iút Info

Formulaire Analyse

Table des matières

1	Dérivation	2
2	Intégration	3
3	Trigonométrie et autres formules	4
4	Formules de Taylor et développements limités	5
5	Fonction polynôme du second degré $x \mapsto ax^2 + bx + c \ (a \neq 0)$	6
6	Fonction puissance $x \mapsto x^n \ (n \in \mathbb{N}^*)$	8
7	Fonction racine n-ième $x \mapsto \sqrt[n]{x} \ (n \in \mathbb{N}^*)$	9
8	Fonction exponentielle $x \mapsto e^x$	10
9	Fonction logarithme néperien $x\mapsto \ln x$	11
10	Fonction exponentielle de base $a > 0$: $x \mapsto a^x$	12
11	Fonction logarithme de base $a > 0, \ a \neq 1 : x \mapsto \log_a x$	13
12	Fonction puissance : $x \mapsto x^{\alpha} \ (\alpha \in \mathbb{R})$	14
13	Fonction inverse: $x \mapsto \frac{1}{x}$	15
14	Fonctions cosinus : $x \mapsto \cos x$	16
15	Fonctions sinus : $x \mapsto \sin x$	17
16	Fonctions tangente : $x \mapsto \tan x$	18
17	Fonction $\arccos x \mapsto \arccos x$	19
18	Fonction $\arcsin x \mapsto \arcsin x$	19
19	Fonction $\arctan : x \mapsto \arctan x$	20
20	Croissance comparée à l'infini	20
2 1	Suites	21

1 Dérivation

Dérivées usuelles

Fonction	Dérivée
α	0
x	1
x^2	2x
$\frac{1}{x} = x^{-1}$	$-\frac{1}{x^2} = -x^{-2}$
$\sqrt{x} = x^{\frac{1}{2}}$	$\frac{1}{2\sqrt{x}} = \frac{1}{2}x^{-\frac{1}{2}}$
$x^{\alpha} \ (\alpha \in \mathbb{R})$	$\alpha x^{\alpha-1}$
e^x	e^x
$\ln x$	$\frac{1}{x}$
$\cos x$	$-\sin x$
$\sin x$	$\cos x$
$\tan x$	$1 + \tan^2 x = \frac{1}{\cos^2 x}$
$\arccos x$	$\frac{-1}{\sqrt{1-x^2}}$
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$
$\arctan x$	$\frac{1}{1+x^2}$

Opérations

Fonction	Dérivée
f+g	f'+g'
f-g	$\frac{f'-g'}{\alpha f'}$
αf	
$\alpha f + \beta g$	$\alpha f' + \beta g'$
fg	f'g + fg'
f	$\underline{f'g-fg'}$
g	g^2
$g \circ f(x) = g(f(x))$	$\frac{g'(f(x))f'(x)}{\alpha f^{\alpha-1}f'}$
f^{α}	$\alpha f^{\alpha-1}f'$
1	f'
\overline{f}	$-\frac{1}{f^2}$
$\cos \alpha x$	$-\alpha \sin \alpha x$
$\sin \alpha x$	$\alpha \cos \alpha x$
$e^{\alpha x}$	$\alpha e^{\alpha x}$
$\ln f $	f'
111 J	\overline{f}
$\left(f^{-1}\right)'(y)$	$\frac{1}{f'(x)} = \frac{1}{f'(f^{-1}(y))}$

Equation de la tangente au point $M_{0}\left(x_{0},f\left(x_{0}\right)\right)$

$$D: y = f'(x_0)(x - x_0) + f(x_0)$$

2 Intégration

Primitives usuelles

Fonction f	Primitive F
0	α
1	$\frac{x}{x^2}$
x	$\frac{x^2}{2}$ $x^{\alpha+1}$
$x^{\alpha} \ (\alpha \neq -1)$	$\frac{x^{\alpha+1}}{\alpha+1}$ $(x+a)^{\alpha+1}$
$(x+a)^{\alpha} \ (\alpha \neq -1)$	$\frac{(x+a)^{\alpha+1}}{\alpha+1}$
$\frac{1}{x}$	$\ln x $
$\frac{1}{x+a}$	$\ln x+a $
e^x	e^x
$\cos x$	$\sin x$
$\sin x$	$-\cos x$
$e^{\alpha x} \ (\alpha \neq 0)$	$\frac{e^{\alpha x}}{\alpha}$
$\cos \alpha x \ (\alpha \neq 0)$	$\frac{\alpha}{\sin \alpha x}$
$\sin \alpha x \ (\alpha \neq 0)$	$\frac{-\cos \alpha x}{\alpha}$
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin x$
$\frac{1}{\sqrt{1-x^2}}$	$-\arccos x$
$\frac{1}{1+x^2}$	$\arctan x$

Intégrale de Riemann

$$\int_{1}^{+\infty} \frac{1}{t^{\alpha}} dt \text{ est convergente si et seulement } \sin \alpha > 1$$

Opérations

Fonction f	Primitive F
f+g	F+G
f-g	F-G
αf	αF
$\alpha f + \beta g$	$\alpha F + \beta G$

Intégration

$$\int_{a}^{b} f(t) dt = [F(t)]_{a}^{b} = F(b) - F(a)$$

Opérations

$$\int_a^b (f(t) + g(t)) dt = \int_a^b f(t) dt + \int_a^b g(t) dt$$

$$\int_a^b (f(t) - g(t)) dt = \int_a^b f(t) dt - \int_a^b g(t) dt$$

$$\int_a^b (\alpha f(t)) dt = \alpha \int_a^b f(t) dt$$

Intégration par parties

$$\int_{a}^{b} f(x)g'(x)dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f'(x)g(x)dx$$

Changement de variable

$$\int_{\varphi(a)}^{\varphi(b)} f(t)dt = \int_{a}^{b} f(\varphi(x)) \varphi'(x) dx \quad (t = \varphi(x))$$

3 Trigonométrie et autres formules

Formule fondamentale

$$\cos^2\theta + \sin^2\theta = 1$$

Formules d'addition

$$\cos(\theta + \theta') = \cos\theta \cos\theta' - \sin\theta \sin\theta'$$

$$\sin(\theta + \theta') = \sin\theta \cos\theta' + \cos\theta \sin\theta'$$

$$\cos(\theta - \theta') = \cos\theta \cos\theta' + \sin\theta \sin\theta'$$

$$\sin(\theta - \theta') = \sin\theta \cos\theta' - \cos\theta \sin\theta'$$

$$\cos(2\theta) = \cos^2\theta - \sin^2\theta$$

$$\cos(2\theta) = 2\cos^2\theta - 1$$

$$\cos(2\theta) = 1 - 2\sin^2\theta$$

$$\sin(2\theta) = 2\sin\theta \cos\theta$$

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

$$\cos(-\theta) = \cos(\theta)$$

$$\sin(-\theta) = -\sin(\theta)$$

$$\cos(\theta + \frac{\pi}{2}) = \cos(\theta)$$

$$\sin(\theta + \frac{\pi}{2}) = \cos(\theta)$$

$$\cos(\frac{\pi}{2} - \theta) = \sin(\theta)$$

$$\sin(\frac{\pi}{2} - \theta) = \cos(\theta)$$

$$\cos(\theta + \pi) = -\cos(\theta)$$

Identités remarquables

 $\sin(\theta + \pi) = -\sin(\theta)$

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$

$$(a+b)(a-b) = a^{2} - b^{2}$$

$$(a+b)^{n} = \sum_{k=0}^{n} C_{n}^{k} a^{k} b^{n-k} = \sum_{k=0}^{n} C_{n}^{k} a^{n-k} b^{k}$$

Angles remarquables

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$3\frac{\pi}{2}$	π
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	0	- 1
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	-1	0
$\tan \theta$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	/	/	0

Inégalités triangulaires $||a| - |b|| \le |a + b| \le |a| + |b|$

4 Formules de Taylor et développements limités

n est un entier naturel et ϵ une fonction vérifiant $\lim_{x\to 0} \epsilon(x) = 0$.

Formule de Taylor - Lagrange

$$f(b) = f(a) + \frac{b-a}{1!}f'(a) + \frac{(b-a)^2}{2!}f^{(2)}(a) + \frac{(b-a)^3}{3!}f^{(3)}(a) + \dots + \frac{(b-a)^n}{n!}f^{(n)}(a) + \frac{(b-a)^{n+1}}{(n+1)!}f^{(n+1)}(c)$$

$$(c \in]a,b[)$$

Formule de Taylor - Mac Laurin

$$f(x) = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!}f^{(2)}(0) + \frac{x^3}{3!}f^{(3)}(0) + \dots + \frac{x^n}{n!}f^{(n)}(0) + \frac{x^{n+1}}{(n+1)!}f^{(n+1)}(\theta x) \ (\theta \in]0,1[)$$

Formule de Taylor - Young

$$f(x) = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!}f^{(2)}(0) + \frac{x^3}{3!}f^{(3)}(0) + \dots + \frac{x^n}{n!}f^{(n)}(0) + x^n\epsilon(x)$$

Développements limités

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots + \frac{x^{n}}{n!} + x^{n} \epsilon(x)$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + x^{2n+1} \epsilon(x)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + x^{2n+2} \epsilon(x)$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^{2} + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^{3} + \dots + \frac{\alpha(\alpha-1) \dots (\alpha-(n-1))}{n!} x^{n} + x^{n} \epsilon(x)$$

$$\frac{1}{1+x} = 1 - x + x^{2} - x^{3} + \dots + (-1)^{n} x^{n} + x^{n} \epsilon(x)$$

$$\frac{1}{1-x} = 1 + x + x^{2} + \dots + x^{n} + x^{n} \epsilon(x)$$

$$\tan x = x + \frac{x^{3}}{3} + \frac{2}{15} x^{5} + x^{6} \epsilon(x)$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots + (-1)^{n-1} \frac{x^{n}}{n} + x^{n} \epsilon(x)$$

Equivalents

Un polynôme est équivalent à son monôme

- de plus haut degré au voisinage de $\pm \infty$,
- de plus bas degré au voisinage de 0.

$$\sin x \sim x
\tan x \sim x
\ln(1+x) \sim x
\cos x - 1 \sim -\frac{x^2}{2}
e^x - 1 \sim x$$

5 Fonction polynôme du second degré $x \mapsto ax^2 + bx + c$ $(a \neq 0)$

Forme canonique

 $\forall x \in \mathbb{R} \ ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a} = a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a} \text{ en posant } \Delta = b^2 - 4ac \text{ (discriminant)}.$

Dérivée

$$\forall x \in \mathbb{R} \ (ax^2 + bx + c)' = 2ax + b$$

Variations

(a)
$$a > 0$$

$$\begin{array}{c|ccccc}
x & -\infty & -\frac{b}{2a} & +\infty \\
\hline
(ax^2 + bx + c)' & + & 0 & - \\
\hline
ax^2 + bx + c & -\frac{\Delta}{4a} & \\
-\infty & -\infty
\end{array}$$

(b)
$$a < 0$$

Exemples

Equation du second degré $ax^2 + bx + c = 0$

1. si $\Delta < 0$ alors $ax^2 + bx + c = 0$ n'a aucune solution réelle.

2. si $\Delta = 0$ alors $ax^2 + bx + c = 0$ a une solution unique $x_0 = -\frac{b}{2a}$ et $ax^2 + bx + c = 0$ $a(x-x_0)^2$.

3. si $\Delta > 0$ alors $ax^2 + bx + c = 0$ a deux solutions distinctes $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}.$ De plus, $ax^2 + bx + c = a(x - x_1)(x - x_2).$ Remarque : si $\Delta < 0$ alors $ax^2 + bx + c = 0$ a deux solutions complexes distinctes et

conjuguées $x_1 = \frac{-b - i\sqrt{-\Delta}}{2a}$ et $x_2 = \frac{-b + i\sqrt{-\Delta}}{2a}$.

Signe de $ax^2 + bx + c$

Le signe de $ax^2 + bx + c$ est celui de a sauf en entre les racines x_1 et x_2 si elles existent où le signe est celui de -a.

x	$-\infty$			$+\infty$		
signe de		a				
	(a)	$\Delta < 0$				
x	$-\infty$	x_0)	$+\infty$		
signe de		a 0	a			
	(b)	$\Delta = 0$				
x	$-\infty$	x_1	x_2	$+\infty$		
signe de	a	0 - a	ı 0	\overline{a}		
(c) $\Delta > 0$						

Exemples

6 Fonction puissance $x \mapsto x^n \ (n \in \mathbb{N}^*)$

Dérivée

 $\forall x \in \mathbb{R} \ x^{n \prime} = n x^{n-1}$

Variations

(a) n impair

(b) n pair

Exemples

(c) n impair

(d) n pair

7 Fonction racine n-ième $x \mapsto \sqrt[n]{x} \ (n \in \mathbb{N}^*)$

 $x\mapsto \sqrt[n]{x}$ est la bijection réciproque de $x\mapsto \sqrt[n]{x}$ définie sur $[0,+\infty[.$ $\forall x\geq 0\ y=x^n\Leftrightarrow x=\sqrt[n]{y}$

$$\forall x \geq 0 \ \sqrt[n]{x} = x^{\frac{1}{n}}$$

Dérivée

$$\forall x > 0 \ \sqrt[n]{x'} = \frac{\sqrt[n]{x}}{nx}$$

Variations

Représentation graphique

Remarque : pour n impair, $x \mapsto \sqrt[n]{x}$ est définie sur \mathbb{R} .

Exemples

8 Fonction exponentielle $x \mapsto e^x$

Dérivée

$$\forall x \in \mathbb{R} \ e^{x \, \prime} = e^x$$

Variations

$$\lim_{\substack{x \to +\infty \\ 1 \to \infty}} e^x = +\infty$$

$$\lim_{\substack{x \to -\infty \\ x \to -\infty}} e^x = \lim_{\substack{x \to -\infty \\ x \to -\infty}} xe^x = 0$$

9 Fonction logarithme néperien $x \mapsto \ln x$

 $x \mapsto \ln x$ est la bijection réciproque de $x \mapsto e^x$.

$$\forall x \in \mathbb{R} \ y = e^x \Leftrightarrow x = \ln y$$

Dérivée

$$\forall x > 0 \ln' x = \frac{1}{x}$$

Variations

$$\lim_{\substack{x\to 0_+\\\lim x\to +\infty}}\ln x=-\infty$$

$$\lim_{\substack{x\to +\infty\\x\to 0_+}}\ln x=0$$

$$\lim_{\substack{x\to 0_+\\x\to +\infty}}\frac{\ln x}{x}=0$$

10 Fonction exponentielle de base $a > 0 : x \mapsto a^x$

Définition

 $\forall x \in \mathbb{R} \ a^x = exp(x \ln a) = e^{x \ln a}$

Dérivée

 $\forall x \in \mathbb{R} \ a^{x'} = \ln a \,.\, a^x$

Variations

(a) 0 < a < 1

(b) a > 1

Représentation graphique

(c) 0 < a < 1

(d) a > 1

Fonction logarithme de base $a>0,\ a\neq 1$: $x\mapsto \log_a x$ 11

 $x \mapsto \log_a x$ est la bijection réciproque de $x \mapsto a^x$.

$$\forall x \in \mathbb{R} \ y = a^x \Leftrightarrow x = \log_a y$$

Notation

Notation
$$\forall x > 0 \log_a x = \frac{\ln x}{\ln a}$$

Dérivée

$$\forall x > 0 \log_a' x = \frac{1}{x \ln a}$$

Variations

(a) 0 < a < 1

(b) a > 1

Représentation graphique

12 Fonction puissance : $x \mapsto x^{\alpha} \ (\alpha \in \mathbb{R})$

Définition

 $\forall x > 0 \ x^{\alpha} = e^{\alpha \ln x}$

Dérivée

 $\forall x > 0 \ x^{\alpha \prime} = \alpha x^{\alpha - 1}$

13 Fonction inverse: $x \mapsto \frac{1}{x}$

Parité
$$x \mapsto \frac{1}{x}$$
 est impaire : $\forall x \in \mathbb{R}^* - x \in \mathbb{R}^*$ et $\frac{1}{-x} = -\frac{1}{x}$ Dérivée

Variations
$$\forall x \neq 0 \left(\frac{1}{x}\right)' = -\frac{1}{x^2}$$

x	$-\infty$ ($+\infty$
$\left(\frac{1}{x}\right)'$	_	_
$\frac{1}{x}$	0 $-\infty$	+∞ 0

14 Fonctions cosinus : $x \mapsto \cos x$

Période

cos est périodique de période $T=2\pi: \forall x \in \mathbb{R} \cos(x+2\pi)=\cos x$.

Parité

 \cos est paire : $\forall x \in \mathbb{R} - x \in \mathbb{R}$ et $\cos(-x) = \cos x$.

Dérivée

 $\forall x \in \mathbb{R} \, \cos' x = -\sin x.$

Variations

x	$-\pi$		0		π
$\cos' x$	0	+	0	_	0
$\cos x$	-1	7	1		-1

15 Fonctions sinus : $x \mapsto \sin x$

Période

sin est périodique de période $T=2\pi: \forall x\in\mathbb{R} \sin(x+2\pi)=\sin x$.

Parité

 $\sin \text{ est impaire } : \forall x \in \mathbb{R} - x \in \mathbb{R} \text{ et } \sin(-x) = -\sin x.$

Dérivée

 $\forall x \in \mathbb{R} \sin' x = \cos x$

Variations

x	$-\pi$	$-\frac{\pi}{2}$		$\frac{\pi}{2}$		π
$\sin' x$		- 0	+	0	_	
$\sin x$	0	-1		1		0

16 Fonctions tangente : $x \mapsto \tan x$

Période

tan est périodique de période $T=\pi: \forall x \neq (2k+1)\frac{\pi}{2} \; (k \in \mathbb{Z}) \; \tan(x+\pi) = \tan x$

Parité

tan est impaire : $\forall x \neq (2k+1)\frac{\pi}{2} \ (k \in \mathbb{Z}) \ -x \neq (2k+1)\frac{\pi}{2} \ (k \in \mathbb{Z})$ et $\tan(-x) = -\tan x$ Dérivée

$$\forall x \neq (2k+1)\frac{\pi}{2} \ (k \in \mathbb{Z}) \ \tan' x = 1 + \tan^2 x = \frac{1}{\cos^2 x}$$

Variations

Fonction $\arccos x \mapsto \arccos x$ 17

Dérivée

Derivee
$$\forall x \in]-1,1[\arccos' x = \frac{-1}{\sqrt{1-x^2}}$$
Représentation graphique

Fonction arcsinus : $x \mapsto \arcsin x$ 18

Parité

 \arcsin est impaire : $\forall x \in [-1, 1] - x \in [-1, 1]$ et $\arcsin(-x) = -\arcsin x$.

Dérivée

$$\forall x \in]-1,1[\arcsin' x = \frac{1}{\sqrt{1-x^2}}$$
Représentation graphique

Fonction $\arctan: x \mapsto \arctan x$ 19

Parité

 $\arctan \operatorname{est impaire} : \forall x \in \mathbb{R} - x \in \mathbb{R} \operatorname{et} \arctan(-x) = -\arctan x.$

Dérivée

$$\forall x \in \mathbb{R} \arctan' x = \frac{1}{1+x^2}$$
Représentation graphique

Croissance comparée à l'infini 20

$$\lim_{x \to +\infty} \frac{x^{\alpha}}{\ln x} = +\infty \ (\alpha > 0)$$

$$\lim_{x \to +\infty} \frac{a^x}{x^{\alpha}} = +\infty \ (\alpha > 0, \ a > 1)$$

21 Suites

1. Suite arithmétique

a est un réel. Une suite arithmétique de raison a est une suite (u_n) telle que pour tout entier naturel $n: u_{n+1} = u_n + a$.

- (a) Pour tout $n \geq 0$, $u_n = u_0 + na$.
- (b) La somme de termes consécutifs d'une suite arithmétique est égale à

$$nombre\ de\ termes imes rac{premier\ terme + dernier\ terme}{2}$$

2. Suite géométrique

a est un réel. Une suite $g\acute{e}om\acute{e}trique$ de raison $a\neq 0$ est une suite (u_n) telle que pour tout entier naturel $n:u_{n+1}=au_n$.

- (a) Pour tout $n \ge 0$, $u_n = u_0 a^n$.
- (b) La somme de termes consécutifs d'une suite géométrique est égale à

$$premier\ terme \times \frac{1 - raison^{nombre\ de\ termes}}{1 - raison}$$

3. Suite arithmético-géométrique

a et b sont des réels, $a \neq 1$, $b \neq 0$. Une suite arithmético-géométrique est une suite (u_n) telle que pour tout entier naturel $n: u_{n+1} = au_n + b$.

En notant λ la solution de ax + b = x, la suite (v_n) définie par $v_n = u_n - \lambda$ est une suite géométrique de raison a.

4. Série

Soit une suite (u_n) $(n \ge 0)$. La suite (S_n) définie par $S_n = u_0 + u_1 + u_2 + \dots + u_n = \sum_{k=0}^n u_k$

est appelée $s\acute{e}rie$ de terme général u_n .

Si la suite (S_n) est convergente et admet la limite S lorsque n tend vers l'infini alors

la série
$$\sum_{n=0}^{\infty} u_n$$
 est dite convergente et $\sum_{n=0}^{\infty} u_n = S$.

Sinon, la série $\sum_{n=0}^{\infty} u_n$ est dite divergente.

5. Limites

- (a) (n^{α}) est convergente si et seulement si $\alpha \leq 0$. Si $\alpha < 0$ alors $\lim_{n \to +\infty} n^{\alpha} = 0$.
- (b) (a^n) est convergente si et seulement si $-1 < a \le 1$. Si -1 < a < 1 alors $\lim_{n \to +\infty} a^n = 0$.
- (c) $\sum_{n=0}^{+\infty} a^n$ est convergente si et seulement si -1 < a < 1.

Si
$$-1 < a < 1$$
 alors $\sum_{n=0}^{+\infty} a^n = \frac{1}{1-a}$.

6. Suite croissante, décroissante

- (a) Une suite (u_n) est dite *croissante* si $\forall n \geq 0 \ u_n \leq u_{n+1}$.
- (b) Une suite (u_n) est dite décroissante si $\forall n \geq 0 \ u_n \geq u_{n+1}$.
- (c) Une suite (u_n) est dite strictement croissante si $\forall n \geq 0 \ u_n < u_{n+1}$.
- (d) Une suite (u_n) est dite strictement décroissante si $\forall n \geq 0 \ u_n > u_{n+1}$.

7. Suite croissante majorée, décroissante minorée

- (a) Une suite croissante et majorée est convergente.
- (b) Une suite décroissante et minorée est convergente.

8. Suite récurrente

Soit f une fonction continue sur un intervalle I et $u_0 \in I$.

La suite définie par $\forall n \in \mathbb{N} \ u_{n+1} = f(u_n)$ est dite suite récurrente.

Si la suite (u_n) définie par $u_{n+1} = f(u_n)$ converge vers L et si f est continue en L alors f(L) = L.

L est donc solution de l'équation f(x) = x.

9. Suites adjacentes

Deux suites (u_n) et (v_n) sont dites adjacentes si

- (a) $\forall n \ge 0 \ u_n \le u_{n+1} \le v_{n+1} \le v_n$
- (b) $\lim_{n\to+\infty} (v_n u_n) = 0$

Deux suites adjacentes sont convergentes et ont la même limite L.