

Sector Magnets or Transverse EM Fields in Cylindrical Coordinates [THPOA31]

Timofey Zolkin¹

¹Fermi National Accelerator Laboratory, PO Box 500, Batavia, Illinois 60510-5011, USA

2. Multipoles in Cartesian Coordinates — Homogeneous Harmonic Polynomials

$$\Delta_{\perp} \Phi = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = 0$$

$$\Delta_{\perp} \mathbf{A} = \left(\frac{\partial^2 A_z}{\partial x^2} + \frac{\partial^2 A_z}{\partial y^2}\right) \hat{\mathbf{e}}_z = 0$$

Solutions are homogeneous harmonic polynomials of two variables

$$\mathcal{A}_{n}(x,y) = \Re \mathcal{Z}^{n} = \frac{1}{2} \left[(x+iy)^{n} + (x-iy)^{n} \right] = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^{k} \cos \frac{k\pi}{2}$$

$$\mathcal{B}_{n}(x,y) = \Im \mathcal{Z}^{n} = \frac{1}{2i} \left[(x+iy)^{n} - (x-iy)^{n} \right] = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^{k} \sin \frac{k\pi}{2}$$

related to each other through the Cauchy-Riemann equation

$$\frac{\partial \mathcal{A}_n}{\partial x} = \frac{\partial \mathcal{B}_n}{\partial y} \qquad \qquad \frac{\partial \mathcal{A}_n}{\partial y} = -$$

with lowering operator which relates functions of different orders to each other

$$n (\mathcal{A}, \mathcal{B})_{n-1} = \frac{\partial}{\partial x} (\mathcal{A}, \mathcal{B})_n = \pm \frac{\partial}{\partial y} (\mathcal{B}, \mathcal{A})_n$$
 $\mathcal{A}_0 = 1, \mathcal{B}_0 = 0.$

Normal		Skew	
$\overline{\Phi}^{(n)} = -C_n \frac{\mathcal{B}_n^{(\mathbf{e})}}{n!}$	$\overline{A}_{\theta}^{(n)} = -C_n \frac{\mathcal{A}_n^{(\mathbf{m})}}{n!}$	$\underline{\Phi}^{(n)} = -\mathrm{D}_n \frac{\mathcal{A}_n^{(\mathbf{e})}}{n!}$	$\underline{A}_{\theta}^{(n)} = D_n \frac{\mathcal{B}_n^{(\mathbf{m})}}{n!}$
$\overline{F}_{\rho}^{(n)} = C_n \frac{\mathcal{B}_{n-1}^{(m)}}{(n-1)!}$	$\overline{F}_{\mathbf{y}}^{(n)} = C_n \frac{\mathcal{A}_{n-1}^{(\mathbf{e})}}{(n-1)!}$	$\underline{F}_{\rho}^{(n)} = D_n \frac{\mathcal{A}_{n-1}^{(m)}}{(n-1)!}$	$\underline{F}_{\mathbf{y}}^{(n)} = -\mathrm{D}_{n} \frac{\mathcal{B}_{n-1}^{(\mathbf{e})}}{(n-1)!}$

3. Multipoles in Cylindrical Coordinates and McMillan Harmonics

First step is to restore the symmetry

$$\triangle_{\triangle}\Phi = \triangle_{\perp}\Phi + \frac{1}{\rho}\frac{\partial\Phi}{\partial\rho} = \frac{\partial^{2}\Phi}{\partial\rho^{2}} + \frac{1}{\rho}\frac{\partial\Phi}{\partial\rho} + \frac{\partial^{2}\Phi}{\partial y^{2}} = 0$$

$$\triangle_{\triangle}\mathbf{A} = \left(\triangle_{\triangle}A_{\theta} - \frac{A_{\theta}}{\rho^{2}}\right)\hat{\mathbf{e}}_{\theta} = \frac{\hat{\mathbf{e}}_{\theta}}{\rho}\left[\frac{\partial^{2}}{\partial\rho^{2}} - \frac{1}{\rho}\frac{\partial}{\partial\rho} + \frac{\partial^{2}\Phi}{\partial y^{2}}\right](\rho A_{\theta}) = 0$$

Looking for the solution in a form similar to HHP

$$\Phi = -\sum_{k=0}^{n} \frac{\mathcal{F}_{n-k}(\rho)y^{k}}{(n-k)!} \left(C_{n} \sin \frac{k\pi}{2} + D_{n} \cos \frac{k\pi}{2} \right)$$

$$A_{\theta} = -\sum_{k=0}^{n} \frac{1}{\rho} \frac{\mathcal{G}_{n-k}(\rho)y^{k}}{(n-k)!} \left(C_{n} \cos \frac{k\pi}{2} - D_{n} \sin \frac{k\pi}{2} \right)$$

where functions $\mathcal{F}_n(
ho)$ and $\mathcal{G}_n(
ho)$ are determined by two recurrence equations

$$\frac{\partial^{2} \mathcal{F}_{n}(\rho)}{\partial \rho^{2}} + \frac{1}{\rho} \frac{\partial \mathcal{F}_{n}(\rho)}{\partial \rho} = n (n - 1) \mathcal{F}_{n-2}(\rho)$$

$$\frac{\partial^{2} \mathcal{G}_{n}(\rho)}{\partial \rho^{2}} - \frac{1}{\rho} \frac{\partial \mathcal{G}_{n}(\rho)}{\partial \rho} = n (n - 1) \mathcal{G}_{n-2}(\rho)$$

one can see that \mathcal{F}_n and \mathcal{G}_n are related to each other through

$$\mathcal{G}_{n-1} = rac{1}{n}
ho rac{\partial \mathcal{F}_n}{\partial
ho} \qquad ext{and} \qquad \mathcal{F}_{n-1} = rac{1}{n} rac{\partial \mathcal{G}_n}{\partial
ho}$$

and allow the construction of lowering and corresponding raising operators

$$\mathcal{F}_{n} = \frac{1}{(n+1)(n+2)} \left[\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial}{\partial \rho} \right) \right] \mathcal{F}_{n+2} \qquad \mathcal{F}_{n} = n (n-1) \int_{1}^{\rho} \frac{1}{\rho} \int_{1}^{\rho} \rho \, \mathcal{F}_{n-2} \, \mathrm{d} \, \rho \, \mathrm{d} \, \rho$$

$$\mathcal{G}_{n} = \frac{1}{(n+1)(n+2)} \left[\rho \frac{\partial}{\partial \rho} \left(\frac{1}{\rho} \frac{\partial}{\partial \rho} \right) \right] \mathcal{G}_{n+2} \qquad \mathcal{G}_{n} = n (n-1) \int_{1}^{\rho} \rho \int_{1}^{\rho} \frac{1}{\rho} \, \mathcal{G}_{n-2} \, \mathrm{d} \, \rho \, \mathrm{d} \, \rho$$

with an additional constraint to terminate recurrences defining lowest orders as

 $\mathcal{F}_0 = 1, \qquad \mathcal{F}_1 = \ln \rho, \qquad \mathcal{G}_0 = 1, \qquad \mathcal{G}_1 = (\rho^2 - 1)/2.$

4. Summary

https://arxiv.org/pdf/1603.03451v1.pdf

3D models of 2n-pole sector magnets. From the left to the right: skew S-dipole, normal S-dipole, skew S-quadrupole, normal S-quadrupole and skew S-sextupole.

 $\mathcal{B}_{n}^{(\mathbf{e})}$ **0** 0

Table 2: Relationship between the coefficients of pure normal and skew sector multipoles, and, power series expansion of field in radial and vertical planes.

C_n		D_n	
n x = 0 y	t = 0	x = 0	y = 0
$1 F_y F$	\overline{y}	F_x	F_x
2 $\partial_y F_x \partial_y F_x$	$\partial_x F_y$	$-\partial_y F_y$	$\partial_x F_x + F_x$
$3 - \partial_y^2 F_y$ $\partial_y^2 F_y$	$\partial_x^2 F_y + \partial_x F_y$	$-\partial_y^2 F_x$	$\partial_x^2 F_x + \partial_x F_x - F_x$
$4 \ -\partial_y^3 F_x \ \partial$	$\partial_x^3 F_y + \partial_x^2 F_y - \partial_x F_y$	$\partial_y^3 F_y$	$\partial_x^3 F_x + 2 \partial_x^2 F_x - \partial_x F_x + F_x$