Administrivia

Homework 7 is due by Thursday at 11:59PM.

The BUGWU is on strike.

Case Study: STLC in Agda

Type Theory and Mechanized Reasoning Lecture 16

Outline

See how to represent the simply typed lambda calculus in Agda.

Prove meta-theoretic lemmas about STLC, leading to a proof of *type preservation*.

Recap

(Fix a set of variables.)

(Fix a set of variables.)

Definition. The collection of lambda terms is defined inductively.

(Fix a set of variables.)

Definition. The collection of lambda terms is defined inductively.

• Every variable x is a lambda term.

variables

(Fix a set of variables.)

Definition. The collection of lambda terms is defined inductively.

- Every variable x is a lambda term.
- If M and N are lambda terms, then so is (MN)

variables

application

(Fix a set of variables.)

Definition. The collection of lambda terms is defined inductively.

- Every variable x is a lambda term.
- If M and N are lambda terms, then so is (MN)
- If M is a lambda term, then so is $(\lambda x.M)$ for any variable x

variables

application

abstraction

Recall: Examples

$$X, y$$

$$I \triangleq \lambda x . x$$

$$K \triangleq \lambda x . \lambda y . x$$

$$A \triangleq \lambda x . \lambda y . xy$$

$$\omega \triangleq \lambda x . xx$$

$$\Omega \triangleq \omega \omega = (\lambda x . xx)(\lambda x . xx)$$

$$\lambda x \cdot xz =_{\alpha} \lambda y \cdot yz =_{\alpha} \lambda \cdot \cdot \cdot z$$

$$\lambda x \cdot xz =_{\alpha} \lambda y \cdot yz =_{\alpha} \lambda \cdot \cdot \cdot z$$

We always consider terms up to $=_{\alpha}$.

$$\lambda x \cdot xz =_{\alpha} \lambda y \cdot yz =_{\alpha} \lambda \cdot \cdot \cdot z$$

We always consider terms up to $=_{\alpha}$

What we really want is to be able to replace the binding variable with a pointer.

$$\lambda x \cdot xz =_{\alpha} \lambda y \cdot yz =_{\alpha} \lambda \cdot \cdot \cdot z$$

We always consider terms up to $=_{\alpha}$.

What we *really* want is to be able to replace the binding variable with a pointer.

In math speak, we want to give a canonical element for the α -equivalence class.

Recall: De Bruijn Indices

$$\frac{1}{\lambda} \left(\frac{\lambda}{\lambda} \frac{1}{1} \left(\frac{\lambda}{\lambda} \frac{1}{1} \right) \right) \left(\frac{\lambda}{\lambda} \frac{2}{1} \right)$$

The idea. Bound variables are represented as numbers, the depth away from the binding site.

$$M ::= \mathbb{N} \mid \lambda M \mid MM$$

This gives an incredibly simple grammar.

Recall: Free Variables and De Bruijn Indices

$$\lambda x . x(yz) \longrightarrow \lambda . 1(23)$$

Today, we will be using numbers *larger than the depth* of the term to represent free variables.

(This will make contexts easier to represent.)

(There is also a very nice trick for representing De Bruijn indices using dependent types.)

demo

(let's define these in Agda)

$$f: \bot \to \bot \vdash \lambda x . fx : \bot \to \bot$$

$$f: \bot \to \bot \vdash \lambda x . fx : \bot \to \bot$$

The <u>Simply Typed Lambda Calculus (STLC)</u> is a type theory built on top of the (untyped) lambda calculus (ULC).

$$f: \bot \to \bot \vdash \lambda x . fx : \bot \to \bot$$

The <u>Simply Typed Lambda Calculus (STLC)</u> is a type theory built on top of the (untyped) lambda calculus (ULC).

$$f: \bot \to \bot \vdash \lambda x.fx: \bot \to \bot$$

The <u>Simply Typed Lambda Calculus (STLC)</u> is a type theory built on top of the (untyped) lambda calculus (ULC).

$$f: \bot \to \bot \vdash \lambda x.fx: \bot \to \bot$$

The <u>Simply Typed Lambda Calculus (STLC)</u> is a type theory built on top of the (untyped) lambda calculus (ULC).

$$f: \bot \to \bot \vdash \underset{\lambda}{\lambda x.fx}: \bot \underset{\text{simple type typing statement}}{\lambda x.fx}$$

The <u>Simply Typed Lambda Calculus (STLC)</u> is a type theory built on top of the (untyped) lambda calculus (ULC).

$$f: \bot \to \bot \vdash \underset{\text{context}}{\lambda x.fx}: \underset{\text{simple type typing statement}}{\bot}$$

The <u>Simply Typed Lambda Calculus (STLC)</u> is a type theory built on top of the (untyped) lambda calculus (ULC).

$$f: \bot \to \bot \vdash \lambda x.fx: \bot \to \bot$$
context

co

The <u>Simply Typed Lambda Calculus (STLC)</u> is a type theory built on top of the (untyped) lambda calculus (ULC).

Definition. The collection of **simple types** is defined inductively as follows.

Definition. The collection of **simple types** is defined inductively as follows.

• 1 is a simple type.

Definition. The collection of **simple types** is defined inductively as follows.

- 1 is a simple type.
- ullet If A and B are simple types, then is A o B.

Definition. The collection of **simple types** is defined inductively as follows.

- 1 is a simple type.
- ullet If A and B are simple types, then is A o B.

Examples. $\bot \to \bot$, $(\bot \to \bot) \to (\bot \to (\bot \to \bot))$

Simply Typed Lambda Calculus (Types)

$$\varnothing \vdash A : \mathsf{Type} \qquad \varnothing \vdash B : \mathsf{Type}$$
 $\varnothing \vdash A \to B : \mathsf{Type}$

Type formation rules are used to build types within and for judgments.

(These are the same as our inductive rules, but written as typing judgments)

Simply Typed Lambda Calculus (Terms)

$$\frac{\Gamma \vdash A : \mathsf{Type}}{\Gamma, x : A \vdash x : A} \ (x \not\in \Gamma)$$

$$\frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x . M : A \rightarrow B}$$

$$\frac{\Gamma \vdash M : A \qquad \Gamma \vdash B : \mathsf{Type}}{\Gamma, x : B \vdash M : A} \quad (x \notin \Gamma) \qquad \frac{\Gamma \vdash M : A \to B \qquad \Gamma \vdash N : A}{\Gamma \vdash MN : B}$$

<u>Term formation rules</u> are used to generate typeable terms in the simply typed lambda calculus.

Simply Typed Lambda Calculus (Terms)

start

$$\frac{\Gamma \vdash A : \mathsf{Type}}{\Gamma, x : A \vdash x : A} \ (x \not\in \Gamma)$$

abstraction

$$\frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x . M : A \rightarrow B}$$

weakening

$$\frac{\Gamma \vdash M : A \qquad \Gamma \vdash B : \mathsf{Type}}{\Gamma, x : B \vdash M : A} \quad (x \notin \Gamma)$$

application

$$\frac{\Gamma \vdash M : A \to B}{\Gamma \vdash MN : B}$$

<u>Term formation rules</u> are used to generate typeable terms in the simply typed lambda calculus.

demo

(let's define these in Agda)

Variable Shifting

$$\lambda x \cdot x(\lambda y \cdot y(x(zw))) \longrightarrow \lambda \cdot 0(\lambda \cdot 0(1(23))) \longrightarrow \lambda \cdot 0(\lambda \cdot 0(1(56)))$$

One of the trickier aspects of working with De Bruijn indices is that we often have to **shift** around the values of free variables.

We will write $\mathrm{shift}_{m,p}(M)$ for the function which increases all free variables at least value m by p.

Example: Weakening

$$x:A \vdash \lambda y.x:C \rightarrow A$$

$$x:A,z:B \vdash \lambda y.x:C \rightarrow A$$
 Weakening
$$A \vdash \lambda.1:C \rightarrow A$$

$$A,B \vdash \lambda.2:C \rightarrow A$$

When we represent the variables in a context, they are in increasing order from right to left.

So weakening requires changing the typed term.

Recall: Induction on Derivations

 \vdots $\Gamma \vdash M : A$

If we want to prove that P holds of all typeable terms, we have to show that it holds of all terms M for any choice of the last inference rule in a derivation of M.

Thinning Lemma

Theorem. If $\Gamma, \Delta \vdash M : A$ and x does not appear in Δ , then $\Gamma, x : B, \Delta \vdash M : A$.

Using De Bruijn indices:

If $\Gamma, \Delta \vdash M : A$ and $|\Gamma| = m$, then $\Gamma, B, \Delta \vdash \mathrm{shift}_{|\Gamma|, 1}(M) : A$

Proof. By induction on the structure of derivations.

Simultaneous Substitution

Let M be a term with free variables $\vec{x} = x_1, ..., x_k$. We define $M[\overrightarrow{N}/\overrightarrow{x}]$ inductively as follows.

lookup

recurse

 $(\lambda M)[\overrightarrow{N}/\overrightarrow{x}] = \lambda(M[\overrightarrow{N}'/\overrightarrow{x}])$ where $N_i' = \text{shift}_{0,1}(N_i)$ recurse and shift

Recall: Simultaneous Substitution

Theorem. If
$$y_1:A_1,\ldots,y_k:A_k\vdash M:B$$
 and
$$\Gamma\vdash N_1:A_1 \text{ and } \dots \text{ and } \Gamma\vdash N_k:A_k$$
 then $\Gamma\vdash M[N_1/y_1][N_2/y_2]\dots[N_k/y_k]:B$

Proof. By induction on the structure of derivations.

Definition. We define the relation $M \to_{\beta} N$ as follows.

Definition. We define the relation $M \to_{\beta} N$ as follows.

 $\bullet (\lambda x.M)N \to_{\beta} M[N/x]$

Definition. We define the relation $M \to_{\beta} N$ as follows.

- $\bullet (\lambda x.M)N \to_{\beta} M[N/x]$
- $M \to_{\beta} M'$ implies $MN \to_{\beta} M'N$ and $NM \to_{\beta} NM'$ and $\lambda x . M \to_{\beta} \lambda x . M'$

Definition. We define the relation $M \to_{\beta} N$ as follows.

- $\bullet (\lambda x.M)N \to_{\beta} M[N/x]$
- $M \to_{\beta} M'$ implies $MN \to_{\beta} M'N$ and $NM \to_{\beta} NM'$ and $\lambda x . M \to_{\beta} \lambda x . M'$

This is a relation not a function.

Type Preservation

Theorem. If $\Gamma \vdash M : A$ and $M \rightarrow_{\beta} N$ then $\Gamma \vdash N : A$.

Beta reduction doesn't change typability, or the type.

Proof. By induction on the β -reduction relation...(!)