10

⑧ శేశీష 🏄 引导案例:雾霾之痛、全球之痛

・我们怎么办?

· 发展是人类社会永恒的主题

发展:事物由小到大、由简单到复杂、由低级到高级的变化

人类文明 发展历程	采猎文明	猎文明 农业文明 工业文明		生态文明	
时段	(原始社会) —	———18世纪后	80年代——至今		
劳动工具	石器	铁器 (手工)	机器	电器	
对自然的态度	依赖自然	改造自然	征服自然	善待自然	
环境问题	食物短缺、疾 病、灾害	森林砍伐、地力 下降、水土流失	区域性污染到全 球性公害	全球性灾难急需 解决	
人类对策	听天由命	牧童经济	环境保护	可持续发展	

🕃 至于美星大學 5.1.1 可持续发展思想的形成及发展

· 可持续发展思想形成的全球背景

1) 人口数量剧增:

人类面临的几乎所有危机 和困境, 追根溯源都是<mark>人</mark> 口问题。

⑧ 科教 4 大 4 大 4 大 4 大 4 大 5 . 1 . 1 可持续发展思想的形成及发展

· 可持续发展思想形成的全球背景

2) 自然资源枯竭: 水资源、土地资源、森林资源、能源资源...

⑧ 香芽紅土紫 5.1.1 可持续发展思想的形成及发展

可持续发展思想形成的全球背景

3) 环境污染加剧: 大气污染、水体污染、土壤污染、噪声污染...

③ 香芹養太學 5.1.1 可持续发展思想的形成及发展

可持续发展思想形成的全球背景

4) 生态环境恶化: 臭氧层空洞、酸雨区蔓延、全球变暖与海平面上升、水土流失与土地荒漠化、生物多样性锐减、湿地损失

⑧ 香井美養大學 5.1.1 可持续发展思想的形成及发展

可持续发展思想形成的全球背景

5) 南北差距过大:

全球20%富人与20%穷人收入差距: 1900年为9:1, 2000年为80:1 2000年GDP: 富裕国家人均3.5万美元, 贫穷国家人均200美元 最不发达国家: 20世纪70年代25个, 2000年48个

⑧ ಕ್ರಕ್ಷನ್ನೇ 5.1.1 可持续发展思想的形成及发展

可持续发展思想发展的重要里程碑
 2) 1972年,罗马俱乐部发表报告《增长的极限》

全球的增长将会于21世纪的某个时段内达到极限

所阐述的"合理的、持久的均衡发展"为可持续发展思想萌芽提供土壤

3) 1972年,斯德哥尔摩召开联合国人类环境 会议,通过<mark>《人类环境宣言》</mark>

各国政府和人民必须为全体人民和自身后代的 利益做出共同努力

同年,第27届联合国大会通过每年的6月5日 为"世界环境日"

2021: 人与自然和谐共生

⑥ 養孝義養太學 5.1.1 可持续发展思想的形成及发展

可持续发展思想发展的重要里程碑

4) 1980年,国际自然保护联合会、联合国环境规划署、 世界野生动物基金会联合发表《世界保护自然大纲》

首次明确提出"可持续发展"的概念

5) 1987年,世界环境与发展委员会发表报告《我们共同的未来》

是联合国在环境保护和经济发展领域的纲领性文件,是<mark>可持续发展思想成熟</mark>的重要标志

指出可持续发展是"在满足当代人需求的同时,又不损害后代人满足其需求的能力的发展"

⑥ 至于天皇大學 5.1.1 可持续发展思想的形成及发展

・可持续发展思想发展的重要里程碑

6) 1992年,**联合国与环境发展大会通过《21世纪议程》** 标志着可持续发展战略实践的开始

7) 2001年,欧文•拉兹洛出版《第三个干年》 从公众参与、文化创新层面解读可持续发展 TO SECURE A PROPERTY OF THE SECURE AS A PROPERTY OF THE SECURE AS A SECURE AS

8) 2002年,联合国可持续发展首脑会议通过《可持续发展执行计划》 对过去10年全球可持续发展实践的评估,以及对世界未来可持续发展的 具体计划

资源: 人类的生产和生活都有赖于资源的供给

经济: 人类个体发展和社会整体进步的动力

发展的结果要使人均福利随时间增长而增长

基于经济要素的定义

基于人口要素的定义

人口: 可持续发展是以人为本的发展

强调:发展要在生态系统承载力内,发展的结果要提高人类生活质量

2003年7月28日:

坚持以人为本, 树立全面、 协调、可持续的发展观,促 进经济社会和人的全面发展

· 基于资源要素的定义

强调:发展要通过自然资本和人造资本的替代维持资本库存的动态平衡,

250000

强调:发展要合理利用有限的自然资源,发展的结果要保持资源稳定

(金) 至少充金大学 5.1.2 可持续发展的内涵

基于环境要素的定义

环境: 资源的载体和人类生存的基础

强调: 发展要保护生态系统 的完整性和生物多样性

发展的结果要保持生命保障 系统的生产能力和整体功能 的良性循环

2021年10月12日,昆明 《生物多样性公约》第十五次缔约方大会

🔞 🛂 🏄 叁 5.1.2 可持续发展的内涵

基于经济要素的定义

经济: 经济是价值的创造、转化与实现; 人类经济活动就是创造、转化、实现价 值,满足人类物质文化生活需要的活动。

简单地说,经济就是对物资的管理;是 对人们生产、使用、处理、分配一切物 资这一整体动态现象的总称。

微观的指一个家庭的家务管理。

宏观的指一个国家的国民经济。

	88	GDP (東元, IMF 2019)	GOP (東元, 取合 (取2016)	人均国内生产 总值	2019年人日
1	p(OR	21.347592	18.627572	\$ 64,865	329,064,917
2	中間	14.22/5/2	11.22万亿	\$ 9,915	1,433,783,686
3	日本	5.187552	4.9475/2	\$ 40,802	126,860,301
•	65.00	3.9675/2	3.48)5/2	\$ 47,462	83,517,045
5	印度	2.97万亿	2.26万亿	\$ 2,175	1,366,417,754
3	\$100 (100 (100 (100 (100 (100 (100 (100	2.837542	2 657512	\$ 41,895	67,530,172
7	18.00	2.76万亿	2.47万亿	\$ 42,402	65,129,728
	意大利	2.037562	1.86万亿	\$ 33,458	60,550,075
9	60	1.96万亿	1.807512	\$ 9,285	211,049,527
10	加拿大	1.74万亿	1.537512	\$ 46,487	37,411,047
11	πn	1.66万亿	1.41万亿	\$ 32,341	51,225,308
12	00.00	1.61万亿	1.257592	\$ 11,040	145,872,256
13	BHS	1.43万亿	1.24万亿	\$ 30,578	46,736,776
54	液大利亚	1.4275/2	1.307512	\$ 56,223	25,203,198
15	80.6	1.24万亿	1.087512	\$ 9,731	127,575,529
14	meene	1.107562	9322 617	\$ 4,068	270,625,568
17	用出	9140.062	7772 MZ	\$ 53,450	17,097,130
18	SHEED	7622.6/2	6396 212	\$ 22,244	34,268,528
19	班士	7075.7fZ	6688 552	\$ 62,358	8,591,365
20	±HH.	7062.452	8637.152	\$ 8,405	83,429,615

30

33

🕲 🛂 🧸 🧸 5.1.2 可持续发展的内涵

基于社会要素的定义

社会: 人类发展的组织依托, 社会进步是人类发展的终极目标

强调:发展要维护代内公平和代际公平,发展的结果要促进个人的全面 发展和社会的全面进步

可持续发展是"在满足当代人需求的同时,又不损害后代人满足其需求的能力的发展"——《我们共同的未来》(1987) 的能力的发展"一

上述定义有局限吗?

强调: 时间维的代际公平

忽略: 空间维的代内公平和区际公平

5.1.2 可持续发展的内涵 (金) 西安克通大学

基于要素综合的定义

可持续发展:

在生态承载力范围内,人类通过合理高 效地利用**自然资源**,保持**生态系统**的完 整性, 维持资本系统的稳定性, 维护社 会的公平性, 在不断提高人类生活质量 的同时,实现生态系统、经济系统和社 会系统的协同进化。

西安克通大学 5.1.2 可持续发展的内涵

内涵的具体化--可持续发展目标(2018年)

5.2.1 资源可持续发展 (金) 西安克通大学

次消工坐片 | 米坐屏

贝冰开	及一八	尖			
社会发展阶段	文化时期	人类技术水平	新增自然资源种类		
狩猎-采集	旧石器时代	粗制石器、钻木取火	燧石、树木、鱼、兽、果		
社会	新石器时代	精制石器、刀耕火种	栽培植物、驯化动物		
	青铜器时代	青铜斧、犁、冶铜技术、轮轴机械、灌溉 技术、木结构建筑	铜、锡矿石、耕地、木材、水流		
农业社会	铁器时代	铁斧、犁、刀、冶炼技术、齿轮传动机械、 石结构建筑、水磨	铁、铅、金、银、汞、石材、水力		
	中世纪	风车、海航	风能、海洋水产		
	文艺复兴期	爆破技术	硝石 (炸药与肥料)		
	产业革命期	蒸汽机	煤的大量使用		
	殖民时期	火车、轮船、电力、炼钢、汽车、内燃机	石油		
工业社会	一战前后	飞机、化肥	铝、磷、钾		
	二战前后	人造纤维、原子技术	稀有元素、放射性元素;石油 煤不仅作为能源,也作为原料		
	20世纪50年	空间技术、电子技术、生物技术等新技术	更多稀有金属、半导体元素、遗 传基因		

5.2.1 资源可持续发展 (金) 西安克通大学

自然资源的主要特性

自然资源: 在一定时间、地点条件下能够产生经济价值,以提高人类当 前和未来福利的自然环境因素和条件

1) 禀赋的稀缺性——绝对稀缺

我国人均资源与世界比较					
	中国	世界	位次		
人均耕地	0.10公顷	0.36公顷	67		
人均林地	0.12公顷	0.90公顷	80		
人均草地	0.23公顷	0.76公顷	121		
人均河流	2600立方	11000立方	88		

自然资源的主要特性

1) 禀赋的稀缺性—

总量较大的矿产资源大多为贫矿,开采和利用难度大、成本高

自然资源的主要特性

2) 分布的区域性

(3) を考える大学 5.2.1 资源可持续发展

· 自然资源的主要特性

(金) 西安克通大學 5.2.1 资源可持续发展

自然资源的主要特性

4) 质/量的可变性

不可再生资源:

人类利用的总是趋于降低其数量和质量

可重生资源:

数量和质量较为稳定, 但存在承载范围 例如:水体的自净、森林的可再生,捕 鱼与禁渔,等

② F 李 於 4 大學 5.2.1 资源可持续发展

· 不可再生资源的可持续利用

1) 不可再生资源的替代性: 直接替代

当传统来源的矿物变得稀缺时,人们会努力发展技术从替代来源中提取 例:石油 VS 页岩油

③ F45.4大學 5.2.1 资源可持续发展

不可再生资源的可持续利用

1) 不可再生资源的替代性: 技术替代 综合利用技术可大大降低资源需求量

可再生资源的可持续利用

经营性可再生资源: 财产权利明晰、能够合理配置、实现可持续利用 公共性可再生资源: 财产权利不明确,资源收获量不能由私人决定

汽车保有量 (亿台)

千人汽车保存台数(台)

报废汽车回收拆解数 (万台

(3) 新考点表表表 5.2.1 资源可持续发展

· 不可再生资源的可持续利用

1) 不可再生资源的替代性:

对废旧金属的回收利用可在 很大程度上替代矿物产品的 使用。

日本: 回收汽车80%的部件 25%再利用

报废汽车回收比率(%)	5.77	7.86	7,00	0.70
报废汽车回收拆解企业数(家)	120 000	5 000	15 000	695
汽车报废年限 (年)	13	10	7 16 8	15 % 20
相关政策法规及行动指南	(未来报废汽车 回收利用指南)	(报废汽车 再生利用法)	(报废汽车 处理法规)	(报废汽车回 收管理办法》
报废汽车补贴 (人民币)	2.5 75 iUfs	Æ	1.9 7i 7c/fr	450 元吨
汽车制造商参与度	4	高	Ä	无
特殊制度	汽车制造商成立 专门理事会和技 术研究机构	征牧回牧再 利用费:建立 电子清单	汽车生产商 有回收报度 汽车的义务	茏
极度汽车其他处理方法	零部件出口国外	1/5 出口国外	2/3 出口国外	本国处理
			40.00	

美国

日本

德国

中国

2.40

172

较为落后

55%作为原料再循环

5.2.1 资源可持续发展

不可再生资源的可持续利用

(3) を考える大学 5.2.1 资源可持续发展

2) 不可再生资源的最优耗竭

人类可获得的不可再生资源的总量是一定的

为了<mark>不</mark>对后代人满足其需求的能力<mark>构成危害</mark>,必须考察不可再生资源在 不同时期的最优配置问题

可再生资源的可持续利用

2) 可再生资源的最佳利用:不仅考虑生物学意义的最大可持续产量,还 要考虑经济上的效率最大化,即净收益最大

可再生资源的最佳利用,就是对有效可持续产量的利用

③ F考える大学 5.2.1 资源可持续发展

可再生资源的可持续利用

1) 可再生资源的可持续产量: 对可再生资源的收获量不能超过其更新量

例: 鱼类资源的捕捞量不能超过其更新量

⑤ を考える大学 5.2.2 环境可持续发展

・环境生产力结构

是环境生产力的构成,包括资源生产力、环境纳污力、灾害破坏力

1) 资源生产力:环境产生可再生资源和不可再生资源的能力 适宜的自然环境是保证其资源生产力的关键

45

41

・环境与资源

自然环境: 可以直接、间接影响人类生活和发展的各种自然因素的总体

- 1) 自然资源是环境生产的产物
- 2) 环境本身也是一种特殊的资源

⑧ 香芋菜養大學 5.2.2 环境可持续发展

· 环境生产力结构

3) **灾害破坏力**: 自然环境<mark>固有的</mark>和对人类活动<mark>反馈所形成</mark>的自然灾害对 环境生产力的损失或抵消

从人类价值衡量: 自然灾害可以降低甚至抵消资源生产力和污染消纳力

③ F 李 元 4 大学 5.2.2 环境可持续发展

· 环境可持续发展——环境保护

2) 环境保护促进可持续发展

环境问题的实质:人来索取资源的速率**超过**了资源本身及其替代产品的 再生速率,向环境排放废弃物的速率与数量**超过**了环境的自净能力

·环境可持续发展——生物多样性保护

2) 生物多样性的锐减

生态系统多样性的锐减、物种多样性的锐减、基因多样性的锐减

⑧ శ್ರೀಸ್ತ್ರೆ 4人譽 5.2.2 环境可持续发展

· 环境可持续发展——生物多样性保护

2) 生物多样性的锐减——原因

生境破坏: 高度多样化的自然生态系统→结构相对简单的农业生态系统

过度捕猎: 狩猎规模和速率超出了种群的自然生殖能力和速率

化学污染: 大气污染、农业化学品、工业废弃物…… **气候变化**: 剧烈影响生物的习性、分布、种类

生物入侵: 有意或无意种地不当引进物种易导致灾难性后果

人口增长: 生物多样性锐减的根本原因

环境同化、吸收、降解人类排 放污染物的自净能力

环境生产力结构

2) 污染消纳力:

自净能力对于可持续发展社会 的建设显得尤为重要

例: 森林生态系统净化能力

图 新考点 4 大學 5.2.2 环境可持续发展

· 环境可持续发展——环境保护

1) 可持续发展源于环境保护

可持续发展思想从萌芽到成熟、从理论到实践,始终都与环境保护相关

《人类环境宣言》 1987

· 环境可持续发展——生物多样性保护

1) 生物多样性的表现

57

基因多样性、物种多样性、生态系统多样性

51

53

55