Scilab Textbook Companion for Schaum's Outline Of Physical Science by A. Beiser¹

Created by
Ashana Yamunashankar Shukla
Electrical Engineering
Electrical Engineering
Sardar Patel College of Engineering
College Teacher
NA
Cross-Checked by
Ganesh R

August 10, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Schaum's Outline Of Physical Science

Author: A. Beiser

Publisher: McGraw Hill

Edition: 2

Year: 1988

ISBN: 0-07-004419-8

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	et of Scilab Codes	5
1	Physical Quantities	13
2	Motion in a straight line	17
3	The Laws of Motion	24
4	Circular Motion and Gravitation	32
5	Energy	40
6	Momentum	47
7	Relativity	51
8	Fluids	53
9	Heat	59
10	Kinetic Theory of Gases	65
11	Thermodynamics	70
12	Electricity	74
13	Electric Current	80
11	Magnetism	86

15 Electromagnetic Induction	89
16 Waves	92
17 Lenses	96
18 Quantum Physics	100
19 The Nucleus	106
21 Theory of The Atom	108
25 Stoichiometry	110
26 Solutions	117
27 Solutions	121
28 Acids and Bases	124
30 Electrochemistry	126
34 The Atmosphere	131
40 The Earths Interior	139

List of Scilab Codes

Exa 1.1	1	13
Exa 1.2	2	13
Exa 1.3	3	14
Exa 1.4	4	14
Exa 1.5	5	14
Exa 1.6	6	14
Exa 1.7	7	15
Exa 1.8	8	15
Exa 1.9	9	15
Exa 1.10	10	15
Exa 1.11	11	16
Exa 2.1	1	17
Exa 2.2	2	17
Exa 2.3	3	17
Exa 2.4	4	18
Exa 2.5	5	18
Exa 2.6	6	18
Exa 2.7	7	19
Exa 2.8	8	19
Exa 2.9	9	19
Exa 2.10	10	20
Exa 2.11	11	20
Exa 2.12	12	20
Exa 2.13	13	21
Exa 2.14	14	21
Exa 2.15	15	21
Exa 2.16	16	22
Exa 2.17	17	22

Exa 2.18	18	22
Exa 2.19	19	23
Exa 2.20	20	23
Exa 3.4	4	24
Exa 3.5	5	24
Exa 3.6	6	25
Exa 3.7	7	25
Exa 3.8	8	25
Exa 3.9	9	26
Exa 3.10	10	26
Exa 3.11	11	26
Exa 3.12	12	27
Exa 3.13	13	27
Exa 3.14	14	28
Exa 3.15	15	28
Exa 3.16	16	28
Exa 3.17	17	29
Exa 3.18	18	29
Exa 3.19	19	30
Exa 3.20	20	30
Exa 3.21	21	31
Exa 3.22	22	31
Exa 4.1	1	32
Exa 4.2	2	32
Exa 4.3	3	33
Exa 4.4	4	33
Exa 4.5	5	34
Exa 4.6	6	34
Exa 4.7	7	34
Exa 4.8	8	35
Exa 4.9	9	35
Exa 4.10	10	36
Exa 4.11	11	36
Exa 4.12	12	37
Exa 4.13	13	37
Exa 4.14	14	38
Exa 4.14	15	38
Exa 4.16	16	39

Exa 5.2	2	40
Exa 5.3	3	40
Exa 5.4	4	41
Exa 5.5	5	41
Exa 5.7	7	41
Exa 5.8	8	41
Exa 5.9	9	42
Exa 5.10	10	42
Exa 5.11	11	43
Exa 5.12	12	43
Exa 5.13	13	43
Exa 5.14	14	44
Exa 5.15	15	44
Exa 5.16	16	44
Exa 5.17	17	45
Exa 5.18	18	45
Exa 5.19	19	46
Exa 5.20	20	46
Exa 6.3	3	47
Exa 6.4	4	47
Exa 6.6	6	48
Exa 6.7	7	48
Exa 6.8	8	48
Exa 6.9	9	49
Exa 6.10	10	49
Exa 7.5	5	51
Exa 7.6	6	51
Exa 7.7	7	52
Exa 7.8	8	52
Exa 7.9	9	52
Exa 8.3	3	53
Exa 8.4	4	53
Exa 8.5	5	54
Exa 8.6	6	54
Exa 8.7	7	54
Exa 8.8	8	55
Exa 8.9	9	55
Exa. 8 10	10	56

Exa 8.11	11															56
Exa 8.12	12															56
Exa 8.13	13															57
Exa 8.14	14															57
Exa 8.15	15															58
Exa 9.2	2 .															59
Exa 9.3	3.															59
Exa 9.4	4 .															59
Exa 9.5	5.															60
Exa 9.6	6.															60
Exa 9.7	7.															60
Exa 9.8	8.															61
Exa 9.9	9.															61
Exa 9.10	10															61
Exa 9.11	11															62
Exa 9.12	12															62
Exa 9.13	13															62
Exa 9.14	14															63
Exa 9.15	15															63
Exa 9.18	18															64
Exa 9.19	19															64
Exa 10.4	4 .															65
Exa 10.5	5.															65
Exa 10.6	6 .															66
Exa 10.7	7.															66
Exa 10.8	8.															66
Exa 10.9	9.															67
Exa 10.10	10															67
Exa 10.11	11															68
Exa 10.12	12															68
Exa 10.13	13															68
Exa 10.14	14															69
Exa 10.15	15															69
Exa 11.4	4 .															70
Exa 11.6	6.															70
Exa 11.7	7.															71
Exa 11.8	8.															71
Exa 11 9	9															72

Exa 11.10	10	72
Exa 11.11	11	73
Exa 12.7	7	74
Exa 12.8	8	74
Exa 12.9	9	75
Exa 12.10	10	75
Exa 12.12	12	75
Exa 12.13	13	76
Exa 12.14	14	76
Exa 12.15	15	77
Exa 12.16	16	77
Exa 12.17	17	77
Exa 12.18	18	78
Exa 12.19	19	78
Exa 12.20	20	79
Exa 13.5	5	80
Exa 13.6	6	80
Exa 13.7	7	81
Exa 13.8	8	81
Exa 13.9	9	81
Exa 13.10	10	82
Exa 13.11	11	82
Exa 13.12	12	82
Exa 13.13	13	83
Exa 13.14	14	83
Exa 13.15	15	84
Exa 13.16	16	84
Exa 13.17	17	85
Exa 14.8	8	86
Exa 14.10	10	86
Exa 14.11	11	87
Exa 14.12	12	87
Exa 14.13	13	87
Exa 14.14		88
Exa 15.3	3	89
Exa 15.4	4	89
Exa 15.5	5	90
Exa 15.6	6	90

Exa 15.7	7.																		90
Exa 15.8	8.																		91
Exa 16.9	9.																		92
Exa 16.10	10																		92
Exa 16.11	11																		92
Exa 16.12	12																		93
Exa 16.13	13																		93
Exa 16.15	15																		93
Exa 16.16	16																		94
Exa 16.17	17																		94
Exa 16.18	18																		94
Exa 17.3	3.																		96
Exa 17.4	4 .																		96
Exa 17.5	5.																		97
Exa 17.6	6.																		97
Exa 17.7	7.																		97
Exa 17.8	8.																		98
Exa 17.9	9.																		98
Exa 17.10	10																		99
Exa 17.11	11																		99
Exa 18.1	1.																		100
Exa 18.2	2 .																		100
Exa 18.3	3.																		101
Exa 18.4	4 .																		101
Exa 18.5	5.																		101
Exa 18.6	6.																		102
Exa 18.7	7.																		102
Exa 18.8	8.																		103
Exa 18.9	9.																		103
Exa 18.10	10																		103
Exa 18.11	11																		104
Exa 18.13	13																		104
Exa 18.14	14																		105
Exa 19.4	$\frac{1}{4}$.																		106
Exa 19.5	5.																		106
Exa 19.6	6.																		106
Exa 19.10	10																		107
Exa 21.5	5	-	•	-					-			-		•	-	-	•	-	108

Exa 21.6	6.									 						108
Exa 21.7	7.									 						109
Exa 21.8	8.									 						109
Exa 21.11	11									 						109
Exa 25.2	2 .									 						110
Exa 25.3	3.															110
Exa 25.4	4 .									 						111
Exa 25.5	5.															111
Exa 25.6	6.									 						111
Exa 25.7	7.									 						112
Exa 25.8	8.									 						112
Exa 25.9	9.									 						113
Exa 25.10	10									 						113
Exa 25.11	11									 						114
Exa 25.12	12									 						114
Exa 25.13	13									 						114
Exa 25.15	15									 						115
Exa 25.16	16									 						115
Exa 25.17	17									 						115
Exa 26.1	1.									 						117
Exa 26.2	2 .									 						117
Exa 26.3	3.									 						117
Exa 26.4	4 .									 						118
Exa 26.5	5.									 						118
Exa 26.6	6.															118
Exa 26.7	7.															119
Exa 27.7	7.									 						119
Exa 26.8	8.									 						119
Exa 26.9	9.									 						120
Exa 26.10	10									 						120
Exa 27.3	3.									 						121
Exa 27.4	4 .									 						121
Exa 27.5	5.									 						121
Exa 27.6	6.									 						122
Exa 27.8	8.									 						122
Exa 27.9	9.															122
Exa 27.11	11									 						122
Exa 27 12																122

Exa 27.14	14	. 123
Exa 28.1	1	. 124
Exa 28.10	10	. 124
Exa 28.11	11	. 124
Exa 28.12	12	. 125
Exa 30.3	3	. 126
Exa 30.4	4	. 126
Exa 30.5	5	. 127
Exa 30.6	6	. 127
Exa 30.7	7	. 127
Exa 30.8	8	. 128
Exa 30.9	9	. 128
Exa 30.10	10	. 128
Exa 30.11	11	. 129
Exa 30.13	13	. 129
Exa 34.8	8	. 131
Exa 40.7	7	. 132

Chapter 1

Physical Quantities

Scilab code Exa 1.1 1

```
1 clc;
2 disp("2*10^1");
3 disp("3.043*10^3");
4 disp("8.7*10^6");
5 disp("2.2*10^-1");
6 disp("3.5*10^-1");
```

Scilab code Exa 1.2 2

```
1 clc;
2 disp(6*10^2+5*10^4);
3 disp(2*10^-2+3*10^-3);
4 disp(7+2*10^-2);
5 disp(6*10^4-4*10^2);
6 disp(3*10^-2-5*10-3);
7 disp(7*10^-5-2*10^-4);
8 disp(6.23*10^-3-6.28*10^-3);
```

```
Scilab code Exa 1.3 3
1 clc;
2 disp(10^5*10^-2);
3 disp(10^4/10^-3);
4 disp(10<sup>3</sup>/10<sup>6</sup>);
5 disp((10<sup>5</sup>*10<sup>-7</sup>)/10<sup>2</sup>);
  Scilab code Exa 1.4 4
1 clc;
2 disp((460*0.00003*100000)/(9000*0.0062));
  Scilab code Exa 1.5 5
1 clc;
2 disp(10^2*10^4);
3 disp(10^-15);
4 disp(10<sup>12</sup>);
5 disp((3*10^3)^3);
6 disp((4*10^-5)^3);
7 disp((2*10^-2)^-4);
  Scilab code Exa 1.6 6
1 clc;
2 disp(sqrt(10^6));
```

```
3 disp(sqrt(5*10^4));
4 disp(sqrt(3*10^5));
5 disp(sqrt(0.000025));
  Scilab code Exa 1.7 7
1 clc;
2 disp(10<sup>3</sup>);
3 disp(10^(8/3));
4 disp((3.8*10^19)^(1/3));
5 disp((2.7*10^-5)^(1/3));
  Scilab code Exa 1.8 8
1 clc;
2 disp(1440*0.621, "Distance in miles");
                                                //
     displaying result
  Scilab code Exa 1.9 9
1 clc;
2 disp(74*2.54, "Height in cm = "); //displaying
     result
```

Scilab code Exa 1.10 10

Chapter 2

Motion in a straight line

Scilab code Exa 2.4 4

Scilab code Exa 2.5 5

Scilab code Exa 2.6 6

Scilab code Exa 2.7 7

Scilab code Exa 2.8 8

```
1 clc;
2 v=30;  //velocity in min/hr
3 v0=20;  //velocity in min/hr
4 t=1.5;  //time in sec
5 a=((v-v0)/t);  //calculating acc.
6 t1=(36-30)/a;  //calculating time
7 disp(a,"Accelaration in (min/h)/sec = ");  //displaying result
8 disp(t1,"Time in second = ");  //displaying result
```

Scilab code Exa 2.9 9

```
1 clc;
2 v=24;  //velocity in m/sec
3 a=8;  //acc. in m/sec square
4 t=v/a;  //using t=v/a
5 disp(t,"Time in sec = "); //displaying result
6 s=(1/2)*(a*t*t);  //kinematical equation
```

```
7 disp(s,"Distance in metre = ");  //displaying
  result
```

Scilab code Exa 2.10 10

```
1 clc;
2 v=30;  //velocity in m/sec
3 a=6;  //acc. in m/sec square
4 t=v/a;  //using t=v/a
5 disp(t,"Time in sec = "); //displaying result
6 s=(1/2)*(a*t*t);  //kinematical equation
7 disp(s,"Distance in metre = ");  //displaying result
```

Scilab code Exa 2.11 11

Scilab code Exa 2.12 12

Scilab code Exa 2.13 13

```
1 clc;
2 v=15;    //velocity in m/sec
3 v0=30;    //velocity in m/sec
4 a=-2;    //acc. in m/sec square
5 s=((v*v)-(v0*v0))/(2*a);    //kinematical equation
6 disp(s,"Distance in metre = ");    //displaying
    result
7 v=0;
8 s=(v*v)-(v0*v0)/(2*a);
9 disp(s,"Distance in metre = ");    //displaying
    result
```

Scilab code Exa 2.14 14

```
1 clc;
2 g=9.8;  //gravitational constant in m/sec square
3 t=2.5;  //time in sec
4 v=g*t;
5 disp(v,"Velocity in m/sec = ");  //displaying
    result
6 h=(1/2)*g*t*t;  //kinematical equation
7 disp(h,"Height in m = ");  //displaying result
```

Scilab code Exa 2.15 15

```
1 clc;
2 g=32;    //gravitational constant in ft/sec square
3 h=64;    //height in ft
4 t=(sqrt((2*h)/g));    //kinematical equation
5 disp(t,"Time in sec = ");    //displaying result
6 v=g*t;    //kinematical equation
```

```
7 disp(v," Velocity in ft/sec = ");  //displaying
  result
```

Scilab code Exa 2.16 16

```
1 clc;
2 g=32;    //gravitational constant in ft/sec
        square
3 h=100;    //height in ft
4 v=sqrt(2*g*h);    //calculating velocity
5 disp(v,"Velocity in ft/sec = ");    //displaying
    result
```

Scilab code Exa 2.17 17

```
1 clc;
2 h=0.78;    //height in m
3 g=9.8;    //gravitational constant in m/sec square
4 v=0.5;    //velocity in m/sec
5 t=sqrt((2*h)/g);    //calculating t
6 disp(t,"Time required in sec = ");    //displaying result
7 s=v*t;    //calculating distance
8 disp(s,"Horizontal distance in m = ");    // displaying result
```

Scilab code Exa 2.18 18

```
1 clc;
2 v0=20; //velocity in ft/sec
```

```
3 g=32;  //gravitational constant in ft/sec
4 t=2;  //time in sec
5 v=v0+(g*t);  //kinematical equation
6 disp(v,"Velocity in ft/sec = ");  //displaying
    result
7 s=(v0*t)+(1/2)*g*t*t;  //kinematical equation
8 disp(s,"Distance in ft = "); //displaying result
```

Scilab code Exa 2.19 19

```
1 clc;
2 v0=20;  //velocity in ft/sec
3 g=-32;  //gravitational constant in ft/sec
4 t=0.5;  //time in sec
5 v=v0+(g*t);  //kinematical equation
6 disp(v,"Velocity in ft/sec = ");  //displaying result
7 t=2;  //time in sec
8 s=v0+(g*t);  //kinematical equation
9 disp(s,"Distance in ft = ");  //displaying result
```

Scilab code Exa 2.20 20

Chapter 3

Scilab code Exa 3.4 4

The Laws of Motion

1 clc; 2 g=9.8; //gravitational constant in m/sec square 3 m=100; //mass in kg 4 disp(m*g,"Weight in Newton = ");

Scilab code Exa 3.5 5

```
1 clc;
2 g=9.8;    //gravitational constant in m/sec square
3 m=5;    //mass in kg
4 F=100;    //force in Newton
5 disp(m*g,"Weight in Newton = ");
6 a=F/m;    //calculating acc.
7 disp(a,"Accelaration in m/sec square = "); // displaying result
```

Scilab code Exa 3.6 6

```
1 clc;
2 g=9.8;    //gravitational constant in m/sec square
3 m=1;    //mass in kg
4 F=1;    //force in Newton
5 w=1;    //in Newton
6 a=F/m;    //calculating acc.
7 disp(a,"Accelaration in m/sec square = "); // displaying result
8 a=(F*g)/w;
9 disp(a,"Accelaration in m/sec square = ");    // displaying result
```

Scilab code Exa 3.7 7

```
1 clc;
2 g=9.8;    //gravitational constant in m/sec square
3 m=10;    //mass in kg
4 a=5;    //acc. in m/sec square
5 F=m*a;    //calculating force
6 disp(F,"Force in Newton = ");    //displaying
    result
```

Scilab code Exa 3.8 8

```
1 clc;
2 a=20;    //acc. in m/sec square
3 F=80;    //force in Newton
4 m=F/a;    //using F=m*a (Newton's Law)
5 disp(m,"Mass in kg = ");    //displaying result
```

Scilab code Exa 3.9 9

```
1 clc;
2 g=9.8;    //gravitational constant in m/sec square
3 m=60;    //mass in kg
4 a=2;    //acc. in m/sec square
5 F=(m*g)+(m*a);    //calculating force in Newton
6 disp(F, "Force in Newton = "); // displaying result
```

Scilab code Exa 3.10 10

Scilab code Exa 3.11 11

```
1 clc;
2 m=2000;    //mass in kg
3 a=1;    //acc. in m/sec square
4 F=m*a;    //Newton's Law
5 disp(F,"Force in Newton = "); //displaying result
```

```
6 m=3000;    //mass in kg
7 a=F/m;    //Newton's Law
8 disp(a,"Accelaration in m/sec square = ");    //
        displaying result
```

Scilab code Exa 3.12 12

```
1 clc;
2 v = 20;
                //velocity in m/sec
3 v0=10;
                //velocity in m/sec
                //time in sec
4 t=5;
5 a=(v-v0)/t; //kinematical equation
6 disp(a, "Accelaration in m/sec square = ");
                                                 //
     displaying result
7 m = 1000;
               //mass in kg
8 a=2;
           //acc. in m/sec square
9 F=m*a; //Newton's Law
10 disp(F, "Force in Newton = "); //displaying result
```

Scilab code Exa 3.13 13

```
1 clc;
2 v=-20;    //velocity in m/sec
3 v0=15;    //velocity in m/sec
4 t=0.005;    //time in sec
5 a=(v-v0)/t;    //kinematical equation
6 disp(a, "Accelaration in m/sec square = ");    //displaying result
7 m=0.06;    //mass in kg
8 F=m*a;    //Newton's Law
9 disp(F, "Force in Newton = ");    //displaying result
```

Scilab code Exa 3.14 14

Scilab code Exa 3.15 15

Scilab code Exa 3.16 16

```
1 clc;
2 g=32;    //gravitational constant in ft/sec square
3 w=160;    //weight in lb
4 m=w/g     //calculating mass in slugs.
5 disp(m,"Mass in slugs = "); //displaying result
```

Scilab code Exa 3.17 17

```
1 clc;
2 m=25;    //mass in slugsg
3 F=75;    //force in lb
4 a=F/m;    //calculating acc.
5 t=12;    //time in sec
6 disp(a,"Accelaration in ft/sec square = "); //displaying result
7 v=a*t;    //kinematical equation
8 disp(v,"Velocity in ft/sec = ");    //displaying result
```

Scilab code Exa 3.18 18

Scilab code Exa 3.19 19

```
1 clc;
2 g=32;
                //gravitational constant in ft/sec
      square
3 \text{ w} = 3200;
                    //weight in lb
             //calculating mass
4 \text{ m=w/g};
5 disp(m, "Mass in slugs = "); // displaying result
                  //velocity in ft/sec
6 v = 44;
7 t=8;
                  //time in sec
                   //calculating acc
8 a=v/t;
9 disp(a, "Accelaration in ft/sec square = ");
                                                       //
      displaying result
                  //calculating force in lb
10 F=m*a;
11 disp(F, "Force in lb = "); //displaying result
```

Scilab code Exa 3.20 20

```
1 clc;
2 g=32;
               //gravitational constant in ft/sec
     square
3 w = 2400;
                   //weight in lb
           //calculating mass
4 \text{ m=w/g};
5 disp(m, "Mass in slugs = "); //displaying result
6 F = 750;
                  //force in lb
7 m = 75;
                  //mass in slugs
                  //calculating acc
8 a=F/m;
9 disp(a, "Accelaration in ft/sec square = ");
      displaying result
10 v0=60; //initial velocity in ft/sec
11 v = 20;
             //final velocity in ft/sec
12 a=-10; //acc. in ft/sec square
```

```
13 t=(v-v0)/a;  //kinematical equation
14 s=(v0*t)+((1/2)*a*t*t);  //calculating
    distance in ft
15 disp(s,"Distance in ft = ");  //displaying result
```

Scilab code Exa 3.21 21

```
1 clc;
2 g=32;
               //gravitational constant in ft/sec
     square
3 \text{ w} = 3200;
                   //weight in lb
4 m=w/g; //calculating mass
5 disp(m, "Mass in slugs = "); //displaying result
6 \text{ F} = 800;
                  //force in lb
7 m = 100;
                  //mass in slugs
                  //calculating acc
8 a=F/m;
9 disp(a, "Accelaration in ft/sec square = ");
                                                       //
     displaying result
```

Scilab code Exa 3.22 22

```
1 clc;
2 F=50-30;    //force in lb
3 w1=50;    //weight in lb
4 w2=30;    //weight in lb
5 m=(w1+w2)/g;    //calculating mass
6 disp(m,"Mass in slugs = ");    //displaying result
7 a=F/m;    //Newton's Law
8 disp(a,"Accelaration in ft/sec square = ");    //displaying result
```

Chapter 4

Circular Motion and Gravitation

Scilab code Exa 4.1 1

```
1 clc;
2 r=1.5;
                                 //radius in ft
                                 //time in sec
3 t=2;
4 s = 2 * \%pi * r;
                                 //calculating s using
     circumference of circle
                                 // = 2*3.14*r in ft
                                 //calculating velocity
6 \text{ v=s/t};
     using v=s/t in ft/sec
                                 //calculating
7 ac=(v*v)/r;
     centripetal accelaration in
                                        //ft/sec square.
8 disp(ac, "Centripetal Accelaration = "); //
     Displaying Result in ft/sec square.
```

Scilab code Exa 4.2 2

Scilab code Exa 4.3 3

```
1 clc;
2 F=1;    //force in Newton
3 m=0.1;    //m in kg
4 r=0.7;    //radius in metre
5 v=sqrt((F*r)/m);    //calculating v in m/sec
6 disp(v,"Velocity in metre/sec = ");    //displaying result.
```

Scilab code Exa 4.4 4

Scilab code Exa 4.5 5

```
1 clc;
2 m=1000;  //mass in kg
3 r=30;  //radius in metre
4 v=9;  //velocity in metre/sec
5 F=(m*v*v)/r;  //calculating centripetal force in Newton.
6 disp(F, "Centripetal Force in Newton = ");  // displaying result.
```

Scilab code Exa 4.6 6

```
1 clc;
2 g=32    //gravitational constant in ft/sec square.
3 w=3200    //weight in lb
4 F=2000    //Maximum Force in lb
5 r=320    //radius in ft
6 m=w/g;    //calculating mass in slugs
7 v=sqrt((F*r)/m);    //calculating velocity in ft/sec
8 disp(v*0.682,"Velocity in min/hr = ");    // displaying velocity in min/hr.
```

Scilab code Exa 4.7 7

```
1 clc;
2 g=9.8;    //gravitaional constant in metre/sec
3 r=0.5;    //radius in metre
4 m=1;    //mass in kg
```

```
5 v=5; //velocity in metre/sec
6 F=(m*v*v)/r; //calculationg centripetal force in
     Newton
              //calculating weight in Newton
7 w=m*g;
8 \quad T = F - w;
             //calculating Tension in string at top
     position in Newton
9 disp(T," Tension in the string at the top position in
      Newton = "); //displaying result
          //calculating Tension at bottom of string
10 T = F + w;
     in Newton.
11 disp(T, "Tension in the string at the bottom position
      in Newton = "); // displaying Tension at
     bottom of string in Newton.
```

Scilab code Exa 4.8 8

Scilab code Exa 4.9 9

```
3 \text{ m1=5.98*10^24}; //\text{mass of earth in kg}
                   //mass of moon in kg
4 m2=7.36*10^22;
5 r=3.84*10^8; //radius of moon's orbit
6 F=(G*m1*m2)/(r*r); //calculating gravitationalforce
      in Newton
7 \text{ v=sqrt}((G*m1)/r); //calculating velocity of moon
     in m/sec
8 s = 2 * \%pi * r;
               //calculating circumference of moon's
      orbit in metre
                 //calculating time in sec
10 disp(F, "Gravitational Force in Newton = "); //
      displaying gravitational force in Newton
11 disp(v, "Velocity in metre/sec = "); //displaying
      velocity in metre
12 disp(t, "Time in sec = "); //displaying time in sec.
13 disp(t/86400, "Time in days = "); // displaying time
     in days
```

Scilab code Exa 4.10 10

```
1 clc;
2 r=6.4*10^6; //radius of earth in m
3 g=9.8; //gravitational constant in m/sec square
4 v=sqrt(r*g); //calculating velocity in m/sec
5 disp(v,"Velocity in metre/sec = "); //displaying
    result
```

Scilab code Exa 4.11 11

```
4 disp(g,"Accelaration due to gravity at 1000km = "); //displaying result
```

Scilab code Exa 4.12 12

Scilab code Exa 4.13 13

```
1 clc;
2 T = 24 * 60 * 60;
                 //time in sec
3 \text{ re=} 6.4*10^{6};
                 //radius of earth in m
4 g=9.8;
                  //gravitational constant in m/sec
     square
5 r = (((6.4*10^6*6.4*10^6)*9.8*(8.64*10^4*8.64*10^4))
     /(4*\%pi*\%pi))^(1/3); //calculating r in metre
6 disp(r, "Radius in metre = "); //displaying radius
     in metre
              //h =altitude above earth's surface
7 \text{ h=r-re};
8 disp(h, "Height above the earths Surface in metre = "
     ); //displaying height above earth's surface in
     \mathbf{m}
```

```
9 disp(h/1000,"Height above the earths Surface in
    kilometre = "); //displaying height above earth'
    s surface in km)
```

Scilab code Exa 4.14 14

```
1 clc;
2 re=6.4*10^6; //radius of earth in m
3 g=9.8; //gravitational constant in m/sec square
4 G=6.67*10^-11; //Universal gravitational constant
    in Nm square/kg square
5 m=(g*re*re)/G; //calculating mass of earth in kg
6 disp(m,"Mass of Earth in kg = "); //diaplaying mass
    of Earth inkg
```

Scilab code Exa 4.15 15

Scilab code Exa 4.16 16

Energy

Scilab code Exa 5.2 2

```
1 clc;
2 F=60;    //force in lb
3 s=10;    //distance inft
4 W=F*s;    //calculating weight
5 disp(W,"Weight in ft.lb = ");    //displaying result
```

Scilab code Exa 5.3 3

Scilab code Exa 5.4 4

```
1 clc;
2 g=9.8;    //gravitational constant in m/sec square
3 h=1.5;    //height in m
4 m=2;    //mass in kg
5 W=m*g*h;    //calculating weight
6 disp(W,"Weight in Joule = ");    //displaying result
7 disp(W,"Potential Energy in Joule = ");    //
        displaying result
```

Scilab code Exa 5.5 5

```
1 clc;
2 g=9.8;    //gravitational constant in m/sec square
3 m=2;    //mass in kg
4 W=m*g;    //calculating weight
5 disp(W,"Weight in Newton = ");    //displaying result
```

Scilab code Exa 5.7 7

Scilab code Exa 5.8 8

```
1 clc;
2 s = 80;
              //height in m
               //power of hoist in hp
3 p=20;
             //weight in kg
4 m = 500;
          //gravitational constant in m/sec square
//efficiency = 80 percent
5 \text{ g=9.8};
6 e = 0.8;
             //Force in Newton
7 F=m*g;
8 P=e*p*746; //calculating power in watt
9 t=(F*s)/P; //calculating time required
10 disp(t, "Time required in sec = "); //displaying
      time required.
```

Scilab code Exa 5.9 9

```
1 clc;
2 v=10;    //velocity in min/hr
3 p=80;    //power required in hp
4 v=v*1.47;    //converting v to ft/sec
5 P=p*550;    //converting P to ft.lb/sec
6 F=P/v;    //calculating resistive force required
7 disp(F, "Resistive force required in lb = ");    // displaying resistive force required.
```

Scilab code Exa 5.10 10

```
1 clc;
2 p=1; //power output in hp
3 p=1*746 //power output in Watt using 1hp = 746Watt
4 F=300; //Force in Newton
5 v=p/F; //calculating v in m/sec using P=F*v
6 disp(v,"Velocity in m/sec = "); //displaying velocity in m/sec
```

Scilab code Exa 5.11 11

Scilab code Exa 5.12 12

Scilab code Exa 5.13 13

```
1 clc;
2 v=15;    //velocity in ft/sec
3 w=128;    //weight in lb
4 g=32;    //g in ft/sec square
5 m=w/g;    //calculating m in slugs
6 KE=(1/2)*(m*v*v);    //calculating KE in ft.lb
7 disp(KE, "Kinetic Energy in ft.lb = ");    //displaying result
```

Scilab code Exa 5.14 14

Scilab code Exa 5.15 15

```
1 clc;
2 h=7-3;  //height above ground in ft
3 g=32;  //g in ft/sec square
4 v=sqrt(2*g*h);  //calculating velocity in ft/sec since PE=KE
5 disp(v,"Velocity in ft/sec = ");  //displaying result
```

Scilab code Exa 5.16 16

```
1 clc;
2 v=20;  //velocity in m/sec
3 g=9.8;  //g in m/sec square
4 h=200;  //height in m
```

Scilab code Exa 5.17 17

```
1 clc;
2 w=3;  //weight in lb
3 v=15;  //velocity in ft/sec
4 g=32;  //g in ft/sec square
5 s=(1/24);  //s in ft
6 F=(w*v*v)/(2*g*s);  //calculating force exerted in lb
7 disp(F, "Force exerted in lb = ");  //displaying result
```

Scilab code Exa 5.18 18

```
1 clc;
              //g in m/sec square
2 g=9.8;
3 h=2;
              //height in m
4 F = 100;
              //force in Newton
             //s in m
5 \text{ s=15};
             //velocity in m/sec
6 v = 2;
              //mass in 30 kg
7 m = 30;
             //calculating work in Joule
8 \text{ W=F*s};
9 delKE=(1/2)*(m*v*v); //calculating change in KE in
      Joule
                          //calculating change in PE in
10 delPE=m*g*h;
      Joule
11 Wf=W-delKE-delPE;
                         //calculating work in Joule
```

Scilab code Exa 5.19 19

Scilab code Exa 5.20 20

```
1 clc;
2 P=10^8;  //power in Watt
3 t=60*60*24;  //t in seconds for 1 day
4 E=P*t;  //calculating energy in Joule using E=P*
    t
5 m=E/(c*c);  //calculating m in kg using Einstein's
        equation:E=m*c*c
6 disp(m,"Mass in kg = ");  //displaying result
```

Momentum

Scilab code Exa 6.3 3

```
1 clc;
2 m=50;    //mass in kg
3 v=6;    //velocity in m/sec
4 p=m*v;    //calculating momentum
5 disp(p,"Momentum of woman in kg.m/sec = ");    //displaying result
```

Scilab code Exa 6.4 4

Scilab code Exa 6.6 6

```
1 clc;
2 mr=5;    //weight of rifle in kg
3 mb=0.015;    //weight of bullet in kg
4 vb=600;    //velocity of bullet in m/sec
5 vr=(mb*vb)/mr;    //calculating vr using law of conservation of momentum
6 disp(vr, "Recoil velocity of rifle in m/sec = ");    // displaying result
```

Scilab code Exa 6.7 7

```
1 clc;
2 wa=300; //weight of astronaut in lb
3 ww=1; //weight in of wrench lb
4 vw=15; //velocity of wrench in ft/sec
5 va=(ww*vw)/wa; //calculating va using law of conservation of momentum
6 disp(va,"Velocity of astronaut in ft/sec = "); // displaying result
```

Scilab code Exa 6.8 8

```
1 clc;
2 mm=70; //weight in of man kg
3 ms=0.5; //weight of snow-ball in kg
4 v1=20; //man's initial velocity in m/sec
5 v2=(ms/(mm+ms))*v1; //calculating v2 using law of conservation of momentum
```

```
6 disp(v2, "Mans final velocity in m/sec = "); //
displaying result
```

Scilab code Exa 6.9 9

```
1 clc;
2 m1 = 40;
          //weight in kg
            //weight in kg
3 m2=60;
4 v1=4; //speed in m/sec
5 v2=2; //speed in m/sec
6 v3 = ((m1*v1) + (m2*v2))/(m1+m2); // calculating v3
      using law of conservation of momentum
7 disp(v3, "Final velocity in m/sec = "); //displaying
      result
8 inKE=(1/2)*(m1*v1*v1)+(1/2)*(m2*v2*v2); //
      calculating initial KE in Joules
9 fiKE=(1/2)*(m1+m2)*v3*v3; //calculating final KE in
       Joules
10 disp(inKE-fikE, "Kinetic Energy lost in Joules = ");
      //displaying result.
```

Scilab code Exa 6.10 10

```
8 fiKE=(1/2)*(m1+m2)*v3*v3;  // calculating initial
         KE in Joules
9 inKE=(1/2)*((m1*v1*v1)+(m2*v2*v2));  // calculating
         final KE in Joules
10 disp(inKE-fiKE, "Kinetic Energy lost in Joules = ");
         // displaying result.
```

Relativity

Scilab code Exa 7.5 5

Scilab code Exa 7.6 6

Scilab code Exa 7.7 7

Scilab code Exa 7.8 8

Scilab code Exa 7.9 9

Fluids

Scilab code Exa 8.3 3

```
1 clc;
2 dg=1200; //density in lb/ft cube
3 v=1/1728; //in ft cube/in cube
4 w=dg*v; //calculating weight
5 disp(w,"Weight in lb = "); //displaying result
```

Scilab code Exa 8.4 4

Scilab code Exa 8.5 5

```
1 clc;
2 dg=0.08;    //weight density of air in lb/ft cube
3 v=12*12*10;    //calculating volume using v=l*b*h in
    ft cube
4 w=dg*v;    //calculating weight in lb using weight=
        weight density*volume
5 disp(w,"Weight of the air in lb = ");    //displaying
    result.
```

Scilab code Exa 8.6 6

```
1 clc;
2 w=500; //weight in lb
3 dg=62; //density in lb/ft cube
4 v=w/dg; //calculating volume using density=mass/
    volume
5 disp(v,"Volume in ft cube = "); ///displaying
    result.
```

Scilab code Exa 8.7 7

```
1 clc;
2 F=130; //force in lb
3 r=1; //radius in inch
```

Scilab code Exa 8.8 8

```
1 clc;
2 m=20000; //mass in kg
3 A=60; //area in metre square
4 g=9.8; //gravitational constant in m/sec square
5 F=m*g; //calculating force in Newton
6 p=F/A; //calculating pressure in Pascal
7 disp(p,"Pressure in Pascal = "); //displaying result.
8 disp(p/(1.013*10^5),"Pressure in atm = "); //displaying result.
```

Scilab code Exa 8.9 9

```
1 clc;
2 pa=14.7;  //atm pressure in lb/in square
3 dg=62;  //density in lb/ft cube
4 h=6/144;  //in ft cube/in square
5 p=pa+(dg*h);  //calculating pressure
6 disp(p,"Pressure in lb/in square = ");  //displaying result
```

Scilab code Exa 8.10 10

Scilab code Exa 8.11 11

Scilab code Exa 8.12 12

```
1 clc;
2 r=2;    //side in m
3 m=70;    //mass of man in kg
4 d=10^3;    //density in kg/m cube
5 V=m/d;    //calculating Volume in m cube
6 A=r*r;    //calculating area in m square
7 h=V/A;    //calculating height using vol=height*
    area in metre
8 disp(h,"Height in metre = ");    //displaying result.
```

Scilab code Exa 8.13 13

```
1 clc;
2 dice=920; //desity of ice in kg/m cube
3 dwater=1030; //density of water in kg/m cube
4 vsub=dice/dwater; //calculating percentage volume
    of iceberg that is submerged using relation:dice*
    g*v=dwater*g*vsub
5 disp(vsub*100,"Percentage of volume of submerged
    iceberg = "); //displaying result.
```

Scilab code Exa 8.14 14

Scilab code Exa 8.15 15

Heat

Scilab code Exa 9.2 2

```
1 clc;
2 tf=80;  //temp in farenheit
3 tc=(5/9)*(tf-32);  //calculating temp in celcius
4 disp(tc,"Temperature in celcius = ");  //displaying
    result
```

Scilab code Exa 9.3 3

Scilab code Exa 9.4 4

```
1 clc;
2 tf=-362;  //temp in farenheit
3 tc=(5/9)*(tf-32);  //calculating temp in celcius
4 disp(tc,"Temperature in celcius = ");  //displaying
    result
```

Scilab code Exa 9.5 5

Scilab code Exa 9.6 6

```
1 clc;
2 delt=80-20;    //change in temp in celcius
3 m=3;    //mass in lb
4 c=4185;    //specific heat in J/kg.celcius
5 Q=m*c*delt;    //calculating heat required
6 disp(Q,"Heat required in Joule = ");    //displaying result
```

Scilab code Exa 9.7 7

```
1 clc;
2 Q=200;  //heat in Btu(British Thermal Unit)
3 m=50;  //mass in lb
4 c=0.5;  //specific heat capacity inBtu/lb.F
```

```
5 delT=Q/(m*c); //calculating change in temperatur
     using Q=mc(del T)
6 disp(delT, "Change in Temperature in Farenheit = ");
      //displaying result.
7 disp(25-delT, "Final Temperature in Farenheit = ");
       //displaying result.
  Scilab code Exa 9.8 8
1 clc;
2 Q = 10;
          //Heat in kilo calorie
3 \text{ m=1}; //\text{mass in kg}
4 delT=24; //change in temperature in degree celcius
5 c=Q/(m*delT); //calculating specific heat in kcal
     /(kg.degree celcius)
6 disp(c, "Spacific Heat in kcal/(kg.degree celcius) =
     "); //displaying result.
  Scilab code Exa 9.9 9
1 clc;
2 t=500/8; //using heat gained = heat lost
3 disp(t, "Final temperature in Farenheit = ");
                                                    //
     displaying result
  Scilab code Exa 9.10 10
1 clc;
2 t = (225990+3360)/2769;
                                  //calculating
     temperature
```

```
3 disp(t, "Temperature in celcius = ");  //
    displaying result
```

Scilab code Exa 9.11 11

Scilab code Exa 9.12 12

```
1 clc;
2 delT=626-70;  //change in temp. in Farenheit
3 m=200;  //mass in lb
4 c=0.03;  //specific heat capacity in Btu/(lb.Farenheit)
5 Lf=10.6;  //Latent Heat of Fusion in Btu/lb
6 Q=(m*c*delT)+(m*Lf); //calculating heat in Btu
7 disp(Q,"Heat Required in Btu = ");  //displaying result.
```

Scilab code Exa 9.13 13

```
1 clc;
2 mw=5;  //mass of water in kg
3 c=1;  //specific heat of water in kcal/(kg.degree celcius)
4 delT=40;  //change in temp in celcius
5 Lf=80;  //Latent heat of Fusion in kcal/kg
```

Scilab code Exa 9.14 14

```
1 clc;
          //mass of water in kg
2 m1=2;
3 c=1;
          //specific heat in kcal/kg.celcius
4 delT=20; //change in temp. in celcius
         //L in kcal/kg
5 L=540;
6 Q1=m1*c*delT;
                    //calculating heat in kcal
                    //calculating heat available to
7 Q2=500-Q1;
     convert water at 100 celcius to steam
8 msteam=Q2/L; //calculating mass of steam in kg
9 disp(msteam, "Steam produced in kg = ");
     displaying result.
```

Scilab code Exa 9.15 15

```
1 clc;
                  //change in temp of ice in celcius
2 deltice=10;
                  //change in temp of water in celcius
3 deltwater=20;
                  //mass of water in kg
4 mwater=0.5;
5 cwater=4.185;
                  //specific heat of water in kJ/kg.
     celcius
6 Lice=335;
                  //latent heat in kJ/kg
7 \text{ cice} = 2.09;
                  //specific heat of ice in kJ/kg.
     celcius
8 mice=(mwater*cwater*deltwater)/((cice*deltice)+Lice)
```

```
9 disp(mice*1000, "Minimum amount of ice in gram = "); // displaying result.
```

Scilab code Exa 9.18 18

Scilab code Exa 9.19 19

Kinetic Theory of Gases

Scilab code Exa 10.4 4

Scilab code Exa 10.5 5

Scilab code Exa 10.6 6

Scilab code Exa 10.7 7

Scilab code Exa 10.8 8

```
4 disp((t1*v2)-273, "Temperature in celcius = "); // displaying result
```

Scilab code Exa 10.9 9

```
1 clc;
2 T1=283;    //temperature Kelvin
3 T2=322;    //temp. in Kelvin
4 p1=35;    //pressure in lb/in square
5 p2=(T2*p1)/T1;    //calculating p2 using ideal gas equation since ,v1=v2
6 disp(p2,"Pressure in lb/in square = ");    // displaying result.
```

Scilab code Exa 10.10 10

```
1 clc;
              //temp in Kelvin
2 t1 = 293;
             //temp in Kelvin
3 t2=233;
             //volume in m cube
4 v1=0.1;
5 p1=10;
              //pressure in atm
6 p2=1;
              //pressure in atm
7 v2=(p1*v1*t2)/(t1*p2); //calculating v2 using
     ideal gas law
              //pressure in atm
9 v3=(p1*v1)/p3; //calculating volume using ideal
      gas law
10 disp(v2-0.1,"(a) Volume of ballon in m cube = "); //
     displaying result.
11 disp(v3-0.1,"(b) Volume of ballon after Helium
     absorbs heat from air in m cube = "); //
     displaying result.
```

Scilab code Exa 10.11 11

```
1 clc;
              //density in kg/m cube
2 d1=1.293;
                //temperature in Kelvin
3 t1=273;
                //pressure in atm
4 p2=2;
                //temperature in Kelvin
5 t2=373;
                //pressure in atm
6 p1=1;
7 d2=(d1*t1*p2)/(t2*p1); //calculating density
     using ideal gas law in kg/m cube
8 disp(d2, "Density in kg/m cube = ");
                                     //displaying
     result
```

Scilab code Exa 10.12 12

```
1 clc;
2 o=16.00;    //atomic mass of O
3 h=1.008;    //atomic mass of H
4 mh2o=(o+2*h)*1.66*10^-27;    //mass of H2O molecule
5 disp(mh2o,"Mass of H2O molecule in kg = ");    //
        displaying result
6 c=12.01;    //atomic mass of carbon
7 m=((2*c)+o+(6*h))*1.66*10^-27;    //mass of C2H6O molecule
8 disp(m,"Mass of Ethyl Alcohol molecule in kg = ");    //displaying result
```

Scilab code Exa 10.13 13

```
1 clc;
2 m=1;    //mass of H2O in kg
3 m1=2.99*10^-26;    //mass of H2O molecule in kg
4 mo=m/m1;    //calculating no. of molecules of H2O using no=mass of H2O/mass of H2) molecule
5 disp(mo, "Molecules of H2O = ");    //displaying result
```

Scilab code Exa 10.14 14

Scilab code Exa 10.15 15

Thermodynamics

Scilab code Exa 11.4 4

```
1 clc;
2 lf=335;    //heat of fusion in kJ/kg
3 g=9.8;     //gravitational constant in m/sec square
4 h=lf/g;    //height in km
5 disp(h,"Height in km = ");    //displaying result
```

Scilab code Exa 11.6 6

```
1 clc;
2 hc=1.1*10<sup>4</sup>;
                //heat of combustion of heat oil in
      kcal/kg
                //Power in Watt
3 p=10^6;
4 t=3600*24;
                   //time in sec
                  //calculating power produced in a
5 \text{ w=p*t};
     day in Joule
                 //efficiency
6 e = 0.4;
7 \text{ hi=w/e};
                 //Heat input in Joule sice efficiency
     =output/input
```

```
8 hi=hi/(4.185*10^3); //for calculating heat input
    in kcal
9 m=hi/hc; //amount of fuel burnt each day in kg
10 disp(m, "Amount of fuel burnt each day in kg = ");
    //displaying result
```

Scilab code Exa 11.7 7

```
1 clc;
2 w = 40000;
              //weight in lb
              //time in sec
3 t=3600;
4 g=32;
              //gravitational constant in ft/sec
     square
             //initial velocity in m/sec
5 v1 = 2500;
6 v2=400; //final velocity in m/sec
7 W=(w/(2*g))*((v1*v1)-(v2*v2)); // calculating Work
     done in ft.lb using work done=difference in
     Kinetic Energy
                    //calculating Power using P=W/t
8 p=W/(t*550);
     since 1hp=550 ft.lb/sec;
9 disp(p, "Power Ouput in hp = ");
                                  //displaying
     result
```

Scilab code Exa 11.8 8

```
1 clc;
2 t1=327+273;  //temp in Kelvin
3 t2=127+273;  //temp in Kelvin
4 eff=1-(t2/t1);  //calculating efficiency
5 hi=4185;  //1 kcal=4185 Joule
6 W=eff*hi;  //calculating Work in joule
7 disp(W,"Work in Joule = ");  //displaying result
```

Scilab code Exa 11.9 9

```
1 clc;
2 \text{ woa} = 3000;
                       //work ouput of a in Joule
                       //work output of b in Joule
3 \text{ wob=} 2000;
                       //work output of c in Joule
4 \text{ woc} = 1000;
                       //1 kcal=4185 Joule
5 hi=4185;
                       //temp in Kelvin
6 t1 = 500;
7 t2=300;
                       //temp in Kelvin
8 \text{ eff=1-(t2/t1)};
                      // efficiency
9 effa=woa/hi;
                      //calculating efficiency of a
10 effb=wob/hi;
                      //calculating efficiency of b
                     //calculating efficiency of c
11 effc=woc/hi;
12 disp(effa*100, "Efficiency of A = ");
      displaying result
13 disp(effb*100, "Efficiency of B = ");
                                                    //
      displaying result
14 disp(effc*100, "Efficiency of C = ");
                                                    //
      displaying result
```

Scilab code Exa 11.10 10

```
1 clc;
2 t1=267+273;  //temp in Kelvin
3 eff=0.25;  //efficiency
4 t2=t1*(1-eff);  //calculating t2 using eff=1-(t2/t1)
5 disp(t2-273, "Temperature in celcius = ");  //displaying result
```

Scilab code Exa 11.11 11

```
1 clc;
2 t1=34+273;    //temperature in Kelvin
3 t2=35+273;    //temperature in Kelvin
4 r=((t2^4)-(t1^4))/(t1^4);    //calculating
        percentage difference in radiation
5 disp(r*100,"Percentage difference in radiation = ");
        //displaying result
```

Electricity

Scilab code Exa 12.7 7

Scilab code Exa 12.8 8

```
1 clc;
2 k=9*10^9;    //constant in free space in N.m square
    /C square
3 q1=4*10^-9;    //charge in coulomb
4 q2=5*10^-8;    //charge in coulomb
5 r=5*10^-2;    //radius in metre
6 F=(k*q1*q2)/(r*r);    //calculating force in Newton
7 disp(F, "Force in Newton = ");    //displaying
    result
```

Scilab code Exa 12.9 9

```
1 clc;
2 k=9*10^9;    //constant in free space in N.m square
    /C square
3 q1=1.6*10^-19;    //charge in coulomb
4 q2=1.6*10^-19;    //charge in coulomb
5 r=5.3*10^-11;    //radius in metre
6 F=(k*q1*q2)/(r*r);    //calculating force in Newton
7 disp(F, "Force in Newton = ");    //displaying
    result
```

Scilab code Exa 12.10 10

Scilab code Exa 12.12 12

Scilab code Exa 12.13 13

Scilab code Exa 12.14 14

```
1 clc;
2 e=1.6*10^-19;  //charge on an electron in coulomb
3 E=5*10^3;  //electric field in V/m
4 m=3.3*10^-26;  //mass of neon ion in kg
5 F=E*e;  //calculating foece in Newton using F=Q*E
6 a=F/m;  //calculating accelaration in m/sec square using Newton's Law(F=m*a)
```

Scilab code Exa 12.15 15

Scilab code Exa 12.16 16

Scilab code Exa 12.17 17

```
1 clc;
```

Scilab code Exa 12.18 18

```
1 clc;
           //electric field in volt/metre
2 E=600;
            //distance between plates in metre
3 s=0.15;
            //distance in m
4 r=0.05;
5 V=E*s;
             //calculating potential difference in
     Volt
6 disp(V, "(a) Potential Difference in Volt = ");
     //displaying result
7 Q=10^-10; //charge in coulomb
             //calculating force in Newton
9 disp(F, "Force on the charge of 10^-10 C in Newton =
     "); //displaying result
10 KE=F*r;
          //calculating Kinetic Energy in Joule
11 disp(KE, "Kinetic Energy in Joule = ");
     displaying result
```

Scilab code Exa 12.19 19

```
1 clc;
2 m=9.1*10^-31;  //mass of electron in kg
3 v=10^7;  //velocity of electron in m/sec
4 e=1.6*10^-19;  //charge on electron in coulomb
```

Scilab code Exa 12.20 20

Electric Current

Scilab code Exa 13.5 5

Scilab code Exa 13.6 6

```
1 clc;
2 v=120;  //potential diff in Volt
3 r=12;  //resistance in ohms
4 i=v/r;  //calculating current in Ampere using Ohm'
    s law ie. V=I*R
5 disp(i, "Current in the toaster in Ampere = ");  //
    displaying result
```

Scilab code Exa 13.7 7

```
1 clc;
2 v=120;  //potential diff in volt
3 i=25;  //current in Ampere
4 r=v/i;  //Ohm's law
5 disp(r,"Resistance in ohm = ");  //displaying
    result
```

Scilab code Exa 13.8 8

```
1 clc;
2 v=240;  //potential diff in volt
3 p=2000;  //power in Watt
4 disp((p/v), "Current in Ampere = ");  //displaying
    result
```

Scilab code Exa 13.9 9

Scilab code Exa 13.10 10

```
1 clc;
2 i=15;    //current in Ampere
3 v=240;    //potential diff. in Volt
4 t=45/60;    //time in hours
5 p=v*i;    //clculating power in Watt using p=v*i
6 w=p*t;    //calculating work done in Watt.h using w =p*t
7 disp(w/1000,"Work done in kiloWatt.hr = ");    //displaying result
```

Scilab code Exa 13.11 11

```
1 clc;
2 v=12;  //potential diff. in volt
3 i=20;  //current in Ampere
4 t=3600;  //time in sec
5 p=v*i;  //power in Watt using p=v*i
6 w=p*t;  //calculating work in Joule using w=p*t
7 disp(w,"Work done in Joule = ");  //displaying result
```

Scilab code Exa 13.12 12

```
1 clc;
2 p=60;  //power in Watt
3 c=80;  //car capacity in Ampere.hr
4 t=3600;  //time in seconds
```

Scilab code Exa 13.13 13

```
1 clc;
2 v=600;    //potential diff. in volt
3 i=10;    //current in Ampere
4 r=v/i;    //calculating resistence in ohm using ohm's law ie.v=i*r
5 disp(r,"Resistence in Ohm = ");    //displaying result
```

Scilab code Exa 13.14 14

```
1 clc;
                   //potential diff in volt
2 v = 60;
          //resistance in Ohm
3 r1=5;
           //resistance in Ohm
4 r2=5;
           //resistance in Ohm
5 \text{ r3}=5;
               //resistance in series
6 r=r1+r2+r3;
7 disp(r, "Resistance in Series in Ohm = ");
                                                 //
     displaying result
                        //calculating current in
     Ampere using Ohm's law ie. V=I*R
9 disp(i, "Current in the entire circuit in Ampere = ")
     ; //displaying result
```

Scilab code Exa 13.15 15

```
1 clc;
2 v = 60;
                     //potential diff in volt
3 r=5;
              //resistance in Ohm
4 r1=5;
             //resistance in Ohm
              //resistance in Ohm
5 \text{ r2=5};
6 \text{ r3=5};
              //resistance in Ohm
7 rp=(r1)^-1+(r2)^-1+(r3)^-1;
                                 //resistance in
      series
  disp((rp^-1), "Resistance in Parallel in Ohm = ");
          //displaying result
  i=v/r;
                          //calculating current in
     Ampere using Ohm's law ie. V=I*R
10 disp(i, "Current in the entire circuit in Ampere = ")
          //displaying result
```

Scilab code Exa 13.16 16

```
1 clc;
2 v = 120;
             //potential diff in volt
3 r1 = 240;
            //resistance in ohm
4 r2 = 240;
             //resistance in ohm
            //resistance in series
5 r=r1+r2;
6 i=v/r;
             //calculating current in Ampere using Ohm
     's law
7 disp(i, "(a) Current in each bulb in Ampere = ");
     displaying result
              //calculating power dissipated in each
8 p=i*i*r1;
     bulb in Watt
9 disp(p,"(b) Power dissipated in each bulb in Watt = "
     ); //displaying result
```

Scilab code Exa 13.17 17

```
1 clc;
2 v=120;    // potential diff in volt
3 r=240;    // resistance in ohm
4 i=v/r;    // current in Ampere using Ohm's law
5 disp(i,"(a) Current in each bulb in Ampere = ");
    // displaying result
6 p=i*i*r;    // power in Watt
7 disp(p,"Power dissipated in each bulb in Watt = ");
    // displaying result
```

Magnetism

Scilab code Exa 14.8 8

Scilab code Exa 14.10 10

Scilab code Exa 14.11 11

Scilab code Exa **14.12** 12

Scilab code Exa 14.13 13

```
4 B=0.8; //magnitude of field in Tesla

5 F=B*I*L; //calculating force

6 disp(F, "Force in Newton = "); //displaying

result
```

Scilab code Exa 14.14 14

```
1 clc;
2 P=2000;  //power in Watt
3 V=120;  //potential diff in volt
4 I=P/V;  //current in Ampere
5 s=2*10^-3;  //distance in m
6 K=2*10^-7;  //constant in N/A square
7 F=(I*I*K)/s;  //calculating force per metre
8 disp(F, "Force in Newton per metre in opposite direction = ");  //displaying result
```

Electromagnetic Induction

Scilab code Exa 15.3 3

```
1 clc;
2 l=5*0.305;  //converting ft to metre
3 v=40*0.447;  //converting mile/hr to m/sec
4 B=3*10^-5;  //magnetic field in Tesla
5 ve=B*1*v;  //calculating potential difference
6 disp(ve,"Potential difference in Volt = ");  //diplaying result
```

Scilab code Exa 15.4 4

```
1 clc;
2 i=0.707*10;  //current in Ampere
3 r=20;  //resistance in Ohm
4 p=i*i*r;  //calculating power dissipated
5 disp(p,"Power dissipated in Watt = ");  //diplaying result
```

Scilab code Exa 15.5 5

```
1 clc;
2 r=5;
                 //resistance in ohm
                 //power in Watt
3 p=1000;
4 va=100;
                 //potential diff in Volt for a
5 vb=100000;
                //potential diff in volt for b
6 ia=p/va;
                //calculating current
7 ib=p/vb;
                //calculating current
                //heat in Watt
8 ha=ia*ia*r;
9 hb=ib*ib*r; //heat in Watt
10 disp(ha, "Heat produced by a in Watt = ");
     diplaying result
11 disp(hb, "Heat produced by b in Watt = ");
     diplaying result
```

Scilab code Exa 15.6 6

```
1 clc;
2 i1=3;   //current in Ampere
3 n2=500;   //no. of turns
4 n1=100;   //no. of turns
5 v1=120;   //potential diff in volt
6 v2=(n2*v1)/n1;   //calculating v2
7 i2=(n1*i1)/n2;   //calculating i2
8 disp(v2,"Voltage in volt = ");   //diplaying result
9 disp(i2,"Current in Ampere = ");   //diplaying result
```

Scilab code Exa 15.7 7

```
1 clc;
2 p=10000; //power in Watt
3 v1=5000; //potential diff in volt
```

```
4 v2=240;  //voltage in volt
5 i2=p/v2;  //calculating i2
6 disp(v1/v2,"Ratio of turns = ");  //diplaying
    result
7 disp(i2,"Maximum current in Ampere = ");  //
    diplaying result
```

Scilab code Exa 15.8 8

Waves

Scilab code Exa 16.9 9

```
1 clc;
2 l=10^-4;   //lambda in m
3 v=0.25;   //velocity in m/sec
4 f=v/l;   //calculating frequency
5 disp(f,"Frequency in Hz = ");  //diplaying result
```

Scilab code Exa 16.10 10

```
1 clc;
2 v=5020;  //velocity in ft/sec
3 f=256;  //frequency in Hz
4 l=v/f;  //calculatin lamda
5 disp(1,"Wavelength in ft = ");  //diplaying result
```

Scilab code Exa 16.11 11

```
1 clc;
2 f=1/4;    //frequency in Hz
3 l=30;    //wavwlength in metre
4 v=f*1;    //calculating velocity
5 disp(v,"Velocity in m/sec = ");    //diplaying result
```

Scilab code Exa 16.12 12

```
1 clc;
2 l=3.2*10^-2;  //lambda in m
3 v=3*10^8;  //velocity in m/sec
4 f=v/l;  //calculating frequency
5 disp(f,"Frequency in Hz = ");  //diplaying result
```

Scilab code Exa 16.13 13

```
1 clc;
2 c=3*10^8;  //velocity in m/sec
3 n=2.42;  //refractive index
4 v=c/n;  //calculating velocity
5 disp(v,"Velocity in m/sec = ");  //diplaying result
```

Scilab code Exa 16.15 15

```
1 clc;
2 v=343;  //velocity in m/sec
3 vs=20;  //velocity in m/sec
4 fs=500;  //original frquency
```

Scilab code Exa 16.16 16

```
1 clc;
2 v1=-20;  //velocity in m/sec
3 vs=0;  //velocity in m/sec
4 fs=500;  //original frquency
5 f1=(fs*(v+v1))/(v-vs);  //doppler effect
6 disp(f1, "Percieved frequency in Hz = ");  //diplaying result
```

Scilab code Exa 16.17 17

```
1 clc;
2 v=343;    //velocity in m/sec
3 fs=800;    //original frquency
4 f1=750;    //percieved frquency
5 vs=v*(1-(fs/f1));    //calculating velocity
6 disp(vs,"Trains velocity in m/sec = ");    //diplaying result
```

Scilab code Exa 16.18 18

Lenses

Scilab code Exa 17.3 3

```
1 clc;
2 p=24;    //in inch
3 f=16;    //inch
4 q=(p*f)/(p-f);    //calculating image distance
5 disp(q,"Distance of image in inch = ");    //
        displaying result
6 h=3;    //inch
7 hd=(-h*q)/p;    //calculating diameter
8 disp(hd,"Diameter in inch = ");    // displaying
    result
```

Scilab code Exa 17.4 4

```
6 h=8; //in cm
7 hd=(-h*q)/p; //calculating diameter
8 disp(hd,"Diameter in cm = "); //displaying result
```

Scilab code Exa 17.5 5

```
1 clc;
2 p=100;    //in cm
3 f=40;    //in cm
4 q=(p*f)/(p-f);    //calculating image distance
5 disp(q,"Distance of image in cm = ");    //
        displaying result
6 h=6;    //in cm
7 hd=(-h*q)/p;    //calculating diameter
8 disp(hd,"Diameter in cm = ");    // displaying result
```

Scilab code Exa 17.6 6

```
1 clc;
2 p=12;   //in ft
3 f=-2;   //in ft
4 q=(p*f)/(p-f);   //calculating image distance
5 disp(q,"Distance of image in ft = ");   //
        displaying result
6 m=-q/p;   //calculating magnification
7 disp(m,"Magnification = ");   //displaying result
```

Scilab code Exa 17.7 7

```
1 clc;
```

```
2 hd=5;  //in mm
3 h=2;  //in mm
4 f=6;  //in cm
5 m=hd/h;  //calculating magnification
6 p=((m-1)/m)*f;  //lens formula
7 disp(p,"Distance in cm = ");  //displaying result
8 q=-m*p;  //lens formula
9 disp(q,"Image distance in cm = ");  //displaying result
```

Scilab code Exa 17.8 8

```
1 clc;
2 p=1.5;    //in inch
3 m=3;    //magnification
4 q=-m*p;    //calculating image distance
5 disp(q,"Distance of image in inch = ");    //
        displaying result
6 f=(p*q)/(p+q);    //calculating focal length
7 disp(f,"Focal Length in inch = ");    //displaying
    result
```

Scilab code Exa 17.9 9

```
1 clc;
2 p=1.5;  //in inch
3 f=0.15;  //in metre
4 w=(p*f)/(p-f);  //calculating focal length
5 disp(w*10^3,"Length in mm = ");  //displaying
    result
```

Scilab code Exa 17.10 10

```
1 clc;
2 hd=-36;  //in inch
3 h=2;  // in inch
4 m=hd/h;  //calculating magnification
5 q=-15;  //in ft
6 p=-q/m;  //in ft
7 f=(p*q)/(p+q);  //calculating focal length
8 disp(f, "Focal Length in ft = ");  //displaying
    result
```

Scilab code Exa 17.11 11

Quantum Physics

Scilab code Exa 18.1 1

Scilab code Exa 18.2 2

Scilab code Exa 18.3 3

Scilab code Exa 18.4 4

Scilab code Exa 18.5 5

```
1 clc;
2 e=1.6*10^-19; //charge
```

Scilab code Exa 18.6 6

Scilab code Exa 18.7 7

Scilab code Exa 18.8 8

```
1 clc;
2 h=6.63*10^-34; //planck's constant in J.sec
3 e=1.6*10^-19; //in Coloumb
4 V=10^4; //potential difference in Volt
5 f=(e*V)/h; //calculating frequency
6 disp(f, "Frequency in Hz = "); //displaying reuslt
```

Scilab code Exa 18.9 9

```
1 clc;
2 c=3*10^8;  //velocity in m/sec
3 l=2*10^-11;  //wavelength in m
4 f=c/l;  //calculating frequency
5 e=1.6*10^-19;  //in Coloumb
6 disp(f, "Frequency in Hz = ");  //displaying reuslt
7 h=6.63*10^-34;  //planck's constant in J.sec
8 V=(h*f)/e;  //calculating energy
9 disp(V, "operating Voltage in Volt = ");  //displaying reuslt
```

Scilab code Exa 18.10 10

```
6 disp(1,"Wavelength in m = "); //displaying reuslt
```

Scilab code Exa 18.11 11

```
1 clc;
2 e=1.6*10^-19;
                     //charge
3 \text{ ke=1.5*10^4};
                           //kinetic energy in eV
                   //calculating kinetic energy
4 KE=ke*e;
5 m=9.1*10^-31;
                     //mass in kg
6 disp(KE, "Kinetic Energy in Joule = ");
     displaying result
                      //calculating velocity
7 \text{ v=} \text{sqrt} ((2*KE)/m);
8 disp(v, "Velocity in m/sec = "); //displaying
     result
9 1=h/(m*v);
              //calculating wavelength
10 disp(1, "Wavelength in metre = "); h=6.63*10^-34;
       //planck's constant in J.sec
```

Scilab code Exa 18.13 13

Scilab code Exa 18.14 14

The Nucleus

2 m0=10.07825+10.08665; //in u

```
Scilab code Exa 19.4 4

1 clc;
2 disp(((0.7552*34.969)+(0.2447*36.966)), "Atomic mass of chlorine = "); //displaying result

Scilab code Exa 19.5 5

1 clc;
2 delm=(8.0626+8.0693)-15.9949; //in u
3 E=delm*931; //calculating binding energy in MeV disp(E,"Binding Energy in MeV = "); //displaying result

Scilab code Exa 19.6 6

1 clc;
```

```
3 delm=160.6/931; //calculating mass eqvi. of 160.6 MeV 
4 disp((m0-delm), "Atomic Mass in u="); //displaying result
```

Scilab code Exa 19.10 10

```
1 clc;
//power in Watt
4 p=10<sup>8</sup>;
              //time in hr/day
5 t = 24;
            //Eintstein equation
6 E = m * c * c;
7 disp(E, "Energy in Joule = "); //displaying result
8 M=(p*3600*t)/E; //calculating mass of U required
9 m=E/(7822*4185); //calculating mass of coal
     required
10 disp(M, "Mass of U required in kg/day = "); //
     displaying result
11 disp(m, "Mass of coal required in kg/day = "); //
     displaying result
```

Theory of The Atom

Scilab code Exa 21.5 5

```
1 clc;
2 e1=-13.6;  //in eV
3 disp((e1/4), "Energy of first excited state in eV = "
     );  //displaying result
4 disp((e1/9), "Energy of second excited state in eV =
        ");  //displaying result
5 disp((e1/16), "Energy of third excited state in eV =
        ");  //displaying result
```

Scilab code Exa 21.6 6

Scilab code Exa 21.7 7

Scilab code Exa 21.8 8

Scilab code Exa 21.11 11

```
1 clc;
2 e1=-13.6;  //energy in eV
3 disp(e1/9,"Energy in eV = ");  //displaying result
```

Stoichiometry

Scilab code Exa 25.2 2

```
1 clc;
2 a=238.03;    //atomic mass
3 m=75;    //no. of moles
4 mass=m*a;    //calculating mass of U
5 n=6.023*10^23;    //avogadro's no.
6 no=m*n;    //calculating no. of atoms
7 disp(mass,"Mass of U in gram = ");    //displaying result
8 disp(no,"No. of atoms = ");    //displaying result
```

Scilab code Exa 25.3 3

```
1 clc;
2 a=63.54;  //atomic mass of Cu
3 m=100;  //mass of Cu
4 moles=m/a;  //calculating moles of U
5 n=6.023*10^23;  //avogadro's no.
6 no=moles*n;  //calculating no. of atoms
```

Scilab code Exa 25.4 4

```
1 clc;
2 no=10^24;    //no of atoms
3 n=6.023*10^23;    //avogadro's no.
4 moles=no/n;    //calculating no. of moles
5 disp(moles, "Moles = ");    //displaying result
```

Scilab code Exa 25.5 5

```
1 clc;
2 c=12.01;  //mass of carbon
3 h=1.008;  //mass of hydrogen
4 mass=((2*c)+(4*h))*9.4;  //calculating mass
5 disp(mass,"Required mass = ");  //displaying result
6 n=6.023*10^23;  //avogadro's no
7 ac=(2*9.4)*n;  //calculating atoms of c
8 disp(ac,"Atoms of C = ");  //displaying result
```

Scilab code Exa 25.6 6

```
1 clc;
2 c=12.01;    //mass of carbon
3 h=1.008;    //mass of hydrogen
4 o=16.00;    //mass of oxygen
```

Scilab code Exa 25.7 7

```
1 clc;
2 pb=207.19;  //mass of carbon
3 n=14.01;  //mass of hydrogen
4 o=16.00;  //mass of oxygen
5 mass=((1*pb)+(2*n)+(6*o));  //calculating formula mass
6 m=28.02;  //no. of grams per mole
7 moles=m/mass;  //moles
8 disp(moles*100, "Proportion in percentage = ");  // displaying result
```

Scilab code Exa 25.8 8

Scilab code Exa 25.9 9

```
1 clc;
2 m=70; //mass in g
3 a=14.01; //atomic mass
4 moles=m/a; //moles
5 h=1.008; //atomic mass of hydrogen
6 mass=3*moles*h; //mass of H
7 disp(moles,"Moles of N = "); //displaying result
8 disp(mass,"Mass of H = "); //displaying result
9 ma=15+70; //mass of ammonia
10 disp((mass/ma)*100,"Proportion of Hydrogen = "); //displaying result
11 disp((m/ma)*100,"Proportion of Nitrogen = "); //displaying result
```

Scilab code Exa 25.10 10

```
1 clc;
2 m=200; //mass in g
3 o=16.00; //atomic mass
4 moles=m/o; //moles
5 m=6.25; //moles of S
6 as=32.06; //atomic mass of s
7 disp(m*as,"Mass of S = "); //displaying result
```

Scilab code Exa 25.11 11

Scilab code Exa 25.12 12

```
1 clc;
2 m=1000; //mass of H2
3 fh=2.02; //formula mass of hydrogen
4 fo=32.00; //formula mass of oxygen
5 disp((m/fh), "Moles of H2 = "); //displaying result
6 disp((m/fo), "MOles of O2 = "); //displaying result
7 mass=62.5*18.02; //mass
8 disp(mass, "Mass of H2O = "); //displaying result
9 disp(432.5*2.02, "Mass of H2 = "); //displaying result
```

Scilab code Exa 25.13 13

```
1 clc;
2 Na=22.99;  //mass of Na
3 S=32.06;  //mass of S
4 O=16.00;  //mass of O
5 mass=((2*Na)+(1*S)+(4*O));  //calculating mass
```

```
6 m=100/mass; // moles
7 disp(m,"Moles = "); // displaying result
8 disp(m*32.06,"Mass of S = "); // displaying result
9 disp(22.99*1.408,"Mass of Na = "); // displaying result
```

Scilab code Exa 25.15 15

```
1 clc;
2 disp(128.8/32.06, "Moles of S = ");  //displaying
    result
3 disp(8.06/1.008, "Moles of H = ");  //displaying
    result
```

Scilab code Exa 25.16 16

```
1 clc;
2 disp(57.54/79.91,"Moles of Br = ");  //displaying
    result
3 disp(17.29/12.01,"Moles of C = ");  //displaying
    result
4 disp(3.63/1.008,"Moles of H = ");  //displaying
    result
```

Scilab code Exa 25.17 17

```
1 clc;
2 disp(100.9/12.01, "Moles of C = ");  //displaying
    result
3 disp(22.6/1.008, "Moles of H = ");  //displaying
    result
```

Solutions

Scilab code Exa 26.4 4

Scilab code Exa 26.5 5

```
1 clc;
2 N=14.01; //mass of N
3 H=1.008; //mass of H
4 m=N+(3*H); //calculating mass
5 moles=1/m //cal moles
6 v=moles*22.4; //cal vol
7 disp(v,"Volume = "); //displaying result
8 disp((1*1.32*373)/(1.2*273),"V2 = "); //displaying result
```

Scilab code Exa 26.6 6

```
1 clc;
2 p=4; //atm
```

Scilab code Exa 26.7 7

Scilab code Exa 27.7 7

```
1 clc;
2 disp(0.075*111,"Mass = "); //displaying result
```

Scilab code Exa 26.8 8

```
1 clc;
```

Scilab code Exa 26.9 9

```
1 clc;
2 p=5;    //atm
3 v=1;    //volume in litres
4 t=293;    //Kelvin
5 R=0.0821;    //constant in atm-l/mole-K
6 n=(p*v)/(R*t);    //calculating n
7 disp(n,"n = ");    //displaying result
8 m=n*32;    //moles of O2
9 disp(m,"Moles of O2 = ");    //displaying result
10 d=m/v;    //cal density
11 disp(d,"Density in g/litre = ");    //displaying result
```

Scilab code Exa 26.10 10

```
1 clc;
2 disp(28.1/0.214, "Molecular mass = ") //displaying
    result
```

Solutions

```
Scilab code Exa 27.6 6
1 clc;
2 disp(2*170, "Mass = "); // displaying result
  Scilab code Exa 27.8 8
1 clc;
2 disp(4/166, "Moles = "); // displaying result
3 disp(0.024/0.8,"Litres = "); //displaying result
  Scilab code Exa 27.9 9
1 clc;
2 \text{ m=} 12.01 + 32.00; // cal mass
3 disp(3.3/m, "Moles = "); //displaying result
  Scilab code Exa 27.11 11
1 clc;
2 disp(20/180, "Moles = "); // displaying result
3 disp(0.11/0.05, "Molality = "); //displaying result
```

Scilab code Exa 27.12 12

```
1 clc;
2 m=24.02+6.05+32.00;   //cal mass
3 disp(m*13.4,"Mass = "); //displaying result
```

Scilab code Exa 27.14 14

```
1 clc;
2 m=0.91/0.52; //cal molality
3 disp(m*0.5,"Moles = "); //displaying result
4 disp(300/(m*0.5),"Molecular Mass = "); //displaying result
```

Acids and Bases

```
Scilab code Exa 28.1 1

1    clc;
2    disp(1000/18,"Moles of H2O = ");    //displaying
        result

Scilab code Exa 28.10 10

1    clc;
2    disp(2*0.4,"Moles of KOH = ");    //displaying result
3    disp(0.8*(1.01+16.00+39.10),"Mass = ");    //
        displaying result

Scilab code Exa 28.11 11

1    clc;
2    disp(3*5,"Moles = ");    //displaying result
```

```
3 disp(15*(2.02+32.06+64), "Mass = "); // displaying result
```

Scilab code Exa 28.12 12

```
1 clc;
2 disp((2*50)/10,"Volume = "); //displaying result
```

Electrochemistry

Scilab code Exa 30.3 3

```
1 clc;
2 F=96500/3600; //calculating 1F
3 disp(F,"1 Faraday in ampere.hr = "); //displaying
    result
```

Scilab code Exa 30.4 4

Scilab code Exa 30.5 5

Scilab code Exa 30.6 6

Scilab code Exa 30.7 7

```
10 disp(t, "Time in sec = "); //displaying result
```

Scilab code Exa 30.8 8

```
1 clc;
2 i=50;    //current in Ampere
3 t=3600;    //time in sec
4 A=22.99;    //molar mass of zinc
5 F=96500;    //in Coloumb
6 v=1;    //valency
7 m=(i*t*A)/(F*v);    //calculating mass
8 disp(m, "Mass in gm = ");    //displaying result
9 M=(i*t)/(F*v);    //calculating moles
10 disp(M, "No. of moles per hour = ");    //displaying result
```

Scilab code Exa 30.9 9

```
1 clc;
2 i=10;    //current in Ampere
3 t=3600;    //time in sec
4 F=96500;    //in Coloumb
5 v=1;    //valency
6 M=(i*t)/(F*v);    //calculating moles
7 disp(M,"No. of moles per hour = ");    //displaying result
```

Scilab code Exa 30.10 10

```
1 clc;
```

```
//atomic mass in gm
2 A = 107.87;
                    //in Coloumb
3 F=96500;
                  //valency
4 v = 1;
                   //calculating ECE using Faraday's
5 z=A/(F*v);
     Law
6 disp(z,"(a) Electrochemical Eqvivalent = "); //
     displaying result
                  //atomic mass in gm
7 \text{ A1} = 16;
8 v1=2;
                 //valency
9 z1=A1/(F*v1); //Faraday's Law
10 disp(z1,"(b) Electrochemical Equivalent = "); //
     displaying result
```

Scilab code Exa 30.11 11

Scilab code Exa 30.13 13

 $\operatorname{disp}(m, "\operatorname{Mass\ in\ gm} = "); //\operatorname{displaying\ result}$

The Atmosphere

Scilab code Exa 34.8 8

```
1 clc;
2 m=1;    //mass in kg
3 delt=80;    //change in temperature in celcius
4 c=1;    //specific heat in kcal/kg.celcius
5 Q=m*c*delt;    //calculating heat
6 disp(Q,"Heat required in kcal = ");    //displaying result
7 t=Q/9.4;    //calculating time
8 disp(t,"Time required in second = ");    //displaying result
```

The Earths Interior

Scilab code Exa 40.7 7

```
1 clc;
2 r=6.4*10^6;  //radius in metre
3 v=(4/3)*%pi*r*r*r;  //calculating volume
4 m=6.0*10^24;  //mass in kg
5 d=m/v;  //calculating density
6 disp(d,"Density in kg/m cube = ");  //displaying result
```