EXERCICE 1.

Trouver les limites suivantes :

1.
$$x(3+x)\frac{\sqrt{x+3}}{\sqrt{x}\sin\sqrt{x}}$$
 en 0 3. $\frac{(1-\cos x^2)e^{\frac{1}{x}}}{x^5+x^3}$ en 0+

3.
$$\frac{(1-\cos x^2)e^{\frac{1}{x}}}{x^5+x^3}$$
 en 0^+

2.
$$\frac{(1-e^x)(1-\cos x)}{3x^3+2x^4}$$
 en 0

4.
$$\left(x - \frac{\pi}{4}\right) \tan\left(x + \frac{\pi}{4}\right)$$
 en $\frac{\pi}{4}$

2.
$$\frac{(1-e^x)(1-\cos x)}{3x^3+2x^4}$$
 en 0 5. $(\tanh x)^{\ln x}$ en $+\infty$

EXERCICE 2.

Calculer, si elles existent, les limites de

1.
$$\sqrt[3]{x^3+1} - \sqrt{x^2+x+1}$$
 en $+\infty$, $\left(1+\frac{1}{x}\right)^x$ en 0.

2.
$$\left(1+\frac{1}{x}\right)^x \text{ en } 0$$

EXERCICE 3.

Etudier les limites suivantes :

1.
$$\lim_{x \to +\infty} \frac{(\ln(\ln x))^2 - \cos^2 x + \ln x}{2^x - 50x^6}.$$
 7.
$$\lim_{x \to +\infty} \left(\cos\left(\frac{1}{\ln x}\right)\right)^{x^2}.$$

2.
$$\lim_{x \to +\infty} \left(\frac{x^2 + 2x - 3}{x^2 - x - 1} \right)^x$$
.

$$3. \lim_{x\to 0} \frac{\cos 3x - \cos x}{x^2}.$$

4.
$$\lim_{x \to 0} \frac{a^x - b^x}{x}$$
 avec $0 < a < b$. 10. $\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{3}\cos x - \sin x}{x - \frac{\pi}{3}}$.

5.
$$\lim_{x \to 1} \frac{\sqrt{2 - x^2} - 1}{\ln x}$$
.

6.
$$\lim_{x \to +\infty} \sin\left(\frac{1}{x}\right) e^{\cos x}$$
.

7.
$$\lim_{x \to +\infty} \left(\cos\left(\frac{1}{\ln x}\right)\right)^{x^2}$$
.

8.
$$\lim_{x \to \frac{\pi}{2}} (\tan x) (\tan 2x)$$

8.
$$\lim_{x \to \frac{\pi}{2}} (\tan x)(\tan 2x)$$
.
9. $\lim_{x \to 1} \frac{e^{x^2 + x} - e^{2x}}{\cos(\frac{\pi x}{2})}$.

10.
$$\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{3} \cos x - \sin x}{x - \frac{\pi}{3}}$$

11.
$$\lim_{x\to 0} \frac{e^x - 1 + x^2 + \sin^3 x}{\sqrt[3]{1+x} - 1}$$
.

12.
$$\lim_{x\to 0} x \sin\left(\frac{1}{x}\right)$$
.

EXERCICE 4.

$$\mathrm{Soit}\ f(x) = x \ln \bigg(1 + \frac{\ln \big(1 + \frac{1}{x} \big)}{\ln x} \bigg).$$

- 1. Démontrer que $f(x) \sim \frac{1}{\ln x}$.
- 2. En déduire la limite en $+\infty$ de $(e^{f(x)} 1) \ln x$.
- 3. Soit $g(x) = \left[\left(\frac{\ln(x+1)}{\ln x} \right)^x 1 \right] \ln x$. Déterminer la limite de g en $+\infty$.

EXERCICE 5.

n et p désignant deux entiers naturels non nuls, calculer la limite quand x tend vers 1 de

$$\frac{nx^{n+1} - (n+1)x^n + 1}{x^{p+1} - x^p - x + 1}$$

Exercice 6.★

Soient a, b et c trois réels positifs. Etudier le comportement en $+\infty$ de

$$f(x) = \left(\frac{a^{1/x} + b^{1/x} + c^{1/x}}{3}\right)^{x}.$$

Exercice 7.

Lever les formes indéterminées suivantes :

1.
$$\lim_{x \to 0} \frac{2\cos(x) - x\tan(x)}{\sin^3(x)}$$
; 3. $\lim_{x \to 1} \frac{x}{x - 1} - \frac{1}{\ln(x)}$;

3.
$$\lim_{x \to 1} \frac{x}{x-1} - \frac{1}{\ln(x)}$$

2.
$$\lim_{x \to 0} \frac{x \cos(x) - \tan(x)}{\sin(x)(x - \tan(x))}$$
; 4. $\lim_{x \to 1} \frac{\sqrt{x} - 1}{\sqrt[3]{x} - 1}$.

4.
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{\sqrt[3]{x} - 1}$$

EXERCICE 8.

Déterminer un équivalent simple de la suite de terme général

$$u_n = 2\sqrt{n} - \sqrt{n+1} - \sqrt{n-1}.$$

EXERCICE 9.

Déterminer des équivalents simples en 0 des expressions suivantes,

1.
$$\arccos(x) - \pi/2$$

4.
$$\arctan(x) + x$$

2.
$$x^4 + x + x^2$$

5.
$$\frac{1}{1-x} - 1 + x$$

1.
$$\arccos(x) - \pi/2$$
;
2. $x^4 + x + x^2$;
3. $\arcsin(x) + x + x^2$;
4. $\arctan(x) + x$;
5. $\frac{1}{1-x} - 1 + x$;
6. $\frac{x^2}{1+x} - x$.

6.
$$\frac{x^2}{1+x} - x$$

EXERCICE 10.

Donner un équivalent en 0 de l'expression

$$\ln\left(\frac{e^x+1}{2}\right)-\frac{4x+x^2}{8}.$$

EXERCICE 11.★

Donner un équivalent en 0 de l'expression

$$\sin(\sinh(x)) - \sinh(\sin(x))$$
.

EXERCICE 12.

Déterminer un équivalent au point considéré des fonctions suivantes :

- 1. $x \ln(1+x) (x+1) \ln x \text{ en } +\infty$.
- **2.** $|x| \ln (1 + \frac{1}{x^2})$ en $+\infty$.
- 3. $\sqrt{x+1} \sqrt{x^2+1}$ en 0.
- 4. $\frac{\sin x + \cos x 1}{\tan(x x \cos x)}$ en 0.
- 5. $\frac{\sqrt{1+\tan^2 x}-1}{\tan x}$ en 0.

- **6.** $\ln(\cos x)$ en 0.
- 7. $\chi(e^{\frac{1}{x}} \cos(\frac{1}{x})) \text{ en } +\infty.$
- 8. $\frac{\ln(\ln x) \left(\frac{1}{2}\right)^x}{\left(\frac{1}{2}\right)^3 \left(\frac{1}{2}\right)^x}$ en $+\infty$.
- 9. $e^{\sin x} e^{\tan x}$ en 0.
- 10. $\tan\left(\frac{\pi x}{2x+3}\right)$ en $+\infty$.

EXERCICE 13.

Déterminer des équivalents de :

- 1. $\cos x$ en $\frac{\pi}{2}$
- 2. $\tan x \text{ en } \frac{\pi}{2}$

- 3. $\sqrt[3]{1+x^3} x \text{ en } +\infty$ 4. $\frac{1}{1+x} \frac{1}{2} \text{ en } 1$

EXERCICE 14.

Déterminer le DL₅(0) de

$$f(x) = \frac{\arcsin(x)}{\sqrt{1 - x^2}}.$$

EXERCICE 15.★

Calculer le développement limité à l'ordre n au voisinage de 0 des expressions suivantes:

- 1. $e^x \sin(x)$ et n = 3:
- **2.** $\sin^3(x) x^3 \cos(x)$, pour n = 6; 7. $\sqrt{4-x}$ et n = 3;
- 3. $x^3\sqrt{1+x}$ et n=5;
- 4. $\frac{1}{2+x}$ et n = 3;
- 5. $\frac{1}{3-x^2}$ et n = 5;

- **6.** $\sqrt{1+2x}$ et n = 3:
- 8. $\cos(\frac{\pi}{3} + x)$ et n = 3;
 - **9.** $\ln(2+x)$ et n=3;
 - **10.** $\exp(3-x)$ et n=3;
 - 11. $(1+x)^{1/x}$ et n=2.

EXERCICE 16.★

On considère la fonction numérique f définie sur l'intervalle I =]-1, 1[par

$$f(x) = x + \ln(1 + x).$$

- 1. Déterminer le développement limité à l'ordre 3 de f(x) au voisinage de 0.
- 2. Démontrer que f réalise une bijection de I sur un intervalle J qu'on explici-
- 3. En admettant qu'il existe, déterminer le développement limité à l'ordre 3 de $f^{-1}(x)$ au voisinage de 0.

EXERCICE 17.★

Développements en vrac.

- 1. Calculer les développements limités à l'ordre 4 des expressions suivantes au voisinage de x_0 :
 - **a.** e^{x} , $x_{0} = 1$;
 - **b.** $\cos(x), x_0 = \pi/4$;
 - **c.** $\sin(x)$, $x_0 = \pi/6$;
 - **d.** $\ln(x), x_0 = e$;
 - e. $\frac{1}{1+x^2}$, $x_0 = 1$;

- $\mathbf{g.} \ \frac{\sqrt{x^2-1}}{x}, \, x_0 = +\infty \, ;$
 - **h.** $(\tan(x))^{\tan(2x)}, x_0 = \pi/4$;
- 2. Calculer les développements limités
 - a. à l'ordre 3 au voisinage de $+\infty$ de

$$\sqrt[3]{x^3 + x^2} - \sqrt[3]{x^3 - x^2}$$
;

b. à l'ordre 2 au voisinage de $\pi/4$ de

$$\cos(x) + \sin(x) ;$$

c. à l'ordre 2 au voisinage de $\pi/4$ de tan(x).

EXERCICE 18.★

Déterminer le $DL_4(0)$ de

$$f(x) = x(ch(x))^{1/x}.$$

EXERCICE 19.★

Déterminer le $DL_2(0)$ de la fonction q définie par

$$g: x \longmapsto (1 + \arctan(x))^{\frac{x}{\sin^2(x)}}$$

EXERCICE 20.

Déterminer le $DL_3(0)$ de la fonction f définie sur \mathbb{R} par

$$f: x \longmapsto \ln(3e^x + e^{-x}).$$

EXERCICE 21.

Déterminer le DL₄(0) de la fonction définie par,

$$f(x) = \frac{1}{1 + \cos(x)}.$$

EXERCICE 22.

Chercher un développement limité d'ordre 5 de la fonction

$$f(x) = \frac{x^2 \sin(x)}{1 + x}.$$

EXERCICE 23.

Déterminer un $DL_4(0)$ des expressions suivantes :

1.
$$f(x) = \frac{\cos(x)}{\sqrt{1-x}}$$
;
2. $g(x) = \sqrt{1+\cos(x)}$;
3. $h(x) = e^{\cos(x)}$;
4. $i(x) = \frac{\cos(x)}{1+x^2}$.

$$\sqrt{1-x}$$

2. $a(x) = \sqrt{1+\cos(x)}$.

3.
$$h(x) = e^{\cos(x)}$$
;

4.
$$i(x) = \frac{\cos(x)}{1+x^2}$$
.

EXERCICE 24.

1. Soit $n \in \mathbb{N}$. Calculer le développement limité à l'ordre n au voisinage de 0

$$x\mapsto \ln\left(\sum_{k=0}^n x^k\right)$$

2. Soit $n \in \mathbb{N}^*$. Calculer le développement limité à l'ordre n au voisinage de 0 de

$$x\mapsto \ln\left(\sum_{k=0}^{n-1}\frac{x^k}{k!}\right)$$

3. Déterminer le développement limité à l'ordre 6 au voisinage de 0 de

$$x \mapsto \int_{x}^{x^2} e^{-t^2/2} dt$$

EXERCICE 25.

Chercher trois termes du développement asymptotique de la fonction f définie

$$f(x) = \sqrt{x^2 + x}$$

au voisinage de $+\infty$.

EXERCICE 26.

- 1. Montrer que pour tout $x \in [0, 1], x \frac{x^3}{6} \le \sin x \le x$.
- 2. Montrer que $\sum_{k=1}^{n} \sin \frac{k}{n^2} = \frac{1}{2} + \frac{1}{2n} + o\left(\frac{1}{n}\right)$

EXERCICE 27.

Déterminer les réels a et b tels que

$$f(x) = \cos(x) - \frac{1 + ax^2}{1 + bx^2}$$

soit, au voisinage de 0, un infiniment petit d'ordre le plus grand possible.

EXERCICE 28.

Soit f la fonction définie sur $[0; +\infty[$ par $f(x) = x^{1+\frac{1}{x}}$ si x > 0 et f(0) = 0. Soit \mathcal{C} la courbe représentative de f.

- 1. Montrer que f est continue en 0.
- 2. f est-elle dérivable en 0?
- 3. Déterminer la limite de f en $+\infty$.
- 4. Etudier les variations de f.
- **5.** Etudier les branches infinies de C.
- 6. Déterminer le développement limité à l'ordre 3 en 1 de f.
- 7. Préciser l'équation de la tangente T à $\mathcal C$ au point d'abscisse 1. Préciser la position relative de T et $\mathcal C$ au voisinage du point d'abscisse 1.
- 8. Tracer $\mathcal C$ avec soin. On placera notamment la tangente T déterminée à la question précédente.

EXERCICE 29.

Soit $f: x \mapsto xe^x$.

- 1. Montrer que f est une bijection de \mathbb{R}_+ sur un ensemble à déterminer.
- 2. Déterminer le développement limité de f^{-1} à l'ordre 2 au voisinage de 0.
- 3. Donner un équivalent simple de f^{-1} en $+\infty$.

Exercice 30.★

On cherche à déterminer le comportement au voisinage de $\mathfrak 0$ de la fonction $\mathfrak 1$ définie par l'expression

$$\frac{1}{\arcsin(x)} - \frac{1}{x}.$$

- 1. Quel est l'ensemble de définition de f?
- 2. Prouver que f est prolongeable par continuité en 0. On note encore f ce prolongement.
- 3. La fonction f est-elle dérivable en 0 ?
- 4. Étudier la position position relative du graphe de f et de sa tangente au voisinage de l'origine.

EXERCICE 31.

Soit f la fonction définie par

$$x \longmapsto (1+x)e^{1/x}$$
.

Etudier les branches infinies de f et déterminer la position des asymptotes par rapport à la courbe.

EXERCICE 32.

Démontrer que la fonction définie par

$$f(x) = x^2 \ln \left(\frac{x+1}{x-1} \right)$$

a pour asymptote la droite d'équation y = 2x en $+\infty$.

EXERCICE 33.

Déterminer les asymptotes à la courbe représentative de f définie par $f(x) = \sqrt{x^2 + x}e^{\frac{1}{x}}$.

EXERCICE 34.

On dit qu'une fonction $f:\mathbb{R}\longrightarrow\mathbb{R}$ admet une dérivée symétrique en $\mathfrak{a}\in\mathbb{R}$ lorsque le rapport

$$\frac{f(a+h)-f(a-h)}{2h}$$

admet une limite lorsque h tend vers 0.

- 1. Prouver que la dérivabilité en a est une condition suffisante de dérivabilité symétrique en a.
- 2. Est-ce une condition nécessaire?

EXERCICE 35.

Soit $f:\mathbb{R}\longrightarrow\mathbb{R}$ de classe \mathcal{C}^2 . Soit $x_0\in\mathbb{R}$. Déterminer la limite en 0 du quotient

$$\frac{f(x_0 + h) + f(x_0 - h) - 2f(x_0)}{h^2}.$$

EXERCICE 36.

On pose $u_n = \int_{n^2}^{n^3} \frac{dt}{1+t^2}$. Montrer que $u_n \underset{n \to +\infty}{\sim} \frac{1}{n^2}$.

EXERCICE 37.

On pose pour $n \in \mathbb{N}$ $u_n = \int_0^1 \frac{dx}{1 + x^n}$.

- 1. Montrer que (u_n) converge et donner sa limite.
- 2. A l'aide d'une intégration par parties, donner un développement asymptotique à deux termes de \mathfrak{u}_n .