

第五讲:分子的对称性与群论基础

群表示与不可约表示

1. 群表示

1). 群表示的定义

定义: 若矩阵群 Γ {**E**, **A**, **B**, **C**, Λ } 是抽象群 G{ \hat{E} , \hat{A} , \hat{B} , $\hat{C}\Lambda$ } 的一个同态映像,则 Γ 称为G的一个矩阵表示。

[说明]:

- □ 矩阵群的元素是同阶方阵;
- □ 矩阵群的运算规则: 矩阵乘法;
- □ 矩阵群的单位元为: 单位矩阵;
- □ 由数字 1 构成的矩阵群是任何群G的一个同态映像,称全对 称表示。任何标量函数是全对称表示的基函数;
- □ 一个抽象群可以有无穷多个矩阵表示。

2. 群表示

2).等价表示与不等价表示

定义: 如果群的表示 Γ 与 Γ ' 的矩阵,以同一相似变换相 关联,则 Γ 与 Γ ' 为等价表示。

 Γ : **E**, **A**, **B**, **C**,.....

 Γ' : E', A', B', C',

两者等价,是指满足下列关系:

$$A' = P^{-1}AP$$
, $B' = P^{-1}BP$, $C' = P^{-1}CP$,

P 是一个非奇异方阵 ($|P| \neq 0$),但不一定是群表示的矩阵。

1. 群表示

示例:

选取基函数为:
$$(f_1, f_2, f_3) = (\mathbf{x}^2 - \mathbf{y}^2, 2xy, \mathbf{x}^2 + \mathbf{y}^2)$$

可以得到 C_{3V} 点群6个对称操作的矩阵表示(Γ 1):

$$\mathbf{E} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{C}_3 = \begin{pmatrix} -1/2 & \sqrt{3}/2 & 0 \\ -\sqrt{3}/2 & -1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{C}_3^2 = \begin{pmatrix} -1/2 & -\sqrt{3}/2 & 0 \\ \sqrt{3}/2 & -1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\boldsymbol{\sigma}_{\mathbf{v}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \boldsymbol{\sigma}_{\mathbf{v}}' = \begin{pmatrix} -1/2 & \sqrt{3}/2 & 0 \\ \sqrt{3}/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \boldsymbol{\sigma}_{\mathbf{v}}'' = \begin{pmatrix} -1/2 & -\sqrt{3}/2 & 0 \\ -\sqrt{3}/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

1. 群表示

选取基函数为:

$$(g_1, g_2, g_3) = (x^2, 2xy, y^2)$$

则可以得到C3V点群6个对称操作的矩阵表示如下 (Γ2):

$$\mathbf{E} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{C}_{3} = \begin{pmatrix} 1/4 & \sqrt{3}/2 & 3/4 \\ -\sqrt{3}/4 & -1/2 & \sqrt{3}/4 \\ 3/4 & -\sqrt{3}/2 & 1/4 \end{pmatrix} \qquad \boldsymbol{\sigma}_{\mathbf{V}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\mathbf{C}_{3}^{2} = \mathbf{C}_{3}\mathbf{C}_{3} \qquad \boldsymbol{\sigma}_{\mathbf{V}}^{\prime} = \boldsymbol{\sigma}_{\mathbf{V}}\mathbf{C}_{3} \qquad \boldsymbol{\sigma}_{\mathbf{V}}^{\prime\prime} = \boldsymbol{\sigma}_{\mathbf{V}}\mathbf{C}_{3}^{2}$$

两组基函数有变换关系:

$$(x^2, 2xy, y^2) = (x^2 - y^2, 2xy, x^2 + y^2) \begin{pmatrix} 1/2 & 0 & -1/2 \\ 0 & 1 & 0 \\ -1/2 & 0 & 1/2 \end{pmatrix}$$

即:

$$(g_1, g_2, g_3) = (f_1, f_2, f_3) \mathbf{P}^{-1}$$

$$P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

$$P^{-1} = \begin{pmatrix} 1/2 & 0 & -1/2 \\ 0 & 1 & 0 \\ -1/2 & 0 & 1/2 \end{pmatrix}$$

1. 群表示

两组对称操作矩阵有变换关系:

$$\mathbf{R}(\Gamma_2) = \mathbf{P}^{-1}\mathbf{R}(\Gamma_1)\mathbf{P}$$

$$\mathbf{C}_3(\Gamma_2) = \mathbf{P}^{-1}\mathbf{C}_3(\Gamma_1)\mathbf{P}$$

$$\mathbf{P} = \begin{pmatrix} 1/2 & 0 & -1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{pmatrix}$$

$$\mathbf{P}^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1/4 & \sqrt{3}/2 & 3/4 \\ -\sqrt{3}/4 & -1/2 & \sqrt{3}/4 \\ 3/4 & -\sqrt{3}/2 & 1/4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1/2 & \sqrt{3}/2 & 0 \\ -\sqrt{3}/2 & -1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & -1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{pmatrix}$$

一个对称操作(算符)在同一个函数空间(x,y的二次齐次函数)的作用效果,只是基函数的选取是不同的。可见,等价表示本质上是"相同"的表示。

1. 群表示

矩阵的迹(对角元之和):

$$Tr \mathbf{A} = \sum_{i} A_{ii}$$

相似变换不改变矩阵的迹(对角元素之和)

等价表示的相应矩阵的迹相同。即:

若: $\mathbf{A}' = \mathbf{P}^{-1}\mathbf{AP}$, $\mathbf{B}' = \mathbf{P}^{-1}\mathbf{BP}$,

则: $Tr \mathbf{A} = Tr \mathbf{A}'$, $Tr \mathbf{B} = Tr \mathbf{B}'$,

证明: $Tr(\mathbf{ABC}) = Tr(\mathbf{BCA})$ $\sum_{i} (\mathbf{ABC})_{ii} = \sum_{i} \left(\sum_{j} \sum_{k} a_{ij} b_{jk} c_{ki} \right)$ $= \sum_{j} \left(\sum_{i} \sum_{k} b_{jk} c_{ki} a_{ij} \right)$ 故有: $Tr(\mathbf{A'}) = Tr(\mathbf{P^{-1}AP}) = Tr(\mathbf{P}) = Tr(\mathbf{A})$ $= \sum_{i} (\mathbf{BCA})_{ij}$

1. 群表示

3)、特征标

群表示理论中,矩阵的迹称特征标: $\chi(\hat{R}) = Tr \mathbf{R}$

两个表示等价的充要条件是特征标相同。

$$\left\{ \chi_{\Gamma}(\hat{R}) \middle| \hat{R} = \dots \right\} = \left\{ \chi_{\Gamma'}(\hat{R}) \middle| \hat{R} = \dots \right\}$$

群的一个多维表示一定有无穷多个表示与之等价,且这些表示相互等价。

1. 群表示

定理: 同一共轭类的群元素, 其特征标相同。

[证] 设:

 \hat{A} , \hat{B} , $\hat{X} \in G$

且 A 与 B共轭:

 $\hat{A} = \hat{X}^{-1} \hat{B} \hat{X}$

群元素:

 \hat{A} , \hat{B} , \hat{X} , \hat{X}^{-1}

相应的矩阵:

 A, B, X, X^{-1}

则由群表示的定义:

 $\mathbf{A} = \mathbf{X}^{-1} \mathbf{B} \mathbf{X}$

矩阵与操作有 相同的乘积关系

 $\mathbf{H}: \mathbf{X}\mathbf{X}^{-1} = \mathbf{E}$

所以:

 $\chi(\hat{A}) = \chi(\hat{B})$

(相似变换不改变矩阵的迹)

2. 可约与不可约表示

1)、矩阵的直和

例:
$$\mathbf{C_3} = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ \hline 0 & 0 & 1 \end{pmatrix}$$

可分解为两个子方阵:

$$\mathbf{C_3^a} = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \qquad \mathbf{C_3^b} = (1)$$

矩阵的直和: $C_3 = C_3^a \oplus C_3^b$

2. 可约与不可约表示

2)、可约和不可约表示

由矩阵的乘法规则可知:方块化的矩阵的乘法为方块对方块的乘法。 每组小方块矩阵服从同样的乘法次序。一组子方块矩阵也构成群的一 个表示。"

 C_{3V} 点群的三维表示 Γ :

$$\mathbf{E} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \hline 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{C}_{3} = \begin{pmatrix} -1/2 & \sqrt{3}/2 & 0 \\ -\sqrt{3}/2 & -1/2 & 0 \\ \hline 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{C}_{3}^{2} = \begin{pmatrix} -1/2 & -\sqrt{3}/2 & 0 \\ \sqrt{3}/2 & -1/2 & 0 \\ \hline 0 & 0 & 1 \end{pmatrix}$$

$$\boldsymbol{\sigma}_{\mathbf{v}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ \hline 0 & 0 & 1 \end{pmatrix} \qquad \boldsymbol{\sigma}_{\mathbf{v}}' = \begin{pmatrix} -1/2 & \sqrt{3}/2 & 0 \\ \sqrt{3}/2 & 1/2 & 0 \\ \hline 0 & 0 & 1 \end{pmatrix}$$

$$\boldsymbol{\sigma}_{\mathbf{v}}'' = \begin{pmatrix} -1/2 & -\sqrt{3}/2 & 0 \\ -\sqrt{3}/2 & 1/2 & 0 \\ \hline 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{E} = \mathbf{E}^{\mathbf{a}} \oplus \mathbf{E}^{\mathbf{b}}, \quad \mathbf{C}_{\mathbf{3}} = \mathbf{C}_{\mathbf{3}}^{\mathbf{a}} \oplus \mathbf{C}_{\mathbf{3}}^{\mathbf{b}}, \quad \dots$$

子方块矩阵分别构成C3V点群的二维和一维表示:

$$\Gamma_a: \left\{ \mathbf{E^a}, \mathbf{C_3^a}, \mathbf{C_3^{2^a}}, \ldots \right\} \qquad \Gamma_b: \left\{ \mathbf{E^b}, \mathbf{C_3^b}, \mathbf{C_3^{2^b}}, \ldots \right\} \qquad \boxed{\Gamma = \Gamma_a \oplus \Gamma_b}$$

$$E^{b}=(1), C_3^{b}=(1), C_3^{2b}=(1), \dots$$
 全对称不可约表示

2. 可约与不可约表示

定义: 群的一个表示, 如果它的所有矩阵可以借助于某一个相似变换变 成相同形式的对角方块化矩阵,则此表示是可约的,否则是不可约的。

C3V群的两个三维表示:

$$\mathbf{E} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{C_3} = \begin{pmatrix} -1/2 & \sqrt{3}/2 & 0 \\ -\sqrt{3}/2 & -1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{E} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{C}_3 = \begin{pmatrix} -1/2 & \sqrt{3}/2 & 0 \\ -\sqrt{3}/2 & -1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{C}_3^2 = \begin{pmatrix} -1/2 & -\sqrt{3}/2 & 0 \\ \sqrt{3}/2 & -1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{\sigma}_{\mathbf{v}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{\sigma}_{\mathbf{v}}' = \begin{pmatrix} -1/2 & \sqrt{3}/2 & 0\\ \sqrt{3}/2 & 1/2 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{\sigma}_{\mathbf{v}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{\sigma}_{\mathbf{v}}' = \begin{pmatrix} -1/2 & \sqrt{3}/2 & 0 \\ \sqrt{3}/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{\sigma}_{\mathbf{v}}'' = \begin{pmatrix} -1/2 & -\sqrt{3}/2 & 0 \\ -\sqrt{3}/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\Gamma 2$$

$$\mathbf{E} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{\sigma}_{\mathbf{v}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{C}_3^2 = \mathbf{C}_3 \mathbf{C}_3 \qquad \qquad \mathbf{\sigma}_{\mathbf{V}}' = \mathbf{\sigma}_{\mathbf{V}} \mathbf{C}_3$$

$$\sigma_{v}' = \sigma_{v}C_{3}$$

$$\sigma_{\rm V}'' = \sigma_{\rm V} {\rm C}_3^2$$

2. 可约与不可约表示

总结上述讨论:

- 1. 一个群可以有无穷多个矩阵表示,但其中很多是等价表示,对于相互等价的表示,我们只需研究其中的一个。
- 2. 一个群可以有很多个不等价表示,但其中很多是可约的, 对于可约表示,我们可以将其约化为不可约表示的直和。
- 3. 研究群的性质,只需研究其不等价的不可约表示的性质。 对于有限阶的群,其不等价不可约表示的数目是有限的。

群的所有不等价不可约表示的性质就完全代表了群的性质。

3. 不可约表示特征标表

群的重要性质被概括在各种表格中,其中最频繁使用的是不可约表示的特征标表。

	群力	元素,对称物	对称操作的表示空间(荷载空间) 的基函数		
C_{3v}	E	$2C_3$	30,		
Ą	1	1	1	Z	$x^2 + y^2, z^2$
A_{2}	1	1	-1	R,	
E	2	-1	0	$(x,y),(R_x,R_y)$	$(x^2-y^2,xy),(xz,yz)$
不可约 表示	•	特征标		p 轨道、 偶极矩	d 轨道、 极化率

3. 不可约表示特征标表

C_{3V}	E	C_3	$C_3^{\ 2}$	$\sigma_{V}(XZ)$	$\sigma_{\!\scriptscriptstyle V}$ '	$\sigma_{\!\scriptscriptstyle V}$ "	
$\Gamma_{l}\left(A_{l}\right)$	1	1	1	1	1	1	
Γ_2 (A_2)	1	1	1	-1	-1	-1	
$\Gamma_3(E)$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$ \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} $	$\begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	$\begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$	$ \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} $	

3. 不可约表示特征标表

一维表示: A 或 B 二维表示: E 三维表示: T(F)

A
$$\chi(C_n) = 1$$

$$\mathbf{B} \quad \underline{\hspace{1cm}} \chi(C_n) = -1$$

下标1 —
$$\chi(\sigma_V)=1$$
 $\chi(C_2')=1$

下标2
$$\chi(\sigma_V) = -1$$
 $\chi(C_2') = -1$

上标"
$$\chi(\sigma_h)=1$$

上标" $\chi(\sigma_h)=-1$

下标g ——
$$\chi(i)=1$$

下标
$$\mathbf{u}$$
 —— $\chi(i) = -1$

3. 广义正交定理(矩阵元正交定理)

群的表示的矩阵元的记号:

$$\Gamma_i(\hat{R})_{mn}$$

n列

第i个不可约表示、对称操作 \hat{R} (群的元素)的矩阵的 m 行

定理1 (广义正交定理): 若 Γ_i , Γ_i 为群的不可约表示, 则:

$$\sum_{\hat{R}} \Gamma_{i}(\hat{R})_{mn}^{*} \Gamma_{j}(\hat{R})_{m'n'} = \frac{h}{\sqrt{l_{i}l_{j}}} \delta_{ij} \delta_{mm'} \delta_{nn'}$$

式中 h 为**群的阶**(对称操作的数目), l_i 为 Γ_i 的**维数**(该表示 中每个矩阵的阶)

3. 广义正交定理(矩阵元正交定理)

可将定理改写为:

$$(\Gamma_{i}(\hat{R}_{1})_{mn}, \Gamma_{i}(\hat{R}_{2})_{mn}, \Lambda, \Gamma_{i}(\hat{R}_{h})_{mn})^{*} \begin{pmatrix} \Gamma_{j}(\hat{R}_{1})_{m'n'} \\ \mathbf{M} \\ \Gamma_{j}(\hat{R}_{h})_{m'n'} \end{pmatrix} = \sqrt{\frac{h}{l_{i}}} \cdot \sqrt{\frac{h}{l_{j}}} \delta_{ij} \delta_{mm'} \delta_{nn'}$$

h

——向量的维数(分量数)

$$\sqrt{\frac{l_i}{h}}$$
 ——向量的长度(模)

不可约表示的每一套 矩阵元,构成 h 维 空间的一个向量 广义正交定理:这些 向量是彼此正交的。

$$\sum_{\hat{R}} \Gamma_i(\hat{R})^*_{mn} \Gamma_j(\hat{R})_{m'n'}$$

——两向量的标积

3. 广义正交定理(矩阵元正交定理)

C_{3V}点群有三个不等价的不可约表示,其一组矩阵元可以 构成6维向量空间的向量,这些向量相互正交:

C_{3V}	E	C_3	$C_3^{\ 2}$	$\sigma_{V}(XZ)$	$\sigma_{\!\scriptscriptstyle V}$ '	$\sigma_{\!\scriptscriptstyle V}$ "
$\Gamma_{l}\left(A_{l}\right)$	1	1	1	1	1	1
Γ_2 (A_2)	1	1	1	-1	-1	-1
$\Gamma_3(E)$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$ \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} $	$\begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	$\begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$	$\begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$

h = 6向量空间的维数(对称操作的数目(群的阶))

正交的向量数,由不可约表示矩阵元的数目给出: $l_1^2 + l_2^2 + l_3^2 = 6$

3. 广义正交定理(矩阵元正交定理)

数学上可严格证明下面的结论:

推论1: 群的不等价不可约表示的维数平方和等于群的阶 。 ¤թ։

$$\sum_{i} l_i^2 = h$$

求和包括所有不等价的不可约表示。

4. 不可约表示特征表的正交性

1). 特征标正交定理

定理2: 若
$$\chi_i(\hat{R})$$
 , $\chi_j(\hat{R})$ 是群 G 的不可约表示的特征 标,则
$$\sum_{\hat{R}}^h \chi_i(\hat{R})^* \chi_j(\hat{R}) = h \delta_{ij}$$

证明:
$$\sum_{\hat{R}} \Gamma_i(\hat{R})_{mn}^* \Gamma_j(\hat{R})_{m'n'} = \frac{h}{\sqrt{l_i l_j}} \delta_{ij} \delta_{mm'} \delta_{nn'} \quad (对所有对角矩阵元成立)$$

令:
$$m = n$$
 $m' = n'$ 并对所有行指标求和:

$$\sum_{m}^{l_{i}} \sum_{m'}^{l_{j}} \sum_{\hat{R}} \left(\Gamma_{i} (\hat{R})_{mm}^{*} \Gamma_{j} (\hat{R})_{m'm'}^{*} \right) = \frac{h}{\sqrt{l_{i}l_{j}}} \delta_{ij} \sum_{m}^{l_{i}} \sum_{m'}^{l_{j}} \delta_{mm'} \delta_{mm'}$$

4. 不可约表示特征表的正交性

推论2: 不可约表示特征标的平方和等于群的阶。即:

令: *i=j*, 得:

$$\sum_{\hat{R}} \left| \chi_i(\hat{R}) \right|^2 = h$$

其逆命题也成立,即:

若群表示特征标平方和等于群的阶,则该表示一定是不可约的。 (群表示的不可约性判据)

$$i \neq j \qquad \sum_{\hat{R}} \chi_i^*(\hat{R}) \chi_j(\hat{R}) = 0 \\ \left(\chi_i(\hat{R}) \chi_i(\hat{R}_2) \Lambda \chi_i(\hat{R}_h) \right)^* \begin{pmatrix} \chi_j(\hat{R}) \\ M \\ \chi_j(\hat{R}_h) \end{pmatrix} = 0$$

即:以两个不等价不可约表示的特征标作为分量的两个h维向量相互 正交。

4. 不可约表示特征表的正交性

推论3: 群的不等价的不可约表示的数目等于群的类的

数目。

例: C3V 群,有3个类(k=3)

C_{3V}	E	$2C_3$	$3\sigma_{V}$
A_1	1	1	1
A_2	1	1	-1
E	2	-1	0

4. 不可约表示特征表的正交性

试应用有关定理及其推论导出C3v点群的特征标表。

C3V点群有3个共轭类。由推论3,该群有3个不等价的不可约表示

$$l_1^2 + l_2^2 + l_3^2 = 6$$

$$l_1 = l_2 = 1$$
 $l_3 = 2$

∴ 只能有2个一维表示,1个二维表示,于是:

C_{3V}	E	$2C_3$	$3\sigma_{V}$
Γ_1	1	1	1
Γ_2	1	а	b
Γ_3	2	С	d

4. 不可约表示特征表的正交性

1) Γ1 与Γ2 正交:

$$1 \cdot 1 + 2 \cdot 1 \cdot a + 3 \cdot 1 \cdot b = 0$$

2) 特征标的平方和等于群的阶 :
$$1 \cdot 1 + 2 \cdot a \cdot a + 3 \cdot b \cdot b = 6$$

$$\begin{cases} a = -\frac{7}{5} \\ b = \frac{3}{5} \end{cases}$$
 (不合,舍去)

故特征标表为:

C_{3V}	E	$2C_3$	$3\sigma_{V}$
$\Gamma_1(A_1)$	1	1	1
$\Gamma_2(A_2)$	1	1	-1
$\Gamma_3(E)$	2	-1	0

5. 可约表示的分解

任一可约表示 Γ :

$$\Gamma = a_1 \Gamma_1 \oplus a_2 \Gamma_2 \oplus a_3 \Gamma_3 \oplus \Lambda = \sum_j a_j \Gamma_j$$

 Γ_j 是不可约表示; a_j 是 Γ_j 出现的次数。

问题:
$$a_j = ?$$

5. 可约表示的分解

定理3 (可约表示的分解定理): 可约表示 G 可通过相似变换转化 为不可约表示的直和,第 i 个不可约表示出现的次数为:

$$a_i = \frac{1}{h} \sum_{\hat{R}}^h \chi_i(\hat{R})^* \chi_{\Gamma}(\hat{R})$$

$C_3^2 = $	$\sqrt{3}/2$	-1/2	0	$\sigma_{\rm v} =$	0	-1	0		0	0	1)	
	0	0	1	$\sigma_{v} = $	0	0	1)		(-1/2)	$-\sqrt{3}/2$	0	١
	,	2						$\sigma_{v}'' =$	$\begin{pmatrix} -1/2 \\ -\sqrt{3}/2 \\ 0 \end{pmatrix}$	1/2	0	
	_	$3\sigma_V$							0	0	1	

$$a_{A_{1}} = \frac{1}{6} \left[\chi_{A_{1}}^{*}(\hat{E}) \chi_{\Gamma}(\hat{E}) + \chi_{A_{1}}^{*}(\hat{C}_{3}) \chi_{\Gamma}(\hat{C}_{3}) + \Lambda + \chi_{A_{1}}^{*}(\hat{\sigma}_{V}'') \chi_{\Gamma}(\hat{\sigma}_{V}'') \right]$$

$$= \frac{1}{6} \left[1 \cdot 3 + 1 \cdot 0 + 1 \cdot 0 + 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 \right] = 1$$

$$a_{A_2} = 0 \ a_E = 1$$

$$\Gamma = A_1 \oplus E$$

6. 直积表示

1) 、矩阵的直接乘积

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \otimes \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} = \begin{pmatrix} a_{11}\mathbf{B} & a_{12}\mathbf{B} \\ a_{21}\mathbf{B} & a_{22}\mathbf{B} \end{pmatrix}_{6\times6}$$

其中,

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} \quad a_{11}\mathbf{B} = \begin{pmatrix} a_{11}b_{11} & a_{11}b_{12} & a_{11}b_{13} \\ a_{11}b_{21} & \Lambda & \Lambda \\ \Lambda & \Lambda & \Lambda \end{pmatrix}$$

特征标:

$$\chi(\mathbf{A} \otimes \mathbf{B}) = a_{11}\chi(\mathbf{B}) + a_{22}\chi(\mathbf{B}) = \chi(\mathbf{A})\chi(\mathbf{B})$$

直积矩阵的特征标等于两个直因子矩阵的特征标的普通乘积。

6. 直积表示

2)、直积表示

假如以函数 (f_1, f_2) 为基,可以支撑群的一个二维表示空间:

$$(f_1, f_2) \rightarrow \hat{R}(f_1, f_2) = (f_1, f_2)(\mathbf{R_f})_{2 \times 2}$$

以函数 (g_1,g_2,g_3) 为基,可以支撑群的一个三维表示空间:

$$(g_1, g_2, g_3) \rightarrow \hat{R}(g_1, g_2, g_3) = (g_1, g_2, g_3)(\mathbf{R_g})_{3\times 3}$$

则以全部乘积函数为基: $(f_1g_1, f_1g_2, f_1g_3, f_2g_1, f_2g_2, f_2g_3)$

可以支撑起一个 $2 \times 3 = 6$ 维的函数空间,它是对称操作的表示空间:

$$\hat{R}(f_1g_1, \Lambda, f_2g_3) = (f_1g_1, \Lambda, f_2g_3)(\mathbf{R_{fg}})_{6\times 6}$$

$$\mathbf{R}_{\mathbf{f}\mathbf{g}} = \mathbf{R}_{\mathbf{f}} \otimes \mathbf{R}_{\mathbf{g}}$$

6. 直积表示

定理4 直积表示的特征标等于直因子表示的特征标的普通 乘积 (Î) x (Î) x (Î)

 $\chi_{\Gamma_i \otimes \Gamma_j}(\hat{R}) = \chi_{\Gamma_i}(\hat{R}) \chi_{\Gamma_j}(\hat{R})$

C_{3v}	Ê	$2\hat{C}_{\!\scriptscriptstyle 3}$	$3\hat{\sigma}_v$	
A,	1	1	1	
A_2	1	1	-1	
E	2	-1	0	
$A_1\otimes A_2$	1	1	-1	A_2
$A_{_{\!2}}\otimes A_{_{\!2}}$	1	1	1	Ą
$E \otimes E$	4	1	0	$A_1 \oplus A_2 \oplus E$
				•

一维表示的自身直积是全对称表示。

6. 直积表示

定理5: 只有当不可约表示 Γ_i 与 Γ_i^* 等价时,直积表示 $\Gamma_i \otimes \Gamma_i$ 才含有全对称表示。

证: 由可约表示分解定理, 第k个不可约表示出现的次数:

$$a_k = \frac{1}{h} \sum_{\hat{R}} \chi_k^*(\hat{R}) \chi_{\Gamma_i \otimes \Gamma_j}(\hat{R})$$

全对称表示出现的次数:

$$a_{1} = \frac{1}{h} \sum_{\hat{R}} \chi_{\Gamma_{i} \otimes \Gamma_{j}}(\hat{R}) = \frac{1}{h} \sum_{\hat{R}} \chi_{\Gamma_{i}}(\hat{R}) \chi_{\Gamma_{j}}(\hat{R})$$

$$= \frac{1}{h} \sum_{\hat{R}} \chi_{\Gamma_{i}}(\hat{R}) [\chi_{\Gamma_{j}^{*}}(\hat{R})]^{*} = \frac{1}{h} \sum_{\hat{R}} \chi_{\Gamma_{i}}(\hat{R}) [\chi_{\Gamma_{j}^{*}}(\hat{R})]^{*}$$

$$= \delta_{\Gamma_{i}, \Gamma_{i}^{*}}$$

6. 直积表示

推论4: 只有不可约表示的直积 $\Gamma_h \otimes \Gamma_j$ 包含不可约表示 Γ_i 时, $\Gamma_i^* \otimes \Gamma_h \otimes \Gamma_i$ 才包含全对称表示。

很多时候,只涉及实表示;此时,定理5和推论4可表述为:

只有当不可约表示 $\Gamma_i = \Gamma_j$ 时,直积表示 $\Gamma_i \otimes \Gamma_j$ 才含有全对称表示。

只有不可约表示的直积 $\Gamma_h \otimes \Gamma_j$ 包含不可约表示 Γ_i 时, $\Gamma_i \otimes \Gamma_h \otimes \Gamma_j$ 才包含全对称表示。

7. 对称直积与反对称直积

两组全同函数组
$$\{\psi_i,\ i=1,2,...,m\}$$
 $\{\phi_j,\ j=1,2,...,m\}$ $\{\psi_i\phi_j,\ i,j=1,2,...,m\}$ 对应可约表示

$$\psi_{i}\phi_{j} + \psi_{j}\phi_{i}$$
 对称直积
$$[x^{2}](\hat{R}) = \frac{1}{2} \{ [x(\hat{R})]^{2} + x(\hat{R}^{2}) \}$$
 $\psi_{i}\phi_{j} - \psi_{j}\phi_{i}$ 反对称直积
$$\{x^{2}\}(\hat{R}) = \frac{1}{2} \{ [x(\hat{R})]^{2} - x(\hat{R}^{2}) \}$$

下面给出某些可约表示的特征标值,试将每个表示写成不可约表示的直接和。

$$\hat{\mathbf{C}}_{2}(z)$$

$$\hat{\mathbf{E}} \qquad \hat{\mathbf{C}}_{2}(z) \qquad \hat{\sigma}_{v}(xz) \qquad \hat{\sigma}_{v}(yz)$$

$$\hat{\sigma}_{v}(yz)$$

$$\hat{E}$$
 $2\hat{C}_3$ $3\hat{\sigma}_v$

$$3\hat{\sigma}$$

$$\hat{\mathbf{E}}$$
 \hat{C}_3

$$\hat{C}_3^2$$

请将下面每个直积写成不可约表示的和: (a) C_{3v} 群的 $A_2 \otimes E$; (b) T_d 群的 $T_1 \otimes E$;

(c) C_{3v} 群的 $E \otimes E \otimes E$; (d) D_{3h} 群的 $E' \otimes E'$; (e) D_{3h} 群的 $[E' \otimes E']$; (f) C_3 群的

$$E \otimes E^* (E_1 \otimes E_2)_{\circ}$$