safeAI | checking logical models

ANNELINE DAGGELINCKX, MATTHIJS KEMP, and OTTO MÄTTAS, Utrecht University, The Netherlands

1 WEEK 8 ASSIGNMENTS

Defining Concurrent Epistemic Game Structures

Consider a CEGS $M_{chicken}$, where (Agt, St, Act, d, out) is a concurrent game structure, and \sim_a are indistinguishability relations over St, one per agent in Aqt. We can now define the CEGS as a tuple

$$M_{chicken} = (\mathbb{A}qt, St, \sim_a | a \in \mathbb{A}qt, Act, d, out)$$
 (1)

, where

- $Aqt = \{a_1, a_2\}$
- - $-q_0 =$ left-hand traffic
 - $-q_1$ = right-hand traffic
 - $-q_2$ = left-hand traffic; a_1 drives left; a_2 drives left

As there is no propositional argument matching the action *drive_right*, we are evaluating q_6 implicitly.

Validating Concurrent Epistemic Game Structures through Memoryless Strategies

For the defined CEGS $M_{chicken}$ in 1.1, it is **untrue** that under the independent combination of ATL semantics with epistemic semantics (no uniform strategies requirement) agent a_1 has a memoryless strategy in q_0 to enforce $\neg crash$ in the next state $(\langle \langle 1 \rangle \rangle X \neg crash)$.

This is because in q_0 , the only way not to crash is for both agents to take action drive left. Agent a_1 cannot force this protocol alone, agent a_2 needs to adhere to it as well.

Validating Concurrent Epistemic Game Structures through Indistinguishability

For the defined CEGS $M_{chicken}$ in 1.1, it is **untrue** that under ATL_{ir}, $M_{chicken}, q_0 \models_{ir} \langle \langle 1 \rangle \rangle X \neg crash \text{ holds.}$

This is because agent a_1 does not know whether it is in q_0 or q_1 . Therefore it does not know whether the action to take is *drive_left* or drive_right. Even more, if agent a1 would choose the correct action (drive_left), agent 2 can still cause a crash by executing drive_right.

1.4 Validating Concurrent Epistemic Game Structures through Memoryless Strategies

For the defined CEGS $M_{chicken}$ in 1.1, it is **true** that under the independent combination of ATL semantics with epistemic semantics (no uniform strategies requirement), both agents together have a memoryless strategy in q_0 to enforce $\neg crash$ in the next state, namely $s_{a_1}(q_0) = drive_left$.

This is because there is a strategy in q_0 which leads to a state with $\neg crash$ from both agents' perspective. To make it a complete strategy in the formal sense, we would need a strategy that also covers state q_1 . Then, the strategy becomes $s_i(q_0) = drive_left \ \forall i \in \{1, 2\}$; $s_i(q_1) = drive \ right \ \forall i \in \{1, 2\}.$

1.5 Validating Concurrent Epistemic Game Structures through Indistinguishability

For the defined CEGS $M_{chicken}$ in 1.1, it is **true** that under ATL_{ir}, $M_{chicken}$, $q_0 \models_{ir} \langle \langle 1, 2 \rangle \rangle X \neg crash$ holds.

This is because agents do not know whether they are in q_0 or q_1 . Therefore, they do not know whether the action to take is $drive_left$ or $drive_right$, not being able to create a uniform strategy.

1.6 Validating Concurrent Epistemic Game Structures through Knowledge

For the defined CEGS $M_{chicken}$ in 1.1, it is **true** that under the independent combination of ATL semantics with epistemic semantics (no uniform strategies requirement), both agents together know that they have a memoryless strategy in q_0 to enforce $\neg crash$ in the next state $(K_1\langle\langle 1,2\rangle\rangle X \neg crash \wedge K_2\langle\langle 1,2\rangle\rangle X \neg crash)$.

This is because the only state indistinguishable for both agents from q_0 is q_1 . For $q \in \{q_0, q_1\}$, it holds that $M_{chicken}, q \models \langle \langle 1, 2 \rangle \rangle X \neg crash$, using the following strategy $s_i(q_0) = drive_left \ \forall i \in \{1, 2\}$; $s_i(q_1) = drive_right \ \forall i \in \{1, 2\}$.

1.7 Validating Concurrent Epistemic Game Structures through Indishtinguishable Knowledge

For the defined CEGS $M_{chicken}$ in 1.1, it is **untrue** that under ATL_{ir}, $M_{chicken}$, $q_0 \models_{ir} K_1\langle\langle 1, 2 \rangle\rangle X \neg crash \wedge K_2\langle\langle 1, 2 \rangle\rangle X \neg crash$ holds.

This is because there is a state q_1 in distinguishable from q_0 for both agents. For $q \in \{q_0, q_1\}$, there is no uniform strategy to satisfy the requirement.

1.8 Formalising ATL_{ir}

To say in ATL_{ir} that agent a_1 can ensure that eventually it knows whether it is in a country that drives on the left or a country that drives on the right, we can specify a formula as follows

$$M_{chicken}, q_0 \models_{ir} K_1 \langle \langle 1 \rangle \rangle F(q_0 \vee q_1)$$
 (2)

This formula is **untrue** in q_0 . This is because agent a_1 can not come to the knowledge on it's own volition as agent a_2 has to also participate in order for agent a_1 to know this.

1.9 Formalising ATL_{ir}

To say in ATL_{ir} that it is inevitable that if in the next state there is no crash, then agent a_1 knows whether it is in a country that drives on the left or a country that drives on the right, we can specify a formula as follows

$$\langle \langle 1 \rangle \rangle X \neg crash \wedge E_1 \langle \langle 1 \rangle \rangle G(q_0 \vee q_1)$$
 (3)

This formula is **true** in q_0 . This is because for agent a_1 , there are two states (q_2 and q_6) without a crash which both are reachable by a distinguishable strategy from q_0 . Namely, q_2 can be reached by taking action $drive_left$ and q_6 can be reached by taking action $drive_right$.

1.10 Specifying model checking algorithms

To say in ATL_{ir} that there is a strategy which in two steps guarantees enforcing of φ from any state indistinguishable from q, we can

specify an algoritm as follows

$$1 + 1 = 3$$
 (4)

The big O complexity of the algorithm as a function of the model size and formula size is ...