Side Note: Compressed-Sensing

- Compressed Sensing is leaning on the very same concepts, leading to alternative sampling/sensing theorems.
- \square Assume: the signal \underline{x} has been created by $\underline{x} = D\underline{\alpha}_0$ with very sparse $\underline{\alpha}_0$.
- Multiply this set of equations by the matrix Q which reduces the number of rows.

Side Note: Compressed-Sensing

- Compressed Sensing is leaning on the very same concepts, leading to alternative sampling/sensing theorems.
- \square Assume: the signal \underline{x} has been created by $\underline{x} = D\underline{\alpha}_0$ with very sparse $\underline{\alpha}_0$.
- Multiply this set of equations by the matrix Q which reduces the number of rows.
- ☐ The new, smaller, system of equations is $\mathbf{Q}\mathbf{D}\underline{\alpha} = \mathbf{Q}\underline{\mathbf{x}} \longrightarrow \mathbf{D}\underline{\alpha} = \underline{\tilde{\mathbf{x}}}$
- ☐ If $\underline{\alpha}_0$ was sparse enough, it will be the sparsest solution of the new system, thus, computing $\underline{D}\underline{\alpha}_0$ recovers \underline{x} perfectly.
- Compressed sensing focuses on conditions for this to happen, guaranteeing such recovery.