Hypothesis Testing

Hypothesis Testing refers to assumptions. We are testing our assumptions.

To testing the assumptions, we need statistical testing tools.

It is all about finding whether the said assumptions/ the said statistical concept is present or absent in the data.

statistical concept:

- 1- Test for Normalization
- 2- Test for correlation
- 3- Test for feature elimination

There are two types of **Hypothesis Testing**:

- 1- NULL Hypothesis (Negative answer to your question)
- 2- Alternate Hypothesis (Positive answer to your question)

When it comes to performing any statistical test on a dataset, you need to perform 5 steps:

Step 1: Create a viable question(The question should be yes or no question)

Step 2: convert the question into Hypothesis

NULL →

ALTERNATE →

Step3: Select the statistical test and formula to perform.

Step4: Select the SL (0.05, 0.01, 0.1, data scientist)

Step5: Find the P-value and compare with SL to identify who wins.

Imagine we want to test:

- 1- Whether Sugar is sweet or not? → (Created a viable question)
- 2- Sugar is **NOT** sweet. → (convert the question into **NULL Hypothesis**)
 Sugar is sweet. → (convert the question into **Alternate Hypothesis**)

3-

Statistical Tests:

- 1- Correlation Test
- 2- Normality Test
- 3- Non-parametric Test
- 4- Parametric Test
- 5- Chi-square Test

Correlation Test, Normality Test, Non-parametric Test, Parametric Test → applied on Quantitative Data(Numerical Data)

Chi-square Test → Qualitative Data(Categorical Data)

Correlation Test: → goal of correlation test is identify correlation between two variables(**feature and label**)

- 1- Pearson's Correlation Test
- 2- Spearman Rank Test
- 3- Kendall Tau Rank Test

Normality Test: → the primarily goal of Normality test is identify whether the given column follows normal distribution or not? (just one feature)

- 1- Shapiro Test
- 2- Anderson Darling Test
- 3- Normal Test

Non-parametric Test → goal of Non-parametric Test whether two features have any kind of relationship. If The two features fail normality test and then go for Non-Parametric Test (feature and feature) (Use for feature elimination):

- 1- Wilcoxon Test
- 2- Matt Whitney U test
- 3- Kruskal-Wallis(H) Test
- 4- Friedman Test

Parametric Test → goal of Non-parametric Test whether two features have any kind of relationship. There is a catch here, you should use Parametric Test if normality passes. The two features pass normality test and then go for Parametric Test (feature and feature) (Use for feature elimination)

- 1- Student t-Test
- 2- Paired Student t-Test
- 3- ANOVA

Chi-square Test:

1- Chi-square Test

Practical Test

1		<pre>data = pd.read_csv('50_Startups.csv')</pre>
2		data.info()
		<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 50 entries, 0 to 49 Data columns (total 5 columns): # Column Non-Null Count Dtype</class></pre>
		0 R&D Spend 50 non-null float64 1 Administration 50 non-null float64 2 Marketing Spend 50 non-null float64 3 State 50 non-null object 4 Profit 50 non-null float64 dtypes: float64(4), object(1)
3	Completion Tool	memory usage: 2.1+ KB SL = 0.05
3	Correlation Test 1. Pearson's Correlation Coeff Test (R&D Spend and Profit)	from scipy.stats import pearsonr corr, pvalue = pearsonr(data['R&D Spend'], data['Profit'])
	Step1: Create A Viable Question Question: Lets Test whether R&D Spend and Profit have a Linear Relationship?	if pvalue <= SL: print("Alternate Hypothesis passed (H1) R&D Spend and Profit have Linear Relationship") else:
	Step2: Convert the Question into Hypothesis Types	print("Null Hypothesis passed (H0) R&D Spend and Profit have NO
	Null Hypothesis: R&D Spend and Profit have NO Linear Relationship Alternate Hypothesis: R&D Spend and Profit have Linear Relationship	Linear Relationship") Alternate Hypothesis passed (H1) R&D Spend and Profit have Linear Relationship
	Step3: Select The Statistical Test to Perform:> Pearson's Correlation Test	
	Scipy> Scientific Python All formulaes related to Math and Stat are present in Scipy	
	Step4: Select the Significance Level (SL = 0.05)	
	Step5: Find the p-value of R&D Spe nd using Pearson's Correlation Test	
	1.Pearson's Correlation Coeff Test (Marketing and Profit)	SL = 0.05
	Step1: Create A Viable Question Question: Lets Test whether Marketing and Profit hava a Linear Relationship?	from scipy.stats import pearsonr corr, pvalue = pearsonr(data['Marketing Spend'], data['Profit'])
	Step2: Convert the Question into Hypothesis Types Null Hypothesis: Marketing and Profit have NO Linear Relationship Alternate Hypothesis: Marketing and Profit have Linear Relationship	if pvalue <= SL: print("Alternate Hypothesis passed (H1) Marketing and Profit have Linear Relationship") else: print("Null Hypothesis passed (H0) Marketing and Profit have NO Linear Relationship")
	Step3: Select the Statistical Test to Perform:> Pearson's Correlation Test	Alternate Hypothesis passed (H1) Marketing and Profit have Linear Relationship
	Step4: Select the Significance Level (SL = 0.05)	
<u> </u>		

Step5: Find the p-value of Marketing using Pearson's Correlation Test 1.Pearson's Correlation Coeff Test (Administration and Profit) Step1: Create A Viable Question Question: Lets Test whether Administration and Profit hava a Linear Relationship? Step2: Convert the Question into Hypothesis Types Null Hypothesis: Administration and Profit have NO Linear Relationship	SL = 0.05 from scipy.stats import pearsonr corr, pvalue = pearsonr(data['Administration'], data['Profit']) if pvalue <= SL: print("Alternate Hypothesis passed (H1) Administration and Profit have Linear Relationship")
Alternate Hypothesis: Administration and Profit have Linear Relationship	else: print("Null Hypothesis passed (H0) Administration and Profit have NO Linear Relationship")
Step3: Select The Statistical Test to Perform:> Pearson's Correlation Test Step4: Select the Significance Level (SL = 0.05)	Null Hypothesis passed (H0) Administration and Profit have NO Linear Relationship
Step5: Find the p-value of Administration using Pearson's Correlation Test	

2. Spearman Rank Test (correlation test)

Test whether **R&D Spend** and **Profit** have a Linear Relationship?

Step1: Create A Viable Question

Question: Lets Test whether **R&D Spend** and **Profit** have a Linear Relationship?

Step2: Convert the Question into Hypothesis Types

Null Hypothesis: R&D Spend and Profit have NO Linear Relationship

Alternate Hypothesis: R&D Spend and Profit have Linear Relationship

Step3: Select the Statistical Test to Perform: ---> Spearman RankTest

Step4: Select the Significance Level (SL = 0.05)

Step5: Find the p-value of R&D Spend using Spearman Rank Test

SL = 0.05

from scipy.stats import spearmanr

corr, pvalue = spearmanr(data['Administration'], data['Profit'])

if pvalue <= SL

print("Alternate Hypothesis passed (H1) -- Administration and Profit have Linear Relationship")

print("Null Hypothesis passed (H0) -- Administration and Profit have NO Linear Relationship")

Null Hypothesis passed (H0) -- Administration and Profit have NO Linear Relationship

3.Kendall tau Test(Correlation Test)

Step1: Create A Viable Question

Question: Lets Test whether **R&D Spend and Profit** hava a Linear Relationship?

Step2: Convert the Question into Hypothesis Types

Null Hypothesis: R&D Spend and Profit have NO Linear Relationship

Alternate Hypothesis: R&D Spend and Profit have Linear Relationship

Step3: Select The Statistical Test to Perform: ---> Kendall Test

Step4: Select the Significance Level (SL = 0.05)

Step5: Find the p-value of R&D Spend using Kendall Test

SL = 0.05

from scipy.stats import kendalltau

corr, pvalue = kendalltau(data['Administration'], data['Profit'])

if pvalue <= SL:

print("Alternate Hypothesis passed (H1) -- Administration and Profit have Linear Relationship")

print("Null Hypothesis passed (H0) -- Administration and Profit have NO Linear Relationship")

Null Hypothesis passed (H0) -- Administration and Profit have NO Linear Relationship

Normality Test: to check whether the given column is normally distributed or not?

Shapiro	SL = 0.05
Step1: Create A Viable Question	from scipy.stats import shapiro
Question: Lets Test whether R&D Spend is normally	#from scipy.stats import anderson
distributed?	#from scipy.stats import normaltest
	corr, pvalue = shapiro(data['R&D Spend'])
Step2: Convert the Question into Hypothesis Types	
	if pvalue >= SL:
Null Hypothesis: R&D Spend is NOT normally distributed	print("Alternate Hypothesis passed (H1) R&D Spend is
Alternate Hypothesis: R&D Spend is normally distributed	normally distributed")
, r,,,	else:
Step3: Select The Statistical Test to Perform:> Shapiro Test	print("Null Hypothesis passed (H0) R&D Spend is NO normally distributed")
Step4: Select the Significance Level (SL = 0.05)	#print("Confidence Level for R&D by Shapiro : {}".format(
	pvalue))
Step5: Find the p-value of R&D Spend using Shapiro Test	
	Alternate Hypothesis passed (H1) R&D Spend is
	normally distributed
	Confidence Level for R&D by Shapiro:
	0.8199481666088104
	import seaborn as sns
	%matplotlib inline
	sns.distplot(data['R&D Spend'])
	0.000008
	0.000007 -
	0.000006 -
	0.000005 -
	0.000004 -
	0.000003
	0.000002 -
	0.000001
	0.000000
	R&D Spend

Non-parametric Test / Parametric Test Goal

Non-parametric Test → goal of Non-parametric Test whether two features have any kind of relationship. If the two features fail normality test and then go for Non-Parametric Test (feature and feature) (Use for feature elimination):

- 1- Wilcoxon Test
- 2- Matt Whitney U test
- 3- Kruskal-Wallis(H) Test
- 4- Friedman Test

Parametric Test → goal of Non-parametric Test whether two features have any kind of relationship. There is a catch here, you should use Parametric Test if normality passes. The two features pass normality test and then go for Parametric Test (feature and feature) (Use for feature elimination)

Non-parametric Test / Parametric Test Goal	SL = 0.05
	from scipy.stats import wilcoxon #from scipy.stats import mannwhitneyu #from scipy.stats import kruskal #from scipy.stats import friedmanchisquare
	corr, pvalue = wilcoxon(data['R&D Spend'], data['Administration'])
	if pvalue <= SL: print("Alternate Hypothesis passed (H1) R&D Spend and Administration are Unequal") else: print("Null Hypothesis passed (H0) R&D Spend and Administration are NOT Unequal")
	Alternate Hypothesis passed (H1) R&D Spend and Administration are Unequal(No multicollinearity)
Parametric Test	SL = 0.05
	from scipy.stats import ttest_ind from scipy.stats import ttest_rel from scipy.stats import f_oneway
	#from scipy.stats import mannwhitneyu #from scipy.stats import kruskal #from scipy.stats import friedmanchisquare
	corr, pvalue = ttest_ind(data['R&D Spend'], data['Administration'])
	if pvalue <= SL: print("Alternate Hypothesis passed (H1) R&D Spend and Administration are Unequal") else: print("Null Hypothesis passed (H0) R&D Spend and Administration are NOT Unequal")
	Alternate Hypothesis passed (H1) R&D Spend and Administration are Unequal(No multicollinearity)

Chi-square Test

Use chi-square test in the following conditions: Feature and Label

- a. Feature is Categorical and Label is Numerical
- b. Feature is Categorical and Label is Categorical
- c. Feature is Numerical and Label is Categorical

Goal is to test whether there exists any relationship between feature and label. If Relationship exists maintain the feature else eliminate it.

Checking the relationship between State (Feature -	c_t = pd.crosstab(data['State'], data['Profit'])
Categorical) and Profit(Label - Numerical)	
	# Apply CS Test
Step1: Prepare your data to make it compatible for	
Chi-square function	from scipy.stats import chi2_contingency
Create Contingency Table	s,pvalue,a,b = chi2 contingency(c t)
Create Contingency Table	s,pvalue,a,o = emz_contingency(e_t)
	if pvalue <= SL:
	print("Alternate Hypothesis passed (H1) State and Profit have some form
	of relationship")
	else:
	print("Null Hypothesis passed (H0) State and Profit DOESNOT have
	some form of relationship")
	Null Hypothesis passed (H0) State and Profit DOESNOT have some
	form of relationship