```
In [2]:
            import pandas as pd
            import numpy as np
            import plotly.express as px
            import plotly.graph_objects as go
            data = pd.read_csv("E:\diamondspricepredection.csv")
            print(data.head())
                          cut color clarity
               carat
                                             depth
                                                    table
                                                           price
                                                                      Х
                                                                                  Z
            0
                0.23
                                                      55.0
                                                                   3.95
                                                                        3.98
                                                                               2.43
                        Ideal
                                  Ε
                                        SI2
                                              61.5
                                                              326
            1
                0.21
                     Premium
                                  Ε
                                        SI1
                                              59.8
                                                      61.0
                                                              326
                                                                   3.89 3.84 2.31
                         Good
                                        VS1
            2
                0.23
                                  Ε
                                              56.9
                                                      65.0
                                                              327
                                                                   4.05
                                                                        4.07
                                                                               2.31
            3
                0.29 Premium
                                  Ι
                                        VS2
                                              62.4
                                                      58.0
                                                              334
                                                                  4.20 4.23
                                                                              2.63
                0.31
                                        SI2
                                              63.3
                                                      58.0
                                                              335 4.34 4.35 2.75
                         Good
                                  J
In [3]:

    figure = px.scatter(data_frame = data, x="carat",
                                y="price", size="depth",
                                color= "cut", trendline="ols")
            figure.show()
```


	carat	cut	color	clarity	depth	table	price	x	у
z \ 0	0.23	Ideal	Е	SI2	61.5	55.0	326	3.95	3.98
2.43	0.23	Ideal		312	01.5	55.0	320	3.95	3.90
-• <i>-</i> •5 L	0.21	Premium	Е	SI1	59.8	61.0	326	3.89	3.84
.31									
<u>)</u>	0.23	Good	Е	VS1	56.9	65.0	327	4.05	4.07
.31									
}	0.29	Premium	I	VS2	62.4	58.0	334	4.20	4.23
.63	0 21	Caad	_	CTO	62.2	F0 0	225	4 24	4 25
.75	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35
• • •									
				• • • •					
3935	0.72	Ideal	D	SI1	60.8	57.0	2757	5.75	5.76
.50									
3936	0.72	Good	D	SI1	63.1	55.0	2757	5.69	5.75
.61	0.70	c l	5	674	62.0	60.0	2757		F 60
3937 .56	0.70	Very Good	D	SI1	62.8	60.0	2757	5.66	5.68
3938	0.86	Premium	Н	SI2	61.0	58.0	2757	6.15	6.12
3.74	0.00	i i ciii ciii		312	01.0	50.0	2/3/	0.15	0.12
3939	0.75	Ideal	D	SI2	62.2	55.0	2757	5.83	5.87
3.64									
	size								
9	38.202030								
L	34.505856								
2	38.076885								
3	46.724580								
ļ	51.91								
·· 3935	115 02								
3936	115.920000 118.110175								
3937	114.449728								
3938	140.766120								
53939	124.56	8444							

[53940 rows x 11 columns]


```
In [8]:
         correlation = data.corr()
            print(correlation["price"].sort_values(ascending=False))
                     1.000000
            price
                     0.921591
            carat
            size
                     0.902385
                     0.884435
            Х
                     0.865421
            У
                     0.861249
                     0.127134
            table
                    -0.010647
            depth
            Name: price, dtype: float64
In [9]:
        M data["cut"] = data["cut"].map({"Ideal": 1,
                                            "Premium": 2,
                                            "Good": 3,
                                            "Very Good": 4,
                                            "Fair": 5})
```

```
In [10]: ► #splitting data
             from sklearn.model_selection import train_test_split
             x = np.array(data[["carat", "cut", "size"]])
             y = np.array(data[["price"]])
             xtrain, xtest, ytrain, ytest = train_test_split(x, y,
                                                             test_size=0.10,
                                                             random_state=42)
In [11]:
          ▶ | from sklearn.ensemble import RandomForestRegressor
             model = RandomForestRegressor()
             model.fit(xtrain, ytrain)
             C:\Users\bhava\AppData\Local\Temp\ipykernel_9560\2944638855.py:3: Data
             ConversionWarning:
             A column-vector y was passed when a 1d array was expected. Please chan
             ge the shape of y to (n_samples,), for example using ravel().
   Out[11]: RandomForestRegressor()
In [12]:
          print("Diamond Price Prediction")
             a = float(input("Carat Size: "))
             b = int(input("Cut Type (Ideal: 1, Premium: 2, Good: 3, Very Good: 4, F
             c = float(input("Size: "))
             features = np.array([[a, b, c]])
             print("Predicted Diamond's Price = ", model.predict(features))
             Diamond Price Prediction
             Carat Size: 3
             Cut Type (Ideal: 1, Premium: 2, Good: 3, Very Good: 4, Fair: 5): 5
             Size: 100
             Predicted Diamond's Price = [16824.0465]
```