

Lab 10: Characterization of the MOSFET

Kylan Lewis

UIN: 719001131

ECEN 325 -501 TA: Jian Shao Date: 11/3/2020

Simulations

(1) NMOS using 2N7000G

Figure 1: Schematic for NMOS using 2N7000G ▲

Figure 2: Simulation of NMOS characterization circuit using DC sweep of V1 from 0 to 2.5V,

Figure 3: Excel plot of NMOS characterization circuit using DC sweep of V1 from 0 to 2.5V,

while V2 = 5V, where Id = (5-Vd)/1000

Figure 4: Excel plot of NMOS characterization of derivative of Id' vs. Vgs ▲

Threshold Voltage Vt = 2.23V

Transconductance parameter = (0.023218-0)/(2.5-2.23) = 0.086

(2) NMOS using CD4007N

Figure 5: Schematic for NMOS using CD4007N (β =102mA/V2, V_{TN}=2.0V) \blacktriangle

Figure 6: Simulation of NMOS characterization circuit using DC sweep of V1 from 0 to 2.5V,

 $\textbf{Figure 7:} \ Excel \ plot \ of \ NMOS \ characterization \ circuit \ using \ DC \ sweep \ of \ V1 \ from \ 0 \ to \ 2.5V,$

while
$$V2 = 5V$$
, where $Id = (5-Vd)/1000 \blacktriangle$

Figure 8-1: Excel plot of NMOS characterization of derivative of Id' vs. Vgs ▲

Figure 8-2: Excel plot of NMOS characterization of derivative of Id' vs. Vgs Decimated ▲

Threshold Voltage Vt = 1.5V

 $Transconductance\ parameter=0.001A/V^2$

(3) PMOS using CD4007P

Figure 9: Schematic for PMOS using CD4007P (β =102mA/V2, V_{TN}=2.0V) \blacktriangle

Figure 10: Simulation of PMOS characterization circuit using DC sweep of V1 from -2.5 to 0V,

Figure 11: Excel plot of PMOS characterization circuit using DC sweep of V1 from -2.5 to 0V,

while V2 = -5V, where $Id = (Vd+5)/1000 \triangle$

Figure 12-1: Excel plot of PMOS characterization of derivative of Id' vs. Vsg ▲

Figure 12-2: Excel plot of PMOS characterization of derivative of Id' vs. Vsg Decimated ▲

Threshold Voltage Vt = 1.5V

Transconductance parameter = $0.001A/V^2$

TA Question:

My question related to the Lab10 video (11:00-21:00) is, Why do we need to apply the decimation technique when we plot the derivative of Id as a function of Vgs in the measurement?

We need to apply the decimation technique when we plot the derivative of Id as a function of Vgs because the curve is very noisy (many outliers). We seek to have a more smooth and filtered plot. In using the decimation technique we need to take a decimation factor "k" which we determined to be 300 and substitute this into the equation as shown below.

$$I_{d}'(n) = \frac{I_{d}(n+1) - I_{d}(n)}{V_{GS}(n+1) - V_{GS(n)}};$$

Substituting in decimation factor k,

$$I_{d}^{\;\;\prime}(\,n) \; = \; \frac{I_{d}(\,n + k) \; - \; I_{d}(\,n\,)}{V_{GS}(\,n + k) \; - \; V_{GS(\,n\,)}} \label{eq:Id}$$

Note: V_{GS} is adjusted to the midpoint of $(I_d(n+k) + I_d(n))$