Théorie des groupes

Feuille de TD2

18 Septembre 2017

Exercice 1. Étant donnée une matrice a nous notons a^t sa transposée. Pour chacune des applications suivantes, décider si elle est un morphisme et, dans le cas où c'est un morphisme, décider si celui-ci est injectif, surjectif et s'il est un isomorphisme. $n \ge 2$

- 1. $f: (\mathcal{M}_n(\mathbf{R}), +) \to (\mathcal{M}_n(\mathbf{R}), +), a \mapsto a + a^t$.
- 2. $f: \operatorname{GL}_n(\mathbf{R}) \to \operatorname{GL}_n(\mathbf{R}), a \mapsto a^t$.
- 3. $f: \operatorname{GL}_n(\mathbf{R}) \to \mathbf{R}^*, a \mapsto \det(a)$.
- 4. $f: \mathbf{C}^* \to \mathbf{R}^*, z \mapsto |z|$.

Exercice 2. Soit $\varphi \colon G_1 \to G_2$ un morphisme de groupes.

- 1. Si g est un élément d'ordre fini de G_1 , montrer que l'ordre de $\varphi(g)$ divise l'ordre de g.
- 2. On suppose que G_1 est engendré par l'ensemble de ses éléments d'ordre 2 et que G_2 est fini, d'ordre impair. Montrer que φ est trivial.

Exercice 3. Soient g et h deux éléments d'un groupe G.

- (a) Montrer que les éléments g, g^{-1}, hgh^{-1} ont le même ordre. Plus généralement, si $\varphi \in \operatorname{Aut}(G)$, montrer que $\varphi(g)$ et g ont même ordre.
- (b) Montrer que gh et hg ont le même ordre.
- (c) Soit n un entier. Exprimer l'ordre de g^n en fonction de celui de g.
- (d) On suppose que gh = hg, que $\langle g \rangle \cap \langle h \rangle = \{1\}$ et que g et h sont d'ordre fini n et m respectivement. Exprimer l'ordre de gh en fonction de n et de m.

Exercice 4. Soit φ un morphisme d'un groupe fini (G,*) vers (\mathbb{C}^*,\times) . On suppose que φ n'est pas une application constante. Calculer

$$\sum_{x \in G} \varphi(x)$$

Exercice 5. Soit G un groupe tel que $\operatorname{Aut}(G)=\{1\}$. On veut montrer que G est d'ordre au plus deux.

- 1. Montrer que G est abélien.
- 2. En déduire que $g \mapsto g^{-1}$ est un automorphisme de G.
- 3. En déduire que G a une structure d'espace vectoriel V sur le corps $\mathbb{Z}/2\mathbb{Z}$ à deux éléments.
- 4. Montrer qu'une application $\mathbb{Z}/2\mathbb{Z}$ -linéaire inversible de V est un automorphisme de G. En déduire que G est un espace vectoriel de dimension 0 ou 1.

Exercice 6. Montrer que l'application de $GL_n(\mathbf{R})$ dans lui-même définie par $A \mapsto ({}^tA)^{-1}$ est un automorphisme de $GL_n(\mathbf{R})$.

Exercice 7. Soient G et G' deux groupes. Soit morphisme de groupe $f: G \to G'$.

- 1. On dit que G est un monomorphisme si pour tout groupe Γ , la propriété suivante est vérifiée : pour tous morphismes de groupes $u, v \colon \Gamma \to G$, si $f \circ u = f \circ v$ alors u = v.
- 2. On dit que G est un épimorphisme si pour tout groupe Γ , la propriété suivante est vérifiée : pour tous morphismes de groupes $u, v \colon G' \to \Gamma$, si $u \circ f = v \circ u$ alors u = v.

1

Montrer les résultats suivant :

- 1. f est un morphisme injectif si et seulement si f est un monomorphisme
- 2. f est un morphisme surjectif si et seulement si f est un épimorphisme

Exercice 8. Soient G un groupe et H un sous-groupe. On définit les *classes* à *droite* de H dans G comme les classes d'équivalence de la relation $x \sim_R y \Leftrightarrow xy^{-1} \in H$ et les *classes* à *gauche* comme étant celles de la relation $x \sim_L y \Leftrightarrow y^{-1}x \in H$.

- 1. Montrer que les classes à gauche sont de la forme gH avec $g \in G$ et que les classes à droite s'écrivent Hg.
- 2. Montrer que l'application $gH\mapsto Hg^{-1}$ est une bijection de l'ensemble des classes à gauche sur celui des classes à droites.
- 3. En déduire que les ensembles quotients de ces deux relations ont même cardinal.

Exercice 9. Soit G un groupe qui possède exactement deux sous-groupes distincts de G et 1.

- 1. Montrer que G est un groupe fini en montrant d'abord que tous ses éléments sont d'ordre finis.
- 2. Montrer que G est cyclique.
- 3. En déduire que G est d'ordre pq ou p^3 avec $p \neq q$ deux nombres premiers.

Exercice 10. On considère une décomposition d'un entier n de la forme $n = n_1 + \cdots + n_k$ avec $n_i > 0$. Montrer que $\prod_{i=1}^k (n_i!)$ divise n! (on pourra appliquer le théorème de Lagrange à un sous-groupe bien choisi de S_n).

Exercice 11. Quel est le dernier chiffre dans l'écriture décimale de 3^{2017} ?

Exercice 12. Soit $p \ge 3$ un nombre premier.

1. Montrer que pour tout $k \ge 0$,

$$(1+p)^{p^k} = 1 + \lambda_k p^{k+1}$$

où p ne divise pas λ_K .

- 2. En déduire que si $\alpha \ge 2$ alors $\overline{1+p}$ est d'ordre $p^{\alpha-1}$ dans $(\mathbf{Z}/p^{\alpha}\mathbf{Z})^{\times}$.
- 3. On considère le morphisme naturel $(\mathbf{Z}/p^{\alpha}\mathbf{Z})^{\times} \longrightarrow (\mathbf{Z}/p\mathbf{Z})^{\times}$. Montrer qu'il est surjectif et en déduire que $(\mathbf{Z}/p^{\alpha}\mathbf{Z})^{\times}$ est cyclique.

Exercice 13. 1. Montrer que pour $k \geqslant 0$, $5^{2^k} = 1 + \lambda_k 2^{k+2}$ avec λ_k impair. En déduire que $\bar{5}$ est d'ordre $2^{\alpha-2}$ dans $(\mathbf{Z}/2^{\alpha}\mathbf{Z})^{\times}$.

2. Montrer que le morphisme naturel $(\mathbf{Z}/2^{\alpha}\mathbf{Z})^{\times} \longrightarrow (\mathbf{Z}/4\mathbf{Z})^{\times} = \mathbf{Z}/2\mathbf{Z}$ est surjectif et que $\bar{5}$ engendre son noyau. En déduire que

$$(\mathbf{Z}/2^{\alpha}\mathbf{Z})^{\times} \simeq (\mathbf{Z}/2^{\alpha-2}\mathbf{Z}) \times \mathbf{Z}/2\mathbf{Z}.$$