Introduction to Machine Learning

Evaluation Resampling 2

Learning goals

- Understand why resampling is better estimator than hold-out
- In-depth bias-var analysis of resampling estimator
- Understand that CV does not produce independent samples
- Short guideline for practical use

BIAS-VARIANCE ANALYSIS FOR SUBSAMPLING

- Reconsider bias-var experiment for holdout (maybe re-read)
- Split rates $s \in \{0.05, 0.1, ..., 0.95\}$ with $|\mathcal{D}_{\text{train}}| = s \cdot 500$.
- Holdout vs. subsampling with 50 iters
- 50 replications

BIAS-VARIANCE ANALYSIS FOR SUBSAMPLING

- Both estimators are compared to "real" MCE (black line)
- SS same pessimistic bias as holdout for given s, but much less var

BIAS-VARIANCE ANALYSIS FOR SUBSAMPLING

- ullet MSE of $\widehat{\mathrm{GE}}$ strictly better for SS
- Smaller var of SS enables to use larger s for optimal choice
- The optimal split rate now is a higher $s \approx 0.8$.
- Beyond s = 0.8: MSE goes up because var doesn't go down as much as we want due to increasing overlap in trainsets (see later)

DEDICATED TESTSET SCENARIO - ANALYSIS

ullet Goal: estimate $\operatorname{GE}\left(\hat{\mathit{f}}\right) = \mathbb{E}\left[\mathit{L}\left(\mathit{y},\hat{\mathit{f}}(\mathbf{x})\right)
ight]$ via

$$\widehat{\mathrm{GE}}\left(\widehat{f}\right) = \frac{1}{m} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}_{\mathrm{test}}} L\left(\mathbf{y}, \widehat{f}(\mathbf{x})\right)$$

Here, only (\mathbf{x}, y) are random, they are m i.i.d. fresh test samples

- This is: average over i.i.d $L(y, \hat{f}(\mathbf{x}))$, so directly know \mathbb{E} and var. And can use CLT to approx distrib of $\widehat{\mathrm{GE}}\left(\hat{f}\right)$ with Gaussian.
- $\mathbb{E}[\widehat{GE}(\hat{f})] = \mathbb{E}[L(y, \hat{f}(\mathbf{x}))] = GE(\hat{f})$
- $\mathbb{V}[\widehat{GE}(\hat{t})] = \frac{1}{m} \mathbb{V}[L(y, \hat{t}(\mathbf{x}))]$
- So $\widehat{\mathrm{GE}}\left(\widehat{f}\right)$ is unbiased estimator of $\widehat{\mathrm{GE}}\left(\widehat{f}\right)$, var decreases linearly in testset size, have an approx of full distrib (can do NHST, Cls, etc.)
- NB: Gaussian may work less well for e.g. 0-1 loss, with $\mathbb E$ close to 0, can use binomial or other special approaches for other losses

PESSIMISTIC BIAS IN RESAMPLING

• Estim $\operatorname{GE}(\mathcal{I}, n)$ (surrogate for $\operatorname{GE}\left(\widehat{f}\right)$ when \widehat{f} is fit on full \mathcal{D} , with $|\mathcal{D}| = n$) via resampling based estim $\widehat{\operatorname{GE}}(\mathcal{I}, n_{\operatorname{train}})$

$$\begin{split} \widehat{\mathrm{GE}}(\mathcal{I}, \mathcal{J}, \rho, \boldsymbol{\lambda}) &= \mathrm{agr}\Big(\rho\Big(\mathbf{y}_{J_{\mathrm{test},1}}, \boldsymbol{F}_{J_{\mathrm{test},1}, \mathcal{I}(\mathcal{D}_{\mathrm{train},1}, \boldsymbol{\lambda})}\Big), \\ &\vdots \\ &\rho\Big(\mathbf{y}_{J_{\mathrm{test},B}}, \boldsymbol{F}_{J_{\mathrm{test},B}, \mathcal{I}(\mathcal{D}_{\mathrm{train},B}, \boldsymbol{\lambda})}\Big)\Big), \end{split}$$

- ullet Let's assume agr is avg and ρ is loss-based, so ρ_L
- The ρ are simple holdout estims. So:

$$\mathbb{E}[\widehat{\mathrm{GE}}(\mathcal{I},\mathcal{J},\rho,\boldsymbol{\lambda})] \approx \mathbb{E}[\rho\Big(\mathbf{y}_{J_{\mathrm{test}}}, \boldsymbol{F}_{J_{\mathrm{test}},\mathcal{I}(\mathcal{D}_{\mathsf{train}},\boldsymbol{\lambda})}\Big)]$$

- NB1: In above, as always for $GE(\mathcal{I})$, both $\mathcal{D}_{\text{train}}$ and $\mathcal{D}_{\text{test}}$ (and so $\mathbf{x} \in \mathcal{D}_{\text{test}}$) are random vars. and we take E over them
- ullet NB2: Need pprox as maybe not all train/test sets in resampling of exactly same size

NO INDEPENDENCE OF CV RESULTS

- Similar analysis as before holds for CV
- Might be tempted to report distribution or SD of individual CV split perf values, e.g. to test if perf of 2 learners is significantly different
- But k CV splits are not independent.

A t-test on the difference of the mean GE estimators yields a highly significant p-value of $\approx 7.9 \cdot 10^{-5}$ on the 95% level.

LDA vs SVM on spam classification problem, performance estimation via 20-CV w.r.t. MCE.

NO INDEPENDENCE OF CV RESULTS

- $\bullet \ \mathbb{V}[\widehat{\mathrm{GE}}]$ of CV is a difficult combination of
 - average variance as we estim on finite trainsets
 - covar from test errors, as models result from overlapping trainsets
 - covar due to the dependence of trainsets and test obs appear in trainsets
- Naively using the empirical var of k individual \widehat{GEs} (as on slide before) yields biased estimator of $\mathbb{V}[\widehat{GE}]$. Usually this underestimates the true var!
- ullet Worse: there is no unbiased estimator of $\mathbb{V}[\widehat{\mathrm{GE}}]$ [Bengio, 2004]
- Take into account when comparing learners by NHST
- Somewhat difficult topic, we leave it with the warning here

SHORT GUIDELINE

- 5-CV or 10-CV have become standard.
- Do not use hold-out, CV with few folds, or SS with small split rate for small n. Can bias estim and have large var.
- For small n, e.g. n < 200, use LOO or, probably better, repeated CV.</p>
- For some models, fast tricks for LOO exist
- With n = 100.000, can have "hidden" small-sample size, e.g. one class very small
- SS usually better than bootstrapping.
 Repeated obs can cause problems in training, especially in nested setups where the "training" set is split up again.