TAREA 2

SANTIAGO BERMÚDEZ FERNANDO GARZA

PROBLEMA 1

Cina
$$\leq$$
 ana \uparrow bn \uparrow c

Sea $C_1 = \frac{\alpha}{4}$
 $\Rightarrow \frac{\alpha n^2}{4} \leq \alpha n^2 + bn \uparrow c$

Usanes la formula general

 $\Rightarrow n_2 - b + \sqrt{b^2 - 3ac}$
 $\Rightarrow \frac{3\alpha}{2}$
 $\Rightarrow \frac{3\alpha}{3} \left(\frac{1}{\sqrt{b^2 - 3ac}} - b \right)$

hay que notar que $\sqrt{b^2 - 3ac} \geq 0$
 $\Rightarrow b^2 \leq 3ac$

Avaliances les signientes casos $\frac{|b|}{a} \geq \frac{|c|}{a}$
 $\Rightarrow \frac{|b|}{a} \leq \frac{|c|}{a}$

D

 $\sqrt{b^2 - 3ac} - b \leq \frac{4b^2 - b}{a} \leq \frac{3|b|}{a} \Rightarrow \frac{3x|b|}{a} = \frac{3|b|}{a}$

D

 $\sqrt{b^2 - 3ac} - b \leq \frac{4a|c|}{a} + b \leq \frac{3|b|}{a} \Rightarrow \frac{3x|b|}{a} = \frac{3|b|}{a}$
 $\sqrt{b^2 - 3ac} - b \leq \frac{4a|c|}{a} + b \leq \frac{3|c|}{a}$
 $\sqrt{a} = \frac{3ac}{a} + \frac{b}{a} = \frac{3ac}{a}$
 $\sqrt{a} = \frac{3ac}{a} + \frac{b}{a} = \frac{3ac}{a}$
 $\sqrt{a} = \frac{3ac}{a} + \frac{b}{a} = \frac{3ac}{a}$
 $\sqrt{a} = \frac{3ac}{a} + \frac{b}{a} = \frac{3ac}{a} + \frac{b}{a} = \frac{3ac}{a} = \frac{3a$

Usamos la firmula general

hay que tener el mostimo

Isamos la fórmula general

$$=> \frac{25}{3600} \left(\frac{1}{60} \right)$$

$$\Rightarrow \frac{25}{60} \left(1 :, h_0 \ge 1 \right)$$

Problema 3

3+
(2/n)*(log(n)/log(2))
3
4
4.056641667
4
3.928771238
3.861654167
3.802101406
3.75
3.704427778
3.664385619
3.628987567
3.59749375
3.569298418
3.543907846
3.520918746
3.5
3.480877981
3.463325
3.447150265
3.432192809

n	Función	c1n^3	c2n^3
0	0	0	0
1	0	0.3	1
2	2	2.4	8
3	9	8.1	27
4	24	19.2	64
5	50	37.5	125
6	90	64.8	216
7	147	102.9	343
8	224	153.6	512
9	324	218.7	729
10	450	300	1000

PROBLEMA 2

Ordenar una serie de funciones por orden de crecimiento. Es decir, si tenemos dos funciones f, g:

- f tiene un orden de crecimiento mayor que g si $f = \Omega(g)$.
- Recordar que Ω nos da el límite inferior de crecimiento de una función.

Una forma de ordenarlas sería utilizar una gráfica, por ejemplo:

Y entonces diríamos que x^3 crece más rápido que x^2 ...

El problema es cuando las funciones son muy similares:

En realidad estas funciones tienen el mismo orden de crecimiento... $lg(n!) = \theta(n lg n)$

Una mejor forma de hacerlo es usando límites:

Si
$$\lim_{n\to\infty} f(n)/g(n) =$$

- Constante, entonces $f(n) = \theta(g(n))$ si c > 0.
- **0** entonces f(n) = O(g(n))
- ∞ entonces $f(n) = \Omega(g(n))$

De esta forma, podríamos probar cada función y compararla con otra, y ordenarlas...

Se identificaron 6 grupos de funciones:

- a) Factoriales
- b) Exponenciales
- c) De potencias
- d) Identidad
- e) Logarítmicas
- f) Constantes

En general:

$$a = \Omega(b); b = \Omega(c); c = \Omega(d); d = \Omega(e); e = \Omega(f)$$

- Hay ciertas funciones que son iguales a otras, sólo cambia la forma en que fueron escritas, por ejemplo:
 - $4^{\lg n} = n^2$
 - $n^{\lg(\lg n)} = \lg n^{\lg n}$
 - $2^{\lg n} = n$
 - Etc.

Finalmente, las funciones ordenadas quedaron así:

2.
$$(n+1)!$$

4.
$$e^n$$

5.
$$n * 2^n$$

6.
$$2^n$$

7.
$$\left(\frac{3}{2}\right)^n$$

8.
$$\frac{n^{\lg \lg n}}{(\lg n)^{\lg n}}$$

9.
$$(\lg n)!$$

10.
$$n^3$$

11.
$$\frac{4^{\lg n}}{n^2}$$

$$12. \frac{n \lg n}{\lg(n!)}$$

13.
$$\frac{2^{\lg n}}{n}$$

14.
$$\sqrt{2}^{\lg n}$$

$$15. \lg^2 n$$

$$16. \ln n$$

17.
$$\sqrt{\lg n}$$

$$20. \frac{\lg^*(\lg n)}{\lg^*(n)}$$

21.
$$\lg(\lg^* n)$$

$$22. \frac{1}{n^{\frac{1}{\lg n}}}$$