INTRODUCCIÓN A LA TEORÍA DE GRAFOS

Tecnología Digital V: Diseño de Algoritmos Universidad Torcuato Di Tella

Bienvenidos!

- Objetivos. Conocer técnicas de diseño de algoritmos que nos permitan resolver problemas más difíciles que los que resolvimos hasta ahora.
 - 1. Introducción a la teoría de grafos.
 - Técnicas algorítmicas: backtracking, programación dinámica, heurísticas y metaheurísticas, algoritmos aproximados, etc.
 - 3. Introducción a la teoría de NP-completitud.
 - 4. Aplicaciones. Cómo usar estas técnicas para modelar y resolver problemas prácticos.

Sobre la cursada

Clases.

- Dos módulos de clases teóricas y dos módulos de clases prácticas por semana.
- Las disposición de clases prácticas / teóricas puede cambiar debido al calendario.

O Régimen de cursada.

- o Dos parciales escritos e individuales. Se aprueban con 60/100.
- Dos trabajos prácticos grupales (uno en cada mitad de la materia).
 Se aprueban con 60/100.
- Un trabajo práctico optativo adicional grupal, en la segunda mitad de la materia y con nota entre o y 10. Se aprueba con 6/10.

$$nota\ final\ =\ min\left\{100,\ \frac{30(parcial_1+parcial_2)+20(TP_1+TP_2)}{100}+TP_3\right\}$$

 Comunicación. El material de las clases y las consultas se canalizan a través del campus virtual.

Definición

Un grafo es un par G = (V, E) tal que ...

- 1. *V* es un conjunto finito (llamado el conjunto de vértices de *G*), y
- 2. $E \subseteq \{\{i, j\} : i, j \in V, i \neq j\}$ es un conjunto de aristas.

• En este ejemplo, $V = \{1, ..., 7\}$ y $E = \{12, 13, 23, 24, 34, 36, 45, 47, 56, 57, 67\}$.

○ El orden de los extremos de una arista no es importante. Nos referimos indistintamente a la arista 34 como 43 o bien {3,4}.

Definiciones

- 1. Si $ij \in E$, decimos que los vértices i y j son vecinos.
- 2. Dado $i \in V$, definimos el vecindario de i como $N(i) = \{j \in V : ij \in E\}$.
- 3. El grado de un vértice $i \in V$ es d(i) = |N(i)|.

Motivación (1/6)

Red vial I

Representamos con grafos un mapa de rutas entre un grupo de ciudades (los vértices representan las ciudades y los cruces de caminos).

Motivación (2/6)

Red vial II

Cambiando la interpretación, con grafos podemos representar mapas de ciudades (los vértices representan las esquinas!).

Motivación (3/6)

Red de transporte

Podemos representar una red de transporte con grafos (los vértices representan las estaciones/paradas).

Motivación (4/6)

Redes sociales

Podemos representar relaciones entre usuarios de una red social (los vértices representan los usuarios).

Motivación (5/6)

Conflictos de horarios

Cursos a dictar y superposiciones entre cursos (dos vértices son vecinos si sus cursos se solapan).

Motivación (6/6)

Conflictos espaciales

Antenas en una red de telefonía celular (dos vértices son vecinos si sus antenas tienen áreas de cobertura superpuestas).

Definiciones

- Un camino entre dos vértices i y j es una secuencia de aristas desde i hasta j.
- La distancia entre dos vértices es la cantidad de aristas del camino más corto entre ellos.
- O Un grafo es conexo si existe un camino entre todo par de vértices.

Definiciones

- Una componente conexa es un subconjunto de vértices conexo, maximal con esta propiedad.
- O Un vértice aislado es un vértice i con d(i) = 0 (que conforma una componente conexa de tamaño 1).
- 1. Un grafo conexo tiene exactamente una componente conexa.
- 2. Si *i* y *j* están en componentes conexas distintas, decimos que hay una distancia infinita entre ellos.

Grafos completos

Definición

Un grafo se dice completo si todos los vértices son adyacentes entre sí. Dado $n \in \mathbb{N}$, K_n es el grafo completo de n vértices.

Pregunta

¿Cuántas aristas tiene un grafo completo de n vértices?

Grafo complemento

Definición

Dado un grafo G = (V, E), el grafo complemento de G, que notamos como $\bar{G} = (V, \bar{E})$, tiene el mismo conjunto de vértices que G y cada par de vértices es adyacente en \bar{G} si y solo si no es adyacente en G (es decir, $ij \in E$ si y solo si $ij \notin \bar{E}$).

Pregunta

Si G tiene n vértices y m aristas, ¿cuántas aristas tiene \bar{G} ?

Grafos bipartitos

Definición

Un grafo G = (V, E) se dice bipartito si existe una partición V_1, V_2 del conjunto de vértices V, es decir,

- 1. $V = V_1 \cup V_2$,
- 2. $V_1 \cap V_2 = \emptyset$,
- 3. $V_1 \neq \emptyset$,
- 4. $V_2 \neq \emptyset$

tal que todas las aristas de G tienen un extremo en V_1 y otro en V_2 .

Grafos bipartitos

Definición

Un grafo bipartito G = (V, E) con partición V_1 , V_2 es bipartito completo si todo vértice en V_1 es adyacente a todo vértice en V_2 . Si $|V_1| = n_1$ y $|V_2| = n_2$, notamos a este grafo como K_{n_1,n_2} .

Teorema

Un grafo es bipartito si y sólo si no tiene circuitos simples (i.e., caminos que empiezan y terminan en el mismo vértice y no repiten vértices salvo el primero) de longitud impar.

Pregunta

¿Cuántas aristas tiene un grafo bipartito completo?