Badanie zjawiska Halla

1 Wstęp teoretyczny

Efekt Halla - zjawisko powstania różnicy potencjałów(napięcia) pomiędzy przeciwległymi ściankami półprzewodnika lub metalu w kierunku prostopadłym do kierunku przepływu prądu oraz kierunku wektora indukcji zewnętrznego pola magnetycznego.

Na ładunek elektryczny poruszający się w polu elektromagnetycznym działa **siła Lorentz'a** i wyrażana jest wzorem

$$F = qvB\sin\alpha$$

Wektor siły jest prostopadły zarówno do kierunku wektora indukcji magnetycznej i wektora prędkości.

Natężenie pola magnetycznego przewodnika jest tym większe, im większe jest natężenie prądu w przewodniku i im mniejsza jest odległość punktu pola od przewodnika. Natężenie pola magnetycznego określa się wzorem

$$H = \frac{l}{2\pi r} \left[\frac{A}{m} \right]$$

Solenoid to cewka powietrzna(bez rdzenia) która wytwarza jednorodne pole magnetyczne. Natężenie pola wyrażane jest wzorem

$$H = n \cdot I$$

gdzie:

H - nateżenie pola

n - liczba zwojów cewki

I - natężenie prądu elektrycznego

Efekt Halla umożliwia pomiar znaku ładunków poruszających się w przewodniku oraz ich koncentrację oraz dla znanych materiałów pozwala określić wartość indukcji pola magnetycznego.

2 Opracowanie pomiarów

Tabela przedstawia wyniki przeprowadzonych pomiarów:

U_Y, mV					
Is, mA	I = 0,000(29)A	I = 1,000(40)A	I = 2,000(52)A	I = 3,000(64)A	
-6,000(33)	-2,200(62)	-0,600(70)	1,100(75)	2,900(80)	
-5,000(29)	-1,800(61)	-0,500(68)	0,900(72)	2,400(77)	
-4,000(24)	-1,500(60)	-0,400(66)	0,700(69)	1,900(73)	
-3,000(20)	-1,100(59)	-0,300(64)	0,500(66)	1,500(69)	
-2,000(15)	-0,700(57)	-0,200(62)	0,300(62)	1,000(63)	
-1,000(10)	-0,300(56)	-0,100(58)	0,200(58)	0,500(59)	
0,000(55)	0,000(55)	0,000(55)	0,000(55)	0,000(55)	
1,000(10)	0,400(56)	0,100(59)	-0,100(57)	-0,400(59)	
2,000(15)	0,800(57)	0,300(61)	-0,200(60)	-0,800(64)	
3,000(20)	1,200(58)	0,400(63)	-0,400(63)	-1,300(68)	
4,000(24)	1,700(59)	0,500(65)	-0,500(66)	-1,700(72)	
5,000(29)	2,100(60)	0,700(67)	-0,600(69)	-2,200(77)	
6,000(33)	2,500(61)	0,800(69)	-0,800(72)	-2,600(81)	

Niepewności pomiarowe zostały obliczone na podstawie wzoru

$$u_a = \frac{x}{\sqrt{3}}$$

, gdzie x to niepewność pomiarowa przedstawiona przez producenta sprzętu pomiarowego i wynosi ona następująco:

$$2,0\%W+50mA$$
 - miliamperomierz $0,8\%W+10\mu A$ - amperomierz $0,5\%W+100\mu V$ - woltomierz

Od wszystkich napięć poprzecznych odjęliśmy napięcie występujące przy zerowym prądzie cewki. Wyniki ukazuje tabela:

$U_{H1} = U1 - U0, V$	$U_{H2} = U2 - U0, V$	$U_{H3} = U3 - U0, V$
I = 1A	I = 2A	I = 3A
0,001600(95)	0,003300(98)	0,005100(11)
0,001300(93)	0,002700(94)	0,004200(99)
0,001100(91)	0,002200(91)	0,003400(96)
0,000800(89)	0,001600(89)	0,002600(93)
0,000500(87)	0,001000(87)	0,001700(90)
0,000200(85)	0,000500(85)	0,000800(87)
0,000000(83)	0,000000(83)	0,000000(83)
-0,000300(85)	-0,000500(86)	-0,000800(86)
-0,000500(87)	-0,001000(89)	-0,001600(89)
-0,000800(89)	-0,001600(92)	-0,002500(93)
-0,001200(91)	-0,002200(95)	-0,003400(95)
-0,001400(93)	-0,002700(97)	-0,004300(98)
-0,001700(94)	-0,003300(99)	-0,005100(10)

Niepewność obliczona ze wzoru:

$$u(U_H) = \sqrt{(u(U_Y))^2 + (u(U_Y0))^2}$$

Na wykresie(1) przedstawiliśmy zależności napięcia Halla U_H w funkcji natężenia prądu sterującego I_S Następnie zestawiliśmy współczynniki kierunkowe otrzymanych charakterystyk. Ukazuje je tabela:

I = 1A	I = 2A	I = 3A
-0,2736(39)	-0,5429(41)	-0,8484(45)

Wzór na stałą Halla R_H :

$$R_H = \frac{d \cdot U_H}{A \cdot I_s \cdot I}$$

,gdzie

A = 0,0045

d = 0,0815(50)mm

I przekształcając go na współczynnik a otrzymujemy

$$a = \frac{AR_H I}{d}$$

$$R_H = \frac{ad}{AI}$$

$$R_H = \frac{0,2736 \cdot 0,0016}{0,0045 \cdot -6 \cdot 1} = -4,9552$$

R_H				
I = 1A	I = 2A	I = 3A		
-4,95(39)	-4,92(33)	-5,12(35)		

Rachunek jednostek:

$$\frac{mV}{AT} = \frac{m}{A} \cdot \frac{As^2m^2kg}{As^3kg} = \frac{m^3}{As} = \frac{m^3}{C}$$

Niepewność obliczyliśmy wykorzystując prawo przenoszenia niepewności:

$$u(R_H) = \sqrt{(\frac{d}{AI}u(a))^2 + (\frac{a}{AI}u(d))^2 + (\frac{-ad}{AI^2}u(I))^2}$$

Srednia ważona i jej niepewność zostały obliczone ze wzorów

$$\frac{\sum \omega_i \phi_i}{\sum \phi_i}$$

,
gdzie ϕ to waga obliczonej wartości obliczaną wzorem

$$\phi = \frac{1}{u(R_H)^2}$$

a ω to wartości R_H

Niepewność średniej ważonej obliczyliśmy z

$$\frac{1}{\sqrt{\Sigma\phi_i}}$$

Więc średnia ważona obliczanej wartości wynosi

$$R_{Hsr} = -4,95(24)\frac{m^3}{C}$$

Ze wzoru obliczyliśmy czułość hallotronu

$$\gamma_0 = \frac{a}{AI}$$

$\gamma, \frac{V}{AT}$				
$a_1 = -0,2736$	$a_2 = -0,5429$	$a_3 = -0.8484$		
-60,80(39)	-60,32(33)	-62,84(35)		

Niepewność wyliczyliśmy propagacją niepewności

$$\sqrt{(\frac{1}{AI}u(a))^2 + (\frac{-a}{AI^2}u(I))^2}$$

Obliczyliśmy średnią ważoną czułości

$$\gamma_{sr} = -61, 23(1, 54) \frac{V}{AT}$$

3 Wnioski

Zbadane przez nas napęcie poprzeczne pozwoliło nam wyznaczyć stałą Halla. Wartość średnia obliczonej przez nas stałej Halla jest ujemna co świadczy o tym, że w układzie został zastosowany półprzewodnik typu n(domieszkowany).

