Quiz 1B

Exercise 1 1

- For $n \ge 1$ define $f_n : \mathbb{R} \to \mathbb{R}$, $x \to \frac{x}{1+nx^2}$. 1. Show that (f_n) is pointwise convergent. We note $f(x) = \lim_{n \to \infty} f_n(x)$.
 - 2. Show that (f_n) converges uniformly to f.
 - 3. Show that the equation

$$f'(x) = \lim_{n \to \infty} f'_n(x)$$

is correct if $x \neq 0$, but false if x = 0.

$\mathbf{2}$ Exercise 2

- For $n \ge 1$ define $f_n : [0, \frac{\pi}{2}] \to \mathbb{R}, x \to \frac{\cos nx}{n^2}$. 1. Show that the series $\sum_{1}^{\infty} f_n$ converges uniformly on $[0, \frac{\pi}{2}]$.
 - 2. Take as given that

$$\sum_{n=1}^{\infty} \frac{\cos nx}{n^2} = \frac{x^2}{4} - \frac{\pi x}{2} + \frac{\pi^2}{6} \quad \text{for } 0 \le x \le \frac{\pi}{2}.$$

Show that

$$\sum_{n=0}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

3. Show that

$$\int_0^{\frac{\pi}{2}} \frac{\cos nx}{n^2} dx = \frac{(-1)^{k+1}}{(2k-1)^3} \quad \text{for } n = 2k-1$$

and

$$\int_0^{\frac{\pi}{2}} \frac{\cos nx}{n^2} dx = 0 \quad \text{for } n = 2k$$

where $k \in \mathbb{N}$.

4. Show that

$$\int_0^{\frac{\pi}{2}} \left(\frac{x^2}{4} - \frac{\pi x}{2} + \frac{\pi^2}{6} \right) dx = \frac{\pi^3}{32}.$$

5. Conclude that

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2n-1)^3} = \frac{\pi^3}{32}.$$