

	012 #3	
0		
a) v= 300 mz		at around sows
ft = 1GH2 = 109 H2	fivet ecl	no at 2 GOMH2
C = 3.108 m/s	tvansmit	ted signal % 30MHz
$f_{d} = \frac{2.200 \cdot 10^{9}}{3.108} = 200 \text{ Hz}$	Δ . =	60-30=30MHz
= 2HHz	Second	echo appears at 90 MHz
b) fa = 2KH2 = 2000H2		x f ₂ × 90-30 = 60 MH2
$T = \frac{1}{\sqrt{f_3}} = \frac{1}{2000 \text{Hz}} = 0.5$	ms $h = \frac{c}{2V}$	5 A F
at least 0.5ms of dat	a	
	3.108	3. 106 4.5 Km for first Awcraft
required C) fo = 2GH2 = 2·109H2		Awcvaft
$N = f \cdot T = 2.10^{9} \cdot C$	D.0005	
= 1.100	samples 3.10	60.10° = 9 km for second Awcraft
it could be practical 1		Awcvaet
requives high speed AD	C & memory	
1 / 1		Drogor Lange Drogory
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25 MH2	linear Image Processing
t= \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1H2 = 1012 H2/3	1 Mritten it shows 054
$t = \frac{1}{K}\Delta G$ $K = 1M$ C = 300	1H2 = 10 ¹² H2/3 m/nH2 = 3-10 ⁸ m/3	3 Written it shows 054
$t = \frac{1}{K}\Delta \cdot F \qquad h = 1M$ $C = 300$ $P = \frac{C}{2} t \qquad \frac{3 \cdot 10^{8}}{2 \cdot 10^{1}}$ $= \frac{C}{2} \cdot \Delta \cdot F \qquad h = \frac{3 \cdot 10^{8}}{2 \cdot 10^{1}}$	1H2 = 10 ¹² H2/s m/nH2 = 3-10 ⁸ m/s · 25-10 ⁸	
$t = \frac{1}{K}\Delta \cdot F \qquad h = 1M$ $C = 300$ $P = \frac{C}{2} t \qquad \frac{3 \cdot 10^{8}}{2 \cdot 10^{1}}$ $= \frac{C}{2} \cdot \Delta \cdot F \qquad h = \frac{3 \cdot 10^{8}}{2 \cdot 10^{1}}$	1H2 = 10 ¹² H2/s m/nH2 = 3-10 ⁸ m/s · 25-10 ⁸	3 Written it shows 054
$t = \frac{1}{K}\Delta \cdot f$ $C = 300$ $R = \frac{C}{2}t$ $= \frac{C}{2} \cdot \frac{\Delta \cdot f}{K}$ $= \frac{C}{2K}\Delta \cdot f$ $R = \frac{3 \cdot 10^{8}}{2 \cdot 10^{1}}$ $= \frac{3 \cdot 25}{2 \cdot 10}$	1H2 = 10 ¹² H2/3 m/nH2 = 3-10 ⁸ m/3 25-10 ⁶	3 Written it shows 054
$t = \frac{1}{K}\Delta if \qquad K = 1M$ $C = 300$ $R = \frac{C}{2}t$ $= \frac{C}{2} \cdot \frac{\Delta if}{K} \qquad R = \frac{3 \cdot 10^{8}}{2 \cdot 10^{1}}$ $= \frac{C}{2K}\Delta if \qquad = \frac{3 \cdot 25}{2 \cdot 10}$	1H2 = 10 ¹² H2/3 m/nH2 = 3-10 ⁸ m/3 25-10 ⁶	3 Written it shows 054
$t = \frac{1}{K}\Delta if \qquad K = 1M$ $C = 300$ $R = \frac{C}{2}t$ $= \frac{C}{2} \cdot \frac{\Delta if}{K} \qquad R = \frac{3 \cdot 10^{8}}{2 \cdot 10^{1}}$ $= \frac{C}{2K}\Delta if \qquad = \frac{3 \cdot 25}{2 \cdot 10}$	1H2 = 10 ¹² H2/s m/nH2 = 3-10 ⁸ m/s · 25-10 ⁸	3 Written it shows 054
$t = \frac{1}{K}\Delta if \qquad K = 1M$ $C = 300$ $R = \frac{C}{2}t$ $= \frac{C}{2} \cdot \frac{\Delta if}{K} \qquad R = \frac{3 \cdot 10^{8}}{2 \cdot 10^{1}}$ $= \frac{C}{2K}\Delta if \qquad = \frac{3 \cdot 25}{2 \cdot 10}$	1H2 = 10 ¹² H2/3 m/nH2 = 3-10 ⁸ m/3 25-10 ⁶	3 Written it shows 054
$t = \frac{1}{K}\Delta if \qquad K = 1M$ $C = 300$ $R = \frac{C}{2}t$ $= \frac{C}{2} \cdot \frac{\Delta if}{K} \qquad R = \frac{3 \cdot 10^{8}}{2 \cdot 10^{1}}$ $= \frac{C}{2K}\Delta if \qquad = \frac{3 \cdot 25}{2 \cdot 10}$	1H2 = 10 ¹² H2/3 m/nH2 = 3-10 ⁸ m/3 25-10 ⁶	3 Written it shows 054
$t = \frac{1}{K}\Delta if \qquad K = 1M$ $C = 300$ $R = \frac{C}{2}t$ $= \frac{C}{2} \cdot \frac{\Delta if}{K} \qquad R = \frac{3 \cdot 10^{8}}{2 \cdot 10^{1}}$ $= \frac{C}{2K}\Delta if \qquad = \frac{3 \cdot 25}{2 \cdot 10}$	1H2 = 10 ¹² H2/3 m/nH2 = 3-10 ⁸ m/3 25-10 ⁶	3 Written it shows 054
$t = \frac{1}{K}\Delta if \qquad K = 1M$ $C = 300$ $R = \frac{C}{2}t$ $= \frac{C}{2} \cdot \frac{\Delta if}{K} \qquad R = \frac{3 \cdot 10^{8}}{2 \cdot 10^{1}}$ $= \frac{C}{2K}\Delta if \qquad = \frac{3 \cdot 25}{2 \cdot 10}$	1H2 = 10 ¹² H2/3 m/nH2 = 3-10 ⁸ m/3 25-10 ⁶	3 Written it shows 054
$t = \frac{1}{K}\Delta if \qquad K = 1M$ $C = 300$ $R = \frac{C}{2}t$ $= \frac{C}{2} \cdot \frac{\Delta if}{K} \qquad R = \frac{3 \cdot 10^{8}}{2 \cdot 10^{1}}$ $= \frac{C}{2K}\Delta if \qquad = \frac{3 \cdot 25}{2 \cdot 10}$	1H2 = 10 ¹² H2/3 m/nH2 = 3-10 ⁸ m/3 25-10 ⁶	3 Written it shows 054