	<u>Utech</u>
Name :	
Roll No. :	
Invigilator's Signature :	

CS/B.Tech (CE)/SEM-8/CE-801/1/2012 2012

ADVANCED TRANSPORATION ENGINEERING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) The maximum number of vehicles can be parked with
 - a) parallel parking
- b) right angle parking
- c) 45° angle parking
- d) 75° angle parking.
- ii) The colour of light used for visibility during fog is
 - a) red

b) yellow

c) green

- d) white.
- iii) The most efficient traffic signal system is
 - a) simultaneous system
 - b) alternate system
 - c) flexible progressive system
 - d) simple progressive system.

8024 [Turn over

CS/B.Tech~(CE)/SEM-8/CE-801/1/2012

iv)	A complete signal-time cycle constitutes				
	a)	red timing	b)	yellow timing	
	c)	green timing	d)	all of these.	
v)	Flas	hing yellow beam are	someti	mes employed as	
	a)	stopping signal	b)	proceeding signal	
	c)	warning signal	d)	none of these.	
vi)	If th	ne free mean speed	of a roa	adway is 80 kmph and	
	aver	age spacing betwee	n the v	vehicles under stopped	
	condition is 6.9 m, the capacity of flow will be				
	a)	2000 vph	b)	2900 vph	
	c)	3000 vph	d)	3200 vph.	
vii)	Diamond interchange is the simplest form of				
	a)	3-leg interchange			
	b)	4-leg interchange			
	c)	multi-leg interchang	ξe.		
viii)	Wid	th of roadway of Na	itional a	and State highways or	
	plain area for two-lane carriageway is				
	a)	9·0 m	b)	7·5 m	
	c)	12 m	d)	8·80 m.	
8024		2			

- ix) Recommended ruling design speed on rural state highways in plane area is
 - a) 50 kmph
- b) 80 kmph
- c) 40 kmph
- d) 100 kmph.
- x) 10000 rep of 160 kN axle load is equivalent to N nos. of rep of 80 kN axle load where N is
 - a) 8×10^5
- b) 16×10^5
- c) 8×10^4
- d) 16×10^4 .
- xi) The average running speed at intersection must be
 - a) design speed
 - b) 75% of design speed
 - c) 80% of design speed
 - d) none of these.
- xii) If an ascending gradient of 1 in 50 meets a descending gradient of 1 in 50, the length of summit curve for a stopping sight distance of 80 m will be
 - a) zero

b) 64 m

c) 80 m

d) 60 m.

CS/B.Tech (CE)/SEM-8/CE-801/1/2012

(Short Answer Type Questions)

Answer any three of the following.

- Draw a labelled and dimensioned sketch of an expressway.
 Mention the values of cross-fall (carriageway, treated shoulder and untreated shoulder).
- 3. Discuss the benefits derived from channelising road intersections. Illustrate your answer with sketches.
- 4. Describe the relationship between speed, travel time, volume, density & capacity.
- 5. Derive the expression : $e + f = \frac{v^2}{127 R}$, where symbols have usual meaning.
- 6. A track has to carry a load of 16 tonnes at its real axle. Find the ESWL on a flexible pavement 50 cm thick for the following conditions:
 - i) Single axle with dual tiers where tier pressure $7\ kg/cm^2$
 - ii) Tendon axle with dual tiers, where tier pressure $7\ kg/cm^2$

Tiers are 30 cm and tendons are 60 cm apart (c/c), and the clear distance of tier for both the cases is 10 cm.

8024 4

Answer any three of the following.

 $3 \times 15 = 45$

8

7. a) From a moving vehicle survey following are obtained:

		No. of Vehicles		
Direction	Travel time	Travelling in opposite direction	Overtaking test vehicle	Overtaking by test vehicle
North bound	T_n	N_n		
1	3.20	75	3	1
2	2.80	80	2	2
3	3.25	85	0	1
4	3.01	70	2	1
South bound	T_s	N_s		
1	3.20	78	4	0
2	3.25	74	2	2
3	3.40	79	0	2
4	3.35	82	3	3

Find out:

- i) flow of traffic stream
- ii) mean time of north bound and south bound.
- b) A minor road with a design speed of 60 kmph meets a preferential road having design speed of 80 kmph angle of margins 30° and the intersection is uncontrolled.
 Find the sides of minimum and safe distance of side triangle. Assume any other condition if needed.

CS/B.Tech (CE)/SEM-8/CE-801/1/2012

- 8. A 40 cm PCC pavement is designed with a 20 year life to accommodate 4 types of heavy daily traffic of mix given below. Design $M_R = 41 \, \mathrm{kg/cm^2}$ and $k = 9 \, \mathrm{kg/cm^2}$. Determine how much remaining life would exist after 20 years service, using
 - a) Vesie's equation
 - b) IRC method.

Vehicle life	Expected repetitions	Calculated tensile stress in kg/cm ²
A	2000	27.09
В	25000	23.52
C	100000	20.91
D	87300	17·36

 3×5

- 9. Write short notes on any *three* of the following :
 - a) Fatigue of pavement
 - b) Acceleration lane and deceleration lane
 - c) Design modulus of rapture
 - d) Effect of lateral wander
 - e) 3-phase signalling system.

- 10. A three layer system (subgrade is counted as a "layer") with the thickness and moduli shown in the following Figure is loaded by a uniformly distributed load with radius 150 mm and contact stress 0·7 MPa. Poisson's ratio is assumed to be 0·35 for all materials. Find out
 - a) Horizontal strain at the bottom of the apshalt.
 - b) Vertical stress on subgrade.

 $E_3 = 50 \text{ MPa}$

(vertical and tangential stress for a circular loading is given below)

Tangential stress due to circular loading

Vertical stress due to circular loading

- 11. Calculate the values of ruling minimum and absolute minimum radius of horizontal curve of a NH in plain terrain. Assume ruling design speed and minimum design values as 100 and 80 kmph respectively.
- 12. a) State the purpose of capacity analysis. What is LOS? What is the significance of LOS in capacity analysis? Define space headway and time headway.
 - b) Explain in detail, the AASHTO design method of flexible pavement.

8024