Learn Latent Representations

Unsupervised and self-supervised learning Auto-Encoders

Jonathon Hare

Vision, Learning and Control University of Southampton

Compressed and Latent Representations

Jonathon Hare Auto-encoders 3 / 11

Compression

Generative Modelling from Latent Representations

Jonathon Hare Auto-encoders 5 / 11

Autoencoders

The aim of an autoencoder is to learn a representation (encoding) for a set of data, typically for dimensionality reduction, by training the network to ignore signal noise.

Deep Autoencoders

1

¹Image taken from wikipedia

Jonathon Hare

Auto-encoders

7 / 11

Denoising Autoencoders

- Denoising autoencoders take a partially corrupted input and train to recover the original undistorted input.
- To train an autoencoder to denoise data, it is necessary to perform a preliminary stochastic mapping to corrupt the data $(x \to \tilde{x})$.
- ullet A normal autoencoder is used with \tilde{x} is used as input and x as output.
- In a denoising autoencoder, the loss should be computed on $\mathcal{L}(x,\hat{x})$ as opposed to $\mathcal{L}(\tilde{x},\hat{x})$.

Jonathon Hare Auto-encoders 8 / 1

Sparse Autoencoders

 In a sparse autoencoder, there are more hidden units than inputs, but only a small number of the hidden units are allowed to be active at the same time.

Jonathon Hare Auto-encoders 9 / 11

Convolutional Autoencoders

•

Autoencoder Applications

- Any basic AE (or its variant) is used to learn a compact representation of data.
- You can learn automatic features from data.
- Denoising can help generalise over the test set since the data is distorted by adding noise.
- Pretraining networks by learning your network weights using a stacked AE.

Jonathon Hare Auto-encoders 11 / 11