Task Scheduling Problem

Introduction

- Also called interval scheduling problem
- Motivated by applications in resources scheduling
- We are given a set $S = \{a_1, a_2, \dots, a_n\}$ of n activities that are to be scheduled on some resource, which can serve only one activity at a time. Each activity a_i has a time interval specified by *start time* s_i and a *finish time* f_i . Two activities are *compatible* if their intervals doesn't overlap. The problem is to schedule as many compatible activities as possible on the resource.

An example

Consider the following set S of activities with their start and finish times.

a_i	1	2	3	4	5	6	7	8	9	10	11
\mathbf{s}_i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	9	9	10	11	12	14	12 16

The subset $\{a_3, a_9, a_{11}\}$ consists of mutually compatible activities, but it is not a maximum subset.

The subset $\{a_1, a_4, a_8, a_{11}\}$ is a largest subset of mutually compatible activities.

Another largest subset is $\{a_2, a_4, a_9, a_{11}\}.$

The greedy algorithm

Which of the following parameter can be used for greedy choice?

- Start time
- Finish time
- **3** Shortest activity $(f_i s_i)$

A few trials show that the finish time is the best.

Exercise. Show that the other parameters may not generate optimal solutions (provide counter examples)

The greedy algorithm

- **1** Sort the activities by finish time and set $\mathcal{R} = \phi$
- ② Pick the first activity a_i in the sorted list and add to \mathcal{R}
- **8** Remove all activities that are not compatible with a_1
- 4 Repeat steps 3 and 4 until the list is finished

Consider the following activities again.

a_i	1	2	3	4	5	6	7	8	9	10	11
\mathbf{s}_i	1	3	0	5	3	5	6	8	8	2	12 16
f_i	4	5	6	7	9	9	10	11	12	14	16

The list is already sorted in the increasing order of finish time. We add a_1 to R and delete all incompatible activities (a_2 , a_3 , a_5 , a_{10}). Then add a_4 to R and delete the incompatible activities (a_6 , a_7), then add a_8 and delete a_9 , and finally add a_{11} to R.

Optimal substructure and greedy choice

1 Greedy choice: There exists an optimal solution containing the greedy choice (a_1) .

Let R be an optimal solution and if R contains a_1 , we are done. otherwise let a_k be the first activity in R, then we can remove a_k and safely add a_1 because $f_1 \le f_k$. The new R is also optimal .

Optimal substructure: The optimal solution can be made from the greedy choice plus an optimal solution to the remaining sub problem.

Proof is left as an exercise.