Module 18: Multiple Comparisons

Localizing Activation

- 1. Construct a model for each voxel of the brain.
 - "Massive univariate approach"
 - Regression models (GLM) commonly used.

$$Y = X\beta + \varepsilon$$
 $\varepsilon \sim N(0, V)$

Localizing Activation

2. Perform a statistical test to determine whether task related activation is present in the voxel.

$$H_0: \mathbf{c}^T \mathbf{\beta} = 0$$

Statistical image: Map of t-tests

across all voxels (a.k.a t-map).

Localizing Activation

3. Choose an appropriate threshold for determining statistical significance.

Statistical parametric map: Each significant voxel is color-coded according to the size of its p-value.

Hypothesis Testing

Null Hypothesis H₀

- Statement of no effect (e.g., β_1 - β_2 =0).

Test statistic T

 Measures compatibility between the null hypothesis and the data.

P-value

 Probability that the test statistic would take a value as or more extreme than that actually observed if H₀ is true, i.e P(T > t | H₀).

Significance level

- Threshold u_{α} controls false positive rate at level $\alpha = P(T>u_{\alpha} \mid H_0)$

Null Distribution of T

Making Errors

- There are two types of errors one can make when performing significance tests:
 - Type I error
 - H₀ is true, but we mistakenly reject it (False positive).
 - Controlled by significance level α.
 - Type II error
 - H₀ is false, but we fail to reject it (False negative)
- The probability that a hypothesis test will correctly reject a false null hypothesis is the power of the test.

Multiple Comparisons

- Choosing an appropriate threshold is complicated by the fact we are dealing with a family of tests.
- If more than one hypothesis test is performed, the risk of making at least one Type I error is greater than the α value for a single test.
- The more tests one performs, the greater the likelihood of getting at least one false positive.

Multiple Comparisons

- Which of 100,000 voxels are significant?
 - $-\alpha$ =0.05 \Rightarrow 5,000 false positive voxels
- Choosing a threshold is a balance between sensitivity (true positive rate) and specificity (true negative rate).

Measures of False Positives

- There exist several ways of quantifying the likelihood of obtaining false positives.
- Family-Wise Error Rate (FWER)
 - Probability of any false positives
- False Discovery Rate (FDR)
 - Proportion of false positives among rejected tests

End of Module

