Package 'baker'

January 30, 2024

```
Type Package
Title "Nested Partially Latent Class Models"
Version 1.0.3
Date 2024-01-29
Description Provides functions to specify, fit and visualize
     nested partially-latent class models (
     Wu, Deloria-Knoll, Hammitt, and Zeger (2016) <doi:10.1111/rssc.12101>;
     Wu, Deloria-Knoll, and Zeger (2017) <doi:10.1093/biostatistics/kxw037>;
     Wu and Chen (2021) <doi:10.1002/sim.8804>) for
     inference of population disease etiology and individual diagnosis. In the motivating
     Pneumonia Etiology Research for Child Health (PERCH) study, because both quantities
     of interest sum to one hundred percent, the PERCH scientists frequently refer to
     them as population etiology pie and individual etiology pie, hence the name of the package.
Depends R(>= 4.3.0)
Imports rjags(>= 4-6), R2jags(>= 0.5), lubridate(>= 1.3), binom(>=
     1.1), coda(>= 0.16), robCompositions(>= 2.0.3), ggplot2(>=
     1.0), ggpubr(>= 0.4.0), gridExtra(>= 2.0), reshape2(>= 1.4),
     mgcv(>= 1.8-6), mvbutils(>= 2.7.4.1), shinyFiles(>= 0.6),
     shinydashboard(>= 0.5.1), stats, utils, abind
License MIT + file LICENSE
Language en-US
SystemRequirements JAGS (>= 4.3.2) (http://mcmc-jags.sourceforge.net)
Suggests spelling, knitr, testthat, rmarkdown, covr, knitcitations, sf
VignetteBuilder knitr
RoxygenNote 7.2.3
Encoding UTF-8
URL https://github.com/zhenkewu/baker, https://zhenkewu.com/baker/
BugReports https://github.com/zhenkewu/baker/issues
NeedsCompilation no
```

Author Zhenke Wu [cre, aut, cph] (https://orcid.org/0000-0001-7582-669X),
Scott Zeger [aut] (https://orcid.org/0000-0001-8907-1603),
John Muschelli [ctb] (https://orcid.org/0000-0001-6469-1750),
Irena Chen [ctb] (https://orcid.org/0000-0002-9366-8506)

Maintainer Zhenke Wu <zhenkewu@gmail.com>

Repository CRAN

Date/Publication 2024-01-30 08:40:02 UTC

R topics documented:

add_meas_BrS_case_Nest_Slice
add_meas_BrS_case_Nest_Slice_jags
add_meas_BrS_case_NoNest_reg_discrete_predictor_Slice_jags
add_meas_BrS_case_NoNest_reg_Slice_jags
add_meas_BrS_case_NoNest_Slice
add_meas_BrS_case_NoNest_Slice_jags
add_meas_BrS_ctrl_Nest_Slice
add_meas_BrS_ctrl_NoNest_reg_discrete_predictor_Slice_jags
add_meas_BrS_ctrl_NoNest_reg_Slice_jags
add_meas_BrS_ctrl_NoNest_Slice
add_meas_BrS_param_Nest_reg_Slice_jags
add_meas_BrS_param_Nest_Slice
add_meas_BrS_param_Nest_Slice_jags
add_meas_BrS_param_NoNest_reg_discrete_predictor_Slice_jags
add_meas_BrS_param_NoNest_reg_Slice_jags
add_meas_BrS_param_NoNest_Slice
add_meas_BrS_param_NoNest_Slice_jags
add_meas_BrS_subclass_Nest_Slice
add_meas_SS_case
add_meas_SS_param
as.matrix_or_vec
assign_model
baker
beta_parms_from_quantiles
beta_plot
bin2dec
check_dir_create
clean_combine_subsites
clean_perch_data
combine_data_nplcm
compute_logOR_single_cause
compute_marg_PR_nested_reg
compute_marg_PR_nested_reg_array
create_bugs_regressor_Eti
create_bugs_regressor_FPR
data_nplcm_noreg
data nplcm reg nest

delete_start_with	44
dm_Rdate_Eti	
dm_Rdate_FPR	
expit	46
extract_data_raw	47
get_coverage	48
get_direct_bias	49
get_fitted_mean_nested	49
get_fitted_mean_no_nested	50
get_individual_data	51
get_individual_prediction	51
get_latent_seq	53
get_marginal_rates_nested	54
get_marginal_rates_no_nested	54
get_metric	55
get_pEti_samp	55
get_plot_num	56
get_plot_pos	56
get_postsd	57
get_top_pattern	57
H	58
has_non_basis	59
I2symb	59
Imat2cat	60
init_latent_jags_multipleSS	61
insert_bugfile_chunk_noreg_etiology	61
insert_bugfile_chunk_noreg_meas	62
$insert_bugfile_chunk_reg_discrete_predictor_etiology \dots \dots$	63
insert_bugfile_chunk_reg_discrete_predictor_nonest_meas	
insert_bugfile_chunk_reg_etiology	64
insert_bugfile_chunk_reg_nest_meas	
insert_bugfile_chunk_reg_nonest_meas	66
is.error	67
is_discrete	67
is_intercept_only	68
is_jags_folder	68
is_length_all_one	69
jags2_baker	69
line2user	71
loadOneName	73
logit	73
logOR	74
logsumexp	74
lookup_quality	75
make_filename	75
make_foldername	76
make_list	77
make meas object	77

make_numbered_list	. 	 	79
make_template	. 	 	79
marg_H		 	80
match_cause		 	81
merge_lists		 	82
my_reorder		 	82
NA2dot		 	83
nplcm			
nplcm_fit_NoReg			
nplcm_fit_Reg_discrete_predictor_NoNest		 	90
nplcm_fit_Reg_Nest			
nplcm_fit_Reg_NoNest			
nplcm_read_folder			
null_as_zero			
order_post_eti			
overall_uniform			
parse_nplcm_reg			
pathogen_category_perch			
pathogen_category_simulation			
plot.nplcm			
plot_BrS_panel			
plot_case_study			
plot_check_common_pattern			
plot_check_pairwise_SLORD			
plot_etiology_regression			
plot_etiology_strat			
plot_leftmost			
plot_logORmat			
plot_panels			
plot_piacis			
plot_SS_panel			
plot_subwt_regression			
print.nplcm			
print.summary.nplcm.no_reg			
print.summary.nplcm.reg_nest			
print.summary.nplcm.reg_nest_strat			
print.summary.nplcm.reg_nonest			
print.summary.nplcm.reg_nonest_strat			
read_meas_object			
rvbern			
set_prior_tpr_BrS_NoNest			
set_prior_tpr_SS			
set_strat			
show_dep			
show_individual			
simulate_brs			
simulate_latent			
simulate_nplcm		 	-130

150

```
add_meas_BrS_case_Nest_Slice
```

add likelihood for a BrS measurement slice among cases (conditional dependence)

Description

add likelihood for a BrS measurement slice among cases (conditional dependence)

Usage

Index

```
add_meas_BrS_case_Nest_Slice(s, Mobs, cause_list, ppd = NULL)
```

Arguments

s the slice

Mobs See data_nplcm described in nplcm()

cause_list the list of causes in data_nplcm described in nplcm()

ppd Default is NULL; Set to TRUE for enabling posterior predictive checking.

Value

Other likelihood specification functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_NoNest_Slice_add_meas_BrS_case_NoNest_Slice(), add_meas_BrS_case_NoNest_reg_Slice_jags(), add_meas_BrS_case_NoNest_add_meas_BrS_ctrl_NoNest_slice(), add_meas_BrS_ctrl_NoNest_reg_Slice_add_meas_BrS_ctrl_NoNest_reg_discrete_predictor_Slice_jags(), add_meas_BrS_param_Nest_Slice(), add_meas_BrS_param_NoNest_add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_reg_Slice_jags(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_reg_Slice_jags(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_case(), add_meas_BrS_param()

Other plug-and-play functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_NoNest_Slice_jags(), add_meas_BrS_case_NoNest_Slice(), add_meas_BrS_case_NoNest_reg_Slice_jags(), add_meas_BrS_case_NoNest_add_meas_BrS_ctrl_NoNest_slice(), add_meas_BrS_ctrl_NoNest_reg_Slice_add_meas_BrS_ctrl_NoNest_reg_discrete_predictor_Slice_jags(), add_meas_BrS_param_Nest_Slice_jags(), add_meas_BrS_param_Nest_slice(), add_meas_BrS_param_NoNest_add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_reg_Slice_jags(), add_meas_BrS_param_NoNest_add_meas_BrS_subclass_Nest_Slice(), add_meas_SS_case(), add_meas_SS_param()

```
add_meas_BrS_case_Nest_Slice_jags

add likelihood for a BrS measurement slice among cases (conditional

dependence)
```

Description

add likelihood for a BrS measurement slice among cases (conditional dependence)

Usage

```
add_meas_BrS_case_Nest_Slice_jags(s, Mobs, cause_list, ppd = NULL)
```

Arguments

s the slice

Mobs See data_nplcm described in nplcm()

cause_list the list of causes in data_nplcm described in nplcm()

ppd Default is NULL; Set to TRUE for enabling posterior predictive checking.

Value

add_meas_BrS_case_NoNest_Slice(), add_meas_BrS_case_NoNest_reg_Slice_jags(), add_meas_BrS_case_NoNest_add_meas_BrS_ctrl_Nest_Slice(), add_meas_BrS_ctrl_NoNest_reg_Slice_add_meas_BrS_ctrl_NoNest_reg_discrete_predictor_Slice_jags(), add_meas_BrS_param_Nest_Slice_jags(), add_meas_BrS_param_Nest_Slice_jags(), add_meas_BrS_param_NoNest_add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_reg_Slice_jags(), add_meas_BrS_param_NoNest_add_meas_BrS_param_NoNest_slice(), add_meas_BrS_case(), add_meas_BrS_param()

Other plug-and-play functions: add_meas_BrS_case_Nest_Slice(), add_meas_BrS_case_NoNest_slice_jags(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_reg_Slice_jags(), add_meas_BrS_case_NoNest_reg_Slice_jags(), add_meas_BrS_ctrl_NoNest_reg_Slice_jags(), add_meas_BrS_ctrl_NoNest_reg_slice_jags(), add_meas_BrS_param_Nest_Slice(), add_meas_BrS_param_Nest_slice_jags(), add_meas_BrS_param_NoNest_add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_slice_jags(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_reg_slice_jags(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_reg_slice_jags(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_para

Other likelihood specification functions: add_meas_BrS_case_Nest_Slice(), add_meas_BrS_case_NoNest_Slice_jags(

```
add_meas_BrS_case_NoNest_reg_discrete_predictor_Slice_jags

add likelihood component for a BrS measurement slice among cases
```

Description

regression model with no nested subclasses; discrete predictors

Usage

```
add_meas_BrS_case_NoNest_reg_discrete_predictor_Slice_jags(
    s,
    Mobs,
    prior,
    cause_list,
    ppd = NULL
)
```

Arguments

```
s the slice

Mobs See data_nplcm described in nplcm()

prior Prior specifications.

cause_list the list of causes in data_nplcm described in nplcm()

ppd Default is NULL; Set to TRUE for enabling posterior predictive checking.
```

Value

Other likelihood specification functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_Nest_Slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_ctrl_NoNest_reg_slice_jags(), add_meas_BrS_ctrl_NoNest_reg_slice_jags(), add_meas_BrS_param_Nest_slice_jags(), add_meas_BrS_param_Nest_slice_jags(), add_meas_BrS_param_NoNest_add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_reg_slice_jags(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_reg_slice_jags(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_reg_slice_jags(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_reg_slice_jags(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_reg_slice_jags(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_slice(),

Other plug-and-play functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_Nest_Slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_reg_add_meas_BrS_ctrl_Nest_Slice(), add_meas_BrS_ctrl_NoNest_reg_slice_add_meas_BrS_ctrl_NoNest_reg_discrete_predictor_Slice_jags(), add_meas_BrS_param_Nest_Slice_jags(), add_meas_BrS_param_Nest_slice(), add_meas_BrS_param_NoNest_add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_reg_slice_jags(), add_meas_BrS_param_NoNest_add_meas_BrS_subclass_Nest_Slice(), add_meas_SS_case(), add_meas_SS_param()

```
add_meas_BrS_case_NoNest_reg_Slice_jags

add likelihood component for a BrS measurement slice among cases
```

Description

regression model with no nested subclasses

Usage

```
add_meas_BrS_case_NoNest_reg_Slice_jags(s, Mobs, prior, cause_list, ppd = NULL)
```

Arguments

s the slice

Mobs See data_nplcm described in nplcm()

prior Prior specifications.

cause_list the list of causes in data_nplcm described in nplcm()

ppd Default is NULL; Set to TRUE for enabling posterior predictive checking.

Value

Other likelihood specification functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_Nest_Slice(), add_meas_BrS_case_NoNest_Slice(), add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_reg_add_meas_BrS_ctrl_NoNest_reg_slice_add_meas_BrS_ctrl_NoNest_reg_discrete_predictor_slice_jags(), add_meas_BrS_param_Nest_slice(), add_meas_BrS_param_NoNest_add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_reg_slice_jags(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_reg_slice_jags(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_reg_slice_jags(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param()

Other plug-and-play functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_Nest_Slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_reg_add_meas_BrS_ctrl_Nest_Slice(), add_meas_BrS_ctrl_NoNest_reg_slice_add_meas_BrS_ctrl_NoNest_reg_discrete_predictor_slice_jags(), add_meas_BrS_param_Nest_slice_jags(), add_meas_BrS_param_Nest_slice_jags(), add_meas_BrS_param_NoNest_add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_reg_slice_jags(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_reg_slice_jags(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_slice_jags(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_slice_slice(), add_meas_BrS_slice(), a

```
add_meas_BrS_case_NoNest_Slice
```

add a likelihood component for a BrS measurement slice among cases (conditional independence)

Description

add a likelihood component for a BrS measurement slice among cases (conditional independence)

Usage

```
add_meas_BrS_case_NoNest_Slice(s, Mobs, cause_list, ppd = NULL)
```

Arguments

s the slice

Mobs See data_nplcm described in nplcm()

cause_list the list of causes in data_nplcm described in nplcm()

ppd Default is NULL; Set to TRUE for enabling posterior predictive checking.

Value

```
Other likelihood specification functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_Nest_Slice(),
add_meas_BrS_case_NoNest_Slice_jags(), add_meas_BrS_case_NoNest_reg_Slice_jags(),
add_meas_BrS_case_NoNest_reg_discrete_predictor_Slice_jags(),add_meas_BrS_ctrl_Nest_Slice(),
add_meas_BrS_ctrl_NoNest_Slice(), add_meas_BrS_ctrl_NoNest_reg_Slice_jags(), add_meas_BrS_ctrl_NoNest_
add_meas_BrS_param_Nest_Slice_jags(), add_meas_BrS_param_Nest_Slice(), add_meas_BrS_param_Nest_reg_Sl
add_meas_BrS_param_NoNest_Slice_jags(),add_meas_BrS_param_NoNest_Slice(),add_meas_BrS_param_NoNest_
add_meas_BrS_param_NoNest_reg_discrete_predictor_Slice_jags(), add_meas_BrS_subclass_Nest_Slice(),
add_meas_SS_case(), add_meas_SS_param()
Other plug-and-play functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_Nest_Slice(),
add_meas_BrS_case_NoNest_Slice_jags(),add_meas_BrS_case_NoNest_reg_Slice_jags(),
add_meas_BrS_case_NoNest_reg_discrete_predictor_Slice_jags(),add_meas_BrS_ctrl_Nest_Slice(),
add_meas_BrS_ctrl_NoNest_Slice(), add_meas_BrS_ctrl_NoNest_reg_Slice_jags(), add_meas_BrS_ctrl_NoNest_
add_meas_BrS_param_Nest_Slice_jags(), add_meas_BrS_param_Nest_Slice(), add_meas_BrS_param_Nest_reg_Sl
add_meas_BrS_param_NoNest_Slice_jags(), add_meas_BrS_param_NoNest_Slice(), add_meas_BrS_param_NoNest_
add_meas_BrS_param_NoNest_reg_discrete_predictor_Slice_jags(), add_meas_BrS_subclass_Nest_Slice(),
add_meas_SS_case(), add_meas_SS_param()
```

```
{\it add\_meas\_BrS\_case\_NoNest\_Slice\_jags} \\ {\it add\ a\ likelihood\ component\ for\ a\ BrS\ measurement\ slice\ among\ cases} \\ {\it (conditional\ independence)}
```

Description

add a likelihood component for a BrS measurement slice among cases (conditional independence)

Usage

```
add_meas_BrS_case_NoNest_Slice_jags(s, Mobs, prior, cause_list, ppd = NULL)
```

Arguments

s the slice

Mobs See data_nplcm described in nplcm()

prior Prior specifications.

cause_list the list of causes in data_nplcm described in nplcm()

ppd Default is NULL; Set to TRUE for enabling posterior predictive checking.

Value

Other likelihood specification functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_Nest_Slice(), add_meas_BrS_case_NoNest_reg_Slice_jags(), add_meas_BrS_case_NoNest_add_meas_BrS_case_NoNest_reg_Slice_jags(), add_meas_BrS_case_NoNest_add_meas_BrS_ctrl_NoNest_reg_Slice_jags(), add_meas_BrS_ctrl_NoNest_reg_Slice_jags(), add_meas_BrS_param_Nest_Slice_jags(), add_meas_BrS_param_Nest_slice_jags(), add_meas_BrS_param_NoNest_add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_reg_Slice_jags(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_reg_Slice_jags(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_reg_Slice_jags(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_case(), add_meas_BrS_param()

Other plug-and-play functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_Nest_Slice(), add_meas_BrS_case_NoNest_Slice(), add_meas_BrS_case_NoNest_reg_Slice_jags(), add_meas_BrS_case_NoNest_add_meas_BrS_ctrl_NoNest_slice(), add_meas_BrS_ctrl_NoNest_reg_Slice_add_meas_BrS_ctrl_NoNest_reg_discrete_predictor_Slice_jags(), add_meas_BrS_param_Nest_Slice_jags(), add_meas_BrS_param_Nest_slice(), add_meas_BrS_param_NoNest_add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_reg_Slice_jags(), add_meas_BrS_param_NoNest_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_slice(), add_meas_BrS_slice_jags(), add_meas_BrS_param_NoNeadd_meas_BrS_slice(), add_meas_SS_case(), add_meas_SS_param()

```
{\it add\_meas\_BrS\_ctrl\_Nest\_Slice} \\ add\ likelihood\ for\ a\ BrS\ measurement\ slice\ among\ controls\ (conditional\ independence)
```

Description

add likelihood for a BrS measurement slice among controls (conditional independence)

Usage

```
add_meas_BrS_ctrl_Nest_Slice(s, Mobs, cause_list, ppd = NULL)
```

Arguments

s the slice

Mobs See data_nplcm described in nplcm()

cause_list the list of causes in data_nplcm described in nplcm()

ppd Default is NULL; Set to TRUE for enabling posterior predictive checking.

Value

```
Other likelihood specification functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_Nest_Slice(),
add_meas_BrS_case_NoNest_Slice_jags(), add_meas_BrS_case_NoNest_Slice(), add_meas_BrS_case_NoNest_reg
add_meas_BrS_case_NoNest_reg_discrete_predictor_Slice_jags(),add_meas_BrS_ctrl_NoNest_Slice(),
add_meas_BrS_ctrl_NoNest_reg_Slice_jags(),add_meas_BrS_ctrl_NoNest_reg_discrete_predictor_Slice_jag
add_meas_BrS_param_Nest_Slice_jags(), add_meas_BrS_param_Nest_Slice(), add_meas_BrS_param_Nest_reg_Sl
add_meas_BrS_param_NoNest_Slice_jags(),add_meas_BrS_param_NoNest_Slice(),add_meas_BrS_param_NoNest_
add_meas_BrS_param_NoNest_reg_discrete_predictor_Slice_jags(), add_meas_BrS_subclass_Nest_Slice(),
add_meas_SS_case(), add_meas_SS_param()
Other plug-and-play functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_Nest_Slice(),
add\_meas\_BrS\_case\_NoNest\_Slice\_jags(), add\_meas\_BrS\_case\_NoNest\_Slice(), add\_meas\_BrS\_case\_NoNest\_reg. \\
add_meas_BrS_case_NoNest_reg_discrete_predictor_Slice_jags(), add_meas_BrS_ctrl_NoNest_Slice(),
add_meas_BrS_ctrl_NoNest_reg_Slice_jags(),add_meas_BrS_ctrl_NoNest_reg_discrete_predictor_Slice_jag
add_meas_BrS_param_Nest_Slice_jags(), add_meas_BrS_param_Nest_Slice(), add_meas_BrS_param_Nest_reg_Sl
add_meas_BrS_param_NoNest_Slice_jags(),add_meas_BrS_param_NoNest_Slice(),add_meas_BrS_param_NoNest_
add_meas_BrS_param_NoNest_reg_discrete_predictor_Slice_jags(), add_meas_BrS_subclass_Nest_Slice(),
add_meas_SS_case(), add_meas_SS_param()
```

Description

regression model without nested subclasses; discrete

Usage

```
add_meas_BrS_ctrl_NoNest_reg_discrete_predictor_Slice_jags(
    s,
    Mobs,
    cause_list,
    ppd = NULL
)
```

Arguments

s the slice

Mobs See data_nplcm described in nplcm()

cause_list the list of causes in data_nplcm described in nplcm()

ppd Default is NULL; Set to TRUE for enabling posterior predictive checking.

Value

Other likelihood specification functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_Nest_Slice(), add_meas_BrS_case_NoNest_Slice(), add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_discrete_predictor_Slice_jags(), add_meas_BrS_ctrl_Nest_Slice(), add_meas_BrS_ctrl_NoNest_Slice(), add_meas_BrS_ctrl_NoNest_reg_Slice_jags(), add_meas_BrS_param_Nest_add_meas_BrS_param_Nest_slice(), add_meas_BrS_param_NoNest_reg_Slice_jags(), add_meas_BrS_param_NoNest_add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_reg_Slice_jags(), add_meas_BrS_param_NoNeadd_meas_BrS_subclass_Nest_Slice(), add_meas_SS_case(), add_meas_SS_param()

Other plug-and-play functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_Nest_Slice(), add_meas_BrS_case_NoNest_Slice(), add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_slice(), add_meas_BrS_ctrl_NoNest_reg_Slice_jags(), add_meas_BrS_param_Nest_add_meas_BrS_param_Nest_slice(), add_meas_BrS_param_NoNest_add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_reg_Slice_jags(), add_meas_BrS_param_NoNest_add_meas_BrS_subclass_Nest_Slice(), add_meas_SS_case(), add_meas_SS_param()

Description

regression model without nested subclasses

Usage

```
add_meas_BrS_ctrl_NoNest_reg_Slice_jags(s, Mobs, cause_list, ppd = NULL)
```

Arguments

s the slice

Mobs See data_nplcm described in nplcm()

cause_list the list of causes in data_nplcm described in nplcm()

ppd Default is NULL; Set to TRUE for enabling posterior predictive checking.

Value

Other likelihood specification functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_Nest_Slice(), add_meas_BrS_case_NoNest_Slice(), add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_param_Nest_reg_slice(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_case(), add

Other plug-and-play functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_Nest_Slice(), add_meas_BrS_case_NoNest_Slice(), add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_param_Nest_slice(), add_meas_BrS_param_Nest_reg_slice(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_add_meas_BrS_param_NoNest_slice(), add_meas_BrS_subclass_Nest_slice(), add_meas_BrS_case(), a

```
add_meas_BrS_ctrl_NoNest_Slice

add a likelihood component for a BrS measurement slice among con-
trols (conditional independence)
```

Description

add a likelihood component for a BrS measurement slice among controls (conditional independence)

Usage

```
add_meas_BrS_ctrl_NoNest_Slice(s, Mobs, cause_list, ppd = NULL)
```

Arguments

s the slice

Mobs See data_nplcm described in nplcm()

cause_list the list of causes in data_nplcm described in nplcm()

ppd Default is NULL; Set to TRUE for enabling posterior predictive checking.

Value

```
add_meas_BrS_case_NoNest_reg_discrete_predictor_Slice_jags(), add_meas_BrS_ctrl_Nest_Slice(), add_meas_BrS_ctrl_NoNest_reg_Slice_jags(), add_meas_BrS_ctrl_NoNest_reg_discrete_predictor_Slice_jag add_meas_BrS_param_Nest_Slice(), add_meas_BrS_param_Nest_reg_Sl add_meas_BrS_param_NoNest_Slice(), add_meas_BrS_param_NoNest_reg_Slice(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_add_meas_BrS_param_NoNest_reg_discrete_predictor_Slice_jags(), add_meas_BrS_subclass_Nest_Slice(), add_meas_SS_case(), add_meas_BrS_case_NoNest_Slice(), add_meas_BrS_case_NoNest_Slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_slice_jags(), add_meas_BrS_ctrl_NoNest_reg_discrete_predictor_Slice_jags(), add_meas_BrS_case_predictor_slice_jags(), add_meas_BrS_param_Nest_slice(), add_meas_BrS_param_Nest_reg_slice_jags(), add_meas_BrS_param_NoNest_reg_slice_jags(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoN
```

Other likelihood specification functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_Nest_Slice(), add_meas_BrS_case_NoNest_Slice(), add_meas_BrS_case_NoNest_reg

```
add_meas_BrS_param_Nest_reg_Slice_jags

add parameters for a BrS measurement slice among cases and controls
```

Description

regression model with nested subclasses; called by insert_bugfile_chunk_reg_nest_meas

Usage

```
add_meas_BrS_param_Nest_reg_Slice_jags(
    s,
    Mobs,
    prior,
    cause_list,
    FPR_formula = NULL
)
```

Arguments

```
s the slice

Mobs See data_nplcm described in nplcm()

prior Prior specifications.

cause_list the list of causes in data_nplcm described in nplcm()

FPR_formula False positive regression formula for slice s of BrS data. Check model_options$likelihood$FPR_formula
```

Value

a list of two elements: the first is plug, the .bug code; the second is parameters that stores model parameters introduced by this plugged measurement slice

See Also

Other likelihood specification functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_Nest_Slice(), add_meas_BrS_case_NoNest_Slice_jags(), add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_discrete_predictor_Slice_jags(), add_meas_BrS_ctrl_Nest_Slice(), add_meas_BrS_ctrl_NoNest_slice_jags(), add_meas_BrS_ctrl_NoNest_add_meas_BrS_param_Nest_Slice_jags(), add_meas_BrS_param_NoNest_Slice(), add_meas_BrS_param_NoNest_Slice(), add_meas_BrS_param_NoNest_Slice_jags(), add_meas_BrS_param_NoNest_slice_jags(), add_meas_BrS_param_NoNest_slice_jags(), add_meas_BrS_param_NoNest_slice_jags(), add_meas_BrS_param_NoNest_slice_jags(), add_meas_BrS_param_NoNest_slice_jags(), add_meas_BrS_param_NoNest_slice_jags(), add_meas_BrS_case_Nest_slice(), add_meas_BrS_case_Nest_slice_jags(), add_meas_BrS_case_Nest_slice(), add_mea

other programs functions, add_meas_brs_case_Nest_stree_jags(), add_meas_brs_case_Nest_stree(), add_meas_brs_case_NoNest_reg_add_meas_brs_case_NoNest_reg_add_meas_brs_case_NoNest_reg_discrete_predictor_slice_jags(), add_meas_brs_ctrl_Nest_slice(), add_meas_brs_ctrl_NoNest_reg_slice_jags(), add_meas_brs_ctrl_NoNest_add_meas_brs_param_Nest_slice(), add_meas_brs_param_NoNest_slice(), add_meas_brs_param_NoNest_slice(), add_meas_brs_param_NoNest_reg_slice_jags(), add_meas_brs_param_NoNest_slice(), add_meas_brs_param_NoNest_slice(), add_meas_brs_param_NoNest_slice(), add_meas_brs_param_NoNest_slice(), add_meas_brs_param_NoNest_slice(), add_meas_brs_param()

```
add_meas_BrS_param_Nest_Slice
```

add parameters for a BrS measurement slice among cases and controls (conditional dependence)

Description

add parameters for a BrS measurement slice among cases and controls (conditional dependence)

Usage

```
add_meas_BrS_param_Nest_Slice(s, Mobs, cause_list)
```

Arguments

s the slice

Mobs See data_nplcm described in nplcm()

cause_list the list of causes in data_nplcm described in nplcm()

Value

Other likelihood specification functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_Nest_Slice(), add_meas_BrS_case_NoNest_Slice_jags(), add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_discrete_predictor_Slice_jags(), add_meas_BrS_ctrl_Nest_Slice(), add_meas_BrS_ctrl_NoNest_reg_Slice_jags(), add_meas_BrS_ctrl_NoNest_add_meas_BrS_param_Nest_Slice_jags(), add_meas_BrS_param_NoNest_BrS_param_NoNest_BrS_param_NoNest_Slice_jags(), add_meas_BrS_param_NoNest_BrS_para

Other plug-and-play functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_Nest_Slice(), add_meas_BrS_case_NoNest_Slice(), add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_slice_jags(), add_meas_BrS_ctrl_NoNest_slice(), add_meas_BrS_ctrl_NoNest_reg_slice_jags(), add_meas_BrS_ctrl_NoNest_add_meas_BrS_param_Nest_slice(), add_meas_BrS_param_NoNest_reg_slice_jags(), add_meas_BrS_param_NoNest_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_reg_slice_jags(), add_meas_BrS_param_NoNeadd_meas_BrS_subclass_Nest_slice(), add_meas_SS_case(), add_meas_SS_param()

```
add_meas_BrS_param_Nest_Slice_jags
```

add parameters for a BrS measurement slice among cases and controls (conditional dependence)

Description

add parameters for a BrS measurement slice among cases and controls (conditional dependence)

Usage

```
add_meas_BrS_param_Nest_Slice_jags(s, Mobs, cause_list)
```

Arguments

s the slice

Mobs See data_nplcm described in nplcm()

cause_list the list of causes in data_nplcm described in nplcm()

Value

```
Other likelihood specification functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_Nest_Slice(), add_meas_BrS_case_NoNest_Slice(), add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_ctrl_NoNest_reg_slice_jags(), add_meas_BrS_ctrl_NoNest_slice(), add_meas_BrS_ctrl_NoNest_reg_slice_jags(), add_meas_BrS_ctrl_NoNest_add_meas_BrS_param_Nest_Slice(), add_meas_BrS_param_NoNest_reg_slice_jags(), add_meas_BrS_param_NoNest_add_meas_BrS_subclass_Nest_slice(), add_meas_BrS_param_NoNest_reg_slice_jags(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_Slice_jags(), add_meas_BrS_case_Slice_jags(), add_meas_BrS_case_Slice_jags(), add_meas_BrS_param_NoNest_add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_reg_slice_jags(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_p
```

```
add\_meas\_BrS\_param\_NoNest\_reg\_discrete\_predictor\_Slice\_jags \\ add\ parameters\ for\ a\ BrS\ measurement\ slice\ among\ cases\ and\ controls
```

Description

regression model with no nested subclasses; discrete

Usage

```
add_meas_BrS_param_NoNest_reg_discrete_predictor_Slice_jags(
    s,
    Mobs,
    prior,
    cause_list
)
```

Arguments

```
s the slice

Mobs See data_nplcm described in nplcm()

prior Prior specifications.

cause_list the list of causes in data_nplcm described in nplcm()
```

Value

```
Other likelihood specification functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_Nest_Slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_ctrl_NoNest_reg_slice_jags(), add_meas_BrS_ctrl_NoNest_slice(), add_meas_BrS_ctrl_NoNest_slice_jags(), add_meas_BrS_param_Nest_slice(), add_meas_BrS_param_Nest_reg_sladd_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_add_meas_BrS_subclass_Nest_slice(), add_meas_BrS_case(), add_meas_BrS_case_Nest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_param_Nest_reg_slice(), add_meas_BrS_param_Nest_reg_slice(), add_meas_BrS_param_Nest_reg_slice(), add_meas_BrS_param_NoNest_slice(), add_meas
```

```
{\it add\_meas\_BrS\_param\_NoNest\_reg\_Slice\_jags} \\ {\it add\ parameters\ for\ a\ BrS\ measurement\ slice\ among\ cases\ and\ controls} \\
```

Description

regression model with no nested subclasses

Usage

```
add_meas_BrS_param_NoNest_reg_Slice_jags(
    s,
    Mobs,
    prior,
    cause_list,
    FPR_formula
)
```

Arguments

```
s the slice

Mobs See data_nplcm described in nplcm()

prior Prior specifications.
```

cause_list the list of causes in data_nplcm described in nplcm()

FPR_formula False positive regression formula for slice s of BrS data. Check model_options\$likelihood\$FPR_formu

Value

Other likelihood specification functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_Nest_Slice(), add_meas_BrS_case_NoNest_Slice(), add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_discrete_predictor_Slice_jags(), add_meas_BrS_ctrl_Nest_Slice(), add_meas_BrS_ctrl_NoNest_reg_Slice_jags(), add_meas_BrS_ctrl_NoNest_add_meas_BrS_param_Nest_Slice(), add_meas_BrS_param_Nest_reg_Slice(), add_meas_BrS_param_Nest_reg_Slice(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_add_meas_BrS_subclass_Nest_Slice(), add_meas_BrS_param()

Other plug-and-play functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_Nest_Slice(), add_meas_BrS_case_NoNest_Slice(), add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_discrete_predictor_Slice_jags(), add_meas_BrS_ctrl_Nest_Slice(), add_meas_BrS_ctrl_NoNest_reg_Slice_jags(), add_meas_BrS_ctrl_NoNest_add_meas_BrS_param_Nest_Slice_jags(), add_meas_BrS_param_Nest_Slice(), add_meas_BrS_param_Nest_reg_Sladd_meas_BrS_param_NoNest_Slice(), add_meas_BrS_param_NoNest_add_meas_BrS_subclass_Nest_Slice(), add_meas_SS_case(), add_meas_SS_param()

add_meas_BrS_param_NoNest_Slice

add parameters for a BrS measurement slice among cases and controls (conditional independence)

Description

add parameters for a BrS measurement slice among cases and controls (conditional independence)

Usage

```
add_meas_BrS_param_NoNest_Slice(s, Mobs, cause_list)
```

Arguments

s the slice

Mobs See data_nplcm described in nplcm()

cause_list the list of causes in data_nplcm described in nplcm()

Value

```
add_meas_BrS_case_NoNest_Slice_jags(), add_meas_BrS_case_NoNest_Slice(), add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_discrete_predictor_Slice_jags(), add_meas_BrS_ctrl_Nest_Slice(), add_meas_BrS_ctrl_NoNest_slice(), add_meas_BrS_ctrl_NoNest_reg_Slice_jags(), add_meas_BrS_ctrl_NoNest_add_meas_BrS_param_Nest_Slice_jags(), add_meas_BrS_param_Nest_reg_Slice_jags(), add_meas_BrS_param_NoNest_reg_Slice_jags(), add_meas_BrS_param_NoNest_reg_Slice_jags(), add_meas_BrS_param_NoNest_reg_discrete_predictor_Slice_jags(), add_meas_BrS_subclass_Nest_Slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice_jags(), add_meas_BrS_case_NoNest_reg_slice_jags(), add_meas_BrS_param_Nest_slice_jags(), add_meas_BrS_param_Nest_slice_jags(), add_meas_BrS_param_Nest_reg_slice_jags(), add_meas_BrS_param_NoNest_reg_slice_jags(), add_meas_BrS_param_NoNest_reg_slice_jags(), add_meas_BrS_param_NoNest_reg_slice_jags(), add_meas_BrS_param_NoNest_reg_slice_jags(), add_meas_BrS_param_NoNest_reg_slice_jags(), add_meas_BrS_param_NoNest_reg_slice_jags(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_No
```

Other likelihood specification functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_Nest_Slice(),

```
add_meas_BrS_param_NoNest_Slice_jags

add parameters for a BrS measurement slice among cases and controls

(conditional independence)
```

Description

add parameters for a BrS measurement slice among cases and controls (conditional independence)

Usage

```
add_meas_BrS_param_NoNest_Slice_jags(s, Mobs, prior, cause_list)
```

Arguments

s the slice

Mobs See data_nplcm described in nplcm()

prior Prior specifications.

cause_list the list of causes in data_nplcm described in nplcm()

Value

Other likelihood specification functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_Nest_Slice(), add_meas_BrS_case_NoNest_Slice(), add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_slice(), add_meas_BrS_ctrl_NoNest_reg_slice_jags(), add_meas_BrS_ctrl_NoNest_add_meas_BrS_param_Nest_slice(), add_meas_BrS_param_Nest_reg_slice_jags(), add_meas_BrS_param_NoNest_reg_slice_jags(), add_meas_BrS_param_NoNest_reg_slice_jags(), add_meas_BrS_param_NoNeadd_meas_BrS_subclass_Nest_slice(), add_meas_BrS_case(), add_meas_SS_param()

Other plug-and-play functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_Nest_Slice(), add_meas_BrS_case_NoNest_Slice(), add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_discrete_predictor_Slice_jags(), add_meas_BrS_ctrl_Nest_Slice(), add_meas_BrS_ctrl_NoNest_slice(), add_meas_BrS_ctrl_NoNest_reg_Slice_jags(), add_meas_BrS_ctrl_NoNest_add_meas_BrS_param_Nest_Slice(), add_meas_BrS_param_Nest_Slice(), add_meas_BrS_param_Nest_reg_Slice_jags(), add_meas_BrS_param_NoNest_reg_Slice_jags(), add_meas_BrS_param_NoNest_BrS_param_NoNest_Slice(), add_meas_BrS_case(), add_meas_BrS_param()

add_meas_BrS_subclass_Nest_Slice

add subclass indicators for a BrS measurement slice among cases and controls (conditional independence)

Description

add subclass indicators for a BrS measurement slice among cases and controls (conditional independence)

Usage

```
add_meas_BrS_subclass_Nest_Slice(s, Mobs, cause_list, ppd = NULL, reg = NULL)
```

Arguments

s the slice

Mobs See data_nplcm described in nplcm()

cause_list the list of causes in data_nplcm described in nplcm()

ppd Default is NULL; Set to TRUE for enabling posterior predictive checking.

reg Default is NULL; set to TRUE if doing regression (double index of subclass

weights: subject and subclass)

Value

add_meas_SS_case 23

See Also

Other likelihood specification functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_Nest_Slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_slice_jags(), add_meas_BrS_ctrl_Nest_slice(), add_meas_BrS_ctrl_NoNest_reg_slice_jags(), add_meas_BrS_ctrl_NoNest_add_meas_BrS_param_Nest_slice_jags(), add_meas_BrS_param_Nest_slice(), add_meas_BrS_param_Nest_reg_slice_jags(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_add_meas_BrS_param_NoNest_reg_discrete_predictor_slice_jags(), add_meas_SS_case(), add_meas_SS_param()

Other plug-and-play functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_Nest_Slice(), add_meas_BrS_case_NoNest_Slice_jags(), add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_slice_jags(), add_meas_BrS_ctrl_NoNest_Slice(), add_meas_BrS_ctrl_NoNest_reg_Slice_jags(), add_meas_BrS_ctrl_NoNest_add_meas_BrS_param_Nest_Slice_jags(), add_meas_BrS_param_Nest_Slice(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_add_meas_BrS_param_NoNest_reg_discrete_predictor_Slice_jags(), add_meas_SS_case(), add_meas_SS_param()

add_meas_SS_case add likelihood for a SS measurement slice among cases (conditional independence)

Description

add likelihood for a SS measurement slice among cases (conditional independence)

Usage

```
add_meas_SS_case(nslice, Mobs, prior, cause_list)
```

Arguments

nslice the total number of SS measurement slices

Mobs see data_nplcm described in nplcm()

prior see model_options described in nplcm()

cause_list the list of causes in model_options described in nplcm()

Value

Other likelihood specification functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_Nest_Slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_BrS_case_NoNest_reg_slice(), add_meas_BrS_case_NoNest_reg_slice(), add_meas_BrS_case_NoNest_reg_slice(), add_meas_BrS_case_NoNest_slice(), add_meas_B

Other plug-and-play functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_Nest_Slice(), add_meas_BrS_case_NoNest_slice_jags(), add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_slice_jags(), add_meas_BrS_ctrl_NoNest_slice(), add_meas_BrS_ctrl_NoNest_reg_slice_jags(), add_meas_BrS_ctrl_NoNest_add_meas_BrS_param_Nest_slice_jags(), add_meas_BrS_param_Nest_slice(), add_meas_BrS_param_NoNest_reg_slice_jags(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_add_meas_BrS_param_NoNest_reg_discrete_predictor_slice_jags(), add_meas_BrS_subclass_Nest_slice(), add_meas_SS_param()

add_meas_SS_param add parameters for a SS measurement slice among cases (conditional independence)

Description

add parameters for a SS measurement slice among cases (conditional independence)

Usage

```
add_meas_SS_param(nslice, Mobs, prior, cause_list)
```

Arguments

nslice the total number of SS measurement slices

Mobs see data_nplcm described in nplcm()

prior see model_options described in nplcm()

cause_list the list of causes in model_options described in nplcm()

Value

as.matrix_or_vec 25

See Also

Other likelihood specification functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_Nest_Slice(), add_meas_BrS_case_NoNest_Slice(), add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_discrete_predictor_Slice_jags(), add_meas_BrS_ctrl_Nest_Slice(), add_meas_BrS_ctrl_NoNest_slice(), add_meas_BrS_ctrl_NoNest_reg_Slice_jags(), add_meas_BrS_ctrl_NoNest_add_meas_BrS_param_Nest_Slice_jags(), add_meas_BrS_param_Nest_reg_Slice(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_subclass_Nest_Slice(), add_meas_BrS_case()

Other plug-and-play functions: add_meas_BrS_case_Nest_Slice_jags(), add_meas_BrS_case_Nest_Slice(), add_meas_BrS_case_NoNest_Slice(), add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_reg_add_meas_BrS_case_NoNest_slice(), add_meas_BrS_ctrl_NoNest_reg_slice_jags(), add_meas_BrS_ctrl_NoNest_add_meas_BrS_param_Nest_slice(), add_meas_BrS_param_Nest_reg_slice(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_param_NoNest_slice(), add_meas_BrS_subclass_Nest_slice(), add_meas_BrS_case()

as.matrix_or_vec

convert one column data frame to a vector

Description

convert one column data frame to a vector

Usage

```
as.matrix_or_vec(x)
```

Arguments

Х

an one-column data.frame

Details

JAGS cannot accept a data frame with one column; This function converts it to a vector, which JAGS will allow.

Value

a vector

26 assign_model

ssign_model

Description

assign_model translates options specified by a user (e.g., in model_options) into information that can be understood by baker.

Usage

```
assign_model(model_options, data_nplcm, silent = TRUE)
```

Arguments

```
model_options See nplcm() function.

data_nplcm Data. See nplcm() function for data structure.

silent Default is TRUE for no messages; FALSE otherwise.
```

Details

assign_model will be modified to check if data are conformable to specified model.

Value

A list of model specifications:

- num_slice A vector counting the No. of measurement slices for each level of measurement quality (e.g., MBS, MSS, MGS representing Bronze-Standard Measurements case-control, Silver-Standard Measurements and Gold-Standard Measurements case-only);
- nested Local dependence specification for modeling bronze-standard data. TRUE for nested
 models (conditional dependence given disease class); FALSE for non-nested models (conditional independence given disease class). One for each BrS slice.
- regression
 - do_reg_Eti TRUE for doing etiology regression. It means let the etiology fractions vary with explanatory variables. FALSE otherwise;
 - do_reg_FPR A vector whose names represent the slices of bronze-standard data. For each slice of BrS measurements, TRUE does false positive rate regression. It means the false positive rates, estimatable from controls, can vary with covariates; FALSE otherwise.
 - is_discrete_predictor A list of names "Eti", and the names for every slice of bronze-standard data. TRUE if all predictors are discrete; FALSE otherwise.

baker 27

Examples

```
cause_list <- c(LETTERS[1:6])</pre>
J.BrS <- 6
model_options_no_reg <- list(</pre>
likelihood = list(
  cause_list = cause_list,
  k_subclass = 2,
  Eti_formula = \sim -1,
  # no covariate for the etiology regression
  FPR_formula = list(
   MBS1 = \sim -1)
    # no covariate for the subclass weight regression
),
use_measurements = c("BrS"),
# use bronze-standard data only for model estimation.
prior= list(
  Eti_prior = overall_uniform(1,cause_list),
  # Dirichlet(1, ..., 1) prior for the etiology.
  TPR_prior = list(BrS = list(
    info = "informative", # informative prior for TPRs
    input = "match_range",
    # specify the informative prior for TPRs by specifying a plausible range.
    val = list(MBS1 = list(up = list(rep(0.99, J.BrS)),
    # upper ranges: matched to 97.5% quantile of a Beta prior
                           low = list(rep(0.55, J.BrS)))
                            # lower ranges: matched to 2.5% quantile of a Beta prior
  )
  )
)
data("data_nplcm_noreg")
assign_model(model_options_no_reg,data_nplcm_noreg)
```

baker

baker: Bayesian Analytic Kit for Etiology Research

Description

baker is designed for disease etiology studies from case-control data with multiple sources of measurements with potential errors. If you are interested in estimating the population etiology pie (a vector of fractions that sum to one), and the probability of each cause for a particular individual case, try baker.

Details

baker implements hierarchical Bayesian models to infer disease etiology for multivariate binary data. We created baker to catalyze effective communications between analysts and practicing clinicians that are vital to the success of etiology studies. The baker package offers modules to

- Import and tidy the PERCH data (the study that motivates the creation of this package),
- Transform, explore the data,
- Specify, automatically generate the model files, and fit the models (npLCM),
- Store and visualize posterior summaries for communicating scientific findings, and
- Check and compare the fitted models.

baker has implemented models for dependent measurements given disease status, regression analyses of etiology, multiple imperfect measurements, different priors for true positive rates among cases with differential measurement characteristics, and multiple-pathogen etiology. Scientists in Pneumonia Etiology Research for Child Health (PERCH) study usually refer to the etiology distribution as "population etiology pie" and "individual etiology pie" for their compositional nature, hence the name of the package (baking the pie).

Value

No returned value; documentation purpose only.

baker functions

```
nplcm()
```

See Also

• https://github.com/zhenkewu/baker for the source code and system/software requirements to use baker for your data.

```
beta_parms_from_quantiles
```

Pick parameters in the Beta distribution to match the specified range

Description

beta_parms_from_quantiles produces prior Beta parameters for the true positive rates (TPR)

Usage

```
beta_parms_from_quantiles(
   q,
   p = c(0.025, 0.975),
   precision = 0.001,
   derivative.epsilon = 0.001,
   start.with.normal.approx = TRUE,
   start = c(1, 1),
   plot = FALSE
)
```

beta_plot 29

Arguments

A vector of lower and upper bounds, in which Beta distribution will have quanq

tiles specified by p. For example, q=c(0.5,0.99)

р The lower and upper quantiles of the range one wants to specify.

precision Approximation precisions.

derivative.epsilon

Precision of calculating derivative.

start.with.normal.approx

Default is TRUE, for normal approximation.

Starting values of beta parameters. start

plot Default is FALSE to suppress plotting of the beta density, otherwise, set to TRUE.

Value

A list containing the selected Beta parameters a, and b. Other elements of the list include some details about the computations involved in finding a and b.

References

```
http://www.medicine.mcgill.ca/epidemiology/Joseph/PBelisle/BetaParmsFromQuantiles.
html
```

Examples

```
beta_parms_from_quantiles(c(0.5,0.99))
```

beta_plot

Plot beta density

Description

Plot beta density

Usage

```
beta_plot(a, b)
```

Arguments

The first parameter а

b The second parameter 30 check_dir_create

Value

None

Examples

```
beta_plot(2,2)
```

bin2dec

Convert a 0/1 binary-coded sequence into decimal digits

Description

Useful when try to list all the binary patterns. One can group the binary sequences according to their equivalent decimal values.

Usage

```
bin2dec(binary_vector)
```

Arguments

```
binary_vector a binary number
```

Value

a decimal number

Examples

```
bin2dec(c(1,0,1))
```

check_dir_create

check existence and create folder if non-existent

Description

check existence and create folder if non-existent

Usage

```
check_dir_create(path)
```

clean_combine_subsites

Arguments

path

Folder path to check and create if not there.

Value

```
the same returned values for dir.create()
```

Examples

```
check_dir_create(tempdir())
```

clean_combine_subsites

Combine subsites in raw PERCH data set

Description

In the Actual PERCH data set, a study site may have multiple subsites. clean_combine_subsites combines all the study subjects from the same site.

Usage

```
clean_combine_subsites(raw_meas_dir, subsites_list, newsites_vec)
```

Arguments

raw_meas_dir The file path to the raw data file (.csv)

subsites_list The list of subsite group names. Each group is a vector of subsites to be com-

bined

 ${\tt newsites_vec} \qquad A \ vector \ of \ new \ site \ names. \ It \ has \ the \ same \ length \ as \ "subsites_list"$

Value

A data frame with combined sites

32 clean_perch_data

clean_perch_data

Clean PERCH data

Description

clean_perch_data transforms a raw data table (row for subjects, column for variables - named as {pathogen name}_{specimen}{test} for lab tests or other covariates) into a list. It is designed for PERCH data format.

Usage

```
clean_perch_data(clean_options)
```

Arguments

clean_options

The list of options for cleaning PERCH data. Its elements are defined as follows:

raw_meas_dir : The file path to the raw data;

case_def : Variable name in raw data for **case** definition;

case_def_val : The value for case definition;

ctrl def: Variable name in raw data for **control** definition:

ctrl_def_val : The value for control definition;

X_strat : A vector of variable names for stratifying the data to perform SEP-ARATE analyses;

X_strat_val : A list of values for X_strat. The output data only have individuals with identical(X_strat, X_strat_val)==TRUE. To perform analysis on a single site, say "02GAM", use X_strat="newSITE" and X_strat_val=list("02GAM");

BrS_objects : A list of BrS objects built by make_meas_object();

SS_objects : A list of SS objects built by make_meas_object();

X_extra: A vector of covariate names for regression or visualization;

patho_taxo_dir : The file path to the pathogen category or taxonomy information (.csv). The information should be as complete as possible for a particular analysis. If not, the pathogen without taxonomy information could not be assigned to bacterial or viral groups (see plot_group_etiology()); See assign_taxo_cause_list() that requires this taxonomy information..

Value

A List: list(Mobs,Y,X)

- Mobs A list of bronze- (MBS), silver- (MSS), and gold-standard (MGS, if available) measurements. See the formats of these measurements in extract_data_raw().
- Y 1 for case; 0 for control;
- X Data frame of covariates for cases and controls. The covariate names are specified in X extra:

This function does not re-order pathogens that only have silver-standard data.

combine_data_nplcm 33

See Also

make_meas_object for wrapping information about a particular type of measurement; extract_data_raw for reading raw data table and organizing them into data_nplcm format. Also see clean_combine_subsites for combining subsites and parse_date_time for parsing date.

```
combine\_data\_nplcm \qquad combine\ multiple\ data\_nplcm\ (useful\ when\ simulating\ data\ from\ regression\ models)
```

Description

combine multiple data_nplcm (useful when simulating data from regression models)

Usage

```
combine_data_nplcm(data_nplcm_list)
```

Arguments

Value

a list with each element resulting from row binding of each corresponding element in the input data_nplcm_list.

See Also

Other data operation functions: merge_lists(), subset_data_nplcm_by_index()

Examples

```
N=100
Y = rep(c(1,0), times=50) # simulate two cases and two controls.
out_list <- vector("list",length=N)</pre>
                               # number of causes
cause_list = c(LETTERS[1:J]) # cause list
K = 2
                               # number of subclasses
lambda = c(.8,.2)
                                 # subclass weights for control group
eta = c(.9,.1)
                                 # subclass weights for case group
for (i in 1:N){
  #setup parameters for the present individual:
  set_parameter <- list(</pre>
   cause_list = cause_list,
   etiology
                  = c(0.5, 0.2, 0.3), # only meaningful for cases
    pathogen_BrS = LETTERS[1:J],
```

```
= LETTERS[1:2],
    pathogen_SS
   meas_nm
                    = list(MBS = c("MBS1"), MSS=c("MSS1")),
    Lambda
                    = lambda,
                                        # for BrS
                    = t(replicate(J,eta)), # case subclass weight for BrS
   Eta
                    = cbind(c(0.15, 0.3, 0.35),
   PsiBS
                             c(0.25, 0.2, 0.15)), # FPR
    PsiSS
                     = cbind(rep(0,J),rep(0,J)),
    ThetaBS
                     = cbind(c(0.95, 0.9, 0.85),
                             c(0.95, 0.9, 0.85)),
                     = cbind(c(0.25,0.10),
    ThetaSS
                             c(0.25, 0.10)),
                  1,
   Nd
   Nu
            =
                   1
 simu_out <- simulate_nplcm(set_parameter)</pre>
 out <- simu_out$data_nplcm</pre>
 out_list[[i]] \leftarrow out
}
# extract cases and controls and combine all the data into one:
data_nplcm_list <- lapply(1:N, function(s) subset_data_nplcm_by_index(out_list[[s]],2-Y[s]))</pre>
data_nplcm_unordered
                           <- combine_data_nplcm(data_nplcm_list)</pre>
```

compute_logOR_single_cause

Calculate marginal log odds ratios

Description

This only works for single-agent causes

Usage

```
compute_logOR_single_cause(set_parameter)
```

Arguments

set_parameter

True model parameters in an npLCM specification:

cause_list a vector of disease class names among cases (since the causes could be multi-agent (e.g., multiple pathogens may cause an individual case's pneumonia), so its length could be longer than the total number of unique causative agents)

etiology a vector of proportions that sum to 100 percent

pathogen_BrS a vector of putative causative agents' names measured in bronzestandard (BrS) data. This function simulates only one slice defined by specimen``test``pathogen

pathogen_SS a vector of pathogen names measured in silver-standard (SS) data.

meas_nm a list of specimen``test names e.g., list(MBS = c("NPPCR"), MSS="BCX") for nasopharyngeal (NP) specimen tested by polymerase chain reaction (PCR) - NPPCR and blood (B) tested by culture (Cx) - BCX

Lambda controls' subclass weights $\nu_1, \nu_2, \dots, \nu_K$ a vector of K probabilities that sum to 1.

Eta a matrix of dimension length(cause_list) by K; each row represents a disease class (among cases); the values in that row are subclass weights $\eta_1, \eta_2, \ldots, \eta_K$ for that disease class, so needs to sum to one. In Wu et al. 2016 (JRSS-C), the subclass weights are the same across disease classes across rows. But when simulating data, one can specify rows with distinct subclass weights - it is a matter whether we can recover these parameters (possible when some cases' true disease classes are observed)

PsiBS/PsiSS False positive rates for Bronze-Standard data and for Silver-Standard data. For example, the rows of PsiBS correspond to the dimension of the particular slice of BrS measures, e.g., 10 for 10 causative agents measured by NPPCR; the columns correspond to K subclasses; generically, the dimension is J by K PsiSS is supposed to be a vector of all zeros (perfect specificity in silver-standard measures).

ThetaBS/ThetaSS True positive rates Θ for Bronze-Standard data and for Silver-Standard data. Dimension is J by K (can contain NA if the total number of causative agents measured by BrS or SS exceeds the measured causative agents in SS. For example, in PERCH study, nasopharyngeal polymerase chain reaction (NPPCR; bronze-standard) may target 30 distinct pathogens, but blood culture (BCX; silver-standard) may only target a subset of the 30, so we have to specify NA in ThetaSSfor those pathogens not targeted by BCX).

Nu the number of control subjects Nd the number of case subjects

Value

a matrix of log odds ratio. See the example for a figure showing pairwise odds ratios for cases (upper right, solid lines) and controls (lower left, broken lines) as the first subclass weight increases from 0 to 1. Pairwise independence is represented by the dotted horizontal lines for reference.

Examples

```
it <- layout(matrix(1:J^2,nrow=J,ncol=J,byrow=TRUE),</pre>
            heights = rep(3,J),
            widths = rep(3,J))
oldpar <- par(oma=c(8,10,8,3));
pch_seq_cause <- LETTERS[1:J]</pre>
lty_seq_cause <- 1+(1:J)</pre>
pch_pos_seq <- c(0.01); gap = 0.15
adj_seq \leftarrow c(0.15, 0.5, 0.85) # for roman numerals:
cex1
          <- 2
cex_label1 <- 1
cex2
       <- 2
cex_label2 <- 2
cex_margin_marks <- 2</pre>
for (scn in c(1,2,3)){
for (iter in seq_along(subclass_mix_seq)){
   curr_mix <- subclass_mix_seq[iter]</pre>
   lambda <- c(curr_mix,1-curr_mix)</pre>
          <- c(curr_mix,1-curr_mix)
   \# if it is c(1,0), then it is conditional independence model, and
   # only the first column of parameters in PsiBS, ThetaBS matter!
   seed_start <- 20150923
   # set fixed simulation sequence:
   set.seed(seed_start)
   if (scn == 3){
     ThetaBS_withNA <- cbind(c(0.95, 0.9, 0.1, 0.5, 0.5),
                              c(0.95,0.1,0.9,0.5,0.5))
     PsiBS_withNA <- cbind(c(0.4,0.4,0.05,0.2,0.2),
                              c(0.05, 0.05, 0.4, 0.05, 0.05))
   }
   if (scn == 2){
     ThetaBS_withNA <- cbind(c(0.95,0.5,0.5,0.5,0.5),
                              c(0.95, 0.5, 0.5, 0.5, 0.5))
     PsiBS_withNA
                    \leftarrow cbind(c(0.4,0.4,0.05,0.2,0.2),
                              c(0.05,0.05,0.4,0.05,0.05))
   }
   if (scn == 1){
     ThetaBS_withNA <- cbind(c(0.95, 0.5, 0.5, 0.5, 0.5),
                              c(0.95, 0.5, 0.5, 0.5, 0.5))
     PsiBS_withNA <- cbind(c(0.3,0.3,0.15,0.2,0.2),
                              c(0.15, 0.15, 0.3, 0.05, 0.05))
   }
   # the following paramter names are set using names in the 'baker' package:
   set_parameter0 <- list(</pre>
     cause_list
                     = c(LETTERS[1:J]),
```

```
etiology
                    = c(0.5, 0.2, 0.15, 0.1, 0.05), #same length as cause_list
                    = rep(0.2,J), #same length as cause_list
    #etiology
    pathogen_BrS = LETTERS[1:J],
                 = list(MBS = c("MBS1")),
   meas_nm
   Lambda
                  = lambda,
                                            #ctrl mix
   Eta
                  = t(replicate(J,eta)), #case mix, row number equal to Jcause.
   PsiBS
                  = PsiBS_withNA,
   ThetaBS
                  = ThetaBS_withNA,
   Nu
         = N, # control size.
   Nd
            = N # case size.
  )
  res[,,iter] <- round(compute_logOR_single_cause(set_parameter0),2)</pre>
  for (pick in 1:J){
    set_parameter <- set_parameter0</pre>
    set_parameter$ThetaBS <- set_parameter0$PsiBS</pre>
    set_parameter$ThetaBS[pick,] <- set_parameter0$ThetaBS[pick,]</pre>
    set_parameter$etiology <- rep(0,J); set_parameter$etiology[pick] <- 1</pre>
    res_cond[,,iter,pick] <- round(compute_logOR_single_cause(set_parameter),2)</pre>
 }
}
ind <- sapply(c(0,0.5,1), function(x) which(subclass_mix_seq==x))
logOR_lim <- c(-2.15, 2.15)
col_seq <- c("dodgerblue2","orange")</pre>
logOR_seq <- log(c(0.25,0.5,1,2,4))
pick_one <- 3
print(paste0("==Shading pairs of ",pch_seq_cause[pick_one]," and others.==="))
for (j in 1:J){
  for (l in 1:J){
    par(mar=c(0,0,0,0));
    if (j==J){
      par(mar=c(0,0,0,0))
    if (1\%J==0){
      par(mar=c(0,0,0,1))
    if (1\%J==1){
      par(mar=c(0,1,0,0))
    }
    if (!(j==1)){}
      plot(res[j,1,],type="1",xlab="",ylab="",
           ylim=logOR_lim, lwd=5,
           xaxt="n",
           yaxt="n",
           col=col_seq[1+(1>j)],
           \text{#lty=c(2,1)[1+(1>j)]},
           lty=1,
           bty="n"
      )
```

```
box(col="lightgray")
abline(h=0,col="lightgray",lwd=3,lty=3)
if (j<1){
  matplot(res_cond[j,1,,],type="1",add=TRUE,pch=LETTERS[1:J],lwd=2,lty=2,
           col=col_seq_cause)
lab\_ord \leftarrow c(j,l); if (j>l){lab\_ord \leftarrow rev(lab\_ord)}
mtext(paste0("(",set_parameter*pathogen_BrS[lab_ord[1]],",",
              set_parameter$pathogen_BrS[lab_ord[2]],")"),
       side=3, adj=0.1,line=-2)
if (1%%J==1){
   axis(2,at = logOR_seq,
        labels = round(exp(logOR_seq),1),
        las=2,cex.axis=cex1)
}
if (1%%J==0){
   axis(4,at = logOR_seq,
        labels = round(exp(logOR_seq),1),
        las=2,cex.axis=cex1)
}
if (j==J){
   axis(1,at=seq_along(subclass_mix_seq)[ind],
   labels=rep("",length(ind)),cex.axis = cex1,las=1)
  axis(1,at=seq_along(subclass_mix_seq)[ind]+c(1,rep(0,length(ind)-2),-1),
  labels=subclass_mix_seq[ind],cex.axis = cex1,las=1,tick=FALSE)
}
if (j==1){
  axis(3,at=seq_along(subclass_mix_seq)[ind],
  labels=rep("",length(ind)),cex.axis = cex1,las=1)
  axis(3,at=seq\_along(subclass\_mix\_seq)[ind]+c(1,rep(0,length(ind)-2),-1),
  labels=subclass_mix_seq[ind],cex.axis = cex1,las=1,tick=FALSE)
}
if (j==5 \& l==1){
  mtext(expression(atop("Odds Ratio","(log-scale)")), side = 2, line = 4,
         cex=cex_label1, las=2)
}
if (j==5){
  mtext(expression(lambda[o]),side=1,line=4,cex=cex_label1)
if ((j<1) \&\& (l==pick\_one | j==pick\_one )){
   # add shading cells for oen picked pathogen among cases:
  color <- rgb(190, 190, 190, alpha=80, maxColorValue=255)</pre>
   rect(par("usr")[1], par("usr")[3], par("usr")[2],
        par("usr")[4], density = 100, col = color)
matplot(res_cond[j,1,,],type="1",add=TRUE,lwd=2,col=col_seq_cause,lty=lty_seq_cause)
   for (ell in 1:J){
    where_add_letter <- quantile(seq_along(subclass_mix_seq),pch_pos_seq+gap*ell)</pre>
```

```
points(where_add_letter, res_cond[j,1,where_add_letter,ell], pch=pch_seq_cause[ell])
         mtext(paste0("(",set_parameter$pathogen_BrS[lab_ord[1]],",",
                      set_parameter$pathogen_BrS[lab_ord[2]],")"),
               side=3, adj=0.1,line=-2)
       }
     }else{
       plot(1, type="n", axes=FALSE, xlab="", ylab="", bty="n",
            xlim=c(0,1), ylim=c(0,1))
       if (j==3){
         text(labels=expression(CASES%up%""),x=.7,
              y=0.55,srt=-49,col=col_seq[2],cex=1.8,adj=0.5,font=4)
         text(labels=expression(CONTROLS%down%""),x=.42,
              y=0.38,srt=-49,col=col_seq[1],cex=1.8,adj=0.5,font=4)
       }
       if (j!=1 \& j!=J){
         dg <- par("usr")</pre>
         segments(dg[1],dg[4],dg[2],dg[3], col='lightgray',lwd=3)
       }
       if (j==J){
         legend("top",LETTERS[1:J],lty=2,col=col_seq_cause,cex = 1.5,lwd=2,
                bty="n",horiz=FALSE)
       }
     }
  }
}
par(oldpar)
```

compute_marg_PR_nested_reg

compute positive rates for nested model with subclass mixing weights that are the same across Jcause classes for each person (people may have different weights.)

Description

The array version of this function (compute_marg_PR_nested_reg_array) is used in plot_etiology_regression

```
compute_marg_PR_nested_reg(ThetaBS, PsiBS, pEti_mat, subwt_mat, case, template)
```

Arguments

ThetaBS True positive rates for JBrS measures (rows) among K subclasses (columns) PsiBS False positive rates; dimension same as above a matrix of etiology pies for N subjects (rows) and Jcause causes (columns) pEti_mat rows sum to ones. subwt_mat a matrix of subclass weights for cases and controls. N by K. Rows sum to ones. case a N-vector of 1s (cases) and 0s (controls) template a binary matrix with Jcause+1 rows (Jcause classes of cases and 1 class of controls) and JBrS columns for the Bronze-standard measurement (say, pick

one type/slice). The ones in each row indicate the measurements that will show up more frequently in cases given the cause.

Value

a matrix of values between 0 and 1 (need not to have row sums of ones); of dimension (number of subjects, dimension of the bronze-standard measurement slice).

```
compute_marg_PR_nested_reg_array
```

compute positive rates for nested model with subclass mixing weights that are the same across Jcause classes for each person (people may have different weights.)

Description

This is an array-version of compute marg PR nested reg. This is used in plot etiology regression

Usage

```
compute_marg_PR_nested_reg_array(
  ThetaBS_array,
 PsiBS_array,
  pEti_mat_array,
  subwt_mat_array,
  case,
  template
)
```

Arguments

ThetaBS_array An array of: True positive rates for JBrS measures (rows) among K subclasses (columns)

An array of: False positive rates; dimension same as above PsiBS_array

pEti_mat_array An array of: a matrix of etiology pies for N subjects (rows) and Jcause causes

(columns) rows sum to ones.

subwt_mat_array

An array of: a matrix of subclass weights for cases and controls. N by K. Rows

sum to ones.

case a N-vector of 1s (cases) and 0s (controls)

template a binary matrix with Jcause+1 rows (Jcause classes of cases and 1 class of con-

trols) and JBrS columns for the Bronze-standard measurement (say, pick one type/slice). The ones in each row indicate the measurements that will show up

more frequently in cases given the cause.

Value

An array of: a matrix of values between 0 and 1 (need not to have row sums of ones); of dimension (number of subjects, dimension of the bronze-standard measurement slice).

```
create_bugs_regressor_Eti
```

create regressor summation equation used in regression for etiology

Description

create_bugs_regressor_Eti creates linear product of coefficients and a row of design matrix used in regression

Usage

```
create_bugs_regressor_Eti(
   n,
   dm_nm = "dm_Eti",
   b_nm = "betaEti",
   ind_nm = "j",
   sub_ind_nm = "k"
)
```

Arguments

```
n the length of coefficients

dm_nm name of design matrix; default "dm_Eti"

b_nm name of the coefficients; default "betaEti"

ind_nm name of the coefficient iterator; default "j"

sub_ind_nm name of the subject iterator; default "k"
```

Value

a character string with linear product form

42 data_nplcm_noreg

```
create_bugs_regressor_FPR
```

create regressor summation equation used in regression for FPR

Description

create_bugs_regressor_FPR creates linear product of coefficients and a row of design matrix used in regression

Usage

```
create_bugs_regressor_FPR(
   n,
   dm_nm = "dm_FPR",
   b_nm = "b",
   ind_nm = "j",
   sub_ind_nm = "k"
)
```

Arguments

n	the length of coefficients
dm_nm	name of design matrix; default "dm_FPR"
b_nm	name of the coefficients; default "b"
ind_nm	name of the coefficient iterator; default "j"
sub_ind_nm	name of the subject iterator; default "k"

Value

a character string with linear product form

data_nplcm_noreg

Simulated dataset that is structured in the format necessary for an nplcm() without regression

Description

Data set for illustrating regression functionalities

```
data("data_nplcm_noreg")
```

data_nplcm_reg_nest 43

Format

A list containing three items

Mobs BrS level measurements: N = 600 (half cases and half controls); one slice of BrS measurements (6 dimensional, A-F); one slice of SS measurements (2 dimensional, A and B)

Y case-control status

Value

No returned value; just loading data into the working space.

data_nplcm_reg_nest

Simulated dataset that is structured in the format necessary for an nplcm() with regression

Description

Data set for illustrating regression functionalities

Usage

```
data("data_nplcm_reg_nest")
```

Format

A list containing three items

Mobs BrS level measurements: N = 1,200 (half cases and half controls); one slice of BrS measurements (6 dimensional, A-F); one slice of SS measurements (2 dimensional, A and B)

Y case-control status

X matrix of covariates (N by 4); columns: SITE (1 and 2, each with 600 subjects), DATE (index from 1:300), std_date (standardized DATE), ENRLDATE (actual dates)

Value

No returned value; just loading data into the working space.

dm_Rdate_Eti

delete_start_with
Deletes a pattern from the start of a string, or each of a vector of strings.

Description

delete_start_with is used for clean the column names in raw data. For example, R adds "X" at the start of variable names. This function deletes "X_"s from the column names. This can happen if the raw data have column names such as "_CASE_ABX". Check clean_perch_data() for its actual usage.

Usage

```
delete_start_with(s, vec)
```

Arguments

s the pattern (a single string) to be deleted from the start.

vec a vector of strings with unwanted starting strings (specified by s).

Value

string(s) with deleted patterns from the start.

Examples

```
delete_start_with("X_",c("X_hello"))
delete_start_with("X_",c("X_hello","hello2"))
delete_start_with("X_",c("X_hello","hello2","X_hello3"))
```

dm_Rdate_Eti

Make etiology design matrix for dates with R format.

Description

dm_Rdate_Eti creates design matrices for etiology regressions.

```
dm_Rdate_Eti(Rdate, Y, num_knots_Eti, basis_Eti = "ncs")
```

dm_Rdate_FPR 45

Arguments

Rdate a vector of dates of R format

Y binary case/control status; 1 for case; 0 for controls

num_knots_Eti number of knots for etiology regression

basis_Eti the type of basis functions to use for etiology regression. It can be "ncs" (natural

cubic splines) or "tprs" (thin-plate regression splines). Default is "ncs". "tprs"

will be implemented later.

Details

It is used in model_options\$likeihood\$Eti_formula. For example, one can specify it as:

```
~ AGECAT+HIV+dm_Rdate_Eti(ENRLDATE,Y,5)
```

to call an etiology regression with intercept, main effects for 'AGECAT' and 'HIV', and natural cubic spline bases for 'ENRLDATE' using 5 knots defined as 5 equal-probability-spaced sample quantiles.

Value

Design matrix for etiology regression:

• Z_Eti transformed design matrix for etiology regression

See Also

nplcm()

dm_Rdate_FPR

Make FPR design matrix for dates with R format.

Description

dm_Rdate_FPR creates design matrices for false positive rate regressions; can also be used to standardize dates.

```
dm_Rdate_FPR(Rdate, Y, effect = "fixed", num_knots_FPR = NULL)
```

46 expit

Arguments

Rdate a vector of dates of R format

Y binary case/control status; 1 for case; 0 for controls

effect The design matrix for "random" or "fixed" effect; Default is "fixed". When spec-

ified as "fixed", it produces standardized R-format dates using control's mean and standard deviation; When specified as "random", it produces num_knots_FPR columns of design matrix for thin-plate regression splines (TPRS) fitting. One needs both "fixed" and "random" in a FPR regression formula in model_options to enable TPRS fitting. For example, model_options\$likelihood\$FPR_formula

can be

~ AGECAT+HIV+dm_Rdate_FPR(ENRLDATE,Y,"fixed")+dm_Rdate_FPR(ENRLDATE,Y,"random",10)

means FPR regression with intercept, main effects for 'AGECAT' and 'HIV', and TPRS bases for 'ENRLDATE' using 10 knots placed at 10 equal-probability-crossed sample quantiles.

spaced sample quantiles.

num_knots_FPR number of knots for FPR regression; default is NULL to accommodate fixed effect

specification.

Value

Design matrix for FPR regression:

- Z_FPR_ctrl transformed design matrix for FPR regression for controls
- Z_FPR_case transformed design matrix for borrowing FPR regression from controls to cases. It is obtained using control-standardization, and square-root the following matrix $(\Omega]$) with (j_1,j_2) element being

$$\Omega_{j_1 j_2} = \|knots_{j_1} - knots_{j_2}\|^3$$

See Also

nplcm()

expit expit function

Description

expit function

Usage

expit(x)

extract_data_raw 47

Arguments

x A real number

Value

a Probability between 0 and 1

Examples

```
expit(-0.1)
```

extract_data_raw

Import Raw PERCH Data extract_data_raw imports and converts the raw data to analyzable format

Description

Import Raw PERCH Data

extract_data_raw imports and converts the raw data to analyzable format

Usage

```
extract_data_raw(
  dat_prepared,
  strat_nm,
  strat_val,
  meas_object,
  extra_covariates = NULL
)
```

Arguments

dat_prepared The data set prepared in clean_perch_data.

strat_nm The vector of covariate names to separately extract data. For example, in PERCH

data cleaning, X = c("newSITE", "CASECONT").

strat_val The list of covariate values to stratify data. Each element corresponds to ele-

ments in X. For example, in PERCH data cleaning, Xval = list("02GAM", "1").

meas_object A list of bronze-standard or silver-standard measurement objects made by func-

tion make_meas_object().

extra_covariates

The vector of covariate name for regression purposes. The default is NULL, which means not reading in any covariate.

48 get_coverage

Value

A list of data.

Mobs MBS A list of Bronze-Standard (BrS) measurements. The names of the list take the form of specimen_test. Each element of the list is a data frame. The rows of the data frame are for subjects; the columns are for measured pathogens.

MSS A list of Silver-Standard (SS) measurements. The formats are the same as MBS above.

MGS A list of Gold-Standard (GS) measurements. It equals NULL if no GS data exist.

X A data frame with columns specified by extra_covariates.

See Also

```
clean_perch_data()
```

Other raw data importing functions: read_meas_object()

get_coverage

Obtain coverage status from a result folder

Description

Obtain coverage status from a result folder

Usage

```
get_coverage(DIR_NPLCM, truth)
```

Arguments

DIR_NPLCM Path to where Bayesian results are stored

truth True etiologic fraction vector (must sum to 1) used to generate data.

Value

A logic vector of length as truth. 1 for covered; 0 for not.

get_direct_bias 49

get_direct_bias	Obtain direct bias that measure the discrepancy of a posterior distribution of pie and a true pie.
	button of pie una a true pie.

Description

Obtain direct bias that measure the discrepancy of a posterior distribution of pie and a true pie.

Usage

```
get_direct_bias(DIR_list, truth = NULL, silent = FALSE)
```

Arguments

DIR_list The list of where Bayesian results are stored

truth True etiologic fraction vector (must sum to 1) used to generate data; Default is

NULL. If a vector is supplied, then only the first path in DIR_LIST is used.

silent Default is FALSE. To suppress printing messages, set to TRUE.

Value

a list of length two. diff is the direct differences; prb is the percent relative bias.

```
get_fitted_mean_nested
```

get fitted mean for nested model with subclass mixing weights that are the same among cases

Description

get fitted mean for nested model with subclass mixing weights that are the same among cases

```
get_fitted_mean_nested(
    slice,
    res_nplcm,
    model_options,
    data_nplcm,
    clean_options
)
```

Arguments

```
slice the slice of BrS data that are modeled
res_nplcm matrix of MCMC samples
model_options see nplcm()
data_nplcm see nplcm()
clean_options see clean_perch_data()
```

Value

a matrix of no. of rows equal to retained MCMC samples, no. of columns equal to the no. of measurement dimensions within a slice.

Description

get model fitted mean for conditional independence model

Usage

```
get_fitted_mean_no_nested(
    slice,
    res_nplcm,
    model_options,
    data_nplcm,
    clean_options
)
```

Arguments

Value

a list with model fitted means

get_individual_data 51

```
get_individual_data
get individual data
```

Description

get individual data

Usage

```
get_individual_data(i, data_nplcm)
```

Arguments

i index of individual as appeared in data_nplcm

data_nplcm the data for nplcm; see nplcm()

Value

a list of the same structure as data_nplcm; just with one row of values

Examples

```
data(data_nplcm_noreg)
get_individual_data(2,data_nplcm_noreg)
```

```
get_individual_prediction
```

get individual prediction (Bayesian posterior)

Description

must set individual.pred = TRUE in MCMC options (see the example of this function)

Usage

```
get_individual_prediction(x)
```

Arguments

x an nplcm object; it contains the file path DIR_NPLCM to where the model results and specifications are stored. The function first reads a list from this folder by nplcm_read_folder()

Value

a matrix of individual predictions; rows for cases, columns for causes specified in model_options\$likelihood\$cause_listSee nplcm()

Examples

```
data(data_nplcm_noreg)
cause_list <- LETTERS[1:6]</pre>
J.BrS
           <- 6
model_options_no_reg <- list(</pre>
  likelihood = list(
    cause_list = cause_list,
    k_subclass = 2,
    Eti_formula = ~-1, # no covariate for the etiology regression
    FPR_formula = list(
      MBS1 = \sim -1)
                     # no covariate for the subclass weight regression
  ),
  use\_measurements = c("BrS"),
  # use bronze-standard data only for model estimation.
  prior= list(
    Eti_prior = overall_uniform(1,cause_list),
    \# Dirichlet(1,...,1) prior for the etiology.
    TPR_prior = list(BrS = list(
      info = "informative", # informative prior for TPRs
      input = "match_range",
      # specify the informative prior for TPRs by specifying a plausible range.
      val = list(MBS1 = list(up = list(rep(0.99, J.BrS)),
                              # upper ranges: matched to 97.5% quantile of a Beta prior
                              low = list(rep(0.55, J.BrS)))
      # lower ranges: matched to 2.5% quantile of a Beta prior
   )
 )
)
set.seed(1)
# include stratification information in file name:
          <- paste0(tempdir(), "_no_reg")</pre>
# create folders to store the model results
dir.create(thedir, showWarnings = FALSE)
result_folder_no_reg <- file.path(thedir,paste("results",collapse="_"))</pre>
thedir <- result_folder_no_reg</pre>
dir.create(thedir, showWarnings = FALSE)
# options for MCMC chains:
mcmc_options_no_reg <- list(</pre>
  debugstatus = TRUE,
  n.chains = 1,
  n.itermcmc = as.integer(200),
```

get_latent_seq 53

```
n.burnin = as.integer(100),
 n.thin = 1,
 individual.pred = TRUE, # <- must set to TRUE!</pre>
 ppd = FALSE,
 result.folder = thedir,
 bugsmodel.dir = thedir
)
BrS_object_1 <- make_meas_object(patho = LETTERS[1:6],</pre>
                                  specimen = "MBS", test = "1",
                                  quality = "BrS", cause_list = cause_list)
clean_options <- list(BrS_objects = make_list(BrS_object_1))</pre>
# place the nplcm data and cleaning options into the results folder
dput(data_nplcm_noreg,file.path(thedir,"data_nplcm.txt"))
dput(clean_options, file.path(thedir, "data_clean_options.txt"))
rjags::load.module("glm")
fitted_nplcm_noreg <- nplcm(data_nplcm_noreg,model_options_no_reg,mcmc_options_no_reg)</pre>
image(get_individual_prediction(fitted_nplcm_noreg))
```

get_latent_seq

get index of latent status

Description

get index of latent status

Usage

```
get_latent_seq(cause_list, ord, select_latent = NULL, exact = TRUE)
```

Arguments

```
cause_list see mode_options in nplcm()
ord order of cause_list according to posterior mean
select_latent Default is NULL
exact Default is TRUE
```

Value

a vector of indices

```
get_marginal_rates_nested
```

get marginal TPR and FPR for nested model

Description

get marginal TPR and FPR for nested model

Usage

```
get_marginal_rates_nested(slice, res_nplcm, model_options, data_nplcm)
```

Arguments

slice the slice of BrS data that are modeled

res_nplcm matrix of MCMC samples

model_options see nplcm()
data_nplcm see nplcm()

Value

a matrix of no. of rows equal to retained MCMC samples, no. of columns equal to the no. of measurement dimensions within a slice.

```
get_marginal_rates_no_nested
```

get marginal TPR and FPR for no nested model

Description

get marginal TPR and FPR for no nested model

Usage

```
get_marginal_rates_no_nested(slice, res_nplcm, model_options, data_nplcm)
```

Arguments

slice the slice of BrS data that are modeled

res_nplcm matrix of MCMC samples

model_options see nplcm()
data_nplcm see nplcm()

Value

a matrix of no. of rows equal to retained MCMC samples, no. of columns equal to the no. of measurement dimensions within a slice.

get_metric 55

get_metric	Obtain Integrated Squared Aitchison Distance, Squared Bias and Variance (both on Central Log-Ratio transformed scale) that measure the
	discrepancy of a posterior distribution of pie and a true pie.

Description

The result is equivalent to Euclidean-type calculation after the compositional vector (e.g., etiologic fraction) is centered-log-ratio (CLRB) transformed. For simulation only.

Usage

```
get_metric(DIR_NPLCM, truth)
```

Arguments

DIR_NPLCM File path where Bayesian results are stored

truth True etiologic fraction vector (must sum to 1) used to generate data

Value

a vector of (Integrated Squared Aitchison Distance (ISAD), bias-squared, variance, truth)

Description

get etiology samples by names (no regression)

Usage

```
get_pEti_samp(res_nplcm, model_options)
```

Arguments

```
res_nplcm result from model fits
model_options model specification
```

Value

A list:

pEti_mat: a matrix of posterior samples (iteration by cause); overall etiology latent_nm: a vector of character strings representing the names of the causes

56 get_plot_pos

get_plot_num

get the plotting positions (numeric) for the fitted means; 3 positions for each cell

Description

get the plotting positions (numeric) for the fitted means; 3 positions for each cell

Usage

```
get_plot_num(e, height)
```

Arguments

e Integer index from 1 to length(cause_list)

height the total number of causes

Value

a triple with numerical plotting positions

get_plot_pos

get a list of measurement index where to look for data

Description

get a list of measurement index where to look for data

Usage

```
get_plot_pos(template)
```

Arguments

template

See nplcm()

Value

a list of index vectors

get_postsd 57

get_postsd

Obtain posterior standard deviation from a result folder

Description

Obtain posterior standard deviation from a result folder

Usage

```
get_postsd(DIR_NPLCM)
```

Arguments

DIR_NPLCM

Path to where Bayesian results are stored

Value

a vector of positive numbers

get_top_pattern

get top patterns from a slice of bronze-standard measurement

Description

get top patterns from a slice of bronze-standard measurement

Usage

```
get_top_pattern(BrS_dat, Y, case_status, n_pat, exclude_missing = TRUE)
```

Arguments

BrS_dat bronze-standard data, which is usually data_nplcm\$Mobs\$MBS[[1]]

Y A vector of case/control status: 1 for case; 0 for control

case_status 1 for case; 0 for controls

n_pat the number of top patterns one wants to show

exclude_missing

DEFAULT is TRUE for excluding any individual with missing measurements.

Value

a list of results: obs_pat - observed rates; pattern_names; exist_other - if actual no. of patterns is larger than n_pat ; N- No. of individuals with Y = case_status.

58 H

See Also

```
Other exploratory data analysis functions: plot_logORmat(), show_individual(), summarize_BrS(), summarize_SS(), visualize_season()
```

Examples

```
data(data_nplcm_noreg)
get_top_pattern(data_nplcm_noreg$Mobs$MBS[[1]],data_nplcm_noreg$Y,1,5,FALSE)

data(data_nplcm_noreg)
get_top_pattern(data_nplcm_noreg$Mobs$MBS$MBS1,data_nplcm_noreg$Y,case_status=1,n_pat=5)
```

Н

Shannon entropy for multivariate discrete data

Description

Shannon entropy for multivariate discrete data

Usage

H(px)

Arguments

рх

a vector of positive numbers sum to 1

Value

a non-negative number

Examples

```
H(c(0.5,0.3,0.2))
```

has_non_basis 59

Description

test if a formula has terms not created by [s_date_Eti() or s_date_FPR()

Usage

```
has_non_basis(form)
```

Arguments

form a formula

Value

logical TRUE (if having terms not created by [s_date_Eti() or s_date_FPR()); FALSE otherwise.

Examples

```
form1 <- as.formula(~ -1+s_date_FPR(DATE,Y,basis = "ps",10) + as.factor(SITE))
form2 <- as.formula(~ -1+s_date_FPR(DATE,Y,basis = "ps",10))
form3 <- as.formula(~ s_date_FPR(DATE,Y,basis = "ps",10))
has_non_basis(form1)
has_non_basis(form2)
has_non_basis(form3)</pre>
```

I2symb

Convert 0/1 coding to pathogen/combinations

Description

```
Reverse to symb2I()
```

Usage

```
I2symb(binary_code, pathogen_list)
```

Arguments

```
binary_code Binary indicators for pathogens
pathogen_list The complete list of pathogen names
```

60 Imat2cat

Value

The name of pathogen or pathogen combination indicated by "code"

Examples

```
I2symb("001",c("A","B","C"))
I2symb("000",c("A","B","C"))
```

Imat2cat

Convert a matrix of binary indicators to categorical variables

Description

Convert a matrix of binary indicators to categorical variables

Usage

```
Imat2cat(binary_mat, cause_list, pathogen_list)
```

Arguments

binary_mat The matrix of binary indicators. Rows for subjects, columns for pathogens in

the "pathogen.list"

cause_list The list of causes

Value

A vector of categorical variables. Its length equals the length of "allowed.list"

Examples

```
Imat2cat(rbind(diag(3),c(1,1,0),c(0,0,0)),c("A","B","C","A+B","NoA"),c("A","B","C"))\\
```

```
init_latent_jags_multipleSS
```

Initialize individual latent status (for JAGS)

Description

Initialize individual latent status (for JAGS)

Usage

```
init_latent_jags_multipleSS(
   MSS_list,
   cause_list,
   patho = unlist(lapply(MSS_list, colnames))
)
```

Arguments

MSS_list A list of silver-standard measurement data, possibly with more than one slices;

see data_nplcm argument in nplcm()

cause_list See model_options arguments in nplcm()

patho A vector of measured pathogen name for MSS; default is colnames(MSS)

Details

In JAGS 3.4.0, if an initial value contradicts the probabilistic specification, e.g. MSS_1[i,j] ~ dbern(mu_ss_1[i,j]), where MSS_1[i,j]=1 but mu_ss_1[i,j]=0, then JAGS cannot understand it. In PERCH application, this is most likely used when the specificity of the silver-standard data is 1. Note: this is not a problem in WinBUGS.

Value

a list of numbers, indicating categories of individual latent causes.

```
insert_bugfile_chunk_noreg_etiology
```

insert distribution for latent status code chunk into .bug file

Description

insert distribution for latent status code chunk into .bug file

```
insert_bugfile_chunk_noreg_etiology(ppd = NULL)
```

Arguments

ppd Default is NULL; set to TRUE for posterior predictive checking

Value

a long character string to be inserted into .bug model file as distribution specification for latent status

```
\label{likelihood} Insert\_bugfile\_chunk\_noreg\_meas \\ Insert\ measurement\ likelihood\ (without\ regression)\ code\ chunks\ into\ .bug\ model\ file
```

Description

Insert measurement likelihood (without regression) code chunks into .bug model file

Usage

```
insert_bugfile_chunk_noreg_meas(
   k_subclass,
   Mobs,
   prior,
   cause_list,
   use_measurements = "BrS",
   ppd = NULL,
   use_jags = FALSE
)
```

Arguments

k_subclass the number of subclasses for the slices that require conditional dependence mod-

eling (only applicable to BrS data); its length is of the same value as the number

of BrS slices.

Mobs measurement data in the form of data_nplcm prior prior specification from model_options

cause_list a list of latent status names (crucial for building templates; see make_template())

use_measurements

"BrS", or "SS"

ppd Default is NULL; set to TRUE for posterior predictive checking use_jags Default is FALSE; set to TRUE if want to use JAGS for model fitting.

Value

a long character string to be inserted into .bug model file as measurement likelihood

See Also

It is used in write_model_NoReg for constructing a .bug file along with specification of latent status distribution (insert_bugfile_chunk_noreg_etiology)

Description

insert etiology regression for latent status code chunk into .bug file; discrete predictors

Usage

```
insert_bugfile_chunk_reg_discrete_predictor_etiology(Jcause, ppd = NULL)
```

Arguments

Jeause The number of distinct causes, i.e., categories of latent health status; equals

length(model_options\$likelihood\$cause_list).

ppd Default is NULL; set to TRUE for posterior predictive checking

Value

a long character string to be inserted into .bug model file as distribution specification for latent status

Description

Insert measurement likelihood (with regression; discrete) code chunks into .bug model file

```
insert_bugfile_chunk_reg_discrete_predictor_nonest_meas(
   Mobs,
   prior,
   cause_list,
   use_measurements = "BrS",
   ppd = NULL,
   use_jags = FALSE
)
```

Arguments

Mobs Measurement data in the form of data_nplcm
prior Prior specification from model_options

cause_list A list of latent status names (crucial for building templates; see make_template())

use_measurements

"BrS", or "SS"

ppd Default is NULL; set to TRUE for posterior predictive checking use_jags Default is FALSE; set to TRUE if want to use JAGS for model fitting.

Value

A long character string to be inserted into .bug model file as measurement likelihood

See Also

It is used in write_model_Reg_NoNest for constructing a .bug file along with specification of latent status regression (insert_bugfile_chunk_reg_etiology)

insert_bugfile_chunk_reg_etiology

insert etiology regression for latent status code chunk into .bug file

Description

insert etiology regression for latent status code chunk into .bug file

Usage

```
insert_bugfile_chunk_reg_etiology(Eti_formula, Jcause, ppd = NULL)
```

Arguments

Eti_formula Etiology regression formula; Check model_options\$likelihood\$Eti_formula.

Jcause The number of distinct causes, i.e., categories of latent health status; equals

length(model_options\$likelihood\$cause_list).

ppd Default is NULL; set to TRUE for posterior predictive checking

Value

a long character string to be inserted into .bug model file as distribution specification for latent status

```
insert\_bugfile\_chunk\_reg\_nest\_meas
```

Insert measurement likelihood (nested model+regression) code chunks into .bug model file

Description

Insert measurement likelihood (nested model+regression) code chunks into .bug model file

Usage

```
insert_bugfile_chunk_reg_nest_meas(
  Mobs,
  prior,
  cause_list,
  FPR_formula,
  use_measurements = "BrS",
  ppd = NULL,
  use_jags = FALSE
)
```

Arguments

Mobs	Measurement data in the form of data_nplcm	
prior	Prior specification from model_options	
cause_list	A list of latent status names (crucial for building templates; see make_template())	
FPR_formula	$A\ list\ of\ FPR\ regression\ formula; check\ model_options\$likelihood\$FPR_formula$	
use_measurements		
	"BrS", or "SS"	
ppd	Default is NULL; set to TRUE for posterior predictive checking	
use_jags	Default is FALSE; set to TRUE if want to use JAGS for model fitting.	

Value

A long character string to be inserted into .bug model file as measurement likelihood

See Also

Called by write_model_Reg_NoNest for constructing a .bug file. This is usually called along with specification of latent status regression (insert_bugfile_chunk_reg_etiology).

Description

Insert measurement likelihood (with regression) code chunks into .bug model file

Usage

```
insert_bugfile_chunk_reg_nonest_meas(
  Mobs,
  prior,
  cause_list,
  FPR_formula,
  use_measurements = "BrS",
  ppd = NULL,
  use_jags = FALSE
)
```

Arguments

Mobs	Measurement data in the form of data_nplcm	
prior	Prior specification from model_options	
cause_list	A list of latent status names (crucial for building templates; see make_template())	
FPR_formula	$A\ list\ of\ FPR\ regression\ formula; check\ model_options\$likelihood\$FPR_formula$	
use_measurements		
	"BrS", or "SS"	
ppd	Default is NULL; set to TRUE for posterior predictive checking	
use_jags	Default is FALSE; set to TRUE if want to use JAGS for model fitting.	

Value

A long character string to be inserted into .bug model file as measurement likelihood

See Also

It is used in write_model_Reg_NoNest for constructing a .bug file along with specification of latent status regression (insert_bugfile_chunk_reg_etiology)

is.error 67

is.error

Test for 'try-error' class

Description

Test for 'try-error' class

Usage

```
is.error(x)
```

Arguments

Х

An object to be test if it is "try-error"

Value

Logical. TRUE for "try-error"; FALSE otherwise

References

http://adv-r.had.co.nz/Exceptions-Debugging.html

is_discrete

Check if covariates are discrete

Description

is_discrete checks if the specified covariates could be regarded as discrete variables.

Usage

```
is_discrete(X, X_reg)
```

Arguments

X A data frame of covariates

X_reg The vector of covariates that will stratify the analyses. These variables have

to be categorical. Or a formula (can be tested by is.formula in plyr), e.g.,

~as.factor(SITE8) + as.factor(AGECAT > 1).

Details

Note that this function should be used with caution. It used

$$nrow(X)/nrow(unique(X[, X_reg, drop = FALSE])) > 10$$

as an ad hoc criterion. It is not the same as is.discrete() in plyr

is_jags_folder

Value

TRUE for all being discrete; FALSE otherwise.

is_intercept_only

check if the formula is intercept only

Description

outputs logical values for a formula; to identify intercept-only formula.

Usage

```
is_intercept_only(form)
```

Arguments

form

Regression formula

Value

TRUE for intercept-only; FALSE otherwise

is_jags_folder

See if a result folder is obtained by JAGS

Description

See if a result folder is obtained by JAGS

Usage

```
is_jags_folder(DIR_NPLCM)
```

Arguments

DIR_NPLCM

directory to the folder with results. "mcmc_options.txt" must be in the folder.

Value

TRUE for from JAGS; FALSE otherwise.

Examples

```
is_jags_folder(tempdir()) # just an illustration.
```

is_length_all_one 69

is_length_all_one

check if a list has elements all of length one

Description

check if a list has elements all of length one

Usage

```
is_length_all_one(x)
```

Arguments

Х

a list

Value

TRUE or FALSE

Examples

```
l = list(a = 5, b = 1:2)
is_length_all_one(1) # FALSE
l = list(a = 5, b = 1)
is_length_all_one(1) # TRUE
```

jags2_baker

Run JAGS from R

Description

The jags function takes data and starting values as input. It automatically writes a jags script, calls the model, and saves the simulations for easy access in R. Check the R2jags::jags2 for details about the argument.

```
jags2_baker(
  data,
  inits,
  parameters.to.save,
  model.file = "model.bug",
  n.chains = 3,
  n.iter = 2000,
  n.burnin = floor(n.iter/2),
  n.thin = max(1, floor((n.iter - n.burnin)/1000)),
```

70 jags2_baker

```
DIC = TRUE,
  jags.path = "",
  working.directory = NULL,
  clearWD = TRUE,
  refresh = n.iter/50
)
```

Arguments

data (1) a vector or list of the names of the data objects used by the model, (2) a

(named) list of the data objects themselves, or (3) the name of a "dump" format file containing the data objects, which must end in ".txt", see example below for

details.

inits a list with n.chains elements; each element of the list is itself a list of start-

ing values for the BUGS model, or a function creating (possibly random) initial

values. If inits is NULL, JAGS will generate initial values for parameters.

parameters.to.save

character vector of the names of the parameters to save which should be moni-

tored.

model.file file containing the model written in BUGS code. Alternatively, as in **R2WinBUGS**,

model.file can be an R function that contains a BUGS model that is written to

a temporary model file (see tempfile) using write.model

n. chains number of Markov chains (default: 3)

n.iter number of total iterations per chain (including burn in; default: 2000)

n.burnin length of burn in, i.e. number of iterations to discard at the beginning. Default

is n. iter/2, that is, discarding the first half of the simulations. If n.burnin is 0,

jags() will run 100 iterations for adaption.

n.thin thinning rate. Must be a positive integer. Set n.thin > 1 to save memory

and computation time if n.iter is large. Default is max(1, floor(n.chains * (n.iter-n.burnin) / 1000)) which will only thin if there are at least 2000

simulations.

DIC logical; if TRUE (default), compute deviance, pD, and DIC. The rule pD=var (deviance)

/ 2 is used.

jags.path directory that contains the JAGS executable. The default is "".

working.directory

sets working directory during execution of this function; This should be the

directory where model file is.

clearWD indicating whether the files 'data.txt', 'inits[1:n.chains].txt', 'codaIndex.txt',

'jagsscript.txt', and 'CODAchain[1:nchains].txt' should be removed af-

ter jags has finished, default=TRUE.

refresh refresh frequency for progress bar, default is n.iter/50

Details

This modifies the jags2 function in R2jags package.

line2user 71

Value

```
Same as R2jags::jags()
```

See Also

```
R2jags::jags()
```

line2user

convert line to user coordinates

Description

Here's a version that works with log-scale and linear scale axes. The trick is to express line locations in npc coordinates rather than user coordinates, since the latter are of course not linear when axes are on log scales.

Usage

```
line2user(line, side)
```

Arguments

line integer side integer; 1-4

Details

par('cin')[2] * par('cex') * par('lheight') returns the current line height in inches, which we convert to user coordinates by multiplying by diff(grconvertX(0:1, 'inches', 'user')), the length of an inch in user coordinates (horizontally, in this case - if interested in the vertical height of a line in user coords we would use diff(grconvertY(0:1, 'inches', 'user'))).

Value

a numeric vector of the same length as line; the values represent the coordinates in the current plot and are converted from line.

References

https://stackoverflow.com/questions/29125019/get-margin-line-locations-mgp-in-user-coordinates

72 line2user

Examples

```
setup_plot <- function(log = "") {</pre>
 oldpar \leftarrow par(mar = c(2, 10, 2, 2), oma = rep(2, 4))
 plot.new()
 plot.window(xlim = c(1, 10), ylim = c(1, 10), log = log)
 box(which = "plot", lwd = 2, col = "gray40")
 box(which = "figure", lwd = 2, col = "darkred")
 box(which = "outer", lwd = 2, col = "darkgreen")
 text(x = 0.5, y = 0.5,
       labels = "Plot Region",
       col = "gray 40", font = 2)
 mtext(side = 3, text = "Figure region", line = 0.5, col = "darkred", font = 2)
 mtext(side = 3, text = "Device region", line = 2.5, col = "darkgreen", font = 2)
 for (i in 0:9) {
   mtext(side = 2, col = "darkred", text = paste0("Line", i), line = i)
 par(oldpar)
# And here are a couple of examples, applied to your setup_plot with mar=c(5, 5, 5, 5):
setup_plot()
axis(1, line=5)
axis(2, line=5)
abline(h=line2user(0:4, 1), lty=3, xpd=TRUE)
abline(v=line2user(0:4, 2), lty=3, xpd=TRUE)
abline(h=line2user(0:4, 3), lty=3, xpd=TRUE)
abline(v=line2user(0:4, 4), lty=3, xpd=TRUE)
setup_plot(log='x')
axis(1, line=5)
axis(2, line=5)
abline(h=line2user(0:4, 1), lty=3, xpd=TRUE)
abline(v=line2user(0:4, 2), lty=3, xpd=TRUE)
abline(h=line2user(0:4, 3), lty=3, xpd=TRUE)
abline(v=line2user(0:4, 4), lty=3, xpd=TRUE)
setup_plot(log='y')
axis(1, line=5)
axis(2, line=5)
abline(h=line2user(0:4, 1), lty=3, xpd=TRUE)
abline(v=line2user(0:4, 2), lty=3, xpd=TRUE)
abline(h=line2user(0:4, 3), lty=3, xpd=TRUE)
abline(v=line2user(0:4, 4), lty=3, xpd=TRUE)
setup_plot(log='xy')
axis(1, line=5)
axis(2, line=5)
abline(h=line2user(0:4, 1), lty=3, xpd=TRUE)
abline(v=line2user(0:4, 2), lty=3, xpd=TRUE)
abline(h=line2user(0:4, 3), lty=3, xpd=TRUE)
```

loadOneName 73

```
abline(v=line2user(0:4, 4), lty=3, xpd=TRUE)
```

loadOneName

load an object from .RDATA file

Description

load an object from .RDATA file

Usage

```
loadOneName(objName, file, envir = parent.frame(), assign.on.exit = TRUE)
```

Arguments

objName the name of the object

file the file path

envir environment; default is calling environment: parent.frame

assign.on.exit default is TRUE

Value

a new environment

logit

logit function

Description

logit function

Usage

logit(p)

Arguments

р

Probability between 0 and 1

Value

A real number

Examples

logit(0.5)

74 logsumexp

logOR

calculate pairwise log odds ratios

Description

Case at upper triangle; control at lower triangle

Usage

```
logOR(MBS.case, MBS.ctrl)
```

Arguments

MBS. case Case Bronze-Standard (BrS) data; rows for case subjects; columns contain JBrS

measurements

MBS.ctrl Control Bronze-Standard (BrS) data; rows for control subjects; columns contain

JBrS measurements

Value

a list of two elements: logOR (JBrS by JBrS matrix of log odds ratios for each pair among JBrS measurements) and logOR.se (same dimension as logOR, but representing the standard errors of the corresponding estimated log odds ratios in logOR).

logsumexp

log sum exp trick

Description

log sum exp trick

Usage

logsumexp(x)

Arguments

х

a vector of numbers

Value

a numeric value

```
logsumexp(c(-20,-30))
```

lookup_quality 75

lookup_quality

Get position to store in data_nplcm\$Mobs:

Description

Get position to store in data_nplcm\$Mobs:

Usage

```
lookup_quality(quality_nm)
```

Arguments

```
quality_nm names of quality: can be "BrS", "SS" or "GS"
```

Details

also works for a vector

Value

```
position of the quality name: "BrS"-1; "SS"-2; "GS"-3.
```

See Also

```
extract_data_raw()
```

make_filename

Create new file name

Description

Create new file name

Usage

```
make_filename(parameter_names, parameter_vals, format)
```

Arguments

```
parameter_names
```

The parameters that distinguish this folder's scenario

parameter_vals The actual parameter values

format The suffix ".XXX" in the end to specify the file format

76 make_foldername

Value

A string for file name

Examples

```
make_filename(c("theta", "alpha"), c(0.9,2), "csv")
```

make_foldername

Create new folder name

Description

Create new folder name

Usage

```
make_foldername(parent_path, parameter_names, parameter_vals, sep = "/")
```

Arguments

```
parent_path The parent directory where to put the new folder
parameter_names
The parameters that distinguish this folder's scenario

parameter_vals The actual parameter values

sep file name separator - default to "/" for OSX; "\\" for Windows.
```

Value

A string for folder name

```
make_foldername("/user",c("theta","alpha","beta"),c(1,2,3))
```

make_list 77

make_list

Takes any number of R objects as arguments and returns a list whose names are derived from the names of the R objects.

Description

Roger Peng's listlabeling challenge from http://simplystatistics.tumblr.com/post/11988685443/computing-on-the-language. Code copied from https://gist.github.com/ajdamico/1329117/0134148987859856fcecbe4446cfd37e500e4272

Usage

```
make_list(...)
```

Arguments

... any R objects

Value

a list as described above

Examples

```
#create three example variables for a list x <-1 y <-2 z <- "hello" #display the results make_list( x , y , z )
```

make_meas_object

Make measurement slice

Description

Wrap the information about a particular type of measurement, e.g., NPPCR. NB: add example! copy some from the vignette file.

Usage

```
make_meas_object(patho, specimen, test, quality, cause_list, sep_char = "_")
```

78 make_meas_object

Arguments

patho	A vector of pathogen names
specimen	Specimen name
test	Test name
quality	Quality category: any of "BrS", "SS" or "GS".
cause_list	The vector of potential latent status
sep_char	a character string that separate the pathogen names and the specimen-test pair; Default to "_"

Value

A list with measurement information

- quality same as argument
- patho same as argument
- name_in_data the names used in the raw data to locate these measurements
- template a mapping from patho to cause_list. NROW = length(cause_list)+1; NCOL = length(patho). This value is crucial in model fitting to determine which measurements are informative of a particular category of latent status.
- specimen same as argument
- test same as argument
- nm_spec_test paste specimen and test together

See Also

```
make_template()
```

```
make_meas_object(
patho = c("A","B","C","D","E","F"),
specimen = "MBS",
test = "1",
quality = "BrS",
cause_list = c("A","B","C","D","E"))
```

make_numbered_list 79

make_numbered_list

Make a list with numbered names

Description

To collect multiple measurements within the same category, e.g., bronze-standard.

Usage

```
make_numbered_list(...)
```

Arguments

```
... any R object
```

Value

a list with names numbered

make_template

make a mapping template for model fitting

Description

make_template creates a mapping matrix (binary values). Each pathogen in a measurement slice (e.g., nasal-pharyngeal PCR test) is mapped to inform one category of latent status. All the possible categories (e.g., causes of pneumonia) remain the same regardless of the measurement slice used (e.g., NPPCR or BCX).

Usage

```
make_template(patho, cause_list)
```

Arguments

patho A vector of pathogen names for a particular measurement slice. patho must

be a substring of some elements in cause_list, e.g., "PNEU" is a substring of

"PNEU_VT13". Also see Examples for this function.

cause_list A vector of characters; Potential categories of latent statuses.

80 marg_H

Details

The first argument has to be character substrings from the second argument. For example, the two arguments can respectively be "A" and "A_1", or "A" and "A+B". The second argument can have character strings not matched in the first argument. If so, it means some causes of diseases are not directly measured in the current measurement slice. For each element of patho, the function matches from the start of the strings of cause_list. Therefore, make sure that latent statuses from the same family (e.g., "PNEU_VT13" and "PNEU_NOVT13") need to start with the same family name (e.g., "PNEU") followed by subcategories (e.g., "_VT13" and "_NOVT13").

Value

a mapping from patho to cause_list. NROW = length(cause_list)+1; NCOL = length(patho). This value is crucial in model fitting to determine which measurements are informative of a particular category of latent status.

Examples

```
cause_list <- c("HINF", "PNEU_VT13", "PNEU_NOVT13", "SAUR", "HMPV_A_B", "FLU_A",
    "PARA_1", "PARA_3", "PARA_4", "PV_EV", "RHINO", "RSV", "ENTRB", "TB")

patho_BrS_NPPCR <- c("HINF", "PNEU", "SAUR", "HMPV_A_B", "FLU_A", "PARA_1",
    "PARA_3", "PARA_4", "PV_EV", "RHINO", "RSV")

make_template(patho_BrS_NPPCR, cause_list)

cause = c("A", "B1", "B2", "C", "A+C", "B+C")

patho = c("A", "B1", "B2", "C", "A+C", "B+C", "other")

patho = c("A", "B1", "B2", "C")

make_template(patho, cause)

cause = c("A", "B1", "B2", "X_B", "Y_B", "C", "A+C", "B+C", "other")

patho = c("A", "B1", "B2", "X_B", "Y_B", "C", "A+C", "B+C", "other")

patho = c("A", "B1", "B2", "X_B", "Y_B", "C", "A+C", "B+C", "other")

patho = c("A", "B1", "C", "X_B", "Y_B")

make_template(patho, cause)</pre>
```

marg_H

Shannon entropy for binary data

Description

Shannon entropy for binary data

match_cause 81

Usage

```
marg_H(m_px)
```

Arguments

 m_px

a number between 0 and 1

Value

a non-negative number

Examples

```
marg_H(0.1)
```

match_cause

Match latent causes that might have the same combo but different specifications

Description

@details In our cause_list, "A+B" represents the same cause as "B+A". It is used for plotting side-by-side posterior sample comparisons

Usage

```
match_cause(pattern, vec)
```

Arguments

pattern a vector of latent cause names, e.g., from a particular fit

vec a vector of latent cause names, e.g., usually a union of cause names from several

model fits. Usually, it is also the display order that one wants to show.

Value

A vector of length length(vec); NA means no pattern matches vec; 1 at position 10 means the first element of pattern matches the 10th element of vec.

```
pattern <- c("X+Y","A+Z","C")
vec <- c(LETTERS[1:26],"Y+Z","Y+X","Z+A")
match_cause(pattern,vec)</pre>
```

82 my_reorder

merge_lists

For a list of many sublists each of which has matrices as its member, we combine across the many sublists to produce a final list

Description

For a list of many sublists each of which has matrices as its member, we combine across the many sublists to produce a final list

Usage

```
merge_lists(list_of_lists)
```

Arguments

```
list_of_lists a list of sublists
```

Value

a list after merge

See Also

Other data operation functions: combine_data_nplcm(), subset_data_nplcm_by_index()

Examples

```
DT1 = list(A=1:3,B=letters[1:3])
DT2 = list(A=4:5,B=letters[4:5])
DT3 = list(A=1:4,B=letters[1:4])
DT4 = list(A=4:7,B=letters[4:7])
1 = list(DT1,DT2);names(1) <- c("haha","hihi")
12 = list(DT3,DT4);names(12) <- c("haha","hihi")
listoflists <- list(1,12);names(listoflists) <- c("dude1","dude2")
listoflists
merge_lists(listoflists)</pre>
```

my_reorder

Reorder the measurement dimensions to match the order for display

Description

Reorder the measurement dimensions to match the order for display

Usage

```
my_reorder(disp_order, raw_nm)
```

NA2dot 83

Arguments

disp_order The vector of names to be displayed (order matters)

raw_nm The vector of names from raw measurements (order matters)

Value

A permuted vector from 1 to length(raw_nm). For example, if its first element is 3, it means that the 3rd pathogen in raw_nm should be arranged to the first in the raw measurements.

Examples

```
disp_order <- c("B","E","D","C","F","A")
raw_nm <- c("C","A","E")
my_reorder(disp_order,raw_nm)</pre>
```

NA2dot

convert 'NA' to '.'

Description

```
convert 'NA' to '.'
```

Usage

```
NA2dot(s)
```

Arguments

S

A string of characters that may contain "NA"

Value

A string of characters without 'NA'

84 nplcm

nplcm	Fit nested partially-latent class models (highest-level wrapper function)

Description

Uses JAGS (OSX or Windows) operating system for Bayesian posterior inference (see README file for an instruction to install JAGS). If running JAGS on windows, please go to control panel to add the directory to JAGS into ENVIRONMENTAL VARIABLE.

Usage

```
nplcm(data_nplcm, model_options, mcmc_options)
```

Arguments

data_nplcm

Cases are on top of controls in the rows of diagnostic test results and the covariate matrix. This is assumed by baker to automatically write model files (.bug).

- Mobs A list of measurements of distinct qualities (Bronze-, Silver, and Gold-Standard: MBS,MSS,MGS). The elements of the list should include MBS, MSS, and MGS. If any of the component is not available, please specify it as, e.g., MGS=NULL (effectively deleting MGS from Mobs).
 - MBS a list of data frame of bronze-standard (BrS) measurements. For each data frame (referred to as a 'slice'), rows are subjects, columns are causative agents (e.g., pathogen species). We use list here to accommodate the possibility of multiple sets of BrS data. They have imperfect sensitivity/specificity (e.g. nasopharyngeal polymerase chain reaction NPPCR).
 - MSS a list of data frame of silver-standard (SS) measurements. Rows are subjects, columns are causative agents measured in specimen (e.g. blood culture). These measurements have perfect specificity but imperfect sensitivity.
 - MGS a list of data frame of gold-standard (GS) measurements. Rows are subject, columns are measured causative agents These measurements have perfect sensitivity and specificity.
- Y Vector of disease status: 1 for case, 0 for control.
- X Covariate matrix. A subset of columns are primary covariates in causespecific- case-fraction (CSCF) functions and hence must be available for cases, and another subset are covariates that are available in the cases and the controls. The two sets of covariates may be identical, overlapping or completely different. In general, this is not the design matrix for regression models, because for enrollment date in a study which may have non-linear effect, basis expansion is often needed for approximation.

model_options A list of model options: likelihood and prior.

nplcm 85

use_measurements A vector of characters strings; can be one or more from "BrS", "SS", "GS".

likelihood cause_list The vector of causes (NB: specify);

- k_subclass The number of nested subclasses in each disease class (one of case classes or the control class; the same k_subclass is assumed for each class) and each slice of BrS measurements. 1 for conditional independence; larger than 1 for conditional dependence. It is only available for BrS measurements. It is a vector of length equal to the number of slices of BrS measurements;
- **Eti_formula** Formula for etiology regressions. You can use s_date_Eti() to specify the design matrix for R format enrollment date; it will produce natural cubic spline basis. Specify ~ 1 if no regression is intended.
- **FPR_formula** formula for false positive rates (FPR) regressions; see formula(). You can use s_date_FPR() to specify part of the design matrix for R format enrollment date; it will produce penalized-spline basis (based on B-splines). Specify ~ 1 if no regression is intended. (NB: If effect="fixed", dm_Rdate_FPR() will just specify a design matrix with appropriately standardized dates.)

prior **Eti_prior** Description of etiology prior (e.g., overall_uniform - all hyperparameters are 1; or 0_1 - all hyperparameters are 0.1);

TPR_prior Description of priors for the measurements (e.g., informative vs non-informative). Its length should be the same as use_measurements above. Please see examples for how to specify. The package can also handle multiple slices of BrS, SS data, so separate specification of the TPR priors are needed.

mcmc_options

A list of Markov chain Monte Carlo (MCMC) options.

- debugstatus Logical whether to pause WinBUGS after it finishes model fitting; (NB: is this obsolete? Test.)
- n. chains Number of MCMC chains:
- n. burnin Number of burn-in iterations;
- n. thin To keep every other n. thin samples after burn-in period;
- individual.pred TRUE to perform individual prediction (Icat variables in the .bug file); FALSE otherwise;
- ppd TRUE to simulate new data (XXX.new variables in the .bug file) from the posterior predictive distribution (ppd); FALSE otherwise;
- get.pEti TRUE for getting posterior samples of individual etiologic fractions; FALSE otherwise. For non-regression, or regression models with all discrete predictors, by default this is TRUE, so no need to specify this entry. It is only relevant for regression models with non-discrete covariates. Because individuals have distinct CSCFs at their specific covariate values, it's easier to just store the posterior samples of the regression coefficients and reconstruct the pies afterwards, rather than storing them through JAGS.
- result. folder Path to folder storing the results;
- bugsmodel.dir Path to .bug model files;
- jags.dir Path to where JAGS is installed; if NULL, this will be set to jags.dir="".

86 nplcm

Value

A JAGS output result, fitted by function R2jags::jags2() from R2jags. It is an object of class nplcm and bugs. Current implemented models follow the hierarchy below:

- no regression: Fitted by at low level by nplcm_fit_NoReg
- regression: Given disease class (control or a class of cases with the same subset of causative agents):
 - local independence model for BrS measures: Fitted at lower level by
 - * nplcm_fit_Reg_NoNest deals with the setting with two sets of covariates, one for CSCF regression and the other for FPR regression. The two sets of covariates may be identical, overlapping or non-overlapping. This function is called when there exists one or more than one discrete covariate among the union of the two covariate sets. The method implemented by this function directly lets FPR depend upon covariates. This is different from Wu and Chen (2021), which let the subclass weights depend upon covariates. We implemented this function for methods comparison.
 - * nplcm_fit_Reg_discrete_predictor_NoNest deals with the setting with all discrete covariates for FPRs and CSCFs. The strata defined by the two sets of covariates need not be identical, e.g., as a result of distinct sets of covariates. Again, this is directly to let FPR be stratified by covariates, hence different from Wu and Chen (2020+) We implemented this function for methods comparison.
 - local dependence model for BrS measures: Fitted at lower level by nplcm_fit_Reg_Nest:
 This is the method introduced in Wu and Chen (2021): CSCF regression + case/control subclass weight regression. It does not provide a specialized function for the setting with all discrete covariates.

```
data(data_nplcm_noreg)
cause_list <- LETTERS[1:6]</pre>
J.BrS
           <- 6
model_options_no_reg <- list(</pre>
 likelihood = list(
    cause_list = cause_list,
   k_subclass = 2,
   Eti_formula = ~-1, # no covariate for the etiology regression
   FPR_formula = list(
      MBS1 =
              ~-1)
                       # no covariate for the subclass weight regression
 ),
 use_measurements = c("BrS"),
 # use bronze-standard data only for model estimation.
 prior= list(
   Eti_prior = overall_uniform(1,cause_list),
    # Dirichlet(1, ..., 1) prior for the etiology.
   TPR_prior = list(BrS = list(
      info = "informative", # informative prior for TPRs
      input = "match_range",
      # specify the informative prior for TPRs by specifying a plausible range.
```

nplcm_fit_NoReg 87

```
val = list(MBS1 = list(up = list(rep(0.99, J.BrS)),
                              # upper ranges: matched to 97.5% quantile of a Beta prior
                              low = list(rep(0.55, J.BrS)))
      # lower ranges: matched to 2.5% quantile of a Beta prior
   )
 )
)
set.seed(1)
# include stratification information in file name:
thedir <- paste0(tempdir(), "_no_reg")</pre>
# create folders to store the model results
dir.create(thedir, showWarnings = FALSE)
result_folder_no_reg <- file.path(thedir,paste("results",collapse="_"))</pre>
thedir <- result_folder_no_reg</pre>
dir.create(thedir, showWarnings = FALSE)
# options for MCMC chains:
mcmc_options_no_reg <- list(</pre>
 debugstatus = TRUE,
 n.chains = 1,
 n.itermcmc = as.integer(200),
 n.burnin = as.integer(100),
 n.thin = 1,
 individual.pred = TRUE, # <- must set to TRUE! <---- NOTE!</pre>
 ppd = FALSE,
 result.folder = thedir,
 bugsmodel.dir = thedir
)
BrS_object_1 <- make_meas_object(patho = LETTERS[1:6],</pre>
                                  specimen = "MBS", test = "1",
                                  quality = "BrS", cause_list = cause_list)
clean_options <- list(BrS_objects = make_list(BrS_object_1))</pre>
# place the nplcm data and cleaning options into the results folder
dput(data_nplcm_noreg,file.path(thedir,"data_nplcm.txt"))
dput(clean_options, file.path(thedir, "data_clean_options.txt"))
rjags::load.module("glm")
nplcm_noreg <- nplcm(data_nplcm_noreg,model_options_no_reg,mcmc_options_no_reg)</pre>
```

Description

This function prepares data, specifies hyperparameters in priors (true positive rates and etiology fractions), initializes the posterior sampling chain, writes the model file (for JAGS or WinBUGS with slight differences in syntax), and fits the model. Features:

- · no regression;
- · no nested subclasses

Usage

nplcm_fit_NoReg(data_nplcm, model_options, mcmc_options)

Arguments

data_nplcm

Cases are on top of controls in the rows of diagnostic test results and the covariate matrix. This is assumed by baker to automatically write model files (.bug).

- Mobs A list of measurements of distinct qualities (Bronze-, Silver, and Gold-Standard: MBS,MSS,MGS). The elements of the list should include MBS, MSS, and MGS. If any of the component is not available, please specify it as, e.g., MGS=NULL (effectively deleting MGS from Mobs).
 - MBS a list of data frame of bronze-standard (BrS) measurements. For each data frame (referred to as a 'slice'), rows are subjects, columns are causative agents (e.g., pathogen species). We use list here to accommodate the possibility of multiple sets of BrS data. They have imperfect sensitivity/specificity (e.g. nasopharyngeal polymerase chain reaction NPPCR).
 - MSS a list of data frame of silver-standard (SS) measurements. Rows are subjects, columns are causative agents measured in specimen (e.g. blood culture). These measurements have perfect specificity but imperfect sensitivity.
 - MGS a list of data frame of gold-standard (GS) measurements. Rows are subject, columns are measured causative agents These measurements have perfect sensitivity and specificity.
- Y Vector of disease status: 1 for case, 0 for control.
- X Covariate matrix. A subset of columns are primary covariates in cause-specific- case-fraction (CSCF) functions and hence must be available for cases, and another subset are covariates that are available in the cases and the controls. The two sets of covariates may be identical, overlapping or completely different. In general, this is not the design matrix for regression models, because for enrollment date in a study which may have non-linear effect, basis expansion is often needed for approximation.

model_options A list of model options: likelihood and prior.

nplcm_fit_NoReg 89

use_measurements A vector of characters strings; can be one or more from "BrS", "SS", "GS".

likelihood cause_list The vector of causes (NB: specify);

- k_subclass The number of nested subclasses in each disease class (one of case classes or the control class; the same k_subclass is assumed for each class) and each slice of BrS measurements. 1 for conditional independence; larger than 1 for conditional dependence. It is only available for BrS measurements. It is a vector of length equal to the number of slices of BrS measurements;
- **Eti_formula** Formula for etiology regressions. You can use s_date_Eti() to specify the design matrix for R format enrollment date; it will produce natural cubic spline basis. Specify ~ 1 if no regression is intended.
- **FPR_formula** formula for false positive rates (FPR) regressions; see formula(). You can use s_date_FPR() to specify part of the design matrix for R format enrollment date; it will produce penalized-spline basis (based on B-splines). Specify ~ 1 if no regression is intended. (NB: If effect="fixed", dm_Rdate_FPR() will just specify a design matrix with appropriately standardized dates.)
- prior **Eti_prior** Description of etiology prior (e.g., overall_uniform all hyperparameters are 1; or 0_1 all hyperparameters are 0.1);
 - **TPR_prior** Description of priors for the measurements (e.g., informative vs non-informative). Its length should be the same as use_measurements above. Please see examples for how to specify. The package can also handle multiple slices of BrS, SS data, so separate specification of the TPR priors are needed.

mcmc_options

A list of Markov chain Monte Carlo (MCMC) options.

- debugstatus Logical whether to pause WinBUGS after it finishes model fitting; (NB: is this obsolete? Test.)
- n. chains Number of MCMC chains:
- n. burnin Number of burn-in iterations;
- n. thin To keep every other n. thin samples after burn-in period;
- individual.pred TRUE to perform individual prediction (Icat variables in the .bug file); FALSE otherwise;
- ppd TRUE to simulate new data (XXX.new variables in the .bug file) from the posterior predictive distribution (ppd); FALSE otherwise;
- get.pEti TRUE for getting posterior samples of individual etiologic fractions; FALSE otherwise. For non-regression, or regression models with all discrete predictors, by default this is TRUE, so no need to specify this entry. It is only relevant for regression models with non-discrete covariates. Because individuals have distinct CSCFs at their specific covariate values, it's easier to just store the posterior samples of the regression coefficients and reconstruct the pies afterwards, rather than storing them through JAGS.
- result. folder Path to folder storing the results;
- bugsmodel.dir Path to .bug model files;
- jags.dir Path to where JAGS is installed; if NULL, this will be set to jags.dir="".

Value

BUGS fit results.

See Also

write_model_NoReg for constructing .bug model file; This function then put it in the folder mcmc_options\$bugsmodel.dir. Other model fitting functions: nplcm_fit_Reg_Nest(), nplcm_fit_Reg_NoNest(), nplcm_fit_Reg_discrete_predicto

```
nplcm_fit_Reg_discrete_predictor_NoNest

Fit nested partially-latent class model with regression (low-level)
```

Description

Fit nested partially-latent class model with regression (low-level)

Usage

```
nplcm_fit_Reg_discrete_predictor_NoNest(
  data_nplcm,
  model_options,
  mcmc_options
)
```

Arguments

data_nplcm

Cases are on top of controls in the rows of diagnostic test results and the covariate matrix. This is assumed by baker to automatically write model files (.bug).

- Mobs A list of measurements of distinct qualities (Bronze-, Silver, and Gold-Standard: MBS,MSS,MGS). The elements of the list should include MBS, MSS, and MGS. If any of the component is not available, please specify it as, e.g., MGS=NULL (effectively deleting MGS from Mobs).
 - MBS a list of data frame of bronze-standard (BrS) measurements. For each data frame (referred to as a 'slice'), rows are subjects, columns are causative agents (e.g., pathogen species). We use list here to accommodate the possibility of multiple sets of BrS data. They have imperfect sensitivity/specificity (e.g. nasopharyngeal polymerase chain reaction NPPCR).
 - MSS a list of data frame of silver-standard (SS) measurements. Rows are subjects, columns are causative agents measured in specimen (e.g. blood culture). These measurements have perfect specificity but imperfect sensitivity.
 - MGS a list of data frame of gold-standard (GS) measurements. Rows are subject, columns are measured causative agents These measurements have perfect sensitivity and specificity.

- Y Vector of disease status: 1 for case, 0 for control.
- X Covariate matrix. A subset of columns are primary covariates in causespecific- case-fraction (CSCF) functions and hence must be available for cases, and another subset are covariates that are available in the cases and the controls. The two sets of covariates may be identical, overlapping or completely different. In general, this is not the design matrix for regression models, because for enrollment date in a study which may have non-linear effect, basis expansion is often needed for approximation.

model_options

A list of model options: likelihood and prior.

use_measurements A vector of characters strings; can be one or more from "BrS", "SS", "GS".

likelihood **cause_list** The vector of causes (NB: specify);

k_subclass The number of nested subclasses in each disease class (one of case classes or the control class; the same k_subclass is assumed for each class) and each slice of BrS measurements. 1 for conditional independence; larger than 1 for conditional dependence. It is only available for BrS measurements. It is a vector of length equal to the number of slices of BrS measurements;

Eti_formula Formula for etiology regressions. You can use s_date_Eti() to specify the design matrix for R format enrollment date; it will produce natural cubic spline basis. Specify ~ 1 if no regression is intended.

FPR_formula formula for false positive rates (FPR) regressions; see formula(). You can use s_date_FPR() to specify part of the design matrix for R format enrollment date; it will produce penalized-spline basis (based on B-splines). Specify ~ 1 if no regression is intended. (NB: If effect="fixed", dm_Rdate_FPR() will just specify a design matrix with appropriately standardized dates.)

prior Eti_prior Description of etiology prior (e.g., overall_uniform - all hyperparameters are 1; or 0_1 - all hyperparameters are 0.1);

TPR_prior Description of priors for the measurements (e.g., informative vs non-informative). Its length should be the same as use_measurements above. Please see examples for how to specify. The package can also handle multiple slices of BrS, SS data, so separate specification of the TPR priors are needed.

mcmc_options

A list of Markov chain Monte Carlo (MCMC) options.

- debugstatus Logical whether to pause WinBUGS after it finishes model fitting; (NB: is this obsolete? Test.)
- n. chains Number of MCMC chains:
- n.burnin Number of burn-in iterations;
- n. thin To keep every other n. thin samples after burn-in period;
- individual.pred TRUE to perform individual prediction (Icat variables in the .bug file); FALSE otherwise;
- ppd TRUE to simulate new data (XXX.new variables in the .bug file) from the posterior predictive distribution (ppd); FALSE otherwise;
- get.pEti TRUE for getting posterior samples of individual etiologic fractions; FALSE otherwise. For non-regression, or regression models with all

92 nplcm_fit_Reg_Nest

discrete predictors, by default this is TRUE, so no need to specify this entry. It is only relevant for regression models with non-discrete covariates. Because individuals have distinct CSCFs at their specific covariate values, it's easier to just store the posterior samples of the regression coefficients and reconstruct the pies afterwards, rather than storing them through JAGS.

- result. folder Path to folder storing the results;
- bugsmodel.dir Path to .bug model files;
- jags.dir Path to where JAGS is installed; if NULL, this will be set to jags.dir="".

Details

This function prepares data, specifies hyperparameters in priors (true positive rates and etiology fractions), initializes the posterior sampling chain, writes the model file (for JAGS or WinBUGS with slight differences in syntax), and fits the model. Features:

- · regression;
- no nested subclasses, i.e. conditional independence of multivariate measurements given disease class and covariates;
- multiple BrS + multiple SS.

If running JAGS on windows, please go to control panel to add the directory to jags into ENVI-RONMENTAL VARIABLE!

Value

BUGS fit results.

See Also

write_model_NoReg for automatically generate .bug model file; This present function store it in location: mcmc_options\$bugsmodel.dir.

Other model fitting functions: nplcm_fit_NoReg(), nplcm_fit_Reg_Nest(), nplcm_fit_Reg_NoNest()

nplcm_fit_Reg_Nest

Fit nested partially-latent class model with regression (low-level)

Description

Called by nplcm() upon being assigned to this nested regression by assign_model()

Usage

```
nplcm_fit_Reg_Nest(data_nplcm, model_options, mcmc_options)
```

Arguments

data_nplcm

Cases are on top of controls in the rows of diagnostic test results and the covariate matrix. This is assumed by baker to automatically write model files (.bug).

- Mobs A list of measurements of distinct qualities (Bronze-, Silver, and Gold-Standard: MBS,MSS,MGS). The elements of the list should include MBS, MSS, and MGS. If any of the component is not available, please specify it as, e.g., MGS=NULL (effectively deleting MGS from Mobs).
 - MBS a list of data frame of bronze-standard (BrS) measurements. For each data frame (referred to as a 'slice'), rows are subjects, columns are causative agents (e.g., pathogen species). We use list here to accommodate the possibility of multiple sets of BrS data. They have imperfect sensitivity/specificity (e.g. nasopharyngeal polymerase chain reaction NPPCR).
 - MSS a list of data frame of silver-standard (SS) measurements. Rows are subjects, columns are causative agents measured in specimen (e.g. blood culture). These measurements have perfect specificity but imperfect sensitivity.
 - MGS a list of data frame of gold-standard (GS) measurements. Rows are subject, columns are measured causative agents These measurements have perfect sensitivity and specificity.
- Y Vector of disease status: 1 for case, 0 for control.
- X Covariate matrix. A subset of columns are primary covariates in cause-specific- case-fraction (CSCF) functions and hence must be available for cases, and another subset are covariates that are available in the cases and the controls. The two sets of covariates may be identical, overlapping or completely different. In general, this is not the design matrix for regression models, because for enrollment date in a study which may have non-linear effect, basis expansion is often needed for approximation.

model_options

A list of model options: likelihood and prior.

use_measurements A vector of characters strings; can be one or more from "BrS", "SS", "GS".

likelihood cause_list The vector of causes (NB: specify);

- k_subclass The number of nested subclasses in each disease class (one of case classes or the control class; the same k_subclass is assumed for each class) and each slice of BrS measurements. 1 for conditional independence; larger than 1 for conditional dependence. It is only available for BrS measurements. It is a vector of length equal to the number of slices of BrS measurements;
- **Eti_formula** Formula for etiology regressions. You can use s_date_Eti() to specify the design matrix for R format enrollment date; it will produce natural cubic spline basis. Specify ~ 1 if no regression is intended.
- **FPR_formula** formula for false positive rates (FPR) regressions; see formula(). You can use s_date_FPR() to specify part of the design matrix for R format enrollment date; it will produce penalized-spline basis (based on B-splines). Specify ~ 1 if no regression is intended. (NB: If effect="fixed",

dm_Rdate_FPR() will just specify a design matrix with appropriately standardized dates.)

prior **Eti_prior** Description of etiology prior (e.g., overall_uniform - all hyperparameters are 1; or 0_1 - all hyperparameters are 0.1);

TPR_prior Description of priors for the measurements (e.g., informative vs non-informative). Its length should be the same as use_measurements above. Please see examples for how to specify. The package can also handle multiple slices of BrS, SS data, so separate specification of the TPR priors are needed.

mcmc_options

A list of Markov chain Monte Carlo (MCMC) options.

- debugstatus Logical whether to pause WinBUGS after it finishes model fitting; (NB: is this obsolete? Test.)
- n. chains Number of MCMC chains;
- n. burnin Number of burn-in iterations:
- n. thin To keep every other n. thin samples after burn-in period;
- individual.pred TRUE to perform individual prediction (Icat variables in the .bug file); FALSE otherwise;
- ppd TRUE to simulate new data (XXX.new variables in the .bug file) from the posterior predictive distribution (ppd); FALSE otherwise;
- get.pEti TRUE for getting posterior samples of individual etiologic fractions; FALSE otherwise. For non-regression, or regression models with all discrete predictors, by default this is TRUE, so no need to specify this entry. It is only relevant for regression models with non-discrete covariates. Because individuals have distinct CSCFs at their specific covariate values, it's easier to just store the posterior samples of the regression coefficients and reconstruct the pies afterwards, rather than storing them through JAGS.
- result.folder Path to folder storing the results;
- bugsmodel.dir Path to .bug model files;
- jags.dir Path to where JAGS is installed; if NULL, this will be set to jags.dir="".

Details

This function prepares data, specifies hyperparameters in priors (true positive rates and etiology fractions), initializes the posterior sampling chain, writes the model file (for JAGS), and fits the model. Features:

- regression (not all discrete covariates);
- nested subclasses, i.e. conditional dependence of multivariate measurements given disease class and covariates;
- multiple BrS + multiple SS.

Value

BUGS fit results.

See Also

write_model_Reg_Nest for constructing .bug model file; This function then put it in the folder mcmc_options\$bugsmodel.dir.

Other model fitting functions: nplcm_fit_NoReg(), nplcm_fit_Reg_NoNest(), nplcm_fit_Reg_discrete_predictor_N

nplcm_fit_Reg_NoNest Fit nested partially-latent class model with regression (low-level)

Description

Fit nested partially-latent class model with regression (low-level)

Usage

```
nplcm_fit_Reg_NoNest(data_nplcm, model_options, mcmc_options)
```

Arguments

data_nplcm

Cases are on top of controls in the rows of diagnostic test results and the covariate matrix. This is assumed by baker to automatically write model files (.bug).

- Mobs A list of measurements of distinct qualities (Bronze-, Silver, and Gold-Standard: MBS,MSS,MGS). The elements of the list should include MBS, MSS, and MGS. If any of the component is not available, please specify it as, e.g., MGS=NULL (effectively deleting MGS from Mobs).
 - MBS a list of data frame of bronze-standard (BrS) measurements. For each data frame (referred to as a 'slice'), rows are subjects, columns are causative agents (e.g., pathogen species). We use list here to accommodate the possibility of multiple sets of BrS data. They have imperfect sensitivity/specificity (e.g. nasopharyngeal polymerase chain reaction NPPCR).
 - MSS a list of data frame of silver-standard (SS) measurements. Rows are subjects, columns are causative agents measured in specimen (e.g. blood culture). These measurements have perfect specificity but imperfect sensitivity.
 - MGS a list of data frame of gold-standard (GS) measurements. Rows are subject, columns are measured causative agents These measurements have perfect sensitivity and specificity.
- Y Vector of disease status: 1 for case, 0 for control.
- X Covariate matrix. A subset of columns are primary covariates in cause-specific- case-fraction (CSCF) functions and hence must be available for cases, and another subset are covariates that are available in the cases and the controls. The two sets of covariates may be identical, overlapping or completely different. In general, this is not the design matrix for regression models, because for enrollment date in a study which may have non-linear effect, basis expansion is often needed for approximation.

model_options

A list of model options: likelihood and prior.

use_measurements A vector of characters strings; can be one or more from "Brs", "Ss", "Gs".

likelihood **cause_list** The vector of causes (NB: specify);

- k_subclass The number of nested subclasses in each disease class (one of case classes or the control class; the same k_subclass is assumed for each class) and each slice of BrS measurements. 1 for conditional independence; larger than 1 for conditional dependence. It is only available for BrS measurements. It is a vector of length equal to the number of slices of BrS measurements:
- **Eti_formula** Formula for etiology regressions. You can use s_date_Eti() to specify the design matrix for R format enrollment date; it will produce natural cubic spline basis. Specify ~ 1 if no regression is intended.
- **FPR_formula** formula for false positive rates (FPR) regressions; see formula(). You can use s_date_FPR() to specify part of the design matrix for R format enrollment date; it will produce penalized-spline basis (based on B-splines). Specify ~ 1 if no regression is intended. (NB: If effect="fixed", dm_Rdate_FPR() will just specify a design matrix with appropriately standardized dates.)
- prior **Eti_prior** Description of etiology prior (e.g., overall_uniform all hyperparameters are 1; or 0_1 all hyperparameters are 0.1);
 - **TPR_prior** Description of priors for the measurements (e.g., informative vs non-informative). Its length should be the same as use_measurements above. Please see examples for how to specify. The package can also handle multiple slices of BrS, SS data, so separate specification of the TPR priors are needed.

mcmc_options

A list of Markov chain Monte Carlo (MCMC) options.

- debugstatus Logical whether to pause WinBUGS after it finishes model fitting; (NB: is this obsolete? Test.)
- n. chains Number of MCMC chains:
- n.burnin Number of burn-in iterations;
- n. thin To keep every other n. thin samples after burn-in period;
- individual.pred TRUE to perform individual prediction (Icat variables in the .bug file); FALSE otherwise;
- ppd TRUE to simulate new data (XXX.new variables in the .bug file) from the posterior predictive distribution (ppd); FALSE otherwise;
- get.pEti TRUE for getting posterior samples of individual etiologic fractions; FALSE otherwise. For non-regression, or regression models with all discrete predictors, by default this is TRUE, so no need to specify this entry. It is only relevant for regression models with non-discrete covariates. Because individuals have distinct CSCFs at their specific covariate values, it's easier to just store the posterior samples of the regression coefficients and reconstruct the pies afterwards, rather than storing them through JAGS.
- result.folder Path to folder storing the results;
- bugsmodel.dir Path to .bug model files;
- jags.dir Path to where JAGS is installed; if NULL, this will be set to jags.dir="".

nplcm_read_folder 97

Details

This function prepares data, specifies hyperparameters in priors (true positive rates and CSCFs), initializes the posterior sampling chain, writes the model file (for JAGS or WinBUGS with slight differences in syntax), and fits the model. Features:

- regression (not all discrete covariates);
- no nested subclasses, i.e. conditional independence of multivariate measurements given disease class and covariates;
- multiple BrS + multiple SS.

Value

BUGS fit results from JAGS.

See Also

write_model_NoReg for constructing .bug model file; This function then puts it in the folder mcmc_options\$bugsmodel.dir.

Other model fitting functions: nplcm_fit_NoReg(), nplcm_fit_Reg_Nest(), nplcm_fit_Reg_discrete_predictor_NoN

nplcm_read_folder

Read data and other model information from a folder that stores model results.

Description

Read data and other model information from a folder that stores model results.

Usage

```
nplcm_read_folder(DIR_NPLCM)
```

Arguments

DIR_NPLCM

File path to the folder containing posterior samples

Value

A list with data, options and posterior samples.

- bugs.dat
- model_options
- clean_otions
- Nd; Nu; Y; Mobs;
- res_nplcm.

98 nplcm_read_folder

```
data(data_nplcm_noreg)
cause_list <- LETTERS[1:6]</pre>
          <- 6
J.BrS
model_options_no_reg <- list(</pre>
 likelihood = list(
    cause_list = cause_list,
   k_subclass = 2,
   Eti_formula = ~-1, # no covariate for the etiology regression
   FPR_formula = list(
      MBS1 = ~-1) # no covariate for the subclass weight regression
 ),
 use_measurements = c("BrS"),
 # use bronze-standard data only for model estimation.
 prior= list(
   Eti_prior = overall_uniform(1,cause_list),
    # Dirichlet(1, ..., 1) prior for the etiology.
   TPR_prior = list(BrS = list(
      info = "informative", # informative prior for TPRs
      input = "match_range",
      # specify the informative prior for TPRs by specifying a plausible range.
      val = list(MBS1 = list(up = list(rep(0.99, J.BrS)),
                             # upper ranges: matched to 97.5% quantile of a Beta prior
                             low = list(rep(0.55, J.BrS)))
      # lower ranges: matched to 2.5% quantile of a Beta prior
   )
   )
 )
)
set.seed(1)
# include stratification information in file name:
       <- paste0(tempdir(),"_no_reg")</pre>
# create folders to store the model results
dir.create(thedir, showWarnings = FALSE)
result_folder_no_reg <- file.path(thedir,paste("results",collapse="_"))</pre>
thedir <- result_folder_no_reg</pre>
dir.create(thedir, showWarnings = FALSE)
# options for MCMC chains:
mcmc_options_no_reg <- list(</pre>
 debugstatus = TRUE,
 n.chains = 1,
 n.itermcmc = as.integer(200),
 n.burnin = as.integer(100),
 n.thin = 1,
 individual.pred = FALSE,
 ppd = TRUE,
```

null_as_zero 99

null_as_zero

Convert NULL to zero.

Description

null_as_zero make NULL to be zero.

Usage

```
null_as_zero(x)
```

Arguments

Х

A number (usually a member of a list) that might be NULL

Value

A number

100 overall_uniform

order_post_eti

order latent status by posterior mean

Description

order latent status by posterior mean

Usage

```
order_post_eti(res_nplcm, model_options)
```

Arguments

res_nplcm result from model fits model_options model specification

Value

a list with order (ord) and ordered posterior samples (by column)

overall_uniform

specify overall uniform (symmetric Dirichlet distribution) for etiology prior

Description

specify overall uniform (symmetric Dirichlet distribution) for etiology prior

Usage

```
overall_uniform(alpha, cause_list)
```

Arguments

alpha any positive number, usually 1.

cause_list a list of latent status

Value

```
a vector of length length(cause_list)
```

See Also

Other prior specification functions: set_prior_tpr_BrS_NoNest(), set_prior_tpr_SS()

parse_nplcm_reg 101

Examples

```
overall_uniform(1,c("A","B","C"))
```

parse_nplcm_reg parse regression components (either false positive rate or etiology regression) for fitting npLCM; Only use this when formula is not NULL.

Description

parse regression components (either false positive rate or etiology regression) for fitting npLCM; Only use this when formula is not NULL.

Usage

```
parse_nplcm_reg(form, data_nplcm, silent = TRUE)
```

Arguments

form regression formula

data_nplcm data object for nplcm(); may contain covariates X; must have case-control sta-

tus Y.

silent Default is TRUE for no message about covariates; FALSE otherwise.

Value

TRUE for doing regression; FALSE otherwise.

pathogen_category_perch

pathogens and their categories in PERCH study (virus or bacteria)

Description

231 rows indicating bacteria, virus, fungi, or other categories.

Usage

```
data("pathogen_category_perch")
```

Format

A matrix of two columns

pathogen names of the pathogens

pathogen_type category of the pathogens, B for bacterium, V for virus, F for fungus, O for "not categorized"

Value

No returned value; just loading data into the working space.

pathogen_category_simulation

Hypothetical pathogens and their categories (virus or bacteria)

Description

This is used in simulations where the pathogen names are from the alphabet, and we hope to plot etiologies grouped by virus or bacteria

Usage

```
data("pathogen_category_simulation")
```

Format

A matrix of two columns

pathogen names of the hypothetical pathogens, A-Z

pathogen_type category of the hypothetical pathogens, B for bacterium, V for virus, which are randomly assigned.

Value

No returned value; just loading data into the working space.

plot.nplcm 103

```
plot.nplcm
```

plot.nplcm plot the results from nplcm().

Description

```
plot.nplcm plot the results from nplcm().
```

Usage

```
## S3 method for class 'nplcm' plot(x, ...)
```

Arguments

x Output from nplcm().

... Arguments passed to summary and printing methods.

Value

a figure

See Also

```
Other visualization functions: plot_BrS_panel(), plot_SS_panel(), plot_check_common_pattern(), plot_check_pairwise_SLORD(), plot_etiology_regression(), plot_etiology_strat(), plot_panels(), plot_pie_panel(), plot_subwt_regression()
```

plot_BrS_panel

Plot bronze-standard (BrS) panel

Description

Plot bronze-standard (BrS) panel

Usage

```
plot_BrS_panel(
    slice,
    data_nplcm,
    model_options,
    clean_options,
    bugs.dat,
    res_nplcm,
    bg_color,
    select_latent = NULL,
```

104 plot_BrS_panel

```
exact = TRUE,
top_BrS = 1.3,
cexval = 1,
srtval = 0,
prior_shape = "interval",
silent = TRUE
)
```

Arguments

slice the index of measurement slice for BrS.

data_nplcm See nplcm()
model_options See nplcm()

clean_options See clean_perch_data()
bugs.dat Data input for the model fitting.

res_nplcm See nplcm_read_folder()

bg_color A list with names "BrS", "SS", "pie" to specify background colors

select_latent a vector of character strings representing latent status. It is used for just plot-

ting a subset of latent status. For example, you can specify select_latent =

"HINF" to plot all latent status information relevant to "HINF".

exact Default is TRUE to use select_latent as exact names of causes. If you want to

specify a name and plot all single or combo causes with that name, specify it to

be FALSE.

top_BrS Numerical value to specify the rightmost limit on the horizontal axis for the BrS

panel.

cexval Default is 1 - size of text of the BrS percentages.

srtval Default is 0 - the direction of the text for the BrS percentages.

prior_shape interval or boxplot - for how to represent prior/posteriors of the TPR/FPRs

of measurements.

silent Default is TRUE to not print any warning messages; FALSE otherwise.

Value

plotting function.

See Also

```
Other visualization functions: plot.nplcm(), plot_SS_panel(), plot_check_common_pattern(), plot_check_pairwise_SLORD(), plot_etiology_regression(), plot_etiology_strat(), plot_panels(), plot_pie_panel(), plot_subwt_regression()
```

plot_case_study 105

plot_case_study

visualize the PERCH etiology regression with a continuous covariate

Description

This function is specifically designed for PERCH data, e.g., (NB: dealing with NoA, multiple-pathogen causes, other continuous covariates? also there this function only plots the first slice - so generalization may be useful - give users an option to choose slice s; currently default to the first slice.)

Usage

```
plot_case_study(
  DIR_NPLCM,
  stratum_bool = stratum_bool,
  bugs.dat = NULL,
  slice = 1,
  RES_NPLCM = NULL,
  do_plot = TRUE,
  do_rug = FALSE,
  return_metric = TRUE
)
```

Arguments

DIR_NPLCM	File path to the folder containing posterior samples
stratum_bool	integer; for this function, indicates which strata to plot
bugs.dat	The posterior samples (loaded into the environment to save time) -> default is NULL
slice	integer; specifies which slice of bronze-standard data to visualize; Default to 1.
RES_NPLCM	pre-read res_nplcm; default to NULL.
do_plot	TRUE for plotting
do_rug	TRUE for plotting
return_metric	TRUE for showing overall mean etiology, quantiles, s.d., and if truth\$Eti is supplied, coverage, bias, truth and integrated mean squared errors (IMSE).

Value

A figure of etiology regression curves and some marginal positive rate assessment of model fit; See example for the legends.

```
plot_check_common_pattern
```

Posterior predictive checking for the nested partially class models - frequent patterns in the BrS data. (for multiple folders)

Description

At each MCMC iteration, we generate a new data set based on the model and parameter values at that iteration. The sample size of the new data set equals that of the actual data set, i.e. the same number of cases and controls.

Usage

```
plot_check_common_pattern(
   DIR_list,
   slice_vec = rep(1, length(DIR_list)),
   n_pat = 10,
   dodge_val = 0.8
)
```

Arguments

DIR_list The list of directory paths, each storing a model output.

slice_vec Default are 1s, for the first slice of BrS data.

n_pat Number of the most common BrS measurement pattern among cases and controls. Default is 10.

dodge_val Default is 0.8; For width of boxplots.

Value

A figure of posterior predicted frequencies compared with the observed frequencies of the most common patterns for the BrS data.

See Also

```
Other visualization functions: plot.nplcm(), plot_BrS_panel(), plot_SS_panel(), plot_check_pairwise_SLORD(), plot_etiology_regression(), plot_etiology_strat(), plot_panels(), plot_pie_panel(), plot_subwt_regression()
```

```
data(data_nplcm_noreg)
cause_list <- LETTERS[1:6]
J.BrS     <- 6
model_options_no_reg <- list(
    likelihood = list(</pre>
```

```
cause_list = cause_list,
    k_subclass = 2,
   Eti_formula = ~-1, # no covariate for the etiology regression
   FPR_formula = list(
     MBS1 = \sim -1)
                     # no covariate for the subclass weight regression
 use_measurements = c("BrS"),
 # use bronze-standard data only for model estimation.
 prior= list(
   Eti_prior = overall_uniform(1,cause_list),
    # Dirichlet(1, ..., 1) prior for the etiology.
   TPR_prior = list(BrS = list(
      info = "informative", # informative prior for TPRs
      input = "match_range",
      # specify the informative prior for TPRs by specifying a plausible range.
      val = list(MBS1 = list(up = list(rep(0.99, J.BrS)),
                             # upper ranges: matched to 97.5% quantile of a Beta prior
                             low = list(rep(0.55, J.BrS)))
      # lower ranges: matched to 2.5% quantile of a Beta prior
   )
 )
)
set.seed(1)
# include stratification information in file name:
          <- paste0(tempdir(), "_no_reg")</pre>
# create folders to store the model results
dir.create(thedir, showWarnings = FALSE)
result_folder_no_reg <- file.path(thedir,paste("results",collapse="_"))</pre>
thedir <- result_folder_no_reg</pre>
dir.create(thedir, showWarnings = FALSE)
# options for MCMC chains:
mcmc_options_no_reg <- list(</pre>
 debugstatus = TRUE,
 n.chains = 1,
 n.itermcmc = as.integer(200),
 n.burnin = as.integer(100),
 n.thin = 1,
 individual.pred = FALSE,
 ppd = TRUE,
 result.folder = thedir,
 bugsmodel.dir = thedir
)
BrS_object_1 <- make_meas_object(patho = LETTERS[1:6],</pre>
                                 specimen = "MBS", test = "1",
                                 quality = "BrS", cause_list = cause_list)
clean_options <- list(BrS_objects = make_list(BrS_object_1))</pre>
# place the nplcm data and cleaning options into the results folder
```

```
dput(data_nplcm_noreg,file.path(thedir, "data_nplcm.txt"))
dput(clean_options, file.path(thedir, "data_clean_options.txt"))
rjags::load.module("glm")
nplcm_noreg <- nplcm(data_nplcm_noreg,model_options_no_reg,mcmc_options_no_reg)
plot_check_common_pattern(nplcm_noreg$DIR_NPLCM)</pre>
```

plot_check_pairwise_SLORD

Posterior predictive checking for nested partially latent class models pairwise log odds ratio (only for bronze-standard data)

Description

At each MCMC iteration, we generate a new data set based on the model and parameter values at that iteration. The sample size of the new data set equals that of the actual data set, i.e. the same number of cases and controls.

Usage

```
plot_check_pairwise_SLORD(DIR_NPLCM, slice = 1)
```

Arguments

DIR_NPLCM File path to the folder that stores results from npLCM fit.

slice Default is 1, for the first slice of BrS data.

Value

A figure of posterior predicted log odds ratio compared with the observed log odds ratio for the BrS data. The function generates this figure in your working directory automatically.

See Also

```
Other visualization functions: plot.nplcm(), plot_BrS_panel(), plot_SS_panel(), plot_check_common_pattern(), plot_etiology_regression(), plot_etiology_strat(), plot_panels(), plot_pie_panel(), plot_subwt_regression()
```

```
data(data_nplcm_noreg)
cause_list <- LETTERS[1:6]</pre>
          <- 6
J.BrS
model_options_no_reg <- list(</pre>
 likelihood = list(
   cause_list = cause_list,
   k_subclass = 2,
   Eti_formula = ~-1, # no covariate for the etiology regression
   FPR_formula = list(
     MBS1 = \sim -1)
                       # no covariate for the subclass weight regression
 use_measurements = c("BrS"),
 # use bronze-standard data only for model estimation.
 prior= list(
   Eti_prior = overall_uniform(1,cause_list),
    # Dirichlet(1, ..., 1) prior for the etiology.
   TPR_prior = list(BrS = list(
      info = "informative", # informative prior for TPRs
      input = "match_range",
      # specify the informative prior for TPRs by specifying a plausible range.
      val = list(MBS1 = list(up = list(rep(0.99, J.BrS)),
                             # upper ranges: matched to 97.5% quantile of a Beta prior
                             low = list(rep(0.55, J.BrS)))
      # lower ranges: matched to 2.5% quantile of a Beta prior
   )
   )
 )
)
set.seed(1)
# include stratification information in file name:
thedir <- paste0(tempdir(), "_no_reg")</pre>
# create folders to store the model results
dir.create(thedir, showWarnings = FALSE)
result_folder_no_reg <- file.path(thedir,paste("results",collapse="_"))</pre>
thedir <- result_folder_no_reg</pre>
dir.create(thedir, showWarnings = FALSE)
# options for MCMC chains:
mcmc_options_no_reg <- list(</pre>
 debugstatus = TRUE,
 n.chains = 1,
 n.itermcmc = as.integer(200),
 n.burnin = as.integer(100),
 n.thin = 1,
 individual.pred = FALSE,
 ppd = TRUE,
 result.folder = thedir,
```

plot_etiology_regression

visualize the etiology regression with a continuous covariate

Description

This function visualizes the etiology regression against one continuous covariate, e.g., enrollment date. (NB: dealing with NoA, multiple-pathogen causes, other continuous covariates? also there this function only plots the first slice - so generalization may be useful - give users an option to choose slice s; currently default to the first slice.)

Usage

```
plot_etiology_regression(
   DIR_NPLCM,
   stratum_bool,
   slice = 1,
   plot_basis = FALSE,
   truth = NULL,
   RES_NPLCM = NULL,
   do_plot = TRUE,
   do_rug = TRUE,
   return_metric = TRUE,
   plot_ma_dots = FALSE
)
```

Arguments

DIR_NPLCM File path to the folder containing posterior samples
stratum_bool a vector of TRUE/FALSE with TRUE indicating the rows of subjects to include

slice	integer; specifies which slice of bronze-standard data to visualize; Default to 1.
plot_basis	TRUE for plotting basis functions; Default to FALSE
truth	a list of truths computed from true parameters in simulations; elements: Eti, FPR, PR_case,TPR; All default to NULL in real data analyses. Currently only works for one slice of bronze-standard measurements (in a non-nested model).
	• Eti matrix of # of rows = # of subjects, # columns: length(cause_list) for Eti
	• FPR matrix of # of rows = # of subjects, # columns: ncol(data_nplcm\$Mobs\$MBS\$MBS1)
	• PR_case matrix of # of rows = # of subjects, # columns: ncol(data_nplcm\$Mobs\$MBS\$MBS1)
	TPR a vector of length identical to PR_case
RES_NPLCM	pre-read res_nplcm; default to NULL.
do_plot	TRUE for plotting
do_rug	TRUE for plotting
return_metric	TRUE for showing overall mean etiology, quantiles, s.d., and if truth\$Eti is

supplied, coverage, bias, truth and integrated mean squared errors (IMSE).

plot moving averages among case and controls if TRUE; Default to FALSE.

Value

A figure of etiology regression curves and some marginal positive rate assessment of model fit; See example for the legends.

References

See example figures

plot_ma_dots

- A Figure using simulated data for six pathogens: https://github.com/zhenkewu/baker/blob/master/inst/figs/visualize_etiology_regression_SITE=1.pdf
- The legends for the figure above: https://github.com/zhenkewu/baker/blob/master/inst/figs/legends_visualize_etiology_regression.png

See Also

```
Other visualization functions: plot.nplcm(), plot_BrS_panel(), plot_SS_panel(), plot_check_common_pattern(), plot_check_pairwise_SLORD(), plot_etiology_strat(), plot_panels(), plot_pie_panel(), plot_subwt_regression()
```

plot_etiology_strat

plot_etiology_strat visualize the etiology estimates for each discrete levels

Description

This function visualizes the etiology estimates against one discrete covariate, e.g., age groups.

Usage

```
plot_etiology_strat(
   DIR_NPLCM,
   strata_weights = "empirical",
   truth = NULL,
   RES_NPLCM = NULL,
   show_levels = 0,
   is_plot = TRUE,
   VERBOSE = TRUE
)
```

Arguments

DIR_NPLCM File path to the folder containing posterior samples

strata_weights a vector of weights that sum to one; for each pathogen the weights specify how

the j-th etiology fraction should be combined across all levels of the discrete predictors in the data; default is "empirical" to use empirical weights (observed

fractions of subjects across strata).

truth a list of true values, e.g., truth=list(allEti = <a list of etiology fractions, each of identica

if available, will be shown in thicker red solid vertical lines.

RES_NPLCM pre-read res_nplcm; default to NULL.

show_levels a vector of integers less than or equal to the total number of levels of strata;

default to 0 for overall.

is_plot default to TRUE, plotting the figures; if FALSE only returning summaries

VERBOSE default to TRUE, print actual meanings of the levels

Value

plotting function

See Also

```
Other visualization functions: plot.nplcm(), plot_BrS_panel(), plot_SS_panel(), plot_check_common_pattern(), plot_check_pairwise_SLORD(), plot_etiology_regression(), plot_panels(), plot_pie_panel(), plot_subwt_regression()
```

plot_leftmost 113

plot_leftmost

plotting the labels on the left margin for panels plot

Description

plotting the labels on the left margin for panels plot

Usage

```
plot_leftmost(model_options, height)
```

Arguments

model_options See nplcm()

height no. of rows in the panels plot; commonly set as length(select_latent)

Value

a plot

See Also

plot_panels

plot_logORmat

Visualize pairwise log odds ratios (LOR) for data that are available in both cases and controls

Description

Visualize pairwise log odds ratios (LOR) for data that are available in both cases and controls

Usage

```
plot_logORmat(data_nplcm, pathogen_display, BrS_slice = 1, logOR_rounding = 2)
```

Arguments

```
data_nplcm See assign_model().
```

pathogen_display

The pathogen vector in desired order for display. It can be of larger length than

that of pathogen_BrS.

BrS_slice Default is 1 - the set of BrS data to visualize.

logOR_rounding Rounding number of the log odds ratio. Default is 2.

114 plot_panels

Details

plot_logORmat visualizes a matrix of pairwise log odds ratios (LOR) for cases (upper) and controls (lower). LOR is at the top of the cell. Below it, its standard error is in smaller type, using the same color as the LOR. Then the estimate is divided by its standard error. We put the actual value when the Z-statistics has an absolute value greater than \$2\$; a plus (red) or minus (blue) if between \$1\$ and \$2\$; blank otherwise.

Value

Figure of LOR matrix and relevant s.e. and significance information.

See Also

```
Other exploratory data analysis functions: get_top_pattern(), show_individual(), summarize_BrS(), summarize_SS(), visualize_season()
```

Examples

```
data(data_nplcm_noreg)
plot_logORmat(data_nplcm_noreg,names(data_nplcm_noreg$Mobs$MBS[[1]]))
```

plot_panels

Plot three-panel figures for nested partially-latent model results

Description

plot_panels() visualizes the model outputs for communicating how the data inform final latent disease status (etiology). It works for singleton or combo etiologies.

```
plot_panels(
  DIR_NPLCM,
  slices = "all",
  bg_color = list(BrS = "lavenderblush", SS = "mistyrose", pie = "antiquewhite"),
  select_latent = NULL,
  exact = TRUE,
  SS_upperlimit = 1,
  eti_upperlimit = 1,
  silent = TRUE,
  ref_eti0 = NULL,
  is_plot = TRUE
)
```

plot_panels 115

Arguments

DIR_NPLCM	File path to the folder containing posterior samples
slices	DEFAULT is "all" - to plot all measurements; Otherwise, one can specify a list: list(MBS=c(1,3),MSS=1) means to plot the 1st and 3rd slice of BrS measurements and 1st of SS measurement.
bg_color	A list with names "BrS", "SS", "pie" to specify background colors. The current default is list(BrS = "lavenderblush", SS = "mistyrose", pie="antiquewhite"). If no background is intended, specify as NULL or for a particular measurement, e.g., BrS = NULL.
select_latent	a vector of character strings representing latent status. It is used for just plotting a subset of latent status. For example, you can specify select_latent = "HINF" to plot all latent status information relevant to "HINF".
exact	Default is TRUE to use select_latent as exact names of causes. If you want to specify a name and plot all single or combo causes with that name, specify it to be FALSE.
SS_upperlimit	The upper limit of horizontal bar for the silver-standard subpanel (the middle panel). The default value is .25.
eti_upperlimit	The upper limit of horizontal bar for the etiology posterior subpanel (the right-most panel). The default value is .4
silent	Default is TRUE to not print any warning messages; FALSE otherwise.
ref_eti0	reference quantiles and means; a list: pEti_ref_q, pEti_ref_mean_ord
is_plot	default to TRUE for plotting only; set to FALSE if to get summary.

Details

Missing data for BrS or SS are dropped when calculating observed measurement positive rates

Value

A figure with two or three columns (if is_plot=TRUE); otherwise, it provide posterior summaries of Etiology information to used by print.summary.nplcm.no_reg()

See Also

```
Other visualization functions: plot.nplcm(), plot_BrS_panel(), plot_SS_panel(), plot_check_common_pattern(), plot_check_pairwise_SLORD(), plot_etiology_regression(), plot_etiology_strat(), plot_pie_panel(), plot_subwt_regression()
```

plot_pie_panel

plot_pie_panel

Plot etiology (pie) panel

Description

Plot etiology (pie) panel

Usage

```
plot_pie_panel(
  model_options,
  res_nplcm,
  bugs.dat,
  bg_color,
  select_latent = NULL,
  exact = TRUE,
  top_pie = 1,
  label_size = 1,
  ref_eti = NULL,
  is_plot = TRUE
)
```

Arguments

${\sf model_options}$	See nplcm()
res_nplcm	See nplcm_read_folder()
bugs.dat	Data input for the model fitting.
bg_color	A list with names "BrS", "SS", "pie" to specify background colors
select_latent	a vector of character strings representing latent status. It is used for just plotting a subset of latent status. For example, you can specify select_latent = "HINF"
exact	Default is TRUE to use select_latent as exact names of causes. If you want to specify a name and plot all single or combo causes with that name, specify it to be FALSE. to plot all latent status information relevant to "HINF".
top_pie	Numerical value to specify the rightmost limit on the horizontal axis for the pie panel.
label_size	the size of latent status labels on the right margin
ref_eti	reference quantiles and means; a list: pEti_ref_q, pEti_ref_mean_ord
is_plot	default to TRUE for plotting only; set to FALSE if to get summary.

Value

plotting function.

plot_SS_panel 117

See Also

Other visualization functions: plot.nplcm(), plot_BrS_panel(), plot_SS_panel(), plot_check_common_pattern(), plot_check_pairwise_SLORD(), plot_etiology_regression(), plot_etiology_strat(), plot_panels(), plot_subwt_regression()

plot_SS_panel

Plot silver-standard (SS) panel

Description

Plot silver-standard (SS) panel

Usage

```
plot_SS_panel(
    slice,
    data_nplcm,
    model_options,
    clean_options,
    bugs.dat,
    res_nplcm,
    bg_color,
    select_latent = NULL,
    exact = TRUE,
    top_SS = 1,
    cexval = 1,
    srtval = 0,
    prior_shape = "interval"
)
```

Arguments

slice the index of measurement slice for SS.

data_nplcm See nplcm()
model_options See nplcm()

clean_options See clean_perch_data()
bugs.dat Data input for the model fitting.
res_nplcm See nplcm_read_folder()

bg_color A list with names "BrS", "SS", "pie" to specify background colors

select_latent a vector of character strings representing latent status. It is used for just plot-

ting a subset of latent status. For example, you can specify select_latent =

"HINF" to plot all latent status information relevant to "HINF".

exact Default is TRUE to use select_latent as exact names of causes. If you want to

specify a name and plot all single or combo causes with that name, specify it to

be FALSE.

plot_subwt_regression

top_SS Numerical value to specify the rightmost limit on the horizontal axis for the SS

panel.

cexval Default is 1 - size of text of the SS percentages.

srtval Default is 0 - the direction of the text for the SS percentages.

prior_shape interval or boxplot - for how to represent prior/posteriors of the TPR/FPRs

of measurements.

Value

plotting function

See Also

```
Other visualization functions: plot.nplcm(), plot_BrS_panel(), plot_check_common_pattern(), plot_check_pairwise_SLORD(), plot_etiology_regression(), plot_etiology_strat(), plot_panels(), plot_pie_panel(), plot_subwt_regression()
```

plot_subwt_regression visualize the subclass weight regression with a continuous covariate

Description

visualize the subclass weight regression with a continuous covariate

Usage

```
plot_subwt_regression(
  DIR_NPLCM,
  stratum_bool,
  case = 0,
  slice = 1,
  truth = NULL,
  RES_NPLCM = NULL
)
```

Arguments

DIR_NPLCM	File path to the folder containing posterior samples
stratum_bool	a vector of TRUE/FALSE with TRUE indicating the rows of subjects to include
case	1 for plotting cases, 0 for plotting controls; default to 0.
slice	integer; specifies which slice of bronze-standard data to visualize; Default to 1.
truth	a list of truths computed from true parameters in simulations; elements: Eti, FPR, PR_case, TPR; All default to NULL in real data analyses. Currently only works for one slice of bronze-standard measurements (in a non-nested model).
	• truth_subwt matrix of # of rows = # of subjects, # columns: number of true subclasses
RES_NPLCM	pre-read res_nplcm; default to NULL.

print.nplcm 119

Value

A figure of subclass regression curves

See Also

```
Other visualization functions: plot.nplcm(), plot_BrS_panel(), plot_SS_panel(), plot_check_common_pattern(), plot_check_pairwise_SLORD(), plot_etiology_regression(), plot_etiology_strat(), plot_panels(), plot_pie_panel()
```

print.nplcm

print.nplcm summarizes the results from nplcm().

Description

print.nplcm summarizes the results from nplcm().

Usage

```
## S3 method for class 'nplcm'
print(x, ...)
```

Arguments

x Output from nplcm().

... Arguments passed to summary and printing methods.

Value

Summary of object output by nplcm() — need details.

See Also

```
Other nplcm results: print.summary.nplcm.no_reg(), print.summary.nplcm.reg_nest_strat(),
print.summary.nplcm.reg_nest(), print.summary.nplcm.reg_nonest_strat(), print.summary.nplcm.reg_nones
summary.nplcm()
```

Description

print.summary.nplcm is a print method for class summary.nplcm.NoReg.

Usage

```
## S3 method for class 'summary.nplcm.no_reg'
print(x, ...)
```

Arguments

x output from summary.nplcm with summary.nplcm.no_reg as the output object class.

... Not used.

Value

```
see print.nplcm()
```

See Also

Other nplcm results: print.nplcm(), print.summary.nplcm.reg_nest_strat(), print.summary.nplcm.reg_nest(), print.summary.nplcm.reg_nonest_strat(), print.summary.nplcm.reg_nonest(), summary.nplcm()

Description

print.summary.nplcm is a print method for class summary.nplcm.reg_nest.

Usage

```
## S3 method for class 'summary.nplcm.reg_nest'
print(x, ...)
```

Arguments

x output from summary.nplcm with summary.nplcm.reg_nest as the output object class.

... Not used.

Value

```
see print.nplcm()
```

See Also

Other nplcm results: print.nplcm(), print.summary.nplcm.no_reg(), print.summary.nplcm.reg_nest_strat(), print.summary.nplcm.reg_nonest_strat(), print.summary.nplcm.reg_nonest(), summary.nplcm()

Description

```
Same as print.summary.nplcm.reg_nonest_strat()
```

Usage

```
## S3 method for class 'summary.nplcm.reg_nest_strat' print(x, ...)
```

Arguments

x output from summary.nplcm.with summary.nplcm.reg_nest_strat as the output object class.

... Not used.

Details

print.summary.nplcm is a print method for class summary.nplcm.reg_nest_strat.

Value

```
see print.nplcm()
```

See Also

```
Other nplcm results: print.nplcm(), print.summary.nplcm.no_reg(), print.summary.nplcm.reg_nest(), print.summary.nplcm.reg_nonest_strat(), print.summary.nplcm.reg_nonest(), summary.nplcm()
```

Description

print.summary.nplcm is a print method for class summary.nplcm.reg_nonest.

Usage

```
## S3 method for class 'summary.nplcm.reg_nonest'
print(x, ...)
```

Arguments

x output from summary.nplcm with summary.nplcm.reg_nonest as the output object class.

.. Not used.

Value

```
see print.nplcm()
```

See Also

Other nplcm results: print.nplcm(), print.summary.nplcm.no_reg(), print.summary.nplcm.reg_nest_strat(), print.summary.nplcm.reg_nest(), print.summary.nplcm.reg_nonest_strat(), summary.nplcm()

Description

print.summary.nplcm is a print method for class summary.nplcm.reg_nonest_strat.

Usage

```
## S3 method for class 'summary.nplcm.reg_nonest_strat' print(x, ...)
```

Arguments

x output from summary.nplcm with summary.nplcm.reg_nonest_strat as the output object class.

... Not used.

read_meas_object 123

Value

```
see print.nplcm()
```

See Also

Other nplcm results: print.nplcm(), print.summary.nplcm.no_reg(), print.summary.nplcm.reg_nest_strat(), print.summary.nplcm.reg_nest(), print.summary.nplcm.reg_nonest(), summary.nplcm()

read_meas_object

Read measurement slices

Description

NB: add example, small data

Usage

```
read_meas_object(object, data)
```

Arguments

object Outputs from make_meas_object()

Value

A list with two elements: meas-data frame with measurements; position-see lookup_quality()

See Also

Other raw data importing functions: extract_data_raw()

rvbern

Sample a vector of Bernoulli variables.

Description

Sample a vector of Bernoulli variables with higher speed (same length with "p"). The Bernoulli random variables can have different means.

Usage

rvbern(p)

р

A vector of probabilities, each being the head probability of an independent coin

Value

```
A vector of 1s (head) and 0s (tail)
```

Examples

```
rvbern(c(0.9,0.1,0.2,0.3))
```

```
set_prior_tpr_BrS_NoNest
```

Set true positive rate (TPR) prior ranges for bronze-standard (BrS) data

Description

set_prior_tpr_BrS_NoNest is for for conditional independence models. We currently also use it for conditional dependence model: subclass TPRs are independently assigned a beta prior. Ongoing work will enable specifying priors for the marginal TPR, i.e. TPRs for a disease class, not for the finer subclass.

Usage

```
set_prior_tpr_BrS_NoNest(slice, model_options, data_nplcm)
```

Arguments

slice The BrS measurement slice under consideration.

model_options See nplcm() function.

data_nplcm See assign_model() function.

Value

Parameters for the BrS dta TPR priors. It is a list of two lists (alpha and beta). Alpha and beta are of the same length, the number of BrS measurement slices. Each element of the alpha (beta) list is a numeric vector for alpha (beta) parameters as in BETA distribution.

See Also

Other prior specification functions: overall_uniform(), set_prior_tpr_SS()

set_prior_tpr_SS 125

set_prior_tpr_SS

Set true positive rate (TPR) prior ranges for silver-standard data.

Description

Set true positive rate (TPR) prior ranges for silver-standard data.

Usage

```
set_prior_tpr_SS(model_options, data_nplcm)
```

Arguments

```
model_options See nplcm() function.
data_nplcm See assign_model() function.
```

Value

Parameters for the SS data TPR priors. It is a list of two lists (alpha and beta). Alpha and beta are of the same length, the number of BrS measurement slices. Each element of the alpha (beta) list is a numeric vector for alpha (beta) parameters to specify Beta prior for TPRs.

See Also

Other prior specification functions: overall_uniform(), set_prior_tpr_BrS_NoNest()

set_strat

Stratification setup by covariates

Description

```
set_strat makes group indicators based on model_options$X_reg_*
```

Usage

```
set_strat(X, X_reg)
```

Arguments

X A data frame of covariates

X_reg The vector of covariates that will stratify the analyses. These variables have to be categorical.

show_dep

Details

the results from this function will help stratify etiology or FPR for different strata; the ways of stratification for etiology and FPR can be based on different covariates.

Value

A list with following elements:

- N_group The number of groups
- group A vector of group indicator for every observation

show_dep

Show function dependencies

Description

Show function dependencies

Usage

```
show_dep(fname, pckg = "package:baker", ...)
```

Arguments

fname	Character string for one function
pckg	Package name; default is "package:baker"
	Other parameters accepted by mvbutils::foodweb()

Value

A figure showing function dependencies

```
show_dep("nplcm", ancestor=FALSE)
show_dep("nplcm")
```

show_individual 127

show_individual

get an individual's data from the output of clean_perch_data()

Description

```
get an individual's data from the output of clean_perch_data()
```

Usage

```
show_individual(data_nplcm, ID)
```

Arguments

```
data_nplcm data for fitting nplcm; See nplcm()

ID patient id: patid.
```

Value

a list with the inquired patient's data

See Also

```
Other exploratory data analysis functions: get_top_pattern(), plot_logORmat(), summarize_BrS(), summarize_SS(), visualize_season()
```

Examples

```
data(data_nplcm_noreg)
data_nplcm_noreg$X$patid <- paste("PAT",1:length(data_nplcm_noreg$Y0),sep="")
data_nplcm_noreg$X <- as.data.frame(data_nplcm_noreg$X)
subset_data_nplcm_by_index(data_nplcm_noreg,which(data_nplcm_noreg$X$patid%in%c("PAT12","PAT408")))
data_nplcm_noreg$X <- NULL</pre>
```

simulate_brs

Simulate Bronze-Standard (BrS) Data

Description

```
Simulate Bronze-Standard (BrS) Data
```

```
simulate_brs(set_parameter, latent_samples)
```

128 simulate_brs

Arguments

set_parameter

True model parameters in an npLCM specification:

cause_list a vector of disease class names among cases (since the causes could be multi-agent (e.g., multiple pathogens may cause an individual case's pneumonia), so its length could be longer than the total number of unique causative agents)

etiology a vector of proportions that sum to 100 percent

pathogen_BrS a vector of putative causative agents' names measured in bronzestandard (BrS) data. This function simulates only one slice defined by specimen``test``pathogen

pathogen_SS a vector of pathogen names measured in silver-standard (SS) data.

meas_nm a list of specimen ``test names e.g., list(MBS = c("NPPCR"), MSS="BCX") for nasopharyngeal (NP) specimen tested by polymerase chain reaction (PCR) - NPPCR and blood (B) tested by culture (Cx) - BCX

Lambda controls' subclass weights $\nu_1, \nu_2, \dots, \nu_K$ a vector of K probabilities that sum to 1.

Eta a matrix of dimension length(cause_list) by K; each row represents a disease class (among cases); the values in that row are subclass weights $\eta_1, \eta_2, \ldots, \eta_K$ for that disease class, so needs to sum to one. In Wu et al. 2016 (JRSS-C), the subclass weights are the same across disease classes across rows. But when simulating data, one can specify rows with distinct subclass weights - it is a matter whether we can recover these parameters (possible when some cases' true disease classes are observed)

PsiBS/PsiSS False positive rates for Bronze-Standard data and for Silver-Standard data. For example, the rows of PsiBS correspond to the dimension of the particular slice of BrS measures, e.g., 10 for 10 causative agents measured by NPPCR; the columns correspond to K subclasses; generically, the dimension is J by K PsiSS is supposed to be a vector of all zeros (perfect specificity in silver-standard measures).

ThetaBS/ThetaSS True positive rates Θ for Bronze-Standard data and for Silver-Standard data. Dimension is J by K (can contain NA if the total number of causative agents measured by BrS or SS exceeds the measured causative agents in SS. For example, in PERCH study, nasopharyngeal polymerase chain reaction (NPPCR; bronze-standard) may target 30 distinct pathogens, but blood culture (BCX; silver-standard) may only target a subset of the 30, so we have to specify NA in ThetaSSfor those pathogens not targeted by BCX).

Nu the number of control subjects

Nd the number of case subjects

latent_samples simulated latent status for all the subjects, for use in simulating BrS measurements.

Value

a data frame with first column being case-control status (case at top) and columns of bronze-standard measurements

simulate_latent 129

See Also

Other internal simulation functions: simulate_latent(), simulate_ss()

simulate_latent

Simulate Latent Status:

Description

Simulate Latent Status:

Usage

simulate_latent(set_parameter)

Arguments

set_parameter

True model parameters in an npLCM specification:

cause_list a vector of disease class names among cases (since the causes could be multi-agent (e.g., multiple pathogens may cause an individual case's pneumonia), so its length could be longer than the total number of unique causative agents)

etiology a vector of proportions that sum to 100 percent

pathogen_BrS a vector of putative causative agents' names measured in bronzestandard (BrS) data. This function simulates only one slice defined by specimen' 'test' 'pathogen

 $pathogen_SS \ \ a \ vector \ of \ pathogen \ names \ measured \ in \ silver-standard \ (SS) \ data.$

meas_nm a list of specimen ``test names e.g., list(MBS = c("NPPCR"), MSS="BCX") for nasopharyngeal (NP) specimen tested by polymerase chain reaction (PCR) - NPPCR and blood (B) tested by culture (Cx) - BCX

Lambda controls' subclass weights $\nu_1, \nu_2, \dots, \nu_K$ a vector of K probabilities that sum to 1.

Eta a matrix of dimension length(cause_list) by K; each row represents a disease class (among cases); the values in that row are subclass weights $\eta_1, \eta_2, \ldots, \eta_K$ for that disease class, so needs to sum to one. In Wu et al. 2016 (JRSS-C), the subclass weights are the same across disease classes across rows. But when simulating data, one can specify rows with distinct subclass weights - it is a matter whether we can recover these parameters (possible when some cases' true disease classes are observed)

PsiBS/PsiSS False positive rates for Bronze-Standard data and for Silver-Standard data. For example, the rows of PsiBS correspond to the dimension of the particular slice of BrS measures, e.g., 10 for 10 causative agents measured by NPPCR; the columns correspond to K subclasses; generically, the dimension is J by K PsiSS is supposed to be a vector of all zeros (perfect specificity in silver-standard measures).

simulate_nplcm

ThetaBS/ThetaSS True positive rates Θ for Bronze-Standard data and for Silver-Standard data. Dimension is J by K (can contain NA if the total number of causative agents measured by BrS or SS exceeds the measured causative agents in SS. For example, in PERCH study, nasopharyngeal polymerase chain reaction (NPPCR; bronze-standard) may target 30 distinct pathogens, but blood culture (BCX; silver-standard) may only target a subset of the 30, so we have to specify NA in ThetaSSfor those pathogens not targeted by BCX).

Nu the number of control subjects

Nd the number of case subjects

Value

a list of latent status samples for use in simulating measurements. It also includes a template to look up measurement parameters for each disease class.

See Also

Other internal simulation functions: simulate_brs(), simulate_ss()

simulate_nplcm

Simulate data from nested partially-latent class model (npLCM) family

Description

Simulate data from nested partially-latent class model (npLCM) family

Usage

```
simulate_nplcm(set_parameter)
```

Arguments

set_parameter

True model parameters in an npLCM specification:

cause_list a vector of disease class names among cases (since the causes could be multi-agent (e.g., multiple pathogens may cause an individual case's pneumonia), so its length could be longer than the total number of unique causative agents)

etiology a vector of proportions that sum to 100 percent

pathogen_BrS a vector of putative causative agents' names measured in bronzestandard (BrS) data. This function simulates only one slice defined by specimen'test'pathogen

pathogen_SS a vector of pathogen names measured in silver-standard (SS) data. meas_nm a list of specimen ``test names e.g., list(MBS = c("NPPCR"), MSS="BCX") for nasopharyngeal (NP) specimen tested by polymerase chain reaction (PCR) - NPPCR and blood (B) tested by culture (Cx) - BCX

simulate_nplcm 131

Lambda controls' subclass weights $\nu_1, \nu_2, \dots, \nu_K$ a vector of K probabilities that sum to 1.

Eta a matrix of dimension length(cause_list) by K; each row represents a disease class (among cases); the values in that row are subclass weights $\eta_1, \eta_2, \ldots, \eta_K$ for that disease class, so needs to sum to one. In Wu et al. 2016 (JRSS-C), the subclass weights are the same across disease classes across rows. But when simulating data, one can specify rows with distinct subclass weights - it is a matter whether we can recover these parameters (possible when some cases' true disease classes are observed)

PsiBS/PsiSS False positive rates for Bronze-Standard data and for Silver-Standard data. For example, the rows of PsiBS correspond to the dimension of the particular slice of BrS measures, e.g., 10 for 10 causative agents measured by NPPCR; the columns correspond to K subclasses; generically, the dimension is J by K PsiSS is supposed to be a vector of all zeros (perfect specificity in silver-standard measures).

ThetaBS/ThetaSS True positive rates Θ for Bronze-Standard data and for Silver-Standard data. Dimension is J by K (can contain NA if the total number of causative agents measured by BrS or SS exceeds the measured causative agents in SS. For example, in PERCH study, nasopharyngeal polymerase chain reaction (NPPCR; bronze-standard) may target 30 distinct pathogens, but blood culture (BCX; silver-standard) may only target a subset of the 30, so we have to specify NA in ThetaSSfor those pathogens not targeted by BCX).

Nu the number of control subjects

Nd the number of case subjects

Value

A list of diagnostic test measurements, true latent statues:

data_nplcm a list of structured data (see nplcm() for description).

template a matrix: rows for causes (may comprise a single or multiple causative agents), columns for measurements; generated as a lookup table to match disease-class specific parameters (true and false positive rates)

latent_cat integer values to indicate the latent category. The integer code corresponds to the order specified in set_parameter\$etiology. Controls are coded as length(set_parameter\$etiology)+1.)

See Also

simulate_latent for simulating discrete latent status, given which simulate_brs simulates bronzestandard data.

```
K.true <- 2 # no. of latent subclasses in actual simulation.  
# If eta = c(1,0), effectively, it is K.true=1.

J <- 21 # no. of pathogens.

N <- 600 # no. of cases/controls.
```

132 simulate_ss

```
eta <- c(1,0)
# if it is c(1,0), then it is conditional independence model, and
# only the first column of parameters in PsiBS, ThetaBS matter!
seed_start <- 20150202
print(eta)
# set fixed simulation sequence:
set.seed(seed_start)
ThetaBS_withNA <- c(.75,rep(c(.75,.75,.75,NA),5))
PsiBS_withNA <- c(.15,rep(c(.05,.05,.05,NA),5))
ThetaSS_withNA <- c(NA, rep(c(0.15, NA, 0.15, 0.15), 5))
PsiSS_withNA <- c(NA, rep(c(0, NA, 0, 0), 5))
set_parameter <- list(</pre>
 cause_list
                  = c(LETTERS[1:J]),
 etiology
                  = c(c(0.36,0.1,0.1,0.1,0.1,0.05,0.05,0.05,
                 0.05,0.01,0.01,0.01,0.01),rep(0.00,8)),
                 #same length as cause_list.
                  = LETTERS[1:J][!is.na(ThetaBS_withNA)],
 pathogen_BrS
                  = LETTERS[1:J][!is.na(ThetaSS_withNA)],
 pathogen_SS
                  = list(MBS = c("MBS1"),MSS="MSS1"),
 meas_nm
                  = eta, #ctrl mix
 Lambda
 Eta
                  = t(replicate(J,eta)), #case mix, row number equal to Jcause.
 PsiBS
                  = cbind(PsiBS_withNA[!is.na(PsiBS_withNA)],
                          rep(0,sum(!is.na(PsiBS_withNA)))),
 ThetaBS
                  = cbind(ThetaBS_withNA[!is.na(ThetaBS_withNA)],
                          rep(0,sum(!is.na(ThetaBS_withNA)))),
 PsiSS
                  = PsiSS_withNA[!is.na(PsiSS_withNA)],
 ThetaSS
                  = ThetaSS_withNA[!is.na(ThetaSS_withNA)],
                N, # control size.
 Nd
                N # case size.
)
 simu_out <- simulate_nplcm(set_parameter)</pre>
 data_nplcm <- simu_out$data_nplcm</pre>
 pathogen_display <- rev(set_parameter$pathogen_BrS)</pre>
 plot_logORmat(data_nplcm,pathogen_display)
 # more examples are provided in the vignette, including settings with
 # covariates.
```

simulate_ss

Simulate Silver-Standard (SS) Data

Description

Simulate Silver-Standard (SS) Data

simulate_ss 133

Usage

simulate_ss(set_parameter, latent_samples)

Arguments

set_parameter

True model parameters in an npLCM specification:

cause_list a vector of disease class names among cases (since the causes could be multi-agent (e.g., multiple pathogens may cause an individual case's pneumonia), so its length could be longer than the total number of unique causative agents)

etiology a vector of proportions that sum to 100 percent

pathogen_BrS a vector of putative causative agents' names measured in bronzestandard (BrS) data. This function simulates only one slice defined by specimen'test'pathogen

pathogen_SS a vector of pathogen names measured in silver-standard (SS) data.

meas_nm a list of specimen``test names e.g., list(MBS = c("NPPCR"), MSS="BCX") for nasopharyngeal (NP) specimen tested by polymerase chain reaction (PCR) - NPPCR and blood (B) tested by culture (Cx) - BCX

Lambda controls' subclass weights $\nu_1, \nu_2, \dots, \nu_K$ a vector of K probabilities that sum to 1.

Eta a matrix of dimension length(cause_list) by K; each row represents a disease class (among cases); the values in that row are subclass weights $\eta_1, \eta_2, \ldots, \eta_K$ for that disease class, so needs to sum to one. In Wu et al. 2016 (JRSS-C), the subclass weights are the same across disease classes across rows. But when simulating data, one can specify rows with distinct subclass weights - it is a matter whether we can recover these parameters (possible when some cases' true disease classes are observed)

PsiBS/PsiSS False positive rates for Bronze-Standard data and for Silver-Standard data. For example, the rows of PsiBS correspond to the dimension of the particular slice of BrS measures, e.g., 10 for 10 causative agents measured by NPPCR; the columns correspond to K subclasses; generically, the dimension is J by K PsiSS is supposed to be a vector of all zeros (perfect specificity in silver-standard measures).

ThetaBS/ThetaSS True positive rates Θ for Bronze-Standard data and for Silver-Standard data. Dimension is J by K (can contain NA if the total number of causative agents measured by BrS or SS exceeds the measured causative agents in SS. For example, in PERCH study, nasopharyngeal polymerase chain reaction (NPPCR; bronze-standard) may target 30 distinct pathogens, but blood culture (BCX; silver-standard) may only target a subset of the 30, so we have to specify NA in ThetaSSfor those pathogens not targeted by BCX).

Nu the number of control subjects

Nd the number of case subjects

latent_samples simulated latent status for all the subjects, for use in simulating SS measurements.

134 softmax

Value

a data frame with first column being case-control status (case at top) and columns of silver-standard measurements

See Also

Other internal simulation functions: simulate_brs(), simulate_latent()

softmax

softmax

Description

uses logsumexp trick to prevent numerical overflow

Usage

```
softmax(x)
```

Arguments

Х

a vector of numbers

Value

a vector of positive values that sum to one.

```
softmax2 \leftarrow function(x) exp(x) / sum(exp(x))
 softmax(c(1, 2, 3) * 1000) # NaN NaN NaN
 softmax2(c(1, 2, 3) * 1000) # 0 0 1
```

```
subset_data_nplcm_by_index
subset data from the output of clean_perch_data()
```

Description

It is particularly useful in simulating data from a regression model where one generates a case and control at a particular covariate value, and just choose a case or control to retain in the simulated data.

Usage

```
subset_data_nplcm_by_index(data_nplcm, index)
```

Arguments

data_nplcm data for fitting nplcm; See nplcm()
index a vector of indices indicating the observations you hope to subset; it will subset in all the sublists of data_nplcm

Value

a list with the requested data, in the order determined by 'index'

See Also

Other data operation functions: combine_data_nplcm(), merge_lists()

```
# number of causes
cause_list = c(LETTERS[1:J]) # cause list
K = 2
                              # number of subclasses
lambda = c(1,0)
                              # subclass weights for control group
eta = c(1,0)
                              # subclass weights for case group
# setup parameters for the present individual:
set_parameter <- list(</pre>
cause_list
              = cause_list,
             = c(0.5,0.2,0.3), # only meaningful for cases
etiology
pathogen_BrS = LETTERS[1:J],
 pathogen_SS
                = LETTERS[1:2],
                = list(MBS = c("MBS1"), MSS=c("MSS1")),
 meas_nm
Lambda
                = lambda,
                                  # for BrS
               = t(replicate(J,eta)), # case subclass weight for BrS
Eta
PsiBS
              = cbind(c(0.15,0.3,0.35),
                        c(0.25,0.2,0.15)), # FPR
PsiSS
               = cbind(rep(0,J),rep(0,J)),
```

summarize_BrS

```
ThetaBS
                  = cbind(c(0.95, 0.9, 0.85),
                                                 # TPR
                          c(0.95,0.9,0.85)),
 ThetaSS
                  = cbind(c(0.25, 0.10),
                          c(0.25,0.10)),
               5,
 Nd
         =
 Nu
               3
simu_out <- simulate_nplcm(set_parameter)</pre>
out <- simu_out$data_nplcm</pre>
out
subset_data_nplcm_by_index(out,c(1,4,5))
subset_data_nplcm_by_index(out,2)
```

summarize_BrS

summarize bronze-standard data

Description

summarize bronze-standard data

Usage

```
summarize_BrS(BrS_dat, Y)
```

Arguments

BrS_dat bronze-standard data, which is usually data_nplcm\$Mobs\$MBS[[1]]

Y A vector of case/control status: 1 for case; 0 for control

Value

a list of summaries for BrS data

See Also

```
Other exploratory data analysis functions: get_top_pattern(), plot_logORmat(), show_individual(), summarize_SS(), visualize_season()
```

```
data(data_nplcm_noreg)
summarize_BrS(data_nplcm_noreg$Mobs$MBS[[1]], data_nplcm_noreg$Y)
```

summarize_SS 137

summarize_SS

silver-standard data summary

Description

silver-standard data summary

Usage

```
summarize_SS(SS_dat, Y)
```

Arguments

SS_dat a data frame of silver-standard data. It can usually be obtained by data_nplcm\$Mobs\$MSS[[1]],

meaning the first SS measurement slice.

Y a vector of case control status: 1 for case; 0 for control.

Value

a vector of number of positives

See Also

```
Other exploratory data analysis functions: get_top_pattern(), plot_logORmat(), show_individual(), summarize_BrS(), visualize_season()
```

Examples

```
data(data_nplcm_noreg)
summarize_BrS(data_nplcm_noreg$Mobs$MBS[[1]], data_nplcm_noreg$Y)
summarize_SS(data_nplcm_noreg$Mobs$MSS[[1]], data_nplcm_noreg$Y)
```

summary.nplcm

summary.nplcm summarizes the results from nplcm().

Description

```
summary.nplcm summarizes the results from nplcm().
```

```
## S3 method for class 'nplcm'
summary(object, ...)
```

138 symb2I

Arguments

```
object Output from nplcm(). An object of class "nplcm"
... Not used.
```

Value

```
see print.nplcm()
```

See Also

```
Other nplcm results: print.nplcm(), print.summary.nplcm.no_reg(), print.summary.nplcm.reg_nest_strat(), print.summary.nplcm.reg_nest(), print.summary.nplcm.reg_nonest_strat(), print.summary.nplcm.reg_nonest
```

symb2I

Convert names of pathogen/combinations into 0/1 coding

Description

Convert names of pathogen/combinations into 0/1 coding

Usage

```
symb2I(pathogen_name, pathogen_list)
```

Arguments

```
pathogen_name The allowed pathogen name (can be a combination of pathogens in "pathlist")
pathogen_list The complete list of pathogen names
```

Value

A 1 by length(pathlist) matrix of binary code (usually for pathogen presence/absence)

```
symb2I("A",c("A","B","C"))
symb2I("A+B",c("A","B","C"))
symb2I("NoA",c("A","B","C"))
symb2I(c("A","B+C"),c("A","B","C")) # gives a 2 by 3 matrix.
```

sym_diff_month 139

sym_diff_month get symmetric difference of months from	n two vector of R-format dates
--	--------------------------------

Description

 sym_diff_month evaluates the symmetric difference between two sets of R-formatted date

Usage

```
sym_diff_month(Rdate1, Rdate2)
```

Arguments

```
Rdate1, Rdate2 R-formatted R dates. See as.Date()
```

Value

NULL if no difference; the set of different months otherwise.

s_date_Eti	Make Etiology design matrix for dates with R format.

Description

s_date_Eti creates design matrices for etiology regressions;

Usage

```
s_date_Eti(Rdate, Y, basis = "ps", dof = ifelse(basis == "ncs", 5, 10), ...)
```

Arguments

Rdate	a vector of dates of R format
Υ	Binary case/control status; 1 for case; 0 for controls
basis	ncs for natural cubic splines; ps for penalized-splines based on B-spline basis functions (NB: baker does not recommend setting ncs using this function; use splines::ns)
dof	Degree-of-freedom for the bases. For ncs basis, dof is the number of columns; For ps basis, the number of columns is dof if intercept=TRUE; dof-1 if FALSE.
	Other arguments as in splines::bs()

Value

• Z_Eti design matrix for etiology regression on dates.

140 s_date_FPR

See Also

```
nplcm()
```

Examples

```
data("data_nplcm_reg_nest")
s_date_Eti(data_nplcm_reg_nest$X$DATE,data_nplcm_reg_nest$Y,basis='ps',dof=7)
```

s_date_FPR

Make false positive rate (FPR) design matrix for dates with R format.

Description

s_date_FPR creates design matrices for FPR regressions;

Usage

```
s_date_FPR(Rdate, Y, basis = "ps", dof = 10, ...)
```

Arguments

Rdate a vector of dates of R format

Y Binary case/control status; 1 for case; 0 for controls

basis "ps" for penalized-splines based on B-spline basis functions

dof Degree-of-freedom for the bases.For "ps" basis, the number of columns is dof

if intercept=TRUE; dof-1 if FALSE.

... Other arguments as in splines::bs()

Value

Design matrix for FPR regression, with cases' rows on top of controls'.

See Also

```
nplcm()
```

```
data(data_nplcm_reg_nest)
s_date_FPR(data_nplcm_reg_nest$X$DATE,data_nplcm_reg_nest$Y,basis='ps',dof=7)
```

tsb 141

tsb

generate stick-breaking prior (truncated) from a vector of random probabilities

Description

generate stick-breaking prior (truncated) from a vector of random probabilities

Usage

tsb(u)

Arguments

u

a vector of probabilities, with the last element 1.

Value

a vector of the same length as u; sum to 1.

Examples

```
oldpar <- graphics::par(mfrow=c(3,3),oma=c(0,1,5,0),
    mar=c(1,2,1,1))
for (iter in 1:9){
    u <- c(rbeta(9,1,0.8),1)
    res <- tsb(u)
    barplot(res,ylim=c(0,1),main=paste0("Random Sample #", iter),ylab="Probability")
}
graphics::mtext("Truncated Stick-Breaking Dist. (10 segments)",3,
    outer=TRUE,cex=1.5,line=1.5)
par(oldpar)</pre>
```

unfactor

Convert factor to numeric without losing information on the label

Description

Convert factor to numeric without losing information on the label

Usage

```
unfactor(f)
```

Arguments

f

A factor

142 unique_month

Value

A numeric vector

Examples

```
unfactor(factor(c("1","3","3"),levels=c("1","3")))
# contrast this to:
as.numeric(factor(c("1","3","3"),levels=c("1","3")))
```

unique_cause

get unique causes, regardless of the actual order in combo

Description

get unique causes, regardless of the actual order in combo

Usage

```
unique_cause(cause_vec)
```

Arguments

cause_vec

a vector of characters with potential combo repetitions written in scrambled orders separated by "+"

Value

a vector of characters with unique meanings for latent causes

Examples

```
x <- c("A","B","A","CC+DD","DD+CC","E+F+G","B")
unique_cause(x)</pre>
```

unique_month

Get unique month from Date

Description

unique_month converts observed dates into unique months to help visualize sampled months

```
unique_month(Rdate)
```

Rdate standard date format in R

Value

a vector of characters with month-year, e.g., 4-2012.

```
visualize_case_control_matrix
```

Visualize matrix for a quantity measured on cases and controls (a single number)

Description

Special to case-control visualization: upper right for cases, lower left for controls.

Usage

```
visualize_case_control_matrix(
  mat,
  dim_names = ncol(mat),
  cell_metrics = "",
  folding_line = TRUE,
  axes = FALSE,
  xlab = "",
  ylab = "",
  asp = 1,
  title = ""
)
```

Arguments

matrix of values: upper for cases, lower for controls; mat names of the columns, from left to right. It is also the names of the rows, from dim_names bottom to top. Default is 1 through ncol(mat); the meaning of number in every cell; cell_metrics folding_line Default is TRUE for adding dashed major diagonal line. plot axes; default is FALSE; axes xlab label for x-axis label for y-axis ylab aspect ratio; default is 1 to ensure square shape asp text for the figure title

Value

plotting function; no returned value.

144 visualize_season

visualize_season	visualize trend of pathogen observation rate for NPPCR data (both cases and controls)

Description

visualize trend of pathogen observation rate for NPPCR data (both cases and controls)

Usage

```
visualize_season(data_nplcm, patho, slice = 1, slice_SS = 1)
```

Arguments

data_nplcm	Data set produced by clean_perch_data()
patho	the index of pathogen
slice	the slice of BrS data for visualization; default is 1.
slice_SS	the slice of SS data to add onto BrS plots; default is 1, usually representing blood culture measurements.

Details

This function shows observed positive rate for continuous covariates,e.g., enrollment date in PERCH application. Smoothing is done by penalized splines implemented by mgcv package. The penalized spline smoothing term is constructed by mgcv::smooth.construct.ps.smooth.spec(). The window size of the moving averages currently is set to 60 days.

Value

A figure with smoothed positive rate and confidence bands for cases and controls, respectively. The right margin shows marginal positive rates; all rates are only among the subset of case subjects who had non-missing responses for a measured agent (e.g., pathogen); similarly for controls.

See Also

```
Other exploratory data analysis functions: get_top_pattern(), plot_logORmat(), show_individual(), summarize_BrS(), summarize_SS()
```

write.model 145

write.model

function to write bugs model (copied from R2WinBUGS)

Description

function to write bugs model (copied from R2WinBUGS)

Usage

```
write.model(model, con = "model.bug", digits = 5)
```

Arguments

model R/S-PLUS function containing the BUGS model in the BUGS model language,

for minor differences see Section Details.

con passed to writeLines which actually writes the model file

digits number of significant digits used for WinBUGS input, see formatC

Value

write text lines to a connection; same as writeLines()

write_model_NoReg

Write .bug model file for model without regression

Description

write_model_NoReg automatically generates model file according to model_options

```
write_model_NoReg(
   k_subclass,
   Mobs,
   prior,
   cause_list,
   use_measurements,
   ppd = NULL,
   use_jags = FALSE
)
```

k_subclass the number of subclasses for the slices that require conditional dependence mod-

eling (only applicable to BrS data); its length is of the same value as the number

of BrS slices.

Mobs measurement data in the form of data_nplcm
prior prior specification from model_options

cause_list a list of latent status names (crucial for building templates; see make_template())

use_measurements

"BrS", or "SS"

ppd Default is NULL; set to TRUE for posterior predictive checking

use_jags Default is FALSE; set to TRUE if want to use JAGS for model fitting.

Value

a long character string to be written into .bug file.

See Also

insert_bugfile_chunk_noreg_meas for inserting .bug file chunk for measurements (plug-and-play); insert_bugfile_chunk_noreg_etiology for inserting .bug file chunk for distribution of latent status (etiology).

Other model generation functions: write_model_Reg_Nest(), write_model_Reg_NoNest(), write_model_Reg_discrete

```
write_model_Reg_discrete_predictor_NoNest
```

Write .bug model file for regression model without nested subclasses

Description

write_model_Reg_discrete_predictor_NoNest automatically generates model file according to model_options

```
write_model_Reg_discrete_predictor_NoNest(
  Mobs,
  prior,
  cause_list,
  use_measurements,
  ppd = NULL,
  use_jags = FALSE
)
```

Mobs Measurement data in the form of data_nplcm

prior Prior specification from model_options

cause_list A list of latent status names (crucial for building templates; see make_template())

use_measurements

"BrS", or "SS"

ppd Default is NULL; set to TRUE for posterior predictive checking

Default is FALSE; set to TRUE if want to use JAGS for model fitting.

Value

use_jags

a long character string to be written into .bug file.

See Also

insert_bugfile_chunk_noreg_meas for inserting .bug file chunk for measurements (plug-and-play); insert_bugfile_chunk_noreg_etiology for inserting .bug file chunk for distribution of latent status (etiology).

Other model generation functions: write_model_NoReg(), write_model_Reg_Nest(), write_model_Reg_NoNest()

write_model_Reg_Nest Write .bug model file for regression model WITH nested subclasses

Description

write_model_Reg_Nest automatically generates model file according to model_options; This is called within nplcm_fit_Reg_Nest.

```
write_model_Reg_Nest(
   Mobs,
   prior,
   cause_list,
   Eti_formula,
   FPR_formula,
   use_measurements,
   ppd = NULL,
   use_jags = FALSE
)
```

Mobs	Measurement data in the form of data_nplcm	
prior	Prior specification from model_options	
cause_list	A list of latent status names (crucial for building templates; see make_template())	
Eti_formula	$Etiology\ regression\ formula; Check\ model_options\$likelihood\$Eti_formula.$	
FPR_formula	$A\ list\ of\ FPR\ regression\ formula; check\ model_options\$likelihood\$FPR_formula; check\ model_options§likelihood\$FPR_formula; checklikelihood\$FPR_formula; check\ model_options§likelihood\FPR_formu	
use_measurements		
	"BrS", or "SS"	
ppd	Default is NULL; set to TRUE for posterior predictive checking	
use_jags Default is FALSE; set to TRUE if want to use JAGS for model fitting.		

Value

a long character string to be written into .bug file.

See Also

insert_bugfile_chunk_noreg_meas for inserting .bug file chunk for measurements (plug-and-play.R); insert_bugfile_chunk_noreg_etiology for inserting .bug file chunk for distribution of latent status (etiology).

 $Other \ model \ generation \ functions: \ write_model_NoReg(), \ write_model_Reg_NoNest(), \ write_model_Reg_discrete_productions \ functions \ func$

```
write_model_Reg_NoNest
```

Write .bug model file for regression model without nested subclasses

Description

write_model_Reg_NoNest automatically generates model file according to model_options

```
write_model_Reg_NoNest(
   Mobs,
   prior,
   cause_list,
   Eti_formula,
   FPR_formula,
   use_measurements,
   ppd = NULL,
   use_jags = FALSE
)
```

Mobs Measurement data in the form of data_nplcm
prior Prior specification from model_options

cause_list A list of latent status names (crucial for building templates; see make_template())

Eti_formula Etiology regression formula; Check model_options\$likelihood\$Eti_formula.

FPR_formula A list of FPR regression formula; check model_options\$likelihood\$FPR_formula

use_measurements

"BrS", or "SS"

ppd Default is NULL; set to TRUE for posterior predictive checking use_jags Default is FALSE; set to TRUE if want to use JAGS for model fitting.

Value

a long character string to be written into .bug file.

See Also

insert_bugfile_chunk_noreg_meas for inserting .bug file chunk for measurements (plug-and-play); insert_bugfile_chunk_noreg_etiology for inserting .bug file chunk for distribution of latent status (etiology).

Other model generation functions: write_model_NoReg(), write_model_Reg_Nest(), write_model_Reg_discrete_pred

Index

```
* data operation functions
                                                                                                                      12
         combine_data_nplcm, 33
                                                                                                             add_meas_BrS_ctrl_NoNest_reg_Slice_jags,
        merge_lists, 82
         subset_data_nplcm_by_index, 135
                                                                                                             add_meas_BrS_ctrl_NoNest_Slice, 14
* data standardization functions
                                                                                                             add_meas_BrS_param_Nest_reg_Slice_jags,
         make_meas_object, 77
* data tidying functions
                                                                                                             add_meas_BrS_param_Nest_Slice, 16
         clean_perch_data, 32
                                                                                                             add_meas_BrS_param_Nest_Slice_jags,
* datasets
                                                                                                             add_meas_BrS_param_NoNest_reg_discrete_predictor_Slice
         data_nplcm_noreg, 42
         data_nplcm_reg_nest, 43
                                                                                                             add_meas_BrS_param_NoNest_reg_Slice_jags,
         pathogen_category_perch, 101
         pathogen_category_simulation, 102
                                                                                                             add_meas_BrS_param_NoNest_Slice,
* exploratory data analysis functions
         get_top_pattern, 57
         plot_logORmat, 113
                                                                                                             add_meas_BrS_param_NoNest_Slice_jags,
         show_individual, 127
                                                                                                             add_meas_BrS_subclass_Nest_Slice,
         summarize_BrS, 136
                                                                                                                      22
         summarize_SS, 137
                                                                                                             add_meas_SS_case, 23
         visualize_season, 144
                                                                                                             add_meas_SS_param, 24
* initialization functions
                                                                                                    * model checking functions
         init_latent_jags_multipleSS, 61
                                                                                                             plot_check_pairwise_SLORD, 108
* internal simulation functions
                                                                                                    * model fitting functions
         simulate_brs, 127
                                                                                                             nplcm_fit_NoReg, 88
         simulate_latent, 129
                                                                                                             nplcm_fit_Reg_discrete_predictor_NoNest,
         simulate_ss, 132
                                                                                                                      90
* likelihood specification functions
                                                                                                             nplcm_fit_Reg_Nest, 92
         add_meas_BrS_case_Nest_Slice, 5
                                                                                                             nplcm_fit_Reg_NoNest, 95
         add_meas_BrS_case_Nest_Slice_jags,
                                                                                                    * model generating functions
         \verb| add_meas_BrS_case_NoNest_reg_discrete_predictplosses | \verb| blooms | blo
                                                                                                    * model generation functions
                                                                                                             write_model_NoReg, 145
         add_meas_BrS_case_NoNest_reg_Slice_jags,
                                                                                                             write_model_Reg_discrete_predictor_NoNest,
         add_meas_BrS_case_NoNest_Slice, 9
         add_meas_BrS_case_NoNest_Slice_jags,
                                                                                                             write_model_Reg_Nest, 147
                                                                                                             write\_model\_Reg\_NoNest, 148
                  10
         add_meas_BrS_ctrl_Nest_Slice, 11
                                                                                                    * nplcm results
         add_meas_BrS_ctrl_NoNest_reg_discrete_predictpri6timplgmgb19
```

```
print.summary.nplcm.no_reg, 120
                                                     extract_data_raw, 47
    print.summary.nplcm.reg_nest, 120
                                                     read_meas_object, 123
                                                 * simulation functions
    print.summary.nplcm.reg_nest_strat,
                                                     simulate_nplcm, 130
                                                 * specification checking functions
    print.summary.nplcm.reg_nonest,
                                                     assign_model, 26
                                                 * visualization functions
    print.summary.nplcm.reg_nonest_strat,
                                                     plot.nplcm, 103
        122
                                                     plot_BrS_panel, 103
    summary.nplcm, 137
                                                     plot_check_common_pattern, 106
* plug-and-play functions
                                                     plot_check_pairwise_SLORD, 108
    add_meas_BrS_case_Nest_Slice, 5
                                                     plot_etiology_regression, 110
    add_meas_BrS_case_Nest_Slice_jags,
                                                     plot_etiology_strat, 112
    add_meas_BrS_case_NoNest_reg_discrete_predict01051020e138g14
                                                     plot_pie_panel, 116
                                                     plot_SS_panel, 117
    add_meas_BrS_case_NoNest_reg_Slice_jags,
                                                     plot_subwt_regression, 118
    add_meas_BrS_case_NoNest_Slice, 9
                                                 add_meas_BrS_case_Nest_Slice, 5, 7-25
    add_meas_BrS_case_NoNest_Slice_jags,
                                                 add_meas_BrS_case_Nest_Slice_jags, 6, 6,
                                                          8-25
    add_meas_BrS_ctrl_Nest_Slice, 11
    add_meas_BrS_ctr1_Nest_Sirce, ii add_meas_BrS_case_NoNest_reg_discrete_predictor_Slice_jags add_meas_BrS_ctr1_NoNest_reg_discrete_predictor_Slice_jags_5
                                                 add_meas_BrS_case_NoNest_reg_Slice_jags,
    add_meas_BrS_ctrl_NoNest_reg_Slice_jags,
                                                          6-8, 8, 10-25
                                                 add_meas_BrS_case_NoNest_Slice, 6-9, 9,
    add_meas_BrS_ctrl_NoNest_Slice, 14
                                                          11-25
    add_meas_BrS_param_Nest_reg_Slice_jags,
                                                 add_meas_BrS_case_NoNest_Slice_jags,
                                                          6-10, 10, 12-25
    add_meas_BrS_param_Nest_Slice, 16
                                                 add_meas_BrS_ctrl_Nest_Slice, 6-11, 11,
    add_meas_BrS_param_Nest_Slice_jags,
                                                 add_meas_BrS_ctrl_NoNest_reg_discrete_predictor_Slice_jags
    \verb| add_meas_BrS_param_NoNest_reg_discrete_predictor_§| ice_{1} ice_{1} ice_{2} ice_{3}, 25
                                                 add_meas_BrS_ctrl_NoNest_reg_Slice_jags,
    add_meas_BrS_param_NoNest_reg_Slice_jags,
                                                          6-13, 13, 15-25
                                                 add_meas_BrS_ctrl_NoNest_Slice, 6-14,
    add_meas_BrS_param_NoNest_Slice,
                                                          14, 16–25
                                                 add_meas_BrS_param_Nest_reg_Slice_jags,
    add_meas_BrS_param_NoNest_Slice_jags,
                                                          6–15, 15, 17–25
                                                 add_meas_BrS_param_Nest_Slice, 6–16, 16,
    add_meas_BrS_subclass_Nest_Slice,
                                                          18-25
        22
                                                 add_meas_BrS_param_Nest_Slice_jags,
    add_meas_SS_case, 23
                                                          6–17, 17, 19–25
    add_meas_SS_param, 24
                                                 add_meas_BrS_param_NoNest_reg_discrete_predictor_Slice_jag
* prior specification functions
                                                          6–18, 18, 20–25
    overall_uniform, 100
                                                 add_meas_BrS_param_NoNest_reg_Slice_jags,
    set_prior_tpr_BrS_NoNest, 124
                                                          6-19, 19, 21-25
    set_prior_tpr_SS, 125
                                                 add_meas_BrS_param_NoNest_Slice, 6-20,
* raw data importing functions
                                                          20, 22–25
```

<pre>add_meas_BrS_param_NoNest_Slice_jags,</pre>	<pre>get_marginal_rates_nested, 54</pre>
<i>6–21</i> , 21, 2 <i>3–25</i>	<pre>get_marginal_rates_no_nested, 54</pre>
add_meas_BrS_subclass_Nest_Slice, 6-22,	<pre>get_metric, 55</pre>
22, 24, 25	<pre>get_pEti_samp, 55</pre>
add_meas_SS_case, 6-23, 23, 25	<pre>get_plot_num, 56</pre>
add_meas_SS_param, 6 – 24 , 24	get_plot_pos, 56
as.Date(), 139	get_postsd, 57
as.matrix_or_vec, 25	get_top_pattern, 57, 114, 127, 136, 137, 144
assign_model, 26	
assign_model(), 92, 113, 124, 125	Н, 58
	has_non_basis,59
baker, 27	
beta_parms_from_quantiles, 28	I2symb, 59
beta_plot, 29	Imat2cat, 60
bin2dec, 30	<pre>init_latent_jags_multipleSS, 61</pre>
	<pre>insert_bugfile_chunk_noreg_etiology,</pre>
check_dir_create, 30	61, 63, 146–149
clean_combine_subsites, 31, 33	<pre>insert_bugfile_chunk_noreg_meas, 62,</pre>
clean_perch_data, 32	146–149
clean_perch_data(), 44, 48, 50, 104, 117,	<pre>insert_bugfile_chunk_reg_discrete_predictor_etiology,</pre>
127, 135, 144	63
combine_data_nplcm, 33, 82, <i>135</i>	<pre>insert_bugfile_chunk_reg_discrete_predictor_nonest_meas</pre>
<pre>compute_logOR_single_cause, 34</pre>	63
compute_marg_PR_nested_reg, 39, 40	insert_bugfile_chunk_reg_etiology, 64,
<pre>compute_marg_PR_nested_reg_array, 39,</pre>	64, 65, 66
40	<pre>insert_bugfile_chunk_reg_nest_meas, 15,</pre>
<pre>create_bugs_regressor_Eti, 41</pre>	65
create_bugs_regressor_FPR, 42	<pre>insert_bugfile_chunk_reg_nonest_meas,</pre>
	66
data_nplcm_noreg, 42	is.error,67
data_nplcm_reg_nest, 43	is_discrete, 67
delete_start_with, 44	is_intercept_only, 68
dir.create(), 31	is_jags_folder, 68
dm_Rdate_Eti, 44	is_length_all_one, 69
dm_Rdate_FPR, 45	15_Teliguil_att_olle, 09
dm_Rdate_FPR(), 85, 89, 91, 94, 96	jags2_baker, 69
	Jugoz_buker, 07
expit, 46	line2user,71
extract_data_raw, 33, 47, 123	loadOneName, 73
$extract_data_raw(), 32, 75$	logit, 73
C	logOR, 74
formula(), 85, 89, 91, 93, 96	logsumexp, 74
get_coverage, 48	
	lookup_quality,75
get_direct_bias, 49	lookup_quality(), <i>123</i>
get_fitted_mean_nested, 49	maka filanama 75
get_fitted_mean_no_nested, 50	make_filename, 75
get_individual_data, 51	make_foldername, 76
get_individual_prediction, 51	make_list, 77
<pre>get_latent_seq, 53</pre>	make_meas_object, 33,77

make_meas_object(), 32, 47, 123	plot_leftmost, 113
make_numbered_list,79	plot_logORmat, 58, 113, 127, 136, 137, 144
make_template, 79	plot_panels, 103, 104, 106, 108, 111-113,
make_template(), 62, 64-66, 78, 146-149	114, <i>117–119</i>
marg_H, 80	plot_pie_panel, 103, 104, 106, 108, 111,
match_cause, 81	<i>112, 115,</i> 116 <i>, 118, 119</i>
merge_lists, 33, 82, 135	plot_SS_panel, 103, 104, 106, 108, 111, 112,
<pre>mgcv::smooth.construct.ps.smooth.spec(),</pre>	<i>115, 117,</i> 117 <i>, 119</i>
144	plot_subwt_regression, 103, 104, 106, 108,
<pre>mvbutils::foodweb(), 126</pre>	<i>111, 112, 115, 117, 118,</i> 118
my_reorder, 82	print.nplcm, 119, 120-123, 138
	print.nplcm(), 120-123, 138
NA2dot, 83	print.summary.nplcm.no_reg, 119, 120,
nplcm, 84	121–123, 138
nplcm(), 5-24, 26, 28, 33, 42, 43, 45, 46,	<pre>print.summary.nplcm.no_reg(), 115</pre>
50–54, 56, 61, 92, 101, 103, 104,	<pre>print.summary.nplcm.reg_nest, 119, 120,</pre>
113, 116, 117, 119–122, 124, 125,	120, <i>121–123</i> , <i>138</i>
127, 131, 135, 137, 138, 140	<pre>print.summary.nplcm.reg_nest_strat,</pre>
nplcm_fit_NoReg, 86, 87, 92, 95, 97	119–121, 121, 122, 123, 138
<pre>nplcm_fit_Reg_discrete_predictor_NoNest,</pre>	<pre>print.summary.nplcm.reg_nonest,</pre>
86, 90, 90, 95, 97	119–121, 122, 123, 138
nplcm_fit_Reg_Nest, 86, 90, 92, 92, 97, 147	<pre>print.summary.nplcm.reg_nonest_strat,</pre>
nplcm_fit_Reg_NoNest, 86, 90, 92, 95, 95	119–122, 122, 138
nplcm_read_folder, 97	<pre>print.summary.nplcm.reg_nonest_strat(),</pre>
nplcm_read_folder(), 51, 104, 116, 117	121
null_as_zero, 99	
	R2jags::jags(), <i>71</i>
order_post_eti, 100	R2jags::jags2(),86
overall_uniform, 100, <i>124</i> , <i>125</i>	read_meas_object, 48, 123
	rvbern, 123
parent.frame, 73	
parse_date_time, 33	s_date_Eti, 139
parse_nplcm_reg, 101	s_date_Eti(), 85, 89, 91, 93, 96
pathogen_category_perch, 101	s_date_FPR, 140
pathogen_category_simulation, 102	s_date_FPR(), 59, 85, 89, 91, 93, 96
plot.nplcm, 103, 104, 106, 108, 111, 112,	set_prior_tpr_BrS_NoNest, 100, 124, 125
115, 117–119	set_prior_tpr_SS, <i>100</i> , <i>124</i> , 125
plot_BrS_panel, 103, 103, 106, 108, 111,	set_strat, 125
112, 115, 117–119	show_dep, 126
plot_case_study, 105	show_individual, 58, 114, 127, 136, 137, 144
plot_check_common_pattern, 103, 104, 106,	simulate_brs, 127, <i>130</i> , <i>131</i> , <i>134</i>
108, 111, 112, 115, 117–119	simulate_latent, <i>129</i> , 129, <i>131</i> , <i>134</i>
plot_check_pairwise_SLORD, 103, 104, 106,	simulate_nplcm, 130
108, 111, 112, 115, 117–119	simulate_ss, <i>129</i> , <i>130</i> , 132
plot_etiology_regression, 39, 40, 103,	softmax, 134
104, 106, 108, 110, 112, 115,	splines::bs(), <i>139</i> , <i>140</i>
117–119	<pre>subset_data_nplcm_by_index, 33, 82, 135</pre>
plot_etiology_strat, <i>103</i> , <i>104</i> , <i>106</i> , <i>108</i> ,	summarize_BrS, <i>58</i> , <i>114</i> , <i>127</i> , 136, <i>137</i> , <i>144</i>
<i>111</i> , 112, <i>115</i> , <i>117–119</i>	summarize_SS, 58, 114, 127, 136, 137, 144

```
summary.nplcm, 119–123, 137
sym_diff_month, 139
symb2I, 138
symb2I(), 59
tempfile, 70
tsb, 141
unfactor, 141
unique_cause, 142
unique_month, 142
visualize_case_control_matrix, 143
visualize_season, 58, 114, 127, 136, 137,
        144
write.model, 70, 145
write_model_NoReg, 63, 90, 92, 97, 145,
         147-149
write\_model\_Reg\_discrete\_predictor\_NoNest,
        146, 146, 148, 149
write_model_Reg_Nest, 95, 146, 147, 147,
         149
write_model_Reg_NoNest, 64-66, 146-148,
        148
writeLines(), 145
```