

_2021_级

《大数据存储与管理》课程

实验报告

 姓
 名
 黄宇

 学
 号
 U202115436

 班
 号
 CS2104 班

 日
 期
 2024.04.20

— 、	选题	3
<u>_</u> ,	实验结构	ŝ
2.2	1 数据结构的设计	3
2.2	2 操作流程分析	4
2.3	3 理论分析	5
2.4	4 实验测试性能	6
三、	实验总结与心得	6

一、选题

选题 1: 基于 Bloom Filter 的设计

基于 Bloom Filter 的多维数据属性表示和索引

二、实验结构

2.1 数据结构的设计

在处理多维数据时,若采用基于 Bloom Filter 的数据结构,则会用到 MDBF, 也即多维布隆过滤器。在 MDBF 中采用多个标准的 Bloom Filter 组成,其个数等 同于所需存储数据的维数。在元素查询过程中,通过多维元素各个属性值是否都 存在相应过滤器中。其大体结构如下图所示。

由于多维数据的整体性,通过上述 MDBF 得到的信息会由于单维属性的误判从而导致元素的整体误判,因此我们需要在上述 MDBF 的前提下,再使用一个 Bloom Filter 来存储所有属性联合哈希值。这样是我们能够更精确地判断多维数据地存在性。

举一例说明,但我们存在三维元素 $\{1, 2, 3\}$, $\{4, 5, 6\}$ 时,若不使用额外 Bloom Filter,则当我们检测 $\{1, 5, 3\}$ 时会出现 false positive,而改善后则不会出现该问题。

2.2 操作流程分析

在具体的代码设计中, 我采用的是 C++语言。

首先需要定义 Bloom Filter 的类。可以使用 C++标准库中的 bitset 存储位数组,而哈希函数可以使用 C++标准库中提供的 std::hash 计算哈希值(当然也可以使用其它哈希函数,本实验中采用库中函数)。得到如下代码:

```
vclass BloomFilter {
    private:
        std::bitset<1024> bits; // 选择适当大小的 bitset
        std::hash<std::string> hash_fn1;
        std::hash<std::string> hash_fn2;

    public:
        void add(const std::string& item) {
            auto hash1 = hash_fn1(item) % bits.size();
            auto hash2 = hash_fn2(item) % bits.size();
            bits. set(hash1);
            bits. set(hash2);
        }
        bool possiblyContains(const std::string& item) const {
            auto hash1 = hash_fn1(item) % bits.size();
            auto hash2 = hash_fn2(item) % bits.size();
            return bits.test(hash1) && bits.test(hash2);
        }
        }
    }
}
```

之后为了处理多维数据,我们需要创建一个包含多个 Bloom Filter 的结构, 其中每个维度都有一个对应的 Bloom Filter。最后再额外使用一个 Bloom Filter 用于存储属性的联合值。其代码如下所示:

```
class UnionMultiDimensionalBloomFilter {
private:
    std::array (BloomFilter, 3) filters; // 假设有3个维度
    BloomFilter unionFilter; // 用于联合属性
    void add(const std::array<std::string, 3>& items) {
        std::string combined;
            filters[i].add(items[i]);
            combined += items[i]; // 创建联合字符串
        unionFilter.add(combined); // 添加联合字符串到联合 Bloom Filter
    bool possiblyContains(const std::array<std::string, 3>& items) {
        std::string combined;
        for (size_t i = 0; i < items. size(); ++i) {
            if (!filters[i].possiblyContains(items[i])) {
               return false;
            combined += items[i];
        return unionFilter.possiblyContains(combined); // 检查联合 Bloom Filter
```

最后定义一个主函数来测试 UMDBF 以验证其功能,其代码如下图所示:

2.3 理论分析

由于该实验中采用的是标准 Bloom Filter 实现,因此不会发生 False Negative。因为在 Bloom Filter 中一旦位置为 1,就不会再进行更改,因此总能返回正确值。

对于 False Positive, 在我们的联合 Bloom Filter 中增加了额外的检查层次,理论上可以减少因低维错误肯定而认为元素存在的情况。但由于这个额外检查层自身也有可能出现错误肯定,尤其是多个不同属性组合的情况下。

对于其影响因素,大概有以下三点:

哈希函数的选择:选择好的哈希函数可以减少哈希冲突,从而降低错误肯定的概率。

Bloom Filter 的大小: 增加 Bloom Filter 的大小可以降低错误肯定的概率,因为它提供了更多的位来存储信息,减少了不同元素哈希值的重叠概率。

哈希函数的数量:使用更多的哈希函数可以更均匀地分布哈希值,但也可能增加设置位的数量,导致更高的错误肯定概率。

2.4 实验测试性能

根据测试集可以得到结果如下图:

```
Testing 'apple', 'banana', 'cherry': Found
Testing 'apple', 'banana', 'grape': Not Found
Testing 'apple', 'elephant', 'cherry': Not Found
```

对于简单测试集,能得到相应结果。由于加入了额外的检查层,空间开销相较于前将会增大。

假设我们的Bloom Filter使用的是长度为m位的位数组。在原始的多维Bloom Filter中,如果有 d 个维度,每个维度使用一个独立的 Bloom Filter,那么总的位数为 d*m。增加了一个维度后,总的位数变为(d+1)*m。由此可知,当我们的数据位数越长,所需的空间开销则越多。

三、实验总结与心得

本次实验其数据结构主要完成了对多维联合 Bloom Filter 的代码实现,其具体实现原理并不复杂,本实验中所呈现的联合 Bloom Filter 较为简易,总体上能反映出算法的基本思想。