LECTURE: MODEL EVALUATION TECHNIQUES IN MACHINE LEARNING I. INTRODUCTION TO MODEL EVALUATION

The foundation of model evaluation lies in understanding the confusion matrix, which organizes

predictions into four categories:

Confusion Matrix:	Predicted Positive	Predicted Negative
Actual Positive	True Positive	False Negative
Actual Negative	False Positive	True Negative

Where: -

TP (True Positives): Correctly identified positive cases TN (True Negatives): Correctly identified negative cases

FP (False Positives): Incorrectly identified as positive (Type I error) FN (False Negatives): Incorrectly identified as negative (Type II error)

II. FUNDAMENTAL EVALUATION METRICS

A. Accuracy

Accuracy = (TP + TN)/(TP + TN + FP + FN)

- Represents overall correctness

Limitations: Misleading for imbalanced datasets, Doesn't distinguish between error types

B. Precision

Precision = TP/(TP + FP)

- Measures exactness - Critical when false positives are costly -

Applications: Spam detection, Medical diagnosis, Recommendation systems

C. Recall (Sensitivity)

Recall = TP/(TP + FN)

- Measures completeness - Important when false negatives are costly

Applications: Disease detection, Fraud detection, Security systems

D. F1-Score

$F1 = 2 \times (Precision \times Recall)/(Precision + Recall)$

- Harmonic mean of precision and recall - Balanced measure for imbalanced datasets -

Properties: Ranges from 0 (worst) to 1 (best), Penalizes extreme imbalances between precision and recall

III. ROC CURVE ANALYSIS

A. ROC Curve Construction

Plot TPR vs FPR at various thresholds

TPR = TP/(TP + FN) # Sensitivity

FPR = FP/(FP + TN) # 1 - Specificity

Characteristics:

(0,0): Most conservative classifier

(1,1): Most liberal classifier

(0,1): Perfect classifier Diagonal line: Random classifier

B. Area Under the Curve (AUC)

 $AUC = \int TPR d(FPR)$

- Interpretation: * AUC = 1.0: Perfect classifier * AUC = 0.5: Random classifier * AUC < 0.5: Worse than random

IV. PRACTICAL IMPLEMENTATION

A. Code Example (Python)

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from sklearn.metrics import confusion_matrix, roc_curve, auc
Basic metrics
accuracy = accuracy_score(y_true, y_pred)
precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred)
Confusion matrix
conf_matrix = confusion_matrix(y_true, y_pred)
ROC curve
fpr, tpr, thresholds = roc_curve(y_true, y_pred_proba)
roc_auc = auc(fpr, tpr)

B. Metric Selection Guidelines (Why/When use this metrices?)

Use Accuracy when:

Classes are balanced

False positives and negatives have similar cost

Use Precision when:

False positives are more costly

Resources for positive predictions are limited

Use Recall when:

False negatives are more costly

Missing positive cases is critical

Use F1-score when:

Need balance between precision and recall

Dataset is imbalanced

Use ROC-AUC when:

Need threshold-independent evaluation

Comparing different models

V. COMMON PITFALLS AND CONSIDERATIONS

Class Imbalance:

Can skew accuracy

May require specialized metrics

Consider using weighted variants

Threshold Selection:

Affects all metrics

ROC curve helps in threshold selectionConsider business requirements

Data Leakage:

Evaluate on unseen data

Use proper cross-validation

Maintain test set integrity

VI. PRACTICE PROBLEMS

Calculate all metrics for given confusion matrix:

TP = 85, FP = 15

FN = 10, TN = 90

Analyze ROC curves:

Compare two models' ROC curves

Determine optimal threshold

Calculate AUC

Case Study:

Medical diagnosis scenario

Imbalanced classes

Cost-sensitive evaluation

REFERENCES

Hastie, T., et al. "The Elements of Statistical Learning" Géron, A. "Hands-On Machine Learning with Scikit-Learn" James, G., et al. "An Introduction to Statistical Learning"