CS738: Advanced Compiler Optimizations

Interprocedural Data Flow Analysis Functional Approach

Amey Karkare

karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738

Department of CSE, IIT Kanpur

► *G** ignores the special nature of call and return edges

- ► *G** ignores the special nature of call and return edges
- ► Not all paths in *G** are feasible

- ► *G** ignores the special nature of call and return edges
- ▶ Not all paths in *G** are feasible
 - do not represent potentially valid execution paths

- ► *G** ignores the special nature of call and return edges
- ▶ Not all paths in *G** are feasible
 - do not represent potentially valid execution paths
- ► IVP(r₁, n): set of all interprocedurally valid paths from r₁ to n

- G* ignores the special nature of call and return edges
- ▶ Not all paths in G* are feasible
 - do not represent potentially valid execution paths
- ► IVP(r₁, n): set of all interprocedurally valid paths from r₁ to n
- ▶ Path $q \in \text{path}_{G^*}(r_1, n)$ is in IVP (r_1, n)

- G* ignores the special nature of call and return edges
- ▶ Not all paths in G* are feasible
 - do not represent potentially valid execution paths
- ► IVP(r₁, n): set of all interprocedurally valid paths from r₁ to n
- ▶ Path $q \in \text{path}_{G^*}(r_1, n)$ is in IVP (r_1, n)
 - iff sequence of all E^1 edges in q (denoted q_1) is proper

 $ightharpoonup q_1$ without any return edge is proper

- $ightharpoonup q_1$ without any return edge is proper
- let $q_1[i]$ be the first return edge in q_1 . q_1 is proper if

- $ightharpoonup q_1$ without any return edge is proper
- let $q_1[i]$ be the first return edge in q_1 . q_1 is proper if
 - ightharpoonup i > 1; and

- $ightharpoonup q_1$ without any return edge is proper
- let $q_1[i]$ be the first return edge in q_1 . q_1 is proper if
 - \triangleright i > 1; and
 - ▶ $q_1[i-1]$ is call edge corresponding to $q_1[i]$; and

- q₁ without any return edge is proper
- let $q_1[i]$ be the first return edge in q_1 . q_1 is proper if
 - \triangleright i > 1; and
 - $ightharpoonup q_1[i-1]$ is call edge corresponding to $q_1[i]$; and
 - $ightharpoonup q_1'$ obtained from deleting $q_1[i-1]$ and $q_1[i]$ from q_1 is proper

Interprocedurally Valid Complete Paths

▶ $IVP_0(r_p, n)$ for procedure p and node $n \in N_p$

Interprocedurally Valid Complete Paths

- ▶ $IVP_0(r_p, n)$ for procedure p and node $n \in N_p$
- ightharpoonup set of all interprocedurally valid paths q in G^* from r_p to n s.t.

Interprocedurally Valid Complete Paths

- ▶ $IVP_0(r_p, n)$ for procedure p and node $n \in N_p$
- set of all interprocedurally valid paths q in G* from rp to n s.t.
 - Each call edge has corresponding return edge in q restricted to E¹

$$\textit{r}_1 \rightarrow \textit{c}_1 \rightarrow \textit{r}_2 \rightarrow \textit{c}_2 \rightarrow \textit{r}_2 \rightarrow \textit{e}_2 \rightarrow \textit{n}_2 \rightarrow \textit{e}_2 \rightarrow \textit{n}_1 \rightarrow \textit{e}_1$$

$$\begin{array}{c} \textit{r}_1 \rightarrow \textit{c}_1 \rightarrow \textit{r}_2 \rightarrow \textit{c}_2 \rightarrow \textit{r}_2 \rightarrow \textit{e}_2 \rightarrow \textit{n}_2 \rightarrow \textit{e}_2 \rightarrow \textit{n}_1 \rightarrow \textit{e}_1 \\ \in \mathsf{IVP}(\textit{r}_1,\textit{e}_1) \end{array}$$

$$r_1 \rightarrow c_1 \rightarrow r_2 \rightarrow c_2 \rightarrow r_2 \rightarrow e_2 \rightarrow n_1 \rightarrow e_1$$

$$r_1 \rightarrow c_1 \rightarrow r_2 \rightarrow c_2 \rightarrow r_2 \rightarrow e_2 \rightarrow n_1 \rightarrow e_1 \not\in \mathsf{IVP}(r_1, e_1)$$

$$\textit{r}_2 \rightarrow \textit{c}_2 \rightarrow \textit{r}_2 \rightarrow \textit{c}_2 \rightarrow \textit{e}_2 \rightarrow \textit{n}_2$$

$$r_2 \rightarrow c_2 \rightarrow r_2 \rightarrow c_2 \rightarrow e_2 \rightarrow n_2 \not\in \mathsf{IVP}_0(r_2, n_2)$$

Path Decomposition

```
q \in \mathsf{IVP}(r_{\mathsf{main}}, n)
\Leftrightarrow
q = q_1 \parallel (c_1, r_{p_2}) \parallel q_2 \parallel \cdots \parallel (c_{j-1}, r_{p_j}) \parallel q_j
where for each i < j, q_i \in \mathsf{IVP}_0(r_{p_i}, c_i) and q_i \in \mathsf{IVP}_0(r_{p_i}, n)
```

► (*L*, *F*): a *distributive* data flow framework

- ► (*L*, *F*): a *distributive* data flow framework
- ▶ Procedure p, node $n \in N_p$

- ► (*L*, *F*): a *distributive* data flow framework
- ▶ Procedure p, node $n \in N_p$
- $\phi_{(r_p,n)} \in F$ describes flow of data flow information from start of r_p to start of n

- \blacktriangleright (L, F): a distributive data flow framework
- ▶ Procedure p, node $n \in N_p$
- $\phi_{(r_p,n)} \in F$ describes flow of data flow information from start of r_p to start of n
 - ▶ along paths in $IVP_0(r_p, n)$

Functional Approach Constraints

$$\begin{array}{ll} \phi_{(r_p,r_p)} & \leq & \textit{id}_L \\ \phi_{(r_p,n)} & = & \bigwedge_{(m,n) \in E_p} (h_{(m,n)} \circ \phi_{(r_p,m)}) & \text{for } n \in N_p \\ \\ \text{where} \\ h_{(m,n)} & = & \begin{cases} f_{(m,n)} & \text{if } (m,n) \in E_p^0, \\ f_{(m,n)} \in F \text{ associated flow function} \\ \phi_{(r_q,e_q)} & \text{if } (m,n) \in E_p^1 \text{ and } m \text{ calls procedure } q \end{cases}$$

Information x at r_p translated to information $\phi_{(r_p,n)}(x)$ at n

Solving ϕ Constraints

Round-robin iterative approximations to initial values

$$\begin{array}{lcl} \phi^0_{(r_p,r_p)} & \leq & id_L \\ \\ \phi^0_{(r_p,n)} & \leq & f_\Omega & n \in N_p - \{r_p\} \end{array}$$

Solving ϕ Constraints

Round-robin iterative approximations to initial values

$$\begin{array}{lcl} \phi^0_{(r_p,r_p)} & \leq & id_L \\ \\ \phi^0_{(r_p,n)} & \leq & f_\Omega & n \in N_p - \{r_p\} \end{array}$$

Reach maximal fixed point

			lte	eration	n #
Function	Constraint	Init	1 st	2 nd	3 rd

			lte	Iteration #		
Function	Constraint	Init	1 st	2 nd	3 rd	
$\overline{\phi_{(r_1,r_1)}}$	id _L	id	id	id	id	

			Iteration #			
Function	Constraint	Init	1 <i>st</i>	2 nd	3 rd	
$\overline{\phi_{(r_1,r_1)}}$	id _L	id	id	id	id	
	$f_1 \circ \phi_{(r_1,r_1)}$	f_{Ω}	f_1	f_1	f_1	

		Iteration #				
Function	Constraint	Init	1 st	2 nd	3 rd	
$\phi_{(r_1,r_1)}$	id _L	id	id	id	id	
	$f_1 \circ \phi_{(r_1,r_1)}$	f_{Ω}	f_1	f_1	f_1	
$\phi_{(r_1,n_1)}$	$\phi(r_2,e_2) \circ \phi(r_1,c_1)$	f_{Ω}	f_{Ω}	f_1	f_1	

			Iteration #			
Function	Constraint	Init	1 st	2 nd	3 rd	
$\overline{\phi_{(r_1,r_1)}}$	id _L	id	id	id	id	
$\phi_{(r_1,c_1)}$	$f_1 \circ \phi_{(r_1,r_1)}$	f_{Ω}	f_1	f_1	f_1	
$\phi_{(r_1,n_1)}$	$\phi_{(r_2,e_2)} \circ \phi_{(r_1,c_1)}$	f_{Ω}	f_{Ω}	f_1	f_1	
$\phi(r_1,e_1)$	$f_1 \circ \phi_{(r_1,n_1)}$	f_{Ω}	<i>f</i> ₁	f_1	f_1	

			Iteration #			
Function	Constraint	Init	1 <i>st</i>	2 nd	3 rd	
$\phi_{(r_1,r_1)}$	id _L	id	id	id	id	
$\phi_{(r_1,c_1)}$	$f_1 \circ \phi_{(r_1,r_1)}$	f_{Ω}	f_1	f_1	f_1	
$\phi_{(r_1,n_1)}$	$\phi(r_2,e_2) \circ \phi(r_1,c_1)$	f_{Ω}	f_{Ω}	f_1	f_1	
$\phi(r_1,e_1)$	$f_1 \circ \phi_{(r_1,n_1)}$	f_{Ω}	f_1	f_1	f_1	
$\phi_{(r_2,r_2)}$	id_L	id	id	id	id	

			Iteration #				
Function	Constraint	Init	1 <i>st</i>	2 nd	3 rd		
$\overline{\phi_{(r_1,r_1)}}$	id _L	id	id	id	id		
$\phi_{(r_1,c_1)}$	$f_1 \circ \phi_{(r_1,r_1)}$	f_{Ω}	f_1	f_1	f_1		
$\phi_{(r_1,n_1)}$	$\phi(r_2,e_2) \circ \phi(r_1,c_1)$	f_{Ω}	f_{Ω}	f_1	f_1		
$\phi(r_1,e_1)$	$f_1 \circ \phi_{(r_1,n_1)}$	f_{Ω}	f_1	f_1	f_1		
$\phi_{(r_2,r_2)}$	id_L	id	id	id	id		
$\phi(r_2,b_2)$	$id_L \circ \phi_{(r_2,r_2)}$	f_{Ω}	id	id	id		

			Iteration #			
Function	Constraint	Init	1 st	2 nd	3 rd	
$\phi_{(r_1,r_1)}$	id _L	id	id	id	id	
$\phi_{(r_1,c_1)}$	$f_1 \circ \phi_{(r_1,r_1)}$	f_{Ω}	f_1	f_1	f_1	
$\phi_{(r_1,n_1)}$	$\phi(r_2,e_2) \circ \phi(r_1,c_1)$	f_{Ω}	f_{Ω}	f_1	f_1	
$\phi_{(r_1,e_1)}$	$f_1 \circ \phi_{(r_1,n_1)}$	f_{Ω}	f_1	f_1	f_1	
$\phi_{(r_2,r_2)}$	id_L	id	id	id	id	
$\phi_{(r_2,b_2)}$	$id_L \circ \phi_{(r_2,r_2)}$	f_{Ω}	id	id	id	
$\phi_{(r_2,c_2)}$	$f_0 \circ \phi_{(r_2,b_2)}$	f_{Ω}	f_0	f_0	f_0	

			Iteration #			
Function	Constraint	Init	1 <i>st</i>	2 nd	3 rd	
$\phi_{(r_1,r_1)}$	id _L	id	id	id	id	
$\phi(r_1,c_1)$	$f_1 \circ \phi_{(r_1,r_1)}$	f_{Ω}	f_1	f_1	f_1	
$\phi_{(r_1,n_1)}$	$\phi(r_2,e_2)\circ\phi(r_1,c_1)$	f_{Ω}	f_{Ω}	f_1	f_1	
$\phi_{(r_1,e_1)}$	$f_1 \circ \phi_{(r_1,n_1)}$	f_{Ω}	f_1	f_1	f_1	
$\phi_{(r_2,r_2)}$	id_L	id	id	id	id	
$\phi_{(r_2,b_2)}$	$id_L \circ \phi_{(r_2,r_2)}$	f_{Ω}	id	id	id	
$\phi(r_2,c_2)$	$f_0 \circ \phi_{(r_2,b_2)}$	f_{Ω}	f_0	f_0	f_0	
$\phi_{(\mathit{r}_{2},\mathit{n}_{2})}$	$\phi(\mathit{r}_{2}, \mathit{e}_{2}) \circ \phi(\mathit{r}_{2}, \mathit{c}_{2})$	f_{Ω}	f_{Ω}	f_0	f_0	

			Iteration				
Function	Constraint	Init	1 <i>st</i>	2 nd	3 rd		
$\phi_{(r_1,r_1)}$	id _L	id	id	id	id		
$\phi_{(r_1,c_1)}$	$f_1 \circ \phi_{(r_1,r_1)}$	f_{Ω}	f_1	f_1	f_1		
$\phi_{(r_1,n_1)}$	$\phi(r_2,e_2)\circ\phi(r_1,c_1)$	f_{Ω}	f_{Ω}	f_1	f_1		
$\phi(r_1,e_1)$	$f_1 \circ \phi_{(r_1,n_1)}$	f_{Ω}	f_1	f_1	f_1		
$\phi_{(r_2,r_2)}$	id_L	id	id	id	id		
$\phi(r_2,b_2)$	$id_L \circ \phi_{(r_2,r_2)}$	f_{Ω}	id	id	id		
$\phi_{(r_2,c_2)}$	$f_0 \circ \phi_{(r_2,b_2)}$	f_{Ω}	f_0	f_0	f_0		
$\phi(r_2,n_2)$	$\phi(r_2,e_2)\circ\phi(r_2,c_2)$	f_{Ω}	f_{Ω}	f_0	f_0		
$\phi(r_2,e_2)$	$(f_1 \circ \phi_{(r_2,n_2)}) \wedge (id_L \circ \phi_{(r_2,r_2)})$	f_{Ω}	id	id	id		

Solving Data Flow Problem

ightharpoonup The above process gives solution to ϕ functions

Solving Data Flow Problem

- ▶ The above process gives solution to ϕ functions
- ► Use it to compute data flow information *x*_n associated with start of block *n*

$$x_{r_{\text{main}}} = BoundaryInfo$$

for each procedure p

$$egin{array}{lcl} x_{r_p} &=& igwedge \left\{ egin{array}{lll} \phi_{(r_q,c)}(x_{r_q}): & q ext{ is a procedure and} \\ & c ext{ is a call to } p ext{ in } q \end{array}
ight\} \ x_n &=& \phi_{(r_p,n)} & n \in N_p - \{r_p\} \end{array}$$

Solving Data Flow Problem

- ightharpoonup The above process gives solution to ϕ functions
- Use it to compute data flow information x_n associated with start of block n

$$x_{r_{\text{main}}} = BoundaryInfo$$

for each procedure p

$$x_{r_p} = \bigwedge \left\{ egin{array}{ll} \phi_{(r_q,c)}(x_{r_q}): & q ext{ is a procedure and} \\ & c ext{ is a call to } p ext{ in } q \end{array} \right\}$$
 $x_n = \phi_{(r_p,n)} \quad n \in N_p - \{r_p\}$

lterative algorithm for solution, maximal fixed point solution

Interprocedural MOP

$$\Psi_n = \bigwedge \{ f_q : q \in \mathsf{IVP}(r_{\mathsf{main}}, n) \} \in F \quad \forall n \in N^*$$
 $y_n = \Psi_n(\mathsf{BoundaryInfo}) \quad \forall n \in N^*$

Interprocedural MOP

$$\Psi_n = \bigwedge \{ f_q : q \in \mathsf{IVP}(r_{\mathsf{main}}, n) \} \in F \qquad \forall n \in N^*$$
 $y_n = \Psi_n(\mathsf{BoundaryInfo}) \quad \forall n \in N^*$

 y_n is the *meet-over-all-paths solution* (MOP).

IVP₀ Lemma

$$\phi_{(r_p,n)} = \bigwedge \{ f_q : q \in \mathsf{IVP}_0(r_p,n) \} \qquad \forall n \in N_p$$

IVP₀ Lemma

$$\phi_{(r_p,n)} = \bigwedge \{ f_q : q \in \mathsf{IVP}_0(r_p,n) \} \quad \forall n \in N_p$$

Proof: By induction (Exercise/Reading Assignment)

MOP

$$\Psi_n = \bigwedge \{ f_q : q \in \mathsf{IVP}(r_{\mathsf{main}}, n) \} \in F \quad \forall n \in N^*$$

$$\mathcal{X}_n = \bigwedge \{ \phi_{(r_{p_j}, n)} \circ \phi_{(r_{p_{j-1}}, c_{j-1})} \circ \ldots \circ \phi_{(r_{p_1}, c_1)} \mid c_i \text{ calls } p_{i+1} \}$$

MOP

$$\begin{array}{lcl} \Psi_n & = & \bigwedge \{f_q : q \in \mathsf{IVP}(r_{\mathsf{main}}, n)\} \in F & \forall n \in N^* \\ \mathcal{X}_n & = & \wedge \{\phi_{(r_{p_j}, n)} \circ \phi_{(r_{p_{j-1}}, c_{j-1})} \circ \ldots \circ \phi_{(r_{p_1}, c_1)} \mid c_i \text{ calls } p_{i+1}\} \end{array}$$

Then

$$\Psi_n = \mathcal{X}_n$$

Proof: IVP₀ Lemma and Path decomposition

MOP

$$\begin{array}{lcl} \Psi_n & = & \bigwedge \{f_q : q \in \mathsf{IVP}(r_{\mathsf{main}}, n)\} \in F & \forall n \in N^* \\ \mathcal{X}_n & = & \land \{\phi_{(r_{p_j}, n)} \circ \phi_{(r_{p_{j-1}}, c_{j-1})} \circ \ldots \circ \phi_{(r_{p_1}, c_1)} \mid c_i \text{ calls } p_{i+1}\} \end{array}$$

Then

$$\Psi_n = \mathcal{X}_n$$

Proof: IVP₀ Lemma and Path decomposition

$$y_n = \Psi_n(BoundaryInfo) = \mathcal{X}_n(BoundaryInfo)$$

MOP vs MFP

► F is distributive $\Rightarrow MFP = MOP$

MOP vs MFP

- ightharpoonup F is distributive $\Rightarrow MFP = MOP$
- ▶ F is monotone \Rightarrow $MFP \le MOP$

▶ How to compute ϕ s effectively?

- ▶ How to compute ϕ s effectively?
 - For general frameworks

- ▶ How to compute ϕ s effectively?
 - ► For general frameworks
 - L not finite

- ▶ How to compute ϕ s effectively?
 - For general frameworks
 - L not finite
 - F not bounded

- ▶ How to compute ϕ s effectively?
 - For general frameworks
 - L not finite
 - F not bounded
 - Does the solution process converge?

- ► How to compute \(\phi \)s effectively?
 - For general frameworks
 - L not finite
 - F not bounded
 - Does the solution process converge?
- ▶ How much space is required to represent ϕ functions?

- ▶ How to compute ϕ s effectively?
 - For general frameworks
 - L not finite
 - F not bounded
 - Does the solution process converge?
- ▶ How much space is required to represent ϕ functions?
- Is it possible to avoid explicit function compositions and meets?