Бесконечно малые функции

Функция $\alpha(x)$ называется бесконечно малой функцией при $x \to x_0$, если $\lim_{x \to x_0} \alpha(x) = 0$.

1. Функции $\alpha_1(x)$ и $\alpha_2(x)$ называются бесконечно малыми одного порядка при $x \to x_0$, если

$$\lim_{x \to x_0} \frac{\alpha_1(x)}{\alpha_2(x)} = A, A \neq 0, A \in \mathbb{R};$$

2. Функция $\alpha_1(x)$ называется бесконечно малой высшего порядка, чем $\alpha_2(x)$ при $x \to x_0$, если

$$\lim_{x\to x_0}\frac{\alpha_1(x)}{\alpha_2(x)}=0;$$

3. Функция $\alpha_1(x)$ называется бесконечно малой низшего порядка, чем $\alpha_2(x)$ при $x \to x_0$, если

$$\lim_{x\to x_0}\frac{\alpha_1(x)}{\alpha_2(x)}=\infty;$$

4. Функция $\alpha_1(x)$ называется бесконечно малой k-го порядка относительно $\alpha_2(x)$ при $x \to x_0$, если

$$\lim_{x \to x_0} \frac{\alpha_1(x)}{\alpha_2^k(x)} = A, A \neq 0, A \in \mathbb{R}$$

5. Бесконечно малые функции $\alpha_1(x)$ и $\alpha_2(x)$ называются *несравнимыми* при $x \to x_0$, если в точке x_0 не существует предела их отношения.

Приведенные выше определения остаются в силе при $x\to\infty,\ x\to+\infty,\ x\to-\infty$ и при $x\to x_0\pm 0$.

Некоторые эквивалентные бесконечно малые функции

$\sin x \sim x, x \to 0$	$e^{x} - 1 \sim x, x \rightarrow 0$
$tg x \sim x, x \to 0$	$a^{x} - 1 \sim x \ln a, x \rightarrow 0$
$\arcsin x \sim x, x \to 0$	$\log_{a}(1+x) \sim x \log_{a} e, x \to 0$
$arctg x \sim x, x \rightarrow 0$	$\ln(1+x) \sim x, x \to 0$
$1 - \cos x \sim \frac{x^2}{2}, x \to 0$	$(1+x)^k - 1 \sim k x, x \to 0, k > 0$