Recitation 4: Multivariate OLS

Seung-hun Lee

Columbia University
Undergraduate Introduction to Econometrics Recitation

October 6th, 2022

Gauss-Markov Theorem

Gauss-Markov Theorem: Big picture

 Assuming classical linear regression assumptions, OLS is the unbiased, linear estimator with the smallest variance (OLS = BLUE)

Gauss-Markov Theorem: Statement and condition

Assuming the following conditions

- Conditional expectation is zero: $E[u_i|X_i] = 0$
- Homoskedasticity: $var(u_i|X_i) = \sigma_u^2$
- No autocorrelation: $E[u_i u_i | X_i] = 0$ for $i \neq j$

OLS is best, linear, unbiased estimator (BLUE)

October 6th, 2022 Recitation 4 (UN 3412) 3 / 21

OLS is linear and unbiased

• Linearity: We can write the numerator from $\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}$ as

$$\sum_{i=1}^{n} (X_{i} - \bar{X})(Y_{i} - \bar{Y}) = \sum_{i=1}^{n} X_{i} Y_{i} - \bar{Y} \sum_{i=1}^{n} X_{i} - \bar{X} \sum_{i=1}^{n} Y_{i} + n\bar{X}\bar{Y}$$

We use the fact that $\sum_{i=1}^{n} X_i = n\bar{X}$ to reduce the above to

$$\sum_{i=1}^{n} X_{i} Y_{i} - \bar{Y} \sum_{i=1}^{n} X_{i} - \bar{X} \sum_{i=1}^{n} Y_{i} + n \bar{X} \bar{Y} = \sum_{i=1}^{n} X_{i} Y_{i} - \bar{X} \sum_{i=1}^{n} Y_{i} = \sum_{i=1}^{n} (X_{i} - \bar{X}) Y_{i}$$

Thus, OLS estimator is linear in Y_i

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X}) Y_i}{\sum_{i=1}^n (X_i - \bar{X})^2} = \sum_{i=1}^n c_i Y_i$$

• Unbiasedness: We have shown this when we talked about the sampling distribution of $\hat{\beta}_1$. The same logic holds here

October 6th, 2022 Recitation 4 (UN 3412) 4 / 21

OLS has the smallest variance out of unbiased, linear estimators

• Let $\tilde{\beta}_1$ be linear in Y_i and unbiased ($\tilde{\beta}_1 = \sum_{i=1}^n a_i Y_i$). We can write

$$\tilde{\beta}_1 = \sum_{i=1}^n a_i (\beta_0 + \beta_1 X_i + u_i) = \sum_{i=1}^n a_i \beta_0 + \beta_1 \sum_{i=1}^n a_i X_i + \sum_{i=1}^n a_i u_i$$

• Since this is also unbiased, we can infer that (note that this applies to c_i too)

$$E\left[\sum_{i=1}^{n} a_{i} u_{i} | X_{i}\right] = 0 \sum_{i=1}^{n} a_{i} = 0 \quad \sum_{i=1}^{n} a_{i} X_{i} = 1$$

We have

$$var(\tilde{\beta}_1|X_i) = var(\beta_1 + \sum_{i=1}^n a_i u_i | X_i) = \sum_{i=1}^n a_i^2 var(u_i | X_i) = \sum_{i=1}^n a_i^2 \sigma_u^2$$

$$var(\hat{\beta}_1|X_i) = \frac{\sigma_u^2}{\sum_{i=1}^n (X_i - \bar{X})^2} = \sum_{i=1}^n c_i^2 \sigma_u^2 \text{(Verify on your own)}$$

October 6th, 2022 Recitation 4 (UN 3412) 5 / 21

OLS has the smallest variance out of unbiased, linear estimators

So the difference in variances are

$$var(\tilde{\beta}_1|X_i) - var(\hat{\beta}_1|X_i) = \sigma_u^2 \sum_{i=1}^n (a_i^2 - c_i^2)$$

• Let $a_i = c_i + d_i$. Then we have

$$\begin{split} \sum_{i=1}^{n} a_i^2 &= \sum_{i=1}^{n} c_i^2 + \sum_{i=1}^{n} d_i^2 + 2 \sum_{i=1}^{n} c_i d_i \\ &= \sum_{i=1}^{n} c_i^2 + \sum_{i=1}^{n} d_i^2 + 2 \frac{\sum_{i=1}^{n} (X_i - \bar{X}) d_i}{\sum_{i=1}^{n} (X_i - \bar{X})^2} \\ &= \sum_{i=1}^{n} c_i^2 + \sum_{i=1}^{n} d_i^2 + 2 \frac{\sum_{i=1}^{n} X_i a_i - \sum_{i=1}^{n} X_i c_i - \bar{X} \sum_{i=1}^{n} a_i + \bar{X} \sum_{i=1}^{n} c_i}{\sum_{i=1}^{n} (X_i - \bar{X})^2} \\ &= \sum_{i=1}^{n} c_i^2 + \sum_{i=1}^{n} d_i^2 (\because \text{ Conditions we set for } a_i) \end{split}$$

October 6th, 2022 Recitation 4 (UN 3412) 6 / 21

OLS has the smallest variance out of unbiased. linear estimators

Therefore,

$$var(ilde{eta}_1|X_i) - var(\hat{eta}_1|X_i) = \sigma_u^2 \sum_{i=1}^n d_i^2 \geq 0$$

- Takeaway: Among the class of unbiased and linear estimators. OLS has the smallest variance of them all.
- Note that this also implies that there is an estimator with smaller variance but such estimator has a bias or is nonlinear (e.g. LASSO)

7/21October 6th, 2022 Recitation 4 (UN 3412)

Multivariate OLS

Multivariate Regression: Why add more variables to the right?

- Suppose that there are more than one possible independent variable
- The set of models are

True:
$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

Mistake: $Y_i = \beta_0 + \beta_1 X_i + u_i^*$
Sample: $Y_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{u}_i$

• Suppose you run an OLS regression without Z_i . $\hat{\beta}_1$ can be calculated as $\frac{\sum_{i=1}^{n}(X_i-\bar{X})(Y_i-\bar{Y})}{\sum_{i=1}^{n}(X_i-\bar{X})^2}$. Replacing this with the true model gives

$$\frac{\sum_{i=1}^{n} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})(\beta_{1}(X_{i} - \bar{X}) + \beta_{2}(Z_{i} - \bar{Z}) + (u_{i} - \bar{u}))}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}$$

$$= \beta_{1} + \beta_{2} \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})(Z_{i} - \bar{Z})}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}} + \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})(u_{i} - \bar{u})}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}$$

October 6th, 2022 Recitation 4 (UN 3412) 9 / 21

Omitted variable bias: Bias from missing out needy independent variables

- If $\beta_2 \neq 0$ and $\frac{\sum_{i=1}^n (X_i \bar{X})(Z_i \bar{Z})}{\sum_{i=1}^n (X_i \bar{X})^2} \neq 0$, then the mean of $\hat{\beta}_1$ is not guaranteed to be β_1 . This leads to the **omitted variable bias** problem
- This happens when both of the following cases hold
 - ▶ Z should explain Y: If the slope coefficient of Z (β_2) is nonzero, then the Z variable is part of the error term if we forget to include them
 - ▶ \underline{Z} is correlated with \underline{X} : If $cov(X, Z) \neq 0$ and the regression residual \hat{u} is correlated with X, the independent variable is now correlated with \hat{u} , which leads to violation of the assumption that independent variable and the residual are not correlated.
- We can even determine the direction of the bias
 - $\hat{\beta}_1$ is overestimated if $\beta_2 \frac{\sum_{i=1}^n (X_i \bar{X})(Z_i \bar{Z})}{\sum_{i=1}^n (X_i \bar{X})^2} > 0$
 - $\hat{\beta}_1 \text{ is underestiated if } \beta_2 \frac{\sum_{i=1}^{n} (X_i \bar{X})(Z_i \bar{Z})}{\sum_{i=1}^{n} (X_i \bar{X})^2} < 0$

October 6th, 2022 Recitation 4 (UN 3412) 10 / 21

Omitted variable hias: What to do about it?

- We can simply include the Z variable if we have the data for it.
- Another way is to conduct an ideal randomized controlled experiment (or randomized control trial) that randomly assigns value of X to all students.
- If none of the two are feasible, we should find another variable that can be a proxy to Z - they have to be related to the X variable and is uncorrelated with the errors which is the Instrumental Variable method.

October 6th, 2022 Recitation 4 (UN 3412) 11 / 21

Multivariate regression: So now what does the coefficients really mean?

- The technicalities involved do not change drastically compared to the univariate regression.
- However, one should interpret the coefficients cautiously. Suppose that the regression is

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

• To see the impact of X_i and Y_i , one needs to take (partial) derivatives on Y_i with respect to X_i . This leads to

$$\beta_1 = \frac{\partial Y_i}{\partial X_i}$$

- In words, β_1 captures how much Y_i changes with respect to X_i holding other variables constant (ceteris paribus).
- If you do not hold other variables (Z_i in this case) fixed, the change will not exactly be β_1 (it could be more or less)

October 6th, 2022 Recitation 4 (UN 3412) 12 / 21

Sapling distribution of estimates: Just derive this once in your life

• The estimates for the $\hat{\beta}_j$, can be obtained in a similar way in which we have obtained the OLS estimates for the single variable version.

$$\min_{\{\beta_0,\beta_1,\beta_2\}} \sum_{i=1}^n [Y_i - \beta_0 - \beta_1 X_{1i} - \beta_2 X_{2i}]^2$$

 After some more amount of algebra (than the single variable case), the result we get is the following

$$\begin{array}{ll} \hat{\beta}_{0} = & \bar{Y} - \hat{\beta}_{1}\bar{X}_{1} - \hat{\beta}_{2}\bar{X}_{2} \\ \hat{\beta}_{1} = & \frac{\sum_{i=1}^{n}(X_{1i} - \bar{X}_{1})(Y_{i} - \bar{Y})\sum_{i=1}^{n}(X_{2i} - \bar{X}_{2})^{2} - \sum_{i=1}^{n}(X_{2i} - \bar{X}_{2})(Y_{i} - \bar{Y})\sum_{i=1}^{n}(X_{1i} - \bar{X}_{1})(X_{2i} - \bar{X}_{2})}{\sum_{i=1}^{n}(X_{1i} - \bar{X}_{1})^{2}\sum_{i=1}^{n}(X_{2i} - \bar{X}_{2})^{2} - [\sum_{i=1}^{n}(X_{1i} - \bar{X}_{1})(X_{2i} - \bar{X}_{2})]^{2}} \\ \hat{\beta}_{2} = & \frac{\sum_{i=1}^{n}(X_{2i} - \bar{X}_{2})(Y_{i} - \bar{Y})\sum_{i=1}^{n}(X_{1i} - \bar{X}_{1})^{2} - \sum_{i=1}^{n}(X_{1i} - \bar{X}_{1})(Y_{i} - \bar{Y})\sum_{i=1}^{n}(X_{1i} - \bar{X}_{1})(X_{2i} - \bar{X}_{2})}{\sum_{i=1}^{n}(X_{1i} - \bar{X}_{1})^{2}\sum_{i=1}^{n}(X_{2i} - \bar{X}_{2})^{2} - [\sum_{i=1}^{n}(X_{1i} - \bar{X}_{1})(X_{2i} - \bar{X}_{2})]^{2}} \end{array}$$

• What matters at this point is how we should **interpret** these coefficients.

October 6th, 2022 Recitation 4 (UN 3412) 13 / 21

What new problems do we have in multivariate regressions?

- We are quite likely to end up including independent variables that are highly correlated with each other. There are two
- We say two variables X_1 and X_2 are **perfectly multicollinear** if X_1 is in an exact linear relationship of some sort with X_2 .
- Any multicollinearities that are not in exact linear relationship is referred to as imperfect multicollinearity.

October 6th, 2022 Recitation 4 (UN 3412) 14 / 21

When does perfect multicollinearity happen?

- Assume that $X_2 = cX_1$ for some constant c: Then we have $(X_{2i} \bar{X}_2) = c(X_{1i} \bar{X}_1)$. Then $\hat{\beta}_1$ changes to $\frac{0}{0}$
- **Dummy variable trap**: Say that you have the dummy variable for females and males. Let each of them be X_{1i} and X_{2i} with $X_{2i} = 1 X_{1i}$. Then the regression can be written as

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + u_{i} \iff Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}(1 - X_{1i}) + u_{i}$$
$$\iff Y_{i} = \beta_{0} + \beta_{2} + (\beta_{1} - \beta_{2})X_{1i} + u_{i}$$

Therefore, by including both X_{1i} and X_{2i} in the same regression, the X_{2i} vanishes from the equation. This is why when you have dummy variables for all categories in the observation, one of them must be left out.

October 6th, 2022 Recitation 4 (UN 3412) 15 / 21

Adjusted R^2 and why we need this

• Additional complication rises from interpreting the goodness of fit. In addition to R^2 , we now get the **adjusted** R^2 (or \bar{R}^2), which is defined as

$$\bar{R}^2 = 1 - \frac{n-1}{n-k-1} \frac{\text{RSS}}{\text{TSS}}$$
 (k : number of independent variables)

- Since we are assuming that $k \ge 1$, adjusted R^2 is smaller than the R^2 .
- As we include more variables, the $\frac{n-1}{n-k-1}$ increases, leading to further decrease in \bar{R}^2 . (There is no such factor in R^2 , so it always increases even with irrelevant variable)
- However, if the new variables are very relevent, $\frac{RSS}{TSS}$ decreases quickly.
- This reduces the gap between R^2 and the adjusted R^2 . If the adjusted R^2 do not decrease drastically, it is a sign that we are adding a relevant variable.

October 6th, 2022 Recitation 4 (UN 3412) 16 / 21

Joint hypothesis tests (Why it is not straightforward)

• Suppose that you are running a two-sided test with 5 independent variables and significance level $\alpha = 5\%$ under the null hypothesis

$$H_0: \beta_1 = ...\beta_5 = 0$$

- You reject the null hypothesis when $|t_i| \ge 1.96$ with probability 0.05.
- Now assume that each test statics are independent. Then the probability of incorrectly rejecting the null hypothesis using this approach is

$$\Pr(|t_1| > 1.96 \cup ... \cup |t_5| > 1.96) = 1 - \Pr(|t_1| \le 1.96 \cap ... \cap |t_1| \le 1.96)$$

(: Independence of t_i 's) $= 1 - \Pr(|t_1| \le 1.96) \times ... \times \Pr(|t_5| \le 1.96)$
 $= 1 - (0.95)^5$
 $= 0.2262$

• This means that the rejection rate under the null is not 5% but 22% percent - we end up rejecting the null hypothesis more than we have to.

October 6th, 2022 Recitation 4 (UN 3412) 17 / 21

F-test for joint significance

- This is a test where all parts of the joint hypothesis can be tested at once. It also has mechanism for correcting the correlation between the *t*-test statistics.
- It ultimately allows us to correctly set the significance level even for the multiple testing case.
- The usual joint hypothesis test for the regression with *k* variables (not including the constant term) is

$$H_0: \beta_1 = ... = \beta_k = 0, \ H_1: \neg H_0$$

where H_1 refers to the case where there is a nonzero element in any one of β_1 to β_k .

Note that the default F-test null hypothesis for STATA is as above

October 6th, 2022 Recitation 4 (UN 3412) 18 / 21

Tricks for deriving *F*-statistics

- Assuming $H_0: \beta_1 = ... = \beta_q = 0$ hypothesis, we use R^2 from the 'unrestricted' and 'restricted' regressions.
 - Assume the following setup

Restricted:
$$Y_i = \beta_0 + 0X_{1,i} + ... + 0X_{q,i} + \beta_{q+1}X_{q+1,i} + ... + \beta_kX_{k,i} + u_i$$

Unrestricted: $Y_i = \beta_0 + \beta_1X_{1,i} + ... + \beta_qX_{q,i} + \beta_{q+1}X_{q+1,i} + ... + \beta_kX_{k,i} + u_i$

- ▶ Restricted regression assumes that H_0 is true and then only optimizes with respect to $\beta_{a+1}, ..., \beta_k$.
- ▶ Unrestricted regression does not assume that H_0 is true and optimizes with respect to all slope coefficients.

October 6th, 2022 Recitation 4 (UN 3412) 19 / 21

Tricks for deriving The *F*-statistic

• We use R^2 from these two regressions.

$$\frac{(R_{\mathsf{Unrestricted}}^2 - R_{\mathsf{Restricted}}^2)/q}{(1 - R_{\mathsf{Unrestricted}}^2)/(n - k - 1)}$$

- k: number of independent variables (not counting intercept)
- a is the number of restrictions.
- Since unrestricted models allows roles for $X_1, ..., X_q$ variables, they have higher R^2 (Restricted: They should have no role)
- Another: Using $R_{\text{Restricted}}^2 = 1 \frac{RSS_{\text{Restricted}}}{TSS}$, we can write

$$\frac{(RSS_{\text{Restricted}} - RSS_{\text{Unrestricted}})/q}{(RSS_{\text{Unrestricted}})/(n-k-1)}$$

October 6th, 2022 Recitation 4 (UN 3412) 20 / 21

Other tests in multivariate regressions

- Suppose that instead of β_1 and β_2 being zero, we are just interested in whether they are equal.
- The *F*-test can also be used for testing this hypothesis. The setup of the hypothesis would be

$$H_0: \beta_1 = \beta_2 \ H_1: \beta_1 \neq \beta_2$$

• With this, you can answer various types of tests (e.g. is $\beta_1 + \beta_2 = 100$?)

October 6th, 2022 Recitation 4 (UN 3412) 21 / 21