Sélection et évaluation de modèle - Partie 1

Sélection et évaluation de modèle - Partie 1

Véronique Tremblay

Objectifs

- Comprendre les difficultés liées à la mesure de l'erreur d'un modèle
- Connaître et utiliser une méthode d'évaluation d'un modèle (la validation croisée)

Rappel

Modèle prédictif

$$Y = f(x) + \epsilon$$

En général, on trouve \hat{f} en minimisant l'espérance d'une certaine fonction de perte $\underline{\ }$

$$L(Y, \hat{f}(x))$$

Décomposition de l'EQM

$$E[(Y_0 - \hat{f}(x_0))^2] = [Biais(\hat{f}(x_0))]^2 + Var(\hat{f}(x_0)) + \sigma_{\epsilon}^2$$

Sélection et évaluation de modèle - Partie 1

Mesurer l'erreur d'un modèle

Mesurer l'erreur d'un modèle

Sélection et évaluation de modèle - Partie 1

Mesurer l'erreur d'un modèle

Pourquoi?

1 Choisir le meilleur modèle

Pourquoi?

1 Choisir le meilleur modèle

2 Avoir une idée de la confiance qu'on peut accorder à notre modèle

1 Choisir le meilleur modèle

2 Avoir une idée de la confiance qu'on peut accorder à notre modèle

Entraînement

Validation

Test

Sélection et évaluation de modèle - Partie 1

Mesurer l'erreur d'un modèle

■ L'erreur de généralisation

$$Err_{\tau} = \mathbb{E}_{X^{0}, Y^{0}}[L(Y^{0}, \hat{f}(X^{0}))|\tau]$$

■ L'erreur de généralisation

$$Err_{\tau} = \mathbb{E}_{X^{0}, Y^{0}}[L(Y^{0}, \hat{f}(X^{0}))|\tau]$$

■ L'erreur sur l'échantillon d'entraînement

$$e\bar{r}r = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{f}(x_i))$$

■ L'erreur de généralisation

$$Err_{\tau} = \mathbb{E}_{X^{0},Y^{0}}[L(Y^{0},\hat{f}(X^{0}))|\tau]$$

■ L'erreur sur l'échantillon d'entraînement

$$e\bar{r}r = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{f}(x_i))$$

■ L'erreur in sample

$$Err_{in} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{Y^{0}}(L(Y^{0}, \hat{f}(x_{i})))$$

Optimisme de la mesure d'erreur sur l'échantillon d'entraînement¹

$$\mathbb{E}_Y(Err_{in}) - \mathbb{E}_Y(e\bar{r}r) = \frac{1}{N} \sum_{i=1}^N \mathbb{C}\mathsf{ov}(y_i, \hat{y})$$

$$\mathbb{E}_Y(Err_{in}) - \mathbb{E}_Y(e\bar{r}r) = \frac{2d\sigma_{\epsilon}^2}{N}$$

¹Lire la section 7.4 de ESL

Sélection et évaluation de modèle - Partie 1

Mesurer l'erreur d'un modèle

Estimer Err_{in} ²

- AIC
- BIC
- \blacksquare C_p

 $^{^2}$ Les sections 7.5, 7.6 et 7.7 sont intéressantes mais ne font pas partie de la matière.

Mesurer l'erreur d'un modèle

Estimer l'erreur de généralisation (Err)

■ Bootstrap

■ Validation-croisée

Sélection et évaluation de modèle - Partie 1

Mesurer l'erreur d'un modèle

Validation croisée

Validation croisée ³

 $^{^3}$ Lisez la section 7.10 de ESL au complet, particulièrement 7.10.2 et 7.10.3.

Sélection et évaluation de modèle - Partie 1

Mesurer l'erreur d'un modèle

Validation croisée

1 On sépare l'échantillon en K plis de façon aléatoire.

└Validation croisée

- 1 On sépare l'échantillon en K plis de façon aléatoire.
- 2 Pour k de 1 à K

└Validation croisée

- 1 On sépare l'échantillon en K plis de façon aléatoire.
- 2 Pour k de 1 à K
 - i. On estime $\hat{f}^{(-k)}$ en utilisant uniquement les observations qui ne sont pas dans k

└─ Mesurer l'erreur d'un modèle └─ Validation croisée

- On sépare l'échantillon en K plis de façon aléatoire.
- 2 Pour k de 1 à K
 - i. On estime $\hat{f}^{(-k)}$ en utilisant uniquement les observations qui ne sont pas dans k
 - ii. On prédit $\hat{Y}^{(k)} = \hat{f}^{(-k)}(X^{(k)})$

└Validation croisée

- On sépare l'échantillon en K plis de façon aléatoire.
- 2 Pour k de 1 à K
 - i. On estime $\hat{f}^{(-k)}$ en utilisant uniquement les observations qui ne sont pas dans k
 - ii. On prédit $\hat{Y}^{(k)} = \hat{f}^{(-k)}(X^{(k)})$
 - iii. On calcule $CV^{(k)} = \frac{1}{N_k} \sum_{i=1}^{N_k} L(Y^{(k)}, \hat{Y}^{(k)})$

└─Validation croisée

- On sépare l'échantillon en K plis de façon aléatoire.
- 2 Pour k de 1 à K
 - i. On estime $\hat{f}^{(-k)}$ en utilisant uniquement les observations qui ne sont pas dans k
 - ii. On prédit $\hat{Y}^{(k)} = \hat{f}^{(-k)}(X^{(k)})$
 - iii. On calcule $CV^{(k)} = \frac{1}{N_k} \sum_{i=1}^{N_k} L(Y^{(k)}, \hat{Y}^{(k)})$
- 3 On calcule la moyenne $CV = \frac{1}{K} \sum_{j=1}^K CV^{(k)}$

└Validation croisée

- On sépare l'échantillon en K plis de façon aléatoire.
- 2 Pour k de 1 à K
 - i. On estime $\hat{f}^{(-k)}$ en utilisant uniquement les observations qui ne sont pas dans k
 - ii. On prédit $\hat{Y}^{(k)} = \hat{f}^{(-k)}(X^{(k)})$
 - iii. On calcule $CV^{(k)} = \frac{1}{N_k} \sum_{i=1}^{N_k} L(Y^{(k)}, \hat{Y}^{(k)})$
- 3 On calcule la moyenne $CV = \frac{1}{K} \sum_{j=1}^K CV^{(k)}$
- 4 On répète 1 à 3 pour tous les modèles et on choisit le modèle dont la valeur de CV est la plus basse.

└─Validation croisée

Distribution de l'erreur mesurée sur chaque pli lors de la validation croisée

Sélection et évaluation de modèle - Partie 1 Le Résumé

Résumé

■ Expliquer l'optimisme de l'erreur sur l'échantillon d'entraînement.

- Expliquer l'optimisme de l'erreur sur l'échantillon d'entraînement.
- Coder l'algorithme de validation croisée avec R.

- Expliquer l'optimisme de l'erreur sur l'échantillon d'entraînement.
- Coder l'algorithme de validation croisée avec R.
- Donner des exemples de situation où la validation croisée est plus difficile à mettre en oeuvre.

- Expliquer l'optimisme de l'erreur sur l'échantillon d'entraînement.
- Coder l'algorithme de validation croisée avec R.
- Donner des exemples de situation où la validation croisée est plus difficile à mettre en oeuvre.
- Utiliser la validation croisée pour comparer différents modèles.