Claim: For set S =
$$\{\frac{c}{d}: c \in \mathbb{N} \cup \{0\}, d \in \mathbb{Q}, d \neq 0\}, S = \mathbb{Q}$$

Proof: Need to show $\forall s \in S, s \in \mathbb{Q}$

Let
$$s \in S \Rightarrow s = \frac{c}{d}$$
 for $c \in \mathbb{N} \cup \{0\}$, $d \in \mathbb{Q}$, $d \neq 0$

$$\Rightarrow d = \frac{a}{b}$$
 where $a \in \mathbb{Z}$, $a \neq 0$, $b \in \mathbb{Z}$, $b \neq 0$

1.
$$\Rightarrow s = \frac{c}{(\frac{a}{b})}$$

$$\Rightarrow s = \frac{cb}{a}$$

$$\Rightarrow S \in \mathbb{Q}$$
$$\therefore S = \mathbb{Q}$$

2.

3.

4. $\{w: w \text{ starts with sequence } 10\}$