Value Iteration Networks

presented by Jason TOKO

背景与动机

- RL要解决的是序列决策问题,一般需要一定的planning
- 纯learning方法学习的策略泛化能力差,例如:

背景与动机

- · VIN涉及到的背景知识
 - Value Iteration
 - CNN
 - RL与IL
- VIN的算法思想——learn to plan:
 - 构造一个可微的planning模块,作为VI的逼近
 - end-to-end的训练,契合RL或IL算法
 - 训练后,可根据observation得到相关的planning computation,然后再根据planning得到预测的动作

• 整体架构

- 定义: M与 \overline{M} , \overline{S} , \overline{A} , $\overline{R}(\overline{s},\overline{a})$, $\overline{P}(\overline{s}'|\overline{s},\overline{a})$
- M与 \bar{M} 的联系: $\bar{R} = f_R(\phi(s)), \bar{P} = f_P(\phi(s))$
- VI模块: 输入 f_R 、 f_P ,输出 \bar{V}^*
- attention: $\psi(s)$
 - 一个状态的最优策略只与一部分状态有关 $\bar{\pi}^*(\bar{s}) = \arg\max_{\bar{a}} \bar{R}(\bar{s}, \bar{a}) + \gamma \sum_{\bar{s}'} \bar{P}(\bar{s}'|\bar{s}, \bar{a}) \bar{V}^*(\bar{s}')$
 - 通过减少学习过程中的有效网络参数,可提高学习效果

• VI模块

- VI模块: 利用CNN实现VI算法迭代过程
- 卷积层:
 - 输入奖励图: \bar{R} , 维度l,m,n
 - 转移概率卷积核: \bar{P}
 - 输出Q值图: $\bar{Q}_{\bar{a},i',j'} = \sum_{l,i,j} W_{l,i,j}^{\bar{a}} \bar{R}_{l,i'-i,j'-j}$
- 池化层:
 - 沿着channel最大池化: $ar{V}_{i,j} = \max_{ar{a}} ar{Q}_{ar{a},i,j}$
- \bar{V} 与 \bar{R} 堆叠,作为卷积层的输入,反复迭代K次

VI模块和VI算法对比:

VI模块

VI算法

$$\bar{Q}_{\bar{a},i',j'} = \sum_{l,i,j} W_{l,i,j}^{\bar{a}} \bar{R}_{l,i'-i,j'-j} \qquad \qquad \qquad Q_n(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) V_n(s')$$

$$\bar{V}_{i,j} = \max_{\bar{a}} \bar{Q}_{\bar{a},i,j} \qquad \qquad \qquad \qquad \qquad V_{n+1}(s) = \max_{a} Q_n(s,a)$$

输出: \bar{V}^* 输出: $\pi^*(s) = \arg\max_a Q_{\infty}(s, a)$

- VIN源代码: https://github.com/avivt/VIN
- Grid-World Domain
- Mars Rover Navigation
- Continuous Control
- WebNav Challenge

• Grid-World Domain: 随机起始点、目标点、障碍物

• 评估指标: prediction loss、success rate、trajectory difference

• VIN与CNN、FCN对比

Domain	VIN			CNN			FCN		
	Prediction	Success	Traj.	Pred.	Succ.	Traj.	Pred.	Succ.	Traj.
	loss	rate	diff.	loss	rate	diff.	loss	rate	diff.
8 × 8	0.004	99.6%	0.001	0.02	97.9%	0.006	0.01	97.3%	0.004
16×16	0.05	99.3%	0.089	0.10	87.6%	0.06	0.07	88.3%	0.05
28×28	0.11	97%	0.086	0.13	74.2%	0.078	0.09	76.6%	0.08

• VIN可视化 f_R 与 $ar{V}^*$

附录E分层VI模块

- •问题: VI迭代次数K取决于问题的规模, 若K过小, 会导致奖励信息无法传递到所有状态上。
- •解决方案:应用分层VI模块(Hierarchical VI Modules)来加速奖励信息的传递。

附录E分层VI模块

• HVIN

