Measurement of the half-life of the $T = \frac{1}{2}$ mirror decay of ¹⁹Ne and its implication on physics beyond the standard model

Results and Discussion

Yanxin Zhang

Sun Yat-Sen University School of Physics and Astronomy

Reference: L.J.Broussard, et,al., PRL112, 212301 (2014)

- 1 Introduction
- 2 Experimental Method
- 3 Results and Discussion
- 4 Summary and Outlook

Main content

- 1 Introduction

Abstract

Introduction

Key Findings

The $\frac{1}{2}^+ \to \frac{1}{2}^+$ superallowed mixed mirror decay of 19 Ne to 19 F is suited for high precision studies of the weak interaction:

■ New half-life measurement:

$$T_{1/2} = 17.2832 \pm 0.0051_{\text{(stat)}} \pm 0.0066_{\text{(sys)}} \text{ s}$$

lacksquare Differs from previous world average by 3σ

Physics Implications

- Provides stringent constraints on physics Beyond the Standard Model (BSM)
- lacktriangle Enables precise determination of V_{ud} from mirror decays

Weak Interaction Tests via β -Decay

Standard Model

Introduction 000000000000

- Weak interaction has V-A(Vector minus Axial-vector) structure
- Maximal parity violation

All weak processes are described by a current-current interaction with:

- Universal coupling constant G_F (Fermi constant)
- Pure V A structure: $\gamma^{\mu}(1-\gamma_5)$

It is natural to hope that all weak interaction phenomena are described by a V-A current-current interaction with a universal coupling G. For example, B-decay of Fig. 12.2 and a-decay of Fig. 12.4 can be described by the amplitudes $\Re \left(p \to ne^{+}\nu_{e}\right) = \frac{G}{\sqrt{2}} \left[\bar{u}_{e}\gamma^{\mu}(1-\gamma^{5})u_{\rho}\right] \left[\bar{u}_{\nu_{e}}\gamma_{\mu}(1-\gamma^{5})u_{e}\right]$ (12.10)

 $\Re \left(\mu^{-} \rightarrow e^{-} \rho_{e} \nu_{\mu}\right) = \frac{G}{\sqrt{2}} \left[\bar{u}_{\nu \mu} \gamma^{a} (1 - \gamma^{5}) u_{\mu}\right] \left[\bar{u}_{e} \gamma_{a} (1 - \gamma^{5}) u_{\nu_{e}}\right], (12.11)$

Figure 1: Weak Interactions: Universal *V* − *A* Current-Current Theory

The transition amplitude for eta Decay

amplitudes

The transition amplitude for β + decay is given by:

$$\mathcal{M} = \frac{G}{\sqrt{2}} \left[\bar{u}_n \gamma^{\mu} (1 - \gamma_5) u_p \right] \left[\bar{u}_e \gamma_{\mu} (1 - \gamma_5) u_{\nu_e} \right]$$

Results and Discussion

Hadronic Current:

$$J_{had}^{\mu} = \bar{u}_n \gamma^{\mu} (1 - \gamma_5) u_p$$

■ Describes $p \rightarrow n$ transition

Leptonic Current:

$$J_{lep}^{\mu} = \bar{u}_e \gamma_{\mu} (1 - \gamma_5) u_{\nu_e}$$

Standard Model

Introduction 000000000000

- $u \rightarrow d + W^+$ transition
- $\blacksquare W^+ \rightarrow e^+ + \nu_e \text{ decay}$
- The process involves the exchange of a virtual W boson, where a u quark inside the proton transforms into a d quark, while emitting $e^+\nu_e$.

It is natural to hope that all weak interaction phenomena are described by a V-A current-current interaction with a universal coupling G. For example, B-decay of Fig. 12.2 and μ-decay of Fig. 12.4 can be described by the amplitudes

$$\mathfrak{M}\left(\mathbf{p} \rightarrow \mathbf{n}\mathbf{e}^{+}\nu_{e}\right) = \frac{G}{\sqrt{2}}\left[\bar{u}_{e}\gamma^{\mu}(1-\gamma^{5})u_{\rho}\right]\left[\bar{u}_{\nu_{e}\gamma\mu}(1-\gamma^{5})u_{e}\right]$$
 (12.10)

$$\Re \left(\mu^{-} \rightarrow e^{-} \rho_{e} \nu_{\mu}\right) = \frac{G}{\sqrt{2}} \left[\bar{u}_{\nu_{\mu}} \gamma^{a} (1 - \gamma^{5}) u_{\mu}\right] \left[\bar{u}_{e} \gamma_{a} (1 - \gamma^{5}) u_{\nu_{e}}\right], (12.11)$$

Figure 2: Weak Interactions: Universal *V* − *A* Current-Current Theory

Beyond Standard Model

Beyond Standard Model Possibilities

BSM may introduce other forms of coupling, such as scalars or tensor, the contribution of these couplings can be probed by experimentally observing the new physics.

Results and Discussion

Exotic couplings: Scalar (S) and Tensor (T)

Sensitive Observables

- Fierz term *h*: Scalar/tensor interference
- β -asymmetry (A): Tensor/axial-vector mixing
- \blacksquare β - ν correlation (a): All couplings

Polarized ¹⁹Ne Decay Kinematics

Angular Distribution Formula

$$\Gamma = 1 + \underbrace{\beta}_{v/c} \underbrace{\langle P \rangle}_{\text{Polarization Asymmetry}} \underbrace{A(W)}_{\text{cos } \theta} \cos \theta$$

- θ : Angle between nuclear spin \vec{J} and positron momentum \vec{p}_e
- Leading-order asymmetry for ¹⁹Ne:

$$\bar{A} \approx 0.67 \frac{\rho^2 - 1.73\rho}{1 + \rho^2} \approx -0.039$$

A depends on positron energy W

Introduction

0000000000000

Beyond Standard Model

Gamow-Teller to Fermi mixing ratio:

$$\rho \equiv \frac{g_A M_{GT}}{g_V M_F}$$

Results and Discussion

Deviations from SM prediction for A(W) may reveal:

$$\rho \to \rho \left(1 + \epsilon_T \frac{g_T}{g_A} \right)$$

where ϵ_T quantifies tensor couplings.

β -Decay as a Precision Lab

- Angular correlations (e.g., β -asymmetry) are sensitive probes
- Nuclear mirrors like ¹⁹Ne provide:
 - T = 1/2 systems
 - Complementary to neutron decay

Mirror Decay

Introduction

- Mirror nuclei are a pair of isobars of two different elements where Z1 = N2 and Z2 = N1.
- The $\frac{1}{2}^+ \to \frac{1}{2}^+$ superallowed mixed mirror decay of 19 Ne to 19 F is excellently suited for high precision studies of the weak interaction

Physical characteristics

- Mixed Fermi + Gamow-Teller transitions
- Sensitive to both vector + axial-vector currents

Research implications

- Test **CKM unitarity** via V_{ud}
- Probe for tensor currents (BSM physics)
- Cross-check superallowed $0^+ \rightarrow 0^+$ results

8 / 18

Introduction

000000000000

Definition

Links quark mass & weak eigenstates:

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = V_{\mathsf{CKM}} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

Standard Parameterization:

$$V = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ \cdots & \cdots & s_{23}c_{13} \\ \cdots & \cdots & c_{23}c_{13} \end{pmatrix}$$

Unitarity Test (1st Row)

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 - \Delta$$

- Current status: $\Delta = 0.0011(6)$ (1.8 σ deviation)
- Most precise input: $|V_{ud}| = 0.97373(31)$ (superallowed β decays)

β -Decay for Measuring $|V_{ud}|$

We can now use this result for $\overline{\mathcal{F}t}$ to determine the vector coupling constant, $G_{\rm v}$, from Eq. (1). The value of $G_{\rm v}$ itself is of little interest but, together with the weak interaction constant for the purely leptonic muon decay, $G_{\rm F}$, it yields the much more interesting up-down element of the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix. The basic relationship is $V_{ud} = G_{V}/G_{F}$, which in terms of $\overline{\mathcal{F}t}$ becomes

$$|V_{ud}|^2 = \frac{K}{2G_F^2(1 + \Delta_R^V)\overline{\mathcal{F}t}}$$

= $\frac{2915.64 \pm 1.08}{\overline{\mathcal{F}t}}$, (8)

Results and Discussion

DOI: 10.1103/PhysRevC.91.025501

Motivation

000000000000

Introduction

Precision Tests of Weak Interaction

 \blacksquare Current best V_{ud} from superallowed $0^+ \rightarrow 0^+$ Fermi decays:

$$|V_{ud}| = 0.97425(22)$$

Mirror decays $(T=\frac{1}{2})$ provide crucial cross-check:

$$|V_{ud}| = 0.9719(17)$$

The ¹⁹Ne Advantage

- Small β asymmetry \Rightarrow sensitive to right-handed currents
- Obtaining complementary limits on tensor couplings

11 / 18

Key Challenges in ¹⁹Ne Mixed Decay Studies

Essential Measurements for SM Tests

- Half-life $(T_{1/2})$
 - Angular correlation (to extract $\rho = \text{Fermi/Gamow-Teller mixing ratio}$

Discrepancies

Given the log ft value, the half-life is:

$$t_{1/2} = 10^{\log ft - \log f_0} \text{ s.}$$
 (1)

Results and Discussion

- Large uncertainty in ¹⁹Ne half-life dominated the uncertainty in Ft
- It is on par with the contribution of the beta asymmetry parameter to the uncertainty of V_{ud}

This discrepancy has been addressed in the experiment through a novel approach

Main content

- **Experimental Method**

Experimental Setup

- Performed at TRIµP facility at KVI
 - ¹⁹Ne production:
 - ¹⁹F(p,n)¹⁹Ne reaction
 - 10.5 MeV/A beam energy
- Detection system:
 - Two HPGe clover detectors
 - Coincidence measurement of 511 keV γ rays
 - Low background (\sim 0.2 s⁻¹)

Figure 3: Tape drive system for transporting ¹⁹Ne samples

Systematic Effects

Table 1: Main systematic uncertainties

Effect	Uncertainty (%)
Deadtime	0.02
Accidental coincidences	0.002
Energy determination	0.01
Diffusion	8×10^{-5}
Contamination	0.03
Total systematic	0.038

Results and Discussion

•00

Main content

- Results and Discussion

14 / 18

Results of ¹⁹Ne half-life measurements

Key Measurements

Introduction

- 8 historical experiments(1957–2013)
- New weighted average:

$$T_{1/2} = 17.2604 \pm 0.0034 \,\mathrm{s}$$

- χ^2 /NDF = 50.3/8 (indicates unresolved systematics)
- Extracted $\mathcal{F}t = 1719.8(13) \text{ s}$ ⇒ $V_{ud} = 0.9712(22)$
- Competitive with neutron decay $(V_{ud} = 0.9774(17))$
- Tensor coupling limits: $-0.006 < C_T/C_A < 0.034$

Figure 4: Discrepancy in previous

19 Ne half-life measurements

Half-life Results

Introduction

- Blinded analysis result:
 - $T_{1/2} = 17.2832 \pm 0.0051_{\text{stat}} \pm 0.0058_{\text{sys}} \text{ s}$
- Post-blind analysis:
 - $T_{1/2} = 17.2826 \pm 0.0044$ stat ± 0.0064 sys S
- Final adopted value:
 - $T_{1/2} = 17.2832 \pm 0.0051_{\text{stat}} \pm 0.0066_{\text{sys}} \text{ s}$
- Differs from previous world average by 3σ :
 - New world average: 17.2604 ± 0.0034 s

16 / 18

- 1 Introduction
- 2 Experimental Method
- 3 Results and Discussion
- 4 Summary and Outlook

Summary

Introduction

- New precise measurement of ¹⁹Ne half-life:
 - $T_{1/2} = 17.2832 \pm 0.0083$ s
 - Differs from previous average by 3σ
- Improved understanding of systematics:
 - Diffusion effects characterized
 - Contamination limits established
 - Rate-dependent effects studied
- Physics results:
 - Precise V_{ud} determination
 - Competitive limits on tensor currents

Thank you!

