Capítulo 11 Aplicações Baseadas em Servidor Streaming

Prof. Roberto Willrich INE - CTC-UFSC

Aplicações Baseadas em Servidores Multimídia

- Duas formas de transmissão
 - Transmissão assíncrona (download)
 - informação é primeiro transferida, então armazenada no receptor, e apresentada
 - mais simples de implementar
 - Sincrona ou tempo-real (streaming)
 - parte ou toda a informação é transferida em tempo-real sobre a rede e apresentada continuamente no receptor
- · Para multimídia
 - Para transferência de textos os modos síncronos e assíncronos são equivalentes
 - Para mídias contínuas depende do tipo de aplicação, tamanho da informação e da velocidade da rede

Aplicações Baseadas em Servidores Multimídia

· Transmissão assíncrona

- Usado para pequenas seqüências
 - facilmente armazenadas no receptor
 - · atrasos de 3 a 4 seg. no início da apresentação são toleráveis
 - · em boas condições pode dar a impressão de reação tempo real

Aplicações Baseadas em Servidores Multimídia

- Transmissão síncrona
 - Necessário para:
 - · seqüências muito grandes,
 - · redes muito lentas, ou
 - · pouca capacidade de armazenamento

Problemas na Transmissão Síncrona

- Perda da sincronização intra-mídia e inter-mídia
 - Quando as mídias são transferidas pela rede as relações temporais podem ser alteradas
 - Devido a variação do atraso provocada pela redes
 - certos fragmentos podem ser atrasados em relação a outros
 - Fragmentos podem ser perdidos ou a ordem pode ser perdida
- São necessários mecanismos no cliente e servidor
 - Restauram as relações temporais dentro de cada fluxo transportando uma mídia contínua (sincronização intramídia)
 - assegura que o fluxo recebido seja rearranjado para se parecer com o original
 - Restauram as relações temporais entre os vários fluxos ou elementos (sincronização intermídia)
 - restaura dependências temporais inter-mídia

Streaming de Mídia

Produtos a serem usados:

- Para mídia (vídeo ou áudio) armazenada: editores de mídia, como Adobe Premiere, Pinnacle studio Cyberlink Producer para importar a fonte de vídeo para o servidor, e editar ele no computador.
- Para mídia tempo-real: equipamentos de captura
- Software de codificação de streaming de mídia, para converter o vídeo em um formato compatível com um ou mais dos principais formatos de mídia para streaming
 - Helix Producer (para RealMedia), Windows Media Encoder (para Windows Media Player) ou Sorenson Squeeze e Broadcaster (para Quicktime)

Streaming de Mídia

- Produtos a serem usados:
 - Servidor de Streaming de Mídia, como Helix Universal
 Server, Windows Media Server, QuickTime Streaming Server
 4, icecast. etc.
 - Streaming media player, para o usuário visualizar a mídia
 - · RealOne Player, Windows Media Player, e QuickTime Player.

VideoLAN

 Solução multimídia Open Source (GPL) (VideoLAN Client/VideoLAN Server) em 2001

VideoLAN

- Características (http://www.videolan.org/vlc/features.html)
 - Entrada: UDP/RTP unicast/multicast, HTTP/FTP, MMS, TCP/RTP Unicast, DCCP/RTP Unicast, File, DVD Video, Video CD/VCD, SVCD, Audio CD, DVB, MPEG encoder, aquisição de vídeo (Direct Show, V4L, V4LS)
 - codecs: MPEG, AVI, AVF/WMV/WMA, MP4/MOV/3GP, OGG/OGM/Annodex, Real, WAV, DTS, AAC, AC3/A52, FLAC, FLV, MXF, Nut, MIDI/SMF, Creative Voice.
 - Vários S.O.: MacOS X, Windows, Linux, BeOS, fontes disponíveis

- Plataforma Helix
 - Framework open source para multimídia digital
 - https://helixcommunity.org/
 - Iniciado pela RealNetworks

- Plataforma Helix
 - Helix DNA Client
 - Player multiplataforma
 - Formatos de áudio: Vorbis, .au, AAC, AAC+, MP3, AMR-NB/WB, RealAudio, WMA, M4A
 - Formatos de vídeo: Theora, AVI, RealVideo, WMV, H.263, H.264, VC1, H.261, MJPEG
 - Formatos de descrição: SMIL, SDP
 - Imagens: JPEG, GIF, PNG
 - Protocolos: RTSP, RTP, HTTP, Multicast, RDT

- Plataforma Helix
 - Helix DNA Producer
 - Máquina de codificação de mídia multiformato para criar streaming broadcasts
 - Permite escolher a taxa de bits (de 56k a qualidade DVD)
 - Fornece o arquivo multimídia para o servidor

Entradas:

- Dispositivos de captura de áudio e vídeo
- Uncompressed Wav, QuickTime, AVI
- Arquivos de áudio NeXT e Sun
- Arquivos AIFF
- Windows apenas: Compressed AVI, Digital Video (DV) files, MPEG1, MPEG2, MPEG4, Compressed QuickTime

Saída:

- RealMediastreaming broadcast
- Arquivo de saída no formato RealMediaFormat (*.rmand *.rmvb)
- OggVorbisAudio

Plataforma Helix

- Helix DNA Server
 - Máquina suportando o empacotamento tempo-real e transmissão na rede
 - Estatísticas de desempenho e de carga
 - · Lista de controle de acesso IP
 - Formato de arquivo suportado: MP3, RealAudio, RealVideo (.rm, .ra, .rv)
 - Protocolos: RTP, RTSP, usando TCP ou UDP (unicast ou multicast), HTTP

Darwin Streaming Server (DSS)

- E O
- Primeiro servidor open source RTP/RTSP (1999)
- Suporta vários tipos de mídia H.264/MPEG-4 AVC e Parte 2,
 2GP
- Desenvolvido pela Apple: equivalente ao QuickTime Streaming Server
- Windows Media Services (WMS)
 - Servidor de streaming da Microsoft

- Usa o Windows Media Encoder

RTSP (Real-Time Streaming Protocol)

Origem

- Proposta de padrão IETF para controle de fluxo de mídia sobre redes IP
 - · Comandos: Describe, setup, play, pause, record, teardown
- Submetido em 1996 pela RealNetworks e Netscape Communications Corporation e com o suporte de 40 companhias
- Recomendação IETF em Abril/98 (RFC 2326)

Implementações:

- QuickTime Streaming Server (Apple Mac OS X Server)
- Darwin Streaming Server (Open Source do primeiro)
- PacketVideo Streaming Server (Alcatel-Lucent)
- Helix DNA Server (RealNetwork Open Source)
- VideoLAN (open source)
- Windows Media Services (Microsoft)
- VX30 (Java pela Maui X-Stream)

Modelo de Servidor Multimídia

- Principais componentes
 - Dispositivos de armazenamento
 - Escalonador
 - determina qual fluxo é o próximo a ser servido
 - caso existam vários fluxos sendo transmitidos simultaneamente
 - Buffer de suavização

Modelo de Servidor Multimídia

- Principais componentes
 - Buffer de suavização
 - leitura de dados dos dispositivos de armazenamento é realizada em rajada para fluxos individuais
 - buffers de suavização são usados para transmitir fluxos de mídias contínuas para aplicações ou para um sistema de transporte
 - dado será transmitido para a rede na mesma taxa que ele deve ser apresentado no cliente

Modelo de Servidor Multimídia

Meta do servidor

- Servir simultaneamente tantos fluxos quanto possível satisfazendo os requisitos de continuidade dos fluxos e guardando os requisitos de bufferização ao mínimo
- Para obter isto:
 - dispositivos de armazenamento apropriados, posicionamento dos dados nestes dispositivos e técnicas de escalonamento devem ser usados

Reserva de Recursos em Servidores Multimídia

- Objetivo
 - Fornecer a largura de banda requerida para obter um filme com boa qualidade
- Recursos podem ser reservados em avanço
 - Definindo o intervalo de tempo desejado para apresentação
 - Meta-servidor calcula o melhor tempo de partida de uma transmissão de vídeo
 - considerando todos os outros pedidos conhecidos e seus requisitos de largura de banda

Reserva de Recursos em Servidores Multimídia

- Multicast otimiza uso dos recursos
 - Se um filme popular é pedido por vários clientes simultaneamente
 - clientes podem ser juntar a um único grupo multicast
 - Servidor de vídeo pode então fazer o multicast do fluxo de vídeo sob a rede de alta velocidade e usar todas as vantagens da transmissão multicast

Dispositivos de armazenamento

Tipos de dispositivos de armazenamento

Característica	Disco magnético	Disco ótico	Low-end tape	High-end tape
Modo de acesso	Randômico, Menor tempo	Randômico, Maior tempo	Seqüencial	Seqüencial
Taxa de tranf.	Mais alta	Media	Mais baixa	Media
Custo por Gbytes	Mais alto	Media	Baixo	Mais baixo

Dispositivos de armazenamento

- · Discos magnéticos são melhores para multimídia
 - Permitem acesso randômico rápido e tem altas taxas de transferência
 - Mas eles são relativamente caros comparado a outros dispositivos de armazenamento
- Discos óticos têm tempo de acesso altos
 - Discos óticos têm mais alta capacidade que discos magnéticos e também permitem o acesso randômico
 - · mas o tempo de acesso é grande e a taxa de transferência é baixa
- Tapes tem acesso sequencial
 - Tapes têm a mais alta capacidade de armazenamento
 - · mas não podem ser acessados randômicamente
 - para ler um bloco de dados é necessário ler todos os blocos precedentes
 - taxa de transferência é baixa

Dispositivos de armazenamento

- Um dispositivo de armazenamento único não é suficiente
 - Qualquer um dos tipos de dispositivo de armazenamento tem capacidades e taxas de transferência insuficientes
 - Solução: usar vários dispositivos de armazenamento em um servidor
- Abordagens de organizar vários dispositivos de armazenamento
 - Uso de vários discos para formar um vetores de disco
 - · para aumentar a capacidade de armazenamento e largura de banda
 - Junção de vários dispositivos de armazenamento
 - · para formar uma hierarquia de armazenamento de baixo custo
 - para formar um servidor multimídia de grande capacidade
 - Utilizar vários servidores para formar um vetor de servidores

Posicionamento de dados no disco

- Posicionamento de dados no disco
 - Um arquivo é quebrado em um conjunto de blocos de armazenamento
 - Existem dois métodos gerais para posicionar estes blocos:
 - colocados continuamente em um disco
 - espalhados ao redor do disco
 - Variações destes dois métodos foram propostos
 - · para aumentar o desempenho

Escalonamento de Disco e Controle de Admissão

- Escalonamento de disco
 - Para evitar a falta de dados
 - acesso aos dados no disco deveria ser feita antes do tempo de transmissão do dado
 - Garantir que a taxa de transmissão seja igual a taxa de apresentação
 - Dado excedente deve ser buferizado
 - tamanho deste buffer não deve ser muito grande
 - buffer grande torna sistema caro e o dado sofrerá grande atrasos
 - Tarefa do servidor é prevenir a falta de dados minimizando os requisitos do buffer e atraso

Escalonamento em sistemas tradicionais

- Algoritmos de escalonamento de disco são usados mesmo em sistemas de arquivo tradicionais
- Seu propósito é reduzir o tempo de busca e a latência de rotação
 - obtendo mais alta vazão ou fornecendo acesso igual para aplicações

· Latência de rotação

- Período de espera desde o posicionamento do cabeçote na trilha apropriada até a chegada do setor correto
- Latência de rotação depende da velocidade de rotação do drive
 - · drive de 3600 rpm tem latência de rotação média de 8,3 ms
 - · drive rápido de 7200 tem latência de rotação média é de 4,2 ms

- Algoritmos de escalonamento de disco mais comuns
 - FCFS (First-Come-First-Served)
 - · pedidos são servidos de acordo com sua ordem de chegada

FCFS

- ignora o movimento e a localização do cabeçote do disco
 - tempo médio de busca é alto

Starting position:

Sector 8 Sector 6

Seqüência:

20 14

26 10

- Algoritmos de escalonamento de disco mais comuns
 - SSTF (Shortest Seek Time First)
 - tenta minimizar o tempo de busca servindo o pedido cujo dado está mais próximo da localização atual do cabeçote
 - favorece o pedido no meio de um disco
 - quando o servidor é muito carregado a transferência de dados nas trilhas mais internas e mais externas não são servidos

Seqüência:

8

6

20

14

26

10

- Algoritmos de escalonamento de disco mais comuns
 - Scan
 - tenta minimizar o tempo de busca servindo pedidos na ordem do movimento dos cabeçotes do disco
 - ele serve primeiro todos os pedidos em uma direção até que todos os pedidos sejam servidos nesta direção
 - movimento dos cabeçotes é invertido e serve os pedidos nesta direção

Seqüência:

10

Sector 26

Sector 6

Sector 14

Algoritmos de escalonamento de disco

- Algoritmos de escalonamento de disco comuns
 - Não levam em consideração a temporização de cada fluxo
 - eles não podem ser diretamente utilizados para escalonamento de servidores multimídia
 - · a não ser que seja limitado o número de pedidos
- Algoritmos mais adaptados para tempo-real
 - Algoritmo EDF (Earliest Deadline First)
 - · escalona para primeiro o bloco de mídia com deadline mais próximo
 - não leva em consideração a posição do cabeçote
 - Scan-EDF
 - Combina Scan e EDF para reduzir tempo de busca médio do EDF
 - Mais adequados para servidores multimídia
 - Algoritmo Round-Robin
 - Escalonamento GSS (Group Sweeping Scheduling)

Vídeo/Filme sob demanda (VOD)

O que é VOD

- Serviços de vídeo/filme sob demanda estão sendo desenvolvidos para quebrar a limitação da TV e fornecer outras funcionalidades
 - · Uma grande coleção de vídeos são armazenados em servidores de vídeo
 - Usuários ou clientes acessam estes vídeos através de uma rede.
- As principais vantagens de VOD são:
 - · Não temos que sair de casa para assistir nosso filme favorito
 - televisor seria conectado ao servidor de vídeo através de uma rede
 - necessitaríamos apenas selecionar o vídeo através de um menu na TV
 - Oferecimento de uma grande coleção de vídeos, atualizada e sempre disponível
 - Podemos assistir nosso filme predileto a qualquer instante que desejarmos
 - Podemos interromper, avançar e voltar à traz, ou mesmo pular para uma determinada cena
 - · Temos alta qualidade, pois vídeos são armazenados digitalmente.

Vídeo sob-demanda (VOD)

- Qualidade necessária e taxa de bits associada
 - qualidade equivalente ao videocassete VHS requer 1,5 Mbits/s
 - muitos operados estão planejando operar em uma infraestrutura piloto sob taxa de 7 a 8 Mbits/s
- Verdadeiros VOD
 - São extremamente custosos
 - Em termos de poder para acessar e ler o dispositivo de armazenamento, poder de processamento nos servidores e consumo de tamanho de banda na rede
 - Em hora de pico vários pedidos de um vídeo popular pode existir:
 - centenas de fluxos distintos com distâncias de poucos segundos (comutação de fase)

Vídeo sob-demanda (VOD)

- Near video on demand (NVOD)
 - Vídeo é transmitido em diversos canais.
 - Cada canal transmite o vídeo com diferença de 10 a 20 minutos
 - Reduz o número de comutação de fase e reduz a carga do servidor
 - Utiliza técnicas multicast para reduzir o tamanho de banda necessário
- Push video on demand
 - Técnica usada por algumas empresas que não tem interatividade para prover verdadeiro VoD
 - Simula o VoD Verdadeiro
 - Um sistema de gravação (Personal Video Recorder) automaticamente registra uma seleção de programação
 - Normalmente transmitido a noite
 - Usuário assiste a hora que quiser

Vídeo sob-demanda (VOD): Arquitetura

- · Arquitetura para sistemas servidores de vídeo
 - Sistema servidor de vídeo consiste de clientes, servidores e meta-servidores conectados a uma rede de alta velocidade
 - Servidores armazenam os vídeos em dispositivos de armazenamento de alta capacidade
 - Clientes acessam o vídeo de um ou mais servidores
 - Permitindo interações de controle do fluxo

Vídeo sob-demanda (VOD): Arquitetura

- Meta-servidores
 - Fornecer informações para o cliente
 - cliente pode perguntar ao meta-servidor os nomes e endereços dos servidores necessários para obter o fluxo de vídeo
 - fornece informações como tamanho de arquivos, taxa de quadros, esquema de compressão ou descrição do conteúdo do vídeo
 - · dependendo da informação recebida do meta-servidor
 - cliente seleciona um servidor de vídeo apropriado

Vídeo sob-demanda (VOD): Arquitetura

- Meta-servidores
 - Fornecer funções de configuração dos servidores e gerenciamento do sistema de armazenamento
 - Estatísticas de acesso colecionadas pelo meta-servidor pode ser usada para otimizar o desempenho do sistema global
 - exemplo: vídeos populares poderiam ser distribuídos para um número maior de servidores que vídeos não populares
 - Fornecer funções de controle de admissão e coleta de dados necessários para faturamento
 - · como o número e a duração de acesso a vídeos

VoD: Requisitos de Servidores Multimídia

- Capacidade de armazenamento e a taxa de transferência
 - Deve ser suficientemente alta para suportar vários clientes simultaneamente afim de tornar o sistema econômico
- Escalabilidade
 - Arquitetura e técnica usada em um servidor deveria ser escalável e capaz de suportar uma grande população de usuários
- Suportar interatividade
 - Servidor deveria ser capaz de suportar vários tipos de interações com o usuário tal como pausa, avanço e retrocesso rápidos.
 - Servidor deveria fornecer capacidades de busca
 - Facilita a navegação, tornando o acesso a informação mais rápido
- Deveriam fornecer garantias de QoS
 - Servidor deveria implementar controle de admissão e escalonamento tempo-real