Support Vector Machines and kernelization

```
[1]: # Global imports and settings
    from preamble import *
    %matplotlib inline
    plt.rcParams['savefig.dpi'] = 120 # Use 300 for PDF, 100 for slides
    #InteractiveShell.ast_node_interactivity = "all"
    HTML('''<style>html, body{overflow-y: visible !important} .CodeMirror{min-w
```

<IPython.core.display.HTML object>

Linear SVMs

Revisited

Linear models for Classification (recap)

Aims to find a (hyper)plane that separates the examples of each class. For binary classification (2 classes), we aim to fit the following function:

$$\hat{y} = w_0 * x_0 + w_1 * x_1 + ... + w_p * x_p + b > 0$$

When $\hat{y} < 0$, predict class -1, otherwise predict class +1

Support vector machines

- In several other linear models, we minimized (misclassification) error
- In SVMs, the optimization objective is to maximize the margin
- The margin is the distance between the separating hyperplane and the *support vectors*
- The **support vectors** are the training samples closest to the hyperplane
- Intuition: large margins generalize better, small margins may be prone to overfitting

SVC Image

Maximum margin For now, we assume that the data is linearly separable.

The positive hyperplanes is defined as:

$$b + \mathbf{w}^{\mathbf{T}} \mathbf{x}_{+} = 1$$

with x_+ the positive support vectors.

Likewise, the *negative hyperplanes* is defined as:

$$b + \mathbf{w}^{\mathbf{T}} \mathbf{x}_{-} = -1$$

Substracting them yields:

$$\mathbf{w}^{\mathbf{T}}(\mathbf{x}_{+} - \mathbf{x}_{-}) = 2$$

We can normalize by the length of vector w, defined as

$$||w|| = \sqrt{\sum_{j=1}^{m} w_j^2}$$

$$\frac{\mathbf{w}^{\mathbf{T}}(\mathbf{x}_{+} - \mathbf{x}_{-})}{||w||} = \frac{2}{||w||}$$

Yielding $\frac{\mathbf{w^T}(\mathbf{x_+} - \mathbf{x_-})}{||w||} = \frac{2}{||w||}$ The left side can be interpreted as the distance between to positive and negative hyperplane, which is the *margin* that we want to maximize.

Hence, we want to maximize $\frac{2}{||w||}$ under the constraint that all samples are classified correct-

$$b + \mathbf{w^T} \mathbf{x^{(i)}} \ge 1 \text{ if } y^{(i)} = 1$$
$$b + \mathbf{w^T} \mathbf{x^{(i)}} \le -1 \text{ if } y^{(i)} = -1$$

i.e. all negative examples should fall on one side of the negative hyperplane and vice versa.

$$y^{(i)}(b + \mathbf{w^T}\mathbf{x^{(i)}}) \ge 1 \ \forall i$$

Maximizing $\frac{2}{||w||}$ can be done by minimizing $\frac{||w||^2}{2}$

This is a quadratic objective with linear constraints, and can hence be solved using quadratic programming, and more specifically with the Lagrangian multipler method.

Primal and Dual formulations The Primal formulation of the Lagrangian objective function is:

$$minL_P = \frac{1}{2}||\mathbf{w}||^2 - \sum_{i=1}^{l} a_i y_i(\mathbf{x_i} * \mathbf{w} + b) + \sum_{i=1}^{l} a_i$$

so that

$$a_i \ge 0$$

$$\mathbf{w} = \sum_{i=1}^l a_i y_i \mathbf{x_i}$$

$$\sum_{i=1}^{l} a_i y_i = 0$$

with *l* the number of training examples and *a* the *dual variable*, which acts like a weight for each training example.

It has a Dual formulation as follows:

min

$$L_D(a_i) = \sum_{i=1}^{l} a_i - \frac{1}{2} \sum_{i=1}^{l} a_i a_j y_i y_j(\mathbf{x_i}.\mathbf{x_j})$$

so that

$$a_i \ge 0$$

$$\sum_{i=1}^{l} a_i y_i = 0$$

See 'Elements of Statistical Learning' for more detail.

Why are we doing this?

• Because now we can solve the problem by just computing the inner products of x_i , x_j , which will be important when we want to solve non-linearly separable cases.

Ok, what now?

• Knowing the dual coefficients a_i we can find the weights w for the maximal margin separating hyperplane:

$$\mathbf{w} = \sum_{i=1}^{l} a_i y_i \mathbf{x_i}$$

- Hence, we can classify a new sample ${\bf u}$ by looking at the sign of ${\bf w}*{\bf u}+b$
- Most of the a_i will turn out to be 0
- The training samples for which a_i is not 0 are the *support vectors*
- Hence, the SVM model is completely defined by the support vectors and their coefficients

SVMs and kNN

Remember, we will classify a new sample *u* by looking at the sign of:

```
f(x) = \mathbf{w} * \mathbf{u} + b = \sum_{i=1}^{l} a_i y_i \mathbf{x_i} * \mathbf{u} + b
```

Weighted k-nearest neighbor is a generalization of the k-nearest neighbor classifier would classify by looking at the sign of:

```
f(x) = \sum_{i=1}^{k} a_i y_i dist(x_i, u)
```

Hence: SVM's predict exactly the same way as k-NN, only: - They only consider the truly important points (the support vectors) - Thus *much* faster - The number of neighbors is the number of support vectors - The distance function can be different

SVMs in scikit-learn

- We can use the sym. SVC classifier
 - or svm. SVR for regression
- To build a linear SVM use kernel=linear
- It returns the following:
 - support_vectors_: the support vectors
 - dual_coef_: the dual coefficients *a*, i.e. the weigths of the support vectors
 - coef_: only for linear SVMs, the feature weights w

[2]: from sklearn import svm

```
# Linearly separable data
X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]]
Y = [0] * 20 + [1] * 20

# Fit the model
clf = svm.SVC(kernel='linear')
clf.fit(X, Y)

# Get the support vectors and weights
print("Support vectors:")
print(clf.support_vectors_[:])
print("Coefficients:")
print(clf.dual_coef_[:])
```

```
Support vectors:

[[-0.729 -1.39]

[-1.932 1.17]

[ 1.634 0.449]]

Coefficients:

[[-0.18 -0.055 0.234]]
```

SVM result. The circled samples are support vectors, together with their coefficients.

Dealing with nonlinearly separable data

- If the data is not linearly separable, (hard) margin maximization becomes meaningless
 - The constraints would contradict
- We can allow for violatings of the margin constraint by introducing slack variables $\xi^{(i)}$

$$\begin{array}{ll} b + \mathbf{w^T}\mathbf{x^{(i)}} \geq 1 - \xi^{(i)} & if \ y^{(i)} = 1 \\ b + \mathbf{w^T}\mathbf{x^{(i)}} \leq -1 + \xi^{(i)} & if \ y^{(i)} = -1 \end{array}$$

• The new objective (to be minimized) becomes:

$$\frac{||w||^2}{2} + C(\sum_i \xi^{(i)})$$

- ullet C is a penalty for misclassification
 - Large C: large error penalties
 - Small C: less strict about violations (more regularization)

- This is known as the *soft margin* SVM (or *large margin* SVM)
 - Some support vectors are exactly on the margin hyperplane, with margin = 1
 - Others are margin violators, with margin < 1 and a positive slack variable: $\xi^{(i)} > 0$
 - * If $\xi^{(i)} \geq 1$, they are misclassified

C and regularization

- Hence, we can use C to control the size of the margin and tune the bias-variance trade-off
 - Large C: Increases bias, reduces variance, more underfitting
 - Small C: Reduces bias, increases variance, more overfitting
- The penalty term $C(\sum_i \xi^{(i)})$ acts as an L1 regularizer on the dual coefficients
 - Also known as hinge loss
 - This induces sparsity: large C values will set many dual coefficients to 0, hence fewer support vectors
 - Small C values will typically lead to more support vectors
 - Again, it depends on the data how flexible or strict you need to be
- The *least squares SVM* is a variant that does L2 regularization
 - Will have many more support vectors (with low weights)
 - In scikit-learn, this is only available for the LinearSVC classifier (loss='squared_hinge')

Effect on linearly separable data

Effect on non-linearly separable data

[5]: mglearn.plots.plot_svm_margins_nonlin()

C = 1

Hinge loss We are trying to: - Maximize the margin - Minimize the sum of margin violations We could also try to maximize the margin and minimize the number of misclassifications - Turns out that the corresponding objective function is not convex, NP-hard

The best convex relation is hinge loss: $L(\gamma) = \max\{0, 1 - \gamma\}$ It measures the margin violation ξ_i .

Other loss functions It is possible to use generalize SVMs by training them with other loss functions and gradient descent as the optimizer

See the SGDCLassifier - SGDCLassifier (loss='hinge') will act like an SVM

Hinge

Kernelized Support Vector Machines

- Linear models work well in high dimensional spaces.
- You can *create* additional dimensions yourself.
- Let's start with an example.

Our linear model doesn't fit the data well

```
[7]: from sklearn.datasets.samples_generator import make_blobs
    from sklearn.svm import LinearSVC
    X, y = make_blobs(centers=4, random_state=8)
    y = y % 2
    linear_svm = LinearSVC().fit(X, y)

mglearn.plots.plot_2d_separator(linear_svm, X)
    mglearn.discrete_scatter(X[:, 0], X[:, 1], y)
    plt.xlabel("Feature 0")
    plt.ylabel("Feature 1");
```


Feature 0

We can add a new feature by taking the squares of feature1 values

Now we can fit a linear model

```
[9]: linear_svm_3d = LinearSVC().fit(X_new, y)
     coef, intercept = linear_svm_3d.coef_.ravel(), linear_svm_3d.intercept_
     # show linear decision boundary
     figure = plt.figure()
    ax = Axes3D (figure, elev=-152, azim=-26)
    xx = np.linspace(X_new[:, 0].min() - 2, X_new[:, 0].max() + 2, 50)
    yy = np.linspace(X_new[:, 1].min() - 2, X_new[:, 1].max() + 2, 50)
    XX, YY = np.meshgrid(xx, yy)
    ZZ = (coef[0] * XX + coef[1] * YY + intercept) / -coef[2]
    ax.plot_surface(XX, YY, ZZ, rstride=8, cstride=8, alpha=0.3)
    ax.scatter(X_new[mask, 0], X_new[mask, 1], X_new[mask, 2], c='b',
                cmap=mglearn.cm2, s=60)
     ax.scatter(X_new[~mask, 0], X_new[~mask, 1], X_new[~mask, 2], c='r', marker
                cmap=mglearn.cm2, s=60)
    ax.set_xlabel("feature0")
     ax.set_ylabel("feature1")
     ax.set_zlabel("feature1 ** 2")
<matplotlib.text.Text at 0x11b931278>
```


As a function of the original features, the linear SVM model is not actually linear anymore, but more of an ellipse

Kernels

A (Mercer) Kernel on a space X is a (similarity) function

 $k: X \times X \to \mathbb{R}$

Of two arguments with the properties:

- Symmetry: $k(x_1, x_2) = k(x_2, x_1) \ \forall x_1, x_2 \in X$
- Positive definite: for each finite subset of data points $x_1, ..., x_n$, the kernel Gram matrix is positive semi-definite

Kernel matrix = $K \in \mathbb{R}^{n \times n}$ with $K_{ij} = k(x_i, x_j)$

What is this good for?

Mercer's Theorem states that

- there exists a Hilbert space $\mathcal H$ of continuous functions $X\to\mathbb R$ - basically, a possibly infinite-dimensional vector space with inner product where all operations are meaningful - and a continuous "feature map" $\phi:X\to\mathcal H$ - so that the kernel computes the inner product of the features $k(x_1,x_2)=\langle\phi(x_1),\phi(x_2)\rangle$

Hence, a kernel can be thought of as a 'shortcut' computation for the 2-step procedure feature map + inner product

Kernels: examples

- The inner product is a kernel. The standard inner product is the **linear kernel**: $k(x_1, x_2) = x_1^T x_2$
- Kernels can be constructed from other kernels k_1 and k_2 :
 - For $\lambda \geq 0, \lambda.k_1$ is a kernel
 - $k_1 + k_2$ is a kernel

- $k_1.k_2$ is a kernel (thus also k_1^n)
- This allows to construct the **polynomial kernel**: $k(x_1, x_2) = (x_1^T x_2 + b)^d$, for $b \ge 0$ and $d \in \mathbb{N}$
- The 'radial' **Gaussian kernel** is defined as: $k(x_1, x_2) = exp(-\gamma ||x_1 x_2||^2)$, for $\gamma \ge 0$

The Kernel Trick

- Adding nonlinear features can make linear models much more powerful
- Often we don't know which features to add, and adding many features might make computation very expensive
- Mathematical trick (*kernel trick*) allows us to directly compute distances (scalar products) in the high dimensional space
 - We can search for the nearest support vector in the high dimensional space
- A *kernel function* is a distance (similarity) function with special properties for which this trick is possible
 - Polynomial kernel: computes all polynomials up to a certain degree of the original features
 - Gaussian kernel, or radial basis function (RBF): considers all possible polynomials of all degrees
 - * Infinite high dimensional space (Hilbert space), where the importance of the features decreases for higher degrees

The kernel trick: intuition

- There exists many feature map (and hence Hilbert space) for the same kernel, but they are all equivalent
- The Reproducing Kernel Hilbert Space (RKHS) has feature map $\phi: X \to C(X); x \to k(x,)$ Where C is the space of continuous functions $X \to \mathbb{R}$
- Thus, an input $x \in X$ is mapped to the basis function $\phi(x) = k(x, y)$
 - For every point, the mappings are continuous functions $k(x, \cdot)$

• Kernel computes $\langle k(x1,\cdot),k(x2,\cdot)\rangle = k(x1,x2)$

[11]: mglearn.plots.plot_svm_kernels()

kernel = poly

kernel = rbf

Understanding SVMs

To make a prediction for a new point, the distance to each of the support vectors is measured.

- The weight of each support vector is stored in the dual_coef_attribute of SVC
- The distance between data points is measured by the kernel
 - Gaussian kernel: $krbf(x_1, x_2) = \exp(\gamma ||x_1 x_2||^2)$
 - * γ controls the width of the kernel and can be tuned

Given the support vectors, their weigths, and the kernel, we can plot the decision boundary

```
[12]: from sklearn.svm import SVC

X, y = mglearn.tools.make_handcrafted_dataset()
```

```
svm = SVC(kernel='rbf', C=10, gamma=0.1).fit(X, y)
mglearn.plots.plot_2d_separator(svm, X, eps=.5)
# plot data
mglearn.discrete_scatter(X[:, 0], X[:, 1], y)
# plot support vectors
sv = svm.support_vectors_
# class labels of support vectors are given by the sign of the dual coeffi
sv_labels = svm.dual_coef_.ravel() > 0
mglearn.discrete_scatter(sv[:, 0], sv[:, 1], sv_labels, s=15, markeredgewi
plt.xlabel("Feature 0")
plt.ylabel("Feature 1");
```


Feature 0

Tuning SVM parameters

Several important parameters:

- gamma (kernel width): high values means that points are further apart
 - Leads to many support vectors, narrow Gaussians, overfitting
 - Low values lead to underfitting
- C (our linear regularizer): limits the weights of the support vectors
 - Higher values: more regularization, less overfitting
- For polynomial kernels, the *degree* (exponent) defines the complexity of the models

```
[13]: plt.rcParams.update({'font.size': 14})
    fig, axes = plt.subplots(3, 3, figsize=(15, 10))

for ax, C in zip(axes, [-1, 0, 3]):
    for a, gamma in zip(ax, range(-1, 2)):
```

- Low gamma (left): wide Gaussians, very smooth decision boundaries
- High gamma (right): narrow Gaussians, boundaries focus on single points (high complexity)
- Low C (top): each support vector has very limited influence: many support vectores, almost linear decision boundary
- High C (bottom): Stronger influence, decision boundary bends to every support vector

```
[18]: import plot_classifiers
   names = ["Linear SVM", "RBF", "Polynomial"]

classifiers = [
    SVC(kernel="linear", C=0.025),
    SVC(gamma=2, C=1),
    SVC(kernel="poly", degree=3, C=0.1)
   ]

plot_classifiers.plot_classifiers(names, classifiers, figuresize=(20,8))
```


Preprocessing Data for SVMs

- SVMs are very sensitive to hyperparameter settings
- They expect all features to be approximately on the same scale
 - If not, they overfit easily

```
[21]: from sklearn.model_selection import train_test_split
    from sklearn.datasets import load_breast_cancer
    cancer = load_breast_cancer()

X_train, X_test, y_train, y_test = train_test_split(
        cancer.data, cancer.target, random_state=0)

svc = SVC()
    svc.fit(X_train, y_train)

print("Accuracy on training set: {:.2f}".format(svc.score(X_train, y_train))

Accuracy on training set: 1.00

Accuracy on test set: 0.63
```

We can plot the scales of the features by plotting their min and max value

```
[22]: plt.plot(X_train.min(axis=0), 'o', label="min")
    plt.plot(X_train.max(axis=0), '^', label="max")
    plt.legend(loc=4)
    plt.xlabel("Feature index")
    plt.ylabel("Feature magnitude")
    plt.yscale("log")
```


We can scale all features between 0 and 1 Note: the sklearn.prepr ocessing package supports many preprocessing techniques, including the 'MinMaxScaler'

```
[23]:
     # Compute the minimum value per feature on the training set
    min_on_training = X_train.min(axis=0)
     # Compute the range of each feature (max - min) on the training set
     range_on_training = (X_train - min_on_training).max(axis=0)
     # subtract the min, divide by range
     # afterwards min=0 and max=1 for each feature
    X_train_scaled = (X_train - min_on_training) / range_on_training
    print("Minimum for each feature\n()".format(X_train_scaled.min(axis=0)))
    print("Maximum for each feature\n {}".format(X_train_scaled.max(axis=0)))
Minimum for each feature
0. 0. 0. 0. 0. 0.]
Maximum for each feature
 1. 1. 1. 1. 1. 1.]
```

- We must now apply the SAME transformation on the test set
 - Don't rescale the test set separately
 - Don't apply rescaling before making train test spits
- sklearn offers pipelines which make this easier
 - Wrapper around series of operators

Much better results, but they can still be tuned further

Strengths, weaknesses and parameters

- SVMs allow complex decision boundaries, even with few features.
- Work well on both low- and high-dimensional data
- Don't scale very well to large datasets (>100000)
- Require careful preprocessing of the data and tuning of the parameters.
- SVM models are hard to inspect

Important parameters: * regularization parameter *C* * choice of the kernel and kernel-specific parameters * Typically string correlation with *C*