Balancing around maximum SOC

- "A balanced battery pack is one in which, at some point in its cycle, all the cells are at exactly the same SOC."1
 - □ Other definitions are possible where this condition is never met. However, this definition will be sufficient for now
- But, what should that SOC be?
- One choice is to balance at top SOC
 - □ Maximizes energy that can be stored by the battery pack (good for EV)
 - But, some cell aging mechanisms accelerated at high SOC (bad)

Cell 1 Cell 2 Cell 3 Cell 4

¹Andrea, D., Battery Management Systems for Large Lithium-Ion Battery Packs, Artech House, 2010, p. 23.

Dr. Gregory L. Plett | University of Colorado Color

Balancing around mean SOC

- For example, when one cell is at 50 % SOC, all other cells are also at 50 % SOC
 - □ Reduces energy somewhat (cells at lower voltages), but some applications don't care
 - Maximizes pack's ability to accept or deliver power (good for HEV)
 - □ Slows degradation for stronger cells since they do not dwell at high SOCs, but does not slow degradation for weakest cell(s)
 - So, cell capacities tend to diverge

Cell 1 Cell 2 Cell 3 Cell 4

5.1.4: What are the criteria for specifying a balancing setpoint for a battery pack?

Balancing around low SOC

- Or, could balance at a minimum SOC
 - □ Again, results in somewhat lower energy than balancing at the top
 - □ Also minimizes high-SOC-based aging on some cells
 - □ However, the weak cells still experience the high-SOC-based aging, so we probably don't want to do this as it accelerates divergence between cells (weak cells age faster).

Balancing around a dynamic SOC point

- If fast active balancing is used, the setpoint becomes dynamic, and the entire range of every cell can be used
 - □ "Strong" cell experiences greater total load, so ages more quickly
 - □ This is a self-regulating effect
- Balancing point is a design choice
- There isn't a one-size-fits-all answer
 - □ The controls engineer will need to consider the pros and cons corresponding to each alternative for every new application

Dr. Gregory L. Plett | University of Colorado Colorado Springs

Battery Pack Balancing and Power Estimation | Passive balancing methods for battery packs | 4 of 5

Summary

- Controls engineer needs to make a number of design choices related to cell balancing
- One is a choice regarding the balancing setpoint
 - Can balance all cells at high SOC
 - □ Can balance all cells at middle SOC
 - □ Can balance all cells at low SOC
 - Can choose dynamic SOC balancing setpoint if active balancing used
- There are advantages and disadvantages to each approach that need to be considered

Dr. Gregory L. Plett | University of Colorado Colorado Springs

Battery Pack Balancing and Power Estimation | Passive balancing methods for battery packs | 5 of 5