

# **LOONGSON**

# 龙芯 7A2000 独显桥片

数据手册

V1. 2

2025年06月

龙芯中科技术股份有限公司

自主决定命运,创新成就未来





### 阅读指南

《龙芯 7A2000 独显桥片数据手册》主要介绍龙芯 7A2000 独显桥片接口结构,特性, 电气规范, 以及硬件设计指导。

1



## 目 录

| 图  | 目录.  | IV                   |
|----|------|----------------------|
| 表  | 目录.  | v                    |
| 附表 | 录目录  | ŧVI                  |
| 1. | 简介   |                      |
|    | 1.1  | 技术指标1                |
|    | 1.2  | 典型应用2                |
|    |      | 1.2.1 单路应用           |
|    |      | 1.2.2 双路应用           |
|    | 1.3  | 订购信息4                |
|    | 1.4  | 术语4                  |
|    | 1.5  | 文档约定4                |
|    |      | 1.5.1 引脚信号命名4        |
|    |      | 1.5.2 数值表示5          |
|    |      | 1.5.3 寄存器域5          |
| 2. | 接口位  | 信号6                  |
|    | 2. 1 | 信号类型定义6              |
|    | 2.2  | 接口信号说明6              |
|    |      | 2. 2. 1 HT 接口6       |
|    |      | 2. 2. 2 PCIE 接口8     |
|    |      | 2.2.3 显存接口           |
|    |      | 2.2.4 网络接口9          |
|    |      | 2. 2. 5 SATA 接口10    |
|    |      | 2. 2. 6 VGA 接口       |
|    |      | 2.2.7 HDMI 接口11      |
|    |      | 2. 2. 8 USB 接口       |
|    |      | 2. 2. 9 HDA 接口12     |
|    |      | 2. 2. 10 SPI 接口12    |
|    |      | 2. 2. 11 LPC 接口12    |
|    |      | 2. 2. 12 I2C 接口   13 |
|    |      | 2. 2. 13 UART 接口     |
|    |      | 2. 2. 14 PWM 接口      |
|    |      | 2. 2. 15 GPIO 接口13   |
|    |      | 2. 2. 16 RTC 信号      |
|    |      | 2.2.17 电源管理接口14      |
|    |      | 2.2.18 时钟信号          |
|    |      | 2.2.19 芯片配置接口        |
|    |      | 2.2.20 中断接口16        |



|    |       | 2. 2. 21 JTAG 接口 | 17 |
|----|-------|------------------|----|
|    |       | 2. 2. 22 引脚复用表   | 17 |
| 3. | 功能    | 及接口说明            | 20 |
|    | 3. 1  | HT 接口            | 20 |
|    | 3. 2  | PCIE 接口          | 20 |
|    | 3. 3  | GPU              | 20 |
|    | 3.4   | 显示接口             | 20 |
|    | 3.5   | 显存接口             | 21 |
|    | 3.6   | USB 接口           | 21 |
|    | 3. 7  | SATA 接口          | 21 |
|    | 3.8   | 网络接口             | 22 |
|    | 3.9   | HDA 接口           | 22 |
|    | 3.10  | ) I2S 接口         | 22 |
|    | 3. 11 | SPI 接口           | 22 |
|    | 3. 12 | 2 LPC 接口         | 23 |
|    | 3. 13 | 3 UART 接口        | 23 |
|    | 3. 14 | L CAN            | 23 |
|    | 3. 15 | 5 I2C接口          | 23 |
|    | 3. 16 | 5 PWM            | 24 |
|    | 3. 17 | HPET             | 24 |
|    | 3. 18 | RTC              | 24 |
|    | 3. 19 | ACPI 接口          | 24 |
|    | 3. 20 | ) GPIO 接口        | 25 |
|    | 3. 21 | JTAG 接口          | 25 |
| 4. | 时钟.   |                  | 26 |
|    | 4. 1  | 时钟内部框图           | 26 |
|    | 4.2   | 芯片时钟介绍           | 26 |
|    | 4.3   | 时钟功能描述           | 27 |
|    | 4.4   | 频率配置             | 28 |
| 5. | 电源管   | 管理 ACPI          | 29 |
|    |       | 电源域              |    |
|    | 5. 2  | 功能描述             | 29 |
| 6. | 热设计   | #                | 30 |
|    |       | 热参数              |    |
|    | 6. 2  | 焊接温度及焊接曲线        | 30 |
| 7. | 电气物   | 寺性               | 32 |
|    |       | 最大额定工作条件         |    |
|    |       | 工作电源             |    |
|    |       | 典型应用功耗           |    |
|    |       | 电源时序             |    |
|    |       | 7.4.1 使能 ACPI EN | 36 |



|    |      | 7.4.2 不使能 ACPI_EN | 13         |
|----|------|-------------------|------------|
| 8. | 封装   | 信息                | 16         |
|    | 8. 1 | 封装尺寸              | 16         |
|    | 8.2  | 信号位置分布            | <u>1</u> 7 |
|    | 8.3  | 芯片引脚排布            | 17         |
| 9. | 产品   | 标识                | 18         |
| 附: | 录 A: | 芯片引脚排布图           | 19         |
| 修  | 江记录  | <del>.</del>      | 55         |



## 图目录

| 图 1-1 | 龙芯 7A2000 顶层结构图1               |
|-------|--------------------------------|
| 图 1-2 | 单路应用示意图3                       |
| 图 1-3 | 双路应用示意图3                       |
| 图 4-1 | 芯片时钟结构图26                      |
| 图 6-1 | 焊接回流曲线31                       |
| 图 7-1 | 冷启动上电时序(RTC 掉电)36              |
| 图 7-2 | 热复位时序图38                       |
| 图 7-3 | S0 到 S3 及 S3 到 S0 时序图40        |
| 图 7-4 | S0 到 S4/S5 及 S4/5 到 S0 状态时序图41 |
| 图 7-5 | 不使能 ACPI 功能时的冷启动上电时序(RTC 掉电)43 |
| 图 7-6 | 不使能 ACPI 功能时的热复位时序图44          |
| 图 8-1 | 封装尺寸47                         |
| 图 8-2 | 信号引脚分布总览(顶视图)47                |
| 图 9-1 | 产品标识 48                        |



# 表目录

| 表 1-1  | 龙芯 7A2000 芯片分级 4                       |
|--------|----------------------------------------|
| 表 1-2  | 术语和缩略语表4                               |
| 表 2-1  | 信号类型说明6                                |
| 表 2-2  | HT 接口 6                                |
| 表 2-3  | PCIE 接口 8                              |
| 表 2-4  | 显存接口9                                  |
| 表 2-5  | 网络接口9                                  |
| 表 2-6  | SATA 接口 10                             |
| 表 2-7  | VGA 接口 10                              |
| 表 2-8  | HDMI 接口11                              |
| 表 2-9  | USB接口11                                |
| 表 2-10 | HDA 接口12                               |
| 表 2-11 | SPI 接口12                               |
| 表 2-12 | LPC 接口 12                              |
| 表 2-13 | I2C 接口13                               |
| 表 2-14 | ART 接口13                               |
| 表 2-15 | PWM 接口13                               |
| 表 2-16 | GPIO 接口13                              |
| 表 2-17 | RTC 接口14                               |
| 表 2-18 | 电源管理接口14                               |
| 表 2-19 | 时钟信号15                                 |
| 表 2-20 | 芯片配置接口15                               |
| 表 2-21 | 中断接口16                                 |
| 表 2-22 | JTAG 接口17                              |
| 表 2-23 | 引脚复用表17                                |
| 表 4-1  | 桥片时钟输入27                               |
| 表 4-2  | 桥片时钟输出27                               |
| 表 6-1  | 龙芯 7A2000 的热阻参数                        |
| 表 6-2  | 回流焊接温度分类表30                            |
| 表 7-1  | 芯片绝对最大额定电压32                           |
| 表 7-2  | 工作电源要求33                               |
| 表 7-3  | 典型应用功耗34                               |
| 表 7-4  | 上电时序要求(示例)                             |
| 表 7-5  | 热复位时序约束39                              |
| 表 7-6  | S0 到 S3/S4/S5 及 S3/S4/S5 到 S0 状态时序约束42 |
| 表 7-7  | 不使能 ACPI 功能时的上电时序要求                    |
| 表 7-8  | 不使能 ACPI 功能时的热复位时序约束                   |



## 附录目录

| 图 A - | 1芯片引脚排布 1/4 (顶视图,   | 从左至右) |   | 51 |
|-------|---------------------|-------|---|----|
| 图 A - | 2 芯片引脚排布 2/4 (顶视图,  | 从左至右) | 5 | 52 |
| 图 A - | 3 芯片引脚排布 3/4 (顶视图,  | 从左至右) | 5 | 53 |
| 图 A - | 4 芯片引脚排布 4/4 ( 顶视图, | 从左至右) | 5 | 54 |



## 1. 简介

龙芯 7A2000 型处理器独显桥片(后文也简称为 7A2000)是龙芯 7A1000 的升级产品。 该芯片通过 HT 高速总线接口与龙芯 3 号系列处理器相连,内部集成 GPU、DC、DDR4 显存控制器,以及 PCIE3. 0、SATA3. 0、USB3. 0、GMAC、HDMI、I2C、UART、GPIO 等接口,可为龙芯处理器提供丰富的南北桥功能。



图 1-1 龙芯 7A2000 顶层结构图

#### 1.1 技术指标

7A2000 芯片主要特性

- 16 位 HT 3.0 接口
- 3D GPU
- 支持双路显示
- 32 位 DDR4 显存控制器
- 3个 x8 PCIE 3.0接口;其中一个可拆分为2个独立 PCIE x4接口<sup>a</sup>
- 1个 x4 PCIE 3.0 接口;可拆分为 4个独立 PCIE x1 2.0 接口
- 1个 x4 PCIE 3.0 接口;可拆分为 2个独立 PCIE x1 2.0 接口
- 4个 SATA 3.0
- 最多4个USB 3.0,最多12个USB2.0



- 1个千兆网口
- HDA/I2S
- RTC/HPET 模块
- 1 个全功能 UART 控制器
- 4 个 CAN 控制器
- 6个 I2C 控制器
- 1 个 LPC 控制器
- 1个 SPI 控制器,支持 QSPI
- GPIO接口
- ACPI 规范
- 内置温度传感器
- 采用 FC-BGA 封装

注 a: BC 版本商业级/工业级芯片的两个 x8 可以作为 x16 使用

#### 1.2 典型应用

#### 1.2.1单路应用

将 7A2000 通过 HT 接口与 3A 系列处理器相连,7A2000 的 HT3. 0 总线频率为 3.2 GHz,通过 16 位总线与 3A 系列处理器连接。





图 1-2 单路应用示意图

#### 1.2.2双路应用

典型的双路应用如图 1-3 所示,由两个龙芯 3A/3B 处理器和两个 7A2000 组成,其中两个处理器通过 HT 连接,每个处理器分别通过 HT 接口与一个 7A2000 连接。



图 1-3 双路应用示意图



### 1.3 订购信息

表 1-1 龙芯 7A2000 芯片分级

| 芯片型号       | 封装 | 工作温度(壳温)   | 质量等级 |
|------------|----|------------|------|
| LS7A2000   | 塑封 | 0°C−70°C   | 商业级  |
| LS7A2000-i | 塑封 | -40°C-85°C | 工业级  |

### 1.4 术语

表 1-2 术语和缩略语表

| 术语      | 描述                                                | 备注 |  |  |  |  |
|---------|---------------------------------------------------|----|--|--|--|--|
| UEFI    | Unified Extensible Firmware Interface             |    |  |  |  |  |
| RGMII   | Reduced Gigabit Media Independent Interface       |    |  |  |  |  |
| LPC     | LPC Low Pin Count                                 |    |  |  |  |  |
| GPI0    | General-purpose input/output                      |    |  |  |  |  |
| ACPI    | AdvancedConfigurationandPowerManagement Interface |    |  |  |  |  |
| SPI     | Serial Peripheral Interface                       |    |  |  |  |  |
| WDT     | Watchdog Timer                                    |    |  |  |  |  |
| HDAudio | High Definition Audio                             |    |  |  |  |  |
| I2C     | Inter Integrated Circuit                          |    |  |  |  |  |
| ROM     | Read-Only Memory                                  |    |  |  |  |  |
| ECC     | Error Correcting Code                             |    |  |  |  |  |
| PCIe    | Peripheral Component Interconnect express         |    |  |  |  |  |
| DIMM    | Dual Inline Memory Module                         |    |  |  |  |  |
| UDIMM   | Unbuffered Dual Inline Memory Module              |    |  |  |  |  |
| SODIMM  | Small Outline Dual Inline Memory Module           |    |  |  |  |  |
| RDIMM   | RDIMM Registered Dual Inline Memory Modules       |    |  |  |  |  |
| LRDIMM  | Load-Reduced Dual Inline Memory Modules           |    |  |  |  |  |
| EJTAG   | Joint Test Action Group for mips                  |    |  |  |  |  |
| JTAG    | Joint Test Action Group                           |    |  |  |  |  |

### 1.5 文档约定

### 1.5.1引脚信号命名

信号名的选取以方便记忆和明确标识功能为原则。低有效信号以 n 结尾,高有效信号则不带 n。



### 1.5.2数值表示

16 进制数表示为'hxxx, 2 进制数表示为'bxx, 其它数字为 10 进制。功能相同但标号有别的引脚使用方括号加数字范围的形式简写(如 DDR\_DQ0, DDR\_DQ1, …DDR\_DQ31 简写成 DDR\_DQ[31:0])。类似地,寄存器域也采用这种表示方式。

#### 1.5.3寄存器域

寄存器域以[寄存器名]. [域名]的形式加以引用。如 chip\_config0. uart\_split 指芯片配置寄存器 0 (chip\_config0) 的 uart\_split 域。



## 2. 接口信号

本节对桥片的信号进行说明。

#### 2.1 信号类型定义

表 2-1 信号类型说明

| 信号类型     | 说明   |
|----------|------|
| DIFF IN  | 差分输入 |
| DIFF OUT | 差分输出 |
| I        | 输入   |
| I/0      | 双向   |
| 0        | 输出   |
| OD       | 开漏输出 |

#### 2.2 接口信号说明

- 1) "一"在复位状态栏中代表输入信号或无需关心;在上下拉栏中代表片内未实现上下拉。
- 2) 对于上下拉的电阻阻值,除了 HT 的几个信号单独说明了阻值要求外,其他所有阻值都 为  $50K\,\Omega$  。
- 3) 关于引脚在不使用时的情况,已经在描述里进行说明,没有说明的信号都可以浮空。
- 4) 除特殊情况外(如 VGA),差分信号合并进行说明,以 P/N 分别代表正/负端。
- 5) 引脚复用配置寄存器的相关配置详见用户手册。

### 2.2.1HT 接口

表 2-2 HT 接口

| 信号名称          | 类型 | 复位状态  | 描述                                                                                                                            | 电源         | 上下拉 |
|---------------|----|-------|-------------------------------------------------------------------------------------------------------------------------------|------------|-----|
| HT_REXT_IO_LO | I  | `h0   | HT 参考电阻,通过一个 1Kohm(1%)的电阻接地                                                                                                   | VDDE_HT_SB | _   |
| HT_CLKP/N     | I  | -     | HT 通道差分时钟输入                                                                                                                   | VDDA_HTPLL | -   |
| HT_LO_POWEROK | OD | `h1   | 当 HT_8X2 无效时为 HT 总线 PowerOK 信号,<br>当 HT_8X2 有效时为 HT_Lo 总线 PowerOK 信号,<br>工作在 3.3V 时,电阻值范围 10~100K Ω;工作在 1.8V<br>时,电阻值最大 50K Ω | VDDE_HT_SB | 上拉  |
| HT_LO_RSTn    | OD | l 160 | 当 HT_8X2 无效时为 HT 总线 Resetn 信号,<br>当 HT_8X2 有效时为 HT_Lo 总线 Resetn 信号,                                                           | VDDE_HT_SB | 上拉  |



|                         |    |        | 工作在 3.3V 时,电阻值范围 10~100K Ω; 工作在 1.8V                                                                                                                      |            |    |
|-------------------------|----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|
|                         |    |        | 时,电阻值最大 50K Ω                                                                                                                                             |            |    |
| HT_LO_LDT_STOPn         | OD | `h1    | 当 HT_8X2 无效时为 HT 总线 Ldt_Stopn 信号,<br>当 HT_8X2 有效时为 HT_Lo 总线 Ldt_Stopn 信号,<br>工作在 3.3V 时,电阻值范围 10~100K Ω;工作在 1.8V<br>时,电阻值最大 50K Ω(不使用时下拉到地)               | VDDE_HT_SB | 上拉 |
| HT_LO_LDT_REQn          | OD | `h1    | 当 HT_8X2 无效时为 HT 总线 Ldt_Reqn 信号,<br>当 HT_8X2 有效时为 HT_Lo 总线 Ldt_Reqn 信号,<br>工作在 3.3V 时,电阻值范围 10~100KΩ;工作在 1.8V<br>时,电阻值最大 50KΩ                             | VDDE_HT_SB | 上拉 |
| HT_HI_POWEROK           | OD | `h1    | 当 HT_8X2 无效时该信号无效,<br>当 HT_8X2 有效时为 HT_Hi 总线 PowerOK 信号,<br>工作在 3.3V 时,电阻值范围 10~100K Ω;工作在 1.8V<br>时,电阻值最大 50K Ω                                          | VDDE_HT_SB | 上拉 |
| HT_HI_RSTn              | OD | `h0    | 当 HT_8X2 无效时该信号无效,<br>当 HT_8X2 有效时为 HT_Hi 总线 Resetn 信号,<br>工作在 3.3V 时,电阻值范围 10~100K Ω;工作在 1.8V<br>时,电阻值最大 50K Ω                                           | VDDE_HT_SB | 上拉 |
| HT_HI_LDT_STOPn         | OD | `h1    | 当 $HT_8X2$ 无效时该信号无效,<br>当 $HT_8X2$ 有效时为 $HT_Hi$ 总线 $Ldt_Stopn$ 信号,<br>工作在 $3.3V$ 时,电阻值范围 $10^{\sim}100K\Omega$ ;工作在 $1.8V$ 时,电阻值最大 $50K\Omega$ (不使用时下拉到地) | VDDE_HT_SB | 上拉 |
| HT_HI_LDT_REQn          | OD | `h1    | 当 HT_8X2 无效时该信号无效,<br>当 HT_8X2 有效时为 HT_Hi 总线 Ldt_Reqn 信号,<br>工作在 3.3V 时,电阻值范围 10~100KΩ;工作在 1.8V<br>时,电阻值最大 50KΩ                                           | VDDE_HT_SB | 上拉 |
| HT_TX_CAD[15:00]P/<br>N | 0  | 'h0000 | 当 HT_8X2 无效时,该总线为 HT 总线发送数据命令总线<br>当 HT_8X2 有效时:<br>[07:00]位为 HT_Lo 总线发送数据命令总线<br>[15:08]位为 HT_Hi 总线发送数据命令总线                                              | VDDP_HT_TX | -  |
| HT_TX_CTL[1:0]P/N       | 0  | 'h0    | 当 HT_8X2 无效时:  [0] 位为 HT 总线发送控制信号  [1] 位无效  当 HT_8X2 有效时:  [0] 位为 HT_Lo 总线发送控制信号  [1] 位为 HT_Hi 总线发送控制信号                                                   | VDDP_HT_TX | -  |
| HT_TX_CLK[1:0]P/N       | 0  | 'hO    | 当 HT_8X2 无效时,该总线为 HT 总线发送时钟总线<br>当 HT_8X2 有效时:<br>[0]位为 HT_Lo 总线发送时钟信号<br>[1]位为 HT_Hi 总线发送时钟信号                                                            | VDDP_HT_TX | -  |
| HT_RX_CAD[15:00]P/<br>N | I  | _      | 当 HT_8X2 无效时,该总线为 HT 总线接收数据命令总线<br>当 HT_8X2 有效时:                                                                                                          | VDDP_HT_RX | -  |



|                    |      |         | [07:00]位为 HT_Lo 总线接收数据命令总线    |                      |            |               |              |  |
|--------------------|------|---------|-------------------------------|----------------------|------------|---------------|--------------|--|
|                    |      |         | [15:08]位为 HT_Hi 总线接收数据命令总线    |                      |            |               |              |  |
|                    |      |         | 当 HT_8X2 无效时:                 |                      |            |               |              |  |
|                    |      | I -     | [0]位为 HT 总线接收控制信号             |                      |            |               |              |  |
| HT RX CTL[1:0]P/N  | т    |         | [1]位无效。                       | VDDP_HT_RX           | -          |               |              |  |
| III_KA_CIL[1.0]I/N | 1    |         | 当 HT_8X2 有效时                  |                      |            |               |              |  |
|                    |      |         |                               | [0]位为 HT_Lo 总线接收控制信号 |            |               |              |  |
|                    |      |         |                               | [1]位为 HT_Hi 总线接收控制信号 |            |               |              |  |
|                    |      |         | 当 HT_8X2 无效时,该总线为 HT 总线接收时钟总线 |                      |            |               |              |  |
| HIT DV CLV[1.0]D/N | 'N I | P/N I - | TALL OLD AT                   | NIKET OJD /N         |            | 当 HT_8X2 有效时: | TANDO HAL DA |  |
| HT_RX_CLK[1:0]P/N  |      |         | _                             | [0]位为HT_Lo 总线接收时钟信号, | VDDP_HT_RX | _             |              |  |
|                    |      |         | [1]位为HT_Hi 总线接收时钟信号。          |                      |            |               |              |  |

### 2. 2. 2PCIE 接口

表 2-3 PCIE 接口

| 信号名称                | 类型       | 复位状态   | 描述                                                     | 电源        | 上下拉 |
|---------------------|----------|--------|--------------------------------------------------------|-----------|-----|
| PCIE_GO_TX[15:0]P/N | DIFF OUT | 'h0000 | PCIE 差分数据输出                                            | VDDP_PCIE | -   |
| PCIE_GO_RX[15:0]P/N | DIFF IN  | -      | PCIE 差分数据输入                                            | VDDP_PCIE | -   |
| PCIE_GO_REFRES[3:0] | I        | ı      | PCIE GO 外部参考电阻,通过 487ohm(+/-1%)连接至<br>VDDP_PCIE 电源,可不接 | VDDP_PCIE | -   |
| PCIE_GO_RSTN        | 0        | 'h0    | PCIE GO 复位输出                                           | VDDE_SOC  | _   |
| PCIE_H_TX[7:0]P/N   | DIFF OUT | 'h00   | PCIE 差分数据输出                                            | VDDP_PCIE | -   |
| PCIE_H_RX[7:0]P/N   | DIFF IN  | -      | PCIE 差分数据输入                                            | VDDP_PCIE | -   |
| PCIE_H_REFRES[1:0]  | I        | -      | PCIE H外部参考电阻,通过 487ohm(+/-1%)连接至<br>VDDP_PCIE 电源,可不接   | VDDP_PCIE | -   |
| PCIE_H_RSTN         | 0        | 'h0    | PCIE 复位                                                | VDDE_SOC  | -   |
| PCIE_F0_TX[3:0]P/N  | DIFF OUT | 'h0    | PCIE 差分数据输出                                            | VDDP_PCIE | -   |
| PCIE_FO_RX[3:0]P/N  | DIFF IN  | -      | PCIE 差分数据输入                                            | VDDP_PCIE | _   |
| PCIE_FO_REFRES      | I        | ı      | PCIE FO 外部参考电阻,通过 487ohm(+/-1%)连接至<br>VDDP_PCIE 电源,可不接 | VDDP_PCIE | -   |
| PCIE_FO_RSTN        | 0        | 'h0    | PCIE 复位                                                | VDDE_SOC  | -   |
| PCIE_F1_TX[3:0]P/N  | DIFF OUT | 'h0    | PCIE 差分数据输出,2X1 模式下仅 LANEO/1 可用                        | VDDP_PCIE | -   |
| PCIE_F1_RX[3:0]P/N  | DIFF IN  | -      | PCIE 差分数据输入,2X1 模式下仅 LANEO/1 可用                        | VDDP_PCIE | -   |
| PCIE_F1_REFRES      | I        | -      | PCIE F1 外部参考电阻,通过 487ohm(+/−1%)连接至<br>VDDP_PCIE 电源,可不接 | VDDP_PCIE | -   |



| PCIE_F1_RSTN             | 0        | 'h0 | PCIE 复位                                              | VDDE_SOC  | - |
|--------------------------|----------|-----|------------------------------------------------------|-----------|---|
| PCIE_REFRES              | I        | _   | PCIE 共享参考电阻,通过 487ohm(+/-1%)连接至<br>VDDP_PCIE 电源,必须连接 | VDDP_PCIE |   |
| PCIE_REFCLK_OUT[7:0] P/N | DIFF OUT | -   | PCIE 100MHz 差分时钟输出                                   | VDDP_PCIE | - |

### 2.2.3显存接口

表 2-4 显存接口

| 信号名称              | 类型       | 复位状态 | 描述                              | 电源       | 上下拉 |
|-------------------|----------|------|---------------------------------|----------|-----|
| GMEM_DQ[31:0]     | I/0      | 'hx  | 显存数据信号                          | VDDP_MEM | -   |
| GMEM_DQS[3:0]P/N  | DIFF I/O | 'hx  | 显存数据选通信号                        | VDDP_MEM | -   |
| NC_GMEM_DQSN[5:4] | I/0      | 'hx  | 显存数据选通信号 4,5 负极,板级悬空处理          | VDDP_MEM | -   |
| GMEM_DMON_DQSP4   | I/0      | 'hx  | 显存数据屏蔽信号 0                      | VDDP_MEM | -   |
| GMEM_DM1N_DQSP5   | I/0      | 'hx  | 显存数据屏蔽信号1                       | VDDP_MEM | -   |
| GMEM_DM2N_DQSP6   | I/0      | 'hx  | 显存数据屏蔽信号 2                      | VDDP_MEM | -   |
| GMEM_DM3N_DQSP7   | I/0      | 'hx  | 显存数据屏蔽信号 3                      | VDDP_MEM | -   |
| GMEM_A[13:0]      | 0        | 'hx  | 显存地址信号                          | VDDP_MEM | -   |
| GMEM_BA[1:0]      | 0        | 'hx  | 显存 Bank 地址信号                    | VDDP_MEM | -   |
| GMEM_BG[1:0]      | 0        | 'hx  | 显存 BankGroup 地址信号               | VDDP_MEM | -   |
| GMEM_ACT          | 0        | 'hx  | 显存行激活信号,低有效                     | VDDP_MEM | -   |
| GMEM_ALERT        | I        | -    | 显存出错警告信号,低有效                    | VDDP_MEM | -   |
| GMEM_WEn          | 0        | 'hx  | 显存写使能信号                         | VDDP_MEM | -   |
| GMEM_CASn         | 0        | 'hx  | 显存列选信号                          | VDDP_MEM | -   |
| GMEM_RASn         | 0        | 'hx  | 显存行选信号                          | VDDP_MEM | -   |
| GMEM_SCSn[1:0]    | 0        | 'hx  | 显存片选信号                          | VDDP_MEM | -   |
| GMEM_CKE[1:0]     | 0        | 'hx  | 显存 CKE 信号                       | VDDP_MEM | -   |
| GMEM_CKP/N        | DIFF 0   | 'hx  | 显存时钟信号                          | VDDP_MEM | -   |
| GMEM_ODT[1:0]     | 0        | 'hx  | 显存 ODT 信号                       | VDDP_MEM | -   |
| GMEM_PAR          | 0        | 'hx  | 显存命令地址奇偶校验信号                    | VDDP_MEM | -   |
| GMEM_RESETn       | 0        | 'hx  | 显存复位信号                          | VDDP_MEM | -   |
| GMEM_COMP_REXT    | I/0      | `h0  | 显存外部参考电阻,通过一个 240ohm(1%)的电阻连接至地 | VDDP_MEM | _   |

### 2.2.4网络接口

表 2-5 网络接口



| 信号名称             | 类型   | 复位状态 | 描述                      | 电源           | 上下拉 |
|------------------|------|------|-------------------------|--------------|-----|
| GMAC1_TX_CLK     | 0    | 'hx  | GMAC 通道 1 发送时钟。保留,不可使用。 | VDDE_RSM     | -   |
| GMAC1_TCTL       | 0    | 'hx  | GMAC 通道 1 发送控制。保留,不可使用。 | VDDE_RSM     | -   |
| GMAC1_TXD[3:0]   | 0    | 'hx  | GMAC 通道 1 发送数据。保留,不可使用。 | VDDE_RSM     | -   |
| GMAC1_RX_CLK     | Ι    | _    | GMAC 通道 1 接收时钟。保留,不可使用。 | VDDE_RSM     | -   |
| GMAC1_RCTL       | I    | -    | GMAC 通道 1 接收控制。保留,不可使用。 | VDDE_RSM     | -   |
| GMAC1_RXD[3:0]   | Ι    | _    | GMAC 通道 1 接收数据。保留,不可使用。 | VDDE_RSM     | -   |
| GMAC1_MDCK       | 0    | 'hx  | GMAC 通道 1 接口时钟。保留,不可使用。 | VDDE_RSM     | -   |
| GMAC1_MDIO       | I/OD | 'hx  | GMAC 通道 1 接口数据。保留,不可使用。 | VDDE_RSM     | -   |
| TX_A_P/N         | I/0  | 'hx  | 双绞线 A 差分端口              | VDDP_GNET_AB | -   |
| TX_B_P/N         | I/0  | 'hx  | 双绞线 B 差分端口              | VDDP_GNET_AB | -   |
| TX_C_P/N         | I/0  | 'hx  | 双绞线C差分端口                | VDDP_GNET_CD | -   |
| TX_D_P/N         | I/0  | 'hx  | 双绞线 D 差分端口              | VDDP_GNET_CD | -   |
| REXT             | I/0  | -    | 外接参考电阻 5Kohm+/- 1%,必须连接 | -            | -   |
| GMACO_LED_1KB    | 0    | 'hx  | 千兆网工作状态指示灯,高有效          | VDDE_RSM     | -   |
| GMACO_LED_100B   | 0    | 'hx  | 十/百兆网工作状态指示灯,高有效,可根据    | VDDE RSM     | _   |
| GMVCO_FED_100B   |      |      | 需要通过软件配置增加千兆网工作状态       | A NNE TROM   | _   |
| GMACO_LED_ACTIVE | 0    | 'hx  | 网络收发包状态指示,高有效           | VDDE_RSM     | -   |

### 2.2.5 SATA 接口

表 2-6 SATA 接口

| 信号名称            | 类型       | 复位状态 | 描述                                                     | 电源          | 上下拉 |
|-----------------|----------|------|--------------------------------------------------------|-------------|-----|
| SATA_REFRES     | I        | _    | SATA 外部参考电阻输入,通过 487ohm(+/-1%)电阻连至<br>VDDP_U3S_RX,必须连接 | VDDP_U3S_RX | -   |
| SATA[3:0]_TXP/N | DIFF OUT | 'h0  | SATA 差分数据输出                                            | VDDP_U3S_TX | -   |
| SATA[3:0]_RXP/N | DIFF IN  | -    | SATA 差分数据输入                                            | VDDP_U3S_RX | -   |
| SATA_LEDn       | OC       | 'h0  | SATA 工作状态,低表示有数据传输                                     | VDDE_SOC    | -   |
| SATA_REFCLKP/M  | DIFF IN  | _    | SATA 参考 25MHz 差分时钟端输入, 当选择 USB 参考差分时钟时可不接              | TBD         | _   |

## 2.2.6 VGA 接口

表 2-7 VGA 接口

| 信号名称      | 类型 | 复位状态 | 描述                 | 电源       | 上下拉 |
|-----------|----|------|--------------------|----------|-----|
| VGA_ROUTP | 0  | 'h1  | VGA R 通道正端口        | VDD_MISC | _   |
| VGA_ROUTN | 0  | 'h0  | VGA R 通道负端口,不使用可接地 | VDD_MISC | -   |
| VGA_GOUTP | 0  | 'h1  | VGA G 通道正端口        | VDD_MISC | -   |



| VGA_GOUTN | 0  | 'h0 | VGA G 通道负端口,不使用可接地                   | VDD_MISC | - |
|-----------|----|-----|--------------------------------------|----------|---|
| VGA_BOUTP | 0  | 'h1 | VGA B 通道正端口                          | VDD_MISC | - |
| VGA_BOUTN | 0  | 'h0 | VGA B 通道负端口,不使用可接地                   | VDD_MISC | - |
| VGA_REXTP | 0  | -   | 外部电阻接在该引脚和 REXTP 和 REXTN 之间,可用 2.27K | VDD_MISC | - |
| VGA_REXTN | I  | -   | Ω到 4.54KΩ, 取决于电流要求(参考值为 2.87KΩ)      | VDD_MISC | - |
| VGA_HSYNC | 0  | 'h0 | VGA 行同步                              | VDDE_SOC | - |
| VGA_VSYNC | 0  | 'h0 | VGA 场同步                              | VDDE_SOC |   |
| VGA_VREF  | 10 | _   | 外接 1. 204V 电压, 默认可不接                 |          | _ |

## 2.2.7HDMI 接口

表 2-8 HDMI 接口

| 信号名称             | 类型       | 复位状态 | 描述                            | 电源            | 上下拉 |
|------------------|----------|------|-------------------------------|---------------|-----|
| HDMIO_TX[2:0]P/N | DIFF OUT | 'h1  | HDMIO 通道数据差分输出                | VDDE_SOC      | -   |
| HDMIO_CKP/N      | DIFF OUT | _    | HDMIO 通道时钟输出                  | VDDE_SOC      | -   |
| HDMIO BIAS       | I/0      | _    | HDMIO 通道偏置电压-通过 240 欧姆电阻上     | VDDP_HDMI_PLL | -   |
| nDM10_b1A3       |          |      | 拉到 VDDP_HDMI_PLL 电源,最大电流 22mA |               |     |
| HDMIO_HOTPLUG    | I        | -    | HDMIO 通道热插拔检测,插入设备时为高         | VDDE_SOC      | 下拉  |
| HDMIO_I2C_SCL    | OC       | 'h0  | HDMIO 通道 I2C 串行时钟             | VDDE_SOC      | _   |
| HDMIO_I2C_SDA    | OC       | 'h0  | HDMIO 通道 I2C 串行数据             | VDDE_SOC      | -   |
| HDMI1_TX[2:0]P/N | DIFF     | 'h1  | HDMI1 通道数据差分输出                | VDDE_SOC      | -   |
| nDMII_IX[2.0]F/N | OUT      | 111  | nDMII 超起致循左分割出                |               |     |
| HDMI1_CKP/N      | DIFF OUT | -    | HDMI1 通道时钟差分输出                | VDDE_SOC      | -   |
| HDMI1_BIAS       | I/0      | _    | HDMI1 通道偏置电压-通过 240 欧姆电阻上     | VDDP_HDMI_PLL | -   |
| IIDMII_DIAS      |          |      | 拉到 VDDP_HDMI_PLL 电源,最大电流 22mA |               |     |
| HDMI1_HOTPLUG    | I        | -    | HDMI1 通道热插拔检测,插入设备时为高         | VDDE_SOC      | 下拉  |
| HDMI1_I2C_SCL    | OC       | 'h0  | HDMI1 通道 I2C 串行时钟             | VDDE_SOC      | _   |
| HDMI1_I2C_SDA    | OC       | 'h0  | HDMI1 通道 I2C 串行数据             | VDDE_SOC      | -   |

## 2.2.8USB接口

表 2-9 USB 接口

| 信号名称             | 类型  | 复位状态  | 描述                                           | 电源          | 上下拉 |
|------------------|-----|-------|----------------------------------------------|-------------|-----|
| USB2_REFRES[3:0] | I   | `h0   | 通过 3Kohm+/- 1%电阻下拉至地                         | _           | _   |
| USB2_D[11:0]P/M  | I/0 | 'h000 | USB2 数据线,低 4 位与 USB3 数据线组合成 USB3 接口          | VDDE_RSM    | -   |
| USB_OC[3:0]      | I   | _     | USB 过流检测输入,该信号为高有效。该引脚与 USB 控制器的对应关系可通过软件配置。 | VDDE_RSM    | -   |
| USB3_REFRES      | I   | `h1   | USB3 外部参考电阻输入,通过 487ohm(+/-1%)电阻连至           | VDDP_U3S_RX | -   |



|                 |          |   | VDDP_U3S_RX          |             |   |
|-----------------|----------|---|----------------------|-------------|---|
| USB_REFCLKP/N   | DIFF IN  | - | USB 参考差分时钟端输入(25MHz) | VDDP_U3S_RX | - |
| USB3_TX[3:0]P/N | DIFF OUT | - | USB3 端口差分发送数据端       | VDDP_U3S_TX | - |
| USB3_RX[3:0]P/N | DIFF IN  | - | USB3 端口差分接收数据端       | VDDP_U3S_RX | - |

注: USB2\_DP/M[3:0]和 USB3 端口不支持唤醒功能,只有 USB2\_DP/M[11:4]八组接口支持

### 2.2.9HDA 接口

表 2-10 HDA 接口

| 信号名称       | 类型  | 复位状态 | 描述                       | 电源       | 上下拉 |
|------------|-----|------|--------------------------|----------|-----|
| HDA_BCLK   | I/0 | _    | HDA BITCLK 输出            | VDDE_SOC | _   |
| HDA_SDIO   | I   | -    | HDA/I2S 数据输入,连接第一个 codec | VDDE_SOC | -   |
| HDA_SDI1   | I   | -    | HDA 数据输入,连接第二个 codec     | VDDE_SOC | -   |
| HDA_SDI2   | I   | _    | HDA 数据输入,连接第三个 codec     | VDDE_SOC | -   |
| HDA_SDO    | 0   | 'h0  | HDA 数据输出                 | VDDE_SOC | -   |
| HDA_SYNC   | 0   | 'h0  | HDA 同步                   | VDDE_SOC | -   |
| HDA_RESETn | 0   | 'h0  | HDA/I2S 复位               | VDDE_SOC | -   |

### 2.2.10 SPI 接口

表 2-11 SPI 接口

| 信号名称         | 类型 | 复位状态 | 描述                                                                                                      | 电源       | 上下拉 |
|--------------|----|------|---------------------------------------------------------------------------------------------------------|----------|-----|
| SPI_SCK      | 0  | -    | SPI master输出时钟信号                                                                                        | VDDE_SOC | _   |
| SPI_SD0      | 0  | 'hx  | SPI master输出数据信号                                                                                        | VDDE_SOC | 上拉  |
| SPI_SDI      | Ι  | 'h0  | SPI master 输入数据信号                                                                                       | VDDE_SOC | 上拉  |
| SPI_CSn[3:0] | 0  | 'hl  | 单/双线模式: SPI slave 片选信号<br>四线模式:<br>SPI_CSn[1:0]为片选信号;<br>SPI_CSn[2]为 SPI_WPn;<br>SPI_CSn[3]为 SPI_HOLDn; | VDDE_SOC | -   |

注: SPI\_CSn0 片选必须连接一个外部 flash,容量不小于 128KB,用于主板存储 ROM 使用。

### 2.2.11 LPC 接口

表 2-12 LPC 接口

| 信号名称         | 类型  | 复位状态 | 描述                              | 电源       | 上下拉 |
|--------------|-----|------|---------------------------------|----------|-----|
| LPC_LAD[3:0] | I/0 | 'h0  | LPC 复用的命令、地址、数据信号线              | VDDE_SOC | 上拉  |
| LPC_LFRAMEN  | I/0 | 'hx  | LPC 总线帧起始、结束信号                  | VDDE_SOC | -   |
| LPC_SERIRQ   | I/0 | _    | LPC 总线 serial IRQ 信号,用于传输串行中断信号 | VDDE_SOC | 上拉  |



| LPC_RESETN | 0 | 'hx | LPC 总线复位信号     | VDDE_SOC | _ |
|------------|---|-----|----------------|----------|---|
| LPC_CLKOUT | 0 | -   | LPC 33MHz 时钟输出 | VDDE_SOC | - |

### 2.2.12 I2C接口

表 2-13 I2C 接口

| 信号名称         | 类型 | 复位状态 | 描述       |          | 上下拉 |
|--------------|----|------|----------|----------|-----|
| I2C[1:0]_SCL | OC | 'h0  | I2C 串行时钟 | VDDE_SOC | -   |
| I2C[1:0]_SDA | OC | 'h0  | I2C 串行数据 | VDDE_SOC | -   |

### 2.2.13 UART接口

表 2-14ART 接口

| 信号名称     | 类型 | 复位状态 | 描述             |          | 上下拉 |
|----------|----|------|----------------|----------|-----|
| UART_TXD | 0  | 'h1  | UARTO 数据发送     | VDDE_SOC | -   |
| UART_RXD | I  | -    | UARTO 数据接收     | VDDE_SOC | -   |
| UART_RTS | 0  | 'h1  | UARTO 请求发送信号   | VDDE_SOC | -   |
| UART_CTS | I  | -    | UARTO 清发送信号    | VDDE_SOC | -   |
| UART_DTR | 0  | 'h1  | UARTO 数据终端就绪信号 | VDDE_SOC | -   |
| UART_DSR | I  | -    | UARTO 数据设置就绪信号 | VDDE_SOC | -   |
| UART_RI  | I  | 'h1  | UARTO 铃流指示信号   | VDDE_SOC | -   |
| UART_DCD | I  | -    | UARTO 数据载波检测信号 | VDDE_SOC | -   |

### 2.2.14 PWM 接口

表 2-15 PWM 接口

| 信号名称     | 类型  | 复位状态 | 描述         | 电源       | 上下拉 |
|----------|-----|------|------------|----------|-----|
| PWM[3:0] | I/0 | 'h0  | PWM 脉冲输入输出 | VDDE_SOC | _   |

### 2.2.15 GPIO接口

表 2-16 GPIO 接口

| 信号名称   | 类型  | 复位状态 | 描述          | 电源       | 上下拉 |
|--------|-----|------|-------------|----------|-----|
| GPI000 | I/0 | _    | 通用输入输出接口 0  | VDDE_SOC | _   |
| GPI027 | I/0 | -    | 通用输入输出接口 27 | VDDE_SOC | -   |

注:

1. 以上仅列举了两个专用 GPIO 接口, 复用的 GPIO 接口参见 2.2.22 节。



2. 该 GPIO 接口与 ACPI\_GPIO 互相独立。

### 2.2.16 RTC 信号

表 2-17 RTC 接口

| 信号名称   | 类型     | 复位状态 | 描述                                   | 电源      | 上下拉 |
|--------|--------|------|--------------------------------------|---------|-----|
| RTC XI | YT T - | _    | 32. 768KHz 晶体输入,或者外部 32. 768KHz 时钟输入 | VDD_RTC | _   |
| KIO_XI | 1      |      | (使用晶体时,必须使用;使用晶振时,必须使用)              |         |     |
| DTC VO |        |      | 32.768KHz 晶体输出                       | UDD DTC |     |
| RTC_XO | 0      | 0 –  | (使用晶体时,必须使用;使用晶振时,可不接)               | VDD_RTC | _   |

### 2.2.17 电源管理接口

表 2-18 电源管理接口

| 信号名称          | 类型 | 复位状态 | 描述                                                                                                               | 电源        | 上下拉 |
|---------------|----|------|------------------------------------------------------------------------------------------------------------------|-----------|-----|
| ACPI_EN       | I  | -    | ACPI 使能 0: 不 使 能 ACPI 功 能 , 此 时 除 了 复 位 信 号 (ACPI_SYSRSTn) 外,其他电源管理信号无效; 1: 使能 ACPI 功能; (板级必须控制,可根据需要设置为 0 或者 1) | VDDE_ACPI | 上拉  |
| ACPI_SYSRSTn  | Ι  | _    | 系统复位,低有效。<br>(必须按照时序要求进行控制)                                                                                      | VDDE_ACPI | -   |
| ACPI_WAKEN    | I  | _    | PCIE 唤醒,低有效。<br>(不使用时上拉处理)                                                                                       | VDDE_ACPI | -   |
| ACPI_SUSSTATn | 0  | 'h1  | 低功耗状态,低有效<br>(不使用时可不接)                                                                                           | VDDE_ACPI | 上拉  |
| ACPI_S3n      | 0  | 'h1  | S3 状态,低有效。<br>(不使用时可不接)                                                                                          | VDDE_ACPI | 上拉  |
| ACPI_S4n      | 0  | 'h1  | S4 状态,低有效。<br>(不使用时可不接)                                                                                          | VDDE_ACPI | 上拉  |
| ACPI_S5n      | 0  | 'h1  | S5 状态,低有效。<br>(不使用时可不接)                                                                                          | VDDE_ACPI | 上拉  |
| ACPI_PLTRSTn  | 0  | 'h1  | 平台复位,低有效。<br>(建议板级使用该复位信号,ACPI_EN 为 0 时该信号仅<br>受 ACPI_SYSRSTn 控制)                                                | VDDE_ACPI | 上拉  |
| ACPI_PWRBTNn  | I  | -    | 电源开关,低有效。<br>(不使用时上拉处理)                                                                                          | VDDE_ACPI | -   |
| ACPI_PWROK    | I  | -    | 电源有效,指示最后一级电源上电成功,高有效。<br>(不使用时上拉处理)                                                                             | VDDE_ACPI | -   |
| ACPI_VSBGATE  | 0  | 'h1  | 主电源和 standby 电源切换控制信号<br>(不使用时可不接)                                                                               | VDDE_ACPI | -   |



|                  |     |   | ACPI 域 GPIO 端口,用作 GPE 功能,具有唤醒和中断功 |           |   |
|------------------|-----|---|-----------------------------------|-----------|---|
| ACPI_GPIO[15:00] | I/0 | - | 能,中断类型包括电平/边沿/双沿,极性可设置            | VDDE_ACPI | - |
|                  |     |   | (不使用时可不接)                         |           |   |
| ACPI RSMRSTn     | т   |   | ACPI 域复位信号,低有效                    | VDDE ACPI |   |
| ACLI_V2MV2111    | 1   | _ | (必须按照时序要求进行控制)                    | VDDE_ACFI | _ |
| SYS_DOTESTn      | I   | т | 测试模式设置,低有效。功能模式下必须上拉。             | VDDE ACDI | _ |
|                  |     | _ | (不使用时上拉处理)                        | VDDE_ACPI |   |

注:参见电源管理和复位时序。

### 2.2.18 时钟信号

表 2-19 时钟信号

| 信号名称        | 类型 | 复位状态 | 描述                                            | 电源         | 上下拉 |
|-------------|----|------|-----------------------------------------------|------------|-----|
| SYS_CLKIN   | I  | _    | 桥片 100 MHz 主参考时钟<br>(当系统时钟选择 HT 的差分参考时钟时,可不接) | VDDE_HT_SB | -   |
| SYS_TESTCLK | I  | _    | 测试时钟输入<br>(功能模式下,必须下拉)                        | VDDE_SOC   | -   |
| CLKOUT_100M | 0  | 'hx  | 100 MHz 单端时钟输出                                | VDDE_HT_SB | -   |
| CLKOUT_33M  | 0  | 'h0  | 33.3 MHz 单端时钟输出                               | VDDE_SOC   | _   |
| CLKOUT_25M  | 0  | 'hx  | 25 MHz 单端时钟输出                                 | VDDE_SOC   |     |
| CLKOUT_FLEX | 0  | 'hx  | 系统时钟输出,频率可配置                                  | VDDE_SOC   | _   |

### 2.2.19 芯片配置接口

表 2-20 芯片配置接口

| 信号名称          | 类型  | 复位状态 | 描述                                                                                                                                                                                                                | 电源       | 上下拉                                                                                                                                                                    |
|---------------|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PCIE_BRIDGE   | I/0 | _    | 系统 PCIE 桥模式选择输入,                                                                                                                                                                                                  | VDDE_SOC | 下拉                                                                                                                                                                     |
| CLKSEL[08:00] | 1/0 | -    | 0=HT 桥片模式, 1=PCIE 桥片模式 CLKSEL[1:0]: 内部 PLL(除 HT PLL)时钟配置 00: 由软件对时钟频率进行配置; 01: 硬件配置 1; 10: 硬件配置 0; 11: 内部 PLL bypass,仅用于调试 CLKSEL[3:2]: HT 控制器分频设置 00: 8 分频 01: 4 分频 10: 保留 11: 1 分频 CLKSEL[5:4]: HT PLL VCO 频率配置 | VDDE_SOC | CLKSEL[0]: 下拉<br>CLKSEL[1]: 下拉<br>CLKSEL[2]: 下拉<br>CLKSEL[3]: 下拉<br>CLKSEL[4]: 上拉<br>CLKSEL[5]: 下拉<br>CLKSEL[6]: 下拉<br>CLKSEL[6]: 下拉<br>CLKSEL[7]: 上拉<br>CLKSEL[8]: 下拉 |



|             |   |     | 1                               |           | 7   |
|-------------|---|-----|---------------------------------|-----------|-----|
|             |   |     | 00: VCO 频率 1.6GHz               |           |     |
|             |   |     | 01: VCO 频率 3.2GHz               |           |     |
|             |   |     | 10: VCO 频率 1.2GHz               |           |     |
|             |   |     | 11: VCO 频率 2.4GHz               |           |     |
|             |   |     | CLKSEL[6]: 保留                   |           |     |
|             |   |     | CLKSEL[7]: HT 频率配置模式选择(必须控制)    |           |     |
|             |   |     | 0:软件配置,这种情况下 CLKSEL[5:2] 不起作用   |           |     |
|             |   |     | 1: 硬件配置                         |           |     |
|             |   |     | CLKSEL[8]:系统参考时钟选择(必须控制)        |           |     |
|             |   |     | 0: 使用 SYS_CLKIN                 |           |     |
|             |   |     | 1: 使用 HT PHY 参考时钟 HT_CLKP/n     |           |     |
| HT_8X2      | I | -   | HT 8x2 模式设置,必须配置成 0             | VDDE_SOC  | 下拉  |
| HT_GEN3     | I | -   | HT GEN3 模式设置,必须配置成0,板级可不接       | VDDE_SOC  | 下拉  |
|             |   |     | 系统双桥模式使能                        |           |     |
| DUAL_BRIDGE | I | -   | 0: 禁用 PCIE FO 桥模式               | VDDE_SOC  | 下拉  |
|             |   |     | 1: 使能 PCIE FO 桥模式               |           |     |
|             |   |     | HT 外部差分参考时钟频率选择                 |           |     |
| HTCLV CELO  | т | _   | 0: 100MHz                       | VDDE_SOC  | T++ |
| HTCLK_SEL0  | I | _   | 1: 200MHz                       | VDDE_SOC  | 下拉  |
|             |   |     | (HT 输入差分时钟不使用时可不接)              |           |     |
|             |   |     | HT 参考时钟选择                       |           |     |
| HTCLV CEL1  | т |     | 0: 选择外部差分参考时钟                   | ADDE COC  | T+÷ |
| HTCLK_SEL1  | I | _   | 1: 选择 SYS_CLKIN                 | VDDE_SOC  | 下拉  |
|             |   |     | (必须控制)                          |           |     |
|             |   |     | PRG 参考时钟选择                      |           |     |
|             |   |     | 0: 选择 USB3 输出的 25MHz 参考时钟       |           |     |
| PRG_CLKSEL  | I | -   | 1:选择 PCIE_REFCLKINP/N 作为参考时钟    | VDDE_SOC  | 下拉  |
|             |   |     | (不选择 PCIE_REFCLKINP/N 作为参考时钟时可不 |           |     |
|             |   |     | 接)                              |           |     |
|             |   |     | USB 参考时钟选择                      |           |     |
| Heber wers  | _ | т – | 0: USB 参考时钟为 25MHz 晶体           | WDDD AGDT |     |
| USBCLKSEL   |   |     | 1: USB 参考时钟为 25MHz 差分输入         | VDDE_ACPI | _   |
|             |   |     | (必须控制)                          |           |     |
| L           |   | L   | I .                             |           |     |

# 2.2.20 中断接口

表 2-21 中断接口

| 信号名称  | 类型 | 复位状态 | 描述       | 电源       | 上下拉 |
|-------|----|------|----------|----------|-----|
| INTNO | 0  | 'h1  | 系统中断输出 0 | VDDE_SOC | -   |
| INTN1 | 0  | 'h1  | 系统中断输出1  | VDDE_SOC | -   |



## 2.2.21 JTAG 接口

表 2-22 JTAG 接口

| 信号名称  | 类型 | 复位状态 | 描述          | 电源       | 上下拉 |
|-------|----|------|-------------|----------|-----|
| TCK   | Ι  | _    | JTAG 时钟     | VDDE_SOC | 下拉  |
| TDI   | Ι  | _    | JTAG 数据输入   | VDDE_SOC | -   |
| TMS   | Ι  | -    | JTAG 模式     | VDDE_SOC | -   |
| TRSTN | Ι  | -    | JTAG 复位,需下拉 | VDDE_SOC | 下拉  |
| TDO   | 0  | 'h0  | JTAG 数据输出   | VDDE_SOC | -   |

### 2.2.22 引脚复用表

模块级的功能复用关系如下表所示:

表 2-23 引脚复用表

| 功能 0        | 功能1    | 功能 2     | 功能3 | 功能 4 | 复用控制 |
|-------------|--------|----------|-----|------|------|
| CLKOUT_33M  | GPI001 |          |     |      | 见注1  |
| CLKOUT_25M  | GPI002 |          |     |      | 见注1  |
| CLKOUT_FLEX | GPI003 |          |     |      | 见注1  |
| CLKSEL00    | GPI046 |          |     |      | 见注 4 |
| CLKSEL01    | GPI047 |          |     |      |      |
| CLKSEL02    | GPI048 |          |     |      |      |
| CLKSEL03    | GPI049 |          |     |      |      |
| CLKSEL04    | GPI050 |          |     |      |      |
| CLKSEL05    | GPI051 |          |     |      |      |
| CLKSEL06    | GPI052 |          |     |      |      |
| CLKSEL07    | GPI053 |          |     |      |      |
| PCIE_BRIDGE | GPI054 |          |     |      |      |
| HT8x2       | GPI055 |          |     |      | 见注 2 |
| HTGEN3      | GPI056 |          |     |      |      |
| DUAL_BRIDGE | GPI057 |          |     |      | 见注 4 |
| HDA_BCLK    | GPI019 | I2S_BCLK |     |      | 见注3  |
| HDA_RESETn  | GPIO21 | I2S_LR   |     |      | ]    |
| HDA_SDIO    | GPI023 | I2S_DI   |     |      |      |
| HDA_SDO     | GPI022 | I2S_D0   |     |      |      |
| HDA_SYNC    | GPI020 | I2S_MCLK |     |      |      |
| HDA_SDI1    | GPI024 |          |     |      | 见注3  |
| HDA_SDI2    | GPI025 |          |     |      |      |



|             |        |           |          | _       |                   |
|-------------|--------|-----------|----------|---------|-------------------|
| I2C0_SCL    | GPI008 |           |          |         | 见注 2              |
| I2CO_SDA    | GPI009 |           |          |         |                   |
| I2C1_SCL    | GPI010 |           |          |         | 见注 2              |
| I2C1_SDA    | GPI011 |           |          |         |                   |
| LPC_LADO    | GPI040 |           |          |         | 见注 2              |
| LPC_LAD1    | GPI041 |           |          |         |                   |
| LPC_LAD2    | GPI042 |           |          |         |                   |
| LPC_LAD3    | GPI043 |           |          |         |                   |
| LPC_LFRAMEN | GPI045 |           |          |         |                   |
| LPC_SERIRQ  | GPI044 |           |          |         |                   |
| SATA_LEDn   | GPI026 |           |          |         | 见注1               |
| SPI_CSn0    | GPI012 |           | I2C4_SCL |         | 见注 2              |
| SPI_CSn1    | GPI013 |           | I2C4_SDA |         | 1                 |
| SPI_CSn2    | GPI014 | SPI_WPn   | I2C5_SCL |         | 见注 2              |
| SPI_CSn3    | GPI015 | SPI_HOLDn | I2C5_SDA |         |                   |
| SPI_SDI     | GPI016 |           |          |         | 见注 2              |
| SPI_SD0     | GPI017 |           |          |         |                   |
| SPI_SCK     | GPI018 |           |          |         |                   |
| PWMO        | GPI004 |           |          |         | 见注1               |
| PWM1        | GPI005 |           |          |         | 见注 1              |
| PWM2        | GPI006 |           |          |         | 见注1               |
| PWM3        | GPI007 |           |          |         | 见注 1              |
| UART_DCD    | GPI032 | UART3_RXD | I2C2_SCL | CAN3_RX | ELY-0             |
| UART_RI     | GPI033 | UART3_TXD | I2C2_SDA | CAN3_TX | - 见注 2            |
| UART_DSR    | GPI034 | UART2_RXD | I2C3_SCL | CAN2_RX | EL 24- 0          |
| UART_DTR    | GPI035 | UART2_TXD | I2C3_SDA | CAN2_TX | - 见注 2            |
| UART_CTS    | GPI036 | UART1_RXD |          | CAN1_RX | шу <del>у</del> о |
| UART_RTS    | GPI037 | UART1_TXD |          | CAN1_TX | - 见注 2            |
| UART_RXD    | GPI038 | UARTO_RXD |          | CANO_RX | ш у-г о           |
| UART_TXD    | GPI039 | UARTO_TXD |          | CANO_TX | - 见注 2            |
| USB_OCO     | GPI028 |           |          |         | 见注 1              |
| USB_0C1     | GPI029 |           |          |         | 见注1               |
| USB_OC2     | GPI030 |           |          |         | 见注1               |
| USB_0C3     | GPI031 |           |          |         | 见注 1              |

#### 注:

- 1. 引脚功能可单独配置。
- 2. 引脚功能不可单独配置,合并单元格内的引脚功能需同时配置。
- 3. HDA 相关引脚,当配置为 HDA 模式时,所有引脚都工作在 HDA 模式,即使在 HDA 模式下不使用引脚 HDA\_SDI1/2,它们也无法作为其他功能使用;当配置为 I2S 模式时,引脚 HDA\_SDI1/2 可以作为 GPIO 功能使用。



4. 芯片配置相关引脚,在 boot 阶段作为芯片配置输入引脚,系统启动后,工作在 GPIO 输出模式。(注意: 当作为 GPIO 输入使用时需保证不影响 boot 阶段的配置)。



# 3. 功能及接口说明

#### 3.1 HT 接口

● 16 位 HT3.0 接口

#### 3.2 PCIE 接口

- 兼容 PCIE 3.0
- 32 个 lane, 3 个 x8 接口 b, 2 个 x4 接口
- 1个x8接口可配置为2个x4接口独立使用
- 其中1个x4接口可配置为4个x1接口独立使用
- 另外 1 个 x4 接口可配置为 2 个 x1 接口独立使用
- 输出 8 路 PCIE 差分参考时钟
- 支持极性反转
- 支持线序反转(注: PCIE\_GO 在 1X16 模式下支持, 2X8 模式下仅 PORT1 支持, PORT0 不支持; PCIE\_H 在 1X8 模式下支持, 2X4 模式下仅 PORT1 支持, PORT0 不支持。PCIE\_FO 和 PCIE\_F1 在 1X4 模式下支持。)

注 b: BC 版本商业级/工业级芯片的 PCIE\_GO 高低 8 位可组成 x16 接口

#### 3. 3 GPU

- 集成一路 DMA
- 集成 MMU
- 支持 4x MSAA
- 支持内存压缩
- 支持动态功耗管理

#### 3.4 显示接口

● 两路 HDMI 接口,一路 VGA 接口



- VGA 显示内容与 HDMIO 相同
- 两路独立硬件光标
- 伽玛校正
- 输出抖动
- 支持 1080p@60Hz
- 支持线性显示缓冲
- 上电序列控制
- 低功耗管理

#### 3.5 显存接口

- 32 位 DDR4 显存控制器,接口最大速率 DDR4-2400Mbps.
- 最大显存容量 16GB
- 显存通道可配置为 32/16 位

### 3.6 USB接口

- 采用 OHCI、EHCI 和 XHCI 协议
- 4个独立的 USB3.0 HOST 端口
- 最多 12 个 USB2. 0 HOST 端口
- 兼容 USB1.1、USB2.0 和 USB3.0
- 最高传输速度可达 5Gbps
- USB3.0接口支持极性反转

### 3.7 SATA 接口

- 4 个独立 SATA3. 0 端口
- 支持 SATA 1.5Gbps、3Gbps 和 6Gbps 的传输
- 兼容串行 ATA 3.3 规范和 AHCI 1.3.1 规范
- 低功耗设计
- 支持极性反转



#### 3.8 网络接口

- 10/100/1000Mbps 自适应以太网
- 兼容 IEEE 802.3
- 支持全双工<sup>°</sup>
- Timestamp 功能
- 支持 CRC 校验码的自动生成与校验,支持前置符生成与删除
- 支持网络 S3 唤醒

注 c: BC 版本芯片支持全/半双工

#### 3.9 HDA 接口

- 支持 16、18 和 20 位采样精度,支持可变速率
- 最高采样频率 192KHz
- 7.1 频道环绕立体声输出
- 三路音频输入

#### 3.10 I2S 接口

- 支持 master 模式下 I2S 输入
- 支持 master 模式下 I2S 输出
- 支持8、16、18、20、24、32位宽
- 支持单声道和立体声道音频数据
- 支持(16、22.05、32、44.1、48)KHz 采样频率
- 支持 DMA 传输模式

### 3.11 SPI 接口

- 双缓冲接收器
- 极性和相位可编程的串行时钟
- 主模式支持



- 支持到4个的变长字节传输
- 支持标准读、连续地址读、快速读、双路 I/0 等 SPI Flash 读模式
- 支持 QSPI

### 3.12 LPC 接口

- 符合 LPC1.1 规范
- 扩展支持 TPM 协议
- 支持 Serialized IRQ 规范,提供17个中断源

#### 3.13 UART接口

- 1 个全功能 UART 和流控 TXD, RXD, CTS, RTS, DSR, DTR, DCD, RI
- 在寄存器与功能上兼容 NS16550A
- 两路全双工异步数据接收/发送
- 可编程的数据格式
- 16 位可编程时钟计数器
- 支持接收超时检测
- 带仲裁的多中断系统
- 可配置为 4 个两线串口(TXD, RXD)

#### 3.14 CAN

- 符合 CAN2. 0 规范
- 四路 CAN 接口
- 支持中断

#### 3.15 I2C接口

- 集成 6 个 I2C 接口
- 兼容 SMBUS(100Kbps)
- 与 PHILIPS I2C 标准相兼容



- 履行双向同步串行协议
- 主从设备支持
- 能够支持多主设备的总线
- 总线的时钟频率可编程
- 可以产生开始/停止/应答等操作
- 能够对总线的状态进行探测
- 支持低速和快速模式
- 支持 7 位寻址和 10 位寻址
- 支持时钟延伸和等待状态

#### 3.16 PWM

- 4路32位可配置 PWM 定时器
- 支持定时器功能
- 支持计数器功能
- 支持防死区发生控制

#### 3.17 HPET

- 支持1个周期性中断
- 支持2个非周期性中断

#### 3.18 RTC

- 计时精确到1微秒
- 可产生3个定时中断
- 支持定时开关机功能

### 3.19 ACPI 接口

- USB/GMAC 可 S3 唤醒
- 来电可自动启动



● 支持 S0, S3, S4, S5 状态

### 3.20 GPIO接口

- 2 个专用 GPIO 引脚, 56 个复用 GPIO 引脚
- 输入中断功能
- 中断极性、触发类型可设置

### 3.21 JTAG 接口

● JTAG 测试接口



### 4. 时钟

#### 4.1 时钟内部框图



图 4-1 芯片时钟结构图

#### 4.2 芯片时钟介绍

桥片的系统时钟有两种选择方式,一种是选择单端输入时钟 SYS\_CLKIN,另一种是选择 HT 的差分输入时钟,选择信号为 CLKSEL8。无论哪种方式,必须保证系统时钟的频率为 100MHz,所以当选择 HT 的差分输入时钟时,需要根据差分时钟的频率对系统配置信号 HTCLK\_SEL0 进行设置。

除系统时钟外,还需要一个 32.768KHz 的时钟作为 RTC 时钟。其他参考时钟的描述如下。



表 4-1 桥片时钟输入

| 时钟                      | 频率                                                                                                     | 说明                                                   | 电平标准                      |
|-------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------|
| SYSCLK                  | 100MHz                                                                                                 | 桥片 100 MHz 主参考时钟                                     | LVCMOS-1V8/LVC<br>MOS-3V3 |
| RTC_XI                  | 32. 768KHz                                                                                             | 32.768KHz 晶体输入,或者外部32.768KHz 时钟输入                    | _                         |
| RTC_XO                  | 32. 768KHz                                                                                             | 32. 768KHz 晶体输出                                      | _                         |
| SYS_TESTCLK             | -                                                                                                      | 功能模式下, 必须下拉                                          | _                         |
| HT_CLKP/N               | CLKP/N 100/200 MHz HT 差分参考时钟,当 HT 使用内部参考时钟时,可不接                                                        |                                                      | LVDS                      |
| PCIE_REFCLKINP/N 100MHz |                                                                                                        | PCIE 差分参考时钟, 当 PCIE 使用 USB 的参考时钟时可不接                 | LP-HCSL                   |
| RAPIDIO_REFCLKIN_P/N    | PIDIO_REFCLKIN_P/N - 保留,可不接                                                                            |                                                      | _                         |
| USB3_REFCLKP/N          | USB 差分参考时钟,可接 25MHz 晶体或者晶振。当不使<br>BB3_REFCLKP/N 25MHz 用 USB3/2 和 GMACO 并且 PCIE 和 SATA 不使用该时钟时才<br>可以不接 |                                                      | LP-HCSL                   |
| SATA_REFCLKP/N          | 25MHz                                                                                                  | SATA 差分参考时钟,电平标准为 LP-HCSL。当 SATA 使用<br>USB 的参考时钟时可不接 | LP-HCSL                   |

 $\mathbf{\hat{z}}$ : 晶体参考时钟(RTC\_XI/X0)必须保留,否则影响正常开机以及会导致软件访问电源管理模块的寄存器时死机。

表 4-2 桥片时钟输出

| 时钟                  | 频率      | 说明                | 电平标准                 |
|---------------------|---------|-------------------|----------------------|
| CLKOUT_33M          | 33.3MHz | 33.3 MHz 单端时钟输出   | -                    |
| CLKOUT_100M         | 100 MHz | 100 MHz 单端时钟输出    | LVCMOS-1V8/LVCMO-3V3 |
| CLKOUT_25M          | 25 MHz  | 25 MHz 单端时钟输出     | -                    |
| CLKOUT_FLEX         | 可变      | 频率可变单端时钟输出        | -                    |
| LPC_CLKOUTOUT       | 33.3MHz | LPC 接口输出参考时钟      | -                    |
| PCIE_REFCLK_OUTOP/N | 100MHz  | 第 0 路 PCIE 输出参考时钟 | LP-HCSL              |
| PCIE_REFCLK_OUT1P/N | 100MHz  | 第1路 PCIE 输出参考时钟   | LP-HCSL              |
| PCIE_REFCLK_OUT2P/N | 100MHz  | 第2路 PCIE 输出参考时钟   | LP-HCSL              |
| PCIE_REFCLK_OUT3P/N | 100MHz  | 第3路PCIE输出参考时钟     | LP-HCSL              |
| PCIE_REFCLK_OUT4P/N | 100MHz  | 第 4 路 PCIE 输出参考时钟 | LP-HCSL              |
| PCIE_REFCLK_OUT5P/N | 100MHz  | 第 5 路 PCIE 输出参考时钟 | LP-HCSL              |
| PCIE_REFCLK_OUT6P/N | 100MHz  | 第6路PCIE输出参考时钟     | LP-HCSL              |
| PCIE_REFCLK_OUT7P/N | 100MHz  | 第7路PCIE输出参考时钟     | LP-HCSL              |

注: CLKOUT\_33M、CLKOUT\_25M 和 CLKOUT\_FLEX 引脚可复用为 GPIO 功能。

### 4.3 时钟功能描述

桥片内部包含了多个 PLL 和时钟分频模块,用于产生桥片需要的各个时钟。 桥片内部包含 6 个 PLL,其中每个 PLL 最多可以提供 3 个时钟输出。这 6 个 PLL 的用途



分别为:一个设备 PLL,产生 USB/SATA、GMAC 控制器的时钟;一个图形 PLL 用于产生 GPU、DC 以及显存的时钟;针对这个 PLL,额外提供一个支持展频功能 (SSC) 的 PLL 作为备份;一个系统 PLL 用于产生内部总线、HDA BITCLK、CLKOUT\_FLEX 的时钟;两个 PIX PLL 用于产生两个独立的像素时钟,以支持双路独立显示。

#### 4.4 频率配置

参考用户手册。



# 5. 电源管理 ACPI

### 5.1 电源域

所有电源域清单请参见第7.2节。

### 5.2 功能描述

桥片电源管理模块提供系统功耗管理功能。支持 Advanced Configuration and Power Interface, Version 4.0a(ACPI),提供相应的功耗管理功能。

系统休眠与唤醒,支持 ACPI S3 (待机到内存), ACPI S4 (待机到硬盘), ACPI S5 (软关机),并且支持电源失效检测和自动系统恢复。支持多种唤醒方式 (USB S3 唤醒, GMAC S3 唤醒,电源开关等)。

集成一个看门狗。在使能 ACPI 情况下可使能看门狗,最大定时时间约 82s。



# 6. 热设计

## 6.1 热参数

表 6-1 龙芯 7A2000 的热阻参数

| 热阻                           | 典型值      |
|------------------------------|----------|
| 芯片整体热阻 R 总                   | 1.638℃/₩ |
| 芯片基底热阻 R <sub>th (J-B)</sub> | 1.337℃/₩ |
| 芯片硅片热阻 R <sub>th (J-C)</sub> | 0.301℃/₩ |

## 6.2 焊接温度及焊接曲线

表 6-2 回流焊接温度分类表

| Profi                 | Profile Feature                    |                   |  |
|-----------------------|------------------------------------|-------------------|--|
| Average ramp-u        | Average ramp-up rate (Tsmax to Tp) |                   |  |
|                       | Temperature Min (Tsmin)            | 150 ° C           |  |
| Preheat               | Temperature Max (Tsmax)            | 200 ° C           |  |
|                       | Time (Tsmin to Tsmax) (ts)         | 60-180 seconds    |  |
| Time maintained above | Temperature (TL)                   | 217 ° C           |  |
| Time maintained above | Time (tL)                          | 60-150 seconds    |  |
| Peak Ten              | nperature (Tp)                     | 245° C            |  |
| Time within 5°C of ac | 20-40 seconds                      |                   |  |
| Ramp                  | -down Rate                         | 6 ° C/second max. |  |
| Time 25°C t           | o Peak Temperature                 | 8 minutes max.    |  |





图 6-1 焊接回流曲线



# 7. 电气特性

## 7.1 最大额定工作条件

表 7-1 芯片绝对最大额定电压

|       | rin MES                                | <i>4.</i> #1                                      | 电压   | (V)   |
|-------|----------------------------------------|---------------------------------------------------|------|-------|
| 电源域   | 电源                                     | 描述                                                | Min  | Max   |
| RTC   | VDD_RTC                                | RTC 域电源                                           | -0.3 | 3. 3  |
| ACPI  | VDD_ACPI ACPI 域核心电源  VDDE ACPI 域 IO 电源 |                                                   | -0.3 | 1.1   |
| ACF 1 | VDDE_ACPI                              | ACPI 域 IO 电源                                      | -0.3 | 3.6   |
|       | VDD_RSM                                | RESUME 域核心电源,包括 USB2/3 控制器,GMAC<br>控制器/PHY1.0V 供电 | -0.3 | 1.3   |
|       | VDDE_RSM                               | RESUME 域 IO 电源                                    | -0.3 | 3.6   |
|       | VDDP_RSM                               | GMAC PHY 及 USB2 PHY 1.8V 供电                       | -0.3 | 1.9   |
| RSM   | VDDP_GNET_AB                           | GMAC PHY Channel A/B 3.3V 供电                      | -0.3 | 3.6   |
|       | VDDP_GNET_CD                           | GMAC PHY Channel C/D 3.3V 供电                      | -0.3 | 3.6   |
|       | VDDP_U3S_TX                            | USB3/SATA PHY 1.8V 供电                             | -0.3 | 1.9   |
|       | VDDP_U3S_RX                            | USB3/SATA PHY1.0V 供电                              | -0.3 | 1.1   |
|       | VDDP_USB2_L                            | USB2 PHY 0.9V 供电                                  | -0.3 | 1.1   |
|       | VDD_SOC                                | SOC 域核心电源                                         | -0.3 | 1.1   |
|       | VDDE_SOC                               | SOC 域 IO 电源(包括 HDMI 的 3v3 电)                      | -0.3 | 3.6   |
|       | VDD_MISC                               | VGA、OTP 和温度传感器电源                                  | -0.3 | 1.9   |
|       | VDDE_HT_SB                             | HT 边带信号以及参考时钟电源                                   | -0.3 | 1.9   |
|       | VDDP_HDMI_PLL                          |                                                   |      | 1.9   |
|       | VDDP_HDMI_BIAS                         |                                                   |      | 1.9   |
|       | VDDP_HDMI_L                            | HDMI 低压供电                                         | -0.3 | 0.945 |
|       | VDDP_PRG                               | PRG 电源                                            | -0.3 | 1.9   |
|       | VDD_MEM                                | DDR PHY 核心电源                                      | -0.3 | 1.1   |
| SOC   | ADDD MEN                               | DDR IO 电源(DDR4 模式)                                | -0.3 | 1.3   |
|       | VDDP_MEM                               | DDR IO 电源(DDR3 模式)                                | -0.3 | 1.65  |
|       | VDDP_HT_TX                             | HT PHY TX 电源                                      | -0.3 | 1.3   |
|       | VDDP_HT_RX                             | HT PHY RX 电源                                      | -0.3 | 1.3   |
|       | VDDP_PCIE                              | PCIE3 PHY 电源                                      | -0.3 | 1.1   |
|       | VDDA_SSCPLL                            | 展频 PLL 模拟电源                                       | -0.3 | 1.9   |
|       | VDDD_SSCPLL                            | 展频 PLL 数字电源                                       | -0.3 | 1.1   |
|       | VDD_PLL0                               | PLLO 电源                                           | -0.3 | 1.4   |
|       | VDD_PLL1                               | PLL1 电源                                           | -0.3 | 1.4   |
|       | VDD_PLL2                               | PLL2 电源                                           | -0.3 | 1.4   |



| VDD_PLL3   | PLL3 电源     | -0.3 | 1. 4 |
|------------|-------------|------|------|
| VDD_PLL4   | PLL4 电源     | -0.3 | 1. 4 |
| VDDA_HTPLL | HT PLL 模拟电源 | -0.3 | 1. 4 |
| VDDD_HTPLL | HT PLL 数字电源 | -0.3 | 1. 4 |

# 7.2 工作电源

表 7-2 工作电源要求

| -L- Vizz I-A | <b>酒椒 由酒                                  </b> |                                                   |        | 电压(V) | )      | 最大电流 *   |
|--------------|------------------------------------------------|---------------------------------------------------|--------|-------|--------|----------|
| 电源域          | 电源                                             | 描述                                                | Min    | Тур   | Max    | (売温 85°) |
| RTC          | VDD_RTC                                        | RTC 域电源                                           | 2. 4   | 3     | 3. 3   | 5uA      |
| ACDI         | VDD_ACPI                                       | ACPI 域核心电源                                        | 0.95   | 1.0   | 1.05   | 15mA     |
| ACPI         | VDDE_ACPI                                      | ACPI 域 IO 电源                                      | 3. 135 | 3. 3  | 3.465  | 3mA      |
|              | VDD_RSM                                        | RESUME 域核心电源,包括 USB2/3<br>控制器,GMAC 控制器/PHY1.0V 供电 |        | 1.2   | 1. 25  | 0. 9A    |
|              | VDDP_U3S_RX                                    | USB3/SATA PHY1.0V 供电                              | 0.95   | 1.0   | 1.05   |          |
|              | VDDE_RSM                                       | RESUME 域 IO 电源                                    | 3. 135 | 3. 3  | 3. 465 |          |
| RSM          | VDDP_GNET_AB                                   | GMAC PHY Channel A/B 3.3V 供电                      | 3. 135 | 3. 3  | 3. 465 | 250mA    |
|              | VDDP_GNET_CD                                   | GMAC PHY Channel C/D 3.3V 供电                      | 3. 135 | 3. 3  | 3. 465 |          |
|              | VDDP_RSM GMAC PHY 及 USB2 PHY 1.8V              |                                                   | 1.75   | 1.8   | 1.85   | 280mA    |
|              | VDDP_U3S_TX                                    | USB3/SATA PHY 1.8V 供电                             | 1.75   | 1.8   | 1.85   | ZOUIIA   |
|              | VDDP_USB2_L USB2 PHY 0.9V 供电                   |                                                   | 0.855  | 0.9   | 0. 945 | 35mA     |
|              | VDD_SOC                                        | SOC 域核心电源                                         | 0.95   | 1.0   | 1.05   | 8. 5A    |
|              | VDD_MEM                                        | DDR PHY 核心电源                                      | 0.95   | 1.0   | 1.05   | 0. JA    |
|              | VDDE_SOC                                       | SOC域 IO 电源(包括 HDMI 的 3v3 电)                       | 3. 135 | 3. 3  | 3. 465 | 300mA    |
|              | VDD_MISC                                       | VGA、OTP 和温度传感器电源                                  | 1.75   | 1.8   | 1.85   | 150mA    |
|              | VDDE_HT_SB                                     | HT 边带信号以及参考时钟电源                                   | 1.75   | 1.8   | 1.85   | 1 JOIIIA |
|              | VDDP_HDMI_PLL                                  | HDMI 1.8V PLL 电源                                  | 1.75   | 1.8   | 1.85   | 10uA     |
|              | VDDP_HDMI_BIAS                                 | HDMI 1.8V 偏置电源                                    | 1.75   | 1.8   | 1.85   | 1mA      |
|              | VDDP_HDMI_L                                    | HDMI 低压供电                                         | 0.855  | 0.9   | 0.945  | 20mA     |
| SOC          | VDDP_PRG                                       | PRG 电源                                            | 1.75   | 1.8   | 1.85   | 80mA     |
|              | ADDD MEN                                       | DDR IO 电源(DDR3 模式)                                | 1.45   | 1. 5  | 1.55   | TBD      |
|              | VDDP_MEM                                       | DDR IO 电源(DDR4 模式)                                | 1.15   | 1.2   | 1.25   |          |
|              | VDDP_HT_TX                                     | HT PHY TX 电源                                      | 1.15   | 1.2   | 1. 25  | 1A       |
|              | VDDP_HT_RX                                     | HT PHY RX 电源                                      | 1.15   | 1. 2  | 1.25   |          |
|              | VDDP_PCIE                                      | PCIE3 PHY 电源                                      | 0.95   | 1.0   | 1.05   | 2.8A     |
|              | VDDA_SSCPLL                                    | 展频 PLL 模拟电源                                       | 1.75   | 1.8   | 1.85   | 10mA     |
|              | VDDD_SSCPLL                                    | 展频 PLL 数字电源                                       | 0.95   | 1.0   | 1.05   | TBD      |
|              | VDD_PLL0                                       | PLL0 电源                                           | 1.28   | 1. 3  | 1. 32  | 100mA    |



|     | VDD_PLL1    | PLL1 电源     | 1.28  | 1.3  | 1.32  |      |
|-----|-------------|-------------|-------|------|-------|------|
|     | VDD_PLL2    | PLL2 电源     | 1. 28 | 1. 3 | 1.32  |      |
|     | VDD_PLL3    | PLL3 电源     | 1.28  | 1. 3 | 1. 32 |      |
|     | VDD_PLL4    | PLL4 电源     | 1.28  | 1. 3 | 1. 32 |      |
|     | VDDA_HTPLL  | HT PLL 模拟电源 | 1.28  | 1. 3 | 1. 32 | 204  |
|     | VDDD_HTPLL  | HT PLL 数字电源 | 1.28  | 1. 3 | 1. 32 | 30mA |
|     | VSS_RTC     | RTC 域地      | -     | 0    | -     | -    |
|     | VSS         | 芯片地         | -     | 0    | -     | -    |
|     | VSS_PLL0    | PLLO 地      | -     | 0    | -     | -    |
|     | VSS_PLL1    | PLL1 地      | -     | 0    | -     | -    |
|     | VSS_PLL2    | PLL2 地      | -     | 0    | -     | -    |
| GND | VSS_PLL3    | PLL3 地      | -     | 0    | 1     | -    |
|     | VSS_PLL4    | PLL4 地      | -     | 0    | 1     | -    |
|     | VSSA_SSCPLL | 展频 PLL 模拟地  | -     | 0    | ı     | -    |
|     | VSSD_SSCPLL | 展频 PLL 数字地  | -     | 0    | -     | _    |
|     | VSSA_HTPLL  | HT PLL 模拟地  | -     | 0    | -     | -    |
|     | VSSD_HTPLL  | HT PLL 数字地  | -     | 0    | -     | -    |

注:合并的项为对应电源的电流总和。

## 7.3 典型应用功耗

表 7-3 典型应用功耗

| 电源           | Idle(85°)<br>(W) | 高负载(85°)<br>(W) | Idle(25°)<br>(W) | 高负载(25°)<br>(W) |
|--------------|------------------|-----------------|------------------|-----------------|
| VDD_RTC      | 0.000003         | 0.000003        | 0. 000003        | 0.000003        |
| VDD_ACPI     | 0.007825         | 0.00805         | 0. 006625        | 0.006625        |
| VDDE_ACPI    | 0.0066           | 0.006518        | 0.0066           | 0.0066          |
| VDD_RSM      | 0.7075           | 0.7495          | 0 555            | 0 5075          |
| VDDP_U3S_RX  | 0. 7075          | 0. 7425         | 0. 555           | 0. 5675         |
| VDDE_RSM     |                  |                 |                  |                 |
| VDDP_GNET_AB | 0.651            | 0.745           | 0. 449           | 0.65            |
| VDDP_GNET_CD |                  |                 |                  |                 |
| VDDP_RSM     | 0.4005           | 0.200           | 0.9795           | 0.400           |
| VDDP_U3S_TX  | 0. 4005          | 0. 396          | 0. 3735          | 0. 423          |
| VDDP_USB2_L  | 0. 02268         | 0. 017213       | 0. 021622        | 0. 016358       |
| VDD_SOC      | 5. 323           | 7. 788          | 3                | 5. 38           |
| VDDE_SOC     | 0.07128          | 0.07128         | 0. 072848        | 0. 07293        |
| VDD_MISC     | 0.21             | 0. 207          | 0.202            | 0. 197          |



| VDDE_HT_SB     |           |            |           |            |
|----------------|-----------|------------|-----------|------------|
| VDDP_HDMI_PLL  | 0.000009  | 0.00001    | 0. 000005 | 0.000005   |
| VDDP_HDMI_BIAS | 0.00126   | 0.00126    | 0. 00063  | 0.000855   |
| VDDP_HDMI_L    | 0.006975  | 0.007335   | 0.0054    | 0.00549    |
| VDDP_PRG       | 0.07875   | 0. 07875   | 0.09      | 0. 08625   |
| VDDP_MEM       |           |            |           |            |
| VDDP_HT_TX     | 0.729     | 0.771      | 0.687     | 0. 687     |
| VDDP_HT_RX     |           |            |           |            |
| VDDP_PCIE      | 2. 3325   | 2. 5375    | 2. 165    | 2. 205     |
| VDDA_SSCPLL    | 0.01206   | 0.01206    | 0. 01188  | 0.011925   |
| VDDD_SSCPLL    | TBD       | TBD        | TBD       | TBD        |
| VDD_PLL0       |           |            |           |            |
| VDD_PLL1       |           |            |           |            |
| VDD_PLL2       | 0. 0525   | 0. 0525    | 0.045     | 0. 0475    |
| VDD_PLL3       |           |            |           |            |
| VDD_PLL4       |           |            |           |            |
| VDDA_HTPLL     | 0 0000    | 0 00000    | 0 00000   | 0.00197    |
| VDDD_HTPLL     | 0. 0228   | 0. 02328   | 0. 02088  | 0. 02127   |
| 总功耗            | 10. 63624 | 13. 465257 | 7. 712993 | 10. 385311 |

#### 注:

- 1. 合并的项为对应电源的功耗总和。
- 2. 测试时外接设备包括 1 个 PCIEx4 raid 卡(3.0), 1 个 PCIEx8 网卡(3.0), 1 个 PCIEx8 显卡(3.0), 2 个 USB3.0 U 盘, 4 个 USB2.0 U 盘, 1 路千兆网络, 3 个 SATA3.0 硬盘。
- 3. Idle 代表系统空闲时的功耗。
- 4. 高负载代表以上各路设备都在高负载使用状态。



## 7.4 电源时序

### 7.4.1 使能 ACPI\_EN

### ● 冷启动上电时序



图 7-1 冷启动上电时序(RTC 掉电)



#### 注:

- 1. RSM 域内的 VDDP\_\*电源(包括 VDDP\_RSM, VDDP\_GNET\_AB, VDDP\_GNET\_CD, VDDP\_U3S\_TX, VDDP\_U3S\_RX, VDDP\_U3B2\_L) 时序可根据需要选择与 VDD\_RSM 或者 VDDE\_RSM 相同
- 2. VDD(SOC 域)包括: VDD\_SOC, VDD\_MISC, VDD\_MEM, VDDA\_SSCPLL, VDDD\_SSCPLL, VDD\_PLLO, VDD\_PLL1, VDD\_PLL2, VDD\_PLL3, VDD\_PLL4, VDDA\_HTPLL, VDDD\_HTPLL
- 3. SOC 域内的 VDDP\_\*电源(包括 VDDP\_HDMI\_PLL, VDDP\_HDMI\_BIAS, VDDP\_HDMI\_L, VDDP\_PRG, VDDP\_MEM, VDDP\_HT\_TX, VDDP\_HT\_RX, VDDP\_PCIE)时序可根据需要选择与 VDD\_SOC 或者 VDDE\_SOC 相同
- 4. 上图中 VDD\_ACPI 和 VDDE\_ACPI 的时序可根据需要进行交换,即 VDDE\_ACPI 可早于 VDD\_ACPI 上电,但是二者不可同时上电
- 5. 上图中 VDD\_RSM 和 VDDE\_RSM 的时序可根据需要进行交换,即 VDDE\_RSM 可早于 VDD\_RSM 上电,但是二 者不可同时上电
- 6. 上图中 VDD\_SOC 和 VDDE\_SOC 的时序可根据需要进行交换,即 VDDE\_SOC 可早于 VDD\_SOC 上电,但是二 者不可同时上电
- 7. 表 7-4 对时序的描述对应图 7-1,与上述注解不一致的描述以上述注解为准

表 7-4 上电时序要求(示例)

| RTC 电源稳定时刻 RTCRSTn 解复位时刻 ACPI 电源稳定时刻 _ACPI 电源上电时刻 _RSMRSTn 解复位时刻 _PWRBTNn 按钮按下(信号)时刻 _PWRBTNn 按钮释放(信号 | t1 - t0 ≈ 1s<br>兄 $t3$ $t3 - t2 > 10us$ $t5 - t3 > 5ms$ $t5 - t0 > 4s$ $t6 - t5 > 60 us$ | 片内 RTCRSTn 在 RTC 电源稳定之后解复位  VDD_ACPI 要先于 VDDE_ACPI 供电  ACPI_RSMRSTn 需要在 RTC 和 ACPI 域电源稳定之后解复位  ACPI_PWRBTNn 信号在 ACPI_RSMRSTn 解复位之后起作用 |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| ACPI 电源稳定时刻 _ACPI 电源上电时刻 _RSMRSTn 解复位时刻 _PWRBTNn 按钮按下(信号) 时刻                                          | 见 t3<br>t3 - t2 > 10us<br>t5 - t3 > 5ms<br>t5 - t0 > 4s                                  | 位  VDD_ACPI 要先于 VDDE_ACPI 供电  ACPI_RSMRSTn 需要在 RTC 和 ACPI 域电源稳定之后解复位  ACPI_PWRBTNn 信号在 ACPI_RSMRSTn 解                                 |
| _ACPI 电源上电时刻<br>_RSMRSTn 解复位时刻<br>_PWRBTNn 按钮按下(信号<br>) 时刻                                            | t3 - t2 > 10us<br>t5 - t3 > 5ms<br>t5 - t0 > 4s                                          | VDD_ACPI 要先于 VDDE_ACPI 供电 ACPI_RSMRSTn 需要在 RTC 和 ACPI 域电源稳定之后解复位 ACPI_PWRBTNn 信号在 ACPI_RSMRSTn 解                                      |
| _ACPI 电源上电时刻<br>_RSMRSTn 解复位时刻<br>_PWRBTNn 按钮按下(信号<br>) 时刻                                            | t3 - t2 > 10us<br>t5 - t3 > 5ms<br>t5 - t0 > 4s                                          | ACPI_RSMRSTn 需要在 RTC 和 ACPI 域电源稳定之后解复位 ACPI_PWRBTNn 信号在 ACPI_RSMRSTn 解                                                                |
| _RSMRSTn 解复位时刻<br>_PWRBTNn 按钮按下(信号<br>) 时刻                                                            | t5 - t3 > 5ms<br>t5 - t0 > 4s                                                            | ACPI_RSMRSTn 需要在 RTC 和 ACPI 域电源稳定之后解复位 ACPI_PWRBTNn 信号在 ACPI_RSMRSTn 解                                                                |
| _PWRBTNn 按钮按下(信号<br>) 时刻                                                                              | t5 - t0 > 4s                                                                             | 源稳定之后解复位 ACPI_PWRBTNn 信号在 ACPI_RSMRSTn 解                                                                                              |
| )时刻                                                                                                   |                                                                                          | ACPI_PWRBTNn 信号在 ACPI_RSMRSTn 解                                                                                                       |
| )时刻                                                                                                   | t6 - t5 > 60 us                                                                          |                                                                                                                                       |
|                                                                                                       |                                                                                          | 有於之戶却從田                                                                                                                               |
| PWRRTNn 按钮释放 (信号                                                                                      |                                                                                          | <u> </u>                                                                                                                              |
|                                                                                                       | t7 - t6 > 20ms                                                                           | ACPI_PWRBTNn 有效需要保持低电平的                                                                                                               |
| )时刻                                                                                                   |                                                                                          | 时间大于 20ms                                                                                                                             |
| _S5n 状态退出时刻                                                                                           | t8 - t7≈ 150us                                                                           | 在 ACPI_PWRBTNn 退出之后,ACPI_S5n                                                                                                          |
|                                                                                                       |                                                                                          | 状态才会退出                                                                                                                                |
| _S4n 状态退出时刻                                                                                           | t9 - t8 ≈ 150us                                                                          | ACPI_S4n 在 ACPI_S5n 退出之后退出                                                                                                            |
| RSM 供电稳定时刻                                                                                            |                                                                                          |                                                                                                                                       |
| _RSM 供电稳定时刻                                                                                           | t11 - t10 > 10us                                                                         | VDD_RSM 要先于 VDDE_RSM 供电                                                                                                               |
| _S3n 状态退出时刻                                                                                           | t12 - t9 ≈ 60us                                                                          | ACPI_S3n 在 ACPI_S4n 退出之后退出                                                                                                            |
| SOC 域)供电稳定时刻                                                                                          |                                                                                          |                                                                                                                                       |
| _SOC 供电稳定时刻                                                                                           | t14 - t13 > 10us                                                                         | VDD(SOC域)供电要先于VDDE_SOC供电                                                                                                              |
| _PWROK 信号有效时刻                                                                                         | t15 - t14 > 0                                                                            | ACPI_PWROK 信号必须在所有电源稳定                                                                                                                |
|                                                                                                       |                                                                                          | 之后有效                                                                                                                                  |
|                                                                                                       | t16 - t15≈7.8 ms                                                                         | ACPI_SUSSTATn 在 PWROK 之后退出                                                                                                            |
| _SUSSTATn 状态退出时刻                                                                                      | t17 - t16≈ 30us                                                                          | ACPI_PLTRSTn 在 ACPI_SUSSTATn 退出之<br>后退出                                                                                               |
|                                                                                                       | S3n 状态退出时刻 S0C 域) 供电稳定时刻 S0C 供电稳定时刻 PWROK 信号有效时刻 SUSSTATn 状态退出时刻                         | $_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{}}}}}}}}}$                                                                                             |



| t170 | 输出时钟 CLKOUT100M/25M 稳     | t170 - t14 > 0   | 输出 CLKOUT100M/25M 时钟在 VDDE_SOC    |
|------|---------------------------|------------------|-----------------------------------|
|      | 定时刻                       |                  | 上电稳定后输出                           |
| t171 | 输出时钟 CLKOUT_33M 稳定时       | t171-t17 <60us   | 输出 CLKOUT_33M 时钟有效时刻不晚于           |
|      | 刻                         |                  | ACPI_PLTRSTn 之后 60us              |
| t172 | 输出时钟 CLKOUT_FLEX 稳定时      | t172-t17 > 0     | 输出时钟 CLKOUT_FLEX 稳定时刻取决于          |
|      | 刻                         |                  | 软件配置时机                            |
| t100 | ACPI_PWRBTNn/             | t5 - t100 > 60us | ACPI_PWRBTNn/PWROK/SYSRSTn 输入信    |
|      | PWROK/SYSRSTn 信号有效时刻      |                  | 号需要在 ACPI_RSMRSTn 解复位之前有          |
|      |                           |                  | 效                                 |
| t101 | ACPI_VSBGATEn/ACPI_S3n/S4 | t101 - t3 < 60us | ACPI_VSBGATEn/ACPI_S3n/S4n/S5n/PL |
|      | n/S5n/ PLTRSTn 信号有效时刻     |                  | TRSTn 在 VDDE_ACPI 电源稳定之后 60us     |
|      |                           |                  | 内输出有效                             |

注:冷启动时,ACPI\_SYSRSTn信号不需要复位,系统自动进行复位。

#### 热复位时序



图 7-2 热复位时序图

注: POWER 包括所有的供电。



#### 表 7-5 热复位时序约束

| 标记符  | 参数                          | 需求               | 说明                             |
|------|-----------------------------|------------------|--------------------------------|
| t1   | ACPI_SYSRSTn 变低的时刻          |                  |                                |
| t2   | ACPI_SYSRSTn 变高的时刻          | t2 - t1 > 1ms    | ACPI_SYSRSTn 保持为低电平的时间         |
|      |                             |                  | 需大于 1ms 才有效                    |
| t3   | ACPI_SYSRSTn 保持为高的时间        | t3 - t2 > 16ms   | ACPI_SYSRSTn 变为高电平之后保持         |
|      |                             |                  | 一段时间,系统才开始复位                   |
| t4   | ACPI_SUSSTATn 变低的时刻         | t4 - t1≈120us    | ACPI_SUSSTATn 在 ACPI_SYSRSTn 变 |
|      |                             |                  | 低 90us 后也变低                    |
| t5   | ACPI_PLTRSTn 变低的时刻          | t5 - t4 ≈90us    | ACPI_PLTRSTn 在 ACPI_SUSSTATn 变 |
|      |                             |                  | 低之后 90us 变低                    |
| t6   | ACPI_SUSSTATn 变高的时刻         | t6 - t4 > 6ms    | ACPI_SUSSTATn 保持复位的时间大         |
|      |                             |                  | 于 6ms                          |
| t7   | ACPI_PLTRSTn 变高的时刻          | t7 - t6≈ 30us    | ACPI_PLTRSTn 在 ACPI_SUSSTATn 之 |
|      |                             |                  | 后 30us 变高                      |
| t100 | 输出时钟 CLKOUT_33M/CLKOUT_FLEX | t100 - t4 > 0    | 时钟无效时刻在 ACPI_SUSSTATn 变        |
|      | 无效时刻                        | t100 - t5 < 0    | 低之后,在 ACPI_PLTRSTn 变低之前        |
| t101 | 输出时钟 CLKOUT_33M             | t101 - t7 < 60us | 输出时钟 CLKOUT_33M 有效时刻不晚         |
|      | 稳定时刻                        |                  | 于 ACPI_PLTRSTn 之后 60us         |
| t102 | 输出时钟 CLKOUT_FLEX            | t102 - t7 > 0    | 输出时钟 CLKOUT_FLEX 稳定时刻取         |
|      | 稳定时刻                        |                  | 决于软件配置时机                       |



### S0 到 S3 及 S3 到 S0 状态时序图



图 7-3 S0 到 S3 及 S3 到 S0 时序图



#### S0 到 S4/S5 及 S4/S5 到 S0 状态时序



图 7-4 S0 到 S4/S5 及 S4/5 到 S0 状态时序图

#### 注(图7-3、图7-4):

- 1. 表中未列出的 ACPI 相关信号 (PWRBTNn/SYSRSTn 等) 默认为高电平。
- 2. 唤醒事件包括: 电源按钮、复位按钮、USB、GMAC等。
- 3. 可以使用 S3n 来控制 S0C 域的上电。
- 4. 可以使用 ACPI\_VSBGATE 来控制 dual 电的切换。

#### 注:

- 1. RSM 域内的 VDDP\_\*电源(包括 VDDP\_RSM, VDDP\_GNET\_AB, VDDP\_GNET\_CD, VDDP\_U3S\_TX, VDDP\_U3S\_RX, VDDP\_USB2\_L) 时序可根据需要选择与 VDD\_RSM 或者 VDDE\_RSM 相同
- 2. VDD(SOC 域)包括: VDD\_SOC, VDD\_MISC, VDD\_MEM, VDDA\_SSCPLL, VDDD\_SSCPLL, VDD\_PLLO, VDD\_PLL1, VDDD\_PLL2, VDD\_PLL3, VDD\_PLL4, VDDA\_HTPLL, VDDD\_HTPLL
- 3. SOC 域内的 VDDP\_\*电源(包括 VDDP\_HDMI\_PLL, VDDP\_HDMI\_BIAS, VDDP\_HDMI\_L, VDDP\_PRG, VDDP\_MEM, VDDP\_HT\_TX, VDDP\_HT\_RX, VDDP\_PCIE) 时序可根据需要选择与 VDD\_SOC 或者 VDDE\_SOC 相同
- 4. 上图中 VDD\_ACPI 和 VDDE\_ACPI 的时序可根据需要进行交换,即 VDDE\_ACPI 可早于 VDD\_ACPI 上电,但是二者不可同时上电
- 5. 上图中 VDD\_RSM 和 VDDE\_RSM 的时序可根据需要进行交换,即 VDDE\_RSM 可早于 VDD\_RSM 上电,但是二者不可同时上电
- 6. 上图中 VDD\_SOC 和 VDDE\_SOC 的时序可根据需要进行交换,即 VDDE\_SOC 可早于 VDD\_SOC 上电,但是二者不可同时上电



#### 7. 表 7-6 对时序的描述对应图 7-4,与上述注解不一致的描述以上述注解为准

表 7-6 S0 到 S3/S4/S5 及 S3/S4/S5 到 S0 状态时序约束

| 标记符   | 参数                       | 需求                    | 说明                              |
|-------|--------------------------|-----------------------|---------------------------------|
| t0    | 软件发起进入低功耗状态的时            |                       |                                 |
|       | 刻                        |                       |                                 |
| t1    | ACPI_VSBGATE 变低时刻        | t1 - t0 ≈120us        | ACPI_VSBGATE 在发起低功耗状态           |
|       |                          |                       | 120us 变低                        |
| t2    | ACPI_SUSSTATn 状态进入时刻     | t2 - t1> Tdndly       | ACPI_SUSSTAT 在 ACPI_VSBGATE 有效  |
|       |                          |                       | 之后变低,这个时间间隔软件可配。                |
|       |                          |                       | 可选的时间长度(Tdndly)有:               |
|       |                          |                       | 31.25ms、62.5ms、125ms、250ms。     |
| t2a   | 输出时钟无效时刻                 | t2a - t2 > 0          | 输出时钟在 ACPI_SUSSTATn 变低之后        |
|       |                          | t3 - t2a > 0          | ACPI_PLTRSTn 变低之前无效             |
| t3    | ACPI_PLTRSTn 复位时刻        | t3 - t2 ≈ 90us        | ACPI_PLTRSTn 在 ACPI_SUSSTATn 复位 |
|       |                          |                       | 之后复位                            |
| t4    | ACPI_S3n 状态进入时刻          | t4 - t3≈30us          | ACPI_S3n 在 ACPI_PLTRSTn 复位之后    |
|       |                          |                       | 进入                              |
| t5    | ACPI_S4n 状态进入时刻          | t5 - t4 ≈ 60us        | ACPI_S4n 在 ACPI_S3n 进入之后进入      |
| t6    | ACPI_S5n 状态进入时刻          | t6 - t5 ≈ 30us        | ACPI_S5n 在 ACPI_S4n 进入之后进入      |
|       |                          |                       |                                 |
| t100  | 低功耗状态退出唤醒时刻              |                       |                                 |
| t101  | ACPI_S5n 状态退出时刻          | t101 - t100 ≈ 150us   | S5n 在唤醒时刻 120us 退出              |
| t102  | ACPI_S4n 状态退出时刻          | t102 - t101≈30us      | S4n 在 S5n 退出之后退出                |
|       |                          | t102-t5>0             | S4n 保持为有效时间由软件配置决定              |
| t103  | ACPI_S3n 状态退出时刻          | t103 - t102≈60us      | S3n 在 S4n 退出之后退出                |
|       |                          | t103-t4>0             | S4n 保持为有效时间由软件配置决定              |
|       |                          | t103-t100≈360us       | S3n 在唤醒事件后退出                    |
| t103b | ACPI_VSBGATE 变高时刻        | t103b - t103 > Tupdly | ACPI_VSBGATE在S3n退出一段时间之         |
|       |                          |                       | 后变高,这个时间间隔软件可配。可                |
|       |                          |                       | 选的时间长度(Tupdly)有: 125ms、         |
|       |                          |                       | 250ms, 500ms, 1s.               |
| t104  | ACPI_PWROK 有效时刻          |                       | ACPI_PWROK 需要在所有电源稳定之后          |
|       |                          |                       | 有效                              |
| t105  | ACPI_SUSSTATn 状态退出时刻     | t105 - t104 > 7.8ms   | ACPI_SUSSTATn 在 ACPI_PWROK 有效之  |
|       |                          |                       | 后退出                             |
| t106  | ACPI_PLTRSTn 解复位时刻       | t106 - t105 ≈ 30us    | ACPI_PLTRSTn 在 ACPI_SUSSTATn 退出 |
|       |                          |                       | 之后解复位                           |
| t2a   | 输 出 时 钟                  |                       | 时钟无效时刻在 ACPI_SUSSTATn 变低        |
|       | CLKOUT100M/CLKOUT_33M/   |                       | 之后,在 ACPI_PLTRSTn 变低之前          |
|       | CLKOUT25M/CLKOUT_FLEX 无效 |                       |                                 |
|       | 时刻                       |                       |                                 |



| t107 | 输出时钟 CLKOUT100M/25M 稳 |                    | 输 出 CLKOUT100M/25M 时 钟 在 |
|------|-----------------------|--------------------|--------------------------|
|      | 定时刻                   |                    | VDDE_SOC 上电稳定后输出         |
|      |                       |                    |                          |
| t108 | 输出时钟 CLKOUT_33M 稳定时   | t108 - t106 < 60us | 输出时钟有效时刻不晚于              |
|      | 刻                     |                    | ACPI_PLTRSTn 之后 60us     |
| t109 | 输出时钟 CLKOUT_FLEX 稳定时  |                    | 输出时钟 CLKOUT_FLEX 稳定时刻取决  |
|      | 刻                     |                    | 于软件配置时机                  |

### 7.4.2 不使能 ACPI EN

#### 冷启动上电时序(不使能 ACPI)



图 7-5 不使能 ACPI 功能时的冷启动上电时序 (RTC 掉电)

#### 注:

1. VDD 包括:

VDD\_ACPI, VDD\_RSM, VDDP\_RSM, VDDP\_GNET\_AB, VDDP\_GNET\_CD, VDDP\_U3S\_TX, VDDP\_U3S\_RX,
VDDP\_USB2\_L, VDD\_SOC, VDD\_MISC, VDDP\_HDMI\_PLL, VDDP\_HDMI\_BIAS, VDDP\_HDMI\_L, VDDP\_PRG, VDD\_MEM,
VDDP\_MEM, VDDP\_HT\_TX, VDDP\_HT\_RX, VDDP\_PCIE, VDDA\_SSCPLL, VDDD\_SSCPLL, VDD\_PLLO, VDD\_PLL1,
VDD\_PLL2, VDD\_PLL3, VDD\_PLL4, VDDA\_HTPLL, VDDD\_HTPLL

2. VDDE 包括:

VDDE\_ACPI, VDDE\_RSM, VDDE\_SOC, VDDE\_HT\_SB

3. 上述 VDD 和 VDDE 的时序可根据需要进行交换,即 VDDE 可早于 VDD 上电,但是二者不可同时上电



- 4. ACPI 相关的除电源复位信号外的其他输入信号拉高
- 5. 在 ACPI\_EN 不使能的情况下,桥片的 ACPI\_SYSRSTn 信号没有去抖动功能,需主板提供去抖动电路。
- 6. 表 7-7 对时序的描述对应图 7-5,与上述注解不一致的描述以上述注解为准

| 表 7-7 | 不使能           | ACPT   | 功能时的 | 上电时序要求      |
|-------|---------------|--------|------|-------------|
| 10 1  | 1 1 1 2 11 11 | 1101 1 |      | T DEI/I X/V |

| 标记符 | 参数                 | 需求              | 说明                               |
|-----|--------------------|-----------------|----------------------------------|
| t0  | VDD_RTC 电源稳定时刻     |                 |                                  |
| t1  | 内部 RTCRSTn 解复位时刻   | t1 - t0 ≈1s     | RTCRSTn 需要在 RTC 电源稳定之后解复位        |
| t2  | VDD 电源上电时刻         | t2 - t0 >=0     | RTC 电源要先于 VDD 电源供电               |
| t3  | VDDE 电源稳定时刻        | t3 - t2 >= 10us | Core 电源要先于 IO 电源供电               |
| t4  | ACPI_RSMRSTn 解复位时刻 | t4 - t3 > 5ms   | ACPI_RSMRSTn 需要在所有 VDDE 电源稳定     |
|     |                    | t4 - t0 > 4s    | 之后解复位                            |
|     |                    |                 | ACPI_RSMRSTn 需要在 RTC 电源稳定 4s 之   |
|     |                    |                 | 后解复位                             |
| t5  | ACPI_SYSRSTn 解复位时刻 | t5 - t4>5ms     | ACPI_SYSRSTn 需要在 ACPI_RSMRSTn 解复 |
|     |                    |                 | 位之后解复位                           |
| t6  | 输出时钟稳定时刻           | t6 - t5 < 10us  | 输出时钟的稳定时刻不晚于                     |
|     |                    |                 | ACPI_SYSRSTn 解复位后 10 us, 其中      |
|     |                    |                 | CLKOUT_FLEX 输出稳定时刻由软件决定          |

### 热复位时序 (不使能 ACPI)



图 7-6 不使能 ACPI 功能时的热复位时序图

注: POWER 包括所有的供电。



#### 表 7-8 不使能 ACPI 功能时的热复位时序约束

| 标记符 | 参数                          | 需求            | 说明                          |
|-----|-----------------------------|---------------|-----------------------------|
| t1  | ACPI_SYSRSTn 变低的时刻          |               |                             |
| t2  | ACPI_SYSRSTn 变高的时刻          | t2 - t1 > 1ms | ACPI_SYSRSTn 保持为低电平的时间需     |
|     |                             |               | 大于 1ms 才有效                  |
| t3  | CLKOUT_33M/CLKOUT_FLEX 稳定时刻 | t3 - t2 <10us | 输出时钟的稳定时刻不晚于                |
|     |                             |               | ACPI_SYSRSTn 解复位后 10 us, 其中 |
|     |                             |               | CLKOUT_FLEX 输出稳定时刻由软件决定     |



# 8. 封装信息

## 8.1 封装尺寸

芯片采用 FCBGA-958 封装, 封装大小为 29mmX29mm. 详细封装尺寸如下图所示。



TOP VIEW

SIDE VIEW





#### **COMMON DIMENSIONS**

(UNITS OF MEASURE=MILLIMETER)

| SYMBOL | MIN    | NOM    | MAX    |  |  |  |
|--------|--------|--------|--------|--|--|--|
| А      | 2.202  | 2.382  | 2.562  |  |  |  |
| A1     | 0.200  | 0.300  | 0.400  |  |  |  |
| A2     | 1.142  | 1.272  | 1.402  |  |  |  |
| A3     | 0.750  | 0.810  | 0.870  |  |  |  |
| b      | 0.300  | 0.400  | 0.500  |  |  |  |
| D      | 28.900 | 29.000 | 29.100 |  |  |  |
| Е      | 28.900 | 29.000 | 29.100 |  |  |  |
| е      | C      | ).889  |        |  |  |  |
| g      | 0.721  |        |        |  |  |  |
| f      | 0.721  |        |        |  |  |  |
| N      | 9      | 958    |        |  |  |  |

图 8-1 封装尺寸

## 8.2 信号位置分布



图 8-2 信号引脚分布总览(顶视图)

### 8.3 芯片引脚排布

请参见附录 A



# 9. 产品标识



图 9-1 产品标识

#### 每一器件应标志下列内容:

- a) 定位点: ●;
- b) 第一行: LS7A2000; A 区域是型号补充信息: 空白(商业级), -i(工业级);
- c) 第二行: B 区域是厂商信息一;
- d) 第三行: C 区域是厂商信息二;
- e) 第四行: LOONGSON® , 厂商信息三;
- f) D区域是二维码(右上角): 与C区域信息相同;



# 附录 A: 芯片引脚排布图



|    | 1                  | 2                  | 3                  | 4                   | 5                  | 6                  | 7                  | 8              |    |
|----|--------------------|--------------------|--------------------|---------------------|--------------------|--------------------|--------------------|----------------|----|
| A  |                    |                    | VSS                | HT_CLKP             | VSS                | HT_TX_CAD06N       | VSS                | HT_TX_CADO4N   | A  |
| В  |                    | VSS                | HDMI1_TX1P         | HT_CLKN             | HT_TX_CADO7N       | HT_TX_CAD06P       | HT_TX_CAD05N       | HT_TX_CAD04P   | В  |
| С  | VSS                | HDMI1_TXOP         | HDMI1_TX1N         | HDMI1_TX2P          | HT_TX_CAD07P       | VSS                | HT_TX_CAD05P       | VSS            | С  |
| D  | REXT               | HDMI1_TXON         | VSS                | HDMI1_TX2N          | VSS                | HT_TX_CAD14N       | VSS                | HT_TX_CAD12N   | D  |
| Е  | RTC_XI             | RTC_XO             | HDMI1_I2C_SCL      | HDMI1_CKN           | HT_TX_CAD15N       | HT_TX_CAD14P       | HT_TX_CAD13N       | HT_TX_CAD12P   | Е  |
| F  | TX_D_N             | TX_D_P             | VSS                | HDMI1_CKP           | HT_TX_CAD15P       | VSS                | HT_TX_CAD13P       | VSS            | F  |
| G  | TX_C_N             | TX_C_P             | VSS                | HDMI1_I2C_SDA       | HDMI1_HOTPLUG      | VSS                | GMAC1_RX_CLK       | GMAC1_RXD1     | G  |
| Н  | TX_B_N             | TX_B_P             | VSS                | GMAC1_RCTL          | GMAC1_RXD2         | VSS                | GMAC1_MDIO         | GMAC1_MDCK     | Н  |
| J  | TX_A_N             | TX_A_P             | VSS                | USB2_REFRESO        | USB2_REFRES1       | VSS                | GMACO_LED_1KB      | GMACO_LED_100B | J  |
| K  | USB2_D10M          | USB2_D10P          | VSS                | USB2_D11M           | USB2_D11P          | VSS                | VGA_GOUTP          | VGA_GOUTN      | K  |
| L  | USB2_DO8M          | USB2_D08P          | VSS                | USB2_D09M           | USB2_D09P          | VSS                | VGA_REXTP          | VGA_REXTN      | L  |
| M  | USB2_D06M          | USB2_D06P          | VSS                | USB2_D07M           | USB2_D07P          | VSS                | VGA_BOUTP          | VGA_BOUTN      | M  |
| N  | USB2_DO4M          | USB2_D04P          | VSS                | USB2_D05M           | USB2_D05P          | VSS                | VGA_ROUTP          | VGA_ROUTN      | N  |
| P  | USB2_DO2M          | USB2_D02P          | VSS                | USB2_DO3M           | USB2_D03P          | VSS                | VGA_VSYNC          | VGA_HSYNC      | P  |
| R  | USB2_DOOM          | USB2_D00P          | VSS                | USB2_D01M           | USB2_D01P          | VSS                | VGA_VREF           | VSS            | R  |
| Т  | VSS                | USB3_RX3N          | USB3_RX3P          | VSS                 | USB3_TX3N          | USB3_TX3P          | USB_0C0            | USB_0C2        | T  |
| U  | USB3_RX2N          | USB3_RX2P          | VSS                | USB3_TX2N           | USB3_TX2P          | VSS                | USB_0C1            | USB_0C3        | U  |
| V  | VSS                | USB3_RX1N          | USB3_RX1P          | VSS                 | USB3_TX1N          | USB3_TX1P          | USB2_REFRES2       | USB2_REFRES3   | V  |
| W  | USB3_RXON          | USB3_RX0P          | VSS                | USB3_TXON           | USB3_TX0P          | VSS                | USB3_REFRES        | VSS            | W  |
| Y  | VSS                | SATAO_RXN          | SATAO_RXP          | VSS                 | SATAO_TXN          | SATAO_TXP          | USB_REFCLKN        | USB_REFCLKP    | Y  |
| AA | SATA1_RXN          | SATA1_RXP          | VSS                | SATA1_TXN           | SATA1_TXP          | VSS                | SATA_REFCLKM       | SATA_REFCLKP   | AA |
| AB | VSS                | SATA2_RXN          | SATA2_RXP          | VSS                 | SATA2_TXN          | SATA2_TXP          | SATA_REFRES        | SATA_LEDN      | AB |
| AC | SATA3_RXN          | SATA3_RXP          | VSS                | SATA3_TXN           | SATA3_TXP          | VSS                | HDA_SDI1           | HDA_SDIO       | AC |
| AD | VSS                | PCIE_REFCLK_OU T4N | PCIE_REFCLK_OUT4 P | VSS                 | PCIE_REFCLK_0 UT3N | PCIE_REFCLK_OU T3P | HDA_SDI2           | HDA_RESETn     | AD |
| AE | PCIE_REFCLK_OU TON | PCIE_REFCLK_OU TOP | PCIE_REFCLK_OUT1   | PCIE_REFCLK_OU T1P  | PCIE_H_REFRES 0    | VSS                | PCIE_REFCLK_OU T2P | HDA_SDO        | AE |
| AF | PCIE_GO_TX00P      | VSS                | PCIE_REFCLKIN_N    | PCIE_REFCLKIN_<br>P | VSS                | PCIE_H_REFRES1     | PCIE_REFCLK_OU T2N | VSS            | AF |
| AG | PCIE_GO_TXOON      | PCIE_GO_TX01P      | VSS                | PCIE_GO_TX03P       | VSS                | PCIE_GO_TX05P      | VSS                | PCIE_GO_TX07P  | AG |
| AH | VSS                | PCIE_GO_TX01N      | PCIE_GO_TXO2P      | PCIE_GO_TXO3N       | PCIE_GO_TX04P      | PCIE_GO_TX05N      | PCIE_GO_TX06P      | PCIE_GO_TXO7N  | AH |
| AJ | PCIE_GO_RXOOP      | VSS                | PCIE_GO_TXO2N      | VSS                 | PCIE_GO_TXO4N      | VSS                | PCIE_GO_TX06N      | VSS            | AJ |
| AK | PCIE_GO_RXOON      | PCIE_GO_RX01P      | VSS                | PCIE_GO_RXO3P       | VSS                | PCIE_GO_RX05P      | VSS                | PCIE_GO_RX07P  | AK |
| AL | VSS                | PCIE_GO_RX01N      | PCIE_GO_RXO2P      | PCIE_GO_RXO3N       | PCIE_GO_RXO4P      | PCIE_GO_RX05N      | PCIE_GO_RX06P      | PCIE_GO_RXO7N  | AL |
| AM |                    | VSS                | PCIE_GO_RXO2N      | VSS                 | PCIE_GO_RXO4N      | VSS                | PCIE_GO_RXO6N      | VSS            | AM |



图 A - 1 芯片引脚排布 1/4 (顶视图, 从左至右)

|    | 9             | 10               | 11              | 12              | 13              | 14                 | 15                    | 16             |    |
|----|---------------|------------------|-----------------|-----------------|-----------------|--------------------|-----------------------|----------------|----|
| A  | VSS           | HT_TX_CAD02N     | VSS             | HT_TX_CADOON    | VSS             | HT_TX_CTLON        | VSS                   | HT_RX_CAD06N   | A  |
| В  | HT_TX_CAD03N  | HT_TX_CAD02P     | HT_TX_CAD01N    | HT_TX_CADOOP    | HT_TX_CLKON     | HT_TX_CTLOP        | HT_RX_CADO7N          | HT_RX_CAD06P   | В  |
| С  | HT_TX_CAD03P  | VSS              | HT_TX_CAD01P    | VSS             | HT_TX_CLKOP     | VSS                | HT_RX_CADO7P          | VSS            | С  |
| D  | VSS           | HT_TX_CAD10N     | VSS             | HT_TX_CAD08N    | VSS             | HT_TX_CTL1N        | VSS                   | HT_RX_CAD14N   | D  |
| Е  | HT_TX_CAD11N  | HT_TX_CAD10P     | HT_TX_CAD09N    | HT_TX_CAD08P    | HT_TX_CLK1N     | HT_TX_CTL1P        | HT_RX_CAD15N          | HT_RX_CAD14P   | Е  |
| F  | HT_TX_CAD11P  | VSS              | HT_TX_CAD09P    | VSS             | HT_TX_CLK1P     | VSS                | HT_RX_CAD15P          | VSS            | F  |
| G  | GMAC1_RXD0    | GMACO_LED_ACTIVE | GMAC1_TXDO      | GMAC1_TXD1      | GMAC1_TX_CLK    | HT_8X2             | HT_HI_LDT_STOP n      | HT_HI_POWEROK  | G  |
| Н  | GMAC1_RXD3    | VSS              | GMAC1_TXD2      | GMAC1_TXD3      | GMAC1_TCTL      | VSS                | HT_LO_LDT_STOP n      | HT_LO_POWEROK  | Н  |
| J  |               |                  |                 |                 |                 |                    |                       |                | J  |
| К  |               | HDMI1_BIAS       | VDDP_HDMI_L     | HDMIO_CKN       | HDMIO_TXON      | HDMIO_TX1N         | HDMIO_TX2N            | VDDD_SSCPLL    | К  |
| L  |               | VSS              | VDDP_HDMI_L     | HDMIO_CKP       | HDMIO_TXOP      | HDMIO_TX1P         | HDMIO_TX2P            | VSSD_SSCPLL    | L  |
| M  |               | VDDP_HDMI_PLL    | VDDP_HDMI_BIAS  | VSS             | HDMIO_HOTPLUG   | HDMIO_BIAS         | HDMIO_I2C_SCL         | HDMIO_I2C_SDA  | M  |
| N  |               | VSS              | VDD_RTC         | VDD_MISC        | VSS             | VDD_SOC            | VSS                   | VDD_SOC        | N  |
| Р  |               | VDDE_ACPI        | VSS_RTC         | VSS             | VDD_RSM         | VSS                | VDD_SOC               | VSS            | Р  |
| R  |               | VDDP_GNET_CD     | VDD_ACPI        | VDDP_USB2_L     | VSS             | VDD_SOC            | VSS                   | VDD_SOC        | R  |
| Т  |               | VDDP_GNET_AB     | VDDP_RSM        | VSS             | VDD_SOC         | VSS                | VDD_SOC               | VSS            | Т  |
| U  |               | VDDE_RSM         | VSS             | VDDP_RSM        | VSS             | VDD_SOC            | VSS                   | VDD_SOC        | U  |
| V  |               | VSS              | VDDP_U3S_TX     | VSS             | VDD_SOC         | VSS                | VDD_SOC               | VSS            | V  |
| W  |               | VDDP_U3S_RX      | VSS             | VDDP_U3S_TX     | VSS             | VDD_SOC            | VSS                   | VDD_SOC        | W  |
| Y  |               | VSS              | VDDP_U3S_RX     | VSS             | VDD_SOC         | VSS                | VDD_SOC               | VDDP_PCIE      | Y  |
| AA |               | VDDP_U3S_RX      | VSS             | VSS             | VSS             | VSS                | VSS                   | VSS            | AA |
| AB |               | VSS              | VDDP_PCIE       | VSS             | VDDP_PCIE       | VSS                | VDDP_PCIE             | VSS            | AB |
| AC |               | VDDP_PCIE        | VSS             | VDDP_PCIE       | VSS             | VDDP_PCIE          | VSS                   | VDDP_PCIE      | AC |
| AD |               |                  |                 |                 |                 |                    |                       |                | AD |
| AE | HDA_SYNC      | PCIE_REFRES      | PCIE_GO_REFRESO | PCIE_GO_REFRES1 | PCIE_GO_REFRES2 | PCIE_REFCLK_OU T5N | PCIE_REFCLK_OU<br>T5P | PCIE_FO_REFRES | AE |
| AF | HDA_BCLK      | VSS              | PCIE_H_RSTN     | VSS             | PCIE_GO_REFRES3 | VSS                | PCIE_FO_RSTN          | VSS            | AF |
| AG | VSS           | PCIE_GO_TX09P    | VSS             | PCIE_GO_TX11P   | VSS             | PCIE_GO_TX13P      | VSS                   | PCIE_GO_TX15P  | AG |
| AH | PCIE_GO_TX08P | PCIE_GO_TX09N    | PCIE_GO_TX10P   | PCIE_GO_TX11N   | PCIE_GO_TX12P   | PCIE_GO_TX13N      | PCIE_GO_TX14P         | PCIE_GO_TX15N  | AH |
| АJ | PCIE_GO_TXO8N | VSS              | PCIE_GO_TX10N   | VSS             | PCIE_GO_TX12N   | VSS                | PCIE_GO_TX14N         | VSS            | АJ |
| AK | VSS           | PCIE_GO_RX09P    | VSS             | PCIE_GO_RX11P   | VSS             | PCIE_GO_RX13P      | VSS                   | PCIE_GO_RX15P  | AK |
| AL | PCIE_GO_RX08P | PCIE_GO_RXO9N    | PCIE_GO_RX10P   | PCIE_GO_RX11N   | PCIE_GO_RX12P   | PCIE_GO_RX13N      | PCIE_GO_RX14P         | PCIE_GO_RX15N  | AL |
| AM | PCIE_GO_RXO8N | VSS              | PCIE_GO_RX10N   | VSS             | PCIE_GO_RX12N   | VSS                | PCIE_GO_RX14N         | VSS            | AM |



图 A - 2 芯片引脚排布 2/4 (顶视图, 从左至右)

|    | 17             | 18             | 19            | 20            | 21           | 22           | 23          | 24          |    |
|----|----------------|----------------|---------------|---------------|--------------|--------------|-------------|-------------|----|
| A  | VSS            | HT_RX_CADO4N   | VSS           | HT_RX_CADO2N  | VSS          | HT_RX_CADOON | VSS         | HT_RX_CTLON | A  |
| В  | HT_RX_CAD05N   | HT_RX_CADO4P   | HT_RX_CAD03N  | HT_RX_CAD02P  | HT_RX_CAD01N | HT_RX_CAD00P | HT_RX_CLKON | HT_RX_CTLOP | В  |
| С  | HT_RX_CAD05P   | VSS            | HT_RX_CAD03P  | VSS           | HT_RX_CAD01P | VSS          | HT_RX_CLK0P | VSS         | С  |
| D  | VSS            | HT_RX_CAD12N   | VSS           | HT_RX_CAD10N  | VSS          | HT_RX_CAD08N | VSS         | HT_RX_CTL1N | D  |
| Е  | HT_RX_CAD13N   | HT_RX_CAD12P   | HT_RX_CAD11N  | HT_RX_CAD10P  | HT_RX_CAD09N | HT_RX_CAD08P | HT_RX_CLK1N | HT_RX_CTL1P | Е  |
| F  | HT_RX_CAD13P   | VSS            | HT_RX_CAD11P  | VSS           | HT_RX_CAD09P | VSS          | HT_RX_CLK1P | VSS         | F  |
| G  | HT_HI_RSTn     | HT_HI_LDT_REQn | HT_REXT_IO_LO | VSS           | PWMO         | PWM2         | TDI         | TMS         | G  |
| Н  | HT_LO_RSTn     | HT_LO_LDT_REQn | HT_GEN3       | PWM1          | PWM3         | TCK          | TDO         | TRSTN       | Н  |
| J  |                |                |               |               |              |              |             |             | Ј  |
| K  | VDDA_HTPLL     | VDDD_HTPLL     | VDDP_HT_RX    | VDDP_HT_RX    | VSS          | VDDP_HT_TX   | VDDP_HT_TX  |             | K  |
| L  | VSSA_HTPLL     | VSSD_HTPLL     | VDDP_HT_RX    | VDDP_HT_RX    | VSS          | VDDP_HT_TX   | VDDP_HT_TX  |             | L  |
| M  | VSSA_SSCPLL    | VDDA_SSCPLL    | NC_GMEM_DQSN5 | NC_GMEM_DQSN4 | VDD_SOC      | VSS          | VDD_SOC     |             | M  |
| N  | VSS            | VDD_SOC        | VSS           | VDD_SOC       | VSS          | VDD_MEM      | VSS         |             | N  |
| Р  | VDD_SOC        | VSS            | VDD_SOC       | VSS           | VDD_MEM      | VSS          | VDD_MEM     |             | Р  |
| R  | VSS            | VDD_SOC        | VSS           | VDD_SOC       | VSS          | VDD_MEM      | VSS         |             | R  |
| Т  | VDD_SOC        | VSS            | VDD_SOC       | VSS           | VDD_MEM      | VSS          | VDD_MEM     |             | Т  |
| U  | VSS            | VDD_SOC        | VSS           | VDD_SOC       | VSS          | VDD_SOC      | VDDE_HT_SB  |             | U  |
| V  | VDD_SOC        | VSS            | VDD_SOC       | VSS           | VDD_SOC      | VSS          | VDDE_SOC    |             | V  |
| W  | VSS            | VDD_SOC        | VSS           | VDD_SOC       | VSS          | VDD_SOC      | VDDE_SOC    |             | W  |
| Y  | VDD_SOC        | VDDP_PCIE      | VDD_SOC       | VSS           | VDD_SOC      | VSS          | VDD_SOC     |             | Y  |
| AA | VSS            | VSS            | VSS           | VSS           | VSS          | VSS          | VSS         |             | AA |
| AB | VDDP_PCIE      | VSS            | ACPI_GPI014   | ACPI_GPI011   | ACPI_GPI008  | ACPI_GPI012  | VSS_PLL0    |             | AB |
| AC | VSS            | VDDP_PRG       | ACPI_GPI010   | ACPI_GPI013   | ACPI_GPI009  | ACPI_GPI015  | VDD_PLL0    |             | AC |
| AD |                |                |               |               |              |              |             |             | AD |
| AE | PCIE_F1_REFRES | PCIE_BRIDGE    | PCIE_F1_RSTN  | INTN1         | CLKSEL01     | CLKSEL03     | CLKSEL02    | CLKSEL05    | AE |
| AF | PCIE_GO_RSTN   | VSS            | INTNO         | VSS           | CLKSEL04     | VSS          | CLKSEL00    | VSS         | AF |
| AG | VSS            | PCIE_H_TX1P    | VSS           | PCIE_H_TX3P   | VSS          | PCIE_H_TX5P  | VSS         | PCIE_H_TX7P | AG |
| AH | PCIE_H_TX0P    | PCIE_H_TX1N    | PCIE_H_TX2P   | PCIE_H_TX3N   | PCIE_H_TX4P  | PCIE_H_TX5N  | PCIE_H_TX6P | PCIE_H_TX7N | AH |
| АJ | PCIE_H_TXON    | VSS            | PCIE_H_TX2N   | VSS           | PCIE_H_TX4N  | VSS          | PCIE_H_TX6N | VSS         | AJ |
| AK | VSS            | PCIE_H_RX1P    | VSS           | PCIE_H_RX3P   | VSS          | PCIE_H_RX5P  | VSS         | PCIE_H_RX7P | AK |
| AL | PCIE_H_RXOP    | PCIE_H_RX1N    | PCIE_H_RX2P   | PCIE_H_RX3N   | PCIE_H_RX4P  | PCIE_H_RX5N  | PCIE_H_RX6P | PCIE_H_RX7N | AL |
| AM | PCIE_H_RXON    | VSS            | PCIE_H_RX2N   | VSS           | PCIE_H_RX4N  | VSS          | PCIE_H_RX6N | VSS         | AM |



图 A - 3 芯片引脚排布 3/4 (顶视图, 从左至右)

|    | 25           | 26              | 27           | 28               | 29              | 30                 | 31                 | 32                  |    |
|----|--------------|-----------------|--------------|------------------|-----------------|--------------------|--------------------|---------------------|----|
| A  | VSS          | GMEM_AO8        | VSS          | GMEM_A10         | GMEM_BG1        | GMEM_CKP           | VSS                |                     | A  |
| В  | GMEM_PAR     | GMEM_AOO        | GMEM_A06     | GMEM_BGO         | GMEM_WEN        | GMEM_CKN           | VDDP_MEM           | VSS                 | В  |
| С  | GMEM_A02     | GMEM_A09        | GMEM_BAO     | GMEM_A12         | GMEM_ALERTN     | GMEM_BA1           | VDDP_MEM           | VSS                 | С  |
| D  | VSS          | GMEM_AO7        | GMEM_A03     | GMEM_RASN        | VSS             | GMEM_CASN          | GMEM_DQ15          | GMEM_DQ13           | D  |
| Е  | GMEM_A11     | GMEM_A01        | VSS          | GMEM_ODTO        | GMEM_ACTN       | GMEM_DQ09          | GMEM_DQ11          | VSS                 | Е  |
| F  | VDDP_MEM     | GMEM_A13        | GMEM_AO4     | VSS              | GMEM_CKEO       | VSS                | GMEM_DQS1N         | GMEM_DQS1P          | F  |
| G  | VSS          | GMEM_AO5        | VSS          | GMEM_DQ01        | GMEM_DMON_DQSP4 | GMEM_DQ10          | GMEM_DQ08          | VSS                 | G  |
| Н  | VDDP_MEM     | GMEM_RESETN     | GMEM_SCSNO   | GMEM_DQ05        | GMEM_DQ03       | VSS                | GMEM_DQ12          | GMEM_DQ14           | Н  |
| J  | VDDP_MEM     | GMEM_DQ07       | VSS          | GMEM_DQSON       | GMEM_DQSOP      | GMEM_DM1N_DQSP5    | GMEM_DQ31          | VSS                 | Ј  |
| K  | VSS          | GMEM_DQ02       | GMEM_DQ00    | GMEM_SCSN1       | GMEM_DQ06       | VSS                | GMEM_DQ29          | GMEM_DQ25           | K  |
| L  | GMEM_CKE1    | GMEM_DQ04       | VSS          | GMEM_DM2N_DQS P6 | GMEM_DQ17       | GMEM_DQ27          | GMEM_DQS3N         | VSS                 | L  |
| M  | VSS          | GMEM_COMP_REX T | GMEM_ODT1    | GMEM_DQ19        | GMEM_DQ21       | VSS                | GMEM_DQS3P         | GMEM_DQ26           | M  |
| N  | I2C0_SCL     | I2CO_SDA        | VSS          | GMEM_DQ18        | GMEM_DQ23       | GMEM_DQ24          | GMEM_DQ28          | VSS                 | N  |
| Р  | VSS          | GMEM_DQ20       | GMEM_DQ16    | GMEM_DQS2N       | GMEM_DQS2P      | VSS                | GMEM_DQ30          | GMEM_DM3N_DQS<br>P7 | Р  |
| R  | VSS_PLL4     | VDD_PLL4        | VSS          | GMEM_DQ22        | ACPI_EN         | I2C1_SCL           | I2C1_SDA           | VSS                 | R  |
| Т  | VDD_PLL3     | ACPI_GPI001     | ACPI_GPI002  | ACPI_GPI005      | ACPI_SYSRSTn    | ACPI_PWROK         | ACPI_WAKEN         | ACPI_RSMRSTn        | Т  |
| U  | VSS_PLL3     | ACPI_GPI003     | ACPI_GPI004  | ACPI_GPI000      | ACPI_PWRBTNn    | VSS                | ACPI_VSBGATE       | HTCLK_SEL0          | U  |
| V  | VDD_PLL2     | ACPI_GPI007     | VSS          | ACPI_GPI006      | ACPI_SUSSTATn   | ACPI_S4n           | LPC_RESETN         | HTCLK_SEL1          | V  |
| W  | VSS_PLL2     | VSS_PLL1        | VDD_PLL1     | ACPI_PLTRSTn     | LPC_LAD3        | LPC_LADO           | LPC_LAD2           | VSS                 | W  |
| Y  | VSS          | UART_DSR        | ACPI_S3n     | ACPI_S5n         | VSS             | LPC_LAD1           | PRG_CLKSEL         | USBCLKSEL           | Y  |
| AA | UART_RTS     | UART_CTS        | VSS          | UART_DTR         | LPC_SERIRQ      | LPC_CLKOUT         | SYS_DOTESTn        | CLKSEL08            | AA |
| AB | UART_RI      | UART_DCD        | DUAL_BRIDGE  | SPI_CSn2         | SPI_SD0         | LPC_LFRAMEN        | SYS_TESTCLK        | SYSCLK              | AB |
| AC | UART_RXD     | UART_TXD        | VSS          | GPI027           | GPI000          | RAPIDIO_REFCLKIN_P | RAPIDIO_REFCLKIN_N | VSS                 | AC |
| AD | VSS          | SPI_SCK         | SPI_CSn3     | SPI_CSn1         | SPI_CSn0        | VSS                | PCIE_REFCLK_OUT7P  | PCIE_REFCLK_0 UT7N  | AD |
| AE | CLKSEL06     | CLKSEL07        | SPI_SDI      | VSS              | VSS             | PCIE_REFCLK_OUT6P  | PCIE_REFCLK_OUT6N  | VSS                 | AE |
| AF | CLKOUT_FLEX  | VSS             | CLKOUT_25M   | CLKOUT_100M      | CLKOUT_33M      | VSS                | VSS                | PCIE_F1_TX3P        | AF |
| AG | VSS          | PCIE_F0_TX1P    | VSS          | PCIE_FO_TX3P     | VSS             | PCIE_F1_TX1P       | PCIE_F1_TX2P       | PCIE_F1_TX3N        | AG |
| AH | PCIE_FO_TXOP | PCIE_FO_TX1N    | PCIE_F0_TX2P | PCIE_FO_TX3N     | PCIE_F1_TXOP    | PCIE_F1_TX1N       | PCIE_F1_TX2N       | VSS                 | АН |
| АJ | PCIE_FO_TXON | VSS             | PCIE_FO_TX2N | VSS              | PCIE_F1_TXON    | VSS                | VSS                | PCIE_F1_RX3P        | АJ |



| AK | VSS          | PCIE_FO_RX1P | VSS          | PCIE_FO_RX3P | VSS          | PCIE_F1_RX1P | PCIE_F1_RX2P | PCIE_F1_RX3N | AK |
|----|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----|
| AL | PCIE_FO_RXOP | PCIE_FO_RX1N | PCIE_F0_RX2P | PCIE_FO_RX3N | PCIE_F1_RXOP | PCIE_F1_RX1N | PCIE_F1_RX2N | VSS          | AL |
| AM | PCIE_FO_RXON | VSS          | PCIE_FO_RX2N | VSS          | PCIE_F1_RXON | VSS          | VSS          |              | AM |

图 A - 4 芯片引脚排布 4/4 (顶视图, 从左至右)



### 修订记录

| 版本号   | 更新内容                                                                                                                                                                                                          |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V1. 0 | 第一版                                                                                                                                                                                                           |
| V1. 1 | 更改芯片名称为龙芯 7A2000 独显桥片 1.3 节增加新的质量等级 2.2.7 节修正部分描述 2.2.13 节修正接口类型 2.2.19 节修改部分描述格式 2.2.22 节增加 I2C4/5 的复用 3.2 节增加线序反转的说明 3.19 节明确 USB 和 GMAC 唤醒为 S3 唤醒 7.1 和 7.2 节更新电气特性 7.4 节更正部分描述和时序图 8.2 节更新引脚分布总览图(引脚定义未改) |
| V1. 2 | 信号名称统一 1.1 节和 3.2 节更新 PCIE 接口描述 2.2.13 节修正 UART 部分信号的类型 2.2.18 节和 4.2 节 SYS_TESTCLK 描述更新 2.2.22 节更新 DUAL_BRIDGE 的注解 3.8 节更新网络接口半双工功能描述 第 8 章图片更新为矢量图                                                          |

#### 技术支持

可通过邮箱向我司提交芯片手册和产品使用的问题,并获取技术支持。

服务邮箱: service@loongson.cn

#### 声明

本文档版权归龙芯中科技术股份有限公司所有,未经许可不得擅自实施传播等侵害版权人合法权益的行为。

本文档仅提供阶段性信息,可根据实际情况进行更新,恕不另行通知。如因文档使用不当造成的直接或间接损失,本公司不承担任何责任。

#### 龙芯中科技术股份有限公司

 ${\tt Loongson}\ {\tt Technology}\ {\tt Corporation}\ {\tt Limited}$ 

地址:北京市海淀区中关村环保科技示范园龙芯产业园2号楼

Building No. 2, Loongson Industrial Park,

 ${\it Zhongguancun\ Environmental\ Protection\ Park,\ Haidian\ District,\ Beijing}$ 

电话(Tel): 010-62546668 传真(Fax): 010-62600826