USN

Mo	del (Ques	tion	Pap	er-I	with	effe	ect fr	om 2

Fourth Semester B.E Degree Examination Complex Analysis, Probability & Statistical Methods All branches Except CS & ME Engg. Allied branches-21MAT41

TIME: 03 Hours Max. Marks: 100

Note: Answer any **FIVE** full questions, choosing at least **ONE** question from each module.

Q.N	Vo.	Question	M	L	CO			
		Module -1						
01	a	Define analytic function and derive C-R equations in Cartesian form.	06	L2	CO1			
	b	Show that $f(z) = log z$ is analytic and hence obtain its derivative.	07	L2	CO1			
•	с	Evaluate $\int_{0}^{1+i} (x^2 - i y) dz$ along the curve $y = x^2$.	07	L3	CO1			
		OR	<u> </u>					
02		Construct an analytic function, whose imaginary part is $v = e^x(xSiny + yCosy)$	06	L2	CO1			
	a	by the Milne-Thomson method						
•	b	State and prove Cauchy's integral formula.	07	L2	CO1			
-	υ							
	c	Evaluate $\int_{C} \frac{Sin\pi z^{2} + Cos\pi z^{2}}{(z-1)(z-2)} dz$, where $C: z = 3$.	07	L3	CO1			
		Module-2	l					
03		Obtain the series solution of Bessel's differential equation	06	L2	CO2			
	a	$x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} + (x^{2} + n^{2})y = 0$						
	b	Show that $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$.	07	L2	CO2			
•	С	Express $x^3 - 5x^2 + 6x + 1$ in terms of Legendre polynomial	07	L2	CO2			
		OR						
4	a	Show that $J_{-n}(x) = (-1)^n J_n(x)$		L2	CO2			
-	а		07	L2	CO2			
	b	Show that $P_4(\cos\theta) = \frac{1}{64} (35\cos 4\theta + 2\theta\cos\theta + 9)$.			CO2			
•	c	Prove that $x^3 - 2x^2 - x - 3 = \frac{2}{5}P_3(x) + \frac{4}{3}P_2(x) - \frac{2}{5}P_1(x) - \frac{7}{3}P_0(x)$						
		Module-3	J		1			
5		Find Karl Pearson's coefficient of correlation.	06	L2	CO3			
		x: 1 2 3 4 5 6 7						
	a	y: 9 8 10 12 11 13 14						

		Fit a straight line $y = ax + b$ for the data									07	L2	CO3
	b	x	: 5	10	15		20	25					
		у	: 16	19	23		26	30					
		Find the regres	sion lines o	of y on x and	d x on	y for	the foll	owing d	ata		07	L2	CO3
		<i>x</i> :											
	С	y:	2	5		3	8	3	7				
6		The participant	s in a conte	est are ranke	ed by	OR two ju		follows	5.		06	L2	CO3
		x:			<u> </u>								
	a		6 5	10	3	2	4	9	7	8			
		y: 6	4 9	8	1	2	3	10	5	7			
		Compute the R	ank correla	ation.	1								
	b	Compute means			tion co	effici	ent r fr	om the g	given re	egression	07	L2	CO3
		lines $2x + 3y +$ Fit a second de			2 1		Fo. 11 41 0	امده			07	L2	CO3
	c	x:	gree poryn	$\frac{\sin a \cdot y - c}{2}$	$\frac{\iota x + \iota}{3}$		4	uata.	5				
		y:	10	12	13		16		19				
			1 771 1	C 11 :		Modu		•			100	1 7.0	004
		A random varial	ble X has ti	ne following	g prob	ability	functi	on:			06	L2	CO4
	a	X	-3		-1	0	1	2	3				
		P(X)			3 <i>k</i>	4 <i>k</i>	3 <i>k</i>	2 <i>k</i>	k				
		Find k. Also f						,			07	1.2	604
7	b	Find the mean a								1	07	L2	CO4
,		In a certain fac								500	07	L3	CO4
	any blade to be defective. The blades are supplied in a packets of 10. Use Poisson distribution to calculate approximate number of packets containing								Jse Poisson				
	i) No defective ii) Two defective												
		iii)Three det	fective in c	onsignment	of 10	000 pa	ackets.						
						OR					1	1	1
8	a	Δ random varie	able V bas	dencity fun	ction	f(y)	$\int kx^2$	$-3 \le 3$	<i>x</i> ≤ 3		06	L2	CO4
		A random variable X has density function: $f(x) = \begin{cases} kx^2 & -3 \le x \le 3 \\ 0 & Otherwise \end{cases}$,											
		Find k . Also,	find $P(X \le$	$P(X \ge 1)$	2) and	P(X)	> 1).						

	b	The probability that a pen manufactured by a company will be defective is 0.1. If 12 such pens are selected at random, find the probability that i) Exactly two pens will be defective ii) At most two pens will be defective iii) None will be defective							L2	CO4
	С	The marks of 10 with mean 70 and	00 studen	nts in an exa				07	L3	CO4
		will be	i standard	i deviation 3.	rina the hui	nder student	s whose marks			
		i) Less than	n 65							
		i) More tha	n 75							
		iii) Betwee	n 65 and 7	75.						
0		TT1 ' ' ' 1' ' ' 1			Iodule-5	X 7 ' C 11		0.0	1	CO.5
9	a	The joint distribut	tion of two	o random var	nables X and	Y is as follow	WS. l	06	L2	CO5
			X	-4	2	7				
			1	<u>1</u>	<u>1</u>	1				
			1	8	4	8				
			5	<u>1</u>	$\frac{1}{8}$	$\frac{1}{2}$				
			C 11 '	$\overline{4}$	8	8				
		Compute the i) E(X) and		g.						
		ii) E(XY)	112(1)							
		iii) $\sigma_x \& \sigma_x$	$\sigma_{_{V}}$							
	b	Define i) Null hype	-	Type-I & Ty	pe-II errors i	ii) Degrees o	of freedom	07	L2	CO5
		iv) Level of Signif		31 3	1	, 6				
	С	Two types of batte	ries are te	sted for their	length of life	and the foll	owing results are	07	L3	CO5
		obtained: Battery	A: $n_1 =$	$10 \overline{x}_1 = 500$	OHrs. $\sigma_1^2 =$:100				
		Battery	B: $n_2 =$	$= 10 \overline{x}_2 = 50$	$6 Hrs. \sigma_2^2 =$	=121				
		Compute Student's t and test whether there is a significant difference in the two means at 5% significance level.								
					OR					
10	a	Determine (i) Marginal distributions							L2	CO5
		(ii) Covariance between the variables <i>X</i> and <i>Y</i> ,								
		If the joint probability distribution is given by:								
		X		3	4	5				
			2	<u>1</u>	<u>1</u>	<u>1</u>				
				6	6	<u>6</u>				
			5	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$				
			7	1 12	$\frac{1}{12}$	$\frac{1}{12}$				
		<u> </u>					I			

Ten individuals are chosen at random from a population and their heights in inches are found to be 63, 63, 66, 67, 68, 69, 70, 70, 71, 71. Test the hypothesis that the mean height of the universe is 66 inches at 5% significance level. $(t_{0.05} = 2.262 \text{ for } 9 \text{ d.f.})$							CO5	
In experiments on pea breeding the following frequencies of seeds were obtained:							CO5	
Round and Yellow								
315	556							
Theory predicts that the frequencies should be in proportions9: 3: 3: 1. Examine								
the correspondence between theory and experiment								
		_						
	are found to be mean height of $(t_{0.05} = 2.262 \text{ for } 10.05)$ In experiments Round and Yellow 315 Theory predicts	are found to be 63, 63, 66, 67, mean height of the universe is 66 $(t_{0.05} = 2.262 \text{ for } 9 \text{ d.f.})$ In experiments on pea breeding to the experiments of the experiments	are found to be 63, 63, 66, 67, 68, 69, 70, 70, 70, 70, 70, mean height of the universe is 66 inches at 5% signature $(t_{0.05} = 2.262 \text{ for } 9 \text{ d.f.})$ In experiments on pea breeding the following free Round and Wrinkled Round and Yellow Green 315 101 108 Theory predicts that the frequencies should be in	are found to be 63, 63, 66, 67, 68, 69, 70, 70, 71, 71. Test the h mean height of the universe is 66 inches at 5% significance level. ($t_{0.05} = 2.262 \text{ for 9 d.f.}$) In experiments on pea breeding the following frequencies of seeds Round and Wrinkled Round and Wrinkled Yellow and Yellow Green and Green 315 101 108 32 Theory predicts that the frequencies should be in proportions 9: 3:	are found to be 63, 63, 66, 67, 68, 69, 70, 70, 71, 71. Test the hypothesis that the mean height of the universe is 66 inches at 5% significance level. $(t_{0.05} = 2.262 \text{ for 9 d.f.})$ In experiments on pea breeding the following frequencies of seeds were obtained:	are found to be 63, 63, 66, 67, 68, 69, 70, 70, 71, 71. Test the hypothesis that the mean height of the universe is 66 inches at 5% significance level. ($t_{0.05} = 2.262 \text{ for 9 d.f.}$) In experiments on pea breeding the following frequencies of seeds were obtained: Round and Wrinkled Round and Wrinkled Total Yellow and Yellow Green and Green 315 101 108 32 556 Theory predicts that the frequencies should be in proportions 9: 3: 3: 1. Examine	are found to be 63, 63, 66, 67, 68, 69, 70, 70, 71, 71. Test the hypothesis that the mean height of the universe is 66 inches at 5% significance level. ($t_{0.05} = 2.262 \text{ for 9 d.f.}$) In experiments on pea breeding the following frequencies of seeds were obtained: Round and Wrinkled Round and Wrinkled Total Yellow and Yellow Green and Green 315 101 108 32 556 Theory predicts that the frequencies should be in proportions 9: 3: 3: 1. Examine	

	Low	ver-order thinking skills	
Bloom's Taxonom y Levels	Remembering (knowledge): L_1	Understanding (Comprehension): L ₂	Applying (Application): L_3
y Levels			
	Analyzing (Analysis):L ₄	Valuating (Evaluation): L_5	Creating (Synthesis): L ₆