

Robo Retriever

Computer Architecture Project

A. Merkushova, J. Käser, M. Groenen, R. Kempf

• Goal:

• Develop a quadruped four-legged robotic pet controlled via Wi-Fi

• Steps:

- Design parts and print them
- Design electronics and solder
- Assembly and calibration
- Programming

JIRI: 3D DESIGN

- LegsShoulder
- Main body

JIRI: ROBOT MECHANICS

JIRI: ROBOT MECHANICS

JIRI: PROBLEMS WHILE DESIGNING

- Too perfect fit
- Not good enough fit
- Belt slipping
- Servo mount slightly off
- Belt distance management
- ..

MATHIEU: MOVEMENT & CODING

Inverse Kinematics

• Leg movement by specifying the desired coordinates (x, y, z) and calculating the angles.

Implementation

- Implemented in C++
- Angle calculations
- Each leg governs over its servos, allowing for individual movement

Wi-Fi

Async HTTP Server for remote control of the robot

MATHIEU: CODE ARCHITECTURE

- Stand up / Sit
- Tilt forward and backwards
- Walk forwards

• Results:

- Functional 3D design
- Electronic setup capable of controlling multiple servos
- Basic movement

• Future Work:

- Refine 3D design for stability
- Include rechargeable battery
- Optimize walking
- Remote Control with Interface

