CS273B: Deep learning for Genomics and Biomedicine

Lecture 2: Genomics 101

09/27/2017

Anshul Kundaje, James Zou

Outline

Anatomy of the human genome

2

High throughput sequencing

Anatomy of the human genome

DNA: the molecule of heredity

- DNA: Deoxyribose nucleic acid
- Double stranded biopolymer
- Canonical form: right handed double helix
- Phosphate backbone outside
- 4 Bases / nucleotides hidden on the inside (A, C, G, T)
- A pairs with T
- C pairs with G
- 1 helical turn is 10.4 nucleotides

DNA is directional and has two complementary strands

- Weak hydrogen bonds hold the two strands together
- This allows low-energy opening and reclosing of two strands
- Chemical Polarity: Extension 5'→3' tri-phosphate coming from newly added nucleotide

Chromosomes in humans

TGCCAAGCA
|||||||||
ACGGTTCGT

TGCCAAGCA
|||||||||
ACGGTTCGT

U.S. National Library of Medicine

- Humans are diploid (2 copies of each chromosome)
- 22 pairs of autosomes
- Sex chromosomes: female (X,X), male (X,Y)
- Mitochondrial DNA (circular, many copies per cell)
- Diploid Human genome = ~3 billion <u>base-pairs</u> X 2

Genes (DNA -> RNA -> protein)

- The gene is a fundamental functional unit of DNA whose sequence codes specific recipes to make other biomolecules (RNA and proteins)
 - In humans each DNA molecule ⇔ 25,000 protein-coding genes
 - Many other gene-like units encode short and long non-coding RNAs

Where to get genome and gene sequences

GENBANK: https://www.ncbi.nlm.nih.gov/genbank/

ENSEMBL: https://www.ensembl.org/index.html

FASTA format

TCCCAGGCCAGTGCCGGGCCCCTCATAGGAGAGGAAGCTCGGG

AGGTGGCCAGGCAGGAAGGCGCACCCCCCAGCAATCCGC GCGCCGGGACAGAATGCCCTGCAGGAACTTCTTCTGGAAGACCT

TCTCCTCCTGCAAATAAAACCTCACCCATGAATGCTCACGCAAGT

TTAATTACAGACCTGAA

mRNA: The messenger

- Information changes medium
 - single strand vs. double strand
 - ribose vs. deoxyribose sugar
 - Uracil (U) instead of Thymine (T)

DNA sequence

ATTACGGTACCGT

UAAUGCCAUGGCA

Corresponding RNA sequence

Proteins – chain of 20 (+2) amino acids

Amino acid \$	3-letter ^[132] ◆	1-letter ^[132] \$
Alanine	Ala	Α
Arginine	Arg	R
Asparagine	Asn	N
Aspartic acid	Asp	D
Cysteine	Cys	С
Glutamic acid	Glu	Е
Glutamine	Gln	Q
Glycine	Gly	G
Histidine	His	Н
Isoleucine	lle	I
Leucine	Leu	L
Lysine	Lys	К
Methionine	Met	М
Phenylalanine	Phe	F
Proline	Pro	Р
Serine	Ser	S
Threonine	Thr	Т
Tryptophan	Trp	W
Tyrosine	Tyr	Y
Valine	Val	V

FASTA format

>DROME_HH_Q02936

MRHIAHTQRCLSRLTSLVALLLIVLPMVFSPAHSCGPGRGLGRHRARNLYPLVL KQTIPNLSEYTNSASGPLEGVIRRDSPKFKDLVPNYNRDILFRDEEGTGADRLM SKRCKEKLNVLAYSVMNEWPGIRLLVTESWDEDYHHGQESLHEGRAVTIATS DRDQSKYGMLARLAVEAGFDWVSYVSRRHIYCSVKSDSSISSHVHGCFTPES TALLESGVRKPLGELSIGDRVLSMTANGQAVYSEVILFMDRNLEQMQNFVQLH TDGGAVLTVTPAHLVSVWQPESQKLTFVFADRIEEKNQVLVRDVETGELRPQR VVKVGSVRSKGVVAPLTREGTIVVNSVAASCYAVINSQSLAHWGLAPMRLLST LEAWLPAKEQLHSSPKVVSSAQQQNGIH WYANALYKVKDYVLPQSWRHD

Where to get protein sequences

UNIPROT: http://www.uniprot.org/

Translation (RNA->protein): The Genetic Code

- A triplet of nucleic acids (codon) codes for one amino acid
- The code is redundant. E.g., both GGC and GGA code for Gly (Glycine)

Picture: https://media1.shmoop.com/images/biology/biobook_dna_graphik_22.png

DNA, RNA and proteins form complex secondary and tertiary structures

3D genome architecture (DNA folding)

RNA secondary structure

ub-Cellular_Imaging/Sriram_001_465x.png

Interactions between proteins, DNA, RNA and small molecules (drugs)

Major ML challenge: Predicting interactions between biomolecules

Protein-DNA interactions

Protein-Protein interactions

PPI networks

Protein-small molecule interactions

(Drug discovery, cheminformatics, Quantitative structure activity relationships (QSAR)

From DNA to RNA: Transcription

Machine learning problems

- 1. Predict genes in the genome
- 2. Predict gene transcription start sites (TSS) and termination sites (TTS)

https://www.youtube.com/watch?v=41 Ne5mS2ls

Parts of a gene: Exons and Introns (Splicing)

- Not every part of a gene is coding
- Exons (coding)
 interrupted by nontranslated introns
- Introns are **spliced** out
- Alternative splicing: different exon subsets for the same gene => different protein products

Major ML challenge: Predict slice sites, gene isoforms and alternative splicing events

What is gene regulation?

Gene regulation (When? Where? How much?)

Regulatory control elements and epigenomic marks

Chromatin and epigenomic modifications

Nature Reviews | Genetics

http://www.nature.com/nrg/journal/v12/n1/fig_tab/nrg2905_F1.html

The figure illustrates nucleosome models and major posttranslational modifications which play essential roles in gene expression regulation and disease processes

Major ML challenge: Predict combinatorial epigenomic code

One genome \Leftrightarrow Many cell types

ACCAGTTACGACGG
TCAGGGTACTGATA
CCCCAAACCGTTGA
CCGCATTTACAGAC
GGGGTTTGGGTTTT
GCCCCACACAGGTA
CGTTAGCTACTGGT
TTAGCAATTTACCG
TTACAACGTTTACA
GGGTTACGGTTGGG
ATTTGAAAAAAAGT
TTGAGTTGGTTTTT
TCACGGTAGAACGT
ACCTTACAA

Differential activation/repression of control elements and genes defines cell type identity and state

- Active control elements
- Active control elements
- Active genes
- Repressed elements
- ~25,000 genes
- ~2 million novel putative control elements!
- cell-type specific usage of elements

Major ML challenges:

- 1. Predict regulatory elements (REs) and their cell type specific activity
- 2. Predict which REs regulate which genes in which cell types
- 3. Predict gene expression from regulatory element activation

What code in the non-coding DNA controls cell-type specific activation of regulatory elements?

Regulatory proteins bind **DNA** words (landing pads) in control elements!

'Motif Discovery'

The multiple facets of genomic regulatory code

epigenomic marks

Adapted from Shlyueva et al. (2014) Nature Reviews Genetics.

Major ML challenges:

- 1. Predict DNA sequence affinity of individual proteins
- 2. Predict binding landscape of proteins in different cell types and states
- 3. Predict combinatorial binding patterns of proteins
- Predict combinatorial regulatory grammars encoded in non-coding regulatory elements

Genetic variation across individuals

Homozygous (identical alleles)

Heterozygous (different alleles)

Alleles of the variant

major allele: the more common copy

minor allele: the rarer copy

Human genome: ~3 billion bp X 2 copies

Types of genetic Variants:

- Single nucleotide polymorphisms (SNPs): substitutions
 - ~3M <u>common</u> SNPs (> 2-5% minor allele frequency (MAF) in human population)
 - Rare (< 2-5% MAF frequency) and private SNPs (in a single individual)
- Short and large insertions, deletions, inversions, translocations

<u>Germline vs. Somatic mutations:</u> Genetic alteration acquired by a cell that can be passed to the progeny of the **mutated** cell in the course of cell division. **Somatic mutations** differ from **germ line mutations**, which are inherited genetic alterations that occur in the germ cells (i.e., sperm and eggs)

Case-control studies to identify disease-associated genetic variants

Correlation structure between variants makes it difficult to identify causal variant

Genome-wide association study (GWAS)

The role of genetic variation in regulation

Major computational challenges:

- 1. Predict genetic variants from genome sequencing data
- 2. Which genetic variants are benign vs. harmful i.e. which genetic variants are associated with different phenotypes (diseases/traits)
- 3. What is the genetic architecture of a disease/trait (relationship between variants to phenotype)
- 4. Predict the molecular effect of a genetic variant i.e. how it affects cellular function

Introduction to high-throughput sequencing

The Number of Human Genomes Sequenced (log scale)

Source: National Human Genome Research Institute (NHGRI), ARK Investment Management LLC

Oxford Nanopore technology

Images: www.illumina.com/systems

Numbers: www.politigenomics.com/next-generation-sequencing-informatics

Dates: Illumina press releases

Sequencing technologies

Sanger DNA sequencing

1977-1990s

DNA Microarrays

Since mid-1990s

2nd-generation DNA sequencing

Since ~2007

3rd-generation & single-molecule DNA sequencing

Since ~2010

Since 2005, many DNA sequencing instruments have been described and released. They are based on a few different principles

Synthesis / ligation

SMRT cell

Nanopore

Sequencing by synthesis ("massively parallel sequencing") provides greatest throughput, and is the most prevalent today

DNA sequencing: DNA Polymerase

DNA polymerase moves along the template in one direction, integrating complementary nucleotides as it goes

1. Take DNA sample, which includes many copies of the genome, and chop it into single-stranded fragments ("templates")

E.g. with ultrasound waves, water-jet shearing (pictured), divalent cations

Picture: http://www.jgi.doe.gov/sequencing/education/how/how_1.html

3. Make copies so that each template becomes a "cluster" of clones

4. Repeatedly inject mixture of *color-labeled* nucleotides (A, C, G and T) and DNA polymerase. When a complementary nucleotide is added to a cluster, the corresponding color of light is emitted. (snap) Capture images of this as it happens. Polymerase Shown here is just the first Pretend these are clusters sequencing cycle

5. Line up images and, for each cluster, turn the series of light signals into corresponding series of nucleotides

5. Line up images and, for each cluster, turn the series of light signals into corresponding series of nucleotides

"Base caller" software looks at this cluster across all images and "calls" the complementary nucleotides: TACAC, corresponding to the template sequence

TACAC is a "sequence read," or "read." Actual reads are usually 100 or more nucleotides long.

Genome assembly

Mapping reads to reference genome

Naïve method

- Scan whole genome with every read
- Problem: Too slow

Indexing + Alignment approach

- Create a compressed reference 'genome index'
 - a map of where each short subsequence of length 'k' hits the genome
- Map reads using index via smart alignment algorithms and data structures (e.g suffix array)
- Allow for errors: insertions, deletions, mismatches in alignments

Run times for indexing alignment

- Indexing human genome ~ 3 hours
- Alignment speed: 2 million 35 bp reads on 1 processor ~20 mins
- Alignment speed depends on error rate

ACGTTACCGAATCGATCAAGTCGA

Nature Reviews | Genetics

http://www.nature.com/nrg/journal/v14/n5/box/nrg3433 BX2.html

