Project 2 Executive Summary—Joseph Petitti

Brute Force Algorithm time efficiency:

$$T_B(n) = \sum_{i=0}^{n-1} \sum_{j=i+1}^n c = \frac{n * (n+1)}{2} = O(n^2)$$

Recursive Algorithm time efficiency:

$$T_{R}(n) = \begin{cases} T_{B}(n) : n \le 3 \\ 2 * T_{R}\left(\frac{n}{2}\right) + n \log n + n : n > 3 \end{cases}$$

Master Method, Case 2:
$$n^{\log_2 2} < n \log n + n$$

$$T_R(n) = O(n (\log n)^2)$$

Test Cases:

	Runtimes (seconds)			
n	Recursive	Brute Force	Answer	Notes
4	4.2667e-5	1.0666e-5	45.122	See "Test 1"
12	8.2774e-5	6.5279e-5	2.828	See "Test 2"
1000	2.6222e-2	4.6988e-1	14.036	1000 random points (see "Test 3")
4	2.8587e-5	7.6800e-6	0.0	Four identical points (see "Test 4")
5000	6.5678e-1	1.2942e+1	2.0	5,000 random points (see "Test 5")

The exact points tested are listed in "readme.txt"

These tests show experimentally what the time efficiency equations above showed theoretically: Except in the case of very small *n*, the recursive algorithm is much more time efficient.

