



### **CHEMISTRY NMDCAT**

### **UHS TOPIC WISE TEST (UNIT-10)**

| TOPI     | CS                                                                                          | · · · · · · · · · · · · · · · · · · · |  |  |
|----------|---------------------------------------------------------------------------------------------|---------------------------------------|--|--|
|          | ✓ ALDEHYDES AND KETON                                                                       | ES                                    |  |  |
| Q.1      | The reaction in which aldehydes and ketones react with ammonia derivatives in the           |                                       |  |  |
| <b>C</b> | presence of acid catalyst followed by elimination of water is called                        |                                       |  |  |
|          | a. Redox reaction                                                                           | b. Condensation reaction              |  |  |
|          | c. Oxidation reaction                                                                       | d. Polymerization reaction            |  |  |
| Q.2      | Which of the following ketone will not give iodoform test                                   |                                       |  |  |
|          | a. Methyl isopropyl ketone                                                                  | b. Dimethyl ketone                    |  |  |
|          | c. Ethyl isopropyl ketone                                                                   | d. 2-Hexanone                         |  |  |
| Q.3      | Which of the following will not form when calcium formate is distilled with calcium acetate |                                       |  |  |
|          | a. Acetone                                                                                  | b. Ethanal                            |  |  |
|          | c. Propanal                                                                                 | d. Methanal                           |  |  |
| Q.4      | The reaction of formaldehyde with HCN is                                                    |                                       |  |  |
|          | a. Nucleophilic substitution                                                                | b. Electrophilic substitution         |  |  |
|          | c. Free radical addition                                                                    | d. Nucleophilic addition              |  |  |
| Q.5      | In aldehydes and ketones carbon of carbonyl group is                                        |                                       |  |  |
|          | a. sp <sup>3</sup> hybridized                                                               | b. sp <sup>2</sup> hybridized         |  |  |
|          | c. sp hybridized                                                                            | d. unhybridized                       |  |  |
| Q.6      | Which of the following gives positive haloform test and positive Fehling solution test      |                                       |  |  |
|          | a. Acetone                                                                                  | b. Propanal                           |  |  |
|          | c. Acetaldehyde                                                                             | d. Formaldehyde                       |  |  |
| Q.7      | Crotonaldehyde is an α, β-unsaturated aldehyde formed from an aldol. Th                     |                                       |  |  |
|          | aldehyde which is the starting material in this reaction is                                 |                                       |  |  |
|          | a. Ethanal                                                                                  | b. Propanone                          |  |  |
|          | c. Propanal                                                                                 | d. Propanol                           |  |  |
| Q.8      | Which compound gives positive silver mirror test                                            |                                       |  |  |
|          | a. Propanone                                                                                | b. Propanol                           |  |  |

- c. Propanal d. Propanoic acid
- Q.9 An organic compound P when treated with NaBH4 forms Q, which is used in denaturing of the spirit. The compound P is
  - a. Ethanol b. Methanal c. Methanol d. Ethanal
- Q.10 Which of the following will react with nitroprusside solution?
  - a. CH<sub>3</sub>CH<sub>2</sub>CHO b. (CH<sub>3</sub>)<sub>2</sub>CO
  - c. CH<sub>3</sub>COOH d. CH<sub>3</sub>-CH<sub>2</sub>-OH
- Q.11 Cannizzaro's reaction is not given by
  - a. HCHO b. C<sub>6</sub>H<sub>5</sub>CHO c. (CH<sub>3</sub>)<sub>3</sub>C-CHO d. CH<sub>3</sub>CHO
- Q.12 Aldehydes are prepared by the oxidation of
  - a. Primary alcohols b. Tertiary alcohols
  - c. Secondary alcohols d. 2-Propanol





| Q.13 | $CH_3 - CO - CH_2 - CH_3 + [O] \rightarrow C + D$ in the given reaction, C and D are   |                                                               |  |  |
|------|----------------------------------------------------------------------------------------|---------------------------------------------------------------|--|--|
|      | a. CH <sub>3</sub> COOH + CH <sub>3</sub> COOH                                         | b. CH <sub>3</sub> COOH + CH <sub>3</sub> CH <sub>2</sub> CHO |  |  |
|      | c. CH <sub>3</sub> COOH + CH <sub>3</sub> CH <sub>2</sub> COOH                         | d. HCHO + 2CH₃COOH                                            |  |  |
| Q.14 | Which compound forms white crystalline ppt with aldehydes and small methyl ketones     |                                                               |  |  |
|      | a. 2,4 DNPH                                                                            | b. Ammonical AgNO <sub>3</sub>                                |  |  |
|      | c. Sodium nitroprusside                                                                | d. NaHSO <sub>3</sub>                                         |  |  |
| Q.15 | Alcohols react with aldehydes in presence of dry HCl to give                           |                                                               |  |  |
|      | a. Esters                                                                              | b. Carboxylic acid                                            |  |  |
|      | c. Acetals                                                                             | d. Glyoxal                                                    |  |  |
| Q.16 | Which of the following does not give yellow precipitate with I <sub>2</sub> + NaOH     |                                                               |  |  |
|      | a. Acetone                                                                             | b. Benzaldehyde                                               |  |  |
|      | c. Acetaldehyde                                                                        | d. Acetophenone                                               |  |  |
| Q.17 | Which of the following does not give br                                                | ick red precip <mark>it</mark> ate with Fehling's solution    |  |  |
|      | a. Acetaldehyde                                                                        | b. Formalin                                                   |  |  |
|      | c. D-glucose                                                                           | d. Acetone                                                    |  |  |
| Q.18 | Which is most difficult to oxidize                                                     |                                                               |  |  |
|      | a. HCHO                                                                                | b. CH <sub>3</sub> COCH <sub>3</sub>                          |  |  |
|      | c. CH <sub>3</sub> CHO                                                                 | d. CH <sub>3</sub> CH <sub>2</sub> CHO                        |  |  |
| Q.19 | Which of the following gives silver mirror                                             | ror with ammonical AgNO3                                      |  |  |
|      | a. Benzyl alcohol                                                                      | b. Benzene                                                    |  |  |
|      | c. Benzoic acid                                                                        | d. Benzaldehyde                                               |  |  |
| Q.20 | Which reagent will perform the following reduction                                     |                                                               |  |  |
|      | $CH_3 - CH = CH - CHO \longrightarrow CH_3 - CH = CH - CH_2 - OH$                      |                                                               |  |  |
|      | a. V <sub>2</sub> O <sub>5</sub>                                                       | b. NaBH <sub>4</sub>                                          |  |  |
|      | c. H <sub>2</sub> /Ni                                                                  | d. Both "b" and "c"                                           |  |  |
| Q.21 | Which one of the following does not give aldol condensation reaction                   |                                                               |  |  |
|      | a. Ethanal                                                                             | b. Propanal                                                   |  |  |
|      | c. Propanone                                                                           | d. Methanal                                                   |  |  |
| Q.22 | An aldehyde when strongly heated with Fehling's reagent gives brick red precipitate of |                                                               |  |  |
|      | a. CuO                                                                                 | b. Cu <sub>2</sub> O                                          |  |  |
|      | c. CuO <sub>2</sub>                                                                    | d. Cu(OH) <sub>2</sub>                                        |  |  |
| Q.23 | <b>Propanone</b> reacts with HCN in basic m                                            | edium followed by acid hydrolysis yielding                    |  |  |
|      | a. 2-Hydroxy propanoic acid                                                            | b. 2-Hydroxy ethanoic acid                                    |  |  |
|      | c. 2-Hydroxy-2-methyl propanoic acid                                                   | d. 2-Hydroxy butanoic acid                                    |  |  |
| Q.24 | The reagent (s) used to distinguish betw                                               | veen ethanal and formaldehyde                                 |  |  |
|      | a. Phenylhydrazine                                                                     | b. Alkaline aqueous iodine                                    |  |  |
|      | c. NaHSO <sub>3</sub>                                                                  | d. Tollen's reagent                                           |  |  |
| Q.25 | Sodium borohydride reduces the                                                         | bond                                                          |  |  |
|      | a. $C = C$                                                                             | b. $C \equiv C$                                               |  |  |
|      | c. $C \equiv N$                                                                        | d. C = O                                                      |  |  |
| Q.26 | Statement NOT true about reduction of                                                  | f acetone                                                     |  |  |
|      | a. With NaBH <sub>4</sub> it follows nucleophilic addition                             |                                                               |  |  |
|      | b. With LiAlH <sub>4</sub> it gives propane                                            |                                                               |  |  |
|      | c. It gives to 2-propanol with NaBH <sub>4</sub>                                       |                                                               |  |  |

d. Can easily be reduced with LiAlH<sub>4</sub>





|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | **************************************                                                                                                                                   |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Q.27 | Hydrogen cyanide adds to aldehyde and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d ketones to form cyanohydrin the reaction is                                                                                                                            |  |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ral acid to an aqueous solution of sodium                                                                                                                                |  |  |
|      | cyanide. The acid generates HCN from sodium cyanide in situ which means                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                          |  |  |
|      | a. Before reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | b. During reaction                                                                                                                                                       |  |  |
|      | c. After reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d. At any time                                                                                                                                                           |  |  |
| Q.28 | $X \xrightarrow{\text{K}_2\text{Cr}_2\text{O}_7} \text{CH}_3\text{COCH}_3 \xrightarrow{\text{warm}} \text{CH}_3 \xrightarrow{\text{Warm}} \text{CH}_3 \xrightarrow{\text{Warm}} \text{CH}_3 \xrightarrow{\text{Warm}} \text{CH}_3 \xrightarrow{\text{Warm}} \text{CH}_3 \xrightarrow{\text{Warm}} \text{Warm} \xrightarrow{\text{Warm}} \text{CH}_3 \xrightarrow{\text{Warm}} \text{Warm} \xrightarrow{\text{Warm}} \xrightarrow{\text{Warm}} \xrightarrow{\text{Warm}} \text{Warm} \xrightarrow{\text{Warm}} \xrightarrow{\text{Warm}} \text{Warm} \xrightarrow{\text{Warm}$ | $\xrightarrow{\text{Cr}_2\text{O}_7}$ $\rightarrow$ CH <sub>3</sub> COCH <sub>3</sub> $\xrightarrow{\text{warm}}$ $\rightarrow$ CHI <sub>3</sub> , identify compound "X" |  |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ОН                                                                                                                                                                       |  |  |
|      | a. CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | b. $CH_3$ - $CH$ - $CH_3$                                                                                                                                                |  |  |
|      | c. CH <sub>3</sub> OCH <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d. CH <sub>3</sub> CH <sub>2</sub> OH                                                                                                                                    |  |  |
| Q.29 | 29 Which of the following is easily oxidized to the corresponding carbonyl compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |  |  |
|      | a. Propanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | b. 2–Hydroxypropane                                                                                                                                                      |  |  |
|      | c. $2$ –Methyl – $2$ – hydroxypropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d. t–Butyl alcohol                                                                                                                                                       |  |  |
| Q.30 | The complex formed in Tollen's reagen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t is                                                                                                                                                                     |  |  |
|      | a. $[Ag (NH3)2]OH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | b. $[Ag (NH_3)_2]$                                                                                                                                                       |  |  |
|      | c. $[Ag (OH)_2]NO_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d. $[Ag (NH3)2OH] NO3$                                                                                                                                                   |  |  |
| Q.31 | The correct name of the following given compound is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |  |  |
|      | O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                          |  |  |
|      | $C_6H_5-C-CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                          |  |  |
|      | a. Methyl Phenyl Ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | b. Benzophenone                                                                                                                                                          |  |  |
|      | c. Acetophenone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d. Both a and c                                                                                                                                                          |  |  |
| Q.32 | Acetone reacts with NaHSO <sub>3</sub> to form bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eacts with NaHSO <sub>3</sub> to form bisulphite adduct. This is an example of                                                                                           |  |  |
|      | a. Electrophilic substitution reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | b. Electrophilic addition reaction                                                                                                                                       |  |  |
|      | c. Nucleophilic substitution reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d. Nucleophilic addition reaction                                                                                                                                        |  |  |

- Q.33 One of the following is identification test of carbonyl compounds
  - a. Lucas test

b. Friedal – Craft Alkylation

c. 2,4 – DNPH

- d. Baeyer's reagent test
- Q.34 Homologous series of both aldehyde and ketones have the general formula
  - a.  $C_nH_{2n}$

 $b.\ C_nH_{2n}O_2$ 

c.  $C_nH_{2n+2}O$ 

- $d. \; C_n H_{2n} O$
- Q.35 The nucleophile produced during reduction of carbonyl compound with sodium borohydride is

a. BH<sub>4</sub>

b. H

c. BH<sub>3</sub>

- d. BH<sub>2</sub>
- Q.36 Acetaldehyde polymerizes in the presence of dilute H<sub>2</sub>SO<sub>4</sub> to give \_\_\_\_\_

a. Metaformaldehyde

b. Bakelite

c. Paraldehyde

- d. Crotonaldehyde
- Q.37 A student mixed ethyl alcohol with small amount of sodium dichromate and added it to the hot solution of dilute sulphuric acid. A vigorous reaction took place. He distilled the product formed immediately. What was the product

a. Acetone

b. Dimethyl ether

c. acetaldehyde

- d. Acetic acid
- Q.38 Which of the following acts as a nucleophile in given reaction?

OH
$$CH_3 - CHO + HCN \longrightarrow H_3C - CH - CN$$
a. Cl
c. OH
d. HCl





|                                                                              |                                                                                | 86.0                                                                                     |  |  |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|
| Q.39                                                                         | Common names of aldehydes are derived                                          | l from?                                                                                  |  |  |
|                                                                              | a. Alkanes                                                                     | b. Alcohols                                                                              |  |  |
|                                                                              | c. Ethers                                                                      | d. Carboxylic acids                                                                      |  |  |
| Q.40                                                                         |                                                                                |                                                                                          |  |  |
|                                                                              | a. 2-Hydroxy butanal                                                           | b. 3-Hydroxybutanal                                                                      |  |  |
|                                                                              | c. 4-Hydroxy butanal                                                           | d. 2-Hdyroxy pentanal                                                                    |  |  |
| Q.41                                                                         | When this group " $-C = N - R$ " is attached                                   | ed to carbon the resultant prod <mark>u</mark> ct is called                              |  |  |
|                                                                              | a. Hydrazone                                                                   | b. Acetal                                                                                |  |  |
|                                                                              | c. Oxime                                                                       | d. Imine                                                                                 |  |  |
| Q.42                                                                         | Methyl ketones are usually characterized                                       |                                                                                          |  |  |
|                                                                              | a. Tollen's tests                                                              | b. Lucas test                                                                            |  |  |
|                                                                              | c. Iodoform test                                                               | d. Fehling solution test                                                                 |  |  |
| Q.43                                                                         | inguished by means of Tollen's test                                            |                                                                                          |  |  |
|                                                                              | a. HCHO and CH <sub>3</sub> COCH <sub>3</sub>                                  | b. HCHO and CH <sub>3</sub> CHO                                                          |  |  |
|                                                                              | c. CH <sub>3</sub> CHO and CH <sub>3</sub> COCH <sub>3</sub>                   | d. C <sub>6</sub> H <sub>5</sub> COCH <sub>3</sub> and C <sub>6</sub> H <sub>5</sub> CHO |  |  |
| Q.44                                                                         | Q.44 Which of the following statements is incorrect about ethanal and propanon |                                                                                          |  |  |
|                                                                              | a. Both can be prepared by oxidation of alcohols                               |                                                                                          |  |  |
|                                                                              | b. Both gives wine red or orange colour with sodium nitroprusside              |                                                                                          |  |  |
|                                                                              | c. Both react with 2, 4-Dinitrophenyl hydra                                    | ine reagent                                                                              |  |  |
|                                                                              | d. Both give positive iodoform test                                            |                                                                                          |  |  |
| Q.45 In an acid catalyzed reaction of carbonyl compounds, the acid increases |                                                                                |                                                                                          |  |  |
|                                                                              | a. Nucleophilic character of C of carbonyl group                               |                                                                                          |  |  |
|                                                                              | b. Acidic character of carbonyl group                                          | 5 * 1                                                                                    |  |  |
|                                                                              | c. Electrophilic character of C of carbonyl group                              | m                                                                                        |  |  |
|                                                                              | 1                                                                              | P                                                                                        |  |  |
| 0.46                                                                         | d. Both acidic and nucleophilic character                                      | t with both aldahyda and batanas                                                         |  |  |
| Q.46                                                                         | Which of the following reagents will reac                                      | ·                                                                                        |  |  |
|                                                                              | a. Grignard's reagent                                                          | b. Tollen's reagent                                                                      |  |  |
| Q.47                                                                         | c. Fehling's reagent In aldehyde the carbonyl group must be                    | d. Benedict's reagent                                                                    |  |  |
| Q.47                                                                         | a. Two carbon atoms                                                            | b. At least one hydrogen atom                                                            |  |  |
|                                                                              | c. One carbon atom                                                             | d. One hydrogen and one carbon atom                                                      |  |  |
| Q.48                                                                         |                                                                                | of aldehydes and ketones the bond angle                                                  |  |  |
| Q.+0                                                                         | around the carbonyl carbon changes                                             | of aluenyues and ketones the bond angi-                                                  |  |  |
|                                                                              | a. 109.5° – 120°                                                               | b. 120° – 180°                                                                           |  |  |
|                                                                              | c. 120° – 109.5°                                                               | d. 109.5° – 180°                                                                         |  |  |
| Q.49                                                                         |                                                                                | orm oxime when reacted with aldehydes or                                                 |  |  |
|                                                                              | ketones?                                                                       |                                                                                          |  |  |
|                                                                              |                                                                                |                                                                                          |  |  |

Q.50 A compound "X" gives silver mirror test. It gives primary alcohol on reduction. The compound "X" belongs to class of organic compounds

b. CH<sub>3</sub>NH<sub>2</sub> d. NH<sub>2</sub>OH

a. Alcoholb. Aldehydec. Carboxylic acidd. Ketone

a. NH<sub>3</sub>

 $c.\ NH_2NH_2$ 

## Chemisky CTS-10 CHEM, PHY

|      |        |                     | 0       | 41-10 |
|------|--------|---------------------|---------|-------|
|      | " D    | 21: D               | 31-0    |       |
| 1-8  |        |                     | 32 D    | 42-C  |
| 2- C | 12-A   | 22- B               | 33 C    | 43-B  |
| 3- C | 13- A  | 23-C                |         | 44 B  |
|      | 11- D  | 24-B                | 34- D   |       |
| 4-0  |        |                     | 35 - B  | 48- 6 |
| 5-B  | 12- C  | 25-0                |         | 46- A |
| 6- C | 16- B  | 266                 | 36 - C. |       |
| 1    |        | 27-B                | 37- C   | 31. B |
| 7- A | H-D    |                     |         | 48. C |
| 8- C | 18-B   | 28-B                | 38 B    |       |
| 9-C  | 19- D  | 29-B                | 39 8    | 49. D |
|      | _      | THE PERSON NAMED IN | 40 A    | 50. B |
| 10-B | 20 - B | 30 A                | 40 H    |       |

# Physics

| 1-0  | 11- B  | 21- D | 31. D | 41.6  |
|------|--------|-------|-------|-------|
| 2-6  | 52-0   | 22- A | 32 C  | 42 0  |
| 3-17 | 13-B   | 23-B  | 33 D  | 43 C  |
| +-0  | 14-A   | 24-C  | 34 C  | +4. D |
| 5-B  | 15-B   | 25- A | 35 C  | 45 A  |
| 6 C  | 16-B   | 26- B | 3 6 B | 46 C  |
| 7-0  | 17- B  | 27 C  | 37-B  | 47 D  |
| 8-A  | 1B-A   | 28-B  | 38.0  | 48- D |
| 9-B  | 19 - B | 29- ( | 39- B | 49 B  |
| 10 A | 20 B   | 30 D  | 40-6  | 50- A |