DISCRETE MATHEMATICS

QUESTION 1

(a)
$$A \setminus (A \setminus B) = A \cap B$$

·
$$\times \in A \setminus (A \setminus B)$$
 => $\times \in A$ and $\times \notin A \setminus B$ => $\times \in A$ and $(\times \notin A \text{ on } \times \in B)$ =>

=>
$$(x \in A \text{ and } x \notin A)$$
 or $(x \in A \text{ and } x \in B) = x \in A \cap B \Rightarrow A \setminus (A \setminus B) \subseteq A \cap B$

* XE ANB => XEA and XEB => (XEA and X
$$\notin$$
 A) on (XEA and X \in B) =>

The A and
$$(x \notin A \text{ on } x \in B)$$
 => $\times \in A$ and $x \notin A \setminus B$ => $\times \in A \setminus (A \setminus B)$ => $\times \in A$

if
$$x \in B \Rightarrow we are done$$

if $x \in C \Rightarrow x \in A \cap C \Rightarrow x \in B \cap C \Rightarrow x \in B \Rightarrow x \in B \Rightarrow x \in B \Rightarrow x \in A \cup C \Rightarrow x \in A \Rightarrow x \in C$

False:
$$A = \emptyset$$
, $B = \{1\}$, $C = \{1, 2\}$

$$aR_1a$$
 and aR_2a for every $a \in A$

$$a(R_2\circ R_1)a <=> (3) \times eA \text{ s.t. } aR_1\times \text{ and } \times R_2a$$

$$if x = a$$

$$c = A + b + c = b + c = b + c = b$$

False:
$$R_2 = \{(x, y), (z, t)\}, R_1 = \{(a, x), (y, z)\}$$

$$R_2 \circ R_1 = \{(a, y), (y, t)\} \text{ is not transitive since } (a, t) \notin (R_2 \circ R_1)$$

False:
$$R_2 = \{(x,y), (y,x)\}$$
, $R_1 = \{(x,2), (2,x)\}$
 $R_2 \circ R_1 = \{(z,y)\}$ is not symmetric since $(y,z) \notin (R_2 \circ R_1)$

Case 1:
$$5, 3, 1, 1$$
 in boxes $\frac{4!}{2! \cdot 1! \cdot 1!} = 12$ Ways

Case 2:
$$5, 2, 2, 1$$
 in boxes $\frac{5!}{2!} = 12$ ways

Case 3: 4, 4, 1, 1 in boxes
$$\frac{4!}{2! \cdot 2!} = 6 \text{ ways}$$

Case 5: 3, 3, 3, 1 in boxes
$$\frac{4!}{3!} = 4$$
 ways

Case 6: 3,3,2,2 in boxes
$$\frac{5!}{2! \cdot 2!} = 6 \text{ ways}$$

12+12+6+24+4+6 - 64 ways

VESTION 2

- (9) $27^{17} \pmod{7} = (-1)^{17} \mod 7 = (-1) \mod 7 = 6$
- (b) $m, n \in \mathbb{N}^+$ $x, y \in \mathbb{Z}$ s.t. $g = m \times + n y$, g = gcd(m, n) p prime
 - a (mod p) exists for any a ∈ Zp, a \$0 (mod p)
 - We know that $g = \gcd(a, p) = 1$, since p is prime and $a \not\equiv 0 \pmod{p} = 1$
 - (7) xiy & Z s.t. 1 = xp+ ya => 1 = ya (mod u) => a = y (mod p).
- (c) p = prime a = 0 (mod p), then

 $a^{p-1} \equiv 1 \pmod{p}$

We will prove by induction that a P-1 = 1 (mod p) for a EN

- P(0) cannot be used as 0 = 0 (mod p)
- P(1): 1 = 1 = 1 (mod p) V
- $P(a) \Rightarrow P(a+1)$ $(a+1)^{p} = \sum_{i=0}^{p} {p \choose i} a^{i} = a \pmod{p}$
- So, $a^p \equiv a \pmod{p}$ and from b we know that $(3)a^{-1} \Rightarrow a^{p-1} \equiv 1 \pmod{p}$ For a < 0, we have $a^{p-1} = (-1)^{p-1} = (-1)^{p-1} = (-1)^{p-1} = 1$ for p = z it's trivial as a is odd \Rightarrow $a \equiv 1 \pmod{2}$ \Rightarrow for p > z p is odd \Rightarrow $(-1)^{p-1} = 1$
 - => a = b = 1 (mod p)
- (d) $(a_{n}), n \in \mathbb{N}_{+}, a_{n} = O(n)$ $k \geqslant 2, (kb_{n}), n \in \mathbb{N}_{+}$ $kb_{1} = k^{-1}b_{1}$ $kb_{2} = \frac{1}{2}(k^{-1}b_{1} + k^{-1}b_{2})$ $kb_{n} = \frac{1}{n}(k^{-1}b_{n} + k^{-1}b_{2} + ... + k^{-1}b_{n})$

16 = a ..

We'll prove by induction on k > 1 that kbn = 0(n)

We know that kbn = o(n) and we have

$$k+1 \delta_n = \frac{1}{n} \left(k \delta_1 + k \delta_2 + \dots + k \delta_n \right)$$

We have
$$k_{b_1} = O(1) = 0$$
 $k_{b_1} < C_1$
 $k_{b_2} = O(2) = 0$ $k_{b_2} < 2C_2$ \Rightarrow $k_{b_3} < C_4$ \Rightarrow $k_{b_4} < C_4$

$$\begin{cases} k_{b_n} = o(n) \Rightarrow k_{b_n} < n c_n \end{cases}$$

Thum,
$$k+1 b_n < \frac{1}{2} \cdot \frac{x(n+1)}{2} \cdot C$$

 $k+1 b_n < \frac{n+1}{2} \cdot C = \sum_{k+1}^{k+1} b_n = O(n+1)$

QUESTION 3

(a)
$$f(n) = O(g(n))$$
 if $\exists c \in \mathbb{R}$, $N \in \mathbb{N}$ s.t. (\forall) $n \ge N$ we have $|f(n)| \le C|g(n)|$

(b) (i)
$$3n^2 + 5n^{\frac{3}{2}} + 6 = O(n^2)$$

True:
$$3n^2 + 5n^{\frac{3}{2}} + 6 < 4n^2 + 5n^{\frac{3}{2}}$$
 for $n \ge 3$
 $4n^2 + 5n^{\frac{3}{2}} < 9n^2$ for $n \ge 3 \Rightarrow$ we take $C = 9$ and $N = 3$

$$\frac{f_{\alpha}|_{S_{\alpha}}}{2^{n}} = \frac{1 \cdot 2 \cdot \dots \cdot n}{2 \cdot 2 \cdot \dots \cdot 2} \rightarrow \infty \text{ as } n \rightarrow \infty \Rightarrow n! > 2^{n} \text{ for } n \ge 4$$

(iii)
$$\sum_{k=0}^{n} k^2 = O(n^3)$$

$$\frac{1}{1} \frac{n(n+1)(2n+1)}{6} = o(n^3)$$

$$\frac{n^3 + 2n^2 + n}{6} = o(n^3)$$

$$\sum_{k=1}^{\infty} k^{2} = o(n^{2})$$

False:
$$n^3 + 2n^2 + n < cn^2$$

 $n^3 + 2n^2 + n < 6cn^2 = dn^2$
Since $n^3 > dn^2$ (Y) $d \in \mathbb{R}$ for n sufficiently big

- (c) < partial order on A, subsit S = A
 - (i) least upper bound meA for s if

 -m is an upper bound for S: X ≤ m (∀) X ∈ S and

 if m' is any other upper bound for s, then m ≤ m'
 - (ii) maximum:

 m is the maximum of s if it is an upper bound and mes
- (d) · vectors in plane (x,y) ∈ IR × IR
 - · & on IR
 - · EL lexicographic order; sp product order
 - S = sat of vectors in the interior of the unit disc i.e. $S = \{(x,y) \in |R \times |R| \times^2 + y^2 < 1\}$
- \leq_L : $(x,y) \leq_L (z,t)$ if $x \leq_Z$ on (x=z) and $y \leq_L t$

There is no least upper bound for \leq_L since any vector (1, a) is an upper bound as $\chi^2 + y^2 <_L$ implies that $\chi \in (-1, 1) =_D (\forall) (\chi, y) \in_S \cdot (\chi, y) \leq_L (1, a)$

and the least upper bound is (1, a), when a - - 00, so it can't be defined

· sp: (x,y) sp (z,t) if x s = and y st

The least upper bound is (1,1) since $x \in I$, $y \in I$ for all $(x,y) \in S$ and it cannot be smaller since $X,y \in (-1,1)$.