EE364a Review Session 1

administrative info:

- office hours: tue 4-6pm, wed 4-8pm, packard 277
- review session: example problems and hw hints
- homeworks due thursdays by 5pm
- staff email: ee364a-win0708-staff@lists.stanford.edu

Combinations and hulls

$$y = \theta_1 x_1 + \dots + \theta_k x_k$$
 is a

- linear combination of x_1, \ldots, x_k
- affine combination if $\sum_i \theta_i = 1$
- convex combination if $\sum_i \theta_i = 1$, $\theta_i \geq 0$
- conic combination if $\theta_i \geq 0$

(linear, affine, . . .) **hull** of $S = \{x_1, \ldots, x_k\}$ is a set of all (linear, affine, . . .) combinations from S

linear hull: $\operatorname{span}(S)$ affine hull: $\operatorname{aff}(S)$

convex hull: $\mathbf{conv}(S)$

conic hull: $\mathbf{cone}(S)$

example: a few simple relations:

$$\operatorname{\mathbf{conv}}(S) \subseteq \operatorname{\mathbf{aff}}(S) \subseteq \operatorname{span}(S), \quad \operatorname{\mathbf{conv}}(S) \subseteq \operatorname{\mathbf{cone}}(S) \subseteq \operatorname{span}(S).$$

example: $S = \{(1,0,0), (0,1,0), (0,0,1)\} \subseteq \mathbf{R}^3$

what is the linear hull? affine hull? convex hull? conic hull?

- linear hull: R³.
- affine hull: hyperplane passing through (1,0,0),(0,1,0),(0,0,1).
- convex hull: triangle with vertices at (1,0,0),(0,1,0),(0,0,1).
- conic hull: R_+^3

Important rules

intersection

$$S_{lpha}$$
 is $\left(egin{array}{c} ext{subspace} \\ ext{affine} \\ ext{convex cone} \end{array}
ight)$ for $lpha\in\mathcal{A}\Longrightarrow\bigcap_{lpha\in\mathcal{A}}S_{lpha}$ is $\left(egin{array}{c} ext{subspace} \\ ext{affine} \\ ext{convex cone} \end{array}
ight)$

example: a *polyhedron* is intersection of a finite number of halfspaces and hyperplanes.

• functions that preserve convexity examples: affine, perspective, and linear fractional functions. if C is convex, and f is an affine/perspective/linear fractional function, then f(C) is convex and $f^{-1}(C)$ is convex.

Quantized measurements

consider the measurement setup,

$$y = 0.1$$
floor $(10Ax)$

where $x \in \mathbf{R}^2$ is the input, $y \in \mathbf{R}^5$ are the measurements, and $A \in \mathbf{R}^{5 \times 2}$.

• given a measurement y, we want to find the set of inputs that are consistent with the measurements. i.e., the set

$$\mathcal{X} = \{x \mid 0 \le a_i^T x - y_i \le 0.1, i = 1, \dots, 5\}.$$

we can explore this set by simulating, and plotting points that are inside the set. we randomly choose an $x \in \mathbf{R}^2$. if x is consistent with y, then we plot x. we repeat this a number of times. in the following plot, the blue circles represent points inside \mathcal{X} , and the red dot is the least squares solution, $x_{\mathrm{ls}} = A^{\dagger}y$.

Quantized measurements

from the simulations we suspect that \mathcal{X} is a polyhedron. *i.e.*,

$$\mathcal{X} = \{x \mid Fx \le g\}.$$

it is easy to show that,

$$F = \begin{bmatrix} -a_1^T \\ a_1^T \\ \vdots \\ -a_5^T \\ a_5^T \end{bmatrix}, \quad g = \begin{bmatrix} -y_1 \\ y_1 + 0.1 \\ \vdots \\ -y_5 \\ y_5 + 0.1 \end{bmatrix}.$$

Solution set of a quadratic inequality

let $C \subseteq \mathbf{R}^n$ be the solution set of a quadratic inequality,

$$C = \{ x \in \mathbf{R}^n \mid x^T A x + b^T x + c \le 0 \},\$$

with $A \in \mathbf{S}^n$, $b \in \mathbf{R}^n$, and $c \in \mathbf{R}$.

• show that C is convex if $A \succeq 0$.

we will show that the intersection of C with an arbitrary line $\{\hat{x}+tv\mid t\in\mathbf{R}\}$ is convex. we have,

$$(\hat{x} + tv)^T A(\hat{x} + tv) + b^T (\hat{x} + tv) + c = \alpha t^2 + \beta t + \gamma$$

where,

$$\alpha = v^T A v, \quad \beta = b^T v + 2\hat{x}^T A v, \quad \gamma = c + b^T \hat{x} + \hat{x}^T A \hat{x}.$$

the intersection of C with the line defined by \hat{x} and v is the set

$$\{\hat{x} + tv \mid \alpha t^2 + \beta t + \gamma \le 0\},\$$

which is convex if $\alpha \geq 0$. This is true for any v if $A \succeq 0$.

Voronoi sets and polyhedral decomposition

let $x_0, \ldots, x_K \in \mathbf{R}^n$. consider the set of points that are closer (in Euclidean norm) to x_0 than the other x_i , *i.e.*,

$$V = \{x \in \mathbf{R}^n \mid ||x - x_0||_2 \le ||x - x_i||_2, i = 1, \dots, K\}.$$

• what kind of set is V?

answer. V is a polyhedron. we can express V as $V = \{x \mid Ax \leq b\}$ with

$$A = 2 \begin{bmatrix} x_1 - x_0 \\ x_2 - x_0 \\ \vdots \\ x_K - x_0 \end{bmatrix}, \quad b = \begin{bmatrix} x_1^T x_1 - x_0^T x_0 \\ x_2^T x_2 - x_0^T x_0 \\ \vdots \\ x_K^T x_K - x_0^T x_0 \end{bmatrix}.$$

(check this!)

Conic hull of outer products

consider the set of rank-k outer products, defined as

$$\{XX^T \mid X \in \mathbf{R}^{n \times k}, \ \mathbf{rank} X = k\}.$$

describe its conic hull in simple terms.

solution. we have $XX^T \succeq 0$ and $\mathbf{rank}(XX^T) = k$. a positive combination of such matrices can have rank up to n, but never less than k. indeed, let A and B be positive semidefinite matrices of rank k. suppose $v \in \mathcal{N}(A+B)$, then

$$(A+B)v = 0 \Leftrightarrow v^{T}(A+B)v = 0 \Leftrightarrow v^{T}Av + v^{T}Bv = 0.$$

this implies,

$$v^T A v = 0 \Leftrightarrow A v = 0, \quad v^T B v = 0 \Leftrightarrow B v = 0.$$

hence any vector in the $\mathcal{N}(A+B)$ must be in $\mathcal{N}(A)$, and $\mathcal{N}(B)$.

this implies that $\dim \mathcal{N}(A+B)$ cannot be greater than $\dim \mathcal{N}(A)$ or $\dim \mathcal{N}(B)$, hence a positive combination of positive semidefinite matrices can only gain rank.

it follows that the conic hull of the set of rank-k outer products is the set of positive semidefinite matrices of rank greater than or equal to k, along with the zero matrix.

EE364a Review Session 1