1.3вичайне Диференціальне рівняння

Oznarenne 1. Cuibliquouenne buruegy

F(x, y, y', y'', ..., y''n)) = 0,

ge y = y(x) - unguana apynagie, a F - higoera

apynagie, u azuba c 15 cel zburanimum guapepen
yi antomnu pibuennele, u pa yurbi, azo

F espennubus jale um 16 xora o liz ogni i-i

no xi gresi apynagii y.

2.Порядок Диференціального рівняння

Означение 2. Пореднан днореренующью рівнення F(x, y, y', y'', ..., y''и) = 0 мариванно насівнущей порядон похідной тусканой сруницій у, з ексен вона ефектово в содинь у рівшення.

3.Означення розв'язку дифернціального рівняння

Oznaremne 3. Pythugie y = y(x), buzuarema ua i'umeplani I = (a, b), uazulae Tbae pozlignam guspefenyiamburo pibuemne $F(x, y, y', y'', ..., y^m) = 0$ M-20 nopeguy, emyo

o $y = y(x) \in n$ paz umepepho guspefenyi
voluoso spymyino ua I;

o upu migamamolyi y = y(x) go pibuemne,

bono neperbopuottome y Totoremium b za T Todoro $F(x, y(x), y'(x), y''(x), ..., y''')(x) \equiv 0$, $\forall x \in I$.

4.Загальний роз'язок рівняння -множина усіх розв'язків

Oznarenne 4. Altereuney yax postiesmil geopépenyiaebnoro pibueene negularine no lioro zaranbuenn postiesmon. Komen nontipermusi enement yiti muonning majubarunemo racunobum postiesmon,

5. Рівняння з відокремленими зміннами

Pibuenne iz bigonpennennu zwintunu

Oznarenne. Dugpepenyi anone pibaenne buznegy

y' = f(x)g(y) aso y' = \frac{f(x)}{g(y)},

be enony upaka racumula & gooyonan ado racokowo

gbox apyrnyin pizux zwinnux, no zelo on enemo

pibaennene iz ligonpen nenennu zenimunu.

6.Однорідне рівняння

Oznazemil Deglepenyia ebne pibnemine y' = f(x, y), $(x, y) \in \mathbb{R}^2 \setminus \{0, 0\}$ mazhbarunemo ognofigumu, emys opymuziel $f = f(x, y) \in \text{ognopiguous myelooboro curentine,}$ $f(x, y) \in \text{ognopiguous myelooboro curentine,}$ f(x, x, x, y) = f(x, y)gue brix $(x, y) \in \mathbb{R}^2 \setminus \{0, 0\}$ ma x > 0,

3aybaruemine. Imazo pibulume y' = f(x, y) $\in \text{ognopiguous}$, $f(x, y) \in \mathbb{R}^2 \setminus \{0, 0\}$ in f(x, y)

P(x,y)dx + Q(x,y)dy =0

y' = P(x,y)

B(x,y)

Quapignocini

P(xx,xy) = xh P(x,y), Q(xx,xy) = x' Q(x,y),

uo pibuenne + ognopignocini

7. Лінійне неоднорідне рівняння

Oznarenne. Surpepenyiansue pibulune burnegy y' + a(x) y = b(x), b deany a mab - bigani opymuyii, a y = y(x)
megnano opymuyie, nazubareno eimiinum

neognofigumu pibulumem nepuoro nopegny. a = a(x) - koeopiyi+nt pibulume

<math>b = b(x) - hpaba racumuna pibulume

dunyo y pibulumi (1) nounacan <math>b = 0, to

pibulume y' + a(x) y = 0(2)

nazubareno einiinem ognopiguem pibulumen

8. Повні диференціали

9. Рівняння Бернуллі

10. Теорема існування та єдиності

11.Умова Ліпшиця

Oznaremul. Karulmo, upo pythugil
$$f = f(x,y)$$

Zagoborbule gluoby limmye $b \Omega$ za

Zueithnow y, emyo i'mye taka amana $L > 0$,

nyo

 $|f(x,y_1) - f(x,y_2)| \leq L |y_1 - y_2|$

gue yeix torox (x,y_1) , (x,y_2) 3 oon. Ω .

12. Теорема Пеано

Теорена існування Пеано.

Імизо сруниція $f = f(x, y) \in \text{иенерервионо}$ в обласні Ω , то терез исницу тогку
(хо, уо) є Ω проходимь принацімні один
розв'язом рівнення $y' = f(x, y), (x, y) \in \Omega$,

13.Глобальні розв'язки

υσοδαιτοιί ροχθ'ερα τα ίχμε αμργατγρα.

Οχυανευμε. Ροχθ'ερα y = y(x), βυχυανευμώ μα εια κανωαμόνο εισνεκειθουιχ ύνωνερβαιμ (9, 6), μαχιεθαε εια τιεδαμόνων ροχθ'ερκαμ.

Τεαρείμα (μρο αμργατγρα νιοδαμόνονο ροχθ'ερμα).

Η εκαιί $y : (α, 6) \rightarrow \mathbb{R}$ - νιοδαμόνονο ροχθ'ερου ρόθιερου ρόθιερου ρόθιερου γ' = f(x, y). Τος ι' απραθειμικί αλότερμα τιβη:

αλό $α = -\infty$, αδο α-ακίννεμμε ι' lim $y(x) = \infty$;

αδο $b = +\infty$, αδο b-ακίν νεμμε ι' lim $y(x) = \infty$.

14. Особливий розв'язок

15. Рівняння Лагранжа (Неявне)

Pibuenne Marjanna: y = a(y) x + b(y').

16. Рівняння Клеро (Неявне)

Pibuliue Knepo: y=xy'+b(y').

17. Рівняння високого порядку

Oznarenne. Duspepenyianene piberenne Burnegy

1g (u) = f (x, y, y', y'', ..., y (m-1))

uazubaren piberennen n-10 uopeguy eure pyb'ilzene cenocobuo cenapunoi noxiguoi.

18.Лінійне рівняння зі змінними коеф

Dzuarenne. Pibuline burnegy $y^{(m)} + a_1(x)y^{(m)} + \cdots + a_{m-1}(x)y' + a_m(x)y = b(x),$ b enough y yhugir a_1, \dots, a_m rabe b bigoennu, a opyhugil y b enguerno uagulareno

eluinum pibulinen m-wuopeyny y_i zieninum uce opiyi b hallen $a_k = a_k(x) - u$ oeopiyi b hallen b = b(x) - u paba a a an a pibuline b = b(x) - u paba a a an a pibuline b = b(x) - u paba a a an a pibuline b = b(x) - u paba a a a an a pibuline b = b(x) - u paba a a a an a pibuline b = b(x) - u paba a a a an a an a pibuline

19. Перший метод пониження степеня

Перший метод нонишенне норедну

Нехсий диореренуйшьме ривичние $F(x,y,y',y'',...,y^{(m)}) = 0$ не заесниять від шушаной функцій у, тобто $F(x,y',y'',...,y^{(m)}) = 0$,

Понизити поредок тоді могина зашином u = y! $Togi u' = y'',...,u^{(m-1)} = y^{(m)}, a o тие$ $F(x,u,u',...,u^{(m-1)}) = 0$

Doguei A	verog nou	unere	uopeguy	
Theyo pibu	enne F	(x, y, y), y	(" y (") = 0	ul
zanerin B	eluo l	ig ugane	remoi fuine	oi X
140 1200 1	20 h 0 P 014	Morecua 1	(", y (m)) = 0 remoi fuine nomenjura,	Hibuu
0000			0	
Zaeriay	9=0	(7).		
			i myreans	
0.0	0		0 0	1
gg 17 win w	9 -	o, i agi	vereity zu	a my
$x \mapsto y$				
	NAME AND ADDRESS OF TAXABLE PARTY.			1 50 >
clungs	1 (2, 2,	y 170, u	io javenina	J=0(A)
gae: y	1 = 4 (5 (y(x)) = 8	5'(4).4' = 55'	
			3, 9	1
1-0	४, ७, ७७'	1=0.		

21.Третій метод пониження степеня

Τρετί κελτος μομανιθμικε μορίομη

πρινεμουμικο, αμο σωρερινη από τιε ρί βιλεμικε F(x, y, y', ..., y''') = 0 μας τανή βιασπικί (μπ β $F(x, \lambda y, \lambda y', ..., \lambda y''') = \lambda^5 F(x, y, y', ..., y''')),$ ποδτο φημική $F(x, z_0, z_1, ..., z_n) \in ogachi fuono

3α τρημικο γενινικές <math>z_0, ..., z_n$ Τοςί πορεςοιε ρί βιλεμικε ποτιικά πο μετριτη

2 απίπουο y' = y z , ge z - z(x) - μοβαμεγιαμό φημική $z_0, y'' = y z + y' z - y z + y z^2 = y (z + z z)$ $y'' = (y z)' - y z' + y' z - y z' + y z^2 - y (z + z z)$ F(x, y, y', y'') = F(x, y, y, z, y(z' + z')) = y' F(x, y, z, z' + z') - 0.