AULA 25: OS ESPAÇOS L^p $(1 \le p \le \infty)$

Sejam (X, \mathcal{B}, μ) um espaço de medida e $p \in [1, \infty]$. Vamos relembrar as definições dos espaços de funções $L^p(X)$.

■ $1 \le p < \infty$. Dizemos que $f \in L^p(X)$ se f é mensurável e $\int_X |f|^p d\mu < \infty$. Neste caso,

$$\|f\|_p \coloneqq \left(\int_X |f|^p d\mu\right)^{\frac{1}{p}}.$$

■ $p = \infty$. Dizemos que $f \in L^{\infty}(X)$ se f é mensurável e existe $C < \infty$ tal que $|f(x)| \le C$ para μ -q.t.p. $x \in X$. Neste caso,

$$||f||_{\infty} := \inf \{ C \in \mathbb{R} \colon |f(x)| \le C \quad \mu\text{-q.t.p.} \}$$
.

Definição 1. Dois números $p,q \in [1,\infty]$ são (Hölder) conjugados se $\frac{1}{p} + \frac{1}{q} = 1$. Por exemplo, 2 e 2 são Hölder conjugados, e também 1 e ∞ .

Lema 1 (a desigualdade de Young). Se $a, b \ge 0, p, q \in (1, \infty), \frac{1}{p} + \frac{1}{q} = 1, então$

$$ab \le \frac{a^p}{p} + \frac{b^q}{q} \,.$$

Demonstração. A função $\log: (0, \infty) \to \mathbb{R}$ é côncava. Então,

$$\log\left(\frac{1}{p}a^{p} + \frac{1}{q}b^{q}\right) \ge \frac{1}{p}\log(a^{p}) + \frac{1}{q}\log(b^{q}) = \log(a) + \log(b) = \log(ab)$$

Teorema 1 (a desigualdade de Hölder). Sejam $p,q \in [1,\infty]$ tais que $\frac{1}{p} + \frac{1}{q} = 1$. Se $f \in L^p(X)$ e $g \in L^q(X)$ então $f g \in L^1(\mu)$ e $\|f g\|_1 \le \|f\|_p \|g\|_q$.

Exercício 1. Pelo teorema anterior, se $f, g \in L^2(X)$ então $f \cdot g \in L^1(X)$. Encontre um exemplo mostrando que o produto $f \cdot g$ não necessariamente pertence a $L^1(X)$ se $f, g \in L^1(X)$.

Além disso, mostre que se $\mu(X) < \infty$ então $L^{\infty}(X) \subset L^{2}(X) \subset L^{1}(X)$. Mais geralmente, se $1 \leq p_{1} \leq p_{2} \leq \infty$ então $L^{p_{2}}(X) \subset L^{p_{1}}(X)$.

Demonstração (da desigualdade de Hölder).

■ p=1 e $q=\infty$ (ou vice versa). Temos $g\in L^\infty(X)$. Seja $C<\infty$ tal que $|g(x)|\leq C$ para μ -q.t.p. $x\in X$. Então $|f(x)g(x)|\leq C$ |f(x)| para μ -q.t.p. $x\in X$. Integrando em x segue que

$$||fg||_1 = \int_X |fg| \ d\mu \le \int_X C \ |f| \ d\mu = C \ ||f||_1 < \infty.$$

Portanto $fg \in L^1(X)$ e, se $|g(x)| \leq C$ μ -q.t.p. $x \in X$ então $||fg||_1 \leq C$ $||f||_1$. Se $||f||_1 \neq 0$, então $\frac{||fg||_1}{||f||_1} \leq C$, e tomando o ínfimo sobre todos tais C, concluímos que

$$\frac{\|fg\|_1}{\|f\|_1} \le \|g\|_{\infty},$$

mostrando a afirmação.

Se $||f||_1 = 0$ então f = 0 μ -q.t.p., portanto fg = 0 μ -q.t.p. e a afirmação é evidente.

П

 $\blacksquare \, p,q \in (1,\infty).$ Se $\|f\|_p = 0$ (argumento similar se $\|g\|_q = 0)$ tem-se

$$\int |f|^p d\mu = 0 \implies |f|^p = 0 \text{ μ-q.t.p.} \implies f = 0 \text{ μ-q.t.p.} \implies fg = 0 \text{ μ-q.t.p.}$$

Neste caso, a desigualdade é evidente.

Logo, podemos supor que $||f||_p \neq 0, ||g||_q \neq 0$. Fixe $x \in X$ e denote por

$$a := \frac{|f(x)|}{\|f\|_p}, \quad b := \frac{|g(x)|}{\|g\|_q}$$

Pela desigualdade de Young,

$$\frac{|f(x)g(x)|}{\|f\|_p \|g\|_q} \le \frac{1}{p} \frac{|f(x)|^p}{\|f\|_p^p} + \frac{1}{q} \frac{|g(x)|^q}{\|g\|_q^q}$$

A designaldade acima vale para todo $x \in X$, integrando em x temos:

$$\int_{X} \frac{|fg|}{\|f\|_{p} \|g\|_{q}} d\mu \le \frac{1}{p} \frac{\int |f|^{p}}{\|f\|_{p}^{p}} + \frac{1}{q} \frac{\int |g|^{q}}{\|g\|_{q}^{q}} = \frac{1}{p} + \frac{1}{q} = 1.$$

Concluímos que

$$\frac{\int |fg| \, d\mu}{\|f\|_p \, \|g\|_q} \le 1,$$

logo
$$||fg_1|| = \int |fg| d\mu \le ||f||_p ||g||_q$$
.

Teorema 2. Seja (X, \mathcal{B}, μ) um espaço de medida. Então $L^p(X)$ é um espaço vetorial para todo $1 \leq p \leq \infty$.

Demonstração. Se $f \in L^p(X), c \in \mathbb{R}$, é fácil verificar que $cf \in L^p(X)$. Logo, basta provar que se $f, g \in L^p(X)$ $(1 \le p \le \infty)$ então $\|f + g\|_p < \infty$.

- O caso $p = \infty$ é exercício.
- Suponha que $1 \le p < \infty$.

Se $a, b \ge 0$ então a seguinte desigualdade vale:

$$(a+b)^p \le 2^{p-1}(a^p + b^p)$$
.

De fato, se $p \geq 1$, a função $[0, \infty) \ni x \mapsto x^p$ é convexa. Então,

$$\left(\frac{a+b}{2}\right)^p \le \frac{1}{2} a^p + \frac{1}{2} b^p,$$

logo

$$(a+b)^p \le 2^{p-1}(a^p + b^p)$$
.

Portanto,

$$|f(x) + g(x)|^p \le (|f(x)| + |g(x)|)^p \le 2^{p-1} (|f(x)|^p + |g(x)|^p).$$

Integrando em x, temos que

$$||f+g||_p^p = \int |f+g|^p \le 2^{p-1} \left(\int |f|^p + \int |g|^p \right) = 2^{p-1} (||f||_p^p + ||g_p^p|) < \infty,$$

mostrando que $f + g \in L^p(X)$.

Teorema 3. Seja (X, \mathcal{B}, μ) um espaço de medida. Então, $(L^p(X), \|\cdot\|_p)$ é um espaço normado para todo $1 \le p \le \infty$.

Demonstração.

- O caso $p = \infty$ é exercício.
- lacktriangle Suponha que $1 \leq p < \infty$. O único axioma da norma que precisamos verificar é a desigualdade triangular:

$$\|f+g\|_p \leq \|f\|_p + \|g\|_p \quad \text{(a desigualdade de Minkowski)}.$$

Temos que

$$||f+g||_p^p = \int |f+g|^p \ d\mu = \int |f+g| |f+g|^{p-1} \ d\mu \le \int |f| |f+g|^{p-1} \ d\mu + \int |g| |f+g|^{p-1} \ d\mu$$

Seja q o conjugado à Hölder de p, logo, $\frac{1}{p} + \frac{1}{q} = 1$, portanto (p-1)q = p. Daí,

$$(|f+g|^{p-1})^q = |f+g|^p$$

e pela desigualdade de Hölder,

$$\int |f| |f + g|^{p-1} = ||f| |f + g|^{p-1} ||_{1}$$

$$\leq ||f||_{p} || |f + g|^{p-1} ||_{q}$$

$$= ||f||_{p} \left(\int |f + g|^{(p-1)q} \right)^{\frac{1}{q}}$$

$$= ||f||_{p} \left(\int |f + g|^{p} \right)^{\frac{1}{q}}$$

$$= ||f||_{p} \left(\int |f + g|^{p} \right)^{\frac{1}{p} \cdot \frac{p}{q}}$$

$$= ||f||_{p} ||f + g||_{p}^{\frac{p}{q}}$$

Logo, mostramos que

$$\int |f| |f + g|^{p-1} d\mu \le ||f||_p ||f + g||_p^{\frac{p}{q}}.$$

Similarmente,

$$\int |g| |f + g|^{p-1} d\mu \le ||g||_p ||f + g||_p^{\frac{p}{q}}.$$

Portanto,

$$||f+g||_p^p \le (||f||_p + ||g||_p) ||f+g||_p^{\frac{p}{q}}$$

Como $p - \frac{p}{q} = 1$, segue que $||f + g||_p \le ||f||_p + ||g||_p$.

Teorema 4 (Riesz-Fischer). Seja (X, \mathcal{B}, μ) um espaço de medida. Então $L^p(X, \mathcal{B}, \mu)$ é um espaço de Banach para todo $1 \leq p \leq \infty$ (i.e espaços normados completos).

Demonstração.

 \bullet O caso $p = \infty$.

Seja $\{f_n\}_{n\geq 1}\subset L^\infty(X)$ uma sequência de Cauchy (com respeito à norma L^∞). Para todo $n\geq 1$ existe $n_m\in\mathbb{N}$ tal que

$$||f_k - f_l||_{\infty} < \frac{1}{m} \quad \forall k, l \ge n_m.$$

Logo, existe $W_{k,l,m} \in \mathcal{B}, \mu(W_{k,l,m}) = 0$ tal que

$$|f_k(x) - f_l(x)| < \frac{1}{m} \quad \forall x \in W_{k,l,m}^{\mathfrak{c}}.$$

Seja $W = \bigcup_{k,l,m} W_{k,l,m}$ união enumerável. Então, $W \in \mathcal{B}$ e $\mu(W) = 0$. Afirmamos que se $x \in W^{\mathfrak{c}}$ então $\{f_n(x)\}_{n \geq 1} \subset \mathbb{R}$ é Cauchy. De fato, para todo $x \in W^{\mathfrak{c}}$ e $m \geq 1$ temos

$$(1) |f_k(x) - f_l(x)| < \frac{1}{m} \quad \forall k, l \ge n_m$$

Seja

$$f(x) := \begin{cases} \lim_{k \to \infty} f_k(x) & \text{se } x \in W^{\complement} \\ 0 & \text{se } x \in W \end{cases}$$

Logo, f é mensurável. Na desigualdade (1), tomando $l \to \infty$, segue que para todo $x \in W^{\complement}$,

(2)
$$|f_k(x) - f(x)| \le \frac{1}{m} \quad \forall k \ge n_m,$$

já que $f(x) = \lim_{l \to \infty} f_l(x)$.

Em particular,

$$|f(x)| = |f(x) - f_k(x) + f_k(x)|$$

$$\leq |f(x) - f_k(x)| + |f_k(x)|$$

$$\leq \frac{1}{m} + |f_k(x)|,$$

e como f_k é essencialmente limitada, f também é essencialmente limitada, i.e, $f \in L^{\infty}(X)$.

Pela desigualdade (2) temos que $f_k \to f$ uniformemente em W^{\complement} . Como $\mu(W) = 0$, concluímos que $f_k \to f$ em L^{∞} , portanto a sequência de Cauchy $\{f_k\}_{k\geq 1} \subset L^{\infty}(X)$ possui um limite $f \in L^{\infty}(X)$, mostrando a completude do espaço $L^{\infty}(X)$

■ O caso $1 \le p < \infty$. Usaremos o seguinte resultado.

Lema 2. Seja $\{g_n\}_{n\geq 1}\subset L^p(X,\mathcal{B},\mu)$. Se $\sum_{n=1}^{\infty}\|g_n\|_p<\infty$, então existe $g\in L^p(X)$ tal que

$$\sum_{n=1}^{\infty} g_n = g \ \mu\text{-q.t.p. em } L^p(X).$$

Vamos usar o lema para provar que dada $\{f_n\}_{n\geq 1}\subset L^p(X)$ uma sequência de Cauchy existe $\{f_{n_k}\}_{k\geq 1}$ subsequência convergente. Como $\{f_n\}_{n\geq 1}$ é Cauchy em $L^p(X)$,

$$||f_n - f_m||_p \to 0$$
 quando $n, m \to \infty$.

Então existe uma subsequência $\{f_{n_k}\}_{k\geq 1}$ tal que

$$||f_{n_k} - f_{n_{k+1}}||_p < \frac{1}{2^k}$$
 para todo $k \ge 1$.

Seja $g_k := f_{n_k} - f_{n_{k+1}}$. Como $\|g_k\|_p < \frac{1}{2^k}$ temos que $\sum_{k \ge 1} \frac{1}{2^k} < \infty$. Então pelo lema anterior

 $\sum_{n=1}^{\infty}g_n$ converge em $L^p(X)$ para uma função $g\in L^p(X).$ Temos

$$\sum_{k=1}^{m} g_k = f_{n_1} - f_{n_2} + f_{n_2} - f_{n_3} + \ldots + f_{n_m} - f_{n_{m+1}} = f_{n_1} - f_{n_{m+1}}.$$

Então,

$$f_{n_{m+1}} = f_{n_1} - \sum_{k=1}^{m} g_k.$$

Concluímos que $\{f_{n_k}\}_{k\geq 1}$ converge em $L^p(X)$ para $f\coloneqq f_{n_1}-g$. Não é difícil concluir que $\{f_n\}_{n\geq 1}$ mesmo é convergente. De fato, dado $\epsilon>0$, como $\{f_n\}_{n\geq 1}$ é Cauchy em $L^p(X)$, existe $n_\epsilon\in\mathbb{N}$ tal que

$$\|f_n - f_m\|_p < \epsilon \quad \forall n, m \ge n_{\epsilon}.$$

Ainda, $\{f_{n_k}\}_{k\geq 1}$ é convergente em $L^p(X)$, então existe $k_{\epsilon}\in\mathbb{N}$ tal que

$$||f_{n_k} - f||_p < \epsilon \quad \forall k \ge k_{\epsilon}.$$

Então, para todo n suficientemente grande,

$$||f_n - f||_p \le ||f_n - f_{n_k}||_p + ||f_{n_k} - f||_p \le \epsilon + \epsilon = 2\epsilon.$$

Demonstração do lema. Considere a sequência de funções mensuráveis $\{|g_n|\}_{n\geq 1}$. Pelo teorema de Tonelli, $\sum_{n=1}^{\infty} |g_n|$ é mensurável e

$$\int_{X} \sum_{n=1}^{\infty} |g_{n}| \ d\,\mu = \sum_{n=1}^{\infty} \int_{X} |g_{n}| \ d\,\mu$$

Sejam $h_n = \sum_{k=1}^n |g_k|$ (a soma parcial) e $h = \sum_{n=1}^\infty |g_n|$ (a soma da série). Então $h_n \nearrow h$ em todo

ponto. Em particular, $h_n^p \nearrow h^p$ em todo ponto. Portanto, pelo TCM, $\int_X h_n^p \to \int_X h^p$. Então,

$$\left(\int_X h_n^p\right)^{\frac{1}{p}} = \|h_n\|_p = \|\sum_{k=1}^n |g_k|\|_p \le \sum_{k=1}^n \|g_k\|_p \le \sum_{k=1}^\infty \|g_k\|_p < \infty.$$

Concluímos que

$$||h||_p = \left(\int_X h^p d\mu\right)^{\frac{1}{p}} \le \sum_{k=1}^{\infty} ||g_k||_p < \infty,$$

ou seja, $h \in L^p(X)$. Em particular, $h(x) < \infty$ para μ -q.t.p. $x \in X$ onde $h(x) = \sum_{k=1}^{\infty} |g_k(x)|$.

Então, a série $\sum_{k=1}^{\infty} g_k(x)$ é absolutamente convergente μ -q.t.p. Seja $g(x) = \sum_{k=1}^{\infty} g_k(x)$, então g

é mensurável. Resta provar que $g \in L^p(X)$ e $\sum_{k=1}^{\infty} g_k = g$ em $L^p(X)$. Como $g = \sum_{n=1}^{\infty} g_n \mu$ -q.t.p.,

temos que $|g| \leq \sum_{n=1}^{\infty} |g_n| = h \in L^p$, logo, pela monotonicidade da integral, $g \in L^p(X)$. As somas

parciais
$$\sum_{k=1}^{n} g_k \to g \ \mu$$
-q.t.p., logo $\left| \sum_{k=1}^{n} g_k - g \right|^p \to 0 \ \mu$ -q.t.p.

Então,

$$\left| g - \sum_{k=1}^{n} g_k \right|^p \le \left(|g| + \sum_{k=1}^{n} |g_k| \right)^p \le (h+h)^p = 2^p h^p \in L^1(X).$$

Portanto, o teorema da convergência dominada é aplicável e implica

$$\int_{X} \left| g - \sum_{k=1}^{n} g_{k} \right|^{p} d\mu \to 0 \Leftrightarrow \sum_{k=1}^{n} g_{k} \to g \text{ em } L^{p}(X).$$