Lecture Outline

Reminders to self:

- ☐ Turn on lecture recording to Cloud
- ☐ Turn on Zoom microphone
- Last Lecture
 - Finished Counters
 - Finished counter design with other types of flip-flops (SR and JK)
 - Analysis of Counter Circuits verifying design does the expected
- Today's Lecture
 - Start Analysis of clocked sequential circuits
 - Parity checker design example
 - Analysis by signal tracing and timing charts
 - Definitions of Moore and Mealy machines
 - Moore & Mealy machine analysis examples
 - Start Analysis by Transition Tables & State Graphs

Handouts and Announcements

Announcements

ECE2060

- Homework Problem: No new homework assignment
- Homework Reminder
 - HW 12-4 Due: 11:59pm Tuesday 3/21
 - HW 12-5 Due: 11:25am Wednesday 3/22
- Read for Monday 3/20: pages 432-436
- Mini-Exam 3 regrade continuing
 - A-some C regraded
 - N-Z regraded

Clocked Sequential Circuits

- The counters we designed:
 - Went through a fixed sequence of states
 - Had only the clock as an input, which triggered change of state
 - Exception:
 - The of last lecture had additional inputs
 - Allowed a selection between of states
- In general, sequential circuits may have additional inputs
 - Sequence of will depend on those inputs
 - Sequence of will depend on those inputs
- We will start by looking at specific examples
- First example: Sequential Parity Checker

• Parity:

ECE2060

- When binary data is transmitted/received (Tx/Rx) or stored it is susceptible to corruption from things such as noise or interference
- An extra bit (a parity bit) is frequently added to each data "word" for error detection
- Example: 7-bit data word + 1 parity bit = 8 bit TX word
- Odd Parity:
 - Total number of "1" bits in the word (including the parity bit) is
 - Value of parity bit chosen to make that true (e.g. 01101110)
- Eur Parity:
 - Total number of "1" bits in the word (including the parity bit) is even
 - Value of parity bit chosen to keep make true (e.g. 011011111)

• Parity:

ECE2060

- Odd Parity:
 - Total number of "1" bits in the word (including the parity bit) is odd
 - Value of parity bit chosen to keep that true (e.g. 0110111<u>0</u>)
- Even Parity:
 - Total number of "1" bits in the word (including the parity bit) is even
 - Value of parity bit chosen to keep that true (e.g. 0110111<u>1</u>)
- If noise or interference causes any single bit in the word to flip, the presence of an error can be detected from the change in parity
 - As an FYI:
 - Detection of more than one error in a word requires adding additional "check bits"
 - Error correction is also possible generally requires that even more extra bits be added
 - Not this example or this course

- Parity Checker:
 - We will design a parity checker for serial data
 - "Serial" means that data enters circuit one bit at a time

Clock

- Z = 0 when # of 1s is even
- When data with odd parity is transmitted, a final output Z=0 indicates that a transmission error occurred
- Value of X read at time of active clock edge
 - The *X* input data stream must be synchronized with clock, so that it assumes its next value before the next active clock edge
 - The clock is necessary in order to distinguish consecutive 0s or consecutive 1s

Sequential Parity Checker

- Since only two states are needed one flip-flop is sufficient
 - Let state S_0 correspond to an even number of 1s received
 - Let state S_1 correspond to an odd number of 1s received

- Design such that
- Z = 1 when # of 1s is ODD
- Z = 0 when # of 1s is EVEN

• State Graph:

- Initially zero ones have been received
- Zero is an even number, so start system in state S_0 (
 - X = 0 arrives, stay in S_0 (# 1s still
 - X = 1 arrives, go to state S_1 (# 1s now)
- When in state S_1 (
 - X = 0 arrives, stay in S_1 (# 1s still
 - X = 1 arrives, go to state S_0 (# 1s now)

Sequential Parity Checker

T Flip-Flop Transition Table corresponding to State Table

	Q)+			
Q	X = 0	X = 1	X = 0	X = 1	Z
0	0	1	0	1	0
1	1	0	0	1	1

ECE2060

Basic Procedure to Find Output Sequence By Tracing 0 and 1 Signals through Circuit:

- 1. Assume an initial state of the flip-flops (all flip-flops reset to 0 unless otherwise specified)
- 2. For 1st set of inputs in the given sequence, determine
 - Circuit output(s)
 - Flip-flop inputs
- 3. Determine the new set of flip-flop states (after next active clock edge)
- 4. Determine output(s) that corresponds to the new states
- 5. Repeat 2, 3, and 4 for each input in the given sequence

ECE2060

Two types of clocked sequential circuits:

1. Moore machine

- Output of sequential circuit is a function of the present state only
- State graph for a Moore machine has the output associated with the state

2. Mealy machine

- Output is a function of both the present state and the input
- State graph for a Mealy machine has the output associated with the arrow going between states

Finite State Machines:

- Special purpose hardware used to implement simple algorithms
- Two most prevalent approaches: Mealy & Moore
 - Both define specific states
 - Use "inputs" to determine state changes
- Mealy: Output depends on both the present state and the inputs
- Moore:

ECE2060

- Output depends only on present state
- The parity detector we just designed is a Moore machine
- Usually has more states
- Stable outputs between clock transitions
- If inputs have a "glitch," Mealy Machine output may change

ECE2060

Moore Machine Analysis Example:

- *X* is input
- Z is output
- Initial state A = B = 0
- Analyze for input sequence X = 01101

• Changes only when state changes

- Next state A = , B =
- New output $Z = A \otimes B = | \bigcirc \bigcirc = | ^{13}$

 D_A

A'

Clock

ECE2060

Moore Machine Analysis Example:

- Analyze for input sequence X = 01101
- New present state A = 1, B = 0
- New X = 1 $D_A = X \oplus B' = D_B = X + A = 0$
- Next state A = B =
- New output $Z = A \oplus B =$
- Repeat for each X

Clock

 D_B

ECE2060

Moore Machine Analysis Example:

- Analyze for input sequence X = 01101
- Output that results from application of given input appears after active clock edge
- Output sequence is displaced in time with respect to input sequence

X =	0	1	1	0	1	
A =	0	1	0	1	0	1
B =	0	0	1	1	1	1
Z =	(0)	1	1	0	1	0

ECE2060

Mealy Machine Analysis Example:

- In addition to depending on state of flip-flops, *A* and *B*
- Output *Z* also depends on input *X*

• Initially X = 1

•
$$Z =$$

$$J_A = XB =$$

$$K_B = XA =$$

•
$$J_R = K_A = X =$$

- Next state A : A = B , B = B
- New output Z =
- Repeat for subsequent values of *X*

- Z can change either:
 - When the state changes, or
 - When X changes
- Falling edge clock for these J-K flip-flops
- Initial state A = B = 0

ECE2060

Mealy Machine Analysis Example:

Analyze for input sequence

X = 10101

- next value X = 0
- Output back to 1 before next clock falling edge
- For clocked sequential circuits input values immediately before active clock edges determine next state

ECE2060

Mealy Machine Analysis Example:

- For clocked sequential circuits, input values immediately before active clock edges determine next state
- In a similar manner, output from Mealy circuit is of interest only immediately before active clock edge
- Extra output changes between active clock edges should be ignored (
- Ignore false outputs by reading outputs just before active clock edge
- In this case, output sequence
- If output of Mealy circuit is read by another sequential circuit using the same clock the false outputs are automatically ignored by the second circuit

$$Z = 11001$$

Analysis by Transition Tables & Graphs

Basic Procedure to Find Output Sequence By Transition Tables and Graphs:

- 1. Determine equations for inputs to flip-flops and outputs from circuit
- 2. Derive next-state equations for each flip-flop from its input equations (using flip-flop next-state relations
 - D: $Q^+ = D$
 - D-CE: $Q^+ = D \cdot CE + Q \cdot CE'$
 - T: $Q^+ = TQ' + T'Q = T \oplus Q$
 - S-R: $Q^+ = S + R'Q$
 - J-K: $Q^+ = JQ' + K'Q$
- 3. Plot a next-state map for each flip-flop
- 4. Combine these maps to form the transition table that gives the next state of the flip-flop as a function of current state and circuit inputs
- 5. Use the transition table to form the state table
- 6. Use the state table to draw the state graph

THE OHIO STATE UNIVERSITY

COLLEGE OF ENGINEERING

ECE2060

Analysis by Transition Tables & Graphs

- 1. Determine equations for inputs to flip-flops and outputs from circuit
- $D_A = X \oplus B'$
- $D_R = X + A$
- $Z = A \oplus B$
- These are same as when worked before
- Except before we plugged in values of all variables for the initial state right away
- And then repeated as we stepped through each state

The Ohio State University

COLLEGE OF ENGINEERING

ECE2060

Analysis by Transition Tables & Graphs

- $D_A = X \oplus B'$
- $D_R = X + A$
- $Z = A \oplus B$
- 2. Derive next-state equations for each flip-flop from its input equations (using flip-flop next-state relations)

$$Q^+ = D$$

- $A^+ = X \oplus B'$
- $B^{+} = X + A$

THE OHIO STATE UNIVERSITY

COLLEGE OF ENGINEERING

ECE2060

Analysis by Transition Tables & Graphs

- $A^+ = X \oplus B'$
- $B^+ = X + A$
- $Z = A \oplus B$
- 3. Plot a next-state map for each flip-flop

THE OHIO STATE UNIVERSITY

COLLEGE OF ENGINEERING

ECE2060

Analysis by Transition Tables & Graphs

- $Z = A \oplus B$
- 4. Combine these maps to form the transition table that gives the next state of the flip-flop as a function of current state and circuit inputs

	A^+B^+		
AB	X = 0	X = 1	$Z = A \oplus B$
00	10		0
01	00		1
11	01		0
10	11		1

A+		
A^+_{AB}	0	1
00	1	0
01	0	1
11	0	1
10	1	0

$B^+_{AB}^{X}$	0	1
00	0	1
01	0	1
11	1	1
10	1	1

Analysis by Transition Tables & Graphs

Repeat Moore example using these techniques:

• $Z = A \oplus B$

State Name definitions for this example

4. Combine these maps to form the transition table that gives the next state of the flip-flop as a function of current state and circuit inputs

	A^+	B^+	
AB	X = 0	X = 1	$Z = A \oplus B$
00	10	01	0
01	00	11	1
11	01	11	0
10	11	01	1

Present	Next State		Present Output
State	X = 0	X = 1	$Z = A \oplus B$
S_0			0
S_1			1
S_2			0
S_3			1

Analysis by Transition Tables & Graphs

Repeat Moore example using these techniques:

If in S_0 and X = 0, go to S_3 at next active clock edge

If in S_0 and X = 1, go to S_1 at next active clock edge

If in S_1 and X = 1, go to S_2 at next active clock edge

If in S_2 and X = 0, go to S_1 at next active clock edge ... etc.

Present	Next State		Present Output
State	X = 0	X = 1	$Z = A \oplus B$
S_0	S_3	\mathcal{S}_1	0
S_1	S_0	S_2	1
S_2	S_1	S_2	0
S_3	S_2	S_1	1