PROJECT 2: REACHER

P.M. Lucaci
DEEP REINFORCEMENT LEARNING NANODEGREE, Udacity

Contents	
Learning Algorithm	2
Hyperparameters	2
NN Model Architecture	2
Plot of Rewards	3
Ideas for Future Work	4
Improving the report	4
Including project details	4
GIF of Trained Agent	4
Action Space	4
State Space	4
Rewards	4
Solving the Environment	4
Documenting Future Improvements of Learning Algorithm	4
Add Bayesian Optimization	4
Add Prioritised Replay Buffer	4
Add Progress Bar	4
Add TensorBoard	4

Learning Algorithm

DDPG stands for "Deep Deterministic Policy Gradient", which is an algorithm learning concurrently a Q-function and a policy. This algorithm has been implemented to train and evaluate all 20 **environment agents**.

Hyperparameters

```
n_episodes = 30000  # maximum no. of episodes to train
    max_t = 2000  # maximum no. of time steps
    num_agents = 20  # no. of agents
    random_seed = 0  # random seed
    eps_start = NaN  # epsilon upper limit (before any decay)
    eps_end = NaN  # epsilon lower limit (minimum value)
    eps_decay = NaN  # epsilon decay rate

TIMES_UPDATED = NaN  # update times each UPDATE_EVERY

BUFFER_SIZE = int(1e6)  # replay buffer size

BATCH_SIZE = 512  # minibatch size

GAMMA = 0.99  # discount factor

UPDATE_EVERY = 4  # how often to update the network

TAU = 1e-3  # for soft update of target parameters

LR_ACTOR = 1e-4  # learning rate actor

LR_CRITIC = 5e-4  # learning rate actor
```

NN Model Architecture

	BATCHNORM1D	LINEAR	RELU	LINEAR	RELU	LINEAR	TANH
ACTOR	IN = OUT = STATE_SIZE	IN = STATE_SIZE		IN = OUT = 128		IN = 128	
		OUT =	128			OUT = ACT	ION_SIZE
STATE_SIZE = 33			ACTION_SIZE = 4				

	BATCHNORM1D	LINEAR	RELU	LINEAR	RELU	LINEAR	
CRITIC	IN = OUT = STATE_SIZE	IN = STATE_SIZE		IN = 128 + ACTION_SIZE		IN = 128	
		OUT = 128		OUT = 128		OUT = 1	
STATE_SIZE = 33				ACTION_SIZE = 4			

Plot of Rewards

Episode 844 Average Score: 40.03 Environment solved in **844 episodes**

Ideas for Future Work

Improving the report

Including project details

GIF of Trained Agent

Action Space

State Space

Rewards

Solving the Environment

Documenting Future Improvements of Learning Algorithm

Full Model Rehaul

Add Bayesian Optimization

Add Prioritised Replay Buffer

Add Progress Bar

Add Tensor Board