MEAN 스택 활용 웹 개발

빅데이터 개요

60초 사이에 일어나는 일들..

빅데이터 정의

그 전에는 분석이 불가능했지만, IT가 발전하면서 다룰 수 있게 된 방대한 양의 데이터

예) 휴대폰 통화 내역, 기상 정보, 실시간 교통량, 인터넷 검색 내역, 소셜 네트워크 서비스 메시지 등

하루 평균 1 억 5,500만 건 생성

하루 평균 동영상 재생 건수 40억회

인터넷 기업의 등장과 글로벌 디지털 데이터 규모

빅데이터 특징

- 데이터의 양 (Volume)
- 데이터 생성 속도 (Velocity)
- 형태의 다양성 (Variety)

박데이터 속에서는 이름이나 주민등록번호와 같은 개인식별정보, 성별·나이·직업과 같은 정형적인 특성보다는 '당신이 어디에서 무엇을 하며, 어떤 행동방식을 선호하는가'가 의미 있는 자료가 됨

빅데이터 특징

구분	기존	빅데이터 환경
데이터	■ 정형화된 수치자료 중심	●비정형의 다양한 데이터 ●문자 데이터(SMS, 검색어) ●영상 데이터(CCTV, 동영상) ●위치 데이터
하드웨어	고가의 저장장치데이터베이스데이터웨어하우스(Data-warehouse)	• 클라우드 컴퓨팅 (비용효율적인 장비) 활용 가능
소프트웨어 /분석 방법	 관계형 데이터베이스 (RDBMS) 통계패키지(SAS, SPSS) 데이터 마이닝 (data mining) machine learning, knowledge discovery 	 오픈소스 형태의 무료 소프트웨어 Hadoop, NoSQL 오픈 소스 통계솔루션(R) 텍스트 마이닝(text mining) 온라인 버즈 분석(opinion mining) 감성 분석(sentiment analysis)

- 미국 국세청
 - ❖ 정부기관 사기 방지 솔루션: 방대한 자료로부터 이상 징후를 찾아내고 예측 모델링을 통해 과정의 행동 정보를 분석하여 사기 패턴과 유사한 행동 검출
 - ❖ 소셜 네트워크 분석을 통한 범죄 네트워크 발굴:계좌,주소,전화번호,납세자 간의 연관 관계 분석, 범죄자와 관련된 소셜 네트워크를 분석하여 범죄자 집단에 대한 감시 시스템 마련
 - ❖ 다양한 데이터 분석을 통한 지능형 감시 시스템 구축, 탈세 및 사기 범죄 예방 시스템 구축
 - → 통합형 탈세 및 정부 사기 방지 시스템을 통해 연간 3,450억 달러에 달하는 세금 누락 및 불필요한 세금 환급 절감, 탈세자 수의 감축

- 일본 정부 지능형 교통 정보 시스템
 - ❖ 다양한 사용자에 의해 취득된 정보를 바탕으로 한 실시간 교통 정보를 공유함으로써 최적의 교통 안내 서비스 제공 및 교통 체증으로 인한 불필요한 에너지 낭비 방지
 - ❖ UTIS(Ubiqlink Traffic Information System)를 통한 독자적 도로교통정보망구축: 차량 주행속도 기반으로 도로 교통정보 예측한 후, 최적 경로 안내 및 재난 상황 시 통행 가능 도로 정보 제공

→ 자동차 주행 속도 계산하여 교통 정보 수집 (일본 전역 지정도시 택시 약 11,000대와 데이터 제공 동의한 사용자로부터 실시간 정보 수집)

- 구글
 - ❖ 독감과 관련된 검색어 빈도를 분석해 독감 환자 수와 유행 지역을 예측하는 독감 동향 서비스 개발(google.org/flutrends)
 - → 미국 질병통제본부(CDC)보다 예측력이 뛰어남 (CDC보다 1~2주 정도 확산 경로를 더 빠르게 예측함)
 - ❖ 자동번역 시스템 구글은 수천만 권의 도서 정보와 유엔과 유럽의회, 웹사이트의 자료를 활용해 64개 언어 간 자동번역 시스템 개발 (IBM도 캐나다의회의 문서를 활용해 영어・불어 자동번역 시스템 개발을 시도했으나 실패)
 - ❖ Microsoft가 장기간 대규모 투자로 만들어낸 스펠링 교정보다 우수한 프로그램을 개발하고 번역시스템에 적용 (매일 3억건씩 발생하는 검색창의 오타 입력과 수정 정보를 활용)

- 서울시 심야버스
 - ❖ 심야버스 노선을 계획할 당시 심야 택시 승·하차데이터 500만 건과 이동통신사 KT가 보유한 통화기록 30만 건을 결합해 분석
 - → 홍대, 동대문, 강남, 종로 등 주요 지역의 시간대별 인구 밀집도와 이동 경로를 파악해 노선도의 효율성을 높임 (하룻밤에 6,000명 이용)

