

VARIABEL RANDOM KONTINU DAN DISTRIBUSI PROBABILITASNYA

Oleh : Tim Dosen Pengantar Statistika

VARIABEL

KONTINU

Variabel tidak
dapat dihitung
(uncountable)
atau nilainya
adalah semua nilai
dalam suatu
interval
(measurement)

Ciri histogram

- Total area di bawah kurva adalah 1
- Relative frequency dari interval a dan b adalah area di bawah histogram antara titik a dan b

100 pengukuran

5000 pengukuran

Kelas interval lebih sempit dan jumlah observasi lebih besar

Frekuensi relative jangka Panjang

Kelas interval semakin sempit dengan jumlah observasi yang semakin besar

Kurva Densitas Probabilitas

Kurva Densitas Probabilitas

Probability Density Function (PDF) f(x)

Nilai Variabel Acak X

Fungsi Densitas Probabilitas (PDF)

Menggambarkan distribusi probabilitas untuk suatu variabel acak kontinu

Sifatnya adalah:

- 1. Total area di bawah kurva probabilitas distribusi adalah 1.
- 2. $P[a \le X \le b]$ adalah area di bawah kurva probabilitas antara a dan b
- 3. $f(x) \ge 0$ untuk semua x

- Pada variabel acak kontinu, P(X = x) = 0
- PDF menunjukkan probabilitas suatu interval [a, b] yang adalah area di bawah kurva batas a dan b

$$P[a \le X \le b] = P[a < X \le b] = P[a \le X < b] = P[a < X < b]$$

$$P[a < X < b] = (\text{area kiri } b) - (\text{area kiri } a)$$
$$= P(X < b) - P(X < a)$$
$$= F(b) - F(a)$$

$$P[b < X] = P[X > b] = 1 - (\text{area kiri } b)$$

= 1 - P(X < b)
= 1 - F(b)

Keterangan

 $F(x) = P(X \le x)$ adalah area di bawah kurva f(x) yang berada di antara nilai x terkecil yang mungkin (pada umumnya $-\infty$) dan titik x

Hubungan Antara PDF dengan CDF

Bentuk Kurva Densitas Probabilitas

Different Peakedness

Ukuran Pemusatan dan Penyebaran Distribusi Probabilitas

Mean = Expected Value = $E(X) = \mu$ Standard Deviation = σ

Nilai μ dan σ tergantung dari distribusi probabilitasnya

Figure 3 Mean as the balance point and median as the point of equal division of the probability mass.

Figure 4 Quartiles of two continuous distributions.

Variabel yang distandarisasi

(Standardized Variable)

$$Z = \frac{X - \mu}{\sigma}$$

Mempunyai mean 0 dan standard deviation 1

Latihan Soal

Which of the functions sketched above could be a probability density function for a continuous random variable? Why or why not?

2

Determine the following probabilities from the curve f (x) diagrammed in Exercise 1(a).

- a. P[0 < X < 0.5]
- b. P[0.5 < X < 1]
- c. P[1.5 < X < 2]
- d. P[X<1]

3

For the curve f (x) graphed in Exercise 1(c), which of the two intervals [0 < X < 0.5] or [1.5 < X < 2] is assigned a higher probability?

4

Determine the median and the quartiles for the probability distribution depicted in Exercise 1(a)

5

Determine the 15th percentile of the curve in Exercise 1(a).

Latihan Soal

Which of the distributions in Figure are compatible with the following statements?

- The first test was too easy because over half the class scored above the mean.
- In spite of recent large increases in salary, half of the professional football players still make less than the average salary

Distribusi Uniform

$$X \sim U(a, b)$$

PDF

$$f(x) = \frac{1}{(b-a)} \text{ untuk } a \le x \le b$$
$$= 0 \text{ untuk } x \text{ lainnya}$$

$$P(x_1 \le X \le x_2) = \frac{x_2 - x_1}{b - a}$$

dimana $a \le x_1 \le x_2 \le b$

Expected Value & Variance

$$E(X) = \frac{a+b}{2}$$

$$V(X) = \frac{(b-a)^2}{12}$$

Distribusi Eksponensial

 $X \sim E(\lambda)$

PDF:

$$f(x) = \lambda e^{-\lambda x}$$
; untuk $x \ge 0$
= 0 ; untuk lainnya

- $P(X \le x) = 1 e^{-\lambda x}$ untuk $x \ge 0$
- $P(X \ge x) = e^{-\lambda x}$ untuk $x \ge 0$
- $P(x_1 \le X \le x_2) = e^{-\lambda x_1} e^{-\lambda x_2}$ untuk $0 \le x_1 < x_2$

Expected Value & Variance

$$E(X) = \frac{1}{\lambda}$$
$$V(X) = \frac{1}{\lambda^2}$$

Distribusi Normal

- Pada umumnya, data diharapkan mempunyai distribusi normal. Jika tidak, maka data tersebut diragukan.
- Tetapi pada kenyataannya, banyak data yang tidak berdistribusi normal.
- Meskipun begitu, distribusi normal sangat diperlukan dalam statistika terutama dalam prosedur inferensia

• Berbentuk seperti lonceng

• Simetris

$$X \sim N(\mu, \sigma)$$

$$X \sim N(\mu, \sigma)$$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2} \text{ untuk } -\infty < x < \infty$$

The probability of the interval extending

One sd on each side of the mean: $P[\mu - \sigma < X < \mu + \sigma] = .683$

Two sd on each side of the mean: $P[\mu - 2\sigma < X < \mu + 2\sigma] = .954$

Three sd on each side of the mean: $P[\mu - 3\sigma < X < \mu + 3\sigma] = .997$

Parameter Distribusi Normal

Parameter distribusi Normal adalah μ dan σ . Mean μ menyatakan lokasi.

 μ_1 lebih kecil dibandingkan dengan μ_2 tetapi mempunyai deviasi standar yang sama

Parameter Distribusi Normal

Deviasi Standar menyatakan sebaran data

Distribusi Normal Standar

Distribusi normal yang mempunyai mean 0 dan deviasi standar 1

 $P[Z \le z]$ = area di bawah kurva dari titik z ke kiri

$$P[a \le Z \le b] = \text{area kiri } b - \text{area kiri } a$$

$$P[Z \le 0] = 0.5$$

$$P[Z \le -z] = 1 - P[Z \le z] = P[Z \ge z]$$

CONTOH

a. Temukan $P[Z \le 1.37]$

z = 1.37 = 1.3 + .07				
z	.00	•••	.07	
.0				
1.3			-> .9147	
•				

Dengan tabel distribusi Normal: $P[Z \le 1,37] = 0,9147$

b. Temukan P[Z > 1,37]

$$P[Z > 1,37] = 1 - P[Z \le 1,37]$$

= 1- 0,9147
= 0,0853

LATIHAN

- 1. Hitung P[-0.155 < Z < 1.60]
- 2. Hitung $P[Z < -1.9 \ atau \ Z > 2.1]$
- 3. Jika P[Z > z] = 0.025, maka berapakah z?
- 4. Jika $P[-z \le Z \le z] = 0.90$, maka berapakah z?

Penghitungan Probabilitas dengan Distribusi Normal

Jika X berdistribusi $N(\mu, \sigma)$, maka variabel tersebut dapat distandarisasi dengan cara

Transformasi X ke Z

$$Z = \frac{X - \mu}{\sigma}$$

sehingga Z mempunyai distribusi **normal standar**

CONTOH

Seseorang mencatat kalori pada makan siangnya setiap hari selama satu bulan. Kemudian diketahui bahwa data kalori tersebut berdistribusi normal dengan rata-rata 200 dan deviasi standar 5. Berapakah probabilitas makan siang tersebut mempunyai kalori sebanyak:

- a. Lebih dari 208 kalori
- b. Antara 190 dengan 200 kalori

JAWAB

Misal X adalah banyak kalori pada makan siang tersebut, maka variabel yang terstandarisasi adalah

$$Z = \frac{X - 200}{5}$$

a. Nilai z dari x = 208adalah $z = \frac{208 - 200}{5} = 1,6$

maka,

$$P(X > 208) = P(Z > 1,6)$$

= 1-P(Z \le 1,6)
= 1-0,9452 = 0,0548

b. Nilai z masing-masing untuk x = 190 dan x = 200 adalah

$$\frac{190 - 200}{5} = -2 \quad \text{dan} \quad \frac{200 - 200}{5} = 0$$

maka,

$$P(190 \le X \le 200) = P(-2 \le Z \le 0)$$

= 0,5-0,0228
= 0,4772

DAFTAR PUSTAKA

Aczel, A. and Sounderpandian, J., 2008, Complete Business Statistics, 7th Edition, McGraw-Hill/Irwin, USA.

Richard, A.J. and Bhattacharyya, G.K., 2010, Statistics: Principles and Methods, 6th Edition, John Wiley and Sons, USA.

THANK YOU