

Model Development Phase Template

Date	21 June 2024
Team ID	739769
Project Title	Life Style Change Due To Covid Prediction
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial Random Forest model shows promising results for predicting lifestyle changes due to COVID-19 based on demographic and behavioral attributes. Further refinement of the model, including hyperparameter tuning and feature engineering, may enhance its predictive performance.

Initial Model Training Code:

```
from sklearn.ensemble import RandomForestClassifier
# Initialize the Random Forest Classifier
model2 = RandomForestClassifier()

# Fit the model
model2.fit(X_train, y_train)

# Make predictions on the test set
y_pred = model2.predict(X_test)

# Model Accuracy
accuracy = accuracy_score(y_test, y_pred)

# Evaluate the model
print("Accuracy: ", accuracy * 100)
print("\nClassification Report: \n", classification_report(y_test, y_pred))
```



```
from sklearn.tree import DecisionTreeClassifier
# Initialize the Decision Tree Classifier
model3 = DecisionTreeClassifier(random_state=42)
# Fit the model
model3.fit(X_train, y_train)
# Make predictions on the test set
y_pred = model3.predict(X_test)
# Model Accuracy
accuracy = accuracy_score(y_test, y_pred)
# Evaluate the model
print("Accuracy: ", accuracy * 100)
print("\nClassification Report: \n", classification_report(y_test, y_pred))
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report
model1=LogisticRegression()
model1.fit(X_train,y_train)
▼ LogisticRegression
LogisticRegression()
```


Model Validation and Evaluation Report:

Model	Classification Report	F1 Scor e	Confusion Matrix							
Random Forest	from sklearn.ensemble import RandomForestClassifier # Initialize the Random Forest Classifier model2 = RandomForestClassifier() # Fit the model model2.fit(X_train, y_train) # Make predictions on the test set y_pred = model2.predict(X_test) # Model Accuracy accuracy = accuracy_score(y_test, y_pred) # Evaluate the model print("Accuracy: "a,ccuracy " 100) print("\nclassification Report: \n", classification_re Accuracy: 97.0212759957468 Classification Report: precision recall fi-score support precision recall fi-score support precision precision recall fi-score support accuracy: 90.94 0.98 0.96 85 1 0.99 0.97 0.98 150 accuracy 0.97 0.97 235 macro avg 0.96 0.97 0.97 235 weighted avg 0.97 0.97 0.97 235	97%	<pre>cm = confusion_matrix(y_test, y_pred) # Plot the confusion matrix as a heatmap plt.figure(figsize=(8, 6)) sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['0', '1'], yticklabels=['0', '1'] plt.xlabel('Predicted') plt.ylabel('Actual') plt.title('Confusion Matrix') plt.show()</pre>							
			Confusion Matrix - 140 - 120 - 100 - 80 - 60 - 60 - 40 - 20							

Decision Tree

99%

cm = confusion_matrix(y_test, y_pred)

Plot the confusion matrix as a heatmap
plt.figure(figsize-(a, 6))
sns.heatmap(cn, annot=rue, fmt='d', cmap='8lues', xticklabels=['0', '1'], yticklabels
plt.xiabel('Predicted')
plt.yabel('Actual')
plt.title('Confusion Natrix')
plt.show()

Logistic Regression	<pre>print('Accuracy:',accuracy*100) print('\nClassification Report:',classification_report(y_test,y_pred))</pre>							82%	<pre>cm = confusion_matrix(y_test, y_pred) # Plot the confusion matrix as a heatmap plt.figure(figsize(8, 6)) sns.heatmap(cm, annot-rue, fmt='d', cmap='glues', xticklabels=['0', '1'], y</pre>				
	Accuracy: 82.97872340425532						<pre>plt.xlabel('Predicted') plt.ylabel('Actual') plt.title('Confusion Matrix')</pre>						
	Classification	Report:		precision	recall	f1-score	support		plt.show()				
	0	0.82	0.68	0.74	85								
	1	0.84	0.91	0.87	150								
	accuracy	0.03	0.00	0.83	235								
	macro avg 0.83 0.80 0.81 veighted avg 0.83 0.83 0.83		235 235			Confusion Matrix							
													- 120
										0-	58	27	- 100
										ctual			- 80
										4			- 60
										н-	13	137	- 40
													- 20