Parameter-free Identification of Cohesive Subgroups in Large Attributed Graphs

Leman Akoglu Hanghang Tong Brendan Meeder Christos Faloutsos

Carnegie Mellon University

IBMT. J. Watson

Carnegie Mellon University

Carnegie Mellon University

PICS: problem

Given a graph with node attributes (features)

social networks + user interests phone call networks + customer demographics gene interaction networks + gene expression info

Find cohesive clusters, bridges, anomalies

cohesive cluster: similar connectivity & attribute coherence

PICS: problem sketch

Given adjacency matrix A and feature matrix F Find homogeneous blocks (clusters) in A and F

- * parameter-free
- * scalable

Simple extensions: why not?

- Flat clustering
- Graph clustering
- Additional feature nodes
 - heterogeneous graph
- Weighted edges by both connectivity and feature similarity
 - quadratic pairwise computations!
 - choice of similarity function

Related Work

	Grapher	Node attric	Parameter s	Linear scalability
Flat clustering (e.g. k-means) [Kriegel+] [Leeuwen+]		\checkmark		\checkmark
METIS [Karypis and Kumar], [Flake+] [Girvan and Newman] [Andersen+] spectral [Ng+], co-clustering [Dhillon+]	✓			√
SA-cluster [Zhou+], Spect. rel. clus. [Long+]	\checkmark	\checkmark		
CoPaM [Moser+], Gamer [Gunneman+]	\checkmark	\checkmark		?,✓
Autopart and cross-assoc.s [Chakrabarti+], GraphScope [Sun+], PaCK [He+]	√		√	\checkmark

PICS: approach

- 1. How many node- & attribute-clusters?
- 2. How to assign nodes and attributes to clusters?

Main idea: employ Minimum Description Length

Minimum Description Length

Given database D and set of models for D, MDL selects model M that minimizes

$$L(M) + L(D|M)$$

VS.

length in bits: description of model M

 a_1x+a_0

 $a_9 x^9 + ... + a_1 x + a_0$

length in bits: data, encoded by M

Bishop: PR&ML

PICS: formulation

L (M): Model description cost

- 1. $\log^* n + \log^* f$ n: #nodes f: #attributes
- 2. $\log^* k + \log^* l$ k: #node-clus. I: #attribute-clus. $\log^*(k) = \log(k) + \log\log(k) + \cdots$
- 3. nH(P) + fH(Q) $p_i = \frac{r_i}{n}$ size of node cluster i $q_j = \frac{c_j}{f}$ size of attr. cluster j

$$optimal \ \#bits = -\log \frac{r_i}{n} = -\log p_i$$

$$node \ clus. \ cost = \sum_i r_i . -\log \frac{r_i}{n} = n. - \sum_i \frac{r_i}{n} \log \frac{r_i}{n} = nH(P)$$

PICS: formulation

- L(D|M): Data description cost given Model
 - 1. For each block in A and F , #1s: $\log^* n_1(B_{ij})$

2. Encoding cost of a block

$$E(B_{ij}) = -n_1(B_{ij}) \log_2(P_{ij}(1)) - n_0(B_{ij}) \log_2(P_{ij}(0))$$
$$= n(B_{ij})H(P_{ij}(1)).$$

where

$$P_{ij}(1) = n_1(B_{ij})/n(B_{ij})$$

$$r_i c_j \text{ or } r_i r_j$$

PICS: total cost objective

- L (M): Model description cost
 - n: #nodes, f: #attributes
- 1. $\log^* n + \log^* f$ n: #nodes, f: #attributes 2. $\log^* k + \log^* l$ k: #node-clusters, I: #attribute-clusters
- size of node-cluster i

size of attribute-cluster i

- A similar problem (column re-ordering for minimum
 - L() total run length) is shown to be NP-hard
 - 1.[Johnson+] (reduction from Hamiltonian Path)

$$E(B_{ij}) = -n_1(B_{ij}) \log_2(P_{ij}(1)) - n_0(B_{ij}) \log_2(P_{ij}(0))$$
$$= n(B_{ij})H(P_{ij}(1)).$$

where
$$P_{ij}(1) = n_1(B_{ij})/n(B_{ij})$$

 $r_i c_i$ or $r_i r_j$

PICS: algorithm sketch

The algorithm is iterative and monotonic will converge to local optimum

PICS: objective and algorithm

Total Encoding Cost (Length in bits) $L(\mathbf{A}, \mathbf{F}; R, C) = \log^* n + \log^* f + \log^* k + \log^* k$ $- \sum_{i=1}^k r_i \log_2(\frac{r_i}{n}) - \sum_{j=1}^l c_j \log_2(\frac{c_j}{f})$ $+ \sum_{i=1}^k \sum_{j=1}^l \left(\log^* n_1(B_{ij}^F) + E(B_{ij}^F) \right)$ $+ \sum_{i=1}^k \sum_{j=1}^k \left(\log^* n_1(B_{ij}^A) + E(B_{ij}^A) \right).$

Algorithm PICS

Input: $n \times n$ link matrix \mathbf{A} , $n \times f$ feature matrix \mathbf{F} Output: A heuristic solution towards minimizing total encoding $L(\mathbf{A}, \mathbf{F}; R, C)$: number of row and column groups (k^*, l^*) , associated mapping (R^*, C^*)

- 1: Set $k^0=l^0=1$ as we start with a single node and feature cluster.
- 2: Set $R^0 := \{1, 2, \dots, n\} \to \{1, 1, \dots, 1\}$
- 3: Set $C^0 := \{1, 2, \dots, f\} \to \{1, 1, \dots, 1\}$
- 4: Let T denote the outer iteration index. Set T=0.
- 5: repeat
- 6: $C^{T+1}, l^{T+1} := \text{Split-FeatureGroup}(\mathbf{F}, C^T, l^T)$
- 7: $(R^{T+1}, C^{T+1}) := \text{Shuffle}(\mathbf{A}, \mathbf{F}, (R^T, C^{T+1}), (k^T, l^{T+1}))$
- 8: $R^{T+1}, k^{T+1} := \text{Split-NodeGroup}(\mathbf{A}, \mathbf{F}, (R^{T+1}, C^{T+1}), (k^T, l^{T+1}))$
- 9: $(R^{T+1}, C^{T+1}) :=$ Shuffle $(A, F, (R^{T+1}, C^{T+1}), (k^{T+1}, l^{T+1}))$
- 10: if $L(\mathbf{A}, \mathbf{F}; R^{T+1}, C^{T+1}) \ge L(\mathbf{A}, \mathbf{F}; R^T, C^T)$ then
- 11: return $(k^*, l^*) = (k^T, l^T), (R^*, C^*) = (R^T, C^T)$
- 12: else
- 13: Set T = T + 1
- 14: end if
- 15: until convergence

PICS: scalability

Computational complexity:

$$O(\max(k^*, l^*) * [2n_1(A)k^* + n_1(F)(k^* + l^*)] * \hat{t})$$

non-zeros

PICS: datasets

Graphs

- 1. Phone call
- 2. Device
- 3. PolBooks
- 4. PolBlogs
- 5. Twitter
- 6. YouTube
- 7. YeastGene

Description	n	f	nnz
users, titles	94	7	391
users, titles	94	7	5K
books, incl.	92	2	840
blogs, incl.	1.5K	2	20K
users, h-tags	9.6K	10K	82K
users, groups	77K	30K	1M
genes, articles	844	17K	64K

PICS at work (Political books)

10 20 30 40 40 50 60 70 80 90 liberal conservative

liberal vs. conservative

"core and periphery"

PICS at work (Political books)

Examples of "core" liberal and conservative books

Liberal

Lies and the Lying Liars Who Tell Them: A Fair and

Balanced Look at the Right

-Big Lies:) The Right-Wing Propaganda Machine and

How It Distorts the Truth

-The Lies of George W. Bush

-Dude, Where's My Country?

Conservative

-Persecution: How Liberals Are Waging War Against

Christianity

-Deliver Us from Evil Defeating Terrorism, Despo-

tism, and Liberalism

(Tales) from the (Left) Coast

-A National Party No More

Examples of bridging 'conservative' books

"core and per

 $\square_{The\ Bushes:Portrait\ of\ a\ Dynasty}^{Bush\ at\ War}$

-Rise of the Vulcans: The History of Bush's War Cabinet

PICS at work (Reality mining)

objects

Device scans

PICS at work (YeastGene)

PICS at work (Twitter)

9,6K users
10K hashtags

PICS at work (YouTube)

Summary of contributions

Novel clustering model:

- PICS finds groups of nodes in an attributed graph with (1) similar connectivity, and (2) attribute homogeneity.
- It also groups the node attributes into attribute-clusters.

Parameter-free nature:

 No user input, e.g. number of clusters, similarity functions/thresholds

Effectiveness:

 Insightful clusters, bridges and outliers in diverse realworld datasets including YouTube and Twitter.

Scalability:

Linearly growing run time with graph + attribute size

Thank you!

lakoglu@cs.cmu.edu

http://www.cs.cmu.edu/~lakoglu/

Source code: www.cs.cmu.edu/~lakoglu/#pics

