Three data types: continuous, coin flips and counts

Cóilín Minto, Olga Lyashevska

Marine and Freshwater Research Centre Atlantic Technological University Galway, Ireland

July 15th 2022

Ollscoil Teicneolaíochta an Atlantaigh

Atlantic Technological University

Outline

1. Data types

2. Probability distributions

Continuous data

- Response y is continuous, e.g., y = 1.25 possible
- Response can be positive or negative (on the real line)
- Apparent positive linear relationship with continuous variable x
- Example y could be a change in water height

Positive continuous data

- Response y is also continuous, e.g., y = 0.25 possible
- Response can only be positive (on the positive real line)
- Apparent positive non-linear relationship with continuous variable x
- **Example** y could be mass of individuals
 - Discuss what values mass/weight of a fish could be

Count data

- Response y is a count (discrete), e.g., y = 1.25 impossible
- Response can be zero or a positive integer
- Apparent positive non-linear relationship with continuous variable x
- **Example** y could be abundance
 - Discuss what values of abundance are possible

Binary data

- Response y can be either a 1 or a 0 (or other binary categories)
 - Often it is a sum of positives out of a given number of trials, e.g., total number of heads in 10 coin flips
 - Key thing is that for any one flip there can only be 2 outcomes
- Apparent positive non-linear relationship with continuous variable x
- Example y could be maturity status (mature/immature) for an organism
 - Discuss other binary data examples

Outline

1. Data types

2. Probability distributions

Probability distribution

A function that describes the probabilities associated with possible outcomes for an experiment (think of the response y)

Continuous probability distributions

Normal distribution

