ALUNOS

Lucas Oliveira de Paula – 10773680 Victor Nascimento Pereira – 10773530

Título

Relatório sobre um problema inverso para obtenção de distribuição de Temperatura (parte 2)

Versão Original

Relatório apresentado ao Instituto de Matemática e Estatística da Universidade de São Paulo como parte complementar ao EP2 de Métodos Numéricos e Aplicações (MAP-3121)

Área de concentração Métodos Numéricos

São Paulo 2020

SUMÁRIO

1. Introdução	3
2. Hipótese	3
3. Procedimento e funções do código fonte	4
3.1 . Função main	4
3.2 fazx	8
3.3 fazt	8
3.4 ep2	9
3.5 learquivo	11
3.6 Função crank	13
3.7 Função ruido	17
3.8 produtointerno	18
3.9 resolvenovox	18
3.10 Função e2	19
3.11 Função progressbar1	20
3.12 Função novaldl	21
4. Resultados dos testes e dados	22
4.1 Teste a	22
4.2 Teste b	22
4.3 Teste c	22
4.4 Teste d	24
5. Comparações e conclusões	25

1. Introdução

Há problemas diretos, onde se determina o efeito da causa, e problemas inversos, onde a partir do efeito observado tenta-se apurar a causa. Este EP resolverá problemas inversos relacionados a equação do calor.

Utilizando de métodos computacionais sendo aplicados através da linguagem Python, e dispondo das bibliotecas permitidas, neste EP, tratou-se a obtenção de coeficientes que determinam a intensidade de fontes pontuais de calor em determinadas regiões da barra a partir dos valores finais de temperatura obtidos previamente (por medição, por exemplo).

2. Hipótese

Como temos um sistema com N (número de divisões da barra) equações e nf (número de fontes pontuais) incógnitas, esse é um sistema sobredeterminado, e para resolvê-lo devemos utilizar o método dos mínimos quadrados (MMQ), que tem como objetivo minimizar a equação do erro quadrático:

$$E_2 = \sqrt{\Delta x \sum_{i=1}^{N-1} \left(u_T(x_i) - \sum_{k=1}^{nf} a_k u_k(T, x_i) \right)^2} ,$$
 (1)

Para isso, deve ser utilizado sistema a seguir, com o produto interno apresentado na equação (4). Nota-se que para o cálculo do produto interno são ignorados o primeiro e último pontos (x = 0 e x = 1), pois foi adotado o valor de 0 para as duas fronteiras, logo, não precisam entrar na equação.

$$\begin{bmatrix} \langle u_{1}, u_{1} \rangle & \langle u_{2}, u_{1} \rangle & \cdots & \langle u_{nf}, u_{1} \rangle \\ \langle u_{1}, u_{2} \rangle & \langle u_{2}, u_{2} \rangle & \cdots & \langle u_{nf}, u_{2} \rangle \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \langle u_{1}, u_{nf} \rangle & \langle u_{2}, u_{nf} \rangle & \cdots & \langle u_{nf}, u_{nf} \rangle \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{nf} \end{bmatrix} = \begin{bmatrix} \langle u_{T}, u_{1} \rangle \\ \langle u_{T}, u_{2} \rangle \\ \vdots \\ \langle u_{T}, u_{nf} \rangle \end{bmatrix}$$

$$(2)$$

3. Procedimento e funções do código fonte

As funções utilizadas no programa estão apresentadas e brevemente explicadas a seguir. Apenas seus propósitos, funcionalidades (de um modo geral) e particularidades/observações são ditas, desta forma, é necessário um conhecimento prévio de linguagem python para entendê-las.

Para fim de organização o trabalho foi desmembrado em diversos arquivos ".py", em que cada um possui determinadas funcionalidades, o que facilita a implementação e modificações nos arquivos. O funcionamento se dá por importações de códigos ".py", onde, por exemplo, o codigo testeep2.py abre com imports de ep2 e ep1, para realizar suas operações de forma conjunta e organizada.

3.1. Função main

A função main se encontra no arquivo testeep2.py, ela é a porta de entrada do programa. A partir dela, o usuário pode digitar as entradas e escolher as opções para o funcionamento do programa. O seu código pode ser visto a seguir:

```
from ep2 import ep2, learquivo
  from ep1 import fazx, fazt, metodo11, euler, crank
     b = 1
   print("\n1-Teste do metodo 11\n2-Euler Implicito\n3-Crank Nicolson\
\n4 - Ep2 (problema inverso) \nDigite outro valor inteiro para sair\n")
         b = int(input("Qual teste deseja executar? - "))
             n = int(input("Escolha o valor de N: "))
           lmbda = float(input("Escolha o valor de lambda (Para deltat
      ser igual a deltax, lambda = n; Para inserir M, lambda = 0): "))
             if lmbda == 0:
                m=int(input("Escolha o valor de M(multiplo de 10): "))
             else:
                 m = n ** 2 / lmbda
             if int(m) == m:
```

```
m = m-1
             else:
                           a = int(input("\nSelecione a função f(t,x) desejada:\
                                         \n1: f(t,x) = 10x^2(x-1)-60xt+ 20t
                     n2:f(t,x)=10\cos(10t)x^2(1-x)^2-(1+\sin(10t))(12x^2-12x+2)
                                        \n3: f(t,x) = 25t^2e^{(t-x)} \cos(5tx) - 10te^{(t-x)}
                                                                                                        sen(5tx) - 5xe^(t-x) sen(5tx)
                           \n4: f(t,x) = 10000(1-2t^2)N (p = 0.25 e gh cte): "))
                           if a != 1 and a != 2 and a != 3 and a != 4:
                                        print ("Teste Invalido")
                                       break
                          x = fazx(n)
                          t = fazt(m)
                           if b == 1:
                                       metodoll(x,t,a)
                           elif b == 2:
                                        euler (x,t,a)
                                       crank (x, t, a, 0.25, 1)
elif b == 4:
               print(" \na - Teste com N = 128, nf = 1 e p1 = 0.35 \nb - 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 
                           Teste com N =128, nf = 4 e p = [0.15, 0.3, 0.7, 0.8]
                           \nc - Teste com arquivo txt e N a escolha \nd - Teste
                                               com arquivo txt, N a escolha e ruido em Ut(x) \
                              \ne - Se deseja digitar nf, p, N e coeficientes ak")
              r = input("Qual teste deseja executar? - ")
             if r == 'a' :
                          t = fazt (127)
                          x = fazx (128)
                          p = [0.35]
                          ep2(x,t,1,p,r)
             elif r == 'b':
```

```
t = fazt (127)
        x = fazx (128)
        p = [0.15, 0.3, 0.7, 0.8]
        ep2(x,t,4,p,r)
    elif r == 'c' or r == 'd':
        n = int(input("Escolha o valor de N: "))
        t = fazt (n-1)
        p = learquivo (0)
        ep2 (x,t,len(p), p, r)
    elif r == 'e':
        p = []
        nf = int(input("Quantos pontos p serão utilizados
            (parametro nf)? - ")) # Recebe os pontos de fonte
        for i in range (0,nf):
            pdigitado = float(input("digite a posição de pk
                                       (k = %d) = " % (i+1)))
            p.append(pdigitado)
        n = int(input("Escolha o valor de N: "))
        t = fazt (n-1)
        ep2 (x,t,nf,p,r)
else:
    print("Teste invalido")
```

Primeiramente o usuário escolherá o teste a ser executado, como os casos do ep1 já foram explicados no relatório anterior, estes serão considerados já compreendidos, ou seja, não adentrarmos nos casos de o usuário dar como entrada 1, 2 ou 3. Caso o usuário entre com o valor 4, será solicitado desde a escolha de qual teste deseja executar (os testes a, b, c e d mencionados encontram-se no enunciado do exercício programa).

Caso a:

É criado o vetor x (que representa a barra com N subdivisões Δx), utilizando a função fazx, com o valor sugerido para N no enunciado do ep2 (N = 128), e o vetor t que representa o tempo com M subdivisões Δt), utilizando a função fazt, com valor M = N = 128. Como explicado no exercício programa anterior, a função fazt recebe o parâmetro M-1, por questões explicadas no relatório anterior que não vêm ao caso agora. Após, é criado o vetor de forçante pontual p, que para o teste a, é único com p = 0.35. Após estas tarefas preparadas, chama-se a função ep2, enviando os vetores x, t, o número de fontes pontuais (nf = 1), o vetor p, e o valor da variável r (r == a, no caso) para que a função ep2 trate com a funcionalidade do teste a .

Caso b:

Análogo ao caso a, porém, conta com mais forçantes pontuais, que caracterizam o vetor p. Para este teste, foram definidas as fontes pontuais $p_1 = 0.15$, $p_2 = 0.15$, $p_3 = 0.15$ e $p_4 = 0.8$, todas inseridas no vetor p. Além disso, o valor de nf, passado como parâmetro para a função ep2, vale 4, por haver 4 fontes pontuais no vetor p.

Casos c e d:

É colhido do usuário o valor N, que será o parâmetro de fazt e fazx neste caso. Para os forçantes pontuais p, utiliza-se a função learquivo, com o parâmetro enviado n = 0, que faz com que a função learquivo retorne apenas o vetor p que é lido do arquivo .txt fornecido. E então, assim como nos outros casos, é chamada a função ep2, com os parâmetros obtidos. Se o parâmetro r enviado for d, a função ep2 chamará também a função que transforma o vetor ut em um novo vetor ut com ruído, mas isto será explicado na respectiva função.

Caso e (adicional, não pedido no enunciado):

Foi desenvolvido para que o usuário digite as entradas desejadas para os parâmetros p, N e coeficientes ak. Neste caso, inicia-se criando o vetor p, a partir do número de fontes pontuais obtido pelo parâmetro nf digitado pelo usuário. Então colhe-se do usuário os valores para as posições pk das forçantes pontuais a serem utilizada. Adiante, é colhido do usuário o valor N, que será o parâmetro de fazt e fazx neste, e finalmente é chamada a função ep2 com os parâmetros atuais.

3.2 fazx

Esta função se encontra em ep1.py, e é usada para fazer o vetor x (posição na barra). O seu código pode ser visto a seguir:

```
def fazx(n):
  x = []
   for i in range(n + 1):
      x.append(i / n)
```

3.3 fazt

Esta função se encontra em ep1.py, e é usada para fazer o vetor t (tempo). Lembrando que para a lógica funcionar, como explicado no relatório do ep1, o valor m recebido é menor em uma unidade que o M digitado (no caso M recebido será igual a N-1). As funções do programa executam essa lógica automaticamente a partir do valor M digitado pelo usuário (o usuário deve digitar o valor de M que deseja), ou a partir do valor de N digitado ou pré-definido (para a funcionalidade "4 - Ep2 (problema inverso)", pois para esta funcionalidade, N = M). Toda essa lógica existe para que a função fazt criasse um vetor com M sendo um número inteiro, caso o usuário digite o valor de λ nas funcionalidades 1, 2 e 3. O código da função fazt pode ser visto a seguir:

```
def fazt(m):
   t = []
   for i in range(int(m) + 2):
       t.append(i / (int(m) + 1))
   return t
```

A partir destas funções, é criado o vetor x, que representa as posições espaciais na barra, que vai de 0 a 1, sendo $\Delta x = 1/N$, com N+1 valores (logo $x_N = 1$, partindo de x_0). E o vetor t (tempo), que vai de 0 a T = 1, onde Δt = 1/M, com M+2 valores (M=N-1, o que resulta em $t_0 = 0$, $t_k = k / (M+1)$ e $t_{M+1} = 1$). Relembrando, o valor do parâmetro M é criado automaticamente para esta tarefa do exercício programa 2.

3.4 ep2

Esta função se encontra em ep2.py, e organiza os cálculos a serem feitos. Recebe os parâmetros provenientes da função main para o tipo de teste desejado. A função começa originando os vetores Uk no mesmo número de fontes pontuais existentes no vetor p (parâmetro nf). Para isso, a função deve chamar uma outra função, já utilizada no exercício programa anterior, porém modificada, a função crank. Esta nova função crank retornará os vetores u_k (u_k é o vetor de temperaturas $u(t_k, x_i)$ para a barra no tempo t = T = 1, e o índice k é o número da fonte pontual utilizada no cálculo do método de Crank-Nicolson) caso o usuário tenha escolhido a funcionalidade "4- Ep2 (problema inverso)". Após isto, são pedidos os valores dos coeficientes ak, caso o usuário tenha escolhido o teste a,b ou e. Com isso, o vetor u_T é criado a partir dos coeficientes inseridos e os vetores u_k

$$u_T(x) = \sum_{k=1}^{nf} a_k u_k(T, x)$$
 (3)

Se for escolhidos o teste c ou d, o vetor u_T é proveniente da função learquivo, com parâmetro N passado (N escolhido na função main caso o teste seja c ou d). Além disso, para o teste d, o vetor u_T , lido do arquivo .txt, é modificado pela função ruido.

Com os vetores u_T e os vetores u_k (k=1, 2... nf) em mãos, podemos desenvolver a matriz (2). Sendo A, matriz de coeficientes das incógnitas a_k , composta pelos produtos internos entre os vetores u_k . E sendo B, a matriz de termos independentes, no segundo membro, composta pelos produtos internos entre vetores u_k e a solução u_T . Todos estes produtos internos são obtidos pela função produtointerno, com primeiro e último valor ignorados por serem 0 (condições de fronteira) em todos os vetores. Após, é chamada a função que resolverá o sistema da equação (2) e apresentará a solução para os valores dos coeficientes a_k provenientes do MMQ realizado, chamada de resolvenovox. Por fim, a última função chamada é e2, que calcula o erro quadrático (1) e apresenta ao usuário.

O código pode ser visto a seguir:

```
def ep2(x, t, nf, p, r):
    n = len(x) - 1
    uk = []
    coef = []
```

```
ut = []
matrizA = []
vetorB = []
vetoru = []
   vetoru = crank(x, t, 4, p[i], 2)
   uk.append(vetoru)
if r in ('a', 'b', 'e'):
   cf=float(input("Digite o coeficiente de u%d - " % (i+1)))
      coef.append(cf)
   for i in range(0, n+1):
# Cria vetor Ut
      valorut = 0
      somaut = 0
      for j in range(0, nf):
         valorut = coef[j] * uk[j][i]
         somaut = somaut + valorut
      ut.append(somaut)
   ut = learquivo(n)
   if r == 'd':
      ut = ruido(ut)
for i in range(0, nf):
   linhaA = []
   B = produtointerno(ut, uk[i])
   vetorB.append(B)
   for j in range(0, nf):
      A = produtointerno(uk[i], uk[j])
      linhaA.append(A)
   matrizA.append(linhaA)
vetorx = resolvenovox(matrizA, vetorB)
```

```
print('Valores de ak (vetor):')
print(vetorx)
e2(vetorx, ut, uk)
```

3.5 learquivo

Esta função se encontra em ep2.py, é a responsável pela leitura de arquivos e gravação de seus dados em vetores. O seu código pode ser visto a seguir:

```
def learquivo(n):
 v = []
 f = open('teste.txt', 'r')
 raw = f.read()
 f = raw.split('\n')
  aux = "
 if n == 0:
    raw = f[0].split('
    for i in raw:
       aux = "
       for j in i:
          if | != ' ':
             aux = aux+j
       v.append(np.float128(aux))
    return v
  for i in range(1, len(f)-1, int((len(f)-3)/n)):
    aux = "
    for j in f[i]:
       if j != ' ':
          aux = aux+j
    v.append(np.float128(aux))
  return v
```

Nesta função, por início cria-se o vetor v, então é criado f, que recebe o arquivo sugerido, raw "lê" o arquivo, e passa a ter seu conteúdo, f então recebe o conteúdo

dividido por quebras de linha, e então é criado um auxiliar.

Caso o parâmetro passado para a função seja 0, esta estará criando um vetor p de forçantes pontuais, onde raw receberá a primeira linha do arquivo sugerido, subdividida entre os espaços. No laço, o índice toma os valores de raw, que serão percorridos em um novo laço, onde, quando o valor atual não for um espaço, ele é inserido no auxiliar, deixando o auxiliar com todos valores "validos", para ser acoplado ao vetor v, que é retornado pela função.

Caso o parâmetro passado para a função for um N válido, esta tem um início de operação similar, lidando com o arquivo, porém, ignora a parte que faz o vetor p, e adentra um laço, que começa em 1 (ignorando a primeira linha, que seria índice 0, com os valores sugeridos para o vetor p), vai até a quantidade de linhas do arquivo - 1, pulando de quantidade de possíveis valores de N / n recebido como parâmetro. Neste laço, o auxiliar é esvaziado, então, em um laço são analisados os valores em cada linha de f, e os válidos são passado ao auxiliar, que é acoplado no vetor v, neste caso de valores das funções $u_{\scriptscriptstyle T}(x_i)$.

3.6 Função crank

Esta função se encontra em ep1.py, é responsável pelo cálculo das matrizes pelo método Crank-Nicolson. Ela será utilizada para a resolução do novo problema proposto. Para relembrar, o método de Crank-Nicolson consiste na resolução do sistema (4), mostrado a seguir, para cada iteração. O sistema provém da equação (5).

$$\begin{vmatrix} 1+\lambda & \frac{-\lambda}{2} & 0 & \dots & 0 \\ \frac{-\lambda}{2} & 1+\lambda & \frac{-\lambda}{2} & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \frac{-\lambda}{2} & 1+\lambda & \frac{-\lambda}{2} \\ 0 & \dots & 0 & \frac{-\lambda}{2} & 1+\lambda \end{vmatrix} \begin{bmatrix} u_1^{k+1} \\ u_2^{k+1} \\ \vdots \\ u_{N-1}^{k+1} \end{bmatrix} = \begin{vmatrix} u_1^k + (u_0^k - 2u_1^k + u_2^k) + \frac{\Delta t}{2}(f_1^k + f_1^{k+1}) + \frac{\lambda}{2}g_1^{k+1} \\ u_2^k + (u_1^k - 2u_2^k + u_3^k) + \frac{\Delta t}{2}(f_2^k + f_2^{k+1}) \\ \vdots \\ u_{N-2}^k + (u_{N-3}^k - 2u_{N-2}^k + u_{N-1}^k) + \frac{\Delta t}{2}(f_{N-2}^k + f_{N-2}^{k+1}) \\ u_{N-1}^k + (u_{N-2}^k - 2u_{N-1}^k + u_N^k) + \frac{\Delta t}{2}(f_{N-1}^k + f_{N-1}^{k+1}) + \frac{\lambda}{2}g_2^{k+1} \end{vmatrix}$$

$$(4)$$

$$u_{i}^{k+1} = u_{i}^{k} + \frac{\lambda}{2} ((u_{i-1}^{k+1} - 2u_{i}^{k+1} + u_{i+1}^{k+1}) + (u_{i-1}^{k} - 2u_{i}^{k} + u_{i+1}^{k})) + \frac{\Delta t}{2} (f(x_{i}, t_{k+1}) + f(x_{i}, t_{k}))$$
(5)

Para isso, devemos desenvolver as matrizes de coeficientes (matriz A, não é a mesma apresentada anteriormente, é apenas um nome genérico) e o vetor de termos independentes (vetor b, assim como A, não é o mesmo da função ep2). Para resolução deste sistema linear ainda utiliza-se duas outras funções, a ldl e a resolvex. A diferença consiste na adição dos parâmetros recebidos: p, que no exercício programa anterior era um ponto fixo em 0,25, agora é variável e recebido pela função. O outro novo parâmetro é v, que pode ser 1, para a funcionalidade do exercício programa 1, ou v pode ser 2, que utiliza outra funcionalidade: faz a função crank retornar o vetor u para o instante final (t = 1), ou seja, o ultimo vetor da matriz u desenvolvida pelo método de Crank-Nicolson. Além disso, o parâmetro v faz com que o método utilize a função r(t) correspondida (para v=1: r(t) = 10000(1 - 2²), para v=2: r(t) = 10(1 +cos(5t))). Assim como no exercício programa anterior, o parâmetro a deve ser igual a 4, para a funcionalidade de função pontual, o que diferencia entre os problemas propostos é o parametro v já explicado. A nova função crank pode ser vista a seguir:

```
def crank(x, t, a, p, v):
    n = len(x) - 1
    m = len(t) - 1
    lmbda = n*n/m
    u = []
    linha = []
    principal = []
    secundaria = []
    b = []
    vetorx = []
    uo = 0
    meiodeltax = x[1] / 2

for j in range(0, n-1):  # Matriz A
        principal.append(1 + lmbda)
```

```
secundaria.append(-lmbda/2)
for k in range(0, m+1):
   b = []
   vetorx = []
        if a == 1 or a == 4:
            linha.append([0] * (n+1))
           u = linha
            progressbar1(len(u)-1, len(t), 'Calculando')
            plt.plot(linha, 'k', color='orange')
            for j in range(n+1):
                uo = x[j] * x[j] * (1 - x[j]) * (1 - x[j])
                linha.append(uo)
            u.append(linha)
            progressbar1(len(u)-1, len(t), 'Calculando')
            plt.plot(linha, 'k', color='orange')
            for j in range(n+1):
                uo = math.exp(-x[j])
                linha.append(uo)
            u.append(linha)
            progressbar1(len(u)-1, len(t), 'Calculando')
            plt.plot(linha, 'k', color='orange')
    else:
        linha = []
            q1 = 0
            linha.append(g1)
            g1 = math.exp(t[k])
            linha.append(g1)
            q2 = 0
```

```
elif a == 3:
    g2 = math.exp(t[k] - 1) * math.cos(5 * t[k])
 for i in range(1, n):
    if a == 1:
        f1 = (10 * x[i] ** 2 * (x[i] - 1) -
              60 * x[i] * t[k-1] + 20 * t[k-1])
        f2 = (10 * x[i] ** 2 * (x[i] - 1) -
             60 * x[i] * t[k] + 20 * t[k]
        f = f1 + f2
        c1 = (10 * math.cos(10 * t[k-1]) * x[i]
             * x[i] * (1 - x[i]) * (1 - x[i])
        d1 = (1 + math.sin(10 * t[k-1])) * 
            (12 * x[i] * x[i] - 12 * x[i] + 2)
        f1 = c1 - d1
        c2 = (10 * math.cos(10 * t[k]) * x[i]
             * x[i] * (1 - x[i]) * (1 - x[i])
        d2 = (1 + math.sin(10 * t[k])) * 
            (12 * x[i] * x[i] - 12 * x[i] + 2)
        f2 = c2 - d2
        f = f1 + f2
    elif a == 3:
        b1 = 25*t[k]*t[k] * (math.exp(t[k]-x[i])) * \
            (\text{math.cos}(5*t[k]*x[i]))
        c1 = 10*t[k] * (math.sin(5*t[k]*x[i]))
        d1 = 5*x[i] * (math.exp(t[k]*x[i])) * 
            (\text{math.sin}(5*t[k]*x[i]))
        f1 = b1 - c1 - d1
        b2 = 25*t[k-1]*t[k-1] * 
      (math.exp(t[k-1]-x[i])) * (math.cos(5*t[k-1]*x[i]))
       c2 = 10*t[k-1] * (math.sin(5*t[k-1]*x[i]))
       d2 = 5*x[i] * (math.exp(t[k-1]*x[i])) * 
            (math.sin(5*t[k-1]*x[i]))
        f2 = b2 - c2 - d2
        f = f1 + f2
```

```
elif a == 4:
        if v == 1:
            if x[i] \le (p+meiodeltax) and x[i] > =
                                           (p-meiodeltax):
               f1= 10000*(1- 2* t[k-1]* t[k-1])* (1/x[1])
               f2 = 10000* (1-2 * t[k] * t[k]) * (1/x[1])
                f = f1 + f2
            elif x[i] < (p-meiodeltax) or x[i] >
                                          (p+ meiodeltax):
        elif v == 2:
            if x[i] \le (p+ meiodeltax) and x[i] >=
                                           (p-meiodeltax):
                f1 = (10 + 10*math.cos(5*t[k-1])) / x[1]
                f2 = (10 + 10*math.cos(5*t[k])) / x[1]
                f = f1 + f2
            elif x[i] < (p-meiodeltax) or x[i] >
                                            (p+meiodeltax):
    if i == 1:
      valorb=((lmbda/2) * (u[k-1][i-1]-2*u[k-1][i]+
    u[k-1][i+1]) + (u[k-1][i]) + (f/(2*m)) + ((lmbda/2)*g1)
    elif i == (n-1):
      valorb=((lmbda/2)* (u[k-1][i-1]-2*u[k-1][i]
   +u[k-1][i+1]) + (u[k-1][i]) + (f/(2*m)) + ((lmbda/2)*g2)
    else:
      valorb=((lmbda/2)*(u[k-1][i-1]-2*u[k-1][i]+
                  u[k-1][i+1])) + (u[k-1][i]) + (f/(2*m))
    b.append(valorb)
l, d = ldl(principal, secundaria, n)
vetorx = resolvex(1, d, n, b)
for j in range(0, len(vetorx)):
    linha.append(vetorx[j])
linha.append(g2)
u.append(linha)
progressbar1(len(u)-1, len(t), "Calculando")
```

```
if v == 1:
    calculatrunc(t, x, u, a, 3)
elif v == 2:
    return u[m]
```

3.7 Função ruido

Esta função se encontra em ep2.py, e é responsável pela geração pseudo aleatória de distorções para os calores das funções u_T . Isso consiste na soma de cada valor do vetor u_T por um fator que é igual a 1% do valor de u_T em questão multiplicado pela variável chamada ruido (esta variável é um valor pseudo aleatória entre -1 e 1). O código pode ser visto a seguir:

```
def ruido(ut):
    for i in range(0, len(ut)):
        ruido = (random.random()-0.5)*2
        ut[i] = ut[i] + ut[i]*ruido*0.01
    return ut
```

3.8 produtointerno

Esta função é encontrada em ep2.py, e é responsável por realizar o cálculo do produto interno entre vetores passados como parâmetros. Vale lembrar que o produto interno é calculado ignorando o primeiro e último valor dos vetores (pois estes são iguais a 0). O código pode ser visto a seguir:

```
def produtointerno(vetoru, vetorv):
    n = len(vetoru)-1
    soma = 0
    for i in range(1, n):
        produto = vetoru[i]*vetorv[i]
        soma = soma + produto
    return soma
```

3.9 resolvenovox

Poderíamos ter reutilizado a função resolvex desenvolvida no exercício programa anterior, porém ela está sendo utilizada na função crank, e entendemos que

seria de mais proveito criar uma nova função. Esta nova função, que também se encontra em ep2.py, é responsável por calcular o novo vetor x (este vetor x é a solução para as incógnitas a_k, não tendo relação com o vetor x que dita as posições da barra. O nome vetor x para este vetor é apenas genérico, como a matriz A e o vetor b apresentados anteriormente). A diferença para esta nova função resolvenovox é que o parâmetro L (minúsculo no código) está em forma de matriz, diferente da função anterior que possui o parâmetro L em forma de vetor. A matriz L e o vetor d são provenientes da função novaldI que é chamada no início. O código da função resolvenovox pode ser visto a seguir:

```
def resolvenovox(A, b):
   n = len(A)
  l, d = novaldl(A)
  y = []
   z = []
  x = []
   y.append(b[0])
   for i in range(1, n):
       somay = 0
       for j in range (0, i):
           somay = somay + l[i][j]*y[j]
       y.append(b[i] - somay)
   for i in range(0, n):
       z.append(y[i]/d[i])
   for i in range(0, n):
       x.append(0)
   x[n-1] = z[n-1]
   for i in range(1, n):
       somax = 0
       for j in range(n-i, n):
           somax = somax + l[j][n-i-1]*x[j]
       x[n-i-1] = z[n-i-1] - somax
```

```
return x
```

3.10 Função e2

Esta função se encontra em ep2.py, sua responsabilidade é calcular o erro quadrático para cada teste realizado. O erro quadrático é apresentado na equação (1) e está descrito em forma de linguagem python na função e2. O código pode ser visto a seguir:

```
def e2(ak, ut, uk):

somaut = 0
for i in range(0, len(ut)):
    somauk = 0
    for k in range(0, len(ak)):
        somauk = somauk + ak[k]*uk[k][i]
        somaut = somaut + (ut[i] - somauk)*(ut[i] - somauk)

print('Erro quadrático =', f'{(math.sqrt(somaut / (len(ut)-1))):.2e}')
```

3.11 Função progressbar1

Esta função se encontra em ep1.py, veio da necessidade de alguma interação com o programa durante etapas de cálculos duradouras. O seu código pode ser visto a seguir:

Trata-se de uma função para mostrar a porcentagem concluída de laços, ela recebe como parâmetros o tamanho de 2 vetores, tamu é o tamanho do vetor que está sendo calculado e tamt o tamanho do vetor usado de base dos cálculos, nt recebe tamt - 1, porcentagem recebe a comparação do tamanho dos vetores, t recebe a proporção de 1/10 (um décimo) do tamanho nt, v é um vetor com 10 (dez) posições equidistantes predefinidas de nt. Então, se o vetor sendo calculado tem o tamanho de uma das posições predefinidas em v, é mostrada na tela uma barra de progresso, com sua porcentagem e indicação visual adequada.

3.12 Função novaldl

Esta equação se encontra em ep2.py, e retorna o novo sistema tridiagonal simétrico que é utilizado para resolução do sistema (2). A diferença para a função IdI que foi desenvolvida no exercício programa 1 é que esta função retorna o parâmetro L em forma de matriz, como dito em 3.9. O seu código pode ser visto a seguir:

```
def novaldl(A):
  n = len(A)
  d = []
  linhal = []
  1 = []
  v = []
  linhal = []
     for j in range(0, n):
            linhal.append(1)
         else:
            linhal.append(0)
     l.append(linhal)
  for i in range (0, n):
     somad = 0
     v = []
     for j in range(0, i):
      v.append(l[i][j]*d[j])
```

```
somad = somad + v[j]*l[i][j]
d.append(A[i][i]-somad)
for j in range(i+1, n):  # modifica matriz l
    somal = 0
    for k in range(0, i):
        somal = somal + l[j][k]*v[k]
    l[j][i] = (A[j][i] - somal) / d[i]

return (l, d)
```

4. Resultados dos testes e dados

4.1 Teste a

Com N = 128, nf = 1,
$$p_1$$
 = 0.35, $u_T(x i)$ = 7 $u_1(T, x_i)$ e a_1 = 7:

Valores de ak (vetor):

[6.9999999999998]

Erro quadrático = 2.05e-15

Como o parâmetro a₁ é digitado pelo usuário, podemos adotar qualquer um diferente de 7, mas para o teste do enunciado, foi sugerido este valor

4.2 Teste b

Com N = 128, nf = 4,
$$p_1$$
 = 0.15, p_2 = 0.3, p_3 = 0.7 e p_4 = 0.8 e $u_T(x_{ij})$ = 2.3 $u_1(T, x_{ij})$ + 3.7 $u_2(T, x_{ij})$ + 0.3 $u_3(T, x_{ij})$ + 4.2 $u_4(T, x_{ij})$:

Valores de ak (vetor):

[2.3000000000013, 3.69999999999815, 0.3000000000003046, 4.1999999999999735]

Erro quadrático = 8.55e-15

O teste b é análogo ao teste a, porém com maior número de fontes e, consequentemente, mesmo número de parâmetros a_k . Lembrando que o teste e (adicionado) é análogo aos testes a e b, porém com maior controle sobre os parâmetros, por isso não será utilizado como comparações de resultados.

4.3 Teste c

Com $\triangle x = 1/N e N = 128$:

Valores de ak (vetor):

[1.2091231792046620453, 4.839258715746566398, 1.8872408557564149013, 1.5833999318644641913, 2.214504046287935124, 3.1212947787768608099, 0.3773402863716625831, 1.4923482881226575172, 3.9751388015997336028, 0.40414515364777024739]

Erro quadrático = 2.45e-02

Com $\triangle x = 1/N e N = 256$:

Valores de ak (vetor):

[0.9045010343181617528, 5.077572635561159932, 2.1008535954774862544, 1.4141556850900282635, 2.229245013052500053, 3.104613856992625852, 0.5094525973879268448, 1.3865087904608050543, 3.9498786461511186672, 0.41489312833156495827]

Erro quadrático = 1.24e-02

Com $\triangle x = 1/N e N = 512$:

Valores de ak (vetor):

[0.9286883784929526684, 5.053707844480655846, 2.043701048904807402, 1.4676706728624837987, 2.1967633320010850105, 3.0911311688978230822, 0.6375875163901560229, 1.2716872153134484444, 3.878094867330631777, 0.53055677864216620415]

Erro quadrático = 8.48e-03

Com $\triangle x = 1/N e N = 1024$:

Valores de ak (vetor):

[1.0072813220752491678, 4.992443012455015438, 1.9858767276132414832,

1.5132584652261398192, 2.1926928376831849397, 3.0951528759327473542, 0.6523266477836633559, 1.2537898890592238839, 3.8796670569411461982, 0.5297366253017004965]

Erro quadrático = 3.78e-03

Com $\triangle x = 1/N e N = 2048$:

Valores de ak (vetor):

[0.99999999931278097, 5.00000000017139335, 2.0000000000009534323, 1.5000000000532518751, 2.2000000000521942496, 3.1000000000324374008, 0.600000000347936093, 1.3000000000090322205, 3.9000000000275843524, 0.50000000000045434119]

Erro quadrático = 2.65e-12

A partir dos resultados, pode-se notar a convergência à medida que o valor de N cresce. E consequentemente, o erro quadrático diminui.

4.4 Teste d

Com $\triangle x = 1/N e N = 128$:

Valores de ak (vetor):

[1.1117887329746769902, 4.964215153295211496, 1.9568063653138766163, 1.3959831152123856682, 2.3088115110303021873, 3.1261909051905786036, 0.6321923173436257296, 1.182998983940126151, 4.1468749379837264554, 0.26312506012649376812]

Erro quadrático = 9.32e-02

Com $\Delta x = 1/N e N = 256$:

Valores de ak (vetor):

[0.9845983807886308989, 5.0512195537121481817, 1.9656801023854950563, 1.4936570443064469925, 2.2560500327957040126, 3.0208724687680328911, 0.8751316600493046008, 1.0589817207642474323, 3.9751006537933548347, 0.4240967317848102315]

Erro quadrático = 1.10e-01

Com $\triangle x = 1/N e N = 512$:

Valores de ak (vetor):

[1.077693673725991173, 4.8257122791313995305, 2.1920612346153448419, 1.4136355147110694734, 2.2212310421509654174, 2.9892215484985582186, 0.8771017232247854058, 1.0930947717951377653, 3.891163130782313075, 0.52344439228282688934]

Erro quadrático = 1.03e-01

Com $\triangle x = 1/N e N = 1024$:

Valores de ak (vetor):

[0.9371714549824310056, 5.091685101509784244, 1.9069766530004193528, 1.5822936647775575625, 2.1394467698743158896, 3.119863557317657746, 0.7486864056700307966, 1.1346979599158907295, 3.9055269098955810148, 0.53439909704175039384]

Erro quadrático = 1.00e-01

Com $\triangle x = 1/N e N = 2048$:

Valores de ak (vetor):

[0.9813082831563020459, 5.0142416100798941903, 2.0154801329418211859, 1.4694994939675549914, 2.2217457026025135749, 3.0934781491632144267, 0.64241020465365336264, 1.241615677291772829, 3.9222593145771244788, 0.48970695333238772735]

Erro quadrático = 1.03e-01

Como esperado, a adição dos ruídos fez com que a obtenção dos resultados reais fosse prejudicada. Isso é notado pelo aumento do erro quadrático para cada valor de N e pela diferença entre os valores encontrados para N = 2048 no teste c (teste em que os coeficientes apresentaram-se na forma mais próxima aos reais).

5. Comparações e conclusões

A partir dos dados apresentados anteriormente e pelo gráfico da figura 01 exemplificado a seguir, podemos notar o desprezível erro quadrático obtido e a proximidade dos valores obtidos pelo vetor a_k com os valores digitados. Isso comprova a eficiência do programa em linguagem python desenvolvido e, além disso, a eficiência do método dos mínimos quadrados (MMQ) utilizado para a obtenção dos parâmetros.

figura 01 - Gráfico do erro quadrático para os testes a e b

Para os testes c e d, podemos notar, a partir do gráfico da figura 02, a diminuição do erro quadrático principalmente para o teste c, onde não há ruídos. Diferente dos testes a e b, os valores de $u_{\scriptscriptstyle T}$ ($x_{\scriptscriptstyle i}$) não foram obtidos a partir de uma combinação linear dos valores $u_{\scriptscriptstyle K}(x_{\scriptscriptstyle i})$ com coeficientes digitados pelo usuário, logo, não sabemos com exatidão os valores destes coeficientes $a_{\scriptscriptstyle K}$, porém, com N = 2048 para o teste c, obtivemos valores para esses coeficientes de uma forma aceitavelmente próxima, principalmente pelo desprezível erro quadrático, como nos testes a e b. Para

o teste d, a adição dos ruídos simula uma situação real onde há ruídos na medição da temperatura, o que claramente prejudica a obtenção dos coeficientes a_k com muita exatidão. Já era esperado o aumento do erro quadrático, porém ainda podemos considerá-lo aceitável. Temos o maior erro relativo entre os coeficientes obtidos no teste c e d (com N=2048) de 6.60% (para a_k com k = 7), o que nos mostra a eficiência do método mesmo com a adição do ruído. O gráfico para o erro quadrático dos testes c e d mencionado anteriormente pode ser visto a seguir na figura 02.

figura 02 - Gráfico do erro quadrático para os testes c e d em função de N