20. Неприводимые многочлены над полем рациональных чисел и кольцом целых чисел. Критерий Эйзенштейна.

Теорема: признак Эйзенштейна

Пусть $f(x)\in\mathbb{Z}[x]$ и $f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ и существует такое простое число p, что:

- \mathbf{I} . p не делит a_n
- **2.** p делит все остальные $a_i \ (i=0,1,\dots,n-1)$
- **3.** p^2 не делит a_0

Тогда f(x) неприводим над \mathbb{Q} ./

Доказательство

Пусть $f(x)=a_nx^n+\cdots+a_0\in\mathbb{Z}[x]$ и пусть выполняется условие признака. Тогда предположим, что f(x) - разложим, то есть f(x)=g(x)h(x), где $g(x)=b_kx^k+\cdots+b_1x+b_0$ и $h(x)=c_mx^m+\cdots+c_1x+c_0$. Тогда p^2 не делит $c_0\Longrightarrow$ либо $p\mid c_0$ и p не делит b_0 , либо наоборот. Пусть $p\mid c_0$ и p не делит b_0 . Тогда $a_1=b_1c_0+c_1b_0$, отсюда, т.к. $p\mid a_1$, то $p\mid c_1$, далее, $a_2=b_2c_0+c_1b_1+c_2b_0$, отсюда $p\mid c_2$. Продолжая эти рассуждения, получаем что $a_m=b_mc_0+c_mb_1+\cdots+c_mb_0$, то есть $p\mid c_m$, то есть $p\mid a_n$ - противоречие.