Esercitazione 4 Strutture algebriche

Serafina Lapenta

(1) Si studi la struttura algebrica (\mathbb{Q}, \perp) , dove

$$x \bot y = \frac{3xy}{2}.$$

Si dimostri che l'applicazione $f: \mathbb{Q} \to \mathbb{Q}$ definita da $f(x) = \frac{2}{3}x$ è un isomorfismo di (\mathbb{Q}, \cdot) in (\mathbb{Q}, \perp) .

- (2) Sia $W = \{3h + 1 \mid h \in \mathbb{N}_0\} \subseteq \mathbb{N}_0$.
 - (a) Si dimostri che W è una parte stabile di (\mathbb{N}_0,\cdot) e non di $(\mathbb{N}_0,+)$.
 - (b) Si verifichi che la relazione $\mathcal{R} \subseteq W \times W$ definita da

$$(3h+1) \mathcal{R} (3k+1) \iff h+k \in 2\mathbb{N}_0$$

è una congruenza in (W, \cdot) .

- (c) Si studi la struttura quoziente $(W/\mathcal{R}, \cdot)$.
- (3) Sia $W = \{3^n 7^m \mid n, m \in \mathbb{N}_0\} \subseteq \mathbb{N}$.
 - (a) Si dimostri che W è una parte stabile di (\mathbb{N}_0,\cdot) e non di $(\mathbb{N}_0,+)$.
 - (b) Si verifichi che la relazione $\mathcal{R}\subseteq W\times W$ definita da

$$3^n 7^m \mathcal{R} \ 3^s 7^t \iff |n-m| = |s-t|$$

è una di equivalenza ma non è una congruenza in (W,\cdot) .

(4) Sia S un insieme non vuoto. Si dimostri che l'applicazione

$$q: \mathcal{P}(S) \to \mathcal{P}(S)$$
 $q(X) = S \setminus X$,

è un isomorfismo di $(\mathcal{P}(S), \cup)$ in $(\mathcal{P}(S), \cap)$.

- (5) Si considerino gli anello $(\mathbb{Z}_2, +, \cdot)$ e $(\mathbb{Z}_6, +, \cdot)$, e l'anello prodotto $G = (\mathbb{Z}_2 \times \mathbb{Z}_6, +, \cdot)$.
 - (a) Si scrivano gli elementi di G,
 - (b) Si scrivano in maniera ridotta ai resti le somme

$$\begin{array}{cccc} [0]_6 + [2]_6 + [5]_6 & [1]_2 + [1]_2 + [1]_2 \\ [2]_6 \cdot [5]_6 & [3]_6 \cdot [3]_6 \\ ([0]_2, [3]_6) + ([1]_2, [2]_6) & ([1]_2, [1]_6) + ([0]_2, [4]_6) \\ ([1]_2, [1]_6) + ([1]_2, [1]_6) & ([0]_2, [3]_6) + ([0]_2, [3]_6). \end{array}$$

- (c) Si esibisca almeno una coppia di divisori dello zero di G.
- (d) Si provi che il sottoinsieme $T = \{(a, 2b) \mid a \in \mathbb{Z}_2, b \in \mathbb{Z}_6\}$ è un sottogruppo di (G, +).
- (6) Si dimostri che $(m\mathbb{Z}, +, \cdot)$ è un sottoanello di $(\mathbb{Z}, +, \cdot)$ per ogni $m \in \mathbb{Z} \setminus \{0, 1\}$.
- (7) Si dimostri che $(2\mathbb{Z}_{12}, +, \cdot)$ è un sottoanello non unitario di $(\mathbb{Z}_{12}, +, \cdot)$, mentre $(4\mathbb{Z}_{12}, +, \cdot)$ è un sottoanello unitario con unità $[4]_{12}$. Si elenchino i divisori dello zero di \mathbb{Z}_{12} .

1