

PERTEMUAN-9

ALGORITHMA LINGKARAN

ALGORITHMA LINGKARAN

- Menggambar lingkaran dapat menggunakan rumus :
 - sin dan cosinus
 - Algorithma Bresenham
- Pemakaian sinus dan cosinus membutuhkan memori karena melibatkan angka pecahan serta komputasi yang rumit dalam menentukan nilai sinus dan cosinus

ALGORITHMA LINGKARAN

$$x_1 = cos(\alpha) *R$$

 $y_1 = sin(\alpha) *R$

apabila α dari 0° s/d 359° maka kita akan memperoleh koordinat titik-titik yang membentuk sebuah lingkaran

BRESENHAM'S CIRCLE

- Algorithma lingkaran bresenham melibatkan angka integer dan tidak membutuhkan pembagian.
- Algorithma yang disajikan berikut ini hanya membahas pada kuadran I yaitu pada x ≥ 0 dan y ≥ 0

Ada 3 pilihan titik dari (xi,yi), yaitu :H,V, dan D.

Jarak antara H,V dan D terhadap lingkaran sesungguhnya dirumuskan sebagai :

$$m_H = |(x_1+1)^2 + (y_1)^2 - R^2|$$

 $m_D = |(x^1+1)^2 + (y_1-1)^2 - R^2|$
 $m_V = |(x^1)^2 + (y_1-1)^2 - R^2|$

Titik yang dipilih adalah nilai paling kecil diantara m_{H} , m_{D} dan m_{V}

Lingkaran yang diinginkan

Algorithma Lingkaran Bresenham:

$$\Delta_i = (x_i + 1)^2 + (y_i - 1)^2 - R^2$$

 $\Delta i < 0$ maka

 $\alpha=m_H-m_D$ (kasus 1 dan 2)

bila $\alpha \le 0$ maka pilih m_H bila $\alpha > 0$ maka pilih m_D

Δi > 0 maka (kasus 3 dan 4)

$$\beta = m_D - m_V$$

bila $\beta \le 0$ maka pilih m_D bila $\beta > 0$ maka pilih m_V

 $\Delta i = 0$ maka pilih m_D (kasus 5)

TUGAS

- Implementasikan algorithma lingkaran Bresenham ke dalam salah satu bahasa pemrograman.
- Tugas kelompok (maks 3 orang).
- Kumpulkan listing program dan printout hasil program.
- Dikumpulkan pada pertemuan berikutnya.