SEMICONDUCTOR DEVICES

MOS Transistors: Part 2

M.B.Patil
mbpatil@ee.iitb.ac.in
www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering Indian Institute of Technology Bombay

M. B. Patil, IIT Bombay

 V_{FB}

V_G (Volts)

 $\times 10^{12}/\text{cm}^2$

0.5

-0.5

-1.0

MOS capacitor depletion inversion accumulation $-qV_{G}$ * $Q_s/q = \int_0^\infty (N_d^+ - N_a^- + p - n) \, dy$. $q\phi_B$ qV_G ψ $2\phi_B$ $\times 10^{12}/\text{cm}^2$ E_y 0.5 $q\phi_{\rm m}=4.1\,{\rm eV}$ -0.5 $q\chi_s = 4.05 \, eV$ ρ $t_{ox} = 50 \text{ nm}$ -1.0 $N_a = 5 \times 10^{16} \, cm^{-3}$

0 -

M. B. Patil, IIT Bombay

V_G (Volts)

* $Q_s/q = \int_0^\infty (N_d^+ - N_a^- + p - n) \, dy.$

* $V_G = V_{FB} \rightarrow \text{flad bands} \rightarrow Q_s = 0.$

 $\times 10^{12} / cm^{2}$

V_G (Volts)

0.5

-0.5

-1.0

 $\times 10^{12}/\text{cm}^2$

0.5

-0.5

-1.0

*
$$Q_S/q = \int_0^\infty (N_d^+ - N_a^- + p - n) \, dy$$
.
* $V_G = V_{FB} \rightarrow \text{flad bands} \rightarrow Q_S = 0$.

*
$$V_G < V_{FB}
ightarrow$$
 accumulation

V_G (Volts)

$$V_G \subset V_{FB} \to \text{accumulation}$$

 $\to Q_s > 0.$

depletion

inversion

accumulation

*
$$Q_s/q = \int_0^\infty (N_d^+ - N_a^- + p - n) dy.$$

*
$$V_G = V_{FB}
ightarrow ext{flad bands}
ightarrow ext{Q_s} = 0.$$

*
$$V_G < V_{FB} \rightarrow$$
 accumulation

$$\rightarrow Q_s > 0.$$

*
$$V_G > V_{FB}
ightarrow {
m depletion}$$
 or inversion $ightarrow Q_s < 0$ in either case.

*
$$Q_s/q = \int_0^\infty (N_d^+ - N_a^- + p - n) dy.$$

*
$$V_G = V_{FB} \rightarrow \text{flad bands} \rightarrow Q_s = 0.$$

*
$$V_G < V_{FB} \rightarrow \text{accumulation}$$

 $\rightarrow Q_s > 0.$

*
$$V_G > V_{FB} \rightarrow$$
 depletion or inversion

$$ightarrow Q_s < 0$$
 in either case.

* Home work: Sketch ρ versus y for the case of an n-type substrate.

M. B. Patil, IIT Bombay

 V_{FB}

V_G (Volts)

 $\times 10^{12}/\text{cm}^2$

0.5

-0.5

-1.0

 $\times 10^{12} / cm^{2}$

0.5

-0.5

-1.0

* The "inversion charge" Q_l is defined as

* The inversion charge
$$Q_l$$
 is defined as
$$Q_l = -q \int_0^\infty n \, dy \to \frac{Q_l}{(-q)} = \int_0^\infty n \, dy.$$

V_G (Volts)

* The "inversion charge" Q_l is defined as

$$Q_{I} = -q \int_{0}^{\infty} n \, dy \to \frac{Q_{I}}{(-q)} = \int_{0}^{\infty} n \, dy.$$

* Q_l has a special significance in a MOS transistor since it represents the mobile charge (due to electrons in this case) which, unlike the charge due to the fixed acceptor and donor ions, can contribute to current.

- * The "inversion charge" Q_l is defined as
- $Q_I = -q \int_0^\infty n \, dy \to \frac{Q_I}{(-q)} = \int_0^\infty n \, dy.$ Q_I has a special significance in a MOS transistor since it represents the mobile charge (due to electrons in this case) which,

unlike the charge due to the fixed acceptor and donor ions, can contribute to current.

* $Q_I/(-q)$ gives the total number of electrons in the semiconductor per unit area (in the x-z plane).

* Ionised acceptor density $N_a^- \approx N_a$ at T = 300 K.

- * Ionised acceptor density $N_a^- \approx N_a$ at T = 300 K.
- * Hole density p(y) which is equal to p_0 ($\approx N_a$) except near the surface.

- * Ionised acceptor density $N_a^- \approx N_a$ at T = 300 K.
- * Hole density p(y) which is equal to p_0 ($\approx N_a$) except near the surface.
- * $p(y)-N_a^-\approx -N_a$ near the surface and becomes zero as we move into the bulk semiconductor region.

- * Ionised acceptor density $N_a^- \approx N_a$ at T = 300 K.
- * Hole density p(y) which is equal to p_0 ($\approx N_a$) except near the surface.
- * $p(y)-N_a^- \approx -N_a$ near the surface and becomes zero as we move into the bulk semiconductor region.
- * $n(y) = n_0 = \frac{n_i^2}{p_0}$ in most of the device except near the surface where it increases dramatically.

Consider the onset of inversion. We have $\psi_s \approx 2\,\phi_B$, and the electron density at the interface has not yet become significant $\to n(y) = 0$.

Consider the onset of inversion. We have $\psi_s \approx 2 \, \phi_B$, and the electron density at the interface has not yet become significant $\to n(y) = 0$.

With the depletion approximation, and with $Y_{\rm dep}$ as the depletion width at the onset of inversion, we get

$$rac{d\mathcal{E}_{y}}{dy} = rac{
ho}{\epsilon}
ightarrow \int_{0^{+}}^{Y_{\mathsf{dep}}} d\mathcal{E}_{y} = rac{1}{\epsilon_{\mathsf{Si}}} \int_{0^{+}}^{Y_{\mathsf{dep}}}
ho \, dy$$

Consider the onset of inversion. We have $\psi_s \approx 2 \, \phi_B$, and the electron density at the interface has not yet become significant $\to n(v) = 0$.

With the depletion approximation, and with $Y_{\rm dep}$ as the depletion width at the onset of inversion, we get

$$rac{d\mathcal{E}_{ extsf{y}}}{d extsf{y}} = rac{
ho}{\epsilon}
ightarrow \int_{0^{+}}^{ extsf{Y}_{ extsf{dep}}} d\mathcal{E}_{ extsf{y}} = rac{1}{\epsilon_{ extsf{Si}}} \int_{0^{+}}^{ extsf{Y}_{ extsf{dep}}}
ho \, dy$$

$$ightarrow \mathcal{E}_y(Y_{
m dep}) - \mathcal{E}_y(0^+) = - \frac{qN_aY_{
m dep}}{\epsilon_{
m Si}}$$

Consider the onset of inversion. We have $\psi_s \approx 2 \, \phi_B$, and the electron density at the interface has not yet become significant $\to n(v) = 0$.

With the depletion approximation, and with $Y_{\rm dep}$ as the depletion width at the onset of inversion, we get

$$rac{d\mathcal{E}_y}{dy} = rac{
ho}{\epsilon}
ightarrow \int_{0^+}^{Y_{\mathsf{dep}}} d\mathcal{E}_y = rac{1}{\epsilon_{\mathsf{Si}}} \int_{0^+}^{Y_{\mathsf{dep}}}
ho \, dy$$

$$ightarrow \mathcal{E}_{y}(Y_{\mathsf{dep}}) - \mathcal{E}_{y}(0^{+}) = -\,rac{q \mathcal{N}_{a} Y_{\mathsf{dep}}}{\epsilon_{\mathsf{Si}}}$$

$$ightarrow \mathcal{E}_{y}(0^{+}) = rac{qN_{a}Y_{\mathsf{dep}}}{\epsilon c}.$$

 Y_{dep}

Consider the onset of inversion. We have $\psi_s \approx 2 \, \phi_B$, and the electron density at the interface has not yet become significant $\to n(v) = 0$.

With the depletion approximation, and with $Y_{\rm dep}$ as the depletion width at the onset of inversion, we get

$$rac{d\mathcal{E}_{y}}{dy} = rac{
ho}{\epsilon}
ightarrow \int_{0^{+}}^{
m Y_{dep}} d\mathcal{E}_{y} = rac{1}{\epsilon_{
m Si}} \int_{0^{+}}^{
m Y_{dep}}
ho \, dy$$

$$ightarrow \mathcal{E}_y(Y_{ ext{dep}}) - \mathcal{E}_y(0^+) = - \, rac{qN_a Y_{ ext{dep}}}{\epsilon_{ ext{Si}}}$$

$$ightarrow \mathcal{E}_{y}(0^{+}) = rac{q N_{a} Y_{\mathsf{dep}}}{\epsilon_{\mathsf{Si}}}.$$

$$\mathcal{E}_{y} = -\frac{d\psi}{dv} \rightarrow -\int_{0+}^{Y_{\text{dep}}} d\psi = \int_{0+}^{Y_{\text{dep}}} \mathcal{E}_{y} dy = \frac{qN_{a}}{2\epsilon_{\text{S}}} Y_{\text{dep}}^{2}$$

Consider the onset of inversion. We have $\psi_s \approx 2 \phi_B$, and the electron density at the interface has not yet become significant $\rightarrow n(v) = 0$.

With the depletion approximation, and with $Y_{\rm dep}$ as the depletion width at the onset of inversion, we get

$$\frac{d\mathcal{E}_{y}}{dy} = \frac{\rho}{\epsilon} \to \int_{0^{+}}^{Y_{\text{dep}}} d\mathcal{E}_{y} = \frac{1}{\epsilon_{\text{Si}}} \int_{0^{+}}^{Y_{\text{dep}}} \rho \, dy$$
$$\to \mathcal{E}_{y}(Y_{\text{dep}}) - \mathcal{E}_{y}(0^{+}) = -\frac{qN_{a}Y_{\text{dep}}}{\epsilon_{\text{Si}}}$$

$$au au \mathcal{E}_{y}(0^{+}) = rac{qN_{a}Y_{ ext{dep}}}{\epsilon_{ ext{Si}}}.$$
 $au_{y} = -rac{d\psi}{dy} au - \int_{0^{+}}^{Y_{ ext{dep}}} d\psi = \int_{0^{+}}^{Y_{ ext{dep}}} \mathcal{E}_{y} dy = rac{qN_{a}}{2\epsilon_{ ext{Ci}}} Y_{ ext{dep}}^{2}$

$$\rightarrow \psi(0^+) = 2\phi_B = \frac{qN_a}{2\epsilon c} Y_{\text{dep}}^2$$

Consider the onset of inversion. We have $\psi_s \approx 2 \phi_B$, and the electron density at the interface has not yet become significant $\rightarrow n(y) = 0$.

With the depletion approximation, and with Y_{dep} as the depletion width at the onset of inversion, we get

$$rac{d\mathcal{E}_{y}}{dy} = rac{
ho}{\epsilon}
ightarrow \int_{0^{+}}^{Y_{\mathsf{dep}}} d\mathcal{E}_{y} = rac{1}{\epsilon_{\mathsf{Si}}} \int_{0^{+}}^{Y_{\mathsf{dep}}}
ho \, dy$$

$$ightarrow \mathcal{E}_y(Y_{\mathsf{dep}}) - \mathcal{E}_y(0^+) = - \, rac{q N_a Y_{\mathsf{dep}}}{\epsilon_{\mathsf{Si}}}$$

$$\mathcal{E}_{y} = -\frac{d\psi}{dy} \rightarrow -\int_{0^{+}}^{Y_{\text{dep}}} d\psi = \int_{0^{+}}^{Y_{\text{dep}}} \mathcal{E}_{y} dy = \frac{qN_{a}}{2\epsilon_{\text{Si}}} Y_{\text{dep}}^{2}$$

$$\rightarrow \psi(0^{+}) = 2\phi_{B} = \frac{qN_{a}}{2\epsilon_{\text{Si}}} Y_{\text{dep}}^{2}$$

$$ightarrow Y_{\sf dep} = \sqrt{rac{4\epsilon_{\sf Si}\phi_B}{qN_a}}.$$

$$\mathcal{E}_y^{\rm ox} = \mathcal{E}_y(0^-) = \mathcal{E}_y(0^+) \, \frac{\epsilon_{\rm Si}}{\epsilon_{\rm ox}} = \frac{\epsilon_{\rm Si}}{\epsilon_{\rm ox}} \, \frac{q N_a Y_{\rm dep}}{\epsilon_{\rm Si}}$$

$$\mathcal{E}_{y}^{\text{ox}} = \mathcal{E}_{y}(0^{-}) = \mathcal{E}_{y}(0^{+}) \frac{\epsilon_{\text{Si}}}{\epsilon_{\text{ox}}} = \frac{\epsilon_{\text{Si}}}{\epsilon_{\text{ox}}} \frac{qN_{a}Y_{\text{dep}}}{\epsilon_{\text{Si}}}$$
$$= \frac{\epsilon_{\text{Si}}}{\epsilon_{\text{ox}}} \frac{qN_{a}}{\epsilon_{\text{Si}}} \sqrt{\frac{4\epsilon_{\text{Si}}\phi_{B}}{\epsilon_{\text{OX}}}}$$

$$\mathcal{E}_{y}^{\text{ox}} = \mathcal{E}_{y}(0^{-}) = \mathcal{E}_{y}(0^{+}) \frac{\epsilon_{\text{Si}}}{\epsilon_{\text{ox}}} = \frac{\epsilon_{\text{Si}}}{\epsilon_{\text{ox}}} \frac{qN_{\text{a}}Y_{\text{dep}}}{\epsilon_{\text{Si}}}$$
$$= \frac{\epsilon_{\text{Si}}}{\epsilon_{\text{cx}}} \frac{qN_{\text{a}}}{\epsilon_{\text{Si}}} \sqrt{\frac{4\epsilon_{\text{Si}}\phi_{B}}{qN_{\text{a}}}} = \frac{1}{\epsilon_{\text{cx}}} \sqrt{4qN_{\text{a}}\epsilon_{\text{Si}}\phi_{B}}.$$

$$\begin{split} \mathcal{E}_{y}^{\text{ox}} &= \mathcal{E}_{y}(0^{-}) = \mathcal{E}_{y}(0^{+}) \frac{\epsilon_{\text{Si}}}{\epsilon_{\text{ox}}} = \frac{\epsilon_{\text{Si}}}{\epsilon_{\text{ox}}} \frac{qN_{a}Y_{\text{dep}}}{\epsilon_{\text{Si}}} \\ &= \frac{\epsilon_{\text{Si}}}{\epsilon_{\text{ox}}} \frac{qN_{a}}{\epsilon_{\text{Si}}} \sqrt{\frac{4\epsilon_{\text{Si}}\phi_{B}}{qN_{a}}} = \frac{1}{\epsilon_{\text{ox}}} \sqrt{4qN_{a}\epsilon_{\text{Si}}\phi_{B}}. \end{split}$$

$$\mathcal{E}_{y} = -\frac{d\psi}{dy} o \int_{-t_{co}}^{0^{-}} d\psi = -\int_{-t_{co}}^{0^{-}} \mathcal{E}_{y}^{ox} dy$$

Assuming zero charge in the oxide and also at the $Si\text{-}SiO_2$ interface, we have

$$\begin{split} \mathcal{E}_{y}^{\text{ox}} &= \mathcal{E}_{y}(0^{-}) = \mathcal{E}_{y}(0^{+}) \frac{\epsilon_{\text{Si}}}{\epsilon_{\text{ox}}} = \frac{\epsilon_{\text{Si}}}{\epsilon_{\text{ox}}} \frac{qN_{a}Y_{\text{dep}}}{\epsilon_{\text{Si}}} \\ &= \frac{\epsilon_{\text{Si}}}{\epsilon_{\text{ox}}} \frac{qN_{a}}{\epsilon_{\text{Si}}} \sqrt{\frac{4\epsilon_{\text{Si}}\phi_{B}}{qN_{a}}} = \frac{1}{\epsilon_{\text{ox}}} \sqrt{4qN_{a}\epsilon_{\text{Si}}\phi_{B}}. \\ \mathcal{E}_{y} &= -\frac{d\psi}{dy} \to \int_{-t_{\text{ox}}}^{0^{-}} d\psi = -\int_{-t_{\text{ox}}}^{0^{-}} \mathcal{E}_{y}^{\text{ox}} dy \end{split}$$

 $\rightarrow \psi(0^-) - \psi(-t_{ox}) = -\mathcal{E}_{v}^{ox}t_{ox}.$

 Y_{dep}

Assuming zero charge in the oxide and also at the Si-SiO_2 interface, we have

$$\mathcal{E}_{y}^{\text{ox}} = \mathcal{E}_{y}(0^{-}) = \mathcal{E}_{y}(0^{+}) \frac{\epsilon_{\text{Si}}}{\epsilon_{\text{ox}}} = \frac{\epsilon_{\text{Si}}}{\epsilon_{\text{ox}}} \frac{qN_{a}Y_{\text{dep}}}{\epsilon_{\text{Si}}}$$
$$= \frac{\epsilon_{\text{Si}}}{\epsilon_{\text{ox}}} \frac{qN_{a}}{\epsilon_{\text{Si}}} \sqrt{\frac{4\epsilon_{\text{Si}}\phi_{B}}{qN_{a}}} = \frac{1}{\epsilon_{\text{ox}}} \sqrt{4qN_{a}\epsilon_{\text{Si}}\phi_{B}}.$$

$$\mathcal{E}_{y} = -\frac{d\psi}{dy} \rightarrow \int_{-t_{\text{ox}}}^{0^{-}} d\psi = -\int_{-t_{\text{ox}}}^{0^{-}} \mathcal{E}_{y}^{\text{ox}} dy$$

 $\rightarrow \psi(0^{-}) - \psi(-t_{\text{ox}}) = -\mathcal{E}_{v}^{\text{ox}} t_{\text{ox}}.$

The voltage drop across the oxide is

$$V_{
m ox} = \mathcal{E}_y^{
m ox} t_{
m ox} = rac{t_{
m ox}}{\epsilon_{
m ox}} \sqrt{4qN_a\epsilon_{
m Si}\phi_B} = rac{\sqrt{4qN_a\epsilon_{
m Si}\phi_B}}{C_{
m ox}},$$

where $C_{\rm ox}=\epsilon_{\rm ox}/t_{\rm ox}$ is the capacitance per unit area of a parallel plate capacitor with SiO₂ as the dielectric and a dielectric thickness $t_{\rm ox}$.

Assuming zero charge in the oxide and also at the Si-SiO_2 interface, we have

$$\mathcal{E}_{y}^{\text{ox}} = \mathcal{E}_{y}(0^{-}) = \mathcal{E}_{y}(0^{+}) \frac{\epsilon_{\text{Si}}}{\epsilon_{\text{ox}}} = \frac{\epsilon_{\text{Si}}}{\epsilon_{\text{ox}}} \frac{qN_{a}Y_{\text{dep}}}{\epsilon_{\text{Si}}}$$
$$= \frac{\epsilon_{\text{Si}}}{\epsilon_{\text{ox}}} \frac{qN_{a}}{\epsilon_{\text{Si}}} \sqrt{\frac{4\epsilon_{\text{Si}}\phi_{B}}{qN_{a}}} = \frac{1}{\epsilon_{\text{ox}}} \sqrt{4qN_{a}\epsilon_{\text{Si}}\phi_{B}}.$$

$$\begin{split} \mathcal{E}_{y} &= -\frac{d\psi}{dy} \to \int_{-t_{\text{ox}}}^{0^{-}} d\psi = -\int_{-t_{\text{ox}}}^{0^{-}} \mathcal{E}_{y}^{\text{ox}} dy \\ &\to \psi(0^{-}) - \psi(-t_{\text{ox}}) = -\mathcal{E}_{y}^{\text{ox}} t_{\text{ox}}. \end{split}$$

The voltage drop across the oxide is

$$V_{
m ox} = \mathcal{E}_y^{
m ox} t_{
m ox} = rac{t_{
m ox}}{\epsilon_{
m ox}} \sqrt{4qN_a\epsilon_{
m Si}\phi_B} = rac{\sqrt{4qN_a\epsilon_{
m Si}\phi_B}}{C_{
m ox}},$$

where $C_{\rm ox}=\epsilon_{\rm ox}/t_{\rm ox}$ is the capacitance per unit area of a parallel plate capacitor with SiO₂ as the dielectric and a dielectric thickness $t_{\rm ox}$.

Units of C_{ox} : $\frac{F/cm}{cm} = \frac{F}{cm^2}$.

The threshold voltage $V_{\rm th}$ is the gate voltage required to obtain the condition of inversion (i.e., onset of inversion).

The threshold voltage $V_{\rm th}$ is the gate voltage required to obtain the condition of inversion (i.e., onset of inversion).

With $V_G = V_{FB}$, $\psi_s = 0 \text{ V}$, and $V_{ox} = 0 \text{ V}$.

The threshold voltage $V_{\rm th}$ is the gate voltage required to obtain the condition of inversion (i.e., onset of inversion).

With $V_G = V_{FB}$, $\psi_s = 0 \text{ V}$, and $V_{OX} = 0 \text{ V}$.

 \rightarrow In addition to V_{FB} , a voltage $\psi_s + V_{ox}$, i.e., $2 \phi_B + V_{ox}$, is required for inversion.

The threshold voltage V_{th} is the gate voltage required to obtain the condition of inversion (i.e., onset of inversion).

With
$$V_G = V_{FB}$$
, $\psi_s = 0 \text{ V}$, and $V_{OX} = 0 \text{ V}$.

ightarrow In addition to V_{FB} , a voltage $\psi_s + V_{
m ox}$, i.e.,

 $2\,\phi_B + V_{
m ox}$, is required for inversion.

$$ightarrow V_{\mathsf{th}} = V_{\mathit{FB}} + \psi_{\mathit{s}} + V_{\mathsf{ox}}$$

The threshold voltage V_{th} is the gate voltage required to obtain the condition of inversion (i.e., onset of inversion).

With
$$V_G = V_{FB}$$
, $\psi_s = 0$ V, and $V_{ox} = 0$ V.

ightarrow In addition to V_{FB} , a voltage $\psi_{s}+V_{
m ox}$, i.e.,

$$2\,\phi_B + V_{
m ox}$$
, is required for inversion.

 $\rightarrow V_{th} = V_{FB} + \psi_s + V_{ox}$

$$=V_{FB}+2\phi_B+rac{\sqrt{4qN_a\epsilon_{\mathrm{Si}}\phi_B}}{C_{\mathrm{crit}}}$$

Calculate the threshold voltage for a MOS capacitor with $t_{\rm ox}=50\,{\rm nm}$, $\phi_m=4.1\,{\rm eV},~\chi_{\rm S}=4.05\,{\rm eV},~N_{\rm a}=5\times10^{16}\,{\rm cm}^{-3}.$

Calculate the threshold voltage for a MOS capacitor with $t_{\rm ox}=50\,{\rm nm}$, $\phi_m=4.1\,{\rm eV},~\chi_{\rm S}=4.05\,{\rm eV},~N_a=5\times10^{16}\,{\rm cm}^{-3}$.

What is the depletion width at the onset of inversion?

Calculate the threshold voltage for a MOS capacitor with $t_{\rm ox} = 50\,{\rm nm}$,

$$\phi_m = 4.1 \,\mathrm{eV}, \; \chi_s = 4.05 \,\mathrm{eV}, \; N_a = 5 \times 10^{16} \,\mathrm{cm}^{-3}.$$

What is the depletion width at the onset of inversion?

$$q\phi_s = q\chi_s + \left[E_g + k_B T \log \left(\frac{p_0}{N_v} \right) \right]$$

Calculate the threshold voltage for a MOS capacitor with $t_{\rm ox}=50\,{\rm nm}$, $\phi_m=4.1\,{\rm eV},~\chi_S=4.05\,{\rm eV},~N_a=5\times10^{16}\,{\rm cm}^{-3}$.

What is the depletion width at the onset of inversion?

$$q\phi_s = q\chi_s + \left[E_g + k_B T \log \left(\frac{p_0}{N_v} \right) \right]$$

= $4.05 + \left[1.12 + 0.0258 \times \log \left(\frac{5 \times 10^{16}}{1.04 \times 10^{19}} \right) \right] = 5.03 \,\text{eV}.$

Calculate the threshold voltage for a MOS capacitor with $t_{\rm ox}=50\,{\rm nm}$, $\phi_m=4.1\,{\rm eV},~\chi_{\rm S}=4.05\,{\rm eV},~N_{\rm A}=5\times10^{16}\,{\rm cm}^{-3}.$

What is the depletion width at the onset of inversion?

$$q\phi_s = q\chi_s + \left[E_g + k_B T \log\left(\frac{p_0}{N_v}\right) \right]$$

= $4.05 + \left[1.12 + 0.0258 \times \log\left(\frac{5 \times 10^{16}}{1.04 \times 10^{19}}\right) \right] = 5.03 \,\text{eV}.$

$$V_{FB} = \phi_{ms} = \phi_m - \phi_s = 4.1 - 5.03 = -0.93 \,\mathrm{V}.$$

Calculate the threshold voltage for a MOS capacitor with $t_{\rm ox}=50\,{\rm nm}$, $\phi_m=4.1\,{\rm eV},~\chi_{\rm S}=4.05\,{\rm eV},~N_{\rm a}=5\times10^{16}\,{\rm cm}^{-3}.$

What is the depletion width at the onset of inversion?

$$q\phi_s = q\chi_s + \left[E_g + k_B T \log \left(\frac{p_0}{N_v} \right) \right]$$

= $4.05 + \left[1.12 + 0.0258 \times \log \left(\frac{5 \times 10^{16}}{1.04 \times 10^{19}} \right) \right] = 5.03 \,\text{eV}.$

$$V_{FB} = \phi_{ms} = \phi_m - \phi_s = 4.1 - 5.03 = -0.93 \,\text{V}.$$

$$p_0 = n_i \exp\left(\frac{\phi_B}{V_T}\right) \rightarrow \phi_B = V_T \log\left(\frac{p_0}{n_i}\right) = 0.41 \,\mathrm{V}.$$

Calculate the threshold voltage for a MOS capacitor with $t_{\rm ox}=50$ nm, $\phi_m=4.1\,{\rm eV},~\chi_{\rm s}=4.05\,{\rm eV},~N_a=5\times10^{16}\,{\rm cm}^{-3}.$

What is the depletion width at the onset of inversion?

$$q\phi_s = q\chi_s + \left[E_g + k_B T \log \left(\frac{p_0}{N_v} \right) \right]$$

= $4.05 + \left[1.12 + 0.0258 \times \log \left(\frac{5 \times 10^{16}}{1.04 \times 10^{19}} \right) \right] = 5.03 \,\text{eV}.$

$$V_{FB} = \phi_{ms} = \phi_m - \phi_s = 4.1 - 5.03 = -0.93 \,\text{V}.$$

$$p_0 = n_i \exp\left(\frac{\phi_B}{V_T}\right) \ o \ \phi_B = V_T \log\left(\frac{p_0}{n_i}\right) = 0.41 \, \mathrm{V}.$$

$$C_{\text{ox}} = \frac{\epsilon_{\text{ox}}}{t_{\text{ox}}} = \frac{3.9 \times 8.85 \times 10^{-14} \text{ F/cm}}{50 \times 10^{-7} \text{ cm}} = 69 \text{ nF/cm}^2.$$

Calculate the threshold voltage for a MOS capacitor with $t_{\rm ox}=50$ nm, $\phi_m=4.1\,{\rm eV},~\chi_{\rm S}=4.05\,{\rm eV},~N_{\rm A}=5\times10^{16}\,{\rm cm}^{-3}.$

What is the depletion width at the onset of inversion?

$$q\phi_s = q\chi_s + \left[E_g + k_B T \log \left(\frac{p_0}{N_v} \right) \right]$$

= $4.05 + \left[1.12 + 0.0258 \times \log \left(\frac{5 \times 10^{16}}{1.04 \times 10^{19}} \right) \right] = 5.03 \,\text{eV}.$

$$V_{FB} = \phi_{ms} = \phi_m - \phi_s = 4.1 - 5.03 = -0.93 \,\text{V}.$$

$$p_0 = n_i \exp\left(\frac{\phi_B}{V_T}\right) \rightarrow \phi_B = V_T \log\left(\frac{p_0}{n_i}\right) = 0.41 \,\mathrm{V}.$$

$$C_{\rm ox} = rac{\epsilon_{
m ox}}{t_{
m ox}} = rac{3.9 \times 8.85 \times 10^{-14} \, {
m F/cm}}{50 \times 10^{-7} \, {
m cm}} = 69 \, {
m nF/cm}^2.$$

$$\sqrt{4aN_2\epsilon_{\rm Si}\phi_B} = \sqrt{4\times1.6\times10^{-19}\times5\times10^{16}\times11.7\times8.85\times10^{-14}\times0.41}$$

Calculate the threshold voltage for a MOS capacitor with $t_{\rm ox}=50$ nm, $\phi_m=4.1\,{\rm eV},~\chi_{\rm S}=4.05\,{\rm eV},~N_{\rm A}=5\times10^{16}\,{\rm cm}^{-3}.$

What is the depletion width at the onset of inversion?

$$q\phi_s = q\chi_s + \left[E_g + k_B T \log\left(\frac{p_0}{N_v}\right) \right]$$

= $4.05 + \left[1.12 + 0.0258 \times \log\left(\frac{5 \times 10^{16}}{1.04 \times 10^{19}}\right) \right] = 5.03 \,\text{eV}.$

$$V_{FB} = \phi_{ms} = \phi_m - \phi_s = 4.1 - 5.03 = -0.93 \,\text{V}.$$

$$p_0 = n_i \exp\left(\frac{\phi_B}{V_T}\right) \rightarrow \phi_B = V_T \log\left(\frac{p_0}{n_i}\right) = 0.41 \, \text{V}.$$

$$C_{
m ox} = rac{\epsilon_{
m ox}}{t_{
m ox}} = rac{3.9 imes 8.85 imes 10^{-14} \, {
m F/cm}}{50 imes 10^{-7} \, {
m cm}} = 69 \, {
m nF/cm}^2.$$

$$\sqrt{4qN_a\epsilon_{Si}\phi_B} = \sqrt{4 \times 1.6 \times 10^{-19} \times 5 \times 10^{16} \times 11.7 \times 8.85 \times 10^{-14} \times 0.41}$$

= 1.16 × 10⁻⁷ C/cm².

Example (continued)

$$V_{\text{th}} = V_{FB} + 2\phi_B + \frac{\sqrt{4qN_a\epsilon_{\text{Si}}\phi_B}}{C_{\text{ox}}}$$

= $-0.93 + 2 \times 0.41 + \frac{1.16 \times 10^{-7}}{69 \times 10^{-9}} = 1.57 \,\text{V}.$

Example (continued)

$$V_{\text{th}} = V_{FB} + 2\phi_B + \frac{\sqrt{4qN_a\epsilon_{\text{Si}}\phi_B}}{C_{\text{ox}}}$$

= $-0.93 + 2 \times 0.41 + \frac{1.16 \times 10^{-7}}{69 \times 10^{-9}} = 1.57 \,\text{V}.$

The depletion width at the onset of inversion is

$$Y_{\text{dep}}^{\text{inv}} = \sqrt{\frac{4\epsilon_{\text{Si}}\phi_B}{qN_a}} = \sqrt{\frac{4\times11.7\times8.85\times10^{-14}\times0.41}{1.6\times10^{-19}\times5\times10^{16}}}$$

Example (continued)

$$V_{\text{th}} = V_{FB} + 2\phi_B + \frac{\sqrt{4qN_a\epsilon_{\text{Si}}\phi_B}}{C_{\text{ox}}}$$
$$= -0.93 + 2 \times 0.41 + \frac{1.16 \times 10^{-7}}{69 \times 10^{-9}} = 1.57 \text{ V}.$$

The depletion width at the onset of inversion is

$$\begin{split} Y_{dep}^{inv} &= \sqrt{\frac{4\varepsilon_{Si}\phi_{B}}{qN_{a}}} = \sqrt{\frac{4\times11.7\times8.85\times10^{-14}\times0.41}{1.6\times10^{-19}\times5\times10^{16}}} \\ &= 1.45\times10^{-5}\,\text{cm} = 0.145\,\mu\text{m}. \end{split}$$

Consider $V_G > V_{\text{th}}$. We have $V_G = V_{FB} + \psi_s + V_{\text{ox}}$.

The surface potential ψ_s stays approximately constant $(=2\phi_B)$ in inversion.

ightarrow The "excess" gate voltage (beyond $V_{
m th}$) can only appear

as a change in V_{ox} .

Consider $V_C > V_{th}$. We have $V_C = V_{ER} + \psi_s + V_{ox}$.

The surface potential ψ_s stays approximately constant $(=2\phi_B)$ in inversion.

ightarrow The "excess" gate voltage (beyond $V_{
m th}$) can only appear

as a change in
$$V_{\rm ox}$$
. $V_G \approx V_{FB} + 2\phi_B + V_{\rm ox}$, where $V_{\rm ox} = \mathcal{E}(0^-) t_{\rm ox} = \mathcal{E}(0^+) \frac{\epsilon_{\rm Si}}{\epsilon_{\rm ox}} t_{\rm ox}$.

$$\int_{0^+}^{Y_{ ext{dep}}} d\mathcal{E}_y = rac{1}{\epsilon_{ ext{Si}}} \int_{0^+}^{Y_{ ext{dep}}}
ho \, dy = rac{1}{\epsilon_{ ext{Si}}} \int_{0^+}^{Y_{ ext{dep}}} q \left(-N_a^- - n
ight) dy$$

$$\rightarrow \mathcal{E}(Y_{\text{dep}}) - \mathcal{E}(0^+) = -\mathcal{E}(0^+) = \frac{1}{\epsilon_{\text{Si}}} \left(-qN_aY_{\text{dep}} + Q_I \right) \rightarrow \mathcal{E}(0^+) = \frac{qN_aY_{\text{dep}}}{\epsilon_{\text{Si}}} - \frac{Q_I}{\epsilon_{\text{Si}}}, \text{ where }$$

$$Y_{\rm dep} \approx Y_{\rm dep}^{\rm inv} = \sqrt{\frac{4\epsilon_{
m Si}\phi_B}{aN_2}}$$
 (= depletion width at the onset of inversion).

Consider $V_C > V_{th}$. We have $V_C = V_{ER} + \psi_s + V_{ox}$.

The surface potential ψ_s stays approximately constant

 $(=2\phi_B)$ in inversion. \rightarrow The "excess" gate voltage (beyond $V_{\rm th}$) can only appear as a change in V_{ox} .

$$ightarrow$$
 The "excess" gate voltage (beyond $V_{ ext{th}}$) can only appear as a change in $V_{ ext{ox}}$. $V_G pprox V_{FB} + 2\phi_B + V_{ ext{ox}}$, where $V_{ ext{ox}} = \mathcal{E}(0^-) t_{ ext{ox}} = \mathcal{E}(0^+) rac{\epsilon_{ ext{Si}}}{\epsilon_{ ext{ox}}} t_{ ext{ox}}$.

$$\int_{0^{+}}^{Y_{\text{dep}}} d\mathcal{E}_{y} = \frac{1}{\epsilon_{\text{Si}}} \int_{0^{+}}^{Y_{\text{dep}}} \rho \, dy = \frac{1}{\epsilon_{\text{Si}}} \int_{0^{+}}^{Y_{\text{dep}}} q \left(-N_{a}^{-} - n \right) dy$$

$$\rightarrow \mathcal{E}(Y_{\text{dep}}) - \mathcal{E}(0^{+}) = -\mathcal{E}(0^{+}) = \frac{1}{\epsilon_{\text{CI}}} \left(-qN_{a}Y_{\text{dep}} + Q_{I} \right) \rightarrow \mathcal{E}(0^{+}) = \frac{qN_{a}Y_{\text{dep}}}{\epsilon_{\text{CI}}} - \frac{Q_{I}}{\epsilon_{\text{CI}}}, \text{ where}$$

$$Y_{\rm dep} pprox Y_{
m dep}^{
m inv} = \sqrt{\frac{4\epsilon_{
m Si}\phi_B}{qN_{
m e}}}$$
 (= depletion width at the onset of inversion).

Putting together the various terms, we get

Putting together the various terms, we get
$$V_G = V_{FB} + 2\phi_B + \frac{\sqrt{4qN_a\epsilon_{Si}\phi_B}}{C_{ev}} - \frac{Q_I}{C_{ev}} = V_{th} - \frac{Q_I}{C_{ev}}.$$

$$\to Q_I = -C_{\rm ox}(V_G - V_{\rm th}).$$

In a MOS capacitor with a uniformly doped p-type substrate, we can describe the inversion charge with the following approximate relationship.

$$Q_I = 0,$$
 $V_G \le V_{\text{th}},$ $= -C_{\text{ox}}(V_G - V_{\text{th}}),$ $V_G > V_{\text{th}}.$

In a MOS capacitor with a uniformly doped *p*-type substrate, we can describe the inversion charge with the following approximate relationship.

$$Q_I = 0,$$
 $V_G \le V_{\text{th}},$ $= -C_{\text{ox}}(V_G - V_{\text{th}}),$ $V_G > V_{\text{th}}.$

* The DC current through the MOS structure is zero because of the insulator, and it behaves like a capacitor.

- * The DC current through the MOS structure is zero because of the insulator, and it behaves like a capacitor.
- * The differential capacitance $C=\frac{dQ}{dV_G}$ is of great interest since it contains information about several important parameters, such as the oxide thickness, oxide charge, and doping density in the semiconductor.

- * The DC current through the MOS structure is zero because of the insulator, and it behaves like a capacitor.
- * The differential capacitance $C=\frac{dQ}{dV_G}$ is of great interest since it contains information about several important parameters, such as the oxide thickness, oxide charge, and doping density in the semiconductor.
- * C depends on the bias (DC) value of V_G . A plot of the capacitance C versus the bias voltage is known as the MOS C-V curve, and it serves as an important tool for process evaluation.

* $V_G = V_{FB} + V_{ox} + \psi_{Si}$.

- * $V_G = V_{FB} + V_{ox} + \psi_{Si}$.
- * $\psi_{\rm Si}$, the voltage drop across the semiconductor, is the same as the surface potential $\psi_{\rm S}$ if we take $\psi(\infty)$ as 0 V.

Let Q be the charge per unit area on the metal: $Q=-Q_{\mathrm{s}}=-\int_{0}^{\infty}\!\rho\,dy.$

Let Q be the charge per unit area on the metal: $Q=-Q_s=-\int_0^\infty\!\!\rho\,dy.$ If $V_G\to V_G+\Delta V_G$, there is a corresponding change ΔQ in the metal charge.

Let Q be the charge per unit area on the metal: $Q=-Q_s=-\int_0^\infty \rho\,dy$.

If $V_G o V_G + \Delta V_G$, there is a corresponding change ΔQ in the metal charge.

$$\frac{\Delta V_{G}}{\Delta Q} = \frac{\Delta V_{\rm ox} + \Delta \psi_{s}}{\Delta Q} = \frac{\Delta V_{\rm ox}}{\Delta Q} + \frac{\Delta \psi_{s}}{\Delta Q}$$

MOS capacitor: C-V relationship

Let Q be the charge per unit area on the metal: $Q=-Q_s=-\int_0^\infty\!\rho\,dy.$

If $V_G o V_G + \Delta V_G$, there is a corresponding change ΔQ in the metal charge.

$$\frac{\Delta V_G}{\Delta Q} = \frac{\Delta V_{\rm ox} + \Delta \psi_{\rm s}}{\Delta Q} = \frac{\Delta V_{\rm ox}}{\Delta Q} + \frac{\Delta \psi_{\rm s}}{\Delta Q} \quad \rightarrow \quad \frac{1}{\left(\frac{dQ}{dV_G}\right)} = \frac{1}{\left(\frac{dQ}{dV_{\rm ox}}\right)} + \frac{1}{\left(\frac{dQ}{d\psi_{\rm s}}\right)},$$

MOS capacitor: C-V relationship

Let Q be the charge per unit area on the metal: $Q=-Q_s=-\int_0^\infty \rho\,dy$.

If $V_G o V_G + \Delta V_G$, there is a corresponding change ΔQ in the metal charge.

$$\frac{\Delta V_G}{\Delta Q} = \frac{\Delta V_{\rm ox} + \Delta \psi_{\rm s}}{\Delta Q} = \frac{\Delta V_{\rm ox}}{\Delta Q} + \frac{\Delta \psi_{\rm s}}{\Delta Q} \quad \rightarrow \quad \frac{1}{\left(\frac{dQ}{dV_G}\right)} = \frac{1}{\left(\frac{dQ}{dV_{\rm ox}}\right)} + \frac{1}{\left(\frac{dQ}{d\psi_{\rm s}}\right)},$$

i.e., $C = \frac{dQ}{dV_G}$ is given by $\frac{1}{C} = \frac{1}{C_{\rm ox}} + \frac{1}{C_{\rm s}}$, a series connection of $C_{\rm ox}$ and $C_{\rm s}$.

MOS capacitor: C-V relationship

Let Q be the charge per unit area on the metal: $Q=-Q_s=-\int_0^\infty \rho\,dy$.

If $V_G o V_G + \Delta V_G$, there is a corresponding change ΔQ in the metal charge.

$$\frac{\Delta V_G}{\Delta Q} = \frac{\Delta V_{\rm ox} + \Delta \psi_{\rm s}}{\Delta Q} = \frac{\Delta V_{\rm ox}}{\Delta Q} + \frac{\Delta \psi_{\rm s}}{\Delta Q} \quad \rightarrow \quad \frac{1}{\left(\frac{dQ}{dV_G}\right)} = \frac{1}{\left(\frac{dQ}{dV_{\rm ox}}\right)} + \frac{1}{\left(\frac{dQ}{d\psi_{\rm s}}\right)},$$

i.e.,
$$C=rac{dQ}{dV_G}$$
 is given by $rac{1}{C}=rac{1}{C_{
m ox}}+rac{1}{C_{
m s}}$, a series connection of $C_{
m ox}$ and $C_{
m s}$.

To obtain $Q_s(\psi_s)$, we start with $n=n_0\mathrm{e}^{\psi/V_T}$, $p=p_0\mathrm{e}^{-\psi/V_T}$, $N_a^-\approx N_a=p_0-n_0$.

To obtain $Q_s(\psi_s)$, we start with $n=n_0e^{\psi/V_T}$, $p=p_0e^{-\psi/V_T}$, $N_a^-\approx N_a=p_0-n_0$. Sufficiently far from the interface, $\psi=0$ V, $n=n_0$, $p=p_0$, $\rho=p-n-N_a^-=0$.

To obtain $Q_s(\psi_s)$, we start with $n=n_0e^{\psi/V_T}$, $p=p_0e^{-\psi/V_T}$, $N_a^-\approx N_a=p_0-n_0$.

Sufficiently far from the interface, $\psi = 0 \text{ V}$, $n = n_0$, $p = p_0$, $\rho = p - n - N_a^- = 0$.

Poisson's equation: $\frac{d\mathcal{E}}{dx} = \frac{\rho}{\epsilon_{\mathrm{Si}}} = \frac{q}{\epsilon_{\mathrm{Si}}} \, (p-n-N_a^-).$

To obtain $Q_s(\psi_s)$, we start with $n=n_0\mathrm{e}^{\psi/V_T}$, $p=p_0\mathrm{e}^{-\psi/V_T}$, $N_a^-\approx N_a=p_0-n_0$.

Sufficiently far from the interface, $\psi = 0 \text{ V}$, $n = n_0$, $p = p_0$, $\rho = p - n - N_a^- = 0$.

Poisson's equation: $\frac{d\mathcal{E}}{dx} = \frac{\rho}{\epsilon_{\mathrm{Si}}} = \frac{q}{\epsilon_{\mathrm{Si}}} \, (p-n-N_a^-).$

$$\frac{d\mathcal{E}}{dx} = \frac{d\mathcal{E}}{d\psi} \frac{d\psi}{dx} = -\mathcal{E} \frac{d\mathcal{E}}{d\psi}$$

To obtain $Q_s(\psi_s)$, we start with $n=n_0\mathrm{e}^{\psi/V_T}$, $p=p_0\mathrm{e}^{-\psi/V_T}$, $N_a^-\approx N_a=p_0-n_0$.

Sufficiently far from the interface, $\psi = 0 \text{ V}$, $n = n_0$, $p = p_0$, $\rho = p - n - N_a^- = 0$.

Poisson's equation:
$$\frac{d\mathcal{E}}{dx} = \frac{\rho}{\epsilon_{\mathrm{Si}}} = \frac{q}{\epsilon_{\mathrm{Si}}} (p - n - N_a^-).$$

$$\frac{d\mathcal{E}}{dx} = \frac{d\mathcal{E}}{d\psi} \frac{d\psi}{dx} = -\mathcal{E} \frac{d\mathcal{E}}{d\psi} \quad \rightarrow \quad \mathcal{E}d\mathcal{E} = \frac{q}{\epsilon_{Si}} \left[n_0 \left(e^{\psi/V_T} - 1 \right) - p_0 \left(e^{-\psi/V_T} - 1 \right) \right] d\psi.$$

$$\int_{\gamma=0^+}^{\infty} \mathcal{E} d\mathcal{E} = \frac{q}{\epsilon_{Si}} \int_{\psi_S}^{0} \left[n_0 \left(e^{\psi/V_T} - 1 \right) - p_0 \left(e^{-\psi/V_T} - 1 \right) \right] d\psi.$$

$$\int_{\gamma=0^+}^{\infty} \mathcal{E} d\mathcal{E} = \frac{q}{\epsilon_{\text{Si}}} \int_{\psi_{\text{S}}}^{0} \left[n_0 \left(e^{\psi/V_T} - 1 \right) - p_0 \left(e^{-\psi/V_T} - 1 \right) \right] d\psi.$$

We now obtain $\mathcal{E}(0^+)$ as a function of ψ_s and then $Q_s = -\epsilon_{Si} \mathcal{E}(0^+)$ as the total charge in the semiconductor per unit area.

$$\int_{v=0^{+}}^{\infty} \mathcal{E} d\mathcal{E} = \frac{q}{\epsilon_{Si}} \int_{bb_{c}}^{0} \left[n_{0} \left(e^{\psi/V_{T}} - 1 \right) - \rho_{0} \left(e^{-\psi/V_{T}} - 1 \right) \right] d\psi.$$

We now obtain $\mathcal{E}(0^+)$ as a function of ψ_s and then $Q_s = -\epsilon_{\rm Si}\,\mathcal{E}(0^+)$ as the total charge in the semiconductor per unit area.

* In accumulation ($\psi_s < 0$ V) and inversion ($\psi_s > 2\phi_B$), Q_s changes rapidly with ψ_s because $p \propto e^{-(E_F - E_V)/kT}$, $n \propto e^{-(E_c - E_F)/kT}$.

* In the depletion regime, the region near the surface is depleted of electrons and holes, and the variation of Q_s with ψ_s comes from the change in the ionised acceptor charge, i.e., the change in the depletion width with ψ_s .

* Since the depletion width varies relatively slowly with ψ_s (as $\sqrt{\psi_s}$), $\frac{dQ}{d\psi_s}$ is relatively small in the depletion regime.

$$* \ Q_M = -Q_s \ \rightarrow \ C_s \equiv \frac{dQ_M}{d\psi_s} = -\,\frac{dQ_s}{d\psi_s}.$$

* Accumulation and inversion: C_s is large compared to $C_{\rm ox}$. Since $\frac{1}{C}=\frac{1}{C_{\rm ox}}+\frac{1}{C_s},\ C o C_{\rm ox}.$

* To map the surface potential ψ_{s} to the gate voltage V_{G} , we use

$$V_G = V_{FB} + \psi_s + \mathcal{E}_{ox}t_{ox} = V_{FB} + \psi_s + \frac{(-Q_s)}{\epsilon_{ox}}t_{ox} = V_{FB} + \psi_s + \frac{(-Q_s)}{C_{ox}}.$$

* In accumulation and inversion, $C \rightarrow C_{ox}$.

* In depletion, C is smaller than C_{∞} and is minimum when C_s is minimum. This corresponds to the situation where there is no inversion charge yet, but the depletion width has reached its maximum value which happens at the onset of inversion, i.e., $V_G \approx V_{\text{th}}$.

* Since $V_G = V_{FB} + \psi_s + \mathcal{E}_{ox}t_{ox}$, a change in V_{FB} by ΔV_{FB} causes the C-V curve to shift horizontally by ΔV_{FB} .

* We have assumed so far that the variation in the gate voltage is slow enough for the carriers to respond.

- * We have assumed so far that the variation in the gate voltage is slow enough for the carriers to respond.
- * The C-V measurement is made by applying $v_G(t) = V_G + v_g \sin \omega t$. We require $f < 100 \, \mathrm{Hz}$ for the above assumption to hold.

- * We have assumed so far that the variation in the gate voltage is slow enough for the carriers to respond.
- * The C-V measurement is made by applying $v_G(t)=V_G+v_g$ sin ωt . We require f<100 Hz for the above assumption to hold.
- At high frequencies, the C-V curve in the accumulation region remains unaffected since it involves the readjustment of the majority carriers, a fast process.

- * We have assumed so far that the variation in the gate voltage is slow enough for the carriers to respond.
- * The C-V measurement is made by applying $v_G(t) = V_G + v_g \sin \omega t$. We require $f < 100 \, \mathrm{Hz}$ for the above assumption to hold.
- * At high frequencies, the *C*–*V* curve in the accumulation region remains unaffected since it involves the readjustment of the majority carriers, a fast process.

However, the inversion charge — which is made up of minority carriers — cannot follow the changes in the gate voltage because the minority carriers must come from the generation-recombination process in the bulk. As a result, C_s stays as its minimum value which occurs when the depletion width is maximum, corresponding to $\psi_s = 2\phi_B$.

- * We have assumed so far that the variation in the gate voltage is slow enough for the carriers to respond.
- * The C-V measurement is made by applying $v_G(t) = V_G + v_g \sin \omega t$. We require $f < 100 \, \mathrm{Hz}$ for the above assumption to hold.
- * At high frequencies, the *C*–*V* curve in the accumulation region remains unaffected since it involves the readjustment of the majority carriers, a fast process.

However, the inversion charge — which is made up of minority carriers — cannot follow the changes in the gate voltage because the minority carriers must come from the generation-recombination process in the bulk. As a result, C_s stays as its minimum value which occurs when the depletion width is maximum, corresponding to $\psi_s = 2\phi_B$.

- * We have assumed so far that the variation in the gate voltage is slow enough for the carriers to respond.
- * The C-V measurement is made by applying $v_G(t)=V_G+v_g$ sin ωt . We require $f<100\,\mathrm{Hz}$ for the above assumption to hold.
- * At high frequencies, the C-V curve in the accumulation region remains unaffected since it involves the readjustment of the majority carriers, a fast process. However, the inversion charge — which is made up of minority carriers — cannot follow the changes in the gate voltage because the minority carriers must come from the generation-recombination process in the bulk. As a result, C. stays as its minimum value which occurs when the
- * The low-frequency ($f < 100\,\mathrm{Hz}$) and high-freq ($f > 1\,\mathrm{MHz}$) C-V curves offer an excellent "diagnostic" tool during processing since they can be used to find the oxide thickness, flat-band voltage, etc.

depletion width is maximum, corresponding to $\psi_s = 2\phi_B$.

