Основы вероятностного вывода

Владимир Анатольевич Судаков 2023

на основе [Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley]

Применение

• Вероятностный вывод

- Диагностика
- Распознавание речи
- Отслеживание объектов
- Роботизированное картографирование
- Генетика
- Коды коррекции ошибок
- ... и многое другое!

Разделы лекции

Вероятности

- Случайные переменные
- Совместные и частные (маргинальные) распределения
- Условные распределения
- Правило произведения, Цепное правило,
 Правило Байеса
- Вероятностный вывод

Вывод в охотниках за привидениями

- Приведение в какой-то клетке
- Показания датчиков говорят, насколько близко квадрат к призраку

■ На призраке: red

■ 1 or 2 клетки: orange

■ 3 or 4 клетки : yellow

■ 5+ клеток: green

■ Сенсор зашумлен, но известно P(Color | Distance)

P(red 3)	P(orange 3)	P(yellow 3)	P(green 3)
0.05	0.15	0.5	0.3

Охотники за приведениями – Без вероятностей

Неопределенность

- Обобщённая ситуация:
 - Наблюдаемые переменные (свидетельство): Агент знает определенные вещи о состоянии мира (например, показания датчиков или симптомы).
 - Ненаблюдаемые переменные: Агент должен рассуждать о других аспектах (например, где находится объект или какое заболевание присутствует)
 - **Модель**: Агент что-то знает о том, как известные переменные соотносятся с неизвестными переменными.
- Вероятностное рассуждение дает нам основу для управления нашими убеждениями и знаниями.

Случайные переменные

- Случайная величина это некоторый аспект мира, относительн которого у нас (возможно) есть неопределенность
 - R = Сейчас идет дождь?
 - Т = Сейчас тепло или холодно?
 - D = Сколько времени потребуется, чтобы доехать до работы?
 - L = Где приведение?
- Случайные величины будем обозначать заглавными буквами
- Случайные величины имеют домены
 - R in {true, false} (often write as {+r, -r})
 - T in {hot, cold}
 - D in $[0, \infty)$
 - L in возможные местоположения {(0,0), (0,1), ...}

Распределения вероятностей

- Сопоставьте вероятность с каждым значением
 - Temperature:

P(T)T P
hot 0.5
cold 0.5

Weather:

W P
sun 0.6
rain 0.1
fog 0.3
meteor 0.0

P(W)

Распределения вероятностей

• Ненаблюдаемые случайные величины имеют распределения P(W)

P(T)	
Т	Р
hot	0.5
cold	0.5

W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

- Распределение представляет собой ТАБЛИЦУ вероятностей значений
- Вероятность (значение в нижнем регистре) это одно число.
 P(W=rain) = 0.1
- Должно выполняться: $\forall x \ P(X=x) \geq 0$ и $\sum_{x} P(X=x) = 1$

Стандартная форма записи:

$$P(hot) = P(T = hot),$$

 $P(cold) = P(T = cold),$
 $P(rain) = P(W = rain),$
...

Все элементы доменов уникальны

Совместное распределение

• Совместное распределение случайных величин: $X_1, X_2, \ldots X_n$ указывает действительное число для каждого присваивания переменных:

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

 $P(x_1, x_2, \dots x_n)$

$$P(x_1, x_2, \dots x_n) \ge 0$$

Должно выполняться:

$$\sum_{(x_1, x_2, \dots x_n)} P(x_1, x_2, \dots x_n) = 1$$

- Какова размерность распределения, если дано п переменных с доменами размерности d?
 - Для все кроме самых маленьких распределений записывать таблицу не целесообразно!

\boldsymbol{P}	T	7	W	1
1	(τ	,	VV	J

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Вероятностные модели

- Вероятностная модель это совместное распределение по набору случайных величин
- Вероятностные модели:
 - (Случайные) переменные с доменами
 - Назначения называются результатами
 - Совместные распределения: скажите, вероятны ли присваивания (результаты)
 - Нормализовано: сумма = 1,0
 - В идеале: напрямую взаимодействуют только определенные переменные
- Проблемы удовлетворения ограничений:
 - Переменные с доменами
 - Ограничения: укажите, возможны ли назначения
 - В идеале: напрямую взаимодействуют только определенные переменные

Распределение T,W

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Ограничения по T,W

Т	W	Р
hot	sun	Т
hot	rain	F
cold	sun	F
cold	rain	Т

События

 Событие это множество возможный исходов Е

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

- Из совместного распределения мы можем рассчитать вероятность любого события
 - Вероятность того, что жарко и солнечно?
 - Вероятность того, что жарко?
 - Вероятность того, что жарко ИЛИ солнечно?
- Как правило, интересующие нас события являются частичными присваиваниями, как P(T=hot)

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Тест: События

■ P(+x)?

■ P(-y OR +x) ?

X	Υ	Р
+x	<mark>+y</mark>	0.2
+x	<mark>-y</mark>	0.3
-X	+ y	0.4
-X	<mark>-y</mark>	0.1

Маргинальное (частное) распределение

- Маргинальные распределения это подтаблицы, которые исключают переменные.
- Маргинализация (суммирование): объедините свернутые строки, путем суммирования P(T)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(t) = \sum_{s} P(t, s)$$

$$P(s) = \sum_{t} P(t, s)$$

$P(X_1 = x_1) =$	$\sum P(X_1 = x_1, X_2 = x_2)$
	x_2

Т	Р
hot	0.5
cold	0.5

P(W)	
W	Р
sun	0.6
rain	0.4

Тест: Маргинальные распределения

X	Υ	Р
+x	+y	0.2
+x	- y	0.3
-X	+ y	0.4
-X	- y	0.1

$$P(x) = \sum_{y} P(x, y)$$

$$P(y) = \sum_{x} P(x, y)$$

P(X)

X	Р
+x	
-X	

Υ	Р
+ y	
- y	

Условные вероятности

- Простое отношение между совместной и условной вероятностями
 - Фактически это принимается за определение условной вероятности

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$

$$= P(W = s, T = c) + P(W = r, T = c)$$

$$= 0.2 + 0.3 = 0.5$$

Тест: Условные вероятности

■ P(+x | +y)?

P(X,Y)

X	Υ	Р
+x	+y	0.2
+x	- y	0.3
-X	+ y	0.4
-X	- y	0.1

■ P(-x | +y)?

■ P(-y | +x)?

Условные распределения

• Условные распределения - это распределения вероятностей по некоторым переменным при фиксированных значениях других

Условные распределения

Совместное распределение

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Трюк с нормализацией

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

$$= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

$$P(W = r | T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

$$P(W|T=c)$$

W	Р
sun	0.4
rain	0.6

Трюк с нормализацией

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

$$= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

ВЫБЕРИТЕ

совместные вероятности, соответствующие доказательствам

P(c, W)

Т	W	Р
cold	sun	0.2
cold	rain	0.3

НОРМАЛИЗОВАТЬ

выбор (сделайте сумму равной единице)

$$P(W|T=c)$$

W	Р
sun	0.4
rain	0.6

$$P(W = r | T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

Трюк с нормализацией

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

ВЫБЕРИТЕ

совместные вероятности, соответствующие доказательствам

НОРМАЛИЗОВАТЬ

выбор (сделайте сумму равной единице)

W	Р
sun	0.4
rain	0.6

■ Почему это работает? Сумма выбора равна Р(доказательство)! (Р(T=c), в данном случае)

$$P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)}$$

Тест: Трюк с нормализацией

■ P(X | Y=-y)?

P(X,Y)

X	Υ	Р
+x	+y	0.2
+x	- y	0.3
-X	+y	0.4
-X	-y	0.1

ВЫБЕРИТЕ

совместные вероятности, соответствующие доказательствам

НОРМАЛИЗОВАТЬ

выбор (сделайте сумму равной единице)

Для нормализации

• (Словарь) Привести или восстановить до нормального состояния

■ Шаг 1: Посчитать Z = sum по всем элементам

■ Шаг 2: Разделить каждый элемент на Z

• Пример 1

W	Р	Normalize	W	Р
sun	0.2	\longrightarrow	sun	0.4
rain	0.3	Z = 0.5	rain	0.6

Example 2

	Т	W	Р
	hot	sun	20
	hot	rain	5
Ī	cold	sun	10
	cold	rain	15

Сумма равна 1

	Т	W	Р
Normalize	hot	sun	0.4
	hot	rain	0.1
Z = 50	cold	sun	0.2
	cold	rain	0.3

Вероятностный вывод

- Вероятностный вывод: вычисление требуемой вероятности из других известных вероятностей (например, условное из совместного)
- Обычно мы вычисляем условные вероятности
 - P(on time | no reported accidents) = 0.90
 - Они представляют убеждения агента с учетом данных
- Вероятности меняются с появлением новых доказательств :
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Наблюдение за новыми свидетельствами приводит к обновлению убеждений

■ P(W)?

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

■ P(W)?

		1	1
S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

■ P(W)?

P(sun)=.3+.1+.1+.15=.65

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

■ P(W)?

P(sun)=.3+.1+.1+.15=.65 P(rain)=1-.65=.35

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

■ P(W | winter, hot)?

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

■ P(W | winter, hot)?

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(W | winter, hot)?

P(sun|winter,hot)~.1 P(rain|winter,hot)~.05

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

■ P(W | winter, hot)?

P(sun|winter,hot)~.1 P(rain|winter,hot)~.05 P(sun|winter,hot)=2/3 P(rain|winter,hot)=1/3

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

■ P(W | winter)?

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

■ P(W | winter)?

P(sun|winter)~.1+.15=.25

		1	
S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Inference by Enumeration

■ P(W | winter)?

 $P(rain|winter)\sim.05+.2=.25$

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

■ P(W | winter)?

P(sun|winter)~.25 P(rain|winter)~.25 P(sun|winter)=.5 P(rain|winter)=.5

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Вывод по перечислению

• Общий случай:

■ Наблюдаемые: $E_1 \dots E_k = e_1 \dots e_k$ $X_1, X_2, \dots X_n$ Все переменные

 Шаг 1: Выбрать сущности совместимые с наблюдением

 Шаг 2: Сложить по Н чтобы получить общий Запрос и наблюдение

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

$$X_1, X_2, \dots X_n$$

• Требуется:

* Хорошо работает с несколькими

$$P(Q|e_1 \dots e_k)$$

Шаг 3: Нормализация

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$
$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

Вывод по перечислению

• Очевидные проблемы:

- Временная сложность в худшем случае O(dⁿ)
- Сложность пространства O(dⁿ) для хранения совместного распределения

Правило произведения

Иногда даны условные распределения, но необходимы совместные

$$P(y)P(x|y) = P(x,y) \qquad \Longrightarrow \qquad P(x|y) = \frac{P(x,y)}{P(y)}$$

Правило произведения

$$P(y)P(x|y) = P(x,y)$$

• Пример:

\overline{P}	(\overline{W})
-	1	, ,	/

R	Р
sun	0.8
rain	0.2

P(D|W)

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

P(D,W)

D	W	Р
wet	sun	
dry	sun	
wet	rain	
dry	rain	

Цепное правило

 В общем случае любое совместное распределение всегда можно записать как произведение условных распределений.

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$

$$P(x_1, x_2, \dots x_n) = \prod_i P(x_i | x_1 \dots x_{i-1})$$

Правило Байеса

Правило Байеса

 Два способа факторизации совместного распределения по двум переменным :

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

• Разделив получим:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Почему это полезно?
 - Давайте построим одно условное выражение из его реверса
 - Часто одно условие сложное, а другое простое.
 - Основа многих систем, которые мы увидим позже (например, автоматическое исправление ошибок)

Претендует на самое важное уравнение ИИ!

Вывод с помощью правила Байеса

• Пример: диагностическая вероятность из причинной вероятности:

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

- Пример:
 - М: менингит, S: онемевшая шея

$$P(+m) = 0.0001 \ P(+s|+m) = 0.8 \ P(+s|-m) = 0.01$$
 Дано в примере

$$P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999}$$

- Примечание: Апостериорная вероятность менингита все еще очень мала
- Примечание: Вам все равно нужно проверить онемевшую шею! Почему?

Тест: Правило Байеса

■ Дано:

P(W)

R	Р	
sun	0.8	
rain	0.2	

P(D|W)

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

Чему равно P(W | dry) ?

Охотники за приведениями, Пересмотр

- Пусть дано два распределения:
 - Априорное распределение местоположения приведения: P(G)
 - Путь оно равномерно
 - Модель считывания датчика: P(R | G)
 - Дано: мы знаем, что делают наши датчики
 - R = считывание цвета в ячейке (1,1)
 - Например, P(R = yellow | G=(1,1)) = 0.1
- Можно рассчитать апостериорное распределение P(G|r) по положениям приведения используя правило Байеса: $P(g|r) \propto P(r|g)P(g)$

Охотники за привидениями с вероятностным выводом

Следующий раз: Байесовские сети