NATIONAL UNIVERSITY OF SINGAPORE

Department of Mathematics

MA 1505 Mathematics I Tutorial 4

1. Find the radius of convergence of the following series.

(a)
$$\sum_{n=0}^{\infty} (-1)^n \frac{(x+2)^n}{n}$$
 (b) $\sum_{n=0}^{\infty} \frac{(3x)^n}{n}$

(a)
$$\sum_{n=0}^{\infty} (-1)^n \frac{(x+2)^n}{n}$$
 (b) $\sum_{n=0}^{\infty} \frac{(3x-2)^n}{n}$ (c) $\sum_{n=0}^{\infty} (-1)^n (4x+1)^n$ (d) $\sum_{n=0}^{\infty} \frac{3^n x^n}{n!}$ (e) $\sum_{n=0}^{\infty} n^n x^n$ (f) $\sum_{n=0}^{\infty} \frac{(4x-5)^{2n+1}}{n^{3/2}}$

Ans. (a) 1 (b)
$$1/3$$
 (c) $1/4$ (d) ∞ (e) 0 (f) $1/4$

2. Find the sum of the geometric series inside the interval of convergence

$$1 - \frac{1}{2}(x-3) + \frac{1}{4}(x-3)^2 - + \dots + (-\frac{x-3}{2})^n + \dots$$

Ans.
$$\frac{2}{x-1}$$

3. Find the Taylor series for the following functions:

(a)
$$\frac{x}{1-x}$$
 at $x = 0$;

(b)
$$\frac{1}{x^2}$$
 at $x = 1$;

(c)
$$\frac{x}{1+x}$$
 at $x = -2$;

Ans. (a)
$$\sum_{n=0}^{\infty} x^{n+1}$$
 (b) $\sum_{n=0}^{\infty} (-1)^n (n+1)(x-1)^n$ (c) $2 + \sum_{n=1}^{\infty} (x+2)^n$

4. Use the Taylor polynomial $P_3(x)$ of $f(x) = \sin x$ at x = 0 of order 3 to approximate $\sin 0.1$. Show that the error incurred in the approximation is less than 10^{-5} .

Ans. 0.09983

5. Let

$$S = \sum_{n=0}^{\infty} \frac{1}{n! (n+2)}.$$

In this question, we will introduce two different ways to find the value of S, one by integration and the other by differentiation.

- (i) Integrate the Taylor series of xe^x to show that S=1.
- (ii) Differentiate the Taylor series of $\frac{e^x-1}{x}$ to show that S=1.
- 6. Let n be a positive integer. Prove that

$$\frac{1}{2} \int_0^1 t^{n-1} (1-t)^2 dt = \frac{1}{n(n+1)(n+2)}.$$

Hence find the exact value of the infinite series

$$\frac{1}{1\cdot 2\cdot 3} + \frac{1}{3\cdot 4\cdot 5} + \frac{1}{5\cdot 6\cdot 7} + \frac{1}{7\cdot 8\cdot 9} + \cdots$$