

14.3 Full SAR

Test Band	Channel	Frequency	Tune-Up	Measured Power	Test Position	Measured 10g SAR	Measured 1g SAR	Reported 10g SAR	Reported 1g SAR	Power Drift	Figure
GSM850	128	824.2 MHz	33.5	32. 52	Left Cheek	0.126	0.165	0.16	0.21	-0.04	<u>Fig A. 1</u>
GSM850	251	848.8 MHz	29	28.97	Rear	0.199	0.36	0.20	0.36	-0.07	<u>Fig A. 2</u>
PCS1900	661	1880 MHz	30.5	29.41	Left Cheek	0.074	0.122	0.10	0.16	-0.09	Fig A. 3
PCS1900	661	1880 MHz	26.5	25.85	Rear	0.297	0.503	0.34	0.58	0.05	Fig A. 4
WCDMA1900-BII	9262	1852.4 MHz	24	23.67	Left Cheek	0.175	0.283	0.19	0.31	0.05	Fig A. 5
WCDMA1900-BII	9262	1852.4 MHz	24	23.67	Rear	0.391	0.625	0.42	0.67	0.11	<u>Fig A. 6</u>
WCDMA1700-BIV	1513	1752.6 MHz	24	23.72	Left Cheek	0.243	0.382	0.26	0.41	-0.09	Fig A.7
WCDMA1700-BIV	1513	1752.6 MHz	24	23.72	Rear	0.546	0.847	0.58	0.90	-0.09	Fig A.8
WCDMA850-BV	4233	846.6 MHz	24	23.78	Right Cheek	0.253	0.339	0.27	0.36	0.19	Fig A. 9
WCDMA850-BV	4233	846.6 MHz	24	23.78	Rear	0.233	0.415	0.25	0.44	-0.04	Fig A. 10
LTE1900-FDD2	18700	1860 MHz	24.5	24.03	Left Cheek	0.194	0.314	0.22	0.35	0.01	Fig A. 11
LTE1900-FDD2	18700	1860 MHz	24.5	24.03	Rear	0.346	0.546	0.39	0.61	-0.05	Fig A. 12
LTE1700-FDD4	20300	1745 MHz	24	23.48	Left Cheek	0.227	0.349	0.26	0.39	0.06	Fig A. 13
LTE1700-FDD4	20300	1745 MHz	24	23.48	Rear	0.346	0.546	0.39	0.61	-0.05	Fig A. 14
LTE850-FDD5	20450	829 MHz	23	23.00	Right Cheek	0.157	0.207	0.16	0.21	0.16	Fig A. 15
LTE850-FDD5	20450	829 MHz	23	23.00	Rear	0.144	0.254	0.14	0.25	-0.02	Fig A. 16
LTE2500-FDD7	20850	2510 MHz	24	23.73	Left Cheek	0.084	0.157	0.09	0.17	0.02	Fig A. 17
LTE2500-FDD7	20850	2510 MHz	24	23.73	Rear	0.282	0.576	0.30	0.61	-0.05	Fig A. 18
LTE700-FDD12	23095	707.5 MHz	23	22.85	Right Cheek	0.201	0.254	0.21	0.26	0.17	Fig A. 19
LTE700-FDD12	23095	707.5 MHz	23	22.85	Rear	0.233	0.312	0.24	0.32	0.05	Fig A. 20
LTE750-FDD13	23230	782 MHz	24	23.31	Right Cheek	0.154	0.199	0.18	0.23	0.03	Fig A. 21
LTE750-FDD13	23230	782 MHz	24	23.31	Rear	0.248	0.318	0.29	0.37	-0.01	Fig A. 22

B₂

Deviation

14.4 WLAN Evaluation

According to the KDB248227 D01, SAR is measured for 802.11b DSSS using the <u>initial test position</u> procedure.

Note1: When the reported SAR of the initial test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position using subsequent highest estimated 1-g SAR conditions determined by area scans, on the highest maximum output power channel, until the reported SAR is \leq 0.8 W/kg.

Note2: For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the reported SAR is \leq 1.2 W/kg or all required channels are tested.

Note3: According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

WLAN2450 #1 Ambient Temperature: 22.5 Liquid Temperature: 22.3 Measured SAR [W/kg] Reported SAR [W/kg] Device SAR Rate 11 6 orientation measurement 11 6 1 2462 MHz 2437 MHz 2412 MHz 15.5 15.5 Tune up 15.5 Scaling factor' Slot Average Power [dBm] 15.11 15.38 15.01 1.09 1.12 1g Fast SAR 0.316 0.32 Left Cheek 10g SAR 0.142 0.15 Deviation 0.16 0.16 0.162 1g Fast SAR 0.17 802.11b Left Tilt 10g SAR 0.079 0.08 1Mbps Deviation -0.05-0.051g Fast SAR 0.113 0.12 Right Cheek 10g SAR 0.06 0.06 0.06 Deviation 0.06 1g Fast SAR 0.11 0.11 Right Tilt 10g SAR 0.056 0.06 0.09 0.09 Deviation 802.11b 1g Fast SAR 0.293 0.30 1Mbps Worst Case 10g SAR 0.137 0.14

-0.03

Table 14-23 WLAN2450 #1

-0.03

Table 14-24 WLAN2450 #1 Head Full SAR

WLAN2450 #1 Head Full SAR												
Ambient To	emperature:	22.5				Liquid Te	mperature:	22.3				
	Device	SAR	Mea	sured SAR [V	V/kg]	Reported SAR [W/kg]						
Rate		measurement	11	6	1	11	6	1				
	Onemation	measurement	2462 MHz	2437 MHz	2412 MHz		В	'				
	Tur	ne up	15.5	15.5	15.5		Scaling factor	•				
	Slot Average	e Power [dBm]	15.11	15.38	15.01	1.09	1.03	1.12				
	Left Cheek	1g Full SAR		0.316			0.32					
		10g SAR		0.142			0.15					
		Deviation		0.16			0.16					
		1g Full SAR										
802.11b	Left Tilt	10g SAR										
1Mbps		Deviation										
		1g Full SAR										
	Right Cheek	10g SAR										
		Deviation										
		1g Full SAR										
	Right Tilt	10g SAR										
		Deviation										

Table 14-25 WLAN2450 #1 Body Fast SAR

			WLAN2	450 #1 Body Fa	st SAR			
Ambient T	emperature:	22.5				Liquid Ter	mperature:	22.3
	Doubles	SAR	Mea	sured SAR [V	V/kg]	Rep	orted SAR [W	//kg]
Rate	Device orientation		11	6	1	11	6	1
	orientation	measurement	2462 MHz	2437 MHz	2412 MHz	11	6	
	Tur	ne up	15.5	15.5	15.5		Scaling factor	*
	Slot Average	e Power [dBm]	15.11	15.38	15.01	1.09	1.03	1.12
	Front	1g Fast SAR		0.072			0.07	
		10g SAR		0.038			0.04	
		Deviation		0.11			0.11	
	Rear	1g Fast SAR		0.083			0.09	
802.11b		10g SAR		0.044			0.05	
1Mbps		Deviation		0.15			0.15	
		1g Fast SAR		0.071			0.07	
	Top edge	10g SAR		0.033			0.03	
		Deviation		0.02			0.02	
		1g Fast SAR		0.033			0.03	
	Right edge	10g SAR		0.018			0.02	
		Deviation		0.13			0.13	
802.11b	Mant	1g Fast SAR		0.081			0.08	
1Mbps	Worst case	10g SAR		0.039			0.04	
B1	check	Deviation		0.03			0.03	

Table 14-26 WLAN2450 #1 Body Fast SAR

			WLAN2	450 #1 Body Ft	ıll SAR			
Ambient Te	emperature:	22.5				Liquid Ter	mperature:	22.3
	Device	SAR	Mea	sured SAR [V	V/kg]	Rep	orted SAR [W	//kg]
Rate	orientation	measurement	11	6	1	11	6	1
	onemation	measurement	2462 MHz	2437 MHz	2412 MHz	''	0	
	Tune up		15.5 15.5 15.5			;	Scaling factor	
	Slot Average	Power [dBm]	15.11	15.38	15.01	1.09	1.03	1.12
		1g Full SAR						
	Front	10g SAR						
		Deviation						
		1g Full SAR		0.084			0.09	
	Rear	10g SAR		0.045			0.05	
		Deviation		0.15			0.15	
		1g Full SAR						
802.11b	Left edge	10g SAR						
1Mbps		Deviation						
		1g Full SAR						
	Right edge	10g SAR						
		Deviation						
		1g Full SAR						
	Bottom edge	10g SAR						
		Deviation						
		1g Full SAR						
	Top edge	10g SAR						
		Deviation						

SAR is not required for OFDM because the 802.11b adjusted SAR $\,\leqslant\,\,$ 1.2 W/kg.

	According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below												
Frequ	uency	Test Position	Actual duty	maximum duty	Reported	Scaled reported	Figure						
MHz	Ch.	restrusium	factor	factor	SAR(1g)(W/kg)	SAR(1g)(W/kg)	rigure						
2437	2437 6 Left Cheek 99.15% 100% 0.32 0.33 Fig A.23												

	•	e KDB248227 D01, The reported Sance at the maximum tune-up tolera			•						
Frequ	iency	Test Position	Actual duty factor	maximum duty	Reported SAR(1g)(W/kg)	Scaled reported SAR(1g)(W/kg)	Figure				
MHz	MHz Ch.										
2437 6 Rear 99.15% 100% 0.09 Fig A.24											

Picture 14.1 Duty factor plot

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Mode	СН	Freq	Test Poisition	Original SAR (W/kg)	First Repeated SAR(W/kg)	The Ratio
WCDMA1700-BIV	1513	1752.6 MHz	Rear	0.847	0.831	1.02

16 Measurement Uncertainty

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

10.1	weasurement on	CCIta	inty for 1401	mai OAIT i	CSIS	(00011	1112	, OI 12,		
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Meas	surement system				_					
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	N	1	1	1	0.6	0.6	8
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	80
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
			Test	sample related	ì			•		
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
			Phant	tom and set-uj	p					
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521

17

18

19

20

Phantom uncertainty

Liquid conductivity

Liquid conductivity

permittivity

(target)

(meas.)

Liquid

В

В

A

В

4.0

5.0

2.06

5.0

(Combined standard uncertainty	$u_c^{'} =$	$=\sqrt{\sum_{i=1}^{21}c_i^2u_i^2}$					9.55	9.43	257
_	nded uncertainty fidence interval of	ī	$u_e = 2u_c$					19.1	18.9	
16.2			_		1	(3~6	GHz)	1	ı	T
No.	Error Description	Type	Uncertainty	1	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
	surement system		I			1	ı		I	I
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	&
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	∞
13	Post-processing	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
			Test	sample related	d					
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
1										

Phantom and set-up

R

R

N

R

 $\sqrt{3}$

 $\sqrt{3}$

1

 $\sqrt{3}$

1

0.64

0.64

0.6

1

0.43

0.43

0.49

2.3

1.8

1.32

1.7

2.3

1.2

0.89

1.4

 ∞

43

	(target)									
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	$u_c^{'} =$	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					10.7	10.6	257
_	inded uncertainty fidence interval of	1	$u_e = 2u_c$					21.4	21.1	

16.3 Measurement Uncertainty for Fast SAR Tests (300MHz~3GHz)

No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
110.	Entir Description	Турс	value	Distribution	וען.	1g	10g	Unc.	Unc.	of
			varue	Distribution		18	10g	(1g)	(10g)	freedo
								(1g)	(10g)	m
Meas	surement system									111
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. Restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
14	Fast SAR z- Approximation	В	7.0	R	$\sqrt{3}$	1	1	4.0	4.0	8
			Test	sample related	l					
15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
			Phant	tom and set-uj	p					
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞

19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	$u_c^{'} =$	$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					10.4	10.3	257
_	inded uncertainty fidence interval of	l	$u_e = 2u_c$					20.8	20.6	

16.4 Measurement Uncertainty for Fast SAR Tests (3~6GHz)

No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Mea	Measurement system									
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	8
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	8
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	&
11	Probe positioned mech. Restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	œ
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
14	Fast SAR z- Approximation	В	14.0	R	$\sqrt{3}$	1	1	8.1	8.1	8
	Test sample related									
15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71

©Copyright. All rights reserved by CTTL.

No. I18Z60328-SEM01 Page 74 of 208

16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
	Phantom and set-up									
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
Combined standard uncertainty		$u_c^{'} =$	$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					13.5	13.4	257
Expanded uncertainty (confidence interval of 95 %)		ı	$u_e = 2u_c$					27.0	26.8	

17 MAIN TEST INSTRUMENTS

Table 17.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	E5071C	MY46110673	January 13, 2017	One year	
02	Power meter	NRVD	102196	Marsh 02 2047	One year	
03	Power sensor	NRV-Z5	100596	March 02,2017		
04	Signal Generator	E4438C	MY49071430	January 13,2017	One Year	
05	Amplifier	60S1G4	0331848	No Calibration Requested		
06	BTS	E5515C	MY50263375	January 16, 2017	One year	
07	BTS	CMW500	149646	October 31, 2017	One year	
08	E-field Probe	SPEAG EX3DV4	3846	January 13,2017	One year	
09	DAE	SPEAG DAE4	1331	January19, 2017	One year	
10	Dipole Validation Kit	SPEAG D750V3	1017	July 19, 2017	One year	
11	Dipole Validation Kit	SPEAG D835V2	4d069	July 19, 2017	One year	
12	Dipole Validation Kit	SPEAG D1750V2	1003	July 21, 2017	One year	
13	Dipole Validation Kit	SPEAG D1900V2	5d101	July 26, 2017	One year	
14	Dipole Validation Kit	SPEAG D2450V2	853	July 21, 2017	One year	
15	Dipole Validation Kit	SPEAG D2600V2	1012	July 21, 2017	One year	
16	Network analyzer	E5071C	MY46110673	January 24, 2018	One year	
17	Power meter	NRVD	102196	Marsh 02 2047	Onovices	
18	Power sensor	NRV-Z5	100596	March 02,2017	One year	
19	Signal Generator	E4438C	MY49071430	January 2,2018	One Year	
20	Amplifier	60S1G4	0331848	No Calibration Requested		
21	BTS	E5515C	MY50263375	January 23, 2018	One year	
22	BTS	CMW500	149646	October 31, 2017	One year	
23	E-field Probe	SPEAG EX3DV4	7464	September 12,2017	One year	
24	DAE	SPEAG DAE4	1525	October 2, 2017	One year	

^{***}END OF REPORT BODY***

ANNEX A Graph Results

GSM850 CH128 Left Cheek

Date: 12/26/2017

Electronics: DAE4 Sn1331 Medium: Head 835 MHz

Medium parameters used: f = 824.2 MHz; $\sigma = 0.882 \text{ mho/m}$; $\epsilon r = 42.31$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: GSM850 824.2 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 – SN3846 ConvF(9.33,9.33,9.33)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mmMaximum value of SAR (interpolated) = 0.192 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.229 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.208 W/kg

SAR(1 g) = 0.165 W/kg; SAR(10 g) = 0.126 W/kg

Maximum value of SAR (measured) = 0.182 W/kg

Fig A.1

GSM850 CH251 Rear

Date: 12/26/2017

Electronics: DAE4 Sn1331 Medium: Head 835 MHz

Medium parameters used: f = 848.8 MHz; $\sigma = 0.967 \text{ mho/m}$; $\epsilon r = 54.7$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: GSM850 848.8 MHz Duty Cycle: 1:2

Probe: EX3DV4 – SN3846 ConvF(9.52,9.52,9.52)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.455 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.32 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.637 W/kg

SAR(1 g) = 0.36 W/kg; SAR(10 g) = 0.199 W/kg

Maximum value of SAR (measured) = 0.44 W/kg

Fig A.2

PCS1900 CH661 Left Cheek

Date: 12/28/2017

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.379 \text{ mho/m}$; $\epsilon r = 39.82$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: PCS1900 1880 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 – SN3846 ConvF(7.89,7.89,7.89)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mmMaximum value of SAR (interpolated) = 0.147 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.101 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.191 W/kg

SAR(1 g) = 0.122 W/kg; SAR(10 g) = 0.074 W/kg

Maximum value of SAR (measured) = 0.145 W/kg

Fig A.3

PCS1900 CH661 Rear

Date: 12/28/2017

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.473 \text{ mho/m}$; $\epsilon r = 52.55$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: PCS1900 1880 MHz Duty Cycle: 1:2

Probe: EX3DV4 – SN3846 ConvF(7.57,7.57,7.57)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mmMaximum value of SAR (interpolated) = 0.619 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.11 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.893 W/kg

SAR(1 g) = 0.503 W/kg; SAR(10 g) = 0.297 W/kg

Maximum value of SAR (measured) = 0.612 W/kg

Fig A.4

WCDMA1900-BII CH9262 Left Cheek

Date: 12/28/2017

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters used: f = 1852.4 MHz; $\sigma = 1.352$ mho/m; $\epsilon r = 39.86$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA1900-BII 1852.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3846 ConvF(7.89,7.89,7.89)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.347 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.647 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.442 W/kg

SAR(1 g) = 0.283 W/kg; SAR(10 g) = 0.175 W/kg

Maximum value of SAR (measured) = 0.329 W/kg

Fig A.5

WCDMA1900-BII CH9262 Rear

Date: 12/28/2017

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters used: f = 1852.4 MHz; $\sigma = 1.446$ mho/m; $\epsilon r = 52.59$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA1900-BII 1852.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3846 ConvF(7.57,7.57,7.57)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.746 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.6 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.625 W/kg; SAR(10 g) = 0.391 W/kg

Maximum value of SAR (measured) = 0.734 W/kg

Fig A.6

WCDMA1700-BIV CH1513 Left Cheek

Date: 12/27/2017

Electronics: DAE4 Sn1331 Medium: Head 1750 MHz

Medium parameters used: f = 1752.6 MHz; $\sigma = 1.391 \text{ mho/m}$; $\epsilon r = 40.25$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA1700-BIV 1752.6 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3846 ConvF(8.16,8.16,8.16)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.459 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.962 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.574 W/kg

SAR(1 g) = 0.382 W/kg; SAR(10 g) = 0.243 W/kg

Maximum value of SAR (measured) = 0.435 W/kg

Fig A.7

WCDMA1700-BIV CH1513 Rear

Date: 12/27/2017

Electronics: DAE4 Sn1331 Medium: Head 1750 MHz

Medium parameters used: f = 1752.6 MHz; $\sigma = 1.496 \text{ mho/m}$; $\epsilon r = 52.74$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA1700-BIV 1752.6 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3846 ConvF(7.9,7.9,7.9)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.04 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.93 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.34 W/kg

SAR(1 g) = 0.847 W/kg; SAR(10 g) = 0.546 W/kg

Maximum value of SAR (measured) = 0.99 W/kg

Fig A.8

WCDMA850-BV CH4233 Right Cheek

Date: 12/26/2017

Electronics: DAE4 Sn1331 Medium: Head 835 MHz

Medium parameters used: f = 846.6 MHz; $\sigma = 0.903 \text{ mho/m}$; $\epsilon r = 42.29$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA850-BV 846.6 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(9.33,9.33,9.33)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.374 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.678 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.445 W/kg

SAR(1 g) = 0.339 W/kg; SAR(10 g) = 0.253 W/kg

Maximum value of SAR (measured) = 0.373 W/kg

Fig A.9