Лабораторная работа 2.2.1 Исследование взаимной диффузии газов

Злобина Вера Б02-002 20 мая 2021 г. **Цель работы:** 1) регистрация зависимости концентрации гелия в воздухе от времени с помощью датчиков теплопроводности при разных начальных давлениях смеси газов; 2) определение коэффициента диффузии по результатам измерений.

Рис. 1: Вакуумметр

В работе используются: измерительная установка (Рис. 3); форвакуумный насос; баллон с газом (гелий); манометр (Рис. 1); источник питания; магазин сопротивлений; гальванометр; компьютерное ПО.

Теоретические сведения. Диффузией называют самопроизвольное взаимное проникновение веществ друг в друга, происходящее вследствие хаотичного теплового движения молекул. При перемешивании молекул разного сорта говорят о взаимной (или концентрационной) диффузии.

Диффузия в системе, состоящей из двух компонентов a и b (бинарная смесь), подчиняется за-

кону Фика: плотности потока компонентов $j_{a,b}$ (количество частиц, пересекающих единичную площадку в единицу времени) пропорциональны градиентам их концентраций $\nabla n_{a,b}$, что в одномерном случае можно записать как

$$j_a = -D\frac{\partial n_a}{\partial x}, j_b = -D\frac{\partial n_b}{\partial x},$$

где D — коэффициент взаимной диффузии компонентов. Знак "минус" отражает тот факт, что диффузия идёт в направлении выравнивания концентраций. Равновесие достигается при равномерном распределении вещества по объёму сосуда ($\partial n/\partial x = 0$).

В данной работе исследуется взаимная диффузия гелия и воздуха. Давление P и температура T в условиях опыта предполагаются неизменными: $P = (n_{He} + n_{\rm B}) k_{\rm B} T = const$, где n_{He} и $n_{\rm B}$ – концентрации (объёмные плотности) диффундирующих газов. Поэтому для любых изменений концентраций справедливо $\Delta n_{He} = -\Delta n_{\rm He}$. Следовательно, достаточно ограничиться описанием диффузии одного из компонентов, например гелия n_{He} :

$$j_{He} = -D\frac{\partial n_{He}}{\partial x} \tag{1}$$

Рис. 2: Установка для исследования взаимной диффузии газов

Приведём теоретическую оценку для коэффициента диффузии. В работе концентрация гелия, как правило, мала. Кроме того, атомы гелия существенно легче молекул, составляющих воздух ($\mu_{He} \ll \mu_{H_2}, \mu_{O_2}$), значит и их средняя тепловая скорость велика по сравнению с остальными частицами. Поэтому перемешивание газов в работе можно приближенно описывать как диффузию примеси лёгких частиц Не на практически стационарном фоне воздуха. Коэффициент диффузии в таком приближении равен

$$D = \frac{1}{3}\lambda \overline{v},\tag{2}$$

где $\overline{v} = \sqrt{\frac{8RT}{\pi\mu}}$ — средняя тепловая скорость частиц примеси, $\lambda = \frac{1}{n_0\sigma}$ — их длина свободного пробега, n_0 — концентрация рассеивающих центров (фона), σ — сечение столкновения частиц примеси с частицами фона.

Таким образом, теория показывает, что коэффициент диффузии обратно пропорционален давлению в системе и не зависит от пропорций компонентов, что и предлагается проверить в работе экспериментально.

Схема установки и методика измерения. Схема установки представлена на Рис.2. Краны K_1 и K_2 отвечают за изоляцию сосудов V_1 и V_2 , а кран K_3 — за сообщение между ними. Краны K_6 и K_7 отвечают за подачу гелия. Гелий содержится в баллоне под давлением, превышающим атмосферное.

Для предотвращения избыточного расхода гелия и его неконтролируемого проникания в установку предусмотрен металлический кран (K_7) , отделя-

Рис. 3: Внешний вид основной части установки

ющий её от баллона с гелием. Его открывают только на время непосредственного заполнения установки гелием, остальное время он должен быть закрыт.

Для подачи малых порций гелия предусмотрен двухходовый кран с дозатором . При повороте рычажка P в положение I гелий в небольшом количестве поступает в дозатор (если открыт K_7), а при повороте P в положение II порция из дозатора поступает в установку (схема работы представлена на Pис. 4). Кран K_4 обладает повышенной вакуумплотностью и используется для изоляции измерительной части установки от возможных протечек гелия и воздуха. Двухходовой кран K_5 служит для подключе-

Рис. 4: Кран K_6

ния форвакуумного насоса к установке, подачи воздуха в установку и соединения форвакуумного насоса с атмосферой.

Рис. 5: Схема работы банка сопротивлений

Для измерения разности концентраций газов используется мостовая схема, представленная на Рис. 5. Здесь D_1, D_2 — датчики теплопроводности, расположенные в сосудах V_1 и V_2 . Сопротивления R_1, R_2, R служат для установки прибора на нуль (балансировка моста). В одну из диагоналей моста включен гальванометр, к другой подключается небольшое постоянное напряжение. Сопротивления R_1 и R_2 спарены (их подвижные контакты находятся на общей оси) и изменяются одновременно при повороте ручки грубой регулировки. Точная балансировка выполняется потенциометром R. Балансировку необходимо про-

водить перед каждым экспериментом заново: при этом установка заполняется чистым газом (воздухом без гелия) при давлении, близком «рабочему» (при котором затем будут проводится измерения).

Мост балансируется при заполнении сосудов (и датчиков) одной и той же смесью. При заполнении сосудов смесями различного состава возникает «разбаланс» моста. При незначительном различии в составах смесей показания гальванометра, подсоединённого к диагонали моста, будут пропорциональны разности концентраций примеси: $U \propto \Delta \kappa \propto \Delta n$.

Рассмотрим процесс выравнивания концентрации. Пусть концентрации одного из компонентов смеси в сосудах V_1 и V_2 равны n_1 и n_2 . Плотность диффузионного потока любого компонента (т. е. количество вещества, проходящее в единицу времени через единичную поверхность)

определяется законом Фика:

$$j = -D\frac{\partial n}{\partial x},$$

где D — коэффициент взаимной диффузии газов, а j - плотность потока частиц.

В нашем случае ввиду того что, а) объем соединительной трубки мал по сравнению с объемами сосудов, б) концентрацию газов внутри каждого сосуда можно считать постоянной по всему объему. Диффузионный поток в любом сечении трубки одинаков. Поэтому,

$$J = -DS \frac{n_1 - n_2}{l}.$$

Обозначим через Δn_1 и Δn_2 изменения концентрации в объемах V_1 и V_2 за время Δt . Тогда $V_1 \Delta n_1$ равно изменению количества компонента в объеме V_1 , а $V_2\Delta n_2$ — изменению количества этого компонента в V_2 . Из закона сохранения вещества следует, что $V_1n_1 + V_2n_2 = const$, откуда $V_1 \Delta n_1 = -V_2 \Delta n_2$. Эти изменения происходят вследствие диффузии, поэтому:

$$V_1 \Delta n_1 = -V_2 \Delta n_2.$$

С другой стороны $V_1\Delta n_1=J\Delta t$ и $V_1\frac{dn_1}{dt}=-DS\frac{n_1-n_2}{l}$. Аналогично $V_2 \frac{dn_2}{dt} = DS \frac{n_1 - n_2}{l}$ Тогда

$$\frac{d(n_1 - n_2)}{dt} = -\frac{n_1 - n_2}{l} \frac{V_1 + V_2}{V_1 V_2}$$

Проинтегрируем и получим, что

$$n_1 - n_2 = (n_1 - n_2)_0 e^{-t/\tau},$$

где $(n_1 - n_2)_0$ — разность концентраций в начальный момент времени,

$$\tau = \frac{V_1 V_2}{V_1 + V_2} \frac{l}{SD} \approx \frac{1}{2V} \frac{l}{SD}$$

Для измерения концентраций в данной установке применяются датчики теплопроводности \mathcal{I}_1 , \mathcal{I}_2 (см. рис. 1) используется зависимость теплопроводности газовой смеси от ее состава. Для измерения разности концентраций газов используется мостовая схема (рис. 1). Здесь \mathcal{I}_1 и \mathcal{I}_2 датчики теплопроводности, расположенные в сосудах V_1 и V_2 . Сопротивления R_1, R_2 и R служат для установки прибора на нуль (балансировка моста). В одну из диагоналей моста включен гальванометр, к другой

подключается небольшое постоянное напряжение. Мост балансируется при заполнении сосудов (и датчиков) одной и той же смесью.

При заполнении сосудов смесями различного состава возникает «разбаланс» моста. При незначительном различии в составах смесей показания гальванометра, подсоединённого к диагонали моста, будут пропорциональны разности концентраций примеси. В процессе диффузии разность концентраций убывает по экспоненте, и значит по тому же закону изменяются во времени показания гальванометра

$$U = U_0 \exp(-t/\tau)$$

Эту зависимость нам и предстоит проверить на практике.

Ход работы

- **1.** Ознакомимся с устройством установки, внимательно исследуем механизмы подачи гелия, а так же правила работы с форвакуумным насосом.
- **2.** Подготовим установку к работе, а именнно проверим все ли краны поставлены в нужное положение, нет ли нигде утечек. Далее включим питание датчиков и измерительного моста. После чего откачаем установку.
- **3.** Сбалансируем мост при начальном рабочем давлении давлении $P_1=40$ торр. (На Рис. 6 приведена фотография показаний вольтметра при сбалансированном мосте)

Рис. 6: Вольтметр при сбалансированном мосте

4. Теперь нужно один из объёмов заполнить воздухом, а другой — смесью гелия с воздухом. Сначала нужно заполнить объём, предназначенный для гелия, после чего нужно изолировать его и откачать гелий из патрубков. Затем заполнить второй объём воздухом.

Следующим этапом необходимо уравнять давления в этих

объёмах для чего нужно открыть краны K_1 и K_2 на небольшое время порядка 30 с, чтобы дать давлениям выравняться. После эти краны нужно перекрыть и записать давление, которое показывает манометр.

- **5.** Откроем кран K_3 , после чего начнётся процесс диффузии, перед этим необходимо запустить компьютерную программу, которая запишет показания вольтметра в зависимости от времени. Из полученного массива данных выберем 15 точек для дальнейшего анализа и зафиксируем это в Таблице 1.
- **6.** Повторим измерения 3-5 для давлений до 240 торр. Данные занесём в Таблицу 1.

Обработка результатов эксперимента

1. Построим графики зависимости $\ln(U/U_0)$ от времени t для выбранных точек. С помощью МНК вычислим коэффициент угла наклона для каждой прямой k и погрешность этой величины.

$$k = \frac{\ln(U/U_0)}{t},$$

$$\sigma_k = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle \ln(U/U_0)^2 \rangle - \langle \ln(U/U_0) \rangle^2}{\langle t^2 \rangle - \langle t \rangle^2} - k^2}.$$

Через эту величину выражается нужный нам коэффициент D взаимной диффузии при заданном давлении, а именно $D=\frac{VL}{2\tau S},$ где $\tau=-\frac{t}{\ln(U/U_0)}=-\frac{1}{k}$, то есть

$$D = -\frac{kVL}{2S},$$

$$\sigma_D = D\sqrt{\left(\frac{\sigma_k}{k}\right)^2 + \left(\frac{3\sigma_V}{2V}\right)^2 + \left(\frac{\sigma_{L/S}}{L/S}\right)^2}.$$

Для вычисления коэффициента взаимной диффузии D нам нужны два параметра, которые записаны на установке, а именно:

$$L/S = (15.0 \pm 0.1) \text{cm}^{-1}$$

 $V = (800 \pm 5) \text{cm}^{3}$

Результаты представлены на Рис. 7 и в Таблице 1.

Как видно из Таблицы 1 относительная погрешность величины k, вносимая МНК, составляет не более 2%, в то время как инструментальная погрешность составляет максимум (для оценки я взяла точки с максимальными относительными погрешностями) $\varepsilon_k = \varepsilon_t + \varepsilon_U \approx 0.03\% + 0.04\% \approx 0.1\%$, что гораздо меньше статистического вклада, поэтому инструментальнаю погрешность измерения величины k в дальнейшем учитываться не будет.

2. Построим график зависимости коэффициента диффузии от обратного давления и экстраполируя зависимость до атмосферного давления получим искомую величину коэффициента взаимной диффузии (обозначено зелёным квадратом на Рис. 8).

Таблица 1: Экспериментальные данные и их обработка

m P=41.3 торр			m P=77.5 торр			
$1/P = 1.82 \cdot 10^{-4} \mathrm{Ha^{-1}}$			$1/P = 9.68 \cdot 10^{-5} \; \Pi a^{-1}$			
$U_0 = 13.13 \text{ mV}$			$U_0 = 19.06 \text{ mV}$			
U, mV	$\ln(U/U_0)$	t, s	U, mV	$\ln(U/U_0)$	t, s	
12.80	-0.0256	20.09	18.68	-0.0199	20.01	
12.25	-0.0688	40.09	18.20	-0.0458	40.01	
11.73	-0.112	60.09	17.73	-0.0719	60.01	
11.24	-0.157	80.09	17.28	-0.0975	80.01	
10.77	-0.197	100.09	16.85	-0.123	100.01	
10.32	-0.240	120.09	16.42	-0.148	120.01	
9.90	-0.282	140.09	16.01	-0.174	140.01	
9.49	-0.324	160.09	15.61	-0.199	160.01	
9.10	-0.366	180.09	15.22	-0.224	180.01	
8.73	-0.408	200.09	14.85	-0.249	200.01	
8.37	-0.449	220.09	14.48	-0.274	220.01	
8.03	-0.490	240.09	14.13	-0.298	240.01	
7.71	-0.531	60.09	13.79	-0.323	60.01	
7.41	-0.572	280.09	13.45	-0.348	280.01	
7.11	-0.612	300.09	13.13	-0.372	300.01	
6.83	-0.653	320.09	12.81	-0.396	320.01	
6.56	-0.692	340.09	12.51	-0.420	340.01	
6.31	-0.732	360.09	12.21	-0.444	360.01	
6.07	-0.771	380.09	11.92	-0.468	380.01	
5.83	-0.810	400.09	11.64	-0.492	400.01	
$k = -2.06 \cdot 10^{-3} \text{ s}^{-1}$			$k = -1.24 \cdot 10^{-3} \text{ s}^{-1}$			
$\sigma_k = 0.1 \cdot 10^{-4} \text{ s}^{-1}$			$\sigma_k = 0.1 \cdot 10^{-4} \text{ s}^{-1}$			
$D = 12.40 \ cm^2/s$			$D = 7.46 \ cm^2/s$			
$\sigma_D = 0.21 \ cm^2/s$			$\sigma_D = 0.14 \ cm^2/s$			

P=120.4 Topp			Р = 140.0 торр			
$1/P = 6.23 \cdot 10^{-5} \mathrm{\Pi a^{-1}}$			$1/P = 4.69 \cdot 10^{-5} \mathrm{\Pi a^{-1}}$			
$U_0 = 13.13 \text{ mV}$			$U_0 = 19.06 \text{ mV}$			
U, mV	$\ln(U/U_0)$	t, s	U, mV	$\ln(U/U_0)$	t, s	
17.36	-0.0142	20.09	16.71	-0.0108	20.01	
17.05	-0.0325	40.09	16.48	-0.0249	40.01	
16.74	-0.0510	60.09	16.24	-0.0393	60.01	
16.43	-0.0694	80.09	16.01	-0.0536	80.01	
16.13	-0.0877	100.09	15.79	-0.0678	100.01	
15.85	-0.105	120.09	15.57	-0.0818	120.01	
15.57	-0.123	140.09	15.36	-0.0955	140.01	
15.29	-0.141	160.09	15.15	-0.109	160.01	
15.03	-0.158	180.09	14.94	-0.122	180.01	
14.77	-0.175	200.09	14.74	-0.136	200.01	
14.52	-0.193	220.09	14.54	-0.149	220.01	
14.27	-0.210	240.09	14.35	-0.163	240.01	
14.03	-0.227	60.09	13.16	-0.176	60.01	
13.79	-0.244	280.09	13.98	-0.189	280.01	
13.56	-0.261	300.09	13.80	-0.202	300.01	
13.34	-0.277	320.09	13.62	-0.215	320.01	
13.11	-0.295	340.09	13.45	-0.228	340.01	
12.90	-0.311	360.09	13.28	-0.240	360.01	
12.68	-0.328	380.09	13.11	-0.253	380.01	
12.48	-0.344	400.09	12.95	-0.266	400.01	
$k = -8.68 \cdot 10^{-4} \text{ s}^{-1}$			$k = -6.71 \cdot 10^{-4} \text{ s}^{-1}$			
$\sigma_k = 0.6 \cdot 10^{-5} \text{ s}^{-1}$			$\sigma_k = 0.5 \cdot 10^{-5} \text{ s}^{-1}$			
$D = 5.21 \ cm^2/s$			$D = 4.03 \ cm^2/s$			
$\sigma_D = 0.10 \ cm^2/s$			$\sigma_D = 0.08 \ cm^2/s$			

m P=200.0 торр			m P=236.3 торр		
$1/P = 3.75 \cdot 10^{-5} \mathrm{\Pi a^{-1}}$			$1/P = 3.17 \cdot 10^{-5} \mathrm{\Pi a^{-1}}$		
$U_0 = 19.06 \text{ mV}$			$U_0 = 13.13 \text{ mV}$		
U, mV	$\ln(U/U_0)$	t, s	U, mV	$\ln(U/U_0)$	t, s
16.95	-0.0113	20.01	17.05	-0.00796	20.09
16.74	-0.0239	40.01	16.89	-0.0176	40.09
16.53	-0.0366	60.01	16.71	-0.0280	60.09
16.32	-0.0495	80.01	16.54	-0.0384	80.09
16.11	-0.0620	100.01	16.37	-0.0485	100.09
15.91	-0.0749	120.01	16.21	-0.0586	120.09
15.71	-0.0873	140.01	16.05	-0.0687	140.09
15.52	-0.0995	160.01	15.89	-0.0784	160.09
15.33	-0.111	180.01	15.74	-0.0878	180.09
15.15	-0.123	200.01	15.59	-0.0972	200.09
14.98	-0.135	220.01	15.45	-0.106	220.09
14.80	-0.147	240.01	15.30	-0.116	240.09
14.63	-0.158	60.01	15.16	-0.125	60.09
14.47	-0.169	280.01	15.02	-0.134	280.09
14.30	-0.181	300.01	14.88	-0.143	300.09
14.15	-0.192	320.01	14.75	-0.152	320.09
13.99	-0.203	340.01	14.61	-0.162	340.09
13.84	-0.214	360.01	14.48	-0.171	360.09
13.68	-0.225	380.01	14.35	-0.180	380.09
13.53	-0.237	400.01	14.23	-0.189	400.09
$k = -5.92 \cdot 10^{-4} \text{ s}^{-1}$			$k = -4.76 \cdot 10^{-4} \text{ s}^{-1}$		
$\sigma_k = 0.5 \cdot 10^{-5} \text{ s}^{-1}$			$\sigma_k = 0.6 \cdot 10^{-5} \text{ s}^{-1}$		
$D = 3.55 \ cm^2/s$			$D = 2.86 \ cm^2/s$		
$\sigma_D = 0.08 \ cm^2/s$			$\sigma_D = 0.07 \ cm^2/s$		

Рис. 7: График зависимости $\ln(U/U_0)$ от времени t

Точность измерения давления определяется инструментальной погрешностью используемого вакуумметра и составляет порядка 6% (значение для маленьких двалений 20-40 торр). Используя МНК получим, что погрешность полученного значения ещё 7%, то есть в результате погрешность величины $\varepsilon_{D_{\text{атм}}}=10\%$

Поэтому итоговый ответ $D_{\rm arm}=(1.76\pm0.18)~cm^2/s$, что даже в пределах погрешности не стыкуется с табличным значением $0.66~cm^2/s$, хоть и имеет с ним один порядок.

Рис. 8: График зависимости D от обратного давления 1/P

3. Теперь по полученным данным оценим длину свободного пробега о. Теперь по полученным данным оценим длину своюдного прооега и размер молекулы. Поскольку $D=\frac{1}{3}\lambda\langle v\rangle$, где $\langle v\rangle=\sqrt{\frac{8RT}{\pi\mu}}$, то длина свободного пробега $\lambda=3D\sqrt{\frac{\pi\mu}{8RT}}\approx 420$ нм, что сходится с табличными значениями только по порядку. Эффективное сечение $\sigma=\frac{kT}{\sqrt{\lambda P}}\approx 6.9\cdot 10^{-2}$ нм².

Вывод

В ходе работы мо научились работать с форвакуумным насосом, а так же с вакуумным оборудованием. Убедились в том, что во время диффузии для концентраций газов выполняется соотношение $\Delta n = \Delta n_0 e^{-\frac{t}{\tau}}$. Так же мы проверили, что коэффициент взаимной диффузии D линейно зависит от обратного давления 1/P, при этом экстраполируя значения давления к атмосферному мы смогли получить приближенной значение $D_{\text{атм}}$. Полученное значение сходится с табличным по порядку. Так же используя величину $D_{\text{атм}}$ мы смогли получить оценки для длины свободного пробега атомов гелия λ и эффективного сечения столкновения в смеси воздух-гелий $\sigma_{He-воздух}$.