

Apply the Bounde-Hilbert land on T:

1 11 IV-VII20 5 ch 1102 511 Bon

11 I'm - v | 200 \ \(\text{Linterpolation error \(\text{CT} \) \\
11 I'm - v | 200 \\
11 = \(\text{Linterpolation error \(\text{CT} \) \\
11 = \(\text{Linterpolation error \(\text{CT} \) \\
11 = \(\text{Linterpolation error \(\text{CT} \) \\
11 = \(\text{Linterpolation error \(\text{CT} \) \\
11 = \(\text{Linterpolation error \(\text{CT} \) \\
11 = \(\text{Linterpolation error \(\text{CT} \) \\
11 = \(\text{Linterpolation error \(\text{CT} \) \\
11 = \(\text{Linterpolation error \(\text{CT} \) \\
11 = \(\text{Linterpolation error \(\text{CT} \) \\
11 = \(\text{Linterpolation error \(\text{CT} \) \\
11 = \(\text{Linterpolation error \(\text{CT} \) \\
11 = \(\text{Linterpolation error \(\text{CT} \) \\
11 = \(\text{Linterpolation error \(\text{CT} \) \\
11 = \(\text{Linterpolation error \(\text{CT} \) \\
11 = \(\text{Linterpolation error \(\text{CT} \) \\
11 = \(\text{Linterpolation error \(\text{CT} \) \\
11 = \(\text{Linterpolation error \(\text{CT} \) \\
11 = \(\text{Linterpolation error \(\text{CT} \) \\
12 = \(\text{Linterpolation error \(\text{CT} \) \\
12 = \(\text{Linterpolation error \(\text{CT} \) \\
13 = \(\text{Linterpolation error \(\text{CT} \) \\
14 = \(\text{Linterpolation error \(\text{

i e "it is more difficult to approximate the gradients of u than the function values of u

The of the with

The above is only three for the particular transformation $F_{\tau}(\hat{x}) = A_{\tau} \hat{x} + b_{\tau}$

with $A = \begin{pmatrix} h & 0 \\ 0 & h \end{pmatrix}$. General transformations, that also have a shear/rotation/reflection component, need some technicalities \rightarrow Than 2.3.14