Prof. Dr. Ir. Dr. h. c. Joost-Pieter Katoen

Christian Hensel, Matthias Volk

Introduction to Model Checking (Summer Term 2018)

— Solution 8 (due 25th June) —

General Remarks

- The exercises are to be solved in groups of *three* students.
- You may hand in your solutions for the exercises just before the exercise class starts at 12:15 or by dropping them into the "Introduction to Model Checking" box at our chair before 12:00. Do not hand in your solutions via L2P or via e-mail.
- If a task asks you to justify your answer, an explanation of your reasoning is sufficient. If you are required to prove a statement, you need to give a *formal* proof.

General Notation

In the following we transform LTL formulae into the corresponding GNBAs. As an example consider the LTL formula $\varphi = a \cup (\neg a \wedge b)$ from the lecture. We order the subformulae of φ from the innermost formulae to the outermost, and from left to right. In our example we get the subformulae $a, b, \neg a \wedge b$ and φ . The elementary sets are given in the following table where we order the sets by their binary encoding:

B	a	b	$\neg a \wedge b$	φ
$\overline{B_1}$	0	0	0	0
B_2	0	1	1	1
B_3	1	0	0	0
B_4	1	0	0	1
B_5	1	1	0	0
B_6	1	1	0	1

Moreover, for the GNBA \mathcal{G}_{φ} the transition relation can be given as a table where the rows and columns correspond to states of \mathcal{G}_{φ} and the entries are either empty (representing "no transition") or contain an element from 2^{AP} (representing the character that can be used for the transition).

For example, an extract of the transition relation for the GNBA \mathcal{G}_{φ} is given in the following.

	B_1	B_2	B_3	B_4	B_5	B_6
B_1	Ø	Ø	Ø	Ø	Ø	Ø
B_2						
B_3	<i>{a}</i>		<i>{a}</i>		<i>{a}</i>	

Exercise 1★

(1+3+3 Points)

Let AP = $\{a,b\}$. Let $\varphi = (a \to \bigcirc \neg b) \ W \ (a \land b)$ as in exercise sheet 7.2.

(a) Transform $\neg \varphi$ into an equivalent LTL formula φ' (i.e., $Words(\neg \varphi) = Words(\varphi')$) which is constructed according to the following grammar:

$$\varphi ::= true \mid false \mid a \mid b \mid \varphi \land \varphi \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi \lor \varphi.$$

- (b) Compute all elementary sets with respect to $closure(\varphi')$.
- (c) Construct the GNBA $\mathcal{G}_{\varphi'}$ according to the algorithm from the lecture such that $\mathcal{L}_{\omega}(\mathcal{G}_{\varphi'}) = Words(\varphi')$. It suffices to provide the initial states, the acceptance set and the transition relation of $\mathcal{G}_{\varphi'}$ as a table.

Solution: _____

(a) We transform $\neg \varphi$ into an equivalent LTL formula φ' similar to exercise 7.2:

$$\neg \varphi
\equiv \neg ((a \to \bigcirc \neg b) \ \mathsf{W} \ (a \land b))
\equiv ((a \to \bigcirc \neg b) \land \neg (a \land b)) \ \mathsf{U} \ (\neg (a \to \bigcirc \neg b) \land \neg (a \land b))
\equiv ((\neg a \lor \bigcirc \neg b) \land \neg (a \land b)) \ \mathsf{U} \ (\neg (\neg a \lor \bigcirc \neg b) \land \neg (a \land b))
\equiv ((\neg a \lor \bigcirc \neg b) \land \neg (a \land b)) \ \mathsf{U} \ ((a \land \neg \bigcirc \neg b) \land \neg (a \land b))
\equiv ((\neg a \land \neg \bigcirc \neg b) \land \neg (a \land b)) \ \mathsf{U} \ ((a \land \neg \bigcirc \neg b) \land \neg (a \land b))
\equiv (\neg (a \land \neg \bigcirc \neg b) \land \neg (a \land b)) \ \mathsf{U} \ ((a \land \neg \bigcirc \neg b) \land \neg (a \land b))
\equiv (\neg (a \land \bigcirc b) \land \neg (a \land b)) \ \mathsf{U} \ ((a \land \bigcirc b) \land \neg (a \land b))
(* definition of φ *)$$

In the end

$$\varphi' = (\neg(a \land \bigcirc b) \land \neg(a \land b)) \cup ((a \land \bigcirc b) \land \neg(a \land b))$$

(b) We denote:

$$\psi_1 = a \land \bigcirc b$$

$$\psi_2 = a \land b$$

$$\psi_3 = \neg \psi_1 \land \neg \psi_2$$

$$\psi_4 = \psi_1 \land \neg \psi_2$$

$$\varphi' = \psi_3 \lor \psi_4$$

We start by setting all possible combinations for "simple" subformulae:

#	a	$\mid b \mid$	$ \bigcirc b $	$a \land \bigcirc b$	$a \wedge b$	$\neg \psi_1 \wedge \neg \psi_2$	$\psi_1 \wedge \neg \psi_2$	$\psi_3 \ U \ \psi_4$
				ψ_1	ψ_2	ψ_3	ψ_4	arphi'
1	0	0	0	0	0	1	0	\overline{x}
2	0	0	1	0	0	1	0	x
3	0	1	0	0	0	1	0	x
4	0	1	1	0	0	1	0	x
5	1	0	0	0	0	1	0	x
6	1	0	1	1	0	0	1	x
7	1	1	0	0	1	0	0	x
8	1	1	1	1	1	0	0	x

Then we consider the first rule for local consistency for until formulae $\varphi_1 \cup \varphi_2$:

$$\varphi_2 \in B \Rightarrow \varphi_1 \cup \varphi_2 \in B$$

The result looks as follows:

7	#	a	b	$ \bigcirc b $	$a \land \bigcirc b$	$a \wedge b$	$\neg \psi_1 \wedge \neg \psi_2$	$\psi_1 \wedge \neg \psi_2$	$\psi_3 \ U \ \psi_4$
					ψ_1	ψ_2	ψ_3	ψ_4	arphi'
1	-	0	0	0	0	0	1	0	x
2	2	0	0	1	0	0	1	0	x
3	3	0	1	0	0	0	1	0	x
4	Į	0	1	1	0	0	1	0	x
5	5	1	0	0	0	0	1	0	x
6	;	1	0	1	1	0	0	1	1
7	7	1	1	0	0	1	0	0	x
8	3	1	1	1	1	1	0	0	x

Then we consider the second rule for local consistency for until formulae $\varphi_1 \cup \varphi_2$:

$$\varphi_1 \cup \varphi_2 \in B \text{ and } \varphi_2 \notin B \Rightarrow \varphi_1 \in B$$

The result looks as follows:

B	a	b	$ \bigcirc b $	$a \land \bigcirc b$	$a \wedge b$	$\neg \psi_1 \wedge \neg \psi_2$	$\psi_1 \wedge \neg \psi_2$	$\psi_3 \ U \ \psi_4$
				ψ_1	ψ_2	ψ_3	ψ_4	φ'
B_1	0	0	0	0	0	1	0	0
B_2	0	0	0	0	0	1	0	1
B_3	0	0	1	0	0	1	0	0
B_4	0	0	1	0	0	1	0	1
B_5	0	1	0	0	0	1	0	0
B_6	0	1	0	0	0	1	0	1
B_7	0	1	1	0	0	1	0	0
B_8	0	1	1	0	0	1	0	1
B_9	1	0	0	0	0	1	0	0
B_{10}	1	0	0	0	0	1	0	1
B_{11}	1	0	1	1	0	0	1	1
B_{12}	1	1	0	0	1	0	0	0
B_{13}	1	1	1	1	1	0	0	0

Notice that three sets were removed because they were not locally consistent with respect to φ' . In total, we have 13 elementary sets.

(c) The elementary sets form the states of the GNBA $\mathcal{G}_{\varphi'} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$. We have

$$Q = \{B_1, \dots, B_{13}\}$$

$$Q_0 = \{B_2, B_4, B_6, B_8, B_{10}, B_{11}\}$$

$$\mathcal{F} = \{F_{\psi_3 \cup \psi_4}\}, \text{ where}$$

$$F_{\psi_3 \cup \psi_4} = \{B_1, B_3, B_5, B_7, B_9, B_{11}, B_{12}, B_{13}\}$$

The transition relation is given as follows:

	B_1	B_2	B_3	B_4	B_5	B_6	B_7	B_8	B_9	B_{10}	B_{11}	B_{12}	B_{13}
B_1	Ø		Ø						Ø				
B_2		Ø		Ø						Ø	Ø		
B_3					Ø		Ø					Ø	Ø
B_4						Ø		Ø					
B_5	{b}		$\{b\}$						{b}				
B_6		{b}		{b}						{b}	{b}		
B_7					{b}		{b}					{b}	{b}
$\overline{B_8}$						{b}		{b}					
B_9	$\{a\}$		$\{a\}$						$\{a\}$				
B_{10}		$\{a\}$		$\{a\}$						$\{a\}$	$\{a\}$		
B_{11}					$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$				$\{a\}$	$\{a\}$
B_{12}	$\{a,b\}$	$\{a,b\}$	$\{a,b\}$	$\{a,b\}$					$\{a,b\}$	$\{a,b\}$	$\{a,b\}$		
B_{13}					$\{a,b\}$	$\{a,b\}$	$\{a,b\}$	$\{a,b\}$				$\{a,b\}$	$\{a,b\}$

Following the first rule $\bigcirc b \in B \implies b \in B'$ allows for the following transitions:

$$B_i$$
 with $i = 3, 4, 7, 8, 11, 13 \rightarrow B' \in \{B_5, B_6, B_7, B_8, B_{12}, B_{13}\}$

Following the first rule $\bigcirc b \notin B \implies b \notin B'$ allows for the following transitions:

$$B_i$$
 with $i = 1, 2, 5, 6, 9, 10, 12 \rightarrow B' \in \{B_1, B_2, B_3, B_4, B_9, B_{10}, B_{11}\}$

Following the second rule $\varphi_1 \cup \varphi_2 \in B \implies (\varphi_2 \in B) \vee (\varphi_1 \in B \wedge \varphi_1 \cup \varphi_2 \in B')$ allows for the following transitions:

$$B_i$$
 with $i = 2, 4, 6, 8, 10 \rightarrow B' \in \{B_2, B_4, B_6, B_8, B_{10}, B_{11}\}$ and $B_{11} \rightarrow B' \in \{B_1, ..., B_{13}\}$

Following the second rule $\varphi_1 \cup \varphi_2 \notin B \implies (\varphi_2 \notin B) \wedge (\varphi_1 \notin B \vee \varphi_1 \cup \varphi_2 \notin B')$ allows for the following transitions:

$$B_i$$
 with $i = 1, 3, 5, 7, 9 \implies B' \in \{B_1, B_3, B_5, B_7, B_9, B_{12}, B_{13}\}$ and $B_{12}, B_{13} \rightarrow B' \in \{B_1, ..., B_{13}\}$

The final transitions are the *intersection* of the transitions that are allowed by the first and the second rule for each elementary set B.

Exercise 2

$$(1+3+3+2+1+2 \text{ Points})$$

Let $\varphi = \Box (a \to ((\neg b) \cup (a \land b)))$ over the set $AP = \{a, b\}$ of atomic propositions. We are interested in checking whether TS $\models \varphi$ where TS is the following transition system:

(a) Convert $\neg \varphi$ into an equivalent LTL-formula ψ which is constructed according to the following grammar:

$$\varphi ::= true \mid false \mid a \mid b \mid \varphi \land \varphi \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi \cup \varphi.$$

Derive $closure(\psi)$.

- (b) Give all elementary sets wrt. $closure(\psi)$.
- (c) Construct the GNBA \mathcal{G}_{ψ} using the algorithm given in the lecture. It suffices to provide its initial states, its acceptance set and its transition relation.
 - Hint: Give the transition relation as a table where the rows and columns correspond to states of \mathcal{G}_{ψ} and the entries are either empty (representing "no transition") or contain an element from 2^{AP} (representing the character that can be used for the transition).
- (d) Now, construct a non-blocking NBA $\mathcal{A}_{\neg\varphi}$ directly from $\neg\varphi$, i.e. without relying on \mathcal{G}_{ψ} . Provide an intuitive explanation of why your automaton recognizes the right language. The latter is absolutely essential to earn points for this task.

Hint: Four states suffice. Consider rewriting $\neg \varphi$ using the release operator and recall that $\varphi \bowtie \psi$ intuitively expresses that φ "releases" ψ . That is, ψ either holds all the time or at some point $\varphi \wedge \psi$ holds and at all previous positions ψ holds.

- (e) Construct $TS \otimes \mathcal{A}_{\neg \varphi}$.
- (f) Apply the nested depth-first search (lecture 11, slides 150 and 159) to TS $\otimes \mathcal{A}_{\neg \varphi}$ for the persistence property "eventually forever $\neg F$ ", where F is the acceptance set of $\mathcal{A}_{\neg \varphi}$. To illustrate the steps:
 - before each *Pop* operation give:
 - for the first DFS the contents of stack π and set U, and
 - for the second DFS the contents of stack ξ and set V.
 - indicate whenever $CYCLE_CHECK(...)$ is called or returns a result (including the result itself).

• indicate when and which result the outer DFS returns.

Give the stack contents from left to right, in the sense that the topmost element is on the right. Does $TS \models \varphi$ hold? In case the property is refuted, give the counterexample returned by the algorithm.

Solution: _____

(a)

$$\neg \varphi = \neg \Box (a \to (\neg b \cup (a \land b)))
\equiv \Diamond \neg (\neg a \lor (\neg b \cup (a \land b)))
\equiv \Diamond (a \land \neg (\neg b \cup (a \land b)))
\equiv \underbrace{true \cup (a \land \neg (\neg b \cup (a \land b)))}_{yb}$$

We then compute the closure:

$$\begin{aligned} closure(\psi) &= \{ \, true, false, a, \neg a, b, \neg b \\ &\quad a \wedge b, \neg (a \wedge b), \neg b \, \, \mathsf{U} \, \, (a \wedge b), \neg (\neg b \, \, \mathsf{U} \, \, (a \wedge b)), \\ &\quad a \wedge \neg (\neg b \, \, \mathsf{U} \, \, (a \wedge b)), \neg (a \wedge \neg (\neg b \, \, \mathsf{U} \, \, (a \wedge b))), \psi, \neg \psi \, \, \} \end{aligned}$$

(b) We let

$$\begin{split} &\psi_1 = (a \wedge b) \\ &\psi_2 = \neg b \; \mathsf{U} \; (a \wedge b) = \neg b \; \mathsf{U} \; \psi_1 \\ &\psi_3 = a \wedge \neg (\neg b \; \mathsf{U} \; (a \wedge b)) = a \wedge \neg \psi_2 \\ &\psi_4 = true \; \mathsf{U} \; \psi_3 \end{split}$$

The elementary sets are as follows:

$ a \wedge b \neg b \cup \psi_1$	$a \wedge \neg \psi_2$	true U ψ_3
$ a b \psi_1 \psi_2$	ψ_3	ψ
B_1 0 0 0 0	0	0
$B_2 0 0 0 0$	0	1
$B_3 0 0 0 1$	0	0
$B_4 0 0 0 1$	0	1
$B_5 0 1 0 0$	0	0
$B_6 0 1 0 0$	0	1
$B_7 \mid 1 \mid 0 \mid 0 \mid 0$	1	1
$B_8 \ \ 1 \ \ 0 \ \ 0 \ \ 1$	0	0
$B_9 \ \ 1 \ \ 0 \ \ 0 \ \ 1$	0	1
$B_{10} 1 1 1 1$	0	0
$B_{11} 1 1 1 1$	0	1

(c) The elementary sets form the states of the GNBA $\mathcal{G}_{\neg\varphi} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$. We have

$$\begin{split} Q &= \{B_1, \dots, B_{11}\} \\ Q_0 &= \{B_2, B_4, B_6, B_7, B_9, B_{11}\} \\ \mathcal{F} &= \left\{F_{\neg b \ \cup \ (a \land b)}, F_{\psi}\right\}, \text{ where} \\ F_{\neg b \ \cup \ (a \land b)} &= \{B_1, B_2, B_5, B_6, B_7, B_{10}, B_{11}\} \\ F_{\psi} &= \{B_1, B_3, B_5, B_7, B_8, B_{10}\} \end{split}$$

The transition relation is given as follows:

	B_1	B_2	B_3	B_4	B_5	B_6	B_7	B_8	B_9	B_{10}	B_{11}
B_1	Ø				Ø						
B_2		Ø				Ø	Ø				
B_3			Ø					Ø		Ø	
B_4				Ø					Ø		Ø
$\overline{B_5}$	{b}		{b}		{b}			{b}		{b}	
B_6		{b}		{b}		{b}	{b}		{b}		$\{b\}$
B_7	<i>{a}</i>	<i>{a}</i>			<i>{a}</i>	<i>{a}</i>	<i>{a}</i>				
B_8			<i>{a}</i>					<i>{a}</i>		<i>{a}</i>	
B_9				<i>{a}</i>					{a}		$\{a\}$
B_{10}	$\{a,b\}$		$\{a,b\}$		$\{a,b\}$			$\{a,b\}$		$\{a,b\}$	
B_{11}		$\{a,b\}$		$\{a,b\}$		$\{a,b\}$	$\{a,b\}$		$\{a,b\}$		$\{a,b\}$

(d) We rewrite $\neg \varphi$ as follows:

$$\neg \varphi \equiv \neg \Box (a \to (\neg b \cup (a \land b)))
\equiv \Diamond \neg (\neg a \lor (\neg b \cup (a \land b)))
\equiv \Diamond (a \land \neg (\neg b \cup (a \land b)))
\equiv \Diamond (a \land \underbrace{(b \land (\neg a \lor \neg b))}_{\psi_1})
\underline{\qquad \qquad \qquad }_{\psi_1}$$

In particular, we have

$$\begin{split} & (b \; \mathsf{R} \; (\neg a \vee \neg b)) \\ & \equiv \Box \; (\neg a \vee \neg b) \vee \Big(\; (\neg a \vee \neg b) \; \; \mathsf{U} \; \big(b \wedge (\neg a \vee \neg b) \big) \Big) \\ & \equiv \underbrace{\Box \; \big(\neg a \vee \neg b \big)}_{\psi_2} \vee \underbrace{\Big(\; (\neg a \vee \neg b) \; \; \mathsf{U} \; \; \big(\neg a \wedge b \big) \Big)}_{\psi_3} \end{split}$$

From this form, we construct the NBA $\mathcal{A}_{\neg\varphi}$ that recognizes $Words(\neg\varphi)$ as follows:

The underlying idea is as follows. For an infinite word $\sigma = A_0 A_1 \dots$, the automaton nondeterministically guesses the position i such that $A_i A_{i+1} \dots \models \psi$ holds and loops in the first state q_0 until that point. In particular $A_i A_{i+1} \dots \models \psi_1$ and therefore $a \in A_i$ and also $A_i A_{i+1} \dots \models \psi_1$ and therefore $A_i A_{i+1} \dots \models \psi_2 \vee \psi_3$. As $a \in A_i$, both ψ_2 and ψ_3 imply that $b \notin A_i$. Therefore, the transition from q_0 to q_1 requires $a \wedge \neg b$. If in q_1 , we have already seen an a and only require ψ_1 , or equivalently, $\psi_2 \vee \psi_3$ from this point on. Seeing $a \wedge b$ violates both disjuncts of $\psi_2 \vee \psi_3$ and therefore the corresponding transition leads into a trap state since no such word is accepted. Similarly, seeing $\neg a \wedge b$ makes the word satisfy ψ_3 and the corresponding transition leads into a state q_2 from which every continuation of the word is accepted. Finally, seeing $\neg b$ in q_1 leads back to q_1 itself as this intuitively delays the decision if the word is to be expected by one position. That is, after seeing any number of $\neg b$, the word may still satisfy $\psi_2 \vee \psi_3$ (by either looping in q_2 forever or seeing $\neg a \wedge b$) but may also still violate it (by seeing an $a \wedge b$).

(e) The product transition system $TS \otimes A_{\neg \varphi}$ is depicted below:

- (f) To prove TS $\not\models \varphi$, we check the persistence property P_{pers} = "eventually forever $\neg \Phi''$ where $\Phi = q_1 \lor q_2$ on the product transition system TS $\otimes \mathcal{A}_{\neg \varphi}$. Using the nested depth-first search algorithm, we search for a reachable cycle in the product containing at least one state whose second component corresponds to an accepting state in $\mathcal{A}_{\neg \varphi}$. We denote the stack content from *left to right* in the sense that the top element is on the right. The algorithm then proceeds as follows.
 - Initial state (1st DFS): $\langle s_0, q_0 \rangle$

$$\pi = \langle s_0, q_0 \rangle \langle s_3, q_1 \rangle \langle s_0, q_1 \rangle \langle s_1, q_2 \rangle \langle s_2, q_2 \rangle \langle s_3, q_2 \rangle \langle s_0, q_2 \rangle$$

$$U = \{ \langle s_0, q_0 \rangle, \langle s_3, q_1 \rangle, \langle s_0, q_1 \rangle, \langle s_1, q_2 \rangle, \langle s_2, q_2 \rangle, \langle s_3, q_2 \rangle, \langle s_0, q_2 \rangle \}$$

$$\xi = \varepsilon$$

$$V = \emptyset$$

State $\langle s_3, q_2 \rangle$ is popped from π as all its successors $(\langle s_1, q_2 \rangle)$ and $\langle s_3, q_2 \rangle)$ are already in U.

- We have $\langle s_0, q_2 \rangle \not\models \neg \Phi$ and therefore $CYCLE_CHECK(s_0, q_2)$ is invoked.
- Initial state (2nd DFS): $\langle s_0, q_2 \rangle$

$$\pi = \langle s_0, q_0 \rangle \langle s_3, q_1 \rangle \langle s_0, q_1 \rangle \langle s_1, q_2 \rangle \langle s_2, q_2 \rangle \langle s_3, q_2 \rangle$$

$$U = \{ \langle s_0, q_0 \rangle, \langle s_3, q_1 \rangle, \langle s_0, q_1 \rangle, \langle s_1, q_2 \rangle, \langle s_2, q_2 \rangle, \langle s_3, q_2 \rangle, \langle s_0, q_2 \rangle \}$$

$$\xi = \langle s_0, q_2 \rangle \langle s_3, q_2 \rangle$$

$$V = \{ \langle s_0, q_2 \rangle, \langle s_3, q_2 \rangle \}$$

Since $\langle s_0, q_2 \rangle \in \text{Post}(\langle s_3, q_2 \rangle)$, $CYCLE_CHECK(s_0, q_2)$ returns true.

• The outer DFS returns "no" and we conclude that TS $\not\models \varphi$. Additionally, the nested DFS algorithm returns the following counterexample (to be read from left to right)

$$reverse(\pi, \xi) = \underbrace{\langle s_0, q_0 \rangle \langle s_3, q_1 \rangle \langle s_0, q_1 \rangle \langle s_1, q_2 \rangle \langle s_2, q_2 \rangle \langle s_3, q_2 \rangle}_{reverse(\pi)} \underbrace{\langle s_0, q_2 \rangle \langle s_3, q_2 \rangle}_{reverse(\xi)}$$

Exercise 3 (1 Points)

Let φ be an LTL-formula over a set of atomic propositions AP. Let $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$ be a GNBA for $Words(\varphi)$ that is the result of the LTL-to-GNBA construction presented in the lecture applied to an LTL formula φ .

Prove that for all elementary sets $B \subseteq closure(\varphi)$ and for all $B' \in \delta(B, B \cap AP)$, it holds:

$$\neg \cap \psi \in B \iff \psi \notin B'.$$

Solution: _

According to the definition of the transition function δ , it is:

$$\bigcirc \psi \in B \iff \psi \in B', \tag{8.1}$$

which is equivalent to

$$\bigcirc \psi \notin B \iff \psi \notin B'. \tag{8.2}$$

By the maximality constraint, we have

$$\bigcirc \psi \notin B \Rightarrow \neg \bigcirc \psi \in B. \tag{8.3}$$

Finally, by local consistency with respect to negation, we have

$$\neg \bigcirc \psi \in B \Rightarrow \bigcirc \psi \notin B \tag{8.4}$$

We can conclude

$$\neg \bigcirc \ \psi \in B \overset{(8.3+8.4)}{\Longleftrightarrow} \bigcirc \ \psi \not \in B \overset{(8.4)}{\Longleftrightarrow} \ \psi \not \in B'.$$