

Global United Technology Services Co., Ltd.

Report No.: GTS201811000166F01

FCC Report (Bluetooth)

Applicant: Dongguan Siyoto Electronics Co., Ltd.

Address of Applicant: No.15,16,17,Seven street of north

QiaodongTown,Dongguan city,Guangdong province,China

Manufacturer/Factory: Dongguan Siyoto Electronics Co., Ltd.

Address of No.15,16,17,Seven street of north

Manufacturer/Factory: QiaodongTown,Dongguan city,Guangdong province,China

Equipment Under Test (EUT)

Product Name: BW BT SPT IN-EAR

Model No.: BWD19AAH01, BWD19AAH02, BWD19AAH03,

SMBT-10102, BWA19AAH01C, BWA19AAH02C

Trade Mark: Blackweb

FCC ID: 2ADZH-BWD01

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: November 08, 2018

Date of Test: November 08, 2018 – December 07, 2018, 2018

Date of report issued: December 07, 2018

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	December 07, 2018	Original

Prepared By:	Jamelly	Date:	December 07, 2018
	Project Engineer		
Check By:	Reviewer	Date:	December 07, 2018

3 Contents

			Page
1	СО	VER PAGE	1
2	VE	RSION	2
3		NTENTS	
4	TES	ST SUMMARY	4
5	GE	NERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	
	5.3	TEST FACILITY	7
	5.4	TEST LOCATION	7
	5.5	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.6	DESCRIPTION OF SUPPORT UNITS	
	5.7	Additional Instructions	8
6	TES	ST INSTRUMENTS LIST	9
7	TES	ST RESULTS AND MEASUREMENT DATA	11
	7.1	ANTENNA REQUIREMENT	11
	7.2	CONDUCTED EMISSIONS	12
	7.3	CONDUCTED PEAK OUTPUT POWER	15
	7.4	20dB Emission Bandwidth	
	7.5	CARRIER FREQUENCIES SEPARATION	
	7.6	HOPPING CHANNEL NUMBER	
	7.7	DWELL TIME	
	7.8	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	7.9	BAND EDGE	
	7.9		
	7.9.		
	7.10	SPURIOUS EMISSION	
	7.1 7.1		
8	TES	ST SETUP PHOTO	47
a	FU	T CONSTRUCTIONAL DETAILS	49

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

5 General Information

5.1 General Description of EUT

•	
Product Name:	BW BT SPT IN-EAR
Model No.:	BWD19AAH01, BWD19AAH02, BWD19AAH03, BWA19AAH01C, BWA19AAH02C, SMBT-10102
Test Model No:	BWD19AAH01
	are identical in the same PCB layout, interior structure and electrical circuits.
Serial No.:	1845A
Test sample(s) ID:	GTS201811000166-1
Sample(s) Status	Engineer sample
Hardware:	V1.1
Software:	V1.4
Operation Frequency:	2402MHz-2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Antenna Type:	Ceramic Antenna
Antenna gain:	2.0dBi
Power supply:	Rechargeable battery: DC 3.7V, 125mAh

Channel	Frequency eacl	Channel	Frequency	Channel	Frequency	Channel	Frequency
Charine	rrequericy	Chamilei	rrequericy	Charmer	rrequericy	Chamilei	1 requericy
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383, January 08, 2018.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.4 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.5 Other Information Requested by the Customer

None.

5.6 Description of Support Units

Manufacturer	Description	Model	Serial Number
SAMSUNG	Adapter	ETAOU80EBE	N/A
Lenovo	Notebook computer	E470C	PF-10FB5C

5.7 Additional Instructions

EUT Software Settings::

	Special software is used.
Mode	The software provided by client to enable the EUT under transmission condition
	continuously at specific channel frequencies individually.

Power level setup in software					
Test Software Name	BK323xx RF Test-v1.5				
Mode	Channel Frequency (MHz) Soft Set				
GFSK, π/4-DQPSK, 8DPSK	CH01	2402			
	CH21	2441	TX level : max		
	CH40	2480			

Run Software

6 Test Instruments list

Radi	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 27 2018	June. 26 2019		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 27 2018	June. 26 2019		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 27 2018	June. 26 2019		
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 27 2018	June. 26 2019		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
8	Coaxial Cable	GTS	N/A	GTS213	June. 27 2018	June. 26 2019		
9	Coaxial Cable	GTS	N/A	GTS211	June. 27 2018	June. 26 2019		
10	Coaxial cable	GTS	N/A	GTS210	June. 27 2018	June. 26 2019		
11	Coaxial Cable	GTS	N/A	GTS212	June. 27 2018	June. 26 2019		
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 27 2018	June. 26 2019		
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 27 2018	June. 26 2019		
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 27 2018	June. 26 2019		
15	Band filter	Amindeon	82346	GTS219	June. 27 2018	June. 26 2019		
16	Power Meter	Anritsu	ML2495A	GTS540	June. 27 2018	June. 26 2019		
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 27 2018	June. 26 2019		
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 27 2018	June. 26 2019		
19	Splitter	Agilent	11636B	GTS237	June. 27 2018	June. 26 2019		
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 27 2018	June. 26 2019		

Gene	General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 27 2018	June. 26 2019	
2	Barometer	ChangChun	DYM3	GTS255	June. 27 2018	June. 26 2019	

Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 27 2018	June. 26 2019
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 27 2018	June. 26 2019
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
7	Thermo meter	KTJ	TA328	GTS233	June. 27 2018	June. 26 2019
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 27 2018	June. 26 2019

RF C	RF Conducted Test:					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 27 2018	June. 26 2019
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 27 2018	June. 26 2019
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 27 2018	June. 26 2019
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 27 2018	June. 26 2019
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 27 2018	June. 26 2019
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 27 2018	June. 26 2019
8	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019
9	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 27 2018	June. 26 2019

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is Ceramic Antenna, the best case gain of the antenna is 2.0 dBi

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.10:2013			
Test Frequency Range:	150KHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	veep time=auto		
Limit:	- (MIL)	Limit (c	dBuV)	
	Frequency range (MHz) Quasi-peak Average			
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarithm	of the frequency.		
Test setup:	Reference Plane		_	
	AUX Equipment E.U.T Remark EU T Equipment Under Test LISN Line impedence Stabilization Network Test table height=0.8m			
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Measurement data:

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Line:

EUT: BW BT SPT IN-EAR **Probe**: L1

Model: BWD19AAH01 Power Source: AC120V/60Hz

Mode: BT mode Test by: Jason

Temp./Hum.(%H): 26 °C/60%RH

	_	Reading	Correct	Measure-	,	_	
No. Mk.	Freq.	Level	Factor	ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.4700	23.02	10.05	33.07	56.51	-23.44	QP
2	0.4700	14.71	10.05	24.76	46.51	-21.75	AVG
3	0.7980	28.69	9.94	38.63	56.00	-17.37	QP
4	0.7980	21.28	9.94	31.22	46.00	-14.78	AVG
5	1.0380	23.78	9.85	33.63	56.00	-22.37	QP
6	1.0380	15.85	9.85	25.70	46.00	-20.30	AVG
7	1.5460	30.60	9.83	40.43	56.00	-15.57	QP
8 *	1.5460	25.47	9.83	35.30	46.00	-10.70	AVG
9	2.6780	26.10	9.80	35.90	56.00	-20.10	QP
10	2.6780	17.66	9.80	27.46	46.00	-18.54	AVG
11	7.0780	25.27	9.75	35.02	60.00	-24.98	QP
12	7.0780	17.91	9.75	27.66	50.00	-22.34	AVG

Neutral:

EUT: BW BT SPT IN-EAR Probe: N

Model: BWD19AAH01 Power Source: AC120V/60Hz

Mode: BT mode Test by: Jason

Temp./Hum.(%H): 26°C/60%RH

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.4260	19.55	10.15	29.70	57.33	-27.63	QP
2		0.4260	13.83	10.15	23.98	47.33	-23.35	AVG
3		0.7460	19.16	10.11	29.27	56.00	-26.73	QP
4	*	0.7460	12.99	10.11	23.10	46.00	-22.90	AVG
5		1.2180	18.01	10.00	28.01	56.00	-27.99	QP
6		1.2180	12.53	10.00	22.53	46.00	-23.47	AVG
7		2.2060	15.07	9.99	25.06	56.00	-30.94	QP
8		2.2060	8.36	9.99	18.35	46.00	-27.65	AVG
9		3.9620	10.32	9.96	20.28	56.00	-35.72	QP
10		3.9620	3.46	9.96	13.42	46.00	-32.58	AVG
11		7.2500	21.02	9.95	30.97	60.00	-29.03	QP
12		7.2500	10.41	9.95	20.36	50.00	-29.64	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level +Correct Factor
- 4. Correct Factor = LISN Factor + Cable Loss

7.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)		
Test Method:	ANSI C63.10:2013		
Limit:	30dBm(for GFSK),20.97dBm(for EDR)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
	Lowest	2.08		
GFSK	Middle	2.85	30.00	Pass
	Highest	2.89		
	Lowest	3.82		
π/4-DQPSK	Middle	4.46	20.97	Pass
	Highest	4.55		
	Lowest	4.21		
8DPSK	Middle	4.95	20.97	Pass
	Highest	5.01		

Test plot as follows:

Test mode: GFSK mode

Date: 7.DEC.2018 08:59:46

Lowest channel

Date: 7.DEC.2018 09:00:42

Middle channel

Date: 7.DEC.2018 09:01:03

Highest channel

Date: 7.DEC.2018 09:06:51

Lowest channel

Date: 7.DEC.2018 09:07:25

Middle channel

Date: 7.DEC.2018 09:07:58

Highest channel

Test mode: 8DPSK mode

Date: 7.DEC.2018 09:09:35

Lowest channel

Date: 7.DEC.2018 09:09:12

Middle channel

Date: 7.DEC.2018 09:08:30

Highest channel

7.4 20dB Emission Bandwidth

Measurement Data

Mode	Test channel	20dB Emission Bandwidth (MHz)	Result
	Lowest	0.992	
GFSK	Middle	0.984	Pass
	Highest	0.980	
	Lowest	1.374	
π/4-DQPSK	Middle	1.368	Pass
	Highest	1.374	
	Lowest	1.362	
8DPSK	Middle	1.368	Pass
	Highest	1.362	

Test plot as follows:

Test mode: GFSK mode

Date: 15.NOV.2018 15:36:35

Lowest channel

Date: 15.NOV.2018 15:33:23

Middle channel

Date: 15.NOV.2018 15:32:04

Highest channel

Date: 15.NOV.2018 15:23:55

Lowest channel

Date: 15.NOV.2018 15:27:33

Middle channel

Date: 15.NOV.2018 15:29:12

Highest channel

Date: 15.NOV.2018 15:22:00

Lowest channel

Date: 15.NOV.2018 15:16:38

Middle channel

Date: 15.NOV.2018 15:13:44

Highest channel

7.5 Carrier Frequencies Separation

	•		
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak		
Limit:	GFSK: 20dB bandwidth Pi/4QPSK & 8DSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Mode	Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
	Lowest	1004	992.00	Pass
GFSK	Middle	1004	992.00	Pass
	Highest	1004	992.00	Pass
	Lowest	1004	916.00	Pass
π/4-DQPSK	Middle	1000	916.00	Pass
	Highest	1000	916.00	Pass
	Lowest	1000	912.00	Pass
8DPSK	Middle	1004	912.00	Pass
	Highest	1004	912.00	Pass

Note: According to section 7.4

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	992	992.00
π/4-DQPSK	1374	916.00
8DPSK	1368	912.00

Test plot as follows:

Modulation mode: GFSK

Date: 15.NOV.2018 15:53:50

Lowest channel

Date: 15.NOV.2018 15:55:07

Middle channel

Date: 15.NOV.2018 15:57:13

Highest channel

Test mode: $\pi/4$ -DQPSK mode

Date: 15.NOV.2018 16:03:25

Lowest channel

Date: 15.NOV.2018 16:00:32

Middle channel

Date: 15.NOV.2018 15:59:05

Highest channel

Test mode: 8DPSK mode

Date: 15.NOV.2018 16:05:06

Lowest channel

Date: 15.NOV.2018 16:08:16

Middle channel

Date: 15.NOV.2018 16:09:22

Highest channel

7.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak
Limit:	15 channels
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data:

Mode	Hopping channel numbers Limit		Result
GFSK	GFSK 79 15		Pass
π/4-DQPSK	79	15	Pass
8DPSK	79	15	Pass

Date: 15.NOV.2018 15:43:47

7.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak		
Limit:	0.4 Second		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	DH1/2-DH1/3-DH1	130.56	400	Pass
2441MHz	DH3/2-DH3/3-DH3	270.72	400	Pass
2441MHz	DH5/2-DH5/3-DH5	318.29	400	Pass

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Test channel: 2441MHz as blow

DH1/2-DH1/3-DH1 time slot=0.408 (ms)*(1600/(2*79))*31.6=130.56 ms DH3/2-DH3/3-DH3 time slot=1.692 (ms)*(1600/(4*79))*31.6=270.72 ms DH5/2-DH5/3-DH5 time slot=2.984 (ms)*(1600/(6*79))*31.6=318.29 ms

Test plot as follows:

Date: 15.NOV.2018 15:45:21

DH1/2-DH1/3-DH1

Date: 15.NOV.2018 15:47:35

DH3/2-DH3/3-DH3

Date: 15.NOV.2018 15:50:03

DH5/2-DH5/3-DH5

7.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: $2^9 1 = 511$ bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

7.9 Band Edge

7.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013				
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Test plot as follows:

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

GFSK Mode:

Hopping mode

π/4-DQPSK Mode:

No-hopping mode

Date: 15.NOV.2018 16:24:53

Hopping mode

Date: 15.NOV.2018 16:26:20

8DPSK Mode:

Hopping mode

7.9.2 Radiated Emission Method

Test Requirement: FCC Part15 C Section 15.209 and 15.205 Test Method: ANSI C63.10:2013 Test Frequency Range: All restriction band have been tested, and 2310MHz to 2390MHz, 2483.5MHz to 2500MHz band is the worse case Test site: Measurement Distance: 3m Receiver setup: Frequency Detector RBW VBW Remark Above 1GHz Peak 1MHz 3MHz Peak Value Frequency Limit (dBuV/m @ 3m) Remark Above 1GHz Peak 1MHz 10Hz Average Value Frequency Limit (dBuV/m @ 3m) Remark Above 1GHz Frequency Frequency Frequency Remark Above 1GHz Frequency Frequency Frequency Frequency Remark Above 1GHz Frequency Freq	7.9.2 Radiated Emission W						
Test Frequency Range: All restriction band have been tested, and 2310MHz to 2390MHz, 2483.5MHz to 2500MHz band is the worse case Receiver setup: Measurement Distance: 3m Frequency Detector RBW VBW Remark Above 1GHz Peak 1MHz 3MHz Peak Value Peak 1MHz 3MHz Peak Value Limit: Frequency Limit (dBuV/m @3m) Remark Above 1GHz Frequency Limit (dBuV/m @3m) Remark Above 1GHz T4.00 Peak Value Test setup: Test setup: Test setup: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was turned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak valueus of the EUT would be reported. Otherwise the emissions that did not have 10dE margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test instruments: Refer to section 6.0 for details	Test Requirement:	FCC Part15 C Section 15.209 and 15.205					
Test site: Measurement Distance: 3m	Test Method:	ANSI C63.10:20	13				
Receiver setup: Frequency	Test Frequency Range:						
Above 1GHz Peak 1MHz 3MHz Peak Value Peak 1MHz 10Hz Average Value Frequency Limit (BBuVm @3m) Remark Above 1GHz 54.00 Average Value Test setup: Test setup: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dE margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 5.2 for details	Test site:	Measurement D	istance: 3m				
Limit: Frequency Limit (dBuV/m @3m) Remark Above 1GHz Frequency Limit (dBuV/m @3m) Remark Above 1GHz Frequency Limit (dBuV/m @3m) Remark Above 1GHz Frequency Limit (dBuV/m @3m) Remark Average Value Test setup: Test setup: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dE margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 6.0 for details	Receiver setup:	Frequency	Detector	RBW	VBW		
Peak 1MHz 10Hz Average Value		Above 1GHz					
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dE margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 6.0 for details	1		1				
Test setup: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dE margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 6.0 for details	Limit:	Freque	ncy	· · · · · · · · · · · · · · · · · · ·			
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dE margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 5.2 for details		Above 1	GHz				
ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dE margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 6.0 for details Refer to section 5.2 for details		Test Antenna Tum Table <150cm > Tum Table					
Test mode: Refer to section 5.2 for details	Test Procedure:	ground at a 3 determine the 2. The EUT was antenna, which tower. 3. The antenna ground to det horizontal and measurement 4. For each sustand then the and the rota to maximum reasonable in the emission limit specified EUT would be margin would	meter cambe e position of the set 3 meters ch was mount height is varie ermine the moderation of divertical polarity pected emission antenna was able was turnading, iver system with Maximum in level of the directly of the the reported. Of	er. The table was away from the ted on the top ed from one maximum value arizations of the tuned to height about the top ed from 0 degrees set to Pear Hold Mode. EUT in peak of could be stop therwise the ed one by one under the table one by one under the table one by one under the table to the table to the table to the table ta	was rotated diation. The interference of a variable of the field of the field of the antenna and the from 1 magnes to 360 mode was arranged the from 1 magnes to 360 mode was apped and the missions the sing peak, of the field o	and degrees to ance-receiving le-height antenna ar meters above the distrength. Both are set to make the ed to its worst case meter to 4 meters and degrees to find the function and Specified and Blower than the elepeak values of the nat did not have 10dB quasi-peak or	
	Test Instruments:	Refer to section	6.0 for detail	S			
Test results: Pass	Test mode:	Refer to section	5.2 for detail	s			
	Test results:	Pass					

Remark:

1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK modulation, and found the 8DPSK modulation which it is worse case.

Peak value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	56.04	-16.65	39.39	74.00	-34.61	Horizontal
2390.00	58.75	-16.24	42.51	74.00	-31.49	Horizontal
2310.00	55.63	-16.65	38.98	74.00	-35.02	Vertical
2390.00	59.18	-16.24	42.94	74.00	-31.06	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	43.26	-16.65	26.61	54.00	-27.39	Horizontal
2390.00	45.17	-16.24	28.93	54.00	-25.07	Horizontal
2310.00	43.34	-16.65	26.69	54.00	-27.31	Vertical
2390.00	43.92	-16.24	27.68	54.00	-26.32	Vertical

Test channel:	Highest
	0

Peak value:

T Gait TaidGI						
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	79.53	-15.71	63.82	74.00	-10.18	Horizontal
2500.00	58.26	-15.60	42.66	74.00	-31.34	Horizontal
2483.50	74.32	-15.71	58.61	74.00	-15.39	Vertical
2500.00	62.58	-15.60	46.98	74.00	-27.02	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	52.56	-15.71	36.85	54.00	-17.15	Horizontal
2500.00	45.51	-15.60	29.91	54.00	-24.09	Horizontal
2483.50	53.18	-15.71	37.47	54.00	-16.53	Vertical
2500.00	43.36	-15.60	27.76	54.00	-26.24	Vertical

Remark:

- 1. Final Level = Receiver Read level + Correct factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Correct factor= Antenna Factor + Cable Loss Preamplifier Factor

7.10 Spurious Emission

7.10.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Remark:

During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK modulation, and found the 8DPSK modulation which it is worse case.

30MHz~25GHz

30MHz~25GHz

30MHz~25GHz

7.10.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209								
Test Method:	ANSI C63.10:2013								
	9kHz to 25GHz								
Test Frequency Range:									
Test site:	Measurement Distar	nce: 3	3m	1		Г			
Receiver setup:	Frequency Detector F		RB'	W	VBW	′	Value		
	9KHz-150KHz	Qι	ıasi-peak	200	Hz	600H	Z	Quasi-peak	
	150KHz-30MHz	Qι	ıasi-peak	9Kł	Ηz	30KH	z	Quasi-peak	
	30MHz-1GHz	Qı	ıasi-peak	100k	Ήz	300KF	Ηz	Quasi-peak	
	Ab 2002 4 CU I=		Peak	1MI	Ηz	3MHz	z	Peak	
	Above 1GHz		Peak	1MI	IHz 10		<u> </u>	Average	
Limit: (Spurious Emissions)	Frequency	Frequency Limit (mit (uV/m)		Value		Measurement Distance	
	0.009MHz-0.490M	lHz	2400/F(k	2400/F(KHz)		QP		300m	
	0.490MHz-1.705M	lHz	24000/F(KHz)		QP		300m		
	1.705MHz-30MH	lz	30		QP		30m		
	30MHz-88MHz		100	Q		QP			
	88MHz-216MHz	<u>z</u>	150		QP				
	216MHz-960MH	Z	200		QP				
	960MHz-1GHz 500		QP		3m				
			500		Average				
Above 1GHz		5000		Peak					
Limit: (band edge)	Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.								

	 The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 	
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.	
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.	
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement data:

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK modulation, and found the 8DPSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

■ Below 1GHz

EUT: BW BT SPT IN-EAR **Polarziation**: Horizontal

Model: BWD19AAH01 Power Source: AC120V/60Hz

Mode: BT mode Test by: Jason

Temp./Hum.(%H): 26°C/60%RH

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	47.4918	8.60	12.86	21.46	40.00	-18.54	QP
2	106.0126	14.46	10.17	24.63	43.50	-18.87	QP
3	162.0414	8.38	13.56	21.94	43.50	-21.56	QP
4	325.5958	9.74	14.33	24.07	46.00	-21.93	QP
5	508.2582	10.96	18.38	29.34	46.00	-16.66	QP
6 *	716.6820	10.95	22.14	33.09	46.00	-12.91	QP

EUT: BW BT SPT IN-EAR **Polarziation**: Vertical

Model: BWD19AAH01 Power Source: AC120V/60Hz

Mode: BT mode Test by: Jason

Temp./Hum.(%H): 26°C/60%RH

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		59.4405	10.01	12.14	22.15	40.00	-17.85	QP
2		121.1231	9.89	11.79	21.68	43.50	-21.82	QP
3		169.5990	9.25	12.87	22.12	43.50	-21.38	QP
4		282.9852	9.61	13.08	22.69	46.00	-23.31	QP
5		494.1984	9.35	18.09	27.44	46.00	-18.56	QP
6	*	631.6884	10.81	20.96	31.77	46.00	-14.23	QP

■ Above 1GHz

Test channel:	Lowest
---------------	--------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	57.16	-7.43	49.73	74.00	-24.27	Vertical
7206.00	56.24	-2.42	53.82	74.00	-20.18	Vertical
9608.00	59.37	-2.38	56.99	74.00	-17.01	Vertical
12010.00	*			74.00		Vertical
14412.00	*			74.00		Vertical
4804.00	58.42	-7.43	50.99	74.00	-23.01	Horizontal
7206.00	57.03	-2.42	54.61	74.00	-19.39	Horizontal
9608.00	59.65	-2.38	57.27	74.00	-16.73	Horizontal
12010.00	*			74.00		Horizontal
14412.00	*			74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	46.36	-7.43	38.93	54.00	-15.07	Vertical
7206.00	45.65	-2.42	43.23	54.00	-10.77	Vertical
9608.00	46.71	-2.38	44.33	54.00	-9.67	Vertical
12010.00	*			54.00		Vertical
14412.00	*			54.00		Vertical
4804.00	46.85	-7.43	39.42	54.00	-14.58	Horizontal
7206.00	47.26	-2.42	44.84	54.00	-9.16	Horizontal
9608.00	48.45	-2.38	46.07	54.00	-7.93	Horizontal
12010.00	*			54.00		Horizontal
14412.00	*			54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Correct factor
- 2. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor
- 3. "*", means this data is the too weak instrument of signal is unable to test.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel:	Middle
---------------	--------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	57.46	-7.49	49.97	74.00	-24.03	Vertical
7323.00	54.51	-2.40	52.11	74.00	-21.89	Vertical
9764.00	58.03	-2.38	55.65	74.00	-18.35	Vertical
12205.00	*			74.00		Vertical
14646.00	*			74.00		Vertical
4882.00	58.26	-7.49	50.77	74.00	-23.23	Horizontal
7323.00	57.53	-2.40	55.13	74.00	-18.87	Horizontal
9764.00	59.01	-2.38	56.63	74.00	-17.37	Horizontal
12205.00	*			74.00	_	Horizontal
14646.00	*			74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	42.06	-7.49	34.57	54.00	-19.43	Vertical
7323.00	42.18	-2.40	39.78	54.00	-14.22	Vertical
9764.00	43.09	-2.38	40.71	54.00	-13.29	Vertical
12205.00	*			54.00		Vertical
14646.00	*			54.00		Vertical
4882.00	43.36	-7.49	35.87	54.00	-18.13	Horizontal
7323.00	41.17	-2.40	38.77	54.00	-15.23	Horizontal
9764.00	47.52	-2.38	45.14	54.00	-8.86	Horizontal
12205.00	*			54.00		Horizontal
14646.00	*	_		54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Correct facto
- 2. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor
- 3. "*", means this data is the too weak instrument of signal is unable to test.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel:	Highest
---------------	---------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	57.64	-7.47	50.17	74.00	-23.83	Vertical
7440.00	55.23	-2.45	52.78	74.00	-21.22	Vertical
9920.00	58.03	-2.37	55.66	74.00	-18.34	Vertical
12400.00	*			74.00		Vertical
14880.00	*			74.00		Vertical
4960.00	58.80	-7.47	51.33	74.00	-22.67	Horizontal
7440.00	56.58	-2.45	54.13	74.00	-19.87	Horizontal
9920.00	59.81	-2.37	57.44	74.00	-16.56	Horizontal
12400.00	*			74.00		Horizontal
14880.00	*			74.00		Horizontal

Average value:

Average value.									
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4960.00	42.02	-7.47	34.55	54.00	-19.45	Vertical			
7440.00	41.73	-2.45	39.28	54.00	-14.72	Vertical			
9920.00	43.84	-2.37	41.47	54.00	-12.53	Vertical			
12400.00	*			54.00		Vertical			
14880.00	*			54.00		Vertical			
4960.00	42.36	-7.47	34.89	54.00	-19.11	Horizontal			
7440.00	41.56	-2.45	39.11	54.00	-14.89	Horizontal			
9920.00	44.19	-2.37	41.82	54.00	-12.18	Horizontal			
12400.00	*			54.00		Horizontal			
14880.00	*			54.00		Horizontal			

Remark:

- 1. Final Level =Receiver Read level + Correct factor
- 2. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor
- 3. "*", means this data is the too weak instrument of signal is unable to test.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

-----End-----