## 타깃 보드 및 개발환경 이해

2024.06

㈜다인시스



## 목 차

#### ◆ INL (IoT Node Link)

INL-01 이해

**ESP32-S3** 

ESP32-S3-DevKitC-1

ESP32-S3 개발 환경

Arduino Platform

#### IoT Node Link: INL Series

- ♦ IoT Node Link (INL Series) 이해
  - ESP32-S3와 Arduino Platform 기반의 산업용 제어 보드
  - UART, RS232, RS485, GPIO와 LAN, WLAN, BLE 지원하는 IoT 기반 제어 및 상태 감시 목적의 Node Device로 사용
- INL Series 제품 및 주요 특징

| 구분          | INL-01              | INL-02              | NL-03               | INL-04              | INL-05              | INL-06                   |
|-------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------------------|
| MCU         | ESP32-S3            | ESP32-S3            | ESP32-S3            | ESP32-S3            | ESP32-S3            | ESP32-S3                 |
| Serial      | UART, RS232         | RS232,RS485         | RS232,RS485         | RS232,RS485,UART(4) | RS232,RS485,UART(4) | RS232,RS485,UART(4)      |
| USB         |                     |                     | 지원                  | 지원                  | 지원                  | 지원                       |
| Ю           | 12C(2),ADIN/GPIO(8) | I2C(1),ADIN/GPIO(1) | I2C(1),ADIN/GPIO(1) | I2C(1),ADIN/GPIO(4) | I2C(1),ADIN/GPIO(4) | 12C(1),ADIN/GPIO(4)      |
| Digital In  |                     | 5V (1), 24V(1)      | 5V (1), 24V(1)      | 5V (4), 24V(4)      | 5V (8), 24V(8)      | 5V (4), 24V(4)           |
| Digital Out |                     | Sink(1)             | Sink(1)             | Sink(4)             | Sink(8)             | Sink(4)                  |
| Relay Out   |                     |                     | Relay(1)            | Relay(4)            | Relay(2)            |                          |
| RTC         |                     |                     | 지원                  | 지원                  | 지원                  | 지원                       |
| 통신          | WLAN/BT/LAN         | WLAN/BT             | WLAN/BT/LAN         | WLAN/BT/LAN         | WLAN/BT/LAN         | WLAN/BT<br>LTE CatM.1 지원 |

# INL 시리즈 사양 비교

| 구분          | INL-01   | INL-02   | INL-03   | INL-04   | INL-05   | INL-06   | 설명                                                              |
|-------------|----------|----------|----------|----------|----------|----------|-----------------------------------------------------------------|
| MCU         | ESP32-S3 | ESP32-S3 | ESP32-S3 | ESP32-S3 | ESP32-S3 | ESP32-S3 |                                                                 |
| Upload      | 1        | 1        | 1        | 1        | 1        | 1        | ESP32 UARTO, USB-C                                              |
| RS232       | 1        | 1        | 1        | 1        | 1        | 1        | ESP32 UART1                                                     |
| RS485       |          | 1        | 1        | 1        | 1        | 1        | ESP32 UART2                                                     |
| UART        | 1(ESP32) |          |          | 2        | 2        | 2        | SC16IS752 (I2C to UART)                                         |
| USB         |          |          | 1        | 1        | 1        | 1        | USB-C, OTG                                                      |
| 12C         | 1        | 1(GPIO)  | 1(GPIO)  | 1(GPIO)  | 1(GPIO)  | 1(GPIO)  | 4P Wafer connector : VGG, GND, SDA, SCL                         |
| ADIN/GPIO   | 8(6/2)   | 1        | 2        | 4        | 4        | 4        | ESP32 ADC, GPIO 3.3V                                            |
| Digital In  |          | 1        | 1        | 4        | 8        | 4        | DC Input 0V(Low), 24V(High, 20~28V)                             |
| Digital In  |          | 1        | 1        | 4        | 8        | 4        | DC Input 0V(Low), 5V(High)                                      |
| Digital Out |          | 1        | 1        | 4        | 8        | 4        | DC Sink 5~26 VDC, NPN TR OUTPUT (High->GND, Low-> OFF)          |
| Relay Out   |          |          | 1        | 4        | 2        |          | 10A 출력, (High->On, Low->Off)                                    |
| RTC         |          |          | 1        | 1        | 1        | 1        | DS1307(I2C)                                                     |
| LED         | 2        | 2        | 2        | 2        | 2        | 2        | Status, Power                                                   |
| Button      | 2        | 2        | 2        | 2        | 2        | 2        | Reset, Boot                                                     |
| Switch      |          | 8        | 8        | 8        | 8        | 8        | Additional GPIO, PCF8574, 4 pin select switch : RS485 ID select |
| R.45(LAN)   | 1        |          | 1        | 1        | 1        |          | Wiznet W5500                                                    |
| WiFi        | 1        | 1        | 1        | 1        | 1        | 1        | ESP32-S3-WROOM-1(내장안테나/-1U(외장안테나)                               |
| BLE         | 1        | 1        | 1        | 1        | 1        | 1        | ESP32-S3-WROOM-1(내장안테나/-1U(외장안테나)                               |
| LTE CatM.1  |          |          |          |          |          | 1        |                                                                 |
| Power       | 12~24V   | 12~24V   | 12~24V   | 12~24V   | 12~24V   | 12~24V   | Terminal Block 사용                                               |

# INL-01 제품 사양

| 구분           | INL-01   | 설 명                        | Connector       | 비고                                                            |
|--------------|----------|----------------------------|-----------------|---------------------------------------------------------------|
| MCU          | ESP32-S3 | ESP32-S3-WROOM-1(U)-N8     |                 | ESP32-S3-WROOM-1(U)-N8                                        |
| Debug/Upload | 1        | ESP32 UARTO, USB-C         |                 | Debug & F/W upload                                            |
| RS232        | 1        | ESP32 UART1                | T.B             | IO17, IO18 : Terminal Block 사용                                |
| UART         | 1        | ESP32 UART2                | B2B             | IO47, IO48: B2B Connector                                     |
| SW I2C       | 1        | GPIO                       | Wafer           | SW I2C_2, IO41, IO42 : , 4P Wafer Connector 적용                |
| ADIC/GPIO    | 6        | ESP32 ADC, GPIO 3.3V       | B2B             | IO4, IO5, IO6, IO7, IO8, IO19 : B2B Connector                 |
| ADIC/GPIO    | 2        | ESP32 ADC, GPIO 3.3V       | T.B             | IO1, IO2 : External Terminal Block                            |
| LED          | 2        | Status, Power              |                 | IO20 : Status LED, Power LED는 Power에 연결                       |
| Button       | 2        | Reset, Boot                |                 | Switch 및 Upload 포트에서 자동 reset 제어 용도로 사용                       |
| LAN          | 1        | Wiznet W5500               |                 | IO35,IO36,IO37,IO39: SPI Interface 적용, IO38: Int, IO40: Reset |
| WLAN         | 1        | WLAN IEEEb/g/n, 2.4~2.5GHz |                 | ESP32-S3-WROOM-1(내장안테나/-1U(외장안테나)                             |
| BLE          | 1        | Bluetooth V5.0 BLE/Mesh    |                 | ESP32-S3-WROOM-1(내장안테나/-1U(외장안테나)                             |
| Power        | 12~24V   | 12~24V 전원 입력               | USB / B2B / T.B | Debug 용 USB Type-C, B2B Connector + External Terminal Block   |

## INL-01 블록도



## INL-01 보드 구조



# INL-03 제품 사양

| 구분           | INL-03   | 설 명                            | 비고                                                                              |  |  |
|--------------|----------|--------------------------------|---------------------------------------------------------------------------------|--|--|
| MCU          | ESP32-S3 | ESP32-S3-WROOM-1(U)            | ESP32-S3-WROOM-1(U)-N8                                                          |  |  |
| Debug/Upload | 1        | ESP32 UARTO, USB-C             | Debug & F/W upload                                                              |  |  |
| RS232        | 1        | ESP32 UART1                    | IO17(TX), IO18(RX) : Terminal Block 사용                                          |  |  |
| RS485        | 1        | ESP32 UART2                    | IO47(TX), IO48(RX) : Terminal Block 사용, IO11 : 485 TRX EN                       |  |  |
| USB          | 1        | USB-C, OTG                     | IO19, IO20, IO3(USB OTG VBUS EN)                                                |  |  |
| 12C          | 1(SW)    | GPIO                           | SW I2C_2, IO41(SCL), IO42(SDA), 4P Wafer Connector                              |  |  |
| ADC/GPIO     | 2        | ESP32 ADC, GPIO 3.3V           | IO1(ADC_IN0), IO2(ADC_IN1) : Terminal Block                                     |  |  |
| ADC/GPIO     | 4        | ESP32 ADC, GPIO, EXP_GPIO 3.3V | IO4(ADC_IN3), IO9(ADC_IN8), P6(EXP_GPIO0), P7(EXP_GPIO1), : Wafer               |  |  |
| Digital In   | 1        | DC Input 0~24 VDC              |                                                                                 |  |  |
| Digital In   | 1        | DC Input 0~5 VDC               | PCF8574 I2C GPIO 확장, NPN OPEN DRAIN OUTPUT, Software I2C : IO41(SCL), IO42(SDA) |  |  |
| Digital Out  | 1        | DC Sink 5~26 VDC               |                                                                                 |  |  |
| Relay Out    | 1        | Relay 10A                      | ESP32 IO21 10A 출력                                                               |  |  |
| RTC          | 1        | DS1307(I2C)                    | Software I2C 사용(IO5, IO6)                                                       |  |  |
| LED          | 2        | Status, Power                  | IO10 : Status LED, Power LED는 3.3V Power에 연결                                    |  |  |
| Button       | 2        | Reset, Boot                    | Switch 및 Upload 포트에서 자동 reset 제어 용도로 사용                                         |  |  |
| Switch       | 8        | RS485 ID select switch         | PCF8574 사용, 8 port GPIO 확장, Software I2C 사용(IO5, IO6)                           |  |  |
| LAN          | 1        | Wiznet W5500                   | IO35,IO36,IO37,IO39: SPI Interface 적용, IO38: Int, IO40: Reset                   |  |  |
| WiFi         | 1        | WLAN IEEE b/g/n, 2.4~2.5GHz    | ESP32-S3-WROOM-1(내장안테나/-1U(외장안테나)                                               |  |  |
| BLE          | 1        | Bluetooth V5.0 BLE/Mesh        | ESP32-S3-WROOM-1(내장안테나/-1U(외장안테나)                                               |  |  |
| Power        | 1        | 12~24V DC                      | Terminal Block 사용                                                               |  |  |

#### INL-03 블록도



## INL-03 보드 구조



## INL-03 보드 Layout



# INL-05 제품 사양

| 구분           | INL-05   | 설 명                        | 비고                                                                                       |
|--------------|----------|----------------------------|------------------------------------------------------------------------------------------|
| MCU          | ESP32-S3 | ESP32-S3-WROOM-1(U)        | ESP32-S3-WROOM-1(U)-N8                                                                   |
| Debug/Upload | 1        | ESP32 UARTO, USB-C         | Debug & F/W upload                                                                       |
| RS232        | 1        | ESP32 UART1                | IO17(TX), IO18(RX) : Terminal Block 사용                                                   |
| RS485        | 1        | ESP32 UART2                | IO47(TX), IO48(RX) : Terminal Block 사용, IO11 : 485 TRX EN                                |
| UART         | 2        | SC16IS752 (I2C to UART)    | Software I2C 사용 : IO15(SDA), IO16(SCL), IO7(RESET)<br>UART TTL 출력, 5P Wafer Connector 적용 |
| USB          | 1        | USB-C, OTG                 | IO19, IO20, IO3(USB OTG VBUS EN)                                                         |
| 12C          | 1(SW)    | GPIO                       | SW I2C_2, IO41(SCL), IO42(SDA), 4P Wafer Connector                                       |
| ADC/GPIO     | 4        | ESP32 ADC, GPIO 3.3V       | IO1(ADC_IN0), IO2(ADC_IN1), IO4(ADC_IN3), IO9(ADC_IN8): Terminal Block                   |
| Digital In   | 8        | DC Input 20~24 VDC         | MCD22017 16 part Coffware 12C ( IOE/CCL) IOE/CDA)                                        |
| Digital In   | 8        | DC Input 0~5 VDC           | MCP23017 16 port , Software I2C : IO5(SCL), IO6(SDA)                                     |
| Digital Out  | 8        | DC Sink 5~26 VDC           | PCF8574 I2C GPIO 확장, NPN OPEN DRAIN OUTPUT, Software I2C : IO41(SCL), IO42(SDA)          |
| Relay Out    | 2        | Relay 10A                  | ESP32 IO21,IO14, 10A 출력                                                                  |
| RTC          | 1        | DS1307(I2C)                | Software I2C 사용(IO5, IO6)                                                                |
| LED          | 2        | Status, Power              | IO10 : Status LED, Power LED는 3.3V Power에 연결                                             |
| Button       | 2        | Reset, Boot                | Switch 및 Upload 포트에서 자동 reset 제어 용도로 사용                                                  |
| Switch       | 8        | RS485 ID select switch     | PCF8574 사용, 8 port GPIO 확장, Software I2C 사용(IO5, IO6)                                    |
| LAN          | 1        | Wiznet W5500               | IO35,IO36,IO37,IO39: SPI Interface 적용, IO38: Int, IO40: Reset                            |
| WiFi         | 1        | WLAN IEEEb/g/n, 2.4~2.5GHz | ESP32-S3-WROOM-1(내장안테나/-1U(외장안테나)                                                        |
| BLE          | 1        | Bluetooth V5.0 BLE/Mesh    | ESP32-S3-WROOM-1(내장안테나/-1U(외장안테나)                                                        |
| Power        | 1        | 12~25V DC                  | Terminal Block 사용                                                                        |
| rower        | 1        | 12V DC                     | DC Jack                                                                                  |

## INL-05 블록도



## INL-05 보드 Layout



## INL-05 보드 구조



## 재 난안전용 IoT Node Link (INL Series)

#### ◆ 재난안전용 IoT Node Link for Diaster(INL-D Series)

- ESP32-S3와 Arduino Platform 기반의 산업용 제어 보드
- 지진, 화재 감지, 긴급 버튼 지원

#### ◆ 주요 특징

| 구 분      | 사 양                          | 비고             |
|----------|------------------------------|----------------|
| ESP32-S3 | Xtensa dual-core, LX7 240MHz |                |
| 지진감지     | 6축 Gyro/Acc 센서, ICM-42670    |                |
|          | 가연성 가스 감지센서, MQ2             |                |
| 화재감지     | 불꽃감지 센서, L-51POPT1D2         |                |
|          | 온습도센서, SHT40, Sensirion      |                |
| -1C  4   | 조도센서, VEML3235SL             | 생활감지           |
| 기타센서     | 동작감시, TMF8801                | 생활감지           |
| 긴급버튼     | 긴급호출                         |                |
| 알람       | 긴급 알람, Buzzer, HN9650B       | 소리 큰 Buzzer 적용 |
| Power    | Battery with 상시 전원           |                |
| 케이스      | 플라스틱 케이스                     |                |

#### 생활안전 대응 센서 노드: INL-D01 제품 사양

#### ◆ INL-D01 제품 사양 및 하드웨어 구조

| 구분         | INL-D01      | ESP32-S3 IO        | 설 명                         | 비고                                | 12C Addr |
|------------|--------------|--------------------|-----------------------------|-----------------------------------|----------|
| MCU        | ESP32-S3     |                    | ESP32-S3-WROOM-1(U)         | 내장안테나 / 외장안테나 모듈 지원               |          |
| Upload     | 1            | TXD0, RXD0         | ESP32-S3 UARTO, USB-C       | Debug & F/W upload                |          |
| HW I2C     | 1            | IO8(SDA), IO9(SCL) | ESP32-S3 I2C                | HW I2C 사용                         |          |
| Gyro+Accel | 1            | IO8(SDA), IO9(SCL) |                             | 6축 Gyro/Acc 센서, ICM-42670         | 0x68     |
| Temp+Hum.  | 1            | IO8(SDA), IO9(SCL) |                             | SHT40, 정밀 온습도 센서                  | 0x44     |
| Light      | 1            | IO8(SDA), IO9(SCL) |                             | 조도센서, VEML3235SL                  | 0x10     |
| TOF        | 1            | IO8(SDA), IO9(SCL) |                             | 동작 감지용, TMF8801                   | 0x41     |
| Gas        | 1            | Analog             |                             | MQ2, Analog Read                  |          |
| Flame      | 1            | IO5                | 불꽃감지                        | GPIO, L-51POPT1D2                 |          |
| BUZZER     | 1            | 107                |                             | GPIO, HN9650B                     |          |
| BAT        | 1            | IO2                |                             | Battery Present                   |          |
| LED        | 2            | X                  | Battery Charge, Standby     | Battery Charge, Standby State 표시  |          |
| Button     | 1            | EN                 | Reset                       | Reset 제어용                         |          |
| Button     | 1            | 100                | Boot                        | Boot 스위치, Factory Reset 용으로 사용 예정 |          |
| Button     | 1            | 106                | Safe                        | 긴급 호출 용도로 사용                      |          |
| WiFi       | 1            |                    | WLAN IEEE b/g/n, 2.4~2.5GHz | ESP32-S3-WROOM-1(내장안테나/-1U(외장안테나) |          |
| BLE        | 1            |                    | Bluetooth V5.0 BLE/Mesh     | ESP32-S3-WROOM-1(내장안테나/-1U(외장안테나) |          |
| Power      | USB, Battery |                    | USB 전원 or Battery           |                                   |          |

## INL-D01 블록도



## INL-D01 PCB 구성



## INL-01 외관



## 목 차

INL (IoT Node Link)

◆ INL-01 이해

INL-01 이해

**ESP32-S3** 

ESP32-S3-DevKitC-1

ESP32-S3 개발 환경

**Arduino Platform** 

## INL-01 제품 사양

| 구분                | INL-05   | 설 명                        | 비고                                                             |  |
|-------------------|----------|----------------------------|----------------------------------------------------------------|--|
| MCU               | ESP32-S3 | ESP32-S3-WROOM-1(U)        | 내장안테나 / 외장안테나 모듈 지원                                            |  |
| Upload            | 1        | ESP32 UARTO, USB-C         | Debug & F/W upload                                             |  |
| RS232             | 1        | ESP32 UART1                | IO17, IO18 : Terminal Block 사용                                 |  |
| RS485             | 1        | ESP32 UART2                | IO47, IO48 : Terminal Block 사용, IO11 : 485 TX EN               |  |
| USB               | 1        | USB-C, OTG                 | IO19, IO20                                                     |  |
| SWI2C             | 1        | GPIO                       | SW I2C_2, IO41, IO42, 4P Wafer Connector 적용                    |  |
| ADIC/GPIO(2)      | 2        | ESP32 ADC, GPIO 3.3V       | IO1, IO2, Terminal Block 사용                                    |  |
| ADIC(2)/GPIO(2/4) | 4        | ESP32 ADC, GPIO 3.3V       | IO3, IO4, GPIO0, GPIO1(PCF8574 I2C GPIO 확장): B2B Connector     |  |
| Digital In        | 1        | DC Input 20~24 VDC         | PCF8574 I2C GPIO 확장(IO5, IO6)                                  |  |
| Digital In        | 1        | DC Input 0~5 VDC           | DC 입력 범위는 Compile Tech. FA-DUINO 참조                            |  |
| Digital Out       | 1        | DC Sink 5~26 VDC           | PCF8574 I2C GPIO 확장, NPN TR OUTPUT , Compile Tech. FA-DUINO 참조 |  |
| Relay Out         | 1        | Relay 10A                  | ESP32 IO21,IO14, 10A 출력, Compile Tech. FA-DUINO 참조             |  |
| RTC               | 1        | DS1307(I2C)                | Software I2C 사용(IO5, IO6)                                      |  |
| LED               | 2        | Status, Power              | IO20 : Status LED, Power LED는 Power에 연결                        |  |
| Button            | 2        | Reset, Boot                | Switch 및 Upload 포트에서 자동 reset 제어 용도로 사용                        |  |
| Switch            | 8        | RS485 ID select switch     | PCF8574 사용, 8 port GPIO 확장, Software I2C 사용(IO5, IO6)          |  |
| R145(LAN)         | 1        | Wiznet W5500               | IO35,IO36,IO37,IO39: SPI Interface 적용, IO38: Int, IO40: Reset  |  |
| WiFi              | 1        | WLAN IEEEb/g/n, 2.4~2.5GHz | ESP32-S3-WROOM-1(내장안테나/-1U(외장안테나)                              |  |
| BLE               | 1        | Bluetooth V5.0 BLE/Mesh    | ESP32-S3-WROOM-1(내장안테나/-1U(외장안테나)                              |  |
| Power             | 12~24V   | 12~25V 전원 입력 가능하도록 설계      | Terminal Block 사용                                              |  |

## INL-01 블록도



## INL-01 보드 구조



## INL-01 주요 소자 및 연결 단자

| Ŧ              | 분                  | 설 명                        | ESP32-53 포트 정보                                                                                                                                                    |
|----------------|--------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MCU            | MCU                | ESP32-S3-WROOM-1(U) N8     | ESP32-S3-WROOM-1(U) N8 모듈                                                                                                                                         |
| USB Type-C     | Debugger           | Power & Debug console      | USB Type-C port 용도<br>1) Power supply to the board<br>2) Flashing applications to the chip<br>3) Communication with the chip via the on-board USB-to-UART bridge. |
| LAN            | Ethernet           | 10MBps Ethernet            | 외부 소자 : WIZnet W5500<br>SPI I/F 사용 (MOSI:IO35, MISO:IO37, SCK:IO36, SS:IO39)                                                                                      |
| RS232          |                    | RS232-S3 Serial            | UART1 (RX:IO18, TX:IO17)                                                                                                                                          |
| Terminal Block | ADC/GPIO           | ESP32-S3 ADC IN, GPIO 3.3V | IO1, IO2                                                                                                                                                          |
|                | Power              | DC Power                   | 입력 범위 : 12 ~ 24VDC                                                                                                                                                |
|                | ADC/GPIO           | ESP32-S3 ADC IN, GPIO 3.3V | 104, 105, 106, 107, 108, 1019                                                                                                                                     |
| Board to Board | UART TTL           | ESP32-S3 UART TTL Level    | UART2 (TX:IO47, RX:IO48)                                                                                                                                          |
|                | Power              | DC Power                   | 입력 범위 : 12 ~ 24VDC                                                                                                                                                |
| 14/-C          | 12C                | 12C I/F                    | Software I2C (SCL:IO41 SDA:IO42)                                                                                                                                  |
| Wafer          | 12C Level Selector | I2C Bus level              | 3.3V or 5V 선택                                                                                                                                                     |
| Antenna        | RF Antenna         | 내장형, 외장형                   | 제품에 따라 내장형 및 외장형 지원                                                                                                                                               |
| D. #           | Boot               | Download                   | 시리얼 포트로 펌웨어 다운로드 할 때 Boot 버튼을 누르고 Reset 누른다                                                                                                                       |
| Button         | Reset              | System Reset               | 시스템 재시작 버튼                                                                                                                                                        |
| LED            | Power, Status LED  | Power, Status LED          | IO20 : Status LED, Power LED는 3.3V Power에 연결                                                                                                                      |
| Antenna        | RF Antenna         | 내장형, 외장형                   | 제품에 따라 내장형 및 외장형 지원                                                                                                                                               |

## INL-01 연결 단자 핀맵

| 구분                  | 연결 단자          | Ref. ID  | PIN  | Name  | Type   | Function                                              |
|---------------------|----------------|----------|------|-------|--------|-------------------------------------------------------|
| Power               | Terminal Block | J2       | VCC  | +     | Р      | 12 ~ 24VDC power supply                               |
| 1 GVG               | JZ             | GND      | -    | Р     | Ground |                                                       |
|                     |                |          | IO1  | IO.1  | I/O/T  | RTC_GPIO1, GPIO1, TOUCH1, ADC1_CH0                    |
| ADC/GPIO Terminal B | Terminal Block | J10      | IO2  | IO.2  | I/O/T  | RTC_GPIO2, GPIO2, TOUCH2, ADC1_CH1                    |
|                     |                |          | GND  | GND   | Р      | Ground                                                |
|                     |                |          | TX   | TX    | I/O/T  | RS232 U1TXD / GPIO17                                  |
| RS232               | Terminal Block | J9       | RX   | RX    | I/O/T  | RS232 U1RXD / GPIO18                                  |
|                     |                |          | GND  | GND   | Р      | Ground                                                |
|                     |                |          | VCC  | VCC   | Р      | 12 ~ 24VDC power supply                               |
| Power               |                |          | VCC  | VCC   | Р      | 12 ~ 24VDC power supply                               |
| rowei               |                |          | GND  | GND   | Р      | Ground                                                |
|                     |                |          | GND  | GND   | Р      | Ground                                                |
|                     |                |          | GND  | GND   | Р      | Ground                                                |
| UART                |                |          | RX   | RX    | I/O/T  | UART TTL U2RXD / GPIO48                               |
|                     | Board to Board | 10       | TX   | TX    | I/O/T  | UART TTL U2TXD / GPIO47                               |
|                     | (2.54mm)       | J8       | GND  | GND   | Р      | Ground                                                |
|                     |                |          | IO19 | IO.19 | I/O/T  | RTC_GPIO19, GPIO19, U1RTS, ADC2_CH8, CLK_OUT2, USB_D- |
|                     |                |          | IO8  | IO.8  | I/O/T  | RTC_GPIO8, GPIO8, TOUCH8, ADC1_CH7, SUBSPICS1         |
| ADC/GPIO            |                |          | 107  | IO.7  | I/O/T  | RTC_GPIO7, GPIO7, TOUCH7, ADC1_CH6                    |
|                     |                |          | 106  | IO.6  | I/O/T  | RTC_GPIO6, GPIO6, TOUCH6, ADC1_CH5                    |
|                     |                |          | IO5  | IO.5  | I/O/T  | RTC_GPIO5, GPIO5, TOUCH5, ADC1_CH4                    |
|                     |                |          | IO4  | IO.4  | I/O/T  | RTC_GPIO4, GPIO4, TOUCH4, ADC1_CH3                    |
|                     |                |          | GND  | GND   | Р      | Ground                                                |
| Software I2C        | Mafor          | IE.      | SCL  | SCL   | I/O/T  | MTDI, GPIO41, CLK_OUT1                                |
| Sulwareizc          | vvaier         | Wafer J5 | SDA  | SDA   | I/O/T  | MTMS, GPIO42                                          |
|                     |                |          | VCC  | VCC   | Р      | 3.3 or 5V                                             |

#### INL-01 회로 : ESP32-S3-WROOM-1

- ◆ ESP32-S3-WROOM 모듈을 이용한 회로도 설계
  - 모듈의 I/O interface는 제공된 datasheet을 통하여 확인 가능
  - esp32-s3-wroom-1\_wroom-1u\_datasheet\_en.pdf



▲ ESP32-S3-WROOM-1 Schematics

## ESP32-S3 모듈

- ESP32-S3 SoC를 이용하여 사용자가 사용하기 쉽게 모듈화 설계
  - ESP32-S3 SoC와 외부 연결이 용이하도록 설계
  - WiFi/BT RF 특성 튜닝 된 안테나 제공

#### ESP32-S3 WROOM

- 2.4 GHz WiFi(802.11 b/g/n) and Bluetooth® 5 (LE) module
- Built around ESP32S3 series of SoCs, Xtensa® dualcore 32bit LX7 microprocessor
- Flash up to 16 MB, PSRAM up to 8 MB
- 36 GPIOs, rich set of peripherals
- Onboard PCB antenna



ESP32-S3-WROOM-1 Block Diagram





ESP32-S3-WROOM-1U

ESP32-S3-WROOM-1



ESP32-S3-WROOM-1U Block Diagram

#### INL-01 회로 : Power

- Power
  - 동작 전압범위는 2.3V~3.6V
- ◆ 전원 공급
  - USB Type-C 포트, Terminal Block 또는 Board to Board 코넥터 중 하나를 통해 공급이 가능
  - USB Type-C 포트 : 5V, 500mA Power, 콘솔용 USB-to-UART port
  - Terminal Block, Board to Board Connector: 12 ~ 24V Power
- ◆ 전원 공급 회로
  - Terminal Block, Board to Board Connector 12~24V는 Switching Regulator 를 통한 5V 생성, USB 전원 5V 입력
  - 공급받은 5V 전원은 레귤레이터(Regulator)를 통해 3.3V 전원 생성



## INL-01 회로 : LED, Switch & Button

- ◆ Status LED (D1)
  - GPIO20 에 연결
- ◆ 부트 버튼 (SW1)
  - GPIO0 에 연결
- ◆ 리셋 버튼 (SW2)
  - CHIP\_PU 에 연결 (EN pin of ESP32-S3)









- Programming Mode
  - 시리얼 포트로 펌웨어 다운로드 할 때 Boot 버튼을 누르고 Reset 누른다
- ♦ Auto Program 지원
  - USP to UART Chipset의 DTR/RTS 신호를 이용한 자동 프로그래밍(Auto Programming) 모드 지원
  - 프로그램 다운로드 및 Reset 자동 제어



▲ Auto Programming mode 지원

#### INL-01 회로: USB to UART

- ♦ ESP32-S3 USB to UART 지원
  - USB to UART Bridge 적용(CP2102N)
  - ESP32-S3의 UART0포트를 통해 데이터 신호 입출력
  - RTS(request To Send)와 DTR(Data Terminal Ready)을 통한 하드웨어 통신제어



▲ USB Type-C to UART Interface



▲ USB to UART bridge IC(CP2102) schematic

#### INL-01 회로 : Board to Board / I2C Wafer

- ◆ 외부 보드와 연결용 Board to Board 코넥터 회로 설계
  - UART TX, RX, 6 ADC/GPIO
- ◆ I2C 확장용 4P Wafer
  - 5V, 3.3V 전원 지원



▲ Board to Board Connector



▲ Board to Board Connector

# INL-01 회로 : Terminal Block

- Power
  - 12 ~ 24V Power 입력
- ADC/GPIO
  - 2 pin ADC in / GPIO
- ◆ RS232
  - RS232 Level Tx/Rx



▲ Terminal Block : Power



▲ Terminal Block : ADC/GPIO



▲ Terminal Block: RS232

## INL-01 회로 : 10Mbps Ethernet

- ◆ 10Mbps Ethernet Controller와 RJ45 코넥터
  - W5500 10Mbps Ethernet Controller
  - SPI Interface 사용



▲ 10Mbps Ethernet Controller와 RJ45 Connector

## 목 차

INL(IoT Node Link)

INL-01 이해

#### **◆ ESP32-S3**

ESP32-S3-DevKitC-1

ESP32-S3 개발 환경

Arduino Platform

#### ESP32-S3 SoC 이해

- ◆ ESP32 SoC 라?
  - ESPRESSIF 사에서 Xtensa Silicon IP를 도입하여 설계하여 판매하는 SoC 제품
  - https://www.espressif.com/en/products/socs/esp32-s3
- ◆ ESP32 SoC 특징
  - ESP32는 소형 IoT기기에 탑재하기 위한 무선 통신 컨트롤러 장치
  - Wi-Fi와 Bluetooth가 통합된 SoC모듈
  - 주로 모바일, 웨어러블 디바이스 및 IoT통신 제품에 탑재하기 위해 설계됨
- ESP32-S3 HW spec.
  - Designed for AloT application
  - Processor: Xtensa® dual-core 32-bit LX7 microprocessors, upto 240MHz
  - Memory: 384 KB ROM, 512 KB SRAM, 16 KB SRAM in RTC
  - 2.4 GHz Wi-Fi & Bluetooth 5 (BLE)
  - Peripherals
    - ♦ 45 programmable GPIOs, SPI, I2S, I2C, PWM, RMT, ADC and UART, SD/MMC host and TWAI™.
    - 4 14 GPIOs can be configured as capacitive touch input for HMI applications
  - Ultra-low-power(ULP) core
    - supports multiple low-power modes in a variety of such use-cases

### ESP32-S3 SoC 구조

- ◆ 단일 칩으로 구성
  - MCU-based system on a chip (SoC)
  - 칩 내부에 CPU를 비롯한 네트워크 및
     IO 디바이스 Integration
  - Xtensa® dual-core 32-bit LX7 microprocessors
  - 2.4 GHz Wi-Fi & Bluetooth 5 (BLE)





ESP32-S3 Block Diagram

# ESP32-S3: CPU & On-Chip Memory

- CPU(Processor)
  - Xtensa® dual-core 32-bit LX7 microprocessor, up to 240 MHz
  - 1 core at 240 MHz: 613.86 CoreMark;
    - 2.56 CoreMark/MHz
  - 2 cores at 240 MHz: 1181.60 CoreMark;
    - 4.92 CoreMark/MHz
  - 128-bit data bus and SIMD commands
- On-Chip Memory
  - 384 KB ROM
  - 512 KB SRAM
  - 16 KB SRAM in RTC
- External Flash and external RAM
  - SPI, Dual SPI, Quad SPI, Octal SPI, QPI and OPI interfaces
  - Flash controller with cache is supported
  - Flash in-Circuit Programming (ICP) is supported



#### ESP32-S3: WiFi

- ◆ IEEE 802.11 b/g/n-compliant
  - Supports 20 MHz, 40 MHz bandwidth in 2.4 GHz band
  - 1T1R mode with data rate up to 150 Mbps
- 4 × virtual Wi-Fi interfaces
  - Simultaneous support for Infrastructure BSS Station, SoftAP, or Station + SoftAP modes
- Wi-Fi Multimedia (WMM)
- TX/RX A-MPDU, TX/RX A-MSDU
- Fragmentation and defragmentation
- Automatic Beacon monitoring (hardware TSF)
- Antenna diversity
- 802.11mc FTM





#### ESP32-S3: Bluetooth

- Bluetooth LE: Bluetooth 5, Bluetooth mesh
- High power mode (20 dBm)
- Speed: 125 Kbps, 500 Kbps, 1 Mbps, 2 Mbps
- Advertising extensions
- Multiple advertisement sets
- Channel selection algorithm #2
- Internal co-existence mechanism between Wi-Fi and Bluetooth to share the same antenna





# ESP32-S3: Peripheral

- ◆ 45 × programmable GPIOs
- Digital interfaces:
  - 4 × SPI
  - 1 × LCD interface
    - 8-bit ~16-bit parallel RGB
    - I8080 and MOTO6800)
  - 1 × DVP 8-bit ~16-bit camera interface
  - 3 × UART
  - 2 × I2C
  - 2 × I2S
  - 1 × RMT (TX/RX)
  - 1 × pulse counter LED PWM controller, up to 8 channels
  - 1 × full-speed USB OTG
  - 1 × USB Serial/JTAG controller
  - 2 × MCPWM
  - 1 × SDIO host controller
  - 1 × TWAI® controller, compatible with ISO 11898-1 (CAN Spec. 2.0)



#### Analog interfaces:

- ho 2 imes 12-bit SAR ADCs, up to 20 channels
- 1 × temperature sensor
- 14 × touch sensing los

#### Timers:

- 4 × 54-bit general-purpose timers
- 1 × 52-bit system timer
- 3 × watchdog timers

# ESP32-S3: Peripheral (GPIOs)

- ◆ ESP32-S3 GPIO 핀은 IO MUX 기능을 지원하여 F0~F4 서로 다른 기능 제공
  - IO MUX는 ESP32-S3의 각 핀을 GPIO 및 특정 Peripheral 인터페이스로 사용 가능
  - IO MUX 적용 예

|     |                     |        |       |        |       | IO MUX   | Function |           |        |         |        |
|-----|---------------------|--------|-------|--------|-------|----------|----------|-----------|--------|---------|--------|
| Pin | IO MUX<br>GPIO Name | F0     |       | F1     |       | F2       |          | B         |        | F4      |        |
|     |                     | 0      | Туре  | 1      | Туре  | 2        | Туре     | 3         | Туре   | 4       | Туре   |
|     |                     |        |       |        |       |          |          |           |        |         |        |
|     |                     |        |       |        |       |          |          |           |        |         |        |
|     |                     |        |       |        |       |          |          |           |        |         |        |
| 13  | GPIO8               | GPIO8  | I/O/T | GPIO8  | I/O/T |          |          | SUBSPICS1 | O/T    |         |        |
| 14  | GPIO9               | GPIO9  | I/O/T | GPIO9  | I/O/T |          |          | SUBSPIHD  | I1/O/T | FSPIHD  | I1/O/T |
| 15  | GPIO10              | GPIO10 | I/O/T | GPIO10 | I/O/T | FSPIIO4  | I1/O/T   | SUBSPICS0 | O/T    | FSPICS0 | I1/O/T |
| 16  | GPIO11              | GPIO11 | I/O/T | GPIO11 | I/O/T | FSPIIO5  | I1/O/T   | SUBSPID   | I1/O/T | FSPID   | I1/O/T |
| 17  | GPIO12              | GPIO12 | I/O/T | GPIO12 | I/O/T | FSPIIO6  | I1/O/T   | SUBSPICLK | O/T    | FSPICLK | I1/O/T |
| 18  | GPIO13              | GPIO13 | I/O/T | GPIO13 | I/O/T | FSPIIO7  | I1/O/T   | SUBSPIQ   | I1/O/T | FSPIQ   | I1/O/T |
| 19  | GPIO14              | GPIO14 | I/O/T | GPIO14 | I/O/T | FSPIIDQS | O/T      | SUBSPIWP  | I1/O/T | FSPIWP  | I1/O/T |
|     |                     |        |       |        |       |          |          |           |        |         |        |
|     |                     |        |       |        |       |          |          |           |        |         |        |

# ESP32-S3: Security

- Secure boot
- Flash encryption
- 4-Kbit OTP, up to 1792 bits for users
- Cryptographic hardware acceleration:
  - AES-128/256 (FIPS PUB 197)
  - Hash (FIPS PUB 180-4)
  - RSA
  - Random Number Generator (RNG)
  - HMAC
  - Digital signature



# ESP32-S3: RTC & Low Power Management

- RTC (Real Time Clock)
- PMU (Power Management Unit)
  - Low Power Management
  - Power Management Unit with five power modes
    - ❖ Active, Sleep mode 제어
- Ultra-Low-Power (ULP) coprocessors
  - ULP-RISC-V coprocessor
  - ULP-FSM coprocessor



### ESP32-S3 기술 자료

https://www.espressif.com/en/support/download/all



### ESP32-S3 모듈

- ◆ ESP32-S3 SoC를 이용하여 사용자가 사용하기 쉽게 모듈화 설계
  - ESP32-S3 SoC와 외부 연결이 용이하도록 설계
  - WiFi/BT RF 특성 튜닝 된 안테나 제공





ESP32-S3-WROOM-1U

ESP32-S3-WROOM-1

#### ESP32-S3 WROOM

- 2.4 GHz WiFi(802.11 b/g/n) and Bluetooth® 5 (LE) module
- Built around ESP32S3 series of SoCs, Xtensa® dualcore 32bit LX7 microprocessor
- Flash up to 16 MB, PSRAM up to 8 MB
- 36 GPIOs, rich set of peripherals
- Onboard PCB antenna



40 MHz Crystal ESP32-S3-WROOM-1U Antenna
ESP32-S3
ESP32-S3R2
ESP32-S3R8
ESP32-S3R8
ESP32-S3R8
ESP32-S3R8
FSRANGED (GSPICSPI)

ANTENNA

RF Matching

GPIOS

PRANGED (GSPICSPI)

ANTENNA

RF Matching

OPIOS

PRANGED (GSPICSPI)

ANTENNA

OPIOS

RF Matching

OPIOS

PRANGED (GSPICSPI)

ANTENNA

OPIOS

ESP32-S3-WROOM-1U Block Diagram

#### ESP32-S3-WROOM

- ◆ ESP32-S3를 이용한 임베디드 보드 개발시 대부분 ESP32-S3 모듈 사용
- ◆ ESP32-S3 모듈 사용시 장점
  - 즉시 제품화 가능하도록 대부분의 하드웨어 설계 완료 됨
    - ❖ 일부 필요한 센서 등 IO 장치만 추가로 설계하여 사용 가능
  - WiFi/BT 아테나 회로 구현
    - ❖ 별도로 안테나 성능을 높이기 위한 RF 설계 불필요
    - ❖ 제품화에 필요한 RF 인증시험 완료된 모듈 사용하여 제품화 용이
- ◆ ESP32-S3-WROOM-1 시리즈

| Ordering Code          | Flash <sup>2</sup> | PSRAM            | Ambient Temp. <sup>3</sup><br>(°C) | Size <sup>4</sup><br>(mm) |
|------------------------|--------------------|------------------|------------------------------------|---------------------------|
| ESP32-S3-WROOM-1-N4    | 4 MB (Quad SPI)    | -                | <b>−</b> 40 ~ 85                   |                           |
| ESP32-S3-WROOM-1-N8    | 8 MB (Quad SPI)    | -                | <b>−</b> 40 ~ 85                   |                           |
| ESP32-S3-WROOM-1-N16   | 16 MB (Quad SPI)   | -                | <b>−40 ~ 85</b>                    | 18.0                      |
| ESP32-S3-WROOM-1-H4    | 4 MB (Quad SPI)    | -                | <b>−</b> 40 ~ 105                  |                           |
| ESP32-S3-WROOM-1-N4R2  | 4 MB (Quad SPI)    | 2 MB (Quad SPI)  | <b>−</b> 40 ~ 85                   | x<br>25.5                 |
| ESP32-S3-WROOM-1-N8R2  | 8 MB (Quad SPI)    | 2 MB (Quad SPI)  | <b>−</b> 40 ~ 85                   |                           |
| ESP32-S3-WROOM-1-N16R2 | 16 MB (Quad SPI)   | 2 MB (Quad SPI)  | <b>−40 ~ 85</b>                    | X<br>3.1                  |
| ESP32-S3-WROOM-1-N4R8  | 4 MB (Quad SPI)    | 8 MB (Octal SPI) | <b>−</b> 40 ~ 65                   | 3.1                       |
| ESP32-S3-WROOM-1-N8R8  | 8 MB (Quad SPI)    | 8 MB (Octal SPI) | <b>−</b> 40 ~ 65                   |                           |
| ESP32-S3-WROOM-1-N16R8 | 16 MB (Quad SPI)   | 8 MB (Octal SPI) | -40 ~ 65                           |                           |

#### ESP32-S3-WROOM-1

- ◆ ESP32-S3-WROOM 모듈의 I/O interface는 제공된 datasheet을 통하여 확인 가능
  - esp32-s3-wroom-1\_wroom-1u\_datasheet\_en.pdf



▲ ESP32-S3-WROOM-1 Pin Layout (Top View)



▲ ESP32-S3-WROOM-1 PCB (Bottom View)

# ESP32-S3-WROOM: Pin Description (1)

| Name | No. | Туре  | Function                                                           |
|------|-----|-------|--------------------------------------------------------------------|
| GND  | 1   | Р     | Ground                                                             |
| 3V3  | 2   | Р     | Power supply                                                       |
| EN   | 3   | I     | Module-enable signal. Active high.                                 |
| 104  | 4   | I/O/T | RTC_GPIO4, GPIO4, TOUCH4, ADC1_CH3                                 |
| 105  | 5   | I/O/T | RTC_GPIO5, GPIO5, TOUCH5, ADC1_CH4                                 |
| 106  | 6   | I/O/T | RTC_GPIO6, GPIO6, TOUCH6, ADC1_CH5                                 |
| 107  | 7   | I/O/T | RTC_GPIO7, GPIO7, TOUCH7, ADC1_CH6                                 |
| IO15 | 8   | I/O/T | RTC_GPIO15, GPIO15, U0RTS, ADC2_CH4, XTAL_32K_P                    |
| IO16 | 9   | I/O/T | RTC_GPIO16, GPIO16, U0CTS, ADC2_CH5, XTAL_32K_N                    |
| IO17 | 10  | I/O/T | RTC_GPIO17, GPIO17, U1TXD, ADC2_CH6                                |
| IO18 | 11  | I/O/T | RTC_GPIO18, GPIO18, U1RXD, ADC2_CH7, CLK_OUT3                      |
| 108  | 12  | I/O/T | RTC_GPIO8, GPIO8, TOUCH8, ADC1_CH7, SUBSPICS1                      |
| IO19 | 13  | I/O/T | RTC_GPIO19, GPIO19, U1RTS, ADC2_CH8, CLK_OUT2, USB_D               |
| IO29 | 14  | I/O/T | RTC_GPIO20, GPIO20, U1CTS, ADC2_CH9, CLK_OUT1, USB_D+              |
| 103  | 15  | I/O/T | RTC_GPIO3, GPIO3, TOUCH3, ADC1_CH2                                 |
| IO46 | 16  | I/O/T | GPIO46                                                             |
| 109  | 17  | I/O/T | RTC_GPIO9, GPIO9, TOUCH9, ADC1_CH8, FSPIHD, SUBSPIHD               |
| IO10 | 18  | I/O/T | RTC_GPIO10, GPIO10, TOUCH10, ADC1_CH9, FSPICS0, FSPIIO4, SUBSPICS0 |
| IO11 | 19  | I/O/T | RTC_GPIO11, GPIO11, TOUCH11, ADC2_CH0, FSPID, FSPIIO5, SUBSPID     |
| IO12 | 20  | I/O/T | RTC_GPIO12, GPIO12, TOUCH12, ADC2_CH1, FSPICLK, FSPIIO6, SUBSPICLK |

# ESP32-S3-WROOM: Pin Description (2)

| Name | No. | Туре  | Function                                                         |
|------|-----|-------|------------------------------------------------------------------|
| IO13 | 21  | I/O/T | RTC_GPIO13, GPIO13, TOUCH13, ADC2_CH2, FSPIQ, FSPIIO7, SUBSPIQ   |
| IO14 | 22  | I/O/T | RTC_GPIO14, GPIO14, TOUCH14, ADC2_CH3, FSPIWP, FSPIDQS, SUBSPIWP |
| IO21 | 23  | I/O/T | RTC_GPIO21, GPIO21                                               |
| 1047 | 24  | I/O/T | SPICLK_P_DIFF,GPIO47, SUBSPICLK_P_DIFF                           |
| IO48 | 25  | I/O/T | SPICLK_N_DIFF,GPIO48, SUBSPICLK_N_DIFF                           |
| IO45 | 26  | I/O/T | GPIO45                                                           |
| 100  | 27  | I/O/T | RTC_GPIO0, GPIO0                                                 |
| IO35 | 28  | I/O/T | SPIIO6, GPIO35, FSPID, SUBSPID                                   |
| IO36 | 29  | I/O/T | SPIIO7, GPIO36, FSPICLK, SUBSPICLK                               |
| IO37 | 30  | I/O/T | SPIDQS, GPIO37, FSPIQ, SUBSPIQ                                   |
| IO38 | 31  | I/O/T | GPIO38, FSPIWP, SUBSPIWP                                         |
| IO39 | 32  | I/O/T | MTCK, GPIO39, CLK_OUT3, SUBSPICS1                                |
| 1040 | 33  | I/O/T | MTDO, GPIO40, CLK_OUT2                                           |
| IO41 | 34  | I/O/T | MTDI, GPIO41, CLK_OUT1                                           |
| 1042 | 35  | I/O/T | MTMS, GPIO42                                                     |
| RXD0 | 36  | I/O/T | U0RXD, GPIO44, CLK_OUT2                                          |
| TXD0 | 37  | I/O/T | U0TXD, GPIO43, CLK_OUT1                                          |
| 102  | 38  | I/O/T | RTC_GPIO2, GPIO2, TOUCH2, ADC1_CH1                               |
| IO1  | 39  | I/O/T | RTC_GPIO1, GPIO1, TOUCH1, ADC1_CH0                               |
| GND  | 40  | Р     | GND                                                              |

### ESP32 SoC 이해

#### ◆ ESP32 SoC 라?

- ESPRESSIF 사에서 Xtensa Silicon IP를 도입하여 설계하여 판매하는 SoC 제품
- https://www.espressif.com/en/products/socs/esp32

#### ◆ ESP32 SoC 특징

- ESP32는 소형 IoT기기에 탑재하기 위한 무선 통신 컨트롤러 장치
- Wi-Fi와 Bluetooth가 통합된 SoC모듈
- 주로 모바일, 웨어러블 디바이스 및 IoT통신 제품에 탑재하기 위해 설계됨

#### HW spec.

- Processor: Xtensa® single-/dual-core 32-bit LX6 microprocessor(s),
   up to 600 MIPS (200 MIPS for ESP32-S0WD, 400 MIPS for ESP32-D2WD)
- Memory: 448 KB ROM, 520 KB SRAM, 16 KB SRAM in RTC
- 2.4 GHz Wi-Fi & Bluetooth
- Peripherals: Capacitive touch sensors, Hall sensor, SD card interface, Ethernet, high-speed S PI, UART, I2S and I2C
- Ultra-low-power

## 목 차

INL(IoT Node Link)

INL-01 이해

**ESP32-S3** 

ESP32-S3-DevKitC-1

ESP32-S3 개발 환경

Arduino Platform

#### ESP32-S3-DevKitC-1 Board - Overview

- ◆ ESP32-S3 프로세서가 탑재된 개발 보드
  - https://docs.espressif.com/projects/esp-idf/en/latest/esp32s3/hw-reference/esp32s3/user-guidedevkitc-1.html





### ESP32-S3-DevKitC-1 주요 구성

#### ◆ ESP32-S3-DevKitC-1 주요 컴포넌트 구성 (그림 참조)

| Component             | 용도                                                                   |
|-----------------------|----------------------------------------------------------------------|
| ESP32-S3-WROOM-1/1U/2 | ESP32-S3-WROOM-1, ESP32-S3-WROOM-1U, and ESP32-S3-WROOM-2 모듈         |
| 5 V to 3.3 V LDO      | 5V를 3.3V로 변환하는 Regulator                                             |
| Pin Headers           | All available GPIO pins (except for the SPI bus for flash)           |
|                       | A Micro-USB port used for                                            |
| USB-to-UART Port      | 1) Power supply to the board                                         |
| USB-10-UART POIL      | 2) Flashing applications to the chip                                 |
|                       | 3) Communication with the chip via the on-board USB-to-UART bridge.  |
| Boot Button           | Download button.                                                     |
| DOOL BUILDIT          | 시리얼 포트로 펌웨어 다운로드 할 때 Boot 버튼을 누르고 Reset 누른다                          |
| Reset Button          | 시스템 재시작 버튼                                                           |
|                       | USB1.1 호환, ESP32-S3 full-speed USB OTG 인터페이스                         |
|                       | 1) Power supply to the board                                         |
| USB Port              | 2) Flashing applications to the chip                                 |
|                       | 3) Communication with the chip using USB 1.1 protocols               |
|                       | 4) JTAG debugging.                                                   |
| USB-to-UART Bridge    | Single USB-to-UART bridge chip provides transfer rates up to 3 Mbps. |
| RGB LED               | RGB LED, GPIO38 핀으로 제어                                               |
| 3.3 V Power On LED    | USB 전원 연결 시 ON                                                       |

### ESP32-S3-DevKitC-1 헤더 핀 레이아웃



# ESP32-S3-DevKitC-1 헤더 (J1)

| Name | No. | Туре  | Function                                                           |
|------|-----|-------|--------------------------------------------------------------------|
| 3V3  | 1   | Р     | 3.3 V power supply                                                 |
| 3V3  | 2   | Р     | 3.3 V power supply                                                 |
| RST  | 3   | I     | EN                                                                 |
| 4    | 4   | I/O/T | RTC_GPIO4, GPIO4, TOUCH4, ADC1_CH3                                 |
| 5    | 5   | I/O/T | RTC_GPIO5, GPIO5, TOUCH5, ADC1_CH4                                 |
| 6    | 6   | I/O/T | RTC_GPIO6, GPIO6, TOUCH6, ADC1_CH5                                 |
| 7    | 7   | I/O/T | RTC_GPIO7, GPIO7, TOUCH7, ADC1_CH6                                 |
| 15   | 8   | I/O/T | RTC_GPIO15, GPIO15, U0RTS, ADC2_CH4, XTAL_32K_P                    |
| 16   | 9   | I/O/T | RTC_GPIO16, GPIO16, U0CTS, ADC2_CH5, XTAL_32K_N                    |
| 17   | 10  | I/O/T | RTC_GPIO17, GPIO17, U1TXD, ADC2_CH6                                |
| 18   | 11  | I/O/T | RTC_GPIO18, GPIO18, U1RXD, ADC2_CH7, CLK_OUT3                      |
| 8    | 12  | I/O/T | RTC_GPIO8, GPIO8, TOUCH8, ADC1_CH7, SUBSPICS1                      |
| 3    | 13  | I/O/T | RTC_GPIO3, GPIO3, TOUCH3, ADC1_CH2                                 |
| 46   | 14  | I/O/T | GPIO46                                                             |
| 9    | 15  | I/O/T | RTC_GPIO9, GPIO9, TOUCH9, ADC1_CH8, FSPIHD, SUBSPIHD               |
| 10   | 16  | I/O/T | RTC_GPIO10, GPIO10, TOUCH10, ADC1_CH9, FSPICS0, FSPIIO4, SUBSPICS0 |
| 11   | 17  | I/O/T | RTC_GPIO11, GPIO11, TOUCH11, ADC2_CH0, FSPID, FSPIIO5, SUBSPID     |
| 12   | 18  | I/O/T | RTC_GPIO12, GPIO12, TOUCH12, ADC2_CH1, FSPICLK, FSPIIO6, SUBSPICLK |
| 13   | 19  | I/O/T | RTC_GPIO13, GPIO13, TOUCH13, ADC2_CH2, FSPIQ, FSPIIO7, SUBSPIQ     |
| 14   | 20  | I/O/T | RTC_GPIO14, GPIO14, TOUCH14, ADC2_CH3, FSPIWP, FSPIDQS, SUBSPIWP   |
| 5V   | 21  | Р     | 5 V power supply                                                   |
| G    | 22  | G     | Ground                                                             |

# ESP32-S3-DevKitC-1 헤더 (J3)

| Name | No. | Туре  | Function                                              |
|------|-----|-------|-------------------------------------------------------|
| GND  | 1   | G     | Ground                                                |
| TX   | 2   | I/O/T | U0TXD, GPIO43, CLK_OUT1                               |
| RX   | 3   | I/O/T | U0RXD, GPIO44, CLK_OUT2                               |
| 1    | 4   | I/O/T | RTC_GPIO1, GPIO1, TOUCH1, ADC1_CH0                    |
| 2    | 5   | I/O/T | RTC_GPIO2, GPIO2, TOUCH2, ADC1_CH1                    |
| 42   | 6   | I/O/T | MTMS, GPIO42                                          |
| 41   | 7   | I/O/T | MTDI, GPIO41, CLK_OUT1                                |
| 40   | 8   | I/O/T | MTDO, GPIO40, CLK_OUT2                                |
| 39   | 9   | I/O/T | MTCK, GPIO39, CLK_OUT3, SUBSPICS1                     |
| 38   | 10  | I/O/T | GPIO38, FSPIWP, SUBSPIWP, RGBLED(V1.1)                |
| 37   | 11  | I/O/T | SPIDQS, GPIO37, FSPIQ, SUBSPIQ                        |
| 36   | 12  | I/O/T | SPIIO7, GPIO36, FSPICLK, SUBSPICLK                    |
| 35   | 13  | I/O/T | SPIIO6, GPIO35, FSPID, SUBSPID                        |
| 0    | 14  | I/O/T | RTC_GPIO0, GPIO0                                      |
| 45   | 15  | I/O/T | GPIO45                                                |
| 48   | 16  | I/O/T | GPIO48, SPICLK_N, SUBSPICLK_N_DIFF, RGBLED(V1.0)      |
| 47   | 17  | I/O/T | GPIO47, SPICLK_P, SUBSPICLK_P_DIFF                    |
| 21   | 18  | I/O/T | RTC_GPIO21, GPIO21                                    |
| 20   | 19  | I/O/T | RTC_GPIO20, GPIO20, U1CTS, ADC2_CH9, CLK_OUT1, USB_D+ |
| 19   | 20  | I/O/T | RTC_GPIO19, GPIO19, U1RTS, ADC2_CH8, CLK_OUT2, USB_D- |
| GND  | 21  | G     | Ground                                                |
| GND  | 22  | G     | Ground                                                |

## ESP32-S3-DevKitC-1 블록도



#### ESP32-S3-DevKitC-1 회로: ESP32-S3-WROOM-1

- ◆ 제공된 schematic(회로도)을 이용하여 회로 설계 내용 확인
  - SCH\_ESP32-S3-DevKitC-1\_V1.1\_20221130.pdf
- ◆ ESP32-S3-WROOM 모듈을 이용한 회로도 설계
  - 모듈의 I/O interface는 제공된 datasheet을 통하여 확인 가능
  - esp32-s3-wroom-1\_wroom-1u\_datasheet\_en.pdf



▲ ESP32-S3-WROOM-1 Schematics

# ESP32-S3-DevKitC-1 회로 : 펜 헤더

- ◆ ESP32-S3-DevKitC1-1 외부 핀 헤더 주변 회로 설계
  - ESP32-S3의 대부분 핀 지원
  - ESP32-S3의 GPIO35, GPIO36, GPIO37내부 Octal SPI flash/PSRAM 메모리 I/F 용도로 사용, 따라서 사용자는 사용 불가



▲ Pin header (J1, J3)

### ESP32-S3-DevKitC-1 회로: USB & UART

- ◆ ESP32-S3 USB I/F 지원
  - ESP32-S3 USB OTG

- ◆ ESP32-S3 USB to UART 지원
  - USB to UART Bridge 적용(CP2102N)
  - ESP32-S3의 UART0포트를 통해 데이터 신호 입출력





▲ USB OTG Interface



▲ USB to UART Interface



▲ USB to UART bridge IC schematic

## ESP32-S3-DevKitC-1 회로: Power

- Power
  - 동작 전압범위는 2.3V~3.6V
  - 단일 전원 공급 장치 사용할 경우 권장 전압은 3.3V, 500mA이상
- ◆ 전원 공급
  - 2개의 USB장치 중 하나를 통해 공급이 가능
  - USB-to-UART port
  - USB Port
- ◆ 전원 공급 회로
  - USB장치에서 공급받은 5V전원은 레귤레이터(Regulator)를 통해 3.3V 전원 생성
  - 외부확장인터페이스(Connector Interface)의 경우 3.3V~5V전압의 입출력장치를 연결하기 위해서 Power Enable된 5V전압을 확장인터페이스로 인가



### ESP32-S3-DevKitC-1 회로: Switch & Button

- ◆ 부트 버튼 (SW1)
  - GPIO0 에 연결
- ◆ 리셋 버튼 (SW2)
  - CHIP\_PU 에 연결 (EN pin of ESP32-S3)
- Programming Mode
  - 시리얼 포트로 펌웨어 다운로드 할 때 Boot 버튼을 누르고 Reset 누른다
- ◆ Auto Program 지원
  - DTR/RTS 신호를 이용한 자동 프로그래밍 모드 지원



▲ Auto Programming mode 지원



▲ Boot 버튼 (SW1)



▲ Reset 버튼 (SW2)

# ESP32-S3-DevKitC-1 회로: RGB LED

#### RGB LED on GPIO48

| Name | No. | Type  | Function                           |
|------|-----|-------|------------------------------------|
| 48   | 16  | I/O/T | GPIO48, SPICLK_N, SUBSPICLK_N_DIFF |



▲ RGB LED

#### Note

Both versions(V1.0 & V1.1) of ESP32-S3-DevKitC-1 are available on the market. The main difference lies in that the RGB LED is connected to different pins. (V1.0 connected to GPIO48, V1.1 connected to GPIO38)

## 목 차

INL(IoT Node Link)

INL-01 이해

**ESP32-S3** 

ESP32-S3-DevKitC-1

◆ ESP32-S3 개발 환경

**Arduino Platform** 

### 소프트웨어 개발 환경

- ◆ 교차 개발 환경 (Cross Development Platform)
  - 소프트웨어를 개발하는 시스템(컴퓨터)과 실제 실행하는 시스템이 서로 다른 개발 환경
- ◆ 호스트(Host) 시스템과 타깃(Target) 시스템
  - 호스트 시스템: 개발환경을 가지고 소프트웨어를 개발하고 빌드하는 컴퓨터 (PC)
    - ❖ Windows, Linux, Mac OS 등 다양한 환경 구성 가능
  - 타깃 시스템: 개발하고자 하는 임베디드 시스템 (ESP32-S3-DevKitC-1 / INL)
- ◆ 교차 개발 환경 구성 요소
  - 크로스 컴파일러 / 툴체인
  - 디버거, 에디터 등
  - 통합개발환경(IDE)



### ESP32 개발 환경 설정

- ◆ 소스코드 편집기 : VSCode, Eclipse, VI 에디터
- ◆ ESP32 툴체인: 어셈블러, 컴파일러, 링커, 디버거 등
  - SDK 형태로 툴체인을 포함하여 API, Library, 샘플 소스코드를 포함한 툴체인 사용
    - SDK : Software Development Kit
    - API : Application Programming Interface
  - ▶ ESP32-IDF, ESP32 Arduino, NodeMCU, MicroPython 등 다양함



#### Reference

- ESP32-IDF: <a href="https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/index.html">https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/index.html</a>
- Arduino ESP32 : <a href="https://docs.espressif.com/projects/arduino-esp32/en/latest/index.html">https://docs.espressif.com/projects/arduino-esp32/en/latest/index.html</a>

## 목 차

INL(IoT Node Link)

INL-01 이해

**ESP32-S3** 

ESP32-S3-DevKitC-1

ESP32-S3 개발 환경

Arduino Platform

#### Arduino Platform



- Arduino is an open-source electronics platform based on easy-to-use hardware and software
- Basic structure
  - read inputs (sensor) turn it into an output (actuator)
- What to be done by board between sensing and actuating
  - a set of instructions to the microcontroller on the board
- Started from AVR, now extended to various microcontrollers (e.g., ARM Cortex M-series)
- Reference :
  - https://www.arduino.cc

# **Arduino Programming**

- Based on C/C++
- Arduino IDE
  - https://www.arduino.cc/en/software
- Basic structure of Arduino Programming

```
void setup() {
    // put your setup code here, to run once:
}

void loop() {
    // put your main code here, to run repeatedly:
}
```



#### Arduino ESP32

- ◆ Arduino API를 ESP32에서 사용 가능하도록 구성
- ♦ IDE 지원



- Arduino FSP32 IDF Install
  - https://docs.espressif.com/projects/arduino-esp32/en/latest/installing.html
  - ◈ Arduino IDE 설치 시 최신 버전을 설치하는 경우 ESP32용으로 정상동작 하지 않음 (1.8.xx 버전 사용 권장)

#### Community

- ESP32 Forum : <a href="https://esp32.com">https://esp32.com</a>
- ESP32 Arduino Forum : <a href="https://esp32.com/viewforum.php?f=19">https://esp32.com/viewforum.php?f=19</a>
- ESP32 Hardware Forum : <a href="https://esp32.com/viewforum.php?f=12">https://esp32.com/viewforum.php?f=12</a>
- Document : <a href="https://docs.espressif.com/projects/arduino-esp32/en/latest/index.html">https://docs.espressif.com/projects/arduino-esp32/en/latest/index.html</a>

#### Arduino API Reference

- https://www.arduino.cc/reference/en/
  - Function, variable(variable & constant) 및 structure 정의
  - 상세 내용은 reference site 참조

| 구분      | 함수 이름                    | 설명                                                                                          |
|---------|--------------------------|---------------------------------------------------------------------------------------------|
|         | pinMode(pin, mode)       | 입력된 핀번호에 해당하는 핀의 동작(Input, Output)을 설정 한다.                                                  |
| Digital | digitalWrite(pin, value) | 입력된 핀번호에 해당하는 핀으로 디지털값(High, Low)값을 출력 한다.                                                  |
|         | digitalRead(pin)         | 입력된 핀번호로부터 디지털 값(High, Low)을 읽는다.                                                           |
|         | analogRead(pin)          | 입력된 핀번호에 해당하는 핀으로부터 아날로그신호를 읽는다.                                                            |
| Analog  |                          | 입력된 핀번호에 해당하는 핀으로 다음 analogWrite()가 올 때까지 특정 듀티싸이클을 가지는 PWM(Pulse Width Modulation 펄스 폭 변조) |
|         | analogWrite(pin, value)  | 을 출력한다.                                                                                     |
|         | Serial.begin(speed)      | 시리얼통신의 속도를 설정한다.                                                                            |
|         | Serial.available()       | 시리얼포트로부터 시리얼데이터의 바이트크기를 읽어 반환 한다                                                            |
| Serial  | Serial.flush()           | 시리얼포트안에 존재하는 데이터를 비운다.                                                                      |
|         | Serial.println(val)      | 시리얼데이터를 아스키코드형식에 맞추어서 출력한다.                                                                 |
|         | Serial.read()            | 시리얼 데이터를 읽는다.                                                                               |
|         | delay()                  | 지정된 밀리초 시간만큼 프로그램을 일시 중지한다.                                                                 |
|         | delayMicroseconds()      | 지정된 마이크로초 시간만큼 프로그램을 일시 중지한다.                                                               |
| Time    | micros()                 | 현재 프로그램이 시작된 이후의 경과시간을 마이크로초 단위로 반환한다.                                                      |
|         | millis()                 | 현재 프로그램이 시작된 이후의 경과시간을 밀리초 단위로 반환한다.                                                        |

# Arduino API Reference (cont'd)

| 구분        | 함수 이름               | 설명                                     |  |  |
|-----------|---------------------|----------------------------------------|--|--|
| Math      | min(x, y)           | 입력된 두 값중 최소값을 반환 한다.                   |  |  |
|           | max(x, y)           | 입력된 두 값중 최대값을 반환 한다.                   |  |  |
|           | abs(x)              | 입력된 값의 절대값을 반환 한다.                     |  |  |
|           | constrain(x, a, b)  | 첫번째 인자값을 두번째 인자값과 세번째 인자값의 사이값으로 제한한다. |  |  |
|           | map()               | 첫번째 인자값을 지정된 범위로 선형사상하여 반환 한다.         |  |  |
|           | pow(base, exponent) | 입력한 밑과 지수값으로 거듭제곱하여 값을 반환 한다.          |  |  |
|           | sqrt(x)             | 입력한 값을 루트씌워 계산하여 반환 한다.                |  |  |
|           | interrupts()        | nointerrupt()에 의해 금지된 인터럽트의 발생을 허용한다.  |  |  |
| Interrupt | noInterrupts()      | 인터럽트의 발생을 금지 시킨다                       |  |  |
|           | lowByte(x)          | 입력된 값의 최하위 바이트를 추출 한다.                 |  |  |
|           | highByte(x)         | 입력된 값의 최상위 바이트를 추출 한다.                 |  |  |
|           | bitRead(x, n)       | 주어진 데이터의 n번째 비트를 읽어 반환 한다.             |  |  |
| Bits and  | bitWrite(x, n, b)   | 주어진 데이터의 n번째 비트에 b값(0또는1)을 입력한다.       |  |  |
| Bytes     | bitSet(x, n)        | 주어진 데이터의 n번째 비트를 1로 설정 한다.             |  |  |
|           | bitClear(x, n)      | 주어진 데이터의 n번째 비트를 0으로 설정 한다.            |  |  |
|           | bit(n)              | 지정된 비트 위치(n번째)에 해당하는 비트 값을 계산하여 반환 한다. |  |  |

# Arduino API Reference (cont'd)

| Advanced<br>IO | tone(pin, frequency) | 입력된 핀번호로 입력된 주파수를 가지는 square wave를 생성한다.                     |  |
|----------------|----------------------|--------------------------------------------------------------|--|
|                | noTone(pin)          | 특정 핀에서 tone()함수에 의한 square wave 생성을 중지시킨다.                   |  |
|                | shiftOut()           | 입력된 핀번호로 입력된 값을 출력 순서에 맞게 출력 한다                              |  |
|                | shiftIn()            | 특정핀(dataPin)으로 부터 데이터를 입력받아 비트 순서에 맞게 정렬 후 바이트 단위로 반환 한다.    |  |
|                | pulseIn(pin, value)  | 특정핀으로부터 Pulse(또는 High or Low)를 읽어서 Pulse의 길이를 마이크로초단위로 반환 한다 |  |

### 통합 개발환경 다운로드 및 설치

- ◆ Arduino ESP32 IDE 다운로드 및 설치
  - https://www.arduino.cc/en/Main/Software 링크 접속
  - 아래 순서대로 클릭 시, 파일 다운로드
  - 다운 받은 zip 파일 압축 해제

#### Legacy IDE (1.8.X)





# 통합 개발환경 다운로드 및 설치 (계속)

- ◆ Arduino 설치 및 실행
  - 압축 해제하여 Arduino 설치
    - ❖ 설치 위치 : 실습PC 내 C:/Work 또는 D:/Work 디렉토리 사용
  - Arduino 실행
    - ❖ 설치 디렉토리의 arduino.exe 실행
    - ❖ 실행 후 반드시 종료 (필수)



- ◆ 문서/Arduino 디렉토리 생성 확인
  - 명령 실행 후 문서 디렉토리에 Arduino 디렉토리 생성 됨

### 하드웨어 패키지 설치

- ◆ Arduino IDE 환경에서 ESP32 SoC 사용에 필요한 추가적인 매니저 URL 설정
  - 참조: https://docs.espressif.com/projects/arduino-esp32/en/latest/installing.html
  - 설치 경로 : Arduino IDE > 파일 > 환경설정 > 추가적인 보드 매니저 URLs
  - 설정: 위 경로의 Stable release link 복사
     https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package\_esp32\_index.json



# 하드웨어 패키지 설치 (계속)

- ◆ Arduino IDE 환경에서 ESP32 SoC 사용에 필요한 보드 설정 추가
  - 참조: https://docs.espressif.com/projects/arduino-esp32/en/latest/installing.html
  - 설치 경로 : Arduino IDE > 툴 > 보드 > 보드 매니저
  - ESP32 보드를 지정한 후 설치



### USB 드라이버 설치

- ◆ 드라이버 다운로드
  - 아래 사이트 참조하여 드라이버 설치, 윈도우 자동 드라이버 설치 가능
  - https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers?tab=downloads

#### Software Downloads

Software (11) Software • 11

| CP210x Universal Windows Driver               | v11.2.0<br>10/21/2022 |
|-----------------------------------------------|-----------------------|
| CP210x VCP Mac OSX Driver                     | v6.0.2<br>10/27/2021  |
| CP210x VCP Windows                            | v6.7<br>9/4/2020      |
| CP210x Windows Drivers                        | v6.7.6<br>9/4/2020    |
| CP210x Windows Drivers with Serial Enumerator | v6.7.6<br>9/4/2020    |

Show 6 more Software

### 하드웨어 연결 및 동작 확인

- ◆ 타깃 보드와 PC 연결
  - Micro USB Cable을 ESP32-S3-DevKitC-1보드의 USB(UART로 표기된 부분)와 PC USB 포트 연결
  - 하드웨어 연결이 완료되면 중앙 우측 RED LED ON
- ◆ 장치관리자에서 새로운 USB 장치가 검색되었는지 확인
  - 아래 그림은 드라이버 설치 된 후임. 드라이버 설치 전에는 비 정상



### IDE 환경 설정 및 업로드

◆ Arduino를 실행하고 보드 선택

보드 선택 : 툴 > 보드 > ESP32S3 Dev Module



# IDE 환경 설정 및 업로드 (계속)

◆ 시리얼 디버그 포트 설정

#### 포트 선택: 툴 > 포트 > COMx



# IDE 환경 설정 및 업로드 (계속)

◆ 소프트웨어 개발 후 컴파일 omega sketch\_mar07a | 아두이노 1.8.19 ◆ 컴파일 후 타깃 보드에 업로드 및 실행 툴 도움말 sketch\_mar07a 컴파일: 스케치 > 확인 및 컴파일 (Ctrl+R) sketch\_aug14a | 아두이노 1.8.19 × 업로드: 스케치 > 업로드(Ctrl+U) 파일 편집 스케치 툴 도움말 확인/컴파일 Ctrl+R 🥯 sketch\_aug14a | 아두이노 1.8.19  $\times$ 언로드 Ctrl+U 파일 편집 스케치 툴 도움말 sketch a 프로그래머를 이용해 업로드 Ctrl+Shift+U 확인/컴파일 Ctrl+R Ø void set 컴파일된 바이너리 내보내기 Ctrl+Alt+S 업로드 // put Ctrl+U 스케치 폴더 보이기 Ctrl+K sketch a 프로그래머를 이용해 업로드 Ctrl+Shift+U 라이브러리 포함하기 void set 컴파일된 바이너리 내보내기 Ctrl+Alt+S 파일 추가... // put 스케치 폴더 보이기 Ctrl+K // put your main code here, to run repeatedly: 라이브러리 포함하기 파일 추가... void loor // put your main code here, to run repeatedly:

※ 참고: 업로드 하면 자동으로 컴파일도 실행함

### [실습] Hello Arduino on ESP32

◆ 컴파일 후 타깃 보드에 업로드 및 실행



```
void setup() {
 delay(500);
 Serial.begin(115200);
 delay(500);
 Serial.println("\n\n====
 Serial.print("Chip Model: ");
 Serial.println(ESP.getChipModel());
 Serial.print("Chip version: ");
 Serial.println(ESP.getChipRevision());
 Serial.print("Numer of cores: ");
 Serial.println(ESP.getChipCores());
 Serial.print("Flash Chip Size: ");
 Serial.println(ESP.getFlashChipSize());
 Serial.print("Flash Chip Speed: ");
 Serial.println(ESP.getFlashChipSpeed());
 Serial.println("==
void loop() {
// put your main code here, to run repeatedly:
```

### Arduino Serial.print (1)

- ▷ 시리얼(Serial) 포트로 다양한 형식의 데이터를 ASCⅡ 문자로 출력
  - Serial 포트 출력은 Arduino IDE의 시리얼 모니터 출력으로 확인 가능



함수 Serial.print() size\_t Serial.print(val); size\_t Serial.print(val, format); size\_t Serial.println(val); size\_t Serial.println(val, format);

• val : 출력할 값

format : 출력 형식(BIN,OCT,DEC,HEX) 및 소수점 자릿수

• 리턴 값 : 출력한 바이트 수

Serial.println은 줄바꿈 포함

참고 : Serial.print() 사용 전에 Serial.begin() 함수를 이용하여 설정 필수

# Arduino Serial.print (2)

◆ 함수 Serial.begin()

void Serial.begin(speed);

void Serial.begin (speed, config);

void setup() {

Serial.begin(115200);

// "56"

// "H"

// "Hello!!"

// "56.79" \**반올림되어 출력됨* 

```
• speed: long 형식의 bps (전송 속도)
```

- config : data, parity, stop 비트 설정
  - 예) SERIAL\_8N1
- ♦ 사용예

```
Serial.println(56);
Serial.println(56.7865);
Serial.println('H');
Serial.println(56); // "56"
Serial.println(56, BIN); // "111000"
Serial.println(56, OCT); // "70"
Serial.println(56, DEC); // "56"
Serial.println(56, HEX); // "38"
Serial.println(56.7860, 0); // "57" *반올림되어 출력됨
Serial.println(56.7860, 4); // "56.7860"
}
```

### ESP32 하드웨어 패키지 지원 내용

#### C:\Users\[사용자]\AppData\Local\Arduino15\packages\esp32\hardware\esp32\2.0.7\cores

| Peripheral    | ESP32         | ESP32-S2      | ESP32-C3      | ESP32-S3      |
|---------------|---------------|---------------|---------------|---------------|
| ADC           | Yes           | Yes           | Yes           | Yes           |
| Bluetooth     | Yes           | Not Supported | Not Supported | Not Supported |
| BLE           | Yes           | Not Supported | Yes           | Yes           |
| DAC           | Yes           | Yes           | Not Supported | Not Supported |
| Ethernet      | Yes           | Not Supported | Not Supported | Not Supported |
| GPIO          | Yes           | Yes           | Yes           | Yes           |
| Hall Sensor   | Yes           | Not Supported | Not Supported | Not Supported |
| I2C           | Yes           | Yes           | Yes           | Yes           |
| I2S           | Yes           | Yes           | Yes           | Yes           |
| LEDC          | Yes           | Yes           | Yes           | Yes           |
| Motor PWM     | No            | Not Supported | Not Supported | Not Supported |
| Pulse Counter | No            | No            | No            | No            |
| RMT           | Yes           | Yes           | Yes           | Yes           |
| SDIO          | No            | No            | No            | No            |
| SDMMC         | Yes           | Not Supported | Not Supported | Yes           |
| Timer         | Yes           | Yes           | Yes           | Yes           |
| Temp. Sensor  | Not Supported | Yes           | Yes           | Yes           |
| Touch         | Yes           | Yes           | Not Supported | Yes           |
| TWAI          | No            | No            | No            | No            |
| UART          | Yes           | Yes           | Yes           | Yes           |
| USB           | Not Supported | Yes           | Yes           | Yes           |
| Wi-Fi         | Yes           | Yes           | Yes           | Yes           |

### ESP32-S3 Pins for Arduino

#### C:\Users\[사용자]\AppData\Local\Arduino15\packages\esp32\hardware\esp32\2.0.7\variants\esp32s3

```
#ifndef Pins_Arduino_h
#define Pins_Arduino_h
#include <stdint.h>
#include "soc/soc_caps.h"
#define USB VID 0x303a
#define USB PID 0x1001
#define EXTERNAL_NUM_INTERRUPTS
                                                       46
#define NUM_DIGITAL_PINS
                                     48
#define NUM ANALOG INPUTS
                                     20
// Some boards have too low voltage on this pin (board design bug)
// Use different pin with 3V and connect with 48
// and change this setup for the chosen pin (for example 38)
static const uint8_t LED_BUILTIN =
                                     SOC_GPIO_PIN_COUNT+48;
#define BUILTIN LED
                                     LED_BUILTIN // backward compatibility
#define LED_BUILTIN
                                     LED_BUILTIN
                                     LED BUILTIN
#define RGB_BUILTIN
#define RGB_BRIGHTNESS
                                     64
#define analogInputToDigitalPin(p)
                                     (((p)<20)?(analogChannelToDigitalPin(p)):-1)
#define digitalPinToInterrupt(p)
                                     (((p)<48)?(p):-1)
                                                                                     static const uint8_t A12 = 13;
#define digitalPinHasPWM(p)
                                     (p < 46)
```

```
static const uint8_t TX = 43;
                                             static const uint8_t A13 = 14;
static const uint8 t RX = 44;
                                             static const uint8 t A15 = 16:
                                             static const uint8_t A16 = 17;
static const uint8_t SDA = 8;
                                             static const uint8_t A17 = 18;
static const uint8 t SCL = 9:
                                             static const uint8_t A18 = 19;
                                             static const uint8 t A19 = 20:
static const uint8 t SS = 10:
static const uint8 t MOSI = 11;
                                             static const uint8 t T1 = 1:
static const uint8_t MISO = 13;
                                             static const uint8_t T2 = 2;
static const uint8_t SCK = 12;
                                             static const uint8_t T3 = 3;
                                             static const uint8_t T4 = 4;
static const uint8 t A0 = 1:
                                             static const uint8 t T5 = 5:
static const uint8 t A1 = 2;
                                             static const uint8 t T6 = 6:
static const uint8_t A2 = 3;
                                             static const uint8_t T7 = 7;
static const uint8_t A3 = 4;
                                             static const uint8_t T8 = 8;
static const uint8_t A4 = 5;
                                             static const uint8_t T9 = 9;
static const uint8_t A5 = 6;
                                             static const uint8_t T10 = 10;
static const uint8 t A6 = 7:
                                             static const uint8_t T11 = 11;
static const uint8_t A7 = 8;
                                             static const uint8_t T12 = 12;
static const uint8_t A8 = 9;
                                             static const uint8_t T13 = 13;
static const uint8_t A9 = 10;
                                             static const uint8_t T14 = 14;
static const uint8 t A10 = 11;
static const uint8 t A11 = 12;
                                             #endif /* Pins Arduino h */
```

# 질의 응답