LA Assignment - 4 - 13/2/25

1. If $A_{n \times n}$ over F, and the evens of A four linearly independent vectors in F, then prove that $A_{n \times n}$ is invertible.

Let E; in Fⁿ be a vector of n elemente in it such that the ith scalar is I and the others are zoro.

Clearly the est of E_i \forall $i \leq n$ is a linearly independent without and also found the basis of F^n , since any vector in F^n can be represented as a linear combination of the vectors E_i \forall i

Let $\overline{\alpha}_1, \overline{\alpha}_2 \cdots \overline{\alpha}_n$ be the now nector of A. lince $\overline{\alpha}_1, \overline{\alpha}_2 \cdots \overline{\alpha}_n$ are n linearly independent nectors, they span the full nector space F_n . Therefore J Bij in F such that

 $E_i = \sum_{j=1}^{\infty} B_{ij} \overline{\alpha}_i$ je E_i is a linear combination of the nector $\overline{\alpha}_i + i$.

If we form a motion B ving Bij's, we get

T = BA E_i is the ideality matrix I.

.. I a motorin B for A et BA = I (=) A is invertible

in A, trebragabaris prosenil are A jo water were at J. ois investible.

$$= \sum_{k=1}^{K} Z_k \overline{y}_k + \sum_{i=1}^{N} (-c_i) \overline{x}_i = 0$$

But eince {\alpha_1, \alpha_2...\alpha_n, \bar{\gamma_1, \bar{\gamma_2}...\bar{\gamma_n, \bar{\gamma_1}, \bar{\gamma_2}...\bar{\gamma_n}} is independent,

$$= \sum_{i=1}^{N} x_i \, \overline{x_i} + \sum_{j=1}^{N} y_j \, \overline{\beta_j} = 0$$

Lince {\alpha_1, \alpha_2 \ldots \alpha_n \bar{\beta}^{\bar{\beta}} \cdots \bar{\beta}^{\bar{\beta}} \text{ is also independent

$$\sum_{i=1}^{N} \chi_{i} \overline{\chi}_{i} + \sum_{j=1}^{N} y_{i} \overline{\beta}_{j}^{i} + \sum_{j=1}^{N} \overline{\chi}_{j} \overline{\chi}_{j}^{i} = 0 \Rightarrow \chi_{i} = 0 \forall i, y_{i} = 0 \forall j, y_{i} =$$

The above set is also a basis in W1+W2 since it is found by the bases of W, and W2

=>
$$\lim_{n \to \infty} (\omega_1 + \omega_2) = n + m + k$$
, in $\lim_{n \to \infty} (\omega_1 + \omega_2)$ is finde

dim	$(\omega_1) =$	n + m	dim (W2) =	n+k,	$\dim (\omega, n \omega_2) =$	n

$$\lim_{n \to \infty} (\omega_1) + \dim_n(\omega_2) = n + m + n + k$$

$$= n + (n + m + k)$$

$$= \dim_n(\omega_1 + \omega_2)$$

$$= \dim_n(\omega_1 + \omega_2)$$

Hence Proud.	