Computational Learning Theory

Learning Theory

 Theorems that characterize classes of learning problems or specific algorithms in terms of computational complexity or sample complexity (the number of training examples necessary or sufficient to learn hypotheses of a given accuracy)

Complexity of a learning problem depends on

- Size or expressiveness of the hypothesis space
- Accuracy to which target concept must be approximated
- Probability with which the learner must produce a successful hypothesis
- Manner in which training examples are presented, e.g., randomly or by query to an oracle

Types of Results

- Learning in the limit: Is the learner guaranteed to converge to the correct hypothesis in the limit as the number of training examples increases to infinity?
- Sample complexity: How many training examples are needed for a learner to construct (with high probability) a highly accurate concept?
- Computational complexity: How much computational resources (time and space) are needed for a learner to construct (with high probability) a highly accurate concept?
- Mistake bound: Learning incrementally, how many training examples will the learner misclassify before constructing a highly accurate concept

Learning in the Limit vs. PAC Model

- Learning in the limit model is too strong
 - Requires learning correct exact concept
- Learning in the limit model is too weak
 - Allows unlimited data and computational resources
- PAC Model (Leslie Valiant got a Turing Award!)
 - Only requires a Probably Approximately Correct (PAC) concept: learn a decent approximation most of the time
 - Requires polynomial sample complexity and computational complexity

PAC Learning

 The only reasonable expectation of a learner is that with high probability it learns a close approximation to the target concept

• In the PAC model, we specify two parameters, ϵ and δ , and require that with probability at least $(1 - \delta)$ a system learn a concept with error at most ϵ

PAC Learning

- How to prove PAC learnability?
 - First, prove sample complexity of learning a target concept h* using a hypothesis space H is polynomial
 - Second, prove that the learner can train on a polynomial-sized data set in polynomial time
- To be PAC-learnable
 - There must be a hypothesis in H with arbitrarily small error for every target concept h*

Consistent Learners

 A learner using a hypothesis space H and training data D is said to be a consistent learner if it always outputs a hypothesis with zero error on D whenever H contains such a hypothesis

Sample Complexity Result

- Any consistent learner, given at least
 - $-\left(\ln\frac{1}{\delta} + \ln|H|\right) \cdot \frac{1}{\epsilon}$ examples will produce a result that is PAC
- Just need to determine the size of a hypothesis space to instantiate this result for learning specific target concepts
- This gives a *sufficient* number of examples for PAC learning, but not a necessary number – meaning the bound is very loose in practice

Infinite Hypothesis Spaces

- The preceding analysis was restricted to finite hypothesis spaces
- Some infinite hypothesis spaces (such as those including real-valued thresholds or parameters) are more expressive than others
- Need some measure of the expressiveness of infinite hypothesis space
- The Vapnik-Chervonenkis (VC) dimension provides such a measure, denoted VC(H)

The VC Dimension

 A set of instances S is shattered by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy

• The Vapnik-Chervonenkis dimension, VC(H), of hypothesis space H defined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $VC(H)=\infty$

Sample Complexity with VC dimension

 Using VC dimension as a measure of expressiveness, the following number of examples have been shown to be sufficient for PAC Learning (Blum et al., 1989)

$$m \ge \frac{1}{\varepsilon} \left(4\log_2(2/\delta) + 8VC(H)\log_2(13/\varepsilon) \right)$$

 In general, this can provide a tighter upper bound on the number of examples needed for PAC learning

Summary of Learning Theory

- The PAC framework provides a theoretical mechanism for analyzing the effectiveness of learning algorithms
- The sample complexity for any consistent learner using some hypothesis space, H, can be determined from a measure of its expressiveness |H| or VC(H)
- If sample complexity is tractable, then the computational complexity of finding a consistent hypothesis in H governs its PAC learnability
- Constant factors are more important in sample complexity than in computational complexity, since our ability to gather data is generally not growing exponentially
- Experimental results suggest that theoretical sample complexity bounds over-estimate the number of training examples needed in practice since they are worst-case bounds!

12

More Readings

- Michael Kearns and Umesh Vazirani: Introduction to Computational Learning Theory, MIT Press, 1994.
 - https://mitpress.mit.edu/books/introduction-computational-learning-theory