

# APPLYING MULTITASK LEARNING TO ACOUSTIC-PHONEMIC MODELING FOR MISPRONUNCIATION DETECTION AND DIAGNOSIS IN L2 ENGLISH SPEECH

Shaoguang Mao<sup>1</sup>, Zhiyong Wu<sup>1,2</sup>, Runnan Li<sup>1</sup>, Xu Li<sup>2</sup>, Helen Meng<sup>1,2</sup>, Lianhong Cai<sup>1</sup>



<sup>2</sup> Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong



#### 1. Introduction

#### **>** Objective

Mispronunciation detection and diagnosis (MDD) of L2 learner's speech

#### > Challenge

- Unbalanced data distribution between correct and incorrect L2 speech
- Existing approaches insufficiently capture differences in between correct and incorrect phoneme pronunciations

Words

a Dict

acoustic

features

#### > Multi-Task Training

- Process incorrect correct pronunciations in L2 speech separately
- Correct-pronunciation recognizer to focus on correct pronunciation
- Mispronunciation recognizer to focus on incorrect pronunciations
- Train two tasks together with multi-task learning

#### **>** Contribution

Propose multi-task Acoustic-Phonemic Model (MT-APM) and related feature representation (R-MT-APM)

### 2. Acoustic-Phonemic Model

## > Input Features

• Concatenate acoustic features ( $x_t$ , i.e. MFCC) and phonetic features ( $q_t^{Dict}$ , i.e. current canonical phone with 3 phones to the left and right respectively)

## > Structure (Fig. 1)

- Derive phone-state posterior probabilities  $P(s_i|x_t,q_t^{Dict}), i \in [1, ..., 144]$ after several hidden layers;
- •Generate recognized phone sequence with Viterbi decoding

### > Problems

Low recall (<70%) of mispronounced phones acoustic



# Data Labeling (Fig. 2)

- Introduce two new states (*mis* and *cor*) Multi-task Structure (Fig. 3) for the two tasks in (R-)MT-APM
- ☐ For a frame, compare its annotation with canonical phone;
- ☐ If same (correct pronunciation), its label for Task 1 is the canonical phone state  $cs_i$ ,  $i \in [1...144]$ , while its label for Task 2 is *cor*;
- ☐ If different (mispronunciation), its label for Task 1 is *mis*, while its label for Task 2 is the annotation phone state  $ms_i$ ,  $i \in [1...144]$ .

# 3. Multi-Task Learning for APM > Multi-Task APM (MT-APM)

- ☐ Task 1 : Correct-pronunciation Recognizer
- ☐ Task 2 : Mispronunciation Recognizer
- ☐ Train two tasks together with multi-task learning

#### **Joint Decoding for MT-APM (Fig. 4)**

- $\square$  Compare  $P(mis|x_t,q_t^{Dict})$ from Task 1  $P(cor|x_t,q_t^{Dict})$  from Task 2.
- Use  $P(ms_i|x_t,q_t^{Dict})$ ,  $i \in [1...144]$  from task 2 as the output for Viterbi decoding if  $P(mis|x_t,q_t^{Dict}) >$  $P(cor|x_t,q_t^{Dict}).$
- $\square$  Else, use  $P(cs_i|x_t,q_t^{Dict})$ ,  $i \in [1...144]$  for decoding.

## > Feature Representation for MT-APM (R-MT-APM)

- Two Stage Structure (Fig. 5)
- Stage 1
- ☐ Train correct-mispronunciation DNN (CM-DNN) to judge whether current frame is *cor* or *mis*;

### and Stage 2

- ☐ Train the dense layer and shared hidden layers with the fixed pre-trained CM-DNN;
- $\square$  Derive P( $C|x_t,q_t^{Dict}$ ) and P( $M|x_t,q_t^{Dict}$ ) for input features;
- Compute a dense output vector;
- □ Compute the represented new features by adding input

features and the dense output vector.





Fig. 5

Mispronunciation Recognizer

Task 1

- **Corpus:** CU-CHLOE (Chinese University Chinese Learners of English)
  - L2 English speech uttered by 100 Cantonese speakers (CHLOE-C)
  - 30% speaker audios are labeled by skilled linguists with actual pronunciations
- > Evaluation Metrics and Experimental Results

Cor Mis Mis Mis Cor Cor Cor Mis Mis Cor Cor Cor Mis Mis Mis Mis Mis Mis Cor

Correct-Pronunciation Recognizer

 $P(cs_1|x_t,q_t^{Dict})$ 

 $P(cs_2|x_t,q_t^{Dict})$ 

 $P(cs_3|x_t,q_t^{Dict})$ 

 $P(cs_{144}|x_t,q_t^{Dict})$ 

 $P(\mathbf{mis}|x_t,q_t^{\mathsf{Dict}})$ 

 $P(ms_1|x_t,q_t^{Dict})$ 

 $P(ms_2|x_t,q_t^{Dict})$ 

 $P(ms_3|x_t,q_t^{Dict})$ 

 $P(ms_{144}|x_t,q_t^{\text{Dict}})$ 

 $P(cor|x_t,q_t^{Dict})$ 

Mispronunciation Recognizer

Task2 label Cor d d d Cor Cor Cor Cor I I Cor Cor Cor f f f f f Cor

Fig. 2

Shared Hidden Layers

Fig. 3

|   |             |                  | Recognition Result |                  |  |  |
|---|-------------|------------------|--------------------|------------------|--|--|
|   |             |                  | Correct            | Micronunciation  |  |  |
|   |             |                  | Pronunciation      | Mispronunciation |  |  |
|   | Manually    | Correct          | TA                 | FR               |  |  |
|   | Transcribed | Pronunciation    | I A                |                  |  |  |
|   | Phonetic    | Micropungiation  | Tr A               | TR (CD/DE)       |  |  |
|   | Unit        | Mispronunciation | FA                 |                  |  |  |
| i |             |                  |                    | -                |  |  |

The Recognition metrics:

The MDD metrics :  $Precision = \frac{TR}{TR + FR}$ ,  $Recall = \frac{TR}{TR + FA}$ 

 $Precision \times Recall$  $F-measure = 2 \times \frac{1}{R}$ Precision + Recall

 $Correct = \frac{N-S-D}{N}$ ,  $Accuracy = \frac{N-S-D-I}{N}$ 

Detection Accuracy

# Experimental Setup

4. Experiments

- Comparing models :
  - 2) MT-APM; 3) R-MT-APM; 1) Baseline APM; 4) A-MT-APM.
- •Acoustic features  $(x_t)$ : 11 frames (5 before, 1 current and 5 after) of MFCC, using 25-ms Hamming window and 10-ms frame shift
- Phonemic features  $(q_t^{Dict})$ : 7 canonical phones (3 before, 1 current and 3after)

|              | Method   | Performance of Recognition |               | Performance of Mispronunciation Detection and Diagnosis |        |               |                       |                        |
|--------------|----------|----------------------------|---------------|---------------------------------------------------------|--------|---------------|-----------------------|------------------------|
| Dataset      |          | Correct                    | Accuracy      | Precision                                               | Recall | F-measure     | Detection<br>Accuracy | Diagnostic<br>Accuracy |
| Small        | APM      | 79.60%                     | 72.20%        | 52.02%                                                  | 84.67% | 64.44%        | 84.24%                | 57.07%                 |
| Sman         | MT-APM   | 84.40%                     | 76.80%        | 59.31%                                                  | 89.33% | 71.29%        | 87.86%                | <b>75.69%</b>          |
|              | R-MT-APM | 86.10%                     | <b>77.00%</b> | 63.47%                                                  | 88.78% | 74.02%        | 89.44%                | 74.07%                 |
| (5h)         | A-MT-APM | 74.80%                     | 61.80%        | 52.02%                                                  | 84.67% | 64.44%        | 84.24%                | 57.07%                 |
| Medium       | APM      | 80.80%                     | 78.60%        | 53.22%                                                  | 83.56% | 65.02%        | 84.92%                | 73.47%                 |
| Scale        | MT-APM   | 85.50%                     | 81.70%        | 61.29%                                                  | 86.14% | 71.62%        | 88.54%                | 75.83%                 |
|              | R-MT-APM | 87.50%                     | 83.10%        | <b>65.84%</b>                                           | 89.92% | 76.02%        | 90.44%                | 77.71%                 |
| (7.5h)       | A-MT-APM | 83.70%                     | 78.70%        | 62.26%                                                  | 90.35% | 73.72%        | 89.10%                | 73.77%                 |
| Lorgo        | APM      | 81.40%                     | 76.30%        | 63.35%                                                  | 83.74% | 72.13%        | 89.03%                | 68.36%                 |
| Large        | MT-APM   | 86.40%                     | 80.50%        | 62.78%                                                  | 89.05% | 73.64%        | 89.26%                | 79.63%                 |
| Scale (0.5h) | R-MT-APM | 88.20%                     | 83.30%        | 67.65%                                                  | 89.52% | <b>77.07%</b> | 90.99%                | 78.24%                 |
| (9.5h)       | A-MT-APM | 86.80%                     | 81.30%        | 67.75%                                                  | 85.60% | 75.63%        | 90.70%                | 75.72%                 |

## 5. Conclusion

- Propose MT-APM and R-MT-APM
- Better capture differences in between correct and incorrect phoneme pronunciations
- Resolve the low recall problem in MDD

# 6. Acknowledgment

This project is partially supported by a grant from the HKSAR RGC General Research Fund (project no. 14207315), and a seed grant from the MSRA Collaborative Research Project.