学习知识准备与双色 LED 实验

一、Raspberry Pi 的 IO 口介绍

Raspberry Pi 的 IO , 一共有 40 个管脚, 具体定义如下所示:

wiringPi Pin	BCM GPIO	Name	Header	Name	BCM GPIO	wiringPi Pin		
-	-	3.3v	1 2	5v	-	-		
8	R1:0/R2:2	SDA0	3 4	5v	_	-		
9	R1:1/R2:3	SCL0 GPI07	5 6	OV TXD	- 14	-		
7	4		7 8			15		
-	-	ov	9 10	RXD	15	16		Fo
0	17	GPI00	11 12	GPI01	18	1	71	
2	R1:21/R2:27	GPIO2	13 14	OV	-	-	For RPi	
3	22	GPIO3	15 16	GPI04	23	4	Pi B	
-	-	3.3v	17 18	GPI05	24	5	2000	
12	10	MOSI	19 20	ov	-	-		
13	9	MISO	21 22	GPI06	25	6		
14	11	SCLK	23 24	CE0	8	10		
-	-	ov	25 26	CE1	7	11		
30	0	SDA. 0	27 28	SCL. 0	1	31		
21	5	GP10. 21	29 30	ov	_	-		
22	6	GP10. 22	31 32	GP10. 26	12	26		
23	13	GP10. 23	33 34	ov	-	-		
24	19	GP10. 24	35 36	GP10. 27	16	27		
25	26	GP10. 25	37 38	GP10. 28	20	28		
		ov	39 40	GP10. 29	21	29		
wiringPi Pin	BCM GPIO	Name	Header	Name	BCM GPIO	wiringPi Pin		

目前,Raspberry Pi 有三种引脚编号方法,分别是:根据引脚的物理位置编号(Header)、由 C 语言 GPIO 库 wiringPi 指定的编号(wiringPi Pin)、由 BCM2837 SOC 指定的编号(BCM GPIO)。

如果想要基于wiringPI库以C语言运行RaspberryPiGPIO,请选择由wiringPi指定的编号。从上图可以看出,wiringPi中的GPIO0对应于物理位置编号的引脚11,GPIO30对应物理位置编号的引脚30。

下图说明了三个物理位置编号的引脚 11、12 和 13 对应的编号。例如,物理位置编号的引脚 11 对应 wiringPi 的 0 和 BCM GPIO 的 17。

我们使用的 T 型扩展板采用的是 BCM 编码。需要注意的 G27 对应的是 BCM 编码的 R1:21/R2:27 管脚。

二、wiringPi 库介绍

如果选择使用 C/C++编程,需要安装 wiringPi 库,安装方法如下: cd /tmp wget https://project-downloads.drogon.net/wiringpi-latest.deb sudo dpkg -i wiringpi-latest.deb 安装完毕后,可以使用如下命令测试是否成功安装。 gpio -v

三、RPI.GPIO 介绍

如果使用 Python 编程,可以使用 RPi.GPIO 提供的 API 对 GPIO 进行编程,该软件包提供了一个类来控制 Raspberry Pi 上的 GPIO。Rspberry Pi 的 Raspbian OS 镜像中默认安装 RPi.GPIO,因此可以直接使用它。

如果需要安装 python-dev 包,则输入以下命令: sudo apt-get install python-dev

四、使用 MU 软件进行 python 开发

Mu 对初学者来说是一个简单易用的 Python 编辑器和 IDE(集成开发环境)。

打开 Mu 软件后,选择 Python 3 模式,点击 OK。

Mu 的主要区域是编写代码的地方,在 Mu 中输入以下代码,创建"Hello World"程序。点击 Save 保存程序;点击 Check 检查程序(只要在程序未运行的情况下,都可以点击 Check 检查代码是否有错误。);点击 Run 运行程序;点击 Stop 停止运行程序。

如果代码没有语法错误,但是运行结果与预期不同,则可以使用"Debug"按钮进行逐步调试,具体调试界面如下:

调试器有四个按钮, Continue: 重新运行程序、Step Over: 单步执行、Step In: 如果下一行是函数,则进入该函数运行、Step Out: 退出正在运行的函数。

窗口右侧 Debug Inspector,显示正在使用的任何变量的当前值。

点击 Step Over,程序逐步运行。

五、使用 Geany IDE 进行 C 程序开发

点击左上角 Programming, 打开 Geany。

新建一个文件,点击保存,命名为helloworld.c。(注意扩展名为.c)

使用带有 Geany 的 wiringPi 库编译 C/C++程序,需要进行配置,具体方法如下。点击上侧"Build"按钮,选择 Set Build Commands。

在 Compile 和 Build 选框里最后面添加 "-lwiringPi"。

三个按钮分别为编译文件、生成运行文件、运行。

六、双色 LED 实验

双色 LED 灯准确来说叫双基色 LED 灯,是指模块只能显示两种颜色,一般是红色和绿色,可以有三种状态,灭、颜色 1 亮、颜色 2 亮。

实验目标:实现 LED 灯红绿交替闪烁。

具体实现方法可以参考以下步骤:

将引脚 S (绿色) 和中间管脚 (红色) 连接到 Raspberry Pi 的 GPIO 接口上,引脚一连接到 Raspberry Pi 的 GND 上,对 Raspberry Pi 进行编程控制,将 LED 的颜色从红色变成绿色。

该模块的原理图如下所示:

实验硬件连线图可以参考如下:

附录: 使用 FileZilla 软件相互传递文件

具体配置方法如下图,可以直接使用鼠标拖拽在本机与 Raspberry Pi 之间传输文件。

