

Data Science Foundation Lesson #8 - Storytelling from Seaborn

Ivanovitch Silva September, 2017

Agenda

- Case study: kaggle competition
- Motivation: seaborn
- Histogram, KDE
- Modifying the appearance of plots
- Conditional distributions

Update the repository

git clone https://github.com/ivanovitchm/EEC2006.git

Or

git pull

Motivation - Seaborn

Getting started

conda install -c conda-forge seaborn

Introduction to dataset

a

Introduction to dataset

Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500		S
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38.0	1	0	PC 17599	71.2833	C85	С
3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250		S

- sibsp: The dataset defines family relations in this way...
 - Sibling = brother, sister, stepbrother, stepsister
 - Spouse = husband, wife (mistresses and fiancés were ignored)
- parch: The dataset defines family relations in this way...
 - Parent = mother, father
 - Child = daughter, son, stepdaughter, stepson
 - Some children travelled only with a nanny, therefore parch=0 for them.

Creating histogram in seaborn

```
# seaborn is commonly imported as `sns`.
                                                             0.035
import matplotlib.pyplot as plt
                                                             0.030
import seaborn as sns
                                                             0.025
#to switch to seaborn defaults, simply call the set()
                                                             0.020
sns.set()
                                                             0.015
# The four preset contexts, in order of relative size,
                                                             0.010
sns.set context("notebook")
                                                             0.005
# plot a univariate distribution of observations.
sns.distplot(titanic["Fare"])
                                                             0.000
                                                                                200
                                                                                      300
                                                                                             400
                                                                                                    500
                                                                         100
plt.show()
                                                                                   Fare
```


Generating a kernel density plot


```
sns.kdeplot(titanic["Age"])
plt.show()
```


Modifying the appearance of plots

Conditional distributions

Conditional distributions

```
# Condition on unique values of the "Survived" column.
g = sns.FacetGrid(titanic, col="Survived", size=6)

# For each subset of values, generate a kernel density plot of the "Age" columns.
g.map(sns.kdeplot, "Age", shade=True)

# Plot the graph
plt.show()
```


Creating conditional plots using two conditions


```
g = sns.FacetGrid(titanic, col="Survived", row="Pclass")
g.map(sns.kdeplot, "Age", shade=True)
sns.despine(left=True, bottom=True)
plt.show()
```


