МФТИ. ЗОШ 2025

Винер Даниил

10 января 2025 г.

1/16

План на сегодня

- Вещественные числа
- 2 Базовые определения геометрии
- 3 Скалярное и псевдоскалярное произведение векторов
- Прямая, отрезок, луч
- Выпуклая оболочка
- 6 Выпуклая оболочка

2/16

Вещественные числа

Определение

Число с плавающей точкой — форма представления вещественных чисел, при которой число хранится в виде мантиссы и показателя степени

- float одинарная точность
- double двойная точность
- long double расширенная точность

Примечание

 $\mathit{float} \leqslant \mathit{double} \leqslant \mathit{long} \ \mathit{double}$

3/16

Хранение вещественных чисел

Хранится 3 «массива»:

- Основание
- Мантисса
- Порядок (экспонента)

4/16

Хранение вещественных чисел

Хранится 3 «массива»:

- Основание
- Мантисса
- Порядок (экспонента)

Формула

$$x = (-1)^{\mathsf{sign}} \cdot (1.M) \cdot B^{P-S}$$

- sign знак числа
- М мантисса
- В основание системы
- P степень
- S сдвиг

Вместимость вещественных чисел

Тип	Размер (байт)
float	4
double	8
long double	16

Арифметические операции с числами с плавающей точкой такие же, как и с целыми числами. При этом операция деления по модулю не определена

Точка, вектор

Определение

Точка — характеристика объекта в пространстве, не имеет ни размера, ни формы

Пример

Точка a в n-мерном пространстве:

$$a=(x_1,x_2,\ldots,x_n)$$

Определение

Вектор — это направленный отрезок, имеющий длину и направление

Примечание

Вектор $\overrightarrow{AB}(x_2-x_1,y_2-y_1)$, из точки $A(x_1,y_1)$ в точку $B(x_2,y_2)$

Расстояние между точками

Определение

Пусть дано две точки $A(x_1, x_2, ..., x_n)$ и $B(y_1, y_2, ..., y_n)$

Расстояние между точками А и В:

$$d(A,B) = \sqrt{\sum_{i=1}^{n} (y_i - x_i)^2}$$

7/16

Скалярное произведение

Определение

Скалярное произведение векторов \overrightarrow{a} *и* \overrightarrow{b} — произведение их длин на косинус угла между ними:

$$\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \cos \theta$$

Оно показывает проекцию одного вектора на другой

Примечание

$$\overrightarrow{a} \cdot \overrightarrow{b} = x_1 x_2 + y_1 y_2$$

8/16

Псевдоскалярное произведение векторов

Определение

Псевдоскалярное произведение — это число равное площади параллелограмма, построенного на этих векторах:

$$\overrightarrow{a} \times \overrightarrow{b} = x_1 y_2 - x_2 y_1$$

Примечание

Псевдоскалярное произведение показывает поворот одного вектора относительно другого:

- ullet Если $\overrightarrow{a} imes \overrightarrow{b}>0$, то поворот от \overrightarrow{a} к \overrightarrow{b} против часовой стрелки
- ullet Если $\overrightarrow{a} imes \overrightarrow{b} < 0$, то по часовой

9/16

Прямая, отрезок, луч

Определение

Дано две точки в \mathbb{R}^2 : $A(x_1, y_1)$ и $B(x_2, y_2)$. Тогда прямая, проходящая через них может быть выражена как:

$$A(x-x_1)=B(y-y_1),$$

где
$$A = y_2 - y_1$$
, $B = x_1 - x_2$

10 / 16

Вектор нормали, уравнение прямой

Определение

Вектор нормали — это вектор, который перпендикулярен данной прямой (плоскости)

Определение

Пусть $\overrightarrow{n}=(A,B)$ — вектор нормали, тогда уравнение прямой, проходящей через точку (x_0,y_0) :

$$A(x-x_0) + B(y-y_0) = 0$$

11 / 16

Выпуклая оболочка

Определение

Выпуклая оболочка (или выпуклая оболочка множества точек) — это геометрический объект, который представляет собой наименьший выпуклый многоугольник, который может полностью покрыть заданное множество точек на плоскости (или в пространстве)

12 / 16

Алгоритмы построения

- Джарвиса
- Грэхэма
- Алгоритм QuickHull

13 / 16

Алгоритм Джарвиса

- ullet Начинаем с самой левой точки, например p_0
- Ищем точку, которая образует наименьший полярный угол с текущей точкой
- Повторяем пока не придем снова в точку p_0

14 / 16

Алгоритм Грэхэма

• Алгоритм Грэхэма — оптимизация алгоритма Джарвиса

Шаги алгоритма:

- Выбираем точку с наименьшими координатами, которая будет опорной
- Сортируем все точки по углу, который они составляют с опорной точкой
- Строим выпуклую оболочку, начиная с опорной точки и добавляя точки, если они не образуют правый поворот. Когда же происходит правый поворот, удаляем последнюю добавленную точку

При добавлении i-й точки в оболочку нужно лишь удалить сколько-то последних добавленных точек, которые не будут входить в новую оболочку, а именно тех, которые «покрываются» новой точкой и своей предыдущей.

Алгоритм QuickHull

- ullet Находим два крайних по x значения, которые будут служить концами отрезка
- Строим прямую между этими точками и находим точку, которая наиболее удалена от этой прямой
- Это будет точка, которая гарантированно лежит на границе выпуклой оболочки
- Далее мы повторяем шаги для двух оставшихся подмножеств точек и продолжаем до тех пор, пока не будут найдены все точки выпуклой оболочки

16 / 16