Problem Statement

- Mansourian Insurance is a growing private healthcare insurance provider. The company was founded on the premise that advanced analytics can improve the health insurance industry.
- Based on the yearly CDC data, analyze the 2014 published survey results for three States.
- Understand the demographics, health, and fitness trends affecting Physical Health for the residents of these States.

Data Gathering & Cleansing

STATE	PHYSHLTH	EXERCISE	WEIGHT	SEX	BMI	_STATE	FMONTH	IDATE	IMONTH	IDAY	IYEAR	DISPCODE
CONNECTICUT	3.0	1.0	180.0	1.0	2250.0	CONNECTICUT	5.0	5212014	5	21	2014	1200.0
CONNECTICUT	5.0	1.0	136.0	2.0	2487.0	CONNECTICUT	9.0	10252014	10	25	2014	1200.0
CONNECTICUT	20.0	2.0	330.0	1.0	4354.0	CONNECTICUT	9.0	11082014	11	8	2014	1200.0
CONNECTICUT	10.0	1.0	165.0	2.0	2832.0	CONNECTICUT	9.0	9272014	9	27	2014	1200.0
CONNECTICOT	10.0	1.0	105.0	2.0	2032.0	CONNECTICUT	1.0	1262014	1	26	2014	1200.0
CONNECTICUT	2.0	2.0	120.0	2.0	1937.0							
	•••		***			NEW YORK	1.0	2092014	2	9	2014	1200.0
NEW YORK	4.0	1.0	118.0	2.0	1905.0	NEW YORK	7.0	7232014	7	23	2014	1200.0
NEW YORK	1.0	1.0	195.0	1.0	2504.0	NEW YORK	1.0	2102014	2	10	2014	1200.0
NEW YORK	1.0	1.0	280.0	2.0	4257.0	NEW YORK	2.0	3052014	3	5	2014	1200.0
NEW YORK	3.0	1.0	155.0	2.0	2428.0	NEW YORK	3.0	3282014	3	28	2014	1200.0

Tri-State Physical Health Histogram

Tri-State Physical Health Boxplot

Tri-State Physical Health Statistics

State	Mean (days)	Median (days)	Standard Deviation (days)		
CONNECTICUT	10.43	5.0	10.67		
NEW JERSEY	11.73	6.0	11.23		
NEW YORK	10.93	5.0	10.80		
ANOVA, Statistic	12.09				
ANOVA, P-Value 5.72 × 10 ⁻⁶					

Impact of Exercise & Sex on Physical Health

Correlations Between Dependent Variables & Physical Health

	PHYSHLTH	EXERCISE	WEIGHT	SEX	ВМІ
PHYSHLTH	1	- 0.285597	0.076465	- 0.012965	0.118236
EXERCISE	- 0.285597	- 1	- 0.090831	- 0.05867	- 0.143793
WEIGHT	0.076465	0.090831	1	- 0.37463	0.866612
SEX	0.012965	- 0.05867	- 0.37463	1	- 0.05174
BMI	0.118236	0.143793	0.866612	- 0.05174	1

Multiple Linear Regression Model

Dep. Variable	Model	Method	Prob (F-statistic)	Log-Likelihood
PHYSHLTH	OLS	Least Squares	5.06 × 10 ⁻¹⁷⁴	-32549
R-squared	Adj. R-squared	F-statistic	No. Observations	Df Model
0.09	0.089	212.3	8636	4

	Coefficients	Standard Error	t-value	P > t
Y-Intercept	12.542	0.597	20.999	0.000
EXERCISE	- 6.432	0.245	- 26.21	0.000
WEIGHT	- 0.027	0.006	- 4.276	0.000
SEX	- 0.847	0.308	- 2.754	0.006
BMI	0.003	0.000	6.989	0.000

Taking it Further

- Finding where the significance lies between other variables
- Understand how physical health is different amongst other races
- Investigate physical health data based on disease trends in the region. Such as how seasonal flu is impacting physical health.
- Compare healthcare expenditure per 100k residents versus number of bad physical health days suffered by citizens
- Compare health amongst all SES (Socio-Economic Status) levels
- Conduct Post-hoc analyses to run comparative studies:
 - Duncan's Multiple Range Test (MRT)
 - Tukey Honest Significance Difference (HSD)
- Use the regression model to create supervised machine learning algorithm to predict physical health status based on given features.

