<u>ΑΣΚΗΣΗ 2</u> <u>ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΟΥ ΣΕ</u> ΣΥΝΑΡΤΗΣΗ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

🖖 Αρχικά οι αλγόριθμοι αναζήτησης που θα μελετηθούν είναι:

- Μέγιστης Καθόδου (Steepest Descent)
- Newton
- Levenberg-Marquardt

και η δοσμένη αντικειμενική συνάρτηση θα είναι :

$$f(x,y) = x^3 e^{-x^2 - y^4}$$

Θ EMA 1 – ΣΧΕΔΙΑΣΜΟΣ ΤΗΣ f:

ΘΕΜΑ 2 - ΜΕΘΟΔΟΣ ΜΕΓΙΣΤΗΣ ΚΑΘΟΔΟΥ:

Αρχικό σημείο (0,0) βλέπω πως η παράγωγος της f είναι μηδέν οπότε τερματίζει ο αλγόριθμος και έτσι θα έχω f(x,y) = 0:

Επιλέγω σταθερό γ_κ = 0.5 και ε = 0.001.

> Το ίδιο συμβαίνει στο γ όταν ελαχιστοποιεί την $f(x_{\kappa} + \gamma_{\kappa} d_{\kappa})$.

> Το ίδιο συμβαίνει και με τον κανόνα Armijo.

🦴 Αρχικό σημείο (-1,-1) :

Επιλέγω σταθερό γ_κ = 0.5 και ε = 0.001,

Μετά από 82 επαναλήψεις καταλήγω στο σημείο πιο πάνω.

ightharpoonup Για το γ όταν ελαχιστοποιεί την $f(x_{\rm k}+\gamma_{\rm k}d_{\rm k})$ έχω

Μετά από 5 επαναλήψεις καταλήγω στο σημείο πιο πάνω.

και τέλος με τον κανόνα Armijo :

- ⇔ Αρχικό σημείο (1,1) :
 - Επιλέγω σταθερό γ_κ = 0.5 και ε = 0.001

Μετά από 120 επαναλήψεις καταλήγω στο σημείο πιο πάνω.

ightharpoonup Για το γ όταν ελαχιστοποιεί την $f(x_{\kappa} + \gamma_{\kappa} d_{\kappa})$ έχω

Μετά από 1 επανάληψη καταλήγω στο σημείο πιο πάνω.

και τέλος με τον κανόνα Armijo :

Μετά από 119 επαναλήψεις καταλήγω στο σημείο πιο πάνω

υμπερασματικά για τον αριθμό επαναλήψεων συναρτήσει με το (x,y) το (-1,-1) έχω

🕨 Στο (1,1) έχω

Θ EMA 3 – ΜΕΘΟΔΟΣ NEWTON:

Τρέχοντας το πρόγραμμα με την αντικειμενική συνάρτηση που μας δόθηκε βλέπουμε πως δεν πληρούνται τα κριτήρια για κανένα από τα ζητούμενα αρχικά σημεία και έχουμε αυτό το αποτέλεσμα:

ightharpoonup Για το γ όταν ελαχιστοποιεί την $f(x_{\kappa} + \gamma_{\kappa} d_{\kappa})$ έχω

και τέλος με τον κανόνα Armijo

🤟 για τον αριθμό επαναλήψεων συναρτήσει με το (x,y) θα έχω :

<u>ΘΕΜΑ 4 – ΜΕΘΟΔΟΣ LEVENBERG-MARQUARDT</u>:

Υ Για το αρχικό σημείο (0,0) βλέπω πως δεν πληρούνται τα κριτήρια 3 και 4 άρα το αποτέλεσμα μου θα είναι όπως παρακάτω όταν:

Επιλέγω σταθερό γ_κ = 0.5 και ε = 0.001.

Fig. το γ όταν ελαχιστοποιεί την $f(x_{\kappa} + \gamma_{\kappa} d_{\kappa})$

και τέλος με τον κανόνα Armijo

- 🤝 Με αρχικό σημείο (-1,-1)
- > Επιλέγω σταθερό γ_κ = 0.5 και ε = 0.001 και παρατηρούμαι πως δεν πληρούνται τα κριτήρια και για

αυτό το αρχικό σημείο.

ightharpoonup Για το γ όταν ελαχιστοποιεί την $f(x_k + \gamma_k d_k)$

με τον κανόνα Armijo

- 🤝 Με αρχικό σημείο (1,1)
- Επιλέγω σταθερό γ_κ = 0.5 και ε = 0.001

ightharpoonup Για το γ όταν ελαχιστοποιεί την $f(x_{\kappa} + \gamma_{\kappa} d_{\kappa})$

με τον κανόνα Armijo

🦠 Συμπερασματικά για τον αριθμό επαναλήψεων συναρτήσει με το (x,y)

Στο (-1,-1) έχω

Στο (1,1) έχω

ΤΕΛΙΚΟ ΣΥΜΠΕΡΑΣΜΑ:

 Μετά από όλες αυτές τις παρατηρήσεις όλες οι μέθοδοι έχουν σημαντικές αδυναμίες και προβλήματα.

- ο Η μέθοδος Newton είναι λίγο καλύτερη από τη μέθοδο της μέγιστης καθόδου όμως
 - Η Newton χρειάζεται θετικά ορισμένο εσσιανό πίνακα και έτσι δεν ξέρουμε αν θα ισχύει σε κάθε επανάληψη
 - Η μέθοδος μέγιστης καθόδου ο αλγόριθμος καθυστερεί στη σύγκλιση του
- ο Η μέθοδος Levenberg-Marquardt έχει και αυτή αρκετούς περιορισμούς
- Δεν ξέρουμε αν είναι το ολικό ελάχιστο αφού και οι 3 μέθοδοι είναι εγκλωβισμένοι στη γειτονία του ελαχίστου