

Justifique todas as suas respostas, indicando os cálculos efetuados e/ou os conceitos teóricos utilizados.

- 1. (40 pts) Seja $g(x) = 2 \operatorname{arcsen}(\operatorname{tg} x)$ onde $D_g \subset] \frac{\pi}{2}, \frac{\pi}{2}[.$
 - (a) Determine o domínio de g, D_q .
 - (b) Caracterize a função inversa de g, indicando o domínio, o contradomínio e a expressão analítica que a define.
 - (c) Justifique que g atinge mínimo e máximo globais no seu domínio e calcule esses valores.
 - (d) Sabendo que

$$\int f(x) dx = g(x) + C, C \in \mathbb{R},$$

determine f(0).

Resolução:

(a) Atendendo a que a tangente está definida em $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ e que o domínio do arcoseno é [-1, 1],

$$D_g = \left\{x \in \mathbb{R} : -1 \leq \operatorname{tg} x \leq 1\right\} = \left[\operatorname{arctg}\left(-1\right), \operatorname{arctg}(1)\right] = \left[-\frac{\pi}{4}, \frac{\pi}{4}\right].$$

- (b) e (c) Como as funções arcoseno e tangente são estritamente crescentes, a composta das duas funções é também estritamente crescente, e, portanto,

 - o máximo de g é atingido em $x=\frac{\pi}{4}$ e é $g\left(\frac{\pi}{4}\right)=2 \arcsin{(1)}=\pi;$ o mínimo de g é atingido em $x=-\frac{\pi}{4}$ e é $g\left(-\frac{\pi}{4}\right)=2 \arcsin{(-1)}=-\pi.$

Isto permite afirmar que o contradomínio de g é, $CD_g = [-\pi, \pi]$.

O domínio da inversa é o contradomínio da função e o contradomínio da inversa é o domínio da função, assim,

$$CD_{g^{-1}} = \left[-\frac{\pi}{4}, \frac{\pi}{4} \right] \, \in D_{g^{-1}} = [-\pi, \pi].$$

Para determinar a expressão da inversa, resolve-se a equação y = g(x) em ordem a x:

$$y = 2 \operatorname{arcsen}(\operatorname{tg} x) \Leftrightarrow \operatorname{sen}\left(\frac{y}{2}\right) = \operatorname{tg}\left(x\right) \Leftrightarrow x = \operatorname{arctg}\left(\operatorname{sen}\left(\frac{y}{2}\right)\right).$$

A expressão da inversa é

$$g^{-1}(x) = \arctan\left(\operatorname{sen}\left(\frac{x}{2}\right)\right).$$

(d) Por definição de primitiva,

$$g'(x) = f(x).$$

Calculando a derivada de g vem

$$g'(x) = (2\arcsin(\operatorname{tg} x))' = 2\frac{(\operatorname{tg}(x))'}{\sqrt{1 - \operatorname{tg}^2(x)}} = 2\frac{\sec^2(x)}{\sqrt{1 - \operatorname{tg}^2(x)}}, \ \forall x \in \left] -\frac{\pi}{4}, \frac{\pi}{4}\right[.$$

$$f(0) = g'(0) = 2\frac{\sec^2(0)}{\sqrt{1 - \operatorname{tg}^2(0)}} = 2.$$

- 2. **(30 pts)** Calcule:
 - (a) o integral definido $\int_1^5 \frac{2x}{\sqrt{2x-1}} dx$;
 - (b) a família de primitivas $\int (2x^3 + x) \arctan x \, dx$.

Resolução:

(a) Considerando a mudança de variável definida por $\sqrt{2x-1}=t,\ t>0,$ donde resulta $x=\frac{t^2+1}{2}$ e $dx=t\,dt,$ e atendendo a que $x\in[1,5],$ conduz a $t\in[1,3],$ obtém-se

$$\int_{1}^{5} \frac{2x}{\sqrt{2x-1}} dx = \int_{1}^{3} \frac{t^2+1}{t} t dt = \int_{1}^{3} t^2+1 dt = \left[\frac{t^3}{3}+t\right]_{1}^{3} = \frac{32}{3}.$$

(b) Utilizando primitivação por partes, fazendo $u' = (2x^3 + x)$ e v = arctg(x), vem:

$$\int (2x^3 + x) \arctan x \, dx = \frac{x^4 + x^2}{2} \arctan(x) - \int \frac{x^4 + x^2}{2} \frac{1}{1 + x^2} \, dx$$

Atendendo a que $x^4 + x^2 = x^2(x^2 + 1)$,

$$\int \frac{x^4 + x^2}{2} \frac{1}{1 + x^2} dx = \int \frac{x^2}{2} dx = \frac{x^3}{6} + C, C \in \mathbb{R}.$$

Então,

$$\int (2x^3 + x) \arctan x \, dx = \frac{x^4 + x^2}{2} \arctan(x) - \frac{x^3}{6} + C, \, C \in \mathbb{R}.$$

3. (30 pts) Dada uma função $f:[3,+\infty[\to\mathbb{R},$ considere o integral impróprio de 1ª espécie

$$\int_{3}^{+\infty} f(x) \, dx.$$

- (a) Suponha que o integral impróprio referido acima é convergente. Explicite o significado matemático desta afirmação.
- (b) Enuncie um teorema que lhe permite comparar a natureza de uma série numérica real com a de um integral impróprio adequado.
- (c) Aplicando o teorema referido em (b) estude a natureza da série de

$$\sum_{n=3}^{+\infty} \frac{1}{n \ln n \left(\ln(\ln n) \right)}.$$

Resolução:

(a) Se

$$\lim_{t \to +\infty} \int_3^t f(x) \, dx$$

existe e é finito, o integral impróprio de 1ª espécie $\int_3^{+\infty} f(x) dx$ é convergente.

(b) Critério do integral:

Seja $\sum_{n=1}^{+\infty} a_n$ uma série de termos não negativos e $f: [1, +\infty[\to \mathbb{R}$ uma função decrescente, integrável em qualquer intervalo $[1, b], b \ge 1$ e tal que $f(n) = a_n, \forall n \in \mathbb{N}$. Então

$$\sum_{n=1}^{+\infty} a_n \quad e \quad \int_1^{+\infty} f(x) dx$$

têm a mesma natureza.

(c) Sejam $a_n = \frac{1}{n \ln n \left(\ln(\ln n)\right)}, n \ge 3 \text{ e } f(x) = \frac{1}{x \ln x \left(\ln(\ln x)\right)}, x \in [3, +\infty].$ Como $n \ge 3, \ln n > 1 \text{ e } \ln(\ln n) > 0.$ Logo $a_n \ge 0, \forall n \ge 3.$ Tendo em conta que

$$f'(x) = \frac{-\left(x \ln x \left(\ln(\ln x)\right)\right)'}{\left(x \ln x \left(\ln(\ln x)\right)\right)^2} = -\frac{\left(\ln x + 1\right) \ln(\ln x) + 1}{\left(x \ln x \left(\ln(\ln x)\right)\right)^2} < 0, \ \forall x \in [3, +\infty],$$

conclui-se que f é uma função decrescente em $[3, +\infty]$. Por outro lado, como f é uma função contínua em $[3, +\infty]$, f é integrável em qualquer intervalo [3, b], $b \ge 3$. Assim, pelo critério do integral, conclui-se que

$$\sum_{n=3}^{+\infty} \frac{1}{n \ln n \left(\ln(\ln n) \right)} \quad e \quad \int_{3}^{+\infty} \frac{1}{x \ln x \left(\ln(\ln x) \right)} dx$$

têm a mesma natureza.

Como

$$\lim_{t \to +\infty} \int_3^t \frac{1}{x \ln x \left(\ln(\ln x)\right)} dx = \lim_{t \to +\infty} \int_3^t \frac{\frac{1}{x \ln x}}{\ln(\ln x)} dx = \lim_{t \to +\infty} \left[\ln\left|\ln(\ln x)\right|\right]_3^t = +\infty,$$

conclui-se que o integral impróprio $\int_3^{+\infty} \frac{1}{x \ln x \left(\ln(\ln x)\right)} dx$ é divergente. Deste modo, a série $\sum_{n=3}^{+\infty} \frac{1}{n \ln n \left(\ln(\ln n)\right)}$ é divergente.

4. (28 pts) Determine a natureza das seguintes séries numéricas, indicando, em caso de convergência, se se trata de convergência simples ou absoluta:

(a)
$$\sum_{n=3}^{+\infty} (-1)^n \left(1 - \frac{2}{n}\right)^{n^2}$$
;

(b)
$$\sum_{n=1}^{+\infty} \frac{n}{n^2 + 1} \cos[(n+1)\pi].$$

Resolução:

(a) Neste caso pode aplicar-se o Critério de Cauchy:

$$\lim_{n \to +\infty} \sqrt[n]{\left| (-1)^n \left(1 - \frac{2}{n} \right)^{n^2} \right|} = \lim_{n \to +\infty} \left(1 - \frac{2}{n} \right)^n = e^{-2}.$$

Como $e^{-2} < 1$, pode afirmar-se que a série $\sum_{n=3}^{+\infty} (-1)^n \left(1 - \frac{2}{n}\right)^{n^2}$ converge absolutamente.

(b) Observe-se que $\cos[(n+1)\pi] = (-1)^{n+1}$ e, portanto, a série dada é alternada, já que $\frac{n}{n^2+1} > 0$.

$$\sum_{n=1}^{+\infty} \frac{n}{n^2 + 1} \cos\left[(n+1)\pi\right] = \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{n}{n^2 + 1}.$$

Começando por estudar a série dos módulos, $\sum_{n=1}^{+\infty} \left| (-1)^{n+1} \frac{n}{n^2+1} \right| = \sum_{n=1}^{+\infty} \frac{n}{n^2+1}, \text{ usando o critério}$

de comparação por passagem ao limite, comparando com a série divergente $\sum_{n=1}^{+\infty} \frac{1}{n}$:

$$\lim_{n \to +\infty} \frac{\frac{n}{n^2 + 1}}{\frac{1}{n}} = 1,$$

portanto, as séries têm a mesma natureza e assim, a série $\sum_{n=1}^{+\infty} \left| (-1)^{n+1} \frac{n}{n^2+1} \right|$ diverge.

Sendo uma série alternada, pode aplicar-se o Critério de Leibniz:

• $\lim_{n\to+\infty} a_n = 0$:

$$\lim_{n \to +\infty} \frac{n}{n^2 + 1} = 0.$$

• (a_n) é monótona decrescente, isto é, $a_{n+1} \leq a_n$, $\forall n \in \mathbb{N}$:

$$\frac{n+1}{(n+1)^2+1} \le \frac{n}{n^2+1} \Leftrightarrow (n+1)(n^2+1) \le n((n+1)^2+1) \Leftrightarrow 0 \le n^2+n-1$$

que é uma proposição verdadeira.

Pode então concluir-se que a série $\sum_{n=1}^{+\infty} (-1)^{n+1} \frac{n}{n^2+1}$ converge, mas como a série dos módulos diverge, a convergência é simples.

5. (15 pts) Mostre que a equação $x^2 = x \operatorname{sen} x + \cos x$ tem exatamente duas soluções em \mathbb{R} .

Resolução:

Considere-se a função definida em \mathbb{R} por $f(x) = x^2 - x \operatorname{sen} x - \cos x$ e procurem-se os zeros desta função. f é derivável em \mathbb{R} e

$$f'(x) = 2x - \sin(x) - x\cos(x) + \sin(x) = 2x - x\cos(x) = x(2 - \cos(x)).$$

O único zero de f' é x=0 já que $-1 \le \cos(x) \le 1$ e, portanto, $2-\cos(x) \ne 0$. Como consequência do Teorema de Rolle, a função f terá no máximo dois zeros (entre dois zeros da função existe pelo menos um zero da derivada, ora, se existissem 3 zeros teria que haver pelo menos um outro zero de f').

Pode ainda observar-se que, como $2 - \cos(x) > 0$, f'(x) < 0 se x < 0 e, portanto, f é decrescente em $]-\infty,0[$, e f'(x) > 0 se x > 0, e, f é crescente em $]0,+\infty[$.

Como f(0) = -1, escolha-se um valor à esquerda de zero e um outro à direita de modo que f seja positivo nesses pontos. Ora, $f(\pi) = \pi^2 - \pi \operatorname{sen} \pi - \cos \pi = \pi^2 + 1 = f(-\pi)$.

Pode então afirmar-se que existem exatamente dois zeros para a função f em \mathbb{R} , um em $]-\pi,0[$ e outro em $]0,\pi[$.

6. (25 pts) Sejam $\varphi : \mathbb{R} \to \mathbb{R}$ uma função contínua, positiva e derivável em \mathbb{R} e $f : \mathbb{R} \to \mathbb{R}$ a função definida por

$$f(x) = \int_{x}^{x^2} \varphi(t) dt, \ x \in \mathbb{R}.$$

- (a) Mostre que f é duas vezes derivável e determine expressões para f' e f''.
- (b) Prove que f é estritamente decrescente em $]-\infty,0[$.
- (c) Estude o sinal de f em \mathbb{R} .

Resolução:

(a) O Teorema Fundamental do Cálculo Integral afirma o seguinte:

Seja φ uma função contínua no intervalo J e f a função definida por

$$f(x) = \int_{g_1(x)}^{g_2(x)} \varphi(t)dt,$$

com g_1 e g_2 definidas em $I \subseteq \mathbb{R}$ tais que $g_1(I) \subseteq J$ e $g_2(I) \subseteq J$. Se φ é contínua em J e g_1 e g_2 são deriváveis em I, então

$$f'(x) = \varphi(g_2(x))g'_2(x) - \varphi(g_1(x))g'_1(x)$$
, para todo o $x \in I$.

Neste caso $I = J = \mathbb{R}$, $g_2(x) = x^2$ e $g_1(x) = x$ são funções deriváveis em \mathbb{R} , e φ é uma função contínua. Então:

$$f'(x) = \varphi(x^2)(x^2)' - \varphi(x)(x)' = 2x\varphi(x^2) - \varphi(x).$$

Como a função φ é derivável, pode determinar-se a função f'':

$$f''(x) = (2x\varphi(x^2) - \varphi(x))' = (2x)'\varphi(x^2) + 2x(\varphi(x^2))' - \varphi'(x) = 2\varphi(x^2) + (2x)^2\varphi'(x^2) - \varphi'(x).$$

- (b) Pode determinar-se o sinal de f' analisando a sua expressão:
 - $\varphi(t) > 0$, $\forall t \in \mathbb{R}$, portanto, $\varphi(x^2) > 0$ e $\varphi(x) > 0$, independentemente do x;
 - $2x < 0, \forall x < 0, \log_2 2x \varphi(x^2) < 0, \text{ em }] \infty, 0[.$

Então, $f'(x) = 2x\varphi(x^2) - \varphi(x) < 0$, $\forall x < 0$ e, portanto, f é (estritamente) decrescente neste intervalo.

(c) Como $f(0) = \int_0^0 \varphi(t) dt = 0$ e f é estritamente decrescente em $]-\infty, 0[$, então, f(x) > 0 neste intervalo (se a função decresce até x = 0, o seu valor para x < 0 tem que ser positivo).

Repare-se que f tem um outro zero em x=1: $f(1)=\int_1^{1^2}\varphi(t)\,dt=\int_1^1\varphi(t)\,dt=0$.

Uma das propriedades do integral definido afirma o seguinte:

Seja f uma função integrável em [a,b], com a < b. Se $f(x) \ge 0$ para todo o $x \in [a,b],$ então

$$\int_{a}^{b} f(x)dx \ge 0.$$

Ora, no intervalo $]0,1[,x>x^2,$ portanto

$$\int_{x}^{x^{2}} \varphi(t) dt = -\int_{x^{2}}^{x} \varphi(t) dt < 0 \text{ (porque } \int_{x^{2}}^{x} \varphi(t) dt > 0).$$

No intervalo]1, $+\infty$ [, como $x^2 > x$, $\int_{a}^{x^2} \varphi(t) dt > 0$.

Concluindo:

- $f(x) > 0 \text{ se } x \in]-\infty, 0[\cup]1, +\infty[,$
- f(x) < 0 se $x \in]0,1[$ e
- f(x) = 0 se x = 0 ou x = 1.

7.

Responda nesta folha e entregue-a juntamente com as restantes folhas de prova.

(32	pts) Para cada uma das questões seguintes, <u>assinale a opção correta</u> .	
(a)	Sejam $f \in g$ as funções definidas por $f(x) = -\arccos(x+5)$ e $g(x) = 3 \arcsin(x+4)$.	
	$(\mathbf{A}) \lim_{x \to -4^-} \frac{f(x)}{g(x)} = +\infty.$	X
	(B) $\lim_{x \to -4^-} \frac{f(x)}{g(x)} = -\infty.$	
	(C) $\lim_{x \to -4^{-}} \frac{f(x)}{g(x)} = 0.$	
	(D) $\lim_{x \to -4^-} \frac{f(x)}{g(x)} = -\frac{1}{3}$	
(b)	Seja f uma função contínua em $[8,13]$, derivável em $]8,13[$ e satisfazendo a condição $f(8)$ $f(13)=0$. Seja ainda g uma função definida em $[8,13]$ por $g(x)=e^{-3x}f(x)$. Pode afirmar-se que existe $t\in]8,13[$ tal que	=
	(A) $f(t) = \frac{1}{3}f'(t)$.	X
	(B) $f(t) = 3f'(t)$.	
	(C) $g'(t) = \frac{1}{3}g(t)$	
	(D) $g'(t) = 3g(t)$	
(c)	Seja f uma função real de variável real de domínio \mathbb{R} . Se $\lim_{x\to +\infty} f(x) = 2$ então o integr	al
	impróprio $\int_{1}^{+\infty} \frac{f(x)}{x^{2}} dx$	
	(A) é convergente.	
	(B) é divergente.	
	(C) é igual a $+\infty$. (D) é igual a 2.	
(d)	A área da região limitada pelas curvas de equação $y=\sqrt[3]{x},\ y=x^2$ e $x=-1$ pode s dada por	er
	(A) $\int_{-1}^{1} (\sqrt[3]{x} - x^2) dx$	
	(B) $\int_{-1}^{1} (x^2 - \sqrt[3]{x}) dx$	
	0	
	(C) $\int_{-1}^{0} (\sqrt[3]{x} - x^2) dx + \int_{0}^{1} (x^2 - \sqrt[3]{x}) dx$. (D) $\int_{-1}^{0} (x^2 - \sqrt[3]{x}) dx + \int_{0}^{1} (\sqrt[3]{x} - x^2) dx$.	