COS221 - L22 - Normalisation - 1NF, 2NF and 3NF

Linda Marshall

24 April 2023

 First normal form - All attributes of the relation must be atomic

Consider the following relation (a) and state (b): Ignore Fig 14-9(c) for now

1NF. (b) Sample state of relation DEPARTMENT. (c) 1 NF version of the same relation with redundancy.

Figure 14.9

Normalization into 1NF. (a) A

relation schema that is not in

The relation is not in a normal form due to the **multivalued** attribute Dlocations

Follow one of the following to remove the multivalued attribute.

- 1. Remove the attribute that violates the atomic requirement. Create a new relation with the primary key of the original relation and the non-atomic attribute as the primary key.
- 2. Expand the key of the relation to include the non-atomic attribute as part of the key.
- 3. If the number of instances of the non-atomic attribute is known, replace the attribute with that many additional attributes.

First Normal Form - 1NF (Option 1)

Follow one of the following to remove the multivalued attribute.

 Remove the attribute that violates the atomic requirement. Create a new relation with the primary key of the original relation and the non-atomic attribute as the primary key.

- 2. Expand the key of the relation to include the non-atomic attribute as part of the key.
- 3. If the number of instances of the non-atomic attribute is known, replace the attribute with that many additional attributes.

First Normal Form - 1NF (Option 2)

Follow one of the following to remove the multivalued attribute.

- Remove the attribute that violates the atomic requirement.
 Create a new relation with the primary key of the original relation and the non-atomic attribute as the primary key.
- 2. Expand the key of the relation to include the non-atomic attribute as part of the key.

(c)			
DEPARTMENT			
Dname	Dnumber	Dmgr_ssn	Dlocation
Research	5	333445555	Bellaire
Research	5	333445555	Sugarland
Research	5	333445555	Houston
Administration	4	987654321	Stafford
Headquarters	1	888665555	Houston

3. If the number of instances of the non-atomic attribute is known, replace the attribute with that many additional attributes.

First Normal Form - 1NF (Option 3)

Follow one of the following to remove the multivalued attribute.

- 1. Remove the attribute that violates the atomic requirement. Create a new relation with the primary key of the original relation and the non-atomic attribute as the primary key.
- 2. Expand the key of the relation to include the non-atomic attribute as part of the key.
- If the number of instances of the non-atomic attribute is known, replace the attribute with that many additional attributes.

DEPARTMENT(Dname, <u>Dnumber</u>, Dmgr_ssn, Dlocation1, Dlocation2, Dlocation3)

What about nested relations?

▶ Remove the nested relation attributes into a new relation and propagate the primary key to it. The primary key of the new relation will combine the partial key with the primary key of the original relation.

Consider the relation:

EMP_PROJS(<u>Ssn</u>, Ename, PROJS(<u>Pnumber</u>, Hours)) In this case, PROJS is nested and multivalued. Ssn is the primary key and Pnumber a partial key.

(a)

EMP_PROJ		Projs	
Ssn	Ename	Pnumber Hours	

(b)

EMP_PROJ

EMP_PROJ			
Ssn	Ename	Pnumber	Hours
123456789	Smith, John B.	1	32.5
		2	7.5
666884444	Narayan, Ramesh K.	3	40.0
453453453	English, Joyce A.	1	20.0
		2	20.0
333445555	Wong, Franklin T.	2	10.0
		3	10.0
		10	10.0
L		20	10.0
999887777	Zelaya, Alicia J.	30	30.0
		10	10.0
987987987	Jabbar, Ahmad V.	10	35.0
		30	5.0
987654321	Wallace, Jennifer S.	30	20.0
		20	15.0
888665555	Borg, James E.	20	NULL

relations into 1NF.

(a) Schema of the
EMP_PROJ relation with
a nested relation attribute
PROJS. (b) Sample
extension of the
EMP_PROJ relation
showing nested relations
within each tuple.
(c) Decomposition of

EMP_PROJ into relations EMP_PROJ1 and EMP_PROJ2 by

propagating the primary

key.

Figure 14.10 Normalizing nested

> (c) EMP_PROJ1

Ssn Ename

EMP_PROJ2

Ssn	Pnumber	Hours
-----	---------	-------

Second Normal Form - 2NF

➤ **Second normal form** - A relational schema *R* is in 2NF if it is in 1NF and if every nonprime attribute *A* in *R* is fully functionally dependent on the primary key of *R*.

Consider the following relation:

(a)

EMP_PROJ

Second Normal Form - 2NF

- ► Hours is fully functionally dependent on the primary key (FD1)
- Ename is partially dependent on the primary key (FD2)
- Pname and Plocation are partially dependent on the primary key (FD3)

Second Normal Form - 2NF

- Remove Ename from EMP_PROJS into a new relation. Add the left side of the FD as its primary key
- Remove Pname and Plocation from EMP_PROJS into a new relation. Add the left side of the FD as its primary key.

Third Normal Form - 3NF

➤ Third normal form - A relation schema *R* is in 3NF if it is in 2NF and no nonprime attribute is transitively dependent on the primary key

Note: A functional dependency, $X \to Y$, in a relation schema R is a *transitive dependency* if there exists a set of attributes Z in R, that is neither a candidate key or a subset of any key or R and both $X \to Z$ and $Z \to Y$ hold.

Third Normal Form - 3NF

- ▶ Remove the attributes which are dependent on the attributes resulting in the transitive dependency (Z) and place them in a new relation. Make the attributes corresponding to Z in the transitive dependency the primary key of this new relation.
- ▶ Only attributes of Z should remain in the original relation.

Consider the following example. EMP_DEPT is in both 1NF and 2NF, but not in 3NF.

Summary of 1NF, 2NF and 3NF

Normal Form	Test	Remedy (Normalization)
First (1NF)	Relation should have no multivalued attributes or nested relations.	Form new relations for each multivalued attribute or nested relation.
Second (2NF)	For relations where primary key contains multiple attributes, no nonkey attribute should be functionally dependent on a part of the primary key.	Decompose and set up a new relation for each partial key with its dependent attribute(s). Make sure to keep a relation with the original primary key and any attributes that are fully functionally dependent on it.
Third (3NF)	Relation should not have a nonkey attribute functionally determined by another nonkey attribute (or by a set of nonkey attributes). That is, there should be no transitive dependency of a nonkey attribute on the primary key.	Decompose and set up a relation that includes the nonkey attribute(s) that functionally determine(s) other nonkey attribute(s).

Normalise to 3NF

- 1. $R(\underline{a}, b, c, R1(\underline{d}, \underline{e}))$ with FD's: $a \to \{b, c\}$ $c \to \{d, e\}$
- 2. $R(\underline{a}, \underline{b}, c, d, e, \{f\})$ with FD's: $\{a,b\} \rightarrow c$ $a \rightarrow d$ $c \rightarrow e$
- 3. $R(\underline{a}, \underline{b}, c, d, e, \{f\})$ with FD's: $b \to c$ $a \to d$ $c \to e$