Departamento de Estatística - ICEx - Universidade Federal de Minas Gerais Lista de Exercícios 2: EST079 - Modelos Lineares Generalizados

Observação:

- As listas de exercícios de MLG não valem pontos.
 O estudante deve fazer os exercícios apenas como forma de aprendizagem e preparação para as avaliações.
- Algumas questões podem ser resolvidas através do R, outras questões devem ser feitas sem auxílio computacional.
 O enunciado do exercício avisará sobre isso.
- Se houver algum banco de dados disponibilizado para esta lista, saiba que ele foi salvo em um computador Linux. Desta forma, pode haver desconfiguração ao abrir o arquivo no "bloco de notas" do Windows. Use o comando read.table normalmente no R para ler os dados. A data.frame criada estará no formato correto.

[Questão 1] Para um indivíduo i, considere a variável aleatória $Y_i \sim \operatorname{Bernoulli}(\theta)$, tal que $0 \leq \theta \leq 1$ é a probabilidade do evento sucesso $Y_i = 1$. Um estudo foi desenvolvido com este tipo de variável aleatória sendo medida independentemente para cada indivíduo participante. A seguinte amostra aleatória foi observada:

$$y_1 = 1$$
, $y_2 = 0$, $y_3 = 0$, $y_4 = 1$, $y_5 = 0$,
 $y_6 = 0$, $y_7 = 0$, $y_8 = 1$, $y_9 = 0$, $y_{10} = 0$,
 $y_{11} = 0$, $y_{12} = 1$, $y_{13} = 0$, $y_{14} = 0$, $y_{15} = 1$.

Responda os ítens a seguir:

(a) Escreva a expressão da função de verossimilhança e a expressão da função de log-verossimilhança relacionadas a este problema. Sua resposta deverá contemplar os valores amostrais observados para os 15 indivíduos. Atenção! é obrigatório substituir o resultado amostral indicado acima na expressão das duas funções solicitadas.

Não use o R para responder.

- (b) Use o R para fazer o gráfico da função de verossimilhança escrita na letra (a). Você deve plotar "valores de θ versus função de verossimilhança" (θ deve estar no eixo horizontal do gráfico). Considere os valores de θ definidos pelo comando theta = seq (0,1,0.01). Qual valor de θ está associado ao ponto de máximo da curva obtida no gráfico?
- (c) Use o R para fazer o gráfico da função de log-verossimilhança escrita na letra (a). Você deve plotar "valores de θ versus função de log-verossimilhança" (θ deve estar no eixo horizontal do gráfico). Considere os valores de θ definidos pelo comando theta = seq(0,1,0.01). Qual valor de θ está associado ao ponto de máximo da curva obtida no gráfico?
- (d) Aplique a função optim do R (conforme ensinado nas aulas) para obter a estimativa de máxima verossimilhança de θ. Você deverá maximizar a função de log-verossimilhança e considerar a amostra apresentada no enunciado desta questão (use o chute inicial θ⁽⁰⁾ = 0.5). Dentro da função optim, selecione o método L-BFGS-B para realizar a otimização numérica (especifique limite inferior = 0.0001 e superior = 0.9999 para o L-BFGS-B). Mostre seu script e indique claramente a estimativa final de θ.

[Questão 2] Seja Y_1, Y_2, \ldots, Y_n uma amostra aleatória tal que $Y_i \sim \text{Poisson}(\theta_i)$ com $\theta_i > 0$. Desejamos analisar o impacto do regressor X_{1i} sobre a resposta Y_i . Considere o preditor linear $\eta_i = \beta_0 + \beta_1 X_{1i}$. Denotando $\beta = (\beta_0, \beta_1)^{\top}$ e $X_i = (1, X_{1i})^{\top}$, podemos também escrever $\eta_i = X_i^{\top} \beta$. No caso Poisson, lembre que a função de ligação é estabelecida por $\theta_i = e^{\eta_i}$. A seguinte amostra deverá ser utilizada para resolver esta questão:

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Y_i	7	2	24	33	2	5	2	5	8	8	16	20	11	4	37	1	8	8	5	7	5	4	4	2	26
X_{1i}	-0.27	0.57	-0.74	-0.94	0.64	0.86	0.5	0.12	-0.36	0.12	-0.55	-0.81	-0.21	0.53	-1	0.4	-0.07	0.15	-0.13	0.22	0.96	0.45	-0.06	0.97	-0.71

Nas aulas de MLG foi explicado como fica estruturado o algorítmo IWLS para esta situação. Revise as aulas e responda o ítens a seguir:

- (a) Estabeleça o chute inicial $\hat{\beta}^{(r=0)} = (1,1)^{\top}$ a ser utilizado no IWLS. Usando este chute e o resultado amostral fornecido no enunciado, construa no R (exibir o script) a matriz $W^{(0)}$ correspondente a este problema. Mostre a submatriz 5×5 formada pelas linhas 1 a 5 e colunas 1 a 5 da matriz $W^{(0)}$.
- (b) Ainda levando em conta o chute inicial $\hat{\beta}^{(r=0)} = (1,1)^{\top}$, calcule o vetor $z^{(0)}$ definido no IWLS deste problema relacionado à Poisson. Mostre os valores do seu vetor $z^{(0)}$.
- (c) Utilizando $W^{(0)}$ e $z^{(0)}$ obtidos em (a) e (b), respectivamente, calcule a estimativa $\beta^{(1)} = (X^\top W^{(0)} X)^{-1} X^\top W^{(0)} z^{(0)}$ referente à primeira iteração do IWLS. Mostre o script R e o resultado final de $\beta^{(1)}$.
- (d) Use os dados amostrais fornecidos no enunciado e aplique a função glm do R para estimar β_0 e β_1 . Use o mesmo chute inicial sugerido em (a). Mostre a saída do comando summary e avalie a significância dos coeficientes. Atenção! sua análise sobre a significância deve indicar claramente a estimativa do coeficiente e o valor-p sob avaliação. Note também que a questão NÃO está pedindo para você realizar vários ajustes para encontrar o melhor modelo. O objetivo aqui é apenas ver se você sabe interpretar a saída computacional solicitada.
- (e) A saída computacional investigada em (d) mostra a deviance do modelo ajustado. Calcule esta deviance através do R. Depois disso, avalie se essa deviance é pequena, moderada ou grande. Atenção! você deve mostrar o passo a passo da conta (use a expressão da deviance para o caso Poisson explicada nas aulas). Não aplique uma função pronta do R que calcula a deviance automaticamente.
- (f) Calcule (use o R) a estatística de Pearson generalizada para o ajuste em (d). Em seguida compare o resultado com algum limiar adequado que deve ser obtido a partir da distribuição qui-quadrado. Atenção! mostre o passo-a-passo da conta e não use função pronta do R que calcula a estatística.

[Questão 3] Um experimento de laboratório foi desenvolvido para estudar um tipo de larva que ataca lavouras de café. O estudo considerou 52 recipientes, os quais receberam (cada um) 10 larvas. As larvas em cada recipiente foram submetidas (ao mesmo tempo) a uma dose de um produto químico A (variável X_1) e uma dose de um produto químico B (variável X_2). Os dados estão disponíveis no arquivo dados_Q3_L2_MLG.txt disponibilizado para esta lista de exercícios. A variável resposta do estudo é o número de larvas que morreram no recipiente após 1 hora da aplicação dos dois produtos químicos. Carregue os dados no R com a função read.table. A data frame obtida terá a variável resposta na coluna 1, X_1 na coluna 2 e X_2 na coluna 3.

Responda os ítens a seguir (você poderá usar o R para responder).

- (a) Aplique a função glm do R para estimar os coeficientes β₀, β₁ e β₂ do modelo MLG apropriado a estes dados (use obrigatoriamente o link canônico). Mostre a saída do comando summary e avalie a significância dos coeficientes. Atenção! sua análise sobre a significância deve indicar claramente o valor estimado do coeficiente e o valor-p sob avaliação. Note também que a questão NÃO está pedindo para você realizar vários ajustes para encontrar o melhor modelo. O objetivo aqui é apenas ver se você sabe qual é o MLG (Normal, Binomial, Bernoulli, Poisson, Gama, etc.) apropriado e como interpretar o resultado.
- (b) Interprete o impacto da covariável X_1 quando seu valor é aumentado em 0.1 (zero ponto um). Atenção! explique claramente qual elemento do modelo sofrerá influência direta deste aumento em X_1 .
- (c) Baseando-se no ajuste obtido em (a), construa os seguintes gráficos: "resíduos de Pearson vs. Valores ajustados" e "resíduos componente do desvio vs. valores ajustados". Interprete os dois gráficos. Atenção! mostre os comandos que usou para obter os resíduos e os valores ajustados.
- (d) Levando em consideração o resultado do ajuste em (a), obtenha as estimativas das probabilidades de morte da larva em cada recipiente do experimento (mostre o script R). Faça o gráfico: " X_1 vs. probabilidade de morte" e " X_2 vs. probabilidade de morte". Comente os resultados dos dois gráficos.