

DDN: Dual-domain Dynamic Normalization for Non-stationary Time Series Forecasting

Paper

Tao Dai^{1,*}, Beiliang Wu^{1,*}, Peiyuan Liu^{2,†}, Naiqi Li^{2,†}, Yuerong Xue², Shu-tao Xia², Zexuan Zhu¹

- 1. College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
- 2. Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
 - * Equal Contributions
- † Corresponding Author

Motivation

- ➤ Reliable forecasting under rapidly changing and nonstationary data distributions remains a core challenge in time series analysis.
- Addressing non-stationarity through dynamic normalization in both time and frequency domains enhances prediction accuracy by adapting to time-varying distribution shifts.
- Frequency domain decomposition captures distribution variations over different periods, while time domain techniques provide fine-grained adjustments for dynamic local patterns.

Contribution

- ➤ We propose Dual-domain Dynamic Normalization (DDN), a novel framework that dynamically normalizes time series in both time and frequency domains, effectively addressing non-stationarity.
- Our sliding window-based normalization mechanism decomposes time series into fine-grained frequency components and local temporal patterns, enabling precise adaptation to distribution shifts.
- Extensive experiments across diverse datasets demonstrate DDN's superior accuracy and versatility, significantly improving forecasting performance as a model-agnostic plugin.

<u>Pipeline</u>

Sliding Normalization

$$\mu_{j}^{i} = \frac{1}{2k+1} \sum_{-k}^{k} x_{j+t}^{i}, \quad (\sigma_{j}^{i})^{2} = \frac{1}{2k+1} \sum_{-k}^{k} (x_{j+t}^{i} - \mu_{j}^{i})^{2}, \mu^{i} = \operatorname{Pad}(\{\mu_{k+1}^{i}, \cdots, \mu_{L-k}^{i}\}), \quad \sigma^{i} = \operatorname{Pad}(\{\sigma_{k+1}^{i}, \cdots, \sigma_{L-k}^{i}\}).$$

$$\bar{\boldsymbol{x}}^{i} = \frac{1}{\boldsymbol{\sigma}^{i} + \epsilon} \odot (\boldsymbol{x}^{i} - \boldsymbol{\mu}^{i}),$$

Frequency Domain Normalization

$$egin{align*} oldsymbol{x}_l^i, oldsymbol{x}_h^i &= ext{DWT}_{\phi_{l,h}}(oldsymbol{x}^i), \ ar{oldsymbol{x}}_l^i, oldsymbol{\mu}_l^i, oldsymbol{\sigma}_l^i &= ext{SlidingNorm}(oldsymbol{x}_l^i), \quad ar{oldsymbol{x}}_h^i, oldsymbol{\mu}_h^i, oldsymbol{\sigma}_h^i &= ext{SlidingNorm}(oldsymbol{x}_h^i), \ ar{oldsymbol{x}}^i &= ext{IDWT}_{\phi_{l,h}}(ar{oldsymbol{x}}_l^i, ar{oldsymbol{x}}_h^i), \quad ar{oldsymbol{\mu}}^i &= ext{IDWT}_{\phi_{l,h}}(oldsymbol{\mu}_l^i, oldsymbol{\mu}_h^i), \quad ar{oldsymbol{\sigma}}^i &= ext{IDWT}_{\phi_{l,h}}(oldsymbol{\sigma}_l^i, oldsymbol{\sigma}_h^i). \end{gathered}$$

Time Domain Normalization

$$\bar{\boldsymbol{x}}^i, \boldsymbol{\mu}^i, \boldsymbol{\sigma}^i = \text{SlidingNorm}(\boldsymbol{x}^i),$$

Stationary Sequences Weighting

$$\bar{\boldsymbol{x}}^i = \bar{\boldsymbol{x}}^i \cdot \beta + \hat{\boldsymbol{x}}^i \cdot \alpha.$$

Non-stationary Reconstruction

Frequency Domain Prediction

$$\hat{\boldsymbol{\sigma}}_{\Delta}^{i} = \operatorname{SP}\left(\hat{\boldsymbol{\sigma}}^{i} - \sigma_{f}^{i}, \boldsymbol{x}^{i}\right), \quad \hat{\boldsymbol{\sigma}}_{*}^{i} = \hat{\boldsymbol{\sigma}}_{\Delta}^{i} + \sigma_{f}^{i},$$
 $\hat{\boldsymbol{\mu}}_{\Delta}^{i} = \operatorname{MP}\left(\hat{\boldsymbol{\mu}}^{i} - \mu_{f}^{i}, \boldsymbol{x}^{i} - \mu_{f}^{i}\right), \quad \hat{\boldsymbol{\mu}}_{*}^{i} = \hat{\boldsymbol{\mu}}_{\Delta}^{i} + \mu_{f}^{i}.$

Time Domain Prediction

$$oldsymbol{\sigma}_{\Delta}^i = \mathrm{SP}\left(oldsymbol{\sigma}^i - \sigma_o^i, oldsymbol{x}^i
ight), \quad oldsymbol{\sigma}_*^i = oldsymbol{\sigma}_{\Delta}^i + \sigma_o^i, \ oldsymbol{\mu}_{\Delta}^i = \mathrm{MP}\left(oldsymbol{\mu}^i - \mu_o^i, oldsymbol{x}^i - \mu_o^i
ight), \quad oldsymbol{\mu}_*^i = oldsymbol{\mu}_{\Delta}^i + \mu_o^i.$$

De-normalization

$$m{\mu}_*^i = m{\mu}_*^i \cdot eta + \hat{m{\mu}}_*^i \cdot lpha, \quad m{\sigma}_*^i = m{\sigma}_*^i \cdot eta + \hat{m{\sigma}}_*^i \cdot lpha, \quad ar{m{x}}^i = ar{m{x}}^i \cdot eta + \hat{m{x}}^i \cdot lpha. \ m{y}_*^i = ar{m{y}}_*^i \odot \left(m{\sigma}_*^i + \epsilon\right) + m{\mu}_*^i.$$

Experiment

Methods		Autoformer		+DDN		FEDformer		+DDN		DLinear		+DDN		iTransformer		+DDN	
Metric		MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
	96	0.458	0.448	0.427	0.424	0.371	0.411	0.385	0.408	0.377	0.399	0.372	0.396	0.392	0.422	0.377	0.405
<u>F</u>	192	0.481	0.474	0.472	0.452	0.420	0.443	0.415	0.452	0.417	0.426	0.406	0.416	0.428	0.448	0.414	0.430
ETTh1	336	0.508	0.485	0.498	0.466	0.446	0.459	0.458	0.452	0.464	0.461	0.432	0.434	0.467	0.475	0.453	0.456
-	720	0.525	0.516	0.502	0.483	0.482	0.495	0.490	0.479	0.493	0.505	0.462	0.474	0.568	0.547	0.553	0.530
	96	0.493	0.470	0.354	0.390	0.362	0.408	0.313	0.364	0.301	0.344	0.288	0.342	0.322	0.371	0.301	0.355
ETTm1	192	0.546	0.498	0.397	0.408	0.395	0.427	0.361	0.396	0.335	0.366	0.324	0.364	0.353	0.392	0.339	0.378
Ę	336	0.658	0.543	0.429	0.433	0.441	0.454	0.417	0.430	0.370	0.387	0.356	0.385	0.385	0.410	0.370	0.396
Щ	720	0.626	0.532	0.488	0.464	0.488	0.481	0.470	0.472	0.425	0.421	0.415	0.419	0.441	0.443	0.426	0.426
	96	0.247	0.320	0.190	0.243	0.246	0.328	0.174	0.237	0.175	0.237	0.146	0.201	0.177	0.228	0.148	0.210
the	192	0.302	0.366	0.231	0.282	0.281	0.341	0.233	0.294	0.217	0.275	0.190	0.247	0.223	0.266	0.191	0.252
Weather	336	0.362	0.394	0.289	0.327	0.337	0.376	0.307	0.349	0.263	0.314	0.239	0.288	0.287	0.310	0.237	0.290
>	720	0.427	0.433	0.369	0.375	0.414	0.426	0.399	0.405	0.325	0.366	0.311	0.343	0.364	0.365	0.301	0.336
- E	96	0.195	0.309	0.150	0.254	0.185	0.300	0.146	0.251	0.140	0.237	0.131	0.228	0.133	0.229	0.127	0.225
ricity	192	0.215	0.325	0.173	0.275	0.196	0.310	0.168	0.268	0.153	0.250	0.148	0.246	0.154	0.250	0.146	0.246
	336	0.237	0.344	0.185	0.288	0.215	0.330	0.174	0.280	0.168	0.267	0.164	0.264	0.170	0.266	0.156	0.257
Elect	720	0.292	0.375	0.201	0.304	0.244	0.352	0.216	0.312	0.203	0.301	0.201	0.299	0.192	0.287	0.179	0.282
	96	0.654	0.403	0.453	0.296	0.579	0.363	0.442	0.288	0.411	0.283	0.375	0.261	0.348	0.254	0.336	0.248
Traffic	192	0.654	0.410	0.462	0.304	0.608	0.376	0.462	0.300	0.423	0.289	0.396	0.272	0.364	0.264	0.347	0.254
rai	336	0.629	0.391	0.486	0.315	0.620	0.385	0.474	0.306	0.437	0.297	0.411	0.279	0.381	0.272	0.363	0.263
	720	0.657	0.402	0.529	0.344	0.630	0.387	0.512	0.329	0.467	0.316	0.448	0.298	0.421	0.290	0.412	0.286

- Datasets: ETTh1, ETTm1, Weather, Electricity, Traffic
- Metric: Mean Square Error (MSE) and Mean Absolute Error (MAE)
- Integrating DDN into Autoformer, FEDformer, DLinear, and iTransformer achieves MSE reductions of 19.2%, 13.1%, 24.7%, and 22.3%, respectively, demonstrating its effectiveness across diverse forecasting models.

Ablation Studies

	Mathada			Auto	former		FEDformer							
	Methods	+DDN	+RevIN	+NST	+Dish-TS	+SAN	IMP	+DDN	+RevIN	+NST	+Dish-TS	+SAN	IMP	
	ETTh1	0.475	0.519	0.521	0.521	0.518	3.7%	0.437	0.463	0.456	0.461	0.447	-1.6%	
	ETTh2	0.403	0.489	0.465	1.175	0.411	9.6%	0.385	0.465	0.481	1.004	0.404	9.8%	
	ETTm1	0.417	0.562	0.535	0.567	0.406	28.2%	0.390	0.415	0.411	0.422	0.377	7.6%	
	ETTm2	0.283	0.325	0.331	0.894	0.311	15.0%	0.282	0.310	0.315	0.759	0.287	6.6%	
	Weather	0.270	0.290	0.290	0.433	0.305	19.2%	0.278	0.268	0.267	0.398	0.279	13.1%	
	Electricity	0.177	0.219	0.213	0.231	0.204	24.7%	0.176	0.200	0.198	0.203	0.191	16.2%	
	Traffic	0.483	0.666	0.664	0.677	0.594	25.6%	0.473	0.647	0.649	0.652	0.572	22.3%	

DDN outperforms other normalization methods: RevIN, NST, Dish-TS, and SAN across all benchmarks, achieving the best results by effectively addressing non-stationarity with finer-grained dynamic normalization.

DDN can reconstruct fine-grained variations and rapid local fluctuations, surpassing other reversible normalization methods in precision and adaptability.