STAT 320: Principles of Probability Unit 5: Discrete Random Variables

United Arab Emirates University

Department of Statistics

Outline

- Random Variables

Random Variables

Frequently, when an experiment is performed, we are interested mainly in some function of the outcome as opposed to the actual outcome itself.

For instance, in tossing dice, we are often interested in the sum of the two dice and are not really concerned about the separate values of each die.

These quantities of interest, or, more formally, these real-valued functions defined on the sample space, are known as random variables.

Random Variables

Events of major interest to the scientist, engineer, or businessperson are those identified by numbers, called numerical events. The research physician is interested in the event that ten of ten treated patients survive an illness; the businessperson is interested in the event that sales next year will reach \$3 million. Let Y denote a variable to be measured in an experiment. The realized value of Y will vary depending on the outcome of the experiment. Thus it is called a random variable.

Definition (Random Variable)

A random variable is a function from a sample space $\mathscr S$ into the real numbers.

Example: Random Variable

Experiment	Random Variable
Toss two dice	X= sum of the numbers
Toss a coin 25 times	X number of heads in 25 tosses
Apply different amounts of	
fertilizer to corn plants	X = yield/acre

Notation: Random variables will always be denoted with uppercase letters and the realized values of the variable (or its range) will be denoted by the corresponding lowercase letters. Thus, the random variable X can take the value x.

Support/Range of a Random Variable

Definition (Support/Range of a Random Variable)

The set containing the all possible values of a random variable is called its support or range.

Notation: We will use the notation \mathbb{S}_{x} (or simply \mathbb{S} if there is no ambiguity) to denote the support of a random variable X.

Example: Consider the experiment of tossing a fair coin 3 times from. Define the random variable X to be the number of heads obtained in the 3 tosses. The Support of the random variable is $\mathbb{S}_{\mathbf{y}} = \{0, 1, 2, 3\}$

Example: Suppose that our experiment consists of tossing 3 fair coins. If we let Y denote the number of heads that appear, then Y is a random variable taking on one of the values 0, 1, 2, and 3 with respective probabilities.

$$\rho_{Y}(0) = P(Y = 0) =
\rho_{Y}(1) = P(Y = 1) =
\rho_{Y}(2) = P(Y = 2) =$$

 $p_{\vee}(3) = P(Y = 3) =$

Example: Suppose that our experiment consists of tossing 3 fair coins. If we let Y denote the number of heads that appear, then Y is a random variable taking on one of the values 0, 1, 2, and 3 with respective probabilities.

$$\rho_{Y}(0) = P(Y = 0) =
\rho_{Y}(1) = P(Y = 1) =
\rho_{Y}(2) = P(Y = 2) =$$

 $p_{\vee}(3) = P(Y = 3) =$

Random Variables Outline

- Random Variables
- Discrete Random Variables
- Expected Value and Variance
- Binomial Distribution
- Poisson Distribution
- Geometric Distribution
- Negative Binomial Distribution

Discrete Random **Variables**

Definition (Discrete Random Variables)

A random variable that can take on at most a countable number of possible values is said to be discrete.

For a discrete random variable X, we define the probability mass function (pmf) $p_{Y}(x)$ of X by

$$p_X(x) = P(X = x)$$
 for all $x \in \mathbb{S}_X$

The pmf of the random variable representing the sum when two dice are rolled can be represented in multiple ways.

As a Table:

X	2	3	4	5	6	7	8	9	10	11	12
$p_{x}(x)$	1 36	2 36	<u>3</u>	4 36	<u>5</u>	<u>6</u> 36	<u>5</u>	<u>4</u> 36	36	2 36	1 36

As a Plot/Graph:

Example: A system consists of 2 components connected in parallel, then at least one must work correctly for the system to work correctly. Each component operates correctly with probability 0.8 and independent of the other. Let X be the number of components that work correctly. Find the probability distribution of X.

Example: A system consists of 2 components connected in parallel, then at least one must work correctly for the system to work correctly. Each component operates correctly with probability 0.8 and independent of the other. Let X be the number of components that work correctly. Find the probability distribution of X.

Solution: X can take on only three possible values; 0, 1, or 2. Let E_i denote the event that component i works correctly. Then $P(E_i) = 0.8$. Thus, we have

$$p_{Y}(2) = P(E_1 \cap E_2) = P(E_1)P(E_2) = (0.8)(0.8) = 0.64.$$

ĺ	Х	0	1	2
	$p_X(x)$	0.04	0.32	0.64

Random Variables

cumulative distribution function

Definition (cumulative distribution function)

Let X be a discrete random variable on the support \mathbb{S}_{r} with the corresponding probability mass function

$$P(X = x) = p_X(x)$$
 for $x \in \mathbb{S}_X$.

The cumulative distribution function (cdf), denoted by $F_{\nu}(\cdot)$ is the following quantity

$$F_{X}(a) = P(X \le a) = \sum_{\{x \le a: x \in \mathbb{S}_{X}\}} p_{X}(a)$$

Example: If X be a discrete random variable on the support $S_x =$ $\{1,2,3,4\}$ with the corresponding pmf specified as $p_x(1) = \frac{1}{4}, p_x(2) =$

 $\frac{1}{2}$, $p_x(3) = \frac{1}{8}$, and $p_x(4) = \frac{1}{8}$. Calculate the CDF function of X.

Example: If X be a discrete random variable on the support $S_x =$ $\{1,2,3,4\}$ with the corresponding pmf specified as $p_x(1)=\frac{1}{4},p_x(2)=\frac{1}{2},p_x(3)=\frac{1}{8},$ and $p_x(4)=\frac{1}{8}.$ Calculate the CDF function of X.

Solution:

$$F_X\left(\begin{array}{c} {\bf a} \\ \end{array}\right) = \begin{cases} 0 & \text{if } {\bf a} < 1 \\ \frac{1}{4} & \text{if } 1 \le {\bf a} < 2 \\ \frac{3}{4} & \text{if } 2 \le {\bf a} < 3 \\ \frac{7}{8} & \text{if } 3 \le {\bf a} < 4 \\ \frac{7}{8} & \text{if } 4 \le {\bf a} \end{cases}$$

Graph of CDF of X

Let the pmf of a discrete random varibale X is given as

Х	0	1	2
$p_{\chi}(x)$	0.04	0.32	0.64

Find the corresponding CDF.

Let the pmf of a discrete random varibale X is given as

X	0	1	2
$p_{X}(X)$	0.04	0.32	0.64

Find the corresponding CDF.

Solution:

$$F_X \left(\begin{array}{c} \mathbf{a} \\ \end{array} \right) = \begin{cases} 0 & \text{if } \mathbf{a} < 0 \\ 0.04 & \text{if } 0 \le \mathbf{a} < 1 \\ 0.36 & \text{if } 1 \le \mathbf{a} < 2 \\ 1 & \text{if } 2 \le \mathbf{a} \end{cases}$$

Graph of CDF of X

Outline

- **Expected Value and Variance**

The "Expected Value" or "Mean" of a Discrete Random Variable

Definition (The "Expected Value" or "Mean" of a Discrete Random Variable)

If X is a random variable with pmf $p_{x}(x)$ on the support S_{x} , then the expected value (the mean) of X denoted by E(X) or μ_{\times} is given by

$$\mu_{X} = E(X) = \sum_{\{X \in \mathbb{S}_{X}\}} X p_{X}(X).$$

Definition (The Expected Value of a Function of a Discrete Random Variable)

Let the random variable X has the probability mass function $p_{\nu}(x)$ for all $x \in \mathbb{S}_x$, the support of X. Let h(x) be any* function, then the expected value of h(X) is defined as

$$E\left(h(X)\right) = \sum_{\left\{X \in \mathbb{S}_{X}\right\}} h(x) \left[p_{X}(X)\right].$$

Variance and Standard Deviation

Variance The variance of X, denoted by Var(X) is deifined as

$$Var(X) := E\left(X - \frac{\mu_X}{\mu_X}\right)^2$$

where $\mu_{x} = E(X)$, the mean of the random variable.

Definition (Variance)

The variance of X, denoted by Var(X) is deifined as

$$Var(X) := E(X^2) - \left(E(X)\right)^2$$

Var(X) is often denoted by σ^2 , i.e. $\sigma^2 = Var(X)$ and the standard deviation is $\sigma = \sqrt{\sigma^2} = \sqrt{\operatorname{Var}(X)}$.

Properties of Expected Value and Variance

Moment Generating Function (mgf)

Definition (Moment Generating Function)

The Moment Generating Function (mgf) of X, denoted by $M_{\nu}(t)$ is deifined as

$$\mathsf{M}_{\scriptscriptstyle X}(t) := \mathsf{E}\left(\mathsf{e}^{tX}\right) \ ,$$

whenever it exists.

If the random variable X has the probability mass funciton $p_{\nu}(x)$ for all $x \in \mathbb{S}_{\nu}$, the support of X, then

$$E\left(e^{tX}\right) = \sum_{\left\{|X| \in \mathbb{S}_X\right\}} e^{tX} \left|p_X(X)\right|.$$

The probability distribution of X, the number of daily network blackouts is given by

Х	0	1	2
$p_{\chi}(x)$	0.7	0.2	0.1

Find the Expected value and variance of the random variable X.

The probability distribution of X, the number of daily network blackouts is given by

Х	0	1	2
$p_{\chi}(x)$	0.7	0.2	0.1

Find the Expected value and variance of the random variable X.

Solution:

$$\mu_X = E(X) = \sum_{x \in \{0,1,2\}} x p_X(x)$$

$$= 0 \times p_X(0) + 1 \times p_X(1) + 2 \times p_X(2)$$

$$= 0 \times 0.7 + 1 \times 0.2 + 2 \times 0.1$$

$$= 0.4$$

$$\begin{split} E(X^2) &= \sum_{x \in \{0,1,2\}} x^2 \rho_X(x) \\ &= 0^2 \times \rho_X(0) + 1^2 \times \rho_X(1) + 2^2 \times \rho_X(2) \\ &= 0 \times 0.7 + 1 \times 0.2 + 4 \times 0.1 \\ &= 0.6 \end{split}$$

Hence $Var(X) := E(X^2) - (E(X))^2 = 0.6 - (0.4)^2 = 0.6 - 0.16 = 0.44$

The probability distribution of X, the number of daily network blackouts is given by

Х	0	1	2
$p_{\chi}(x)$	0.7	0.2	0.1

A small internet trading company estimates that each network blackout results in a \$500 loss. Compute expectation and variance of this company's daily loss due to blackouts.

The probability distribution of X, the number of daily network blackouts is given by

Х	0	1	2
$p_{\chi}(x)$	0.7	0.2	0.1

A small internet trading company estimates that each network blackout results in a \$500 loss. Compute expectation and variance of this company's daily loss due to blackouts.

The daily loss due to blackouts is given by h(X) = 500X. We need to find E(h(X)) and Varinace of Var(h(X)).

Solution:

$$\mu_X = E(X) = \sum_{x \in \{0,1,2\}} x p_X(x)$$

$$= 0 \times p_X(0) + 1 \times p_X(1) + 2 \times p_X(2)$$

$$= 0 \times 0.7 + 1 \times 0.2 + 2 \times 0.1$$

$$= 0.4$$

$$E(X^{2}) = \sum_{x \in \{0,1,2\}} x^{2} \rho_{X}(x)$$

$$= 0^{2} \times \rho_{X}(0) + 1^{2} \times \rho_{X}(1) + 2^{2} \times \rho_{X}(2)$$

$$= 0 \times 0.7 + 1 \times 0.2 + 4 \times 0.1$$

$$= 0.6$$

Exercises on Computing E(X) and Var(X)

- Find E(X) and Var(X), where X is the outcome when we roll a fair die.
- A school class of 120 students is driven in 3 buses to a symphonic performance. There are 36 students in one of the buses, 40 in another, and 44 in the third bus. When the buses arrive, one of the 120 students is randomly chosen. Let X denote the number of students on the bus of that randomly chosen student, and find E(X) and Var(X).
- **(a)** We say that $\mathbb{I}_A(x)$ is an indicator function for the event A if

$$\mathbb{I}_{A}(x) := \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A. \end{cases}$$

Obtain $E(\mathbb{I}_{\Delta}(X))$ and $Var(\mathbb{I}_{\Delta}(X))$.

Outline

- **Binomial Distribution**

Binomial Distribution

- A Bernoulli experiment is a random experiment, the outcome of which can be classified in one of two mutually exclusive and exhaustive ways, say, "1=success" or "0=failure." Let Y be the number of success on a Bernoulli trial, then Y is called the Bernoulli random variable.
- If a sequence of n independent Bernoulli trials is performed under the same condition, we call it a set of n Bernoulli trials a Binomial experiment.

Binomial Distribution

Definition (Binomial Experiment)

An experiment is called a Binomial experiment if it satisfies the following 4 conditions:

- The experiment consists of n Bernoulli trials.
- Each trial results in a success (S) or a failure (F).
- The trials are independent.
- The probability of a success, p, is fixed throughout n trials.

Binomial Distribution Binomial (n, p)

- Given a Binomial experiment consisting of n Bernoulli trials with success probability p, the Binomial random variable X associated with this experiment is defined as the number of successes among the n trials.
- The random variable X has the Binomial Distribution with parameters n and p; denoted by $X \sim Binomial(n, p)$.
- The behavior of Binomial Distribution with different n and p.

Random Variables

Binomial Distribution Binomial (n, p)

Definition (Binomial Distribution)

The probability mass function of Binomial(n, p) is given by

$$p(x) := \binom{n}{x} p^x (1-p)^{n-x}$$
, for $x = 0, 1, ..., n$ and $0 .$

$$E(X) = n \times p$$
 and $Var(X) = np(1 - p)$.

Example: Five fair coins are flipped. If the outcomes are assumed independent.

- Find the probability mass function of the number of heads obtained.
- Find the probability that at least 3 heads are obtained.
- Find the probability that at most 2 heads are obtained.

Example

Example: Five fair coins are flipped. If the outcomes are assumed independent.

- Find the probability mass function of the number of heads obtained.
- Find the probability that at least 3 heads are obtained.
- Find the probability that at most 2 heads are obtained.

Solution: Let $X = \text{The number of heads in 5 tossed coins. } X \sim \textit{Binomial}(n = 5, p = 0.5).$

- $P(X = 1) = {5 \choose 1} 0.5^5 = 0.1563$
- $P(X=2) = {5 \choose 2} 0.5^5 = 0.3125$
- $P(X=3) = {5 \choose 3} 0.5^5 = 0.3125$

Example

Example: It is known that screws produced by a certain company will be defective with probability .01, independently of each other. The company sells the screws in packages of 10 and offers a money-back guarantee that at most 1 of the 10 screws is defective. What proportion of packages sold must the company replace? Use the Binomial Calculator or Statistical Tables.

Example

Example: The following gambling game, known as the wheel of fortune (or chuck-a-luck), is quite popular at many carnivals and gambling casinos: A player bets on one of the numbers 1 through 6. Three dice are then rolled, and if the number bet by the player appears i times, i = 1; 2; 3, then the player wins i units; if the number bet by the player does not appear on any of the dice, then the player loses 1 unit. Is this game fair to the player?

Outline

- Random Variables
- Discrete Random Variables
- Expected Value and Variance
- Binomial Distribution
- Poisson Distribution
- Geometric Distribution
- Negative Binomial Distribution

Poisson Distribution

The Poisson distribution models the number of occurrences of an event when there is a known average rate per unit time or space λ .

Definition (Poisson Distribution)

The requirements for a Poisson distribution are that:

- no two events can occur simultaneously,
- events occur independently in different intervals, and
- the expected number of events in each time interval remain constant.

Poisson Distribution: pmf, Expected Value

The Poisson distribution models the number of occurrences of an event when there is a known average rate per unit time or space λ .

Definition (Poisson Distribution: pmf, Expected Value)

The requirements for a Poisson distribution are that:

The probability mass function of Poisson(λ) is given by

$$p(x) = \frac{e^{-\lambda} \lambda^x}{x!}$$
 for $x = 0, 1, 2, 3, ...$

② If $X \sim Poisson(\lambda)$, then $E(X) = \lambda$, and $Var(X) = \lambda$.

Example: The number of customers arriving at a service counter within one-hour period.

Example: The number of typographical errors in a book counted per page.

Example: The number of email messages received at the technical support center daily.

Example: The number of traffic accidents that occur on a specific road during a month.

A Few Examples of Poisson Distribution

Example: Messages arrive at an electronic message center at random times, with an average of 9 messages per hour.

- What is the probability of receiving exactly five messages during the next hour?
- What is the probability that more than 10 messages will be received within the next two hours?

- The number of messages received in an hour, X is modeled by Poisson distribution with $\lambda = 9$, i.e. $X \sim \text{Poisson}(9)$. $P(X = 5) = \frac{9^5 \exp(-9)}{5^{12}}$
- The number of messages received within a 2-hour period, Y is another Poisson distribution with Y = (2)(9) = 18, i.e. $Y \sim Poisson(18)$. P(Y > 10) = 1 - P(Y < 10) = ... = 0.9696

Group Work

- Develop a real life example in which you can easily apply:
 - Group 1: Poisson distribution.
 - Group 2: Binomial distribution.
 - Group 3: Poisson distribution
- In each case, propose two problems which can be solved using the Statistical Calculator.
- Can you propose an idea in which you can mix both distributions? (extra)

Outline

- Random Variables
- Discrete Random Variables
- Expected Value and Variance
- Binomial Distribution
- Poisson Distribution
- Geometric Distribution
- Negative Binomial Distribution

Geometric Distribution

Geometric Distribution

- Suppose that independent trials, each having a probability p. 0 , of being a success, are performed until a successoccurs.
- Example: The first head in tossing coin several times.
- Then. Geometric distribution models the number of trials performed until a success occurs.

Definition (Geometric Distribution)

The probability mass function of Geometric(p) is given by

$$p(x) = (1-p)^{x-1}p$$
 for $x = 1, 2, 3, ...,$

If $X \sim \text{Geometric}(p)$ then $E(X) = \frac{1}{p}$, and $\text{Var}(X) = \frac{1-p}{p^2}$

Geometric Distribution: Example

Example: Suppose that the probability of engine malfunction during any one-hour period is p = 0.02. Find the probability that a given engine will survive two hours.

Geometric Distribution: Example

Example: Suppose that the probability of engine malfunction during any one-hour period is p = 0.02. Find the probability that a given engine will survive two hours.

Solution:

Letting Y denote the number of one-hour intervals until the first malfunction, we have

$$P(\text{Survival for Next Two Hours}) \\ = P(Y \ge 3) \\ = 1 - P(Y \le 2) \\ = 1 - \sum_{y=1}^{2} p(y) \\ = 1 - \{p(1) + p(2)\} \\ = 1 - 0.02 - 0.98 \times 0.02 \\ = 0.9604$$

Exercise Find the mean and standard deviation of Y.

Outline

- Random Variables
- Discrete Random Variables
- Expected Value and Variance
- Binomial Distribution
- Poisson Distribution
- Geometric Distribution
- Negative Binomial Distribution

Negative Binomial Distribution

- Suppose that independent trials, each having probability p, 0 , of being a success are performed until a total of rsuccesses is accumulated.
- Example: The third head in tossing coin several times.
- Then, Negative Binomial distribution models the number of trials performed until a the rth success occurs.

Definition (Negative Binomial Distribution)

The probability mass function of Negative Binomial RV, denoted by Negative-Binomial(r, p) is given by

$$p(x) = {x-1 \choose r-1} p^{r-1} (1-p)^{x-r} \text{ for } x = r+1, r+2, r+3, \dots,$$

If $X \sim \text{Negative-Binomial}(r, p)$ then $E(X) = \frac{r}{p}$, and $Var(X) = \frac{r}{p}$

Example: A machine produces 1% defective parts. Using the statistical calculator, calculate the probability that

- 10 parts have to be selected until to get 2 defective parts.
- Between 20 to 25 parts have to be selected to get 2 defective parts.

Example:

- A machine produces 1% defective parts. Using the statistical calculator, calculate the probability that
 - 10 parts have to be selected until to get 2 defective parts.
 - Between 20 to 25 parts have to be selected to get 2 defective parts.

Solution: Letting Y denote the number of

> AA(1)

Exercise Find the mean and standard deviation of Y.

