## Solution V1.1

LST

July 11, 2016

## 1 problem definition

$$\min \sum_{i=1}^{n} \frac{\alpha_i}{1 - F_i(c_i)}$$

s.t. 
$$\sum_{i=1}^{n} \int_{c_i}^{M} x dF_i(x) \le B$$

where  $\forall c_i, 0 \leq c_i \leq M, \text{and} F(0) = 0, F(M) = 1$ 

## 2 solution

First consider the unconstrained problem. If  $\overline{y}$  is the local minimum of the functional J(y) if y is the local niminum of J(y), then it holds that  $\forall \hat{y}$  in a function space V

$$\delta J|_{y}(\hat{y} - \overline{y}) \ge 0$$

where  $\delta J|_{y}(\hat{y}-\overline{y})$  is the Gateaux deravative of J in the direction of  $\hat{y}-\overline{y}$ .

We then consider the constraint problem. For the constraint optimization problem, we have that if y is the extremal of the constraint problem, then it is also the extremal of the augmented cost functional(Lagarangian)  $J(y) + \lambda C(y)$ , where the  $\lambda$  is the Lagarange Multiplier, and C(y) is the constraint.

We come back to our problem. We first give our function space  $V = \{y|y(0) = 0, y(M) = 1\}$ . And we denote our cost function as

$$M(F_1, , F_n) = \sum_{i=1}^{n} \frac{\alpha_i}{1 - F_i(c_i)}.$$

Then the augmented cost function is derived as

$$J(F_1, ..., F_n, \lambda) = M(F_1, ..., F_n) + \lambda (\sum_{i=1}^n \int_{c_i}^M x dF_i(x) - B)$$

According to the calculation, we obtain that for  $\forall \hat{F} \in V$ 

$$\delta J|_{F_t}(\hat{F}_t - F_t) = \int_{c_t}^{M} (-\frac{\alpha_t}{(1 - F_t(c_t))^2} + \lambda x)(\hat{f}(x) - f(x)) dx$$

if  $\overline{F}$  is the local minimum, then we have

$$\delta J(\hat{F}_t - \overline{F_t}) > 0$$

holds for every  $\hat{F} \in V$ . Noticing that

$$\int_0^M f_t(x) - f(x)dx = 0$$

We must have

$$-\frac{\alpha_t}{(1 - F_t(c_t))^2} + \lambda x \ge 0$$

hold on every where on  $[c_t, M]$  thus we obtain that

$$F_t(c) = 1 - \sqrt{\frac{\alpha_t}{\lambda c}} \quad c \in (0, M)$$

Noticing that F(x) is not continuous, according to Stieltjes Integral, we rewrite the constraint as following

$$\sum_{i=1}^{n} \left( \int_{c_i}^{M} x f_i(x) dx + (1 - F_i(M)M) \le B \right)$$

According to the property of Lagarangian, we have

$$\frac{\partial J}{\partial \lambda} = \sum_{i=1}^{n} \left( \int_{c_i}^{M} x f_i(x) dx + (1 - F_i(M)M) - B \right) = 0$$

we can solve the  $\lambda$  when we have the form of  $F_t$ 

## 3 Note

The definition of Gateaux Deravative is

$$\delta J|_{y}(\eta) = \lim_{\epsilon \to 0} \frac{J(y + \epsilon \eta) - J(y)}{\epsilon}$$