

MODULE AP1 : CONTRÔLE DE MÉCANIQUE I

DURÉE : 1H

N.B : LA JUSTIFICATION DES RÉPONSES ET LA CLARTÉ DE LA RÉDACTION SERONT PRISES EN COMPTE.

& DOCUMENTS NON AUTORISÉS &

QUESTIONS DE COURS :

On veut étudier le mouvement d'un mobile "M" dans deux référentiels différents. Le 1^{er} est considéré fixe, noté $\Re_a(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$, le second, noté $\Re_r(O, \overrightarrow{i'}, \overrightarrow{j'}, \overrightarrow{k'})$, est en rotation par rapport à \Re_a (voir figure).

- 1. Montrer que les dérivées temporelles des vecteurs de base s'écrivent : $\frac{d\overrightarrow{i}'}{dt} = \overrightarrow{\omega} \wedge \overrightarrow{i}'$, Idem pour \overrightarrow{j}' et \overrightarrow{k}'
- Montrer que le vecteur vitesse d'entrainement s'écrit :

$$\overrightarrow{V}_e = \omega \wedge \overrightarrow{O'M}$$

EXERCICE 1:

Une particule décrivant une trajectoire curviligne dans le plan (Oxy) est repérée, en coordonnées polaires $(\overrightarrow{u}_r, \overrightarrow{u}_\theta)$ par les équations :

$$r(t) = \beta_0 e^{-\varphi}$$
 with $\varphi(t) = t/a$

On prend, β_0 , a constantes positives.

- 1. En partant de l'expression du vecteur position dans la base polaire, établir l'expression du vecteur vitesse \overrightarrow{V} de cette particule. Calculer son module.
- 2. Montrer que l'angle $(\overrightarrow{V}, \overrightarrow{u}_{\theta})$ est constant. Calculer
 - 3. Donner l'expression du vecteur accélération \overrightarrow{a} . Calculer son module.
 - 4. Calculer le rayon de courbure R_c de la trajectoire, sachons que le vecteur accélération fait un angle de $\frac{\pi}{4}$ avec \overrightarrow{u}_r .

EXERCICE 2:

Un mobile M décrit une courbe C dans l'espace. La courbe C est définie dans le système de coordonnées cartésiennes par les équations paramétriques suivantes :

$$x = r_0 e^{\theta} cos\theta$$
 $y = r_0 e^{\theta} sin\theta$ $z = r_0 ln(1+\theta)$

ro est une constante positive.

 θ représente l'angle entre l'axe Ox et le vecteur OM', où M' la projection orthogonale de M sur le plan Oxy. Le point M le mobile qui se déplace sur C à vitesse angulaire constante.

- 1. Déterminer en coordonnées cartésiennes les expressions des vecteurs vitesse \overrightarrow{V} et accélération \overrightarrow{a} .
- 2. Déterminer le vecteur position \overrightarrow{OM} du mobile M dans le système de coordonnées cylindriques en fonction de r_0 , θ et des vecteurs de bases.
 - 3. Donner les expressions de \overrightarrow{V} et \overrightarrow{a} en coordonnées cylindriques.

