12/5/2018

Time series and Forecasting

Case Study

Jay Bhanushali

The software used in this report is JMP

1)

Holt-Winter's Forecasting method:

The Time-series output from JMP is as follows:

From the Time-series plot, we can see that there is no significant amplitude increase as it is almost constant. Thus, we use the Holt-Winter's additive method for our problem.

The ACF and PACF plots are as follows:

The model summary and the parameter's estimate are as follows:

■ Model: Winters Method (Additive)							
DF			98	Stable	Yes		
Sum of Squared Errors		167.498	463	Invertib	le No		
Variance Estimate		1.70916	799				
Standard Deviation		1.30735	152				
Akaike's 'A' Information Crite	rion	349.518	438				
Schwarz's Bayesian Criterion		357.3	638				
RSquare		0.45996	215				
RSquare Adj		0.44894097					
MAPE		5.14585419					
MAE		1.06607863					
-2LogLikelihood		343.518	438				
△ Parameter Estimates							
Term	E	stimate	St	d Error	t Ratio	Prob> t	
Level Smoothing Weight	1.7	4478e-8	1.8	354e-7	0.10	0.9245	
Trend Smoothing Weight	0.0	0009885	0.0	012006	0.08	0.9346	
Seasonal Smoothing Weight	0.7	6083326	0.1	390828	5.47	<.0001*	

The level smoothing weight and Trend smoothing weight are not significant which can be seen from the parameter estimates. This validates the fact that there is no significant increase in the level and trend of the time-series.

The accuracy measures are as follows:

Model	DF	Variance	AIC	SBC	RSquare	Weights	.2 .4 .6 .8	MAPE	MAE
Winters Method (Additive)	98	1.709168	349.51844	357.36380	0.460	1.000000		5.145854	1.066079

The output from JMP gives just the optimal model. Thus, we can conclude that this model is the best for the Temperature time-series.

The forecast plot is as follows:

2)Modeling ARIMA model on the temperature time-series:

The time-series plot is as follows:

As we can see from the time-series plot from above, this is stationary seasonal time-series.

The ACF and PACF plots are as follows:

Both ACF and PACF plots have some season component which are significant in it which has to be modeled out. From the plots above, we can see a cut-off pattern on both ACF and PACF plots, suggesting the best model might be an ARMA model with seasonal component.

Now we apply a seasonal difference of order 1 to see if the seasonal components in ACF and PACF are still significant.

The ACF and PACF plots are given as:

Now we can see that the seasonal components are no more significant. The cut-off pattern can be seen in both the plots, suggesting we should try an ARMA model after the seasonal differencing:

We consider 2 candidate models for comparison:

- 1) ARIMA $(2, 0, 1) \times (0, 1, 0)_{12}$
- 2) ARIMA $(2, 0, 0) \times (0, 1, 0)_{12}$

ARIMA (2, 0, 1) x $(0, 1, 0)_{12}$

The model summary and the parameter estimates are given below:

As we can see, all the parameters are significant except the MA1 component which is not as significant as others, suggesting this model is still considered as valid.

The accuracy measures are given as:

Model	DF	Variance	AIC	SBC	RSquare	MAPE	MAE
Seasonal ARIMA(2, 0, 1)(0, 1, 0)12	98	0.7926771	270.96838	281.46827	0.753	3.439393	0.705697

Residual analysis:

-0.0997

-0.0665

-0.1442

0.0774

0.0115

-0.0482

0.0066

-0.0328

-0.0444

0.0425

0.0391

-0.0899

-0.0076

-0.0883

0.0276

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25 -0.2497 20.5620 0.7168 25 -0.2629 We can see from the residuals that the residuals are random and there is no auto-correlation left. Thus, suggesting that this model is indeed valid candidate.

4.9603 0.8938

8.6400 0.7996

9.0790 0.9378

5.4763

7.9268

8.6559

8.9397

8.9451

9.3278

9.5584

9.7567

10.8141

10.8217

11.8698

11.9733

0.9059

0.7908

0.8524

0.8807

0.9157

0.9517

0.9630

0.9724

0.9663

0.9772

0.9724

0.9802

10 -0.1173

11 -0.0545

14 -0.0357

18 -0.0353

-0.1309

0.0965

-0.0588

-0.0232 17 -0.0208

0.0827

-0.0208

-0.1219

-0.0328

0.0375

23 -0.1022

12

13

15

16

19

20

21

22

24

ARIMA (2, 0, 0) x $(0, 1, 0)_{12}$

The model summary and the parameter estimates are given below:

As we can see, all the parameters are significant, suggesting this model is valid.

The accuracy measures are given as:

Model	DF	Variance	AIC	SBC	RSquare	MAPE	MAE
Seasonal ARIMA(2, 0, 0)(0, 1, 0)12	99	0.8125565	272.43422	280.30913	0.745	3.438165	0.706244

Residual analysis:

We can see from the residuals that the residuals are random and there is no auto-correlation left. Thus, suggesting that this model is indeed valid candidate.

Model selection:

As both the candidate models are valid, we compare the accuracy measures for selecting the best model for Temperature time-series

Model	DF	Variance	AIC	SBC	RSquare	MAPE	MAE
Seasonal ARIMA(2, 0, 1)(0, 1, 0)12	98	0.7926771	270.96838	281.46827	0.753	3.439393	0.705697
Seasonal ARIMA(2, 0, 0)(0, 1, 0)12	99	0.8125565	272.43422	280.30913	0.745	3.438165	0.706244

We select ARIMA (2, 0, 0) x (0, 1, 0)₁₂ as all the parameters are significant and the accuracy measures are good.

3)

Spectral analysis of Temperature process:

The spectral density of the temperature process is depicted below:

From the above plots, we can see that the Fisher's Kappa statistic is significant as the p-value is below 0.05. Thus, suggesting that there exists one underlying periodic component in it. From the Spectral Density Vs Period plot, we can see that there is a significant and prolonged peak at period 12, which indicates that we have a seasonal period of 12 months.

We save the columns of spectral density and we see the spectral density value of the first spike. We check the corresponding period value and its frequency. That is the period value and the corresponding frequency.

•	Period	Frequency	Angular Frequency	Sine	Cosine	Periodogram	Spectral Density
1	•	0	0	0	0	0	0.5737972359
2	114	0.0087719298	0.0551156606	0.2188367252	0.2803771433	7.2105487237	0.4373570825
3	57	0.0175438596	0.1102313212	0.078059956	-0.009363287	0.3523185888	0.2785298681
4	38	0.0263157895	0.1653469818	0.2483136201	-0.212365624	6.0852522984	0.3045790204
5	28.5	0.0350877193	0.2204626424	0.1961964191	-0.101987721	2.786988219	0.2326655386
6	22.8	0.0438596491	0.2755783029	0.0069810432	-0.02407551	0.0358168136	0.0668293335
7	19	0.0526315789	0.3306939635	0.0633784185	-0.069031887	0.5005868422	0.0992107037
8	16.285714286	0.0614035088	0.3858096241	-0.263241661	0.0001666467	3.9498833861	0.1929483797
9	14.25	0.0701754386	0.4409252847	0.1341592044	0.0691254044	1.2982897787	1.3562978157
10	12.666666667	0.0789473684	0.4960409453	-0.542292501	0.887198184	61.628501121	2.9340192783
11	11.4	0.0877192982	0.5511566059	-0.436164199	-0.460376803	22.924602541	2.195479505
12	10.363636364	0.0964912281	0.6062722665	0.0518625048	-0.218680907	2.8791303427	0.8444174746
13	9.5	0.1052631579	0.6613879271	-0.243077651	-0.427030631	13.762188529	0.8108218014
14	8.7692307692	0.1140350877	0.7165035877	0.0787843266	-0.418833894	10.352841634	0.845734289
15	8.1428571429	0.1228070175	0.7716192483	0.1176913761	-0.356735896	8.0433702724	0.5621635682
16	7.6	0.1315789474	0.8267349088	-0.111016228	-0.139883312	1.8178407954	0.3056650636
17	7.125	0.1403508772	0.8818505694	-0.132743616	-0.216874148	3.6853500285	0.3798604821
18	6.7058823529	0.149122807	0.93696623	0.2725763568	0.3154042503	9.9053295474	0.9345758597
19	6.3333333333	0.1578947368	0.9920818906	-0.445200689	-0.462322305	23.480897359	2.7288681354
20	6	0.1666666667	1.0471975512	0.6619776639	0.9851754386	80.300749123	3.9692652824
21	5.7	0.1754385965	1.1023132118	-0.515439835	0.0714486774	15.434638819	2.2173526924
22	5.4285714286	0.1842105263	1.1574288724	-0.044776085	0.0549316844	0.2862761005	0.3207072068
23	5.1818181818	0.1929824561	1.212544533	0.0090737952	0.0436530241	0.1133114558	0.0323067384
24	4.9565217391	0.201754386	1.2676601936	-0.015540589	0.1387442882	1.1110147826	0.0465374383
25	4.75	0.2105263158	1.3227758541	-0.00694362	-0.004467383	0.0038857678	0.028894376
26	4.56	0.2192982456	1.3778915147	0.0719892479	0.0258889933	0.3336034319	0.0942306982
27	4.3846153846	0.2280701754	1.4330071753	-0.180522048	-0.196813694	4.0654588753	0.2689781015
28	4.222222222	0.2368421053	1.4881228359	-0.116481712	-0.274098762	5.0557928577	1.147169481

The highlighted are the value of a period which suggests 1 period consists of approximately 12 months, and its corresponding frequency = 0.0789 Hz and the first spike spectral density value is spectral density = 2.934

This can be confirmed by the plot below as the highest spike is for approximately 12.

4)

Now we take Temperature as an input and electricity as an output as a cause and effect series. We first see the cross-correlation of the output series to check if pre-whitening is needed.

The cross-correlation plot is as follows:

As we can see the seasonal components which are significant, and the correlations are significant for negative lags as well, which is unreasonable. Thus, pre-whitening is needed.

We apply pre-whitening using the model ARIMA (2, 0, 0) x $(0, 1, 0)_{12}$ to the input temperature series and obtain the transfer function parameters from the cross-correlation of input series after pre-whitening.

Cross-correlation plot of input series after pre-whitening:

		Prewh				_	_	_		
	Lag		Corr	8	64	2	0	.2	.4	.6 .8
-4		0.1297	1	: :			:	:	:	:
-3		0.0859	1 1			ı				
-2		-0.0942								
-1		0.1052								
0		0.0974								
1		-0.0706								
2		-0.2188								
3		-0.1481			- [
4		0.0731								
5		-0.1506			i [
6		-0.1494			- [i		
7		0.0559								
8		-0.1455			- il					
9		0.0337	1 :			L				
10		0.1865	;				Ŀ			
11		0.0907	;				Ŀ			
12		0.2093								
13		0.1651								
14		0.1767	1 :							
15		0.1796	1 :							
16		0.1995	1 :				ļ			
17		0.1016	1 :							
18		0.1347	;				I i			
19		0.1147	;							
20		0.0065	1 1							
21		-0.0563				Щ				
22		0.0101								

From the plot above, we can take b=2 as the lag starts from lag 2 and r=0 as there is no exponential decaying pattern and s=0 as there is w_0 which is of order 0. i.e. ARMAX (2,0,0)

Now we put ARMAX (2, 0, 0) and check its residuals to obtain which ARIMA model is adequate for output electricity model.

The parameter estimates and model summary for ARMAX (2, 0, 0) are:

We can clearly see that the ARMAX (2, 0, 0) model is valid as all the parameters are significant. Residual analysis:

From the residuals we can see that there are significant auto-correlations left which should be modeled by an ARIMA model and the seasonal component should be modeled out by a seasonal ARIMA model.

We take seasonal differencing of order 1 and check the residuals ACF and PACF to see which ARIMA model to model the noise for output series

Residual ACF and PACF after seasonal differencing:

From plots above, we can see that there is a cut-off pattern in PACF of order 2 and an exponential decay type pattern in ACF thus we can choose 2 candidate models to model this

- 1) ARMAX (2, 0, 0) + ARIMA (2, 0, 0) x $(0, 1, 0)_{12}$
- 2) ARMAX (2, 0, 0) + ARIMA (2, 0, 1) x (0, 1, 0)₁₂

$ARMAX(2, 0, 0) + ARIMA(2, 0, 0) \times (0, 1, 0)_{12}$

The model summary and the parameter estimates are given below:

As we can see, all the parameters are significant, suggesting this model is valid.

The accuracy measures are given as:

Model	DF	Variance	AIC	SBC	RSquare	MAPE	MAE
Transfer Function Model (3)	96	8.5868101	503.80436	514.22504	0.626	2.013286	2.396815

Residual analysis:

There is no significant auto-correlation left and the residual plot is random, thus, suggesting this model is valid.

$ARMAX(2, 0, 0) + ARIMA(2, 0, 1) \times (0, 1, 0)_{12}$

The model summary and the parameter estimates are given below:

As we can see from the table above, all parameters are not significant for this model.

Thus, we can select ARIMA (2, 0, 0) x (0, 1, 0) to model noise model.

The final model for transfer function is ARMAX $(2, 0, 0) + ARIMA(2, 0, 0) \times (0, 1, 0)_{12}$

To check Independence between the output residual and the input series:

We now take Temperature as input series and Electricity residuals as an output and compute the cross-correlation:

	Cross Correlation Plots: Output Series - Residual Elec							
Outpu		Residua	II Elec					
1	Corr	864-	202	460				
Lag	vs. Temp	804-	.2 0 .2	.4 .0 .8				
-16	0.1059							
-15	0.1050							
-14	0.0194							
-13	-0.0646							
-12	-0.1259							
-11	0.0657							
-10	0.1181							
-9	-0.0054							
-8	-0.0601							
-7	-0.0635							
-6	-0.0603							
-5	-0.1665							
-4 -3	0.0290							
-3 -2	0.1368							
-2 -1	0.0972							
0	0.0600		1 " [
1	-0.0072 0.0822		1 61					
2	-0.0589							
3	-0.0369							
4	-0.0537		17					
5	0.0052		1 7 1					
6	0.0387							
7	-0.1128							
8	-0.1252							
9	0.0623		7					
10	0.1771							
11	0.0888							
12	0.0653		F					
13	0.0019							
14	-0.0678							
15	-0.0851							

From the plot we can see that the cross-correlation is only white noise. Thus, the input series and the residual of the output series are independent.

5)

For the forecast process, we fit optimal seasonal ARIMA models separately to both temperature and electricity.

We already have Optimal ARIMA for the Temperature series.

Electricity:

ACF and PACF of electricity time-series are:

As we can see there is some significant seasonal component and AR 2 cut-off pattern. Thus, we will put ARIMA (2, 0, 0) x (0, 1, 0) which is significant by analysis, thus validating our model. We now forecast temperature and electricity separately with their respective ARIMA model.

Forecast for next 6 months

Month	Predicted Temperature	Predicted Electricity
7	23.18910819	121.4144055
8	23.57367519	121.1429699
9	19.58086603	121.9514398
10	15.19227942	127.523679
11	16.99198557	129.3577309
12	19.84934281	129.996468