AMENDMENTS TO THE SPECIFICATION:

Please delete paragraph [0001] in its entirety.

Please replace paragraph [0005] with the following new paragraph:

[0005] General chemical compositions for groups of oxide materials with simple perovskite structures are $(A_{1-x}M_x)BO_3$, $(A_{1-x}M_x)(B'B'')O_3$ or $A(B_{1-x}M_x)O_3$, (where A can be 1⁺, 2⁺ and 3⁺ ions; B can be 5⁺, 4+, 3⁺ ions; B' and B'' can be 2⁺, 3⁺, 4⁺, 5⁺ and 6⁺ ions, M is a magnetic ion dopant). Specific examples are $(A_{1-x}M_x)TiO_3$, $(A_{1-x}M_x)ZrO_3$, $(A_{1-x}M_x)SnO_3$, $(A_{1-x}B_x)HfO_3$, $La(Mo_{1-x}M_x)O_3$, $Sr(Ti_{1-x}M_x)O_3$ where A=Ca, Sr, Ba, Pb, Cd and M= Fe, Ni, Co, Mn with 0<x<0.15 (??????).

Please replace paragraph [0007] with the following new paragraph:

[0007] Figure 2 are <u>illustrates</u> plots of magnetization (μ_B/Fe) measured as a function of magnetic field at a temperature of 300K by SQUID magnetometer for a series of ($Ba_{1-x}Fe_x$)TiO₃ with x =0.01, 0.02, 0.03, 0.05, 0.07, and 0.1.

Please replace paragraph [0008] with the following new paragraph:

[0008] Figure 3 are <u>illustrates</u> plots of magnetization (μ_B /mol) measured as a function of magnetic field at a temperature of 300K by SQUID magnetometer for a series of ($Ba_{0.95}M_{0.05}$)TiO₃ with M=Fe, Co, and Ni.

Please replace paragraph [0009] with the following new paragraph:

[0009] Figure 4 are <u>illustrates</u> plots of magnetization (μ_B /mol) measured as a function of magnetic field at a temperature of 300K by SQUID magnetometer for a series of ($Ca_{0.95}M_{0.05}$)TiO₃ with M=Fe, Co, and Ni.

Please replace paragraph [0010] with the following new paragraph:

[0010] Figure 5 are illustrates plots of magnetization (µ_B/mol) measured as a function of magnetic field at a temperature of 300K by SQUID magnetometer for a series of (Ba_{0.95}Fe_{0.05})BO₃ with B=Ti, Zr, and Hf.

Please replace paragraph [0011] with the following new paragraph:

[0011] Figure 6 are illustrates plots of magnetization (µ_B/mol) measured as a function of magnetic field at a temperature of 300K by SQUID magnetometer for a series of (Ca_{0.95}Fe_{0.05})BO₃ with B=Ti, Zr, and Hf.

Please replace paragraph [0013] with the following new paragraph:

[0013] Figure 8 Figures 8A and 8B depict hysteresis loops of $(Ba_{0.94}Fe_{0.05})TiO_3$ and $(Ca_{0.94}Fe_{0.05})TiO_3$ measured at 5K and 300K by a SQUID magnetometer.

Please replace paragraph [0016] with the following new paragraph:

[0016] The invention includes general chemical compositions of the forms

 $(A_{1-x}M_x)BO_3$ $(A_{1-x}M_x)(B'B'')O_3$ $A(B_{1-x}M_x)O_3$

where A can be 1^+ , 2^+ and 3^+ ions; B can be 5^+ , 4^+ , 3^+ ions; B' and B" can be 2^+ , 3^+ , 4⁺, 5⁺ and 6⁺ ions, M is a magnetic ion dopant such as Fe, Co, Ni and Mn.