第2章 逻辑门电路 Logic Gates

§ 2.1 概述 Introduction

用以实现逻辑运算单元电路称为逻辑门电路。

逻辑门 Logic Gates

Output ~ Input

逻辑函数

逻辑运算和逻辑门:

用电压(电平)表示逻辑高和低:

正逻辑

逻辑高 – 高电平 逻辑低 – 低电平

获得高 (logic 1)、低 (logic 0) 输出电平的基本原理:

输入信号 V_i 控制其工作在截止和导通两个状态,S起开关作用。

§ 2.2 逻辑门电路 Logic Gates

2.2.1 基本逻辑门 Basic Logic Gates

- 1. 与门 (AND)
 - 1) 与开关电路

两个开关串联

只有当A和B都闭合(逻辑1),灯(F)才亮(逻辑1)。

2) 真值表 Truth Table

表:输入的所有可能取值 按二进制数大小排列 在左;对应的输出列 在右。

\boldsymbol{A}	B	F
0	0	0
0	1	0
1	0	0
1	1	1

3) 与功能

输入只要有低,输出为低;输入都为高时,输出为高。

4) 与门符号及表达式

ANSI/IEEE 标准符号

American National Standard Institute

/ Institute of Electrical and Electronics Engineers

表达式:
$$F = A \cdot B = AB$$
 (A and B) (逻辑乘)

5) 与门电路

情况相同。(真值表前3行)

当 A=B=1 (High, 6 V), D1 和 D2 都截止,

F=1 (High, 6 V) (真值表最后1行)

6) 与运算 AND operation

$$0 \Box 0 = 0$$
 $0 \Box 1 = 1 \Box 0 = 0$
 $1 \Box 1 = 1$

$$A\Box 0=0$$

$$A\square = A$$

$$A\Box A=A$$

$$A\Box\overline{A}=0$$

A: 变量输入

7)波形图,时序图

Output waveforms Timing diagrams

输出波形必须对应输入波形

$oldsymbol{A}$	B	\boldsymbol{F}
0	0	0
0	1	0
1	0	0
1	1	1

输入只要有低,输出为低;输入都为高时,输出为高。

2. 或 (OR)

1) 或开关电路

两个开关 (A, B) 并联

任何一个开关闭合, 灯F亮。

2) 真值表

A	B	F
0	0	0
0	1	1
1	0	1
1	1	1

3) 或功能描述

或关系:

只要有一个输入为高电平1,输出就为高电平1; 只有输入全为低电平0时,输出才为低电平0。

4) 或门符号及表达式

$$F = A + B$$
 逻辑加

5) 或门电路

\boldsymbol{A}	\boldsymbol{B}	F
0	0	0
0	1	1
1	0	1
1	1	1

$$\stackrel{\text{def}}{=} A = B = 0 \text{ (-6 V, Low)}, \underline{1 1}$$

$$F = 1$$
 (High).

(减0.7 V仍为高电平)

当B=1, or A=B=1时,情况相同.

6) 或运算

$$0+0=0$$

$$0+1=1$$

$$1+1=1$$

$$A + 0 = A$$

$$A+1=1$$

$$A+A=A$$

$$A + \overline{A} = 1$$

3. 非门 (NOT)

1) 非开关电路

如果A闭合, 灯F灭。

2) 真值表

3) 非功能描述

输出与输入波形相反,产生反向输出波形。

4) 非门符号及表达式

5) 非门电路

$V_{\rm i}$	$V_{ m o}$	
0	$E_{\rm c}$ (1)	T截止
1	$V_{\rm ces}(0)$	T 导通

6) 非运算

$$\bar{0} = 1$$

$$\overline{1} = 0$$

$$\overline{\overline{A}} = A$$

$$A \cdot \overline{A} = 0$$

$$A + \overline{A} = 1$$

7) 波形图

2.2.2 复合逻辑门 Integrated Logic Gate

逻辑门及表达式

2. 或门 (OR)

$$F = A + B$$

3. 非门(NOT)

$$F = \overline{AB}$$

$$\frac{A}{B}$$

5. 或非门(NOR)

$$F = \overline{A + B}$$

$$A$$
 B
 F

6. 与或门 (AND-OR)

$$\begin{array}{c|c}
A & & & & & \\
B & & & & & \\
C & & & & & \\
\end{array}$$
 ≥ 1
 F

$$F = AB + CD$$

7. 与或非门

(AND-OR-NOT)

$$\begin{bmatrix} A & & & & \\ B & & & & \\ C & & & & \\ \end{bmatrix} \ge 1$$

$$F = \overline{AB + CD}$$

8. 异或门 (XOR: Exclusive - OR)

$$F = A \oplus B$$
$$= \overline{AB} + A\overline{B}$$

真值表:

A B	F(xor)
0 0	0
0 1	1
1 0	1
1 1	0

输入端只有2个且必须 2个, 两输入相异时输出高电平。

功能:

比较(判断)两输入是否相异:

Yes: 1 (肯定) No: 0 (否定)

9. 同或门(XNOR: Exclusive-NOR)

真值表:

$$F = A \square B = AB + A \cdot B$$

$$F = \overline{A \oplus B}$$

A I	F (xo	$\mathbf{F}(\mathbf{x}\mathbf{NOR})$
0 0	0	1
0 1	. 1	0
1 0	1	0
1 1	0	1

同或门2输入,输出与 异或门相反;两输入相 同时输出高电平。

功能: 比较(判断)两输入是否相同 $\begin{cases} Yes: 1 \\ No: 0 \end{cases}$

10. 集电极开路与非门

(OC: Open collector NAND Gate)

$$F = AB$$

11. 三态门 (TSL: Three State Logic)

Tristates: 1, 0, Hi-Z (高阻态) impedance

1) 高电平有效 (Active High)

EN: 使能输入端 enable input

EN=0, F=Hi-Z (高阻抗)

2) 低电平有效 (Active Low)

EN=0, F = AB (与非门)

EN=1, F = Hi-Z

12. 传输门 (TG: Transmission Gate)

C: Control

C=1, $\overline{C}=0$, F=A (开关合上信号传过) C=0, $\overline{C}=1$, (开关断开)

§ 2.3 TTL 集成门电路

TTL Integrated Logic Gates

Transistor-Transistor-Logic

2.5.1 TTL集成电路概述 (自学)

2.5.2 TTL 与非门 TTL NAND Gates

1. 工作原理

$$F = \overline{AB}$$

T1: 两发射极 (多发射极),

两个eb结

与非门真值表

A B	
0 0	1 1 A 或 B 或二者为低, F 为高电平 1 → A 和 B 都为高电平时, F 为低电平
0 1	1 A 或 B 或二者为低,F 为高电平
1 0	1
1 1	$0 \rightarrow A$ 和 B 都为高电平时, F 为低电平

1) 入端有低 (either or both)

A 或 B 或二者接地, T1导通,电流从 +5 V 电源经 R1 和 T1 到地。

$$I_{\rm i} = \frac{5 - 0.7}{4 \times 10^3} = 1.1 \text{ mA}$$

$$V_{b1} = 0.7 \text{ V}$$
 $V_{c1} = V_{b2} = 0.3 \text{ V}$

0.3 V 不足以使 T2be 正向导通

∴T2 截止, T5 截止

等效电路:

$$V_{b4} \approx 5 \text{ V}$$

输出

R1

R4

4 T4

+D3

R2

T2

R3

典型高电平

输入端有低电平,输出为高电平.

关门状态

2) 入都为高 (A 和 B 都为高电平) 3.6 V

A和B都是3.6V,

T1 导通,

V_{b1} 钳位 4.3 V (=3.6 + 0.7),

V_{b2} 钳位 3.9 V (=3.6 + 0.3).

3.9 V 足以正向导通 T2_{be} 和 T5_{be} 结。

∴ T2, T5 导通

电流从 +5 V电源, 经 T1,T2 和 T5 流向地.

等效电路:

输入全高,输出低. 开门状态

实现与非功能:

$$F = \overline{AB}$$

T2 和 T5导通,

$$V_{b4} = V_{be5} + V_{ce2}$$

= 0.7 +0.3 = 1.0 V

V_{b4} 不足以 正向导通T4_{be} 和 D3

T4, D3 截止

输出

$$F=V_{ce5}=0.1\sim0.3 \text{ V}$$
 (低)
T5 饱和压降

2. 电压传输特性

将与非门输入连在一起,相当于非门。

研究当输入 $V_{i}(A)$ 从低到高时,输出 $V_{o}(F)$ 如何从高到低

电压传输特性

$$V_i: 0 \to 0.7 \to 1.4 \ (V_T = 1.4 \ V) \to 1.4 \ V$$

$$V_0: 3.6 \rightarrow <3.6 \rightarrow 2.8 \xrightarrow{V_0 \downarrow \downarrow \downarrow} 0.3 \text{ V}$$

V_T: 阈值电压(门坎电压) Threshold voltage

TTL 系列典型值

高电平 1: 2.8~3.6 V;

低电平 0: 0~0.3 V.

 V_{off} V_{on} 噪声容限: 在保证逻辑门正常逻辑功能情况下,输入端所能承受的最大干扰电压值。

2.2.3 TTL 与非门的电气特性 Electrical Properties of TTL NAND Gates

1. 输入负载特性

理想的TTL与非门电压传输特性是:

求出当 $V_i = V_T = 1.4$ V时的输入电阻值 R_T

R_{i} 小, V_{Ri} 低 \Longrightarrow 输入低电平

 R_i 大, V_{Ri} 高 \Longrightarrow 输入高电平

$$V_{Ri} = \frac{R_i}{4 \times 10^3 + R_i} (5 - 0.7)$$
=1.4 V (V_T)

门坎电压时的 R_i $R_i = 1.9 k\Omega \approx 2 k\Omega = R_T$

 R_{T} : 门坎电阻

输入电阻
$$R_i < R_T$$
, 等效于输入低电平 (0) $R_i > R_T$, 等效于输入高电平 (1) R_i 对地悬空 (∞) 逻辑高电平 (1)

例: TTL 逻辑门

2. 输出特性(带负载能力一同类门)

1) 输出低一灌流负载

当 F=0, 电流从5 V 电源 经 T1, T2 和 T5 流向地.

负载门: 输入低电平

驱动门:

$$i_{b5} > 0$$
, $I_{cs5} = 0$,

$$\therefore i_{b5} >> \frac{I_{cs5}}{\beta} = I_{b5}$$

∴T5 深饱和

每个负载门有电流 I_i 灌入,灌电流。

$$I_i = \frac{5 - 0.7}{4 \times 10^3} = 1.1 \ mA$$

灌入驱动门,这时的负载为灌流负载。

$$I_{\rm max} = 1.6 \,\mathrm{mA}$$

如果驱动门从每一个负载门接收 1.1 mA (1.6 mA) 灌电流, I_{cs5} 就要升高,饱和就会变浅,输出脱离标准低电平。

因此,TTL不能带过多负载门。驱动门的最大容许灌电流 16 mA.

扇出系数 (Fan-out):

一个输出所能驱动的同类门的最大数目。

$$N = \frac{16 \text{ } mA}{1.6 \text{ } mA} = 10$$
 手册上规定: $N \le 8$

2) 输出高一拉流负载

从F拉出的电流是负载门T1管的反向漏电流。

驱动门输出高电平时,要承受各负载门的拉电流。拉电流越大,驱动门中 R4 上压降越大。F 非高非低,脱离标准逻辑高电平。

每负载门的拉电流为40μA,驱动门最大允许 拉电流400μA

扇出系数与灌电流时相同:

$$\frac{400 \ \mu A}{40 \ \mu A} = 10$$

手册规定: N ≤8

§ 2.3.4 其他类型TTL门电路 Other TTL Gates

1. TTL 非门

TTL 非门与 TTL 与非门基本相同。

$$F = \overline{A + B}$$

中间级和输出级和 与非门相同

$$A$$
: 高 $\left\{ egin{array}{ll} \mathbf{T_2}, \mathbf{T_5} & \circlearrowleft \mathbf{H} \\ \mathbf{T_4}, \mathbf{D_3} & \end{split}
ight.
ight.$

$$B$$
: 高 $\left\{ egin{array}{ll} \mathbf{T_2'}, \mathbf{T_5} & \mathbb{F} & \mathbb{H} \\ \mathbf{T_4}, \mathbf{D_3} & \mathbb{H} & \mathbb{H} \end{array} \right\} F$: 低

T,和T,'集电极 $\to T_4$ 发射极 \rightarrow T₅

$$egin{array}{c|c} AB & F \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \hline \end{array}$$

$$F = \overline{A + B}$$

3. 异或门

A, B 都高

T₆, T₉ 导通 T₈ 截止

A, B 都低

T2, T3 发射极导通 T₄, T₅ 截止(V_{7b}高) T₇, T₉ 导通 T₈截止

 T_1 导通, T_6 截止 $egin{align*} A \ A \ B \ T_4, T_5 \ Z \ T_8 \ \Psi \ D, \ T_9 \ \Psi \ D \ T_8 \ \Psi \ D, \ T_9 \ \Psi \ D \ D, \ T_8 \ H \ D, \ T_9 \ \Psi \ D, \ T_9 \ H \ D, \ T_8 \ H \ D, \ T_9 \ H \ D, \ T_8 \ H \ D, \ T_9 \ H \ D, \ T_9$

4. 集电极开路与非门 (OC)

当需要下面运算时

$$F = F_1 \square F_2 = \overline{AB} \square \overline{CD}$$

有一种连接方法 如图

这种连法称"线与"

普通TTL门电路禁止这种连接方法

原因:

TTL 门输入电阻很小。如果 G1 输出高,而 G2 输出低, 会形成一个很大电流 I 从 G1 T4 流向 G2 T5.

导致:

 $I = \begin{cases} G2 \text{ T5 烧毁} \\ \text{输出 } F \text{ 脱离标准逻辑电平} \end{cases}$

非1非0,逻辑错误。

OCIJ:

(负载电阻的计算,见书)

集电极开路与非门去掉了T4和D3,用一个上拉电阻 R_L 替代。

选择适当 V_{cc} '和 R_L 值,就可以实现高电平和线与。

OC 门符号:

$$F = F_1 \Box F_2 = \overline{AB} \Box \overline{CD} = \overline{AB + CD}$$

5. 三态门 TSL

三态门输出:

高, 低, 高阻抗 (Hi-Z)

高阻抗是 T_4 和 T_5 管都截止,输出对地和对电源 E_c 都为高阻抗.

输出是悬浮的终端,既不是逻辑低也不是逻辑高电平.

实际中,输出端是一个几兆欧或更大的电阻.

TTL三态门

三态钳位电路示意图

高电平有效

EN = 1, T6倒置放大, T7 导通, T8 截止, T8 集电极开路; 三态钳位电路不起作用,输入完全取决于A、B。 $F = \overline{AB}$

EN = 0, T8 导通, V_{b4} 钳位 0.3 V, T4 D3 截止

T1 导通, $V_{b2} = 0.3 \text{ V}$ T2 T5 截止

F: Hi-Z 悬浮导线

三态门:

符号:

高电平有效

$$\begin{cases} EN=1, F=\overline{AB} \\ EN=0, F: Hi-Z \end{cases}$$

低电平有效

$$\begin{cases} EN=0, F=\overline{AB} \\ EN=1, F: Hi-Z \end{cases}$$

2.3.5 TTL 电路的改进

Improvement of TTL Gates

理想电压传输特性:

输入电压在 V_{T} 时,输出电压翻转.

多种改进的方法。

一种是在TTL电路中增加T6管:

电路中:

 $V_i = 0.7 \text{ V}, \text{T2 导通} \quad (\mathbf{R}_3 \rightarrow \mathbf{b})$

R3 造成电压传输特性不理想.

用 R_5 , R_6 , T6 替代 R_3 . (改成有源泄放回路)

改进电路:

 $V_i = 0.7 \text{ V, T2 截至}$

只有当 V_i =1.4 V, T2和T5 同时导通, 或 T2 和T6 同时导通.

 R_5 的存在,通常T6滞后于T5.

只有 $V_{\rm T}$, 没有 $V_{\rm on}$ 和 $V_{\rm off}$

 $V_{
m T}$: 阈值电压threshold voltage , $V_{
m T}$ =1.4 m V

$$\{V_i < 1.4 \text{ V} \mid \text{相当于} V_i = 0 \}$$

输入 $V_i \in V_i > 1.4 \text{ V} \mid \text{相当于} V_i = 1 \}$
 V_i 悬空 $V_i = 1$

§ 2.6 MOS 逻辑电路 MOS Logic Circuits

MOS 逻辑电路的基本单元为MOSFET

N-channel MOS

Grid 栅 G B Source 源

input
$$V_{GS} \ge V_T \quad (V_T > 0)$$

NMOS ON

$$E_D = 5 \text{ V} \sim 15 \text{ V}$$

P-channel MOS

input
$$|V_{GS}| \ge |V_T|$$
 $(V_T < 0)$

PMOS ON
$$-E_D$$

$$V_{\rm T} = 2 \text{ V} \sim 2.5 \text{ V}$$

MOSFET 开关电路

NMOS 开关电路

当 $V_i = V_{GS} < V_T$,NMOS 截止。

MOSFET 在截止状态的 电阻 R_{OFF}

$$R_{\rm OFF} \ge 10^{10} \Omega$$

MOSFET的 D-S 结等效于断开.

只要 $R_{\rm D}$ << $R_{\rm OFF}$,输出为高电平: $V_{\rm OH} \approx E_{\rm D}$.

当 $V_{\rm i} > V_{\rm T}$,NMOS处于恒流区,NMOS的导通电阻: $R_{\rm ON} \sim 1~{\rm k}\Omega$

只要 $R_{\rm D} >> R_{\rm ON}$,输出为低电平: $V_{\rm OL} \approx 0$.

NMOS 开关电路

MOSFET的 D-S 结相当于 短路.

输入低电平,MOS 截止,输出高电平; 输入高电平,MOS 导通,输出低电平。

2.6.1 NMOS 门电路 NMOS Gate Circuits

1. NMOS 非门

NMOS 非门含有两个 N-沟 FETs:

 $R_{\rm ON 1}$ =100 k Ω

T₁: 负载管

 T_2 : 驱动管,接输入 A

负载管 T_1 栅极接 E_D ,总是导通,基本作用为负载电阻(有源负载省面积)

输入
$$A = 0 \text{ V (logic 0)}$$
,

$$V_{\rm GS2} < V_{\rm T,}$$

T₂ 截止,

$$R_{\rm off} \ge 10^{10} \ \Omega$$

输出:
$$F = \frac{10^{10}}{10^5 + 10^{10}} \times E_D \approx E_D$$

$$F = E_D$$
 (logic 1) $\therefore A = 0, F = 1$

输入
$$A = 5 \text{ V (logic 1)}$$
,

$$V_{GS} > V_{T}$$
, T_2 导通,

$$R_{on2} = 1 k\Omega$$

$$F = \frac{R_{ON2}}{R_{ON1} + R_{ON2}} E_D = \frac{1k}{100k + 1k} E_D \approx 0.01 E_D$$
 真值表

$$\therefore F = 0 \text{ (logic 0)}$$

实现逻辑功能

$$F = \overline{A}$$

对MOS逻辑门,采用MOS管导通和截止状态电阻 的不同,用分压的方法来分析输出逻辑电平的高低。

2. NMOS 与非门

:输出

$$F = \overline{AB}$$

两个驱动管 T_2 和 T_3 串联,输入分别为 A 和 B.

输入、输出列于真值表:

AB	T_1	T_2	T_3	F
0 0	on	off	off	1
01	on	off	on	1
10	on	on	off	1
11	on	on	on	0

两个NMOS驱动管 串联,实现与非关系。

3. NMOS 或非门

两个驱动管 T_2 和 T_3 并联,输入分别 为 A 和 B.

$$\therefore F = \overline{A + B}$$

两个NMOS驱动管 并联,实现或非关系。

注意:

无负载管不是逻辑电路

2.6.2 CMOS 门电路 CMOS Gate Circuits

互补型MOS (CMOS: complementary) 逻辑门在一个电路中同时包含P- 和 N- 沟道FET。

1. CMOS 非门

PMOS: 负载

NMOS: 驱动

$$E_{\mathrm{D}}$$
 = 10 V
 E_{D} > $(V_{\mathrm{TN}} + /V_{\mathrm{TP}}/)$
 $V_{\mathrm{TN}} = /V_{\mathrm{TP}}/$
大于两门坎电压代数和

$$A=0$$
, $T_{\rm N}$ 截止, $T_{\rm P}$ 导通

$$(V_{\mathrm{GSN}} < V_{\mathrm{TN}},$$
 $V_{\mathrm{GSP}} = 0 - E_{\mathrm{D}} = -E_{\mathrm{D}}$
 $|V_{\mathrm{GSP}}| > |V_{\mathrm{TP}}|$

$$F = E_D = 1$$

$$A=1$$
, $T_{\rm N}$ 导通, $T_{\rm P}$ 截止

$$(V_{GSP} = E_D - E_D = 0$$
$$< |V_{TP}|)$$

$$F = 0$$

\boldsymbol{A}	$T_{ m P}$ $T_{ m N}$	
0	on off	1
1	off on	0

$$F = \overline{A}$$

2. CMOS 与非门

A B	$T_{N1} T_{N2} T_{P1} T_{P2}$	F
0 0	off off on on	1
01	off on on off	1
10	on off off on	1
11	on on off off	0

两个驱动管 T_{N1} 和 T_{N2} 串联. 功能: 与非 两个负载管 T_{P1} 和 T_{P2} 并联。

$$F = \overline{AB}$$

3. CMOS 或非门:

					T_{P2}	$oxed{F}$
0	0	off	off	on	on	1
0	1	off	on	on	off on	0
1	0	on	off	off	on	0
1	1	on	on	off	off	0

功能:或非

F = A + B

两 NMOSFETs 并联作为驱动管.

两 PMOSFETs 串联作为负载管.

MOS电路输入电阻 $R_{\rm GS} > 10^{10}\,\Omega$,所以无论外接电阻多大,都是:接地 $\to 0$, $E_{\rm c}\to 1$ 。

CMOS 电路不用的输入端一定不能悬空(静电保护)悬空时入端无电流,高输入阻抗($>10^{10}\Omega$)会使沟道被静电击穿。

第二章作业:

2.3 2.13 ($\mathbf{F_1}$)
2.4 2.16 (\mathbf{TTL})
2.5 2.17
2.10 ($\mathbf{F_1}$) 2.21