Compte rendu TP3 : Tests d'hypothèse

Introduction

Dans ce TP, nous avons un jeu de données représentant l'historique d'indemnisation qu'une société d'assurance a effectué pour un produit donné, on considère que ces données sont distribués selon une loi normale $N(\mu, \sigma)$.

On suppose que la variance σ est connue (σ = 60) et on cherche à tester H_0 : $\mu = \mu_0$ contre H_1 : $\mu \neq \mu_0$.

Question 1

Nous commençons par générer une matrice de 1000 échantillons de taille n = 30 à partir de notre jeu de donnée...

Question 2

Nous écrivons une fonction permettant d'effectuer un test de nullité de la moyenne, paramétrée par un échantillon de données, l'écart-type σ et le risque de première espèce α

Cette fonction retournera 1 si H_0 est rejetée et 0 sinon.

Hypothèse nulle : H_0 : $\{\mu = 0\}$ donc $H_1 = \{\mu \neq 0\}$

Sous H_0 :

On prend la statistique de tests suivante :

$$T = \frac{\overline{X}}{\sigma_{\frac{1}{M}}} \sim N(0, 1)$$

Donc

$$P(T \in [-u_{1-\frac{\alpha}{2}};u_{1-\frac{\alpha}{2}}]) = 1-\alpha$$

On ne rejette pas H_0 si $T \in [-u_{1-\frac{q}{2}}; u_{1-\frac{q}{2}}]$ et on rejette sinon.

Question 3

Parmi les 1000 échantillons générés, on cherche combien de fois on peut affirmer au risque $\alpha = 5\%$ que l'indemnisation moyenne est différente de 650 \in .

Pour cela, pour chaque valeur de notre matrice, on soustrait 650, on obtient que l'on peut affirmer que l'indemnisation moyenne est différente de 650€, 51 fois.

Question 4

On cherche maintenant à écrire une fonction qui à partir d'un échantillon de données et de l'écart-type σ calcule la p-value α^* du test.

La p-value est la plus grande valeur pour laquelle on peut conserver H_0 donc la plus grande valeur de α^* tel que $T \in [-u_{1-\frac{\mu}{2}};u_{1-\frac{\mu}{2}}]$

C'est à dire que

$$|T| = u_{1-\frac{\alpha}{2}}$$

On obtient

$$\alpha^* = 2(1 - F_{N(0,1)}(\frac{\sqrt{n}}{\sigma}|\overline{X}|))$$

Question 5

On cherche maintenant à déterminer la formule de la puissance de ce test,