Notes of Machine Learning

Kai Zhao

January 18, 2017

Contents

I	Supervised Learning											5						
1	Linear Regression									7								
	1.1	Matrix	derivatives .															8
		1.1.1	trace fact															8
2	Boosting										11							
	2.1	Boost	ing									 						12
		2.1.1	Reference .															12
		2.1.2	Definition															12
	2.2	Gradi	ent boosting															12
		2.2.1	Reference .									 						12
		2.2.2	Definition									 						12

4 CONTENTS

Part I Supervised Learning

Chapter 1

Linear Regression

1.1 Matrix Derivatives

1.1.1 trace fact

1. trAB = trBA

proof:

Let A be a m-by-n matrix, let B be a n-by-m matrix.

$$trAB = \sum_{i=1}^{m} (AB)_{ii} = \sum_{i=1}^{m} (\sum_{j=1}^{n} A_{ij}B_{ji})$$
(1.1)

$$trBA = \sum_{i=1}^{n} (BA)_{ii} = \sum_{i=1}^{n} (\sum_{j=1}^{m} B_{ij} A_{ji})$$
(1.2)

$$trBA = \sum_{i=1}^{n} (\sum_{j=1}^{m} B_{ij} A_{ji})$$

$$= \sum_{j=1}^{m} (\sum_{i=1}^{n} B_{ij} A_{ji})$$

$$= \sum_{j=1}^{m} (\sum_{i=1}^{n} A_{ji} B_{ij})$$

$$= \sum_{i=1}^{m} (\sum_{j=1}^{n} A_{ij} B_{ji})$$

$$= trAB$$

$$(1.3)$$

2. $\nabla_A tr AB = B^T$

proof:

Let A be a m-by-n matrix, let B be a n-by-m matrix.

1.1. MATRIX DERIVATIVES

9

$$\nabla_{A} tr A B = \begin{bmatrix} \frac{tr A B}{\partial A_{11}} \dots \frac{tr A B}{\partial A_{1n}} \\ \dots \\ \dots \\ \frac{tr A B}{\partial A_{m1}} \dots \frac{tr A B}{\partial A_{mn}} \end{bmatrix}$$

$$= \begin{bmatrix} B_{11} \dots B_{n1} \\ \dots \\ \dots \\ B_{1m} \dots B_{nm} \end{bmatrix}$$

$$= B^{T}$$

$$(1.4)$$

3.
$$\nabla_{A^T} f(A) = (\nabla_A f(A))^T$$

proof:

Let A be a m-by-n matrix.

$$\nabla_{A^{T}} f(A) = \begin{bmatrix} \frac{\partial f(A)}{\partial A_{11}} \cdots \frac{\partial f(A)}{\partial A_{m1}} \\ \cdots \\ \cdots \\ \frac{\partial f(A)}{\partial A_{1n}} \cdots \frac{\partial f(A)}{\partial A_{mn}} \end{bmatrix}$$
(1.5)

$$(\nabla_{A}f(A))^{T} = \begin{bmatrix} \frac{\partial f(A)}{\partial A_{11}} \dots \frac{\partial f(A)}{\partial A_{1n}} \\ \dots \\ \frac{\partial f(A)}{\partial A_{m1}} \dots \frac{\partial f(A)}{\partial A_{mn}} \end{bmatrix}^{T}$$

$$= \begin{bmatrix} \frac{\partial f(A)}{\partial A_{11}} \dots \frac{\partial f(A)}{\partial A_{mn}} \\ \dots \\ \dots \\ \dots \\ \frac{\partial f(A)}{\partial A_{1n}} \dots \frac{\partial f(A)}{\partial A_{mn}} \end{bmatrix}$$

$$= \nabla_{AT}f(A)$$

$$(1.6)$$

Chapter 2

Boosting

2.1 Boosting

2.1.1 Reference

http://www.cnblogs.com/wentingtu/archive/2011/12/15/2289550.html

Wikipedia: Boosting

2.1.2 Definition

Boosting is a family of machine learning algorithms which convert **weak learners** to **strong ones**.

2.2 Gradient boosting

2.2.1 Reference

http://www.cnblogs.com/wentingtu/archive/2011/12/15/2289550.html

2.2.2 Definition

Gradient boosting is a method of boosting. It is a machine learning technique for regression and classification problems, which produces a prediction model in the form of an ensemble of weak prediction models, typically decision trees.

It builds the model in a stage-wise fashion like other boosting methods do, and it generalizes them by allowing optimization of an arbitrary differentiable loss function.