

深度學習 Deep Learning

輕量化訓練大型模型的方法

Instructor: 林英嘉 (Ying-Jia Lin)

2025/05/12

Course GitHub

Slido # DL_0512

Outline

- 輕量化訓練大型模型的方法
 - Parameter-efficient fine-tuning (PEFT)

The Revolution of ChatGPT

ChatGPT came out in November, 2022.

讓大型語言模型適用於你的任務?

翻譯、聊天、寫故事 ...

醫學資料、少數語言、網路上查不到的知識

解決方案: Fine-tuning 語言模型

Full Fine-tuning (全微調) LLM 的困境

GPU Memory Estimated (Model weights)

以 Llama 2-7B 為例,且儲存參數的精度為 float 32 (FP32):

在 float 32 (FP32) 的情況下,1 個參數需要 4 bytes 儲存

-> 7B = 70億個參數 = 7,000,000,000 * 4 bytes = (扣掉3個逗號從B換成GB) 28GB

Introduction to Quantization

(這頁只是示意圖,數值不精準)

$$\begin{bmatrix} -0.4 & 1.3 & 3.73 \\ -4.7 & -3.2 & -6.4 \\ 8.5 & 14.3 & 13.5 \end{bmatrix}$$

 $\begin{bmatrix} -0.4 & 1.3 & 3.73 \\ -4.7 & -3.2 & -6.4 \\ 8.5 & 14.3 & 13.5 \end{bmatrix} \xrightarrow{\text{\tiny FP32}} \text{int8} \begin{bmatrix} 0 & 1 & 4 \\ -5 & -3 & -6 \\ 9 & 14 & 14 \end{bmatrix}$

36 bytes

32-bit floating point (FP32): 1個

值需要4個bytes才能儲存

8 bytes

8-bit Integer (int8): 1個值需要

1個bytes才能儲存

誤差:
$$\begin{bmatrix} 0.4 & -0.3 & 0.27 \\ -0.3 & 0.2 & 0.4 \\ 0.5 & -0.3 & 0.5 \end{bmatrix}$$

GPU Memory Estimated (Model weights)

以 Llama 2-7B 為例,且儲存參數的精度為 float 32 (FP32):

在 float 32 (FP32) 的情況下,1 個參數需要 4 bytes 儲存

-> 7B = 70億個參數 = 7,000,000,000 * 4 bytes = (扣掉3個逗號從B換成GB) 28GB

模型	參數量	Memory (FP32)	Memory (FP16)
DeepSeek v3	685B	2740 GB	1370 GB
Llama 4 Scout	109B	436 GB	218 GB
GPT-2 XL	1.5B	6 GB	3 GB

GPU Memory Estimated (Full Fine-tuning)

Llama 2-7B

16-bit float, max_length (seq) = 4096, hidden_size = 4096, batch_size (bs) = 1

	算法	Memory
CUDA	-	~1 GB
Model weights	size(float) * Nparameter	13.03 GB
Gradients	size(float32) * Ntrainable	26.06 GB
Hidden states	~size(float) * seq * hidden_size * L	1.07 GB
Optimizer states (Adam)	2 * size(float) * Ntrainable	26.06 GB

L: Number of layers in model (eq. 32 layers)

Estimate: 67.22 GB *NVIDIA 5090: 32GB

有沒有可能只微調 LLM 一部分的參數呢?

Parameter-efficient Fine-tuning (PEFT)
Update a **small subset** of model parameters

GPU Memory Estimated (PEFT)

• 假設我們只更新 2% 的參數

Пa	m	a 2	-7B
LIO		3 ~	- <i>,</i> ப

16-bit float, max_length (seq) = 4096, hidden_size = 4096, batch_size (bs) = 1

	算法	Memory
CUDA	-	~1 GB
Model weights	size(float) * Nparameter	13.03 GB
Gradients	size(float32) * Ntrainable	13.03*0.02 = 0.2606 GB
Hidden states	~size(float) * seq * hidden_size * L	1.07 GB
Optimizer states (Adam)	2 * size(float) * Ntrainable	0.5212 GB

L : Number of layers in model (eq. 32 layers)

*NVIDIA 4060 Ti: 16 GB

Estimate: 15.88 GB

PEFT Outline

<u>Adapters</u>

LoRA

Prefix-Tuning

BitFit

LoRA: Low-Rank Adaptation

LoRA is common ...

[Prerequisite] Weights in Transformer layers

Transformer layers

[Recap] MLP is composed of weight matrices

[Prerequisite] 矩陣分解

d = 1000

參數量 1000*1000 = 1百萬

r = 10

1000*10 + 10*1000= 20000

LoRA: Low-Rank Adaptation

只有黃色部分會被訓練 α 是超參數

為什麼 LoRA 要這樣做?

d = 1000

參數量 1000*1000 = 1百萬

訓練參數太多

小矩陣 W_b∈ℝ^{r×d}

小矩陣 W_a∈ℝ^{d×r}

r = 10

1000*10 + 10*1000 = 20000

訓練參數少,僅有2%

Low-Rank 的部分在哪?(1)

Reduced rowechelon form : Linearly-independent vectors rank = 3

rank 大小最多等於 column vectors (或 row vectors) 的數量

Low-Rank 的部分在哪?(2)

d > r 的情況下 (通常 d>> r) · A 或 B 的 rank 一定遠小於 W 的 rank 故為 low-rank 的由來

LoRA: Low-Rank Adaptation (w / pseudo code)

Pseudocode:

```
input dim = 768 # the hidden size of the pre-trained model
output dim = 768 # the output size of the layer
rank = 8 # The rank 'r' for the low-rank adaptation
W = \dots \# from pretrained network with shape input dim x
output dim
W A = nn.Parameter(torch.empty(input dim, rank)) # LoRA weight A
W B = nn.Parameter(torch.empty(rank, output dim)) # LoRA weight B
# Initialization of LoRA weights
nn.init.kaiming uniform (W A, a=math.sqrt(5))
nn.init.zeros (W B)
def regular_forward_matmul(x, W):
   h = x @ W
return h
def lora forward matmul(x, W, W A, W B):
   h = x @ W # regular matrix multiplication
   h += x @ (W A @ W B) * alpha # use scaled LoRA weights
return h
```


[注意事項] LoRA 的問題

- r 的數值大小需要手動調整
 - r 越小,訓練參數量越少
- 相較於原本沒有 LoRA 的模型,
 LoRA 其實會讓 inference 速度變慢

可不可以不要外加?

Adapter: Parameter-Efficient Transfer Learning for NLP. ICML 2019

優點:模型設計更靈活

缺點:

- 直接變更了模型架構 (串聯)
 - -> 計算時間比 LoRA 長

[注意事項] LoRA 的問題

- r的數值大小需要手動調整
 - r越小,訓練參數量越少
- 相較於原本沒有 LoRA 的模型,
 LoRA 其實會讓 inference 速度變慢
- 訓練和 inference 時,大模型的部分其實還是被載入記憶體...

QLoRA: Quantized LoRA

只有黃色部分會被訓練 α 是超參數

[注意事項] QLoRA

• 記憶體使用量:QLoRA < LoRA

• 模型效能: QLoRA <= LoRA

How about model compression?

PEFT vs. Model compression

	PEFT	Model Compression
目標	讓模型適應新的任務, 但模型大小不變	加速模型運算或模型儲存空間
相較於原始模型的 改變內容	插入少量可訓練參數	減少整體模型結構或權重
參數更新	只更新少量新參數	先減少整體模型結構後針對新的模 型進行訓練
使用情境	需要模型學會新的任務時	手機、邊緣裝置

Thank you!

Instructor: 林英嘉

yjlin@cgu.edu.tw

TA: 林君襄

becky890926@gmail.com