Representació de traces (ground tracks) d'òrbites de satèl·lits artificials

ALUMNE: Francesco Tedesco

NIU: 1635101

PROFESSOR: Jose Maria Mondelo Gonzalez

ASSIGNATURA: Càlcul Numèric

${\rm \acute{I}ndex}$

1	Intr	roducció	2	
2	Comentaris generals sobre la Implementació			
3	Maı	nual del software encarregat	5	
	3.1	Biblioteca bisnwt	5	
	3.2	Utilitat kplt2nu	6	
		3.2.1 Comandes per la generació dels corresponents executables	6	
		3.2.2 Exemple d'ús de la utilitat	6	
4 Proves Realitzades				
	4.1	Validació de les proves	8	
	4.2	Experiments numèrics i conclusions	13	
		4.2.1 Experimentant amb els paràmetres	13	

1 INTRODUCCIÓ 2

1 Introducció

L'objectiu principal d'aquest treball és fer una eina que sigui capaç de calcular la posició d'un satèl·lit en el seu pla orbital. Per tant s'haurà de poder resoldre l'equació de Kepler nombroses vegades, motiu pel qual es proporcionarà una rutina per poder calcular 0 de funcions per facilitar la validació dels càlculs de l'òrbita.

2 Comentaris generals sobre la Implementació

D'entrada, per fer més eficient la rutina que servirà per buscar 0 de funcions, s'ha optat per implementar tant el mètode de la bisecció i el de Newton que la rutina utilitzarà en circumstàncies diferents.

L'estratègia que se seguirà per implementar aquesta rutina serà la següent. En primer lloc, mentre no s'hagi retornat cap cosa, continuarem en un bucle de tipus while, en el principi d'aquest bucle implementarem el mètode de la bisecció, es farà el mètode fins que la longitud de l'interval arribi a ser més petit que un paràmetre delta. A continuació, si el valor de delta és més petit que una tolerància que s'haurà passat com a paràmetre, es guardarà dins un apuntador *arr el punt mitjà de l'últim interval de bisecció i es retornarà un -1. Altrament, es farà Newton a partir d'aquest últim punt. Finalment, si Newton acaba convergint, el valor de l'arrel trobada serà guardat dins l'apuntador *arr i es retornarà el nombre d'iterats, en els altres casos es tornarà al principi del bucle while per fer bisecció, començant des de l'últim interval obtingut per la bisecció anterior. Per acabar, cal remarcar que a la funció de la qual es busca el 0 i la seva derivada, seran passades com apuntadors a aquestes.

Quant a la utilitat per calcular les posicions del satèl·lit en el seu pla orbital per poder calcular les òrbites que calcular segons la necessitat del client, s'ha decidit de pensar la

utilitat a partir dels següents paràmetres; l'excentricitat, el període, l'anomalia mitjana inicial, durada de la simulació en segons i el nombre de punts que es volen calcular.

Per fer-ho; s'implementarà un bucle de tipus for amb la $i \in [0, 1, 2, ..., nt]$, (nt és el nombre de punts de la simulació). En primer lloc, es calcularà l'instant de temps que serà i*(temps final/nt). A continuació, per calcular l'anomalia mitjana, es farà servir la següent fórmula per calcular la M:

$$M = 2\pi \frac{t - t_p}{T}$$

Però com que es passarà una M_0 , s'haurà de saber el temps de pas pel perigeu en l'instant inicial, el primer es farà serà aïllar t_p en l'instant inicial

$$M_0 = 2\pi \frac{t - t_0}{T} \iff t_p = -\frac{TM_0}{2\pi} + t$$

Com que t = 0, la fórmula de l'anomalia mitjana queda;

$$M = \frac{t - \left(-\frac{TM_0}{2\pi}\right)}{T} 2\pi = \frac{t}{T} 2\pi + \frac{\frac{TM_0}{2\pi}}{T} 2\pi = \frac{2\pi t}{T} + M_0$$

Un cop obtingut l'anomalia mitjana M, per obtenir l'anomalia excèntrica del satèl·lit E, per fer-ho s'haurà de resoldre l'equació de Kepler:

$$M = E - e \sin E$$

Com que aïllar la E de l'equació no és viable, es procedirà a tractar aquesta equació com una funció que depèn de E

$$f(E) = E - e \sin E - M$$

Seguidament, es cridarà la rutina feta anteriorment per trobar els zeros d'aquesta funció. Cal afegir que aquesta funció es pot derivar i per tant no es tindran problemes quan la rutina estigui aplicant el mètode de Newton. La derivada quedaria

$$df(E) = 1 - e \cos E$$

Un cop tenim la anomalía excèntrica, s'aïllarà l'anomalia vertadera de la seguent igualtat

$$\cos v = \frac{e - \cos E}{e \cos E - 1}$$

I per tant per saber la anomalia vertadera només s'haurà d'aplicar la següent fórmula

$$v = \arccos \frac{e - \cos E}{e \cos E - 1}$$

Per acabar, s'haurà de corregir l'anomalia vertadera per posar-la a la mitja volta corresponent, per fer-ho, primer es dividirà la E entre 2π , per tant la part entera de la divisió ens dirà a quina volta estem i la part decimal a quina mitja volta estem, és a dir que si la part decimal és més gran que 0.5, estarem a la segona mitja volta, i en el cas contrari estarem en la primera volta. Per tant, per obtenir el valor correcte de v, si estem en el 1a mitja volta haurem de sumar a v 2*part entera* π , si estem a la 2a haurem de "canviar de signe a la v" i sumar (2*part entera + 2) π , el +2 es posa per sumar la mitja volta que queda...

Finalment, cal afegir, ens interessa tenir un arxiu amb 3 columnes, la 1a amb el temps, la 2a amb l'anomalia mitjana i la 3a amb l'anomalia excèntrica, per fer això farem un printf d'aquests tres números i els redirigirem a un fitxer a l'hora de cridar la utilitat.

3 Manual del software encarregat

3.1 Biblioteca bisnwt

En aquesta biblioteca només tindrem una rutina anomenada bisnwt()

• Arguments

- double a; extrem inferior de l'interval per començar a fer bisecció
- double b; extrem superior de l'interval on començarem a fer bisecció
- double *arr; apuntador que servirà per apuntar l'arrel trobada
- double *dlt; paràmetre delta per saber fins a quina longitud mínima apliquem bisecció, cal afegir que aquest paràmetre s'anirà actualitzant, ja que és possible fer bisecció més d'una vegada.
- double tol; ens serveix per saber si l'arrel trobada "s'apropa prou" a l'arrel que desitjem trobar, el farem servir al sortir de bisecció per mirar la longitud de l'últim interval o en el mètode de Newton, on mirarem la última arrel trobada... int maxit; màxim d'iterats permesos alhora de fer el mètode de Newton
- double (*f)(double, void*); apuntador a una funció de la qual volem trobar el
 0, es farà servir tant en mètode de bisecció com en el de Newton
- double (*df)(double, void*); apuntador a la derivada de la funció anterior i només es farà servir en mètode de Newton
- void *prm serà un paràmetre que servirà per passar a les dues funcions anterior
 una estructura amb coeficients que calguin per definir la funció.

• Valor de retorn

En el cas que s'hagi "convergit" mitjançant el mètode la Bisecció es retornarà un int amb el valor -1 i el paràmetre *arr apuntarà al punt mig del l'últim interval de la Bisecció. Altrament, quan s'hagi convergit mitjançant

3.2 Utilitat kplt2nu

3.2.1 Comandes per la generació dels corresponents executables.

Per poder generar l'executable només cal posar a la terminal make kplt2nu i generara l'executable kplt2nu que podrà ser executat amb les següent comanda /kplt2nu 0.74105=e 43081.95859068188=T 3.141592653589793=M0 86163.91718136377=tf 333=nt

3.2.2 Exemple d'ús de la utilitat

Escrivint l'anterior línia de comandes a la terminal, podrem veure els l'anomalia mitjana i l'anomalia vertadera que corresponen a cada instant de temps

```
(base) franc@laptop:-/ir_curs/Câlcul Numeric/Pràctiques/P2$ ./kplt2nu 0.74105=
e 43081.95859068188=T 3.141592653589793=M0 86163.91718136377=tf 333=nt
-21540.979295
0.00000000000000000 3.1415926535897927 3.1415926535897931
258.7505020461374556 3.1793295022815617 3.1499522569596174
577.5010040922749113 3.2170663509733313 3.15831520507746448
776.2515961384124238 3.2548031996651003 3.1666848498116584
1035.0020081845498225 3.2925400483568699 3.1750645573464089
1293.7525102306872213 3.3302768970486389 3.1750645573464089
1293.7525102306872213 3.3302768970486389 3.1938677405566123
1811.2535143229622463 3.4057505944321771 3.2002980858240235
2070.0040163690996451 3.4434874431239471 3.2002980858240235
2070.0040163690996451 3.4434874431239471 3.2007252482540511
2328.7545184152372773 3.4812242918157166 3.2172337768864390
2587.5059204613744427 3.5189611405074852 3.2257462809260660
2846.2555225975120688 3.5566979891992552 3.2342934382438866
3105.0060245536496950 3.5944348378910238 3.2428790042441902
3363.7565265997868664 3.6321716865827933 3.2515068211507567
3622.5070286459244926 3.6699085352745624 3.2601808277686151
3881.2575306920616640 3.7076453839663319 3.2689050697829378
4140.0080327381992902 3.745382236581010 3.2776837106621324
4398.7585347843369163 3.7831190813498705 3.2865210432385163
4657.5090368304745425 3.8208559300416396 3.2954215020472732
```

Amb la mateixa utilitat, es pot arribar a representar el ground track del satèl·lit(tracça), obrint el gnuplot i posant les següents comandes:

Comanda	Informació sobre la comanda
load 'ctants.gnu'	fitxer que defineix constants per poder definir els maràmertes de l'òrbita
lonesp=0	longitud del lloc que espia
xc=0.74105	excentricitat
xc=0.74105	excentricitat
T=dias/2	període de l'òrbita
i=63.4*(pi/180)	inclinació de l'òrbita
tf=dias	temps total de simulació
nt=333	punts totals de la traça que volem calcular
load 'dibgte.gnu'	fitxer que serveix per representar la traça de l'òrbita que volem calcular

Per veure com varia distància que hi ha entre el satèl.lit i la terra durant l'òrbita del satèltit, hem de posar la següent comanda en el gnuplot

set autoscale ; plot "gtrk.txtü 1:(r(\$3)) w lp

4 Proves Realitzades

4.1 Validació de les proves

Per validar la rutina que hem implementat, buscarem el 0 de la funció f(x) = ex - 2, i per poder estudiar el comportament de la rutina, li passarem els paràmetres de la següent taula.

a	b	dlt	tol	maxit
-9	1	10	10-12	10
-9	1	2.5	10-12	10
-9	1	0.01	10-12	10

Per poder entendre més en detall el funcionament de la rutina, s'ha decidit afegir uns prints per mostrar les informacions de:

- Quan comença el mètode de Bisecció
- Els extrems i el punt mig de l'interval de la Bisecció
- Quan comença el mètode de Newton
- \bullet La X_0 i la X_1 de cada iterat de Newton
- La delta actual

Delta 10

Si el valor del paràmetre delta és 10, obtindrem el següent resultat;

x0 -> 98.19630 x1 -> 97.19630	x0 -> 96.19630 x1 -> 95.19630	Delta actual 1.25000
x0 -> 97.19630 x1 -> 96.19630		
x0 -> 96.19630 x1 -> 95.19630	Delta actual 2.50000	Bisecció;
		a -1.50000 b 1.00000 c -> -0.25000
Delta actual 5.00000	Bisecció;	
	a -4.00000 b 1.00000 c -> -1.50000	Newton;
Bisecció;		x0 -> -0.25000 x1 -> 1.31805
a -9.00000 b 1.00000 c -> -4.00000	Newton;	x0 -> 1.31805 x1 -> 0.85336
	x0 -> -1.50000 x1 -> 6.46338	x0 -> 0.85336 x1 -> 0.70532
Newton;	x0 -> 6.46338 x1 -> 5.46650	x0 -> 0.70532 x1 -> 0.69322
x0 -> -4.00000 x1 -> 104.19630	x0 -> 5.46650 x1 -> 4.47495	x0 -> 0.69322 x1 -> 0.69315
x0 -> 104.19630 x1 -> 103.19630	x0 -> 4.47495 x1 -> 3.49773	x0 -> 0.69315 x1 -> 0.69315
x0 -> 103.19630 x1 -> 102.19630	x0 -> 3.49773 x1 -> 2.55826	x0 -> 0.69315 x1 -> 0.69315
x0 -> 102.19630 x1 -> 101.19630	x0 -> 2.55826 x1 -> 1.71314	n iterats 7
x0 -> 101.19630 x1 -> 100.19630	x0 -> 1.71314 x1 -> 1.07374	
x0 -> 100.19630 x1 -> 99.19630	x0 -> 1.07374 x1 -> 0.75720	
x0 -> 99.19630 x1 -> 98.19630	x0 -> 0.75720 x1 -> 0.69516	
x0 -> 98.19630 x1 -> 97.19630	x0 -> 0.69516 x1 -> 0.69315	
x0 -> 97.19630 x1 -> 96.19630		

Per començar, podem notar que en el primer iterat del while principal es fa directament Newton sense fer bisecció, això és degut al fet que la longitud de l'interval [-9, -1] (10), no és estrictament més gran que delta. A continuació, podem veure que la delta s'ha actualitzat i, per tant, en el següent iterat sí que es farà bisecció, i com que nou primer interval de Bisecció torna a ser igual que la delta (5), passarem un altre cop a fer Newton. Aquest procediment anterior es tornarà a repetir fins que el punt mitjà l'últim interval de la bisecció (es pot considerar com el primer), estigui a una distància prou bona per començar Newton de tal manera que convergeixi en menys de 10 iterats.

Delta 2.5

Si ara posem la delta a 2.5, aconseguirem els següents resultats

```
x0 -> 2.55826 | x1 -> 1.71314
Bisecció;
a -9.00000 | b 1.00000 | c -> -4.00000
                                               x0 -> 1.71314 | x1 -> 1.07374
                                                                                               x0 -> -0.25000 | x1 -> 1.31805
                                               x0 -> 1.07374 | x1 -> 0.75720
                                                                                              x0 -> 1.31805 | x1 -> 0.85336
a -4.00000 | b 1.00000 | c -> -1.50000
                                               x0 -> 0.75720 | x1 -> 0.69516
                                                                                               x0 -> 0.85336 | x1 -> 0.70532
                                               x0 -> 0.69516 | x1 -> 0.69315
                                                                                               x0 -> 0.70532 | x1 -> 0.69322
                                                                                              x0 -> 0.69322 | x1 -> 0.69315
Newton:
                                               Delta actual 1.25000
                                                                                               x0 -> 0.69315 | x1 -> 0.69315
x0 -> -1.50000 | x1 -> 6.46338
                                                                                               x0 -> 0.69315 | x1 -> 0.69315
x0 -> 6.46338 | x1 -> 5.46650
                                                                                               n iterats 7
x0 -> 5.46650 | x1 -> 4.47495
                                               Bisecció;
                                               a -1.50000 | b 1.00000 | c -> -0.25000
x0 -> 4.47495 | x1 -> 3.49773
x0 -> 3.49773 | x1 -> 2.55826
```

En aquest segon cas, sí que entrarà a fer bisecció de primeres, en aquest cas, pararà quan la longitud de l'últim interval sigui igual la delta 2,5, a continuació ens trobarem en la mateixa situació de posar delta 10, però amb menys esforç, perquè ara la Bisecció inicial ens ha estalviat passar per Newton dues vegades.

Delta 0.01

Per acabar, si passem el paràmetre delta 0.01;

```
a 0.68750 | b 0.76562 | c -> 0.72656
                                                                                            x0 -> 0.69315 | x1 -> 0.69315
   Bisecció:
a -9.00000 | b 1.00000 | c -> -4.00000
                                              a 0.68750 | b 0.72656 | c -> 0.70703
                                                                                             n iterats 4
a -4.00000 | b 1.00000 | c -> -1.50000
                                              a 0.68750 | b 0.70703 | c -> 0.69727
a -1.50000 | b 1.00000 | c -> -0.25000
  -0.25000 | b 1.00000 | c -> 0.37500
a 0.37500 | b 1.00000 | c -> 0.68750
                                             x0 -> 0.69727 | x1 -> 0.69316
a 0.68750 | b 1.00000 | c -> 0.84375
                                             x0 -> 0.69316 | x1 -> 0.69315
a 0.68750 | b 0.84375 | c -> 0.76562
                                             x0 -> 0.69315 | x1 -> 0.69315
```

Podem observar que ara només s'ha fet Newton un sol cop i ha convergit en menys iterats, això es deu al fet que la delta és molt petita, i, per tant, es farà bisecció fins a una distància aproximadament de 0,01/2 de l'arrel que busquem, per aquest motiu Newton ha convergit més ràpidament. A banda de tot això, cal afegir que aquests raonaments que fem amb la delta, no són generals per totes les funcions.

Per validar la utilitat kplt2nu, s'ha mirat si en posar els següents paràmetres, els resultats del temps, anomalia mitjana i anomalia vertadera coincideixen amb els de l'arxiu "orb.txt", com podem veure a continuació coincideixen; ¹

0.00000 3.14159 3.14159	8280.01607 4.34917 3.42961	16560.03213 5.55675 3.95304
258.75050 3.17933 3.14995	8538.76657 4.38691 3.44014	16818.78263 5.59449 3.98398
517.50100 3.21707 3.15832	8797.51707 4.42465 3.45083	17077.53314 5.63222 4.01715
776.25151 3.25480 3.16668	9056.26757 4.46238 3.46171	17336.28364 5.66996 4.05290
1035.00201 3.29254 3.17506	9315.01807 4.50012 3.47277	17595.03414 5.70770 4.09161
1293.75251 3.33028 3.18346	9573.76858 4.53786 3.48403	17853.78464 5.74544 4.13378
1552.50301 3.36801 3.19187	9832.51908 4.57559 3.49551	18112.53514 5.78317 4.18003
1811.25351 3.40575 3.20030	10091.26958 4.61333 3.50721	18371.28565 5.82091 4.23111
2070.00402 3.44349 3.20875	10350.02008 4.65107 3.51915	18630.03615 5.85865 4.28800
2328.75452 3.48122 3.21723	10608.77058 4.68880 3.53135	18888.78665 5.89638 4.35196
2587.50502 3.51896 3.22575	10867.52109 4.72654 3.54383	19147.53715 5.93412 4.42466
2846.25552 3.55670 3.23429	11126.27159 4.76428 3.55659	19406.28765 5.97186 4.50830
3105.00602 3.59443 3.24288	11385.02209 4.80201 3.56966	19665.03816 6.00959 4.60587
3363.75653 3.63217 3.25151	11643.77259 4.83975 3.58306	19923.78866 6.04733 4.72147
3622.50703 3.66991 3.26018	11902.52309 4.87749 3.59682	20182.53916 6.08507 4.86074
3881.25753 3.70765 3.26891	12161.27360 4.91522 3.61095	20441.28966 6.12280 5.03131
4140.00803 3.74538 3.27768	12420.02410 4.95296 3.62549	20700.04016 6.16054 5.24290
4398.75853 3.78312 3.28652	12678.77460 4.99070 3.64047	20958.79067 6.19828 5.50578
4657.50904 3.82086 3.29542	12937.52510 5.02844 3.65592	21217.54117 6.23601 5.82491
4916.25954 3.85859 3.30439	13196.27560 5.06617 3.67187	21476.29167 6.27375 6.18884
5175.01004 3.89633 3.31343	13455.02611 5.10391 3.68837	21735.04217 6.31149 6.56343
5433.76054 3.93407 3.32255	13713.77661 5.14165 3.70547	21993.79267 6.34922 6.90787
5692.51105 3.97180 3.33175	13972.52711 5.17938 3.72321	22252.54318 6.38696 7.19899
5951.26155 4.00954 3.34104	14231.27761 5.21712 3.74164	22511.29368 6.42470 7.43506
6210.01205 4.04728 3.35042	14490.02811 5.25486 3.76084	22770.04418 6.46244 7.62482
6468.76255 4.08501 3.35990	14748.77862 5.29259 3.78087	23028.79468 6.50017 7.77865
6727.51305 4.12275 3.36949	15007.52912 5.33033 3.80182	23287.54518 6.53791 7.90527
6986.26356 4.16049 3.37919	15266.27962 5.36807 3.82378	23546.29569 6.57565 8.01125
7245.01406 4.19822 3.38900	15525.03012 5.40580 3.84685	23805.04619 6.61338 8.10142
7503.76456 4.23596 3.39895	15783.78062 5.44354 3.87116	24063.79669 6.65112 8.17927
7762.51506 4.27370 3.40903	16042.53113 5.48128 3.89684	24322.54719 6.68886 8.24737
8021.26556 4.31143 3.41924	16301.28163 5.51901 3.92407	24581.29769 6.72659 8.30761

¹Només he mostat 5 decimals per poder-los posar a la memòria

24840.04820 6.76433 8.36146	37518.82280 8.61344 9.23923	50197.59740 10.46254 9.66727
25098.79870 6.80207 8.41002	37777.57330 8.65117 9.24839	50456.34790 10.50028 9.67715
25357.54920 6.83980 8.45414	38036.32380 8.68891 9.25747	50715.09840 10.53801 9.68715
25616.29970 6.87754 8.49452	38295.07430 8.72665 9.26647	50973.84890 10.57575 9.69730
25875.05020 6.91528 8.53169	38553.82480 8.76438 9.27541	51232.59941 10.61349 9.70759
26133.80071 6.95301 8.56611	38812.57531 8.80212 9.28428	51491.34991 10.65123 9.71804
26392.55121 6.99075 8.59812	39071.32581 8.83986 9.29308	51750.10041 10.68896 9.72865
26651.30171 7.02849 8.62804	39330.07631 8.87759 9.30183	52008.85091 10.72670 9.73943
26910.05221 7.06622 8.65612	39588.82681 8.91533 9.31053	52267.60141 10.76444 9.75040
27168.80271 7.10396 8.68255	39847.57732 8.95307 9.31918	52526.35192 10.80217 9.76156
27427.55322 7.14170 8.70753	40106.32782 8.99080 9.32779	52785.10242 10.83991 9.77293
27686.30372 7.17944 8.73120	40365.07832 9.02854 9.33636	53043.85292 10.87765 9.78452
27945.05422 7.21717 8.75370	40623.82882 9.06628 9.34488	53302.60342 10.91538 9.79634
28203.80472 7.25491 8.77514	40882.57932 9.10401 9.35338	53561.35392 10.95312 9.80841
28462.55523 7.29265 8.79562	41141.32983 9.14175 9.36185	53820.10443 10.99086 9.82074
28721.30573 7.33038 8.81523	41400.08033 9.17949 9.37029	54078.85493 11.02859 9.83335
28980.05623 7.36812 8.83404	41658.83083 9.21723 9.37871	54337.60543 11.06633 9.84627
29238.80673 7.40586 8.85212	41917.58133 9.25496 9.38711	54596.35593 11.10407 9.85950
29497.55723 7.44359 8.86953	42176.33183 9.29270 9.39550	54855.10643 11.14180 9.87308
29756.30774 7.48133 8.88632	42435.08234 9.33044 9.40387	55113.85694 11.17954 9.88702
30015.05824 7.51907 8.90254	42693.83284 9.36817 9.41224	55372.60744 11.21728 9.90136
30273.80874 7.55680 8.91824	42952.58334 9.40591 9.42060	55631.35794 11.25502 9.91611
30532.55924 7.59454 8.93344	43211.33384 9.44365 9.42896	55890.10844 11.29275 9.93132
30791.30974 7.63228 8.94820	43470.08434 9.48138 9.43732	56148.85894 11.33049 9.94702
31050.06025 7.67001 8.96254	43728.83485 9.51912 9.44568	56407.60945 11.36823 9.96324
31308.81075 7.70775 8.97648	43987.58535 9.55686 9.45406	56666.35995 11.40596 9.98003
31567.56125 7.74549 8.99005	44246.33585 9.59459 9.46244	56925.11045 11.44370 9.99744
31826.31175 7.78323 9.00329	44505.08635 9.63233 9.47085	57183.86095 11.48144 10.01552
32085.06225 7.82096 9.01620	44763.83685 9.67007 9.47927	57442.61145 11.51917 10.03433
32343.81276 7.85870 9.02882	45022.58736 9.70780 9.48771	57701.36196 11.55691 10.05393
32602.56326 7.89644 9.04115	45281.33786 9.74554 9.49617	57960.11246 11.59465 10.07441
32861.31376 7.93417 9.05322	45540.08836 9.78328 9.50467	58218.86296 11.63238 10.09585
33120.06426 7.97191 9.06504	45798.83886 9.82101 9.51320	58477.61346 11.67012 10.11835
33378.81476 8.00965 9.07663	46057.58936 9.85875 9.52177	58736.36396 11.70786 10.14203
33637.56527 8.04738 9.08800	46316.33987 9.89649 9.53037	58995.11447 11.74559 10.16700
33896.31577 8.08512 9.09916	46575.09037 9.93423 9.53902	59253.86497 11.78333 10.19344
34155.06627 8.12286 9.11012	46833.84087 9.97196 9.54772	59512.61547 11.82107 10.22151
34413.81677 8.16059 9.12091	47092.59137 10.00970 9.55647	59771.36597 11.85880 10.25143
34672.56727 8.19833 9.13152	47351.34187 10.04744 9.56528	60030.11647 11.89654 10.28345
34931.31778 8.23607 9.14196	47610.09238 10.08517 9.57415	60288.86698 11.93428 10.31787
35190.06828 8.27380 9.15225	47868.84288 10.12291 9.58308	60547.61748 11.97202 10.35504
35448.81878 8.31154 9.16240	48127.59338 10.16065 9.59209	60806.36798 12.00975 10.39542
35707.56928 8.34928 9.17241	48386.34388 10.19838 9.60116	61065.11848 12.04749 10.43954
35966.31978 8.38701 9.18229	48645.09438 10.23612 9.61032	61323.86898 12.08523 10.48809
36225.07029 8.42475 9.19205	48903.84489 10.27386 9.61957	61582.61949 12.12296 10.54194
36483.82079 8.46249 9.20169	49162.59539 10.31159 9.62890	61841.36999 12.16070 10.60219
36742.57129 8.50023 9.21122	49421.34589 10.34933 9.63833	62100.12049 12.19844 10.67028
37001.32179 8.53796 9.22065	49680.09639 10.38707 9.64787	62358.87099 12.23617 10.74813
37260.07229 8.57570 9.22999	49938.84689 10.42480 9.65751	62617.62150 12.27391 10.83830

	62876.37200 12.3	31165 10.94429	70897.63756 13.48149	15.02578	78918.90312 14.6	35133 15.46055
,	63135.12250 12.3	34938 11.07090	71156.38806 13.51923	3 15.04773	79177.65363 14.6	38907 15.47037
,	63393.87300 12.3	38712 11.22473	71415.13856 13.55696	3 15.06868	79436.40413 14.7	72681 15.48007
	63652.62350 12.4	42486 11.41450	71673.88907 13.59470	15.08872	79695.15463 14.7	76454 15.48965
,	63911.37401 12.4	46259 11.65057	71932.63957 13.63244	15.10791	79953.90513 14.8	30228 15.49914
,	64170.12451 12.5	50033 11.94168	72191.39007 13.67017	15.12635	80212.65563 14.8	34002 15.50852
,	64428.87501 12.5	53807 12.28612	72450.14057 13.70791	15.14409	80471.40614 14.8	37775 15.51781
,	64687.62551 12.5	57580 12.66072	72708.89107 13.74568	5 15.16118	80730.15664 14.9	91549 15.52701
,	64946.37601 12.6	61354 13.02464	72967.64158 13.78338	3 15.17768	80988.90714 14.9	95323 15.53613
,	65205.12652 12.6	65128 13.34378	73226.39208 13.82112	2 15.19364	81247.65764 14.9	99096 15.54517
,	65463.87702 12.6	68902 13.60665	73485.14258 13.85886	3 15.20908	81506.40814 15.0)2870 15.55413
	65722.62752 12.7	72675 13.81825	73743.89308 13.89659	15.22406	81765.15865 15.0	06644 15.56303
	65981.37802 12.7	76449 13.98882	74002.64359 13.93433	3 15.23860	82023.90915 15.1	10417 15.57187
,	66240.12852 12.8	80223 14.12809	74261.39409 13.97207	15.25274	82282.65965 15.1	14191 15.58065
,	66498.87903 12.8	83996 14.24369	74520.14459 14.00983	15.26650	82541.41015 15.1	17965 15.58938
,	66757.62953 12.8	87770 14.34126	74778.89509 14.04754	15.27990	82800.16065 15.2	21738 15.59805
	67016.38003 12.9	91544 14.42489	75037.64559 14.08528	3 15.29297	83058.91116 15.2	25512 15.60668
	67275.13053 12.9	95317 14.49759	75296.39610 14.12302	2 15.30573	83317.66166 15.2	29286 15.61526
	67533.88103 12.9	99091 14.56156	75555.14660 14.16075	5 15.31820	83576.41216 15.3	33059 15.62381
	67792.63154 13.0	02865 14.61845	75813.89710 14.19849	15.33040	83835.16266 15.3	36833 15.63232
	68051.38204 13.0	06638 14.66953	76072.64760 14.23623	3 15.34234	84093.91316 15.4	10607 15.64080
	68310.13254 13.1	10412 14.71577	76331.39810 14.27396	3 15.35405	84352.66367 15.4	14381 15.64926
	68568.88304 13.1	14186 14.75795	76590.14861 14.31170	15.36552	84611.41417 15.4	18154 15.65769
	68827.63354 13.1	17959 14.79666	76848.89911 14.34944	15.37679	84870.16467 15.5	51928 15.66610
,	69086.38405 13.2	21733 14.83240	77107.64961 14.38717	15.38785	85128.91517 15.5	55702 15.67449
	69345.13455 13.2	25507 14.86558	77366.40011 14.42491	15.39872	85387.66568 15.5	59475 15.68287
	69603.88505 13.2	29280 14.89651	77625.15061 14.46265	5 15.40942	85646.41618 15.6	33249 15.69124
•	69862.63555 13.3	33054 14.92548	77883.90112 14.50038	3 15.41994	85905.16668 15.6	37023 15.69960
	70121.38605 13.3	36828 14.95271	78142.65162 14.53812	2 15.43031	86163.91718 15.7	70796 15.70796
	70380.13656 13.4	40602 14.97840	78401.40212 14.57586	3 15.44053		
	70638.88706 13.4	44375 15.00271	78660.15262 14.61359	9 15.45061		

4.2 Experiments numèrics i conclusions

4.2.1 Experimentant amb els paràmetres

A continuació farem unes proves representant diferents traces de possibles òrbites que pot arribar a fer el satèl·lit, a partir dels paràmetres que havíem definit abans per l'exemple de l'òrbita.

Si ara posem el període T = dias/2, tf = 10*dias, nt = 10*333, acon-

seguirem la següent òrbita:

Com que ara el període passa a ser el dia dividint entre una mica més de la seva meitat, aquest disminuirà i, per tant, aconseguirem un desplaçament de l'òrbita, perquè en el mateix temps serem capaços de fer més voltes a l'òrbita. El qual, si augmentem el nombre de dies (juntament amb el nombre de punts de la traça), serem capaços d'espiar diversos llocs de la terra i no només 2.

Si ara no tenim un objectiu molt precís, sinó que volem espiar una zona, ho podem fer de dues maneres; augmentant o disminuint l'excentricitat. En el primer cas, respecte al cas inicial aconseguirem ampliar la zona per espiar, i en el segon podrem espiar llocs de manera "horitzontal" respecte al mapa.

Com podem veure en la següent taula, en els tres casos la distància entre la terra i el satèl·lit quan estem espiant s'assemblen, i, per tant, serveixen per espiar.

Per espiar zones de superfície visible semblant a la vista mitjançant l'excentricitat 0.62. Tornant a l'excentricitat 0.74105, si es posa el període a dias/3, podrem espiar més zones del planeta, però si a més disminuïm una mica el valor del període, podrem espiar encara més zones, i com podrem veure en la següent taula, el satèl·lit s'aproparà a la terra a una distància prou bona per a poder espiar.

Per acabar, si manipulant els paràmetres anteriors, no s'aconsegueix passar per la zona en què es vol espiar. (Posant els paràmetres un altre cop als valors que teníem inicialment). El que es pot provar és a modificar el paràmetre lonesp, per exemple a 0.2 i s'aconseguirà desplaçar l'òrbita cap a la dreta. També es pot pensar de canviar el signe a la inclinació de l'òrbita (i), en aquest últim cas la traça que s'observarà sobre el mapa es girarà cap per avall.

