Generalized functions Exercise sheet 5

Exercises marked with * are optional.

Fix $W \subseteq V$ and E finite dimensional topological vector spaces over a local field F. Put $n = \dim_F V$.

Exercise 1. Show that $C^{-\infty}(V) \otimes E \simeq (C_c^{\infty}(V, E^* \otimes \operatorname{Haar}(V)))^*$.

Exercise 2. Given $1 \le k \le n$, find an isomorphism $\Lambda^k(V^*) \simeq \Lambda^k(V)^*$.

Exercise 3. Recall that

$$\Omega^{\text{top}}(V) = \Lambda^n(V^*), \quad |V| = \{f : V \to \mathbb{R} : \forall \alpha \in F, f(\alpha v) = |\alpha| f(v) \},$$

and

Dens
$$(V) = \{ f : V^n \to \mathbb{R} : f(Av_1, \dots, Av_n) = |\det(A)| f(v_1, \dots, v_n) \}.$$

Show that $|\Omega^{\text{top}}(V)| \simeq \text{Dens}(V)$.

Exercise 4.

- (1) Show that $\operatorname{Haar}(W) \otimes \operatorname{Haar}(V/W) \simeq_{\operatorname{can}} \operatorname{Haar}(V)$.
- (2) Show that $\operatorname{Haar}(V^*) \simeq_{\operatorname{can}} \operatorname{Haar}(V)^*$.
- (3) Conclude that $\operatorname{Haar}(W) \otimes \operatorname{Haar}(V^*) \simeq_{\operatorname{can}} \operatorname{Haar}(W^{\perp})$, where $W^{\perp} = (V/W)^*$.

Exercise 5. Assume $F = \mathbb{R}$. Find a distribution $\xi \in \mathrm{Dist}(V \setminus W)$ such that $\nexists \eta \in \mathrm{Dist}(V)$ with $\eta_{V \setminus W} = \xi$.

Exercise 6. * Let $F_m(W) = (C_c^{\infty}(V)/V_m(W))^* = \{\xi \in \text{Dist}(V) : \langle \xi, f \rangle = 0 \text{ for any } f \in V_m(W) \}$, where $V_m(W)$ is as defined in class. Put $G_m(W) = F_m(W) \otimes \text{Haar}(W)^*$, the corresponding quotient of the space of generalized functions. Show that

$$G_m(W)/G_m(W) \simeq_{\operatorname{can}} C^{-\infty}(W, \operatorname{Sym}^m(W^{\perp}) \otimes \operatorname{Haar}(W^{\perp})).$$

The tangent space of a manifold

This part of the exercise is not mandatory, but it highly recommended that you solve and submit these questions.

Let M be a C^{∞} -manifold over \mathbb{R} , and let $x \in M$. In this part of the exercise we will prove the equivalence of the definitions given in class for the tangent space $T_x(M)$ of M at x.

We recall some notation:

• $\mathcal{C}_x(M)$ denotes the set of smooth curves $\gamma: (-1,1) \to M$ such that $\gamma(0) = x$. This set is endowed with a relation \sim such that $\gamma_1 \sim \gamma_2$ if for any $x \in U \subseteq M$ and any diffeomorphism $\varphi: U \to \mathbb{R}^n$

$$\frac{d}{dt} \left(\varphi \circ \gamma_1 - \varphi \circ \gamma_2 \right) \mid_{t=0} = 0.$$

• $\operatorname{Der}_x(C^{\infty}(M), \mathbb{R})$ denotes the vector space of derivations of $C^{\infty}(M)$ with values in \mathbb{R} over x. That is-linear maps $d: C^{\infty}(M) \to \mathbb{R}$ which satisfy the Leibniz rule, i.e., for any $f, g \in C^{\infty}(M)$,

$$d(f \cdot g) = f(x)d(g) + g(x)d(f).$$

• Let $\mathfrak{m}_x := \{ f \in C^{\infty}(M) : f(x) = 0 \}$ and $\mathfrak{m}_x^2 = \{ \sum_{i=1}^N f_i g_i : N \in \mathbb{N}, f_1, g_1, \dots, f_N, g_N \in \mathfrak{m}_x \}.$

Exercise 7.

- (1) Show that, given $\gamma_1, \gamma_2 \in \mathcal{C}_x(M)$, $\gamma_1 \sim \gamma_2$ if and only if there exists $x \in U \subseteq M$ open and a diffeomorphism $\varphi: U \to \mathbb{R}^n$ such that $\frac{d}{dt}(\varphi \circ \gamma_1 \varphi \circ \gamma_2)|_{t=0} = 0$.
- (2) Let $\gamma \in \mathcal{C}_x(M)$. Show that the map $d_{\gamma}: C^{\infty}(M) \to \mathbb{R}$, defined by $d_{\gamma}(f) = \frac{d}{dt}(f \circ \gamma)|_{t=0}$, is an element of $\mathrm{Der}_x(C^{\infty}(M),\mathbb{R})$.
- (3) Show that $d_{\gamma_1} = d_{\gamma_2}$ if and only if $\gamma_1 \sim \gamma_2$. Deduce that the map $[\gamma]_{\sim} \mapsto d_{\gamma} : (\mathfrak{C}_x/\sim) \to \operatorname{Der}_x(C^{\infty}(M), \mathbb{R})$ is injective.
- (4) Given $d \in \operatorname{Der}_x(C^{\infty}(M), \mathbb{R})$ and a diffeomorphism $\varphi = (\varphi_1, \dots, \varphi_n) : U \to \mathbb{R}^n$ with $x \in U \subseteq M$ open, define $u_d = (d(\varphi_1), \dots, d(\varphi_n))$ and put

$$\gamma_d(t) = \varphi^{-1} \left(\varphi(x) + t u_d \right).$$

Show that γ_d is a smooth curve and that the association $d \mapsto \gamma_d$ is the inverse of the map defined in item (3).

Exercise 8.

- (1) Let $f, g \in C^{\infty}(M)$ be such that $f|_{U} \equiv g|_{U}$ for some open neighbourhood $x \in U$. Show that d(f) = d(g) for all $d \in \text{Der}_{x}(C^{\infty}(M), \mathbb{R})$. (*Hint*: if f vanishes in a neigbourhood of x then there exist f_{1}, f_{2} with $f_{1}(x) = f_{2}(x) = 0$ such that $f = f_{1}f_{2}$.)
- (2) Given $f \in C^{\infty}(M)$, $x \in U \subseteq M$ open and $\varphi : U \to \mathbb{R}^n$, a diffeomorphism with $\varphi(x) = 0$, show that $f \circ \varphi^{-1}(t_1, \dots, t_n) = f(x) + \sum_{i=1}^n a_i t_i + h(t_1, \dots, t_n)$ with $a_i = \frac{\partial (f \circ \varphi^{-1})}{\partial x_i}(0)$, and $h \in C^{\infty}(\mathbb{R}^n)$ satisfying $\lim_{\mathbf{t} \to 0} \frac{h(\mathbf{t})}{\|\mathbf{t}\|^2} = 0$.
- (3) Show that, for $d \in \operatorname{Der}_x(C^{\infty}(M), \mathbb{R})$, we have that $d \equiv 0$ if and only $d(\ell) = 0$ for any $\ell \in C^{\infty}(M)$ such that $\ell \circ \varphi^{-1}$ is linear.
- (4) Show that for any $d \in \operatorname{Der}_x(C^{\infty}(M), \mathbb{R})$, the map $T_d : \mathfrak{m}_x/\mathfrak{m}_x^2 \to \mathbb{R}$, defined by $T_d(f + \mathfrak{m}_x^2) = d(f)$, is well-defined. Show that the map $d \mapsto T_d$ is injective.
- (5) Given $T \in (\mathfrak{m}_x/\mathfrak{m}_x^2)^*$ define a map $d_T : C^{\infty}(M) \to \mathbb{R}$ by $d_T(f) = T((f f(x)) + \mathfrak{m}_x^2)$. Show that $d_T \in \operatorname{Der}_x(C^{\infty}(M), \mathbb{R})$, and that the map $T \mapsto d_T$ is the inverse of the map defined in Item (3).

¹For the *only if* implication, you may invoke the existence of smooth cut-off functions on M without proof.