

Telescopes and the Basics of Radio Astronomy

ICRAR/CASS Radio School

R. D. Ekers

1 Oct 2018

Geraldton, WA

WHY?

- National Facilities
 - ✓ Easy for non-experts to use
 - don't know what you are doing
- Cross fertilization
- Doing the best science
- Value of radio astronomy

Indirect Imaging Applications

- Interferometry
 - radio, optical, IR, space...
- Fourier synthesis
 - measure Fourier components and make images
 - Earth rotation, SAR, X-ray crystallography,
- Axial tomography (CAT)
 - NMR, Ultrasound, PET, X-ray tomography
- Seismology
- Fourier filtering, pattern recognition
- Adaptive optics, speckle

Doing the best science

- The telescope as an analytic tool
 - how to use it
 - integrity of results
- Making discoveries
 - Most discoveries are driven by instrumental developments
 - recognising the unexpected phenomenon
 - discriminate against errors
- Instrumental or Astronomical specialization?

HOW?

- Don't Panic!
 - Many entrance levels

Basic concepts

- Importance of analogies for physical insight
- Different ways to look at a synthesis telescope
 - Engineers model
 - » Telescope beam patterns...
 - Physicist electromagnetic wave model
 - » Sampling the spatial coherence function
 - » Barry Clark Synthesis Imaging chapter 1
 - » Born & Wolf Physical Optics
 - Quantum model
 - » Radhakrishnan Synthesis Imaging last chapter

References

- Essential Radio Astronomy
 - a complete one semester course, J.J. Condon and S.M. Ransom
 - www.cv.nrao.edu/course/astr534/ERA.shtml
 - David Wilner, ANITA lectures, Swinburne, 2015
- Thompson, A.R., Moran, J.M. & Swensen, G.W. 2017,
 "Interferometry and Synthesis in Radio Astronomy" 3rd edition (Wiley-VCH)
- NRAO Synthesis Imaging workshop proceedings
 - Perley, R.A., Schwab, F.R., Bridle, A.H., eds. 1989, ASP Conf. Series 6, "Synthesis Imaging in Radio Astronomy" (San Francisco: ASP)
 - www.aoc.nrao.edu/events/synthesis
- IRAM Interferometry School proceedings
 - www.iram.fr/IRAM/FR/IS/IS2008/archive.html
- Ekers & Wilson, Radio Telescopes, in Planets, Stars and Stellar Systems,
 Springer, 2013

Detecting Signals from Radio Telescopes

Planck's Law

Rayleigh-Jeans approximation

The spectral distribution of the radiation of a black body in thermodynamic equilibrium is given by the Planck law:

$$B_{\nu}(T) = \frac{2h\nu^3}{c^2} \frac{1}{\mathrm{e}^{h\nu/kT} - 1}$$

If $hv \ll kT$, the *Rayleigh-Jeans Law* is obtained:

$$B_{\rm RJ}(\nu,T)=\frac{2\nu^2}{c^2}kT$$

In the Rayleigh-Jeans relation, the brightness and the thermodynamic temperatures of black body emitters are strictly proportional (\odot 8.3). This feature is useful, so the normal expression of brightness of an extended source is *brightness temperature* T_B :

$$T_{\rm B} = \frac{c^2}{2k} \frac{1}{v^2} I_{\nu} = \frac{\lambda^2}{2k} I_{\nu} \,. \tag{8.4}$$

If I_{ν} is emitted by a black body and $h\nu \ll kT$, then (§ 8.4) gives the thermodynamic temperature of the source, a value that is independent of ν . If other processes are responsible for the emission of the radiation (e.g., synchrotron, free-free, or broadband dust emission), $T_{\rm B}$

Figure 33-1. Boxcar representation for a stream of radiation. Each boxcar is a sample and corresponds to the reciprocal of the bandwidth, the rate at which new information arrives. A) The high density case where there is an enormous number of photons in each sample and substantial variation from sample to sample. B) The very low density case when the number of photons is minute compared to the number of samples.

Resolving Power

Angular resolution = wavelength/aperture

	Light	Radio
Wavelength	0.00005cm	21cm
Aperture	10cm	10km
Resolution	0.00005/10 rad = 1" arc	21/10 ⁶ rad = 4" arc

Imaging at Radio Wavelengths

Bad news

- Radio waves are big
- Need large aperture or an interferometer

Good news

- Radio frequencies are low
- Interferometers are easy to build

Remarks on Units

- I_v = monochromatic intensity [W m⁻² sr⁻¹ Hz⁻¹]
 intensity (or brightness)
 independent of source distance
- T_b = I_v (c²/2kv²) = Rayleigh-Jeans Brightness Temperature [K] for thermal emission T_b is the temperature of the emitting body, for other cases, radio astronomers still talk about T_b, the equivalent temperature that a blackbody would have to be as bright
- S_v = flux density = integral of l_v over solid angle [W m⁻² Hz⁻¹]
 flux density decreases with source distance squared

Spatial Coherence

van Cittert-Zernike theorem

The spatial coherence function is the Fourier Transform of the brightness distribution

Analogy with single dish

Big mirror decomposition

Delay

Phased array

Guided

Mechanical v
Electronic steering

Delay

Phased array

 $(\Sigma \text{ Vi })^2$

Guided

Guided

Delay

Phased array

$$(\Sigma \text{ Vi })^2 = \Sigma \text{ (Vi)}^2 + \Sigma \text{ (Vi × Vj)}$$

Guided

Ryle & Vonberg (1946)
phase switch

Delay

Phased array

$$(\Sigma \text{ Vi })^2 = \Sigma (\Sigma)^2 + \Sigma (\text{Vi} \times \text{Vj })$$

Correlation array

Phased Array

 Δt

Phased array
Tied array
Beam former

Synthesis Imaging

The Fourier Transform

 Fourier theory states and any well behaved signal (including images) can be expressed as the sum of sinusoids

Jean Baptiste Joseph Fourier 1768-1830

$$x(t) = \frac{4}{\pi} \left(\sin(2\pi f t) + \frac{1}{3} \sin(6\pi f t) + \frac{1}{5} \sin(10\pi f t) + \cdots \right)$$

- the Fourier transform is the mathematical tool that decomposes a signal into its sinusoidal components
- the Fourier transform contains all of the information of the original signal

Analogy with single dish

- Big mirror decomposition
- Reverse the process to understand imaging with a mirror
 - Eg understanding non-redundant masks
 - Adaptive optics
- Single dishes and correlation interferometers
 - Darrel Emerson, NRAO
 - http://www.gb.nrao.edu/sd03/talks/whysd_r1.pdf

Filling the aperture

- Aperture synthesis
 - measure correlations with multiple dishes
 - moving dishes sequentially
 - earth rotation synthesis
 - store all correlations for later use
- Partially unfilled aperture
 - some spacings missing
- Redundant spacings
 - some interferometer spacings occur twice
- Non-redundant aperture

Redundancy

```
1 unit 5x (source same atmosphere different)
```

2units 4x

3units 3x

4units 2x

5units 1x

$$n(n-1)/2 = 15$$

Non Redundant

1unit 1x
2units 1x
3units 1x
4units 1x
5units 0x
6units 1x
7units 1x
etc

HERA

Epoch of Reinization Array

Maximally redundant array to decouple the sky from the instrumental errors

Basic Interferometer

BASIC LINKED RADIO INTERFEROMETER

29 Sep 2008 R D Ekers 37

Storing visibilities

A powerful tool to manipulate the coherence function and reimage.

Not possible in most other domains

27 Sep 2015 R D Ekers 38

Aperture Array or Focal Plane Array?

- Why have a dish at all?
 - Sample the whole wavefront
 - n elements needed: n \propto Area/($\lambda/2$)²

- For 100m aperture and $\lambda = 20$ cm, $n=10^4$
 - » Electronics costs too high!

Radio Telescope Imaging image v aperture plane

ASKAP

Radio Telescopes

aperture plane

image plane

R D Ekers

Fourier Transform and Resolution

- Large spacings
 - high resolution

- Small spacings
 - low resolution

from Kevin Cowtan's Book of Fourier

http://www.ysbl.york.ac.uk/~cowtan/fourier/fourier.html

10% data omitted in rings

Amplitude of duck Phase of cat

Amplitude of cat Phase of duck

In practice...

- 1. Use many antennas (VLA has 27)
- 2. Amplify signals
- 3. Sample and digitize
- 4. Send to central location
- 5. Perform cross-correlation
- 6. Earth rotation fills the "aperture"
- 7. Inverse Fourier Transform gets image
- 8. Correct for limited number of antennas
- 9. Correct for imperfections in the "telescope" e.g. calibration errors
- 10. Make a beautiful image...

Terminology

RADIO OPTICAL

Antenna, dish	⇔ Telescope, element	
Sidelobes	⇔ Diffraction pattern	
Near sidelobes	⇔ Airy rings	
Feed legs	⇔ Spider	
Aperture blockage	⇔ Vignetting	
Dirty beam	⇔ Point Spread Function (PSF)	
Primary beam (single pixel receivers)	⇔ Field of View	

25 Sep 2017 R D Ekers 48

Terminology

RADIO OPTICAL

Map	⇔ Image
Source	⇔ Object
Image plane	⇔ Image plane
Aperture plane	⇔ Pupil plane
UV plane	⇔ Fourier plan
Aperture	⇔ Entrance pupil
UV coverage	⇔ Modulation transfer function

22 Sep 2012 R D Ekers 49

Terminology

RADIO OPTICAL

Dynamic range	⇔ Contrast
Phased array	⇔ Beam combiner
Correlator	⇔ no analog
no analog	⇔ Correlator
Receiver	⇔ Detector
Taper	⇔ Apodise
Self calibration	⇔ Wavefront sensing (Adaptive optics)

22 Sep 2012 R D Ekers 50