Session 13:

Supervised learning, part 2

Andreas Bjerre-Nielsen

Agenda

- 1. model building
- 2. model selection
 - cross validation
 - tools for selection

Vaaaamos

```
In [18]: import warnings
    from sklearn.exceptions import ConvergenceWarning
    warnings.filterwarnings(action='ignore', category=ConvergenceWarning)

import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd
    import seaborn as sns
```

Recap from yesterday

Stuff about machine learning

- Supervised vs non-supervised (having a target variable or just unlabelled data)
- Supervised types: regression problems vs. classification problems
- Models
 - Perceptron
 - Adaline
 - Logistic regression
 - Linear regression
- We learned about optimization: gradient descent
- How can we say whether a model generalizes:
 - We split data randomly into training and testing data.

Supervised problems (1)

0.0

0.2

0.6

Χ

0.4

What is the tradeoff for making supervised regression models?

1.0

0.8

In [63]: f_bias_var['regression'][2] Out[63]: Underfitting: Balanced model: Overfitting: Linear Non-linear Hyper-sensitive 1.0 1.0 1.0 0.8 0.8 0.8 0.6 0.6 0.6 > 0.4 > 0.4 0.4 0.2 0.2 0.2 0.0 0.0

0.2

0.4

estimated model data generating process

0.6

Χ

0.8

1.0

0.0

0.2

0.4

0.8

0.0

Supervised problems (2)

What was a remedy to overfitting in linear models? How do we measure overfitting?

Regularization

- Too many irrelevant features solved by L1 regularization ~ lasso
- Exploding coefficients solved by L2 regularization ~ ridge

Model building

Model pipelines (1)

Is there a smart way to build ML models?

Yes, we build a pipeline:

- From input (tidy) -> output
- Preprocessing data
 - Standard: adding polynomials, imputation, rescaling
 - Unsupervised learning (not this course)
- Supervised learning

Model pipelines (2)

How does the pipeline look? Is there data leakage?

Model pipelines (3)

What are the advantages of using a pipeline?

- Ensures good practice we only fit on training data.
 - No leakage of data from train to test!
- Much less code!

Applying a model pipeline (1)

What would this look like in Python?

('standardscaler', StandardScaler(copy=True, with mean=True, with std=True))

Applying a model pipeline (2)

Does this remind you of something?

YES!

Method chaining from Pandas

Applying a model pipeline (3)

Let's some load Boston house price data

```
In [23]: from sklearn.datasets import load_boston
boston = load_boston()
# print(boston['DESCR'])
# print('\n'.join(load_boston()['DESCR'].split('\n')[12:26]))
X = boston.data # features
y = boston.target # target
X_train, X_test, y_train, y_test = train_test_split(X, y)
```

Applying a model pipeline (4)

And how do I apply the pipe on the data?

Applying a model pipeline (5)

What would it like look if we did use the pipe..?

The more steps we have, the more code we save.

```
In [10]: poly_trans = PolynomialFeatures()
    scaler = StandardScaler()

# we call both transformations twice on both test and train
    X_train_poly = poly_trans.fit_transform(X_train)
    X_test_poly = poly_trans.transform(X_test)

X_train_prep_alt = scaler.fit_transform(X_train_poly)
    X_test_prep_alt = scaler.transform(X_test_poly)
```

Model selection

Measuring the problem

Does machine learning work out of the box?

- In some cases ML works quite well out of the box.
- Often ML requires making careful choices.
 - Note that automated machine learning packages and services exist.
 - E.g. AutoML this a hot research topic

Which choices are to be made?

- We need to pick model building hyperparameters.
- ullet E.g. λ for Lasso, Ridge.

Model validation (1)

How do we measure our model's performance for different hyperparameters?

Remember we cannot use the test set.

Could we somehow mimick what we do with test data?

- Yes, we can split the remaining non-test data into training and validation data:
 - we train model for various hyperparameters on training data;
 - pick the hyperparameters which performs best on validation data.

Model validation (2)

The non-test data is split into training and validation

Model validation (3)

What would this look like in Python?

```
In [26]: # splitting into development (2/3) and test data (1/3)
X_dev, X_test, y_dev, y_test = train_test_split(X, y, test_size=1/3, random_state=1)
# splitting development into train (1/3) and validation (1/3)
X_train, X_val, y_train, y_val = train_test_split(X_dev, y_dev, test_size=1/2, random_state=1)
```

Model validation (4)

Let's train a linear regression model

Model validation (5)

Let's find the Lasso model which performs best in the validation set

Optimal alpha: 0.01 Validation MSE: 18.421

Model validation (6)

Let's compare the performance of the Lasso vs. Linear Regression

Lasso 12.4 LinReg 21.3

Bias and variance (1)

How do we describe the modelling error?

From Wikipedia (https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff) yesterday:

- model bias: an error from erroneous assumptions in the learning algorithm
 - high bias can cause an algorithm to miss the relevant relations between features and target outputs (underfitting)
- model variance: an error from sensitivity to small fluctuations in the training set
 - high variance can cause an algorithm to model the random noise in the training data, rather than the intended outputs (overfitting).

Bias and variance (2)

So what is overfitting?

Overfitting is: low bias / high variance

- traning our model captures all patterns but we also find some irrelevant
- reacts too much to training sample errors
 - some errors are just noise, and thus we find too many spurious relations
- examples of causes:
 - too much polynomial expansion of variables (PolynomialFeatures)
 - non-linear/logistic without properly tuned hyperparameters:
 - Decision Trees, Support Vector Machines or Neural Networks

Bias and variance (3)

So what is underfitting?

Underfitting is: high bias / low variance

- oversimplification of models, cannot approximate all patterns found
- examples of causes:
 - linear and logistic regression (without polynomial expansion)

Bias and variance (4)

Not so fast.. OLS is unbiased, right?

Yes, OLS is unbiased. But...?

- But .. only by assumption..
 - Requires we know the true form of the model.
 - However, we never know do..

What happens if we introduce regularization?

- Then model is no longer unbiased.
 - (if we assume the model is true)

Smarter validation

Is this approach the smartest way for deciding on choice of hyperparameters?

NO

Our model choice depends a lot on which sample we pick. Could we use more of the data?

Cross validation

The holdout method

How do we got the more out of the data?

We reuse the data in the development set repeatedly

- We test on all the data
- Rotate which parts of data is used for test and train.

Leave-one-out CV

How do we got the most of the data?

The most robust approach

- Each single observation in the training data we use the remaining data to train.
- Makes number of models equal to the number of observations
- Very computing intensive does not scale! LOOCV

K fold method (1)

How do balance computing time vs. overfitting?

We split the sample into K even sized test bins.

• For each test bin k we use the remaining data for training.

Advantages:

- We use all our data for testing.
- Training is done with 100-(100/K) pct. of the data, i.e. 90 pct. for K=10.

K fold method (2)

In K-fold cross validation we average the errors.

K fold method (3)

How would we use K-fold cross validation to select our model?

We compute MSE for every lambda and every fold (nested for loop)

```
In [37]:
         from sklearn.model selection import KFold
         kfolds = KFold(n splits=10)
         folds = list(kfolds.split(X dev, y dev))
         # outer loop: Lambdas
         mseCV = []
         for lambda in lambdas:
             # inner loop: folds
             mseCV = []
             for train idx, val idx in folds:
                 # train model and compute MSE on test fold
                  pipe lassoCV = make pipeline(PolynomialFeatures(degree=3, include bias=True),
                                               StandardScaler(),
                                               Lasso(alpha=lambda , random state=1))
                 X train, y train = X dev[train idx], y dev[train idx]
                 X val, y val = X dev[val idx], y dev[val idx]
                  pipe lassoCV.fit(X train, y train)
                 mseCV .append(mse(pipe lassoCV.predict(X val), y val))
             # store result
             mseCV.append(mseCV )
         # convert to DataFrame
         lambdaCV = pd.DataFrame(mseCV, index=lambdas)
```

K fold method (4)

Training the model with optimal hyperparameters and compare MSE

Lasso 12.4 Lasso CV 12.4 LinReg 21.32

K fold method (5)

What else could we use cross-validation for?

- Getting more evaluations of our model performance.
- We can cross validate at two levels:
 - Outer: we make multiple splits of test and train/dev.
 - Inner: within each train/dev. dataset we make cross validation to choose hyperparameters

Learning curves (1)

What does a balanced model look like?

Learning curves (2)

```
Train Test sample size
40 0.836417 67.617824
50 1.343929 103.111180
60 1.592246 52.207788
```

Learning curves (3)

Out[47]: <matplotlib.legend.Legend at 0x230c5abf7b8>

Learning curves (4)

In [48]: f_learn

Out[48]:

Tools for model selection

Validation curves (1)

lambda
0.017783 17.207944
Name: Validation, dtype: float64

Validation curves (2)

```
In [56]: mse_score.plot(logx=True, logy=True)
```

Out[56]: <matplotlib.axes._subplots.AxesSubplot at 0x23991b08208>

Grid search (1)

How do we search for two or more optimal parameters? (e.g. elastic net)

• Goal: find the optimal parameter combination:

$$\lambda_1^*, \lambda_2^* = rg\min_{\lambda_1, \lambda_2} MSE^{CV}(X_{train}, y_{train})$$

- Option 1: We can loop over the joint grid of parameters.
 - One level for each parameter.
 - Caveats:
- Option 2: sklearn has GridSearchCV has a tool which tests all parameter combinations.

Grid search (2)

How does this look in Python?

- Notation: double underscore between estimator and hyperparameter, e.g. 'est_hyperparam'
- Scoring: negative MSE as we're maximizing the score ~ minimize MSE.

Grid search (3)

What does the grid search yield?

```
In [46]: # models['ElasicNetCV'] = gs.fit(X_train, y_train)
    for name, model in models.items():
        score = mse(model.predict(X_test),y_test)
        print(name, round(score, 2))
    print()
    print('CV params:', gs.best_params_)

Lasso 12.4
    Lasso CV 12.4
    LinReg 21.32
    ElasicNetCV 12.17

CV params: {'elasticnet__alpha': 0.011989685006378818, 'elasticnet__l1_ratio': 0.7777
        77777777777}
```

Grid search (4)

What if we have 10,000 parameter combinations?

- Option 1: you buy a cluster on Amazon, learn how to parallelize across computers.
- Option 2: you drop some of the parameter values
- Option 3: RandomizedSearchCV searches a subset of the combinations.

Miscellanous

How do we get the coefficient from the models?

The end

Return to agenda