소속:	Computer System	2020-1 5주차 온라인 수업 과제
학번:	Architecture[답안]	제출기한: 2020년 4월 28일(화)
이름:	담당교수 : 고영은	Chapter 2.3~2.7, 3.5. 3.6

1. 두 개의 8×1 Multiplexer와 하나의 2×1 Multiplexer를 이용하여 하나의 16×1 Multiplexer를 구성하고, 사용된 각각의 블록도를 이용하여 전체 블록도를 그리시오.

2. 4bits register의 초기값이 1101이다. 이 레지스터에 직렬 입력 101101을 주고, 오른쪽으로 여섯 번 shift시킬 경우 각 shift 때마다 레지스터의 내용을 나열하시오.

3. 네 개의 병렬 로드를 가진 4bits binary counter로 병렬 로드를 가진 16bits binary counter를 구성 하라. 4bits binary counter에 대한 블록도를 이용하여 16bits binary counter의 블록도를 그려라.

4. 다음 메모리 장치들을 워드수와 한 워드당 비트수의 곱으로 나타내어 진다 각 경우 필요한 주소 라인과 입출력 데이터 라인의 수를 구하라.

(1) $2K \times 16$

	Address	Data
	lines	lines
$2K \times 16 = 2^{11} \times 16$	11	16

(2) $4G \times 64$

	Address	Data	
101 114 122 - 114	lines	lines	
$4G \times 64 = 2^{32} \times 64$	32	64	

 $5. \ 4096 \times 16 \$ 용량의 메모리를 구성하려면 128×8 메모리 칩이 몇 개나 필요한가?

$$\frac{4096 \times 16}{128 \times 8} = \frac{2^{12} \times 2^4}{2^7 \times 2^3} = 2^6 = 64 \text{ chips}$$

6. 십진수 8620을 아래의 각각 코드로 변환하여 하라.

BCD	1000 0110 0010 0000
excess-3code	1011 1001 0101 0011
2421 code	1110 1100 0010 0000
8421 code	1000 0110 0010 0000

7. 최상위 비티에 짝수 및 홀수 패리티를 준 10개의 BCD 숫자를 나열해보아라.(5bits)

십진수	even parity BCD	odd parity BCD
0	0 0000	1 0000
1	1 0001	0 0001
2	1 0010	0 0010
3	0 0011	1 0011
4	1 0100	0 0100
5	0 0101	1 0101
6	0 0110	1 0110
7	1 0111	0 0111
8	1 1000	0 1000
9	0 1001	1 1001