CounterExample-Guided Abstraction / Refinement for Symbolic Model Checking

Konkuk University
Department of Computer Science & Engineering
Kunha Kim

Introduction

- In this article, we present an automatic iterative abstraction-refinement methodology that extends symbolic model checking
- Despite the success of symbolic methods, the state explosion problem remains a major hurdle in applying model checking to large industrial designs.
- There are many techniques to reduce the number of the states, such as symmetry reduction, partial order reduction and abstraction techniques.
- Among these techniques, abstraction is considered the most general and flexible for handling the state explosion problem.

Introduction(Con't)

- There are two kinds of abstraction, **Over-approximation** and **Under-approximation**. In this paper, we're gonna use Over-approximation.
- They admit only false negatives (erroneous counterexamples) and false positives, respectively.
- This article describes a new counterexample-guided abstraction technique that extends the general framework of existential abstraction.
- The key step is to extract information from false negatives due to over-approximation.
- Such artificial specification violations are witnessed by what we call "spurious counterexamples".
- Our method is **complete for an important fragment of ACTL***, precisely for the fragment of ACTL* that admits counterexamples in the form of finite or infinite traces (i.e., finite traces followed by loops).

Recall: CTL and CTL*

- State formula ϕ in CTL^* is $true \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$ where $p_i \in AP$, ϕ_1, ϕ_2 are state formula and α is a path formula.
- Path formula α in CTL^* is $\phi \mid \neg \alpha_1 \mid \alpha_1 \land \alpha_2 \mid X \mid \alpha_1 \mid F \mid \alpha_1 \mid G \mid \alpha_1 \mid \alpha_1 U \mid \alpha_2 \cup A_2 \cup A_3 \cup A_4 \cup A_4 \cup A_5 \cup$
- CTL is a subfragment of CTL^* , where path quantifier A or E is immediately followed by a temporal operator.
- $ACTL^*$ is the fragment of CTL^* , where only the path operator A is used, and negation is restricted to atomic formulas.
- An important feature of $ACTL^*$ is the existence of counterexamples.

Simulation and Preservation of $ACTL^*$

- Given two Kripke structures M and M' with $AP \supset AP'$, a relation $H \subseteq S \times S'$ is a simulation relation between S and S' if and only if for all $(s, s') \in H$, the following conditions hold.
- $L(s) \cap A' = L'(s')$ and for each state s_1 such that $(s, s_1) \in R$, there exists a state s_1' with the property that $(s', s_1') \in R'$ and $(s_1, s_1') \in H$.
- We say that M' simulates M (denoted by $M \leq M'$) if there exists a simulation relation H such that for every initial state s_0 in M there exists an initial state s_0' in M' for which $(s_0, s_0') \in H$.
- For every $ACTL^*$ formula ρ over atomic proposition AP', if $M \leq M'$ and $M' \models \rho$, then $M \models \rho$ (Theorem 2.3).

Abstract function h

- Intuitively speaking, existential abstraction amounts to **partitioning the states** of a Kripke structure **into clusters**, and treating the clusters as new abstract states.
- Formally, an abstraction function h is described by a surjection $h:S\to \hat{S}$ where \hat{S} is the set of abstract states.
- Let d, e be states in S. We say d and e are logically equivalent on relation h iff h(d) = h(e) and denoted by $d \equiv_h e$

Formal Definition of Abstraction

- The abstract Kripke structure $\hat{M}=(\hat{S},\hat{I},\hat{R},\hat{L})$ generated by the abstraction function h is defined as
 - $\hat{I}(\hat{d})$ iff $\exists d(h(d) = \hat{d} \land I(d))$
 - $\hat{R}(\hat{d}_1, \hat{d}_2)$ iff $\exists d_1 \exists d_2 (h(d_1) = \hat{d}_1 \land h(d_2) = \hat{d}_2 \land R(d_1, d_2))$
 - $\hat{L}(\hat{d}) = \bigcup_{h(d)=\hat{d}} L(d)$
- An abstraction function h is appropriate for a specification ρ if for all atomic sub-formulas f of ρ and for all states d and e in the domain S such that $d \equiv_h e$ it holds $d \models f \Leftrightarrow e \models f$.

FIG. 1. Existential Abstraction. M is the original Kripke structure, and \widehat{M} the abstracted one. The dotted lines in M indicate how the states of M are clustered into abstract states.

Formal Definition of Abstraction(Con't)

- h is appropriate for a set F of formulas if h is appropriate for all $f \in F$.
- $\hat{L}(\hat{d})$ is consistent if all concrete states corresponding to \hat{d} satisfy all labels in $\hat{L}(\hat{d})$. That is, collapsing a set of concrete states into an abstract state does not lead to contradictory labels.
- If h is appropriate for ρ , then all concrete states in an equivalence class of \equiv_h share the same labels.
- Also, the abstract states inherit all labels from each state in the respective equivalence classes
- Finally, the labels of the abstract states are consistent.
- In other words, $d\equiv_h d'$ implies L(d)=L(d'), $h(d)=\hat{d}$ implies $\hat{L}_h(\hat{d})=L(d)$, and $\hat{L}_h(d)$ is consistent.

Formal Definition of Abstraction(Con't)

- Let h be appropriate for the $ACTL^*$ specification ρ and M be defined over the atomic propositions in ρ . Then $M \leq \hat{M}_h$ (Lemma 3.2).
- A simulation relation $H = \{(s, h(s) | s \in S\}$ trivially satisfies Lemma 3.2.
- Let h be appropriate for the $ACTL^*$ specification ρ . Then $\hat{M}_h \vDash \rho$ implies $M \vDash \rho$

Example: Traffic light

FIG. 2. Abstraction of a US traffic light.

- We want to prove $\psi = AG(AF(state=red))$ using the abstraction function $h(red) = \hat{red}$ and $h(green) = h(blue) = \hat{go}$
- It is easy to see that $M \vDash \psi$ while $\hat{M} \nvDash \psi$. There exists an infinite abstract trace $< \hat{red}, \hat{go}, \hat{go}, \cdots >$ that invalidates ψ . This is a spurious counterexample.

FIG. 3. The abstract path in \widehat{M} (indicated by the thick arrows) is spurious. To eliminate the spurious path, the abstraction has to be refined as indicated by the thick line in M.

Clue of Refinement

- We see that the abstract path does not have a corresponding concrete path.
- Whichever concrete path we follow, we will end up in state D, from which we cannot go any further. Therefore, D is called a deadend state.
- On the other hand, the bad state is state B, because it made us believe that there is an outgoing transition.
- In addition, there is the set of irrelevant states I that are neither deadend nor bad, and it is immaterial whether states in I are combined with D or B.
- To eliminate the spurious path, the abstraction has to be refined as indicated by the thick line.

Approximation for Existential Abstraction

- It is too expensive to compute existential abstraction directly. Instead, we use approximation.
- If a Kripke structure $\tilde{M}=(S_h,\tilde{I},\tilde{R},\hat{L}_h)$ satisfies $\hat{I}_h\subseteq \tilde{I}$ and $\hat{R}_h\subseteq \tilde{R}$, we say \tilde{M} approximates \hat{M}_h .
- Let h be the appropriate for the $ACTL^*$ specification ρ . Then $\hat{M}_h \leq \tilde{M}$ (Theorem 3.5)
- A simulation relation is given by the identity mapping that maps each state in M to the same state in \hat{M}_h note that the sets of states in M and \hat{M}_h coincide.

"Early" Approximation

- Since \leq is preorder, $M \leq \hat{M}_h \leq \tilde{M}$ in accordance with Theorem 3.3 and 3.5 define a practical transformation T called $early\ approximation$.
- T applies existential abstraction operation directly to variables at the innermost level of the formula.
- This transformation generates a new structure $\tilde{M}_t = (S_h, T(I), T(R), \hat{L}_h)$ where $T(R) = (R_1)_h \wedge \cdots \wedge (R_n)_h$ and analogously for I $(R = R_1 \wedge \cdots \wedge R_n)$.
- R_i defines the transition relation for single variable.

"Early" Approximation(Con't)

- Consider a system M, which is a synchronous composition of M_1 and M_2 . $(M=M_1\,|\,|M_2)$
- Both M_1 and M_2 define the transition of one variable. In this case, \tilde{M}_T is equal to $(\hat{M}_1)_h | |(\hat{M}_2)_h$.(Abstraction applied for each model)
- Since T is applied at the innermost level, abstraction can be performed before building the BDDs for the transition relation.
- It is easy to implement and fast. But it has potential limitations in checking certain properties.
- Since \tilde{M}_T is a coarse abstraction, there exist many properties that cannot be checked on \tilde{M}_T but can still be verified using a finer approximation.

•

FIG. 4. Traffic light example.

```
init(t) := r;init(c) := s;next(t) := casenext(c) := caset = r : \{r, g\};t = g : \{s, d\};t = g : \{g, y\};t \neq g : s;t = y : \{y, r\};esac;
```

Example: Traffic light and Car

- The Kripke Structure for the system is obtained by composing M_t and M_c .
- The safety property we want to prove is $\rho = AG[\neg(t = r \land c = d)]$
- Let us consider an abstraction function abs which maps the value g and d to w. If we apply abs **after composition**, ρ still holds.
- If however, we use the transformation T, which applies abs **before** composition, ρ does not holds.
- We see that when we first abstract the individual components and then compose we may introduce too many spurious behaviors.

A brief view

- It is desirable to obtain an approximation structure \tilde{M} which is more precise than the structure \tilde{M}_T obtained by the technique proposed in Clarke et al.[1994].
- All the transitions in the abstract structure \hat{M}_h are included in both \tilde{M} and \tilde{M}_T . Note that the state sets of \hat{M}_h , \tilde{M} , \tilde{M}_T are the same and $M \leqslant \hat{M}_h \leqslant \tilde{M}_T$.
- \hat{M}_h is intended to be built but too expensive, \tilde{M}_T is easy to build but extra behaviors are added into the structure.
- Our aim is to build a model \tilde{M} which is computationally easier but a more refined approximation of \hat{M}_h than \tilde{M}_T .
- It means, $M \leqslant \hat{M}_h \leqslant \tilde{M} \leqslant \tilde{M}_T$.

Our Abstraction Methodology (CAV'2000)

Generating Initial Abstraction(Specifically)

- Assume that we have a given program P with n variables $\{v_1, v_2, \dots, v_n\}$.
- Given an atomic formula f, let var(f) is set of variables appearing in f. For example, var(x=y) is $\{x,y\}$.
- Given a set of atomic formulas U, var(U) equals $\bigcup_{f \in U} var(f)$.
- Let \equiv_I be the equivalence relation on Atoms(P), which is reflexive and transitive. The equivalence class of an atomic formula $f \in Atoms(P)$ is called $formula\ cluster$ of f, denoted by [f].
- Let f_1 and f_2 be an atomic formulas. $var(f_1) \cap var(f_2) \neq \emptyset$ means $[f_1] = [f_2]$.
- It means a variable v_i cannot appear in formulas that belong to two different formula clusters.

Generating Initial Abstraction(Cont.)

- The formula clusters induce an equivalence relation \equiv_V on the set of variables V by the following manner :
- $v_i \equiv_V v_i$ iff v_i and v_i appear in atomic formulas that belong to the same formula cluster.
- The equivalence class of \equiv_V are called $variable\ clusters$. For instance, consider $FC_i = \{v_1 > 3, v_1 = v_2\}$. The corresponding variable cluster is $VC_i = \{v_1, v_2\}$.
- Now, let $\{FC_1, FC_2, \dots, FC_m\}$ be the set of formula clusters and $\{VC_1, VC_2, \dots, VC_m\}$ the set of corresponding variable clusters.
- We construct initial abstraction $h=(h_1,h_2,\cdots,h_m)$ as follows.
- For each h_i , we set $D_{VC_i} = \prod_{v \in VC_i} D_v$, i.e. D_{VC_i} is the domain corresponding to the variable cluster VC_i . The corresponding abstraction h_i is defined on D_{VC_i} as follows: $h_i(d_1, \cdots, d_k) = h_i(e_1, \cdots, e_k) \text{ iff } (d_1, \cdots, d_k) \vDash f \Leftrightarrow (e_1, \cdots, e_k) \vDash f.$

Identification of Spurious Counterexamples: Path

- First we will tackle the case \hat{T} is a path $<\hat{s_1},\cdots,\hat{s_n}>$. Given an abstract state \hat{s} , the set of concrete states s s.t. $h(s)=\hat{s}$ is denoted by $h^{-1}(\hat{s})$.
- We extend h^{-1} to sequences in the following way: $h^{-1}(\hat{T})$ is the set of concrete paths given by the following expression:

$$\{ \langle s_1, \dots, s_n \rangle \mid \bigwedge_{i=1}^n h(s_i) = \hat{s}_i \wedge I(s_1) \wedge \bigwedge_{i=1}^{n-1} R(s_i, s_{i+1}) \}$$

- Let $S_1 = h^{-1}(\hat{s_1}) \cap I$. For $1 < i \le n$, we define S_i in the following manner: $S_i \doteqdot Img(S_{i-1},R) \cap h^{-1}(\hat{s_i})$. This can be computed by using OBDD and standard image computation algorithm.
- The following lemma establishes the correctness of this procedure.
- Lemma 1. If the path \hat{T} corresponds to a concrete counterexample, the set of concrete paths $h^{-1}(\hat{T})$ is non-empty and $S_i \neq \emptyset$ for all $1 \leq i \leq n$.

Algorithm SplitPATH

$$\begin{split} S := h^{-1}(\widehat{s_1}) \cap I \\ j := 1 \\ \textbf{while} \ (S \neq \emptyset \ \text{and} \ j < n) \ \ \{ \\ j := j+1 \\ S_{\text{prev}} := S \\ S := Img(S,R) \cap h^{-1}(\widehat{s_j}) \ \ \} \\ \textbf{if} \ S \neq \emptyset \ \textbf{then} \ \text{output counterexample} \\ \textbf{else} \ \text{output} \ j, S_{\text{prev}} \end{split}$$

Fig. 4. SplitPATH checks spurious path.

Fig. 3. An abstract counterexample

Example

- Consider a program with only one variable with domain $D = \{1, \dots, 12\}$. Assume that h maps $x \in D$ to $\lfloor (x-1)/3 \rfloor + 1$.
- There are four abstract states $\hat{1}, \hat{2}, \hat{3}$ and $\hat{4}$ correspond to $\{1,2,3\}, \{4,5,6\}, \{7,8,9\}, \{10,11,12\}$ respectively.
- Suppose we obtain an abstract counterexample $\hat{T}=<\hat{1},\hat{2},\hat{3},\hat{4}>$. It is easy to see \hat{T} is spurious.
- Also, we can check $S_1 = \{1,2,3\}, S_2 = \{4,5,6\}, S_3 = \{9\}, S_4 = \emptyset$. Notice that S_4 and therefore $Img(S_3, R)$ are both empty.
- The algorithm **SplitPATH** will output 3 and S_3 .

Identification of Spurious Counterexamples: Loop

- Now we're gonna focus on loop counterexample, described as $<\hat{s_1},\cdots\hat{s_i}><\hat{s_{i+1}},\cdots\hat{s_n}>^\omega$. The loop starts at $\hat{s_{i+1}}$ and ends at $\hat{s_n}$.
- Consider a loop $<\hat{s_1}><\hat{s_2},\hat{s_3}>^\omega$. To detect this loop is corresponds to concrete loop or not, we unwind the counterexample.
- As you can see in the example, a given abstract loop may correspond to several concrete loops of different size(in this case, 3 and 6)
- In addition, each individual loops may start at different stages of unwinding. Also, it eventually becomes periodic ($S_3^0 = S_3^2$).
- The size of the period is the least common multiple of the size of the individual loops, and thus, in general **exponential**.

Identification of Spurious Counterexamples: Loop(Cont.)

- However, for $\hat{T}=<\hat{s_1}, \cdots \hat{s_i}><\hat{s_{i+1}}, \cdots \hat{s_n}>^\omega$, the number of unwinding can be bounded by $min=\min{(|h^{-1}(\hat{s_i})|)(i+1\leq j\leq n)}$.
- In other words, the number of unwinding is at most the number of concrete states for any abstract state in the loop.
- Let \hat{T}_{unwind} denote $<\hat{s_1}, \cdots \hat{s_i}><\hat{s_{i+1}}, \cdots \hat{s_n}>^{min+1}$. If \hat{T} corresponds to concrete counterexample, $h^{-1}(\hat{T}_{unwind})$ is not empty.
- This algorithm is more complicated than the path counterexamples.

Algorithm SplitLOOP(\widehat{T})

$$min = \min\{|h^{-1}(\widehat{s_{i+1}})|, \dots, |h^{-1}(\widehat{s_n})|\}$$
 $\widehat{T}_{unwind} = \mathbf{unwind}(\widehat{T}, min + 1)$
Compute j and S_{prev} as in $\mathbf{SplitPATH}(\widehat{T}_{unwind})$
 $k := \mathbf{LoopIndex}(j)$
 $p := \mathbf{LoopIndex}(j + 1)$
output S_{prev}, k, p

FIG. 9. SplitLOOP checks if an abstract loop is spurious.

Algorithm SplitLOOP

- This algorithm is an extension of SplitPATH. \hat{T}_{unwind} is computed by the subprogram ${\bf unwind}.$
- The subprogram LoopIndex(j) computes the index of the abstract state at position j in the unwound counterexample \hat{T}_{unwind} .
- That is, for $j \le n$, LoopIndex outputs j, and for j > n, LoopIndex outputs $[j-(i+1) \mod(n-i)]+(i+1)$
- If the abstract counterexample is spurious, then the algorithm SplitLOOP outputs a set S_{prev} and indices k,p, such that the following conditions hold.

Fig. 5. A loop counterexample, and its unwinding.

- (1) The states in S_{prev} correspond to the abstract state $\widehat{s_p}$, that is, $S_{\text{prev}} \subseteq h^{-1}(\widehat{s_p})$.
- (2) All states in S_{prev} are reachable from $h^{-1}(\widehat{s_1}) \cap I$.
- (3) k is the successor index of p within the loop, that is, if p = n then k = i + 1, and otherwise k = p + 1.
- (4) There is no transition from a state in S_{prev} to $h^{-1}(\widehat{s_k})$, that is, $Img(S_{\text{prev}}, R) \cap h^{-1}(\widehat{s_k})$ is empty.
- (5) Therefore, $\widehat{s_p}$ is the failure state of the loop counterexample.

Refining the Abstraction

- First, we will consider counterexample $\hat{T} = \langle \hat{s_1}, \cdots, \hat{s_n} \rangle$ is a path.
- Since \hat{T} does not correspond to a real counterexample, there exists a set $S_i \subseteq h^{-1}(\hat{s}_i)$ with $1 \leq i < n$ such that $Img(S_i, R) \cap h^{-1}(\hat{s}_{i+1}) = \emptyset$ and S_i is reachable from initial state set $h^{-1}(\hat{s}_1) \cap I$.
- Since there is a transition from \hat{s}_i to \hat{s}_{i+1} , there is at least one transition from a state in $h^{-1}(\hat{s}_i)$ to $h^{-1}(\hat{s}_{i+1})$ even though there is no transition from S_i to $h^{-1}(\hat{s}_{i+1})$.
- Our goal is to separate the dead-end state and bad state. To do this, we partition $h^{-1}(\hat{s}_i)$ into three pieces.
- $S_{i,0} = S_i$, $S_{i,1} = \{s \in h^{-1}(\hat{s}_i) \mid \exists s' \in h^{-1}(\hat{s}_{i+1}) . R(s,s')\}, S_{i,x} = h^{-1}(\hat{s}_i) \setminus (S_{i,0} \cup S_{i,1})\}$
- Each of these subsets are correspond to dead-end state, bad state, irrelevant state, respectively.

Recall: Fig3

Fig. 3. An abstract counterexample

Example: Figure 3

- We can easily obtain $S_1 = \{1,2,3\}, S_2 = \{4,5,6\}, S_3 = \{9\}, S_4 = \emptyset.$
- Also, using our definition, we have $S_{3,0} = \{9\}, S_{3,1} = \{7\}, S_{3,x} = \{8\}.$
- Since $S_{i,1}$ is not empty, there is a spurious transition $\hat{s}_i \to \hat{s}_{i+1}$.
- As we mentioned, we need to separate $S_{i,0}$ and $S_{i,1}$. We need an abstract function, in which no abstract state simultaneously contains states from $S_{i,0}$ and $S_{i,1}$.

Refining the Abstraction(Cont.)

- It is natural to describe the needed refinement in terms of equivalence relations. Recall that $h^{-1}(\hat{s})$ is an equivalence class of \equiv which has the form $E_1 \times \cdots \times E_m$, where E_i is an equivalence class of \equiv_i .
- Thus, the refinement is obtained by partitioning the equivalence classes E_j into subclasses, which amounts to refining the equivalence relations \equiv_i .
- The size of refinement is the number of new equivalence classes. Ideally, we would like to find the coarsest refinement, but this problem in NP-hard.
- But if $S_{i,x} = \emptyset$, the problem can be solved in polynomial time.
- Now, we're gonna focus on this case.

Algorithm PolyRefine

- Let P_j^+, P_j^- be two projection functions, such that for $s=(d_1,\cdots,d_m), P_j^+(s)=d_j$ and $P_j^-(s)=(d_1,\cdots,d_{j-1},d_{j+1},\cdots,d_m).$
- A $\operatorname{proj}(S_{i,0},j,a)$ denotes the projection set $\{P_j^- \mid P_j^+(s) = a, s \in S_{i,0}\}$.
- Intuitively, $proj(S_{i,0},j,a) \neq proj(S_{i,0},j,b)$ means that there exists $(d_1,\cdots,d_{j-1},d_{j+1},\cdots,d_m) \in proj(S_{i,0},j,a) \text{ and } (d_1,\cdots,d_{j-1},d_{j+1},\cdots,d_m) \not\in proj(S_{i,0},j,b)$
- By the definition of $proj(S_{i,0},j,a)$, $s_1=(d_1,\cdots,d_{j-1},a,d_{j+1},\cdots,d_m) \in S_{i,0}$ and $s_2=(d_1,\cdots,d_{j-1},a,d_{j+1},\cdots,d_m) \not\in S_{i,0}$. Therefore, $s_2\in S_{i,1}$.
- So, we need to change \equiv_j to \equiv_j' such that $a \not\equiv_j' b$. Also, \equiv_j' is the coarsest refinement of \equiv_j .
- In practical, we merge the states in $S_{i,x}$ to $S_{i,1}$ and use PolyRefine.

Fig. 6. Three sets $S_{i,0}, S_{i,1}$, and $S_{i,x}$

Algorithm PolyRefine

$$\begin{aligned} &\text{for j} \coloneqq 1 \text{ to m } \{ \\ &\equiv'_j := \equiv_j \\ &\text{for every } a, b \in E_j \ \{ \\ &\text{ if } proj(S_{i,0}, j, a) \neq proj(S_{i,0}, j, b) \\ &\text{ then } \equiv'_j := \equiv'_j \setminus \{(a, b)\} \end{aligned} \} \}$$

Fig. 7. The algorithm PolyRefine

Proof of PolyRefine

LEMMA 4.19. When $S_I = \emptyset$, the relation \equiv' computed by **PolyRefine** is an equivalence relation which refines \equiv and separates S_D and S_B .

PROOF. The algorithm **PolyRefine** computes

$$\equiv'_{j} = \equiv_{j} -\{(a, b) : \operatorname{proj}(\mathcal{S}_{D}, j, a) \neq \operatorname{proj}(\mathcal{S}_{D}, j, b)$$

$$= \{(a, b) : a \equiv_{j} b \land \operatorname{proj}(\mathcal{S}_{D}, j, a) = \operatorname{proj}(\mathcal{S}_{D}, j, b)\}$$

$$= \{(a, b) : a \equiv_{j} b \land \forall d_{1}, \dots, d_{m}.$$

$$(d_{1}, \dots, d_{j-1}, a, d_{j+1}, \dots, d_{m}) \in \mathcal{S}_{D} \leftrightarrow$$

$$(d_{1}, \dots, d_{j-1}, b, d_{j+1}, \dots, d_{m}) \in \mathcal{S}_{D}\}$$

• Note that we view equivalence relations as sets of pairs of states, as subsets of $S \times S$.

Proof of PolyRefine(Cont.)

- Now, we show that \equiv' is a correct refinement, that is, for all dead-end states $d \in S_D$ and bad states $b \in S_B$ it holds that $d \not\equiv' b$.
- Let b and d be such states, and assume towards a contradiction, that $b \equiv' d$. Recall that $h(b) = h(d) = \hat{s}_i$ and $b \equiv d \, (\hat{s}_i$ is a failure state).
- By construction, b and d have the form $b=(b_1,\cdots,b_m)$, $d=(d_1,\cdots,d_m)$ where for all $i\in[1,m]$, b_i and d_i are in D_i .
- Consider a sequence x_1, \dots, x_{m+1} of states constructed as follows:

$$x_1 = (b_1, b_2, \dots, b_m) = b, x_2 = (d_1, b_2, \dots, b_m), \dots,$$

 $x_m = (d_1, \dots, d_{m-1}, b_m), x_{m+1} = (d_1, \dots, d_m) = d$

• All x_i are concrete states corresponding to the failure state. It means, $h(x_i) = (h(b_1), \dots, h(b_m)) = \hat{s}_i$

State Splitting

- For a set $h^{-1}(\hat{s}_i)$, a set of concrete states correspond to \hat{s}_i occurring in spurious counterexample, split it into $h^{-1}(\hat{s}_i) \cap Image(h^{-1}(\hat{s}_{i-1}))$ and $h^{-1}(\hat{s}_i) \setminus Image(h^{-1}(\hat{s}_{i-1}))$, provided both non-empty.
- In the case i=1, split it into $h^{-1}(\hat{s}_1)\cap I$ and $h^{-1}(\hat{s}_1)\backslash I$.
- In other words, replace \hat{s}_i by two states \hat{s}_i^+ and \hat{s}_i^- representing $h^{-1}(\hat{s}_i) \cap Image(h^{-1}(\hat{s}_{i-1}))$ and $h^{-1}(\hat{s}_i) \setminus Image(h^{-1}(\hat{s}_{i-1}))$, respectively.
- Therefore, \hat{S} is turned into $\hat{S}' = \hat{S} \setminus \{\hat{s}_i\} \cup \{\hat{s}_i^+, \hat{s}_i^-\}$.

State Splitting(Cont.)

• So, replace $\hat{M}=(\hat{S},\hat{I},\hat{R},\hat{L})$ to $\hat{M}'=(\hat{S}',\hat{I}',\hat{R}',\hat{L}')$ denoted as

$$\hat{S}' = \hat{S} \setminus \{\hat{s}_i\} \cup \{\hat{s}_i^+, \hat{s}_i^-\}$$

$$\hat{I}' = \hat{I} \text{ if } h^{-1}(\hat{s}_i) \cap I = \emptyset, \text{ otherwise } I \setminus \{\hat{s}_i\} \cup \{\hat{s}_i^+\}$$

$$\hat{R}' = \hat{R} \cap (\hat{V}' \times \hat{V}') \cup \{(\hat{s}_i^+, \hat{s}_i^-), (\hat{s}_i^-, \hat{s}_i^+)\} \cup \{(\hat{s}, \hat{s}_i^+) \mid (\hat{s}, \hat{s}_i) \in \hat{R}\} \cup \{(\hat{s}, \hat{s}_i^-) \mid (\hat{s}, \hat{s}_i) \in \hat{R}, \hat{s} \neq \hat{s}_{i-1}\} \cup \{(\hat{s}_i^+, \hat{s}), (\hat{s}_i^-, \hat{s}) \mid (\hat{s}_i, \hat{s}) \in \hat{R}\}$$

$$\hat{L}'(\hat{s}) = L(\hat{s}) \text{ if } \hat{s} \in \hat{S}, L(\hat{s}_i) \text{ if } \hat{s} \in \{\hat{s}_i^+, \hat{s}_i^-\}$$

Abstraction and Refining transition

- So, resulting abstraction is $h'(s) = \hat{s}_i^+$ if $s \in h^{-1}(\hat{s}_i) \cap Image(\hat{s}_{i-1})$, \hat{s}_i^- if $s \in h^{-1}(\hat{s}_i) \setminus Image(\hat{s}_{i-1})$, otherwise h(s).
- Pre- and post-images of $h^{'-1}(\hat{s}_i^{+})$ or $h^{'-1}(\hat{s}_i^{-})$ may well have empty intersections with sets that the pre- or post-set of $h^{'-1}(\hat{s}_i)$ did intersect with. In such cases, \hat{R}' contains spurious edges.
- Thus, remove such edges by pruning \hat{R}' to $\hat{E}'' = \{(s,t) \in \hat{R}' | Image(h^{'-1}(s)) \cap h^{'-1}(t) \neq \emptyset\}$

Our Abstraction Methodology (CAV'2000)

