Package 'transx'

October 14, 2022

October 14, 2022
Title Transform Univariate Time Series
Version 0.0.1
Description Univariate time series operations that follow an opinionated design. The main principle of 'transx' is to keep the number of observations the same. Operations that reduce this number have to fill the observations gap.
License GPL-3
Imports rlang
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
<pre>URL https://github.com/kvasilopoulos/transx</pre>
<pre>BugReports https://github.com/kvasilopoulos/transx/issues</pre>
Suggests dplyr, ggplot2, cli, testthat, knitr, DescTools, outliers, rmarkdown, mFilter, covr
VignetteBuilder knitr
Language en-US
Depends R (>= 2.10)
NeedsCompilation no
Author Kostas Vasilopoulos [aut, cre] (https://orcid.org/0000-0002-9769-6395)
Maintainer Kostas Vasilopoulos <k.vasilopoulo@gmail.com></k.vasilopoulo@gmail.com>
Repository CRAN
Date/Publication 2020-11-27 11:40:02 UTC
R topics documented:
demean-demedian

2 demean-demedian

fill linear	5
fill_locf	6
fill_nocb	7
fill_spline	8
 filter_bk	8
filter_bw	9
filter_cf	9
filter_hamilton	10
filter_hp	11
filter_tr 1	11
gmean	12
leadx-lagx	12
	13
~wq-	14
	14
	15
	15
	16
	17
	18
	18
F · · · =	19
F · · · =	20
F · · · _ JJ	20
	21
	22
8-	23
	24
	25
	26
std	26
	28

demean-demedian

Removes measure of centrality from the series

Description

Index

Maturing

Removes the mean, the median or the mode from the series.

```
demean(x, na.rm = getOption("transx.na.rm"))
demedian(x, na.rm = getOption("transx.na.rm"))
demode(x, na.rm = getOption("transx.na.rm"))
```

diffx-rdiffx-ldiffx 3

Arguments

[univariate vector] Χ Univariate vector, numeric or ts object with only one dimension. na.rm [logical(1): getOption("transx.na.rm")]

A value indicating whether NA values should be stripped before the computation

proceeds.

Value

Returns a vector with the same class and attributes as the input vector.

Examples

```
x < -c(2,5,10,20,30)
summary(x)
demean(x)
demedian(x)
demode(x)
```

diffx-rdiffx-ldiffx Compute lagged differnces

Description

Maturing

Returns suitably lagged and iterated difference

- diffx computes simple differences.
- rdffix computes percentage differences.
- ldiffx computes logged differences.

```
diffx(x, n = 1L, order = 1L, rho = 1, fill = NA)
rdiffx(x, n = 1L, order = 1L, rho = NULL, fill = NA)
ldiffx(x, n = 1L, order = 1L, rho = 1, fill = NA)
```

4 dtrend

Arguments

X	[univariate vector]
	Univariate vector, numeric or ts object with only one dimension.
n	[positive integer(1): 1L]
	Value indicating which lag to use.
order	[positive integer(1): 1L]
	Value indicating the order of the difference.
rho	[numeric(1): NULL]
	Value indicating the autocorrelation parameter. The purpose of this parameter is to provide quasi-differencing assuming the value falls within 0 and 1.
fill	[numeric or function: NA]
	Numeric value(s) or function used to fill observations.

Examples

```
x <- c(2, 4, 8, 20)
diffx(x)
rdiffx(x)
ldiffx(x)</pre>
```

dtrend

Deterministic Trend

Description

Stable

Remove global deterministic trend information from the series.

- dt_lin removes the linear trend.
- dt_quad removes the quadratic trend.
- dt_poly removes the nth-degree polynomial trend.

```
dtrend_lin(x, bp = NULL, na.rm = getOption("transx.na.rm"))
dtrend_quad(x, bp = NULL, na.rm = getOption("transx.na.rm"))
dtrend_poly(x, degree, bp = NULL, na.rm = getOption("transx.na.rm"))
```

fill_linear 5

Arguments

X	[univariate vector]	
	Univariate vector, numeric or ts object with only one dimension.	
bp	[positive integer(1)]	
	Break points to define piecewise segments of the data.	
na.rm	<pre>[logical(1): getOption("transx.na.rm")]</pre>	
	A value indicating whether NA values should be stripped before the computation	
	proceeds.	
degree	[positive integer(1)]	
	Value indicating the degree of polynomial	

Value

Returns a vector with the same class and attributes as the input vector.

Examples

```
set.seed(123)
t <- 1:20

# Linear trend
x <- 3*sin(t) + t
plotx(cbind(x, dtrend_lin(x)))

# Quadratic trend
x2 <- 3*sin(t) + t + t^2
plotx(cbind(raw = x2, quad = dtrend_quad(x2)))

# Introduce a breaking point at point = 10
xbp <- 3*sin(t) + t
xbp[10:20] <- x[10:20] + 15
plotx(cbind(raw = xbp, lin = dtrend_lin(xbp), lin_bp = dtrend_lin(xbp, bp = 10)))</pre>
```

fill_linear

Fill with "linear approximation"

Description

Fill with "linear approximation"

```
fill_linear(body, idx, ...)
```

fill_locf

Arguments

body	[numeric vector]
	The body of the vector.
idx	[integer vector]
	the index to replace with.
	Further arguments passed to \link[stats]{approx}

Value

Returns a vector with the same class and attributes as the input vector.

Examples

```
x <- c(5,3,2,2,5)
xlen <- length(x)
n <- 2
n <- pmin(n, xlen)
idx <- 1:n
body <- x[seq_len(xlen - n)]
fill_linear(body, idx)</pre>
```

fill_locf

Fill with "Last Observation Carried Forward"

Description

Fill with "Last Observation Carried Forward"

Usage

```
fill_locf(body, idx, fail = NA)
```

Arguments

body	<pre>[numeric vector]</pre>	
	The body of the vector.	
idx	<pre>[integer vector]</pre>	
	the index to replace with.	
fail	<pre>[numeric(1) or numeric vector: fill]</pre>	
	In case it fails to fill some values.	

Value

Returns a vector with the same class and attributes as the input vector.

fill_nocb 7

Examples

```
x <- c(5,3,2,2,5)
lagx(x, n = 2, fill = fill_locf)
leadx(x, n = 2, fill = fill_locf)
lagx(x, n = 2, fill = fill_nocb)
leadx(x, n = 2, fill = fill_nocb)</pre>
```

 $fill_nocb$

Fill with "Next observation carried backwards"

Description

Fill with "Next observation carried backwards"

Usage

```
fill_nocb(body, idx, fail = NA)
```

Arguments

body	<pre>[numeric vector]</pre>
	The body of the vector.
idx	[integer vector]
	the index to replace with.
fail	<pre>[numeric(1) or numeric vector: fill]</pre>
	In case it fails to fill some values.

Value

Returns a vector with the same class and attributes as the input vector.

```
x <- c(5,3,2,2,5)
leadx(x, n = 2, fill = fill_locf)

xlen <- length(x)
n <- 2
n <- pmin(n, xlen)
idx <- (xlen - n + 1):xlen
body <- x[-seq_len(n)]
fill_locf(body, idx, NA)</pre>
```

filter_bk

C . 7 .	-	
† 1 l	L_spl	ine

Fill with "cubic spline interpolation"

Description

Fill with "cubic spline interpolation"

Usage

```
fill_spline(body, idx, ...)
```

Arguments

body	[numeric vector]
	The body of the vector.
idx	<pre>[integer vector]</pre>
	the index to replace with.
	Further arguments passed to \link[stats]{spline}

Value

Returns a vector with the same class and attributes as the input vector.

Examples

```
x \leftarrow c(5,3,NA,2,5)
fill_spline(x, 3)
```

filter_bk

Baxter-King Filter

Description

Maturing

This function computes the cyclical component of the Baxter-King filter.

Usage

```
filter_bk(x, fill = NA, ...)
```

Arguments

x	[univariate vector]
	Univariate vector, numeric or ts object with only one dimension.
fill	[numeric or function: NA]
	Numeric value(s) or function used to fill observations.
	Further arguments passed to bkfilter.

filter_bw

Examples

```
unemp <- ggplot2::economics$unemploy
unemp_cycle <- filter_bk(unemp)
plotx(cbind(unemp, unemp_cycle))</pre>
```

filter_bw

Butterworth Filter

Description

Maturing

This function computes the cyclical component of the Butterworth filter.

Usage

```
filter_bw(x, ...)
```

Arguments

x [univariate vector]

Univariate vector, numeric or ts object with only one dimension.

.. Further arguments passed to bwfilter.

Examples

```
unemp <- ggplot2::economics$unemploy
unemp_cycle <- filter_bw(unemp, freq = 10)
plotx(cbind(unemp, unemp_cycle))</pre>
```

filter_cf

Christiano-Fitzgerald Filter

Description

Maturing

This function computes the cyclical component of the Christiano-Fitzgerald filter.

```
filter_cf(x, ...)
```

10 filter_hamilton

Arguments

x [univariate vector]

Univariate vector, numeric or ts object with only one dimension.

... Further arguments passed to cffilter.

Examples

```
unemp <- ggplot2::economics$unemploy
unemp_cycle <- filter_cf(unemp)
plotx(cbind(unemp, unemp_cycle))</pre>
```

filter_hamilton

Hamilton Filter

Description

Maturing

This function computes the cyclical component of the Hamilton filter.

Usage

```
filter_hamilton(x, p = 4, horizon = 8, fill = NA)
```

Arguments

x [univariate vector]

Univariate vector, numeric or ts object with only one dimension.

p [integer(1): 4]

A value indicating the number of lags

horizon [integer(1): 8]

A value indicating the number of periods to look ahead.

fill [numeric or function: NA]

Numeric value(s) or function used to fill observations.

Value

Returns a vector with the same class and attributes as the input vector.

```
unemp <- ggplot2::economics$unemploy
unemp_cycle <- filter_hamilton(unemp)
plotx(cbind(unemp, unemp_cycle))</pre>
```

filter_hp

filter_hp

Hodrick-Prescot Filter

Description

Maturing

This function computes the cyclical component of the Hodrick-Prescot filter.

Usage

```
filter_hp(x, ...)
```

Arguments

x [univariate vector]

Univariate vector, numeric or ts object with only one dimension.

... Further arguments passed to hpfilter.

See Also

select_lambda

Examples

```
unemp <- ggplot2::economics$unemploy
unemp_cycle <- filter_hp(unemp, freq = select_lambda("monthly"))
plotx(cbind(unemp, unemp_cycle))</pre>
```

filter_tr

Trigonometric regression Filter

Description

Maturing

This function computes the cyclical component of the trigonometric regression filter.

Usage

```
filter_tr(x, ...)
```

Arguments

x [univariate vector]

Univariate vector, numeric or ts object with only one dimension.

... Further arguments passed to trfilter.

12 leadx-lagx

Examples

```
unemp <- ggplot2::economics$unemploy
unemp_cycle <- filter_tr(unemp, pl=8, pu=40)
plotx(cbind(unemp, unemp_cycle))</pre>
```

gmean

Geometric Mean value

Description

Compute the sample geometric mean.

Usage

```
gmean(x, na.rm = getOption("transx.na.rm"))
```

Arguments

x [univariate vector]

Univariate vector, numeric or ts object with only one dimension.

na.rm [logical(1): getOption("transx.na.rm")]

A value indicating whether NA values should be stripped before the computation

proceeds.

Value

Returns a vector with the same class and attributes as the input vector.

leadx-lagx

Compute lagged or leading values

Description

Stable

Find the "previous" (lagx()) or "next" (leadx()) values in a vector. Useful for comparing values behind of or ahead of the current values.

```
lagx(x, n = 1L, fill = NA)
leadx(x, n = 1L, fill = NA)
```

modex 13

Arguments

X	[univariate vector]
	Univariate vector, numeric or ts object with only one dimension.
n	<pre>[positive integer(1): 1L]</pre>
	Value indicating the number of positions to lead or lag by.
fill	[numeric or function: NA]
	Numeric value(s) or function used to fill observations.

Details

This functions has been taken and modified from the dplyr package, however, to reduce dependencies they are not imported.

Value

Returns a vector with the same class and attributes as the input vector.

Examples

```
x <- c(5,3,2,2,5)
lagx(x)
lagx(x, fill = mean)
lagx(x, fill = fill_nocb)

leadx(x)
leadx(x, fill = fill_locf)</pre>
```

modex

Mode value

Description

Compute the sample median.

Usage

```
modex(x, na.rm = getOption("transx.na.rm"))
modex_int(x, na.rm = getOption("transx.na.rm"))
```

Arguments

x [univariate vector]
Univariate vector, numeric or ts object with only one dimension.

na.rm [logical(1): getOption("transx.na.rm")]
A value indicating whether NA values should be stripped before the computation proceeds.

14 out_pt

out.	iar
Ou t	_ 1 (1)

Detect outliers with Tukey's method

Description

Maturing

Usage

```
out_iqr(x, cutoff = 1.5, fill = NA, ...)
```

Arguments

x [univariate vector]
Univariate vector, numeric or ts object with only one dimension.
cutoff [numeric(1): 1.5]
fill [numeric or function: NA]
Numeric value(s) or function used to fill observations.
... further arguments passed to quantile.

Examples

```
out_iqr(c(0,1,3,4,20))
```

out_pt

Detect outliers with Percentiles

Description

Maturing

Usage

```
out_pt(x, pt_low = 0.1, pt_high = 0.9, fill = NA)
```

Arguments

X	[univariate vector] Univariate vector, numeric or ts object with only one dimension.
pt_low	the lowest quantile
pt_high	the highest quantile
fill	[numeric or function: NA]
	Numeric value(s) or function used to fill observations.

out_score_z

Examples

```
x \leftarrow c(1, 3, -1, 5, 10, 100)
out_pt(x)
```

out_score_z

Detect outliers with zscore

Description

Maturing

Usage

```
out_score_z(x, cutoff = 3, fill = NA, ...)
```

Arguments

x [univariate vector]

Univariate vector, numeric or ts object with only one dimension.

cutoff [numeric(1): 3]

fill [numeric or function: NA]

Numeric value(s) or function used to fill observations.

... Further arguments passed to score.

Examples

```
out_score_z(c(0,0.1,2,1,3,2.5,2,.5,6,4,100))
```

out_score_zrob

Detect outliers Iglewicz and Hoaglin (1993) robust z-score method

Description

Maturing

```
out_score_zrob(x, cutoff = 3.5, fill = NA, ...)
```

out_threshold

Arguments

X	[univariate vector]
	Univariate vector, numeric or ts object with only one dimension.
cutoff	[numeric(1): 3.5]
fill	[numeric or function: NA]
	Numeric value(s) or function used to fill observations.
	further arguments passed to score.

Examples

```
out_score_zrob(c(0,0.1,2,1,3,2.5,2,.5,6,4,100))
```

out_threshold Detect outliers with upper and lower threshold

Description

Maturing

Usage

```
out_threshold(x, tlow = NULL, thigh = NULL, fill = NA)
```

Arguments

Χ	[univariate vector]
	Univariate vector, numeric or ts object with only one dimension.
tlow	[numeric(1): NULL]
	The lower threshold.
thigh	[numeric(1): NULL]
	The upper threshold.
fill	[numeric or function: NA]
	Numeric value(s) or function used to fill observations.

Value

Returns a vector with the same class and attributes as the input vector.

```
x <- c(1, 3, -1, 5, 10, 100)

out_threshold(x, tlow = 0, fill = 0)

out_threshold(x, thigh = 9, fill = function(x) quantile(x, 0.9))
```

out_winsorise 17

Description

Maturing

Replace extremely values that are defined by min and max.

Usage

```
out_winsorise(x, min = quantile(x, 0.05), max = quantile(x, 0.95))
out_winsorize(x, min = quantile(x, 0.05), max = quantile(x, 0.95))
```

Arguments

x	[univariate vector]
	Univariate vector, numeric or ts object with only one dimension.
min	[numeric(1): quantile(x, 0.05)]
	The lower bound, all values lower than this will be replaced by this value.
max	[numeric(1): quantile(x, 0.95)]
	The upper bound, all values above than this will be replaced by this value.

Value

Returns a vector with the same class and attributes as the input vector.

See Also

Winsorize

```
x <- c(1, 3, -1, 5, 10, 100)
out_winsorise(x)
```

18 pow_boxcox

pow

nth Power Transformation

Description

Stable

Usage

```
pow(x, pow = NULL, modulus = FALSE)
```

Arguments

x [univariate vector]

Univariate vector, numeric or ts object with only one dimension.

pow [numeric(1): NA]

The nth power.

modulus positive

Value

Returns a vector with the same class and attributes as the input vector.

Examples

```
pow(2, 2)
pow(-2, 2)
pow(-2,2, TRUE)
```

pow_boxcox

Box-Cox Transformations

Description

Maturing

```
pow_boxcox(x, lambda = NULL, lambda2 = NULL, ...)
```

19 pow_manly

Arguments

[univariate vector] Χ Univariate vector, numeric or ts object with only one dimension. lambda [numeric(1): NULL] Transformation exponent, λ . lambda2 [numeric(1): NULL] Transformation exponent, λ_2 .

Further arguments passed to pow.

. . .

Value

Returns a vector with the same class and attributes as the input vector.

References

Box, G. E., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society. Series B (Methodological), 211-252. https://www.jstor.org/stable/2984418

Examples

```
set.seed(123)
x <- runif(10)</pre>
pow_boxcox(x, 3)
```

pow_manly

Manly(1971) Transformations

Description

Maturing

The transformation was reported to be successful in transform unimodal skewed distribution into normal distribution, but is not quite useful for bimodal or U-shaped distribution.

Usage

```
pow_manly(x, lambda = NULL)
```

Arguments

Х [univariate vector]

Univariate vector, numeric or ts object with only one dimension.

lambda [numeric(1): NULL]

Transformation exponent, λ .

Value

Returns a vector with the same class and attributes as the input vector.

20 pow_yj

Examples

```
set.seed(123)
x <- runif(10)
pow_manly(x, 3)</pre>
```

pow_tukey

Tukey Transformations Transformations

Description

Maturing

Usage

```
pow_tukey(x, lambda = NULL, ...)
```

Arguments

x [univariate vector]

Univariate vector, numeric or ts object with only one dimension.

lambda [numeric(1): NULL]

Transformation exponent, λ .

... Further arguments passed to pow.

Value

Returns a vector with the same class and attributes as the input vector.

Examples

```
set.seed(123)
x <- runif(10)
pow_tukey(x, 2)</pre>
```

pow_yj

Yeo and Johnson(2000) Transformations

Description

Maturing

```
pow_yj(x, lambda = NULL, ...)
```

rebase 21

Arguments

x [univariate vector]

Univariate vector, numeric or ts object with only one dimension.

lambda [numeric(1): NULL]

Transformation exponent, λ .

... Further arguments passed to pow.

Value

Returns a vector with the same class and attributes as the input vector.

References

Yeo, I., & Johnson, R. (2000). A New Family of Power Transformations to Improve Normality or Symmetry. Biometrika, 87(4), 954-959. http://www.jstor.org/stable/2673623

Examples

```
set.seed(123)
x <- runif(10)
pow_yj(x, 3)</pre>
```

rebase

Change the base year

Description

Maturing

Change the base year.

Usage

```
rebase(x, n = NULL)
rebase_origin(x)
```

Arguments

x [univariate vector]

Univariate vector, numeric or ts object with only one dimension.

n [numeric(1): NULL]

The index of the new base year.

Value

Returns a vector with the same class and attributes as the input vector.

22 root

Examples

```
x <- 3:10
# New base would be 5
rebase(x, 5)
# Or the origin
rebase_origin(x)
# Fro the base to be 100 or 0 then:
rebase(x, 5)*100
rebase(x, 5) - 1</pre>
```

root

nth Root Transformation

Description

Stable

• root: nth root

root_sqrt: square rootroot_cubic: cubic root

Usage

```
root(x, root = NULL, modulus = FALSE)
root_sq(x, ...)
root_cubic(x, ...)
```

Arguments

x [univariate vector]

Univariate vector, numeric or ts object with only one dimension.

root [numeric(1): NA]

The nth root.

modulus [logical(1): FALSE]

Transformation will work for data with both positive and negative root.

... Further arguments passed to root.

scale_range 23

Examples

```
root(4, 2)
root(-4, 2)
root(-4, 2, TRUE)
```

scale_range

Rescale

Description

Maturing

Usage

```
scale_range(x, to, na.rm = getOption("transx.na.rm"))
scale_minmax(x, na.rm = getOption("transx.na.rm"))
scale_unit_len(x, na.rm = getOption("transx.na.rm"))
```

Arguments

X	[univariate vector]
	Univariate vector, numeric or ts object with only one dimension.
to	[numeric(2): NULL]
	Values that will determine the output range.
na.rm	<pre>[logical(1): getOption("transx.na.rm")]</pre>
	A value indicating whether NA values should be stripped before the computation proceeds.

Details

To rescale a range between an arbitrary set of values [a, b], the formula becomes:

Value

Returns a vector with the same class and attributes as the input vector.

```
x <- c(10,5,1,-2)
scale_range(x, c(-1, 2))
scale_minmax(x)</pre>
```

24 score

score

Score transformation

Description

Stable

These functions calculate the scores according to:

- score_z: Normal(z) distribution
- score_mad: Mean absolute deviation
- score_t: t-distribution
- score_chi: chi-distribution

Usage

```
score_z(x, na.rm = getOption("transx.na.rm"))
score_mad(x, na.rm = getOption("transx.na.rm"))
score_t(x, na.rm = getOption("transx.na.rm"))
score_chisq(x, na.rm = getOption("transx.na.rm"))
```

Arguments

x [univariate vector]

Univariate vector, numeric or ts object with only one dimension.

na.rm [logical(1): getOption("transx.na.rm")]

A value indicating whether NA values should be stripped before the computation proceeds.

Details

Because function are known with different names:

- score_z is identical to std_mean
- score_mad is identical to std_median

Value

Returns a vector with the same class and attributes as the input vector.

See Also

scores

select_lambda 25

Examples

```
x <- seq(-3,3,0.5)
score_z(x)
score_mad(x)
score_t(x)</pre>
```

select_lambda

Selecting lambda

Description

Approaches to selecting lambda.

Usage

```
select_lambda(
  freq = c("quarterly", "annual", "monthly", "weekly"),
  type = c("rot", "ru2002")
)
```

Arguments

freq [character: "quarterly"]
The frequency of the dataset.

type [character: "rot"]
The methodology to select lambda.

Details

Rule of thumb is from Hodrick and Prescot (1997):

- Lambda = 100*(number of periods in a year)^2
- Annual data = $100 \times 1^2 = 100$
- Quarterly data = $100 \times 4^2 = 1,600$
- Monthly data = $100 \times 12^2 = 14,400$
- Weekly data = $100 \times 52^2 = 270,400$
- Daily data = $100 \times 365^2 = 13,322,500$

Ravn and Uhlig (2002) state that lambda should vary by the fourth power of the frequency observation ratio;

• Lambda = $6.25 \times (number of periods in a year)^4$

Thus, the rescaled default values for lambda are:

26 std

- Annual data = $1600 \times 1^4 = 6.25$
- Quarterly data = $1600 \times 4^4 = 1600$
- Monthly data = $1600 \times 12^4 = 129,600$
- Weekly data = $1600 \times 12^4 = 33,177,600$

References

Hodrick, R. J., & Prescott, E. C. (1997). Postwar US business cycles: an empirical investigation. Journal of Money, credit, and Banking, 1-16.

Ravn, M. O., & Uhlig, H. (2002). On adjusting the Hodrick-Prescott filter for the frequency of observations. Review of economics and statistics, 84(2), 371-376.

skewness

Skewness/Kurtosis Value

Description

Compute the sample skewness/kurtosis

Usage

```
skewness(x, na.rm = getOption("transx.na.rm"))
kurtosis(x, na.rm = getOption("transx.na.rm"))
```

Arguments

[univariate vector]

Univariate vector, numeric or ts object with only one dimension.

[logical(1): getOption("transx.na.rm")] na.rm

> A value indicating whether NA values should be stripped before the computation proceeds.

std

Standarization

Description

Maturing

Convert number of standard deviations by which the value of a raw score is above or below the mean value of what is being observed or measured.

std 27

Usage

```
std_mean(x, na.rm = getOption("transx.na.rm"))
std_median(x, na.rm = getOption("transx.na.rm"))
```

Arguments

x [univariate vector]

Univariate vector, numeric or ts object with only one dimension.

na.rm [logical(1): getOption("transx.na.rm")]

A value indicating whether NA values should be stripped before the computation

proceeds.

Value

Returns a vector with the same class and attributes as the input vector.

```
x <- c(10,2,5,3)
std_mean(x)
scale(x)
std_median(x)</pre>
```

Index

```
bkfilter, 8
                                                 out_pt, 14
bwfilter, 9
                                                 out_score_z, 15
                                                 out_score_zrob, 15
cffilter, 10
                                                 out_threshold, 16
                                                 out_winsorise, 17
demean (demean-demedian), 2
                                                 out_winsorize (out_winsorise), 17
demean-demedian, 2
demedian (demean-demedian), 2
                                                 pow, 18
demode (demean-demedian), 2
                                                 pow_boxcox, 18
diffx (diffx-rdiffx-ldiffx), 3
                                                 pow_manly, 19
diffx-rdiffx-ldiffx, 3
                                                 pow_tukey, 20
dtrend. 4
                                                 pow_yj, 20
dtrend_lin (dtrend), 4
dtrend_poly (dtrend), 4
                                                  rdiffx (diffx-rdiffx-ldiffx), 3
dtrend_quad (dtrend), 4
                                                 rebase, 21
                                                 rebase_origin (rebase), 21
fill_linear, 5
                                                 root, 22
fill_locf, 6
                                                  root_cubic (root), 22
fill_nocb, 7
                                                 root_sq (root), 22
fill_spline, 8
filter_bk, 8
                                                 scale_minmax (scale_range), 23
filter_bw, 9
                                                 scale_range, 23
filter_cf, 9
                                                 scale_unit_len (scale_range), 23
filter\_hamilton, 10
                                                 score, 24
filter_hp, 11
                                                  score_chisq(score), 24
filter_tr, 11
                                                  score_mad(score), 24
                                                  score_t (score), 24
gmean, 12
                                                 score_z (score), 24
                                                 scores, 24
hpfilter, 11
                                                  select_lambda, 25
kurtosis (skewness), 26
                                                  skewness, 26
                                                 std, 26
lagx (leadx-lagx), 12
                                                 std_mean(std), 26
ldiffx (diffx-rdiffx-ldiffx), 3
                                                 std_median(std), 26
leadx (leadx-lagx), 12
                                                 trfilter, 11
leadx-lagx, 12
modex, 13
                                                 Winsorize, 17
modex_int (modex), 13
out_iqr, 14
```