

Track-based Alignment of the Muon System

Jim Pivarski, Alexei Safonov, Dmitry Yakorev Texas A&M University

> Karoly Banicz Purdue University

16 June, 2007

Introduction and Overview

- Development of infrastructure: ready for CSA07
- Survey measurements (used as constraints for track-based alignment)
- ▶ MC: developing the procedure
- Alignment results in MC
- ► MTCC: early attempts on real data

Infrastructure

- Defined data path and triggers
- Defined data format for muon alignment stream
- Developed monitoring tools
- Ready for CSA07

- 1. CommonAlignmentMonitor: general plotting package integrated into AlignmentProducer
 - Manages iteration, collection after parallel processing
- 2. AlignmentMonitorMuonHIP outputs histograms for every chamber (or every layer): residuals versus everything
- 3. pyROOT script merges histograms on the fly

▶ Offline Alignment Validation, the last step in monitoring, sees changes in p_T , Z' resolution (Javier Fernandez)

Survey measurements

- ▶ This is the initial geometry used in track-based alignment
- Can also be used as a constraint on track-based alignment
- Positions of optical targets are measured by photogrammetry and later transformed into chamber positions/orientations
- CSC measurement is good; transformation contains an error

Consistency check: \sim 1 mm

Measurement resolution: \sim 300 μ m

Testing the alignment system in MC

MC: developing the procedure

- More realistic than this spring's test-run (presented at UCLA)
 - ▶ Large datasets: 10 pb⁻¹ and 100 pb⁻¹ of muons from W and Z (simulated by Z only)
 - More ambitious precision goals (200 μ m, rather than 1 cm)
 - Random misalignments with SurveyOnlyScenario (rather than moving all chambers in the same direction)
 - ▶ First attempt at muon system self-measurement
- Two major approaches, developed simultaneously
 - ► Align the muon system to the tracker (globalMuons)
 - converges more quickly
 - Align the muon system to itself (standAloneMuons)
 - independent of the tracker

Aligning to the tracker

▶ Residuals from globalMuons have two peaks per chamber, due to track-fitting bias

- Simply extrapolating a tracker track into the muon system removes the bias, but at a severe resolution cost (note wider scale)
- Neither is optimal

The "lowbias" method

- ▶ Re-fit globalMuon tracks with inflated hit uncertainties in the muon system
- Resulting tracks are determined mostly by the silicon tracker, but they "know" about scattering in the muon system

The "standalone" method

- standAloneMuons have the two-peak structure in residuals, and therefore need to iterate to decouple track-fitting from chamber alignment
- ▶ With a |residuals| < 5 cm cut, this method shows clear convergence for most chambers:

▶ We are keenly interested in saving the tails. . .

The same plots for "lowbias"

- Converges in one iteration
- ▶ Beyond that most chambers are stable, but a few DTs wander
- ► There's also a cumulative problem with hit efficiency

Alignment Results (10 pb $^{-1}$)

- Starting from MuonSurveyOnlyScenario: positions misaligned 2.5 mm, ϕ_z misaligned 0.25 mrad
- ▶ Five degrees of freedom in alignment: x, y, ϕ_x , ϕ_y , ϕ_z
- ► Accuracy: one iteration lowbias, ten iterations standalone

Precision: alignment uncertainties are still underestimated by a factor of 3-4

Figures of merit

- 1. σ of core Gaussian (best-measured chambers)
- 2. RMS, cut at 1 cm
- 3. |max| (worst outlier)

790 chambers	core σ	RMS	max
lowbias x	50	280	4500
lowbias y	270	860	6000
standalone x	50	1040	∞
standalone y	290	1540	34000
	1	I	microns

standalone lowbias Entries 0.0000768 0.03091 100 0.01661 9.63/7 0.00487 ± 0.00027 x chamber positions (cm) x chamber positions (cm)

Figures of merit versus iteration

- \triangleright Core σ largely unchanged after first iteration
- standalone method requires 7 iterations

Figures of merit versus integrated luminosity

- ▶ lowbias reaches sensitivity limit between 10 and 100 pb⁻¹
- ▶ standalone technique reaches limit below 10 pb⁻¹

in progress

Planned systematics studies

- Dependence of lowbias on tracker alignment in progress
- Dependence on fitting constraints
- Dependence on survey constraints
 - obtain survey geometries and apply constraints
- Dependence on tracking algorithm
 - Uncertainty in distribution of material
 - Uncertainty in $\vec{B}(\vec{x})$
- Background studies in CSA07
 - ► Multiple scattering in low-p_T muons
 - Alignment with $J/\psi \rightarrow \mu\mu$
 - Effect of fake muons in the alignment stream
 - Obtain realistic background samples from CSA07
 - Finalize track quality cuts

Testing the alignment system in **MTCC**

Karoly Banicz's (re-)discovery of layer offsets

- Agrees with FAST site measurements
- ▶ We want to reproduce this study in AlignmentProducer

□ Pick good segments, fix end-points and look at residuals in intermediate layers:

120 aligned layer positions	mean	stdev	max
X	-55 μ m	$190~\mu$ m	$670~\mu{\rm m}$
y	$110~\mu$ m	330 μ m	1.2 mm
$\phi_{m{z}}$	0.01 mrad	0.04 mrad	0.15 mrad

Preliminary MTCC alignment with AlignmentProducer

- ▶ Alignment attempts were beset by random crashes
- ► A single standalone iteration survived; not enough for a reliable alignment, but enough for order-of-magnitude

102 semi-aligned layer positions	mean	stdev	max
X	8 μ m	192 μ m	440 μ m

- in rough agreement with Karoly's results
- ▶ We'll need more data and more robust computation
- ► Likely to get both with MTCC 1_5_0 re-reconstruction

How well can we do layer-by-layer alignments anyway?

Back to MC...

3920 layers	core σ	RMS	max
lowbias x	50	1630	6600
lowbias y	360	1830	13000
standalone x	60	1720	6600
standalone y	380	1970	6400
			microns

Summary

- Overall scheme and infrastructure components are now mature
- ► Entering the era of precision alignment studies
- Procedure is ready for CSA07, some updates need to be checked into CVS
- ▶ We have taken a first glance at MTCC data and are ready to apply our software to 1_5_0 re-reconstructed data
- Concrete list of systematics studies planned for CSA07
- ▶ The software is available for cosmic ray/beam halo studies. . .
- ▶ We're starting to write a CMS Note

Backup Slides

Dependence of lowbias on tracker alignment

- ► The lowbias technique aligns the muon system using tracks which were fitted to the silicon tracker
- ▶ How does muon alignment depend on the tracker's alignment?

▶ Differences between alignment scenarios appears to be weak

 Reducing the number of degrees of freedom should improve convergence

Again, dependence is weak

Are the MTCC layer offsets real?

- ▶ Or are we under-reporting our uncertainties?
- Can we find a pair of divergent layers in the same chamber?

▶ red is layer 3, blue is layer 6 in chamber 27 in ME+3/2