

Featureless Graph Data Predicting

Speaker: Ruiwen Zhou (Group 12)

June, 2021

Group Division

• From the left to the right:

Group Member	Major Contribution
Ruiwen Zhou	Literature Research Link Prediction
Rui Ye	Data Preprocessing Node Classification
Zhiyu Zhang	Ensemble Learning Scheme Node Classification

 Although in general we work in a parallel manner, we communicate and discuss on both directions often.

Contents

- 1 AceMap Network Modelling
- Node Classification Configuration
- Link Prediction with SEAL
- Improvement Against Overfitting
- Summary and Acknowledgement

AceMap Network Modelling

- We build a HOMOGENEOUS network
- Involving nodes of both types: Papers and Authors

Three edge types: Citation, Authorship, and Co-author relationship

Node Classification Configuration

Feature Engineering

GCN & SGC

SEAL Framework

We follow the SEAL framework proposed in NeurIPS 2018

Figure 1: The SEAL framework. For each target link, SEAL extracts a local enclosing subgraph around it, and uses a GNN to learn general graph structure features for link prediction. Note that the heuristics listed inside the box are just for illustration – the learned features may be completely different from existing heuristics.

And we replace the DGCNN in SEAL by Hierarchical ASAP Pooling Net

Overfitting Problem

- Using unweighted edges and DGCNN (as default setting in SEAL)
- We obtain some prediction distributed like this

- Most prediction falls into a narrow range centering at 0 and 1
- Poor generalization, which does great harm to AUC score

Trick 1: Soft Labels

- Assume a pair of authors (a_i, a_j) coauthor n_{ij} papers
- Requirement:

More cooperation

More Determined Label

The label of this author pair is

$$y(a_i, a_j) = \sigma(\beta n_{ij}) = \frac{1}{1 + \exp(-\beta n_{ij})}$$

• We search for the hyperparameter space and set $\beta=0.5$ here

Trick 2: ASA Pooling

- DGCNN uses two elements by default:
 - Global Sort Pooling Layer
 - GCN Convolution Kernel

Fast Overfitting

Use Hierarchical ASAP structure, and substitute GCN conv. to LE conv.

E. Ranjan, S. Sanyal, et al. ASAP: Adaptive Structure Aware Pooling for Learning Hierarchical Graph Representations. AAAI 2020.

Enhance by Bagging

- Now we have obtain a single model which works very well
- However, we want to further improve our AUC score
- Common method in Kaggle competitions: Ensemble Learning

About 0.01 ~ 0.02 AUC improvement

Summary and Acknowledgement

- We summarize our work as following four points:
 - We build a unified homogeneous academic network
 - We design a simple but effective feature for node classification
 - We improve the performance of SEAL by using soft labels and ASAP
 - We utilize ensemble learning to further raise the strength of model
- Acknowledgements:
 - ACK. to Prof. Jiaxin Ding and T.A. Bowen Zhang's insightful discussions
 - ACK. to other groups for great competition

Thanks!

