Tutorial:

Input: List of *MT WS....mat* files as users' eye movement results MT_WS0401_171012_1148.mat 10/12/2017 12:03 ... MATLAB Data 321 KB MT_WS0402_171012_1554.mat 10/12/2017 4:09 PM MATLAB Data 258 KB MT_WS0403_171012_1751.mat 10/12/2017 6:06 PM MATLAB Data 565 KB MT_WS0404_171013_1136.mat 10/13/2017 11:52 ... MATLAB Data 428 KB MT WS0406 171016 1542.mat 10/16/2017 3:57 PM MATLAB Data 465 KB MT_WS0407_171016_1916.mat 10/16/2017 7:31 PM MATLAB Data 948 KB MT_WS0408_171017_1546.mat 10/17/2017 4:02 PM MATLAB Data 381 KB MT_WS0410_171019_1134.mat 10/19/2017 11:49 ... MATLAB Data 498 KB MT_WS0411_171019_1600.mat 10/19/2017 4:15 PM MATLAB Data 734 KB MT_WS0412_171019_1741.mat 10/19/2017 5:56 PM MATLAB Data 1,092 KB MT WS0413 171020 1141.mat 10/20/2017 11:56 ... MATLAB Data 478 KB MT WS0414 171025 1937.mat 10/25/2017 7:52 PM MATLAB Data 402 KB MT_WS0415_171026_1342.mat 10/26/2017 1:57 PM MATLAB Data 657 KB MT_WS0416_171026_1539.mat 10/26/2017 3:54 PM MATLAB Data 553 KB MT_WS0417_171026_1741.mat 10/26/2017 5:57 PM MATLAB Data 431 KB MT_WS0418_171027_1150.mat MATLAB Data 691 KB 10/27/2017 12:06 ... MT WS0420 171030 1203.mat MATLAB Data 10/30/2017 12:18 ... 571 KB MT_WS0423_171101_1134.mat 11/1/2017 11:49 AM MATLAB Data 428 KB MT_WS0427_171102_1534.mat 11/2/2017 3:50 PM MATLAB Data 1,147 KB MT WS0428 171103 1144.mat 11/3/2017 11:59 AM MATLAB Data 391 KB MT_WS0429_171103_1331.mat 710 KB 11/3/2017 1:46 PM MATLAB Data MT WS0431 171106 1148.mat 11/6/2017 12:03 PM MATLAB Data 1,041 KB

Step1: adding folders and files

- create [...]/data and [...]/matlab folders under your desired folder
- put input files MT WS....mat under [...]/data/demo/results

• under [...]/matlab, copy the following matlab files

[...]/data/demo/stimuli: copy the stimuli images into it.

Step2: run *analysis_main.m* file to generate desired trajectory & fixations

>> analysis_main

Warning: Directory already exists.

> In parse (line 19)

In analysis main (line 5)

Computing fixation maps.Done in 1.94 seconds!
Computing trajectory maps.Done in 73.45 seconds!
Computing fixation maps.Done in 9.37 seconds!

Results in [...]/data/clean and [...]/data/figures folders and subfolders

Step3: Generate cluster from clean fixation files by findMixGaussPeak demo.m

- ### These files can be anywhere in your computer as long as you modify the following parameters and put the subfiles in the same folder correctly ###
- predefined parameters in findMixGaussPeak_demo.m:
 - dataroot (the very first root directory before [...])
 - user (= [...])

- subfunction files needed to be included
 - assignCluster.m
 - findMixGaussPeak.m
 - rangepeak2d.m

- ध assignCluster.m
- 🖺 findMixGaussPeak.m
- findMixGaussPeak_demo.m
- angepeak2d.m
- Modificable parameters of findMixGaussPeak.m:
 - less: decide how many clusters you want from the fixation points
 - myFig & mydisp: display related parameters
- Results:
 - [...]/[date]allfile_[less].mat
 - allfile_10: x,y,cx,cy,cid,nowname

Step4: Display and save the cluster figures by displmgClusters demo.m

- predefined parameters in <u>displmgClusters_demo.m</u>:
 - dataroot (the very first root directory before [...])
 - user (= [...])
 - allfile name=(the name you saved in the format: [...]/[date]allfile [less].mat)

- subfunction files needed to be included
 - displmgClusters.m
 - dispCtrRegions.m
- Modificable parameters of displmgClusters.m
 - shape: display shape of the clustering results ('rectangle'/'circle')
 - save_status: to display image only or save the image (0/1)
 - myFig: display related parameters
- Results: (if save_status = 1)
 - [...]/fixation cluster images:
 - all the clustering images: labeling [idx].jpg

