V702

Aktivierung mit Neutronen

Fritz Agildere fritz.agildere@udo.edu

Amelie Strathmann amelie.strathmann@udo.edu

Durchführung: 13. Juni 2023 Abgabe:

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

Ar	nhang	10
5	Diskussion	9
	4.1 Nulleffekt 4.2 Vanadium 4.3 Rhodium	2 3 5
4	Auswertung	2
3	Durchführung	2
2	Theorie	2
1	Zielsetzung	2

1 Zielsetzung

2 Theorie

3 Durchführung

4 Auswertung

4.1 Nulleffekt

Tabelle 1

t/s	$N / { m s}^{-1}$	t/s	$N / { m s}^{-1}$	t/s	N / s^{-1}	t / s	N / s^{-1}
10	0,3	160	0,3	310	0,4	460	0,3
20	0,9	170	0,8	320	0,3	470	0,3
30	0,5	180	0,5	330	0,2	480	0,5
40	0,1	190	0,4	340	0,3	490	0,3
50	0,5	200	0,3	350	0,4	500	0,4
60	$0,\!4$	210	0,4	360	0,2	510	0,7
70	0,1	220	0,6	370	0,5	520	0,2
80	0,6	230	0,3	380	0,4	530	0,2
90	$0,\!2$	240	0,3	390	0,5	540	0,3
100	0,3	250	0,2	400	0,2	550	0,5
110	0,5	260	0,2	410	0,6	560	0,4
120	0,3	270	0,6	420	0,8	570	0,2
130	0,4	280	0,2	430	0,7	580	0,3
140	0,2	290	0,3	440	0,6	590	0,1
150	0,7	300	0,5	450	0,6	600	0,2

Abbildung 1

4.2 Vanadium

Tabelle $\bf 2$

t/s	N / s^{-1}	t/s	N / s^{-1}	t / s	N / s^{-1}
30	5.9 ± 0.2	330	$1,9 \pm 0,2$	630	$1,0 \pm 0,2$
60	$5,3 \pm 0,2$	360	$1,9 \pm 0,2$	660	0.3 ± 0.2
90	4.5 ± 0.2	390	$1{,}7\pm0{,}2$	690	0.9 ± 0.2
120	$3,5 \pm 0,2$	420	$1{,}5\pm0{,}2$	720	0.9 ± 0.2
150	3.8 ± 0.2	450	$1{,}3\pm0{,}2$	750	0.6 ± 0.2
180	2.8 ± 0.2	480	$1{,}7\pm0{,}2$	780	0.7 ± 0.2
210	$3,4 \pm 0,2$	510	$1{,}2\pm0{,}2$	810	0.3 ± 0.2
240	$2,4 \pm 0,2$	540	$1{,}2\pm0{,}2$	840	0.5 ± 0.2
270	$2,0 \pm 0,2$	570	$1,\!0\pm0,\!2$	870	$0,\!4 \pm 0,\!2$
300	$1{,}8\pm0{,}2$	600	$0,9\pm0,2$	900	0.3 ± 0.2

Abbildung 2

4.3 Rhodium

Tabelle 3

t/s	$N/\mathrm{s^{-1}}$								
8	37.7 ± 0.2	152	$6,0 \pm 0,2$	296	2.7 ± 0.2	440	$2,0 \pm 0,2$	584	$1,5 \pm 0,2$
16	$28{,}1\pm0{,}2$	160	$3,6 \pm 0,2$	304	$2,\!0\pm0,\!2$	448	$1{,}6\pm0{,}2$	592	$1,\!0\pm0,\!2$
24	26.5 ± 0.2	168	6.7 ± 0.2	312	$1,1 \pm 0,2$	456	0.5 ± 0.2	600	$1,6 \pm 0,2$
32	$21{,}5\pm0{,}2$	176	$5,5 \pm 0,2$	320	$1,6 \pm 0,2$	464	$1{,}1\pm0{,}2$	608	0.7 ± 0.2
40	$19{,}7\pm0{,}2$	184	$3,9 \pm 0,2$	328	1.7 ± 0.2	472	$1{,}4\pm0{,}2$	616	0.9 ± 0.2
48	$18{,}5\pm0{,}2$	192	$5,5 \pm 0,2$	336	$1,9 \pm 0,2$	480	$1{,}0\pm0{,}2$	624	0.7 ± 0.2
56	$17{,}4\pm0{,}2$	200	$3,2 \pm 0,2$	344	1.7 ± 0.2	488	$1{,}1\pm0{,}2$	632	0.2 ± 0.2
64	$13{,}0\pm0{,}2$	208	$2,\!0\pm0,\!2$	352	$1,5 \pm 0,2$	496	$1,9 \pm 0,2$	640	0.7 ± 0.2
72	$13{,}2\pm0{,}2$	216	3.7 ± 0.2	360	$2,\!0\pm0,\!2$	504	$1{,}0\pm0{,}2$	648	0.7 ± 0.2
80	$13{,}5\pm0{,}2$	224	$3,4 \pm 0,2$	368	$2,5 \pm 0,2$	512	0.5 ± 0.2	656	0.4 ± 0.2
88	$13,\!6\pm0,\!2$	232	$3,1 \pm 0,2$	376	$1,9 \pm 0,2$	520	$1,6 \pm 0,2$	664	$1,2 \pm 0,2$
96	$7{,}7\pm0{,}2$	240	$4{,}0\pm0{,}2$	384	$2,6 \pm 0,2$	528	$1{,}7\pm0{,}2$	672	0.4 ± 0.2
104	$10{,}4\pm0{,}2$	248	$2,0 \pm 0,2$	392	$1,9 \pm 0,2$	536	$1{,}7\pm0{,}2$	680	0.7 ± 0.2
112	$8{,}5\pm0{,}2$	256	$3,4 \pm 0,2$	400	$1,9 \pm 0,2$	544	0.9 ± 0.2	688	0.9 ± 0.2
120	9.1 ± 0.2	264	$2,6 \pm 0,2$	408	$1,6 \pm 0,2$	552	$1{,}1\pm0{,}2$	696	$1,0 \pm 0,2$
128	$8{,}4\pm0{,}2$	272	$2{,}9\pm0{,}2$	416	$1{,}2\pm0{,}2$	560	$1{,}2\pm0{,}2$	704	0.9 ± 0.2
136	6.1 ± 0.2	280	$2,4\pm0,2$	424	0.9 ± 0.2	568	0.7 ± 0.2	712	0.6 ± 0.2
144	$6{,}7\pm0{,}2$	288	$1{,}7\pm0{,}2$	432	$2,4\pm0,2$	576	0.6 ± 0.2	720	0.6 ± 0.2

Abbildung 3

Abbildung 4

Abbildung 5

Tabelle 4

t/s	N / s^{-1}	t/s	N / s^{-1}	t/s	N / s^{-1}	t/s	N / s^{-1}
15	$49,7 \pm 0,2$	210	$4,3 \pm 0,2$	405	$1,4 \pm 0,2$	600	$1,2 \pm 0,2$
30	$35{,}1\pm0{,}2$	225	$3,9 \pm 0,2$	420	$1,7 \pm 0,2$	615	0.9 ± 0.2
45	$27,9 \pm 0,2$	240	$3,4 \pm 0,2$	435	$1,5 \pm 0,2$	630	0.9 ± 0.2
60	$25{,}9\pm0{,}2$	255	$2,7 \pm 0,2$	450	$1{,}1\pm0{,}2$	645	$0,5 \pm 0,2$
75	$17,9 \pm 0,2$	270	$2,7 \pm 0,2$	465	$1,7 \pm 0,2$	660	0.7 ± 0.2
90	$17{,}2\pm0{,}2$	285	$2{,}7\pm0{,}2$	480	$1,9 \pm 0,2$	675	0.7 ± 0.2
105	$12{,}4\pm0{,}2$	300	$2{,}7\pm0{,}2$	495	0.9 ± 0.2	690	$1{,}3\pm0{,}2$
120	9.5 ± 0.2	315	$2,3 \pm 0,2$	510	$1{,}1\pm0{,}2$	705	$1,0 \pm 0,2$
135	7.8 ± 0.2	330	$2,0 \pm 0,2$	525	$1,3 \pm 0,2$	720	0.5 ± 0.2
150	7.5 ± 0.2	345	$2{,}1\pm0{,}2$	540	0.7 ± 0.2	735	0.9 ± 0.2
165	5.8 ± 0.2	360	0.7 ± 0.2	555	$1{,}1\pm0{,}2$	750	0.5 ± 0.2
180	$5{,}3\pm0{,}2$	375	$1{,}6\pm0{,}2$	570	$1{,}3\pm0{,}2$		
195	$5{,}1\pm0{,}2$	390	$1,\!8\pm0,\!2$	585	$1{,}1\pm0{,}2$		

Abbildung 6

Abbildung 7

Abbildung 8

5 Diskussion

Anhang

Abbildung 9: Ausgehängte Liste.

tins	N	
10	3	
20	3	
30	5	
40	1	
20	5	
60	4	
70	Λ	
80	6	
90	2	
dar	3	
ANO	5	
720	3	
130	Ч	
140	2	
120	67	
160	3	
OFA	8	
180	5	
190	4	

N 3	390	V 5
4	400	
6	410	6
3	420	8
3	430	7
2	440	6
2	456	6
6	460	3
2	470	3
3	480	5
5	490	3
Ч	400	4
3	510	7
2	520	2
3	530	2
4	540	3
2	550	5
5	560	4
4	580 3	2 590 1
	6 3 3 2 2 6 2 3 5 4 3 2 3 4 2 5	6 400 3 420 3 430 2 440 2 456 6 460 2 476 3 480 5 480 5 500 3 500 2 520 5 530 4 540 2 550 5 560

600		(zu longsam)
lnodium	At=	= 8 Ful 12min
N	tins	NZ
305	8	57
228	,	51
215	•	32
175		57
161		47
151		34
142		47
107		29
109		19
111		33
112		30
65		28
86	4.7	35
71		19
76		30
70		24
52		26

N ₃	+ auc 8	s My
22	6	10
Ad 17	A 6	22
		19
25		16
19		7
12		
16	6	12
17	3 7	14
78		11
17		12
15	23	12
19		1/1
23		7
18		16
24		17
18		17
18		10
16		12
1/3		13
	35	9

N5	+	6
8	1	
15	-	
		41 7
$\Lambda\Lambda$		
16		
9		
10		
9		
5		
3		
9		
9		
6		
13		
8		
3		
10		
10		
11		
10		
8		
8		

vand	ium	15 min
Δt	=305	
N	N ₂	tins
188	47	30
171	47	
148	43	4
116	40	4
127	41	
96	22	
115	39	
83	40	
71	30	
66	32	
68	21	
70	26	
62	25	
57	21	
52		
63		

Modium	2	in 12 win
		1t=155
NA	NZ	Eins
751	46	15
5 32	47	
u25	46	
395	40	
774	36	
264	37	
192	17	
148	36	
123	33	
118	27	
93	31	
35	25	
28	23	
70	31	
64	34	
57	19	
46	22	

