DSO 530 - 16275. Team 6: Linh Chu, Nhi Dang, Linh Pham, Cong Minh Tran

Introducing our

Call Option Valuation & Pricing

Agenda

1 Problem Statement

2 Exploratory Data Analysis

3 Feature Engineering

4 Value Prediction Model

5 BS Prediction Model

6 Considerations

Which one predicts better?

Exploratory Data Analysis

1. Descriptive Statistics

No missing value + no extreme outliers

- \rightarrow Keep all 5,000 rows
- → Standardize all features

2. Correlation with 'Value'

- K seems negatively correlated
- No clear linear correlation with other features

3. 'BS' differences

K can separate the majority of 2 classes

Feature Engineering

Creating new features based on options terminologies

Features	Definitions	
S/K	Moneyness-Indicator for in-the-money (ITM), at-the-money (ATM), or out-of-the-money (OTM) options	
max(S-K,0)	Capture intrinsic value, enhancing the interpretability of the model by incorporating a clear and intuitive measure of option value	
abs(S-K)	A direct measure of the distance between the current asset price S and the strike price K-assess the potential impact of asset price fluctuations on option values	
tau_days	Offer additional granularity and capture more nuanced temporal information	
K*S	Monetary value of the underlying asset relative to the strike price	

→ max(S-K,0) has a strong linear relationship with option value

→ **K*S** can **partially separate** BS value

Modeling Approach

Regression

(Criteria: R²)

Linear Regression

Decision Tree

Gradient Boosting

XGBoost

Random Forest

Classification

(Criteria: Classification Error)

Logistic Regression

K-NN

Decision Tree

Random Forest

XGBoost

SVM

Cross validation 10-folds + Hyperparameter Tuning

Model selection based on **best mean CV score**

Regression

Model	Features	Mean CV R-squared
Linear Regression w/ Best Subset Selection	tau, S/K, S-K , intrinsic value	99.25

Linear Regression with Best Subset Selection

Adjusted R squared does not increase significantly for 5+ predictors

→ stop at 4 best predictors: tau, S/K, |S-K|, intrinsic_value for better model interpretability

	coef	std err	t	P> t	[0.025	0.975]
const tau S/K S-K_abs intrinsic_value	-130.5409	7.821	-16.691	0.000	-145.874	-115.208
	122.4174	0.678	180.551	0.000	121.088	123.747
	160.3511	7.946	20.179	0.000	144.773	175.930
	-0.1724	0.005	-37.137	0.000	-0.182	-0.163
	0.8795	0.012	72.230	0.000	0.856	0.903

Regression

Model	Features	Mean CV R-squared
Linear Regression w/ Best Subset Selection	tau, S/K, S-K , intrinsic value	99.25
Decision Tree		99.58
Random Forest	S, K, tau, r, S/K, S-K , intrinsic value	99.77
Gradient Boosting		99.81
XGBoost		99.87

→ Linear Regression can also be considered for model interpretability

XGBoost Regressor

- Out of tree-based models, XGBoost gave the highest R-squared
- 4 most important features in XGBoost match with 4 features selected in Linear Regression

Hyperparameter	Value
gamma	0.1
learning_rate	0.1
max_depth	7
n_estimators	300
subsample	0.8

[→] XGBoost is our final choice for the best prediction accuracy

Classification

Model	Features	Mean CV Classification Error	
Logistic Regression	K, tau, r, S/K, S-K , intrinsic value, tau ²	10.36	
SVM	K, r, S-K , tau_underroot	9.16	
KNN	S, K, r, S/K, intrinsic value, √tau, K*S	8.38	
Decision Tree	S, K, tau, r, √tau, tau²	9.28	
Random Forest	all	6.46	
XGBoost	all	5.58	
→ XGBoost is our final choice for the best prediction			

 \rightarrow XGBoost is our final choice for the best **prediction** accuracy

XGBoost Classifier

• K is the most important feature in XGBoost Classification

Hyperparameter	Value
colsample_bytree	1.0
gamma	0.1
learning_rate	0.1
max_depth	7
n_estimators	300
subsample	0.8

CONSIDERATIONS

Model complexity vs. prediction accuracy

- Hyperparameters & features
 lead to better performance
- Linear regression model has lower accuracy but higher interpretability

Inclusion of all four variables

- Not all variables are equally important
- Redundant predictors increase model complexity

Application on Tesla stocks

- Can't directly be applied to Tesla stocks
- Application depends on diverse set of stocks/industries/time period & external factors

CONCLUSION

Best Model

Value Prediction (Regression)
Mean CV R-squared

Mean CV Classification Error

XGBoost

99.87

5.58

Thank you!