- 1. (a) Prove that $(n+3)^3 = \Theta(n^3)$
 - (b) Prove that for any real constants a and b, where b > 0,

$$(n+a)^b = \Theta(n^b)$$

Note: to establish the relationship $f(n) = \Theta(g(n))$, we need to find the proper constants c_1 , c_2 and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ whenever $n \ge n_0$.

- 2. (a) Is $2^{n+1} = O(2^n)$? why? (b) Is $2^{2n} = O(2^n)$? why?
- 3. Order the following functions into a list such that if f(n) comes before g(n) in the list then f(n) = O(g(n)). If any two (or more) of the same asymptotic order, indicate which.
 - (a) Start with these basic functions

$$n, 2^n, n \lg n, n^3, \lg n, n - n^3 + 7n^5, n^2 + \lg n$$

(b) Combine the following functions into your answer for part (a). Assume that $0 < \epsilon < 1$.

$$e^n$$
, \sqrt{n} , 2^{n-1} , $\lg \lg n$, $(\sqrt{2})^{\lg n}$, $\ln n$, $(\lg n)^2$, $n!$, $n^{1+\epsilon}$, 1

4. A method to solve the recurrence relations is to expand out the recurrence a few times, until a pattern emerges. For instance, let us start with the recurrence

$$T(n) = 2T(n/2) + O(n).$$

Think of O(n) as being $\leq cn$ for some constant c so $T(n) \leq 2T(n/2) + cn$. By repeatedly applying this rule, we can bound T(n) in terms of T(n/2), then $T(n/2^2)$, then $T(n/2^3)$, and so on, at each step getting closer to the basis value of $T(\cdot)$ we do know, namely T(1) = O(1):

$$T(n) \le 2T(n/2) + cn \le 2[2T(n/2^2) + cn/2] + cn = 2^2T(n/2^2) + 2cn$$

 $\le 2^2[2T(n/2^3) + cn/2^2] + 2cn = 2^3T(n/2^3) + 3cn \le \dots$

A pattern is emerging. The general term is $T(n) \leq 2^k T(n/2^k) + kcn$. Plugging in $k = \lg n$, we get $T(n) \leq n T(1) + cn \lg n = O(n \lg n)$.

Do the same thing for the recurrence

$$T(n) = 3T(n/2) + O(n).$$

- (a) What is the general kth term in this case?
- (b) What value of k should be plugged in to get the answer?
- 5. Give asymptotic upper and lower bounds for T(n) in each of the following recurrences. Assume that T(n) is constant for sufficient small n, and c is a constant. Make your bounds as tight as possible, and justify your answers.
 - (a) T(n) = T(n-1) + 1/n
 - (b) $T(n) = T(n-1) + c^n$, where c > 1 is some constant
 - (c) T(n) = 2T(n-1) + 1
 - (d) $T(n) = 2 \cdot T(\frac{n}{2}) + \sqrt{n}$
 - (e) T(n) = 2T(n/4) + 1
 - (f) T(n) = 2T(n/4) + n
 - (g) $T(n) = 3 \cdot T(\frac{n}{2}) + cn$
 - (h) $T(n) = 27 \cdot T(\frac{n}{3}) + cn^3$
 - (i) $T(n) = 5 \cdot T(\frac{n}{4}) + cn^2$