

- Prelegerea 7.2 - WEP

Adela Georgescu, Ruxandra F. Olimid

Facultatea de Matematică și Informatică Universitatea din București

Cuprins

1. Informații generale

2. Descriere

3. Securitate

Informații generale

WEP este:

- definit ca standard IEEE 802.11 în 1999;
- ► folosit pentru criptare în cadrul rețelor fără fir;
- ▶ înlocuit de WPA, apoi WPA2.

Informații generale

[https://wigle.net/stats]

Descriere

- ▶ WEP utilizează RC4;
- ► Introduce în plus (Cyclic Redundancy Check) cu rolul de a detecta eventuale erori de transmisiune;
- ► IV este transmis către destinatar, împreună cu c (IV||c), fiind necesar pentru decriptare .

Descriere

Detalii de implementare:

- ► |*IV*| = 24 (biţi)
- ► IV se utilizează în counter mode (0, 1, 2, ...)

	criptat cu RC4	
IV	m	CRC(m)

Problema 1: Utilizarea multiplă a lui IV

▶ Întrebare: Ce efect imediat are utilizarea multiplă a lui *IV* pentru o cheie fixată *k*?

Problema 1: Utilizarea multiplă a lui IV

- ▶ Întrebare: Ce efect imediat are utilizarea multiplă a lui IV pentru o cheie fixată k?
- Răspuns: Se obține întotdeauna aceeași cheie fluidă k_r

$$IV_1 = IV_2 = IV \Rightarrow k_{f1} = k_{f2} = PRG(IV||k)$$

Problema 1: Utilizarea multiplă a lui IV

- ▶ Întrebare: Ce efect imediat are utilizarea multiplă a lui *IV* pentru o cheie fixată *k*?
- Răspuns: Se obține întotdeauna aceeași cheie fluidă k_r

$$IV_1 = IV_2 = IV \Rightarrow k_{f1} = k_{f2} = PRG(IV||k)$$

Întrebare: Sistemul rămâne sigur în aceste condiții?

Problema 1: Utilizarea multiplă a lui IV

- ▶ Întrebare: Ce efect imediat are utilizarea multiplă a lui IV pentru o cheie fixată k?
- Răspuns: Se obține întotdeauna aceeași cheie fluidă k_r

$$IV_1 = IV_2 = IV \Rightarrow k_{f1} = k_{f2} = PRG(IV||k)$$

- ▶ Întrebare: Sistemul rămâne sigur în aceste condiții?
- ► Răspuns: NU!

$$c_1 = m_1 \oplus k_{f1}, c_2 = m_2 \oplus k_{f2} \Rightarrow c_1 \oplus c_2 = m_1 \oplus m_2$$

Exemplu:

- ightharpoonup dacă A cunoaște m_1 , atunci poate determina m_2
- $ightharpoonup \mathcal{A}$ poate determina m_1 și m_2 folosind analiza statistică

▶ Întrebare: Câte valori posibile poate lua IV?

▶ Întrebare: Câte valori posibile poate lua IV?

► Răspuns: 2²⁴

▶ Întrebare: Câte valori posibile poate lua IV?

► Răspuns: 2²⁴

Cum un AP (Access Point) trimite aproximativ 1000 pachete/s, valoarea lui IV se repetă la cel mult la câteva ore!

▶ Întrebare: Câte valori posibile poate lua IV?

► Răspuns: 2²⁴

- Cum un AP (Access Point) trimite aproximativ 1000 pachete/s, valoarea lui IV se repetă la cel mult la câteva ore!
- ▶ Mai mult, există echipamente care resetează IV la fiecare repornire!

Problema 2: Liniaritatea

▶ Întrebare: Făcând abstracție de CRC, A poate modifica mesajul criptat transmis după bunul său plac?

Problema 2: Liniaritatea

- ▶ Întrebare: Făcând abstracție de CRC, A poate modifica mesajul criptat transmis după bunul său plac?
- ► Răspuns: DA!

$$(m_1 \oplus m_2) \oplus k_f = (m_1 \oplus k_f) \oplus m_2$$

Exemplu:

 $ightharpoonup \mathcal{A}$ interceptează c_1 și îl transformă în c_2

	criptat cu RC4		
IV	m_1	CRC(m ₁)	
	\oplus		
	1001110		
	criptat cu RC4		
IV	m_2	CRC(m ₂)	

► CRC poate detecta erorile de transmisiune (neintenţionate) dar nu şi modificarile premeditate (intenţionate)

- CRC poate detecta erorile de transmisiune (neintenţionate)
 dar nu şi modificarile premeditate (intenţionate)
- ightharpoonup În aceste condiții, ${\cal A}$ poate modifica mesajele transmise:
 - ▶ prin XOR-are cu secvențe (convenabile) de biți
 - prin amestecarea biților din mesajul interceptat

Important de reținut!

▶ O proastă implementare / utilizare poate diminua considerabil securitatea unui sistem!