PierNet: Technical Overview & Implementation

Version 1.0 | Technical Whitepaper | February 2025

1. Network Architecture

- **User Devices as Nodes** Phones, tablets, Raspberry Pi devices form the core mesh.
- **Long-Range & Fixed Nodes** LoRa, CBRS, and antennas extend rural coverage.
- **Nodes That Act as Gateways Can Earn Connectivity Tokens** Devices that provide internet access to the network receive token rewards based on demand and usage.

2. Proof-of-Connectivity (PoC) Token Model

Nodes earn tokens based on:

- **Reliability (Uptime & Stability).**
- **Geographic Expansion (Adding new coverage areas).**
- **Traffic Volume (Data Relayed).**

Harbors (Internet Gateways) receive additional rewards for providing external access.

3. Dynamic Pricing & Priority-Based Token Spending

Data transmission costs are based on:

- **Low Priority (Cheapest)** Background transfers, batch downloads.
- ✓ **Standard Priority (Balanced Cost)** Normal browsing and messaging.
- **High Priority (Most Expensive)** Real-time video, VoIP calls, emergency data.

Prices fluctuate based on network congestion and node availability.

^{**}Dynamic Pricing Model (Example Costs in Tokens per MB)**

Network Load	Low Priority (Tokens/MB)	Standard Priority (Tokens/MB)	High Priority (Tokens/MB)
Low Traffic (Late Night)	0.2	0.5	1
Normal Traffic (Daytime)	0.5	1	2

High Traffic (Peak	1	2	4
Hours)			

These values dynamically adjust based on real-time demand. Higher congestion leads to increased costs for priority access.

4. DAO Governance & Network Reserve

- **Hybrid DAO Model** A mix of token holders and active network contributors make governance decisions.
- **Algorithm-Driven Pricing** The system automatically adjusts pricing; the DAO can intervene only in extreme cases.
- **DAO Override Threshold** Requires a percentage of active participants to trigger a governance vote.

5. Security & Trust Mechanisms

- ▼ **End-to-End Encryption** Prevents unauthorized data interception.
- **Reputation-Based Trust** Nodes earn credibility based on uptime and reliability.
- **Mitigation Against Malicious Nodes** Bad actors can be flagged and blacklisted.