Analysis of Beijing PM2.5 dataset using MCMCglmm

Guanghui Min, Muzhe Guo, Naichen Ni

University of Michigan

guanghui, muzheguo, ncni @umich.edu

September 20, 2019

Overview

- Overview of the model
 - Fixed vs Random Effects
 - Brief introduction to Linear Mixed Model
- Preprocess the dataset
 - Overview of the dataset
 - Box-cox transformation for response
 - Choose preidictors
- Apply the model on the dataset
 - Apply the simple linear model
 - Apply linear mixed model using MCMCglmm
 - Compare the mixed model to simple regression model

Fixed vs Random Effects

In the simple linear model, we assume that parameters are unknown constants.

- Regression: b is some unknown (constant) coefficient vector
- ANOVA: μ_j are some unknown (constant) means
- These are referred to as fixed effects.

Unlike fixed effects, random effects are NOT unknown constants.

- Random effects are random variables in the population
- Typically assume that random effects are zero-mean Gaussian
- Typically want to estimate the variance parameter(s)

Brief intro to LMM

The model can be represented as:

$$Y = X\beta + Zu + \epsilon$$

where $Y \in \mathbb{R}^m$, $\beta \in \mathbb{R}^n$, $X \in \mathbb{R}^{m \times n}$, $Z \in \mathbb{R}^{m \times k}$, and $u \sim \mathcal{N}(0_k, G_k)$, $\epsilon \sim \mathcal{N}(0_m, R_m)$

- $X\beta$ is referred as fixed effects and $Z\alpha$ is referred as the random effect part;
- ullet Typically we assume lpha and ϵ are independent;
- X and Z are known design matrices relating the observations to y, β and u respectively.

Beijing PM2.5 dataset

After deleting the missing values in the dataset, there are 41755 observations of 13 variables.

- year: year of data in this row
- month: month of data in this row
- day: day of data in this row
- hour: hour of data in this row
- pm2.5: PM2.5 concentration (ug/m^3)
- DEWP: Dew Point $(\hat{\alpha}_{,,}f)$
- TEMP: Temperature $(\hat{\alpha}_{,,}f)$
- PRES: Pressure (hPa)
- cbwd: Combined wind direction
- Iws: Cumulated wind speed (m/s)
- Is: Cumulated hours of snow
- Ir: Cumulated hours of rain

Box-cox transformation

We choose the variable **pm2.5** as the response.

The response is severely skewed.

Box-cox transformation

We use box-cox plot for diagnostics:

For better interpretation, we choose $\lambda=0.1$. Then $g_{\lambda}(y)=y^{0.1}$

Box-cox transformation

We can see that the transformed response follows a short-tailed distribution. For short-tailed distributions, the consequences of nonnormality are not serious and can reasonably be ignored.

To avoid time series analysis, we tend to not use the variable **year**, month, day and **hour**. We create a new variable **season** to simply indicate the season of the row. What's more, as more than 95% of the entries of **IS**, **Ir** are zeros, we decide to deprecate them as well.

Finally, we will choose **DEWP**, **TEMP**, **PRES** and **Iws** as fixed effects and **cbwd** and **season** as random effects.

Here is the boxplots of transformed response grouped by **cbwd** and **season**.

Simple linear model

We first look the result of the simple model:

```
fit.linear=lm(pm2.5 trans-DEWP+TEMP+PRES+Iws.data=AO)
summary(fit.linear)
Call:
lm(formula = pm2.5 trans ~ DEWP + TEMP + PRES + Iws, data = AQ)
Residuals:
    Min
              10 Median
-0.59857 -0.08534 0.00579 0.08956 0.49906
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.482e+00 1.149e-01 39.00 <2e-16 ***
DEWP
            8.094e-03 8.306e-05 97.45 <2e-16 ***
           -1.016e-02 1.066e-04 -95.28 <2e-16 ***
TEMP
PRES
           -2.788e-03 1.124e-04 -24.82 <2e-16 ***
           -6.635e-04 1.327e-05 -50.01 <2e-16 ***
Iws
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1267 on 41750 degrees of freedom
Multiple R-squared: 0.3258,
                            Adjusted R-squared: 0.3258
F-statistic: 5045 on 4 and 41750 DF, p-value: < 2.2e-16
```

Simple linear model

QQplot for residuals of the fit:

It turns out to be a good fit.

$$\begin{bmatrix} \epsilon \\ u \end{bmatrix} \sim \mathcal{N}(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} R & 0 \\ 0 & G \end{bmatrix})$$

$$f(\epsilon, u|\beta, G, R) \propto |R|^{-1/2}|G|^{-1/2}$$

$$\times \exp(-\frac{1}{2}(y - X\beta - Zu)^T R^{-1}(y - X\beta - Zu) - \frac{1}{2}u^T G^{-1}u)$$

$$\hat{\beta}|y, u, G, R = (X^T V^{-1}X)^{-1}X^T V^{-1}y$$

where $V = ZGZ^T + R$ Then we assume the prior distribution of G, R follows inverse-Wishart distribution and apply gibbs sampler in this problem.

Compare the two methods

The advantage of the mixed model is that it does not assume the independency between the observations.

Thank you!