Integrated CCG Parsing and Supertagging

Michael Auli
(University of Edinburgh; graduating spring 2012)
joint work with
Adam Lopez (Johns Hopkins University)

Marcel proved completeness

Combinatory Categorial Grammar (CCG; Steedman 2000)

Marcel proved completeness

$$\begin{array}{ccc} \underline{Marcel} & \underline{proved} & \underline{completeness} \\ NP & (S \backslash NP)/NP & NP \end{array}$$

time flies like an arrow

time	flies	like	an	arrow
NP	$S \setminus NP$	$((S \setminus NP) \setminus (S \setminus NP))/NP$	NP/NP	\overline{NP}

time	flies	like	an	arrow
NP	$S \setminus NP$	$((S \setminus NP) \setminus (S \setminus NP))/I$	NP NP/NI	P = NP
N/N	NP	PP/NP	$(NP \setminus NP)/$	$N NP \setminus NP$
N/S	$(S \setminus NP)/PP$	$(NP \setminus NP)/NP$	$((S \setminus NP) \setminus (S \setminus NP))$	P))/N N/N
$S \setminus NP) \setminus (S \setminus N)$	$IP) (S \setminus NP)/S$	(S/S)/NP	$(S \setminus S)/N$	N/S
$NP \setminus NP$	$(S \setminus NP)/NP$	$((S \setminus NP)/(S \setminus NP))/S$	NP	$(S\NP)\(S\NP)$
$(S \NP)/NP$	$((S \setminus NP)/PP)/NP$	P (PP/PP)/NP	(N/N)/(N/N)	N) S\NP
•••	$(S \setminus NP)/S$	PP/S	•••	•••

Friday, 10 June 2011

	time	flies	like		an	_	arrow	
	NP	$S \setminus NP$	$((S \setminus NP) \setminus (S \setminus NP))/I$	VΡ	NP/NP		NP	
	N/N	NP	PP/NP		$(NP \setminus NP)/N$	J	$NP \setminus NP$	
	N/S	$(S \setminus NP)/PP$	$(NP \setminus NP)/NP$	$((S \setminus I))$	$NP)\setminus (S\setminus NP)$))/N	N/N	
$\langle S \setminus$	$NP)\setminus (S\setminus N)$	$(S \setminus NP)/S$	(S/S)/NP		$(S \setminus S)/N$		N/S	
	$NP \setminus NP$	$(S \setminus NP)/NP$	$((S \setminus NP)/(S \setminus NP))/S$		NP ($(S\setminus I)$	$NP)\setminus (S\setminus N)$	P)
(5	$S \setminus NP)/NP$	$((S \setminus NP)/PP)/NP$	P (PP/PP)/NP		(N/N)/(N/N)	I)	S\NP	
	•••	$(S \setminus NP)/S$	PP/S		•••		•••	

Over 22 tags per word! (Clark & Curran 2004)

Hard parsing task

time flies like an arrow

time	flies	like	an	arrow
NP	$S \setminus NP$	$((S \setminus NP) \setminus (S \setminus NP))/NP$	NP/NP	NP

Overview

- The Problem with Pipeline Models
- Decoding Integrated Models
 with Loopy Belief Propagation and Dual Decomposition (ACL 2011)
- Training Integrated Models
 with Softmax-Margin using Exact and Approximate Loss Functions
 (EMNLP 2011)

Overview

- The Problem with Pipeline Models
- Decoding Integrated Models
 with Loopy Belief Propagation and Dual Decomposition (ACL 2011)
- Training Integrated Models
 with Softmax-Margin using Exact and Approximate Loss Functions
 (EMNLP 2011)

timeflieslikeanarrowNP $S \setminus NP$ $(S \setminus NP)/NP$ NP/NPNP

time	flies	like	an	arrow
NP	$S \setminus NP$	$(S \setminus NP)/NP$	NP/NP	NP
			NP	>
			>	
		$S\NP$		

time	flies	like	an	arrow
NP	$S \setminus NP$	$(S \setminus NP)/NP$	NP/NP	NP
			NP	>
		S\NP	>	

time	flies	like	an	arrow
NP	$S \setminus NP$	$(S \setminus NP)/NP$	NP/NP	NP

time	flies	like	an	arrow
NP	$S \setminus NP$	$(S \setminus NP)/NP$	NP/NP	NP
NP/NP	NP	• • • •	• • •	• • •
• • •	•••	$((S \setminus NP) \setminus (S \setminus NP))/NP$		
		• • • •		

Adaptive Supertagging

Clark & Curran (2004)

Adaptive Supertagging

Clark & Curran (2004)

- Algorithm:
 - Run supertagger.
 - Return tags with posterior higher than some alpha.
 - Parse by combining tags (CKY).
 - If parsing succeeds, stop.
 - If parsing fails, lower alpha and repeat.

Adaptive Supertagging

Clark & Curran (2004)

- Algorithm:
 - Run supertagger.
 - Return tags with posterior higher than some alpha.
 - Parse by combining tags (CKY).
 - If parsing succeeds, stop.
 - If parsing fails, lower alpha and repeat.
- Q: are parses returned in early rounds suboptimal?

Answer...

Answer...

- Oracle parsing (Huang 2008):
 - With tight beam: 94.35
 - With loose beam: 97.65
 - With gold-supertags: 97.73

Answer...

- Oracle parsing (Huang 2008):
 - With tight beam: 94.35
 - With loose beam: 97.65
 - With gold-supertags: 97.73
- Standard parsing task (Clark & Curran 2007):
 - With tight beam: 87.38 (labeled F-measure)
 - With loose beam: 87.36

Note: only sentences parsable at all beam settings.

Oracle Parsing

Note: only sentences parsable at all beam settings.

What's happening here?

What's happening here?

- Supertagger keeps parser from making serious errors.
- But it also occasionally prunes away useful parses.

What's happening here?

- Supertagger keeps parser from making serious errors.
- But it also occasionally prunes away useful parses.
- Why not combine supertagger and parser into one?

Overview

- The Problem with Pipeline Models
- Decoding Integrated Models
 with Loopy Belief Propagation and Dual Decomposition (ACL 2011)
- Training Integrated Models
 with Softmax-Margin using Exact and Approximate Loss Functions
 (EMNLP 2011)

- Supertagger & parser are undirected log-linear models.
- Idea: combine their features into one model.
- Problem: Exact computation of marginal or maximum quantities becomes very expensive because parsing and tagging submodels must agree on the tag sequence.

- Supertagger & parser are undirected log-linear models.
- Idea: combine their features into one model.
- Problem: Exact computation of marginal or maximum quantities becomes very expensive because parsing and tagging submodels must agree on the tag sequence.

Intersection of a regular and context-free language (Bar-Hillel et al. 1964)

 $A \rightarrow B C O(Gn^3)$

Intersection of a regular and context-free language (Bar-Hillel et al. 1964)

$$A \rightarrow B C O(Gn^3)$$

$$qA_r \rightarrow qB_s \cdot C_r O(G^3n^3)$$

Intersection of a regular and context-free language (Bar-Hillel et al. 1964)

Approximate Algorithms

- Loopy belief propagation: approximate calculation of marginals. (Pearl 1988; Smith & Eisner 2008)
- Dual decomposition: exact (sometimes) calculation of maximum. (Dantzig & Wolfe 1960; Komodakis et al. 2007; Koo et al. 2010)

Forward-backward is belief propagation (Smyth et al. 1997)

Forward-backward is belief propagation (Smyth et al. 1997)

emission message: $e_{i,j}$

forward message: $f_{i,j} = \sum_{i'} f_{i-1,j'} e_{i-1,j'} t_{j',j}$

backward message: $b_{i,j} = \sum_{j'} b_{i+1,j'} e_{i+1,j'} t_{j,j'}$

belief (probability) that tag j is at position i: $p_{i,j} = \frac{1}{Z} f_{i,j} e_{i,j} b_{i,j}$

Forward-backward is belief propagation (Smyth et al. 1997)

Notational convenience: one factor describes whole distribution over supertag sequence...

We can also do the same for the distribution over parse trees (Case-factor diagrams: McAllester et al. 2008)

We can also do the same for the distribution over parse trees (Case-factor diagrams: McAllester et al. 2008)

Marcel

proved

completeness

We can also do the same for the distribution over parse trees (Case-factor diagrams: McAllester et al. 2008)

Marcel

proved

completeness

We can also do the same for the distribution over parse trees (Case-factor diagrams: McAllester et al. 2008)

Marcel proved completeness

Inside-outside is belief propagation (Sato 2007)

Graph is not a tree!

Converges to bounded approximate marginals (Yedidia et al. 2001)

Graph is not a tree!

Converges to bounded approximate marginals (Yedidia et al. 2001)

Graph is not a tree!

Converges to bounded approximate marginals (Yedidia et al. 2001)

- Computes approximate marginals.
- Complexity is additive: $O(Gn^3 + Gn)$ vs. $O(G^3n^3)$
- In training: use for gradient optimization (e.g. SGD).
- In decoding: compute minimum-risk parse (Goodman 1996).

$$\arg\max_{y,z} f(y) + g(z)$$

s.t. y(i,t) = z(i,t) for all i, t

$$\arg \max_{y,z} f(y) + g(z)$$
 s.t. $y(i,t) = z(i,t)$ for all i,t

$$L(u) = \max_{y} f(y) + \sum_{i,t} u(i,t) \cdot y(i,t)$$
$$+ \max_{z} g(z) - \sum_{i,t} u(i,t) \cdot z(i,t)$$

$$\arg\max_{y,z} f(y) + g(z)$$

s.t. y(i,t) = z(i,t) for all i, t

$$L(u) = \max_{y} f(y) + \sum_{i,t} u(i,t) \cdot y(i,t)$$
 relaxed original problem
$$+ \max_{z} g(z) - \sum_{i,t} u(i,t) \cdot z(i,t)$$

$$\arg\max_{y,z} f(y) + g(z)$$

s.t. y(i,t) = z(i,t) for all i, t

$$L(u) = \max_{y} f(y) + \sum_{i,t} u(i,t) \cdot y(i,t)$$

$$+ \max_{z} g(z) - \sum_{i,t} u(i,t) \cdot z(i,t)$$

$$\arg\max_{y,z} f(y) + g(z)$$

s.t. y(i,t) = z(i,t) for all i, t

$$L(u) = \max_{y} f(y) + \sum_{i,t} u(i,t) \cdot y(i,t)$$
$$+ \max_{z} g(z) - \sum_{i,t} u(i,t) \cdot z(i,t)$$

Dual objective: find assignment of u(i,t) that minimizes L(u)

$$\operatorname{arg} \max_{y,z} f(y) + g(z)$$
 s.t. $y(i,t) = z(i,t)$ for all i , t

$$L(u) = \max_{y} f(y) + \sum_{i,t} u(i,t) \cdot y(i,t)$$
$$+ \max_{z} g(z) - \sum_{i,t} u(i,t) \cdot z(i,t)$$

Dual objective: find assignment of u(i,t) that minimizes L(u)

$$u(i,t) = u(i,t) + \alpha \cdot [y(i,t) - z(i,t)]$$
 (Rush et al. 2010)

Solution provably solves original problem.

- Computes *exact* maximum, *if* it converges.
 - Otherwise: return best parse seen (approximation).
- Complexity is additive: $O(Gn^3 + Gn)$ vs. $O(G^3n^3)$
- In training: use with margin-based optimizers.
- In decoding: compute Viterbi parse.

- Standard parsing task:
 - C&C Parser and supertagger (Clark & Curran 2007).
 - CCGBank standard train/dev/test splits.
 - Separate L-BFGS optimization for each submodel (pseudolikelihood: Besag 1975).
 - Approximate algorithms used to decode test set only.

• Baseline results on test:

• tight beam: 87.73

• loose beam: 87.65

- Baseline results on test:
 - tight beam: 87.73
 - loose beam: 87.65
- Belief propagation (1 iter):
 - tight beam: 88.25
 - loose beam: **88.86**

- Baseline results on test:
 - tight beam: 87.73
 - loose beam: 87.65
- Belief propagation (1 iter):
 - tight beam: 88.25
 - loose beam: **88.86**
- Dual decomposition (25 iter):
 - tight beam: 88.14
 - loose beam: **88.80**

- Baseline results on test:
 - tight beam: 87.73
 - loose beam: 87.65
- Belief propagation (1 iter):
 - tight beam: 88.25
 - loose beam: **88.86**
- Dual decomposition (25 iter): Best performance in larger search space
 - tight beam: 88.14

• loose beam: **88.80**

Oracle Results Again

Oracle Results Again

Summary

• Parser and supertagger interaction exploited in combined model.

Summary

- Parser and supertagger interaction exploited in combined model.
- By far best performance with loose supertagger beam.
 Better models can exploit larger search spaces.

Summary

- Parser and supertagger interaction exploited in combined model.
- By far best performance with loose supertagger beam. Better models can exploit larger search spaces.
- Accurate parsing possible in a combined model.

Overview

- The Problem with Pipeline Models
- Decoding Integrated Models
 with Loopy Belief Propagation and Dual Decomposition (ACL 2011)
- Training Integrated Models
 with Softmax-Margin using Exact and Approximate Loss Functions
 (EMNLP 2011)

Softmax-Margin

- Minimizes bound on expected risk (Gimpel & Smith, 2010).
- Allows optimization towards loss function.
- Retains probabilistic interpretation.
- Convex.
- Requires little change to existing Conditional Log-Likelihood (CLL) implementation.

CLL:
$$\min_{\theta} \sum_{i=1}^{m} \left[-\theta^{\mathsf{T}} f(x^{(i)}, y^{(i)}) + \log \sum_{y \in \mathcal{Y}(x^{(i)})} \exp\{\theta^{\mathsf{T}} f(x^{(i)}, y)\} \right]$$

weights
$$\text{CLL:} \quad \min_{\theta} \sum_{i=1}^{m} \left[-\theta^{\mathsf{T}} f(x^{(i)}, y^{(i)}) + \log \sum_{y \in \mathcal{Y}(x^{(i)})} \exp\{\theta^{\mathsf{T}} f(x^{(i)}, y)\} \right]$$

weights features
$$\text{CLL:} \quad \min_{\theta} \sum_{i=1}^{m} \left[-\theta^{\mathsf{T}} f(x^{(i)}, y^{(i)}) + \log \sum_{y \in \mathcal{Y}(x^{(i)})} \exp\{\theta^{\mathsf{T}} f(x^{(i)}, y)\} \right]$$

weights features input $\text{CLL:} \quad \min_{\theta} \sum_{i=1}^{m} \left[-\theta^{\mathsf{T}} f(x^{(i)}, y^{(i)}) + \log \sum_{y \in \mathcal{Y}(x^{(i)})} \exp\{\theta^{\mathsf{T}} f(x^{(i)}, y)\} \right]$

weights features input true output

CLL:
$$\min_{\theta} \sum_{i=1}^{m} \left[-\theta^{\mathsf{T}} f(x^{(i)}, y^{(i)}) + \log \sum_{y \in \mathcal{Y}(x^{(i)})} \exp\{\theta^{\mathsf{T}} f(x^{(i)}, y)\} \right]$$

 $\text{CLL:} \quad \min_{\theta} \sum_{i=1}^{m} \left[-\theta^{\mathsf{T}} f(x^{(i)}, y^{(i)}) + \log \sum_{y \in \mathcal{Y}(x^{(i)})} \exp\{\theta^{\mathsf{T}} f(x^{(i)}, y)\} \right]$ $\text{SMM:} \quad \min_{\theta} \sum_{i=1}^{m} \left[-\theta^{\mathsf{T}} f(x^{(i)}, y^{(i)}) + \log \sum_{y \in \mathcal{Y}(x^{(i)})} \exp\{\theta^{\mathsf{T}} f(x^{(i)}, y) + \ell(y^{(i)}, y)\} \right]$

CLL: $\min_{\theta} \sum_{i=1}^{m} \left[-\theta^{\mathsf{T}} f(x^{(i)}, y^{(i)}) + \log \sum_{y \in \mathcal{Y}(x^{(i)})} \exp\{\theta^{\mathsf{T}} f(x^{(i)}, y)\} \right]$ SMM: $\min_{\theta} \sum_{i=1}^{m} \left[-\theta^{\mathsf{T}} f(x^{(i)}, y^{(i)}) + \log \sum_{y \in \mathcal{Y}(x^{(i)})} \exp\{\theta^{\mathsf{T}} f(x^{(i)}, y)\} + \ell(y^{(i)}, y)\} \right]$

CLL: weights features input true output proposed output
$$\prod_{\theta}^{m} \sum_{i=1}^{m} \left[-\theta^{\mathsf{T}} f(x^{(i)}, y^{(i)}) + \log \sum_{y \in \mathcal{Y}(x^{(i)})} \exp\{\theta^{\mathsf{T}} f(x^{(i)}, y)\} \right]$$
SMM:
$$\min_{\theta} \sum_{i=1}^{m} \left[-\theta^{\mathsf{T}} f(x^{(i)}, y^{(i)}) + \log \sum_{y \in \mathcal{Y}(x^{(i)})} \exp\{\theta^{\mathsf{T}} f(x^{(i)}, y) + \ell(y^{(i)}, y)\} \right]$$

- Penalise high-loss outputs.
- Re-weight outcomes by loss.
- Loss function an *unweighted feature* -- if **decomposable**.

Labelled, directed dependency recovery

(Clark & Hockenmaier, 2002)

y = dependencies in ground truth

y' = dependencies in proposed output

y = dependencies in ground truth y' = dependencies in proposed output

$$|y \cap y'| = n$$
 correct dependencies returned $|y'| = d$ all dependencies returned

y = dependencies in ground truth y' = dependencies in proposed output

$$|y \cap y'| = n$$
 correct dependencies returned $|y'| = d$ all dependencies returned

Precision
$$P(y, y') = \frac{|y \cap y'|}{|y'|} = \frac{n}{d}$$

y = dependencies in ground truth y' = dependencies in proposed output

$$|y \cap y'| = n$$
 correct dependencies returned $|y'| = d$ all dependencies returned

Precision
$$P(y, y') = \frac{|y \cap y'|}{|y'|} = \frac{n}{d}$$

Recall
$$R(y, y') = \frac{|y \cap y'|}{|y|} = \frac{n}{|y|}$$

Parsing Metrics

y = dependencies in ground truth y' = dependencies in proposed output

$$|y \cap y'| = n$$
 correct dependencies returned $|y'| = d$ all dependencies returned

Precision
$$P(y, y') = \frac{|y \cap y'|}{|y'|} = \frac{n}{d}$$

Recall
$$R(y, y') = \frac{|y \cap y'|}{|y|} = \frac{n}{|y|}$$

F-measure
$$F_1(y, y') = \frac{2PR}{P+R} = \frac{2|y \cap y'|}{|y|+|y'|} = \frac{2n}{d+|y|}$$

$$|y\cap y'|=n$$
 correct dependencies returned $|y'|=d$ all dependencies returned

$$|y \cap y'| = n$$
 correct dependencies returned $|y'| = d$ all dependencies returned

• e.g. n is decomposable

$$n_1 + n_2 = n$$

 $n_1 + n_2 = n$

$$|y \cap y'| = n$$
 correct dependencies returned $|y'| = d$ all dependencies returned

- e.g. n is decomposable
- But F-measure is *not* $f_1 + f_2 \neq f$

$$|y \cap y'| = n$$
 correct dependencies returned $|y'| = d$ all dependencies returned

e.g. n is decomposable

 $n_1 + n_2 = n$

But F-measure is not

$$f_1 + f_2 \neq f$$

... but statistics are decomposable! $F_1(y, y') = \frac{2n}{d + |y|}$

$$F_1(y, y') = \frac{2n}{d + |y|}$$

$$|y \cap y'| = n$$
 correct dependencies returned $|y'| = d$ all dependencies returned

• e.g. n is decomposable

 $n_1 + n_2 = n$

But F-measure is not

$$f_1 + f_2 \neq f$$

... but statistics are decomposable! $F_1(y, y') = \frac{2n}{d + |y|}$

$$f_1 + f_2 = \frac{2n_1}{d_1 + |y_1|} \oplus \frac{2n_2}{d_2 + |y_2|} = \frac{2(n_1 + n_2)}{d_1 + d_2 + |y_1| + |y_2|}$$

T(y) = set of actions to build parse y

$$\frac{NP}{S} < S$$

T(y) = set of actions to build parse y

$$\frac{NP}{S} < \frac{S \setminus NP}{S} < \frac{S \setminus NP}{S}$$

 $d_{+}(t)$ = number of dependencies introduced by $t \in T(y)$

 $n_+(t)$ = number of correct dependencies introduced by $t \in T(y)$

T(y) = set of actions to build parse y

$$\frac{\text{NP } S \backslash \text{NP}}{S} <$$

 $d_{+}(t)$ = number of dependencies introduced by $t \in T(y)$

 $n_+(t)$ = number of correct dependencies introduced by $t \in T(y)$

Precision
$$DecP(y) = \sum_{t \in T(y)} d_{+}(t) - n_{+}(t)$$

$$T(y)$$
 = set of actions to build parse y

$$\frac{\text{NP } S \backslash \text{NP}}{S} <$$

 $d_{+}(t)$ = number of dependencies introduced by $t \in T(y)$

 $n_+(t)$ = number of correct dependencies introduced by $t \in T(y)$

Precision
$$DecP(y) = \sum_{t \in T(y)} d_{+}(t) - n_{+}(t)$$

Recall
$$DecR(y) = \sum_{t \in T(y)} c_{+}(t) - n_{+}(t)$$

T(y) = set of actions to build parse y

$$\frac{NP}{S} \frac{S \setminus NP}{S} <$$

 $d_{+}(t)$ = number of dependencies introduced by $t \in T(y)$

 $n_+(t)$ = number of correct dependencies introduced by $t \in T(y)$

Precision
$$DecP(y) = \sum_{t \in T(y)} d_{+}(t) - n_{+}(t)$$

Recall
$$DecR(y) = \sum_{t \in T(y)} c_{+}(t) - n_{+}(t)$$

$$F_1$$
 $DecF1(y) = DecP(y) + DecR(y)$

(Taskar et al., 2004)

T(y) = set of actions to build parse y

$$\frac{NP}{S} \frac{S \setminus NP}{S} <$$

 $d_{+}(t)$ = number of dependencies introduced by $t \in T(y)$

 $n_+(t)$ = number of correct dependencies introduced by $t \in T(y)$

Precision
$$DecP(y) = \sum_{t \in T(y)} d_{+}(t) - n_{+}(t)$$

Recall
$$DecR(y) = \sum_{t \in T(y)} c_{+}(t) - n_{+}(t)$$

efficient but approximate!

$$F_1$$
 $DecF1(y) = DecP(y) + DecR(y)$

(Taskar et al., 2004)

items $A_{i,j}$

items $A_{i,j}$

time₁ flies₂ like₃ an₄ arrow₅

items $A_{i,j}$

target analysis

time₁ flies₂

like₃

an₄

arrow₅

items $A_{i,j}$

target analysis correct dependencies all dependencies

time₁ flies₂ like₃ an₄ arrow₅

Friday, 10 June 2011

items $A_{i,j}$

items $A_{i,j}$

items $A_{i,j}$

items $A_{i,j}$

items $A_{i,j}$

items $A_{i,j}$

items $A_{i,j}$

items $A_{i,j}$

items $A_{i,j}$

items $A_{i,j}$

items $A_{i,j}$

another analysis correct dependencies all dependencies

time₁ flies₂ like₃ an₄ arrow₅

Friday, 10 June 2011

items $A_{i,j}$

items $A_{i,j}$

items $A_{i,j}$

items $A_{i,j}$

items $A_{i,j}$

items $A_{i,j}$

items $A_{i,j}$

items $A_{i,j}$

items $A_{i,j}$

Exact Losses for Parsing

Precision
$$P(y,y') = \frac{|y \cap y'|}{|y'|} = \frac{n}{d}$$
Recall
$$R(y,y') = \frac{|y \cap y'|}{|y|} = \frac{n}{|y|}$$
F-measure
$$F_1(y,y') = \frac{2PR}{P+R} = \frac{2|y \cap y'|}{|y|+|y'|} = \frac{2n}{d+|y|}$$

- Compute exact losses on sentence-level i.e. items $A_{i,j,n,d}$
- \bullet Treat F_1 as non-local features dependent on n, d

items $A_{i,j,n,d}$

correct dependencies all dependencies

time₁ flies₂ like₃ an₄ arrow₅

items $A_{i,j,n,d}$

correct dependencies all dependencies

items $A_{i,j,n,d}$

correct dependencies all dependencies

time₁ flies₂ like₃ an₄ arrow₅

items $A_{i,j,n,d}$

correct dependencies all dependencies

• Exact versus approximate loss functions on test:

Loss Approx Exact

• Exact versus approximate loss functions on test:

Loss	Approx	Exact
Precision	87.34	87.23

• Exact versus approximate loss functions on test:

Loss	Approx	Exact
Precision	87.34	87.23
Recall	87.42	87.51

• Exact versus approximate loss functions on test:

Loss	Approx	Exact
Precision	87.34	87.23
Recall	87.42	87.5 I
Fı	87.69	87.7 I

• Exact versus approximate loss functions on test:

Loss	Approx	Exact
Precision	87.34	87.23
Recall	87.42	87.51
Fı	87.69	87.71

Approximate loss functions very competitive!

- Results on test:
- CLL
 - tight beam: 87.73
 - loose beam: 87.65

- Results on test:
- CLL
 - tight beam: 87.73
 - loose beam: 87.65
- DecF1
 - tight beam: 88.09
 - loose beam: **88.58**

- Results on test:
- CLL
 - tight beam: 87.73
 - loose beam: 87.65
- DecF1
 - tight beam: 88.09
 - loose beam: **88.58**

Best performance in larger search space

Integrated Model + SMM

Results with integrated model using BP:

CLL

87.65

Results with integrated model using BP:

CLL	87.65
BP	88.86

• Results with integrated model using BP:

CLL	87.65
BP	88.86
+ DecF _I	89.15

• Results with integrated model using BP:

CLL	87.65	
BP	88.86	
+ DecF _I	89.15	parser loss
+ SA	89.25	Hamming loss

CLL	85.74	
Petrov I-5	86.01	Fowler & Penn (2010)

CLL	85.74	
Petrov I-5	86.01	Fowler & Penn (2010)
BP	86.84	

CLL	85.74	
Petrov I-5	86.01	Fowler & Penn (2010)
BP	86.84	
+ DecF ₁	87.08	

CLL	85.74	
Petrov I-5	86.01	Fowler & Penn (2010)
BP	86.84	
+ DecF _I	87.08	parser loss
+ SA	87.20	Hamming loss

- What is the performance when speed is important?
- Results with tight beam (AST):

	Fı	sent/sec	
CLL	87.73	65	
BP	88.20		
+ DecF _I	88.28	60	parser loss
+ SA	88.46		Hamming loss

Oracle Results Again

Belief Propagation

• Pruning with supertagging comes at a cost.

- Pruning with supertagging comes at a cost.
- Better models can exploit larger search spaces.

- Pruning with supertagging comes at a cost.
- Better models can exploit larger search spaces.
- Supertagger and parser interaction can be exploited in a combined model.

- Pruning with supertagging comes at a cost.
- Better models can exploit larger search spaces.
- Supertagger and parser interaction can be exploited in a combined model.
- Task specific optimization improves performance.

- Pruning with supertagging comes at a cost.
- Better models can exploit larger search spaces.
- Supertagger and parser interaction can be exploited in a combined model.
- Task specific optimization improves performance.
- Approximate loss functions very competitive to exact counterparts -- they are simple and efficient.

- Pruning with supertagging comes at a cost.
- Better models can exploit larger search spaces.
- Supertagger and parser interaction can be exploited in a combined model.
- Task specific optimization improves performance.
- Approximate loss functions very competitive to exact counterparts -- they are simple and efficient.
- Methods are generally applicable.

- Pruning with supertagging comes at a cost.
- Better models can exploit larger search spaces.
- Supertagger and parser interaction can be exploited in a combined model.
- Task specific optimization improves performance.
- Approximate loss functions very competitive to exact counterparts -- they are simple and efficient.
- Methods are generally applicable.
- Best reported results for CCG parsing (89.3)

Future Directions

- Integration of POS sequence model.
- Combined models for grammar induction.
- Application to other grammar formalisms & problems.

Thanks!

Phil Blunsom Prachya Boonkwan Christos Christodoulopoulos Stephen Clark Michael Collins Chris Dyer Timothy Fowler Mark Granroth-Wilding Philipp Koehn

Terry Koo Tom Kwiatkowski André F. T. Martins Matt Post Gholamreza Haffari David A. Smith David Sontag Mark Steedman Charles Sutton