Fundamentos de Algoritmia

rundamentos de Aigori	uiiia
Examen de junio	Curso 2021/2022
Nombre:	
Observaciones:	
• En el test, para cada pregunta hay una única respuesta corre puntos y cada respuesta incorrecta resta 0,033 puntos.	ecta. Cada respuesta correcta vale 0,1
1. Si la precondición de un algoritmo es false , ¿qué afirmación ϵ	es correcta?
(a) Cualquier postcondición será válida.	
(b) Si se ejecuta el algoritmo dicha ejecución no terminará.	a
(c) Si se ejecuta el algoritmo se producirá un error en tiemp	o de ejecución.
(d) Ninguna postcondición será válida.	
2. Indica cuál de las siguientes afirmaciones es incorrecta:	
(a) $O(\log n) \subset O(n)$.	
(b) $O(2^n) \subset O(n^2)$.	b
(c) $2 \in O(1)$.	В
(d) $n \log(n) \in O(n^2)$.	
3. Indica la complejidad del siguiente algoritmo:	
int c = 0;	
for (int $i = 0$; $i < n$; $i += 2$) $c += 1$;	
for (int $j = 0$; $j < n$; ++j) c += 3;	
(a) $\Theta(\log n)$.	
(b) $\Theta(n)$.	b
(c) $\Theta(n^2)$.	
(d) Ninguna de las anteriores.	
4. ¿Qué significa el siguiente predicado para un vector no vacío	de naturales?
$\forall i : 1 \le i < v.\text{size}() : v[i-1]$	$\neq v[i]$
(a) Todos los valores del vector son diferentes.	
(b) No existen dos valores iguales en el vector.	d
(c) Los valores del vector están ordenados en orden creciente	e.

(d) Ninguna de las anteriores.

5. Dada la especificación

```
 \begin{aligned} &\{0 \leq a.size\} \\ &\text{fun contarImpares(vector<int>a) dev (int } c) \\ &\{c = \#i: 0 \leq i < a.size: a[i] \% 2 = 1\} \end{aligned}
```

y el siguiente algoritmo:

```
int contarImPares(std::vector<int> const& a) {
   int c = 0; int k = a.size()-1;
   while (k >= 0)
   {
      if (a[k] % 2 == 1) {c = c + 1;}
      k = k - 1;
   }
   return c;
}
```

indica si el algoritmo es correcto con respecto a la especificación y en tal caso cuál es el invariante que permite demostrar la corrección del bucle.

- (a) Es correcto con invariante $\{-1 \le k < a.size \land c = \#i : 0 \le i < k : a[i] \% 2 = 1\}$.
- (b) Es correcto con invariante $\{-1 \le k \le a.size \land c = \#i : k \le i < a.size : a[i] \% 2 = 1\}.$
- (c) Es correcto con invariante $\{-1 \le k \le a.size \land c = \#i : k < i < a.size : a[i] \% 2 = 1\}$.
- (d) Ninguna de las anteriores.
- 6. Indica cuál de las siguientes propiedades sobre los órdenes de complejidad no es correcta, siendo f y g funciones de coste cualesquiera:

```
(a) \mathcal{O}(f+g) = \mathcal{O}(\max(f,g)).

(b) \mathcal{O}(c.f) = c.\mathcal{O}(f)

(c) \mathcal{O}(\log_a f) = \mathcal{O}(\log_b f)

(d) Ninguna de las anteriores.
```

- 7. Indica cuál es una función de cota para este algoritmo:
 - {x > 0 }
 int i = x;
 while (i >= 0)
 {
 if (i%2 == 1) {i = i + 1;}
 i = i 1;
 }
 {i%2 = 1}
 (a) i + 1
 (b) x + i
 (c) max(0, i 1)
 - (d) Ninguna de las anteriores.
- 8. Dados los algoritmos de búsqueda lineal y de búsqueda binaria, indica cual de las siguientes afirmaciones es cierta (n indica el número de elementos del vector en que se realiza la búsqueda):
 - (a) Ambos algoritmos tienen el mismo orden de complejidad en el caso peor.
 - (b) El algoritmo de búsqueda lineal tiene coste $\mathcal{O}(1)$ y el de búsqueda binaria $O(\log(n))$.
 - (c) Ambos algoritmos se pueden aplicar sobre los mismos vectores de entrada.
 - (d) Ninguna de las anteriores.

d

d

 \mathbf{c}

9. La siguiente especificación:

$$P: v.size \ge 0 \land v = V$$

$$Q: \forall k: 0 \le k < v.size - 1: v[k] \le v[k+1] \land permutacion(v, V)$$

siendo el predicado
$$permutacion(v,w) \equiv v.size() = w.size() \land \forall k: 0 \leq k < v.size(): (\#x: 0 \leq x < v.size():v[x]=v[k]) = (\#x: 0 \leq x < v.size():w[x]=v[k])$$

a

a

Se puede implementar con el siguiente algoritmo

- (a) Algoritmo quicksort o de ordenación rápida.
- (b) Algoritmo de partición.
- (c) Algoritmo de búsqueda binaria.
- (d) Ninguna de las anteriores.
- 10. Indica el coste de un algoritmo cuya recurrencia es:

$$T(n) = \left\{ \begin{array}{ll} c_0 & if & n \leq 2 \\ T(n/2) + c_1 & if & n > 2 \end{array} \right.$$

- (a) $\mathcal{O}(\log n)$
- (b) $\mathcal{O}(n)$
- (c) $\mathcal{O}(n \log n)$
- (d) $\mathcal{O}(n^2)$

1	2	3	4	5	6	7	8	9	10