Les géodonnées : de l'enregistrement à la publication - un nouveau monde métiers

FOSS4G-Fr 2018 - Yves Jacolin

INNOVATIVE SOLUTIONS BY OPEN SOURCE EXPERTS

Déroulement

- Principes généraux
- Exemples d'architecture

Problématique

- Des données plus nombreuses
- Des besoins en augmentation
- Une complexité qui se popularise

Des processus encore manuels

- Mais les chaînes de traitement sont encore en grande partie manuel!
 - Acquisition → récupération → traitement → diffusion

Qui s'automatisent peu à peu

- « ETL » pour les traitements (Talend, FME, scripts spécifiques)
 - Est ce suffisant ?
 - Non!

Comment gérer le volume et la complexité ?

- Industrialisation et urbanisation de l'infrastructure
 - Déploiement automatisé de serveur
 - Monitoring et alerting
- Intégration/déploiement continue des services

Urbanisation et industrialisation de l'infrastructure

- Déployer des serveurs à la demande
 - Terraform
 - puppet

- Docker
- Rancher/OpenShift
- Monitoring Log Métrique
 - ELK (log)
 - Prometheus/grafana (métrique)

Piles de l'Utilisateur Ajouter une Pile Ajouter depuis le Catalogue État Trier Par: Ajouter un Service ez-server-monitor 0 : Service Container 12 12 Ajouter un Service georchestra 0 : Services Containers Aiouter un Service georchestra-apache-nas 0 : Service Container georchestra-cadastrapp Aiouter un Service 0 : Stack for the cadastrapp geOrchestra webapp Services Containers georchestra-cms Aiouter un Service \vee 0 : CMS stack Services Containers georchestra-ldap Ajouter un Service 0 : geOrchestra OpenLDAP stack Service Container 1 Ajouter un Service georchestra-pydio \vee 0 : Container Service Ajouter un Service georchestra-sftp-admin \vee 0 : Services Containers

Pile: Seg	eorchestra 🗸	Ajouter un Service 💙		À jour SActive	o :
	analytics (i)	Image: camptocamp/georchestra_analytics:m aster-grandest-jenkins- 20180426-113839	Service	1 Container	① :
- Active	cas ①	Image: camptocamp/georchestra_cas:master- grandest-jenkins-20180426-113839	Service	1 Container	① :
- Active	console (i)	Image: camptocamp/georchestra_console:ma ster-grandest-jenkins- 20180426-113839	Service	1 Container	① :
- Active	extractorapp ①	Image: camptocamp/georchestra_extractorap p:master-grandest-jenkins- 20180426-113839	Service	1 Container	① :
- Active	geonetwork (i)	Image: camptocamp/georchestra_geonetwor k:georchestra-gn3.4-master- grandest-9	Service	1 Container	① :
⊕ Active	geoserver-datadir-sync (i)	Image: fvanderbiest/volume-git- backup:20180502115603	Service	1 Container	① :
⊕ Active	geoserver-lb (i)	Image: camptocamp/geoserver- lb:20180226161015	Service	1 Container	① :

Monitoring (métrique)

Détails du monitoring (métrique)

Déploiement continue

Atouts:

- Release à faible risque (pas de downtime)
- Rapidité entre la création et la publication
- Meilleure qualité (utilisation de tests pour corriger les problèmes)
- Coût en baisse
- Meilleurs produits (retours utilisateurs plus rapides)
- Équipe moins stressée
- Difficulté :
 - Complexité à mettre en œuvre

Déploiement continue : principe

- Maintien d'un dépôt unique pour les sources
- Build automatique
- Le build lance les tests
- Chaque commit est testé
- Le build doit être rapide
- Test dans un clone de l'environnement de production
- Facilité la récupération du projet
- Tous le monde doit voir ce qui arrive
- Déploiement automatique

1^{ère} conclusion

Les méthodes et les outils sont connus!

Un exemple : D-Telekom

Une coopération :

- Camptocamp
- Mundialis
- Terrestris

Problématique

- Comment gérer
 - o à l'échelle européenne ou mondiale,
 - un projet dans l'état de l'art
 - en ayant besoin de données :
 - Précises,
 - Récentes
 - et qui correspond à mon besoin métier
 - o (afin d'optimiser des coûts de mise en place)?

Quelles données utiliser?

- Historiquement :
 - Données sur étagère
 - Quelle précision ?
 - Le résultat sera aussi précise que les données initiales
 - Données trop génériques
 - Comment obtenir des données adaptées à nos besoins ?
 - Récupérer soi-même des données
 - au niveau local
 - au niveau national ou plus

Objectif du projet

- Récupérer des données à l'échelle du pays
 - Rapidité
 - Précision
 - Adapté
 - Faible coût

Mise en place

- Pas de traitement manuel de données
 - Ferme de serveurs
- Architecture logiciels basée sur des projets open source
 - Possibilité d'adapter les logiciels (en fonctionnalités et performance)
- Durée du projet : entre 6 et 9 mois (Poc, mise en place, validation)

Méthodologie agile

- Méthode par itération :
 - Récupération des données par capteur mobile (voiture)
 - Traitement des données
 - Analyse et validation des résultats
 - Correction des algorithmes

Exemple de difficultés rencontrées

- Les voitures sur le trottoir ne permet pas de définir la fin de la voie
 - On se base sur les normes des voies
 - Voies privées : données issues des géomètres
- Comment obtenir les données dans les parcs ou certaines zones inaccessibles ?
 - Orthophotos puis traitement par GRASS

Architecture logiciels

Exemple de résultat

Rien n'est impossible

- l'agilité nous permet de trouver des solutions à chaque problème rencontré
- L'architecture logiciels est fortement modulable et scalable
- Les logiciels peuvent être améliorés en fonction des besoins

Merci de votre attention!

BY OPEN SOURCE EXPERTS

