Progetto Heuristics & Metaheuristics for Optimization & Learning Algoritmo Tabu Search per il Problema del Massimo Flusso

Matteo Vullo Matricola: 1000034661

Università degli Studi di Catania Dipartimento di Matematica e Informatica

Luglio 2025

Indice

Introduzione

Scelta dell'Algoritmo

Implementazione dell'Algoritmo

Struttura della Soluzione Inizializzazione della Soluzione

Mosse

Memoria Tabù e Diversificazione

Risultati Sperimentali

Conclusioni

Introduzione

Problema del Massimo Flusso:

- ▶ Dato un grafo diretto G = (V, E) con capacità positive sugli archi.
- Obiettivo: determinare il flusso massimo da un nodo sorgente s a un nodo pozzo t, rispettando i vincoli di capacità e conservazione del flusso.

Obiettivo del Progetto:

- Implementare un algoritmo metaheuristico (Tabu Search) per risolvere il problema del massimo flusso.
- ▶ Ottenere soluzioni vicine all'ottimo in tempi ragionevoli.

Scelta dell'Algoritmo

Tabu Search (TS):

- Evita ottimi locali grazie alla lista tabù.
- ► Flessibilità nella definizione del vicinato e delle mosse.
- Punto di partenza: soluzione iniziale di alta qualità (inizializzazione EK parziale).
- Compromesso tra complessità di implementazione e capacità di esplorazione.

Struttura della Soluzione

Rappresentazione della soluzione:

- ▶ Vettore $\vec{f} \in \mathbb{R}^n$, dove n = |E|.
- ightharpoonup Ogni componente f_i rappresenta il flusso sull'arco i-esimo.

Funzione Obiettivo:

$$f_{\mathsf{tot}} = \sum_{(s,v)\in E} f(s,v)$$

Inizializzazione della Soluzione

Strategie:

- **Casuale:** Flusso uniforme in [0, c(u, v)].
- ► **Greedy:** Percorsi aumentanti con Dijkstra.
- **EK parziale:** Versione ridotta di Edmonds-Karp con fattore casuale $r \in [0.7, 0.95]$.

Migliore strategia: EK parziale per qualità e velocità di convergenza.

Definizione delle Mosse

Mosse Elementari:

- ▶ Incremento/decremento del flusso su un arco.
- $\delta = 20\%$ della capacità residua o totale.

Mosse di Scambio:

- Ridistribuzione del flusso tra archi saturi e non saturi.
- Applicate ogni 20 iterazioni.

Mosse di Aumento su Cammino:

Ispirate a Edmonds-Karp, applicate ogni 100 iterazioni o in caso di stallo.

Memoria Tabù e Diversificazione

Memoria Tabù:

- Dizionario per archi tabù con scadenza.
- Accesso rapido (O(1)) e gestione efficiente.

Diversificazione:

- Perturbazione ogni 2000 iterazioni senza miglioramenti.
- Riduzione proporzionale del flusso e aggiunta di rumore controllato.

Risultati Sperimentali

Dati aggregati su 10 esecuzioni:

- Istanze piccole/medie: Ottimo raggiunto in tutte le esecuzioni (deviazione standard nulla).
- ▶ Istanze grandi: Soluzioni vicine all'ottimo ($\sim 99\%$), ma con tempi di convergenza più lunghi.

Grafici di Convergenza:

- Best run e convergenza media mostrano crescita rapida verso l'ottimo per istanze piccole.
- Per istanze grandi, convergenza lenta e stagnazione.

Conclusioni

Punti di forza:

- ► Algoritmo robusto per istanze piccole/medie.
- Soluzione iniziale ibrida e adattività dinamica dei parametri.
- Vicinato ridotto ma efficace.

Limitazioni:

Scalabilità ridotta per istanze molto grandi.

Originalità:

 Combinazione di tecniche per bilanciare esplorazione e intensificazione.

Grazie per l'attenzione!

