Simulate Stock Prices – Factor Model

Dr. Jinghan Meng

FINA3351 – Spreadsheet Modelling in Finance

Roadmap for Today

- Simulate Stock Prices Using Single-Index Model: Monte Carlo
- Simulate Stock Prices Using Single-Index Model: Bootstrapping

Monte Carlo Simulation of Stock Prices: Single-Index Model

Motivation

- Now we simulate stock returns based on factor models.
- Let's take single-index model as an example.
- The stock i's excess return follows

$$R_{i,t}^e = \alpha + \beta R_{M,t}^e + e_{i,t}$$

- $R_{m,t}^e$ is the market factor (i.e., market returns minus the risk-free rate).
- $e_{i,t} \sim N(0, \sigma_e^2)$ is idiosyncratic shock, i.i.d. normally distributed
- Two random variables in this model:
 - pricing factor $R_{M,t}^e$
 - idiosyncratic shock $e_{i,t}$
- \bullet We will start with simulating systematic risk factor $R_{M,t}^e$.

Simulating the Market Factor -1

- We cannot deny that the market factor may be affected by some macroeconomic conditions, such as business cycles, interest rates, economic prospects, tax policies, etc.
- You can write

$$R_{M,t}^e = a + b_1 F_{1,t} + \dots + b_K F_{K,t} + e_{M,t}$$

where a is the constant, b_j is the sensitivity of the market factor to the j-th macroeconomic factor $F_{j,t}$.

- Then if you can simulate the stochastic processes of $F_{1,t}, \dots, F_{K,t}$, you can simulate $R_{M,t}^e$.
- Here, we illustrate the simplest approach. That is, we assume that the market factor is normally distributed

$$R_{M,t}^e = a + e_{M,t} \sim N(a, \sigma_M^2)$$

- a is the market risk premium, $E(R_{M,t}^e)$
- σ_M^2 is the variance of market index

Simulating the Market Factor -2

- Go to Excel file "Lec8_ StockSimulation-Factor.xlsm".
- See tab "MCM_Excel".
- We simulate Café de Coral (0341.HK) stock prices.
- The market factor is measured by Hang Seng Index (HSI) excess returns.
- **Sample**: Daily data from 31/10/2023 to 31/10/2024.
- Risk-free rate is overnight HIBOR rate announced on HK Monetary Authority website. See the tab "T7.3.1".
- Note: HIBOR rate is updated monthly, we choose one-month lagged rate from Sep. 2023 to Sep. 2024. Then we transform annual interest rate (in percentage) to daily data.

Simulating Firm-Specific Shock $e_{i,t}$

Recall that, based on single-index model, the stock i's excess return satisfies

$$R_{i,t}^e = \alpha + \beta R_{M,t}^e + e_{i,t}$$

- * We first use the mean and standard deviation of HSI excess returns to simulate future market excess returns $\{R_{M,t}^{e,\text{sim}}\}_{t=1,2,\cdots,T}$.
- \bullet Then we simulate idiosyncratic shock $\{e_{i,t}\}_{t=1,2,\cdots,T}$.
 - From the regression, we estimate α , β and σ_e (residual standard deviation) using LINEST function.
 - Given that $e_{i,t} \sim N(0, \sigma_e^2)$, we can simulate idiosyncratic shocks $\{e_{i,t}^{\rm sim}\}_{t=1,2,\cdots,T}$.

Simulating CAF's Excess Return and Price

* We <u>calculate</u> simulated CAF's excess returns $\{R_{i,t}^{e,\text{sim}}\}_{t=1,2,\cdots,T}$, given simulated market factor $\{R_{M,t}^{e,\text{sim}}\}_{t=1,2,\cdots,T}$ and simulated idiosyncratic shocks $\{e_{i,t}^{\text{sim}}\}_{t=1,2,\cdots,T}$.

$$R_{i,t}^{e,\text{sim}} = \hat{\alpha} + \hat{\beta} R_{M,t}^{e,\text{sim}} + e_{i,t}^{\text{sim}}$$

where $\hat{\alpha}$ and $\hat{\beta}$ are coefficient estimation from linear regression.

❖ Given that the adjusted closing price on 2024-10-30 is \$8.164, we can calculate the simulated price for the next 22 days.

$$R_{i,t}^e = \ln\left(\frac{S_t}{S_{t-1}}\right) - R_f$$

$$S_t = S_{t-1} \exp(R_{M,t}^e + R_f)$$

- Note: you need to "add back" the risk-free rate.
- Stock price equation is based on the definition of excess return, not a specific model.

Simulating CAF's Excess Return and Price

- Now we have the time series of one simulation; what if we want to have multiple simulations?
- ❖ We can use Data Table function to generate 20 simulated CAF scenarios in 22 days since 30/10/2024.
- **Data Table** in Excel allows users to test how the value of one variable or two variables affects the result in the created formula.
- ❖ Go to Data → What-If Analysis → Data Table

Go to tab "DataTable" for details

Simulating CAF's excess return using VBA

- Now we write a VBA function to simulate stock price.
- The function "simfactor" in Module MCM returns a simulated excess return of a stock based on factor model, with up to four factors (number of factors can be easily modified).
- Refer to Excel tab "Simfactor".
- The factor model is

$$R_{i,t}^e = \alpha + \beta_1 F_{1,t} + \beta_2 F_{2,t} + \beta_3 F_{3,t} + \beta_4 F_{4,t} + e_{i,t}$$

where

- $F_{1,t} \sim N(\mu_1, \sigma_1^2), F_{2,t} \sim N(\mu_2, \sigma_2^2), F_{3,t} \sim N(\mu_3, \sigma_3^2), F_{4,t} \sim N(\mu_4, \sigma_4^2)$
- $e_{i,t} \sim N(0, \sigma_e^2)$
- Four factors are independent with each other and are independent with firm-specific shock $e_{i,t}$.
- To exclude a factor from the model, you can simply set beta coefficient to be 0.

Simulating CAF's excess return using VBA

- Conducting simulations in Excel is slow.
- Now we write a VBA sub procedure Factor_mcm in Module MCM.
- The parameters in the single-index model are listed in Sheet "MCM_VBA".
- Sub procedure reads the parameter values into VBA, then simulate stock prices from day 1 to day 22. Then repeat the simulation for 10000 times.
- Simulated stock prices are written into the worksheet.

Bootstrap Simulation of Stock Prices: Single-Index Model

Bootstrap

- The idea of bootstrapping is to sample randomly, with replacement, from observed historical observations under the assumption that future observations will be drawn from the same distribution.
- It is a non-parametric simulation method.
- The bootstrap is to estimate the distribution of an estimator or test statistic by resampling one's data.
- The bootstrap provides a way to substitute computation for mathematical analysis if calculating the asymptotic distribution of an estimator or statistic is difficult.
- You must be wondering: Why is this method called "bootstrap"?
- => Come from the term "pulling yourself up by your own bootstraps".

Bootstrap

- For example, assuming normal stock returns has trouble accounting for events like 2008 financial crisis.
- The advantage of bootstrapping is that, since it is not based on a particular assumed distribution (e.g., normal distribution), it is consistent with any distribution of returns, if observations can be assumed to be from an independent and identically distributed population.
- It has better "small-sample property" (especially high-order properties such as skewness).
- A disadvantage of simple bootstrapping is that the autocorrelation property in the data might be lost when the data are reshuffled.

Bootstrap

Simple Bootstrapping

- The most basic approach can be observed in sheet "Bootstrap_Excel".
- * Basically, we simulate the "position" of observations in the sample, rather than simulating data based on any distribution function.

Steps:

- 1. Let N denote the total number of observations in the sample. We index the observations from 1 to N. It is the "position" of each data.
- 2. Generate random integer number u between 1 and N.
- 3. Find the observation at the position u. This is the bootstrapped data.

Simple Bootstrapping

- As you can see, bootstrapped HSI excess returns have similar mean and standard deviation.
- More importantly, bootstrapped HSI series captures the "skewness" of stock returns, which cannot be achieved by our previous simulation method.
- Skewness is an important property in stock returns.

Simple Bootstrapping using VBA

The function procedure bootseeds in Module Bootstrap is used to bootstrap data position using simple bootstrapping method.

Factor Model Simulation - Bootstrap

Excel sheet "Bootstrap_Excel" tab continues the example of single-factor model simulation of CAF stock prices.

$$R_{i,t}^e = \alpha + \beta R_{M,t}^e + e_{i,t}$$

- Now we simulate HSI excess return $(R_{m,t}^e)$ and firm-specific shock $(e_{i,t})$ with bootstrap method:
 - HSI excess returns $R_{M,t}^e$ are bootstrapped from sample observations.
 - Shocks $e_{i,t}$ are bootstrapped from residuals of OLS regression.
 - α , β are still estimated from regression.
- ❖ In the example, we can simulate the next 22 days CAF returns and prices time-series simulation.

Simulating CAF's excess return using Excel

- ❖ We can then use Data Table function to do cross-sectional simulation of month-end CAF prices for 100 times.
- Note: We don't impose assumptions on the distribution of $R_{m,t}^e$ and $e_{i,t}$, but require them to be independent with each other, and has no autocorrelation.

Simulating CAF's excess return using VBA

- Conducting simulations in Excel is slow.
- Now we write a VBA sub procedure Factor_bootstrap in Module Bootstrap.
- The parameters in the single-index model are listed in Sheet "Bootstrap_VBA".
- Sub procedure reads the parameter values into VBA, then simulate stock prices from day 1 to day 22. Then repeat the simulation for 10000 times.
- Simulated stock prices are written into the worksheet.