

How about Avengers: Endgame?

Movie revenue prediction with hierarchical model

Jiazhao Li¹, Yuan Gao¹ Department of EECS, University of Michigan

Problem and Motivations

- 1. Will this movie be good?
- 2. Will this cast and crew succeed when they cooperated?
- 3. How should I manage my movie schedule to balance interests of customers and increase occupancy rate.

Given movie information. **INPUT OUTPUT** Prediction revenue of movies

Dataset

Movie dataset crawled from IMDb.com from 2008 to 2018.

- . **3258** movies (average 300 per year) released in the United States from the whole world.
- 2. Actors/Actress: **5,147**
- 3. Directors: **2,073**
- 4. Writers: **2,184**

Methods Web data Crawling High revenue Low revenue regression regression **Feature Embedding Movie Clustering** Backoff model Complex model **Movie Classification Based on data completeness**

Encoding:

Categorical Features : **One-hot** encoding Sparse Feature: Using historical revenue

Fig. 2 Feature Importance using **Gradient Boosting Regression**

STEP 2: GMM Clustering and RFC Classification

- Two Gaussian distribution clusters
- Gaussian Mixture Model (GMM) clustering into two classes:
- High revenue and Low revenue
- Random Forest Classification based on clustering result.

STEP 3: Regression with original/back-off models

Cold start problem: No reference revenue data for first appearing actors. Back-off model

Data with missing features: Data with all features:

Back-off regression without 'Sparse feature'. Original regression with all features.

Gradient Boosting Regression (GBR) performed best.

Experimental Results Ablation experiment:

How about performance of each component?

Y axis: prediction revenue x axis: ground true revenue **Red points: train samples** Blue crosses: test samples Original box: miss classification

Model	Test ROC score
Original model	0.88
Back-off model	0.73

Observation:

- 1. Most of instances have missing features
- 2. Under true classification, regression model works perfectly.
- 3. More features the better of classification

Result

Train set	Test set	MAE	SMAPE
2008-14	2015-18	\$23.6M	0.905

Observations: More information contributes to model.

More information help?

Train set	Test Set	MAE	SMAPE
2008-14	2017-18	\$15.2M	1.47
2008-15	2017-18	\$14.9M	1.41
2008-16	2017-18	\$13.4M	1.38

Model Generalization

Can our model works on other dataset?

Features: Crossing, Shortpassing, Dribbling, Shot power, Penalties..... 5 categories: Technical, Attack, Physical, Defense,

New dataset: Europe Soccer

Mental.

0: Attack players, 1. Defense players, 3. All-star players, 2. Goalkeeper

