

Report Date
25 August 2016

Tumor Type

PEDIATRIC Bone osteosarcoma

Date of Birth	12 December 2002	Medical Facility	ABC Oncology		
Sex	Male	Ordering Physician	Smith, John	Specimen Received	21 July 2016
FMI Case #	SMP37669	Additional Recipient	Not Given	Specimen Site	Blood
Medical Record #	12345678	Medical Facility ID #	200313	Date of Collection	08 December 2016
Specimen ID	Not Given	Pathologist	Public, John Q	Specimen Type	Block

ABOUT THE TEST:

FoundationOne Heme™ is a next-generation sequencing (NGS) based assay that identifies genomic alterations within hundreds of cancer-related genes.

PATIENT RESULTS

3 genomic findings

1 therapy associated with potential clinical benefit

O therapies associated with lack of response

10 clinical trials

"Reduced sensitivity due to sample quality – See Appendix: Performance Specifications for details.

TUMOR TYPE: PEDIATRIC BONE OSTEOSARCOMA

Genomic Alterations Identified[†]

CCND3 amplification – equivocal*
CDK4 amplification
MYC amplification

THERAPEUTIC IMPLICATIONS

Genomic Findings Detected	FDA-Approved Therapies (in patient's tumor type)	FDA-Approved Therapies (in another tumor type)	Potential Clinical Trials
CCND3 amplification - equivocal	None	Palbociclib	Yes, see clinical trials section
CDK4 amplification	None	Palbociclib	Yes, see clinical trials section
MYC amplification	None	None	Yes, see clinical trials section

Note: Genomic alterations detected may be associated with activity of certain FDA-approved drugs; however, the agents listed in this report may have little or no evidence in the patient's tumor type. Neither the therapeutic agents nor the trials identified are ranked in order of potential or predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient's tumor type.

For more comprehensive information please log on to the Interactive Cancer Explorer™

To set up your Interactive Cancer Explorer account, contact your sales representative or call (888) 988-3639.

Electronically Signed by Jo-Anne Vergilio, M.D. | Jeffrey S. Ross, M.D., Medical Director | 25 August 2016 Foundation Medicine, Inc. / 1-888-988-3639 Sample Preparation: 150 Second St., 1st Floor, Cambridge, MA 02141 / CLIA:22D2027531
Sample Analysis: 150 Second St., 1st Floor, Cambridge, MA 02141 / CLIA:22D2027531

[†] For a complete list of the genes assayed and performance specifications, please refer to the Appendix

^{*} See Appendix for details

Report Date
25 August 2016

Tumor Type
PEDIATRIC Bone osteosarcoma

GENOMIC ALTERATIONS

GENE ALTERATION

INTERPRETATION

CCND3amplification -equivocal

Gene and Alteration: CCND3 encodes cyclin D3, a G1/S-specific cell cycle regulator. Cyclin D3 interacts with and regulates the cyclin-dependent kinases Cdk4 and Cdk6, resulting in the phosphorylation and inactivation of Rb and the progression of the cell cycle¹. CCND1 amplification correlates with Cyclin D1 overexpression and may lead to excessive proliferation and oncogenic growth^{2,3,4,5}.

Frequency and Prognosis: One study reports frequent high-level amplification of CCND3 in aggressive osteosarcomas (5/6)⁶. Another study reports consistent overexpression of CCND3 in all 13 osteosarcoma patient samples analyzed; 2 of 4 of these samples also showed CCND3 gene amplification⁷. CCND3 overexpression was not correlated with increased cyclin D3 protein levels in this study⁷. Increased expression of Cyclin D3 has been reported in bone and soft tissue sarcomas compared with leiomyomas and normal tissue, suggesting a role for this protein in bone and soft tissue tumors⁸.

Potential Treatment Strategies: Amplification or activation of CCND3 may predict sensitivity to CDK4/6 inhibitors^{9,10,11}, such as LEE011, abemaciclib, and the FDA-approved therapy palbociclib, all of which are under investigation in clinical trials (Infante et al., 2014; ASCO Abstract 2528, Shapiro et al., 2013; ASCO Abstract 2500)^{12,13}.

CDK4 amplification

Gene and Alteration: CDK4 encodes cyclin-dependent kinase 4, which regulates the cell cycle, senescence, and apoptosis¹⁴. CDK4 and its functional homolog CDK6 are activated by D-type cyclins and promote cell cycle progression by inactivating the retinoblastoma tumor suppressor protein (Rb)^{3,15}. CDK4 amplification correlates with high CDK4 gene and protein expression¹⁶.

Frequency and Prognosis: Amplification of CDK4 has been variously reported in 9-82% of osteosarcoma samples^{17,18,19,20,21}. CDK4 amplification has been reported to be relatively rare in conventional high-grade osteosarcoma but frequent in low-grade osteosarcomas, including parosteal osteosarcomas and low-grade central osteosarcomas, suggesting that CDK4 expression may help facilitate subclassification in osteosarcoma^{19,20,21}. Deregulation of the G1/S checkpoint genes, including CDK4, and expression of the cyclin D1/CDK4 complex have been associated with poor prognosis in osteosarcoma patients^{22,23}.

Potential Treatment Strategies: Amplification of CDK4 may predict sensitivity to CDK4/6 inhibitors, such as LEE011, abemaciclib, and the FDA-approved therapy palbociclib, all of which are under investigation in clinical trials (Infante et al., 2014; ASCO Abstract 2528, Shapiro et al., 2013; ASCO Abstract 2500)^{12,13,24}.

MYC amplification

Gene and Alteration: MYC (c-MYC) encodes a transcription factor that regulates several genes related to cell cycle regulation and cell growth. It is an oncogene and may be activated in as many as 20% of cancers²⁵. MYC deregulation (amplification, overexpression, translocation) has been identified in a number of different cancer types²⁶. MYC amplification has been significantly linked with increased mRNA and protein levels and results in the dysregulation of a large number of target genes^{25,27,28}.

Frequency and Prognosis: MYC amplification has been reported in 16% of osteosarcoma cases and has been significantly associated with poor prognosis¹⁸. In osteosarcoma, MYC amplification has been observed frequently with alterations of RB1¹⁸. c-Myc expression has been observed in up to 86% (48/56) of osteosarcomas, and has also been correlated with a poor prognosis²⁹.

Report Date 25 August 2016

Tumor Type
PEDIATRIC Bone osteosarcoma

GENE ALTERATION

INTERPRETATION

Potential Treatment Strategies: There are no available therapies that directly target MYC. However, preclinical studies have suggested several synthetic lethal strategies to indirectly target MYC; these studies have shown that cells that overexpress MYC protein may be sensitive to CDK1, CDK2, or Aurora kinase B inhibitors, including those that are under investigation in clinical trials^{30,31,32,33,34}. A patient with MYC-amplified invasive ductal breast carcinoma experienced a partial response to an Aurora kinase inhibitor35. Furthermore, in numerous preclinical studies, inhibition of BET bromodomaincontaining proteins, in particular BRD4, has been reported to downregulate MYC expression and MYCdependent gene expression programs in a variety of hematopoietic and solid tumor cancer models and primary cells^{36,37,38}. Phase 1 trials of the BET inhibitor OTX015 in patients with hematological malignancies reported clinical activity in patients with acute myeloid leukemia (AML) or lymphoma (Herait et al., 2015; TAT Abstract O7.3, Dombret et al., 2014; ASH Abstract 117, Thieblemont et al., 2014; ASH Abstract 4417). On the basis of preclinical (Sun et al., 2016; AACR Abstract 4634)^{39,40} and limited clinical (Younes et al., 2015; ASH Abstract 257)⁴¹ data, MYC alterations that lead to increased expression of MYC may predict sensitivity to combinatorial inhibition of HDAC and PI3K in diffuse large B-cell lymphoma (DLBCL); it is not clear whether this approach would be beneficial in other cancer types. MYC amplification has also been suggested to predict response to chemotherapy in patients with breast cancer in some studies^{42,43}. Preclinical evidence suggests that colon cancer cells with MYC amplification may be more sensitive to 5-fluorouracil and paclitaxel^{44,45}.

Report Date 25 August 2016

Tumor Type

PEDIATRIC Bone osteosarcoma

THERAPIES

There are no therapies FDA-approved in this patient's tumor type that are specific to the reported genomic alterations.

ADDITIONAL THERAPIES - FDA-APPROVED IN OTHER TUMOR TYPES

THERAPY SUMMARY OF DATA IN OTHER TUMOR TYPE

Palbociclib

Approved Indications: Palbociclib inhibits the cyclin-dependent kinases 4 and 6 (CDK4/6) and is FDA approved to treat hormone receptor (HR)-positive, HER2-negative advanced or metastatic breast cancer in combination with letrozole as first-line therapy for postmenopausal women or in combination with fulvestrant following progression on endocrine therapy.

Gene Association: Clinical studies in liposarcoma and mantle cell lymphoma as well as responses in patients with breast cancer or melanoma indicate that activation of cyclin D-CDK4/6 may predict sensitivity to therapies such as palbociclib (Infante et al., 2014; ASCO Abstract 2528)^{13,46,47}.

Supporting Data: Palbociclib has not been extensively studied in the context of osteosarcoma (PubMed, May 2016). Palbociclib has been studied primarily for the treatment of ER+ breast cancer^{24,48,49}. Single-agent palbociclib has shown limited activity against solid tumors, with a Phase 1 study reporting no partial responses (PR) and a 16% (6/37) stable disease (SD) rate (>9 months)¹². Phase 2 trials of palbociclib in patients with KRAS-mutant colorectal cancer or p16INK4a-deficient nonsmall cell lung cancer (NSCLC) also reported no responses, although SD was seen in 33% (5/15) and 50% (8/16) of patients, respectively (O'Hara et al., 2015; ASCO GI Abstract 626, Gopalan et al., 2014; ASCO Abstract 8077). A Phase 2 study of palbociclib for the treatment of advanced Rb-positive hepatocellular carcinoma reported disease control (responses or stable disease) for 9/21 (43%) patients, including one patient with a PR; the trial has met its primary endpoint (Littman et al., 2015; ASCO GI Abstract 277). For various tumor types, preclinical studies suggest that palbociclib may be useful in combination with other therapies targeting oncogenic drivers such as MEK, BRAF, PI3K, or IGF1R^{50,51,52,53,54}. Multiple preclinical studies demonstrate that loss or inactivation of Rb predicts resistance to palbociclib^{55,56,57,58}.

Genomic alterations detected may be associated with activity of certain FDA-approved drugs; however, the agents listed in this report may have little or no evidence in the patient's tumor type.

Report Date 25 August 2016

Tumor Type
PEDIATRIC Bone osteosarcoma

CLINICAL TRIALS TO CONSIDER

IMPORTANT: While every effort is made to ensure the accuracy of the information contained below, the information available in the public domain is continually updated and should be investigated by the physician or research staff. This is not meant to be a complete list of available trials. In order to conduct a more thorough search, please go to www.clinicaltrials.gov and use the search terms provided below. For more information about a specific clinical trial, type the NCT ID of the trial indicated below into the search bar.

GENE RATIONALE FOR POTENTIAL CLINICAL TRIALS

amplification - equivocal

CCND3 amplification may predict sensitivity to CDK4/6 inhibitors. Due to the limited number of clinical trials available for pediatric patients, clinical trials recruiting adults only are listed below for informational purposes. Examples of clinical trials that may be appropriate for this patient are listed below. These trials were identified through a search of the trial website clinical trials. gov using keyword terms such as "CDK4", "CDK6", "PD 0332991", "LEE011", "LY2835219", "palbociclib", "child", "osteosarcoma", "solid tumor", and/or "advanced cancer".

TITLE	PHASE	TARGETS	LOCATIONS	NCT ID
Targeted Agent and Profiling Utilization	Phase 2	CDK4, CDK6,	Michigan, North Carolina	NCT02693535
Registry (TAPUR) Study		Others		
Phase II Trial of the Cyclin-Dependent Kinase	Phase 2	CDK4, CDK6	Pennsylvania	NCT01037790
Inhibitor PD 0332991 in Patients With Cancer				
Abemaciclib in Children With Newly Diagnosed	Phase 1	CDK4, CDK6	Georgia	NCT02644460
Diffuse Intrinsic Pontine Glioma, and in				
Children With Recurrent and Refractory Solid				
Tumors Including Malignant Brain Tumors				
A Phase I Study of the CDK4/6 Inhibitor PD-	Phase 1	CDK4, CDK6	District of Columbia	NCT01522989
0332991, 5-Fluorouracil, and Oxaliplatin in				
Patients With Advanced Solid Tumor				
Malignancies				
Modular Phase II Study to Link Targeted	Phase 2	CDK4, CDK6	Texas	NCT02187783
Therapy to Patients With Pathway Activated				
Tumors: Module 8 - LEE011 for Patients With				
CDK4/6 Pathway Activated Tumors				

Report Date 25 August 2016

Tumor Type

PEDIATRIC Bone osteosarcoma

CLINICAL TRIALS TO CONSIDER (cont.)

GENE RATIONALE FOR POTENTIAL CLINICAL TRIALS

• CDK4
amplification

Amplification of CDK4 may predict sensitivity to CDK4/6 inhibitors. Due to the limited number of clinical trials available for pediatric patients, clinical trials recruiting adults only are listed below for informational purposes. Examples of clinical trials that may be appropriate for this patient are listed below. These trials were identified through a search of the trial website clinicaltrials.gov using keyword terms such as "CDK4", "CDK6", "PD 0332991", "LEE011", "LY2835219", "palbociclib", "child", "osteosarcoma", "solid tumor", and/or "advanced cancer".

TITLE	PHASE	TARGETS	LOCATIONS	NCT ID
A Phase I Study of the CDK4/6 Inhibitor PD-	Phase 1	CDK4, CDK6	District of Columbia	NCT01522989
0332991, 5-Fluorouracil, and Oxaliplatin in				
Patients With Advanced Solid Tumor				
Malignancies				
Modular Phase II Study to Link Targeted	Phase 2	CDK4, CDK6	Texas	NCT02187783
Therapy to Patients With Pathway Activated				
Tumors: Module 8 - LEE011 for Patients With				
CDK4/6 Pathway Activated Tumors				
PIPA: A Phase Ib Study to Assess the Safety,	Phase 1	CDK4, CDK6,	London (United Kingdom)	NCT02389842
Tolerability and Efficacy of the PI3K Inhibitors,		PI3K		
Taselisib (GDC-0032) or Pictilisib (GDC-0941), in				
Combination With PAlbociclib, With the				
Subsequent Addition of Fulvestrant in PIK3CA-				
mutant Breast Cancers				
Abemaciclib in Children With Newly Diagnosed	Phase 1	CDK4, CDK6	Georgia	NCT02644460
Diffuse Intrinsic Pontine Glioma, and in				
Children With Recurrent and Refractory Solid				
Tumors Including Malignant Brain Tumors				
Targeted Agent and Profiling Utilization	Phase 2	CDK4, CDK6,	Michigan, North Carolina	NCT02693535
Registry (TAPUR) Study		Others		

For more comprehensive information please log on to the Interactive Cancer Explorer™

To get up your lateractive Cancer Explorer account contact your caller concentative or call.

Report Date 25 August 2016

Tumor Type
PEDIATRIC Bone osteosarcoma

CLINICAL TRIALS TO CONSIDER (cont.)

GENE

RATIONALE FOR POTENTIAL CLINICAL TRIALS

MYC amplification

Several strategies are under investigation to address amplification or overexpression of MYC in human cancer. These strategies include inhibition of CDKs, especially CDK1 and CDK2; Aurora kinases, particularly Aurora kinase B; as well as BET inhibitors, reported to down-regulate MYC expression and MYC-dependent transcriptional programs in a variety of human cancer models. Due to the limited number of clinical trials recruiting pediatric patients, the list below may include trials that are only recruiting adult patients at this time. Examples of clinical trials that may be appropriate for this patient are listed below. These trials were identified through a search of the trial website clinicaltrials. gov using keyword terms such as "MYC", "BET", "BRD4", "CDK1", "CDK2", "Aurora kinase B", "AZD1152", "AMG 900", "GSK1070916A", "BMS 777607", "chiauranib", "dinaciclib", "SCH727965", "BAY 1000394", "CS-2164", "CPI-0610", "I-BET762", "GSK525762", "GSK1324726A", "TEN-010", "RVX-208", "OTX015", "child", "osteosarcoma", "solid tumor", and/or "advanced cancer".

TITLE	PHASE	TARGETS	LOCATIONS	NCT ID
A Phase 1/2, Open-Label, Dose-Escalation,	Phase	BRD2, BRD3,	California, Colorado, Illinois,	NCT02431260
Safety and Tolerability Study of INCB054329 in	1/Phase	BRD4	Indiana, Michigan, Missouri,	
Subjects With Advanced Malignancies	2		Tennessee, Texas, Washington	
Phase 1 Trial of ABT-888 and SCH727965 in	Phase 1	CDK1, CDK2,	Massachusetts	NCT01434316
Patients With Advanced Solid Tumors		CDK5, CDK9,		
		PARP		
A Two Part, Phase 1, Multicenter, Open-label	Phase 1	BRD2, BRD3,	Connecticut, Massachusetts,	NCT01987362
Study of TEN-010 Given Subcutaneously. Part		BRD4, BRDT	Michigan, Ohio	
A: A Dose-Escalation Study in Patients With				
Advanced Solid Tumors. Part B: An Expansion				
Cohort in Patients With Selected Malignancies.				
A Phase I/IIa Trial With BMS-986158, a Small	Phase	BRD2, BRD3,	California, Ontario (Canada),	NCT02419417
Molecule Inhibitor of the Bromodomain and	1/Phase	BRD4, BRDT	Victoria (Australia)	
Extra-Terminal (BET) Proteins, in Subjects With	2			
Selected Advanced Solid Tumors				

Report Date 25 August 2016

Tumor Type

PEDIATRIC Bone osteosarcoma

APPENDIX

VARIANTS OF UNKNOWN SIGNIFICANCE

Note: One or more variants of unknown significance (VUS) were detected in this patient's tumor. These variants may not have been adequately characterized in the scientific literature at the time this report was issued, and/or the genomic context of these alterations make their significance unclear. We choose to include them here in the event that they become clinically meaningful in the future.

 HDAC1
 HDAC7

 R77S
 R166H

MYCN S369N **NFE2L2** N262S *NUP98* E1303G

PIM1 amplification

RAD21 TLL2 amplification L441F

Burden TMB-Low; 0.73 Muts/Mb

Tumor Mutation

Report Date 25 August 2016

Tumor Type
PEDIATRIC Bone osteosarcoma

APPENDIX

GENES ASSAYED IN FOUNDATIONONE HEME

FoundationOne Heme is designed to include all genes known to be somatically altered in human hematologic malignancies, sarcomas, and pediatric cancers that are validated targets for therapy, either approved or in clinical trials, and/or that are unambiguous drivers of oncogenesis based on current knowledge. The current assay utilizes DNA sequencing to interrogate 406 genes as well as selected introns of 31 genes involved in rearrangements, in addition to RNA sequencing of 265 genes. The assay will be updated periodically to reflect new knowledge about cancer biology.

DNA Gene List: Entire Coding Sequence for the Detection of Base Substitutions, Insertion/Deletions, and Copy Number Alterations												
ABL1	ACTB	AKT1	AKT2	AKT3	ALK	AMER1	APC	APH1A	AR	ARAF	APFRP1	ARHGAP26
ARID1A	ARID2	ASMTL	ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXL	B2M	BAP1
BARD1	BCL10	BCL11B	BCL2	BCL2L2	BCL6	BCL7A	BCOR	BCORL1	BIRC3	BLM	BRAF	BRCA1
BRCA2	BRD4	BRIP1	BRSK1	BTG2	BTK	BTLA	C11orf30	CAD	CALR*	CARD11	CBFB	CBL
CCND1	CCND2	CCND3	CCNE1	ССТ6В	CD22	CD274	CD36	CD58	CD70	CD79A	CD79B	CDC73
CDH1	CDK12	CDK4	CDK6	CDK8	CDKN1B	CDKN2A	CDKN2B	CDKN2C	CEBPA	CHD2	CHEK1	CHEK2
CIC	CIITA	CKS1B	CPS1	CREBBP	CRKL	CRLF2	CSF1R	CSF3R	CTCF	CTNNA1	CTNNB1	CUX1
CXCR4	DAXX	DDR2	DDX3X	DNM2	DNMT3A	DOT1L	DTX1	DUSP2	DUSP9	EBF1	ECT2L	EED
EGFR	ELP2	EP300	EPHA3	EPHA5	EPHA7	EPHB1	ERBB2	ERBB3	ERBB4	ERG	ESR1	ETS1
ETV6	EXOSC6	EZH2	FAF1	FAM46C	FANCA	FANCC	FANCD2	FANCE	FANCF	FANCG	FANCL	FAS
FBXO11	FBXO31	FBXW7	FGF10	FGF14	FGF19	FGF23	FGF3	FGF4	FGF6	FGFR1	FGFR2	FGFR3
FGFR4	FHIT	FLCN	FLT1	FLT3	FLT4	FLYWCH1	FOXL2	FOXO1	FOXO3	FOXP1	FRS2	GADD45B
GATA1	GATA2	GATA3	GID4	GNA11	GNA12	GNA13	GNAQ	GNAS	GPR124	GRIN2A	GSK3B	GTSE1
HDAC1	HDAC4	HDAC7	HGF	HIST1H1C	HIST1H1D	HIST1H1E	HIST1H2AC	HIST1H2AG	HIST1H2AL	HIST1H2AM	HIST1H2BC	HIST1H2BJ
HIST1H2BK	HIST1H2BO	HIST1H3B	HNF1A	HRAS	HSP90AA1	ICK	ID3	IDH1	IDH2	IGF1R	IKBKE	IKZF1
IKZF2	IKZF3	IL7R	INHBA	INPP4B	INPP5D	IRF1	IRF4	IRF8	IRS2	JAK1	JAK2	JAK3
JARID2	JUN	KAT6A	KDM2B	KDM4C	KDM5A	KDM5C	KDM6A	KDR	KEAP1	KIT	KLHL6	KMT2A
KMT2B	KMT2C	KRAS	LEF1	LRP1B	LRRK2	MAF	MAFB	MAGED1	MALT1	MAP2K1	MAP2K2	MAP2K4
MAP3K1	MAP3K14	MAP3K6	MAP3K7	MAPK1	MCL1	MDM2	MDM4	MED12	MEF2B	MEF2C	MEN1	MET
MIB1	MITF	MKI67	MLH1	MPL	MRE11A	MSH2	MSH3	MSH6	MTOR	MUTYH	MYC	MYCL
MYCN	MYD88	MYO18A	NCOR2	NCSTN	NF1	NF2	NFE2L2	NFKBIA	NKX2-1	NOD1	NOTCH1	NOTCH2
NPM1	NRAS	NT5C2	NTRK1	NTRK2	NTRK3	NUP93	NUP98	P2RY8	PAG1	PAK3	PALB2	PASK
PAX5	PBRM1	PC	PCBP1	PCLO	PDCD1	PDCD11	PDCD1LG2	PDGFRA	PDGFRB	PDK1	PHF6	PIK3CA
PIK3CG	PIK3R1	PIK3R2	PIM1	PLCG2	POT1	PPP2R1A	PRDM1	PRKAR1A	PRKDC	PRSS8	PTCH1	PTEN
PTPN11	PTPN2	PTPN6	PTPRO	RAD21	RAD50	RAD51	RAF1	RARA	RASGEF1A	RB1	RELN	RET
RHOA	RICTOR	RNF43	ROS1	RPTOR	RUNX1	S1PR2	SDHA	SDHB	SDHC	SDHD	SERP2	SETBP1
SETD2	SF3B1	SGK1	SMAD2	SMAD4	SMARCA1	SMARCA4	SMARCB1	SMC1A	SMC3	SMO	SOCS1	SOCS2
SOCS3	SOX10	SOX2	SPEN	SPOP	SRC	SRSF2	STAG2	STAT3	STAT4	STAT5A	STAT5B	STAT6
STK11	SUFU	SUZ12	TAF1	TBL1XR1	TCF3	TCL1A	TET2	TGFBR2	TLL2	TMEM30A	TMSB4XP8	TNFAIP3
TNFRSF11A	TNFRSF14	TNFRSF17	TOP1	TP53	TP63	TRAF2	TRAF3	TRAF5	TSC1	TSC2	TSHR	TUSC3
TYK2	U2AF1	U2AF2	VHL	WDR90	WHSC1	WISP3	WT1	XBP1	XPO1	YY1AP1	ZMYM3	ZNF217
ZNF24	ZNF703	ZRSR2										
*Note: the a	ssay was upda	ted on 11/8/2	016 to include	the detection of	of alterations i	n CALR						
DNA Gene Li	ist: For the Det	tection of Sele	ct Rearranger	nents								
ALK	BCL2	BCL6	BCR	BRAF	CCND1	CRLF2	<i>EGFR</i>	EPOR	ETV1	ETV4	ETV5	ETV6
EWSR1	FGFR2	IGH	IGK	IGL	JAK1	JAK2	KMT2A	MYC	NTRK1	PDGFRA	<i>PDGFRB</i>	RAF1
RARA	RET	ROS1	TMPRSS2	TRG								

For more comprehensive information please log on to the Interactive Cancer $\mathsf{Explorer}^{\mathsf{TM}}$

To set up your Interactive Cancer Explorer account, contact your sales representative or call (888) 988-3639.

Report Date 25 August 2016

Tumor Type
PEDIATRIC Bone osteosarcoma

RNA	Gene	List:	For	the	Detection	on of	Select	Gene	Fusions

ABI1	ABL1	ABL2	ACSL6	AFF1	AFF4	ALK	ARHGAP26	ARHGEF12	ARID1A	ARNT	ASXL1
ATF1	ATG5	ATIC	BCL10	BCL11A	BCL11B	BCL2	BCL3	BCL6	BCL7A	BCL9	BCOR
BCR	BIRC3	BRAF	BTG1	CAMTA1	CARS	CBFA2T3	CBFB	CBL	CCND1	CCND2	CCND3
CD274	CDK6	CDX2	CHIC2	CHN1	CIC	CIITA	CLP1	CLTC	CLTCL1	CNTRL	COL1A1
CREB3L1	CREB3L2	CREBBP	CRLF2	CSF1	CTNNB1	DDIT3	DDX10	DDX6	DEK	DUSP22	EGFR
EIF4A2	ELF4	ELL	ELN	EML4	EP300	EPOR	EPS15	ERBB2	ERG	ETS1	ETV1
ETV4	ETV5	ETV6	EWSR1	FCGR2B	FCRL4	FEV	FGFR1	FGFR1OP	FGFR2	FGFR3	FLI1
FNBP1	FOXO1	FOXO3	FOXO4	FOXP1	FSTL3	FUS	GAS7	GLI1	<i>GMPS</i>	GPHN	HERPUD1
HEY1	HIP1	HIST1H4I	HLF	HMGA1	HMGA2	HOXA11	HOXA13	HOXA3	HOXA9	HOXC11	HOXC13
HOXD11	HOXD13	HSP90AA1	HSP90AB1	IGH	IGK	IGL	IKZF1	IL21R	IL3	IRF4	ITK
JAK1	JAK2	JAK3	JAZF1	KAT6A	KDSR	KIF5B	KMT2A	LASP1	LCP1	LMO1	LMO2
LPP	LYL1	MAF	MAFB	MALT1	MDS2	MECOM	MKL1	MLF1	MLLT1	MLLT10	MLLT3
MLLT4	MLLT6	MN1	MNX1	MSI2	MSN	MUC1	MYB	MYC	MYH11	МҮН9	NACA
NBEAP1	NCOA2	NDRG1	NF1	NF2	NFKB2	N/N	NOTCH1	NPM1	NR4A3	NSD1	NTRK1
NTRK2	NTRK3	NUMA1	NUP214	NUP98	NUTM2A	OMD	P2RY8	PAFAH1B2	PAX3	PAX5	PAX7
PBX1	PCM1	PCSK7	PDCD1LG2	PDE4DIP	PDGFB	PDGFRA	PDGFRB	PER1	PHF1	PICALM	PIM1
PLAG1	PML	POU2AF1	PPP1CB	PRDM1	PRDM16	PRRX1	PSIP1	PTCH1	PTK7	RABEP1	RAF1
RALGDS	RAP1GDS1	RARA	RBM15	RET	RHOH	RNF213	ROS1	RPL22	RPN1	RUNX1	RUNX1T1
RUNX2	SEC31A	SEPT5	SEPT6	SEPT9	SET	SH3GL1	SLC1A2	SNX29	SRSF3	SS18	SSX1
SSX2	SSX4	STAT6	STL	SYK	TAF15	TAL1	TAL2	TBL1XR1	TCF3	TCL1A	TEC
TET1	TFE3	TFG	TFPT	TFRC	TLX1	TLX3	TMPRSS2	TNFRSF11A	TOP1	TP63	TPM3
TPM4	TRIM24	TRIP11	TTL	TYK2	USP6	WHSC1	WHSC1L1	YPEL5	ZBTB16	ZMYM2	ZNF384
ZNF521											

Additional Assays: For the Detection of Select Cancer Biomarkers

Tumor Mutation Burden

Report Date 25 August 2016

Tumor Type
PEDIATRIC Bone osteosarcoma

APPENDIX

FOUNDATIONONE HEME PERFORMANCE SPECIFICATIONS

	Base Substitutions at ≥5% Minor Allele Frequency					
651161 - 111/	Insertions/Deletions (1-40 base pairs) at ≥10% Minor Allele Frequency					
SENSITIVITY	Focal Copy Number Alterations (homozygous deletions or amplifications ≥8 copies)					
	Known Gene Fusions					
	Positive Predictive Value (PPV) for Base Substitutions, Insertions/Deletions, and Focal					
SPECIFICITY	Copy Number Alterations					
	Positive Predictive Value (PPV) for Known Gene Fusions	>95%				
ACCURACY	Tumor Mutation Burden accuracy at ≥20% tumor nuclei	>90%				
	Concordance between replicates inter-batch	97%				
REPRODUCIBILITY	Concordance between replicates intra-batch					
	Tumor Mutation Burden precision	96%				

Assay specifications were determined for typical median exon coverage of approximately 500X. For additional information regarding the validation of FoundationOne, please refer to the article, Frampton, GM. et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing, Nat Biotechnol (2013 Oct. 20).

Tumor Mutation Burden (TMB) is determined by measuring the number of somatic mutations occurring in sequenced genes on the FoundationOne and FoundationOne Heme tests and extrapolating to the genome as a whole. TMB is assayed for all FoundationOne and FoundationOne Heme samples. TMB-High results are reported in all tumor types. In select tumor types, other TMB results may be reported (TMB-Intermediate, TMB-Low, TMB-Unknown) when relevant. TMB results are determined as follows: TMB-High corresponds to greater than or equal to 20 mutations per megabase (Muts/Mb); TMB-Intermediate corresponds to 6-19 Muts/Mb; TMB-Low corresponds to less than or equal to 5 Muts/Mb. Tumor Mutation Burden may be reported as "Unknown" if the sample is not of sufficient quality to confidently determine Tumor Mutation Burden.

For additional information specific to the performance of this specimen, please contact Foundation Medicine, Inc. at 1-888-988-3639.

Il Reduced Sensitivity: Although we can definitively confirm the presence of the genomic alterations detailed in this report, the data obtained may have been insufficient for comprehensive detection of genomic alterations. Reduced sensitivity may be due to poor sample quality or, in rare cases, to patient transplant history or the receipt of only a pre-extracted DNA sample, precluding RNA sequencing. Any Tumor Mutation Burden (TMB) value (Muts/Mb) shown on a report with reduced sensitivity reflects an estimate of the lowest possible TMB.

Report Date 25 August 2016

Tumor Type
PEDIATRIC Bone osteosarcoma

APPENDIX

REFERENCES

- ¹ Sridhar J, Akula N, Pattabiraman N (2006) Selectivity and potency of cyclin-dependent kinase inhibitors. AAPS J 8(1):E204-21.
- ² Elsheikh S, Green AR, Aleskandarany MA, et al. (2008) CCND1 amplification and cyclin D1 expression in breast cancer and their relation with proteomic subgroups and patient outcome. Breast Cancer Res Treat 109(2):325-35.
- ³ Musgrove EA, Caldon CE, Barraclough J, et al. (2011) Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 11(8):558-72.
- ⁴ Fu M, Wang C, Li Z, et al. (2004) Minireview: Cyclin D1: normal and abnormal functions. Endocrinology 145(12):5439-47.
- ⁵ Takahashi-Yanaga F, Sasaguri T (2008) GSK-3beta regulates cyclin D1 expression: a new target for chemotherapy. Cell Signal 20(4):581-9.
- ⁶ Kanamori M, Sano A, Yasuda T, et al. (2012) Array-based comparative genomic hybridization for genomic-wide screening of DNA copy number alterations in aggressive bone tumors. J Exp Clin Cancer Res 31:100.
- ⁷ Lu XY, Lu Y, Zhao YJ, et al. (2008) Cell cycle regulator gene CDC5L, a potential target for 6p12-p21 amplicon in osteosarcoma. Mol Cancer Res 6(6):937-46.
- ⁸ Bui MM, Bagui TK, Boulware DC, et al. Altered expression of cell cycle regulatory proteins in benign and malignant bone and soft tissue neoplasms. In Vivo 21(5):729-37.
- ⁹ Schmitz R, Young RM, Ceribelli M, et al. (2012) Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 490(7418):116-20.
- ¹⁰ Choi YJ, Li X, Hydbring P, et al. (2012) The requirement for cyclin D function in tumor maintenance. Cancer Cell 22(4):438-51.
- ¹¹ Sawai CM, Freund J, Oh P, et al. (2012) Therapeutic targeting of the cyclin D3:CDK4/6 complex in T cell leukemia. Cancer Cell 22(4):452-65.
- ¹² Flaherty KT, Lorusso PM, Demichele A, et al. (2012) Phase I, dose-escalation trial of the oral cyclin-dependent kinase 4/6 inhibitor PD 0332991, administered using a 21-day schedule in patients with advanced cancer. Clin Cancer Res 18(2):568-76.
- ¹³ Dickson MA, Tap WD, Keohan ML, et al. (2013) Phase II trial of the CDK4 inhibitor PD0332991 in patients with advanced CDK4-amplified well-differentiated or dedifferentiated liposarcoma. J Clin Oncol 31(16):2024-8.
- ¹⁴ Choi YJ, Anders L (2014) Signaling through cyclin D-dependent kinases. Oncogene 33(15):1890-903.
- ¹⁵ Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81(3):323-30.
- Wikman H, Nymark P, Väyrynen A, et al. (2005) CDK4 is a probable target gene in a novel amplicon at 12q13.3-q14.1 in lung cancer. Genes Chromosomes Cancer 42(2):193-9.
- Wei G, Lonardo F, Ueda T, et al. (1999) CDK4 gene amplification in osteosarcoma: reciprocal relationship with INK4A gene alterations and mapping of 12q13 amplicons. Int J Cancer 80(2):199-204.
- ¹⁸ Smida J, Baumhoer D, Rosemann M, et al. (2010) Genomic alterations and allelic imbalances are strong prognostic predictors in osteosarcoma. Clin Cancer Res 16(16):4256-67.
- ¹⁹ Dujardin F, Binh MB, Bouvier C, et al. (2011) MDM2 and CDK4 immunohistochemistry is a valuable tool in the differential diagnosis of low-grade osteosarcomas and other primary fibro-osseous lesions of the bone. Mod Pathol 24(5):624-37.
- ²⁰ Mejia-Guerrero S, Quejada M, Gokgoz N, et al. (2010) Characterization of the 12q15 MDM2 and 12q13-14 CDK4 amplicons and clinical correlations in osteosarcoma. Genes Chromosomes Cancer 49(6):518-25.

Report Date 25 August 2016

Tumor Type
PEDIATRIC Bone osteosarcoma

APPENDIX

REFERENCES

- ²¹ Yoshida A, Ushiku T, Motoi T, et al. (2012) MDM2 and CDK4 immunohistochemical coexpression in high-grade osteosarcoma: correlation with a dedifferentiated subtype. Am J Surg Pathol 36(3):423-31.
- ²² López-Guerrero JA, López-Ginés C, Pellín A, et al. (2004) Deregulation of the G1 to S-phase cell cycle checkpoint is involved in the pathogenesis of human osteosarcoma. Diagn Mol Pathol 13(2):81-91.
- ²³ Benassi MS, Molendini L, Gamberi G, et al. (1999) Alteration of pRb/p16/cdk4 regulation in human osteosarcoma. Int J Cancer 84(5):489-93.
- Finn RS, Crown JP, Lang I, et al. (2014) The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol ePub Dec 2014.
- ²⁵ Dang CV, O'Donnell KA, Zeller KI, et al. (2006) The c-Myc target gene network. Semin Cancer Biol 16(4):253-64.
- ²⁶ Nesbit CE, Tersak JM, Prochownik EV (1999) MYC oncogenes and human neoplastic disease. Oncogene 18(19):3004-16.
- ²⁷ Blancato J, Singh B, Liu A, et al. (2004) Correlation of amplification and overexpression of the c-myc oncogene in high-grade breast cancer: FISH, in situ hybridisation and immunohistochemical analyses. Br J Cancer 90(8):1612-9.
- ²⁸ Fromont G, Godet J, Peyret A, et al. (2013) 8q24 amplification is associated with Myc expression and prostate cancer progression and is an independent predictor of recurrence after radical prostatectomy. Hum Pathol 44(8):1617-23.
- ²⁹ Wu X, Cai ZD, Lou LM, et al. (2012) Expressions of p53, c-MYC, BCL-2 and apoptotic index in human osteosarcoma and their correlations with prognosis of patients. Cancer Epidemiol 36(2):212-6.
- ³⁰ Horiuchi D, Kusdra L, Huskey NE, et al. (2012) MYC pathway activation in triple-negative breast cancer is synthetic lethal with CDK inhibition. J Exp Med 209(4):679-96.
- Hook KE, Garza SJ, Lira ME, et al. (2012) An integrated genomic approach to identify predictive biomarkers of response to the aurora kinase inhibitor PF-03814735. Mol Cancer Ther 11(3):710-9.
- ³² Goga A, Yang D, Tward AD, et al. (2007) Inhibition of CDK1 as a potential therapy for tumors over-expressing MYC. Nat Med 13(7):820-7.
- ³³ Yang D, Liu H, Goga A, et al. (2010) Therapeutic potential of a synthetic lethal interaction between the MYC proto-oncogene and inhibition of aurora-B kinase. Proc Natl Acad Sci USA 107(31):13836-41.
- Molenaar JJ, Ebus ME, Geerts D, et al. (2009) Inactivation of CDK2 is synthetically lethal to MYCN over-expressing cancer cells. Proc Natl Acad Sci USA 106(31):12968-73.
- ³⁵ Ganesan P, Moulder S, Lee JJ, et al. (2014) Triple Negative Breast Cancer Patients Treated at MD Anderson Cancer Center in Phase I Trials: Improved Outcomes with Combination Chemotherapy and Targeted Agents. Mol Cancer Ther ePub Sep 2014.
- ³⁶ Delmore JE, Issa GC, Lemieux ME, et al. (2011) BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146(6):904-17.
- ³⁷ Bandopadhayay P, Bergthold G, Nguyen B, et al. (2013) BET-bromodomain inhibition of MYC-amplified Medulloblastoma. Clin Cancer Res ePub Dec 2013.
- ³⁸ Lovén J, Hoke HA, Lin CY, et al. (2013) Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153(2):320-34.

For more comprehensive information please log on to the Interactive Cancer Explorer™

To set up your Interactive Cancer Explorer account, contact your sales representative or call (888) 988-3639.

Report Date 25 August 2016

Tumor Type
PEDIATRIC Bone osteosarcoma

APPENDIX

REFERENCES

- ³⁹ Dong LH, Cheng S, Zheng Z, et al. (2013) Histone deacetylase inhibitor potentiated the ability of MTOR inhibitor to induce autophagic cell death in Burkitt leukemia/lymphoma. J Hematol Oncol 6:53.
- ⁴⁰ Pei Y, Liu KW, Wang J, et al. (2016) HDAC and PI3K Antagonists Cooperate to Inhibit Growth of MYC-Driven Medulloblastoma. Cancer Cell 29(3):311-23.
- ⁴¹ Younes A, Berdeja JG, Patel MR, et al. (2016) Safety, tolerability, and preliminary activity of CUDC-907, a first-in-class, oral, dual inhibitor of HDAC and PI3K, in patients with relapsed or refractory lymphoma or multiple myeloma: an open-label, dose-escalation, phase 1 trial. Lancet Oncol ePub Mar 2016.
- ⁴² Pereira CB, Leal MF, de Souza CR, et al. (2013) Prognostic and predictive significance of MYC and KRAS alterations in breast cancer from women treated with neoadjuvant chemotherapy. PLoS ONE 8(3):e60576.
- ⁴³ Yasojima H, Shimomura A, Naoi Y, et al. (2011) Association between c-myc amplification and pathological complete response to neoadjuvant chemotherapy in breast cancer. Eur J Cancer 47(12):1779-88.
- ⁴⁴ Arango D, Corner GA, Wadler S, et al. (2001) c-myc/p53 interaction determines sensitivity of human colon carcinoma cells to 5-fluorouracil in vitro and in vivo. Cancer Res 61(12):4910-5.
- ⁴⁵ Bottone MG, Soldani C, Tognon G, et al. (2003) Multiple effects of paclitaxel are modulated by a high c-myc amplification level. Exp Cell Res 290(1):49-59.
- ⁴⁶ Dickson MA, Schwartz GK, Keohan ML, et al. (2016) Progression-Free Survival Among Patients With Well-Differentiated or Dedifferentiated Liposarcoma Treated With CDK4 Inhibitor Palbociclib: A Phase 2 Clinical Trial. JAMA Oncol ePub Apr 2016.
- ⁴⁷ Leonard JP, LaCasce AS, Smith MR, et al. (2012) Selective CDK4/6 inhibition with tumor responses by PD0332991 in patients with mantle cell lymphoma. Blood 119(20):4597-607.
- ⁴⁸ Turner NC, Ro J, André F, et al. (2015) Palbociclib in Hormone-Receptor-Positive Advanced Breast Cancer. N Engl J Med ePub Jun 2015.
- ⁴⁹ DeMichele A, Clark A, Tan KS, et al. (2014) CDK 4/6 Inhibitor Palbociclib (PD0332991) in Rb+ Advanced Breast Cancer: Phase II Activity, Safety and Predictive Biomarker Assessment. Clin Cancer Res ePub Dec 2014.
- ⁵⁰ Kwong LN, Costello JC, Liu H, et al. (2012) Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma. Nat Med 18(10):1503-10.
- ⁵¹ Huillard E, Hashizume R, Phillips JJ, et al. (2012) Cooperative interactions of BRAFV600E kinase and CDKN2A locus deficiency in pediatric malignant astrocytoma as a basis for rational therapy. Proc Natl Acad Sci USA 109(22):8710-5.
- ⁵² Vora SR, Juric D, Kim N, et al. (2014) CDK 4/6 Inhibitors Sensitize PIK3CA Mutant Breast Cancer to PI3K Inhibitors. Cancer Cell 26(1):136-49.
- Miller ML, Molinelli EJ, Nair JS, et al. (2013) Drug synergy screen and network modeling in dedifferentiated liposarcoma identifies CDK4 and IGF1R as synergistic drug targets. Sci Signal 6(294):ra85.
- ⁵⁴ Heilmann AM, Perera RM, Ecker V, et al. (2014) CDK4/6 and IGF1 Receptor Inhibitors Synergize to Suppress the Growth of p16INK4A-Deficient Pancreatic Cancers. Cancer Res 74(14):3947-58.
- ⁵⁵ Fry DW, Harvey PJ, Keller PR, et al. (2004) Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther 3(11):1427-38.

For more comprehensive information please log on to the Interactive Cancer Explorer™

To set up your Interactive Cancer Explorer account, contact your sales representative or call (888) 988-3639.

Report Date 25 August 2016

Tumor Type
PEDIATRIC Bone osteosarcoma

APPENDIX

REFERENCES

- ⁵⁶ Dean JL, Thangavel C, McClendon AK, et al. (2010) Therapeutic CDK4/6 inhibition in breast cancer: key mechanisms of response and failure. Oncogene 29(28):4018-32.
- Dean JL, McClendon AK, Hickey TE, et al. (2012) Therapeutic response to CDK4/6 inhibition in breast cancer defined by ex vivo analyses of human tumors. Cell Cycle 11(14):2756-61.
- ⁵⁸ Garnett MJ, Edelman EJ, Heidorn SJ, et al. (2012) Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483(7391):570-5.

Report Date 25 August 2016

Tumor Type
PEDIATRIC Bone osteosarcoma

APPENDIX

ABOUT FOUNDATIONONE HEME™

FoundationOne Heme™: FoundationOne Heme (the Test) was developed and its performance characteristics determined by Foundation Medicine, Inc. (Foundation Medicine). The Test has not been cleared or approved by the United States Food and Drug Administration (FDA). The FDA has determined that such clearance or approval is not necessary. The Test may be used for clinical purposes and should not be regarded as purely investigational or for research only. Foundation Medicine's clinical reference laboratory is certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) as qualified to perform high-complexity clinical testing.

Diagnostic Significance: FoundationOne Heme identifies alterations to select cancer-associated genes or portions of genes (biomarkers). In some cases, the Test Report also highlights selected negative test results regarding biomarkers of clinical significance.

Qualified Alteration Calls (Equivocal and Subclonal): An alteration denoted as "amplification – equivocal" implies that FoundationOne Heme data provide some, but not unambiguous, evidence that the copy number of a gene exceeds the threshold for identifying copy number amplification. The threshold used in FoundationOne Heme for identifying a copy number amplification is five (5) for ERBB2 and six (6) for all other genes. Conversely, an alteration denoted as "loss – equivocal" implies that FoundationOne Heme data provide some, but not unambiguous, evidence for homozygous deletion of the gene in question. An alteration denoted as "subclonal" is one that FoundationOne Heme analytical methodology has identified as being present in <10% of the assayed tumor DNA.

The Report incorporates analyses of peer-reviewed studies and other publicly available information identified by Foundation Medicine; these analyses and information may include associations between a molecular alteration (or lack of alteration) and one or more drugs with potential clinical benefit (or potential lack of clinical benefit), including drug candidates that are being studied in clinical research.

NOTE: A finding of biomarker alteration does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment regimen; a finding of no biomarker alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug or treatment regimen.

Alterations and Drugs Not Presented in Ranked Order: In this Report, neither any biomarker alteration, nor any drug associated with potential clinical benefit (or potential lack of clinical benefit), are ranked in order of potential or predicted efficacy.

Level of Evidence Not Provided: Drugs with potential clinical benefit (or potential lack of clinical benefit) are not evaluated for source or level of published evidence.

No Guarantee of Clinical Benefit: This Report makes no promises or guarantees that a particular drug will be effective in the treatment of disease in any patient. This Report also makes no promises or guarantees that a drug with potential lack of clinical benefit will in fact provide no clinical benefit.

No Guarantee of Reimbursement: Foundation Medicine makes no promises or guarantees that a healthcare provider, insurer or other third party payor, whether private or governmental, will reimburse a patient for the cost of the Test.

Treatment Decisions are Responsibility of Physician: Drugs referenced in this Report may not be suitable for a particular patient. The selection of any, all or none of the drugs associated with potential clinical benefit (or potential lack of clinical benefit) resides entirely within the discretion of the treating physician. Indeed, the information in this Report must be considered in conjunction with all other relevant information regarding a particular patient, before the patient's treating physician recommends a course of treatment.

Decisions on patient care and treatment must be based on the independent medical judgment of the treating physician, taking into consideration all applicable information concerning the patient's condition, such as patient and family history, physical examinations, information from other diagnostic tests, and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this Test, or the information contained in this Report.

Certain sample or variant characteristics may result in reduced sensitivity. These include: subclonal alterations in heterogeneous samples, low sample quality or with homozygous losses of <3 exons; and deletions and insertions >40bp, or in repetitive/high homology sequences. FoundationOne Heme is performed using DNA and RNA derived from tumor, and as such germline events may not be reported. The following targets typically have low coverage resulting in a reduction in sensitivity: *SDHD* exon 4, *TNFRSF11A* exon1, and *TP53* exon 1.

FoundationOne Heme complies with all European Union (EU) requirements of the IVD Directive 98/79EC. As such, the FoundationOne Heme Assay has been registered for CE mark by our EU Authorized Representative, Qarad b.v.b.a, Cipalstraat 3, 2440 Geel, Belgium.

