La Seine Musicale★

B2-07

Question 1 En considérant que la perturbation $C_{\text{pert}}(p)$ est nulle, déterminer $H_f(p) = \frac{\Omega_m(p)}{\Omega_c(p)}$ sous forme canonique. Réduction de la boucle du moteur à courant continu :

$$\frac{\Omega_m(p)}{U_m(p)} = \frac{\frac{k_c}{R + Lp} \frac{1}{J_{eq}p}}{1 + \frac{k_c}{R + Lp} \frac{k_e}{J_{eq}p}} = \frac{k_c}{(R + Lp) J_{eq}p + k_e k_c}.$$

On a alors,

$$\frac{X_{ch}(p)}{\Omega_{c}(p)} = K_{a} \frac{CK_{h} \frac{k_{c}}{(R+Lp) J_{eq}p + k_{e}k_{c}}}{1 + CK_{h}K_{capt} \frac{k_{c}}{(R+Lp) J_{eq}p + k_{e}k_{c}}}$$

$$= K_{a} \frac{CK_{h}k_{c}}{(R+Lp) J_{eq}p + k_{e}k_{c} + CK_{h}K_{capt}k_{c}}$$

$$= \frac{K_{a}}{(k_{e}k_{c} + CK_{h}K_{capt}k_{c})} \frac{CK_{h}k_{c}}{\frac{J_{eq}(R+Lp)}{k_{e}k_{c} + CK_{h}K_{capt}k_{c}}} \frac{1}{k_{e}k_{c} + CK_{h}K_{capt}k_{c}}$$

Question 2 En prenant $\Omega_c(p) = 0$, exprimer la fonction de transfert $H_r(p) = \frac{\Omega_m(p)}{C_{\text{pert}}(p)}$

en la mettant sous la forme : $H_r(p) = -\frac{\alpha (1 + \tau p)}{1 + \gamma p + \delta p^2}$. Exprimer α , τ , γ et δ en fonction des différents paramètres de l'étude.

Par lecture directe du schéma-blocs, on a $\Omega_m(p) = \frac{1}{J_{ea}p} (C_{pert}(p) + C_m(p)).$

De plus,
$$C_m(p) = (U_m(p) - k_e \Omega_m(p)) \frac{k_c}{R + Lp}$$
 et $U_m(p) = \varepsilon(p)CK_h = -\Omega_m(p)CK_hK_{\text{capt}}$.

On a donc,

$$\Omega_m(p) = \frac{1}{J_{eq}p} C_{\mathrm{pert}}(p) + \frac{1}{J_{eq}p} \left(-\Omega_m(p) C K_h K_{\mathrm{capt}} - k_e \Omega_m(p) \right) \frac{k_c}{R + Lp}.$$

$$\Leftrightarrow \Omega_m(p) = \frac{1}{J_{eq}p} C_{\text{pert}}(p) + \frac{1}{J_{eq}p} \Omega_m(p) \left(-CK_h K_{\text{capt}} - k_e \right) \frac{k_c}{R + Lp}$$

$$\Leftrightarrow \Omega_m(p) \left(1 + \frac{1}{J_{eq}p} \left(CK_h K_{\text{capt}} + k_e \right) \frac{k_c}{R + Lp} \right) = \frac{1}{J_{eq}p} C_{\text{pert}}(p)$$

$$\Leftrightarrow \frac{\Omega_m(p)}{C_{\text{pert}}(p)} = \frac{\frac{1}{J_{eq}p}}{\left(1 + \frac{1}{J_{eq}p} \left(CK_hK_{\text{capt}} + k_e\right)\frac{k_c}{R + Lp}\right)}$$

$$\Leftrightarrow \frac{\Omega_m(p)}{C_{\mathrm{pert}}(p)} = \frac{R + Lp}{J_{eq}p\left(R + Lp\right) + \left(CK_hK_{\mathrm{capt}} + k_e\right)k_c}$$

$$\Leftrightarrow \frac{\Omega_m(p)}{C_{\text{pert}}(p)} = \frac{R}{\left(CK_hK_{\text{capt}} + k_e\right)k_c} \frac{1 + \frac{L}{R}p}{\frac{J_{eq}}{\left(CK_hK_{\text{capt}} + k_e\right)k_c}p\left(R + Lp\right) + 1}.$$

Par identification, on a alors :
$$\alpha = -\frac{R}{\left(CK_hK_{\text{capt}} + k_e\right)k_c}$$

$$\tau = \frac{L}{R}$$

$$\gamma = \frac{RJ_{eq}}{\left(CK_hK_{\text{capt}} + k_e\right)k_c}$$

$$\delta = \frac{LJ_{eq}}{\left(CK_hK_{\text{capt}} + k_e\right)k_c}.$$

Question 3 Exprimer $X_{ch}(p)$ en fonction de $\Omega_m(p)$ et $C_{pert}(p)$.

D'une part, $\Omega_m(p) = H_f(p)\Omega_c(p)$ quand il n'y a pas de perturbation. D'autre part, $\Omega_m(p) = H_r(p)C_{\rm pert}(p)$ quand il n'y a pas de perturbation.

Par superposition, on a donc $\Omega_m(p) = H_f(p)\Omega_c(p) + H_r(p)C_{pert}(p)$.

Par suite,
$$X_{ch}(p) = (H_f(p)\Omega_c(p) + H_r(p)C_{\text{pert}}(p)) \frac{DK_{\text{red}}}{2p}$$
.

