МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

ФАКУЛЬТЕТ СИСТЕМ УПРАВЛЕНИЯ И РОБОТОТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №3

по дисциплине «ОСНОВЫ ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ»

Вариант № 1025

Выполнил:
Студент группы Р3110
Голиков Денис
Игоревич
Преподаватель:
Клименков Сергей
Викторович

Оглавление

Задание	2
Ход работы	3
Текст исходной программы	
Описание программы	
Трассировка с данными числами	
Вывод	5

Задание

По выданному преподавателем варианту восстановить текст заданного варианта программы, определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы.

```
0400
5A3:
       05B8
                5B1:
5A4:
       A000
                5B2:
                       AEF3
5A5:
       4000
                       0700
                5B3:
5A6:
       E000
                5B4:
                       EEF1
5A7: + 0200
                5B5:
                       85A5
5A8:
       EEFD
                5B6:
                       CEF6
5A9:
       AF03
                5B7:
                       0100
5AA:
       EEFA
                5B8:
                       F801
5AB:
       4EF7
                5B9:
                       0741
5AC:
       EEF7
                5BA:
                       25A3
5AD:
       ABF6
5AE:
       0480
5AF:
       F401
5B0:
       CE04
```

Ход работы

Текст исходной программы

Адрес	Код команды	Мнемоника	Комментарий
5A3	05B8	A	Адрес начала массива
5A4	A000	P	Указатель массива
5A5	4000	N	Размер массива
5A6	E000	R	Результат
5A7	0200	CLA	Очистка аккумулятора
5A8	EEFD	ST (IP-3)	Сохранение аккумулятора в ячейку R
5A9	AF03	LD #3	Установка размера массива N=3
5AA	EEFA	ST (IP-6)	
5AB	4EF7	ADD (IP-9)	Установка указателя массива, теперь он указывает
5AC	EEF7	ST (IP-9)	на последний элемент.
5AD	ABF6	LD (IP-10)+	Загрузка ячейки под номером Р-1 в аккумулятор.
5AE	0480	ROR	Проверка элемента массива на четность (то есть
5AF	F401	BLO 01	регистр С=1), если нечет, то переход на 5В5
5B0	CE04	JUMP 04	
5B1	0400	ROL	Восстановление исходного значения элемента
			массива.
5B2	AEF3	LD (IP-13)	Загрузка ячейки под номером Р в аккумулятор,
5B3	0700	INC	инкремент Р. Сохранение результата в ір-15.
5B4	EEF1	ST (IP-15)	
5B5	85A5	LOOP M	Если N<=0 (т.е. конец массива), то пропуск и
5B6	CEF6	JUMP (IP-	остановка программы, иначе переход на 5AD
		10)	
5B7	0100	HLT	
5B8	F801	P[1]	Элементы массива
5B9	0704	P[2]	
5BA	25A3	P[3]	

Описание программы

Назначение программы:

Данная программа считает количество нечетных элементов массива.

For i in range(len(a)):

If a[i] < 0:

Cont += count;

Расположение в памяти БЭВМ программы, исходных данных и результатов:

5В8 – адрес первого элемента массива

5А4 – указатель на элемент массива

5А5 – количество элементов массива

5А6 – результат работы программы

5B8-5BВ — элементы массива.

Область представления:

 $-2^{15} \le A, P, N, R, P[1], P[2], P[3] \le 2^{15} - 1$

Область допустимых значений

 $000 \le A \le 59$ F или $5B8 \le A \le 7$ FF т.к хранит адрес первого элемента массива N, P, R – любые тк устанавливаются в процессе выполнения $(-2^{15})/3 \le P[1]$, P[2], $P[3] \le (2^{15}-1)/3$

Элементы массива так же могут располагаться в следующих местах в памяти: 000-5A2, 5AB-7FF. Таким образом, максимальное количество элементов составляет 2038.

Трассировка с данными числами

Адр	Знчн	IP	CR	AR	DR	SP	BR	AC	PS	NZVC	Адр	Знчн
5A7	0200	5A8	0200	5A7	0200	0	05A7	0000	4	0100		
5A8	EEFD	5A9	EEFD	5A6	0000	0	FFFD	0000	4	0100	5A6	0000
5A9	AF03	5AA	AF03	5A9	0003	0	0003	0003	0	0000		
5AA	EEFA	5AB	EEFA	5A5	0003	0	FFFA	0003	0	0000	5A5	0003
5AB	4EF7	5AC	4EF7	5A3	05B8	0	FFF7	05BB	0	0000		
5AC	EEF7	5AD	EEF7	5A4	05BB	0	FFF7	05BB	0	0000	5A4	05BB
5AD	ABF6	5AE	ABF6	5BA	25A3	0	FFF6	25A3	0	0000	5A4	05BA
5AE	0480	5AF	0480	5AE	0480	0	05AE	12D1	3	0011		
5AF	F401	5B1	F401	5AF	F401	0	0001	12D1	3	0011		
5B1	0400	5B2	0400	5B1	0400	0	05B1	25A3	0	0000		
5B2	AEF3	5B3	AEF3	5A6	0000	0	FFF3	0000	4	0100		
5B3	0700	5B4	0700	5B3	0700	0	05B3	0001	0	0000		
5B4	EEEF1	5B5	EEF1	5A6	0001	0	FFF1	0001	0	0000	5A6	0001
5B5	85A5	5B6	85A5	5A5	0002	0	0001	0001	0	0000	5A5	0002
5B6	CEF6	5AD	CEF6	5B6	05AD	0	FFF6	0001	0	0000		
5AD	ABF6	5AE	ABF6	5B9	0741	0	FFF6	0741	0	0000	5A4	05B9
5AE	0480	5AF	0480	5AE	0480	0	05AE	03A0	3	0011		
5AF	F401	5B1	F401	5AF	F401	0	0001	03A0	3	0011		
5B1	0400	5B2	0400	5B1	0400	0	05B1	0741	0	0000		
5B2	AEF3	5B3	AEF3	5A6	0001	0	FFF3	0001	0	0000		
5B3	0700	5B4	0700	5B3	0700	0	05B3	0002	0	0000		
5B4	EEF1	5B5	EEF1	5A6	0002	0	FFF1	0002	0	0000	5A6	0002
5B5	85A5	5B6	85A5	5A5	0001	0	0000	0002	0	0000	5A5	0001
5B6	CEF6	5AD	CEF6	5B6	05AD	0	FFF6	0002	0	0000		
5AD	ABF6	5AE	ABF6	5B8	F801	0	FFF6	F801	8	1000	5A4	05B8
5AE	0480	5AF	0480	5AE	0480	0	05AE	7C00	3	0011		
5AF	F401	5B1	F401	5AF	F401	0	0001	7C00	3	0011		
5B1	0400	5B2	0400	5B1	0400	0	05B1	F801	Α	1010		
5B2	AEF3	5B3	AEF3	5A6	0000	0	FFF3	0002	0	0000		
5B3	0700	5B4	0700	5B3	0700	0	05B3	0003	0	0000		
5B4	EEF1	5B5	EEF1	5A6	0003	0	FFF1	0003	0	0000	5A6	0003
5B5	85A5	5B7	85A5	5A5	0000	0	FFFF	0003	0	0000	5A5	0001

Вывод

В ходе выполнения лабораторной работы исследовал работу базовой ЭВМ, изучил различные виды адресации, научился работать с массивами с помощью команд цикла и ветвления.