编译原理

第三章 词法分析

- ■对于词法分析器的要求
- ■词法分析器的设计
- ■正规表达式与有限自动机
- ■词法分析器的自动产生 --LEX

- ■对于词法分析器的要求
- ■词法分析器的设计
- ■正规表达式与有限自动机
- ■词法分析器的自动产生 --LEX

关系图

DIM,IF, DO,STOP,END number, name, age 125, 2169,

```
curState = 初态
GetChar();
while( stateTrans[curState][ch] 有定义){
    // 存在后继状态,读入、拼接
    Concat();
    // 转换入下一状态,读入下一字符
    curState= stateTrans[curState][ch];
    if cur_state 是终态 then 返回 strToken 中的单
    GetChar();
}
```


3.3.5 正规式与有限自动机的等价性

■ 定理:

- 对任何 FA M ,都存在一个正规式 r , 使得 L(r)=L(M) 。
- 对任何正规式 r , 都存在一个 FA M , 使得 L(M)=L(r) 。
- 对转换图概念拓广,令每条弧可用一个 正规式作标记。(对一类输入符号)

w

■ 证明:

- 1 对 Σ 上任一 NFA M ,构造一个 Σ 上的正规式 r ,使得 L(r)=L(M) 。
 - □首先,在 M 的转换图上加进两个状态 X 和 Y ,从 X 用ε弧连接到 M 的所有初态结点,从 M 的所有终态结点用ε弧连接到 Y ,从而形成一个新的 NFA ,记为 M',它只有一个初态 X 和一个终态 Y ,显然 L(M)=L(M')。

w

■ 证明:

- 1 对 Σ 上任一 NFA M ,构造一个 Σ 上的正规式 r ,使得 L(r)=L(M) 。
 - □首先,在 M 的转换图上加进两个状态 X 和 Y ,从 X 用ε弧连接到 M 的所有初态结点,从 M 的所有终态结点用ε弧连接到 Y ,从而形成一个新的 NFA ,记为 M' ,它只有一个初态 X 和一个终态 Y ,显然 L(M)=L(M')。

■ 证明:

- 1 对Σ上任一 NFA M ,构造一个Σ上的正规式 r ,使得 L(r)=L(M) 。
 - □首先,在 M 的转换图上加进两个状态 X 和 Y ,从 X 用ε弧连接到 M 的所有初态结点,从 M 的所有终态结点用ε弧连接到 Y ,从而形成一个新的 NFA ,记为 M',它只有一个初态 X 和一个终态 Y ,显然 L(M)=L(M')。
 - □然后,反复使用下面的一条规则,逐步消去的 所有结点,直到只剩下 X 和 Y 为止;

$$i$$
 r_1 r_3 k 代之为 i $r_1r_2*r_3$ k

- 最后, X 到 Y 的弧上标记的正规式即为所构造的正规式 r
- 显然 L(r)=L(M)=L(M')
- 1. 对任何 FA M ,都存在一个正规式 r ,使得 L(r)=L(M) 。
- 2. 对任何正规式 r , 都存在一个 FA M , 使得 L(M)=L(r) 。

证明 2: 对于Σ上的正规式 r , 构造一个 NFA M , 使 L(M)=L(r) , 并且 M 只有一个 个终态, 而且没有从该终态出发的箭弧。

下面使用关于 r 中运算符数目的归纳法证明上述结论。

(1) 若 r 具有零个运算符,则 r= ϵ 或 r= ϕ 或 r=a,其中 a \in Σ 。此时下图所示的三个有限自动机显然符合上述要求。

(2) 假设结论对于少于 k(k≥1) 个运算符的正规式成立。

当r中含有k个运算符时,r有三种情形:

• 情形 1: $r=r_1|r_2$, r_1 和 r_2 中运算符个数少于 k 。从而,由归纳假设,对 r_i 存在 $M_i=<S_i$, Σ_i , δ_i , q_i , $\{f_i\}>$,使得 $L(M_i)=L(r_i)$,并且 M_i 没有从终态出发的箭弧(i=1,2)。不妨设 $S_1 \cap S_2=\phi$,在 $S_1 \cup S_2$ 中加入两个新状态 q_0 , f_0 。

 \Leftrightarrow M=<S₁ \cup S₂ \cup {q₀,f₀}, Σ ₁ \cup Σ ₂, δ , q₀, {f₀}>

,其中δ定义如下:

(a)
$$\delta(q_0, \epsilon) = \{q_1, q_2\}$$

(b)
$$\delta(q,a)$$
= $\delta_1(q,a)$, \cong $q \in S_1$ -{ f_1 }, $a \in \Sigma_1 \cup \{\epsilon\}$

(c)
$$\delta(q,a)$$
= $\delta_2(q,a)$, $\triangleq q \in S_2 - \{f_2\}$, $a \in \Sigma_2 \cup \{ε\}$

(d)
$$\delta(f_1, \varepsilon) = \delta(f_2, \varepsilon) = \{f_0\}$$
.

M 的状态转换如右图所示。 L(M)=L(M₁)∪L(M₂) =L(r₁)∪L(r₂)=L(r)

• 情形 2: $r=r_1r_2$,设 M_i 同情形 1(i=1,2)。 令 $M=<S_1\cup S_2$, $\Sigma_1\cup \Sigma_2$, δ , q_1 , $\{f_2\}>$,其中 δ 定义如下:

- (a) δ (q,a)= δ ₁(q,a), $\dot{}$ q∈S₁-{f₁}, a∈Σ₁ ∪ {ε}
- (b) δ (q,a)= δ ₂(q,a), \exists q∈S₂, a∈Σ₂∪{ε}
- (c) $\delta(f_1, \varepsilon) = \{q_2\}$

M 的状态转换如右图所示。 L(M)=L(M₁)L(M₂) =L(r_1)L(r_2)=L(r_3)=

r=r₁r₂

● 情形 3: r=r₁*。设 M₁ 同情形 1。

令 M=<S₁∪{q₀, f₀}, Σ ₁, δ , q₀, {f₀}> ,其中 q₀, f₀∉S₁, δ 定义如下:

(a) $\delta(a, \varepsilon) = \delta(f, \varepsilon) = \{a, f_{\alpha}\}$

- 1. 对任何 FA M ,都存在一个正规式 r ,使得 L(r)=L(M) 。
- 2. 对任何正规式 r , 都存在一个 FA M , 使得 L(M)=L(r) 。

至此,结论2获证。

上述证明过程实质上是一个将正规表达式转换为有限自动机的算法

1)构造Σ上的 NFA M'使得 L(V)=L(M')
 首先,把 V表示成 Y

按下面的三条规则对V进行分裂

$$i$$
 V_1V_2 k 代之为 i V_1 j k

逐步把这个图转变为每条弧只标记为Σ上的一个字符或ε,最后得到一个 NFA M',显然 L(M')=L(V)

(a|b)*(aa|bb)(a|b)*

$$(X)^{(a|b)*(aa|bb)(a|b)}$$

小结

DIM,IF, DO,STOP,END number, name, age 125, 2169

```
curState = 初态
GetChar();
while( stateTrans[curState][ch] 有定义){
  // 存在后继状态,读入、拼接
  Concat();
  //转换入下一状态,读入下一字符
  curState= stateTrans[curState][ch];
  if cur state 是终态 then 返回 strToken 中的单
  GetChar();
                  FA
```

