A Walk on the Side an introduction to R for data analysis

GW Libraries Workshop September 2022

go.gwu.edu/rworkshop

Logistics

Schedule (approximate)

9:30-11:45(ish) R, with 1 break

~~ 45 minute break ~~

12:30(ish)-2:15 R, with 1 break

Upcoming R workshops

A WALK ON THE R SIDE

- Sept. 19 this workshop, again
- Oct. 7, 14, 28 (Fridays 10-12) Statistical Inference with R
- Nov. 4 (Friday 10-12) Interactive Data Viz w/RShiny

Learning Objectives

[Hopefully] You will learn how to do some of the following:

- Set up your laptop with R & RStudio (done!)
- Write and run an R program in RStudio
- Use variables of different types in R
- Use vectors and data frames in R to represent data
- Import & export data files
- "Wrangle" data in R
- Explore data in R with basic statistics and data visualizations
- Learn how to look for help to overcome obstacles

Agenda

- About R and RStudio
- Along the way: How to get help
- Hands-on:
 - variables
 - o logical expressions
 - o values, vectors, and data frames
 - R Studio projects
 - reading in data
 - exploring data

- data wrangling:
 cleaning and reshaping
- o data visualization
- data analysis
- functions
- o R Markdown / reports
- Resources for further learning

Acknowledgments

Teaching basic lab skills for research computing

O'REILLY"

Hadley Wickham & Garrett Grolemund

r4ds.had.co.nz

Workshop Housekeeping

Ask questions! Either via voice or chat

Use chat to help each other out

If something is confusing in the workshop, let us know.

About R

- Free/Open source
- Cross-platform (Mac, Windows, Linux)
- For statistical computing (and data visualization)
- CRAN r-project.org
 - o <u>R packages</u>
 - R journal

Reasons researchers prefer R

- Scripted language (vs. point/click)
- Features built around working with data
- Reproducibility
- Interdisciplinary
- Extensible
- Beautiful data visualization
- RStudio is a well-liked R development app
- Community RStudio Community, Stack Overflow

R Studio

Variables/Objects

"Binding" data to a named object/variable allows you to store data in memory and access it later.

$$x < -5$$

y <- c("Washington", "Chicago", "Washington", "Boston")

 $z < -data.frame(pt_id = c("A001", "B204"), bpm = c(60, 72))$

Variables

A WALK ON THE R SIDE

- Try using R as a "calculator" in the Console
 - Try some mathematical functions, too
- Create some variables
 - variable naming
 - <- for assigning values to variables (Option on Mac, Alt on Win)
 - o numeric, character, logical
 - Watch the Environment pane!
 - o typeof()
 - Coercion w/ as.integer, as.character, as.logical, as...

Logical Expressions

Operators include:

```
==, <, >, ! (not), & (and), | (or), etc.
```


Basic Data Structures

Atomic Vector

10.2

Vector

1 10.2
 2 11.3
 3 11.5
 4 12.0

Data Frame

Vectors

Vectors

A WALKUM K SIDE

- A vector is
 - A sequence of data elements (components) all of the same type.
- Create vectors with **c()** (short for "combine")

Data Frames

Data Frames

- A data.frame stores a data table
- Comprised of vectors of equal length. <u>Vectors become</u> <u>columns</u>.
- Columns and rows can have names.
- tibble (from the tibble package) has some advantages over data.frame

A brief word on list and matrix

Projects in RStudio

Projects in RStudio

Recommendations:

- Use [Github for] version control!
- Create folders to keep things organized

It's time to import some data!

Data Importing

A WALK ON THE R SIDE

- Prepare data as "tidy"
 - rectangular
 - one table per file
 - o rows are observations, columns are variables
- Formats: CSV, TSV, Excel, Fixed-Width, JSON... and with the right packages: Stata, SPSS, SAS... (using rio or haven)

• A word about "big data" (consider data.table)

Installing and loading R packages

- install.packages('mypackage')
- library(mypackage)

Tidyverse Core Packages

- ggplot2 graphics
- dplyr data manipulation
- tidyr tidying data
- readr reading in data
- tibble modern data frame
- purrr functional programming

tidyverse.org

Other often-used R packages

Loading in various data file types - haven, readxl

Mapping → rgdal, tmap, leaflet

Analyzing 2D and 3D shapes → geomorph

Genomic data • bioconductor

Cluster analyses • cluster

Time series data ◆ forecast

Text mining → qdap, sentimentr, tidytext

graph/network analysis → igraph, sna

Interactive web visualizations → shiny

Web scraping ◆ rvest

Exploring Data

- head, tail
- subsetting
- slicing and dicing

Data Transformation using the dplyr package

A WALK ON THE R SIDE

• filter()

- mutate()
- arrange()
- summarize()

select()

• group_by()

• ..

You will want to use a "pipe": %>%

(shortcut: control-shift-M)

Data Tidying with dplyr

- gather()
- spread()
- separate()
- unite()

Joining with dplyr

"Merges" tables together

- left_join()
- right_join()
- ..

Data Visualization with "base R" and ggplot

Data Analysis

Functions

R Markdown

R Markdown

- A format for writing reproducible, dynamic reports with R (as HTML, PDF, MS Word, and more)
- <u>rmarkdown.rstudio.com</u>
- # Header 1
 ## Header 2
 Italic **bold**
- Insert R code directly into your document

```
'``{r setup}
# your R code goes here
'``
```

Include LaTeX code with \$ or \$\$

R Shiny

Parting thoughts

Recommended practices

A WALK ON THE R SIDE

- Use Projects in RStudio
 - Set up folders
- Use tidyverse packages (dplyr, tidyr, etc.) to wrangle your data
- Leave raw data raw
- Empty out your variables, then make sure your script runs from the top
- Learn by finding and using working examples

Some Handy R Links

Tutorials

A WALK ON THE R SIDE

- RStudio R paths: <u>education.rstudio.com/learn/</u>
- Data Carpentry & Software Carpentry:
 - o datacarpentry.org/R-ecology-lesson/
 - o <u>datacarpentry.org/r-socialsci/</u>
 - o <u>swcarpentry.github.io/r-novice-inflammation</u>
 - o <u>swcarpentry.github.io/r-novice-gapminder</u>
- Linkedin Learning @ GW: go.gwu.edu/linkedinlearning
- r-tutor.com/r-introduction & r-tutor.com/elementary-statistics
- R Graph Gallery (w/code): <u>r-graph-gallery.com</u>

Books you can access for free

- Free books online Hadley Wickham:
 - R for Data Science <u>r4ds.had.co.nz</u>
 - Advanced R <u>adv-r.hadley.nz/</u>
- Through your GW library privileges:

Reference Links

- R language (CRAN): <u>r-project.org</u>
- R search engine: <u>rseek.org</u>
- <u>rstudio.com</u>
 - Cheat Sheets! <u>rstudio.com/resources/cheatsheets</u>
- <u>stackoverflow.com</u>

Thanks!

Dan Kerchner

kerchner@gwu.edu

These slides: go.gwu.edu/rworkshop

R or Statistics Appointments: <u>academiccommons.gwu.edu/data-consulting</u>

Appointments with me: <u>calendly.com/kerchner</u>

Coding consultations (Python, git, etc.): calendly.com/gwul-coding/