Introduction to Cryptography - Exercise session 6

Prof. Sebastian Faust

November 28, 2018

In the first part of this exercise, we recall the new topics covered during the lecture: the block cipher AES and Message authentication codes (MACs). The second part of this sheet contains more interesting exercises.

PART 1

Exercise 1 (MAC)

- (a) Give the definition of MAC.
- (b) Explain with security experiments how would you define MAC.
- (c) Define a new experiment $\mathsf{Mac}\text{-sforge}_{\mathcal{A},\Pi}(n)$, by modifying the above experiment such that adversary wins also if he outputs a new valid tag for a message queried earlier.

In the literature, the modified experiment $\mathsf{Mac}\text{-sforge}_{\mathcal{A},\Pi}(n)$ above is used in order to define a stronger version of the MAC, called *Strong MAC*. More precisely:

Definition 1 (Strong MAC) A message authentication code $\Pi = (\mathsf{Gen}, \mathsf{Mac}, \mathsf{Vrfy})$ is strongly secure or a strong MAC, if for all probabilistic polynomial-time adversaries \mathcal{A} , there is a negligible function negl such that:

$$\Pr[\mathsf{Mac}\text{-sforge}_{\mathcal{A},\Pi}(n) = 1] \leq \mathsf{negl}$$

Exercise 2 (Canonical Verification)

Let (Gen, Mac, Vrfy) be a MAC scheme, where Mac is a deterministic algorithm. Explain how Vrfy works.

PART 2

Exercise 3 (Size of a tag)

Say $\Pi = (\mathsf{Gen}, \mathsf{Mac}, \mathsf{Vrfy})$ is a secure MAC, and for $k \in \{0, 1\}^n$ the tag-generation algorithm Mac_k always outputs tags of length t(n). Prove that if $t(n) = \mathcal{O}(\log(n))$ then Π cannot be a secure MAC.

Exercise 4 (Canonical Verification \implies Strong MAC)

Let $\Pi = (\mathsf{Gen}, \mathsf{Mac}, \mathsf{Vrfy})$ be a secure MAC, where Mac is deterministic and Vrfy uses canonical verification. Prove that Π is a strong MAC.

Exercise 5 (Strong MAC)

Let F_k be a PRF and let $\Pi = (\mathsf{Gen}, \mathsf{Mac}, \mathsf{Vrfy})$ be a MAC defined as follows:

- 1. $Gen(1^n)$: outputs a uniform key $k \in \{0, 1\}^n$
- 2. $Mac_k(m) := (F_k(m) \parallel F_k(m))$
- 3. Vrfy_k(m,t): outputs 1 if and only if $t = (F_k(m) \parallel F_k(m))$
- (a) Prove that Π is a secure MAC.
- (b) Is Π from part (a) strongly secure? Explain your answer.
- (c) Prove or disprove: If $\Pi=(\mathsf{Gen},\mathsf{Mac},\mathsf{Vrfy})$ is a strongly secure MAC then Mac is a pseudorandom function.

Exercise 6 (Constructions using a PRF)

Let F be a pseudorandom function. Show that each of the following message authentication codes is insecure, even if used to authenticate fixed-length messages. (In each case the shared key outputed by Gen is a random $k \in \{0,1\}^n$ and < i > denotes an n/2-bit encoding of the integer i.

(a) To authenticate a message $m = m_1, \dots, m_l$, where $m_i \in \{0, 1\}^n$, compute

$$t := F_k(m_1) \oplus \cdots \oplus F_k(m_l)$$

(b) To authenticate a message $m = m_1, \ldots, m_l$, where $m_i \in \{0, 1\}^{n/2}$, compute

$$t := F_k(<1 > || m_1) \oplus \cdots \oplus F_k(< l > || m_l)$$

(c) To authenticate a message $m = m_1, \ldots, m_l$, where $m_i \in \{0, 1\}^{n/2}$, choose a random $r \leftarrow \{0, 1\}$ and compute

$$t := (r, F_k(r) \oplus F_k(<1 > || m_1) \oplus \cdots \oplus F_k(< l > || m_l)).$$

HOMEWORK

Exercise 7 (AES)

- (a) Show the original contents of State and the Key, displayed as a 4×4 matrix.
- (b) Show the value of State after initial AddRoudKey (Hint: the key K_0 is equal to the original AES key).
- (c) Show the value of State after SubBytes. You can find the substitution table at the end of this exercise sheet.
- (d) Show the value of State after ShiftRows.
- (e) Explain how to compute the State after MixColumns (as a voluntary homework exercise, you can try to explicitly compute the State).

	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
00	63	7c	77	7b	f2	6b	6f	c5	30	01	67	2b	fe	d7	ab	76
10	ca	82	с9	7d	fa	59	47	fO	ad	d4	a2	af	9с	a4	72	c0
20	b7	fd	93	26	36	3f	f7	сс	34	a5	e5	f1	71	d8	31	15
30	04	с7	23	с3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
40	09	83	2c	1a	1b	6e	5a	a0	52	3b	d6	b3	29	e3	2f	84
50	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	cf
60	dO	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3c	9f	a8
70	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
80	cd	0c	13	ec	5f	97	44	17	c4	a7	7e	3d	64	5d	19	73
90	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	Ob	db
a0	e0	32	За	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
b0	e7	с8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
c0	ba	78	25	2e	1c	a6	b4	с6	e8	dd	74	1f	4b	bd	8b	8a
d0	70	3e	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9e
e0	e1	f8	98	11	69	d9	8e	94	9b	1e	87	e9	се	55	28	df
fO	8c	a1	89	Od	bf	e6	42	68	41	99	2d	Of	bO	54	bb	16