Lentes gravitacionales en astrofísica y cosmología

Actividad Práctica 9

1. Cizalladura promedio

Muestre que

$$<\gamma_t>(\theta)=\bar{\kappa}(\theta)-<\kappa(\theta)>,$$
 (1)

donde $<\gamma_t>(\theta)$ es el promedio a lo largo de un círculo de radio θ de la componente tangencial de la cizalladura, $\bar{\kappa}(\theta)$ es el promedio de la convergencia en un disco de radio θ y $<\kappa(\theta)>$ es el promedio de la convergencia sobre el círculo.

Muestre que, para la componente cruzada de la Cizalladura (i.e. rotada de 45 grados) tenemos

$$\langle \gamma_{\times} \rangle = 0$$
 (2)

¿Cómo se puede utilizar el resultado (1) para ajustar modelos de perfiles de densidad de materia a los datos? ¿Cómo se hace para combinar datos de diferentes lentes? ¿Cómo se puede utilizar el resultado (2) para controlar los errores sistemáticos?

2. Ajuste de perfiles promedios de densidad

¿Qué elementos se consideran actualmente para realizar un ajuste de perfiles de densidad a la señal de lente débil de un conjunto de lentes (galáxias, grupo, etc.)?

Realizar en la práctica el ajuste de un modelo a partir de medidas reales de la elipticidad de galáxias de fondo y utilizando um catálogo real de galáxias o agrupaciones de galáxias.

Tip: Seguir el ejemplo del notebook fit_redmapper.ipynb que está en el repositorio https://github.com/CosmoObs/FoF_lensing_2022 en el fichero WeakLensing/example_fit/. Describir lo que hace ese notebook, que datos utilizar, que modelos incluye e interpretar los resultados.

3. Lenteo gravitacional por múltiples planos

Obtenga la función de desvío temporal en el caso de múltiples planos de deflexión. A partir de este resultado, derive la ecuación de las lentes para este caso.

Estos resultados son importantes para lentes no localizados, como la estructura a gran escala del Universo, especialmente en el régimen débil del lenteo.

Sugerencia: siga el procedimiento de (Petters A.,O., Levine H., Wambsganss J., 2001) p. 75 y obtenga las ecuaciones (3.92) y (3.98 - 3.99). Consulte también Seitz & Schneider, 1992 y 1994.

Referencia: Petters A.,O., Levine H., Wambsganss J., 2001, Singularity Theory and Gravitational Lensing. Birkhäuser, Boston