Demonstration of Laboratory Experiments on Numerical Relays

Experiment 03(a): Verification of Directional Overcurrent Relay Characteristic

A K Pradhan

Verification of Directional Overcurrent Relay Characteristic

- Objective
- Theory
- Circuit diagram
- Relay Settings
- Observations and Verification

Objective:

To Verify the Operating Characteristic of the Numerical Directional - Overcurrent Relay
-Directional Overcurrent Relay- MICOM P138 (Schneider Electric)

Phase-a to ground-fault

Source -1

Source -2

Phase-a to ground-fault

Value of the state of th

Theory: Principle of Directional Relaying

Based on angle between phase voltages and currents

- Transmission lines are predominantly inductive
 - For forward line faults (F₁), I lags V by the fault loop impedance angle, φ.
 - For reverse faults on the adjacent line (F₂), I leads V by approximately 180⁰ minus the fault loop impedance angle, φ.

V_M polarizing voltage at bus M

Principle of Directional Relaying..

400 kV 3-phase transmission network

Fundamental Principle of Directional Relaying

400 kV 3-phase transmission network

For a 3-phase fault at F₂

Directional-overcurrent relay (67)

X: Overcurrent relay output

Y: Directional relay output

Trip = X AND Y

Circuit Diagram:

Settings

Settings

Relay operates when, relay current $I \ge K_1I_{ref}$, where $K_1 = pickup$ setting

Operating time of IDMT relay,
$$t = T \times \left(\frac{K}{\left(\frac{I}{I_S}\right)^{\alpha} - 1} + L\right)$$

For IEEE moderately inverse curve,

$$K = 0.0515$$

$$\alpha = 0.02$$

$$L = 0.114$$

Settings:

Nominal Current (I_{nom})= 5A, Pickup setting= $0.3I_{nom}$ = 1.5

Characteristic curve= IEEE M Inverse.

Direction: $\beta = 135^{\circ}$, $\Upsilon = -45^{\circ}$

Case-1Setting:

Nominal Current (I_{nom})= 5A, Pickup setting= $0.3I_{nom}$ = 1.5 A. Characteristic curve= IEEE M Inverse.

$$\beta = 135^{\circ}, \quad \Upsilon = -45^{\circ}$$

Observation: Fixed Fault current injected =2.67A

Angle (V-I) (deg)	1	15	27	42	64	86	99	117	134	138	148	156	164	178
Trip/ No trip (relay decision)	Trip	Trip	Trip	Trip	Trip	Trip	Trip	Trip	Trip	No trip	No trip	No trip	No trip	No trip
Angle (V-I) (deg)	-6	-18	-28	-39	-43	-46	-58	- 71	- 82	- 105	- 125	- 154	- 170	- 176
Trip/ No trip (relay decision)	Trip	Trip	Trip	Trip	Trip	No trip								

Conclusion:

Trip region is observed to be within -430 and 1340

Set characteristics

→ Observed characteristics

Case-2 Setting:

Nominal Current (I_{nom})= 5A, Pickup setting= $0.3I_{nom}$ = 1.5 A. Characteristic curve= IEEE M Inverse.

 $\beta = 170^{\circ}, \Upsilon = -10^{\circ}$

Observation: Fixed injected Fault current = 2.67A

Angle (V-I) (deg)	4	16	33	42	53	62	78	98	125	144	165	174	176	179
Trip/ No trip	Trip	Trip	Trip	Trip	Trip	Trip	Trip	Trip	Trip	Trip	Trip	No trip	No trip	No trip
Angle (V-I)	6	40	0.1	40	00	70						_		
(deg)	- 6	- 13	- 21	- 46	- 60	- 78	- 89	- 100	- 113	- 121	- 138	- 154	- 164	- 177

Conclusion:

Trip region is observed to be within -10^o and 170^o

Set characteristics

--→ Observed characteristics

Demonstration is available on:

https://www.youtube.com/watch?v=gsZazbNwl6A&feature=emb_logo

Directional relay lectures:

https://www.youtube.com/watch?v=wDDLYkVm3ig&feature=emb_title

https://www.youtube.com/watch?v=9W071FEwtk4&feature=emb_title

Directional relay experiment demonstration:

https://www.youtube.com/watch?v=gsZazbNwl6A&feature=emb_logo

Schneider electric book link (Directional overcurrent--page no. 164):

https://www.se.com/ww/en/tools/npag-online/pdf/C1-Overcurrent_Protection_for_Phase_and_Earthfaults.pdf

Report Submission Guidelines:

- 1. Obtain the trip and block region for the directional relay based on the given two data sets. (Write your roll number and name at the top of the sheets)
- 2. Plot the actual operating characteristic for the relay based on the settings provided for each case (on the same plots as in (1)).
- 3. Write on your assessment for each experimental data set compared to actual operating characteristic.
- 4. Write your suggestions how the performance of the relay and the **testing** can be improved further.
- 5. Check whether the directional relay will operate or not for the following fault cases.

Setting of the directional overcurrent relay: $\beta = 160^{\circ}$, $\gamma = -20^{\circ}$, pickup current = 0.3 kA

C	Case-1	Case-2				
Voltage and curi	ent data during fault	Voltage and curi	rent data during fault			
V_a : 104.77 \angle 78.430 kV	I _a : 0.08∠ -87.91 ⁰ kA	V_a : 22.52 \angle 98.260 kV	I_a : 0.63 \angle -164.740 kA			
$V_{\rm b}$: 53.84 \angle -85.740 kV	I _b : 0.72∠ -96.16 ⁰ kA	V _b : 22.94∠-19.90 ⁰ kV	I _b : 0.64∠53.15 ⁰ kA			
V_{c} : 54.96 \angle -117.070 kV	l _c : 0.79∠84.70º kA	V _c : 22.10∠-139.94 ⁰ Kv	I _c : 0.61∠-45.39 ⁰ kA			

Sequence Components based directional relaying

Sequence Components from phase quantities

$$\begin{bmatrix} V_{a} \\ V_{b} \\ V_{c} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & \alpha^{2} & \alpha \\ 1 & \alpha & \alpha^{2} \end{bmatrix} \begin{bmatrix} V_{a0} \\ V_{a1} \\ V_{a2} \end{bmatrix} \qquad \alpha = 1 \angle 120^{\circ}$$

$$\begin{bmatrix} V_{a0} \\ V_{a1} \\ V_{a2} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \alpha & \alpha^2 \\ 1 & \alpha^2 & \alpha \end{bmatrix} \begin{bmatrix} V_a \\ V_b \\ V_c \end{bmatrix}$$

$$\left[\mathbf{V}_{a}^{012} \right] = \left[\mathbf{T} \right]^{-1} \left[\mathbf{V}^{abc} \right]$$

Phasor diagrams and rules for sequence components based directional relaying

$$\Phi_1 = \angle I_{1MN} - \angle V_{1M}$$

- negative for forward fault
- Positive for reverse fault

$$\Phi_2 = \angle I_{2MN} - \angle -V_{2M}$$

- negative for forward fault
- Positive for reverse fault

Report Submission Guidelines:

6. A Simulink model of 3-bus equivalent system is provided. A directional relay is provided at bus M with a setting of $\beta = 160^{\circ}$, $\gamma = -20^{\circ}$, pickup current = 0.3 kA. Create phase –A-to-ground faults at F1 and F2 and write your observation in the following table.

Roll No:								
Fault position	Fault resistance	Voltage	Current	Decision (Trip/ No trip)				
F ₁	Last digit of roll number							
F ₂	Last digit of roll number							

Pages to be submitted

(one pdf file for this experiment)

- Page-1 :roll No, Name at the top, discussion on observations of the 2 cases as mentioned in the earlier slide including point(4)
- Page-2 –page-3- papers with plots (roll No, Name at the top)
- Page 4- for the problem in point 5
- Page 5- for the result sheet on point 6 (Simulink)