# 3 CONICAS

3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola Objetivos. Se persigue que el estudiante: Identifique, grafique y determine los elementos de una cónica conociendo su ecuación general. Dado elementos de una cónica encuentre su ecuación. Resuelva problemas de aplicación empleando teoría de cónicas

Las cónicas o también llamadas secciones cónicas se presentan cuando un doble cono se interseca con planos.



No estamos interesados en los lugares geométricos de  $\mathbb{R}^3$ , estudiaremos las curvas de intersección de estas superficies pero en  $\mathbb{R}^2$ . Se obtendrán las ecuaciones de definiciones directamente en el plano cartesiano.

Descubriremos que la ecuación de una cónica, tiene la forma:

$$Ax^2 + By^2 + Cx + Dy + Exy + F = 0$$

Con  $A \neq 0$  ó  $B \neq 0$  ó ambos, y E = 0.

## 3.1. Circunferencia

#### 3.1.1. Definición.

Sea O un punto del plano y sea "r" un número real positivo. Se define la circunferencia como el conjunto de puntos P(x,y) tal que la distancia de P a O es igual a "r". Es decir:

$$Circunferencia = \{P(x, y) / d(P, O) = r\}$$

Al punto "O" se le denomina **centro de la circunferencia** y a "r" se le denomina **radio de la circunferencia**.

#### 3.1.2. Ecuación canónica de la circunferencia

Supongamos que  ${\cal O}$  tiene coordenadas (h,k)



La distancia entre los puntos P(x,y) de la circunferencia y el punto C(h,k), la cual denotamos como "r", está dada por  $r=\sqrt{\left(x-h\right)^2+\left(y-k\right)^2}$ , entonces, tenemos:

$$(x-h)^2 + (y-k)^2 = r^2$$
 Ecuación canónica de una circunferencia. Para  $r^2 > 0$ .

Un tipo especial de circunferencia es aquella que tiene por ecuación:

$$x^2 + y^2 = r^2$$

Es decir, una circunferencia con centro O(0,0), el origen:



Despejando  $\,y\,,\,$  obtenemos las ecuaciones de las semicircunferencias superior e inferior.

### Ejemplo

Hallar la ecuación canónica de la circunferencia que tiene centro el punto O(4,2) y radio 3

SOLUCIÓN:

Reemplazando en  $(x-h)^2 + (y-k)^2 = r^2$  tenemos:

$$(x-4)^2 + (y-2)^2 = 3^2$$

$$(x-4)^2 + (y-2)^2 = 9$$

La ecuación canónica pedida.

Ahora, en la ecuación canónica del ejemplo anterior  $(x-4)^2+(y-2)^2=3^2$ , al elevar al cuadrado y reducir términos semejantes se obtiene:

$$x^2 - 4x + 16 + y^2 - 4y + 4 = 9$$

$$x^{2} + y^{2} - 4x - 4y + 16 + 11 = 0$$

Se puede decir, entonces que la ecuación de una circunferencia tendrá la forma:

$$x^2 + y^2 + C'x + D'y + F' = 0$$

O también:

$$Ax^2 + Ay^2 + Cx + Dy + F = 0$$

Esta última ecuación es llamada ECUACIÓN GENERAL DE UNA CIRCUNFERENCIA.

Por tanto si nuestra intensión fuese dibujar la circunferencia o descubrirle sus elementos (centro y radio) a partir de la ecuación general, deberíamos llevar la ecuación a su forma canónica completando trinomios cuadrados perfectos.

### Ejemplo

Graficar la circunferencia que tiene por ecuación  $x^2 + y^2 - 4x + 6y - 12 = 0$ 

#### Solución

La ecuación general dada, la transformamos a la ecuación canónica completando cuadrados

$$(x^2 - 4x + 4) + (y^2 + 6y + 9) = 12 + 4 + 9$$
$$(x - 2)^2 + (y + 3)^2 = 25$$

Tenemos una circunferencia de radio r = 5 y centro C(2,-3)



No toda ecuación de la forma  $Ax^2 + Ay^2 + Cx + Dy + F = 0$  representará una circunferencia.

Si en el proceso de llevarla a la forma canónica se obtiene  $r^2=0$ , es decir resulta  $(x-h)^2+(y-k)^2=0$ , el lugar geométrico es el punto O(h,k). ¿Por qué?

Si  $r^2 < 0$ , la ecuación no representa lugar geométrico. ¿Por qué?

## Ejemplo

Hallar la ecuación canónica de la circunferencia que contiene a los puntos (1,2),

$$(3,0)$$
 y  $(3+\sqrt{3},3)$ 

#### Solución:

Si los puntos pertenecen a la circunferencia deben satisfacer su ecuación. En este caso empleamos la ecuación general  $x^2 + y^2 + C'x + D'y + F' = 0$ .

Reemplazando las coordenadas de los puntos dados:

Moisés Villena Muñoz

$$\begin{cases} 1^2 + 2^2 + C'(1) + D('2) + F' = 0 \\ 3^2 + 0^2 + C'(3) + D'(0) + F' = 0 \\ \left(3 + \sqrt{3}\right)^2 + 3^2 + C'(3 + \sqrt{3}) + D'(3) + F' = 0 \end{cases}$$

Resolviendo simultáneamente el sistema:

$$\begin{cases} C' + 2D + F' = -5\\ 3C' + F' = -9\\ \left(3 + \sqrt{3}\right)C' + 3D' + F' = -\left(3 + \sqrt{3}\right)^2 - 9 \end{cases}$$

En la segunda ecuación se obtiene F' = -9 - 3C'Reemplazando en la primera:

$$C'+2D'+F'=-5$$
  
 $C'+2D'-9-3C'=-5$   
 $-2C'+2D'=4$   
 $D'=2+C'$ 

Reemplazando D' y F'en la tercera ecuación:

$$(3+\sqrt{3})C'+3D'+F' = -(3+\sqrt{3})^{2} - 9$$

$$(3+\sqrt{3})C'+3(2+C')+(-9-3C') = -(3+\sqrt{3})^{2} - 9$$

$$3C'+\sqrt{3}C'+6+3C'-9-3C' = -9-6\sqrt{3}-3-9$$

$$\sqrt{3}C'+3C' = -18-6\sqrt{3}$$

$$(\sqrt{3}+3)C' = -6(3+\sqrt{3})$$

$$C' = -6|$$

**Entonces**:

$$D'=2+C'$$
  
= 2-6  
 $D'=-4$   
 $F'=-9-3C'$   
= -9-3(-6)  
 $F'=9$ 

Por tanto, la ecuación general de la circunferencia sería:

$$x^2 + y^2 - 6x - 4y + 9 = 0$$

Agrupando y completando cuadrados, se obtiene la ecuación canónica:

$$x^{2} + y^{2} - 6x - 4y + 9 = 0$$

$$(x^{2} - 6x + 9) + (y^{2} - 4y + 4) = -9 + 9 + 4$$

$$(x - 3)^{2} + (y - 2)^{2} = 4$$

## Ejercicios Propuestos 3.1

1. Grafique el lugar geométrico definido por cada una de las siguientes ecuaciones:

a. 
$$x^2 + y^2 - 2x - 4y + 1 = 0$$

b. 
$$2x^2 + 2y^2 - 2x - 2y + 9 = 0$$

b. 
$$x^2 + y^2 - 4x + 6y + 13 = 0$$
 c.  $x^2 + y^2 - 4x - 6y + 17 = 0$ 

c. 
$$x^2 + y^2 - 4x - 6y + 17 = 0$$

2. Determine la ecuación de la circunferencia que contiene a los puntos A(0,6), B(1,5) y cuyo centro se encuentra sobre la recta definida por la ecuación x + y = -1.

Resp. 
$$(x+3)^2 + (y-2)^2 = 25$$

3. Determine la ecuación general de una circunferencia tangente a la recta definida por la ecuación 2x-3y+5=0, y está centrada en el punto (-1,-2)

Resp. 
$$13x^2 + 13y^2 + 26x + 52y - 16 = 0$$

- 4. La intersección de las rectas  $L_1: 2x-y+3=0$  y  $L_2: 4x+y-2=0$  es el centro de una circunferencia que es tangente a la recta  $L_3: x-y+1=0$ . Determine la ecuación de la circunferencia.  $\operatorname{Resp.} \left(x+\tfrac{1}{6}\right)^2 + \left(y-\tfrac{8}{3}\right)^2 = \tfrac{121}{72}$
- 5. Determine la longitud de la cuerda de la circunferencia que tiene como ecuación  $x^2 + y^2 6x 14y 111 = 0$  conociendo que el punto medio de dicha cuerda tiene coordenadas  $\left(\frac{17}{2}, \frac{7}{2}\right)$ .
- 6. Hallar la ecuación canónica de la circunferencia que contiene los puntos (0,0), (1,-1) y (9,-1). Resp.  $(x-5)^2 + (y-4)^2 = 41$
- 7. Determine la ecuación de la circunferencia que es tangente a las rectas de ecuaciones y=x y x+y=1 y que contiene al punto (2,2). Resp.  $\left(x-\frac{5}{2}\right)^2+\left(y+\frac{1}{2}\right)^2=\frac{9}{2}$

#### 3.2. Parábola

#### 3.2.1. Definición

Sea l una recta y sea F un punto. La parábola se define como el conjunto de puntos P(x,y) tal que su distancia al punto F es igual a su distancia a la recta l. Es decir:

Parábola = 
$$\{P(x, y) / d(P, F) = d(p, l)\}$$

Al punto F se le denomina foco de la parábola y a la recta l se le denomina directriz de la parábola.

#### 3.2.2 Ecuación canónica

Supongamos que F tiene coordenadas (0,p) y la recta l tiene ecuación y=-p con p>0. Observe la gráfica:



Observe que  $d(P,F) = \sqrt{(x-0)^2 + (y-p)^2}$  y que d(P,l) = |y+p|.

Igualando distancias y resolviendo:

$$d(P,F) = d(P,l)$$

$$\sqrt{(x-0)^2 + (y-p)^2} = y+p$$

$$(\sqrt{(x-0)^2 + (y-p)^2})^2 = (y+p)^2$$

$$x^2 + y^2 - 2py + p^2 = y^2 + 2py + p^2$$

$$x^2 = 4py$$

Al punto V se le denomina **vértice de la parábola**, en este caso tiene coordenadas (0,0). A la recta perpendicular a la directriz, que contiene al vértice y al foco, se le denomina **Eje Focal**. Observe que para la parábola anterior el eje focal es el eje y.

Observe además que la parábola es cóncava hacia arriba.

Al segmento de recta perpendicular al eje focal que pasa por el foco y que tiene como extremos los dos puntos de la parábola, se denomina **lado recto** y tiene una medida de 4p. ¡Demuéstrele!

Suponga ahora que el vértice no es el origen, que tenemos V(h,k), entonces su ecuación sería:

$$(x-h)^2 = 4p(y-k)$$

Y su gráfico sería:



Para otros casos, tenemos:

$$(x-h)^2 = -4p(y-k)$$

Una parábola con eje focal vertical, pero cóncava hacia abajo.



Si la parábola tiene ecuación  $(y-k)^2 = 4p(x-h)$ , Su **eje focal** será **horizontal** y además será **cóncava hacia la derecha**:



Si la parábola tiene ecuación  $(y-k)^2 = -4p(x-h)$ . Su **eje focal** será **horizontal**, pero ahora será **cóncava hacia la izquierda**:



La ecuación general de esta cónica será de la forma  $Ax^2 + By^2 + Cx + Dy + F = 0$  con A = 0 o B = 0 pero no ambos. Es decir tendremos ecuaciones de la forma  $Ax^2 + Cx + Dy + F = 0$  o de la forma  $By^2 + Cx + Dy + F = 0$ , según sea la dirección del eje focal.

O más simplemente 
$$x^2 + C'x + D'y + F' = 0$$
 
$$y^2 + C'x + D'y + F' = 0$$

## Ejemplo 1

Graficar la parábola que tiene por ecuación  $4x^2 - 20x - 24y + 97 = 0$ . Indique coordenadas del vértice, coordenadas del foco, ecuación de la recta directriz.

#### **SOLUCIÓN:**

Despejando la variable cuadrática para completarle cuadrados y agrupando, tenemos:

$$4x^{2} - 20x = -24y - 97$$

$$\frac{4}{4}\left(x^{2} - 5x + \frac{25}{4}\right) = \frac{24}{4}y - \frac{97}{4} + \frac{25}{4}$$

$$\left(x - \frac{5}{2}\right)^{2} = 6y - 18$$

$$\left(x - \frac{5}{2}\right)^{2} = 6(y - 3)$$

Se deduce entonces que:

- 1. La parábola tiene vértice  $V\left(\frac{5}{3},3\right)$ .
- 2. El eje focal es paralelo al eje y
- 3. La parábola es cóncava hacia arriba
- 4.  $p = \frac{3}{2}$  debido a que 6 = 4p.

Realizando su gráfica tenemos:



## Ejemplo-2

Hallar la ecuación general de la parábola que tiene foco el punto de coordenadas (-3,-2) y directriz la recta con ecuación x=1.

#### **SOLUCIÓN**

En primer lugar representamos el foco y la directriz en el plano cartesiano.



Concluimos que:

1. El vértice debe tener coordenadas (-1,-2)

- 2. El eje focal es paralelo al eje x
- 3. La parábola es cóncava hacia la izquierda.
- 4. p=2, distancia del vértice al foco o distancia del vértice a la directriz.
- 5. La ecuación de trabajo es  $(y-k)^2 = -4p(x-h)$

Bien, reemplazando los valores en la ecuación de trabajo, tenemos:

$$(y+2)^2 = -4(2)(x+1)$$

$$y^2 + 4y + 4 = -8x - 8$$

$$8x + y^2 + 4y + 12 = 0$$

## Ejemplo 3

Un puente colgante de 120m de longitud tiene trayectoria parabólica sostenida por torres de igual altura si la directriz se encuentra en la superficie terrestre y el punto más bajo de cada cable está a 15m de altura de dicha superficie, hallar la altura de las torres.

#### **SOLUCIÓN:**

Primero hacemos una representación gráfica de la información proporcionada, trabajando en el plano cartesiano, es mejor poner el vértice en el origen:



La ecuación de la trayectoria sería:  $x^2 = 4(15)y$  $x^2 = 60y$ 

Utilizando la ecuación de la trayectoria determinamos "y":  $\begin{vmatrix} x^2 = 60y \\ 60^2 = 60y \\ y = 60 \end{vmatrix}$ 

Por lo tanto la altura de las torres sería: h = y + p h = 60 + 15h = 75m

### Ejemplo 4

Hallar la ecuación de la parábola que tiene eje focal vertical y contiene los puntos (-1,5), (3,1) y (7,5).

#### **SOLUCIÓN:**

Ya que tiene eje focal vertical empleamos la ecuación  $x^2 + C'x + D'y + F' = 0$  ¿Porqué?).

Cómo los puntos pertenecen a la parábola, las coordenadas deben satisfacer su ecuación.

Reemplazando y simplificando:

$$\begin{cases} (-1)^2 + C'(-1) + D'(5) + F' = 0 \\ (3)^2 + C'(3) + D'(1) + F' = 0 \\ (7)^2 + C'(7) + D'(5) + F' = 0 \end{cases} \Rightarrow \begin{cases} -C' + 5D' + F' = -1 \\ 3C' + D' + F' = -9 \\ 7C' + 5D' + F' = -49 \end{cases}$$

Resolviendo el sistema simultáneo se obtiene:

$$C' = -6$$
,  $D' = -4$  y  $F' = 13$ 

Por tanto la ecuación buscada sería:

$$x^2 + -6x - 4y + 13 = 0$$

### Ejercicios Propuestos 3.2

1. Grafique el lugar geométrico definido por cada una de las siguientes ecuaciones: (Indique todos sus elementos).

a. 
$$x^2 - 2x - 4y + 1 = 0$$

b. 
$$2y^2 - 2x - 2y + 9 = 0$$

c. 
$$y^2 - 4x + 6y + 13 = 0$$

d. 
$$-x^2 - 4x - 6y + 17 = 0$$

2. Determine la ecuación de la parábola cuya directriz es la recta definida por y = 1, contiene al punto (0,3) y la menor distancia entre la parábola y la directriz es igual a 2.

Resp. 
$$x^2 = 8(y-3)$$

3. Determine la ecuación canónica de la parábola donde la recta directriz tiene la ecuación y+2=0 y los extremos del lado recto son los puntos A(0,2) y B(8,2).

Resp. 
$$(x-4)^2 = 8y$$

4. Encuentre la ecuación canónica de la parábola que tiene eje focal vertical y contiene los puntos:  $(0,0),(1,-1),(\frac{3}{2},-\frac{1}{2})$  Resp.  $\left(x-\frac{7}{8}\right)^2=\frac{3}{4}\left(y+\frac{49}{48}\right)$ 

5. Resuelva el problema anterior suponiendo ahora que el eje focal es horizontal.

Resp. 
$$\left(y + \frac{5}{8}\right)^2 = -\frac{1}{4}\left(x - \frac{25}{16}\right)$$

6. Encuentre la ecuación canónica de la parábola que tiene eje focal horizontal contiene los puntos: (-1,-1),(0,1),(1,0)

Resp. 
$$\left(y - \frac{1}{6}\right)^2 = -\frac{2}{3}\left(x - \frac{25}{4}\right)$$

7. Resuelva el problema anterior suponiendo ahora que el eje focal es vertical.

Resp. 
$$\left(x - \frac{1}{6}\right)^2 = -\frac{2}{3}\left(y - \frac{25}{24}\right)$$

## 3.3. Elipse

#### 3.3.1 Definición.

Sean  $F_1$  y  $F_2$  dos puntos del plano y sea a una constante positiva. La Elipse se define como el conjunto de puntos P(x,y) tales que la suma de su distancia a  $F_1$  con su distancia a  $F_2$  es igual a 2a. Es decir:

Elipse= 
$$\{P(x, y)/d(P, F_1) + d(P, F_2) = 2a\}$$

A  $F_1$  y  $F_2$  se les denomina focos de la elipse y "a" representa la medida del **semieje mayor** de la elipse.

#### 3.3.2 Ecuación Canónica

Sean  $F_1(-c,0)$  y  $F_2(c,0)$ , observe el gráfico:



De la definición tenemos:

$$d(P, F_2) + d(P, F_1) = 2a$$
$$\sqrt{(x-c)^2 + (y-0)^2} + \sqrt{(x+c)^2 + (y-0)^2} = 2a$$

Despejando un radical, elevando al cuadrado y reduciendo términos semejantes:

$$\left(\sqrt{(x-c)^2 + y^2}\right)^2 = \left(2a - \sqrt{(x+c)^2 + y^2}\right)^2$$

$$(x-c)^2 + y^2 = 4a^2 - 4a\sqrt{(x+c)^2 + y^2} + (x-c)^2 + y^2$$

$$x^2 - 2xc + c^2 + y^2 = 4a^2 - 4a\sqrt{(x+c)^2 + y^2} + x^2 - 2xc + c^2 + y^2$$

$$4a\sqrt{(x+c)^2 + y^2} = 4a^2 + 4cx$$

Dividiendo para 4, elevando al cuadrado y reduciendo términos semejantes:

$$\left( a\sqrt{(x+c)^2 + y^2} \right)^2 = \left( a^2 + cx \right)^2$$

$$a^2 \left[ (x+c)^2 + y^2 \right] = a^4 + 2a^2c + c^2x^2$$

$$a^2 \left[ x^2 + 2cx + c^2 + y^2 \right] = a^4 + 2a^2cx + c^2x^2$$

$$a^2x^2 + 2a^2cx + a^2c^2 + a^2y^2 = a^4 + 2a^2cx + c^2x^2$$

$$a^2x^2 - c^2x^2 + a^2y^2 = a^4 - a^2c^2$$

$$\left( a^2 - c^2 \right) x^2 + a^2y^2 = a^2 \left( a^2 - c^2 \right)$$

Dividiendo para  $a^2(a^2-c^2)$ 

$$\frac{x^2(a^2-c^2)}{a^2(a^2-c^2)} + \frac{a^2y^2}{a^2(a^2-c^2)} = \frac{a^2(a^2-c^2)}{a^2(a^2-c^2)}$$
$$\frac{x^2}{a^2} + \frac{y^2}{a^2-c^2} = 1$$

Finamente, llamando  $b^2 = a^2 - c^2$  tenemos:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 Ecuación canónica de la elipse con centro  $O(0,0)$  y eje focal horizontal

"b" representa la longitud del **semieje menor**, Observe la gráfica anterior.

Aquí el **lado recto** tiene dimensión  $\frac{2b^2}{a}$ . ¡Demuéstrelo!

Para los casos generales tenemos:

Suponga que el vértice es el punto V(h,k), y que el **eje focal sea** horizontal entonces su ecuación sería:

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

Y su gráfica sería:



<u>Observación</u>: La dirección del eje focal está indicada por el término que tiene el mayor denominador, es este caso ese sería el valor de " $a^2$ ". Observe también que a>b.

Por lo tanto, si el eje focal fuese vertical, su ecuación sería:

$$\frac{(y-k)^2}{a^2} + \frac{(x-h)^2}{b^2} = 1$$

Y su gráfica sería:



## Ejemplo 1

Graficar la Elipse que tiene por ecuación  $25x^2 + 16y^2 + 100x - 96y - 156 = 0$ . Indique todos sus elementos.

#### Solución

La ecuación general dada, la transformamos a la ecuación canónica completando cuadrados

$$25(x^2 + 4x + 4) + 16(y^2 - 6y + 9) = 156 + 100 + 144$$
$$25(x + 2)^2 + 16(y - 3)^2 = 400$$

Ahora dividimos para 400

$$\frac{25(x+2)^2}{400} + \frac{16(y-3)^2}{400} = \frac{400}{400}$$
$$\frac{(x+2)^2}{16} + \frac{(y-3)^2}{25} = 1$$

La última ecuación nos indica que la elipse tiene:

- 1. Centro 0(-2,3)
- 2. Eje **focal vertical**, debido a que el mayor denominador está sobre el termino que contiene a " y " Entonces  $a^2 = 25 \Rightarrow a = 5$
- 3.  $b^2 = 16 \Rightarrow b = 4$
- 4. Lo anterior nos permite calcular el valor de c.

$$c = \sqrt{a^2 - b^2}$$

$$c = \sqrt{25 - 16}$$

$$c = \sqrt{9}$$

$$c = 3$$

Por lo tanto la gráfica sería:



## Ejemplo 2

Hallar la ecuación general de la Elipse cuye eje mayor mide 20 unidades y los focos son los puntos de coordenadas  $(0,5\sqrt{3})$  y  $(0,-5\sqrt{3})$ .

#### SOLUCIÓN

Primero representamos en el plano cartesiano los puntos dados.



Observamos que la elipse tiene como eje focal, el eje y, que  $c=5\sqrt{3}$  . Como nos dicen que el eje mayor mide 20 unidades, entonces a=10

Esto, nos permite calcular b:

$$b^2 = a^2 - c^2$$

$$b^2 = (10)^2 - (5\sqrt{3})^2$$

$$b^2 = 100 - 75$$

$$b^2 = 25 \Rightarrow b = 5$$

Finalmente la ecuación de la elipse sería:

$$\frac{y^2}{100} + \frac{x^2}{25} = 1$$

$$4x^2 + y^2 = 100$$

## Ejemplo 3

Una pista de carros tiene forma de elipse, el eje mayor mide 10 km. Y el eje menor 6 km. Determine la distancia a que se encuentra un carro del centro de la pista en el momento en que pasa a la altura de uno de los focos.

#### Solución

Representando en el plano cartesiano la información proporcionada, tenemos:

Moisés Villena Muñoz



Cónicas

La ecuación de la elipse sería:  $\frac{x^2}{5^2} + \frac{y^2}{3^2} = 1$ 

Como 
$$a = 5$$
 y  $b = 3$  entonces  $c^2 = a^2 - b^2 = 25 - 9 = 16$   
 $c = 4$ 

La dimensión de la altura de uno de los focos a la elipse es la mitad de la dimensión del lado recto



Empleando el teorema de Pitágoras, resulta:  $d = \sqrt{4^2 + \left(\frac{9}{5}\right)^2}$   $d = \frac{\sqrt{481}}{\sqrt{481}}$ 

## Ejercicios Propuestos 3.3

1. Grafique el lugar geométrico definido por cada una de las siguientes ecuaciones: (Indique todos sus elementos).

a. 
$$4x^2 + 9y^2 - 16x + 18y - 11 = 0$$

b. 
$$9x^2 + 4y^2 + 18x - 16y - 11 = 0$$

2. Si los focos de una elipse son los puntos  $F_1=(-4,3), F_2=(2,3)$  y el perímetro del triángulo cuyos vértices son los focos y un punto de la elipse, es igual a 16, determine la ecuación de la

elipse. Resp.  $\frac{(x+1)^2}{25} + \frac{(y-3)^2}{16} = 1$ 

- 3. El arco de un puente es semielíptico, con eje mayor horizontal. La base tiene 30 m. y su parte más alta con respecto a la tierra es 10 m. Determine la altura del arco a 6 m. del centro de la base. Resp.  $h = 2\sqrt{21} \ m$
- 4. Determine los valores de k para que la ecuación  $x^2 + 2y^2 + 2x + 12y = k$  describa una elipse. Resp. k > -19

5. La Tierra gira alrededor del Sol siguiendo una órbita elíptica con excentricidad igual a 0.0172 y eje mayor de  $299 \times 10^6$  Km. Si el sol está ubicado en uno de los focos de la elipse , determine la mayor y la menor distancia entre la Tierra y el Sol. (NOTA: excentricidad  $e = \frac{c}{a}$ )

$$\mbox{Resp. } d_{\rm {\it MAYOR}} = 152.0714 \ \mbox{Km.} \quad d_{\rm {\it MENOR}} = 146.9286 \ \mbox{Km}.$$

## 3.4. Hiperbola

#### 3.4.1 Definición.

Sean  $F_1$  y  $F_2$  dos puntos del plano y sea a una constante positiva. La Hipérbola se define como el conjunto de puntos P(x,y) del plano tales que el valor absoluto de la diferencia de su distancia a  $F_1$  con su distancia a  $F_2$  es igual a 2a. Es decir:

Elipse= 
$$\{P(x, y)/|d(P, F_1) - d(P, F_2)| = 2a\}$$

A  $F_1$  y  $F_2$  se les denomina focos de la hipérbola.

#### 3.4.2 Ecuación Canónica

Sean  $F_1(-c,0)$  y  $F_2(c,0)$ , observe el gráfico:



De la definición tenemos:

$$|d(P, F_1) - d(P, F_2)| = 2a$$

$$\sqrt{(x+c)^2 + (y-0)^2} - \sqrt{(x-c)^2 + (y-0)^2} = 2a$$

Despejando un radical, elevando al cuadrado y reduciendo términos semejantes:

$$\left(\sqrt{(x+c)^2 + y^2}\right)^2 = \left(2a + \sqrt{(x-c)^2 + y^2}\right)^2$$

$$(x+c)^2 + y^2 = 4a^2 + 4a\sqrt{(x-c)^2 + y^2} + (x-c)^2 + y^2$$

$$x^2 + 2xc + c^2 + y^2 = 4a^2 + 4a\sqrt{(x-c)^2 + y^2} + x^2 - 2xc + c^2 + y^2$$

$$4cx - 4a^2 = 4a\sqrt{(x-c)^2 + y^2}$$

Dividiendo para 4, elevando al cuadrado y reduciendo términos semejantes:

$$(cx-a^{2})^{2} = (a\sqrt{(x-c)^{2} + y^{2}})^{2}$$

$$c^{2}x^{2} - 2a^{2}cx + a^{4} = a^{2}[(x-c)^{2} + y^{2}]$$

$$c^{2}x^{2} - 2a^{2}cx + a^{4} = a^{2}[x^{2} - 2cx + c^{2} + y^{2}]$$

$$c^{2}x^{2} - 2a^{2}cx + a^{4} = a^{2}x^{2} - 2a^{2}cx + a^{2}c^{2} + a^{2}y^{2}$$

$$c^{2}x^{2} - a^{2}x^{2} - a^{2}y^{2} = a^{2}c^{2} - a^{4}$$

$$(c^{2} - a^{2})x^{2} - a^{2}y^{2} = a^{2}(c^{2} - a^{2})$$

Dividiendo para  $a^2(c^2 - a^2)$ 

$$\frac{x^{2}(c^{2}-a^{2})}{a^{2}(c^{2}-a^{2})} - \frac{a^{2}y^{2}}{(c^{2}-a^{2})} = \frac{a^{2}(c^{2}-a^{2})}{a^{2}(c^{2}-a^{2})}$$
$$\frac{x^{2}}{a^{2}} - \frac{y^{2}}{c^{2}-a^{2}} = 1$$

Finamente, llamando  $b^2 = c^2 - a^2$  tenemos:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 Ecuación canónica de la hipérbola con centro  $O(0,0)$  y eje focal horizontal

Aquí "b" representa la longitud del segmento (Observe la gráfica anterior) llamado **semieje conjugado**.

Para los casos generales tenemos:

Suponga que el vértice es el punto V(h,k), y que el eje focal sea horizontal entonces su ecuación sería:

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

Y su gráfica sería:



<u>OBSERVACIÓN</u>: La dirección del eje focal esta indicada por el término positivo y además sobre este término estará " $a^2$ ".

Por lo tanto, si el eje focal fuese vertical, su ecuación sería:

$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

Y su gráfica sería:



## Ejemplo 1

Graficar la hipérbola que tiene por ecuación  $x^2 - 3y^2 + 2x + 6y - 1 = 0$ . Indique coordenadas de los vértices, coordenadas de los focos y ecuaciones de las asíntotas.

#### SOLUCIÓN:

Agrupando y completando cuadrados para darle la forma canónica a la ecuación:

$$(x^{2} + 2x + 1) - 3(y^{2} - 2y + 1) = 1 + 1 - 3$$
$$(x+1)^{2} - 3(y-1)^{2} = -1$$
$$3(y-1)^{2} - (x+1)^{2} = 1$$
$$\frac{(y-1)^{2}}{\frac{1}{3}} - \frac{(x+1)^{2}}{1} = 1$$

Se concluye que:

1. La hipérbola tiene eje focal vertical, debido a que el termino positivo es el que contiene a "y".

$$2. \qquad a^2 = \frac{1}{3} \Rightarrow a = \sqrt{\frac{1}{3}}$$

3. 
$$b^2 = 1 \Rightarrow b = 1$$

El valor de  $\,c\,$  se lo calcula empleando la fórmula  $\,c=\sqrt{a^{\,2}\,+b^{\,2}}\,$  , es decir:

$$c = \sqrt{a^2 + b^2} = \sqrt{\frac{1}{3} + 1} = \sqrt{\frac{4}{3}} = 2\sqrt{\frac{1}{3}}$$

Por lo tanto su gráfica sería:



Las ecuaciones de las asíntotas se determinan igualando a cero la ecuación canónica:

$$3(y-1)^{2} - (x+1)^{2} = 0$$

$$3(y-1)^{2} = (x+1)^{2}$$

$$\sqrt{3(y-1)^{2}} = \sqrt{(x+1)^{2}}$$

$$\sqrt{3}\sqrt{(y-1)^{2}} = \pm (x+1)$$

$$y-1 = \frac{\pm (x+1)}{\sqrt{3}}$$

$$y = 1 \pm \frac{\left(x+1\right)}{\sqrt{3}}$$

## Ejemplo 2

Hallar la ecuación general de la cónica que tiene por focos los puntos (1,3) y (7,3); y por vértices los puntos (2,3) y (6,3)

#### SOLUCIÓN:

Representando los focos y vértices en el plano cartesiano, sacamos las conclusiones necesarias para plantear la ecuación buscada



Del gráfico se observa que:

- 1. El eje focal debe ser horizontal.
- 2. El centro tiene coordenadas 0(4,3).
- 3. a = 2 y c = 3

El valor de  $\,b\,$  se calcula empleando la formula  $\,b=\sqrt{c^{\,2}-a^{\,2}}\,$  , es decir:

$$b = \sqrt{c^2 - a^2} = \sqrt{9 - 4} = \sqrt{5}$$

Ahora hallando la ecuación de la hipérbola, tenemos:

$$\frac{(x-4)^2}{4} - \frac{(y-3)^2}{5} = 1$$

$$5(x^2 - 8x + 16) - 4(y^2 - 6y + 9) = 20$$

$$5x^2 - 40x + 80 - 4y^2 + 24y - 36 - 20 = 0$$

$$5x^2 - 4y^2 - 40x + 24y + 24 = 0$$

## Ejercicios Propuestos 3.4

1. Grafique el lugar geométrico definido por cada una de las siguientes ecuaciones: (Indique todos sus elementos).

a. 
$$4x^2 - 9y^2 - 16x + 18y - 9 = 0$$

b. 
$$9x^2 - 4y^2 + 18x - 16y - 9 = 0$$

2. Determine la ecuación de las asíntotas de la hipérbola definida por  $4x^2 - 3y^2 + 8x + 16 = 0$ .

Resp. 
$$x + 1 = \pm \frac{\sqrt{3}}{2} y$$

3. Determine la ecuación de la recta que contiene al centro de la hiperbola cuya ecuación es  $4x^2 - y^2 + 32x - 8y + 49 = 0$  y es perpendicular a la recta definida por la ecuación 2x - 9y + 3 = 0. Resp. 9x + 2y + 44 = 0

- 4. Determine la distancia entre los vértices de la cónica con ecuación  $-9x^2 + 18x + 4y^2 + 24y = 9$  Resp. 6
- 5. Si una hipérbola, una circunferencia de radio 5 y el rectángulo ABCD de lado AB=6, están ubicados en el plano cartesiano como se muestra en la figura, determine la distancia entre los vértices de la hipérbola.



Otras regiones del plano, importantes a considerar, serían aquellas que están definidas por **inecuaciones**.

## Ejemplo 1

Grafique la región del plano  $R = \{(x, y)/y > x^2 - 4\}$  SOLUCIÓN:



# Ejemplo 2

Grafique la región del plano  $R = \{(x, y)/x^2 + y^2 \le 4\}$ 



# Ejemplo 3

Grafique la región del plano  $R = \{(x, y)/x^2 - y^2 \le 1\}$ 



# Ejemplo 4

Grafique la región del plano  $R = \{(x, y) / x^2 - 4 \le y \le 2x - 1\}$ 



# Ejemplo 5

Grafique la región del plano  $R = \left\{ \left( x, y \right) / - \sqrt{4 - x^2} \le y \le -\frac{1}{2}x + 2 \right\}$ 



## Ejercicios Propuestos 3.5

1. Si  $p(x, y) : \frac{x^2}{a^2} - \frac{y^2}{b^2} \le 1$ , grafique Ap(x, y).

2. Grafique las regiones en el plano definidas por:

1. 
$$3x^2 + 5y^2 \le 9$$

2. 
$$x^2 + y^2 \ge 16$$

$$3. \qquad \frac{x^2}{18} + \frac{y^2}{9} < 1$$

4. 
$$\frac{x^2}{25} - \frac{y^2}{100} \ge -$$

3. Grafique en el plano el conjunto solución de los siguientes sistemas

1) 
$$\begin{cases} x^2 + y^2 \le 10 \\ x + y \ge 2 \end{cases}$$

2) 
$$\begin{cases} x^2 + y^2 > 1 \\ x^2 + y^2 < 4 \end{cases}$$

#### Misceláneos

1. Grafique el lugar geométrico definido por cada una de las siguientes ecuaciones: (indique vértices, focos, centros asíntotas)

1. 
$$y^2 + 4y - 6x + 22 = 0$$

2. 
$$3x^2 - 5y^2 + 6x + 10y = 32$$

3. 
$$x^2 + y^2 - 12x - 12y + 36 = 0$$

4. 
$$x^2 + 3y^2 + 6x + 6 = 0$$

5. 
$$x^2 + y^2 + 4x - 3y + 9 = 0$$

1. 
$$y^2 + 4y - 6x + 22 = 0$$
  
2.  $3x^2 - 5y^2 + 6x + 10y = 32$   
3.  $x^2 + y^2 - 12x - 12y + 36 = 0$   
4.  $x^2 + 3y^2 + 6x + 6 = 0$   
5.  $x^2 + y^2 + 4x - 3y + 9 = 0$   
6.  $9x^2 - 4y^2 - 54x + 8y + 113 = 0$   
18.  $(y-1)^2 = 2x + 4$   
9.  $x^2 - 4x - 4y = 0$   
10.  $x^2 - 4x + y^2 - 16y + 4 = 0$   
11.  $25x^2 + 16y^2 + 100x - 96y - 156 = 0$   
12.  $y^2 - 4y - 8x + 28 = 0$   
13.  $4x^2 - 3y^2 + 8x + 16 = 0$ 

7. 
$$4x^2 + 9y^2 - 8x = 32$$

$$8. (y-1)^2 = 2x + 4$$

9. 
$$x^2 - 4x - 4y = 0$$

10. 
$$x^2 - 4x + y^2 - 16y + 4 = 0$$

11 
$$25r^2 + 16v^2 + 100r - 96v - 156 -$$

12. 
$$v^2 - 4v - 8x + 28 = 0$$

13. 
$$4x^2 - 3y^2 + 8x + 16 = 0$$

2. Califique como Verdadera o falsa cada una de las proposiciones. Justifique formalmente su

a. La ecuación  $x^2 + y^2 + ax + by = c$  representa una circunferencia para todos los números reales diferentes de cero a,b,c.

b. La distancia entre los focos de la gráfica de  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  es  $2\sqrt{a^2 - b^2}$ 

c. La ecuación  $x^2 + y^2 - 2kx + 4 = 0$  describe una circunferencia si y sólo si  $k \in (-\infty, -2) \cup (2, +\infty)$ 

d. El vértice de una parábola es el foco de la otra parábola y viceversa, si la ecuación de una de ellas es  $y^2 - 2y - 4x + 1 = 0$ , entonces la ecuación de la otra parábola es  $y^2 + 2y + 2x - 4 = 0$ 

e. La cónica de ecuación  $y = x^2 + 2x - 1$ , tiene su foco en (1,0).

f. Sea la parábola P, cuya ecuación es  $P: 2y^2 - 3y + 5x + 2 = 0$ , su foco tiene por coordenadas  $F_0\left(-\frac{107}{40}, \frac{3}{4}\right)$ 

g. Sea la ecuación  $Ax^2 - 2y^2 + 3x - 2y = 0$  con  $Re = \mathbb{R}$ ;  $\forall A > 0$ , la ecuación describe una hipérbola.

h.

Determine la ecuación de la circunferencia que tiene como centro el vértice de la parábola que tiene por ecuación  $x + 3y^2 - y = 0$ , y contiene al foco de la misma.

Resp. 
$$\left(x - \frac{1}{12}\right)^2 + \left(y - \frac{1}{6}\right)^2 = \frac{1}{144}$$

4. Una circunferencia tiene por ecuación  $x^2 + (y-2)^2 = 1$ . La recta de ecuación y = kx donde  $k \in R$ , es tangente a la circunferencia. Halle todos los valores posibles de k.

Resp. 
$$k = \pm \sqrt{3}$$

5. Determine la ecuación del conjunto de puntos P(x, y) tales que la suma de la distancia de P a los puntos (-4,0) y (4,0) es 14.

Resp. 
$$\frac{x^2}{49} + \frac{y^2}{33} = 1$$

6. Determine la ecuación del lugar geométrico de los puntos P(x, y) tales que la distancia al punto (1,-3) es dos veces la distancia a la recta definida por la ecuación x-4=0.

Resp. 
$$\frac{(x-5)^2}{4} - \frac{(y+3)^2}{12} = 1$$

7. Un avión sigue una trayectoria tal que su distancia a una estación de radar situada en el punto (2,0) es igual a un tercio de su distancia a una carretera que sigue el trayecto de la recta definida por x=-2. Determine la ecuación de la trayectoria que sigue el avión.

Resp. 
$$\frac{\left(x-\frac{5}{2}\right)^2}{\frac{9}{4}} + \frac{y^2}{2} = 1$$

8. Determine la ecuación del lugar geométrico compuesto de puntos P(x, y) que cumplen con la condición de que su distancia al eje 'y' es el doble que su distancia al punto (2,-3).

Resp. 
$$3x^2 + 4y^2 - 16x + 24y + 52 = 0$$

9. Un punto se mueve de tal manera que su distancia al punto (2,-2) es siempre igual a un tercio de su distancia al punto (4,1). Determine la ecuación del lugar geométrico,

Resp. 
$$8x^2 + 8y^2 - 28x + 38y + 55 = 0$$

10. Determine la ecuación general del lugar geométrico definido por el conjunto de puntos (x, y) ubicados en el plano tales que la distancia al punto (-1,-2) es el doble de la distancia a la recta definida por la ecuación x-3=0.

Resp. 
$$3x^2 - y^2 - 26x - 4y + 31 = 0$$

11. Determine la ecuación del lugar geométrico de un punto que se mueve de tal manera que la distancia a la recta x + 3 = 0 es siempre dos unidades mayor que su distancia al punto (1,1).

Resp. 
$$y^2 - 2y - 4x + 1 = 0$$

12. Sea p(x, y):  $\begin{cases} x^2 + 4y^2 - 25 = 0 \\ 2x^2 - 2y^2 - 5 = 0 \end{cases}$  hallar Ap(x, y).

Resp. 
$$Ap(x, y) = \{ \sqrt{7}, \frac{3}{2}\sqrt{2} \} (\sqrt{7}, -\frac{3}{2}\sqrt{2}) (-\sqrt{7}, \frac{3}{2}\sqrt{2}) (-\sqrt{7}, -\frac{3}{2}\sqrt{2}) \}$$

13. Hallar los valores de 'b' para los cuales el sistema:  $\begin{cases} x^2 + y^2 = 4 \\ y = x + b \end{cases}$  tiene solución única.

Resp. 
$$b = \pm 2\sqrt{2}$$

14. Sea el sistema  $\begin{cases} y^2 - 8y - a_1x + 3a_1 + 16 = 0 \\ y^2 - 8y - a_2x - 2a_2 + 16 = 0 \end{cases}, \ a_1, a_2 \in \mathbb{R}^+ \text{ . Encuentre los valores de}$ 

 $a_1, a_2$  para que el sistema tenga solución en  $\mathbb{R}^2$ 

Resp. 
$$a_1 > a_2 > 0$$

15. Encontrar el conjunto solución de los siguientes sistemas (realice las respectivas gráficas)

1. 
$$\begin{cases} y = x^2 \\ y = 2x + 3 \end{cases}$$
 3. 
$$\begin{cases} yx^2 = 20 \\ y = 9 - x^2 \end{cases}$$

2. 
$$\begin{cases} x^2 + y^2 = 25 \\ x^2 - 6y = 9 \end{cases}$$
4. 
$$\begin{cases} x^2 + y^2 = 12 \\ x^2 - y^2 = 4 \end{cases}$$
Resp. 1. 
$$Ap(x, y) = \{(3,9), (-1,1)\}$$
2. 
$$Ap(x, y) = \{(\sqrt{21}, 2), (-\sqrt{21}, 2)\}$$
3. 
$$Ap(x, y) = \{(2,5), (-2,5), (\sqrt{5}, 4), (-\sqrt{5}, 4)\}$$
4. 
$$Ap(x, y) = \{(2\sqrt{2}, 2, 2), (2\sqrt{2}, -2), (-2\sqrt{2}, 2)\}$$

4.  $Ap(x,y) = \{(2\sqrt{2},2)(2\sqrt{2},-2)(-2\sqrt{2},2)(2\sqrt{2},-2)\}$ 16. Hallar la ecuación de la recta que contiene al punto (-1,6) y es tangente al lugar geométrico que tiene por ecuación  $x^2 + y^2 - 2x - 6y - 3 = 0$ .

Resp. 
$$2x - 3y + 20 = 0$$

17. Hallar la ecuación de la recta que tiene pendiente  $-\frac{3}{2}$  y es tangente al lugar geométrico que tiene por ecuación  $4x^2 + 4y^2 + 8x + 4y - 47 = 0$ .

**Resp.** 
$$y = -\frac{3}{2}x + \frac{9}{2}$$
 0  $y = -\frac{3}{2}x - \frac{17}{2}$ 

18. Hallar la ecuación de la recta que es paralela a la recta que tiene por ecuación x+4y+31=0 y es tangente al lugar geométrico que tiene por ecuación  $x^2+y^2+6x-8=0$ .

Resp. 
$$y = -\frac{1}{4}x + \frac{7}{2}$$
 o  $y = -\frac{1}{4}x - 5$ 

19. Determine la ecuación de la recta l que contiene al centro de la elipse de ecuación  $4x^2 + 9y^2 + 8x - 36y + 4 = 0$  y contiene al foco de la parábola de ecuación  $x^2 - 6x - 4y + 5 = 0$ .

Resp. 
$$x + 2y - 3 = 0$$

20. Determine la ecuación de la parábola que es cóncava hacia arriba y contiene tres de los vértices de la elipse cuya ecuación es  $9x^2 + 4y^2 = 36$ .

Resp. 
$$x^2 = -\frac{4}{3}(y-3)$$

21. Determine el valor de la distancia mínima entre la circunferencia C y la recta L, si sus ecuaciones son respectivamente  $C: x^2 + y^2 + 2x - 4y - 4 = 0$  y L: x - 2y - 6 = 0.

Resp. 
$$d = \frac{11}{\sqrt{5}} - 1$$

22. Dadas una circunferencia C y una elipse E que son concentricas de las cuales se conoce la ecuación de la elipse  $E:9x^2+16y^2+18x-64y-62=0$  y que C es tangente al eje , determine la ecuación de C .

Resp. 
$$(x+1)^2 + (y-2)^2 = 22$$

23. Demostrar que la ecuación de la recta tangente a la circunferencia  $x^2 + y^2 = r^2$ , en el punto  $(x_1, y_1)$  perteneciente a la circunferencia es:  $x_1x + y_1y = r^2$ .