Московский государственный университет имени М. В. Ломоносова

Байсовские методы машинного обучения

Задание 1. Байесовские рассуждения Вариант 1

Выполнил:

студент 4 курса 417 группы Бабичев Дмитрий Олегович

Содержание

1	Опи	исание моделей	2
	1.1	Модель 1	2
	1.2	Модель 2	3
2	Зад	ания варианта 1	3
	2.1	Пункт 1	3
	2.2	Пункт 2	6
	2.3	Пункт 3	7
	2.4	Пункт 4	11
	2.5	Пункт 5	13
	2.6	Пункт 6	14

1 Описание моделей

Вероятностные модели посещаемости курса

Есть некоторый курс, которые могут посещать студенты двух категорий: те, у которых этот курс является профильным и все остальные. Общее количество студентов первой категории будем обозначать a, второй - b. Не все студенты посещают курс. Есть вероятность, что студент решит его прогулять. Обозначим за p_1 вероятность посещения курса студентом первой категории, за p_2 вероятность посещения курса студентом второй категории. Тогда общее количество пришедших на занятие студентов c будет зависить как и от a, так и от b. Обозначается это так: c|a,b. Далее мы рассмотрим две модели, которые отличаются именно характером зависимости c от a и b. Пусть также на занятиях ведется журнал посещаемости, и пусть студенты будут иметь возможность отметить отсутствующего товарища c вероятностью c Общее количество записавшихся обозначим за c Тогда случайная величина c представляет собой сумму c и случайной величины, распределенной по биномиальному закону c Віпc0, c1. И напоследок зададим априорные вероятности для c2 и c3. Пусть они будут распределены равномерно на c3. c4. c6. c6. Пусть они будут распределены равномерно на c6. c7. c8. c8. c9. c9. Общее

1.1 Модель 1

Пусть $c|a,b \sim \text{Bin}(a,p_1) + \text{Bin}(b,p_2)$, тогда итоговая модель будет выглядеть следующим образом:

$$p(a, b, c, d) = p(d|c)p(c|a, b)p(a)p(b),$$

$$d|c \sim c + \text{Bin}(c, p_3),$$

$$c|a, b \sim \text{Bin}(a, p_1) + \text{Bin}(b, p_2),$$

$$a \sim \text{Unif}[a_{min}, a_{max}],$$

$$b \sim \text{Unif}[b_{min}, b_{max}].$$

1.2 Модель 2

Допустим некоторое упрощение предыдущей модели, а именно заменим в распределении c|a,b биномиальное распределение Пуассоновским распределением: $Bin(n,p) \to Poiss(np)$

$$p(a, b, c, d) = p(d|c)p(c|a, b)p(a)p(b),$$

$$d|c \sim c + \text{Bin}(c, p_3),$$

$$c|a, b \sim \text{Poiss}(ap_1 + bp_2),$$

$$a \sim \text{Unif}[a_{min}, a_{max}],$$

$$b \sim \text{Unif}[b_{min}, b_{max}].$$

2 Задания варианта 1

Рассматриваются приведенные выше модели 1.1 и 1.2 с параметрами $a_{min}=75$, $a_{max}=90,\ b_{min}=500,\ b_{max}=600,\ p_1=0.1,\ p_2=0.01,\ p_3=0.3.$

2.1 Пункт 1

Вывести формулы для всех необходимых далее распределений аналитически.

Все формулы в этом отчете верны для вычислений скаляров. В реализации значения высичляются по-другому. Также я подумал, что не буду выводить формулы математического ожидания и дисперсии для нетабличных случайных величин, потому что они легко считаются и по формулам общего вида:

$$\mathbb{E}\xi = \sum_{\xi=\xi_{min}}^{\xi_{max}} \xi p(\xi), \mathbb{E}\xi^2 = \sum_{\xi=\xi_{min}}^{\xi_{max}} \xi^2 p(\xi), \mathbb{D}\xi = \mathbb{E}\xi^2 - (\mathbb{E}\xi)^2$$

Выведем формулы вероятностей следующих величин: p(a), p(b), p(c), p(d), p(c|a,b), p(c|a), p(c|b), p(c|d), p(d|c), p(c|a,b,d), используя знания некоторых распределений и правила произведения и суммирования и маргинализацию.

p(a), p(b):

Дискретное равномерное распределение. Вероятность попасть в точку на отрезке равна единице, деленной на количество целых точек на отрезке

$$p(a) = \frac{1}{a_{max} - a_{min} + 1}, \ p(b) = \frac{1}{b_{max} - b_{min} + 1}.$$

$$\mathbf{p}(\mathbf{c}|\mathbf{a},\mathbf{b}) \ (c=\xi_1+\xi_2,\ \xi_1\sim \mathrm{Bin}(a,p_1),\ \xi_2\sim \mathrm{Bin}(b,p_2))$$
: Условимся, что $\binom{n}{k}=0,\ \mathrm{ec}$ ли $k>n,$ тогда

$$p(c = k|a, b) = \sum_{i=0}^{k} p(\xi_1 = i)p(\xi_2 = k - i) =$$

$$= \sum_{i=0}^{k} {a \choose i} p_1^i (1 - p_1)^{a-i} {b \choose k-i} p_2^{k-i} (1 - p_2)^{b+i-k}$$

То, что величины ξ_1 и ξ_2 имеют биномиальные распределения позволяют прийти к формулам выше прямыми рассуждениями. А в общем, для нахождения плотности суммы двух случайных величин (не обязательно дискретных) используется свертка. Плотность суммы равна свертке плотностей слагаемых, а прямое преобразование Фурье плотности суммы равно произведению прямых преобразований Фурье плотностей слагаемых.

$$\mathbf{p}(\mathbf{c}|\mathbf{a},\mathbf{b}) \ (c|a,b \sim \operatorname{Pois}(ap_1 + bp_2)):$$

Простое табличное распределение:

$$p(c = k|a, b) = \frac{e^{-(ap_1 + bp_2)}(ap_1 + bp_2)^k}{k!}$$

 $\mathbf{p}(\mathbf{c}|\mathbf{a}), \ \mathbf{p}(\mathbf{c}|\mathbf{b}):$

$$p(c|a) \stackrel{SR}{=} \sum_{b=b_{min}}^{b_{max}} p(c|a,b)p(b) = \frac{\sum_{b=b_{min}}^{b_{max}} p(c|a,b)}{b_{max} - b_{min} + 1} =$$

$$= \begin{cases} \sum_{b=b_{min}}^{b_{max}} \sum_{i=0}^{c} {a \choose i} p_1^i (1-p_1)^{a-i} {b \choose c-i} p_2^{c-i} (1-p_2)^{b+i-c} \\ b_{max} - b_{min} + 1 \end{cases}, \quad c|a,b \sim \text{Bin}(a,p_1) + \text{Bin}(b,p_2) \\ \frac{b_{max}}{b_{max}} e^{-(ap_1+bp_2)} (ap_1 + bp_2)^c \\ \frac{b=b_{min}}{(b_{max} - b_{min} + 1)c!}, \quad c|a,b \sim \text{Pois}(ap_1 + bp_2) \end{cases}$$

Аналогично

$$p(c|b) = \begin{cases} \frac{\sum_{a=a_{min}}^{a_{max}} \sum_{i=0}^{c} {a \choose i} p_1^i (1-p_1)^{a-i} {b \choose c-i} p_2^{c-i} (1-p_2)^{b+i-c} \\ \frac{a_{max} - a_{min} + 1}{\sum_{a=a_{min}}^{a_{max}} e^{-(ap_1+bp_2)} (ap_1 + bp_2)^c}, & c|a, b \sim \text{Bin}(a, p_1) + \text{Bin}(b, p_2) \\ \frac{a_{max} - a_{min} + 1}{(a_{max} - a_{min} + 1)c!}, & c|a, b \sim \text{Pois}(ap_1 + bp_2) \end{cases}$$

 $\mathbf{p}(\mathbf{c})$:

$$p(c) \stackrel{SR}{=} \sum_{b=b_{min}}^{b_{max}} p(c|b)p(b) \stackrel{SR}{=} \sum_{b=b_{min}}^{b_{max}} \sum_{a=a_{min}}^{a_{max}} p(c|a,b)p(b)p(a) =$$

$$= \frac{\sum_{b=b_{min}}^{b_{max}} \sum_{a=a_{min}}^{a_{max}} \sum_{i=0}^{c} \binom{a}{i} p_1^i (1-p_1)^{a-i} \binom{b}{c-i} p_2^{c-i} (1-p_2)^{b+i-c}}{(b_{max}-b_{min}+1)(a_{max}-a_{min}+1)}$$

$\mathbf{p}(\mathbf{d}|\mathbf{c})$:

Вспомним, что в обеих моделях $d|c \sim c + \text{Bin}(c, p_3)$. Учитывая нашу договоренность о биномиальных коэффициентах, получаем следующуй формулу:

$$p(d|c) = {c \choose d-c} p_3^{d-c} (1-p_3)^{2c-d}.$$

 $\mathbf{p}(\mathbf{d})$:

$$p(d) \stackrel{SR}{=} \sum_{c=0}^{a_{max}+b_{max}} p(d|c)p(c) = \sum_{c=0}^{a_{max}+b_{max}} {c \choose d-c} p_3^{d-c} (1-p_3)^{2c-d} p(c) =$$

$$= \sum_{c=0}^{a_{max}+b_{max}} {c \choose d-c} p_3^{d-c} (1-p_3)^{2c-d} \cdot \frac{\sum_{b=b_{min}}^{b_{max}} \sum_{a=a_{min}}^{a_{max}} \sum_{i=0}^{c} {a \choose i} p_1^i (1-p_1)^{a-i} {b \choose c-i} p_2^{c-i} (1-p_2)^{b+i-c}}{(b_{max}-b_{min}+1)(a_{max}-a_{min}+1)}$$

 $\mathbf{p}(\mathbf{c}|\mathbf{d})$:

$$p(c|d) \stackrel{Bayes'}{=} \frac{p(d|c)p(c)}{p(d)} \stackrel{SR}{=} \frac{p(d|c)p(c)}{\sum\limits_{k=0}^{a_{max}+b_{max}} p(d|c=k)p(c=k)}$$

 $\mathbf{p}(\mathbf{c}|\mathbf{a},\mathbf{b},\mathbf{d})$:

$$\begin{split} p(c|a,b,d) &= \frac{p(a,b,c,d)}{p(a,b,d)} = \\ &= \frac{p(d|c)p(c|a,b)p(a)p(b)}{\sum\limits_{k=0}^{a_{max}+b_{max}} p(d|c=k)p(c=k|a,b)p(a)p(b)} = \\ &= \frac{p(d|c)p(c|a,b)}{\sum\limits_{k=0}^{a_{max}+b_{max}} p(d|c=k)p(c=k|a,b)} \end{split}$$

2.2 Пункт 2

Найдите математические ожидания и дисперсии априорных распределений $p(a),\ p(b),\ p(c),\ p(d).$

$$\mathbb{E}a = 82.5;$$

$$\mathbb{D}a = 21.25;$$

$$\mathbb{E}b = 550;$$

$$\mathbb{D}b = 850;$$

$$\mathbb{E}c_1 = 13.75;$$

$$\mathbb{D}c_1 = 13.1675;$$

$$\mathbb{E}c_2 = 13.75;$$

$$\mathbb{D}c_2 = 14.0475;$$

$$\mathbb{E}d_1 = 17.875;$$

$$\mathbb{D}d_1 = 25.140575;$$

$$\mathbb{E}d_2 = 17.875;$$

$$\mathbb{D}d_2 = 26.627775;$$

2.3 Пункт 3

Пронаблюдать, как происходит уточнение прогноза для величины с по мере прихода новой косвенной информации.

Предлагается внимательно изучить распределение и статистики следующих случайных величин: p(c), p(c|b), p(c|d), p(c|a,b), p(c|a,b,d).

Для начала построим график всех распределений и отметим на нем математические ожидания и среднеквадратические отклонения от него:

Рис. 1: Модель 1

Во-первых, заметим, что графики всех распределений очень похожи на гауссианы. Но увы, на этих графиках 4 распределения слились. Но уже по ним видно, что у распределений, для которых определено d (p(c|d), p(c|a,b,d) дисперсия значительно

Рис. 2: Модель 2

ниже. Можно предположить, что d несет в себе значительно больше информации, чем a, b и их комбинации. Еще одно интеренсое наблюдение (надеюсь, что это не ошибка кода): дисперсия p(c|d) меньше, чем дисперсия p(c|a,b,d). Все эти догадки справедливы для обеих моделей. Более четко это можно увидеть на следующих графиках:

Рис. 3: Дисперсии. Модель 1

Рис. 4: Дисперсии. Модель 2

Посмотрим на графики распределений по отдельности в одинаковом масштабе.

Модель 1

На этих графиках видно практически отсутствие отличий между распределениями

 $p(c), \ p(c|a), \ p(c|b), \ p(c|a,b)$. А что во ворой модели?

Модель 2 Аналогичная картина. Можно посмотреть на табличку.

	p(c)	p(c a)	p(c b)	p(c d)	p(c a,b)	p(c a,b,d)		
Модель 1								
$\mathbb{E}c$	13.75	13.8	13.75	14.09	13.8	13.91		
$\mathbb{D}c$	13.17	13	13.08	1.71	12.92	2.83		
Модель 2								
$\mathbb{E}c$	13.75	13.8	13.75	14.09	13.8	13.9		
$\Box c$	14.05	13.89	13.96	1.71	13.8	2.88		

Получается, что a несет информации больше, чем b, вместе они информативнее, чем по отдельности, d вносит самый существенный вклад, а по непонятным мне причинам одновременно они вносят вклад меньше, чем отдельно d. Изучим этот эффект подробнее в пункте 4.

2.4 Пункт 4

Определить, какая из величин $a,\ b,\ d$ вносит наибольший вклад в уточнение прогноза для величины c (в смысле дисперсии распределения).

При выполнении этого пункта возникло ряд проблем с точностью вычислений вероятности p(c|d) и, соответственно, с дисперсиями. Наверно стоило попробовать увеличить разрядность до 128 бит, но я решил не делать этого, отчего мои результаты не совпали с ожидаемыми. В частности:

	p(c a)	p(c b)	p(c d)				
Модель 1							
$\max \mathbb{D}c$	13.63	13.57	114.90				
$\min \mathbb{D}c$	12.28	12.58	0.0				
Модель 2							
$\max \mathbb{D}c$	14.58	14.4625	17.00				
$\min \mathbb{D}c$	13.08	13.46	0.0				

Ожидалось, что для всех d $\mathbb{D}[c|d]$ будет меньше $\min_a \mathbb{D}[c|a]$ и $\min_b \mathbb{D}[c|b]$, на деле же это условие выволняется при d<80 и d>922 в первой модели, d<400 и d>520

во второй модели.

Что касается множеств $\{(a,b): \mathbb{D}[c|b] < \mathbb{D}[c|a]\}$ и $\{(a,b): \mathbb{D}[c|b] \geq \mathbb{D}[c|a]\}$, то они оказались линейно разделимыми в обеих моделях. Наверно это можно доказать аналитически, но я решил применить к этим множествам метод опорных векторов, который выдававал 100% точность на этих данных, откуда следует, что существует прямая, идеально разделяющая эти два множества.

Пункт 5 Провести временные замеры по оценке всех необходымых распределе-

2.5

ний.

сек	p(c)	p(c a)	p(c b)	p(c d)	p(c a,b)	p(c a,b,d)	p(d)	
	Модель 1							
median	0.3124	0.3183	0.3162	0.4654	0.3268	0.4760	0.5507	
min	0.3066	0.3056	0.3072	0.4579	0.3086	0.4417	0.5259	
max	0.3599	0.6108	0.5954	0.5377	0.3776	0.6488	0.6817	
Модель 2								
median	0.3017	0.3062	0.3067	0.4522	0.3104	0.4293	0.5413	
min	0.2964	0.2972	0.2994	0.4427	0.2958	0.4544	0.5135	
max	0.3683	0.4785	0.3905	0.5183	0.4080	0.6302	0.6990	

Все вычисления укладываются в одну секунду. Самой емкой задачей является вычисление p(c|a,b,d), где необходимо уметь эффективно работать с многомерными матрицами. Я использовал суммирование Эйнштейна, которое позволяет очень удобно манипулировать матрицами. Получилось эффективно по времени, но на моем устройстве были проблемы с памятью. Схожеть результатов для p(c), p(c|a), p(c|b), p(c|a,b) объясняется просто: все они опираются на вычисление p(c|a,b) с последующей маргинализацией.

2.6 Пункт 6

Сравнить результаты для двух моделей. Показать где максимально проявляется разница между ними (привести конкретный пример, не обязательно из экспериментов выше). Объяснить причины подобного результата.

Как уже было сказано в задании, модель 2 похожа на модель 1 только при большом количестве наблюдений и небольшой вероятности успеха. Поэтому для того, чтобы найти существенные различия, достаточно менять эти параметры. Для иллюстрации я менял вероятность посещения лекции студентом профильного факультета p_1 . Пронаблюдаем поведение распределений обеих моделей: Сразу же видны все раз-

личия. При росте вероятности успеха в биномильном распределении график плотности по-идее должен смещаться влево и становиться острее. Мы же видим сначала

сглаживание, затем уже рост. Оказывается так на поведение флияет свертка двух биномиальных случайных величин. Распределение пуассона же при росте λ Также должно смещаться вправо, но не заостряться, а наоборот, угасать, "размазываться". Что мы и наблюдаем. Вторая модель значительно проще, потому что параметры распределения b входят лишь как слагаемое $\lambda = ap_1 + bp_2$.