IMAGE FORMING DEVICE

Publication number: JP9046490

Publication date: 1997-02-14
Inventor: SLIMITA HII

SUMITA HIROYASU; TAGAWA TOSHIYA

Applicant: RICOH KK

Classification: - international:

G03G21/00; G03G15/36; H04N1/00; H04N1/21;

G03G21/00; G03G15/36; H04N1/00; H04N1/21; (IPC1-

7): H04N1/21; G03G21/00; H04N1/00

- European:

Application number: JP19950190026 19950726
Priority number(s): JP19950190026 19950726

Report a data error here

Abstract of JP9046490

PROBLEM TO BE SOLVED: To enable an operator to accurately recognize a read source document to ensure the subsequent accurate processing and to improve the workability by producing the image of the read source document if an original carrier device has a iam. SOLUTION: When a source document jam or a carrier paper jam occurs, a CPU 68 starts the iam event processing and at the same time reads the old image data out of an image memory 66 in the order of storage. Then the images are produced in sequence on the transfer paper by a write unit 57. If an operator decides an undesired image such as an omitted page, an obliquely produced image, etc., this image is invalidated by a selector 64 and the image corresponding to the relevant source document is read and produced again. As a result, the operator can accurately recognize the read source document against the Jam that is caused in a source document carrier mode. Thus it is possible to evade the omission of pages and the double output of the source document image and to ensure an accurate and smooth copying job with elimination of the waste time

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出關公開番号 特開平9-46490

(43)公開日 平成9年(1997)2月14日

(51) Int.Cl. ⁸		織別記号	庁内整理番号	FΙ	技術表示箇所	
H 0 4 N	1/21			H 0 4 N 1/21		
G 0 3 G	21/00	376		G 0 3 G 21/00	3 7 6	
H 0 4 N	1/00	108		H 0 4 N 1/00	108M	

審査請求 未請求 請求項の数6 OL (全 23 頁)

(21)出願番号	特顧平7-190026	(71) 出顧人	
			株式会社リコー
(22)出願日	平成7年(1995)7月26日		東京都大田区中馬込1丁目3番6号
		(72)発明者	住田 浩康
			東京都大田区中馬込1丁目3番6号株式会
			社リコー内
		(72)発明者	
		(12/76976	東京都大田区中馬込1丁目3番6号株式会
			社リコー内
		(74)代理人	弁理士 西脇 民雄

(54) 【発明の名称】 画像形成装置

(57)【要約】

【課題】 原稿の画像読み込み段階でADFにジャムが 発生した場合、これまでに読み込んが原稿画像を逐次転 写紙に作像してオペレータに通知し、原稿画像のページ 抜け、ダブリ出力を回避し、コピー時間節約、省資源化 に資する画像形成装置を提供する。

【解決手段】原稿読み取り部50に複数枚の原稿を搬送 可能な原稿搬送装置1と、読み取られた複数の原稿画像 を画像データとして記憶する画像メモリ66と、画像メ モリ66に記憶されている画像データを読み出して画像 データに基づき転写紙に原稿画像を作像する画像形成手 段と、原稿紙詰まりの場合に画像メモリに格納されてい る画像データに対応する原稿画像を逐次画像形成手段5 7により作像させる制御手段20と、画像形成手段57 によって作像された画像に対応する画像データを選択的 に無効化する操作部30とを有する.

【特許請求の範囲】

【請求項1】 原稿読み取り部に複数次の原務を拠当可能な原稿競送装置と、読み取られた複数の原稿画像を画像データとして記憶する画像光干りと、該画像デモリた 記憶されている画像データを読み出して該画像データに 基づき転写紙に原稿画像と一像する画像形成手段と、原 稀紙詰まりの場合に前記画像メモリに格納されている画 像データ上が広する原稿画像と選次前記画像形成手段に より作像させる制御手段と、該画像形成手段によって作 像された画像に対応する画像データ走掛け的に無効化す る操作部とを有する画像デルタ連携のに無効化す る操作部とを有する画像デルタ連環。

【請求項2】 前記画像形成手段は紙詰まり発生時に読 み込まれた原稿に対応する原稿画像のみを作像し、前記 様件部は紙詰まり発生時に読み込まれた原稿に対応する 原稿画像のみを選択的に無効化することを特徴とする請 求項1 (配類の画像形成装置。

【請求項3】 原統読み取り部に原稿を搬送する原稿撤送装置と、読み取られた複数の原稿画像を置修データと して記憶する面像メモリと、該画像メモリに記憶されている画像データを読み出して該画像データに基づき転写 紙に原稿画像を作像する画像形成手段と、前記画像メモリに格納されている画像データに対応する原稿画像を表 りに格納されている画像デークに対応する原稿画像を表 不可能を表示手段と、原稿紙結まりの場合に前記画像メ モリに格納された画像デークに対応する原稿画像を逐次 前記表示手段に表示させる制御手段と、前記表示手段に表示されている原稿画像に対応する画像データを選択的 に無効化する操作部とを有する画像形成装置。

【請求項4】 前記表示手段は紙詰まり発生時に読み込 まれた原稿に対応する原納面像のみを表示し、前記操作 部は紙詰まり発生時に読み込まれた原稿に対応する原稿 簡像のみを選択的に無効化することを特徴とする請求項 3に記載の面像形成装置。

【請求項5】 原稿読み取り館に原稿を搬送する原稿数 送装置と、読み取られた複数の原稿画像を画像データと して記憶する画像メモリと、該画像メモリに記憶されて いる画像データをページ順にソートして原稿画像を転写 派に作像する画像形成手段と、一連の原稿の読み込み終 了後に読み込まれた原稿の砂板又はページをを意味する 数値とその数値で良いか否かのメッセージとを含む操作 ている数値で良いと判断したときには作像動作を実行さ せ、良くないと判断したときには作像動作を実行さ せ、良くないと判断したときには作像動作を実行さ されている画像データを無効化し、対の原稿読み込みを 開始させる操作器とを有する画像形成装置。

【請求項6】 前記操作画面情報は原稿搬送の際に紙詰まりが発生した場合にのみ表示されることを特徴とする請求項5に記載の画像形成装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、デジタル的に画像

を一時的に記憶する画像メモリを有し、メモリ上で複数 の原稿画像をページ揃えして出力することのできる画像 形成装置、いわゆる電子ソート機能を備えた画像形成装 置の改良に関する。

[0002]

【発明が解決しようとする課題】しかしながら、この従来のADFから読み込んだ原稿をページ輸えして画像を出力する電子ソート機能を備えた画像形成装置では、ADFにおいて原稿が結まった場合(いわゆる原稿ジャムが発生した場合)、何枚目の原稿までが正常に読み込まれたか否か判らないという不都合がある。特に、原稿読取り処理のスピードの向上を図るために、あらかじめ原格を予備繰り出しする方式のADFでは、どの原稿がジャムしたかをオペレータが判断するのは凝し、

【0004】この競み込みの途中で請まった原稿、引っかかった原稿があった場合、オペレータが勘に親って原稿をADFに戻して再読み込みをさせると、原稿画像のページが抜けたり、原稿画像がダブって出力されることがあり、ページが抜けたり、原稿画像がダブって出力されることがあり、ページが大いた。 (ページがなける) これまでに行った読み込ませ作業、出力動作に伴う処理時間、オペレータの操作時間等が全て徒労となり、再び設制から原稿を読み込ませなくてはなないという事態が生じる。このことは、オペレータに時間的にも精神的にも過大の負担を与え、また、転写紙を余分に使用する観点、電力の利用の視点から資源の無野体いたもなる。

【0005】また、原稿が2枚以上重なって搬送される 原稿の重送状態も生じることがあるが、この原稿の重送 状態が発生した場合、多分にジャムにはならないのであ るが、ページ抜けが生じ、ジャムによりページ抜けが発 生した時と同様の問題が生じる。

【0006】そこで、本発明の第1の目的は、原稿の画 像説み込み段階でADFにジャムが発生した場合、どこ まで原稿を正確に読み込んだかを明確にするために、こ れまでに読み込んだ原稿画像と選次転写紙化件像してオ ベレータに週勤することにより、正確に読み込まれた原 稿をオベレーグに認識させ、ひいては、原稿画像のベ 対抜け、原稿画像のダブり出力を回避し、コピー作業の 無駄な時間を省くと共に、省資源化に資することのでき る画像形成装置を提供することにある。

画像形成装置を提供することにある。

【0007】本発明の第2の目的は、ジャム発生時に最後に読み込まれた原稿が正常に読み込まれているか否かを明確に確認できる画像形成装置を提供することにあ

【0008】本発明の第3の目的は、原稿画像読み込み 段階でADFジャムが発生した場合、どこまで原稿を正 確に読み込みんだかを明確にするために、余分な確認用 の転写紙を必要とすることなく、読み込まれた原稿画像 を逐次表示手段に表示することによりオペレータに読み 込まれた原稿画像を確認させ、もって原稿画像のページ 抜け、原稿画像のグブり出力を回避し、コピー作業の無 駄な時間を報くと共に、省資源化に資することのできる

【〇〇〇9】本発明の第4の目的は、ジャム発生時に最 後に読み込まれた原稿が正常に読み込まれているか否か を余分な確認用の転写紙を必要とすることなく明確に確 認できる画像形成装置を提供することにある。

【0010】本発明の第5の目的は、作像出力する前に 読み込まれた原稿枚数又はベージ数を確認することによ り、ADFによる原稿の重送、ベージ数けが発生したか 否かを確認させ、もって効率的な作像作業に黄すること のできる画像形成装置を掲載することによる。

【0011】本発明の第6の目的は、能み込み中に原稿 ジャムが発生した場合にのみ、作像出力する前に読み込 まれた原稿が数及12ペーン数を表示させることによ り、ペーン核けがあったか否かを確認させ、もって効率 的な作像作業に資することのできる画像形成装置を提供 することにある

[0012]

【課題を解決するための手段】本発明の請求項1に記載の画像形成装置は、前記算1の目的を達成するため、原 都読み取り結准数枚の原務を搬送可能を取締機と装置 と、読み取られた複数の原稿画像を画像データとして記憶されている原 億データを読み出して該画像データに記憶されている原 億所一度を設立出して該画像データに支払する事等紙に原 稿画像を押像する画像形成手段と、原稿配はまりの場合 に前記画像メモリに格約されている画像データに対応す 毎年段と、該画像形成手段と、原稿配像データに対応す 毎年段と、該画像形成手段によって作儀された画像に対 がよる画像データを選択的に無効化する操作部とを有す 24

【0013】請求項1に記載の画像形成装置によれば、 原稿紙詰まりが発生した場合、制御手段は、原稿紙詰ま り時に画像メモリに格納されて画像データ版に遡って画 像メモリから画像データを読み出し、画像形成手段はそ の読み出された画像データに基づいて版写紙にその画像 データに基づく画像を逐次作像する。オペレータはその 作像された画像を確認し、その画像が望ましていとり 断したとき、例えば、作像された原稿画像にページの飛 び、あるいは、原稿画像が斜めに作像されている時に は、その原稿画像に対応する画像データを消去するた め、操作部の「消去する」を選択し、その画像データ 無効にする。これにより、その画像データが消去さん る、オペレータが作像された髪写紙の画像が下帝でき

り、画像を消さなくても良いと判断したときには「消去 しない」を選択する。これにより、原稿画像の読み込み が再期可能となり、オペレータは、正常な原稿画像の次 の履稿から読み込みを再開させる。

)原稿がら試み込みを再開させる。

[0014] 本発明の請求項(こ記載の画像形成装置 は、前記第2の目的を達成するため、請求項1に記載の 画像形成装置において、前注画修形成手段には結束り発 生時に読み込まれた原稿に対応する原稿画像のみを作像 し、前記操作部は紙詰まり発生時に読み込まれた原稿に 対応する原稿画像のみを選択的に無効化することを特徴 とする。

【0015] 請求項2に記載の画像形成装置によれば、 制御手段は新詰まり発生時に散後に説み込まれた原稿に 対応する原稿画像のみを作能する。オペレータは、その 作儀された面像を確認し、その面像が選ましくないと判 断したとき、操作部の「消去する」を選択し、その画像 データを無効にする。そして、消去された面像データを 格納していた画像メモリに格納すべき原稿をADFに戻 して再読み込みを行わせる。オペレークが作像された歌 写紙の画像が上帯であり、面ペレークが作像された歌 で紙の画像が上帯であり、面ペレークが作像された歌 は、消去しない」を選択し、板詰 まり発生度後に読み込まれるべきであった次の原稿画像 から読み込みを買用させる。

【00161本発明の請求項3に記載の画像形成装置 は、前記第3の目的を達成するため、原稿語が取り部に 病稿を搬送する原稿搬送装置と、読み取られた複数の原 稿画像を確保データとして記憶する画像メモリと、該画 像メモリに記憶されている画像データを読み出して該画 像データに基づき転写紙に原稿画像を作像する画像形成 片段と、部記画像メモリに格納されている画像データに対 がする原稿画像を表示可能と表示手段と、原稿報話ま りの場合に前記画像メモリに格納された画像データに対 広する原稿画像を表示可能と表示手段と、原稿報話ま りの場合に前記画像メモリに格納された画像データに対 広する原稿画像を逐次表示させる制御手段と、前記表示 手段に表示されている原稿画像に対応する画像データを 選択的に無効化する操作器とを有する。

【0017】請求項3に記載の画像形成装置によれば、原稿紙語まりが発生した場合、原稿紙語まりが発生した場合、原稿紙語まり発生時に画像メモリから画像データか認み出され、原統画像が近次表される。オペレータはその原稿画像が表次表でされる。オペレータはその原稿画像が表次表されるで、画像メモリ内の画像データを消去するか否かを判断し、表示された原稿画像にベージの飛び、あるいは、原衛画像が斜めに作像されている等の異常が認められた場合、オペレータは「消去する」を選択してその画像データを消失の画像が一番の画像が一番の一般である。

タを無効にする。オペレータは表示された原稿画像が正 常であり、その原稿画像を消去しなくても良いと判断し た場合には、「消去しない」を選択する。これにより、 原稿画像の読み込みが再開可能となり、オペレータは正 常な原稿画像の次の原稿から読み込みを再開させる。 【0018】本発明の請求項4に記載の画像形成装置 は、原稿画像の紙詰まりが生じた場合、表示手段には紙 詰まり発生時に最後に読み込まれた原稿に対応する原稿 画像のみが表示され、オペレータはその表示手段に表示 されている原稿画像を見て、その原稿画像に対応する画 像メモリの画像データを消去するか否かを判断する。 【0019】本発明の請求項5に記載の画像形成装置 は、前記第5の目的を達成するため、原稿読み取り部に 原稿を搬送する原稿搬送装置と、読み取られた複数の原 稿画像を画像データとして記憶する画像メモリと、該画 像メモリに記憶されている画像データをページ順にソー トして原稿画像を転写紙に作像する画像形成手段と、一 連の原稿の読み込み終了後に読み込まれた原稿の枚数又 はページ数を意味する数値とその数値で良いか否かのメ ッセージとを含む操作画面情報を表示する表示手段と オペレータが表示されている数値で良いと判断したとき には作像動作を実行させ、良くないと判断したときには 前記画像メモリに格納されている画像データを無効化 し、再び原稿読み込みを開始させる操作部とを有する。 【0020】この発明によれば、ページ抜け、原稿の重 送を、作像作業を実行する前にあらかじめ確認できる。 【0021】本発明の請求項6に記載の画像形成装置 は、表示手段には原稿紙詰まりが発生した場合にのみ操 作画面情報が表示される。 [0022]

【発明の実施の形態】図1は画像形成装置の名構成要素の配置関係を示す概要図である。この図1において、対
ラ1 Aは画像形成装置の本体部である。その本体部1 Aにはこれに開発してフィニッシャ100が設けられている。本体部1 Aの上部には、ADF1と操作部30(図2を参照)とが設けられている。ADF1は原稿20位置を有する。原稿台2には原稿の東がその画像面を上面にしてセットされる。操作部30は表示手段としての液晶タッチパネル31、テンキー32、クリア/ストップキー33、スタートキーとしてのプリントキー34、モードクリアキー35、初期設定キー38を有する。液晶タッチがあい31には、機能キー36a、部数及び画像形成装置の状態を示すメッセージ37等が表示される。図3はその溶晶タッチパネル31には、機能キー36a、部数及び画像形成装置の状態を示すメッセージ37等が表示される。図3

はなの機能カッテハネルシ 1 の恵大学間別を示す。 【 00 23 】 操作都30 のプリントキー3 4 が押される と、一番下の原稿から順に給送ローラ3、 熱送ペルト4 によってコンタクトガラス6 の所定の位置に給送され る。 符号5 0 はスキャナーとしての范取りユニットであ り、読取りユニット 5 0 は、コンタクトガラス6 と光学 走査系とから構成され、光学走査系は露光ランプ5 1、 第1ミラー52、レンズ53、CCDイメージセンサー 54、第2ミラー55、第3ミラー56を有する。露光 ランプ51及び第1ミラー52は図示を略す第1キャリ ッジに固定され、第2ミラー55及び第3ミラー56は 図示を略す第2キャリッジに固定されている。

【0024】原稿画像の読み取り時、光路長が変わらな いように、第1キャリッジと第2キャリッジとが2対1 の相対速度で機械的に操作される。この光学走査系は、 図示を略す駆動モータによって駆動される。原稿画像 は、CCDイメージセンサ54によって読み取られ、電 気信号に変換されて処理される。画像倍率はレンズ53 及びCCDイメージセンサ54を図1において左右方向 に移動させることにより変更され、指定された倍率に対 応してレンズ53及びCCDイメージセンサ54の左右 方向の位置が設定される。コンタクトガラス6にセット された原稿の原稿画像は読取りユニット50によってデ ジタル画像データとして読み取られる。その読み取りが 終了した原稿は、給送ベルト4、排送ローラ5によって コンタクトガラス6から取り除かれる。原稿台2には原 稿セット検知センサ7が設けられ、次の原稿が存在する ことが検出された時、その原稿がコンタクトガラス6に 給送され、その原稿の原稿画像が同様に読み取られる。 【0025】給送ローラ3、給送ベルト4、排送ローラ 5は図4に示す搬送モータ26によって駆動される。こ れらの制御はメインコントローラ20によって行われ る。本体部1A内には第1トレイ8、第2トレイ9、第 3トレイ10が設けられ、この第1トレイ8、第2トレ イ9、第3トレイ10には各サイズ、各向きの転写紙が 積載されている。各トレイ8、9、10には、第1給紙 装置11、第2給紙装置12、第3給紙装置13がそれ ぞれ設けられ、各転写紙は各給紙装置11によって給紙 される。本体部1A内には縦搬送ユニット14が設けら れ、転写紙はその縦搬送ユニット14によって画像形成 手段としての感光体15に当接する位置まで搬送され る。感光体15の上部には画像形成手段の一部を構成す るプリンタとしての書き込みユニット57が設けられて いる。この書き込みユニット57は、レーザ出力ユニッ ト58、結像レンズ59、ミラー60から構成されてい る。レーザ出力ユニット58の内部には、レーザ光源と してのレーザダイオード及びモータによって一定速度で 高速回転する多角形ミラー (いわゆるポリゴンミラー) が備えられている。書き込みユニット57から出力され たレーザ光は、感光体15に照射される。感光体15の 一端近傍には、レーザビーム照射箇所に、主走査同期信 号を発生するビームセンサ (図示を略す) が配置されて いる。読み取りユニット50により読み込まれた画像デ ータは、書き込みユニット57のレーザービームによっ て感光体15に書き込まれ、現像ユニット27によりト ナー像が感光体15に形成される。転写紙は感光体15 の回転速度と等速で搬送ベルト16によって搬送され、

感光体15を通過することにより、その転写紙に感光体 15のトナー保が転写される。感光体15、散送ペルト 16、定着ニニット17、排紙ユニット18、現像ユニット27はメインモータ25によって駆動され、各給紙 装置11~13にはメインモータ25の駆動がそれぞれ 給紙クラッチ22~24によって伝達駆動される。緩散 ジユニット14にはメインモータ25の駆動が中間クラッチ21によって伝達駆動される。

【0026】転写紙には、その後、定着ユニット17に より原稿画像が定着され、排紙ユニット18によりフィ ニシャ100に排出される。フィニシャ100は、排紙 ユニット18の排紙ローラ19によって搬送された転写 紙を、通常排紙ローラ102への方向と、ステーブル処 理部の方向とに導くことができる。切り替え板101を トに切り替えると、転写紙はスタッカ排紙ローラ103 を経由して通常排紙トレイ104に排出させることがで きる。また、切り替え板101を下方向に切り替える と、搬送ローラ105、107を経由して、ステープル 台108に排出させることができる。 ステーブル台10 8に排出された転写紙は、一枚排出されるごとに紙揃え 用のジョガー109によって、紙端面が揃えられて積載 される。そのステープル台108に排出された転写紙は コピー部数が一部単位で完了する毎にステープラ106 によって綴じられる。このステープラ106により綴じ られた転写紙は自重によって降下し、ステーブル完了排 出トレイ110に収納される。通常排紙トレイ104は 前後に移動可能であり、この通常排紙トレイ104は、 原稿毎、あるいは、画像メモリによってソーティングさ れたコピー部毎に、前後に移動し、簡易的に排出されて くるコピー紙を仕分ける。

【0027】メインコントローラ20は画像処理部(I PUともいう) 49を有する。このIPU49は、図5 に示すように、CCDイメージセンサ54から出力され た光電変換信号をデジタルデータに変換するA/Dコン バータ61を有する。そのデジタルデータに変換された 画像データは、シェーディング補正回路62によりシェ ーディング補正がされた後、MTF・γ補正回路63に よってMTF補正、γ補正がなされる。そのMTF・γ 補正がされた画像データはセレクタ64に送られ、セレ クタ64は画像データの送り先を、変倍部71と画像記 憶手段の一部を構成する画像メモリコントローラ65と の間で切り替える役割を有する。変倍部71に導かれた 画像データは変倍率に合わせて拡大縮小されて、書き込 みユニット57に送られる。画像メモリコントローラ6 5とセレクタ64とは、双方向に画像データを授受可能 な構成となっている。画像処理部49は、画像メモリコ ントローラ65の設定、読み取りユニット50、書き込 みユニット57の制御を行うためのCPU68、その制 御のためのプログラム、データを格納するROM69、 RAM70を備えている。CPU68は画像メモリコン

トローラ65を介して、画像記憶手段の一部を構成する 画像メモリ66のデータの書き込み、読み出しを行なう ことができる。なお、符号67は各電子制卸機器との入 出力を司る I/Oボートである。

【0028】図6はセレクタ64における1ページ分の 画像データの説明であり、この図6(イ)において、/ FGATEは、1ページの画像データの副走査方向の有 効期間を示すフレームゲート信号、/LSYNCは1ラ イン毎の主走査同期信号であり、この/LSYNCの立 ち上がり後の所定クロック数で画像データが有効とな る。また、/LGATEは主走査方向の画像信号が有効 であることを示すラインゲート信号である。これらの各 信号は、画素クロックVCLKに同期しており、画素ク ロックVCLKの1周期に対して1画素8ビット(25 6階調)のデータが送られる。ここでは、転写紙への書 込密度は400dpi、最大画素数は主走査方向で48 00画素、副走査方向で6800画素である。転写紙に 画像形成される画像データと、フレームゲート信号、ラ インゲート信号との関係が図6(ロ)に示されている。 ここでは、画像データは255に近いほど白画像にな

【0029】画像メモリコントローラ65と画像メモリ 66によって実現される画像圧縮・伸長機能について次 に図7を参照しつつ説明する。

【0030】メモリコントローラ65には圧縮器 (COMP) 290と伸長器(EXP) 291とが設けられ、
の圧縮器 290と伸長器(EXP) 291とが設けられ、
の圧縮器 290と伸長器を291とは画像メモリる6のメモリユニット(Memory Unit) 292の前後に配置され、メモリユニット292には実データ以外の圧縮データも格納できるようになっている。圧縮器 290はスキッナの速度に合わせて動作し、伸長器 291はアリンタの速度に合わせて動作する必要があり、実データを格納する場合には、マルチプレクサ州 UX(4) 293と MUX(5) 294をそれぞれ A入力にし、圧縮データを用いる場合はそれぞれ B入力にする。 なお、 295はエラー検知器(CERRORDETECT)である。

【0031】 メモリユニット292には、3個の画像データタイプと、圧縮データとしてのコードデータとを扱うための入力データ幅変換器301、メモリブロック302、ダイレクトメモリコトローラ(DMC1、DMC2)303、304を有する。入力データ幅変換器00はメモリブロック302の入力側に設けられ、出力データ解変換器301はメモリブロック302の入りドレスモリ3ントローラ303は、パックされだデータ数とメモリデータ解に応じてメモリブロック302の所定のアドレスにデータを書き込む動作、ダイレクトメモリコトローラ304は、パックされたデータ数とメモリデータ相に応じてメモリブロック302の所定のアドレスにデータを書き込む動作、ダイレクトメモリコトローラ304は、パックされたデータ数とメモリデータ相に応じてメモリブロック302の所定のアドータを開ていることでは、3個の画像データイトンを表しまります。

レスからデータを読み取る動作を行う。

【0032】図9は画像データのデータタイプを示し、温常、読取りユニット50からメモリユニット292への画像板送速度、または、書き込みユニット57への画像データの転送速度は、8ビットデータ (タイプ3)、4ビットデータ(タイプ3)、1ビットデータ(タイプ3)、1ビットデータ(タイプ3)、1ビットデータ(タイプ3)、2000年では、8本のデータラインの上位ビット(MSB)勝の大きで、1ビットデータ、4ビットデータ、8ビットデータとして上位ビット(MSB)勝つデータをとして上位ビット(MSB)勝つデータを表している。スカデータ報変操器300と出方データ報変操器301とはそのマータを来りブロックのデータ幅(16ビット)にパック、アンパックする。このパックによってデータ深さに応じてメモリを使うことができ、メモリユニット292の有効利用が可能になる。

【0033】図10は圧縮器290と伸展器291の代わりにピケセルプロセスユニット(PPU)310をメモリユニット292の外部に配置した例を元上、PPU 310はイメージデータ間のロジカル演算(例えばAN D、OR、EXOR、NOT)を実現する機能を有し、メモリユニット292かの入力データ(例えば、スキャンデータ)とを演算して書き込みユニット57に出力すること、及び、再びメモリユニット592に格納する用を果たす。書き込みユニット57と出力エット292との切り替えは、MUX(6)311とMUX(7)312により行う。これは一般的に関係合成に使力人例えば、メモリユニット292にオーバーレイデータを置き、スキャナデータにオーバーレイぞかぶせるときに使用される。

【0034】図11は圧縮及び伸長の処理速度が間に合 わなかったとき、100%リカバリー(回復)できるよ うにしたもので、メモリユニット292にはスキャナ走 査と同時に圧縮データとイメージデータとがメモリユニ ット292に入力される。その入力データはそれぞれ別 のメモリエリアに格納されるが、圧縮データはそのまま 伸長器291に入力されて伸長される。1ページのデー タが全てメモリユニット292に入力されるまでに、圧 縮器290及び伸長器291の処理時間が間に合って、 正常終了した場合には、圧縮データのみがメモリエリア に残り、生データのエリアは消去される。もし、エラー 検出回路295が圧縮器290又は伸長器291からエ ラー信号を検出した場合、直ちに圧縮データエリアが取 り消され、生データが採用される。メモリ管理ユニット (MMU) 330は、メモリユニット292に対して2 つの入力データと1つの出力データとが同時に入出力で きるようにメモリ制御する。このリアルタイムで圧縮及 び伸長の検定を行うことにより、高速性と確実性とメモ リエリアの有効利用とが可能となる。ここでは、メモリ

管理ユニット330によってメモリエリアのダイナミクなアロケーションができるようにしたが、生データータ 足圧器データ用の2つのメモリユニットを特たせてもよい。この構成は、電子ソーティングのように複数のページを格制し、リアルタイムでプリンタに出力する用途、 結約ページ数とプリント速度とを両立させなければならない用途に懸慮である。

【0035】次に、図12に示すフローチャートに基づき、本発明の画像形成装置の動作について機略説明する。

【0036】電源を投入すると、まず初期化処理が行わ れ(S.1)、各種フラグのリセット、各種カウンター のクリア、画像メモリのクリア、画像形成モード(変 倍、分割など)のリセット等が行われる。その初期化の 詳細な説明は省略する。この初期化終了後、キー入力又 は画像形成エンジンからのイベント (何等かの変化要 因)の発生待ちとなる(S.2)。オペレータが何等か のキー操作を行うと、操作部30からキー入力イベント がメインコントローラ20に通知され、また、何等かの 画像形成エンジンの変化、例えば、ADF1に原稿をセ ットすると、原稿セット検知センサ7の信号の変化によ るエンジン・イベントがメインコントローラ20に通知 され、キー又はエンジンのうちの何れかのイベントが発 生すると、S. 3に進み、発生イベントがキー入力イベ ントか又はエンジンイベントかを判定する。エンジンの 場合、エンジンイベント処理(S.4)を行い、キー入 力の場合、キー入力イベント処理(S.5)を行い、再 び、S. 2のイベント待ちに戻る。

【0037】このイベント処理の過程で、コピー動作 (作像動作)、原稿読取り動作が行われる。

【0038】図13は、ソートモードが選択されて、プ リントキー34が押された場合のコピーフローチャート を示し、メインコントローラ20は操作部30のプリン トキー34が押されたか否かをチェックする(S.1) 1)。プリントキー34が押されると、ADF1はセッ トされた原稿の束を順番にコンタクトガラス4に搬送す る。これにより、画像メモリ66に原稿画像が読み込ま れる(S. 12)。原稿読み込み終了後、S. 13に進 み、画像メモリ66に記憶された原稿画像をページ順に 合わせながら、転写紙にコピー(作像)出力する。一枚 の転写紙に原稿画像がコピーされるたびに、S. 14に おいて、全ての原稿画像を出力したか否かが判断され、 出力されていない原稿画像がある場合には8.13に戻 って次の原稿画像をページ順に出力し、全ての原稿画像 のコピー出力が完了すると、S. 15に進んで、コピー 部数カウンタが「1」つカウントアップされ、このカウ ントアップ後、S. 16に進んで、オペレータのセット したコピー部数の数値とコピー部数カウンタの数値との 比較を行い、一致していない場合には、S. 13に戻っ て、S. 13からS. 16までの処理を繰り返し、一致

したときは、オペレータがセットしたコピー部数のコピ 一動作が行われたことになるので、処理を終了する。 【0039】図14は図13の原稿読み込み動作処理 (ステップS, 12) の詳細フローであり、S, 21に おいて、ADF1の原稿台2に原稿が在るか否かが判断 され、「YES」のときは、既述したようにコンタクト ガラス4の所定位置に原稿が搬送され(S. 22)、次 に、読取りユニット50がスキャン駆動されて原稿画像 が読み込まれ(S. 23)、読み込まれた画像データが 圧縮され(S. 24)、画像データの圧縮処理が終了し たか否かが判断され(S. 25)、圧縮処理が完了して いない場合にはS.24に戻って、圧縮処理を繰り返 し、この圧縮処理が完了したなら、S. 26に進んで、 圧縮原稿画像の原稿ページ数を意味する圧縮ページカウ ンタをインクリメントした後、S. 21に戻り、この原 稿の搬送、読み込み、画像データ圧縮の一連の処理が原 稿台2から原稿がなくなるまで繰り返し行われる。

【0040】この原稿の読み込みの過程で、紙結まり、 いわゆる原稿シャムを起こすことがあり、本発明では、 以下に説明する発明の実施の形態により、この原稿ジャ ムに記聞する不具合を解消することとした。 【0041】

【発明の実施の形態1】図15は請求項1に記載の画像 形成装置の発明の実施の形態を説明するためのフローチ ャートであり、原稿ジャム、搬送紙ジャムのいずれかが 発生すると、メインコントローラ20はジャムイベント 処理に入り、このジャムイベント処理においては、ま ず、S、31において、原稿ジャムであるか否かが判断 され、転送紙ジャムの場合、S. 37に進んで、所定の 転写紙ジャム処理が行われるが、その詳細な説明は省略 する。原稿ジャムの場合、S. 32に進んで、ジャム発 牛時に読み込まれた原稿のページ数、枚数を意味する圧 縮ページカウンタの値により参照される画像メモリから 画像データを読み出して原稿画像を転写紙に出力させ る。この作像処理は、画像メモリ66から画像データを 読み出してコピー動作を行わせる通常のコピー処理と同 様の処理である。この転写紙への出力後、S. 33に進 んで、操作部30の液晶タッチパネル31に図16に示 す操作画面情報を出力表示する。操作画面情報には、メ ッセージ37、「消去する」キー、「消去しない」キ 一、ジャム発生時までに読み込まれた原稿枚数(又はべ 一ジ数)が表示される。

【0042】オペレータはこの操作画面情報を見ながら キー入力操作を行うもので、ジャム発生時に読み込まれ た原稿の原稿画像を転写紙に出力させて見た結果、その 原稿画像の品質が望ましくないと判断したときには、

「消去する」を選択し、その原稿画像の品質が何等支降 のないものである場合には、「消去しない」を選択する もので、メインコントローラ20はS. 33の処理実行 後、S. 34に進む。そのS. 34において、「消去す る」が鑑択された場合、S、35に進んで、圧縮ページ カウンタが「-1」され、S、32に戻って、原稿ジャ み発生時に操後に誇み込んだ解務がら遡って製えて2番 目に読み込まれた原稿画像が転写紙に出力されると共 に、S、33においてその原稿画像を消去するかしない かの操作画面特が操作部30に出力表示される。一 方、S、34において「消去しない」が選択された場 合、S、36に進んで、原稿ジャムが解除され、一連の の解診がム処理が終了する。例えば、オペレータは、そ の最後に読み込んだ原稿が通って数えて3番目に読み 込まれた原稿画像を正常であると判断した場合、ジャム 処理終了後、その最後から2番目の原稿から原稿画像を 再度読み込ませる。

【0043】なお、オペレータが「消去する」を選択した場合、面像メモリ66に格納されている画像データを必ず消去させなければならないというわけてはなく、再度読み込まれた原稿画像を消去予定の画像メモリ66にオーバーライトすることにより、実質上消去された状態とすることができ、この意味で、操作部30は画像形成手段によって作像された画像に対応する画像メモリ上の画像データを無効化する役割を果たし、この無効化はオペレータの整志によるものであるので選択的である。

[0044]

【発明の実施の形態2】図17は請求項2に記載の画像 形成装置の発明の実施の形態を説明するためのフロチ ャートであり、S、41からS、44までの処理は、図 15のS、31からS、34までの処理と大戦同じであ り、また、S、41において、転送紙ジャムと判断され た場合のステップS、47の処理は図15のステップ S、37の処理と同じであるので、その詳細な説明は省 略し、異なる部分についてのみ説明する。

【0045】この発明の実施の形態2においては、操作 部30の被晶タッチパネル31には図18に示す操作画 面情報が出力表示され、操作画面情報は、メッセージ3 、「消去する」キー、「消去しない」キーからなる。 【0046】オペレータは、原稿ジャム発生時に転写紙 に出力された原稿画像を見た結果、その原稿画像の品質 が望ましくないを判断したときには、「消去する」を選 択し、その原稿画像の品質が何等支険のないものである 場合には、「消去しない」を選択し、S、44において 「消去する」を選択すると、メインコントローラ20は S、45に進んで、圧縮ページカウンタが「-1」さ れ、原稿ジャムの解除処理(S、46)が実行され、

「消去しない」を選択した場合、S. 45をスキップして原稿ジャムの解除処理(S. 46)が実行される。従って、この雰囲の実態の形態2では、最後の原稿の画像のみを再度読み込ませることになる。

【0047】通常、原稿ジャムが発生した場合、最後に 読み込まれた原稿の画像が斜めに読み込まれていたり、 基準の位置からずれていることが大半で、最後から遡っ て数えて2番目以降に読み込まれた原稿の画像には支障 がないことが多いからである。

[0048]

【発明の実施の形態3】図19は請求項3に記載の画像 形成装置の発明の実施の形態を説明するためのフローチャートであり、この発明の実施の形態は、発明の実施 形態1の図15に示すフローチャートに対応しており、 ステップS.51はステップS.31と同一の処理、ステップS.53からステップS.56まではステップS.36までと同一の処理、ステップS.76まではステップS.77と同一の処理、ステップS.57はステップS.37と同一の処理であって、ステップS.52の処理がステップS.32の処理と異なるのみであるので、異なる部がについてのみ説明することする

【0049】発明の実施の形態1では、原稿ジャムが発生した場合、撤送紙に作機して原務画像に支陸があるかを判断したが、この発明の実施の形態では、原稿ジャムが発生した場合、S.52において、ジャム発生時に読み込まれた原称ページ数、原稿校数を意味する圧縮ページカウンの数値により寒観さる画像メモリから画像データが読み出され、S.53の処理に進んで、図20に示すように、操作部30の液晶ラッチパネル31 に原稿繭像377が、メッセージ37、「消去しない」キー、読み込まれた原稿の枚数(ページ数)を意味する数値からなる操作画面情報と共に出力表示される。

【0050】この原稿画像37~の画像データは図5に 示す画像メモリ66からメモリコントローラ65を通 り、CPU68にデータバスを介して流れ、このCPU 68によりデータの間引きが行われ、図示を略すシリア ル通信ラインを介して図4にデッオソコントローラ2 0に伝送され、操作部30にデータとして被多れる。操 作部30はそのデータをビットマップ化し、操作部30 の液晶タッチパネル31に縮小された原稿画像37^{*}が 表示される。

【0051】オペレータはこの原稿画像37、操作画面情報を見ながらキー入力操作を行うもので、ジャム発生時に読み込まれた原稿の原稿画像を転写紙に出力させて見た結果、その原稿画像の品質が望ましくないと判断したときには、「消去する」を選択し、その原稿画像の品質が何家支障のないものである場合には、「消去しない」を選択する。その後の処理は、発明の実施の形態1と同じであるので、その詳報な説明は省略する。

[0052]

【発明の実験の形態4】図21は請求項4に記載の画像 形成装置の発明の実施の形態を説明するためのフロー サートであり、S、61からS、64までの処理は、図 19のS、51からS、54までの処理と大略同じであ り、また、S、61において、転送紙ジャムと判断され た場合のステップS、67の処理は図19のステップ S. 57の処理と同じであるので、その詳細な説明は省略し、異なる部分についてのみ説明する。

【0053】この発明の実籍の形態4においては、操作 部30の液晶タッチパネル31には図22に示す原稿画 像37~と操作画面情報とが出力表示され、操作画面情報 制は、メッセージ37、「消去する」キー、「消去しな い」キーからなる。

【0054】オペレータは、流晶タッチパネル31に表示されている原稿画像を見た結果、その原稿画像の品質が望ましてないと判断したときには、「消去する」を選択し、その原稿画像の品質が何等支棘のないものである場合には、「消去しない」を選択し、S.64において「消去する」を選択すると、メインコントローラ20に、「消去する」を選択すると、メインコントローラ20に、「消去する」を選択すると、メインコントローラ20に、「消去した場合」を発行され、「消去しない」を選択した場合、S.65をスキップして原稿ジャムの解除処理(S.66)が実行される。従って、この発明の実権の形態では、発明の実権の形態では、発明の実権の形態では、発明の実権の形態では、発明の実権の形態では、発明の実権の形態では、発明の実権の形態では、発明の実権の形態では、発明の実権の形態では、発明の実権の形態では、発明の実権の形態と

と同様に最後の原稿の画像のみを再度読み込ませること

になる。 【0055】

【発明の実施の形態5】図23は請求項5に記載の画像 形成装置の発明の実施の形態を説明するためのフローチ ャートであり、メインコントローラ20はプリントキー 34の状態を判断し(S. 71)、プリントキー34が 押されると、原稿の読み込み動作を行う(S. 72)。 この原稿の読み込みが終了すると、画像形成装置の一連 の機械的動作が中断され、操作部30に圧縮ページカウ ンタの値と共にメッセージ37等の操作画面情報が表示 出力される。図24はその操作部30の液晶タッチパネ ル31に表示された操作画面情報を示し、操作画面情報 には、メッセージ37、「OK」キー、「NG」キー、 読み込まれた原稿枚数 (ページ数) が表示される (S. 73)。オペレータはこの図24に示す操作画面情報に 基づき、所望の枚数の原稿が読み込まれたか否かを確認 する。メインコントローラ20はここでは先ず「OK」 キーが押されたか否かを判断する(S.74)。「YE SIのときはS. 77に進み、「NOIのときはS. 7 5に進んで、「NG」キーが押されたか否かを判断す る。「YES」のときはS.76に進み、「NO」のと きは5.74に戻る。

【0056】S、77においては、画像形炭差置は画像 の出力フェイズに移行し、画像メモリ66から画像データが呼び出され、原稿画像が作儀され、図 13のS・1 4からS・16までの処理と同一の処理がS・77から、80までにおいて行われ、オペレータがセットしたコピー部級かのコピーが行われる。「NG」キーが押された場合。S、76に進み、メインコントローラ20は 活み込みにより蓄積された画像データを全て消去し、ステップ71に戻る。この場合、オペレータは原稿を再度

読み込ませることになる。

【0057】なお、S.73の処理とS.77の処理との間でS.74からS76までの処理を行う代わりに、S.73の処理の後にS.77の処理を行い、S.77とS.78の処理の後にS.74からS.76までの処理を行うことにしても良く、この場合には、原稿画像の読み込み完了と同時にS.77において作像(コピー)が開始され、この作像(コピー)の途中で「NG」キーを押すことが可能となる。

[0058]

【発明の実施の形態6】図25は請求項6に記載の画像 形成装置の発明の実施の形態を説明するためのフローチ ャートであり、メインコントローラ20はプリントキー 34の状態を判断し(S. 81)、プリントキー34が 押されると、原稿の読み込み動作を行い(S.82)、 この原稿の読み込み動作の過程で、図26に示すジャム イベント処理を実行する。このジャムイベント処理は、 S. 91において、原稿ジャムが発生したか否かを確認 し、転写紙ジャムの場合、S. 95に進み、原稿ジャム の場合、S92に進んで原稿ジャムフラグを「ON」に セットし、その後、オペレータによる原稿ジャム処理が 終了したか否かをチェックし(S.93)、終了してい れば、ステップ94に進んでジャム解除処理を行い、メ インフローに戻り、S. 83に進んで、原稿ジャムフラ グが「ON」であるか否かが判断される。原稿ジャムが 発生していた場合、S. 84において、原稿ジャムフラ グが「OFF」にリセットされ、画像形成装置の一連の 機械的動作が中断され、操作部30に圧縮ページカウン タの値と共にメッセージ37等の操作画面情報が表示出 力され(S. 85)、その操作画面情報は図24に示す 操作画面情報と同一であり、その詳細は省略する。オペ レータはその図24に示す操作画面情報に基づき、所望 の枚数の原稿が読み込まれたか否かを確認し、メインコ ントローラ20はここでは先ず「OK」キーが押された か否かを判断し(S. 85)、図23のS. 74から S. 76までの処理に対応する処理をS. 86、S. 8 6 ~、S. 87 ~ のステップにおいて行い、図23の S. 77からS. 80までの処理に対応する処理をS.

87からS. 90までのステップにおいて行う。 【0059】S. 83において、原稿ジャムフラグが

「OFF」と判断された場合、S. 87にジャンプし、 操作部30に操作画面情報が表示されず、S. 87以降 の作像処理が実行されることとなる。

【0060】この発明の実施の形態によれば、ページ狂いの生じやすいADFジャムが発生したときにのみ原稿 枚数の確認表示を出力させることができる。

[0061]

【発明の効果】

(請求項1の効果)原稿の画像読み込み段階でADFに ジャムが発生した場合、どこまで原稿を正確に読み込ん だかを明確にするために、これまでに読み込んだ原稿画 像を選次底字紙に作像してオペレータに週知できるの で、正確に読み込まれた原稿をオペレータに認識させ、 いいては、原稿画像のページ抜け、原稿画像のダブり出 力を回避し、コピー作業の無駄な時間を省くと共に、省 資源化に資することのできる。

【0062】(請求項2の効果) 請求項1の効果に加えて、複雑な操作を行うことなく、オペレータは最後に読み込まれた原稿の画像が正常か否かを知ることができる。

【0063】(請求項3の効果) 本発明によれば、請求項1の効果に加えて、原稿画像のページ抜け、原稿画像のグブり出力を転写紙に作像することなく確認できる。【0064】(請求項4の効果) 請求項3の効果に加えて、複雑な操作を行うことなく、オペレータは最後に読み込まれた原稿の画像が正常が否かを知ることができ

○ (0065] (請求項5の効果)作像出力する前に読み 込まれた原稿枚数又はページ数を確認することにより、 ADFによる原稿の重送、ページ抜けが発生したか否か を確認でき、もって、効率的な作像作業に資することが できる。

【0066】(請求項6の効果)原稿ジャムが発生した 場合にのみ、作機出力する前に読み込まれた原稿の枚数 又はページ数を表示させることにしたので、ジャム非発 生時には、不必要な停止を実行することがなく、かつ、 複雑な機能も省くことができる。

【図面の簡単な説明】

【図1】 本発明に係わる画像形成装置の全体構成を示す概略図である。

【図2】 本発明に係わる操作部の配置を示す平面図である.

【図3】 図2に示す液晶タッチパネルの拡大平面図である。

【図4】 本発明に係わる制御回路のブロック構成図である。

【図5】 図4に示す画像処理部(IPU)の詳細構成を示すブロック図である。

【図6】 画像データのタイミングチャートを示し、

(イ)は主走査同期信号とフレームゲート信号との関係を示し、(ロ)は画素クロックと画像データとラインゲート信号との関係を示している。

【図7】 画像メモリコントローラと画像メモリとによって実行される画像圧縮・伸張回路のブロック図である.

【図8】 図7に示すメモリユニットの詳細構成を示す ブロック図である。

【図9】 画像データのタイプの説明図である。

【図10】 図7に示す画像圧縮・伸張回路の変形例を 示すブロック図である。 【図11】 図7に示す画像圧縮・伸張回路の変形例を 示すブロック図であって、リカバリー回路を設けたブロック図である。

【図12】 この発明の実施の形態1のメインフロー図

【図13】 この発明の実施の形態1のコピー動作を説明するためのフロー図である。

である.

【図14】 この発明の実施の形態1の読み込み動作を

説明するためのフロー図である。

【図15】 この発明の実施の形態1のジャムイベント 処理を説明するためのフロー図である。

元星を説明するだめのプロー国とある。 【図16】 この発明の実施の形態1において、液晶タッチパネルに表示される操作画面情報の説明図である。

ッサンスのルに表示される採作画面情報の話の話である。 【図17】 この発明の実施の形態2のジャムイベント 処理を説明するためのフロー図である。

【図18】 この発明の実施の形態2において、液晶タッチパネルに表示される操作画面情報の説明図である。

【図19】 この発明の実施の形態3のジャムイベント 処理を説明するためのフロー図である。

【図20】 この発明の実施の形態3において、液晶タ

ッチバネルに表示される操作画面情報の説明図である。 【図21】 この発明の実施の形態4のジャムイベント 処理を説明するためのフロー図である。

【図22】 この発明の実施の形態4において、液晶タッチパネルに表示される操作画面情報の説明図である。 【図23】 この発明の実施の形態5を説明するためのフロー図である。

【図24】 この発明の実施の形態5において、液晶タッチバネルに表示される操作画面情報の説明図である。

「図25」 この発明の実施の形態6を説明するためのフロー図である。

【図26】 この発明の実施の形態6のジャムイベント 処理を説明するためのフロー図である。

【符号の説明】 1…原稿搬送装置

20…メインコントローラ (制御手段)

30…操作部 50…読取りユニット (原稿読取り部)

57…書き込みユニット(画像形成手段)

66…画像メモリ

【図1】

【図18】

【図13】

【図17】

【図19】

【図21】

【図23】

【図25】

【図26】

