

Solving the optimal path planning of a mobile robot using improved Q-learning - omówienie artykułu

Przemysław Jaskuła 269995@student.pwr.edu.pl

WYDZIAŁ ELEKTRONIKI, FOTONIKI I MIKROSYSTEMÓW

Projekt Specjalnościowy

- 1 Reinforcement learning
- Q learning
- 3 Problemy związane z Q learningiem
- 4 Co to jest FPA
- 5 FPA jako lepsze zainicjiowanie macierzy Q
- 6 Q&A

Reinforcement learning

Q learning

▶ Stan

- StanAkcja

- Stan
- AkcjaAgent

- ▶ Stan
- Akcja
- AgentNagroda i Kara

$$Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s, a) + \alpha \left[r_{t+1} + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}) \right]$$

s_t: Obecny stan

 a_t : Akcja podjęta w stanie s_t

 r_{t+1} : Nagroda po stanie s_t

 α : Współczynnik nauki

 γ : Współczynnik dyskontowy

Algorithm 1: Classical Q-learning algorithm

Begin

Initiate all Q-values, Q(s, a) in Q-table to zero

Select a starting state, $Q(s_1, a_1)$

while (iteration < Max iteration)

while goal is not achieved

Select an action, a within the available actions in the current state according to the

highest Q-value in the next state

Perform the selected action, a and reward or penalty, r will be given

Update the Q-value using Equation (1)

Move the state to new state, s'

end while

end while

end

Problemy związane z Q learningiem

 Złożoność obliczeniowa wraz z wzrostem przestrzeni poszukiwań

- Złożoność obliczeniowa wraz z wzrostem przestrzeni poszukiwań
- 2. Początkowy etap eksploracji

Co to jest FPA

Zapylanie globalne zawiera zapylanie biotyczne i krzyżowe, a zapylacze używają dystrybucji Levy-iego przy przenoszeniu pyłków.

- Zapylanie globalne zawiera zapylanie biotyczne i krzyżowe, a zapylacze używają dystrybucji Levy-iego przy przenoszeniu pyłków.
- Zapylanie lokalne będące abiotyczne i samozapylające.

- Zapylanie globalne zawiera zapylanie biotyczne i krzyżowe, a zapylacze używają dystrybucji Levy-iego przy przenoszeniu pyłków.
- Zapylanie lokalne będące abiotyczne i samozapylające.
- Szansa na reprodukcję zależy od tego jak dwa kwiaty są podobne.

- Zapylanie globalne zawiera zapylanie biotyczne i krzyżowe, a zapylacze używają dystrybucji Levy-iego przy przenoszeniu pyłków.
- Zapylanie lokalne będące abiotyczne i samozapylające.
- Szansa na reprodukcję zależy od tego jak dwa kwiaty są podobne.
- Prawdopodobieństwo zmiany decyduje między zapylaniem lokalnym a globalnym.

$$\mathbf{x}_{i}^{t+1} = \mathbf{x}_{i}^{t} + \gamma \mathbf{L}(\lambda)(\mathbf{x}_{i}^{t} - \mathbf{g}*)$$

 x_i^t : Pyłek i w iteracji t

g*: Najlepsze rozwiązanie w obecnej iteracji

 γ : Współczynnik skalowania

 $L(\lambda)$: Siła zapylania

$$x_i^{t+1} = x_i^t + \epsilon (x_i^t - x_k^t)$$

 x_i^t : Pyłek i w iteracji t

 $\mathbf{x}_{j}^{t}-\mathbf{x}_{k}^{t}$: Pyłki z tego samego gatunku, lecz innych kwiatów

 ϵ : Liczba losowa z dystrybucji jednostajnej

Algorithm 2: Flower pollination algorithm

Begin

Define objective function $f(x), x=(x_1, x_2, x_3, ..., x_d)^T$

Do initialization of a population of n flowers in random positions.

Obtain the best solution g* in the initial population

Define the range of switch probability $p \in [0,1]$

while (t < Max Generation)

for i = 1:n (all n flowers in the population)

if
$$(rand > p)$$

Draw a (d-dimensional) state vector L from Levy distribution

Obtain global population using the relation

$$x_i^{t+1} = x_i^t + \gamma L(\lambda)(x_i^t - g^*)$$

else

Draw \in from a uniform distribution in [0,1]

Obtain local pollination using $x_i^{t+1} = x_i^t + \in (x_j^t - x_k^t)$

end if

Evaluate new solutions

If new solutions are better than update population

end for

Find the current best solution g*

end while

end

FPA jako lepsze zainicjiowanie macierzy Q

Q & A

Dziękuję za uwagę