Module 5.2: Counting Injections MCIT Online - CIT592 - Professor Val Tannen

LECTURE NOTES

Counting injections I

We already counted the number of **arbitrary** functions: $|B^A| = |B|^{|A|}$.

Problem. Let A be a set with r elements and B be a set with n elements. How many injective functions with domain A and codomain B can be defined?

Answer. By the injection rule, there is no injective function when r > n.

Assume $r \leq n$. W.l.o.g., let $A = \{a_1, \ldots, a_r\}$.

Why w.l.o.g? Because the **number** of functions should not depend on what the elements of A are, just on **how many** there are.

We construct a function $f: A \to B$ in r steps where in step (i) we map a_i to an element that we pick in B, making sure f is injective.

Counting injections II

Answer (continued). We assumed $r \le n$ and $A = \{a_1, \ldots, a_r\}$.

We construct an injection $f: A \rightarrow B$ in r steps as follows:

- (1) Pick an element of B to map a_1 to. Can be done in n ways.
- (2) Pick one of the remaining elements to map a_2 to. In n-1 ways. . . .
- (r) Pick one of the remaining n-(r-1)20mm elements to map a_r to. In n - (r - 1) = n - r + 1 ways.

This is the same as counting partial permutations of r out of n!

The number of injections is therefore $\frac{n!}{(n-r)!}$.

Counting bijections

Problem. Let A be a set with r elements and B be a set with n elements. How many bijective functions with domain A and codomain B can be defined?

Answer. By the bijection rule, to have any bijective function $f: A \rightarrow B$ we must have r = n.

Then we can count bijections in the same way we counted injections, except that r is replaced by n.

The number of bijections is the same as the number of permutations of n elements, namely n!.

ACTIVITY: Bijections, injections and surjections

Let's assume that A and B have the same nonzero cardinality, n.

How many bijections are there? On the previous slide we showed there are n! bijections.

Similarly, how many injections are there? There are $\frac{n!}{(n-n)!} = n!$ injections, according to how we counted them on a previous slide.

Therefore, there are as many bijections as injections: n!.

Question: Does this give a proof of the following?

Proposition If the domain and codomain have the same number of elements then every injection is also a surjection.

In the video, there is a box here for learners to put in an answer. As you read these notes, try it yourself using pen and paper!

ACTIVITY: Bijections, injections and surjections (continued)

Answer: Yes!

Let I, S and J be the set of injections, surjections, and bijections, respectively, from A to B.

Then the proposition follows from $J = I \cap S$ that we knew by definition and |I| = |J| that we just observed.

Here are the details:

Since $J \subseteq I$ and |I| = |J|, we must have I = J.

Thus, every injection from A to B is a bijection, and therefore is also a surjection.

Counting surjections?

First of all, by the surjection rule, to have any surjective functions of domain A and codomain B it must be that $|A| \ge |B|$.

W.l.o.g., assume $A = \{a_1, \ldots, a_r\}$. We only consider the particular case when B has 2 elements and we have $r \ge 2$. Again w.l.o.g., assume $B = \{0, 1\}$.

We count **complementarily**: we subtract from the total number of functions the number of those functions which are **not surjections**.

If a function $f: A \to B$ is not a surjection there must be some element of B that is not in Ran(f). Define

$$F_0 = \{f : A \to \{0,1\} \mid 0 \notin \text{Ran}(f)\}$$

 $F_1 = \{f : A \to \{0,1\} \mid 1 \notin \text{Ran}(f)\}$

Now, $F_0 \cup F_1$ is the set of functions $f: A \to \{0,1\}$ that are not surjections.

Penn Engineering How many are there? We need $|F_0 \cup F_1|$.

Still counting surjections?

$$F_0 \cup F_1$$
 where $F_0 = \{f : A \rightarrow \{0,1\} \mid 0 \notin \mathsf{Ran}(f)\}$
 $F_1 = \{f : A \rightarrow \{0,1\} \mid 1 \notin \mathsf{Ran}(f)\}$

Lemma. The sets of functions F_0 and F_1 are **disjoint**.

Proof of Lemma. Suppose (toward a contradiction) that there is some $f \in F_0 \cap F_1$. Then neither 0 nor 1 are in Ran(f). Therefore $Ran(f) = \emptyset$, which is impossible.

By the Lemma and by the addition rule, $|F_0 \cup F_1| = |F_0| + |F_1|$. There is exactly one function in F_0 , the one that maps all a_i 's to 1. Similarly for F_1 . Therefore $|F_0 \cup F_1| = 2$.

And the number of surjections is $2^r - 2$.