

Symbol table review

implementation	worst-case cost (after N inserts)			average case (after N random inserts)			ordered iteration?	key interface
	search	insert	delete	search hit	insert	delete		
sequential search (unordered list)	N	N	N	N/2	N	N/2	no	equals()
binary search (ordered array)	lg N	N	N	lg N	N/2	N/2	yes	compareTo()
BST	N	N	N	1.39 lg N	1.39 lg N	?	yes	compareTo()
goal	log N	log N	log N	log N	log N	log N	yes	compareTo()

Challenge. Guarantee performance.

This lecture. 2-3 trees, left-leaning red-black BSTs, B-trees.

2-3 tree

Allow 1 or 2 keys per node.

2-node: one key, two children.

• 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order. Perfect balance. Every path from root to null link has same length.

2-3 tree demo

Search.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

search for H

2-3 tree construction demo

insert S

2-3 tree

Insertion into a 2-3 tree

Insertion into a 2-node at bottom.

• Add new key to 2-node to create a 3-node.

insert G

Insertion into a 2-3 tree

Insertion into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

insert Z

Local transformations in a 2-3 tree

Splitting a 4-node is a local transformation: constant number of operations.

Global properties in a 2-3 tree

Invariants. Maintains symmetric order and perfect balance.

Pf. Each transformation maintains symmetric order and perfect balance.

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.

- Worst case:
- Best case:

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.

• Worst case: lg N. [all 2-nodes]

• Best case: $\log_3 N \approx .631 \lg N$. [all 3-nodes]

Between 12 and 20 for a million nodes.

Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

ST implementations: summary

implementation	worst-case cost (after N inserts)			average case (after N random inserts)			ordered iteration?	key interface
	search	insert	delete	search hit	insert	delete		
sequential search (unordered list)	N	N	N	N/2	N	N/2	no	equals()
binary search (ordered array)	lg N	N	N	lg N	N/2	N/2	yes	compareTo()
BST	N	N	N	1.39 lg N	1.39 lg N	?	yes	compareTo()
2-3 tree	c lg N	c lg N	c lg N	c lg N	c lg N	c lg N	yes	compareTo()

Direct implementation is complicated, because:

- Maintaining multiple node types is cumbersome.
- Need multiple compares to move down tree.
- Need to move back up the tree to split 4-nodes.
- Large number of cases for splitting.

fantasy code

```
public void put(Key key, Value val)
{
   Node x = root;
   while (x.getTheCorrectChild(key) != null)
   {
      x = x.getTheCorrectChildKey();
      if (x.is4Node()) x.split();
   }
   if (x.is2Node()) x.make3Node(key, val);
   else if (x.is3Node()) x.make4Node(key, val);
}
```

Bottom line. Could do it, but there's a better way.

Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007)

- 1. Represent 2-3 tree as a BST.
- 2. Use "internal" left-leaning links as "glue" for 3-nodes.

An equivalent definition

A BST such that:

- No node has two red links connected to it.
- Every path from root to null link has the same number of black links.
- · Red links lean left.

"perfect black balance"

Left-leaning red-black BSTs: 1-1 correspondence with 2-3 trees

Key property. 1-1 correspondence between 2-3 and LLRB.

Search implementation for red-black BSTs

Observation. Search is the same as for elementary BST (ignore color).

but runs faster because of better balance

```
public Val get(Key key)
{
   Node x = root; while (x != null)
   {
      int cmp = key.compareTo(x.key);
      if (cmp < 0) x = x.left;
      else if (cmp > 0) x = x.right;
      else if (cmp == 0) return x.val;
   }
   return null;
}
```



```
else if (cmp > 0) x = x.right;
else if (cmp == 0) return x.val;
```

Remark. Most other ops (e.g., floor, iteration, selection) are also identical.

Red-black BST representation

Each node is pointed to by precisely one link (from its parent) \Rightarrow can encode color of links in nodes.

```
private static final boolean RED = true;
private static final boolean BLACK = false;
private class Node
   Key key;
   Value val;
   Node left, right;
   boolean color; // color of parent link
private boolean isRed(Node x)
{
   if (x == null) return false;
   return x.color == RED;
                              null links are black
```


Left rotation. Orient a (temporarily) right-leaning red link to lean left.


```
private Node rotateLeft(Node h)
{
   assert isRed(h.right);
   Node x = h.right;
   h.right = x.left;
   x.left = h;
   x.color = h.color;
   h.color = RED;
   return x;
}
```

Left rotation. Orient a (temporarily) right-leaning red link to lean left.


```
private Node rotateLeft(Node h)
{
   assert isRed(h.right);
   Node x = h.right;
   h.right = x.left;
   x.left = h;
   x.color = h.color;
   h.color = RED;
   return x;
}
```

Right rotation. Orient a left-leaning red link to (temporarily) lean right.


```
private Node rotateRight(Node h)
{
   assert isRed(h.left);
   Node x = h.left;
   h.left = x.right;
   x.right = h;
   x.color = h.color;
   h.color = RED;
   return x;
}
```

Right rotation. Orient a left-leaning red link to (temporarily) lean right.


```
private Node rotateRight(Node h)
{
   assert isRed(h.left);
   Node x = h.left;
   h.left = x.right;
   x.right = h;
   x.color = h.color;
   h.color = RED;
   return x;
}
```


Color flip. Recolor to split a (temporary) 4-node.


```
private void flipColors(Node h)
{
    assert !isRed(h);
    assert isRed(h.left);
    assert isRed(h.right);
    h.color = RED;
    h.left.color = BLACK;
    h.right.color = BLACK;
}
```

Color flip. Recolor to split a (temporary) 4-node.


```
private void flipColors(Node h)
{
    assert !isRed(h);
    assert isRed(h.left);
    assert isRed(h.right);
    h.color = RED;
    h.left.color = BLACK;
    h.right.color = BLACK;
}
```

Insertion in a LLRB tree: overview

Basic strategy. Maintain 1-1 correspondence with 2-3 trees by applying elementary red-black BST operations.

Warmup 1. Insert into a tree with exactly 1 node.

Case 1. Insert into a 2-node at the bottom.

- Do standard BST insert; color new link red.
- If new red link is a right link, rotate left.

Warmup 2. Insert into a tree with exactly 2 nodes.

Case 2. Insert into a 3-node at the bottom.

- Do standard BST insert; color new link red.
- Rotate to balance the 4-node (if needed).
- Flip colors to pass red link up one level.
- Rotate to make lean left (if needed).

Insertion in a LLRB tree: passing red links up the tree

Case 2. Insert into a 3-node at the bottom.

- Do standard BST insert; color new link red.
- Rotate to balance the 4-node (if needed).
- Flip colors to pass red link up one level.
- Rotate to make lean left (if needed).
- Repeat case 1 or case 2 up the tree (if needed).

Red-black BST construction demo

insert S

red-black BST

Insertion in a LLRB tree: Java implementation

Same code for all cases.

- Right child red, left child black: rotate left.
- Left child, left-left grandchild red: rotate right.
- Both children red: flip colors.


```
private Node put(Node h, Key key, Value val)
                                                                               insert at bottom
   if (h == null) return new Node(key, val, RED);
                                                                               (and color it red)
   int cmp = key.compareTo(h.key);
            (cmp < 0) h.left = put(h.left, key, val);</pre>
   if
   else if (cmp > 0) h.right = put(h.right, key, val);
   else if (cmp == 0) h.val = val;
   if (isRed(h.right) && !isRed(h.left))
                                                 h = rotateLeft(h);
                                                                               lean left
   if (isRed(h.left)
                        && isRed(h.left.left))
                                                 h = rotateRight(h);
                                                                               balance 4-node
                                                                               split 4-node
   if (isRed(h.left) && isRed(h.right))
                                                 flipColors(h);
   return h:
                  only a few extra lines of code provides near-perfect balance
```

Insertion in a LLRB tree: visualization

255 insertions in ascending order

Insertion in a LLRB tree: visualization

Insertion in a LLRB tree: visualization

255 random insertions

Balance in LLRB trees

Proposition. Height of tree is $\leq 2 \lg N$ in the worst case.

Pf.

- Every path from root to null link has same number of black links.
- Never two red links in-a-row.

Property. Height of tree is $\sim 1.00 \lg N$ in typical applications.

ST implementations: summary

implementation	worst-case cost (after N inserts)			average case (after N random inserts)			ordered iteration?	key interface
	search	insert	delete	search hit	insert	delete		
sequential search (unordered list)	N	N	N	N/2	N	N/2	no	equals()
binary search (ordered array)	lg N	N	N	lg N	N/2	N/2	yes	compareTo()
BST	N	N	N	1.39 lg N	1.39 lg N	?	yes	compareTo()
2-3 tree	c lg N	c lg N	c lg N	c lg N	c lg N	c lg N	yes	compareTo()
red-black BST	2 lg N	2 lg N	2 lg N	1.00 lg N *	1.00 lg N *	1.00 lg N *	yes	compareTo()

 $^{^{*}}$ exact value of coefficient unknown but extremely close to 1

War story: why red-black?

Xerox PARC innovations. [1970s]

- Alto.
- GUI.
- Ethernet.
- Smalltalk.
- InterPress.
- Laser printing.
- Bitmapped display.
- WYSIWYG text editor.

Xerox Alto

A DICHROMATIC FRAMEWORK FOR BALANCED TREES

Leo J. Guibas Xerox Palo Alto Research Center, Palo Alto, California, and Carnegie-Mellon University

and

Robert Sedgewick* Program in Computer Science Brown University Providence, R. I.

ABSTRACT

In this paper we present a uniform framework for the implementation and study of balanced tree algorithms. We show how to imbed in this the way down towards a leaf. As we will see, this has a number of significant advantages over the older methods. We shall examine a number of variations on a common theme and exhibit full implementations which are notable for their brevity. One implementation is examined carefully, and some properties about its

War story: red-black BSTs

Telephone company contracted with database provider to build real-time database to store customer information.

Database implementation.

- Red-black BST search and insert; Hibbard deletion.
- Exceeding height limit of 80 triggered error-recovery process.

allows for up to 240 keys

Hibbard deletion

was the problem

Extended telephone service outage.

- Main cause = height bounded exceeded!
- Telephone company sues database provider.
- Legal testimony:

"If implemented properly, the height of a red-black BST with N keys is at most $2 \lg N$." — expert witness

File system model

Page. Contiguous block of data (e.g., a file or 4,096-byte chunk).

Probe. First access to a page (e.g., from disk to memory).

Property. Time required for a probe is much larger than time to access data within a page.

Cost model. Number of probes.

Goal. Access data using minimum number of probes.

B-trees (Bayer-McCreight, 1972)

B-tree. Generalize 2-3 trees by allowing up to M-1 key-link pairs per node.

choose M as large as possible so that M links fit in a page, e.g., M = 1024

- · At least 2 key-link pairs at root.
- At least M/2 key-link pairs in other nodes
- External nodes contain client keys.
- Internal nodes contain copies of keys to guide search...

Searching in a B-tree

- Start at root.
- Find interval for search key and take corresponding link.
- Search terminates in external node.

52

Insertion in a B-tree

- Search for new key.
- Insert at bottom.
- Split nodes with M key-link pairs on the way up the tree.

Inserting a new key into a B-tree set

Balance in B-tree

Proposition. A search or an insertion in a B-tree of order M with N keys requires between $\log_{M-1} N$ and $\log_{M/2} N$ probes.

Pf. All internal nodes (besides root) have between M/2 and M-1 links.

In practice. Number of probes is at most 4. M = 1024; N = 62 billion $\log_{M/2} N \le 4$

Optimization. Always keep root page in memory.

Building a large B tree

Balanced trees in the wild

Red-black trees are widely used as system symbol tables.

- Java: java.util.TreeMap, java.util.TreeSet.
- C++ STL: map, multimap, multiset.
- Linux kernel: completely fair scheduler, linux/rbtree.h.
- Emacs: conservative stack scanning.

B-tree variants. B+ tree, B* tree, B# tree, ...

B-trees (and variants) are widely used for file systems and databases.

- Windows: HPFS.
- Mac: HFS, HFS+.
- Linux: ReiserFS, XFS, Ext3FS, JFS.
- Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.