Nom:

Pr'enom:

Classe:

Évaluation n°4

(Calculatrice autorisée)

,	,
Cette évaluation est composée	e de 4 exercices indépendants.
Exercice 1 (/ 4) Dériver les fonctions suivantes :	
f(x) = 5x + 9	$g(x) = x^2 + 3x - 1$
$f'(x) = \dots $	$g'(x) = \dots $
=	=
=	=
$h(x) = 2x^3 - 5x^2 + 3$	$k(x) = 2x^2 + x\sqrt{5}$
$h'(x) = \dots \dots \dots \dots \dots$	$k'(x) = \dots$
=	=
=	
f(x) = 1	$x^3 - \frac{1}{x}$
1. Calculer la dérivée f' de la fonction f :	
2. Donner, en expliquant, le signe de f' :	
3. En déduire les variations de f :	

Exercice 3 (/ 4)

On donne ci-contre la courbe représentative d'une fonction g.

Donner les limites suivantes :

$$2. \lim_{\substack{x \to 2 \\ x < 2}} g(x) = \dots$$

3.
$$\lim_{\substack{x \to 2 \\ x > 2}} g(x) = \dots$$

$$4. \lim_{x \to +\infty} g(x) = \dots$$

Exercice 4 (/ 7)

On considère la fonction f définie pour tout $x \in \mathbb{R}^*$ par :

$$f(x) = x + \frac{2}{x}$$

1. Compléter le tableau ci-dessous :

x	-1000	-100	-1	-0,1	-0,01	 0,01	0,1	1	100	1000
f(x)		-100,02	-3		-200,01	 200,01	20,1		100,02	1000,002

2. À l'aide du tableau précédent, donner les limites suivantes :

$$\lim_{x \to -\infty} f(x) = \dots$$

$$\lim_{\substack{x \to 0 \\ x < 0}} f(x) = \dots$$

$$\lim_{x \to +\infty} f(x) = \dots$$

$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \dots$$

Nom:

Pr'enom:

Classe:

Évaluation n°4

(Calculatrice autorisée)

Catculati	ce autorisee)
Cette évaluation est composé	e de 4 exercices indépendants.
Exercice 1 (/ 4) Dériver les fonctions suivantes :	
f(x) = 8x + 2	$g(x) = 3x^2 + 3x - 5$
$f'(x) = \dots$	$g'(x) = \dots$
=	=
=	=
$h(x) = 3x^3 - 4x^2 - 11$	$k(x) = 2x^3 + \sqrt{5}$
$h'(x) = \dots$	$k'(x) = \dots$
=	=
=	$=$ $\in \mathbb{R}^*$ par :
·	$-2x^3 + \frac{1}{x}$
1. Calculer la dérivée f' de la fonction f :	
2. Donner, en expliquant, le signe de f' :	
3. En déduire les variations de f :	

Exercice 3 (/ 4)

On donne ci-contre la courbe représentative d'une fonction g.

Donner les limites suivantes :

2.
$$\lim_{\substack{x \to 1 \\ x < 1}} g(x) = \dots$$

3.
$$\lim_{\substack{x \to 1 \\ x > 1}} g(x) = \dots$$

$$4. \lim_{x \to +\infty} g(x) = \dots$$

Exercice 4 (/ 7)

On considère la fonction f définie pour tout $x \in \mathbb{R}^*$ par :

$$f(x) = 2x - \frac{3}{x}$$

1. Compléter le tableau ci-dessous :

	x	-1000	-100	-1	-0,1	-0,01	 0,01	0,1	1	100	1000
j	f(x)		-199,97	1		299,98	 -299,98	-29,8		199,97	1999, 997

2. À l'aide du tableau précédent, donner les limites suivantes :

$$\lim_{x \to -\infty} f(x) = \dots \qquad \qquad \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \dots \dots$$

$$\lim_{x \to +\infty} f(x) = \dots \qquad \qquad \lim_{\substack{x \to 0 \\ x > 0}} f(x) = \dots \dots$$