CS311 Formal Language and Automata

Tingting Chen
Computer Science
Cal Poly Pomona

Nondeterministic Finite Automata

An NDFA can be non-deterministic by:

- (1) having more than one edge with the same label originate from one vertex: see state q_1 , which has two arcs labeled 0 emanating from it
- (2) having states without an edge originating from it for some symbol: see state q_2 , which has no edges labeled 0 or 1. (This may be interpreted as a transition to the empty set.)
- (3) having lambda-transitions: see state q_0 , which has an arc indicating that a λ -move from q_0 to q_2 is possible

Nondeterministic Finite Automata (NFA)

Alphabet = {a}

Does it accept aa?

Does it accept a?

Nondeterministic Finite Automata (NFA)

- An NFA accepts a string when there is a computation of the NFA that accepts the string.
- There is a computation means that all the input is consumed and the automaton is in an accepting state.
- An NFA **rejects a string** when there is no computation of the NFA that accepts the string.
- For each computation:
- •All the input is consumed and the automaton is in a non final state, OR
- The input cannot be consumed.

Lambda Transitions

• Example

Does it accept aa?

Does it accept aaa?

The language that it accepts: {aa}.

Example 2: L(M)=?

Lambda Transitions

• Example 3: L(M) = ?

- The λ symbol never appears on the input tape.
- Consider two FAs, L(M₁)=?, L(M₂)=?

Why NFA?

- More natural when modeling a lot of real problems, such as in game theory.
- We can express languages easier than DFA.

Formal Definition of NFA

A non-deterministic finite accepter is defined by the quintuple: $M = (Q, \Sigma, \delta, q_0, F)$

Q is a finite, nonempty set of states Σ is finite set of input symbols called alphabet $\delta \colon Q \times (\Sigma \cup \{\lambda\}) \to 2^Q$ is the transition function $q_0 \in Q$ is the initial state $F \subset Q$ is a set of final or "accepting" states

Transition Function Examples

$$\delta(q_1, 0) = \{q_{0}, q_2\}$$

 $\delta(q_0, \lambda) = \{q_0, q_2\}$

$$\delta(q_2, 1) = \phi$$

Extended Transition Function

Formally

- The extended transition function for an NFA is defined so that δ^* (q_i, w) contains q_j, iff there is a walk in the transition graph from q_i to q_i labeled w.
- The language L accepted by an NFA $M = (Q, \Sigma, \delta, q_0, F) \text{ is defined as}$ $L(M) = \{w \in \Sigma^* : \delta^* (q_0, w) \cap F \neq \emptyset\}$
- That is, the language consists of all strings such that for each of them there is a walk from the start state to a final state in the transition graph.

Exercise: L(M)=?

Exercise: L(M)=?


```
aa ab? \delta*(q_0, ab) = \{q_2, q_3, q_0\}abab abaa aba? L(M) = \{ab\}^* \cup \{(ab)^n aa: n \ge 0\}
```

Formally, again

• The language L accepted by an NFA M is $L(M) = \{w_1, w_2, w_3...\}$

where δ^* (q₀, w_m) = {q_i, q_i, ..., q_k, ...} and

there is some $q_k \in F$ (final/accepting states).