MIT 18.01 Problem Set 7 Unofficial Solutions

Q1) (from PS6) The voltage V of house current is given by

$$V(t) = Csin(120\pi t)$$

where t is time, in seconds and C is a constant amplitude. The square root of the average value of V^2 over one period of V(t) (or cycle) is called the *root-mean-square* voltage, abbreviated RMS. This is what the voltage meter on a house records. For house current, find the RMS in terms of the constant C. (The peak voltage delivered to the house is $\pm C$. The units of V^2 are square volts; when we take the square root again after averaging, the units become volts again.)

Average value of V^2 over 1 period of V(t) is

$$\frac{1}{60} \int_{0}^{\frac{1}{60}} C^{2} sin^{2} (120\pi t) dt = \frac{C^{2}}{60} \int_{0}^{\frac{1}{60}} sin^{2} (120\pi t) dt
= \frac{C^{2}}{60} \int_{0}^{\frac{1}{60}} \frac{1 - cos(240\pi t)}{2} dt
= \frac{C^{2}}{120} \int_{0}^{\frac{1}{60}} 1 - cos(240\pi t) dt
= \frac{C^{2}}{120} \left(t - \frac{sin(240\pi t)}{240\pi}\right) \Big|_{0}^{\frac{1}{60}}
= \frac{C^{2}}{120} \left(\frac{1}{60} - \frac{sin(240\pi \cdot \frac{1}{60})}{240\pi}\right)
= \frac{C^{2}}{120} \left(\frac{1}{60} - \frac{sin(4\pi)}{240\pi}\right)
= \frac{C^{2}}{120} \left(\frac{1}{60}\right)
= \frac{C^{2}}{7200}$$

Square root of average value of V^2 over 1 period of $V(t) = \sqrt{\frac{C^2}{7200}} = \frac{C}{\sqrt{3600*2}} = \frac{C}{60\sqrt{2}}$

Q2) The solid torus is the figure obtained by rotating the disk $(x-b)^2 + y^2 \le a^2$ around the y-axis. Find its volume by the method of shells. (Hint: Substitute for x-b. As noted p. 229/11, the answer happens to be the area of the disk multiplied by the distance travelled by the center as it revolves.)

For a circle centered at x=b,y=0 with radius a, the volume of the torus is:

$$2\int_{b-a}^{b+a} 2\pi x (\sqrt{a^2 - (x-b)^2}) dx = 4\pi \int_{b-a}^{b+a} x \sqrt{a^2 - (x-b)^2} dx$$

Let u = x - b. Then du = dx. Also, x = u + b. Substitute those into the above:

$$4\pi \int_{b-a}^{b+a} x \sqrt{a^2 - (x-b)^2} dx = 4\pi \int_{-a}^{a} (u+b) \sqrt{a^2 - u^2} du$$

$$= 4\pi \left(\int_{-a}^{a} u \sqrt{a^2 - u^2} du + b \int_{-a}^{a} \sqrt{a^2 - u^2} du \right)$$

$$= 4\pi \left(-\frac{1}{2} \cdot \frac{(a^2 - u^2)^{3/2}}{\frac{3}{2}} \right]_{-a}^{a} + b \int_{-a}^{a} \sqrt{a^2 - u^2} du$$

$$= 4\pi b \int_{-a}^{a} \sqrt{a^2 - u^2} du \quad \text{(area of semicircle of radius } a \text{ centered at origin)}$$

$$= 4\pi b \left(\frac{1}{2} \pi a^2 \right)$$

$$= 2\pi^2 a^2 b$$