Base de Datos (75.15 / 75.28 / 95.05)

Evaluación Integradora - 02 de agosto de 2017

TEMA 20171C5						Padrón:
Diseño		ACR		Proc.		Apellido:
DW		СуТ		NoSQL		Nombre:
Corrigi	ó:					Cantidad de hojas:
Nota:						\square Aprobado \square Insuficiente

Criterio de aprobación: El examen está compuesto por 6 ítems, cada uno de los cuales se corrige como B/B-/Reg/Reg-/M. Se aprueba con nota mayor o igual a 4(cuatro), equivalente a desarrollar el $60\,\%$ del examen correctamente.

- 1. (Diseño conceptual y relacional) Una empresa de recolección de residuos organiza sus rondas diarias de recolección de la siguiente manera:
 - Cada *Ronda* se identifica con un código y la fecha, y tiene además una hora de inicio. Para cada *Ronda* se asigna un mínimo de 3 *Recolectores* y un y sólo un *Vehículo*.
 - Un *Recolector* se identifica con su legajo. Un *Recolector* puede participar de muchas rondas, inclusive en un mismo día.
 - Un *Vehículo* se identifica con su patente. Un *Vehículo* puede participar de muchas rondas, inclusive en un mismo día.

Basado en estas reglas, un diseñador de base de datos propone el siguiente diagrama Entidad-Interrelación para modelar la situación:

Y luego traduce el diagrama al siguiente esquema de base de datos relacional:

- Recolectores(legajo, nombre)
- Rondas(código_ronda, fecha, hora_inicio)
- Vehiculos(patente, modelo)
- Realiza(legajo, código_ronda, fecha, patente)

Se pide:

- a) Encuentre un conjunto de dependencias funcionales en la relación universal $U(legajo, nombre, patente, modelo, código_ronda, fecha, hora_inicio)$ que represente todas las restricciones de la empresa.
- b) Proyecte este conjunto de dependencias en cada una de las 4 relaciones del esquema. ¿Se perdió alguna dependencia?
- c) Muestre que el esquema no se encuentra en FNBC.
- d) Proponga una descomposición a FNBC del esquema dado.
- e) Explique cuál fue el error conceptual del diseñador que derivó en un diseño lógico con redundancia.
- f) Proponga un diagrama Entidad-Interrelación más adecuado.
- 2. (Álgebra y Cálculo Relacionales) Dadas dos relaciones unión-compatibles R(A, B, C) y S(A, B, C), considere la siguiente igualdad entre dos expresiones del álgebra relacional que las involucran:

$$\pi_B(R) - \pi_B(S) = \pi_B(R - S)$$

Se pide:

- a) Traduzca la expresión del lado izquierdo de la igualdad a una expresión en Cálculo Relacional de Tuplas.
- b) Traduzca la expresión del lado derecho de la igualdad a una expresión en Cálculo Relacional de Tuplas.
- c) Muestre que esta igualdad no es una identidad encontrando un contraejemplo. Es decir, halle dos instancias de relación de R y S para las cuales la identidad no se cumpla.

- 3. (Procesamiento de Consultas) Los siguientes esquemas de relación almacenan los discos preferidos de los usuarios de un sistema de música online, y las canciones que componen cada disco:
 - Usuarios(<u>nombre_usuario</u>, password, nombre, apellido, edad, localidad)
 - DiscosUsuarios(nombre_usuario, nombre_disco, puntaje)
 - ComposiciónDiscos(nombre_disco, nombre_canción, duración)

Se desea estimar el tamaño de la junta natural DiscosUsuarios * ComposiciónDiscos. Para ello se cuenta con la siguiente información de catálogo:

DISCOS USUARIOS	COMPOSICIÓN DISCOS
n(DiscosUsuarios) = 14000	n(ComposiciónDiscos)=300
B(DiscosUsuarios) = 1400	B(ComposiciónDiscos)=15
$V(nombre_disco, DiscosUsuarios) = 100$	V(nombre_disco, ComposiciónDiscos)=40

Se pide:

- a) Estime la cardinalidad del resultado de la junta natural entre ambas tablas, en términos de cantidad de tuplas.
- b) Estime la cantidad de bloques en disco que ocupará el resultado.
 Ayuda: Considere que una tupla del resultado ocupa un espacio igual al espacio ocupado por una tupla de DiscosUsuarios más el espacio ocupado por una tupla de ComposiciónDiscos.
- 4. (Data Warehousing) Indique si las siguientes afirmaciones sobre data warehouses son verdaderas o falsas, justificando su respuesta.
 - a) Uno de los objetivos de OLAP es procesar grandes volúmenes de transacciones en forma concurrente.
 - b) Los procesos ETL (Extract-Transform-Load) tienen como finalidad resolver consultas analíticas sobre el Data Warehouse.
 - c) Un cubo de datos OLAP es una matriz de 3 dimensiones.
 - d) El diagrama de estrella (star scheme) utilizado en el modelado conceptual de data warehouses conecta distintas tablas de hechos entre sí.
 - e) El estándar SQL posee extensiones vinculadas con OLAP.
 - f) La operación de slicing realiza una selección algebraica en una de las dimensiones.

5. (Concurrencia y transacciones) Considere el siguiente solapamiento de transacciones en un SGBD que emplea locks:

T	T	The same of the The
Transacción T_1	Transacción T_2	Transacción T_3
		lock(Z)
		$leer_item(Z)$
	lock(Y)	
	leer_item(Y)	
		lock(X)
		$leer_item(X)$
		escribir_item(Z)
		unlock(Z)
	lock(Z)	
	leer_item(Z)	
	, ,	unlock(X)
		commit
lock(X)		
$leer_item(X)$		
$\operatorname{escribir_item}(X)$		
()	escribir_item(Z)	
unlock(X)	coerron stroni(2)	
()	lock(X)	
	leer_item(X)	
	escribir_item(Y)	
	unlock(X)	
	unlock(Y)	
	unlock(Z)	
	commit	
commit		

Responda los siguientes ítems, justificando su respuesta.

- a) Indique si la ejecución respeta el Protocolo de lock de 2 fases (2PL).
- b) Indique si este solapamiento es serializable.
- c) Indique si este solapamiento es recuperable.
- 6. (NoSQL) Mencione los 4 tipos de bases de datos NoSQL estudiados, indicando para cada uno de ellos una característica que considere relevante.