





Data Science Academy

## Seja muito bem-vindo(a)!







Data Science Academy

# Decision Tree, Random Forest e Métodos Ensemble





Este é um assunto bastante extenso, pois temos diversos algoritmos e diversas técnicas para trabalhar com árvores de decisão.

Por outro lado, esses algoritmos estão entre os mais poderosos em Machine Learning e são de fácil interpretação.





Vamos iniciar nossos estudos definindo o que são árvores de decisão e sua representação através de algoritmos de Machine Learning.





Como já conversamos nos capítulos anteriores, uma coisa é o modelo de aprendizagem e outra coisa é o algoritmo de aprendizagem.

Para os modelos de aprendizagem com árvores de decisão, estudaremos alguns algoritmos como o C4.5, C5.0, CART e o ID3.





Existem alguns tipos especializados de árvores de decisão e estudaremos isso na sequência do capítulo.

E a principal especialização das árvores de decisão é o RandomForest, que nada mais é do que uma coleção de árvores de decisão. Estudaremos o RandomForest em detalhes.





Podemos usar o RandomForest para seleção de atributos, ou seja, podemos usar árvores de decisão não apenas para modelos de ML em si, mas também para aplicar técnicas de feature selection a fim de preparar nosso dataset para outros algoritmos de ML.

Veremos os conceitos relacionados a seleção de atributos, tais como ganho de informação, entropia e índice Gini.



E vamos claro criar modelos e fazer previsões, estudar os parâmetros e os detalhes de pré-processamento das árvores de decisão e como interpretar os resultados dos modelos preditivos.





E faremos ainda o pruning, que em português seria algo como "podar a árvore".

Ao criar<mark>mos ár</mark>vores de decisão, podemos ter árvores com muitos "galhos e folhas" e em algum momento teremos que parar a construção da árvore ou fazer ajustes reduzindo o número de pontos de decisão no modelo preditivo. Veremos como aplicar esta técnica.



#### Métodos Ensemble Training Data Data2 Data m Data1 Learner1 Learner2 Learner m Model2 Model 1 Model m Final Model Model Combiner



## Data Science Academy marxv49@gmail.com 5e686b2be32fc3447a0e403be Learning







### **Data Science Academy**

Árvores de Decisão

## Data Science Academy marxv49@gmail.com 5e686b2be32fc3447a0e403bne Learning

























Árvores de Decisão podem ser usadas para problemas de:

Classificação

Regressão

Árvore de Classificação

Árvore de Regressão



#### Considerações na Construção de Árvores de Decisão

| Atributo A | Atributo B | Saída |
|------------|------------|-------|
| 0          | 0          | 0     |
| 0          | 1          | 0     |
| 1          | 0          | 0     |
| 1          | 1          | 1     |





#### Considerações na Construção de Árvores de Decisão

Qual atributo deve ser usado para iniciar a árvore?

Qual deve ser o atributo seguinte?

Quando parar de construir ramos na árvore (para evitar overfitting)?





#### Considerações na Construção de Árvores de Decisão

Qual atributo deve ser usado para iniciar a árvore?

Qual deve ser o atributo seguinte?

Quando parar de construir ramos na árvore (para evitar overfitting)?

Ganho de Informação e Entropia Índice de Gini (Gini Index) Taxa de Ganho (Gain Ratio)











Data Science
Academy

# Ganho de Informação, Entropia, Índice Gini e Pruning



As árvores de decisão têm desfrutado de muita popularidade por causa de seu algoritmo intuitivo. Sua saída é facilmente traduzida em regras e, portanto, é bastante compreensível pelos seres humanos (diferente de modelos como SVM e Redes Neurais, consideradas caixas pretas).





# Processo de Aprendizado dos Algoritmos de Árvore de Decisão







Greedy Search
(Busca Gananciosa ou Gulosa)

O algoritmo procura maximizar o passo atual sem olhar para o passo seguinte, a fim de alcançar uma otimização global.



# Mais detalhes sobre algoritmos gulosos no curso de Introdução à Lógica de Programação disponível para os alunos das Formações DSA.



Greedy Search utiliza uma heurística estimada h(n)



| Node | h(n) |
|------|------|
| Α    | 11   |
| В    | 5    |
| С    | 9    |
| D    | 8    |
| E    | 4    |
| - F  | 2    |
| Н    | 7    |
| I    | 3    |



Índice Gini

Ganho de Informação Redução de Variância

Ross Quinlan  $\rightarrow$  (ID3)  $\rightarrow$  C4.5  $\rightarrow$  C5.0



# Como definir o nó raiz e como realizar a divisão do conjunto de dados?



## Data Science Academy marxv49@gmail.com 5e686b2be32fc3447a0e403bne Learning



## Data Science Academy marxv49@gmail.com 5e686b2be32fc3447a0e403bne Learning





# Como definir o nó raiz e como realizar a divisão do conjunto de dados?

- Estratégia Gulosa (Greedy Selection)
- Divisão baseada em atributos nominais
  - Divisão Binária
  - Divisão Múltipla
- Divisão baseada em atributos contínuos
  - Decisão Binária
  - Discretização
    - Estática
    - Dinâmica





Você não achou que seria fácil, não é?





Agora você entende porque Cientistas de Dados são profissionais raros no mercado?





Mas fique tranquilo, pois estamos apenas aquecendo os motores!



# Como definir o nó raiz e como realizar a divisão do conjunto de dados?

Estratégia Gulosa (Greedy Selection)

Necessita da medida da "impureza" do nó

C0: 5 C1: 5

Não-homogênea,

Alto grau de impureza

C0: 9

Homogêneo,

baixo grau de impureza



### Como definir o nó raiz e como realizar a divisão do conjunto de dados?

#### Estratégia Gulosa (Greedy Selection)

Necessita da medida da "impureza" do nó

C0: 5

C0: 9

Não-homogênea,

Alto grau de impureza

Homogêneo,

baixo grau de impureza

- Entropia
- Índice de Gini
- Erro de Classificação



Entropia é a medida da incerteza nos dados

Ganho de Informação é a redução da Entropia



#### **Entropia**

$$Entropy = \sum -p_i \log_2 p_i$$



Entropia máxima considerando duas classes com a mesma probabilidade (distribuição 50/50):

Entropy = 
$$-0.5*log_2(0.5) -0.5*log_2(0.5) = 1.0$$

Entropia considerando duas classes com distribuição 40/60:

Entropy = 
$$-0.4*\log_2(0.4) -0.6*\log_2(0.6) = 0.97$$



Importante!

Nos algoritmos ID3, C4.5 e C5.0, o nó raiz é escolhido com base em quanto do total da Entropia é reduzido, se aquele nó é escolhido

Isso é chamado de Ganho de Informação!

## Data Science Academy marxv49@gmail.com 5e686b2be32fc3447a0e403bne Learning

Ganho de Informação = Entropia do sistema antes da divisão - Entropia do sistema após a divisão





Ganho de Informação = Entropia do sistema antes da divisão - Entropia do sistema após a divisão

$$E = -\sum_{i=1}^{m} p_i log_2(p_i)$$

$$E_A = \sum_{i=1}^{v} \frac{D_i}{D} E(D_i)$$



Esta metodologia (Entropia) é aplicada para computar o ganho de informação para todos os atributos. É escolhido o atributo com o mais alto ganho de informação. Isso é testado para cada nó a fim de escolher o melhor nó.



#### Índice de Gini

O Índice de Gini é usado para medir a probabil<mark>id</mark>ade de dois itens aleatórios pertencerem à mesma classe.

A medida de Gini de um nó é a soma dos quadrados das proporções das classes.



#### Índice de Gini

O Índice de Gini diz: se selecionarmos dois itens de uma população aleatoriamente, então eles devem ser da mesma classe e a probabilidade para isto é 1 se a população é pura.



#### Índice de Gini

O Índice de Gini é usado como regra de parada para construção de uma árvore de decisão.



### O que são as regras de parada (Stopping Rules)?





#### Regras de Parada

- Índice Gini
- Qui-quadrado
- Ganho de Informação
- Redução de Variância







Pruning Poda da Árvore



#### **Pruning**

- A árvore de decisão é concluída antes que uma classificação perfeita dos dados de treinamento seja alcançada.
- Ocorre o excesso de ajuste nos dados gerando um modelo e, em seguida, a árvore é podada (Pruning) para se tornar generalizável.



#### E como definir o tamanho correto da árvore?

Usar um conjunto de validação

Usar métodos probabilísticos



O classificador de árvore de decisão do Scikit-Learn não suporta atualmente o Pruning. Pacotes avançados como o XGBoost adotaram a poda de árvores em sua implementação. Mas a biblioteca rpart em R, fornece uma função para Pruning.

Viu por que é importante conhecer mais de uma ferramenta?



Data Science Academy marxv49@gmail.com 5e686b2be32fc3447a0e403b



# Data Science Academy

Algoritmo ID3



## O que são heurísticas?



#### Começa com todos os exemplos de treino

Escolhe o teste (atributo) que melhor divide os exemplos, ou seja agrupa exemplos da mesma classe ou exemplos semelhantes

Para o atributo escolhido, é criado um nó filho para cada valor possível do atributo

Transporta os exemplos para cada filho considerando o valor do filho

Repete o procedimento para cada filho não "puro".



E como o algoritmo sabe o melhor atributo a escolher?

Através do Ganho de Informação e Entropia!!







# Espaço de Hipóteses do ID3

ID3 (Iterative Dichotomizer 3)

C5.0

CART (Classification and Regression Trees)

C4.5

