PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of

BOWERS, RODERICK W. J., et al.

Divisional Application of

Appln. No.: 08/050,032

Group Art Unit: Not Assigned

Confirmation No.:

Examiner: Not Assigned

Filed: February 28, 2002

For:

CONTACT LENS MATERIAL

PRELIMINARY AMENDMENT

Commissioner for Patents Washington, D.C. 20231

Sir:

Prior to examination, please amend the above-identified application as follows:

IN THE CLAIMS:

Please cancel claims 1-16 without prejudice or disclaimer.

Please add the following new claims:

CLAIMS

- 17. A contact lens material manufactured from a cross-linked polymer formed by polymer using a mixture of;
 - a) a zwitterionic monomer;
 - b) a non-ionic diluent monomer; and
 - c) a cross-linking monomer which forms cross-linking during the polymerisation reaction.
- 18. A contact lens material according to claim 17 obtained by polymerizing at least 0.2% by weight of said zwitterionic monomer at least 70% by weight of said diluent

Divisional Application of

U.S. Appln. No. 08/050,032

proportions being based on the total weight of monomer.

19. A contact lens material according to claim 17 wherein the zwitterionic monomer has the formula (I):

$$Y - B - X \tag{I}$$

wherein B is a straight or branched alkylene, oxaalkylene or oligooxaalkylene chain or if X contains a carbon-carbon chain between B and the zwitterionic group or if Y contains a terminal carbon atom, a valence bond,

Y is an ethylenically unsaturated polymerizable group selected from:

$$CH_2 = C - C - A - Or$$

wherein

R is hydrogen or a C_1 - C_4 alkyl group;

A is -O- or -NR 1 - where R 1 is hydrogen or a C $_1$ -C $_4$ alkyl group or R 1 is -B-X where B and X are as defined above; and

K is a group -(CH₂)_pOC(O)-, -(CH₂)_pC(O)O-, -(CH₂)_pOC(O)O-, -(CH₂)₂NR², - (CH₂)₂NR²C(O)-, -(CH₂)₂C(O)NR²-, -(CH₂)₂NR²C(O)O-, -(CH₂)₂NR²C(O)O-, - (CH₂)₂OC(O)NR²-, -(CH₂)₂NR²C(O)NR²- (in which the groups R² are the same or different), -(CH₂)₂O-, -(CH₂)₂SO₃-, or, optionally in a combination with B, a valence bond, and p is from 1 to 12 and R² is hydrogen or a C₁-C₄ alkyl group; and

X is a zwitterionic group.

20. A contact lens material according to claim 3 wherein X has the general formula IVB, IVC, IVD, IVE or IVF

wherein a group IVB has the formula

wherein the groups R^6 are the same or different and each is hydrogen or C_{1-4} alkyl and d is from 2 to 4,

the group IVC has the formula

$$-O-P-O(CH_2)_e-N (R^7)_3$$
 (IVC)

wherein the groups R^7 are the same or different and each is hydrogen or C_{1-4} alkyl, and e is 1, 3 or 4;

groups of formula (IVD) have the general formula

$$\begin{array}{c} CH_{2}-O-P-O-(CH_{2})_{f}^{\bigoplus}N(R^{8})_{3} \\ -[O]_{z}-CH & O \\ CH_{2}-O-C-B^{1}-CH_{3} \\ O \end{array} \qquad (IVD)$$

wherein the groups R⁸ are the same or different and each is hydrogen or C₋₁₄ alkyl, B¹ is a valence bond or straight or branched alkylene, oxaalkylene or oligo-oxaalkylene group, f is

Divisional Application of

U.S. Appln. No. 08/050,032

is directly bonded to an oxygen or nitrogen atom and otherwise z is 1; groups of formula (IVE) have the general formula

$$-[O]_{z}-CH_{2}-CH-CH_{2}-O-P-O-(CH_{2})_{g} \xrightarrow{\bigoplus} N(R^{9})_{3}$$

$$O-C-B^{2}-CH_{3}$$

$$O$$

$$O$$

$$O$$

wherein the groups R^9 are the same or different and each is hydrogen or $C_{1\text{--}4}$ alkyl, B^2 is a valence bond or straight or branched alkylene, oxaalkylene or oligo-oxaalkylene group, g is from 1 to 4 and if B is other than a valence bond, z is 1 and if B is a valence bond z is 0 if X is directly bonded to an oxygen or nitrogen atom and otherwise z is 1; and

groups of formula (IVF) have the general formula

wherein the groups R^{10} are the same or different and each is hydrogen or C_{1-4} alkyl, B^3 is a valence bond or a straight or branched alkylene, oxaalkylene or oligo-oxaalkylene group, h is from 1 to 4 if B is other than a valence bond, z is 1 and if B is a valence bond z is 0 if X is directly bonded to an oxygen or nitrogen atom and otherwise z is 1.

21. A contact lens material, according to claim 20 in which the group X is said group IVC.

Divisional Application of

U.S. Appln. No. 08/050,032

monomer is selected from the group consisting of alkane diol di (alk)acrylates, alkane triol tri(alk)acrylates, alkylene di(alk)acrylamides, alkylene tri(alk)acrylamides, divinylbenzene, and trivinylbenzene.

A contact lens material according to claim 19 in which the non-ionic monomer is selected from hydroxy C₁₋₄alkyl(alk)acrylates and C₁₋₁₂alkyl(alk)acrylates.

24. A contact lens material according to claim 1 wherein the zwitterionic monomer has the formula (V):

$$CH_2 = C - C - C - (BB)_{nn} - YY$$
 (V)

wherein BB is a straight or branched C₁-C₆ alkylene chain optionally interrupted by one or more oxygen atoms;

nn is from 1 to 12;

R¹¹ is H or a C₁-C₄ alkyl group; and

YY is a zwitterionic group.

25. A contact lens material according to claim 24 wherein YY is selected from the group consisting of VIB, VIC, VID and VIE:

$$\begin{array}{c}
CH_3 \\
-N \\
CH_2)_3SO_3
\end{array}$$
VIB

$$-O-P-O-(CH2)mm-N(CH3)3$$

$$CH2-O-P-O-(CH2)2-N(CH3)3$$

$$-CH$$

$$C2-O-C-(BB)nn-CH3; and$$

$$-CH_{2}-CH-CH_{2}-O-P-O-(CH_{2})_{2} + N(CH_{3})_{3}$$

$$O-C-(BB)_{nn}-CH_{3}$$
(VIE)

wherein mm is 1 to 4, nn is 1 to 12 and BB is a straight or branched C₁-C₆ alkylene chain optionally interrupted by one or more oxygen atoms.

A contact lens material according to claim 25 in which YY is a group VIC.

A contact lens material according to claim 25 in which the cross-linking monomer which forms cross-links during the polymerization reaction selected from the group consisting of alkane diol di (alk)acrylates, alkane triol tri(alk)acrylates, alkylene di(alk)acrylamides, alkylene tri(alk)acrylamides, divinylbenzene, and trivinylbenzene.

A contact lens material according to claim 24 in which the non-ionic monomer is selected from hydroxy C_{1-4} alkyl(alk)acrylates and C_{1-12} alkyl(alk)acrylates.

Divisional Application of

U.S. Appln. No. 08/050,032

29. A contact lens material according to claim 17 which is a xerogel free of water.

A contact lens formed of a hydrogel comprising a cross-linked polymer and water in an amount from 30 to 80% by weight.

A process for making a contact lens comprising providing individual monomers (a), (b) and (c), forming a blend of monomers by dissolving components (b) and (c) into monomer (a) in the absence of non-polymerisable diluent, removing oxygen from the solution, and polymerising the blend in a contact lens mold to form a contact lens which is a xerogel wherein

- a) is a zwitterionic monomer,
- b) is a nonionic diluent monomer and
- c) is a cross-linking monomer which forms crosslinks during the polymerisation.

A process for forming a contact lens material comprising forming a solution of a blend of monomers (a), (b) and (c) in a non-polymerisable solvent, polymerising the monomer blend in a mold and removing the solvent, wherein

- a) is a zwitterionic monomer,
- b) is a nonionic diluent monomer and
- c) is a cross-linking monomer which forms crosslinks during the polymerisation.

33. A contact lens material manufactured from a cross-linked polymer obtained by polymerizing a mixture consisting essentially of:

zwitteronic monomer of the formula (V):

$$CH_2 = C - C - C - (BB)_{nn} - YY$$
 (V)

Divisional Application of

U.S. Appln. No. 08/050,032

more oxygen atoms;

nn is from 1 to 12;

R¹¹ is H or a C₁-C₄ alkyl group; and

YY is a zwitterionic group which is selected from the group consisting of:

$$-O-P-O-(CH2)mm

O VIC$$

$$-CH_{2}-CH-CH_{2}-O-P-O-(CH_{2})_{2} \xrightarrow{\Phi} N(CH_{3})_{3}$$

$$O-C-(BB)_{nn}-CH_{3}$$
(VIE)

Divisional Application of

U.S. Appln. No. 08/050,032

- ii) a non-ionic diluent monomer; and
- iii) a cross-linking monomer which forms cross-links during the polymerization reaction.
- 34. A contact lens material according to claim 33, in which the diluent monomer is selected from the group consisting of alkyl (alk)acrylates, dialkylamino alkyl (alk)acrylates, alkyl (alk)acrylamides, hydroxyalkyl (alk)acrylates, N-vinyl lactams, styrene, substituted styrene, and mixtures thereof.
- 35. A contact lens material according to claim 34, in which the diluent monomer is selected from the group consisting of vinyl pyrrolidone, 2-hydroxyethylmethacrylate, methylmethacrylate and mixtures thereof.
- 36. A contact lens material according to claim 35 wherein the diluent monomer is 2-hydroxyethylmethacrylate.
- 37. A contact lens material according to claim 35, wherein the diluent monomer is methylmethacrylate.
- 38. A contact lens material according to claim 33, in which the cross-linking monomer is a bifunctional or trifunctional cross-linking agent.
 - A contact lens material according to claim 38, in which the cross-linking monomer is selected from the group consisting of ethyleneglycoldimethacrylate, trimethylolpropane trimethacrylate and N,N'-methylenebisacrylamide.
 - 40! A contact lens material according to claim 33, in which YY is a group of formula (VIC).

The state state of the state of

A contact lens material according to claim 33, wherein the group R¹¹ is hydrogen or methyl.

42. A contact lens material according to claim 33, in which the zwitterionic monomer of the formula V is 2(methacryloyloxy)ethyl-2'-(trimethylammonium)ethyl phosphate inner salt.

43 A contact lens material according to claim 42, in which the diluent monomer is 2-hydroxyethylmethacrylate.

44. A contact lens formed of a hydrogel comprising a cross-linked polymer obtained by polymerizing a mixture consisting essentially of:

i) a zwitteronic monomer of the formula (V):

$$CH_2 = C - C - C - C - (BB)_{nn} - YY$$
 (V)

wherein BB is a straight or branched C₁-C₆ alkylene chain optionally interrupted by one or more oxygen atoms;

nn is from 1 to 12;

R¹¹ is H or a C₁-C₄ alkyl group; and

YY is a zwitterionic group which is selected from the group consisting of:

$$-O - P - O - (CH2)mm N(CH3)3$$
 VIC

$$CH_{2} \longrightarrow O \longrightarrow P \longrightarrow O \longrightarrow (CH_{2})_{2} \xrightarrow{\bigoplus} N(CH_{3})_{3}$$

$$CH \longrightarrow O \longrightarrow O$$

$$C_{2} \longrightarrow C \longrightarrow C \longrightarrow (BB)_{nn} \longrightarrow CH_{3}; \quad and$$

$$O \longrightarrow O \longrightarrow O$$

$$O \longrightarrow O$$

$$-CH_{2}-CH-CH_{2}-O-P-O-(CH_{2})_{2} \stackrel{\textcircled{\tiny }}{=} N(CH_{3})_{3}$$

$$O-C-(BB)_{nn}-CH_{3}$$
(VIE)

wherein mm is 1 to 4, nn is 1 to 12 and BB is a straight or branched C₁-C₆ alkylene chain optionally interrupted by one or more oxygen atoms;

- ii) a non-ionic diluent monomer; and
- iii) a cross-linking monomer which forms cross-links during the polymerization reaction,

Divisional Application of

U.S. Appln. No. 08/050,032

and water in an amount of from 30 to 80% by weight of the hydrogel.

- 45. A contact lens button formed of a xerogel comprising a cross-linked polymer obtained by polymerizing a mixture consisting essentially of:
 - i) a zwitteronic monomer of the formula (V):

$$CH_2 = C - C - C - (BB)_{nn} - YY$$
 (V)

wherein BB is a straight or branched C₁-C₆ alkylene chain optionally interrupted by one or more oxygen atoms;

nn is from 1 to 12;

R¹¹ is H or a C₁-C₄ alkyl group; and

YY is a zwitterionic group which is selected from the group consisting of:

$$-O-P-O-(CH2)mm N(CH3)3 VIC$$

$$\begin{array}{c} CH_2-O-P-O-(CH_2)_2^{\bigoplus}N(CH_3)_3\\ -CH & O \\ \\ C_2-O-C-(BB)_{nn}-CH_3; \end{array} \qquad \text{and} \qquad (VID)$$

$$-CH_{2}-CH-CH_{2}-O-P-O-(CH_{2})_{2}\xrightarrow{\oplus}N(CH_{3})_{3}$$

$$-CH_{2}-CH-CH_{2}-O-P-O-(CH_{2})_{2}\xrightarrow{\oplus}N(CH_{3})_{3}$$

$$-CH_{2}-CH-CH_{2}-O-P-O-(CH_{2})_{2}\xrightarrow{\oplus}N(CH_{3})_{3}$$

$$-CH_{2}-CH-CH_{2}-O-P-O-(CH_{2})_{2}\xrightarrow{\oplus}N(CH_{3})_{3}$$

$$-CH_{2}-CH-CH_{2}-O-P-O-(CH_{2})_{2}\xrightarrow{\oplus}N(CH_{3})_{3}$$

$$-CH_{2}-CH-CH_{2}-O-P-O-(CH_{2})_{2}\xrightarrow{\oplus}N(CH_{3})_{3}$$

$$-CH_{2}-CH-CH_{2}-O-P-O-(CH_{2})_{2}\xrightarrow{\oplus}N(CH_{3})_{3}$$

$$-CH_{2}-CH-CH_{3}$$

$$-CH_{2}-CH-CH_{3}$$

$$-CH_{2}-CH-CH_{3}$$

wherein mm is 1 to 4, nn is 1 to 12 and BB is a straight or branched C₁-C₆ alkylene chain optionally interrupted by one or more oxygen atoms;

- ii) a non-ionic diluent monomer; and
- iii) a cross-linking monomer which forms cross-links during the polymerization reaction,

which is free of water.

46. A contact lens material manufactured from a cross-linked polymer obtained by polymerizing a mixture consisting essentially of:

i) a zwitterionic monomer of formula (I):

$$Y - B - X$$
 (I)

wherein B is a straight or branched alkylene, oxaalkylene or oligo-oxaalkylene chain or if X contains a carbon-carbon chain between B and the zwitterionic group or if K is joined to B via a carbon atom, a valence bond,

Y is an ethylenically unsaturated polymerizable group selected from: wherein:

$$CH_2 = C - C - A - Or$$

wherein:

R is hydrogen or a C₁-C₄ alkyl group;

A is -O- or -NR¹- where R^1 is hydrogen or a C_1 - C_4 alkyl group or R^1 is -B-X where B and X are as defined above; and

K is a group -(CH₂)_pOC(O)-, -(CH₂)_pC(O)O-, -(CH₂)_pOC(O)O-, -(CH₂)₂NR²-, - (CH₂)₂NR²C(O)-, -(CH₂)₂C(O)NR²-, - (CH₂)₂NR²C(O)O-, -(CH₂)₂NR²C(O)O-, - (CH₂)₂OC(O)NR²-, -(CH₂)₂NR₂C(O)NR²- (in which the groups R² are the same or different), -(CH₂)₂O-, -(CH₂)₂SO₃-, or, optionally in a combination with B, a valence bond, and p is from 1 to 12 and R² is hydrogen or a C₁-C₄ alkyl group and

X is selected from the group consisting of groups of formula (IVC):

$$-O - P - O(CH_2)_e - N (R^7)_3$$
 (IVC)

wherein the groups R^7 are the same or different and each is hydrogen or C_{1-4} alkyl, and e is 1, 3 or 4;

groups of formula (IVD):

$$\begin{array}{c|c}
CH_2-O-P-O-(CH_2)_f \stackrel{\bigoplus}{=} N(R^8)_3 \\
-[O]_z-CH & O^- \\
CH_2-O-C-B^1---CH_3
\end{array}$$
(IVD)

Divisional Application of U.S. Appln. No. 08/050,032

wherein the groups R⁸ are the same or different and each is hydrogen or C₋₁₄ alkyl, B¹ is a valence bond or straight or branched alkylene, oxaalkylene or oligo-oxaalkylene group, f is from 1 to 4 and if B is other than a valence bond, z is 1 and if B is a valence bond z is 0 if X is directly bonded to an oxygen or nitrogen atom and otherwise z is 1;

groups of formula (IVE):

$$-[O]_{z}-CH_{2}-CH-CH_{2}-O-P-O-(CH_{2})_{g} \xrightarrow{\bigoplus} N(R^{9})_{3}$$

$$Q-C-B^{2}-CH_{3}$$

$$O$$
(IVE)

wherein the groups R^9 are the same or different and each is hydrogen or $C_{1\text{--}4}$ alkyl, B^2 is a valence bond or straight or branched alkylene, oxaalkylene or oligo-oxaalkylene group, g is from 1 to 4 and if B is other than a valence bond, z is 1 and if B is a valence bond z is 0 if X is directly bonded to an oxygen or nitrogen atom and otherwise z is 1; and

groups of formula (IVF):

wherein the groups R^{10} are the same or different and each is hydrogen or C_{1-4} alkyl, B^3 is a valence bond or a straight or branched alkylene, oxaalkylene or oligo-oxaalkylene group, h is from 1 to 4 if B is other than a valence bond, z is 1 and if B is a valence bond z is 0 if X is directly bonded to an oxygen or nitrogen atom and otherwise z is 1;

- ii) a non-ionic diluent monomer; and
- iii) a cross-linking monomer which forms cross-links during the polymerization reaction.

47. A contact lens material according to claim 46, in which the diluent monomer is selected from the group consisting of alkyl (alk)acrylates, dialkylamino alkyl (alk)acrylates, alkyl (alk)acrylamides hydroxyalkyl (alk)acrylates, N-vinyl lactams, styrene, substituted styrene, and mixtures thereof.

48. A contact lens material according to claim 47, in which the diluent monomer is selected from the group consisting of vinylpyrrolidone, 2-hydroxyethylmethacrylate, methylmethacrylate and mixtures thereof.

49. A contact lens material according to claim 46, in which B is an alkylene group of formula -(CR³₂)_a-, wherein the groups -(CR³₂)- are the same or different, and in each group - (CR³₂)- the groups R³ are the same or different and each group R³ is hydrogen or C₁-C₄ alkyl, and a is from 1 to 12;

an alkoxyalkyl group having 1 to 6 carbon atoms in each alyl moiety;

Divisional Application of U.S. Appln. No. 08/050,032

an oligo-oxaalkylene group of formula $-[(CR^4_2)_bO]_c(CR^4_2)_b$ - where the groups $-(CR^4_2)$ - are the same or different and in each group $-(CR^4_2)$ - the groups R^4 are the same or different and each group R^4 is hydrogen or C_1 - C_4 alkyl, and b is 2 or 3 and c is from 2 to 11,

or if X contains a carbon-carbon chain between B and the center of positive charge, or if K is joined to B via a carbon atom, a valence bond.

- 50. A contact lens material according to claim 46, in which the group X is a group of formula (IVC).
 - 51. A contact lens material polymer according to claim 50, wherein the groups R⁷ are all methyl.
 - 52. A contact lens material according to claim 46, in which cross-linking monomer is a bifunctional or trifunctional cross-linking agent.
 - 53. A contact lens material according to claim 52, in which the cross-linking agent is selected from the group consisting of ethyleneglycoldimethacrylate, trimethylolpropanetrimethacrylate and N,N'-methylenebisacrylamide.
 - A contact lens formed of a hydrogel comprising a cross-linked polymer obtained by polymerizing a mixture consisting essentially of:
 - i) a zwitterionic monomer of formula (I):

Y - B - X (I)

wherein B is a straight or branched alkylene, oxaalkylene or oligo-oxaalkylene chain or if X contains a carbon-carbon chain between B and the zwitterionic group or if K is joined to B via a carbon atom, a valence bond,

Y is an ethylenically unsaturated polymerizable group selected from: wherein:

$$CH_2 = C - C - A - Or$$

wherein:

R is hydrogen or a C₁-C₄ alkyl group;

A is -O- or -NR 1 - where R 1 is hydrogen or a C_1 - C_4 alkyl group or R 1 is -B-X where B and X are as defined above; and

K is a group -(CH₂)_pOC(O)-, -(CH₂)_pC(O)O-, -(CH₂)_pOC(O)O-, -(CH₂)₂NR²-, - (CH₂)₂NR²C(O)-, -(CH₂)₂C(O)NR²-, - (CH₂)₂NR²C(O)O-, -(CH₂)₂NR²C(O)O-, - (CH₂)₂NR₂C(O)NR²-, -(CH₂)₂NR₂C(O)NR²- (in which the groups R² are the same or different), - (CH₂)₂O-, -(CH₂)₂SO₃-, or, optionally in a combination with B, a valence bond, and p is from 1 to 12 and R² is hydrogen or a C₁-C₄ alkyl group and

X is selected from the group consisting of groups of formula (IVC):

$$-O - P - O(CH_2)_e - N (R^7)_3$$
 (IVC)

wherein the groups R^7 are the same or different and each is hydrogen or C_{1-4} alkyl, and e is 1, 3 or 4;

groups of formula (IVD):

$$\begin{array}{c|c}
CH_{2}-O-P-O-(CH_{2})_{f}^{\bigoplus}N(R^{8})_{3} \\
-[O]_{z}-CH & O^{-} \\
CH_{2}-O-C-B^{1}-CH_{3} \\
O
\end{array}$$
(IVD)

wherein the groups R⁸ are the same or different and each is hydrogen or C₋₁₄ alkyl, B¹ is a valence bond or straight or branched alkylene, oxaalkylene or oligo-oxaalkylene group, f is from 1 to 4 and if B is other than a valence bond, z is 1 and if B is a valence bond z is 0 if X is directly bonded to an oxygen or nitrogen atom and otherwise z is 1;

groups of formula (IVE):

$$-[O]_{z}-CH_{2}-CH-CH_{2}-O-P-O-(CH_{2})_{g}\xrightarrow{\bigoplus}N(R^{9})_{3}$$

$$Q-C-B^{2}-CH_{3}$$

$$O$$
(IVE)

wherein the groups R^9 are the same or different and each is hydrogen or C_{1-4} alkyl, B^2 is a valence bond or straight or branched alkylene, oxaalkylene or oligo-oxaalkylene group, g is from 1 to 4 and if B is other than a valence bond, z is 1 and if B is a valence bond z is 0 if X is directly bonded to an oxygen or nitrogen atom and otherwise z is 1; and

groups of formula (IVF):

wherein the groups R^{10} are the same or different and each is hydrogen or C_{1-4} alkyl, B^3 is a valence bond or a straight or branched alkylene, oxaalkylene or oligo-oxaalkylene group, h is from 1 to 4 if B is other than a valence bond, z is 1 and if B is a valence bond z is 0 if X is directly bonded to an oxygen or nitrogen atom and otherwise z is 1;

- ii) a non-ionic diluent monomer; and
- iii) a cross-linking monomer which forms cross-links during the polymerization reaction,

and water in an amount of from 30 to 80% by weight of the hydrogel.

- 55. A contact lens button formed of a xerogel comprising a cross-linked polymer cross-linked polymer obtained by polymerizing a mixture consisting essentially of:
 - i) a zwitterionic monomer of formula (I):

$$Y - B - X \tag{I}$$

wherein B is a straight or branched alkylene, oxaalkylene or oligo-oxaalkylene chain or if X contains a carbon-carbon chain between B and the zwitterionic group or if K is joined to B via a carbon atom, a valence bond,

Y is an ethylenically unsaturated polymerizable group selected from: wherein:

$$CH_2 = C - C - A - Or$$

wherein:

R is hydrogen or a C₁-C₄ alkyl group;

A is -O- or -NR 1 - where R 1 is hydrogen or a C_1 - C_4 alkyl group or R 1 is -B-X where B and X are as defined above; and

K is a group -(CH₂)_pOC(O)-, -(CH₂)_pC(O)O-, -(CH₂)_pOC(O)O-, -(CH₂)₂NR²-, - (CH₂)₂NR²C(O)-, -(CH₂)₂C(O)NR²-, - (CH₂)₂NR²C(O)O-, -(CH₂)₂NR²C(O)O-, - (CH₂)₂OC(O)NR²-, -(CH₂)₂NR₂C(O)NR²- (in which the groups R² are the same or different), - (CH₂)₂O-, -(CH₂)₂SO₃-, or, optionally in a combination with B, a valence bond, and p is from 1 to 12 and R² is hydrogen or a C₁-C₄ alkyl group and X is selected from the group consisting of groups of formula (IVC):

$$-O - P - O(CH_2)_e - N + (R^7)_3$$
 (IVC)

wherein the groups R^7 are the same or different and each is hydrogen or C_{1-4} alkyl, and e is 1, 3 or 4;

groups of formula (IVD):

$$\begin{array}{c|c}
CH_2-O-P-O-(CH_2)_f & \oplus \\
-[O]_z-CH & O^- \\
CH_2-O-C-B^1-CH_3 \\
O
\end{array} (IVD)$$

wherein the groups R⁸ are the same or different and each is hydrogen or C₋₁₄ alkyl, B¹ is a valence bond or straight or branched alkylene, oxaalkylene or oligo-oxaalkylene group, f is from 1 to 4 and if B is other than a valence bond, z is 1 and if B is a valence bond z is 0 if X is directly bonded to an oxygen or nitrogen atom and otherwise z is 1;

groups of formula (IVE):

wherein the groups R^9 are the same or different and each is hydrogen or $C_{1\text{-}4}$ alkyl, B^2 is a valence bond or straight or branched alkylene, oxaalkylene or oligo-oxaalkylene group, g is from 1 to 4 and if B is other than a valence bond, z is 1 and if B is a valence bond z is 0 if X is directly bonded to an oxygen or nitrogen atom and otherwise z is 1; and

groups of formula (IVF):

$$\begin{array}{c} O \\ \\ CH_{3} - B^{3} - C - O - CH_{2} \\ \\ CH - O - P - O - (CH_{2})_{h} N^{\oplus} (R^{10})_{3} \\ \\ - [O]_{z} - CH_{2} \\ O \\ \end{array}$$
 (IVF)

wherein the groups R^{10} are the same or different and each is hydrogen or C_{1-4} alkyl, B^3 is a valence bond or a straight or branched alkylene, oxaalkylene or oligo-oxaalkylene group, h is from 1 to 4 if B is other than a valence bond, z is 1 and if B is a valence bond z is 0 if X is directly bonded to an oxygen or nitrogen atom and otherwise z is 1;

- ii) a non-ionic diluent monomer; and
- iii) a cross-linking monomer which forms cross-links during the polymerization reaction

which is free of water.

REMARKS

Entry and consideration of this Amendment is respectfully requested.

Respectfully submitted,

Registration No. 32,607

SUGHRUE MION, PLLC 2100 Pennsylvania Avenue, N.W. Washington, D.C. 20037-3213

Telephone: (202) 293-7060 Facsimile: (202) 293-7860

Date: February 28, 2002

APPENDIX

<u>VERSION WITH MARKINGS TO SHOW CHANGES MADE</u>

IN THE CLAIMS:

Claims 1-16 are canceled.

Claims 17-55 are added as new claims