

(19) BUNDESREPUBLIK DEUTSCHLAND

© OffenlegungsschriftDE 196 14 718 A 1

DEUTSCHES
PATENTAMT

(1) Aktenzeichen: 196 14 718.2
 (2) Anmeldetag: 15. 4. 96
 (3) Offenlegungstag: 16. 10. 97

(51) Int. Cl.⁸:

C 07 D 239/42

C 07 D 239/34 C 07 D 239/88 C 07 D 239/94 C 07 D 405/12 C 07 D 409/12 A 01 N 43/54 // (C07D 405/12, 239:42,311:68,311:62) (C07D 409/12,239:34, 239:42,335:06)

Ш

① Anmelder:

Hoechst Schering AgrEvo GmbH, 13509 Berlin, DE

② Erfinder:

Braun, Ralf, Dr., 78857 Dernbach, DE; Schaper, Wolfgang, Dr., 86420 Diedorf, DE; Stark, Herbert, Dr., 65779 Kelkheim, DE; Preuß, Rainer, Dr., 13467 Berlin, DE; Knauf, Werner, Dr., 65835 Liederbach, DE; Sanft, Ulrich, Dr., 65719 Hofheim, DE; Kern, Manfred, Dr., 55296 Lörzweiler, DE; Bonin, Werner, Dr., 65779 Kelkheim, DE

- Substituierte Pyridine/Pyrimidine, Verfahren zu ihrer Herstellung, und ihre Verwendung als Schädlingsbekämpfungsmittel
- Die vorliegende Erfindung betrifft neue substituierte Pyridine/Pyrimidine der allgemeinen Formel I, worin

A CH oder N bedeutet; X NH, O oder $S(O)_q$ mit q=0, 1 oder 2 bedeutet; Y^1 , Y^2 und Y^3 unabhängig voneinander eine Gruppe der Formel -O-, -CO-, -CNR⁶-, -S(O) _r-, oder -N(O)_iR⁸- mit I = 0

Formel -O-, -CO-, -CNR⁶-, -S(O) _r-, oder -N(O)_RR⁸- mit I = 0 oder 1 bedeuten, wobei r = 0, 1 oder 2 ist, oder eine Gruppe der Formel CR⁷R⁸ ist, oder

 Y^1 oder Y^3 an Stelle einer direkten Bindung stehen; Z eine direkte Bindung, NR^9 , O, $S(0)_a$ mit s=0, 1 oder 2, OSO₂, SO₂O,

bedeutet, wobei U eine direkte Bindung, NR¹⁴ oder O bedeutet; W Sauerstoff oder Schwefel bedeutet; V eine direkte Bindung, NR¹⁵ oder Sauerstoff bedeutet; m und n 0, 1, 2, 3 oder 4 bedeuten; wobei die Reste R¹ bis R¹⁵ die in der Beschreibung angegebene Bedeutung haben, Verfahren zu ihrer Herstellung, ihre Verwendung als Schädlingsbekämpfungsmittel, Fungizide und Ovizide sowie ihre Verwendung als Tierarzneimittel.

Beschreibung

Die Erfindung betrifft neue substituierte Pyridine/Pyrimidine, Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel, Fungizide und Ovizide.

Es ist bereits bekannt, daß bestimmte Cycloalkylamino- und -alkoxy-Heterocyclen fungizide, akarizide und insektizide Wirkung zeigen (DE-A-42 08 254). Die biologische Wirkung dieser Verbindungen ist jedoch, insbesondere bei niedrigen Aufwandmengen und Konzentrationen, nicht in allen Anwendungsbeispielen zufriedenstellend.

Es wurden neue, substituierte Pyridine/Pyrimidine der allgemeinen Formel gefunden,

15

20

25

10

worin die Reste und Gruppen wie unten definiert sind, die sich bei guter Pflanzenverträglichkeit und günstiger Warmblütertoxizität sehr gut zur Bekämpfung von tierischen Schädlingen, wie Insekten, Spinnentieren, Nematoden, Helminthen und Mollusken und deren Eiern, zur Bekämpfung von Endo- und Ektoparasiten auf dem veterinärmedizinischen Gebiet und zur Bekämpfung von Schadpilzen eignen.

R² und R³ zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, einen ungesättigten 5- oder 6-gliedrigen carbocyclischen Ring bilden, der, falls es sich um einen 5-Ring handelt, an Stelle von CH₂ ein Sauerstoff- oder Schwefelatom enthalten kann oder der, falls es sich um einen 6-Ring handelt, an Stelle von einer oder zwei CH-Einheiten ein oder zwei Stickstoffatome enthalten kann und der gegebenenfalls durch 1, 2 oder 3 gleiche oder verschiedene Reste R²⁷ substituiert ist, oder R² und R³ zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, einen gesättigten 5-, 6- oder 7-gliedrigen carbocyclischen Ring bilden, der an Stelle von einer oder zwei CH₂-Gruppen Sauerstoff und/oder Schwefel enthalten kann und der gegebenenfalls durch 1, 2 oder 3 (C₁—C₄)-Alkylgruppen substituiert ist;

A CH oder N bedeutet;

X NH, O oder $S(O)_q$ mit q = 0, 1 oder 2 bedeutet;

Y¹, Y² und Y³ unabhängig voneinander eine Gruppe der Formel -O-, -CO-, $-CNR^6-$, $-S(O)_r-$, oder $-N(O)_1R^6-$ mit l=0 oder 1 bedeuten, wobei r=0, 1 oder 2 ist, oder eine Gruppe der Formel CR^7R^8 ist, oder

Y¹ oder Y³ an Stelle einer direkten Bindung stehen;

 R^4 Wasserstoff oder (C₁ - C₄)-Alkyl bedeutet;

m 0, 1, 2, 3 oder 4, bevorzugt 1 oder 2 bedeutet;

n 0, 1, 2, 3 oder 4, bevorzugt 1 oder 2 bedeutet;

Z eine direkte Bindung, NR9, O, S(O)₅ mit s = 0, 1 oder 2, OSO₂, OSO₂, NR¹⁰SO₂, SO₂NR¹¹, SiR¹²R¹³ oder

U-C-V II W

60

65

bedeutet, wobei

U eine direkte Bindung, NR¹⁴ oder O bedeutet;

196 14 718 A1 DE

- W Sauerstoff oder Schwefel, vorzugsweise Sauerstoff bedeutet;
- V eine direkte Bindung, NR¹⁵ oder Sauerstoff bedeutet, wobei
- R9, R10, R11, R14 und R15 gleich oder verschieden sind und jeweils Wasserstoff, Alkyl, Alkoxy, Alkanoyl oder Cycloalkyl bedeuten:
- R⁵ voneinander unabhängige Substituenten sind und Halogen, Cyano, Nitro, Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Cycloalkenyl bedeuten und in den letztgenannten 5 Resten eine oder mehrere, vorzugsweise bis zu drei nicht benachbarte gesättigte Kohlenstoffeinheiten durch eine Carbonyl-Gruppe oder durch Heteroatom-Einheiten, wie Sauerstoff, $S(O)_x$ mit x = 0, 1 oder 2, NR^{16} oder $SiR^{17}R^{18}$ ersetzt sein können, und diese letztgenannten 5 Reste mit oder ohne die angegebenen Variationen, gegebenenfalls mit einem oder mehreren, vorzugsweise bis zu drei, im Falle von Fluor bis zur Maximalanzahl an gleichen oder verschiedenen Resten D¹R¹⁹ substituiert sein 10 können, oder
- R⁵ Aryl oder Heterocyclyl bedeuten kann, wobei diese beiden Reste unsubstituiert oder mit bis zu drei, im Falle von Fluor auch bis zur Maximalanzahl an gleichen oder verschiedenen Resten D²R²⁰ substituiert sein können, oder zwei benachbarte Reste
- Z-R⁵ gemeinsam mit den diese tragenden C-Atomen einen ankondensierten Cyclus mit 4 bis 6 Ringatomen 15 bilden können, der carbocyclisch ist oder Heteroringatome aus der Gruppe von O, S und N enthält und der unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe von Halogen, (C1-C4)-Alkyl und Oxo substituiert ist, oder
- R9, R10, R11, R14 oder R15 unabhängig voneinander mit dem an Z befindlichen R5 ein 4- bis 8-gliedriges Ringsystem bilden können, in dem eine oder zwei CH2-Gruppen, bevorzugt eine CH2-Gruppe durch Hetero- 20 atom-Einheiten wie Sauerstoff, $S(O)_t$ mit t = 0, 1 oder 2 oder NR^{25} ersetzt sein kann, wobei
- R⁶ Wasserstoff, (C_1-C_4) -Alkyl, (C_1-C_4) -Halogenalkyl, (C_2-C_4) -Alkenyl, (C_2-C_4) -Halogenalkenyl, (C_2-C_4) -Alkinyl, (C_2-C_4) -Halogenalkinyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Halogenalkylthio, (C_1-C_4) -Alkanoyl, (C_2-C_4) -Halogenalkylthio, (C_1-C_4) -Alkanoyl, (C_2-C_4) -Halogenalkylthio, (C_1-C_4) -Alkoxy- (C_1-C_4) -Alkoxy-R7 und R8 unabhängig voneinander Wasserstoff, Hydroxy, Halogen, Cyano, (C1 - C4)-Alkyl, (C1 - C4)-Halogenalkyl, (C_2-C_4)-Alkenyl, (C_2-C_4)-Halogenalkenyl, (C_2-C_4)-Alkinyl, (C_2-C_4)-Halogenalkenyl, (C_3-C_5)-Cycloalkyl, (C_1-C_4)-Alkanoyl, (C_1-C_4)-Halogenalkanoyl, (C_1-C_4)-Alkoxy, (C_1-C_4)-Halogenalkoxy, (C_1-C_4)-Alkylthio oder (C₁-C₄)-Halogenalkylthio sind;
- R^{12} und R^{13} (C₁-C₄)-Alkyl oder Phenyl, vorzugsweise Methyl bedeuten;
- R^{16} Wasserstoff, (C_1-C_4) -Alkyl, (C_1-C_4) -Alkoxy oder (C_1-C_4) -Alkanoyl bedeutet;
- R¹⁷ und R¹⁸ unabhängig voneinander (C₁-C₄)-Alkyl, bevorzugt Methyl, bedeuten;
- D^1 und D^2 jeweils unabhängig voneinander sind und eine direkte Bindung, Sauerstoff, S(O)_k, SO₂O, OSO₂, CO, OCO, COO, NR²¹, SO₂NR²¹, NR²¹SO₂, ONR²¹, NR²¹CO, CONR²¹ oder SiR²²R²³ bedeuten und k = 0, 1 35 oder 2 ist, wobei
- R²¹ voneinander unabhängig Wasserstoff, (C₁−C₄)-Alkyl, (C₁−C₄)-Alkanoyl oder (C₃−C₅)-Cycloalkyl bedeu-
- R²² und R²³ unabhängig voneinander (C₁ C₄)-Alkyl bedeuten;
- R¹⁹ und R²⁰ unabhängig voneinander Wasserstoff, Cyano, Nitro, Halogen, Alkyl, Halogenalkyl, Alkenyl, Halo-40 genalkenyl, Alkinyl, Halogenalkinyl, Alkoxyalkyl, Halogenalkoxyalkyl, Alkylthioalkyl, Halogenalkylthioalkyl, Cycloalkyl, Cycloalkenyl, Cycloalkylalkyl, Cycloalkenylalkyl, Aryl, Heterocyclyl, Arylalkyl oder Heterocyclylalkyl bedeuten, wobei in den letztgenannten 8 Resten die cycloaliphatischen, aromatischen oder heterocyclischen Ringsysteme unsubstituiert oder mit bis zu drei, im Falle von Fluor auch bis zur Maximalanzahl an gleichen oder verschiedenen Substituenten R²⁴ versehen sein können, oder

- R¹⁹ und R²⁰ am gleichen C-Atom sitzend gemeinsam eine Oxo-Gruppe bedeuten; wobei
- R^{24} unabhängig voneinander ($C_1 C_4$)-Alkyl, ($C_1 C_4$)-Halogenalkyl, ($C_1 C_4$)-Alkoxy, ($C_1 C_4$)-Halogenalkoxy, Cyano, Nitro oder Halogen sein kann;
- $R^{25}\, unabh\bar{a}ngig\, voneinander\, Wasserstoff, (C_1-C_3)-Alkyl, (C_1-C_4)-Halogenalkyl, (C_1-C_4)-Alkoxy, (C_1-C_4)-Alkoxy, (C_1-C_4)-Alkoxy, (C_1-C_4)-Alkyl, (C_1-C_4)-Alk$ kylthio, (C_3-C_5) -Cycloalkyl, (C_2-C_4) -Alkenyl, (C_2-C_4) -Alkinyl, (C_1-C_4) -Alkanoyl, (C_1-C_4) -Halogenalkanoyl, (C_1-C_4) -Alkoxy- (C_1-C_4) -alkyl, Phenyl- (C_1-C_4) -alkyl oder Phenyl bedeuten kann, wobei die Phenylgruppen unabhängig voneinander unsubstituiert oder mit bis zu drei, im Falle von Fluor auch bis zur Maximalanzahl an gleichen oder verschiedenen Substituenten R²⁶ versehen sein können, wobei
- R^{26} unabhängig voneinander ($C_1 C_4$)-Alkyl, ($C_1 C_4$)-Halogenalkyl, ($C_1 C_4$)-Alkoxy, ($C_1 C_4$)-Alkylthio, Halogen oder Cyano bedeuten kann, und R27 unabhängig voneinander (C1-C4)-Alkyl, (C1-C4)-Halogenalkyl, vorzugsweise Trifluormethyl, Halogen, (C_1-C_4) -Alkoxy oder (C_1-C_4) -Halogenalkoxy bedeutet; und deren Salze, vorzugsweise Säureadditionssalze;
- insbesondere solche Verbindungen für die
- R⁵ voneinander unabhängige Substituenten sind und Halogen, Cyano, Nitro, (C₁ C₂₀)-Alkyl, (C₂ C₂₀)-Alkenyl, (C₂-C₂₀)-Alkinyl, (C₃-C₈)-Cycloalkyl, (C₄-C₈)-Cycloalkenyl bedeutet und in den letztgenannten 5 Resten eine oder mehrere, vorzugsweise bis zu drei nicht benachbarte gesättigte Kohlenstoffeinheiten durch eine Carbonyl-Gruppe oder durch Heteroatom-Einheiten, wie Sauerstoff, $S(O)_x$ mit x = 0, 1 oder 2, NR^{16} oder $SiR^{17}R^{18}$ ersetzt sein können und diese letztgenannten 5 Reste mit oder ohne die angegebenen Variationen, gegebenenfalls mit einem oder mehreren, vorzugsweise bis zu drei, im Falle von Fluor bis zur Maximalanzahl an gleichen oder verschiedenen Resten D¹R¹⁹ substituiert sein können, oder
- R⁵ Aryl oder Heterocyclyl bedeuten kann, wobei diese beiden Reste unsubstituiert oder mit bis zu drei, im Falle von Fluor auch bis zur Maximalanzahl an gleichen oder verschiedenen Resten D2R20 substituiert sein können, oder zwei benachbarte Reste

- $Z-R^5$ gemeinsam mit den diese tragenden C-Atomen einen ankondensierten Cyclus mit 4 bis 6 Ringatomen bilden können, der carbocyclisch ist oder Heteroringatome aus der Gruppe von O, S und N enthält 3 und der unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe von Halogen, (C_1-C_4) -Alkyl und Oxo substituiert ist, oder
- R⁹, R¹¹ oder R¹⁵ unabhängig voneinander mit dem an Z befindlichen R⁵ ein 4-bis 8-gliedriges Ringsystem bilden können, in dem eine oder zwei CH₂-Gruppen, bevorzugt eine CH₂-Gruppe durch Heteroatom-Einheiten wie Sauerstoff, S(O)_t mit t = 0, 1 oder 2 oder NR²⁵ ersetzt sein kann, wobei

 R^{16} Wasserstoff, $(C_1 - C_4)$ -Alkyl, $(C_1 - C_4)$ -Alkoxy oder $(C_1 - C_4)$ -Alkanoyl bedeutet;

R¹⁷ und R¹⁸ unabhängig voneinander (C₁—C₄)-Alkyl, bevorzugt Methyl, bedeuten;

- D¹ und D² jeweils unabhängig voneinander sind und eine direkte Bindung, Sauerstoff, S(O)_k, SO₂O, OSO₂, CO, OCO, COO, NR²¹, SO₂NR²¹, NR²¹SO₂, ONR²¹, NR²¹O, NR²¹CO, CONR²¹ oder SiR²²R²³ bedeuten, und k = 0, 1 oder 2 ist, wobei
 - R^{21} voneinander unabhängig Wasserstoff, (C₁—C₄)-Alkyl, (C₁—C₄)-Alkanoyl oder (C₃—C₅)-Cycloalkyl bedeutet;
- 15 R²² und R²³ unabhängig voneinander (C₁-C₄)-Alkyl bedeuten;

R¹⁹ und R²⁰ unabhängig voneinander Wasserstoff, Cyano, Nitro, Halogen, (C_1-C_8) -Alkyl, (C_1-C_8) -Halogenalkyl, (C_2-C_8) -Alkenyl, (C_2-C_8) -Halogenalkenyl, (C_2-C_8) -Alkinyl, (C_1-C_8) -Halogenalkinyl, (C_1-C_8) -Alkoxy- (C_1-C_4) -alkyl, (C_1-C_8) -Halogenalkoxy- (C_1-C_4) -alkyl, (C_1-C_8) -Alkylthio- (C_1-C_4) -alkyl, (C_3-C_8) -Cycloalkyl, (C_4-C_8) -Cycloalkenyl, (C_3-C_8) -Cycloalkyl, (C_4-C_8) -Cycloalkenyl, (C_4-C_8) -Cycloalkenyl, (C_1-C_4) -alkyl, (C_1-C_4) -alkyl,

20 (C₄—C₈)-Cycloalkenyl-(C₁—C₄)-alkyl, Aryl, Heterocyclyl, Aryl-(C₁—C₄)-alkyl oder Heterocyclyl-(C₁—C₄)-alkyl bedeuten, wobei in den letztgenannten 8 Resten die cycloaliphatischen, aromatischen oder heterocyclischen Ringsysteme unsubstituiert oder mit bis zu drei, im Falle von Fluor auch bis zur Maximalanzahl an gleichen oder verschiedenen Substituenten R²⁴ versehen sein können, oder

R¹⁹ und R²⁰ am gleichen C-Atom sitzend gemeinsam eine Oxo-Gruppe bedeuten, wobei

25 R²⁴ (C₁-C₄)-Alkyl, (C₁-C₄)-Halogenalkyl, (C₁-C₄)-Alkoxy, (C₁-C̄₄)-Halogenalkoxy, Cyano, Nitro oder Halogen sein kann;

 R^{25} Wasserstoff, (C₁-C₄)-Alkyl, (C₁-C₄)-Halogenalkyl, (C₁-C₄)-Alkoxy, (C₁-C₄)-Alkylthio, (C₃-C₅)-Cycloalkyl, (C₂-C₄)-Alkenyl, (C₂-C₄)-Alkinyl, (C₁-C₄)-Alkanoyl, (C₂-C₄)-Haloalkanoyl, (C₂-C₄)-Alkoxyalkyl, Phenyl-(C₁-C₄)-alkyl oder Phenyl bedeuten und die Phenylgruppen unsubstituiert oder mit bis zu drei, im Falle von Fluor auch bis zur Maximalanzahl an gleichen oder verschiedenen Substituenten R^{26} versehen sein können,

Fluor auch bis zur Maximalanzahl an gleichen oder verschiedenen Substituenten R²⁶ versehen sein könner wobei

 R^{26} (C₁-C₄)-Alkyl, (C₁-C₄)-Haloalkyl, (C₁-C₄)-Alkoxy, (C₁ -C₄)-Alkylthio, Halogen oder Cyano bedeuten kann.

Bevorzugt sind Verbindungen der Formel I, in welcher

R¹ Wasserstoff, Chlor oder Fluor bedeutet;

 R^2 (C₁—C₄)-Alkyl, (C₂—C₄)-Alkenyl, (C₂—C₄)-Alkinyl, Tri-(C₁—C₄)-alkylsilyl-(C₂—C₄)-alkinyl, (C₁—C₄)-Halogenalkyl, Cyclopropyl, Halogencyclopropyl, Methoxymethyl oder Cyano bedeutet;

R³ Wasserstoff, Halogen, Methyl, Ethyl, Ethenyl, Ethinyl, Methoxy, Ethoxy, Cyano, Trifluormethyl, Fluormethylthio oder Methoxycarbonyl bedeutet; oder

R² und R³ zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, einen gegebenenfalls substituierten, ungesättigten 5- oder 6-gliedrigen Ring bilden, der im Falle des 5-Rings an Stelle einer CH₂-Einheit ein Schwefelatom enthalten kann; oder

R² und R³ zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, einen gesättigten 5- oder 6-gliedrigen Ring bilden, der an Stelle einer CH₂-Einheit ein Schwefel- oder ein Sauerstoffatom enthalten kann:

45 A CH oder N bedeutet:

X NH oder Sauerstoff bedeutet;

Y¹, Y² und Y³ eine Gruppe der Formel -O-, S(O)_r, $-N(O)_1R^6-$ mit l=0 oder 1 bedeutet, wobei r=0, 1 oder 2 ist, oder eine Gruppe der Formel CR^7R^8 ist; oder

Y¹ oder Y² an Stelle einer direkten Bindung stehen;

Ra Wasserstoff bedeutet:

m 1 oder 2 bedeutet;

n 1 oder 2 bedeutet;

Z direkte Bindung, NR9, O, S(O)₅ mit s = 0, 1 oder 2, oder OSO₂, SO₂O, NR¹⁰SO₂, SO₂NR¹¹, SiR¹²R¹³ oder

U-C-V I W

bedeutet, wobei

U direkte Bindung, NR¹⁴ oder 0 bedeutet:

W Sauerstoff bedeutet:

direkte Bindung, NR15 oder Sauerstoff bedeutet;

ss wobe

 R^6 unabhängig voneinander ($C_1 - C_4$)-Alkyl oder ($C_1 - C_4$)-Alkanoyl sein kann;

 R^7 und R^8 unabhängig voneinander Wasserstoff, Halogen oder (C_1-C_4)-Alkyl sind, und

R9, R10, R11, R14 und R15 gleich oder verschieden sind und jeweils Wasserstoff, (C1-C4)-Alkyl, (C1-C4)-Alkoxy,

(C₁-C₄)-Alkanoyl oder (C₃-C₅)-Cycloalkyl bedeuten;

insbesondere solche Verbindungen, worin R1 Wasserstoff oder Fluor bedeutet; R^2 Methyl, Ethyl, Propyl, Isopropyl, (C_1-C_2) -Fluoralkyl oder Methoxymethyl bedeutet; R3 Halogen, Methyl, Ethyl, Ethenyl, Ethinyl, Methoxy, Ethoxy, Trifluormethyl, Fluormethylthio, Methoxycarbonvi oder Cyano bedeutet; oder R2 und R3 zusammen mit dem Ringsystem, an das sie gebunden sind, das Chinazolin- oder Chinolin-System bilden, das im carbocyclischen Teil durch Fluor substituiert sein kann; oder R² und R³ zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, einen gesättigten 6-gliedrigen Ring bilden, der an Stelle einer CH2-Gruppe ein Sauerstoff- oder Schwefelatom enthalten kann; 10 A CH oder N bedeutet; X NH oder Sauerstoff bedeutet; Y^1 , Y^2 und Y^3 eine Gruppe der Formel -O, oder $S(O)_r$ bedeutet, wobei r=0, 1 oder 2 ist oder eine Gruppe der Formel CR7R8, oder Y1 oder Y3 an Stelle einer direkten Bindung stehen, wobei R7 und R8 unabhängig voneinander Wasserstoff oder Methyl sind. 15 Besonders bevorzugt sind solche Verbindungen der Formel I, worin R1 Wasserstoff bedeutet; R² Ethyl, Propyl, Isopropyl, 1-Fluorethyl oder Methoxymethyl bedeutet; R3 Fluor, Chlor, Brom, Cyano, Methoxy, Ethenyl oder Ethinyl bedeutet; oder für den Fall, daß A Stickstoff bedeutet. R² und R³ zusammen mit dem Ringsystem, an das sie gebunden sind, das Chinazolin-System bilden, das mit einem Fluoratom substituiert sein kann. Am stärksten bevorzugt sind solche Verbindungen der Formel I, für die R1 Wasserstoff bedeutet; R² Ethyl oder Methoxymethyl bedeutet; 25 R³ Fluor, Chlor, Brom oder Methoxy bedeutet; R⁵ voneinander unabhängige Substituenten sind und Halogen, Cyano, Nitro, (C₁-C₈)-Alkyl, (C₂-C₈)-Alkenyl, (C₂-C₈)-Alkinyl, (C₃-C₈)-Cycloalkyl, (C₄-C₈)-Cycloalkenyl bedeuten und in den letztgenannten 5 Resten eine oder mehrere, vorzugsweise bis zu drei nicht benachbarte gesättigte Kohlenstoffeinheiten durch eine Carbonyl-Gruppe oder durch Heteroatom-Einheiten, wie Sauerstoff, $S(O)_x$ mit x = 0, 1 oder 2, NR^{16} oder $SiR^{17}R^{18}$ ersetzt sein können, und diese letztgenannten 5 Reste mit oder ohne die angegebenen Variationen, gegebenenfalls mit einem oder mehreren, vorzugsweise bis zu drei, im Falle von Fluor bis zur Maximalanzahl an gleichen oder verschiedenen Resten D¹R¹⁹ substituiert sein können, oder R⁵ Aryl oder Heterocyclyl bedeuten kann, wobei diese beiden Reste unsubstituiert oder mit bis zu drei, im Falle von Fluor auch bis zur Maximalanzahl an gleichen oder verschiedenen Resten D2R20 substituiert sein können, 35 oder zwei benachbarte Reste Z-R⁵ gemeinsam mit den diese tragenden C-Atomen einen ankondensierten Cyclus mit 4 bis 6 Ringatomen bilden können, der carbocyclisch ist oder Heteroringatome aus der Gruppe von O, S und N enthält und der unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe von Halogen, (C1-C4)-Alkyl und Oxo substituiert ist, oder R¹¹ oder R¹⁵ unabhängig voneinander mit dem an Z befindlichen R⁵ ein 4- bis 8-gliedriges Ringsystem bilden können, in dem eine oder zwei CH2-Gruppen, bevorzugt eine CH2-Gruppe durch Heteroatom-Einheiten wie Sauerstoff $S(0)_t$ mit t = 0, 1 oder 2 oder NR^{25} ersetzt sein kann, wobei R16 unabhängig voneinander Wasserstoff, (C1-C4)-Alkyl, (C1-C4)-Alkoxy oder (C1-C4)-Alkanoyl bedeutet, 45 R¹⁷ und R¹⁸ unabhängig voneinander (C₁—C₄)-Alkyl, bevorzugt Methyl, bedeuten; D1 und D2 jeweils unabhängig voneinander sind und eine direkte Bindung, -O-, -S(O)k-, -SO2O-, $-OSO_2-$, -CO-, -OCO-, -COO-, $-NR^{21}-$, $-SO_2NR^{21}-$, $-NR^{21}SO_2-$, $-ONR^{21}-$, $-NR^{21}O-$, $-NR^{21}CO$, $-CONR^{21}$ bedeutet, und k = 0, 1 oder 2 ist, und wobei R²¹ voneinander unabhängig Wasserstoff, (C₁-C₄)-Alkyl, (C₁-C₄)-Alkanoyl oder (C₃-C₅)-Cycloalkyl bedeu- 50 R¹⁹ und R²⁰ unabhängig voneinander Wasserstoff, Halogen, bevorzugt Fluor, (C₁-C₈)-Alkyl, (C₃-C₈)-Cycloalkyl, Aryl oder Heterocyclyl bedeuten, wobei in den letztgenannten 3 Resten die cycloaliphatischen, aromatischen oder heterocyclischen Ringsysteme unsubstituiert oder mit bis zu drei, im Falle von Fluor auch bis zur Maximalanzahl an gleichen oder verschiedenen Substituenten R24 versehen sein können, wobei R^{24} unabhängig voneinander ($C_1 - C_4$)-Alkyl, (C_1 C_4)-Halogenalkyl, ($C_1 - C_4$)-Alkoxy, ($C_1 - C_4$)-Halogenalkoxy, Cyano, Nitro, Halogen sein kann; R^{25} unabhängig voneinander (C_1-C_8)-Alkyl, (C_3-C_5)-Cycloalkyl, (C_1-C_4)-Alkanoyl, (C_2-C_4)-Halogenalkanoyl, (C1-C4)-Alkoxy-(C1-C4)-alkyl, Phenyl-(C1-C4)-alkyl oder Phenyl bedeuten und die Phenylgruppen unsubstituiert oder mit bis zu drei, im Falle von Fluor auch bis zur Maximalanzahl an gleichen oder verschiedenen 60 Substituenten R²⁶ versehen sein können, wobei R²⁶ unabhängig voneinander (C₁ - C₄)-Alkyl, (C₁ - C₄)-Haloalkyl, (C₁ - C₄)-Alkoxy, (C₁ - C₄)-Alkylthio, Halogen oder Cyano bedeuten kann: insbesondere solche Verbindungen, für die R⁵ voneinander unabhängig (C₁-C₈)-Alkyl bedeutet, in dem eine oder mehrere, vorzugsweise bis zu drei nicht 65 benachbarte gesättigte Kohlenstoff-Einheiten durch Sauerstoff ersetzt sein können, und der mit oder ohne die angegebenen Variationen, gegebenenfalls mit einem oder mehreren, vorzugsweise bis zu drei, im Falle von Fluor

bis zur Maximalanzahl an gleichen oder verschiedenen Resten DiRi9 substituiert sein kann, oder

R⁵ Aryl oder Heterocyclyl bedeuten kann, wobei diese beiden Reste unsubstituiert oder mit bis zu drei, im Falle von Fluor auch bis zur Maximalanzahl an gleichen oder verschiedenen Resten D²R²⁰ substituiert sein können.

In der obigen Formel ist unter "Halogen" ein Fluor-, Chlor-, Brom- oder Iodatom zu verstehen;

unter dem Ausdruck "(C₁—C₄)-Alkyl" ist ein unverzweigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 4
Kohlenstoffatomen zu verstehen, so wie z. B. der Methyl-, Ethyl-, Propyl-, Isopropyl-, 1-Butyl-, 2-Butyl-, 2-Methylpropyl- oder tert.-Butylrest;

unter dem Ausdruck " (C_1-C_8) -Alkyl" die vorgenannten Alkylreste, sowie z.B. der Pentyl-, 2-Methylbutyl-, 1,1-Dimethylpropyl-, Hexyl-, Heptyl-, Octyl-, oder der 1,1,3,3-Tetramethylbutyl-Rest;

unter dem Ausdruck "(C1-C20)-Alkyl" die vorgenannten Alkylreste, sowie z. B. der Dodecyl-, Pentadecyl- oder

unter dem Ausdruck "(C₁—C₄)-Halogenalkyl" eine unter dem Ausdruck "(C₁—C₄)-Alkyl" genannte Alkylgruppe, in der eines oder mehrere Wasserstoffatome durch die obengenannten Halogenatome, bevorzugt Chlor oder Fluor, ersetzt sind, wie beispielsweise die Trifluormethyl-, 1-Fluorethyl-, 2-Fluorethyl-, 2,2-Trifluorethyl-, Chlormethyl-, Fluormethyl-, Difluormethyl- oder die 1,1,2,2-Tetrafluorethyl-Gruppe;

unter dem Ausdruck "(C₁—C₂)-Fluoralkyl" z. B. die Mono-, Di-, Trifluormethyl-, 1-Fluorethyl-, 2-Fluorethyl, 2,2-Difluorethyl, 1,1-Difluorethyl- oder die 2,2,2-Trifluorethyl-Gruppe; unter dem Ausdruck "Cycloalkyl" vorzugsweise (C₃—C₈)-Cycloalkyl;

unter dem Ausdruck "Cycloaikyi" vorzugsweise ($C_3 - C_8$)-Cycloaikyi; unter dem Ausdruck "Cycloaikenyi" vorzugsweise ($C_3 - C_8$)-Cycloaikenyi;

unter dem Ausdruck "(C3-C5)-Cycloalkyl" die Cyclopropyl-, Cyclobutyl- oder Cyclopentylgruppe;

unter dem Ausdruck "(C₃—C₈)-Cycloalkyl" die oben unter "(C₃—C₅)-Cycloalkyl" genannten Reste, wie der Cyclohexyl-, Cycloheptyl- oder Cyclooctyl-Rest, aber auch bicyclische Systeme wie z. B. die Norbornylgruppe oder der Bicyclo[2.2.2]octan-Rest;

unter dem Ausdruck "(C₃—C₅)-Halogencycloalkyl" einer der oben aufgeführten (C₃—C₅)-Cycloalkylreste, in dem eines oder mehrere, im Falle von Fluor gegebenenfalls auch alle Wasserstoffatome durch Halogen, bevorzugt Fluor oder Chlor ersetzt sind, wie beispielsweise die 2,2-Difluor- oder 2,2-Dichlorcyclopropan-Gruppe oder der Fluorcyclopentan-Rest;

unter dem Ausdruck "(C₂—C₄)-Alkenyl" z. B. die Vinyl-, Allyl-, 2-Methyl-2-propen- oder 2-Butenyl-Gruppe; unter dem Ausdruck "(C₂—C₈)-Alkenyl" die vorstehend unter "(C₂—C₄)-Alkenyl" genannten Reste, sowie z. B. die 2-Pentenyl- oder die 2-Octenyl-Gruppe;

unter dem Ausdruck "(C₂-C₂₀)-Alkenyl" die vorstehend unter "(C₂-C₈)-Alkenyl" genannten Reste, sowie z. B. die 2-Decenyl- oder die 2-Eicosenyl-Gruppe;

unter dem Ausdruck "(C₂—C₄)-Halogenalkenyl" eine (C₂—C₄)-Alkenyl-Gruppe in der die Wasserstoffatome teilweise oder im Falle von Fluor auch vollständig durch Halogen, bevorzugt Fluor oder Chlor ersetzt sind; unter dem Ausdruck "(C₂—C₈)-Halogenalkyl" eine (C₂—C₈)-Alkenyl-Gruppe, in der die Wasserstoffatome teil-

weise, im Falle von Fluor auch vollständig durch Halogen, bevorzugt Fluor oder Chlor ersetzt sind; unter dem Ausdruck "(C4-C5)-Cycloalkenyl" die Cyclobutenyl- oder Cyclopentenylgruppe;

unter dem Ausdruck "(C4-C8)-Cycloalkenyl" die vorstehend genannten Reste, sowie z. B. die 1-Cyclohexenyl-Gruppe:

unter dem Ausdruck "(C₂—C₄)-Alkinyl" z. B. die Ethinyl-, Propargyl, 2-Methyl-2-propin-, 1-Butinyl-, 2-Butinyl-oder die 3-Butinyl-Gruppe;

unter dem Ausdruck "(C₂-C₈)-Alkinyl" die vorstehend unter "(C₂-C₄)-Alkinyl" genannten Reste, sowie z. B. die 2-Pentinyl- oder die 2-Octinyl-Gruppe;

unter dem Ausdruck "(C₂-C₂₀)-Alkinyl" die vorstehend unter "(C₂-C₈)-Alkenyl" genannten Reste, sowie z. B. die 2-Decinyl-Gruppe;

unter dem Ausdruck "(C₂-C₄)-Halogenalkinyl" eine (C₂-C₄)-Alkinylgruppe, in der die Wasserstoffatome teilweise, im Falle von Fluor auch vollständig, durch Halogenatome, bevorzugt Fluor oder Chlor, ersetzt sind, oder auch die Jodethinyl-Gruppe;

unter dem Ausdruck "(C₂—C₈)-Halogenalkinyl" eine (C₂—C₈)-Alkinyl-Gruppe, in der die Wasserstoffatome teilweise, im Falle von Fluor auch vollständig, durch Halogenatome, bevorzugt Fluor oder Chlor, ersetzt sind;

unter dem Ausdruck "Tri-(C₁—C₄)-alkylsilyl-(C₂—C₄)-alkinyl" vorzugsweise die Trimethylsilylethinyl-Gruppe; unter dem Ausdruck "(C₁—C₄)-Hydroyalkyl" z. B. die Hydroxymethyl-, 1-Hydroxyethyl-, 2-Hydroxyethyl-, 1-Hydroxy-1-methylethyl- oder die 1-Hydroxypropyl-Gruppe; unter dem Ausdruck "(C₁—C₄)-Alkanoyl" z. B. die Formyl-, Acetyl-, Propionyl-, 2-Methylpropionyl- oder Buty-

ryl-Gruppe;

unter dem Ausdruck "(C₂—C₄)-Halogenalkanoyl" eine (C₂—C₄)-Alkanoyl-Gruppe, in der die Wasserstoffatome teilweise, im Falle von Fluor auch vollständig, durch Halogenatome, bevorzugt Fluor oder Chlor, ersetzt sind; unter dem Ausdruck "Cyan-(C₁—C₄)-alkyl" eine Cyanalkyl-Gruppe, deren Kohlenwasserstoffrest die unter dem Ausdruck "(C₁—C₄)-Alkyl" angegebene Bedeutung hat; unter dem Ausdruck "(C₁—C₄)-Alkoxycarbonyl" z. B. die Methoxycarbonyl-, Ethoxycarbonyl-, Propoxycarbo-

nyl-, Butoxycarbonyl oder tert.-Butoxycarbonyl-Gruppe;

unter dem Ausdruck "(C₁-C₄)-Halogenalkoxycarbonyl" eine (C₁-C₄)-Alkoxycarbonyl-Gruppe in der eines oder mehrere, im Falle von Fluor gegebenenfalls auch alle Wasserstoffatome durch Halogen, bevorzugt Fluor oder Chlor, ersetzt sind;

unter dem Ausdruck " (C_1-C_4) -Alkylthio" eine Alkylthiogruppe, deren Kohlenwasserstoffrest die unter dem Ausdruck " (C_1-C_4) -Alkyl" angegebene Bedeutung hat;

unter dem Ausdruck "(C₁—C₄)-Halogenalkylthio" eine (C₁—C₄)-Alkylthio-Gruppe, in der eines oder mehrere, im Falle von Fluor gegebenenfalls auch alle Wasserstoffatome des Kohlenwasserstoffrests durch Halogen, bevorzugt Chlor oder Fluor, ersetzt sind;

196 14 718 DE

unter dem Ausdruck "Fluormethylthio" die Mono-, Di- oder Trifluormethylthio-Gruppe; unter dem Ausdruck "(C1-C4)-Alkylsulfinyi" z. B. die Methyl-, Ethyl-, Propyl-, Isopropyl-, Butyl-, Isobutyl-, sek.-Butyl- oder tert.-Butylsulfinyl-Gruppe; unter dem Ausdruck "(C1-C4)-Alkylsulfonyl" z. B. die Methyl-, Ethyl-, Propyl-, Isopropyl-, Butyl-, Isobutyl-, sek.-Butyl- oder tert.-Butylsulfonyl-Gruppe; unter den Ausdrücken " (C_1-C_4) -Halogenalkylsulfinyl" und " (C_1-C_4) -Halogenalkylsulfonyl" (C_1-C_4) -Alkylsulfinyl" und " (C_1-C_4) -Halogenalkylsulfonyl" (C_1-C_4)-Alkylsulfinyl" und " (C_1-C_4) -Halogenalkylsulfonyl" (C_1-C_4)-Alkylsulfinyl" und " (C_1-C_4) -Alkylsulfinyl" nyl- und -sulfonyl-Reste mit den oben angegebenen Bedeutungen, bei denen eines oder mehrere, im Falle von Fluor gegebenenfalls auch alle Wasserstoffatome des Kohlenwasserstoffrests durch Halogen, bevorzugt Chlor oder Fluor, ersetzt sind; unter dem Ausdruck "(C1-C4)-Alkoxy" eine Alkoxygruppe, deren Kohlenwasserstoffrest die unter dem Aus- 10 druck"(C1-C4)-Alkyl" angegebene Bedeutung hat; unter dem Ausdruck "(C1-C4)-Halogenalkoxy" eine Halogenalkoxygruppe, deren Halogen-Kohlenwasserstoffrest die unter dem Ausdruck " (C_1-C_4) -Halogenalkyl" angegebene Bedeutung hat; unter dem Ausdruck " (C_1-C_4) -Alkoxy- (C_1-C_4) -alkyl" beispielsweise die 1-Methoxyethyl-, 2-Methoxyethyl-, 2-Ethoxyethyi-, Methoxymethyi-, Ethoxymethyi-, 3-Methoxypropyl- oder die 4-Butoxybutyl-Gruppe; unter den Ausdrücken "(C1-C4)-Halogenalkoxy-(C1-C4)-alkyl", "(C1-C4)-Alkoxy-(C1-C4)-halogenalkyl" und (C_1-C_4) -Halogenalkoxy- (C_1-C_4) -halogenalkyl (C_1-C_4) -Alkoxy- (C_1-C_4) -alkyl-Reste mit den oben angegebenen Bedeutungen, bei denen eines oder mehrere, im Falle von Fluor gegebenenfalls auch alle Wasserstoffatome der entsprechenden Kohlenwasserstoff-Anteile durch Halogen, bevorzugt Chlor oder Fluor, ersetzt sind; unter dem Ausdruck " (C_1-C_4) -Alkylthio- (C_1-C_4) -alkyl" beispielsweise Methylthiomethyl, Ethylthiomethyl, 20 Propylthiomethyl, 2-Methylthioethyl, 2-Ethylthioethyl oder 3-Methylthiopropyl; $unter\ dem\ Ausdruck\ "(C_3-C_5)-Cycloalkoxy"\ die\ Cyclopropoxy-, Cyclobutoxy-\ oder\ Cyclopentoxy-Gruppe;$ unter dem Ausdruck "(C3-C8)-Cycloalkyl-(C1-C4)-alkyl" beispielsweise eine Cyclopropylmethyl-, eine Cyclopentylethyl- oder eine Cyclohexylmethyl-Gruppe; unter dem Ausdruck " (C_4-C_8) -Cycloalkenyl- (C_1-C_4) -alkyl" beispielsweise eine Cyclobutenylmethylgruppe, 25 eine Cyclopenten-1-ylethylgruppe oder eine Cyclohexen-3-ylmethylgruppe; unter dem Ausdruck "Phenyl-(C1-C4)-alkyl" vorzugsweise Benzyl; unter dem Ausdruck "Aryl-(C1-C4)-Alkyl" z. B. die Benzyl-, die 2-Phenylethyl-, die 1-Phenylethyl-, die 1-Methyl-1-phenylethylgruppe, die 2-Phenylpropyl-, die 4-Phenylbutylgruppe, die 2-Methyl-2-phenylethylgruppe oder die 1-Methyl- oder 2-Methylnaphthylgruppe; unter dem Ausdruck "Heterocyclyl-(C1-C4)-alkyl" z. B. die Thienylmethyl-, Pyridylmethyl-, Furfuryl-, Tetrahydrofurfuryl-, Tetrahydropyranylmethyl- oder die 1,3-Dioxolan-2-methyl-Gruppe; unter dem Ausdruck "Aryl" ein carbocyclischer aromatischer Rest mit vorzugsweise 6 bis 14, bevorzugt 6 bis 12 C-Atomen, wie beispielsweise Phenyl, Naphthyl oder Biphenyl, vorzugsweise Phenyl; unter dem Ausdruck "Heterocyclyl" ein heteroaromatisches oder heteroaliphatisches Ringsystem, wobei unter 35 "heteroaromatisches Ringsystem" ein Arylrest zu verstehen ist, worin mindestens eine CH-Gruppe durch N ersetzt ist und/oder mindestens zwei benachbarte CH-Gruppen durch S, NH oder O ersetzt sind, z. B. ein Rest von Thiophen, Furan, Pyrrol, Thiazol, Oxazol, Imidazol, Isothiazol, Isoxazol, Pyrazol, 1,3,4-Oxadiazol, 1,3,4-Thiadiazol, 1,3,4-Triazol, 1,2,4-Oxadiazol, 1,2,4-Thiadiazol, 1,2,4-Triazol, 1,2,3-Triazol, 1,2,3,4-Tetrazol, Benzo[b]thiophen, Benzo[b]furan, Indol, Benzo[c]thiophen, Benzo[c]furan, Isoindol, Benzoxazol, Benzothiazol, Benzimidazol, Benzisoxazol, Benzisothiazol, Benzopyrazol, Benzothiadiazol, Benzotriazol, Dibenzofuran, Dibenzothiophen, Carbazol, Pyridin, Pyrazin, Pyrimidin, Pyridazin, 1,3,5-Triazin, 1,2,4-Triazin, 1,2,4,5 Triazin, Chinolin, Isochinolin, Chinoxalin, Chinazolin, Cinnon, 1,8-Naphthyridin, 1,5-Naphthyridin, 1,6-Naphthyridin, 1,7-Naphthyridin, Phthalazin, Pyridopyrimidin, Purin, Pteridin oder 4H-Chinolizin; und der Ausdruck "heteroaliphatisches Ringsystem" einen (C3-C6)-Cycloalkylrest bedeutet, in dem mindestens 45 eine Kohlenstoff-Einheit durch O, S oder eine Gruppe NR¹¹ ersetzt ist, worin R¹¹ Wasserstoff, (C₁-C₄)-Alkyl, (C1-C4)-Alkoxy oder Aryl ist. Die oben abgegebene Erläuterung gilt entsprechend für Homologe bzw. deren abgeleitete Reste. Die vorliegende Erfindung betrifft die Verbindungen der Formel I in Form der freien Base oder eines Salzes, vorzugsweise eines Säureadditionssalzes. Säuren, die zur Salzbildung herangezogen werden können, sind bei-

spielsweise anorganische Säuren, wie Salzsäure, Bromwasserstoffsäure, Salpetersäure, Schwefelsäure, Phosphorsäure oder organische Säuren wie Ameisensäure, Essigsäure, Propionsäure, Malonsäure, Oxalsäure, Fumarsäure, Adipinsäure, Stearinsäure, Ölsäure, Methansulfonsäure, Benzolsulfonsäure oder Toluolsulfonsäure.

Die Verbindungen der Formel I weisen zum Teil ein oder mehrere asymmetrische Kohlenstoffatome oder Stereoisomere an Doppelbindungen auf. Es können daher Enantiomere oder Diastereomere auftreten. Die 55 Erfindung umfaßt sowohl die reinen Isomeren als auch deren Gemische. Die Gemische von Diasteromeren können nach gebräuchlichen Methoden, z. B. durch selektive Kristallisation aus geeigneten Lösungsmitteln oder durch Chromatographie in die Komponenten aufgetrennt werden. Racemate können nach üblichen Methoden in die Enantiomeren aufgetrennt werden, so z. B. durch Salzbildung mit einer optisch aktiven Säure, Trennung der diastereomeren Salze und Freisetzung der reinen Enantiomeren mittels einer Base.

Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung von Verbindungen der Formel I, das dadurch gekennzeichnet ist, daß man eine Verbindung der Formel II,

10

45

60

65

worin A, R¹, R² und R³ die oben unter Formel I angegebenen Bedeutungen haben und L eine Abgangsgruppe-, beispielsweise Halogen, Alkylthio, Alkansulfonyloxy, Arylsulfonyloxy, Alkylsulfonyl oder Arylsulfonyl bedeutet, mit einem Nucleophil der Formel III,

worin X, Y¹, Y², Y³, Z, R⁴, R5, m und n die oben unter Formel I angegebenen Bedeutungen haben, umsetzt und in den so oder auf andere Weise erhaltenen Verbindungen der Formel I, gegebenenfalls den Stickstoff-Heterocyclus oder die Seitenkette(n) R⁵ weiter derivatisiert.

Die oben beschriebene Substitutionsreaktion ist im Prinzip bekannt. Die Abgangsgruppe L ist in weiten Grenzen variierbar und kann beispielsweise ein Halogenatom wie Fluor, Chlor, Brom oder Iod bedeuten oder Alkylthio wie Methyl- oder Ethylthio, oder Alkansulfonyloxy wie Methan-, Trifluormethan- oder Ethansulfonyloxy oder Arylsulfonyloxy, wie Benzolsulfonyloxy oder Toluolsulfonyloxy oder Alkylsulfonyl wie Methyl- oder Ethylsulfonyl oder Arylsulfonyl wie Phenyl- oder Toluolsulfonyl.

Die vorgenannte Reaktion wird in einem Temperaturbereich von 20 bis 150°C, zweckmäßig in Anwesenheit einer Base und gegebenenfalls in einem inerten organischen Lösungsmittel wie z. B. N,N-Dimethylformamid, N,N-Dimethylacetamid, Dimethylsulfoxid, N-Methylpyrrolidin-2-on, Dioxan, Tetrahydrofuran, 4-Methyl-2-pentanon, Methanol, Ethanol, Butanol, Ethylenglykol, Ethylenglykoldimethylether, Toluol, Chlorbenzol oder Xylol durchgeführt. Es können auch Gemische der genannten Lösungsmittel verwendet werden.

Geeignete Basen für den Fall, daß X Sauerstoff bedeutet, sind beispielsweise Alkali- oder Erdalkalimetallcarbonate, -hydrogencarbonate, -amide oder -hydride wie Natriumcarbonat, Natriumhydrogencarbonat, Kaliumcarbonat, Natriumamid oder Natriumhydrid, für den Fall, daß X NH bedeutet, sind dies beispielsweise Alkalioder Erdalkalimetallcarbonate, -hydrogencarbonate, -hydroxide, -amide oder -hydride wie Natriumcarbonat, Natriumhydrogencarbonat, Kaliumcarbonat, Natriumhydroxid, Natriumamid oder Natriumhydrid oder organische Basen wie Triethylamin oder Pyridin. Auch ein zweites Äquivalent eines Amins der Formel III kann als Hilfsbase eingesetzt werden.

Die als Ausgangsprodukte benötigten Verbindungen der Formel II sind größtenteils literaturbekannt oder können analog bekannten Methoden hergestellt werden (vgl. EP 370 391, EP 470 600, DOS 43 31 179, DOS 44 04 702).

Zur Herstellung der Nucleophile der Formel III geht man von geeignet substituierten Ketonen der Formel IV aus und wandelt diese durch reduktive Aminierung (H₂, NH₃, Metallkatalysator oder Ammoniumacetat/Natriumcyanoborhydrid oder Leuckart-Wallach-Reduktion) in die entsprechenden Amine oder durch Reduktion mit einem komplexen Metallhydrid in die entsprechenden Alkohole um.

Weiterhin können die Nucleophile der Formel III mit X = NH durch Reduktion eines Oxims oder Imins oder durch Gabriel-Reaktion eines Alkylhalogenids oder -tosylats oder durch Mitsunobu-Reaktion mit Phthalimid und anschließender Hydrazinolyse hergestellt werden. Ebenso sind diese Nucleophile durch Reaktion eines Alkylhalogenids oder -tosylats mit einem Metallazid und Reduktion des Azids mit einem geeigneten Reduktionsmittel, beispielsweise einem komplexen Metallhydrid, Wasserstoff in Gegenwart eines Hydrierkatalysators oder Phosphin, bzw. Phosphit darstellbar. Zur Herstellung der 2-Aminoindene kommt auch folgender Syntheseweg in Frage: D.E. Nichols, W.K. Brewster, M.P. Johnson, R. Overlender und R.U. Riggs, J. Med. Chem. 1990, 33, 703. 2-Aminochromane sind auch auf anderem Wege erhältlich (vgl. WO 90/12795).

Die Ketone der Formel IV

$$(Z-R^5)_{n}$$
(IV)

sind käuflich, literaturbekannt oder können analog bekannten Verfahren synthetisiert werden:

J.J. Sims, L.H. Selman, M. Cadogan, Org. Synth. 1971, 61, 109;

S. Lee, S.P. Frescas, O.E. Nichols, Synth. Commun. 1995, 2775;

G.D. Johnson, Org. Synth. 1963, IV, 900;

D. Hackle, I.M. Lockhardt, M. Wright, J. Med. Chem. 1969, 12, 277;

R.J. Heffner, M.M. Joullie, Synth. Commun. 1991, 2231;

Krollpfeiffer, Schulze, Chem. Ber. 1923, 56, 1822.

Die Wirkstoffe eignen sich bei guter Pflanzenverträglichkeit und günstiger Warmblütertoxizität zur Bekämpfung von tierischen Schädlingen, insbesondere Insekten, Spinnentieren, Helminthen und Mollusken sowie deren Eier, ganz besonders bevorzugt zur Bekämpfung von Insekten und Spinnentieren, die in der Landwirtschaft, bei der Tierzucht, in Forsten, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen. Sie sind gegen normal sensible und resistente Arten sowie alle oder einzelne Entwicklungsstadien wirksam. Zu den oben erwähnten Schädlingen gehören:

5

20

30

65

Aus der Ordnung der Acarina z. B. Acarus siro, Argas spp., Ornithodoros spp., Dermanyssus gallinae, Eriophyes ribis, Phyllocoptruta oleivora, Boophilus spp., Rhipicephalus spp., Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp., Eotetranychus spp., Oligonychus spp., Eutetranychus spp.

Aus der Ordnung der Isopoda z. B. Oniscus asselus, Armadium vulgar, Porcellio scaber.

Aus der Ordnung der Diplopoda z. B. Blaniulus guttulatus.

Aus der Ordnung der Chilopoda z. B. Geophilus carpophagus, Scutigera spp.

Aus der Ordnung der Symphyla z. B. Scutigerella immaculata.

Aus der Ordnung der Thysanura z. B. Lepisma saccharina.

Aus der Ordnung der Collembola z. B. Onychiurus armatus.

Aus der Ordnung der Orthoptera z. B. Blatta orientalis, Peripaneta americana, Leucophaea madeirae, Blatella germanica, Acheta domesticus, Gryllotalpa spp., Locusta migratoria migratorioides, Melanoplus differentialis, 25 Schistocerca gregaria.

Aus der Ordnung des Isoptera z. B. Reticulitermes spp.

Aus der Ordnung der Anoplura z. B. Phylloera vastatrix, Pemphigus spp., Pediculus humanus corporis, Haematopinus spp., Linognathus spp.

Aus der Ordnung der Mallophaga z. B. Trichodectes pp., Damalinea spp.

Aus der Ordnung der Thysanoptera z. B. Hercinothrips femoralis, Thrips tabaci.

Aus der Ordnung der Heteroptera z. B. Eurygaster spp., Dysdercus intermedius, Piesma quadrata, Cimex lectularius, Rhodnius prolixus, Triatoma spp.

Aus der Ordnung der Homoptera z. B. Aleurodes brassicae, Bemisia tabaci, Trialeurodes vaporariorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Doralis fabae, Doralis pomi, Eriosoma lanigerum, Hyplopterus arundinis, Macrosiphum avenae, Myzus spp., Phorodon humuli, Rhopalosiphum padi, Empoasca spp., Euscelus bilobatus, Nephotettix cincticeps, Lecanium corni, Saissetia oleae, Laodelphax striatellus, Nilaparvata lugens, Aonidiella aurantii, Aspidiotus hederae, Pseudococcus spp., Psylla spp.

Aus der Ordnung der Lepidoptera z. B. Pectinophora gossypiella, Bupalus piniarius, Cheimatobia brumata, Lithocolletis blancardella, Hyponomeuta padella, Plutella maculipennis, Malacosoma neustria, Euproctis chrysorrhoea, Lymantria spp., Bucculatrix thurberiella, Phyllocnistis citrella, Agrotis spp., Euxoa spp., Feltia spp., Earias insulana, Heliothis spp., Laphygma exigua, Mamestra brassicae, Panolis flammea, Prodenia litura, Spodoptera spp., Trichoplusia ni, Carpocapsa pomonella, Pieris spp., Chilo spp., Pyrausta nubilalis, Ephestia kuehniella, Galleria mellonella, Cacoecia podana, Capua reticulana, Choristoneura fumiferana, Clysia ambiguella, Homona magnanima, Tortrix viridana.

Aus der Ordnung der Coleoptera z. B. Anobium punctatum, Rhizopertha dominica, Bruchidius obtectus, Acanthoscelides obtectus, Hylotrupes bajulus, Agelastica alni, Leptinotarsa decemlineata, Phaedon cochleariae, Diabrotica spp., Psylloides chrysocephala, Epilachna varivestis, Atomaria spp., Oryzaephilus surinamensis, Anthonumus spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopolites sordidus, Ceuthorrynchus assimilis, Hypera postica, Dermestes spp., Trogoderma, Anthrenus spp., Attagenus spp., Lyctus spp., Meligethes aeneus, Ptinus spp., Niptus hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor, Agriotes spp., Conoderus spp., Melolontha melolontha, Amphimallon solstitialis, Costelytra zealandica.

Aus der Ordnung der Hymenoptera z. B. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp.

Aus der Ordnung der Diptera z. B. Aedes spp., Anopheles spp., Culex spp., Drosophila melanogaster, Musca spp., Fannia spp., Calliphora erythrocephala, Lucilia spp., Chrysomyia spp., Cuterebra spp., Gastrophilus spp., Hypobosca spp., Stomoxys spp., Oestrus spp., Hypoderma spp., Tabanus spp., Tannia spp., Bibio hortulanus, Oscinella frit, Phorbia spp., Pegomyia hyoscyami, Ceratitis capitata, Dacus oleae, Tipula paludosa.

Aus der Ordnung der Siphonaptera z. B. Xenopsylla cheopsis, Ceratophyllus spp.

Aus der Ordnung der Arachnida z. B. Scorpio maurus, Latrodectus mactans.

Aus der Klasse der Helminthen z. B. Haemonchus, Trichostrongulus, Ostertagia, Cooperia, Chabertia, Strongyloides, Oesophagostomum, Hyostrongulus, Ancylostoma, Ascaris und Heterakis sowie Fasciola.

Aus der Klasse der Gastropoda z. B. Deroceras spp., Arion spp., Lymnaea spp., Galba spp., Succinea spp., Biomphalaria spp., Bulinus spp., Oncomelania spp.

Aus der Klasse der Bivalva z. B. Dreissena spp.

Zu den pflanzenparasitären Nematoden, die erfindungsgemäß bekämpft werden können, gehören beispielsweise die wurzelparasitären Bodennematoden wie z. B. solche der Gattungen Meloidogyne (Wurzelgallennematoden, wie Meloidogyne incognita, Meloidogyne hapla und Meloidogyne javanica), Heterodera und Globodera

(zystenbildende Nematoden, wie Globodera rostochiensis, Globodera pallida, Heterodera trifolii) sowie der Gattungen Radopholus wie Radopholus similis, Pratylenchus wie Pratyglenchus neglectus, Pratylenchus penetrans und Pratylenchus curvitatus;

Tylenchulus wie Tylenchulus semipenetrans, Tylenchorhynchus, wie Tylenchorhynchus dubius und Tylenchorhynchus claytoni, Rotylenchus wie Rotylenchus robustus, Heliocotylenchus wie Haliocotylenchus multicinctus, Belonoaimus wie Belonoaimus longicaudatus, Longidorus wie Longidorus elongatus, Trichodorus wie Trichodorus primitivus und Xiphinema wie Xiphinema index.

Ferner lassen sich mit den erfindungsgemäßen Verbindungen die Nematodengattungen Ditylenchus (Stengelparasiten, wie Ditylenchus dipsaci und Ditylenchus destructor), Aphelenchoides (Blattnematoden, wie Aphelenchoides ritzemabosi) und Anguina (Blütennematoden, wie Anguina tritici) bekämpfen.

Die Erfindung betrifft auch Mittel, insbesondere insektizide, akarizide und ovizide Mittel, die die Verbindungen der Formel I neben geeigneten Formulierungshilfsmitteln enthalten.

Die erfindungsgemäßen Mittel enthalten die Wirkstoffe der allgemeinen Formel I in einem Konzentrationsbereich von 0,00000001 bis 95 Gew.-%, vorzugsweise von 1 bis 95 Gew.-%.

Sie können auf verschiedene Art formuliert werden, je nachdem wie es durch die biologischen und/oder chemisch-physikalischen Parameter vorgegeben ist. Als Formulierungsmöglichkeiten kommen daher in Frage: Spritzpulver (WP), emulgierbare Konzentrate (EC), wäßrige Lösungen (SL), Emulsionen, versprühbare Lösungen, Dispersionen auf Öl- oder Wasserbasis (SC), Suspoemulsionen (SE), Stäubemittel (DP), Beizmittel, Granulate in Form von Mikro-, Sprüh-, Aufzugs- und Adsorptionsgranulaten, wasserdispergierbare Granulate (WG), ULV-Formulierungen, Mikrokapseln, Wachse oder Köder.

Diese einzelnen Formulierungstypen sind im Prinzip bekannt und werden u. a. beschrieben in:

Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser Verlag München, 4. Aufl. 1986; van Falkenberg, "Pesticides Formulations", Marcel Dekker N.Y., 2nd Ed. 1972—73; K. Martens, "Spray Drying Handbook", 3rd Ed. 1979, G. Goodwin Ltd. London.

Die notwendigen Formulierungshilfsmittel wie Inertmaterialien, Tenside, Lösungsmittel und weitere Zusatzstoffe sind ebenfalls bekannt und werden beispielsweise beschrieben in:

Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell N.J.; H. v. Olphen, "Introduction to Clay Colloid Chemistry", 2nd Ed., J. Wiley & Sons, N.Y.; Marsden, "Solvents Guide", 2nd Ed., Interscience, N.Y. 1950; McCutcheon's, "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J.; Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y. 1964; Schönfeldt, "Grenzflächenaktive Äthylenoxidaddukte", Wiss. Verlagsgesell., Stuttgart 1967; Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser Verlag München, 4. Aufl. 1986.

Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix. Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs- oder Inertstoff noch Netzmittel, z.B. polyoxethylierte Alkylphenole, polyoxethylierte Fettalkohole, Alkyl- oder Alkylphenol-sulfonate und Dispergiermittel, z.B. ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium enthalten.

Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel, z. B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen unter Zusatz von einem oder mehreren Emulgatoren hergestellt. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsäure Calcium-Salze wie Cadodecylbenzol-sulfonat oder nichtionische Emulgatoren wie Fettsäurepolyglykolester, Alkylarylpolyglykolether, Fettalkoholpolyglykolether, Propylenoxid-Ethylenoxid-Kondensationsprodukte, Alkylpolyether, Sorbitanfettsäureester, Polyoxyethylensorbitan-Fettsäureester oder Polyoxethylensorbitester.

Stäubemittel erhält man durch Vermahlen des Wirkstoffes mit fein verteilten festen Stoffen, z. B. Talkum, natürlichen Tonen wie Kaolin, Bentonit, Pyrophillit oder Diatomeenerde. Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z. B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise — gewünschtenfalls in Mischung mit Düngemitteln — granuliert werden.

In Spritzpulvern beträgt die Wirkstoffkonzentration z.B. etwa 10 bis 90 Gew.-% der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration etwa 5 bis 80 Gew.-% betragen. Staubförmige Formulierungen enthalten meistens 5 bis 20 Gew.-% an Wirkstoff, versprühbare Lösungen etwa 2 bis 20 Gew.-%. Bei Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche Granulierhilfsmittel, Füllstoffe usw. verwendet werden.

Daneben enthalten die genannten Wirkstofformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Lösungsmittel, Füll- oder Trägerstoffe.

Zur Anwendung werden die in handelsüblicher Form vorliegenden Konzentrate gegebenenfalls in üblicher Weise verdünnt, z. B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und teilweise auch bei Mikrogranulaten mittels Wasser. Staubförmige und granulierte Zubereitungen sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt.

Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit u. a. variiert die erforderliche Aufwandmenge. Sie kann innerhalb weiter Grenzen schwanken, z. B. zwischen 0,0005 und 10,0 kg/ha oder mehr Aktivsubstanz, vorzugsweise liegt sie jedoch zwischen 0,001 und 5 kg/ha.

Die erfindungsgemäßen Wirkstoffe können in ihren handelsüblichen Formulierungen sowie in den aus diesen

Formulierungen bereiteten Anwendungsformen in Mischungen mit anderen Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Akariziden, Nematiziden, Fungiziden, Oviziden, wachstumsregulierenden Stoffen oder Herbiziden vorliegen.

Zu den Schädlingsbekämpfungsmitteln zählen beispielsweise Phosphorsäureester, Carbamate, Carbonsäureester, Formamidine, Zinnverbindungen, durch Mikroorganismen hergestellte Stoffe u. a.

5

25

35

50

Bevorzugte Mischungspartner sind

1. aus der Gruppe der Phosphorverbindungen

Acephate, Azamethiphos, Azinphosethyl, Azinphosmethyl, Bromophos, Bromophosethyl, Chlorfenvinphos, Chlormephos, Chlorpyrifos, Chlorpyrifosmethyl, Demeton, Demeton-S-methyl, Demeton-S-methylsulfphone, Dialifos, Diazinon, Dichlorvos, Dicrotophos, O,O-1,2,2,2-Tetrachlorethylphosphorthioate (SD 208 304), Dimethoate, Disulfoton, EPN, Ethion, Ethoprophos, Etrimfos, Famphur, Fenamiphos, Fenitriothion, Fensulfothion, Fenthion, Fonofos, Formothion, Heptenophos, Isozophos, Isothioate, Isoxathion, Malathion, Methacrifos, Methamidophos, Methidathion, Salithion, Mevinphos, Monocrotophos, Naled, Omethoate, Oxydemeton-methyl, Parathion, Parathionmethyl, Phenthoate, Phorate, Phosalone, Phosfolan, Phosmet, Phosphamidon, Phoxim, Pirimiphos, Primiphos-ethyl, Pirimiphos-methyl, Profenofos, Propaphos, Proetamphos, Prothiofos, Pyraclofos, Pyridapenthion, Quinalphos, Sulprofos, Temephos, Terbufos, Tetrachlorvinphos, Thiometon, Triazophos, Trichlorphon, Vamidothion;

2. aus der Gruppe der Carbamate

Aldicarb, 2-sec.-Butylphenylmethylcarbamate (BPMC), Carbaryl, Carbofuran, Carbosulfan, Cloethocarb, 20 Benfuracarb, Ethiofencarb, Furathiocarb, Isoprocarb, Methomyl, 5-Methyl-m-cumenylbutyryl(methyl)carbamate, Oxamyl, Pirimicarb, Propoxur, Thiodicarb, Thiofanox, Ethyl-4,6,9-triaza-4-benzyl-6,10-dimethyl-8-oxa-7-oxo-5,11-dithia-9-dodecenoate (OK 135), 1-Methylthio(ethylideneamino)-N-methyl-N-(morpholinothio)carbamate (UC 51717);

3. aus der Gruppe der Carbonsäureester

Allethrin, Alphametrin, 5-Benzyl-3-furylmethyl-(E)-(1R)-cis, 2,2-di-methyl-3-(2-oxothiolan-3-ylidenemethyl)cyclopropanecarboxylate, Bioallethrin, Bioallethrin((S)-cyclopentylisomer), Bioresmethrin, Biphenate, (RS)-1-Cyano- 1-(6-phenoxy-2-pyridyl)methyl-(1RS)-trans-3-(4-tert.butylphenyl)-2,2-dimethylcyclopropanecarboxylate (NCI 85193), Cycloprothrin, Cyhalothrin, Cythithrin, Cypermethrin, Cyphenothrin, Deltamethrin, Empenthrin, Esfenvalerate, Fenfluthrin, Fenpropathrin, Fenvalerate, Flucythrinate, Flumethrin, Fluvalinate (D-Isomer), Permethrin, Pheothrin ((R)-Isomer), d-Pralethrin, Pyrethrine (natürliche Produkte), Resmethrin, Tefluthrin, Tralomethrin;

4. aus der Gruppe der Amidine

Amitraz, Chlordimeform;

5. aus der Gruppe der Zinnverbindungen

Cyhexatin, Fenbutatinoxide;

6. Sonstige

Abamectin, Bacillus thuringiensis, Bensultap, Binapacryl, Bromopropylate, Buprofezin, Camphechlor, Cartap, Chlorobenzilate, Chlorfluazuron, 2-(4-Chlorphenyl)-4,5-diphenylthiophen (UBI-T 930), Chlorfentezine, Cyclopropancarbonsäure-(2-naphthylmethyl)ester (Rol 2-0470), Cyromazin, N-(3,5-Dichlor-4-(1,1,2,3,3,3-hexafluor-1-propyloxy)phenyl)carbamoyl)-2-chlorbenzcarboximidsäureethylester, DDT, Dicofol, N-(N-(3,5-Di-chlor-4-(1,1,2,2-tetrafluorethoxy)phenylamino)carbonyl)-2,6-difluorbenzamid (XRD 473), Diflubenzuron, N-(2,3-Dihydro-3-methyl-1,3-thiazol-2-ylidene)-2,4-xylidine, Dinobuton, Dinocap, Endosulfan, Ethofenprox, (4-Ethoxyphenyl)(dimethyl)(3-(3-phenoxyphenyl)propyl)silan, (4-Ethoxyphenyl) (3-(4-fluoro-3-phenoxyphenyl)propyl)dimethylsilan, Fenoxycarb, 2-Fluoro-5-(4-(4-ethoxyphenyl)-4-methyl-1-pentyl)diphenylether (MTI 800), Granulose- und Kernpolyederviren, Fenthiocarb, Flubenzimine, Flucycloxuron, Flufenoxuron, Gamma-HCH, Hexythiazox, Hydramethylnon (AC 217300), Ivermectin, 2-Nitromethyl-4,5-dihydro-6H-thiazin (DS 52618), 2-Nitromethyl-3,4-dihydrothiazol (SD 35651), 2-Nitromethylene-1,2-thiazinan-3-ylcarbamaldehyde (WL 108477), Propargite, Teflubenzuron, Tetradifon, Tetrasul, Thiocyclam, Trifumuron, Imidacloprid.

Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann von 0,00000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,00001 und 1 Gew.-% liegen.

Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weise.

Die erfindungsgemäßen Wirkstoffe eignen sich auch zur Bekämpfung von Endo- und Ektoparasiten auf dem 55 veterinärmedizinischen Gebiet bzw. auf dem Gebiet der Tierhaltung.

Die Anwendung der erfindungsgemäßen Wirkstoffe geschieht hier in bekannter Weise wie z. B. durch orale Anwendung, beispielsweise in Form von Tabletten, Kapseln, Tränken, Granulaten, durch dermale Anwendung, beispielsweise durch Tauchen (Dippen), Sprühen (Sprayen), Aufgießen (pour-on and spot-on) und Einpudern sowie durch parenterale Anwendung, beispielsweise durch Injektion, z. B. s.c.

Die erfindungsgemäßen neuen Verbindungen der Formel I können demgemäß auch besonders vorteilhaft in der Viehhaltung (z. B. Rinder, Schafe, Schweine und Geflügel wie Hühner, Gänse usw.) eingesetzt werden. In einer bevorzugten Ausführungsform der Erfindung werden den Tieren die neuen Verbindungen, gegebenenfalls in geeigneten Formulierungen (vgl. oben) und gegebenenfalls mit dem Trinkwasser oder Futter oral verabreicht. Da eine Ausscheidung im Kot in wirksamer Weise erfolgt, läßt sich auf diese Weise sehr einfach die Entwicklung von Insekten im Kot der Tiere verhindern. Die jeweils geeigneten Dosierungen und Formulierungen sind insbesondere von der Art und dem Entwicklungsstadium der Nutztiere und auch vom Befallsdruck abhängig und lassen sich nach den üblichen Methoden leicht ermitteln und festlegen. Die neuen Verbindungen können bei

Rindern z. B. in Dosierungen von 0,01 bis 1 mg/kg Körpergewicht eingesetzt werden.

Die erfindungsgemäßen Verbindungen der Formel I zeichnen sich auch durch eine hervorragende fungizide Wirkung aus. Bereits in das pflanzliche Gewebe eingedrungene pilzliche Krankheitserreger lassen sich erfolgreich kurativ bekämpfen. Dies ist besonders wichtig und vorteilhaft bei solchen Pilzkrankheiten, die nach eingetretener Infektion mit den sonst üblichen Fungiziden nicht mehr wirksam bekämpft werden können. Das Wirkungsspektrum der beanspruchten Verbindungen erfaßt verschiedene wirtschaftlich bedeutende, phytopathogener Pilze, wie z. B. Plasmopara viticola, Phytophthora infestans, Erysiphe graminis, Piricularia oryzae, Pyrenophora teres, Leptosphaerea nodorum und Pellikularia sasakii und Puccinia recondita.

Die erfindungsgemäßen Verbindungen eignen sich daneben auch für den Einsatz in technischen Bereichen, beispielsweise als Holzschutzmittel, als Konservierungsmittel in Anstrichfarben, in Kühlschmiermitteln für die Metallbearbeitung oder als Konservierungsmittel in Bohr- und Schneidölen.

Die erfindungsgemäßen Wirkstoffe können in ihren handelsüblichen Formulierungen entweder allein oder in Kombination mit weiteren, literaturbekannten Fungiziden angewendet werden.

Als literaturbekannte Fungizide, die erfindungsgemäß mit den Verbindungen der Formel I kombiniert werden können, sind z. B. folgende Produkte zu nennen: Aldimorph, Andoprim, Anilazine, BAS 480F, BAS 450F, BAS 490F, Benalaxyl, Benodanil, Benomyl, Binapacryl, Bitertanol, Bromuconazol, Buthiobate, Captafol, Captan, Carbendazim, Carboxin, CGA 173506, Cyprodinil, Cyprofuram, Dichlofluanid, Dichlomezin, Diclobutrazol, Diethofencarb, Difenconazol (CGA 169374), Difluconazole, Dimethirimol, Dimethomorph, Diniconazole, Dinocap, Dithianon, Dodemorph, Dodine, Edifenfos, Ethirimol, Etridiazol, Epoxiconazol, Fenbuconazol, Fenarimol, Fenfuram, Fenpiclonil, Fenpropidin, Fenpropimorph, Fentinacetate, Fentihydroxide, Ferimzone (TF164), Fluazinam, Fluobenzimine, Fludioxinil, Fluquinconazole, Fluorimide, Flusilazole, Flutolanil, Flutriafol, Folpet, Fosetylaluminium, Fuberidazole, Fulsulfamide (MT-F 651), Furalaxyl, Furconazol, Furmecyclox, Guazatine, Hexaconazole, ICI A5504, Imazalil, Imibenconazole, Iprobenfos, Iprodione, Isoprothiolane, KNF 317, Kupferverbindungen wie Cu-oxychlorid, Oxine-Cu, Cu-oxide, Mancozeb, Maneb, Mepanipyrim (KIF 3535), Metconazol, Mepronil, Metalaxyl, Methasulfocarb, Methfuroxam, MON 24000, Myclobutanil, Nabam, Nitrothalidopropyl, Nuarimol, Ofurace, Oxadixyl, Oxycarboxin, Penconazol, Pencycuron, PP 969, Probenazole, Propineb, Prochloraz, Procymidon, Propamocarb, Propiconazol, Prothiocarb, Pyracarbolid, Pyrazophos, Pyrifenox, Pyrimethanil, Pyroquilon, Rabenzazole, RH7 592, Schwefel, Tebuconazole, TF 167, Thiabendazole, Thicyofen, Thiofanatemethyl, Thiram, Tolclofos-methyl, Tolylfluanid, Triadimefon, Triadimenol, Triazoxid, Tricyclazole, Tridemorph, Triflumizol, Triforine, Trifionazol, Validamycin, Vinchlozolin, XRD 563, Zineb, Natriumdodecylsulfonate, Natrium-dodecyl-sulfat, Natrium-C13/C15-alkohol-ethersulfonat, Natrium-cetostearyl-phosphatester, Dioctyl-natrium-sulfosuccinat, Natrium-isopropyl-naphthalenesulfonat, Natriummethylenebisnaphthalene-sulfonat, Cetyl-trimethyl-ammoniumchlorid, Salze von langkettigen primären, sekundären oder tertiären Aminen, Alkyl-propyleneamine, Laurylpyrimidiniumbromid, ethoxylierte quarternierte Fettamine, Alkyl-dimethylbenzyl-ammoniumchlorid und 1-Hydroxyethyl-2-alkyl-imidazolin.

Die oben genannten Kombinationspartner stellen bekannte Wirkstoffe dar, die zum großen Teil in Ch.R Worthing, S.B. Walker, The Pesticide Manual, 7. Auflage (1983), British Crop Protection Council beschrieben sind. Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann in weiten Bereichen variieren, die Wirkstoffkonzentration der Anwendungsformen kann von 0,0001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,0001 und 1 Gew.-% liegen. Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weise.

Nachfolgende Beispiele dienen zur Erläuterung der Erfindung, ohne daß diese darauf beschränkt wäre.

A. Formulierungsbeispiele

a) Fin Stäuhemittel wurde erhalten indem man 10 Gew. Teile Wirkstoff und 9

- a) Ein Stäubemittel wurde erhalten, indem man 10 Gew.-Teile Wirkstoff und 90 Gew.-Teile Talkum als Inertstoff mischte und in einer Schlagmühle zerkleinerte.
- b) Ein in Wasser leicht dispergierbares, benetzbares Pulver wurde erhalten, indem man 25 Gew.-Teile Wirkstoff, 65 Gew.-Teile kaolinhaltigen Quarz als Inertstoff, 10 Gew.-Teile ligninsulfonsaures Kalium und 1 Gew.-Teil oleoylmethyltaurinsaures Natrium als Netz- und Dispergiermittel mischte und in einer Stiftmühle mahlte.
- c) Ein in Wasser leicht dispergierbares Dispersionskonzentrat stellte man her, indem man 40 Gew.-teile Wirkstoff mit 7 Gew.-Teilen eines Sulfobernsteinsäurehalbesters, 2 Gew.-Teilen eines Ligninsulfonsäure-Natriumsalzes und 51 Gew.-Teilen Wasser mischte und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlte.
- d) Ein emulgierbares Konzentrat ließ sich aus 15 Gew.-Teilen Wirkstoff, 75 Gew.-Teilen Cyclohexan als Lösungsmittel und 10 Gew.-Teilen oxethyliertem Nonylphenol (10 EO) als Emulgator herstellen.
- e) Ein Granulat ließ sich aus 2 bis 15 Gew.-Teilen Wirkstoff und einem inerten Granulatträgermaterial wie Attapulgit, Bimsgranulat und/oder Quarzsand herstellen. Zweckmäßigerweise verwendete man eine Suspension des Spritzpulvers aus Beispiel b) mit einem Feststoffanteil von 30% und spritzte diese auf die Oberfläche eines Attapulgitgranulats, trocknete und vermischte innig. Dabei betrug der Gewichtsanteil des Spritzpulvers ca. 5% und der des inerten Trägermaterials ca. 95% des fertigen Granulats.

45

50

55

B. Herstellungsbeispiele

Beispiel A

15

25

45

65

4-(6-Ethoxy-tetralin-2-yloxy)chinazolin

Zu einer Suspension von 400 mg NaH (80%ig, 13,3 mmol in 40 ml THF gab man unter Eiskühlung 2,57 g (13,3 mmol) 6-Ethoxy-tetralin-2-ol in 5 ml THF. Anschließend erhitzte man 1 h unter Rückfluß, kühlte auf 20 Raumtemperatur ab und gab 2,0 g (12,2 mmol) 4-Chlorchinazolin zu. Man erhitzte 24 h unter Rückfluß, verdünnte nach dem Abkühlen mit Ether und wusch mit gesättigtem Natriumhydrogencarbonat und gesättigter Kochsalzlösung. Nach Trocknen und Einengen der organischen Phase wurde der Rückstand mit Petrolether/Essigester (9:1, 8:2) an Kieselgel chromatographiert. Man erhielt 2,39 g (61% d.Th.) farblose Kristalle (Fp. 115-117°C).

Herstellung des 6-Ethoxy-tetralin-2-ols

Zu 9.8 g (51.4 mmol) 6-Ethoxy-2-tetralon in 150 ml Ethanol gab man bei 0°C portionsweise 1,97 g (52 mmol) Natriumborhydrid. Man ließ 1 h bei 0°C rühren, verdünnte mit 200 ml 2N Natronlauge und extrahierte die 30 Lösung mit Dichlormethan. Die vereinigten organischen Phasen wurden mit gesättigter Kochsalzlösung gewaschen, getrocknet und eingeengt. Man erhielt 9,8 g eines Öls, das ohne Reinigung weiter umgesetzt wurde.

Herstellung des 6-Ethoxy-2-tetralons

Zu 53,4 g (0,4 mol) Aluminiumchlorid in 800 ml Dichlormethan wurden bei -78°C 39,1 g (0,20 mol) 4-Ethoxyphenylessigsäurechlorid in 200 ml Dichlormethan innerhalb 1 h zugetropft. Anschließend leitete man innerhalb 15 min einen kräftigen Strom von Ethylen ein, ließ auf Raumtemperatur erwärmen und rührte 3 h nach. Die dunkelrote Lösung wurde auf 0°C gekühlt und vorsichtig mit 300 ml Eiswasser versetzt. Nach Phasentrennung wurde die organische Phase mit 2N HCl (3 x) und ges. Natriumhydrogencarbonat-Lösung gewaschen, getrocknet und einrotiert. Nach säulenchromatographischer Reinigung mit Petrolether/ Essigester (9:1,8:2) erhielt man 20.9 g (56% d.Th.) eines gelben Sirups.

Herstellung des 4-Ethoxyphenylessigsäurechlorids

50 g (0,28 mol) 4-Ethoxyphenylessigsäure wurden mit 50 ml Thionylchlorid versetzt und 24 h bei Raumtemperatur gerührt. Man entfernte überschüssiges Thionylchlorid im Vakuum und destillierte den Rückstand im Hochvakuum. Man erhielt 39 g (71% d.Th.) eines Öls (Sdp. 110°C/53,3 Pa).

5-Chlor-6-ethyl-4-(6-methoxy-tetralin-2-ylamino)pyrimidin

1,5 g (8,5 mmol) 4,5-Dichlor-6-ethylpyrimidin, 1,5 g (8,5 mmol) 2-Amino-6-methoxytetralin und 2 ml Triethylamin wurden 10 h bei 85°C erhitzt. Anschließend verdünnte man mit Wasser und Ether, trennte die Phasen und wusch die organische mit Wasser und ges. NaCl-Lösung. Nach Trocknen und Einengen wurde der Rückstand säulenchromatographisch mit Petrolether/Essigester (8:1) gereinigt. Man erhielt 2,4 g (89% d.Th.) farblose Kristalle (Smp. 70-71°C).

Herstellung des 2-Amino-6-methoxytetralins

Zu einer Suspension von 1,7 g (44 mmol) Lithiumaluminiumhydrid in 70 ml THF tropfte man bei 0°C 6,0 g (30 mmol) 2-Azido-6-methoxytetralin in 15 ml TMF innerhalb von 15 min zu. Man rührte 30 min bei Raumtemperatur und erhitzte 1 h auf Rückfluß. Nach Abkühlen auf 0°C zerstörte man überschüssiges Alanat mit Isopropanol, verdünnte mit Ether und wusch die Mischung mit ges. Tartrat- und ges. NaCl-Lösung. Nach Trocknen und Einengen der organischen Phase wurde das erhaltene farblose Öl direkt weiter eingesetzt. Ausbeute 5,1 g (96% d.Th.).

Herstellung des 2-Azido-6-methoxytetralins

8,0 g (31 mmol) 2-Methansulfonyloxy-6-methoxytetralin und 2,6 g (40 mmol) Natriumazid wurden in 100 ml DMF 3 h auf 90°C erhitzt. Nach dem Abkühlen verdünnt man mit Ether, wusch mit Wasser und ges. NaCl-Lösung trocknete und engte im Vakuum ein. Man erhielt 6 g (95% d.Th.) eines farblosen Öls, das direkt weiter umgesetzt wurde.

Herstellung des 2-Methansulfonyloxy-6-methoxytetralins

Zu einer Lösung von 5,4 g (30 mmol) 6-Methoxytetralin-2-ol und 4,6 g (45 mmol) Triethylamin in 60 ml Dichlormethan gab man bei 0°C tropfenweise 4,5 g (39 mmol) Methansulfonylchlorid zu. Man rührte 1 h bei 0°C und wusch dann die Mischung mit Wasser, 2N HCl, ges. NaHCO₃- und ges. NaCl-Lösung. Nach Trocknen und Einengen erhielt man 8 g (97% d.Th.) Mesylat, das ohne Reinigung weiter umgesetzt wurde.

Beispiel C

5-Chlor-6-ethyl-4-(6-hydroxy-tetralin-2-ylamino)pyrimidin

Eine Lösung von 5,8 g (18 mmol) 5-Chlor-6-ethyl-4-(6-methoxytetralin-2-ylamino)pyrimidin in 22 ml 48%iger HBr und 4,5 ml Essigsäure wurde 4 h auf 110°C erhitzt. Nach Abkühlen stellte man mit Natronlauge auf pH = 8 ein und extrahierte die Mischung mit Dichlormethan. Nach Trocknen, Einengen und Waschen mit Toluol erhielt man 4,8 g (88% d.Th.) farblose Kristalle (Smp. 178°C).

50 Beispiel D

5

15

20

65

5-Chlor-6-ethyl-4-(6-Trifluormethylsulfonyloxy-tetralin-2-ylamino) pyrimidin

Zu einer Lösung von 1,2 g (4,0 mmol) 5-Chlor-6-ethyl-4-(6-hydroxy-tetralin-2-ylamino)pyrimidin in 5 ml Pyri-

din gab man bei 0°C 1,55 g (5,5 mmol) Trifluormethansulfonsäureanhydrid. Man rührte 2h bei Raumtemperatur, verdünnte mit Dichlormethan und wusch mit ges. NaHCO₃-Lösung. Nach Trocknen, Einengen und säulenchromatographischer Reinigung mit Petrolether/Essigester (7:3) erhielt man 1,0 g (57% d.Th.) eines farblosen Öls.

$$\begin{array}{c|c}
X & Z \\
R & 3 \\
R & 4
\end{array}$$
10

Bsp.	R ²	R ³	Х	Z	R ⁴	R ⁵	Fρ
Nr.							[°C]
1	C ₂ H ₅	CI	NH	CH ₂	Н	Н	
2	CH ₃ OCH ₂	OCH ₃	NH	CH ₂	Н	Н	135-137
3	C ₂ H ₅	CI	0.	CH ₂	Н	Н	
4	CH ₃ OCH ₂	OCH ₃	0	CH ₂	Н	Н	
5	C ₂ H ₅	CI	NH	0	Н	Н	
6	CH ₃ OCH ₂	OCH ₃	NH	0	Н	Н	152-153
7	CH ₃ OCH ₂	OCH ₃	NH	S	Н	Н	142-144
8	C ₂ H ₅	CI	0	S	Н	Н	
9	C ₂ H ₅	CI	NH	s [·]	CH ₃	CH3	135
10	C ₂ H ₅	CI	0	S	CH ₃	CH ₃	

$$\mathbb{R}^3$$
 \mathbb{R}^3
 \mathbb{R}^3

20	Bsp.	R ²	R ³	x	R ⁴	R ⁵	Fp
	Nr.						[°C]
	11	C ₂ H ₅	CI	0	Н	Н	85
25	12	C ₂ H ₅	CI	NH	Н	Н	
	13	CH ₃ OCH ₂	OCH ₃	0	Н	Н	48
30	14	CH ₃ OCH ₂	OCH ₃	NH	Н	Н	101-103
	15	(CH	0	Н	Н	59	
	16	(CH) 4	NH	Н	Н	
35	17	(CH ₂	2)4	0	Н	Н	110
	18	(CH ₂) ₄		NH	Н	Н	
40	19	C ₂ H ₅	CI	NH	OCH ₃	Н	
	20	(СН	NH	осн _з	н		
_	21	(СН)4	0	OCH ₃	н	
45	22	C ₂ H ₅	CI	NH	OC ₂ H ₅	Н	
	23	C ₂ H ₅	Ci	NH	00	H ₂ O	

Bsp.	R ²	R ³	Х	R ⁴	R ⁵	Fp
Nr.						[°C]
24	C ₂ H ₅	CI	0	Н	Н	ÖI
25	C ₂ H ₅	Cl	NH	Н	Н	
26	CH ₃ OCH ₂	оснз	0	Н	Н	Öl
27	CH ₃ OCH ₂	оснз	NH	Н	Н	
28	(CH) ₄		0	н	Н	119-121
29	(CH) ₄		NH	Н	H	
30	(CH ₂) ₄		0	Н	Н	Öl
31	(CH ₂) ₄		NH	Н	Η	
32	C ₂ H ₅	CI	0	оснз	Н	
33	C ₂ H ₅	CI	NH	OCH ₃	Н	
34	(CH) ₄		0	OCH ₃	Н	
35	C ₂ H ₅	CI	NH	OC ₂ H ₅	Н	
36	C ₂ H ₅	CI	NH	oc	H ₂ O	

$$R^3$$
 R^4
 R^5

•

20	Bsp.	R ²	R ³	Х	R ⁴	R ⁵	R ⁶	Fp
	Nr.							[°C]
	37	C ₂ H ₅	CI	0	Н	Н	Н	ÖI
25	38	C ₂ H ₅	CI	NH	Н	Н	Н	80-82
	39	CH ₃ OCH ₂	OCH ₃	0	Н	Н	Н	ŌΙ
30	40	CH ₃ OCH ₂	OCH ₃	NH	Н	Н	Н	115-116
	41	(CH	0	Н	н	Н	75	
35	42	(СН	NH	Н	н	Н		
	43	(CH ₂) ₄		0	Н	Н	Н	Öl
	44	(CH ₂) ₄		NH	Н	Н	Н	
40	45	C ₂ H ₅	ÇI	0	Н	Н	OCH ₃	45-48
	46	C ₂ H ₅	CI	NH	Н	Н	OCH ₃	70-71
	47	CH ₃ OCH ₂	OCH ₃	0	Н	Н	OCH ₃	Ōl
45	48	CH ₃ OCH ₂	OCH ₃	NH	Н	Н	OCH ₃	lÖ
	49	(CH) ₄	0	Н	н	OCH ₃	114-115
50	50	(CH)4	NH	Н	Н	OCH ₃	165-166
	51	(CH ₂) ₄		0	Н	Н	OCH ₃	87-88
	52	C ₂ H ₅	CI	0	Н	Н	OC ₂ H ₅	64-67
55	53	C ₂ H ₅	CI	NH	Н	• н	OC ₂ H ₅	100

Bsp.	R ²	R ³	Х	R ⁴	R ⁵	R ⁶	Fp	
Nr.							[°C]	5
54	CH ₃ OCH ₂	OCH ₃	0	Н	н	OC ₂ H ₅	ÕΙ	
55	CH ₃ OCH ₂	OCH ₃	NH	Н	Н	OC ₂ H ₅	ÕI	
56	(CH)4	0	Н	Н	OC ₂ H ₅	115-117	10
57	(CH)4	NH	Н	Н	OC ₂ H ₅	Н	
58	(CH ₂)4	0	Н	Н	OC ₂ H ₅	H	
59	C ₂ H ₅	CI	0	Н	Н	ОН		15
60	C ₂ H ₅	CI	NH	Н	Н	ОН	178	
61	(CH		0	Н	Н	ОН		20
62	C ₂ H ₅	CI	0	Н	Н	0-i-C ₃ H ₇		
63	C ₂ H ₅	CI	NH	Н	Н	O-i-C ₃ H ₇	ÕΙ	
64	C ₂ H ₅	CI	0	Н	Н	OCO ₂ C ₂ H ₅		25
65	C ₂ H ₅	CI	NH	Н	Н	OCO ₂ C ₂ H ₅	96	
66	C ₂ H ₅	CI	0	Н	Н	OCON(CH ₃) ₂		30
67	C ₂ H ₅	CI	NH	Н	Н	OCON(CH ₃) ₂	129	
68	C ₂ H ₅	CI	0	Н	Н	OCONHC ₆ H ₅		25
69	C ₂ H ₅	CI	NH	Н	Н	OCONHC ₆ H ₅	140	35
70	C ₂ H ₅	CI	0	Н	Н	0S0 ₂ CH ₃		
71	C ₂ H ₅	CI	NH	Н	Η	OSO ₂ CH ₃	ŎΙ	40
72	C ₂ H ₅	CI	0	Н	Н	0S0 ₂ C ₃ H ₇		
73	C ₂ H ₅	CI	NH	Н	Н	0S0 ₂ C ₃ H ₇	Õ!	45
74	C ₂ H ₅	CI	0	H.	Н	OSO ₂ CF ₃		
75	C ₂ H ₅	CI	NH	Н	H	OSO ₂ CF ₃	ÕI]
76	C ₂ H ₅	CI	NH	Н	Н	CI	125-126	50
77	CH ₃ OCH ₂	OCH ₃	NH	Н	Н	CI	131-132	
78	CH ₃ OCH ₂	OCH ₃	0	Н	Н	CI		55
79	C ₂ H ₅	CI	NH	Н	OCH ₃	Н		
80	C ₂ H ₅	CI	NH	OCH ₃	Н	Н		
81	C ₂ H ₅	CI	NH	Н	Н	CH ₃		60

5

10

15

20	Bsp.	R ²	R ³	R ⁴	R ⁵	R ⁶	R ⁷	Fp
	Nr.							[°C]
	82	C ₂ H ₅	CI	н	Н	Н	Н	ÕΙ
25	83	CH ₃ OCH ₂	OCH ₃	Н	Н	Н	Н	111
	84	(CH	4	Н	Н	H	н	231
30	85	C ₂ H ₅	CI	Н	CH3	Н	Н	73
	86	C ₂ H ₅	CI	OCH ₃	CH ₃	Н	Н	
	87	C ₂ H ₅	CI	OCH ₃	Н	OCH ₃	Н	64
35	88	C ₂ H ₅	CI	OCH ₃	Н	Н	Н	
	89	C ₂ H ₅	CI	Н	Н	Н	OCH ₃	
40	90	C ₂ H ₅	CI	Н	C ₂ H ₅	Н	Н	
	91	C ₂ H ₅	CI	н	н	OSO ₂ CH ₃	Н	
45	92	C ₂ H ₅	CI	Н	Н	OSO ₂ CF ₃	Н	
1 0	92	C ₂ H ₅	CI	Н	Н	. OSO ₂ CF ₃	Н	
	93	C ₂ H ₅	CI	Н	Н	OCON(CH3)2	Н	
50	94	C ₂ H ₅	CI	Н	Н	OSO ₂ C ₃ H ₇	Н	

C. Biologische Beispiele

Verwendung als Fungizid

Die Wirksamkeit der erfindungsgemäßen Präparate wurde gemäß einer Skala von 0-4 beurteilt, wobei $0\,0-24\%$ Befallsunterdrückung

1 25-49% Befallsunterdrückung

250—74% Befallsunterdrückung

375—97% Befallsunterdrückung

497-100% Befallsunterdrückung

bedeutet.

55

65

Beispiel F

Gerstenpflanzen der Sorte "Maris Otter" wurden im 2-Blattstadium mit einer Lösung der erfindungsgemäßen

196 14 718 A1 DE

Verbindung in einem Gemisch aus 40% Aceton und 60% Wasser tropfnaß gespritzt. 24 Stunden später wurden die Pflanzen mit Konidien des Gerstenmehltaus (Erysiphe graminis f. sp. hordei) inokuliert und in einer Klimakammer bei 20°C und einer relativen Luftfeuchtigkeit von 75-80% aufbewahrt. 7 Tage nach der Behandlung wurden die Pflanzen auf Befall mit Gerstenmehltau untersucht. Die folgenden Verbindungen wurden bei 500 mg Wirkstoff/l Spritzbrühe mit 3 oder 4 bewertet:

Verbindungen gemäß Beispiel Nr. 53, 54, 55, 56, 57 und 77.

Beispiel G

Tomatenpflanzen der Sorte "First in the Field" wurden im 3-4-Blattstadium mit einer Lösung der erfindungs- 10 gemäßen Verbindung in einem Gemisch aus 40% Aceton und 60% Wasser tropfnaß gespritzt. 24 Stunden später wurden die Pflanzen mit einer Sporensuspension von Phytophthora infestans (20 000 Sporen/ml) inokuliert und in einer Klimakammer bei 15°C zunächst 2 Tage bei 99% relativer Luftfeuchtigkeit, dann 4 Tage bei 75-80% relativer Luftfeuchtigkeit aufbewahrt. 6 Tage nach der Behandlung wurden die Pflanzen auf Befall mit Phytophthora infestans untersucht.

15

20

30

35

40

50

60

Die folgenden Verbindungen wurden bei 500 mg Aktivsubstanz/l Spritzbrühe mit 3 oder 4 bewertet: Verbindungen gemäß Beispiel Nr. 47, 50, 52, 55 und 77.

Beispiel H

Ca. 6 Wochen alte Sämlinge der Rebsorte "Grüner Veltliner" wurden mit einer Lösung der erfindungsgemä-Ben Verbindung in einem Gemisch aus 40% Aceton und 60% Wasser tropfnaß gespritzt. 24 Stunden später wurden die Pflanzen durch Besprühen mit einer Zoosporensuspension (100 000/ml) von Plasmopara viticola inokuliert und in einer Klimakammer bei 70°C und einer relativen Luftfeuchtigkeit von ca. 99% aufbewahrt. 14 Tagen nach der Behandlung wurden die Pflanzen auf ihren Befall mit Plasmopara viticola untersucht. Die 25 folgenden Verbindungen wurden bei 500 mg Aktivsubstanz/l Spritzbrühe mit 3 oder 4 bewertet: Verbindungen gemäß Beispiel Nr. 47, 54, 55, 58 und 71.

Beispiel I

Weizenpflanzen der Sorte "Hornet" wurden im 2-Blattstadium mit einer Lösung der erfindungsgemäßen Verbindung in einem Gemisch aus 40% Aceton und 60% Wasser tropfnaß gespritzt. 24 Stunden später wurden die Pflanzen durch Besprühen mit einer Pyknosporensuspension (500 000/ml) von Leptosphaeria nodorum inokuliert und in einer Klimakammer bei 18-20°C und einer relativen Luftfeuchtigkeit von ca. 99% aufbewahrt. 14 Tage nach Inokulation wurden die Pflanzen auf ihren Befall mit Leptosphaeria nodorum untersucht.

Die folgenden Verbindungen wurden bei 500 mg Aktivsubstanz/l Spritzbrühe mit 3 oder 4 bewertet: Verbindung gemäß Beispiel Nr. 56, 63, 77 und 84.

Beispiel K

Reispflanzen der Sorte "Nihonbare" wurden im 1,5-Blattstadium mit einer Lösung der erfindungsgemäßen Verbindung in einem Gemisch aus 40% Aceton und 60% Wasser tropfnaß gespritzt. Zur gleichen Zeit erfolgte eine Gieß-Applikation mit einer Lösung der Substanz in einem Gemisch aus 5% Aceton und 95% Wasser. 24 Stunden später wurden die Pflanzen durch Besprühen mit einer Pyknosporensuspension (106/ml) von Pyricularia Oryzae inokuliert. Die Pflanzen wurden 2 Tage in einer abgedunkelten Klimakammer bei 26°C und einer 45 relativen Luftfeuchtigkeit von 99% aufbewahrt und anschließend in eine beleuchtete Klimakammer mit ca. 18°C und einer relativen Luftfeuchtigkeit von 75-80% verbracht. 7-9 Tage nach Inokulation wurden die Pflanzen auf ihren Befall mit Pyricularia oryzae untersucht.

Die folgenden Substanzen wurden bei 500 mg Aktivsubstanz/l Spritzbrühe mit 3 oder 4 bewertet: Verbindungen gemäß Beispiel Nr. 47, 53, 54, 56, 57, 60, 63, 82, 83, 84 und 87.

Beispiel L

Ca. 3 Wochen alte Apfel-Sämlinge (Malus sp.) wurden mit einer Lösung der erfindungsgemäßen Verbindung in einem Gemisch aus 40% Aceton und 60% Wasser tropfnaß gespritzt. Nach 24 Stunden wurden die Pflanzen 55 durch Besprühen mit einer Sporensuspension (300 000/ml) von Venturia inaequalis inokuliert. Die Pflanzen wurden 2 Tage im Dunkeln bei 18-20°C und einer relativen Luftfeuchtigkeit von 99% aufbewahrt, anschlie-Bend im Hellen 5 Tage bei gleicher Luftfeuchtigkeit und schließlich 7 Tage bei 75-80% Luftfeuchtigkeit. 14 Tage nach der Behandlung wurden die Pflanzen auf ihren Befall mit Venturia inaequalis untersucht.

Die folgenden Substanzen wurden bei 500 mg Aktivsubstanz/l Spritzbrühe mit 3 oder 4 bewertet. Verbindungen gemäß Beispiel Nr. 63, 82 und 83.

Beispiel M

Tomatenpflanzen der Sorte "First in the Field" wurden im 2—3-Blattstadium mit einer Lösung der erfindungsgemäßen Verbindung in einem Gemisch aus 40% Aceton und 60% Wasser tropfnaß gespritzt. Nach 24 Stunden wurden die Pflanzen mit einer Sporensuspension (500 000/ml) von Botrytis einerea inokuliert. Die Pflanzen wurden in einer Klimakammer bei 18-20°C und 99% relativer Luftfeuchtigkeit aufbewahrt. 5 Tage nach

Inokulation wurden die Pflanzen auf ihren Befall mit Botrytis einerea untersucht. Die folgenden Substanzen wurden bei 500 mg Aktivsubstanz/l Spritzbrühe mit 3 oder 4 bewertet: Verbindungen gemäß Beispiel Nr. 63 und 83.

Beispiel N

Weizen der Sorte "Jubilar" wurde im 2-Blatt-Stadium mit wäßrigen Suspensionen der beanspruchten Verbindungen tropfnaß behandelt. Nach dem Antrocknen des Spritzbelages wurden die Pflanzen mit einer wäßrigen Sporensuspension von Puccinia recondita inokuliert. Die Pflanzen wurden für ca. 16 Stunden tropfnaß in eine Klimakammer mit 20°C und ca. 100% rel. Luftfeuchtigkeit gestellt. Anschließend wurden sie in einem Gewächshaus bei einer Temperatur von 22 bis 25°C und 50 bis 70% rel. Luftfeuchtigkeit weiterkultiviert. Nach einer Inkubationszeit von ca. 2 Wochen sporulierte der Pilz auf der gesamten Blattoberfläche der nicht behandelten Kontrollpflanzen (100% Infektion), so daß eine Befallsauswertung der Versuchspflanzen vorgenommen werden konnte. Der Befallsgrad wurde in % befallener Blattfläche im Vergleich zu den unbehandelten, zu 100% infizierten Kontrollpflanzen ausgedrückt. Die folgenden Verbindungen wurden bei 500 mg Aktivsubstanz/l Spritzbrühe mit 3 oder 4 bewertet:

Verbindungen gemäß Beispiel Nr. 13, 14, 38, 39, 40, 46 und 48.

Verwendung als Insektizid/Akarizid

20

30

40

5

Beispiel O

Auf die Innenseiten des Deckels und des Bodens einer Petrischale wurden jeweils 1 ml der zu testenden Formulierung emulgiert in Wasser, gleichmäßig aufgetragen und nach dem Abtrocknen des Belages jeweils 10 Imagines der Hausfliege (Musca domestica) eingegeben. Nach dem Verschließen der Schalen wurden diese bei Raumtemperaturen aufbewahrt und nach 3 Stunden die Mortalität der Versuchstiere bestimmt. Bei 300 ppm (Gehalt an Wirkstoff in der Testlösung) zeigen die Präparate gemäß Beispiel Nr. 48, 53, 55, 63, 67, 71 und 87 eine 100%ige Mortalität bei den eingesetzten Versuchstieren.

Beispiel P

Reissaatgut wurde auf Watte in Zuchtgläsern feucht zur Keimung gebracht und nach dem Heranwachsen auf ca. 8 cm Halmlänge mit den Blättern in die zu prüfende Testlösung gegeben. Nach dem Abtropfen wurden die so behandelten Reispflanzen getrennt nach Prüfkonzentration in Zuchtbehälter gegeben und mit je 10 Larven (L3) der Art Nilaparvata lugens besetzt. Nach Aufbewahren der verschlossenen Zuchtbehälter bei 21°C konnte nach 4 Tagen die Mortalität der Zikadenlarven bestimmt werden. Bei einer Konzentration von 300 ppm (Gehalt an Wirkstoff in der Testlösung) zeigten die Präparate gemäß Beispiel Nr. 55, 57, 63, 71, 73, 75 und 87 eine 100%ige Mortalität bei den eingesetzten Versuchstieren.

Beispiel R

Weizensaatgut wurde unter Wasser 6 Stunden vorgekeimt, danach in 10 ml Glasprüfröhrchen gegeben und mit je 2 ml Erde abgedeckt. Nach Zugabe von 1 ml Wasser blieben die Pflanzen in den Zuchtgläsern bis zum Erreichen einer Wuchshöhe von ca. 3 cm unter Raumtemperatur (21°C) stehen. Anschließend wurden mittlere Diabrotica undecimpunctata-Larvenstadien (je 10 Stück) in die Gläschen auf die Erde gegeben und nach 2 Stunden 1 ml der zu überprüfenden Konzentration an Testflüssigkeit auf die Erde bzw. die Gläschen pipettiert. Nach 5 Tagen Standzeit unter Laborbedingungen (21°C) wurden die Erde bzw. die Wurzelteile auf lebende Diabrotica-Larven untersucht und die Mortalität festgestellt. Bei 300 ppm (Gehalt an Wirkstoff in der Testlösung) zeigten die Präparate gemäß Beispiel Nr. 53, 55, 57, 63, 67, 71, 73, 75, 82, 85 und 87 eine 100%ige Mortalität bei den eingesetzten Versuchstieren.

Beispiel S

Mit schwarzer Bohnenlaus (Aphis fabae) stark besetzte Ackerbohnen (Vicia faba) wurden mit wäßrigen Verdünnungen eines Spritzpulverkonzentrates mit 300 ppm Wirkstoffgehalt bis zum Stadium des beginnenden Abtropfens besprüht. Die Mortalität der Blattläuse wurde nach 3 Tagen bestimmt. Eine 100%ige Abtötung konnte mit den Verbindungen gemäß Beispiel Nr. 14, 46, 53, 63, 67, 71, 75 und 87 erzielt werden.

Beispiel T

60

65

Mit Bohnenspinnmilben (Tetranychus urticae, Vollpopulation) stark befallene Bohnenpflanzen (Phaseolus v.) wurden mit der wäßrigen Verdünnung eines Spritzpulverkonzentrates, das 300 ppm des jeweiligen Wirkstoffes enthielt, gespritzt. Die Mortalität der Milben wurde nach 7 Tagen kontrolliert. 100% Abtötung wurde mit den Verbindungen gemäß Beispiel Nr. 53, 63, 71 und 73 erzielt.

Verwendung als Ovizid

Beispiel U

Filterpapierscheiben mit aufliegenden Eiern von Baumwollwanzen (Oncopeltus fasciatus) wurden mit jeweils 0.5 ml wäßriger Verdünnung der zu testenden Formulierung behandelt. Nach Antrocknen des Belages wurde die Petrischale verschlossen und der Innenraum auf maximaler Luftfeuchtigkeit gehalten. Nach Aufbewahrung bei Raumtemperatur wurde nach 7 Tagen die ovizide Wirkung ermittelt. Mit 300 ppm Wirkstoffgehalt wurde für die Verbindungen gemäß Beispiel Nr. 13, 14, 15, 38, 39,40,46,48, 50, 53, 55, 57, 63, 67, 71, 76, 82, 83 und 87 eine 100%ige 5 ovizide Wirkung erzielt.

Beispiel V

L2-Larven von Spodoptera litoralis (Ägyptischer Baumwollwurm) wurden in Petrischalen eingesetzt, die am 10 Boden mit Filterpapier belegt waren und die eine kleine Menge Nährmedium enthielten. Der Boden mit dem Nährmedium und den daraufgesetzten Larven wurde mit den wäßrigen Emulsionen der Testsubstanzen besprüht und die Petrischalen mit einem Deckel verschlossen. Nach 5 Tagen bei ca. 23°C wurde die Wirkung der Verbindung auf die Larven festgestellt. Es konnte mit den Verbindungen gemäß Beispiel Nr. 53 und 67 bei einer Konzentration von 300 ppm (Wirkstoffgehalt) der Spritzbrühe eine 100%ige Wirkung erzielt werden.

Verwendung als Antiparasitikum

15

20

40

Beispiel W

In vitro-Test an tropischen Rinderzecken (Boophilus microplus)

In folgender Versuchsanordnung ließ sich die Wirksamkeit der erfindungsgemäßen Verbindungen gegen Zecken nachweisen:

Zur Herstellung einer geeigneten Wirkstoffzubereitung wurden die Wirkstoffe 10%ig (w/v) in einer Mischung, 25 bestehend aus Dimethylformamid (85 g), Nonylphenolpolyglykolether (3 g) und oxethyliertem Rizinusöl (7 g) gelöst und die so erhaltenen Emulsionskonzentrate mit Wasser auf eine Prüfkonzentration von 500 ppm ver-

In diese Wirkstoffverdünnungen wurden jeweils zehn vollgesogene Weibchen der tropischen Zecke, Boophilus microplus, für fünf Minuten eingetaucht. Die Zecken wurden anschließend auf Filterpapier getrocknet und 30 dann zur Eiablage mit der Rückseite auf einer Klebefolie befestigt. Die Aufbewahrung der Zecken erfolgte im Wärmeschrank bei 28°C und einer Luftfeuchtigkeit von 90%.

Zur Kontrolle wurden Zeckenweibchen lediglich in Wasser eingetaucht. Zur Bewertung der Wirksamkeit wurde zwei Wochen nach der Behandlung die Hemmung der Eiablage herangezogen.

In diesem Test bewirkten die Verbindungen gemäß der Beispiel Nr. 52, 53, 55, 56 und 87 jeweils eine 100%ige 35 Hemmung der Eiablage.

Patentansprüche

1. Verbindungen der Formel I

45 $(Z - R^5)_{2}$ (1)55

 $R^1 \ Wasserstoff, Halogen, (C_1-C_4)-Alkyl, (C_1-C_4)-Halogenalkyl \ oder \ (C_3-C_5)-Cycloalkyl \ bedeutet;$ R² und R³ gleich oder verschieden sind und jeweils Wasserstoff, (C_1-C_4) -Alkyl, (C_1-C_4) -Halogenalkyl, (C_2-C_4) -Alkenyl, (C_2-C_4) -Alkenyl, (C_2-C_4) -Alkenyl, (C_2-C_4) -Alkonyl, (C_1-C_4) -halogenalkyl, Halogen, Hydroxy, (C_1-C_4) -Hydroxyalkyl, (C_1-C_4) -Alkanoyl, (C_1-C_4) -Alkanoyl, (C_1-C_4) -Alkanoyl, (C_3-C_5) -Cycloalkyl, (C_4-C_5) -Cycloalkenyl, (C_3-C_5) -Cycloalkyl, (C_4-C_5) -Cycloalkyl, (C_3-C_5) -Cycloalkyl, (C_4-C_5) -Cycloalkyl, (C_3-C_5) koxy, (C_3-C_5) -Halogencycloalkyl, (C_4-C_5) -Halogencycloalkenyl, Cyano, (C_1-C_4) -Cyanalkyl, Nitro, 65 (C_1-C_4) -Nitroalkyl, Thiocyano, (C_1-C_4) -Thiocyanoalkyl, (C_1-C_4) -Alkoxycarbonyl, (C_1-C_4) -Alboxycarbonyl, (C_1-C_4) -Alboxycarb bonyl- (C_1-C_4) -alkyl, (C_1-C_4) -Halogenalkoxycarbonyl, (C_1-C_4) -Alkanoyloxy- (C_1-C_4) -alkyl, (C_1-C_4) -Alkylthio, $(C_1 - C_4)$ -Alkylthio- $(C_1 - C_4)$ -alkyl, $(C_1 - C_4)$ -Halogenalkylthio, $(C_1 - C_4)$ -Alkylsulfinyl, $(C_1 - C_4)$ -Halogenalkylthio,

DE 196 14 718

 $logenalkylsulfinyl, (C_1-C_4)-Alkylsulfonyl\ oder\ (C_1-C_4)-Halogenalkylsulfonyl\ bedeuten; oder\ (C_1-C_4)-Alkylsulfonyl\ oder\ (C_1-C_4)-Halogenalkylsulfonyl\ bedeuten; oder\ (C_1-C_4)-Halogenalkylsulfonyl\ bedeuten; oder\ (C_1-C_4)-Alkylsulfonyl\ oder\ (C_1-C_4)-Halogenalkylsulfonyl\ bedeuten; oder\ (C_1-C_4)-Alkylsulfonyl\ oder\ (C_1-C_4)-Halogenalkylsulfonyl\ bedeuten; oder\ (C_1-C_4)-Alkylsulfonyl\ oder\ (C_1-C_4)-Halogenalkylsulfonyl\ bedeuten; ode$

R² und R³ zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, einen ungesättigten 5- oder 6-gliedrigen carbocyclischen Ring bilden, der, falls es sich um einen 5-Ring handelt, an Stelle von CH2 ein Sauerstoff- oder Schwefelatom enthalten kann oder der, falls es sich um einen 6-Ring handelt, an Stelle von einer oder zwei CH-Einheiten ein oder zwei Stickstoffatome enthalten kann und der gegebenenfalls durch 1, 2 oder 3 gleiche oder verschiedene Reste R²⁷ substituiert ist, oder

R² und R³ zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, einen gesättigten 5-, 6- oder 7-gliedrigen carbocyclischen Ring bilden, der an Stelle von einer oder zwei CH2-Gruppen Sauerstoff und/oder Schwefel enthalten kann und der gegebenenfalls durch 1, 2 oder 3 (C₁-C₄)-Alkylgruppen substituiert ist:

A CH oder N bedeutet:

X NH, O oder $S(O)_q$ mit q = 0, 1 oder 2 bedeutet;

Y¹, Y² und Y³ unabhängig voneinander eine Gruppe der Formel -O-, -CO-, -CNR⁶-, -S(O)_roder $-N(0)_1R^6$ mit l=0 oder 1 bedeuten, wobei r=0, 1 oder 2 ist, oder eine Gruppe der Formel CR^7R^8 ist, oder

Y¹ oder Y³ an Stelle einer direkten Bindung stehen;

 R^4 Wasserstoff oder (C₁ - C₄)-Alkyl bedeutet;

m 0, 1, 2, 3 oder 4 bedeutet:

n 0, 1, 2, 3 oder 4 bedeutet;

Z eine direkte Bindung, NR⁹, O, S(O)₈ mit s = 0, 1 oder 2, OSO₂, SO₂O, NR¹⁰SO₂, SO₂NR¹¹, SiR¹²R¹³ oder

U-C-V H W

5

10

15

20

25

30

35

45

55

60

65

bedeutet, wobei

U eine direkte Bindung, NR14 oder 0 bedeutet;

W Sauerstoff oder Schwefel bedeutet:

V eine direkte Bindung, NR¹⁵ oder Sauerstoff bedeutet, wobei

R9, R10, R11, R14 und R15 gleich oder verschieden sind und jeweils Wasserstoff, Alkyl, Alkoxy, Alkanoyl oder Cycloalkyl bedeuten:

R⁵ voneinander unabhängige Substituenten sind und Halogen, Cyano, Nitro, Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Cycloalkenyl bedeuten und in den letztgenannten 5 Resten eine oder mehrere nicht benachbarte gesättigte Kohlenstoffeinheiten durch eine Carbonyl-Gruppe oder durch Heteroatom-Einheiten, wie Sauerstoff, $S(O)_x$ mit x = 0, 1 oder 2, NR^{16} oder $SiR^{17}R^{18}$ ersetzt sein können, und diese letztgenannten 5 Reste mit oder ohne die angegebenen Variationen, gegebenenfalls mit einem oder mehreren, im Falle von Fluor bis zur Maximalanzahl an gleichen oder verschiedenen Resten D¹R¹⁹ substituiert sein können, oder

R⁵ Aryl oder Heterocyclyl bedeutet, wobei diese beiden Reste unsubstituiert oder mit bis zu drei, im Falle 40 von Fluor auch bis zur Maximalanzahl an gleichen oder verschiedenen Resten D²R²⁰ substituiert sein können, oder zwei benachbarte Reste

Z-R⁵ gemeinsam mit den diese tragenden C-Atomen einen ankondensierten Cyclus mit 4 bis 6 Ringatomen bilden können, der carbocyclisch ist oder Heteroringatome aus der Gruppe von O, S und N enthält und der unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe von Halogen, (C1-C4)-Alkyl und Oxo

R⁹, R¹⁰, R¹¹, R¹⁴ oder R¹⁵ unabhängig voneinander mit dem an Z befindlichen R⁵ ein 4- bis 8-gliedriges Ringsystem bilden können, in dem eine oder zwei CH2-Gruppen durch Heteroatom-Einheiten wie Sauerstoff, $S(O)_t$ mit t = 0, 1 oder 2 oder NR^{25} ersetzt sein kann,

wobei 50

R⁶ Wasserstoff, (C₁-C₄)-Alkyl, (C₁-C₄)-Halogenalkyl, (C₂-C₄)-Alkenyl, (C₂-C₄)-Halogenalkenyl, (C₂-C₄)-Alkinyl, (C₂-C₄)-Halogenalkinyl, (C₁-C₄)-Alkoxy, (C₁-C₄)-Halogenalkoxy, (C₁-C₄)-Alkylthio, (C_1-C_4) -Halogenalkylthio, (C_1-C_4) -Alkanoyl, (C_2-C_4) -Halogenalkanoyl, (C_3-C_5) -Cycloalkyl, (C_1-C_4) -Alkylsulfonyl, (C_1-C_4) -Halogenalkylsulfonyl, (C_1-C_4) -Alkoxy- (C_1-C_4) -alkyl, (C_1-C_4) -Alkoxycarbonyl bedeutet;

 R^7 und R^8 unabhängig voneinander Wasserstoff, Hydroxy, Halogen, Cyano, (C₁-C₄)-Alkyl, (C₁-C₄)-Halogenalkyl, (C₂-C₄)-Alkenyl, (C₂-C₄)-Halogenalkenyl, (C₂-C₄)-Alkinyl, (C₂-C₄)-Halogenalkenyl, (C_3-C_5) -Cycloalkyl, (C_1-C_4) -Alkanoyl, (C_1-C_4) -Halogenalkanoyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Halogenalkoxy, (C_1-C_4) -Alkylthio oder (C_1-C_4) -Halogenalkylthio sind; R^{12} und R^{13} unabhängig voneinander (C₁—C₄)-Alkyl oder Phenyl bedeuten; R¹⁶ Wasserstoff, (C₁—C₄)-Alkyl, (C₁—C₄)-Alkoxy oder (C₁—C₄)-Alkanoyl bedeutet; R¹⁷ und R¹⁸ unabhängig voneinander (C₁—C₄)-Alkyl bedeuten;

D¹ und D² jeweils unabhängig voneinander sind und eine direkte Bindung, Sauerstoff, S(O)k, SO2O, OSO2, CO, OCO, COO, NR²¹, SO₂NR̄²¹, NR²¹SO₂, ONR²¹, NR²¹O, NR²¹CO, CONR̄²¹ oder SiR²²R̄²³ bedeuten und k = 0, 1 oder 2 ist, wobei

R²¹ voneinander unabhängig Wasserstoff, (C₁−C₄)-Alkyl, (C₁−C₄)-Alkanoyl oder (C₃−C₅)-Cycloalkyl be-

R²² und R²³ unabhängig voneinander (C₁—C₄)-Alkyl bedeuten;

```
R<sup>19</sup> und R<sup>20</sup> unabhängig voneinander Wasserstoff, Cyano, Nitro, Halogen, Alkyl, Halogenalkyl, Alkenyl,
Halogenalkenyl, Alkinyl, Halogenalkinyl, Alkoxyalkyl, Halogenalkoxyalkyl, Alkylthioalkyl, Halogenalky-
lthioalkyl, Cycloalkyl, Cycloalkenyl, Cycloalkylalkyl, Cycloalkenylalkyl, Aryl, Heterocyclyl, Arylalkyl oder
Heterocyclylalkyl bedeuten, wobei in den letztgenannten 8 Resten die cycloaliphatischen, aromatischen
oder heterocyclischen Ringsysteme unsubstituiert oder mit bis zu drei, im Falle von Fluor auch bis zur
Maximalanzahl an gleichen oder verschiedenen Substituenten R24 versehen sind, oder
R<sup>19</sup> und R<sup>20</sup> am gleichen C-Atom sitzend gemeinsam eine Oxo-Gruppe bedeuten;
wobei
R^{24} unabhängig voneinander (C_1 - C_4)-Alkyl, (C_1 - C_4)-Halogenalkyl, (C_1 - C_4)-Alkoxy, (C_1 - C_4)-Halogenal-
koxy, Cyano, Nitro oder Halogen sind;
R<sup>25</sup> unabhängig voneinander Wasserstoff, (C<sub>1</sub>-C<sub>8</sub>)-Alkyl, (C<sub>1</sub>-C<sub>4</sub>)-Halogenalkyl, (C<sub>1</sub>-C<sub>4</sub>)-Alkoxy,
(C_1-C_4)-Alkylthio, (C_3-C_5)-Cycloalkyl, (C_2-C_4)-Alkenyl, (C_2-C_4)-Alkinyl, (C_1-C_4)-Alkanoyl,
(C<sub>1</sub>-C<sub>4</sub>)-Halogenalkanoyl, (C<sub>1</sub>-C<sub>4</sub>)-Alkoxy-(C<sub>1</sub>-C<sub>4</sub>)-alkyl, Phenyl-(C<sub>1</sub>-C<sub>4</sub>)-alkyl oder Phenyl bedeutet,
wobei die Phenylgruppen unabhängig voneinander unsubstituiert oder mit bis zu drei, im Falle von Fluor
auch bis zur Maximalanzahl an gleichen oder verschiedenen Substituenten R26 versehen sind, wobei
R^{26} unabhängig voneinander (\tilde{C}_1-C_4)-Alkyl, (C_1-C_4)-Halogenalkyl, (C_1-C_4)-Alkoxy, (C_1-C_4)-Alkylthio,
Halogen oder Cyano bedeutet, und
R<sup>27</sup> unabhängig voneinander (C<sub>1</sub>-C<sub>4</sub>)-Alkyl, (C<sub>1</sub>-C<sub>4</sub>)-Halogenalkyl, Halogen, (C<sub>1</sub>-C<sub>4</sub>)-Alkoxy oder
(C<sub>1</sub>-C<sub>4</sub>)-Halogenalkoxy bedeutet und deren Salze.
2. Verbindungen der Formel I gemäß Anspruch 1, worin
                                                                                                                                                                                                                 20
R^1 Wasserstoff, Halogen, (C_1 - C_4)-Alkyl, (C_1 - C_4)-Halogenalkyl oder (C_3 - C_5)-Cycloalkyl bedeutet;
R^2 und R^3 gleich oder verschieden sind und jeweils Wasserstoff, (C_1-C_4)-Alkyl, (C_1-C_4)-Halogenalkyl, (C_2-C_4)-Alkenyl, (C_2-C_4)-Halogenalkenyl, (C_2-C_4)-Alkinyl, (C_2-C_4)-Halogenalkinyl, Tri-(C_1-C_4)-alkyl-
silyl-(C_2-C_4)-alkinyl, (C_1-C_4)-Alkoxy, (C_1-C_4)-Halogenalkoxy, (C_1-C_4)-Alkoxy-(C_1-C_4)-alkyl, (C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4)-Halogenalkoxy-(C_1-C_4
(C_1-C_4)-halogenalkyl, Halogen, Hydroxy, (C_1-C_4)-Hydroxyalkyl, (C_1-C_4)-Alkanoyl, (C_1-C_4)-Alkanoyl, (C_1-C_4)-Halogenalkanoyl, (C_3-C_5)-Cycloalkyl, (C_4-C_5)-Cycloalkenyl, (C_3-C_5)-Cycloalkoxy, (C_3-C_5)-Halogencycloalkyl, (C_4-C_5)-Halogencycloalkyl, (C_4-C_5)-Halogencycloalkyl, Nitro,
(C_1-C_4)-Nitroalkyl, Thiocyano, (C_1-C_4)-Thiocyanoalkyl, (C_1-C_4)-Alkoxycarbonyl, (C_1-C_4)-Alkoxycarbonyl, (C_1-C_4)-Alkoxycarbonyl, (C_1-C_4)-Alkanoyloxy-(C_1-C_4)-Alkoxycarbonyl, (C_1-C_4)-Alkanoyloxy-(C_1-C_4)-Alkyl, (C_1-C_4)-Alkyl, (C_1-C_4)-Alkyl
 kvlthio, (C_1 - C_4)-Alkylthio-(C_1 - C_4)-alkyl, (C_1 - C_4)-Halogenalkylthio, (C_1 - C_4)-Alkylsulfinyl, (C_1 - C_4)-Ha-
 logenalkylsulfinyl, (C1-C4)-Alkylsulfonyl oder (C1-C4)-Halogenalkylsulfonyl bedeuten; oder
 R<sup>2</sup> und R<sup>3</sup> zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, einen ungesättigten 5- oder
6-gliedrigen carbocyclischen Ring bilden, der, falls es sich um einen 5-Ring handelt, an Stelle von CH2 ein
 Sauerstoff- oder Schwefelatom enthalten kann oder der, falls es sich um einen 6-Ring handelt, an Stelle von 35
 einer oder zwei CH Einheiten ein oder zwei Stickstoffatome enthalten kann und der gegebenenfalls durch 1,
2 oder 3 gleiche oder verschiedene Reste R<sup>27</sup> substituiert ist, oder
 R<sup>2</sup> und R

<sup>3</sup> zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, einen gesättigten 5-, 6- oder
 7-gliedrigen carbocyclischen Ring bilden, der an Stelle von einer oder zwei CH2-Gruppen Sauerstoff
 und/oder Schwefel enthalten kann und der gegebenenfalls durch 1, 2 oder 3 (C1-C4)-Alkylgruppen substi-
 tuiert ist:
 A CH oder N bedeutet;
X NH, O oder S(O)q mit q = 0, 1 oder 2 bedeutet;
 Y1, Y2 und Y3 unabhängig voneinander eine Gruppe der Formel -O-, -CO-, -CNR6-, -S(O)r-
 oder -N(0)_1R^6 mit l=0 oder 1 bedeuten, wobei r=0,1 oder 2 ist, oder eine Gruppe der Formel CR^7R^8 45
 ist, oder
 Y1 oder Y3 an Stelle einer direkten Bindung stehen;
 R^4 Wasserstoff oder (C<sub>1</sub>-C<sub>4</sub>)-Alkyl bedeutet;
 m 1 oder 2 bedeutet;
                                                                                                                                                                                                                 50
 n 1 oder 2 bedeutet;
 Z eine direkte Bindung, NR^9, O, S(O), mit s = 0, 1 oder 2, OSO_2, SO_2O, NR^{10}SO_2, SO_2N R^{11}, SiR^{12}R^{13} oder
  U-C-V
                                                                                                                                                                                                                 55
        11
       W
 bedeutet, wobei
 U eine direkte Bindung, NR14 oder O bedeutet;
                                                                                                                                                                                                                 60
 W Sauerstoff bedeutet;
 V eine direkte Bindung, NR<sup>15</sup> oder Sauerstoff bedeutet, wobei
 R9, R10, R11, R14 und R15 gleich oder verschieden sind und jeweils Wasserstoff, Alkyl, Alkoxy, Alkanoyl oder
 Cycloalkyl bedeuten;
 R<sup>5</sup> voneinander unabhängige Substituenten sind und Halogen, Cyano, Nitro, Alkyl, Alkenyl, Alkinyl, Cyclo-65
 alkyl, Cycloalkenyl bedeuten und in den letztgenannten 5 Resten bis zu drei nicht benachbarte gesättigte
 Kohlenstoffeinheiten durch eine Carbonyl-Gruppe oder durch Heteroatom-Einheiten, wie Sauerstoff, S(O)x
```

mit x = 0, 1 oder 2, NR¹⁶ oder SiR¹⁷R¹⁸ ersetzt sein können, und diese letztgenannten 5 Reste mit oder ohne

die angegebenen Variationen, gegebenenfalls mit bis zu drei, im Falle von Fluor bis zur Maximalanzahl an gleichen oder verschiedenen Resten D¹R¹⁹ substituiert sein können, oder

R⁵ Aryl oder Heterocyclyl bedeutet, wobei diese beiden Reste unsubstituiert oder mit bis zu drei, im Falle von Fluor auch bis zur Maximalanzahl an gleichen oder verschiedenen Resten D²R²⁰ substituiert sein können, oder zwei benachbarte Reste

Z-R⁵ gemeinsam mit den diese tragenden C-Atomen einen ankondensierten Cyclus mit 4 bis 6 Ringatomen bilden, der carbocyclisch ist oder Heteroringatome aus der Gruppe von O, S und N enthält und der unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe von Halogen, (C₁-C₄)-Alkyl und Oxo substituiert ist, oder

- R^9 , R^{10} , R^{11} , R^{14} oder R^{15} unabhängig voneinander mit dem an Z befindlichen R^5 ein 4- bis 8-gliedriges Ringsystem bilden, in dem eine CH_2 -Gruppe durch Heteroatom-Einheiten wie Sauerstoff, $S(O)_t$ mit t=0,1 oder 2 oder NR^{25} ersetzt sein kann,
- R⁷ und R⁸ unabhängig voneinander Wasserstoff, Hydroxy, Halogen, Cyano, (C₁—C₄)-Alkyl, (C₁—C₄)-Halogenalkyl, (C₂—C₄)-Alkenyl, (C₂—C₄)-Halogenalkenyl, (C₂—C₄)-Alkinyl, (C₂—C₄)-Halogenalkenyl, (C₃—C₅)-Cycloalkyl, (C₁—C₄)-Alkanoyl, (C₁—C₄)-Halogenalkanoyl, (C₁—C₄)-Alkoxy, (C₁—C₄)-Halogenalkoxy, (C₁—C₄)-Alkylthio oder (C₁—C₄)-Halogenalkylthio sind; R¹² und R¹³ Methyl bedeuten;

 R^{16} Wasserstoff, (C_1-C_4) -Alkyl, (C_1-C_4) -Alkoxy oder (C_1-C_4) -Alkanoyl bedeutet;

- 25 R¹⁷ und R¹⁸ Methyl bedeuten; D¹ und D² jeweils unabhängig voneinander sind und eine direkte Bindung, Sauerstoff, S(O)_k, SO₂O, OSO₂, CO, OCO, COO, NR²¹, SO₂NR²¹, NR²¹SO₂, ONR²¹, NR²¹O, NR²¹CO, CONR²¹ oder SiR²²R²³ bedeuten und k = 0, 1 oder 2 ist, wobei
 - R²¹ voneinander unabhängig Wasserstoff, (C₁—C₄)-Alkyl, (C₁—C₄)-Alkanoyl oder (C₃—C₅)-Cycloalkyl bedeutet:
 - R²² und R²³ unabhängig voneinander (C₁—C₄)-Alkyl bedeuten; R¹⁹ und R²⁰ unabhängig voneinander Wasserstoff, Cyano, Nitro, Halogen, Alkyl, Halogenalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Halogenalkinyl, Alkoxyalkyl, Halogenalkoxyalkyl, Alkylthioalkyl, Halogenalkylthioalkyl, Cycloalkyl, Cycloalkenyl, Cycloalkyl, Cycloalkyl, Aryl, Heterocyclyl, Arylalkyl oder
- Heterocyclylalkyl bedeuten, wobei in den letztgenannten 8 Resten die cycloaliphatischen, aromatischen oder heterocyclischen Ringsysteme unsubstituiert oder mit bis zu drei, im Falle von Fluor auch bis zur Maximalanzahl an gleichen oder verschiedenen Substituenten R²⁴ versehen sind, oder R¹⁹ und R²⁰ am gleichen C-A tom sitzend gemeinsam eine Ovo-Gruppe bedeuten.

R¹⁹ und R²⁰ am gleichen C-Atom sitzend gemeinsam eine Oxo-Gruppe bedeuten; wobei

- R²⁴ unabhängig voneinander (C₁—C₄)-Alkyl, (C₁—C₄)-Halogenalkyl, (C₁—C₄)-Alkoxy, (C₁—C₄)-Halogenalkoxy, Cyano, Nitro oder Halogen sind;
 - R²⁵ unabhängig voneinander Wasserstoff, (C_1-C_4) -Alkyl, (C_1-C_4) -Halogenalkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylthio, (C_3-C_5) -Cycloalkyl, (C_2-C_4) -Alkenyl, (C_2-C_4) -Alkinyl, (C_1-C_4) -Alkanoyl, (C_1-C_4) -Alkoxy- (C_1-C_4) -Alkoxy- (C_1-C_4) -Alkyl, Phenyl- (C_1-C_4) -alkyl oder Phenyl bedeutet, wobei die Phenylgruppen unabhängig voneinander unsubstituiert oder mit bis zu drei, im Falle von Fluor
 - auch bis zur Maximalanzahl an gleichen oder verschiedenen Substituenten R^{26} versehen sind, wobei R^{26} unabhängig voneinander ($C_1 C_4$)-Alkyl, ($C_1 C_4$)-Halogenalkyl, ($C_1 C_4$)-Alkoxy, ($C_1 C_4$)-Alkylthio, Halogen oder Cyano bedeutet, und
- R^{27} unabhängig voneinander (C_1-C_4)-Alkyl, Trifluormethyl, Halogen, (C_1-C_4)-Alkoxy oder (C_1-C_4)-Halogenalkoxy bedeutet

und deren Salze.

5

30

45

- 3. Verbindungen der Formel I gemäß Anspruch 1 oder 2, worin
- R⁵ voneinander unabhängige Substituenten sind und Halogen, Cyano, Nitro, (C₁-C₂₀)-Alkyl, (C₂-C₂₀)-Alkyl, (C₂-C₂₀)-Alkyl, (C₃-C₈)-Cycloalkyl, (C₄-C₈)-Cycloalkenyl bedeutet und in den letztgenannten 5
 Resten eine oder mehrere nicht benachbarte gesättigte Kohlenstoffeinheiten durch eine Carbonyl-Gruppe oder durch Heteroatom-Einheiten, wie Sauerstoff, S(O)_x mit x = 0, 1 oder 2, NR¹⁶ oder SiR¹⁷R¹⁸ ersetzt sein können und diese letztgenannten 5 Reste mit oder ohne die angegebenen Variationen, gegebenenfalls mit einem oder mehreren, im Falle von Fluor bis zur Maximalanzahl an gleichen oder verschiedenen Resten D¹R¹⁹ substituiert sein können, oder
- R⁵ Aryl oder Heterocyclyl bedeutet, wobei diese beiden Reste unsubstituiert oder mit bis zu drei, im Falle von Fluor auch bis zur Maximalanzahl an gleichen oder verschiedenen Resten D²R²⁰ substituiert sein können, oder zwei benachbarte Reste
 - Z-R⁵ gemeinsam mit den diese tragenden C-Atomen einen ankondensierten Cyclus mit 4 bis 6 Ringatomen bilden, der carbocyclisch ist oder Heteroringatome aus der Gruppe von O, S und N enthält und der unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe von Halogen, (C₁-C₄)-Alkyl und Oxo substituiert ist, oder
 - R⁹, R¹¹ oder R¹⁵ unabhängig voneinander mit dem an Z befindlichen R⁵ ein 4-bis 8-gliedriges Ringsystem bilden, in dem eine oder zwei CH₂-Gruppen durch Heteroatom-Einheiten wie Sauerstoff, S(O)_t mit t = 0, 1

```
oder 2 oder NR25 ersetzt sind,
wobei
R^{16} Wasserstoff, (C_1-C_4)-Alkyl, (C_1-C_4)-Alkoxy oder (C_1-C_4)-Alkanoyl bedeutet;
R17 und R18 unabhängig voneinander (C1-C4)-Alkyl bedeuten;
D¹ und D² jeweils unabhängig voneinander sind und eine direkte Bindung, Sauerstoff, SOk, SO2O, OSO2,
CO, OCO, COO, NR<sup>21</sup>, SO<sub>2</sub>NR<sup>21</sup>, NR<sup>21</sup>SO<sub>2</sub>, ONR<sup>21</sup>, NR<sup>21</sup>O, NR<sup>21</sup>CO, CONR<sup>21</sup> oder SiR<sup>22</sup>R<sup>23</sup> bedeuten, und
k = 0.1 oder 2 ist, wobei
R<sup>21</sup> voneinander unabhängig Wasserstoff, (C<sub>1</sub>-C<sub>4</sub>)-Alkyl, (C<sub>1</sub>-C<sub>4</sub>)-Alkanoyl oder (C<sub>3</sub>-C<sub>5</sub>)-Cycloalkyl be-
deutet:
R<sup>22</sup> und R<sup>23</sup> unabhängig voneinander (C<sub>1</sub>-C<sub>4</sub>)-Alkyl bedeuten;
R<sup>19</sup> und R<sup>20</sup> unabhängig voneinander Wasserstoff, Cyano, Nitro, Halogen, (C<sub>1</sub>-C<sub>8</sub>)-Alkyl, (C<sub>1</sub>-C<sub>8</sub>)-Halo-
genalkyl, (C_2-C_8)-Alkenyl, (C_2-C_8)-Halogenalkenyl, (C_2-C_8)-Alkinyl, (C_2-C_8)-Alkinyl, (C_1-C_8)-Alkoxy-(C_1-C_4)-alkyl, (C_1-C_8)-Halogenalkoxy-(C_1-C_4)-alkyl, (C_1-C_8)-Alkylthio-(C_1-C_4)-alkyl, (C_1-C_8)-Cycloalkyl, (C_4-C_8)-Cycloalkyl, (C_3-C_8)-Cycloalkyl, (C_3-C_8)-Cycloalk
alkyl-(C_1-C_4)-alkyl, (C_4-C_8)-Cycloalkenyl-(C_1-C_4)-alkyl, Aryl, Heterocyclyl, Aryl-(C_1-C_4)-alkyl oder 15
Heterocyclyl-(C1-C4)-alkyl bedeuten, wobei in den letztgenannten 8 Resten die cycloaliphatischen, aroma-
tischen oder heterocyclischen Ringsysteme unsubstituiert oder mit bis zu drei, im Falle von Fluor auch bis
zur Maximalanzahl an gleichen oder verschiedenen Substituenten R24 versehen sind, oder
R<sup>19</sup> und R<sup>20</sup> am gleichen C-Atom sitzend gemeinsam eine Oxo-Gruppe bedeuten,
                                                                                                                                                                                                                 20
R^{24} unabhängig voneinander (C_1 - C_4)-Alkyl, (C_1 - C_4)-Halogenalkyl, (C_1 - C_4)-Alkoxy, (C_1 - C_4)-Halogenal-
koxy, Cyano, Nitro oder Halogen sind;
R<sup>25</sup> unabhängig voneinander Wasserstoff, (C_1-C_8)-Alkyl, (C_1-C_4)-Halogenalkyl, (C_1-C_4)-Alkoxy, (C_1-C_4)-Alkylthio, (C_3-C_5)-Cycloalkyl, (C_2-C_4)-Alkenyl, (C_2-C_4)-Alkinyl, (C_1-C_4)-Alkinyl, (C_1-C_4)-Alkoxylkyl, Phenyl-(C_1-C_4)-alkyl oder Phenyl bedeuten und die Phe-25
nylgruppen unabhängig voneinander unsubstituiert oder mit bis zu drei, im Falle von Fluor auch bis zur
Maximalanzahl an gleichen oder verschiedenen Substituenten R26 versehen sind, wobei
R<sup>26</sup> unabhängig voneinander (C<sub>1</sub>-C<sub>4</sub>)-Alkyl, (C<sub>1</sub>-C<sub>4</sub>)-Haloalkyl, (C<sub>1</sub>-C<sub>4</sub>)-Alkoxy, (C<sub>1</sub>-C<sub>4</sub>)-Alkylthio, Ha-
logen oder Cyano bedeuten
                                                                                                                                                                                                                 30
und deren Salze.
4. Verbindungen der Formel I gemäß einem der Ansprüche 1 bis 3,
R<sup>5</sup> voneinander unabhängige Substituenten sind und Halogen, Cyano, Nitro, (C<sub>1</sub>-C<sub>20</sub>)-Alkyl, (C<sub>2</sub>-C<sub>20</sub>)-Al-
kenyl, (C2-C20)-Alkinyl, (C3-C8)-Cycloalkyl, (C4-C8)-Cycloalkenyl bedeutet und in den letztgenannten 5
Resten bis zu drei nicht benachbarte gesättigte Kohlenstoffeinheiten durch eine Carbonyl-Gruppe oder 35
durch Heteroatom-Einheiten, wie Sauerstoff, S(O)_x mit x = 0, 1 oder 2, NR^{16} oder SiR^{17}R^{18} ersetzt sein
können und diese letztgenannten 5 Reste mit oder ohne die angegebenen Variationen, gegebenenfalls mit
bis zu drei, im Falle von Fluor bis zur Maximalanzahl an gleichen oder verschiedenen Resten D1R19
substituiert sein können, oder
R<sup>5</sup> Aryl oder Heterocyclyl bedeutet, wobei diese beiden Reste unsubstituiert oder mit bis zu drei, im Falle 40
von Fluor auch bis zur Maximalanzahl an gleichen oder verschiedenen Resten D2R20 substituiert sein
können, oder zwei benachbarte Reste
Z-R<sup>5</sup> gemeinsam mit den diese tragenden C-Atomen einen ankondensierten Cyclus mit 4 bis 6 Ringatomen
bilden, der carbocyclisch ist oder Heteroringatome aus der Gruppe von O, S und N enthält und der
unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe von Halogen, (C1-C4)-Alkyl und Oxo 45
substituiert ist, oder
R9, R11 oder R15 unabhängig voneinander mit dem an Z befindlichen R5 ein 4-bis 8-gliedriges Ringsystem
bilden, in dem eine CH2-Gruppe durch Heteroatom-Einheiten wie Sauerstoff, S(O)t mit t = 0, 1 oder 2 oder
NR<sup>25</sup> ersetzt sind,
                                                                                                                                                                                                                 50
wobei
R^{16} Wasserstoff, (C_1-C_4)-Alkyl, (C_1-C_4)-Alkoxy oder (C_1-C_4)-Alkanoyl bedeutet;
R<sup>17</sup> und R<sup>18</sup> Methyl bedeuten;
D1 und D2 jeweils unabhängig voneinander sind und eine direkte Bindung, Sauerstoff, S(O)k, SO2O, OSO2,
CO, OCO, COO, NR21, SO2NR21, NR21SO2, ONR21, NR21O, NR21CO, CONR21 oder SiR22R23 bedeuten, und
k = 0, 1 oder 2 ist, wobei
R<sup>21</sup> voneinander unabhängig Wasserstoff, (C<sub>1</sub>-C<sub>4</sub>)-Alkyl, (C<sub>1</sub>-C<sub>4</sub>)-Alkanoyl oder (C<sub>3</sub>-C<sub>5</sub>)-Cycloalkyl be-
 R<sup>22</sup> und R<sup>23</sup> unabhängig voneinander (C<sub>1</sub>-C<sub>4</sub>)-Alkyl bedeuten;
 R<sup>19</sup> und R<sup>20</sup> unabhängig voneinander Wasserstoff, Cyano, Nitro, Halogen, (C<sub>1</sub>-C<sub>8</sub>)-Alkyl, (C<sub>1</sub>-C<sub>8</sub>)-Halo-
genalkyl, (C_2-C_8)-Alkenyl, (C_2-C_8)-Halogenalkenyl, (C_2-C_8)-Alkinyl, (C_2-C_8)-Halogenalkinyl, 60 (C_1-C_8)-Alkoxy-(C_1-C_4)-alkyl, (C_1-C_8)-Halogenalkoxy-(C_1-C_4)-alkyl, (C_1-C_8)-Alkylthio-(C_1-C_4)-alkyl, (C_3-C_8)-Cycloalkyl, (C_4-C_8)-Cycloalkyl, (C_3-C_8)-Cycloalkyl, (C_4-C_8)-Cycloalkenyl, (C_3-C_8)-Cycloalkyl, (C_4-C_8)-Cycloalkenyl-(C_1-C_4)-alkyl, (C_1-C_4)-alkyl, (C_1-C_4)-a
 Heterocyclyl-(C1-C4)-alkyl bedeuten, wobei in den letztgenannten 8 Resten die cycloaliphatischen, aroma-
 tischen oder heterocyclischen Ringsysteme unsubstituiert oder mit bis zu drei, im Falle von Fluor auch bis 65
 zur Maximalanzahl an gleichen oder verschiedenen Substituenten R24 versehen sind, oder
 R<sup>19</sup> und R<sup>20</sup> am gleichen C-Atom sitzend gemeinsam eine Oxo-Gruppe bedeuten,
 wobei
```

 R^{24} unabhängig voneinander ($C_1 - C_4$)-Alkyl, ($C_1 - C_4$)-Halogenalkyl, ($C_1 - C_4$)-Alkoxy, ($C_1 - C_4$)-Halogenalkoxy, Cyano, Nitro oder Halogen sind; R²⁵ unabhängig voneinander Wasserstoff, (C_1-C_8) -Alkyl, (C_1-C_4) -Halogenalkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylthio, (C_3-C_5) -Cycloalkyl, (C_2-C_4) -Alkenyl, (C_2-C_4) -Alkinyl, (C_1-C_4) -Alkanyl, (C_2-C_4) -Halogenalkanoyl, (C_2-C_4) -Alkoxyalkyl, Phenyl- (C_1-C_4) -alkyl oder Phenyl bedeuten und die Phenyl- (C_1-C_4) -Alkoxyalkyl, Phenyl- (C_1-C_4) -Alkyl oder Phenyl bedeuten und die Phenyl oder Phenyl o 5 nylgruppen unabhängig voneinander unsubstituiert oder mit bis zu drei, im Falle von Fluor auch bis zur Maximalanzahl an gleichen oder verschiedenen Substituenten R²⁶ versehen sind, wobei R^{26} unabhängig voneinander ($C_1 - C_4$)-Alkyl, ($C_1 - C_4$)-Haloalkyl, ($C_1 - C_4$)-Alkoxy, ($C_1 - C_4$)-Alkylthio, Halogen oder Cyano bedeutet und deren Salze. 10 5. Verbindungen der Formel I gemäß einem der Ansprüche 1 bis 4, worin R¹Wasserstoff, Chlor oder Fluor bedeutet: R² (C₂-C₄)-Alkenyl, (C_1-C_4) -Alkyl, (C_2-C_4) -Alkinyl, $Tri-(C_1-C_4)$ -alkylsilyl-(C_2-C_4)-alkinyl, (C1-C4)-Halogenalkyl, Cyclopropyl, Halogencyclopropyl, Methoxymethyl oder Cyano bedeutet; 15 R3 Wasserstoff, Halogen, Methyl, Ethyl, Ethenyl, Ethinyl, Methoxy, Ethoxy, Cyano, Trifluormethyl, Fluormethylthio oder Methoxycarbonyl bedeutet; oder R² und R³ zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, einen gegebenenfalls substituierten, ungesättigten 5- oder 6-gliedrigen Ring bilden, der im Falle des 5-Rings an Stelle einer CH2-Einheit 20 ein Schwefelatom enthalten kann; oder R² und R³ zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, einen gesättigten 5- oder 6-gliedrigen Ring bilden, der an Stelle einer CH2-Einheit ein Schwefel- oder ein Sauerstoffatom enthalten kann; A CH oder N bedeutet; 25 X NH oder Sauerstoff bedeutet: Y^1 , Y^2 und Y^3 eine Gruppe der Formel $-O_+$, $-S(O)_r$, $-N(O)_lR^6$ mit l=0 oder 1 bedeutet, wobei r =0, 1 oder 2 ist, oder eine Gruppe der Formel CR⁷R⁸ ist; oder Y¹ oder Y² an Stelle einer direkten Bindung stehen; Ra Wasserstoff bedeutet: 30 m 1 oder 2 bedeutet; n 1 oder 2 bedeutet; Z direkte Bindung, NR⁹, O, S(O)₈ mit s = 0, 1 oder 2, oder OSO₂, SO₂O, NR¹⁰SO₂, SO₂NR¹¹, SiR¹²R¹³ oder 35 U-C-V II W 40 bedeutet, wobei U direkte Bindung, NR¹⁴ oder O bedeutet: W Sauerstoff bedeutet; V direkte Bindung, NR¹⁵ oder Sauerstoff bedeutet: wobei 45 R^6 unabhängig voneinander (C_1-C_4)-Alkyl oder (C_1-C_4)-Alkanoyl sind; R⁷ und R⁸ unabhängig voneinander Wasserstoff, Halogen oder (C₁—C₄)-Alkyl sind, und R^9 , R^{10} , R^{11} , R^{14} und R^{15} gleich oder verschieden sind und jeweils Wasserstoff, (C_1-C_4) -Alkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkanoyl oder (C_3-C_5) -Cycloalkyl bedeuten und deren Salze. 50 6. Verbindungen der Formel I gemäß einem der Ansprüche 1 bis 5, worin R1 Wasserstoff oder Fluor bedeutet; R² Methyl, Ethyl, Propyl, Isopropyl, (C₁-C₂)-Fluoralkyl oder Methoxymethyl bedeutet; R3 Halogen, Methyl, Ethyl, Ethenyl, Ethinyl, Methoxy, Ethoxy, Trifluormethyl, Fluormethylthio, Methox-55 ycarbonyl oder Cyano bedeutet; oder R² und R³ zusammen mit dem Ringsystem, an das sie gebunden sind, das Chinazolin- oder Chinolin-System bilden, das im carbocyclischen Teil durch Fluor substituiert sein kann; oder R² und R³ zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, einen gesättigten 6-gliedrigen Ring bilden, der an Stelle einer CH2-Gruppe ein Sauerstoff- oder Schwefelatom enthalten kann; 60 A CH oder N bedeutet: X NH oder Sauerstoff bedeutet: Y^1 , Y^2 und Y^3 eine Gruppe der Formel -O, oder -S(O), bedeutet, wobei r=0,1 oder 2 ist oder eine Gruppe der Formel CR⁷R⁸, oder Y¹ oder Y³ an Stelle einer direkten Bindung stehen, wobei R7 und R8 unabhängig voneinander Wasserstoff oder Methyl sind 65

7. Verbindungen der Formel I gemäß einem der Ansprüche 1 bis 6.

und deren Salze.

worin

R1 Wasserstoff bedeutet;

R² Ethyl, Propyl, Isopropyl, 1-Fluorethyl oder Methoxymethyl bedeutet;

R³ Fluor, Chlor, Brom, Cyano, Methoxy, Ethenyl oder Ethinyl bedeutet; oder für den Fall, daß A Stickstoff bedeutet.

R² und R³ zusammen mit dem Ringsystem, an das sie gebunden sind, das Chinazolin-System bilden, das mit 5 einem Fluoratom substituiert sein kann

und deren Salze.

8. Verbindungen der Formel I gemäß einem der Ansprüche 1 bis 7, worin

R1 Wasserstoff bedeutet;

R² Ethyl oder Methoxymethyl bedeutet;

R3 Fluor, Chlor, Brom oder Methoxy bedeutet;

 R^5 voneinander unabhängige Substituenten sind und Halogen, Cyano, Nitro, (C_1-C_8) -Alkyl, (C_2-C_8) -Alkenyl, (C_2-C_8) -Alkinyl, (C_3-C_8) -Cycloalkyl, (C_4-C_8) -Cycloalkenyl bedeuten und in den letztgenannten 5 Resten eine oder mehrere, vorzugsweise bis zu drei nicht benachbarte gesättigte Kohlenstoffeinheiten durch eine Carbonyl-Gruppe oder durch Heteroatom-Einheiten, wie Sauerstoff, $S(O)_x$ mit x=0,1 oder 2, 15 NR^{16} oder $SiR^{17}R^{18}$ ersetzt sein können, und diese letztgenannten 5 Reste mit oder ohne die angegebenen Variationen, gegebenenfalls mit einem oder mehreren, vorzugsweise bis zu drei, im Falle von Fluor bis zur Maximalanzahl an gleichen oder verschiedenen Resten D^1R^{19} substituiert sein können, oder

R⁵ Aryl oder Heterocyclyl bedeutet, wobei diese beiden Reste unsubstituiert oder mit bis zu drei, im Falle von Fluor auch bis zur Maximalanzahl an gleichen oder verschiedenen Resten D²R²⁰ substituiert sein 20 können, oder zwei benachbarte Reste

 $Z-R^5$ gemeinsam mit den diese tragenden C-Atomen einen ankondensierten Cyclus mit 4 bis 6 Ringatomen bilden, der carbocyclisch ist oder Heteroringatome aus der Gruppe von O, S und N enthält und der unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe von Halogen, (C_1-C_4)-Alkyl und Oxo substituiert ist, oder

 R^{11} oder R^{15} unabhängig voneinander mit dem an Z befindlichen R^5 ein 4- bis 8-gliedriges Ringsystem bilden, in dem eine oder zwei CH₂-Gruppen, bevorzugt eine CH₂-Gruppe durch Heteroatom-Einheiten wie Sauerstoff S(O)_t mit t=0,1 oder 2 oder NR^{25} ersetzt sind, wobei

 R^{16} unabhängig voneinander Wasserstoff, ($C_1 - C_4$)-Alkyl, ($C_1 - C_4$)-Alkoxy oder ($C_1 - C_4$)-Alkanoyl bedeuter

R¹⁷ und R¹⁸ unabhängig voneinander (C₁ - C₄)-Alkyl, bevorzugt Methyl, bedeuten;

D¹ und D² jeweils unabhängig voneinander sind und eine direkte Bindung, -O, $-SO_k$, $-SO_2O$, $-OSO_2$, -CO, -COO, -COO, $-NR^{21}$, $-SO_2NR^{21}$, $-NR^{21}SO_2$, $-ONR^{21}$, $-NR^{21}CO$, $-CONR^{21}$ bedeutet, und k = 0, 1 oder 2 ist, und wobei

 R^{21} voneinander unabhängig Wasserstoff, (C₁—C₄)-Alkyl, (C₁—C₄)-Alkanoyl oder (C₃—C₅)-Cycloalkyl bedeutet:

R¹⁹ und R²⁰ unabhängig voneinander Wasserstoff, Halogen, bevorzugt Fluor, (C₁—C₈)-Alkyl, (C₃—C₈)-Cycloalkyl, Aryl oder Heterocyclyl bedeuten, wobei in den letztgenannten 3 Resten die cycloaliphatischen, aromatischen oder heterocyclischen Ringsysteme unsubstituiert oder mit bis zu drei, im Falle von Fluor 40 auch bis zur Maximalanzahl an gleichen oder verschiedenen Substituenten R²⁴ versehen sind, wobei

 R^{24} unabhängig voneinander ($C_1 - C_4$)-Alkyl, ($C_1 - C_4$)-Halogenalkyl, ($C_1 - C_4$)-Alkoxy, ($C_1 - C_4$)-Halogenalkoxy, Cyano, Nitro oder Halogen sind;

 R^{25} unabhängig voneinander (C_1-C_8)-Alkyl, (C_3-C_5)-Cycloalkyl, (C_1-C_4)-Alkanoyl, (C_2-C_4)-Halogenal-kanoyl, (C_1-C_4)-Alkoxy-(C_1-C_4)-alkyl, Phenyl-(C_1-C_4)-alkyl oder Phenyl bedeuten und die Phenylgruppen unabhängig voneinander unsubstituiert oder mit bis zu drei, im Falle von Fluor auch bis zur Maximalanzahl an gleichen oder verschiedenen Substituenten R^{26} versehen sind, wobei

 R^{26} unabhängig voneinander (C_1-C_4)-Alkyl, (C_1-C_4)-Haloalkyl, (C_1-C_4)-Alkoxy, (C_1-C_4)-Alkylthio, Halogen oder Cyano bedeutet und deren Salze.

9. Verbindungen der Formel I gemäß einem der Ansprüche 1 bis 8, worin R⁵ voneinander unabhängig 50 (C₁—C₈)-Alkyl bedeutet, in dem eine oder mehrere, vorzugsweise bis zu drei nicht benachbarte gesättigte Kohlenstoff-Einheiten durch Sauerstoff ersetzt sein können, und die mit oder ohne die angegebenen Variationen, gegebenenfalls mit einem oder mehreren, vorzugsweise bis zu drei, im Falle von Fluor bis zur 10 Maximalanzahl an gleichen oder verschiedenen Resten D¹R¹⁹ substituiert sind, oder

R⁵Aryl oder Heterocyclyl bedeutet, wobei diese beiden Reste unsubstituiert oder mit bis zu drei, im Falle 55 von Fluor auch bis zur Maximalanzahl an gleichen oder verschiedenen Resten D²R²⁰ substituiert sein können

und deren Salze.

10. Verfahren zur Herstellung von Verbindungen der Formel I gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß eine Verbindung der Formel II,

65

10

15

20

25

30

35

40

45

50

55

60

65

worin A, R¹, R² und R³ die oben unter Formel I angegebenen Bedeutungen haben und L eine Abgangsgruppe, beispielsweise Halogen, Alkylthio, Alkansulfonyloxy, Arylsulfonyloxy, Alkylsulfonyl oder Arylsulfonyl bedeutet, mit einem Nucleophil der Formel III,

$$H-X \xrightarrow{(Y^2)_m} (Z-R^5)_n \qquad (III)$$

worin X, Y¹, Y², Y³, Z, R⁴, R⁵, m und n die unter Formel I angegebenen Bedeutungen haben, umsetzt und in den so oder auf andere Weise erhaltenen Verbindungen der Formel I, gegebenenfalls den Stickstoff-Heterocyclus oder die Seitenkette(n) R⁵ weiter derivatisiert und die so erhaltenen Verbindungen gegebenenfalls in ihre Salze überführt.

11. Mittel, enthaltend mindestens eine Verbindung gemäß einem der Ansprüche 1 bis 9 und mindestens ein Formulierungsmittel.

12. Fungizides Mittel gemäß Anspruch 11, enthaltend eine fungizid wirksame Menge mindestens einer Verbindung gemäß einem der Ansprüche 1 bis 9, zusammen mit den für die fungizide Anwendung üblichen Zusatz- oder Hilfsstoffen.

13. Ovizides Mittel gemäß Anspruch 11, enthaltend eine ovizid wirksame Menge mindestens einer Verbindung gemäß einem der Ansprüche 1 bis 9, zusammen mit den für die ovizide Anwendung üblichen Zusatzoder Hilfsstoffen.

14. Insektizides, akarizides, ixodizides oder nematizides Mittel gemäß Anspruch 11, enthaltend eine insektizid, akarizid, ixodizid oder nematizid wirksame Menge mindestens einer Verbindung gemäß einem der Ansprüche 1 bis 9, zusammen mit den für diese Anwendungen üblichen Zusatz- oder Hilfsstoffen.

15. Pflanzenschutzmittel, enthaltend eine wirksame Menge mindestens einer fungizid, insektizid, akarizid, ixodizid, nematizid oder ovizid wirksamen Verbindung gemäß einem der Ansprüche 1 bis 9 und mindestens einem weiteren Wirkstoff aus der Reihe der Fungizide, Insektizide, Ovizide, Lockstoffe, Sterilantien, Akarizide, Nematizide und Herbizide zusammen mit den für diese Anwendung üblichen Zusatz- oder Hilfsstoffen.

16. Mittel zur Anwendung im Holzschutz oder als Konservierungsmittel in Dichtmassen, Anstrichfarben, Kühlschmiermitteln für die Metallbearbeitung oder in Bohr- und Schneidölen, enthaltend eine wirksame Menge mindestens einer Verbindung gemäß einem der Ansprüche 1 bis 9, zusammen mit den für diese Anwendung üblichen Zusatz- oder Hilfsstoffen.

17. Verwendung einer Verbindung gemäß einem der Ansprüche 1 bis 9 oder eines Mittels gemäß einem der Ansprüche 11 bis 14 als Tierarzneimittel, vorzugsweise zur Bekämpfung von Endo- oder Ektoparasiten.

18. Verwendung einer Verbindung gemäß einem der Ansprüche 1 bis 9 oder eines Mittels gemäß einem der Ansprüche 11, 12, 15 oder 16 als Fungizid.

19. Verwendung einer Verbindung gemäß einem der Ansprüche 1 bis 9 oder eines Mittels gemäß einem der Ansprüche 11, 13, 15 oder 16 als Ovizid.

20. Verwendung einer Verbindung gemäß einem der Ansprüche 1 bis 9 oder eines Mittels gemäß einem der Ansprüche 11 bis 16 zur Bekämpfung von Insekten, Acarina, Mollusken oder Nematoden.

21. Verwendung einer Verbindung gemäß einem der Ansprüche 1 bis 9 oder eines Mittels gemäß einem der Ansprüche 11 bis 14 oder 16 als Holzschutzmittel oder als Konservierungsmittel in Dichtmassen, Anstrichfarben, Kühlschmiermitteln für die Metallbearbeitung oder in Bohr- und Schneidölen.

22. Verfahren zur Bekämpfung von phytopathogenen Pilzen, dadurch gekennzeichnet, daß auf diese oder die von ihnen befallenen Pflanzen, Flächen oder Substrate oder auf Saatgut eine fungizid wirksame Menge einer Verbindung gemäß einem der Ansprüche 1 bis 9 oder eines Mittels gemäß einem der Ansprüche 11, 12, 15 oder 16 appliziert wird.

23. Verfahren zur Bekämpfung von Insekten, Acarina, Mollusken, Nematoden oder deren Eiern, dadurch gekennzeichnet, daß auf diese oder die von ihnen befallenen Pflanzen, Flächen oder Substrate eine insektizid, akarizid, ixodizid, nematizid oder ovizid wirksame Menge einer Verbindung gemäß einem der Ansprüche 1 bis 9 oder eines Mittels gemäß einem der Ansprüche 11 oder 13 bis 16 appliziert wird.

24. Saatgut, behandelt oder beschichtet mit einer wirksamen Menge einer Verbindungen gemäß einem der Ansprüche 1 bis 9 oder eines Mittels gemäß einem der Ansprüche 11 bis 15.