МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

Лабораторная работа 1.3.1

Определение модуля Юнга на основе исследования деформаций растяжения и изгиба

Авторы: Петров Олег Б02-202

1 Аннотация

Цель работы:Экспериментально получить зависимость между напряжением и деформацией для двух простейших напряженных состояний упругих тел: одностороннего сжатия и чистого изгиба; по результатам эксперимента вычислить модул Юнга.

Оборудование:в первой части - прибор Лермантова, проволка из исследуемого материала, зрительная трубка со шкалой, набор грузов, микрометр,рулетка; во второй части - стойка для изгибания балки, индикатор для измерения величин прогиба, набор исследуемых стержней, грузы, линйка, штангенциркуль.

2 Определение модуля Юнга по измерения растяжения проволки

2.1 Теоретические сведения

Растяжение проволки соответствует напряженому состоянию вдоль одной оси, которое описывается формулой:

$$\sigma = E\varepsilon, \quad \frac{F}{S} = E\frac{\Delta l}{l} \tag{1}$$

Измерения производятся на установке Лермантова. Направим зрительную трубку на зеркальце.... Тогда учитывая параксиальность углов, для расчета растяжения проволки справедлива формула:

$$l = n \frac{r}{2h},\tag{2}$$

где h - расстояние от шкалы до зеркальца, r - длина рычага, n - показания шкалы

2.2 Эксперимантельная установка

Рис. 1: Установка Лермантова и установка

Для определения модуля Юнга используется прибор Лермонтова, схема которого изображена на рис. 1. Верхний конец проволоки П, из- готовленной из исследуемого материала, прикреплен к консоли К, а нижний - к цилиндру, которым оканчивается шарнирный кронштейн Ш. На этот же цилиндр опирается рычаг г, связанный с зеркальцем 3. Таким образом, удлинение проволоки можно измерить по углу по- ворота зеркальца.

Натяжение проволоки можно менять, перекладывая грузы с пло- щадки М на площадку О и наоборот. Такая система позволяет исклю- чить влияние деформации кронштейна K на точность измерений, так как нагрузка на нем все время остается постоянной.

2.3 Результаты эксперимента и обработка данных

• Сначалаа измерим параметры системы:

$$g = 9.815 \pm 0.005 \text{ mc}^2$$
, $h = 138 \pm 1 \text{ mm}$, $r = 13 \pm 0.5 \text{ mm}$, $d_{\text{проволки}} = 0.73 \pm 0.005 \text{ mm}$

• По полученным значениям вычисляем площадь и ее погрешность:

$$S = \frac{\pi d^2}{4} = 41.910^2 \text{ mm}^2, \quad \sigma_S = S \frac{2\sigma_d}{d} = 0.6 \ 10^2 \text{ mm}^2, \quad \varepsilon_S = 1.4\%$$

- Измеряем длину проволки $l=177\pm 1~{\rm cm}$.
- Позаботимся о том, чтобы в процессе эксперимента не выйти за пределы области, где удлинение проволки пропорционально ее натяжению. С учетом разрушительного напряжения: $\sigma_{\text{разрушения}} = 900~H \cdot \text{мm}^{-2}$. Рассчитаем предельную массу груза, которую можно подвесить, чтобы не выйти из диапозона рабочих напряжений: $m_{\text{предельная}} = 0.3 \cdot \sigma_{\text{разрушения}} S/g = 11.3 \text{ кг}.$
- С учетом полученного выше значения снимаем зависимость удлинения проволки от массы грузов грузов m при увеличении и уменьшении нагрузки. Данные заносим в таблицу ниже. Расчет Δl производим по формуле, а погрешность измерения Δl оцениваем по формуле:

$$\varepsilon_{\Delta l} = \sqrt{\left(\frac{\sigma_n}{n}\right)^2 + \left(\frac{\sigma_r}{r}\right)^2 + \left(\frac{\sigma_h}{n}\right)^2} \approx \varepsilon_r = 3.8\%, \qquad \varepsilon_{\Delta m} = 0.2\%$$

$N_{\bar{0}}$	$\Delta m \downarrow$, гр	т, гр	P, H	n, mm	Δl ,mm
1	245.8	2444.4	23.99	22.2	1.046
2	245.5	2198.6	21.58	21.1	0.994
3	246.1	1953.1	19.17	20	0.942
4	245.7	1707	16.76	18.9	0.890
5	245.7	1461.3	14.34	17.6	0.829
6	245.6	1215.6	11.93	16.5	0.777
7	246.1	970	9.52	15.2	0.716
8	245.2	723.9	7.11	14.2	0.669
9	478.7	478.7	4.70	12.6	0.593

Таблица 1: Измерения величин припонижении нагрузки

$\mathcal{N}_{\overline{0}}$	$\Delta m \uparrow$, гр	m, гр	P, H	n, mm	$\Delta l, \mathrm{mm}$
1	246.1	970	9.52	15	0.707
2	245.6	1215.6	11.93	16.3	0.768
3	245.7	1461.3	14.34	17.6	0.829
4	491.8	1953.1	19.17	19.9	0.937
5	245.5	2198.6	21.58	21.1	0.994
6	245.8	2444.4	23.99	22.2	1.046

Таблица 2: Измерения величин при повышении нагрузки

Рис. 2: График зависимости $P(\Delta l)$ от Δl

• По полученным данным строим график зависимости $P(\Delta l)$ методом наименьших квадратов(МНК). Также учтем что в недеформированном состоянии проволка, как правило, изогнута, и при малых нагрузках ее удлинение определяется не растяжением, а выпрямлением. Поэтому исключим начальный участок зависимости из обработки данных.

По формулам МНК находим коэффицент наклона графика для прямой и его случайную погрешность. Для коэффицента наклона графика имеем:

$$k = \frac{\langle P\Delta l \rangle - \langle P \rangle \langle \Delta l \rangle}{\langle \Delta l^2 \rangle - \langle \Delta l \rangle^2} = 43.1 \ H \cdot \text{mm}$$

Для систематической и случайной относительной погрешности имеем:

$$\varepsilon_k^{\text{случ}} = \frac{1}{k\sqrt{N-2}} \sqrt{\frac{\langle P^2 \rangle - \langle P \rangle^2}{\langle \Delta l^2 \rangle - \langle \Delta l \rangle^2} - k^2} = 4.3\%, \quad \varepsilon_k^{\text{chct}} = \sqrt{\varepsilon_P^2 + \varepsilon_{\Delta l}^2} \approx \varepsilon_{\Delta l} = 3.8\%$$

$$\varepsilon_k = \sqrt{\varepsilon_{\mathrm{cuct}}^2 + \varepsilon_{\mathrm{cnyq}}^2} = 5.7\%$$

• С учетом формул выше получаем, как выражается модуль Юнга через коэффицент наклона графика, и выражение для его погрешности:

$$E=\frac{kl}{S}=180~\Gamma\Pi \mathrm{a}$$

$$\varepsilon_E=\sqrt{\varepsilon_S^2+\varepsilon_k^2+\varepsilon_l^2}\approx\varepsilon_k=5.8\%,\quad \sigma_E=\varepsilon\cdot E=1~\Gamma\Pi \mathrm{a}$$

По итогу получаем значение для модуля Юнга проволки: $E=180\pm10~\Gamma\Pi$ а и относительной погрешность $\varepsilon_E=6\%$

3 Определение модуля Юнга по измерению изгиба балки

3.1 Теоретические сведения

Модуль Юнга материала стержня E связан со стрелой прогиба y_{max} как:

$$E = \frac{Pl^3}{4ab^3 y_{max}} \tag{3}$$

где P - нагрузка на стержень, l - расстояние меду точками опоры, a - ширина балки ,b - высота балки

3.2 Экспериментальная установка

Рис. 3: Установка Лермантова и установка

Экспериментальная установка состоит из прочной стойки с опорным- ми призмами А и Б (рис. 2). На ребра призм опирается исследуемый стержень (балка) В. В середине стержня на призме Д подвешена пло- щадка П с грузами. Измерять стрелу прогиба можно с помощью индикатара И, укрепляемого на отдельной штанге. Полный оборот большой стрелки индикатора соответствует 1 мм и одному делению малого циферблата.

3.3 Результаты эксперимента и обработка данных

- Измерим расстояние между опорами $l = 51 \pm 0.5$ мм, $\varepsilon_l = 1\%$
- ullet Измерим высоту d и ширину a балок из различных материалов и занесем данные в таблицу.

N1,латунь	1	2	3	4	5	6	7	8	9	10
a, cm	2.16	2.14	2.14	2.14	2.14	2.14	2.15	2.14	2.14	2.14
<i>b</i> , см	0.38	0.39	0.39	0.39	0.39	0;38	0.39	0.39	0.39	0.39
N2,сталь	1	2	3	4	5	6	7	8	9	10
a, cm	2.09	2.1	2.12	2.12	2.12	2.14	2.11	2.11	2.12	2.11
<i>b</i> , см	0.37	0.375	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37

За истинное значение примим среднее по всей выборке. Погрешности измерений оцениваем по формулам:

$$\sigma^a_{
m cлуч} = \sqrt{\sum_i (a_i - \langle a \rangle)^2/N(N-1)}, \quad \sigma^a_{
m chct} = \Delta a$$

$$\sigma_a = \sqrt{\sigma^2_{
m cлуч} + \sigma^2_{
m chct}}$$

Получаем значения для латуни: $a_{\text{лат}}=2.143\pm0.005$ см, $b_{\text{лат}}=0.390\pm0.005$ см и для относительных погрешностей имеем: $\varepsilon_{a_{\text{лат}}}=0.2\%,\ \varepsilon_{b_{\text{лат}}}=1.2\%$

Получаем значения для латуни: $a_{\text{сталь}}=2.118\pm0.005$ см, $b_{\text{сталь}}=0.370\pm0.005$ см и для относительных погрешностей имеем: $\varepsilon_{a_{\text{сталь}}}=0.2\%$, $\varepsilon_{b_{\text{сталь}}}=1.3\%$

Тогда для моментов инерции поперечного сечения балки относительно оси, проходящей через среднюю линию балки имеем:

$$I = \frac{ab^3}{12}, \quad \varepsilon_I = \sqrt{\varepsilon_a^2 + 9\varepsilon_b^2} \approx 3\varepsilon_b$$

Значение для латуни: $I_{\text{лат}}=10.5\pm0.4~10^{-3}~\text{cm}^4, \varepsilon_{I_{\text{лат}}}=3.6\%$ Значение для стали: $I_{\text{сталь}}=8.9\pm0.3~10^{-3}~\text{cm}^4, \varepsilon_{I_{\text{сталь}}}=4.0\%$

• Кладем исследуемую балку на стойку. Устанавливаем индикатор в центре балки и снимаем зависимость стрелы прогиба Δy_{max} от величины нагрузкиP. Проделываем эти измерения при возрастающей и убывающей нагрузки, заносим данные в таблицу. Заносим эти данные в таблицу и строим по этим точкам график методом намименьших квадратов (МНК).

m, гр	$\Delta_{y_{\mathrm{max}}}$ \uparrow ,cM	P, H	y_{max} , cm	т, гр	$\Delta_{y_{\max}} \downarrow$,cm	P, H	y_{max} , cm
482.5	1.15	4.736	1.15	478.2	-1.17	28.885	7.21
503.1	1.23	9.674	2.38	511	-1.24	24.191	6.04
501.3	1.28	14.595	3.66	466.7	-1.13	19.176	4.8
466.7	1.14	19.176	4.8	501.3	-1.23	14.595	3.67
511	1.25	24.191	6.05	503.1	-1.23	9.674	2.44
478.2	1.16	28.885	7.21	482.5	1.14	4.736	1.21

Таблица 3: Величина прогиба в зависимости от массы при повышении ↑ и при понижении массы ↓ для латунной балки

• Исследуем, насколько существенна зависимость результата от положения точки приложения изгибающей силы P. Сместим т. давления на 2-3 см от середины балки проведем аналогичные измерения. Построим по этим точкам прямую на том же графике пользуясь (МНК).

m,гр	$\Delta_{y_{ ext{max}}}$,cm	P, H	y_{max} , см
482.5	1.15	4.736	1.15
503.1	1.22	9.674	2.37
501.3	1.25	14.595	3.62
466.7	1.13	19.176	4.75
511	1.23	24.191	5.98
478.2	1.12	28.885	7.1

Таблица 4: Величина прогиба в зависимости от массы при при смещении т. пприложения сил на 2-3 см

Рис. 4: График зависимости $P(y_{max})$ от y_{max} для латунной балки при прямом и обратном ходе и при смещении т. давления

Как видно точки первого и второго графика лежат практически на одной прямой, коэффиценты наклона находим по формулам:

$$k = \frac{\langle P\Delta y_{max} \rangle - \langle P \rangle \langle \Delta y_{max} \rangle}{\langle y_{max}^2 \rangle - \langle y_{max} \rangle^2}$$

Учтем, что $\varepsilon_{\Delta_{y_{\mathrm{max}}}} \approx 1.6\%$, а $\varepsilon_m \approx 0.01\%$

Итоговую погрешность измерения $\varepsilon_{y_{\max}}$ посчитаем как усредненную по всем значениям N $\varepsilon_{y_{\max}}v=\langle\sqrt{N}\varepsilon_{\Delta_{y_{\max}}}\rangle=3.6\%$

Для оценики систематической и случайной относительной погрешности пользуемся формулами получаем:

$$\varepsilon_k^{\text{случ}} = \frac{1}{k\sqrt{N-2}} \sqrt{\frac{\langle P^2 \rangle - \langle P \rangle^2}{\langle y_{max}^2 \rangle - \langle y_{max} \rangle^2} - k^2} = 0.3\%, \quad \varepsilon_k^{\text{сист}} = \sqrt{\varepsilon_P^2 + \varepsilon_{y_{max}}^2} \approx \varepsilon_{y_{max}} = 3.6\%$$

$$\varepsilon_k = \sqrt{\varepsilon_{\text{сист}}^2 + \varepsilon_{\text{случ}}^2} \approx \varepsilon_{y_{max}} = 3.6\%$$

Для итоговых значений коэффицентов наклона имеем:

$$k_{\text{латунь}} = 4.00 \pm 0.14 \text{ H/cm}, \quad k_{\text{латунь, сдвиг}} = 4.04 \pm 0.14 \text{ H/cm}$$

Как видно, коэффиценты наклона при смещении на 2-3 см и в середине практически совпадают и находятся в пределах погрешности друг друга.

• Теперь посчитаем модуль Юнга по формуле 3:

$$E_{\text{матунь}} = \frac{kl^3}{48I_{\text{матунь}}} = 105 \ \Gamma \Pi \text{a}, \quad \varepsilon_E = \sqrt{\varepsilon_k^2 + 9\varepsilon_l^2 + \varepsilon_I^2} = 5\%$$

По итогу получаем значение: $E_{\text{латунь}} = 105 \pm 5 \, \Gamma$ па.

• Аналогичные измерения зависимости нагрузки от стелы прогиба проводим для балки из стали. Данные заносим в таблицу:

m,гр	$\Delta y_{ m max}, { m cm}$	P, H	y_{max} , cm
482.5	0.65	4.736	0.65
503.1	0.7	9.674	1.35
501.3	0.67	14.595	2.02
466.7	0.63	19.176	2.65
511	0.7	24.191	3.35
478.2	0.65	28.885	4

Таблица 5: Величина прогиба в зависимости от массы для стальной балки

По полученным данным строим график методом наименьших квадратов (МНК). Пользуясь формулами для МНК аналогично случаю латунной балки находим значение коэффицента наклона и его погрешность:

$$k = 7.2 \pm 0.4 \text{ H/cm}, \quad \varepsilon_k = 6\%$$

Теперь мы можем рассчитать модуль Юнга для стальной балки и его погрешность:

$$E_{\text{сталь}} = \frac{kl^3}{48I_{\text{сталь}}} = 224 \ \Gamma \Pi \text{a}, \quad \varepsilon_E = \sqrt{\varepsilon_k^2 + 9\varepsilon_l^2 + \varepsilon_I^2} = 7\%$$

По итогу получаем значение $E_{\text{сталь}} = 224 \pm 15 \; \Gamma \text{па}.$

Рис. 5: График зависимости $P(y_{max})$ от y_{max} для стальной балки

4 Выводы

В результате выполнения работы было поддтверждено несколько теоретических зависимостей. Получены ожидаемые линейные зависимости между стрелой прогиба и весом нагрузки. В первой части работы были получено значение модуля Юнга проволки: $E=180\pm10$ Гпа которое в пределах погрешности $\varepsilon_E=6\%$ совпадает с табличным значением для стали и железа. Во второй части работы получены значения для модулей Юнга стали $E_{\text{сталь}}=224\pm15$ Гпа и латуни $E_{\text{латунь}}=105\pm5$ Гпа соответственно, которые совпадают с табличными значениями в пределах погрешности.