

CO331 – Network and Web Security

4. Malware

Dr Sergio Maffeis Department of Computing

Course web page: http://www.doc.ic.ac.uk/~maffeis/331

MALicious soft**WARE**

Examples

- Virus: malicious code that copies itself into existing programs
- Worm: self-replicating program that infects other machines over the network or removable devices
- Trojan: malicious program that provides some useful service in order to pose as legitimate
- Drive-by download: code executed by visiting a malicious website
- Spoofed software: fake antivirus or fake software updates
- Adware: displays intrusive advertisement
- Spyware: steal sensitive documents
- Ransomware: block access to machine or data until ransom is paid
- Rootkit: modifies the OS to hide malicious activity of itself or other malware
- Keylogger: log keystrokes to steal user credentials
- Backdoor: opens a network connection for repeated access by the attacker
- RAT: remotely control the machine in a targeted attack
- Botnet: recruit the machine into a botnet

Malware dimensions

Format

- Injected code added to a legitimate program (virus)
- DLL that is called by a legitimate program (fake software updates)
- Script run by an application (macro virus)
- Standalone executable that is run by the user or automatically by the system (trojan)

Propagation

- Installed by the attacker
 - Self-replication (worm)
 - Exploiting vulnerabilities (drive-by download)
- Installed by the user
 - Social engineering (fake antivirus)
 - Compromised certificate (fake software updates)

Privileges

- Root: it owns the machine (rootkit)
- User: can do limited damage (spyware), but can also attempt elevation of privilege to become root

Malware campaigns

- Generic attacks infect as many machines as possible
 - Deliver low-cost attacks with low chance of success
 - Value in numbers: build a botnet
- Targeted attacks aim to infect the machine of a particular high-value victim
 - May be personalised: company executive, nuclear power plant employee, politician, organization, highnet worth individual
 - Fewer targets: attack may be driven by human
 - Advanced Persistent Threats (APT): attackers stealthily exploit a system over time
- Malware targets different operating systems
 - Windows is still the most popular target
 - Android, OSX, Linux are now also popular

Botnets

(Stone-Gross et al., CCS 2009)

- One attacker (the botmaster) can control hundred of thousands of infected machines
- Sophisticated *command-and-control* architectures
 - Peer-to-peer, hierarchical, star topology
 - Encrypted and stealthy communication of commands and results
 - Botmaster server may keep changing IP to avoid detection (fast flux/domain flux)

Botnet goals

- Steal user credentials
 - Credit card numbers
 - Gmail or Facebook passwords
 - Gaming passwords
- Spam: deliver unrequested email
 - Advertising illegal, counterfeit goods
 - Spread malicious attachments
 - Fraud, deception: romance scams, phishing
- Click fraud: generate advertising revenue from bogus user clicks
 - Startup from Imperial students, bought by Google: http://www.spider.io
- Distributed denial of service (DDOS): flood web servers with requests
 - Take down servers or slow them down significantly
 - Blackmail companies under attack
 - Disrupt communications on the target network

The botnet economy

- Botnets have their own sophisticated economy
 - Botmaster can rent spare capacity to other criminals on the market
 - \$1 = 10 machines in the US, 100 machines in Asia
 - Very organized: 24/7 technical support, training, complaints department..

- 18 billion spam emails per year are just the beginning
- The spam value chain includes
 - Botnets, domain registration, name servers, hosting services
 - Payment processing, bank accounts, customer service, products and delivery
- Spammers are the marketers for Affiliate programs that support online stores with the back-office functions
- Researchers tried to buy pharmaceuticals, replica watches and software from spam
 - 120 attempts, 56 payments succeeded, 49 products delivered
 - They did not try the meds, replicas were crude and disappointing, but software had no malware!
 - For details, see recommended reading

Weaponised malware

- Malware can be turned into a weapon
 - Designed to affect specific targets
 - Achieve objectives that would otherwise require espionage or the use of force
- Worms
 - Can spread very quickly: parallel replication
 - Can reach air-gapped systems
 - Can cause physical damage
- Botnets
 - Can contain a large number of machines
 - Can coordinate attacks to deplete target resources
 - Can disrupt communications in a whole country
- Examples
 - 2007 DDOS on Estonia, attributed to Russia, several days of internet disruption
 - 2010 Stuxnet attack on Iranian nuclear centrifuges, attributed to US and Israel
 - 2012 Shamoon virus wipes clean 35,000 Saudi ARAMCO computers, attributed to Iran as retaliation to Stuxnet
 - 2014 US State Department and White House network infiltration, attributed to Russia
 - 2017 NoPetya cyberweapon masked as "ransomware", damaging Ukranian assets

Commoditised malware

- Exploit kits: "commercial" malware toolkits sold or rented out to criminals
 - Capabilities: automated vulnerability analysis, exploitation and post-exploitation
 - Include Anti-Virus evasion techniques
 - Exploiting CVE-2013-7331 to find files in the system: kl1.sys => Kaspersky AV installed
 - Operator needs to subscribe to traffic from spam and malicious ads
 - Comes with administration console fine tune parameters, select victims
 - Users with a certain demographic, from a certain geographical area

Exploit kits and vulnerabilities

- From: Evolution of exploit kits, TrendMicro working paper, 2015
- Currently 70 exploit kits available, using more than a hundred vulnerabilities

Distribution	of	exploit	kit	attacks
--------------	----	---------	-----	---------

	Nuclear	SweetOrange	FlashPack
Internet Explorer	CVE-2013-2551	CVE-2013-2551 CVE-2014-0322 CVE-2014-6332	CVE-2013-2551 CVE-2013-3918 CVE-2014-0322
Microsoft Silverlight	CVE-2013-0074		
Adobe Flash Player	CVE-2014-0515 CVE-2014-0569 CVE-2014-8439 CVE-2015-0311	CVE-2014-0515 CVE-2014-0569	CVE-2013-0634 CVE-2014-0497 CVE-2014-0515 CVE-2014-0569
Adobe Acrobat/ Reader	CVE-2010-0188		
Oracle Java	CVE-2012-0507		CVE-2013-2460 CVE-2013-2471
XMLDOM ActiveX	CVE-2013-7331		

Malware detection

- Detect malware just before or after infection (Antivirus)
 - Theorem: impossible to have a perfect antivirus (similar to halting problem)
 - Main approach: scan programs for signatures (sequences of instructions typical of the malware)
 - Metamorphic malware
 - Code is obfuscated until it does not contain known signatures
 - The new malware code has a new signature that needs to be added to the antivirus
 - Moral hazard: collecting thousands of signatures is good for Antivirus marketing
- Blacklist web pages hosting phishing and malware
 - For example, Google Safe Browsing, Facebook Threat Exchange
 - Based on human reports or crawling pages to detect malware
- Either way, the attacker always gets a window of opportunity before detection

Malware analysis

- Malware samples are captured
 - Cleaning up after an infection
 - Running honeypots: intentionally vulnerable machines that attract attacks
 - Networks of honeypots used for worm detection
- Observe malware execution in a VM sandbox
 - Look for effects on storage, system settings, network traffic
 - Problems
 - Malware can try and kill logging processes and IDSs in the guest OS
 - Approx 16% of malware detects virtualization and behaves differently
- Dynamic analysis
 - Extract a signature based on malware behaviour, not code
 - Typically patterns of system calls made by malware
 - Read file, open network connection, send data, ...
 - Malware may evade detection by mixing malicious behaviour with legitimatelooking behaviour
 - Further challenge: how to elicit malware behaviour
- Guest lecture 23/2
 - Malware analysis An overview and some key challenges

Malware prevention

- Most common infection vectors are vulnerabilities and social engineering
 - Educate humans to avoid direct installs
 - Update and patch software in response to vulnerability disclosures
 - Most malware uses known vulnerabilities from CVE database
 - Although "serious" malware can contain zero-days (Stuxnet had 5!)
 - Firewalls and Intrusion Detection Systems help prevent network infections

Certified secure systems

- Vision: hardware and software should come with proof of correctness and/or security
- Ongoing research in academia and industry, all over the world
 - Harvard, Upenn, MIT, INRIA, NICTA, Microsoft Research, etc.
 - Imperial's contribution: JSCert, RIAPAV/RIVESST