User Modeling

You are what you post!

Represent users by documents a user = a document including all she said

You are what you post!

- Modeling User Personality (Computational Social Science)
 - Personality traits in psychology
 - Big Five: extraversion, emotional stability, agreeableness, conscientiousness, and openness to experience
- Modeling User Health Profile (Computational Epidemiology)
 - Privacy of the user, Ethical principles
- Modeling Gender and Ethnicity
 - First names → gender; Last names → ethnicity
- Modeling User Location

Predicting Personal Life Events from Streaming Social Content

Maryam Khodabakhsh Ferdowsi University of Mashhad maryamkhodabakhsh@stu.mail.ac.ir

> Fattane Zarrinkalam Ryerson University fzarrinkalam@ryerson.ca

Hossein Fani University of New Brunswick hfani@unb.ca

> Ebrahim Bagheri Ryerson University bagheri@ryerson.ca

Figure 1: Distribution of personal life events by event class.

Figure 3: Comparative results of the sliding strategy.

Figure 4: Comparative results of the temporal strategy.

User community detection via embedding of social network structure and temporal content*

Fig. 1. Different temporal behaviour of three Twitter users with respect to the 'War in Afghanistan' topic.

All users are interested in z_{44} ='War in Afghanistan'

User community detection via embedding of social network structure and temporal content*

Fig. 1. Different temporal behaviour of three Twitter users with respect to the 'War in Afghanistan' topic.

All users are interested in z₄₄='War in Afghanistan' but not aligned in time!

User community detection via embedding of social network structure and temporal content

All users are interested in z_{44} ='War in Afghanistan' but not aligned in time!

- User Clustering
 - Timeseries (Image) Clustering

User ↔ Documents → User Vector ↔ Document Vector

- How to include time?

- User Clustering
 - User Vector Representation

User ↔ Documents → User Vector ↔ Document Vector

- How to include time?

User at time $t \leftrightarrow A$ document that has all she said at time t User = $[Doc_0, Doc_1, ..., Doc_T]$

User =
$$[Doc_0, Doc_1, ..., Doc_T]$$

LDA

User = $[[z^{(0)}_{1:K}], [z^{(1)}_{1:K}], ..., [z^{(T)}_{1:K}]]$

User =
$$[Doc_0, Doc_1, ..., Doc_T]$$

LDA

User = $[[z^{(0)}_{1:K}], [z^{(1)}_{1:K}], ..., [z^{(T)}_{1:K}]]$

Two users are similar if they share more cells! each cell = $1 \times 1 \times 1$ cube = $\{u_i\} \times \{z_j\} \times \{t_k\}$ Shared cell = $n \times m \times k$ cube

e.g.,
$$\{u_1u_2\} \times \{z_{44}\} \times \{t_{22} \ t_{23} \ ... \ t_{30}\}$$

Region of Like-mindedness (RoL) iff $y_t^u[z] \approx y_t^v[z]$

Two users are similar if they share more cells!

each cell = 1×1×1 cube = {u_i}×{z_j}×{t_k}

Shared cell = n×m×k cube

e.g.,
$$\{u_1u_2\} \times \{z_{44}\} \times \{t_{22} \ t_{23} \ ... \ t_{30}\}$$

- User Clustering
 - Timeseries (Image) Clustering
 - User2Vec: User Vector Representation: Two Similar Users → Similar Vectors

Louvain Method (Blondel et al. JSTAT 2008)

Evaluation: how accurate are the communities?

Evaluation: how accurate are the communities?

Are these users are sharing:

- Same topics
- In the same time intervals

Qualitative:

Evaluation: how accurate are the communities?

Are these users are sharing:

- Same topics
- In the same time intervals

Quantitative:

- Intrinsic: golden communities

Evaluation: how accurate are the communities?

Are these users are sharing:

- Same topics
- In the same time intervals

Quantitative:

- Intrinsic: golden communities
- Extrinsic: help another applications
 - News Recommendation

Recommend news articles to users to read at today, tomorrow, next week. Instead of per user recommendation, we recommend to the communities!

Evaluation: how accurate are the communities?

Recommend news articles to users to read at today, tomorrow, next week. Instead of per user recommendation, we recommend to the communities!

Evaluation: how accurate are the communities?

all three users in same community

Recommend news articles about

- Z₄₄: "War in Afghanistan"
- at day = 40

Evaluation: how accurate are the communities?

the first two users in same community the last user in another community

Recommend news articles about

- Z₄₄: "War in Afghanistan"
- at day = 40

Evaluation: how accurate are the communities?

all three users in same community

Recommend news articles about

- Z₄₄: "War in Afghanistan"
- at day = 60

Evaluation: how accurate are the communities?

the first two users in same community the last user in another community

Evaluation Strategy

Assumption:

users are interested in the topics of the news article about which they have posted

Evaluation Strategy

Golden Dataset Curation:

news articles to which a user has explicitly linked in her tweets

mentions = {(user, news article, timestamp)}

Evaluation Strategy

News Recommendation:

mentions = {(user, ?, timestamp)}

We recommend news article n

- About topic z
- At timestamp t
- To a community that shows overall burst at time t about z

Evaluation Strategy

News Recommendation:

mentions = {(user, ?, timestamp)}

We hope the community

- Read news article *n*
- Tweet news article *n*

Evaluation Strategy

News Recommendation:

mentions = {(user, ?, timestamp)}

We evaluate

- Our hope: (user, n, timestamp)}
- The reality: (user, *news article*, timestamp)

Evaluation Strategy

Dataset:

- Abel et al.: Twitter,
 - 3M tweets
 - Posted by 135K users
 - Between Nov. 1 and Dec. 31, 2010.

Golden Entries:

- 25,756 triples extracted from 3,468 distinct news articles posted by 1,922 users

Evaluation Strategy

Evaluation Strategy (Second)

User Prediction:

Seen a stray tweet, who is the author?

Probably from community C because this community talked a lot about the topics of the mentioned news article n at timestamp t

mentions = {(?, news article, timestamp)}

Evaluation: how accurate are the communities?

the first two users in same community the last user in another community

Evaluation: how accurate are the communities?

the first two users in same community the last user in another community

Evaluation Strategy (Second)

User Prediction:

Evaluation Strategy (Second)

User Prediction:

User Community Prediction

User Community Detection in Future!

User Community Prediction

