Leveraging Load Balancing Options on the GCP

UNDERSTANDING LOAD BALANCING OPTIONS ON THE GCP

Vitthal Srinivasan CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Introducing load balancers on the GCP Global and regional load balancers
External and internal load balancers
Types of load balancers: HTTP(S), SSL proxy, TCP proxy, network and internal
Choosing the right load balancer

Prerequisites and Course Outline

Prerequisites: Basic Cloud Computing

Choosing and Implementing Google Cloud Compute Engine Solutions

Building Scalable Compute Solutions Using Managed Instance Groups

Course Outline

Load balancing options on the GCP

- Global and regional, external and internal
- Types of load balancers
- Choosing the right load balancer

Implementing HTTP(S) load balancing

- Unmanaged and managed instance groups
- HTTP(S) load balancing components
- HTTP(S) load balancing with autoscaling

Configuring other types of load balancers

- Understanding and implementing other load balancers on the GCP
- SSL proxy, TCP proxy, network and internal load balancing

Scenarios: SpikeySales.com

Hypothetical online retailer

- Flash sales of trending products
- Spikes in user traffic

SpikeySales on the GCP

- Cloud computing fits perfectly
- Pay-as-you-go
- No idle capacity during off-sale periods

Introducing Load Balancing

Attractions of Cloud Computing

Autoscaling

Compute capacity automatically changes with changing need

Autohealing

Platform ensures health of compute resources

Cloud VM Instances

Individual VM instances do not provide either advantage

Some higher level abstraction is needed to do so

Two Types of Scaling

.....

....

Managed Instance Groups are a horizontally scaled laaS offering with autohealing and autoscaling

Managed Instance Group

Group of identical GCE VM instances, created from the same instance template that are managed by the platform

Instance Template

A specification of machine type, boot disk (or container image), zone, labels and other instance properties that can be used to instantiate either individual VM instances or a Managed Instance Group

Instance Template

Attractions of Cloud Computing

Autoscaling

Compute capacity automatically changes with changing need

Autohealing

Platform ensures health of compute resources

Applying to MIGs

Autoscaling

Associate autoscaling policy with MIG

Autohealing

Associate health check and autohealing policy with MIG

Attractions of Cloud Computing

Autoscaling

Associate autoscaling policy with MIG

Autohealing

Associate health check and autohealing policy with MIG

Health Check

Associate Health Check with MIG

Instance Template

Health Check

Instance Template

Health Check

Instance Template

Health Check

Instance Template

Scalable Compute with MIGs

User Traffic

Incoming requests from users during Black Friday sale

Backend Service

Managed Instance Group to serve those incoming requests

Still two missing pieces of puzzle

Scalable Compute with MIGs

Backend Service

User Request

Still two missing pieces of puzzle

Two Missing Pieces of the Puzzle

What IP Address?

Individual VM IP addresses are ephemeral; traffic needs stable front-end IP

Which specific instance?

Individual VMs will come and go, and experience varying load; load needs to be balanced

Load Balancer to the rescue

Scalable Compute with MIGs

Backend Service

Load Balancer to the rescue

Scalable Compute with MIGs

Backend Service

User Request

Load Balancer

Load Balancers

Complex service with many moving parts Basic idea

- Stable front-end IP
- Forwarding rules to funnel traffic
- Connect to backend service
- Distribute load intelligently
- Health checks to avoid unhealthy instances

The primary purpose of load balancers is to distribute traffic to resources close to users and meet high-availability requirements

Load Balancers on the GCP

Fully managed, software-defined, redundant and highly available

Supports > 1 million queries per second with high performance and low latency

Autoscaling with no pre-warming to scale to increased traffic

Route traffic to closest VM

Load balancers on the GCP can also work with unmanaged instance groups which offer no autoscaling and autohealing properties

Types of Load Balancing on the GCP

Load Balancing

Global Load Balancing

Use when your users and instances are globally distributed, Provides IPv4 and IPv6 termination

Regional Load Balancing

Use when instances and users are concentrated in one region and only IPv4 termination is needed

External Load Balancing

Distributes traffic from the internet to a GCP network

Internal Load Balancing

Distributes traffic only within a GCP network

Load Balancing

OSI Network Stack

User	
Application Layer	···· → HTTP/HTTPS
Presentation Layer	
Session Layer	···· SSL Proxy
Transport Layer	···· → TCP Proxy
Network Layer	···· Network
Data Link Layer	
Physical Layer	

The different load balancers operate at different layers of the OSI network stack

Load Balancing

HTTP(S) is used to balance global, external traffic

A global, external load balancing service offered on the GCP

Distributes HTTP(S) traffic among groups of instances based on:

- Proximity to the user
- Requested URL
- Or both.

Load Balancing

SSL Proxy Load Balancing

User	
Application Layer	HTTP/HTTPS
Presentation Layer	
Session Layer	SSL Proxy
Transport Layer	TCP Proxy
Network Layer	Network
Data Link Layer	
Physical Layer	

SSL operates in the session layer

SSL Proxy Load Balancing

SSL Proxy Load Balancing

Use only for non-HTTP(S) SSL traffic

For HTTP(S), just use HTTP(S) load balancing

SSL connections are terminated at the global layer

Then proxied to the closest available instance group

Load Balancing

TCP Proxy Load Balancing

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

HTTP/HTTPS

SSL Proxy

TCP Proxy

Network

TCP Proxy Load Balancing

TCP Proxy Load Balancing

Allows you to use a single IP address for all users around the world

Automatically routes traffic to the instances that are closest to the user

More intelligent routing than network load balancing

Better security, TCP vulnerabilities patched at the load balancer

Load Balancing

Network Load Balancing

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

HTTP/HTTPS

SSL Proxy

TCP Proxy

Network

Network Load Balancing

Based on incoming IP protocol data, such as address, port, and protocol type

Pass-through, regional load balancer - does not proxy connections from clients

Use it to load balance UDP traffic, and TCP and SSL traffic

Load balances traffic on ports that are not supported by the SSL proxy and TCP proxy load balancers

Load Balancing

Internal Load Balancing

Internal Load Balancing

Private load balancing IP address that only your VPC instances can access

VPC traffic stays internal - less latency, more security

No public IP address needed

Useful to balance requests from your frontend to your backend instances

Choosing the Right Load Balancing Option

Load Balancing

OSI Network Stack

User	
Application Layer	·····➤ HTTP/HTTPS
Presentation Layer	
Session Layer	···· SSL Proxy
Transport Layer	···· → TCP Proxy
Network Layer	···· Network
Data Link Layer	
Physical Layer	

Which load balancer is the right one for you?

Which kind of load balancer is the right one for your case?

OSI Network Stack

User
Application Layer
Presentation Layer
Session Layer
Transport Layer
Network Layer
Data Link Layer
Physical Layer

HTTP/HTTPS

SSL Proxy

TCP Proxy

Network

Rule-of-thumb: Load balancer in the highest layer possible

Choosing the Right Load Balancer

Where does the traffic to your network come from? External clients or from services and VMs which are on the same network?

Choosing the Right Load Balancer

Where does the traffic to your network come from? External clients or from services and VMs which are on the same network?

Internal Load Balancing

Choosing the Right Load Balancer

What Kind of External Traffic?

What Kind of External Traffic?

More Decisions

SSL Proxy

TCP Proxy

TCP Proxy or Network Load Balancing

What Kind of External Traffic?

Network Load Balancing

Network load balancing is a non-proxied load balancer for traffic not supported by other types of load balancers

Load Balancing

External, Global

OSI Network Stack

U	S	e	r
			_

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

···· → HTTP/HTTPS

· · · · · · SSL Proxy

TCP Proxy

•••••• Network

OSI Network Stack

User			
Application Layer			
Presentation Layer			
Session Layer			
Transport Layer			
Network Layer			
Data Link Layer			
Physical Layer			

HTTP/HTTPS

SSL Proxy

TCP Proxy

Network

Rule-of-thumb: Load balancer in the highest layer possible

OSI Network Stack

	User
Layer HTTP	Application La
Layer	Presentation La
ayer SSL	Session Laye
_ayer TCP	Transport Lay
ayer Net	Network Laye
_ayer	Data Link Lay
ayer	Physical Laye

HTTP/HTTPS

SSL Proxy

TCP Proxy

Network

HTTP(S) load balancing is the "smartest"

Pricing

Load Balancing and Forwarding Rules

ltem	Price per Unit (USD)	Pricing Unit	
First 5 forwarding rules	\$0.025	Per Hour	
Per additional forwarding rule	\$0.010	Per Hour	
Ingress data processed by load balancer	\$0.008	Per GB	

https://cloud.google.com/compute/pricing#lb

Egress Charges

Normal egress rates are charged for traffic outbound from a load balancer

There is no additional load balancer egress cost beyond normal egress rates

Load Balancing Pricing

Compute Engine charges for:

- Load balancing
- Forwarding rules

Forwarding rules charges

Pricing:

- 5 forwarding rules = \$0.025/hour
- Each additional forwarding rule = \$0.01/hour

\$0.025/hour

Forwarding Rules Charges

Five forwarding rules

\$0.025/hour for 5 rules + (5 additional rules * \$0.01/hour) = \$0.075/hour

Forwarding Rules Charges

Ten forwarding rules

Traffic Through External IP Addresses

Pricing:

- Egress between zones in the same region
- Egress between regions within the US
- Internet egress pricing.

Summary

Introducing load balancers on the GCP Global and regional load balancers
External and internal load balancers
Types of load balancers: HTTP(S), SSL proxy, TCP proxy, network and internal
Choosing the right load balancer