Statistical Learning. Convex optimization

Beatriz Pateiro López

Departamento de Estatística e Investigación Operativa (USC)

Máster Interuniversitario en Tecnologías de Análisis de Datos Masivos: Big Data

In many problems in statistical estimation and regression the solution requires either iterative methods or numerical optimization.

■ Example: Suppose that we observe a quantitative response Y and a preditor variable X and we assume that there is some relationship between Y and X. The relation can be written in general:

$$Y = f(X) + \epsilon$$

- f is some fixed but unknown function
- ϵ is a random error term
- How do we estimate f?
- We want to find a function \hat{f} such that $Y \approx \hat{f}(X)$ for any observation (X,Y).

- To evaluate the performance of a statistical learning method, we need some way to measure how well its predictions actually match the observed data.
- The most commonly-used measure is the mean squared error (MSE), given by

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

Example: Let us consider one very simple assumption: $f(X) = \beta_1 X$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{\beta}_1 x_i)^2$$

■ The objective is to choose the value $\hat{\beta}_1$ which minimizes the MSE

- **Example**: Let us consider one very simple assumption: $f(X) = \beta_1 X$
- Given $(x_1, y_1), \ldots, (x_n, y_n)$, the objective is to choose the value $\hat{\beta}_1$ which minimizes the MSE

$$\hat{\beta_1} = \arg\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta x_i)^2 \equiv \arg\min_{\beta} ||y - x|\beta||_2^2$$

where
$$x = (x_1, ..., x_n)^t$$
 and $y = (y_1, ..., y_n)^t$

■ Here we show the representation of the MSE (as a function of β) for a given training set $(x_1, y_1), \ldots, (x_n, y_n)$

A mathematical optimization problem, has the form

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1, ..., m$
 $h_j(x) = 0, j = 1, ..., p$

- The vector $x = (x_1, ..., x_d)^t \in \mathbb{R}^d$ is the optimization variable
- The function $f_0: \mathbb{R}^d \to \mathbb{R}$ is the objective function
- The functions $f_i : \mathbb{R}^d \to \mathbb{R}$, i = 1, ..., m are the inequality constraint functions
- The functions $h_j: \mathbb{R}^d \to \mathbb{R}, j=1,\ldots,p$ are the equality constraint functions
- The domain of the problem is:

$$\mathcal{D} = \operatorname{dom}(f_0) \cap \operatorname{dom}(f_1) \cap \ldots \cap \operatorname{dom}(f_m) \cap \operatorname{dom}(h_1) \cap \ldots \cap \operatorname{dom}(h_p)$$

A mathematical optimization problem, has the form

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1, ..., m$
 $h_j(x) = 0, i = j, ..., p$

- The feasible set is the set of points in \mathcal{D} that satisfy all the constraints (the set of feasible solutions)
- The optimal set is the set of feasible points for which the objective function achieves the optimal value, denoted by f^*
- \blacksquare A point x^* is optimal if it belongs to the optimal set

■ A convex optimization problem, has the form

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1,..., m$
 $a_j^t x = b_j, j = 1,..., p$

- where $f_0: \mathbb{R}^d \to \mathbb{R}$, and $f_i: \mathbb{R}^d \to \mathbb{R}$, i = 1, ..., m are convex functions,
- $a_j=(a_{j1},\ldots,a_{jd})^t\in\mathbb{R}^d$ is a vector of coefficients and $b_j\in\mathbb{R},\,j=1,\ldots,p$.

Convex sets

■ Line segment: Let x, y be two points in \mathbb{R}^d with $x \neq y$. Points of the form

$$z = \theta x + (1 - \theta)y$$

with $\theta \in [0, 1]$ form the line segment joining x and y.

■ Convex set: A set $C \in \mathbb{R}^d$ is convex if

$$x,y\in C\Rightarrow \theta x+(1-\theta)y\in C,\quad \forall \theta\in [0,1]$$

with $\theta \in R$ form the line segment through x and y.

Examples of convex sets

In all the following examples, $x = (x_1, \dots, x_d)^t \in \mathbb{R}^d$

- $\| \{x : \|x\| \le r\}$, for a given norm $\| \cdot \|$, r > 0
- $\{x: a^t x = b\}$, where $a = (a_1, \dots, a_d)^t \in \mathbb{R}^d$ and $b \in \mathbb{R}$.
- $\{x: a^t x \leq b\}$, where $a = (a_1, \dots, a_d)^t \in \mathbb{R}^d$ and $b \in \mathbb{R}$.
- $\{x: Ax \leq b\}$, where A is a $m \times d$ matrix and $b \in \mathbb{R}^m$.
- **..**

Convex functions

■ Convex function: A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if dom(f) is convex and for all $x, y \in dom(f)$ and $\theta \in [0, 1]$

$$f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y)$$

■ Strictly convex function: A function $f: \mathbb{R}^d \to \mathbb{R}$ is strictly convex if dom(f) is convex and for all $x, y \in \text{dom}(f)$ with $x \neq y$ and $\theta \in (0, 1)$

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

Examples of convex functions

In all the following examples, $x = (x_1, \dots, x_d)^t \in \mathbb{R}^d$

- Affine functions $f(x) = a^t x + b$, where , $a = (a_1, ..., a_d)^t \in \mathbb{R}^d$ and $b \in \mathbb{R}$.
- Quadratic forms $f(x) = x^t A x$, where A is semidefinite positive $d \times d$ matrix.
- Least squares loss $f(x) = \|y Ax\|_2^2$, where $y = (y_1, \dots, y_p)^t \in \mathbb{R}^p$ and A is a $p \times d$ matrix
- Norm function f(x) = ||x|| for any norm

■ Suppose $f: \mathbb{R}^d \to \mathbb{R}$ is differentiable. The gradient of f at $x \in \mathbb{R}^d$ is given by

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f(x)}{\partial x_1} \\ \vdots \\ \frac{\partial f(x)}{\partial x_d} \end{pmatrix}$$

 \blacksquare Recall that gradient vector give us the direction of greatest increase of f

■ First-order Taylor approximation: Given $f: \mathbb{R}^d \to \mathbb{R}$ differentiable

$$f(y) \approx f(x) + \nabla f(x)^{t} (y - x)$$

■ First order characterization: Suppose $f: \mathbb{R}^d \to \mathbb{R}$ is differentiable. Then f convex if and only if dom(f) is convex and for all $x, y \in dom(f)$

$$f(y) \ge f(x) + \nabla f(x)^t (y - x)$$

First-order Taylor approximation is a global underestimator of f

■ Nota that, if $\nabla f(x) = 0$ then for all $y \in \text{dom}(f)$ we have $f(y) \ge f(x)$, that is, x is a global minimizer of f

■ Suppose $f: \mathbb{R}^d \to \mathbb{R}$ is twice differentiable. The Hessian of f at $x \in \mathbb{R}^d$ is given by

$$\nabla^2 f(x) = \begin{pmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_d} \\ \vdots & \vdots & & \vdots \\ \frac{\partial^2 f(x)}{\partial x_d \partial x_1} & \frac{\partial^2 f(x)}{\partial x_d \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_d^2} \end{pmatrix}$$

■ Second-order Taylor approximation: Given $f : \mathbb{R}^d \to \mathbb{R}$ differentiable

$$f(y) \approx f(x) + \nabla f(x)^{t} (y - x) + \frac{1}{2} (y - x)^{t} \nabla^{2} f(x) (y - x)$$

■ Second order characterization: Suppose $f: \mathbb{R}^d \to \mathbb{R}$ is twice differentiable. Then f convex if and only if dom(f) is convex and for all $x \in dom(f)$

$$\nabla^2 f(x) \succeq 0$$

 Geometrically, this characterization requires that the graph of the function have positive curvature at x

A convex optimization problem, has the form

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1, ..., m$
 $a_j^t x = b_j, j = 1, ..., p$

- where $f_0: \mathbb{R}^d \to \mathbb{R}$, and $f_i: \mathbb{R}^d \to \mathbb{R}$, i = 1, ..., m are convex functions,
- $a_j = (a_{j1}, \ldots, a_{jd})^t \in \mathbb{R}^d$ is a vector of coefficients and $b_j \in \mathbb{R}, j = 1, \ldots, p$.
- The feasible set of a convex optimization problem is convex
- We minimize a convex objective function over a convex set

For example, linear programs are convex problems with affine objective and constraint functions.

minimize
$$c^t x$$

subject to $d_i^t x \le e_i, i = 1, ..., m$
 $a_j^t x = b_j, j = 1, ..., p$

- where $x \in \mathbb{R}^d$, $c \in \mathbb{R}^d$,
- $d_i \in \mathbb{R}^d$, $e_i \in \mathbb{R}$, $i = 1, \dots, m$
- $a_j \in \mathbb{R}^d, b_j \in \mathbb{R}, j = 1, \dots, p$

- In a convex optimization problem any locally optimal point is also (globally) optimal
- Suppose f_0 is differentiable. Then, for all $x, y \in \text{dom}(f_0)$

$$f_0(y) \ge f_0(x) + \nabla f_0(x)^t (y - x)$$

Let X denote the feasible set of the problem. A point x is optimal if and only if $x \in X$ and for all $y \in X$,

$$\nabla f_0(x)^t(y-x) \ge 0$$

Descent methods

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)}$$
 with $f(x^{(k+1)}) < f(x^{(k)})$

- \blacksquare Δx is the search direction
- $t^{(k)} \ge 0$ is the step size
- From convexity we have that $\nabla f(x^{(k)})^t(y-x^{(k)}) \ge 0$ implies $f(y) \ge f(x^{(k)})$. Therefore, if we want $f(x^{(k+1)}) < f(x^{(k)})$, we must choose a search direction such that

$$\nabla f(x^{(k)})^t \Delta x^{(k)} < 0$$

Descent methods

Algorithm: General descent method

given a start point $x \in dom(f)$ repeat

- 1. Determine a descent direction Δx
- 2. Line search. Choose a step size t > 0
- 3. Update. $x := x + t\Delta x$

until stopping criterion is satisfied

Gradient descent method

- A natural choice for the search direction is the negative gradient $\Delta x = -\nabla f(x)$.
- The resulting algorithm is called the gradient algorithm or gradient descent method

Algorithm: Gradien descent method **given** a start point $x \in dom(f)$ **repeat**

- 1. $\Delta x = -\nabla f(x)$
- 2. Line search. Choose a step size t > 0
- 3. Update. $x := x + t\Delta x$

until stopping criterion is satisfied

■ The stopping criterion is usually of the form $\|\nabla f(x)\|^2 \le \eta$, for η small

Gradient descent methods: How do we choose the stepsize?

Gradient descent methods: How do we choose the stepsize?

■ Exact line search

$$t = \arg\min_{s \ge 0} f(x + s\Delta x)$$

Backtracking line search. One inexact line search method that is very simple and quite effective is called backtracking line search.

Algorithm: Backtracking line search

given a descent direction Δx for f at $x \in \text{dom}(f)$, $\alpha \in (0, 0.5)$ and $\beta \in (0, 1)$ t := 1

while
$$f(x + t\Delta x) > f(x) + \alpha t \nabla f(x)^t \Delta x$$
, $t := \beta t$

References

Boyd, S. and Vandenberghe, L. (2004). Convex optimization.

Tibshirani, R.

Course on Convex Optimization. Carnegie Mellon University - CMU

Duchi, J.

Course on Introduction to Convex Optimization for Machine Learning. University of California, Berkeley