Ch 7.1-7.2: Polynomial regression and Step Functions Lecture 20 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

::

Dept of Computational Mathematics, Science & Engineering

Fri, Nov 4, 2022

Announcements

Last time:

Exam

This lecture:

- 7.1 Polynomial regression
- 7.2 Step functions

Announcements:

•

Dr. Munch (MSU-CMSE)

Section 1

Last time

High-Dimensional Data

Low-Dimensions

$$n \gg p$$

- Low here means p is low, or at least small relative to n
- Can do all the stuff we've talked about so far

High-Dimensions

$$n \ll p$$

- Issues show up even if p is close to or slightly smaller than n
- Classical approaches not appropriate since lots of overfitting

4 / 22

What to do about it?

Be less flexible....

Key points

- regularization or shrinkage plays a key role in high-dimensional problems,
- appropriate tuning parameter selection is crucial for good predictive performance, and
- the test error tends to increase as the dimensionality of the problem increases, unless the additional features are truly associated with the response.

- Curse of dimensionality
- Report results on an independent test set, or cross-validation errors.

5/22

r. Munch (MSU-CMSE) Fri, Nov 4, 2022

Section 2

Polynomial Regression

r. Munch (MSU-CMSE) Fri, Nov 4, 2022

Polynomial regression

Replace linear model

$$y_i = \beta_0 + \beta_1 x_1 + \varepsilon_i$$

with

$$y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_i^2 + \dots + \beta_d x_i^d + \varepsilon_i$$

Coding bit

wage =
$$\beta_0 + \beta_1$$
age + β_2 age² + \cdots + β_p age^p + ε .

Dr. Munch (MSU-CMSE) Fri, Nov 4,

Example with wage data

Section 3

Step function

r. Munch (MSU-CMSE) Fri, Nov 4, 2022

Step functions

$$I(X < c)$$
 $I(c_1 \le X < c_2)$ $I(c \le X)$

Dr. Munch (MSU-CMSE)

More on step function setup

$$\begin{array}{rcl} C_0(X) & = & I(X < c_1), \\ C_1(X) & = & I(c_1 \le X < c_2), \\ C_2(X) & = & I(c_2 \le X < c_3), \\ & \vdots & & \vdots \\ C_{K-1}(X) & = & I(c_{K-1} \le X < c_K), \\ C_K(X) & = & I(c_K \le X), \end{array}$$

Dr. Munch (MSU-CMSE) Fri, Nov 4, 2022

Example

Given knots $c_1 = 3$, $c_2 = 5$, $c_3 = 7$, determine the entries in the columns for $C_i(X)$ in the below matrix.

X	$C_0(X)$	$C_1(X)$	$C_2(X)$	$C_3(X)$
1				
7				
3				
5				
4				
9				

r. Munch (MSU-CMSE) Fri, Nov 4, 2022

Step function: Learned model

$$y_i = \beta_0 + \beta_1 C_1(x_i) + \beta_2 C_2(x_i) + \cdots + \beta_K C_K(x_i) + \varepsilon_i$$

Coding bit

Back to the wage data set

Dr. Munch (MSU-CMSE) Fri, Nov 4, 2022

Step function example

Section 4

Classification versions

r. Munch (MSU-CMSE) Fri, Nov 4, 2022

Classification version

$$\Pr(y_i > 250 \mid x_i) = \frac{\exp(\beta_0 + \beta_1 x_i + \dots + \beta_d x_i^d)}{1 + \exp(\beta_0 + \beta_1 x_i + \dots + \beta_d x_i^d)}$$

Step function classification example

$$\Pr(y_i > 250 \mid x_i) = \frac{\exp(\beta_0 + \beta_1 C_1(x_i) + \beta_2 C_2(x_i) + \dots + \beta_K C_K(x_i))}{1 + \exp(\beta_0 + \beta_1 C_1(x_i) + \beta_2 C_2(x_i) + \dots + \beta_K C_K(x_i))}$$

Dr. Munch (MSU-CMSE)

A few more comments on step functions

Dr. Munch (MSU-CMSE) Fri, Nov 4, 2022

Basis Functions Setup

Polynomial and piecewise-constant regression models are special cases of a *basis function* approach.

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \cdots + \beta_K b_K(x_i) + \varepsilon_i$$

r. Munch (MSU-CMSE) Fri, Nov 4, 2022

Next time

	F	Dec 9	Midterm #3	Bring your cheat sheet and a non-internet-connected calculator	
	W	Dec 7	Review		
32	М	Dec 5	More Clustering	12.4	HW #10 Due
31	F	Dec 2	Unsupervised Learning & Clustering	12.1, 12.4	
30	W	Nov 30	CNN	10.3	
29	М	Nov 28	Multi Layer NN	10.2	HW #9 Due
	F	Nov 25	No class - Thanksgiving		
28	W	Nov 23	Single layer NN	10.1	
27	М	Nov 21	SVM	9.3, 9.4, 9.5	
26	F	Nov 18	SVC	9.2	HW #8 Due
25	W	Nov 16	Maximal Margin Classifier	9.1	
24	М	Nov 14	Ensemble methods	8.2	
23	F	Nov 11	Decision Trees	8.1	HW #7 Due
22	w	Nov 9	Smoothing Splines; Local regression; GAMs	7.5-7.7	
21	М	Nov 7	Basis functions, Regression Splines	7.3,7.4	
20	F	Nov 4	Polynomial & Step Functions.	7.1,7.2	

Dr. Munch (MSU-CMSE) Fri, Nov 4, 2022