20100110100010ZO

网络层

网络层引言

网络层在哪里?

Comparing TCP/IP with OSI

网络层要做什么?

封装源数据

将源端数据包(分组)一路送到接收方

找到一根好的路径(路由)

路由选择协议 路由器

达成网络层目标的过程中,会遭遇...

. . .

第5章主要内容

IP协议

- □ IP地址
 - (解决目标机的标识)
- □ IP分组
 - (解决信息的封装)
- ☐ IPv6

(新一代的IP协议)

路由选择协议

□ 距离矢量路由 选择协议

(RIP)

□ 链路状态路由选择协议

(OSPF)

其它

- ☐ ARP
- □ ICMP
- CIDR
- □ NAT

0 0 0 0 0

源和目的之间的网络有哪些类?

数据报网络

提供无连接的服务

虚电路网络

提供面向连接的服务

数据报网络

虚电路网络

二者的比较

比较项目	数据报子网(无连接服务)	虚电路子网(面向连接服务)
建立电路	不需要	要求
地址信息	每个分组含完整的SA和DA	每个VC包含一个很短的VC号码
状态信息	路由器不保留任何连接状态信息	每个VC都要求路由器建立表项
路由	每个分组独立选择路由	每个分组沿建立VC时确定的路由
路由器失效影响	没有,只有系统崩溃时丢失分组	所有经过失效R的VC都终止
服务质量		总资源(带宽、缓存)足够的情
拥塞控制	很难实现	况下,采用提前给每个VC分配资源的方法, <mark>很容易实现</mark>

小结

- 网络层的目标: 把数据分组一路送到接收机。
- □ 网络层利用下层--数据链路层提供的服务为它的上层--传输层 提供服务。
- □两种类型的网络分别提供两种类型的服务。
 - □ 数据包网络: 无连接的服务
 - □ 虚电路网络:面向连接的服务

小思考

- □ 在参考模型上,网络层的上层和下层分别是什么?
- □ 网络层的主要目标是什么?
- □ 虚电路网络中,是否不需要进行路径选择?
- □ 数据报网络中,路由表从何而来?
- □ 数据是怎样穿过数据报网络的?
- 数据是怎样穿过虚电路网络的?

1001011101111000001

001101100011111010100

20100110100010ZO

谢姚看

TITOTOOTOOOTITOOOT

1011110001110

致谢

本课程课件中的部分素材来自于: (1)清华大学出版社出 版的翻译教材《计算机网络》(原著作者: Andrew S. Tanenbaum, David J. Wetherall); (2) 思科网络技术学院教程; (3) 网络 上搜到的其他资料。在此,对清华大学出版社、思科网络技术学 院、人民邮电出版社、以及其它提供本课程引用资料的个人表示 衷心的感谢!

对于本课程引用的素材,仅用于课程学习,如有任何问题,请与我们联系!