

# Database Systems Lecture 2

Dr. T. Akilan

takilan@lakeheadu.ca

### Database

- A database system, also called a database management system (DBMS)
- Consists of a collection of interrelated data

- Provides mechanisms
  - o for defining database **structures** and data **storage**;
  - o for **specifying** and **managing** concurrent, shared, or distributed data access;
  - o for ensuring **consistency** and **security** of the information stored despite system crashes or attempts at unauthorized access.

**Database** 

### Database Cont.

- A relational database is a collection of tables, each of which is assigned a unique name.
- Table:
  - o consists of a set of attributes (columns or fields) o stores a large set of tuples (records or rows).
- Tuple represents an object identified by a unique key and described by a set of attribute values.

```
customer (cust_ID, name, address, age, occupation, annual_income, credit_information, category, ...)

item (item_ID, brand, category, type, price, place_made, supplier, cost, ...)

employee (empl_ID, name, category, group, salary, commission, ...)

branch (branch_ID, name, address, ...)

purchases (trans_ID, cust_ID, empl_ID, date, time, method_paid, amount)

items_sold (trans_ID, item_ID, qty)

works_at (empl_ID, branch_ID)
```

**E.g.,** Relational schema for a relational database, *AllElectronics*.

Image: Data Mining: Concepts and Techniques

Relational database 3

### Data Warehouses

• A repository of information collected from multiple sources, stored under a unified schema, and usually residing at a single site.



Image: Data Mining: Concepts and Techniques

### Data Warehouses Cont.

#### • Multidimension:

- O It is a multidimensional data structure, called a data cube.
- Each dimension corresponds to an attribute or a set of attributes in the schema
- o Each cell stores the value of some aggregate measure such as countsum(sales\_amount).
- A data cube provides a **multidimensional view** of data and allows the precomputation and fast access of summarized data.

Data warehouses

### Data Warehouses Cont.

- E.g., the figure shows a multidimensional data cube, commonly used for data warehousing:
  - (a) shows summarized data for *AllElectronics*
  - (b) shows summarized data resulting from drill-down and roll-up operations on the cube in (a)

Note: for improved readability, only some of the cube cell values are shown in the figure.



Image: Data Mining: Concepts and Techniques

### Database vs Data Warehouse

| Parameter            | Database                                                             | Data Warehouse                                             |
|----------------------|----------------------------------------------------------------------|------------------------------------------------------------|
| Purpose              | To perform fundamental operations, like transactional data recording | To analyze historical data, like predicting business trend |
| Processing<br>Method | Online Transactional Processing (OLTP)                               | Online Analytical Processing (OLAP)                        |
| Availability         | Data is available real-time                                          | Data is refreshed from source systems as and when needed   |
| Data Type            | Current - Data stored/captured in the Database is up to date         | Historical (analytical) data. May not be up to date        |
| Query Type           | Simple transaction queries                                           | Complex queries are used for analysis purpose              |
| Abstract<br>Level    | Detailed data is stored in a database                                | It stores highly summarized data                           |

## Data Sources for Knowledge Extraction

- What kind of data can we use?
  - o Relational database, data warehouse, transactional database
  - o Heterogeneous databases and legacy databases
  - O Data streams and sensor data
  - o Data sequences: temporal data, sequences of actions, DNA
  - o Structured data, graphs, social networks and multi-linked data
  - o Spatial data and spatiotemporal data
  - Multimedia databases
  - Text databases
  - o And of course, the World-Wide Web (WWW)

## Knowledge Extraction

• What kind of knowledge (patterns) can we get?



✓ What items are frequently purchased together?

#### ○Association rules

✓ What items frequently lead customers to purchase a second item?



### What kind of knowledge (patterns) can we get? Cont.

Image: Data Mining: Concepts and Techniques

### Clustering

- Group data to form new categories by maximizing intra-class similarity & minimizing interclass similarity
- o Grouping houses into different social neighborhoods



A classification model is represented in the form of a NN

### • Classification (label prediction)

- o A large family of problems, "what type of thing is this?"
- o Find attributes common to items in one class and missing from items in other classes
- o Text classification based on keyword occurrences



A 2-D plot of customer data with respect to customer locations in a city, showing three data clusters.

### What kind of knowledge (patterns) can we get? Cont.

- Regression (numeric prediction)
  - o Models continuous-valued functions.
  - o Predicts missing or unavailable numerical data values rather than (discrete) class labels.
  - o Encompasses the identification of distribution trends based on the available data

#### Sequential patterns

- o From sequential data, trends, time-series
- o Discovering DNA sequences common to specific populations, sequences of commands in program hacking
- o Streams:
  - ✓ Potentially-infinite time sequences to analyze in real-time (video, for instance)

## Data Mining Challenges

- Heterogeneous data
  - O When you build your own database and populate it yourself, all the data is ok
  - o But when you're dealing with a data warehouse...
    - ✓ Different databases with different fields
    - ✓ Legacy databases with outdated information
    - ✓ Noise and missing information
    - ✓ User-submitted information of questionable quality
- Efficient processing
  - o Your algorithm can extract knowledge from an encyclopaedia article in 15 seconds!
  - o There are 4M articles in Wikipedia
  - O It will take 2 years to finish...

Heterogeneous data 12

#### • Outliers:

- O A piece of data that is very unlike everything else around it
- o Including it causes large differences in the average statistics, but excluding it requires special exception rules
  - ✓ How much cash do you have in your pockets?

  - ✓ Average amount people have = \$100,009?

#### • Outlier analysis:

O It may uncover fraudulent usage of credit cards by detecting purchases of unusually large amounts for a given account number in comparison to regular charges incurred by the same account.

Outliers 13

- High dimensionality
  - O Most complete data warehouse have a lot of information (dimensions) about each item
    - ✓ A shopping database can have very detailed data about purchases
    - ✓ "the customer bought 2% milk on special"
  - o Can cause us to discover patterns that are too specific to be useful, or to miss more general patterns
  - O Dimensionality reduction: abstracting away some details
    - ✓ 2% milk on special = 2% milk = milk = dairy products = groceries?
    - ✓ i.e., from multidimensional space to lower dimensional space

High dimensionality 14

#### • Handling uncertainty, noise, or incompleteness of data:

- O Data often contain noise, errors, exceptions, or uncertainty, or are incomplete.
- o Errors and noise may confuse the data mining process, leading to the derivation of erroneous patterns.
- O Data cleaning, data preprocessing, outlier detection and removal, and uncertainty reasoning are examples of techniques that need to be integrated with the data mining process.

#### Background knowledge

- o Some patterns are obvious from the data for us, because of our background knowledge
  - ✓ We know a text document mentioning "wall street" is probably about finance
  - ✓ Because we know the New York Stock Exchange (NYSE) a major financial institution is on Wall Street
- o How to include such knowledge into a database system?

- Evaluating the knowledge
  - o One can mine tremendous amount of patterns
  - o How to know which ones are good or bad?
  - o Different evaluation metrics for different patterns and applications
    - ✓ Predictive, coverage, statistical measures (precision, recall, accuracy, f-measure), computational complexity, etc.

Evaluation 16

## Applications

#### Basket data analysis and targeted marketing

- o Given a database of customers with demographic information, location, and past purchase behaviour
- o Determine the profile of the most profitable customers
- o Tailor advertisement campaigns to attract and retain these customers

#### Fraud detection

- O Automobile Insurance Bureau of Massachusetts had a database of insurance claims, including over 60 attributes such as claimant, type of accident, type of injury/treatment, and expert opinion of real vs. fraud
- O Dimension Reduction methods used to obtain weighted variables, then identified subsets of characteristics strongly correlated with fraud

Applications 17

## Applications

#### • Web page analysis:

- o Page ranking, for example, Google search engine results
- o Recommender systems (Amazon)
- o Clicks-to-Customers
  - ✓ 50% of Dell's customers order their computer through the web, but 0.5% of visitors of Dell's web page become customers
  - ✓ Dell has navigation history of visitors through their site
  - ✓ Cluster customers through their click sequences, and design web pages to maximize the number of customers

#### • Biological and medical data analysis:

- o classification, cluster analysis, biological sequence analysis, biological network analysis
- Engineering research and development (Watson)

### Summary

- Data (collected and generated) and individual databases are being consolidated into massive data warehouses
  - o Getting knowledge from this massive amount of data is a challenge
- Data mining: Extraction of interesting (non-trivial, implicit, previously unknown and potentially useful) patterns from huge amount of data
  - o Different types of data
  - O Different patterns of interest
  - o Different applications
  - o Different challenges

Summary 1

## Summary Cont.



Data mining adopts techniques from many domains

Image: Data Mining: Concepts and Techniques

Summary 20

### Summary Cont.



Image: Data Mining: Concepts and Techniques