Quiz04 - Weighted graphs

Hamita Onoda Name:

Student ID: 5 70195

1. Ex03 では、グラフ G(V, E) 上で Depth First Search や Breadth First Search による探索を行った。 もし同じグラフGの全ての辺に「重み」を定義した、グラフG(V, E, W)上で同様にDFS、BFSを実行 すると結果はどうなるか? (異なる結果となるか、同じであるのか説明せよ.)

2. 次のリスト表現された重み付きグラフ G(V, E, W) に対応する距離行列 D (Distance Matrix) を求めよ. ただし、自分自身への距離は0、辺が無い頂点対の距離は ∞ と書け.

3. 以下に列挙する文を満たすアルゴリズムに適当な印をつけよ. ただし、T は最小全域木を得る過程に おける部分解(Vの部分集合)とする. またアルゴリズムは、資料通りの典型的な実装とする.

Description	Prim's Algorithm	Kruskal's Algorithm
例)最小全域木を求める	0	0
初期条件として,任意の1つの頂点を探索済みとする	0	×
T に属する頂点から,経由する辺の重みが最小になるように $V ext{-}T$ に属する頂点を選ぶ	G	*
辺を選んだとき、それに含まれる2頂点が既に連結になっていないか調べる	×	Q
グラフ上の全体から辺を選ぶことができる	×	0
$V ext{-}T$ に属する頂点を T に含めるたびに, T から $V ext{-}T$ への重みの最小値を更新する	٥	×
T のどの頂点にも隣接していない $V ext{-}T$ の頂点を選択することは絶対にない	O	×
最初に選んだ頂点を起点に、木が徐々に広がっていくように頂点が選択される	0	×
できるだけ重みの小さい辺から木に取り込んでいく	G G	9
毎回、重みが最小の辺を探すときに探索対象のデータ数がより多いのは?	Ų.	<u> </u>
重みが最小の辺を探すときに、ヒープを利用すると効率的である	×	
時間計算量 (time complexity) は $O(E \log E)$	>	
時間計算量 (time complexity) は $O(V ^2)$	O	× ×