Corrigé du DM n°25

Exercice 1

Tout d'abord, écrivons M sous forme plus explicite:

$$\Delta_n = \begin{vmatrix} 0 & 1 & 2 & 3 & \dots & n-1 \\ 1 & 0 & 1 & 2 & \dots & n-2 \\ 2 & 1 & 0 & 1 & \dots & n-3 \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ n-2 & n-3 & \dots & 1 & 0 & 1 \\ n-1 & n-2 & \dots & 2 & 1 & 0 \end{vmatrix}$$

Effectuons l'opération $C_1 \leftarrow C_1 - C_2$:

$$\Delta_n = \begin{vmatrix} -1 & 1 & 2 & 3 & \dots & n-1 \\ 1 & 0 & 1 & 2 & \dots & n-2 \\ 1 & 1 & 0 & 1 & \dots & n-3 \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 1 & n-3 & \dots & 1 & 0 & 1 \\ 1 & n-2 & \dots & 2 & 1 & 0 \end{vmatrix}$$

Si on fait à présent $C_2 \leftarrow C_2 - C_3$:

$$\Delta_n = \begin{vmatrix} -1 & -1 & -1 & \dots & n-1 \\ 1 & -1 & -1 & \dots & n-2 \\ 1 & 1 & -1 & \dots & n-3 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & \dots & 0 \end{vmatrix}$$

On fait cela pour toutes les colonnes sauf la dernière : chaque colonne moins la suivante, ce qui donne :

$$\Delta_n = \begin{vmatrix} -1 & -1 & -1 & \dots & -1 & n-1 \\ 1 & -1 & -1 & \dots & -1 & n-2 \\ 1 & 1 & -1 & \dots & -1 & n-3 \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 1 & 1 & \dots & 1 & -1 & 1 \\ 1 & 1 & \dots & 1 & 1 & 0 \end{vmatrix}$$

En d'autres termes, sauf sur la dernière colonne, on a des -1 au-dessus (au sens large) de la diagonale, et des 1 en-dessous (au sens strict) de la diagonale. Si on ajoute la dernière ligne à toutes les autres (i.e. $L_i \leftarrow L_i + L_n, \forall i \leq n-1$):

$$\Delta_n = \begin{vmatrix} 0 & 0 & 0 & \dots & 0 & n-1 \\ 2 & 0 & 0 & \dots & 0 & n-2 \\ 2 & 2 & 0 & \dots & 0 & n-3 \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 2 & 2 & \dots & 2 & 0 & 1 \\ 2 & 2 & \dots & 2 & 2 & 0 \end{vmatrix}$$

Si on développe à présent par rapport à la première ligne (ne pas oublier la puissance de -1):

$$\Delta = (-1)^{n+1} \times (n-1) \times \begin{vmatrix} 2 & 0 & 0 & \dots & 0 \\ 2 & 2 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 2 & 2 & \dots & 2 & 0 \\ 2 & 2 & \dots & 2 & 2 \end{vmatrix}$$

On obtient une matrice triangulaire inférieure (de taille n-1). On trouve finalement que:

$$\Delta = (-1)^{n+1} \times (n-1) \times 2^{n-1}$$

Exercice 2

 $\boxed{\mathbf{1}}$ Soit $\sigma \in S_n$. Précisons que les $X_{i,j}$ sont d'espérance nulle et de variance égale à 1 (ce qu'on trouve par un calcul direct). Par indépendance des $X_{i,j}$, on a:

$$E(Y_{\sigma}) = \prod_{i=1}^{n} E(X_{\sigma(1),1})$$

si bien que $E(Y_{\sigma}) = 0$. De plus, Y_{σ} étant un produit de variables aléatoires valant ± 1 , son carré est constant égal à 1 donc son espérance vaut 1. Finalement,

$$E(Y_{\sigma}) = 0$$
 et $E(Y_{\sigma}^{2}) = 1$

2 Découle du fait que σ et σ' sont deux fonctions distinctes donc diffèrent en au moins un point. De plus, le produit de l'énoncé ne contient aucune variable aléatoire de la forme $X_{\sigma(i),i}$ ou $X_{\sigma'(i),i}$ et les différentes $X_{i,j}$ sont indépendantes: on conclut par le lemme des coalitions.

D'après le lemme des coalitions,
$$\mathbf{X}_{\sigma(i),i}\mathbf{X}_{\sigma'(i)}$$
 est indépendante de $\prod_{j\neq i}\mathbf{X}_{\sigma(j),j}\mathbf{X}_{\sigma'(j),j}$.

3 Par définition du déterminant :

$$\det(\mathbf{M}) = \sum_{\sigma \in \mathbf{S}_n} \varepsilon(\sigma) \mathbf{Y}_{\sigma}$$

Le problème est que les Y_{σ} ne sont pas indépendantes (il y a plusieurs permutations σ vérifiant $\sigma(1)=1$ par exemple, donc on trouve dans les expressions des Y_{σ} correspondantes la même v.a. $X_{1,1}$ donc les Y_{σ} ne sont pas indépendantes). Il faut donc le faire à la main. D'après la formule de König-Huygens:

$$V(\det(M)) = E\left(\left(\sum_{\sigma \in S_n} \varepsilon(\sigma) Y_{\sigma}\right)^2\right) - E\left(\sum_{\sigma \in S_n} \varepsilon(\sigma) Y_{\sigma}\right)^2$$

En développant le premier terme (on obtient une somme double car on multiplie deux sommes simples) et par linéarité de l'espérance pour le deuxième :

$$V(\det(M)) = E\left(\sum_{(\sigma,\sigma') \in S_n^2} \varepsilon(\sigma) Y_{\sigma} \varepsilon(\sigma') Y_{\sigma'}\right) - \left(\sum_{\sigma \in S_n} \varepsilon(\sigma) E(Y_{\sigma})\right)^2$$

D'une part, la deuxième quantité est nulle d'après la question 1, car les Y_{σ} sont d'espérance nulle. D'autre part, par linéarité de l'espérance et en séparant les cas où $\sigma = \sigma'$ des cas où $\sigma \neq \sigma'$:

$$V(\det(M)) = \sum_{\sigma \in S_n} \varepsilon(\sigma)^2 E(Y_{\sigma}^{\ 2}) + \sum_{(\sigma,\sigma') \in S_n^{\ 2}, \sigma \neq \sigma'} \varepsilon(\sigma) \varepsilon(\sigma') E(Y_{\sigma}) Y_{\sigma'}$$

D'après la question 1, et puisqu'une signature vaut ± 1 , les termes de la première somme valent tous 1, et d'après la question 2, les termes de la deuxième somme sont tous nuls. Puisque S_n est de cardinal n!, cela donne le résultat voulu.

$$V(\det(M)) = n!$$

Exercice 3

1 Soient donc x, y, z trois réels. On a

$$C_2(x,y) = \begin{vmatrix} \cos(x) & \cos(y) \\ \sin(x) & \sin(y) \end{vmatrix}$$
$$= \cos(x)\sin(y) - \sin(x)\cos(y)$$
$$= \sin(y - x)$$

et
$$C_3(x, y, z) = \begin{vmatrix} \cos(x) & \cos(y) & \cos(z) \\ \sin(x) & \sin(y) & \sin(z) \\ \cos(x + \pi/4) & \cos(y + \pi/4) & \cos(z + \pi/4) \end{vmatrix}$$

$$= \begin{vmatrix} \cos(x) & \cos(y) & \cos(z) \\ \sin(x) & \sin(y) & \sin(z) \\ \cos(x)\cos(\pi/4) - \sin(x)\sin(\pi/4) & \cos(y)\cos(\pi/4) - \sin(y)\sin(\pi/4) & \cos(z)\cos(\pi/4) - \sin(z)\sin(\pi/4) \end{vmatrix}$$

La dernière ligne étant CL des deux premières, les lignes sont liées donc le déterminant est nul.

$$C_2(x,y) = \sin(y-x) \text{ et } C_3(x,y,z) = 0.$$

 $oxed{2}$ Soit $(x_1,\ldots,x_n)\in\mathbb{K}^n$. Par hypothèse, il existe $(\lambda_1,\ldots,\lambda_n)$ non tous nuls tels que $\sum_{i=1}^n\lambda_if_i=0$. Par conséquent, pour tout $j\in \llbracket 1\,;\, n\rrbracket,\, \sum_{i=1}^n\lambda_if_i(x_j)=0$. En d'autres termes, si on note $\mathrm{L}_1,\ldots,\mathrm{L}_n$ les vecteurs lignes, $\sum_{i=1}^n\lambda_n\mathrm{L}_i=0$: les vecteurs lignes sont liés, donc le déterminant est nul.

Si
$$(f_1, \ldots, f_n)$$
 est liée, alors C_n est la fonction nulle.

Suivons l'indication de l'énoncé et supposons $C_{n-1} \neq 0$, c'est-à-dire que C_{n-1} n'est pas la fonction nulle, donc il existe (u_1, \ldots, u_{n-1}) tel que $C_{n-1}(u_1, \ldots, u_{n-1}) \neq 0$. Notons

$$g: x \mapsto C_n(u_1, \dots, u_{n-1}, x) = \begin{vmatrix} f_1(u_1) & \dots & f_1(u_{n-1}) & f_1(x) \\ \vdots & \ddots & \vdots & \vdots \\ f_{n-1}(u_1) & \dots & f_{n-1}(u_{n-1}) & f_{n-1}(x) \\ f_n(u_1) & \dots & f_n(u_{n-1}) & f_n(x) \end{vmatrix} = 0$$

Soit $x \in X$. Développons par rapport à la dernière colonne : il existe $\lambda_1, \ldots, \lambda_n$ tels que

$$\sum_{i=1}^{n} \lambda_i f_i(x) = 0$$

Or, le coefficient devant $f_n(x)$ vaut $\lambda_n = C_{n-1}(u_1, \dots, u_{n-1}) \neq 0$ (la puissance de -1 est égale à 1). On a donc une CL de coefficients non tous nuls qui annule f_1, \dots, f_n : la famille est liée. On peut donc prouver le résultat voulu (si $C_n = 0$ alors (f_1, \dots, f_n) est liée) par récurrence:

- le résultat est immédiat si n = 1: si $C_1 = 0$ alors f_1 est la fonction nulle donc f_1 est une famille liée (à un élément).
- supposons le résultat vrai au rang n-1: si $C_{n-1}=0$ alors, par HR, f_1,\ldots,f_{n-1} sont liées donc f_1,\ldots,f_n le sont aussi (une famille contenant une famille liée est liée) et, si $C_{n-1}\neq 0$, on vient de prouver que la famille (f_1,\ldots,f_n) est tout de même liée. Dans les deux cas, l'hérédité est prouvée.

4.(a) Soit $i \in [1; n]$ et soit $x \in X$. Par définition, on remplace u_i par x en i-ième colonne si bien que

$$\begin{vmatrix} f_1(u_1) & \dots & f_1(u_{i-1}) & f_1(x) & f_1(u_{i+1}) & \dots & f_1(x_n) \\ f_2(u_1) & \dots & f_2(u_{i-1}) & f_2(x) & f_2(u_{i+1}) & \dots & f_2(x_n) \\ \vdots & \vdots & \ddots & \vdots & & & & \\ f_n(u_1) \dots & f_n(u_{i-1}) & f_n(x) & f_n(u_{i+1}) & \dots & f_n(x_n) \end{vmatrix}$$

Il suffit de développer par rapport à la i-ième colonne pour conclure.

Il existe des
$$\alpha_{i,j} \in \mathbb{K}$$
 tels que: $\forall i \in [1; n], \forall x \in X, F_i(x) = \sum_{j=1}^n \alpha_{i,j} f_j(x)$

 $\boxed{ \mathbf{4.(b)} }$ D'après la question précédente, les $\alpha_{i,j}$ sont les cofacteurs du déterminant ci-dessus. Mais, une fois barrée la colonne i, ces cofacteurs sont les mêmes que ceux du déterminant $C_n(u_1,\ldots,u_n) \neq 0$. On en déduit que la matrice P est la comatrice de la matrice M associée au déterminant $C_n(u_1,\ldots,u_n)$. Ce déterminant étant non nul, M est inversible donc sa comatrice

également (car sa transposée est inversible, puisque la transposée de la comatrice de M est, à multiplication par un scalaire près, l'inverse de M). On en déduit donc que

La question précédente donne l'inclusion $\text{Vect}(F_1, \dots, F_n) \subset \text{Vect}(f_1, \dots, f_n)$. De plus, si on note B le vecteur colonne contenant F_1, \dots, F_n et A le vecteur colonne contenant f_1, \dots, f_n , la question précédente donne l'égalité : B = PA. Dès lors, $A = P^{-1}B$, c'est-à-dire que :

$$\forall i \in [1; n], \forall x \in X, f_i(x) = \sum_{j=1}^n (P^{-1}) i, jF_j(x)$$

ce qui permet de prouver l'inclusion réciproque, d'où l'égalité.

$$\operatorname{Vect}(\mathbf{F}_1,\ldots,\mathbf{F}_n) = \operatorname{Vect}(f_1,\ldots,f_n)$$

Exercice 4

[1] Si i > j alors $P_{i,j} = 0$ car i ne divise par j si bien que P est triangulaire supérieure. De plus, les termes diagonaux sont tous égaux à 1 car i divise i pour tout i. Dès lors,

$$\det(P) = 1$$

Soit $(i, j) \in [1; n]^2$. Par définition d'un produit matriciel:

$$\mathbf{M}_{i,j} = \sum_{k=1}^{n} (\mathbf{P}^{\top})_{i,k} (\Delta \mathbf{P})_{k,j}$$

$$= \sum_{k=1}^{n} \mathbf{P}_{k,i} \sum_{\ell=1}^{n} \Delta_{k,\ell} \mathbf{P}_{\ell,j}$$

Or, par définition, Δ est diagonale donc $\Delta_{k,\ell} = 0$ si $k \neq \ell$ et vaut f(k) si $k = \ell$ si bien que:

$$\mathbf{M}_{i,j} = \sum_{k=1}^{n} \mathbf{P}_{k,i} f(k) \mathbf{P}_{k,j}$$

Par définition de P, il ne reste que les termes pour lesquels k divise i et j donc:

$$M_{i,j} = \sum_{k \text{ divise } i \text{ et } j} f(k)$$

3 Notons $S = \sum_{d|n} f(d)$, et on cherche donc à prouver que S = g(n). Remplaçons, pour tout d divisant n, f(d) par sa valeur, ce qui donne :

$$S = \sum_{d|n} \sum_{c|d} \mu\left(\frac{d}{c}\right) g\left(c\right)$$

Intervertissons ces deux sommes (faites le geste): lorsque d parcourt les diviseurs de n et c les diviseurs de d, alors c parcourt les diviseurs de n (par transitivité) et d les multiples de c divisant n:

$$S = \sum_{c|n \ d \text{ multiple de } c \text{ divisant } n} \mu\left(\frac{d}{c}\right) g\left(c\right)$$

Dans la deuxième somme, posons k = d/c, d = kc (ce qui est possible car d est un multiple de c). Or, on sait que d divise n donc il existe p tel que dp = n donc kcp = n et donc kp = n/c donc k divise n/c et, réciproquement, si k divise n/c alors kc divise n. En d'autres termes, lorsque d = kc parcourt les multiples de c divisant n, alors k parcourt les diviseurs de n/c si bien qu'on a finalement:

$$S = \sum_{c|n} \sum_{k|n/c} \mu(k) g(c)$$

$$= \sum_{c|n} g(c) \sum_{k|n/c} \mu(k)$$

Si $c \neq n$, la deuxième somme est nulle car $n/c \neq 1$, d'après la propriété rappelée dans l'énoncé, et donc il ne reste que le terme pour c = n, et la deuxième somme vaut alors $\mu(1) = 1$, si bien que S = 1.

On a bien
$$g(n) = \sum_{d|n}^{f} (d)$$

Rappelons (cf. chapitre 6) qu'un entier divise i et j si et seulement s'il divise leur PGCD. Dès lors, pour tous i et j,

$$M_{i,j} = \sum_{k|i \wedge j} f(k)$$

Prenons donc la fonction f définie par :

$$\forall n \in \mathbb{N}^*, f(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) g(d)$$

On a donc, pour cette valeur de f,

$$\mathbf{M}_{i,j} = \sum_{k|i \wedge j} f(k) = g(i \wedge j)$$

d'après la question précédente, et donc on a bien $M = A_g$. Par conséquent, $\det(M) = \det(A_g)$. Or, le déterminant étant multiplicatif, $\det(M) = \det(P^\top) \times \det(\Delta) \times \det(P)$. De plus, P est de déterminant 1 donc sa transposée également, si bien que $\det(M) = \det(\Delta)$. Enfin, Δ étant diagonale, son déterminant est égal au produit de ses coefficients diagonaux, si bien que

$$\det(\mathbf{A}_g) = \prod_{k=1}^n f(k) \text{ où, pour tout } n, f(n) = \sum_{j|n} \mu\left(\frac{n}{d}\right) g(d)$$

[5.(a)] Notons U l'union de droite. Par définition, U est contenue dans [1; n]. De plus, elle est disjointe car un même k ne peut pas avoir deux PGCD différents avec n. Enfin, pour tout $k \in [1; n]$, si on note $d = k \wedge n$, alors d divise n donc k est dans l'ensemble $\{k \in [1; n] \mid k \wedge n = d\}$, si bien que [1; n] est aussi inclus dans U.

$$[\![\,1\,;\,n\,]\!]=\bigcup_{d\mid n}\{k\in[\![\,1\,;\,n\,]\!]\,|\,k\wedge n=d\}$$
 et cette union est disjointe.

[5.(d)] Le sens direct découle du chapitre 6: si $k \wedge n = d$ alors d divise k et k/d et n/d sont premiers entre eux. Réciproquement, supposons que d divise k et k/d et n/d soient premiers entre eux. Soit $m = k \wedge n$. Alors d divise m (le PGCD est divisible par tous les diviseurs communs) donc il existe a tel que m = ad. Puisque k/m et n/m sont des entiers, il en découle que a divise n/d et k/d qui sont premiers entre eux donc a = 1 donc m = d.

$$k \wedge n = d$$
 si et seulement si d divise k et $(k/d) \wedge (n/d) = 1$.

 $\mathbf{5.(c)}$ D'après la question 5.(a), l'union étant disjointe, la somme des cardinaux est le cardinal de l'union :

$$n = \sum_{d \mid n} \operatorname{Card} \left\{ k \in \llbracket \, 1 \, ; \, n \, \rrbracket \, | \, k \wedge n = d \right\}$$

Or, d'après la question précédente, le cardinal de $\{k \in [1; n] \mid k \land n = d\}$ est égal au nombre d'entiers k multiples de d tels que k/d soit premier avec n/d. En d'autres termes, ce cardinal est égal au nombre d'entiers de la forme $i \times d$ avec i premier avec n/d: il y a donc autant d'éléments dans cet ensemble que d'entiers premiers avec n/d. Finalement, le cardinal de cet ensemble est égal au nombre d'entiers premiers avec n/d, c'est-à-dire que:

$$n = \sum_{d|n} \varphi\left(\frac{n}{d}\right)$$

La conclusion découle de la formule d'inversion de Möbius (la réciproque de la question 3, vraie d'après l'exercice 25 du chapitre 17).

$$\forall n \in \mathbb{N}^*, \sum_{d|n}^{\mu} \left(\frac{n}{d}\right) \times d = \varphi(n)$$

5.(d) Il s'agit d'appliquer la question 4 avec $g: n \mapsto n$. La fonction f est alors définie par:

$$\forall n \in \mathbb{N}^*, f(n) = \sum_{i \mid n} \mu\left(\frac{n}{d}\right) \times d$$

donc f est l'indicatrice d'Euler d'après la question précédente. D'après la question 4:

$$\det((i \wedge j)_{i,j}) = \varphi(1) \times \cdots \times \varphi(n)$$

Puisque l'indicatrice d'Euler ne s'annule pas, la matrice associée est inversible.

Problème

Partie A. La propriété fondamentale du résultant

Réciproquement, supposons qu'il existe A et B comme dans l'énoncé et que P et Q soient premiers entre eux. P divise BQ donc, d'après le théorème de Gauß, P divise B ce qui est absurde car $\deg(P) > \deg(B)$ et B est non nul. Donc P et Q ne sont pas premiers entre eux.

On a bien l'équivalence voulue.

On sait que $\mathbb{K}_p[X]$ est de dimension p+1 et que la dimension de l'espace vectoriel produit $F \times G$ est égale à la somme des dimensions de F et G. On obtient ainsi que:

Ces deux espaces sont de dimension n + m.

[3] Il faut faire attention qu'<u>un</u> élément de l'espace de départ est un couple de <u>deux</u> éléments. Montrons que f est linéaire. Pour tous (P_1, Q_1) et (P_2, Q_2) dans $\mathbb{K}_{m-1}[X] \times \mathbb{K}_{n-1}[X]$ et tous $\lambda, \mu \in \mathbb{K}$ on a:

$$\begin{split} f\left(\left(\lambda \left(\mathbf{P}_{1}, \mathbf{Q}_{1} \right) + \mu \left(\mathbf{P}_{2}, \mathbf{Q}_{2} \right) \right) &= f\left(\lambda \mathbf{P}_{1} + \mu \mathbf{P}_{2}, \lambda \mathbf{Q}_{1} + \mu \mathbf{Q}_{2} \right) \\ &= \left(\lambda \mathbf{P}_{1} + \mu \mathbf{P}_{2} \right) \mathbf{P} + \left(\lambda \mathbf{Q}_{1} + \mu \mathbf{Q}_{2} \right) \mathbf{Q} \\ &= \lambda \mathbf{P}_{1} \mathbf{P} + \lambda \mathbf{Q}_{1} \mathbf{Q} + \mu \mathbf{P}_{2} \mathbf{P} + \mu \mathbf{Q}_{2} \mathbf{Q} \\ &= \lambda f(\mathbf{P}_{1}, \mathbf{Q}_{1}) + \mu f(\mathbf{P}_{2}, \mathbf{Q}_{2}) \end{split}$$

et f est, en conclusion, bien linéaire. Une base de l'espace d'arrivée est la base canonique $(1, X, ..., X^{n+m-1})$. Montrons que la famille $(1,0), ..., (X^{m-1},0), (0,1), ..., (0,X^{n-1})$ est une base de l'espace de départ. Comme cette famille est de cardinal n+m, c'est-à-dire la dimension de l'espace, il suffit de montrer que c'est une famille génératrice (juste pour changer: on peut aussi montrer facilement qu'elle est libre). Soient

$$\mathbf{C} = \sum_{i=0}^{m-1} c_i \mathbf{X}^i \in \mathbb{K}_{m-1}[\mathbf{X}] \qquad \text{et} \qquad \mathbf{D} = \sum_{i=0}^{n-1} d_i \mathbf{X}^i \in \mathbb{K}_{n-1}[\mathbf{X}]$$

Dès lors

$$(C,D) = (C,0) + (0,D) = \sum_{i=0}^{m-1} c_i(X^i,0) + \sum_{i=0}^{m-1} d_i(0,X^i)$$

Cette famille est bien génératrice et donc c'est une base. Vérifions que la matrice de f dans ces deux bases et la transposée de la matrice résultante. $f(1,0) = P = a_0 + a_1X + \cdots + a_nX^n$ et donc la première colonne de cette matrice est le vecteur

$$\begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

D

e même $f(X, 0) = XP = a_0X + a_1X^2 + \cdots + a_nX^{n+1}$ et donc la deuxième colonne de cette matrice est le vecteur

$$\begin{pmatrix} 0 \\ a_0 \\ a_1 \\ \vdots \\ a_n \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

De même pour chaque élément $(X^i, 0)$: la *i*-ème colonne de la matrice associée à f est le vecteur avec ses i-1 premières coordonnées nulles, les n+1 suivantes valant a_0, \ldots, a_n et les suivantes aussi nulles. On a ainsi les n premières colonnes de cette matrice. Pour la n+1 et les suivantes, il faut regarder $f(0, X^i)$ et cela marche exactement de la même façon et on trouve le résultat demandé.

C'est bon.

 $oxed{4}$ D'après la première question, P et Q sont premiers entre eux si et seulement si f est injective, donc si et seulement si le déterminant de la matrice associée à f est non nul. Or, le déterminant d'une matrice étant égal à celui de sa transposée, et le résultant étant égal au déterminant de la transposée de la matrice de f par la question précédente, on en déduit le résultat voulu.

P et Q sont premiers entre eux si et seulement si leur résultat est non nul.

5 Le résultant recherché est le déterminant de la matrice suivante

Multiplions la colonne C_j par λ^j pour j allant de 1 à m+n (ce qui divise le déterminant par λ^j). On peut alors mettre λ^{n+i} en facteur sur la ligne L_i pour les m premières lignes $(i \in [1; m])$ et λ^i pour les n suivantes $(i \in [m+1; m+n])$. Par n-linéarité du déterminant, on obtient :

$$\operatorname{Res}_{\mathbb{K}}\left(\lambda^{n}\operatorname{P}\left(\frac{\operatorname{X}}{\lambda}\right),\lambda^{m}\operatorname{Q}\left(\frac{\operatorname{X}}{\lambda}\right)\right)=\lambda^{\alpha}\operatorname{Res}_{\mathbb{K}}(\operatorname{P},\operatorname{Q})$$

οù

$$\alpha = \sum_{i=1}^{m} (n+i) + \sum_{i=m+1}^{n+m} i - \sum_{j=1}^{n+m} j$$

$$= nm + \frac{m(m+1)}{2} - \sum_{j=1}^{m} i$$

$$= nm + \frac{m(m+1)}{2} - \frac{m(m+1)}{2}$$

$$= nm$$

En conclusion

$$\operatorname{Res}_{\mathbb{K}}\left(\lambda^{n}\operatorname{P}\left(\frac{\operatorname{X}}{\lambda}\right),\lambda^{m}\operatorname{Q}\left(\frac{\operatorname{X}}{\lambda}\right)\right)=\lambda^{nm}\operatorname{Res}_{\mathbb{K}}(\operatorname{P},\operatorname{Q})$$

6.(a) Tout d'abord, le discriminant de P est nul si et seulement si le résultant de P et P' est nul. D'après la question 1, le discriminant de P est nul si et seulement si P et P' ne sont pas premiers entre eux, c'est-à-dire s'ils ont une racine complexe commune. Or, P et P' ont une racine commune si et seulement si c'est une racine multiple. Le résultat en découle:

P a une racine multiple si et seulement si son discriminant est nul.

6.(b)
$$P = aX^2 + bX + c \text{ et } P' = 2aX + b \text{ donc}$$

Res(P, P') =
$$\begin{vmatrix} c & b & a \\ b & 2a & 0 \\ 0 & b & 2a \end{vmatrix} = 4a^2c - ab^2$$

et en multipliant par $\frac{(-1)^{2\times 3/2}}{a}=-\frac{1}{a}$ on obtient le résultat voulu.

P a une racine multiple si et seulement si son discriminant est nul.

6.(c)
$$P = X^3 + pX + q$$
 et $P' = 3X^2 + p$ ce qui donne

$$\operatorname{Res}(\mathbf{P},\mathbf{P}') = \begin{vmatrix} q & p & 0 & 1 & 0 \\ 0 & q & p & 0 & 1 \\ p & 0 & 3 & 0 & 0 \\ 0 & p & 0 & 3 & 0 \\ 0 & 0 & p & 0 & 3 \end{vmatrix} = 27q^2 + 4p^3$$

en développant, par exemple, suivant la première colonne. Comme le polynôme est unitaire et n=3, le discriminant est lui aussi égal à $27q^2 + 4p^3$.

Le discriminant de
$$X^3 + pX + q$$
 est égal à $27q^2 + 4p^3$.

On en déduit que ce polynôme a une racine multiple si et seulement si $27q^2 + 4p^3 = 0$. On avait prouvé ce résultat d'une autre façon dans l'exercice 74 du chapitre 19.

Partie B. Nombres algébriques

1 En développant on obtient

$$P = X^3 - 3X^2Y + 3XY^2 - Y^3 + 2X^2Y^2 = (X^3) + (-3X^2)Y + (3X + 2X^2)Y^2 + (-1)Y^3$$

De même que dans la question précédente on peut mettre les deux polynômes sous la forme $(X^3 + 1) + (X^2)Y + (X)Y^2$ et 1 + (X)Y. Le résultant de ces deux polynômes, en tant que polynômes en Y à coefficients dans K est alors

$$\begin{vmatrix} 1 + X^3 & X^2 & X \\ 1 & X & 0 \\ 0 & 1 & X \end{vmatrix} = X^2(1 + X^3) + X - X^3 = X + X^2 - X^3 + X^5$$

Be résultant demandé est un déterminant d'une matrice à coefficients dans $\mathbb{Z}[X]$ et comme le déterminant est polynomial en les coefficients, son déterminant est aussi à valeurs dans $\mathbb{Z}[X]$. Montrons que c'est un polynôme annulateur de $z_1 + z_2$. Il faut montrer que la fonction polynomiale associée (en x) est nulle en $z_1 + z_2$. Or, en évaluant cette fonction en $z_1 + z_2$, on obtient le résultant des deux polynômes $P(z_1 + z_2 - Y)$ et $P_2(Y)$ qui s'annulent tous les deux en z_2 : les deux polynômes ont une racine commune, ils ne sont pas premiers entre eux et d'après la partie précédente, leur résultant est nul.

Ce polynôme est un élément de $\mathbb{Z}[X]$ qui annule z_1+z_2 .

 $\boxed{\textbf{4}}\ P_1 = X^2 - 2\ \text{et}\ P_2 = X^2 - 7\ \text{sont respectivement annulateurs de}\ \sqrt{2}\ \text{et}\ \sqrt{7}.\ D\text{'après la question précédente},\ \sqrt{2} + \sqrt{7}\ \text{est annulateur du polynôme}\ Q = \operatorname{Res}_K(P_1(X-Y),P_2(Y)).\ On\ a\ \text{\'evidemment}\ P_2(Y) = Y^2 - 7\ \text{et}\ P_1(X-Y) = X^2 - 2XY + Y^2 - 2 = (X^2-2) + (-2XY+Y^2) + (-2XY+Y$

$$Q = \begin{vmatrix} -7 & 0 & 1 & 0 \\ 0 & -7 & 0 & 1 \\ X^2 - 2 & -2X & 1 & 0 \\ 0 & X^2 - 2 & -2X & 1 \end{vmatrix}$$

Calculons ce déterminant. Développons par rapport à la dernière colonne :

$$Q = +1 \times \begin{vmatrix} -7 & 0 & 1 \\ X^2 - 2 & -2X & 1 \\ 0 & X^2 - 2 & -2X \end{vmatrix} + 1 \times \begin{vmatrix} -7 & 0 & 1 \\ 0 & -7 & 0 \\ X^2 - 2 & -2X & 1 \end{vmatrix}$$
$$= -28X^2 + (X^2 - 2)^2 + 7(X^2 - 2) + 49 + 7(X^2 - 2)$$
$$\boxed{X^4 - 18X^2 + 25 \text{ est annulateur de } \sqrt{2} + \sqrt{7}.}$$

En conclusion

- $\boxed{5}$ Il faut montrer que c'est un sous-corps de \mathbb{R} .
 - 0 et 1 sont évidemment algébriques car racines de X et X-1.
 - L'ensemble des nombres algébriques est stable par somme d'après la question 3.
 - Montrons qu'il est stable par produit. On reprend les notations de la question 2.(c) et on cherche un polynôme à coefficients entiers annulant z_1z_2 . Bien sûr, si z_1 ou z_2 est nul, $z_1z_2=0$ est algébrique. On supposera donc z_1 et z_2 non nuls. Il faut penser à l'analogue du polynôme de la question 3, version multiplication : l'analogue de X-Y est $\frac{X}{Y}$. On a envie de regarder le résultant des polynômes $P_1\left(\frac{X}{Y}\right)$ et $P_2(Y)$. L'ennui, c'est que le premier n'est pas un polynôme en Y. On règle cela en multipliant par Y^n où n est le degré de $P_1:Y^nP_1\left(\frac{X}{Y}\right)$ est bien un polynôme en Y à coefficients dans $\mathbb{Z}[X]$, et si on évalue en $X=z_1z_2$, le polynôme $Y^nP_1\left(\frac{z_1z_2}{Y}\right)$ s'annule en z_2 et donc lui et $P_2(Y)$ ont z_2 en racine commune : leur résultant est nul, ce qu'on voulait démontrer.
 - Une fois qu'on a fait la multiplication, le passage à l'inverse n'est pas très compliqué: si z_1 est un nombre algébrique non nul annulant P_1 , on voit avec le même raisonnement que $\frac{1}{z_1}$ est racine du résultant des deux polynômes en Y $P_1(Y)$ et $P_1(XY^2)$, puisque si on évalue en $X = \frac{1}{z_1}$ alors les deux polynômes en Y admettent z_1 comme racine commune.

En conclusion

L'ensemble des nombres algébriques est un corps.