William Stallings Computer Organization and Architecture 6th Edition

Chapter 9 Computer Arithmetic

Arithmetic & Logic Unit

- Does the calculations
- Everything else in the computer is there to service this unit
- Handles integers
- May handle floating point (real) numbers
- May be separate FPU (maths co-processor)

ALU Inputs and Outputs

Addition and Subtraction

- Normal binary addition
- Monitor sign bit for overflow
- Take twos compliment of substahend and add to minuend

$$-$$
 i.e. $a - b = a + (-b)$

So we only need addition and complement circuits

A	В	Sum
0	0	0
0	1	1
1	0	1
1	1	0, Carry 1
1	1 and 1(Prev carry)	Sum=1,Carry=1

Example of 2's Compliment

$$\begin{array}{rcl}
-13 & = & 11110011 \\
& & \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\
& & 00001100 \\
& & & & +1 \\
13 & = & 00001101
\end{array}$$
Complement Digits

Add 1

Find 2's compliment

Hardware for Addition and Subtraction

OF = overflow bit

SW = Switch (select addition or subtraction)

Booth's Algorithm

Q0	Q-1	Result	
0	0	Only shift	
1	1		
0	1	A=A+M ,then shift	
1	0	A = A - M, then shift	

Example of Booth's Algorithm:7(M)*3(Q)

s	Values	Initial V	M 0111	Q_{-1}	Q 0011	A 0000
First	- M }	A = A	0111	0	0011	1001
Cycle	3	Shift	0111	1	1001	1100
nd e	Second Cycle	Shift	0111	1	0100	1110
Third	+ M }	A = A -	0111	1	0100	0101
Cycle	5	A = A - Shift	0111	0	1010	0010
Fourth Cycle	}	Shift	0111	0	0101	0001

Answer is in A and $Q \rightarrow 0001 0101 = 21$

A	Q	Q ₋₁	М	Initial values
0000	0011	0	0111	
1001	0011	0	0111	$A \leftarrow A - M$ First Shift Sycle
1100	1001	1	0111	
1110	0100	1	0111	Shift Second cycle
0101	0100	1	0111	$A \leftarrow A + M$ Third Shift \int cycle
0010	1010	0	0111	
0001	0101	0	0111	Shift } Fourth cycle

Figure 9.13 Example of Booth's Algorithm (7×3)

Examples-size of n determines answer

Solve using Booths Algorithm

A.
$$M = 5$$
, $Q = 5$

B.
$$M = 12$$
, $Q = 11$

C.
$$M = 9$$
, $Q = -3$

D.
$$M = -13 (0011)$$
, $Q = 6$
-M=13 (1101)

A.
$$M = -19$$
 , $Q = -20$

Division

- More complex than multiplication
- Negative numbers are really bad!
- Based on long division

Division of Unsigned Binary Integers

Flowchart for Restoring Division

Solve by restoring division

$$M = 0 1 1 0 1 1$$

M=27 , 9=55 M= 011011 M= 100101 000000 110111 10111 Shift letter 000001 de1 101110 A=4-M 100110 101110 Set 90=0; A=Att 000001

000011 101000 A= A-M set 90=0 000011 A-A+M 000110 shift left All 100] 11100D A=A-M 011 111000 Stp.=0; A=AH 000110 11000 Shift left A19 001101 11000 DA=A-M 10010 and coton A-At

M=27: 9=55 M= 011011 -M= 100101 9= 110111 A 110111 000000 shift letty 000001 cycles 101110 A=4-M 100110 101110 Set 9000; A=A+ 000001 OIIIOD Shift left AIG 000011 101000 01110 D A= A-M set 90=0 000011 011100 ATA+M 000110 11100 I shift left a 111000 A-A-M 101011 111000 Stg :0; A= ,000110 agde4 001101 11000 Shift 1 set A19 11000 D A=A-M 110000 set 90=0. A=A+ 001101 agdes 3011011 10000 Shift 14th A.g. 000000 10000 D set 90=1 00001] Shittlettag 000001 1100110 000010 A-A-M Set 90=0 000010 A= A+M 000001 9 22

Solve using Restoring Division

A.
$$M = 5$$
, $Q = 5$,

B.
$$M = 12$$
, $Q = 26$,

C.
$$M = 9$$
, $Q = 19$,

D.
$$M = 32$$
 , $Q = 59$

E.
$$M = 17$$
, $Q = 42$,

	A 113	9
	0000	0100
Shiftlestall	30000	100 0 7 1
A=A-M set qo=	01110	1000)
,	21 1 1 1	1
shift left A	19/10/	000 1 4 6
A=A+M	1111	0000
set 90=	0	

Solve using Non Restoring

A.
$$M = 5$$
, $Q = 5$.

B.
$$M = 12$$
, $Q = 26$.

C.
$$M = 9$$
, $Q = 19$

D.
$$M = 32$$
 , $Q = 59$,.

E.
$$M = 17$$
, $Q = 42$.

Booths Recoding / Bit pair recording

STEPS

Booth's Recoding algorithm 0=001)

Table Value peration

Value Step 2: 2(0)+(-1) 2(0)+1

Step 3: M 8+4+2+1=

Solve using Booths Recoding

1.
$$M = 5$$
, $Q = 4$ (4 bits)= 00010100 (20)

2.
$$M=9$$
 , $Q = -6$ (5 bits)=11110 01010 (-54)

3.
$$M=15$$
, $Q=-10$ (5 bits)=11011 01010(-150)

4.
$$M = -13$$
, $Q = -20$ (6 bits) = 000100000100(260)

IEEE 754

- Standard for floating point storage
- 32 and 64 bit standards
- 8 and 11 bit exponent respectively
- Extended formats (both mantissa and exponent) for intermediate results
 - IEEE Standard 754 floating point is the most common representation today for real numbers on computers, including Intel-based PC's, Macs, and most Unix platforms.

Expressible Numbers

(a) Twos Complement Integers

(b) Floating-Point Numbers

IEEE 754 floating point representation

 $(1.N)2^{E-1023}$

Steps

- 1. Convert Decimal to Binary
- 2. Normalization
 - Rewriting Step 1 into (1.N) form

- Ex:
$$1 1 1 . 0 1 1 = 1 . 1 1 0 1 1 x 2^{2}$$
- Ex: $0 . 0 0 0 1 0 = 0 0 0 0 1 . 0 x 2^{-4}$

- 3.Biasing
 - Applying Single Precision (E 1 2 7) & Double Precision (E 1 0 2 3) on exponent from Step 2
- 4. Representation in Single (32 bit)and Double Precision (64 bit) Format

Solved Example

Normalization (1. N) Step 2: 1.10001 X 2 Exponent Step3: Biasing Single Precision Double precision E-127 E-1023 3= E-1023 3 = E-127 E=1023+3 E = 127 +3 = 1026

			1	-	. 0 3		2	2	10
- 1	, 1	1					2	4	10
	1	0	3 11	10"			2	8	0
2	2	0				-76	2	16	10
2	4	0	A				2	32	10
2	8	0				- 15	2		
2	16	0					-	64	10
2	32	1					2	128	0
2	65	0	224		V-3		2	256	1
2	130	0					2	5113	0

Single	Precision (32	bits)
sign bit	Biased Exponent	Mantissa/Significand
0	10000010	10001
1 bit	8 bits	23 bits
- The a		
Double	Precision (64 bits)
ignbit		
0/10		10001

16it \$1 bits 52 bits

Solve

25.44	SP- 0 100000 1001 0111 0000 1010 0011 110 DP- 0 1000000011 1001 0111 0000 1010 0011 110
0.00635	SP- 0 1110111 00000001101000
	DP- 0 1111110111 00000001101000
-125.10	SP- 1 10000101 1111 010001
	DP- 1 10000000101 1111 010001
-13.54	SP- 1 10000010 10110001010
	DP- 1 1000000010 10110001010

Sample Problems to Solve

```
1) -178.1875
SP 1 |10000110|01100100011
DP 1 |1000000110|
1) 309.175
SP 0|10000111|01011101001011
DP 0|1000000111|
1) 1259.125
SP 0|10001001|0011101011001000...(9 zeroes)
DP 0|1000001001|
1) 0.0625
SP 0 | 1111011 | 0
DP 0 | 11111111011 | 0
```

Sample mix problems-Kindly refrain referring to flowchart.

1. Booth's Algorithm = $000\ 100\ 000\ 100(260)$

```
A= 110011 (Multiplicand )
B= 101100 (Multiplier)
```

2. Booth's Recoding = 11011 01010

```
M = (15)
Q = (-10)
```

3. Non Restoring Division

```
M=11, Q= 21, A= 01010, Q= 00001
```

4. Restoring Division

$$M=14$$
, $Q=15$, $A=00001$, $Q=00001$

4 phases of FP Arithmetic +/-

- Check for zeros
- Align significands (adjusting exponents)
- Add or subtract significands
- Normalize result

Floating Point Addition

Add the following two decimal numbers in scientific notation:

$$8.70 \times 10^{-1}$$
 with 9.95×10^{1}

Rewrite the smaller number such that its exponent matches with the exponent of the larger number.

$$8.70 \times 10^{-1} = 0.087$$
 (Note!) $\times 10^{1}$

Add the mantissas

$$9.95 + 0.087 = 10.037$$
 and

write the sum 10.037×10^{1}

Put the result in Normalised Form

 $10.037 \times 10^1 = 1.0037 \times 10^2$ (shift mantissa, adjust exponent)

Check for overflow/underflow of the exponent after normalisation

Overflow

The exponent is too *large* to be represented in the Exponent field

Underflow

The number is too *small* to be represented in the Exponent field

Round the result

If the mantissa does not fit in the space reserved for it, it has to be rounded off.

For Example: If only 4 digits are allowed for mantissa

$$1.0037 \times 10^2 ===> 1.004 \times 10^2$$

FP Addition & Subtraction Flowchart

FP Arithmetic x/÷

- Check for zero
- Add/subtract exponents
- Multiply/divide significands (watch sign)
- Normalize
- Round
- All intermediate results should be in double length storage

Floating Point Multiplication

Floating Point Division

Division of signed numbers

- 1. Load the divisor into the M register and the dividend into the A, Q registers. The dividend must be expressed as a 2n-bit twos complement number. Thus, for example, the 4-bit 0111 becomes 00000111, and 1001 becomes 11111001.
- 2. Shift A, Q left 1 bit position.
 - 3. If M and A have the same signs, perform $A \leftarrow A M$; otherwise, $A \leftarrow A + M$.
 - 4. The preceding operation is successful if the sign of A is the same before and after the operation.
 - a. If the operation is successful or A = 0, then set $Q_0 \leftarrow 1$.
 - b. If the operation is unsuccessful and A,≠ 0, then set Q₀ ← 0 and restore the previous value of A.
- 5. Repeat steps 2 through 4 as many times as there are bit positions in Q.
- 6. The remainder is in A. If the signs of the divisor and dividend were the same, then the quotient is in Q; otherwise, the correct quotient is the two complement of Q.

The reader will note from Figure 9.17 that $(-7) \div (3)$ and $(7) \div (-3)$ produce different remainders. This is because the remainder is defined by

$$D = Q \times V + R$$

where

D = dividend

er that is not normalized; the num Q = quotient

V = divisor

R = remainder

The results of Figure 9.17 are consistent with this formula.

Solve

greatAr than o	Q	M = 0011
Oni 1111100	1001	Initial value
1111 0010 1111	0010	shift add restore
1110 0001 1110	0100	shift add restore
1100 1111 1111	1000	shift add set $Q_0 = 1$
1111 0010 1111	0010	shift add restor (c) (-7)/(3)

Dividend negative → Remainder –ve