Package 'ProxReg'

March 15, 2025

Title Linear Models for Prediction and Classification using Proximal

Type Package

Operators
Version 0.1.1
Date 2025-02-27
Maintainer YingHong Chen <pre><yinghongchen1402@gmail.com></yinghongchen1402@gmail.com></pre>
Description Implements optimization techniques for Lasso regression, R.Tibshirani(1996) doi:10.1111/j.2517-6161.1996.tb02080.x using Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) and Iterative Shrinkage-Thresholding Algorithm (ISTA) based on proximal operators, A.Beck(2009) doi:10.1137/080716542 . The package is useful for high-dimensional regression problems and includes cross-validation procedures to select optimal penalty parameters.
License MIT + file LICENSE
Encoding UTF-8
Language en-US
RoxygenNote 7.3.2
Suggests knitr, rmarkdown,
VignetteBuilder knitr
Imports dplyr, EBImage, glmnet
NeedsCompilation no
Author YingHong Chen [aut, cre]
Repository CRAN
Date/Publication 2025-03-15 17:10:12 UTC
Contents
delete_rect 2 inpainting 3 k_fold_cross 4 lasso_fista 4

2 delete_rect

								15
softmax	 •	•	•	•	•	•	•	13
ridge								
ols_KCV								12
ols								11
1_CV								
lasso_multi_back								9
lasso_multi								8
lasso_ista_back								
lasso_ista								6
lasso_fista_back								5

delete_rect

rectangular hole in image

Description

creates a rectangular hole in the image with the specified dimensions

Usage

Index

```
delete_rect(image,i,j,width,height)
```

Arguments

image	image to be modified, it has to be a 3D array proceed with readImage function from EBImage package
i	row index of the upper left corner of the rectangle
j	column index of the upper left corner of the rectangle
width	width of the rectangle
height	height of the rectangle

Details

delete_rect

Value

a 3D array with pixels in the hole set to -100 and the rest of the image pixels unchanged

Examples

```
image<-EBImage::readImage(system.file("extdata", "bird.jpg", package = "ProxReg"))
image_noise<-delete_rect(image,160,160,20,20)
image_noise<-EBImage::Image(image_noise,colormode = "Color")
EBImage::display(image_noise)</pre>
```

inpainting 3

inpainting	image recovery using Lasso regression

Description

predicts the missing pixels in an image using Lasso regression and fills the hole in the image

Usage

```
inpainting(image,h,stride,i,j,width,height,lambda=0.1,max_iter=50000,
fista=TRUE, verbose=TRUE,ini=0,glmnet=TRUE,noise=TRUE)
```

Arguments

image	image to be modified, it has to be a 3D array proceed with readImage function from EBImage package
h	size of the patch
stride	stride for the patch
i	row index of the upper left corner of the rectangle
j	column index of the upper left corner of the rectangle
width	width of the rectangle
height	height of the rectangle
lambda	a penalized parameter for the Lasso regression, it is 0.1 by default
max_iter	maximum number of iterations, it is 50000 by default
fista	fista=TRUE: use FISTA algortihm for the pixel prediction
verbose	print the iteration number and the size of the boundary
ini	initial value for the coefficients, default is 0
glmnet	use glmnet package for the Lasso regression
noise	display the image with the hole, it is TRUE by default

Details

inpainting

Value

a 3D array with the hole filled by pixels predicted by Lasso regression

Examples

```
test_img <- EBImage::readImage(system.file("extdata", "bird.jpg", package = "ProxReg"))
image_repaired <- inpainting(
  test_img, h = 10, stride = 6, i = 160, j = 160, width = 20, height = 20,
  lambda = 0.001, max_iter = 1000, verbose = TRUE, glmnet = TRUE,noise=TRUE)
RGB_repaired<-EBImage::Image(image_repaired,colormode = "Color")</pre>
```

lasso_fista

k_fold_cross

 k_fold_cross

Description

k_fold_cross splits the dataset into k parts, and uses k-1 parts to train the model and the remaining part to test the model.

Usage

```
k_fold_cross(data,k)
```

Arguments

data dataset which will be used for K-Fols Cross Validation

k integer

Value

a list with two sublists: training set and test set

Examples

```
 df = data.frame("hours"=c(1, 2, 4, 5, 5, 6, 6, 7, 8, 10, 11, 11, 12, 12, 14), \\ "score"=c(64, 66, 76, 73, 74, 81, 83, 82, 80, 88, 84, 82, 91, 93, 89)) \\ k\_fold\_cross(df,k=2)
```

lasso_fista

Lasso regression with fixed step with FISTA algorithm

Description

the function carries out the Lasso regression using fixed step using FISTA algorithm.

```
lasso_fista(data,y,x,lambda,max_step=10000,type="Gaussian",image=TRUE,ini=0.5,tol=10^-7)
```

lasso_fista_back 5

Arguments

data	name of the dataset
У	name of the dependent variables
x	name of the independent variable
lambda	a vector of lambda-value to be evaluated in the regression
max_step	maximum number of steps
type	type of response variable, by default, it is 'Gaussian' for continuos response and can be modified as 'Binomial' for binary response
image	logical, if TRUE, the evolution of errors in term of lambda values will be plotted
ini	initial value for the coefficients
tol	tolerance for convergence, it is 10^-7 by default

Details

lasso_fista

Value

A list containing:

- coefficients: A matrix where each column represents the estimated regression coefficients for a different lambda value.
- error_evolution: A numeric vector tracking the error at certain step.
- num_steps: An integer vector indicating the number of steps in which errors are calculated.

Examples

```
library("glmnet")
data("QuickStartExample")
test<-as.data.frame(cbind(QuickStartExample$y,QuickStartExample$x))
lasso_fista(test,"V1",colnames(test)[2:21],lambda=0.1,image=TRUE,max_step=1000)</pre>
```

lasso_fista_back

Lasso regression with backtraking line research with FISTA algorithm

Description

the function carries out the Lasso regression using backtraking line research and FISTA algorithm.

```
lasso_fista_back(data,y,x,lambda,max_step=10000,tol=10^-7,
type="Gaussian",ini=0.5,image=TRUE)
```

lasso_ista

Arguments

data	name of the dataset
у	name of the dependent variables
x	name of the independent variable
lambda	a vector of lambda-value to be evaluated in the regression
max_step	maximum number of steps
tol	tolerance for convergence, it is 10^-7 by default
type	type of response variable, by default, it is 'Gaussian' for continuos response and can be modified as 'Binomial' for binary response
ini	initial value for the coefficients, default is 0.5
image	plots the evolution of errors in term of lambda values

Details

lasso_fista_back

Value

A list containing:

- coefficients: A matrix where each column represents the estimated regression coefficients for a different lambda value.
- error_evolution: A numeric vector tracking the error at certain step.
- num_steps: An integer vector indicating the number of steps in which errors are calculated.

Examples

```
library("glmnet")
data("QuickStartExample")
test<-as.data.frame(cbind(QuickStartExample$y,QuickStartExample$x))
lasso_fista_back(test,"V1",colnames(test)[2:21],lambda=0.1,image=TRUE,type='Gaussian',max_step=1000)</pre>
```

lasso_ista

Lasso regression with fixed step with ISTA algorithm

Description

the function carries out the Lasso regression using fixed step using ISTA algorithm.

```
lasso_ista(data,y,x,lambda,max_step=10000,type="Gaussian",image=TRUE,tol=10^-7,ini=0.5)
```

lasso_ista_back 7

Arguments

data	name of the dataset
у	name of the dependent variables
x	name of the independent variable
lambda	a vector of lambda-value to be evaluated in the regression
max_step	maximum number of steps
type	type of response variable, by default, it is 'Gaussian' for continuos response and can be modified as 'Binomial' for binary response
image	logical, if TRUE, the evolution of errors in term of lambda values will be plotted
tol	tolerance for convergence, it is 10^-7 by default
ini	initial value for the coefficients

Details

lasso_ista

Value

A list containing:

- coefficients: A matrix where each column represents the estimated regression coefficients for a different lambda value.
- error_evolution: A numeric vector tracking the error at certain step.
- num_steps: An integer vector indicating the number of steps in which errors are calculated.

Examples

```
library("glmnet")
data("QuickStartExample")
test<-as.data.frame(cbind(QuickStartExample$y,QuickStartExample$x))
lasso_ista(test,"V1",colnames(test)[2:21],lambda=0.1,image=TRUE,max_step=1000)</pre>
```

lasso_ista_back

Lasso regression with backtraking line research

Description

the function carries out the Lasso regression using backtraking line research and ISTA algorithm.

```
lasso_ista_back(data,y,x,lambda,max_step=10000,tol=10^-7,
type="Gaussian",ini=0.5,image=TRUE)
```

8 lasso_multi

Arguments

data	name of the dataset
у	name of the dependent variables
X	name of the independent variable
lambda	a vector of lambda-value to be evaluated in the regression
max_step	maximum number of steps
tol	tolerance for convergence, it is 10^-7 by default
type	type of response variable, by default, it is 'Gaussian' for continuos response and can be modified as 'Binomial' for binary response
ini	initial value for the coefficients, dafault is 0.5
image	plots the evolution of errors in term of lambda values

Details

lasso_ista_back

Value

A list containing:

- coefficients: A matrix where each column represents the estimated regression coefficients for a different lambda value.
- error_evolution: A numeric vector tracking the error at certain step.
- num_steps: An integer vector indicating the number of steps in which errors are calculated.

Examples

```
library("glmnet")
data("QuickStartExample")
test<-as.data.frame(cbind(QuickStartExample$y,QuickStartExample$x))
lasso_ista_back(test,"V1",colnames(test)[2:21],lambda=0.1,image=TRUE,type='Gaussian',max_step=100)</pre>
```

lasso_multi	Lasso logistic regression for multinomial response variable with fixed
	step

Description

the function realizes L1-regularized classification for multinomial response variable using ISTA / FISTA algorithm

```
lasso_multi(data,y,x,lambda,max_step=10000,image=FALSE,fista=TRUE)
```

lasso_multi_back 9

Arguments

data	name of the dataset
У	name of the dependent variables
X	name of the independent variable
lambda	a number or a vector of lambda-value to be evaluated in the regression
max_step	maximum number of steps
image	plots the evolution of errors in term of lambda values
fista	fista=TRUE: use FISTA algortihm for the multiclass logistic regression; fista=FALSE: use ISTA algortihm

Details

lasso_multi

Value

A list containing:

- coefficients: A matrix where each column represents the estimated regression coefficients for a different lambda value.
- error_evolution: A numeric vector tracking the error at certain step.

sponse variable

• num_steps: An integer vector indicating the number of steps in which errors are calculated.

Examples

```
library(glmnet)
data("MultinomialExample")
x<-MultinomialExample$x
y<-MultinomialExample$y
mult<-as.data.frame(cbind(x,y))
lasso_multi(mult,y="y",x=colnames(mult)[-31],max_step = 1000,lambda=0.01,image=TRUE,fista=TRUE)

lasso_multi_back
    Lasso regression with backtraking line research for multinomial re-</pre>
```

Description

the function carries out the Lasso regression for multinomial response using backtraking line research and FISTA/ISTA algorithm.

```
lasso_multi_back(data,y,x,lambda,max_step=10000,image=FALSE,fista=TRUE,tol=10^-7,ini=0)
```

10 1_CV

Arguments

data	name of the dataset
у	name of the dependent variables
x	name of the independent variable
lambda	a vector of lambda-value to be evaluated in the regression
max_step	maximum number of steps
image	plots the evolution of errors in term of lambda values
fista	fista=TRUE: use FISTA algortihm for the multiclass logistic regression; fista=FALSE: use ISTA algortihm
tol	tolerance for the convergence
ini	initial value for the coefficients, default is $0 \# @examples library(glmnet) data("MultinomialExample") x<-MultinomialExample$x y<-MultinomialExample$y mult<-as.data.frame(cbind(x,y)) lasso_multi_back(mult,y="y",x=colnames(mult)[-31],max_step = 1000,lambda=0.01,image=TRUE,fista=0.01,image=TRUE,fista=0.01,image=TRUE,fista=0.01,image=TRUE,fista=0.01,image=TRUE,fista=0.01,image=TRUE,fista=0.01,image=TRUE,fista=0.01,image=TRUE,fista=0.01,image=0.01,$

Details

lasso_multi_back

Value

A list containing:

- · coefficients: A matrix where each column represents the estimated regression coefficients for a different lambda value.
- error_evolution: A numeric vector tracking the error at certain step.
- num_steps: An integer vector indicating the number of steps in which errors are calculated.

1_CV K-Fold Cross validation for L1/L2 regression

Description

the function realizes K-Fold Cross validation for ridge/Lasso regression to help to choose the lambda that minimise the RSS

Usage

1_CV(data,y,x,lambda,k,mode=2,binary=FALSE,step=1000,bound=0.5,fista=TRUE,tol=10^-7)

ols 11

Arguments

data	name of the dataset
У	name of the dependent variables
x	name of the independent variable
lambda	a number or a vector of lambda-value to be evaluated in the regression
k	integer, which indicates how many training and test set will be splited from the dataset
mode	1: ridge regression; 2: lasso regression
binary	logical, if TRUE, the dependent variable is binary
step	maximum number of steps
bound	threshold for binary dependent variable
fista	logical, if TRUE, the FISTA algorithm is used
tol	tolerance for convergence, it is 10^-7 by default

Value

the lambda values that minimize the MSE

Examples

```
1_CV(mtcars, "hp", c("mpg", "qsec", "disp"), c(0.01, 0.1), k=5, mode=2)
```

ols	Ordinary Least Square regression	

Description

This is a function that estimates coefficients for a linear model using Ordinary Least Squares (OLS) regression.

Usage

```
ols(data,y,x,alpha=0.025,verbose=TRUE)
```

Arguments

data	Dataset used to estimated the coefficients
у	name of the dependent variable
x	name or a vector of names of the independent variables
alpha	confedence level
verbose	logical, if TRUE, the table will be printed

ols_KCV

Value

coefficients of the linear model, or a table with the coefficients, standard errors, t-values, p-values and confidence intervals

Examples

```
df = data.frame("hours"=c(1, 2, 4, 5, 5, 6, 6, 7, 8, 10, 11, 11, 12, 12, 14), "score"=c(64, 66, 76, 73, 74, 81, 83, 82, 80, 88, 84, 82, 91, 93, 89)) ols(df, "score", "hours")
```

ols_KCV

K-Fold Cross Validation for OLS

Description

ols_KCV makes the K-Fold Cross Validation for ordinary least squared regression

Usage

```
ols_KCV(data,k,y,x)
```

Arguments

data	full dataset which will be used for KCV
k	integer, which indicates how many training and test set will be splited from the dataset
у	dependent variable
x	independent variables

Value

the root mean square error after K-Fold Cross Validation on training set

Examples

```
df<-mtcars
ols_KCV(mtcars,5,"hp",c("mpg","qsec","disp"))</pre>
```

ridge 13

ridge Ridge regression

Description

ridge function estimates the coefficients for a linear model using Ridge regression.

Usage

```
ridge(data,y,x,lambda)
```

Arguments

data name of the dataset

y name of dependent variablesx name of independent variable

lambda a numeric value or a numeric vector to penalize the squared residual

Value

a matrix with the coefficients for each lambda

Examples

```
\label{eq:continuous_problem} ridge(\texttt{mtcars}, \texttt{"hp"}, \texttt{c("mpg"}, \texttt{"qsec"}, \texttt{"disp"}), \texttt{c(0.01}, 0.1))
```

softmax

Softmax function for multinomial response variable

Description

the function calculates the softmax function for the multinomial response variable

Usage

```
softmax(num)
```

Arguments

num

A numeric matrix or vector

Details

softmax

14 softmax

Value

A numeric matrix or vector of the same shape as num, where each element represents a probability value between 0 and 1. The values sum to 1 across each row or the entire vector.

Index

```
delete_rect, 2
inpainting, 3
k_fold_cross, 4
l_CV, 10
lasso_fista, 4
lasso_fista_back, 5
lasso_ista_back, 7
lasso_multi, 8
lasso_multi_back, 9
ols, 11
ols_KCV, 12
ridge, 13
softmax, 13
```