# Gráficas y Juegos: Tarea 02

Martínez Méndez Ángel Antonio Pinzón Chan José Carlos Rendón Ávila Jesús Mateo

February 27, 2025





Universidad Nacional Autónoma de México Facultad de Ciencias Profesor: César Hernández Cruz 1. Sea G una gáfica, y recuerde que  $c_G$  denota al número de componentes conexas de G. Demuestre que si  $e \in E$ , entonces  $c_G \le c_{G-e} \le c_G + 1$ .

## Hipotesis

Ges una gráfica cuyo número de componentes conexas se denota  $c_G$  y e=uves una arista tal que  $e\in E_G$ 

### Definiciones

Def. A las subgráficas de una gráfica G, máximas por contención con la propiedad de ser conexas, se les llama **componentes conexas**.

Por hipótesis el número de componentes conexas de G es  $c_G$ . Sabemos que  $e \in E_G$  por lo cual e forma parte de alguna componente conexa en G. Como se trata de componentes conexas , entre cualesquiera vértices que pertenezcan a la misma componente conexa que e, existe un camino. A partir de este punto se pueden distinguir dos casos generales:

Sean x, y dos vértices en la misma componente conexa que e.

- 1) Existe un xy camino, llamémoslo W, tal que e no forma parte de W: En este caso, como e no forma parte de W entonces al eliminar dicha arista el xy - camino sigue existiendo.
- 2) Existe un xy camino, llamémoslo P, tal que e forma parte de P. En este segundo caso es donde divergen dos posibilidades muy importantes:
  - (a) Si entre los vértices u y v existe un uv camino distinto de  $\{u,e,v\}$ , que denotaremos como R, al eliminar la arista e de G, el camino P ya no coneca a x con y, sin embargo, prevalece un xy-camino descrito del siguiente modo: xPuRvPy. En consiguiente podemos decir que la grafica sigue siendo conexa y que por lo tanto  $c_{G-e} = c_G$ .
  - (b) Si entre los vértices u y v el único camino existente es  $\{u,e,v\}$ , al eliminar e de G, el camino P deja de existir y sucede que u no puede alcanzar a v. Como resultado x no puede alcanzar a y, oséase, no existe un xy camino; la componente conexa se ha separado. Por el incisio 1), sabemos que todos los caminos en los que e no forma parte se conservan, por lo tanto, en ambas particiones la grafica sigue siendo conexa. Así podemos concluir que  $c_{G-e} = c_G + 1$ .

A manera de resumen, puede suceder que  $c_G = c_{G-e}$ , o bien,  $c_{G-e} = c_G + 1$ , en otras palabras:  $c_G \le c_{G-e} \le c_G + 1$ .

Nota: Eliminar a la arista  $\underline{e}$  no afecta a las componentes conexas a las que  $\underline{e}$  no pertenece, es por ello que ignoramos al resto de componentes y nos centramos en la componente de  $\underline{e}$ .

2. Una gráfica es escindible completa si su conjunto de vértices admite una partición (S, K) de tal forma que S es un conjunto independiente, K es un clan, y cada vértice en S es adyacente a cada vértice en K. Demuestre que una gráfica es escindible completa si y sólo si no contiene a  $C_4$  ni a  $\overline{P_3}$  como subgráfica inducida. (Sugerencia: Un ejercicio de la tarea anterior puede resultar de utilidad.)

# Hipótesis

Una gráfica es **escindible completa** si y sólo si no contiene a  $C_4$  ni a  $\overline{P_3}$  como subgráfica inducida.

#### Definiciones

Def. Una gráfica es escindible completa si su conjunto de vértices admite una partición (S, K) de tal forma que S es un conjunto independiente, K es un clan, y cada vértice en S es adyacente a cada vértice en K.

Def. Un subconjunto no vacío de vértices de una gráfica es un **clan** si y sólo si induce una subgráfica completa. Alternativamente, un subconjunto de los vértices de una gráfica G es un clan si y sólo si es un conjunto independiente en la gráfica complementaria  $\overline{G}$ .

 $\Rightarrow$ | Sea G una gráfica, tal que G es escindible completa.

Si tenemos una subgráfica inducida de G tal que es igual a  $C_4$ ,  $V_{C_4} = \{v_1, v_2, v_3, v_4\}$  y  $E_{C_4} = \{v_1v_2, v_2v_3, v_3v_4, v_4v_1\}$  tenemos 3 posibles biparticiones en  $C_4$ :

i) Sea la bipartición (X,Y) en  $C_4$ , tal que  $v_1, v_3 \in X$  y  $v_2, v_4 \in Y$ .

Tambien de nuestra hipótesis se sigue que **G no es completa**, pues no existen aristas que unan a los vértices en S.

Finalmente

 $\Leftarrow$  Sea G una gráfica tal que G no contiene a  $C_4$  ni a

**3**.

a) Demuestre que si  $\mid E \mid > n-1$ , entonces G es conexa.

# Hipotesis

## Definiciones

b) Para cada n > 3 encuentre una gráfica inconexa de orden n con |E| = n - 1.

# Hipotesis

#### **Definiciones**

4.

a) Demuestre que si  $\delta > \left( \left| \frac{|V|}{2} \right| - 1 \right)$ , entonces G es conexa.

# Hipotesis

El grado minimo  $\delta$  de G es mayor a  $\left(\left\lfloor \frac{|V|}{2}\right\rfloor - 1\right)$ .

Sea G una gráfica cuyo grado minimo es  $\delta > \left( \left\lfloor \frac{|V|}{2} \right\rfloor - 1 \right)$ , entonces podemos decir quev  $\delta \geq \left\lfloor \frac{|V|}{2} \right\rfloor - 1 + 1$ , es decir:

$$\delta \ge \left\lfloor \frac{|V|}{2} \right\rfloor$$

Si S es un subconjunto de V(G) que satisface |S| = |V| - 2 y u, v dos vértices que pertenecen a V(G) y no pertenecen a S.

Como sabemos que  $u, v \notin S$ . Si es que u es adyacente a  $\frac{|S|}{2}$  elementos  $s \in S$  y v es adyacente a  $\frac{|S|}{2}$  elementos  $s' \in S$ . Como sabemos que |S| = |V| - 2, así u es adyacente a  $\frac{|V|-2}{2}$  elementos  $s \in S$  y v es adyacente a  $\frac{|V|-2}{2}$  elementos  $s' \in S$ .

Como por hipotesis sabemos que  $d(u), d(v) \ge \left\lfloor \frac{|V|}{2} \right\rfloor$ , entonces cuando |V| es impar debe haber un  $s_i$  en S tal que u es adyacente a  $s_i$  y también v es adyacente a  $s_i$ , mientras que cuando |V| es par existen al menos un  $s_i$  y un  $s_j$  a los cuales u y v son adyacentes. Por lo que podemos grantizar una uv- trayectoria P:

$$P = (u, s_k = s_i = s_k', v)$$
 cuando  $|V|$  es par e impar y  $P' = (u, s_k = s_j = s_k', v)$ , cuando  $|V|$  es par

para cada  $u, v \in V(G)$ . Por lo tanto G es conexa.



Figure 1: Representación de G cuando |V| es par, suponiendo que la columna central son adaycentes cualesqueira 2 vértices



Figure 2: Representación de G cuando |V| es impar

b) Para |V| par encuentre una gráfica  $\left(\left\lfloor\frac{|V|}{2}\right\rfloor-1\right)$ -regular e inconexa.

Como podemos ver de dibujar las gráficas para |V|=2, |V|=4, |V|=6 y |V|=8









Figure 3: Representación de una gráfica 0-regular de 2 vértices

Figure 4: Representación de una gráfica 1-regular de 4 vértices

Figure 5: Representación de una gráfica 2-regular de 6 vértices

Figure 6: Representación de una gráfica 3-regular de 6 vértices

Podemos decir que las gráficas que representan la condición son las  $2k_n$  con  $n \ge 1$  y  $n \in \mathbb{N}$ .

5. Demuestre que si D no tiene lazos y  $\delta^+ \geq 1$ , entonces D contiene un ciclo dirigido de longitud al menos  $\delta^+ + 1$ .

#### **Definiciones**

Def.