Übungen zur Algebra I

Wintersemester 2020/21

Universität Heidelberg Mathematisches Institut Prof. Dr. A. Schmidt Dr. M. Leonhardt

Blatt 05

Abgabetermin: Freitag, 11.12.2020, 9:15 Uhr

Aufgabe 1. (Fortsetzung von Blatt 04, Aufgabe 2) (6 Punkte) Wir betrachten wieder die Erweiterung $L = \mathbb{Q}(\sqrt[4]{2}, i)$ über \mathbb{Q} .

- (a) (2 Punkte) Zeigen Sie, dass L ein Zerfällungskörper von $X^4 2 \in \mathbb{Q}[X]$ ist.
- (b) (3 Punkte) Bestimmen Sie alle \mathbb{Q} -Automorphismen von L.
- (c) (1 Punkt) Zeigen Sie $L = \mathbb{Q}(\sqrt[4]{2} + i)$. (Hinweis: Aufgabe 3 (b).)

Aufgabe 2. (Zerfällungskörper) (6 Punkte, je 2 Punkte) Bestimmen Sie jeweils einen Zerfällungskörper L/\mathbb{Q} sowie dessen Grad $[L:\mathbb{Q}]$ für die Polynome

$$X^4 + 4$$
, $X^8 - 1$, $X^4 + 2X^2 - 2$.

Aufgabe 3. (Körperhomomorphismen) (6 Punkte, je 3 Punkte) Es sei L/K eine Körpererweiterung.

- (a) Wir nehmen an, dass [L:K] = n endlich ist und dass es ein $\alpha \in L$ sowie K-Automorphismen $\sigma_1, \ldots, \sigma_n$ von L gibt, sodass $\sigma_i(\alpha) \neq \sigma_j(\alpha)$ für alle $i \neq j$. Zeigen Sie: $L = K(\alpha)$.
- (b) Nun sei L/K algebraisch (nicht notwendigerweise endlich). Zeigen Sie, dass jeder K-Homomorphismus $\sigma\colon L\to L$ ein Automorphismus ist. Gilt das auch für nicht-algebraische Erweiterungen L/K?

(Hinweis: Betrachten Sie jeweils die Nullstellen des Minimalpolynoms eines Elementes aus L.)

Aufgabe 4. (Komposita) (6 Punkte; je 1,5 Punkte) Es sei L/K eine algebraische Körpererweiterung und E, F zwei Zwischenkörper von L/K. Zeigen Sie:

- (a) Jeder Unterring R von L, der K enthält, ist ein Körper.
- (b) Es sei EF der kleinste Teilkörper von L, der E und F enthält (genannt Kompositum von E und F in L). Dann gilt:

$$EF = \left\{ \sum_{i=1}^{n} a_i b_i \mid n \in \mathbb{N}, a_i \in E, b_i \in F \right\}.$$

(Hinweis: Zeigen Sie, dass die rechte Seite ein Ring ist, und benutzen Sie (a).)

(c) Sind [E:K] und [F:K] endlich, so auch [EF:K], und es gilt

$$[EF:K] \le [E:K][F:K].$$

(d) Sind [E:K] und [F:K] teilerfremd, so gilt in der Ungleichung in (c) sogar Gleichheit.

Da am Sonntag Nikolaus ist, gibt es dieses Mal zwei Bonusaufgaben:

Bonusaufgabe 5. (Einfache Radikalerweiterungen) (6 Bonuspunkte) Es sei K ein Körper. Wir betrachten in dieser Aufgabe einfache Radikalerweiterungen L von K, d.h. $L = K(\alpha)$ für ein $\alpha \in L$ mit $\alpha^n = a \in K^{\times}$ für ein $n \in \mathbb{N}$. Sei also $a \in K^{\times}$. Wir schreiben $\alpha = \sqrt[n]{a}$. Zeigen Sie:

- (a) (1 Punkt) Es gilt $[K(\sqrt[n]{a}):K]=n$ genau dann, wenn $X^n-a\in K[X]$ irreduzibel ist.
- (b) (1 Punkt) Die Nullstellen von $X^n a$ in einem Zerfällungskörper von $X^n a$ über K sind von der Form $\zeta \sqrt[n]{a}$, wobei ζ eine n-te Einheitswurzel (d.h. $\zeta^n = 1$) ist.
- (c) (1 Punkt) Ist $X^n a \in K[X]$ irreduzibel und d|n, so ist auch $X^d a \in K[X]$ irreduzibel.
- (d) (1 Punkt) Sind $m, n \in \mathbb{N}$ teilerfremd, so ist $X^{mn} a \in K[X]$ genau dann irreduzibel, wenn $X^m a$ und $X^n a$ in K[X] irreduzibel sind.
- (e) (2 Punkte) Es sei $X^n a \in K[X]$ irreduzibel und wir nehmen an, dass alle n-ten Einheitswurzeln in $K(\sqrt[n]{a})$ bereits in K liegen. Dann sind die Zwischenkörper von $K(\sqrt[n]{a})/K$ genau die Körper der Form $K(\sqrt[d]{a})$ mit d|n und $\sqrt[d]{a} := (\sqrt[n]{a})^{n/d}$.

Bonusaufgabe 6. (Zerfällungskörper II) (6 Bonuspunkte) Bestimmen Sie für die Körper $K \in \{\mathbb{R}, \mathbb{Q}, \mathbb{F}_3, \mathbb{F}_7\}$ jeweils den Grad [L:K] eines Zerfällungskörper L von $X^3 - 4 \in K[X]$. (Hinweis für $K = \mathbb{F}_7$: Zerlegen Sie das Polynom $X^3 - 4$ über einem Erweiterungskörper M/\mathbb{F}_7 in einen linearen und einen quadratischen Faktor. Mittels quadratischer Ergänzung reduzieren Sie die Frage nach [L:K] auf die Frage, ob $-3 \in M^{\times}$ ein Quadrat in M^{\times} ist.)

¹Achtung: Diese Notation ist nicht eindeutig, d.h. weder α noch $K(\alpha)$ sind dadurch eindeutig bestimmt (wieso?). Wir meinen im Folgenden mit $\sqrt[n]{a}$ immer ein fest gewähltes α mit $\alpha^n = a$.