

Vadhiraj K P P

Department of Electrical Engineering

Unit 2 – Lecture 23 - Analysis of Single-Phase AC circuits with R Load and L Load

Vadhiraj K P P

Department of Electrical & Electronics Engineering

PES UNIVERSITY

Response of Resistive Load to Sinusoidal Supply

Let the supply voltage be $v(t) = V_m \sin(\omega t)$ where, V_m is the peak value of voltage

By Ohm's Law,
$$i(t) = \frac{v(t)}{R}$$

Hence current will be of the form, $i(t) = I_m \sin(\omega t)$

where,
$$I_m = \frac{V_m}{R}$$
 is the peak value of current

Response of Resistive Load to Sinusoidal Supply

$$v(t)=V_{m}\sin(\omega t) \implies \overline{V}=\frac{V_{m}}{\sqrt{2}}\angle 0^{\circ}$$

$$i(t)=I_{m}\sin(\omega t)$$
 \Rightarrow $\bar{I}=\frac{I_{m}}{\sqrt{2}}\angle 0^{\circ}$

Phasor Diagram:

$$\frac{I_m}{\sqrt{2}}$$
 $\frac{V_m}{\sqrt{2}}$

Impedance,
$$Z = \overline{V}/\overline{I} = R\angle 0^\circ = R \Omega$$

Response of Pure Inductive Load to Sinusoidal Supply

Let the supply voltage be $v(t) = V_m \sin(\omega t)$ In a pure inductor, $i(t) = \frac{1}{L} \int v(t) dt$ $= \frac{-V_m}{\omega L} \cos(\omega t)$ $= I_m \sin(\omega t - 90^\circ)$ where, $I_m = \frac{V_m}{\omega L}$ is the peak value of current

Response of Pure Inductive Load to Sinusoidal Supply

In a pure inductor, current lags voltage by 90°

Response of Pure Inductive Load to Sinusoidal Supply

v(t)=V_msin(
$$\omega$$
t) $\Rightarrow \bar{V} = \frac{V_m}{\sqrt{2}} \angle 0^\circ$
i(t)=I_msin(ω t-90°) $\Rightarrow \bar{I} = \frac{I_m}{\sqrt{2}} \angle -90^\circ$

Phasor Diagram:

$$Z = \frac{\overline{V}}{I} = \frac{\frac{V_m}{\sqrt{2}} \angle 0^{\circ}}{\frac{I_m}{\sqrt{2}} \angle -90^{\circ}} = \omega L \angle 90^{\circ} = jX_L \quad \Omega$$

Where, $X_i = \omega L$ is called 'Inductive Reactance'

Text Book & References

Text Book:

"Electrical and Electronic Technology" E. Hughes (Revised by J. Hiley, K. Brown & I.M Smith), 11th Edition, Pearson Education, 2012.

Reference Books:

- 1. "Basic Electrical Engineering Revised Edition", D. C. Kulshreshta, Tata- McGraw-Hill, 2012.
- 2. "Basic Electrical Engineering", K Uma Rao, Pearson Education, 2011.
- 3. "Engineering Circuit Analysis", William Hayt Jr.,
- Jack E. Kemmerly & Steven M. Durbin, 8th Edition, McGraw-Hill, 2012.

THANK YOU

Vadhiraj K P P

Department of Electrical & Electronics Engineering

vadhirajkpp@pes.edu