Sheet 3 Evgenij Page 1

Exercise 1 (4 Points). The Clayton Copula with parameter $\theta > 0$ is given by

$$C_{\theta}(u, v) = (u^{-\theta} + v^{-\theta} - 1)^{-1/\theta}$$
.

Show that the Clayton copula is an archimedian copula.

We need to find a 2-monotone or convex φ so that $(u^{-\theta} + v^{-\theta} - 1)^{-1/\theta} = \phi(\varphi^{-1}(u) + \varphi^{-1}(v))$. If we set the pseudo-inverse of the generator to $\varphi^{-1}(t) = t^{-\theta} - 1$ for $t \in (0,1]$ and t_0 for t = 0, then we get that $\varphi^{-1}(C_{\theta}(u,v)) = u^{-\theta} + v^{-\theta} - 2 = \varphi^{-1}(u) + \varphi^{-1}(v)$. That is, the Clayton copula is an archimedian copula with generator $\varphi(t) = (t+1)^{-1/\theta}$.

Let $U_1, U_2 \sim \mathrm{U}[0,1]$ independent random variables. Determine the function f_θ such that $(U_1, f_\theta(U_1, U_2)) \sim C_\theta$.

Exercise 3 (4 Points). Prove Proposition 3.4: Let $X = (X_1, ..., X_d)$ and $Y = (Y_1, ..., Y_d)$ be d-dimensional random vectors. Then

(i)
$$X \leq_{st} Y \implies X \leq_{icx} Y$$
, $X \leq_{uo} Y$ and $X \geq_{lo} Y$
If $X \leq_{st} Y$, then

(iii)
$$X \leq_{sm} Y \implies X \leq_{c} Y \implies X \leq_{lo} Y$$
 and $X \leq_{uo} Y$

First, $X \leq_c Y$ is defined by $X \leq_{uo} Y$ and $X \leq_{lo} Y$, so it is enough to that $X \leq_{sm} Y \implies X \leq_{lo} Y$ and $X \leq_{sm} \implies X \leq_{uo} Y$. To this end we follow Theorem 6.15. from [Rüs13]. If $X \leq_{sm} Y$, then for all φ with for all $\epsilon, \delta > 0$ and $x \in \mathbb{R}^n$ $\Delta_i^{\epsilon} \Delta_j^{\delta} \varphi(x) \geq 0$ it holds that $E\varphi(X) \leq E\varphi(Y)$ Here proof is missing.

(iv)
$$X \leq_{sm} Y \implies X \leq_{dcx} Y \implies \sum_{i=1}^{d} X_i \leq_{cx} \sum_{i=1}^{d} Y_i$$

See Remark 6.27.b in [Rüs13].

Exercise 5 (4 Points; Bonus). Show that the Markov product A * B is a bivariate copula.

Sheet 3 Evgenij Page 2

To this end we use proposition 1.10. To see that A*B is a bivariate copula, we need to show that it is grounded, has uniform univariate marginals and is 2-increasing. Since A and B are grounded, $\int_0^1 \partial_2 A(0,t) \partial_1 B(t,v) dt = \int_0^1 \partial_2 A(0,t) \partial_1 B(t,v) dt = \int_0^1 \partial_2 A(u,t) \partial_1 B(t,0) dt = 0$, so A*B is grounded. To see that A*B has uniform univariate marginals, we calculate $A*B(u,1) = \int_0^1 \partial_2 A(u,t) \partial_1 B(t,1) dt = \int_0^1 \partial_2 A(u,t) dt = A(u,1) - A(u,0) = u$. An analogous calculation yields A*B(1,v) = v.

To see that A*B is 2-increasing, according to equation (1.14) we need to see that for all $0 \le u, v \le 1$, $0 \le \varepsilon \le 1 - u$ and $0 \le \delta \le 1 - v$ we get $A*B(u+\varepsilon,v+\delta) - A*B(u,v+\delta) - A*B(u+\varepsilon,v) + A*B(u,v) \ge 0$. Employing yields

$$A * B(u + \varepsilon, v + \delta) - A * B(u, v + \delta) - A * B(u + \varepsilon, v) + A * B(u, v)$$

$$= \int_{0}^{1} (\partial_{2}A(u + \varepsilon, t)\partial_{1}B(t, v + \delta) - \partial_{2}A(u, t)\partial_{1}B(t, v + \delta)$$

$$- \partial_{2}A(u + \varepsilon, t)\partial_{1}B(t, v) + \partial_{2}A(u, t)\partial_{1}B(t, v))dt$$

$$= \int_{0}^{1} [\partial_{2}(A(u + \varepsilon, t) - A(u, t))\partial_{1}B(t, v + \delta) - \partial_{2}(A(u + \varepsilon, t) - A(u, t))\partial_{1}B(t, v)]dt$$

$$= \int_{0}^{1} [\partial_{2}(A(u + \varepsilon, t) - A(u, t))\partial_{1}(B(t, v + \delta) - B(t, v))]dt.$$

However, $\partial_2 \left(A(u+\varepsilon,t) - A(u,t) \right) = \lim_{h \to 0} \frac{1}{h} \left(A(u+\varepsilon,t+h) - A(u,t+h) - A(u+\varepsilon,t) + A(u,t) \right) \ge 0$, because A is 2-increasing. Analogously $\partial_1 \left(B(t,v+\delta) - B(t,v) \right) \ge 0$. Thus, the integrand is positive for every $0 \le t \le 1$ so that we get

 ≥ 0 .

All together A * B is a bivariate copula.

Moreover, show that for a bivariate copula C it holds that $\pi^2 * C = C * \Pi^2 = \Pi^2$.

Sheet 3 Evgenij Page 3

The Markov product is defined by $\Pi * C = \int_0^1 \partial_2 \Pi(u,t) \partial_1 C(t,v) dt = \int_0^1 u \partial_1 C(t,v) dt = u(C(1,v)-C(0,v)) = uv = \Pi$ which however is not $\Pi^2 * C$.

References

[Rüs13] RÜSCHENDORF, Ludger: Mathematical risk analysis. In: Springer Ser. Oper. Res. Financ. Eng. Springer, Heidelberg (2013)