

Uploaded by José Roberto Mau Fernández

g Full description

RELATED TITLES

Euclides Prueba

11

facultad de Ingeniería

Estimación de

: INTERVALOS DE CONFIANZA - DOS MUESTRAS

Instrucciones:

Resolver los ejercicios con todos los pasos, utilizar megastat o funciones excel.

Interpretar los resultados.

Uploaded by José Roberto Mau Fernández

g Full description

RELATED TITLES

Euclides Prueba

Estimación de

Hypothesis Test: Independent Groups (z-test)

Tipo A		
1827	1658	mean
168	225	std. dev.
60	180	n

169.000 difference (Tipo A - Tipo B) 27.416 standard error of difference 0 hypothesized difference

6.16 z 7.08E-10 p-value (two-tailed)

6.164230553

11

115.265 confidence interval 95.% lower 222.735 confidence interval 95.% upper 53.735 margin of error

Hypothesis Test: Independent Groups (t-test, pooled variance)

Placa A:	Placa B:	_
1.1300	1.1740	mean
0.0283	0.0195	std. dev
5	5	n

8 df
-0.04400 difference (Placa A: - Placa B:)
0.00059 pooled variance
0.02429 pooled std. dev.
0.01536 standard error of difference
0 hypothesized difference

-2.864 t .0210 p-value (two-tailed)

-0.09555 confidence interval 99.% lower 0.00755 confidence interval 99.% upper 0.05155 margin of error

F-test for equality of variance

0.0008 variance: Placa A: 0.0004 variance: Placa B: 2.11 F

.4886 p-value

2.105263158

Uploaded by José Roberto Mau Fernández

g Full description

RELATED TITLES

Ejemplos PRACTICA Ejemplo 01 E Euclides Prueba Estimación de II

3.54133433129987E-10 0.000000000354133389

0.000000000708266822

usat\sloayza

Uploaded by José Roberto Mau Fernández

g Full description

RELATED TITLES

Un ingeniero eléctrico desea comparar las medias de los tiempos de vida de dos transistores en una aplicación que implica un desarrollo a alta temperatura. Se pr muestra de 60 transistores del tipo A y se encontró que tenía media de tiempos c 1 827 horas y desviación estándar de 168 horas. Se probó una muestra de 180 tra del tipo B y se encontró que tenía media de tiempos de vida de 1 658 horas y des estándar de 225 horas. Determine un intervalo de confianza de 95% para la diferentre las medias de los tiempos de vida de los dos tipos de transistores.

<u>Datos</u>	Tipo A	<u>Tipo B</u>
Media muestral (X)=	1827	1658
Desv. Estándar (S)=	168	225
Tamaño de muestra (n)=	60	180
Nivel de confianza 95%=(1-α)=	0.95	
Nivel de significancia $5\%=(\alpha)=$	0.05	

Calcular Z para intervalos de confianza

•	
DISTR.NORM.ESTAND.INV(1- α /2)=	
DISTR.NORM.ESTAND.INV(1- α /2)=	1.95996398
Diferencia de medias (X _A -X _B)=	169
Error Estándar S _(XA-XB) =	27.4162361
Margen de error (e)= $Z_{(1-\alpha/2)}^* S_{(XA-XB)}^=$	53.7348353
<u>Intervalos de Confianza</u>	
Limite inferior (Li)= $(X_A - X_B)$ - e	115.265165
Limite superior (Ls)= $(X_A - X_B) + e$	222.734835

Uploaded by José Roberto Mau Fernández

g Full description

RELATED TITLES

Se midió cinco veces el contenido de carbono (en partes por millón) para cada una de diferentes.

Las mediciones fueron:

Placa A: 1.1 1.15 1.16
Placa B: 1.2 1.18 1.16

Determine un intervalo de confianza de 99% para la diferencia en contenido de carbc

<u>Datos</u>	Placa A:	Placa B:
Media muestral (X)=	1.13	1.174
Desv. Estándar muestral (S)=	0.0282842712	0.0194935887
Tamaño de muestra (n)=	5	5
Varianza (S^2)=	0.0008	0.00038
Grados de libertad (v)=(n-1) =	4	4
Nivel de Confianza 99%=(1-α)=	0.99	
Nivel de Significancia 1%=(α)=	0.01	

Intervalo de Confianza para la Razón de dos varianzas

Calcular F para intervalos de Confianza

=DISTR.F.INV(1- α /2,v1,v2)=

=DISTR.F.INV(1-0.01/2,4,4)= 0.0431881465

 $\frac{\frac{s_{1}^{2}}{s_{2}^{2}}}{F_{1-\alpha/2, v_{1}, v_{2}}} \leq \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}$

=DISTR.F.INV($\alpha/2$,v1,v2)=

=DISTR.F.INV(0.01/2,4,4)= 23.1545014379 0.0431881465

<u>Intervalos de Confianza</u>

Limite inferior (Li) = 0.0909224137 Limite superior (Ls) = 48.7463188166

Interpretación

A un 99% de confianza se estima que la variación del contenido de carbón en las placas de silicio son iguales.

Aplicar el caso 3

Uploaded by José Roberto Mau Fernández

g Full description

☐ **⇔ C** ☐ Save Embed Share Print

RELATED TITLES

Euclides Prueba

11

Estimación de

_	DI 4	DI D
Datos	Placa A:	Placa B:
Media muestral (X)=	1.13	
Desv. Estándar muestral (S)=	0.0282842712	0.0194935887
Tamaño de muestra (n)=	5	5
Varianza (S^2)=	0.0008	0.00038
n-1 =	4	4
Nivel de Confianza 99%=(1-α)=	0.99	
Nivel de Significancia 1%=(α)=	0.01	
Grados de libertad (n ₁ +n ₂ -2)=	8	
Diferencia de medias (X _A -X _B)=	-0.044	
Error Estándar S _(xA-xB) =	0.0153622915	
Varianza en conjunto(Sc^2)=	0.00059	
Calcular t para intervalos		
=DISTR.T.INV(α ,gl)=		
=DISTR.T.INV(0.01,8)=	3.3553873313	
Margen de error (e)=	0.0515464383	
Intervalos de Confianza		
Limite inferior (Li)= (X_1-X_2) - e =	-0.0955464383	
Limite superior (Ls)= $(X_1-X_2) + e =$	0.0075464383	

A un 99% de confianza se estima que no existe diferencia entre el contenido de carbon en las plcas A y B.

Interpretación

Uploaded by José Roberto Mau Fernández

g Full description

☐ **⇔ <** ☐ Save Embed Share Print

RELATED TITLES

dos placas de silicio		
1.1 1.18	1.14 1.15	
ntre las dos placas.		

Placa A:	Placa B:
1.1	1.2
1.15	1.18
1.16	1.16
1.1	1.18
1.14	1.15

Hypothesis Test: Independent Groups (t-test, pooled varianc

_	Placa A:	Placa B:	
	1.1300	1.1740	mean
	0.0283	0.0195	std. dev.
	5	5	n

8 df -0.04400 difference (Placa A: - Placa B:) 0.00059 pooled variance

0.02429 pooled std. dev.0.01536 standard error of difference0 hypothesized difference

-2.864 t

.0210 p-value (two-tailed)

-0.09555 confidence interval 99.% lower 0.00755 confidence interval 99.% upper 0.05155 margin of error

Uploaded by José Roberto Mau Fernández

g Full description

RELATED TITLES

Una muestra de ocho acondicionadores de aire para habitación de cietenía una media de presión de sonido de media de 52 decibeles (dB) desviación estándar de cinco decibeles, y una muestra de 12 acondiciaire de un modelo diferente tenía una media de presión de sonido de decibeles y desviación estándar de 2 decibeles.

Determiné un intervalo de confianza de 98% para la diferencia en las presión de sonido entre los dos modelos.

<u>Datos</u>	Acondicionador A	Acondicionador B
Media muestral (X)=	52	46
Desv. Estándar muestral (S)=	5	2
Tamaño de muestra (n)=	8	12
Varianza (S^2)=	2	5 4
Grados de libertad (v)=(n-1) =		7 11
Nivel de Confianza 98%=(1-α)=	0.9	8
Nivel de Significancia 1%=(α)=	0.0	2

Intervalo de Confianza para la Razón de dos varianzas

40.8635351973

Calcular F para intervalos de Confianza

=DISTR.F.INV(1-α/2,v1,v2)= =DISTR.F.INV(1-0.02/2,7,11)=	0.1529480983
=DISTR.F.INV(α/2,ν1,ν2)= =DISTR.F.INV(0.02/2,7,11)=	4.8860720392
<u>Intervalos de Confianza</u> Limite inferior (Li)=	1.2791461014

<u>Interpretación</u>

Limite superior (Ls)=

Uploaded by José Roberto Mau Fernández

g Full description

☐ **⇔ <** ☐ Save Embed Share Print

RELATED TITLES

condicionadores.

APLICAR EL CASO 4

Caso 4: Intervalo de Confianza para la diferencia de medias ($n_1 y n_2 < 30$) $\sigma_1^2 \neq \sigma_2^2$ varianzas desconocidas iguales

Acondicionador A	Acondicionador B
52	46
5	2
8	12
25	4
7	11
0.98	
0.02	
18	
	52 5 8 25 7 0.98 0.02

Diferencia de medias $(X_A - X_B) = 6$

Error Estándar S_(xA-xB)=

Varianza en conjunto(Sc^2)=

Calcular t para intervalos

=DISTR.T.INV(α ,gl)=

=DISTR.T.INV(0.01,8)=

Margen de error (e)=

<u>Intervalos de Confianza</u>

Limite inferior (Li)= (X_1-X_2) - e = Limite superior (Ls)= (X_1-X_2) + e =

Uploaded by José Roberto Mau Fernández

g Full description

☐ **⇔ <** ☐ **Save Embed Share Print**

RELATED TITLES

Euclides Prueba

11

Estimación de

modelo na dores de dias de

Uploaded by José Roberto Mau Fernández

g Full description

RELATED TITLES

Euclides Prueba

11

Estimación de

Se comparan dos procesos para fabricar cierto microchip. Se seleccionó una muestra de chips de un proceso menos costoso, donde 62 estaban defectuosos. Se seleccionó una de 100 chips de un proceso más costoso, pero 12 tenían defecto. Determine un interval confianza de 95% para la diferencia entre las proporciones de los chips defectuosos pro por los dos procesos.

Datos	MENOS COSTOSCA	condicionador B
Media muestral (X)=	62	12
Tamaño de muestra (n)=	400	100
proporcion de éxito(p)=(X/n)	0.155	0.12
proporcion de fracaso(q)=(1-p)	0.845	0.88
Nivel de confianza 95%=(1-α)=	0.95	
Nivel de significancia $5\%=(\alpha)=$	0.05	
diferencia de proporcicones(p1-p2)	0.035	
Error estandar sigma (p1-p2)	0.0371945897	
margen de error(e) =		
calcular z para intervalos de confianza		

1.9599639845

DISTR.NORM.ESTAND.INV(1- α /2)= DISTR.NORM.ESTAND.INV(1- α /2)=

Uploaded by José Roberto Mau Fernández

g Full description

RELATED TITLES

11

Estimación de

En un experimento para determinar si hay una diferencia sistemática entre los pesos obtenidos con dos balanzas diferentes, se pesaron diez ejemplares de rocas, en gramos, en cada balanza. Se obtuvieron los siguientes datos:

Euclides Prueba

Ejempla r	Peso en la balanza 1	Peso en la balanza 2
1	11.23	11.27
2	14.36	14.41
3	8.33	8.35
4	10.50	10.52
5	23.42	23.41
6	9.15	9.17
7	13.47	13.52
8	6.47	6.46
9	12.40	12.45
10	19.38	19.35

Suponga que la diferencia entre las balanzas, si es que hay alguna, no depende del objeto pesado. Determine un intervalo de confianza de 98% para esta diferencia.