Barbara Partyka

Scenariusz 4

Temat ćwiczenia: Uczenie sieci regułą Hebba.

Celem ćwiczenia jest poznanie działania reguły Hebba dla sieci

jednowarstwowej na

przykładzie grupowania liter alfabetu.

Model neuronu Hebba.

Model ten ma identyczną strukturę jak w przypadku modelu typu Adaline oraz neuronu sigmoidalnego, ale charakteryzuje się specyficzną metodą uczenia, znaną pod nazwą reguły Hebba. Reguła ta występuje z nauczycielem jak i bez nauczyciela. Hebb zauważył podczas badań działania komórek nerwowych, iż połączenie pomiędzy dwiema komórkami jest wzmacniane, jeśli w tym samym czasie obie komórki są aktywne.

Zaproponował on algorytm, zgodnie z którym modyfikację wag przeprowadza się następująco:

$w[i](t+1)=w[i](t) + \eta y x[i]$

Oznaczenia:

- i-numer wagi neuronu,
- t-numer iteracji w epoce,
- y-sygnał wyjściowy neuronu,
- x-wartość wejściowa neuronu,
- η współczynnik uczenia (0,1).

W przypadku pojedynczego neuronu w trakcie uczenia będziemy modyfikować wartość wag proporcjonalnie zarówno do wartości sygnału podanego na i-te wejście, jak i sygnału wyjściowego y z uwzględnieniem współczynnika uczenia. Zauważmy, że w przypadku tym nie podajemy wzorcowej wartości wyjściowej, stosujemy więc tu metodę uczenia bez nauczyciela.

(źródło: http://pracownik.kul.pl/files/31717/public/Model_neuronu_Hebba.pdf)

Stworzona sieć neuronowa posiada jedną warstwę, która posiada jeden neuron.

Dane uczące oraz testujące:

Dane uczące oraz testujące są takie same i zawierają 26 liter alfabetu angielskiego. Stworzono dwa rodzaje notacji liter. Pierwsza to standardowa wersja reprezentacji zero-jedynkowej.

Każda linijka reprezentuje kolejne litery alfabetu.

Letter2.txt:

```
1111010001100011111101010011100011111
111101000110001100011000110001100011111
111111000010000111110100001000011111
1\,1\,1\,1\,1\,1\,0\,0\,0\,0\,1\,0\,0\,0\,0\,1\,1\,1\,1\,0\,1\,0\,0\,0\,0\,1\,0\,0\,0\,0\,1\,0\,0\,0\,0
01110100011000010111100011000101110
1\,0\,0\,0\,\overline{1}\,1\,0\,0\,0\,1\,1\,0\,0\,\overline{0}\,1\,1\,1\,1\,1\,1\,1\,0\,\overline{0}\,0\,1\,1\,0\,0\,0\,1\,\overline{1}\,0\,0\,0\,1
01110001000100010000100001000010001110
11111000010000100001000110001100011100
1\,0\,0\,0\,1\,1\,0\,0\,1\,0\,1\,0\,1\,0\,0\,1\,1\,0\,0\,0\,1\,0\,1\,0\,0\,1\,0\,0\,1\,0\,1\,0\,0\,1
1000111011101010001100011000110001
10001100011100110110101100111000110001
0\,1\,1\,1\,0\,1\,0\,0\,0\,1\,1\,0\,0\,0\,1\,1\,0\,0\,0\,1\,1\,0\,0\,0\,1\,1\,0\,0\,0\,1\,1\,1\,0
11110100011000111111010000100001000
0\,1\,1\,1\,0\,1\,0\,0\,0\,1\,1\,0\,0\,0\,1\,1\,0\,0\,0\,1\,1\,0\,1\,0\,1\,1\,0\,0\,1\,0\,1\,1\,0\,1
1111010001100011111101010001001010010
01110100011000011100000011100001100011100
1\,1\,1\,1\,1\,0\,0\,1\,0\,0\,0\,0\,1\,0\,0\,0\,0\,1\,0\,0\,0\,0\,1\,0\,0\,0\,0\,1\,0\,0
1000110001100011000110001100011000101110
1000110001100011000110001100010101000
100011000110001100011000110101010101010
1000110001010101000100010101010001
10001100010101010000100001000010000100
1\,1\,1\,1\,1\,0\,0\,0\,0\,1\,0\,0\,0\,1\,0\,0\,0\,1\,0\,0\,0\,1\,0\,0\,0\,1\,0\,0\,0\,1\,1\,1\,1\,1\,1
```

Wyniki uczenia:

Jedna epoka uczenia zawiera cały alfabet, czyli 26 liter. Testowanie nauczonego neuronu badano na trzy sposoby:

Stały współczynnik uczenia oraz liczba iteracji, zmienny współczynnik zapominania

Stały współczynnik zapominania oraz liczba iteracji, zmienny współczynnik uczenia

Stały współczynnik uczenia oraz zapominania, zmienna liczba iteracji

Stały współczynnik uczenia oraz liczba iteracji, zmienny współczynnik zapominania

Współczynnik uczenia = 0,1 Ilość iteracji = 10000

Współłczynnik zapominania = 0

Grupy:

PRSXO

M N

Współłczynnik zapominania = 0,1

Współłczynnik zapominania = 0,2

Współłczynnik zapominania = 0,42

Współłczynnik zapominania = 0,6

Współłczynnik zapominania = 0,8

Stały współczynnik zapominania oraz liczba iteracji, zmienny współczynnik uczenia:

Współczynnik zapominania = 0,1

Ilość iteracji = 10000

Współczynnik uczenia = 0,01

Rozpoznane grupy:

HILTUYMN

BDJRSX

ZE

Współczynnik uczenia = 0,05

Współczynnik uczenia = 0,1

Współczynnik uczenia = 0,25

Współczynnik uczenia = 0,5

Współczynnik uczenia = 0,75

Stały współczynnik uczenia oraz zapominania, zmienna liczba iteracji

Współczynnik uczenia = 0,1

Współłczynnik zapominania = 0,1

Ilość iteracji = 1

Ilość iteracji = 10

Illść iteracji = 100

Ilość iteracji = 1000

Ilość iteracji = 10000

Ilość iteracji = 100000

Rozponane grupy:

PRSTHI

GDX

WY

Analiza:

Współczynnik zapominania jest bardzo ważny w nauce sieci. Ustawiony na małą wartość powoduje wzmocnienie nowej wartości przy poprawianiu wag. Liczba iteracji ma najmniejszy wpływ.

Wnioski:

Neuron nie ma problemu z rozpoznawaniem liter, chociaż rozpoznaje tylko z jakiej grupy pochodzi litera. Wynika z tego ze algorytm Hebba jest poprawnym algorytem i wydajnym, gdyż program nie jest wysoce skompikowany a jednak proces uczenia przeszedł poprawnie.

Zmiana współczynników pozwoliła nam przeanalizować zależności między wspolczynnikami.

Listing kodu:

https://github.com/barbarapar/PSI_GCP03_zima_2017-2018_Barbara_Partyka