INSTRUCTOR: XIAOPING SHI

IRVING K. BARBER FACULTY OF SCIENCE UBC, OKANAGAN CAMPUS

This exercise set has an additional 6 questions, for a total of 13 points. These questions, in addition to those on other practice sets, are representative of what might be seen on Quiz 1.

READ THE QUESTIONS CAREFULLY	
Notes and electronic devices are allowed, but they MUST be kept in airplane mode. You make the back of a page if you run out of room on the front.	ay
SURNAME, GIVEN NAME (print)	
STUDENT NUMBER.	
Signature:	

DATA 570 Practice Solutions

Possible multiple choice-pick the MOST accurate answer

1. (2 marks) Regarding the R^2 value from the linear regression $y_i = a + bx_i + \varepsilon_i$, i = 1, 2, ..., n, which of the following statements are true?

- (a) total amount of variation in the model explained by the response variable
- (b) proportion of variation in the model explained by the response variable
- (c) $0 \le R^2 \le 1$.
- (d) If x and y are uncorrelated, then $R^2 = 0$.

Sol. c, d.

- 2. (2 marks) Regarding the p-value, which of the following statements are true?
 - (a) The probability of observing a test statistic as or more extreme than that which we observed.
 - (b) The probability of observing a test statistic as or more extreme than that which we observed, assuming the alternative hypothesis is true.
 - (c) If p-value is extremely small, then we reject the null hypothesis.
 - (d) If p-value is extremely small, then we reject the alternative hypothesis.

Sol. c.

The next two questions will refer back to this paragraph. When we fit a model, say \hat{f} , to data aring from some unknown true model f, it is useful to keep in mind the following. If Y is numeric response, \hat{f} is the predicted response from our model, X is the set of predictors, and ε the error term, it is possible to show that the mean squared error for a model is

$$E[(Y - \hat{f})^2] = Var(\hat{f}) + [Bias(\hat{f})]^2 + Var(\varepsilon)$$

- 3. (2 marks) Regarding what was discussed above, which of the following statements regarding ε are FALSE?
 - (a) ε is the error that exists in the "true" model: $Y = f(X) + \varepsilon$.
 - (b) ε is considered irreducible error in the MSE.
 - (c) ε and X are dependent.
 - (d) The mean value of ε is zero.

Sol. c.

- 4. (2 marks) Again, regarding the above paragraph, the bias of the fitted model is...
 - (a) $f(X) E[\hat{f}(X)]$
 - (b) $\{f(X) E[\hat{f}(X)]\}^2$
 - (c) ε
 - (d) $Var(\varepsilon)$

Sol. a.

DATA 570 Practice Solutions

5. (2 marks) Which of the following statements generally hold true about testing and training sets?

- (a) The MSE of the test set equals the MSE of the training set.
- (b) The MSE of the test set is less than the MSE of the training set.
- (c) The MSE of the test set is larger than the MSE of the training set.
- (d) The MSE of the test set does not generally have any relationship with the MSE of the training set.

Sol. c.

6. Consider the following partial R ouptut of a simple linear regression model.

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.34602 0.40176 *** 0.414
x 0.09667 *** 0.330 0.750
```

Residual standard error: 1.232 on 8 degrees of freedom Multiple R-squared: 0.01347, Adjusted R-squared: -0.1099 F-statistic: 0.1092 on 1 and 8 DF, p-value: 0.7495

- (a) Write the equation of predicted response.
- (b) b) Fill in the spaces marked with "***".

Sol. a) $\hat{y} = 0.34602 + 0.09667x$. b) 0.34602/0.40176, 0.09667/0.330.