

Selected Topics in Visual Recognition using Deep Learning Homework 2 announcement

TA: 楊証琨, Jimmy

Ph.D. student at National Taiwan Universitiy

d08922002@csie.ntu.edu.tw

HW1 Reminder

- Deadline: Nov. 4, 23:59
 - 1. Finish the <u>competition</u> (your ID on the leaderboard)

	Results					
#	User	Entries	Date of Last Entry	Team Name	Accuracy 📤	
1	ChenHsuanTai	1	10/07/21	baseline	0.65579 (1)	

- 1. Upload your reports in PDF format to **E3 system**
- Naming rule: VRDL_HW1_{STUDENT ID}_Report.pdf
- Deduct 3 points if the file naming is wrong

HW2 Timeline

- Deadline: Nov. 25, 23:59
 - 1. Finish the <u>competition</u> (your ID on the leaderboard)

	Results						
#	User	Entries	Date of Last Entry	Team Name	mAP ▲		
1	luluhoooo	2	11/03/21	baseline	0.39199 (1)		

- 2. Benchmark your model on Colab
- Check the inference code for more details
- 1. Upload your reports in PDF format to **E3 system**
- Naming rule: VRDL HW2 {STUDENT ID} Report.pdf

HW2 Introduction: Street View House Numbers detection

- SVHN dataset contains 33,402 trianing images, 13,068 test images
- Train a not only accurate but fast digit detector!

CodaLab competition: Sign In

- Competition link
- Sing in and participate the competition

CodaLab competition: Team name

Change your team name into your Student ID!

Account -> Settings -> Competition settings -> Team name

		My Con	npetitions Help	NYCU_VRDL +
User Settings				
NYCU_VRDL				
Basic settings				
First name				
Last name				
Email	d08922002@csie.ntu.edu.			
Date joined	Oct. 13, 2021, 1:17 a.m.			
Competition settings				7
Team name				

CodaLab competition: Download dataset

- Download the provided dataset
 - Participate -> Get Data
 - Read the .mat file
 - label 10 represent digit "0"

CodaLab competition: Create submission

- We provide a sample submission file (.zip) and the sample code to generate the sample submission
 - Files -> Starting Kit

CodaLab competition: Create submission

- The submission file is a single .json file compressed in zip
- The .json file (list of dictionaries) should be named as
 - answer.json
 - Format is same as COCO results
 - Digit "0" -> category_id: 0

				ı			
★ sample_submission.zip - ZIP 壓縮檔, 未封裝大小 53,508,445 位元組							
名稱	^	大小	封裝後	類型			
				本機磁碟			
an	swer.json	53,384,563	10,914,864	JSON 檔案			

CodaLab competition: Submit results

- Upload your submission and see the performance on Results!
 - Participate -> Submit / View Results

Grading policy: Model performance (70 points)

- 50 points for the accuracy ranking
- 20 points for the speed benchmark ranking
- Pass the each baseline will get 80% of that points

Benchmark your detection model

- Develop efficient and accurate detection model
- Practice employing your model on new environment (<u>Colab</u>)
 - a. Git clone your project code
 - b. Install required packages
 - c. Download test-set and your model weights
 - d. Run inference and benchmark
 - e. Screenshot your benchmark results and generate submissions
- See the inference.ipynb for detail instructions
 - Make a copy of this notebook and modify it in your own

Benchmark your detection model

- Screenshot your benchmark result and patse it on your Report
- Provide the notebook link on your GitHub README.md

Grading policy: Reports (20 points)

- Document your work (in PDF)
 - GitHub/ GitLab link of your code
 - Reference if you used any code from other resources
 - Brief introduction
 - O Methodology (Data pre-process, Model architecture, Hyperparameters, ...)
 - Summary
- Meet requirements above can get 80% of the points (16 points)

Reports bonus

- Thorough experimental results
- Comprehensive related work survey
- Interesting findings or summary

Code readability (10 points)

- Write beautiful Python code with <u>PEP8 guidelines</u> for readability
- Must provide
 - Downloadable link of your model weights on GitHuB README
 - A inference.py/.ipynb to reproduce your submission file
- Get only half points of model performance if fail on reproducing your submission
 Reproducing Submission

To reproduct my submission without retrainig, do the following steps:

- 1. Installation
- 2. Download Official Image
- 3. Make RGBY Images for official.
- 4. Download Pretrained models
- 5. Inference
- 6. Make Submission

Code readability bonus

- Clear structure and README of all your steps to reproduce the submission
- Good example: https://github.com/paperswithcode/releasing-research-code

The ML Code Completeness Checklist consists of five items:

- 1. Specification of dependencies
- 2. Training code
- 3. Evaluation code
- 4. Pre-trained models
- 5. README file including table of results accompanied by precise commands to run/produce those results

Late policy

- We will deduct a late penalty of 20% per additional late day
- For example, If you get 90% of HW but delay for two days, your will get only 90% - (20% x 2) = 50%!

Keywords

- Beat the baseline
 - YOLO, Retina-Net, Faster RCNN

- Rank Top 3!
 - ➤ Read some new object detection paper from CVPR'2021, ICCV'2021 and try to implement it!

FAQ

- Can I use any code/tools/Library from GitHub or other resources?
 - Yes! We encourage you to learn how to apply existing tools on your own task, such as <u>Keras-Retinanet</u>, <u>Pytorch-mmdetection</u>, <u>TF-object-detection-API</u>

DO NOT copy code from your classmate!

- Pre-trained model is usable for this homework
- Why my testing results are so bad?
 - If you have done any image translation (resize, padding), you will need to transfer the coordinates into original image dimension
- How do I set the score threshold for box predictions?
 - Figure out how mAP is computed, you will get the answer!

Notice

- Check your email regularly, we will mail you if there are any updates or problems of the homework
- If you have any questions or comments for the homework, feel free to mail me and cc Prof. Lin or post it on E3 forum
 - o Prof. Lin: lin@cs.nctu.edu.tw
 - o TA Jimmy: d08922002@csie.ntu.edu.tw
 - o TA 柏聲: bensonliu0904@gmail.com
 - o TA 晨軒: <u>derekt.cs06@nctu.edu.tw</u>
 - o TA 政儒: ace52751208@gmail.com

Have fun!

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

م ا