Prop If $\delta \ge \beta$ in the root poset, $\delta = \mathbb{Z} G \times G$ $\beta = \mathbb{Z} G \times G$ then each $G \ge G$

(Not nacess: 101 \$211 in $\Delta = \widehat{A}_{\lambda}$)

Pf Enough for 0 si $y = \beta - 2 < \beta, \alpha_i > \alpha_i$ Need $< \beta, \alpha_i > < 0$

We have $\gamma = sip$ $dp \gamma = dpp+1$ $t_{\gamma} = sit_{\rho} si$ $l(t_{\gamma}) = l(t_{\rho}) + 2$

So $\ell(sitpsi) > \ell(sitp) \rightarrow (sitp)\alpha_i > 0$ $\ell(tpsi) > \ell(tp) \rightarrow tpai > 0$

Now $t_{\beta} \alpha_{i} = \alpha_{i} - 2 < \beta, \alpha_{i} > \beta > 0$ This is possible Now $-if < \beta, \alpha_{i} > 0$ Then $t_{\beta} \alpha_{i} = \alpha_{i} < 0$ Sitpai = $t_{\alpha} < 0$

-if $\langle \beta, d_i \rangle > 0$ then β must be a multiple of $d_i \rightarrow \beta = d_i \rightarrow t_p d_i = Sidi < 0$

So coeffs, increase or me go up the poset

Small-noots

Fach edge is $r_{\beta}s_{i}$ $r_{$

In Sn, all one short. In Az, how short and long.

Def A small noot is one reachable from the bottom of the noot potet. by joing up small edges.

Let $\beta, \gamma \in \mathbb{Q}^+$ Say β dominate γ (β dom γ) if $\gamma \in \mathbb{Q}$ $\gamma \in \mathbb{Q}$ $\gamma \in \mathbb{Q}$

Theorem A positive not is small if and only if it dominates no other not

To prou this we need some commas.

Pflee book, lemma 4.7.4

Lemma & glong $\Rightarrow \alpha$ dominates someone α gihat $\Rightarrow \alpha$ dominates someone α gihat $\Rightarrow \alpha$ dominates someone α dominates someone

Pt

(a)
$$\alpha = 5\beta \rightarrow (\alpha, \alpha s) \geq 1 \rightarrow \alpha \text{ dom } \alpha r$$

(P) x=28 (pot 0>< B x1>>-1

o If p dom & then \$70% so sp dom st. (Return similarly) B

Pf of Theorem.

olf of 11 short, take a path of short is noone of all the olf of dominate moone of all the a path to a simple most inductively each edge must be short. By