Appunti di Visione Artificiale

Riccardo Lo Iacono

Dipartimento di Matematica & Informatica Università degli studi di Palermo Sicilia a.a. 2022-2023

Indice.

1	\mathbf{Intr}	oduzione: il sistema visivo umano	2
	1.1	Immagini digitali	2
2	Teorema del campionamento e sistemi di output		
	2.1	Sistema di output a scala di grigio	,
	2.2	and the second s	
3	Spazi-colore		
	3.1	Spazio-colore RGB	4
	3.2	Spazio colore RGB: CCD e filtro di Bayer	
	3.3	Spazio colore HSL/HSV	
	3.4	Spazio colore YUV	
	3.5	Altre nozioni sugli spazi colore	,
4	Operatori lineari e convoluzione		
	4.1	Convoluzione	,

– 1 – Introduzione: il sistema visivo umano.

Come si vede in Figura 1.1, l'occhio umano ha una conformazione per lo più sferica. Si circonda da quattro membrane: cornea e sclera che lo coprono dall'esterno; coroide e retina che sono interne.

Circa la visione in se, questa è permessa da recettori luminosi posti sulla retina. Tali recettori sono distinti per struttura e funzionalità, si hanno i bastoncelli e coni.

Analizzando le funzionalità dei due, i recettori conici sono disposti nella parte centrale dell'occhio, la *fovea*,

Figura 1.1: Struttura dell'occhio umano.

sono molto sensibili alle variazioni di colore, e ciascun recettore è connesso ad un proprio terminale nervoso. Sono responsabili della visione fotopica (visione a colori). I bastoncelli, distribuiti su tutta la retina e soggetti alle variazioni luminose, connessi ad un terminale nervoso comune, hanno lo scopo di fornire un immagine generale. Sono responsabili della visione scotopica (visione a scala di grigi).

Osservando Figura 1.1, si osserva che è presente una porzione dell'occhio, quella da cui di base si estende il nervo ottico, che è priva di recettori: tale punto è detto blind spot, proprio perché non contribuisce alla visione. Si potrebbe pertanto pensare che la presenza di questo punto cieco, possa creare una sorta di vuoto nell'immagine. Da un punto di vista tecnico, è così. Per quel che riguarda la visione, così non è: le informazioni carpite dagli occhi giungono al cervello passando per il chiasma, essendo questi un "canale" comune, trasferisce in contemporanea informazioni di entrambi gli occhi, permettendo al cervello di ottenere un'immagine "pulita".

Osservazione: la visione non è globale: ossia nella realtà dei fatti ad essere messa a fuoco non è l'intera scena, quanto più una piccola porzione della stessa, quella perpendicolare alla fovea per la precisione, la nitidezza del resto dell'immagine è dovuta al cervello.

- 1.1 - Immagini digitali.

Una qualsiasi immagine digitale I, può essere vista come una funzione

$$I = \{(i, j, g) : i \in \{0, \dots, W - 1\}, j \in \{0, \dots, H - 1\}, g \in \{0, \dots, G - 1\}\}$$

dove W,H,G rappresentano rispettivamente i valori massimi di larghezza, altezza e livello di grigio dell'immagine. Si deduce banalmente che la qualità dell'immagine sia dipendente dalla codifica di tali parametri. In generale si deve avere che

$$\begin{split} i &= \min \left\{ \lfloor W \times (x - x_{min}) / (x_{max} - x_{min}) \rfloor, W - 1 \right\} \\ j &= \min \left\{ \lfloor H \times (y - y_{min}) / (y_{max} - y_{min}) \rfloor, H - 1 \right\} \\ g &= \min \left\{ \lfloor G \times (l - l_{min}) / (l_{max} - l_{min}) \right\}, G - 1 \right\} \end{split}$$

¹A meno che non sia esplicitato, saranno considerati valori di grigio nel range [0, 255].

-2 - Teorema del campionamento e sistemi di output.

Sia assunto che l'immagine ammette frequenze massime v_x e v_y . Supponendo di dover campionare l'immagine, è così possibile determinare l'ampiezza campionante ad intervalli spaziali, dati da

$$\Delta_x = \frac{1}{2v_x} \qquad \qquad \Delta_y = \frac{1}{2v_y}$$

Nel caso di pixel quadrati si impone $\Delta = \min \{ \Delta_x, \Delta_y \}$.

Parlando di effettivo campionamento, si identificano principalmente tre casi, quali

- sotto-campionamento: il numero di campioni del segnale da campionare, non è sufficiente a ricostruire il segnale di partenza;
- campionamento critico: si campiona il segnale con un numero sufficiente di campioni, permettendo di ripristinare il segnale;
- sovra-campionamento: il segnale è perfettamente ricostruibile, ma il numero di campioni è eccessivo.

-2.1 - Sistema di output a scala di grigio.

Il sistema a scala di grigi che si considera è il tubo catodico. Questi si compone di un tubo di vetro, mantenuto a bassissima pressione, alle cui estremità sono posti due elettrodi collegati ad un generatore di corrente.

Quando la differenza di potenziale tra gli elettrodi è elevata, e inoltre la pressione scende sotto le 10^{-6} atm, il vetro di fronte emette luminescenza. Grazie agli elettronica, con l'uso di magneti è possibile far cambiare direzione al flusso degli elettroni, secondo un percorso $raster^2$;

L'utilizzo di tale tecnologia non permetteva a volte di trasmettere a 25 fotogrammi al secondo, quantità minima di frame affinché l'immagine risulti fluida. In questi casi si procedeva con una trasmissione interlacciata: si trasmettevano cioè prima tutte le righe dispari, poi quelle pari. Motivo di tale scelta è il fatto che ad illuminarsi non è unicamente il pixel, quanto più un'areola leggermente più ampia; facendo così dunque si illuminava anche parte dei pixel delle righe pari.

-2.2 - Sistemi di output a colori.

Davanti ciascun pixel è posta una ghiera di tre filtri: uno rosso, uno verde e uno blu. L'immagine segue sempre un percorso raster, solo che al posto di illuminare un solo pixel, procede con l'illuminare uno o più filtri.

Osservazione: i colori risultanti sono dati dalla combinazione dei tre filtri, secondo il modello RGB.

²L'immagine viene visualizzata a partire dal pixel più in alto a sinistra, procedendo per l'intera riga, e iniziando nuovamente dal pixel più a sinistra della riga successiva.

Sezione 3 Spazi-colore

-3 - Spazi-colore.

Uno *spazio-colore* è la combinazione di un modello di colore e di una appropriata funzione di mappatura di questo modello. Un modello di colore, infatti, è un modello matematico astratto che descrive un modo per rappresentare i colori come combinazioni di numeri, tipicamente come tre o quattro valori detti componenti colore. Tuttavia questo modello è una rappresentazione astratta, per questo viene perfezionato da specifiche regole adatte all'utilizzo che se ne andrà a fare, creando uno spazio dei colori.

-3.1 - Spazio-colore RGB.

L'occhio umano possiede una visione tri-cromatica, permessa come detto in precedenza dai recettori conici. Tramite rappresentazione RGB, a ciascun pizel è associata una terna 3 di byte, potendo definire 2^{24} colori distinti. La rappresentazione di tali colori è facilmente gestibile a livello hardware.

- 3.2 - Spazio colore RGB: CCD e filtro di Bayer.

Il CCD è un dispositivo che conta quanti fotoni sono presenti in un areola, maggiore è tale numero, maggiore l'illuminazione dell'areola.

Osservazione: il CCD non è molto sensibile alle variazioni di luce, si ha quindi una soglia limite entro la quale i fotoni sono considerati.

È evidente che il CCD sinora descritto non permette che l'acquisizione di immagini in scala di grigio. Per far si che il CCD descritto permetta l'acquisizione di immagini a colore sarebbe necessaria un'areola per colore, ma ciò renderebbe difficile e costosa l'implementazione del CCD.

Per ovviare a tale problema si utilizza il *filtro di Bayer*. Sebbene ne esistano varie versioni, tutte condividono una proprietà comune: in un areola 2×2 , due pixel sono verdi, uno rosso e uno blu. Segue che ad essere esatto è un solo colore per volta, i restanti sono ottenuti tramite media.

-3.3 - Spazio colore HSL/HSV.

Lo spazio RGB non è l'unico spazio-colore esistente; un altro è infatti lo spazio HSV. Questi, in *Figura 3.1* rappresenta il colore, *hue*, tramite angoli: per convenzione gli zero gradi sono il rosso, i 120 il verde e i 240 il blu. Il livello di saturazione è dipendente dal *chroma*, mentre l'intensità dal *value*.

Ulteriore spazio-colore è HSL. Questi è molto simile ad HSV, infatti può essere visto come un HSV in cui tutti i colori tendenti al bianco, sono raggruppati in un unico punto.

3.1.b: Spazio-colore HSL.

Figura 3.1: Spazi-colore HSV/HSL.

 $^{^3}$ ad oggi esiste una rappresentazione che fa uso di un quarto bit, per la trasparenza il cosiddetto *alpha channel*.

Sezione 3 Spazi-colore

- 3.4 - Spazio colore YUV.

Come tutti gli altri spazi-colore sinora descritti, anche YUV è uno spazio tridimensionale, ove le componenti Y, U, V rappresentano, rispettivamente, i livelli di luminanza e i valori di crominanza dell'immagine.

Il passaggio da YUV a RGB è effettuato tramite opportune formule trigonometriche, il viceversa tramite operazioni matriciali.

- 3.5 - Altre nozioni sugli spazi colore.

Affinché uno spazio colore sia definito tale, questi deve essere tridimensionale. Per quanto si è detto circa l'occhio umano, seguono due osservazioni.

- 1. La suddivisione tra canali di luminanza e crominanza di YUV, risulta sensata e utile.
- 2. Conseguenza del punto precedente è il fatto che, qual'ora risultasse utile comprimere l'immagine, tale compressione dovrebbe essere effettuata rispetto la crominanza. Ossia, dovendo scegliere tra il rimuovere informazioni relative la luminanza e la crominanza, è preferibile la seconda.

– 4 – Operatori lineari e convoluzione.

Prima di parlare di convoluzione è necessario fare alcune puntualizzazioni. Per prima cosa si farà una distinzione tra operazione matriciale e puntuale. Si considerino le seguenti matrici

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \qquad \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

per il prodotto matriciale si avrebbe

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b12 + a_{22}b_{22} \end{pmatrix}$$

per quello matriciale risulta invece

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} & a_{12}b_{12} \\ a_{21}b_{21} & a_{22}b_{22} \end{pmatrix}$$

Nota: per il resto del documento saranno considerate operazioni puntuali, se non espressamente specificato.

Ulteriore nozione è quella di operatore lineare. Si ricorda che H è un operatore lineare se

$$H[\alpha f(x,y) + \beta f(x,y)] = \alpha H[f(x,y)] + \beta H[f(x,y)] \tag{1}$$

Di interesse per l'utilizzo di MATLAB, risultano essere le seguenti operazioni lineari.

```
I^{(0)} = \{(i,j,g): g=0\} \Longrightarrow \text{ Immagine completamente nera.} I^{(255)} = \{(i,j,g): g=255\} \Longrightarrow \text{ Immagine completamente bianca.} kI = \{(i,j,g): g=\min\{G-1,\lfloor k\cdot g\rfloor\}\} \Longrightarrow \text{ Eventuale saturazione a G} k+I = \{(i,j,g): g=\min\{G-1,\lfloor k+g\rfloor\}\} \Longrightarrow \text{ Eventuale saturazione a G} \min\{I_1,I_2\} = \{(i,j,g): g=\min\{g_1,g_2\}\} \Longrightarrow \text{ Immagine risultante \`e più scura} \max\{I_1,I_2\} = \{(i,j,g): g=\max\{g_1,g_2\}\} \Longrightarrow \text{ Immagine risultante \`e più chiara} I_1+I_2 = \{(i,j,g): g=\min\{G-1,g_1+g_2\}\} \Longrightarrow \text{ Eventuale saturazione a G} I_1\times I_2 = \{(i,j,g): g=\lfloor (g_1\cdot g_2)/G-1\rfloor\} \Longrightarrow \text{ Eventuale saturazione a G}
```

-4.1 - Convoluzione.

La convoluzione è un operatore lineare, e in quanto tale soddisfa l'*Equazione 1*. Essa può essere utilizzata in vari modi, ma tutti sono accomunati da un elemento comune il *kernel*. In maniera sintetica, si pensi al kernel come una finestrella che isola parte dell'immagine.

- 4.1.1 - Filtro di convoluzione blur.

Un filtro di convoluzione blur, o filtro di media, come suggerisce il nome, sfoca l'immagine. Partendo da un immagine I, avendo un kernel K, si procede a creare una nuova immagine I', secondo quanto segue.

Si sovrappone il kernel K all'immagine I, partendo dal pixel più in alto a sinistra; si effettua un prodotto prodotto punto-punto tra il kernel e l'immagine, si sommano tali valori e lo si divide per il numero di elementi del kernel; in una nuova immagine I', nelle coordinate dell'elemento centrale del kernel, si aggiunge un pixel il cui colore è dato dalla media precedentemente calcolata. Si procede analogamente per tutti i pixel dell'immagine, spostandosi di un pixel verso destra di volta in volta e ripartendo dall'estrema sinistra della riga successiva, ogni volta che una è completata.

Si consideri Figura 4.1, e si supponga di dovervi applicare una sfocatura. Si consideri dunque un primo tentativo di sfocatura, utilizzando il seguente kernel

$$K = \begin{pmatrix} 0 & 4 & 0 \\ 4 & 8 & 4 \\ 0 & 4 & 0 \end{pmatrix}$$

Osservazione: Con il filtro di cui sopra la sfumatura è appena percettibile, come sarà più evidente dalle successive versioni, al cambiare del kernel, sia nelle sue dimensioni, sia nei pesi dello stesso, si ottiene una sfocatura diversa.

Figura 4.1: LenaGS

Figura 4.2: Convoluzione di *Figura* 4.1, tramite kernel K.

Eseguendo l'opportuno codice MATLAB, di seguito riportato, ciò che si ottiene è quanto in Figura 4.2.

```
% si aggiunge l'immagine trascinandola in MATLAB ker = [0 4 0; 4 8 4; 0 4 0]/24; convLena = conv2(single(Lena), ker, 'same'); figure; imshow(uint8(convLena), [0, 255]);
```

Analizzando il codice: conv2(single(Lena), ker, 'same') effettua l'effettiva convoluzione tra l'immagine e il kernel, dove il parametro 'same', sta ad indicare che convLena dovrà avere le stesse dimensioni dell'immagine originale; mentre figure; imshow(uint8(convLena), [0, 255]) permette di visualizzare il risultato.

Nota: il cast a single, corrispettivo del float in C, è necessario per via implementazione della funzione conv2; quello a uint8, corrispettivo dell'int in C, non è strettamente necessario.

- 4.1.1.1 - Problema ai bordi.

Legato a questo filtro vi è un problema, il cosiddetto problema~ai~bordi. Si consideri ora un'alto kernel, ad esempio un kernel 11 x 11 in cui ogni elemento è posto ad 1.

Eseguendo il codice MATLAB, a seguire, ciò che ne risulta è l'immagine in Figura 4.3.

```
% si aggiunge l'immagine trascinandola in MATLAB ker = ones (11)/121; convLena = \mathbf{conv2} (single (Lena), ker, 'same'); figure; imshow(uint8(convLena), [0, 255]);
```

Passando all'analisi del codice: l'istruzione $_{ones(11)}$ permette di creare una matrice, quindi un kernel, 11×11 , i cui elementi sono tutti 1.

Sebbene da Figura 4.3 si nota appena, quel che capita è che ai bordi non è possibile applicare convoluzione, proprio perché ad essere considerato è il pixel le cui coordinate combaciano con l'elemento centrale del kernel. Inoltre, il problema peggiora tanto più grande è il kernel. Sia sin da subito chiaro che tale problema

Figura 4.3: Convoluzione di *Figura* 4.1, tramite kernel 11x11 unitario.

non ammette una soluzione concreta, esistono unicamente delle tecniche che permettono di "alleggerire" il problema.

Nota: si ponga l'attenzione sugli esempi di codice MATLAB, in entrambi i casi il kernel è moltiplicato per l'inverso della somma dei pesi dello stesso, effettuando pertanto una media pesata.