Лабораторная №5

1) В классе MODEL реализовать функцию data = harm(N, A_0 , f_0 , Δt , ...), рассчитывающую гармонический процесс по формуле:

$$x(t) = \{x_k\} = A_0 \sin(2\pi f_0 \cdot \Delta t \cdot k), \qquad k = 0,1,2,...,N-1$$

и отобразить ее график.

Рекомендуемые значения:

N = 1000 - длина данных;

$$A_0 = 100;$$

$$f_0 = 15$$
 [Гц];

$$\Delta t = 0.001 \le \frac{1}{2f_{\rm rp}} \text{ [cek]}$$

- 2) Итерационно повышая f_0 с инкрементом 100 Гц до значения 515 Гц наблюдать изменения на графике и объяснить эффекты;
- 3) В классе MODEL реализовать функцию data = polyHarm(N, A_i , f_i , Δt , ...), рассчитывающую гармонический процесс по формуле:

$$x(t) = \{x_k\} = \sum_{i=0}^{2} A_i \sin(2\pi f_i \cdot \Delta t \cdot k), \qquad k = 0, 1, 2, ..., N - 1$$

и отобразить ее график.

Рекомендуемые значения:

$$N$$
 = 1000 — длина данных; $A_0 = 100$ $f_0 = 33$ [Гц]· $A_1 = 15$ $f_1 = 5$ [Гц] $A_2 = 20$ $f_2 = 170$ [Гц] $\Delta t = 0.001$ [сек]

Чему равно значение $f_{
m rp}$ для этого процесса?