

SEQUENCE LISTING

<110> GRUENENTHAL GMBH

<120> SCREENING METHOD USING PIM1-KINASE OR PIM3-KINASE

<130> 029310.52818US

<140>

<141>

<150> PCT/EP02/05234

<151> 2002-05-13

<150> DE 101 23 055.9

<151> 2001-05-11

<160> 11

<170> PatentIn Ver. 2.1

<210> 1

<211> 2623

<212> DNA

<213> Homo sapiens

<400> 1

gaggaggccc gagaggagtc ggtggcagcg gggcgccgg gaccggcagc agcagcagca 60
gcagcagcag caaccactag cctccctgccc cgccggcggt cgacgagccc cacgagccgc 120
tcaccccgcc gttctcagcg ctgcccggacc cgcgtggcgc gcctcccgcc gcagtcccg 180
cagcgcctca gttgtctcc gactcgccct cggccttcgc gcagcgcagc acagccgcac 240
gcaccgcagc acagcacagc acagcccagg catagcttcg gcacagcccc ggctccggct 300
cctcgccgcag ctccctctggc acgtccctgc gccgacattt tggaggttgg atgctttgt 360
ccaaaatcaa ctcgcttgcc cacctcgccg ccgcgcctg caacgacctg cacgccacca 420
agctggcgcc cggcaaggag aaggagcccc tggagtcgca gtaccaggtg ggcccgctac 480
tggcagcgg cggcttcggc tcggctact caggcatccg cgtctccgac aacttgcgg 540
tggccatcaa acacgtggag aaggacccgga ttccgactg gggagagctg cctaattggca 600
ctcgagtgcc catgaaagtg gtcctctgtga agaaggttag ctcggtttc tccggcgtca 660
ttaggtctct ggactggttc gagaggcccc acagtttctgt cctgatcctg gagaggcccc 720
agccggtgca agatctttc gacttcatca cggaaagggg agccctgcaa gaggagctgg 780
cccgagctt ctctctggcag gtgctggagg ccgtgcggca ctggcacaac tgcgggggtgc 840
tacaccgcga catcaaggac gaaaacatcc ttatcgaccc caatcgccgc gagctcaagc 900
tcatcgactt cgggtcgaaaa gcgctgtca aggacaccgt ctacacggac ttcatggaa 960
cccgagtgta tagccctcca gagtggatcc gctaccatcg ctaccatggc aggtcgccgg 1020
cagttctggtc ctgggggatc ctgctgtatg atatggtgg tggagatatt ctttcgagc 1080
atgacgaaga gatcatcagg ggcgggttt ttctcaggaga gaggttctct tcagaatgtc 1140
agcatctcat tagatgggtc ttggccctgtca gaccatcaga taggccaacc ttcaagaaaa 1200
tccagaacca tccatggatc caagatgttcc tccctggccca ggaaactgtt gagatccacc 1260
tccacagect gtcgggggg cccagcaaat agcagcctt ctggcaggc tcctccctctc 1320
ttgtcagatg cccgaggggag gggaaagcttc tgtctccagc ttcccgagta ccagtgcac 1380
gtctcgccaa gcaggacagt gttgatata ggaacaacat ttacaactca ttccagatcc 1440
caggccctg gaggctgcct cccaaacagt gggaaaggtg actctccagg ggtcttaggc 1500
ctcaactcct cccatagata ctctttctt ctcatacggtt tccagcattt ctggactctg 1560
aaatatcccg ggggtggggg gtgggggtgg gcagaacacct gccaatggaa ctctttcttc 1620
atcatgagtt ctgctgaatg ccgcgtatggg tcaggttaggg gggaaacagg ttgggatggg 1680
ataggactag cacatttaa gtccctgtca cctctccga ctctttctga gtgccttcgt 1740
tgggactcc ggctgtgtcg ggagaaatac ttgaacttgc ctcttttacc tgctgcttct 1800

caaaaaatct	gcctggggtt	tgttccctat	ttttctctcc	tgtcctccct	cacccccctcc	1860
ttcatatgaa	agggccatg	gaagaggcta	cagggccaaa	cgctgagcca	cctggcccttt	1920
tttctgcctc	cttagtaaa	actccgagtg	aactggtctt	ccttttttgt	tttacttaa	1980
ctgtttcaaa	gccaagacct	cacacacaca	aaaaaatgca	caaacaaggc	aatcaacaga	2040
aaagctgtaa	atgtgtgtac	agttggcatg	gtagtataca	aaaagattgt	agtggatcta	2100
attttaaga	aattttgcct	ttaagttatt	ttacctgttt	ttgtttcttg	tttggaaaga	2160
tgcgcattct	aacctggagg	tcaatgttat	gtatttattt	atttatttat	ttgggtccct	2220
tcctatttcca	agcttccata	gctgctgccc	tagtttctt	tcctccccc	ctcctctgac	2280
ttggggacct	tttgggggag	ggctgcgacg	cttgctctgt	ttgtgggtg	acgggactca	2340
ggcgggacag	tgctgcagct	ccctggcttc	tgtggggccc	ctcacctact	tacccaggtg	2400
ggtcccggt	ctgtgggtga	tgggaggggc	cattgctgac	tgtgtatata	ggataattat	2460
gaaacacagt	tctggatggt	gtgccttcca	gatccctctt	ggggctgtgt	tttgagcago	2520
aggttagcctg	ctggttttat	ctgagtgaaa	tactgtacag	gggaataaaa	gagatcttat	2580
tttttttta	tacttgcgtt	tggaataaaa	accctttggc	ttt		2623

<210> 2
<211> 313
<212> PRT
<213> *Homo sapiens*

<400> 2
Met Leu Leu Ser Lys Ile Asn Ser Leu Ala His Leu Arg Ala Ala Pro
1 5 10 15

Cys Asn Asp Leu His Ala Thr Lys Leu Ala Pro Gly Lys Glu Lys Glu
20 25 30

Pro Leu Glu Ser Gln Tyr Gln Val Gly Pro Leu Leu Gly Ser Gly Gly
35 40 45

Phe Gly Ser Val Tyr Ser Gly Ile Arg Val Ser Asp Asn Leu Pro Val
 50 55 60

Pro Asn Gly Thr Arg Val Pro Met Glu Val Val Leu Leu Lys Lys Val
85 90 95

Ser Ser Gly Phe Ser Gly Val Ile Arg Leu Leu Asp Trp Phe Glu Arg
 100 105 110

Pro	Asp	Ser	Phe	Val	Leu	Ile	Leu	Glu	Arg	Pro	Glu	Pro	Val	Gln	Asp
							115						120		125

Leu Phe Asp Phe Ile Thr Glu Arg Gly Ala Leu Gln Glu Glu Leu Ala
130 135 140

Arg Ser Phe Phe Trp Gln Val Leu Glu Ala Val Arg His Cys His Asn
145 150 155 160

Cys Gly Val Leu His Arg Asp Ile Lys Asp Glu Asn Ile Leu Ile Asp
165 170 175

Leu Asn Arg Gly Glu Leu Lys Leu Ile Asp Phe Gly Ser Gly Ala Leu
180 185 190

Leu Lys Asp Thr Val Tyr Thr Asp Phe Asp Gly Thr Arg Val Tyr Ser
 195 200 205
 Pro Pro Glu Trp Ile Arg Tyr His Arg Tyr His Gly Arg Ser Ala Ala
 210 215 220
 Val Trp Ser Leu Gly Ile Leu Leu Tyr Asp Met Val Cys Gly Asp Ile
 225 230 235 240
 Pro Phe Glu His Asp Glu Glu Ile Ile Arg Gly Gln Val Phe Phe Arg
 245 250 255
 Gln Arg Val Ser Ser Glu Cys Gln His Leu Ile Arg Trp Cys Leu Ala
 260 265 270
 Leu Arg Pro Ser Asp Arg Pro Thr Phe Glu Glu Ile Gln Asn His Pro
 275 280 285
 Trp Met Gln Asp Val Leu Leu Pro Gln Glu Thr Ala Glu Ile His Leu
 290 295 300
 His Ser Leu Ser Pro Gly Pro Ser Lys
 305 310

<210> 3
 <211> 1302
 <212> DNA
 <213> Rattus norvegicus

<400> 3
 gggatgtct tgtccaagat caactccctg gcccacctgc gcgcagcccc ttgcaacgac 60
 ctgcacgcca acaagctggc gcccggcaaa gagaaggagc ccctggagtc gcagtaccag 120
 gtggggccgc tggggggcag cggtggttc ggctcggtct actcgggcat cccgcgtcgcc 180
 gacaacttgc cggtgccat caagcacgtg gagaaggacc ggattccga ctggggggaa 240
 ctgccaacg gcaccccgagt gcccattggaa gtggctctgc tgaagaaggt gagctcgggc 300
 ttctcggcg tcatttagact tctggactgg ttcgagagggc ccgatagttt cgtgctgatc 360
 ctggagagggc ccgaacccgt gcaagacctc ttgcacttca tcaccggagcg aggagccctc 420
 caggaggagc tggcccgag cttcttctgg caggtgctgg aggcctgtcg gcattgcccac 480
 aactgcgggg ttctccaccc cgacatcaag gacgagaaca tcttaatcga cctgaaccgc 540
 ggcgaactca aactcatcga ctccggctcg gggcgctgc tcaaggacac agtctacacg 600
 gactttgacg gaacccgagt gtacagtccct ccagagtggc ttgcgttacca tcgcttaccac 660
 ggcagggtcgg ctgctgtttg gtccttgggg atcctgtct atgcacatggt ctgcggagat 720
 attccatttg agcacgacga agagatcgac aaggggccaag tgcacttttag gcaaagggtc 780
 tcttcagaat gtcaacatct tatttagatgg tgcctgtccc tgagaccatc ggaccggccc 840
 tccttgaag aaatccagaa ccatccgtgg atgcaggatg ttctcctgcc ccaggccacc 900
 gccgagattc atctgcacag cctgtcacca tcacccagca aatagcagcc attctgtcag 960
 accctccagg gaagagagag cttgtctgtt ggccttccaac aggaccctgc tctacgtatc 1020
 agggacagaa atgacaactc attccaggct cgggggtccc tggagcaacc tccctcaagg 1080
 agaagagact agttcactcg tcctggaccc cgcttgcctc ctcacagact cagttggcgtc 1140
 cagttgtggct ggcgtccgca gagtcccggg tgggggggggg ggaggtggga gtgggtcaga 1200
 gcccctgtcat ggaacttttag tcaccatggaa gactgtgggtt caccatggatg ggccagggtt 1260
 gggggaaaaac atttggggggg tgggattaaa aacttagcacc at 1302

<210> 4
<211> 313
<212> PRT
<213> Rattus norvegicus

<400> 4
Met Leu Leu Ser Lys Ile Asn Ser Leu Ala His Leu Arg Ala Ala Pro
1 5 10 15
Cys Asn Asp Leu His Ala Asn Lys Leu Ala Pro Gly Lys Glu Lys Glu
20 25 30
Pro Leu Glu Ser Gln Tyr Gln Val Gly Pro Leu Leu Gly Ser Gly Gly
35 40 45
Phe Gly Ser Val Tyr Ser Gly Ile Arg Val Ala Asp Asn Leu Pro Val
50 55 60
Ala Ile Lys His Val Glu Lys Asp Arg Ile Ser Asp Trp Gly Glu Leu
65 70 75 80
Pro Asn Gly Thr Arg Val Pro Met Glu Val Val Leu Leu Lys Lys Val
85 90 95
Ser Ser Gly Phe Ser Gly Val Ile Arg Leu Leu Asp Trp Phe Glu Arg
100 105 110
Pro Asp Ser Phe Val Leu Ile Leu Glu Arg Pro Glu Pro Val Gln Asp
115 120 125
Leu Phe Asp Phe Ile Thr Glu Arg Gly Ala Leu Gln Glu Glu Leu Ala
130 135 140
Arg Ser Phe Phe Trp Gln Val Leu Glu Ala Val Arg His Cys His Asn
145 150 155 160
Cys Gly Val Leu His Arg Asp Ile Lys Asp Glu Asn Ile Leu Ile Asp
165 170 175
Leu Asn Arg Gly Glu Leu Lys Leu Ile Asp Phe Gly Ser Gly Ala Leu
180 185 190
Leu Lys Asp Thr Val Tyr Thr Asp Phe Asp Gly Thr Arg Val Tyr Ser
195 200 205
Pro Pro Glu Trp Ile Arg Tyr His Arg Tyr His Gly Arg Ser Ala Ala
210 215 220
Val Trp Ser Leu Gly Ile Leu Leu Tyr Asp Met Val Cys Gly Asp Ile
225 230 235 240
Pro Phe Glu His Asp Glu Glu Ile Val Lys Gly Gln Val Tyr Phe Arg
245 250 255
Gln Arg Val Ser Ser Glu Cys Gln His Leu Ile Arg Trp Cys Leu Ser
260 265 270

Leu Arg Pro Ser Asp Arg Pro Ser Phe Glu Glu Ile Gln Asn His Pro
 275 280 285

Trp Met Gln Asp Val Leu Leu Pro Gln Ala Thr Ala Glu Ile His Leu
 290 295 300

His Ser Leu Ser Pro Ser Pro Ser Lys
 305 310

<210> 5
 <211> 942
 <212> DNA
 <213> Mus musculus

<400> 5
 atgctcctgt ccaagatcaa ctccctggcc cacctgcgcg cccgcccctg caacgacactg 60
 cacgcacca agctggcgcc gggcaaagag aaggagcccc tggagtgcga gtaccaggtg 120
 ggccgcgtgt tggcgacggc tggcttcact ctggcatccg cgtcgccgac 180
 aacttgccgg tggccattaa gcacgtggag aaggaccgga tttccgattt gggagaactg 240
 cccaatggca cccgagtgcc catggaaatgt gtcctgttga agaagggtgag ctccggacttc 300
 tcggcgctca ttagacttct ggactgggtc gagaggcccc atagttcgt gctgatcctg 360
 gagaggcccc aaccgggtgca agaccttcc gactttatca ccgaacgagg agccctacag 420
 gaggacctgg cccgaggatt cttctggcag gtgctggagg ccgtgcggca ttgccacaac 480
 tgcggggttc tccaccgcga catcaaggac gagaacatct taatcgacct gagccgcggc 540
 gaaatcaaac tcatacgactt cgggtcgggg ggcgtgcgtca aggacacagt ctacacggac 600
 tttgatggga cccgagtgta cagtcctcca gagtggattt gctaccatcg ctaccacggc 660
 aggtcggcag ctgtctggtc cttgggatc ctgtctatg acatggcttg cggagatatt 720
 ccgtttgagc acgatgaaga gatcatcaag gccaaatgtt tcttcaggca aactgtctct 780
 tcagagtgtc agcaccttat taaatgggtc ctgtccctga gaccgtcaga tggccctcc 840
 tttgaagaaa tccggaaacca tccgtggatg cagggtgacc tcctggccca ggcagcttct 900
 gagatccatc tgcacagttt gtcaccggga tccagcaagt ag 942

<210> 6
 <211> 313
 <212> PRT
 <213> Mus musculus

<400> 6
 Met Leu Leu Ser Lys Ile Asn Ser Leu Ala His Leu Arg Ala Arg Pro
 1 5 10 15

Cys Asn Asp Leu His Ala Thr Lys Leu Ala Pro Gly Lys Glu Lys Glu
 20 25 30

Pro Leu Glu Ser Gln Tyr Gln Val Gly Pro Leu Leu Gly Ser Gly Gly
 35 40 45

Phe Gly Ser Val Tyr Ser Gly Ile Arg Val Ala Asp Asn Leu Pro Val
 50 55 60

Ala Ile Lys His Val Glu Lys Asp Arg Ile Ser Asp Trp Gly Glu Leu
 65 70 75 80

Pro Asn Gly Thr Arg Val Pro Met Glu Val Val Leu Leu Lys Lys Val
 85 90 95

Ser Ser Asp Phe Ser Gly Val Ile Arg Leu Leu Asp Trp Phe Glu Arg
 100 105 110
 Pro Asp Ser Phe Val Leu Ile Leu Glu Arg Pro Glu Pro Val Gln Asp
 115 120 125
 Leu Phe Asp Phe Ile Thr Glu Arg Gly Ala Leu Gln Glu Asp Leu Ala
 130 135 140
 Arg Gly Phe Phe Trp Gln Val Leu Glu Ala Val Arg His Cys His Asn
 145 150 155 160
 Cys Gly Val Leu His Arg Asp Ile Lys Asp Glu Asn Ile Leu Ile Asp
 165 170 175
 Leu Ser Arg Gly Glu Ile Lys Leu Ile Asp Phe Gly Ser Gly Ala Leu
 180 185 190
 Leu Lys Asp Thr Val Tyr Thr Asp Phe Asp Gly Thr Arg Val Tyr Ser
 195 200 205
 Pro Pro Glu Trp Ile Arg Tyr His Arg Tyr His Gly Arg Ser Ala Ala
 210 215 220
 Val Trp Ser Leu Gly Ile Leu Leu Tyr Asp Met Val Cys Gly Asp Ile
 225 230 235 240
 Pro Phe Glu His Asp Glu Glu Ile Ile Lys Gly Gln Val Phe Phe Arg
 245 250 255
 Gln Thr Val Ser Ser Glu Cys Gln His Leu Ile Lys Trp Cys Leu Ser
 260 265 270
 Leu Arg Pro Ser Asp Arg Pro Ser Phe Glu Glu Ile Arg Asn His Pro
 275 280 285
 Trp Met Gln Gly Asp Leu Leu Pro Gln Ala Ala Ser Glu Ile His Leu
 290 295 300
 His Ser Leu Ser Pro Gly Ser Ser Lys
 305 310

```
<210> 7  
<211> 1176  
<212> DNA  
<213> Homo sapiens
```

```

<400> 7
cccacgcgtc cgcaagactgc cagcagctga tccgggtggtg cctgtccctg cggcccttag 60
agcgccccgtc gctggatcag attgcggccc atccctggat gctgggggct gacgggggctg 120
ccccggagag ctgtgacctg cggctgtgca ccctcgaccc tgatgacgtg gccacgacca 180
cgtnccagcag cgagagcttg tgaggagctg caccctgactg ggagctaggg gaccacctgc 240
cttggccaga cctgggacgc cccccagaccc tgacttttc ctgcgtgggc cgcttcctcc 300
tgccgaagca gtgacctctg accccctggtg accttcgctt tgagtgcctt ttgaacgctg 360
gtccccgggg acttgggttt ctcaagctct gtctgtccaa agacgctcccg gtcgagggtcc 420

```

cgcctgcacct	gggtggatac	ttgaacccca	gacgccccctc	tgtgctgctg	tgtccggagg	480
cgcccttccc	atctgcctgc	ccacccggag	ctcttccgc	cggcgcaggg	tcccaagccc	540
acctcccccc	ctcagtcttg	cggtgtgcgt	ctgggcacgt	cctgcacaca	aatgcaagt	600
cctggccctc	gcggccggccc	gcccacgcga	gcccgtacccg	ccgccaactc	tgttatttt	660
ggtgtgaccc	cctggaggtg	ccctcgccc	accggggcta	tttattgttt	aatttatttg	720
tttaggttat	ttctcttgag	cagtctgcct	ctcccaagcc	ccaggggaca	gtggggaggc	780
aggggagggg	gtggctgtgg	tccagggacc	ccagggccctg	attcctgtgc	ctggcgtctg	840
tcctggccccc	gcctgtcaga	agatgaacat	gtatagtgcc	taacttaagg	ggagtgggtg	900
accctgacac	ttccaggcac	tgtgcccagg	gtttgggttt	taaattattg	actttgtaca	960
gtctgcttgt	gggctctgaa	agctgggggtg	gggccagagc	ctgagcgttt	aatttattca	1020
gtacctgtgt	ttgtgtgaat	gcggtgtgtg	caggcatcgc	agatgggggt	tcttcagtt	1080
caaaaagttag	atgtctggag	atcatatttt	tttatacagg	tatttcaatt	aaaatgtttt	1140
tgtacataaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaa			1176

```
<210> 8  
<211> 2133  
<212> DNA  
<213> Rattus norvegicus
```

<400> 8
 cgctcgccca gctgccgtct acgggcttcc gcgcggccac cgggcaactg cgccgcgcgg 60
 ctgcccact gagcgctcg ctcggggcc gtgggatccg ccgcgtgtc tgcggtcagg 120
 aagaccggcc tcccggtcc gtccggacg gtcagaggc ggcggccac gcgaggccac 180
 ccgcatgtct gctgtccaag ttccggcccc tggccacat ctgcgggctt ggcggcgtgg 240
 accacccccc agtgaagatc ctacagccag ccaaggcggaa caaggagagc ttcgagaagg 300
 tgtaccagg gggccggcgtg ctccggcagc gcggcttcgg cacggctac gcgggcagcc 360
 gcatcgccga cggactcccc gtggctgtga agcacgttgtt gaaggagcgg gtgaccgagt 420
 ggggcagct cggcggaatg gccgtgcggcc tggaggtgtt gctgtgcgc aagggtggcg 480
 cggccggccgg cgcgcgcggc gtcatccgccc tgctggactg gttcgagcgg cccgacggct 540
 tcctgtctgt gctggagcga cccgagccgg cacaggacct cttcgacttc atcaactgaac 600
 gggggccctt ggacgagctt ctggctcgcc gcttcttcgc gcaggtgctc gccgtgtgc 660
 ggcactgcca caattgtggg gtcgtgcacc gcacatcaa ggacgagaac ctgtgtgtgg 720
 acttgcgtc gggcgagctg aagctcatcg acttcggctc gggcgcgtg ctcaaggaca 780
 cggtctacac tgactttgtat ggcacccgtg tgtacagccc cccagagtgg atccggatc 840
 atcgatatac cgggcggctt gcaactgtgtt ggtctctggg tgtactgtc tacgacatgg 900
 tgtgtgggg cattccctt gaggatg aggagatctt ggcggcggagg ctcttttcc 960
 ggaggagggt ctccccagag tgccagcagc ttattgtgtg gtgtctctcc ctgcggccct 1020
 cagagaggcc ctcgctggac caaattgtcg cccatccctg gatgtctgggg acagagggca 1080
 gcgttccaga gaactgtgac ttccggctt gtgccttggg tactgtatc ggagccagta 1140
 ccacttccag cagtggagac ttgtgaggag gaggaggggc ctggactcca cactgggggc 1200
 ctgggctcag cctagccagc cctctccctt aatgaacatt ttctgcctgg gatgtctct 1260
 gcaaaagcag tgacctctga cccctggta ctttgcctt cggcaccggg cctgtttct 1320
 ttgcttttag tgcccttttg aacgctgtc cacagggctt gggttttctt gagctttctt 1380
 gtccaaagat ggctgcgggc taagcaaggt cccgcctgca ctgggtggat acttgaaccc 1440
 gagaccctac cctgtgtc catttgggg cagccttctt gaccaagtgt gttgacatg 1500
 gagcgccctg tggtgccac ctccaaacctt ccagtctctt ggtttcgcc tgggcatgtc 1560
 tgcacaagca atgcaacgct gggccactgc tgcccgctt cttccctggc accgcacgca 1620
 acgagcgtgc cacggctct tatttatggt gtatcaccc tggagggcgc ccctgcctg 1680
 ctggggctat ttattgtttt atttattgc tgagggtact tccctcaagc aaccaccc 1740
 tccaggcccc tgggggtttc aggaaagcca aggggtggccg ttcagttccac agacggcatc 1800
 ctggttcctg cacctgcagt aggtccctaa cccatgtttt gtgggaggag gaatttgc 1860
 agtggctaat ttaaggggag tgggagaccc tgcacccctg ggcactctgc gctggggagg 1920
 gggtttaat tattgacctt gtacagtctg ctgtgtggct ctgaaagctg ggggtgggg 1980
 cagagtctca agcccttaat ttattttagc aactgtgttc tgtgaccctg gtgtgagtag 2040
 gcatcagggg tgggggttga taagttcaaa agtgtgaaat gtctggagat catattttt 2100
 atacaggtat ttcaattaaa tgttttggta tat 2133

<210> 9
 <211> 326
 <212> PRT
 <213> Rattus norvegicus

<400> 9
 Met Leu Leu Ser Lys Phe Gly Ser Leu Ala His Leu Cys Gly Pro Gly
 1 5 10 15

Gly Val Asp His Leu Pro Val Lys Ile Leu Gln Pro Ala Lys Ala Asp
 20 25 30

Lys Glu Ser Phe Glu Lys Val Tyr Gln Val Gly Ala Val Leu Gly Ser
 35 40 45

Gly Gly Phe Gly Thr Val Tyr Ala Gly Ser Arg Ile Ala Asp Gly Leu
 50 55 60

Pro Val Ala Val Lys His Val Val Lys Glu Arg Val Thr Glu Trp Gly
 65 70 75 80

Ser Leu Gly Gly Met Ala Val Pro Leu Glu Val Val Leu Leu Arg Lys
 85 90 95

Val Gly Ala Ala Gly Gly Ala Arg Gly Val Ile Arg Leu Leu Asp Trp
 100 105 110

Phe Glu Arg Pro Asp Gly Phe Leu Leu Val Leu Glu Arg Pro Glu Pro
 115 . 120 125

Ala Gln Asp Leu Phe Asp Phe Ile Thr Glu Arg Gly Ala Leu Asp Glu
 130 135 140

Pro Leu Ala Arg Arg Phe Phe Ala Gln Val Leu Ala Ala Val Arg His
 145 150 155 160

Cys His Asn Cys Gly Val Val His Arg Asp Ile Lys Asp Glu Asn Leu
 165 170 175

Leu Val Asp Leu Arg Ser Gly Glu Leu Lys Leu Ile Asp Phe Gly Ser
 180 185 190

Gly Ala Val Leu Lys Asp Thr Val Tyr Thr Asp Phe Asp Gly Thr Arg
 195 200 205

Val Tyr Ser Pro Pro Glu Trp Ile Arg Tyr His Arg Tyr His Gly Arg
 210 215 220

Ser Ala Thr Val Trp Ser Leu Gly Val Leu Leu Tyr Asp Met Val Cys
 225 230 235 240

Gly Asp Ile Pro Phe Glu Gln Asp Glu Glu Ile Leu Arg Gly Arg Leu
 245 250 255

Phe Phe Arg Arg Arg Val Ser Pro Glu Cys Gln Gln Leu Ile Glu Trp
 260 265 270

Cys Leu Ser Leu Arg Pro Ser Glu Arg Pro Ser Leu Asp Gln Ile Ala
 275 280 285

Ala His Pro Trp Met Leu Gly Thr Glu Gly Ser Val Pro Glu Asn Cys
 290 295 300

Asp Leu Arg Leu Cys Ala Leu Asp Thr Asp Asp Gly Ala Ser Thr Thr
 305 310 315 320

Ser Ser Ser Glu Ser Leu
 325

<210> 10

<211> 2447

<212> DNA

<213> Mus musculus

<400> 10

gcaggggcggg tgagagcgcc gtgaaagccg cggAACGCCG tgcacccctcg cgactctact 60
 acggcaagct agtccggacg ggtcgctgtc cccgcgcgccc accagccctt ggtgaaacgaa 120
 caggggagcgt cgggtttccc cagcacccgccc ctgcgagact caaaaacagcc acaccgc当地 180
 gcgagccctcg ggccggaaagga ggccggagctt caggccggccc cgcctccgcg gaaggataca 240
 catctccgtg gtccaaaacc ccggggcgag gcggccggggg cgtgtgagct gctcggccag 300
 ctgcgtctta cgcgtttcg cgcggccacc gggcaactgc gccgcgcggc tgccccgctg 360
 agcgtcggc ctcggggccg tggatccgc cgcgtgtct gcggtcagga agaccgc当地 420
 cccgcgtcct tgccggacgg gtcagaggcg gcacccgcacg cgaggccacc cgcgtatgc当地 480
 ctgtccaagt tcggctccct ggccgacctc tgccggcctg gcggcgttggc ccacccccc 540
 gtgaagatcc tacagccagc caaggctgac aaggagagct tcgagaaggt gtaccaggtg 600
 ggcgcgtc tggcagccgg cggcttcggc acggctcaacg cggcagccg catgc当地 660
 ggactccccc tggctgtgaa gcacgtggg aaggagccgg tgaccggatg gggcagtc当地 720
 ggcggagatgg ccgtccccct ggaggtggg ctgctgc当地 aggtggccgc ggc当地 780
 ggcgc当地 cc当地 tcatccgtt gctggactgg ttccggccgc cc当地 gggctt cttgttggg 840
 ctggagccgac cc当地 gagccggc acaggaccc tc当地 gacttca tcactgaacg aggccccc当地 900
 gacgagccgc tggcgc当地 cttctcgcc caggctgtcg cc当地 ctgtgc当地 gactgc当地 960
 aattgtgggg tc当地 tgcaccg cgacatcaag gacgagaacc tgctgggatg cctgc当地 ctgc当地 1020
 ggagagatgtg agctcatcg cttcgctcg ggc当地 cgggtgc tcaaggacac ggtctacact 1080
 gactttgatg gcacccctgt gtacagcccc cc当地 aggtggatg tccgatatac cc当地 atatcac 1140
 gggc当地 ctgc当地 cc当地 ctgtgtg gtctctgggt gtactgtct acgacatggt gtgtggggac 1200
 attccctttg agcaggatgtg ggagatcttg cggccaggc tctttccg gaggagggtc 1260
 tccccagatgg cccaggatgtg tattggatgg tgc当地 ctcc tgaggccctc agagaggccc 1320
 tccctggacc aaattgtctcg ccacccctgg atgctggggat cagaggggag cttccaggag 1380
 aactgtgacc ttccggcttg tgcccttggat actgacgacg gagccaggatc cacttccaggc 1440
 agtggagatgtg tgc当地 gaggaggc agaagggggcc tgggctcgcc ctagccaggc ctctccc当地 1500
 attgaacact ttctgc当地 ggatgtctcg gcaaaaaggc tgacccctgat cccctggatg 1560
 cctttctcg cggccaccggg cctgtttctt ttgc当地 tggatg tgc当地 ttttgg aacgctgc当地 1620
 cacaggccct gggtttctt gagctttctt gtccaaaggat ggctgaggcc taaggcaaggt 1680
 cctgc当地 ctggatactt gaaccaggaga tcccgaccct gctgc当地 ccat ctcaggaggc 1740
 agccttc当地 ctgc当地 accaaggatgtg tttgacatgg agcgc当地 ctgc当地 ggtgcccacc tccaaaccctc 1800
 cagtc当地 ctgc当地 gtgttcatgt gggcatgtct gc当地 aaggccaa tgcaacgctg ggccactgt 1860
 gccc当地 ctgc当地 ctcccccggca cggccaggct cc当地 cagccaa cctaaggctg ccaccacgt 1920
 ctcttattta tggatgtatcc accctggagg ggc当地 cccccc cctgc当地 tgggg 1980
 tttaatttat ttgc当地 gaggt tc当地 tccccaaggc aaccaccc tc当地 caggccccc tgggtgtg 2040
 aaagtcaaattt gtc当地 ctgttg agtccacaga cccccc当地 ctgc当地 cctggaggag 2100

ttcccccaacc cccgtgtttg cgggaggaag catttgtaca gtggctaatt taaggggagt 2160
 gggagacccct gtacccctga gcactctgcg ctggggaggg gtttaaatta ttgaccttgc 2220
 acagtctgct tgcgtggctct gaaagctggg gtgggggac agagtctcaa gcccttaatt 2280
 tatttagca gctgtgttgc tgtgaccctg gtgtgactaa gcatcagggg tggggttgta 2340
 taagttcaaa agtgtgaaat gtctgaagat catattttt atacaggtat ttcaattaaa 2400
 tgtttggta tataatggaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa 2447

<210> 11
<211> 326
<212> PRT
<213> Mus musculus

<400> 11
Met Leu Leu Ser Lys Phe Gly Ser Leu Ala His Leu Cys Gly Pro Gly
1 5 10 15
Gly Val Asp His Leu Pro Val Lys Ile Leu Gln Pro Ala Lys Ala Asp
20 25 30
Lys Glu Ser Phe Glu Lys Val Tyr Gln Val Gly Ala Val Leu Gly Ser
35 40 45
Gly Gly Phe Gly Thr Val Tyr Ala Gly Ser Arg Ile Ala Asp Gly Leu
50 55 60
Pro Val Ala Val Lys His Val Val Lys Glu Arg Val Thr Glu Trp Gly
65 70 75 80
Ser Leu Gly Gly Val Ala Val Pro Leu Glu Val Val Leu Leu Arg Lys
85 90 95
Val Gly Ala Ala Gly Gly Ala Arg Gly Val Ile Arg Leu Leu Asp Trp
100 105 110
Phe Glu Arg Pro Asp Gly Phe Leu Leu Val Leu Glu Arg Pro Glu Pro
115 120 125
Ala Gln Asp Leu Phe Asp Phe Ile Thr Glu Arg Gly Ala Leu Asp Glu
130 135 140
Pro Leu Ala Arg Arg Phe Phe Ala Gln Val Leu Ala Ala Val Arg His
145 150 155 160
Cys His Asn Cys Gly Val Val His Arg Asp Ile Lys Asp Glu Asn Leu
165 170 175
Leu Val Asp Leu Arg Ser Gly Glu Leu Lys Leu Ile Asp Phe Gly Ser
180 185 190
Gly Ala Val Leu Lys Asp Thr Val Tyr Thr Asp Phe Asp Gly Thr Arg
195 200 205
Val Tyr Ser Pro Pro Glu Trp Ile Arg Tyr His Arg Tyr His Gly Arg
210 215 220

Ser Ala Thr Val Trp Ser Leu Gly Val Leu Leu Tyr Asp Met Val Cys
225 230 235 240
Gly Asp Ile Pro Phe Glu Gln Asp Glu Glu Ile Leu Arg Gly Arg Leu
245 250 255
Phe Phe Arg Arg Arg Val Ser Pro Glu Cys Gln Gln Leu Ile Glu Trp
260 265 270
Cys Leu Ser Leu Arg Pro Ser Glu Arg Pro Ser Leu Asp Gln Ile Ala
275 280 285
Ala His Pro Trp Met Leu Gly Thr Glu Gly Ser Val Pro Glu Asn Cys
290 295 300
Asp Leu Arg Leu Cys Ala Leu Asp Thr Asp Asp Gly Ala Ser Thr Thr
305 310 315 320
Ser Ser Ser Glu Ser Leu
325