

High Performance LLMs From First Principles (2024)

Goal: learn how to achieve high performance for LLMs

Last week: multiple chip perf

This week: multiple chip perf! With more details and examples! (Much thanks for the various feedback!)

Program (write code in Jax)

Predict (roofline on napkin or spreadsheet)

Profile (run code, compare to predictions)

My Asks

Please ask lots of questions! Just raise your hand or speak up!

If there are topics you're interested in, message me between sessions.

Join the discord! https://discord.gg/2AWcVatVAw

Do the exercises! Give feedback, ask questions!

Website: https://github.com/rwitten/HighPerfLLMs2024

Simplified Workload For Analysis: Just 1 matrix multiply per layer

Reminder: Let's Consider Our Problem

Reminder: what is sharding?

- Assume we have a 1D circular array of devices.
- Then there are three possible shardings for a matrix:
 - Fully replicated (unsharded)
 - Sharded by rows
 - Sharded by cols

Fully Replicated (All the Data on All Computers)

Sharded by rows

Sharded by cols

Let's Consider How to Shard Our Problem

Reminder: Batch Sharding (Data Parallelism)

- Activations NEED to be sharded they're much bigger that weights. We can
 either shard them by rows or columns.
- (For now assume weights are fully replicated)

Batch Sharding (Data Parallelism)

- Batch Sharding is much easier to reason about. Embarrassingly parallelizable.
- It keeps working with a linear speedup as long as you scale batch linearly with number of TPUs!

Batch Sharding By Layers

Batch Sharding with Weight Sharding (Fully Sharded Data Parallelism)

- Shard the weights as well.
- Now each TPU can't compute the matrix multiplication given the data it has locally! The next slide explains the solution all-gathering the next layer while doing the arithmetic on this layer.
- (Requires storing only 1 layer at a time. The big NN's have much more than 200 matmuls so this is a big savings!)

Batch Sharding with Weight Sharding (FSDP)

Layer,: All-gather

Layer_{i-1}: Matrix Multiply (same as data parallelism)

Google

Batch Sharding with Weight Sharding (FSDP)

Batch Sharding with Weight Sharding (FSDP) - Step 0

Batch Sharding with Weight Sharding (FSDP) - Step 1a

Batch Sharding with Weight Sharding (FSDP) - Step 1b

Batch Sharding with Weight Sharding (FSDP) - Step 1c

Batch Sharding with Weight Sharding (FSDP) - Step 2a

Batch Sharding with Weight Sharding (FSDP) - Step 2b

Batch Sharding with Weight Sharding (FSDP) - Step 2c

Batch Sharding with Weight Sharding (FSDP) overlapped

Batch Sharding with Weight Sharding (FSDP) - Step 0 overlapped

Batch Sharding with Weight Sharding (FSDP) - Step 1 overlapped

Batch Sharding with Weight Sharding (FSDP) - Step 2 overlapped

Batch Sharding with Weight Sharding (Fully Sharded Data Parallelism)

- As long as the all-gather of the weights is faster than the matrix multiplication, this is as fast as just keeping the weights fully sharded all the time.
- But only 1 or 2 layers need to be fully replicated (yellow) at a time. Out of 100!
- Because the amount of weights do not depend on the batch and the amount of matrix math depends on the batch, growing batch hides the communications!

Shard the activation dimension.

Google

Batch

Google

When Does Tensor Parallelism Work?

- Data the size of the "partial activations" needs to be transferred.
- But the amount of matrix math depends on B*E²/NUMBER_SHARDS and the amount of data transferred depends on B*E. So if E gets larger, the communication can be hidden!

Break For Coding and Profiling – show all gather

Break For Coding and Profiling – matmuls with FSDP

Break For Coding and Profiling – matmuls with FSDP

export LIBTPU_INIT_ARGS="--xla_enable_async_all_gather=true TPU_MEGACORE=MEGACORE_DENSE"

Break For Coding and Profiling

TPU Collective Ops

- Very beautiful that the key algorithms can happen efficiently with only nearest neighbors comms.
- P.S. we'll use the wrap around! Real TPU's are bidirectional wraparound so they do this in both directions at once.
- GPUs have all-to-all communications and things look a little different (but equally efficient!)

All Gather (remember from FSDP)

Goal: each TPU gathers them all

Implementation: each TPU pushes the last number it received "up" each timestep

Reduce Scatter (remember from Tensor Parallelism?)

Goal: we reduce (assumes sum) and each TPU gets one shard

Implementation: each TPU pushes the last number it received "up" each timestep. The recipients reduces.

All Reduce (for sharing gradients!)

Goal: we reduce (assumes sum) and each TPU gets full copy

Implementation: A Reduce Scatter Followed By An All Gather

Thanks! Ping me (rwitten@google.com) with feedback, suggested topics, etc!