Time Series Lecture 4

Peter Lukianchenko

4 February 2023

Diebold-Mariano test

- Compares two sequences of forecasts: $\{\hat{Y}_{1t}\}$ and $\{\hat{Y}_{2t}\}$
- Forecasts are the primitives, not models
- Look at the loss differential:

$$d_{12t} = L(e_{1t}) - L(e_{2t}) = (Y_t - \hat{Y}_{1t})^2 - (Y_t - \hat{Y}_{2t})^2$$

- Assumption DM: $\{d_{12t}\}$ is covariance-stationary
- Two forecasts are equally good if $E[d_{12t}] = 0$. That's H_0 .
- Form the test statistic:

$$t = \frac{\frac{1}{T} \sum_{t=1}^{T} d_{12t}}{\sqrt{\hat{\sigma}_d/T}},$$

where
$$\sigma_d = \sum_{j=-\infty}^{+\infty} \gamma_d(j)$$

- $t \rightarrow^d \mathcal{N}(0,1)$
- If $t < -z_{\alpha}$, $\{\hat{Y}_{1t}\}$ is preferable; if $t > z_{\alpha}$, $\{\hat{Y}_{2t}\}$ is preferable.

Type of Non-Stationary TimeSeries

- Time trend
- Unit root
- Structural break in levels
- Structural break in variance

Trend-Stationary TimeSeries

$$Y_t = \mu + \delta t + \Psi(L) \varepsilon_t = \mu + \delta t + \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j},$$

where $\sum_{j=1}^{\infty} |\psi_j| < \infty$

• $Y_t - \delta t$ is stationary

• Forecasts:

•
$$\hat{Y}_{t+h|t} = \mu + \delta(t+h) + \psi_h^J \varepsilon_t + \psi_{h+1} \varepsilon_{t-1} + \dots$$

- Forecast error: $e_{t+h|t} = \varepsilon_{t+h} + \psi_1 \varepsilon_{t+h-1} + ... + \psi_{h-1} \varepsilon_{t+1}$
- Variance of the forecast error: $Var(e_{t+h|t}) = \sigma^2 \sum_{j=0}^{h-1} \psi_j^2 < \infty$
- Impulse response to a shock: $\frac{\partial Y_{t+h}}{\partial \varepsilon_t} = \psi_h \to 0$, as $h \to \infty$

Trend-Stationary TimeSeries

- Estimate the trend + arma
- If there is no trend, $\hat{\delta} \rightarrow^p 0$

• Trends might be logarithmic or quadratic

Difference stationary TS

$$Y_t = \mu + Y_{t-1} + \Psi(L) \varepsilon_t = \mu + Y_{t-1} + \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j},$$

where $\sum_{j=1}^{\infty} |\psi_j| < \infty$

- $(1-L)Y_t = Y_t Y_{t-1}$ is stationary
- Forecasts (for simplicity, let $\Psi(L) = I$):
 - $\hat{Y}_{t+h|t} = \mu h + Y_t$
 - Forecast error: $e_{t+h|t} = \sum_{j=1}^{h} \varepsilon_{t+j}$
 - Variance of the forecast error: $Var(e_{t+h|t}) = \sigma^2 h \to \infty$, as $h \to \infty$
- Impulse response to a shock: $\frac{\partial Y_{t+h}}{\partial \varepsilon_t} = 1$

Difference Stationary TS

- Work with $Z_t = (1 L)Y_t = Y_t Y_{t-1}$, which is stationary
- Need to determine if there is a unit root
- Look at ACF (but might confuse with just large $\theta < 1$)
- Do statistical testing

Dickey Fuller Test

• Model:

$$Y_t = \theta Y_{t-1} + \varepsilon_t$$

- True process: $Y_t = Y_{t-1} + \varepsilon_t$
- The null: $H_0: \theta = 1 \text{ vs } H_1: |\theta| < 1$
- Estimate by OLS, form the test statistic:

$$t_n = \frac{\hat{\theta} - 1}{s.e.(\hat{\theta})}$$

- What's the distribution?
- Test with significance level α : Reject H_0 if $t_n < DF_n^{\alpha}$

Augmented Dickey Fuller Test

• Model:

$$Y_t = c + \theta_1 Y_{t-1} + \theta_2 Y_{t-2} + \varepsilon_t$$

• True process has a unit root: $\theta_1 + \theta_2 = 1$

Write the equation:

$$\Delta Y_t = c + (\theta_1 + \theta_2 - 1)Y_{t-1} - \theta_2 \Delta Y_{t-1} + \varepsilon_t$$

$$\Delta Y_t = c + \theta^* Y_{t-1} + \theta_2^* \Delta Y_{t-1} + \varepsilon_t$$

The same distribution as before

Test with significance level α : Reject H_0 if $t_n < DF_n^{\alpha}$