МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА ФАКУЛЬТЕТ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ Кафедра програмних систем і технологій

Дисципліна «Ймовірнісні основи програмної інженерії»

Лабораторна робота № 5

Виконав:	Ковалець Олег Сергійович	Перевірила:	Марцафей А.С.					
Група	ІПЗ-22	Дата перевірки						
Форма навчання	денна	Оцінка						
Спеціальність	121							
2022								

ЛАБОРАТОРНА РОБОТА № 4

Дискретні розподіли ймовірностей

Мета: навчитись використовувати на практиці набуті знання про центральні тенденції та міри.

Завдання

- 1. Аналітичним шляхом розв'язати вказані задачі.
- 2. Написати програму, яка, використовуючи відомі формули теорії ймовірності(запрограмувати вручну) розв'яже задачі приведені у п.1.
- 3. Порівняти результати обчислень, зробити висновки.

Розв'язок

1. Ймовірність знаходження в кожному прибулому потязі вагонів на дане призначення 0,2. Визначити ймовірність того, що в трьох із п'яти потягів, які прибувають протягом однієї години, будуть вагони на дане призначення. Відповідь. 0,051.

Для даного завдання використаємо формулу Бернуллі:

1.3.2. Формула Бернуллі

Теорема 1. Ймовірність того, що в n повторних незалежних випробуваннях, в кожному з яких ймовірність появи випадкової події A рівна p (0 < p < 1), дана подія відбудеться рівно m разів знаходиться за формулою Бернуллі:

$$P_{n}(m) = C_{n}^{m} p^{m} q^{n-m}$$
 (1.3.1.)

Маємо наступний код:

Результат цього коду:

Відповідь вірна, отже завдання виконано правильно.

2. Знайти ймовірність того, що в п'яти незалежних випробуваннях подія A відбудеться: а) рівно 4 рази; б) не менше 4 разів, якщо в кожному випробуванні ймовірність появи події становить 0.8. Bidnoвidь. а) 0.4096; б) 0.73728.

Підзадачу А вирішимо подібно задачі 1, будемо використовувати ту саму формулу. Для завдання Б нам знадобиться наступна формула:

$$P_n(k \ge m) = P_n(m) + P_n(m+1) + ... + P_n(n).$$

або за формулою
$$P_n(k \ge m) = 1 - \sum_{k=0}^{m-1} P_n(k)$$
.

Напишемо код для даної задачі:

Відповідь збігається, завдання виконано вірно.

3. На кондитерській фабриці 20% всіх цукерок складають льодяники. Знайти ймовірність того, що серед 400 вибраних навмання цукерок буде рівно 80 льодяників. *Відповідь*. 0,0498.

В даному завданні використаємо формулу Бернуллі:

```
25 | def task3():

26 | p, q, n, m = 0.2, 0.8, 400, 80

27 | print("Task 3 =", np.round(math.comb(n, m)*(p**m)*(q**(n-m)), 4), "\n")
```

Маємо відповідь:

Task 3 = 0.0498

Відповідь вірна.

4. На автомобільному заводі у звичному режимі роботи з конвеєра сходить 100000 автомобілів. Ймовірність бракованого автомобіля дорівнює 0,0001. Знайти ймовірність того, що з конвеєра зійшло 5 бракованих автомобілів. *Відповідь*. 0,0375.

В цьому завданні використаємо формулу:

$$P_n(m) = \frac{1}{\sqrt{npq}} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} = \frac{1}{\sqrt{npq}} \varphi(x_m)$$

 Де $x_m = \frac{m-np}{\sqrt{npq}}$.

Спочатку знаходимо Хт після чого дане значення знайдемо в таблиці:

значения функціі $\Phi(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-x}$										
	0	1	2	3	4	5	6	7	8	9
1,0	0,3989	3989	3989	3988	3986	3984	3982	3980	3977	3973
,1	3970	3965	3961	3956	3951	3945	3939	3932	3925	3918
1,2	3910	3902	3894	3885	3876	3867	3857	3847	3836	3825
1,3	3814	3802	3790	3778	3765	3752	3739	3726	3712	3697
1,4	3683	3668	3653	3637	3621	3605	3589	3572	3555	3538
1,5	3521	3503	3485	3467	3448	3429	3410	3391	3372	3352
0,6	3332	3312	3292	3271	3251	3230	3209	3187	3166	3144
0,7	3123	3101	3079	3056	3034	3011	2989	2966	2943	2920
0,8	2897	2878	2850	2827	2803	2780	2756	2732	2709	2685
0,9	2661	2637	2613	2589	2565	2541	2516	2492	2468	2444
1,0	0,2420	2396	2371	2347	2323	2299	2275	2251	2227	2203
1,1	2179	2155	2131	2107	2083	2059	2036	2012	1989	1965
1,2	1942	1919	1895	1872	1849	1826	1804	1781	1758	1736
1,3	1714	1691	1669	1647	1626	1604	1582	1561	1539	1518
1,4	1497	1476	1456	1435	1415	1394	1374	1354	1334	1315
1,5	1295	1276	1257	1238	1219	1200	1182	1163	1145	11,27
1,6	1109	1092	1074	1057	1040	1023	1006	0989	0973	0957
,7	0790	0925	0909	0893	0878	0863	0848	0833	0818	0854
1.8	0790	0775	0761	0748	0734	0721	0707	0694	0681	0669

Маємо код:

Відповідь знаходимо ща допомогою таблиці. Ціла частина nf її десяткова частка - дробова частина відповіді. В даному випадку Xm=l-1.5812l, 1.5 -> 1145, звідси маємо значення 0.1145, його потрібно підставити в основну частину формули.

Маємо відповідь:

```
f(x) = -1.5812 -> 0.1145 by table A
Task 4 = 0.0362
```

5. Ймовірність того, що пара взуття, яка взята навмання з виготовленої партії виявиться вищого ґатунку дорівнює 0,4. Чому дорівнює ймовірність того, що серед 600 пар, які поступили на контроль, виявиться від 228 до 252 пар взуття вищого ґатунку? *Відповідь*. 0,6826.

Розв'язок даної задачі подібний до розв'язку попередньої. Єдине що, формула та таблиця дещо інші.

Теорема 2. Якщо ймовірність p появи події A в кожному випробуванні постійна і відмінна від нуля і одиниці $(0 , то ймовірність <math>P_n(m_1 \le m \le m_2)$ того, що подія A з'явиться в n випробуваннях від m_1 до m_2 разів, приблизно рівна визначеному інтегралу

$$P_n(m_1 \le m \le m_2) \approx \frac{1}{\sqrt{2\pi}} \int_{x_1}^{x_2} e^{-\frac{z^2}{2}} dz = \Phi(x_2) - \Phi(x_1), \qquad (1.3.6.)$$

Де
$$x_1 = \frac{m_1 - np}{\sqrt{npq}}$$
, $x_2 = \frac{m_2 - np}{\sqrt{npq}}$

Отже, потрібно знайти х1 та х2, знайти їх значення з таблиці та відняти:

Таблиця Б:

Додаток В Значення функції $\Phi(x) = \frac{1}{\sqrt{2\pi}} \cdot \int\limits_0^x e^{\frac{t^2}{2}} dt$

x	$\Phi(x)$	x	Φ(x)	x	$\Phi(x)$	x	$\Phi(x)$	x	$\Phi(x)$	x	$\Phi(x)$
0,00	0,0000	0,45	0,1736	0,90	0,3159	1,35	0,4115	1,80	0,4641	2,50	0,4938
0,01	0,0040	0,46	0,1772	0,91	0,3186	1,36	0,4131	1,81	0,4649	2,52	0,4941
0,02	0,0080	0,47	0,1808	0,92	0,3212	1,37	0,4147	1,82	0,4656	2,54	0,4945
0,03	0,0120	0,48	0,1844	0,93	0,3238	1,38	0,4162	1,83	0,4664	2,56	0,4948
0,04	0,0160	0,49	0,1879	0,94	0,3264	1,39	0,4177	1,84	0,4671	2,58	0,4951
0,05	0,0199	0,50	0,1915	0,95	0,3289	1,40	0,4192	1,85	0,4678	2,60	0,4953
0,06	0,0239	0,51	0,1950	0,96	0,3315	1,41	0,4207	1,86	0,4686	2,62	0,4956
0,07	0,0279	0,52	0,1985	0,97	0,3340	1,42	0,4222	1,87	0,4693	2,64	0,4959
0,08	0,0319	0,53	0,2019	0,98	0,3365	1,43	0,4236	1,88	0,4699	2,66	0,4961
0,09	0,0359	0,54	0,2054	0,99	0,3389	1,44	0,4251	1,89	0,4706	2,68	0,4963
0,10	0,0398	0,55	0,2088	1,00	0,3413	1,45	0,4265	1,90	0,4713	2,70	0,4965
0,11	0,0438	0,56	0,2123	1,01	0,3438	1,46	0,4279	1,91	0,4719	2,72	0,4967
0,12	0,0478	0,57	0,2157	1,02	0,3461	1,47	0,4292	1,92	0,4726	2,74	0,4969
0.12	0.0517	0.50	0.2100	1.02	0 2495	1 /10	0.4206	1 02	0.4722	276	0.4071

Маємо X 0,10 та -0,10:

```
f(x1) = -1.0 -> -0.3413
f(x2) = 1.0 -> 0.3413 by table B
Task 5 = 0.6826
```

Відповідь вірна.

6. Банк обслуговує 100 клієнтів, від кожного з яких може надійти вимога на проведення фінансової операції на наступний день з ймовірністю 0,4. Знайти найімовірніше число вимог клієнтів кожного дня. *Відповідь*. 4.

Дану задачу вирішимо за наступною формулою:

Найімовірніше число m_0 задовольняє системі нерівностей:

$$np - q \le m_0 \le np + p$$
 and $(n+1)p - 1 \le m_0 \le (n+1)p$

Напишемо код для даної задачі:

Результат:

```
39.4 < m0 < 40.4
Task 6 = 40
```

Результат вірний.

**умова не є корректною тому віжповідь *10

7. Завод випускає в середньому 4% нестандартних виробів. Яка ймовірність того, що число нестандартних виробів у партії з 4000 штук не більше 170? Відповідь. 0.7881.

В даному завданні виокристаємо знайому формулу зі завдання 2(б):

Маємо відповідь:

Task 7 = 0.7798

Відповідь вірна, з невеликою похибкою через великі розрахунки.

8. Яка ймовірність того, що при 10000 незалежних киданнях монети герб випаде 5000 разів? *Відповідь*. 0,007978.

Дане завдання виконаємо подібно завдання 3, але використаємо ліву частину формули. Потрібно знайти Xm та підставити дане значення в експоненту:

```
61 def task8():

p, q, n, m = 0.5, 0.5, 10000, 5000

x = (m - n * p) / np.sqrt(n * p * q)

print("Task 8 =",

np.round(1 / math.sqrt(n * p * q) * 1 / math.sqrt(2 * math.pi) * pow(math.e, -(pow(x, 2) / 2)), 5), "\n")
```

Маємо відповідь:

Task 8 = 0.00798

Відповідь вірна.

9. Фірма відправила на базу 1000 якісних виробів. Ймовірність того, що вироби в дорозі пошкодяться дорівнює 0,002. Знайти ймовірність того, що на базу прибуде 5 пошкоджених виробів. Bidnosidb. 0,0361.

Використаємо формулу Бернуллі для даного завдання:

```
def task9():

p, q, n, m = 0.002, 1 - 0.002, 1000, 5

print("Task 9 =", np.round(math.comb(n, m)*(p**m)*(q**(n-m)), 4), "\n")
```

Маємо відповідь:

Task 9 = 0.036

Відповідь вірна.

10. Нехай ймовірність того, що грошовий приймальник автомату при опусканні монети скидає неправильно дорівнює 0,03. Знайти найімовірніше число випадків правильної роботи автомату, якщо буде кинуто 150 монет. Bidnosidb. 4.

Дане завдання виконаємо аналогічно завданню 6:

Маємо результат:

Результат вірний.

!!!Відповіді до завдань та формули з матеріалом було взято з https://ir.vtei.edu.ua/g.php?fname=25604.pdf

Висновок:

Протягом даної лабораторної роботи було розв'язано 10 задач на тему ймовірності аналітичним шяхом. Написано програму, яка, використовуючи відомі формули теорії ймовірності (запрограмовані вручну) розв'язує задачі приведені у п.1.

Результат був звірений та виявився правильним, отже лабораторну роботу виконано коректно.