The Theoretical Minimum Quantum Mechanics - Solutions

L04E06

M. Bivert

May 1, 2023

Exercise 1. Carry out the Schrödinger Ket recipe for a single spin. The Hamiltonian is $H = \frac{\omega \hbar}{2} \sigma_z$ and the final observable is σ_x . The initial state is given as $|u\rangle$ (the state in which $\sigma_z = +1$).

After time t, an experiment is done to measure σ_y . What are the possible outcomes and what are the probabilities for those outcomes?

Congratulations! You have now solved a real quantum mechanics problem for an experiment that can actually be carried out in the laboratory. Feel free to pat yourself on the back.

Remark 1. There's a typo in the statement of this exercise: the final observable is said first to be σ_x and then σ_y . The French version of the book uses σ_y for both, so that's what I'll do here.

1. Derive, look up, guess, borrow, or steal the Hamiltonian operator H; Well, let's take it from the authors:

$$H = \frac{\omega \hbar}{2} \sigma_z = \frac{\omega \hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

2. Prepare an initial state $|\Psi(0)\rangle$; Again, from the exercise statement, let's prepare an up state:

$$|\Psi(0)\rangle = |u\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}$$

3. Find the eigenvalues and eigenvectors of H by solving the time-independent Schrödinger equation,

$$H|E_j\rangle = E_j|E_j\rangle$$

I don't recall us already diagonalizing σ_z before, so let's do it, but I'll be shorter than usual. The eigenvalues are given by the non-invertibility condition of $H - I\lambda$, as the solutions of

$$\det(H - I\lambda) = (\frac{\omega\hbar}{2} - \lambda)(\lambda - \frac{\omega\hbar}{2}) = 0$$

Hence the two eigenvalues:

$$E_1 = \frac{\omega \hbar}{2}; \qquad E_2 = -\frac{\omega \hbar}{2}$$

From which we can derive the two eigenvectors:

$$\underbrace{\frac{\omega\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}}_{H} |E_1\rangle = \frac{\omega\hbar}{2} |E_1\rangle$$

Assuming an eigenvector of a general form $(a \ b)^T$ yields the following system:

$$\Leftrightarrow \begin{cases} a = a \\ -b = b \end{cases}$$

So b=0; furthermore, as $|E_1\rangle$ must be unitary (from the fundamental theorem/real spectral theorem, we know the eigenvectors of a Hermitian operator, which H most definitely is, are unitary, because the eigenvectors make an orthonormal basis), we must have $a=\pm 1$; let's chose more or less arbitrarily a=1. Hence:

$$|E_1\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}$$

Similarly for $|E_2\rangle$, assume a general form of $(c\ d)^T$, this yields the following system:

$$\Leftrightarrow \begin{cases} c = -c \\ -d = -d \end{cases}$$

By a similar argument, as before we find:

$$|E_2\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$$

Remark 2. I'm not sure why we have an extra degree of freedom via the signs on the non-zero component of the eigenvectors; I can't think of an extra constraint.

4. Use the initial state-vector $|\Psi(0)\rangle$, along with the eigenvectors $|E_j\rangle$ from step 3, to calculate the initial coefficients $\alpha_j(0)$:

$$\alpha_i(0) = \langle E_i | \Psi(0) \rangle$$

That's an elementary computation:

$$\alpha_1(0) = 1;$$
 $\alpha_2(0) = 0$

5. Rewrite $|\Psi(0)\rangle$ in terms of the eigenvectors $|E_i\rangle$ and the initial coefficients $\alpha_i(0)$:

$$|\Psi(0)\rangle = \sum_{j} \alpha_{j}(0)|E_{j}\rangle$$

Again, quite elementary given the quantities involved:

$$|\Psi(0)\rangle = 1|E_1\rangle = |u\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}$$

6. In the above equation, replace each $\alpha_j(0)$ with $\alpha_j(t)$ to capture its time-dependence. As a result, $|\Psi(0)\rangle$ becomes $|\Psi(t)\rangle$:

$$|\Psi(t)\rangle = \sum_{j} \alpha_{j}(t)|E_{j}\rangle$$

Naturally:

$$|\Psi(t)\rangle = \alpha_1(t)|E_1\rangle + \alpha_2(t)|E_2\rangle$$

7. Using Eq. 4.30¹, replace each $\alpha_j(t)$ with $\alpha_j(0) \exp(-\frac{i}{\hbar}E_jt)$:

$$|\Psi(t)\rangle = \sum_{i} \alpha_{j}(0) \exp(-\frac{i}{\hbar}E_{j}t)|E_{j}\rangle$$

Because $\alpha_2(0) = 0$, it only remains:

$$|\Psi(t)\rangle = \exp(-\frac{i}{\hbar}t)|u\rangle$$

¹This equation corresponds exactly to what this step describes

OK, then the idea is that if we have an observable L, the probability to measure λ (where λ is then an eigenvalue of L) is given by:

$$P_{\lambda}(t) = |\langle \lambda | \Psi(t) \rangle|^2$$

The authors are asking us to consider as an observable $L = \sigma_y$. Recall:

$$\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

This is a matrix corresponding to the spin observable following the y-axis: we must expect its eigenvalues to be ± 1 and its eigenvectors to be $|i\rangle$ and $|o\rangle$, but let's compute them all anyway for practice:

$$\det(\sigma_y - I\lambda) = \lambda^2 + i^2 = 0 \Leftrightarrow \lambda = \pm 1$$

For the eigenvectors, again we can assume a general form and solve the corresponding system of equations:

$$\underbrace{\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}}_{\sigma_u} \begin{pmatrix} a \\ b \end{pmatrix} = (+1) \begin{pmatrix} a \\ b \end{pmatrix} \Leftrightarrow \begin{cases} -ib = a \\ ia = b \end{cases}$$

Both equations are actually equivalent (multiply the first one by i to get the second). We furthermore have an additional constraint as the eigenvectors are supposed to be unitary, which yields:

$$|E_1\rangle = \begin{pmatrix} a \\ ia \end{pmatrix}$$
 and $a^2 + (ia)(-ia) = 1 \Leftrightarrow |E_1\rangle = \begin{pmatrix} 1/\sqrt{2} \\ i/\sqrt{2} \end{pmatrix} = |i\rangle$

Similarly:

$$\underbrace{\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}}_{\sigma} \begin{pmatrix} c \\ d \end{pmatrix} = (-1) \begin{pmatrix} c \\ d \end{pmatrix} \Leftrightarrow \begin{cases} -id = -c \\ ic = -d \end{cases}$$

Again, the two equations are equivalent (multiply the first by -i to get the second one), but we have an additional constraint, as the vector must be unitary. In the end, this yields:

$$|E_2\rangle = \begin{pmatrix} c \\ -ic \end{pmatrix}$$
 and $c^2 + (ic)(-ic) = 1 \Leftrightarrow |E_1\rangle = \begin{pmatrix} 1/\sqrt{2} \\ -i/\sqrt{2} \end{pmatrix} = |o\rangle$

We may now apply our previous probability formula (Principle 4):

$$P_{+1}(t) = |\langle i|\Psi(t)\rangle|^2 = |\frac{1}{\sqrt{2}}\exp(-\frac{it}{\hbar})|^2 = \boxed{\frac{1}{2}}$$

And either because the sum of probabilities must be 1, or by explicit computation:

$$P_{-1}(t) = |\langle o|\Psi(t)\rangle|^2 = |\frac{1}{\sqrt{2}}\exp(-\frac{it}{\hbar})|^2 = \boxed{\frac{1}{2}}$$