Equivalences of pushdown systems are hard

Petr Jančar

Dept of Computer Science
Technical University Ostrava (FEI VŠB-TUO), Czech Republic
www.cs.vsb.cz/jancar

FoSSaCS'14, part of ETAPS 2014 Grenoble, 11 Apr 2014

Deterministic pushdown automata; language equivalence

Decidability of $L(M_1) \stackrel{?}{=} L(M_2)$ was open since 1960s (Ginsburg, Greibach). First-order schemes (1970s, 1980s, ..., B. Courcelle,).

Solution

- Sénizergues G.:
 - L(A)=L(B)? Decidability results from complete formal systems. Theoretical Computer Science 251(1-2): 1-166 (2001) (a preliminary version appeared at ICALP'97; Gödel prize 2002)
- Stirling C.: Decidability of DPDA equivalence.
 Theoretical Computer Science 255, 1-31, 2001
- Sénizergues G.: L(A)=L(B)? A simplified decidability proof.
 Theoretical Computer Science 281(1-2): 555-608 (2002)
- Stirling C.: Deciding DPDA equivalence is primitive recursive.
 ICALP 2002, Lecture Notes in Computer Science 2380, 821-832,
 Springer 2002 (longer draft paper on the author's web page)
- Sénizergues G.: The Bisimulation Problem for Equational Graphs of Finite Out-Degree.
 - SIAM J.Comput., 34(5), 1025–1106 (2005) (a preliminary version appeared at FOCS'98)

Outline

Part 1

Deterministic case is in TOWER.

Equivalence of first-order schemes (or det-FO-grammars, or deterministic pushdown automata (DPDA)) is in TOWER, i.e. "close" to elementary. (The known lower bound is P-hardness.)

Part 2

• Nondeterministic case is Ackermann-hard.

Bisimulation equivalence of first-order grammars (or PDA with deterministic popping ε -moves) is Ackermann-hard, and thus not primitive recursive (but decidable).

Part 1

Equivalence of det-FO-grammars (or of DPDA) is in TOWER.

$$\mathcal{L} = (\mathcal{S}, \mathcal{A}, (\stackrel{a}{\rightarrow})_{a \in \mathcal{A}})$$

$$\mathcal{S} = \{s_1, s_2, s_3, \dots\}$$

$$\mathcal{A} = \{a, b\} \qquad \stackrel{a}{\rightarrow} \subseteq \mathcal{S} \times \mathcal{S} \qquad \stackrel{b}{\rightarrow} \subset \mathcal{S} \times \mathcal{S}$$

$$s_1 \stackrel{ab}{\rightarrow} s_3 \stackrel{a}{\rightarrow}$$

$$s_5 \stackrel{ab}{\rightarrow} s_8 \stackrel{a}{\not\rightarrow}$$

$$s_1 \gtrsim_2^3 s_5$$

$$EL(s_1, s_5) = 2$$

$$s \sim_k t \dots \forall w \in \mathcal{A}^{\leq k} : s \xrightarrow{w} \Leftrightarrow t \xrightarrow{w} s \sim_{\omega} t \dots \forall k : s \sim_k t$$

$$EL(s,t) = \max\{k \mid s \sim_k t\}$$

 $\begin{array}{c} a b \end{array}$ is a witness for (s_1, s_5) ... EL drops by 1 in each step

 $\begin{array}{c} a b \end{array}$ is a witness for (s_1, s_5) ... EL drops by 1 in each step

$$A(x_1, x_2, x_3) \xrightarrow{b} B(C(x_2, x_1), x_1, A(x_2, x_1, x_2))$$

 $B(x_1, x_2, x_3) \stackrel{a}{\to} x_2$

$$A(x_1, x_2, x_3) \xrightarrow{b} B(C(x_2, x_1), x_1, A(x_2, x_1, x_2))$$

$$A(x_1, x_2, x_3) \xrightarrow{b} B(C(x_2, x_1), x_1, A(x_2, x_1, x_2))$$

$$B(x_1, x_2, x_3) \xrightarrow{a} x_2$$

$$F \xrightarrow{a} G \text{ implies } F\sigma \xrightarrow{a} G\sigma$$

$$G \xrightarrow{x_1 \dots x_2 \dots x_3 \dots x$$

$$A(x_1, x_2, x_3) \xrightarrow{b} B(C(x_2, x_1), x_1, A(x_2, x_1, x_2))$$

$$B(x_1, x_2, x_3) \xrightarrow{a} x_2$$

$$x_1 \xrightarrow{x_2} x_3 \xrightarrow{a} G \xrightarrow{x_1} G \xrightarrow{x_2} G \xrightarrow{x_2} G \xrightarrow{x_3} G \xrightarrow{x_2} G \xrightarrow{x_3} G \xrightarrow{x_3} G \xrightarrow{x_3} G \xrightarrow{x_3} G \xrightarrow{x_4} G \xrightarrow{x_5} G \xrightarrow{x_5}$$

(D)pda from a first-order term perspective

$$Q = \{q_1, q_2, q_3\}$$

configuration q_2ABA

(pushing) rule $q_2A \stackrel{a}{\longrightarrow} q_1BC$

(popping) rule $q_2A \stackrel{b}{\longrightarrow} q_2$

 $q_2C \stackrel{\varepsilon}{\longrightarrow} q_3$

Bounding lengths of witnesses (where EL keeps dropping)

Theorem.

There is an elementary function g such that for any det-FO grammar $\mathcal{G}=(\mathcal{N},\mathcal{A},\mathcal{R})$ and $T\not\sim U$ of size n we have

$$EL(T, U) \leq tower(g(n)).$$

$$tower(0) = 1$$

 $tower(n+1) = 2^{tower(n)}$

Bounding lengths of witnesses (where EL keeps dropping)

Theorem.

There is an elementary function g such that for any det-FO grammar $\mathcal{G} = (\mathcal{N}, \mathcal{A}, \mathcal{R})$ and $T \not\sim U$ of size n we have

$$EL(T, U) \leq tower(g(n)).$$

$$tower(0) = 1$$

 $tower(n+1) = 2^{tower(n)}$

Proof is based on two ideas:

- "Synchronize" the growth of Ihs-terms and rhs-terms while not changing the respective eq-levels. (Hence no repeat.)
- ② Derive a tower-bound on the size of terms in the (modified) sequence.

Congruence properties of \sim_k and \sim

Congruence properties of \sim_k and \sim

"Stair subsequence" of pairs (on balanced witness path)

Stair subsequence of pairs (written horizontally)

- (1, n)-sequence
- 2^1 pairs
- $n \dots$ thickness

There is no EL-decreasing (1,0)-sequence.

(1, n)-sequence

 2^1 pairs

 $n \dots$ thickness

There is no EL-decreasing (1,0)-sequence.

$$(1, n)$$
-sequence

q ... cardinality of "alphabet"

$$2^1$$
 pairs

$$\ln h(1) = 1 + q$$

In h(1) = 1 + q pairs (of thickness n)

 $n \dots$ thickness

there is some (1, n)-sequence.

(2, n)-sequence

$$2^2 = 4$$
 pairs

 $n \dots$ thickness

(ℓ, n) -(sub)sequences, with 2^{ℓ} pairs

 $q \dots$ cardinality of "alphabet"

$$(2, n)$$
-sequence

$$h(1) = 1 + q \dots (1, n)$$
-sequence

$$2^2 = 4$$
 pairs

In
$$h(2) = h(1) \cdot (1 + q^{h(1)})$$
 pairs

 $n \dots$ thickness

there is some (2, n)-sequence.

(ℓ, n) -(sub)sequences, with 2^{ℓ} pairs

(ℓ, n) -(sub)sequences, with 2^{ℓ} pairs

$\overline{(\ell,n)}$ -(sub)sequences, with 2^ℓ pairs

(3, n)-sequence

$$2^3 = 8$$
 pairs

 $n \dots$ thickness

Recall: There is no EL-decreasing (1,0)-sequence.

Recall: There is no EL-decreasing (1,0)-sequence.

Claim. Any EL-decreasing $(\ell+1, n+1)$ -sequence gives rise to an EL-decreasing (ℓ, n) -sequence.

Recall: There is no EL-decreasing (1,0)-sequence.

Claim. Any EL-decreasing $(\ell+1, n+1)$ -sequence gives rise to an EL-decreasing (ℓ, n) -sequence.

Corollary. There is no EL-decreasing (n+1, n)-sequence.

Recall: There is no EL-decreasing (1,0)-sequence.

Claim. Any EL-decreasing $(\ell+1, n+1)$ -sequence gives rise to an EL-decreasing (ℓ, n) -sequence.

Corollary. There is no EL-decreasing (n+1, n)-sequence.

Recall that

$$h(1) = 1 + q,$$

 $h(j+1) = h(j) \cdot (1 + q^{h(j)})$

and that h(j) "stairs" gives rise to (j, n)-sequence (n being the "small" thickness).

Recall: There is no EL-decreasing (1,0)-sequence.

Claim. Any EL-decreasing $(\ell+1, n+1)$ -sequence gives rise to an EL-decreasing (ℓ, n) -sequence.

Corollary. There is no EL-decreasing (n+1, n)-sequence.

Recall that

$$h(1) = 1 + q,$$

 $h(j+1) = h(j) \cdot (1 + q^{h(j)})$

and that h(j) "stairs" gives rise to (j, n)-sequence (n being the "small" thickness).

Corollary. There are less than h(n+1) stairs, and $h(n+1) \leq tower(g(n))$.

Bounding lengths of witnesses (End of Part 1)

Theorem.

There is an elementary function g such that for any det-FO grammar $\mathcal{G} = (\mathcal{N}, \mathcal{A}, \mathcal{R})$ and $T \not\sim U$ of size n we have

$$EL(T, U) \leq tower(g(n)).$$

Proof is based on two ideas:

- "Synchronize" the growth of lhs-terms and rhs-terms while not changing the respective eq-levels. (Hence no repeat.)
- Derive a tower-bound on the size of terms in the (modified) sequence.

Part 2

Bisimulation equivalence for FO-grammars is Ackermann-hard.

Note:

Benedikt M., Göller S., Kiefer S., Murawski A.S.: Bisimilarity of Pushdown Automata is Nonelementary. LICS 2013 (no ε -transitions)

Ackermann function, class ACK, ACK-completeness

Family f_0, f_1, f_2, \ldots of functions:

$$f_0(n) = n+1$$

 $f_{k+1}(n) = f_k(f_k(\dots f_k(n) \dots)) = f_k^{(n+1)}(n)$

Ackermann function f_A : $f_A(n) = f_n(n)$.

Ackermann function, class ACK, ACK-completeness

Family f_0, f_1, f_2, \ldots of functions:

$$f_0(n) = n+1$$

 $f_{k+1}(n) = f_k(f_k(\dots f_k(n) \dots)) = f_k^{(n+1)}(n)$

Ackermann function f_A : $f_A(n) = f_n(n)$.

ACK ... class of problems solvable in time $f_A(g(n))$ where g is a primitive recursive function.

Ackermann function, class ACK, ACK-completeness

Family f_0, f_1, f_2, \ldots of functions:

$$f_0(n) = n+1$$

 $f_{k+1}(n) = f_k(f_k(\dots f_k(n) \dots)) = f_k^{(n+1)}(n)$

Ackermann function f_A : $f_A(n) = f_n(n)$.

ACK ... class of problems solvable in time $f_A(g(n))$ where g is a primitive recursive function.

Ackermann-budget halting problem (AB-HP):

Instance: Minsky counter machine M.

Question: does M halt from the zero initial configuration within $f_A(size(M))$ steps?

Fact. AB-HP is ACK-complete.

Control state reachability in reset counter machines

```
Reset counter machines (RCMs). nonnegative counters c_1, c_2, \ldots, c_d, control states 1, 2, \ldots, r, configuration (\ell, (n_1, n_2, \ldots, n_d)), initial conf. (1, (0, 0, \ldots, 0)), (nondeterministic) instructions of the types \ell \stackrel{inc(c_i)}{\longrightarrow} \ell' \text{ (increment } c_i), \\ \ell \stackrel{dec(c_i)}{\longrightarrow} \ell' \text{ (decrement } c_i, \text{ if } c_i > 0), \\ \ell \stackrel{reset(c_i)}{\longrightarrow} \ell' \text{ (reset } c_i, \text{ i.e., put } c_i = 0).
```

Control state reachability in reset counter machines

```
Reset counter machines (RCMs). nonnegative counters c_1, c_2, \ldots, c_d, control states 1, 2, \ldots, r, configuration (\ell, (n_1, n_2, \ldots, n_d)), initial conf. (1, (0, 0, \ldots, 0)), (nondeterministic) instructions of the types \ell \stackrel{inc(c_i)}{\longrightarrow} \ell' \text{ (increment } c_i), \\ \ell \stackrel{dec(c_i)}{\longrightarrow} \ell' \text{ (decrement } c_i, \text{ if } c_i > 0), \\ \ell \stackrel{reset(c_i)}{\longrightarrow} \ell' \text{ (reset } c_i, \text{ i.e., put } c_i = 0).
```

CS-reach problem for RCM:

```
Instance: an RCM M, a control state \ell_{\scriptscriptstyle \mathrm{FIN}}. Question: is (1,(0,0,\ldots,0))\longrightarrow^* (\ell_{\scriptscriptstyle \mathrm{FIN}},(\ldots))?
```

Control state reachability in reset counter machines

```
Reset counter machines (RCMs). nonnegative counters c_1, c_2, \ldots, c_d, control states 1, 2, \ldots, r, configuration (\ell, (n_1, n_2, \ldots, n_d)), initial conf. (1, (0, 0, \ldots, 0)), (nondeterministic) instructions of the types \ell \stackrel{inc(c_i)}{\longrightarrow} \ell' \text{ (increment } c_i), \ell \stackrel{dec(c_i)}{\longrightarrow} \ell' \text{ (decrement } c_i, \text{ if } c_i > 0), \ell \stackrel{reset(c_i)}{\longrightarrow} \ell' \text{ (reset } c_i, \text{ i.e., put } c_i = 0).
```

CS-reach problem for RCM:

```
Instance: an RCM M, a control state \ell_{\text{FIN}}. Question: is (1,(0,0,\ldots,0)) \longrightarrow^* (\ell_{\text{FIN}},(\ldots))?
```

Fact. CS-reach problem for RCM is ACK -complete. (See [Schnoebelen, MFCS 2010].)

Bisimulation equivalence as a game

Assume LTS $\mathcal{L} = (\mathcal{S}, \mathcal{A}, (\stackrel{a}{\longrightarrow})_{a \in \mathcal{A}}).$

In a position (s, t),

- **1** Attacker chooses either some $s \xrightarrow{a} s'$ or some $t \xrightarrow{a} t'$.
- **2** Defender responses by some $t \xrightarrow{a} t'$ or some $s \xrightarrow{a} s'$, respectively.

The new position is (s', t').

Bisimulation equivalence as a game

Assume LTS $\mathcal{L} = (\mathcal{S}, \mathcal{A}, (\stackrel{a}{\longrightarrow})_{a \in \mathcal{A}}).$

In a position (s, t),

- **1** Attacker chooses either some $s \xrightarrow{a} s'$ or some $t \xrightarrow{a} t'$.
- **2** Defender responses by some $t \xrightarrow{a} t'$ or some $s \xrightarrow{a} s'$, respectively.

The new position is (s', t').

These rounds are repeated. If a player is stuck, then (s)he loses. An infinite play is a win of Defender.

We put $s \sim t$ (s, t are bisimulation equivalent) if Defender has a winning strategy from position (s, t).

Bisimulation equivalence as a game

Assume LTS $\mathcal{L} = (\mathcal{S}, \mathcal{A}, (\stackrel{a}{\longrightarrow})_{a \in \mathcal{A}}).$

In a position (s, t),

- **1** Attacker chooses either some $s \xrightarrow{a} s'$ or some $t \xrightarrow{a} t'$.
- **Q** Defender responses by some $t \xrightarrow{a} t'$ or some $s \xrightarrow{a} s'$, respectively.

The new position is (s', t').

These rounds are repeated. If a player is stuck, then (s)he loses. An infinite play is a win of Defender.

We put $s \sim t$ (s, t are bisimulation equivalent) if Defender has a winning strategy from position (s, t).

Observation. For deterministic LTSs, bisimulation equivalence coincides with trace equivalence.

Reduction of CS-reach for RCM to FO-bisimilarity

```
Given an RCM M. i.e..
        counters c_1, c_2, \ldots, c_d
        control states 1, 2, \ldots, r,
and instructions of the types
       \ell \stackrel{inc(c_i)}{\longrightarrow} \ell' (increment c_i),
       \ell \stackrel{dec(c_i)}{\longrightarrow} \ell' (decrement c_i, if c_i > 0),
        \ell \stackrel{\text{reset}(c_i)}{\longrightarrow} \ell' (reset c_i, i.e., put c_i = 0).
and \ell_{\text{EIN}}.
we construct \mathcal{G} = (\mathcal{N}, \mathcal{A}, \mathcal{R}) and E_0, F_0 so that
        (1,(0,0,\ldots,0)) \longrightarrow^* (\ell_{\text{FIN}},(\ldots)) iff E_0 \nsim F_0.
```

CS-reachability as bisimulation game

Example with counters c_1, c_2 ; we start with the pair

$$(A_1(\bot,\bot,\bot,\bot,), B_1(\bot,\bot,\bot,\bot)).$$

The pair after mimicking $(1,(0,0)) \longrightarrow^* \overline{(\ell,(2,1))}$ might be

Attacker's win

Attacker wins in

$$(A_{\ell_{\scriptscriptstyle{\mathrm{FIN}}}}(\dots),B_{\ell_{\scriptscriptstyle{\mathrm{FIN}}}}(\dots))$$

due to the rule $A_{\ell_{\text{FIN}}}(x_1, x_2, x_3, x_4) \stackrel{a}{\longrightarrow} \dots$ (while there is no rule for $B_{\ell_{\text{FIN}}}$).

Counter increment

For
$$lins = \ell \stackrel{inc(c_2)}{\longrightarrow} \ell'$$

$$A_{\ell}(x_1, x_2, x_3, x_4) \xrightarrow{ins} A_{\ell'}(x_1, x_2, I(x_3), x_4),$$

$$B_{\ell}(x_1, x_2, x_3, x_4) \xrightarrow{ins} B_{\ell'}(x_1, x_2, I(x_3), x_4),$$

Counter increment

For
$$lins = \ell \stackrel{inc(c_2)}{\longrightarrow} \ell'$$

$$A_{\ell}(x_1, x_2, x_3, x_4) \xrightarrow{ins} A_{\ell'}(x_1, x_2, I(x_3), x_4),$$

Counter increment

For
$$lins = \ell \stackrel{inc(c_2)}{\longrightarrow} \ell'$$

$$A_{\ell}(x_1, x_2, x_3, x_4) \xrightarrow{ins} A_{\ell'}(x_1, x_2, I(x_3), x_4),$$

 $B_{\ell}(x_1, x_2, x_3, x_4) \xrightarrow{ins} B_{\ell'}(x_1, x_2, I(x_3), x_4),$

Counter reset

For
$$ins = \ell \stackrel{reset(c_2)}{\longrightarrow} \ell'$$

$$A_{\ell}(x_1, x_2, x_3, x_4) \xrightarrow{ins} A_{\ell'}(x_1, x_2, \perp, \perp),$$

$$B_{\ell}(x_1, x_2, x_3, x_4) \xrightarrow{ins} B_{\ell'}(x_1, x_2, \bot, \bot),$$

Counter reset

For
$$lins = \ell \stackrel{\mathsf{reset}(c_2)}{\longrightarrow} \ell'$$

we have rules

$$A_{\ell}(x_1, x_2, x_3, x_4) \xrightarrow{ins} A_{\ell'}(x_1, x_2, \perp, \perp),$$

$$B_{\ell}(x_1, x_2, x_3, x_4) \xrightarrow{ins} B_{\ell'}(x_1, x_2, \bot, \bot),$$

Counter reset

For
$$ins = \ell \stackrel{\mathsf{reset}(c_2)}{\longrightarrow} \ell'$$

we have rules

$$A_{\ell}(x_1, x_2, x_3, x_4) \xrightarrow{ins} A_{\ell'}(x_1, x_2, \perp, \perp)$$
,

$$B_{\ell}(x_1, x_2, x_3, x_4) \xrightarrow{ins} B_{\ell'}(x_1, x_2, \perp, \perp),$$

Counter decrement

For $\underbrace{ins = \ell \xrightarrow{dec(c_2)} \ell'}$ we have two phases; the first-phase rules are $A_\ell \xrightarrow{ins} A_{(\ell',2)}$, $A_\ell \xrightarrow{ins} B_{(\ell',2,a)}$, $A_\ell \xrightarrow{ins} B_{(\ell',2,b)}$, $B_\ell \xrightarrow{ins} B_{(\ell',2,b)}$,

Counter decrement

For $\underbrace{ins = \ell \xrightarrow{dec(c_2)} \ell'}$ we have two phases; the first-phase rules are $A_\ell \xrightarrow{ins} A_{(\ell',2)}$, $A_\ell \xrightarrow{ins} B_{(\ell',2,a)}$, $A_\ell \xrightarrow{ins} B_{(\ell',2,b)}$, $B_\ell \xrightarrow{ins} B_{(\ell',2,a)}$, $B_\ell \xrightarrow{ins} B_{(\ell',2,b)}$,

Counter decrement

For $\underbrace{ins = \ell \xrightarrow{dec(c_2)} \ell'}$ we have two phases; the first-phase rules are $A_\ell \xrightarrow{ins} A_{(\ell',2)}$, $A_\ell \xrightarrow{ins} B_{(\ell',2,a)}$, $A_\ell \xrightarrow{ins} B_{(\ell',2,b)}$, $B_\ell \xrightarrow{ins} B_{(\ell',2,a)}$, $B_\ell \xrightarrow{ins} B_{(\ell',2,b)}$,

Counter decrement (option a)

$$A_{(\ell',2)}(x_1, x_2, x_3, x_4) \xrightarrow{a} A_{\ell'}(x_1, x_2, x_3, I(x_4)), A_{\ell',2}(x_1, x_2, x_3, x_4) \xrightarrow{b} x_3, B_{(\ell',2,a)}(x_1, x_2, x_3, x_4) \xrightarrow{a} B_{\ell'}(x_1, x_2, x_3, I(x_4)),$$

$$B_{(\ell',2,a)}(x_1,x_2,x_3,x_4) \xrightarrow{b} x_3,$$

Counter decrement (option a)

$$A_{(\ell',2)}(x_1, x_2, x_3, x_4) \xrightarrow{a} A_{\ell'}(x_1, x_2, x_3, I(x_4)), A_{\ell',2}(x_1, x_2, x_3, x_4) \xrightarrow{b} x_3, B_{(\ell',2,a)}(x_1, x_2, x_3, x_4) \xrightarrow{a} B_{\ell'}(x_1, x_2, x_3, I(x_4)),$$

$$B_{(\ell',2,a)}(x_1,x_2,x_3,x_4) \stackrel{b}{\longrightarrow} x_3,$$

Counter decrement (option a)

$$A_{(\ell',2)}(x_1, x_2, x_3, x_4) \xrightarrow{a} A_{\ell'}(x_1, x_2, x_3, I(x_4)), A_{\ell',2}(x_1, x_2, x_3, x_4) \xrightarrow{b} x_3, B_{(\ell',2,a)}(x_1, x_2, x_3, x_4) \xrightarrow{a} B_{\ell'}(x_1, x_2, x_3, I(x_4)),$$

$$B_{(\ell',2,a)}(x_1,x_2,x_3,x_4) \stackrel{b}{\longrightarrow} x_3,$$

Counter decrement (option b)

$$A_{(\ell',2)}(x_1, x_2, x_3, x_4) \xrightarrow{a} A_{\ell'}(x_1, x_2, x_3, I(x_4)), A_{\ell',2}(x_1, x_2, x_3, x_4) \xrightarrow{b} x_3, B_{(\ell',2,b)}(x_1, x_2, x_3, x_4) \xrightarrow{a} A_{\ell'}(x_1, x_2, x_3, I(x_4)),$$

$$B_{(\ell',2,b)}(x_1,x_2,x_3,x_4) \stackrel{b}{\longrightarrow} x_4,$$

$$I(x_1) \stackrel{c}{\longrightarrow} x_1$$

Counter decrement (option b)

$$A_{(\ell',2)}(x_1, x_2, x_3, x_4) \xrightarrow{a} A_{\ell'}(x_1, x_2, x_3, I(x_4)), A_{\ell',2}(x_1, x_2, x_3, x_4) \xrightarrow{b} x_3, B_{(\ell',2,b)}(x_1, x_2, x_3, x_4) \xrightarrow{a} A_{\ell'}(x_1, x_2, x_3, I(x_4)),$$

$$B_{(\ell',2,b)}(x_1,x_2,x_3,x_4) \stackrel{b}{\longrightarrow} x_4,$$

$$I(x_1) \stackrel{c}{\longrightarrow} x_1$$

Counter decrement (option b)

$$A_{(\ell',2)}(x_1, x_2, x_3, x_4) \xrightarrow{a} A_{\ell'}(x_1, x_2, x_3, I(x_4)), A_{\ell',2}(x_1, x_2, x_3, x_4) \xrightarrow{b} x_3,$$

$$B_{(\ell',2,b)}(x_1, x_2, x_3, x_4) \xrightarrow{a} A_{\ell'}(x_1, x_2, x_3, I(x_4)),$$

$$B_{(\ell',2,b)}(x_1, x_2, x_3, x_4) \xrightarrow{b} x_4,$$

$$I(x_1) \stackrel{c}{\longrightarrow} x_1$$

Concluding remarks

We have shown

- (Trace) equivalence of deterministic first-order grammars is in TOWER.
- Bisimulation equivalence of first-order grammars is Ackermann-hard.

Questions/problems/related results:

- more precise complexity bounds ...
- subcases (simple grammars, one-counter automata, ...)
- higher orders ...
-