Math 415 - Lecture 29

Determinants

Wednesday November 4th 2015

Textbook reading: Chapters 4.2, 4.3

Suggested practice exercises: Chapter 4.2, # 1, 2, 4, 5, 10, 14, 15, 17, 18, 19, 20, 22, 23

Khan Academy video: 3×3 Determinant, $n\times n$ Determinant, Determinants along other rows/ columns,

Strang lecture: Lecture 18: Properties of determinants, Lecture 19: Determinant formulas and cofactors

1 Determinants

For the next few lectures, all matrices are square! Recall that

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

The determinant of

- a 2×2 matrix is $\det \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} = ad bc$,
- a 1×1 matrix is det([a]) = a.
- What is the determinant of an $n \times n$ matrix?

Goal (Point of the determinant)

A is invertible $\iff \det(A) \neq 0$

Notation: We will write both $\det \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix}$ and $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$ for the determinant.

We want to define for every $n \times n$ matrix A a number $\det(A)$.

Definition. The determinant is characterized by:

- the normalization det $I_{n \times n} = 1$,
- and how it is affected by elementary row operations:
 - (Replacement) Add a multiple of one row to another row. Does not change the determinant.
 - (Interchange) Interchange two rows. Reverses the sign of the determinant.
 - (Scaling) Multiply all entries in a row by s. Multiplies the determinant by s.

This allows us to compute the determinant using just row operations!

Important Fact

The determinant of a triangular matrix is the product of the diagonal entries.

Example

$$\det \begin{bmatrix} 2 & 3 & 7 \\ 0 & 4 & 8 \\ 0 & 0 & 6 \end{bmatrix} = 2 \cdot 4 \cdot 6.$$

Why? Take out the diagonal entries, and then use row operations to get the identity matrix.

 $Example\ 1\ (\text{Generic matrix}).\ \text{Compute}\ \begin{vmatrix} 1 & 2 & 0\\ 3 & -1 & 2\\ 2 & 0 & 1 \end{vmatrix}.$

Solution.

$$\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix} \xrightarrow{R2 \to R2 - 3R1} = \begin{vmatrix} 1 & 2 & 0 \\ 0 & -7 & 2 \\ 0 & -4 & 1 \end{vmatrix}$$

$$R3 \to R3 - \frac{4}{7}R2 = \begin{vmatrix} 1 & 2 & 0 \\ 0 & -7 & 2 \\ 0 & 0 & -\frac{1}{7} \end{vmatrix}$$

$$= 1 \cdot (-7) \cdot (-\frac{1}{7}) = 1$$

Example 2 (Reality check). Discover the formula for $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$.

Solution.

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} \stackrel{R2 \to R2 - \frac{c}{a}R1}{=} \begin{vmatrix} a & b \\ 0 & d - \frac{c}{a}b \end{vmatrix} = a\left(d - \frac{c}{a}b\right) = ad - bc$$

NB: this only works if $a \neq 0$. What do you do if a = 0?

Example 3 (Larger matrix). Compute
$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 5 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 3 & 5 \end{vmatrix}$$
.

Solution. The matrix looks complicated, but we can do this in two steps!

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 5 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 3 & 5 \end{vmatrix} \xrightarrow{R4 \to R4 - \frac{3}{2}R3} \begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 5 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & \frac{7}{2} \end{vmatrix} = 1 \cdot 2 \cdot 2 \cdot \frac{7}{2} = 14$$

The following important properties follow from behavior under row operations.

Important properties

- $\det(A) = 0 \iff A$ is not invertible. Why? Because $\det(A) = 0$, if and only if, in an echelon form, a diagonal entry is zero (that is, a pivot is missing).
- det(AB) = det(A) det(B) Challenge: Figure out why! (Matrix multiplication can be seen as linear combinations of rows)
- $\det(A^{-1}) = \frac{1}{\det(A)}$ Why? Because $AA^{-1} = I$. Since $\det(AA^{-1}) = \det(I) = 1$ and $\det(AA^{-1}) = \det(A)\det(A^{-1})$, we have $\det(A)\det(A^{-1}) = 1$
- $det(A^T) = det(A)$. (Think about why this works at home.)

Remark. $det(A^T) = det(A)$ means that everything you know about determinants in terms of *rows* of A is also true for the columns. For instance:

- If you exchange two *columns* in a determinant you get a minus sign.
- You can add a multiple of a *column* to another column without changing the determinant.
- If your matrix has equal *columns* the determinant is zero.
- If your matrix has a zero *column* the determinant is zero.

Example 4. Recall that $AB = \mathbf{0}$, then it does not follow that $A = \mathbf{0}$ or $B = \mathbf{0}$. However, show that $\det(A) = 0$ or $\det(B) = 0$.

Solution. If $AB = \mathbf{0}$, then $\det(AB) = \det(\mathbf{0}) = 0$. Follows from $\det(AB) = \det(A)\det(B)$.

2 A "bad" way to compute determinants, Cofactor expansion

Idea. The determinant is linear in each row or column.

(In some texts this is one of the basic assumptions about det.)

Fact 5.

$$\det \begin{bmatrix} a & b & c \\ * & * & * \\ * & * & * \end{bmatrix} = \det \begin{bmatrix} a & 0 & 0 \\ * & * & * \\ * & * & * \end{bmatrix} + \det \begin{bmatrix} 0 & b & 0 \\ * & * & * \\ * & * & * \end{bmatrix} + \det \begin{bmatrix} 0 & 0 & c \\ * & * & * \\ * & * & * \end{bmatrix}$$

We can use this idea to calculate an $n \times n$ determinant in terms of n determinants of smaller matrices.

Example 6. What is the determinant $\begin{bmatrix} a & 0 & 0 \\ * & * & * \\ * & * & * \end{bmatrix}$? What about $\begin{bmatrix} 0 & b & 0 \\ * & * & * \\ * & * & * \end{bmatrix}$?

Solution.

$$\det \begin{bmatrix} a & 0 & 0 \\ * & * & * \\ * & * & * \end{bmatrix} = a \det \begin{bmatrix} 1 & 0 & 0 \\ * & * & * \\ * & * & * \end{bmatrix} = a \det \begin{bmatrix} 1 & 0 \\ * & B \end{bmatrix} = a \det \begin{bmatrix} B \end{bmatrix},$$

where B is the 2×2 right lower block. Same way, with a twist:

$$\det\begin{bmatrix}0 & b & 0\\v_1 & v_2 & v_3\end{bmatrix} = \boxed{1}b\det\begin{pmatrix}\begin{bmatrix}1 & 0 & 0\\v_2 & v_1 & v_3\end{bmatrix}\right) = -b\det\begin{bmatrix}v_1 & v_3\end{bmatrix}.$$

We can use this idea to calculate an $n \times n$ determinant in terms of n determinants of $(n-1) \times (n-1)$ matrices. Then repeat

Example 7. Compute $\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix}$ by **cofactor expansion**.

Solution. We expand by the first row:

$$\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix} = 1 \cdot \begin{vmatrix} + & & & & & \\ & -1 & 2 \\ 0 & 1 \end{vmatrix} - 2 \cdot \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} + 0 \cdot \begin{vmatrix} 3 & -1 \\ 2 & 0 \end{vmatrix} = 1 \times (-1) - 2 \cdot (-1) + 0 = 1$$

$$\stackrel{\text{i.e.}}{=} 1 \cdot \begin{vmatrix} -1 & 2 \\ 0 & 1 \end{vmatrix} - 2 \cdot \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} + 0 \cdot \begin{vmatrix} 3 & -1 \\ 2 & 0 \end{vmatrix} = 1 \times (-1) - 2 \cdot (-1) + 0 = 1$$

Each term in the cofactor expansion is ± 1 times an entry times a smaller determinant (row and column of entry deleted). The \pm is assigned to each entry according to

There is nothing special about the first row. We can use any other row or

For example, let's use the second column:

Solution.

$$\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix} = -2 \cdot \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} + (-1) \cdot \begin{vmatrix} 1 & 0 \\ 2 & 1 \end{vmatrix} - 0 \cdot \begin{vmatrix} 1 & 0 \\ 3 & 2 \end{vmatrix}$$
$$= -2 \cdot (-1) + (-1) \cdot 1 - 0 = 1$$

Same answer!

Let use the third column:

Solution.

$$\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix} = 0 \cdot \begin{vmatrix} 3 & -1 \\ 2 & 0 \end{vmatrix} - 2 \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \\ 2 & 0 \end{vmatrix} + 1 \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \\ 4 \end{vmatrix} + 1 \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \\ 4 \end{vmatrix}$$
$$= 0 - 2 \cdot (-4) + 1 \cdot (-7) = 1$$

Same answer!

Why not cofactor expansion

Why is the method of cofactor expansion not practical (except when there are lots of zeroes in your matrix.)? Because to compute a large $n \times n$ matrix,

- one reduces to n determinants of size $(n-1) \times (n-1)$,
- then n(n-1) determinants of size $(n-2) \times (n-2)$,
- and so on.

In the end, we have $n! = n(n-1) \cdots 3 \cdot 2 \cdot 1$ many numbers to add. WAY TOO MUCH WORK! Already

$$25! = 15511210043330985984000000 \approx 1.55 \cdot 10^{25}.$$

Context: today's fastest computer, Tianhe-2, runs at 34 pflops $(3.4 \cdot 10^{16}$ operations per second).By the way: "fastest" is measured by computing LU decompositions!

3 Practice Problems

3.1

Example 8. Compute $\begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 0 & 0 \\ 2 & 7 & 6 & 10 \\ 2 & 9 & 7 & 11 \end{vmatrix}$. Use your favorite method (or a mix of methods!)

Solution. The final answer should be -10.

• What's wrong?!

$$\det(A^{-1}) = \det \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad - bc} (da - (-b)(-c)) = 1$$

The correct calculation is:

$$\det \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{(ad - bc)^2} \det \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad - bc}$$

Example 9. Suppose A is a 3×3 matrix with det(A) = 5. What is det(2A)?

Solution. A has three rows. Multiplying all 3 of them produces 2A. Hence, $det(2A) = 2^3 det(A) = 40$.

Imaginary unit and Fibonacci numbers

Example 10. First off, say hello to our new friend: i, the **imaginary unit**. It is infamous for $i^2 = -1$. Let us calculate some determinants.

$$\begin{vmatrix} 1 & i \\ & | 1 & | = 1 \\ & \begin{vmatrix} 1 & i \\ i & 1 \end{vmatrix} & = 1 - i^2 = 2 \\ & \begin{vmatrix} 1 & i \\ i & 1 & i \\ & i & 1 \end{vmatrix} & = 1 \begin{vmatrix} 1 & i \\ i & 1 \end{vmatrix} - i \begin{vmatrix} i & 0 \\ i & 1 \end{vmatrix} = 2 - i^2 = 3$$

$$\begin{vmatrix} 1 & i \\ i & 1 & i \\ & i & 1 \end{vmatrix} & = 1 \begin{vmatrix} 1 & i \\ i & 1 & i \\ & i & 1 \end{vmatrix} - i \begin{vmatrix} i & 0 \\ i & 1 & i \\ & i & 1 \end{vmatrix} = 3 - i^2 \begin{vmatrix} 1 & i \\ i & 1 \end{vmatrix} = 5$$

Example 11 (continued).

$$\begin{vmatrix} 1 & i & & & & \\ i & 1 & i & & & \\ & i & 1 & i & & \\ & & i & 1 & i \\ & & & i & 1 \end{vmatrix} = 1 \begin{vmatrix} 1 & i & & & \\ i & 1 & i & & \\ & i & 1 & i \\ & & i & 1 \end{vmatrix} - i^2 \begin{vmatrix} 1 & i & & \\ i & 1 & i \\ & i & 1 \end{vmatrix} = 5 + 3 = 8$$

The Fibonacci numbers!

Do you know about the connection of Fibonacci numbers and rabbits? If

not, Google is your friend.