Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise

Exercícios de Álgebra Linear

LEIC – Alameda

 1^o Semestre 2005/2006

Paulo Pinto

http://www.math.ist.utl.pt/~ppinto/

Setembro 2005

Conteúdo

1	Sistemas Lineares de Equações e o Cálculo Matricial		2
	1.1	Números complexos	2
	1.2	Método de eliminação de Gauss	2
	1.3	Álgebra das matrizes	4
2	Espaços Lineares (Vectoriais)		
	2.1	Subespaços lineares	7
	2.2	Vectores geradores	8
	2.3	Independência linear	Ś
	2.4	Bases e dimensão de espaços lineares	Ĉ
	2.5	Matriz mudança de base	11
3	Transformações Lineares		
	3.1	Representação matricial de transformações lineares	12
	3.2	Transformações injectivas/sobrejectivas e bijectivas	13
4	Det	terminante e Aplicações	14
5	Valores Próprios e Vectores Próprios		15
	5.1	Alguns exercícios resolvidos	17
6	Produtos Internos		22
	6.1	Complemento, projecções e bases ortogonais	23
	6.2	Alguns exercícios resolvidos	24
	6.3	Formas quadráticas	27

Sistemas Lineares de Equações e o Cálculo Matricial 1

Números complexos

Exercício 1.1 Verifique, com exemplos, que as inclusões $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$ são todas estritas. Será que isto implica que, p.ex., $\#\mathbb{N} \neq \#\mathbb{Z}$??

Exercício 1.2 Escreva na forma a + bi os seguintes números complexos:

(a)
$$(2-i)^2$$

(b)
$$\frac{2}{4-3i}$$

(c)
$$\frac{1+i}{1-i}$$

(a)
$$(2-i)^2$$
 (b) $\frac{2}{4-3i}$ (c) $\frac{1+i}{1-i}$ (d) $(i)^n, n \in \mathbb{N}$.

Exercício 1.3 Escreva os seguintes números na forma polar $z=\rho e^{i\theta}$:

(a) 7 (b) -2i (c)
$$\sqrt{1-i}$$
 (d) $\sqrt[3]{-i}$

(d)
$$\sqrt[3]{-i}$$
.

Exercício 1.4 Seja $p(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n$ um polinómio de coeficientes reais (i.e. todos os coeficientes $a_k \in \mathbb{R}$) e na variável complexa z.

(a) Mostre que $p(\bar{z}) = \overline{p(z)}$ para qualquer $z \in \mathbb{C}$.

(b) Conclua que se $\lambda = a + ib$, com $a, b \in \mathbb{R}$ e $b \neq 0$, é raiz de p(z), então $\bar{\lambda}$ também o é.

(c) Mostre que se n=3 e p(z) tem uma raiz com parte imaginária não nula, então p possui três raizes

(d) Calcule todas as raizes de $p(z) = 5 + 9z + 8z^2 + 4z^3$

1.2 Método de eliminação de Gauss

Exercício 1.5 Quais das seguintes equações são equações lineares em $x, y \in \mathbb{Z}$?

(a)
$$x + \pi^2 y + \sqrt{2}z = 0$$
, (b) $x + y + z = 1$, (c) $x^{-1} + y + z = 0$, (d) $xy + z = 0$.

(b)
$$x + y + z = 1$$
,

(c)
$$x^{-1} + y + z = 0$$
,

(d)
$$xy + z = 0$$

Exercício 1.6 Resolva cada um dos sistemas de equações lineares, utilizando o método de Eliminação

(a)
$$\begin{cases} x + y + 2z = 8 \\ -x - 2y + 3z = 1 \\ 3x - 7y + 4z = 10 \end{cases}$$

(b)
$$\begin{cases} 3x + 2y = 1 \\ 6x + 4y = 0 \\ 9x + 6y = 1 \end{cases}$$

(a)
$$\begin{cases} x + y + 2z = 8 \\ -x - 2y + 3z = 1 \\ 3x - 7y + 4z = 10 \end{cases}$$
 (b)
$$\begin{cases} 3x + 2y = 1 \\ 6x + 4y = 0 \\ 9x + 6y = 1 \end{cases}$$
 (c)
$$\begin{cases} x + y + z + w = 1 \\ 2x + 2y + 2z + 3w = 1 \end{cases}$$
 (d)
$$\begin{cases} 2x + 8y + 6z = 20 \\ 4x + 2y - 2z = -2 \\ 3x - y + z = 11 \end{cases}$$
 (e)
$$\begin{cases} 2x + 8y + 6z = 20 \\ 4x + 2y - 2z = -2 \\ -6x + 4y + 10z = 24 \end{cases}$$
 (f)
$$\begin{cases} y + z = 2 \\ 3y + 3z = 6 \\ y + x + y = 0 \end{cases}$$

(d)
$$\begin{cases} 2x + 8y + 6z = 20 \\ 4x + 2y - 2z = -2 \end{cases}$$

(e)
$$\begin{cases} 2x + 8y + 6z = 20 \\ 4x + 2y - 2z = -2 \\ -6x + 4y + 10z = 24 \end{cases}$$

$$(f) \begin{cases} y+z-2\\ 3y+3z=6\\ y+x+y=0 \end{cases}$$

Exercício 1.7 Indique a matriz aumentada de cada sistema linear do exercício 1.6 e aplique o método de Eliminação de Gauss para confirmar o resultado obtido no exercício 1.6. Indique o conjunto solução.

Exercício 1.8 Encontre um sistema equações lineares cujo conjunto solução seja dado por S:

(a) $S = \{(1+t, 1-t) : t \in \mathbb{R}\};$

(b) $S = \{(1,0,1)\};$

(c) $S = \{(t, 2t, 1) : t \in \mathbb{R}\};$

(d) $S = \{(t, s, t + s) : t, s \in \mathbb{R}\}:$

(e) $S = \emptyset$.

Exercício 1.9 (a) Discuta o sistema ax = b na variável x em função dos parâmetros reais $a \in b$.

(b) Prove, usando o método de eliminação de Gauss, que o seguinte sistema nas incógnitas x, y e nos parâmetros reais a, b, c, d_1 e d_2 é possível e determinado (SPD) se e só se $ad - cb \neq 0$:

$$\begin{cases} ax + by = d_1 \\ cx + dy = d_2. \end{cases}$$

Resolução: Toda a complexidade de sistemas equações lineares está presente na alínea (a). Com efeito, ele é possível e determinado sse $a \neq 0$ (e neste caso x = b/a é a única solução). Se a = 0 então ou b = 0 e portanto o sistema é possível indeterminado (todos os reais x resolvem a dita equação). Nos restantes casos, a = 0 e $b \neq 0$, o sistema é impossível.

Quanto à alínea (b), a matriz aumentada do sistema é: $\begin{bmatrix} a & b & d_1 \\ c & d & d_2 \end{bmatrix}$. Vamos dividir a resolução em dois casos:

• Caso $a \neq 0$. Então por eliminação de Gauss temos

$$\begin{bmatrix} a & b & d_1 \\ c & d & d_2 \end{bmatrix} \xrightarrow{-\frac{c}{a}L_1 + L_2} \begin{bmatrix} a & b & d_1 \\ 0 & d - \frac{cd_1}{a} & d_2 - \frac{cd_1}{a} \end{bmatrix}.$$

Logo o sistema inicial é SPD sse $a \neq 0$ e $d - \frac{cd_1}{a} \neq 0$, mas como estamos a assumir que $a \neq 0$, podemos multiplicar esta última equação por a e obter $ad - cb \neq 0$.

• Caso a=0. Aplicando a eliminação de Gauss:

$$\left[\begin{array}{c|c} 0 & b & d_1 \\ c & d & d_2 \end{array}\right] \xrightarrow{L_1 \leftrightarrow L_2} \left[\begin{array}{c|c} c & d & d_2 \\ 0 & b & d_1 \end{array}\right]$$

pelo que nem c nem b poderão ser nulos para que o sistema seja SPD, como a=0, isto equivale a dizer que $ad-cb\neq 0$ como requerido.

Exercício 1.10 Forneça exemplos concretos de sistemas de equações lineares Ax = b, uns possíveis determinados e outros indeterminados, cuja matrizes de coeficientes das incógnitas A não sejam quadradas.

Resolução: O sistema com matriz aumentada $\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$ é possível indeterminado e o sistema com

matriz aumentada $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ é possível mas determinado. Ambas satisfazem as condições requeridas

no enunciado.

Exercício 1.11 Discuta, em função do parâmetros α e β , cada sistema de equações cuja matriz aumentada é:

Resolução: (a) Para $\alpha \neq 1$ e $\alpha \neq -2$ o sistema é possível e determinado. Para $\alpha = 1$ sistema é possível e indeterminado. Finalmente para $\alpha = -2$, o sistema é impossível.

(b) O sistema é possível e determinado se $\alpha \neq 0$ e $\beta \neq 2$. É impossível para $\alpha = 0$ e $\beta \neq 2$. Nos restantes casos, o sistema linear é possível e indeterminado (i.e. $\beta = 2$ e qualquer α).

3

1.3 Álgebra das matrizes

Exercício 1.12 Considere o sistema Ax = b cuja matriz matriz aumentada é $\begin{bmatrix} 1 & 2 & -\alpha & 1 \\ 2 & -1 & -1 & \beta \\ 9 & -2 & 1 & -1 \end{bmatrix}$.

- (a) Calcule as características de A e da matriz aumentada $\begin{bmatrix} A & b \end{bmatrix}$ em função dos parâmetros α e β .
- (b) Discuta o tipo de solução dos sistema em função dos parâmetros α e β . 1

Resolução: Usando eliminação de Gauss temos

$$\begin{bmatrix} 1 & 2 & -\alpha & 1 \\ 2 & -1 & -1 & \beta \\ 9 & -2 & 1 & -1 \end{bmatrix} \xrightarrow{\stackrel{-2L_1+L_2}{-9L_1+L_3}} \begin{bmatrix} 1 & 2 & -\alpha & 1 \\ 0 & -5 & 2\alpha - 1 & \beta - 2 \\ 0 & -20 & 1 + 9\alpha & -10 \end{bmatrix} \xrightarrow{-4L_2+L_3} \begin{bmatrix} 1 & 2 & -\alpha & 1 \\ 0 & -5 & 2\alpha - 1 & \beta - 2 \\ 0 & 0 & \alpha + 5 & -4\beta - 2 \end{bmatrix}.$$

(a) Donde

$$\operatorname{car} A = \begin{cases} 3, & \alpha \neq -5 \\ 2, & \alpha = -5 \end{cases}, \qquad \operatorname{car} [A|b] = \begin{cases} 3, & \alpha \neq -5, \ \beta \in \mathbb{R} \\ 3, & \alpha = -5 \ e \ \beta \neq -1/2 \\ 2, & \alpha = -5 \ e \ \beta = -1/2 \end{cases}.$$

(b) Dado o comentário em rodapé (e analisando novamente a matriz em escada de linhas) temos que o sistems é impossível quando $\alpha = -5$ e $\beta \neq -1/2$. É determinado quando $\alpha \neq -5$ e indeterminado quando $\alpha = -5$ e $\beta = -1/2$.

Exercício 1.13 Sejam
$$A = \begin{bmatrix} 1 & \pi & -1 \\ 2 & 3 & \sqrt{3} \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & 2 & 3 \\ 3 & 2 & -1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 2 \end{bmatrix}$, $D = \begin{bmatrix} \pi \\ 3 \end{bmatrix}$. Calcule se possível $A + B$, $2A$, CD , AB , AC , DC , CB e AD .

Resolução: Dadas as definições AB, AC, AD e DC não são possíveis de calcular.

Exercício 1.14 (a) Encontre matrizes A e B do tipo 2×2 tais que $AB \neq BA$. Será que $(A+B)^2 = A^2 + 2AB + B^2$?

(b) Prove que dadas duas matrizes quadradas A e B tais que AB = B e BA = A então temos $A^2 = A$.

Resolução: (a) Há muitas – use por exemplo as seguintes
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
 e $B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$.

Exercício 1.15 Sejam $A, B \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ invertíveis. Prove que AB também é invertível e que $(AB)^{-1} = B^{-1}A^{-1}$.

Resolução: Temos que provar que existe uma matrix X tal que X(AB) = (AB)X = I, onde I denota a matriz identidade $n \times n$. Mas como sugere o enunciado, $X = B^{-1}A^{-1}$. Provemos p.ex. que X(AB) = I:

$$X(AB) = B^{-1}A^{-1}(AB) = B^{-1}(A^{-1}A)B = B^{-1}\mathbf{1}B = B^{-1}B = \mathbf{1},$$

onde na segunda igualdade usa-se associatividade a da multiplicação matricial, na terceira igualdade a hipótese de A^{-1} ser a inversa de A e na última igualdade a hipótese de B^{-1} ser a inversa de B.

¹Note que num sistema Ax = b: car(A) = car [A|b] sse o sistema é possível (portanto impossível sse car [A] ≠ car [A|b]). Mais car (A) = car [A|b]=número de incógnitas sse é possível determinado e possível indeterminado sse car (A) = car [A|b] ≠número de incógnitas

Exercício 1.16 Prove que
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-cb} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
 sempre que $ad-cb \neq 0$.

Resolução: Aplique o método de Gauss-Jordan, $[A|\mathbf{1}] - - > [\mathbf{1}|A^{-1}]$, verificando que car A=2 sse $ad - cb \neq 0$. Confronte com o exercício 1.9, alínea (b).

Exercício 1.17 Sendo $A = [a_{ij}]$ uma matriz $n \times n$, define-se o traço de A, $\operatorname{tr}(A)$, como sendo a soma dos elementos da diagonal pincipal, i.e. $\operatorname{tr}(A) = \sum_{k=1}^{n} a_{kk}$.

- (a) Prove que $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$ e $\operatorname{tr}(A)=\operatorname{tr}(A^T)$ onde A^T designa a matriz transposta de A
- (b) Prove que tr(AB) = tr(BA).
- (c) Se $B = S^{-1}AS$ para alguma matriz invertível S, então prove que tr(A) = tr(B).

Resolução: As alíneas (a) e (b) seguem directamente das definições. Use a alínea (b) para resolver (c).

Exercício 1.18 Encontre matrizes A e B do tipo 2×2 reais, tais que $AB \neq BA$. Será que $(A+B)^2 = A^2 + 2AB + B^2$ para quaisquer matrizes A e B? Justifique.

Resolução: Use, por exemplo,
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
 e $B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

Exercício 1.19 Prove que $\{A \in \operatorname{Mat}_{2\times 2}(\mathbb{R}) : AB = BA, \text{ para qualquer } B\} = \{aI : a \in \mathbb{R}\} \text{ onde } I$ denota a matriz identidade do tipo 2×2 . Generalize para matrizes $n \times n$.

Resolução: Dada uma matriz $A \in \{A \in \operatorname{Mat}_{2 \times 2}(\mathbb{R}) : AB = BA, \text{ para toda } B\}$ escrever as condições que provêm de AB = BA quando fazemos $B \in \{\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\}.$

Exercício 1.20 Sejam A, B, C matrizes $n \times n$, tais que A e B são invertíveis. Resolva a seguinte equação matricial em X: AXB = C.

Resolução: Como A é invertível $A^{-1}A = I$ onde I designa a matriz identidade $n \times n$. Portanto multiplicando à esquerda por A^{-1} obtém-se

$$AXB = C \Leftrightarrow A^{-1}AXB = A^{-1}C \Leftrightarrow IXB = A^{-1}C \Leftrightarrow XB = A^{-1}C.$$

De forma similar, multiplica-se à direita esta última equação por B^{-1} e conclui-se que $X = A^{-1}CB^{-1}$.

Exercício 1.21 Seja $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ tal que $A^k = 0$ para algum $k \in \mathbb{N}, k \neq 1$. Prove que

$$(I-A)^{-1} = I + A + A^2 + \dots + A^{k-1}.$$

Exercício 1.22 Seja
$$A = \begin{bmatrix} 10 & 7 & 4 \\ -17 & -12 & -7 \\ 4 & 3 & 2 \end{bmatrix}$$

- (a) Verifique que A^3 é a matriz nula. Prove que A não é invertível.
- (b) Calcule $(I + A + A^2)(I A)$.

Resolução: Facilmente se calcula A^3 por definição de produto de matrizes. Supor que A é invertível, então como o produto de matrizes invertíveis é invertível, conluimos que A^2 e A^3 também são invertíveis. Mas A^3 não é invertível. Alternativelmente, verifique que car $(A) = 2 \neq 3$. Donde A não é invertível.

Exercício 1.23 Seja
$$A$$
 tal que $(7A)^{-1} = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$. Calcule A .

Resolução: Note que $(7A)^{-1} = C$ significa que $7^{-1}A^{-1} = C$, i.e. $A = 7^{-1}C^{-1}$. Neste caso concreto, $A = \frac{1}{7} \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix}$.

Exercício 1.24 Quando possível, inverter as seguintes matrizes:

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 3 & 5 & 0 \\ -1 & -2 & -2 \\ 1 & 2 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 0 & a & 0 & 0 & 0 \\ b & 0 & c & 0 & 0 \\ 0 & d & 0 & e & 0 \\ 0 & 0 & f & 0 & g \\ 0 & 0 & 0 & h & 0 \end{bmatrix}.$$

Resolução: Usando o método de Gauss-Jordan temos

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} \xrightarrow{-L_1 + L_2} \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & -1 & 1 \end{bmatrix} \xrightarrow{-L_2 + L_1} \begin{bmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & -1 & 1 \end{bmatrix}.$$

Portanto A é invertível porque car (A)=2 e $A^{-1}=\begin{bmatrix}2&-1\\-1&1\end{bmatrix}$. A matriz B não é invertível pois car $(B)=1\neq 2$ assim como a matriz D para quaisquer valores dos parâmetros $a,b,c,d,e,f,g,h\in\mathbb{R}$. A matriz C é invertível.

Exercício 1.25 Aproveite a matriz A do exercício 1.24 para resolver o sistema $\begin{cases} x+y=8 \\ x+2y=10 \end{cases}$.

Resolução: Como A é invertível, de A**x** = b obtém-se **x** = $A^{-1}b$ multiplicando à esquerda por A^{-1} . Portanto pelo exercício 1.24

$$\left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{cc} 2 & -1 \\ -1 & 1 \end{array}\right] \left[\begin{array}{c} 8 \\ 10 \end{array}\right] = \left[\begin{array}{c} 6 \\ 2 \end{array}\right].$$

Exercício 1.26 Discuta a invertibilidade da matriz A_{α} , em função do parâmetro α , onde A_{α}

$$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 4 & 4 & -\alpha^2 & \alpha^2 \\ 2 & 2 & -2 & \alpha \end{bmatrix}.$$
 Faça a discussão do sistema homogéneo associado $A_{\alpha}x=0$.

Exercício 1.27 Sejam x_0 e x_1 duas soluções do sistema linear Ax = b. Prove que:

- (a) Para qualquer real λ , $x_{\lambda} = \lambda x_0 + (1 \lambda)x_1$ é solução de Ax = b,
- (b) $x_{\lambda} x_{\lambda'}$ é solução do sistema homogéneo associado Ax = 0 para quaisquer λ , λ' parametros. Conclua que se Ax = b tiver duas soluções distintas, então o conjunto solução é infinito.

Exercício 1.28 Sendo A uma matriz quadrada e b uma matriz coluna não nula, decida o valor lógica de cada uma das seguintes afirmações:

- (a) Se x é solução de Ax = b e y é solução do sistema homogéneo associado Ay = 0, então x y é solução de Ax = b.
- (b) Se x_1 e x_2 são duas soluções de Ax = b, então x y é solução de Ax = b.
- (c) Se x_1 e x_2 são duas soluções de Ax = b, então x y é solução de Ax = 0.
- (d) Se A é invertível, entao x = 0 é a única solução de Ax = 0.

2 Espaços Lineares (Vectoriais)

2.1 Subespaços lineares

Exercício 2.1 Diga, justificando, quais dos seguintes conjuntos são espaços lineares (considere as operações usuais de adição de vectores e multiplicação por escalares):

- (a) $\{(0,0)\}.$
- (b) $\{(x,y) \in \mathbb{R}^2 : x 2y = 0\}.$
- (c) $\{(x,y) \in \mathbb{R}^2 : x+y=\pi\}.$
- (d) $\{(x,y) \in \mathbb{R}^2 : ax + by = k\}.$

Resolução: Os subespaços lineares de \mathbb{R}^2 são as rectas que contêm a origem, além dos dois subespaços triviais: $\{(0,0)\}$ e \mathbb{R}^2 .

Exercício 2.2 Considere o espaço linear $V = \mathbb{R}^3$ com as operações usuais. Diga, justificando, quais dos seguintes subconjuntos de \mathbb{R}^3 são subespaços lineares de V:

- (a) $\{(x, y, z) \in \mathbb{R}^3 : z = 1\},\$
- (b) $\{(x, y, z) \in \mathbb{R}^3 : xy = 0\},\$
- (c) $\{(x, y, z) \in \mathbb{R}^3 : x + y + 2z = 0, x y = 0\},\$
- (d) $\{(x, y, z) \in \mathbb{R}^3 : ax + by + cz = d, kx + ly + mz = r\}.$

Exercício 2.3 Seja
$$A$$
 uma matriz real $n \times m$. Prove que $V = \left\{ (x_1, \dots, x_m) \in \mathbb{R}^m : A \middle| \begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_m \end{array} \middle| = \middle| \begin{array}{c} 0 \\ 0 \\ \vdots \\ 0 \end{array} \middle| \right\}$

é um subespaço linear de \mathbb{R}^m (isto é: o conjunto das soluções de qualquer sistema homogéneo forma um espaço linear).

Exercício 2.4 Considere V o espaço linear das funções reais de variável real. Diga, justificando, quais dos seguintes subconjuntos de V são subespaços lineares de V:

- (a) $\{f : \mathbb{R} \to \mathbb{R} : f(x) = f(-x)\},\$
- (b) $\{f: \mathbb{R} \to \mathbb{R}: f \text{ diferenciável e } f'(x) = f(x)\}$ onde f' designa a derivada de f,
- (c) $\{f: \mathbb{R} \to \mathbb{R}: f \text{ continua}\},\$
- (d) $\{p : \mathbb{R} \to \mathbb{R} : p \text{ polinómino}\},$
- (e) $\mathcal{P}_n = \{ p(x) = \sum_{i=1}^n \alpha_i x^i : \text{ grau de } p \leq n \},$
- (f) $\{p(x) = \sum_{i=1}^{n} \alpha_i x^i : \text{ grau } p = n\},\$
- (g) $\{p(x) = \sum_{i=1}^{n} \alpha_i x^i : \text{ grau de } p \le n \text{ e } p(1) = 0\}.$

Exercício 2.5 Considere V o espaço linear das sucessões. Diga, justificando, quais dos seguintes subconjuntos de V são subespaços lineares de V:

- (a) $\{(u_n): u_n = u_{n-1} + u_{n-2}\},\$
- (b) $\{(u_n): u_n \text{ \'e convergente}\},$
- (c) $\{(u_n): u_n \to 0\},\$
- (d) $\{(u_n): u_n \to 1\},\$
- (e) $\{(u_n): u_n \text{ limitada}\},$
- (f) $\{(u_n): u_n \text{ monotona crescente}\}.$

Exercício 2.6 Considere $V = \operatorname{Mat}_{n \times n}(\mathbb{R})$ os espaço linear das matrizes $n \times n$. Diga, justificando, quais dos seguintes subconjuntos de V são subespaços lineares de V:

- (a) {matrizes triagulares superiores},
- (b) $\{X \in V : X \text{ \'e invert\'evel}\},$
- (c) $\{X \in V : Tr(X) = 0\},\$
- (d) $\{X \in V : X^T = X\}$ onde X^T denota a transposta da matriz X,

(e)
$$\left\{ \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_2 \end{bmatrix} \in \operatorname{Mat}_{2\times 2}(\mathbb{R}) : x_{12} = x_{22} \right\}.$$

2.2 Vectores geradores

Exercício 2.7 Considere em \mathbb{R}^2 o conjunto de vectores $S = \{(1,1), (-1,-1)\}.$

- (a) Mostre que o vector (3,3) é combinação linear de vectores de S.
- (b) Mostre que o vector (0,1) não é combinação linear de vectores de S.
- (c) Determine a forma geral de vectores $(a, b) \in L(S)$ no espaço gerado por S.

Exercício 2.8 No espaço linear \mathbb{R}^3 considere os vectores $v_1=(1,2,1),\ v_2=(1,0,2)$ e $v_3=(1,1,0).$ Mostre que os seguintes vectores são combinações lineares de v_1,v_2 e v_3 :

(a)
$$v = (3,3,3)$$
 (b) $v = (2,1,5)$ (c) $v = (-1,2,0)$.

Exercício 2.9 Determine o valor de k para o qual o vector $v = (1, -2, k) \in \mathbb{R}^3$ é combinação linear dos vectores $v_1 = (3, 0, -2)$ e $v_2 = (2, -1, -5)$.

Exercício 2.10 Decida quais dos seguintes conjuntos geram \mathbb{R}^3 :

- (a) $\{(1,1,1),(1,0,1)\},\$
- (b) $\{(1,1,1),(1,0,1),(0,0,1)\},\$
- (c) $\{(1,1,1),(1,0,1),(0,0,1),(2,1,3)\}.$

Exercício 2.11 Considere, no espaço linear \mathcal{P}_2 dos polinómios de grau menou ou igual a 2, os vectores $p_1(x) = 2 + x + 2x^2$, $p_2(x) = -2x + x^2$, $p_3(x) = 2 - 5x + 5x^2$ e $p_4(x) = -2 - 3x - x^2$. O vector $p(x) = 2 + x + x^2$ pertence à expansão linear $L(\{p_1, p_2, p_3, p_4\})$? Podem p_1, p_2, p_3 e p_4 gerar P_2 ?

Exercício 2.12 Considere
$$A_1 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}$, $A_3 = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$ e $A_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ no

espaço linear $V=\operatorname{Mat}_{2\times 2}(\mathbb{R})$. Prove que $S=\{A_1,A_2,A_3,A_4\}$ gera V. Escreva $A=\begin{bmatrix}1&0\\3&4\end{bmatrix}$ como combinação linear de matrizes de S.

2.3 Independência linear

Exercício 2.13 Quais dos seguintes conjuntos de vectores são linearmente independentes:

Em \mathbb{R}^2 :

- (a) $\{(1,1),(2,2)\},\$
- (b) $\{(1,1),(1,2)\},\$

Em \mathbb{R}^3 :

- (c) $\{(2,-1,4),(3,6,2),(2,10,-4)\},\$
- (d) $\{(6,0,-1),(1,1,4)\},\$
- (e) $\{(4,4,0,0),(0,0,6,6),(-5,0,5,5)\}.$

Exercício 2.14 Determine o única valor de a que torna os seguintes vectores linearmente dependentes: $v_1 = (1, 0, 0, 2), \ v_2 = (1, 0, 1, 0), \ v_3 = (2, 0, 1, a).$

Exercício 2.15 Quais dos seguintes conjuntos de vectores são linearente independentes:

 $\mathrm{Em}\ \mathcal{P}_2$:

- (a) $\{2-x, 1+x\}$,
- (b) $\{1+x, 1+x^2, 1+x+x^2\},$

Em \mathcal{P}_3 :

- (c) $\{1+x+x^3, 1-x-x^2+x^3, x^2\},\$
- (d) $\{1, x, x^2, x^3\},\$

No espaço das funções reais de variável real:

- (e) $\{\cos^2(t), \sin^2(t), 2\},\$
- (f) $\{t, \cos(t)\}.$

Em $\operatorname{Mat}_{2\times 2}(\mathbb{R})$:

(g)
$$\{A_1, A_2, A_3, A_4\}$$
 onde $A_1 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $A_2 = \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}$, $A_3 = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$ e $A_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$.

Exercício 2.16 (a) Seja $\{v_1, v_2, \dots, v_n\}$ um conjunto de vectores linearmente independente de \mathbb{R}^n e $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ uma matriz invertível. Prove que $\{Av_1, Av_2, \dots, Av_n\}$ também é um conjunto de vectores linearmente independente.

(b) Sejam v_1, v_2 e v_3 vectores linearmente independentes em \mathbb{R}^3 . Prove que então $w_1 = v_1 + v_2 + v_3$, $w_2 = 2v_2 + v_3$ e $w_3 = -v_1 + 3v_2 + 3v_3$ são vectores linearmente independentes.

2.4 Bases e dimensão de espaços lineares

Exercício 2.17 (a) Encontre um conjunto de vectores S num espaço linear V tal que S gere V mas com os vectores de S linearmente dependentes.

(b) Encontre um cojunto de vectores S num espaço linear V tal que S não gere V mas com os vectores de S linearmente independentes.

Exercício 2.18 Indique uma base e a respectiva dimensão para cada espaço linear:

- (a) $\{(x,y) \in \mathbb{R}^2 : x+y=0\}.$
- (b) $\{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}.$
- (c) $\{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0, x y = 0\}.$
- c) $\{(x, y, z, w) \in \mathbb{R}^4 : x + y + z = 0, x y = 0, y + w = 0\}.$

Exercício 2.19 Considere $V = L(\{v_1, v_2, v_3\})$ onde $v_1 = (1, 1, 1, 1)$, $v_2 = (0, 1, 1, -1)$ e $v_3 = (1, 2, 2, 0)$. Encontre uma base para V e indique a respectiva dimensão.

Exercício 2.20 Seja
$$A=\begin{bmatrix}1&5&9\\2&6&10\\3&7&11\\4&8&12\end{bmatrix}$$
. Determine a dimensão dos seguintes espaços lineares, indi-

cando uma base em cada caso:

- (a) Núcleo de A
- (b) Espaço linhas de A
- (c) Espaço colunas de A.

Exercício 2.21 Encontre a característica, bases para o núcleo, espaço das linhas e das colunas das matrizes seguintes:

$$\begin{bmatrix} 1 & 5 & 9 \\ 2 & 6 & 10 \end{bmatrix}, \begin{bmatrix} 1 & -4 \\ 3 & -12 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 5 \\ 2 & 6 \\ 3 & 7 \end{bmatrix}, \begin{bmatrix} 1 & 2 & -1 \\ 2 & 4 & 3 \\ 0 & 0 & -2 \\ 4 & 8 & 12 \end{bmatrix} e \begin{bmatrix} 1 & -3 & 2 & 2 & 1 \\ 0 & 3 & 6 & 0 & -2 \\ 2 & -3 & -2 & 4 & 4 \\ 3 & -3 & 6 & 6 & 3 \\ 5 & -3 & 10 & 10 & 5 \end{bmatrix}.$$

Para cada matriz A verifique que: dim Nuc(A)+ car(A)= número de colunas de A.

Exercício 2.22 Encontre bases e respectivas dimensões para os seguintes espaços lineares:

- (a) $V = \{ p \in \mathcal{P}_3 : p(1) = 0 \};$
- (b) $V = \{ p \in \mathcal{P}_2 : p(0) = p(1) = 0 \};$

(c)
$$V = \{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{Mat}_{2 \times 2}(\mathbb{R}) : a + 2b = 0 \};$$

(d) $\{A \in \operatorname{Mat}_{2 \times 2}(\mathbb{R}) : A = A^T\};$

(e)
$$\left\{ A \in \operatorname{Mat}_{2 \times 2}(\mathbb{R}) : A \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix} A \right\}.$$

Exercício 2.23 Sejam $E = L(\{(1,1,1),(1,2,2)\})$ e $F = L(\{(0,1,-1),(1,1,2)\})$.

- (a) Determine a dimensão² de E + F.
- (b) Determine a dimensão de $E \cap F$.

Resolução: (a) Temos que $E + F = L(E \cup F) = L(\{(1,1,1),(1,2,2),(0,1,-1),(1,1,2)\}).$

Escrevendo as componentes destes vectores como linhas de uma matriz e usando eliminação de Gauss

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 1 & 1 & 2 \\ 1 & 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

obtemos uma matriz de característica 3 pelo que a dimensão de E + F é 3.

(b) Como os vectores (1,1,1),(1,2,2) são linearmente independentes, por não serem múltiplos um do outro, a dimensão de E é 2. Analogamente se vê que a dimensão de F é 2. Dado que dim $E+F=\dim E+\dim F-\dim E\cap F$ e pela alínea anterior dim E+F=3, temos que a dimensão de $E\cap F$ é 1.

²Note que em geral se $E=L(\{v_1,\cdots,v_p\})$ e $F=L(\{w_1,\cdots w_q\})$ então $E+F=L(\{v_1,\cdots,v_p,w_1,\cdots,w_q\})$

Exercício 2.24 Determine a dimensões de $E \cap F$ e E + F:

(a)
$$E = L(\{(1,1,-1,-1),(1,1,1,1),(1,1,2,2)\})$$
 e $F = L(\{(1,0,0,1),(0,1,1,1),(1,1,0,1)\})$;

(b)
$$E = \{(x, y, z, w) \in \mathbb{R}^4 : x + y + z = 0\} \in F = (\{(x, y, z, w) \in \mathbb{R}^4 : x + w = 0, y + w = 0\};$$

(c)
$$E = L(\{1 + x + x^2, 1 + x^2\})$$
 e $F = L(\{3 + 2x + 3x^2\})$ em \mathcal{P}_2 .

2.5 Matriz mudança de base

Exercício 2.25 (a) Seja BC= $\{e_1 = (1,0), e_2 = (0,1)\}$ e $\mathcal{B} = \{v_1 = (1,1), v_2 = (-1,0)\}$ duas bases de \mathbb{R}^2 . Encontre a matriz S mudança de base da base BC para a base \mathcal{B} e a matriz P mudança de base da base \mathcal{B} para a base BC. Quais são as coordenadas do vector v = (3,4) na base \mathcal{B} .

(b) Encontre as coordenadas do vector v=(1,2,-3) numa base do espaço linear $E=\{(x,y,z)\in\mathbb{R}^3:x+y+z=0\}$ à sua escolha.

Exercício 2.26 (a) Prove que
$$A_1 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}$, $A_3 = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$ e $A_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ constituem uma base para o espaço linear $V = \operatorname{Mat}_{2 \times 2}(\mathbb{R})$.

- (b) Determine a matriz mudança de base S da base canónica de $\operatorname{Mat}_{2\times 2}(\mathbb{R})$ para a base $\{A_1,A_2,A_3,A_4\}$.
- (c) Encontre as coordenadas de $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ na base canónica de $\operatorname{Mat}_{2\times 2}(\mathbb{R})$ e na base $\{A_1, A_2, A_3, A_4\}$.

3 Transformações Lineares

Exercício 3.1 Sejam E e F espaços lineares e $T: E \to F$ uma transformação linear. Prove que então T transforma o vector nulo $\mathbf{0}_E$ de E no vector nulo $\mathbf{0}_F$ de F, i.e. $T(\mathbf{0}_E) = \mathbf{0}_F$.

Exercício 3.2 Determine quais das seguintes transformações são lineares:

Em \mathbb{R}^n :

(a)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T(x, y) = (x, y)$

(b)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T(x,y) = (x+1,y)$

(c)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T(x,y) = (2x, y^2)$

(d)
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
, $T(x, y, z) = (x + 2y + z, y - 3z, 0)$

(e)
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
, $T(x,y) = (x, 2x + 3y, x + y)$

(f)
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
, $T(x,y) = (x, 2x + 3y, 1)$

Em \mathcal{P}_n na varável x e onde p' designa a derivada de p:

(g)
$$T: \mathcal{P}_2 \to \mathcal{P}_2, T(p)(x) = xp'(x) + p(x)$$

(h)
$$T: \mathcal{P}_2 \to \mathcal{P}_3$$
, $T(p)(x) = x^2 p'(x) + p(x+1)$

(i)
$$T: \mathcal{P}_2 \to \mathcal{P}_2, T(p)(x) = p(x+1) + p(x-1)$$

(j)
$$T: \mathcal{P}_2 \to \mathcal{P}_3, T(p)(x) = p(-1) + p(0) + p(1)$$

(1)
$$T: \mathcal{P}_3 \to \mathcal{P}_2, T(p)(x) = p(0)p'(x)$$

Em $\mathrm{Mat}_{n\times n}(\mathbb{R})$:

(m)
$$T: \operatorname{Mat}_{2\times 2}(\mathbb{R}) \to \operatorname{Mat}_{2\times 2}(\mathbb{R}), T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} b+2c & 0 \\ 3c+a & d-a \end{bmatrix}$$

- (n) $T: \operatorname{Mat}_{n \times n}(\mathbb{R}) \to \operatorname{Mat}_{n \times n}(\mathbb{R}), T(X) = X + X^t$
- (o) $T: \operatorname{Mat}_{n \times n}(\mathbb{R}) \to \operatorname{Mat}_{n \times n}(\mathbb{R}), T(X) = SX$ onde S é uma matriz fixa

(p)
$$T: \mathcal{P}_2 \to \operatorname{Mat}_{2\times 2}(\mathbb{R}), T(p) = \begin{bmatrix} p(-1) & p(0) \\ p(0) & p(1) \end{bmatrix}$$
.

Exercício 3.3 Considere a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ tal que T(1,1) = (3,3) e T(1,-1) = (1,-1). Calcule T(1,0) e T(0,1) e determine a expressão genérica T(x,y).

3.1 Representação matricial de transformações lineares

Exercício 3.4 Considere a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ tal que T(x,y) = (2x+y,x+2y). Em cada alínea, determine a representação matricial M(T;B,B) na base ordenada $B = \{v_1,v_2\}$:

- (a) $v_1 = (1,0), v_2 = (0,1)$
- (b) $v_1 = (2,0), v_2 = (0,2)$
- (c) $v_1 = (0,1), v_2 = (1,0)$
- (d) $v_1 = (1, 1), v_2 = (1, -1).$

Exercício 3.5 Considere a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que T(x, y, z) = (x + y, x + z, z + y). Em cada alínea, determine a representação matricial M(T; B, B) na base ordenada $B = \{v_1, v_2, v_3\}$:

- (a) $v_1 = (1, 0, 0), v_2 = (0, 1, 0), v_3 = (0, 0, 1)$
- (b) $v_1 = (0, 3, 0), v_2 = (0, 0, 3), v_3 = (3, 0, 0)$
- (c) $v_1 = (1,0,0), v_2 = (1,1,0), v_3 = (1,1,1)$

Exercício 3.6 Considere a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^2$ tal que T(x,y,z) = (2x+y,z+3y). Em cada alínea, determine a representação matricial $M(T; B_1, B_2)$ nas bases ordenadas $B_2 = \{v_1, v_2, v_3\}$ no espaço de partida e $B_2 = \{w_1, w_2\}$ n oespaço de chegada:

(a)
$$v_1 = (1, 0, 0), v_2 = (0, 1, 0), v_3 = (0, 0, 1)$$
 $w_1 = (1, 0), w_2 = (0, 1)$

(b)
$$v_1 = (1, 0, 0), v_2 = (1, 1, 0), v_3 = (1, 1, 1)$$
 $w_1 = (1, 0), w_2 = (0, 1)$

(c)
$$v_1 = (1, 0, 0), v_2 = (1, 1, 0), v_3 = (1, 1, 1)$$
 $w_1 = (1, 1), w_2 = (0, 1)$

Exercício 3.7 Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ a transformação linear que na base canónica é representada pela matriz $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$. Calcule mediante uma matriz mudança de base apropriada:

- (a) a representação matricial de T na base $v_1 = (3,0), v_2 = (0,3)$
- (b) a representação matricial de T na base $v_1 = (1,1), v_2 = (1,2)$

Exercício 3.8 Encontre as representações matriciais das transformações lineares do exercício 3.2 nas bases canónicas.

3.2 Transformações injectivas/sobrejectivas e bijectivas

Exercício 3.9 Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ a transformação linear que na base $B = \{(1,1), (1,2)\}$ é representada pela matriz $A = \begin{bmatrix} 3 & 2 \\ 1 & 2 \end{bmatrix}$. Calcule T(x,y) e verifique se T é uma transformação injectiva ou sobrejectiva.

Exercício 3.10 Considere $T: \mathcal{P}_2 \to \mathcal{P}_2$, T(p)(x) = xp'(x) + p(x). Encontre a matriz que representa T na base canónica de \mathcal{P}_2 , i.e. $\{1, x, x^2\}$. Será T uma transformação invertível?

Exercício 3.11 Considere as transformações lineares do exercício 3.2.

- (a) Indique as que são injectivas ou sobrejectivas. Nos casos em que o espaços de partida e de chegada coincidem e a transformação for bijectiva, determine a transformação T^{-1} inversa.
- (b) Se T é não injectiva, então encontre uma base para o núcleo de T.
- (b) Se T é não sobrejctiva, entre encontre uma base para o imagem de T.

Exercício 3.12 Seja $T: \mathbb{R}^3 \to \mathbb{R}^2$ a transformação linear definida por

$$T(x, y, z) = (x + y, x + y - z).$$

- (a) Calcule a matriz que representa T nas bases canónicas.
- (b) Calcule uma base para o núcleo de T. A transformação é injectiva?
- (c) Calcule uma base para a imagem de T. Será T sobrejectiva?
- (d) Resolva a equação linear T(x, y, z) = (1, 1).
- (e) Existe algum $(a,b) \in \mathbb{R}^2$ tal que a equação T(x,y,z) = (a,b) seja impossível?
- (f) Existe algum $(a,b) \in \mathbb{R}^2$ tal que a equação T(x,y,z) = (a,b) seja indeterminada?

Exercício 3.13 Decida o valor lógico das seguintes proposições:

- (a) Existem transformações lineares injectivas de \mathbb{R}^8 para \mathbb{R}^6 .
- (b) Existem transformações lineares sobrejectivas de \mathbb{R}^8 para \mathbb{R}^6 .
- (c) Existem transformações lineares injectivas de \mathbb{R}^6 para \mathbb{R}^8 .
- (d) Existem transformações lineares sobrejectivas de \mathbb{R}^6 para \mathbb{R}^8 .
- (e) Existem transformações lineares injectivas de $Mat_{2\times 2}$ para \mathcal{P}_2 .

Exercício 3.14 Seja $S=\begin{bmatrix}a&b\\c&d\end{bmatrix}$ matriz não nula e a transformação $T:\mathrm{Mat}_{2\times 2}(\mathbb{R})\to\mathrm{Mat}_{2\times 2}(\mathbb{R})$ dada por

$$T(X) = \operatorname{tr}(X)S$$

onde tr(X) designa o traço da matriz X.

- (a) Prove que T é uma transformação linear.
- (b) Considere a base canónica $Bc = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ de $\operatorname{Mat}_{2\times 2}(\mathbb{R})$. Calcule a matriz que representa T nesta base.
- (c) Encontre uma base para o núcleo de T e verifique se T é injectiva.
- (d) Encontre uma base para a imagem de T e verifique se T é sobrejectiva.
- (e) Determine uma base de $\mathrm{Mat}_{2\times 2}(\mathbb{R})$ cuja representação matricial de T nessa base seja uma matriz diagonal.
- (f) Qual é a matriz mudança de base da base conónica para a base da alínea anterior?

Exercício 3.15 Seja $T:\mathcal{P}_2 \to \mathcal{P}_2$ a transformação linear definida por

$$(Tp)(x) = x^2p''(x) - 2p(x).$$

(a) Calcule a matriz que representa T na base canónica $\{p_1, p_2, p_3\}$ onde

$$p_1(x) = 1, \ p_2(x) = x, \ p_3(x) = x^2.$$

- (b) Calcule uma base para o núcleo de T e conclua que T não é injectiva nem sobrejectiva.
- (c) Resolva, em \mathcal{P}_2 , a equação linear $x^2p''(x) 2p(x) = 1$.

4 Determinante e Aplicações

Exercício 4.1 Seja A uma matriz $n \times n$ e B. Decida se cada afirmação seguinte é verdadeira:

- (a) Seja B a matriz que se obtém de A fazendo uma troca de linhas $L_i \longleftrightarrow L_j$ com $i \neq j$. Então $\det(A) = \det(B)$.
- (b) Seja B a matriz que se obtém de A multiplicando uma linha de A por um escalar não nulo k. Então $\det(A) = \frac{1}{k} \det(B)$.
- (c) Seja B a matriz que se obtém de A substituindo a linha L_i de A por $L_i + \alpha L_j$, para qualquer escalar α . Então $\det(A) = \det(B)$.
- (d) Sendo A^t a matriz transposta de A, $det(A) = det(A^t)$.
- (e) $\det(\alpha A) = \alpha^n \det(A)$.

Exercício 4.2 Seja $A=\begin{bmatrix}a&b&c\\d&e&f\\g&h&i\end{bmatrix}$ tal que $\det(A)=-5$. Calcule

$$\begin{bmatrix} g & h & i \end{bmatrix}$$
(a) $\det(3A)$ (b) $\det(A^{-1})$ (c) $\det(-2A^{-1})$ (d) $\det((-2A)^{-1})$ (e) $\det(A^3)$ (f) $\det\begin{bmatrix} a & g & d \\ b & h & e \\ c & i & f \end{bmatrix}$

Exercício 4.3 Mostre que det $\begin{bmatrix} b+c & a+c & a+b\\ a & b & c\\ 1 & 1 & 1 \end{bmatrix} = 0 \text{ para quaisquer } a,b,c \in \mathbb{R}. \text{ Será que } A \text{ \'e}$ invertível para algum $a,b,c \in \mathbb{R}$?

Exercício 4.4 Para que valores de k a matriz A é singular?

(a)
$$A = \begin{bmatrix} 1 & 2 & 4 \\ 3 & 1 & 6 \\ k & 3 & 2 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} k-2 & -2 \\ -2 & k-2 \end{bmatrix}$.

Exercício 4.5 Use a Regra de Laplace para calcular os determinantes das matrizes

$$A = \begin{bmatrix} 1 & \pi & -1 \\ 0 & 2 & 0 \\ 3 & 4 & 5 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & -2 & 3 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & -3 & 1 & 4 \\ 0 & 2 & -1 & 0 \end{bmatrix}, \qquad C = \begin{bmatrix} 0 & 5 & 1 & 0 & 2 \\ 0 & 3 & 2 & 1 & -1 \\ 1 & 0 & 2 & 0 & 0 \\ -1 & 0 & 3 & 2 & 1 \\ 1 & -3 & -2 & -1 & 1 \end{bmatrix}.$$

Exercício 4.6 (a) Calcule
$$\det(A_x - \lambda I)$$
 onde $A_x = \begin{bmatrix} 1 & 0 & 0 & x \\ 0 & 1 & x & 0 \\ 0 & x & 1 & 0 \\ x & 0 & 0 & 1 \end{bmatrix}$ onde x é um parâmetro real e I

denota a matriz identidade do tipo 4×4 .

- (b) Determine os valores de λ (em função de x) para os quais $A_x \lambda I$ é singular.
- (c) Para que valor (ou valores) de x a matrix A_x é invertível?

Exercício 4.7 Seja $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ tal que $AA^T = I$.

- (a) Prove que $det(A) = \pm 1$.
- (b) Encontre uma matriz A tal que $AA^T = I$ e det(A) = -1.

Exercício 4.8 Seja $A = \begin{bmatrix} 1 & -2 & 3 \\ 6 & 7 & -1 \\ -3 & 1 & 4 \end{bmatrix}$.

- (a) Calcule det(A) e justifique que A é invertível.
- (b) Escreva a matriz dos cofactores de A, cof(A).
- (c) Use as alíneas anteriores para calcular a inversa de A.

Exercício 4.9 Resolva os seguintes sistemas de equações lineares usando a regra de Cramer.

(a)
$$\begin{cases} 7x - 2y = 3 \\ 3x + y = 5 \end{cases}$$
 (b)
$$\begin{cases} x - 3y + z = 4 \\ 2x - y = -2 \\ 4x - 3z = -2 \end{cases}$$

(b) Sendo A a matriz dos coeficientes das incógnitas do sistema linear de (b), calcule a entrada-23 da matriz A^{-1} .

5 Valores Próprios e Vectores Próprios

Exercício 5.1 Seja $T:\mathbb{R}^2 \to \mathbb{R}^2$ a transformação linear definida por

$$T(x,y) = (x + 2y, 2x + y).$$

Considere ainda os vectores $v_1 = (0,0), v_2 = (2,1), v_3 = (-1,1), v_4 = (2,3)$ e $v_5 = (2,2)$. Identifique os que são vectores próprios e T. Diga ainda quais são os valores próprios associados.

Exercício 5.2 Seja $T:\mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear definida por

$$T(x, y, z) = (y, y, y).$$

Mostre que os vectores $v_1 = (1,0,0), v_2 = (1,1,1)$ e $v_3 = (0,0,1)$ determinam um base de \mathbb{R}^3 constituída por vectores próprios de T. Calcule a matriz que representa T nesta base.

Exercício 5.3 Seja $T:\mathbb{R}^2 \to \mathbb{R}^2$ a transformação linear definida por

$$T(x,y) = (x+2y,3y).$$

- (a) Calcule a matriz A que representa T na base canónica de T.
- (b) Calcule o polinómio característico de T.

- (c) Determine os espaço próprios e indique as respectivas dimensões.
- (d) Prove que T é diagonalizável e indique uma matriz S tal que SAS^{-1} é uma matriz diagonal.
- (e) Calcule T^9 .

Exercício 5.4 Considere a transformação linear $T: \mathcal{P}_2 \to \mathcal{P}_2$ que na base $\{1, x, x^2\}$ é representada pela matriz

$$A = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 10 & -4 & 4 \end{array} \right].$$

- (a) Determine os valores e vectores pr \acute{p} rios de T.
- (b) Diga, justificando, se existe alguma base de \mathcal{P}_2 cuja representação matricial de T é uma matriz diagonal.

Exercício 5.5 Considere a transformação T do exercício 3.14, mas fixando $S = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$.

- (a) Encontre os valores e vectores próprios de T.
- (b) Verifique se T é diagonalizável.

- (a) Prove que $p(x) = 1 x^2$ e $q(x) = 1 2x + x^2$ são vectores próprios de T. Indique os valores próprios associados.
- (b) verifique se T é diagonalizável.

Exercício 5.7 Seja $p(\lambda) = \det(A - \lambda I)$ o polionómio característico de uma matriz real do tipo $n \times n$ e $E(\lambda) = \operatorname{Nuc}(A - \lambda I)$. Decida sobre o valor lógico das seguintes proposições:

- (a) Temos $p(\lambda) = 0$ se e só se dim $NucE(\lambda) \neq 0$.
- (b) A matriz é invertível se e só se 0 e valor próprios de A.
- (c) Se a matriz B se obtém de A aplicando o método de Gauss, então os valores próprios de A e B coincidem.
- (d) Se A é simétrica $A = A^t$, então é diagonalizável.
- (e) Se λ e μ são valores próprios distintos de A, u vector próprio associado ao valor próprio λ , v vector próprio associado ao valor próprio μ , então u + v é um vector próprio associado ao valor próprio $\lambda + \mu$.
- (f) O conjunto $\{\lambda \in \mathbb{C} : \dim \text{Nuc}(A \lambda I) = 0\}$ é infinito.

Exercício 5.8 (a) Mostre que a matriz $A = \begin{bmatrix} 2 & 1 \\ -2 & 5 \end{bmatrix}$ é diagonalizável, indicando uma matriz diagonal D e matriz mudança de base S tais que $D = SAS^{-1}$.

(b) Encontre a única solução do seguinte sistema de equações diferenciais:

$$\begin{cases} 2x_1(t) + x_2(t) = x'_1(t) \\ -2x_1(t) + 5x_2(t) = x'_2(t) \end{cases}$$

com as condições $x_1(0) = 1, x_2(0) = -1.$

5.1 Alguns exercícios resolvidos

Exercício 5.9 Determine todos os vectores e valores próprios da transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ representada em relação à base canónica de \mathbb{R}^2 pela matriz $A = \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}$.

Resolução O polinómio característico de A é:

$$p(\lambda) = \det(A - \lambda I) = \det\begin{bmatrix} 1 - \lambda & -2 \\ -2 & 4 - \lambda \end{bmatrix} = (1 - \lambda)(4 - \lambda) - 4 = \lambda^2 - 5\lambda,$$

pelo que os valores próprios de T (os mesmos que os de A) são $\{0,5\}$. Resta-nos encontrar os vectores próprios associados a cada valor próprio. O espaço próprio E(0) associado a valor próprio $\lambda=0$ é $E(0)=\operatorname{Nuc}(A-0I)=\operatorname{Nuc}(A)$, cuja base é $\{(2,1)\}$. Portanto os vectores próprios associados ao valor próprio $\lambda=0$ são $\{(2a,a)\}$ para qualquer escalar a não nulo.

Finalmente, o espaço próprio E(5) associado ao valor próprio $\lambda=5$ é

$$E(5) = \operatorname{Nuc}(A - 5I) = \operatorname{Nuc} \begin{bmatrix} -4 & -2 \\ -2 & -1 \end{bmatrix},$$

cuja base é $\{(1,-2)\}$, donde $\{(b,-2b):b\neq 0\}$ são os vectores próprios associados ao valor próprio $\lambda=5$.

Exercício 5.10 Seja $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ matriz invertível.

- (a) Prove que 0 não é valor próprio de A.
- (b) Encontre os valores e vectores próprios de A^{-1} em função dos de A.

Resolução: (a) Comece por notar que, por definição, 0 é valor próprio de A sse 0 é raiz do polinómio característico $p(\lambda) = \det(A - \lambda I)$, i.e. $0 = p(0) = \det(A - 0I) = \det(A)$. Pelo que 0 é valor próprio de A sse det A = 0, ou seja sse A não é invertível. Conclusão: A invertível sse $p(0) \neq 0$.

(b) Seja λ valor próprio de A. Por (a), $\lambda \neq 0$. Vamos agora provar que $1/\lambda$ é valor próprio de A^{-1} . Usando propriedades dos determinantes temos:

$$\det(A^{-1} - \frac{1}{\lambda}I) = \det(A^{-1} - \frac{1}{\lambda}A^{-1}A) = \det(A^{-1})\det(I - \frac{1}{\lambda}A) = \det(A^{-1})\det(\frac{1}{\lambda}\lambda I - \frac{1}{\lambda}A) = \det(A^{-1})\det(\frac{1}{\lambda}\lambda I - \frac{1}{\lambda}A) = \det(A^{-1})\det(A$$

pelo que $\lambda^n \det(A) \det(A^{-1} - 1/\lambda I) = (-1)^n \det(A - \lambda I)$. Portanto λ é valor próprio de A sse $1/\lambda$ é valor próprio de A^{-1} .

Seja v um vector próprio de A associado a um valor próprio λ . Portanto $Av = \lambda v$ por definição. Aplicando a inversa de A em ambos os membros desta igualdade obtemos $A^{-1}Av = \lambda A^{-1}v$, logo $v = \lambda A^{-1}v$. Portanto $A^{-1}v = \frac{1}{\lambda}v$. Assim concluimos que v também é vector próprio de A^{-1} associado ao valor próprio $1/\lambda$.

Exercício 5.11 Prove que $A = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}$ não é diagonalizável.

Resolução: O polinómio característico de A é

$$p(\lambda) = \det(A - \lambda I) = \det\begin{bmatrix} 2 - \lambda & 3 \\ 0 & 2 - \lambda \end{bmatrix} = (2 - \lambda)^2,$$

pelo que A tem $\lambda=2$ como único valor próprio (com multiplicidade algébrica dupla). O respectivo espaço próprio $E(2)=\operatorname{Nuc}\begin{bmatrix}0&3\\0&0\end{bmatrix}$ cuja base é formada por um só vector $e_1=(1,0)$. Como a multiplicidade geométrica deste valor próprio $\lambda=2$ não é igual à sua multiplicidade algébrica, conclui-se de imediato que a matriz A não é diagonalizável.

Exercício 5.12 Para cada $\alpha \in \mathbb{R}$, seja $A_{\alpha} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & \alpha \end{bmatrix}$.

- (a) Encontre os valores próprios de A_{α} e respectivas multiplicidades algébricas. Diga, quando A_{α} é invertível e nesse(s) caso(s), calcule os valores próprios de A_{α}^{-1} .
- (b) Determine base para cada espaço próprio $E(\lambda)$ de A_{α} .
- (c) Prove que A_{α} é diagonalizável para qualquer α , e encontre uma matriz mudança de base S_{α} e matriz diagonal D_{α} tal que $A_{\alpha} = S_{\alpha}^{-1} D_{\alpha} S_{\alpha}$.
- (d) Faça a alínea anterior usando a matriz A_{α}^{-1} (sempre que A_{α}^{-1} exista).
- (e) Prove que $\langle u, v \rangle = u A_{\alpha} v^t$ não mune \mathbb{R}^3 com um produto interno (para todo o α).

Resolução: (a) O polinómio característico de A_{α} é (usando a regra de Laplace):

$$p(\lambda) = \det(A - \lambda I) = \det \begin{bmatrix} 1 - \lambda & 2 & 0 \\ 2 & 1 - \lambda & 0 \\ 0 & 0 & \alpha - \lambda \end{bmatrix} = ((1 - \lambda)^2 - 4)(\alpha - \lambda) = (\lambda + 1)(\lambda - 3)(\alpha - \lambda),$$

pelo que os valores próprios de A_{α} são $\{-1,3,\alpha\}$. As multiplicidades algébricas são todas simples, quando $\alpha \notin \{-1,3\}$. Se $\alpha = -1$ a multiplicidade algébrica de $\lambda = -1$ é dois, e a de $\lambda = 3$ é um. No caso $\alpha = 3$, a multiplicidade algébrica de $\lambda = 3$ é dois, e a de $\lambda = -1$ é um.

A matriz A_{α} é invertível sse $\alpha \neq 0$, e os valores próprios de A^{-1} são $\{-1, 1/3, 1/\alpha\}$ (ver exercício 5.10). (b) Caso $\alpha \notin \{-1, 3\}$:

• O espaço próprio associado a $\lambda = -1$ é $E(-1) = \text{Nuc}(A - (-1)I) = \text{Nuc}\begin{bmatrix} 2 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & \alpha + 1 \end{bmatrix}$.

Pelo que a base de E(-1) é $\{(-1,1,0)\}$.

• O espaço próprio associado a $\lambda=3$ é $E(3)=\operatorname{Nuc}(A-3I)=\operatorname{Nuc}\begin{bmatrix} -2&2&0\\2&-2&0\\0&0&\alpha-3 \end{bmatrix}$.

Portanto $\{(1,1,0)\}$ é uma base para E(3).

• O espaço próprio associado a $\lambda = \alpha$ é $E(\alpha) = \operatorname{Nuc}(A - \alpha I) = \operatorname{Nuc} \begin{bmatrix} 1 - \alpha & 2 & 0 \\ 2 & 1 - \alpha & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Logo $\{(0,0,1)\}$ é uma base para $E(\alpha)$.

Falta investigar dois casos singulares. No caso $\alpha = -1$, $\{(-1,1,0),(0,0,1)\}$ forma uma base para E(-1), enquanto $\{(1,1,0)\}$ forma uma base para E(3). No caso $\alpha = 3$, $\{(-1,1,0)\}$ forma uma base para E(-1), e $\{(1,1,0),(0,0,1)\}$ forma uma base para E(3).

(c) A matriz A_{α} é diagonalizável para todo o α porque é simetrica $A_{\alpha}^{T} = A_{\alpha}$. (Alternativelmente, verifique que a multiplicidade algébrica e geométrica de cada valor próprio coincidem.)

Sendo $S_{\alpha} = M(id; B_{vp}, Bc)$ a matriz mudança de base, as colunas de S_{α} são formadas pelos vectores que provêm das bases dos espaços próprios, e as entrada na matriz diagonal D_{α} são os valores próprios

correspondentes aos vectores próprios em S_{α} . Assim, e em todos os casos, $S_{\alpha} = \begin{bmatrix} -1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $D_{\alpha} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & \alpha \end{bmatrix}$$
. Note que se A_{α} representa a transformação linear T_{α} na base canónica, S_{α} é a matriz

mudança de base (da base formada por vectores próprios para a base canónica) e D_{α} representa T_{α} na base formada pelo vectores próprios (verifique!).

- (d) A matriz é invertível sse $\alpha \neq 0$. Os valores próprios de A^{-1} são pelo exercício 5.10, $\{-1, 1/3, 1/\alpha\}$. As bases para os espaços próprios E(-1), E(1/3) e $E(1/\lambda)$ de A^{-1} coincidem (novamente pelo exercício 5.10) com as bases para os espaços próprios E(-1), E(3) e $E(\alpha)$ de A, respectivamente. Temos trivialmente $A_{\alpha}^{-1} = S_{\alpha}^{-1} D_{\alpha}^{-1} S_{\alpha}$, onde S_{α} e D_{α} são as matrizes calculadas em (c).
- (e) Observe que A_{α} tém pelo menos um valor próprio negativo (para qualquer α)!

Exercício 5.13 Considere a matriz
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
 e $x(t) = (x_1(t), x_2(t), x_3(t))$ para cada $t \in \mathbb{R}$.

- (a) Encontre a solução geral³ do sistema de equações diferencias x'=Ax, onde $x'(t)=(x'_1(t),x'_2(t),x'_3(t))$.
- (b) Calcule a solução de x'(t) = Ax(t) que passa no ponto x(0) = (1, 1, 1).

Resolução: (a) • Comece por observar que A é simétrica, portanto A é diagonalizável. Vamos encontrar, em primeiro lugar, matriz mudança de base S e matriz diagonal D tais que $S^{-1}AS = D$.

O polinómio característico de A é $p(\lambda) = -\lambda(\lambda - 2)^2$, pelo que os valores próprios de A são $\{0,2\}$. O vector (-1,0,1) forma uma base para E(0), enquanto (1,0,1),(0,1,0) fornecem uma base para o espaço próprio E(2). Logo

$$S = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

• De seguida, vamos resolver o sistema de equações diferenciais y' = Dy. Como D é diagonal, a solução geral desta equação é imediata: $y(t) = (c_1e^{0t}, c_2e^{2t}, c_3e^{2t}) = (c_1, c_2e^{2t}, c_3e^{2t})$ com c_1, c_2, c_3 constantes.

• Finalmente, a solução geral de x' = Ax obtém-se da de y' = Dy da seguinte forma

$$x(t) = Sy(t) = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 e^{2t} \\ c_3 e^{2t} \end{bmatrix} = \begin{bmatrix} -c_1 + c_3 e^{2t} \\ c_2 e^{2t} \\ c_1 + c_3 e^{2t} \end{bmatrix}.$$

(b) Já vimos em (a) que a solução geral de x' = Ax é $x(t) = (-c_1 + c_3e^{2t}, c_2e^{2t}, c_1 + c_3e^{2t})$. Falta-nos determinar os valores das constantes c_1, c_2, c_3 , pelo que temos de usar a condição x(0) = (1, 1, 1) da seguinte maneira:

$$(1,1,1) = x(0) = (-c_1 + c_3, c_2, c_1 + c_3)$$

donde $c_1 = 0, c_2 = 1, c_3 = 1$. Portanto $x_1(t) = e^{2t}, x_2(t) = e^{2t}$ e $x_3(t) = e^{2t}$.

Exercício 5.14 No espaço dos polinómios reais de grau menor ou igual a 3, P_3 , considere os vectores $v_1 = 1 + x^3$, $v_2 = 1 + x^2 + x$, $v_3 = x - x^3$, $v_4 = 1 - x$.

- (a) Verifique que $B = (v_1, v_2, v_3, v_4)$ é uma base de P_3 .
- (b) Sendo $T: P_3 \to P_3$ a transformação linear tal que

$$T(y_1v_1 + y_2v_2 + y_3v_3 + y_4v_4) = (y_1 + y_2)v_3 + (y_3 + y_4)v_1$$

determine a imagem, o núcleo e os subespaços próprios de T.

- (c) Escreva a matriz C que representa T em relação à base $B_2 = (1, x, x^2, x^3)$ e diga justificando se C é diagonalizável.
- (d) Resolva a equação $T(p(x)) = 3v_3$.

Resolução:

(a) Escrevendo as componentes destes vectores em relação à base $B_1=(1,x,x^2,x^3)$ de P_3 como linhas de uma matriz e usando eliminação de Gauss

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & -1 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & -1 & 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$

concluímos que, dado que a dimensão do espaço das linhas da matriz é 4, também a expansão linear $L(\{v_1, v_2, v_3, v_4\})$ tem dimensão 4 (igual à dimensão de P_3), donde $B = (v_1, v_2, v_3, v_4)$ é uma base de P_3 .

(b) Como $T(v_1)=v_3, T(v_2)=v_3, T(v_3)=v_1, T(v_4)=v_1,$ a matriz que representa T em relação à base B (ou seja M(T;B)) é

$$A = \left[\begin{array}{cccc} 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right].$$

O espaço de colunas desta matriz é $L(\{(0,0,1,0),(1,0,0,0)\})$, e logo $ImT = \{v \in P_3 : v_B \in \mathcal{C}(A)\} = L(\{v_3,v_1\})$. O núcleo de A é

 $\{(x,y,z,w)\in\mathbb{R}^4: x+y=0 \text{ e } z+w=0\}=\{(-y,y,-w,w): y,w\in\mathbb{R}\}=L(\{(-1,1,0,0),(0,0,-1,1)\}), \text{ e logo}$

Nuc $T = \{v \in P_3 : v_B \in Nuc(A)\} = L(\{-v_1 + v_2, -v_3 + v_4\}).$

O polinómio característico $p(\lambda)$ de A é

$$p(\lambda) = \det \begin{bmatrix} -\lambda & 0 & 1 & 1 \\ 0 & -\lambda & 0 & 0 \\ 1 & 1 & -\lambda & 0 \\ 0 & 0 & 0 & -\lambda \end{bmatrix} = (-\lambda) \det \begin{bmatrix} -\lambda & 0 & 1 \\ 0 & -\lambda & 0 \\ 1 & 1 & -\lambda \end{bmatrix} = (-\lambda) \left((-\lambda) \left((-\lambda) \det \begin{bmatrix} -\lambda & 0 \\ 1 & -\lambda \end{bmatrix} + \det \begin{bmatrix} 0 & 1 \\ -\lambda & 0 \end{bmatrix} \right) = (-\lambda) (-\lambda^3 + \lambda) = \lambda^2 (\lambda^2 - 1) = \lambda^2 (\lambda - 1)(\lambda + 1). \text{ Logo os valores próprios de } T \text{ são } 0, 1, -1.$$

O subespaço próprio associado a 0 é o núcleo de T, que já foi determinado.

Temos
$$A - 1I = \begin{bmatrix} -1 & 0 & 1 & 1 \\ 0 & -1 & 0 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}.$$

Usando eliminação de Gauss

$$\begin{bmatrix} -1 & 0 & 1 & 1 \\ 0 & -1 & 0 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix},$$

concluímos que

Nuc $(A-1I)=\{(x,y,z,w)\in\mathbb{R}^4: -x+z=0\ {\rm e}\ y=0\ {\rm e}\ w=0\}=\{(x,0,x,0): x\in\mathbb{R}\}=L(\{(1,0,1,0)\})$ donde o subespaço próprio de V associado a 1 é o subespaço $L(\{v_1+v_3\})$.

Temos
$$A + 1I = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
.

Usando eliminação de Gauss

$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

concluímos que

Nuc $(A - 1I) = \{(x, y, z, w) \in \mathbb{R}^4 : x + z = 0 \text{ e } y = 0 \text{ e } w = 0\} = L(\{(-1, 0, 1, 0)\}) \text{ donde o subespaço próprio de } V \text{ associado a } -1 \text{ é o subespaço } L(\{-v_1 + v_3\}).$

(c) Seja
$$G = M(id; B, B_2) = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 \end{bmatrix}$$
.

A matriz G^{-1} é a matriz $M(id; B_2, B)$ e pode ser determinada (determine!) pelo método de Gauss-

Jordan ou usando a matriz dos cofactores, i.e.

$$G^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 & -2 & 1 \\ 0 & 0 & 2 & 0 \\ 1 & 1 & -2 & -1 \\ 1 & -1 & 0 & -1 \end{bmatrix}.$$

Sendo A = M(T; B) temos que $C = M(T; B_2) = GAG^{-1}$ (calcule C!).

Dado que, pelas alíneas anteriores, sabemos que a soma das dimensões dos subespaços próprios de T é 4, a transformação T é diagonalizável ou seja P_3 admite uma base B_3 constituída por vectores próprios de T. A matriz D de T em relação a esta base é diagonal e C é semelhante a D, por representar T em relação a outra base de P_3 . Logo C é diagonalizável.

(d) As soluções da equação $T(p(x))=3v_3$ são exactamente os elementos da imagem completa inversa $T^{-1}(v_3)$. Sabemos que $T(v_1)=v_3$ pelo que $T(3v_1)=3v_3$ e logo as soluções da equação dada são os elementos de $3v_1+NucT$. Se quisermos descrever em extensão este conjunto obtemos $3v_1+NucT=\{(3-a)v_1+av_2-bv_3+bv_4:a,b\in\mathbb{R}\}$, dado que

Nuc
$$T = L(\{-v_1 + v_2, -v_3 + v_4\}) = \{-av_1 + av_2 - bv_3 + bv_4 : a, b \in \mathbb{R}\}.$$

Ideia para uma resolução alternativa: As coordenadas do vector $3v_3$ em relação à base B são (0,0,3,0) e logo

$$T^{-1}(v_3)=\{v\in V: v_B\text{ \'e solução de }AX=\begin{bmatrix}0\\0\\3\\0\end{bmatrix}\}. \text{ Resolvendo este sistema obtemos o conjunto das }$$

soluções pretendido.

6 Produtos Internos

Exercício 6.1 Identifique as aplicações $\langle , \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ que definem um produto interno, Em \mathbb{R}^2 :

- (a) $\langle (x_1, x_2), (y_1, y_2) \rangle = x_1 y_1 + x_2 y_2$
- (b) $\langle (x_1, x_2), (y_1, y_2) \rangle = x_1 y_1 + x_1 y_2 + x_2 y_2$.
- (c) $\langle (x_1, x_2), (y_1, y_2) \rangle = -2x_1y_1 + 3x_2y_2$.
- (d) $\langle (x_1, x_2), (y_1, y_2) \rangle = x_2 y_1 y_2 + x_1 y_2$.

Em \mathbb{R}^3 :

- (e) $\langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3$.
- (f) $\langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle = x_1 y_1 + 2x_1 y_2 + x_2 y_2 + 3x_1 y_3 + x_2 y_3 + x_3 y_3$.
- (g) $\langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle = x_3 x_1 y_2 + x_1 y_2$.

Exercício 6.2 Determine um produto interno de \mathbb{R}^2 tal que $\langle (1,0),(0,1)\rangle=2$. Será único?

Exercício 6.3 No espaço linear $E = \operatorname{Mat}_{n \times n}(\mathbb{R})$, mostre que

$$\langle A, B \rangle = tr(AB^t)$$

define um produto interno em E.

6.1 Complemento, projecções e bases ortogonais

Exercício 6.4 Seja E um espaço Euclideano de dimensão finita e $F = L(\{u_1, \dots, u_k\})$.

- (a) Prove que o complemento ortogonal $F^{\perp} = \{u \in E : \langle u, u_1 \rangle = 0, \langle u, u_2 \rangle = 0, \dots, \langle u, u_k \rangle = 0\}.$
- (b) Conclua que se considerarmos o produto interno usual em \mathbb{R}^n e A a matriz $k \times n$ cujas linhas são formadas pelos vectores u_1, \dots, u_k , então $F^{\perp} = \text{Nuc}A$. Em particular $F^{\perp \perp} = \mathcal{L}(A)$.

Exercício 6.5 Considere \mathbb{R}^3 munido com o produto interno usual e $F = L(\{u_1\})$ onde $u_1 = (1, 1, 1)$.

- (a) Calcule uma base ortonormada para F.
- (b) Calcule uma base para o complemento ortogonal F^{\perp} de F.
- (c) Calcule uma base ortgonormal para o complemento ortogonal de F, i.e. base ortogonarmal para F^{\perp} .

Exercício 6.6 Considere \mathbb{R}^3 munido com o produto interno usual e $F = \{(x, y, z) \in \mathbb{R}^3 : x - y = 0\}$.

- (a) Calcule uma base ortonormada para F.
- (b) Calcule uma base para o complemento ortogonal F^{\perp} de F.
- (c) Calcule uma base ortogonormal para o complemento ortogonal de F, i.e. base ortogonormal para F^{\perp} .

Exercício 6.7 Considere \mathbb{R}^4 munido com o produto interno usual e $F = \{(x, y, z) \in \mathbb{R}^4 : x - y = 0\}$.

- (a) Calcule uma base ortogonal para F^{\perp} .
- (b) Determine a projecção ortogonal de p = (1, 1, 1, 1) sobre $F \in F^{\perp}$.
- (c) Calcule dist(p, F) e $dist(p, F^{\perp})$.

Exercício 6.8 Considere em \mathbb{R}^4 o produto interno usual.

- (a) Determine uma base para o complemento ortogonal E^{\perp} de $E = L(\{(1,0,0,0),(1,0,0,1)\})$. E uma base ortogonal para E^{\perp} .
- (b) Determine uma base para o complemento ortogonal de Nuc $\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$.
- (c) Calcule o ângulo entre v = (1, 1, 1, 1) e w = (1, 0, 0, 0).

Exercício 6.9 Seja E um subespaço linear de \mathbb{R}^n . Prove que existe uma matriz A tal que $E = \operatorname{Nuc}(A)$.

Exercício 6.10 Em \mathcal{P}_2 , considere a a seguinte aplicação $\mathcal{P}_2 \times \mathcal{P}_2 \to \mathbb{R}$:

$$\langle p(x), q(x) \rangle = p(0)q(0) + p'(0)q'(0) + p'(0)q'(0),$$

- (a) Prove que esta aplicação define um produto interno em \mathcal{P}_2 .
- (b) Calcule ||p(x)|| para um qualquer polinómio de \mathcal{P}_2 .
- (c) Calcule o ângulo entre os polinómios p(x) = 1 e $q(x) = 2 + x^2$.
- (d) Encontre uma base para o complemento ortogonal E^{\perp} de $E = L(\{p_1(x)\})$ onde $p_1(x) = 1 + x^2$.
- (e) Calcule as distâncias de p(x)=1 a E e a $E^{\perp},$ i.e. $\mathrm{dit}(p,E)$ e $\mathrm{dist}(p,E^{\perp}).$
- (f) Escrevendo $p(x) = a_0 + a_1x + a_2x^2$ e $q(x) = b_0 + b_1x + b_2x^2$, encontre uma matriz simétrica A tal que:

$$\langle p(x), q(x) \rangle = \begin{bmatrix} a_0 & a_1 & a_2 \end{bmatrix} A \begin{bmatrix} b_0 \\ b_1 \\ b_2 \end{bmatrix}$$

Exercício 6.11 No espaço linear $E = \operatorname{Mat}_{2\times 2}(\mathbb{R})$ considere o produto interno

$$\langle A, B \rangle = \operatorname{tr}(AB^t),$$

e o subespaço linear $F=\Big\{\left[\begin{array}{cc} x & y \\ z & w \end{array}\right]\in \mathrm{Mat}_{2\times 2}(\mathbb{R}):\ x+w=0,\ y-z=0\Big\}.$

- (a) Encontre uma base para F.
- (b) Encontre uma base para F^{\perp} .
- (c) Calcule $\operatorname{dist}(A, F)$ onde $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Exercício 6.12 Decida sobre o valor lógico das seguintes proposições:

- (a) Existem produtos internos em \mathbb{R}^2 que satisfazem ||(1,0)||=0.
- (b) Para cada $a \in \mathbb{R}$, existe um produto interno em \mathbb{R}^2 tal que ||(1,0)|| = a.
- (c) O ângulo entre $e_1 = (1,0)$ e $e_2 = (0,1)$ é $\pi/2$ para qualquer produto interno.
- (d) Seja E um subespaço linear de \mathbb{R}^n . Então $\operatorname{dist}(\mathbf{0}, E) = \operatorname{dist}(\mathbf{0}, E^{\perp}) = 0$, para qualquer produto interno.
- (e) O $\mathbf{0}$ é o único ponto de \mathbb{R}^n que satisfaz dist $(\mathbf{0}, E) = \text{dist}(\mathbf{0}, E^{\perp}) = 0$.
- (f) Se $E \subseteq F$ então $F^{\perp} \subseteq E^{\perp}$.
- (g) Para qualquer subespaço linear E do espaço Euclideano \mathbb{R}^n temos que $E^{\perp} \subseteq \{\mathbf{0}\}^{\perp}$.
- (h) Usando o produto interno usual se F = Nuc(A), então $F^{\perp} = \mathcal{L}(A)$.

6.2 Alguns exercícios resolvidos

Exercício 6.13 Em \mathbb{R}^3 , considere o seguinte produto interno:

$$\langle (x, y, z), (a, b, c) \rangle = 2xa + xb + ya + yb + zc$$

o qual se fixa em <u>todas</u> as alíneas que se seguem.

- (a) Prove que $\langle \cdot, \cdot \rangle$ é de facto um produto interno em \mathbb{R}^3 .
- (b) Encontre uma base ortogonal para $E = L(\lbrace e_1, e_2 \rbrace)$ onde $e_1 = (1, 0, 0)$ e $e_2 = (0, 1, 0)$.
- (c) Determine uma base para o complemento ortogonal E^{\perp} . Verifique que $\dim(E) + \dim(E^{\perp}) = \dim\mathbb{R}^3$.
- (d) Encontre a representação matricial da projecção ortogonal $P_E: \mathbb{R}^3 \to \mathbb{R}^3$ na base canónica. Qual é a representação matricial de $P_{E^{\perp}}$?
- (e) Calcule o ponto de E mais próximo de $e_3 = (0, 0, 1)$.
- (f) Calcule a distância de v = (2, 0, 1) a E^{\perp} .

Resolução (a) Sejam $u=(x,y,z), u'=(x',y',z'), v=(a,b,c) \in \mathbb{R}^3$ e $\lambda \in \mathbb{R}$. O axioma da simetria verifica-se porque $\langle u,v\rangle=2xa+xb+ya+yb+zc=2ax+bx+ay+by+cz=\langle v,u\rangle$. Por outro lado,

$$\langle \lambda u + u', v \rangle = 2(\lambda x + x')a + (\lambda x + x')b + (\lambda y + y')a + (\lambda y + y')b + (\lambda z + z')c = \lambda \langle u, v \rangle + \langle u', v \rangle$$

pelo que o axioma da linearidade é verificado. Finalmente, falta provar o axioma da positividade, i.e. $\langle u,u\rangle\geq 0$ para todo $u\in\mathbb{R}^3$ e $\langle u,u\rangle=0$ sse u=(0,0,0). Para esse fim, é suficiente observar que $\langle u,u\rangle=2x^2+2xy+y^2+z^2=x^2+(x+y)^2+z^2$.

Resolução alternativa de (a): comece por notar que $\langle u, v \rangle = \begin{bmatrix} x & y & z \end{bmatrix} A \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ onde $A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$,

pelo que a simetria e a linearidade são óbvias. Para provar a positividade, é suficiente aplicar o critério:

$$A = A^t$$
, $\det[2] > 0$, $\det\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = 1 > 0$ e $\det(A) > 0$

(ou então verifique que os valores próprios de A são todos positivos).

(b) Note, em primeiro lugar, que $\{e_1, e_2\}$ é uma base de E. Aplicamos de seguida o processo de ortogonalização de Gram-Schmidt para obter a base ortogonal $\{w_1, w_2\}$:

$$w_1 = e_1$$

$$w_2 = e_2 - \frac{\langle e_2, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 = e_2 - \frac{1}{2} e_1 = (\frac{-1}{2}, 1, 0)$$

$$\begin{split} w_2 &= e_2 - \frac{\langle e_2, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 = e_2 - \frac{1}{2} e_1 = (\frac{-1}{2}, 1, 0). \\ \text{(c) Por definição } E^\perp &= \{ u \in \mathbb{R}^3 : \langle u, e \rangle = 0, \text{ para todo o } e \in E \}. \text{ Como } e_1, e_2 \text{ geram } E, \end{split}$$

$$E^{\perp} = \{ u = (x, y, z) : \langle u, e_1 \rangle = 0 = \langle u, e_2 \rangle \} = \{ u \in \mathbb{R}^3 : 2x + y = 0 = x + y \} = \text{Nuc} \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}.$$

Donde $e_3 = (0, 0, 1)$ base (ortogonal) de E^{\perp} .

(d) Note que $P_{E^{\perp}}(e_1) = (0,0,0) = P_{E^{\perp}}(e_2)$ porque e_1,e_2 pertencem_a $(E^{\perp})^{\perp} = E$. Mais, $P_{E^{\perp}}(e_3) = e_3$

porque
$$e_3 \in E^{\perp}$$
. Logo a matriz $\mathcal{P}_{E^{\perp}}$ que representa $P_{E^{\perp}}$ é $\mathcal{P}_{E^{\perp}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Como $P_E + P_{E^{\perp}} = I$,

a matriz \mathcal{P}_E que representa P_E na base canónica é $\mathcal{P}_E = I - \mathcal{P}_{E^{\perp}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

(e) O ponto de
$$E$$
 mais próximo de $e_3 = (0, 0, 1)$ é dado por $P_E(e_3)$. Por (d), $\mathcal{P}_E(e_3) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

Donde $P_E(e_3) = (0,0,0)$. Ou então, como $e_3 \in E^{\perp}$, $P_{E^{\perp}}(e_3) = e_3$, $P_E(e_3) = (0,0,0)$

(f) A distância é dada por

$$\operatorname{dist}(v, E^{\perp}) = ||P_E(v)|| = ||(2, 0, 0)|| = \sqrt{\langle (2, 0, 0), (2, 0, 0) \rangle} = \sqrt{8} = 2\sqrt{2}.$$

Exercício 6.14 Considere em \mathbb{R}^4 o produto interno usual e sejam E=L((1,0,0,1),(0,1,1,1)),F=L((1,0,0,1)).

- (a) Será que $E^{\perp} \subseteq F^{\perp}$? Calcule $\dim E$, $\dim E^{\perp}$, $\dim F$ e $\dim F^{\perp}$.
- (b) Determine base ortogonal para E.
- (c) Determine base ortogonal para E^{\perp} (o complemento ortogonal de E).
- (d) Calcule a distância de p = (1, 1, 0, 0) a F.
- (e) Encontre as equações cartesianas da recta \mathcal{R} paralela a F que passa no ponto p=(1,1,0,0).
- (f) Encontre as equações do 2-plano \mathcal{P} que passa no ponto p=(1,1,0,0) e é perpendicular a E.
- (g) Encontre a matriz que representa $P_{F^{\perp}}: \mathbb{R}^4 \to \mathbb{R}^4$ na base canónica. Verifique que $P_{F^{\perp}} \circ P_{F^{\perp}} = P_{F^{\perp}}$.

Resolução (a) Sim, porque $F \subset E$. Temos que $\dim E = \dim E^{\perp} = 2$, $\dim F = 1$ e $\dim F^{\perp} = 3$.

(b) Sendo $v_1 = (1,0,0,1), v_2 = (0,1,1,1)$ base para E, vamos aplicar o processo de ortogonalização de Gram-Scmidt para obter uma base ortogonal $\{w_1, w_2\}$ para E:

$$w_1 = v_1 = (1, 0, 0, 1)$$

$$w_2 = v_2 - \frac{\langle v_2, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 = (\frac{-1}{2}, 1, 1, \frac{1}{2}).$$

(c) Em primeiro lugar temos que encontrar uma base $\{s_1, s_2\}$ de E^{\perp} , e de seguida apelar ao processo de ortogonalização de Gram-Schmidt para obter uma base ortogonal $\{t_1, t_2\}$ de E^{\perp} .

Como v_1, v_2 geram E,

$$E^{\perp} = \{ u = (x, y, z, w) : \langle u, v_1 \rangle = 0 = \langle u, v_2 \rangle \} = \text{Nuc} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

cuja base é $s_1 = (-1, -1, 0, 1)$ e $s_2 = (0, -1, 1, 0)$. Finalmente, aplicando Gram-Schmidt:

$$t_1 = s_1 = (-1, -1, 0, 1)$$

$$t_2 = s_2 - \frac{\langle s_2, t_1 \rangle}{\langle t_1, t_1 \rangle} t_1 = (0, -1, 1, 0) - \frac{1}{3} (-1, -1, 0, 1) = (\frac{1}{3}, \frac{-2}{3}, 1, \frac{-1}{3}).$$

(d) A distância de p a F é dist $(p,F) = ||P_{F^{\perp}}(p)||$. Agora ou se usa uma base ortonormada $\{u_1,u_2,u_3\}$ de F^{\perp} e então⁴ $P_{F^{\perp}}(p) = \langle p,u_1 \rangle u_1 + \langle p,u_2 \rangle u_2 + \langle p,u_3 \rangle u_3$, ou se usa o facto de $P_F + P_{F^{\perp}} = I$, i.e.

$$P_{F^{\perp}}(p) = p - P_F(p) = p - \frac{\langle p, (1, 0, 0, 1) \rangle}{\langle (1, 0, 0, 1), (1, 0, 0, 1) \rangle} (1, 0, 0, 1) = (\frac{1}{2}, 1, 0, \frac{-1}{2}).$$

Portanto $dist(p, F) = \sqrt{6}/2$.

(e) Primeiro vamos encontrar uma base para F^{\perp} . Como estamos a usar o produto usual de \mathbb{R}^4 , temos que $F^{\perp}=\operatorname{Nuc}\left[\begin{array}{ccc} 1 & 0 & 0 & 1 \end{array}\right]$, cuja base é $\{(-1,0,0,1),(0,1,0,0),(0,0,1,0)\}$. Donde $F=\{(x,y,z,w): -x+w=0,y=0,z=0\}$. Como a recta \mathcal{R} é paralela a F, as equações de \mathcal{R} obtêm-se das de F impondo a condição $p\in\mathcal{R}$ (originando eventualmente equações não homogénias). Facilmente se constata que as equações cartesianas de \mathcal{R} são: -x+w=-1,y=1,z=0.

Note que
$$F = \text{Nuc} \begin{bmatrix} -1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
.

- (f) Vimos em (b) que $\{(1,0,0,1),(\bar{0},1,1,1)\}$ é uma base de E, pelo que as equações cartesianas de E^{\perp} são: x+w=0,y+z+w=0. Como o 2-plano \mathcal{P} é paralelo a E^{\perp} e $p\in\mathcal{P}$, concluimos que as equações cartesianas de \mathcal{P} são: x+w=1,y+z+w=1.
- (g) Como dimF é menor que dim F^{\perp} , vamos encontrar a matriz que representa P_F e depois usa-se o facto de $P_{F^{\perp}} = I P_F$. Sendo $\{e_1, e_2, e_3, e_4\}$ a base canónica de \mathbb{R}^4 , $P_F(e_i) = \frac{\langle e_i, (1,0,0,1) \rangle}{\langle (1,0,0,1), (1,0,0,1) \rangle} (1,0,0,1)$, com i = 1, 2, 3, 4. Pelo que

$$P_F(e_1) = (1/2, 0, 0, 1/2), P_F(e_2) = (0, 0, 0, 0), P_F(e_3) = (0, 0, 0, 0), P_F(e_4) = (1/2, 0, 0, 1/2).$$

$$\text{Pelo que a matriz que representa} \, P_{F^\perp} \circ \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right] - \left[\begin{array}{ccccc} 1/2 & 0 & 0 & 1/2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 \end{array} \right] = \left[\begin{array}{ccccc} 1/2 & 0 & 0 & -1/2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -1/2 & 0 & 0 & 1/2 \end{array} \right].$$

Exercício 6.15 Seja E um espaço Euclideano de dimensão n, F um subespaço linear de E, $P_F : E \to E$ a projecção ortogonal sobre F e \mathcal{P}_F a matriz que representa P_F numa base de E.

- (a) Prove que o conjunto dos valores próprios de P_F é um subconjunto de $\{0,1\}$.
- (b) Será \mathcal{P}_F diagonalizável?

⁴Recorde que dada uma base ortonormada $\{u_i\}$ de um espaço E, $P_E(w) = \sum_i \langle w, u_i \rangle u_i$. De forma similar, dada uma base ortonormada $\{v_j\}$ de E^{\perp} , $P_{E^{\perp}}(w) = \sum_j \langle w, v_j \rangle v_j$. Mais: $P_E(w) + P_{E^{\perp}}(w) = w$ para todo o vector w.

Resolução: Se F=E ou $F=\{0_E\}$ o exercício é trivial. Para fazer os outros casos observe que se λ é valor próprio de P_F então λ^2 também é valor próprio de P_F^2 . De seguida use o facto de $P_F^2=P_F$. Finalmente \mathcal{P}_F é diagonalizável, tomando, p. ex., a base $\mathcal{B}=\mathcal{B}_F\cup\mathcal{B}_{F^{\perp}}$ de E, onde \mathcal{B}_F (resp. $\mathcal{B}_{F^{\perp}}$) é uma base de F (resp. F^{\perp}). Indique então S e D tais que $S^{-1}\mathcal{P}_FS=D$, com D matriz diagonal.

Exercício 6.16 Prove que a distância de um ponto (x_0, y_0, z_0) ao plano \mathcal{P}_d de equação ax + by + cz = d é

$$\frac{|ax_0 + by_0 + cz_0 - d|}{(a^2 + b^2 + c^2)^{1/2}}.$$

Resolução: O plano \mathcal{P}_0 que passa na origem (0,0,0) e é paralelo a \mathcal{P}_d tem equação cartesiana dada por ax+by+cz=0. Por outro lado $\{(a,b,c)\}$ é uma base para o complemento ortogonal \mathcal{P}_0^{\perp} e $(0,0,d/c)\in\mathcal{P}_d$ se $c\neq 0$. Note que $(a,b,c)\neq (0,0,0)$, pelo que se $b\neq 0$, podemos usar o ponto $(0,d/b,0)\in\mathcal{P}_d$, ou ainda $(a/d,0,0)\in\mathcal{P}_d$ se $a\neq 0$. Portanto (denotando por $P_{\mathcal{P}_0^{\perp}}$ a projecção ortogonal sobre \mathcal{P}_0^{\perp}) temos

$$\operatorname{dist}\Big((x_0,y_0,z_0),\mathcal{P}_d\Big) = ||P_{\mathcal{P}_0^{\perp}}((x_0,y_0,z_0) - (0,0,d/c))|| = ||\frac{\langle (x_0,y_0,z_0 - d/c),(a,b,c)\rangle}{a^2 + b^2 + c^2}(a,b,c)||$$

donde o resultado.

6.3 Formas quadráticas

Exercício 6.17 Classificar as seguintes formas quadráticas, em definidas positivas, definidas negativas, semidefinidas positivas, semidefinidas negativas ou indefinidas:

(a)
$$Q(x,y) = x^2 + y^2 + 2xy$$
.

(b)
$$Q(x,y) = 2x^2 + 2y^2 + 2xy$$
.

(c)
$$Q(x,y) = -3x^2 + 2yx - 2y^2$$

(d)
$$Q(x, y, z) = x^2 + y^2 + 3z^2 + 4yx$$

(e)
$$Q(x, y, z, w) = \begin{bmatrix} x & y & z & w \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & \alpha & 0 \\ 0 & \alpha & 2 & 0 \\ 0 & 0 & 0 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$
, onde α é um parâmetro.

Exercício 6.18 Seja A uma matriz real simétrica $n \times n$. Prove que A^2 é definida positiva se e só se A for invertível (não singular).