Big Understanding of Little-o

Harshita Bhagat, Vaishali More, TY (IT-2024), Dr. Priyadarshan Dhabe, Ph.D (IIT Bombay), Professor in IT, VIT, Pune

Little-o- A loose upper bound of a function

Big O represents all the upper bounds of a function f(n). It can be tight or loose bound.

- Little 0 represents loose bounds (only) of a function f(n)
- There can be multiple loose upper bounds of f(n)
- If f(n)=9n then $f(n)=o(n^2)$, $f(n)=o(n^3)$,
- i.e f(n)=9n has loose upper bounds as n^2 , n^3 ,..., But n can not be loose upper bound of f(n), in fact it is tight bound of f(n)
- To prove that f(n)=o(g(n)), we have to prove that

$$f(n) < c * g(n) \forall c > 0 \& n > n_0$$

That above in-equility hold for each value of c>0 and for some n_0

Q1. Prove that f(n) = 9n then $f(n) = o(n^3)$

Method 1- prove that it works for some values of c=1,2,3

Definition:
$$f(n) = o(g(n))$$
 iff for $c > 0 \& n_0 > 0$,
 $f(n) < c * g(n) \forall c > 0 \& n > n_0$

n this case,
$$f(n) = 9n$$

 $9n < c * g(n)$... from definition of $o(n)$
 $9n < c * n^3$

С	n	9n < c * n3	isValid?
c = 1	n = 1	9 * 1 < 1 * 1	no
	n = 2	9 * 2 < 1 * 8	no
	n = 3	9 * 3 < 1 * 27	no
	n = 4	9 * 4 < 1 * 64	yes
	n = 10	9 * 10 < 1 * 1000	yes
	n = 100	9 * 100 < 1 * 1000000	yes
c = 2	n = 1	9 * 1 < 2 * 1	no
	n = 2	9 * 2 < 2 * 8	no
	n = 3	9 * 3 < 2 * 27	yes
	n = 4	9 * 4 < 1 * 64	yes
	n = 10	9 * 10 < 1 * 1000	yes
c = 3	n = 1	9 * 1 < 3 * 1	no
	n = 2	9 * 2 < 3 * 8	yes
	n = 3	9 * 3 < 3 * 27	yes
c = 10	n = 1	9 * 1 < 10 * 1	yes
	n = 2	9 * 2 < 10 * 8	yes

From above table, the inequality or little o $9n < c * n^3 holds true for$ (1)

$$c = 1$$
 $n_0 = 4;$
 $c = 2$ $n_0 = 3;$
 $c = 3$ $n_0 = 2;$
 $c = 10$ $n_0 = 1.$

As <u>for each value of c</u> there is a $n > n_0$ satisfying inequality in (1) Hence we can conclude that

$$f(n) = o(n^3)$$
 for $\forall c > 0 \& n > n_0$ where $n_0 = 4$ for $c = 1$.

Q2. Prove that f(n) = 2n + 3 then $f(n) \neq o(n)$

Method 1

Definition:
$$f(n) = o(g(n))$$
 iff for $c > 0 \& n_0 > 0$, $f(n) < c * g(n) \forall c > 0 \& n > n_0$

n this case,
$$f(n) = 2n + 3$$

 $2n + 3 < c * g(n)$... from definition of $o(n)$
 $2n + 3 < c * n$

С	n	2n + 3 < c * n	isValid?
	n = 1	2 * 1 + 3 < 1 * 1	no
	n = 2	2 * 2 + 3 < 1 * 2	no
c = 1	n = 3	2*3+3<1*3	no
	n = 4	2 * 4 + 3 < 1 * 4	no
		•	
		•	
		•	
	n = 10	2 * 10 + 3 < 1 * 10	no
	n = 100	2 * 100 + 3 < 1 * 100	no

From above table, for c=1 no value of n satisfies the condition for little-o f(n) < c * g(n) for $\forall c > 0$ and $n > n_0$. Hence we can conclude that $f(n) \neq o(n)$.

Iethod 2: Limit Theory

If
$$\lim_{n\to\infty} \left(\frac{f(n)}{g(n)}\right)$$
 then $f(n) = o(g(n))$
$$\lim_{n\to\infty} \left(\frac{2n+3}{n}\right) = \lim_{n\to\infty} \left(\frac{2*1+0}{1}\right) = 2$$
 [by using L'Hospital's Rule, taking derivatives of f(n) and g(n)]

$$\lim_{n\to\infty} \left(\frac{2n+3}{n}\right) \neq 0$$

Hence,
$$f(n) \neq o(n)$$

Thank You