17. Algoritmi 3 – Ricerca in ampiezza

Corso di Informatica

Outline

- Ricerca in ampiezza
 - Alberi
 - Grafi
 - Analisi computazionale

Ricerca in ampiezza

- Nota anche come Breadth First Search (BFS)
- Lavora su componenti connesse, indipendentemente dal fatto che siano grafi od alberi
 - Opera attraversando tutti i nodi presenti alla stessa distanza da un nodo sorgente, e quindi proseguendo al livello successivo
- Può essere implementata mediante una coda
- Applicazioni:
 - Trovare persone a k collegamenti di distanza
 - Individuare nodi adiacenti di una rete
 - Trovare il cammino minimo tra due nodi

```
STEP 1: create(queue); current_node = root;
STEP 2: while (current_node is not null)
STEP 3: get(current_node_children);
STEP 4: enqueue(queue, current_node_children);
STEP 5: current_node = dequeue(queue)
```


current_node = {1}
children = {3, 4}

current_node = {3}
children = {6, 2}
dequeued = {1}

Ricerca in ampiezza – Alberi vs. Grafi

- La differenza principale tra alberi e grafi è che i primi non hanno cicli, i secondi invece sì
 - Occorre quindi tener conto dei nodi già visitati
 - Per farlo, usiamo un apposito array

Ricerca in ampiezza – Analisi computazionale

- Supponiamo di avere n elementi nel nostro albero/grafo
- La ricerca in ampiezza dovrà esaminare al più n elementi (nel caso sia implementata come una coda)
- Considerando costante il costo computazionale legato all'eventuale estrazione dei nodi figli (c_F) ed alle operazioni legate alla coda (c_Q) , potremo dire che il costo complessivo è di $(c_F + c_Q) \cdot n$
- La complessità computazionale sarà quindi in O(n)

Domande?

42