Le contenu

Remarques

Equations et inéquations du premier degré à une inconnue : 1. Généralité:

🗷 Activité 🛈:

 \blacksquare Résoudre dans $\mathbb R$ les équations suivantes :

•
$$(E_1): \frac{3x+1}{2} = x - \frac{x-1}{2}$$

•
$$(E_2): 2x + 4 = 3(x - 2) - x + 8$$

•
$$(E_3): \sqrt{2}(x-3)+1=1-\sqrt{2}(3-x)$$

•
$$(E_4):4(x-1)^2-25=0$$

•
$$(E_5): \frac{3x-1}{2x+3} = 0$$

$$(E_6): |2x+3| = |x-2|$$

21 Discuter selon les valeurs de m les solutions des équations suivantes :

•
$$(E_1)$$
: $mx + 5 = x - 1$

•
$$(E_2): 2x + 4m = 3(x-m) + 8$$

Activité ②

Résoudre dans \mathbb{R} les inéquations suivantes :

•
$$(E'_1): -4x + 7 \le 2x + 14$$

•
$$(E_1): -4x + 7 \le 2x + 14$$
 • $(E_2): 2(x-1) - (3x-5) \le 6x + 7 + 4(x-3)$

2. Signe du binôme
$$ax+b$$
 $(a \neq 0)$:

Activité 3:

Résoudre dans \mathbb{R} les inéquations suivantes :

•
$$3x + 4 \le 0$$

•
$$3x+4 \ge 0$$

2 Compléter le tableau suivant en utilisant "+" ou "-".

$oldsymbol{x}$	$-\infty$		$-rac{4}{3}$	$+\infty$
3x + 4		•••	O	

Le tableau au-dessus est appelé *tableau de signe* du binôme ax+b.

3) Donner le tableau de signe de -2x+6.

🎤 🎤 Propriété :

Le tableau de signe de ax + b est :

$oldsymbol{x}$	$-\infty$ $-\frac{b}{a}$	+∞
ax + b	$egin{array}{cccccccccccccccccccccccccccccccccccc$	signe de a

Application 1: Exercice 3 de la série.

On pose p(x) = (2x-5)(-3x+4).

- 1) Poser le tableau de signe de (-3x+4) et (2x-5).
- **2)** En déduire le signe de p(x).
- **3)** En déduire les solutions de l'inéquation $p(x) \le 0$.

Exercice ①: Exercice ④ de la série.

Résoudre dans IR les inéquations suivantes :

•
$$(E_1): 4x^2 - 25 \ge 0$$

•
$$(E_2): (4x-5)(2x+7)(1-x)^2 > 0$$

•
$$(E_3): \frac{(3x-1)(x+2)}{2x+5} < 0$$

Equations et inéquations du second degré à une inconnue : 1. Généralité:

Activité 4:

1) a)-Vérifier que : $x^2-6x+5=(x-3)^2-4$

b) - En déduire les solutions de l'équation : $x^2-6x+5=0$.

L'écriture $(x-3)^2-4$ est appelée *l'écriture canonique* du polynôme x^2-6x+5 .

2) Donner l'écriture canonique du polynôme x^2-x-2 puis résoudre l'équation $x^2 - x - 2 = 0$.

De façon générale :

Soit $p(x) = ax^2 + bx + c$ un trinôme du second degré tels que a, b et c des réels et $a \ne 0$. On a:

$$ax^{2} + bx + c = a \left[x^{2} + \frac{b}{a}x + \frac{c}{a} \right]$$

$$= a \left[(x + \frac{b}{2a})^{2} + \frac{c}{a} - \frac{b^{2}}{(2a)^{2}} \right]$$

$$= a \left[\left(x + \frac{b}{2a} \right)^{2} - \frac{b^{2} - 4ac}{(2a)^{2}} \right]$$

Pour simplifier les calculs on pose : $\Delta = b^2 - 4ac$, on obtient :

$$ax^{2} + bx + c = a \left[\left(x + \frac{b}{2a} \right)^{2} - \frac{\Delta}{4a^{2}} \right]$$

Le nombre Δ est appelé *le discriminant* de ax^2+bx+c .

Propriété :

Pour Résoudre l'équation $(a \ne 0)$ (E): $ax^2 + bx + c = 0$ on calcule **le discriminant** $\Delta = b^2 - 4ac$. On a les cas suivants:

- Si $\Delta \prec 0$, alors l'équation (E) n'a pas de solution dans \mathbb{R} et on écrit: $S = \emptyset$.
- Si $\Delta = 0$, alors l'équation (E) admet une unique solution dans \mathbb{R} qui est $-\frac{b}{2a}$ et on écrit: $S = \{-\frac{b}{2a}\}.$
- Si $\Delta \succ 0$, alors l'équation (E) admet deux solutions différentes

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a} et$$
 $x_2 = \frac{-b - \sqrt{\Delta}}{2a} \mathbb{R}$ et on écrit: $S = \{\frac{-b - \sqrt{\Delta}}{2a}; \frac{-b + \sqrt{\Delta}}{2a}\}$.

Application 2:

Résoudre dans \mathbb{R} les équations suivantes :

$$\bullet (E_1): 2x^2 + 2x - 12 = 0$$

•
$$(E_2):5x^2-4x+2=0$$
 • $(E_3):3x^2-4x=0$

$$\bullet \quad (E_3): 3x^2 - 4x = 0$$

•
$$(E_4): 3x^2+4=0$$

•
$$(E_5): x^2 - 2\sqrt{3}x + 1 = 0$$

Exercice Q: Exercice G de la série.

Résoudre dans IR l'équation $(E): 2x^2-2x-4=0$

En déduire les solutions des équations suivantes :

•
$$(E'): 2x^4 - 2x^2 - 4 = 0$$

•
$$(E''): 2x^2 - 2|x| - 4 = 0$$

•
$$(E'''): 2x - 2\sqrt{x} - 4 = 0$$

• $(E'''): 2x-2\sqrt{x}-4=0$ 2. Factorisation d'un trunôme du second degré

Propriété:

Soit $p(x) = ax^2 + bx + c$ un trinôme du second degré tels que a, b et c des réels et $a \ne 0$ et soit Δ son discriminant. On a les cas suivants:

• Si $\Delta \prec 0$, alors le polynôme p(x) n'admet pas de factorisation dans \mathbb{R} .

• Si
$$\Delta = 0$$
, alors : $p(x) = a \left(x + \frac{b}{2a} \right)^2$.

• Si
$$\Delta \succ 0$$
, alors : $p(x) = a(x - x_1)(x - x_2)$ tels que : $x_1 = \frac{-b + \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$.

Factoriser, si possible, les polynômes suivants :

$$\bullet P_1(x) = 2x^2 + 2x - 12$$

•
$$P_1(x) = 2x^2 + 2x - 12$$
 • $P_2(x) = 5x^2 - 4x + 2$ • $P_3(x) = 3x^2 - 4x$

•
$$P_3(x) = 3x^2 - 4x$$

•
$$P_4(x) = 3x^2 + 4$$

•
$$P_5(x) = x^2 - 2\sqrt{3}x + 1$$

Exercice 3: Exercice 8 de la série.

1) Factoriser les polynômes x^2-x-6 et $2x^2+3x-2$.

2) Résoudre l'equation:
$$(E_1)$$
: $\frac{2}{x^2 - x - 6} + \frac{x}{2x^2 + 3x - 2} = 0$

🖊 Propriété :

Si l'équation $(a \ne 0)$ (E): $ax^2 + bx + c = 0$ admet deux solutions x_1 et x_2 , alors:

$$x_1 + x_2 = -\frac{b}{a} et \quad x_1 \times x_2 = \frac{c}{a}.$$

Application :

Sachant que 1 et une solution de $2018x^2-x-2017$, trouver la deuxième solution.

2) Résoudre le système suivant: $\begin{cases} x + y = 13 \\ xy = 12 \end{cases}$

3. Signe d'un trinôme du second degré

Propriété:

Soit $p(x) = ax^2 + bx + c$ un trinôme du second degré tels que a, b et c des réels et $a \ne 0$ et soit Δ son discriminant. On a les cas suivants:

• Si $\Delta \prec 0$, alors le tableau de signe de p(x) est :

\boldsymbol{x}	$-\infty$		+∞
p(x)		$signe\ de\ a$	

Si $\Delta = 0$, alors alors le tableau de signe de p(x) est :

بريشي جبر لكبير

x	$-\infty$	$-rac{b}{2a}$		+∞
p(x)	$signe \; de \; a$	0	$signe\ de\ a$	

• Si $\Delta \succ 0$, alors le tableau de signe de p(x) est: (On suppose que: $x_1 \prec x_2$)

x	$-\infty$	x_1	x_2	+∞
p(x)	signe de a	O signe contraire de a	0	signe de a

Application 5:

- Donner le tableau de signe de polynômes suivants :
- $P_1(x) = 2x^2 + 2x 12$
- $P_2(x) = 5x^2 4x + 2$ $P_3(x) = 3x^2 4x$

• $P_4(x) = 3x^2 + 4$

- $P_5(x) = x^2 2\sqrt{3}x + 1$
- 2) En déduire les solutions des inéquations suivantes :
 - $P_1(x) \ge 0$
- $\bullet \quad P_3(x) \le 0 \qquad \qquad \bullet \quad P_4(x) < 0$
- $\bullet \quad \frac{P_3(x)}{P_1(x)} \ge 0$
- Ecrire, sans le symbole de la valeur absolue, l'expression $A(x) = |P_1(x)| + |P_3(x)|$.

Equations, inéquations et systèmes du premier degré à deux III. inconnues:

1. Equations du premier degré à deux inconnues:

🎤 Définitions :

- \mathbb{R}^2 est l'ensemble des couples (x, y) tels que $x \in \mathbb{R}$ et $y \in \mathbb{R}$.
- Toute équation peut être écrite sous la forme : ax + by + c = 0 tels que a, b et c des réels et $(a,b) \neq (0,0)$ est appelée une équation du premier degré à deux inconnues.
- Le couple (x_0, y_0) est une solution de l'équation: ax + by + c = 0 si $ax_0 + by_0 + c = 0$

Application®:

- 1) Parmi les couples (1;2),(0;3),(3;0) et $(1;\frac{9}{2})$, déterminer ceux qui vérifient l'équation 3x-2y+6=0.
- Déterminer le nombre a pour que le couple (2a-1,a) soit une solution de 2x - y + 3 = 0.
- 3) Résoudre dans IR² les équations suivantes :
 - \bullet $(E_1): 2x-3y+3=0$

- $(E_2): x-4y=8+5x$
- 2. Systèmes du premier degré à deux inconnues :

🗷 Activité 🛭:

Résoudre dans \mathbb{R}^2 le système suivant : (S): $\begin{cases} 3x + y = 8 \\ 2x - y = 2 \end{cases}$

// Définition et propriété :

On considère le système : (S): $\begin{cases} ax + by = c \\ a'x + b'y = c' \end{cases}$ tels que a, b, c, a', b' et c' des réels.

• Le nombre
$$D = \begin{vmatrix} a & b \\ a' & b' \end{vmatrix}$$
 est appelé le déterminant du système (S) .

• Si $D \neq 0$, alors le système (S) admet une unique solution dans \mathbb{R}^2 : (x_0, y_0) tels

que :
$$x_0 = \frac{\begin{vmatrix} c & b \\ c' & b' \end{vmatrix}}{D}$$
 et $y_0 = \frac{\begin{vmatrix} a & c \\ a' & c' \end{vmatrix}}{D}$.

• Si $D \neq 0$, alors le système (S):

O Soit admet une infinité de solutions dans
$$\mathbb{R}^2 \left(D_x = \begin{vmatrix} c & b \\ c' & b' \end{vmatrix} = 0$$
 et $D_y = \begin{vmatrix} a & c \\ a' & c' \end{vmatrix} = 0$).

Ou bien n'admet pas de solutions dans
$$\mathbb{R}^2$$
 $\left(D_x = \begin{vmatrix} c & b \\ c' & b' \end{vmatrix} \neq 0 \text{ ou } D_y = \begin{vmatrix} a & c \\ a' & c' \end{vmatrix} \neq 0 \right)$.

Application : Exercice O o de la série.

1) Résoudre dans IR^2 les systèmes :

•
$$(S_1)$$
:
$$\begin{cases} 5x - 2y = 1 \\ -10x + 4y = 3 \end{cases}$$

•
$$(S_2):\begin{cases} 3x + y = 7\\ 2x - y = 8 \end{cases}$$

•
$$(S_1)$$
: $\begin{cases} 5x - 2y = 1 \\ -10x + 4y = 3 \end{cases}$ • (S_2) : $\begin{cases} 3x + y = 7 \\ 2x - y = 8 \end{cases}$

b)-En déduire les solutions des systèmes :

•
$$(S_1)$$
:
$$\begin{cases} -\sqrt{x} + \frac{3}{y} = 4\\ \sqrt{x} - \frac{2}{y} = 11 \end{cases}$$

•
$$(S_2):\begin{cases} -|x+1|+3y^2=4\\ |x+1|-2y^2=11 \end{cases}$$

3. Régionnement du plan:

Activité ©:

On considère la droite (D) d'équation : 3x-2y+1=0.

1) Construire la droite (D) dans un repère orthonormé.

2) Parmi les couples (0,0),(0,-3),(0,1), déterminer ceux qui vérifient l'inéquation $3x-2y+1 \ge 0$.

3) Résoudre dans \mathbb{R}^2 l'inéquation $(E'): 3x-2y+1 \ge 0$.

Application®:

Résoudre dans IR^2 les inéquations :

•
$$(E_1): x+2y-2 < 0$$

•
$$(E_2): 2x + y + 2 \ge 0$$

•
$$(E_1): x+2y-2 < 0$$
 • $(E_2): 2x+y$

If En déduire les solutions du système : $(S): \begin{cases} x+2y-2 < 0 \\ 2x+y+2 \ge 0 \end{cases}$

