MÉTODOS NUMÉRICOS TEMA 3 SOLUCIÓN NUMÉRICA DE SISTEMAS DE ECUACIONES LINEALES

1. Resuelva el siguiente sistema de ecuaciones lineales (expresado en forma matricial), por el método de eliminación completa de Gauss - Jordan (con pivoteo); utilizando un programa de cómputo como herramienta para obtener la solución.

2. Un ingeniero supervisa la producción de tres tipos de automóvil. Se requieren tres clases de material -metal, plástico y caucho- para la producción. La cantidad necesaria para elaborar cada automóvil es de:

AUTOMÓVIL	METAL	PLÁSTICO	CAUCHO
	(kg/auto)	(kg/auto)	(kg/auto)
1	1500	25	100
2	1700	33	120
3	1900	42	160

Si se dispone de un total de 106 toneladas de metal, 2.17 toneladas de plástico y 8.2 toneladas de caucho diariamente, ¿Cuántos automóviles se pueden producir por día?

Resolver el problema por el método de descomposición de:

- a) Doolittle
- b) Crout

Presentar los resultados redondeados a dos dígitos decimales

MÉTODOS NUMÉRICOS TEMA 3 SOLUCIÓN NUMÉRICA DE SISTEMAS DE ECUACIONES LINEALES

- 3. Ana, Luis y Pedro tienen diferentes cantidades de dinero, Luis tiene dos veces lo que tiene Ana mas cinco pesos; Pedro tiene el doble de lo que tiene Luis quitándole doscientos cinco pesos a dicha cantidad y entre todos reunirían trescientos veinte pesos si pedro tuviera el triple de lo que tiene. ¿ Cuánto tiene cada uno? , resuelva el problema planteando un sistema de tres ecuaciones lineales con tres incógnitas, utilice el método de:
 - a) Jacobi, considerando una tolerancia \leq 0.04 en el error absoluto $x^{(0)}=[0 \ 0 \ 0]^{T}$
 - b) Gauss Seidel, considerando una tolerancia \leq 0.025% en el error relativo porcentual $\mathbf{x}^{(0)}$ =[0 0 0] $^{\mathsf{T}}$
 - c) Descomposición LU por Crout
 - d) Descomposición LU por Doolittle