From Molecular Gene Discovery to Field Performance

A **six-suggestion guide** to helping researchers understand what is required when evaluating or designing studies claiming major yield increases.

1) Use elite germplasm

Backcross changes into ex-patent variety protection lines or similar commercially competitive germplasm.

2) Measure plot yield

Yield data from single plants is not scalable to plotwide effects.

3) Test G x E x M x T effects

Genotype x environment x management x transgene effects should be tested for any introduced trait.

Density

Edge

Irrigation

Fertilizer

4) Follow standard management

The agronomic practices of the target growing environments should be factored into the experimental design.

5) Consider evolution

Investigate 'missed' genetic variation or novel alleles from different species and ensure that comparable alleles aren't present in commercial varieties.

6) Develop collaborations

Reach out to colleagues, chat at conferences, and learn about existing public yield testing frameworks such as the Genomes to Fields Initiative, CGIAR, and university-based breeding programs.

Graphics by: Merritt Khaipho-Burch mbb262@cornell.edu | @MerKhaiBurch

Suggestions from: *The perils and promise of single-gene approaches to enhancing crop yield* (Khaipho-Burch et al., 2023 Under Revision)

