PROGETTAZIONE

Ricordiamo le fasi della **progettazione** di una Base di Dati

Ci occuperemo adesso della progettazione logica

R.Gori - G.Leoni BD Relazionali

Progettazione Logica

La descrizione del modello da realizzare è fatta in funzione delle caratteristiche del SGBD che sarà utilizzato (il modello dei dati, il linguaggio per sviluppare le applicazioni).

Il modello dei dati, detto *modello logico*, è "più vicino" alla rappresentazione informatica dei dati.

Vedremo l'uso del Modello dei Dati Relazionale.

Lo schema risultante è detto *schema relazionale*, ed è rappresentato con un formalismo testuale.

Si ottiene con una traduzione dello schema E-R

VIENE TRADOTTO NELLO SCHEMA

MUSEI (<u>NomeM</u>, Città, Indirizzo, Direttore) ARTISTI (<u>NomeA</u>, Nazionalità, DataN, DataM) OPERE (<u>Codice</u>, Anno, Titolo, NomeM*, NomeA*) PERSONAGGI (<u>Personaggio</u>, <u>Codice</u>*) DIPINTI (<u>Codice</u>*, Tipo, Larghezza, Altezza) SCULTURE (<u>Codice</u>*, Materiale, Altezza, Peso)

Progettazione Logica

SCHEMA CONCETTUALE (mod E-R)

SCHEMA LOGICO (mod Relazionale)

R.Gori - G.Leoni BD Relazionali

LA RAPPRESENTAZIONE DEI DATI NEL MODELLO RELAZIONALE

- ❖ Vedremo il MODELLO RELAZIONALE, un modello dei dati che viene "compreso" dal SGBD.
- **❖** Vedremo poi in che modo uno schema ER viene tradotto in uno schema relazionale

Modello Relazionale dei Dati Concetti di base

- ❖ relazione (o tabella): corrisponde (non sempre) ad una classe del modello E-R; è un insieme di *ennuple*
- ennupla (o riga): corrisponde
 (non sempre) ad un oggetto del modello E-R;
 una sequenza di *attributi*

R.Gori - G.Leoni BD Relazionali

- * attributo: corrisponde (non sempre) ad un attributo del modello E-R Diversamente dal modello E-R, gli attributi sono sempre univoci (ad un sol valore) ed elementari (non composto)
- ❖ dominio (di un attributo): è l'insieme dei valori che può assumere un attributo.

Schema di relazione - è la descrizione della struttura di una relazione

R è il nome della relazione A1, A2,... sono gli attributi della relazione T1, T2,... sono i *tipi* degli attributi (interi, reali, booleani, stringhe)

R.Gori - G.Leoni BD Relazionali

Per semplicità omettiamo la specifica dei tipi, per cui lo schema di relazione è

Osserviamo che tutte le ennuple di una relazione hanno la stessa struttura

Schema relazionale - è la descrizione della struttura di una base di dati:

- ✓ un insieme di schemi di relazione
- ✓ un insieme di vincoli

chiave di una relazione: un attributo (o un insieme di attributi) che identifica univocamente le ennuple della relazione

chiave primaria - una delle chiavi, scelta dal progettista, per riferirsi alle ennuple della relazione.

R.Gori - G.Leoni BD Relazionali 11

RAPPRESENTAZIONE GRAFICA

PERSONE(<u>CodFiscale</u>, Nome, Telefono)

o più accuratamente

PERSONE(<u>CodFiscale</u>:string(16),Nome: string(30), Telefono: optional integer)

L'attributo sottolineato è la chiave primaria.

Una (istanza della) relazione Persone, conforme a tale schema, è ad es. la seguente: Persone

CodFiscale	Nome	Telefono
LNEGTR44B20A390S	Leoni Gualtiero	502212729
RSSMRA55C11b240K	Rossi Maria	3478634675
ABGTHY34lopwie ue	Verdi Giuseppe	
RSSVLA84X31K390D	Bianchi Viola	765876534
R.Gori - G.Leoni	BD Relazionali	13

Osserviamo che la proprietà di essere chiave è riferita allo schema piuttosto che ad una particolare tabella, cioè

una chiave è tale (identifica le righe) in una qualunque istanza di un determinato schema

Nell'esempio precedente i valori dell'attributo *Nome* son tutti diversi tra loro, ma è una circostanza del tutto casuale; l'unica chiave dichiarata nello schema è l'attributo *CodFiscale*. Potremmo pertanto avere un'istanza di persone in cui l'attributo *Nome* è ripetuto

chiave esterna - è un attributo (od un insieme di attributi) di una relazione R che assume i valori della chiave primaria di un'altra relazione S.

serve a rappresentare un'associazione tra R ed S

STUDENTI(<u>Matr</u>, Cognome, AnnoN, SiglaCdS*) CdS(<u>SiglaCdS</u>, NomeCdS, Tipo)

SiglaCdS* è chiave esterna nella relazione STUDENTI, e serve a rappresentare un'associazione univoca da STUDENTI a CdS

R.Gori - G.Leoni BD Relazionali 15

STUDENTI

Matricola	Cognome	Anno N	Sigla CdS
1676	Rossi	1984	CMT
1532	Verdi	1983	SBC
1798	Bianchi	1985	CMT
1799	Bianchi	1985	CMT

CdS

SiglaCdS	NomeCdS	Tipo
CMT	Cinema, Musica e Teatro	Laurea
SBC	Scienze dei Beni Culturali	Laurea
TIN	Tecnologie Informatiche	Laurea Spec.

Il dominio di SiglaCdS* nella relazione STUDENTI coincide col dominio di SiglaCdS nella relazione CdS

Inoltre, se in una istanza di STUDENTI l'attributo SiglaCdS assume il valore "XYZ", deve esistere, nella istanza di CdS una ennupla con <u>SiglaCdS</u> = "XYZ"

Il motivo è ovvio; se una studente è iscritto a "XYZ", deve esistere il Corso di Studi "XYZ"

R.Gori - G.Leoni BD Relazionali 17

Tale proprietà si chiama **Vincolo di integrità referenziale**, e deve essere sempre soddisfatto da una chiave esterna:

se K è chiave primaria di R e chiave esterna in S, in ogni istanza valida della BD ogni valore assunto da K in S deve essere assunto anche in R.

Dallo schema E-R allo Schema Relazionale

La traduzione di uno schema E-R in uno schema relazionale viene effettuata dal progettista seguendo regole ben precise

Consideriamo per il momento solo attributi **univoci** ed **elementari**

R.Gori - G.Leoni BD Relazionali 19

1-Rappresentazione delle Classi

Una classe C è rappresentata da una relazione R i cui attributi sono quelli di C (supponiamo per ora che gli attributi siano univoci ed elementari)

si traduce in

Studenti(Matricola, Nome, AnnoImmatric)

2 - Rappr. delle Associazioni

a) associazioni 1 → n

L'associazione è rappresentata con il meccanismo della **chiave esterna**:

Se A è un' associazione **univoca da R ad S**, allo schema che rappresenta R verrà aggiunta come chiave esterna la chiave primaria di S.

R.Gori - G.Leoni BD Relazionali 21

Studenti(<u>Matricola</u>, Nome, AnnoImmatric, Codice*) CorsidiLa(<u>Codice</u>, Nome, Tipo)

la chiave esterna **Codice*** rappresenta l'associazione **è_iscritto**

importante! È un **grave errore** fare il contrario.

Lo schema:

Studenti(<u>Matricola</u>, Nome, AnnoImmatric) CorsidiLa(<u>Codice</u>, Nome, Tipo, Matricola*)

rappresenta Corsi di Laurea ai quali può essere iscritto **un solo** studente!

R.Gori - G.Leoni BD Relazionali 23

Se l'associazione è 1→1, cioè univoca in entrambi i versi, allora sono corrette entrambe le soluzioni.

Può essere rappresentato sia con

Dipartimenti(<u>Nome</u>, Facoltà, Cod*) Docenti(<u>Cod</u>, Settore)

sia con

Dipartimenti(<u>Nome</u>, Facoltà) Docenti(<u>Cod</u>, Settore, Nome*)

La prima soluzione è probabilmente migliore, ma entrambe sono corrette

R.Gori - G.Leoni BD Relazionali 25

b) associazioni m → n

Se l'associazione è multivalore in entrambi i versi, non è possibile rappresentarla con una chiave esterna.

Viene introdotto un nuovo schema di relazione, che rappresenta le coppie di oggetti in associazione.

precisamente:

se A è un' associazione multivalore da R ad S e da S ad R, A è rappresentata con uno schema di relazione Gli attributi sono le chiavi primarie *pkR* di R e *pkS* di S.

A (pkR*, pkS*)

CorsidiLa(<u>Codice</u>,Nome,Facoltà,Tipo) Docenti(<u>CodDoc</u>, Settore) **Insegna**(<u>Codice</u>*, <u>CodDoc</u>*)

Una ennupla di **Insegna** rappresenta una coppia (Corso_di_Lurea, Docente) di oggetti in associazione.

R.Gori - G.Leoni BD Relazionali 27

INSEGNA

CodDoc*	Codice*
1592	Inf
3014	Inf
0123	SBC
1592	SBC
0123	CMT
1592	Mat

Il docente identificato dal CodDoc 1592 insegna ai corsi di laurea identificati dai codici Inf, SBC e Mat , il docente identificato dal CodDoc 3014 insegna al corso di laurea identificato dai codici Inf, ecc...

Osserviamo che le chiavi di CorsidiLa e di Docenti sono chiavi esterne in Insegna, ed entrambe ne costituiscono la chiave primaria.

c) attributi delle associazioni

Gli attributi di una associazione diventano attributi nello schema di relazione che rappresenta l'associazione

Caso 1:N

Dipartimenti (<u>Nome</u>, Facoltà)
Docenti(<u>CodDoc</u>, Settore, <u>Nome</u>*, <u>dataAFF</u>)

c) attributi delle associazioni

Caso M:N

 $CorsidiLa(\underline{Codice}, Nome, Facolt\`{a}, Tipo)$

Docenti(CodDoc, Settore)

Insegna(<u>Codice</u>*, <u>CodDoc</u>*, NumIns)

3 - Rappr. di un Attributo Composto

 a) Si può rappresentare con un unico attributo, ignorando la struttura: si perde la visione delle componenti

Studente(<u>Matr</u>,Cogn,Nome,Indirizzo)

b) Si può rappresentare con tanti attributi quante sono le componenti: si perde la visione dell'attributo come insieme di componenti.

Studente(Matr, Cogn, Nome, Città, Via, Nro, CAP)

4 - Rappr. degli Attributi Multivalore

Un attributo multivalore A della classe C viene rappresentato con uno schema di relazione che ha per attributi la chiave di C (chiave esterna) ed A

Film(<u>CodFilm</u>, Titolo, Regista, Anno) Attori(<u>CodFilm</u>*, <u>Attore</u>)

FILM

CodFilm	Titolo	Regista	Anno
PW54	Million dollar baby	C.Eastwood	<mark>2004</mark>
MX23	Per un pugno di dollari	S.Leone	1964
AY78	Eyes wide shut	S.Kubrik	1999

ATTORI

<u>CodFilm</u>	<u>Attore</u>
PW54	C. Eastwood
MX23	C. Eastwood
PW54	H. Swank
PW54	M. Freeman
MX23	G. M. Volonté
AY7 8	T. Cruise
AY78	N. Kidman

R.Gori - G.Leoni BD Relazionali 33

Osservazione importante:

La chiave della relazione Attori è costituita dalla coppia di attributi (CodFilm,Attore); per questo motivo possiamo rappresentare, per lo stesso film, più attori (ed anche più film per lo stesso attore).

Avremmo anche potuto rappresentare la classe Film così: Film(CodFilm, Titolo, Regista, Anno, Attore) ove la chiave è costituita dalla coppia di attributi (CodFilm, Attore)

FILM

CodFilm	Titolo	Regista	Anno	Attore
PW54	Million dollar baby	C.Eastwood	2005	C.Eastwoo
MX23	Per un pugno di dollari	S.Leone	1964	C.Eastwoo
MX23	Per un pugno di dollari	S.Leone	1964	G.M.Volon
PW54	Million dollar baby	C.Eastwood	2004	H. Swank
PW54	Million dollar baby	C. Eastwood	2004	M.Freeman
AY78	Eyes wide shut	S.Kubrik	1999	T.Cruise
AY78	Eyes wide shut	S.Kubrik	1999	N.Kidman

Ma questa non è una *buona* rappresentazione: Se in un film recitano 12 attori, il titolo, il regista e l'anno saranno rappresentati 12 volte.

R.Gori - G.Leoni BD Relazionali 35

4 - Rappres. delle Gerarchie

La sua rappresentazione nel modello relazionale può essere fatta con diverse modalità.

La soluzione più espressiva:

- uno schema che rappresenta la superclasse, con i suoi attributi
- uno schema per ciascuna sottoclasse, con gli attributi propri della sottoclasse, e la chiave della superclasse come chiave esterna

$$R(\underline{K}, A)$$

 $S(\underline{K^*}, B)$
 $T(K^*, C)$

Questa soluzione consente di rappresentare la struttura gerarchica.

Un'istanza di questo schema potrebbe essere:

PERSONE

CodFisc	Nome	Telef
ASTwty	Anna	54637
BXYjlt	Berto	12345
CATijh	Chiara	67890
DRYief	Dante	435672
ELTIte	Emma	654329
FEHssd	Franca	
GFDera	Guido	985634

LAVORATORI

CodFisc*	Attività	Reddito
ASTwty	Notaio	200.000
BXYjlt	DJ	20.000
DRYief	Poeta	200

STUDENTI

CodFisc*	Matric	Facoltà
ELTIte	34571	Lettere
FEHssd	67807	Veterin
DRYief	12398	Agraria

R.Gori - G.Leoni

BD Relazionali

39

Gli attributi di una persona che lavora sono divisi tra le due relazioni *Persona* (gli attributi di tutte le persone), e

Lavoratori (gli attributi specifici dei lavoratori)

Il collegamento tra i due insiemi di attributi (cioè l'ereditarietà) si ottiene con la chiave esterna.

Analogamente per gli studenti

Si osservi che la gerarchia

non è *totale* (Chiara e Guido non sono né studenti né lavoratori) non è *esclusiva* (Dante è studente e lavoratore)

ma queste caratteristiche non si possono esprimere nello schema relazionale

R.Gori - G.Leoni

BD Relazionali

40

Altre soluzioni meno espressive

♦ Un solo schema di relazione, che contiene tutti gli attributi

PERSONE

CodFisc	Nome	Telef	Attività	Reddito	Matric	Facoltà
ASTwty	Anna	54637	Notaio	200.000	Matric	1 acona
BXYjlt	Berto	12345	DJ	20.000		
CATijh	Chiara	67890				
DRYief	Dante	435672	Poeta	200	12398	Agraria
ELTIte	Emma	654329			34571	Lettere
FEHssd	Franca				67807	Veterin
GFDera	Guido	985634				

Con questa soluzione viene ignorata la gerarchia: si perdono le sottoclassi

R.Gori - G.Leoni BD Relazionali 41

Altre soluzioni meno espressive

◆ Tre schemi indipendenti, uno per ogni classe, contenenti tutti gli attributi di ciascuna classe

PERSONE (non lavoratori e non studenti)

CodFisc	Nome	Telef
CATijh	Chiara	67890
GFDera	Guido	985634

LAVORATORI

CodFisc	Nome	Telef	Attività	Reddito
ASTwty	Anna	54637	Notaio	200.000
BXYjlt	Berto	12345	DJ	20.000
DRYief	Dante	435672	Poeta	200

STUDENTI

CodFisc	Nome	Telef	Matric	Facoltà
ELTIte	Emma	654329	34571	Lettere
FEHssd	Franca		67807	Veterin
DRYief	Dante	435672	12398	Agraria

Anche con questa soluzione viene ignorata la gerarchia: si perde la superclasse

Si osservi che con nessuna delle tre soluzioni è in generale possibile esprimere i vincoli strutturali della gerarchia, vale a dire i vincoli di disgiunzione e di totalità

R.Gori - G.Leoni BD Relazionali 43

Confronto tra modello E-R e modello Relazionale.

Nonostante una evidente analogia tra

- **Classe** e Relazione
- Oggetto e Ennupla
- **♦ Attributo**(E-R) e **Attributo**(Rel)

sussiste in realtà una significativa differenza tra i concetti nei due modelli

4. Basi di Dati Relazionali

- Non sempre una relazione rappresenta una classe: può rappresentare una associazione o un attributo multivalore
- ✓ Non sempre un'ennupla rappresenta un oggetto: può rappresentare una coppia di oggetti in associazione o un possibile valore di un attributo multivalore
- ✓ Non sempre un attributo Rel rappresenta un attributo E-R. può rappresentare un oggetto di un'altra classe (chiave esterna)

R.Gori - G.Leoni BD Relazionali 45

La Conoscenza Astratta nel modello Relazionale.

Nel modello relazionale si possono esprimere i seguenti vincoli:

Vincolo di chiave

Vincolo di chiave esterna

Tipo di un attributo

Attributo obbligatorio

Vincoli strutturali delle associazioni (non completamente)

Rispetto al modello E-R, non è possibile rappresentare i vincoli delle gerarchie, mentre è possibile, solo in parte, rappresentare i vincoli strutturali delle associazioni

ESEMPIO $h \overset{\bullet}{\longrightarrow} S$ $a \overset{\circ}{\longrightarrow} V$ $h \overset{\bullet}{\longrightarrow} V$ $h \overset{\bullet}{\longrightarrow}$

Questo schema E-R si traduce nello schema relazionale $S(\underline{h}, a, k^*)$ $T(\underline{k}, b)$ che rappresenta l'univocità e la totalità di R da S a T, ma non consente di esprimere la sua totalità da T ad S.