

The EM Algorithm

Héctor Corrada Bravo

University of Maryland, College Park, USA CMSC 644: 2019-03-13

Instead of the combinatorial approach of the K-means algorithm, take a more direct probabilistic approach to modeling distribution Pr(X).

Assume each of the K clusters corresponds to a multivariate distribution $Pr_k(X)$,

Pr(X) is given by *mixture* of these distributions as $Pr(X) = \sum_{k=1}^{K} \pi_k Pr_k(X)$.

Specifically, take $Pr_k(X)$ as a multivariate normal distribution $f_k(X) = N(\mu_k, \sigma_k^2 I)$ and mixture density $f(X) = \sum_{k=1}^K \pi_k f_k(X)$.

Use Maximum Likelihood to estimate parameters

$$heta = (\mu_1, \ldots, \mu_K, \sigma_1^2, \ldots, \sigma_K^2, \pi_1, \ldots, \pi_K)$$

based on their log-likelihood

$$\ell(heta;X) = \sum_{i=1}^N \log \Biggl[\sum_{k=1}^K \pi_k f_k(x_i; heta) \Biggr]$$

$$\ell(heta;X) = \sum_{i=1}^N \log \Biggl[\sum_{k=1}^K \pi_k f_k(x_i; heta) \Biggr]$$

Maximizing this likelihood directly is computationally difficult

Use Expectation Maximization algorithm (EM) instead.

Example: Mixture of Two Univariate Gaussians

Consider unobserved latent variables Δ_{ik} taking values 0 or 1,

 $\Delta_{ij} = 1$ specifies observation x_i was generated by component k of the mixture distribution.

Now set $Pr(\Delta_{ik} = 1) = \pi_k$, and assume we *observed* values for latent variables Δ_{ik} .

We can write the log-likelihood in this case as

$$\ell_0(heta; X, \Delta) = \sum_{i=1}^N \sum_{k=1}^K \Delta_{ik} \log f_k(x_i; heta) + \sum_{i=1}^N \sum_{k=1}^K \Delta_{ik} \log \pi_k$$

We have closed-form solutions for maximum likelihood estimates:

$$\hat{\mu}_k = rac{\sum_{i=1}^N \Delta_{ik} x_i}{\sum_{i=1}^N \Delta_{ik}}$$

$$\hat{\sigma}_k^2 = rac{\sum_{i=1}^N \Delta_{ik} (x_i - \hat{\mu}_k)^2}{\sum_{i=1}^N \Delta_{ik}}$$

$$\hat{\pi}_k = rac{\sum_{i=1}^K \Delta_{ik}}{N}$$
 .

Of course, this result depends on observing values for Δ_{ik} which we don't observe. Use an iterative approach as well:

- given current estimate of parameters θ ,
- Substitute $E[\Delta_{ik}|X_i,\theta]$ for Δ_{ik} .

Of course, this result depends on observing values for Δ_{ik} which we don't observe. Use an iterative approach as well:

- given current estimate of parameters θ ,
- Substitute $E[\Delta_{ik}|X_i,\theta]$ for Δ_{ik} .

We will prove that this maximizes the likelihood we need $\ell(\theta; X)$.

In the mixture case, what does this look like?

Define

$$\gamma_{ik}(heta) = E(\Delta_{ik}|X_i, heta) = Pr(\Delta_{ik} = 1|X_i, heta)$$

Use Bayes' Rule to write this in terms of the multivariate normal densities with respect to current estimates θ :

$$egin{aligned} \gamma_{ik} &= rac{Pr(X_i|\Delta_{ik}=1)Pr(\Delta_{ik}=1)}{Pr(X_i)} \ &= rac{f_k(x_i;\mu_k,\sigma_k^2)\pi_k}{\sum_{l=1}^K f_l(x_i;\mu_l,\sigma_l^2)\pi_l} \end{aligned}$$

Quantity $\gamma_{ik}(\theta)$ is referred to as the *responsibility* of cluster k for observation i, according to current parameter estimate θ .

We can now give a complete specification of the EM algorithm for mixture model clustering.

- 1. Take initial guesses for parameters θ
- 2. *Expectation Step*: Compute responsibilities $\gamma_{ik}(\theta)$
- 3. *Maximization Step*: Estimate new parameters based on responsibilities as below.
- 4. Iterate steps 2 and 3 until convergence

Soft K-means Algorithm

Estimates in the Maximization step are given by

$$\hat{\mu}_k = rac{\sum_{i=1}^N \gamma_{ik}(heta) x_i}{\sum_{i=1}^N \gamma_{ik}}$$

$$\hat{\sigma}_k^2 = rac{\sum_{i=1}^N \gamma_{ik}(heta)(x_i - \mu_k)^2}{\sum_{i=1}^N \gamma_{ik}(heta)}$$

and

$$\hat{\pi}_k = rac{\sum_{i=1}^N \gamma_{ik}(heta)}{N}$$

Soft K-means Algorithm

The name "soft" K-means refers to the fact that parameter estimates for each cluster are obtained by weighted averages across all observations.

So, why does that work?

Why does plugging in $\gamma_{ik}(\theta)$ for the latent variables Δ_{ik} work?

Why does that maximize log-likelihood $\ell(\theta; X)$?

Think of it as follows:

z: observed data

 Z^m : missing *latent* data $T = (Z, Z^m)$: complete data (observed and missing)

Think of it as follows:

z: observed data

 Z^m : missing *latent* data $T = (Z, Z^m)$: complete data (observed and missing)

 $\ell(\theta'; Z)$: log-likehood w.r.t. *observed* data

 $\ell_0(\theta';T)$: log-likelihood w.r.t. *complete* data

Next, notice that

$$Pr(Z| heta') = rac{Pr(T| heta')}{Pr(Z^m|Z, heta')}$$

Next, notice that

$$Pr(Z| heta') = rac{Pr(T| heta')}{Pr(Z^m|Z, heta')}$$

As likelihood:

$$\ell(heta';Z) = \ell_0(heta';T) - \ell_1(heta';Z^m|Z)$$

Iterative approach: given parameters θ take expectation of log-likelihoods

$$egin{array}{lll} \ell(heta';Z) &=& E[\ell_0(heta';T)|Z, heta] - E[\ell_1(heta';Z^m|Z)|Z, heta] \ &\equiv & Q(heta', heta) - R(heta', heta) \end{array}$$

Iterative approach: given parameters θ take expectation of log-likelihoods

$$egin{array}{lll} \ell(heta';Z) &=& E[\ell_0(heta';T)|Z, heta] - E[\ell_1(heta';Z^m|Z)|Z, heta] \ &\equiv & Q(heta', heta) - R(heta', heta) \end{array}$$

In soft k-means, $Q(\theta',\theta)$ is the log likelihood of complete data with Δ_{ik} replaced by $\gamma_{ik}(\theta)$

The general EM algorithm

- 1. Initialize parameters $\theta^{(0)}$
- 2. Construct *function* $Q(\theta', \theta^{(j)})$
- 3. Find next set of parameters $\theta^{(j+1)} = \arg \max_{\theta'} Q(\theta', \theta^{(j)})$
- 4. Iterate steps 2 and 3 until convergence

So, why does that work?

$$\ell(heta^{(j+1)};Z) - \ell(heta^{(j)};Z) = egin{array}{c} [Q(heta^{(j+1)}, heta^{(j)}) - Q(heta^{(j)}, heta^{(j)})] \ -[R(heta^{(j+1)}, heta^{(j)}) - R(heta^{(j)}, heta^{(j)})] \ \geq \ \end{array}$$

So, why does that work?

$$\ell(heta^{(j+1)};Z) - \ell(heta^{(j)};Z) = egin{array}{c} [Q(heta^{(j+1)}, heta^{(j)}) - Q(heta^{(j)}, heta^{(j)})] \ -[R(heta^{(j+1)}, heta^{(j)}) - R(heta^{(j)}, heta^{(j)})] \ \geq \ 0 \end{array}$$

I.E., every step makes log-likehood larger

Why else does it work? $Q(\theta', \theta)$ minorizes $\ell(\theta'; Z)$

General algorithmic concept:

Iterative approach:

- Initialize parameters
- Construct bound based on current parameters
- Optimize bound

Imputing missing data

z: observed data

 z^m : missing observations

Requires a likelihood model...

Latent semantic analysis

Documents as *mixtures* of topics (Hoffman 1998)

