EECS 127/227AT Optimization Models in Engineering Spring 2020

Discussion 5

1. Simple constrained optimization problem

Consider the optimization problem

$$\min_{x_1, x_2 \in \mathbb{R}} f(x_1, x_2)$$
subject to $2x_1 + x_2 \ge 1$

$$x_1 + 3x_2 \ge 1$$

$$x_1 \ge 0, \ x_2 \ge 0$$

(a) Make a sketch of the feasible set.

For each of the following objective functions, give the optimal set or the optimal value.

- (b) $f(x_1, x_2) = x_1 + x_2$
- (c) $f(x_1, x_2) = -x_1 x_2$
- (d) $f(x_1, x_2) = x_1$
- (e) $f(x_1, x_2) = \max\{x_1, x_2\}$
- (f) $f(x_1, x_2) = x_1^2 + 9x_2^2$

2. About general optimization

In this exercise, we test your understanding of the general framework of optimization and its language. We consider an optimization problem in standard form:

$$p^* = \min_{\vec{x} \in \mathbb{R}^n} f_0(\vec{x}) : f_i(\vec{x}) \le 0, i = 1, \dots, m.$$

In the following we denote by \mathcal{X} the feasible set. Note that the feasible set is a subset of \mathbb{R}^n that satisfies the inequalities $f_i(\vec{x}) \leq 0$, i.e $\mathcal{X} = \{\vec{x} \in \mathbb{R}^n \mid f_i(\vec{x}) \leq 0, i = 1, \dots, m\}$. We make no assumption about the convexity of $f_0(\vec{x})$ and $f_i(\vec{x})$, $i = 1, \dots, m$. For the following statements, provide a proof or counter-example.

- (a) A general optimization problem can be expressed as one with a linear objective.
- (b) A general optimization problem can be expressed as one without any constraints.
- (c) If at the optimal point \vec{x}^* , one constraint is not active (i.e. $f_i(\vec{x}^*) < 0$), then we can remove the constraint from the original problem and obtain the same optimum value.
- (d) If the problem is convex, and at the optimal point \vec{x}^* , one constraint is not active $(f_i(\vec{x}^*) < 0)$, then we can remove the constraint from the original problem and obtain the same optimum value.

Assume that the minimum is attained for some $\vec{x}^* \in \mathbb{R}^n$.

3. Convexity and composition of functions

Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}$. Define the composition of f with g as $h = f \circ g: \mathbb{R}^n \to \mathbb{R}$ such that $h(\vec{x}) = f(g(\vec{x}))$.

- (a) Show that if f is convex and non decreasing and g is convex, then h is convex.
- (b) Show that there exists f non decreasing and g convex, such that $h = f \circ g$ is not convex.
- (c) Show that there exists f convex and g convex such that $h = f \circ g$ is not convex.