

Probabilidades II

Distribuições de Probabilidades

Felipe Figueiredo

Instituto Nacional de Traumatologia e Ortopedia

Probabilidades II Felipe

Figueiredo

Aleatórias

Distribuições de

Probabilidade

Sumário

Probabilidades

Felipe Figueiredo

- Variáveis Aleatórias
 - Tipos de Variáveis
 - Variáveis Discretas
 - Variáveis Contínuas
- Distribuições de Probabilidade
 - Distribuições Discretas
 - Distribuições Contínuas

Sumário

- Probabilidades II
 - Felipe Figueiredo
- Variáveis Aleatórias
- Tipos de Variáveis Variáveis Discretas
- Variáveis Contínua
- de
- Probabilidade

- Variáveis Aleatórias
 - Tipos de Variáveis
 - Variáveis Discretas
 - Variáveis Contínuas
- Distribuições de Probabilidade
 - Distribuições Discretas
 - Distribuições Contínuas

Variáveis Aleatórias

Probabilidades

Felipe Figueiredo

Tipos de Variáveis

Definition

Uma variável aleatória é uma variável (tipicamente representada por x) que tem um único valor numérico associada a um experimento aleatório

- Discretas
- Contínuas

Variáveis Aleatórias

Probabilidades II

> Felipe Figueiredo

Variáveis Aleatórias

Tipos de Variáveis Variáveis Discretas

de

Probabilidad

Definition

Uma variável aleatória é uma variável (tipicamente representada por x) que tem um único valor numérico associada a um experimento aleatório

- Discretas
- Contínuas

Variáveis Aleatórias

Probabilidades II

> Felipe Figueiredo

Variáveis Aleatórias

Tipos de Variáveis Variáveis Discretas

Distribuições de

Probabilidad

Definition

Uma variável aleatória é uma variável (tipicamente representada por *x*) que tem um único valor numérico associada a um experimento aleatório

- Discretas
- Contínuas

Sumário

Probabilidades II

> Felipe Figueiredo

Variáveis Aleatórias Tipos de Variáveis

Variáveis Discretas Variáveis Contínuas

Distribuições de

Probabilidad

- Variáveis Aleatórias
 - Tipos de Variáveis
 - Variáveis Discretas
 - Variáveis Contínuas
- Distribuições de Probabilidade
 - Distribuições Discretas
 - Distribuições Contínuas

Definition

Uma variável aleatória discreta pode assumir uma quantidade contável de valores

Example

Número de filhos em uma família

Quantidade de pacientes em um dia no consultório

Probabilidades II

> Felipe Figueiredo

Variáveis Aleatórias

Tipos de Variáveis Variáveis Discretas Variáveis Contínua:

Distribuições de

Probabilidade

Probabilidades

Felipe Figueiredo

Tipos de Variáveis Variáveis Discretas

Definition

Uma variável aleatória discreta pode assumir uma quantidade contável de valores

- Quantidade de pacientes em um dia no consultório

Probabilidades II

> Felipe Figueiredo

Variáveis Aleatórias

Tipos de Variáveis Variáveis Discretas Variáveis Contínuas

de

Probabilidad

Definition

Uma variável aleatória discreta pode assumir uma quantidade contável de valores

- Número de filhos em uma família
- Quantidade de pacientes em um dia no consultório

Probabilidades

Felipe Figueiredo

Variáveis Discretas

Definition

Uma variável aleatória discreta pode assumir uma quantidade contável de valores

- Número de filhos em uma família
- Quantidade de pacientes em um dia no consultório

Representação em tabela

Probabilidades

Felipe Figueiredo

Example

Seja x o número de filhos em uma família.

O valor esperado E[x] (de filhos por família) é:

$$\sum xP(x) = 0 \times 0.15 + 1 \times 0.30 + 2 \times 0.40 \dots = 1.6$$

Tipos de Variáveis Variáveis Discretas

Representação gráfica

Figura: A distribuição de uma variável discreta (Fonte: Triola, 2004

Probabilidades II

> Felipe Figueiredo

Variáveis Aleatórias Tipos de Variáveis

Variáveis Discretas Variáveis Contínuas

de Probabilidad

Sumário

- Variáveis Aleatórias
 - Tipos de Variáveis
 - Variáveis Discretas
 - Variáveis Contínuas
- - Distribuições Discretas
 - Distribuições Contínuas

Probabilidades Felipe

Figueiredo

Tipos de Variáveis Variáveis Discretas Variáveis Contínuas

Definition

Uma variável aleatória contínua pode ser associada a medições em uma escala contínua (e infinita) de valores

Probabilidades

Felipe Figueiredo

Tipos de Variáveis Variáveis Contínuas

Probabilidades

Felipe Figueiredo

Tipos de Variáveis Variáveis Contínuas

Definition

Uma variável aleatória contínua pode ser associada a medições em uma escala contínua (e infinita) de valores

- Quantidade de leite produzido por uma vaca em um dia
- Expectativa de vida de um paciente terminal

Probabilidades

Felipe Figueiredo

Tipos de Variáveis Variáveis Contínuas

Definition

Uma variável aleatória contínua pode ser associada a medições em uma escala contínua (e infinita) de valores

- Quantidade de leite produzido por uma vaca em um dia
- Expectativa de vida de um paciente terminal

Probabilidades

Felipe Figueiredo

Variáveis Contínuas

Definition

Uma variável aleatória contínua pode ser associada a medições em uma escala contínua (e infinita) de valores

- Quantidade de leite produzido por uma vaca em um dia
- Expectativa de vida de um paciente terminal

Distribuições de Probabilidade

Definition

Uma distribuição de probabilidade é um gráfico, tabela ou fórmula que relaciona a cada valor que a variável aleatória pode assumir a sua probabilidade

Os pré-requisitos para uma função ser uma Função de Probabilidade são:

- $\sum P(x) = 1$, onde x percorre todos os valores possíveis
- $0 \le P(x) \le 1$, para todo x

Probabilidades II

Felipe Figueiredo

Variáveis Aleatórias

Distribuições de

Probabilidade

Distribuições Discretas Distribuições

Distribuições de Probabilidade

Definition

Uma distribuição de probabilidade é um gráfico, tabela ou fórmula que relaciona a cada valor que a variável aleatória pode assumir a sua probabilidade

Os pré-requisitos para uma função ser uma Função de Probabilidade são:

- $\sum P(x) = 1$, onde x percorre todos os valores possíveis
- $0 \le P(x) \le 1$, para todo x

Probabilidades II Felipe

Figueiredo

Variáveis Aleatórias

Distribuições de Probabilidade

Distribuições Discretas

Discretas
Distribuições

Distribuições de Probabilidade

Definition

Uma distribuição de probabilidade é um gráfico, tabela ou fórmula que relaciona a cada valor que a variável aleatória pode assumir a sua probabilidade

Os pré-requisitos para uma função ser uma Função de Probabilidade são:

- $\sum P(x) = 1$, onde x percorre todos os valores possíveis
- $0 \le P(x) \le 1$, para todo x

Probabilidades II Felipe

Figueiredo

Variáveis Aleatórias

Distribuições de

Probabilidade Distribuições

Distribuições
Distribuições
Contínuas

Sumário

Probabilidades

Felipe Figueiredo

Distribuições

Discretas

- Distribuições de Probabilidade
 - Distribuições Discretas

 Tipos de Variáveis Variáveis Discretas Variáveis Contínuas

Probabilidades II

Felipe Figueiredo

Variáveis Aleatórias

de Probabilidade

Distribuições

Discretas Distribuições

Distribuições Contínuas

 Um ensaio de Bernoulli é teste com desfecho 0 ou 1 (negativo ou positivo)

Probabilidade de sucesso p

Probabilidade de fracasso 1 − p

Notação: X ∼ Bern(p)

• Valor esperado: E[x] = p

Probabilidades II

Felipe Figueiredo

Variáveis Aleatórias

de Probabilidade

Probabilidade Distribuições

Discretas Distribuições

- Um ensaio de Bernoulli é teste com desfecho 0 ou 1 (negativo ou positivo)
- Probabilidade de sucesso p
- Probabilidade de fracasso 1 p
- Notação: X ∼ Bern(p)
- Valor esperado: E[x] = p

Probabilidades

Felipe Figueiredo

Distribuições Discretas

- Um ensaio de Bernoulli é teste com desfecho 0 ou 1 (negativo ou positivo)
- Probabilidade de sucesso p
- Probabilidade de fracasso 1 − p
- Notação: X ~ Bern(p)
- Valor esperado: E[x] = p

Probabilidades

Felipe Figueiredo

Distribuições

Discretas

- Um ensaio de Bernoulli é teste com desfecho 0 ou 1 (negativo ou positivo)
- Probabilidade de sucesso p
- Probabilidade de fracasso 1 − p
- Notação: X ~ Bern(p)
- Valor esperado: E[x] = p

Probabilidades

Felipe Figueiredo

Distribuições Discretas

 Um ensaio de Bernoulli é teste com desfecho 0 ou 1 (negativo ou positivo)

Probabilidade de sucesso p

Probabilidade de fracasso 1 − p

Notação: X ~ Bern(p)

• Valor esperado: E[x] = p

Probabilidades

Felipe Figueiredo

Distribuições Discretas

 Quando executamos n ensaios de Bernoulli independentes, encontramos a distribuição Binomial

- Com *n* ensaios (cada um com prob. *p*), temos a
- Notação $X \sim Bin(n, p)$
- Valor esperado: E[x] = np

Probabilidades

Felipe Figueiredo

Distribuições

Discretas

 Quando executamos n ensaios de Bernoulli independentes, encontramos a distribuição Binomial

- Com n ensaios (cada um com prob. p), temos a contagem x de sucessos (desfecho = 1)
- Notação $X \sim Bin(n, p)$
- Valor esperado: E[x] = np

Felipe Figueiredo

Probabilidades

Distribuições

Discretas

- Quando executamos n ensaios de Bernoulli independentes, encontramos a distribuição Binomial
- Com n ensaios (cada um com prob. p), temos a contagem x de sucessos (desfecho = 1)
- Notação X ∼ Bin(n, p)
- Valor esperado: E[x] = np

Probabilidades II Felipe

Figueiredo

Variaveis Aleatórias

de Probabilidade

Distribuições Discretas

- Quando executamos n ensaios de Bernoulli independentes, encontramos a distribuição Binomial
- Com n ensaios (cada um com prob. p), temos a contagem x de sucessos (desfecho = 1)
- Notação X ∼ Bin(n, p)
- Valor esperado: E[x] = np

Probabilidades II

Felipe Figueiredo

Variáveis Aleatórias

de Probabilidade

Distribuições Discretas

Aumentando o tamanho da amostra

Quanto maior o tamanho n da amostra, mais "suave" a distribuição binomial, e mais simétrica

 O histograma vai ficando cada vez mais parecido com uma curva

Probabilidades II Felipe

Figueiredo

Aleatórias

de Probabilidade

Distribuições Discretas

Distribuições

Aumentando o tamanho da amostra

 Quanto maior o tamanho n da amostra, mais "suave" a distribuição binomial, e mais simétrica

 O histograma vai ficando cada vez mais parecido com uma curva

Probabilidades II Felipe

Figueiredo

Variáveis Aleatórias

Distribuições de Probabilidado

Distribuições Discretas

Distribuições

Aumentando o tamanho da amostra

Probabilidades II

> Felipe Figueiredo

Variáveis Aleatórias

de

Probabilidade Distribuições

Discretas
Distribuições
Contínuas

(Vídeos: Galton board e Galton machine)

Sumário

Probabilidades

Felipe Figueiredo

Distribuições

Continuas

- - Tipos de Variáveis
 - Variáveis Discretas
 - Variáveis Contínuas
- Distribuições de Probabilidade
 - Distribuições Discretas
 - Distribuições Contínuas

A distribuição Normal

INTO

Simétrica

- Forma de sino
- Assíntotas

Probabilidades II

Felipe Figueiredo

/ariáveis Aleatórias

Distribuições de

Probabilidade
Distribuições

Discretas

Distribuições

Contínuas

A distribuição Normal

- Simétrica
- Forma de sino
- Assíntotas

Probabilidades II

> Felipe Figueiredo

Variáveis Aleatórias

Distribuições de

Probabilidade
Distribuições

Discretas
Distribuições
Contínuas

A distribuição Normal

INTO

- Simétrica
- Forma de sino
- Assíntotas

Probabilidades II

> Felipe Figueiredo

Variáveis Aleatórias

Distribuições de

Probabilidade
Distribuições

Considere uma variável aleatória X com distribuição normal com média μ e desvio padrão σ , isto é, $X \sim N(\mu, \sigma)$.

- Para simplificar as análises, trabalhamos com a normal padrão
- A normal padrão tem média 0 e desvio-padrão 1
- Padronização:

$$Z = \frac{X - \mu}{\sigma}$$

- Z ~ N(0, 1)
- Seus valores podem ser consultados em uma tabela

Probabilidades II

> Felipe Figueiredo

Aleatórias

de Probabilidade

> Distribuições Discretas

Considere uma variável aleatória X com distribuição normal com média μ e desvio padrão σ , isto é, $X \sim N(\mu, \sigma)$.

- Para simplificar as análises, trabalhamos com a normal padrão
- A normal padrão tem média 0 e desvio-padrão 1
- Padronização:

$$Z = \frac{X - \mu}{\sigma}$$

- $Z \sim N(0,1)$
- Seus valores podem ser consultados em uma tabela

Probabilidades II

> Felipe Figueiredo

leatórias

de Probabilidade

Distribuições Discretas

Considere uma variável aleatória X com distribuição normal com média μ e desvio padrão σ , isto é, $X \sim N(\mu, \sigma)$.

- Para simplificar as análises, trabalhamos com a normal padrão
- A normal padrão tem média 0 e desvio-padrão 1
- Padronização:

$$Z = \frac{X - \mu}{\sigma}$$

- Z ~ N(0, 1)
- Seus valores podem ser consultados em uma tabela

Probabilidades II

> Felipe Figueiredo

Aleatórias

de Probabilidade

Distribuições Discretas

Considere uma variável aleatória X com distribuição normal com média μ e desvio padrão σ , isto é, $X \sim N(\mu, \sigma)$.

- Para simplificar as análises, trabalhamos com a normal padrão
- A normal padrão tem média 0 e desvio-padrão 1
- Padronização:

$$Z = \frac{X - \mu}{\sigma}$$

- $Z \sim N(0,1)$
- Seus valores podem ser consultados em uma tabela

Probabilidades II

> Felipe Figueiredo

Aleatórias

de Probabilidade

Distribuições Discretas

Considere uma variável aleatória X com distribuição normal com média μ e desvio padrão σ , isto é, $X \sim N(\mu, \sigma)$.

- Para simplificar as análises, trabalhamos com a normal padrão
- A normal padrão tem média 0 e desvio-padrão 1
- Padronização:

$$Z = \frac{X - \mu}{\sigma}$$

- $Z \sim N(0, 1)$
- Seus valores podem ser consultados em uma tabela

Probabilidades II

> Felipe Figueiredo

ariáveis leatórias

de

Distribuições