第十章 振动和波

习 颞

一、单选题

D. $y = 0.04\cos\left[2\pi\left(\frac{t}{5} + \frac{x}{0.40}\right) - \frac{\pi}{2}\right]$

- 7、一平面简谐波在弹性介质中传播,在介质质元从平衡位置运动到最大位移处的过程中, ()
 - A. 它的动能转换成势能。
 - B. 它的势能转换成动能。
 - C. 它从相邻的一段质元获得能量, 其能量逐渐增大。
 - D. 它把自己的能量传给相邻的一段质元,其能量逐渐减小。

二、判断题

1,	拍皮球时,	皮球的运动为简谐振动。	设球与地面的碰撞为弹性碰撞。	()
2、	线悬挂一小	球,令其在水平面内作為	7速率圆周运动为简谐振动。	()

3、"质点作简谐振动时,从平衡位置运动到最远点需时 1/4 周期,因此走过该距离的一半时需时 $\frac{1}{8}$ 周期。" ()

4、位移 $x = A\cos(\omega t + \varphi)$ 两次对 t 求导可得加速度 $a = -\omega^2 A\cos(\omega t + \varphi)$,二者括

5、波源不动时,波源的振动周期与波动的周期在数值上是不同的。 ()

6、波源振动的速度与波速相同。 ()

7、在波传播方向上任一质点的振动相位总比波源的相位落后。 ()

三、填空题

1、一平面简谐波沿 x 轴正向传播,已知坐标原点的振动方程为 $y=0.05\cos(\pi t+\frac{\pi}{2})$ m,设同一波线上A、B 两点之间的距离为 0.02 m,B 点的相位

比 A 点落后 $\frac{\pi}{6}$, 则波长 λ =______, 波速 c=______, 波动方程 y=______.

3、 如图所示的振动曲线,其中振幅 A=____。周期 T= ___ ; 初相位 $\varphi=$ ____ ; 振动表达式 x=

- 4、 如图所示的简谐振动矢量图中,振幅 A=2cm,B 为 t=0 时刻的位置,C 为 t 时刻的位置,D:

5、简谐振动的能量表达式为E=______。

四、简答题

- 1、机械波通过不同介质时,它的波长、频率和速度中哪些量会发生变化?哪些量不变?
- 2、 振动和波动有何区别和联系?
- 3、什么是波速?什么是振动速度?有何不同?计算公式各是什么?

五、计算题

- 1、一个作简谐振动的物体,其振幅为A,质量为m,振动的全部能量为E,振动的初相位为 φ ,求此物体的简谐振动方程。
- 2、 弦上传播一横波, 其波动方程为 $y = 2\cos\pi(0.05x 200t)$ m, 式中 x, y 的单位为 m。求:振幅、波长、频率、周期和传播速度;
- 3、一个运动物体的位移与时间的关系为 $y = 0.10\cos(2.5\pi t + \frac{\pi}{3})$ m,试求:①周期、角频率、频率、振幅和初相位;②t=2s 时物体的位移、速度和加速度。

- 4、两个同方向、同频率的简谐振动方程分别为 $x_1=4\cos(3\pi t+\frac{\pi}{3})$ m 和 $x_2=3\cos(3\pi t-\frac{\pi}{6})$ m,试求它们的合振动的振动方程。
- 5、已知波动方程为 $y = A\cos(at bx)$, 试求波的振幅、波速、频率和波长。
- 6、有一列平面简谐波,坐标原点按 $y = A\cos(\omega t + \varphi)$ 的规律振动。已知,A = 0.10m,T = 0.50s, $\lambda = 10$ m。试求: ①波动方程; ②波线上相距 2.5m 的两点的相位差; ③如果 t = 0 时处于坐标原点的质点的振动位移为 $y_0 = +0.050$ m,且向平衡位置运动,求初相位并写出波动方程。
- 7、一列沿绳子行进的横波的波动方程为 $y = 0.10\cos(0.01\pi x 2\pi t)$ m。 试求: 波的振幅、频率、传播速度和波长。