ESAME 26 GIUGNO 2020

1. Si dimostri la seguente equivalenza tra espressioni regolari:

$$(r+s) \cdot t = r \cdot t + s \cdot t$$

2. Si consideri il seguente DFA $(q_0$ stato iniziale e $F = \{q_2, q_3, q_4, q_5\})$ e si scrivano in modo estensionale (laddove gli insiemi siano infiniti si faccia capire anche a parole) le classi delle relazioni R_M ed R_L a lui associate

	0	1
q_0	q_2	q_1
q_1	q_1	q_1
q_2	q_3	q_1
q_3	q_1	q_4
q_4	q_5	q_1
q_5	q_1	q_2

3. Si dica (motivando formalmente la propria affermazione) se i seguenti insiemi A_i e A siano (o meno) regolari o liberi dal contesto.

$$A_i = \left\{ x_1 \dots x_n \in \{0, 1\}^* : (\forall j \in \{1, \dots, n\}) (x_j \in \{0, 1\}^i \land x_j \text{ è prefisso dell'espansione binaria (dopo la virgola) di } \frac{1}{12}) \right\}$$

Mentre $A = \bigcup_{i>0} A_i$

4. Si studino gli insiemi (e i loro complementari):

$$B_1 = \left\{ x : \varphi_x(\lfloor \frac{x}{2} \rfloor) = x! \right\}$$

$$C_1 = \left\{ \langle x, y \rangle : W_x \cap E_y = \emptyset \right\}$$

$$D_1 = \left\{ x : (\exists y > x)(\varphi_y(x) = 0) \right\}$$

Traccia della soluzione:

1. Si tratta di mostrare che $L((r+s) \cdot t) = L(r \cdot t + s \cdot t)$. E' una dimostrazione insiemistica da farsi con doppia inclusione.

 \subseteq Sia $x \in L((r+s) \cdot t)$. Allora esistono stringhe u, v tali che $x = uv, u \in L(r+s), v \in L(t)$. Dunque ... [Completare] Pertanto $x \in L(r \cdot t + s \cdot t)$.

Si passi poi all'altra inclusione:

- \supseteq Sia $x \in L(r \cdot t + s \cdot t) \dots$ [Completare]
- 2. Le classi di R_M sono i linguaggi accettati dai singoli stati. $L(q_0) = \{\varepsilon\}, L(q_1) = \dots$ [Completare]. Si minimimizzi dunque l'automa. Le classi di R_L sono i linguaggi accettati dai singoli stati dell'automa minimo [Completare].
- 3. Innanzitutto si calcoli l'espansione binaria di $\frac{1}{12} = 0.00\overline{(01)}$ (esercizio del primo anno). Fissato i, A_i sarà il linguaggio denotato dalla espressione regolare: $A_0 \mapsto \epsilon$, $A_1 \mapsto (0)^+$, $A_2 \mapsto (00)^+$, $A_3 \mapsto (000)^+$, $A_4 \mapsto (0001)^+$, $A_5 \mapsto (00010)^+$, e così via. Ciascuno di questi è regolare (essendo denotato da una e.r.)

A invece non è regolare ma nemmeno CF. Si applichi il pumping lemma utilizzando, dato n, $z = 00(01)^n 00(01)^n 00(01)^n$.

B è r.e. completo, \bar{C} è r.e. completo (con un dovetail su M_x e M_y cerco due elementi u, v tali che $M_x(u) \downarrow$ e $M_y(v) \downarrow$ e $M_y(v) = u$. $D = \mathbb{N}$ (pensateci) dunque ricorsivo.

23 LUGLIO 2020

1. Si dimostri la seguente equivalenza tra espressioni regolari:

$$r \cdot (s+t) = r \cdot s + r \cdot t$$

- 2. Si definisca la nozione di insieme semplice e si mostri che un insieme semplice non è ricorsivo nè r.e. completo.
- 3. Si definisca la notazione TIME(f(n)) (per k-MdT) e si mostri un esempio di linguaggio che appartiene a $TIME(a \cdot n + b)$ per opportune costanti a, b.
- 4. Si dica (motivando) se la seguente funzione è o meno primitiva ricorsiva

$$\begin{cases} f(0,0) &= 0 \\ f(x,y) &= f(\min\{x,y\},0) \cdot Ack(x,y) \end{cases}$$
 se $x + y > 0$

5. Si dica (motivando) se il seguente insieme è (o meno) regolare o libero dal contesto.

$$A = \left\{x \in \{0,1,'\,.'\} : x$$
è un prefisso dell'espansione binaria di $\frac{30}{7}\right\}$

Nel caso sia regolare, si definisca l'automa minimo che accetta A. Cosa succederebbe se al posto di $\frac{30}{7}$ avessimo scritto $\sqrt{18}$?

6. Si studino gli insiemi (e i loro complementari):

$$B = \{x : \varphi_{x-2}(x+2) = 18\}$$

$$C = \{\langle x, y \rangle : E_y = \{x!\}\}$$

$$D = \{x : (\exists y > x)(\forall u \in \mathbb{N})(\forall v \in \mathbb{N})(\varphi_y(u, v) = Ack(x, y))\}$$

ESAME 15 SETTEMBRE 2020

- 1. Si definisca il concetto di grammatica CF e di linguaggio CF e si dimostri che i linguaggi CF sono chiusi per concatenazione.
- 2. Sia definisca la nozione di funzione primitiva ricorsiva. Si dimostri formalmente che la funzione f(x, y, z) = x + y + z è primitiva ricorsiva.
- 3. Si dia la definizione di insieme semplice. Si dimostri dunque che se S è semplice, allora non può essere completo.
- 4. Si enunci il Teorema (o i Teoremi) di Cook e Levin (che assumiamo per buono/i). Si dimostri dunque che il problema 3SAT è NP-completo.
- 5. Si dica (motivando formalmente la propria affermazione) se il seguente insieme A sia (o meno) regolare o libero dal contesto.

$$A = \{10^n 1 : n \text{ è dispari oppure } n \text{ è potenza di } 2\}$$

6. Si studino gli insiemi (e i loro complementari):

$$B = \{x : \varphi_x(0) = 5 \lor \varphi_x(1) = 3\}$$

$$C = \{x : (\exists y > x)(\varphi_y(x) = x!)\}$$

$$D = \{x : W_x = K\}$$

Traccia di soluzione. 1, 2, 3, 4 sono nozioni presentate o teoremi dimostrati a lezione. 5. Il linguaggio non è CF. Per mostrarlo si utilizzi il Pumping Lemma, prendendo, dat

5. Il linguaggio non è CF. Per mostrarlo si utilizzi il Pumping Lemma, prendendo, dato $n \in \mathbb{N}$ ad esempio la stringa $z = 10^{2^n}1$. Partizionandola con z = uvwxy, se v o x contengono 1, spompando si esce dal linguaggio. Se $vx = 0^a$ con $a \in \{1, \ldots, n\}$ esiste sicuramente un i (probabilmente già i = 2 o i = 3) per cui $uv^iwx^iy = 10^{2^n + (i-1)a}1$ non appartiene al linguaggio. 5. B è r.e. completo (per la completezza definite (ad esempio) una funzione che restituisce 5 se $x \in K$, indefinita altrimenti. $C = \mathbb{N}$ è ricorsivo. D è produttivo. Definite (ad esempio) una funzione che restituisce $\varphi_y(y)$ se $M_x(x)$ non termina in y passi, indefinito altrimenti. Sia $\varphi_{g(x)}$ la funzione ottenuta per Teorema SMN. Se $x \in \bar{K}$ allora $W_{g(x)} = \{y : \varphi_y(y) \downarrow\} = K$. Altrimenti è un sottoinsieme finito di K. \bar{D} è produttivo. Definite (ad esempio) una funzione che restituisce $\varphi_y(y)$ se $x \in K$ indefinito altrimenti. Sia $\varphi_{g(x)}$ la funzione ottenuta per Teorema SMN. Se $x \in \bar{K}$ allora $W_{g(x)} = K$. Altrimenti è \emptyset .

ESAME 21 GENNAIO 2021

- 1. Si definisca il concetto di grammatica di Tipo 1 e di linguaggio di Tipo 1. Si dimostri che, data G di tipo 1, e data una stringa x, il test $x \in L(G)$ è decidibile.
- 2. Sia A un insieme produttivo e sia B un insieme tale che $A \leq B$. Si dimostri che B è produttivo.
- 3. Si definiscano le nozioni di k MdT, di tempo necessario per una macchina M su un input x, di classe in tempo, della classe P e si dia un esempio di un linguaggio in P.
- 4. Si dica (motivando formalmente la propria affermazione) se, fissato i, il seguente insieme A_i sia (o meno) regolare o libero dal contesto (#(a, x) denota il numero delle occorrenze del carattere a nella stringa x).

$$A_i = \{x \in \{0,1\}^* : \#(0,x) < \#(1,x) \land |x| \le i!\}$$

Si dica (sempre motivando) lo stesso dell'insieme $A = \bigcup_{i>0} A_i$.

5. Si studino gli insiemi (e i loro complementari):

$$\begin{array}{lcl} B & = & \left\{ x: \varphi_{\lceil \frac{x}{2} \rceil}(2^x) = x) \right\} \\ C & = & \left\{ x: |E_x \cap W_x| \text{ è un numero pari maggiore di } 0 \right\} \\ D & = & \left\{ \langle x,y \rangle: (\exists z > x) (\varphi_z(x) = y) \right\} \end{array}$$

Traccia di soluzione. 1, 2, 3 sono nozioni presentate o teoremi dimostrati a lezione.

- 4. Con i fissatom A_i è finito e dunque regolare. Unendoli tutti il vincolo di lunghezza viene meno e si tratta di contare gli 0 e gli 1. Con il PL si dimostri che non è regolare (dato n si scelga una stringa 0^n1^n e si pompi v. A è CF. Si scriva una grammatica che genera il linguaggio con numero di 0 uguale al numero di 1 e . . .
- 5. B non è estensionale (perché?) ed è r.e. completo. Per effetturare la riduzione si definisca una funzione che restituisce $\lfloor \log_2 y \rfloor$ se $x \in K$, indefinita altrimenti. C è produttivo cosí come il suo complementare. $D = \mathbb{N}$.

ESAME 18 FEBBRAIO 2021

- 1. Sia $A \subseteq \mathbb{N}$. Si dimostri che, se $A \neq \emptyset$, le due affermazioni sono equivalenti: (1) A è il dominio di una funzione calcolabile (parziale o totale) e (2) A è l'immagine di una funzione calcolabile totale.
- 2. Si definisca il concetto di automa con epsilon transizioni non deterministico, di dia la definizione del linguaggio accettato, e si dimostri che per ogni DFA M esiste un ε -NFA M' con UN SOLO STATO FINALE tale che L(M) = L(M').
- 3. Sia $f(\cdot)$ una funzione calcolabile totale. Si mostri che $NTIME(f(n)) \subseteq TIME(c^{f(n)})$.
- 4. Si dica (motivando formalmente la propria affermazione) se i seguenti linguaggi A e B siano (o meno) regolari o liberi dal contesto

$$A = \begin{cases} 1x : & x \in \{0,1\}^* \land \\ 1x \text{ letto come numero binario vale } 2^n - 1, \text{ per } n \text{ opportuno} \end{cases}$$

$$B = \{1x : x \in \{0,1\}^* \land |1x| = 2^n - 1 \text{ per } n \text{ opportuno} \}$$

5. Si studino gli insiemi (e i loro complementari):

$$C = \left\{ x : \varphi_{\lceil \frac{x}{10} \rceil}(x!+1) = x) \right\}$$

$$D = \left\{ (x, y, z) : z \text{ è pari e } (\varphi_x \text{ oppure } \varphi_y \text{ è totale}) \right\}$$

$$E = \left\{ \langle x, y \rangle : (\forall z > x)(\varphi_z(x) = y) \right\}$$

Traccia di soluzione. 1, 2, 3 sono nozioni presentate o teoremi dimostrati a lezione.

- 4. A è il linguaggio associato alla espressione regolare 1^+ , dunque regolare. Il linguaggio B non è CF. Per mostrarlo si utilizzi il Pumping Lemma, prendendo, dato $n \in \mathbb{N}$ ad esempio la stringa $z = 1^{2^n-1}$.
- 5. C non è estensionale (perché?) ed è r.e. completo. Per effetturare la riduzione si consideri la funzione intuitivamente inversa del fattoriale $f(x) = \mu y(y! \ge x)$. D è produttivo cosí come il suo complementare. Nelle riduzioni si fissi un valore per z (ad esempio 2), un valore per y tale che φ non sia totale (ad esempio 6) e si lavori sul primo parametro. $E = \emptyset$ è ricorsivo.