52.1: Properties of Functions Def : A function is a rule that assigns each element from one set exactly one element from another set Def": The set of all possible values of the independent votiables ("the X in f(x)") is called the domain Def?: The range is the set of all possible values of the independent variable (Nu possible f(x), where x is in the domain of f) Function Samain Range Not function s f(0) > P(1) 3, f(2)=(3) > f(2) This is Not a function Since I value Range Domain in the domain maps to Zvalues in the range C.g. Is y = x a function? Consider the graph a fails the votical This Means that 2 differentX-values are mapping to a single Y-value. (NOT a function) Vertical Line 1est: If a votical line intersects a graph in more than one point, the graph is NOT the graph of a function. Not a function 1 Not 9 function function Not a function

	§ 2.2: Guadratic Functions (Translation/Reflection)
	Recall a quadratic function is of the form $f(x) = ax^2 + bx + C$ where a,b,c eR, a = 0
vetex	The graphs of quadratic equations are called parabolas The vertex of a parabola is the point on the parabola where the slope of the tangent live is equal to 0. and can be found via an equation:
	Recall the quadratic formula: X= -6 ± 162-4ac
	That is, X is the solution to the guad tice equation axe + bx + c = 0. Now we have the explicit formula for both roots of this equation. Since quadratic's are symmetric about the votex, we know the votex is half way between both roots. Thus:
	$\frac{1}{2a} + \frac{10^{2} \text{ fac.}}{2a} + \frac{-6}{2a} - \frac{53}{2a} + \frac{-26}{2a} - \frac{1}{2a} + \frac{-1}{2a} - \frac{1}{2a} + \frac{-1}{2a} + \frac{-1}$
	Thus the vertex of a quadratic equation is given as: $(X_0, Y_0) = \begin{pmatrix} -b \\ 2a \end{pmatrix} + \begin{pmatrix} -b \\ 2a \end{pmatrix}$
	when the cen is of the form f(x) = ax2 - bx + C
	* Note the graph opens upward when a >0 (b) and downward when a <0 (b) axz
0	and downward when a < 0 (X+a) (x-a) (x-a) (x-a)

e.g. | Graphing Quechatic Function: f(x) = x+2x-3

votex: xo = \frac{2}{2a} = \frac{2}{2} = 1 $y_0 = f(x_0) = (-D^2 + (2(-D)) - 3 = |-2 - 3 = -4|$ Zeros: Ma Factor: X2+2x-3=0=(X+3)(X-1)=) X=1,-3 Yint: f(0)=0+0-3=-3 Translations & Reflections: Let I be any function, K>0 - the graph of f(x)+ K is the graph of y=f(x) translated

upward by K cenits

- the graph of f(x)- K is y=f(x) shifted channow K units

- the graph of f(x+K) is that of f(x) shifted left fright K units

- the graph of -f(x) is that of f(x) reflected over x-axis

- the graph of f(-x) is that of f(x) reflected across y-axis A(X)+K

	§ 2.3: Polynomial and Rational Functions
	Def!; A polynomial of degree 1 is of the form: $f(x) = a_0 t a_1 x + t a_n x^n$ with a elk (real coefficients) and an #0 where an is the
	"leading coefficient" Proporties of Polynomials
	(1) A polynomial function of degree n can have at most (n-1) turning pts. Conversely, a polynomial function w/ n turning pts must be atteast degree n+1
	z.) The graph of an even degree polynomial has both tails going up or down If the degree is add the ends go in apposite directions
	3.) If the graph goes "up" as X becomes large and positive, the the leading coefficient is positive. The apposite (graph goes down when X = + 9 is true if leading coefficient is negative.
_	Rational Functions Rational function defined by: f(x) = F(x)
	where p(x), q(x) are polynomial functions with q(x) \$\pm\$ (when graphing, plot pts on a table and use assymtotes)
Here deg(plo)	Vertical Asymtotes: The vortical assymptotes of the rational function $f(x) = \frac{P(x)}{Q(x)} \text{occur at the Zeros of } Q(x)$ $\text{(i.e. if } Q(x) = 0 \text{there } x = k \text{ is exertical assymptote})$
3 (1)	(i.e. if $q(k) = 0$, then $x = k$ is a votical assymtote) Horizontal Assymtotes: Given rational function $f(x) = F(x)/q(x)$ (1) If $deg(q(x)) \ge deg(p(x))$ then there is a horizontal asymtote at $y = 0$
76 O	(1) If $deg(q(x)) \ge deg(p(x))$ then there is a horizontal assymtote at $y=0$ (2) If $deg(q(x)) = deg(p(x))$, then horizontal assymtote occurs at quotient of leading coefficients (3) If $deg(p(x)) \ge deg(q(x))$, then I has NO horizontal assymtotes

Compound THESEST Def : intoest : Cost of bossowing Money or return on investment

principal: Am bossowed or invested

sate of intoest: percent per year earned/owned (aka APR) Simple Interest (only initial investment/loan acrows interest I=Prt ; interest is calculated by multiplying original principal (P) at rate (P) for fime (E) With compound interest, the interest gained pand por time poind is incorporated in finding interest paid/gained in next time step: compound interest: If P dollars are invested at a yearly rate of 1.100 % per year and compounded m time, per year. He compounded amount is given by; A = P(I+m)tm E.g. S Determine the compounded compant on a principal of \$900 at 6% annual interest compounded semiar parties for 4 years: A = ?; P = ?000; r = .06, t = 4, M = 2 $= 2000 \left(1 + \frac{2}{2}\right)^2 = 9000 \left(1.03\right)^8$ Stimes \$ 11,400.93 So this is your New balance in 4 years at this rate.

\$2.5: Logarithmic Functions
-How do we undo an exponential function?
Def n: For a>0, a\$1, X>0 we take
y=loga X to be the real # for which => a=x is true
Def: If $a>0$, $a=1$ then the logarithmix function of base a is defined to be $f(x) = \log_a x$ for $x>0$.
Propostions
(et X, y positive real #s, T be any real # a>0, (= X, y she is the real #s, T be any real # and a #1)
(A) loga Xy = loga X + loga Y = (a*a* = a*+y) Foolut Pele
(B) loga (x) = logax - logay Quotient rule
Ologa X = rloga X Power Rule
$(E) _{\mathcal{Q}_{\alpha}} 1 = 0 \qquad (a = 1)$
* Note we denote $ln(x) = log_e X$ and when No base is indicated, assume base 10 $(log_X = log_{10} X)$
o * light ln(x) = loge(x) is called the Natural logarthm

(c)
$$\log x + \log(x^3) = 1 \Rightarrow 10^{\log(x^2 3x)} = 10^{1}$$

$$\Rightarrow x^2 - 3x = 10 \Rightarrow x = 3x - 10 = 0$$

$$\Rightarrow (x - 5)(x + 2)$$

$$\Rightarrow (x - 7)(x + 2)$$

$$\Rightarrow$$

	§ 2.6: Applications - Growth, Decay, Finance
	Exponential Growth and Dray: Let to be the amount of quantity Present at time t=0. The quantity is said to grow or decay openent if for some constant, K, the amount present at time t is given by: Y = Yo ext Where Koo => growth Y = Yo ext Where Koo => decay
	De isotope Carbon-14 (C14) decays with the constant K= (-1/1 2). Find the half life of C14 in years.
	- Hote, we want time, ξ where amount present (y) is half of what we originally lad: $y = \frac{1}{2} = $
7	
	Suppose some charcody was found at an archaeological dig and had 1/4 the quantity of City a living sample of wood ordinarily has. Estimate the age of the charcoal. (Note: if yo is the original quantity of City, there is now 4 left) 1/6 = 1/6 e 5600 => n 4 = -2 12 = 5600 t
0	=> 6= 5600 × 2 = [11,200 ps old]

Defin. The percent owned formed on a lean/investment por 1 is known as the effective rate
effective rate
Affective Rate For Compound Interest
If I is the annual Take of interest and M is the # of compounding pointed per you then the effective Take, It is!
$\left(\overline{\Gamma} = \left(1 + \overline{m} \right) - 1 \right)$
(IE - (I+m) -)
Affective rate for Continuous Compounding
If interest is compounded annually at annual Tabe, Γ , then the effective Tabe, ΓE , is given by: $\Gamma E = C^{r} - \Gamma$
Tate, TE, is given by: TE = CT-1
C.g. Find the effective Take corresponding to each Stated amual Not, r
(A) F= 6% compounded quotoly: F=.06, M=4
$= (1 + \frac{66}{4})^{4} - 1 = (1.015)^{4} - 1 \approx 0.0014 = 0.147.$
12 (1° 4) ((1001)) 1 ~ 0019 - (0.19)
(8) 6% compounded continuously:
=> FE = e - 1 2 .0618 or (6.18%)
Col IF in most 375000 at 72% APR Course had quotesty
E.g. I If you invest 25,000 at 7.2% APR Compounded quarterly how long will it take to have a total \$40,000 acreed.
P= 25,000, F=.072, M=4. Plug into Compound interest formula:
$A = P(I+I)^{mt}$; $t=?$
$= \frac{1}{25000} = 25,000 \left(1 + \frac{072}{4}\right)^{4/2} = 25,000 \left(1.018\right)^{4/2}$
$= \frac{40}{25} = (1.018)^{44} = \frac{1}{100} = \frac{40}{25} = 44 \cdot \ln(1.018)$
$= \frac{1}{4 \ln (1.018)} \times \frac{6.586 \text{ ys}}{6.586 \text{ ys}}$
7 ln (1.018)