

Bayesian Analysis of Data for Admission in the University

Adeepa Gustinna Wadu Aash Makwana Department of Mathematics and Statistics, University Of Calgary

04/04/2024

Outline

Introduction

Methodology

Results and Discussion

Introduction

- In today's education world there are many number of students
- We are focusing on only the students who want to pursue their higher education in universities.
- But we are focusing on only the students who want to do their Masters in America.
- Students who want to do masters in America have to write GRE and TOEFL

Introduction

 Among these tests CGPA is another important factors consider my universities to grant admission to universities.

 This study focus on figure out underlying probability distributions of these features

Dataset

Dataset has been sourced from Kaggle

 Includes various attributes related to university admissions.

The total number of observations is 400

 We are considering to perform Bayesian analysis for GRE score, TOEFL score and CGPA variables

Objective

 Main objective of this study is to figure out which data generating model is most suitable for these features

Methodology- Preprocessing

Checked for missing values

Divide training(75% of data) and testing datasets

Summary of all features were calculated

Density curves used for explore the distribution of the featues

CGPA

GRE Score

TOEFL score

Summary

Feature	Median	Mean	Standrad Deviation
CGPA	8.640	8.625	0.584
GRE score	317.5	317.2	11.408
TOEFL score	108.0	107.7	6.014

Analysis – Approach 1

 For a given feature, assume data generated from normal distribution.

$$P(X_{1:n}|\mu) \sim N(\mu, \sigma^2)$$

Assume standard deviation is fixed

- Priors were defined for μ
 - $P(\mu) \sim N(\mu_1, \sigma_1^2)$
 - $P(\mu) \propto 1$

Analysis – Approach 1

- Posterior distribution is calculated for the training data.
- Posterior predictive distribution was calculated for testing data
- 95% credible interval was calculated for Posterior predictive distribution
- Finally number of testing sample within the credible interval was calculated

Prior	Posterior	Posterior Predictive
$P(\mu) \sim N(\mu_1, \sigma_1^2)$	$\sigma_2^2 = \frac{\sigma_1^2 \sigma^2}{n \sigma_1^2 + \sigma^2} \mu_2 = \frac{n \sigma_1^2 \bar{X} + \mu_1 \sigma^2}{n \sigma_1^2 + \sigma^2}$	$P(X_{new} X_{1:n}) \sim N(\mu_3, \sigma_3^2)$ $\mu_2 = \mu_2$
	$n\sigma_1^2 + \sigma_2^2$ $n\sigma_1^2 + \sigma_2^2$	$\mu_3 = \mu_2$ $\sigma_3^2 = \sigma_2^2 + \sigma^2$
$P(\mu) \propto 1$	$\mu_2 = \mu P(\mu X_{1:n}) \sim N(\mu_2, \sigma_2^2)$	$P(X_{new} X_{1:n})\sim N(\mu_3,\sigma_3^2)$
	$\sigma_2^2 = \sigma^2$	$\mu_3 = \mu_2$ $\sigma_3^2 = \sigma_2^2 + \sigma^2$

• CGPA - $P(X_{1:n}|\mu) \sim N(8.5, 0.35) \& P(\mu) \sim N(2,1)$

• CGPA - $P(X_{1:n}|\mu) \sim N(8.5, 0.35) \& P(\mu) \propto 1$

• GRE score $-P(X_{1:n}|\mu) \sim N(320, 120) \& P(\mu) \sim N(250, 100)$

• GRE score $-P(X_{1:n}|\mu) \sim N(320, 120) \& P(\mu) \propto 1$

• TOEFL score- $P(X_{1:n}|\mu) \sim N(110, 36) \& P(\mu) \sim N(100, 25)$

• TOEFL - $P(X_{1:n}|\mu) \sim N(110, 36) \& P(\mu) \propto 1$

Data generating model	Prior	Number of samples inside the credible interval
$P(X_{1:n} \mu) \sim N(8.5, 0.35)$	$P(\mu) \sim N(2,1)$	92
$P(X_{1:n} \mu) \sim N(8.5, 0.35)$	$P(\mu) \propto 1$	99
$P(X_{1:n} \mu) \sim N(8.5, 0.35)$	$P(\mu) \sim N(20,10)$	92
$P(X_{1:n} \mu) \sim N(8.5, 0.35)$	$P(\mu) \sim N(200,100)$	92
$P(X_{1:n} \mu) \sim N(8.5, 0.35)$	$P(\mu) \propto 100$	99

Data generating model	Prior	Number of samples inside the credible interval
$P(X_{1:n} \mu) \sim N(320, 120)$	$P(\mu) \sim N(250,100)$	92
$P(X_{1:n} \mu) \sim N(320, 120)$	$P(\mu) \propto 1$	100
$P(X_{1:n} \mu) \sim N(320, 120)$	$P(\mu) \sim N(2.5,1)$	95
$P(X_{1:n} \mu) \sim N(320, 120)$	$P(\mu) \sim N(2500,1000)$	92
$P(X_{1:n} \mu) \sim N(320, 120)$	$P(\mu) \propto 100$	100

Data generating model	Prior	Number of samples inside the credible interval
$P(X_{1:n} \mu) \sim N(110,36)$	$P(\mu) \sim N(100,25)$	95
$P(X_{1:n} \mu) \sim N(110,36)$	$P(\mu) \propto 1$	99
$P(X_{1:n} \mu) \sim N(110,36)$	$P(\mu) \sim N(1,0.25)$	96
$P(X_{1:n} \mu) \sim N(110,36)$	$P(\mu) \sim N(1000,250)$	95
$P(X_{1:n} \mu) \sim N(110,36)$	$P(\mu) \propto 100$	99

Analysis – Metropolis Hastings MCMC

- M H can be treated with two main ingredients.
- A proposal distribution and an acceptance probability.
- Acceptance probability is given as,

$$\alpha(\theta_{new}, \theta_{t-1}) = min(1, \frac{Posterior probability of \theta_{new}}{Posterior probability of \theta_{t-1}})$$

M-H Algorithm

- Initialize θ_0 , number of iterations.
- Given the current state θ_t , generate new state θ_{new} from proposal distribution.
- Calculate acceptance probability $\alpha(\theta_{new}, \theta_t)$.
- With probability $\alpha(\theta_{new}, \theta_t)$, set $\theta_{t+1} = \theta_{new}$, else set $\theta_{t+1} = \theta_t$.
- Iterate.
- Result: Realizations of dependent samples $\{\theta_1, \theta_2, \dots\}$ from the target distribution $\pi(\theta)$.

For CGPA parameter

- *Likelihood* $\sim N(8.59, 0.59)$
- Prior for Mean $\sim N(8,1)$
- Prior for $SD \sim N(1,1)$
- Iterations: 10000

Posterior Distribution of Mu

Posterior Distribution of Sigma

Posterior Distribution of Mu

Posterior Distribution of Sigma

Trace plot

Trace Plot of Sigma

Autocorrelation plot

Autocorrelation Plot of Mu

Autocorrelation Plot of Sigma

For GRE score parameter

- *Likelihood* $\sim N(316.81,11.47)$
- Prior for Mean $\sim N(300,1)$
- Prior for $SD \sim N(10,1)$
- Iterations: 10000

Posterior Distribution of Mu

Posterior Distribution of Sigma

Posterior Distribution of Mu

Posterior Distribution of Sigma

Trace plot

Trace Plot of Sigma

Autocorrelation plot

Autocorrelation Plot of Mu

Autocorrelation Plot of Sigma

For TOEFL score parameter

- *Likelihood* $\sim N(107.41,6.07)$
- Prior for Mean $\sim N(100,1)$
- Prior for $SD \sim N(5,1)$
- Iterations: 10000

Posterior Distribution of Sigma

Posterior Distribution of Sigma

Trace plot

Trace Plot of Sigma

Autocorrelation plot

Autocorrelation Plot of Mu

Autocorrelation Plot of Sigma

Analysis – Gibbs Sampling

- Gibbs sampler is an example of the Markov Chain -Monte Carlo (MCMC) technique used to estimate Bayesian models when analytical solution is not feasible.
- Prior distributions reflect your knowledge of the phenomenon prior to the experiment. They are part of the model.
- Initial values are part of the solution (MCMC algorithm) and tell the algorithm where to start looking for the posterior distribution. Initial values can be based on the data. The prior distributions cannot.

Gibbs Algorithm

- Assign some starting values μ^* and τ^* to the parameters of interest.
- Given $\tau=\tau^*$, sample the new value of μ^* from a normal distribution with mean $\frac{n\overline{y}\tau^*+\mu_0\tau_0}{n\tau^*+\tau_0}$ and precision (inverse variance) $n\tau^*+\tau_0$.
- Given $\mu=\mu^*$, sample the new value of τ^* from a gamma distribution with parameters $\alpha+\frac{n}{2}$ and $\frac{n\overline{y}\tau^*+\mu_0\tau_0}{n\tau^*+\tau_0}$.
- Iterate step 2 and 3 many times.

For CGPA score parameter

- Likelihood $\sim N(\mu, \tau)$
- Prior for Mean $\sim N(8,2.87)$
- Prior for $\tau \sim Gamma(0.01,0.01)$
- Iterations: 1000

Trace plot

Trace Plot of tau

For GRE score parameter

- Likelihood $\sim N(\mu, \tau)$
- *Prior for Mean* $\sim N(300,0.076)$
- Prior for $\tau \sim Gamma(0.01,0.01)$
- Iterations: 1000

Trace plot

Trace Plot of tau

For TOEFL score parameter

- Likelihood ~ $N(\mu, \tau)$
- *Prior for Mean* $\sim N(100,0.028)$
- Prior for $\tau \sim Gamma(0.01,0.01)$
- Iterations: 1000

Trace plot

Trace Plot of tau

Reference

Bayesian data analysis, 3rd edition. Gelman et al.

 Admission Prediction in Undergraduate Applications: an Interpretable Deep Learning Approach. Amisha P. & Barbara M.

Thank You

Adeepa Gustinna Wadu Aash Makwana