Proposition 1.10

July 19, 2021

M.F. Atiyah, I.G. MacDonald Introduction to Commutative Algebra 1 RINGS AND IDEALS

Fact. If $z_1 \equiv 1 \pmod{\mathfrak{a}}$ and $z_2 \equiv 1 \pmod{\mathfrak{a}}$, then $z_1 z_2 \equiv 1 \pmod{\mathfrak{a}}$

 $z_1 - 1 = a_1 \in \mathfrak{a}, \ z_1 - 1 = a_1 \in \mathfrak{a}; \ (z_1 - 1)(z_2 - 1) = a_1 a_3 \in \mathfrak{a}; \ z_1 z_2 - z_1 - z_2 + 1 \in \mathfrak{a}; \ \text{but } -z_2 + 1 \in \mathfrak{a}; \ \text{now } z_1 z_2 - z_1 \in \mathfrak{a}; \ z_1 z_2 \equiv z_1 \equiv 1 \pmod{\mathfrak{a}}; \ \text{and the relation is transitive...}$

This fact is also because A/\mathfrak{a} is a ring: $z_1z_2 + \mathfrak{a} = (z_1 + \mathfrak{a})(z_2 + \mathfrak{a}) = (1 + \mathfrak{a})(1 + \mathfrak{a}) = 1 + \mathfrak{a}$.

Back in the proof of Proposition 1.10, $x_i=1-y_i\equiv 1\pmod{\mathfrak{a}_n}; \prod_{i=1}^{n-1}x_i\equiv 1\pmod{\mathfrak{a}_n}$

Fact. If for $y \in \mathfrak{b}$, $y \equiv 1 \pmod{\mathfrak{a}}$, then $\mathfrak{a} + \mathfrak{b} = (1)$.

 $y-1 \in \mathfrak{a}$; y-1=x in \mathfrak{a} ; x+y=1. Now $\mathfrak{a},\mathfrak{b}$ are coprime by the remark from the first paragraph on page 7.

- (ii) \Rightarrow : $\phi(x) = (1, 0, \dots, 0) = (1 + \mathfrak{a}_1, 0 + \mathfrak{a}_2, \dots, 0)$; $x + \mathfrak{a}_1 = 1 + \mathfrak{a}_1$ and $x + \mathfrak{a}_1 = 0 + \mathfrak{a}_1$; $x \equiv 1 \pmod{\mathfrak{a}_1}$ and $x \equiv 0 \pmod{\mathfrak{a}_2}$.
- (ii) \Leftarrow : Same technique as in (i) to show that $x = \prod (1 u_i) \equiv 1 \pmod{\mathfrak{a}_1}$. As $x \in \mathfrak{a}_1$ for i > 1, $x \equiv 0 \pmod{\mathfrak{a}_1}$.