MECH 539: Computational Aerodynamics Department of Mechanical Engineering, McGill University

Notes for Final Project: Solve the Quasi One-Dimensional Euler Equations for Various Artificial Dissipation Schemes Due 30th April, 2012

Pseudo Code.

1. **Initialize.** Setup the grid, and initialize the state vector (density, momentum, and energy as well as static pressure) flow using the specified flow conditions. Impose the exit static pressure.

2. Iteration Loop

- Compute the time step, Δt_i for each control volume based on the chosen temporal discretization scheme.
- Compute the flux, $F_{i+1/2}$ across each edge based on the chosen scheme.
- Compute the residual, $R_i^n = F_{i+\frac{1}{2}}^n S_{i+\frac{1}{2}} F_{i+\frac{1}{2}}^n S_{i+\frac{1}{2}} Q_i^n$, for all control volumes, $i = 2, ..., i_{\text{max}} 1$.
- Update the state vector based on the chosen temporal discretization. For the explicit Euler, the equation would be $w_i^{n+1} = w_i^n \frac{\Delta t_i}{V_i} R_i^n$, for all control volumes, $i=2,...,i_{\max}-1$.
- Update the static pressure, speed of sound, and Mach number for each control volume, $i = 2, ..., i_{max} 1$.
- Update Inlet and Exit Boundary Conditions using Characteristic Boundary Conditions
 - * Update the inlet boundary condition, by solving for the u-c characteristic if inlet is subsonic. If inlet is supersonic, then do not update i=1. (see page 12 of NavierStokes-BoundaryConditions.pdf)
 - * Update the exit boundary condition, by solving all three characteristics for both subsonic and supersonic exit boundary conditions. Place a conditional statement on how the change in the static pressure, δp , is computed. (see pages 13 and 14 of NavierStokes-BoundaryConditions.pdf)
- Check for convergence by monitoring, R_i , which should converge to machine zero.
- Repeat the **iteration loop** until convergence.

Inlet and Exit Boundary Conditions.

1. Inlet Boundary Conditions

- Supersonic Inlet. Specify the total pressure, p_t , total temperature, T_t , and Mach number, M at cell i = 1. Static pressure, p, static temperature, T, speed of sound, c, velocity, u, and energy, e can be initialized from these three values using the isentropic relations as stated in page 11 of NavierStokes-BoundaryConditions.pdf. As the solution iterates, then you do not update i = 1 since all three characteristics are running right.
- Subsonic Inlet. Solve for the u-c characteristic as follows.
 - * Compute $\frac{\partial p}{\partial u}$ from taking the derivative of p with respect to u in the isentropic relations.

$$\frac{\partial p}{\partial u} = p_t \left(\frac{\gamma}{\gamma - 1}\right) \left[1 - \frac{\gamma - 1}{\gamma + 1} \frac{\left(u_1^n\right)^2}{a_*^2}\right]^{1/(\gamma - 1)} \cdot \left(-2\frac{\gamma - 1}{\gamma + 1} \frac{u_1^n}{a_*^2}\right)$$

where
$$a_*^2 = 2\gamma \left(\frac{\gamma-1}{\gamma+1}\right) c_v T_t$$
, and $c_v = R/(\gamma-1)$.

* Compute δu

$$\lambda = \left(\frac{u_2^n + u_1^n}{2} - \frac{c_2^n + c_1^n}{2}\right) \frac{(\Delta t)_1}{\Delta x} \text{ where, } (\Delta t)_1 = \frac{\text{CFL}\Delta x}{u_1^n + c_1^n}$$
$$\delta u = \frac{-\lambda \left[p_2^n - p_1^n - \rho_1^n c_1^n (u_2^n - u_1^n)\right]}{\frac{\partial p}{\partial u} - \rho_1^n c_1^n}$$

* Update flow properties.

$$\begin{split} u_1^{n+1} &= u_1^n + \delta u \\ T_1^{n+1} &= T_t \left[1 - \frac{\gamma - 1}{\gamma + 1} \frac{\left(u_1^n\right)^2}{a_*^2} \right] \\ p_1^{n+1} &= p_t \left[\frac{T_1^{n+1}}{T_t} \right]^{\gamma/(\gamma - 1)} \\ \rho_1^{n+1} &= p_1^{n+1}/(RT_1^{n+1}) \\ e_1^{n+1} &= \rho_1^{n+1} \left[c_v T_1^{n+1} + \frac{1}{2} (u_1^{n+1})^2 \right] \\ c_1^{n+1} &= \sqrt{\frac{\gamma p_1^{n+1}}{\rho_1^{n+1}}} \\ \mathrm{Mach}_1^{n+1} &= u_1^{n+1}/c_1^{n+1} \end{split}$$

2. Exit Boundary Conditions

- Supersonic and Subsonic Exit.
 - * Compute eigenvalues.

$$\begin{split} \lambda_1 &= \left(\frac{u^n_{imax} + u^n_{imax-1}}{2}\right) \frac{(\Delta t)_{imax}}{\Delta x} \\ \lambda_2 &= \left(\frac{u^n_{imax} + u^n_{imax-1}}{2} + \frac{c^n_{imax} + c^n_{imax-1}}{2}\right) \frac{(\Delta t)_{imax}}{\Delta x} \\ \lambda_3 &= \left(\frac{u^n_{imax} + u^n_{imax-1}}{2} - \frac{c^n_{imax} + c^n_{imax-1}}{2}\right) \frac{(\Delta t)_{imax}}{\Delta x} \\ \text{where, } (\Delta t)_{imax} &= \frac{\text{CFL}\Delta x}{u^n_{imax} + c^n_{imax}} \end{split}$$

* Compute characteristic relations.

$$R_{1} = -\lambda_{1} \left[\rho_{imax}^{n} - \rho_{imax-1}^{n} - \frac{1}{(c_{imax}^{n})^{2}} (p_{imax}^{n} - p_{imax-1}^{n}) \right]$$

$$R_{2} = -\lambda_{2} \left[p_{imax}^{n} - p_{imax-1}^{n} + \rho_{imax}^{n} c_{imax}^{n} (u_{imax}^{n} - u_{imax-1}^{n}) \right]$$

$$R_{3} = -\lambda_{3} \left[p_{imax}^{n} - p_{imax-1}^{n} - \rho_{imax}^{n} c_{imax}^{n} (u_{imax}^{n} - u_{imax-1}^{n}) \right]$$

* Compute exit Mach number

$$\operatorname{Mach}_{imax}^{n} = \frac{(u_{imax}^{n} + u_{imax-1}^{n})/2}{(c_{imax}^{n} + c_{imax-1}^{n})/2}$$

* Compute δp based on either a subsonic or supersonic exit.

if
$$\operatorname{Mach}_{imax}^n > 1$$
 then $\delta p = \frac{1}{2}(R_2 + R_3)$ else $\delta p = 0$ end if

* Update $\delta \rho$ and δu

$$\delta \rho = R_1 + \frac{\delta p}{(c_{imax}^n)^2}$$
$$\delta u = \frac{R_2 - \delta p}{\rho_{imax}^n c_{imax}^n}$$

* Update flow properties.

$$\begin{split} \rho_{imax}^{n+1} &= \rho_{imax}^{n} + \delta \rho \\ u_{imax}^{n+1} &= u_{imax}^{n} + \delta u \\ p_{imax}^{n+1} &= p_{imax}^{n} + \delta p \\ T_{imax}^{n+1} &= \frac{p_{imax}^{n+1}}{\rho_{imax}^{n+1} R} \\ e_{imax}^{n+1} &= \frac{p_{imax}^{n+1}}{\rho_{imax}^{n+1}} \left[c_{v} T_{imax}^{n+1} + \frac{1}{2} (u_{imax}^{n+1})^{2} \right] \\ c_{imax}^{n+1} &= \sqrt{\frac{\gamma p_{imax}^{n+1}}{\rho_{imax}^{n+1}}} \\ \operatorname{Mach}_{imax}^{n+1} &= u_{imax}^{n+1} / c_{imax}^{n+1} \end{split}$$