Linear Regression using Single Variable / Univariant Linear Regression:

In this we will have data set (training set) to build a model that find the relation between our input variable, X and output Variable y, so that our model predicts the value of y for unseen value of X.

Motivation Example: To predict housing price based on the size in sq. Ft.

Circ in on Et (V)	Drico(¢) in 1000/s (v)
Size in sq. Ft (X)	Price(\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178

Model Representation:

Notations:

X → training data set

 $Y \rightarrow output$

 $m \rightarrow$ size of our training data set.

 $(x^{(i)}, y^{(i)}) \rightarrow i^{th}$ training example.

 $h \rightarrow hypothesis (h : X \rightarrow y).$

Here hypothesis is the function that show how X and y values are related to each other.

Representation of h: $h_{theta}(x) = theta0 + theta1*X$.

Cost Function (*J*):

In the above equation of h, the theta0, theta1 are parameters(learning parameters), now the problem is how to choose these parameters.

Idea: Our goal is to have values of the theta0, theta1 such that our $h_{theta}(x)$ value should be close to the y value (we can check that while we are training).

So, the difference $\rightarrow h_{theta}(x) - y$ should be minimum, to achieve this we can use Error functions like Mean Square Error, Root Mean Square error,,etc.

Mean Square Error =
$$J(\theta_0, \theta_1) = \frac{1}{2m} * \sum_{i=1}^{m} (h_{theta}(x^i) - y^i)^2$$