

General information

Designation

Prunus avium

Typical uses

Furniture; turnery; decorative ware;

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O

Material family	Natural			
Base material	Wood (hardwood)			
Renewable content	100	%		

Composition detail (polymers and natural materials)

Wood	100	%
------	-----	---

Price

Price	* 6.7	- 10.8	USD/kg	
-------	-------	--------	--------	--

Physical properties

Density	550	-	670	kg/m^3		
---------	-----	---	-----	--------	--	--

Mechanical properties

wechanical properties				
Young's modulus	* 1.36	-	1.52	GPa
Yield strength (elastic limit)	* 2.64	-	3.18	MPa
Tensile strength	* 4.4	-	5.3	MPa
Elongation	* 0.94	-	1.15	% strain
Compressive strength	* 5.36	-	6.55	MPa
Flexural modulus	1.24	-	1.38	GPa
Flexural strength (modulus of rupture)	* 4.4	-	5.3	MPa
Shear modulus	* 0.141	-	0.193	GPa
Shear strength	* 30.9	-	37.5	MPa
Rolling shear strength	* 1.14	-	3.41	MPa
Bulk modulus	* 0.7	-	0.78	GPa
Poisson's ratio	* 0.02	-	0.04	
Shape factor	5.6			
Hardness - Vickers	* 3.85	-	4.7	HV
Hardness - Brinell	27	-	33	MPa
Hardness - Janka	* 3.85	-	4.7	kN
Fatigue strength at 10^7 cycles	* 1.32	-	1.59	MPa

Cherry (prunus avium) (t)

Mechanical loss coefficient (tan delta)	* 0.02	-	0.026	
Differential shrinkage (radial)	0.16	-	0.18	%
Differential shrinkage (tangential)	0.26	-	0.3	%
Radial shrinkage (green to oven-dry)	* 3.2	-	7	%
Tangential shrinkage (green to oven-dry)	* 6.8	-	11.5	%
Volumetric shrinkage (green to oven-dry)	* 11	-	18	%
Work to maximum strength	* 7.5	-	9.1	kJ/m^3

Impact & fracture properties

Thermal properties

Glass temperature	77	-	102	°C
Maximum service temperature	120	-	140	°C
Minimum service temperature	* -73	-	-23	°C
Thermal conductivity	* 0.093	-	0.114	W/m.°C
Specific heat capacity	1.66e3	-	1.71e3	J/kg.°C
Thermal expansion coefficient	* 29	-	39.3	μstrain/°C

Electrical properties

Electrical resistivity	* 2.1e14	-	7e14	µohm.cm
Dielectric constant (relative permittivity)	* 3.49	-	4.27	
Dissipation factor (dielectric loss tangent)	* 0.047	-	0.057	
Dielectric strength (dielectric breakdown)	* 1	-	2	MV/m

Magnetic properties

Magnetic type	Non-magnetic	
Madhetic type	NOD-MAGNATIC	

Optical properties

Transparency	Opaque

Durability

Water (fresh)	Limited use
Water (salt)	Limited use
Weak acids	Limited use
Strong acids	Unacceptable
Weak alkalis	Acceptable
Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good

Flammability

	Hi	Highly flammable			
Primary production energy, CO2 and water					
Embodied energy, primary production	11	.6	-	12.8	MJ/kg
Sources 0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hamm MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)	ond and Jones,	2008);	11.6	MJ/kg (Hubl	· ·
CO2 footprint, primary production	0	574	_	0.633	kg/kg
Sources 0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg					
Water usage	* 66	35	-	735	l/kg
Processing energy, CO2 footprint & water					
Coarse machining energy (per unit wt removed)	* 0.	568	-	0.627	MJ/kg
Coarse machining CO2 (per unit wt removed)	* 0.	0426	-	0.0471	kg/kg
Fine machining energy (per unit wt removed)	* 1.	4	-	1.55	MJ/kg
Fine machining CO2 (per unit wt removed)	* 0.	105	-	0.116	kg/kg
Grinding energy (per unit wt removed)	* 2.	33	-	2.57	MJ/kg
Grinding CO2 (per unit wt removed)	* 0.	175	-	0.193	kg/kg
Recycling and end of life					
Recycle	×				
Recycle fraction in current supply	8.	55	-	9.45	%
Downcycle	V	'			
Combust for energy recovery	V	1			
Heat of combustion (net)	* 19	8.8	-	21.3	MJ/kg
Combustion CO2	* 1.	69	-	1.78	kg/kg
Landfill	V	'			
Biodegrade	V	,			
Notes Warning					
All woods have properties which show variation; they dep	end principal	ly on g	rowt	th condition	ons and moisture content.
Links					
ProcessUniverse					
Reference					
Shape					