{Section 1}

{Given for Current System}

mdot ref=62.99[g/s]

P=2403[W] {Power at typical operating conditions}

P_2=2420[kPa] {high-side operating temp}

T_4=5[C] {Evaporator temperature}

{Assumtions}

x 1=1

T 1=T 4

s_2s=s_1

P_3=P_2

P 2s=P 2

h 4=h 3

x_3=0 {Subcooled not saturated}

{Design Variables}

electricityPrice=0.1072[\$/kWh] opperatingHours=240[hr]

houseSize=830[ft^2]

{Solving}

h_1=enthalpy(*R410A*,*T*=T_1,*x*=x_1)

P=mdot_ref*(h_2-h_1)

s 1=entropy(R410A, T=T 1,x=x 1)

h_2s=enthalpy(*R410A*,*s*=s_2s,*P*=P_2s)

efficiency_isentropic=(h_2s-h_1)/(h_2-h_1)*100

h_3 =enthalpy(R410A,P= P_3 ,x= x_3)

 $COP=(h_1-h_4)/(h_2-h_1)$

cost_hour=P*convert(W,kW)*electricityPrice cost_month=cost_hour*opperatingHours

capacity=mdot_ref*(h_1-h_4)*convert(kJ,J)/convert(kg,g) capacity required=houseSize*25*convert(Btu/hr,W)

SOLUTION

Unit Settings: SI C kPa kJ mass deg

capacity = 9876 [W]

COP = 4.11

costmonth = 61.82 [\$/month]

electricityPrice = 0.1072 [\$/kWh]

 $h_1 = 422.8 [kJ/kg]$

 $h_{2s} = 448.5 [kJ/kg]$

 $h_4 = 266 [kJ/kg]$

opperatingHours = 240 [hr]

 $P_2 = 2420 [kPa]$

 $P_3 = 2420 \text{ [kPa]}$

 $s_{2s} = 1.801 [kJ/kg-K]$

 $T_4 = 5$ [C]

 $x_3 = 0$

3 potential unit problems were detected.

KEY VARIABLES

capacity = 9876 [W]

efficiencyisentropic = 67.22 [%]

capacityrequired = 6081 [W] costhour = 0.2576 [\$/hr]

efficiencyisentropic = 67.22 [%]

houseSize = 830 [ft²]

 $h_2 = 461 [kJ/kg]$

 $h_3 = 266 [kJ/kg]$

 $mdot_{ref} = 62.99 [g/s]$

P = 2403 [W]

 $P_{2s} = 2420 [kPa]$

 $s_1 = 1.801 [kJ/kg-K]$

 $T_1 = 5$ [C]

 $x_1 = 1$

EES Ver. 10.835: #1867: For use by students and faculty, College of Engineering, University of Oklahoma, Stillwater, OK

COP = 4.11