DATA SCIENCE LAB

Experiment No.: 16

Aim

Implement KMeans algorithm using python.

Procedure

from sklearn.cluster import KMeans
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from matplotlib import pyplot as plt
%matplotlib inline

df = pd.read_csv("income.csv")
df.head()


```
scaler = MinMaxScaler()
scaler.fit(df[['Income($)']])
df['Income($)'] = scaler.transform(df[['Income($)']])
scaler.fit(df[['Age']])
df['Age'] = scaler.transform(df[['Age']])
plt.scatter(df.Age,df['Income($)'])
```

Name: SWETHA PRAKASH

Roll No: 46

Batch: B

Date: 14/11/2022

km = KMeans(n_clusters=3)

y_predicted = km.fit_predict(df[['Age','Income(\$)']])

y_predicted

 $df['cluster'] = y_predicted$

df.head()

25-	Name	Age	Income(\$)	cluster
0	Rob	0.058824	0.213675	1
1	Michael	0.176471	0.384615	1
2	Mohan	0.176471	0.136752	1
3	Ismail	0.117647	0.128205	1
4	Kory	0.941176	0.897436	0
	Rory	0.341170	0.037430	v

km.cluster_centers_

```
array([[0.72268908, 0.8974359 ],
[0.1372549 , 0.11633428],
[0.85294118, 0.2022792 ]])
```

```
df1 = df[df.cluster==0]

df2 = df[df.cluster==1]

df3 = df[df.cluster==2]

plt.scatter(df1.Age,df1['Income($)'],color='green')

plt.scatter(df2.Age,df2['Income($)'],color='red')

plt.scatter(df3.Age,df3['Income($)'],color='black')

plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color='purple',marker='*',label='centroid')

plt.legend()
```

Output

