Examenul de bacalaureat național 2015 Proba E. c) Matematică *M_mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(z-1\right)^2 = i^2 =$	2p
	=-1	3 p
2.	$x_1 + x_2 = 5$	2p
	$x_1 \cdot x_2 = 3 \Rightarrow 3(x_1 + x_2) - 4x_1x_2 = 3 \cdot 5 - 4 \cdot 3 = 3$	3 p
3.	$(2^{x}-1)(2^{x}-2)=0 \Leftrightarrow 2^{x}=1 \text{ sau } 2^{x}=2$	3 p
	x = 0 sau $x = 1$	2p
4.	Sunt 7 numere de două cifre care sunt divizibile cu 13, deci sunt 7 cazuri favorabile Sunt 90 de numere de două cifre, deci sunt 90 de cazuri posibile nr. cazuri favorabile 7	2p 1p
	$p = \frac{\text{In. cazuri Pavorabile}}{\text{nr. cazuri posibile}} = \frac{7}{90}$	2p
5.	Panta paralelei duse prin punctul A la dreapta d este $m = 3$	3 p
	Ecuația paralelei duse prin punctul A la dreapta d este $y = 3x - 3$	2p
6.	$\sin C = \frac{1}{2}$	2p
	$\frac{AB}{\sin C} = 2R \Rightarrow R = 12$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det(A(a)) = \begin{vmatrix} 1 & 1 & 1 \\ 0 & a & a+1 \\ 2 & a+2 & a+3 \end{vmatrix} =$	2p
	$\begin{vmatrix} 1 & 1 & 1 \\ 0 & a & a+1 \\ 2 & 2 & 2 \end{vmatrix} = 0$	3 p
b)	$2A(n^{2}) - A(n) = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2n^{2} - n & 2n^{2} - n + 1 \\ 2 & 2n^{2} - n + 2 & 2n^{2} - n + 3 \end{pmatrix}, A(6) = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 6 & 7 \\ 2 & 8 & 9 \end{pmatrix}$	3p
	$2n^2 - n - 6 = 0 \Rightarrow n = -\frac{3}{2} \notin \mathbb{N} , n = 2 \in \mathbb{N}$	2p

c)	Pentru $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, avem $A(2015) \cdot X = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} x + y + z = 0 \\ 2015y + 2016z = 0 \\ 2x + 2017y + 2018z = 0 \end{cases}$	2p
	Determinantul sistemului omogen este egal cu $0 \Rightarrow$ sistemul are o infinitate de soluții, deci există o infinitate de matrice X	3p
2.a)	$f = X^{3} + 2X - 3$ f(1) = 1 + 2 - 3 = 0	2p
	f(1) = 1 + 2 - 3 = 0	3 p
b)	$f = X^3 + mX - 3$ este divizibil cu $X + 1 \Leftrightarrow f(-1) = 0$	2p
	m = -4	3 p
c)	$x_1^2 + x_2^2 + x_3^2 = -2m < 0 \Rightarrow f$ are cel puţin o rădăcină din $\mathbb{C} \setminus \mathbb{R}$	2p
	$f \in \mathbb{R}\big[X\big] \Rightarrow f$ are două rădăcini conjugate din $\mathbb{C} \setminus \mathbb{R}$, care au modulele egale	3 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = \frac{e^x - x - (x+1)(e^x - 1)}{(e^x - x)^2} =$	2p
	$=\frac{1-xe^x}{\left(e^x-x\right)^2},\ x\in\mathbb{R}$	3 p
b)	y-f(0)=f'(0)(x-0)	2p
	f(0)=1, $f'(0)=1$, deci ecuația tangentei este $y=x+1$	3 p
c)	$\lim_{x \to +\infty} f(-x) = \lim_{x \to +\infty} \frac{-x+1}{e^{-x} + x} =$	2p
	$= \lim_{x \to +\infty} \frac{-1}{1 - e^{-x}} = -1$	3 p
2.a)	$\int_{0}^{2} f^{2}(x) dx = \int_{0}^{2} \frac{1}{x^{2} + 4} dx = \frac{1}{2} \operatorname{arctg} \frac{x}{2} \Big _{0}^{2} =$	3 p
	$=\frac{1}{2}(\operatorname{arctg} 1 - \operatorname{arctg} 0) = \frac{\pi}{8}$	2p
b)	F este o primitivă a funcției $f \Rightarrow F'(x) = f(x)$	2p
	$F'(x) = \frac{1}{\sqrt{x^2 + 4}} > 0$ pentru orice număr real x, deci F este crescătoare pe \mathbb{R}	3 p
c)	$I_n = \int_0^1 \frac{x^n}{\sqrt{x^2 + 4}} dx = x^{n-1} \sqrt{x^2 + 4} \Big _0^1 - (n-1) \int_0^1 x^{n-2} \sqrt{x^2 + 4} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx$	3р
	$= \sqrt{5} - (n-1)I_n - 4(n-1)I_{n-2} \Rightarrow nI_n = \sqrt{5} - 4(n-1)I_{n-2} \text{ pentru orice număr natural } n, n \ge 3$	2p