TELE303 Mobile Systems Lecture 6 – Medium Access Control

Jeremiah Deng TELE Programme / InfoSci University of Otago, 2016

PN Sequences

- PN generator produces periodic sequence that appears to be random
- PN Sequences
 - o Generated by an algorithm using initial seed
 - Sequence isn't truly random but will pass many test of randomness
 - Sequences referred to as pseudorandom numbers or pseudonoise sequences
 - Unless algorithm and seed are known, the sequence is impractical to predict

Multiple Access Techniques

Definitions

- Correlation of two arrays: $Corr(A,B) = \frac{1}{N} \sum_{i=1}^{N} A_i B_i$ • Measures the similarity between the two
 - o Range between -1 and 1
 - 1: the two are a perfect match
 - 0: they are orthogonal
 - -1: they are mirror images
- Autocorrelation: comparison between a sequence and its shifted copy
- Cross correlation: the comparison between two sequences from different sources

Important PN Properties – cont.

- Autocorrelation: when a period of sequence compared with any cycle shift of itself, difference between number of same numbers and number of different numbers is at most 1.
- Cross correlation
 - Cross correlation between a PN sequence and noise should be low.
 - Cross correlation between two different PN sequences should be low.

Linear Feedback Shift Register

 PN generator can be implemented as a circuit consisting of XOR gates and a shift register (LFSR).

- A simple example: $B_3 = B_0 \oplus B_1$
- LFSR contains n bits.
- LFSR output is periodic with a maximum period of $N = 2^n-1$.

Example with initial state of '1000'							
	State	\mathbf{B}_3	$\mathbf{B_2}$	\mathbf{B}_1	\mathbf{B}_{0}	$B_0 \oplus B_1$	Output
	Init.=0	1	0	0	0	0	0
	1	0	1	0	0	0	0
	2	0	0	1	0	1	0
	3	1	0	0	1	1	1
	4	1	0	0	0	0	0
	13	0	0	1	1	0	1
	14	0	0	0	1	1	1
	15	1	0	0	0	0	0

M-Sequences

- Feedback configuration can be found for PN codes generated by LFSR to have the maximal period of N.
- The resulting sequences are called Maximallength sequences, or M-sequences.
- Important in enabling synchronisation by the receiver and in FHSS and DSSS use.

- © The cross correlation between an msequence and noise is low
 - o Useful to the receiver in filtering out noise
- © The cross correlation between two different m-sequences is low
 - Useful for CDMA applications
 - Enables a receiver to discriminate among spread spectrum signals generated by different msequences

Auto-correlation

 M-Sequences have good auto-correlation properties that allow for easy synchronization.

Figure 7.15 PN Autocorrelation Function

Orthogonal Codes

- Orthogonal codes
 - o All pairwise cross correlations are zero
 - Fixed- and variable-length codes used in CDMA systems
 - For CDMA application, each mobile user uses one sequence in the set as a spreading code
 - Provides zero cross correlation among all users
- Types
 - Walsh codes
 - o Variable-Length Orthogonal codes

10

Walsh Codes

- Set of Walsh codes of length n consists of n rows of a Walsh-Hadamard matrix.
- Take bipolar values (1 and -1).
- Every row is orthogonal to every other row and to the logical NOT of every other row
- ⊗ Requires tight synchronization
 - Correlation between different shifts of the Walsh sequences is **not** zero.

FDMA

- Frequency-division multiple access
- Originally proposed for point-to-point systems, each pair operating on a specific channel
- Sometimes a different channel is assigned for each direction of transmission.
- Each user signal must be confined to the assigned channel to reduce interference.

FDMA: Pros and Cons

Pros

- Capacity can scale (lower bit rate and efficient speech encoding scheme)
- Device implementation simple

Cons

- Capacity scaling depends on lower SNR
- Fixed bit rate
- Inefficient use of spectrum: idle band means waste; guard bands needed
- Crosstalk between channels possible

TDMA

- Time-division multiple access
- Originally designed for point-to-multipoint systems
- Modern digital systems later appeared with more complex and efficient sharing strategies
- Suited for data application

TDMA: Pros and Cons

- Pros
 - o Permits flexible bit rate
 - o Enables frame-by-frame monitoring (error control; handoffs)
 - More efficient spectrum utilization and no need for guard bands

- Cons
 - o Requires substantial amount of DSP
 - o Guard time between time slots need to be sufficiently long to cope with delay variance
 - More power consumption
 - Strong synchronization requirements

13

CDMA

- · Code-division multiple access
- Spread spectrum techniques (Frequency Hopping and Direct Sequence) are developed to improve the reuse of channel frequencies.
- ® Receiver complexity; power control necessary.
- Cellular system gives another good example.
 - Cells use/reuse channels allocated on a hexagonal pattern.
 - o Within a cell, FDMA or TDMA can be used.
 - o User Terminals can roam between cells.

Example of A Cellular System

- Hexagonal cellular architecture with a cluster size of 7.
- Clusters have the same frequency reuse pattern.
- Co-channel cells are two cells apart.

Other Medium Access Techniques

- i.e., without channel partitioning
- Useful especially in LAN environments
- Take-turns
 - o e.g., polling, token passing
- Random Access
 - o ALOHA
 - o Slotted ALOHA
 - o CSMA/CD

ALOHA/Slotted ALOHA

- Random, distributed time-division multiplexing
- Slotted Aloha additionally uses time-slots, sending must always start at slot boundaries
- Channel efficiency reaches only 0.36 for slotted ALOHA

Reserved ALOHA

- Explicit reservation
- Competition for small reservation slots
 - o Collisions possible
- Reserved mode for data transmission within successful reserved slots (no collisions possible)
- All stations keep the reservation list consistent
- All stations must synchronize from time to time

PRMA

- Packet Reservation MA (implicit reservation)
- Stations compete for empty slots according to the slotted ALOHA principle
- Once a station reserves a slot successfully, this slot is automatically assigned to this station in all following frames as long as the station has data to send
- Competition for this slots starts again as soon as the slot was empty in the last frame

CSMA-CD

- Carrier Sense Multiple Access with Collision Detection
- Procedure
 - o Listen to medium and wait until it is free
 - Then start talking, but listen to see if someone else starts talking too
 - If a collision occurs, stop and then start talking after a random back-off time
- This scheme is used for hub-based Ethernet
- Requires ability to detect collisions

Physical Carrier Sense Mechanisms

- Energy detection threshold
 - Monitors channel during "idle" times between packets to measure the noise floor
 - Energy levels above the this noise floor by a threshold trigger carrier sense
- DSSS correlation threshold
 - Monitors the channel for Direct Sequence Spread Spectrum (DSSS) coded signal
 - Triggers carrier sense if the correlation peak is above a threshold
 - More sensitive than energy detection

MACA

- Multiple Access with collision avoidance: use short signaling packets
 - Request (or ready) to send RTS: a sender requests the right to send from a receiver with a short RTS packet before it sends a data packet
 - Clear to send CTS: the receiver grants the right to send as soon as it is ready to receive
- Signaling packets contain
 - o sender address
 - o receiver address
 - packet size
- Example: Wireless LAN (802.11)

25

CSMA-CA

- Carrier Sense Multiple Access with Collision Avoidance
- Adopted in 802.11 WLAN
- Procedure
 - o Similar to CSMA/CD
 - o Four-frame exchange
 - RTS = request to send
 - CTS = clear to send
 - DATA = actual packet
 - ACK = acknowledgement

Hidden Terminal Problem

- A talks to B
- C does not hear A's transmission (out of range)
- C talks to B
- Signals from A and B collide

Hidden Terminal: A Solution

- Medium Access with Collision Avoidance (MACA)
 - o A sends RTS (Request To Send)
 - o B sends CTS (Clear To Send)
 - C overheads CTS
 - o C inhibits its own transmitter
 - o A successfully sends DATA to B
- Similar protocol adopted in IEEE 802.11 standards

MAC in IEEE 802.11

- Reliable data delivery based on 4-frame exchange
- Distributed Coordination Function (DCF)
 - o Wait for IFS (interframe space) if channel idle (IFS can be DIFS, PIFS, or SIFS)
 - o Transmit if still idle.
 - o Otherwise wait for IFS; if idle now, exponential backoff then transmit.
 - o Unsuccessful transmission indicated by lack of ACK

Virtual Carrier Sense

- Provided by RTS & CTS
- Designed to protect against hidden terminal collisions
- Small control frames lessen the cost of collisions (when data is large)
- FEC on control frames is beneficial
- More on 802.11 DCF (Distributed Coordination Function):
 - o Wi-Fi Lecture; Stallings Chapter 14

Exposed Terminal Problem

- Hidden terminal is not the only challenge for a distributed wireless MAC protocol
- A sends to B. Can C send to D?
 - o "RTS A" heard by B and C
 - o B responds CTS
 - o C unsure what to do

Recap

- · Garg, Chap.6
- Coming next: mobile ad hoc networking

