SubHalo Abundance Matching for eBOSS Galaxies

Jiaxi Yu

Supervisors: Prof. Dr. Jean-Paul Kneib Dr. Cheng Zhao

July 7th, 2020

Contents:

- **V** Principles
 - Galaxy Bias Models
 - SubHalo Abundance Matching Description
 - Two-point Correlation Function
- > SHAM implementation
- > Results
- Conclusions and Outlooks

SHAM Principles: Galaxy Bias Models

Halo/Subhalo Simulations

SHAM Principles: Galaxy Bias Models

 $\frac{SHAM}{P(M_{(sub)halo})}$

Select halos (i.e., galaxies) so that they:

Select halos (i.e., galaxies) so that they:

•Have the same number density as observations

Select halos (i.e., galaxies) so that they:

- •Have the same number density as observations
- •Match the galaxy probability distribution function (P.D.F)

Fig 1. The ideal probability distribution function for halos with a certain mass to have a galaxy inside

The most massive halos: all have an LRG, no one hosts an ELG

Fig 1. The ideal probability distribution function for halos with a certain mass to have a galaxy inside

Fig 1. The ideal probability distribution function for halos with a certain mass to have a galaxy inside

Intermediate halos: physical processes lead to Stochasticity

Fig 1. The ideal probability distribution function for halos with a certain mass to have a galaxy inside

Select halos (i.e., galaxies) so that they:

- •Have the same number density as observations
- •Match the galaxy probability distribution function (P.D.F)
- •Agree with the observed **two-point correlation functions** (2PCF) on **5-25 Mpc/h**

Fig 1. The ideal probability distribution function for halos with a certain mass to have a galaxy inside

SHAM Principles: 2PCF

For SHAM galaxies:

$$\xi_{PH}(s,\mu) = \frac{DD(s,\mu)}{RR(s,\mu)} - 1$$

(Peebles & Hauser 1974)

For eBOSS galaxies:

$$\xi_{LS}(s,\mu) = \frac{DD(s,\mu) - 2DR(s,\mu) + RR(s,\mu)}{RR(s,\mu)}$$

(Landy & Alexander 1993)

Ref 1. Peebles, P. J. E., & Hauser, M. G. 1974, The Astrophysical Journal Supplement Series, 28, 19 Ref 2. Landy, S., & Alexander, S. 1993, the astropysical journal, 412, 64

Figure from LASTRO Tea-Time Talk: Cosmology with large-scale structures

SHAM Principles: 2PCF(b) with RSD

density contrast in the real space:

$$\delta(x) = \frac{\rho(x) - \overline{\rho}(x)}{\overline{\rho}(x)}$$

the linear galaxy bias in the real space:

$$\delta_{gal}(\mathbf{x}) = b \times \delta_{halo}(\mathbf{x})$$

density contrast in the redshift space:

$$\delta_{obs}(x) = \delta(x) - \frac{\partial_d(v \cdot n)}{H}$$
 (Kaiser 1987)

correlation function in the redshift space:

$$\xi_{gal}(\mathbf{s}) = <\delta_{obs}(\mathbf{x})\delta_{obs}(\mathbf{x} - \mathbf{s}) >$$
 $\xi_{0}(\mathbf{s}) \propto f(b^{2}, b)$
 $\xi_{2}(\mathbf{s}) \propto f(b)$ (Hamilton 1992)

Ref 1. Kaiser, N. 1987, Monthly Notices of the Royal Astronomical Society, 227, 1 Ref 2. Hamilton, A. J. S. 1992, The Astrophysical Journal, 385, L5

SHAM Principles: 2PCF(b) with RSD

density contrast in the real space:

$$\delta(x) = \frac{\rho(x) - \overline{\rho}(x)}{\overline{\rho}(x)}$$

the linear galaxy bias in the real space:

$$\delta_{gal}(\mathbf{x}) = b \times \delta_{halo}(\mathbf{x})$$
peculiar velocity's effects

density contrast in the redshift space:

$$\delta_{obs}(x) = \delta(x) - \frac{\partial_d (v \cdot n)}{H}$$
 (Kaiser 1987)

correlation function in the redshift space:

$$\xi_{gal}(\mathbf{s}) = <\delta_{obs}(\mathbf{x})\delta_{obs}(\mathbf{x}-\mathbf{s})>$$

stronger bias impacts on the monopoles

$$\xi_0(\mathbf{s}) \propto f(b^2, b)$$

$$\xi_2(\mathbf{s}) \propto f(b)$$
(Hamilton 1992)

Contents:

- > Principles
- **∀** SHAM implementation
 - Data Descriptions
 - SHAM using V_{peak}
 - SHAM model Calibration
- > Results
- Conclusions and Outlooks

SHAM Implementation: Data Description

the (Sub)Halo catalogue:

the UNIT simulation

Box size: 13 (Gpc/h)3

Employed snapshots z=0.859 and z=0.702

 V_{peak} : the peak maximum circular velocity over the mass accretion history

SHAM Implementation: Data Description

the (Sub)Halo catalogue:

the UNIT simulation

Box size: 13 (Gpc/h)3

Employed snapshots z=0.859 and z=0.702

V_{peak}: the peak maximum circular velocity over the mass accretion history

eBOSS observations:

PIP+ANG weighted galaxy pair counts

ELG at 0.6 < z < 1.1, $z_{eff} = 0.845$, $n_{eff} = 2.93e^{-4} (Gpc/h)^{-3}$

LRG at 0.6 < z < 1.0, $z_{eff} = 0.698$, $n_{eff} = 6.26e^{-5} (Gpc/h)^{-3}$

SHAM Implementation: Data Description

the (Sub)Halo catalogue:

the UNIT simulation

Box size: 13 (Gpc/h)3

Employed snapshots z=0.859 and z=0.702

V_{peak}: the peak maximum circular velocity over the mass accretion history

eBOSS observations:

PIP+ANG weighted galaxy pair counts

ELG at 0.6 < z < 1.1, $z_{eff} = 0.845$, $n_{eff} = 2.93e^{-4} (Gpc/h)^{-3}$

LRG at 0.6 < z < 1.0, $z_{eff} = 0.698$, $n_{eff} = 6.26e^{-5} (Gpc/h)^{-3}$

Covariance matrices:

EZmocks

1000 realisations for one tracer in one galactic cap

Massive Truncation: probable absence of eBOSS heavy galaxies

mention the target selection effect

Fig 2. The eBOSS galaxy P.D.F compared with the ideal one

eBOSS LRGs and ELGs have the same SHAM model

Fig 3. The eBOSS galaxy P.D.Fs

Simply Cut at V_{cut}

SHAM Implementation: SHAM using V_{peak}

Simply Cut at V_{cut}

Scattering with $N(0, \sigma^2)$ Massive-end cut at V_{cut}

SHAM Implementation: SHAM using V_{peak}

SHAM processes:

- Scattering V_{peak} of (sub)halos with $N(0,\sigma^2)$
- ullet Truncate the massive end of $V_{\text{peak}}^{\text{scat}}$ at V_{cut}
- Select the N_{gal} -th largest $V_{peak}^{scat,cut}$ as galaxies $(N_{gal} = n_{eff} * (1 Gpc/h)^3)$

Fig 4. The impacts of σ and Vcut on the 2PCF monopole (left), quadrupole (right) and the Vpeak PDF (the next page)

mention the possible degeneracy here

Fig 4. The impacts of $\boldsymbol{\sigma}$ and Vcut on the Vpeak PDF

SHAM Implementation: Calibration

SHAM Implementation: Calibration

SHAM Implementation: Calibration

Average over the 2PCFs of 20 catalogues for a single (σ , V_{peak})

Monte-Carlo Nested Samping (Multinest) to obtain the best parameters (iminuit as a reference)

Contents:

- > Principles
- > SHAM implementation
- **V** Results
 - SHAM Models for ELGs
 - SHAM Models for LRGs.
 - LRG Improvement: the Redshift Uncertainty
- Conclusions and Outlooks

Results: ELG NGC 2PCF

σ	V _{peak} (km/s)	χ^2	Reduced χ ²
$0.513^{+0.433}_{-0.081}$	268^{+124}_{-30}	52.296	1.376

Fig 5. The correlation functions of eBOSS SHAM ELGs in NGC

Results: ELG NGC P.D.F

σ	V _{peak} (km/s)	χ^2	Reduced χ ²
$0.513^{+0.433}_{-0.081}$	268+124	52.296	1.376

Fig 6. The probability distribution function of eBOSS SHAM ELGs in NGC

Results: ELG NGC Posterior

σ	V _{peak} (km/s)	χ^2	Reduced χ ²	
$0.513^{+0.433}_{-0.081}$	268^{+124}_{-30}	52.296	1.376	

Fig 7. The posterior distributions of eBOSS SHAM ELGs in NGC

Results: ELG SGC 2PCF

σ	V _{peak} (km/s)	χ^2	Reduced χ ²
$0.790^{+0.200}_{-0.285}$	342^{+58}_{-61}	51.526	1.356

Fig 8. The correlation functions of eBOSS SHAM ELGs in SGC

Results: ELG SGC P.D.F

σ	V _{peak} (km/s)	χ^2	Reduced χ ²
$0.790^{+0.200}_{-0.285}$	342^{+58}_{-61}	51.526	1.356

Fig 9. The probability distribution function of eBOSS SHAM ELGs in SGC

Results: ELG SGC Posterior

σ	V _{peak} (km/s)	χ^2	Reduced χ ²	
$0.790^{+0.200}_{-0.285}$	342^{+58}_{-61}	51.526	1.356	

Fig 10. The posterior distributions of eBOSS SHAM ELGs in SGC

Results: LRG NGC 2PCF

σ	V _{peak} (km/s)	χ^2	Reduced χ ²
$0.800^{+0.035}_{-0.056}$	1167^{+29}_{-63}	72.785	1.915

Fig 11. The correlation functions of eBOSS SHAM LRGs in NGC

Results: LRG NGC P.D.F

σ	V _{peak} (km/s)	χ^2	Reduced χ ²
$0.800^{+0.035}_{-0.056}$	1167^{+29}_{-63}	72.785	1.915

Fig 12. The probability distribution function of eBOSS SHAM LRGs in NGC

Results: LRG NGC Posterior

σ	V _{peak} (km/s)	χ^2	Reduced χ ²
$0.800^{+0.035}_{-0.056}$	1167^{+29}_{-63}	72.785	1.915

Fig 13. The posterior distributions of eBOSS SHAM LRGs in NGC

Results: LRG SGC 2PCF

σ	V _{peak} (km/s)	χ^2	Reduced χ ²
$0.710^{+0.144}_{-0.029}$	994^{+167}_{-12}	54.593	1.437

Fig 14. The correlation functions of eBOSS SHAM LRGs in SGC

Results: LRG SGC P.D.F

σ	V _{peak} (km/s)	χ^2	Reduced χ ²
$0.710^{+0.144}_{-0.029}$	994^{+167}_{-12}	54.593	1.437

Fig 15. The probability distribution function of eBOSS SHAM LRGs in SGC $\,$

Results: LRG SGC Posterior

σ	V _{peak} (km/s)	χ^2	Reduced χ ²
$0.710^{+0.144}_{-0.029}$	994^{+167}_{-12}	54.593	1.437

Fig 16. The posterior distributions of eBOSS SHAM LRGs in SGC

Results: LRG SHAM Improvement

Fig 17. The redshift uncertinty of eBOSS LRG observation pairs, Figure 2 of Ross et al. (2020)

Results: LRG SHAM Improvement

 Δv modelled by a **Gaussian smearing** $N(0, 91.8^2)$ on the **peculiar velocity**

- * the Peculiar velocity not sensitive to the galaxy bias
- the **Quadrupole shifts larger** than the monopole shift (?)

Fig 17. The redshift uncertinty of eBOSS LRG observation pairs, Figure 2 of Ross et al. (2020)

Results: LRG SHAM Improvement

σ	V _{peak} (km/s)		χ^2	Reduced χ ²
$0.800^{+0.035}_{-0.056}$	1167^{+29}_{-63}	72	2.785	1.915
0.806	1170	3	3.910	0.916

Fig 18. The peculiar-velocity-smeared SHAM LRG in NGC

Contents:

- > Principles
- > SHAM implementation
- > Results
- **V** Conclusions and Outlooks

Conclusions:

- ✓ Applyed SHAM on UNIT (sub)halo catalogue
- ✓ Reproduced the 2PCF of eBOSS LRG and ELG respectively

	σ	V _{peak} (km/s)	χ^2	Reduced χ ²
ELG NGC	$0.513^{+0.433}_{-0.081}$	268^{+124}_{-30}	52.296	1.376
ELG SGC	$0.790^{\tiny{+0.200}}_{\tiny{-0.285}}$	342^{+58}_{-61}	51.526	1.356
LRG NGC	$0.800^{+0.035}_{-0.056}$	1167^{+29}_{-63}	72.785	1.915
LRG SGC	$0.710^{+0.144}_{-0.029}$	994^{+167}_{-12}	54.593	1.437

✓ Improved the LRG SHAM by adding the redshift uncertainty effect

Outlooks:

- ✓ Reliable eBOSS LRG & ELG SHAM models
- Robust SHAM models
 - \square Implement (σ , σ_{pec} , V_{cut}) SHAM models
 - ☐ Test the three-parameter model in different redshift bins
- Multi-tracer SHAM
 - □ 'generate' multiple tracers simultaneously
 - ☐ difficulty: overlapped distribution function
- ☐ Cross-Correlation between tracers

Thanks!