Sprint 3

Multilingual Subtitle System

By: Nimrod Eshel

Welcome to my presentation, let's dive deep into it!

Table of contents

01

Introduction

Why I chose this project

02

Techniques

Info extraction, EDA,
Preprocessing

03

Basic Models

Logical Reg, Random Forest, XGBoost

04

Adv Models

Generic CNN, VGG

05

Next Steps

Other CNN Models, UI, DevOPs

O1 Introduction

Why I chose this project?

Introduction

What

- I love movies, tv shows, youtube, etc!
- Sometimes movies lack subtitles

Why

- Absence of subtitles limits media access for non-native speakers
- Ensure everyone enjoys media regardless of the language spoken.

How

- Detects the audio language, transcribes it, and translates it into subtitles.
- Use Machine learning models to detect language spoken

Potential Impact:

- Enhances accessibility for non-native speakers and the hearing impaired.
- Facilitates language learning and understanding.

02Techinques

Extraction, EDA, Preprocessing

Extraction

- Extracted audio files for Chinese, English,
 Spanish, Arabic
- Converted to .wav for better audio quality
- Converted .wav to spectrograms for models
- Resized spectrograms to 128x128
- Flattened pixels from spectrogram to feed models

Data collection techniques

Common Voice

EDA (Exploratory Data Analysis)

- Reshaped images
- Made figures to showcase uniqueness of each language
- Made separate figures for each language on their average pixel values

EDA (Exploratory Data Analysis)

EDA (Exploratory Data Analysis)

Preprocessing

- Normalized the flattened images with standard scaling
- Reduced dimensionality with PCA
- Label encoded my languages

But this is all mambo jumbo... all you need to this that this is done before adding my data to my models to make it more accurate.

O3 Models

Cool machine learning models!

Model Info

I used 3 models (Logistic reg, Random Forest, XGBoost)

Logistic Regression

- Train Accuracy: 98.4%, Test Accuracy: 97.9%
- 98% Precision & 98% Recall

Random Forest

- Train Accuracy: 99.3%, Test Accuracy: 90.8%
- 91% Precision & 91% Recall

XGBoost

- Train Accuracy: 99.3, Test Accuracy: 96.0%
- 96% Precision & 96% Recall

Linear Regression is the winner!

O4 Adv Models

Generic CNN, VGG CNN Pretrained model

Generic CNN Model

I used 3 models (Logistic reg, Random Forest, XGBoost)

Observation:

- Training Accuracy: Stabilizes around 32.5%
- Validation Accuracy: Highly variable and unstable
- Overall Accuracy: Both training and validation accuracies are low (30% - 40%)

Issues Identified:

 Underfitting: Model may be too simple to capture data patterns

Generic CNN Model

VGG CNN Model

Observation:

- Training Accuracy: Gradually increases, stabilizing around 60%
- Validation Accuracy: Increases steadily, stabilizing around 80%
- Overall Accuracy: Good generalization

Positive Indicators:

- Model Learning: Training accuracy improves over time
- Good Generalization: High and stable validation accuracy

VGG CNN Model

O5 Next Steps

Advanced Models, Design, Functionality

Coming Soon...

Adv Modeling

CNN: Further look at

other models

Whisper Al: Used for

transcribing and

translation

Functionality

Interface: Create a user

friendly front end

Subtitles: Customizable

subtitle options

Deployment

Cloud: Deploy on the

cloud (AWS)

Sharing: Release to the

public!

Any Questions?