Midterm2

CPE608: Applied Modelling and Optimization Techniques

Team Members:

1. Aayush Gavande CWID:20010868

2. Shivani Bhavsar CWID:20013020

3. Chinmay Bhagwat CWID:20015512

Question 1

- Solve the following using steepest descent algorithm. Start with x₀ = [1 1 1]^T and use stopping threshold ∈= 10⁻⁶.
 - (a) Verify that the final solution satisfies the second order necessary conditions for a minimum.
 - (b) Plot the value of the objective function with respect to the number of iterations and
 - (c) Comment on the convergence speed of the algorithm.

minimize
$$f(\mathbf{x}) = (x_1 + 5)^2 + (x_2 + 8)^2 + (x_3 + 7)^2 + 2x_1^2x_2^2 + 4x_1^2x_3^2$$

Import Libraries

```
In [1]: !pip install sympy

Requirement already satisfied: sympy in c:\users\aayush\anaconda3\envs\machinelearning\lib\site-packages (1.11.1)
Requirement already satisfied: mpmath>=0.19 in c:\users\aayush\anaconda3\envs\machinelearning\lib\site-packages (from sympy) (1.2.1)

In [2]: import warnings
warnings.filterwarnings("ignore")

import sympy
from sympy import *
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

Steepest Descent Algorithm(Line Search)

from numpy.linalg import norm

import time

```
In [3]: #Steepet Descent Algorithm
        def steepestDescent(df, func, xk, threshold = 10**(-6)):
            f_list = []
            counter = 0
            while (true):
                #Hessian Matrix
                hessian_x = hessian(f(x), [x1, x2, x3]).subs([(x1,xk[0][0]), (x2,xk[0][1]), (x3,xk[0][2])])
                grad = Matrix([f(x)]).jacobian(Matrix([x1,x2,x3])).subs([(x1,xk[0][0]), (x2,xk[0][1]), (x3,xk[0][2])])
                #Alpha Calculation
                num = grad * grad.T;
                den = (grad * hessian_x * grad.T);
                num = np.asarray(num).flatten();
                den = np.asarray(den).flatten();
                num = num[0];
                den = den[0];
                alpha = float(num)/float(den);
                #Second order Condition (d.T * H(x) * d >= 0)
                second_order = ((-1 * grad) * hessian_x * (-1 * grad.T))[0]
                #xk calculation
                xk = xk - (alpha * grad)
                xk = np.asarray(xk);
                grad = np.asarray(grad);
                grad = grad.astype(float)
                #Threshold condition
                check = norm(alpha * grad);
                #Stopping Threshold condition
                if(check <= threshold):</pre>
                    break;
                #Objective Function at updated xk
                fkVal = funcVal(xk);
                f_list.append(fkVal)
                #Increment Iteration counter
                counter = counter + 1;
                #Round Values
                x1_round = round(xk[0][0],4)
                x2\_round = round(xk[0][1],4)
                x3_round = round(xk[0][2],4)
                fkVal_round = round(fkVal,4);
                #second_order_round = round(second_order,3)
                df = df.append({'Iteration': counter, 'alpha': alpha': x1_round, 'x2': x2_round, 'x3': x3_round, 'f(x)': fkVal_round, 'Second order': second_order}, ignore_index=True)
            return f_list, df
```

```
In [4]: x = sympy.symbols('x')
        x1 = sympy.symbols('x1')
        x2 = sympy.symbols('x2')
        x3 = sympy.symbols('x3')
        f = sympy.Function('f')
        xk = np.array([[1,1,1]]); # Initial Value of vector x
        t = time.process_time()
        df = pd.DataFrame(columns=['Iteration', 'alpha', 'x1', 'x2', 'x3', 'f(x)', 'Second order'])
        #Objective Function
        def f(x):
            return (x1+5)**2 + (x2+8)**2 + (x3+7)**2 + 2*x1**2*x2**2 + 4*x1**2*x3**2
        #Function Value
        def funcVal(xk):
            return f(x).subs(x1, xk[0][0]).subs(x2, xk[0][1]).subs(x3, xk[0][2]);
        #Call Steepest Descent Algorithm
        f_list, df = steepestDescent(df, f(x), xk);
        #Total time to reach solution
        total_time = time.process_time() - t
```

Output

In [5]: df.to_csv('Output - Steepest Descent Algorithm.csv', sep='\t')
df

Out[5]:

	Iteration	alpha	x 1	x2	x 3	f(x)	Second orde
0	1	0.037516	0.0996	0.1746	0.0996	143.2365	4360
1	2	0.445530	-4.4534	-7.1125	-6.2301	5087.4350	1287.9094638907
2	3	0.001179	-1.7627	-6.4496	-5.0669	594.2034	5516650807.6881
3	4	0.002331	-0.2505	- 6.2700	- 4.7823	41.1396	189587186.97603
4	5	0.002940	-0.0278	-6.2756	- 4.7883	32.7197	1952129.5767963
5	6	0.216761	-0.1252	- 7.0189	-5.7407	29.9245	144.24537347655
6	7	0.002173	-0.0211	- 7.0222	- 5.7446	27.4242	1060735.8497713
7	8	0.200240	-0.0692	-7.4113	-6.2433	26.5033	50.116103513689
8	9	0.001885	-0.0185	-7.4133	-6.2457	25.8196	385232.83575191
9	10	0.187848	-0.0452	-7.6318	-6.5259	25.4970	19.157006685541
10	11	0.001747	-0.0172	- 7.6330	-6.5273	25.2713	147948.17252389
11	12	0.180485	-0.0332	- 7.7638	-6.6952	25.1485	7.7463534861287
12	13	0.001672	-0.0165	-7.7646	-6.6961	25.0647	59981.031977724
13	14	0.176032	-0.0265	- 7.8460	-6.8005	25.0155	3.2318053161453
14	15	0.001627	-0.0161	- 7.8464	-6.8011	24.9823	25076.093324058
15	16	0.173261	-0.0225	- 7.8982	-6.8676	24.9619	1.3733495367161
16	17	0.001600	-0.0159	-7.8985	-6.8680	24.9482	10672.495613933
17	18	0.171501	-0.0200	-7.9320	-6.9109	24.9396	0.59022778928735
18	19	0.001582	-0.0157	-7.9322	-6.9111	24.9339	4591.7742864922
19	20	0.170367	-0.0184	- 7.9539	-6.9391	24.9302	0.25547592785571
20	21	0.001571	-0.0156	-7.9541	-6.9392	24.9277	1989.0216058950
21	22	0.169629	-0.0173	- 7.9683	- 6.9576	24.9261	0.11108717616023
22	23	0.001564	-0.0155	- 7.9684	-6.9577	24.9251	865.31998121177
23	24	0.169146	-0.0167	- 7.9778	-6.9697	24.9244	0.048446747522922
24	25	0.001559	-0.0155	- 7.9779	-6.9698	24.9239	377.50934810861
25	26	0.168829	-0.0162	-7.9840	-6.9777	24.9236	0.021169276462379
26	27	0.001556	-0.0155	-7.9841	-6.9778	24.9234	164.99457205072
27	28	0.168620	-0.0160	-7.9882	-6.9830	24.9233	0.0092618815183660
28	29	0.001554	-0.0154	-7.9882	-6.9831	24.9232	72.198788213496
29	30	0.168482	-0.0158	-7.9909	-6.9865	24.9231	0.0040556058395480
30	31	0.001553	-0.0154	-7.9909	-6.9865	24.9231	31.617754706426
31	32	0.168391	-0.0157	-7.9927	-6.9888	24.9231	0.0017768548066861
32	33	0.001552	-0.0154	-7.9927	-6.9888	24.9231	13.853415245546
33	34	0.168331	-0.0156	-7.9939	-6.9904	24.9230	0.00077876509272512
34	35	0.001551	-0.0154	-7.9939	-6.9904	24.9230	6.0719899953616
35	36	0.168291	-0.0155	- 7.9947	-6.9914	24.9230	0.00034140171505241
36	37	0.001551	-0.0154	- 7.9947	-6.9914	24.9230	2.6619709384624
37	38	0.168264	-0.0155	- 7.9952	-6.9920	24.9230	0.00014969047927996
38	39	0.001551	-0.0154	- 7.9952	-6.9920	24.9230	1.1671869894256

	Iteration	alpha	x 1	x2	х3	f(x)	Second order
39	40	0.168247	-0.0155	- 7.9955	-6.9925	24.9230	6.56399887917465e-5
40	41	0.001551	-0.0154	- 7.9955	-6.9925	24.9230	0.511823817223594
41	42	0.168235	-0.0154	- 7.9958	-6.9928	24.9230	2.87854594283627e-5
42	43	0.001550	-0.0154	- 7.9958	-6.9928	24.9230	0.224454833393194
43	44	0.168228	-0.0154	- 7.9959	-6.9930	24.9230	1.26240274269339e-5
44	45	0.001550	-0.0154	- 7.9959	-6.9930	24.9230	0.0984365194921377
45	46	0.168223	-0.0154	- 7.9960	-6.9931	24.9230	5.53650893411947e-6
46	47	0.001550	-0.0154	- 7.9960	-6.9931	24.9230	0.0431713869241133
47	48	0.168219	-0.0154	-7.9961	-6.9932	24.9230	2.42819130805915e-6
48	49	0.001550	-0.0154	-7.9961	-6.9932	24.9230	0.0189340713933867
49	50	0.168217	-0.0154	-7.9961	-6.9932	24.9230	1.06496574914525e-6
50	51	0.001550	-0.0154	-7.9961	-6.9932	24.9230	0.00830419412079091
51	52	0.168215	-0.0154	-7.9961	-6.9933	24.9230	4.67081059117273e-7
52	53	0.001550	-0.0154	-7.9961	-6.9933	24.9230	0.00364212296605273
53	54	0.168214	-0.0154	-7.9962	-6.9933	24.9230	2.04857299584690e-7
54	55	0.001550	-0.0154	-7.9962	-6.9933	24.9230	0.00159740163352533
55	56	0.168214	-0.0154	-7.9962	-6.9933	24.9230	8.98488118484210e-8
56	57	0.001550	-0.0154	-7.9962	-6.9933	24.9230	0.000700608244385900
57	58	0.168213	-0.0154	-7.9962	-6.9933	24.9230	3.94070902602977e-8
58	59	0.001550	-0.0154	-7.9962	-6.9933	24.9230	0.000307282216590546
59	60	0.168213	-0.0154	-7.9962	-6.9933	24.9230	1.72837173584467e-8

(a) Verify that the final solution satisfies the second order necessary conditions for a minimum.

Second order necessary conditions -

```
1) grad(xmin) = 0
```

2) d.T *
$$H(x)$$
 * d >= 0 where d = -(grad(xmin))

In our scenario,

xmin = [-0.0154, -7.9962, -6.9933]

f(xmin) = 24.9230

second_order = d.T * H(xmin) * d = 1.72837173584467e-8 >= 0 (satisfied)

(b) Plot the value of the objective function with respect to the number of iterations

```
In [6]: plt.plot(range(len(f_list)),f_list);
    plt.xlabel('Iterations')
    plt.ylabel('Objective Function f(x)')
    plt.title("Objective Function vs Iterations")
    plt.savefig('Objective Function vs Iterations Plot.png')
```


Zoom out plot to check minima

```
In [7]: plt.plot(range(len(f_list)),f_list);
    plt.xlim(5, 30)
    plt.ylim(20, 30)
    plt.xlabel('Iterations')
    plt.ylabel('Objective Function f(x)')
    plt.title("Objective Function vs Iterations:Zoomed In")
```

Out[7]: Text(0.5, 1.0, 'Objective Function vs Iterations:Zoomed In')

(c) Comment on the convergence speed of the algorithm.

Optimum Solution

xmin = [-0.0154, -7.9962, -6.9933]

f(xmin) = 24.9230

Total Time = 2.96875 Seconds

As we can see in the plot(function vs Iterations), we reached the optimum solution at 25th iteration which shows that our algorithm is faster.