Distancia de Mahalanobis

Ana Karen Martínez Marín

30/5/2022

Ejercicio 1

Para desarrollar esta primera parte primero vamos utilizar datos propuestos.

Exploración de los datos

```
library(knitr)
dim(datos)

## [1] 16 2

str(datos)

## 'data.frame': 16 obs. of 2 variables:
## $ ventas : num 1054 1057 1058 1060 1061 ...
## $ clientes: num 63 66 68 69 68 71 70 70 71 72 ...
kable(summary(datos))
```

ventas	clientes
Min. :1054 1st Qu.:1060 Median :1062 Mean :1061 3rd Qu.:1062	Min. :63.00 1st Qu.:68.75 Median :71.00 Mean :70.94 3rd Qu.:73.00
Max. :1070	Max. :78.00

La matriz de datos contiene 16 observaciones, 2 variables y todas las variables son numericas.

Cálculo de la distancia de Mahalanobis

El método de distancia Mahalanobis mejora el método clásico de distancia de Gauss eliminando el efecto que pueden producir la correlación entre las variables a analizar

Determinar el número de outlier que queremos encontrar.

```
num.outliers <- 2
```

Ordenar los datos de mayor a menor distancia, según la métrica de Mahalanobis.

```
mah.ordenacion <- order(mahalanobis(datos, colMeans(datos), cov(datos)), decreasing=TRUE)
mah.ordenacion</pre>
```

```
## [1] 14 16 1 15 2 5 3 10 13 8 12 4 6 7 9 11
```

Generar un vector boleano los dos valores más alejados segun la distancia Mahalanobis.

```
outlier2 <- rep(FALSE , nrow(datos))
outlier2[mah.ordenacion[1:num.outliers]] <- TRUE</pre>
```

Resaltar con un punto relleno los 2 valores outliers.

```
colorear.outlier <- outlier2 *16
```

Visualizar el gráfico con los datos destacando sus outlier.

```
plot(datos , pch=0)
points(datos , pch=colorear.outlier)
```


Ejercicio 2

Se generan datos, su matriz de varianzas y su distancia de mahalanbis

Aqui se usa \mathbb{D}^2 como la distancia Euclidea comun

```
Sx <- cov(x)
D2 <- mahalanobis(x, colMeans(x), Sx)</pre>
```

Gráfico de la densidad de las distancias de Mahalanobis

Squared Mahalanobis distances, n=100, p=3

Gráfico qqplot sobre los datos

Q–Q plot of Mahalanobis \mbox{D}^2 vs. quantiles of χ^2_3

