目录

1	向量	空间																		1
	1.1	\mathbb{R}^n 和 \mathbb{C}^n																		1

1 向量空间

1.1 \mathbb{R}^n 和 \mathbb{C}^n

因为实数集 \mathbb{R} 和复数集 \mathbb{C} 都是**域** (field) 的实例, 故约定记号 \mathbb{F} 表示 \mathbb{R} 或 \mathbb{C} . 本文档所有的 \mathbb{F} 都可以替换为 \mathbb{R} 或 \mathbb{C} . 如 \mathbb{F}^n 可以代表 \mathbb{R}^n 或 \mathbb{C}^n .

Definition 1.1 (加法和数乘). 对于集合 V, 定义 V 上加法为一个函数, 其将每一对 $u,v\in V$ 都映射到 V 的一个元素 u+v. V 上的数乘也是一个函数, 将任意 $\lambda\in\mathbb{F}$ 和 $v\in V$ 都映射到一个元素 $\lambda v\in V$.

 \mathbb{F} 中的元素为标量, 一般 V 中的元素为向量.

Remark. 注意集合上定义的加法必须具有封闭性, 即运算结果仍在集合中.

Definition 1.2 (向量空间). 向量空间是定义了加法和数乘的集合 V, 满足八条公理:

- 1. 加法交换律: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- 2. 加法结合律: u + (v + w) = (u + v) + w
- 3. 加法单位元: $\exists \mathbf{0} \in V, \mathbf{0} + \mathbf{v} = \mathbf{v}$
- 4. 加法逆元: $\forall \mathbf{v} \in V, \exists -\mathbf{v} \in V, \mathbf{v} + (-\mathbf{v}) = \mathbf{0}$
- 5. 相容: $a(b\mathbf{v}) = (ab)\mathbf{v}$
- 6. 数乘单位元: $1\mathbf{v} = \mathbf{v}, 1$ 是数乘单位元
- 7. 数乘对向量加法的分配律: $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$
- 8. 数乘对域加法的分配律: $(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$

尽管 \mathbb{R} 中都是标量, 但是其上定义了加法和数乘, 且具有封闭性, 故也是向量空间. 同理按照定义还可以证明 $\mathbb{R}_0^+ = \{x \in \mathbb{R} \mid x \geq 0\}$ 也是向量空间.

ℝ 上的向量空间是实向量空间, \mathbb{C} 上的有复向量空间. 同理有 \mathbb{R}^n 和 \mathbb{C}^n . 还可以拓广 到无穷维, 定义

$$\mathbb{F}^{\infty} = \{(x_1, x_2, \dots) \mid x_i \in \mathbb{F}, j \in \mathbb{N}^+\}.$$

Definition 1.3 (函数集合). \mathbb{F}^S 表示所有 S 到 F 的函数的集合.