Navigating the Neural Net Terrain

The Brain Analogy

(our cartoon neuron)

The Brain Analogy

(cartoon neuron & mathematical neuron)

The Linear Classifier Analogy

Losses:Softmax (Cross-Entropy) Loss

V3	<u> </u>		0 69								cross-entro	py loss	(Softmax)
0.01	-0.05	0.1	0.05	-15	+	0.0		-2.85		0.058		0.016	- log(0.353) = - 1.04
0.7	0.2	0.05	0.16	22		0.2	→	0.86	exp →	2.36	(to sum to one)	0.631	
0.0	-0.45	-0.2	0.03	-44		-0.3		0.28		1.32		0.353	
	56		b	1	2.720								
				$oxed{x_i}$					•	3.738			

Softmax:
$$f_j(z) = \frac{e^{z_j}}{\sum_k e^{z_k}}$$

Cross-Entropy Li = -log(
$$\frac{e^{z_j}}{\sum_k e^{z_k}}$$
)

The Linear Classifier Analogy: MNIST data set

1) Add up evidence of input being in a certain class Evidence = $\sum W_{i,j}x_j + b_i$

The Linear Classifier Analogy: MNIST data set

1) Add up evidence of input being in a certain class Evidence = $\sum_{i} W_{i,j} x_j + b_i$

The Linear Classifier Analogy: MNIST data set

BackPropagation

How do we get there?

Chain Rule!

Convolutional Neural Nets

Very similar to Neural Nets.. But how are they different?

Convolutional Neural Nets

Vs. Neurals Nets

Input is an image: Leverage 3D Structure

Fully Connected? Not really

The CNN Family

Winners of the ILSVRC ImageNet challenges

AlexNet (2012, Krizhevsky): Popularized CNNs - 1st to incorporate consecutive convolutional layers

GoogleNet / Inception (2014, Szegedy): Drastically reduced the # of parameters used (from 60 million to 4 million)

ResNet (2015, Kaiming He): Residual Network : famous for skip-connections and heavy use of batch-normalization; also removes some fully connected layers (at end of network)

- 1) Input Layer: Raw pixel values of the image (ex: 224 x 224 x 3 (3 ~ color channels (RGB))
- 2) Conv Layer
- 3) Pool Layer
- 4) ReLU Layer
- 5) FC (Fully Connected Layer)

- 1) Input Layer: Raw pixel values of the image
- 2) Conv Layer: Dot product between weights and the small region of input volume (ex: 11 x 11 x 3 filters)
- 3) Pool Layer
- 4) ReLU Layer
- 5) FC (Fully Connected Layer)

What is a Convolution?

$$f*g=\int f(t-\tau)g(\tau)d\tau$$

What is a Convolution?

What is a Convolution?

Convolutional Layer: (W-F + 2P)/S +1

- W: Input Volume size
- F: Receptive Field size of the Conv Layer Neuron
- P: Zero- Padding
- S: Stride

$$(224 - 11 + 2(3))/4 + 1 = 55$$

Conv Layer Output $\sim 55 \times 55 \times 96$ (ie : 55^2 neurons in each layer)

What is a Convolution?

Voila. We have 96 filters.

- 1) Input Layer
- 2) Conv Layer
- 3) Pooling Layer: Performs downsampling operation
- 4) ReLU Layer
- 5) FC (Fully Connected Layer)

Our Eqn : O = (W-F)/S + 1

AlexNet: use 3 x 3 MaxPooling w/ stride = 2

$$O = (55-3)/2 + 1 = 27$$

- 1) Input Layer: Raw pixel values of the image
- 2) Conv Layer:
- 3) Pool Layer:
- 4) ReLU Layer: Apply an elementwise activation function (ex : max(0,x) thresholding output dimension ~ same as input)
- 5) FC (Fully Connected Layer)

^{*}The ReLU non-linearity is applied to the output of every convolutional and fully-connected layer.

ReLU Layer:

Tradionally:

$$f(x) = tanh(x)$$
 or $fx = (1+e-x)^{-1}$ (Very slow to train)

Now:

$$f(x) = max(0,x)$$
 (Faster to train)

- 1) Input Layer: Raw pixel values of the image
- 2) Conv Layer:
- 3) Pool Layer:
- 4) ReLU Layer:
- 5) FC (Fully Connected) Layer: Each neuron will be connected to all activations of the previous volume. The output layer will compute class scores (ex: $[1 \times 1 \times 1000]$)

Real Life example #1:

Train Retinopathy data via AlexNet

Kaggle Dataset:

Diabetic Retinopathy Detection

Learning from the Learning Process

1) Loss functions

^{*} Tip: Change the learning rate!

Learning from the Learning Process

2) Accuracy

^{*} Tip: Increase L2 weight penalty, Increase Drop-Out, More Data (possibly with jitter) - -try batch norm?

Learning from the Learning Process:

3) Weight Ratios

update / weight ratio : should be roughly about 1e-3
(larger ratio~ learning rate may be too high, lower ratio~ learning rate may be too low)

4) First-layer Visualizations

Visualized weights from the 1st layer of the network: (smooth, diverse features indicate that training is going well)

Real Life example #2:

Can I leverage the Inception model to decipher different lung diseases?

Train XRAY data via Inception-V3

Opacity

Train XRAY data via TF's Inception-V3

Retrain using Inception-V3 from pretrained model

(much better!)

Train using Inception-V3 from scratch

(not looking good)

Why did that work so well ???

