Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1-54 (canceled)

1	55 (currently amended): A method of correlating comparing the correlation
2	between gene and protein expression in a two or more biological samples, the method
3	comprising the steps of:
4	a) obtaining a two or more biological samples;
5	b) generating a gene expression profile of the each sample;
6	e) identifying a differentially expressed mRNA in the sample;
7	c) d) determining the nucleotide sequence of the an mRNA in each gene
8 -	expression profile;
9	d) e) predicting the amino acid sequence of the polypeptide encoded by the
10	mRNA in each gene expression profile;
11	e) f) predicting the mass of the encoded polypeptide encoded by the mRNA in
12	each gene expression profile;
13	<u>f</u>) g) generating a protein profile of polypeptides in the each sample by mass
14	spectrometry; and
15	g) h) determining the presence or absence in the each protein profile of a
16	polypeptide having a mass that correlates to the predicted mass of the encoded polypeptide,
17	thereby identifying a protein that is or is not expressed from a corresponding mRNA correlating
18	gene and protein expression in a each biological sample,
19	thereby comparing the correlation between gene and protein expression in two or
20	more biological samples.

1	56 (currently amended): The method of claim 55, wherein one of the biological
2	samples comprises a cell lysate from a healthy cell.
1	57 (currently amended): The method of claim 55, wherein one of the biological
2	samples comprises a cell lysate from a pathological cell.
1	58 (currently amended): The method of claim 55, wherein one of the biological
2	samples comprises a cell lysate from a cell contacted by a toxic compound.
1	59 (currently amended): The method of claim 55, wherein one of the biological
2	samples comprises a cell lysate from a cell of a subject who responds to a drug treatment.
1	60 (currently amended): The method of claim 55, wherein one of the biological
2	samples comprises a cell lysate from a cell of a subject who does not respond to a drug
3	treatment.
1	61 (currently amended): The method of claim 55, wherein the biological samples
2	comprises a human cells.
1	62 (previously presented): The method of claim 55, wherein the step of
2	generating the gene expression profile comprises identifying expressed mRNA with a nucleic
3	acid array.
1	63 (previously presented): The method of claim 55, wherein the step of
2	generating the gene expression profile comprises identifying expressed mRNA with an
3	oligonucleotide array.
1	64 (previously presented): The method of claim 55, wherein the step of
2	generating the gene expression profile comprises identifying expressed mRNA with an mRNA
3	агтау.

1	65 (previously presented): The method of claim 55, wherein the step of
2	generating the gene expression profile comprises identifying expressed mRNA with an EST
3	array.
1	66 (previously presented): The method of claim 55, wherein the step of
	generating the gene expression profile comprises identifying expressed mRNA with a northern
2	
3	blot or a dot blot.
	67 (canceled)
1	68 (currently amended): The method of claim 55, wherein the two biological
2	samples are derived from a normal cell and a pathologic cell.
1	69 (previously presented): The method of claim 68, wherein the pathologic cell
2	is a cancer cell.
_	is a cancer cen.
1	70 (currently amended): The method of claim 55, wherein the two biological
2	samples are derived from a healthy cell and a cell exposed to a toxic compound.
1	71 (previously presented): The method of claim 55, wherein mass spectrometry
2	is laser desorption/ionization mass spectrometry.
1	72 (previously presented): The method of claim 55, wherein mass spectrometry
2	is electrospray mass spectrometry.
1	73 (currently amended): The method of claim 55, further comprising,
2	in step (d), after predicting the amino acid sequence of the polypeptide encoded
3	by the mRNA in each gene expression profile, predicting a post-translational modification of the
4	encoded polypeptide;
5	in step e), after predicting the mass of the encoded polypeptide encoded by the
6	mRNA in each gene expression profile, predicting the mass of the encoded polypeptide to reflect
7	the post-translational modification; and

spectrometry.

8	in step g), after determining the presence of or absence in the each protein profile
9	of a polypeptide having a mass that correlates to the predicted mass of the encoded protein
10	polypeptide, determining the presence or absence of a polypeptide having a mass that correlates
11	to the predicted mass of the encoded polypeptide having the post-translational modification.
1	74 (previously presented): The method of claim 73, wherein the post-
2	translational modification is phosphorylation or glycosylation.
1	75 (currently amended): The method of claim 55 further comprising:
2	(i) after step (d), predicting at least one physio-chemical characteristic of the
3	encoded polypeptide encoded by the mRNA in each gene expression profile selected from the
4	group consisting of isoelectric point, hydrophobicity, hydrophilicity, glycosylation,
5	phosphorylation, epitope sequence, ligand binding sequence, and metal chelate binding;
6	(ii) fractionating the polypeptides in the each sample according to the at least one
7	physiochemical characteristic, retaining the fraction containing the predicted physiochemical
8	proterty property, and then generating the a protein profile of polypeptides in the each sample by
9	mass spectrometry in step (f); and
10	(iii) in step (g), correlating the predicted mass and the at least one physiochemical
11	characteristic of the encoded each polypeptide encoded by the mRNA in each gene expression
12	profile with a polypeptide in the each respective protein expression profile.
1	76 (previously presented): The method of claim 75, wherein the physio-chemical
2	characteristic is isoelectric point and fractionating the polypeptides comprises isoelectric
3	focusing.
1	77 (previously presented): The method of claim 75, wherein the physiochemical
2	characteristic is isoelectric point and fractionating the polypeptides comprises capturing

polypeptides on a solid phase-bound ion exchange adsorbent, washing away unbound

polypeptides and detecting the bound polypeptides by laser desoprtion/ionization mass

1	78 (previously presented): The method of claim 75, wherein the physiochemical
2	characteristic is hydrophobicity and fractionating the polypeptides comprises capturing
3	polypeptides on a solid phase-bound hydrophobic interaction adsorbent, washing away unbound
4	polypeptides and detecting the bound polypeptides by laser desoprtion/ionization mass
5	spectrometry.
1	79 (previously presented): The method of claim 75, wherein the physiochemical
2	characteristic is hydrophilicity and fractionating the polypeptides comprises capturing
3	polypeptides on a solid phase-bound hydrophilic interaction adsorbent, washing away unbound
4	polypeptides and detecting the bound polypeptides by laser desoprtion/ionization mass
5	spectrometry.
1	80 (previously presented): The method of claim 75, wherein the physiochemical
2	characteristic is epitope sequence and fractionating the polypeptides comprises capturing
3	polypeptides on a solid phase-bound biospecific adsorbent, washing away unbound polypeptides
4	and detecting the bound polypeptides by laser desoprtion/ionization mass spectrometry.
1	81 (previously presented): The method of claim 75, wherein the physiochemical
2	characteristic is metal chelate binding and fractionating the polypeptides comprises capturing
3	polypeptides on a solid phase-bound immobilized metal chelate adsorbent, washing away
4	unbound polypeptides and detecting the bound polypeptides by laser desoprtion/ionization mass
5	spectrometry.