

# 5



IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Application of:

MUNROE et al.

Group Art Unit: 1647

Application No.: 10/084,507

Examiner: R. Deberry (expected)

Filed: February 28, 2002

Attorney Dkt. No.: 108074-00023

For: AN ISOLATED HUMAN EDG-4 RECEPTOR (AS AMENDED)

**SUBSTITUTE STATEMENT UNDER 37 CFR §1.821(C)**

Commissioner of Patents and Trademarks  
Washington, D.C. 20231

Date: June 14, 2002

Sir:

In accordance with 37 C.F.R.1.821(C), applicants are submitting herewith the Sequence Listing for the above-identified application both in paper copy form and in computer readable form.

The name of the file on the computer readable form is 100879\_1.asc. The paper copy and the computer readable form are the same.

In the event that any fees are due with respect to the filing of this paper, please charge to our Deposit Account No. 01-2300, referencing Docket No. 108074-00023.

Respectfully submitted,

ARENT FOX KINTNER PLOTKIN & KAHN PLLC



Richard J. Berman  
Registration No. 39,107

Customer No. 004372  
ARENT FOX KINTNER PLOTKIN & KAHN, PLLC  
1050 Connecticut Avenue, N.W., Suite 400  
Washington, D.C. 20036-5339  
Tel: (202) 857-6000; Fax: (202) 638-4810  
RJB/elp

Enclosures: Paper Copy of Sequence Listing  
Disk Containing Sequence Listing  
100885\_1.DOC

## SEQUENCE LISTING



<110> MUNROE, Donald G.  
KAMBOJ, Rajender  
PETERS, Diana  
KOOSHESH, Fatemeh  
VYAS, Tejal B.  
GUPTA, Ashwani K.

<120> IDENTIFICATION OF LYSOLIPID RECEPTORS INVOLVED IN  
INFLAMMATORY RESPONSE

<130> 8074-8021

<140> 09/222,995  
<141> 1998-12-30

<150> 60/109,885  
<151> 1998-11-25

<150> 60/080,610  
<151> 1998-04-03

<150> 60/070,185  
<151> 1997-12-30

<160> 25

<170> PatentIn Ver. 2.1

<210> 1  
<211> 35  
<212> DNA  
<213> Rattus sp.

<400> 1  
gagaagggttc aggaacacta caattacacc aagga 35

<210> 2  
<211> 25  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence: synthetic  
primer

<400> 2  
attataccaa ggagacgctg gaaac 25

<210> 3

<211> 25  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Description of Artificial Sequence: synthetic primer  
  
<400> 3  
agagagcaag gtattggcta cgaag

25

<210> 4  
<211> 22  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Description of Artificial Sequence: synthetic primer  
  
<400> 4  
tcctctcctc gtcacatttc cc

22

<210> 5  
<211> 26  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Description of Artificial Sequence: synthetic primer  
  
<400> 5  
gcattcacaa gaaattactc tgaggc

26

<210> 6  
<211> 26  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Description of Artificial Sequence: synthetic primer  
  
<400> 6  
gagccccacc atgggcagct tgtact

26

<210> 7  
<211> 26

<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Description of Artificial Sequence: synthetic  
primer  
  
<400> 7

gcattcacaa gaaattactc tgaggc 26

<210> 8  
<211> 34  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Description of Artificial Sequence: synthetic  
primer  
  
<400> 8

ttaaaaagc ttcccacat gggcagctt tact 34

<210> 9  
<211> 37  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Description of Artificial Sequence: synthetic  
primer

<400> 9  
tatatatcta gacattcaca agaaattact ctgaggc 37

<210> 10  
<211> 32  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Description of Artificial Sequence: synthetic  
primer

<400> 10  
tatatatcta gagaaaatgt gacgaggaga gg 32

<210> 11  
<211> 33  
<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic  
primer

<400> 11

ttaaaaggtt ccgcaccat gggcagcttg tac

33

<210> 12

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic  
primer

<400> 12

tatataatcta gagaccacccg tttttgccttc cag

33

<210> 13

<211> 445

<212> DNA

<213> Homo sapiens

<400> 13

aaagccccat ggccccagca ggcctctgag ccccaccatg ggcagcttgt actcgaggta 60  
cctgaacccc aacaagggtcc aggaacacta taattatacc aaggagacgc tgaaaacgca 120  
ggagacgacc tccccccagg tggcctcgcc attcatcgcc atcctctgtt gcgccattgt 180  
ggtgaaaaac cttctgggtcc tcattgggt ggcccgaaac agcaagttcc actcggaat 240  
gtacctgttt ctgggcaacc tggccgcctc cgatctactg gcaggcgtgg cttcgttagc 300  
caataaccttgc ctctctggct ctgtcacgct gaggctgacg cctgtgcagt ggttgcgg 360  
ggacggcttg cttcatcac gctctcgccc tctgtttca gcctcctggc catcgccatt 420  
gagcgccacg tggccattgc aaagg 445

<210> 14

<211> 364

<212> DNA

<213> Homo sapiens

<400> 14

aaagccccat ggccccagca ggcctctgag ccccaccatg ggcagcttgt actcgaggta 60  
cctgaacccc aacaagggtcc aggaacacta taattatacc aaggagacgc tgaaaacgca 120  
ggagacgacc tccccccagg tggcctcgcc cttcatcgcc atcctctgtt gcgccattgt 180  
ggtgaaaaac cttctgggtcc tcattgggt ggcccgaaac agcaagttcc actcggaat 240  
gtacctgttt ctgggcaacc tggccgcctc cgatctactg gcaggcgtgg cttcgttagc 300  
caataaccttgc ctctctggct ctgtcacgct gaggctgacg cctgtgcagt ggttgcgg 360  
ggac 364

<210> 15  
<211> 369  
<212> DNA  
<213> Homo sapiens

<400> 15  
agttctgaaa gccccatggc cccagcaggc ctctgagccc caccatgggc agcttgtact 60  
cggagtacct gaaccccaac aaggtccagg aacactataa ttataccaag gagacgctgg 120  
aaacgcagga gacgacctcc cgccaggtgg gctccggcctt catcgcatc ctctgttgcg 180  
ccattgttgtt ggaaaacctt ctggtgctca ttgcgggtggc ccgaaaacagc aagttccact 240  
cgccaatgtt cctgtttctg ggcaacctgg ccgcctccga tctactggca ggcgtggctt 300  
cgttagccaat accttgctct ctggctctgt cacgctgagg ctgacgcctg tgcaagtgggtt 360  
tgcccccggga 369

<210> 16  
<211> 1170  
<212> DNA  
<213> Homo sapiens

<220>  
<221> CDS  
<222> (38)..(1096)

<400> 16  
aaagccccat ggccccagca ggccctctgag ccccacc atg ggc agc ttg tac tcg 55  
Met Gly Ser Leu Tyr Ser  
1 5

gag tac ctg aac ccc aac aag gtc cag gaa cac tat aat tat acc aag 103  
Glu Tyr Leu Asn Pro Asn Lys Val Gln Glu His Tyr Asn Tyr Thr Lys  
10 15 20

gag acg ctg gaa acg cag gag acg acc tcc cgc cag gtg gcc tcg gcc 151  
Glu Thr Leu Glu Thr Gln Glu Thr Ser Arg Gln Val Ala Ser Ala  
25 30 35

ttc atc gtc atc ctc tgt tgc gcc att gtg gtg gaa aac ctt ctg gtg 199  
Phe Ile Val Ile Leu Cys Cys Ala Ile Val Val Glu Asn Leu Leu Val  
40 45 50

ctc att gcg gtg gcc cga aac agc aag ttc cac tcg gca atg tac ctg 247  
Leu Ile Ala Val Ala Arg Asn Ser Lys Phe His Ser Ala Met Tyr Leu  
55 60 65 70

ttt ctg ggc aac ctg gcc tcc gat cta ctg gca ggc gtg gcc ttc 295  
Phe Leu Gly Asn Leu Ala Ala Ser Asp Leu Leu Ala Gly Val Ala Phe  
75 80 85

gta gcc aat acc ttg ctc tct ggc tct gtc acg ctg agg ctg acg cct 343  
Val Ala Asn Thr Leu Leu Ser Gly Ser Val Thr Leu Arg Leu Thr Pro  
90 95 100

|                                                                                                                                                                             |     |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| gtg cag tgg ttt gcc cg <sup>g</sup> gag gg <sup>c</sup> tct gcc ttc atc ac <sup>g</sup> ctc tc <sup>g</sup> gcc                                                             |     | 391 |
| Val Gln Trp Phe Ala Arg Glu Gly Ser Ala Phe Ile Thr Leu Ser Ala                                                                                                             |     |     |
| 105                                                                                                                                                                         | 110 | 115 |
| tct gtc ttc agc ctc ctg gcc atc gcc att gag cg <sup>c</sup> cac gt <sup>g</sup> gcc att                                                                                     |     | 439 |
| Ser Val Phe Ser Leu Leu Ala Ile Ala Ile Glu Arg His Val Ala Ile                                                                                                             |     |     |
| 120                                                                                                                                                                         | 125 | 130 |
| gcc aag gtc aag ctg tat gg <sup>c</sup> agc gac aag agc tgc cg <sup>c</sup> at <sup>g</sup> ctt ct <sup>g</sup>                                                             |     | 487 |
| Ala Lys Val Lys Leu Tyr Gly Ser Asp Lys Ser Cys Arg Met Leu Leu                                                                                                             |     |     |
| 135                                                                                                                                                                         | 140 | 145 |
| ctc atc ggg gcc tc <sup>g</sup> tgg ctc atc tc <sup>g</sup> ctg gtc ctc ggt gg <sup>c</sup> ctg ccc                                                                         |     | 535 |
| Leu Ile Gly Ala Ser Trp Leu Ile Ser Leu Val Leu Gly Gly Leu Pro                                                                                                             |     |     |
| 155                                                                                                                                                                         | 160 | 165 |
| atc ctt gg <sup>c</sup> tgg aac tgc ctg gg <sup>c</sup> cac ctc gag gg <sup>c</sup> tgc tcc act gtc                                                                         |     | 583 |
| Ile Leu Gly Trp Asn Cys Leu Gly His Leu Glu Ala Cys Ser Thr Val                                                                                                             |     |     |
| 170                                                                                                                                                                         | 175 | 180 |
| ctg cct ctc tac gcc aag cat tat gt <sup>g</sup> ctg tgc gt <sup>g</sup> gt <sup>g</sup> acc atc ttc                                                                         |     | 631 |
| Leu Pro Leu Tyr Ala Lys His Tyr Val Leu Cys Val Val Thr Ile Phe                                                                                                             |     |     |
| 185                                                                                                                                                                         | 190 | 195 |
| tcc atc atc ctg ttg gcc atc gt <sup>g</sup> gcc ctg tac gt <sup>g</sup> cg <sup>c</sup> atc tac tgc                                                                         |     | 679 |
| Ser Ile Ile Leu Leu Ala Ile Val Ala Leu Tyr Val Arg Ile Tyr Cys                                                                                                             |     |     |
| 200                                                                                                                                                                         | 205 | 210 |
| gt <sup>g</sup> gtc cg <sup>c</sup> tca agc cac gct gac at <sup>g</sup> gcc gg <sup>c</sup> cag ac <sup>g</sup> cta gg <sup>c</sup>                                         |     | 727 |
| Val Val Arg Ser Ser His Ala Asp Met Ala Ala Pro Gln Thr Leu Ala                                                                                                             |     |     |
| 215                                                                                                                                                                         | 220 | 225 |
| 230                                                                                                                                                                         |     |     |
| ctg ctc aag ac <sup>g</sup> gtc acc atc gt <sup>g</sup> cta gg <sup>c</sup> gtc ttt atc gtc tgc tgg                                                                         |     | 775 |
| Leu Leu Lys Thr Val Thr Ile Val Leu Gly Val Phe Ile Val Cys Trp                                                                                                             |     |     |
| 235                                                                                                                                                                         | 240 | 245 |
| ctg ccc gg <sup>c</sup> ttc agc atc ctc ctt ctg gac tat gg <sup>c</sup> tgt ccc gtc cac                                                                                     |     | 823 |
| Leu Pro Ala Phe Ser Ile Leu Leu Asp Tyr Ala Cys Pro Val His                                                                                                                 |     |     |
| 250                                                                                                                                                                         | 255 | 260 |
| tcc tgc cc <sup>g</sup> atc ctc tac aaa gg <sup>c</sup> cac tac ytt tt <sup>c</sup> gg <sup>c</sup> gtc tcc acc                                                             |     | 871 |
| Ser Cys Pro Ile Leu Tyr Lys Ala His Tyr Xaa Phe Ala Val Ser Thr                                                                                                             |     |     |
| 265                                                                                                                                                                         | 270 | 275 |
| ctg aat tcc ctg ctc aac cc <sup>c</sup> gtc atc tac ac <sup>g</sup> tgg cg <sup>c</sup> agc cg <sup>g</sup> gac                                                             |     | 919 |
| Leu Asn Ser Leu Leu Asn Pro Val Ile Tyr Thr Trp Arg Ser Arg Asp                                                                                                             |     |     |
| 280                                                                                                                                                                         | 285 | 290 |
| ctg cg <sup>g</sup> cg <sup>g</sup> gag gt <sup>g</sup> ctt cg <sup>g</sup> cc <sup>g</sup> ctg cag tgc tgg cg <sup>g</sup> cc <sup>g</sup> gg <sup>c</sup> gt <sup>g</sup> |     | 967 |
| Leu Arg Arg Glu Val Leu Arg Pro Leu Gln Cys Trp Arg Pro Gly Val                                                                                                             |     |     |
| 295                                                                                                                                                                         | 300 | 305 |
| 310                                                                                                                                                                         |     |     |

ggg gtg caa gga cgg agg cgg ggc ggg acc ccg ggc cac cac ctc ctg 1015  
Gly Val Gln Gly Arg Arg Arg Gly Thr Pro Gly His His Leu Leu  
315 320 325

cca ctc cgc agc tcc agc tcc ctg gag agg ggc atg cac atg ccc acg 1063  
Pro Leu Arg Ser Ser Ser Leu Glu Arg Gly Met His Met Pro Thr  
330 335 340

tca ccc acg ttt ctg gag ggc aac acg gtg gtc tgagggtggg ggtggaccaa 1116  
Ser Pro Thr Phe Leu Glu Gly Asn Thr Val Val  
345 350

caaccaggcc agggcatagg ggttcatgga aaggccactg ggtgacccca aata 1170

<210> 17  
<211> 353  
<212> PRT  
<213> Homo sapiens

<400> 17  
Met Gly Ser Leu Tyr Ser Glu Tyr Leu Asn Pro Asn Lys Val Gln Glu  
1 5 10 15

His Tyr Asn Tyr Thr Lys Glu Thr Leu Glu Thr Gln Glu Thr Thr Ser  
20 25 30

Arg Gln Val Ala Ser Ala Phe Ile Val Ile Leu Cys Cys Ala Ile Val  
35 40 45

Val Glu Asn Leu Leu Val Leu Ile Ala Val Ala Arg Asn Ser Lys Phe  
50 55 60

His Ser Ala Met Tyr Leu Phe Leu Gly Asn Leu Ala Ala Ser Asp Leu  
65 70 75 80

Leu Ala Gly Val Ala Phe Val Ala Asn Thr Leu Leu Ser Gly Ser Val  
85 90 95

Thr Leu Arg Leu Thr Pro Val Gln Trp Phe Ala Arg Glu Gly Ser Ala  
100 105 110

Phe Ile Thr Leu Ser Ala Ser Val Phe Ser Leu Leu Ala Ile Ala Ile  
115 120 125

Glu Arg His Val Ala Ile Ala Lys Val Lys Leu Tyr Gly Ser Asp Lys  
130 135 140

Ser Cys Arg Met Leu Leu Leu Ile Gly Ala Ser Trp Leu Ile Ser Leu  
145 150 155 160

Val Leu Gly Gly Leu Pro Ile Leu Gly Trp Asn Cys Leu Gly His Leu  
165 170 175

Glu Ala Cys Ser Thr Val Leu Pro Leu Tyr Ala Lys His Tyr Val Leu  
 180 185 190  
  
 Cys Val Val Thr Ile Phe Ser Ile Ile Leu Leu Ala Ile Val Ala Leu  
 195 200 205  
  
 Tyr Val Arg Ile Tyr Cys Val Val Arg Ser Ser His Ala Asp Met Ala  
 210 215 220  
  
 Ala Pro Gln Thr Leu Ala Leu Leu Lys Thr Val Thr Ile Val Leu Gly  
 225 230 235 240  
  
 Val Phe Ile Val Cys Trp Leu Pro Ala Phe Ser Ile Leu Leu Leu Asp  
 245 250 255  
  
 Tyr Ala Cys Pro Val His Ser Cys Pro Ile Leu Tyr Lys Ala His Tyr  
 260 265 270  
  
 Xaa Phe Ala Val Ser Thr Leu Asn Ser Leu Leu Asn Pro Val Ile Tyr  
 275 280 285  
  
 Thr Trp Arg Ser Arg Asp Leu Arg Arg Glu Val Leu Arg Pro Leu Gln  
 290 295 300  
  
 Cys Trp Arg Pro Gly Val Gly Val Gln Gly Arg Arg Arg Gly Gly Thr  
 305 310 315 320  
  
 Pro Gly His His Leu Leu Pro Leu Arg Ser Ser Ser Ser Leu Glu Arg  
 325 330 335  
  
 Gly Met His Met Pro Thr Ser Pro Thr Phe Leu Glu Gly Asn Thr Val  
 340 345 350  
  
 Val

<210> 18  
 <211> 1170  
 <212> DNA  
 <213> Homo sapiens

<400> 18  
 tttcggggta ccggggtcgt ccggagactc ggggtggtag ccgtcgaaca tgagcctcat 60  
 ggacttgggg ttgttccagg tccttgtat attaatatgg ttccctctgcg acctttgcgt 120  
 cctctgctgg agggcggtcc accggagccg gaagtagcag taggagacaa cgcggtaaca 180  
 ccaccttttg gaagaccacg agtaa.cgcaca ccgggttttg tcgttcaagg tgagccgtta 240  
 catggacaaa gaccgttgg accggcgagg gctagatgac cgtccgcacc ggaagcatcg 300  
 gttatgaaac gagagaccga gacagtgcga ctccgactgc ggacacgtca ccaaacgggc 360  
 cctcccgaga cgaaagttagt gcgagagccg gagacagaag tcggaggacc gtagcggtta 420  
 actcgccgtg caccggtaac ggttccagtt cgacataccg tcgctgttct cgacggcgta 480

cgaagacgag tagccccgga gcaccgagta gagcgaccag gagccaccgg acgggttagga 540  
accgaccttgc acggacccgg tggagctcgc gacgaggtga caggacggag agatgcggtt 600  
cgtaatacac gacacgcacc actggtagaa gaggttagtag gacaaccgggt agcaccggga 660  
catgcacgcg tagatgacgc accaggcgg ttcgggtgcga ctgtaccggc gggcgctctg 720  
cgatcgggac gagttctgcc agtggtagca cgatccgcag aaatagcaga cgaccgacgg 780  
gcggaaagtgc taggaggaag acctgatacg gacagggcag gtgaggacgg gctaggagat 840  
gtttcggtgt atgraaaagc ggcagaggtg ggacttaagg gacgagttgg ggcagtagat 900  
gtgcaccgcg tcggccctgg acgcccgcct ccacaagcc ggcgacgt na cgaccgcccgg 960  
cccccacccc cacgttcctg cctccgc(ccc gccctgggc cgggtgggtgg aggacgggtga 1020  
ggcgtcgagg tcgagggacc tctcccgta cgtgtacggg tgcaagtgggt gaaaagacct 1080  
cccgttgtgc caccagactc ccaccccccac ctggttgttg gtccggtccc gtatccccaa 1140  
gtacctttcc ggtgacccac tggggtttat 1170

<210> 19  
<211> 1062  
<212> DNA  
<213> Homo sapiens

<400> 19  
atggcagct tgtactcgga gtacctgaac cccaacaagg tccaggaaca ctataattat 60  
accaaggaga cgctggaaac gcaggagacg acctccgc aggtggcctc ggccttcatc 120  
gtcatcctct gttgcgcatt tttgggtggaa aaccttctgg tgctcattgc ggtggcccg 180  
aacagcaagt tccactcgcc aatgtacctg tttctggca acctggccgc ctccgatcta 240  
ctggcaggcg tggcccttcgt agccaatacc ttgcctctg gctctgtcac gctgaggctg 300  
acgcctgtgc agtggtttgc cccggagggc tctgccttca tcaacgccttc ggcctctgtc 360  
ttcagcctcc tggccatcgcc cattgagcgc cacgtggca ttgccaaggt caagctgtat 420  
ggcagcgaca agagctgccc catgcttcg ctcatcgggg cctcgtggct catctcgctg 480  
gtcctcggtg gcctgcccatt cttggctgg aactgcctgg gccacctcga ggcctgcctc 540  
actgtcctgc ctctctacgc caagcattat gtgcgtgcg tggtaaccat ctctccatc 600  
atcctgttgg ccgtcgtggc cctgtacgtg cgcatctact gctgtggccg ctcaagccac 660  
gctgacatgg ccgccccgca gacgctagcc ctgctcaaga cggtcacccat cgtgcttaggc 720  
gtctttatcg tctgctggct gcccgcctc agcatcctcc ttctggacta tgctgttccc 780  
gtccactcct gcccgcattt ctacaaggcc cactacctt tcgcccgtctc caccctgaat 840  
tccctgtca accccgtcat ctacacgtgg cgcagccggg acctgcggcg ggaggtgctt 900  
cggccgctgc agtgcgtggcg gcccgggggtg ggggtgcaag gacggaggcg gggccggacc 960  
ccggccacc acctcctgcc actccgcagc tccagctccc tggagagggg catgcacatg 1020  
cccacgtcac ccacgtttct ggagggcaac acgggtgtct ga 1062

<210> 20  
<211> 1062  
<212> DNA  
<213> Homo sapiens

<400> 20  
tacccgtcga acatgagcct catggacttg gggttgttcc aggtccttgt gatattaata 60  
tggttcctct ggcacctttg cgtcctctgc tggagggccg tccaccggag cggaaagtag 120  
cagtaggaga caacgcggta acaccaccc ttggaaagacc acgagtaacg ccaccggct 180  
ttgtcgttca aggtgagccg ttacatggac aaagaccgt tggaccggcg gaggctagat 240  
gaccgtccgc accggaagca tcggttatgg aacgagagac cgagacagtg cgactccgac 300  
tgcggacacg tcacccaaacg ggcctcccg agacggaagt agtgcgtggcg ccggagacag 360  
aagtccggagg accggtagcg gtaactcgcg gtgcaccgggt aacggttcca gttcgacata 420

ccgtcgctgt tctcgacggc gtacgaagac gagtagcccc ggagcaccga gtagagcgac 480  
caggagccac cggacggta ggaacctgacc ttgacggacc cggtggact ccggacgagg 540  
tgacaggacg gagagatgcg gttcgtaata cacgacacgc accactggta gaagaggtag 600  
taggacaacc ggcagcaccc ggacatgcac gcgttagatga cgcaccaggc gagttcggtg 660  
cgactgtacc ggcggggcgt ctgcgatcgg gacgagttct gccagtggta gcacgatccg 720  
cagaaatagc agacgaccga cgggcggaag tcgttaggagg aagacctgat acggacaggg 780  
caggtgagga cgggctagga gatgtttcgg gtgatggaaa agcggcagag gtgggactta 840  
agggacgagt tggggcagta gatgtgcacc gcgtcgccc tggacgccc cctccacgaa 900  
gccggcgaacg tcacgaccgc cggcccccac cccacgttc ctgcctccgc cccgcctgg 960  
ggccggctgg tggaggacgg tgaggcgtcg aggtcgaggg acctctccc gtacgtgtac 1020  
gggtgcagtg ggtgcaaaga cctcccggtg tgccaccaga ct 1062

<210> 21  
<211> 352  
<212> PRT  
<213> Rattus sp.

<400> 21

Met Gly Leu Tyr Ser Glu Tyr Leu Asn Pro Glu Lys Val Gln Glu  
1 5 10 15

His Tyr Asn Tyr Thr Lys Glu Thr Leu Asp Met Gln Glu Thr Pro Ser  
20 25 30

Arg Lys Val Ala Ser Ala Phe Ile Ile Ile Leu Cys Cys Ala Ile Val  
35 40 45

Val Glu Asn Leu Leu Val Leu Ile Ala Val Ala Arg Asn Ser Lys Phe  
50 55 60

His Ser Ala Met Tyr Leu Phe Leu Gly Asn Leu Ala Ala Ser Asp Leu  
65 70 75 80

Leu Ala Gly Val Ala Phe Val Ala Asn Thr Leu Leu Ser Gly Pro Val  
85 90 95

Thr Leu Ser Leu Thr Pro Leu Gln Trp Phe Ala Arg Glu Gly Ser Ala  
100 105 110

Phe Ile Thr Leu Ser Ala Ser Val Phe Ser Leu Leu Ala Ile Ala Ile  
115 120 125

Glu Arg Gln Val Ala Ile Ala Lys Val Lys Leu Tyr Gly Ser Asp Lys  
130 135 140

Ser Cys Arg Met Leu Met Leu Ile Gly Ala Ser Trp Leu Ile Ser Leu  
145 150 155 160

---

Ile Leu Gly Gly Leu Pro Ile Leu Gly Trp Asn Cys Leu Asp His Leu  
165 170 175

Glu Ala Cys Ser Thr Val Leu Pro Leu Tyr Ala Lys His Tyr Val Leu

| 180                                                             | 185 | 190 |
|-----------------------------------------------------------------|-----|-----|
| Cys Val Val Thr Ile Phe Ser Val Ile Leu Leu Ala Ile Val Ala Leu |     |     |
| 195                                                             | 200 | 205 |
| Tyr Val Arg Ile Tyr Phe Val Val Arg Ser Ser His Ala Asp Val Ala |     |     |
| 210                                                             | 215 | 220 |
| Gly Pro Gln Thr Leu Ala Leu Leu Lys Thr Val Thr Ile Val Leu Gly |     |     |
| 225                                                             | 230 | 235 |
| Val Phe Ile Ile Cys Trp Leu Pro Ala Phe Ser Ile Leu Leu Leu Asp |     |     |
| 245                                                             | 250 | 255 |
| Ser Thr Cys Pro Val Arg Ala Cys Pro Val Leu Tyr Lys Ala His Tyr |     |     |
| 260                                                             | 265 | 270 |
| Phe Phe Ala Phe Ala Thr Leu Asn Ser Leu Leu Asn Pro Val Ile Tyr |     |     |
| 275                                                             | 280 | 285 |
| Thr Trp Arg Ser Arg Asp Leu Arg Arg Glu Val Leu Arg Pro Leu Leu |     |     |
| 290                                                             | 295 | 300 |
| Cys Trp Arg Gln Gly Lys Gly Ala Thr Gly Arg Arg Gly Gly Asn Pro |     |     |
| 305                                                             | 310 | 315 |
| Gly His Arg Leu Leu Pro Leu Arg Ser Ser Ser Ser Leu Glu Arg Gly |     |     |
| 325                                                             | 330 | 335 |
| Leu His Met Pro Thr Ser Pro Thr Phe Leu Glu Gly Asn Thr Val Val |     |     |
| 340                                                             | 345 | 350 |

<210> 22  
<211> 353  
<212> PRT  
<213> Homo sapiens

<400> 22  
Met Gly Ser Leu Tyr Ser Glu Tyr Leu Asn Pro Asn Lys Val Gln Glu  
1 5 10 15

His Tyr Asn Tyr Thr Lys Glu Thr Leu Glu Thr Gln Glu Thr Thr Ser  
20 25 30

Arg Gln Val Ala Ser Ala Phe Ile Val Ile Leu Cys Cys Ala Ile Val  
35 40 45

Val Glu Asn Leu Leu Val Leu Ile Ala Val Ala Arg Asn Ser Lys Phe  
50 55 60

His Ser Ala Met Tyr Leu Phe Leu Gly Asn Leu Ala Ala Ser Asp Leu  
 65 70 75 80  
 Leu Ala Gly Val Ala Phe Val Ala Asn Thr Leu Leu Ser Gly Ser Val  
 85 90 95  
 Thr Leu Arg Leu Thr Pro Val Gln Trp Phe Ala Arg Glu Gly Ser Ala  
 100 105 110  
 Phe Ile Thr Leu Ser Ala Ser Val Phe Ser Leu Leu Ala Ile Ala Ile  
 115 120 125  
 Glu Arg His Val Ala Ile Ala Lys Val Lys Leu Tyr Gly Ser Asp Lys  
 130 135 140  
 Ser Cys Arg Met Leu Leu Ile Gly Ala Ser Trp Leu Ile Ser Leu  
 145 150 155 160  
 Val Leu Gly Gly Leu Pro Ile Leu Gly Trp Asn Cys Leu Gly His Leu  
 165 170 175  
 Glu Ala Cys Ser Thr Val Leu Pro Leu Tyr Ala Lys His Tyr Val Leu  
 180 185 190  
 Cys Val Val Thr Ile Phe Ser Ile Ile Leu Leu Ala Val Val Ala Leu  
 195 200 205  
 Tyr Val Arg Ile Tyr Cys Val Val Arg Ser Ser His Ala Asp Met Ala  
 210 215 220  
 Ala Pro Gln Thr Leu Ala Leu Lys Thr Val Thr Ile Val Leu Gly  
 225 230 235 240  
 Val Phe Ile Val Cys Trp Leu Pro Ala Phe Ser Ile Leu Leu Leu Asp  
 245 250 255  
 Tyr Ala Cys Pro Val His Ser Cys Pro Ile Leu Tyr Lys Ala His Tyr  
 260 265 270  
 Leu Phe Ala Val Ser Thr Leu Asn Ser Leu Leu Asn Pro Val Ile Tyr  
 275 280 285  
 Thr Trp Arg Ser Arg Asp Leu Arg Arg Glu Val Leu Arg Pro Leu Gln  
 290 295 300  
 Cys Trp Arg Pro Gly Val Gly Val Gln Gly Arg Arg Arg Gly Gly Thr  
 305 310 315 320  
 Pro Gly His His Leu Leu Pro Leu Arg Ser Ser Ser Ser Leu Glu Arg  
 325 330 335  
 Gly Met His Met Pro Thr Ser Pro Thr Phe Leu Glu Gly Asn Thr Val

340

345

350

Val

&lt;210&gt; 23

&lt;211&gt; 351

&lt;212&gt; PRT

&lt;213&gt; Homo sapiens

&lt;400&gt; 23

Met Val Ile Met Gly Gln Cys Tyr Tyr Asn Glu Thr Ile Gly Phe Phe

1

5

10

15

Tyr Asn Asn Ser Gly Lys Glu Leu Ser Ser His Trp Arg Pro Lys Asp  
20 25 30Val Val Val Ala Leu Gly Leu Thr Val Ser Val Leu Val Leu Leu  
35 40 45Thr Asn Leu Leu Val Ile Ala Ala Ile Ala Ser Asn Arg Arg Phe His  
50 55 60Gln Pro Ile Tyr Tyr Leu Leu Gly Asn Leu Ala Ala Ala Asp Leu Phe  
65 70 75 80Ala Gly Val Ala Tyr Leu Phe Leu Met Phe His Thr Gly Pro Arg Thr  
85 90 95Ala Arg Leu Ser Leu Glu Gly Trp Phe Leu Arg Gln Gly Leu Leu Asp  
100 105 110Thr Ser Leu Thr Ala Ser Val Ala Thr Leu Leu Ala Ile Ala Val Glu  
115 120 125Arg His Arg Ser Val Met Ala Val Gln Leu His Ser Arg Leu Pro Arg  
130 135 140Gly Arg Val Val Met Leu Ile Val Gly Val Trp Val Ala Ala Leu Gly  
145 150 155 160Leu Gly Leu Leu Pro Ala His Ser Trp His Cys Leu Cys Ala Leu Asp  
165 170 175Arg Cys Ser Arg Met Ala Pro Leu Leu Ser Arg Ser Tyr Leu Ala Val  
180 185 190Trp Ala Leu Ser Ser Leu Leu Val Phe Leu Leu Met Val Ala Val Tyr  
195 200 205Thr Arg Ile Phe Phe Tyr Val Arg Arg Arg Val Gln Arg Met Ala Glu  
210 215 220

His Val Ser Cys His Pro Arg Tyr Arg Glu Thr Thr Leu Ser Leu Val  
225 230 235 240

Lys Thr Val Val Ile Ile Leu Gly Ala Phe Val Val Cys Trp Thr Pro  
245 250 255

Gly Gln Val Val Leu Leu Asp Gly Leu Gly Cys Glu Ser Cys Asn  
260 265 270

Val Leu Ala Val Glu Lys Tyr Phe Leu Leu Leu Ala Glu Ala Asn Ser  
275 280 285

Leu Val Asn Ala Ala Val Tyr Ser Cys Arg Asp Ala Glu Met Arg Arg  
290 295 300

Thr Phe Arg Arg Leu Leu Cys Cys Ala Cys Leu Arg Gln Ser Thr Arg  
305 310 315 320

Glu Ser Val His Tyr Thr Ser Ser Ala Gln Gly Gly Ala Ser Thr Arg  
325 330 335

Ile Met Leu Pro Glu Asn Gly His Pro Leu Met Asp Ser Thr Leu  
340 345 350

<210> 24

<211> 1056

<212> DNA

<213> Homo sapiens

<400> 24

atggcatca tggccagtg ctactacaac gagaccatcg gtttttcta taacaacagt 60  
ggcaaagagc tcagctcca ctggcgccc aaggatgtgg tcgtgggtgc actggggctg 120  
accgtcagcg tgctggtgct gctgacaaat ctgctggta tagcagccat cgcctccaac 180  
cgccgcttcc accagcccat ctactacccg ctcggcaatc tggccgcggc tgacctttc 240  
gcggcggtgg cttacactt cctcatgttc cacactggc cccgcacagc ccgactttca 300  
cttgagggtc gtttctgcg gcagggtctg ctggacacaa gcctcactgc gtgggtggcc 360  
acactgtgg ccatacgccgt ggagcggcac cgcatgtga tggccgtgca gtcgcacagc 420  
cgccctcccc gtggccgcgt ggtcatgttc attgtggcg tgtgggtggc tgcctggcc 480  
ctggggctgc tgcctcccc ctccctggcac tgcctctgtg ccctggaccg ctgtcacgc 540  
atggcacccc tgctcagccg ctccattttg gccgtctggg ctctgtcgag cctgtttgtc 600  
ttccctgtca tggtggtgt gtacacccgc atttttttct acgtgcggcg gcgagtgcag 660  
cgcatggcag agcatgtcag ctgccacccc cgctaccgag agaccacgct cagcctggc 720  
aagactgttg tcatcatcct gggggcggtc gtggctgtc ggacaccagg ccaggtggta 780  
ctgctcctgg atggtttagg ctgtgagtcc tgcaatgtcc tggctgtaga aaagtacttc 840  
ctactgtgg ccgaggccaa ctcaactggc aatgtgtcg tttacttttgc ccgagatgtc 900  
gagatgcgcc gcacccctccg ccgccttctc tgctgcgcgt gcctccgcac gtccacccgc 960  
gagtctgtcc actatacatac ctctgcccag ggaggtgcca gcactcgcat catgtttccc 1020  
gagaacggcc acccactgtat ggactccacc cttag 1056

<210> 25

<211> 1056

<212> DNA

<213> Homo sapiens

<400> 25

taccagtat acccggtcac gatgatgtt ctctggtagc cgaagaagat atttgttca 60  
ccgtttctcg agtcgagggt gaccgcccgg ttcctacacc agcaccaccc tgaccccgac 120  
tggcagtcgc acgaccacga cgactggta gacgaccagt atcgtcgta gcggagggtt 180  
gcggcgaagg tggtcggta gatgatggac gagcgttag accggcgccg actggagaag 240  
cgccccgacc ggatggagaa ggagtacaag gtgtgaccag gggcgtgtcg ggctgaaagt 300  
gaactcccgca ccaaggacgc cgtcccgAAC gacctgtttt cggagtgacg cagccaccgg 360  
tgtgacgacc ggtageggca cctcgccgtg gcgtcacact accggcacgt cgacgtgtcg 420  
gcggacgggg caccggcgca ccagtacgag taacacccgc acacccacccg acgggacccg 480  
gaccccgacg acggacgggt gaggacccgt acggagacac gggacctggc gacgagtgcg 540  
taccgtgggg acgagtcggc gaggataaac cggcagaccc gagacagtc ggacgaacag 600  
aaggacgagt accaccgaca catgtggcg taaaagaaga tgcacgcccgc cgctcacgtc 660  
gcgtaccgtc tcgtacagtc gacggtgggg gcgatggctc tctggtgcca gtggaccag 720  
ttctgacaac agtagtagga ccccccgaag caccagacga cctgtgttcc ggtccaccat 780  
gacgaggacc taccaaatcc gacactcagg acgttacagg accgacatct tttcatgaag 840  
gatgacgacc ggctccgggtt gagtgaccag ttacgacgac acatgagaac ggctctacga 900  
ctctacgcgg cgtggaaaggc ggcggaaagag acgacgcgcga cggaggccgt caggtggcg 960  
ctcagacagg tgatatgttag gagacgggtc cctccacgggt cgtgagcgtt gtacgaagg 1020  
ctttgcgg tgggtgacta cctgagggtgg gaaatc 1056