submitted (1)

January 27, 2022

1 Load train dataset

1. Using google files from colab, upload the training file, train.csv

```
[1]: from google.colab import files upload = files.upload()
```

<IPython.core.display.HTML object>

Saving train.csv to train.csv

2 Converting dataset from csv to pandas dataframe

1. Convert the uplaced dataset into a pandas dataframe.

The variable df looks like

\overline{id}	keyword	location	text	target
1	NaN	City A	That is a really bad cracker	0
4	Flood	City B	Floods after the rain RT #Flood @WaterBurst	1
5	Collapse	NaN	Big collapse in the half constructed building https://build	1
6	Fire	City C	Team is really fired up!	0
7	NaN	City D	Rocked	0

```
[2]: import io
import pandas as pd
df = pd.read_csv(io.BytesIO(upload['train.csv']))
```

3 Clean Dataset

- 1. Replace NaN values to empty string, ''.
- 2. Sort dataset according to target values

id	keyword	location	text	target
1		City A	That is a really bad cracker	0
6	Fire	City C	Team is really fired up!	0
7		City D	Rocked	0
4	Flood	City B	Floods after the rain RT #Flood @WaterBurst	1
5	Collapse		Big collapse in the half constructed building https://build	1

```
[3]: import numpy as np
    df = df.sort_values('target')
    df = df.fillna('')
```

4 Getting relevant columns (INPUT)

1. Get the keyword, text and location column

keyword	location	text
City A	That is a really bad cracker	
Fire	City C	Team is really fired up!
City D	Rocked	
Flood	В	Floods after the rain RT #Flood @WaterBurst
Collapse		Big collapse in the half constructed building https://build

2. Concate the strings element-wise

```
tweets

City A That is a really bad cracker

Fire City C Team is really fired up!

City D Rocked

Flood B Floods after the rain RT #Flood @WaterBurst

Collapse Big collapse in the half constructed building https://build
```

```
[4]: keyword = df['keyword']
  location = df['location']
  text = df['text']

[5]: tweets = np.add(keyword + ' ', np.add(text, ' ' + location))
```

5 Preprocess tweets function

1. Remove numbers

- 2. Remove special characters and any following that
- 3. Remove retweets
- 4. Remove links
- 5. Remove hashtags
- 6. Remove at the rates
- 7. Remove case to all small, strip handles, reduce the length using tokenizer
- 8. Remove stopwords
- 9. Stem the words
- 10. Remove punctuations
- 11. Store the clean data

```
tweets

['city', 'a', 'bad', 'cracker']

['fire', 'city', 'c', 'team', 'fire', 'up']

['city', 'd', 'rock']

['flood', 'city', 'b', 'flood', 'rain', 'flood', 'waterburst']

['collapse', 'big', 'collapse', 'half', 'construct', 'build']
```

```
[6]: def process_tweet(tweet):
       tweet = re.sub(r''[0-9]'', '''', tweet)
      tweet = re.sub(r'\$\w*', '', tweet)
      tweet = re.sub(r'^RT[\s]+', '', tweet)
       tweet = re.sub(r'https?://[^\s\n\r]+', '', tweet)
       tweet = re.sub(r'http?://[^\s\n\r]+', '', tweet)
       tweet = re.sub(r'#', '', tweet)
      tweet = re.sub(r'0', '', tweet)
       tokenizer = TweetTokenizer(preserve_case=False,_
      →strip_handles=True,reduce_len=True)
       tweet tokens = tokenizer.tokenize(tweet)
       tweet_clean = []
       stopwords_english = stopwords.words('english')
       stemmer = PorterStemmer()
       for word in tweet_tokens:
         if word not in stopwords_english and word not in string.punctuation:
           stem word = stemmer.stem(word)
           tweet_clean.append(stem_word)
       return tweet_clean
```

6 Get labels (ACTUAL OUTPUT)

- 1. Get the count of 0s and 1s usinf the Counter function.
- 2. Generate a numpy array of 0s and 1s.

7 Getting frequency of each word function

- 1. Squeeze the labels to a list
- 2. Generate a dictionary with a tulple as key, (word, target_value) and increase its count

```
{
  ('city', 0): 4,
  ('a', 0): 1,
  ('bad', 0): 1,
  ('cracker', 0): 1,
  ('fire', 0): 2,
  ('c', 0): 1,
  ('team', 0): 1,
  ('up', 0): 1,
  ('d', 0): 1,
  ('rock', 0): 1,
  ('flood', 1): 3,
  ('b', 1): 1,
  ('rain', 1): 1,
  ('waterburst', 1): 1,
  ('collapse', 1): 2,
  ('big', 1): 1,
  ('half', 1): 1,
  ('construct', 1): 1,
  ('build', 1): 1
}
```

```
[8]: def build_freqs(tweets, ys):
    yslist = np.squeeze(ys).tolist()
    freqs = {}
    for y, tweet in zip(yslist, tweets):
        for word in process_tweet(tweet):
            pair = (word, y)
            if pair in freqs:
                 freqs[pair] += 1
            else:
                 freqs[pair] = 1
            return freqs
```

8 Using the above functions

```
[9]: import re
    from nltk.corpus import stopwords
    from nltk.stem import PorterStemmer
    from nltk.tokenize import TweetTokenizer
    import string
    import nltk
    nltk.download('stopwords')
    freqs = build_freqs(tweets, labels)
```

[nltk_data] Downloading package stopwords to /root/nltk_data...
[nltk_data] Unzipping corpora/stopwords.zip.

9 Lookup function

Lookup function is used to find the frequency of a word given it is fake or real.

```
lookup(freqs, "city", 0) is 4 lookup(freqs, 'half', 1) is 1
```

```
[10]: def lookup(freqs, word, label):
    n = 0
    pair = (word, label)
    if (pair in freqs):
        n = freqs[pair]
    return n
```

10 Train Naive Bayes

vocab = [`city', `a', `bad', `cracker', `fire', `c', `up', `team', `d', `rock', `flood', `b', `rain', `waterburst', `collapse', `big', `half', `construct', `build']

$$V = 19$$

Number of positives = 12

Number of negatives = 14

$$D = 5$$

Number of positive labels = 2

Number of negative labels = 3

$$logprior = log\left(\frac{D_{pos}}{D_{neg}}\right)$$

The positive loglikelihood of a word, w is

$$\frac{freq_{pos,w_i}+1}{N_{pos}+V}$$

The negative loglikelihood of a word, w is

$$\frac{freq_{neg,w_i}+1}{N_{neg}+V}$$

The loglikelihood overall is the log of the ratio of the above

The loglikelihood of every word is given below

word	-ve likelihood	+ve likelihood	likelihood ratio	loglikelihood
'city'	$\frac{4+1}{14+19}$	$\frac{0+1}{12+19}$	0.213	-1.540
'a'	$\frac{1}{14+19}$	$\frac{0+1}{12+19}$	0.532	-0.631
'bad'	$\frac{1}{1+1}$ $\frac{1}{14+19}$	$\frac{10+1}{12+19}$	0.532	-0.631
'cracker'	$\frac{1}{1+1}$	$\frac{\overset{1}{0} + \overset{1}{1}}{12 + \overset{1}{19}}$	0.532	-0.631
'fire'	$\frac{\overset{14+13}{2+1}}{14+19}$	$\frac{\overset{12}{0}+\overset{13}{12}}{12+\overset{19}{19}}$	0.352	-1.044
'c'	$\frac{1+13}{14+19}$	$\frac{\overset{1}{0}+\overset{1}{1}\overset{9}{1}}{12+\overset{1}{19}}$	0.532	-0.631
'team'	$\frac{14+19}{14+19}$	$\frac{\overset{12}{0}+\overset{19}{1}}{12+19}$	0.532	-0.631
'up'	$\frac{14+19}{14+19}$	$\frac{\overset{12}{0}+\overset{13}{1}}{12+19}$	0.532	-0.631
'd'	$\frac{14+19}{14+19}$	$\frac{\overset{12}{0}+\overset{19}{1}}{12+\overset{19}{19}}$	0.532	-0.631
'rock'	$\frac{14+19}{14+19}$	$\frac{\overset{12}{0}+\overset{13}{1}}{12+19}$	0.532	-0.631
'flood'	$\frac{0+1}{14+19}$	$\frac{3+1}{12+19}$	4.258	1.440
'b'	$\frac{0+1}{14+19}$	$\frac{12+19}{1+1}$ $12+19$	2.129	0.755
'rain'	$\frac{0+1}{14+19}$	$\frac{12+19}{1+1}$ $\frac{1+1}{12+19}$	2.129	0.755
'waterburst'	$ \begin{array}{r} 14+19 \\ 0+1 \\ \hline 14+19 \end{array} $	$\frac{12+19}{1+1}$ $\frac{1}{12+19}$	2.129	0.755
'collapse'	$\frac{0+1}{14+19}$ $\frac{0+1}{14+19}$	$\begin{array}{c} 12+19\\ \hline 2+1\\ \hline 12+19 \end{array}$	3.193	1.161

word	-ve likelihood	+ve likelihood	likelihood ratio	loglikelihood
'big' 'half'	$\frac{0+1}{14+19}$	$\frac{1+1}{12+19}$	2.129	0.755
'half'	$ \begin{array}{r} 14+19 \\ 0+1 \\ 14+19 \\ 0+1 \end{array} $	$\begin{array}{r} \hline 12+19 \\ 1+1 \\ \hline 12+19 \\ 1+1 \\ \hline 1+1 \\ \end{array}$	2.129	0.755
'construct'	$\frac{0+1}{14+19}$	$\frac{1+1}{12+19}$	2.129	0.755
'build'	$\begin{array}{r} 14+19 \\ 0+1 \\ \hline 14+19 \end{array}$	$\begin{array}{r} 12+19\\ 1+1\\ 12+19 \end{array}$	2.129	0.755

```
[11]: def train_naive_bayes(freqs, train_x, train_y):
          loglikelihood = {}
          logprior = 0
          vocab = set(pair[0] for pair in freqs.keys())
          V = len(vocab)
          N_pos = N_neg = 0
          for pair in freqs.keys():
              if pair[1] > 0:
                  N_pos += freqs[pair]
              else:
                  N_neg += freqs[pair]
          D = len(train_y)
          D_pos = (len(list(filter(lambda x: x > 0, train_y))))
          D_neg = (len(list(filter(lambda x: x <= 0, train_y))))</pre>
          logprior = np.log(D_pos) - np.log(D_neg)
          for word in vocab:
              freq_pos = lookup(freqs,word,1)
              freq_neg = lookup(freqs,word,0)
              p_w_pos = (freq_pos + 1) / (N_pos + V)
              p_w_neg = (freq_neg + 1) / (N_neg + V)
              loglikelihood[word] = np.log(p_w_pos/p_w_neg)
          return logprior, loglikelihood
```

```
[12]: logprior, loglikelihood = train_naive_bayes(freqs, tweets, labels)
```

11 Test data

Getting the weights and applying to the test data is to get the final value of the logistic regression.

$$\hat{y} = \begin{cases} 1 & y_{pred} \ge 0.0\\ 0 & y_{pred} < 0.0 \end{cases}$$
 (1)

Predicted value is after the weights value on the test data.

```
[13]: from google.colab import files
upload = files.upload()
import io
import pandas as pd
```

```
df = pd.read_csv(io.BytesIO(upload['test.csv']))
      df = df.fillna('')
      keyword = df['keyword']
      location = df['location']
      text = df['text']
      tweets = np.add(keyword + ' ', np.add(text + ' ', location))
     <IPython.core.display.HTML object>
     Saving test.csv to test.csv
[14]: def naive_bayes_predict(tweet, logprior, loglikelihood):
          word_l = process_tweet(tweet)
          p = 0
          p += logprior
          for word in word_l:
              if word in loglikelihood:
                  p += loglikelihood[word]
          return p
[15]: def test_naive_bayes(test_x, test_y, logprior, loglikelihood, id,__
       →naive_bayes_predict=naive_bayes_predict):
          accuracy = 0
          y_hats = []
          for tweet in test_x:
              if naive_bayes_predict(tweet, logprior, loglikelihood) > 0:
                  y_hat_i = 1
              else:
                  y_hat_i = 0
              y_hats.append(y_hat_i)
          id = list(id)
          import csv
          with open('submit.csv', 'w') as f:
            writer = csv.writer(f)
            writer.writerows(zip(['id'], ['target']))
            writer.writerows(zip(id, y_hats))
[16]: id = df['id']
      test_naive_bayes(tweets, labels, logprior, loglikelihood, id, __
```

→naive_bayes_predict=naive_bayes_predict)