PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: G10K 9/08, 7/06

A1

(11) International Publication Number:

WO 97/50077

(43) International Publication Date:

31 December 1997 (31.12.97)

(21) International Application Number:

PCT/GB97/01684

(22) International Filing Date:

20 June 1997 (20.06.97)

(30) Priority Data:

9613150.3

22 June 1996 (22.06.96)

GB

(71) Applicant (for all designated States except US): ER FLUID DEVELOPMENTS LIMITED [GB/GB]; Vincent Works, Brough, Bradwell, Sheffield S30 2HG (GB).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): STANGROOM, James, Edward [GB/GB]; ER Fluid Developments Limited, Vincent Works, Brough, Bradwell, Sheffield S30 2HG (GB). WALTON, Rex [GB/GB]; ER Fluid Developments Limited, Vincent Works, Brough, Bradwell, Sheffield S30 2HG (GB).
- (74) Agent: LONG, Edward, Anthony; Hulse & Co., Eagle Star House, Carver Street, Sheffield S1 4FP (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: ACOUSTIC TRANSDUCERS USING A WORKING FLUID

(57) Abstract

The invention relates to the use, in an acoustic transducer (1) of an ER fluid as the working fluid; to an acoustic transducer (1) using an ER fluid as its working fluid; to the use of an ER fluid as the working fluid of a vibrator; to a vibrator employing an ER fluid as its working fluid.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Słovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

ACOUSTIC TRANSDUCERS USING A WORKING FLUID

Introduction

5

10

15

20

This invention is concerned with acoustic transducers, i.e. devices which convert electrical signals into mechanical vibrations in air, water or other media.

- 1 -

A sound, i.e. a series of successive waves of compression and rarefaction in a compressible medium, can be produced by two main methods:-

- a) By vibrating a surface at the desired frequency. This is by far the commonest method.

 In standard units, the surface is usually a papier mache cone, which is light and stiff in compression, but other shapes and materials can be used. For the remainder of this application, the term "plate" will be used.
- b) By allowing pulses at the desired frequency to escape from a continuous supply of the medium at elevated pressure: sirens are the chief example.

Under a), there are three main methods commonly used to move the plate:-

- (i) A light coil is attached to the plate, and this is suspended in a radial magnetic field, normally produced by a permanent magnet. When a current is passed through the coil, it gives rise to an axial force, so the plate moves in accordance with the magnitude and direction of the current.
- (ii) The plate may be moved electrostatically. With realistic fields, the force and displacement that can be achieved by this method are severely limited, so it is normally used only for high frequencies.
- (iii) A stack of piezo-electric elements may be used to move the plate. This method can produce quite large forces, but the amplitude is relatively low. The response is poor at low frequencies, but very good at higher frequencies, so this is the method of choice for

5

10

15

20

underwater acoustic transducers used for sonar, which work at about 20kHz.

At present , only method (i) above can deal with the lower acoustic frequencies, below approximately 200 Hz. The sound intensity produced is governed by the area of the plate and the amplitude of its movement, and both of these are effectively limited by the force available. The acceleration required to achieve an oscillation at a given frequency and amplitude is proportional to the square of both parameters. The force required is proportional to the oscillating mass, so the latter is a key consideration. The mass of a plate of constant thickness will be proportional to its area, and in practice a larger plate will require additional stiffening. The overall result is that the acoustic output of a transducer at low frequencies is governed by the force that can be produced.

The force produced in an electromagnetic transducer is governed by the field, the performance of the permanent magnet, and the current through the coil, which is determined in turn by heat dissipation. Both of these are approaching the limits of existing materials, so it seems unlikely that electromagnetic transducers will greatly improve on their present practical limit on the mass of the oscillating element which is approximately 500g.

A basic object of the present invention is to provide an improved acoustic transducer overcoming the limitations of prior art proposals and thereby increasing the output of low to medium frequency acoustic transducers.

Accordingly, a first aspect of the present invention is directed to the use of an Electro-Rheological (ER) fluid as the working fluid of an acoustic transducer.

Another aspect, of independent significance is directed to an acoustic transducer employing an ER fluid as its working fluid.

Yet another aspect of independent significance is directed to the use of an ER fluid as the

working fluid of a vibrator.

• 5

10

15

20

Yet another aspect of independent significance is directed to a vibrator employing an ER fluid as its working fluid.

The invention thus makes a radical departure in the field of transducers and vibrators by employing ER fluids, which are concentrated suspensions of finely divided solids in oily base liquids which solidify, progressively, reversibly and virtually instantaneously, in an electric field. It is also well known that if ER fluids are pumped between two parallel fixed plates to which a voltage may be applied, the assemblage functions as a high-speed valve, and bi-directional actuators, in which such valves are combined with well-known hydraulic principles, have been described. However, the design of such actuators has largely followed conventional hydraulic practice, and, as a result, the frequency range of such units is limited. More recently, high frequency versions of these actuators have been the subject of another Patent Application, and it has been shown that these can be operated successfully up to at least 5kHz, making them suitable for use as acoustic transducers in the low to medium frequency range.

The technical advantages of ER vibrators as acoustic transducers are as follows:-

- Since they operate on hydraulic principles, there are virtually no limits on the force that can be applied.
- 2. The main source of energy is the pump which operates continuously and need not be modulated. Hence, only the electrical control power need be modulated. This represents a considerable saving in cost, space and weight on conventional electromagnetic practice which requires equipment to modulate the whole of the electrical input. Another aspect of this advantage is that the main power input need not be electrical. The pump may be driven hydraulically, pneumatically or even by a self-contained engine.

5

10

15

20

3. As in all hydraulic-type devices, waste heat is carried away in the working fluid and may be removed elsewhere in the circuit.

In one embodiment, ER vibrators are used directly to move a plate similar to that used in present loudspeakers. However, since the improved performance characteristics of the vibrators will remove existing limitations on mass, these plates can be made much larger than at present, and other constructional materials may be used.

In another embodiment, an ER vibrator is used to operate a high speed valve mechanism which allows pulses of air to escape from a pressurised reservoir. This aspect of the invention thus replaces the perforated disc used in conventional sirens with a high-frequency controllable valve. Although ER vibrators are ideal for this task, insofar that the mass of the moving parts is not critical, this aspect of the invention is not limited to this alone. Providing the valve itself is correctly designed, other actuators, such as electro-magnetic, electrostatic or piezo-electric could also be employed.

Various aspects of the invention will now be described in greater detail, by way of examples, with reference to the accompanying drawings, in which:-

Figure 1 is a diagrammatic layout of a loudspeaker; and

Figure 2 corresponds to Figure 1 but shows a siren.

In both Figures, like reference numerals are employed for like components.

A high-speed ER actuator is indicated at 1 through which ER fluid is circulated via outlet and return lines 8 and 9 by a pump 2 running continuously at constant speed. A high voltage source 3 supplies high voltage signals to the ER actuator 1 via heavily insulated cables 10, which source 3 is, in turn, controlled by a low voltage source 4, for example a standard audio-amplifier. A cone 5, similar to a cone in a standard loudspeaker, serves to transfer the mechanical

WO 97/50077 PCT/GB97/01684

- 5 -

movements of the output of the ER actuation 1 to the surrounding medium, e.g. air. However, due to the increased thrust capability of the ER actuator 1 compared with a standard electromagnetic loudspeaker, this can be made larger and heavier than standard loudspeaker cones.

In Figure 2 a pump or blower 6 runs continuously, whilst a valve 7 is operated by the ER actuator 1 which modulates the output of the valve 7 in response to the signals from the high voltage source 3.

5

WO 97/50077 PCT/GB97/01684

CLAIMS:

5

10

15

20

- 1. The use, in an acoustic transducer of an ER fluid as the working fluid.
- 2. An acoustic transducer, using an ER fluid as its working fluid with means to apply, in a controlled manner, an electric field to the ER fluid.
- 3. An acoustic transducer as claimed in Claim 2, comprising a pump for displacement of the ER fluid around a flow circuit.
- 4. An acoustic transducer as claimed in Claim 3, wherein the pump is continuously operable.
- 5. An acoustic transducer as claimed in Claim 3 or Claim 4, wherein the pump is driven hydraulically, pneumatically or even by a self-contained engine.
 - 6. An acoustic transducer as claimed in any one of Claims 2 to 5, comprising means to modulate electrical control power providing the electric field.
 - 7. The use of an ER fluid as the working fluid of a vibrator.
 - 8. A vibrator employing an ER fluid as its working fluid.
 - 9. A loud speaker comprising an ER vibrator as defined in Claim 8, operable directly on a movable loud speaker plate.
 - 10. A siren comprising an ER vibrator as defined in Claim 8, operable on a high speed valve mechanism which allows pulses of air to escape from a pressurised reservoir.

Ó

Fig 1

INTERNATIONAL SEARCH REPORT

It ational Application No PCT/GB 97/01684

A. CLASSI IPC 6	FICATION OF SUBJECT MATTER G10K9/08 G10K7/06		•
According to	o International Patent Classification(IPC) or to both national clas	ssification and IPC	
B. FIELDS	SEARCHED		
Minimum do IPC 6	ocumentation searched (classification system followed by classif ${\sf G10K}$	fication symbols)	
Documental	tion searched other than minimumdocumentation to the extent t	hat such documents are included in the field	s searched
Electronic d	lata base consulted during the international search (name of da	ta base and, where practical, search terms (sed)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of th	ie relevant passages	Relevant to claim No.
A	US 5 218 576 A (DECHICO ROBERT 1993 see abstract see column 4, line 8 - line 33		1
А	WO 94 01979 A (NOISE CANCELLATION TECH ;PARRELLA MICHAEL J (US); MILLER SCOTT (US) 20 January 1994 see abstract; figure 4		1,9
X	AU 17480 83 A (SECR DEFENCE BRIT) 7 February 1985 see page 1A, line 23 - line 29 see page 3, line 17 - page 4, line 30; figure 1		7
		-/	
X Fur	ther documents are listed in the continuation of box C.	X Patent family members are	isted in annex.
,	ategories of cited documents :	"T" later document published after the or priority date and not in conflic cited to understand the principle	t with the application but
considered to be of particular relevance "E" earlier document but published on or after the international filing date		invention "X" document of particular relevance cannot be considered novel or o	; the claimed invention annot be considered to
which citation "O" docum	ent which may throw doubts on priority claim(s) or h is cited to establish the publicationdate of another on or other special reason (as specified) nent referring to an oral disclosure, use, exhibition or	involve an inventive step when to "Y" document of particular relevance cannot be considered to involve document is combined with one	the claimed invention an inventive step when the or more other such docu-
"P" docum	r means nent published prior to the international filing date but than the pnority date claimed	ments, such combination being in the art. "&" document member of the same p	
Date of the	e actual completion of theinternational search	Date of mailing of the internation	al search report
	28 October 1997	19/11/1997	
Name and	i mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk	Authorized officer	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Anderson, A	

2

INTERNATIONAL SEARCH REPORT

II lational Application No PCT/GB 97/01684

		701084
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	•
Category	Citation of document with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	Z.P. SHUL'MAN ET AL: "Amplitude-frequency characteristics of an electrodynamic loudspeaker with magnetorheologic suspension" JOURNAL OF ENGINEERING PHYSICS, vol. 53, no. 6, December 1987, USA, pages 1424-1430, XP002044752 see page 1424, line 1 - line 18	9
A	US 1 571 378 A (W. SCHLOEMILCH) 2 February 1926 see claim 1; figure 1	10

INTERNATIONAL SEARCH REPORT

Information on patent family members

ational Application No PCT/GB 97/01684

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 5218576 A	08-06-93	NONE	
WO 9401979 A	20-01-94	NONE	
AU 1748083 A	07-02-85	NONE	
US 1571378 A	02-02-26	DE 421037 C	

DERWENT-ACC-NO: 1998-077358

DERWENT-WEEK: 199918

COPYRIGHT 2008 DERWENT INFORMATION LTD

TITLE: Electroacoustic transducer using electro-

rheological fluid has device to modulate

electrical control power providing electric field

using working fluid of vibrator

INVENTOR: STANGROOM JE; WALTON R

PATENT-ASSIGNEE: ER FLUID DEV LTD[ERFLN]

PRIORITY-DATA: 1996GB-013150 (June 22, 1996)

PATENT-FAMILY:

PUB-NOPUB-DATELANGUAGEWO 9750077 A1December 31, 1997ENAU 9735484 AJanuary 14, 1998ENEP 906611 A1April 7, 1999EN

DESIGNATED-STATES: AL AM AT AU AZ BA BB BG BR BY CA CH

CN CU CZ DE DK EE ES FI GB GE GH HU
IL IS JP KE KG KP KR KZ LC LK LR LS LT
LU LV MD MG MK MN MW MX NO NZ PL
PT RO RU SD SE SG SI SK SL TJ TM TR
TT UA UG US UZ VN YU ZW AT BE C H
DE DK ES FI FR GB GR IE IT LU MC NL

PT SE DE FR GB IT NL

APPLICATION-DATA:

PUB-NO	APPL-DESCRIPTOR	APPL-NO	APPL- DATE
WO1997050077A1	N/A	1997WO- GB01684	June 20, 1997
AU 9735484A	N/A	1997AU- 035484	June 20, 1997
EP 906611A1	N/A	1997EP- 931893	June 20, 1997
EP 906611A1	Based on	1997WO- GB01684	June 20, 1997

INT-CL-CURRENT:

TYPE IPC DATE

CIPS G10K7/06 20060101 CIPS G10K9/08 20060101

ABSTRACTED-PUB-NO: WO 9750077 A1

BASIC-ABSTRACT:

The acoustic transducer (1) uses an electro-rheological (ER) fluid as its working fluid with device to apply, in a controlled manner, an electric field to the ER fluid. The transducer has a pump (2) for displacement of the ER fluid around a flow circuit. The pump is continuously operable and driven hydraulically, pneumatically or even by a self-contained engine. The transducer has a device to modulate electrical control power providing the electric field using the working fluid of a vibrator.

A loudspeaker comprising an ER vibrator operable directly on a movable loudspeaker plate operable on a high speed valve mechanism which allows pulses of air to escape from a pressurised reservoir.

USE - For converting electrical signals into mechanical vibrations in air,

water or other media.

ADVANTAGE - Saving in cost, space and weight, while main power image need not to be electrical.

CHOSEN-DRAWING: Dwg.1/2

TITLE-TERMS: ELECTROACOUSTIC TRANSDUCER

ELECTRO RHEOLOGICAL FLUID DEVICE MODULATE ELECTRIC CONTROL POWER

FIELD WORK VIBRATION

DERWENT-CLASS: P86 V06

SECONDARY-ACC-NO:

Non-CPI Secondary Accession Numbers: 1998-061794