LINÉARISATION DE CARACTÉRISTIQUES STATIQUES (COURS 2)

2.1. Système hydraulique

Soit un réservoir d'eau hermétique dont la section est égale à $1\ [m^2]$. On admet qu'un vide parfait a été fait au-dessus du liquide. Le fond de ce réservoir est percé d'un trou qui laisse fuir de l'eau selon la loi suivante :

$$q$$
: Débit de fuite en $\left[\frac{m^3}{s}\right]$

$$q = k \cdot \sqrt{P_f - P_a}$$
 $P_f = \rho \cdot g \cdot H$: Pression au fond du réservoir [Pa]

$$P_a$$
: Pression atmosphérique à l'extérieur [Pa]

k est un coefficient représentatif de la "perte de charge" de l'orifice. Il dépend de la section du trou, de la forme de l'orifice et de la viscosité du fluide.

- 1) Déterminez les unités du coefficient *k*.
- 2) Lorsque la hauteur d'eau est de 20.672[m] et la pression atmosphérique s'élève à 760[mm(Hg)], on mesure un débit de fuite égal à $10\left[\frac{l}{min}\right]$. Quelle est la valeur du coefficient k? *Indication*: $\rho_{Hg} = 13'600\left[\frac{kg}{m^3}\right]$
- 3) Dessinez graphiquement la caractéristique hauteur H[m] (entrée) -> débit $q\left[\frac{l}{min}\right]$ (sortie) de ce réservoir ($P_a = 760 \ [mm(Hg)], 0 < H < 30 \ [m]$).
- 4) Quelle est la sensibilité du débit de fuite par rapport à la hauteur d'eau présente dans le réservoir? Point de fonctionnement : $H_0 = 20 \ [m]$, $P_{a_0} = 760 \ [mm(Hg)]$.
- 5) idem à 4) mais par rapport à la pression atmosphérique ? Point de fonctionnement : $H_0 = 20 \ [m], P_{a_0} = 760 \ [mm(Hg)].$
- 6) Ecrivez l'équation linéaire approchant le débit *q* autour du point de fonctionnement défini ci-dessus.
- Quelles erreurs absolue et relative fait-on en utilisant l'équation linéaire du point 6) pour calculer le débit de fuite dans les conditions suivantes : $H = 25 \ [m]$, $P_a = 1 \ [bar]$.

2.2. Résistance NTC

Nous considérons une résistance NTC (negative temperature coefficient = coefficient de température négatif) qui sert de capteur de température. Sa caractéristique représentée à la figure suivante

obéit à la loi

$$R(T) = R_{25} \exp \left(\beta \left(\frac{1}{T} - \frac{1}{T_{25}}\right)\right)$$

avec R_{25} = 10k Ω , β = 3965K, T_{25} = 298K et la température T donnée en [K].

- 1) Linéariser cette équation autour de $T = T_{25}$.
- Quelle est l'erreur de linéarisation en absolu (en Ω) et en relatif (en % de la valeur non-linéaire) à 0°C?
- 3) Admettons que ce capteur soit alimenté par un courant constant de 0.25mA. Quelle tension apparait à ses bornes à 25°C et à 0°C, en utilisant l'expression non-linéaire de R(T) ? Quelles valeurs de tension résulteraient par contre en utilisant l'estimation linéarisée de R(T) autour de T_{25} ?

Le circuit électrique est modifié comme indiqué ci-dessous :

avec $R_S = 30k\Omega$ et $U_0 = 10V$.

4) Calculer à nouveau les valeurs de U pour les températures de 25°C et 0°C, en utilisant l'expression non-linéaire de R(T), et comparer avec les résultats de la question précédente. Commenter.

2.3. <u>Lampe incandescante</u>

Une lampe incandescente a une résistance de filament

$$R = R0 (1 + \alpha (T - T0)),$$

avec α = 0.004/K, R0 = 484 Ω à T0 = 2000K.

La puissance électrique P = U²/R fournie à l'ampoule (U = tension sur l'ampoule) est rayonnée sous forme de chaleur et de lumière,

$$P = k (T^4 - T_a^4),$$

avec la température du filament T, la température ambiante $T_a = 300K$, et $k = 6.253 \cdot 10^{-12} \text{W/K}^4$.

1) Montrer que la tension à appliquer U est fonction de la température selon

$$U = \sqrt{R_0 \left(1 + \alpha \left(T - T_0\right)\right) \cdot k \left(T^4 - T_a^4\right)}$$

- 2) Vérifier que pour T_0 = 2000K, l'on doit appliquer au filament la tension U_0 = 220V.
- 3) Linéariser U = f(T) autour de T0. Montrer qu'on obtient

$$U = U_0 + S_T(T - T_0)$$

avec
$$S_T = 0.660 V/K$$
.

4) Inverser cette approximation pour trouver

$$T = T_0 + S_U(U - U_0)$$

Montrer que $S_U = 1.515 \text{K/V}$.

L'intensité l_i de la lumière émise par le filament varie avec le carré de la température

$$I_1/I_{10} = T^2/(T_0^2)$$
 avec $I_{10} = \eta P_0$, $P_0 = 100W$, $\eta = 0.05$.

- 5) Linéariser cette équation autour de $T=T_0$. Déterminer une relation linéarisée $I_1=f(U)$ autour de U_0 .
- 6) Calculer la variation relative de l₁ autour de l₁₀, lorsque U varie de ±10% autour de U₀.

2.4. Mesure de vitesse d'avion

Une sonde de Prandtl, également appelée tube de Pitot, sert à mesurer la vitesse v d'un avion par rapport à l'air. Elle compare la pression statique P_{stat} avec la pression totale P_{tot},

$$P_{tot} = P_{stat} + \frac{\rho}{2}v^2$$

Où la densité ρ de l'air dépend de la hauteur H de vol, selon

$$\rho(H) = \rho_{mer}(1 - k \cdot H)^{\alpha}$$

avec α = 5.26, ρ_{mer} = 1.29[kg/m³], k = 22.6·10⁻⁶[1/m], et H en [m] en dessus de la mer. La différence entre P_{stat} et P_{tot} résulte en une différence de hauteur Δh de la colonne de liquide (mercure) avec la densité ρ_{Hg} = 13'600kg/m³. Nous prenons g = 9.81m/sec².

1) Montrer que la relation non linéaire de la vitesse v en fonction de Δh et H s'écrit

$$v(\Delta h, H) = \sqrt{\frac{2\rho_{Hg}g\Delta h}{\rho_{mer}(1 - k \cdot H)^{\alpha}}}$$

 Montrer que l'expression linéarisée de cette relation, autour du point de fonctionnement v₀, H₀ s'écrit

$$v_{lin}(\Delta h, H) = v_0 + \frac{\alpha k v_0}{2(1 - k \cdot H_0)} (H - H_0) + \frac{v_0}{2\Delta h_0} (\Delta h - \Delta h_0)$$

et donner une expression pour Δh_0 .

3) A l'approche de Cointrin, l'avion descend de sa hauteur de vol de croisière de H_0 = 10km, où il volait à v_0 = 900km/h, à une hauteur de vol d'attente H_1 = 3km, et l'instrument mesure maintenant Δh_1 = 4.13cm au lieu d'auparavant Δh_0 = 7.85cm. Calculer v_1 de manière exacte et par linéarisation. Justifier brièvement, si la linéarisation se laisse bien employer dans ce cas-ci?

2.5. Altimètre

Une méthode courante de mesure de l'altitude *h* consiste à la déduire d'une mesure de la pression atmosphérique *p*. Celle-ci varie avec l'altitude selon

$$\frac{dp}{dh} = -\rho g$$

où la densité ρ dépend elle-même de la pression ρ par

$$\rho = \frac{\rho_0}{p_0} p$$

L'indice 0 dénomme des valeurs prises à une altitude de référence h_0 et une température de référence T_0 . g = 9.81 [m/s²] est l'accélération terrestre.

La pression ambiante complète p_a dépend en outre de la température selon

$$p_a(h,T) = p(h) \cdot \frac{T}{T_0}$$

1. Montrer que la relation suivante pour $h(p_a, T)$ satisfait les équations de base données ci-dessus :

$$h(p_a, T) = \frac{p_0}{\rho_0 g} ln \left(\frac{p_0}{p_a} \cdot \frac{T}{T_0} \right)$$

Indication : Inverser h(p) en p(h), puis vérifier que p(h) est une solution des équations de base.

2. Montrer que l'altitude $h(p_a, T)$ peut être linéarisée à partir d'une altitude de référence h_0 selon

$$h_{lin}(p_a, T) = h_0 + S_p(p_a - p_0) + S_T(T - T_0)$$

Montrer que pour $h_0 = 500$ [m], $p_{a0} = p_0 = 1013.25$ [hPa] (1 [hPa] = 100 [Pa]), $T_0 = 288$ [K] (soit 15 [°C]), $\rho_0 = 1.225$ [kg/m³], on obtient $S_p = -8.32$ [m/hPa] et $S_T = 29.3$ [m/°C].

- 3. Quelle est l'erreur absolue en [m] de mesure d'altitude avec cette linéarisation, si une personne voyage de **Sion** (h_0, T_0) jusqu'au **Gornergrat** (h = 3135 [m], T = -5 [°C]).
- 4. Comme l'altimètre ne dispose pas d'une mesure précise de la température *T*, il applique une correction standardisée de -6.5 [°C] /1000 [m] de dénivelée. Quelle est l'erreur d'altitude en calculant avec cette correction standard dans notre cas ?

2.6. Systèmes connectés en série

Le signal x(t) suivant : (ref E3_1_2)

est appliqué à un instrument de mesure constitué d'un capteur possédant la caractéristique statique suivante :

et d'un système de mise en forme, dont la caractéristique statique est définie par : $y = signum(w) \cdot 3 \cdot \sqrt{|w|}$ avec une saturation pour w = 9.

- 1) Dessinez le signal de sortie du système de mise en forme (en fonction du temps).
- 2) Quelle est la sensibilité de l'instrument de mesure lorsque sa sortie vaut 6 ?
- 3) idem lorsqu'on lui injecte une grandeur à mesurer de valeur 0.8 ?

2.7. Gain de système en série

- 1) Deux amplificateurs sont connectés en série. Le premier double l'amplitude du signal et le second à un gain de 34 [dB]. Quelle est la valeur du signal de sortie si l'on injecte une valeur de 3 à l'entrée du premier amplificateur ?
- 2) Quel est le gain global en [dB] des deux amplificateurs ?

SOLUTIONS

2.1. Système hydraulique

1)
$$\sqrt{\frac{m^7}{kg}}$$

2)
$$P_f = \rho_{H_2O} \cdot g \cdot H = 1'000 \cdot 9.81 \cdot 20.672 = 202'792 [Pa]$$

$$P_a = \rho_{Hg} \cdot g \cdot H = 13'600 \cdot 9.81 \cdot 0.760 = 101'396 [Pa]$$

$$10 \left[\frac{l}{\min} \right] \Leftrightarrow 1.6666 \cdot 10^{-4} \left[\frac{m^3}{s} \right]$$

d'où :
$$k = 5.23 \cdot 10^{-7} \left[\sqrt{\frac{m^7}{kg}} \right]$$

3)

4)
$$\frac{dq}{dH}(H_0; Pa_0) = \frac{5.1346 \cdot 10^{-3}}{2 \cdot \sqrt{9810 \cdot H_0 - Pa_0}} = 8.338 \cdot 10^{-6} \left[\frac{m^2}{s} \right]$$

5)
$$\frac{dq}{dPa} (H_0; Pa_0) = \frac{-5.234 \cdot 10^{-7}}{2 \cdot \sqrt{9810 \cdot H_0 - Pa_0}} = -8.499 \cdot 10^{-10} \left[\frac{s \cdot m^4}{kg} \right]$$

6)
$$q \approx 1.611 \cdot 10^{-4} + 8.338 \cdot 10^{-6} \cdot (H - 20) - 8.499 \cdot 10^{-10} \cdot (Pa - 101'396)$$
$$= 8.057 \cdot 10^{-5} + 8.338 \cdot 10^{-6} \cdot H - 8.499 \cdot 10^{-10} \cdot Pa \left[\frac{m^3}{s} \right]$$

7) débit approché :
$$q \approx 8.057 \cdot 10^{-5} + 8.338 \cdot 10^{-6} \cdot 25 - 8.499 \cdot 10^{-10} \cdot 1 \cdot 10^{5} = 2.040 \cdot 10^{-4} \left[\frac{m^{3}}{s} \right]$$

débit réel :
$$q = 1.995 \cdot 10^{-4} \left[\frac{m^3}{s} \right]$$

Erreur absolue : $E = 4.5 \cdot 10^{-6} \left[\frac{m^3}{s} \right]$, soit une erreur relative de : 2.3 [%]

2.2. Résistance NTC

- 1) $R_{lin}(T) = R_{25} (1 \beta(T T_{25})/T_{25}^2) = 10k\Omega (1 0.0446K^{-1} (T 298K))$
- 2) $E(T=273K) = R(273K) R_{lin}(273K) = 33.8k\Omega 21.2k\Omega = 12.6k\Omega,$ $\epsilon(273K) = E(273K)/R(273K) = 37.3\%$
- 3) Avec la résistance non-linéaire R : U(298K) = 2.5V, U(273K) = 8.45VAvec la résistance linéarisée R_{lin} : $U_{lin}(298K) = 2.5V$, $U_{lin}(273K) = 5.29V$
- 4) U(298K) = 2.5V, U(273K) = 5.29V

La linéarisation mathématique proposée sous 1), est implémentée par le circuit avec source de tension avec résistance interne R_S, proposé sous 4). Ceci est précis aux deux valeurs de température demandées, et approximativement correct ailleurs.

2.3. Lampe incandescante

1) Bilan des puissances :

$$U^{2}/R = k(T^{4} - T_{a}^{4})$$

$$U^{2} = R_{0} (1+\alpha(T - T_{0})) \cdot k(T^{4}-T_{a}^{4})$$

2) $R = R_0 = 484\Omega$, $k(T^4 - T_a^4) = 100W \Rightarrow U = 220V$

3)

$$S_T = \frac{R_0 \alpha k (T^4 - T_a^4) + R_0 (1 + \alpha (T - T_0)) 4kT^3}{2 \sqrt{R_0 (1 + \alpha (T - T_0)) \cdot k (T^4 - T_a^4)}} \bigg|_{T = T_0} = \frac{R_0 k (\alpha (T_0^4 - T_a^4) + 4T_0^3)}{2U_0}$$

$$= 0.66V/K$$

- 4) $S_U=1/S_T=1.515K/V$
- 5)
 $$\begin{split} I_I &= I_{I0} \ T^2/T_0{}^2 \ \cong I_{I0} + S_{IT} \ (T-T_0) \\ S_{IT} &= 2 \ I_{I0}/T_0 = 0.005 W/K \\ II &= I_{I0} + S_{IT} \ (T_0 + S_U \ (U-U_0) T_0 \) = I_{I0} + S_{IT} \ S_U \ (U-U_0) \\ & [\![S_{IT} \ S]\!]_U = 0.00757 W/V \end{split}$$
- 6) $\Delta U = \pm 22V \implies \Delta I_1 = \pm 0.1666W$ $\Delta I_1 / I_{10} = \pm 3.33\%$

2.4. Mesure de vitesse d'avion

1) Dans le tube de mesure de section A la différence de pression P_{tot} - $P_{stat} = \rho \cdot v^2/2$ génère une force, qui est compensée par la force de gravité $\rho_{Hg} \cdot g \cdot \Delta h \cdot A$, donc

$$\rho \cdot v^2/2 = \rho_{Hg} \cdot g \cdot \Delta h$$

et en y introduisant $\rho(H)$,

$$v(\Delta h, H) = \sqrt{\frac{2\rho_{Hg}g\Delta h}{\rho_{mer}(1 - k \cdot H)^{\alpha}}}$$

2) La linéarisation de v(Δh,H) a l'expression

$$v_{lin}(\Delta h, H) = v_0 + S_{H} \cdot (H - H_0) + S_{\Delta h} \cdot (\Delta h - \Delta h_0)$$

avec

$$S_{H} = \frac{\alpha k}{2} \sqrt{\frac{2\rho_{Hg}g\Delta h_{0}}{\rho_{mer}}} (1 - k \cdot H)^{-\frac{\alpha}{2} - 1} = \frac{\alpha k v_{0}}{2(1 - k \cdot H_{0})}$$

et

$$S_{\Delta h} = \frac{v_0}{\sqrt{\Delta h_0} 2\sqrt{\Delta h_0}} = \frac{v_0}{2\Delta h_0}$$

Etant donné vo et Ho il vient

$$\Delta h_0 = \frac{v_0^2 \cdot \rho_{mer} (1 - k \cdot H_0)^\alpha}{2 \rho_{Hq} g}$$

3)

$$v_1 = \sqrt{\frac{2\rho_{Hg}g\Delta h_1}{\rho_{mer}(1 - k \cdot H_1)^{\alpha}}} = 400km/h$$

$$v_{1,lin} = 202.9 km/h$$

 $v_{1,lin}$ est presque deux fois trop petite, comparée à v_1 . La linéarisation ne fonctionne pas très bien ici, car H_1 est trop différent de H_0 et Δh_1 de Δh_0 .

2.5. Altimètre

1. On a

$$h(p) = \frac{p_0}{\rho_0 g} \ln\left(\frac{p_0}{p}\right) \to p(h) = p_0 e^{-\frac{\rho_0 g}{p_0} h}$$

En combinant les deux équations de base

$$\frac{dp}{dh} = -\rho g = -\frac{\rho_{0g}}{p_0} p$$

En dérivant p(h), et en remplaçant dp/dh et p(h) dans l'équation ci-dessus, on démontre qu'elle est satisfaite.

2. $h(p_a, T)$ dépend des deux variables p_a et T avec les sensibilités

$$S_p = \frac{dh}{dp_a} \Big|_{p_{a0}, T_0} = -\frac{1}{\rho_0 g} \cdot \frac{p_0}{p_a} = -\frac{1}{\rho_0 g} = -8.32 \ [m/hPa]$$

$$S_T = \frac{dh}{dT} \Big|_{p_{a0}, T_0} = \frac{p_0}{\rho_0 g T_0} = 29.3 \ [m/^{\circ}C]$$

3. Au Gornergrat, la pression atmosphérique pa sera

$$p_a(h,T) = p_0 \frac{T}{T_0} e^{-\frac{\rho_0 g}{p_0}h} = 650.1[hPa]$$

Ainsi, h_{lin} = 2932[m], ce qui correspond à une erreur de Δh = -203[m].

4. Sans correction de température, on a au Gornergrat h_{lin} = 3518[m], donc une dénivelée de 3018[m], ce qui entraîne une correction de température de -19.6°C, conduisant à une température estimée de -4.6°C. Avec celle-ci, h_{lin} = 2944[m], et Δh = -191[m].

2.6. Systèmes connectés en série

1) Le signal de sortie du capteur sera :

La sortie de l'instrument de mesure sera :

2) Lorsque la sortie du système vaut y = 6, l'entrée du système de mise en forme vaut : w = 4.

La sensibilité du système de mise en forme du signal vaut (pour une entrée $w_0 = 4$):

$$S_m = \frac{3}{2 \cdot \sqrt{w_0}} = 0.75$$

La valeur d'entrée x du capteur correspondant à une sortie $w_0=4$ est : $x_0=0.4$. Pour cette valeur, la sensibilité du capteur vaut : $S_c=10$ (voir pente de la caractéristique sur le graphique).

La sensibilité globale vaut donc : $S_G = S_c \cdot S_m = 7.5$

Pour une valeur à mesurer de $x_0 = 0.8$, la sortie du capteur est saturée à $w_0 = 10$. La sensibilité du capteur est donc nulle! Par ailleurs, le système de mise en forme est également saturé, et sa sensibilité est également nulle. La sensibilité globale est donc évidemment nulle...

2.7. UGain de système en série

On effectue les calculs simples ci-dessous

$$G_{1}[dB] = 20 \cdot \log_{10}(2) = 6.02[dB]$$

$$G_{total}[dB] = G_{1}[dB] + G_{2}[dB] = 6 + 34 = 40[dB]$$

$$G = 10^{\frac{40}{20}} = 100$$

$$y = 100 \cdot 3 = 300$$