GEMA1001 Week 5 Tutorial

HuNianlan

Note: 10.24 quiz 1

- 45min
- 3道题
- 难度相当于考试中的第一、二道大题

Contents

Review

- 上(下)确界
- 数列及其单调性、有界性
- 数列的极限
- 极限证明技巧举例
- 数列极限的性质及运算法则
- 单调有界数列极限存在准则
- 区间套定理与凝聚定理
- 极限计算举例

定义 1.1 我们说一个集合 E 是 数集 如果它是 \mathbb{R} 中的子集.

定义 1.2 给定一个非空集合 $E \subset \mathbb{R}$

- 2. 如 $\exists m \in \mathbb{R}$, 使得 $\forall x \in E$, 有 $x \geq m$, 则称 E 是有 F 是的 (lower bounded), 且 称 m 是 E 的一个 F F (lower bound);
- 3. 若 E 同时有上界和下界,则称 E 为 \overline{A} \overline{A} (bounded),反之,则称 E 是 无界 (unbounded) 的. 换言之, $\exists \overline{M} > 0$,使得 $\forall x \in E$,有 $|x| \leq \overline{M}$,此时称 \overline{M} 为数集 E 的一个 \overline{B} (bound).

定义 1.3 给定非空数集 $E \subset \mathbb{R}$,若 $\exists \beta \in \mathbb{R}$ 满足

- 1. $\forall x \in E$,有 $x \leq \beta$,即 β 是 E 的一个 *上界*;
- 2. $\forall \epsilon > 0$, $\exists x_{\epsilon} \in E$, 使得 $x_{\epsilon} > \beta \epsilon$, 即 β 是 E 所有上界中最小的一个上界.

则称 β 是 E 的 上确界 (supremum), 记为 $\beta = \sup E$.

定义 1.3' 若非空数集 E 有下界,则其下界 $\alpha \in \mathbb{R}$ 称为 E 的 F F 的 F 的 F 的 F 的 F 的 F 的 F 的 F 的 F 的 F 的 F

定义 2.1 一个数列(sequence) $\{x_n\}_{n=1}^{\infty}$ 是正整数集 $\mathbb{Z}_{>0}$ 上的函数,即映射

\mathbb{Z}{\geq 0} \longrightarrow \mathbb{R} \quad n \longmapsto x{n} \

其中 x_n 称为该数列的 *通项或一般项(general term)*. 在这个数列中,第一项是 x_1 ,第二项是 x_2 ,···,第n 项是 x_n 等等. 常将 $\{x_n\}_{n=1}^{\infty}$ 简写为 $\{x_n\}$.

有时,我们也考虑 常数列 (constant sequence), 即每一项都是常数 C 的数列.

定义 2.2 若数列 $\{x_n\}$ 满足 $\forall n$,有 $x_{n+1} \geq x_n$ (或 $x_{n+1} > x_n$),则称 $\{x_n\}$ 是 单调增加(严格单调增加)数列;反之,若 $\forall n$,有 $x_{n+1} \leq x_n$ (或 $x_{n+1} < x_n$),则称 $\{x_n\}$ 是 单调减少(严格单调减少)数列.

定义 2.3 若数列 $\{x_n\}$ 满足: $\exists M > 0$ 使得 $\forall n$, 都有 $|x_n| \leq M$, 则称 $\{x_n\}$ 是 *有界数 列*. 类似地,可给出 *上(下)界* 的定义.

定义 3.1 对数列 $\{x_n\}$,若 \exists 数 A, $\forall \epsilon > 0$, \exists $N \in \mathbb{N}$,使得当 n > N 时,有 $|x_n - A| < \epsilon$,则称 $\{x_n\}$ 的 极限(limit)为 A,或称数列 $\{x_n\}$ 收敛(convergent),且 收敛于(convergent to) A,记为 $\lim_{n \to \infty} x_n = A$ (或者 $x_n \to A$ $(n \to \infty)$). 若不存在这样的常数 A,则称数列 $\{x_n\}$ 无极限,也称其 发散(divergent)或不收敛.

定义 3.2 极限为 的数列 $\{x_n\}$ 称为 *无穷小量*(infinitesimal),简称 x_n 为 *无穷小*(infinite small).

定义 3.3 对数列 $\{x_n\}$,若 $\forall G>0$, $\exists N\in\mathbb{N}$,使得当 n>N 时, $|x_n|>G$,则称 $\{x_n\}$ 是 *无穷大量*,简称 x_n 为 *无穷大*,记为 $\lim_{n\to\infty}=\infty$.

定义 6.1 设 $\{n_1, n_2, \dots\}$ 是正整数集的一个无穷子集,且 $n_{k+1} > n_k, k = 1, 2, \dots$,则数列 $\{x_{n_k}\}_{k=1}^{\infty}$ 称为 $\{x_n\}$ 的一个 *子数列(sub-sequence)*,简称 *子列*.

定义 7.1 一列 闭 区间 $\{[a_n,b_n]\}$ 称为是一个 闭区间套,如果

- 1. $[a_{n+1},\,b_{n+1}]\subseteq [a_n,\,b_n],\,n=1,2,3,\cdots$
- 2. $\lim_{n o\infty}\left(b_n-a_n
 ight)=0.$