RL: POLICY GRADIENT METHODS

Ошибка аппроксимации

DQN обучается на основе ошибки:

$$L \approx E\left[Q(s_t, a_t) + \gamma \max_{a'} Q(s_{t+1}, a')\right]$$

	True	A	В
$Q(s_0, a_0)$	1	1	2
$Q(s_0, a_1)$	2	2	1
$Q(s_1, a_0)$	3	3	3
$Q(s_0, a_1)$	100	50	100

Вопрос: какой из этих алгоритмов лучше?

Ошибка аппроксимации

DQN обучается на основе ошибки:

$$L \approx E\left[Q(s_t, a_t) + \gamma \max_{a'} Q(s_{t+1}, a')\right]$$

	True	A	В
$Q(s_0, a_0)$	1	1	2
$Q(s_0, a_1)$	2	2	1
$Q(s_1, a_0)$	3	3	3
$Q(s_0, a_1)$	100	50	100

Политика лучше

Меньше MSE

Ошибка аппроксимации

DQN обучается на основе ошибки:

$$L \approx E\left[Q(s_t, a_t) + \gamma \max_{a'} Q(s_{t+1}, a')\right]$$

	True	A	В
$Q(s_0, a_0)$	1	1	2
$Q(s_0, a_1)$	2	2	1
$Q(s_1, a_0)$	3	3	3
$Q(s_0, a_1)$	100	50	100

Q learning выберет более плохую политику В

Политика лучше

Меньше MSE

Выводы

Очень часто q значения найти сложнее чем оптимальное действие

Мы можем избежать обучения q функции, заменив это обучением политики $\pi_{\theta}(a|s)$

Вопрос: какой алгоритм мы уже проходили на основе политики?

 $\pi(run|s)=1$

Политика

2 типа

□ Детерминистическая политика

$$a = \pi_{\theta}(s)$$

□ Стохастическая политика

$$a \sim \pi_{\theta}(s)$$

Вопрос: в каких случаях стохастическая политика лучше?

Политика

2 типа

Детерминистическая политика

Генетические алгоритмы Детерминистический градиент политики

□ Стохастическая политика

Метод кросс энтропии Градиент политики

Вопрос: как представить политику в непрерывном случае?

Политика

2 типа

□ Детерминистическая политика

Генетические алгоритмы Детерминистический градиент политики

□ Стохастическая политика

Метод кросс энтропии Градиент политики

Категориальная, нормальная, смесь нормальных, и пр.

Два подхода

□ Value based:

Ищем функцию ценности

 $Q_{ heta}(s,a)$ или $V_{ heta}(s)$

Инферернс политики

 $a = \operatorname*{argmax}_{a} Q_{\theta}(s, a)$

□ Policy based:

Находим политику в явном виде

 $\pi_{\theta}(a|s)$ или $\pi_{\theta}(s) o a$

Метод кроссэнтропии

□ Инициализировать веса

□ Цикл:

Сэмплируем N лучших сессий

$$elite = [(s_0, a_0), (s_1, a_1), ..., (s_k, a_k)]$$

$$w_{i+1} = w_i + \alpha \nabla \left[\sum_{s_i, a_i \in Elite} \log \pi_{w_i}(a_i | s_i) \right]$$

Policy gradient: основная идея

□ Почему так сложно?

□ Будем максимизировать reward напрямую

□ Ожидаемый reward:

$$J = \mathop{\mathbb{E}}_{s \sim p(s)} R(s, a, s', a', \dots)$$
$$a \sim \pi_{\theta}(s|a)$$

□ Ожидаемый reward с учетом дисконта:

$$J = \mathop{\mathbb{E}}_{s \sim p(s)} G(s, a)$$
$$a \sim \pi_{\theta}(s|a)$$

□ Ожидаемый reward:

$$J = \mathop{\mathbb{E}}_{s \sim p(s)} R(s, a, s', a', \dots)$$
$$a \sim \pi_{\theta}(s|a)$$

 \square Ожидаемый reward с учетом дисконта: $G(s,a) = r + \gamma G(s',a')$

$$J = \mathop{\mathbb{E}}_{s \sim p(s)} G(s, a)$$
$$a \sim \pi_{\theta}(s|a)$$

Для простоты рассмотрим один шаг

$$J = \mathop{\mathbb{E}}_{\substack{s \sim p(s) \\ a \sim \pi_{\theta}(s|a)}} R(s,a) = \int_{s} p(s) \int_{a} \pi_{\theta}(a|s) R(s,a) \, da \, ds$$

Для простоты рассмотрим один шаг

$$J=\mathop{\mathbb{E}}_{\substack{s\sim p(s)\ a\sim \pi_{ heta}(s|a)}} R(s,a)=\int\limits_{s} p(s)\int\limits_{a} \pi_{ heta}(a|s)R(s,a)\,da\,ds$$
 Частота посещения состояния

Вопрос: как вычислить?

$$J = \mathop{\mathbb{E}}_{\substack{s \sim p(s) \\ a \sim \pi_{\theta}(s|a)}} R(s,a) = \int_{s} p(s) \int_{a} \pi_{\theta}(a|s) R(s,a) \, da \, ds$$

Семплируем N сессий текущей политики

$$J \approx \frac{1}{N} \sum_{i=0}^{N} R(s, a)$$

$$J = \mathop{\mathbb{E}}_{\substack{s \sim p(s) \\ a \sim \pi_{\theta}(s|a)}} R(s,a) = \int_{s} p(s) \int_{a} \pi_{\theta}(a|s) R(s,a) \, da \, ds$$

Семплируем N сессий текущей политики
$$J \approx \frac{1}{N} \sum_{i=0}^{N} R(s, a)$$

Как сейчас оптимизировать политику?

$$J = \mathop{\mathbb{E}}_{\substack{s \sim p(s) \\ a \sim \pi_{\theta}(s|a)}} R(s,a) = \int_{s} p(s) \int_{a} \pi_{\theta}(a|s) R(s,a) \, da \, ds$$

$$J \approx \frac{1}{N} \sum_{i=0}^{N} \sum_{s,a \in z_i} R(s,a)$$

Мы не знаем как сделать расчет $\frac{\partial J}{\partial \theta}$

Оптимизация

Конечные разности

- Небольшое изменение политики и оценка:

$$\nabla J \approx \frac{J_{\theta+\epsilon} - J_{\theta}}{\epsilon}$$

Стохастическая оптимизация

- Метод кросс энтропии
- Максимизация элитных действий

Оптимизация

Конечные разности

- Небольшое изменение политики и оценка:

$$\nabla J \approx \frac{J_{\theta+\epsilon} - J_{\theta}}{\epsilon}$$

Стохастическая оптимизация

- Метод кросс энтропии
- Максимизация элитных действий

Какие видите проблемы?

Оптимизация

Конечные разности

- Небольшое изменение политики и оценка:

$$\nabla J \approx \frac{J_{\theta+\epsilon} - J_{\theta}}{\epsilon}$$

Очень шумно, особенно если оба Ј семплируются

Стохастическая оптимизация

- Метод кросс энтропии
- Максимизация элитных действий

Какие видите проблемы?

"квантильная сходимость"
Проблемы со стохастическими
МDР

$$J = \mathop{\mathbb{E}}_{\substack{s \sim p(s) \\ a \sim \pi_{\theta}(s|a)}} R(s,a) = \int_{s} p(s) \int_{a} \pi_{\theta}(a|s) R(s,a) \, da \, ds$$

Что бы мы хотели:

- аналитический градиент
- простая/стабильная аппроксимация

Логарифмический трюк

- Простая математика

$$\nabla \ln \pi(z) = ???$$

Логарифмический трюк

- Простая математика

$$\nabla \ln \pi(z) = \frac{1}{\pi(z)} \nabla \pi(z)$$

$$\pi(z) \nabla \ln \pi(z) = \nabla \pi(z)$$

Policy gradient

- Аналитический вывод

$$\nabla J = \int_{S} p(s) \int_{a} \nabla \pi_{\theta}(a|s) R(s,a) \, da \, ds$$
$$\pi(z) \, \nabla \ln \pi(z) = \nabla \pi(z)$$

Policy gradient

- Аналитический вывод

$$\nabla J = \int_{S} p(s) \int_{a} \nabla \pi_{\theta}(a|s) R(s,a) \, da \, ds$$
$$\pi(z) \, \nabla \ln \pi(z) = \nabla \pi(z)$$

$$\nabla J = \int_{S} p(s) \int_{a} \pi_{\theta}(a|s) \nabla \ln \pi_{\theta}(a|s) R(s,a) da ds$$

На что похожа последняя формула?

Policy gradient

- Аналитический вывод

$$\nabla J = \int_{S} p(s) \int_{a} \nabla \pi_{\theta}(a|s) R(s,a) \, da \, ds$$
$$\pi(z) \, \nabla \ln \pi(z) = \nabla \pi(z)$$

$$\nabla J = \int_{S} p(s) \int_{a} \pi_{\theta}(a|s) \nabla \ln \pi_{\theta}(a|s) R(s,a) da ds$$

Мат ожидание

REINFORCE (бандит)

- \square Инициализировать веса θ_0 NN
- □ В цикле
 - Семплируем N сессий по текущей политике
 - Оцениваем градиент политики

$$\pi(z) \nabla \ln \pi(z) = \nabla \pi(z)$$

$$\nabla J = \frac{1}{N} \sum_{i=1}^{N} \nabla \ln \pi_{\theta}(a|s) R(s, a)$$

- Обновляем веса

$$\theta_{i+1} \to \theta_i + \alpha \nabla J$$

Дисконтированное вознаграждение

 \square Меняем R на Q(Q(s,a)=E[G(s,a)])

$$\nabla J = \int_{S} p(s) \int_{a} \nabla \pi_{\theta}(a|s) Q(s,a) \, da \, ds$$
$$\pi(z) \, \nabla \ln \pi(z) = \nabla \pi(z)$$

$$\nabla J = \int_{S} p(s) \int_{a} \pi_{\theta}(a|s) \nabla \ln \pi_{\theta}(a|s) Q(s,a) da ds$$

REINFORCE (с дисконтированием)

□ Policy Gradient

$$\nabla J = \mathop{\mathbb{E}}_{s \sim p(s)} \nabla \ln \pi_{\theta}(a|s) Q(s,a)$$
$$a \sim \pi_{\theta}(s|a)$$

□ Аппроксимация семплинованием

$$\nabla J \approx 1/N \sum_{i=0}^{N} \sum_{s,a \in z_i} \nabla \ln \pi_{\theta}(a|s) Q(s,a)$$

REINFORCE алгоритм

□ Мы можем оценить Q используя G

$$Q_{\pi}(s_t, a_t) = E_{s'}G(s_t, a_t)$$

□ Аппроксимация семплинованием

Дисконтированный reward

$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots = r_t + \gamma (r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots)$$
$$= r_t + \gamma G_{t+1}$$

Мы можем использовать эту формулу для расчета всех rewards за линейное время

REINFORCE алгоритм

- \square Инициализировать веса θ_0 NN
- □ В цикле
 - Семплируем N сессий по текущей политике
 - Оцениваем градиент политики

$$\pi(z) \, \nabla \ln \pi(z) = \nabla \pi(z)$$

$$\nabla J \approx \frac{1}{N} \sum_{i=0}^{N} \sum_{s,a \in z_i} \nabla \ln \pi_{\theta}(a|s) Q(s,a)$$

- Обновляем веса

$$\theta_{i+1} \to \theta_i + \alpha \nabla J$$

REINFORCE алгоритм

- \square Инициализировать веса θ_0 NN
 - Q: это off или on policy?

- В цикле
 - Семплируем N сессий по текущей политике
 - Оцениваем градиент политики

$$\nabla J \approx \frac{1}{N} \sum_{i=0}^{N} \sum_{s,a \in z_i} \nabla \ln \pi_{\theta}(a|s) Q(s,a)$$

- Обновляем веса

$$\theta_{i+1} \to \theta_i + \alpha \nabla J$$

REINFORCE алгоритм

- \square Инициализировать веса θ_0 NN
- □ В цикле

Действие по текущей политике = on policy

- Семплируем N сессий по текущей политике
- Оцениваем градиент политики

$$\nabla J \approx \frac{1}{N} \sum_{i=0}^{N} \sum_{s,a \in z_i} \nabla \ln \pi_{\theta}(a|s) Q(s,a)$$

- Обновляем веса

$$\theta_{i+1} \to \theta_i + \alpha \nabla J$$

Value-based vs policy based

Value-based	Policy-based
Q-learning, SARSA	REINFORCE, CEM
Решает сложные задачи	Решает простые задачи
Искусственное исследование	Встроенное исследование
Обучается на основе частичного опыта (временная разница)	Встроенная стохастичность
Оценивает стратегию бесплатно	Поддержка непрерывного пространства действий
	Учится только на полных сессиях?

Value-based vs policy based

Value-based	Policy-based
Q-learning, SARSA	REINFORCE, CEM
Решает сложные задачи	Решает простые задачи
Искусственное исследование	Встроенное исследование
Обучается на основе частичного опыта (временная разница)	Встроенная стохастичность
Оценивает стратегию бесплатно	Поддержка непрерывного пространства действий
	Учится только на полных сессиях?

- \square Инициализировать веса θ_0 NN
- □ В цикле
 - Семплируем N сессий по текущей политике
 - Оцениваем градиент политики

$$\nabla J \approx \frac{1}{N} \sum_{i=0}^{N} \sum_{s,a \in z_i} \nabla \ln \pi_{\theta}(a|s) Q(s,a)$$

Что лучше для обучения: случайное действие в хорошем состоянии или хорошее действие в плохом состоянии?

Мы можем вычесть произвольную функцию b(s)

$$\nabla J = \mathop{\mathbb{E}}_{s \sim p(s)} \nabla \ln \pi_{\theta}(a|s) (Q(s|a) - b(s)) =$$

$$a \sim \pi_{\theta}(s|a)$$

$$= \mathop{\mathbb{E}}_{s \sim p(s)} \nabla \ln \pi_{\theta}(a|s) Q(s|a) - \mathop{\mathbb{E}}_{s \sim p(s)} \nabla \ln \pi_{\theta}(a|s) b(s)$$

$$a \sim \pi_{\theta}(s|a)$$

$$a \sim \pi_{\theta}(s|a)$$

Мы можем вычесть произвольную функцию b(s)

$$\nabla J = \mathop{\mathbb{E}}_{s \sim p(s)} \nabla \ln \pi_{\theta}(a|s) (Q(s|a) - b(s)) =$$

$$a \sim \pi_{\theta}(s|a)$$

$$= \mathop{\mathbb{E}}_{s \sim p(s)} \nabla \ln \pi_{\theta}(a|s) Q(s|a) - \mathop{\mathbb{E}}_{s \sim p(s)} \nabla \ln \pi_{\theta}(a|s) b(s)$$

$$a \sim \pi_{\theta}(s|a)$$

$$a \sim \pi_{\theta}(s|a)$$

Мы можем упростить второй член? Заметим, что b(s) не зависит от a

Мы можем вычесть произвольную функцию b(s)

$$\nabla J = \underset{s \sim p(s)}{\mathbb{E}} \nabla \ln \pi_{\theta}(a|s) (Q(s|a) - b(s)) =$$

$$= \underset{s \sim p(s)}{\mathbb{E}} \nabla \ln \pi_{\theta}(a|s) Q(s|a) - \underset{s \sim p(s)}{\mathbb{E}} \nabla \ln \pi_{\theta}(a|s) b(s)$$

$$= \underset{s \sim p(s)}{\mathbb{E}} \nabla \ln \pi_{\theta}(a|s) D(s|a) - \underset{s \sim p(s)}{\mathbb{E}} \nabla \ln \pi_{\theta}(a|s) D(s)$$

$$= \underset{s \sim p(s)}{\mathbb{E}} \nabla \ln \pi_{\theta}(a|s) D(s) = D(s) \underset{s \sim p(s)}{\mathbb{E}} \nabla \ln \pi_{\theta}(a|s) D(s) = 0$$

$$= \underset{s \sim p(s)}{\mathbb{E}} \nabla \ln \pi_{\theta}(a|s) D(s) = D(s) \underset{s \sim p(s)}{\mathbb{E}} \nabla \ln \pi_{\theta}(a|s) D(s) = 0$$

$$= \underset{s \sim p(s)}{\mathbb{E}} \nabla \ln \pi_{\theta}(a|s) D(s) = 0$$

$$= \underset{s \sim p(s)}{\mathbb{E}} \nabla \ln \pi_{\theta}(a|s) D(s) = 0$$

Мы можем вычесть произвольную функцию b(s)

$$\nabla J = \underset{s \sim p(s)}{\mathbb{E}} \nabla \ln \pi_{\theta}(a|s) (Q(s|a) - b(s)) =$$

$$= \underset{s \sim p(s)}{\mathbb{E}} \nabla \ln \pi_{\theta}(a|s) Q(s|a) - \underset{s \sim p(s)}{\mathbb{E}} \nabla \ln \pi_{\theta}(a|s) b(s)$$

$$= \underset{s \sim p(s)}{\mathbb{E}} \nabla \ln \pi_{\theta}(a|s) Q(s|a) - \underset{s \sim p(s)}{\mathbb{E}} \nabla \ln \pi_{\theta}(a|s) b(s)$$

$$= \underset{s \sim p(s)}{\mathbb{E}} \nabla \ln \pi_{\theta}(a|s) Q(s|a)$$

$$= \underset{s \sim p(s)}{\mathbb{E}} \nabla \ln \pi_{\theta}(a|s) Q(s|a)$$

Направление градиента не меняется

- \square Направление градиента ∇J остается таким же
- □ Дисперсия может меняться

Дисперсия градиента:

$$Var[Q(s,a)-b(s)]$$
 - случайная

величина

$$Var[Q(s,a)] - 2Cov[Q(s,a),b(s)] + Var[b(s)]$$

- \square Направление градиента ∇J остается таким же
- □ Дисперсия может меняться

Дисперсия градиента:

$$Var[Q(s,a)-b(s)]$$
 - случайная

величина

$$Var[Q(s,a)] - 2Cov[Q(s,a),b(s)] + Var[b(s)]$$

Если b(s) коррелирует с Q(s,a), дисперсия уменьшается

- \square Направление градиента ∇J остается таким же
- □ Дисперсия может меняться

Дисперсия градиента:

$$Var[Q(s,a)-b(s)]$$
 - случайная

величина

$$Var[Q(s,a)] - 2Cov[Q(s,a),b(s)] + Var[b(s)]$$

Вопрос: какую b(s) можем использовать?

- \square Направление градиента ∇J остается таким же
- □ Дисперсия может меняться

Дисперсия градиента:

$$Var[Q(s,a)-b(s)]$$
 - случайная

величина

$$Var[Q(s,a)] - 2Cov[Q(s,a),b(s)] + Var[b(s)]$$

Наивный подход: b =скользящая средняя Q по всем (s,a),

$$Var[b(s)]=0, Cov[Q,b]>0$$

- \square Направление градиента ∇J остается таким же
- □ Дисперсия может меняться

Дисперсия градиента:

$$Var[Q(s,a)-b(s)]$$
 - случайная

величина

$$Var[Q(s,a)] - 2Cov[Q(s,a),b(s)] + Var[b(s)]$$

Наивный базовый подход: b =скользящая средняя Q по всем (s,a),

$$Var[b(s)]=0$$
, $Cov[Q,b]>0$

□ Более удачный выбор b(s) = V(s)

$$\nabla J \approx \frac{1}{N} \sum_{i=0}^{N} \sum_{s,a \in z_i} \nabla \ln \pi_{\theta}(a|s) (Q(s,a) - V(s))$$

Вопрос: как будем предсказывать V(s)?

Actor-critic

- \Box Будем искать (обучать) V(s) и $\pi_{\theta}(a|s)$
- □ И надеемся, что получим лучшее решение

- \square Идея: Обучаем $V_{\theta}(s)$ и $\pi_{\theta}(a|s)$
- \square Используем $V_{\theta}(s)$, чтобы быстрее обучить $\pi_{\theta}(a|s)$

Вопрос: как мы можем оценить A(s,a) из (s,a,r,s') и V функцию

- \square Идея: Обучаем $V_{\theta}(s)$ и $\pi_{\theta}(a|s)$
- \square Используем $V_{\theta}(s)$, чтобы быстрее обучить $\pi_{\theta}(a|s)$

$$A(s,a) = Q(s,a) - V(s)$$

$$Q(s,a) = r + \gamma V(s')$$

$$A(s,a) = r + \gamma V(s') - V(s)$$

- $lacksymbol{\square}$ Идея: Обучаем $V_{ heta}(s)$ и $\pi_{ heta}(a|s)$
- \square Используем $V_{\theta}(s)$, чтобы быстрее обучить $\pi_{\theta}(a|s)$

$$A(s,a) = Q(s,a) - V(s)$$

$$Q(s,a) = r + \gamma V(s')$$

$$A(s,a) = r + \gamma V(s') - V(s)$$

Также: n-step версия

- \square Идея: Обучаем $V_{\theta}(s)$ и $\pi_{\theta}(a|s)$
- \square Используем $V_{\theta}(s)$, чтобы быстрее обучить $\pi_{\theta}(a|s)$

$$A(s,a) = r + \gamma V(s') - V(s)$$

$$\nabla J_{actor} \approx \frac{1}{N} \sum_{i=0}^{N} \sum_{s,a \in z_i} \nabla \ln \pi_{\theta}(a|s) A(s,a)$$

□ Улучшение политики

$$\nabla J_{actor} \approx \frac{1}{N} \sum_{i=0}^{N} \sum_{s,a \in z_i} \nabla \ln \pi_{\theta}(a|s) A(s,a)$$

□ Улучшение ценности

$$\nabla J_{critic} \approx \frac{1}{N} \sum_{i=0}^{N} \sum_{s,a \in z_i} (V_{\theta}(s) - [r + \gamma V_{\theta}(s')])$$

Непрерывное пространство действий

- □ Автономный автомобиль
- □ Управление роботом

Как изменим алгоритм?

Непрерывное пространство действий

- Автономный автомобиль
- □ Управление роботом

Как изменим алгоритм?

Рассмотрим другую формулу для политики, например нормальное распределение

Асинхронный advantage actor-critic

- Параллельные игровые сессии
- Асинхронное обучение на нескольких процессорах
- Без experience replay
- LSTM policy
- N-step advantege
- Без experience replay

https://arxiv.org/abs/1602.01783

IMPALA

- С массовым параллелизмом
- Раздельные процессы actor и critic
- Небольшое повторение опыта с выборкой по важности

https://arxiv.org/abs/1802.01561