MATH 4400/6400 - Final Exam Study Guide

Exam time/location: Wednesday, May 3, 3:30 PM - 6:30 PM, Boyd 323

The exam is **cumulative**. You should expect ≤ 10 questions, with a format similar to that used on your midterms.

Course summary

Part I: Unique factorization in \mathbb{Z} (review from 4000)

- Basic properties of divisibility in \mathbb{Z}
- Division algorithm in \mathbb{Z}
- Ideals in \mathbb{Z} are principal
- Existence of gcds, computing gcds by Euclidean algorithm, the gcd is a linear combination of the starting numbers
- Fundamental Lemma, Euclid's lemma
- Unique factorization theorem for \mathbb{Z}

Part II: Arithmetic in $\mathbb{Z}[i]$, primes as sums of two squares, and allied concepts

- Definition of $\mathbb{Z}[i]$; verification that $\mathbb{Z}[i]$ is a subring of \mathbb{C}
- the norm map on $\mathbb{Z}[i]$ and its multiplicativity
- Basic properties of divisibility in $\mathbb{Z}[i]$ (echoing those of \mathbb{Z})
- Units in $\mathbb{Z}[i]$ as elements of norm 1
- Gaussian primes
 - $-\pi$ is prime in $\mathbb{Z}[i]$ if $N\pi$ is prime in \mathbb{Z}
 - $-\pi$ is prime $\iff \bar{\pi}$ is prime
 - $-\pi$ is prime \iff all of its unit multiples are prime
 - if p is prime in \mathbb{Z} , then p fails to be prime in $\mathbb{Z}[i]$ if and only if $p = \square + \square$

- if p is prime in \mathbb{Z} and $p \equiv 3 \pmod{4}$, then p is prime in $\mathbb{Z}[i]$
- if p is prime in \mathbb{Z} and $p \mid n^2 + 1$ for some integer n, then p is not prime in $\mathbb{Z}[i]$
- Unique factorization theorem in $\mathbb{Z}[i]$
 - careful formulation (we factor nonzero nonunits into irreducibles, and the uniqueness is up to order and unit multiples)
 - existence of factorizations
 - theory of gcds in $\mathbb{Z}[i]$ (echoing that of \mathbb{Z})
 - Fundamental Lemma and Euclid's Lemma in $\mathbb{Z}[i]$
 - completion of proof of UFT in $\mathbb{Z}[i]$
- Wilson's theorem and Euler's criterion for squares mod p; determination of when -1 is a square mod p
- if p is prime in \mathbb{Z} and $p \equiv 1 \pmod{4}$, then p is not prime in $\mathbb{Z}[i]$; consequently, $p = \square + \square$
- analogues of these results for $\mathbb{Z}[\sqrt{-2}]$
- arithmetic in $\mathbb{Z}[\sqrt{2}]$
 - $-\mathbb{Z}[\sqrt{2}]$ is dense in \mathbb{R}
 - units of $\mathbb{Z}[\sqrt{2}]$ as solutions to norm = ± 1
 - complete description of the unit group $U(\mathbb{Z}[\sqrt{2}])$

Part III: Pell's equation $(x^2 - dy^2 = 1)$

- explanation of why this is only interesting when d > 0 and d is not a square!
- description of all solutions to $x^2 2y^2 = 1$, in terms of units in $\mathbb{Z}[\sqrt{2}]$
- application: classification of all square triangular numbers
- \sqrt{d} is irrational when $d \neq \square$
- ullet description of solutions to Pell's equation in terms of powers of smallest unit > 1

- infinitely many elements of bounded norm in $\mathbb{Z}[\sqrt{d}]$; deduction of the existence of a unit of norm > 1
- magic with continued fractions

Part IV: Squares modulo p

- Legendre's symbol
- Euler's criterion (proved in HW by a pairing up argument)
- basic properties of the Legendre symbol

- if
$$a \equiv b \pmod{p}$$
, then $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$

- $\left(\frac{aa'}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{a'}{p}\right)$
- Gauss's criterion and rules for $\left(\frac{a}{p}\right)$ for small values of a
- Gauss's criterion v2.0, using floor functions
- Statement of the Law of Quadratic Reciprocity (QR)
- use of QR to determine specific Legendre symbols, as well as rules for $\left(\frac{a}{p}\right)$ for given values of a
- Floor function sums as lattice point counts
- Proof of Quadratic Reciprocity
- Jacobi symbol
 - definition and basic properties
 - QR and supplementary laws for the Jacobi symbol
 - computing with the Jacobi symbol and interpreting the results

Part V: Distribution of prime numbers

- there are infinitely many primes (Euclid)
- Legendre's formula for $\operatorname{ord}_p(n!)$
- $\sum_{p} 1/p$ diverges, via analysis of $\operatorname{ord}_{p}(n!)$
- Chebyshev's theorems on $\pi(x)$: There are $c_0, c_1 > 0$, as well as a real number x_0 , such that $c_1 x / \log x \le \pi(x) \le c_2 x / \log x$ for all $x > x_0$.
- discussion of Gauss's approximation Li(x) to $\pi(x)$ and the Riemann Hypothesis as a statement about the error term (non-examinable)

Part VI: Arithmetic functions

- Set-up: Definitions of arithmetic functions and multiplicative functions
- If f(n) is multiplicative, so is $g(n) = \sum_{d|n} f(d)$; deduction of multiplicativity of $\tau(n)$ and $\sigma(n)$
- the formula $n = \sum_{d|n} \phi(d)$
- If f, f' are multiplicative, so is $g(n) = \sum_{d|n} f(d)f'(n/d)$.
- definition of the Möbius function; the fundamental relation $\sum_{d|n} \mu(d) = 1$ if n = 1 and 0 if n > 1
- Möbius inversion formula
- If $\sum_{d|n} f(d)$ is multiplicative, then f is; consequently, ϕ is multiplicative.

Part VII: Sums of squares

- Euler's theorem: for positive integers n, we have $n = \Box + \Box \iff \operatorname{ord}_p(n)$ is even for all primes $p \equiv 3 \pmod{4}$
- \mathbb{H} (the Hamiltonians) as an analogue of \mathbb{C}
 - definition; computing in \mathbb{H}
 - the norm map on \mathbb{H}
 - \mathbb{H} is a noncommutative field ("division ring")

- the ring \mathcal{L} of Lipschitz integers as a first analogue of $\mathbb{Z}[i]$; failure of the division algorithm in \mathcal{L}
- the ring \mathcal{I} of Hurwitz integers; existence of the division algorithm in \mathcal{I}
- right ideals of \mathcal{I} are principal
- every odd prime p divides $x^2 + y^2 + 1$ for some $x, y \in \mathbb{Z}$; moreover, these x, y can be chosen so that $p^2 \nmid x^2 + y^2 + 1$
- Lagrange's four square theorem: Every $n = \Box + \Box + \Box + \Box$.
- brief discussion of sums of three squares
 - If $n \equiv 7 \pmod 8$, then $n \neq \square + \square + \square$. If $4 \mid n$, then $n = \square + \square + \square \iff \frac{1}{4}n = \square + \square + \square$. Hence: If $n = 4^k(8\ell + 7)$ for nonnegative integers k, ℓ , then $n \neq \square + \square + \square$.
 - Gauss's three square theorem: Unless $n=4^k(8\ell+7)$ for nonnegative integers k,ℓ , we have $n=\Box+\Box+\Box$. (No proof!)
- sums of higher powers: Every integer is a sum of five cubes. Every nonnegative integer is a sum of 53 4th powers. (non-examinable)

Practice problems

- 1. (a) State Gauss's theorem characterizing which positive integers n are sums of three squares.
 - (b) Assume Gauss's theorem. Show that if n is any positive integer, we can write $n = x^2 + y^2 + z^2 + w^2$ for some integers x, y, z, w where $x \in \{0\} \cup \{2^k : k = 0, 1, 2, 3, ...\}$.
- 2. Show that $\epsilon \in \mathcal{I}$ is a unit in $\mathcal{I} \iff N\epsilon = 1$. (Remember that units in noncommutative rings require two-sided inverses.) How many units in \mathcal{I} are there?
- 3. For $\alpha, \beta \in \mathcal{I}$, say α is a **left divisor** of β if $\beta = \alpha \gamma$ for some $\gamma \in \mathcal{I}$. For $\alpha, \beta \in \mathcal{I}$, say that $\delta \in \mathcal{I}$ is an **LGCD** of α, β if (a) δ is a left divisor of α, β , (b) if γ is any left divisor of α, β , then γ is a left-divisor of δ .
 - (a) Prove that every pair of $\alpha, \beta \in \mathcal{I}$ has some LGCD in \mathcal{I} .
 - (b) Suppose δ, δ' are two LGCDs of the same pair α, β . Show that there is a unit ϵ of \mathcal{I} with $\delta = \delta' \epsilon$.
 - (c) Show that every LGCD of α, β can be written in the form $\alpha \nu + \beta \mu$ for some $\nu, \mu \in \mathcal{I}$.
- 4. Prove the following version of the "Fundamental Lemma" in \mathcal{I} : Let $\alpha, \beta, \gamma \in \mathcal{I}$. Suppose α left divides $\gamma\beta$ and that 1 is an LGCD of α and β . Suppose also that α, γ commute $(\alpha\gamma = \gamma\alpha)$. Prove that α left divides γ .