CVPR 2016

Image Style Transfer Using Convolutional Neural Networks

Leon A. Gatys, Alexander S. Ecker, Matthias Bethge

고민수

Summary

Content Image

Content representation V

Noise Image

Style Image

Summary

Deep image representations

Deep image representations

Deep image representations

Content representation

Content Loss

$$\mathcal{L}_{\text{content}}(\vec{p}, \vec{x}, l) = \frac{1}{2} \sum_{i,j} (F_{ij}^l - P_{ij}^l)^2$$

feature map F

Noise Image

$$\frac{\partial \mathcal{L}_{\text{content}}}{\partial F_{ij}^l} = \begin{cases} \left(F^l - P^l\right)_{ij} & \text{if } F_{ij}^l > 0\\ 0 & \text{if } F_{ij}^l < 0 \end{cases}$$

Content Image

Content representation

Style representation

Style: Correlations between the different channel response

$$G_{ij}^l = \sum_k F_{ik}^l F_{jk}^l$$

G_{11}	G_{12}	G_{13}	G_{14}	G_{15}	G_{16}
G_{21}	G_{22}	G_{23}	G_{24}	G_{25}	G_{26}
G_{31}	G_{32}	G_{33}	G_{34}	G_{35}	G_{36}
G_{41}	G_{42}	G_{43}	G_{44}	G_{45}	G_{46}
G_{51}	G_{52}	G_{53}	G_{54}	G_{55}	G_{56}
G_{61}	G_{62}	G_{63}	G_{64}	G_{65}	G_{66}

Style representation

Style Loss

$$E_{l} = \frac{1}{4N_{l}^{2}M_{l}^{2}} \sum_{i,j} \left(G_{ij}^{l} - A_{ij}^{l}\right)^{2}$$

$$\mathcal{L}_{\text{style}}(\vec{a}, \vec{x}) = \sum_{l=0}^{L} w_l E_l$$

G_{11}	G_{12}	G_{13}	G_{14}	G_{15}	G_{16}
G_{21}	G_{22}	G_{23}	G_{24}	G_{25}	G_{26}
G_{31}	G_{32}	G_{33}	G_{34}	G_{35}	G_{36}
G_{41}	G_{42}	G_{43}	G_{44}	G_{45}	G_{46}
G_{51}	G_{52}	G_{53}	G_{54}	G_{55}	G_{56}
G_{61}	G_{62}	G_{63}	G_{64}	G_{65}	G_{66}

Noise Image

 $\overrightarrow{\mathsf{X}}$

$$\frac{\partial E_l}{\partial F_{ij}^l} = \begin{cases} \frac{1}{N_l^2 M_l^2} \left((F^l)^{\mathrm{T}} \left(G^l - A^l \right) \right)_{ji} & \text{if } F_{ij}^l > 0 \\ 0 & \text{if } F_{ij}^l < 0 \end{cases}$$

Style Image

input

Style transfer

- Optimisation strategy: L-BFGS
- Same size (Style image, Content image)

Result

Trade-off between content and style matching

 $\alpha/\beta = 0.1, 0.01, 0.001, 0.0001$

Content : Conv4_2

Style: Conv1_1, Conv2_1

Conv3_1, Conv4_1

Conv5_1

Effect of different layers of the CNN

Content Image

Conv2_2

Conv4_2

$$\mathcal{L}_{\text{total}}(\vec{p}, \vec{a}, \vec{x}) = \alpha \mathcal{L}_{\text{content}}(\vec{p}, \vec{x}) + \beta \mathcal{L}_{\text{style}}(\vec{a}, \vec{x})$$

$$\alpha/\beta = 0$$

Initialisation of gradient descent

Start with Noise image

Start with Content image

Start with Style image

- Initialisations is not strong effect on outcome of the synthesis procedure
- Initialising with a fixed image always deterministically leads to the same outcome

Thank you

Image Style Transfer Using Convolutional Neural Networks

Leon A. Gatys, Alexander S. Ecker, Matthias Bethge

고민수