Reto 1

José Antonio Álvarez

22 de octubre de 2017

1. Usando la notación O, determinar la eficiencia de los siguientes segmentos de codigo:

```
int n,j; int i=1; int x=0;
do{
    j=1;
    while (j <= n){
        j=j*2;
        x++;
    }
    i++;
} while (i<=n);</pre>
int n,j; int i=2; int x=0;
do{
    j=1;
    while (j <= i){
        j=j*2;
        x++;
        x++;
    }
    i++;
} while (i<=n);
}

int n,j; int i=2; int x=0;
do{
    j=1;
    while (j <= i){
        i++;
    }
    i++;
} while (i<=n);
</pre>
```

- a) En el primer algoritmo podemos observar que el bucle exterior es de orden O(n) mientra que el interior de orden $O(\log(n))$ ya que esta realizando tantas iteraciones como potencias de 2 menores que n. Esto es, $\log_2(n)$. Por tanto la eficiencia del algoritmo completo será de orden $O(n * \log(n))$
- b) La única diferencia de este algoritmo (que representaremos por f(n)) respecto del anterior es el tope del bucle interior. Como siempre se cumple $i \leq n$, sabemos que $O(f(n)) \leq O(n*log(n))$. También sabemos que el bucle interior depende de n. Esto es, su orden de eficiencia es estrictamente mayor que O(1). Por tanto O(n) < O(f(n)) (recordemos que el bucle exterior ya es de orden O(n). Por tanto hemos obtenido que:

$$O(n) < O(f(n)) \le O(n * log(n))$$

Como no hay ningún orden de efiencia entre O(n) y O(n * log(n)), hemos deducido que O(f(n)) = O(n * log(n)).

2. Para cada funcion f(n) y cada tiempo t de la tabla siguiente, determinar el mayor tamano de un problema que puede ser resuelto en un tiempo t (suponiendo que el algoritmo para resolver el problema tarda f(n) microsegundos, es decir, $f(n) * 10^{-6}$ sg.)

f(n)	t						
	1 segundo	1 hora	1 semana	1 año	1000 años		
log_2n	$\approx 10^{300000}$						
n				$\approx 3.15 \cdot 10^{15}$			
$nlog_2n$		$1,33 \cdot 10^{8}$					
n^3				146645			
2^n	19						
n!		12					

La primera aproximación que tuve en cuenta era meramente algorítmica, pero en seguida me di cuenta de que no podía tomar este acercamiento para $f(n) \in \{log_2(n), n\}$. Por ello realicé los siguientes cálculos: el n que buscamos será el máximo de los i's que cumplen:

$$\frac{f(i)}{10^6} \le t \leftrightarrow f(i) \le t \cdot 10^6 \leftrightarrow i \le f^{-1}(t \cdot 10^6)$$

Para $f(n) = log_2(n) \to f^{-1}(n) = 2^n$. Por tanto $i \leq 2^{t \cdot 10^6}$. Buscamos ahora expresarlo de la forma 10^x :

$$10^{x} = 2^{t \cdot 10^{6}} \leftrightarrow log_{10}(10^{x}) = log_{10}(2^{t \cdot 10^{6}}) \leftrightarrow x = t \cdot 10^{6} \cdot log_{10}(2).$$

Obteniendo:

$$i < 10^{t \cdot 10^6 \cdot log_{10}(2)}$$
.

Para valores tan grandes podemos tomar la igualdad. Estudiémos ahora el segundo caso: f(n) = n).

$$\frac{f(i)}{10^6} = \frac{i}{10^6} \le t \leftrightarrow i \le t * 10^6$$

De nuevo tomaremos la igualdad. Para el resto de casos el estudio algorítmico es viable. Aplicando un ligero cambio en el incremento de j en el caso $f(n) = n \cdot log_2(n)$ para hacerlo aún más rápido conseguimos que su ejecución sea de apenas unos segundos.

Nota: El programa utilizado para los cálculos es el archivo adjunto **reto1.cpp**. Este es un ejemplo de ejecución:

```
jose@Ubuntu16:~/Escritorio/DGIIM/ED/reto1$ ./reto1
<sup>f</sup>(n) = log2(n), t = 1 -> n = 10^693147
f(n) = log2(n), t = 3600 -> n = 10^2.49533e+09
f(n) = log2(n), t = 604800 -> n = 10^4.19215e+11
f(n) = log2(n), t = 9198000 -> n = 10^6.37557e+12
<sup>-</sup>(n) = log2(n), t = 9198000000 -> n = 10^6.37557e+15
f(n) = n, t = 1 -> n = 1000000
<sup>-</sup>(n) = n, t = 3600 -> n = 3600000000
    = n, t = 9198000 -> n = 9198000000000
   = n*log2(n), t = 3600 -> n = 133380000
(n) = n*log2(n), t = 604800 -> n = 17763080000
<sup>-</sup>(n) = n*log2(n), t = 9198000 -> n = 243183720000
f(n) = n*log2(n), t = 9198000000 -> n = 193798963720000
f(n) = n^3, t = 1 -> n = 99
    = n^3, t = 3600 -> n = 1532
f(n)
    = n^3, t = 604800 -> n = 8456
F(n)
f(n)
    = n^3, t = 9198000 -> n = 20952
    = n^3, t = 9198000000 -> n = 209522
f(n)
f(n)
    = 2^n, t = 1 -> n = 19
f(n) = 2^n, t = 3600 -> n = 31
f(n) = 2^n, t = 604800 -> n = 39
f(n) = 2^n, t = 9198000 -> n = 43
f(n) = 2^n, t = 9198000000 -> n = 53
f(n) = n!, t = 1 -> n = 9
f(n) = n!, t = 3600 -> n = 12
f(n) = n!, t = 604800 -> n = 14
f(n) = n!, t = 9198000 -> n = 15
<sup>-</sup>(n) = n!, t = 9198000000 -> n = 18
jose@Ubuntu16:~/Escritorio/DGIIM/ED/reto1$
```

Figura 1: Cálculo final de valores de n

Por tanto la tabla queda de la siguiente forma:

f(n)	t					
	1 segundo	1 hora	1 semana	1 año	1000 años	
log_2n	10^{693147}	$10^{2,5\cdot 10^9}$	$10^{4,19\cdot10^{11}}$	$10^{6,38\cdot10^{12}}$	$10^{6,38\cdot10^{15}}$	
n	10^{6}	$3.6 \cdot 10^9$	$6,048 \cdot 10^{11}$	$9{,}198 \cdot 10^{12}$	$9{,}198 \cdot 10^{15}$	
$nlog_2n$	$7 \cdot 10^{4}$	$1,3338 \cdot 10^8$	$1,776308 \cdot 10^{10}$	$2,4318372 \cdot 10^{11}$	$1,9379896372 \cdot 10^{14}$	
n^3	99	1532	8456	20952	209522	
2^n	19	31	39	43	53	
n!	9	12	14	15	18	