CS 161 HM 6

Rui Dong 205123245

1.(a) Bayesian retwork:

031	probability	Gas	probability
T	0.3	T	0.2
F	0.7	F	0.8

Test	O ₂)	Gas	Probability
T	7	7	0
7	7	F	0.8
T	F	7	0.2
T	F	F	0.)

(b) We use Baye' Rule,

$$Pr(O_{3}| | Test) = \frac{P(Test | O_{3}|) \cdot P(O_{3}|)}{P(Test)}$$

Pr (7est $| 0i1 \rangle = 0.8$, although the probability also depends on the presence of natural gas, but since oil and gas cannot be present together, R(7est | 0i1) = 0.8

Using the law of total probability and sum over all cases regarding oil,

Pr(Test) = Pr(Test | Oil) + PolTest | 7011)

```
R(Test A Oal). Pr(Oal) + Pr(Test A 7 Oal)- Pr(7 Oal)
            0.8 . 0.3 + 0.3 . 0.7 = 0.45
P(0:1) Test) = (0.8.0.3) /0.45 = 0.73
```

2. (a) Pr (A, B, C, D, E, F, G, H) = Pr (G F) · Pr (H E, F) · Pr (F | C, D) · Pr (E | B) · Pr (C | A) · Pr (D | A, B) · P(B) · P(A) (b) Pr (A,B,C,D,E,F,G,H) = } } } } } } } Pr (A,B,C,D,E,F,G,H) = } } } } } } RCDIA,B). Pr(E|B). Pr(F) C,D). Pr(G|F). Pr(H|E,F) = = = = = f.(A) x f2(B) x f3(A,C) x f4 (A,B,D) x fx (B,E) * fo (C,D,F) x f7 (E, G) x f8 (E, F, H) fg (A, B, C, F) = \(\frac{1}{2} \) f4 (A, B, D) x f6 (C, D, F) fio (A, B, F) = = = f3 (A, c) x fg(A, B, C, F) fn (A, E, F) = & fs (B, E) x fio (A, B, F) fiz 1 E, F) = } fi (A, E, F) x fi (A) Pr (E, F, G, H) = for (E, F) x for (F, G) x for (E, F, H) (c) Pr (a, 7b, c, d, 7e, f, 7g, h) = Pr (7g | f) . Pr (h | 7e, f). Pr (f | c,d) · o.2 · Pr (c,a) · 0.6 · 0.4 · o.) = 0.00 48 · Pr (79)f) · Pr (h) 7e,f) · Pr(f(c,d) · Pr(c,a) (d) Pr (7a, b) = Pr (7a) · Pr (b) = 0.9.0.6 = 0.54, since they and independent. Pr $(\neg e \mid a) = \frac{Pr(\neg e, a)}{Pr(a)} = \frac{Pr(\neg e) \cdot Pr(a)}{Pr(a)} = Pr(\neg e) \cdot \sin(e)$

e is independent from a). Then he calculate & (7e).

Pr(7e) = Pr(7e, b) + Pr(7e, 7b) by the law of extent probabilities

= Pr(7e|b) · Pr(b) + Pr(7e|7b) · Pr(7b)

= 0.9 · 0.6 + 0.2 · 0.4 = 0.62

1e) A is independent of B.E. given A's pavents (none).

B is independent of A.C. given B's pavents (none).

C is independent of B.D.E. given C's pavents (A.B.).

D is independent of C.E. given D's pavents (A.B.).

E is independent of A.C.D.F.G. given E's pavents (B.).

T is independent of A.B.E. given F's pavents (C.D.).

G is independent of A.B.C.D.E.H. given G's pavents (E.F.).

H is independent of A.B.C.D.G. given H's pavents (E.F.).

(f) The markov blanket for D is {A.B.C.F.}, which includes

Its pavents, Children, and other pavents of its children.

		`
l	9	J

A€	B€	D€	E€	Pr (D A,B)* Pr (E B)	*
0€	0~	0€	1∻	0.2*0.8=0.16	*
0€	0~	1€	1€	0.8*0.8=0.64	*
0~	1€	1€	1€	0.2*0.1=0.02	*
0€	1~	0€	1~	0.8*0.1=0.08	*
1€	0~	0€	1€	0.4*0.8=0.32	*
1€	0~	1€	1€	0.6*0.8=0.48	*
1€	1~	1€	1€	0.7*0.1=0.07	*
1€	1€	0€	1€	0.3*0.1=0.03	*
0€	0~	0€	0~	0.2*0.2=0.04	*
0~	0~	1€	0~	0.8*0.2=0.16	*
0€	14	1€	0~	0.2*0.9=0.18	*
0€	14	0€	0~	0.8*0.9=0.72	*
1€	0€	0€	0~	0.4*0.2=0.08	*
1€	0~	1€	0~	0.6*0.2=0.12	*
1€	1€	1€	0€	0.7*0.9=0.63	*
1€	1∻	0€	0€	0.3*0.9=0.27	*

(h)

Let $f(A, B, D, E)=P(D \mid A, B) \times P(E \mid B)$

 $f(A, B, E) = \sum_{d} f(A, B, D, E) = f(A, B, d, E) + f(A, B, \neg d, E)$

A 🔑	B €	E €	f(A, B, E) •	
1 🗸	1 4	1 🗸	0.1	
1 🔑	1 🗸	0 🕶	0.9 🕶	
1 🗢	0 🗢	1 🗢	0.8 <	
1 🔑	0 🗢	0 🕶	0.2 💝	
0 🗢	1 4	1 🔑	0.1 💝	
0 🔑	1 🕹	0 💞	0.9 <	
0 🗢	0 🗢	1 🔑	0.8 <	
0 🔑	0 🕶	0 🔑	0.2	

(J