

inovex classes

Linux

Session 2

Januar 2019

Agenda

- 17:00 Recap Session 1
- 17:10 Bash Basics
- 17:40 Benutzer & Benutzerverwaltung
- 18:10 Paketverwaltung

Recap Session 1

Recap Session 1

Aktualisierte Aufgabenstellung:

https://github.com/inovex/linux-class

Basics

Autovervollständigung: TAB-TAB

Abbrechen eines Befehls (eigentlich Kill des im Vordergrund laufenden Prozesses)

- STRG/CTRL + C

Schließen der Bash (äquivalent zu "exit")

- STRG/CTRL + D

Prozess im Vordergrund in den Hintergrund schieben

- STRG/CTRL + Z

Zurückholen eines Programms in den Vordergrund:

fg <proc-name>

Basics

Screen leeren:

- STRG/CTRL+L

Ans Zeilenende hüpfen:

STRG/CTRL + E

An den Zeilenanfang springen:

- STRG/CTRL + A

History

Einsehen aller vergangenen Befehle:

- history
- history | grep "ssh" (suchen)

Navigieren durch abgesetzte Befehle:

- Pfeil hoch / runter

Reverse-Search:

- STRG/CTRL + R: und anfangen zu tippen
- STRG/CTRL + O: Befehl erneut absetzen
- STRG/CTRL + G (oder + C): zum abbrechen

Benutzerverwaltung und Dateirechte Übersicht

- Multi-Tasking / Multi-User
- Grundlagen
- Wichtige Befehle
- Hinweise

Multi-Tasking / Multi-User

Multi-Tasking

- mehrere Prozesse (Tasks) gleichzeitig ausführen
- früher (80ths) nur ein (1) Prozess möglich (z.B. MS-DOS)

Multi-User

 mehrere Benutzer (User) arbeiten gleichzeitig auf dem selben System

Grundlagen

- generelle Aufteilung in "einfache" Benutzer (wenig Rechte, weniger Gefahr ein System "zu zerstören") und Systemverwalter (aka "root", alle Rechte)
- Benutzer (User) werden in Gruppen (Groups) zusammengefasst
- Systeminterne Rechtezuweisung an User-ID (UID) und Gruppen-ID (GID)
- Möglichkeit temporär auf Daten anderer User zuzugreifen (Effective UID / EUID, Effective GID / EGID)

Grundlagen

Beispiel Passwort neu setzen als normaler User:

```
$ grep ubuntu /etc/passwd
ubuntu:x:1000:1000:Ubuntu:/home/ubuntu:/bin/bash
$ ls -l /etc/shadow
-rw-r---- 1 root shadow 652 Jan 22 19:22 /etc/shadow
$ ls -l /usr/bin/passwd
```

-rwsr-xr-x 1 root root 54256 May 16 2017 /usr/bin/passwd

Wichtige Befehle

ls -l

- anzeigen der Dateirechte

```
$ 1s -la /home/ubuntu/
drwxr-xr-x 2 ubuntu ubuntu 4096 Jan 28 13:36 .
drwxr-xr-x 1 root root 4096 Jan 28 13:33 ..
-rw-rw-r-- 1 ubuntu ubuntu 0 Jan 28 13:33 leere_datei.txt
```


Wichtige Befehle

stat

- anzeigen des Dateistatus

```
$ stat leere_datei.txt
File: leere_datei.txt
Size: 0 Blocks: 0 IO Block: 4096 regular empty file
Device: 801h/2049d Inode: 284794 Links: 1

Access: (0664/-rw-rw-r--) Uid: (1000/ ubuntu) Gid: (1000/ ubuntu)

Access: 2019-01-29 06:59:19.045767587 +0000

Modify: 2019-01-29 06:59:19.045767587 +0000

Change: 2019-01-29 07:10:17.916757562 +0000
```


Benutzerverwaltung und Dateirechte Wichtige Befehle

id

- Ermitteln der effektiven UIDs und GIDs

```
$ id
uid=1000(ubuntu) gid=1000(ubuntu)
groups=1000(ubuntu),27(sudo)
```


Wichtige Befehle

sudo

temporär die effektive UID und GID wechseln

```
$ sudo id
uid=0(root) gid=0(root) groups=0(root)
```


Wichtige Befehle

chmod

- ändern der Dateirechte

```
$ ls -1 leere_datei.txt
-rw-rw-r-- 1 ubuntu ubuntu 0 Jan 28 13:33 leere_datei.txt
$ chmod u=rw-,g=---,o=--- leere_datei.txt
(oder: chmod 0600 leere_datei.txt)
$ ls -1 leere datei.txt
```

-rw----- 1 ubuntu ubuntu 0 Jan 28 13:33 leere datei.txt

Wichtige Befehle

chown

- ändern des Datei-Eigentümers oder -Gruppe

```
$ ls -1
-rw-rw---- 1 ubuntu sudo 0 Jan 28 13:33 leere_datei.txt
$ chown ubuntu:ubuntu leere_datei.txt
$ ls -1
-rw-rw---- 1 ubuntu ubuntu 0 Jan 28 13:33 leere datei.txt
```


Wichtige Befehle

who | whoami

- aktuelle Benutzer im System anzeigen

```
$ who
jbrunk console Dec 18 14:34
jbrunk ttys000 Dec 18 14:37
jbrunk ttys001 Dec 18 14:37
```

```
$ whoami
jbrunk
```


Wichtige Befehle

useradd

- neuen Benutzer anlegen

usermod

- existierenden Benutzer ändern

groupadd

- neue Gruppe anlegen

groupmod

- existierende Gruppe ändern

Hinweise

- grundsätzlich nicht als **root** auf einem System arbeiten, nur temporär das **sudo** Kommando verwenden
- alle Dienste (zB. Webserver) mit möglichst wenig Rechten / Privilegien betreiben
- Benutzern nicht zu viele Rechte geben (nicht alle müssen root sein)

Wie wird unter Linux Software installiert?

- › Kompilieren von Source
 - > aufwändig, fehleranfällig
- Installation von Binärpaketen
 - z.B. unter debian-basierten Systemen mit "dpkg"
 - keine Kontrolle über Abhängigkeiten
- Installation via Paketverwaltung

Eigenschaften

- › Laden von Paketen
- Auflösung von Abhängigkeiten
- Distributionsspezifische Paketierung
 - Einheitliche Installations- und Konfigurationspfade
 - Systemspezifische Anpassungen
- Qualitätssicherung

Prominente Paketverwaltungen

Distribution	Manager	Format
Debian /Ubuntu	apt, aptitude	deb
RHEL/Centos/Fedora	yum, dnf	rpm
(open)SUSE	YaST, Zypper	rpm
Arch Linux/Manjaro	pacman	tar.xz

Ubuntu Lebenszyklus

Paketquellen

- › Distributionsquellen:
 - mehr Sicherheits- als Versionsupdates
 - » ggf. Anpassungen der Pakete ans System
- > Partnerquellen:
 - erweitern häufig Distributionsquellen um proprietäre Pakete
- > Drittanbieter:
 - häufig Betreiber von Anwendungen oder Community
 - Sicherheit, Stabilität und Aktualität variieren

Wichtige Befehle beim Verwalten von Paketen

- Aktualisierung der Paket Metadaten
 - › regelmäßig vor einer Installation durchführen
- Installation von Paketen
 - inklusive von Abhängigkeiten
- Aktualisierung von Paketen
 - manuell und automatisiert
- › Deinstallation von Paketen
 - in der Regel bleibt Konfiguration bestehen

Ziel

<u>Installation</u> und <u>Betrieb</u> des Webservers <u>NGINX</u> unter <u>Ubuntu</u>

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and working. Further configuration is required.

For online documentation and support please refer to nginx.org. Commercial support is available at nginx.org.

Thank you for using nginx.

Ubuntu: Paketverwaltung mit APT

"Apt is a collection of tools distributed in a package named apt."

Tools: apt-get, apt-cache, add-apt-repository,...

Command: apt -> high level cli for these tools

Manuelles anpassen der Paketquellen:

Add sources in /etc/apt/sources.list.d/*:

/etc/apt/sources.list.d/nginx.list:

```
## Replace $release with your corresponding Ubuntu release.
deb http://nginx.org/packages/ubuntu/ $release nginx
deb-src http://nginx.org/packages/ubuntu/ $release nginx
```


Ubuntu: Wichtige Befehle (1/3)

- # apt-get upgrade
 - > Aktualisierung aller installierten Pakete

Ubuntu: Wichtige Befehle (2/3)

- > # apt-get remove < Paketname(n) >
 - › Deinstallation von Paketen
 - Hinweis: Konfigurationen und ungenutzte Abhängigkeiten bleiben bestehen
 - > --purge: Entfernt auch die Konfigurationen
- # apt-get purge <Paketname(n)>
 - Macht das gleiche wie apt-get remove --purge
- # apt-get autoremove
 - > Entfernt ungenutzte Abhängigkeiten
 - > --purge: Entfernt auch die Konfigurationen

Ubuntu: Wichtige Befehle (3/3)

- # apt-add-apt-repository < Paketquelle >
 - > Hinzufügen von weiteren Paketquellen
 - > --remove: Entfernen von Paketquellen
 - auch manuell möglich durch Anpassung der Quellen unter /etc/apt/sources.list.d/
- # apt-key add < Keyfile >
 - sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys <keyld>: Durchsucht den Ubuntu Key-Server nach öffentlichen Schlüssel und verifiziert ihn

systemd (1/2)

"... provides a <u>system</u> and <u>service manager</u> that runs as PID 1 and <u>starts</u> the rest of the <u>system</u>"

Grundlegende Befehle:

- # systemct1 start <service>: Startet den Dienst.
- # systemct1 stop <service>: Beendet den Dienst.
- # systemct1 restart <service>: Startet den Dienst neu.
- # **systemct1 reload** <service>: Lädt die Konfigurationen des laufenden Dienstes neu.
- # systemctl status <service>: Fragt den Zustand des Dienstes ab.

systemd (2/2)

Weitere Befehle:

systemctl enable <service>:

Fügt den Dienst zu der Liste der beim Hochfahren des Systems zu startenden Dienste hinzu.

systemctl disable <service>:

Entfernt den Dienst von der Liste der beim Hochfahren des Systems zu startenden Dienst.

NGINX

Neben Apache-HTTP der am weitesten verbreitete Webserver unter Linux

Besonderheit bei der Konfiguration unter Ubuntu:

- Webseitenkonfigurationen werden im Ordner /etc/nginx/sites-available abgelegt.
- Um sie zu aktivieren legt man eine symbolische Verknüpfung der jeweiligen Konfigurationen unter /etc/nginx/sites-enabled ab.

Befehl:

```
# In -s /etc/nginx/sites-available/<config> /etc/nginx/sites-enabled/<config>
```


Übung

Aufgaben

- > Installiere den Webserver NGINX
- › Deaktiviere die Standard-Webseitenkonfiguration
- > Deinstalliere den Webserver und entferne sämtliche Konfigurationen

Bonus

> Installiere die aktuellste stabile Version von nginx

