LINEAR REGRESSION II

11.6.2020

RECAP

- * receptive fields
 - * what kind of stuff in the world does a neuron (or voxel, or whatever) respond to?
 - * we can estimate receptive fields by measuring responses in different conditions, and then fitting a model

RECAP

- * how do we fit a stimulus—>response model?
- * spike-triggered average?
 - * kinda bad, especially when stimulus features (x's) are correlated
- * regression!
 - * solves problems with STA!

2D EXAMPLE

subject

- * y = output of a neuron that you are measuring
- * **x1** = how many times **left** side of screen flashes per second
- * x2 = how many times **right** side of screen flashes per second

SQUARED ERROR

* the squared error is defined as the sum of squared differences between actual and predicted data

$$Err(\beta) = \sum_{t=1}^{T} (y_t - x_t \beta)^2$$

2D EXAMPLE

* here the error function takes two variables, E(b1, b2)

- * so how do we find the values of b1 and b2 that minimize the loss function?
- * one way is to take the derivative (aka the **gradient**) of the error with respect to b, then move in that direction
- * this is called gradient descent

Squared Error: $Err(\beta) = (Y - X\beta)^2$

Gradient:
$$\frac{\partial Err(\beta)}{\partial \beta} = -X^\top (Y - X\beta)$$

- * but there's another way to find the optimal b1 and b2
- * what's the shape of the error function?
 - * a parabola!

* there is an analytic solution to the minimum of a parabola!

$$\frac{\partial Err(\beta)}{\partial \beta} = -X^{\top}(Y - X\beta) = 0$$
$$-X^{\top}Y + X^{\top}X\beta = 0$$
$$X^{\top}X\beta = X^{\top}Y$$
$$\beta = (X^{\top}X)^{-1}X^{\top}Y$$

ANALYTIC REGRESSION

- * np.linalg.lstsq solves least squares regression
- * it returns 4 things:
 - * the regression weights (beta)
 - * the residuals (final squared error)
 - * the rank (we'll talk about this later)
 - * the singular values (ditto)

END