Einführung in die Geometrie und Topologie - Mitschrieb -

Übung im Wintersemester 2011/2012

Sarah Lutteropp

26. Oktober 2011

Inhaltsverzeichnis

1	24 .1	10.2011	
	1.1	Induzierte Topologie	
	1.2	Offen und abgeschlossen	
	1.3	Basis der von der Standardmetrik auf dem \mathbb{R}^n definierten To-	
		pologie	
	1.4	Teilraumtopologie	
		Homotopieäquivalenz	

Vorwort

Dies ist ein Mitschrieb der Übung "Einführung in die Geometrie und Topologie" vom Wintersemester 2011/2012 am Karlsruher Institut für Technologie, die von Frau Dipl.-Math. Sandra Lenz gehalten wird.

Kapitel 1

24.10.2011

1.1 Induzierte Topologie

Definition 1.1 (Induzierte Topologie). Sei X eine Menge. Sei $d: X \times X \to \mathbb{R}$ eine Metrik. Diese Metrik d definiert durch folgende Bedingung eine Topologie σ auf X:

 $O\subseteq X$ ist genau dann offen (d.h. $O\in\sigma_d$), wenn für alle $x\in O$ ein $\epsilon>0$ existiert mit

$$B_{\epsilon}(x) := \{ y \in X \mid d(x, y) < \epsilon \} \subseteq O.$$

 $(B_{\epsilon} nennt man offener \epsilon - Ball.)$

1.2 Offen und abgeschlossen

Sei X eine Menge.

- Mengen können sowohl offen als auch abgeschlossen (zugleich) sein.
 - **Beispiel 1.1.** Betrachte \emptyset und X in der trivialen Topologie $\sigma = \{X, \emptyset\}$. Es gilt: $X \in \sigma, \emptyset \in \sigma$ nach Definition, d.h. X und \emptyset sind offen. Außerdem gilt: $X^c = \emptyset \in \sigma$, ebenso: $\emptyset^c = X \in \sigma$, d.h. die Komplemente von X und \emptyset sind offen und somit X und \emptyset abgeschlossen.
- Mengen können weder offen noch abgeschlossen sein.
 - Beispiel 1.2. Betrachte \mathbb{R} mit der von der Standardmetrik induzierten Topologie. Es ist [0,1[nicht offen in dieser Topologie, denn für den Punkt 0 finden wir kein $\epsilon > 0$, so dass $B_{\epsilon}(0)$ in [0,1[liegt. Die Menge [0,1[ist aber auch nicht abgeschlossen, da ihr Komplement $\mathbb{R}\setminus[0,1[=]-\infty,0[\cup[\underline{1},\infty[$ nicht offen ist.
- Bilder offener Mengen unter stetigen Abbildungen müssen nicht notwendigerweise offen sein.

Beispiel 1.3. Betrachte \mathbb{R} mit der von der Standardmetrik induzierten Topologie.

Definiere $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$. Es gilt für die in \mathbb{R} offene Menge]-1,1[:f(]-1,1[)=[0,1[und [0,1[ist nicht offen in \mathbb{R} .

1.3 Basis der von der Standardmetrik auf dem \mathbb{R}^n definierten Topologie

$$\mathcal{B} = \{ B_{\frac{1}{m}}(x) \mid x \in \mathbb{Q}^n, m \in \mathbb{N} \}$$

Diese Basis ist abzählbar.

1.4 Teilraumtopologie

Es sei (X, σ) ein topologischer Raum, $A \subseteq X$. Die Teilraumtopologie (oder Spurtopologie) ist definiert durch

$$\sigma|_A := \{U \cap A \mid U \in \sigma\}$$

Satz 1.1. In der Tat definiert $\sigma|_A$ eine Topologie auf A.

Beweis. $\bullet_{\underline{\mathbf{z}}.\underline{\mathbf{z}}.}$: Für jede Indexmenge I gilt: $\forall i \in I \colon O_i \in \sigma\big|_A \Rightarrow \bigcup_{i \in I} O_i \in \sigma\big|_A$.

Sei I beliebige Indexmenge. Für alle $i \in I$ mit $O_i \in \sigma|_A$ gilt: Es existieren $\mathcal{U}_i \in \sigma$ mit $O_i = \mathcal{U}_i \cap A$. Es gilt:

$$\bigcup_{i \in I} O_i = \bigcup_{i \in I} (\mathcal{U}_i \cap A) = \bigcup_{i \in I} \mathcal{U}_i \cap A \in \sigma|_A$$

, da $\bigcup_{i \in I} \mathcal{U}_i \in \sigma$.

• $\underline{\mathbf{z}}.\underline{\mathbf{z}}.$: $\forall O_1, O_2 \in \sigma|_A : O_1 \cap O_2 \in \sigma|_A$.

Seien $O_1, O_2 \in \sigma|_A$. Dann ex. $\mathcal{U}_1, \mathcal{U}_2 \in \sigma$ mit $O_i = \mathcal{U}_i \cap A, i \in \{1, 2\}$. Es gilt: $O_1 \cap O_2 = (\mathcal{U}_1 \cap A) \cap (\mathcal{U}_2 \cap A) = (\mathcal{U}_1 \cap \mathcal{U}_2) \cap A \in \sigma|_A$, da $\mathcal{U}_1 \cap \mathcal{U}_2 \in \sigma$.

• $\underline{\mathbf{z}}.\underline{\mathbf{z}}.$: $A, \emptyset \in \sigma|_A$.

Es gilt: $A = X \cap A \in \sigma|_A$, da $X \in \sigma$ nach Definition von σ .

Es gilt: $\emptyset = \emptyset \cap A \in \sigma|_A$, da $\emptyset \in \sigma$ nach Definition von σ .

1.5 Homotopieäquivalenz

Definition 1.2. Seien X, Y topologische Räume. X heißt homotopieäquivalent zu Y, falls es stetige Abbildungen $f \colon X \to Y$ und $g \colon Y \to X$ gibt, so dass $f \circ g \simeq id_Y$ und $g \circ f \simeq id_X$.

Satz 1.2. $\mathbb{R}^n \setminus \{0\}$ ist homotopieäquivalent zur Sphäre S^{n-1} .

Beweis. Sei $f\colon S^{n-1}\hookrightarrow \mathbb{R}^n\backslash\{0\}, x\mapsto x$ (Inklusionsabbildung). Dann ist f stetig.

Sei weiter $g: \mathbb{R}^n \setminus \{0\} \to S^{n-1}, x \mapsto \frac{x}{||x||}$. Dann ist auch g stetig und es gilt: $g \circ f = id_{S^{n-1}}$, also insbesondere $g \circ f \simeq id_{S^{n-1}}$.

Für $f \circ g$ betrachte folgende Abbildung:

$$H \colon \mathbb{R}^n \backslash \{0\} \times [0,1] \to \mathbb{R}^n \backslash \{0\}, (x,t) \mapsto (1-t) \frac{x}{||x||} + t \cdot x$$

Dann ist H stetig und es gilt für alle $x \in \mathbb{R} \setminus \{0\}$:

$$H(x,1) = x = id_{\mathbb{R}^n \setminus \{0\}}(x)$$

$$H(x,0) = \frac{x}{||x||} = (f \circ g)(x)$$

Dann ist H Homotopie von $f \circ g$ nach $id_{\mathbb{R}^n \setminus \{0\}}$ (in Zeichen: $f \circ g \simeq id_{\mathbb{R}^n \setminus \{0\}}$).