التمرين 01:

$$H_3C$$

 $C=CH-CH_3+O_3$ \longrightarrow (A)

(A) +
$$H_2O \longrightarrow$$
 (B) + (C) + H_2O_2

(B) +
$$H_2 \xrightarrow{Ni} (D)$$
 کمول ثانوي (D) کمول ثانوي

(D)
$$\xrightarrow{\text{H}_2\text{SO}_4}$$
 (E) + H_2O

$$(E) + HBr \longrightarrow (F)$$

$$(F)$$
 + Mg $\xrightarrow{\text{ether}}$ (G)

$$(E) + (C) \longrightarrow (H)$$

(H) +
$$H_2O$$
 \longrightarrow $H_3C-CH-CH-CH_3$ + $MgBr(OH)$ CH_3OH

1- أكتب صيغ المركبات: (A), (B), (C), (D), (E), (F), (G), (H): المركبات:

2- أكمل التفاعلات الكيمايئية الآتية:

- 3- بلمرة المركب (E) تؤدي إلى تشكل البوليمير (I).
 - أ- ما نوع هذه البلمرة ؟
 - ب- أكتب الصيغة العامة للبوليمير (I).
 - أ- أعط اسم هذا البوليمير.

التمرين 02:

1- يحضر البولي ستيران (polystyrene) من بلمرة الستيران:

$$\leftarrow$$
 CH=CH₂

- أ) أذكر نوع هذه البلمرة.
- ب) مثل مقطع من البولى ستيران يتركب من ثلاث (03) وحدات بنائية (03 مونوميرات)
 - ت) استنتج الصيغة العامة للبولي ستيران.
 - ث) أعط أهم استخدامات البولي ستيران.
- 170° C عند H_2SO_4 عند (A) (کحول أولي) بوجود حمض (A) عند (A) عند (A) عند (A)
 - أ) استنتج صيغة المركب (A).
 - . H_2SO_4 عند $140^{\circ}C$ عند المركب (A) بأكتب معادلة تفاعل نزع الماء من المركب
 - 3- أكتب معادلة تفاعل الستيران مع:
 - أ) H_2 في وجود Ni أ
 - . HBr (ب
 - 4- أكسدة الستيرا بالأوزون (O_3) تعطى المركب (B)
 - أ) أعط صيغة المركب (B).
 - ب) أكتب معادلة تفاعل إماهة المركب (B).

الحـــل

التمرين 01:

1) كتابة صيغ المركبات H.G.F.E.D.C.B.A

$$A: \begin{array}{c} H_3C \\ \\ H_3C \end{array} \begin{array}{c} C \\ \\ \\ O \end{array} \begin{array}{c} CH_3 \\ \\ \\ \\ \end{array} \begin{array}{c} C \\ \\ \end{array} \begin{array}{c} C \\ \\ \\ \end{array} \begin{array}{c} C \\ \\ \end{array} \begin{array}{c} C \\ \\ \\ \end{array} \begin{array}{c} C \\ \\ \end{array}$$

$$C \stackrel{CH_3}{\longleftarrow} ; B: H_3C \stackrel{C}{\longrightarrow} CH_3 ; C: H_3C \stackrel{O}{\longrightarrow} H$$

E:
$$H_2C=CH-CH_3$$
; F: $H_3C-CH-CH_3$

$$G: H_3C-CH-CH_3$$

$$\begin{array}{c} \text{MgBr} & \text{MgBr} \\ | \\ \text{G}: \text{H}_3\text{C-CH-CH}_3 & ; & \text{H}: \text{H}_3\text{C-CH-CH-CH}_3 \\ & & \text{CH}_3 & \end{array}$$

2) إكمال التفاعلات:

(3)أ- نوع البلمرة: بلمرة بالضم.

التمرين 02:

1) أ- نوع البلمرة: بلمرة بالضم.

ب- تمثيل مقطع من البولي ستيران يحتوي على ثلاث وحدات بنائية:

ج- الصيغة العامية للبولي ستيران:

- د- أهم استخدامات البولي ستيران:
- 🖊 عازل للصوت والحرارة.
 - 🚣 مضاد للصدمات.

2) أ- صيغة المركب A:

 $T = 140^{\circ}$ C عند درجة الحرارة A عند المركب عند درجة الحرارة

$$2 \text{ CH}_2\text{-CH}_2\text{-OH} \xrightarrow{\text{H}_2\text{SO}_4} \text{CH}_2\text{-CH}_2\text{-O-CH}_2\text{-CH}_2$$

 H_2 أ- تفاعل الستيران مع H_2 (تفاعل الهدرجة) :

ب- تفاعل إماهة المركب B:

التمرين01 :

1) لديك سلسلة التفاعلات الكيميائية التالية:

1)
$$CH \equiv CH + H_2O \xrightarrow{Hg^{2+}} A' \xrightarrow{} A$$

2) A +
$$CH_3$$
- CH_2 - $MgCl$ \longrightarrow B

3) B +
$$H_2O$$
 \longrightarrow C + $MgCl(OH)$

4) A
$$\frac{\text{KMnO}_4}{\text{end codes}}$$
 D

5) D + C
$$\stackrel{\text{H}^+}{=}$$
 E + H₂O

6) C +
$$PCl_5$$
 \longrightarrow F + HCl + $POCl_3$

7) F +
$$(CH_3)_3N$$
 \longrightarrow G

- A, A', B, C, D, E, F, G: أكتب الصيغ نصف مفصلة للمركبات:
 - ب. ما اسم التفاعل (5) ؟ حدد خصائصه .
 - $AlCl_3$ مع البنزن في وجود الوسيط F مع البنزن
 - د- أكمل التفاعل التالي:

ه- كيف يمكن الحصول على المركب D انطلاقا من بروم المثيل مغنزيوم و CO_2 والماء ؟

2) من جهة أخرى لديك التفاعلين التاليين:

$$HC \equiv CH + HCN \longrightarrow H$$
 $n H \longrightarrow I$

- أ- أكتب الصيغة نصف مفصلة للمركب H.
 - ب- أكتب الصيغة العامة للمركب I.
- ت- مانوع البلمرة في التفاعل المؤدي إلى المركب I.

التمرين02:

1) لتكن التفاعلات الكيميائية المتسلسلة التالية:

$$H_{2}C = CH_{2} + H_{2}O \longrightarrow A$$
 $A \xrightarrow{KMnO_{4}} B$
 $B + SOCl_{2} \longrightarrow C + \dots + \dots$
 $+ C \xrightarrow{AlCl_{4}} D + \dots$
 $D \xrightarrow{LiAlH_{4}} E$
 $E \xrightarrow{170 \, {}^{\circ}C} F + \dots$
 $F + O_{3} \longrightarrow G + H + H_{2}O_{2}$

حيث G مركب أروماتي .

H,G,F,E,D,C,B,A: أ- أكتب الصيغ نصف مفصلة للمركبات

ب- من هذه المركبات عين التي تكون نشطة ضوئيا.

2) بلمرة المركب F تعطي المركب I ذو أهمية صناعية .

أ- أكتب الصيغة العامة للمركب I.

ب- مانوع هذه البلمرة .

ت- أذكر أهم استخدامات البوليمير I.

الحال

حل التمرين01:

أ- صبغ المركبات 'G . F . E . D . C . B . A . A

 $A': H_2C = CH - OH$

$$A: H_3C - C \\ H$$

 $\begin{array}{c} \mathbf{B}: \ \mathbf{H_{3}C-CH_{2}-CH_{2}-CH-OMgCl} \\ \mathbf{CH_{3}} \end{array}$

$$C: H_3C-CH_2-CH_2-CH-CH_3$$

D: CH₃-COOH

$$F: H_3C-CH_2-CH_2-CH-CH_3$$

ب- التفاعل (5) هو تفاعل أسترة . ✓ خصائصه : بطيء .

- ـ ♣ عكوس .
- 🕹 لا حراري.

ج- تفاعل المركب F مع البنزن:

د- إكمال التفاعل:

$$O$$
 : التفاعل : O :

$$CH_3$$
-MgBr + CO_2 \longrightarrow H_3C — C -OMgBr

$$H_3C$$
— C -OMgBr + H_2O — CH_3 -COOH + MgBrOH (D)

ج- نوع البلمرة: بلمرة بالضم.

حل التمرين 02 :

 $A: H_3C-CH_2-OH$; $B: CH_3-COOH$; $C: CH_3-COCI$

أ- الصيغة العامة للمركب I:

- ب- نوع البلمرة: بلمرة بالضم.
- ج- أهم استخدامات البوليمير I:
- ✓ عازل صوتي وحراري.
 - ✓ مضاد للصدمات.
 - √ صناعة الألعاب.

التمرين 01:

- ا) فحم هيدروجيني أوكسيجيني A صيغته المجملة $C_4H_{10}O$ ، نمرر أبخر المركب A على الناحاس المسخن عند $C_4H_{10}O$ فنحل على المركب B ، الذي يتفاعل مع كاشف D.N.P.H بينما لا يتفاعل مع محلول فهلنغ .
 - أوجد الصيغة الكيميائية لكل من المركبين A و B موضحا طبيعتها الكيميائية .
- . C يتفاعل المركب B مع بروميد المثيل مغنزيوم CH_3 -MgBr ليعطى مركبا يتحلل بالماء ليتشكل المركب (2
 - . D على الألومين Al_2O_3 المسخن عند C فيتشكل المركب نمرر أبخرة المركب و الألومين و Al_2O_3
 - يتأكسد المركب D بواسطة $K_2Cr_2O_7$ في وسط حمضي فينتج المركبين D و D
 - . G مع كلوريد الثيونيل ($SOCl_2$) ليعطي المركب F مع كلوريد الثيونيل ويتفاعل المركب
 - . E على المركب G يؤدي إلى المركب CH_3 -MgCl على المركب
 - أ) أكتب الصيغ نصف مفصلة للمركبات G.F.E.D.C
 - ب) مانوع التفاعل المؤدي إلى تشكل كل من المركبين D و D .
 - ج) أكمل التفاعل التالي:

التمرين 02 :

نعتبر التفاعلات الكيميائية المتسلسلة التالية:

- 1) عين الصيغ نصف مفصلة للمركبات G. F.E.D.C.B.A وأكمل التفاعلا الكيميائية المتسلسلة.
 - 2) أكتب تفاعل ارجاع كليمنس للمركب B.
 - 3) أكتب سلسلة التفاعلات التي تسمح بالحصول على المركب B انطلاقا من:

$$H_3C-C\equiv N$$
 g $MgCl$

يحضر البولي إستر في الصناعة من التفاعل التالي:

$$nX + nY$$

$$\longrightarrow \begin{bmatrix} O & O \\ C & -C \\ -C & -C \end{bmatrix} + mH_2O$$

- (1) استنتج الصيغة نصف مفصلة لكل من المونوميرين $(X \ e^{-X})$
 - 2) مانو البلمرة في تفاعل تشكل البولي إستر؟
- CH_3 نحصل على المركب X بأكسدة بو اسطة بر منغنات البوتاسيوم في وسط حمضي . X نحصل على المركب Y بأكسدة الإثيلين بو اسطة فوق الحمض X متبوعة بالإماهة .

أكتب التفاعلات الكيميائية الحاصلة

التمرين 01:

(1

✓ صيغة المركب A:

🚣 المركب A عبارة عن كحول ثانوى .

$$\begin{matrix} \mathrm{O} \\ || \\ \mathrm{H_{3}C-CH-CH_{2}-CH_{3}} \end{matrix}$$

🚣 المركب B عبارة عن سيتون .

أ- الصيغ النصف مفصلة للمركبات G. F.E.D.C:

$$\begin{array}{c} \text{OH} \\ \mid \\ \text{C}: \text{ H}_{3}\text{C}-\text{C}-\text{CH}_{2}-\text{CH}_{3} ; \quad \text{I} \\ \mid \\ \text{CH}_{2} \end{array}$$

C:
$$H_3C - C - CH_2 - CH_3$$
; D: $H_3C - C = CH - CH_3$; E: $H_3C - C = CH_3$

$$F: \ H_3C - C \\ OH \\ ; \quad G: H_3C - C \\ CI$$

✓ نوع التفاعل المؤدي إلى المركب D: تفاعل حذف.

✓ نوع التفاعل المؤدي إلى المركب : تفاعل إستبدال .

ج- إكمال التفاعل:

$$2 \text{ H}_{3}\text{C} - \text{C}' \longrightarrow \text{H}_{3}\text{C} - \text{C}' + \text{CO}_{2} + \text{H}_{2}\text{O}$$

: 02 التمرين

Ι

1) الصيغ نصف المفصلة للمركبات G.F.E.D.C.B.A (1

A:
$$H_3C$$
— C ; B: C CH_3 ; C: H_2C = CH - CH_3 OMgBr C CH_3

$$G: \begin{array}{c} OH \\ CH_3 \\ CH_3 \end{array} \begin{array}{c} CH_3 \\ CH_3 \end{array}$$

2) تفاعل كليمنس على المركب B

3) سلسلة التفاعلات التي تسمح بالحصول على المركب B

II

$$X : HOOC \longrightarrow COOH$$
 ; $Y : HO-CH_2-CH_2-OH$

- 2) نوع البلمرة: بلمرة بالضم.
 - 3) كتابة معادلات التفاعل:

$$H_3C$$
 CH_3
 CH_3
 $COOH + 2H_2O$
 $COOH + 2H_2O$
 $CH_2 + R-COOH$
 $CH_2 + H_2O$
 $CH_2 + H_2O$
 $CH_2 + H_2O$
 $CH_2 - CH_2 - OH$
 $CH_2 - CH_2 - OH$
 $CH_2 - CH_2 - OH$

التمرين 01:

- مع الكاشف D.N.P.H بينما لا يتفاعل مع محلول فهلنغ . C_4H_8O) يتفاعل مع محلول فهلنغ .
 - أ) ما طبيعة المركب A ؟
 - ب) أكتب صيغته نصف المفصلة.
 - 2) نجرى على المركب A سلسلة التفاعلات التالية:

A
$$\xrightarrow{\text{LiAlH}_4}$$
 B

 H_2O

B $\xrightarrow{\text{Al}_2O_3}$ C + H_2O

C $\xrightarrow{\text{KMnO}_4}$ $\xrightarrow{\text{LiAlH}_4}$ 2D

- أكتب الصيغ نصف مفصلة للمركبات D.C.B
- : يمكن نزع مجموعة الكربوكسيل من المركب D بطريقتين (3
 - . 350°C عند MnO بوجود أكسيد المغنزيوم
 - ب) بتأثير الحرارة في وسط قاعدي .
 - أكتب معادلة التفاعل الموافق في الحالتين: أ ب.
- $C-CH_3$ انطلاقا من البنزن والمركب D وكواشف أخرى يمكن الحصول على الأسيتوفينون D عبر عن ذلك بكتابة معادلات التفاعلات الحاصلة .

التمرين 02:

I لتكن التفاعلات التالية:

1)
$$\langle \overline{} \rangle$$
 + CH_3 - CH_2 - OH $\xrightarrow{}$ A + H_2O

2) A + HNO₃
$$\xrightarrow{\text{H}_2\text{SO}_4}$$
 B + H₂O

3) B
$$\xrightarrow{\text{LiAlH}_4}$$
 C

4)
$$CH_3$$
- CH_2 - $OH \xrightarrow{KMnO_4} D$

5) D +
$$SOCl_2$$
 \longrightarrow E + HCl + SO_2

6)
$$C + D \longrightarrow H_3C-CH_2 \longrightarrow NH-C-CH_3$$

- E. D. C. B. A أكتب الصيغ نصف المفصلة للمركبات (1
- 2) يمكن تعويض الكحول الإيثيلي في التفاعل (1) بمركب آخر ، ماهو هذا المركب ؟ وماهو الوسيط المستعمل ؟

$$N \equiv C - (CH_2)_4 - C \equiv N + 4H_2 \xrightarrow{Ni} F$$

- 1) مانوع البلمرة في تفاعل تشكل البولي أميد (Nylon 6-6) ؟
 - 2) أكتب الصيغة نصف مفصلة للمركب £
 - (3 استنتج الصغة العامة ل (Nylon 6-6) . (

التمرين 01:

(3

1)أ- المركب A عبارة عن سيتون .

O | |
$$H_3C-C-CH_2-CH_3$$
 : A ب- الصيغة النصف مفصلة للمركب A

2) الصيغ النصف مفصلة للمركبات D.C.B (2

✓ معادلة التفاعل في الحالة (أ):

$$2 \text{ CH}_{3} - \text{C} \xrightarrow{\text{O}} \frac{\text{MnO}}{350 \text{ °C}} + \text{H}_{3}\text{C} - \text{C} \xrightarrow{\text{CH}_{3}} + \text{CO}_{2} + \text{H}_{2}\text{O}$$

✓ معادلة التفاعل في الحالة (ب):

$$CH_3-C$$
 OH
 OH
 CH_4 + CO_2

(4) المعادلات التي تسمح بالحصول على الاسيتوفينون انطلاقا من المركب ${\bf D}$ والبنزن

. PCl_5 بدل $SOCl_2$ بدل برکن استعمال بدل د

التمرين 02 :

1) الصيغ النصف مفصلة للمركبات E.D.C.B.A

- 2) يمكن تعويض الكحول الإيثيلي في التفاعل (1) بأحد المركبات التالية:
 - · AICl₃ بوجود الوسيط CH₃-CH₂-Cl بوجود الوسيط ✓

II

- 1) نوع البلمرة: بلمرة بالتكاثف.
 - 2) صبغة المركب F:

$$H_2N-(CH_2)_6-NH_2$$

3) الصيغة العامة للنيلون 6-6:

$$\begin{array}{c|c} & O & O \\ || & || \\ C - (CH_2)_4 - C - NH - (CH_2)_6 - NH \end{array}$$

التمرين 01:

I لديك سلسلة التفاعلات الكيميائية التالية:

1)
$$+ Cl_2 \xrightarrow{AlCl_3} A + HCl$$

4)
$$C + H_2O \longrightarrow D + MgCl(OH)$$

5) D
$$\xrightarrow{\text{KMnO}_4}$$
 E

6) E +
$$SOCl_2$$
 \longrightarrow F + SO_2 + HCl

- 1) أكتب الصيغ نصف مفصلة للمركبات F.E.D.C.B. A. أكتب الصيغ
 - 2) ماهي الشروط اللازمة لحدوث التفاعل (2) ؟
 - 3) ماهو الوسيط المستعمل في التفاعل (7) ؟

II يمكن الحصول على البولي أستر (Polyester) من التفاعلات الكيميائية التالية:

1)
$$H_2C = CH_2 + \frac{Ag}{200 \, ^{\circ}C} \rightarrow G$$

2)
$$G + H_2O \longrightarrow H$$

3)
$$n \leftarrow COOH$$
 + $n H \rightarrow polyester + $m H_2O$$

- 1) مانوع البلمرة في التفاعل (3) ؟
- 2) أكتب الصيغة نصف مفصلة لكل من المركبين G و H.

(3) استنتج الصيغة العامة للبولي أستر (polyester) .

التمرين02:

- . B بالأوزون O_3 بالأوزون A بالأوزون المركبا I
- . C بنتج عنها C مول من المركب B ينتج عنها C مول من المركب
 - هدرجة المركب B بوجود النيكل تعطى المركب D.
- . E بنرع المركب $D^{\circ}C$ عند (H_2SO_4) عند $D^{\circ}C$ يعطي المركب . نزع الماء من المركب

$$-\left[CH_2-CH_2\right]_n$$

المركب E تؤدي إلى المركب P ذي الصيغة العامة E

أ) استنتج الصيغ نصف مفصلة للمركبات E.D.C.B.A

ب) مانوع البلمرة ؟ ما اسم البوليمير ؟

I انطلاقا من المركب D نجري سلسلة التفاعلات التالية:

1) D +
$$PCl_5$$
 \longrightarrow F + $POCl_3$ + HCl

5)
$$I + D \xrightarrow{H^{+}} H_{3}C - CH_{2} - C - O - CH_{2} - CH_{3} + H_{2}O$$

- 1) أكتب الصيغ نصف مفصلة للمركبات I.H.G.F
 - 2) أ) ماهو الوسيط المستخدم في التفاعل (2) ؟
 - ب) ماهى خصائص التفاعل (5) ؟
- ج) ماهو مردود التفاعل (5) إذا كان المزيج التفاعلي متساوي عدد المولات؟

المجال الأول: الكيمياء العضوية

ومواد كيميائية أخرى . COOH انطلاقا من المركب F والبنزن والمركب F والبنزن ومواد كيميائية أخرى .

التمرين 01 :

Ι

1) صيغ المركبات: A . B . C . D . E . F

 $A: \begin{picture}(200,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0)$

2) لحدوث التفاعل رقم (2) يجب توفر الشرطين التاليين:

👃 وجود الإيثر الجاف .

👍 الغياب الكلى للماء .

. AlCl₃ الوسيط الذي تم إستخدامه في التفاعل رقم (7) هو: حمض لويس (3

II

1) نوع البلمرة في التفاعل رقم (3) هي: بلمرة بالتكاثف.

2) صيغة كل من المركبين G و H

 $G:H_2C-CH_2$; $H:HO-CH_2-CH_2-OH$

3) صيغة البولى أستر:

 $- \begin{bmatrix} O & O \\ II \\ C & C \end{bmatrix} = CH_2 - CH_2 - O \end{bmatrix}_n$

: 02 التمرين

I

1) صيغ المركبات: . A . B . C . D . E

A:
$$H_3C$$
-CH=CH-CH $_3$; B: H_3C —CH CH—CH $_3$; C: H_3C —CO—H

 $D: H_3C-CH_2-OH$; $E: CH_2-CH_2$

- 2) نوع البلمرة: بلمرة بالضم.
- 👍 إسم البوليمير: بولي إيثيلين.

Π

: $F \cdot G \cdot H \cdot I$ الصيغ نصف مفصلة للمركبات (1

$$F: H_3C-CH_2-Cl$$
 ; $G: H_3C-CH_2-MgCl$

$$\begin{array}{c} O \\ || \\ H_{13}C-CH_{2}-C-OMgCl \end{array} \hspace{3cm} ; \hspace{3cm} I: \hspace{1mm} H_{3}C-CH_{2}-C-OHgCl \end{array}$$

(2

أ- الوسيط الذي تم استعماله في التفاعل (2) هو الإيثر الجاف.

- ب- خصائص التفاعل (5):
 - 👍 بطيء .
 - <u>.</u> عكوس .
 - + محدود .
 - 🚣 لا حراري.
- 3) التفاعلات التي تسمح بالحصول على حمض البنزويك إنطلاقا من المركب F والبنزن:

التمرين 01:

. 78g/mol وكتلته المولية C_nH_{2n-6} ، صيغته العامة A ، صيغته المولية I

1) جد الصيغة نصف مفصلة للمركب A.

H=1g/mol ، C=12g/mol : يعطى

2) انطلاقا من المركب A نجرى سلسلة التفاعلات التالية:

1) A +
$$Cl_2$$
 $\xrightarrow{AlCl_3}$ B + HCl

3)
$$C + CO_2 \longrightarrow D$$

4) D +
$$H_2O$$
 \longrightarrow E + $MgClOH$

- · جد الصيغ نصف مفصلة للمركبات: E.D.C.B:
- نطلاقا من CH_3 - CH_2 انطلاقا من NH_2 انطلاقا من NH_2 انطلاقا من البنزن والایثانول و کواشف أخرى .

. C_3H_8O عبارة عن كحولين لهما نفس الصيغة المجملة F' عبارة عن كحولين الهما نفس الصيغة المجملة F'

. 164g/mol من المركب F ، فينتج عند التوازن 9.84g من الإستر G ذي الكتلة المولية F ، فينتج عند التوازن

- 1) أحسب مردود تفاعل الأسترة ، ثم استنتج صنف الكحول F.
 - 2) استنتج الصيغة نصف المفصلة للكحول F.
 - 3) أكتب معادلة تفاعل الأسترة.

III للحصو على البوليمير P ،انطلاقا من الكحول 'F' ، نجري التفاعلين التاليين :

1)
$$F' = \frac{H_2SO_4}{170 \, {}^{\circ}C} \rightarrow H + H_2O$$

2) nH -----> P

1) جد الصيغة نصف المفصلة لكل من المركبين 'F' و H ، والصيغة العامة للبوليمير P .

. 140°C عند H_2SO_4 بواسطة F' عند f' يعالج المركب أ- أكتب معادلة التفاعل الموافق .

التمرين02:

- يث أن $B(C_2H_4O)$ و $B(C_3H_6O)$ و $B(C_2H_4O)$ حيث أن $B(C_3H_6O)$ و $B(C_3H_6O)$ حيث أن المركب $C(C_3H_6O)$ و $C(C_3H_6O)$ حيث أن المركب $C(C_3H_6O)$ و $C(C_3H_6O)$ حيث أن
 - أ) ماطبيعة المركبين B و ?
 - ب) استنتج الصيغ نصف مفصلة للمركبات С.В.А
 - 2) انطلاقا من المركب C نجري التفاعلات التالية:

1) C
$$\xrightarrow{\text{LiAlH}_4}$$
 D

6)
$$G + H_2O \longrightarrow H + MgCl(OH)$$

7)
$$H + D = H^{+} CH_{3} - CH - C - O - CH - H_{3}C + H_{2}O - CH_{3} - CH_{3} - CH_{3}$$

أ) جد الصيغ نصف مفصلة للمركبات: H.G.F.E.D.

- II يمكن الحصول على البوليمير PVC (بولي كلوريد الفينيل) انطلاقا من الأسيتيلين .
 - 1) أكتب التفاعلاتالتي تسمح بذلك .
 - 2) مانوع البلمرة التي ينتج عنها هذا البوليمير ؟
- n = 1936 إذا علمت أن درجة بلمرته PVC إذا علمت أن درجة بلمرته (3

التمرين 01:

I

1) ايجاد الصيغة نصف مفصلة للمركب A:

 $M(A) = 14n - 6 \, \text{g/mol} :$ المركب A عبارة عن فحم هيدروجيني كتلته المولية من الشكل $M(A) = 78 \, \text{g/mol} :$ ولدينا

14n - 6 = 78: تكافىء

 $n = \frac{84}{14}$

n = 6

 C_6H_6 : هي المركب A

2) ايجاد الصيغ نصف مفصلة للمركبات: E.D.C.B:

$$H_3C-CH_2$$
 \longrightarrow NH_2 : (3

$$O_2N$$
 — CH_2 — CH_3 — Fe/HCl — H_2N — CH_2 — CH_2 — CH_3

إعداد: لبتر بوعلام

II

$$r = \frac{x_f}{x_{max}} \times 100 = \frac{n(\frac{|w|}{n})}{n(cond)} \times 100$$
 $n(\frac{|w|}{n}) = \frac{m}{M}$
 $n(\frac{9,84}{164} = 0,06 \text{mol})$
 $r = \frac{0,06}{0,1} \times 100$
 $r = 60\%$

- بمأن 60% = 1فصنف الكحول هو كحول ثانوي.

3) معادلة تفاعل الأسترة:

III

2) معادلة التفاعل الموافقة:

$$2 \text{ CH}_3 - \text{CH}_2 - \text{CH}_2 - \text{OH} \xrightarrow{\text{H}_2 \text{SO}_4} \text{H}_3 \text{C} - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_3 + \text{H}_2 \text{O}$$

التمرين 02:

(1

أ- طبيعة المركبين B و C:

✓ المركب B : ألدهيد .

✓ المركب : سيتون .

ب- صيغ المركبات: C.B.A

$$A: H_3C-CH=C$$
 ; $B: H_3C-C$; $C: H_3C-C$ CH

H.G.F.E.D أ- صيغ المركبات (2

$$\begin{array}{c} O \\ G: \ H_3C-CH-C-OMgCl \\ CH_3 \end{array} \hspace{0.5cm} ; \quad H: \begin{array}{c} H_3C-CH-C-OH \\ CH_3 \end{array}$$

$$H: \begin{array}{c} & O \\ || \\ H: \\ CH_{3} \\ || \\ CH_{3} \\ \end{array}$$

ب- إكمال التفاعل:

C1
$$H_3C-CH-CH_3 + (CH_3)_3-N \longrightarrow H_3C-CH-N-CH_3 + C1 \\ CH_3 CH_3 CH_3$$

II

1) التفاعلات التي تسمح لنا بالحصول على البوليمير PVC:

$$HC \equiv CH + HCl \longrightarrow H_2C = CH-Cl$$

n CH
$$_{\overline{2}}$$
=CH-Cl \longrightarrow $-$ CH=HC $_{\overline{1}}$ $_{\overline{n}}$ Cl

- . بلمرة التي ينتج عنها PVC بالمرة بالضم (2
 - 3) حساب الكتلة المولية المتوسطة للبوليمير:

$$M($$
 بوليمير $)=n \times M($ مونومير $):$

$$ext{M()}$$
 تعويض عددي: $ext{62,5} imes 62,5 imes 121000 g/mol$

التمرين 01:

- . 3.45 صيغته العامة $C_nH_{2n}O$ وكثافة بخاره بالنسبة للهواء هي A . (1
 - أ- أحسب الكنلة المولية للمركب العضوي (A).
 - ب- جد الصيغة المجملة ل (A).

C=12 g/mol ، H=1 g/mol ، O=16 g/mol : يعطى

- 2) يتفاعل المركب العضوي (A) مع D.N.P.H ولا يرجع محلول فهلنغ .
 - أ- ما طبيعة المركب العضوي (A) ؟
 - ب- أكتب الصيغ نصف مفصلة الممكنة له.
 - (3) ينتج الكحول (B) عن عملية ارجاع المركب العضوي (A).
 - أ- ما صنف الكحول (B) ؟

ب- ماهو المركب الذي يمكن استعماله في عملية الإرجاع؟

- 4) نزع الماء من الكحول (B) في وسط حمضي وعند درجة حرار مناسبة يعطي الألسان .(C)
- أكسدة الألسان (C) بالأوزون (O_3) المتبوعة بالإماهة تعطي البروبانون (O_3 -CC) والمركب العضوي (D) .
 - أ- استنتج الصيغ نصف مفصلة للمركبات العضوية D.C.B.A:
 - ب- أكتب معادلة تفاعل إرجاع كلمنسن للمركب (D) .
 - 5) بلمرة الألسان (C) تعطي البوليمير (E).
 - أ- أكتب الصيغة العامة للبوليمير (E).
 - ب- إذا كانت الكتلة المولية المتوسطة للبوليمير (E) تساوي 126000 و126000 ، فما في درجة بلمرته n ؟

التمرين02:

1) مركب عضوي A صيغته $R-C\equiv N$ يحوي 8.56% من الكربون و 10.14% من الهيدروجين . (1 جد الصيغة المجملة للمركب A .

ب) استنتج الصيغ نصف مفصلة للمركب A .

يعطى : C= 12 g/mol ، H= 1g/mol ، N = 14 g/mol

2) انطلاقا من المركب A ، نجري سلسلة التفاعلات التالية:

2) B +
$$H_2O$$
 \longrightarrow C + $MgBr(OH)$

3) C +
$$H_2O$$
 \longrightarrow D + NH_3

4) D
$$\frac{\text{LiAlH}_4}{\text{H}_2\text{O}}$$
 E

5) E +
$$SOCl_2$$
 \longrightarrow F + HCl + SO_3

6)
$$F + Mg \xrightarrow{\text{ether}} G$$

7)
$$G + D \longrightarrow H + MgCl(OH)$$

8) H
$$\frac{\text{Al}_2\text{O}_3}{400\,^{\circ}\text{C}}$$
 I + H₂O

9)
$$n(I)$$
 \longrightarrow
$$\begin{bmatrix} H_{3}C-CH-CH_{3} & CH_{3} \\ -C & -C \\ -C & -C \\ -CH_{3} & H_{3}C-CH-CH_{3} \end{bmatrix}$$

I. H. G. F. E. D. C. B. A أ- استنتج الصيغ نصف مفصلة ل المنتج التفاعل (9) أ- مانوع البلمر في التفاعل (9) أ

التمرين 01:

(1

أ- حساب الكتلة المولية للمركب A:

 $M(A) = d \times 29$ $M(A) = 3,45 \times 29$ M(A) = 100 g/mol

ب- ايجاد الصيغة المجملة للمركب A:

M(A) = 14n+16

14n+16 = 100

n = 6

 $A:C_6H_{12}O$

2) أ- المركب العضوي (A): سيتون . ب- الصيغ الممكنة للمركب A :

$$H_3C-CH_2-CH-C-CH_3$$
 CH_3

$$H_3C-CH_2-CH_2-CH_2-C-CH_3$$

H₃C-CH₂-C-CH-CH₃

$$_{\rm H_3C-CH_2-CH_2-C-CH_2-CH_3}^{\rm O}$$

. Ni في وجود H_2 في المكن إستعمال هديريد الليتيوم $LiAlH_4$ في عملية الإرجاع ، أو إستعمال الميثيوم

) . المركبات D.C.B.A:

$$A: H_3C-CH_2-C-CH-CH_3$$

$$C: H_3C-CH_2-CH = C-CH_3$$
 CH_3

$$C: H_3C-CH_2-CH=C-CH_3$$
 ; $D: H_3C-CH_2-C$ H (5

$$\begin{bmatrix}
 & CH_3 \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\$$

ب- حساب در جة البلمرة:

n = 1500

التمرين 02:

$$(A): C_x H_y N$$
 : نضع $N\% = 100 - (69,56+10,14) = 20,3$

$$M \longrightarrow 100\%$$

$$14 \longrightarrow 20,3 \longrightarrow M = \frac{14 \times 100}{20,3} = 69g/\text{mol}$$

 C_4H_7N . هي: A المركب A

ب- الصيغ النصف المفصلة الممكنة للمركب A:

$$H_3C$$
- CH - $C\equiv N$ H_3C - CH_2 - CH_2 - $C\equiv N$ CH_3

أ - الصيغ النصف مفصلة للمركبات: I.H.G.F.E.D.C.B.A

A:
$$H_3C$$
- CH - $C\equiv N$
 CH_2

$$B: H_3C-CH-C=NMgB$$

ب- البلمرة في التفاعل 9 هي بلمرة بالضم.

التمرين 01:

 $C_{n}H_{2n+1}$ -OH و (B) و (B) لهما نفس الصغة العامة العامة $C_{n}H_{2n+1}$ -OH ونفس الكثنفة البخارية بالنسبة للهواء

أ- أحسب كتلتهما المولية.

ب- استنتج قيمة n .

ت- أكتب الصيغ الأربعة المحتملة للكحولين.

C=12 g/mol ، H=1 g/mol ، O=16 g/mol : يعطى

- . (C) نعطي السيتون ((A) بواسطة (A) بواسطة (A) في وسط حمضي ((A) نعطي السيتون ((A)
 - أ) استنتج صنف الكحول (A).
- ب) أكتب الصيغة نصف المفصلة للكحول (A) والصيغة نصف مفصلة للسيتون (C).
 - ج) يمكن الحصول على الكحول (A) السابق وفق سلسلة التفاعلات التالية:

1) D
$$\frac{\text{LiAlH}_4}{\text{H}_2\text{O}}$$
 E

2) E + PCl
$$_5$$
 \longrightarrow CH $_3$ -CH $_2$ -Cl + F + HCl

3)
$$CH_3$$
- CH_2 - Cl + Mg ether G

5) H + H
$$_2$$
O \longrightarrow A \longrightarrow HZCIOH

- H.G.F.E.D large large -
- 2) نمزج $0.5 \, \text{mol}$ من حمض الإيثانويك CH_3 -COOH مع $0.5 \, \text{mol}$ من الكحول (B) ، ثم نضيف بعض القطرات من حمض الكبريت المركز فنحصل على $0.025 \, \text{mol}$ من حمض الكبريت المركز فنحصل على $0.025 \, \text{mol}$ من الأستر المتشكل عند التوازن .
 - أ) أحسب مردود تفاعل الأسترة.
 - ب) استنتج صنف الكحول (B).
 - ج) حدد الصيغة نصف مفصلة للكحول (B).
 - د) نزع الماء من الكحول (B) بوجود حمض الكبريت عند 170° C يؤدي إلى المركب (I).

- أكتب صيغة المركب (I).
- ه) بلمرة المركب تعطى البوليمير (J) .
- مثل الصيغة العامة للبوليمير (J).

التمرين02:

- ا كسدة الإيثانول CH_3 - CH_2 -OH تعطي حمض الإيثانويك الذي يتفاعل مع CH_3 - CH_2 -OH أكسدة الإيثانول
 - أ) ماهو المؤكسد الذي يستعمل في أكسدة الإيثانول ؟
 - ب) أكتب معادلة تفاعل حمض الإيثانويك مع PCl₅ .
 - 2) يتفاعل البنزن مع كلور الأستيل بوجود وسيط فيتكون المركب (A).
 - أ) ما اسم هذا التفاعل ؟
 - ب) ماهو الوسيط المستعمل في هذا التفاعل ؟
 - ت) استنتج صيغة المركب العضوي (A) .
 - 3) تجرى على المركب العضوي (A) سلسلة التفاعلات الآتية:

$$B + H_2O \longrightarrow C + MgClOH$$

$$C \qquad \xrightarrow{\text{Al}_2\text{O}_3} \qquad \qquad D \qquad + \qquad \text{H}_2\text{O}$$

- أكتب صيغ المركبات D.C.B.
 - . E بلمرة المركب D تعطي البوليمير \mathbf{D}
- أ) أكتب الصيغة العامة للبوليمير E.
- $M=1584000 {
 m g/mol}$ ب) اذا اكنت الكتلة المولية المتوسطة E تساوي
 - أحسب درجة البلمرة لهذا البوليمير .

نمكن تحضير الكحول
$$(A)$$
 وذلك عبر التفاعلات CH_2 - CH_2 وذلك عبر التفاعلات الآتية :

$$A + H_2 \xrightarrow{Ni} F$$

أ) أكتب صيغ المركبات H.G.F

ب) ماهو الوسيط الميتعمل في التفاعل الأخير؟

التمرين01:

(1

أ- حساب الكتلة المولية لكل من الكحولين:

$$M = d \times 29$$

 $M = 2,55 \times 29 = 73,95$
 $M = 73,95g/mol$

ب- استنتاج قيمة n:

M = 14n + 18: المركبين A و B عبارة عن كحولين كتاتهما المولية من الشكل A = 14n + 18

n=4

ج- الصيغ الأربعة المحتملة للكحولين:

$$H_3C-CH_2-CH_2-CH_2-OH$$

أ- استنتاج الصيغة النصف مفصلة للكحول A: بمأن ناتج أكسدة المركب A تعطي سيتون فالكحول A كحول ثانوي

$$O \\ H_3C \longrightarrow C \\ CH_2-CH_3$$
 : C صيغة السيتون - C

ج- استنتاج صيغ المركبات: H . G. F. E. D

$$E: CH_3-CH_2-OH$$
 ; $F: POCl_3$; $D: H_3C-C$

$$G: CH_3\text{-}CH_2\text{-}MgCl \qquad ; \qquad H: \begin{array}{ccc} H_3C\text{-}CH\text{--}CH_2\text{--}CH_3 \\ & OMgCl \end{array}$$

3)أ- حساب مردود الأسترة:

$$r = \frac{0,025}{0,5} \times 100$$

$$r = 5\%$$

د- صيغة المركب I:

$$H_3C-C \longrightarrow CH_2$$
 CH_3

$$\begin{bmatrix} \text{CH}_3 \\ \text{C} - \text{CH}_2 \\ \text{CH}_3 \end{bmatrix}_{\text{n}}$$

التمرين 02:

(1

 H_2SO_4 . في وجود $KMnO_4$: أ- المؤكسد الذي يمكن أن نستعمله في أكسدة الإيثانول هو

ب- تفاعل حمض الإيثانويك مع PCl₅ :

ت__

$$CH_3$$
-COOH + PCl_5 - CH_3 -COCl + $POCl_3$ + HCl

2) أ- اسم التفاعل: تفاعل أسيلة.

ب- الوسيك الذي تم استعماله في هذا التفاعل هو :حمض لويس AlCl3 .

ج- استنتاج صيّعة المركب العضوي A:

3) الصيغ النصف مفصلة للمركبات: D.C.B.

أ- الصيعة العامية للبوليمير E:

 $\begin{bmatrix}
CH_3 & CH_3 \\
 & & \\
 & & \\
 & & \\
 & & \\
\end{bmatrix}$

ب- حساب درجة البلمرة:

$$n = \frac{158400}{132} = 1200$$

OH $H\cdot G\cdot F:$ الصيغ نصف مفصلة للمركبات $H\cdot G\cdot F:$ $H\cdot G\cdot F:$ $H\cdot H_2O$ G: G: G: G:

UV أو H_2SO_4 : ب- الوسيط المستعمل في التفاعل الأخير هو

بكالوريا 2016

التمرين01:

- 1) ألسين (A) كثافته بالنسبة للهواء d= 1.38
 ب- جد الصيغة المجملة و الصيغة نصف مفصلة للمركب (A).
- 2) نجري انطلاقا من الألسين (A) سلسلة التفاعلات الكيميائية التالية:

- أ) جد الصيغ نصف المفصلة للمركبات: E.D.C.B.
 - . P بلمرة المركب (B) تعطب البوليمير
 - ت- اكتب الصيغة العامة للبوليمير P واذكر اسمه .
- (3) يتم تحضير المركب (E) مخبريا بمزج 10~mL من المركب (D) كثافته (B) و 25~g من بروميد البوتاسيوم (KBr) في وجود H_2SO_4 .
 - أ) أحسب عدد مولات كل من المركب (D) و KBr .
 - $m_p=16~g$ هي (E) مردود التفاعل اذا علمت أن الكتلة المتحصل عليها من المركب (E) هي أحسب مردود التفاعل اذا علمت أن الكتلة المتحصل عليها من المركب

 $C=12\ g/mol$ ، H=1g/mol ، , $K=39\ g/mol$, $Br=80\ g/mol$ $O=16\ g/mol$: y=40

: يمكن تحضير حمض بارا أمينو بنزويك
$$+ COOH$$
 انطلاقا من المركب (D) وفق مايلي (4)

- \checkmark تفاعل البنزن مع المركب (D) في وسط حمضي H_2SO_4 يعطي مركبا (F) .
- \checkmark تأثير HNO_3 على المركب (F) في وجود H_2SO_4 يؤدي إلى المركب (G) .
- \checkmark أكسدة المركب (G) بواسطة $KMnO_4$ في وسط حمضي H_2SO_4 يعطى مركبا (H) .
- ✓ إرجااع المركب (H) بواسطة الحديد Fe في وجود HCl يؤدي إلى حمض بارا أمينو بنزويك .

أ) جد الصيغ نصف مفصلة للمركبات H.G.F

ب) أكمل معادلة التفاعل التالي:

التمرين 02:

- منه أعطى g منه أعطى g منه أعطى $C_nH_{2n}O_2$ منه أعطى g 0.70 منه أعطى g أكسيد الكربون .
 - أ) أكتب معادلة تفاعل الاحتراق التام للمركب (X) بدلالة n أ
 - ب) جد الصيغة المجملة للمركب (X).
 - ج) عين الصيغ نصف مفقلة الممكنة لهذا المركب.

يعطى : C= 12 g/mol ، H= 1g/mol ، O = 16 g/mol

2) لمعرفة صيغة المركب (X) نجري سلسلة التفاعلات التالية:

1)
$$C_2H_2 + H_2 \longrightarrow A$$

3) B +
$$H_2O$$
 \longrightarrow 2C + H_2O_2

4) C +
$$CH_3$$
-MgCl \longrightarrow D

5) D +
$$H_2O$$
 \longrightarrow E + $MgCl(OH)$

6)
$$E \xrightarrow{\text{KMnO}_4} F$$

7)
$$F + CH_3-OH \longrightarrow H_2SO_4 \longrightarrow X + H_2O$$

X.F.E.D.C.B.A: أكتب الصيغ نصف مفصلة للمركبات

- الدراسة الحركية لتفاعل تفكك المركب N_2O_5 إلى NO_2 و NO_3 أثبتت أنه تفاعل من الرتبة الأولى .
- $m K=5\cdot 10^{-3}\;min^{-1}$ وثابت السرعة $m [N_2O_5]_0=0.1\;mol/L$: إذا علمت أن التركيز الابتدائي
 - 1) أكتب التفاعل الحادث.
 - $(t_{1/2})$ أحسب زمن نصف التفاعل (2)
 - (V) احسب سرعة التفاعل (V) بعد مرور زمن قدره ساعة واحدة .

الحسل

التمرين 01:

1) إيجاد صيغة المركب A:

$$n=rac{M_{
m Mol}}{M_{
m Mol}}$$
: الدينا $M_{
m Mol}=rac{M_{
m Nel}}{n}$ الدينا $M_{
m Mol}=rac{M_{
m Nel}}{n}$ الدينا $M_{
m Mol}=rac{126000}{3000}=42~{
m g/mol}$ الدينان فإن $M(A)=14n:$ الدينان فإن $M(A)=42:$ الدينان فإن $M(A)=42:$ الدينان فإن $M(A)=42:$

 $H_2C = CH - CH_3$

- ومنه فإن الصيغة المجملة للمركب A هي : C_3H_6 ، وصيغته نصف مفصلة : (2) معادلة تفاعل البلمرة :

n
$$CH_2$$
= CH - CH_3 \longrightarrow CH_2 - CH - CH_3

(3) اسم البوليمير P: بولي بروبيلين.

II

: J.I.H.G.F.E.D.C.B صيغ المركبات (1

$$E: (H_{3}C)_{2}HC - C = NH \\ | CH(CH_{3})_{2} : F: H_{3}C - CH - C - CH - CH_{3} \\ | CH_{3} : G: H_{3}C - CH - CH_{3} \\ | CH_{3} : CH_{3$$

$$H: {}^{H_{3}C}-{}^{CH}-{}^{CH}={}^{C}-{}^{CH_{3}} \quad ; \quad I: \; {}^{H_{3}C}-{}^{C}-{}^{CH_{3}} \quad ; \quad J: {}^{H_{3}C}-{}^{CH}-{}^{COOH}$$

C كتابة سلسلة التفاعلات التي تسمح بالحصول على المركب (حمض2-مثيل بروبانويك) انطلاقا من المركب وكواشف أخرى :

3) معادلة تفاعل الإرجاع:

$$H_3C$$
— CH — CN + $2H_2$ \xrightarrow{Ni} H_3C — CH — CH_2 - NH_2 CH_3

التمرين 2016:

1) إيجاد صيغة المركب A:

$$M(A)=14n-2$$
 : بمأن المركب A عبارة عن ألسين فكتلته المولية من الشكل $M(A)=d\times 29=40{,}02$ ولدينا $14n-2=40$ تكافيء: $n=3$ تكافيء:

 C_3H_4 : هي A هي المركب A هي المركب A الصيغة المركب A الصيغة نصف مفصلة للمركب A

2) أ- صيغ المركبات E.D.C.B:

$$B: H_2C = CH - CCH_3$$

$$D: H_3C-CH_2-OH; E:$$

$$\begin{array}{c|c} - CH_2 - CH & \\ CH_3 & \end{array}$$

ب- الصيغة العامة للبوليمير p:

:
$$C_2H_5$$
-OH أ- حساب عدد مو لات الإيثانول $(C_2H_5$ -OH) = $(C_2H_5$ -OH)

$$n(C_2H_5\text{-OH}) = 0.174 \text{ mo}$$

- عدد مولات KBr :

$$n(KBr) = 0.23 \text{ mol}$$

ب- حساب مردود التفاعل:

r = 84,43%

4) أ- صيغ المركبات H.G.F:

ب- إكمال معادلة التفاعل:

بكالوريا2017

التمرين 01:

- منه أعطى g منه أعطى g 1.25 من ثنائي $C_nH_{2n}O_2$ عند إحتراق g 0.70 منه أعطى g 1.25 من ثنائي أكسيد الكربون .
 - (X) بدلالة (X) بدلالة (X) المركب (X) بدلالة
 - ث) جد الصيغة المجملة للمركب (X).
 - ح) عين الصيغ نصف مفقلة الممكنة لهذا المركب.

يعطى : C= 12 g/mol ، H= 1g/mol ، O = 16 g/mol

3) لمعرفة صيغة المركب (X) نجري سلسلة التفاعلات التالية:

1)
$$C_2H_2 + H_2 \longrightarrow A$$

3) B +
$$H_2O$$
 \longrightarrow 2C + H_2O_2

4) C +
$$CH_3$$
-MgCl \longrightarrow D

5) D +
$$H_2O$$
 \longrightarrow E + $MgCl(OH)$

6) E
$$\frac{\text{KMnO}_4}{\text{H}_2\text{SO}_4}$$

7) F + CH₃-OH
$$\frac{\text{H}_2\text{SO}_4}{}$$
 X + H₂O

X.F.E.D.C.B.A: أكتب الصيغ نصف مفصلة للمركبات

الدراسة الحركية لتفاعل تفكك المركب N_2O_5 إلى NO_2 و NO_3 أثبتت أنه تفاعل من الرتبة الأولى .

 $m K=5 \ . \ 10^{-3} \ min^{-1}$ ، وثابت السرعة $m [N_2O_5]=0.1 \ mol/L$ وثابت السرعة الأبتدائي وأدا علمت أن التركيز الابتدائي $m (N_2O_5]=0.1 \ mol/L$

- 4) أكتب التفاعل الحادث.
- $(t_{1/2})$ أحسب زمن نصف التفاعل ($(t_{1/2})$).
- (V) أحسب سرعة التفاعل (V) بعد مرور زمن قدره ساعة واحدة .

التمرين 02:

مركب عضوي مغنزيومي (A) صيغته R-MgCl ، كتلته المولية 74.5 g/mol ، حيث (R) جذر ألكيلي .

1) جد الصيغة نصف مفصلة للمركب (A).

يعطى : H= 1g/mol ، Mg = 24 g/mol ، H= 1g/mol ، Mg = 24 g/mol

- 2) اكتب التفاعلات التي تسمح بالحصول على المركب (A) انطلاقا من الميثانول وكواشف أخرى
 - 3) نجري انطلاقا من المركب (A) سلسلة التفاعلات الكيميائية الآتية:

1) A +
$$H_3C-C = N$$
 \longrightarrow E

2) B +
$$2H_2O$$
 \longrightarrow C + $MgCl(OH)$ + NH_3

3)
$$C + H_2 \longrightarrow D$$

4) D + SOCl₂
$$\longrightarrow$$
 E + SO₂ + HCl

5) E + Mg
$$\xrightarrow{ROR}$$
 F

6)
$$F + CO_2$$
 \longrightarrow $G + MgCl(OH)$

7)
$$G + D = \frac{H_2SO_4}{CH_3 - CH - C - O - CH - CH_3 + H_2O}$$
 $CH_3 - CH - C - O - CH - CH_3 + H_2O$
 $CH_3 O - CH_3$

- أ) جد الصيغ نصف مفصلة للمركبات: G.F.E.D.C.B
- ب) استنتج مردود التفاعل (7) علما أن المزيج الإبتدائي متساوي عدد المولات.
 - ج) يتشكل عند التوازن 0.3 mol من الأستر.
 - . D و G أحسب عدد المولات الإبتدائية لكل من المركبين G
 - . H بواسطة G بواسطة C المتبوع بالإماهة يؤدي إلى مركب G المتبوع بالإماهة يؤدي إلى مركب
- . I يعطي مركب H_2SO_4 عند H_2SO_4 يعطي مركب \checkmark
 - ✓ بلمرة المركب I تؤدى إلى البوليمير J.
 - أ) أكتب الصيغ نصف مفصلة لكل من المركبين H و I .
 - ب) أعط الصيغة العامة للبوليمير J.

الحـــل

التمرين01:

I

1) أ- كتابة معادلة الإحتراق:

$$C_n H_{2n} O_2 + \frac{3n-2}{2} O_2$$
 — $nCO_2 + nH_2O$

ب- تعيين الصيغة المجملة للمركب X:

1mol(X) $n \text{ mol}(CO_2)$

$$M(X) = 14n+32 g \longrightarrow 44n g$$

$$0.7 g \longrightarrow 1.25 g$$

(1,25)(14n+32) = (0,7)(44n)

n = 3

 $C_3H_6O_2$: هي X ومنه صيغة المركب

2) الصيغ نصف المفصلة للمركبات F.E.D.C.B.A (2

A: $H_2C = CH_2$; B: $H_2C CH_2$; C: H - C - HO-O

D: $H_3C - CH_2 - OMgCl$; E: $H_3C - CH_2 - OH$; F: $H_3C - C - OH$

(هذا الجزء ليس تابع للمجال الأول) 1) كتابة معادلة التفاعل الحادث:

$$N_2 O_5$$
 $2NO_2 + \frac{1}{2} O_2$

 $t_{1/2}$ حساب زمن نصف التفاعل (2

3) حساب سرعة التفاعل:

 $V = K \times [N_2O_5]$: لدينا

تعويض عددي:

$$V = 5 \times 10^{-3} \times 0,074$$

 $V = 0.37 \times 10^{-3} \text{ mol } . 1^{-1} . \text{min}$

التمرين 02:

1) إيجاد صيغة المركب A:

$$M(A) = 74.5$$
: لدينا $M(A) = 14n + 60.5$: $M(A) = 14n + 60.5$

n = 1

ومنه صيغة المركب A هي: CH3-MgCl

2) كتابة التفاعلات التي تسمح بالحصول على المركب A إنطلاقا من الإيثانول:

$$H_3C$$
-OH + PCl_5 \longrightarrow CH_3 -Cl + $POCl_3$ + HCl H_3C -Cl + Mg \longrightarrow CH_3 -MgCl

- . PCl_5 بدل $SOCl_2$ بدل .
- 3) أ- إيجاد الصيغ النصف مفصلة للمركبات G.F.E.D.C.B

r=60%: بمأن صنف الكحول D كحول ثانوي فإن بمأن صنف بمأن صنف الكحول D

ج- حساب عدد المولات الإبتدائية لكل من المركبين D و G

بمأن المزيج متساوي عدد المولات:

$$n_0 = n_D = n_G$$

$$n_0 = \frac{0.3}{60} \times 100$$

$$n_0 = n_D = n_G = 0.5 mol$$

4) أ- صيغة كل من المركبين Hو I:

ب- الصيغة العامة للبوليمير J:

$$\begin{bmatrix} \mathrm{CH_3} \\ -\mathrm{CH} - \mathrm{CH_2} \\ \mathrm{CH_3} \end{bmatrix}$$