Name:

kinter

GSI: Matchew

DISC #: 104

Math 55, Handout 19.

LINEAR HOMOGENEOUS RECURRENCES WITH CONSTANT COEFFICIENTS.

	RECURRENCES	ODEs
Equation	$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$	$y^{(k)} = C_1 \cdot y^{(k-1)} + C_2 \cdot y^{(k-1)} + \cdots + C_k y$
Solution Ansatz	$a_n = \mathbf{r}^{\bullet}$	$y(x) = e^{rx}$
Ansatz plugged in	r= 4.2 m2 + + (k.h	$r^k e^{rx} = c_1 r^{k-1} e^{rx} + c_2 r^{k-2} e^{rx} + \dots + c_k e^{rx}$
Char. polynomial	$r^k = c_1 r^{k-1} + c_2 r^{k-2} + \dots + c_k$	r*= (1.7 K1 + + CK
Linearity	linear combination of sols is still soluti	$y_1, y_2 \text{ solutions} \Longrightarrow C_1 y_1 + C_2 y_2 \text{ solution}$
Distinct real roots	$a_n = C_1 r_1^n + C_2 r_2^n + \dots + C_k r_k^n$	y = 4.e"+ +4.e"x
Initial conditions	Given as are to get	met by solving for C_1 through C_k
Complex roots	$a_n = r^n$ still a solution for $r \in \mathbb{C}$	y e(a+bi)x = ear (=> bx +1·sinbx)
Multiple roots	It is of multiplicity m,	$e^{rx}, xe^{rx}, \dots, x^{m-1}e^{rx}$ are solutions

is still solution.

NB: The uppercase letters C_j and the lowercase letters c_j here are not to be confused!

Q1. In how many ways can a $2 \times n$ rectangular checkerboard be tiled using 1×2 and 2×2 pieces?

 $\frac{1}{1 + \frac{1}{1 + \frac$

case 2:

 $F(n) = l_1 \cdot 2^n + l_2 \cdot l_1 \cdot l_2$ $F(1) = 1 \qquad F(2) = 3$

Q2. What is the general form of the solution of a linear homogeneous recurrence relation if its characteristic polynomial has precisely these roots: 1, 1, 1, 1, -2, -2, -2, 3, 3, -4?

$$U_{n} = C_{1} + C_{2} n + (3 n^{2} + (4 n^{3} + (5 l^{-2})^{n} + (6 \cdot n \cdot l^{2})^{n} + (6 \cdot n \cdot l^{-2})^{n} + (6$$

LINEAR INHOMOGENEOUS RECURRENCES WITH CONSTANT COEFFICIENTS.

	RECURRENCES	ODEs
Equation	$a_n = c_1 a_{n-1} + \dots + c_k a_{n-k} + F(n)$	$y^{(k)} = C_1 \cdot y^{(k-1)} + \cdots + C_k \cdot y + \mathcal{I}_{(k)}$
Linearity yields	$a_n = a_n^{hom} + a_n^{part}$	$y = y^{hom} + y^{part}$
Special cases	$F(n) = p_t(n)s^n$	Far= Ptares
s not char. root	$\alpha_n^{part} = q_t(n).5^n$	$y^{part}(x) = q_t(x)e^{sx}$
s root; mult. m	$a_n^{post} = n^m \cdot q_{\epsilon}(n) \cdot s^n$	$y^{part}(x) = x^m q_t(x) e^{sx}$

Q3. What is the general form of the particular solution – guaranteed to exist by the above results – of the linear inhomogeneneous recurrence $a_n = 8a_{n-2} - 16a_{n-4} + F(n)$ if $n^4 - f n^5 + 1600 + 2.2.2.2$

(a)
$$F(n) = n^2$$
? $S = |$ not not , $G_n = C_1 2^n + (_2 R_2)^n + (_3 C_3)^n + (_4 R_1 C_3)^n + \frac{32}{27} n + \frac{3$

Q4. Find all solutions to the recurrence $a_{n+2} = -a_n + 5 \cdot 2^n$ subject to the initial conditions $a_0 = 2$, $a_1 = 3$.

Charactistic equation:
$$n^2 + 1 = 0$$
.

 $n = \pm i$

2 is not the roof

 $C_n^{\text{part}} = C \cdot 2^n$. plug into it: $c_n^{\text{n+2}} = -c_n^n + 5 \cdot 2^n$
 $C_n^{\text{part}} = C_n^{\text{n+2}} = 0$
 $C_n^{\text{n+2}} = 0$

$$Q_{n} = (1(i)^{n} + (2 \cdot (-i)^{n} + 2^{n})^{n} + 2^{n})^{n}$$

$$Q_{0} = 2 \quad Q_{1} = 3$$

$$Q_{1} = \frac{1-i}{2} \quad (1 = \frac{1+i}{2})^{n} + \frac{1+i}{2} (-1)^{n} + 2^{n}$$

$$Q_{1} = \frac{1-i}{2} (i)^{n} + \frac{1+i}{2} (-1)^{n} + 2^{n}$$