COMP 546

Lecture 17

Linear Systems 2: Fourier transform, filtering, convolution theorem

Tues. March 20, 2018

Recall last lecture

convolution

special behavior of sines and cosines

complex numbers and Euler's formula

Today

Fourier transform

convolution theorem

filtering

Key idea from linear algebra: orthonormal basis vectors

Example:

$$\begin{bmatrix} u \\ v \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & & -1 \\ & & \\ 1 & & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ & & \\ -1 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

Fourier transform uses orthogonal basis vectors

Example:

(1D) Fourier analysis

Fourier transform

map N-dimensional delta function (impulse function) basis to an N-dimensional sinusoid function basis

Inverse Fourier transform

Fourier Transform

$$\hat{I}(k) = \sum_{x=0}^{N-1} \left(\cos\left(\frac{2\pi}{N}kx\right) - i\sin\left(\frac{2\pi}{N}kx\right) \right) I(x)$$

$$e^{-i\frac{2\pi}{N}kx}$$

$$\hat{I}(k) = \mathbf{F} I(x)$$

Fourier transform

$$Cos\left(\frac{2\pi}{N}kx\right)$$

$$sin\left(\frac{2\pi}{N}kx\right)$$

$$etc$$

$$\hat{I}(k) = I(x)$$

Define *N* x *N* Fourier transform matrix

$$\mathbf{F}_{k,x} \equiv e^{-i\frac{2\pi}{N}kx}$$

Claim: (see lecture notes for proof)

$$\mathbf{F}^{-1} = \frac{1}{N} \; \mathbf{\bar{F}}$$

where

$$\bar{\mathbf{F}}_{k,x} \equiv e^{i\frac{2\pi}{N}kx}$$

amplitude spectrum

phase spectrum

Convolution Theorem

Let I(x) and h(x) be defined on $x \in \{0, 1, ..., N-1\}$.

$$F \{ I(x) * h(x) \} = F I(x) F h(x)$$

$$= \hat{I}(k) \quad \hat{h}(k)$$

See lecture notes for proof.

Convolution Theorem

Let I(x) and h(x) be defined on $x \in \{0, 1, ..., N-1\}$.

$$F \{ I(x) * h(x) \} = F I(x) F h(x)$$

$$= \hat{I}(k) \quad \hat{h}(k)$$

$$= |\hat{I}(k)| |\hat{h}(k)| e^{-i\phi_I(k)} e^{-i\phi_h(k)}$$

Convolving an image I(x) with a filter h(x) changes the amplitude and phase of each frequency component.

Color filtering (by frequency or wavelength)

Linear Filtering (by frequency "band")

Ideal Low Pass Filter h(x)

Only consider up to N/2 because of the conjugacy property (coming soon).

Ideal High Pass Filter h(x)

Ideal bandpass filter

Bandwidth
$$\equiv k_2 - k_1$$

Bandwidth (octaves)
$$\equiv log_2(k_2) - log_2(k_1)$$

Non-Ideal Filters

Bandwidth of Non-Ideal Bandpass Filter

Why are we defining the low/band/high pass filters according to their properties on frequencies k in 0, .. N/2 only?

Conjugacy Property of Fourier transform

Let h(x) be a real valued function.

Then, for any integer k, $\hat{h}(k) = \hat{h}(N-k)$.

$$\hat{h}(k) = \hat{h}(N-k)$$

Proof: see the lecture notes.

Periodicity Property of Fourier transform

For any positive or negative integer m,

$$\hat{h}(k) = \hat{h}(k + mN)$$
.

Periodicity Property of Fourier transform

For any positive or negative integer m,

$$\hat{h}(k) = \hat{h}(k + mN)$$
.

Proof: Use this:

$$e^{-i\frac{2\pi}{N}(k+mN)x} = e^{-i\frac{2\pi}{N}kx} e^{-i\frac{2\pi}{N}mNx}$$

The Fourier transform is well defined for any k (not just in 0, ..., N-1.)

$$\hat{I}(k) = \sum_{x=0}^{N-1} e^{-i\frac{2\pi}{N}kx} I(x)$$

The Fourier transform is well defined for any range of N consecutive values of x.

e.g.
$$\hat{f}(k) = \sum_{x = -\frac{N}{2}}^{\frac{N}{2} - 1} e^{-i\frac{2\pi}{N}kx} f(x)$$

Essentially we are treating f(x) as periodic.

$$e^{-i\frac{2\pi}{N}(x+mN)k} = e^{-i\frac{2\pi}{N}kx} e^{-i\frac{2\pi}{N}kmN}$$

Example 1

$$\delta(x) \equiv \begin{cases} 1, & x = 0 \\ 0, & \text{otherwise} \end{cases}$$

$$\hat{\delta}(k)$$
 = ?

Example 1

$$\delta(x) \equiv \begin{cases} 1, & x = 0 \\ 0, & \text{otherwise} \end{cases}$$

$$\hat{\delta}(k) = \sum_{x=0}^{N-1} \delta(x) e^{-i(\frac{2\pi}{N}kx)}$$

$$= 1 \cdot \overline{e}^{i\frac{2\pi}{N}k \cdot 0}$$

$$= 1$$

Examples 2:

Local Difference:

$$I(x) * D(x) \equiv \frac{1}{2}I(x+1) - \frac{1}{2}I(x-1)$$

$$-\frac{1}{2}, \qquad x = 1$$

$$D(x) \equiv \frac{1}{2}, \qquad x = -1$$

$$0, \qquad \text{otherwise}$$

$$D(x) \equiv \begin{cases} -\frac{1}{2}, & x = 1 \\ \frac{1}{2}, & x = -1 \end{cases}$$

$$0, \text{ otherwise}$$

$$\widehat{D}(k) = \sum_{x=0}^{N-1} e^{-i\frac{2\pi}{N}kx} D(x)$$

: ? (Done on blackboard. See lecture notes)

Useful trick

$$cos\theta = \frac{1}{2}(e^{i\theta} + e^{-i\theta})$$

$$isin\theta = \frac{1}{2}(e^{i\theta} - e^{-i\theta})$$

Example 3:

Local Average:

$$I(x) * B(x) \equiv \frac{1}{4}I(x+1) + \frac{1}{2}I(x) + \frac{1}{4}I(x-1)$$

$$B(x) \equiv \begin{cases} \frac{1}{4}, & x = -1, 1 \\ \frac{1}{2}, & x = 0 \end{cases}$$

$$0, \text{ otherwise}$$

$$B(x) \equiv \begin{cases} \frac{1}{4}, & x = -1, 1 \\ \frac{1}{2}, & x = 0 \end{cases}$$

$$0, \text{ otherwise}$$

$$\hat{B}(k) = \sum_{x=0}^{N-1} e^{-i\frac{2\pi}{N}kx} B(x)$$

? (Sketched on blackboard. See lecture notes)

Stopped here

(will finish next class)

Example 4:

$$\mathbf{F} e^{i\frac{2\pi}{N}k_0x} = N \delta(k - k_0)$$

(Done on blackboard. See lecture notes.)

Example 5 & 6: cosine and sine

$$\mathbf{F} \cos\left(\frac{2\pi}{N}k_0x\right) = ?$$

$$\mathbf{F} \sin\left(\frac{2\pi}{N} k_0 x\right) = ?$$

Example 5 & 6: cosine and sine

$$\mathbf{F} \cos\left(\frac{2\pi}{N}k_0x\right) = \frac{N}{2}(\delta(k-k_0) + \delta(k+k_0))$$

$$\mathbf{F} \sin\left(\frac{2\pi}{N} k_0 x\right) = \frac{N}{2i} (\delta(k - k_0) - \delta(k + k_0))$$

Use Euler's formula and Example 4. Also, recall the conjugacy property.

Example 7: Gaussian

$$G(x,\sigma) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{1}{2} \left(\frac{x}{\sigma}\right)^2}$$

What is its Fourier transform?

Example 7: Gaussian

$$G(x,\sigma) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{1}{2} \left(\frac{x}{\sigma}\right)^2}$$
Note the inverse relationship
$$F G(x,\sigma) \approx e^{-\frac{1}{2} \left(\frac{2\pi \sigma k}{N}\right)^2}$$

with equality in the limit as distance between samples goes to 0 and N goes to infinity, i.e. continuous Fourier transform.

$$G(x, \sigma)$$

$$G(k, \sigma)$$

$$Z\pi \sigma_{2}$$

$$Z\pi \sigma_{2}$$

Example 8: cosine Gabor

$$\mathbf{F} \cos\left(\frac{2\pi}{N}k_0x\right) = \frac{N}{2}(\delta(k-k_0) + \delta(k+k_0))$$

$$\mathbf{F} \quad G(x,\sigma) \approx e^{-\frac{1}{2}\left(\frac{2\pi\sigma k}{N}\right)^2}$$

$$\mathbf{F} \ cosGabor(x,\sigma) = \mathbf{F} \left\{ \cos\left(\frac{2\pi}{N}k_0x\right)G(x,\sigma) \right\}$$

Convolution Theorem (version 2)

$$F \{ I(x) h(x) \} = \frac{1}{N} F I(x) * F h(x)$$

Proof: see Appendix in lecture notes

Example 8: cosine Gabor

$$\mathbf{F} \quad \cos\left(\frac{2\pi}{N}k_0x\right) = \frac{N}{2}(\delta(k-k_0) + \delta(k+k_0))$$

$$\mathbf{F} \quad G(x,\sigma) \approx e^{-\frac{1}{2}\left(\frac{2\pi\sigma k}{N}\right)^2}$$

F
$$cosGabor(x,\sigma) \approx \frac{N}{2} \left(e^{-\frac{1}{2} \left(\frac{2 \pi \sigma (k-k_0)}{N} \right)^2} + e^{-\frac{1}{2} \left(\frac{2 \pi \sigma (k+k_0)}{N} \right)^2} \right)$$

See lecture notes for proof, and formula for sine Gabor.

Example: cosine Gabor

[ADDED: April 12]

$$N = 128$$
, $k0 = 20$, sigma = 5

