

Stochastik

Vorlesung: Prof. Dr. Thorsten Schmidt

Übung: Moritz Ritter

Übungsblatt 6

Abgabe: Freitag, 28.01.2022, 10:00 Uhr.

Aufgabe 1 (4 Punkte). Sei X_n binomialverteilt mit Parametern $n \in \mathbb{N}$ und $p \in (0,1)$. Zeigen Sie, dass

$$P(X_n \ge \frac{n}{2}) \xrightarrow[n \to \infty]{} \begin{cases} 1 & \text{für } p > \frac{1}{2}, \\ \frac{1}{2} & \text{für } p = \frac{1}{2}, \\ 0 & \text{für } p < \frac{1}{2}. \end{cases}$$

Aufgabe 2 (4 Punkte). Finden Sie ein Beispiel einer Folge von Zufallsvariablen $(X_n)_{n\in\mathbb{N}}$, sodass $X_n \to X$ in Verteilung, aber $X_n \not\to X$ bezüglich stochastischer Konvergenz.

Bemerkung: Stochastische Konvergenz impliziert Konvergenz in Verteilung. In dieser Aufgabe wird gezeigt, dass die Rückrichtung im Allgemeinen falsch ist.

Aufgabe 3 (4 Punkte). Für $n \in \mathbb{N}$ seien X_1, \ldots, X_n unabhängige identisch verteilte Zufallsvariablen mit $X_i \sim \mathcal{U}_{[0,1]}$ (uniform verteilt auf [0,1]) und sei

$$Z_n := n \cdot \min\{X_1, \dots, X_n\}.$$

Zeigen Sie, dass Z_n in Verteilung gegen eine exponential verteilte Zufallsvariable Z konvergiert.

Aufgabe 4 (4 Punkte). Es seien X und X_n , $n \in \mathbb{N}$, integrierbare Zufallsvariablen auf dem Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) . Zeigen Sie, dass aus

$$\sum_{n=1}^{\infty} \mathrm{E}[|X_n - X|] < \infty$$

folgt, dass X_n P-fast sicher gegen X konvergiert.