Лабораторная работа №8

Законы распределения непрерывной случайной величины

Цель работы: изучение основных законов распределения непрерывной случайной величины

1. Показательное распределение

Непрерывная случайная величина X имеет показательное (или «экспоненциальное») распределение, если

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, x > 0\\ 0, x \le 0 \end{cases}$$

Положительная величина λ называется параметром показательного распределения.

Его функция распределения:

$$F(x) = 1 - e^{-\lambda x}$$

Числовые характеристики показательного распределения:

1) Математическое ожидание

$$m_x = \frac{1}{\lambda}$$

2) Дисперсия:

$$D_x = \frac{1}{\lambda^2}$$

2. Нормальное распределение

Случайная величина. X распределена по **нормальному закону с параметрами m,** σ , если ее плотность распределения имеет вид:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}$$

Числовые характеристики случайной величины, имеющей нормальное распределение.

1) Математическое ожидание случайной величины X равно т.

$$M[X] = m$$
.

2) Дисперсия с. в. X, распределенной по нормальному закону с параметрами m, σ , равна σ^2 . Значит, параметр σ есть не что иное, как среднее квадратичное отклонение с. в. X:

$$\sigma_x = \sqrt{\overline{D[X]}} = \sigma.$$

Функция распределения F(x) нормально распределенной случайной величины X:

$$F(x) = \frac{1}{2} + \Phi\left(\frac{x-m}{\sigma}\right).$$

где $\Phi(x)$ — табличная функции Лапласа

3. Гамма-распределение и распределение Эрланга

Неотрицательная с. в. X имеет гамма-распределение, если ее плотность выражается формулой:

$$f_k(x) = \frac{\lambda^k x^{k-1} e^{-\lambda x}}{\Gamma(k)} \qquad (x > 0),$$

где $\lambda > 0$ и k > 0, $\Gamma(k)$ — гамма-функция:

$$\Gamma(k) = \int_{0}^{\infty} e^{-t} t^{k-1} dt,$$

Числовые характеристики случайной величины, имеющей гамма-распределение.

$$m_x = M[X] = k/\lambda.$$

$$D_x = D[X] = \alpha_2[X] - m_x^2 = \frac{k}{\lambda^2}$$

При k=1 гамма-распределение превращается в показательное с параметром:

$$f_1(x) = \lambda e^{-\lambda x} \qquad (x > 0).$$

При целом k > 1 гамма-распределение превращается в распределение Эрланга k-го порядка:

$$f_k(x) = \frac{\lambda (\lambda x)^{k+1} e^{-\lambda x}}{(k-1)!} \qquad (x > 0; \quad k = 1, 2, 3, \ldots)$$

4. Порядок выполнения работы

• Получить значения для n точек плотности распределения непрерывной случайной величины, имеющей показательное распределение с параметром λ , согласно индивидуальному заданию лабораторной работы.

Использовать функцию ЭКСПРАСП

Синтаксис: ЭКСПРАСП(х;лямбда;интегральная)

х — это значение функции.

Лямбда — это значение параметра.

Интегральная — это логическое значение, которое указывает, какую форму экспоненциальной функции использовать. Если интегральная имеет значение ИСТИНА, то функция ЭКСПРАСП возвращает интегральную функцию распределения; если этот параметр имеет значение ЛОЖЬ, то возвращается функция плотности распределения.

ЛОЖЬ, то возвращается функция плотности распределения.

Пример выполнения работы:

• Получить значения плотности распределения непрерывной случайной величины, имеющей нормальное распределение с параметрами m и σ для интервала, определяемого правилом 3σ , согласно индивидуальному заданию лабораторной работы.

Использовать функцию НОРМРАСП

<u>Синтаксис</u>: **НОРМРАСП(х;среднее;стандартное_откл;интегральная)**

х — значение, для которого строится распределение.

Среднее — параметр *m* нормального распределения.

Стандартное_откл — параметр о нормального распределения.

Интегральная — логическое значение, определяющее форму функции. Если интегральная имеет значение ИСТИНА, то функция НОРМРАСП возвращает интегральную функцию распределения; если это аргумент имеет значение ЛОЖЬ, то возвращается функция плотности распределения.

Пример выполнения работы:

• Получить значения для n точек плотности распределения непрерывной случайной величины, имеющей распределение Эрланга k-го порядка с параметром λ , согласно индивидуальному заданию лабораторной работы.

Использовать функцию ГАММАРАСП

Синтаксис: ГАММАРАСП(х;альфа;бета;интегральная)

х — это значение, для которого требуется вычислить распределение.

Альфа — это порядок распределения (k)

Бета — это обратный параметр распределения $(1/\lambda)$.

Интегральная — это логическое значение, определяющее форму функции. Если интегральная имеет значение ИСТИНА, то функция ГАММАРАСП возвращает интегральную функцию распределения; если этот аргумент имеет значение ЛОЖЬ, то возвращается функция плотности распределения.

Пример выполнения работы:

- Получить значения для n точек плотности распределения непрерывной случайной величины, имеющей распределение Эрланга **1**-го порядка с параметром λ , согласно индивидуальному заданию лабораторной работы.
- Построить кривую распределения для всех указанных выше распределений
- Получить значения для функций распределения непрерывной случайной величины для указанных законов распределения
- Построить графики функций распределения
- Вычислить числовые характеристики непрерывных случайных величин по расчетным и статистическим формулам.

5. Индивидуальные задания

No	n	λ	m	σ	k
1	15	0.1	-10 -9	3	2
2	20	0.2	-9	3 4	2 3 4
3	25	0.3	-8	5	
4	30	0.4	-7	6	5
5 6	16	0.5	-6 -5 -4 -3 -2 -1	3 4	5 2 3
6	21	0.6	-5		3
7	26	0.7	-4	5	4
8	31	0.15 0.25	-3	6	5 2 3 4
9	17	0.25	-2	3	2
10	17 22 27	0.35 0.45	-1	4	3
11	27	0.45	0	5	4
12	32	0.55	1	6	5
13 14 15	18 23	0.65	3	3 4	2
14	23	0.75	3		3
15	28	0.155	4	5	4
16	33	0.255	5	6	5
17	19	0.355	6	3	2
18 19	24	0.455	7	4	3
19	29	0.555	8	5	4
20	34	0.655	9	6	5
21	15	0.755	10	3	5 2 3 4 5 2 3 4 5 2 3 4
22	20	0.16	11	5	3
23 24 25	25	0.24	12		
24	30	0.32	13	6	5
25	17	0.48	14	3 4	5 2 3
26	24	0.53	15	4	3