Subgrupos característicos

Sésar

1. Definición

Definition 1. Sea G un grupo. Un subgrupo $H \leq G$ es característico, H car G, si

$$\varphi(H) = H, \ \forall \varphi \in \text{Aut}(G).$$

Remark 1. Ser un subgrupo característico es equivalente a comprobar que $\varphi(H) \leq H$ para todo $\varphi \in \operatorname{Aut}(G)$. Esto es porque en particular, $\varphi^{-1}(G) \leq H$, por lo que $H \leq \varphi(H)$.

Example 1. Veamos algunos ejemplos de subgrupos característicos.

- 1. El centro de un grupo Z(G) car G. Sea $g \in \varphi(Z(G))$ y $x \in G$. Si φ es un automorismo, entonces existe un $y \in G$ tal que f(y) = x. Por tanto, $\varphi(g)x = \varphi(g)\varphi(y) = \varphi(gy) = \varphi(yg) = \varphi(y)\varphi(g) = x\varphi(g)$, por lo que $\varphi(g) \in \varphi(Z(G))$.
- 2. Sea G un grupo cíclico finito. Entonces todo subgrupo es característico. Si $H \leq G$, entonces para todo $a \in H$, $\varphi(a) = a^k \in H$, luego $\varphi(H) \leq H$.
- 3. Sea $P \in \operatorname{Syl}_p(G)$. Si $P \subseteq G$, entonces $P \operatorname{car} G$. Si $\varphi \in \operatorname{Aut}(G)$, entonces $|P| = |\varphi(P)|$, por lo que $\varphi(P) \in \operatorname{Syl}_p(G)$. Como $P \subseteq$, en particular es el único p-subgrupo de Sylow, luego $\varphi(P) = P$.

Supongamos que $N \subseteq G$. Entonces en particular esto significa que $gNg^{-1} = N$ para todo $g \in G$. Tomando en consideración que los elementos $\theta_g \in \text{Inn}(G) \subseteq \text{Aut}(G)$ son los automorfismos conjugación, se tiene que $\theta_g(N) = N$ para todo $\theta_g \in \text{Inn}(G)$.

Proposition 1. $H \operatorname{car} G \Rightarrow H \subseteq G$

Demostración. Sea $H \operatorname{car} G$. En particular, para todo automorfismo interno $\theta_g(x) = gxg^{-1}$, tenemos que $\theta_g(H) = gHg^{-1} = H$, luego $H \subseteq G$.

Proposition 2 (Transitividad de subgrupos característicos). Sea G un grupo y $H, K \leq G$. Entonces

- 1. $K \operatorname{car} H \operatorname{car} G \Rightarrow K \operatorname{car} G$.
- 2. $K \subseteq H \operatorname{car} G \Rightarrow K \subseteq G$.
- 3. $K \operatorname{car} H \triangleleft G \Rightarrow K \triangleleft G$.

Demostración. Demostremos a continuación el primer apartado. Sea $\varphi \in \operatorname{Aut}(G)$. Como H car G, entonces $\varphi(H) = H$. Por lo tanto, $\varphi|_H \in \operatorname{Aut}(H)$, y como K car H, $\varphi|_H(K) = K$. Como $K = K \cap H$, tenemos finalmente que $\varphi(K) = \varphi(K \cap H) = \varphi|_H(K) = K$.

Los dos apartados restantes son análogos y su demsotración se realza realizando los mismos pasos, por lo que sólo demostraremos el segundo apartado.

Sea $\theta \in \text{Inn}(G)$. Entonces en particular $\theta \in \text{Aut}(G)$. Como $H \operatorname{car} G$, entonces $\theta(H) = H$, por lo que $\theta|_H \in \text{Inn}(H)$. Además, como $N \subseteq H$, entonces $\theta|_H(K) = K$. Finalmente, como $K = K \cap H$, obtenemos que $\theta(K) = \theta(K \cap H) = \theta|_H(K) = K$.

Proposition 3. Si H es el único subgrupo de G de un cierto orden o índice, entonces $H \operatorname{car} G$.

Demostración. Supongasmo primero que $H \leq G$ es el único con orden |H|. Sea $\varphi \in \operatorname{Aut}(G)$. Entonces por ser biyectiva, $|\varphi(H)| = |H|$ y como $\varphi(H) \leq G$, entonces $\varphi(H) = H$.

Por otro lado, ser el único de un cierto orden es equivalente a decir que es el único de un cierto índice por el Teorema de Lagrange. \Box

Theorem 1. Sea H car G. Entonces existe un único Ψ : $\operatorname{Aut}(G) \to \operatorname{Aut}(G/H)$ homomorfismo tal que el siguiente diagrama conmuta:

$$G \xrightarrow{\varphi} G$$

$$\pi_H \downarrow \qquad \qquad \downarrow \pi_H$$

$$G/H \xrightarrow{\Psi(\varphi)} G/H$$

Demostración. Probemos primero la existencia. Sea $\varphi \in \operatorname{Aut}(G)$, entonces llamando $\pi_H : G \to G/H$ al homomorfismo canónico, tenemos que $\pi_H \circ \varphi : G/H \to G/H$ es un homomorfismo sobreyectivo tal que $\ker(\pi_H \circ \varphi) = \ker(\pi_H) = H$, por lo que por el Teorema Fundamental de los homomorfismos, existe un único isomorfismo $\widetilde{\varphi} : G/H \to G/H$ tal que $\widetilde{\varphi} \circ \pi_H = \pi_H \circ \varphi$. En particular, $\widetilde{\varphi} \in \operatorname{Aut}(G/H)$.

Podemos definir la siguiente aplicación:

$$\Psi: \operatorname{Aut}(G) \to \operatorname{Aut}(G/H)$$
$$\varphi \mapsto \widetilde{\varphi}.$$

En primer lugar, por cómo está definido Ψ , se puede comprobar inmediatamente que $\Psi(\varphi) \circ \pi_H = \pi_H \circ \varphi$ —es decir, el diagrama conmuta—. Basta ver que Ψ es un homomorfismo. Dados $\varphi_1 \varphi_2 \in \operatorname{Aut}(G)$, tenemos que $\Psi(\varphi_1 \circ \varphi_2) \pi_H = \pi_H \circ \varphi_1 \circ \varphi_2 = \Psi(\varphi_1) \circ \pi_H \circ \varphi_2 = \Psi(\varphi_1) \circ \Psi(\varphi_2) \circ \pi_H$, y por la unicidad de Ψ , se tiene que $\Psi(\varphi_1 \circ \varphi_2) = \Psi(\varphi_1) \circ \Psi(\varphi_2)$.

La unicidad del homomorfismo Ψ viene dada por la unicidad del Teorema Fundamental de los homomorfismos. $\hfill\Box$