Example Networks

Internet
Connection Oriented Networks
ATM
Ethernet
Wireless LANs

Internet ATM Ethernet Wireless

Internet – Applications

Internet ATM Ethernet Wireless

- Internetworks: A collection of interconnected networks,
 - Uses gateways to <u>translate between incompatible networks</u>.
- The Internet is a <u>specific worldwide internet</u>.
- Applications based on protocols:

Introduction, Topic 1.3, Example Networks

- HTTP: <u>HyperText Transfer Protocol</u>, the underlying protocol used by the World Wide Web,
- SMTP: <u>Simple Mail Transfer Protocol</u>, a protocol for sending e-mail messages between servers,
- FTP: File Transfer Protocol, the protocol used on the Internet for sending files,
- TELNET: <u>Telecommunications Network</u>, provides virtual terminal services for interactive access by terminal servers to host,
- DNS: <u>Domain Name System</u>, an Internet distributed service that translates domain names into IP addresses,
- NNTP: *Network News Transfer Protocol*, the protocol used to post, distribute, and retrieve USENET messages

APPLICATION LAYER

1

Internet Introduction, Topic 1.3, Example Networks Internet – Messages ATM Ethernet Wireless ■ Packaging: Application messages must be packaged up (like putting them in an envelope) and sent off to the recipient. Sending - Broadcast to many recipients (e.g. e-mail, ?) - May want to ensure that messages are received or may not mind if they go astray (e.g. postcard vs. courier). Receiving - Validity: May need to ensure messages are not corrupt, - Order: and that are received in the correct order. Network independence: Need to ensure that our communications are independent of the network being used, so that it will not matter if the underlying physical media or network protocols are changed.

Internet Introduction, Topic 1.3, Example Networks Internet – Getting there? ATM Ethernet Wireless Routing - Learn where to send the messages, - Can be based on static routing tables although can NETWORK LAYER lead to congestion and problems if a node in the network goes down, - Instead use dynamic routing tables based on system load, path latency, etc. Different Networks - We must often need to repackage messages due to networks having different message size limitations, - We also need to <u>translate messages from network to</u> <u>network</u> which is even more problematic.

Introduction, Topic 1.3, Example Networks

Internet – Transmission?

Internet ATM Ethernet Wireless

- To send a message across a network we must consider:
 - Media: <u>Variety of media (copper, optical fiber, radio waves) for transmission,</u>
 - Encoding: Encode data onto the media, so that a receiver can receive it,
 - Errors: <u>Have to deal with transmission errors</u> (detection/correction)
 - Flow Control:
 - Multiple senders on the same network
 - Slow receivers: Stop them being swamped by fast senders

Introduction, Topic 1.3, Example Networks

Connection Oriented Networks

Internet **ATM** Ethernet Wireless

- The Internet is a connectionless network designed for fault tolerance in the case of <u>hardware failures</u>
 - Routes all packets <u>independently and can dynamically</u> adjust to changes in configuration.
- Problems for network operators
 - Quality of Service: Difficult to provide QoS in packet switched networks,
 - Billing: <u>Telecommunication companies charge</u> connection time. No connection, no charge.
- A Connection oriented approach simplifies these issues. We have to
 - Establish connections for the duration of a "call",
 - Reserve <u>bandwidth for the connection giving</u> guaranteed level of service.

Introduction, Topic 1.3, Example Networks

Wireless LANs (1)

Internet ATM Ethernet Wireless

- 802.11: IEEE standard for Wireless LANs
- Two Modes provided
 - a) With a Base station
 - All comms go through access points,
 - b) Without a base station
 - All comms go directly <u>between devices in an ad hoc fashion.</u>

Introduction, Topic 1.3, Example Networks

Wireless LANs (2)

- Challenges
 - Frequency band: Need a band that could be used worldwide,
 - Range: Radio signals have a finite range,
 - Privacy: Need to ensure users privacy,
 - Safety: Human safety could be an issue with radio waves,
 - Bandwidth: Ensuring enough bandwidth is available to make this economically viable,
 - Listen doesn't work: <u>Cannot sense the medium</u> results in the hidden terminal problem,
 - Multipath fading: Radio waves are reflected off solid objects,
 - Mobile software: Most software isn't designed to be mobile,
 - Handoff: A device moving from one base station to another, requires a handoff process.

Wireless LANs (3)

New standards

- 802.11a: uses a wider frequency band to achieve speeds of up to 54 Mbps,

- 802.11b: uses a different modulation technique, but the original frequency band to achieve 11Mbps,

- 802.11g: uses same frequency band as 802.11b but different modulation (same as 802.11a) to achieve high data rates.