Algorithm Analysis and Design

Divide and Conquer strategy (Matrix Multiplication by Strassen's Algorithm)

Lecture -16

Overview

- Learn the implementation techniques of "divide and conquer" in the context of the Strassen's Matrix multiplication with analysis.
- Conventional strategy $\Rightarrow O(n^3)$.
- Divide and Coques strategy \Rightarrow $O(n^3)$.
- $Strassen's strategy \Rightarrow O(n^{2.81})$.

• Problem definition:

Input: Two $n \times n$ (square) matrices, $A = (a_{ij})$ and $B = (b_{ij})$.

Output: $n \times n$ matrix $C = (c_{ij})$, where $C = A \cdot B$, i.e.,

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$
for $i, j = 1, 2, \dots, n$.

Need to compute n^2 entries of C. Each entry is the sum of n values.

Conventional strategy:

```
SQUARE-MAT-MULT (A, B, n)

let C be a new n \times n matrix

for i = 1 to n

for j = 1 to n

c_{ij} = 0

for k = 1 to n

c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}

return C
```

Analysis: Three nested loops, each iterates n times, and innermost loop body takes constant time $\Rightarrow \Theta(n^3)$.

- Question is $Is \ \Theta(n^3) \ \text{is the best or we can multiply the matrix in } o(n^3) \ \text{time?}$ (i.e. can we solve it in $< \Theta(n^3)$)
- Let's see with Divide and Conquer strategy......

- Divide-and-conquer strategy :
 - ➤ As with the other divide-and-conquer algorithms, assume that n is a power of 2.
 - \triangleright Partition each of A,B, C into four $n/2 \times n/2$ matrices:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$
 , $B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$, $C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$

For multiplication we can write $C = A \cdot B$ as

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

Divide-and-conquer strategy :

For multiplication we can write $C = A \cdot B$ as

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

Which create four equations. They are

$$\begin{split} &C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21} \\ &C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22} \\ &C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21} \\ &C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22} \end{split}$$

Each of these equations multiplies two $n/2 \times n/2$ matrices and then adds their $n/2 \times n/2$ products.

• Divide-and-conquer strategy :

By using the equations of previous slide we ca write the Divide and conquer algorithm.

```
REC-MAT-MULT (A, B, n) 

Let C be a n x n matrix 

If n== 1 

C_{11} = A_{11} \times B_{11} 

else partition A,B, and C into n/2 x n/2 submatrices. 

C_{11} = \text{Rec-Mat-Mult}(A_{11}, B_{11}, \text{N/2}) + \text{Rec-Mat-Mult}(A_{12}, B_{21}, \text{N/2}) 

C_{12} = \text{Rec-Mat-Mult}(A_{11}, B_{12}, \text{N/2}) + \text{Rec-Mat-Mult}(A_{12}, B_{22}, \text{N/2}) 

C_{21} = \text{Rec-Mat-Mult}(A_{21}, B_{11}, \text{N/2}) + \text{Rec-Mat-Mult}(A_{22}, B_{21}, \text{N/2}) 

C_{22} = \text{Rec-Mat-Mult}(A_{21}, B_{12}, \text{N/2}) + \text{Rec-Mat-Mult}(A_{22}, B_{22}, \text{N/2}) 

Return C
```

Analysis of Divide-and-conquer strategy :

Let T(n) be the time to multiply two $n/2 \times n/2$ matrices.

Base Case: n=1. Perform one scalar multiplication: $\Theta(1)$.

Recursive Case: n>1

- Dividing takes b $\Theta(1)$ time, using index calculations.
- Conquering makes 8 recursive calls, each multiplying $n/2 \times n/2$ matrices. (i.e. 8T(n/2))
- Combining Takes $\Theta(n^2)$ time to add $n/2 \times n/2$ matrices four items.

Hence the Recurrence is

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 8T\left(\frac{n}{2}\right) + \Theta(n^2) & \text{if } n > 1 \end{cases}$$

The Complexity is $\Theta(n^3)$ (Apply Master Method)

Can we do better?

• Strassen's strategy:

The Idea:

- Make the recursion tree less bushy.
- \triangleright Perform only 7(seven) recursive multiplications of n/2 x n/2 matrices, rather than 8(Eight).

• Strassen's strategy:

The Algorithm:

- 1. As in the recursive method, partition each of the matrices into four $n/2 \times n/2$ submatrices. Time: $\Theta(1)$
- 2. Compute 7 matrix products P, Q, R, S, T, U, V for each $n/2 \times n/2$.
- 3. Compute n/2 x n/2 submatrices of C by adding and subtracting various combinations of the P_i . Time: $\Theta(n^2)$.

• Strassen's strategy:

Details of Step 2:

Compute 7 matrix products:

$$P=(A_{11}+A_{22}).(B_{11}+B_{22})$$
 $U=(A_{21}-A_{11}).(B_{11}+B_{12})$

$$Q=(A_{21}+A_{22}). B_{11}$$
 $V=(A_{12}-A_{22}).(B_{21}+B_{22})$

$$R = A_{11}.(B_{12} - B_{22})$$

$$S = A_{22} \cdot (B_{21} - B_{11})$$

$$T=(A_{11}+A_{12}). B_{22}$$

• Strassen's strategy:

Details of Step 3:

Compute C with 4 adding and subtracting:

$$C_{11} = P + S - T + V$$

$$C_{12} = R + T$$

$$C_{21} = Q + S$$

$$C_{22} = P + R - Q + U$$

• Strassen's strategy:

Analysis:

The Recurrence is

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 7T\left(\frac{n}{2}\right) + \Theta(n^2) & \text{if } n > 1 \end{cases}$$

The Complexity is $\Theta(n^{\log_2 7}) = \Theta(n^{2.81})$ (By using Master Method)

Example 1

 Compute Matrix multiplication of the following two matrices with the help of Strassen's strategy

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \text{ and } B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$$

Example 1

 Compute Matrix multiplication of the following two matrices with the help of Strassen's strategy

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \text{ and } B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$$

Ans:

$$A_{11}=1$$
, $A_{12}=2$, $A_{21}=3$, and $A_{22}=4$
 $B_{11}=5$, $B_{12}=6$, $B_{21}=7$, and $B_{22}=8$

Example 1

Calculate the value of P, Q, R, S, T, U and V

$$P = (A_{11} + A_{22}). (B_{11} + B_{22}) = (1+4)(5+8) = 5 \times 13 = 65$$

$$Q = (A_{21} + A_{22}). B_{11} = (3+4)5 = 7 \times 5 = 35$$

$$R = A_{11}.(B_{12} - B_{22}) = 1(6-8) = 1 \times -2 = -2$$

$$S = A_{22}.(B_{21} - B_{11}) = 4(7-5) = 4 \times 2 = 8$$

$$T = (A_{11} + A_{12}). B_{22} = (1+2)8 = 3 \times 8 = 24$$

$$U = (A_{21} - A_{11}).(B_{11} + B_{12}) = (3-1)(5+6) = 2 \times 11 = 22$$

$$V = (A_{12} - A_{22}).(B_{21} + B_{22}) = (2-4)(7+8) = -2 \times 15 = -30$$

Example 1

Compute
$$C_{11}$$
, C_{12} , C_{21} , and C_{22} :
$$C_{11} = P + S - T + V = 65 + 8 - 24 - 30 = 19$$

$$C_{12} = R + T = -2 + 24 = 22$$

$$C_{21} = Q + S = 35 + 8 = 43$$

$$C_{22} = P + R - Q + U = 65 - 2 - 35 + 22 = 50$$
Hence,
$$C = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix}$$

Example 2

Compute Matrix multiplication of the following two matrices with the help of Strassen's strategy.

$$A = \begin{bmatrix} 4 & 2 & 0 & 1 \\ 3 & 1 & 2 & 5 \\ 3 & 2 & 1 & 4 \\ 5 & 2 & 6 & 7 \end{bmatrix}, B = \begin{bmatrix} 2 & 1 & 3 & 2 \\ 5 & 4 & 2 & 3 \\ 1 & 4 & 0 & 2 \\ 3 & 2 & 4 & 1 \end{bmatrix}$$

Example 2

First we partition the input matrices into sub matrices as shown below:

$$A_{11} = \begin{bmatrix} 4 & 2 \\ 3 & 1 \end{bmatrix}, A_{12} = \begin{bmatrix} 0 & 1 \\ 2 & 5 \end{bmatrix}$$

$$A_{21} = \begin{bmatrix} 3 & 2 \\ 5 & 2 \end{bmatrix}, A_{22} = \begin{bmatrix} 1 & 4 \\ 6 & 7 \end{bmatrix}$$

$$B_{11} = \begin{bmatrix} 2 & 1 \\ 5 & 4 \end{bmatrix}, B_{12} = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$$

$$B_{21} = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$$
, $B_{22} = \begin{bmatrix} 0 & 2 \\ 4 & 1 \end{bmatrix}$

Example 2

Calculate the value of P, Q, R, S, T, U and V

$$P = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$$

$$= \begin{bmatrix} 5 & 6 \\ 9 & 8 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 9 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} 64 & 45 \\ 90 & 67 \end{bmatrix}$$

$$Q = (A_{21} + A_{22}). B_{11}$$

$$= \begin{bmatrix} 4 & 6 \\ 11 & 9 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 5 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 38 & 28 \\ 67 & 47 \end{bmatrix}$$

Example 2

$$R = A_{11} \cdot (B_{12} - B_{22})$$

$$= \begin{bmatrix} 4 & 2 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ -2 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 8 & 4 \\ 7 & 2 \end{bmatrix}$$

$$S = A_{22} \cdot (B_{21} - B_{11})$$

$$= \begin{bmatrix} 1 & 4 \\ 6 & 7 \end{bmatrix} \begin{bmatrix} -1 & 3 \\ -2 & -2 \end{bmatrix}$$

$$= \begin{bmatrix} -9 & -5 \\ -20 & 4 \end{bmatrix}$$

Example 2

$$T = (A_{11} + A_{12}). B_{22} \qquad U = (A_{21} - A_{11}).(B_{11} + B_{12})$$

$$= \begin{bmatrix} 4 & 3 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 4 & 1 \end{bmatrix} \qquad = \begin{bmatrix} -1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 5 & 3 \\ 7 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 12 & 11 \\ 24 & 16 \end{bmatrix} \qquad = \begin{bmatrix} -5 & -3 \\ 17 & 13 \end{bmatrix}$$

$$V = (A_{12} - A_{22}).(B_{21} + B_{22})$$

$$= \begin{bmatrix} -1 & -3 \\ -4 & -2 \end{bmatrix} \begin{bmatrix} 1 & 6 \\ 7 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} -22 & -15 \\ -18 & -30 \end{bmatrix}$$

Example 2

Now, Compute C_{11} , C_{12} , C_{21} , and C_{22} :

$$C_{11} = P + S - T + V$$

$$C_{11} = \begin{bmatrix} 64 & 45 \\ 90 & 67 \end{bmatrix} + \begin{bmatrix} -9 & -5 \\ -20 & 4 \end{bmatrix} - \begin{bmatrix} 12 & 11 \\ 24 & 16 \end{bmatrix} + \begin{bmatrix} -22 & -15 \\ -18 & -30 \end{bmatrix} = \begin{bmatrix} 21 & 14 \\ 28 & 25 \end{bmatrix}$$

$$C_{12} = R + T$$

$$C_{12} = \begin{bmatrix} 8 & 4 \\ 7 & 2 \end{bmatrix} + \begin{bmatrix} 12 & 11 \\ 24 & 16 \end{bmatrix} = \begin{bmatrix} 20 & 15 \\ 31 & 18 \end{bmatrix}$$

Example 2

Now, Compute C_{11} , C_{12} , C_{21} , and C_{22} :

$$C_{21} = Q + S$$

$$C_{21} = \begin{bmatrix} 38 & 28 \\ 67 & 47 \end{bmatrix} + \begin{bmatrix} -9 & -5 \\ -20 & 4 \end{bmatrix} = \begin{bmatrix} 29 & 23 \\ 47 & 51 \end{bmatrix}$$

$$C_{22} = P + R - Q + U$$

$$C_{22} = \begin{bmatrix} 64 & 45 \\ 90 & 67 \end{bmatrix} + \begin{bmatrix} 8 & 4 \\ 7 & 2 \end{bmatrix} - \begin{bmatrix} 38 & 28 \\ 67 & 47 \end{bmatrix} + \begin{bmatrix} -5 & -3 \\ 17 & 13 \end{bmatrix} = \begin{bmatrix} 29 & 18 \\ 47 & 35 \end{bmatrix}$$

Example 2

So the values of C_{11} , C_{12} , C_{21} , and C_{22} are:

$$C_{11} = \begin{bmatrix} 21 & 14 \\ 28 & 25 \end{bmatrix}$$
, $C_{12} = \begin{bmatrix} 20 & 15 \\ 31 & 18 \end{bmatrix}$, $C_{21} = \begin{bmatrix} 29 & 23 \\ 47 & 51 \end{bmatrix}$ and $C_{22} = \begin{bmatrix} 29 & 18 \\ 47 & 35 \end{bmatrix}$

Hence the resultant Matrix C is =

$$C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} 21 & 14 & 20 & 15 \\ 28 & 25 & 31 & 18 \\ 29 & 23 & 29 & 18 \\ 47 & 51 & 47 & 35 \end{bmatrix}$$

