Discrete Mathematics for Computing

Ch 1.3 Propositional Equivalences

- Motivation: In Mathematical Arguments replace a statement with another statement with the same truth value
- Compound Propositions with the same truth value
- Classification of Compound Propositions

Always true – TAUTOLOGY

Always false – CONTRADICTION

Niether TAUTOLOGY, CONTRADICTION - CONTINGENCY

- Example
- TRUTH TABLE

p	¬ <i>p</i>	p ^v ¬p	p ^ ¬p

p	¬p	$p^{V} \neg p$	p ^ ¬p
Т	F		
F	Т		

p	¬ <i>p</i>	p ^v ¬p	p ^ ¬p
Т	F	Т	
F	Т	Т	

p	¬ <i>p</i>	p ^v ¬p	p ^ ¬p
Т	F	Т	F
F	Т	Т	F

Logical Equivalence

Compound Propositions p and q are equivalent

$$p \leftrightarrow q$$
 is a TAUTOLOGY

■ Denoted by ≡

Example 1: Verify the logical equivalence of
 Distributive Law of disjunction over Conjunction

$$p^{v}(q^{r}) \equiv (p^{v}q)^{r}(p^{v}r)$$
Truth Table

Truth Table

■ Distributive Law $p^{\vee}(q \wedge r) \equiv (p^{\vee}q) \wedge (p^{\vee}r)$ TRUTH TABLE

р	q	r	q ^ r	p v (q ^ r)	p v q	pvr	(p ^v q) ^ (p ^v r)

р	q	r	q ^ r	p v (q ^ r)	p v q	p ^v r	(p ^v q) [^] (p ^v r)
Т	Т	Т					
Т	Т	F					
Т	F	Т					
Т	F	F					
F	Т	Т					
F	Т	F					
F	F	Т					
F	F	F					

p	q	r	q ^ r	p v (q ^ r)	p ^v q	p ^v r	(p ^v q) [^] (p ^v r)
Т	Т	Т	Т				
Т	Т	F	F				
Т	F	Т	F				
Т	F	F	F				
F	Т	Т	Т				
F	Т	F	F				
F	F	Т	F				
F	F	F	F				

p	q	r	q ^ r	p v (q ^ r)	p v q	p ^v r	(p ^v q) [^] (p ^v r)
Т	Т	T	Т	Т			
Т	Т	F	F	Т			
Т	F	Т	F	Т			
Т	F	F	F	Т			
F	Т	Т	Т	Т			
F	Т	F	F	F			
F	F.	т. Т	F	F			
F	F	F	F	F			

p	q	r	q ^ r	p v (q ^ r)	p v q	p ^v r	(p ^v q) ^ (p ^v r)
Т	Т	Т	Т	Т	Т		
Т	Т	F	F	Т	Т		
Т	F	Т	F	Т	Т		
	 F	F		т	 Т		
				T	-		
F				T			
F	Т	F	F	F	T		
F	F	Т	F	F	F		
F	F	F	F	F	F		

p	q	r	q ^ r	p'(q^r)	p v q	pvr	(p ^v q) ^ (p ^v r)
Т	Т	Т	Т	_	Т	Т	
Т	Т	F	F	Т	Т	Т	
	 F	<u>.</u> Т	 F	Т	 Т	T	
1	Г	I	Г	<u> </u>	ı	I	
Т	F	F	F	Т	Т	Т	
F	Т	Т	Т	Т	Т	Т	
F	Т	F	F	F	Т	F	
F	F	Т	F	F	F	Т	
F	F	F	F	F	F	F	

p	q	r	q ^ r	p v (q ^ r)	p v q	p ^v r	(p ^v q) ^ (p ^v r)
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	F	Т	Т	Т	Т
Т	F	Т	F	Т	T	Т	т
-					-	-	<u>'</u>
T	F	F	F		Т	T	I
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	F	F	Т	F	F
F	F	Т	F	F	F	Т	F
F	F	F	F	F	F	F	F

- Table 6, Page 27 -> More Logical Equivalences
- De Morgan's Laws

English Mathematician Augustus De Morgan

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

$$\neg (p \lor q) \equiv \neg p \land \neg q$$

$$\neg (p \lor q) \equiv \neg p \land \neg q$$

p	q	p v q	¬(p ' q)	¬ <i>p</i>	¬q	¬ <i>p</i> ^ ¬q

р	q	p v q	¬(p ' q)	¬p	¬q	¬ <i>p</i> ^ ¬q
Т	Т					
Т	F					
F	Т					
F	F					

p	q	p v q	¬(p ^v q)	¬ <i>p</i>	¬q	¬ <i>p</i> ^ ¬q
Т	Т	Т				
Т	F	Т				
F	Т	Т				
F	F	F				

p	q	p v q	¬(p ^v q)	¬ <i>p</i>	¬q	¬ <i>p</i> ^ ¬q
Т	Т	Т	F			
Т	F	Т	F			
F	Т	Т	F			
F	F	F	Т			

p	q	p v q	¬(p ^v q)	¬ <i>p</i>	¬q	¬ <i>p</i> ^ ¬q
Т	Т	Т	F	F		
Т	F	Т	F	F		
F	Т	Т	F	Т		
F	F	F	Т	Т		

p	q	p v q	¬(p ^v q)	¬ <i>p</i>	¬q	¬ <i>p</i> ^ ¬q
Т	Т	Т	F	F	F	
Т	F	Т	F	F	Т	
F	Т	Т	F	Т	F	
F	F	F	Т	Т	Т	

p	q	p ^v q	¬(p ^v q)	¬ <i>p</i>	¬q	¬ <i>p</i> ^ ¬q
Т	Т	Т	F	F	F	F
Т	F	Т	F	F	Т	F
F	Т	Т	F	Т	F	F
F	F	F	Т	Т	Т	Т

Using De Morgan's Laws

Example: Using De Morgan's Laws, express the negation of

"Heather will go to the concert or Steve will go to the concert."

Using De Morgan's Laws

- Let p -> "Heather will go to the concert"
- Let q -> "Steve will go to the concert"
- Given English statement can be represented as
 p \ q
- By second De Morgan's law

$$\neg(p \lor q) \equiv \neg p \land \neg q$$

"Heather will not go to the concert and Steve will not go to the concert."

Constructing New Logical Equivalences

- Show that ¬($p \rightarrow q$) and $p ^ ¬q$ are logically equivalent.
- Using logical identities, build new logical identities
- Compound Propositions with a large number of variables

Constructing New Logical Equivalences

Show that this conditional statement is a tautology.

$$\left[\neg p \land (p \lor q) \right] \rightarrow q$$

p	q	¬p	pvq	¬p ^ (p ∨ q)	$[\neg p \land (p \lor q)] \rightarrow q$

p	q	¬p	pvq	¬p ^ (p v q)	$[\neg p \land (p \lor q)] \rightarrow q$
Т	Т				
Т	F				
F	Т				
F	F				

p	q	¬p	pvq	¬p ^ (p v q)	$[\neg p \land (p \lor q)] \rightarrow q$
T	T	F	, ,	7 (7 77	
Т	F	F			
F	Т	Т			
F	F	Т			

p	q	$\neg p$	pvq	$\neg p \land (p \lor q)$	$[\neg p \land (p \lor q)] \rightarrow q$
Т	Т	F	Τ		
T	F	F	Τ		
F	Т	Т	Τ		
F	F	Т	F		

p	q	¬p	pvq	$\neg p \land (p \lor q)$	$[\neg p \land (p \lor q)] \rightarrow q$
T	Т	F	Τ	F	
T	F	F	Τ	F	
F	Т	Т	Τ	Т	
F	F	Т	F	F	

				ιο Λ (το σι)	
p	q	$\neg p$	pvq	¬p ^ (p ∨ q)	$[\neg p \land (p \lor q)] \rightarrow q$
T	Т	F	Т	F	T
T	F	F	Т	F	Т
F	T	Т	T	Т	T
F	F	Т	F	F	T