Equality of Absolute Values

Lemma 1. Let $|\cdot|_1$ and $|\cdot|_2$ be absolute values on a field \mathbb{F} . Then the following are equivalent:

- 1. $|\cdot|_1$ and $|\cdot|_2$ are equivalent (i.e. their topologies are the same).
- 2. For any $x \in \mathbb{F}$, we have $|x|_1 < 1$ if and only if $|x|_2 < 1$.
- 3. There is an $\alpha \in \mathbb{R}$ such that for all $x \in \mathbb{F}$, $|x|_1 = |x|_2^{\alpha}$.

Proof. We will start by showing $1 \implies 2$. Suppose $|\cdot|_1$ and $|\cdot|_2$ are equivalent. Since the topologies are the same, we have that any sequence a_n that converges under $|\cdot|_1$ will also converge under $|\cdot|_2$. If we consider any $x \in \mathbb{F}$, then we have

$$\lim_{n\to\infty} x^n = 0$$

exactly when x < 1, so $|x|_1 < 1$ if and only if $|x|_2 < 1$.

We must now show that $2 \implies 3$. Suppose that $x \in \mathbb{F}$ and that $|x|_1 < 1$ if and only if $|x|_2 < 1$. Our goal is to find an α such that for all $x \in \mathbb{F}$, $|x|_1 = |x|_2^{\alpha}$. We can find one such α rather easily. Consider an arbitrary $y \in \mathbb{F}$ where $|y|_1 < 1|$. Then

$$|y|_1 = |y|_2^{\alpha}$$

$$\log |y|_1 = \log |y|_2^{\alpha}$$

$$\log |y|_1 = \alpha \log |y|_2$$

$$\alpha = \frac{\log |y|_1}{\log |y|_2}.$$

We have asserted that such an α exists for y, but we want to show that this α does indeed work for any $x \in \mathbb{F}$ (ideally that α does not depend on our choice of x). We will choose another element of $\mathbb{F} \setminus \{0\}$, $z \neq x$. We know that if $|x|_1 = |y|_1$ then $|x|_2 = |y|_2$ since x/y or y/x would have $|\cdot|_2 < 1$ which would violate the assumption.