ADV. ALGO Test study

1. Complexity & Reduction Fundamentals

1.1 Complexity Classes

Symbol	Meaning
P	Problems solvable in polynomial time
NP	Problems whose solutions can be <i>verified</i> in polynomial time
NP-hard	At least as hard as every problem in NP (no known polytime algorithm)
NP-complete	Problems that are both NP-hard and in NP

1.3 Approximation Definitions

• For minimization problems:

$$\frac{ALG(I)}{OPT(I)} \le \rho$$

For maximization problems:

$$rac{OPT(I)}{ALG(I)} \le
ho$$

where $\rho \geq 1$ is the approximation factor.

1.4 General proof pattern (minimization)

- 1. Lower bound: derive something $LB \leq OPT$.
- 2. Algorithm bound: prove $ALG \leq f(LB)$.
- 3. Combine: $ALG \leq \rho \cdot OPT$.

1.5 Greedy proof skeleton

"Prove feasibility, then prove an upper bound on the cost, compare with a lower bound on OPT \rightarrow conclude ratio ρ ."

2. Greedy Algorithms

2.1 Load Balancing Problem

Setup:

- *m* identical machines
- ullet Jobs J=1,2,...,n with processing times t_j
- Each job assigned to one machine

Goal: minimize the makespan (maximum load).

Greedy Algorithm (List Scheduling)

Assign each job to the machine with the current smallest load.

Notation

- L_i : load of machine i
- $L = \max_i L_i$: makespan of algorithm
- L^* : optimal makespan

Lower bounds for L^*

Every feasible schedule must satisfy:

$$L^* \geq \max_j t_j \quad ext{and} \quad L^* \geq rac{1}{m} \sum_j t_j$$

(Reason: one job is the largest task, and total work divided among m machines.)

Greedy bound

When the last job k is scheduled:

$$L \leq t_k + rac{1}{m} \sum_j t_j$$

Using both lower bounds:

$$L \leq 2L^*$$

☑ Conclusion: the greedy load balancing algorithm is a **2-approximation**.

2.2 Greedy for Set Cover (theoretical)

Problem:

Cover all elements of universe U with the fewest possible subsets S_i .

Greedy algorithm:

At each step, pick the set that covers the largest number of uncovered elements per unit cost.

Approximation Guarantee

Greedy Set Cover is an H_n -approximation, where

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \le \ln n + 1.$$

Key idea (potential argument)

At each iteration, the greedy algorithm covers at least a 1/k fraction of remaining elements, leading to a logarithmic number of iterations.

2.3 Greedy Structure Template

Step	Description
1	Show that algorithm produces a feasible solution
2	Find a lower bound for OPT
3	Relate algorithm's value to OPT
4	Derive constant or logarithmic ratio

3. LP Relaxation and Rounding

3.1 LP Relaxation definition

An **LP relaxation** of an Integer Program (IP) replaces the integrality constraint $x_i \in {0,1}$ by

$$0 \le x_i \le 1$$
.

3.2 Property of LP relaxations

$$OPT_{LP} \leq OPT_{IP}$$

(because relaxing constraints can only decrease the minimum).

3.3 General LP-Rounding Template

Step	Description
1	Formulate the Integer Program (IP)
2	Relax integrality constraints → get LP
3	Solve LP to obtain fractional x^{st}
4	Round x^st to integer x using a threshold $t=1/f$
5	Prove feasibility (pigeonhole/averaging argument)
6	Prove bound: $x_i \leq f \cdot x_i^*$
7	Conclude $cost(x) \leq f \cdot OPT$

3.4 Example: Vertex Cover LP Rounding

LP:

$$\min \sum_v w_v x_v ext{ s.t. } \quad x_u + x_v \geq 1 \quad orall (u,v) \in E, x_v \geq 0.$$

Rounding rule:

$$x_v = \Big\{1, \quad x_v^* \geq 1/2, \; 0, \; ext{otherwise}.$$

Feasibility: each edge has at least one endpoint $\geq 1/2$.

Cost bound: $x_v \leq 2x_v^* o$ 2-approximation.

3.5 Example: Set Cover LP Rounding

LP:

$$\min \sum_S c_S x_S ext{ s.t. } \quad \sum_{S:e \in S} x_S \geq 1, \quad orall e, x_S \geq 0.$$

Rounding rule:

Pick all sets S with $x_S^* \geq 1/f$, where $f = \max_e |S:e \in S|$.

Feasibility: at least one set per element has $x_S^* \geq 1/f$.

Cost bound: $cost(x) \leq f \cdot cost(x^*) \leq f \cdot OPT$.

3.6 Example: Dominating Set LP Rounding

Each constraint involves at most $\Delta+1$ vertices (neighbors + itself).

Threshold:

$$t = rac{1}{\Delta + 1}$$

Feasibility: if all were smaller than $1/(\Delta+1)$, the sum < 1 — contradiction.

Cost bound: $x_v \leq (\Delta+1)y_v^* o (\Delta+1)$ -approximation.

3.7 Rounding Summary Table

Problem	Constraint size	Threshold	Approx. Ratio
Vertex Cover	2	1/2	2
Set Cover	f	1/f	f
Dominating Set	Δ+1	1/(Δ+1)	Δ+1

4. Primal–Dual Method

4.1 Weak Duality Theorem

For any feasible primal (P) and dual (D):

$$value(D) \le value(P)$$
.

This allows proving approximation ratios by comparing primal and dual costs.

4.2 Complementary Slackness (qualitative)

- If a primal constraint is *tight*, the corresponding dual variable can be > 0.
- If a dual constraint is *tight*, the corresponding primal variable can be > 0.

Used in designing primal-dual algorithms.

4.3 Primal-Dual Algorithm Structure

Step	Description
1	Write LP and its dual
2	Start with all dual vars = 0
3	Repeatedly increase some dual vars until a constraint becomes tight
4	Add corresponding primal variable (edge/vertex) to solution
5	Stop when all primal constraints are satisfied
6	Use degree/counting argument to show bounded ratio

4.4 Example 1 — Vertex Cover (Weighted)

Primal (LP):

$$\min \sum_v w_v x_v \quad ext{s.t. } x_u + x_v \geq 1, orall (u,v) \in E, \quad x_v \geq 0.$$

Dual:

$$\max \sum_{(u,v) \in E} y_{uv} \quad ext{s.t.} \ \sum_{(u,v) \in E(i)} y_{uv} \leq w_i, orall i, \quad y_{uv} \geq 0.$$

Algorithm:

- 1. Initialize $y_{uv}=0$, $C=\emptyset$.
- 2. Raise y_{uv} on uncovered edges until some vertex v becomes **tight** $(\sum y_{uv} = w_v)$.
- 3. Add v to C.
- 4. Stop when all edges are covered.

Analysis:

- Each chosen vertex tight o cost $(C) = \sum w_v = \sum_v w_v \leq 2 \sum_{(u,v)} y_{uv} \leq 2 OPT$.
 - **2**-approximation.

4.5 Example 2 — Edge Cover (Weighted)

Primal (P):

$$\min \sum_{e \in E} w_e x_e \quad ext{s.t.} \ \sum_{e \in \delta(v)} x_e \geq 1, orall v, \quad x_e \geq 0.$$

Dual (D):

$$\max \sum_{v \in V} y_v \quad ext{s.t.} \ y_u + y_v \leq w_{uv}, orall (u,v) \in E, \quad y_v \geq 0.$$

Algorithm

- 1. Initialize $y_v=0$, $C=\emptyset$, all vertices uncovered.
- 2. While some vertex v uncovered:
 - Increase y_v until some incident edge (v,u) becomes **tight** $(y_v+y_u=w_{uv})$.
 - Add (v, u) to C and mark v, u covered.

Feasibility

Each step covers both v and u.

Loop stops when all vertices are covered \rightarrow valid edge cover.

Approximation ratio

Every chosen edge (u, v) is tight:

$$w_{uv} = y_u + y_v$$

Algorithm cost:

$$ALG = \sum_{(u,v) \in C} w_{uv} = \sum_v \deg_C(v) y_v$$

Each vertex appears in ≤ 2 chosen edges $\Rightarrow \deg_C(v) \leq 2$:

$$ALG \leq 2\sum_v y_v \leq 2OPT$$

2-approximation

4.6 General Primal-Dual Pattern

Step	Concept	Example
Raise duals	Increase "prices" on uncovered requirements	uncovered vertex in Edge Cover
Tight constraints	When equality reached, add primal variable	edge (u,v) becomes tight
Stop condition	All primal constraints satisfied	every vertex covered
Approximation	Counting argument on degrees	each vertex counted ≤2

(B)

5. Approximation Schemes

Туре	Definition Example		
Constant-factor	Fixed ρ (e.g., 2, f)	Vertex Cover (2), Set Cover (f)	
Logarithmic	Ratio grows with input size	Set Cover $O(\log n)$	
PTAS	For every $arepsilon>0$, polytime for fixed $arepsilon$	Knapsack	
FPTAS	Polytime in both input size and $1/arepsilon$	Bounded Knapsack	

Key properties

- **PTAS:** time = poly(n) for fixed ε .
- **FPTAS:** time = $poly(n, 1/\varepsilon)$.
- Weak duality always underlies primal-dual correctness.
- Complementary slackness guides when to stop raising duals.

Reduction

• A problem X is reducible to a problem Y if an algorithm for solving Y can be used to solve X.

Notation:

 $X \le P Y$ - means "X is polynomial-time reducible to Y".

iF $X \leq P Y$, then Y is at least as hard as X.

We want to show:

HAM-CYCLE \leq_P TSP.

That means:

"If we can solve TSP, we can also solve HAM-CYCLE."

The Perfect Solution (L*)

- Must be at least the size of the biggest single job.
- Must be at least the average load across all machines.

Aproximization ratio

Problem Type	Ratio Definition	Goal of Proof		
Minimization (e.g., Load Balancing, Vertex Cover)	· ·	Prove V is less than or equal to rho times V* 2 .		
Maximization (e.g., Subset-Sum, Knapsack)	V* / V is less than or equal to a constant rho 3.	Prove V* is less than or equal to rho times V 3.		
The challenge is proving this relationship without knowing V* 4. We do this by finding lower bounds for V* and upper bounds for V 2.				

The core goal is to prove that the value of the solution found by an algorithm (V) is "close" to the value of the optimal solution (V^*) .

Standard Strategy for Minimization Problems:

- 1. Find a Lower Bound for V*: Identify properties that V* must satisfy, such as the maximum job size or the average load.
 - Example (Load Balancing): V* is greater than or equal to the total load divided by the number of machines (the average load).
- 2. Find an Upper Bound for V: Analyze the greedy algorithm's structure to prove V is bounded by V* plus some extra terms.
- 3. Combine the Bounds: Use the lower bounds for V* to relate the "extra terms" in the V inequality back to V* itself.

Greedy

Load Balancing - decision NP-complete problem

• Problem: Assign n jobs to m machines to minimize the maximum load on any machine.

Input: m machines, n jobs. Each job j has a processing time t j.

Constraints:

- Each job runs contiguously on one machine.
- Each machine processes one job at a time.

Notation:

- Ji set of jobs assigned to machine i.
- Li load on machine i = sum of processing times of jobs in Ji.
- L = max(Li) makespan (maximum load across all machines).

Two always-true lower bounds for the optimal makespan L*:

- 1. L* \geq max(t_j) for all jobs j (the makespan must be at least as large as the longest job).
- 2. L* ≥ total load / m (the makespan must be at least the average load per machine).
- Goal: Minimize the makespan L.

Ex. 1 CONJUNTO 1

Convert to an approximation ratio using the given totals

Divide both sides by L^* (note $L^* > 0$):

$$\frac{L}{L^*} \leq 1 + \frac{50}{L^*}.$$

But we already proved $L^* \geq 300$. Hence

$$rac{L}{L^*} \, \leq \, 1 + rac{50}{300} \, = \, 1 + rac{1}{6} \, = \, 1.166\overline{6} \, < \, 1.17.$$

Finally, recall the average load $A=rac{1}{10}\sum t_j \leq L^*$ (OPT can never be **below** the average). So

$$L < 1.17 \cdot L^* < 1.17 \cdot A.$$

Conclusion: On these restricted instances, greedyLB1 's makespan is always less than 17% above the average load.

Exam checklist to reproduce:

- 1. "State LB: $L^* \geq \max t_j$ and $L^* \geq rac{1}{10} \sum t_j$."
- 2. "State List Scheduling fact: $L \leq L^* + t_k$."
- 3. "Use $t_k \leq 50$ and $L^* \geq 300$ to get ratio < 1.17."
- 4. "Relate to average: $A \leq L^* \Rightarrow L < 1.17\, A_{\downarrow\downarrow}$ "

Vertex Cover Greedy (ex 2 CONJUNTO 1)

(a) greedyVC1

- Algorithm: For each uncovered edge (u,v), add one endpoint (e.g. u) to the cover.
- Problem: Can pick many unnecessary vertices depending on tie-breaking or order.
- Counterexample:

Star graph — center C connected to n leaves.

```
OPT = {C}, size = 1
```

- Algorithm may pick all leaves → size = n
- Ratio = n / 1 → unbounded
- Conclusion: Not a ρ-approximation for any constant ρ (ratio unbounded).
- greedyVC1 is not a ρ-approximation algorithm for any constant ρ, because in some graphs (like a star), it can produce arbitrarily worse results than optimal.

(b) greedyVC2

```
greedyVC2((V,E)):
    cover = Ø
    for each v in V: inCover[v] = false

for each (v,w) in E:
    if not inCover[v] and not inCover[w]:
        cover.add(v); inCover[v] = true
        cover.add(w); inCover[w] = true

return cover
```

- Algorithm: For each uncovered edge (u,v), add both endpoints u and v to the cover.
- Feasibility: Always covers all edges (any uncovered edge triggers both endpoints).
- Key idea:

Let **M** = set of edges that caused both endpoints to be added.

- M is a matching (no shared vertices).
- Any vertex cover must include ≥ 1 vertex per edge in M → |OPT| ≥ |M|.
- Algorithm adds 2 vertices per edge in M → |ALG| = 2|M|.
 ⇒ |ALG| ≤ 2 × |OPT|.
- Conclusion: greedyVC2 is a 2-approximation algorithm.

LP Rounding (Bending the rules)

- Hard Problem (IP Integer Programming) Choices must be 0 or 1 (eg. vertex is not/is in the cover)
- Easier Problem(LP Linear Programming) Choices can be any value in a range (eg. vertex can be 0.2 in the cover)

We solve the LP, then round the values to get an approximate solution to the IP.

Step:

- 1. Formulate the problem as a precise Integer Program (IP)
- 2. Relax into a Linear Program (LP) by allowing variables to take on fractional values.
- 3. Solve efficiently to find the optimal fractional solution.
- 4. Round the fractional solution to get an approximate solution to the original IP.

Goal	What you must show	Why it's true
1 Feasibility	The rounded solution covers everything	Because LP constraints guarantee some variable in each constraint was large enough (≥ threshold)
2 Approximation factor	Cost of rounded ≤ ρ × OPT	Because each rounded variable ≤ ρ × its fractional value, and fractional OPT ≤ true OPT

Symbol	Meaning		
(x_i)	decision variable for item i		
(x_i^*)	fractional value from the LP		
(x'_i)	rounded (integer) value		
(w_i)	weight / cost of item i		
(OPT)	optimal true (integer) cost		
(w(x))	total cost = $\sum w_i x_i$		
(ρ)	approximation ratio (2 for VC, f for SC)		

Problem 1 — Maximum Subset-Sum (MSS) CONJUNTO 2

You're given positive integers $P=\{x_1,\dots,x_n\}$ and a capacity M (assume each $x_i\leq M$). Goal: pick a subset with **maximum** sum $\leq M$. adAlg-problems02

1(a) greedySS1 — "scan once, add if it fits"

1(b) greedyss2 — "stop at first overflow, compare with the culprit"

1(b) greedySS2 — "stop at first overflow, compare with the culprit" text Copy code $X = \emptyset$; s = 0for i=1..n: if $s + x_i \le M$: add x_i ; $s += x_i$ else: if s ≥ x_i: return X else: return {x_i} return X Claim: greedySS2 is a 2-approximation. adAlg-problems02 **Key idea (one-line)**: Let k be the first index where $s+x_k>M$. Then $M < s + x_k \Rightarrow \max\{s, x_k\} \geq rac{s + x_k}{2} > rac{M}{2}.$ greedySS2 returns exactly $\max\{s,x_k\}$, so its value v>M/2. The optimal value $v^*\leq M$. Therefore $rac{v^*}{v} \leq rac{M}{M/2} = 2.$ Edge case: if no overflow ever occurs, the algorithm takes **all** items (total $\leq M$), which is optimal.

Why this guarantees 2-approx (the one-line insight)

At the first overflow,

$$|s+x_k>M \quad \Rightarrow \quad \max\{s,x_k\} \ \geq \ rac{s+x_k}{2} \ > \ rac{M}{2}.$$

Picture it: draw two bars of lengths s and x_k .

Their combined length already passes M.

So one of them must be longer than M/2.

That "longer bar" is exactly what the algorithm returns.

Since any feasible solution is $\leq M$, the optimal value $v^* \leq M$.

Your value $v=\max\{s,x_k\}>M/2$.

Therefore

$$\frac{v^*}{v} \leq \frac{M}{M/2} = 2.$$

Problem 2 — Packing containers into trucks of capacity (C)

We must minimize the number of trucks. Greedy rule from the sheet: fill a truck with items w_1, w_2, ... in order until the next item would overflow C; dispatch that truck; repeat with a fresh truck. All w_i, C are positive integers and w_i <= C.

2(a) Show the greedy may be suboptimal

Counterexample: (C=10), items (in order): (6,6,4,4).

- Greedy:
 - $\quad \text{o Truck1: takes 6; next 6 would overflow} \rightarrow \text{dispatch} \rightarrow \text{load = 6}.$
 - Truck2: takes 6; next 4 would overflow → dispatch → load = 6.
 - $\circ~$ Truck3: takes 4; next 4 fits? yes \rightarrow Truck3=8 \rightarrow dispatch.

Total trucks = 3.

OPT: pack (6+4) and (6+4) → 2 trucks.

So greedy isn't optimal.

2(b) Prove the greedy is a 2-approximation

we need to prove $A \le 2$ OPT.

load(2i-1)+load(2i)>(C-x)+x=C.

So every complete pair carries more than C in total.

Let:

- A = #trucks used by the greedy,
- T^* = optimum #trucks,
- $W=\sum_i w_i$ = total weight.

Lower bound on OPT: $T^* \geq \left\lceil \frac{W}{C} \right
ceil$. (You must carry W weight with capacity C per truck.)

Pairing trick (hint from sheet): Consider trucks in the greedy solution by consecutive pairs: (Truck 1, Truck 2), (Truck 3, Truck 4), ...

- Every truck except possibly the last is **closed** exactly when the next item doesn't fit. That means: if the first truck of a pair is closed just before placing some item x, then its load > C - x. When we include the second truck's load (which **does** take x), the pair's total load > C.
- Therefore, each full pair carries more than C.

Now split by parity of A:

If A is even: there are A/2 full pairs, so

$$W > (A/2)\,C \ \Rightarrow \ A < 2\,rac{W}{C}.$$
 Hence $A \leq 2\,\left\lceilrac{W}{C}
ight
ceil \leq 2T^*.$

If A is odd: there are $\lfloor A/2 \rfloor$ full pairs > C each, plus a last truck with load > 0.

Thus
$$W>\lfloor A/2\rfloor C\Rightarrow A\leq 2\,rac{W}{C}+1$$
.

Using integers/
$$\lceil \cdot
ceil$$
, you still get $A \leq 2 \left \lceil \frac{W}{C}
ight
ceil \leq 2T^*$.

So in all cases, the greedy uses at most twice the optimal number of trucks.

Case 1 — A is even

There are exactly $A/\mathbf{2}$ full pairs.

Each pair carries > C.

So the total weight

$$W > \frac{A}{2}C.$$

Rearrange:

$$A < 2 \frac{W}{C}$$
.

Use the lower bound on OPT:

$$\frac{W}{C} \leq \left\lceil \frac{W}{C} \right\rceil \leq \text{OPT},$$

thus

$$A \, \leq \, 2 \, \left\lceil rac{W}{C}
ight
ceil \, \leq \, 2 \, ext{OPT}.$$

(We moved from "<" to "≤" cleanly by integer rounding; that's fine for an approximation bound.)

Case 2 — A is odd

There are $\lfloor A/2
floor$ full pairs, plus one last, **possibly light**, unpaired truck.

- Each of the |A/2| pairs carries > C.
- The last truck carries > 0 (otherwise we wouldn't have opened it).

Hence

$$W > \left\lfloor \frac{A}{2} \right\rfloor C.$$

That implies

$$\left\lfloor \frac{A}{2} \right\rfloor < \frac{W}{C} \implies A \leq 2 \frac{W}{C} + 1.$$

Again compare to OPT:

$$A \leq 2 \left\lceil rac{W}{C}
ight
ceil \leq 2 \, ext{OPT}.$$

So in both cases (even or odd A) we conclude $A \leq 2$ OPT.

CONJUNTO 3 - Minimum Dominating Set with LP Rounding

Problem: Minimum Dominating Set (MDS)

A **dominating set** $D\subseteq V$ satisfies: every vertex is either in D or has a neighbor in D.

Equivalently, for each $u \in V$, at least one vertex in its **closed neighborhood** $N[u] = \{u\} \cup N(u)$ is chosen. adAlg-problems03

Let Δ be the **maximum degree** of the graph.

Definition

For any vertex v, its **degree** is the number of edges connected to it — that is, how many neighbors it has.

Formally:

$$\deg(v) = |N(v)|$$

where N(v) is the set of neighbors of vertex v.

Then:

$$\Delta = \max_{v \in V} \deg(v)$$

is the **maximum degree** in the entire graph — the largest number of neighbors that any single vertex has.

(a) Integer Program (IP)

- Variables: one binary variable per vertex $x_v \in \{0,1\}$ meaning "pick vertex v" (1) or not (0).
- Constraints: for each vertex u, someone in N[u] must be picked:

$$\sum_{v \in N[u]} x_v \ \geq \ 1 \qquad orall u \in V.$$

• Objective (unweighted MDS): minimize set size

$$\min \sum_{v \in V} x_v.$$

This is exactly the domination requirement translated into constraints.

adAlg-problems0

(b) Linear Program (LP)

Relax integrality to get a solvable LP:

$$egin{aligned} \min & \sum_{v \in V} y_v \ & ext{s.t.} & \sum_{v \in N[u]} y_v \geq 1 \quad orall u \in V, \ & y_v \geq 0 \quad orall v \in V. \end{aligned}$$

(c) Relation between optimal IP and LP values

Let x^* be optimal for (IP), y^* optimal for (LP). Because (LP) is a relaxation (fewer restrictions),

$$oxed{\sum_v y_v^* \ \leq \ \sum_v x_v^*} \quad ext{i.e., LPopt} \leq ext{OPT}.$$

(This is the standard "LP is a lower bound" fact you've been using in earlier LP-rounding proofs.

Sure! Here's that entire section rewritten so you can **copy-paste directly into your .md file**. It uses \$...\$ and \$\$...\$\$ for math formulas so it renders correctly in Markdown viewers that support LaTeX (VS Code + Markdown Preview Enhanced, Obsidian, Jupyter, etc.).

(d) Feasibility of (LP): how to think

What the LP says

Variables $y_v \geq 0$.

For every vertex u, the **closed neighborhood** N[u] (itself + its neighbors) must carry total mass at least 1:

$$\sum_{v \in N[u]} y_v \geq 1 \quad orall u. \quad ext{(LP constraints)}$$

Your job is **not** to solve the LP — just to prove **there exists at least one** assignment satisfying all these inequalities.

If one exists, the LP is feasible.

Thought process

- Start from the constraints: each is "sum over some set of variables ≥ 1".
- Easiest way to show feasibility is to exhibit a trivial solution that satisfies every constraint.
- ullet Here, the trivial assignment $y_v=1$ for all v works because every N[u] has at least one vertex, so the sum is $|N[u]|\geq 1$.

What to write

Set $y_v = 1$ for all v.

Then $y_v \geq 0$ and, for each u,

$$\sum_{v\in N[u]} y_v = |N[u]| \geq 1.$$

Hence the LP is feasible.

General recipe (for exams)

- 1. Look at each LP constraint's **shape** (sum over a small set ≥ 1).
- 2. Plug a uniform assignment (all ones, or a small constant) and check it satisfies all constraints.
- 3. Conclude: "Therefore, the feasible region is non-empty \rightarrow LP feasible."

(e) Boundedness of (LP): how to think

What "bounded" means

In a minimization LP, "bounded" means the objective can't go to $-\infty$.

You just need a finite lower bound.

Thought process

- Objective is $\min \sum_v y_v$.
- All y_v are constrained to be **nonnegative**.
- Therefore $\sum_v y_v \geq 0$ for every feasible y. That's a valid finite lower bound \Rightarrow the LP is bounded.

What to write

All variables $y_v \geq 0$ and the objective has nonnegative coefficients, so $\sum_v y_v \geq 0$ for every feasible y. Hence the LP is bounded below.

General recipe (for exams)

- 1. Check signs: if variables ≥ 0 and objective coefficients ≥ 0 , then **objective** ≥ 0 .
- 2. Say: "So it can't go to $-\infty$, LP is bounded."

(f)

Why the threshold is $1/(\Delta+1)$

Step 1 — What the rounding threshold must do

When we round the LP solution y^* into integers $x \in 0, 1$, we need two things:

- 1. Feasibility: after rounding, all constraints must still hold.
- 2. Small cost: rounding shouldn't multiply the cost by too much.

To guarantee feasibility, we must choose a threshold t such that:

If every variable in a constraint were below t, the constraint would be violated.

That ensures:

- ullet For every constraint, at least one variable is $\geq t$.
- That variable rounds up to 1.
- The constraint remains satisfied.

 $iggree ext{What's the smallest } t$ that guarantees at least one variable per constraint is $\geq t$?

Step 2 — Look at the LP constraint shape

For each vertex u, the LP constraint is:

$$\sum_{v \in N[u]} y_v^* \geq 1$$

Here N[u] = vertex u and all its neighbors.

Step 3 — How many terms are in each constraint?

Each N[u] contains at most $\Delta+1$ vertices:

- Δ = maximum degree (max number of neighbors)
- +1 = vertex u itself

So:

$$|N[u]| \le \Delta + 1$$

That means each constraint sums at most $\Delta + 1$ nonnegative numbers y_v^* .

Step 4 — The "average" (pigeonhole) argument

The LP constraint says:

$$\sum_{v \in N[u]} y_v^* \geq 1$$

If you have at most $\Delta+1$ nonnegative numbers whose sum ≥ 1 , then at least one of them must be $\geq 1/(\Delta+1)$.

Otherwise, if all were smaller than $1/(\Delta+1)$, their sum would be

$$<(\Delta+1) imesrac{1}{\Delta+1}=1$$

which violates the constraint.

That's the key idea:

"To reach a total \geq 1 with at most $\Delta+1$ values, at least one must be $\geq 1/(\Delta+1)$."

Step 5 — Choose threshold $t=1/(\Delta+1)$

We pick this threshold so that:

- ullet For every vertex u, at least one y^*_v in N[u] is $\geq t$.
- That v will round to 1.
- Therefore every vertex u is covered (dominated).

This guarantees **feasibility** of the rounded solution.

Step 6 — Why not use another threshold?

- If you use something **bigger** (e.g., $1/\Delta$), some constraints could fail their total could still be \geq 1 even though all values are below that higher threshold.
- If you use something **smaller** (e.g., $1/(2\Delta)$), the rounding would still be feasible but you'd pick more vertices, worsening the approximation ratio.

So $1/(\Delta+1)$ is the **tightest safe threshold**:

small enough to guarantee feasibility, large enough to minimize cost.

Step 7 — How this gives the $(\Delta+1)$ factor

Once we round using threshold t=1/f with $f=\Delta+1$, each rounded variable satisfies

$$x_v \leq f \cdot y_v^*$$

which means rounding can multiply the total cost by at most f.

That's where the $(\Delta+1)$ factor in the approximation ratio comes from.

General reasoning template

Whenever you see a constraint of the form:

$$\sum_{i \in S} y_i^* \geq 1$$

- 1. Count how many variables appear in the constraint ightarrow f = |S|.
- 2. Use the averaging argument:

```
If all were < 1/f, their sum < 1 — contradiction.
```

- 3. So at least one variable per constraint is $\geq 1/f$.
- 4. Round using threshold $1/f \rightarrow$ guarantees feasibility.
- 5. Rounding up multiplies cost by at most f.
- 6. Hence the algorithm is an f-approximation.

In summary

For the Dominating Set LP:

- Each constraint involves $\leq \Delta + 1$ variables.
- Pick threshold $t=1/(\Delta+1)$.
- Ensures at least one variable per constraint rounds to 1 (feasible).
- Rounding inflates total cost by $\leq \Delta + 1$.
- \Rightarrow $(\Delta + 1)$ -approximation.

Core intuition:

"Each constraint has ≤ f numbers that must sum to 1.

So one of them must be $\geq 1/f$.

Pick those $\geq 1/f \rightarrow$ feasibility and cost blow-up $\leq f$."

Primal-Dual method

• Every optimization problem (Primal) can be associated with another optimization problem (Dual).

For vertex cover:

Primal (cheapest set of vertices to pick)

Dual (Pricing problem, how high can we raise the prices of edges so that the total price paid by vertices is minimized)

The Price is Right

- Start with zero price on all edges.
- Find an uncovered edge.
- · Raise its price until a vertex becomes "tight".
- Add the tight vertex to the cover.
- Repeat until all edges are covered.

CONJUNTO 4 - Primal-Dual Minimum Weighted Edge Cover

Problem description

- Input: an undirected graph G=(V,E) with edge weights $w_e\geq 0$.
- Goal: choose a set of edges $C \subseteq E$ such that **every vertex** is incident to at least one edge in C, minimizing the total weight

$$w(C) = \sum_{e \in C} w_e.$$

(a) Integer Program (IP)

Let

$$x_e = \Big\{1, \quad \text{if edge e is chosen}, 0, \text{ otherwise.} \Big\}$$

Every vertex v must have at least one chosen incident edge ($\delta(v)$ = edges incident to v):

$$\sum_{e \in \delta(v)} x_e \geq 1 \qquad orall v \in V.$$

Objective:

$$\min \sum_{e \in E} w_e x_e.$$

So the full IP is

$$\min \quad \sum_{e \in E} w_e x_e ext{ s.t. } \qquad \sum_{e \in \delta(v)} x_e \geq 1 \quad orall v \in V, \quad x_e \in 0, 1 \quad orall e \in E.$$

(b) LP Relaxation (primal P)

Relax $x_e \in 0, 1$ to $x_e \geq 0$:

$$ext{(P)} \quad \min \quad \sum_{e \in E} w_e x_e ext{ s.t.} \qquad \sum_{e \in \delta(v)} x_e \geq 1 \quad orall v \in V, \quad x_e \geq 0 \quad orall e \in E.$$

This LP can be solved efficiently, but the solution might be fractional.

(c) Dual LP (D)

Each vertex constraint produces a dual variable $y_v \geq 0$.

Each edge (u,v) appears in the two constraints for u and v.

Hence the dual is:

$$ext{(D)} \quad ext{max} \quad \sum_{v \in V} y_v ext{ s.t.} \qquad y_u + y_v \leq w_{uv} \quad orall (u,v) \in E, \quad y_v \geq 0 \quad orall v \in V.$$

Intuition:

each vertex v pays a "price" y_v to be covered;

an edge (u,v) can only be "paid for" if the combined prices of u and v don't exceed its cost w_{uv} .

(d) Primal-Dual Algorithm

Idea:

start with all vertices uncovered and $y_v=0$.

Repeatedly raise y_v for an uncovered vertex until some incident edge becomes **tight** ($y_u + y_v = w_{uv}$), then select that edge and mark both endpoints covered.

```
primalDualEdgeCover(G=(V,E), w):
    y[v] = 0 for all v
    covered[v] = false for all v
    C = \emptyset
    while exists v with covered[v] = false:
        // raise y[v] until some incident edge (v,u) becomes tight
        Δ = +∞
        for each u with (v,u) in E:
             \Delta = \min(\Delta, w(v,u) - (y[v] + y[u]))
        y[v] = y[v] + \Delta
        // choose one tight edge
        choose u with (v,u) tight // y[v]+y[u] = w(v,u)
        C = C \cup \{(v,u)\}
        covered[v] = true
        covered[u] = true
    return C
```

(Tie-breaking rule: if possible, choose u that is uncovered — used in the ratio proof.)

(e) Time complexity

- Each iteration covers at least one new vertex \rightarrow \leq |V| iterations.
- For vertex v, computing Δ scans its adjacency $\delta(v) \rightarrow$ overall O(|E|).
- Bookkeeping is O(|V| + |E|).

Total: O(|V| + |E|) time.

(f) Feasibility of the output

Each iteration covers at least the vertex v we raised (and its neighbor u). Loop stops only when all vertices are covered.

Therefore, every vertex is incident to some edge in $C \to C$ is an **edge cover**.

(g) Approximation Ratio (2-approx)

Step 1 — Each chosen edge is tight

At selection time (u, v):

$$w_{uv} = y_u + y_v$$
.

Total algorithm cost:

$$ext{ALG} = \sum_{(u,v) \in C} w_{uv} = \sum_{(u,v) \in C} (y_u + y_v) = \sum_{v \in V} \deg_C(v), y_v,$$

where $\deg_C(v)$ = number of chosen edges incident to v.

Step 2 — Each y_v counted at most twice

- When v is first covered, we add one tight $\mathrm{edge} \to \mathrm{deg}_C(v) = 1.$
- ullet Later, v may appear once more as the ${\it already-covered}$ neighbor of another vertex.
- ullet We always prefer uncovered neighbors $ightarrow \deg_C(v) \leq 2$ for every v .

Step 3 — Bounding the total cost

$$ext{ALG} = \sum_v \deg_C(v), y_v \leq 2 \sum_v y_v.$$

Step 4 — Relate dual to OPT

By **weak duality**, for any feasible y, $\sum_v y_v \leq \mathrm{OPT}$.

Therefore,

$$ext{ALG} \leq 2 \sum_v y_v \leq 2, ext{OPT} \ .$$

The algorithm is a 2-approximation.

Summary table

Concept	Expression / Explanation				
IP	$\min \sum_e w_e x_e$ s.t. $\sum_{e \in \delta(v)} x_e \geq 1$, $x_e \in 0, 1$				
Primal (P)	Relax $x_e \geq 0$				
Dual (D)	$\max \sum_v y_v$ s.t. $y_u + y_v \leq w_{uv}, y_v \geq 0$				
Algorithm	Raise y_v for uncovered v until a tight edge (v,u) forms; add (v,u) ; mark u,v covered				
Feasible	Loop ends when all vertices covered $ ightarrow$ edge cover				
Cost bound	$ ext{ALG} = \sum_v \deg_C(v) y_v \leq 2 \sum_v y_v \leq 2 ext{OPT}$				
Approximation	2-approximation				
Complexity	\$O(V	+	Е)\$

Core intuition

- · Start with all vertices uncovered.
- ullet Raise their "prices" y_v until some edge becomes tight o select that edge.
- Each vertex's price appears in at most two selected edges \rightarrow factor 2.
- Weak duality gives $\sum_v y_v \leq ext{OPT} o ext{total cost} \leq ext{2} imes ext{OPT}.$
- lacksquare Result: the primal–dual algorithm for MEC runs in O(|V|+|E|) and is a **2-approximation**.