

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ: ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ КАФЕДРА: КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

Отчет

по домашнему заданию № 3

Название лабораторной работы: Дисциплина: Основы программирования		
Студент гр. ИУ6-12Б	(Подпись, дата)	С.В.Астахов (И.О. Фамилия)
Преподаватель	(Подпись, дата)	(И.О. Фамилия)

I вариант

Задание 1

Описать класс, включающий заданные поля и методы. Протестировать все методы. Объект — слово. Поля: строка, содержащая слово, и длина слова. Методы: процедура инициализации полей объекта; функция, определяющая количество гласных букв в слове; процедура вывода информации об объекте на экран.

Код программы:

```
program project1;
type
 TWord = object
 private
  content: string;
  lg: byte;
 public
  procedure Init(sData: string);
  function CountGlas: byte;
  procedure Info;
  {non-standarted, but needed in task}
 end;
 procedure TWord.Init(sData: string);
 begin
  Self.content := sData;
  Self.lg := length(sData);
 end;
 function TWord.CountGlas: byte;
 type
  glasnType = set of char;
 var
  glasnSet: glasnType;
  i, cnt: byte;
 begin
  cnt := 0;
  glasnSet := ['e', 'y', 'u', 'i', 'o', 'a', 'j'];
  for i := 1 to length(Self.content) do
   if Self.content[i] in glasnSet then
    cnt := cnt + 1;
```

```
Result := cnt;
 end;
 procedure TWord.Info;
 begin
  writeln('= Object info =');
  writeln('word: ', Self.content);
  writeln('length: ', Self.lg);
  writeln('Glasnih in word: ', CountGlas);
 end;
var
 wrd: TWord;
 inputS: string;
begin
 writeln('Input string to make an object');
 readIn(inputS);
 wrd.Init(inputS);
 wrd.Info();
 readIn;
```

Тесты

end.

Входные данные	Ожидаемые выходные	Выходные данные
	данные	
vorona	= Object info =	= Object info =
	word: vorona	word: vorona
	length: 6	length: 6
	Glasnih in word: 3	Glasnih in word: 3
program	= Object info =	= Object info =
	word: program	word: program
	length: 7	length: 7
	Glasnih in word: 2	Glasnih in word: 2
Nº;\$	= Object info =	= Object info =
	word: №;\$	word: №;\$
	length: 3	length: 3
	Glasnih in word: 0	Glasnih in word: 0

Диаграмма классов

TWord	
content: string lg: byte	
Init() CountGlas() Info()	

<u>Задание 2</u>

Разработать и реализовать иерархию классов для описанных объектов предметной области, используя механизмы наследования.

Объект – шахматная фигура. Поля: цвет фигуры (белый, черный) и координаты клетки шахматной доски, на которой она стоит. Методы: процедура инициализации, процедура вывода информации о фигуре на экран и функция, определяющая, совпадает ли цвет фигуры с цветом клетки, на которой она стоит.

Объект – слон (шахматная фигура). Поля: цвет фигуры и координаты клетки, на которой она стоит. Методы: процедура инициализации, процедура вывода информации о фигуре на экран и функция, которая по координатам другой клетки шахматной доски определяет, находится ли она под ударом слона.

Код программы:

```
type
  TFigure = object
  private
  fColor: boolean;
    x, y: byte;
  public
    procedure Init(clr: string; i, j: byte);
  function ColorEq: boolean;
    procedure Info;
  end;

procedure TFigure.Init(clr: string; i, j: byte);
```

```
begin
  if clr = 'black' then
   Self.fColor := True
  else
   Self.fColor := False;
  Self.x := i;
  Self.y := j;
 end;
 function TFigure.ColorEq: boolean;
 begin
  Result := ((((x + y) \mod 2) = 0) = Self.fColor);
  {1;1 is black}
 end;
 procedure TFigure.Info;
 begin
  writeln('= Figure info =');
  writeln('color: ');
  if Self.fColor then
   writeln('black')
  else
   writeln('white');
  writeln('Coords: ', x: 3, y: 3);
  if Self.ColorEq() then
   writeln('Color of figure and field matches')
  else
   writeln('Color of figure and field dont match');
 end;
type
 TSIon = object(TFigure)
  function Danger(fi, fg: byte): boolean;
 end;
 function TSlon.Danger(fi, fg: byte): boolean;
 var
  beaten: boolean;
  diff: integer;
 begin
  beaten := False;
  diff := fi - Self.x;
```

```
{writeln(x: 3, y: 3, fi: 3, fg: 3, diff: 3);}
  if ((fg = Self.y + diff)) or (fg = Self.y - diff)) then
   beaten := True;
  Result := beaten;
 end;
var
 xlnp, ylnp, xTarget, yTarget: byte;
 fClr: string;
 oneSlon: TSlon;
begin
 writeln('Enter color, "black" ot "white"');
 fClr := 'wait';
 while ((fClr <> 'black') and (fClr <> 'white')) do
  readIn(fClr);
 writeln('Enter x,y in [1;8] (one string input)');
 xlnp := 13;
 ylnp := 13;
 while not ((x \ln p > 0)) and (x \ln p < 9) and (y \ln p > 0) and (y \ln p < 9) do
  readln(xInp, yInp);
 oneSlon.Init(fClr, xlnp, ylnp);
 oneSlon.Info;
 writeln;
 writeln('Enter x,y of TARGET in [1;8] (one string input)');
 xTarget := 13;
 yTarget := 13;
 while ((not ((xTarget > 0) and (xTarget < 9) and (yTarget > 0) and
(yTarget < 9))) or
   ((xTarget = xInp) and (yTarget = yInp))) do
  readIn(xTarget, yTarget);
 if oneSlon.Danger(xTarget, yTarget) then
  writeln('Figure can be beaten')
 else
  writeln('Figure cannot be beaten');
 writeln;
 writeln('<press any key>');
 readln;
end.
```

Тесты

I ECI DI		
Входные данные	Ожидаемые выходные данные	Выходные данные
Ghjk	= Figure info =	= Figure info =
Black	color:	color:
99	black	black
2 2	Coords: 2 2	Coords: 2 2
	Color of figure and field	Color of figure and field
3 3	matches	matches
	Figure can be beaten	Figure can be beaten
White	= Figure info =	= Figure info =
12	color:	color:
	white	white
11	Coords: 1 2	Coords: 1 2
	Color of figure and field	Color of figure and field
	matches	matches
	Figure cannot be beaten	Figure cannot be beaten
White	= Figure info =	= Figure info =
12	color:	color:
	white	white
23	Coords: 1 2	Coords: 1 2
	Color of figure and field	Color of figure and field
	matches	matches
	Figure can be beaten	Figure can be beaten

^{*}Ввод повторяется, пока не будут введены корректные данные

Диаграмма классов

Задание 3

Разработать и реализовать диаграмму классов для описанных объектов предметной области, используя механизмы композиции.

Объект — товарный вагон. Поля: грузоподъемность вагона, масса находящегося в нем груза и тип груза. Методы: процедура инициализации, процедура вывода параметров вагона на экран, функция расчета процента заполнения вагона и функции, возвращающие значение каждого поля по запросу.

Объект — товарный поезд. Содержит число вагонов в поезде (по умолчанию 0) и сами вагоны. Методы объекта должны позволять: прицепить к хвосту поезда вагон с заданными параметрами, отцепить последний вагон, вывести на экран информацию обо всех вагонах, рассчитать общую грузоподъемность поезда, получить количество вагонов, заполненных более чем наполовину.

Код программы:

```
program project1;
{
TODO realize class Poezd
Code main program
```

```
get vagon param by id
type
 TVagon = object
 private
  gruzpd: integer;
  massa: integer;
  typeG: string;
 public
  procedure Init(maxGM, gm: integer; typeOfG: string);
  procedure Info;
  function percentG: real;
  function getParam(Id: byte): string;
 end;
 procedure TVagon.Init(maxGM, gm: integer; typeOfG: string);
 begin
  Self.gruzpd := maxGM;
  Self.massa := gm;
  Self.typeG := typeOfG;
 end;
 procedure TVagon.Info;
 begin
  writeln('gruzopod: ', Self.gruzpd: 6, ' weight on board: ',
   Self.massa: 6, 'type of gruz: ',
   Self.typeG: 10, ' % zaniatosti: ', Self.percentG: 6: 2);
 end;
 function TVagon.percentG: real;
 begin
  Result := 100 * (Self.massa / Self.gruzpd);
 end;
 function TVagon.getParam(id: byte): string;
 var
  s: string;
 begin
  case id of
   1: str(Self.gruzpd, s);
```

```
2: str(Self.massa, s);
   3: s := Self.typeG;
   else
    s := 'no data';
  end;
  Result := s;
 end;
type
 TPoezd = object
 private
  vagons: array[1..30] of TVagon;
  n: byte;
 public
  procedure resetP;
  procedure addVagon(maxGM, gm: integer; typeOfG: string);
  procedure removeVagon;
  procedure Info;
  function SumGruzpod: integer;
  function NumOfHalfFull: integer;
  {code that obj}
  {programs to add, delete,info, gruzopod, kolvo more than half
full}
 end;
 procedure TPoezd.resetP;
 begin
  Self.n := 0;
 end;
 procedure TPoezd.addVagon(maxGM, gm: integer; typeOfG:
string);
 var
  newVagon: TVagon;
 begin
  Self.n := Self.n + 1;
  newVagon.Init(maxGM, gm, typeOfG);
  Self.vagons[n] := newVagon;
 end;
 procedure TPoezd.removeVagon;
```

```
begin
  if Self.n > 0 then
   Self.n := Self.n - 1;
 end;
 procedure TPoezd.Info;
 var
  i: byte;
 begin
  if n = 0 then
   writeln('The train doesnt exist(0 vagons)');
  for i := 1 to Self.n do
   Self.vagons[i].Info;
 end;
function TPoezd.sumGruzpod: integer;
 var
  i: byte;
  sum: integer;
 begin
  sum := 0;
  for i := 1 to Self.n do
   sum := sum + Self.vagons[i].gruzpd;
  Result := sum;
 end;
 function TPoezd.NumOfHalfFull: integer;
 var
  cnt, i: byte;
 begin
  cnt := 0;
  for i := 1 to Self.n do
   if Self.vagons[i].massa > (Self.vagons[i].gruzpd div 2) then
    cnt := cnt + 1;
  Result := cnt;
 end;
var
 thomas: TPoezd;
 optionId: byte;
 par1, par2: integer;
 par3: string;
```

```
begin
 thomas.resetP();
 writeln('Chose option: 0-Exit 1-Add 2-Remove 3-info 4-
SumGruzopod 5-HalfFullVagons');
 readln(optionId);
 while optionId <> 0 do
 begin
  case optionId of
   1:
   begin
    writeln('Enter gruzopod and mass: ');
    par1 := -1;
    par2 := -1;
    while not ((par1 > 0) \text{ and } (par2 > 0) \text{ and } (par1 > par2)) \text{ do}
     readln(par1, par2);
    writeln('Enter gruz type: ');
    readIn(par3);
    thomas.addVagon(par1, par2, par3);
   end;
   2: thomas.removeVagon();
   3: thomas.Info();
   4: writeln(thomas.sumGruzpod);
   5: writeln(thomas.NumOfHalfFull);
   else
    writeln('no such command');
  end;
  writeln('Chose option: 0-Exit 1-Add 2-Remove 3-info 4-
SumGruzopod 5-HalfFullVagons');
  readIn(optionId);
 end;
 writeln;
 writeln('<press any key>');
 readln;
end.
```

Тесты

Входные данные	Ожидаемые выходные	Выходные данные
	данные	
3	The train doesnt exist(0	The train doesnt exist(0
	vagons)	vagons)
4	0	0
5	0	0

0	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>
1		
13 2		
Steel		
1		
12 7		
Wood		
1		
13 9		
Other		
3	gruzopod: 13 weight	gruzopod: 13 weight
	on board: 2 type of	on board: 2 type of
	gruz: steel %	gruz: steel %
	zaniatosti:	zaniatosti:
	15.38	15.38
	gruzopod: 12 weight	gruzopod: 12 weight
	on board: 7 type of	on board: 7 type of
	gruz: wood %	gruz: wood %
	zaniatosti:	zaniatosti:
	58.33	58.33
	gruzopod: 13 weight	gruzopod: 13 weight
	on board: 9 type of	on board: 9 type of
	gruz: other % zaniatosti:	gruz: other % zaniatosti:
	69.23	69.23
	03.23	03.23
4	38	38
5	2	2
0	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>
1		
13 4		
Auto		
1		
10 5		
Unkonown		
2		
2		

3	gruzopod: 13 weight on board: 4 type of gruz: auto % zaniatosti: 30.77	gruzopod: 13 weight on board: 4 type of gruz: auto % zaniatosti: 30.77
0	<pre><press any="" key=""></press></pre>	<pre><press any="" key=""></press></pre>

Диаграмма классов:

Вывод:

• ООП позволяет лучше структурировать код программы и реализовать операции наследования и композиции, что значительно упрощает процесс разработки сложных программ с большим числом подпрограмм и сложными объектами