Parâmetros de acoplamento e resolução na prática

Henrique S Requejo

08/11/2020

1 Parâmetros de acoplamento (ω) e resolução (γ) na prática

Como a escolha dos parâmetros de resolução e acoplamento é arbitrária, ficam as perguntas: qual o melhor valor para aplicar na minha rede? Existe apenas um único melhor valor ou depende do que estou querendo enxergar? Quais são os efeitos na prática quando variamos γ e ω ? Com o objetivo de responder essas perguntas e auxiliar na escolha dos valores de γ e ω , vamos analisar o que ocorre quando variamos esses parâmetros.

O parâmetro ω está contido no intervalo (0,1), onde zero representa o desacoplamento total das camadas (cada camada é tratada como uma rede individual) e a modularidade final é a média da modularidade de cada camada, e 1 representa o acoplamento máximo, o que faz com que a rede multiplex se comporte como uma rede monocamada. Na prática, isso significa que, quando aumentamos os valores da constante de acoplamento ω , aumentamos o peso das conexões intercamada (Mucha et al., 2010), isso faz com que as camadas tenham maior influência umas sobre as outras, favorecendo a formação de módulos multicamada. Quando diminuímos ω , o contrário ocorre, o que favorece a formação de módulos monocamada.

O parâmetro de resolução foi introduzido por Reichardt & Bornholdt (2006) para

avaliar redes monocamada e foi propagado para a modularidade generalizada multicamada (Mucha et al., 2010), funcionando da mesma forma. De uma forma geral, se $\gamma_2 > \gamma_1$, os módulos encontrados com γ_2 possuem menos nós (módulos menores) e são mais numerosos (maior quantidade de módulos). Os módulos encontrados com γ_2 podem ser submódulos dos obtidos usando γ_1 , mas nem sempre é o caso (Reichardt & Bornholdt, 2006). Lembrando que $0 \le \gamma \le \infty$. Porém, não faz sentido aumentarmos γ para valores muito altos, já que existe um limite onde os módulos se tornam tão pequenos que cada módulo passa a ter apenas um nó.

Vamos usar a rede multiplex Famílias de Florença (Kent (1978)) para ilustrar graficamente o que ocorre quando variamos os parâmetros ω e γ . Essa rede foi escolhida por ser uma rede multiplex pequena, o que facilita a visualização. A figura 1 mostra a distribuição visual dos módulos sobre as duas camadas da rede para diferentes valores de ω e γ .

Figura 1: Módulos formados usando diferentes valores de acoplamento ω e resolução γ . Valores de ω variam no eixo y e valores de γ variam no eixo x.

Quanto maiores o os valores de γ e menores os valores de ω , menores e mais numerosos são os módulos e vice-versa. A figura 2 mostra o número de módulos para a rede

exemplo Famílias de Florença, onde podemos ver que ocorre o previsto na teoria.

Figura 2: Número de módulos totais da rede para diferentes valores de acoplamento ω e resolução γ . Valores de ω variam no eixo y e valores de γ variam no eixo x.

Mas afinal, quais valores devo escolher para os parâmetros? A resposta mais correta é: depende. Depende do queremos enxergar e qual insigth queremos obter. Por exemplo, se quisermos verificar quais são os "grandes módulos" da rede devemos usar um valor de γ mais baixo, caso quisermos encontrar módulos menores (mais "íntimos") ou submódulos dos "grandes módulos" obtidos com um γ mais baixo, um γ maior seria o mais indicado.

Se quisermos que as conexões de uma camada influenciem mais sobre a outra camada, devemos usar um ω mais alto, coso contrario, por exemplo, melhor usar um ω mais baixo. Como, por exemplo na rede de morcegos-planta (Mello et al., 2019), onde existem duas camadas, uma de nectarívoria e outra de frugívoria. Se quisermos encontrar módulos onde existam morcegos com dietas similares no geral, um ω mais alto é recomendado, pois, temos a frugívoria e nectarívoria com alta influência uma sobre a outra no cálculo dos módulos. Caso quisermos separar morcegos com uma preferência maior por flores, por frutos ou que tenham uma dieta equilibrada, podemos usar um ω menor, já que assim existe a tendência dos módulos se formarem pesando mais as interações dentro de cada camada da rede, fazendo com que os morcegos estejam em grupos que priorizam mais a nectarívoria ou a frugivoría ou até mesmo que possuem interações equilibradas entre camadas (estão em dois grupos em camadas diferentes ao mesmo tempo).

Interpretação, conhecimento específico da área que a rede representa e saber o que queremos enxergar são os fatores principais para a escolha dos valores de ω e γ

Caso quisermos apenas obter uma distribuição de módulos confiável sem a necessidade de interpretação, podemos escolher um valor de ω e γ que maximiza a modularidade. Os valores de ω e γ que maximizam a modularidade diferem para cada rede. A figura 3 mostra os valores da modularidade para diferentes valores de ω e γ da rede exemplo Famílias de Florença.

Com a resolução do ensaio feito, os valores mais indicados para a rede famílias de florença seriam $\omega=0.75$ e $\gamma=1.5$. Para valores mais precisos, basta aumentar as partições de γ e ω ou refinar os valores de γ e ω em torno dos máximos obtidos no ensaio anterior.

Figura 3: Valor da modularidade para diferentes valores de acoplamento ω e resolução γ . Valores de ω variam no eixo y e valores de γ variam no eixo x.

Também existe a possibilidade de que os valores de modularidade fiquem muito próximos uns dos outros. Nesse caso, é comum que os módulos fiquem muito similares entre si, então, é possível escolher qualquer um dos valores de ω e γ . Caso os módulos fiquem muito diferentes entre si (um caso mais raro), uma interpretação de um especialista na área que a rede está retratando é fundamental.

2 Referências

Kent, D. V. (1978). The rise of the medici: Faction in florence 1426-1434. Oxford university press. http://lib.ugent.be/catalog/rug01:000703415

Mello, M. A. R., Felix, G. M., Pinheiro, R. B. P., Muylaert, R. L., Geiselman, C., Santana, S. E., Tschapka, M., Lotfi, N., Rodrigues, F. A., & Stevens, R. D. (2019). Insights into the assembly rules of a continent-wide multilayer network. *Nature Ecology & Evolution*, 3(11), 1525–1532. https://doi.org/10.1038/s41559-019-1002-3

Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., & Onnela, J.-P. (2010). Community structure in time-dependent, multiscale, and multiplex networks. *Science*, 328(5980), 876–878. https://doi.org/10.1126/science.1184819

Reichardt, J., & Bornholdt, S. (2006). Statistical mechanics of community detection. *Physical Review E*, 74(1). https://doi.org/10.1103/physreve.74.016110