Matemática II - Biología

Facultad de Ciencias Exactas y Naturales - Universidad de Buenos Aires

Segundo Cuatrimestre 2020

Cadenas de Markov

Recordamos que ...

Definición: Matriz de transición o matriz de Markov

Una matriz $P \in \mathbb{R}^{n \times n}$, n = cantidad de estados, es una matriz de Markov si cumple

- $p_{ii} \ge 0$, $i, j = 1, \dots, n$
- $\sum_{i=1}^{n} p_{ij} = 1$, $1 \le j \le n$. O sea, la suma de los elementos de cada columna debe dar 1.
- p_{ij} representa la probabilidad de pasar del estado j al estado i.

La matriz asociada al problema de las flores de la clase pasada era

$$P = \left(\begin{array}{ccc} 1 & 0.5 & 0 \\ 0 & 0.5 & 1 \\ 0 & 0 & 0 \end{array}\right)$$

Dado un vector de estados inicial $\mathbf{v}(0)$ la cadena de Markov se obtiene haciendo

$$\mathbf{v}(1) = P\mathbf{v}(0) \quad \mathbf{v}(2) = P\mathbf{v}(1) \qquad \mathbf{v}(n) = P\mathbf{v}(n-1) = P^n v(0)$$

Para unificar conceptos vamos a trabajar con estados que sean vectores de probabilidad, o sea vectores cuyas componentes son todas mayores e iguales que cero y suman 1.

Definimos el espacio de estados como:

$$\mathcal{V} = \{ \mathbf{v} \in \mathbb{R}^n : 0 \le v_j \le 1, 1 \le j \le n, \text{ y además} \sum_{i=1}^n v_j = 1 \}$$

Llamamos $\|\mathbf{v}\|_1 = \sum_{i=1}^n |v_i|$

Notemos que: Si el dato inicial ${\bf w}$ viene dado por ejemplo por cantidad de individuos, como $w_i \geq 0$, los podemos llevar a un vector de probabilidad simplemente haciendo

$$\mathbf{v} = \frac{\mathbf{w}}{\|\mathbf{w}\|_1} = \left(\frac{w_1}{w_1 + w_2 + \dots + w_n}, \frac{w_2}{w_1 + w_2 + \dots + w_n}, \dots, \frac{w_n}{w_1 + w_2 + \dots + w_n}\right)$$

y tendremos así que $\mathbf{v} \in \mathcal{V}$.

Por ejemplo si miramos un cultivo de 30 flores y tenemos 10 rosas y 20 blancas, o sea un vector inicial $\mathbf{w}(0)=(0,10,20)$ para que sea de probabilidad hacemos

$$\mathbf{v}(0) = (\frac{0}{30}, \frac{10}{30}, \frac{20}{30}) = (0, \frac{1}{3}, \frac{2}{3})$$

El estado después de 2 generaciones sería:

$$\mathbf{v}(1) = P\mathbf{v}(0) = \begin{pmatrix} 1 & 0.5 & 0 \\ 0 & 0.5 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1/3 \\ 2/3 \end{pmatrix} = \begin{pmatrix} 1/6 \\ 5/6 \\ 0 \end{pmatrix}$$
$$\mathbf{v}(2) = P\mathbf{v}(1) = \begin{pmatrix} 1 & 0.5 & 0 \\ 0 & 0.5 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/6 \\ 5/6 \\ 0 \end{pmatrix} = \begin{pmatrix} 7/12 \\ 5/12 \\ 0 \end{pmatrix}$$

Diriamos que después de dos generaciones tenemos $30.\frac{7}{12}=17,5$ rojas y $30.\frac{5}{12}=12,5$ rosas (redondeando podrias decir 18 rojas y 12 rosas, la suma debe dar 30).

Preguntas que surgen naturalmente....

¿Habrá algún estado de equilibrio?

Definición: Estado de equilibrio

Decimos que $\mathbf{v}^* \in \mathcal{V}$ es un estado de equilibrio si

$$P\mathbf{v}^* = \mathbf{v}^*$$

¿Dado un estado inicial, habrá algún estado límite?

Definición: Estado límite para el estado inicial v(0).

Si para $\mathbf{v}(0)$ tenemos que:

$$\lim_{k\to+\infty}\mathbf{v}(k)=\lim_{k\to+\infty}P^k\mathbf{v}(0)=\mathbf{v}^\infty$$

decimos que $\mathbf{v}^\infty \in \mathcal{V}$ es un estado límite de $\mathbf{v}(0)$

Nota: : $Si \ \mathbf{v} \in \mathcal{V}$ es un estado límite entonces debe ser un estado de equilibrio

Pues como

$$\mathbf{v}(k+1) = P\mathbf{v}(k)$$

si existe el estado límite \mathbf{v}^{∞} para $\mathbf{v}(0)$, entonces tomando linite resulta que debe cumplir

$$\mathbf{v}^{\infty} = P\mathbf{v}^{\infty}$$

y por ende \mathbf{v}^{∞} es un estado de equilibrio.

Nota: Vamos a ver que siempre hay al menos un estado de equilibrio pero No siempre dado un estado inicial hay estado límite.

Para poder contestar sobre estados de equilibrio y estados limite hay que analizar el espectro de P, o sea analizar sus autovalores.

Proposición

Para cualquier matriz de Markov P se tiene que

- **1** $\lambda = 1$ es autovalor de P y existe un autovector asociado a $\lambda = 1$ que es un estado de equilibrio.
- $|\lambda| \le 1$ para todo λ autovalor de P.
- $oldsymbol{0}$ si $\lambda \neq 1$ es autovalor entonces su autovector asociado $oldsymbol{w}$ cumple que $\sum_{j=1}^n w_j = 0$

Nota: : A partir del resultado del item 3) podemos afirmar que no hay autovectores asociados a autovalores $\lambda \neq 1$ que esten en \mathcal{V} .

Dem: Lo probamos en matrices de 2×2 .

En la demostración a veces conviene trabajar con P^T , la traspuesta de P, que tiene los mismos autovalores que P.

1)

$$P = \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix} \qquad P^{T} = \begin{pmatrix} p_{11} & p_{21} \\ p_{12} & p_{22} \end{pmatrix}$$

Tomamos el vector $\mathbf{1} = (1,1)$ y calculamos $P^T \mathbf{1}$:

$$P^{T} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} p_{11} + p_{21} \\ p_{12} + p_{22} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Esto nos dice que $\lambda=1$ es autovalor de P^T (con autovector (1,1)) y por ende $\lambda=1$ es autovalor de P.

Va a existir entonces un vector $\mathbf{v} \neq 0$ tal que $P\mathbf{v} = \mathbf{v}$. El asunto es ver que ese vector se puede elegir de probabilidad.

Nota: $P y P^T$ No tienen porque tener los mismos autovectores

Queremos probar que podemos elegir un autovector asociado a $\lambda=1$ que este en $\mathcal V$. Sabemos que hay un vector $\mathbf v\neq 0$ tal que

$$P\left(\begin{array}{c} v_1 \\ v_2 \end{array}\right) = \left(\begin{array}{c} p_{11}v_1 + p_{12}v_2 \\ p_{21}v_1 + p_{22}v_2 \end{array}\right) = \left(\begin{array}{c} v_1 \\ v_2 \end{array}\right)$$

Tomando módulo y usando la desigualdad triangular queda

$$|v_1| = |p_{11}v_1 + p_{12}v_2| \le p_{11}|v_1| + p_{12}|v_2|$$

$$|v_2| = |p_{21}v_1 + p_{22}v_2| \le p_{21}|v_1| + p_{22}|v_2|$$

Sumando las ecuaciones resulta

$$|v_1|+|v_2| \leq p_{11}|v_1|+p_{12}|v_2|+p_{21}|v_1|+p_{22}|v_2| = (p_{11}+p_{21})|v_1|+(p_{12}+p_{22})|v_2| = |v_1|+|v_2|$$

Entonces debe ser

$$|v_1| = p_{11}|v_1| + p_{12}|v_2|$$

 $|v_2| = p_{21}|v_1| + p_{22}|v_2|$

O sea que el vector

$$\begin{pmatrix} |v_1| \\ |v_2| \end{pmatrix}$$

es un autovector de P asociado al autovalor $\lambda = 1$.

Luego tomando $\frac{|\mathbf{v}|}{\|\mathbf{v}\|_1}$ tenemos un autovector de $\lambda=1$ que esta en $\mathcal{V}.$

$$\left(\begin{array}{c}\frac{|v_1|}{|v_1|+|v_2|}\\\frac{|v_2|}{|v_1|+|v_2|}\end{array}\right) \quad \text{es autovector asociado a }\lambda=1 \text{ y está en }\mathcal{V}$$

Nota: esta demostración me dice en particular como encontrar estados de equilibrio.

2) Sea **w** un autovector de P^T asociado a λ , o sea P^T **w** = λ **w**, entonces

$$p_{11}w_1 + p_{21}w_2 = \lambda w_1$$
$$p_{12}w_1 + p_{22}w_2 = \lambda w_2$$

Supongamos que $|w_1| \ge |w_2|$ de lo anterior se tiene

$$|\lambda||w_1| = |p_{11}w_1 + p_{21}w_2| \le p_{11}|w_1| + p_{21}|w_2| \le (p_{11} + p_{21})|w_1| = |w_1|$$

De aqui $(|\lambda|-1)|w_1| \le 0$ lo que implica que

$$|\lambda| \leq 1$$
.

Analogamente se demuestra el caso $|w_1| \leq |w_2|$ ya que

$$|\lambda||w_2| = |p_{12}w_1 + p_{22}w_2| \le p_{12}|w_1| + p_{22}|w_2| \le (p_{12} + p_{22})|w_2| = |w_2|$$

y por ende
$$(|\lambda|-1)|w_2| \leq 0 \Rightarrow |\lambda| \leq 1$$

3) Sea $\lambda \neq 1$ autovalor de P de autovector ${\bf z}$. Entonces de $P{\bf z} = \lambda {\bf z}$ resulta

$$p_{11}z_1 + p_{12}z_2 = \lambda z_1$$
$$p_{21}z_1 + p_{22}z_2 = \lambda z_2$$

Sumando y agrupando nos queda

$$\lambda z_1 + \lambda z_2 = (p_{11} + p_{21})z_1 + (p_{12} + p_{22})z_2 = z_1 + z_2$$

o sea que $\lambda(z_1+z_2)=z_1+z_2$ y entonces

$$(\lambda-1)(z_1+z_2)=0$$

y como $\lambda \neq 1$ debe ser $z_1 = -z_2$

Para la matriz del **ejemplo de las flores** $P = \begin{pmatrix} 1 & 0.5 & 0 \\ 0 & 0.5 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ sus

autovalores son $\lambda=1, \lambda=\frac{1}{2}$ y $\lambda=0$ (en una matriz triangular sus autovalores son los elementos de la diagonal) Si buscamos los autovectores asociados a $\lambda=1$ vemos que son los vectore

Si buscamos los autovectores asociados a $\lambda=1$ vemos que son los vectores de la forma

$$\mathbf{w} = \begin{pmatrix} \alpha \\ 0 \\ 0 \end{pmatrix}, \quad \text{con } \alpha \neq 0$$

y para que sea un vector de probabilidad debe ser $\alpha=1$, o sea $\mathbf{v}=\begin{pmatrix}1\\0\\0\end{pmatrix}$.

El estado de equilibrio es que todas las flores sean rojas.

Nota: Autovectores para $\lambda=\frac{1}{2}$ y $\lambda=0$ son respectivamente (1,-1,0) y $(-\frac{1}{2},1,-\frac{1}{2})$, cuyas componente suman cero.

Para la matriz de la clase pasada del ejemplo de niveles económicos

$$P = \left(\begin{array}{cccc} 0.7 & 0.2 & 0.1 & 0 \\ 0.2 & 0.4 & 0.1 & 0.3 \\ 0.1 & 0.3 & 0.4 & 0.2 \\ 0 & 0.1 & 0.4 & 0.5 \end{array}\right)$$

podemos buscar (con python) sus autovalores y ver que son $\lambda=1$ y los demás tienen módulo menor a 1 (hay dos autovalores complejos).

$$\begin{split} \lambda_1 &= 1, \quad |\lambda_1| = 1 \\ \lambda_2 &= 0,65736589, \quad |\lambda_2| = 0,65736589 \\ \lambda_3 &= 0,17131706 + 0,15941922i, \quad \lambda_4 = \overline{\lambda_3} = 0,17131706 - 0,15941922i \\ |\lambda_3| &= |\lambda_4| = 0,23401714 \end{split}$$

Recordamos que si z = a + i b entonces $|z| = \sqrt{a^2 + b^2}$

Si buscamos autovector asociado a $\lambda=1$ vemos que son los vectores de la

forma
$$\mathbf{w}=\begin{pmatrix} \alpha \\ \alpha \\ \alpha \\ \alpha \end{pmatrix}$$
 $\alpha \neq 0$ y para que sea un vector de probabilidad debe

ser $4\alpha = 1$, o sea $\alpha = \frac{1}{4}$ resultando

$$\mathbf{v}=\left(egin{array}{c} 1/4 \ 1/4 \ 1/4 \ 1/4 \end{array}
ight)$$

Si lo hacemos con Python, para obtener un vector de estados a partir de un autovector ${\bf w}$ simplemente calculamos

$$\mathbf{v} = (\frac{|w_1|}{\|\mathbf{w}\|_1}, \frac{|w_2|}{\|\mathbf{w}\|_1}, \cdots, \frac{|w_n|}{\|\mathbf{w}\|_1})$$

La conclusión es que el estado de equilibrio es que todas las clases sociales tengan el mismo número de individuos.

Ejercicio:

Sea

$$M = \left(\begin{array}{ccc} a & b & 0 \\ c & b & 0 \\ 0 & 0 & 1 \end{array}\right)$$

- Sabiendo que det $M = \frac{1}{4}$, determinar todos los valores de a, b y c para los cuales M es de Markov.
- Hacer el diagrama de estados para la matriz de Markov M.
- ¿Es posible hallar dos estados de equilibrio linealmente independientes para una cadena de Markov con matriz de transición *M*?.

Recordemos que al estudiar autovalores y autovectores se define la dimensión algebraica y la dimensión geométrica.

 $m_{\lambda}=$ dimensión algebraica = multiplicidad del autovalor como raíz del polinomio característico.

 $\dim \varepsilon_\lambda = \text{dimensión geométrica} = \text{dimensión del autoespacio asociado al autovalor (o sea la cantidad de autovectores linealmente independientes asociados al autovalor)}$

Una matriz es diagonalizable cuando dim $\varepsilon_{\lambda} = m_{\lambda}$, $\forall \lambda$.

Nota: : en particular, si todos sus autovalores son distintos entonces es diagonalizable (en principio en $\mathbb C$ y si son todos reales en $\mathbb R$)

Proposición

En toda matriz de Markov se tiene que si λ es tal que $|\lambda|=1$ entonces $\dim \varepsilon_\lambda=m_\lambda$

Nota: para los λ con $|\lambda| < 1$ podríamos tener dim $\varepsilon_{\lambda} \neq m_{\lambda}$. Así que una matriz de Markov no es necesariamente diagonalizable.

Nota: Esto que vale en Markov para los autovalores de modulo 1 no vale en general.

Por ejemplo la matriz

$$A = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{array}\right)$$

tiene autovalores $\lambda=1$ doble y $\lambda=2$ simple. Aqui $m_{\lambda=1}=2$ pero $\dim \varepsilon_{\lambda=1}=1$.

Aún seguimos con el interrogante de como podriamos saber, estudiando el espectro de la matriz, si hay o no estado límite.

Sobre la existencia de estado límite

- Si el único autovalor de P de módulo 1 es $\lambda=1$ entonces hay estado límite para cualquier dato inicial $\mathbf{v}(0)$. O sea que todos los $\mathbf{v}(0) \in \mathcal{V}$ tienen estado límite.
 - Dicho estado límite varía según el dato inicial $\mathbf{v}(0)$ pero está en el $\varepsilon_{\lambda=1}$, o sea que es una combinación lineal de autovectores asociados a $\lambda=1$.
- Si además $\lambda=1$ es un autovalor simple, i.e., $m_{\lambda}=1$ entonces el estado límite \mathbf{v}^{∞} es único. O sea que tendremos un solo estado limite independientemente de cual sea el vector inicial.