Trường Đại học Khoa học Tự nhiên Khoa Công nghệ Thông tin

TÀI LIỆU LÝ THUYẾT TRÍ TUỆ NHÂN TẠO

<u>Chủ đề 5</u> LOGIC MỆNH ĐỀ

Giảng viên: ThS. Vũ Thanh Hưng

Email: vthung@fit.hcmus.edu.vn

Biên soạn: ThS. Nguyễn Ngọc Thảo

HKIV2011-2012

Mở đầu

 Cho trước tam giác vuông ABC được xác định bởi hai thông số bất kì:

- Hai cạnh bên
- Cạnh bên và cạnh huyền
- Cạnh huyền và góc
- Một góc và một cạnh bên
- Chiều cao và một góc.
- Trung tuyến cạnh huyền và một góc
- V. V....

- Cạnh huyền
- Cạnh bên còn lại
- Góc còn lại
- V.V...

Ví dụ I: Nhập b và c → tính h

Ví dụ 2: Nhập b và c \rightarrow tính β

Ví dụ 3: Nhập b và h → tính m

Ví dụ 4: Nhập b và c → tính m

V.V....

b

M

H a

Mở đầu

Công thức mối quan hệ giữa các thành phần trong tam giác vuông

$$(1) \quad a^2 = b^2 + c^2$$

(2)
$$a = 2m$$

(3)
$$\frac{1}{h^2} = \frac{1}{b^2} + \frac{1}{c^2}$$
 (4) $\sin(\beta) = \frac{b}{a}$

(4)
$$\sin(\beta) = \frac{b}{a}$$

$$(5) tg(\beta) = \frac{b}{c}$$

NỘI DUNG

- Giới thiệu Logic
- Giới thiệu Logic mệnh đề
 - Cú pháp và ngữ nghĩa
- Suy dẫn và chứng minh trên Logic mệnh đề
 - Bài toán suy dẫn
 - Các quy tắc suy diễn
- Tài liệu tham khảo

GIỚITHIỆU LOGIC

GIỚI THIỆU LOGIC

- Logic là ngành khoa học nghiên cứu về cách thức suy luận (đúng) và các ứng dụng của nó.
- Cần một công cụ để biểu diễn và sử dụng tri thức của con người
- Logic: "khoa học về lập luận, chứng minh, suy nghĩ hay suy diễn"
- Sử dụng logic làm một công cụ để biểu diễn và xử lý tri thức

GIỚI THIỆU LOGIC

- Cú pháp Định nghĩa thế nào là biểu thức hợp lệ
- Ngữ nghĩa Ý nghĩa của biểu thức hợp lệ
- Hệ chứng minh Cách xử lý các biểu thức (có cú pháp) để có được những biểu thức (có cú pháp) khác nhằm cung cấp biết thông tin mới.

GIỚI THIỆU LOGIC

- Chứng minh để làm gì?
 - Từ các quan sát ⇒ kết luận
 - Trạng thái hiện tại & hành động ⇒ thuộc tính của trạng thái kế tiếp
- Hai loại logic :
 - logic mệnh đề (đơn giản)
 - logic vị từ (phức tạp hơn)

GIỚI THIỆU LOGIC MỆNH ĐỀ

Mệnh đề

- Biểu diễn các phát biểu dùng mệnh đề
- Mệnh đề là một câu hoặc đúng hoặc sai.
- Ví dụ:
 - Hà Nội là thủ đô của Việt Nam
 - Tp Hồ Chí Minh là thủ đô của Việt Nam
 - Ngày 30/4/2012 trời nắng
 - Nếu lương không tăng trong tháng này thì bỏ việc.
 - · 2 = 4

Mệnh đề

- Các trường hợp không phải mệnh đề
 - Bạn nên học bài đi.
 - Có điểm Kĩ Thuật Lập Trình chưa nhỉ?
 - Bức tranh này thật là đẹp!
- → không biết TRUE hay FALSE

Biến mệnh đề

- Dùng để kí hiệu mệnh đề. Nhận một trong hai giá trị TRUE hoặc FALSE.
- Do đó các mệnh đề có thể được biểu diễn:
- Kí hiệu : A, B, C ...P, Q, Z.

Biến mệnh đề

- Ví dụ 1: Hà Nội là thủ đô của Việt Nam
 - Đặt: P = "Hà Nội là thủ đô của Việt Nam"
 - Phát biểu trên được biểu diễn:

P

- Ví dụ 2: Nếu lương không tăng trong tháng này thì bỏ việc.
 - Đặt: P = "Lương tăng trong tháng này"
 - Đặt: Q = "Bỏ việc"
 - Phát biểu trên được biểu diễn:

$$\neg P \Rightarrow Q$$

TOÁN TỬ

- Cho P và Q là hai mệnh đề:
 - Phép phủ định: ¬P
 - Phép nối liền (và) : P ∧ Q
 - Phép nối rời (hay): P v Q
 - Phép kéo theo: P ⇒ Q
 - Phép tương đương: P ⇔ Q

QUI TẮC BIỂU DIỄN ⇒, ⇔

- $\alpha \Rightarrow \beta \equiv \neg \alpha \lor \beta$ (điều kiện, kéo theo) tiền đề \Rightarrow kết luận
- $\alpha \Leftrightarrow \beta \equiv (\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$ (tương đương)

ĐỘ ƯU TIÊN TOÁN TỬ

Cao nhất

A∨B∧C	A ∨ (B ∧ C)
$A \land B \Rightarrow C \lor D$	$(A \land B) \Rightarrow (C \lor D)$
$A \Rightarrow B \lor C \Leftrightarrow D$	$(A \Longrightarrow (B \lor C)) \Leftrightarrow D$

- Thấp nhất
- Luật ưu tiên cho phép các dạng viết tắt câu, nhưng chính thức chỉ có dạng đầy đủ dấu ngoặc mới hợp lệ.
- Các dạng nhập nhằng về cú pháp được cho phép viết tắt chỉ khi chúng tương đương ngữ nghĩa.
 - $A \wedge B \wedge C$ tương đương với $(A \wedge B) \wedge C$ và $A \wedge (B \wedge C)$

Câu (sentence)

- Có thể là một mệnh đề hoặc mệnh đề phức hợp
 - Ví dụ:
 - True //Mệnh đề luôn đúng
 - False //Mệnh đề luôn sai
 - P, Q, R, A, B, v.v...
 - $\neg P, P \land Q, P \lor Q, P \Rightarrow Q$
- Nếu α, β là các câu thì ¬α, α ∧ β, α ∨ β, α
 ⇒ β, α ⇔ β cũng là các câu

BẢNG CHÂN TRỊ

 Bảng chân trị: Cho nghĩa của câu ứng với sự kết hợp chân trị (True/False) của biến mệnh đề trong câu.

Ví dụ:

Câu: P

P f t

∘ Câu: B ∧ C

В	С	B∧C
F	F	F
F	Т	F
Т	F	F
Т	Т	Т

BẢNG CHÂN TR!

P	Q	$\neg P$	P∧Q	P _V Q	P⇒Q	$\mathbf{Q} \Rightarrow \mathbf{P}$	P⇔Q
F	F	Т	F	F	Т	Т	Т
F	Т	Т	F	Т	Т	F	F
Т	F	F	F	Т	F	Т	F
Т	Т	F	Т	Т	Т	Т	Т

NGỮ NGHĨA LOGIC MỆNH ĐỀ

- Nghĩa của một câu là một chân trị {t, f}.
- Thể hiện là việc gán chân trị cho các biến mệnh đề
 - holds(α,i) [câu α là t trong thể hiện i]
 - [câu α đúng trong thể hiện i]
 - fails(α,i) [câu α là f trong thể hiện i]
 - [câu α sai trong thể hiện i]
- Ví dụ: Câu B ∧ C có 4 thể hiện i:
 - $i = (B = f, C = f) \rightarrow fails(\alpha, i)$
 - $i = (B = f, C = t) \rightarrow fails(\alpha, i)$
 - $i = (B = t, C = f) \rightarrow fails(\alpha, i)$
 - $i = (B = t, C = t) \rightarrow holds(\alpha, i)$

В	С	B∧C
F	F	F
F	Т	F
Т	F	F
Т	Т	Т

CÁC LUẬT NGỮ NGHĨA

- holds(<u>true</u>, *i*) với mọi i
 - Câu: true đúng với mọi i
- fails(<u>false</u>, i) với mọi i
 - Câu: false sai với mọi i
- holds($\neg \alpha$, *i*) nếu và chỉ nếu (*iff*) fails(α , *i*)
 - Câu ¬α đúng với mọi i nếu và chỉ nếu α sai vói mọi i
- holds(α∧β, i) iff holds(α,i) và (nối liền) holds(β,i)
 - Câu α β đúng với mọi i nếu và chỉ nếu α đúng với mọi i và
 β đúng với mọi i
- holds(α∨β, i) iff holds(α,i) hay (nối rời) holds(β,i)
 - Câu α ∨ β đúng với mọi i nếu và chỉ nếu α đúng với mọi i hay β đúng với mọi I

CÁC LUẬT NGỮ NGHĨA

- Thể hiện i dưới dạng bảng tra, P là biến mệnh đề:
 - holds(P, i) iff i(P) = t
 - Câu (biến mệnh đề) P đúng với mọi i nếu và chỉ nếu P là t với mọi i
 - fails(P, i) iff i(P) = f
 - Câu (biến mệnh đề) P sai với mọi i nếu và chỉ nếu P là f với mọi i

- Một câu là hợp lệ nếu và chỉ nếu chân trị của nó là
 t trong tất cả thể hiện
 - Câu hợp lệ: true, ¬false, P ∨ ¬P

P	$\neg P$	$P \vee \neg P$
F	Т	Т
Т	F	Т

- Một câu là thỏa mãn được nếu và chỉ nếu chân trị của nó là t trong ít nhất một thể hiện
 - Câu thỏa mãn được: P, true, ¬P
 - Ví dụ: Câu P
 - Khi i = {P = T} thì câu trên đúng → đây là câu thảo mãn được

- Một câu là không thỏa mãn được nếu và chỉ nếu chân trị của nó là f trong tất cả thể hiện
 - Câu không thỏa mãn được: P ∧ ¬P, <u>false</u>, ¬true

 Tất cả các câu trong logic mệnh đề đều quyết định được.

Câu	Hợp lệ?	Thể hiện làm cho chân trị của câu =
smoke ⇒ smoke	hợp lệ	
smoke ∨ ¬smoke		
smoke \Rightarrow fire	thỏa mãn được, nhưng không hợp lệ	smoke = t, fire = f
$s\Rightarrowfi\Rightarrow(\negs\Rightarrow\negfi)$	thỏa mãn được, nhưng không hợp lệ	$s=f, fi=t$ $(s \Rightarrow fi) = t,$ $(\neg s \Rightarrow \neg fi) = f$
phản chứng)	
$s \Rightarrow fi \Rightarrow (\neg fi \Rightarrow \neg s)$	hợp lệ	

TÍNH THỎA MÃN ĐƯỢC

- Cho trước một câu S, cố gắng tìm một thể hiện i sao cho holds(S, i).
- Tương tự việc tìm một phép gán các giá trị cho các biến sao cho các ràng buộc thỏa.
- Giải pháp:
 - Phương pháp vét cạn: liệt kê tất cả các thể hiện và kiểm tra.
 - Các phương pháp tốt hơn:
 - tìm kiếm heuristic
 - lan truyền ràng buộc
 - tìm kiếm ngẫu nhiên

- Giả sử ta biết rằng:
 - Nếu hôm nay trời nắng, thì Tomas sẽ vui vẻ
 Nếu Tomas vui vẻ, bài giảng sẽ tốt
 - Hôm nay trời nắng
- Ta có thể kết luận rằng bài giảng sẽ tốt?
- Biểu diễn bằng logic mệnh đề
 - Gọi S = Hôm nay trời nắng, H = Tomas vui vẻ, G = Bài giảng tốt
 - $(S \Rightarrow H), (H \Rightarrow G), (S)$
 - (G) ?

Với 3 biến, ta có tất cả 8 thể hiện có thể có

S	Н	G
Т	Т	Т
Т	Т	F
Т	F	Т
Т	F	F
F	Т	Т
F	Т	F
F	F	Т
F	F	F

 Trong đó, chỉ có một thể hiện thỏa tất cả các câu trong cơ sở tri thức: S = true, H = true, G = true

S	Н	G	$S \Rightarrow H$	$H\RightarrowG$	S
Т	Т	Τ	Т	Т	Т
Т	Т	F	Т	F	Т
Т	F	Т	F	Т	Т
Т	F	F	F	Т	Т
F	Т	Т	Т	Т	F
F	Т	F	Т	F	F
F	F	Т	Т	Т	F
F	F	F	Т	Т	F

Và G cũng đúng trong thể hiện đó.

L	S	Н	G	$S \Rightarrow H$	$H\Rightarrow G$	S	G
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	Т	F	Т	F	Т	F
Т	Т	F	Т	F	Т	Т	Т
Т	Т	F	F	F	Т	Т	F
Т	F	Т	Т	Т	Т	F	Т
Т	F	Т	F	Т	F	F	F
Т	F	F	Т	Т	Т	F	Т
Т	F	F	F	Т	Т	F	F
F	Т	Т	Т	Т	Т	Т	Т
F	Т	Т	F	Т	F	Т	F

- Giả sử ta thêm biến Leslie vui vẻ (L)
- Có 2 thể hiện thỏa KB
- Và chúng cũng thỏa G

- Giả sử ta thêm biến Leslie vui vẻ (L)
- Ta biết rằng:
 - Leslie vui vė
 - Nếu hôm nay trời nắng, thì Tomas sẽ vui vẻ
 - Nếu Tomas vui vẻ, bài giảng sẽ tốt
 - Hôm nay trời nắng
- Ta có thể kết luận rằng bài giảng sẽ tốt?
- Biểu diễn bằng logic mệnh đề
 - $(S \Rightarrow H)$, $(H \Rightarrow G)$, (S), (L)
 - (G) ?

L	S	Н	G	$S \Rightarrow H$	$H\RightarrowG$	S	G
Т	Т	Т	Τ	Т	Т	Т	Т
Т	Т	Т	F	Т	F	Т	F
T	Т	F	Т	F	T	T	Т
T	Т	F	F	F			F
Т	F	T	T	T	toán tôn	g z	
T	F	Т	F	Bal	at: Suy di		F
T	F	F	T	qu		F	Т
T	F	F	F	Т	T	F	F
F	Т	Т	Т	Т	Т	Т	Т
F	Т	Т	F	Т	F	Т	F

- Giả sử ta thêm biến Leslie vui vẻ (L)
- Có 2 thể hiện thỏa KB
- Và chúng cũng thỏa G

SUY DÂN VÀ CHỨNG MINH TRÊN LOGIC MỆNH ĐỀ

SUY DÂN (ENTAILMENT)

- Một cơ sở tri thức (KB) suy dẫn (entails) một câu α nếu và chỉ nếu mọi thể hiện làm cho KB đúng cũng làm cho α đúng.
- Ký hiệu: KB | α

SUY DẪN BẰNG LIỆT KÊ

- Liệt kê tất cả thể hiện. Chọn những thể hiện làm cho mọi thành phần của KB là đúng.
- Kiểm tra xem α có đúng trong tất cả các thể hiện này không.

SUY DẪN BẰNG LIỆT KÊ

- Cho KB: P⇒Q
- Câu α: ¬ P ∨ Q
- $KB \models \alpha$ (KB có suy dẫn ra α hay không?)

Р	Q	KB: P⇒Q
F	F	Т
F	Т	Т
Т	F	F
Т	Т	Т

P	Q	¬P	α : $\neg P \lor Q$
F	F	Т	Т
F	Т	Т	Т
Т	F	F	F
Т	Т	F	Т

- Tập thể hiện làm KB đúng (thể hiện 1, 2, 4) là tập con của tập thể hiện làm α đúng (thể hiện 1, 2, 4) nên
- Do đó KB = α

SUY DẪN BẰNG LIỆT KÊ

- Có quá nhiều thể hiện!!!
- Với n biến, độ phức tạp thời gian là O(2ⁿ), độ phức tạp không gian là O(n).

SUY DẪN VÀ CHỨNG MINH

 Chứng minh là cách kiểm tra xem một KB có suy dẫn một câu α hay không mà không cần liệt kê tất cả các thể hiện có thể.

SUY DẪN VÀ CHỨNG MINH

- Một chứng minh là một chuỗi các câu
- Các câu đầu tiên là các tiền đề (KB)
- Sau đó, ta có thể viết được dòng kế tiếp là kết quả của việc áp dụng một luật suy diễn lên dòng trước.
- Khi α xuất hiện trên dòng, ta đã chứng minh
 α từ KB

SUY DẪN VÀ CHỨNG MINH

- Nếu các luật suy diễn là đúng, thì bất kỳ α có thể chứng minh từ KB cũng suy dẫn được bởi KB
- Nếu các luật suy diễn là đủ, thì bất kỳ α nào có thể được suy dẫn bởi KB cũng có thể được chứng minh từ KB

Luật suy diễn là đúng

Tập α suy dẫn

Tập α chứng minh Luật suy diễn là đủ

Tập α chứng minh = Tập α suy dẫn

LUẬT SUY DIỄN TỰ NHIÊN

Một số luật suy diễn tự nhiên

$$\alpha \Rightarrow \beta$$
 α

β

Modus Ponens

$$\alpha \Rightarrow \beta$$

$$\frac{-\beta}{-\alpha}$$

Modus Tolens

 $\alpha \wedge \beta$

And-Introduction

$$\alpha \wedge \beta$$

α

And-Elimination

Bước	Công thức	Nguồn gốc
1	$P \wedge Q$	Cho trước
2	$P \Rightarrow R$	Cho trước
3	$Q \wedge R \Rightarrow S$	Cho trước

Bước	Công thức	Nguồn gốc
1	$P \wedge Q$	Cho trước
2	$P \Rightarrow R$	Cho trước
3	$Q \wedge R \Rightarrow S$	Cho trước
4	Р	1 And-Elim

α ^ β
α
And-

Bước	Công thức	Nguồn gốc
1	$P \wedge Q$	Cho trước
2	$P \Rightarrow R$	Cho trước
3	$Q \wedge R \Rightarrow S$	Cho trước
4	Р	1 And-Elim
5	R	4,2 Modus Ponens

$\alpha \Rightarrow \beta$
α → ρ
β
Modus Ponens

Chứng minh S

Bước	Công thức	Nguồn gốc
1	$P \wedge Q$	Cho trước
2	$P \Rightarrow R$	Cho trước
3	$Q \wedge R \Rightarrow S$	Cho trước
4	Р	1 And-Elim
5	R	4,2 Modus Ponens
6	Q	1 And-Elim

 $\alpha \wedge \beta$

α

And-Elimination

Chứng minh S

Bước	Công thức	Nguồn gốc
1	$P \wedge Q$	Cho trước
2	$P \Rightarrow R$	Cho trước
3	$Q \wedge R \Rightarrow S$	Cho trước
4	Р	1 And-Elim
5	R	4,2 Modus Ponens
6	Q	1 And-Elim
7	$Q \wedge R$	5,6 And-Intro

α
β
$\alpha \wedge \beta$
And-

Introduction

Bước	Công thức	Nguồn gốc
1	$P \wedge Q$	Cho trước
2	$P \Rightarrow R$	Cho trước
3	$Q \wedge R \Rightarrow S$	Cho trước
4	Р	1 And-Elim
5	R	4,2 Modus Ponens
6	Q	1 And-Elim
7	Q ^ R	5,6 And-Intro
8	S	3,7 Modus Ponens

$\alpha \Rightarrow \beta$
α
β
Modus
Ponens

Phát biểu

(1)
$$a^2 = b^2 + c^2$$

Phát biểu: Nếu có b và có c thì có a

$$(1.1) \quad b = \sqrt{a^2 - c^2}$$

Phát biểu: Nếu có a và có c thì có b

$$(1.2) c = \sqrt{a^2 - b^2}$$

Phát biểu: Nếu có a và có b thì có c

(2)
$$a = 2m$$

Phát biểu: Nếu có a thì có m

$$(2.1) m=a/2$$

Phát biểu: Nếu có m thì có a

Đặt:

- a: "có a"
- b: "có b"
- C: "**có c**"
- m: "có m"
- h: "có h "
- · β: "có β"
- 0

Phát biểu: Nếu có b và có c thì có a

Phát biểu: Nếu có a và có c thì có b

Phát biểu: Nếu có a và có b thì có c

Phát biểu: Nếu có a thì có m

Phát biểu: Nếu có m thì có a

KB:

 $b \wedge c \Rightarrow a$

 $a \wedge C \Rightarrow b$

 $a \wedge b \Rightarrow c$

 $a \Rightarrow m$

 $m \Rightarrow a$

Ví dụ 4: Nhập b và c → tính m

KB:

$$b \wedge c \Rightarrow a$$

$$a \wedge c \Rightarrow b$$

$$a \wedge b \Rightarrow c$$

$$a \Rightarrow m$$

$$m \Rightarrow a \\$$

KB:

$$b \wedge c \Rightarrow a$$

$$a \wedge C \Rightarrow b$$

$$a \wedge b \Rightarrow c$$

$$a \Rightarrow m$$

$$m \Rightarrow a$$

b

C

Ví dụ 4: Nhập b và c → tính m

Suy luận:

```
(1) b \wedge c \Rightarrow a

(2) a \wedge c \Rightarrow b

(3) a \wedge b \Rightarrow c

(4) a \Rightarrow m

(5) m \Rightarrow a

(6) b

(7) c

(8) b \wedge c // 6, 7, And-Introduction

(9) a // 8, I Modus Ponens

(10) m //4, 9 Modus Ponens
```

 Vì mỗi mệnh đề trong KB đều ứng với mỗi công thức do đó có thể tính toán giá trị a và m dễ dàng.

Ví dụ 5: Nhập b và c → tính m

Suy luận:

```
(I) b \wedge c \Rightarrow a
(2) a \wedge c \Rightarrow b
(3) a \wedge b \Rightarrow c
                                                                   \alpha \Rightarrow \beta
(4) a \wedge c \Rightarrow t
                                                                       α
(5) a \Rightarrow m
(6) m \Rightarrow a
                                                                       β
(7) b
                                                                   Modus
(8) c
                                                                   Ponens
(9) b \wedge c \parallel 7, 8, And-Introduction
(10) a // 9,1 Modus Ponens
(11) a \wedge c // 10, 8, And-Introduction
(12) t // 11,4 Modus Ponens
(13) m // 5, 10, Modus Ponens
```

 Vì mỗi mệnh đề trong KB đều ứng với mỗi công thức do đó có thể tính toán giá trị a và m dễ dàng.

HỆ THỐNG SUY DIỄN TỰ NHIÊN

- Có nhiều hệ thống suy diễn tự nhiên; chúng thường là các "chương trình kiểm tra chứng minh", đúng nhưng không đủ
- Suy diễn tự nhiên dùng nhiều luật suy diễn gây hệ số phân nhánh lớn trong việc tìm một chứng minh.
- Thông thường, ta cần dùng "chứng minh theo trường hợp" thậm chí còn phân nhánh nhiều hơn.
 - Ví dụ: cần chứng minh R từ các câu sau

TỔNG KẾT

- Hiểu rõ khái niệm về logic
- Nắm vững cú pháp và ngữ nghĩa của logic mệnh đề, khái niệm suy dẫn và chứng minh.
- Có khả năng áp dụng thành thạo luật suy diễn tự nhiên

TÀI LIỆU THAM KHẢO

- Tài liệu bài giảng môn học
- Chapter 9, 10 MIT OpenCourseWare: http://ocw.mit.edu/
- Chapter 7. S. Russel and P.Norvig, Artificial Intelligence – A Modern Approach. Third Edition. 2010

KÉTTHÚC CHỦ ĐỀ