© J.-H.Kang, CNU

충남대학교 컴퓨터공학과

정렬 (Sorting)

□ 정렬 (Sorting)

- 컴퓨터가 하는 일 중에서 상당한 부분이 정렬이다. ● 25~50 %
- 효율적인 방법이 매우 중요
- 모든 경우에 적용할 수 있는 최선의 정렬 방법은 없다!!!

□ 정렬은 순열 (permutation) 을 찾는 것

- **의** 예: (32, 10, 44, 21,57)
 - ●레코드 R₂의 키 값 = 44
 - ο = (1, 3, 0, 2, 4) 는 주어진 정렬로 찾은 순열 (permutation):
 - $R_{\sigma(0)} = R_1 = 10$
 - $R_{\sigma(1)} = R_3 = 21$
 - $R_{\sigma(2)} = R_0 = 32$
 - $R_{\sigma(3)} = R_2 = 44$
 - $R_{\sigma(4)} = R_4 = 57$
 - 당연히, 다음 부등식이 성립: $R_{\sigma(0)} \leq R_{\sigma(1)} \leq R_{\sigma(2)} \leq R_{\sigma(3)} \leq R_{\sigma(4)} \, .$
 - 그러므로 정렬된 순서의 데이터는, $(R_{\sigma(0)}, R_{\sigma(1)}, R_{\sigma(2)}, R_{\sigma(3)}, R_{\sigma(4)}) = (10, 21, 32, 44, 57)$

□ 안정적인 (stable) 정를

- 정렬 방법 S가 안정적 (stable):
 - ●S를 사용하여 정렬했을 때, 동일한 키 값을 갖는 두 레코 드의 정렬 전의 상대적 순서가 정렬 후에 바뀌지 않는다.

- **•** 예: (14, 19, 12, 13, 14)
 - 다른 두 정렬 방법 S 와 T:
 - ◆ σ_S = (2, 3, 0, 4, 1) : 정렬 방법 S 가 찾아준 순열
 - ◆ σ_T = (2, 3, 4, 0, 1) : 정렬 방법 T 가 찾아준 순열
 - 정렬 S 와 T 가 각각 찾아준 정렬된 키의 순서는 동일:
 - (12, 13, 14, 14, 19)
 - ●그렇지만 엄밀하게는:
 - S: (12, 13, 14, 14, 19)
 - ◆ T: (12, 13, 14, 14, 19)

□ 안정적인 (stable) 정렬

- 정렬방법 S는 안정적이다
 - R $\sigma_{S}(2) = R \sigma_{S}(3) = 14$
 - $\sigma_S(2) = 0$, $\sigma_S(3) = 4$. 그러므로, $\sigma_S(2) < \sigma_S(3)$ 이 성립한다.
 - ◆ 즉, 동일한 키 값을 갖는 두 레코드의 상대적 순서가 정렬 후에 바 뀌지 않았다.
- 정렬방법 T는 안정적이지 않다
 - $R\sigma_{T}(2) = R\sigma_{T}(3) = 14$
 - $\sigma_{T}(2) = 4$, $\sigma_{T}(3) = 0$. 그러므로, $\sigma_{T}(2) < \sigma_{T}(3)$ 이 성립하지 않는다.
 - ◆ 즉, 동일한 키 값을 갖는 두 레코드의 상대적 순서가 정렬 후에 바 뀌었다.

내부 정렬과 외부 정렬

정렬

□ 내부 정렬과 외부 정렬

- 내부 정렬 (Internal Sort)
 - 정렬할 원소의 리스트가 메모리에 있다.
 - 정렬하는 동안 메모리만 사용한다.
- 외부 정렬 (External Sort)
 - 리스트가 너무 커서 한번에 모든 원소를 메모리에 저장 할 수 없다.
 - 하드 디스크와 같은 보조 기억장치를 사용한다.

□ 외부 정렬의 기본적인 방법

- 단계 1: (Sort)
 - 원래 리스트를 메모리에 가져올 수 있을 만큼의 여러 개의 작은 부분 리스트로 분할한다.
 - 각각의 분할된 부분 리스트를 내부 정렬 방법을 사용하여 정렬(Sort)한다.
 - 정렬된 것은 보조 기억장치에 보관한다.
- 단계 2: (Merge)
 - 보조 기억장치에 저장된 부분 리스트들을 몇 개씩 묶어 병합(merge)하여 하나의 정렬된 리스트로 만든다.

삽입 정렬 (Insertion Sort)

□ 삽입 정렬 (Insertion Sort)

- 초기에, (R₀ , R₁)은 이미 정렬된 상태
 - R₀: 키 값으로 -∞를 갖는 보초(sentinel) 레코드
 - ◆ 보초(sentinel) 레코드는 단지 프로그램의 효율을 위한 것
 - ◆ 리스트의 왼쪽 끝에 -∞ 의 보초를 세운 것
- 매번 다음 레코드를 제 위치에 삽입한다.

i	[0]	[1]	[2]	[3]	[4]	[5]
- 1 2 3 4	-8 -8 -8 -8	4 2 2 1 1	2 4 2 2	5 5 4 3	1 1 5 4	3 3 3 5

$$(R_0, R_1)$$

 (R_0, R_2, R_1)
 (R_0, R_2, R_1, R_3)
 $(R_0, R_4, R_2, R_1, R_3)$
 $(R_0, R_4, R_2, R_5, R_1, R_3)$

□ 예제: 최악의 경우와 최선의 경우

최악의 경우

[0]	[1]	[2]	[3]	[4]	[5]
-∞	5,	4	3	2	1
	4	5	3	2	1
- ∞	3	4	5	2	1
-∞	2	3	4	<u>5</u>	
	1	2	3	4	5
	-∞ -∞	-\infty 5 -\infty 4 -\infty 3 -\infty 2	-\infty 5 4 -\infty 4 5 -\infty 3 4 4 -\infty 2 3	-\infty 5 4 3 -\infty 4 5 3 -\infty 3 4 5 5 -\infty 2 3 4 5	$-\infty$ 5 4 3 2 $-\infty$ 4 5 3 2 $-\infty$ 3 4 5 2

비교 회수
2
3
4
5
14

최선의 경우

i	[0]	[1]	[2]	[3]	[4]	[5]
_		1	2	3	4	5
1		1	2	3	4	5
2	-∞	1	2	3	4	5
3	-∞	1	2	3	4	5
4	-∞	1	2	3	4	5

비교 회수
1
1
1
1
4

□ 삽입 정렬의 구현

```
public void insertionSort (Element elements[], int size)
  int i, j;
                      // 보초(sentinel) 레코드가 사용되지 않을 경우
                       (j \ge 0) && (next.key < elements[j].key)
  element next;
  for (i = 2; i \le size; i++)
     next = elements[i] ;
     for (j = i -1; next.key < elements[j].key; j--)
       elements[j+1] = elements[j];
     elements[j+1] = next;
```

□ 삽입 정렬의 분석

- 최악의 경우: 역순으로 정렬되어 있는 경우 • O(n²)
- 최선의 경우: 이미 정렬되어 있는 경우
 - O(n)
- ■관찰
 - 헝클어진 정도가 심하지 않다면, 좋은 성능을 보여준다.
 - 자료가 20 개 이하일 때 좋다.

퀵 정렬 (Quick Sort)

□ 퀵 정렬

- C.A.R Hoare 가 발명
- 재귀 알고리즘
- 평균적 성능이 아주 좋다

17

□ 퀵 정렬의 아이디어: 파티션

- 파티션(partition) 하기
 - 원소들을 특정 값을 기준으로 두 부분으로 나눈다.
 - ◆ 특정 값보다 작은 원소들은 왼쪽에, 큰 원소들은 오른쪽에 오게 하고, 그 사이에 특정 값이 놓이게 한다. (오름차순으로 정렬한다고 가정)
 - ◆ 특정 값을 피봇 (pivot) 값이라고 한다.

18

□ 퀵 정렬의 아이디어: 재귀적으로

- 전체를 quickSort 하기 위해서는, partition을 수행하여 만들어진 크기가 작아진 각각의 부분을 quickSort 한다.
 - 그러므로, 주어진 크기의 배열을 quickSort 하는 문제가, 크기 가 작아진 두 개의 quickSort 문제로 바뀌었다.
- 탈출(exit) 경우
 - quickSort 할 구간의 크기가 0 또는 1 이면, 그 자체가 이미 정 렬이 되어 있는 상태이다.

□ 재귀 알고리즘 개요

```
left
                                                           right
                       quickSortR(A,left,right)
Α
    partition (A,left,right)
      quickSortR(A,left,m-1)
                              (p)
                                      quickSortR(A,m+1,right)
                                                           right
     left
                         (m-1) m (m+1)
  public void quickSortRecursively (Element[] A, int left, int right)
      if (left < right) /* 구간의 크기가 2 이상이면 */ {
         int mid = partition (A, left, right);
                                            // DIVIDE
         quickSortRecursively (A, left, mid-1); // CONQUER
         quickSortRecursively (A, mid+1, right); // CONQUER
```

□ 함수 partition()

Partition 해야 할 원소들 Partition 할 구간의 오른쪽 끝 위치

private int partition (Element[] elements , int left , int right) ;

리턴 값은 정수형
리턴 값은 partition이 된 후 피봇값이 놓인 위치

□ 피봇값 정하기

- 구간 안의 아무 원소를 피봇으로 정해도 된다
- 간편한 방법: 가장 왼쪽 값을 택하여 피봇 값으로 정한다.
 - A[left]의 값이 피봇이 된다.

□ 파티션의 예

□ 함수 partition()

```
private int partition (Element[] elements, int left, int right)
   int pivot = elements[left];
   int up = left;
   int down = right+1;
   do {
       do { up++ } while (elements[up] < pivot) ;</pre>
       do { down-- } while (elements[down] > pivot);
      if (up < down) {
            swap (elements, up, down);
   } while (up < down);</pre>
   swap (elements, left, down);
   return down ; // 피봇 위치가 down 이다
}
```

□ 완성된 퀵 정렬 알고리즘 [1]

```
public void quickSortRecursively (Element[] elements, int left, int right)
{
    if (left < right) {
        // 파티션
            // pivot의 왼쪽에는 pivot 의 key 값보다 작은 원소들이 오게 하며,
            // pivot의 오른쪽에는 pivot 의 key 값보다 큰 원소들이 오게 한다;
    int mid = partition(elements, left, right); //파티션 후의 피봇 위치
        quickSortRecursively (elements, left, mid-1);
        quickSortRecursively (elements, mid+1, right);
    }
}
```

□ 완성된 퀵 정렬 알고리즘 [2]

```
public void quickSortRecursively (Element[] elements, int left, int right)
  if (left < right) {
      // 파티션
          // pivot의 왼쪽에는 pivot 의 key 값보다 작은 원소들이 오게 하며,
          // pivot의 오른쪽에는 pivot 의 key 값보다 큰 원소들이 오게 한다
       int pivot = elements[left] ; // pivot 원소를 정한다
       int up= left;
       int down = right+1;
       do {
          do { up++; } while (element[up] < pivot) ;</pre>
          do { down--; } while (element[down] > pivot) ;
          if ( up < down ) {
              swap(elements, up, down);
       } while ( up < down) ;</pre>
       swap (elements, left, down) ; // pivot과 down 위치의 원소를 맞바꾼다
       int mid = down ; //파티션 후의 피봇 위치가 mid 이다
       quickSortRecursively (elements, left, mid-1);
       quickSortRecursively (elements, mid+1, right);
```

□ 예: 퀵 정렬

R_0	R_1	R_2	R_3	R_4	R_5	R_6	R_7	R_8	R_9	R_{10}	l	r
(26	5	37	1	61	11	59	15	48	19)	+∞	0	9
(11	5	19	1	15)	26	(59	61	48	37)		0	4
(1	5)	11	(19	15)	26	(59	61	48	37)		0	1
()1	(5)	11	(19	15)	26	(59	61	48	37)		0	-1
1	(5)	11	(19	15)	26	(59	61	48	37)		1	1
1	5	11	(19	15)	26	(59	61	48	37)		3	4
1	5	11	(15)	19()	26	(59	61	48	37)		3	3
1	5	11	15	19()	26	(59	61	48	37)		5	4
1	5	11	15	19	26	(59	61	48	37)		6	9
1	5	11	15	19	26	(48	37)	59	(61)		6	7
1	5	11	15	19	26	(37)	48()	59	(61)		6	6
1	5	11	15	19	26	37	48()	59	(61)		8	7
1	5	11	15	19	26	37	48	59	(61)		9	9
1	5	11	15	19	26	37	48	59	61			

□ 최종 퀵 정렬 알고리즘

```
public void quickSort (Element[] elements, int size)
                                                                     private void swap(Element[] elements, int left, int right)
     if (size > 1) {
                                                                          Element temp = elements[left];
           maxLoc = 0;
                                                                          elements[left] = elements[right];
           for (int i = 1; i < size; i++) {
                                                                          elements[right] = temp;
                if (elements[i] > elements[maxLoc] ) {
                      maxLoc = i;
           swap (elements, maxLoc, size-1);
           quickSortRecursively (elements, 0, size-2);
void guickSortRecursively (Element[] elements, int left, int right)
     int pivot, up , down ;
     if (left < right)
           pivot = left ; // pivot 원소를 정한다 ;
           // pivot의 왼쪽에는 pivot 의 key 값보다 작은 원소들이 오게 하며,
// pivot의 오른쪽에는 pivot 의 key 값보다 큰 원소들이 오게 한다 ;
           up = left :
           down = right+1;
           do {
                do { up++; } while (elements[pivot] > elements[up]) ;
                do { down--; } while (elements[pivot] < elements[down]);
                if (up < down) {
                      'swap(elements, up, down);
           } while ( up < down )
          swap (elements, pivot, down) ; // pivot과 down 위치의 원소를 맞바꾼다 mid = down ; //파티션 후의 피봇 위치를 mid 라고 하자 ;
           quickSortRecursively (elements, left, mid-1);
           quickSortRecursively (elements, mid+1, right);
```

□ 예: 퀵 정렬에서의 재귀 호출

- 재귀 호출의 총 회수: 13
- 재귀 호출의 최대 깊이: 4

정렬

□ 퀵 정렬의 시간복잡도

■ 크기가 n인 배열이 크기가 각각 j 와 (n-j-1) 인 두 개의 작은 배열로 파티션 된다고 하자

■시간복잡도를 나타내는 점화식

$$T(n) = \begin{cases} c_0 & \text{if } n = 0\\ c_1 n + T(j) + T(n - j - 1) + c_2 & \text{if } n \ge 1 \end{cases}$$

□ 최악의 경우의 예: 이미 오름차순으로

	R_0	R_1	R_2	R_3	R_4	R_5	R_6	R_7	R_8	R_{9}	R_{10}	l	r
	(10	11	22	33	44	55	66	77	88	99)	+∞	0	9
	()10	(11	22	33	44	55	66	77	88	99)		0	-1
	10	(11	22	33	44	55	66	77	88	99)		1	9
	10	()11	(22	33	44	55	66	77	88	99)		1	0
	10	[™] 11	(22	33	44	55	66	77	88	99)		2	9
	10	11	()22	(33	44	55	66	77	88	99)		2	1
	10	11	22	(33	44	55	66	77	88	99)		3	9
	10	11	22	()33	(44	55	66	77	88	99)		3	2
	10	11	22	33	(44	55	66	77	88	99)		4	9
	10	11	22	33	()44	(55	66	77	88	99)		4	3
	10	11	22	33	44	(55	66	77	88	99)		5	9
	10	11	22	33	44	()55	(66	77	88	99)		5	4
	10	11	22	33	44	55	(66	77	88	99)		6	9
	10	11	22	33	44	55	()66	(77	88	99)		6	5
	10	11	22	33	44	55	66	(77	88	99)		7	9
	10	11	22	33	44	55	66	<u>()</u> 77	(88)	99)		7	6
	10	11	22	33	44	55	66	77	(88)	99)		8	9
	10	11	22	33	44	55	66	77	()88	(99)		8	7
	10	11	22	33	44	55	66	77	88	(99)		9	9
۸.	10	11	22	33	44	55	66	77	88	99			

□ 최악의 시간복잡도: 이미 내림차순으로

	R_0	$\overline{R_1}$	R_2	R_3	R_4	R_5	R_6	R_7	R_8	R_9 R_{10}	l	r
	(99	88	77	66	55	44	33	22	11	10) +∞	0	9
	(10	88	77	66	55	44	33	22	11)	99()	0	8
	<u>()</u> 10	(88)	77	66	55	44	33	22	11)	99()	0	-1
	10	(88)	77	66	55	44	33	22	11)	99()	1	8
	10	(11	77	66	55	44	33	22)	88()	99()	1	7
	10	<u>()</u> 11	(77	66	55	44	33	22)	88()	99()	1	0
	10	¹ 11	(77	66	55	44	33	22)	88()		2	7
	10	11	(22	66	55	44	33)	77()	88()	99()	2	6
	10	11	()22	(66	55	44	33)	77 <u>()</u>	88()	99()	2	1
	10	11	22	(66	55	44	33)	77()	88()	99()	3	6
	10	11	22	(33	55	44)	66()	77 <u>(</u>)	88()	99()	3	5
	10	11	22	()33	(55	44)	66()	77 <u>()</u>	88()	99()	3	2
	10	11	22	33	(55	44)	66()	77()	88()	99()	4	5
	10	11	22	33	(44)	55()	66()	77 <u>()</u>	88()	99()	4	4
	10	11	22	33	44	55 <mark>()</mark>	66()	77()	88()	99()	6	5
	10	11	22	33	44	55	66()	77()	88()	99()	7	6
	10	11	22	33	44	55	66	77()	88()	99()	8	7
	10	11	22	33	44	55	66	77	88()	99()	9	8
	10	11	22	33	44	55	66	77	88	99()	10	9
·2.2.	10	11	22	33	44	55	66	77	88	99		

□ 퀵 정렬의 최악 시간복잡도

- 최악의 경우: 이미 정렬되어 있는 경우
 - T(n)에서 j 가 항상 0

$$T_{wc}(n) = \begin{cases} c_0 & \text{if } n = 0\\ c_1 n + T_{wc}(0) + T_{wc}(n-1) + c_2 & \text{if } n \ge 1 \end{cases}$$

 $T_{wc}(n) = O(n^2)$

□ 퀵 정렬의 최악 시간복잡도

■퀵 정렬에서 대부분의 시간은 파티션

$$\begin{split} T_{wc}(n) &= c_1 n + T_{wc}(0) + T_{wc}(n-1) + c_2 \\ &= c_1 n + c_0 + (c_1(n-1) + T_{wc}(0) + T_{wc}(n-2) + c_2) + c_2 \\ &= c_1 (n + (n-1)) + 2(c_0 + c_2) + T_{wc}(n-2) \end{split}$$

• • • • •

$$= c_1 \sum_{i=1}^{n} i + n(c_0 + c_2) + T_{wc}(0)$$

$$= c_1 \times \frac{n(n+1)}{2} + (c_0 + c_2)n + c_0$$

$$= \frac{c_1}{2}n^2 + (c_0 + \frac{c_1}{2} + c_2)n + c_0$$

$$= O(n^2)$$

□ 퀵 정렬의 최선의 시간복잡도

- 파티션 된 두 배열의 크기가 거의 같을 경우
- \blacksquare T(n) = O(n log n).

$$T(n) \le cn + 2T(\frac{n}{2})$$
 for some constant c

$$\le cn + 2(c \cdot \frac{n}{2} + 2T(\frac{n}{2^2})) = 2cn + 2^2T(\frac{n}{2^2})$$
.....
$$\le \alpha \cdot cn + 2^\alpha T(\frac{n}{2^\alpha}) \quad \text{(Let } \alpha \text{ be the number such that } \frac{n}{2^\alpha} = 1.\text{)}$$

$$= cn \log_2 n + nT(1)$$

$$= O(n \log n)$$

평균 시간복잡도

$$T_{\text{avg}}(n) = O(n \log n).$$

$$T_{avg}(n) = \begin{cases} c_0 & \text{if } n = 0 \\ \frac{1}{n} \sum_{j=0}^{n-1} (c_1 n + T_{avg}(j) + T_{avg}(n-j-1) + c_2) & \text{if } n \ge 1 \end{cases}$$

$$T_{avg}(n) = \frac{1}{n} \sum_{j=0}^{n-1} \left(c_1 n + T_{avg}(j) + T_{avg}(n-j-1) + c_2 \right)$$

$$= c_1 n + c_2 + \frac{1}{n} \sum_{j=0}^{n-1} \left(T_{avg}(j) + T_{avg}(n-j-1) \right)$$

$$= c_1 n + c_2 + \frac{2}{n} \sum_{j=0}^{n-1} T_{avg}(j)$$

$$\leq cn + \frac{2}{n} \sum_{j=0}^{n-1} T_{avg}(j), \quad n \geq 2.$$

■ 귀납법을 이용하여 증명

$$T_{avg}(n) \le cn + \frac{2}{n} \sum_{j=0}^{n-1} T_{avg}(j), \ n \ge 2.$$

We should prove that $T_{avg}(n) \le kn \log_e n$ for some constant k and for $n \ge 2$.

Assume that $T_{avg}(0) \le b$ and $T_{avg}(0) \le b$ for some constant b.

(1) Induction Base : For n = 2,

$$T_{avg}(n) \le c \cdot 2 + \frac{2}{2} \sum_{j=0}^{2-1} T_{avg}(j) = 2c + 2b \le k \cdot 2\log_e 2$$

- (2) Induction Hypothesis: Assume $T_{avg}(n) \le kn \log_e n$ for $1 \le n < m$.
- (3) Induction Step:

$$T_{avg}(m) \le cm + \frac{2}{m} \sum_{j=0}^{m-1} T_{avg}(j) \le cm + \frac{4b}{m} + \frac{2}{m} \sum_{j=2}^{m-1} T_{avg}(j) \le cm + \frac{4b}{m} + \frac{2k}{m} \sum_{j=2}^{m-1} j \log_e j$$

Since $j \log_e j$ is an increasing function of j,

$$T_{avg}(m) \le cm + \frac{4b}{m} + \frac{2k}{m} \int_{2}^{m} x \log_{e} x dx$$

Note that
$$\int x \log_e x dx = \left(\frac{1}{2}x^2 \log x - \frac{1}{4}x^2\right) + C$$
.

$$T_{avg}(m) \le cm + \frac{4b}{m} + \frac{2k}{m} \left| \frac{m^2 \log_e m}{2} - \frac{m^2}{4} \right| = cm + \frac{4b}{m} + km \log_e m - \frac{km}{2} \le km \log_e m$$

□ 최악의 공간복잡도: 최대 호출 깊이=10

	R_{o}	R_1	R_2	R_3	R_4	R_5	R_6	R_7	R_8	R_9	R_{10}	l	r
	(99	10	11	22	33	44	55	66	77	88)	+∞	0	9
	(88)	10	11	22	33	44	55	66	77)	99()		0	8
	(77	10	11	22	33	44	55	66)	88()	99()		0	7
	(66	10	11	22	33	44	55)	77()	88()	99()		0	6
	(55	10	11	22	33	44)	66()	77()	88()	99()		0	5
	(44	10	11	22	33)	55()	66()	77()	88()	99()		0	4
	(33	10	11	22)	44()	55 <u>()</u>	66()	77 ()	88()	99()		0	3
	(22	10	11)	33()	44()	55 <u>()</u>	66()	77 ()	88()	99()		0	2
	(11	10)	22()	33()	44()	55()	66()	77()	88()	99()		0	0
	(10)	11()	22()	33()	44()	55()	66()	77()	88()	99()		3	6
	10	11()	22()	33()	44()	55 <u>()</u>	66()	77()	88()	99()		2	1
	10	11	22()	33()	44()	55()	66()	77()	88()	99()		3	2
	10	11	22	33()	44()	55()	66()	77()	88()	99()		4	3
	10	11	22	33	44()	55()	66()	77()	88()	99()		5	4
	10	11	22	33	44	55()	66()	77()	88()	99()		6	5
	10	11	22	33	44	55	66()	77()	88()	99()		7	6
	10	11	22	33	44	55	66	77 <mark>()</mark>	88()	99()		8	7
	10	11	22	33	44	55	66	77	88()	99()		9	8
	10	11	22	33	44	55	66	77	88	99()		10	9
Ed.	10	11	22	33	44	55	66	77	88	99			

□ 공간복잡도

- 최악의 경우: *O*(*n*)
- 최선의 경우: *O*(1)
- 평균적인 경우: *O*(*log n*)
- 작은 배열 먼저 처리: *O*(log n)

- □ 요약
- ■퀵 정렬은 안정적(stable) 이지 않다
- 피봇을 택하는 다른 방법
 - 셋 중의 중앙값 (median)
 - pivot = 중앙값 $\{K_l, K_{(l+r)/2}, K_r\}$
 - 예
 - median {10, 5, 7} = 7
 - median { 0, 6, 6} = 6

"정렬" [끝]

