Домашняя работа №3

Бредихин Александр

General optimization problems

Задача 1

Give an explicit solution of the following LP.

$$c^{\top}x \to \min_{x \in \mathbb{R}^n}$$

s.t. $Ax = b$

Запишем Лагранжжиан этой задачи:

$$L(x,\lambda) = c^T x + \lambda^T (Ax - b)$$

Условия ККТ:

$$\begin{cases} \nabla_x L : c + A^T \lambda = 0 \\ \nabla_\lambda L : Ax = b \end{cases}$$

Заметим, что данная задача - выпуклая, так как функцию, которую минимизируем - линейная (выпуклая) и функция, задающая ограничения типа равенств - аффинная.

Если у системы Ax = b нет решений, то бюджетное множество пустое и решения нет.

Если решение есть, то в общем виде его можно записать через псевдообратную матрицу:

$$x^* = A^{\dagger}b$$

И будет выполнено условие Слейтера: есть решение системы, то есть есть допустимая точка из относительной внутренности бюджетного множества. Следовательно, условия ККТ - достаточные и мы получили решение задачи:

 $x^*=A^\dagger b$, оптимальное значение $p^*=c^\top A^\dagger b$ если система Ax=b несовместна, то бюджетное множество пустое и $p^*=\infty$

Задача 2

Give an explicit solution of the following LP.

$$c^{\top}x \to \min_{x \in \mathbb{R}^n}$$
s.t. $1^{\top}x = 1$
 $x \succeq 0$

This problem can be considered as a simplest portfolio optimization problem.

Запишем Лагранжиан:

$$L(x, \lambda, \mu) = c^{\mathsf{T}} x + \lambda \left(1^{\mathsf{T}} x - 1 \right) - \mu^{\mathsf{T}} x$$

Запишем условия ККТ:

$$\begin{cases} \nabla_x L : c + \lambda \cdot 1^\top - \mu = 0 \\ \nabla_{\lambda} L : 1^T x = 1 \\ \mu_j \geqslant 0, \quad j = [1, n] \\ \mu_j x_j = 0, \quad j = [1, n] \\ x \succeq 0 \end{cases}$$

Заметим, что наша задача выпуклая: так как линейная функция выпуклая (функция для ограничения типа неравенств тоже линейная), функция для ограничения типа равенства - линейная. А также выполнены условия Слейтера: существует допустимая точка - все компоненты вектора x равны $\frac{1}{n}$. Для этой точки ограничения типа равенства выполнены, а ограничения типа неравенства выполнены строго (то есть такая точка из относительной внутренности бюджетного множества), значит условия ККТ являются достаточными.

Возьмём $x^* = (0,0,\ldots 0,1,0\ldots,0)$ где 1 стоит на месте, где у вектора c минимальная компонента - c_i . Тогда для $\lambda^* = -c_i$ и $\mu_i^* = 0$ и $\mu_j^* = c_j - c_i$ (так как $c_i = \min_j c_j \to c_j - c_i \ge 0 \ \forall j = [1,n]$). Выполнены все условия ККТ, следовательно, такие x^* , μ^* , λ^* - решение системы, следовательно (так как условия ККТ - достаточные), x^* - решение исходной задачи. Оптимальное значение: $p^* = c_i$

Задача 3

Give an explicit solution of the following LP.

$$c^{\top}x \to \min_{x \in \mathbb{R}^n}$$
 s.t. $1^{\top}x = \alpha$ $0 \le x \le 1$

where α is an integer between 0 and n. What happens if α is not an integer (but satisfies $0 \le \alpha \le n$)? What if we change the equality to an inequality $1^{\top}x < \alpha$?

Запишем Лагранжиан для нашей задачи (в выражении $\lambda \in R; \quad \mu, \theta \in R^n$):

$$L(x, \lambda, \mu, \theta) = c^T x + \lambda \left(1^T x - \alpha \right) + \theta^T (x - 1) - \mu^T x$$

Снова записываем условия ККТ:

$$\begin{cases} \nabla_x L : c + \lambda \cdot 1^\top - \mu + \theta = 0 \\ \nabla_\lambda L : 1^T x = \alpha \\ \mu_j \geqslant 0, \quad j = [1, n] \\ \theta_j \geqslant 0, \quad j = [1, n] \\ \mu_j x_j = 0, \quad j = [1, n] \\ \theta_j (x_j - 1) = 0, \quad j = [1, n] \\ 0 \leq x \leq 1 \end{cases}$$

Условия ККТ снова будут достаточными, так как наша задача - выпуклая: функция, задающая ограничения типа равенств - аффинная (линейная), а функции ту, которую мы оптимизируем и те, которые задают ограничения типа неравенств - линейные, следовательно выпуклые. Также выполнено условие Слейтера: возьмём вектор x с компонентами $\frac{\alpha}{n}$ (по условию $\alpha \leq n$). Для этой точки все ограничения типо неравенств выполнены строго и выполнены ограничения типа равенств. Следовательно, она принадлежит относительной внутренности бюджетного множества. Значит условия ККТ - достаточные.

B.o.o. считаем, что вектор c имеет вид

$$c_1 \leqslant c_2 \leqslant \ldots \leqslant c_\alpha \leqslant \ldots \leqslant c_n$$

Если это не так, то переставим компоненты вектора c и соответсвующие им компоненты вектора x и получим то, что нужно.

Покажем, что решением исходной задачи будет такой x^* , что первые его α координат равны 1, а остальные - 0. Для этого возьмём $\lambda^*, \mu^*, \theta^*$ такие, что $x^*, \lambda^*, \mu^*, \theta^*$ - решение исходной системы.

Аналогично предыдущей задаче заметим, что если взять $\lambda = -c_{\alpha}$, и взять μ такое, что первые α координат равны 0, а $\mu_i^* = c_i + \lambda^*, i = [\alpha + 1, n]$ (условие, что $\mu_j \geq 0 \ \forall j = [1, n]$ выполнено, так как $c_i - c_{\alpha} \geq 0$ компоненты вектора c упорядочены по возрастанию).

А $\theta_i^* = 0 \ \forall i = [1, \alpha]$ и $\theta_i^* = -c_i - c_\alpha \ \forall i = [\alpha + 1, n]$ тогда условие, что $\theta_j(x_j - 1) = 0$ и $\theta_j \geqslant 0$, j = [1, n] - выполнены (аналогично условиям для μ).

Для выбранных $x^*, \lambda^*, \mu^*, \theta^*$ все условия системы выполнены, следовательно (так как условия ККТ - достаточные), x^* - решение исходной задачи, а оптимальное значение: $p^* = c_1 + \ldots + c_{\alpha}$

В случае, если $\alpha \notin Z$:

Аналогично предыдущему случаю только теперь $x_i^*=1$ для $i=[1,[\alpha]-1]$ И $x_{[\alpha]}^*=1+\alpha-[\alpha]$. λ^*,μ^*,θ^* из предыдущего пункта. Получаем решение системы, следовательно и решение нашей задачи.

Оптимальное значение:
$$p^* = c_1 + \ldots + c_{[\alpha]-1} + c_{[\alpha]} (1 + \alpha - [\alpha])$$

В случае $1^{\top}x < \alpha$.

Если все компоненты вектора c неотрицательны, то понятно, что минимум достигается при $x^* = 0$ (так как отрицательное число мы получить не можем, а 0 достигается в этой точке).

Если же у c есть отрицательные компонеты, то понятно, что минимумом будет сумма первых α самых отрицательных компонент (в качестве x^* возьмём вектор с 1 в компонентах, где у вектора c самые отрицательные компоненты, а все остальные - 0)

Если отрицательных компанент меньше чем α то возьмём первые α по возрастанию

Задача 4

Give an explicit solution of the following QP.

$$c^{\top}x \to \min_{x \in \mathbb{R}^n}$$
 s.t. $x^{\top}Ax \le 1$

where $A \in \mathbb{S}_{++}^n, c \neq 0$.

What is the solution if the problem is not convex $(A \notin \mathbb{S}_{++}^n)$ (Hint: consider eigendecomposition of the matrix: $A = Q \operatorname{diag}(\lambda) Q^{\top} = \sum_{i=1}^n \lambda_i q_i q_i^{\top}$) and different cases of $\lambda > 0, \lambda = 0, \lambda < 0$?

В случае, если матрица $A \in \mathbb{S}^n_{++}$ Лагранжиан для данной задачи $(\mu \in R)$:

$$L(x,\mu) = c^{T}x + \mu \left(x^{T}Ax - 1\right)$$

Условия ККТ:

$$\begin{cases} \nabla_x L(x,\mu) : c + \mu (A + A^{\top}) x = 0 \\ \mu \geqslant 0 \\ \mu (x^{\top} A x - 1) = 0 \\ x^{\top} A x - 1 \leqslant 0 \end{cases}$$

В этом случае условия ККТ будут достаточными, так как наша задача - выпуклая: функция та, которую мы оптимизируем - линейная (выпуклая), функция, которая задаёт ограничения типа неравенств - выпуклая (так как матрица положительно определена, то задаёт параболу). Также выполнено условие Слейтера: возьмём произвольный вектор x. Для него $l=x^TAx\geq 0$, так как матрица положительно определена. Можем взять вектор $x'=\frac{x}{\sqrt{2\|l\|}}$, тогда $x'^TAx'=\frac{1}{2}$. Для этой точки все ограничения типо неравенств выполнены строго. Следовательно, она принадлежит относительной внутренности бюджетного множества. Значит условия ККТ - достаточные.

Из первого условия и того, что $c \neq 0$ следует, что $\mu \neq 0$, значит, из 3го условия, $x^{\top}Ax = 1$. $A \in S^n_+ \to A^T = A$, следовательное, первое условие можем переписать как: $c + 2\mu Ax = 0$. Выражаем отсюда x и подставляем в преобразованное 3ие условие:

$$x = -\frac{A^{-1}c}{2\mu}$$

$$x^{\top}Ax = \frac{c^{\top}A^{-1}c}{4\mu^2} = 1$$

$$\mu = \frac{1}{2}\sqrt{c^{T}A^{-1}c}$$

Получаем значение μ :

Таким образом решение нашей задачи в этом случае (так как ККТ - достаточные условия):

$$x^* = -\frac{A^{-1}c}{\sqrt{c^T A^{-1}c}}$$

А оптимальное значение: $p^* = -\sqrt{c^T A^{-1} c}$

В случае, если матрица A не положительно определена, тогда уже KKT не достаточное условие (так как задача перестаёт быть выпуклой). Из подсказки: воспользуемся спектральным разложением матрицы $A=\sum_{i=1}^n \lambda_i q_i q_i^{\top}$

Если все собственные значения больше 0, то есть $\lambda_i > 0$, i = [1.n], то матрица положительно определена (по определению) и этот случай мы уже рассмотрели.

Если одно из собсвенных чисел равно 0 или отрицательно, то возьмём соответствующую компоненту вектора x бесконечно отрицательной (или

положительной, смотря какой c_i) и тогда $x^TAx \leq 1$, а минимум функции $-\infty$

Задача 5

Give an explicit solution of the following QP.

$$c^{\top}x \to \min_{x \in \mathbb{R}^n}$$
 s.t. $(x - x_c)^{\top} A (x - x_c) \le 1$

where $A \in \mathbb{S}_{++}^n, c \neq 0, x_c \in \mathbb{R}^n$

1ый способ:

Сделаем замену: $z = x - x_c$. Покажем, что задача

$$c^{\top}z \to \min_{z \in \mathbb{R}^n}$$

s.t. $z^{\top}Az \le 1$

эквивалентна исходной, действительно: $c^{\top}x = c^{\top}z + c^{\top}x_c$, следовательно, $c^{\top}x$ - минимально, когда $c^{\top}z$ - минимально. Если посмотреть на полученную задачу, то поймём, что это задача 4, которую уже решили и для неё можем записать ответ:

$$z^* = -\frac{A^{-1}c}{\sqrt{c^T A^{-1}c}}$$

а оптимальное значение (учитывая константу $c^{\top}x_c$)

$$p^* = c^T x_c - \sqrt{c^T A^{-1} c}$$

2ой способ:

Можно теми же преобразованиями, что и в 4ой задачи честно решить через ККТ

В этом случае Лагранжиан записывается как:

$$L(x, \mu) = c^{T}x + \mu \left((x - x_c)^{T} A (x - x_c) - 1 \right)$$

Условия ККТ (сразу учитывая, что в этой задаче $A \in \mathbb{S}^n_{++}$)

$$\begin{cases} \nabla_x L(x, \mu) : c + 2\mu A (x - x_c) = 0 \\ \mu \ge 0 \\ \mu \left((x - x_c)^T A (x - x_c) - 1 \right) = 0 \\ (x - x_c)^T A (x - x_c) \le 1 \end{cases}$$

Условия ККТ будут достаточными, такие же рассуждения, как и в задаче 4 с положительно определённой матрицей, при которой функция $(x-x_c)^{\top} A(x-x_c) - 1$ - выпуклая.

Из 1го условия выражаем x:

$$x = x_c - \frac{1}{2\mu} A^{-1} c$$

Их 3го условия, так как $\mu \neq 0$ (иначе из 1го условия получим, что c=0, а это по условию не так), получаем:

$$(x - x_c)^T A (x - x_c) = 1$$

Подставляем сюда выраженный x и находим значение μ

$$\mu = \frac{1}{2} \sqrt{c^T A^{-1} c}$$

Так как ККТ - достаточные условия, получаем решения задачи:

$$x^* = x_c - \frac{A^{-1}c}{\sqrt{c^T A^{-1}c}}$$

А оптимальное значение:

$$p^* = c^T x_c - \sqrt{c^T A^{-1} c}$$

Что совпадает с решением, полученным 1ым способом!

Задача 6

Give an explicit solution of the following QP.

$$\begin{split} x^\top B x &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t. } x^\top A x &\le 1 \\ \text{where } A \in \mathbb{S}^n_{++}, B \in \mathbb{S}^n_{+}. \end{split}$$

По условию $B \in \mathbb{S}^n_+$, то есть положительно полуопределена. Это по определению значит, что для любого $x \in \mathbb{R}^n \to x^\top Bx \geq 0$. Понятно, что минимальное значение - 0 достигается при $x^*=0$ и это значение лежит в бюджетном множестве: $x^{*\top}Ax^*=0<1$, значит, мы решили задачу: оптимальное значение $p^*=0$ при x=0

Задача 7

Consider the equality constrained least-squares problem

$$||Ax - b||_2^2 \to \min_{x \in \mathbb{R}^n}$$

s.t. $Cx = d$

where $A \in \mathbb{R}^{m \times n}$ with rank A = n, and $C \in \mathbb{C}^{k \times n}$ with rank C = k. Give the KKT conditions, and derive expressions for the primal solution x^* and the dual solution λ^* .

Лагранжиан для данной задачи:

$$L(x, \lambda) = ||Ax - b||_2^2 + \lambda^T (Cx - b)$$

Условия ККТ:

$$\begin{cases} \nabla_x \ \mathbf{L}(x,\lambda) : 2A^T (Ax - b) + C^T \lambda = 0 \\ \nabla_\lambda \ \mathbf{L}(x,\lambda) : Cx = d \end{cases}$$

Из 1го условия выражаем x:

$$2A^{T}Ax = 2A^{T}b - C^{T}\lambda \to x = \frac{1}{2} (A^{T}A)^{-1} (2A^{T}b - C^{T}\lambda)$$

Из 2го условия выражаем $x = C^{-1}d$ и подставляем в полученное выражение, находим λ :

$$C^{-1}d = (A^T A)^{-1} A^T b - \frac{1}{2} (A^T A)^{-1} C^T \lambda$$

$$(A^{T}A)^{-1}C^{T}\lambda = 2((A^{T}A)^{-1}A^{T}b - C^{-1}d)$$

Следовательно:

$$\lambda = 2\left(C\left(A^{T}A\right)^{-1}C^{T}\right)^{-1}\left(C\left(A^{T}A\right)^{-1}A^{T}b - d\right)$$

Тогда, подставляя полученное λ в выражение для x, получим:

$$x = \frac{1}{2} (AA^{T})^{-1} \left(2A^{T}b - 2C^{T} \left(C (A^{T}A)^{-1} C^{T} \right)^{-1} \left(C (A^{T}A)^{-1} A^{T}b - d \right) \right)$$

Данная задача выпуклая, так как функция, задающая ограничения типа равенств - линейная, а функцию, которую оптимизируем - выпуклая.

C

Если система Cx = d несовместна, то бюджетное множество пустое и оптимальное значение принимаем за $p^* = \infty$

Иначе решение системы можно записать через псевдообратную матрицу $x=C^{\dagger}d$ и будет выполнено условие Слейтера (будет существовать допустимая точка, в которой все ограничения типа равенств выполнены, то есть она принадлежит относительной внутренности бюджетного множества), значит, в этом случае условия ККТ - достаточные и полученное ранее

$$x^* = \left(AA^T\right)^{\dagger} \left(A^Tb - C^T \left(C \left(A^TA\right)^{\dagger} C^T\right)^{\dagger} \left(C \left(A^TA\right)^{\dagger} A^Tb - d\right)\right)$$

-решение задачи (вместо обратных нужно брать псевдообратные матрицы, так как из условий задачи обратные могут не существовать. Все выкладки с псевдообратными совпадают с просто обратной)

Задача 8

Derive the KKT conditions for the problem

$$\operatorname{tr} X - \log \det X \to \min_{X \in \mathbb{S}^n_{++}}$$
s.t. $Xs = y$

where $y \in \mathbb{R}^n$ and $s \in \mathbb{R}^n$ are given with $y^{\top}s = 1$. Verify that the optimal solution is given by

$$X^* = I + yy^{\top} - \frac{1}{s^{\top}s}ss^{\top}$$

Лагранжиан для данной задачи:

$$L(X,\lambda) = \operatorname{tr} X - \log \det X + \lambda^{T} (Xs - y)$$

Условия ККТ:

$$\begin{cases} \nabla_x L(x,\lambda) : I - X^{-1} + \lambda s^T = 0 \\ \nabla_\lambda L(x,\lambda) : Xs = y \end{cases}$$

Условия ККТ в нашем случае являются достаточными, так как задача выпуклая: ограничения типа равенств - линейные, а функцию, которую минимизируем - выпуклая (из первого задания). Также выполнено условие Слейтера: можем подобрать такую матрицу $X \in \mathbb{S}^n_{++}$, что для неё выполнено Xs = y, значит есть допустимая точка.

Из второго условия ККТ: $s=X^{-1}y$. Первое условие можем переписать как:

$$I - X^{-1} + \frac{1}{2} \left(\lambda s^T + s \lambda^T \right) = 0$$

Домножая его справа на y и пользуясь тем, что $s^T y = 1$, получим:

$$y - s + \frac{1}{2} \left(\lambda + s \lambda^T y \right) = 0$$

Домножим полученное выражение слева на y^T и снова используя условие, что $s^Ty=1$, получим:

$$1 = y^T y + \lambda^T y \to \lambda^T y = 1 - y^T y$$

Подставляем в предыдущие уравнение и выражаем λ :

$$\lambda = -2y + \left(1 + y^T y\right) s$$

Подставляем в 1
ое условие ККТ и находим выражение для X^{-1} :

$$X^{-1} = I + (1 + y^{T}y) ss^{T} - ys^{T} - sy^{T}$$

Чтобы матрица X^* задавала решение (так как ККТ - достаточные условия в этой задачи), то нужно проверить, что $X^{-1}X^* = I$. Делаем это подстановкой и раскрытием скобок:

$$X^{-1}X^* = (I - ys^{T} - sy^{T} + (1 + y^{T}y)ss^{T}) \left(I + yy^{T} - \left(\frac{1}{s^{T}s}\right)ss^{T}\right) =$$

$$= \left(I + yy^{T} - \left(\frac{1}{s^{T}s}\right)ss^{T}\right) + (1 + y^{T}y)ss^{T} + (1 + y^{T}y)sy^{T} - (1 + y^{T}y)ss^{T} -$$

$$-ys^{T} - yy^{T} + ys^{T} - sy^{T} - (y^{T}y)sy^{T} + ss^{T}\left(\frac{1}{s^{T}s}\right) = I$$

Ещё нужно проверить, что X^* - положительно определена. По определению $\forall x$:

$$x^{\top} \left(\mathbf{I} + yy^{\top} - \left(\frac{1}{s^{\top} s} \right) ss^{\top} \right) x = x^{\top} x + \left(y^{\top} x \right)^{\top} \left(y^{\top} x \right) - \left(s^{\top} x \right)^{\top} \left(s^{\top} x \right) \left(\left(\frac{1}{s^{\top} s} \right) \right)$$
$$= \|x\|^2 + (y, x)^2 - \frac{(s, x)^2}{\|s\|^2}$$

Понятно, что $||x||^2 - (s,x)^2/||s||^2 \ge 0$, следовательно, показали, что $\forall x: x^\top X^* x \ge 0$, значит X^* положительно определена и следовательно является решением поставленной задачи.

Задача 9

Supporting hyperplane interpretation of KKT conditions. Consider a convex problem with no equality constraints

$$f_0(x) \to \min_{x \in \mathbb{R}^n}$$

s.t. $f_i(x) \le 0$, $i = [1, m]$

Assume, that $\exists x^* \in \mathbb{R}^n, \mu^* \in \mathbb{R}^m$ satisfy the KKT conditions

$$\begin{split} &\nabla_{x}L\left(x^{*},\mu^{*}\right) = \nabla f_{0}\left(x^{*}\right) + \sum_{i=1}^{m} \mu_{i}^{*} \nabla f_{i}\left(x^{*}\right) = 0 \\ &\mu_{i}^{*} \geq 0, \quad i = [1,m] \\ &\mu_{i}^{*}f_{i}\left(x^{*}\right) = 0, \quad i = [1,m] \\ &f_{i}\left(x^{*}\right) \leq 0, \quad i = [1,m] \end{split}$$

Show that

$$\nabla f_0(x^*)^{\top} (x - x^*) \ge 0$$

for all feasible x. In other words the KKT conditions imply the simple optimality criterion or $\nabla f_0(x^*)$ defines a supporting hyperplane to the feasible set at x^*

Возьмём x - допустимое и используя условия ККТ покажем, что $\nabla f_0(x^*)^{\top}(x-x^*) \geq 0$: буду сводить к 1му дифференциальному критерию выпуклой функции (а у нас выпукаля функция f_0 по условию), который записывается как:

$$f_0(x) \ge f_0(x^*) + \nabla f_0^T(x^*)(x - x^*)$$

Из условия, что градиент по x от Лагранжиана равен нулю, получаем:

$$\nabla f_0(x^*)^{\top}(x - x^*) = -\sum_{i=1}^{m} \mu_i^* \nabla f_i^{T}(x^*)(x - x^*)$$

так как $f_i(x) \leq 0$, i = [1, m] (по постановке задачи), а из условий ККТ: $\mu_i^* \geq 0$, i = [1, m] $\mu_i^* f_i(x^*) = 0$, i = [1, m], то можно записать следующие неравенство:

$$\nabla f_0(x^*)^{\top}(x - x^*) =$$

$$= -\sum_{i=1}^m \mu_i^* \nabla f_i^T(x^*)(x - x^*) \ge -\sum_{i=1}^m \mu_i^* \nabla f_i^{\top}(x^*)(x - x^*) + \sum_{i=1}^m \mu_i^* (f_i(x) - f_i(x^*)) =$$

$$= \sum_{j=1}^{m} \mu_i^* \left((f_i(x) - f_i(x^*)) - \nabla f_i^\top (x^*) (x - x^*) \right) \ge 0$$

Так как как раз в скобках получили дифференциальный критерий 1го порядка для выпуклой функции. Следовательно, доказали, что для любой допустимой x выполнено:

$$\nabla f_0\left(x^*\right)^\top \left(x - x^*\right) \ge 0$$

Duality

Задача 1

Fenchel + Lagrange = \heartsuit . Express the dual problem of

$$c^{\top}x \to \min_{x \in \mathbb{R}}$$
 s.t. $f(x) \le 0$

with $c \neq 0$, in terms of the conjugate function f^* . Explain why the problem you give is convex. We do not assume f is convex.

Лагранжиан для этой задачи:

$$L(x,\mu) = c^T x + \mu f(x)$$

Записываем по определению двойственную функцию и сводим к сопряжённой (в следующей задаче вывел для более общего случая):

$$g(\mu) = \inf_{x} \left(c^{T} x + \mu f(x) \right) = -\mu \sup_{x} \left(-\frac{c^{T} x}{\mu} - f(x) \right) = -\mu f^{*} \left(-\frac{c}{\mu} \right)$$

Область определения двойственной функции задаётся областью определения сопряжённой, следовательно dual problem записываем так:

$$\mu f^* \left(-\frac{c}{\mu} \right) \to \min_{\mu}$$
s.t. $\mu \ge 0, -\frac{c^\top}{\mu} \in \text{dom } f^*$

Знаем, что двойственная функция всегда вогнута. При домножении на неотрицательное число $\mu \geq 0$ (из области определения) вогнутость не потеряется, значит, получаем выпуклую задачу (вогнутая функция со знаком минус - выпуклая и мы её максимизируем). Ограничения типа неравенств - линейные, то есть выпуклые.

Задача 2

Minimum volume covering ellipsoid. Let we have the primal problem:

$$\ln \det X^{-1} \to \min_{X \in \mathbb{S}^n_{++}}$$

s.t. $a_i^\top X a_i \le 1, i = 1, \dots, m$

- 1. Find Lagrangian of the primal problem
- 2. Find the dual function
- 3. Write down the dual problem
- 4. Check whether problem holds strong duality or not
- 5. Write down the solution of the dual problem

Заметим, что ограничения типа неравенств в нашей задаче аффины и их можно переписать как:

$$\operatorname{tr}\left(\left(a_{i}a_{i}^{T}\right)X\right) \leq 1$$

Теперь запишем Лагранжиан для поставленной задачи

$$L(X, \mu) = \ln \det X^{-1} + \sum_{i=1}^{m} \lambda_i \left(a_i^T X a_i - 1\right)$$

На семинаре разбирали, как записывать dual function через сопряжённую функцию, а сопряжённую функцию к $\ln \det X^{-1}$ уже находили в 50й задаче 2го домашнего задания и получили:

$$f_0^*(Y) = \log \det(-Y)^{-1} - n$$

Повторим эти небольшие выкладки из семинара для задачи в общей форме, а потом используем полученный результат к нашей проблеме:

minimize
$$f_0(x)$$

subject to $Ax \leq b$
 $Cx = d$

$$g(\lambda, \nu) = \inf_{x} \left(f_0(x) + \lambda^T (Ax - b) + \nu^T (Cx - d) \right)$$
$$= -b^T \lambda - d^T \nu + \inf_{x} \left(f_0(x) + \left(A^T \lambda + C^T \nu \right)^T x \right)$$
$$= -b^T \lambda - d^T \nu - f_0^* \left(-A^T \lambda - C^T \nu \right)$$

Область определения двойственной функции определяется областью определения сопряжённой к исходной функции:

$$\operatorname{dom} g = \left\{ (\lambda, \nu) \mid -A^T \lambda - C^T \nu \in \operatorname{dom} f_0^* \right\}$$

В нашем случае оганичений типа неравенств нет, вектор $b = \mathbf{1}^T$ матрица $A = a_i a_i^{\mathsf{T}}$, dom $f_0^* = -\mathbf{S}_{++}^n$ Получается dual function:

$$g(\lambda) = \begin{cases} \log \det \left(\sum_{i=1}^{m} \lambda_i a_i a_i^T \right) - \mathbf{1}^T \lambda + n & \sum_{i=1}^{m} \lambda_i a_i a_i^T \succ 0 \\ -\infty & \text{иначе} \end{cases}$$

Следовательно двойственную задачу мы можем записать как:

maximize
$$\log \det \left(\sum_{i=1}^{m} \lambda_i a_i a_i^T \right) - \mathbf{1}^T \lambda + n$$

s.t. $\lambda \succeq 0$

В этой задаче выполняется условие Слейтера: всегда существует $X \in \mathbf{S}_{++}^n$ для которой $a_i^T X a_i < 1$, для $i=1,\ldots,m$ то есть есть допустимая точка. Значит, в этой задаче есть сильная двойственность между прямой и двойственной задачами

Задача 3

A penalty method for equality constraints. We consider the problem minimize

$$f_0(x) \to \min_{x \in \mathbb{R}^n}$$

s.t. $Ax = b$

where $f_0(x): \mathbb{R}^n \to \mathbb{R}$ is convex and differentiable, and

$$\alpha \in \mathbb{R}^{m \times n}$$

with rank A=m. In a quadratic penalty method, we form an auxiliary function $\phi(x)=f_0(x)+\alpha\|Ax-b\|_2^2$ where $\alpha>0$ is a parameter. This auxiliary function consists of the objective plus the penalty term $\alpha\|Ax-b\|_2^2$. The idea is that a minimizer of the auxiliary function, \tilde{x} , should be an approximate solution of the original problem. Intuition suggests that the larger the penalty weight α , the better the approximation \tilde{x} to a solution of the original problem. Suppose \tilde{x} is a minimizer of $\phi(x)$. Show how to find, from \tilde{x} , a dual feasible point for the original problem. Find the corresponding lower bound on the optimal value of the original problem.

Запишем Лагранжиан для данной задачи:

$$L(x,\lambda) = f_0(x) + \lambda^T (Ax - b)$$

В точке \tilde{x} функция $\phi(x)$ достигает своего минимального значения, следовательно, по необходимому условию экстремума:

$$\nabla \phi(\tilde{x}) = 0 \Leftrightarrow \nabla f_0(\tilde{x}) + 2\alpha A^T (A\tilde{x} - b) = 0$$

Посмотрим, в какой точке достигается минимум Лагранжиана:

$$\nabla L(x,\lambda) = \nabla f_0(x) + A^{\top} \lambda$$

Заметим, что при $\lambda^* = 2\alpha(A\tilde{x} - b)$, мы получаем выражение из градиента ϕ , которое равно 0. Следовательно, (так как f_0 - выпуклая по условию, а (Ax - b) - линейная, то есть Лагранжиан выпуклая функция) то, равенство градиента нулю - достаточное условие экстремума и $L(x,\lambda^*)$ достигает минимума на \tilde{x} .

По определению двойственной функции:

$$g(\lambda) = \inf_{x} (f_0(x) + \lambda(Ax - b)) = \inf_{x} (L(x, \lambda))$$
$$g(\tilde{\lambda}) = f_0(\tilde{x}) + \alpha ||A\tilde{x} - b||_2^2$$

Получается, для таких x: Ax = b выполнено:

$$f_0(x) \geqslant g(\tilde{\lambda}) = f_0(\tilde{x}) + \alpha ||A\tilde{x} - b||_2^2$$

Получили нижнюю границу на оптимальное значение прямой задачи.

Задача 4

Analytic centering. Derive a dual problem for

$$-\sum_{i=1}^{m} \log \left(b_i - a_i^{\top} x\right) \to \min_{x \in \mathbb{R}^n}$$

with domain $\{x \mid a_i^\top x < b_i, i = [1, m]\}$. First introduce new variables y_i and equality constraints $y_i = b_i - a_i^\top x$. (The solution of this problem is called the analytic center of the linear inequalities $a_i^\top x \leq b_i, i = [1, m]$. Analytic centers have geometric applications, and play an important role in barrier methods.) with domain $\{x \mid a_i^\top x < b_i, i = [1, m]\}$.

Пользуясь подсказкой сделаем замену переменных: $y_i = b_i - a_i^\top x$ или можно её записать как y = b - Ax, где матрица $A \in \mathbb{R}^{m \times n}$ где a_i^T строки у матрицы A

Тогда получим задачу:

$$-\sum_{i=1}^{m} \log(y_i) \to \min$$

s.t. $y = b - Ax$

Лагранжиан полученной задачи:

$$L(x, y, \mu) = -\sum_{i=1}^{m} \log y_i + \mu^{\top} (y - b + Ax)$$

По определению двойственная функция:

$$g(\mu) = \inf_{x,y} \left(-\sum_{i=1}^{m} \log(y_i) + \mu^T (y - b - Ax) \right)$$

Слагаемое $\mu^{\top}Ax$ неограничено снизу по x, то есть всегда можем взять такой x что оно уйдёт в $-\infty$, следовательно, чтобы минимум был не $-\infty$, нужно $A^{\top}\mu=0$

Для нахождения минимума приравниваем градиент к нулю (то что это минимум легко проверить взяв ещё раз градиент, получим сумму $\sum_{i=1}^{m} \left(\frac{1}{y_i}^2\right) \ge 0$, следовательно, минимум). Минимум достигается при $y_i = \frac{1}{\mu_i}$ Так как $y_i > 0$ (стоят под логарифмом), то область определения двойственной функции:

$$A^{\mathsf{T}}\mu = 0$$
 и $\mu \succ 0$

а сама двойственная функция:

$$g(\mu) = \begin{cases} \sum_{i=1}^m \log \mu_i + m - \mu^\top b, & A^\top \mu = 0, \ \mu \succ 0 \\ -\infty, \text{ иначе} \end{cases}$$

Тогда двойственная задача имеет вид:

$$\sum_{i=1}^{m} \log (\mu_i) + m - \mu^{\top} b \to \max_{\mu}$$
s.t. $A^T \mu = 0, \quad \mu \succ 0$