Revision: Matrix and Tensor Factorization

Xinyu Chen

February 3, 2022

2.1 For any partially observed data matrix $\boldsymbol{Y} \in \mathbb{R}^{N \times T}$ with the observed index set Ω , a matrix factorization algorithm can decompose \boldsymbol{Y} into lower dimensional factor matrices $\boldsymbol{W} \in \mathbb{R}^{R \times N}, \boldsymbol{X} \in \mathbb{R}^{R \times T}$, and its loss function can be written as

$$f = \frac{1}{2} \sum_{(i,t) \in \Omega} (y_{i,t} - \boldsymbol{w}_i^{\top} \boldsymbol{x}_t)^2 + \frac{\rho}{2} \left(\sum_{i=1}^{N} \|\boldsymbol{w}_i\|_2^2 + \sum_{t=1}^{T} \|\boldsymbol{x}_t\|_2^2 \right),$$
(1)

where $\boldsymbol{w}_i \in \mathbb{R}^R$ is the *i*th column of \boldsymbol{W} , and $\boldsymbol{x}_t \in \mathbb{R}^R$ is the *t*th column of \boldsymbol{X} . The symbol $\|\cdot\|_2$ denotes the ℓ_2 -norm.

- 1. Obtain the partial derivative with respect to \boldsymbol{w}_i , i.e., $\frac{\partial f}{\partial \boldsymbol{w}_i}$.
- 2. Obtain the partial derivative with respect to x_t , i.e., $\frac{\partial f}{\partial x_t}$.
- 3. How to use Alternating Least Squares (ALS) method to solve the following optimization problem:

$$\min_{\boldsymbol{W}, \boldsymbol{X}} \frac{1}{2} \sum_{(i,t) \in \Omega} (y_{i,t} - \boldsymbol{w}_i^{\top} \boldsymbol{x}_t)^2 + \frac{\rho}{2} \left(\sum_{i=1}^N \|\boldsymbol{w}_i\|_2^2 + \sum_{t=1}^T \|\boldsymbol{x}_t\|_2^2 \right).$$
(2)

.