Departamento de Matemática - IMECC - UNICAMP Exame de Qualificaçõ de Análise no \mathbb{R}^n - 20/02/2019

Questão 1. (2,0 pontos) Seja $f: \mathbb{R}^n \to \mathbb{R}^m$ uma aplicação continuamente diferenciável em uma vizinhança de um ponto x_0 . Mostre que para todo $\varepsilon > 0$, existe um $\delta > 0$ tal que

$$|f(x) - f(y)| < (||f'(x_0)|| + \varepsilon)|x - y|, \quad \forall \ x, y \in B_{\delta}(x_0),$$

onde $|\cdot|$, $||f'(x_0)||$ denotam, respectivamente, a norma euclidiana e a norma do operador linear $f'(x_0): \mathbb{R}^n \to \mathbb{R}^m$, e $B_{\delta}(x_0)$ é a bola euclidianda de centro x_0 e raio δ . Sugestão: considere a função $g(x) = f(x) - f'(x_0)x$.

Questão 2. (2,0 pontos) Dados $A = \{(x,y) \in \mathbb{R}^2 : x > 0, y > 0\}$ e $p,q \in \mathbb{R}$ positivos tais que 1/p + 1/q = 1, sejam $f,g:A \to \mathbb{R}$ definidas por

$$f(x,y) = \frac{x^p}{p} + \frac{y^q}{q}, \quad g(x,y) = xy.$$

- (a) Sejam c > 0 (uma constante positiva arbitrária) e (x_c, y_c) o ponto de mínimo da função f restrita à curva definida pela equação g(x, y) = c. Usando multiplicadores de Lagrange, mostre que $x_c^p = y_c^q$.
- (b) Usando o item (a), mostre que $xy \le \frac{x^p}{p} + \frac{y^q}{q}, \quad \forall \ x, y \ge 0.$

Questão 3. (2,0 pontos)

- (a) Mostre que se m < n então o \mathbb{R}^m visto como um subconjunto do \mathbb{R}^n tem medida nula.
- (b) Mostre que se U é um aberto do \mathbb{R}^m , $f: U \to \mathbb{R}^n$ é uma aplicação lipschitziana e m < n, então a imagem f(U) tem medida nula (em \mathbb{R}^n). Conclua que toda hiperfície de classe C^1 do \mathbb{R}^n tem medida nula.

Questão 4. (2,0 pontos) Sejam A um aberto do \mathbb{R}^m e $f:A\to\mathbb{R}^{m+n}$ uma imersão de classe C^k , $k\geq 1$. Mostre que para todo ponto $a\in A$ existe um aberto $U\subset A$ contendo a tal que $f|U:U\to f(U)$ é um homeoformismo e $(f|U)^{-1}$ é a restrição de uma aplicação de classe C^k definida num aberto em \mathbb{R}^{m+n} .

Questão 5. (2,0 pontos)

- (a) Enuncie o Teorema de Stokes na sua forma mais geral (em variedades).
- (b) Use o Teorema de Stokes para calcular a integral $\int_S \operatorname{rot} \vec{F} \cdot dS$, onde $\vec{F} = z^2 \vec{i} 3xy \vec{j} + x^3 y^3 \vec{k}$ e S é a parte da superfície dada por $z = 5 x^2 y^2$ acima do plano z = 1. Suponha que S está orientada com o vetor normal apontando para fora.

EQ Topologia Geral - 22 de fevereiro de 2019

Nome: R.A.:

Exercício 1. (Obrigatório 4pt) Responda falso ou verdadeiro dando demonstrações e contra-exemplos como justificativa:

- a Todo conjunto compacto é fechado;
- $b\ O\ c$ írcúlo $S^1\ e\ o\ intervalo\ [0,1)\ s$ ão homeomorfos;
- c Uma função $f:X\to S^n$ não sobrejetora é homotópica a função constante, independentemente do espaço X;
- d Todo espaço métrico é Hausdorff.

Escolha 3 dos exercícios abaixo para resolver.

Exercício 2. (2pt) Mostre que toda função contínua no disco, $f: D^2 \to D^2$, possui ponto fixo.

Exercício 3. Sejam X e Y espaços topológicos com Y Hausdorff e sejam f,g: $X \to Y$ funções contínuas. Mostre que o conjunto $\{x \in X \mid f(x) = g(x)\}$ é fechado.

Exercício 4. Usando apenas resultados de topologia (sem ϵ e δ), mostre que toda função contínua $f:[a,b] \to \mathbb{R}$ possui máximo e mínimo.

Exercício 5. Usando apenas resultados de topologia (sem ϵ e δ), enuncie e demonstre o teorema do valor intermediário de cálculo

Exercício 6. Calcule o grupo fundamental de S^2 .

MM719 - Exame de Qualificação

NT	D.A.	or	/00	/2019	
Nome:	κ_{A} :	20/	/ UZ/	4019	1

Escolher itens cujo total de pontos possíveis não ultrapasse 10,5 (existem 12 pontos disponíveis). Salvo menção em contrário, V denota um espaço vetorial sobre um corpo \mathbb{F} . Respostas sem justificativas serão desconsideradas (contas são justificativas). Bom trabalho!

- 1. Seja T um operador linear em \mathbb{R}^4 cuja matriz com respeito a alguma base seja $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 2 & 0 \\ -1 & 1 & 0 & 3 \end{pmatrix}.$
 - (a) (1,0) Ache a correspondente decomposição primária de \mathbb{R}^4 e o polinômio mínimo de T.
 - (b) (1,0) Ache uma base de Jordan com respeito a T.
 - (c) (1,0) Ache uma decomposição cíclica de \mathbb{R}^4 com respeito a T.
 - (d) (0,5) Ache a forma racional de T.
- 2. Suponha que $\dim_{\mathbb{F}}(V) < \infty$ e que $T: V \to V$ seja \mathbb{F} -linear.
 - (a) (1,0) Sejam $u_1, u_2 \in V$ tais que $C_T(u_1) \cap C_T(u_2) = \{0_V\}$ e $w = u_1 + u_2$. Mostre que $m_{T,w} = MMC(m_{T,u_1}, m_{T,u_2})$, onde MMC denota o mínimo múltiplo comum de dois polinômios.
 - (b) (0,5) Mostre que a afirmação anterior não é verdadeira se só supormos que u_1 e u_2 sejam linearmente independentes.
- 3. (1,0) Sejam W_1 e W_2 subespaços vetoriais de V com bases $\alpha = \{v_1, \dots, v_k\} \subseteq W_1$ e $\beta = \{w_1, \dots, w_k\} \subseteq W_2$. Demonstre que $W_1 = W_2$ se e somente se existe $c \in \mathbb{F}$ não nulo tal que

$$v_1 \wedge v_2 \wedge \ldots \wedge v_k = c(w_1 \wedge w_2 \wedge \ldots \wedge w_k)$$

4. Sejam $V=\mathbb{R}^5,~\alpha$ sua base canônica e φ uma forma bilinear em V cuja matriz com respeito a α seja

$${}_{\alpha}[\varphi]_{\alpha} = \begin{pmatrix} 0 & 1 & -2 & 0 & 0 \\ -1 & 0 & 1 & 0 & 1 \\ 2 & -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 & 0 \end{pmatrix}.$$

- (a) (1,0) Verifique que φ é degenerada e ache o subespaço $V^{\perp_{\varphi}}$.
- (b) (1,0) Escolha um subespaço W complementar a $V^{\perp_{\varphi}}$ e ache uma base hiperbólica β de W.
- (c) (0,5) Encontre a matriz $_{\delta}[\varphi]_{\delta}$ com relação à base $\delta=\beta\cup\gamma$, sendo γ uma base de $V^{\perp_{\varphi}}$.
- 5. Determine se cada uma das afirmações abaixo é verdadeira ou falsa.
 - (a) (1,0) Se $\dim_{\mathbb{F}}(V) > 2$, existe $T: S^2(V) \to \Lambda^2(V)$ linear injetora.
 - (b) (1,0) Suponha que $\dim_{\mathbb{F}}(V) < \infty$ e que φ seja forma bilinear simétrica ou alternada em V. Se W é subespaço de V tal que $\operatorname{Rad}(W) = \{0\}$, então $\det({}_{\alpha}[\varphi]_{\alpha}) \neq 0$ para qualquer base α de W.
 - (c) (1,0) Seja W um espaço vetorial sobre \mathbb{F} e suponha que $v_1, \ldots, v_k \in V$ sejam linearmente independentes e $w_1, \ldots, w_k \in W$ são tais que posto $(v_1 \otimes w_1 + \ldots + v_k \otimes w_k) = 0$. Então $w_i = 0$ para todo $i = 1, \ldots, k$.
 - (d) (1,0) Se $V = V_1 \oplus V_2 \oplus \cdots \oplus V_m$, então V^* é isomorfo a $V_1^* \oplus V_2^* \oplus \cdots \oplus V_m^*$.