TD

Modèle DICE (Dynamic Integrated Climate Economy) de Nordhaus simplifié

Maël Forcier

November 26, 2024

A Modélisation

Le modèle de Nordhaus est un modèle de macroéconomie qui étudie l'évolution de l'économie mondiale. Le modèle est dynamique, les variables non-constantes seront indicés par le temps t. La variable principale est le capital, noté K_t , c'est-à-dire la valeur en $\$ de tous les biens matériels ou immatériels dans le monde. Le produit intérieur brut (PIB) en $\$ noté Q_t est la somme de tous les revenus annuels d'une économie. La consommation notée C_t est la somme en $\$ de tous les biens et services perissables utilisés pendant une année. L'investissement en $\$ noté I_t est l'ensemble des

1. On suppose que le PIB n'est utilisé que pour la consommation et l'investissement. Proposer une équation reliant Q_t , C_t et I_t .

 $R\'{e}ponse: Q_t = C_t + I_t$

2. Le capital accumulé se déprécie à un taux δ_K qui le fait diminuer entre chaque étape, mais l'investissement permet de générer du nouveau capital. Proposer une équation dite de dynamique reliant K_t , K_{t-1} , I_t et δ_K .

Réponse : $K_t = (1 - \delta_K)K_{t-1} + I_t$

L'équation de Cobb-Douglas, classique en macro économie pour étudier la croissance, fait l'hypothèse que le PIB Q_t est égal au produit $AK_t^{\gamma}L_t^{1-\gamma}$ où A est appelé le facteur de productivité, γ l'élasticité du capital et L_t le travail, souvent approximé comme égal à la population. Pour simplifier, nous négligerons l'effet de la population et prendrons une élasticité au capital de $\gamma = 1$. Pour prendre en compte le réchauffement climatique, Nordhaus propose d'ajouter un autre facteur Ω_t qui combine les dégats causées par le réchauffement climatique et les besoins d'investissement pour le climat.

3. Proposer une équation de Cobb-Douglas simplifiée (sans le travail) et qui comprend en compte le climat en reliant Q_t , A,Ω_t et K_t .

 $R\'{e}ponse: Q_t = A\Omega_t K_t$

Variable émissions de GES en $GtCO_2eq$

Variable PIB en Md\$

Variable Température

Variable Population

Contrôle taxe carbone en $\t CO_2eq$

Part de l'économie carbonée en %

Variable intensité carbone du PIB en $tCO_2eq\$

Dynamique:

Rétroaction négative de la hausse de la température sur le PIB

Taxe carbone fait ralentir la part d'économie carbonée à court terme

Taxe carbone fait augmenter l'investissement en décarboné à long terme.

Selon Eurostat, l'investissement représente 22 % du PIB contre 78 % pour la consommation. Pour simplifier, on fixe à $I_t=Q_t/4$

Les équations de température

B Scénario contrôle total

C Scénario sans contrôle

D Discussion et critiques

- 4. Quelles variables sont endogènes, exogènes?
- 5. Comment qualifier le modèle top-down/bottom-up, statique/dynamique, stochastique/déterministe, d'optimisation, discret/continu?
- 6. Quelles hypothèses pourraient être ajoutées?

E Comparaison avec le papier d'origine

7. Quelles sont les simplifications que l'on a faite par rapport au modèle DICE du papier de Nordhaus de 1992 ?