Detection of somatic mutations in cancer tumors

Malin Larsson
malin.larsson@scilifelab.se

Outline

- Introduction
- The mutational landscape of cancer
- Detection of cancer mutations
- recap of germline variant calling
- Somatic variant calling workflow
- Today's practical

Introduction

Somatic vs germline mutations

Somatic mutations

- Occur in nongermline tissues
- Cannot be inherited

Mutation in tumor only

(for example, breast)

Germline mutations

- Present in egg or sperm
- Can be inherited
- · Cause cancer family syndrome

Cancer is an evolutionary process

- Genetic variation introduced in individual cells
- more-or-less random mutations
- Clonal expansion natural selection acting on the resultant phenotypic diversity

Development of cancer

Driver and passenger mutations

Driver' mutations confer a growth advantage of the cell. They are positively selected during the evolution of the cancer

Passenger mutations are neutral, they just happened to be present in an ancestor of the cancer cell

Genetic alterations and the progression of colorectal cancer.

Types of mutations

http://socratic.org/questions/how-do-dna-mutations-occur

Epigenetic changes

Mutational Landscape of Cancer

Some statistics...

- From a review published 2013:
- ~350 cancer driver genes catalogued
- 5-7 driver mutations per tumor
 (Stratton et al, The Cancer Genome, Nature 2013)

- Exome seq/WGS studies suggest
 - higher number of driver genes
 - Up to 20 driver mutations per tumor

Number of somatic mutations in representative human cancers, detected by genome-wide sequencing studies.

Bert Vogelstein et al. Science 2013;339:1546-1558

The landscape of driver mutations in breast cancer

Rows: Cancer genes with driver mutations. In case of new Columns: 100 primary breast cancer tumors (79 ER+, 21 ER-)

Coding exons of 21,416 protein coding genes and 1,664 microRNAs were sequenced

PJ Stephens et al. Nature **000**, 1-5 (2012) doi:10.1038/nature11017

Detection of cancer mutations

We are interested in somatic events

A matched "normal sample" needed to filter away germline variants

Tumor samples are often impure due to a mixture of tumor and normal cells

Hanahan and Weinberg, Hallmarks of Cancer: The Next Generation, Cell 2011

Aneuploidy

Tumors consists of subclones with different somatic mutations

So, detection algorithms must handle all of this!

Many tools available

single nucleotide variants (SNVs)
 MuTect1, Strelka, MuTect2

structural variants (SVs)
 Manta, Delly

copy number variants (CNVs)
 Control-FREEC, ASCAT, Patchwork

Somatic variant calling Workflow

First... recap of germline variant calling workflow

FastQ format

FASTQ format is a text-based format for storing both a nucleotide sequence and its corresponding quality scores.

```
@HWUSI-EAS100R:6:73:941:1973#0/1
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>CCCCCCC65
```

1st row: sequence identifier (machine ID, x-y coordinates, additional info)

2nd row: The actual sequence

3rd row: starts with "+" and optionally the same identifier as in the 1st row

4th row: Quality score for each base in read

Quality score: ASCII representation of score for each base (i.e. the probability that the corresponding base call is incorrect.) Platform specific scaling!

For more info: http://en.wikipedia.org/wiki/FASTQ_format

Output of experiment

:@M01674:9:000000000-A4148:1:1101:15048:1349 1:N:0:3

AGACGGTGACCGTGGTCCCTGTGCCCCAGACATCTCGGGTACTACCGTAGTAATCTTCTCTTGCACAG TAATAGACTGCAGAGTCCTCTGATGTCAGGCTGCTGAGCTGCATGTAGGCTGTTTGGA

+

@M01674:9:00000000-A4148:1:1101:15003:1351 1:N:0:3

 ${\tt CAGCCTTCATGCAGCTCAGCAGCCTTACATCTGAAGACTCTGCGGTCTATTTCTGCGCAAGAAAGGGG}\\ {\tt AATTACTACGCCTAGGGGTACTTCGATGTCTGGGGCACAGGGACCACGGTCACCGTCTCCT}\\$

+

@M01674:9:000000000-A4148:1:1101:14577:1352 1:N:0:3

 $\tt CCTGCTTTTCGGGAAAACGGGATCACCACGATGGAACAGGTTAACGCAGGAATGCGCGTAGCCCGTCGGCAGAATCGACCATTTCTGCCATCACCCGGGCAGTTTGTTGCATGGTGCCGGGAAGAAGCATCCGTTACCGCCGGACTGCCA$

+

@M01674:9:000000000-A4148:1:1101:14770:1355 1:N:0:3

 ${\tt TCCAACAGGCCTTCATGCAACTCAGCAGCCTGACATCTGAGGACTCTGCAGTCTATTACTGTGCAAGAGGGGGTTACTAAGCGCTTACTGGGGCCAAGGGACTCTGGTCACTGTCTCTGCAGGT$

+

@M01674:9:00000000-A4148:1:1101:15309:1358 1:N:0:3

+

@M01674:9:00000000-A4148:1:1101:14985:1363 1:N:0:3

 ${\tt AGACGGTGACCGTGGTCCCTGTGCCCCAGACATCGAAGTCGGACCGTAGTAATAAGCCTCTTGCACAGTAATAGACCGCAGAGTCCTCAGATGTCAGGCTGCTGAGTTGCATGAAGGCTGTTGTGAAGGCTGTGTTGGA}$

Fastq files ~7 Gb / exome

Goal:

c Whole - exome

Genome Analysis Tool Kit (GATK)

Somatic variant calling workflow

MuTect1

Identifies variants in tumor
 Differences between tumor DNA and human reference assembly (hg19)

- 2. Post detection filter to remove:
 - false positives due to non-independent sequencing errors
 - germ line variations (detected in normal)

MuTect1

mutect.vcf

#CHF	ROM POS ID	REF ALT QUAL FILTER INFO				FORMAT	HCC1143.normal	HCC1143.tumor
17	1001315 .	С	Т		REJECT .	GT:AD:BQ:DP:FA	0:51,3:::54:0.056	0/1:29,2:23:33:0.065
17	1001331 .	G	Т	•	REJECT .	GT:AD:BQ:DP:FA	0:30,3:::33:0.091	0/1:15,2:34:17:0.118
17	1003390 .	G	Α		REJECT .	GT:AD:BQ:DP:FA	0:17,2:::18:0.105	0/1:16,1:28:17:0.059
17	1004967 .	Α	Т		REJECT .	GT:AD:BQ:DP:FA	0:28,1:::29:0.034	0/1:16,4:15:20:0.200
17	1004974 .	С	Т		REJECT .	GT:AD:BQ:DP:FA	0:27,2:::29:0.069	0/1:11,3:13:14:0.214
17	1024903 .	С	Т		PASS SOMATION	C GT:AD:BQ:DP:FA:SS	0:106,0:::102:0.00:0	0/1:84,6:34:90:0.067:2
17	1277664 .	С	Α	•	PASS SOMATI	C GT:AD:BQ:DP:FA:SS	0:59,0:::59:0.00:0	0/1:41,25:34:66:0.379:2
17	1527066 .	С	G		PASS SOMATI	C GT:AD:BQ:DP:FA:SS	0:35,0:::31:0.00:0	0/1:26,5:29:31:0.161:2

FORMAT (Each code is described in VCF header)

GT:AD:BQ:DP:FA

GT=Genotype

AD=Allelic depths for the ref and alt alleles in the order listed

BQ=Average base quality for reads supporting alleles

DP=Approximate read depth

FA=Allele fraction of the alternate allele with regard to reference

SS=Variant status

(0=wildtype,1=germline,2=somatic,3=LOH,4=post-transcriptional modification,5=unknown")

mutect.out file

All statistics used in post-detection filtering

Columns:

```
contig position
                context ref allele
                                  alt allele
                                             tumor name normal name score dbsnp site
                                                                                           covered
   power tumor power normal power normal power nsp normal power wsp
                                                                                total reads
map Q0 reads init t lod
                         t lod fstar t lod fstar forward t lod fstar reverse tumor f contaminant fraction
contaminant_lod
   t q20 count t ref count t alt count t ref sum t alt sum t ref max mapq t alt max mapq
t ins c
ount t del count normal best gt init n lod normal f
                                                      n q20 count n ref count n alt count n ref s
                  power to detect positive strand artifact
                                                         power to detect negative strand artifact
     n alt sum
um
strand
bias counts tumor alt fpir median tumor alt fpir mad
                                                     tumor alt rpir median tumor alt rpir mad
observed in nor
mals count failure reasons judgement
```

Example row:

```
17
    1001315 TTTxTTT C
                            HCC1143.tumor HCC1143.normal 0
                                                               DBSNP COVERED 0.954491
                                                                                          0.954491
         103 0
                   -3.640633
                               2.499583
                                               3.065049
                                                          0.064516
11
                                                                      0.02 -0.4105
                  893 47
                                  70
                                           6
                                               CC
                                                    5.640677
                                                                0.055556
                                                                            47 51
                                                                                         1476 91
    41
              2
                             70
                                      0
                       (15,14,0,2) 2.5 0.5 83.5 8.5 0
0.560361
           0.544179
                                                           fstar t
umor lod,nearby gap events,possible contamination,alt allele in normal,clustered read position REJECT
```

Annotation

Link detected variants to functional sites in the genome

- Protein coding exons
- UTR
- Regulatory regions
- Database of known variation
 - dbSNP / 1000 Genomes / ExAC for normal variants
 - Cosmic for cancer mutations

SciLifeLab Cancer Analysis Workflow

https://github.com/SciLifeLab/CAW

Todays practical Part one

Analyze somatic mutations in WGS data from breast cancer cell lines and matched normal controls

- Preprocess bam files
- Detect SNVs with MuTect
- Annotate variants with Annovar (RefGene, ExAC and Cosmic databases)
- Only for a small part of chromsome 17

Part One

Todays Practical part two

- Same samples data already generated for entire genome
- Check basic statistics (#detected mutations)
- Analyze how various degrees of normal contamination of the tumor sample affects allele frequencies

Normal

tumor

20/80

40/60

60/40

80/20

http://scilifelab.github.io/courses/ngsgu/cancergenomics/1610/