INDEX

Note: Page numbers followed by f indicate figures and t indicate tables.

Α	Savage-Dickey method, 354, 355
ACF. See Autocorrelation function (ACF)	sequential testing, 385, 389–390
Actual data, 29	Bayesian analysis, 711, 712f
Aggregate function, 57, 58	benefits, 519
Alcohol, 473–474, 473f	data structure, 723
Analysis of covariance (ANCOVA), 554, 571–572	false alarm mitigation, 328-329
Analysis of variance (ANOVA), 554, 584	MCMC sample posting, 723, 724
between-group variance, 556	non-NHST analysis, 722
equality of groups, 556–557	posterior interpretation, 723
hierarchical Bayesian approach, 557–568	posterior predictive check, 724
null hypothesis assumption, 556–557	posterior robustness, 724
within-group variance, 556	power analysis, 724
ANOVA-like analysis, 7	prior justification and description, 723
ANOVA-like model, 642f, 643-644	prior knowledge, 315–317
Anything's-possible model, 290-291, 293, 294	p values, 314–315
Apply function, 59	raw data posting, 724
Argument function, 64	Bayesian approaches
Array function, 50	null value (see Region of practical equivalence
as.vector function, 54	(ROPE))
Autocorrelation, 282-283, 285, 466,	parameter-estimation approach (see
506, 520	Model-comparison method)
Autocorrelation function (ACF), 182, 183,	Bayesian estimation, 677-682, 695
183 <i>f</i> , 184	Bayesian HDI, 324–325
	Bayesian inference, 152, 675
В	ball diameters, 20-21, 21f
Baseball batting abilities	bias of a coin, 112
CSV data file, 254-255, 294	credibility reallocation, 16
data analysis script, 255	degree of noise, 20
hierarchy data, 222	fictional Sherlock Holmes, 19
JAGS model specification, 256-258	Holmes' reasoning, 16, 17f
marginal posterior distributions, 256f, 257f, 260f	judicial exoneration, 18–19, 18f
opportunities and hits, 253-254	manufacturing process, 20
position-level batting abilities, 256f, 258	non-trivial probability test, 21–22
restricted model vs. full model, 291-292	posterior distribution, 16–18
selected individuals batting abilities, 257f, 258	random measurement, 19–20
BattingAverage.csv, 294	Bayesian inference using Gibbs sampling (BUGS)
Bayes, Thomas, 100	193–194
Bayes' factor (BF), 268, 618	Bayesian model, 504
Haldane prior, 344, 345 <i>f</i> , 347, 347 <i>f</i>	Bayesian model averaging (BMA), 547
null hypothesis, 344, 346–347, 348, 354	Bayesian p value, 502
posterior distribution, 346	Bayesian reasoning, 3
ratio of proportions, 353	Bayesian software, 502-503, 649, 671
ROPE 348	Bayesian statistics 1–2

Bayesian variable selection, 537 Bayes' rule, 3, 124, 222–223, 266, 267–268, 275–276 binomial likelihood function, 249 data and parameter values, 105–108 definition of conditional probability, 100–101 MCMC methods, 115–116 multiple coins flipping scenario, 235 numerical approximation, 115 R code, 116–117 single coin flipping scenario, 224–225 varietional approximation, 115	likelihood function, 109, 110–111, 111 <i>f</i> numerical values, 108–109 posterior distribution, 112–113, 136–138 prior distribution, 110 probability of heads, 108 Bimodal distribution, 273 Binomial data, 124 Binomial likelihood function, 249, 250–251 Binomial probability distribution, 303–304, 304 <i>f</i> Binomial <i>versus</i> Bernoulli, 126, 249, 253, 303 Bootstrapping method. <i>See</i> Resampling method Broad shouldered distribution, 675
variational approximation, 115	,
Bayes, Thomas, 100	Brooks-Gelman-Rubin statistic, 181–182
BernBeta function, 138–139, 355	Burn-in period, 179–181
Bernoulli-beta model, 413–414	C
Bernoulli distribution, 124–125, 276, 348, 408,	C
623, 631	camelBack notation, 62
Bernoulli likelihood and beta prior	Central tendency, 87
histogram, 159–160, 159 <i>f</i>	CIs. See Confidence intervals (CIs)
normal distribution, 158	coda.samples function, 203
preliminary phase, 160–161	Coin flip, 73, 223
proposal distribution, 159–161	multiple coin (see Multiple coins flipping
proposal SD, 160	scenario)
relative posterior probability, 157–158	single coin (see Single coin flipping scenario)
Bernoulli likelihood function, 125–126, 249	Colon operator, 43
Bernoulli ones trick, 214	Combine function, 42
Bernoulli versus binomial, 126, 249, 253, 303	Comma separated values (CSV) format, 53
Beta distribution	Component-by-component vector operations,
central tendency, 129	42–43
component names, 131	Computer program, 2–3
concentration, 129	Conditional logistic regression
definition, 127	binary division hierarchy, 655–656, 655f
examples of, 127, 128 <i>f</i>	data generation, 657, 657f
mean and standard deviation, 130-131	hierarchical diagrams, 660f, 661
mode and mean, 129–130, 130f	ilogit function, 661–662
parameterization, 131–132	linear division, 659
posterior beta, 132–133	linear separations, 659
prior knowledge, 134–138	mnemonic subscripts, 658
R code, 138–139	outcome-partition hierarchy, 661, 662
shape parameters, 127	partition structures, 667
Beta function, 127	posterior distributions, 664
Beta prior distribution, 315–316	posterior parameter estimates, 664, 665f, 666f
Beta-prior program, 639–641	regression coefficients, 664
Bias of a coin	response probability, 655
Bayesian inference, 112	Conditional probability, 91–92, 91t
data collection, 110–111	Confidence intervals (CIs)
data type identification, 108-109	Bayesian intuition, 324
departure from fairness, 108	confidence distributions, 323-324
descriptive model, 109	distribution (see Sampling distribution)

hypothetical population, 319	Discrete probability distribution, 78–80
misconception, 322-323	Double exponential distribution, 532
nonrejectable parameter values, 318	Drosophila, 562, 566
plausibility, 323	Dynamic shared object (DSO), 408
point estimates, 317–318	
stopping and testing intentions, 322-323	E
Conjugate prior, 126	Effective sample size (ESS), 170, 184
Continuous probability distribution, 80–84	Entropy, 365
Corn production, 611–612, 611 <i>f</i>	Equally informed priors, 294-295
Correlated parameters, 176, 340–342, 489	Equal-tailed interval (ETI), 342
Correlated predictors, 632–633, 633f	Equivalent prior sample method, 366
Count predicted variable	Error messages, 68
Bayesian analysis, 717–719	Ethanol, 473–474
crime and drinking data, 715, 716f	Expected value, 84-85
eye and hair colors, 704t, 711-713, 712f	Exponential link function, 704t, 705–707, 706t
interaction contrasts, 713, 714f, 717, 718f	Extended hierarchical model
log-linear models, 715	hierarchical dependencies, 251-252, 252f
omnibus test, 714–715	JAGS model specification, 253
shrinkage, 713, 717, 718f	over-arching distribution, 252
Covariate, 554, 569	Extended model, 502
Credible threshold lines, 693, 694f	Eye color, 93, 95–96, 102–103, 719
Crime, 715	
Crossover interaction, 600, 600f, 601	F
Cumulative normal function, 439–440, 440f	Family income, 490–491, 501–502, 506, 508
Cumulative-normal model, 700	Family size, 490–491, 500
Cumulative normal probabilities, 676	F distribution, 556–557
Cumulative t function, 700	Fertilizer, 611
_	Fisher, Ronald, 100, 556–557
D	Fisherian approach, 100
Data fitting, 503–504, 505 <i>f</i>	Fixed-duration stopping rule, 309, 309f
Data frame, 51	Formal analysis, 268–273
Data mimicking, 490	Bayesian updating, independent beta priors, 166,
Data structures	167 <i>f</i>
ANCOVA, 554	beta distribution, 165
experiments, 553	contour plot, 167f, 168
JAGS, 208	probability density function, 165, 166
observational studies, 553	recapitulation, 166
single-factor ANOVA, 554	two-parameter space, 167f, 168
Degree of belief, 72–73	F-ratio, 100, 556–557
Degree of noise, 20	Frequentist approach, 100
Density plots, 180–181	Fruit fly, 473–474, 563f, 570f, 571
Descartes, Rene, 34	Funniness rating, 685, 686f
Dichotomous data, 124	F test, 685
Dichotomous predicted variable	
multiple group nominal predictors, 641-646	G
multiplemetric predictors, 622–629	Gamma distribution, 236–238, 237f
regression coefficients, 629–635	Gaussian distribution. See Normal probability
robust logistic regression, 635–636	density function
single group nominal predictors, 638–646	Gelman-Rubin convergence statistic, 201

Gelman-Rubin statistic, 181–182	proposal distribution, 400-401, 402f
Generalized linear model (GLM), 4, 449-450. See	Steps*Eps, 402–403, 404, 405 <i>f</i>
also Predictor variables	Happiness rating, 671, 682, 691
count data, 422	HDIs. See Highest density intervals (HDIs)
metric scales, 422	Head-biased factories
nominal scales, 422-423	hierarchical diagram, 269, 269f
non-manipulated variables, 421	marginal likelihood function, 270
ordinal scales, 422	posterior distribution, 273
genMCMC function, 372	posterior probabilities, 270–271
Gibbs sampling	prior distribution, 270–271
applied to posterior, 174, 174 <i>f</i> , 175	prior probabilities, 271
beta distributions, 173	Heavy-tailed distribution, 700
component parameter selection, 171-172	Height, 25, 27, 72, 129–130, 168, 420, 421, 429,
conditional posterior distribution, 171, 173–174	430, 447, 477, 621, 622, 626–629
conditional probability, 173–174	Heterogeneous-variance model, 605–606, 605f
disadvantages, 175, 176	Heterogeneous variances and robustness
vs. Metropolis algorithm, 170, 175	contrasts of means, 578
Metropolis-Hastings algorithm, 170-172	difference of scales, 578-579
random walk type procedure, 171	gamma distribution, 573-574
two-parameter example, 171, 172f	groups with different variances, 575,
working procedure, 175	576 <i>f</i> , 577 <i>f</i>
GLM. See Generalized linear model (GLM)	hierarchical diagram, 573-574, 574f
Grid approximations, 144, 271, 273	JAGS implementation, 574–575
multiple coins flipping scenario, 231, 232f,	t distribution, 573–574
234 <i>f</i> , 235	within-group standard deviation, 575-578
single coin flipping scenario, 226, 228	HGN.csv file, 54
Grouped metric data	HGNdf variable, 54
central tendency, 554	Hierarchical Bayesian approach
deflections, 554-555	baseline parameter, 557, 558
description, 554, 555f, 556	contrasts, 565–567
predicted value, 554-555	control types, fruit fly longevity, 561-562
random variation, 554	data and posterior distribution, 562, 563f
sum-to-zero constraint, 555-556	generic noncommittal prior distributions, 557
	half-Cauchy/folded-t distribution, 558-559
Н	heavy-tailed distribution, 559-560
Hair color, 54, 58, 90, 91, 93, 95–96, 102,	hierarchical diagram, 557, 558f, 588-589, 588f
704–705, 711	JAGS model, 560-561, 562, 589-590
Haldane, J. B. S., 308	main effect contrast, 595-596, 596f
Haldane prior, 293, 344, 345 <i>f</i>	MCMC chain diagnostics display, 564
Hamilton, William Rowan, 399, 405–406	multiple comparisons, 567
Hamiltonian Monte Carlo (HMC), 484	normal distributions with homogeneous
definition, 400	variances, 564
initial random momentum, 404, 406f	posterior distributions, 558–559
kinetic energy, 401	posterior predictive distributions, 563f, 564
leapfrog procedure, 404	prior beliefs, 558–559
mathematical theory, 405-406	salary data, 590–594, 592f
Metropolis acceptance probability, 403	shrinkage, 559, 567, 568, 598
posterior density, 400	"simple" comparisons, 597, 597f
potential function, 401	smryMCMC function, 594, 595t

thinSteps=10 argument, 562-564	predictor variables, 435-436
top-level distribution, 589	two-factor ANOVA, 708–709, 709f, 710
two-group case, 568	Island-hopping politician, 161
uncertainty, 598	position probability, 149, 150–151, 150f
Hierarchical linear regression, 573	proposal distribution, 151
Hierarchical MCMC	proposed and current island, 147
autocorrelation, 282-283, 285	proposed position, 151
JAGS, 278, 279	random-walk process, 152
posterior distribution, 279, 280f, 283	relative population, 147, 148f
posterior probabilities, 287	target distribution, 149-150, 156
prior distributions, 279, 280f	trajectory, 147–148, 148f, 149
pseudopriors, 281, 282, 283, 284f, 285, 286f	
Hierarchical models, 4, 602, 603f	J
coin flip, 223	Jacobian matrix, 730–732
definition, 221	JAGS/Stan model, 6, 239-240, 277-278, 279,
dependencies, 223	280-281, 285, 466-468, 486-487, 488-489,
extended hierarchical model, 251-259	503, 506-508. See also Softmax regression
joint parameter space, 222–223	baseball batting ability, 256–258
MLE, 247, 249	baseline and deflection, 710
parameterization, 223	Bayesian approaches, 351-352
shrinkage, 245, 247, 248f	Bernoulli, Jacob, 109, 308
Hierarchical regression	Bernoulli distribution, 195–196, 196f, 408
dependencies model, 491, 493f	Bernoulli likelihood function, 249
fictitious data, 491, 492f	beta density, 195
JAGS model, 493–494	beta distribution, 195–197
parameter estimation, 490	binomial likelihood function, 249, 250-251
posterior distribution, 495	cell probability, 710–711
slope estimation, 491	censored values, 734
Highest density intervals (HDIs), 6, 27–28, 87–89,	condensed highlights, 207
88f, 184, 185, 185f, 186	credible parameter values, 735
equal-tailed intervals, 725	CSV file, 208
unimodal probability distribution, 726-727,	data analysis, 732, 733f
726f	data structure, 208
HMC. See Hamiltonian Monte Carlo (HMC)	diagram of model, 209-210, 209f
Holmes, Sherlock, 16, 17–18, 19, 20, 27–28,	extended hierarchical model, 253
30–31	file naming system, 206–207
Homogeneity of variance, 479, 510, 556–557	genMCMC function, 207
_	hierarchical Bayesian, 560-561
	high-level script, 210–211
ilogit function, 625	ilogit function, 625
Income, family, 420, 490–491, 495–498, 497 <i>f</i> ,	independent beta-distributed prior, 209
501–502, 506, 508	installation, 194, 407
initsList function, 201–202	JAGS, 408, 409, 414
Insightful comments and suggestions, 10	Jags-ExampleScript.R file, 206
Interaction factors, 584–586, 585 <i>f</i> , 587	likelihood function, 195, 414
Inverse-link function, 435–436	limitations, 415
baseline and deflection, 710	limited duration, 732
cell probability, 710–711	loading data into R, 197–198
MCMC process, 709	logical flow, 196–197

JAGS/Stan model (Continued)	terminology, 438–439
logistic function, 622, 625	threshold, 436–437, 438f
log probability, 411–412	Logistic regression. See also Multiple logistic
MCMC process, 709	regressions
model expansion, 218	correlated predictors, 632–633, 633f
model specification, 198–200, 410–411	dependency diagram, 623–624, 624f
multivariate model, 734–735	gender prediction, 626–629, 627 <i>f</i> , 628 <i>f</i>
normal and interval distribution, 734–735	JAGS code, 625–626
parallel processing, 215–218	log odds, 629–631
plotMCMC function result, 211, 211 <i>f</i>	metric predictors' interaction, 633–635, 634f
power analysis, 416	0's and 1's data, 631–632, 632 <i>f</i>
prior distribution, 211–213, 412–413	Logit function, 438–440, 621–622, 624–625,
probability distributions, 213–215	629–630
R commands, 735–736	Log-linear models, 715
relation of R programming language, 194, 194 <i>f</i>	Long-run relative frequency, 74–76
RStan library, 408, 409	Long run relative frequency, 71 70
RStudio script, 197	M
runjags package, 251	Marginal likelihood function, 274-278
sampling command, 408	head-biased factories, 270
specification, 735	tail-biased factories, 270
standardized parameter values, 624–625	Marginal posterior distribution, 273, 627f, 693
string, 407–408	baseball batting ability, 256f, 257f, 260f
transformed parameters, 415–416	therapeutic touch, 243–244, 243f
two-factor ANOVA, 708–709, 709f, 710	Marginal prior distribution, 273
variable declaration, 407-408, 414-415	multiple coins flipping scenario, 233
Joint parameter space, 222–223, 224–225,	single coin flipping scenario, 226–228
233–235, 249	therapeutic touch, 245, 246f
Joint posterior distribution, 228	Marginal probability distribution, 90
Joint prior distribution, 226–228	Margin of error, 498
Joint probability distribution, 90	Markov, Andrey, 178
J 1 , , , ,	Markov chain Monte Carlo (MCMC), 3, 4,
L	115–116
Laplace, Pierre-Simon, 100	accuracy, 182–187
Lasso regression method, 532	autocorrelation plot, 203–204
Least-squares estimates, 689	Bayesian inference, 152
Likelihood distribution function, 228	beta distribution, 145, 146f
multiple coins flipping scenario, 233	convergence diagnostics, 203-204, 204f
single coin flipping scenario, 223-224, 228	density plot, 203–204
Likelihood function, 125, 266	diagMCMC function, 204–205
Likert scales, 681–682	efficiency, 187–188
Linear model, 506	function I, 204–205
Linear regression, 26, 27. See also Multiple linear	generation, 202–203
regressions; Simple linear regression	goals, 178
Load function, 56	hierarchical, 278–287
Logarithmic scale, 599–600	initial values, 200–202
Logistic function	Metropolis algorithm, 146–156
gain indicates, 436, 437f	nonhierarchical, 274–278
orientation, 437	one-parameter models, 144
position, 437	plotPost function, 205-206

representativeness, 178-182	single metric predictor, 423-425, 425f
sampling, 515–516	traditional ANCOVA, 571-572
terminology, 177–178	Metropolis algorithm
trace plot, 203–204	Bayes' rule, 161
Markov representations of Bayes' rule, 118, 119	Bernoulli likelihood and beta prior, 157-161
Mathematical model, 31	bivariate normal distribution, 168-169
Matrix command, 48	disadvantage, 170
Maximum likelihood estimate (MLE), 200, 247,	ESS, 170
249, 459, 460 <i>f</i> , 622, 623 <i>f</i>	vs. formal analysis and grid approximation,
MCMC. See Markov chain Monte Carlo (MCMC)	169–170, 169 <i>f</i>
Mean, 84–85	infinite and finite random walks, 170
Mean centering method, 485	matrix arithmetic, 153, 154
Median of distribution, 87	matrix multiplication, 154-155
Metric-predicted variable	Metropolis, Nicholas, 156
dependency, normal distribution, 455, 455f	multidimensional continuous parameter space,
gamma distribution, 454	157
GLM, 449–450	posterior distribution, 168–170
group identifier, 469	proposal distribution, 157
JAGS, 456–458, 457 <i>f</i> , 462–464	θ -hopping coin bias, 161, 162
mean, 452–453	transition matrix, 155–156
model block, 469	transition probabilities, 153
with multiple metric predictors, 509–552	Model averaging, 289
with multiple nominal predictors, 583–620	Model-comparison method
NHST, 470–472	alternative-hypothesis prior, 354
noise distribution, 472–473	Bayes' factor, 347–348, 347 <i>f</i> , 353–354, 618
normal distribution, likelihood function, 450,	Bernoulli distribution, 348
451 <i>f</i>	factor-deflection model, 617–618
with one metric predictor, 477–508	Haldane prior, 344, 345 <i>f</i>
with one nominal predictor, 553–582	hierarchical diagram, 352–353
parameter estimation, 450	interaction deflections, 618
posterior distribution, 470, 471 <i>f</i>	JAGS, 351–352, 616–617
posterior mean, 453	large-scale model, 349–350
posterior precision, 453	null hypothesis, 344, 346–347, 354
response time data, 473	null-value assessment, 354–355
skewed data, 472	omega model, 349, 350 <i>f</i>
standard deviation, 451–452	omnibus test, 616
Metric predictors	one-mode model, 349
additive combination, 425–427, 426 <i>f</i>	partitioning, 349–350, 356
baseline, 569–570	posterior distribution, 346
covariate, 569	posterior probability, 616–617
expected value, 569	uninformed distribution, 343
hierarchical diagram, 569, 570f	Mode of distribution, 87
hierarchical linear regression, 573	Monte Carlo simulation
JAGS implementation, 569–570	complex models, 375
NHST, 445	goalTally matrix, 373–374
non-additive interaction, 427–428, 428f	HDIofICDF function, 374–375
ordinal predicted variable, 685–698	hypothetical parameter distribution,
posterior distribution, fruit fly longevity, 571,	373–374
572f	JAGS analysis, 372
5	J

Monte Carlo simulation (Continued)	parameters, 500–501
output, 375	Noise data
R script, 372	dichotomous scale, 444
Movie rating, 694f, 695, 696f, 702f	linear regression, 441, 442f
Multinomial logistic regression. See Softmax	logistic regression, 441, 443f
regression	probability density function, 440-441
Multiple coins flipping scenario	Nominal predicted variable, 649-670
full prior distribution, 233	Nominal predictors
grid approximations, 231, 232f, 234f, 235	additive combination, 430-432, 432f
hierarchical dependencies, 231f	non-additive interaction, 432-435, 434t
likelihood function, 233	single nominal predictor, 429-430, 431f
marginal prior distribution, 233	Non-additive effects, 599
posterior distribution, 233-235	Non-crossover interaction, 600, 600f, 601-602
Multiple group nominal predictors, 641-646,	Nonhierarchical MCMC
642 <i>f</i> , 645 <i>f</i>	Bayes' rule, 275-276
Multiple linear regressions	Bernoulli distribution, 276
correlated predictors, 513	JAGS, 277–278
credible regression coefficients, 524	marginal likelihood, 275
definition, 509	marginal posterior distribution, 276-277
grid representation, 510, 511	probability distributions, 274
hierarchical diagram, 514–515, 515f, 531–532,	Non-normal distribution, 675
531 <i>f</i>	Nonparametric models, 30
interpretive perils, 512–513	Non-trivial probability test, 21–22
JAGS model specification, 516	Normal distribution, 23, 27, 673 <i>f</i> , 674
MCMC sampling, 515–516	Normal probability density function, 83–84, 83f
normal distribution, 510, 511f, 512f	Null hypothesis rejection, 5
posterior distribution, 517–519, 518f	Null hypothesis significance testing (NHST), 5,
prior information, sparse data, 524	5t, 28
redundant predictors, 519–523	Bayesian posterior, 328
robust, 514–515	Bonferonni correction, 326
robustness check, 524–525	counterproductive incentive structure,
SAT score, 513, 514 <i>f</i>	326–327
Multiple logistic regressions, 623–624, 624f	experimentwise false alarm rate, 326
Multiplicative interaction	false alarm mitigation, Bayesian analysis,
additive model, 527	328–329
different interpretations, 526, 526f	per-comparison false alarm rate, 325–326
GPA, 526–527	planned comparison, 326, 327
non-additive interaction, 525	post hoc comparison, 326, 327
posterior distribution, 528, 529f, 530	primary goal of, 318
Spend and PrcntTake, 527–528	prior knowledge, 315
Must-be-fair model, 290–291, 293, 294	sampling distributions, 329–331
N	soul searching, 327–328
N N	space of possible outcomes, 298
Natural frequency representation of Bayes' rule, 118	stopping rule, 299–300
NHST. See Null hypothesis significance testing	0
(NHST)	Omnibus test, 616, 713–715
Noise, 698	One-tailed probability, 305
distribution, 288	OpenBUGS, 193-194

Ordinal predicted variable	hierarchical MCMC, 279, 280f, 283
examples of, 672, 673f	with hierarchical shrinkage, 534, 535f
metric predictors, 685-698	marginal, regression coefficients, 539, 539f,
posterior prediction, 698-699	540–542, 541 <i>f</i>
single group, 675–682	Metropolis algorithm, 168-170
two group, 682–685	multiple coins flipping scenario, 233-235
Over-arching distribution, 252	multiple linear regression, 517–519, 518f
	multiplicative interaction, 528, 529f, 530
P	prior distribution, 520, 522f
Pairwise posterior parameters, 636, 638f	redundant predictors, 520, 521f
Parallel processing, JAGS	single coin flipping scenario, 227f, 228–230,
coda-oriented graphical functions, 217	229f
considerations, 218	tail-biased factories, 273
plots argument, 217	without hierarchical shrinkage, 532-534,
rjags vs. runjags, 216–217	533f
runjags package installation, 216	Posterior HDI, 315–316, 316f
running chains in multiple cores, 215–216	Posterior odds, 268
summarise argument, 217	Posterior prediction, 698–699
Parameter estimation, 450, 490, 504	Posterior predictive check, 22, 28–29, 501–502
Parameter values	Posterior predictive distribution, 644, 689,
data histogram, 23-24, 23f	690f
location parameter, 23	Power analysis
mathematical form, 24–25	audience-appropriate prior, 366–367
mathematical formulas, 22–23	average length criterion, 365
normal distribution, 23	Bayesian analysis, 378–379
posterior predictive check, 22	BEST, 383
scale parameter, 23	beta distribution, 371–372, 371t
plotPost function, 340	classical approach, 383
Poisson, Simon-Denis, 707	data consistency, 378
Poisson distribution, 308	data-generating distribution, 370-371
Poisson exponential model	data set simulation, 380–381
ANOVA model, 705, 706–707	definition, 361
data structure, 704, 704t	entropy, 365–366
inverse-link function (see JAGS/Stan model)	flow information, 362–364, 363f
linear model, 705–706, 706 <i>t</i>	goal achievement, 360-361, 379-380
marginal proportions, 704t, 705	group-level modes, 381–382
noise distribution, 707–708, 708f	hierarchical model, 376
Poisson noise distribution, 707–708, 708f	hypothetical distribution, 366-367
Poisson zeros trick, 214, 215	idealized hypothesis, 382-383
Posterior beta	Jags-Ydich-XnomSsubj-
Bayes' rule, 132	MbinomBetaOmegaKappa-Power script,
prior distribution vs. likelihood function, 133,	377
134 <i>f</i>	minimal sample size, 364–365, 367, 367t
Posterior distribution, 16–18, 27–28, 228,	parameter values, 362
489–490, 500, 678f, 679, 683, 684f, 685, 686f,	posterior distribution, 371, 376–377
691, 692 <i>f</i>	posterior estimation, 362, 363
Bayes' rule, 111–115, 111f, 164–165	primary methods, 361
formal analysis, 165–168	repetition, 363
head-biased factories, 273	therapeutic-touch practitioners, 377–378

Predictor variables. See also Metric predictors;	left- and right-tail p value, 310–311
Nominal predictors	likelihood function, 300, 301
cumulative normal function, 439-440, 440f	one tailed and two-tailed p values, $301-302$
dichotomous variable, 445	sample generation process, 300-301
inverse link function, 435-436	sampling distribution, 301
logit function (see Logistic function)	soul searching, 313–314
non-identity link function, 436	space of possible outcomes, 302, 302f
Poisson distribution, 445	
statistical consultant, 445-446	Q
Preposterior marginal distribution, 368	Quadratic coefficients, 503
Price, Richard, 100	Quadratic component, 496, 498-499
Prior distribution, 27, 226, 266	Quadratic trend, 496
head-biased factories, 270-271	
single coin flipping scenario, 223–224, 227f,	R
229f, 230	Random-outcome model, 700
tail-biased factories, 270–271	Rat diet, 446, 474
Prior odds, 268	Rat longevity, 446, 474
Prior probability, 266	R code
Probability	for coin flipping, 94–95
long-run relative frequency, 74–76	grid approximation, 725-726
possibilities and, 77–78	ICDF, 728
subjective belief, 76–77	MCMC sample, 727–728
Probability density function, 79f, 80, 81f, 82–83,	optimize routine, 728–729
126	unimodal probability density function, 728
Probability distribution, 78, 274. See also	Realistic data, 3
Continuous probability distribution; Discrete	Real-world process, 479
probability distribution	Real-world sampling constraints, 309–310
distribution list, 213–214	Region of practical equivalence (ROPE)
likelihood function, 214–215	credible parameter values, 336
Probability mass function, 78–80	definition, 338–339
proc.time function, 66	equal-tailed interval, 342–343, 342f
Programming languages, 2–3	HDI, 337, 342–343, 342 <i>f</i>
Proportion of variance, 517–519	indication, 336
Pseudopriors, 281, 282, 283, 284 <i>f</i> , 285	joint distribution, 341–342, 341 <i>f</i>
Pseudo-random number generators (PRNGs), 74	marginal distribution, 340–341, 341f
p values, NHST	MCMC, 339
analysis of variance, 312–313	NHST, 339–340
Bayesian analysis, 314–315	null hypothesis testing, 337–338
Bayesian HDI, 324–325	null-value assessment, 354–355
cloud of imaginary outcomes, 299, 299f	plotPost function, 340
cloud of imaginary possibilities, 311, 312f	posterior distribution, 339, 353
data collection duration, 300–301	prior probability, 353
definition, 298–299, 299f	size determination, 338
extremeness, 301–302	Regression. See also Logistic regression; Multiple
fairness hypothesis, 300	linear regression; Robust linear regression;
imaginary sample of flips, 311	Softmax regression
intention to fix duration, 308–310	conditional logistic (see Conditional logistic
intention to fix number of flips (N), 302–305	regression)
intention to fix number of heads (z) , 305–308	hierarchical linear, 573

linear, 26, 27	command-line interface, 36
simple linear, 478–479, 478f	component-by-component vector operations
Regression coefficients	42–43
degree of vagueness, 539-540	data frame, 51
dichotomous predicted variable, 629-635	data saving, 55-56
marginal posterior distribution, 539, 539f,	debugging, 67–69
540–542, 541 <i>f</i>	default value, 64–65
shrinkage, 530–536	double equal sign, 41-42
variable selection, 537–538	factor function, 46-47
Relative posterior probabilities, 268	for loop, 65
Relevant data identification, 25, 26f	graphical plots, 69
Reparameterization	help.search function, 39
Jacobian matrix, 730–732	if-else structure, 65
probability distribution, 729, 730	installation, 35
probability mass, 729	levels argument, 48
transformed parameters, 730-732	levels of factor, 46
uniform density, 730, 731f	list structure, 51
Replicate (rep) function, 44	logical sequence, 45
Resampling method, 31	matrix and array, 48-51
R function	named components, 51
analytical derivation, 368	names, elements of vector, 45
beta function, 368	newbie programmers, 61
data-generating distribution, 370	numerical position, 45
initSampSize argument, 369–370	plot function, 37, 39
minimum sample sizes, 372	processing time measurement, 66-67
minNforHDIpower function, 369–370	program/script definition, 36
N flips, 368	read.csv and read.table functions, 53-55
preposterior marginal distribution, 368	replicate function, 44
Rhyming couplets, 8	RStudio, 35, 38
Richter scale, 599–600	sequence function, 43
Robust against outliers, 635	simple graph, 37, 37f
Robust linear regression	SimpleGraph.R file, 38
data standardization, MCMC sampling, 484–487	source vs. load function, 63–64
hierarchical dependencies, 480, 480f, 483	utility functions, 56–61
posterior distribution, 489–490	variable names, 61–62
regression lines and <i>t</i> -noise distributions,	vector, 36–37
480–483, 481 <i>f</i> , 482 <i>f</i>	working directory, 62–63
Stan, 487–489	RStudio, 35
Robust logistic regression, 635–636, 637f, 638f	RunJAGS package, 215
ROPE. See Region of practical equivalence	
(ROPE)	S
R programming language, 3	Salary
argument function, 64	professor salary, 591–592, 594, 595 <i>t</i> , 606
arithmetic and logical operators, 39–40	teacher salary, 543–546
asqplusb function, 64	Salary data, 599, 602–603, 604 <i>f</i> , 605
assignment operator, 40	Sample space, 72
categorical values, 46	Sampling distribution, 28
colon operator, 43	with different θ values, 321–322, 322 f
combine function, 42	experiment planning, 329–330

Sampling distribution (Continued)	posterior parameter estimates, 662–663, 663f
with fixed duration, 320, 321f	probability of outcome k, 650, 659
with fixed N, 318, 319, 319f	property, 654
with fixed z , 319–320, 320 f	reference category (r), 651
model predictions, 330-331	reference outcome, 652-653
Savage-Dickey method, 354, 355	regression coefficients, 652, 663, 664
save command, 55–56	source-ing script, 36
Scholastic aptitude test (SAT), 420, 446, 509, 513,	Spending per pupil, 514f, 524, 527, 530, 538
514 <i>f</i> , 517, 524, 527, 528, 532–534, 538,	Split-plot design
539-540, 543-546	descriptive model, 612-614
Seaweed, 618-619	fertilization method, 611-612, 611f
Sequence (Seq) function, 43	interaction contrast, 615, 615f
Sequential testing	JAGS specification, 614
Bayes' factor, 385, 386f, 387f, 389-390	main-effect contrasts, 615, 615f
coins flips, 385, 386f, 387f	tilling method, 610, 611–612, 611f
HDIs, 385–388, 386 <i>f</i> , 387 <i>f</i>	two-factor between-subject design, 616, 617f
HDI-with-ROPE rule, 390, 391	Standard deviation, 27, 84, 86
NHST, 383, 384	Structural equation modeling (SEM), 523
null hypothesis, 388, 389, 389f	Student t distribution, 501
null value, 384	definition, 458
p values, 385, 386f, 387f	JAGS, 462–464, 463 <i>f</i> , 464 <i>f</i> , 465 <i>f</i>
ROPE, 386f, 387f, 388	MLEs, 459, 460 <i>f</i>
Sherlock Holmes, 16, 17–18, 19, 20, 27–28, 30–31	"normality" parameter, 458–459, 468
Shrinkage, 245, 247, 248f	robust estimation, 461–462
hierarchical Bayesian approach, 559	"scale" parameter, 458-459
hierarchical, variable selection, 542–544, 545f	Stan codes, 465–468
and prediction, posterior distribution, 495	standard deviation, 459-460
regression coefficients, 530-536	Subjective belief, 76–77
Simple linear regression, 478–479, 478f	"Substantial" evidence, 268
Single coin flipping scenario	Sum-to-zero deflections, 586, 586t
Bayes' rule, 224–225	
grid approximation, 226, 228	T
hierarchical dependencies, 224, 225f	Tail-biased factories, 268-273
joint posterior distribution, 228	hierarchical diagram, 269, 269f
joint prior distribution, 226–228	marginal likelihood function, 270
likelihood function, 223–224, 228	posterior distribution, 273
marginal prior distribution, 226-228	posterior probabilities, 270–271
parameterization, 226	prior distribution, 270–271
posterior distribution, 227f, 228–230, 229f	prior probabilities, 271
prior distribution, 223–224, 227 <i>f</i> , 229 <i>f</i> , 230	t distribution, 531. See also Student t distribution
Single group nominal predictors, 638–641, 640f	Therapeutic touch
Single metric predictor, 423–425	data analysis script, 241, 242
Softmax regression	hierarchical model, 240–241, 241f
dcat distribution, 659-661	marginal posterior distributions, 243-244, 243
explambda[k,i] variable, 659–661	marginal prior distributions, 245, 246f
gain (γ) , 650–651	Three-peaked distribution, 675
hierarchical diagram, 659, 660f	Thresholded cumulative-normal regression,
logistic regression, 653	685–687, 687 <i>f</i>
log odds, 651–652	Tidal zone, 618
•	

Tilling, 477, 610, 611–612, 611 <i>f</i> , 615, 615 <i>f</i> , 616	head function, 57
Traditional ANOVA, 587–588	melt command, 59–60
between-group variance, 556	reshape2 package, 59-60
equality of groups, 556-557	str function, 57
hierarchical Bayesian approach, 557-568	summary function, 56-57
null hypothesis assumption, 556-557	table function, 58
within-group variance, 556	
t test, 4, 678f, 680–681	V
Two coin biases	Variable selection, 668
Bernoulli distribution functions, 164, 165	a priori, 537
bivariate normal distribution, 168-169	computational methods, 547-548
credible differences, 176-177, 177f	definition, 536
disadvantage, 170	explanatory model, 544–546, 545f
ESS, 170	hierarchical shrinkage, 542-544, 545f
vs. formal analysis and grid approximation,	inclusion probability, 539-542
169–170, 169 <i>f</i>	interaction variables, 548-549
independent data, 163	non-negligible posterior probability, 538-539,
infinite and finite random walks, 170	539 <i>f</i>
likelihood function, 165	posterior inclusion probability, 546-547
prior beliefs, 163–164	predicted mean value, 537
Two-way discrete table	regression coefficients, 537-538
disease diagnosis, 103, 104–105, 104t, 106	Variable types, 42–53
hair color and eye color proportions, 102 , $102t$	Variance, 86
hit rate and false alarm rate, 104–105	von Neumann, John, 177
joint probability, 101-102, 101t, 102-103	
low-prior probability, 104	W
marginal probability, 101-102	Weight, 25, 420, 421, 447, 477, 621, 622,
posterior probability, 103	626–629
Two-way probability distribution	Weighted noise, 498–499
conditional probability, 91–92	Weight prediction, 26, 28–29, 29f
independence and, 92-93	WinBUGS, 193-194, 736
joint probability, 90	Within-subject design
marginal probability, 90	between-subject design, 608-609
	carryover effects, 609
U	definition, 606
Ulam, Stanislaw, 399	observations, 609–610
Utility functions	practice and fatigue effects, 609
aggregate function, 57, 58	"repeated measures", 606-607
apply function, 59	split-plot design, 610-616
arguments, 56	two-predictor model, 607
formula format, 57	write.csv function, 55