Lecture 6: Value Function Approximation

David Silver

Outline

1 Introduction

2 Incremental Methods

3 Batch Methods

Outline

We have so far assumed that our estimates of value functions are represented as a table with one entry for each state or for each state-action pair. This is a particularly clear and instructive case, but of course it is limited to tasks with small numbers of states and actions. The problem is not just the memory needed for large tables, but the time and data needed to fill them accurately. In other words, the key issue is that of generalization

1 Introduction

- 2 Incremental Methods
- 3 Batch Methods

Large-Scale Reinforcement Learning

Why we interested in value function approximation? What's wrong with the story so far? We'd like to use RL to solve large real world interesting problems.

Then, how large the problems get?

Reinforcement learning can be used to solve large problems, e.g.

■ Backgammon: 10²⁰ states

■ Computer Go: 10¹⁷⁰ states

Helicopter: continuous state space

We will focus "value function" in this lecture.

Large-Scale Reinforcement Learning

Reinforcement learning can be used to solve large problems, e.g.

■ Backgammon: 10²⁰ states

■ Computer Go: 10¹⁷⁰ states

Helicopter: continuous state space

How can we scale up the model-free methods for *prediction* and *control* from the last two lectures?

Value Function Approximation

- So far we have represented value function by a *lookup table*
 - Every state s has an entry V(s)
 - Or every state-action pair s, a has an entry Q(s, a)
- Problem with large MDPs:
 - There are too many states and/or actions to store in memory
 - It is too slow to learn the value of each state individually
- Solution for large MDPs:

if we can do learning

Estimate value function with function approximation

$$\hat{v}(s,\mathbf{w})pprox v_{\pi}(s)$$
 or $\hat{q}(s,a,\mathbf{w})pprox q_{\pi}(s,a)$

- Generalise from seen states to unseen states
- Update parameter w using MC or TD learning

Types of Value Function Approximation

Three types we can use the value function approximation.

for all different actions

feed in your state here

Pick a state comes in and we want a function approximator to tell us value of all actions that we can take in that state.

Which Function Approximator?

There are many function approximators, e.g.

- Linear combinations of features
- Neural network
- Decision tree
- Nearest neighbour
- Fourier / wavelet bases
- ...

Which Function Approximator?

We consider differentiable function approximators, e.g.

- Linear combinations of features as a canonical case (we will see little bit more what that means later)
- Neural network non linear approximators
- Decision tree
- Nearest neighbour
- Fourier / wavelet bases
- **...**

Furthermore, we require a training method that is suitable for non-stationary, non-iid data

What is special about RL compared to the supervised learning is that in practice we end up with non-stationary sequence of value functions we try to estimate.

We need to allow the non-stationarity in a function approximator. Also, we need to allow the non-iid data, this is not supervised learning.

Outline

1 Introduction

2 Incremental Methods

3 Batch Methods

Gradient Descent

- Let J(w) be a differentiable function of parameter vector w
- Define the *gradient* of $J(\mathbf{w})$ to be

$$\nabla_{\mathbf{w}} J(\mathbf{w}) = \begin{pmatrix} \frac{\partial J(\mathbf{w})}{\partial \mathbf{w}_1} \\ \vdots \\ \frac{\partial J(\mathbf{w})}{\partial \mathbf{w}_n} \end{pmatrix}$$

- To find a local minimum of $J(\mathbf{w})$
- Adjust **w** in direction of -ve gradient

$$\Delta \mathbf{w} = -\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w})$$

where α is a step-size parameter

Value Function Approx. By Stochastic Gradient Descent

■ Goal: find parameter vector \mathbf{w} minimising mean-squared error between approximate value fn $\hat{v}(s,\mathbf{w})$ and true value fn $v_{\pi}(s)$

$$J(\mathbf{w}) = \mathbb{E}_{\pi}\left[\left(v_{\pi}(S) - \hat{v}(S, \mathbf{w})\right)^{2}\right]$$

Gradient descent finds a local minimum

$$\Delta \mathbf{w} = -\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w})$$
$$= \alpha \mathbb{E}_{\pi} \left[(v_{\pi}(S) - \hat{v}(S, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w}) \right]$$

Stochastic gradient descent samples the gradient

$$\Delta \mathbf{w} = \alpha(\mathbf{v}_{\pi}(S) - \hat{\mathbf{v}}(S, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S, \mathbf{w})$$

Expected update is equal to full gradient update

Feature Vectors

high, low, open, close, volume, timestamp, many indicators(NVT ratio, \dots), \dots

■ Represent state by a feature vector

$$\mathbf{x}(S) = \begin{pmatrix} \mathbf{x}_1(S) \\ \vdots \\ \mathbf{x}_n(S) \end{pmatrix}$$

- For example:
 - Distance of robot from landmarks
 - Trends in the stock market
 - Piece and pawn configurations in chess

Linear Value Function Approximation

nice way to represent value function

■ Represent value function by a linear combination of features

$$\hat{v}(S, \mathbf{w}) = \mathbf{x}(S)^{\top} \mathbf{w} = \sum_{j=1}^{n} \mathbf{x}_{j}(S) \mathbf{w}_{j}$$

Objective function is quadratic in parameters w

$$J(\mathbf{w}) = \mathbb{E}_{\pi}\left[(v_{\pi}(S) - \mathbf{x}(S)^{\top}\mathbf{w})^{2}\right]$$

- Stochastic gradient descent converges on *global* optimum
- Update rule is particularly simple

the reason why the linear combination is nice (quadratic - easy shape)

$$abla_{\mathbf{w}} \hat{v}(S, \mathbf{w}) = \mathbf{x}(S)$$
 w_new = $\Delta \mathbf{w} = \alpha (v_{\pi}(S) - \hat{v}(S, \mathbf{w}))\mathbf{x}(S)$ w_new = w_old + Update

 $\mathsf{Update} = \mathit{step-size} \times \mathit{prediction} \ \mathit{error} \times \mathit{feature} \ \mathit{value}$

Table Lookup Features

connection b/w what we did before

- Table lookup is a special case of linear value function approximation
- Using table lookup features

$$\mathbf{x}^{table}(S) = egin{pmatrix} \mathbf{1}(S = s_1) \ dots \ \mathbf{1}(S = s_n) \end{pmatrix}$$

■ Parameter vector **w** gives value of each individual state

$$\hat{v}(S, \mathbf{w}) = \begin{pmatrix} \mathbf{1}(S = s_1) \\ \vdots \\ \mathbf{1}(S = s_n) \end{pmatrix} \cdot \begin{pmatrix} \mathbf{w}_1 \\ \vdots \\ \mathbf{w}_n \end{pmatrix}$$

Incremental Prediction Algorithms

- Have assumed true value function $v_{\pi}(s)$ given by supervisor
- But in RL there is no supervisor, only rewards
- In practice, we substitute a target for $v_{\pi}(s)$
 - For MC, the target is the return G_t

$$\Delta \mathbf{w} = \alpha (\mathbf{G_t} - \hat{\mathbf{v}}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S_t, \mathbf{w})$$

■ For TD(0), the target is the TD target $R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w})$

$$\Delta \mathbf{w} = \alpha (\mathbf{R}_{t+1} + \gamma \hat{\mathbf{v}}(\mathbf{S}_{t+1}, \mathbf{w}) - \hat{\mathbf{v}}(\mathbf{S}_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(\mathbf{S}_t, \mathbf{w})$$

■ For TD(λ), the target is the λ -return G_t^{λ}

$$\Delta \mathbf{w} = \alpha (\mathbf{G}_t^{\lambda} - \hat{\mathbf{v}}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S_t, \mathbf{w})$$

Monte-Carlo with Value Function Approximation

- Return G_t is an unbiased, noisy sample of true value $v_\pi(S_t)$
- Can therefore apply supervised learning to "training data":

$$\langle S_1, G_1 \rangle, \langle S_2, G_2 \rangle, ..., \langle S_T, G_T \rangle$$

■ For example, using *linear Monte-Carlo policy evaluation*

$$\Delta \mathbf{w} = \alpha (\mathbf{G_t} - \hat{v}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w})$$
$$= \alpha (G_t - \hat{v}(S_t, \mathbf{w})) \mathbf{x}(S_t)$$

- Monte-Carlo evaluation converges to a local optimum may be a little bit slow
- Even when using non-linear value function approximation

TD Learning with Value Function Approximation

- The TD-target $R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w})$ is a *biased* sample of true value $v_{\pi}(S_t)$
- Can still apply supervised learning to "training data":

$$\langle S_1, R_2 + \gamma \hat{v}(S_2, \mathbf{w}) \rangle, \langle S_2, R_3 + \gamma \hat{v}(S_3, \mathbf{w}) \rangle, ..., \langle S_{T-1}, R_T \rangle$$

• For example, using *linear* TD(0)

$$\Delta \mathbf{w} = \alpha (\mathbf{R} + \gamma \hat{\mathbf{v}}(\mathbf{S}', \mathbf{w}) - \hat{\mathbf{v}}(\mathbf{S}, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(\mathbf{S}, \mathbf{w})$$

$$= \alpha \delta \mathbf{x}(\mathbf{S})$$
In this state (we take step now), we're gonna generate the TD target (using the approximator we have now) and TD error and update the weight immediately, and then we move on to the next step.

■ Linear TD(0) converges (close) to global optimum

In practice, we're just doing everything incrementally, incremental, online, update, for every single step.

$TD(\lambda)$ with Value Function Approximation

- The λ -return G_t^{λ} is also a biased sample of true value $v_{\pi}(s)$
- Can again apply supervised learning to "training data":

$$\left\langle S_{1},\textit{G}_{1}^{\lambda}\right\rangle ,\left\langle S_{2},\textit{G}_{2}^{\lambda}\right\rangle ,...,\left\langle S_{\mathcal{T}-1},\textit{G}_{\mathcal{T}-1}^{\lambda}\right\rangle$$

Forward view linear $TD(\lambda)$

$$\Delta \mathbf{w} = \alpha(\mathbf{G}_t^{\lambda} - \hat{v}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w})$$
$$= \alpha(\mathbf{G}_t^{\lambda} - \hat{v}(S_t, \mathbf{w})) \mathbf{x}(S_t)$$

■ Backward view linear $TD(\lambda)$

$$\delta_t = R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}) - \hat{v}(S_t, \mathbf{w})$$

eligibility trace
$$E_t = \gamma \lambda E_{t-1} + \mathbf{x}(S_t)$$

based on the features and parameters now size of your parameters,

 $\Delta \mathbf{w} = \alpha \delta_t E_t$

not the size of the state base

$TD(\lambda)$ with Value Function Approximation

THIS is main, the main point of this class.

- The λ -return G_t^{λ} is also a biased sample of true value $v_{\pi}(s)$
- Can again apply supervised learning to "training data":

$$\langle S_1, G_1^{\lambda} \rangle, \langle S_2, G_2^{\lambda} \rangle, ..., \langle S_{T-1}, G_{T-1}^{\lambda} \rangle$$

Forward view linear $TD(\lambda)$

Why does the gradient only depend on predicted value function? Why do we take the gradient about function approximator?

$$\begin{split} \Delta \mathbf{w} &= \alpha (\textbf{\textit{G}}_t^{\lambda} - \hat{v}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w}) \text{one way to answer this is that} \\ &= \alpha (\textbf{\textit{G}}_t^{\lambda} - \hat{v}(S_t, \mathbf{w})) \mathbf{x}(S_t) \end{split}$$

■ Backward view linear $TD(\lambda)$

happens later.
$$\delta_t = R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}) - \hat{v}(S_t, \mathbf{w})$$
 eligibility trace $E_t = \gamma \lambda E_{t-1} + \mathbf{x}(S_t)$
$$\Delta \mathbf{w} = \alpha \delta_t E_t$$

Forward view and backward view linear $TD(\lambda)$ are equivalent

The answer (tricky answer) is,

we're doing TD. And, TD means

that you kind of, you're always pushing things toward which happens later (future) because

you trust the things which

Control with Value Function Approximation

Let's move onto control.

We're gonna use the same to approximate q-value.

Policy evaluation (Approximate policy evaluation, $\hat{q}(\cdot,\cdot,\mathbf{w}) \approx q_{\pi}$) Policy improvement ϵ -greedy policy improvement for exploration

Action-Value Function Approximation

Approximate the action-value function

$$\hat{q}(S,A,\mathbf{w})pprox q_{\pi}(S,A)$$

Minimise mean-squared error between approximate action-value fn $\hat{q}(S, A, \mathbf{w})$ and true action-value fn $q_{\pi}(S, A)$

$$J(\mathbf{w}) = \mathbb{E}_{\pi} \left[(q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w}))^2 \right]$$

■ Use stochastic gradient descent to find a local minimum just the chain rule, we have our error, multiply by the gradient

$$-\frac{1}{2}\nabla_{\mathbf{w}}J(\mathbf{w}) = (q_{\pi}(S,A) - \hat{q}(S,A,\mathbf{w}))\nabla_{\mathbf{w}}\hat{q}(S,A,\mathbf{w})$$
$$\Delta\mathbf{w} = \alpha(q_{\pi}(S,A) - \hat{q}(S,A,\mathbf{w}))\nabla_{\mathbf{w}}\hat{q}(S,A,\mathbf{w})$$

Linear Action-Value Function Approximation

Represent state and action by a feature vector

$$\mathbf{x}(S,A) = \begin{pmatrix} \mathbf{x}_1(S,A) \\ \vdots \\ \mathbf{x}_n(S,A) \end{pmatrix}$$

Represent action-value fn by linear combination of features

$$\hat{q}(S, A, \mathbf{w}) = \mathbf{x}(S, A)^{\top} \mathbf{w} = \sum_{j=1}^{n} \mathbf{x}_{j}(S, A) \mathbf{w}_{j}$$

Stochastic gradient descent update

$$\nabla_{\mathbf{w}} \hat{q}(S, A, \mathbf{w}) = \mathbf{x}(S, A)$$
$$\Delta \mathbf{w} = \alpha (q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w})) \mathbf{x}(S, A)$$

Incremental Control Algorithms

- Like prediction, we must substitute a *target* for $q_{\pi}(S,A)$
 - For MC, the target is the return G_t

$$\Delta \mathbf{w} = \alpha(\mathbf{G_t} - \hat{q}(S_t, A_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{q}(S_t, A_t, \mathbf{w})$$

For TD(0), the target is the TD target $R_{t+1} + \gamma Q(S_{t+1}, A_{t+1})$

$$\Delta \mathbf{w} = \alpha(\mathbf{R}_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, \mathbf{w}) - \hat{q}(S_t, A_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{q}(S_t, A_t, \mathbf{w})$$

■ For forward-view TD(λ), target is the action-value λ -return

$$\Delta \mathbf{w} = \alpha(\mathbf{q}_t^{\lambda} - \hat{q}(S_t, A_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{q}(S_t, A_t, \mathbf{w})$$

■ For backward-view $TD(\lambda)$, equivalent update is

$$\begin{aligned} & \delta_t = R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, \mathbf{w}) - \hat{q}(S_t, A_t, \mathbf{w}) \\ & E_t = \gamma \lambda E_{t-1} + \nabla_{\mathbf{w}} \hat{q}(S_t, A_t, \mathbf{w}) \\ & \Delta \mathbf{w} = \alpha \delta_t E_t \end{aligned}$$

Linear Sarsa with Coarse Coding in Mountain Car

Linear Sarsa with Radial Basis Functions in Mountain Car

Study of λ : Should We Bootstrap?

650

MOUNTAIN CAR

0.2 0.4 Shape of the sweet spot depends on the problems. Bootstrapping helps and lambda can find you something better than TD(0)

RMS error

0.8

is that the bootstrapping

Baird's Counterexample

Parameter Divergence in Baird's Counterexample

TD isn't guaranteed to be a stable algorithm. There are situations where you can apply to TD or can blow up. So, want to know when it is safe to use TD and when is not.

Parameter values, $\theta_k(i)$ (log scale, broken at ±1)

Convergence of Prediction Algorithms

This is one slide for summary which roughly tells us when it's OK to use TD and when we're guaranteed for TD to converge to something and when it is the possibility that it might diverge.

On/Off-Policy	Algorithm	Table Lookup	Linear	Non-Linear
On-Policy	MC	✓	✓	√
	TD(0)	✓	✓	×
	$TD(\lambda)$	✓	✓	×
Off-Policy	MC	✓	✓	√
	TD(0)	✓	X	×
	$TD(\lambda)$	✓	X	X

Off-policy learning can be a little problematic.

Gradient Temporal-Difference Learning

- TD does not follow the gradient of *any* objective function
- This is why TD can diverge when off-policy or using non-linear function approximation
- Gradient TD follows true gradient of projected Bellman error This method fixes the issue that TD algorithm has when it bootstraps.

On/Off-Policy	Algorithm	Table Lookup	Linear	Non-Linear
On-Policy	MC	✓	✓	√
	TD	✓	✓	×
	Gradient TD	✓	✓	✓
Off-Policy	MC	✓	✓	√
	TD	✓	X	×
	Gradient TD	✓	✓	✓

Convergence of Control Algorithms

Algorithm	Table Lookup	Linear	Non-Linear
Monte-Carlo Control	✓	(✓)	Х
Sarsa	✓	(✓)	X
Q-learning	✓	X	×
Gradient Q-learning	✓	✓	X

 (\checkmark) = chatters around near-optimal value function

always chattering, which basically means that each time you improve your policy you might not make or there's no guarantee once you use function approximation, your improvement step is really improving the policy.

chattering around and roaming around near-optimal value function and you have never kind of infinity.

Outline

- 1 Introduction
- 2 Incremental Methods

3 Batch Methods

Batch Reinforcement Learning

Let's begin with a motivation. So far, we GD method.

- Gradient descent is simple and appealing
- But it is not sample efficient
- Batch methods seek to find the best fitting value function
- Given the agent's experience ("training data")

Least Squares Prediction

- Given value function approximation $\hat{v}(s, \mathbf{w}) \approx v_{\pi}(s)$
- And $\frac{\text{experience}}{D}$ consisting of $\frac{\text{state}}{\text{value}}$ pairs

$$\mathcal{D} = \{\langle s_1, v_1^\pi \rangle, \langle s_2, v_2^\pi \rangle, ..., \langle s_T, v_T^\pi \rangle\}$$

- Which parameters **w** give the *best fitting* value fn $\hat{v}(s, \mathbf{w})$?
- Least squares algorithms find parameter vector \mathbf{w} minimising sum-squared error between $\hat{v}(s_t, \mathbf{w})$ and target values v_t^{π} ,

$$egin{aligned} LS(\mathbf{w}) &= \sum_{t=1}^T (v_t^\pi - \hat{v}(s_t, \mathbf{w}))^2 \ &= \mathbb{E}_{\mathcal{D}}\left[(v^\pi - \hat{v}(s, \mathbf{w}))^2
ight] \end{aligned}$$

Stochastic Gradient Descent with Experience Replay

Given experience consisting of *(state, value)* pairs

$$\mathcal{D} = \{\langle s_1, v_1^\pi \rangle, \langle s_2, v_2^\pi \rangle, ..., \langle s_T, v_T^\pi \rangle\}$$

Repeat:

1 Sample state, value from experience

$$\langle s, v^{\pi} \rangle \sim \mathcal{D}$$

2 Apply stochastic gradient descent update

$$\Delta \mathbf{w} = \alpha (\mathbf{v}^{\pi} - \hat{\mathbf{v}}(\mathbf{s}, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(\mathbf{s}, \mathbf{w})$$

Stochastic Gradient Descent with Experience Replay

Given experience consisting of *(state, value)* pairs

$$\mathcal{D} = \{\langle s_1, v_1^\pi \rangle, \langle s_2, v_2^\pi \rangle, ..., \langle s_T, v_T^\pi \rangle\}$$

Repeat:

1 Sample state, value from experience

$$\langle s, v^{\pi} \rangle \sim \mathcal{D}$$

2 Apply stochastic gradient descent update

$$\Delta \mathbf{w} = \alpha (\mathbf{v}^{\pi} - \hat{\mathbf{v}}(\mathbf{s}, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(\mathbf{s}, \mathbf{w})$$

Converges to least squares solution

$$\mathbf{w}^{\pi} = \underset{\mathbf{w}}{\operatorname{argmin}} \ LS(\mathbf{w})$$

Batch Methods

Least Squares Prediction

Experience Replay in Deep Q-Networks (DQN)

experience replay stabilizes the neural network method because it de-correlates the trajectory. based Q-learning which is off-policy Instead of going to highly correlated path (trajectory), we randomize the order which they arrive and now powking of break the correlations you have much more stable updates, experience replay and fixed Q-targets

■ Take action a_t according to ϵ -greedy policy

These highlighted points are the reason why this method is stable (quarantee the convergence)

- Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory \mathcal{D} not everything, just "some" samples
- Sample random mini-batch of transitions (s, a, r, s') from \mathcal{D}
- Compute Q-learning targets w.r.t. old, fixed parameters w^-
- Optimise MSE between Q-network and Q-learning targets

$$\mathcal{L}_i(w_i) = \mathbb{E}_{s,a,r,s' \sim \mathcal{D}_i} \left(r + \gamma \max_{\substack{a' \\ \text{be to freeze all the way or some enormous}}} Q(s', a'; w_i^-) - Q(s, a; w_i) \right)^2$$
 eto freeze all the way or some enormous neural network, two different Q-networks (two different parameter)

we don't have to freeze all the way or some enormous heural network, just some period of time or for a while and then swap.

vectors) basically freeze the old network, Using variant of stochastic gradient descent

So, we never bootstrap directly toward things which are updating that moment because that can be unstable. There's a correlation b/w your targets and your Q-values in that moment.

so we remember our old network that we freeze for a while and use the targets, basically we bootstrapped

DQN in Atari

- End-to-end learning of values Q(s, a) from pixels s
- Input state *s* is stack of raw pixels from last 4 frames
- Output is Q(s, a) for 18 joystick/button positions
- Reward is change in score for that step

DQN Results in Atari

Batch Methods

Least Squares Prediction

How much does DQN help?

	Replay	Replay	No replay	No replay
	Fixed-Q	Q-learning	Fixed-Q	Q-learning
Breakout	316.81	240.73	10.16	3.17
Enduro	1006.3	831.25	141.89	29.1
River Raid	7446.62	4102.81	2867.66	1453.02
Seaquest	2894.4	822.55	1003	275.81
Space Invaders	1088.94	826.33	373.22	301.99

Linear Least Squares Prediction

Is there other method which jump to the LS solution? The answer is YES, for the special case linear function approximation. Give you the flavor what that looks like.

- Experience replay finds least squares solution
- But it may take many iterations
- Using *linear* value function approximation $\hat{v}(s, \mathbf{w}) = \mathbf{x}(s)^{\top}\mathbf{w}$
- We can solve the least squares solution directly

Linear Least Squares Prediction (2)

for whole experience set

■ At minimum of $LS(\mathbf{w})$, the expected update must be zero

$$\mathbb{E}_{\mathcal{D}}\left[\Delta\mathbf{w}
ight]=0$$

to get the best solution (unchangedness means the optimal case)

$$\alpha \sum_{t=1}^{T} \mathbf{x}(s_t) (v_t^{\pi} - \mathbf{x}(s_t)^{\top} \mathbf{w}) = 0$$

$$\sum_{t=1}^{I} \mathbf{x}(s_t) v_t^{\pi} = \sum_{t=1}^{I} \mathbf{x}(s_t) \mathbf{x}(s_t)^{\top} \mathbf{w}$$

$$\mathbf{w} = \left(\sum_{t=1}^T \mathbf{x}(s_t)\mathbf{x}(s_t)^{ op}
ight)^{-1} \sum_{t=1}^T \mathbf{x}(s_t)v_t^{\pi}$$

- For N features, direct solution time is $O(N^3)$
- Incremental solution time is $O(N^2)$ using Shermann-Morrison

Linear Least Squares Prediction Algorithms

- We do not know true values v_t^{π}
- In practice, our "training data" must use noisy or biased samples of v_t^π
 - LSMC Least Squares Monte-Carlo uses return $v_t^\pi pprox extbf{G}_t$
 - LSTD Least Squares Temporal-Difference uses TD target $v_t^{\pi} \approx R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w})$
- LSTD(λ) Least Squares TD(λ) uses λ -return $v_t^{\pi} \approx \frac{G_t^{\lambda}}{C_t}$
- In each case solve directly for fixed point of MC / TD / TD(λ)

Linear Least Squares Prediction Algorithms (2)

LSMC
$$0 = \sum_{t=1}^{T} \alpha(G_t - \hat{v}(S_t, \mathbf{w})) \mathbf{x}(S_t)$$

$$\mathbf{w} = \left(\sum_{t=1}^{T} \mathbf{x}(S_t) \mathbf{x}(S_t)^{\top}\right)^{-1} \sum_{t=1}^{T} \mathbf{x}(S_t) G_t$$
LSTD
$$0 = \sum_{t=1}^{T} \alpha(R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}) - \hat{v}(S_t, \mathbf{w})) \mathbf{x}(S_t)$$

$$\mathbf{w} = \left(\sum_{t=1}^{T} \mathbf{x}(S_t) (\mathbf{x}(S_t) - \gamma \mathbf{x}(S_{t+1}))^{\top}\right)^{-1} \sum_{t=1}^{T} \mathbf{x}(S_t) R_{t+1}$$
LSTD(λ)
$$0 = \sum_{t=1}^{T} \alpha \delta_t E_t$$

$$\mathbf{w} = \left(\sum_{t=1}^{T} E_t (\mathbf{x}(S_t) - \gamma \mathbf{x}(S_{t+1}))^{\top}\right)^{-1} \sum_{t=1}^{T} E_t R_{t+1}$$

Convergence of Linear Least Squares Prediction Algorithms

On/Off-Policy	Algorithm	Table Lookup	Linear	Non-Linear
On-Policy	MC	✓	✓	√
	LSMC	✓	✓	-
	TD	✓	✓	×
	LSTD	✓	✓	-
Off-Policy	MC	✓	✓	√
	LSMC	✓	✓	-
	TD	✓	X	×
	LSTD	✓	✓	_

Least Squares Policy Iteration

Policy evaluation Policy evaluation by least squares Q-learning Policy improvement Greedy policy improvement

Least Squares Action-Value Function Approximation

- Approximate action-value function $q_{\pi}(s,a)$
- using linear combination of features $\mathbf{x}(s, a)$

$$\hat{q}(s,a,\mathbf{w}) = \mathbf{x}(s,a)^{ op} \mathbf{w} pprox q_{\pi}(s,a)$$

- Minimise least squares error between $\hat{q}(s, a, \mathbf{w})$ and $q_{\pi}(s, a)$
- \blacksquare from experience generated using policy π
- consisting of $\langle (state, action), value \rangle$ pairs

$$\mathcal{D} = \{\langle (s_1, a_1), v_1^{\pi} \rangle, \langle (s_2, a_2), v_2^{\pi} \rangle, ..., \langle (s_T, a_T), v_T^{\pi} \rangle \}$$

Least Squares Control

- For policy evaluation, we want to efficiently use all experience
- For control, we also want to improve the policy
- This experience is generated from many policies
- So to evaluate $q_{\pi}(S,A)$ we must learn off-policy
- We use the same idea as Q-learning:
 - Use experience generated by old policy S_t , A_t , R_{t+1} , $S_{t+1} \sim \pi_{old}$
 - lacksquare Consider alternative successor action $A'=\pi_{new}(S_{t+1})$
 - Update $\hat{q}(S_t, A_t, \mathbf{w})$ towards value of alternative action $R_{t+1} + \gamma \hat{q}(S_{t+1}, A', \mathbf{w})$

Least Squares Q-Learning

■ Consider the following linear Q-learning update

$$\delta = R_{t+1} + \gamma \hat{q}(S_{t+1}, \pi(S_{t+1}), \mathbf{w}) - \hat{q}(S_t, A_t, \mathbf{w})$$

 $\Delta \mathbf{w} = \alpha \delta \mathbf{x}(S_t, A_t)$

LSTDQ algorithm: solve for total update = zero

$$0 = \sum_{t=1}^{T} \alpha(R_{t+1} + \gamma \hat{q}(S_{t+1}, \pi(S_{t+1}), \mathbf{w}) - \hat{q}(S_t, A_t, \mathbf{w})) \mathbf{x}(S_t, A_t)$$

$$\mathbf{w} = \left(\sum_{t=1}^{T} \mathbf{x}(S_t, A_t) (\mathbf{x}(S_t, A_t) - \gamma \mathbf{x}(S_{t+1}, \pi(S_{t+1})))^{\top}\right)^{-1} \sum_{t=1}^{T} \mathbf{x}(S_t, A_t) R_{t+1}$$

Least Squares Policy Iteration Algorithm

- The following pseudocode uses LSTDQ for policy evaluation
- lacktriangle It repeatedly re-evaluates experience ${\cal D}$ with different policies

```
function LSPI-TD(\mathcal{D}, \pi_0)
      \pi' \leftarrow \pi_0
      repeat
           \pi \leftarrow \pi'
            Q \leftarrow \mathsf{LSTDQ}(\pi, \mathcal{D})
            for all s \in \mathcal{S} do
                 \pi'(s) \leftarrow \operatorname{argmax} Q(s, a)
            end for
      until (\pi \approx \pi')
      return \pi
end function
```

Convergence of Control Algorithms

Algorithm	Table Lookup	Linear	Non-Linear
Monte-Carlo Control	✓	(✓)	×
Sarsa	✓	(✓)	×
Q-learning	✓	X	×
LSPI	✓	(✓)	-

 $(\checkmark) = \text{chatters around near-optimal value function}$

Chain Walk Example

- Consider the 50 state version of this problem
- Reward +1 in states 10 and 41, 0 elsewhere
- Optimal policy: R (1-9), L (10-25), R (26-41), L (42, 50)
- Features: 10 evenly spaced Gaussians ($\sigma = 4$) for each action
- Experience: 10,000 steps from random walk policy

LSPI in Chain Walk: Action-Value Function

LSPI in Chain Walk: Policy

Least Squares Control

Questions?