

Evaluation using a transformer model

31/05/2023

J.F. Alférez Muñoz

Fire detection project

- DETR transformer: https://doi.org/10.48550/arXiv.2005.12872
- Dataset: COCO format for DETR for default
- Useful Reference for DETR object detection: https://huggingface.co/docs/transformers/model_doc/detr

DETR transformer model

Fig. 1: DETR directly predicts (in parallel) the final set of detections by combining a common CNN with a transformer architecture. During training, bipartite matching uniquely assigns predictions with ground truth boxes. Prediction with no match should yield a "no object" (\emptyset) class prediction.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020). End-to-End Object Detection with Transformers. *Lecture Notes in Computer Science* (*Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics*), 12346 LNCS, 213–229. https://doi.org/10.1007/978-3-030-58452-8 13

COCO dataset from Roboflow

• https://universe.roboflow.com/fire-detection/fire-data-annotations/dataset/5

Training phase

Google Colab needed for memory resources needed in GPU

+ -	NVID	IA-SMI					525.85.12		
 -	Fan	Name Temp	Perf	Persist Pwr:Usa	ence-M ge/Cap	Bus-Id		Volatile GPU-Util 	Uncorr. ECC Compute M. MIG M.
-—— i	0 N/A	Tesla 50C		10W /	Off 70W 		0:00:04.0 Off iB / 15360MiB		0 Default N/A

- 50 epochs ≈ 4 hours
- 41.5M params

Inference: aerial images, so good!

Inference: clean indoor images, so good!

Inference: Into a wildfire, fire vs smoke and brightness

Inference: Close to the fire, not bad!

Inference: cities at night. lights! -> worst results 😊

Possible improvements

More training?

Better labeled images?

Focus on a specific type of environment, like aerial images?

Better hyperparameter configuration?

The fire nature is difficult to define by photos

Conclusions... for now

- Give a try if needed -> there is a lot of information about transformers
- There are heavy models with many parameters. Prepare it well before training (resources and time).
- Dataset could be the cause of better or worse results.
- NMS trial and error determination.

Appreciable any comment or suggestion

https://www.linkedin.com/in/juan-francisco-alf%C3%A9rez-mu%C3%B1oz-559955142/