§ 12 四个基本子空间的正交性

设A是一个 $m \times n$ 阶阵,则我们有四个基本子空间 r(A) = r

- 例:设 $A = B_1B_2$,其中 B_1 是 $n \times r$ 阶阵, B_2 是 $r \times n$ 阶阵, 后两矩阵秩均为r,则A是一个 $n \times n$ 阶阵,且r(A) = r.
- **1.** A 的每一列是 B_1 的列向量的线性组合,因而 $C(A) \subset C(B_1)$.
- **2.** A 的每一行是 B_2 的行向量的线性组合,因而 $C(A^T) \subset C(B_2^T)$.
- 3. B_1 是列满秩阵,则存在可逆 $n \times n$ 阶阵 $E_1, E_1B_1 = (I_r \ 0)^T$. B_2 是行满秩阵,则存在可逆 $n \times n$ 阶阵 $E_2, B_2E_2 = (I_r \ 0)$.
- 4. $C(A) = C(AE_2) = C(B_1(I_r \ 0)) = C(B_1).$ $\exists \exists \exists dim C(A) = dim C(B_1)$, $\exists \exists r(A) = r(B_1) = r.$

例:设 A为 $m \times n$ 阶阵, $\mathbf{v} \in C(A^T) \cap N(A)$,则 $A\mathbf{v} = \mathbf{0}$ 且 \mathbf{v} 是 A 的行向量转置的线性组合.

设
$$A = \begin{pmatrix} \alpha_1^T \\ \vdots \\ \alpha_m^T \end{pmatrix}, \mathbf{v} = a_1 \alpha_1 + \dots + a_m \alpha_m, a_i \in \mathbb{R},$$

即
$$C(A^T) \cap N(A) = \{ \mathbf{0} \}.$$

同理,
$$C(A) \cap N(A^T) = \{0\}.$$

我们将学习关于四个基本子空间的更精确关系.

例:
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot C(A) = \left\{ \begin{pmatrix} x \\ 0 \\ z \end{pmatrix} | x, z \in \mathbb{R} \right\}$$
 是 \mathbb{R}^3 的一平面: $x0z$ 平面.
$$C(A^T) = \left\{ \begin{pmatrix} x \\ 0 \\ z \end{pmatrix} | x, z \in \mathbb{R} \right\} = C(A)$$

$$N(A) = \left\{ c \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} | c \in \mathbb{R} \right\} = y \text{ in} \qquad N(A^T) = N(A) = y \text{ in}$$
 $y \text{ in} \perp x0z \text{ 平面} \Longrightarrow C(A)$ 和 $N(A^T)$ 垂直.

目标: $C(A^T)$ 和 N(A)是垂直的. C(A) 和 $N(A^T)$ 是垂直的.

我们需要确切定义子空间的垂直(或正交).

定义:设S和T是 \mathbb{R}^n 的两个子空间(subspaces),我们说S垂直于T(S is perpendicular to T),如果对于 $\forall \mathbf{v} \in S, \mathbf{w} \in T, \mathbf{v}^T \mathbf{w} = 0$.这个定义是对称的,即S垂直于 $T \iff T$ 垂直于S.

记作 $S \perp T$ 或 $T \perp S$

所以我们也可以说: S 和 T 是正交的(S and T are orthogonal).

例: \mathbb{R}^n 和 $\{0\}$ 是正交的.

C(A)和 $N(A^T)$ 均是 \mathbb{R}^4 的子空间(平面). $C(A) \perp N(A^T)$.

例: \mathbb{R}^3 中 x0y 平面和 x0z 平面不正交. 因为 $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ 属于两平面之交, 但 $(1,0,0)(1,0,0)^T \neq 0$.

Fact: $\exists S \cap T \neq \{\mathbf{0}\}, \ \mathbb{M} \ \exists \mathbf{v} \neq \mathbf{0} \in S \cap T, \mathbf{v}^T \mathbf{v} \neq 0. \ \mathbb{M} \ \mathbb{M} \ T \ \mathbb{A} \ \mathbb{A} \ \mathbb{A} \ \mathbb{A} \ \mathbb{A}$

命题:设S和T是 \mathbb{R}^n 中两个子空间,且dim S + dim T > n,则S和 T不正交.

注: 若 dim S + dim T = n, S 和 T 也可能不正交. 例如 \mathbb{R}^2 中 S 是直线 y = x, T 是 x 轴.

定理:设 $A \in \mathbb{R}^n \times n$ 阶阵,则 C(A) 和 $N(A^T)$ 正交, $C(A^T)$ 和 N(A) 正交.

证明:设 $\alpha \in N(A^T)$,则 $\alpha^T A = \mathbf{0}$.

 $\implies \alpha$ 和 A 的全部列向量垂直.

 $\Longrightarrow \alpha \perp C(A)$.

因此, $N(A^T) \perp C(A)$.

将 A 换成 A^T ,我们得到 $C(A^T) \perp N(A)$.

四个子空间还有如下的关系:

定理: $C(A^T) + N(A) = \mathbb{R}^n, C(A^T) \perp N(A)$.

$$C(A) + N(A^T) = \mathbb{R}^m, C(A) \perp N(A^T).$$

我们说 $C(A^T)$ 是N(A) 在 \mathbb{R}^n 中的正交补,C(A) 是 $N(A^T)$ 在 \mathbb{R}^m 中的正交补,四个子空间的关系如下图:

一般地,我们有如下的:

定义: 设 $V \subset \mathbb{R}^n$ 是一个子空间, V 在 \mathbb{R}^n 中的正交补定义为集合 $\{\mathbf{w} \in \mathbb{R}^n | \mathbf{v}^T \mathbf{w} = 0, \forall \mathbf{v} \in V\},$

记作 V^{\perp} , 显然 $V \perp V^{\perp}$.

验证: $C(A^T) = N(A)^{\perp}$.

证明: 己知, $C(A^T) \perp N(A) \Longrightarrow C(A^T) \subset N(A)^{\perp}$.

反之, $\forall \mathbf{v} \in N(A)^{\perp}$,假设 $\mathbf{v} \notin C(A^T)$,考虑矩阵 $A_0 = \begin{pmatrix} A \\ \mathbf{v}^T \end{pmatrix}$.

则 $C(A^T) \subsetneq C(A_0^T)$.

但 $N(A_0) = N(A)$, 即 A_0 的列数 $-r(A_0) = A$ 的列数 -r(A).

则 $r(A) = r(A_0)$, 这与 $C(A^T) \subseteq C(A_0^T)$ 矛盾.

在过去的内容中,我们已经知道:

若 $A_{m \times n}$ 的秩为 r,则 $dim C(A) = dim C(A^T) = r$, dim N(A) = n - r, $dim N(A^T) = m - r$.

这个定理更细致地刻划了 A 的四个子空间的正交补关系.

注记: 若A 对称,即 $A = A^T$,则 $\mathbb{R}^n = N(A) + C(A^T)$ $C(A) \perp N(A)$. $= N(A^T) + C(A)$.

特别地, $A^T A$ 是对称阵,此时

$$N(A) = N(A^{T}A), C(A^{T}) = C(A^{T}A).$$

考虑一个简单观察:

 \mathbb{R}^n

设 $\mathbf{x} \in \mathbb{R}^n$, 则 $A\mathbf{x} \in \mathbb{R}^m$, 即 $\mathbb{R}^n \longrightarrow \mathbb{R}^m$

 $\mathbf{x} \longmapsto A\mathbf{x}$.

我们可以提升以上描述定理的简图如下:

 \mathbb{R}^m

定理: 若 $A\mathbf{x} = \mathbf{b}$ 有解,则 $A\mathbf{x} = \mathbf{b}$ 在 $C(A^T)$ 中有唯一解.

例:
$$A = \begin{pmatrix} 1 & 2 & 5 \\ 2 & 4 & 10 \end{pmatrix}$$
.

则
$$C(A^T) = \left\{c\begin{pmatrix}1\\2\\5\end{pmatrix} | c \in \mathbb{R}\right\}$$
是 \mathbb{R}^3 中一直线
$$N(A) = \text{平面 } x + 2y + 5z = 0$$

$$\mathbb{R}^3 = C(A^T) + N(A)$$

$$\mathbb{R}^3 = C(A^T) + N(A)$$

$$N(A) =$$
平面 $x + 2y + 5z = 0$
 $C(A) = \left\{ c \begin{pmatrix} 1 \\ 2 \end{pmatrix} | c \in \mathbb{R} \right\} \mathbb{R}^2$ 中一直线
 $N(A^T) =$ 直线 $x + 2y = 0$

 $A\mathbf{x} = \mathbf{b}$ 有解 $\iff \mathbf{b} \in C(A)$.

取
$$\mathbf{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
, 求 $\mathbf{x}_r \in C(A^T)$ 使得 $A\mathbf{x}_r = \mathbf{b}$.

因为
$$\mathbf{x}_r \in C(A^T)$$
, $\exists \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, $\mathbf{x}_r = A^T \mathbf{y}$. $\Longrightarrow AA^T \mathbf{y} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. $\Longrightarrow y_1 + 2y_2 = \frac{1}{30}$. 有无穷个 \mathbf{y} 满足 $AA^T \mathbf{y} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

但是
$$\mathbf{x}_r = A^T \mathbf{y} = \begin{pmatrix} 1 & 2 \\ 2 & 4 \\ 5 & 10 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} \frac{1}{30} \\ \frac{2}{30} \\ \frac{5}{20} \end{pmatrix}$$
唯一!

定理的证明: (来自于以上例子)

1.存在性. 设 $A\mathbf{x} = \mathbf{b}$ 有解,则 $\mathbf{b} \in C(A)$.

但 $C(A) = C(AA^T)$, 因此 $\mathbf{b} \in C(AA^T)$, 即 $\exists \mathbf{y} \in \mathbb{R}^m, AA^T\mathbf{y} = \mathbf{b}$.

2.唯一性. 设 $\mathbf{x}_r, \mathbf{x}_r' \in C(A^T)$, 且 $A\mathbf{x}_r = \mathbf{b} = A\mathbf{x}_r'$, 则

$$A(\mathbf{x}_r - \mathbf{x}'_r) = \mathbf{0} \implies \mathbf{x}_r - \mathbf{x}'_r \in N(A).$$

但是 $\mathbf{x}_r - \mathbf{x}'_r \in C(A^T)$,即 $\mathbf{x}_r - \mathbf{x}'_r \in C(A^T) \cap N(A) = \{\mathbf{0}\}.$

因此 $\mathbf{x}_r = \mathbf{x}'_r$.

例:
$$A = (1, -3, -4)_{1 \times 3}$$
.

$$\mathbb{R}^1 = N(A^T) + C(A) \qquad \mathbb{R}$$

$$\mathbb{R}^3 = C(A^T) + N(A)$$

$$C(A^T) = \begin{cases} c \begin{pmatrix} 1 \\ -3 \end{pmatrix} | c \in \mathbb{R} \end{cases}$$

$$C(A^{T}) = \left\{ c \begin{pmatrix} 1 \\ -3 \\ -4 \end{pmatrix} | c \in \mathbb{R} \right\} \quad N(A) = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} | x - 3y - 4z = 0 \right\}$$

$$C(A) = \mathbb{R}^1$$

$$N(A^T) = \{\mathbf{0}\}$$

$$\forall b \in C(A), \ \mathbb{M} \ \mathbf{x}_r = \frac{b}{26} \begin{pmatrix} 1 \\ -3 \\ -4 \end{pmatrix} \in C(A^T), A\mathbf{x}_r = b.$$