

Vector Space Models

Vector semantics [based on the slides of Jurafsky and Mooney]

Why semantic translation may not be enough

Consider answering question "Did Google buy YouTube" from the following sentences:

- 1. Google purchased YouTube
- 2. Google's acquisition of YouTube
- 3. Google acquired every company
- 4. YouTube may be sold to Google
- 5. Google will buy YouTube or Microsoft
- 6. Google didn't takeover YouTube

Why semantic translation may not be enough

Noun

• <u>S:</u> (n) <u>bargain</u>, **buy**, <u>steal</u> (an advantageous purchase) "she got a bargain at the auction"; "the stock was a real buy at that price"

Verb

- <u>S:</u> (v) **buy**, <u>purchase</u> (obtain by purchase; acquire by means of a financial transaction) "The family purchased a new car"; "The conglomerate acquired a new company"; "She buys for the big department store"
- <u>S:</u> (v) <u>bribe</u>, <u>corrupt</u>, **buy**, <u>grease one's palms</u> (make illegal payments to in exchange for favors or influence) "This judge can be bought"
- <u>S:</u> (v) **buy** (be worth or be capable of buying) "This sum will buy you a ride on the train"
- <u>S:</u> (v) **buy** (acquire by trade or sacrifice or exchange) "She wanted to buy his love with her dedication to him and his work"
- S: (v) buy (accept as true) "I can't buy this story"

Buy and purchase are related however there is no entry for the relation between buy and acquire

Why semantic translation may not be enough

- All of these require knowledge of lexical semantics (e.g. that buy and purchase are synonyms),
- But some also need interpretation of quantifiers, negatives, modals and disjunction.
- It seems unlikely that distributional or formal approaches can accomplish the task alone.

Introduction

- Computers understand very little of the meaning of human language.
- This profoundly limits our ability to give instructions to computers, the ability of computers to explain their actions to us, and the ability of computers to analyze and process text.
- Vector space models (VSMs) of semantics are beginning to address these limits.

Vector Space Model(VSM)

VSM was developed for the SMART information retrieval system.

Basic Idea

1. Represent each document as a point in a space i.e a vector in a vector space.

Basic Idea

- 1. Represent each document as a point in a space i.e. a vector in a vector space.
- 2. User's query is also represented as a point in the same space.

Basic Idea

- 1. Represent each document as a point in a space i.e. a vector in a vector space.
- 2. User's query is also represented as a point in the same space.
- 3. Sort the documents according to their distance from the query and return.

Graphic Representation

Outline

- The success of the VSM for information retrieval has inspired researchers to extend the VSM to other semantic tasks in natural language processing.
- If we have a large collection of documents, it is convenient to organize the vectors into a matrix. It turns out that VSMs can be employed in different NLP tasks by creating the matrix in different ways.
- Three different VSM Models
 - Similarity of Documents: The Term-Document Matrix
 - Similarity of Words: The Word-Context Matrix
 - Similarity of Relations: The Pair-Pattern Matrix
- Linguistic Processing for Vector Space Models
- Mathematical Processing for Vector Space Models
- Applications

 f_{ij} is the frequency of term T_i in document D_i

- The row vectors of the matrix correspond to terms (usually terms are words).
- The column vectors correspond to documents (web pages, for example)
- In general, the value of most of the elements in the Matrix will be 0 for obvious reasons.

```
D_1 = "I like databases."
```

$$D_2$$
 = "I hate databases"

	D1	D2
I	1	1
like	1	0
hate	0	1
databases	1	1

- The count vector may seem to be a rather crude representation of the document D_j .
- The sequential order of the words is lost. The vector does not attempt to capture the structure in the phrases, sentences, paragraphs, and chapters of the document.
- However, in spite of this crudeness, search engines work surprisingly well; Why?

- An intuitive justification for the term-document matrix is that
 - The topic of a document will probabilistically influence the author's choice of words when writing the document.
 - If two documents have similar topics, then the two corresponding column vectors will tend to have similar patterns of numbers.

Similarity of Words: The Word-Context Matrix

- Deerwester et al. (1990) observed that we can shift the focus to measuring word similarity, instead of document similarity, by looking at row vectors in the term-document matrix, instead of column vectors.
- However, document is not necessarily the optimal length of text for measuring word similarity.
- In general, we may have a word-context matrix, in which the context is given by words, phrases, sentences, paragraphs, chapters, documents, or more exotic possibilities, such as sequences of characters or patterns.

Similarity of Words: The Word-Context Matrix (Example)

 $D_1 =$ "John went to the playground."

 D_2 = "John travelled to the playground."

Context is "words".

Window size = 1 (i.e. 1 word to the left and 1 word to the right)

	John	went	travelled	playground
John	0	1	1	0
went	1	0	0	1
travelled	1	0	0	1
playground	0	1	1	0

Similarity of Words: The Word-Context Matrix (Example)

- Use syntax to move beyond simple bag-of-words features.
- Parse each sentence in a large corpus.
- For each target word, produce features for it having specific dependency links to specific other words.

	nsubj =John	nsubj- of=go	nsub- of=travel	nmod=pla yground	nmod- of=go	nmod- of=travel
John	0	1	1	0	0	0
go	1	0	0	1	0	0
travel	1	0	0	1	0	0
playground	0	0	0	0	1	1

Similarity of Words: The Word-Context Matrix

- The distributional hypothesis in linguistics is that words that occur in similar contexts tend to have similar meanings (Harris, 1954).
- Word-Context matrix shows how that intuition could be used in a practical algorithm.

Similarity of Relations: The Pair-Pattern Matrix

- In a pair-pattern matrix,
 - row vectors correspond to pairs of words, such as <mason, stone> and
 <carpenter, wood>.
 - column vectors correspond to the patterns in which the pairs co-occur, such as "X cuts Y" and "X works with Y".

Similarity of Relations: The Pair-Pattern Matrix

- Lin and Pantel (2001) introduced the pair-pattern matrix for the purpose of measuring the semantic similarity of patterns; that is, the similarity of column vectors.
- Given a pattern such as "X solves Y", their algorithm was able to find similar patterns, such as "Y is solved by X", "Y is resolved in X", and "X resolves Y".
- The patterns "X solves Y "and "Y is solved by X" tend to co-occur with similar X: Y pairs, which suggests that these patterns have similar meanings.

Similarity of Relations: The Pair-Pattern Matrix

- We can also use of the pair-pattern matrix for measuring the semantic similarity of relations between word pairs, that is, the similarity of row vectors.
- For example, the pairs
 - mason:stone,
 - carpenter: wood,
 - potter: clay,

share the semantic relation artisan: material.

 The above pairs tend to co-occur in similar patterns, such as "the X used the Y to" and "the X shaped the Y into".

Linguistic Processing for Vector Space Models

Linguistic Processing for Vector Space Models

Before we generate a term-document, word-context, or pair-pattern matrix, it can be useful to apply some linguistic processing to the raw text. The types of processing that are used can be grouped into three classes.

- First, we need to **tokenize** the raw text; that is, we need to decide what constitutes a term and how to extract terms from raw text.
- Second, we may want to normalize the raw text, to convert superficially different strings of characters to the same form (e.g., car, Car, cars, and Cars could all be normalized to car).
- Third, we may want to **annotate** the raw text, to mark identical strings of characters as being different (e.g., fly as a verb could be annotated as fly/VB and fly as a noun could be annotated as fly/NN).

Tokenization

- Tokenization of English seems simple at first glance however this assumption is approximately true.
- An accurate English tokenizer must know how to handle
 - punctuation (e.g., don't, Jane's)
 - hyphenation (e.g., state-of-the-art versus state of the art, bat-and-ball),
 and
 - recognize multi-word terms (e.g., Barack Obama and ice hockey)
- We may also wish to ignore stop words, high-frequency words with relatively low information content, such as function words (e.g., of, the, and) and pronouns (e.g., them, who, that).

Normalization

- The most common types of normalization are
 - case folding: converting all words to lower case,
 - stemming, lemmatization: often a word is composed of a stem (root) with added affixes (inflections), such as plural forms and past tenses Stemming /Lemmatization, is the process of reducing inflected words to their stems.

```
am, are, is → be
car, cars, car's, cars' → car
```

- Case folding can be problematic. For example,
 - SMART is an information retrieval system, whereas smart is a common adjective;
 - Bush may be a surname, whereas bush is a kind of plant.

Annotation

- Annotation is the inverse of normalization.
- Just as different strings of characters may have the same meaning, it also happens that identical strings of characters may have different meanings, depending on the context.
- Common forms of annotation include
 - part-of-speech, tagging (marking words according to their parts of speech),
 - word sense tagging (marking ambiguous words according to their intended meanings), and
 - parsing (analyzing the grammatical structure of sentences and marking the words in the sentences according to their grammatical roles)

Example

```
D_1 = "John went to the playground."
```

```
D_2 = "John travelled to the playground"
```

<u>Do</u>: tokenize, stop word removal, case folding, lemmatization, postagging

Result:

```
D_1 = "john-nnp go-vbd playground-nn"
```

```
D_2 = "john-nnp travel-vbd playground-nn"
```

Mathematical Processing for Vector Space Models

Mathematical Processing for Vector Space Models

- After the text has been tokenized and (optionally) normalized and annotated, the first step is to generate a matrix of frequencies.
- However, we may want to adjust the weights of the elements in the matrix, because common words will have high frequencies, yet they are less informative than rare words.
- Third, we may want to smooth the matrix, to reduce the amount of random noise and to fill in some of the zero elements in a sparse matrix.
- Fourth, there are many different ways to measure the similarity of two vectors.

Weighting the Elements

- An element in a frequency matrix corresponds to an event: a certain item (term, word, word pair) occurred in a certain situation (document, context, pattern) a certain number of times (frequency).
- The idea of weighting is to give more weight to surprising events and less weight to expected events.
- The hypothesis is that surprising events, if shared by two vectors, are more discriminative of the similarity between the vectors than less surprising events. For example,
 - in measuring the semantic similarity between the words mouse and rat, the contexts dissect and exterminate are more discriminative of their similarity than the contexts have and like.

Term frequency

- The term frequency tf_{t,d} of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing query-document match scores. But how?
- Raw term frequency is not what we want:
 - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term.
 - But not 10 times more relevant.
- Relevance does not increase proportionally with term frequency.

Log-frequency weighting

The log frequency weight of term t in d is

$$w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d}, & \text{if } tf_{t,d} > 0 \\ 0, & \text{otherwise} \end{cases}$$

- $0 \to 0$, $1 \to 1$, $2 \to 1.3$, $10 \to 2$, $1000 \to 4$, etc.
- Score for a document-query pair: sum over terms t in both q and d:

• Score
$$= \sum_{t \in q \cap d} (1 + \log tf_{t,d})$$

The score is 0 if none of the query terms is present in the document.

Document frequency

- Rare terms are more informative than frequent terms
- Consider a term in the query that is rare in the collection (e.g., arachnocentric)
- A document containing this term is very likely to be relevant to the query arachnocentric
- → We want a high weight for rare terms like arachnocentric.

idf weight

- df_t is the <u>document</u> frequency of t: the number of documents that contain t
 - df_t is an inverse measure of the informativeness of t
 - $df_t \leq N$ (N is the total number of documents)
- We define the idf (inverse document frequency) of t by

$$idf_t = log_{10} (N/df_t)$$

- We use $\log (N/df_t)$ instead of N/df_t to "dampen" the effect of idf.

idf example, suppose N = 1 million

term	df_t	idf _t
calpurnia	1	
animal	100	
sunday	1,000	
fly	10,000	
under	100,000	
the	1,000,000	

$$idf_t = log_{10} (N/df_t)$$

There is one idf value for each term t in a collection.

Effect of idf on ranking

- Does idf have an effect on ranking for one-term queries, like
 - iPhone
- idf has no effect on ranking one term queries
 - idf affects the ranking of documents for queries with at least two terms
 - For the query capricious person, idf weighting makes occurrences of capricious count for much more in the final document ranking than occurrences of person.

tf-idf

 The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$\mathbf{w}_{t,d} = \log(1 + \mathbf{tf}_{t,d}) \times \log_{10}(N / \mathbf{df}_t)$$

- Best known weighting scheme in information retrieval
- Note: the "-" in tf-idf is a hyphen, not a minus sign!
- Alternative names: tf.idf, tf x idf
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection

Weighting the Elements

- Another kind of weighting, often combined with tf-idf weighting, is length normalization.
- In information retrieval, if document length is ignored, search engines tend to have a bias in favor of longer documents.
 Length
- Normalization corrects for this bias.

Pointwise Mutual Information

- An alternative to tf-idf is Pointwise
 Mutual Information (PMI) which works
 well for both word-context matrices
 and term-document matrices.
- A variation of PMI is Positive PMI
 (PPMI), in which all PMI values that are
 less than zero are replaced with zero.
- Here f_{ij} is the (i,j)-th element in the raw frequency matrix (either termdocument matrix, word-context matrix or the pair-pattern matrix).

$$p_{ij} = \frac{f_{ij}}{\sum_{i=1}^{n_r} \sum_{j=1}^{n_c} f_{ij}}$$

$$p_{i*} = \frac{\sum_{j=1}^{n_c} f_{ij}}{\sum_{i=1}^{n_r} \sum_{j=1}^{n_c} f_{ij}}$$

$$p_{*j} = \frac{\sum_{i=1}^{n_r} f_{ij}}{\sum_{i=1}^{n_r} \sum_{j=1}^{n_c} f_{ij}}$$

$$pmi_{ij} = \log\left(\frac{p_{ij}}{p_{i*}p_{*j}}\right)$$

$$x_{ij} = \begin{cases} pmi_{ij} & \text{if } pmi_{ij} > 0\\ 0 & \text{otherwise} \end{cases}$$

Dimensionality reduction

- Word-based features result in extremely high-dimensional spaces that can easily result in over-fitting.
- Reduce the dimensionality of the space by using various mathematical techniques to create a smaller set of k new dimensions that most account for the variance in the data.
 - Singular Value Decomposition (SVD) used in Latent Semantic Analysis (LSA)
 - Principle Component Analysis (PCA)

Simple Dimensionality reduction

Simple Dimensionality Reduction

High-order co-occurrence

- **Direct co-occurrence** (first-order co-occurrence) is when two words appear in identical contexts.
- Indirect co-occurrence (high-order co-occurrence) is when two words appear in similar contexts. Similarity of contexts may be defined recursively in terms of lower-order co-occurrence.
- It was demonstrated that (truncated) SVD can discover highorder co-occurrence.

Comparing the Vectors

• The most popular way to measure the similarity of two frequency vectors (raw or weighted) is to take their cosine. Let x and y be two vectors, each with n elements.

$$\mathbf{x} = \langle x_1, x_2, \dots, x_n \rangle$$

 $\mathbf{y} = \langle y_1, y_2, \dots, y_n \rangle$

 The cosine of the angle between x and y can be calculated as follows:

$$\cos(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i=1}^{n} x_i \cdot y_i}{\sqrt{\sum_{i=1}^{n} x_i^2 \cdot \sum_{i=1}^{n} y_i^2}}$$

Comparing the Vectors

 A measure of distance between vectors can easily be converted to a measure of similarity by inversion or subtraction.

$$\begin{split} & \operatorname{sim}(\mathbf{x}, \mathbf{y}) = 1/\mathrm{dist}(\mathbf{x}, \mathbf{y}) \\ & \operatorname{sim}(\mathbf{x}, \mathbf{y}) = 1 - \mathrm{dist}(\mathbf{x}, \mathbf{y}) \end{split}$$

- Many similarity measures have been proposed in both and lexical semantics circles.
- It is commonly said in IR that, properly normalized, the difference in retrieval performance using different measures is insignificant.

Applications: Term-Document Matrices

- Document retrieval
- **Document clustering**: Given a measure of document similarity, we can cluster the documents into groups, such that similarity tends to be high within a group, but low across groups.
- **Essay grading**: Student essays may be automatically graded by comparing them to one or more high-quality reference essays on the given essay topic.
- **Document segmentation**: The task of document segmentation is to partition a document into sections, where each section focuses on a different subtopic of the document. We may treat the document as a series of blocks, where a block is a sentence or a paragraph. The problem is to detect a topic shift from one block to the next.
- Call routing: "How may I direct your call?"

Applications: Word-Context Matrices

- Word classification (e.g. classify words as positive (honest, intrepid) or negative (disturbing, superfluous).
- Automatic thesaurus generation
- Context-sensitive spelling correction: People frequently confuse certain sets of words, such as there, they're, and their. These confusions cannot be detected by a simple dictionary-based spelling checker.

Applications: Word-Context Matrices

- Word Sense Induction(How?)
 - Create a context-vector for each individual occurrence of the target word, w.
 - Cluster these vectors into k groups.
 - Assume each group represents a "sense" of the word and compute a vector for this sense by taking the mean of each cluster

Applications: Pair-Pattern Matrices

SAT analogy questions

<u>Directions</u>: In the following question, a related pair of words or phrases is followed by five pairs of words or phrases. Choose the pair that best expresses a relationship similar to that in the original pair

MEDICINE: ILLNESS::

- 1. law:anarchy
- 2. hunger: thirst
- 3. etiquette: discipline
- 4. love: treason
- 5. stimulant: sensitivity

Turney (2006) evaluated this approach to relational similarity with 374 multiple-choice analogy questions from the SAT college entrance test, achieving human-level performance (56% correct for the pair-pattern matrix and 57% correct for the average US college applicant). The best non-VSM algorithm achieves 43%.

Note: VSM means Vector Space Model

Applications: Pair-Pattern Matrices

Automatic thesaurus generation: Snow, Jurafsky, and Ng (2006)
used a pair-pattern matrix to build a hypernym-hyponym
taxonomy, whereas Pennacchiotti and Pantel (2006) built a
meronymy and causation taxonomy.

Note: Meronymy refers to part-of relationships

Detecting Antonyms

- Lin et al. (2003) distinguish synonyms from antonyms using two patterns, "from X to Y" and "either X or Y". When X and Y are antonyms, they occasionally appear in a large corpus in one of these two patterns, but it is very rare for synonyms to appear in these patterns.
- Using a Pair-Pattern Matrix one can automatically discover these patterns and more to solve this task.

References

From Frequency to Meaning, Turney & Pantel
 [https://www.jair.org/media/2934/live-2934-4846-jair.pdf]

