Previously.

This Section.

- Relations

- Induction

- Equivalence Relations
- Equivalence Classes

Principle of Mathematical Induction. Let P(n) be a statement for each integer $n \ge m$. Suppose the following conditions are satisfied,

- 1. P(m) is true, and
- **2.** $P(k) \Rightarrow P(k+1)$ for every $k \ge m$.

Then P(n) is true for every $n \geq m$.

Example. Claim: For all $n \geq 4$,

 $2^n < n!$.

Example. Show that $3^{3n} + 1$ is a multiple of 7 for all odd $n \ge 1$.

Induction in Algebra. We assume the distributive property a(b+c) = ab + ac. Prove that this property can be extended, that is show that for all integers $n \geq 2$, for all $a, b_1, \ldots, b_n \in \mathbb{Z}$, we have

$$a(b_1 + b_2 + \dots + b_n) = ab_1 + ab_2 + \dots + ab_n$$
.

Exercise 1. Consider the statement, for all $n \geq 1$,

$$n^3 + (n+1)^3 + (n+2)^3$$

is a multiple of 9.

Use Induction to prove this statement.

- (a) What is the base case?
- (b) What is the inductive hypothesis?
- (c) Use the inductive hypothesis to complete the proof. Hint: Do NOT do any expanding of the terms $(k+1)^3$ and $(k+2)^3$.

Exercise 2. Let $a_n = 2^{3n} - 1$ for $n \ge 0$. Guess a common divisor for each a_n and prove your assertion. (The common divisor should be greater than 1.)

(a) Use a calculator or math software co compute a_1, a_2, a_3, a_4 . What common divisor do you notice?

(b) Use induction to prove your claim.

Another Induction Principle. Let P(n) be a statement for each integer $n \ge m$. Suppose the following conditions are satisfied,

- 1. P(m) and P(m+1) are true, and
- **2.** If $k \ge m$ and both P(k) and P(k+1) are true then P(k+2) is true.

Then P(n) is true for every $n \geq m$.

Exercise 3. Let a_n denote a number for each integer $n \geq 0$ and assume that $a_{n+2} = a_{n+1} + 2a_n$ holds for every $n \geq 0$.

Show that if $a_0 = 1$ and $a_2 = 2$, then $a_n = 2^n$ for each $n \ge 0$.