학번 2021113490 인 이름 **।** ऋस

[Automata Homework #1]

기 Grammar G가 다음과 같이 정의되었다. $G = (\{A,S\},\{a,b\},S,P)$ P $S \rightarrow baA|\lambda,A \rightarrow baA|\lambda$

L(G)를 찾고, 증명하시오.

n the sty

[(G)=7(ba)" | n20]

[assumption] n=x e=y w=> (hatA => Chat & sill sill size he [Inductive stop] M=K+1 steff w= Chark+1 (2+304 =924) St Chark+ Chark+1 (2+304 =924) Start Chark+1 € two if som then wel.

let n: #of defination step.

[basis] /=[. 24] S= 2= Chaje[/=245] S= kaA== ba.e]= 1 [assumption] 1=k 2 eff w bath A => (ba) He l de Azi

[Inductive step] $n=k\pi$ | g of f | solve derivation f | f

3] What language does the grammar with there products generate?

 $S \to Aa$, $A \to B$, $B \to Aa|b$

$$S \rightarrow A\alpha$$

 $A \rightarrow B$
 $B \rightarrow A \rightarrow Ab$

S=Aa=Ba=Aaa terminal 5×mbol

학번	학번 2024/1349 0		확 이	확 이			
이름	9 MAK	분반		1		2	

[Automata Homework #2]

1] Convert nfa to an equivalent dfa.

2] Find dfa for the following language on $\Sigma = \{a,b\}$

 $L = \{w : |w| \bmod 3 = 0\}$

3] Show that the language $L = \{b^n : n \ge 0, n \ne 4\}$ is regular.

so Lis Regular Language.

4] In the graph of Ex2.8 (ppt slide 10 page), find $\delta^*(q_0, 1011)$ and $\delta^*(q_1, 0010)$

S#(0,10010)=\$

5] Find an nfa without λ -transition and with a single final state that accepts the set $\{b\} \cup \{a^n | n > 2\}$

학번 교기 113490			확 이	
이름 이 첫년서	분반	1	2	

[Automata Homework #3]

1] Find a regular expression for the language

 $L = \{w \in \{0,1\}^* : w \text{ has no pair of consecutive } 0's\}$

2] Find all strings in $L((10+0)^*0(1+10)^*)$ of length less than four.

3] Use the construction in Theorem 3.1 to find an nfa that accepts the language $L(ab^*aa + bba^*a)$

4] Find a regular grammar that generates the language $L(aa^*(ba+b)^*)$

[Automata Homework #4]

학번 2021/13490			확 이	
이름 이 등 시	분반	1	2	

1] Use pumping lemma to prove that $L = \{a^n b^k c^{n+k} \mid n \geq 0, k \geq 0\}$ is not regular.

Assume L is regular Amxo me choose M= amp Camer (/m/>m) consider & possible decomp of w= zyz (zyk=m, ly 121) y has the form of OK (I K &m) set i=0, 2z=0mk/mc2m &1 pumping lemma is tabe. -: L is not regular.

2] Use pumping lemma to prove that $L = \{a^n b^l \mid n \neq l\}$ is not regular.

throw, choose $w = a^{ml} \frac{m+l}{b}$. (IWIZM)

onsider all possible decomposition of $w = a \cdots ab \cdots b = zyz$ (Izy1Em, [y1≥1)

onsider all possible decomposition of $w = a \cdots ab \cdots b = zyz$ (Izy1Em, [y1≥1)

onsider all possible decomposition of $w = a \cdots ab \cdots b = zyz$ (Izy1Em, [y1≥1) $y = a^k$ ($1 \le k \le m$) $zy^2z = a^{m+ci-i)k}$ z^{m+l} :: L is not regular.

3] Show that $L = \{w \mid n_a(w) = n_b(w)\}$ is not regular. Is $(L^* \text{ regular})$

4m>0, chase w= ambm. Clwl2m)

consider all possible decomposition of w= a...a.b...b = zyz(|zy|\sum, |y|\z|)

() = 0k (1-k=m)

set 1=2. , 2y22 = 0, 0 €L

Lis not regular.

et L's per expression is 1; L* is not veg slar. (is closed under +.)

مک 4] Prove that $L=\{w\,|\,n_a(w)\neq n_b(w)\}$ is not regular. Assume L is Regular.

[= [w | Nocw) = Nocw) is replan too.

(we know. [= 70,6 n] nzog is not regular)

now)=now) and control order.

but I' is not regular so I' is not regular. then. L is not regular.

V m>0 W= 0mb m+m! (IWI2m).

-m -in+m!

-m -in+m! = -21,42 (1247)\(\text{My ly1\(\gamma\)}

1=0k(14ksm) $\frac{1}{2} = 0$ $\frac{1}{2} = 0$) zymi z= mtmi mtmi #L

- Lis not rapplar

학번			확 이	확 이			
이름		분반		1		2	

[Automata Homework #5]

1] Give a derivation tree for w = abbbaabbaba for the grammar in Example 5.2

2] Find context-free grammars for the language $L = \{a^n b^m \mid n \neq 2m\}$

3] Find an s-grammar for $L = (000^*11 + 11)$

4] Show that the following grammar is ambiguous. $S \rightarrow bSaS|aSbS|\lambda$

학번 **교02/11849/0** 인 이름 분반 MEGLO

[Automata Homework #6]

1] A grammar is given below.

 $S \rightarrow aA|aBB, \ A \rightarrow aaA| \searrow B \rightarrow bB|bbC, \ C \rightarrow B$

- (1) Remove all unit-productions, all useless productions, and all λ -productions.
- 1) Romone all 2-productions

VN=7A9 S-AAIaBBIA, A-MONIDAA., B-6BI66C, C,-B

@ Ramore unit-productions

SYNATORBIA., A-ONTONA.

(SYNATORBIA., A-ONTONA.)

(SYNATORBIA., A-ONTONA.)

(SYNATORBIA., A-ONTONA.)

(SYNATORBIA., A-ONTONA.)

3 Remove useless - productions

VI=PAS) QAla., A-ran acid

(2) Change to Chomsky Normal Form.

step 1) S-JVA (a., A-) VVA, Va-a

step 2) S-VA/a A-VVO/VO/VO-A, D, -VA.

(3) Use CYK algorithm to check the grammar generates a^5 00000. V11=17.5, Va. C V22 V32 Vac V5 35

V13=V11V23 V V12V23= (S,D) V24 V25 \$2.

V(4= V11V24 UV12V24 UV13V44 = PAJ. V3 32

V15=V11/25UV12V35UV13/45UV14V55

V11/25= Ry of 24/29

 SeV_{15} . -IOSeICE)

	학번 202((13490) 확 확
[Automata 2022 – 1 Homework]	이름 하셔. 분반 CO . 1
[Automata Homework #7]	<u> </u>
1] Construct an appla that accepts the r	regular language $L(aaa^*bba)$ transition.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	State. $ \begin{array}{ll} \delta(\Theta_{2}, O_{7} Z) = f(\Theta_{1}, 12) f \\ \delta(\Theta_{1}, O_{7}, 1) = f(\Theta_{2}, D) f \\ \delta(\Theta_{2}, O_{7} Z) = f(\Theta_{2}, Z) f \\ \delta(\Theta_{2}, O_{7} Z) = f(\Theta_{3}, Z) f \\ \delta(\Theta_{3}, O_{7} Z) = f(\Theta_{3}, D) f \\ \delta(\Theta_{3}, O_{7} Z) = f(\Theta_{4}, Z) f \\ \delta(\Theta_{3}, O_{7} Z) = f(\Theta_{4}, Z) f \\ \end{array} $
1//~ \\	36, p., p., D., P., M., M., M., D., D., D., D., D., D., D., D., D., D
<i>"</i>	$2/\sqrt{6}$ (). $1/\sqrt{6}$ (). In the grammar $S \to bSSS \mid ab$
O S→6551 0 = (GM: A→	•
Bn. 1202de-C	3. Lost final
β→ β ·	$\mathcal{S}(\mathcal{Q}_{1-1}) \sim \mathcal{Z} = \mathcal{Z}(\mathcal{Q}_{1-1})$
3 pudn-S	10 (CF-17 7) 1 (CG4. 727).
[6.52,160]=(5,5,00).8]] (M=- (100,0,0,0,0,1,10,6),15,A,B,29,)
(3 5-asslab) = (0,585)	8, Qo, Z, PQ+7)
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \end{array} $ 3] Is the language $L = \{a^n b^n : n \ge 1\} \cup \{b\}$	6. a. Q. a Q. b. D. D. Q.
S(Q2, 1)=7(Q2, 20)] S(Q2, 2,0)=7(Q3, 0)]	DA=1 ZEPO1 - (b,0,0) (b,1,11) O(2,7,6) + O(3) S(Q,5,6)=0 (b,0,0) (b,0,0) (b,1,2)
M=(102,0,0) (032,031,70,17	(x,0,0).

학번 **교회[134억)** 확 인 이름 **이 청사** 분반 **호이** 1 2

[Automata Homework #9]

$$\mathcal{S}(\mathcal{Q}_{0},0)=(\mathcal{Q}_{0},0,R)$$

$$\mathcal{E}(\Omega_2,0)=(\Omega_3,0,L)$$

$$S(Q_3,0) = (Q_4,0,L)$$

Q0.1011. L. 0Q0011.

0000 f. 0000 f.

000 D'0 - 000 - 00°000 -

