Math 591 Lecture 17

Thomas Cohn

10/9/20

Recall that a submersion $F: M \to N$ satisfies $\forall p \in M, F_{*,p}$ is onto.

Fibrations are a special class of submersions. For any submersion, its fibers are $F^{-1}(q)$, $\forall q \in N$. $F^{-1}(q)$ is a regular submanifold by the regular value theorem. But not all fibers are diffeomorphic to each other. And $F^{-1}(q) = \emptyset$ is possible.

Also, the normal form theorem for submersions (also called "the submersion theorem") states that locally, a submersion is a map of the form $(x', x'') \mapsto x'$.

Immersions

Defn: A smooth map $F: M \to N$ is an immersion at $p \in M \Leftrightarrow F_{*,p}$ is injective. Note that this requires dim $M \leq \dim N$.

Defn: F is an immersion iff $\forall p \in M$, F is an immersion at p.

Ex: Our model case is $\mathbb{R}^k \hookrightarrow \mathbb{R}^n$ with $r \mapsto (r, 0)$, where $k \leq n$.

Ex:

- 1) If $S \subset N$ is a regular submanifold, the inclusion $\iota: S \hookrightarrow N$ is an immersion, since $\forall p \in S, \iota_{*,p} : T_pS \hookrightarrow T_pN$. 2) Immersions don't have to be injective. Consider the lemniscate $F: \mathbb{R} \to \mathbb{R}^2$. $\forall t \in \mathbb{R}, \dot{F}(t) \neq 0$, so F is an
- 2) Immersions don't have to be injective. Consider the lemniscate $F: \mathbb{R} \to \mathbb{R}^2$. $\forall t \in \mathbb{R}, \dot{F}(t) \neq 0$, so F is an immersion. But it's not injective!
- 3) Restrict the domain of the lemniscate to obtain a one-to-one map whose image is a regular submanifold.
- 4) Can also restrict the domain of the lemniscate to obtain a one-to-one map whose image is <u>not</u> a regular submanifold. (I.e. it goes right up to the point where the curve would self intersect, but doesn't map to the intersection point more than once.)
- 5) Let $N = \mathbb{R}^2/\mathbb{Z}^2$ (where \mathbb{Z}^2 is the integer lattice). Define $\pi : \mathbb{R}^2 \to N$, and declare this to be a local diffeomorphism, giving us a smooth structure on N. This is the 2-Torus. Let $F : \mathbb{R} \to \mathbb{R}^2 \xrightarrow{\pi} N$. Fix $v = (a, b) \in \mathbb{R}^2 \setminus \{0\}$. Sy $F(t) = \pi(tv)$, $\forall t \in \mathbb{R}$. If a and b are rational, you get a periodic curve around the torus. These are all immersions. If a/b is irrational, then the image of F in $\mathbb{R}^2/\mathbb{Z}^2$ is dense! With the subspace topology, $F(\mathbb{R})$ is very much so not locally Euclidean.

Thm: (Normal Form for Immersions) Let $F: M \to N$ be an immersion at $p \in M$. Then there are coordinates $p \in U, \phi = (x^1, \dots, x^m)$ of M and $f(p) \in V, \psi = (y^1, \dots, y^n)$ of N such that $U \subset F^{-1}(V)$ and $\tilde{F}(r^1, \dots, r^m) = (r^1, \dots, r^n, \underbrace{0, \dots, 0}_{n-m \text{ zeros}})$. We have

$$M \supseteq U \xrightarrow{F} V \subseteq N$$

$$\downarrow^{\phi} \qquad \qquad \downarrow^{\psi}$$

$$\mathbb{R}^m \supseteq \phi(U) \xrightarrow{\tilde{F}} \psi(V) \subseteq \mathbb{R}^m$$

Proof: Next time...

Defn: An immersion $F: M \to N$ hich is a homeomorphism onto F(M) with the subspace topology is called an <u>embedding</u>. This is a global property!

Observe: Embeddings are injective.