Шаблон отчёта по лабораторной работе

4

Разанацуа Сара Естэлл

Содержание

1	Цель работы	5
2	Выполнение лабораторной работы	6
3	Создание программы Hello world!	7
4	Работа с транслятором NASM и работа с расширенным синтаксисом командной строки NASM	9
5	Работа с компоновщиком LD	10
6	Запуск исполняемого файла	11
7	Выполнение заданий для самостоятельной работы.	12
8	Выводы	15
Сп	исок литературы	16

Список иллюстраций

3.1	перемещение между директорами	7
3.2	создание пустого файла	7
3.3	редактора gedig	7
3.4	редактора gedig	8
4.1	компиляция текста программы	9
5.1	передача объектного файла на обработку компоновщику	10
6.1	запуск исполняемого файла	11
7.1	создание копии файла	12
7.2	изменения программы	13
7.3	компиляция трека программы	13
7.4	передача объектного файла на обработку компоновщику	14
7.5	передача объектного файла на обработку компоновщику	14

Список таблиц

1 Цель работы

• Цель данной лабораторной работы - освоить процедуры компиляции и сборки программ, написанных на ассемблере NASM.

2 Выполнение лабораторной работы

3 Создание программы Hello world!

• С помощью утилиты cd перемещаюсь в каталог, в котором буду работать (рис. 3.1).

Рис. 3.1: перемещение между директорами

• Создаю в текущем каталоге пустой текстовый файл hello.asm с помощью утилиты touch (рис. 3.2).

```
serazanacua@dk8n52 ~/work/arch-pc/lab04 $ touch hello.asm
serazanacua@dk8n52 ~/work/arch-pc/lab04 $
```

Рис. 3.2: создание пустого файла

• Открываю созданный файл в текстовом редакторе gedig hello.asm (рис. 3.3).

```
serazanacua@dk8n52 ~/work/arch-pc/lab04 $ touch hello.asm
serazanacua@dk8n52 ~/work/arch-pc/lab04 $ gedit hello.asm
```

Рис. 3.3: редактора gedig

• Заполняю файл, вставляя в него программу для вывода "Hello word!" (рис. 3.4).

```
*hello.asm
1; hello.asm
2 SECTION .data
3 hello: DB 'Hello world!',10; 'Hello world!' плюс
4 ; символ перевода строки
5 helloLen: EQU $-hello ; Длина строки hello
6 ; Длина строки hello
7 SECTION .text ; Начало секции кода
8 GLOBAL _start
9
10 _start: ; Точка входа в программу
11 mov eax, 4 ; Системный вызов для записи (sys_write)
12 mov ebx, 1 ; Описатель файла '1' - стандартный вывод
13 mov ecx,hello ; Адрес строки hello в есх
14 mov edx,helloLen; Размер строки hello
15 int 80h ; Вызов ядра
16
17 mov eax,1 ; Системный вызов для выхода (sys_exit)
18 mov ebx,0 ; Выход с кодом возврата '0' (без ошибок)
19 int 80h ; Вызов ядра
```

Рис. 3.4: редактора gedig

4 Работа с транслятором NASM и работа с расширенным синтаксисом командной строки NASM

• Превращаю текст программы для вывода "Hello world!" в объектный код с помощью транслятора NASM, используя команду nasm -f elf hello.asm, ключ -f указывает транслятору nasm, что требуется создать бинарный файл в формате ELF (рис. [4.1]). Далее проверяю правильность выполнения команды с помощью утилиты ls: действительно, создан файл "hello.o". Ввожу команду, которая скомпилирует файл hello.asm в файл оbj.o, при этом в файл будут включены символы для отладки (ключ -g), также с помощью ключа -l будет создан файл листинга list.lst (рис. [4.1]). Далее проверяю с помощью утилиты ls правильность выполнения команды.(рис. 4.1).

```
serazanacua@dk8n52 ~/work/arch-pc/lab04 $ nasm -f elf hello.asm
serazanacua@dk8n52 ~/work/arch-pc/lab04 $ ls
hello hello.asm hello.o list.lst obj.o
```

Рис. 4.1: компиляция текста программы

5 Работа с компоновщиком LD

• Передаю объектный файл hello.o на обработку компоновщику LD, чтобы получить исполняемый файл hello (рис. [5.1]). Ключ -о задает имя создаваемого исполняемого файла. Далее проверяю с помощью утилиты ls правильность выполнения команды.Выполняю следующую команду (рис. [5.1]). Исполняемый файл будет иметь имя main, т.к. после ключа -о было задано значение main. Объектный файл, из которого собран этот исполняемый файл, имеет имя obj.o. (рис. 5.1).

```
serazanacua@dk8n52 ~/work/arch-pc/lab04 $ ld -m elf_i386 obj.o -o main
ld: предупреждение: невозможно найти символ входа _start; начальный адрес не устанавливается
serazanacua@dk8n52 ~/work/arch-pc/lab04 $ ls
hello hello.asm hello.o list.lst main obj.o
```

Рис. 5.1: передача объектного файла на обработку компоновщику

6 Запуск исполняемого файла

• Запускаю на выполнение созданный исполняемый файл hello (рис. 6.1).

serazanacua@dk8n52 ~/work/arch-pc/lab04 \$./hello

Рис. 6.1: запуск исполняемого файла

7 Выполнение заданий для самостоятельной работы.

• С помощью утилиты ср создаю в текущем каталоге копию файла hello.asm с именем lab4.asm (рис. 7.1).

```
serazanacua@dk8n52 ~/work/arch-pc/lab04 $ cp hello.asm lab4.asm
serazanacua@dk8n52 ~/work/arch-pc/lab04 $ gedit lab4.asm
```

Рис. 7.1: создание копии файла

• С помощью текстового редактора gedit открываю файл lab4.asm и вношу изменения в программу так, чтобы она выводила мои имя и фамилию.(рис. 7.2).

Рис. 7.2: изменения программы

• Компилирую текст программы в объектный файл (рис. [7.3]). Проверяю с помощью утилиты ls, что файл lab4.o создан. (рис. 7.3).

```
serazanacua@dk8n52 ~/work/arch-pc/lab04 $ nasm -f elf lab4.asm
serazanacua@dk8n52 ~/work/arch-pc/lab04 $ ls
hello hello.asm hello.o lab4.asm lab4.o list.lst main obj.o
```

Рис. 7.3: компиляция трека программы

• Передаю объектный файл lab4.o на обработку компоновщику LD, чтобы получить исполняемый файл lab4 (рис. 7.4).

```
serazanacua@dk8n52 ~/work/arch-pc/lab04 $ ld -m elf_i386 lab4.o -o lab4 serazanacua@dk8n52 ~/work/arch-pc/lab04 $ ls hello hello.asm hello.o lab4 lab4.asm lab4.o list.lst main obj.o
```

Рис. 7.4: передача объектного файла на обработку компоновщику

• Запускаю исполняемый файл lab4, на экран действительно выводятся мои имя и фамилия (рис. 7.5).

```
serazanacua@dk8n52 ~/work/arch-pc/lab04 $ ./lab4
Razanatsua Sarah
serazanacua@dk8n52 ~/work/arch-pc/lab04 $
```

Рис. 7.5: передача объектного файла на обработку компоновщику

8 Выводы

-При выполнении данной лабораторной работы я освоила процедуры компиляции и сборки программ, написанных на ассемблере NASM.

Список литературы