

GemasTIK XIV (2021) Pemrograman – Final

[C] Faktorisasi Prima

Batas waktu: 0.5 detik per test case

Batas memori: 16 MB

Deskripsi Masalah

Anda sudah pernah mempelajari faktorisasi prima ketika di sekolah dasar bukan? Misalkan n > 1 adalah sebuah bilangan bulat positif, maka n dapat dinyatakan sebagai hasil kali dari berhingga buah bilangan prima. Hal ini dikenal dengan istilah Teorema Fundamental Aritmatika di kuliah Matematika Diskrit.

Sebagai contoh, untuk n = 12, kita memiliki beberapa faktorisasi prima seperti

- $12 = 2 \cdot 2 \cdot 3$,
- $12 = 2 \cdot 3 \cdot 2$,
- $12 = 3 \cdot 2 \cdot 2$.

Untuk sebuah bilangan bulat positif n > 1, kita dapat membuat fungsi f(n) yang menyatakan banyaknya cara berbeda untuk menyatakan n sebagai hasil kali bilangan-bilangan prima. Pada contoh sebelumnya kita memiliki f(12) = 3. Untuk setiap bilangan bulat positif prima p kita memiliki f(p) = 1.

Pada soal ini Anda diminta untuk menentukan nilai f(n) untuk $2 \le n \le 10^{15}$. Untuk mencegah nilai f(n) yang mungkin bisa sangat besar, Anda diminta untuk mereduksinya dalam modulo 1.000.000.007.

Format Masukan dan Keluaran

Masukan adalah sebuah bilangan bulat positif n dengan $2 \le n \le 10^{15}$. Keluaran adalah nilai f(n) mod 1.000.000.007 sebagaimana dijelaskan pada deskripsi soal.

Contoh Masukan/Keluaran

Masukan	Keluaran
7	1
12	3
30	6

GemasTIK XIV (2021) Pemrograman – Final

Penjelasan Contoh Masukan/Keluaran

Kita memiliki:

- 1. f(7) = 1 karena 7 adalah bilangan prima.
- 2. f(12) = 3 berdasarkan contoh pada deskripsi soal.
- 3. f(30) = 6 karena $30 = 2 \cdot 3 \cdot 5$, $30 = 2 \cdot 5 \cdot 3$, $30 = 3 \cdot 2 \cdot 5$, $30 = 3 \cdot 5 \cdot 2$, $30 = 5 \cdot 2 \cdot 3$, dan $30 = 5 \cdot 3 \cdot 2$.