Gas + 1 gab = 8 Tab 1-1/2 ~ 109 ly 1 Mapa between manifolds Det M. N manifolds of dim m, n &: M -> N Mamooth . If γροφογαί is mosth & charts Ya ef M, Ya of N Rm -> Rh Det q: M-7 N f: N -> R smooth. The kull-back of f by q is $\varphi^*(t) : M \to R$ $\varphi^*(t) = f \circ \varphi \left(\varphi^*(t)(p) = f(\varphi(p)) \right)$ $\frac{1}{2} = \frac{1}{2} = \frac{1}$ Det $\varphi: M \rightarrow N$ smooth, $\rho \in M \times \in T_p(M)$, λ consist in M with forget $\times \mathbb{C}p$ The punk-forward of X by 4 is 9x(X) E Tp(p)(N): tangent to curre god at Q(y). Lenna f: N -> R ((x))(f) = x ((x)) Proof: LHS = $\left[\frac{d}{dt}\left(f\circ(\varphi\circ\lambda)\right)(t)\right]_{t=0}$ = $\left[\frac{d}{dt}\left(\left(f\circ\varphi\right)\circ\lambda\right)(t)\right]_{t=0}$ = RHS $\lambda(0) = b$ Ex xt coords on M $\varphi \iff \text{mop } y^{x}(x)$ $y^{x} \implies \text{on N}$ $y^{x} \iff (\varphi_{*}(x))^{x} = (2y^{x})_{p} \times^{p}$ Det Q: M-> N worth pEM MET pip N. The pull-back of y by y $\varphi^*(y)(x) = y(\varphi_*(x)) \quad \forall x \in T_P M$ Q*(1) E Tp" M

Proof:
$$(\varphi^*(d+))(x) = (d+)(\varphi^*(+))$$

Front: $(\varphi^*(d+))(x) = (d+)(\varphi^*(x)) = \varphi^*(x)(+) = x(\varphi^*(+))$

The stand $(\varphi^*(q))_{p} = (\frac{2q^{p}}{2q^{p}})_{p} Nx$

Full-both $(0,s)$ tensor $S: (\varphi^*(s)) \#(x_1,...,x_s) = S(\varphi_*(x_1),...,\varphi_*(x_s))$

Pull-pursor $(r,0)$ tensor $T: (\varphi_*(T))(y_1,...,y_r) = T(\varphi^*(y_1),...,\varphi^*(x_s))$
 $= Y(\varphi^*(s))_{p,...,p_s} = (\frac{2q^{p_s}}{2q^{p_s}})_{p} \cdots (\frac{2q^{p_s}}{2q^{p_s}})_{p} S_{p_s,...,p_s}$
 $(\varphi_*(T))^{p_s,...,p_s} = (\frac{2q^{p_s}}{2q^{p_s}})_{p} \cdots (\frac{2q^{p_s}}{2q^{p_s}})_{p} T^{p_s,...,p_s}$

Example:
$$M = 6^2$$
, $N = \mathbb{R}^3$ $\psi: M \rightarrow N$ $\chi^{\mu} = (\theta, \psi) \longleftrightarrow \chi^{\mu} = (\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$