

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 1 038 957 A1

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

(43) Date of publication:

27.09.2000 Bulletin 2000/39

(51) Int. Cl.⁷: C12N 15/12, C07K 14/435,
C07K 16/18

(21) Application number: 98955925.7

(86) International application number:
PCT/JP98/05306

(22) Date of filing: 25.11.1998

(87) International publication number:
WO 99/28457 (10.06.1999 Gazette 1999/23)

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE

(72) Inventors:

- HARADA, Yosuke
Tokushima-shi, Tokushima 770-0868 (JP)
- OZAKI, Kouichi,
Ribasaido Minamisuehiro
Tokushima-shi, Tokushima 770-0865 (JP)

(30) Priority: 28.11.1997 JP 34378997

20.04.1998 JP 12680398

(74) Representative: Marsh, Roy David

Hoffmann Eitlie,
Patent- und Rechtsanwälte,
Arabellastrasse 4
81925 München (DE)

(71) Applicant:

OTSUKA PHARMACEUTICAL CO., LTD.
Chiyoda-ku, Tokyo 101-0048 (JP)

(54) TSA305 GENE

(57) The invention provides a pancreas-specific gene comprising a base sequence coding for the amino acid sequence shown under SEQ ID NO:1, which gene is effective particularly in the fields of study, diagnosis and treatment, among others, of pancreatic carcinoma.

EP 1 038 957 A1

Description**TECHNICAL FIELD**

5 [0001] The present invention relates to a gene, named TSA305, coding for a protein specifically expressed in the pancreas and, more particularly, to the above pancreas-specific gene having a high level of homology with nematode sel-1 and expected to show an anticancer activity. The invention also relates to a novel protein encoded by such gene and to a specific antibody thereto.

BACKGROUND ART

10 [0002] Pancreatic cancer holds the fourth and fifth place on the list of cancer-related deaths in Japan and western countries, respectively and has the worst prognosis among digestive system malignancies (Poston, J. G., et al.. Gut, 32, 800-812 (1991)). The ultimate goal in cancer research is to discriminate early stage gene changes leading to malignant transformation. If such changes can be differentiated, genetic tools for early diagnosis may possibly be developed and novel therapeutic approaches for more effective treatment of this lethal disease will possibly be taken.

15 [0003] Meanwhile, the nematode sel-1 gene reportedly has an inhibitory action on Notch/lin-12 which suppresses the differentiation of ectoderm into neuroblast in neural development in nematodes (Genetics, 143 (1), 237-247 (1996); Development, 124 (3), 637-644 (1997)). Said Notch/lin-12, when forcedly expressed, causes breast cancer or leukemia and therefore is considered to be a cancer-related gene. The above sel-1 gene suppressively acting on said cancer-related gene is therefore considered to suppressively act on cancer as well. At present, however, the roles of these genes have not been fully elucidated.

20 [0004] Elucidation of the physiological roles of such genes and the information obtained therefrom are important in elucidating the mechanisms of onset of diseases such as malignant transformation and inflammation and are desired not only in the field of basic scientific studies but also in the pharmaceutical field in determining the causes of such diseases as cancer and inflammation and developing treatment methods for such diseases.

DISCLOSURE OF INVENTION

30 [0005] The present invention has for its object to provide the above information desired in the relevant field of art, in particular a gene coding for a novel protein homolog and having homology with the sel-1 gene.

[0006] With that object in view, the present inventors made an arduous search among genes derived from various human tissues and, as a result, succeeded in newly isolating and identifying a gene coding for a protein specifically expressed in the pancreas and found that the above object can be realized with said gene. As a result, the present invention has now been completed.

35 [0007] Thus, the present invention provides a pancreas-specific gene, TSA305, comprising a nucleotide sequence coding for a protein having the amino acid sequence shown under SEQ ID NO:1, in particular the TSA305 gene which is a human gene.

40 [0008] The invention also provides a pancreas-specific protein (TSA305 protein) comprising the amino acid sequence shown under SEQ ID NO:1 and an antibody capable of coupling therewith.

45 [0009] The invention further provides a pancreas-specific gene, TSA305, which is a polynucleotide defined below under (a) or (b) in particular to the TSA305 gene which is a human gene:

- (a) A polynucleotide comprising the whole or part of the nucleotide sequence shown under SEQ ID NO:2.
- (b) A polynucleotide capable of hybridizing with a DNA having the nucleotide sequence shown under SEQ ID NO:2 under stringent conditions.

[0010] In addition, the present invention provides the above gene in DNA fragment form which is useful as a specific probe or specific primer for gene detection.

50 [0011] In expressing amino acids, peptides, nucleotide sequences, nucleic acids and the like by abbreviations or symbols in the following, the nomenclature of the IUPAC-IUB [IUPAC-IUB Communication on Biological Nomenclature, Eur. J. Biochem., 138: 9 (1984)], the "Guideline for preparing specifications etc. containing nucleotide sequences or amino acid sequences" (edited by the Patent Office of Japan) and the conventional symbols in the relevant field are followed or used.

55 [0012] As a specific example of the gene of the invention, there may be mentioned the one deduced from the DNA sequence of a PCR product named "TSA305" which is to be shown later in the example section. The nucleotide sequence thereof is as shown under SEQ ID NO:3.

[0013] Said gene is a human cDNA containing a coding region having the nucleotide sequence shown under SEQ

ID NO:2 and coding for a novel pancreas-specific protein (hereinafter referred to as TSA305 protein) composed of 794 amino acid residues as shown under SEQ ID NO:1 and is composed of a total length of 7,885 nucleotides.

[0014] As a result of searching in the GenBank/EMBL database utilizing the FASTA program (Person, W. R., et al., Proc. Natl. Acad. Sci. USA, 85, 2444-2448 (1988)), it was confirmed that the product of expression of the TSA305 gene of the invention, namely the TSA305 protein, has a very high level of homology with the nematode *sel-1* gene (cf. the reference cited above). In view of this fact, it is considered that the gene of the invention, like the above-mentioned *sel-1*, act suppressively on Notch/lin-12 which is a cancer-related gene considered to be involved in embryogenesis in general.

[0015] The locus of the gene of the invention is q24.3-q31.1 of the 14th chromosome where a gene causative of insulin-dependent diabetes mellitus (IDDM) is considered to exist. In view of this fact, it is strongly suggested that the gene of the invention be related with diabetes.

[0016] It was further revealed that the product of expression of the gene of the invention is a protein containing a fibronectin type II collagen binding domain. Such collagen binding site close to the N terminal suggests involvement of the protein in fibrogenesis and, based on this, it is strongly suggested that the gene of the invention be involved in fibrosis.

[0017] In addition, since all of the pancreatic carcinoma preparations tested showed a failure of expression of the gene of the invention and the gene is expressed mainly in normal pancreases, it is suggested that the gene of the invention be potentially valuable in forecasting malignant transformation.

[0018] Thus, information and means very useful in elucidating, understanding, diagnosing, preventing and treating various diseases such as mammary cancer, leukemia, fibrosis, diabetes and pancreatic carcinoma, in particular pancreatic carcinoma, are given as a result of providing the TSA305 gene and the product of its expression according to the present invention. The gene of the invention can judiciously be used also in developing a novel drug inducing the expression of the gene of the invention which is utilizable in the treatment of various diseases such as mentioned above. Furthermore, detection of the expression of the gene of the invention or the product of its expression in an individual animal or a specific tissue or detection of a mutation (deletion or point mutation) of said gene or abnormal expression thereof, for instance, is considered to be utilizable adequately in elucidating or diagnosing the above diseases.

[0019] The gene of the invention is specifically represented by a gene containing a nucleotide sequence coding for a protein having the amino acid sequence shown under SEQ ID NO:1 or a gene which is a polynucleotide containing the nucleotide sequence shown under SEQ ID NO:2. However, the gene of the invention is not particularly limited to these but may be, for example, a gene leading to a certain modification in the above specific amino acid sequence or a gene having a certain level of homology with the above specific nucleotide sequence.

[0020] Thus, the gene of the invention also includes a gene containing a nucleotide sequence coding for a protein having an amino acid sequence derived from the amino acid sequence shown under SEQ ID NO:1 by deletion, substitution or addition of one or a plurality of amino acid residues and having the same activity as that of TSA305. The extent and site(s) of "deletion, substitution or addition of an amino acid residue or residues" are not particularly restricted if the modified protein is a product of the same effect which has the same function as the protein having the amino acid sequence shown under SEQ ID NO:1. The term "plurality" used above means 2 or more, normally several.

[0021] While the modification (mutation) or the like of the above amino acid sequence may occur naturally, for example by mutation or posttranslational modification, artificial modification is also possible based on a nature-derived gene (for example, a specific example of the gene of the present invention). The present invention covers all modified genes having the above characteristic without reference to the cause and means, among others, of such modification or mutation.

[0022] As examples of the above artificial means, there may be mentioned site-specific mutagenesis [Methods in Enzymology, 154: 350, 367-382 (1987); *ibid.*, 100: 468 (1983); Nucleic Acids Res., 12: 9441 (1984); Zoku Seikagaku Jikken Koza (Experiments in Biochemistry, second series) 1: "Idensi Kenkyuho (Methods in Gene Research) II", edited by the Biochemical Society of Japan, p. 105 (1986)] and other genetic engineering techniques, means of chemical synthesis such as the phosphotriester method or phosphoamidite method [J. Am. Chem. Soc., 89: 4801 (1967); *ibid.*, 91: 3350 (1969); Science, 150: 178 (1968); Tetrahedron Lett., 22: 1859 (1981); *ibid.*, 24: 245 (1983)], and combinations thereof.

[0023] In a mode of embodiment of the gene of the present invention, there may be mentioned a gene which is a polynucleotide containing the whole or part of the nucleotide sequence shown under SEQ ID NO:3. The open reading frame (nucleotide sequence shown under SEQ ID NO:2) containing in this nucleotide sequence also serves as an example of combination of codons specifying respective amino acid residues in the above amino acid sequence (SEQ ID NO:1). The gene of the invention is not limited to this but can of course have a nucleotide sequence in which an arbitrary combination of codons is selected. The selection of codons can be made in the conventional manner, for example the codon usage in the host employed, among others, can be taken into consideration [Nucleic Acids Res., 9: 43 (1981)].

[0024] While the gene of the invention is represented in terms of single strand DNA nucleotide sequence, as

shown, for example, under SEQ ID NO:2, the invention of coarse includes a polynucleotide having a nucleotide sequence complementary to such nucleotide sequence, or a component comprising both of these as well. It is not limited to a DNA such as a cDNA.

[0025] Furthermore, as mentioned above, the gene of the invention is not limited to a polynucleotide containing the whole or part of the nucleotide sequence shown under SEQ ID NO:2, but includes genes comprising a nucleotide sequence having a certain level of homology with said nucleotide sequence as well. As such genes, there may be mentioned those at least capable of hybridizing with a DNA comprising the nucleotide sequence shown under SEQ ID NO:2 under such stringent conditions as mentioned below and incapable of being released therefrom even by washing under certain conditions.

[0026] Thus, mention may be made, as an example, of a gene having a nucleotide sequence which hybridizes with a DNA having the nucleotide sequence shown under SEQ ID NO:2 under conditions: at 65°C overnight in 6 × SSC or at 37°C overnight in 4 × SSC containing 50% formamide and is not released from said DNA under washing conditions: 30 minutes at 65°C with 2 × SSC. Here, "SSC" means standard saline citrate; 1 × SSC = 0.15 M NaCl, 0.015 M sodium citrate).

[0027] The gene of the present invention can be produced and recovered with ease by general genetic engineering techniques [see, for example, Molecular Cloning, 2nd Ed., Cold Spring Harbor Lab. Press (1989); Zoku Seikagaku Jikken Koza (Experiments in Biochemistry, second series) "Idensi Kenkyuho (Methods in Gene Research) I, II and III", edited by the Biochemical Society of Japan (1986)] based on the information on the sequence of a typical example thereof.

[0028] Specifically, the production/recovery can be carried out by constructing a cDNA library in the conventional manner from an appropriate origin in which the gene of the invention is expressed and selecting a desired clone therefrom using an appropriate probe or antibody specific to the gene of the invention [Proc. Natl. Acad. Sci. USA, 78: 6613 (1981); Science, 222: 778 (1983)].

[0029] As examples of the origin of cDNA in the above process, there may be mentioned various cells and tissues in which the gene of the invention is expressed, cultured cells derived therefrom and the like, in particular the pancreatic tissue. Isolation of total RNA from these, isolation and purification of mRNA, obtainment of cDNA and cloning thereof, among others, can all be performed in the conventional manner. cDNA libraries are also commercially available and such cDNA libraries, for example various cDNA libraries commercially available from Clontech Lab. Inc. can also be used in the practice of the present invention.

[0030] The method of screening the cDNA library for the gene of the invention is not particularly restricted but may be a conventional one. As specific examples, there may be mentioned the method comprising selecting the corresponding cDNA clone by immunological screening using a specific antibody to the protein produced by the cDNA, plaque hybridization or colony hybridization using a probe selectively binding to the desired DNA sequence, and combinations of these.

[0031] As examples of the probe to be used here, there may generally be mentioned DNAs chemically synthesized based on the information on the nucleotide sequence of the gene of the invention, among others. Of course, it is also possible to successfully utilize the gene of the invention already obtained as such or fragments thereof.

[0032] The screening for the gene of the invention can also be made by the protein interaction cloning procedure using the TSA305 protein in lieu of the above specific antibody and, further, the screening method comprising using, as a screening probe, a sense or antisense primer designed based on the information on the nucleotide sequence of the gene of the invention can also be employed.

[0033] In accordance with the present invention, the mRNA expression levels in cells under different conditions or a plurality of different cell groups can be directly compared and investigated by the differential display technique (Liand P., et al., Science, 257: 967-971 (1992)).

[0034] In obtaining the gene of the present invention, DNA/RNA amplification by the PCR technique [Science, 230: 1350 (1985)] can judiciously be utilized. In particular, in cases where it is difficult to obtain the full-length cDNA from a library, the RACE technique (rapid amplification of cDNA ends; Jikken Igaku (Experimental Medicine), 12 (6): 35 (1994)), in particular the 5'-RACE technique [Proc. Natl. Acad. Sci. USA, 85: 8998 (1988)], for instance, is judiciously employed. The primers to be used when such PCR technique is employed can be adequately designed based on the information on the sequence of the gene of the invention as revealed by the present invention and can be synthesized in the conventional manner.

[0035] The amplified DNA/RNA fragments can be isolated and purified in the conventional manner, as mentioned above, for example by gel electrophoresis.

[0036] The gene of the invention or various DNA fragments obtained in the above manner can be sequenced in the conventional manner, for example by the dideoxy method [Proc. Natl. Acad. Sci. USA, 74: 5463 (1977)] or the Maxam-Gilbert method [Methods in Enzymology, 65: 499 (1980)] or, in a simple and easy manner, by using a commercial sequencing kit or the like.

[0037] By utilizing the gene of the present invention, it is possible to readily produce the corresponding gene prod-

uct stably in large amounts by using general genetic engineering techniques. Therefore, the present invention also provides a vector (expression vector) containing the TSA305 gene of the invention, host cells transformed with said vector and a method of producing the TSA305 protein which comprises cultivating said host cells.

[0038] The production method can be carried out according to the ordinary recombinant DNA technology [see, for example, Science, 224: 1431 (1984); Biochem. Biophys. Res. Comm., 130: 692 (1985); Proc. Natl. Acad. Sci. USA, 80: 5990 (1983); and the references cited above].

[0039] Both prokaryotes and eukaryotes can be used as the host cells mentioned above. As prokaryotic hosts, there may be mentioned a wide variety of ones in general use, such as Escherichia coli, Bacillus subtilis, etc., and preferred examples are those included among Escherichia coli strains, in particular the Escherichia coli K 12 strain. The eukaryotic host cells include vertebrate cells and yeast cells, among others. As the former, COS cells [Cell, 23: 175 (1981)], which are simian cells, chinese hamster ovary cells and the dihydrofolate reductase-deficient strain thereof [Proc. Natl. Acad. Sci. USA, 77: 4216 (1980)], for instance, are judiciously used and, as the latter, yeast cells belonging to the genus Saccharomyces and the like are judiciously used. Of course, the host cells are not limited to these.

[0040] Where prokaryotic cells are used as the host, an expression plasmid can judiciously be used which is constructed using a vector capable of replicating in said host cells and providing this vector with a promoter and the SD (Shine and Dalgarno) sequence upstream of the gene of the invention and further with an initiation codon (e.g. ATG) necessary for the initiation of protein synthesis so that the gene of the invention may be expressed. Often used as the above vector are generally Escherichia coli-derived plasmids, for example pBR322, pBR325, pUC12 and pUC13. The vector is not limited to these, however, but various known vectors may be utilized. As commercially available vectors of the above kind which can be used in expression systems in which Escherichia coli is used, there may be mentioned, for example, pGEX-4T (Amersham Pharmacia Biotech), pMAL-C2, pMAL-P2 (New Englands Biolabs), pET21, pET21/lacq (Invitrogen) and pBAD/His (Invitrogen).

[0041] As the expression vector in the case of vertebrate cells being used as the host, there may be mentioned one generally having a promoter located upstream of the gene of the invention which is to be expressed, an RNA splicing site, a polyadenylation site and transcription termination sequence. When necessary, this may further have an origin of replication. As specific examples of said expression vector, there may be mentioned pSV2dhfr having the early promoter of SV40 [Mol. Cell. Biol., 1: 854 (1981)] and the like. In addition to the above, various known commercial vectors can also be used. As commercial vectors of such kind which are to be utilized in expression systems in which animal cells are used, there may be mentioned, among others, vectors for animal cells, such as pEGFP-N, pEGFP-C (Clontech), pIND (Invitrogen) and pcDNA3.1/His (Invitrogen), and vectors for insect cells, such as pFastBac HT (Gibco BRL), pAcGHLT (PharMingen), pAc5/V5-His, pMT/V5-His and pMT/Bip/V5-His (the latter three: Invitrogen).

[0042] As specific examples of the expression vector to be used when yeast cells are used as the host, there may be mentioned, among others, pAM82 having a promoter for the acid phosphatase gene [Proc. Natl. Acad. Sci. USA, 80: 1 (1983)] and the like. Commercial expression vectors for yeast cells include, among others, pPICZ (Invitrogen) and pPICZ α (Invitrogen).

[0043] The promoter is not particularly restricted, either. When an Escherichia species is used as the host, the tryptophan (trp) promoter, lpp promoter, lac promoter, recA promoter, PL/PR promoter or the like can judiciously be utilized. When the host is a Bacillus species, the SP01 promoter, SP02 promoter, penP promoter or the like is preferred. As for the promoter to be used when a yeast species is the host, the pH05 promoter, PGK promoter, GAP promoter or ADH promoter, for instance, can judiciously be used. As preferred examples of the promoter to be used when animal cells are used as the host, there may be mentioned SV40-derived promoters, retrovirus promoters, and the metallothionein promoter, heat shock promoter, cytomegalovirus promoter and SR α promoter.

[0044] Conventional fused protein expression vectors can also judiciously be used as the expression vector for the gene of the present intention. As specific examples of such vectors, there may be mentioned pGEX (Promega) for the expression of a protein fused with glutathione-S-transferase (GST) and the like.

[0045] The method of introducing the desired recombinant DNA (expression vector) into host cells for transforming the same is not particularly restricted, either, but various general methods can be employed. The transformant obtained can be cultivated in the conventional manner, whereby the desired TSA305 protein encoded by the gene of the present invention is expressed-produced and accumulated or secreted within or outside the transformant cells or on the cell membrane.

[0046] The medium to be used in the above cultivation can adequately be selected from among various conventional ones according to the host cells employed, and the cultivation can be conducted under conditions suited for the growth of the host cells.

[0047] The thus-obtained recombinant protein (TSA305 protein) can be isolated and purified, as desired, by various separation procedures utilizing its physical and/or chemical properties, among others [see, for example, "Seikagaku (Biochemical) Data Book II", pages 1175-1259, 1st edition, 1st printing, published June 23, 1980 by Tokyo Kagaku Dojin; Biochemistry, 25 (25): 8274 (1986); and Eur. J. Biochem., 163: 313 (1987)]. As said methods, there may specifically be mentioned, for example, ordinary reconstitution treatment, treatment with a protein precipitating agent (salting

out), centrifugation, osmotic shock procedure, sonication, ultrafiltration, various chromatographic techniques such as molecular sieve chromatography (gel filtration), adsorption chromatography, ion exchange chromatography, affinity chromatography and high-performance liquid chromatography (HPLC), dialysis and combinations of these. Particularly preferred among the above methods is affinity chromatography using a column to which a specific antibody to the TSA305 protein of the invention is bound.

[0048] Thus, the present invention further provides the novel TSA305 protein itself as obtained, for example, in the above manner. As mentioned hereinabove, said protein has a high level of homology with the nematode sel-1 and can produce an inhibitory effect on various kinds of cancer and therefore useful in the pharmaceutical field.

[0049] This TSA305 protein can also be utilized as an immunogen for producing an antibody specific to said protein. The component to be used here as the antigen may be the protein mass-produced by the genetic engineering techniques mentioned above or a fragment thereof, for instance. By utilizing such antigen, it is possible to obtain the desired antiserum (polyclonal antibody) or monoclonal antibody. The methods of producing said antibody are themselves well known to those skilled in the art and, in the practice of the present invention as well, these conventional methods can be followed [see, for example, Zoku Seikagaku Jikken Koza (Experiments in Biochemistry, second series) "Men-eki Seikagaku kenkyuho (Methods in Immunobiochemistry)", edited by the Biochemical Society of Japan (1986)].

[0050] Thus, for example, the animal to be immunized for obtaining antisera can be arbitrarily selected from among ordinary animals such as rabbits, guinea pigs, rats, mice and chickens, and immunization with the antigen mentioned above, blood collection and other procedures can also be carried out in the conventional manner.

[0051] The monoclonal antibody, too, can be produced in the conventional manner by producing hybrid cells from plasmacytoma cells (immunocytes) of an animal immunized with the immunogen mentioned above and plasmacytoma cells, selecting a desired antibody-producing clone from among them, and cultivating said clone. The animal to be immunized is generally selected taking into consideration the compatibility with the plasmacytoma cells employed for cell fusion and, generally, mice or rats, among others, are advantageously used. The immunization can be conducted in the same manner as in the above-mentioned case of antisera and, if desirable, an ordinary adjuvant or the like may be used in combination.

[0052] The plasmacytoma cells to be used for cell fusion are not particularly restricted but, for example, various myeloma cells such as p3 (p3/x63-Ag8) [Nature, 256: 495-497 (1975)], p3-U1 [Current Topics in Microbiology and Immunology, 81: 1-7 (1978)], NS-1 [Eur. J. Immunol., 6: 511-519 (1976)], MPC-11 [Cell, 8: 405-415 (1976)], SP2/0 [Nature, 276: 269-271 (1978) and the like, R210 in rats [Nature, 277: 131-133 (1979)] and the like as well as cells derived therefrom all can be used.

[0053] The fusion of the above immunocytes and plasmacytoma cells can be performed by a known method in the presence of a conventional fusion accelerator such as polyethylene glycol (PEG) or Sendai virus (HVJ) and the desired hybridomas can also be isolated in the conventional manner [e.g. Meth. in Enzymol., 73: 3 (1981); Zoku Seikagaku Jikken Koza (Experiments in Biochemistry, second series) cited above].

[0054] The desired antibody-producing cell line can be searched for and a monoclonal antibody can be derived therefrom in the conventional manner. Thus, for example, the search for an antibody-producing cell line can be carried out using the above-mentioned antigen of the present invention by various methods generally used in detecting antibodies, such as the ELISA technique [Meth. in Enzymol., 70: 419-439 (1980)], plaque technique, spot technique, agglutination reaction technique, Ouchterlony technique, and radioimmunoassay.

[0055] The antibody of the invention can be collected from the thus-obtained hybridomas, for example, by cultivating said hybridomas in the conventional manner and collecting the culture supernatant or by administering the hybridomas to an mammal compatible therewith and, after hybridoma growth, collecting the ascitic fluid. The former method is suited for obtaining a high-purity antibody while the latter method is suited for mass production of an antibody. The thus-obtained antibody can further be purified by conventional means such as salting out, gel filtration and affinity chromatography.

[0056] The thus-obtained antibody is characterized by its ability to bind to the TSA305 protein of the invention and can advantageously be utilized in the above-mentioned purification of the TSA305 protein and in assaying or discriminating the same by immunological techniques. The present invention thus provides such novel antibody as well.

[0057] Further, based on the information on the sequence of the gene of the invention as revealed by the present invention, the expression of the gene of the invention in individuals or in various tissues can be detected, for example by utilizing the whole or part of the nucleotide sequence of said gene.

[0058] Such detection can be carried out in the conventional manner, for example by RNA amplification by RT-PCR [reverse transcribed polymerase chain reaction; E. S. Kawasaki et al., Amplification of RNA. In PCR Protocol, A Guide to methods and applications, Academic Press, Inc., San Diego, 21-27 (1991)], northern blot analysis [Molecular Cloning, Cold Spring Harbor Lab. (1989)], *in situ* RT-PCR [Nucl. Acids Res., 21: 3159-3166 (1993)], *in situ* hybridization or a like technique for assaying the same on the cellular level or by the NASBA technique [nucleic acid sequence-based amplification; Nature, 350: 91-92 (1991)] or other various techniques. All can give good results.

[0059] When the RT-PCR technique is employed, the primers to be used are not limited in any way provided that

they are specific to the gene of the invention and enable specific amplification of said gene alone. The sequences thereof can be adequately designed based on the genetic information according to the present invention. Generally, each may have a partial sequence comprising about 20 to 30 nucleotides.

[0060] In this way, the present invention provides DNA fragments useful as specific primers and/or specific probes in detecting the TSA305 gene according to the invention as well.

BRIEF DESCRIPTION OF DRAWINGS

[0061]

Fig. 1 is a photograph, in lieu of a drawing, illustrating the distribution of the gene of the invention in human tissues as examined by the northern blot analysis described in Example 1 under (2).

Fig. 2 is a photograph, in lieu of a drawing, illustrating the results of RT-PCR analysis of normal pancreatic cells and four cell lines as obtained in Example 1 (4). The results for TSA305 are shown in the upper section and the results for β_2 -microglobulin as a control are shown in the lower section.

Fig. 3 is a photograph, in lieu of a drawing, illustrating the results of RT-PCR analysis of pancreatic carcinoma samples and others as obtained in Example 1 (5). The results for TSA305 are shown in the upper section and the results for β_2 -microglobulin as a control are shown in the lower section.

BEST MODE FOR CARRYING OUT THE INVENTION

[0062] The following examples are given for illustrating the present invention in more detail.

Example 1

(1-1) Method of manifestation by labeling with [α -³³P]ATP

[0063] For identifying the human gene expressed in a tissue-specific process, the method of manifestation by labeling with [α -³³P]ATP was used. The procedure of said method was followed essentially according to the method of Liang (Liang, P., et al., Science, 257: 967-971 (1992)), as mentioned below.

[0064] Thus, polyA RNA (0.2 μ g) isolated from each of 13 human tissues (adult brain, fetal brain, lung, liver, stomach, pancreas, spleen, mammary gland, bladder, placenta, testis, kidney and heart; products of Clontech) was mixed with 25 pmol of 3'-anchored oligo-dT primer G(T)15MA (M being a mixture of G, A and C) in 8 μ l of diethyl pyrocarbonate-treated water and the mixture was heated at 65°C for 5 minutes. To this solution were added 4 μ l of 5 \times First strand buffer (product of BRL), 2 μ l of 0.1 M DTT (product of BRL), 1 μ l of 250 mM dNTPs (product of BRL), 1 μ l of ribonuclease inhibitor (40 units; product of Toyobo) and 1 μ l of SuperScript II reverse transcriptase (200 units; product of BRL). The final volume of each reaction mixture was 20 μ l. Each solution was incubated at 37°C for 1 hour and then 2.5-fold diluted by addition of 30 μ l of distilled water and the dilution was stored at -20°C until the time of use.

[0065] cDNA was amplified by PCR in the presence of [α -³³P]ATP-labeled (product of Amersham) 3'-anchored primer. This cDNA amplification by PCR was conducted in the following manner. Thus, 20 μ l of each PCR mixture contained 2 μ l of RT reaction mixture, 2 μ l of 10 \times PCR buffer (product of Takara), 4 μ l of 2.5 mM dNTPs, 0.25 μ l of ExTaq DNA polymerase (5 units/ml; product of Takara), 25 pmol of [α -³³P]ATP-labeled 3'-anchored oligo-dT primer and 25 pmol of 5'-primer (No. 20, decamer deoxyoligo-nucleotide primer having an arbitrary sequence, in this case the nucleotide sequence shown under SEQ ID NO:4). The PCR reaction was carried out under the following conditions. Thus, one cycle was conducted at 95°C for 3 minutes, at 40°C for 5 minutes and at 72°C for 5 minutes, then 40 cycles were conducted each at 95°C for 0.5 minutes, at 40°C for 2 minutes and at 72°C for 1 minute and, finally, the reaction was allowed to proceed at 72°C for 5 minutes.

[0066] Each PCR reaction sample was extracted with ethanol and resuspended in formamide-sequencing dye and the reaction was allowed to proceed on a 6% acrylamide-7.5 M urea sequencing gel. The gel was dried without fixation and autoradiography was carried out overnight.

(1-2) Subcloning of the amplified cDNA fragment

[0067] 3MM filter paper with the dried gel placed thereon was marked with radioactive ink in advance. By checking the autoradiogram against this mark, the gel containing the desired cDNA-containing band was excised together with the 3MM filter paper and stirred with 300 μ l of dH₂O for 1 hour. After removal of the polyacrylamide gel and filter paper, the cDNA was rerecovered by ethanol precipitation in the presence of 1 μ l of 10 mg/ml glycogen and 0.3 M NaOAc as a carrier and redissolved in 10 μ l of dH₂O. For reamplification, 5 μ l of this solution was used. The PCR conditions and

primers were the same as those in the first PCR. The reamplification product having an appropriate size was recovered as the first PCR product; and the PCR product was then cloned into the pUC118 vector (product of Takara) at the HincII site. The nucleotide sequence was determined using an ABI 377 automated sequencer (product of Applied Biosystems).

[0068] The different patterns manifested upon use of the mRNAs isolated from the 13 human tissues were compared and, as a result, a PCR product specifically expressed in pancreas was identified. This was named TSA305.

[0069] This product was composed of 371 nucleotides. Comparison of the data on this nucleotide with the DNA sequences occurring in the GenBank/EMBL data base using the FASTA program (Person, W. R., et al., Proc. Natl. Acad. Sci. USA, 85: 2444-2448 (1988)) revealed that this PCR product has no homology with any of other known DNA sequences.

(1-3) cDNA screening

[0070] A human normal pancreas cDNA library was constructed using oligo(dT) + random hexamer-primed human normal pancreas cDNA and Uni-ZAP™ XR (product of Stratagene). The total of 1×10^6 clones were isolated by the method mentioned above and subjected to screening using a [α -³³P]-dCTP-labeled cDNA fragment. Positive clones were selected and the insert cDNA portions thereof were excised in vivo in pBluescript II SK(-).

[0071] As a result, about 100 plaques were identified as corresponding to TSA305. Based on this result, the percent transcription among all RNAs was calculated to be about 0.01%. The assembled cDNA sequence (TSA305) homologous with TSA305 comprises 7,885 nucleotides containing an open reading frame of 2,382 nucleotides coding for a protein composed of 794 amino acid residues with a calculated molecular weight of 88,768 Da.

[0072] Based on the primary sequence, it was revealed that this gene product (TSA305 protein) is a protein containing a fibronectin type II collagen binding domain.

[0073] The locus thereof was found to be q24.3-q31.1 on the 14th chromosome where a gene causative of insulin-dependent diabetes mellitus (IDDM) is considered to exist.

[0074] The TSA305 gene of the present invention showed a high level of homology with the nematode sel-1.

(2) Expression in tissues

[0075] For checking the expression profiles of TSA305 in tissues, northern blot analysis was carried out using various human tissues.

[0076] For the northern blot analysis, human MTN (Multiple Tissue Northern) blots I and II (products of Clontech) were used. The cDNA fragments were labeled with [α -³³P]-dCTP by PCR using a set of primers with T3 and T7 promoter sequences. The amplification product-containing membrane was prehybridized (the conditions were as indicated in the product protocol), followed by hybridization according to the product protocol.

[0077] After hybridization, the membrane was washed and exposed to an autoradiograph at -80°C for 24 hours. The results are shown in Fig. 1.

[0078] In the figure, the human tissues used were heart, brain, placenta, lung, liver, skeletal muscle, kidney, pancreas, spleen, thymus, prostate, testis, ovary, small intestine, colon and peripheral blood leukocytes.

[0079] In the figure, a transcript homologous with TSA305 was observed specifically in the pancreas.

(3) FISH

[0080] FISH was carried out for chromosome arrangement according to a known method (Takahashi, E., et al., Hum. Genet., 86: 14-16 (1990)) using 0.5 μ g of each cosmid DNA as a probe. FISH was detected with a Provia 100 film (product of Fuji, ISO 100) or a CCD camera system (Applied Imaging, product of Sightvision).

[0081] As a result, the signals obtained by testing 100 typical cells at (pro)metaphase by R banding were found localized on the bands q24.3-q31.1 of the 14th chromosome. Therefore, the locus of localization of the TSA305 on the chromosome could be identified as 14q24.3-q31.1.

(4) Expression of transcript in pancreatic carcinoma cell lines and in pancreatic carcinoma tissues as revealed by RT-PCR analysis

[0082] To check whether the expression of the TSA305 gene varies in human pancreatic carcinoma cell lines and pancreatic carcinoma tissues, four cell lines (Aspc1 (metastatic adenocarcinoma; J. Natl. Cancer Inst., 67: 563-569 (1981)), Bxpc3 (adenocarcinoma, undifferentiated; Cancer Invest., 4: 15-23 (1986)), MiaPaca2 (adenocarcinoma; Int. J. Cancer, 19: 128-135 (1977)) and PANC1 (epithelioid, pancreatic duct carcinoma; Int. J. Cancer, 15: 741-747 (1975)) and 9 pancreatic carcinoma tissues (gifts from Dr. Nakamura at the University of Tokyo Institute of Medical Sciences)

were subjected to RT-PCR analysis.

[0083] Thus, 10 µl of the total RNA isolated from each cell line or pancreatic carcinoma tissue using ISOGEN (product of Wako) was treated with 10 units of RNase-free DNase I (product of Boebringer Mannheim) for 15 minutes, followed by two repetitions of extraction with phenol-chloroform and precipitation with ethanol. The single-stranded cDNA was synthesized using Superscript I™ RNase H reverse transcriptase (product of Life Technology) with oligo-d(T) and random primers. A 2-µl portion of each product was used for PCR amplification.

[0084] The printers P1 and P2S having the nucleotide sequences shown under SEQ ID NO:5 and SEQ ID NO:6, respectively, were used in 25 cycles of PCR amplification.

[0085] The PCR reaction was carried out in 20 µl of a solution containing 25 ng of cDNA, 10 µM each primer, 2.5 mM dNTP and 0.25 U of Extaq DNA polymerase (product of Takara). Each PCR product was dissolved in 1.5% agarose gel stained with ethidium bromide.

[0086] The four cell lines (lane 1 = Aspc1; lane 2 = Bxpc3; lane 3 = MiaPaca2; lane 4 = PANC1) and a normal pancreatic tissue (normal pancreas, lane 5) were analyzed by RT-PCR in the above manner. The results are as shown in Fig. 2. The results for TSA305 are shown in the upper section and the results for β₂-microglobulin as a control are shown in the lower section.

[0087] From the figure, it was found that the expression of TSA305 is not detected in any of cancer tissues but is detected only in normal pancreatic tissues (cf. lane 5).

(5) Expression of the TSA305 gene in pancreatic carcinoma (RT-PCR)

[0088] The expression of the TSA305 gene was checked in pancreatic carcinoma patient-derived samples (1T, 2T, 3T, 5T, 6T, 7T, 10T and 11T), pancreatic carcinoma (Tumor Pancreas) and normal pancreas (Invitrogen; Human Normal Pancreas) as well as a cancerous portion (23T) and a noncancerous portion (23N) of the same patient by the RT-PCR technique, as follows.

[0089] mRNA was extracted from each sample and the segment of 1581-2382 bp (801 base pairs) of TSA305 was amplified by RT-PCR and tested for detecting expression or no expression. As a concentration control, β₂-microglobulin was used. The results are shown in Fig. 3.

[0090] From the figure, reduced expression or lack of expression of the TSA305 gene was observed in all pancreatic carcinoma samples as compared with the normal pancreas.

INDUSTRIAL APPLICABILITY

[0091] According to the present invention, the novel pancreas-specific TSA305 gene and the protein encoded thereby are provided and, by utilizing these, a technology useful, among others, in elucidating, diagnosing, preventing and treating cancers, such as pancreatic carcinoma, or malignant transformation is provided.

SEQUENCE LISTING

5 <110> Otsuka Pharmaceutical Co., Ltd.

<120> TSA305 gene

<130> P98-53

10 <150> JP H9-3433789 and H10-126803

<151> 1997-11-28 and 1998-4-20

<160> 6

15 <170> PatentIn Ver. 2.0

20 <210> 1

<211> -794

<212> PRT

25 <213> human normal pancreas cDNA library

<400> 1

Met Arg Val Arg Ile Gly Leu Thr Leu Leu Leu Cys Ala Val Leu Leu

30 1 5 10 15

Ser Leu Ala Ser Ala Ser Ser Asp Glu Glu Gly Ser Gln Asp Glu Ser

20 25 30

35 Leu Asp Ser Lys Thr Thr Leu Thr Ser Asp Glu Ser Val Lys Asp His

35 40 45

40 Thr Thr Ala Gly Arg Val Val Ala Gly Gln Ile Phe Leu Asp Ser Glu

50 55 60

45 Glu Ser Glu Leu Glu Ser Ser Ile Gln Glu Glu Asp Ser Leu Lys

65 70 75 80

70 Ser Gln Glu Gly Glu Ser Val Thr Glu Asp Ile Ser Phe Leu Glu Ser

85 90 95

50 Pro Asn Pro Glu Asn Lys Asp Tyr Glu Glu Pro Lys Lys Val Arg Lys

100 105 110

Pro Ala Leu Thr Ala Ile Glu Gly Thr Ala His Gly Glu Pro Cys His
 5 115 120 125
 Phe Pro Phe Leu Phe Leu Asp Lys Glu Tyr Asp Glu Cys Thr Ser Asp
 10 130 135 140
 Gly Arg Glu Asp Gly Arg Leu Trp Cys Ala Thr Thr Tyr Asp Tyr Lys
 145 150 155 160
 Ala Asp Glu Lys Trp Gly Phe Cys Glu Thr Glu Glu Ala Ala Lys
 15 165 170 175
 Arg Arg Gln Met Gln Glu Ala Glu Met Met Tyr Gln Thr Gly Met Lys
 20 180 185 190
 Ile Leu Asn Gly Ser Asn Lys Lys Ser Gln Lys Arg Glu Ala Tyr Arg
 195 200 205
 Tyr Leu Gln Lys Ala Ala Ser Met Asn His Thr Lys Ala Leu Glu Arg
 25 210 215 220
 Val Ser Tyr Ala Leu Leu Phe Gly Asp Tyr Leu Pro Gln Asn Ile Gln
 225 230 235 240
 Ala Ala Arg Glu Met Phe Glu Lys Leu Thr Glu Glu Gly Ser Pro Lys
 30 245 250 255
 Gly Gln Thr Ala Leu Gly Phe Leu Tyr Ala Ser Gly Leu Gly Val Asn
 35 260 265 270
 Ser Ser Gln Ala Lys Ala Leu Val Tyr Tyr Thr Phe Gly Ala Leu Gly
 40 275 280 285
 Gly Asn Leu Ile Ala His Met Val Leu Gly Tyr Arg Tyr Trp Ala Gly
 290 295 300
 Ile Gly Val Leu Gln Ser Cys Glu Ser Ala Leu Thr His Tyr Arg Leu
 45 305 310 315 320
 Val Ala Asn His Val Ala Ser Asp Ile Ser Leu Thr Gly Gly Ser Val
 50 325 330 335
 Val Gln Arg Ile Arg Leu Pro Asp Glu Val Glu Asn Pro Gly Met Asn

	340	345	350
5	Ser Gly Met Leu Glu Glu Asp Leu Ile Gln Tyr Tyr Gln Phe Leu Ala		
	355	360	365
10	Glu Lys Gly Asp Val Gln Ala Gln Val Gly Leu Gly Gln Leu His Leu		
	370	375	380
15	His Gly Arg Gly Val Glu Gln Asn His Gln Arg Ala Phe Asp Tyr		
	385	390	395
20	Phe Asn Leu Ala Ala Asn Ala Gly Asn Ser His Ala Met Ala Phe Leu		
	405	410	415
25	Gly Lys Met Tyr Ser Glu Gly Ser Asp Ile Val Pro Gln Ser Asn Glu		
	420	425	430
30	Thr Ala Leu His Tyr Phe Lys Lys Ala Ala Asp Met Gly Asn Pro Val		
	435	440	445
35	Gly Gln Ser Gly Leu Gly Met Ala Tyr Leu Tyr Gly Arg Gly Val Gln		
	450	455	460
40	Val Asn Tyr Asp Leu Ala Leu Lys Tyr Phe Gln Lys Ala Ala Glu Gln		
	465	470	475
45	Gly Trp Val Asp Gly Gln Leu Gln Leu Gly Ser Met Tyr Tyr Asn Gly		
	485	490	495
50	Ile Gly Val Lys Arg Asp Tyr Lys Gln Ala Leu Lys Tyr Phe Asn Leu		
	500	505	510
55	Ala Ser Gln Gly Gly His Ile Leu Ala Phe Tyr Asn Leu Ala Gln Met		
	515	520	525
60	His Ala Ser Gly Thr Gly Val Met Arg Ser Cys His Thr Ala Val Glu		
	530	535	540
65	Leu Phe Lys Asn Val Cys Glu Arg Gly Arg Trp Ser Glu Arg Leu Met		
	545	550	555
70	Thr Ala Tyr Asn Ser Tyr Lys Asp Gly Asp Tyr Asn Ala Ala Val Ile		
	565	570	575

Gln Tyr Leu Leu Leu Ala Glu Gln Gly Tyr Glu Val Ala Gln Ser Asn
 5 580 585 590
 Ala Ala Phe Ile Leu Asp Gln Arg Glu Ala Ser Ile Val Gly Glu Asn
 10 595 600 605
 Glu Thr Tyr Pro Arg Ala Leu Leu His Trp Asn Arg Ala Ala Ser Gln
 15 610 615 620
 Gly Tyr Thr Val Ala Arg Ile Lys Leu Gly Asp Tyr His Phe Tyr Gly
 20 625 630 635 640
 Phe Gly Thr Asp Val Asp Tyr Glu Thr Ala Phe Ile His Tyr Arg Leu
 25 645 650 655
 Ala Ser Glu Gln Gln His Ser Ala Gln Ala Met Phe Asn Leu Gly Tyr
 30 660 665 670
 Met His Glu Lys Gly Leu Gly Ile Lys Gln Asp Ile His Leu Ala Lys
 35 675 680 685
 Arg Phe Tyr Asp Met Ala Ala Glu Ala Ser Pro Asp Ala Gln Val Pro
 40 690 695 700
 Val Phe Leu Ala Leu Cys Lys Leu Gly Val Val Tyr Phe Leu Gln Tyr
 45 705 710 715 720
 Ile Arg Glu Thr Asn Ile Arg Asp Met Phe Thr Gln Leu Asp Met Asp
 50 725 730 735
 Gln Leu Leu Gly Pro Glu Trp Asp Leu Tyr Leu Met Thr Ile Ile Ala
 55 740 745 750
 Leu Leu Leu Gly Thr Val Ile Ala Tyr Arg Gln Arg Gln His Gln Asp
 755 760 765
 Met Pro Ala Pro Arg Pro Pro Gly Pro Arg Pro Ala Pro Pro Gln Gln
 770 775 780
 Glu Gly Pro Pro Glu Gln Gln Pro Pro Gln
 785 790

<210> 2

<211> 2382

<212> DNA

<213> human normal pancreas cDNA library

<400> 2

10	atgcgggtcc ggatagggct gacgctgctg ctgtgtgcgg tgctgctgag ctggccctcg	60
15	gcgtcctcgg atgaagaagg cagccaggat gaatccttag attccaagac tactttgaca	120
20	tcaagatgagt cagtaaagga ccatactact gcagggcagag tagttgctgg tcaaataattt	180
25	cttgatttcag aagaatctga attagaatcc tctattcaag aagaggaaga cagccctaag	240
30	agccaaagagg gggaaagtgt cacagaagat atcagcttc tagagtctcc aaatccagaa	300
35	aacaaggact aigaagagcc aaagaaaagta cgaaaaaccag ctttgaccgc cattgaaggc	360
40	acagcacatg gggagccctg ccacttcctt ttctttcc tagataagga gtatgtgaa	420
45	tgtacatcag aigggaggga agatggcaga ctgiggttgt ctacaaccta tgactacaaa	480
50	gcagatgaaa agtggggctt ttgtgaaact gaagaagagg ctgctaagag acggcagatg	540
55	caggaagcag aaatgtatgia tcaaactggta atgaaaatcc ttaatggaaag caataagaaa	600
60	agccaaaaaaa gagaagcata tcggtatctc caaaaggcag caagcatgaa ccataccaaa	660
65	gccctggaga gagtgtcata tgctctttt tttggtgatt acttgccaca gaatatccag	720
70	gcagcgagag agatgttta gaagctgact gaggaaggct ctcccaaggg acagactgct	780
75	cttggctttc tgiatgcctc tggacttgtt gtttaattcaa gtcaggcaaa ggctcttgta	840
80	tattatacat tttggagctt tggggcaat ctaatagccc acatggttt gggttacaga	900
85	tactgggtcg gcaatggcgt cctccagagt tgtgaatctg ccctgactca ctatgtctt	960
90	gttgccaaatc atgttgctag tgatatctcg ctaacaggag gctcagtagt acagagaata	1020
95	cggctggctcg atgaagtggaa aaatccagga atgaacagtg gaaatgttgc agaagatttt	1080
100	atcaatattt accagttccct agctgaaaaaa gggtgttgc aagcacaggt tggctttggta	1140
105	caactgcacc tgcacggagg gctgggatgtt gaaacagaatc atcagagagc atttgactac	1200
110	ttcaattttat cagcaaattgc tggcaatttc catggcatgg cttttttggaa aaagatgtat	1260
115	tccggaaaggaa gtgacattgtt acctcagagt aatgagacag ctctccacta cttaagaaa	1320
120	gctgctgaca tgggcaaccc agttggacag agtgggttg gaatggccctt cctctatggg	1380
125	agaggagtttc aagttaattt tgatctagcc ctttaagtatt tccagaaagc tgctgaacaa	1440

	ggctgggtgg atggcagct acagcttgtt tccatgtact ataatggcat tggagtcaag	1500
5	agagattata aacaggcctt gaagtatittt aattttagctt ctccaggagg ccatatcttg	1560
	gttttcata accttagctca gatgcattgc agtggcacccg gcgtgtatgcg atcatgtcac	1620
	actgcagttgg agtigttaaa gaatgtatgtt gaacgaggcc gtgtgttga aaggcttatg	1680
10	actgcctata acagctataa agatggcgat tacaatgtcg cagtgatcca gtaccctc	1740
	ctggctgaac agggctatga agtggcacaa agcaatgcag ccttattct tgcgtatcaga	1800
	gaagcaagca ttgttaggtga gaatgaaact tatcccagag ctgttataca ttggAACAGG	1860
15	gccgcctctc aaggctatac ttgtggctaga attaagctcg gagactacca ttctatggg	1920
	tttggcacccg atgttagatta tggaaactgca ttatttcatt accgtctggc ttctgagcag	1980
	caacacagtg cacaagctat gttaatctcg ggatatatgc atgagaaagg actggcatt	2040
20	aaacaggata ttcaccttgc gaaacgtttt tatgacatgg cagctgaagc cagccccagat	2100
	gcacaagttc cagtttcctt agccctctgc aaatttggcg tcgttattt ctgtcgtac	2160
	atacggaaa caaacattcg agataatgttc acccaacttg atatggacca gcttttggga	2220
25	cctgagttggg acctttacccatcatgaccatc atttgcgtgc tttttggaaac agtcatagct	2280
	tacaggccaa ggcagccacca agacatgcctt gcacccagggc ctccaggggcc acggccagct	2340
	ccaccccccagc aggaggggcc accagagcag cagccaccac ag	2382

35 <210> 3
 <211> 7885
 <212> DNA
 <213> human normal pancreas cDNA library
 <220>
40 <221> cDS
 <222> (46)..(2428)
 <400> 3
45 gcgaaggcga cagctctagg ggttggcacc ggcccccgaga ggagg atg cgg gtc
 54

50 cgg ata ggg ctg acg ctg ctg ctg tgt gcg gtg ctg ctg agc ttg gcc 102
Met Arg Val
1

Arg Ile Gly Leu Thr Leu Leu Leu Cys Ala Val Leu Leu Ser Leu Ala
 5 10 15
 tcg gcg tcc tcg gat gaa gaa ggc agc cag gat gaa tcc tta gat tcc 150
 Ser Ala Ser Ser Asp Glu Glu Gly Ser Gln Asp Glu Ser Leu Asp Ser
 10 20 25 30 35
 aag act act ttg aca tca gat gag tca gta aag gac cat act act gca 198
 Lys Thr Thr Leu Thr Ser Asp Glu Ser Val Lys Asp His Thr Thr Ala
 15 20 25 30 35 40 45 50
 ggc aga gta gtt gct ggt caa ata ttt ctt gat tca gaa gaa tct gaa 246
 Gly Arg Val Val Ala Gly Gln Ile Phe Leu Asp Ser Glu Glu Ser Glu
 20 25 30 35 40 45 50 55 60 65
 tta gaa tcc tct att caa gaa gag gaa gac agc ctc aag agc caa gag 294
 Leu Glu Ser Ser Ile Gln Glu Glu Glu Asp Ser Leu Lys Ser Gln Glu
 25 30 35 40 45 50 55 60 65 70 75 80
 ggg gaa agt gtc aca gaa gat atc agc ttt cta gag tct cca aat cca 342
 Gly Glu Ser Val Thr Glu Asp Ile Ser Phe Leu Glu Ser Pro Asn Pro
 30 35 40 45 50 55 60 65 70 75 80 85 90 95
 gaa aac aag gac tat gaa gag cca aag aaa gta cgg aaa cca gct ttg 390
 Glu Asn Lys Asp Tyr Glu Glu Pro Lys Lys Val Arg Lys Pro Ala Leu
 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115
 acc gcc att gaa ggc aca gca cat ggg gag ccc tgc cac ttc cct ttt 438
 Thr Ala Ile Glu Gly Thr Ala His Gly Glu Pro Cys His Phe Pro Phe
 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130
 ctt ttc cta gat aag gag tat gat gaa tgt aca tca gat ggg agg gaa 486
 Leu Phe Leu Asp Lys Glu Tyr Asp Glu Cys Thr Ser Asp Gly Arg Glu
 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145
 gat ggc aga ctg tgg tgt gct aca acc tat gac tac aaa gca gat gaa 534
 Asp Gly Arg Leu trp Cys Ala Thr Thr Tyr Asp Tyr Lys Ala Asp Glu
 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160

aag tgg ggc ttt tgt gaa act gaa gaa gag gct gct aag aga cgg cag	582
Lys Trp Gly Phe Cys Glu Thr Glu Glu Ala Ala Lys Arg Arg Gln	
5 165 170 175	
atg cag gaa gca gaa atg atg tat caa act gga atg aaa atc ctt aat	630
Met Gln Glu Ala Glu Met Met Tyr Gln Thr Gly Met Lys Ile Leu Asn	
10 180 185 190 195	
gga agc aat aag aaa agc caa aaa aga gaa gca tat cgg tat ctc caa	678
Gly Ser Asn Lys Lys Ser Gln Lys Arg Glu Ala Tyr Arg Tyr Leu Gln	
15 200 205 210	
aag gca gca agc atg aac cat acc aaa gcc ctg gag aga gtg tca tat	726
Lys Ala Ala Ser Met Asn His Thr Lys Ala Leu Glu Arg Val Ser Tyr	
20 215 220 225	
gct ctt tta ttt ggt gat tac ttg cca cag aat atc cag gca gcg aga	774
Ala Leu Leu Phe Gly Asp Tyr Leu Pro Gln Asn Ile Gln Ala Ala Arg	
25 230 235 240	
gag atg ttt gag aag ctg act gag gaa ggc tct ccc aag gga cag act	822
Glu Met Phe Glu Lys Leu Thr Glu Glu Gly Ser Pro Lys Gly Gln Thr	
30 245 250 255	
gct ctt ggc ttt ctg tat gcc tct gga ctt ggt gtt aat tca agt cag	870
Ala Leu Gly Phe Leu Tyr Ala Ser Gly Leu Gly Val Asn Ser Ser Gln	
35 260 265 270 275	
gca aag gct ctt gta tat tat aca ttt gga gct ctt ggg ggc aat cta	918
Ala Lys Ala Leu Val Tyr Tyr Phe Gly Ala Leu Gly Gly Asn Leu	
40 280 285 290	
ata gcc cac atg gtt ttg ggt tac aga tac tgg gct ggc atc ggc gtc	966
Ile Ala His Met Val Leu Gly Tyr Arg Tyr Trp Ala Gly Ile Gly Val	
45 295 300 305	
ctc cag agt tgt gaa tct gcc ctg act cac tat cgt ctt gtt gcc aat	1014
Leu Gln Ser Cys Glu Ser Ala Leu Thr His Tyr Arg Leu Val Ala Asn	

310	315	320	
cat gtt gct agt gat atc tcg cta aca gga ggc tca gta gta cag aga			1062
His Val Ala Ser Asp Ile Ser Leu Thr Gly Gly Ser Val Val Gln Arg			
325	330	335	
ata cgg ctg cct gat gaa gtg gaa aat cca gga atg aac agt gga atg			1110
Ile Arg Leu Pro Asp Glu Val Glu Asn Pro Gly Met Asn Ser Gly Met			
340	345	350	355
cta gaa gaa gat ttg att caa tat tac cag ttc cta gct gaa aaa ggt			1158
Leu Glu Glu Asp Leu Ile Gln Tyr Tyr Gln Phe Leu Ala Glu Lys Gly			
360	365	370	
gat gta caa gca cag gtt ggt ctt gga caa ctg cac ctg cac gga ggg			1206
Asp Val Gln Ala Gln Val Gly Leu Gly Gln Leu His Leu His Gly Gly			
375	380	385	
cgt gga gta gaa cag aat cat cag aga gca ttt gac tac ttc aat tta			1254
Arg Gly Val Glu Gln Asn His Gln Arg Ala Phe Asp Tyr Phe Asn Leu			
390	395	400	
gca gca aat gct ggc aat tca cat gcc atg gcc ttt ttg gga aag atg			1302
Ala Ala Asn Ala Gly Asn Ser His Ala Met Ala Phe Leu Gly Lys Met			
405	410	415	
tat tcg gaa gga agt gac att gta cct cag agt aat gag aca gct ctc			1350
Tyr Ser Glu Gly Ser Asp Ile Val Pro Gln Ser Asn Glu Thr Ala Leu			
420	425	430	435
cac tac ttt aag aaa gct gac atg ggc aac cca gtt gga cag agt			1398
His Tyr Phe Lys Lys Ala Ala Asp Met Gly Asn Pro Val Gly Gln Ser			
440	445	450	
ggg ctt gga atg gcc tac ctc tat ggg aga gga gtt caa gtt aat tat			1446
Gly Leu Gly Met Ala Tyr Leu Tyr Gly Arg Gly Val Gln Val Asn tyr			
455	460	465	
gat cta gcc ctt aag tat ttc cag aaa gct gaa caa ggc tgg gtg			1494

	Asp Leu Ala Leu Lys Tyr Phe Gln Lys Ala Ala Glu Gln Gly Trp Val			
5	470	475	480	
	gat ggg cag cta cag ctt ggt tcc atg tac tat aat ggc att gga gtc			1542
	Asp Gly Gln Leu Gln Leu Gly Ser Met Tyr Tyr Asn Gly Ile Gly Val			
10	485	490	495	
	aag aga gat tat aaa cag gcc ttg aag tat ttt aat tta gct tct cag			1590
	Lys Arg Asp Tyr Lys Gln Ala Leu Lys Tyr Phe Asn Leu Ala Ser Gln			
15	500	505	510	515
	gga ggc cat atc ttg gct ttc tat aac cta gct cag atg cat gcc agt			1638
	Gly Gly His Ile Leu Ala Phe Tyr Asn Leu Ala Gln Met His Ala Ser			
20	520	525	530	
	ggc acc ggc gtg atg cga tca tgt cac act gca gtg gag ttg ttt aag			1686
	Gly Thr Gly Val Met Arg Ser Cys His Thr Ala Val Glu Leu Phe Lys			
25	535	540	545	
	aat gta tgt gaa cga ggc cgt tgg tct gaa agg ctt atg act gcc tat			1734
	Asn Val Cys Glu Arg Gly Arg Trp Ser Glu Arg Leu Met Thr Ala Tyr			
30	550	555	560	
	aac agc tat aaa gat ggc gat tac aat gct gca gtg atc cag tac ctc			1782
	Asn Ser Tyr Lys Asp Gly Asp Tyr Asn Ala Ala Val Ile Gln Tyr Leu			
35	565	570	575	
	ctc ctg gct gaa cag ggc tat gaa gtg gca caa agc aat gca gcc ttt			1830
	Leu Leu Ala Glu Gln Gly Tyr Glu Val Ala Gln Ser Asn Ala Ala Phe			
40	580	585	590	595
	att ctt gat cag aga gaa gca agc att gta ggt gag aat gaa act tat			1878
	Ile Leu Asp Gln Arg Glu Ala Ser Ile Val Gly Glu Asn Glu Thr Tyr			
45	600	605	610	
	ccc aga gct ttg cta cat tgg aac agg gcc gcc tct caa ggc tat act			1926
	Pro Arg Ala Leu Leu His Trp Asn Arg Ala Ala Ser Gln Gly Tyr Thr			
50	615	620	625	

5 gtg gct aga att aag ctc gga gac tac cat ttc tat ggg ttt ggc acc 1974
 Val Aal Arg Ile Lys Leu Gly Asp Tyr His Phe Tyr Gly Phe Gly Thr
 630 635 640
 10 gat gta gat tat gaa act gca ttt att cat tac cgt ctg gct tct gag 2022
 Asp Val Asp Tyr Glu Thr Ala Phe Ile His Tyr Arg Leu Ala Ser Glu
 15 645 650 655
 15 cag caa cac agt gca caa gct atg ttt aat ctg gga tat atg cat gag 2070
 Gln Gln His Ser Ala Gln Ala Met Phe Asn Leu Gly Tyr Met His Glu
 20 660 665 670 675
 20 aaa gga ctg ggc att aaa cag gat att cac ctt gcg aaa cgt ttt tat 2118
 Lys Gly Leu Gly Ile Lys Gln Asp Ile His Leu Ala Lys Arg Phe Tyr
 25 680 685 690
 25 gac atg gca gct gaa gcc agc cca gat gca caa gtc cca gtc ttc tta 2166
 Asp Met Ala Ala Glu Ala Ser Pro Asp Ala Gln Val Pro Val Phe Leu
 30 695 700 705
 30 gcc ctc tgc aaa ttg ggc gtc gtc tat ttc tig cag tac ata cgg gaa 2214
 Ala Leu Cys Lys Leu Gly Val Val Tyr Phe Leu Gln Tyr Ile Arg Glu
 35 710 715 720
 35 aca aac att cga gat atg ttc acc caa ctt gat atg gac cag ctt ttg 2262
 Thr Asn Ile Arg Asp Met Phe Thr Gln Leu Asp Met Asp Gln Leu Leu
 40 725 730 735
 40 gga cct gag tgg gac ctt tac ctc atg acc atc att gcg ctg ctg ttg 2310
 Gly Pro Glu Trp Asp Leu Tyr Leu Met Thr Ile Ile Ala Leu Leu Leu
 45 740 745 750 755
 45 gga aca gtc ata gct tac agg caa agg cag cac caa gac atg cct gca 2358
 Gly Thr Val Ile Ala Tyr Arg Gln Arg Gln His Gln Asp Met Pro Ala
 50 760 765 770
 50 ccc agg cct cca ggg cca cgg cca gct cca ccc cag cag gag ggg cca 2406
 Pro Arg Pro Pro Gly Pro Arg Pro Ala Pro Pro Gln Gln Glu Gly Pro

5 gttggggtag tagttagaac tagatttaac tagtctataa tgaacatgaa ggctttata
tatgaagtgt tatacccttt tggtttttaga gaattatggg aaacctggta agcaaaaactt
tcccccaga taattgcctc caaattcgaa gagtttagtca ccaagagagc catatgtatg
aaagcgtatc tgtgaaaggt aggaaaccta cccccccctaa gtgtaatgtt gctttaggca
actcttgtaa atagigagac ttgtttggtc ctcttacatgt agagatttga gtgcagttgg
tacagtacit tggtgtctcc accactgtcc ctctcccccg ctcaaaaata agtgtaatcc
acggtagcag ccacacttcc ttcaagaagga actgttataa ttttttttaaa agttgaaaaaa
ccacccaaga tgactaccat ctttcatctt ttttctctg ccatccaccc tcattttccc
tttagcaaga ttttataatc taactttcct tccctccatt gaggatgtgc tttagaaaaaa
catttttaaa aacagtggtt gccacctaag gctggatggg aaagtgcagt ctgtttgtc
atataaaaaaa cacacttctt attagttiac ccacttgctt ttttctatgt ttaatgttctt
gaattttcctt ttcttggctt gtttctactt catttttaacc ctgggtcact tgctgccagc
agtttgtgaa tggtgtctt caaataactt agttttatg gcttcaactt aagactgtct
caaaaataact ttgtctctt ctctttttt gtcataggga catggcacctt aagcaaatag
gagttgggtt tggttttctt cctaaaataa tgctcaatac ttacctaatac aaalggcatac
catttgaata aaatgacaat aactaaagct agtttaatgtc agtgacatia aactaactcc
aggattcagg agtttaatg tttagaatttta gatttaacag atagagtgtg gcttcatttt
tccatggtag cccatctctc ctaagaccctt ttcttagtctg tcttccctgccc ttcaacttgg
atgacagtaa aaccctgttt agtattctct tggcatctt gtttgttggtagccgactt
tcttggaaactt attcattttt gttctagttt tattttacag aggttagcattt ggtgggtttt
tttttttttt tctgtctctg tgtttgaagt ttcagttctt gttttcttagg taaggcttat
ttttgatttag cagtcaatgg caaagaaaaaa glaaatcaaa gatgacttctt ttcaaaaatg
tatggccctt ttattgcact tttaacatcg atgaattttttaaaattattaa tcttgatact
aaggatttgt tacttttttgcataattttttaattttac ttcatatgtg agatgttttac
cactaagcca ttctgtctct gtaactgttgg gaagttttgg aaaccctgc cagtgtatct
gtgtatgtatct gatgattttat tttaaagagcc gttgtatgcctt ccagggaaactt taagtatttt
attaaatatat atataggaat tttttttttt tttgtttttt gttttttttt gttttttttt
cctcatgttc attcttcaaa ccagtttttt ggaagttatgc atgcaggccctt ataaatgaaaa
aacacaattt tttatgtgtta tagcaatgtgtt attaaatgtctt aactacatac gaaaaactt
5698

aaaaaaaatc agaatttcig tagtagaaac tacgaaaaat aaaaaggaaa gttttactt	7498
tttgggtatt ttttacgaa taagaaaaag tgagcgtaa tcagttcaaa aggaggtaact	7558
gctgtgtaat gggcttigtta cgttccttct caigtcaactt acgtcaactac ttgcgccatca	7618
aattgaacaa gcttttaatt agatcctgaa aattcaactat gcttagtagtt tattggtagt	7678
attatatttt gagtagaact ctgatttcc cttagggcca aattctttt atctgggtta	7738
atttctttta aacataacaa tggtaatgct gaattgtata ttaaatccca tttctaaaaa	7798
ccacacaatt tttcicatg taagttagt ggaatgttgt tagttactg aatttggaat	7858
gttcatataa ataatttgtt gctgctc	7885
<210> 4	
<211> 10	
<212> DNA	
<213> Primer sequence for PCR of TSA305	
<400> 4	
gatctgacac	10
<210> 5	
<211> 28	
<212> DNA	
<213> Primer sequence for PCR of TSA305	
<400> 5	
gatcggtatcc aggaggatgc gggtccgg	28
<210> 6	
<211> 30	
<212> DNA	
<213> Primer sequence for PCR of TSA305	
<400> 6	
gatcctcgag ttactgttgt ggctgttgt	30

Claims

1. A pancreas-specific gene which comprises a base sequence coding for a protein having the amino acid sequence shown under SEQ ID NO:1.

5 2. A gene as claimed in Claim 1 which is a human gene.

3. A gene as claimed in Claim 1 which is defined by the base sequence shown under SEQ ID NO:2.

10 4. A gene as claimed in Claim 3 which is a human gene.

5. A pancreas-specific gene which is either of the polynucleotides defined below under (a) and (b):

15 (a) a polynucleotide containing the whole or part of the nucleotide sequence shown under SEQ ID NO:2;

(b) a polynucleotide capable of hybridizing with a DNA having the nucleotide sequence shown under SEQ ID NO:2 under stringent conditions.

6. A gene as claimed in Claim 5 which is a human gene.

20 7. A gene as claimed in Claim 5 which is a DNA fragment usable as a specific probe or specific primer in detecting the pancreas-specific gene defined in Claim 1.

8. A pancreas-specific protein having the amino acid sequence shown under SEQ ID NO:1.

25 9. An antibody capable of binding to the pancreas-specific protein defined in Claim 8.

30

35

40

45

50

55

Fig. 1

F i g. 2

F i g . 3

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP98/05306

A CLASSIFICATION OF SUBJECT MATTER
Int.Cl⁶ C12N15/12, C07K14/435, C07K16/18

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.Cl⁶ C12N15/12, C07K14/435, C07K16/18

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
SwissProt/PIR/GeneSeq; Genbank/EMBL/DDBJ/GeneSeq

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ^a	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	Barth Grant et al., "The <i>Caeenorhabditis elegans</i> sel-1 gene, a negative regulator of lin-12 and glp-1, encodes a predicted extracellular protein", <i>Genetics</i> (1996) Vol. 143, No. 1 p.237-247	1-9
A	Barth Grant et al., "Structure, function, and expression of SEL-1, a negative regulator of LIN-12 and GLP-1 in <i>C. elegans</i> ", <i>Development</i> (1997) Vol. 124, No. 3 p.637-644	1-9

 Further documents are listed in the continuation of Box C. See patent family annex.

- * Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
- T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- & document member of the same patent family

Date of the actual completion of the international search
3 March, 1999 (03. 03. 99)Date of mailing of the international search report
16 March, 1999 (16. 03. 99)Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)

Fig. 1

F i g . 2

F i g . 3

