Effect of Inversion Asymmetry on Quantum Confinement of Dirac Semimetal Cd₃As₂

Christopher Chou

Washington High School

Manik Goyal

Materials Department University of California, Santa Barbara

RMP Research Symposium July 29, 2020

Motivation for Dirac Semimetals

- End of Moore's Law
- Current transistors are limited in efficiency, high power consumption
- Economically challenging to decrease sizes of transistors

Promising Properties of Cd₃As₂

Linear band dispersion

Electron mobility 80x greater than Silicon (Nakazawa, 2018)

Backscattering Suppression

Previous Studies on Cd₃As₂

- Exhibits 3D topological insulator state when quantum confined
- Hybridization affected by thickness of thin film
- Inversion asymmetry affected by environment disorder

Source: Orlando Sentinel

Research Goals

Quantum Simulation

We utilized the Python package Kwant to simulate electronic transport under quantum confinement

Formulating Applications

We propose novel topological devices utilizing $\operatorname{Cd_3As_2}$ by manipulating inversion symmetry/hybridization terms

Explaining Interactions

After simulating quantum transport and analyzing previous experimental data, we explain electronic interactions

Procedure

System Model

Quantum Simulation

Analysis

 Δ_{i} related to E_{Top} - E_{Bottom}

 Δ_h related to film thickness

$$\mathcal{H} = \hbar v_f (k_x \sigma_y - k_y \sigma_x) \otimes \tau_z + \Delta_i \mathbf{1} \otimes \tau_z + \Delta_h \mathbf{1} \otimes \tau_x + g^* \mu_B B_0 \sigma_z \otimes \mathbf{1}$$

Landau Level Index Diagram

Energy-Momentum Dispersion

Energy - Momentum Dispersion

Energy vs. Magnetic Field

Spintronics

- Spin-polarized states through breaking of inversion symmetry
- Controllable Spin signals with electric field

SOT MRAM

Conclusion

Summary:

- Analyzed effects of inversion asymmetry and hybridization through quantum simulation
- Spin-polarized surface states develop when breaking inversion symmetry, promising for spintronics

Future Work:

- Testing for detection of spin-polarized states on Cd₃As₂
- Topological devices by manipulating spin-states of electrons

Acknowledgments

Manik Goyal

Andrew McGrath

Lina Kim

Junho Park

Jerry Shi

Sam Bishop

Rachel Xu