Machine Learning for Networking ML4N

Luca Vassio
Gabriele Ciravegna
Zhihao Wang
Tailai Song

The three components of ML (1)

- Data
- Model
- Loss

Data

$$\mathcal{D} = \{ (\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(m)}, y^{(m)}) \}.$$

Data points characterized by features and label

- Features low-level properties

$$\mathbf{X} = \left(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(m)}\right)^{T} = \begin{pmatrix} x_{1}^{(1)} & x_{2}^{(1)} & \dots & x_{n}^{(1)} \\ x_{1}^{(2)} & x_{2}^{(2)} & \dots & x_{n}^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1}^{(m)} & x_{2}^{(m)} & \dots & x_{n}^{(m)} \end{pmatrix} \in \mathbb{R}^{m \times n}$$

Labels high-level properties (quantity of interest)

$$\mathbf{y} = \left(y_1, y_2 \dots, y_m \right)^T \in \mathbb{R}^m$$

Model and loss

- GOAL of ML = learn to predict the label y of a data point from its features x
- ML model = learn a hypothesis $h \in \mathcal{H}$ $h: \mathcal{X} \to \mathcal{Y}$ such that $h(\mathbf{x}) \approx y$
- Loss function: how to quantify/weight prediction error between y and h(x)

Empirical risk minimization

Learning goals

- Know about notion of expected loss or risk
- Know that average loss approximates risk
- Know about empirical risk minimization
- Know some design choices in ERM

Learn a hypothesis $h \in \mathcal{H}$ $h : \mathcal{X} \to \mathcal{Y}$ such that $h(\mathbf{x}) \approx y$ for any data point (\mathbf{x}, \mathbf{y})

What exactly is "any data point"?

Data. Model. Loss.

- Data: set of data points (x,y)
- Model: set \mathcal{H} of hypothesis maps h(.)
- Loss: quality measure L((x,y),h)

What is any data point?

- Interpret data points as realizations of i.i.d. random variables with probability distribution $p(\mathbf{x}, y)$
- Define loss incurred for any data point as the **expected loss**, i.e., on average what will be the loss on the points of the distribution

Expected loss or risk

- Interpret data points as realizations of i.i.d. random variables with probability distribution $p(\mathbf{x},y)$
- Define loss incurred for any data point as the **expected loss**, i.e., on average what will be the loss on the points of the distribution
- Also called expected risk or Bayes risk

$$\mathbb{E}\left\{L\big((\mathbf{x},y),h\big)\right\} := \int_{\mathbf{x},y} L\big((\mathbf{x},y),h\big)dp(\mathbf{x},y).$$

To compute this expectation we need to know the probability distribution $p(\mathbf{x},y)$ of data points (\mathbf{x},y)

10

Expected loss or risk

Expected loss to be minimized

Expected loss or risk

Expected loss to be minimized

Empirical risk

IDEA: approximate expected loss by average loss on data points (training set) = empirical risk

$$\mathcal{D} = \{ (\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(m)}, y^{(m)}) \}.$$

$$\widehat{L}(h|\mathcal{D}) = (1/m) \sum_{i=1}^{m} L((\mathbf{x}^{(i)}, y^{(i)}), h).$$

$$\mathbb{E}\{L((\mathbf{x},y),h)\}\approx \widehat{L}(h|\mathcal{D})$$
 for sufficiently large sample size m .

Empirical Risk Minimization (ERM)

$$\hat{h} \in \operatorname*{argmin}_{h \in \mathcal{H}} \widehat{L}(h|\mathcal{D}) \ \ \underline{\hspace{1cm}} = \ \operatorname*{argmin}_{h \in \mathcal{H}} (1/m) \sum_{i=1}^m L\big((\mathbf{x}^{(i)}, y^{(i)}), h\big).$$

- Any data points = training data points
- Learn hypothesis out of a hypothesis space or model that incurs minimum average loss when predicting labels of training datapoints based on their features

Empirical Risk Minimization

Empirical Risk Minimization

Empirical Risk Minimization

ERM for parametrized models

learnt (optimal) parameter vector

$$\widehat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^n}{\operatorname{argmin}} f(\mathbf{w})$$

loss incurred by h(.) for i-th data point

with
$$f(\mathbf{w}) := (1/m) \sum_{i=1}^{m} L((\mathbf{x}^{(i)}, y^{(i)}), h^{(\mathbf{w})})$$
.

average loss or empirical risk

ERM for parametrized models

Design choices in ERM

Learn a hypothesis in model that incurs in smallest empirical risk (loss) when predicting labels of training data points

ERM for regression

Linear Regression

- Data: Data points characterized by numeric feature vector and numeric label
- Model: model consists of linear hypothesis maps
- Loss: squared error loss

Linear Regression

Choose parameter/weight vector w to minimize average squared error loss

ERM for linear regression

$$\widehat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^n}{\operatorname{argmin}} (1/m) \sum_{i=1}^m (y^{(i)} - \mathbf{w}^T \mathbf{x}^{(i)})^2.$$
(4.5)

ERM for linear regression in Python

$$\widehat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^n}{\operatorname{argmin}} (1/m) \sum_{i=1}^m (y^{(i)} - \mathbf{w}^T \mathbf{x}^{(i)})^2.$$

sklearn.linear_model.LinearRegression

$$\mathbf{X} = \left(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}\right)^T \in \mathbb{R}^{m \times n}$$
 $\mathbf{y} = (y^{(1)}, \dots, y^{(m)})^T \in \mathbb{R}^m$

ERM for linear regression in Python

Feature map + Linear model

$$h(x) = \sum_{j=1}^{n} w_j \phi_j(x)$$

Polynomial regression

$$\mathcal{H}_{\text{poly}}^{(n)} = \{ h^{(\mathbf{w})} : \mathbb{R} \to \mathbb{R} : h^{(\mathbf{w})}(x) = \sum_{j=1}^{n} w_j x^{j-1},$$
with some $\mathbf{w} = (w_1, \dots, w_n)^T \in \mathbb{R}^n \}.$ (3.4)

2

Polynomial regression

Feature map + Linear model

sklearn.preprocessing.PolynomialFeatures

sklearn.linear_model.LinearRegression

$$\begin{cases} x_1 = \phi_1(x) \\ x_2 = \phi_2(x) \\ \vdots \\ x_n = \phi_n(x) \end{cases}$$

Polynomial regression = Linear regression with feature transformation

Which model is best?

Measuring error via loss function

Loss function is also design choice!

Squared error loss

$$L := (\widehat{y} - y)^2$$

Squared error loss is sensitive to outliers

Data without outliers

Squared error loss is sensitive to outliers

Training set with single outlier

Minimize squared error loss forces predictor towards outlier

Absolute error loss

$$L := |\widehat{y} - y|$$

Absolute error loss is robust to outliers

Huber loss

$$L((\mathbf{x}, y), h) = \begin{cases} (1/2)(y - h(\mathbf{x}))^2 & \text{for } |y - h(\mathbf{x})| \le \varepsilon \\ \varepsilon(|y - h(\mathbf{x})| - \varepsilon/2) & \text{else.} \end{cases}$$

Linear predictor with Huber Loss

sklearn.linear_model.HuberRe

.near_model. HuberRegressor (epsilon=1.35, max_iter=100, alpha=0.0

Loss comparison

	Differentiable	Robust to outliers	Insensitive to noise
Absolute Loss	No	Yes	No
Squared Loss	Yes	No	Yes
Huber Loss	Yes	Yes	Yes

All of them are convex functions

Insensitive to noise: deviations of the samples $y^{(i)}$ that are very close to the prediction $h(x^{(i)})$ have a lower effect on the loss

Loss comparison

$$\widehat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^n}{\operatorname{argmin}} f(\mathbf{w}) \quad \text{with } f(\mathbf{w}) := \underbrace{(1/m) \sum_{i=1}^m L((\mathbf{x}^{(i)}, y^{(i)}), h^{(\mathbf{w})})}_{\widehat{L}(h^{(\mathbf{w})} | \mathcal{D})}.$$

- Non-convex objective functions are more difficult to minimize
- Non-differentiable objective functions are more difficult to minimize

ERM for classification

Regression vs. classification

- Regression
 - Numeric labels
 - Loss functions obtained from distance between numbers
- Classification
 - Categorical discrete-valued labels
 - If only 2 categories (e.g., y=-1 vs. y=1): binary classification
 - If more than 2 categories: multi-class classification
 - Loss functions obtained from "confidence" measures

Logistic regression

- Data points with numeric features -- same as in linear regression
- Model = space of linear maps -- same as in linear regression
- Logistic loss -- different from linear regression

Logistic regression

- linear hypothesis h(x) =w^tx
- sign of h(x) used for label prediction
 - h(x) > 0 means sign(h(x))= \widehat{y} =1
 - h(x) < 0 means $sign(h(x)) = \widehat{y} = -1$
- |h(x)| used as confidence measure
 - h(x) = 100000 > 0 means very confident in \widehat{y} =1
 - -h(x) = -1000000 < 0 very confident in $\widehat{y} = -1$

Logistics loss

formula when using -1 and 1 as label values

$$L((\mathbf{x}, y), h) := \log(1 + \exp(-yh(\mathbf{x}))).$$

differentiable and convex as function of h(x) and, in turn, of weight w for linear $h(x) = w^t x$

Logistics loss

formula when using -1 and 1 as label values

$$L((\mathbf{x}, y), h) := \log(1 + \exp(-yh(\mathbf{x}))).$$

differentiable and convex as function of h(x) and, in turn, of weight w for linear $h(x) = w^{t}x$

if
$$y = -1$$

$$\downarrow L((x,y),h)$$

$$\downarrow h(y)$$

Why not Squared Loss?

Choose parameter/weight vector **w** to minimize average squared error loss

Why not Squared Loss?

Choose parameter/weight vector **w** to minimize average squared error loss

Squared error loss

$$L:=(\widehat{y}-y)^2$$
 if $y=1$ wrong prediction
$$L((\mathbf{x},\mathbf{y}),\mathbf{h})$$
 correct prediction

prediction error

 $-y_{5}$

Squared error loss

$$L := (\widehat{y} - y)^2$$
 if $y = -1$ correct prediction
$$L((\mathbf{x}, \mathbf{y}), \mathbf{h})$$
 wrong prediction

prediction error

 $-y_{5}$

Logistic regression – decision boundary in 2D

Figure 2.9: A hypothesis $h: \mathcal{X} \to \mathcal{Y}$ for a binary classification problem, with label space $\mathcal{Y} = \{-1, 1\}$ and feature space $\mathcal{X} = \mathbb{R}^2$, can be represented conveniently via the decision boundary (dashed line) which separates all feature vectors \mathbf{x} with $h(\mathbf{x}) \geq 0$ from the region of feature vectors with $h(\mathbf{x}) < 0$. If the decision boundary is a hyperplane $\{\mathbf{x} : \mathbf{w}^T \mathbf{x} = b\}$ (with normal vector $\mathbf{w} \in \mathbb{R}^n$), we refer to the map h as a linear classifier.

Logistic regression in python

sklearn.linear_model.LogisticRegression

class sklearn.linear_model.LogisticRegression(penalty='l2', *, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='lbfgs', max_iter=100, multi_class='auto', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None) [source]

Logistic Regression (aka logit, MaxEnt) classifier.

Logistic regression: probabilistic interpretation

interpret label of data point as realization of binary RV with probability

$$p(y = 1; \mathbf{w}) = 1/(1 + \exp(-\mathbf{w}^T \mathbf{x}))$$

$$\stackrel{h^{(\mathbf{w})}(\mathbf{x}) = \mathbf{w}^T \mathbf{x}}{=} 1/(1 + \exp(-h^{(\mathbf{w})}(\mathbf{x}))).$$

 Maximum likelihood estimation for w equivalent to logistic regression - see Sec. 3.6 of MLBook

Losses in classification

0/1 loss

$$L\left((\mathbf{x},y),h\right) := \begin{cases} 1 & \text{if } y \neq \hat{y} \\ 0 & \text{else,} \end{cases} \text{ with } \hat{y} = 1 \text{ for } h(\mathbf{x}) \geq 0, \text{ and } \hat{y} = -1 \text{ for } h(\mathbf{x}) < 0$$

56

Losses in classification

Hinge loss

$$L((\mathbf{x}, y), h) := \max\{0, 1 - yh(\mathbf{x})\}.$$

Losses in classification

if y = 1

Summary

- Approximate risk by average loss (empirical risk) on training data
- ERM can fail if empirical risk deviates from risk
- Many ML methods are instances of ERM
- Three design choices of ERM: data, model and loss
- Examples of ERM regression and classification: linear models and derived ones
- In classification loss is obtained from confidence measures

Any questions?

Self-assessment quiz

- Write the expected risk minimization problem for linear regression of a single feature $x \in \mathbb{R}$, if data p(x,y) follows a multivariate normal distribution with mean 0 and covariance matrix $S = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, with squared error loss
- Write the empirical risk minimization problem for linear regression of the following data, with squared error loss

Object id	Feature 1	Feature 2	Label
a	0	10	2
b	-1	9	0.5
С	0	0	0
d	98	99	100

References: readings

• Chapter 2-3-4

Slide acknowledgments

• Alexander Jung – Aalto University