

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА ПРОГРАММНАЯ ИНЖЕНЕРИЯ (ИУ7)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 Программная инженерия

ОТЧЕТ

По лабораторной работе № 1

«Исследование ВАХ полупроводниковых диодов» Дисциплина: Основы электроники

Студент	ИУ7-35Б	А. В. Толмачев		
	(Группа)	(И.О. Фамилия)		
Преподаватель	Оглоблин Дмитрий Игоревич			

Цель лабораторной работы:

Получение в программе схемотехнического анализа Microcap XX и исследование статических характеристик кремниевого полупроводникового диода с целью определения по ним параметров модели полупроводниковых диодов, размещения моделей в базе данных. Освоение программы Mathcad для расчёта параметров модели полупроводниковых приборов на основе данных экспериментальных исследований.

Эксперимент по исследованию ВАХ полупроводниковых диодов на модели лабораторного стенда в программе MicroCap

1. Параметры диода, используемого в работе

Модель диода: KD521B

Параметры диода: (Is=515f N=1.0 Rs=4.21 Cjo=3.25p Tt=3.12e-9 M=0.26 Vj=0.68 Fc=0.5 Bv=75 IBv=1e-11 Eg=1.11 Xti=3)

2. Получение ВАХ

Было проведено моделирование лабораторного стенда для получения ВАХ диода на прямой и обратных ветвях в программе MicroCup. Для этого были построены цепи:

3. Получение значений тока и напряжения

Получим показания с помощью "DC Analysis". Для получения выражений по осям X и Y воспользуемся правилом Кирхгофа:

Формула для оси ОХ учитывает падение напряжения на миллиамперметре. При этом ток через миллиамперметр определяется суммой двух токов- точка

через диод и через милливольтметр, соответственно ток диода по ОУ будет являться разностью двух токов.

Рисунок 4;для обратной ветви

4. Обработка вывода

Для того, чтобы Mathcad мог обработать файл с полученными значениями, необходимо убрать из вывода лишнюю информацию: информацию о задаче, версии программы, и т. д., а также изменить формат вывод числовых значений на десятичный. Эта настройка была произведена в Numeric Output:

Получаем выходные данные в circuit1.DNO

5. Получаем графики для прямой и обратной ветви:

Рисунок 5; для прямой ветви

Рисунок 6; для обратной ветви

Приближенный расчет параметров диода в Mathcad

- 1. Считываем полученные данные из файла в VAX VAX := READPRN("C:\MC12\DATA\circuit1.dno")
- 2. Строим график по полученным данным:

- $VAX^{<0>}$ по оси OX напряжение на диоде
- $VAX^{<1>}$ по оси OY ток на диоде
- 3. С помощью трассировки получим три точки, которые будут использованы в качестве входных данных для приближенного расчета параметров модели полупроводникового диода методом трех ординат

4. Определим параметры диода методом трех ординат:

$$\begin{split} Rb(Ud1,Ud2,Ud3,Id1) &:= \frac{(Ud1-2\cdot Ud2+Ud3)}{Id1} \\ rb &:= Rb(Ud1,Ud2,Ud3,Id1) = -0.167 \\ NFt(Ud1,Ud2,Ud3) &:= \frac{[(3\cdot Ud2-2\cdot Ud1)-Ud3]}{ln(2)} \\ nft &:= NFt(Ud1,Ud2,Ud3) = 0.047 \\ Io(Id1,Ud3,Ud2,nft) &:= Id1\cdot e^{\left[\frac{(Ud3-2\cdot Ud2)}{nft}\right]} \\ io &:= Io(Id1,Ud3,Ud2,nft) = 1.04\times 10^{-8} \end{split}$$

Точный расчет параметров модели полупроводникового диода методом Given Minerr

Для того, чтобы решить систему уравнений, можно воспользоваться вычислительным блоком Given, в частности входящей в него функцией Minerr. Метод является итерационным.

Для решения системы уравнение функцией Minerr нужно задать начальное приближение для всех неизвестных, напечатать слово Given, и ввести уравнения в любом порядке, после чего воспользоваться функцией.

1. Необходимо определить 4 неизвестных, т. е. необходимо 4 уравнения. Для этого выберем произвольных точки из набора данных, полученного при моделировании, и составим систему из четырех уравнений.

2. Получим формулу, связывающую ток и напряжение на диоде, на основе вычисленных параметров методом Minerr:

Idiod :=
$$0.10^{-5}$$
.. 0.055
 $m2 := 1.573$ Ft2 := 0.016
Rb1 := 4.493
NFt1 := $m2 \cdot Ft2 = 0.025$
Is01 := $2.154 \cdot 10^{-13}$
Uformula(Idiod) := Idiod · Rb1 + NFt1 · ln $\left[\frac{\text{(Idiod + Is01)}}{\text{Is01}}\right]$

Изменение ток зададим ранжированной переменной Idiod

3. Данные, для построения графиков:

		0			0		Uformula(Idiod)	Idiod =
$VAX^{\langle 0 \rangle} =$	0	0		0	0		0		0
	1	0.02		1	2·10-6		0.444		1.10-2
	2	0.04		2	4·10-6		0.462		2·10-5
	3	0.06		3	6·10-6		0.472		3·10-5
	4	0.08		4	8·10-6		0.479		4·10-5
	5	0.1		5	1.10-2		0.485		5·10 ⁻⁵
	6	0.12		6	1.2·10-5		0.49		6.10-2
	7	0.14		7	1.4·10-5		0.494		7·10 ⁻⁵
	8	0.16		8	1.6.10-2		0.497		8.10-2
	9	0.18		9	1.8·10-5		0.5		9.10-5
	10	0.2		10	2·10-5		0.503		1.10-4
	11	0.22		11	2.2·10-5		0.505		1.1.10-4
	12	0.24		12	2.41·10-5		0.507		1.2·10-4
	13	0.26		13	2.61·10-5		0.509		1.3·10-4
	14	0.28		14	2.81·10-5		0.511		1.4·10-4
	15			15					
			1						

4. Построим 2 графика – график по формуле с точно рассчитанными параметрами диода и график по исходным данным на 1 холсте:

5. Выполним проверку по напряжению модели и эксперимента:

Iprov :=
$$\left(VAX^{\langle 1 \rangle}\right)_{45} = 0.041$$

Uformula(Iprov) = 0.835

$$\left(\text{VAX}^{\langle 0 \rangle}\right)_{45} = 0.819$$