Travaux dirigés nº 3: Séparateurs linéaires

Stéphan Clémençon <stephan.clemencon@telecom-paristech.fr> Emilie Chautru <emilie.chautru@mines-paristech.fr>

EXERCICE 1. On se place dans le cadre de la classification binaire : soient un descripteur aléatoire X à valeurs dans \mathbb{R} muni de sa tribu des Boréliens, et un label aléatoire Y valant 0 ou 1.

Soit $\mathbb{G} := \{g : \mathbb{R} \to \{0,1\}\}$ l'ensemble des classifieurs adaptés à ce contexte. L'erreur de classification est définie comme l'application $\mathcal{L} : g \in \mathbb{G} \mapsto \mathbb{P} (\mathbf{Y} \neq g(\mathbf{X})) \in [0,1]$ et on note $\mathcal{L}^* := \inf_{g \in \mathbb{G}} \mathcal{L}(g)$.

Dans cet exercice, on s'intéresse à la famille des classifieurs linéaires sur $\mathbb R$

$$\mathcal{G} := \left\{ g_{(x,y)} : z \in \mathbb{R} \ \mapsto \ y \, \mathbb{1}_{\{z \le x\}} + (1-y) \, \mathbb{1}_{\{z > x\}} : (x,y) \in \mathbb{R} \times \{0,1\} \right\}.$$

Pour $(x, y) \in \mathbb{R} \times \{0, 1\}$, l'erreur de classification de $g_{(x,y)} \in \mathcal{G}$ est notée plus simplement L(x, y). On pose $L_0 := \inf_{(x,y) \in \mathbb{R} \times \{0, 1\}} L(x, y)$.

- 1) Exprimer l'erreur de classification d'un élément quelconque de \mathcal{G} en fonction des lois conditionnelles de X sachant Y. On utilisera les notations $F_y(x) := \mathbb{P}\{X \le x \mid Y = y\}$ pour $(x,y) \in \mathbb{R} \times \{0,1\}$ et $p := \mathbb{P}(Y=1)$.
- 2) En faisant tendre x vers $-\infty$, montrer que $L_0 \le \frac{1}{2}$.
- 3) Montrer que $L_0 = \frac{1}{2} \sup_{x \in \mathbb{R}} \left| p F_1(x) (1-p) F_0(x) p + \frac{1}{2} \right|$. Simplifier l'expression quand $p = \frac{1}{2}$.

Indication. Pour tout $(a, b) \in \mathbb{R}^2$ on peut écrire $\min(a, b) = \frac{a + b - |a - b|}{2}$.

- 4) Montrer que $L_0 = \frac{1}{2}$ si et seulement si $L^* = \frac{1}{2}$.
- 5) Montrer l'inégalité de Chebychev-Cantelli : pour toute variable aléatoire réelle Z de carré intégrable et tout $t \ge 0$,

$$\mathbb{P}\left(Z - \mathbb{E}\left(Z\right) \ge t\right) \le \frac{\mathbb{V}\left(Z\right)}{\mathbb{V}\left(Z\right) + t^{2}}.$$

6) Supposons maintenant que X est de carré intégrable. Pour $y \in \{0, 1\}$, on note alors respectivement m_y et σ_y^2 l'espérance et la variance de la loi conditionnelle de X sachant Y = y. Montrer que

$$L_0 \le \left(1 + \frac{(m_0 - m_1)^2}{(\sigma_0 + \sigma_1)^2}\right)^{-1}$$
.

Indication. Utiliser l'inégalité démontrée à la question précédente.

7) Discuter de la performance du minimiseur empirique pris dans la classe \mathcal{G} et des limites des classifieurs linéaires.