Departamento de Ciencia de la Computación e Inteligencia Artificial

SOLUCIÓN Examen de Junio de 2020 Matemáticas II

Instrucciones generales:

Todos los ejercicios deben estar bien explicados. Entregar todas las hojas firmadas y con DNI.

EJERCICIO Sector Circular. Dada la figura:

Se trata de un sector circular (en azul). Para definirlo, basta conocer sus extremos (x_1,y_1) y (x_2,y_2) y su centro (a,b). Supongamos que nos dan los extremos pero no el centro y nos piden hallarlo. En lugar de darnos las coordenadas del centro nos dan el radio de curvatura R. Para simplificar las cosas se sabe que hay ciertas simetrías: $x_2 = -x_1$, $y_2 = y_1$. Además siempre (a = 0, b)

Sabemos, que en general, encontrar las coordenadas óptimas del centro se puede formular como resolver el siguiente sistema no lineal:

$$(x_1 - a)^2 + (y_1 - b)^2 = R^2$$

$$(x_2 - a)^2 + (y_2 - b)^2 = R^2$$

Se pide: dados $x_1=3.5355$, $y_1=5.5355$, R=5 a) modificar el sistema anterior aplicando las simetrías y (a=0,b); b) construir la función de error y aplicar el método de descenso por gradiente par encontrar el centro óptimo $(a^*=0,b^*)$ [solo hay una incógnita] con **punto inicial** $(a_0=0,b_0=4)$ y **constante de ajuste** $\gamma=0.01$. Realizar 3 iteraciones del método. Guardar tres decimales en cada iteración