CS113/DISCRETE MATHEMATICS-SPRING 2024

Worksheet 13

Topic: Sequence Summation

Today, we will learn to calculate the sum of terms in a sequence and derive summation formulas. Get ready to unlock the power of summation and discover the beauty of sequence formulas! Happy Learning!

Student's Name and ID:	
Instructor's name:	

1 Table 1

Summation	Closed Form
$\sum_{k=0}^{n} ar^k (r \neq 0)$	$\frac{ar^{n+1} - a}{r - 1}, (r \neq 1)$
$\sum_{\substack{k=1\\n}}^{n} k$	$\frac{n(n+1)}{2}$
$\sum_{\substack{k=1\\n}}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$
$\sum_{k=1}^{\infty} k^3$	$\frac{n^2(n+1)^2}{4}$
$\sum_{\substack{k=0\\ \infty}}^{\infty} x^k, x < 1$	$\frac{1}{1-x}$
$\sum_{k=1}^{\infty} kx^{k-1}, x < 1$	$\frac{1}{(1-x)^2}$

1. Show that

$$\sum_{j=1}^{n} (a_j - a_{j-1}) = a_n - a_0$$

2. Derive the formula for $\sum_{k=1}^{n} k^2$ given in Table 1.

3. Find following using table1:

(a)
$$\sum_{k=100}^{200} k$$

(b)
$$\sum_{k=10}^{20} (k-1)(2k^2+1)$$

(c)
$$\sum_{k=10}^{20} k^2(k-3)$$