Nonequilibrium physics with interdisciplinary applications (T) - Nonequilibrium

\overline{Course}	Nonequilibrium physics with interdisciplinary applications (T)
Course No.	Nonequilibrium

		ı	Teaching			
Category	Type	Language 1	\mathbf{hours}	\mathbf{CP}	Semester	
Elective	Lecture with exercises	English 2	2+1	4	ST	

Requirements:

Preparation: Statistical mechanics

Form of Testing and Examination: Oral examination or term paper

Length of Course: 1 semester

Aims of the Course: Acquaintance with basic concepts of nonequilibrium physics; ability to apply the basic methods for the investigation of nonequilibrium problems; application of physics-based models to interdisciplinary problems.

Contents of the Course:

Principles of nonequilibrium physics

Stochastic systems and their description (master equation, Fokker-Planck equation,...)

Analytical and numerical methods

Nonequilibrium phase transitions

Applications to traffic, pedestrian dynamics, economic systems, biology, pattern formation,...

Recommended Literature:

A. Schadschneider, D. Chowdhury, K. Nishinari: Stochastic Transport in Complex Systems (Elsevier, 2010)

P.L. Krapivsky, S. Redner, E. Ben-Naim: A Kinetic View of Statistical Physics (Cambridge University Press, 2010)

V. Privman (Ed.): Nonequilibrium Statistical Mechanics in One Dimension (Cambridge University Press, 1997)

N.G. Van Kampen: Stochastic Processes in Physics and Chemistry (Elsevier, 1992)

PDF version of this page.