

LM4040-N, LM4040-N-Q1

SNOS633K -OCTOBER 2000-REVISED JUNE 2016

LM4040-N/-Q1 Precision Micropower Shunt Voltage Reference

Features

- SOT-23 AEC Q-100 Grades 1 and 3 Available
- Small Packages: SOT-23, TO-92, and SC70
- No Output Capacitor Required
- **Tolerates Capacitive Loads**
- Fixed Reverse Breakdown Voltages of 2.048 V, 2.5 V, 3 V, 4.096 V, 5 V, 8.192 V, and 10 V
- Key Specifications (2.5-V LM4040-N)
 - Output Voltage Tolerance (A Grade, 25°C): ±0.1% (Maximum)
 - Low Output Noise (10 Hz to 10 kHz): 35 μV_{rms} (Typical)
 - Wide Operating Current Range: 60 µA to 15
 - Industrial Temperature Range: -40°C to +85°C
 - Extended Temperature Range: -40°C to
 - Low Temperature Coefficient: 100 ppm/°C (Maximum)

2 Applications

- Portable, Battery-Powered Equipment
- **Data Acquisition Systems**
- Instrumentation
- **Process Controls**
- **Energy Management**
- **Product Testing**
- Automotives
- **Precision Audio Components**

3 Description

Ideal for space-critical applications, the LM4040-N precision voltage reference is available in the subminiature SC70 and SOT-23 surface-mount package. The advanced design of the LM4040-N eliminates the need for an external stabilizing capacitor while ensuring stability with any capacitive load, thus making the LM4040-N easy to use. Further reducing design effort is the availability of several fixed reverse breakdown voltages: 2.048 V, 2.5 V, 3 V, 4.096 V, 5 V, 8.192 V, and 10 V. The minimum operating current increases from 60 µA for the 2.5-V LM4040-N to 100 µA for the 10-V LM4040-N. All versions have a maximum operating current of 15 mA.

The LM4040-N uses a fuse and Zener-zap reverse breakdown voltage trim during wafer sort to ensure that the prime parts have an accuracy of better than ±0.1% (A grade) at 25°C. Bandgap reference temperature drift curvature correction and low dvnamic impedance ensure stable reverse breakdown voltage accuracy over a wide range of operating temperatures and currents.

Also available is the LM4041-N with two reverse breakdown voltage versions: adjustable and 1.2 V. See the LM4041-N data sheet (SNOS641).

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
	TO-92 (3)	4.30 mm × 4.30 mm		
LM4040-N	SC70 (5)	2.00 mm x 1.25 mm		
	SOT-23 (3)	2.92 mm × 1.30 mm		
LM4040-N-Q1	SOT-23 (3)	2.92 mm × 1.30 mm		

⁽¹⁾ For all available packages, see the orderable addendum at the end of the data sheet.

Shunt Reference Application Schematic

Table of Contents

1	Features 1	6.17 Electrical Characteristics: 5-V LM4040-N V _R
2	Applications 1	Tolerance Grades 'C' And 'D'; Temperature Grade 'I'
3	Description 1	6.18 Electrical Characteristics: 5-V LM4040-N V _R
4	Revision History3	Tolerance Grades 'C' And 'D'; Temperature Grade
5	Pin Configuration and Functions 4	'E'
6	Specifications5	6.19 Electrical Characteristics: 8.2-V LM4040-N V _R Tolerance Grades 'A' And 'B'; Temperature Grade
	6.1 Absolute Maximum Ratings	Т 27
	6.2 ESD Ratings	6.20 Electrical Characteristics: 8.2-V Lm4040-N V _R
	6.3 Recommended Operating Conditions	Tolerance Grades 'C' And 'D'; Temperature Grade 'I'
	6.4 Thermal Information	6.21 Electrical Characteristics: 10-V LM4040-N V _R
	Tolerance Grades 'A' And 'B'; Temperature Grade 'I' 7	Tolerance Grades 'A' And 'B'; Temperature Grade
	6.6 Electrical Characteristics: 2-V LM4040-N V _R Tolerance Grades 'C', 'D', And 'E'; Temperature Grade 'I'	6.22 Electrical Characteristics: 10-V LM4040-N V_R Tolerance Grades 'C' And 'D'; Temperature Grade
	6.7 Electrical Characteristics: 2-V LM4040-N V _R	'l'30
	Tolerance Grades 'C', 'D', And 'E'; Temperature	6.23 Typical Characteristics31
	Grade 'E' 10	7 Parameter Measurement Information 32
	6.8 Electrical Characteristics: 2.5-V LM4040-N V _R	8 Detailed Description 33
	Tolerance Grades 'A' And 'B'; Temperature Grade 'I' (AEC Grade 3)	8.1 Overview
	6.9 Electrical Characteristics: 2.5-V LM4040-N V _R	8.2 Functional Block Diagram
	Tolerance Grades 'C', 'D', and 'E'; Temperature Grade	8.3 Feature Description33
	'I' (AEC Grade 3)	8.4 Device Functional Modes33
	6.10 Electrical Characteristics: 2.5-V LM4040-N V _R	9 Application and Implementation 34
	Tolerance Grades 'C', 'D', And 'E'; Temperature	9.1 Application Information34
	Grade 'E' (AEC Grade 1)	9.2 Typical Applications34
	Tolerance Grades 'A' And 'B'; Temperature Grade	10 Power Supply Recommendations 41
		11 Layout 41
	6.12 Electrical Characteristics: 3-V LM4040-N V _R	11.1 Layout Guidelines 41
	Tolerance Grades 'C', 'D', And 'E'; Temperature	11.2 Layout Example
	Grade 'I'	12 Device and Documentation Support 42
	6.13 Electrical Characteristics: 3-V LM4040-N V _R Tolerance Grades 'C', 'D', And 'E'; Temperature	12.1 Documentation Support
	Grade 'E'	12.2 Related Links
	6.14 Electrical Characteristics: 4.1-V LM4040-N V _R	12.3 Community Resources
	Tolerance Grades 'A' And 'B'; Temperature Grade	12.4 Trademarks
	Т21	12.5 Electrostatic Discharge Caution
	6.15 Electrical Characteristics: 4.1-V LM4040-N V _R	12.6 Glossary
	Tolerance Grades 'C' and 'D'; Temperature Grade 'I'	13 Mechanical, Packaging, And Orderable
	6.16 Electrical Characteristics: 5-V LM4040-N V _R	Information 42
	Tolerance Grades 'A' And 'B'; Temperature Grade 'I'	13.1 SOT-23 and SC70 Package Marking Information 42

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision J (August 2015) to Revision K	Page
Updated pinout diagrams	4
Changes from Revision I (April 2015) to Revision J	Page
 Added ESD Ratings table, Feature Description section, Device Functional Modes section, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section 	1
Changes from Revision H (April 2013) to Revision I	Page
Added some of the latest inclusions from new TI formatting and made available of the automotive grade for the SOT-23 package	1
Changes from Revision G (July 2012) to Revision H	Page
Changed layout of National Data Sheet to TI format	1

5 Pin Configuration and Functions

Pin Functions

PIN				1/0	DESCRIPTION		
NAME	SOT-23	TO-92	SC70	l/O	DESCRIPTION		
Anode	2	1	1	0	Anode pin, normally grounded		
Cathode	1	2	3	I/O	Shunt Current/Output Voltage		
NC	3 ⁽¹⁾	_	2 ⁽²⁾	_	Must float or connect to anode		
NC	_	3	4, 5	_	No connect		

- This pin must be left floating or connected to pin 2. This pin must be left floating or connected to pin 1.

Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)(2)

		MIN	MAX	UNIT
Reverse current			20	mA
Forward current			10	mA
Power dissination (T ₄ =	SOT-23 (M3) package		306	mW
Power dissipation ($T_A = 25^{\circ}C$) ⁽³⁾	TO-92 (Z) package		550	mW
20 0)	SC70 (M7) package		241	mW
(4)	SOT-23 (M3) Package Peak Reflow (30 sec)		260	°C
Soldering temperature (4)	TO-92 (Z) Package Soldering (10 sec)		260	°C
	SC70 (M7) Package Peak Reflow (30 sec)	306 mW 550 mW 241 mW c) 260 °C	°C	
Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000		
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±200	V

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

Product Folder Links: LM4040-N LM4040-N-Q1

If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), $R_{\theta JA}$ (junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $PD_{max} = (T_{Jmax} - T_A)/R_{\theta JA}$ or the number given in the *Absolute Maximum Ratings*, whichever is lower. For the LM4040-N, $T_{Jmax} = 125^{\circ}C$, and the typical thermal resistance ($R_{\theta JA}$), when board mounted, is 326°C/W for the SOT-23 package, and 180°C/W with 0.4" lead length and 170°C/W with 0.125" lead length for the TO-92 package and 415°C/W for the SC70 Package.

For definitions of Peak Reflow Temperatures for Surface Mount devices, see the TI Absolute Maximum Ratings for Soldering Application Report (SNOA549).

JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)(2)

		MIN	MAX	UNIT
Temperature	Industrial Temperature	–40°C ≤ T _A ≤ 85		°C
$(T_{min} \le T_A \le T_{max})$	Extended Temperature	mperature $-40^{\circ}\text{C} \le T_{\text{A}} \le 85$ mperature $-40 \le T_{\text{A}} \le 125^{\circ}\text{C}$ 0 60 15 5 60 15 0 62 15 1 68 15 0 74 15 2 91 15	°C	
	LM4040-N-2.0	60	15 µ	μA to mA
	LM4040-N-2.5	60	15	μA to mA
	LM4040-N-3.0	62	15	μA to mA
Reverse Current	LM4040-N-4.1	68	15	μA to mA
	LM4040-N-5.0	74	15	μA to mA
$(T_{min} \le T_A \le T_{max}) \\ Extended Temperature \\ LM4040-N-2.0 \\ LM4040-N-2.5 \\ LM4040-N-3.0 \\ Reverse Current \\ LM4040-N-4.1$	LM4040-N-8.2	91	15	μA to mA
	LM4040-N-10.0	100	15	μA to mA

⁽¹⁾ Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Recommended Operating Conditions indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

6.4 Thermal Information

V. T 111							
		LM4	LM4040-N/LM4040-N-Q1				
	THERMAL METRIC ⁽¹⁾	DBZ (SOT-23)	LP (TO-92)	DCK (SC70)	UNIT		
		3 PINS	3 PINS	5 PINS			
$R_{\theta JA}$	Junction-to-ambient thermal resistance	291.9	166	267	°C/W		
R ₀ JC(top)	Junction-to-case (top) thermal resistance	114.3	88.2	95.6	°C/W		
$R_{\theta JB}$	Junction-to-board thermal resistance	62.3	145.2	48.1	°C/W		
ΨЈТ	Junction-to-top characterization parameter	7.4	32.5	2.4	°C/W		
ΨЈВ	Junction-to-board characterization parameter	61	N/A	47.3	°C/W		
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	N/A	°C/W		

 For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

⁽²⁾ The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), R_{θJA} (junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is PD_{max} = (T_{Jmax} - T_A)/R_{θJA} or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM4040-N, T_{Jmax} = 125°C, and the typical thermal resistance (R_{θJA}), when board mounted, is 326°C/W for the SOT-23 package, and 180°C/W with 0.4" lead length and 170°C/W with 0.125" lead length for the TO-92 package and 415°C/W for the SC70 package.

6.5 Electrical Characteristics: 2-V LM4040-N $V_{\rm R}$ Tolerance Grades 'A' And 'B'; Temperature Grade 'I'

all other limits $T_A = T_J = 25$ °C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ±0.1% and ±0.2%, respectively.

	PARAMETER		TEST CONDITIONS		MIN ⁽¹⁾	TYP	MAX ⁽¹⁾	UNIT
	Reverse Breakdown Voltage	Ι _R = 100 μΑ				2.048		V
			LM4040AIM3 LM4040AIZ				±2	
V _R	Reverse Breakdown	I _R = 100 μA	LM4040BIM3 LM4040BIZ LM4040BIM7				±4.1	mV
	Voltage Tolerance ⁽²⁾	Ι _R = 100 μΑ	LM4040AIM3 LM4040AIZ	$T_A = T_J = T_{MIN}$ to T_{MAX}			±15	
			LM4040BIM3 LM4040BIZ LM4040BIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			±17	mV
	Minimum Operating		$T_A = T_J = 25$ °C			45	60	μA
I _{RMIN}	Current		$T_A = T_J = T_{MIN}$ to T_{MAX}				65	μΑ
	Average Reverse Breakdown Voltage Temperature Coefficient ⁽²⁾	I _R = 10 mA				±20		ppm/°C
$\Delta V_R/\Delta T$		I _R = 1 mA	$T_A = T_J = 25^{\circ}C$			±15		ppm/°C
ΔVR/ΔI		IR - I IIIA	$T_A = T_J = T_{MIN}$ to T_{MAX}				±100	ррпі, С
	Cocincient	I _R = 100 μA				±15		ppm/°C
	Reverse Breakdown	$I_{RMIN} \le I_R \le 1 \text{ mA}$	$T_A = T_J = 25$ °C			0.3	0.8	mV
$\Delta V_R/\Delta I$	Voltage Change with	RMIN - IR - I IIII	$T_A = T_J = T_{MIN}$ to T_{MAX}				1	
R	Operating Current Change (3)	1 mA ≤ I _R ≤ 15 mA	$T_A = T_J = 25^{\circ}C$			2.5	6	mV
		1 1111 (= 18 = 10 1111 ($T_A = T_J = T_{MIN}$ to T_{MAX}				8	
Z _R	Reverse Dynamic Impedance	$I_R = 1 \text{ mA}, f = 120$ Hz, $I_{AC} = 0.1 I_R$				0.3	0.8	Ω
e _N	Wideband Noise	I _R = 100 μA 10 Hz ≤ f ≤ 10 kHz				35		μV_{rms}
ΔV_R	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs T = 25°C ±0.1°C I _R = 100 μA				120		ppm
V _{HYST}	Thermal Hysteresis (4)	$\Delta T = -40$ °C to 125°C				0.08%		

- (1) Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL.
- (2) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T_{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

E-grade: $\pm 2.98\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100 \text{°C}$

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100°C$

E-grade: $\pm 3.5\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 100 ^{\circ}\text{C}$

Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ± 2.5 V \times 0.75% = ± 19 mV.

- (3) Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately.
- (4) Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature 125°C.

6.6 Electrical Characteristics: 2-V LM4040-N V_R Tolerance Grades 'C', 'D', And 'E'; Temperature Grade 'I'

all other limits $T_A = T_J = 25$ °C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of $\pm 0.5\%$, $\pm 1\%$ and $\pm 2\%$, respectively.

ı	PARAMETER		TEST CONDITION	ONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT	
	Reverse Breakdown Voltage	I _R = 100 μA				2.048		V	
			LM4040CIM3 LM4040CIZ	$T_A = T_J = 25$ °C			±10		
			LM4040CIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			±23		
V_R	Reverse Breakdown	I _R = 100 μA	LM4040DIM3 LM4040DIZ	$T_A = T_J = 25$ °C			±20	mV	
	Voltage Tolerance ⁽³⁾	ΙΚ = 100 μ/1	LM4040DIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			±40	•	
			LM4040EIZ	$T_A = T_J = 25$ °C			±41		
			LM4040EIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			±60		
	Minimum Operating Current			LM4040CIM3	$T_A = T_J = 25$ °C		45	60	
			LM4040CIZ LM4040CIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			65		
					$T_A = T_J = 25$ °C		45	65	
I _{RMIN}					$T_A = T_J = T_{MIN}$ to T_{MAX}			70	μA
				LM4040EIZ	$T_A = T_J = 25$ °C		45	65	
			LM4040EIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			70		
		I _R = 10 mA				±20			
			LM4040CIM3	$T_A = T_J = 25$ °C		±15			
	A		LM4040CIZ LM4040CIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			±100		
A)/ /AT	Average Reverse Breakdown Voltage	1 1	LM4040DIM3	$T_A = T_J = 25$ °C		±15		ppm/°C	
ΔV _R /ΔT	Temperature Coefficient ⁽³⁾	re $I_R = 1 \text{ mA}$ LM4040DIZ		$T_A = T_J = T_{MIN}$ to T_{MAX}			±150		
			LM4040EIZ	$T_A = T_J = 25$ °C		±15			
			LM4040EIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			±150		
		I _R = 100 μA				±15			

(2) Typicals are at $T_J = 25^{\circ}$ C and represent most likely parametric norm.

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

E-grade: $\pm 2.98\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100^{\circ}\text{C}$

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$

E-grade: $\pm 3.5\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 100 \text{°C}$

Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ± 2.5 V x $0.75\% = \pm 19$ mV.

Submit Documentation Feedback

Copyright © 2000–2016, Texas Instruments Incorporated

⁽¹⁾ Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL.

The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T _{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

Electrical Characteristics: 2-V LM4040-N $\rm V_R$ Tolerance Grades 'C', 'D', And 'E'; Temperature Grade 'I' (continued)

all other limits $T_A = T_J = 25$ °C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ±0.5%, ±1% and ±2%, respectively.

F	PARAMETER		TEST CONDITION	ONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
			LM4040CIM3 LM4040CIZ	$T_A = T_J = 25$ °C		0.3	0.8	
			LM4040CIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			1	
		$I_{RMIN} \le I_R \le 1 \text{ mA}$	LM4040DIM3 LM4040DIZ	$T_A = T_J = 25$ °C		0.3	1	
		RMIN - R - 1	LM4040DIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			1.2	
	Reverse Breakdown		LM4040EIZ	$T_A = T_J = 25$ °C		0.3	1	
$\Delta V_R/\Delta I_R$	Voltage Change		LM4040EIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			1.2	mV
	with Operating Current Change ⁽⁴⁾		LM4040CIM3	$T_A = T_J = 25$ °C		2.5	6	111 V
	ourient onlarige		LM4040CIZ LM4040CIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			8	
		1 mA ≤ I _R ≤ 15 mA	LM4040DIM3	$T_A = T_J = 25$ °C		2.5	8	
			LM4040DIZ LM4040DIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			10	
			LM4040EIZ	$T_A = T_J = 25$ °C		2.5	8	
				LM4040EIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			10
			LM4040CIM3 LM4040CIZ LM4040CIM7			0.3	0.9	
Z _R	Reverse Dynamic Impedance		LM4040DIM3 LM4040DIZ LM4040DIM7			0.3	1.1	Ω
			LM4040EIZ LM4040EIM7			0.3	1.1	
e _N	Wideband Noise	I _R = 100 μA 10 Hz ≤ f ≤ 10 kHz				35		μV_{rms}
ΔV_R	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs T = 25°C ±0.1°C I _R = 100 μA				120		ppm
V _{HYST}	Thermal Hysteresis ⁽⁵⁾	$\Delta T = -40$ °C to 125°C				0.08%		

⁽⁴⁾ Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately.

⁽⁵⁾ Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C.

6.7 Electrical Characteristics: 2-V LM4040-N V_R Tolerance Grades 'C', 'D', And 'E'; Temperature Grade 'E'

all other limits T_A = T_J = 25°C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ±0.5%, ±1% and ±2%, respectively.

	PARAMETER		TEST CONDITION	ONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
	Reverse Breakdown Voltage	I _R = 100 μA				2.048		V
			LMAGAGGEMG	$T_A = T_J = 25$ °C			±10	
			LM4040CEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			±30	
V_R	Reverse Breakdown	1 4004	LMAGAGDEMO	$T_A = T_J = 25$ °C			±20	
	Voltage Tolerance (3)	I _R = 100 μA	LM4040DEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			±50	mV
			L M4040EEM0	$T_A = T_J = 25$ °C			±41	
			LM4040EEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			±70	
			LMAGAGGEMG	$T_A = T_J = 25$ °C		45	60	
I _{RMIN}			LM4040CEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			68	
	Minimum Operating		LMAGAGDEMO	$T_A = T_J = 25$ °C		45	65	
	Current		LM4040DEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			73	μA
			L M4040EEM0	$T_A = T_J = 25$ °C		45	65	
			LM4040EEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			73	
	Average Reverse Breakdown Voltage Temperature	I _R = 10 mA				±20		
			LM4040CFM2	$T_A = T_J = 25$ °C		±15		
			LM4040CEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			±100	
A)/ /AT		eakdown Voltage	LMAGAGDEMO	$T_A = T_J = 25$ °C		±15		/00
$\Delta V_R/\Delta T$			IR = I IIIA LIVI4040	LM4040DEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			±150
	Coefficient		LM4040FFM2	$T_A = T_J = 25$ °C		±15		
			LM4040EEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			±150	
		I _R = 100 μA				±15		
			LMAGAGGEMG	$T_A = T_J = 25$ °C		0.3	0.8	
			LM4040CEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			1	
		1	LMAGAODEMS	$T_A = T_J = 25$ °C		0.3	1	
		$I_{RMIN} \le I_R \le 1 \text{ mA}$	LM4040DEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			1.2	
	Davaraa Braakdawa		LM4040FFM2	$T_A = T_J = 25$ °C		0.3	1	
$\Delta V_R/\Delta I$	Reverse Breakdown Voltage Change with		LM4040EEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			1.2	ma\/
R	Operating Current Change (4)		LM4040CEM3	$T_A = T_J = 25$ °C		2.5	6	mV
	Change		LIVI4040CEIVI3	$T_A = T_J = T_{MIN}$ to T_{MAX}			8	
		1 1 15 1	LM4040DEM2	$T_A = T_J = 25$ °C		2.5	8	
		1 mA ≤ I _R ≤ 15 mA	LM4040DEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			10	
			L N 40 40 F F N 2	$T_A = T_J = 25$ °C		2.5	8	
			LM4040EEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			10	

⁽¹⁾ Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL.

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

E-grade: $\pm 2.98\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100 \text{°C}$

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$

E-grade: $\pm 3.5\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 100 ^{\circ}\text{C}$

Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V x

(4) Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately.

Typicals are at T_J = 25°C and represent most likely parametric norm.

The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance $\pm [(\Delta V_R/\Delta T)(max\Delta T)(V_R)]$. Where, $\Delta V_R/\Delta T$ is the V_R temperature coefficient, $max\Delta T$ is the maximum difference in temperature from the reference point of 25°C to T $_{MIN}$ or T_{MAX} , and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where max $\Delta T = 65^{\circ}C$ is shown below:

Electrical Characteristics: 2-V LM4040-N V_R Tolerance Grades 'C', 'D', And 'E'; Temperature Grade 'E' (continued)

all other limits $T_A = T_J = 25$ °C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of $\pm 0.5\%$, $\pm 1\%$ and $\pm 2\%$, respectively.

	PARAMETER		TEST CONDITIONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
			LM4040CEM3		0.3	0.9	
Z_{R}	Reverse Dynamic Impedance	$I_R = 1 \text{ mA}, f = 120 \text{ Hz},$ $I_{AC} = 0.1 I_R$	LM4040DEM3		0.3	1.1	Ω
	poddi.ioo	AC OII R	LM4040EEM3		0.3	1.1	
e _N	Wideband Noise	I _R = 100 μA 10 Hz ≤ f ≤ 10 kHz			35		μV_{rms}
ΔV_R	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs T = 25°C ±0.1°C I _R = 100 μA			120		ppm
V _{HYST}	Thermal Hysteresis ⁽⁵⁾	$\Delta T = -40$ °C to 125°C			0.08%		

⁽⁵⁾ Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C.

6.8 Electrical Characteristics: 2.5-V LM4040-N V_R Tolerance Grades 'A' And 'B'; Temperature Grade 'I' (AEC Grade 3)

all other limits $T_A = T_J = 25$ °C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of $\pm 0.1\%$ and $\pm 0.2\%$, respectively.

	PARAMETER		TEST CONDITIO	NS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
	Reverse Breakdown Voltage	Ι _R = 100 μΑ				2.5		V
			LM4040AIM3	$T_A = T_J = 25$ °C			±2.5	
V_R	Dayaraa Draakdayya		LM4040AIZ LM4040AIM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			±19	
	Reverse Breakdown Voltage Tolerance ⁽³⁾	I _R = 100 μA	LM4040BIM3	$T_A = T_J = 25$ °C			±5	mV
			LM4040BIZ LM4040BIM7 LM4040QBIM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			±21	
	Minimum Operating		$T_A = T_J = 25$ °C			45	60	
I _{RMIN}	Current		$T_A = T_J = T_{MIN}$ to	T _{MAX}			65	μA
	Average Deverse	I _R = 10 mA				±20		
$\Delta V_R/\Delta T$	Average Reverse Breakdown Voltage	I _R = 1 mA	$T_A = T_J = 25$ °C			±15		ppm/°C
Δν _R /Δι	Temperature Coefficient ⁽³⁾	I _R = I IIIA	$T_A = T_J = T_{MIN}$ to	T _{MAX}			±100	ppin/ C
	Coemicient	I _R = 100 μA				±15		

(2) Typicals are at $T_J = 25^{\circ}$ C and represent most likely parametric norm.

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

E-grade: $\pm 2.98\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100^{\circ}\text{C}$

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$

E-grade: $\pm 3.5\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 100 ^{\circ}\text{C}$

Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ± 2.5 V x $0.75\% = \pm 19$ mV.

⁽¹⁾ Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL.

The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T _{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

Electrical Characteristics: 2.5-V LM4040-N V_R Tolerance Grades 'A' And 'B'; Temperature Grade 'I' (AEC Grade 3) (continued)

all other limits $T_A = T_J = 25$ °C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ±0.1% and ±0.2%, respectively.

	PARAMETER		TEST CONDITIONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
	Reverse Breakdown		$T_A = T_J = 25$ °C		0.3	0.8	
$\Delta V_R/\Delta I$	Voltage Change with	$I_{RMIN} \le I_R \le 1 \text{ mA}$	$T_A = T_J = T_{MIN}$ to T_{MAX}			1	mV
R	Operating Current Change ⁽⁴⁾	1 mA ≤ I _R ≤ 15 mA	$T_A = T_J = 25$ °C		2.5	6	IIIV
	Change	I IIIA S I _R S 15 IIIA	$T_A = T_J = T_{MIN}$ to T_{MAX}			8	
Z_{R}	Reverse Dynamic Impedance	$I_R = 1 \text{ mA, } f = 120 \text{ Hz,}$ $I_{AC} = 0.1 I_R$			0.3	0.8	Ω
e _N	Wideband Noise	I _R = 100 μA 10 Hz ≤ f ≤ 10 kHz			35		μV_{rms}
ΔV _R	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs T = 25°C ±0.1°C I _R = 100 μA			120		ppm
V _{HYST}	Thermal Hysteresis (5)	$\Delta T = -40$ °C to 125°C			0.08%		

⁽⁴⁾ Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately.

⁽⁵⁾ Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C.

6.9 Electrical Characteristics: 2.5-V LM4040-N V_R Tolerance Grades 'C', 'D', and 'E'; Temperature Grade 'I' (AEC Grade 3)

all other limits T_A = T_J = 25°C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ±0.5%, ±1% and ±2%, respectively.

	PARAMETER		TEST CONDITION	S	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
	Reverse Breakdown Voltage	Ι _R = 100 μΑ				2.5		V
			LM4040CIZ	$T_A = T_J = 25$ °C			±12	
			LM4040CIM3 LM4040CIM7 LM4040QCIM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			±29	
V_R			LM4040DIZ	$T_A = T_J = 25$ °C			±25	
	Reverse Breakdown Voltage Tolerance ⁽³⁾	I _R = 100 μA	LM4040DIM3 LM4040DIM7 LM4040QDIM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			±49	mV
			LM4040EIZ	$T_A = T_J = 25$ °C			±50	
			LM4040EIM3 LM4040EIM7 LM4040QEIM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			±74	
			LM4040CIZ	$T_A = T_J = 25$ °C		45	60	
	Minimum Operating		LM4040CIM3 LM4040CIM7 LM4040QCIM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			65	
			LM4040DIZ	$T_A = T_J = 25$ °C		45	65	
I _{RMIN}	I _{RMIN} Minimum Operating Current		LM4040DIM3 LM4040DIM7 LM4040QDIM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			70	μA
			LM4040EIZ	$T_A = T_J = 25$ °C		45	65	
			LM4040EIM3 LM4040EIM7 LM4040QEIM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			70	
		I _R = 10 mA				±20		
			LM4040CIZ	$T_A = T_J = 25$ °C		±15		
			LM4040CIM3 LM4040CIM7 LM4040QCIM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			±100	
	Average Reverse		LM4040DIZ	$T_A = T_J = 25$ °C		±15		
ΔV _R /ΔT	Breakdown Voltage Temperature Coefficient ⁽³⁾	I _R = 1 mA	LM4040DIM3 LM4040DIM7 LM4040QDIM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			±150	ppm/°C
			LM4040EIZ	$T_A = T_J = 25$ °C		±15		
		LM404 LM404	LM4040EIM3 LM4040EIM7 LM4040QEIM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			±150	
		I _R = 100 μA				±15		

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65°C$

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

E-grade: $\pm 2.98\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100 \text{°C}$ D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100°C$

E-grade: $\pm 3.5\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 100 \text{°C}$

Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V x

 $0.75\% = \pm 19 \text{ mV}.$

⁽¹⁾ Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL.

⁽²⁾ Typicals are at $T_J = 25^{\circ}$ C and represent most likely parametric norm.

The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance $\pm [(\Delta V_R/\Delta T)(max\Delta T)(V_R)]$. Where, $\Delta V_R/\Delta T$ is the V_R temperature coefficient, max ΔT is the maximum difference in temperature from the reference point of 25°C to T $_{MIN}$ or T_{MAX} , and V_{R} is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where max $\Delta T = 65^{\circ}C$ is shown below:

Electrical Characteristics: 2.5-V LM4040-N V_R Tolerance Grades 'C', 'D', and 'E'; Temperature Grade 'I' (AEC Grade 3) (continued)

all other limits $T_A = T_J = 25$ °C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of $\pm 0.5\%$, $\pm 1\%$ and $\pm 2\%$, respectively.

	PARAMETER		TEST CONDITION	IS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
			LM4040CIZ LM4040CIM3 LM4040CIM7	$T_A = T_J = 25$ °C		0.3	0.8	
			LM4040QCIM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			1	
			LM4040DIZ LM4040DIM3	$T_A = T_J = 25$ °C		0.3	1	
		$I_{\text{RMIN}} \le I_{\text{R}} \le 1 \text{ mA}$	LM4040DIM7 LM4040QDIM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			1.2	
			LM4040EIZ LM4040EIM3	$T_A = T_J = 25$ °C		0.3	1	
$\Delta V_R/\Delta I$	Reverse Breakdown Voltage Change with		LM4040EIM7 LM4040QEIM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			1.2	mV
R	Operating Current Change (4)		LM4040CIZ LM4040CIM3	$T_A = T_J = 25$ °C		2.5	6	····v
			LM4040CIM7 LM4040QCIM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			8	
			LM4040DIZ LM4040DIM3	$T_A = T_J = 25^{\circ}C$		2.5	8	
		1 mA ≤ I _R ≤ 15 mA	LM4040DIM7 LM4040QDIM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			2.5 6 8 2.5 8	
			LM4040EIZ LM4040EIM3	$T_A = T_J = 25$ °C		2.5	8	
			LM4040EIM7 LM4040QEIM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			10	
			LM4040CIZ LM4040CIM3 LM4040CIM7 LM4040QCIM3			0.3	0.9	
Z_R	Reverse Dynamic Impedance	I _R = 1 mA, f = 120 Hz I _{AC} = 0.1 I _R	LM4040DIZ LM4040DIM3 LM4040DIM7 LM4040QDIM3			0.3	1.1	Ω
			LM4040EIZ LM4040EIM3 LM4040EIM7 LM4040QEIM3			0.3	1.1	
e _N	Wideband Noise	I _R = 100 μA 10 Hz ≤ f ≤ 10 kHz				35		μV_{rms}
ΔV_R	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs T = 25°C ±0.1°C I _R = 100 μA				120		ppm
V_{HYST}	Thermal Hysteresis ⁽⁵⁾	ΔT= -40°C to 125°C				0.08%		

⁽⁴⁾ Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately.

Submit Documentation Feedback

Copyright © 2000–2016, Texas Instruments Incorporated

⁽⁵⁾ Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C.

6.10 Electrical Characteristics: 2.5-V LM4040-N V_R Tolerance Grades 'C', 'D', And 'E'; Temperature Grade 'E' (AEC Grade 1)

all other limits T_A = T_J = 25°C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ±0.5%, ±1% and ±2%, respectively.

ı	PARAMETER		TEST CONDITION	IS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT					
	Reverse Breakdown Voltage	I _R = 100 μA				2.5		V					
			LM4040CEM3	$T_A = T_J = 25$ °C			±12						
			LM4040QCEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			±38						
V_R	Reverse Breakdown	1 100	LM4040DEM3	$T_A = T_J = 25$ °C			±25	mV					
	Voltage Tolerance ⁽³⁾	I _R = 100 μA	LM4040QDEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			±63	mv					
			LM4040EEM3	$T_A = T_J = 25$ °C			±50						
			LM4040QEEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			±88						
			LM4040CEM3	$T_A = T_J = 25$ °C		45	60						
			LM4040QCEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			68						
	Minimum Operating		LM4040DEM3	$T_A = T_J = 25$ °C		45	65						
I _{RMIN}	Current		LM4040QDEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			73	μΑ					
			LM4040EEM3	$T_A = T_J = 25$ °C		45	65						
			LM4040QEEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			73						
Break Temp		I _R = 10 mA		·		±20							
	Breakdown Voltage Temperature		LM4040CEM3	$T_A = T_J = 25$ °C		±15							
	Temperature Coefficient (3) $I_{R} = 1 \text{ m}.$		LM4040QCEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			±100	ppm/°C					
		1 4 4	LM4040DEM3	$T_A = T_J = 25$ °C		±15							
ΔV _R /ΔI		I _R = 1 mA	LM4040QDEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			±150	ppm/°C					
			LM4040EEM3	$T_A = T_J = 25$ °C		±15							
			LM4040QEEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			±150						
		I _R = 100 μA				±15							
			LM4040CEM3	$T_A = T_J = 25$ °C		0.3	0.8						
			LM4040QCEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			1						
			LM4040DEM3	$T_A = T_J = 25$ °C		0.3	1						
		$I_{RMIN} \le I_R \le 1 \text{ mA}$	LM4040QDEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			1.2						
	Davisas Davidavia		LM4040EEM3	$T_A = T_J = 25$ °C		0.3	1						
ΔV _R /ΔI	Reverse Breakdown Voltage Change		LM4040QEEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			1.2	ma\/					
R	with Operating Current Change ⁽⁴⁾		LM4040CEM3	$T_A = T_J = 25$ °C		2.5	6	mV					
	Current Change		LM4040QCEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			8						
		4 4 - 4 - 4	LM4040DEM3	$T_A = T_J = 25$ °C		2.5	8						
		1 mA ≤ I _R ≤ 15 mA	LM4040QDEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			10						
		LM4040EEM3	$T_A = T_J = 25$ °C		2.5	8							
									LM4040EEM3 LM4040QEEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			10

⁽¹⁾ Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL.

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

E-grade: $\pm 2.98\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100 \text{°C}$ D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$

E-grade: $\pm 3.5\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 100 ^{\circ}\text{C}$

Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V x $0.75\% = \pm 19 \text{ mV}.$

(4) Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately.

Copyright © 2000-2016, Texas Instruments Incorporated

Typicals are at $T_J = 25$ °C and represent most likely parametric norm.

The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance $\pm [(\Delta V_R/\Delta T)(max\Delta T)(V_R)]$. Where, $\Delta V_R/\Delta T$ is the V_R temperature coefficient, max ΔT is the maximum difference in temperature from the reference point of 25°C to T $_{MIN}$ or T_{MAX} , and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where max $\Delta T = 65^{\circ}C$ is shown below:

Electrical Characteristics: 2.5-V LM4040-N V_R Tolerance Grades 'C', 'D', And 'E'; Temperature Grade 'E' (AEC Grade 1) (continued)

all other limits $T_A = T_J = 25$ °C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of $\pm 0.5\%$, $\pm 1\%$ and $\pm 2\%$, respectively.

	PARAMETER		TEST CONDITIONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
			LM4040CEM3 LM4040QCEM3		0.3	0.9	
Z_R	Reverse Dynamic Impedance	$I_R = 1 \text{ mA}, f = 120 \text{ Hz},$ $I_{AC} = 0.1 I_R$	LM4040DEM3 LM4040QDEM3		0.3	1.1	Ω
			LM4040EEM3 LM4040QEEM3		0.3	1.1	
e _N	Wideband Noise	I _R = 100 μA 10 Hz ≤ f ≤ 10 kHz			35		μV_{rms}
ΔV_R	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs T = 25°C ±0.1°C I _R = 100 μA			120		ppm
V _{HYST}	Thermal Hysteresis ⁽⁵⁾	ΔT= -40°C to 125°C			0.08%		

⁽⁵⁾ Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature 125°C.

Submit Documentation Feedback

Copyright © 2000–2016, Texas Instruments Incorporated

6.11 Electrical Characteristics: 3-V LM4040-N V_R Tolerance Grades 'A' And 'B'; Temperature Grade 'I'

all other limits $T_A = T_J = 25$ °C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ±0.1% and ±0.2%, respectively.

	PARAMETER		TEST CONDITION	IS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
	Reverse Breakdown Voltage	I _R = 100 μA				3		V
			LM4040AIM3	$T_A = T_J = 25$ °C			±3	
V_R	Reverse Breakdown		LM4040AIZ	$T_A = T_J = T_{MIN}$ to T_{MAX}			±22	.,
	Voltage Tolerance ⁽³⁾	I _R = 100 μA	LM4040BIM3	$T_A = T_J = 25$ °C			±6	mV
			LM4040BIZ LM4040BIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			±26	
I	Minimum Operating		$T_A = T_J = 25$ °C			47	62	μA
I _{RMIN}	Current		$T_A = T_J = T_{MIN}$ to T_I	мах			67	μΛ
	Average Boveres	I _R = 10 mA				±20		
A)/ /AT	Average Reverse ΔV _R /ΔΤ T	I _R = 1 mA	$T_A = T_J = 25^{\circ}C$			±15		ppm/°C
ΔVR/ΔI	Temperature Coefficient ⁽³⁾	I _R = I IIIA	$T_A = T_J = T_{MIN}$ to T_I	MAX			±100	ррпі/ С
	Coefficient	I _R = 100 μA				±15		
	Reverse Breakdown		$T_A = T_J = 25$ °C			0.6	0.8	
$\Delta V_R/\Delta I$	Voltage Change with	$I_{RMIN} \le I_R \le 1 \text{ mA}$	$T_A = T_J = T_{MIN}$ to T_I	MAX			1.1	mV
R	Operating Current Change (4)	1 m \ < 1 < 15 m \	$T_A = T_J = 25$ °C			2.7	6	IIIV
	Change	1 mA ≤ I _R ≤ 15 mA	$T_A = T_J = T_{MIN}$ to T_I	MAX			9	
Z _R	Reverse Dynamic Impedance	I _R = 1 mA, f = 120 Hz, I _{AC} = 0.1 I _R				0.4	0.9	Ω
e _N	Wideband Noise	I _R = 100 μA 10 Hz ≤ f ≤ 10 kHz				35		μV_{rms}
ΔV _R	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs T = 25°C ±0.1°C I _R = 100 μA				120		ppm
V _{HYST}	Thermal Hysteresis (5)	$\Delta T = -40$ °C to 125°C				0.08%		

- (1) Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL.
- (2) Typicals are at $T_J = 25$ °C and represent most likely parametric norm.
- (3) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T_{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

E-grade: $\pm 2.98\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100 \text{°C}$

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100°C$

E-grade: $\pm 3.5\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 100 \text{°C}$

Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ± 2.5 V × $0.75\% = \pm 19$ mV.

- (4) Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately.
- (5) Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature 125°C.

6.12 Electrical Characteristics: 3-V LM4040-N V_R Tolerance Grades 'C', 'D', And 'E'; **Temperature Grade 'I'**

all other limits T_A = T_J = 25°C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ±0.5%, ±1% and ±2%, respectively.

	PARAMETER		TEST CONDITI	ONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
	Reverse Breakdown Voltage	I _R = 100 μA				3		V
			LM4040CIM3	$T_A = T_J = 25$ °C			±15	
			LM4040CIZ LM4040CIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			±34	
V_R	Reverse Breakdown	I _R = 100 μA	LM4040DIM3	$T_A = T_J = 25$ °C			±30	mV
	Voltage Tolerance ⁽³⁾	Ις = 100 μΑ	LM4040DIZ LM4040DIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			±59	IIIV
			LM4040EIM7	$T_A = T_J = 25$ °C			±60	
			LM4040EIZ	$T_A = T_J = T_{MIN}$ to T_{MAX}			±89	
			LM4040CIM3	$T_A = T_J = 25$ °C		45	60	
			LM4040CIZ LM4040CIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}		45 60 65 45 65	65	
	Minimum Operating		LM4040DIM3	$T_A = T_J = 25$ °C			65	
I _{RMIN}	Current		LM4040DIZ LM4040DIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			70	μA
			LM4040EIM7	$T_A = T_J = 25$ °C		45	65	
			LM4040EIZ	$T_A = T_J = T_{MIN}$ to T_{MAX}			70	
		I _R = 10 mA				±20		
			LM4040CIM3	$T_A = T_J = 25$ °C		±15		
	A		LM4040CIZ LM4040CIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			±100	
$\Delta V_R/\Delta T$	Average Reverse Breakdown Voltage	I _R = 1 mA	LM4040DIM3	$T_A = T_J = 25$ °C		±15		ppm/°C
ΔVR/ΔI	Temperature Coefficient ⁽³⁾	IR = I IIIA	LM4040DIZ LM4040DIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			±150	ррпі/ С
		LM4040EIM7 LM4040EIZ	$T_A = T_J = 25$ °C		±15			
			LM4040EIZ	$T_A = T_J = T_{MIN}$ to T_{MAX}			±150	
		I _R = 100 μA				±15		

(2) Typicals are at $T_J = 25^{\circ}$ C and represent most likely parametric norm.

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

E-grade: $\pm 2.98\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100 \text{°C}$ D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100°C$

E-grade: $\pm 3.5\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 100 \text{°C}$

Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V x $0.75\% = \pm 19 \text{ mV}.$

Submit Documentation Feedback

Copyright © 2000-2016, Texas Instruments Incorporated

⁽¹⁾ Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL.

The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance $\pm [(\Delta V_R/\Delta T)(max\Delta T)(V_R)]$. Where, $\Delta V_R/\Delta T$ is the V_R temperature coefficient, max ΔT is the maximum difference in temperature from the reference point of 25°C to T $_{MIN}$ or T_{MAX} , and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where max $\Delta T = 65^{\circ}C$ is shown below:

Electrical Characteristics: 3-V LM4040-N $\rm V_R$ Tolerance Grades 'C', 'D', And 'E'; Temperature Grade 'l' (continued)

all other limits $T_A = T_J = 25$ °C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of $\pm 0.5\%$, $\pm 1\%$ and $\pm 2\%$, respectively.

	PARAMETER		TEST CONDITI	ONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
			LM4040CIM3 LM4040CIZ LM4040CIM7	$T_A = T_J = 25^{\circ}C$ $T_A = T_J = T_{MIN} \text{ to } T_{MAX}$		0.4	1.3 1.1 1.3 6 9 8 11 8 11	
			LM4040DIM3	$T_A = T_J = 25$ °C		0.4	1.1	
		$I_{RMIN} \le I_R \le 1 \text{ mA}$	LM4040DIZ LM4040DIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			1.3	
	Reverse Breakdown		LM4040EIM7	$T_A = T_J = 25$ °C		0.4	1.1	
$\Delta V_R/\Delta I$	Voltage Change		LM4040EIZ	$T_A = T_J = T_{MIN}$ to T_{MAX}			1.3	mV
R	with Operating Current Change ⁽⁴⁾		LM4040CIM3	$T_A = T_J = 25$ °C		2.7	6	IIIV
	Current Change		LM4040CIZ LM4040CIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			9	
		1 1 - 15 1	LM4040DIM3	$T_A = T_J = 25$ °C		2.7	8	
		1 mA ≤ I _R ≤ 15 mA	LM4040DIZ LM4040DIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			11	
			LM4040EIM7	$T_A = T_J = 25$ °C		2.7	8	
			LM4040EIZ	$T_A = T_J = T_{MIN}$ to T_{MAX}			11	
			LM4040CIM3 LM4040CIZ LM4040CIM7			0.4	0.9	
Z_{R}	Reverse Dynamic Impedance	I _R = 1 mA, f = 120 Hz I _{AC} = 0.1 I _R	LM4040DIM3 LM4040DIZ LM4040DIM7			0.4	1.2	Ω
			LM4040EIM7 LM4040EIZ			0.4	1.2	
e_N	Wideband Noise	I _R = 100 μA 10 Hz ≤ f ≤ 10 kHz				35		μV_{rms}
ΔV_R	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs T = 25°C ±0.1°C I _R = 100 μA				120		ppm
V _{HYST}	Thermal Hysteresis ⁽⁵⁾	$\Delta T = -40$ °C to 125°C				0.08%		

⁽⁴⁾ Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately.

⁽⁵⁾ Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature 125°C.

6.13 Electrical Characteristics: 3-V LM4040-N V_R Tolerance Grades 'C', 'D', And 'E'; Temperature Grade 'E'

all other limits T_A = T_J = 25°C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ±0.5%, ±1% and ±2%, respectively.

F	PARAMETER		TEST CONDITION	ONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
	Reverse Breakdown Voltage	I _R = 100 μA				3		V
			LN40400EN0	$T_A = T_J = 25^{\circ}C$			±15	
			LM4040CEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			±45	
V_R	Reverse Breakdown	1 4004	LM4040DEM0	$T_A = T_J = 25$ °C			±30	\/
	Voltage Tolerance ⁽³⁾	I _R = 100 μA	LM4040DEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			±75	mV
			LM4040FFM2	$T_A = T_J = 25$ °C			±60	
			LM4040EEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			±105	
			LM4040CFM2	$T_A = T_J = 25$ °C		47	62	
			LM4040CEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			70	
	Minimum Operating		LM4040DEM2	$T_A = T_J = 25$ °C		47	67	
I _{RMIN}	Current		LM4040DEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			75	μA
			LMAGAGEEMG	$T_A = T_J = 25^{\circ}C$		47	67	
			LM4040EEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			75	
		I _R = 10 mA		•		±20		
	A B	age Reverse	LN40400EN0	$T_A = T_J = 25^{\circ}C$		±15		
			LM4040CEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			±100	
A)/ /AT	Average Reverse Breakdown Voltage		n Voltage	$T_A = T_J = 25$ °C		±15		/00
$\Delta V_R/\Delta T$	Temperature Coefficient ⁽³⁾	I _R = 1 mA	LM4040DEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			±150	ppm/°C
	Coefficient		LMAGAGEEMG	$T_A = T_J = 25^{\circ}C$		±15		
			LM4040EEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			±150	
		I _R = 100 μA				±15		
			LM4040CFM2	$T_A = T_J = 25$ °C		0.4	0.8	
			LM4040CEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			1.1	
		1 4 4	LMAGAGDEMO	$T_A = T_J = 25^{\circ}C$		0.4	1.1	
		$I_{RMIN} \le I_R \le 1 \text{ mA}$	LM4040DEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			1.3	
	Davisas Davida		LMAGAGEEMG	$T_A = T_J = 25^{\circ}C$		0.4	1.1	
۸۱/ /۸۱	Reverse Breakdown Voltage Change		LM4040EEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			1.3	m\/
$\Delta V_R / \Delta I_R$	with Operating Current Change (4)		LMADAOCEMO	$T_A = T_J = 25$ °C		2.7	6.0	IIIV
	Current Change (1)		LM4040CEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			9	
		1 1 15 1	LMAGAODEMO	$T_A = T_J = 25$ °C		2.7	8	
		1 mA ≤ I _R ≤ 15 mA	LM4040DEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			11.0	mV
			LM4040FFM2	$T_A = T_J = 25$ °C		2.7	8	
			LM4040EEM3	$T_A = T_J = T_{MIN}$ to T_{MAX}			11.0	

⁽¹⁾ Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL.

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

E-grade: $\pm 2.98\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100 \text{°C}$

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$

E-grade: $\pm 3.5\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 100°C$

Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V x $0.75\% = \pm 19 \text{ mV}.$

(4) Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately.

Submit Documentation Feedback

Copyright © 2000-2016, Texas Instruments Incorporated

Typicals are at $T_J = 25$ °C and represent most likely parametric norm.

The (overtemperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance $\pm [(\Delta V_R/\Delta T)(max\Delta T)(V_R)]$. Where, $\Delta V_R/\Delta T$ is the V_R temperature coefficient, max ΔT is the maximum difference in temperature from the reference point of 25°C to T $_{MIN}$ or T_{MAX} , and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where max $\Delta T = 65^{\circ}C$ is shown below:

Electrical Characteristics: 3-V LM4040-N V_R Tolerance Grades 'C', 'D', And 'E'; Temperature Grade 'E' (continued)

all other limits $T_A = T_J = 25$ °C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of $\pm 0.5\%$, $\pm 1\%$ and $\pm 2\%$, respectively.

ı	PARAMETER		TEST CONDITIONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
		I _R = 1 mA, f = 120	LM4040CEM3		0.4	0.9	
Z_R	Reverse Dynamic Impedance	Hz,	LM4040DEM3		0.4	1.2	Ω
	poddi.ioo	$I_{AC} = 0.1 I_{R}$	LM4040EEM3		0.4	1.2	
e _N	Wideband Noise	I _R = 100 μA 10 Hz ≤ f ≤ 10 kHz			35		μV_{rms}
ΔV_R	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs T = 25°C ±0.1°C I _R = 100 μA			120		ppm
V _{HYST}	Thermal Hysteresis ⁽⁵⁾	$\Delta T = -40$ °C to 125°C			0.08%		

⁽⁵⁾ Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature 125°C.

6.14 Electrical Characteristics: 4.1-V LM4040-N V_R Tolerance Grades 'A' And 'B'; Temperature Grade 'I'

all other limits $T_A = T_J = 25$ °C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ±0.1% and ±0.2%, respectively.

	PARAMETER		TEST CONDITION	NS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
	Reverse Breakdown Voltage	Ι _R = 100 μΑ				4.096		V
			LM4040AIM3	$T_A = T_J = 25^{\circ}C$			±4.1	
V_R	Reverse Breakdown		LM4040AIZ	$T_A = T_J = T_{MIN}$ to T_{MAX}			±31	
	Voltage Tolerance ⁽³⁾	I _R = 100 μA	LM4040BIM3	$T_A = T_J = 25^{\circ}C$			±8.2	mV
			LM4040BIZ LM4040BIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			±35	
	Minimum Operating		$T_A = T_J = 25$ °C			50	68	uA
I _{RMIN}	Current		$T_A = T_J = 25^{\circ}C$ $T_A = T_J = T_{MIN} \text{ to } T_{MAX}$		73	μΑ		
	A	I _R = 10 mA				±30		
$\Delta V_R/\Delta T$	Average Reverse Breakdown Voltage	1 1 m A	$T_A = T_J = 25$ °C			±20		nn m /0C
ΔVR/ΔI	Temperature Coefficient ⁽³⁾	$I_R = 1 \text{ mA}$	$T_A = T_J = T_{MIN}$ to T_{MIN}	MAX			±100	ppm/°C
	Coefficient	I _R = 100 μA				±20		
	Daverse Presidence	1 m	$T_A = T_J = 25$ °C			0.5	0.9	
$\Delta V_R/\Delta I$	Reverse Breakdown Voltage Change with	$I_{RMIN} \le I_R \le 1 \text{ mA}$	$T_A = T_J = T_{MIN}$ to T_{MAX}				1.2	\/
R	Operating Current Change ⁽⁴⁾	perating Current	$T_A = T_J = 25$ °C			3	7	mV
	Change	1 mA ≤ I _R ≤ 15 mA	$T_A = T_J = T_{MIN}$ to T_{MIN}	MAX	### ##################################	10		

⁽¹⁾ Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL.

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

E-grade: $\pm 2.98\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100^{\circ}\text{C}$

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/}^{\circ}\text{C} \times 100^{\circ}\text{C}$

E-grade: $\pm 3.5\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$

Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ± 2.5 V × $0.75\% = \pm 19$ mV.

(4) Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately.

⁽²⁾ Typicals are at $T_J = 25^{\circ}$ C and represent most likely parametric norm.

⁽³⁾ The (overtemperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T_{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

Electrical Characteristics: 4.1-V LM4040-N V_R Tolerance Grades 'A' And 'B'; Temperature Grade 'I' (continued)

all other limits $T_A = T_J = 25$ °C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of $\pm 0.1\%$ and ±0.2%, respectively.

	PARAMETER		TEST CONDITIONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
Z_R	Reverse Dynamic Impedance	$I_R = 1 \text{ mA}, f = 120 \text{ Hz},$ $I_{AC} = 0.1 I_R$			0.5	1	Ω
e _N	Wideband Noise	I _R = 100 μA 10 Hz ≤ f ≤ 10 kHz			80		μV_{rms}
ΔV _R	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs T = 25°C ±0.1°C I _R = 100 μA			120		ppm
V _{HYST}	Thermal Hysteresis (5)	$\Delta T = -40^{\circ}C$ to 125°C			0.08%		

Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature 125°C.

6.15 Electrical Characteristics: 4.1-V LM4040-N V_R Tolerance Grades 'C' and 'D'; Temperature

all other limits T_A = T_J = 25°C. The grades C and D designate initial Reverse Breakdown Voltage tolerances of ±0.5% and ±1%. respectively.

	PARAMETER		TEST CONDITION	ONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
	Reverse Breakdown Voltage	I _R = 100 μA				4.096		V
			LM4040CIM3	$T_A = T_J = 25$ °C			±20	
V_R	Reverse Breakdown	100	LM4040CIZ LM4040CIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			±47	m) /
	Voltage Tolerance ⁽³⁾	I _R = 100 μA	LM4040DIM3	$T_A = T_J = 25$ °C			±41	mV
			LM4040DIZ LM4040DIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			±81	
			LM4040CIM3	$T_A = T_J = 25$ °C		50	68	
	Minimum Operating	m Operating $ \begin{array}{c c} LM4040CIZ \\ LM4040CIM7 \end{array} $ $ T_A = T_J = T_{MIN} \text{ to } T_{MAX} $			73			
I _{RMIN}	Current		LM4040DIM3	$T_A = T_J = 25$ °C		50	73	μA
			LM4040DIZ LM4040DIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			78	
		I _R = 10 mA				±30		
			LM4040CIM3	$T_A = T_J = 25$ °C		±20		
ΔV _R /	Average Reverse Breakdown Voltage	1 4	LM4040CIZ LM4040CIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			±100	
ΔΤ	Temperature	I _R = 1 mA	LM4040DIM3	$T_A = T_J = 25$ °C		±20		ppm/°C
	Coefficient ⁽³⁾	!	LM4040DIZ LM4040DIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			±150	
		I _R = 100 μA				±20		

- (1) Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL.
- (2) Typicals are at $T_J = 25$ °C and represent most likely parametric norm.
- The (overtemperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance $\pm [(\Delta V_R/\Delta T)(max\Delta T)(V_R)]$. Where, $\Delta V_R/\Delta T$ is the V_R temperature coefficient, max ΔT is the maximum difference in temperature from the reference point of 25°C to T $_{MIN}$ or T_{MAX} , and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where max $\Delta T = 65^{\circ}C$ is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

E-grade: $\pm 2.98\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100 \text{°C}$

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$

E-grade: $\pm 3.5\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$

Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V x $0.75\% = \pm 19 \text{ mV}.$

Electrical Characteristics: 4.1-V LM4040-N V_R Tolerance Grades 'C' and 'D'; Temperature Grade 'I' (continued)

all other limits $T_A = T_J = 25$ °C. The grades C and D designate initial Reverse Breakdown Voltage tolerances of $\pm 0.5\%$ and $\pm 1\%$, respectively.

	PARAMETER		TEST CONDITIO	ONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
			LM4040CIM3	$T_A = T_J = 25$ °C		0.5	0.9	
			LM4040CIZ LM4040CIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			1.2	
		$I_{RMIN} \le I_R \le 1 \text{ mA}$	LM4040DIM3	$T_A = T_J = 25$ °C		0.5	1.2	
ΔV _R /	Reverse Breakdown Voltage Change with		LM4040DIZ LM4040DIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			1.5	mV
ΔI_R	Operating Current Change (4)		LM4040CIM3	$T_A = T_J = 25$ °C		3	7	IIIV
	Change	1 1 15 1	LM4040CIZ LM4040CIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			10	
		1 mA ≤ I _R ≤ 15 mA	LM4040DIM3	$T_A = T_J = 25$ °C		3	9	
			LM4040DIZ LM4040DIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			9	
Z_R	Reverse Dynamic	I _R = 1 mA, f = 120 Hz,	LM4040CIM3 LM4040CIZ LM4040CIM7			0.5		Ω
Z _R	Impedance	I _{AC} = 0.1 I _R	LM4040DIM3 LM4040DIZ LM4040DIM7			0.5	1.3	Ω
e _N	Wideband Noise	I _R = 100 μA 10 Hz ≤ f ≤ 10 kHz				80		μV_{rms}
ΔV_R	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs T = 25°C ±0.1°C I _R = 100 μA				120		ppm
V_{HYST}	Thermal Hysteresis (5)	$\Delta T = -40$ °C to 125°C				0.08%		

⁽⁴⁾ Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately.

6.16 Electrical Characteristics: 5-V LM4040-N V_R Tolerance Grades 'A' And 'B'; Temperature Grade 'I'

all other limits $T_A = T_J = 25$ °C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ±0.1% and ±0.2%, respectively.

	PARAMETER		TEST CONDITIO	NS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
	Reverse Breakdown Voltage	I _R = 100 μA				5		V
	Reverse Breakdown Voltage Tolerance (3)		LM4040AIM3	$T_A = T_J = 25$ °C			±5	
V_R		Ι _R = 100 μΑ	LM4040AIZ	$T_A = T_J = T_{MIN}$ to T_{MAX}			±38	
			LM4040BIM3	$T_A = T_J = 25$ °C			±10	mV
			LM4040BIZ LM4040BIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			±43	

⁽¹⁾ Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL.

Typicals are at $T_J = 25^{\circ}$ C and represent most likely parametric norm.

The (overtemperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T _{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$ E-grade: $\pm 2.98\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100^{\circ}\text{C}$ D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$ E-grade: $\pm 3.5\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$

Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ± 2.5 V x $0.75\% = \pm 19$ mV.

Copyright © 2000–2016, Texas Instruments Incorporated

⁽⁵⁾ Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature 125°C.

Electrical Characteristics: 5-V LM4040-N V_R Tolerance Grades 'A' And 'B'; Temperature Grade 'I' (continued)

all other limits $T_A = T_J = 25$ °C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ±0.1% and ±0.2%, respectively.

	PARAMETER		TEST CONDITIONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
	Minimum Operating		$T_A = T_J = 25$ °C		54	74	
I _{RMIN}	Current		$T_A = T_J = T_{MIN}$ to T_{MAX}			80	μΑ
	Average Deverse	I _R = 10 mA			±30		
$\Delta V_R/\Delta$	Average Reverse Breakdown Voltage	1 - 1 mΛ	$T_A = T_J = 25$ °C		±20		nnm/°C
Ť	Temperature Coefficient ⁽³⁾	$I_R = 1 \text{ mA}$	$T_A = T_J = T_{MIN}$ to T_{MAX}			±100	ppm/°C
	Coemcient	I _R = 100 μA			±20		
	Reverse Breakdown	$I_{RMIN} \le I_R \le 1 \text{ mA}$	$T_A = T_J = 25$ °C		0.5	1	
$\Delta V_R/\Delta$	Voltage Change with	rith	$T_A = T_J = T_{MIN}$ to T_{MAX}			1.4	mV
I_R	Operating Current Change (4)	1 mA ≤ I _R ≤ 15 mA	$T_A = T_J = 25$ °C		3.5	8	IIIV
	Change	TIMA SIR SISIMA	$T_A = T_J = T_{MIN}$ to T_{MAX}			12	
Z_R	Reverse Dynamic Impedance	$I_R = 1 \text{ mA}, f = 120 \text{ Hz},$ $I_{AC} = 0.1 I_R$			0.5	1.1	Ω
e _N	Wideband Noise	I _R = 100 μA 10 Hz ≤ f ≤ 10 kHz			80		μV_{rms}
ΔV_R	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs T = 25°C ±0.1°C I _R = 100 µA			120		ppm
V_{HYST}	Thermal Hysteresis (5)	$\Delta T = -40^{\circ}C$ to 125°C			0.08%		

⁽⁴⁾ Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately.

6.17 Electrical Characteristics: 5-V LM4040-N V_R Tolerance Grades 'C' And 'D'; Temperature Grade 'l'

all other limits $T_A = T_J = 25$ °C. The grades C and D designate initial Reverse Breakdown Voltage tolerances of $\pm 0.5\%$ and $\pm 1\%$, respectively.

	PARAMETER		TEST CONDITIO	NS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
	Reverse Breakdown Voltage	I _R = 100 μA				5		V
	Reverse Breakdown Voltage Tolerance ⁽³⁾		LM4040CIM3	$T_A = T_J = 25$ °C	±25			
V_R		1 4004	LM4040CIZ LM4040CIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}			±58	\/
			LM4040DIM3 LM4040DIZ LM4040DIM7	$T_A = T_J = 25$ °C			±50	mV
				$T_A = T_J = T_{MIN}$ to T_{MAX}			±99	

(1) Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL.

(2) Typicals are at $T_J = 25^{\circ}$ C and represent most likely parametric norm.

The (overtemperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T _{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

E-grade: $\pm 2.98\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100^{\circ}\text{C}$ D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$

E-grade: $\pm 3.5\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 100\text{°C}$

Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ± 2.5 V x $0.75\% = \pm 19$ mV.

⁽⁵⁾ Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature 125°C.

Electrical Characteristics: 5-V LM4040-N V_R Tolerance Grades 'C' And 'D'; Temperature Grade 'I' (continued)

all other limits $T_A = T_J = 25$ °C. The grades C and D designate initial Reverse Breakdown Voltage tolerances of $\pm 0.5\%$ and $\pm 1\%$, respectively.

	PARAMETER		TEST CONDITIO	NS	MIN ⁽¹⁾ TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
			LM4040CIM3 LM4040CIZ	$T_A = T_J = 25$ °C	54	74	
I _{RMIN}	Minimum Operating		LM4040CIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}		80	μA
RMIN	Current		LM4040DIM3 LM4040DIZ	$T_A = T_J = 25^{\circ}C$	54	79	μΛ
			LM4040DIZ LM4040DIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}		±100 ±150 1 1.4 1.3 1.8 8 12 10 15	
		I _R = 10 mA			±30		
			LM4040CIM3	$T_A = T_J = 25$ °C	±20		
$\Delta V_R/\Delta$	Average Reverse Breakdown Voltage	1 1 2 2	LM4040CIZ LM4040CIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}		±100	100
Ť	Temperature Coefficient ⁽³⁾	I _R = 1 mA	LM4040DIM3	$T_A = T_J = 25$ °C	±20		ppm/°C
	Coemcient		LM4040DIZ LM4040DIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}		±150	
		I _R = 100 μA			±20		
			LM4040CIM3	$T_A = T_J = 25$ °C	0.5	1	
			LM4040CIZ LM4040CIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}		±20 0.5 1 1.4 0.5 1.3	
		$I_{RMIN} \le I_R \le 1 \text{ mA}$	LM4040DIM3	$T_A = T_J = 25$ °C	0.5	1.3	
$\Delta V_R/\Delta$	Reverse Breakdown Voltage Change with		LM4040DIZ LM4040DIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}		1.8	
IR	Operating Current Change (4)		LM4040CIM3	$T_A = T_J = 25$ °C	3.5	8	mV
	Change	4 4 4 4 4 5 4	LM4040CIZ LM4040CIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}		12	
		1 mA ≤ I _R ≤ 15 mA	LM4040DIM3	$T_A = T_J = 25$ °C	3.5	10	
			LM4040DIZ LM4040DIM7	$T_A = T_J = T_{MIN}$ to T_{MAX}		15	
Z_R	Reverse Dynamic	I _R = 1 mA, f = 120 Hz,	$T_A = T_J = 25$ °C		0.5	1.1	Ω
∠R	Impedance	$I_{AC} = 0.1 I_{R}$	$T_A = T_J = T_{MIN}$ to	o T _{MAX}		1.5	Ω
e _N	Wideband Noise	I _R = 100 μA 10 Hz ≤ f ≤ 10 kHz			80		μV_{rms}
ΔV_{R}	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs T = 25°C ±0.1°C I _R = 100 μA			120		ppm
V _{HYST}	Thermal Hysteresis (5)	$\Delta T = -40^{\circ}C$ to 125°C			0.08%		

⁽⁴⁾ Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately.

must be taken into account separately.

(5) Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature 125°C.

6.18 Electrical Characteristics: 5-V LM4040-N V_R Tolerance Grades 'C' And 'D'; Temperature Grade 'E'

all other limits T_A = T_J = 25°C. The grades C and D designate initial Reverse Breakdown Voltage tolerances of ±0.5% and ±1%, respectively.

	PARAMETER		TEST CONDITION	IS	MIN ⁽¹⁾	TYP	MAX ⁽¹⁾	UNIT
	Reverse Breakdown Voltage	I _R = 100 μA				5		V
			100 μA	±25 ±75 ±50 ±125 74 83 79 88 ±100 ppr ±150 1 1.4 1.8 8 12				
V_R	Reverse Breakdown	L = 100 HA	LIVI4040CLIVI3	$T_A = T_J = T_{MIN}$ to T_{MAX}			±75	mV
	Voltage Tolerance ⁽²⁾	I _R = 100 μA	I MADADEM3	$T_A = T_J = 25$ °C			±50	IIIV
			LIVITOTOBLIVIS	$T_A = T_J = T_{MIN}$ to T_{MAX}			±125	
			LM4040CEM3	$T_A = T_J = 25$ °C		54	74	
1	Minimum Operating		LIVITOTOCLIVIO	$T_A = T_J = T_{MIN}$ to T_{MAX}			83	μA
I _{RMIN}	Current		I M4040DEM3	$T_A = T_J = 25$ °C		54	79	μΑ
			LIVITOTOBLIVIS	$T_A = T_J = T_{MIN}$ to T_{MAX}			88	
		$I_R = 10 \text{ mA}$				±30		
	Average Reverse		LM4040CEM3	$T_A = T_J = 25$ °C		±20		
ΔV_R /	Breakdown Voltage	I _R = 1 mA	LIVI4040CLIVI3	$T_A = T_J = T_{MIN}$ to T_{MAX}			±100	ppm/°C
ΔΤ	Temperature Coefficient ⁽²⁾	IR - I IIIA	I MADADEM3	$T_A = T_J = 25$ °C		±20		ррпі, С
	Coefficient		LIVI4040DLIVIS	$T_A = T_J = T_{MIN}$ to T_{MAX}			±150	
		I _R = 100 μA				±20		
			I M4040CEM3	$T_A = T_J = 25$ °C		0.5	1	
		< < 1 m/\	LIVI4040CLIVI3	$T_A = T_J = T_{MIN}$ to T_{MAX}			1.4	
	Reverse Breakdown	IRMIN = IR = I IIIA	LM4040DEM3	$T_A = T_J = 25$ °C		0.5	1	
ΔV_R /	Voltage Change with		LIVI4040DLIVI3	$T_A = T_J = T_{MIN}$ to T_{MAX}			1.8	mV
ΔI_R	Operating Current Change ⁽³⁾		I M4040CEM3	$T_A = T_J = 25$ °C		3.5	8	IIIV
	Change	1 m \ < < 15 m \	LIVI4040CLIVI3	$T_A = T_J = T_{MIN}$ to T_{MAX}			12	
		I IIIA 3 IR 3 IO IIIA	I MADADEM3	$T_A = T_J = 25^{\circ}C$		3.5	8	
			LIVI4040DLIVIS	$T_A = T_J = T_{MIN}$ to T_{MAX}			15	
Z _R	Reverse Dynamic Impedance	$I_R = 1 \text{ mA, } f = 120 \text{ Hz,}$ $I_{AC} = 0.1 I_R$				0.5	1.1	Ω
e _N	Wideband Noise	$I_R = 100 \mu A$ 10 Hz \le f \le 10 kHz				80		μV_{rms}
ΔV_R	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs T = 25°C ±0.1°C I _R = 100 μA				120		ppm
$V_{\scriptsize{HYST}}$	Thermal Hysteresis (4)	$\Delta T = -40$ °C to 125°C				0.08%		

- (1) Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL.
- The (overtemperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance $\pm [(\Delta V_R/\Delta T)(max\Delta T)(V_R)]$. Where, $\Delta V_R/\Delta T$ is the V_R temperature coefficient, $max\Delta T$ is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where max $\Delta T = 65$ °C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

E-grade: $\pm 2.98\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100 \text{°C}$

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$

E-grade: $\pm 3.5\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 100 \text{°C}$

Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V x $0.75\% = \pm 19 \text{ mV}.$

- Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately.
- Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature 125°C.

6.19 Electrical Characteristics: 8.2-V LM4040-N V_R Tolerance Grades 'A' And 'B'; Temperature

all other limits T_A = T_J = 25°C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ±0.1% and ±0.2%, respectively.

	PARAMETER		TEST CONDITIO	INS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
	Reverse Breakdown Voltage	Ι _R = 150 μΑ				8.192		V
			LM4040AIM3	$T_A = T_J = 25$ °C			±8.2	
V_R	Reverse Breakdown	I _R = 150 μA	LM4040AIZ	$T_A = T_J = T_{MIN}$ to T_{MAX}			±61	mV
	Voltage Tolerance ⁽³⁾	Ις = 150 μΑ	LM4040BIM3	$T_A = T_J = 25$ °C			±16	IIIV
			LM4040BIZ	$T_A = T_J = T_{MIN}$ to T_{MAX}			±70	
I	Minimum Operating		$T_A = T_J = 25$ °C			67	91	μA
I _{RMIN}	Current		$T_A = T_J = T_{MIN} t$	o T _{MAX}			95	μΑ
	Average Reverse	$I_R = 10 \text{ mA}$				±40		
$\Delta V_R/\Delta T$	Breakdown Voltage Temperature Coefficient ⁽³⁾	I _R = 1 mA	$T_A = T_J = 25$ °C	$T_A = T_J = 25$ °C		±20		ppm/°C
			$T_A = T_J = T_{MIN} t$	o T _{MAX}			±100	ррпі/ С
	Coefficient	I _R = 150 μA				±20		
	Reverse Breakdown	$I_{RMIN} \le I_R \le 1 \text{ mA}$	$T_A = T_J = 25$ °C			0.6	1.3	
$\Delta V_R/\Delta I$	Voltage Change with	IRMIN = IR = I IIIA	$T_A = T_J = T_{MIN} t$	o T _{MAX}			2.5	mV
R	Operating Current Change (4)	1 mA ≤ I _R ≤ 15 mA	$T_A = T_J = 25$ °C			7	10	IIIV
	Change	T IIIA S I _R S 15 IIIA	$T_A = T_J = T_{MIN}$	o T _{MAX}			18	
Z _R	Reverse Dynamic Impedance	$I_R = 1 \text{ mA}, f = 120 \text{ Hz},$ $I_{AC} = 0.1 I_R$				0.6	1.5	Ω
e _N	Wideband Noise	$I_R = 150 \mu A$ 10 Hz \le f \le 10 kHz				130		μV_{rms}
ΔV_R	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs T = 25°C ±0.1°C I _R = 150 μA				120		ppm
V _{HYST}	Thermal Hysteresis (5)	$\Delta T = -40$ °C to 125°C				0.08%		

- (1) Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL.
- Typicals are at $T_J = 25$ °C and represent most likely parametric norm.
- The (overtemperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance $\pm [(\Delta V_R/\Delta T)(max\Delta T)(V_R)]$. Where, $\Delta V_R/\Delta T$ is the V_R temperature coefficient, max ΔT is the maximum difference in temperature from the reference point of 25°C to T _{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where max $\Delta T = 65$ °C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

E-grade: $\pm 2.98\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100^{\circ}\text{C}$

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$

E-grade: $\pm 3.5\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 100 ^{\circ}\text{C}$

Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V x $0.75\% = \pm 19 \text{ mV}.$

- Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately.
- Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature 125°C.

6.20 Electrical Characteristics: 8.2-V Lm4040-N V_R Tolerance Grades 'C' And 'D'; Temperature Grade 'I'

all other limits $T_A = T_J = 25$ °C. The grades C and D designate initial Reverse Breakdown Voltage tolerances of ±0.5% and ±1%, respectively.

	PARAMETER		TEST CONDITI	ONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
	Reverse Breakdown Voltage	I _R = 150 μA				8.192		V
			LM4040CIM3	$T_A = T_J = 25$ °C			±41	
V_R	Reverse Breakdown	I _R = 150 μA	LM4040CIZ	$T_A = T_J = T_{MIN}$ to T_{MAX}			±94	mV
	Voltage Tolerance ⁽³⁾	Ι _R = 130 μΑ	LM4040DIM3	$T_A = T_J = 25$ °C			±82	IIIV
			LM4040DIZ	$T_A = T_J = T_{MIN}$ to T_{MAX}			±162	
			LM4040CIM3	$T_A = T_J = 25^{\circ}C$		67	91	
la	Minimum Operating		LM4040CIZ	$T_A = T_J = T_{MIN}$ to T_{MAX}			95	μA
I _{RMIN}	Current		LM4040DIM3	$T_A = T_J = 25^{\circ}C$		67	96	μπ
			LM4040DIZ	$T_A = T_J = T_{MIN}$ to T_{MAX}			100	
		I _R = 10 mA				±40		
	Average Reverse		LM4040CIM3	$T_A = T_J = 25$ °C		±20		
$\Delta V_R/\Delta T$	Breakdown Voltage	I _R = 1 mA	LM4040CIZ	$T_A = T_J = T_{MIN}$ to T_{MAX}			±100	ppm/°C
Δ•R/Δ.	Temperature Coefficient ⁽³⁾	nperature LM40	LM4040DIM3	$T_A = T_J = 25$ °C		±20		
	Coomoioni		LM4040DIZ	$T_A = T_J = T_{MIN}$ to T_{MAX}			±150	
		I _R = 150 μA				±20	-	
			LM4040CIM3	$T_A = T_J = 25$ °C		0.6	6 1.3	
		$I_{RMIN} \le I_R \le 1 \text{ mA}$	LM4040CIZ	$T_A = T_J = T_{MIN}$ to T_{MAX}			2.5	
	Reverse Breakdown	RMIN - IR - I IIII	LM4040DIM3	$T_A = T_J = 25$ °C		0.6	1.7	
$\Delta V_R/\Delta I$	Voltage Change with		LM4040DIZ	$T_A = T_J = T_{MIN}$ to T_{MAX}			3	mV
R	Operating Current Change (4)		LM4040CIM3	$T_A = T_J = 25$ °C		7	10	****
	S.i.a.i.go	1 mA ≤ I _R ≤ 15 mA	LM4040CIZ	$T_A = T_J = T_{MIN}$ to T_{MAX}			18	
			LM4040DIM3	$T_A = T_J = 25$ °C		7	15	
			LM4040DIZ	$T_A = T_J = T_{MIN}$ to T_{MAX}			24	
Z_R	Reverse Dynamic	I _R = 1 mA, f = 120 Hz,	LM4040CIM3 LM4040CIZ			0.6	1.5	Ω
- K	Impedance	$I_{AC} = 0.1 I_{R}$	LM4040DIM3 LM4040DIZ			0.6	1.9	22
e _N	Wideband Noise	$I_R = 150 \mu A$ 10 Hz \le f \le 10 kHz				130		μV_{rms}
ΔV_R	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs T = 25°C ±0.1°C I _R = 150 μA				120		ppm
V _{HYST}	Thermal Hysteresis (5)	$\Delta T = -40$ °C to 125°C				0.08%		

⁽¹⁾ Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL.

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

E-grade: $\pm 2.98\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100 \text{°C}$

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$

E-grade: $\pm 3.5\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$

Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ± 2.5 V × $0.75\% = \pm 19$ mV.

8 Submit Documentation Feedback

Copyright © 2000–2016, Texas Instruments Incorporated

⁽²⁾ Typicals are at $T_J = 25$ °C and represent most likely parametric norm.

The (overtemperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T_{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

⁽⁴⁾ Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately.

⁽⁵⁾ Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature 125°C.

6.21 Electrical Characteristics: 10-V LM4040-N V_R Tolerance Grades 'A' And 'B'; Temperature

all other limits T_A = T_J = 25°C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ±0.1% and ±0.2%, respectively.

	PARAMETER		TEST CONDIT	ions	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
	Reverse Breakdown Voltage	I _R = 150 μA				10		V
			LM4040AIM3	$T_A = T_J = 25$ °C			±10	
V_R	Reverse Breakdown	I _R = 150 μA	LM4040AIZ	$T_A = T_J = T_{MIN}$ to T_{MAX}			±75	mV
	Voltage Tolerance ⁽³⁾	Ι _R = 150 μΑ	LM4040BIM3	$T_A = T_J = 25$ °C			±20	IIIV
			LM4040BIZ	$T_A = T_J = T_{MIN}$ to T_{MAX}			±85	
1	Minimum Operating		$T_A = T_J = 25$ °C			75	100	μA
I _{RMIN}	Current		$T_A = T_J = T_{MIN} t$	to T _{MAX}			103	μΛ
	Avorago Boyeroo	$I_R = 10 \text{ mA}$				±40		
$\Delta V_R/\Delta T$	Average Reverse Breakdown Voltage Temperature Coefficient ⁽³⁾	I _R = 1 mA	$T_A = T_J = 25$ °C			±20		ppm/°C
			$T_A = T_J = T_{MIN} t$	to T _{MAX}			±100	ррпі/ С
	Coefficient	I _R = 150 μA				±20	±100	
	Reverse Breakdown	$I_{RMIN} \le I_R \le 1 \text{ mA}$	$T_A = T_J = 25$ °C			0.8		
$\Delta V_R/\Delta I$	Voltage Change with	I _{RMIN} = I _R = 1 IIIA	$T_A = T_J = T_{MIN} t$	to T _{MAX}			3.5	mV
R	Operating Current Change (4)	1 m 1 < 15 m 1	$T_A = T_J = 25$ °C			8	12	IIIV
	Change	1 mA ≤ I _R ≤ 15 mA	$T_A = T_J = T_{MIN}$	to T _{MAX}			23	
Z _R	Reverse Dynamic Impedance	$I_R = 1 \text{ mA}, f = 120 \text{ Hz},$ $I_{AC} = 0.1 I_R$				0.7	1.7	Ω
e _N	Wideband Noise	$I_R = 150 \mu A$ 10 Hz \le f \le 10 kHz				180		μV_{rms}
ΔV_R	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs T = 25°C ±0.1°C I _R = 150 μA				120		ppm
V _{HYST}	Thermal Hysteresis (5)	ΔT = -40°C to 125°C				0.08%		

- (1) Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL.
- Typicals are at $T_J = 25$ °C and represent most likely parametric norm.
- The (overtemperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance $\pm [(\Delta V_R/\Delta T)(max\Delta T)(V_R)]$. Where, $\Delta V_R/\Delta T$ is the V_R temperature coefficient, max ΔT is the maximum difference in temperature from the reference point of 25°C to T _{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where max $\Delta T = 65$ °C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

E-grade: $\pm 2.98\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100^{\circ}\text{C}$

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$

E-grade: $\pm 3.5\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 100 ^{\circ}\text{C}$

Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V x $0.75\% = \pm 19 \text{ mV}.$

- Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately.
- Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature 125°C.

6.22 Electrical Characteristics: 10-V LM4040-N V_R Tolerance Grades 'C' And 'D'; Temperature Grade 'l'

all other limits $T_A = T_J = 25$ °C. The grades C and D designate initial Reverse Breakdown Voltage tolerances of $\pm 0.5\%$ and $\pm 1\%$, respectively.

	PARAMETER		TEST CONDITIONS		MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT	
	Reverse Breakdown Voltage	I _R = 150 μA				10		V	
V _R	Reverse Breakdown Voltage Tolerance ⁽³⁾	I _R = 150 μA	LM4040CIM3 LM4040CIZ	$T_A = T_J = 25$ °C			±50	mV	
				$T_A = T_J = T_{MIN}$ to T_{MAX}			±115		
			LM4040DIM3 LM4040DIZ	$T_A = T_J = 25$ °C			±100		
				$T_A = T_J = T_{MIN}$ to T_{MAX}			±198		
I _{RMIN}	Minimum Operating Current		LM4040CIM3 LM4040CIZ	$T_A = T_J = 25$ °C		75	100	μΑ	
				$T_A = T_J = T_{MIN}$ to T_{MAX}			103		
			LM4040DIM3 LM4040DIZ	$T_A = T_J = 25$ °C		75	110		
				$T_A = T_J = T_{MIN}$ to T_{MAX}			113		
$\Delta V_R/\Delta T$	Average Reverse Breakdown Voltage Temperature Coefficient (3)	I _R = 10 mA				±40			
		I _R = 1 mA	LM4040CIM3 LM4040CIZ	$T_A = T_J = 25$ °C		±20		ppm/°C	
				$T_A = T_J = T_{MIN}$ to T_{MAX}			±100		
			LM4040DIM3 LM4040DIZ	$T_A = T_J = 25$ °C		±20			
				$T_A = T_J = T_{MIN}$ to T_{MAX}			±150		
		I _R = 150 μA				±20			
ΔV _R /ΔI R	Reverse Breakdown Voltage Change with Operating Current Change ⁽⁴⁾	$I_{RMIN} \le I_R \le 1 \text{ mA}$	LM4040CIM3 LM4040CIZ	$T_A = T_J = 25$ °C		0.8	1.5	mV	
				$T_A = T_J = T_{MIN}$ to T_{MAX}			3.5		
			LM4040DIM3	$T_A = T_J = 25$ °C		0.8	2		
		1 mA ≤ I _R ≤ 15 mA	LM4040DIZ	$T_A = T_J = T_{MIN}$ to T_{MAX}			4		
			LM4040CIM3 LM4040CIZ	$T_A = T_J = 25$ °C		8	12		
				$T_A = T_J = T_{MIN}$ to T_{MAX}			23		
			LM4040DIM3 LM4040DIZ	$T_A = T_J = 25^{\circ}C$		8	18		
				$T_A = T_J = T_{MIN}$ to T_{MAX}			29		
Z _R	Reverse Dynamic Impedance	I _R = 1 mA, f = 120 Hz, I _{AC} = 0.1 I _R	LM4040CIM3 LM4040CIZ	LM4040CIM3 LM4040CIZ		0.7	1.7	•	
			LM4040DIM3 LM4040DIZ			2.3		Ω	
e _N	Wideband Noise	I _R = 150 μA 10 Hz ≤ f ≤ 10 kHz				180		μV_{rms}	
ΔV _R	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs T = 25°C ±0.1°C I _R = 150 μA				120		ppm	
V _{HYST}	Thermal Hysteresis (5)	$\Delta T = -40$ °C to 125°C				0.08%			

⁽¹⁾ Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL.

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

E-grade: $\pm 2.98\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100 \text{°C}$

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$

E-grade: $\pm 3.5\% = \pm 2.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$

Therefore, as an example, the $\stackrel{\frown}{A}$ -grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{V} \times 0.75\% = \pm 19 \text{ mV}$.

0 Submit Documentation Feedback

Copyright © 2000–2016, Texas Instruments Incorporated

⁽²⁾ Typicals are at $T_J = 25$ °C and represent most likely parametric norm.

The (overtemperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T_{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

⁽⁴⁾ Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately.

⁽⁵⁾ Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature 125°C.

6.23 Typical Characteristics

Figure 1. Temperature Drift For Different Average Temperature Coefficient

Figure 2. Output Impedance vs Frequency

Figure 3. Output Impedance vs Frequency

Figure 4. Reverse Characteristics And Minimum Operating Current

Figure 5. Noise Voltage vs Frequency

STRUMENTS

6.23.1 Start-Up Characteristics

7 Parameter Measurement Information

Figure 9. Test Circuit

Detailed Description

8.1 Overview

The LM4040 device is a precision micropower shunt voltage reference available in 7 different fixed-output voltage options and three different packages to meet small footprint requirements. The part is also available in five different tolerance grades.

8.2 Functional Block Diagram

8.3 Feature Description

The LM4040 device is effectively a precision Zener diode. The part requires a small guiescent current for regulation, and regulates the output voltage by shunting more or less current to ground, depending on input voltage and load. The only external component requirement is a resistor between the cathode and the input voltage to set the input current. An external capacitor can be used on the input or output, but is not required.

8.4 Device Functional Modes

The LM4040 device is a fixed output voltage part, where the feedback is internal. Therefore, the part can only operate is a closed loop mode and the output voltage cannot be adjusted. The output voltage will remain in regulation as long as I_R is between I_{RMIN}, see *Electrical Characteristics: 2-V LM4040-N V_R Tolerance Grades 'A'* And 'B'; Temperature Grade 'I', and I_{RMAX}, 15 mA. Proper selection of the external resistor for input voltage range and load current range will ensure these conditions are met.

Copyright © 2000-2016, Texas Instruments Incorporated Submit Documentation Feedback

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The LM4040-N is a precision micropower curvature-corrected bandgap shunt voltage reference. For space critical applications, the LM4040-N is available in the sub-miniature SOT-23 and SC70 surface-mount package. The LM4040-N has been designed for stable operation without the need of an external capacitor connected between the + pin and the - pin. If, however, a bypass capacitor is used, the LM4040-N remains stable. Reducing design effort is the availability of several fixed reverse breakdown voltages: 2.048 V, 2.5 V, 3 V, 4.096 V, 5 V, 8.192 V, and 10 V. The minimum operating current increases from 60 μ A for the LM4040-N-2.048 and LM4040-N-2.5 to 100 μ A for the 10-V LM4040-N. All versions have a maximum operating current of 15 mA.

LM4040-Ns in the SOT-23 packages have a parasitic Schottky diode between pin 2 (-) and pin 3 (Die attach interface contact). Therefore, pin 3 of the SOT-23 package must be left floating or connected to pin 2.

LM4040-Ns in the SC70 have a parasitic Schottky diode between pin 1 (-) and pin 2 (Die attach interface contact). Therefore, pin 2 must be left floating or connected to pin1.

The 4.096-V version allows single 5-V 12-bit ADCs or DACs to operate with an LSB equal to 1 mV. For 12-bit ADCs or DACs that operate on supplies of 10 V or greater, the 8.192-V version gives 2 mV per LSB.

The typical thermal hysteresis specification is defined as the change in 25°C voltage measured after thermal cycling. The device is thermal cycled to temperature –40°C and then measured at 25°C. Next the device is thermal cycled to temperature 125°C and again measured at 25°C. The resulting V_{OUT} delta shift between the 25°C measurements is thermal hysteresis. Thermal hysteresis is common in precision references and is induced by thermal-mechanical package stress. Changes in environmental storage temperature, operating temperature and board mounting temperature are all factors that can contribute to thermal hysteresis.

In a conventional shunt regulator application (Figure 10) , an external series resistor ($R_{\rm S}$) is connected between the supply voltage and the LM4040-N. $R_{\rm S}$ determines the current that flows through the load ($I_{\rm L}$) and the LM4040-N ($I_{\rm Q}$). Since load current and supply voltage may vary, $R_{\rm S}$ should be small enough to supply at least the minimum acceptable $I_{\rm Q}$ to the LM4040-N even when the supply voltage is at its minimum and the load current is at its maximum value. When the supply voltage is at its maximum and $I_{\rm L}$ is at its minimum, $R_{\rm S}$ should be large enough so that the current flowing through the LM4040-N is less than 15 mA.

 R_S is determined by the supply voltage, (V_S) , the load and operating current, $(I_L$ and $I_Q)$, and the LM4040-N's reverse breakdown voltage, V_R .

$$R_S = \frac{V_S - V_R}{I_L + I_Q} \tag{1}$$

9.2 Typical Applications

9.2.1 Shunt Regulator

Figure 10. Shunt Regulator Schematic

Submit Documentation Feedback

Copyright © 2000–2016, Texas Instruments Incorporated

Typical Applications (continued)

9.2.1.1 Design Requirements

 $V_{IN} > V_{OUT}$

Select R_S such that:

 $I_{RMIN} < I_{R} < I_{RMAX}$ where $I_{RMAX} = 15$ mA

See *Electrical Characteristics: 2-V LM4040-N V_R Tolerance Grades 'A' And 'B'; Temperature Grade 'I'* for minimum operating current for each voltage option and grade.

9.2.1.2 Detailed Design Procedure

The resistor R_S must be selected such that current IR will remain in the operational region of the part for the entire V_{IN} range and load current range. The two extremes to consider are V_{IN} at its minimum, and the load at its maximum, where R_S must be small enough for I_R to remain above I_{RMIN} . The other extreme is V_{IN} at its maximum, and the load at its minimum, where R_S must be large enough to maintain $I_R < I_{RMAX}$. For most designs, 0.1 mA $\leq I_R \leq$ 1 mA is a good starting point.

Use Equation 2 and Equation 3 to set R_S between R_{S MIN} and R_{S MAX}.

$$R_{S_MIN} = \frac{V_{IN_MAX} - V_{OUT}}{I_{LOAD_MIN} + I_{R_MAX}}$$

$$R_{S_MAX} = \frac{V_{IN_MIN} - V_{OUT}}{I_{LOAD_MAX} + I_{R_MIN}}$$
(3)

9.2.1.3 Application Curve

Figure 11. Reverse Characteristics And Minimum Operating Current

Typical Applications (continued)

9.2.2 4.1-V ADC Application

^{**}Ceramic monolithic

Figure 12. 4.1-V LM4040-N'S Nominal 4.096 Breakdown Voltage Gives ADC12451 1 MV/LSB

9.2.2.1 Design Requirements

The only design requirement is for an output voltage of 4.096 V.

9.2.2.2 Detailed Design Procedure

Using an LM4040-4.1, select an appropriate R_S to sufficiently power the device. Set the target I_R for 1 mA. With an input voltage of 5 V, the resistor can be calculated:

$$R = \frac{5 \text{ V} - 4.096 \text{ V}}{1 \text{ mA}} = 904 \Omega \tag{4}$$

The closest available resistance of 909 Ω is used here, which in turn yields an I_R of 994 μ A.

^{*}Tantalum

9.2.3 Bounded Amplifier

Nominal clamping voltage is ±11.5 V (LM4040-N's reverse breakdown voltage +2 diode V_F).

Figure 13. Bounded Amplifier Reduces Saturation-Induced Delays and Can Prevent Succeeding Stage Damage

9.2.3.1 Design Requirements

Design an amplifier with output clamped at ±11.5 V.

9.2.3.2 Detailed Design Procedure

With amplifier rails of ± 15 V, the output can be bound to ± 11.5 V with the LM4040-10 and two nominal diode voltage drops of 0.7 V.

$$V_{OUTBound} = 2 \times VFWD + VZ \tag{5}$$

$$V_{OUTBound} = 1.4 \text{ V} + 10 \text{ V} \tag{6}$$

Select $R_S = 15 \text{ k}\Omega$ to keep I_R low. Calculate I_R to confirm RS selection.

$$I_R = (V_{IN} - V_{OUT}) / R$$
, however in this case, the negative supply must be taken into account. (7)

$$I_{R} = (V_{IN+} - V_{IN-} - V_{OUT})/R = (30 \text{ V} - 10 \text{ V}) / (R_{S1} + R_{S2}) = 20 \text{ V} / 30 \text{ k}\Omega = 0.667 \text{ mA}$$
(8)

This is an acceptable value for I_R that will not draw excessive current, but prevents the part from being starved for current.

9.2.4 Protecting Op-Amp Input

The bounding voltage is ±4 V with the 2.5-V LM4040-N (LM4040-N's reverse breakdown voltage + 3 diode V_F).

Figure 14. Protecting Op Amp Input

9.2.4.1 Design Requirements

Limit the input voltage to the op-amp to ±4 V.

9.2.4.2 Detailed Design Procedure

Similar to *Bounded Amplifier*, this design uses a LM4040-2.5 and three forward diode voltage drops to create a voltage clamp. The procedure for selecting the R_S resistors, in this case 5 k Ω , is the same as *Detailed Design Procedure*.

$$I_{R} = (V_{IN+} - V_{IN-} - V_{OUT}) / R = (10 \text{ V} - 2.5 \text{ V}) / (R_{S1} + R_{S2}) = 7.5 \text{ V} / 10 \text{ k}\Omega = 0.750 \text{ mA}$$
(9)

9.2.5 Precision ±4.096-V Reference

Figure 15. Precision ±4.096-V Reference

9.2.5.1 Design Requirements

Use a single voltage reference to create positive and negative reference rails, ±4.096 V.

9.2.5.2 Detailed Design Procedure

The procedure for selecting the R_S resistor is same as detailed in *Detailed Design Procedure*. The output of the voltage reference is used as the inverting input to the op-amp, with unity gain.

Copyright © 2000–2016, Texas Instruments Incorporated

9.2.6 Precision Current Sink/Source

Figure 16. Precision 1-mA Current Sink

Figure 17. Precision 1-mA Current Source

9.2.6.1 Design Requirements

Create precision 1-mA current sink and/or 1-mA current source.

9.2.6.2 Detailed Design Procedure

Set R1 such that the current through the shunt reference, I_R, is greater than I_{RMIN}. $I_{OUT} = V_{OUT} / R_2$ where V_{OUT} is the voltage drop across the shunt reference. In this case, $I_{OUT} = 2.5 / R_2$

10 Power Supply Recommendations

While a bypass capacitor is not required on the input voltage line, TI recommends reducing noise on the input which could affect the output. A 0.1-µF ceramic capacitor or larger is recommended.

11 Layout

11.1 Layout Guidelines

Place external components as close to the device as possible. Place RS close the cathode, as well as the input bypass capacitor, if used.

11.2 Layout Example

Figure 18. Layout Diagram

Copyright © 2000–2016, Texas Instruments Incorporated

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation, see the following:

LM4041-N/LM4041-N-Q1 Precision Micropower Shunt Voltage Reference, SNOS641

12.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 1. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
LM4040-N	Click here	Click here	Click here	Click here	Click here
LM4040-N-Q1	Click here	Click here	Click here	Click here	Click here
LM4040-N-Q1	Click here	Click here	Click here	Click here	Click here

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, And Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

13.1 SOT-23 and SC70 Package Marking Information

Only three fields of marking are possible on the SOT-23's and SC70's small surface. This table gives the meaning of the three fields.

First Field:

SOT-23 and SC70 Package Marking Information (continued)

R = Reference

Second Field: Voltage Option

J = 2.048-V Voltage Option

2 = 2.5-V Voltage Option

K = 3-V Voltage Option

4 = 4.096-V Voltage Option

5 = 5-V Voltage Option

8 = 8.192-V Voltage Option

0 = 10-V Voltage Option

Third Field: Initial Reverse Breakdown Voltage or Reference Voltage Tolerance

 $A = \pm 0.1\%$

 $B = \pm 0.2\%$

C = +0.5%

 $D = \pm 1.0\%$

 $E = \pm 2.0\%$

PART MARKING	FIELD DEFINITION
RJA (SOT-23 only)	Reference, 2.048 V, ±0.1%
R2A (SOT-23 only)	Reference, 2.5 V, ±0.1%
RKA (SOT-23 only)	Reference, 3 V, ±0.1%
R4A (SOT-23 only)	Reference, 4.096 V, ±0.1%
R5A (SOT-23 only)	Reference, 5 V, ±0.1%
R8A (SOT-23 only)	Reference, 8.192 V, ±0.1%
R0A (SOT-23 only)	Reference, 10 V, ±0.1%
RJB	Reference, 2.048 V, ±0.2%
R2B	Reference, 2.5 V, ±0.2%
RKB	Reference, 3 V, ±0.2%
R4B	Reference, 4.096 V, ±0.2%
R5B	Reference, 5 V, ±0.2%
R8B (SOT-23 only)	Reference, 8.192 V, ±0.2%
R0B (SOT-23 only)	Reference, 10 V, ±0.2%
RJC	Reference, 2.048 V, ±0.5%
R2C	Reference, 2.5 V, ±0.5%
RKC	Reference, 3 V, ±0.5%
R4C	Reference, 4.096 V, ±0.5%
R5C	Reference, 5 V, ±0.5%
R8C (SOT-23 only)	Reference, 8.192 V, ±0.5%
R0C (SOT-23 only)	Reference, 10 V, ±0.5%
RJD	Reference, 2.048 V, ±1.0%
R2D	Reference, 2.5 V, ±1.0%
RKD	Reference, 3 V, ±1.0%
R4D	Reference, 4.096 V, ±1.0%
R5D	Reference, 5 V, ±1.0%
R8D (SOT-23 only)	Reference, 8.192 V, ±1.0%
R0D (SOT-23 only)	Reference, 10 V, ±1.0%
RJE	Reference, 2.048 V, ±2.0%
R2E	Reference, 2.5 V, ±2.0%
RKE	Reference, 3 V, ±2.0%

30-Oct-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type		Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LM4040AIM3-10.0	NRND	SOT-23	DBZ	3	1000	TBD	Call TI	Call TI		R0A	
LM4040AIM3-10.0/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	R0A	Samples
LM4040AIM3-2.0	NRND	SOT-23	DBZ	3	1000	TBD	Call TI	Call TI		RJA	
LM4040AIM3-2.0/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		RJA	Samples
LM4040AIM3-2.5	ACTIVE	SOT-23	DBZ	3	1000	TBD	Call TI	Call TI		R2A	Samples
LM4040AIM3-2.5/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R2A	Samples
LM4040AIM3-3.0/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		RKA	Samples
LM4040AIM3-4.1	NRND	SOT-23	DBZ	3	1000	TBD	Call TI	Call TI		R4A	
LM4040AIM3-4.1/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R4A	Samples
LM4040AIM3-5.0	NRND	SOT-23	DBZ	3	1000	TBD	Call TI	Call TI		R5A	
LM4040AIM3-5.0/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R5A	Samples
LM4040AIM3X-10	NRND	SOT-23	DBZ	3	3000	TBD	Call TI	Call TI		R0A	
LM4040AIM3X-10/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R0A	Samples
LM4040AIM3X-2.0/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		RJA	Samples
LM4040AIM3X-2.5	NRND	SOT-23	DBZ	3	3000	TBD	Call TI	Call TI		R2A	
LM4040AIM3X-2.5/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R2A	Samples
LM4040AIM3X-3.0/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		RKA	Samples
LM4040AIM3X-4.1/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R4A	Samples
LM4040AIM3X-5.0	NRND	SOT-23	DBZ	3	3000	TBD	Call TI	Call TI		R5A	
LM4040AIM3X-5.0/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R5A	Samples

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM4040AIZ-10.0/NOPB	ACTIVE	TO-92	LP	3	1800	Green (RoHS & no Sb/Br)	CU SN	N / A for Pkg Type		4040A IZ10	Samples
LM4040AIZ-2.5/NOPB	ACTIVE	TO-92	LP	3	1800	Green (RoHS & no Sb/Br)	CU SN	N / A for Pkg Type		4040A IZ2.5	Samples
LM4040AIZ-4.1/NOPB	ACTIVE	TO-92	LP	3	1800	Green (RoHS & no Sb/Br)	CU SN	N / A for Pkg Type		4040A IZ4.1	Samples
LM4040AIZ-5.0/NOPB	ACTIVE	TO-92	LP	3	1800	Green (RoHS & no Sb/Br)	CU SN	N / A for Pkg Type		4040A IZ5.0	Samples
LM4040BIM3-10.0	NRND	SOT-23	DBZ	3	1000	TBD	Call TI	Call TI		R0B	
LM4040BIM3-10.0/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R0B	Samples
LM4040BIM3-2.0/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		RJB	Samples
LM4040BIM3-2.5	ACTIVE	SOT-23	DBZ	3	1000	TBD	Call TI	Call TI		R2B	Samples
LM4040BIM3-2.5/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R2B	Samples
LM4040BIM3-3.0	NRND	SOT-23	DBZ	3	1000	TBD	Call TI	Call TI		RKB	
LM4040BIM3-3.0/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		RKB	Samples
LM4040BIM3-4.1	NRND	SOT-23	DBZ	3	1000	TBD	Call TI	Call TI		R4B	
LM4040BIM3-4.1/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R4B	Samples
LM4040BIM3-5.0	NRND	SOT-23	DBZ	3	1000	TBD	Call TI	Call TI		R5B	
LM4040BIM3-5.0/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R5B	Samples
LM4040BIM3-8.2	NRND	SOT-23	DBZ	3	1000	TBD	Call TI	Call TI		R8B	
LM4040BIM3-8.2/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R8B	Sample
LM4040BIM3X-10/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R0B	Sample
LM4040BIM3X-2.0/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		RJB	Sample
LM4040BIM3X-2.5	NRND	SOT-23	DBZ	3	3000	TBD	Call TI	Call TI		R2B	
LM4040BIM3X-2.5/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R2B	Samples

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM4040BIM3X-3.0/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		RKB	Samples
LM4040BIM3X-4.1	NRND	SOT-23	DBZ	3	3000	TBD	Call TI	Call TI		R4B	
LM4040BIM3X-4.1/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R4B	Samples
LM4040BIM3X-5.0/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R5B	Samples
LM4040BIM7-2.0/NOPB	ACTIVE	SC70	DCK	5	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		RJB	Samples
LM4040BIM7-2.5	NRND	SC70	DCK	5	1000	TBD	Call TI	Call TI		R2B	
LM4040BIM7-2.5/NOPB	ACTIVE	SC70	DCK	5	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R2B	Samples
LM4040BIM7-5.0/NOPB	ACTIVE	SC70	DCK	5	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R5B	Samples
LM4040BIM7X-2.5/NOPB	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R2B	Samples
LM4040BIZ-10.0/NOPB	ACTIVE	TO-92	LP	3	1800	Green (RoHS & no Sb/Br)	CU SN	N / A for Pkg Type		4040B IZ10	Samples
LM4040BIZ-2.5/NOPB	ACTIVE	TO-92	LP	3	1800	Green (RoHS & no Sb/Br)	CU SN	N / A for Pkg Type		4040B IZ2.5	Samples
LM4040BIZ-4.1/NOPB	ACTIVE	TO-92	LP	3	1800	Green (RoHS & no Sb/Br)	CU SN	N / A for Pkg Type		4040B IZ4.1	Samples
LM4040BIZ-5.0/NOPB	ACTIVE	TO-92	LP	3	1800	Green (RoHS & no Sb/Br)	CU SN	N / A for Pkg Type		4040B IZ5.0	Samples
LM4040CEM3-2.5	NRND	SOT-23	DBZ	3	1000	TBD	Call TI	Call TI		R2C	
LM4040CEM3-2.5/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R2C	Samples
LM4040CEM3-3.0/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		RKC	Samples
LM4040CEM3-5.0	NRND	SOT-23	DBZ	3	1000	TBD	Call TI	Call TI		R5C	
LM4040CEM3-5.0/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R5C	Samples
LM4040CEM3X-3.0/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM RKC		RKC	Samples
LM4040CEM3X-5.0/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R5C	Samples

Orderable Device	Status	Package Type		Pins		Eco Plan	Lead/Ball Finish	MSL Peak Temp Op Temp	(°C) Device Marking	Sample
	(1)		Drawing		Qty	(2)	(6)	(3)	(4/5)	
LM4040CIM3-10.0	NRND	SOT-23	DBZ	3	1000	TBD	Call TI	Call TI	R0C	
LM4040CIM3-10.0/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	R0C	Sample
LM4040CIM3-2.0	NRND	SOT-23	DBZ	3	1000	TBD	Call TI	Call TI	RJC	
LM4040CIM3-2.0/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	RJC	Sample
LM4040CIM3-2.5	NRND	SOT-23	DBZ	3	1000	TBD	Call TI	Call TI	R2C	
LM4040CIM3-2.5/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	R2C	Sample
LM4040CIM3-3.0	NRND	SOT-23	DBZ	3	1000	TBD	Call TI	Call TI	RKC	
LM4040CIM3-3.0/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	RKC	Sample
LM4040CIM3-4.1	NRND	SOT-23	DBZ	3	1000	TBD	Call TI	Call TI	R4C	
LM4040CIM3-4.1/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	R4C	Sample
LM4040CIM3-5.0	NRND	SOT-23	DBZ	3	1000	TBD	Call TI	Call TI	R5C	
LM4040CIM3-5.0/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	R5C	Sample
LM4040CIM3-8.2	NRND	SOT-23	DBZ	3	1000	TBD	Call TI	Call TI	R8C	
LM4040CIM3-8.2/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	R8C	Sample
LM4040CIM3X-10/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	R0C	Sample
LM4040CIM3X-2.0/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	RJC	Sample
LM4040CIM3X-2.5	NRND	SOT-23	DBZ	3	3000	TBD	Call TI	Call TI	R2C	
LM4040CIM3X-2.5/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)			R2C	Sample
LM4040CIM3X-3.0/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	RKC	Sample
LM4040CIM3X-4.1/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	R4C	Sample
LM4040CIM3X-5.0	NRND	SOT-23	DBZ	3	3000	TBD	Call TI	Call TI	R5C	
LM4040CIM3X-5.0/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	R5C	Sample

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM4040CIM7-2.0/NOPB	ACTIVE	SC70	DCK	5	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		RJC	Samples
LM4040CIM7-2.5/NOPB	ACTIVE	SC70	DCK	5	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R2C	Samples
LM4040CIM7X-2.5/NOPB	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R2C	Samples
LM4040CIZ-10.0/NOPB	ACTIVE	TO-92	LP	3	1800	Green (RoHS & no Sb/Br)	CU SN	N / A for Pkg Type		4040C IZ10	Samples
LM4040CIZ-2.5/LFT8	ACTIVE	TO-92	LP	3	2000	Green (RoHS & no Sb/Br)	CU SN	N / A for Pkg Type		4040C IZ2.5	Samples
LM4040CIZ-2.5/NOPB	ACTIVE	TO-92	LP	3	1800	Green (RoHS & no Sb/Br)	CU SN	N / A for Pkg Type		4040C IZ2.5	Samples
LM4040CIZ-4.1/NOPB	ACTIVE	TO-92	LP	3	1800	Green (RoHS & no Sb/Br)	CU SN	N / A for Pkg Type		4040C IZ4.1	Samples
LM4040CIZ-5.0/NOPB	ACTIVE	TO-92	LP	3	1800	Green (RoHS & no Sb/Br)	CU SN	N / A for Pkg Type		4040C IZ5.0	Samples
LM4040DEM3-2.0	NRND	SOT-23	DBZ	3	1000	TBD	Call TI	Call TI		RJD	
LM4040DEM3-2.0/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		RJD	Samples
LM4040DEM3-2.5/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R2D	Samples
LM4040DEM3-3.0/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		RKD	Samples
LM4040DEM3-5.0	NRND	SOT-23	DBZ	3	1000	TBD	Call TI	Call TI		R5D	
LM4040DEM3-5.0/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R5D	Samples
LM4040DEM3X-2.5/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R2D	Samples
LM4040DEM3X-5.0/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R5D	Samples
LM4040DIM3-10.0	NRND	SOT-23	DBZ	3	1000	TBD	Call TI	Call TI		R0D	
LM4040DIM3-10.0/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R0D	Samples
LM4040DIM3-2.0/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		RJD	Samples
LM4040DIM3-2.5	NRND	SOT-23	DBZ	3	1000	TBD	Call TI	Call TI		R2D	

Orderable Device	Status	Package Type		Pins		Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LM4040DIM3-2.5/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R2D	Samples
LM4040DIM3-3.0/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		RKD	Samples
LM4040DIM3-4.1	NRND	SOT-23	DBZ	3	1000	TBD	Call TI	Call TI		R4D	
LM4040DIM3-4.1/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R4D	Samples
LM4040DIM3-5.0	NRND	SOT-23	DBZ	3	1000	TBD	Call TI	Call TI		R5D	
LM4040DIM3-5.0/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R5D	Samples
LM4040DIM3-8.2/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R8D	Samples
LM4040DIM3X-10/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R0D	Samples
LM4040DIM3X-2.0/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		RJD	Samples
LM4040DIM3X-2.5	NRND	SOT-23	DBZ	3	3000	TBD	Call TI	Call TI		R2D	
LM4040DIM3X-2.5/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R2D	Samples
LM4040DIM3X-3.0/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		RKD	Samples
LM4040DIM3X-4.1	NRND	SOT-23	DBZ	3	3000	TBD	Call TI	Call TI		R4D	
LM4040DIM3X-4.1/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R4D	Samples
LM4040DIM3X-5.0	NRND	SOT-23	DBZ	3	3000	TBD	Call TI	Call TI		R5D	
LM4040DIM3X-5.0/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R5D	Samples
LM4040DIM7-2.0/NOPB	ACTIVE	SC70	DCK	5	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		RJD	Samples
LM4040DIM7-2.5/NOPB	ACTIVE	SC70	DCK	5	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R2D	Samples
LM4040DIM7-5.0	NRND	SC70	DCK	5	1000	TBD	Call TI	Call TI		R5D	
LM4040DIM7-5.0/NOPB	ACTIVE	SC70	DCK	5	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R5D	Samples

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp Op	Temp (°C)	Device Marking (4/5)	Samples
LM4040DIZ-10.0/NOPB	ACTIVE	TO-92	LP	3	1800	Green (RoHS & no Sb/Br)	CU SN	N / A for Pkg Type		4040D IZ10	Samples
LM4040DIZ-2.5/NOPB	ACTIVE	TO-92	LP	3	1800	Green (RoHS & no Sb/Br)	CU SN	N / A for Pkg Type		4040D IZ2.5	Samples
LM4040DIZ-4.1/NOPB	ACTIVE	TO-92	LP	3	1800	Green (RoHS & no Sb/Br)	CU SN	N / A for Pkg Type		4040D IZ4.1	Samples
LM4040DIZ-5.0/LFT1	ACTIVE	TO-92	LP	3	2000	Green (RoHS & no Sb/Br)	CU SN	N / A for Pkg Type		4040D IZ5.0	Samples
LM4040DIZ-5.0/NOPB	ACTIVE	TO-92	LP	3	1800	Green (RoHS & no Sb/Br)	CU SN	N / A for Pkg Type		4040D IZ5.0	Samples
LM4040EEM3-2.5/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R2E	Samples
LM4040EIM3-2.5	NRND	SOT-23	DBZ	3	1000	TBD	Call TI	Call TI		R2E	
LM4040EIM3-2.5/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R2E	Samples
LM4040EIM3-3.0/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		RKE	Samples
LM4040EIM3X-2.5	NRND	SOT-23	DBZ	3	3000	TBD	Call TI	Call TI		R2E	
LM4040EIM3X-2.5/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R2E	Samples
LM4040EIM3X-3.0/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		RKE	Samples
LM4040EIM7-2.0/NOPB	ACTIVE	SC70	DCK	5	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		RJE	Samples
LM4040QAIM3-2.5/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R6A	Samples
LM4040QAIM3X2.5/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R6A	Samples
LM4040QBIM3-2.5/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R6B	Samples
LM4040QBIM3X2.5/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R6B	Samples
LM4040QCEM3-2.5/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R2C	Samples
LM4040QCEM3-3.0/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM -4	40 to 125	R3C	Samples

PACKAGE OPTION ADDENDUM

30-Oct-2017

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM4040QCIM3-2.5/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R6C	Samples
LM4040QCIM3X2.5/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R6C	Samples
LM4040QDEM3-2.5/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R2D	Samples
LM4040QDEM3-3.0/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	R3D	Samples
LM4040QDIM3-2.5/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R6D	Samples
LM4040QDIM3X2.5/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R6D	Samples
LM4040QEEM3-2.5/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R2E	Samples
LM4040QEEM3-3.0/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	R3E	Samples
LM4040QEIM3-2.5/NOPB	ACTIVE	SOT-23	DBZ	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R6E	Samples
LM4040QEIM3X2.5/NOPB	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		R6E	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PACKAGE OPTION ADDENDUM

30-Oct-2017

- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF LM4040-N, LM4040-N-Q1:

Automotive: LM4040-N-Q1

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects

www.ti.com 24-Aug-2017

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM4040AIM3-10.0	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040AIM3-10.0/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040AIM3-2.0	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040AIM3-2.0/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040AIM3-2.5	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040AIM3-2.5/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040AIM3-3.0/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040AIM3-4.1	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040AIM3-4.1/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040AIM3-5.0	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040AIM3-5.0/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040AIM3X-10	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040AIM3X-10/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040AIM3X-2.0/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040AIM3X-2.5	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040AIM3X-2.5/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040AIM3X-3.0/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040AIM3X-4.1/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3

Device		Package	Pins	SPQ	Reel	Reel	A0	B0	K0	P1	W (mm)	Pin1
	Туре	Drawing			Diameter (mm)	Width W1 (mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Quadrant
LM4040AIM3X-5.0	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040AIM3X-5.0/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040BIM3-10.0	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040BIM3-10.0/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040BIM3-2.0/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040BIM3-2.5	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040BIM3-2.5/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040BIM3-3.0	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040BIM3-3.0/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040BIM3-4.1	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040BIM3-4.1/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040BIM3-5.0	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040BIM3-5.0/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040BIM3-8.2	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040BIM3-8.2/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040BIM3X-10/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040BIM3X-2.0/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040BIM3X-2.5	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040BIM3X-2.5/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040BIM3X-3.0/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040BIM3X-4.1	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040BIM3X-4.1/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040BIM3X-5.0/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040BIM7-2.0/NOPB	SC70	DCK	5	1000	178.0	8.4	2.25	2.45	1.2	4.0	8.0	Q3
LM4040BIM7-2.5	SC70	DCK	5	1000	178.0	8.4	2.25	2.45	1.2	4.0	8.0	Q3
LM4040BIM7-2.5/NOPB	SC70	DCK	5	1000	178.0	8.4	2.25	2.45	1.2	4.0	8.0	Q3
LM4040BIM7-5.0/NOPB	SC70	DCK	5	1000	178.0	8.4	2.25	2.45	1.2	4.0	8.0	Q3
LM4040BIM7X-2.5/NOPB	SC70	DCK	5	3000	178.0	8.4	2.25	2.45	1.2	4.0	8.0	Q3
LM4040CEM3-2.5	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040CEM3-2.5/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040CEM3-3.0/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040CEM3-5.0	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040CEM3-5.0/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040CEM3X-3.0/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040CEM3X-5.0/NOPB		DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040CIM3-10.0	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040CIM3-10.0/NOPB		DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040CIM3-2.0	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040CIM3-2.0/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040CIM3-2.5	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040CIM3-2.5/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040CIM3-3.0	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040CIM3-3.0/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM4040CIM3-4.1	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040CIM3-4.1/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040CIM3-5.0	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040CIM3-5.0/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040CIM3-8.2	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040CIM3-8.2/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040CIM3X-10/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040CIM3X-2.0/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040CIM3X-2.5	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040CIM3X-2.5/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040CIM3X-3.0/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040CIM3X-4.1/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040CIM3X-5.0	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040CIM3X-5.0/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
		DCK	5	1000	178.0			2.45	1.22	4.0		Q3
LM4040CIM7-2.0/NOPB	SC70					8.4	2.25			-	8.0	
LM4040CIM7-2.5/NOPB	SC70	DCK	5	1000	178.0	8.4	2.25	2.45	1.2	4.0	8.0	Q3
LM4040CIM7X-2.5/NOPB	SC70	DCK	5	3000	178.0	8.4	2.25	2.45	1.2	4.0	8.0	Q3
LM4040DEM3-2.0	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040DEM3-2.0/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040DEM3-2.5/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040DEM3-3.0/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040DEM3-5.0	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040DEM3-5.0/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040DEM3X-2.5/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040DEM3X-5.0/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040DIM3-10.0	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040DIM3-10.0/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040DIM3-2.0/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040DIM3-2.5	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040DIM3-2.5/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040DIM3-3.0/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040DIM3-4.1	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040DIM3-4.1/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040DIM3-5.0	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040DIM3-5.0/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040DIM3-8.2/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040DIM3X-10/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040DIM3X-2.0/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040DIM3X-2.5	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040DIM3X-2.5/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040DIM3X-3.0/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040DIM3X-4.1	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040DIM3X-4.1/NOPB		DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM4040DIM3X-5.0	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040DIM3X-5.0/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040DIM7-2.0/NOPB	SC70	DCK	5	1000	178.0	8.4	2.25	2.45	1.2	4.0	8.0	Q3
LM4040DIM7-2.5/NOPB	SC70	DCK	5	1000	178.0	8.4	2.25	2.45	1.2	4.0	8.0	Q3
LM4040DIM7-5.0	SC70	DCK	5	1000	178.0	8.4	2.25	2.45	1.2	4.0	8.0	Q3
LM4040DIM7-5.0/NOPB	SC70	DCK	5	1000	178.0	8.4	2.25	2.45	1.2	4.0	8.0	Q3
LM4040EEM3-2.5/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040EIM3-2.5	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040EIM3-2.5/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040EIM3-3.0/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040EIM3X-2.5	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040EIM3X-2.5/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040EIM3X-3.0/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040EIM7-2.0/NOPB	SC70	DCK	5	1000	178.0	8.4	2.25	2.45	1.2	4.0	8.0	Q3
LM4040QAIM3-2.5/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040QAIM3X2.5/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040QBIM3-2.5/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040QBIM3X2.5/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040QCEM3-2.5/NOP B	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040QCEM3-3.0/NOP B	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040QCIM3-2.5/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040QCIM3X2.5/NOP B	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040QDEM3-2.5/NOP B	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040QDEM3-3.0/NOP B	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040QDIM3-2.5/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040QDIM3X2.5/NOP B	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040QEEM3-2.5/NOP B	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040QEEM3-3.0/NOP B	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040QEIM3-2.5/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM4040QEIM3X2.5/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM4040AIM3-10.0	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040AIM3-10.0/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040AIM3-2.0	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040AIM3-2.0/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040AIM3-2.5	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040AIM3-2.5/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040AIM3-3.0/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040AIM3-4.1	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040AIM3-4.1/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040AIM3-5.0	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040AIM3-5.0/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040AIM3X-10	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040AIM3X-10/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040AIM3X-2.0/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040AIM3X-2.5	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040AIM3X-2.5/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040AIM3X-3.0/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040AIM3X-4.1/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040AIM3X-5.0	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040AIM3X-5.0/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM4040BIM3-10.0	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040BIM3-10.0/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040BIM3-2.0/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040BIM3-2.5	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040BIM3-2.5/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040BIM3-3.0	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040BIM3-3.0/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040BIM3-4.1	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040BIM3-4.1/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040BIM3-5.0	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040BIM3-5.0/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040BIM3-8.2	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040BIM3-8.2/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040BIM3X-10/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040BIM3X-2.0/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040BIM3X-2.5	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040BIM3X-2.5/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040BIM3X-3.0/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040BIM3X-4.1	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040BIM3X-4.1/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040BIM3X-5.0/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040BIM7-2.0/NOPB	SC70	DCK	5	1000	210.0	185.0	35.0
LM4040BIM7-2.5	SC70	DCK	5	1000	210.0	185.0	35.0
LM4040BIM7-2.5/NOPB	SC70	DCK	5	1000	210.0	185.0	35.0
LM4040BIM7-5.0/NOPB	SC70	DCK	5	1000	210.0	185.0	35.0
LM4040BIM7X-2.5/NOPB	SC70	DCK	5	3000	210.0	185.0	35.0
LM4040CEM3-2.5	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040CEM3-2.5/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040CEM3-3.0/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040CEM3-5.0	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040CEM3-5.0/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040CEM3X-3.0/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040CEM3X-5.0/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040CIM3-10.0	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040CIM3-10.0/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040CIM3-2.0	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040CIM3-2.0/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040CIM3-2.5	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040CIM3-2.5/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040CIM3-3.0	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040CIM3-3.0/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040CIM3-4.1	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040CIM3-4.1/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040CIM3-5.0	SOT-23	DBZ	3	1000	210.0	185.0	35.0

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM4040CIM3-5.0/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040CIM3-8.2	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040CIM3-8.2/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040CIM3X-10/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040CIM3X-2.0/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040CIM3X-2.5	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040CIM3X-2.5/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040CIM3X-3.0/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040CIM3X-4.1/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040CIM3X-5.0	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040CIM3X-5.0/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040CIM7-2.0/NOPB	SC70	DCK	5	1000	210.0	185.0	35.0
LM4040CIM7-2.5/NOPB	SC70	DCK	5	1000	210.0	185.0	35.0
LM4040CIM7X-2.5/NOPB	SC70	DCK	5	3000	210.0	185.0	35.0
LM4040DEM3-2.0	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040DEM3-2.0/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040DEM3-2.5/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040DEM3-3.0/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040DEM3-5.0	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040DEM3-5.0/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040DEM3X-2.5/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040DEM3X-5.0/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040DIM3-10.0	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040DIM3-10.0/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040DIM3-2.0/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040DIM3-2.5	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040DIM3-2.5/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040DIM3-3.0/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040DIM3-4.1	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040DIM3-4.1/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040DIM3-5.0	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040DIM3-5.0/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040DIM3-8.2/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040DIM3X-10/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040DIM3X-2.0/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040DIM3X-2.5	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040DIM3X-2.5/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040DIM3X-3.0/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040DIM3X-4.1	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040DIM3X-4.1/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040DIM3X-5.0	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040DIM3X-5.0/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040DIM7-2.0/NOPB	SC70	DCK	5	1000	210.0	185.0	35.0
LM4040DIM7-2.5/NOPB	SC70	DCK	5	1000	210.0	185.0	35.0

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM4040DIM7-5.0	SC70	DCK	5	1000	210.0	185.0	35.0
LM4040DIM7-5.0/NOPB	SC70	DCK	5	1000	210.0	185.0	35.0
LM4040EEM3-2.5/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040EIM3-2.5	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040EIM3-2.5/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040EIM3-3.0/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040EIM3X-2.5	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040EIM3X-2.5/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040EIM3X-3.0/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040EIM7-2.0/NOPB	SC70	DCK	5	1000	210.0	185.0	35.0
LM4040QAIM3-2.5/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040QAIM3X2.5/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040QBIM3-2.5/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040QBIM3X2.5/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040QCEM3-2.5/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040QCEM3-3.0/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040QCIM3-2.5/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040QCIM3X2.5/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040QDEM3-2.5/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040QDEM3-3.0/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040QDIM3-2.5/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040QDIM3X2.5/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040QEEM3-2.5/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040QEEM3-3.0/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040QEIM3-2.5/NOPB	SOT-23	DBZ	3	1000	210.0	185.0	35.0
LM4040QEIM3X2.5/NOPB	SOT-23	DBZ	3	3000	210.0	185.0	35.0

DCK (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AA.

DCK (R-PDSO-G5)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4203227/C

SMALL OUTLINE TRANSISTOR

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC registration TO-236, except minimum foot length.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 4. Publication IPC-7351 may have alternate designs.5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 7. Board assembly site may have different recommendations for stencil design.

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4040001-2/F

TO-92 - 5.34 mm max height

TO-92

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. Lead dimensions are not controlled within this area.4. Reference JEDEC TO-226, variation AA.
- 5. Shipping method:

 - a. Straight lead option available in bulk pack only.
 b. Formed lead option available in tape and reel or ammo pack.
 - c. Specific products can be offered in limited combinations of shipping medium and lead options.
 - d. Consult product folder for more information on available options.

TO-92

TO-92

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.