顔廷宇 資工四 B03902052 2017年11月19日

ADLxMLDS HW2

1. Model description

A, Overall:

我的 seq2seq model 是由兩層 RNN 組成,一層 RNN 當作 Encoder ,輸入 Input vector sequence,輸出 Vector;第二層 RNN 當作 Decoder,輸入 Encoder's output vector,輸出 Output word sequence。

B, Encoder:

Encoder RNN 會把 Input vector 和前一輪的 Hidden state 當作輸入,輸出
Output vector 以及 Hidden state。

C, Decoder:

一開始先將 Input Word 做 Embedding 轉成高維,與上一層的 Hidden State 經過一層 Linear Feed-Forward Layer 與 Softmax 算出 Attention Weight。接下來,Encoder Output 和 Attention Weight 相乘並與 Input Word Embedded 經過一層的 Linear Feed-Forward Layer 與 relu 得到 gru 的 Input。最後與 Hidden State 輸入 gru RNN中得到下一層的 Hidden State 以及 Output,再做 Softmax 即可得到 Output Word。

2. Attention mechanism

A, How do you implement attention mechanism?

Attention Weight 是由 Input Word 與 Previous Hidden State 經過 Linear Feed-Forward Layer 與 Softmax 學出來的,並讓 Attention Weight 與 Encoder's Output 相乘且經過 Linear Feed-Forward Layer 與 relu,成為新的 Decoder's Input。

B, Compare and analyze the results:

這個實驗是做在 Hidden Units = 256 的條件下,可以看到加上 Attention 後, Decoder 能更精準地找到影片的焦點,並輸出更準確的字幕。

	BLEU@avg	BLEU@1
With Attention	0.256	0.684
Without Attention	0.241	0.658

3. How to improve your performance

A, Applied scheduled sampling:

使用助教所教的 scheduled sampling ,讓一開始的 Decoder 會拿 label當作下一個 state 的 input ,到最後讓 Decoder 使用自身的 output word 當作下一個 state 的 input。讓 model 可以適應拿到錯誤資訊的情形。

B, 删除低頻率字:

因為有些低頻的字出現次數太少,不容易去學習,故會讓 model 做出錯誤的判斷,故在一開始讀資料時,就刪除低頻率的字,在訓練的時候,也會將 label 中低頻的字刪除,以增加 model 的準確性。

C, 增加 RNN 的 Hidden Unit:

增加 Hidden Unit 會增加神經網路的參數,讓 model 的學習能力更強, 以增加預測的準確性。

4. Experimental results and settings

A, 删除低頻率字實驗:在 scheduled sampling = 0.8, hidden units = 256的情况下, 測試用不同删除低頻字標準對結果的影響

	BLEU@avg	BLEU@1
Word Freq <= 1 (Total = 3703)	0.255	0.683
Word Freq <= 2 (Total = 2876)	0.256	0.684
Word Freq \leq 3 (Total = 2421)	0.272	0.697

=> 從表中可以發現, 刪除低頻字確實可以提高 model 預測的準確性, 但刪除過多字, 會使字數過少, 也會傷害到預測的準確性。

B, scheduled sampling實驗: 在删除頻率 <= 2 的字, hidden units = 256的情况下, 測試 scheduled sampling對結果的影響

	BLEU@avg	BLEU@1
scheduled sampling = 1.0	0.241	0.652
scheduled sampling = 0.8	0.255	0.683
scheduled sampling = 0.6	0.267	0.709
scheduled sampling = 0.4	0.266	0.699

=> 應用 scheduled sampling 後, model 的準確度都有提高,但 scheduled sampling 的值就需要 tuning,而實驗結果為 0.6 時最好。

C, Hidden Unit 實驗: 在刪除頻率 <= 2 的字, scheduled sampling = 0.8 的情况下,測試 Hidden Unit 對結果的影響

	BLEU@avg	BLEU@1
Hidden Unit = 256	0.256	0.684
Hidden Unit = 512	0.286	0.717
Hidden Unit = 1024	0.288	0.731

=> 實驗結果顯示,增加 Hidden Units 數量可以有效的提高 model 預測的準確性,但也會增加記憶體的用量和時間,故需要權衡。