Discrete Mathematics (2012 Spring) Midterm I

- 1. (20%) For each of the following statements, determine whether it is correct or not. (1) $\phi \in \phi$ (2) $\phi \subset \phi$ (3) $\phi \subseteq \{\phi\}$ (4) $\phi \subset \{\phi\}$ (5) $\phi \in P(\phi)$ (6) $A\Delta(B\Delta C) = (A\Delta B)\Delta C$ (7) $A\Delta(B \cup C) = (A\Delta B) \cup (A\Delta C)$ (8) $A\Delta(B \cup C) = (A\Delta B) \cup (A\Delta C)$ (8) $A\Delta(B \cup C) = (A\Delta B) \cup (A\Delta C)$ (9) $A\Delta(B \cup C) = (A\Delta B) \cup (A\Delta C)$ (9) $A\Delta(B \cup C) = (A\Delta B) \cup (A\Delta C)$ (10) $A\Delta(B \cup C) = (A\Delta C)$ (10) $A\Delta(B$
- 2. (15%) Define the connective "Nand" by $(p \uparrow q) \Leftrightarrow \neg (p \land q)$, for any statements p, q. Represent the following using only this connective. (a) $\neg p$, (b) $p \land q$, (c) $p \rightarrow q$.
- 3. (10%) For all $n \in \mathbb{Z}^+$, show that if $n \ge 64$, then n can be written as a sum of 5's and/or 17's. (hints: Use Mathematical induction and try 5 initial cases)
- 4. (10%) Prove that gcd(n, n+2) = 1 or 2.
- 5. (10%) Determine the value of $c \in \mathbb{Z}^+$, $13 \le c \le 20$ such that equation 84x + 990y = c has solutions. Determine the solutions for this c value.
- 6. (10%) (a) Determine the coefficient of $x^3y^2z^{-1}$ for the complete expansion of $(x 4y)^5(3z^{-1} + 3)^4$ (b) Determine the number of nonnegative integer solutions of $x_1 + x_2 + x_3 + ... + x_6 = 27$ and $x_1 + x_2 + x_3 = 6$ where $x_1, x_2, x_3 > 0, x_4 > 3$.
- 7. (10%) (a) How many positive integers *n* can we form using the digits 3, 4, 4, 5, 5, 6, 7 if we want *n* to exceed 4,500,000? (b) How many arrangements of the letters in "MISCELLANEOUS" have no pair of consecutive identical letters?
- 8. (15%) Establish the validity of the following argument. (Don't need to write reasons.) $\forall x[p(x) \lor q(x)]$

$$\frac{\forall x [(\neg p(x) \land q(x)) \rightarrow r(x)]}{\therefore \forall x [\neg r(x) \rightarrow p(x)]}$$