

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

Introduction to lasers

Pr A. Desfarges-Berthelemot – Limoges University

Chapter 3: Laser Oscillator

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

Oscillator: amplifier with a positif feedback

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

I. Types of cavities (see chapter VI for actual architectures)

Rear (end) mirror (R=1) Amplifying medium Pumping energy

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

II. First condition for laser oscillation: Gain condition

1. Laser threshold for Fabry Perot cavity

After one round trip in the cavity, i.e. two passages through the amplifying medium, the small signal gain is : $e^{2\gamma_0 d}$

And the cavity losses (except the ones due to mirrors, i.e diffusion, spontaneous emission, finite size of cavity components) : $e^{-2\alpha d}$

E((A)PA

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

After one round-trip inside the cavity:

To complete

E((MIFAE)

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

2. Laser threshold for ring cavity

E((A)

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

III - Second condition for laser oscillation: Phase condition

To complete

→ Laser frequencies

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

To complete

IV - Steady-state operation

→ Operating point

Laser pumped above threshold ($\gamma_0 > \alpha_t$)

Transient regime

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

To complete

E((Mind

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

Comment

P = *intracavity laser power*