

SEQUENCE LISTING

<110> Iwakura, Masahiro
Hirota, Kiyonori
Sota, Hiroyuki

<120> Support having affinity for antibody

<130> 040894-7434-US

<140> 10575254
<141> 2007-06-05

<150> US 10/575,254
<151> 2006-04-10

<150> PCT/JP2004/014828
<151> 2004-10-07

<150> JP 2003-352937
<151> 2003-10-10

<160> 1

<170> PatentIn version 3.4

<210> 1
<211> 70
<212> PRT
<213> Artificial sequence

<220>

<223> Protein for antibody immobilization

<400> 1

Ala Asp Asn Asn Phe Asn Lys Glu Gln Gln Asn Ala Phe Tyr Glu Ile
1 5 10 15

Leu Asn Met Pro Asn Leu Asn Glu Glu Gln Arg Asn Gly Phe Ile Gln
20 25 30

Ser Leu Lys Asp Asp Pro Ser Gln Ser Ala Asn Leu Leu Ala Glu Ala
35 40 45

Lys Lys Leu Asn Glu Ser Gln Ala Pro Lys Gly Gly Gly Cys Ala
50 55 60

Asp Asp Asp Asp Asp Asp
65 70

<210> 2
<211> 128
<212> PRT
<213> Artificial Sequence

<220>

<223> Protein for antibody immobilization

<400> 2

Ala Asp Asn Asn Phe Asn Lys Glu Gln Gln Asn Ala Phe Tyr Glu Ile
1 5 10 15

Leu Asn Met Pro Asn Leu Asn Glu Glu Gln Arg Asn Gly Phe Ile Gln
20 25 30

Ser Leu Lys Asp Asp Pro Ser Gln Ser Ala Asn Leu Leu Ser Glu Ala
35 40 45

Lys Lys Leu Asn Glu Ser Gln Ala Pro Lys Ala Asp Asn Asn Phe Asn
50 55 60

Lys Glu Gln Gln Asn Ala Phe Tyr Glu Ile Leu Asn Met Pro Asn Leu
65 70 75 80

Asn Glu Glu Gln Arg Asn Gly Phe Ile Gln Ser Leu Lys Asp Asp Pro
85 90 95

Ser Gln Ser Ala Asn Leu Leu Ser Glu Ala Lys Lys Leu Asn Glu Ser
100 105 110

Gln Ala Pro Lys Gly Gly Gly Cys Ala Asp Asp Asp Asp Asp Asp
115 120 125

<210> 3

<211> 58

<212> PRT

<213> Artificial sequence

<220>

<223> A domain monomer

<400> 3

Ala Asp Asn Asn Phe Asn Lys Glu Gln Gln Asn Ala Phe Tyr Glu Ile
1 5 10 15

Leu Asn Met Pro Asn Leu Asn Glu Glu Gln Arg Asn Gly Phe Ile Gln
20 25 30

Ser Leu Lys Asp Asp Pro Ser Gln Ser Ala Asn Leu Leu Ala Glu Ala
35 40 45

Lys Lys Leu Asn Glu Ser Gln Ala Pro Lys
50 55

<210> 4

<211> 128

<212> PRT

<213> Artificial Sequence

<220>

<223> A domain dimer

<400> 4

Ala Asp Asn Asn Phe Asn Lys Glu Gln Gln Asn Ala Phe Tyr Glu Ile

1 5 10 15

Leu Asn Met Pro Asn Leu Asn Glu Glu Gln Arg Asn Gly Phe Ile Gln

20 25 30

Ser Leu Lys Asp Asp Pro Ser Gln Ser Ala Asn Leu Leu Ser Glu Ala

35 40 45

Lys Lys Leu Asn Glu Ser Gln Ala Pro Lys Ala Asp Asn Asn Phe Asn

50 55 60

Lys Glu Gln Gln Asn Ala Phe Tyr Glu Ile Leu Asn Met Pro Asn Leu

65 70 75 80

Asn Glu Glu Gln Arg Asn Gly Phe Ile Gln Ser Leu Lys Asp Asp Pro

85 90 95

Ser Gln Ser Ala Asn Leu Leu Ser Glu Ala Lys Lys Leu Asn Glu Ser

100 105 110

Gln Ala Pro Lys Gly Gly Gly Cys Ala Asp Asp Asp Asp Asp Asp

115 120 125

<210> 5

<211> 12

<212> PRT

<213> Artificial Sequence

<220>

<223> Linker peptide

<400> 5

Gly Gly Gly Gly Cys Ala Asp Asp Asp Asp Asp Asp

1 5 10

<210> 6

<211> 216

<212> DNA

<213> Artificial Sequence

<220>

<223> DNA encoding protein for antibody immobilization

<400> 6

atggctgata acaatttcaa caaagaacaa caaaaatgctt tctatgaaat cttgaatatg 60

cctaacttaa acgaagaaca acgcaatggt ttcatccaaa gcttaaaaaga tgacccaagc 120
caaagtgcta acctattgtc agaagctaaa aagttaaatg aatctcaagc accgaaaggt 180
ggcggtggct gcgctgatga cgatgacgat gactaa 216

<210> 7
<211> 390
<212> DNA
<213> Artificial Sequence

<220>
<223> DNA encoding protein for antibody immobilization

<400> 7

atggctgata acaatttcaa caaagaacaa caaaatgctt tctatgaaat cttgaatatg 60
cctaacttaa acgaagaaca acgcaatggt ttcatccaaa gcttaaaaaga tgacccaagc 120
caaagtgcta acctattgtc agaagctaaa aagttaaatg aatctcaagc accgaaaggt 180
gataacaatt tcaacaaaga acaacaaaat gctttctatg aaatcttgaa tatgcctaac 240
ttaaacaacgaa aacaacgcaa tggtttcatc caaagcttaa aagatgaccc aagccaaagt 300
gctaacctat tgcagaagc taaaaagttt aatgaatctc aagcaccgaa aggtggcggt 360
ggctgcgctg atgacgatga cgatgactaa 390

<210> 8
<211> 302
<212> DNA
<213> Artificial Sequence

<220>
<223> DNA for transferring into vector

<400> 8

ggatccttga caatatctta actatctgtt ataatatattt gaccaggta actaactaag 60
cagcaaaagg aggaacgact atggctgata acaatttcaa caaagaacaa caaaatgctt 120
tctatgaaat ttcatatgtt cctaacttaa acgaagaaca acgcaatggt ttcatccaaa 180
gcttaaaaaga tgacccaagc caaagtgcta acctattgtc agaagctaaa aagttaaatg 240
aatctcaagc accgaaaggt ggcggtggct gcgctgatga cgatgacgat gactaagaat 300
tc 302

<210> 9
<211> 476
<212> DNA
<213> Artificial Sequence

<220>
<223> DNA for transferring into vector

<400> 9

ggatccttga caatatctta actatctgtt ataatatattt gaccaggta actaactaag 60
cagcaaaagg aggaacgact atggctgata acaatttcaa caaagaacaa caaaatgctt 120
tctatgaaat ttcatatgtt cctaacttaa acgaagaaca acgcaatggt ttcatccaaa 180
gcttaaaaaga tgacccaagc caaagtgcta acctattgtc agaagctaaa aagttaaatg 240
aatctcaagc accgaaaggt gataacaatt tcaacaaaga acaacaaaat gctttctatg 300

aaatcttcaa tatgcctaac taaaacgaag aacaacgcaa tggtttcatc caaagcttaa 360
aagatgaccc aagccaaagt gctaacctat tgtcagaagc taaaaagtta aatgaatctc 420
aagcaccgaa aggtggcggt ggctgcgctg atgacgatga cgatgactaa gaattc 476

<210> 10
<211> 74
<212> DNA
<213> Artificial Sequence

<220>
<223> Additional DNA sequence for gene expression

<400> 10

ttgacaatat cttaactatc tggtataata tattgaccag gttaactaac taagcagcaa 60
aaggaggaac gact 74