MATRIX REPRESENTATION OF A LINEAR MAP.

tet T: V→W be a linear transformation from on.

n-dimensional vector space to an m-dimensional vector

space W.

Let
$$\alpha = (v_1, v_2, ..., v_n)$$
 ordered basis of V

$$\beta = (\omega_1, \omega_2, ..., \omega_m)$$
 ordered basis of W .

Consider,

$$T(v_1) = q_1 \omega_1 + q_2 \omega_2 + \cdots + q_m \omega_m$$

$$\in W$$

$$T(v_2) = a_{12}\omega_1 + a_{22}\omega_2 + - - + a_{m2}\omega_m$$

$$T(v_n) = a_{1n}\omega_1 + a_{2n}\omega_2 + - \cdots + a_{mn}\omega_m$$

In short,

$$T(v_i) = \sum_{i=1}^{m} a_{ij} w_i$$
, $j = 1, 2, ...n$.

For any vector XEV, let

$$\chi = \sum_{j=1}^{n} \chi_{j} V_{j}^{*}$$

Consider

$$T(x) = \sum_{j=1}^{m} \chi_{j} T(\omega_{j})$$

$$= \sum_{j=1}^{m} \chi_{j} \sum_{i=1}^{m} q_{ij} \omega_{i}$$

$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} \chi_{j} \right) \omega_{i}$$

$$= \left(\sum_{j=1}^{m} a_{ij} \chi_{j} \right) \omega_{1} + \left(\sum_{j=1}^{n} a_{2j} \chi_{j} \right) \omega_{2} + \cdots + \left(\sum_{j=1}^{m} a_{mj} \chi_{j} \right) \omega_{m}$$

Note that
$$\begin{bmatrix}
T(x) \\
\beta
\end{bmatrix}_{\beta} = \begin{bmatrix}
\sum_{j=1}^{n} a_{1j} \lambda_{j} \\
\sum_{j=1}^{n} a_{2j} \lambda_{j}
\end{bmatrix}$$
Coordinate vector
$$\underbrace{\sum_{j=1}^{n} a_{mj} \lambda_{j}}_{j=1}$$
of T(x) ω . τ . t . β .

$$= \begin{bmatrix} a_{11} & a_{12} & - & - & a_{1n} \\ a_{21} & a_{22} & - & - & a_{2n} \\ \vdots & & & \vdots \\ a_{m1} & a_{m2} & - & - & a_{mn} \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_n \end{bmatrix}$$

$$= A [x]_{\propto}$$

Hence,
$$\left[T(x)\right]_{\beta} = A[x]_{\alpha}$$

That is, for any $x \in V$, the coordinate vector of $[T(x)]_{\beta}$ of T(x) in W is just the product of a fixed matrix A and the coordinate vector $[x]_{\alpha}$ of x.

Note that

$$A = \begin{bmatrix} a_{11}, a_{12}, \dots, a_{1n} \\ a_{21}, a_{22} \dots a_{2n} \\ \vdots \\ a_{m1}, a_{m2} \dots a_{mn} \end{bmatrix} = \begin{bmatrix} \vdots \\ T(v_1) \end{bmatrix} \begin{bmatrix} T(v_2) \end{bmatrix} \dots \begin{bmatrix} T(v_n) \end{bmatrix}$$

Columns are coordinate vectors of T(vj).

Def: The matrix A is called the associated matrix for T (or the matrix representation of T) with respect to the ordered bases \propto and β and is denoted by $A = [T]_{\infty}^{\beta}$.

When V=W and X=B we simply write [T] a.

$$\left[\left[T(\alpha) \right]_{\beta} = \left[T \right]_{\alpha}^{\beta} \left[\alpha \right]_{\alpha} \right]$$

Theorem: Let $T: V \to W$ be linear transformation from n-dimensional vector space W. For fixed ordered bases $X = \{v_1, v_2, --, v_m\}$ for V and $B \neq \{w_1, w_2, --, w_m\}$ for W, there corresponds to a unique associated $m \times n$ matrix $[T]_X^B$ for T such that for any vector $X \in V$ the coordinate vector $[T(X)]_B$ of T(X) W: Y: t: B is given as a matrix $[X]_A$ i.e., $[T(X)]_B = [T]_A^B [X]_A$.

(40)

Example: Let V be the vector space of functions with basis

 $S = \{Sint, cost, e^{3t}\}$ and let $D: V \rightarrow V$ be the differential operator defined by

Find [D]s.

Solution:
$$D(sint) = cost = 0 \cdot (sint) + 1 \cdot (cost) + 0 \cdot (e^{3t})$$

$$D(cost) = -sint = -1(sint) + 0 \cdot (cost) + 0 \cdot (e^{3t})$$

$$D(e^{3t}) = 3e^{3t} = 0 \cdot (sint) + 0(cost) + 3(e^{3t})$$
Hence $[D]_s = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix}$

Check: Find D (sint+2 cost + e3t) with the help of [D]s.

coordinates of (sint+2cost+
$$e^{3t}$$
) are $\begin{bmatrix} 1, 2, 1 \end{bmatrix}^T$
hence, $\begin{bmatrix} D \end{bmatrix}_s \begin{bmatrix} \frac{1}{2} \end{bmatrix} = \begin{bmatrix} -2 \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} D(sint+2cost+e^{3t}) \end{bmatrix}_s$
 $\Rightarrow D(sint+2cost+e^{3t}) = -2 \cdot sint+ 1 \cdot cost + 3e^{3t}$
 $= -2sint+cost+3e^{3t}$.

Verified!

Ex 1: Let $F: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear operator defined by F(x, y) = (2x + 3y, 4x - 5y).

- (a) Find the matrix representation of F relative to the basis $S = \{u_1, u_2\} = \{(1, 2), (2, 5)\}.$
 - (1) First find $F(u_1)$, and then write it as a linear combination of the basis vectors u_1 and u_2 . (For notational convenience, we use column vectors.) We have

$$F(u_1) = F\left(\begin{bmatrix} 1\\2 \end{bmatrix}\right) = \begin{bmatrix} 8\\-6 \end{bmatrix} = x \begin{bmatrix} 1\\2 \end{bmatrix} + y \begin{bmatrix} 2\\5 \end{bmatrix} \quad \text{and} \quad \begin{array}{c} x + 2y = 8\\2x + 5y = -6 \end{array}$$

Solve the system to obtain x = 52, y = -22. Hence $F(u_1) = 52u_1 - 22u_2$.

(2) Next find $F(u_2)$, and then write it as a linear combination of u_1 and u_2 :

$$F(u_2) = F\left(\begin{bmatrix} 2\\5 \end{bmatrix}\right) = \begin{bmatrix} 19\\-17 \end{bmatrix} = x \begin{bmatrix} 1\\2 \end{bmatrix} + y \begin{bmatrix} 2\\5 \end{bmatrix} \quad \text{and} \quad \begin{aligned} x + 2y &= 19\\2x + 5y &= -17 \end{aligned}$$

Solve the system to get x = 129, y = -55. Thus $F(u_2) = 129u_1 - 55u_2$.

Now write the coordinates of $F(u_1)$ and $F(u_2)$ as columns to obtain the matrix

$$[F]_S = \begin{bmatrix} 52 & 129 \\ -22 & -55 \end{bmatrix}$$

(b) Find the matrix representation of F relative to the (usual) basis $E = \{e_1, e_2\} = \{(1, 0), (0, 1)\}.$

Find $F(e_1)$ and write it as a linear combination of the usual basis vectors e_1 and e_2 , and then find $F(e_2)$ and write it as a linear combination of e_1 and e_2 . We have

$$F(e_1) = F(1,0) = (2,2) = 2e_1 + 4e_2$$

 $F(e_2) = F(0,1) = (3,-5) = 3e_1 - 5e_2$ and so $[F]_E = \begin{bmatrix} 2 & 3 \\ 4 & -5 \end{bmatrix}$

Note that the coordinates of $F(e_1)$ and $F(e_2)$ form the columns, not the rows, of $[F]_E$. Also, note that the arithmetic is much simpler using the usual basis of \mathbb{R}^2 .

Ex2

Consider the following matrix A, which may be viewed as a linear operator on \mathbb{R}^2 , and basis S of \mathbb{R}^2 :

$$A = \begin{bmatrix} 3 & -2 \\ 4 & -5 \end{bmatrix} \quad \text{and} \quad S = \{u_1, u_2\} = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 5 \end{bmatrix} \right\}$$

(1) First we write $A(u_1)$ as a linear combination of u_1 and u_2 . We have

$$A(u_1) = \begin{bmatrix} 3 & -2 \\ 4 & -5 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -6 \end{bmatrix} = x \begin{bmatrix} 1 \\ 2 \end{bmatrix} + y \begin{bmatrix} 2 \\ 5 \end{bmatrix} \quad \text{and so} \quad \begin{aligned} x + 2y &= -1 \\ 2x + 5y &= -6 \end{aligned}$$

Solving the system yields x = 7, y = -4. Thus $A(u_1) = 7u_1 - 4u_2$.

(2) Next we write $A(u_2)$ as a linear combination of u_1 and u_2 . We have

$$A(u_2) = \begin{bmatrix} 3 & -2 \\ 4 & -5 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix} = \begin{bmatrix} -4 \\ -7 \end{bmatrix} = x \begin{bmatrix} 1 \\ 2 \end{bmatrix} + y \begin{bmatrix} 2 \\ 5 \end{bmatrix}$$
 and so
$$\begin{aligned} x + 2y &= -4 \\ 2x + 5y &= -7 \end{aligned}$$

Solving the system yields x = -6, y = 1. Thus $A(u_2) = -6u_1 + u_2$. Writing the coordinates of $A(u_1)$ and $A(u_2)$ as columns gives us the following matrix representation of A:

$$[A]_S = \begin{bmatrix} 7 & -6 \\ -4 & 1 \end{bmatrix}$$

Remark: Suppose we want to find the matrix representation of A relative to the usual basis $E = \{e_1, e_2\} = \{[1, 0]^T, [0, 1]^T\}$ of \mathbb{R}^2 . We have

$$A(e_1) = \begin{bmatrix} 3 & -2 \\ 4 & -5 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} = 3e_1 + 4e_2$$

$$A(e_2) = \begin{bmatrix} 3 & -2 \\ 4 & -5 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ -5 \end{bmatrix} = -2e_1 - 5e_2$$
 and so $[A]_E = \begin{bmatrix} 3 & -2 \\ 4 & -5 \end{bmatrix}$

Note that $[A]_E$ is the original matrix A. This result is true in general:

The matrix representation of any $n \times n$ square matrix A over a field K relative to the usual basis E of K^n is the matrix A itself; that is,

$$[A]_E = A$$

Ex 3: Let $T: \mathbb{R}^3 - \mathbb{R}^2$ be a linear transformation defined by $T \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} y+z \\ y-z \end{bmatrix}$. Determine the matrix of the linear transformation T with respect to the ordered bases:

$$X = \left\{ \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\} \text{ in } \mathbb{R}^3 \text{ and } Y = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\} \text{ in } \mathbb{R}^2$$

Consider

$$T \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} = 1 \times \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \times \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

$$T \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 0 \times \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \times \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$T \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1 \times \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 0 \times \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Therefore, the matrix of linear transformation with respect to the given basis is

$$[T]_X^Y = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

Consider
$$A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$$
, $u = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, $v = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

$$Au = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 7 \end{bmatrix} = \begin{bmatrix} -5 \\ -1 \end{bmatrix}$$

$$u = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 7 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$Av = \begin{bmatrix} 3 & -2 \\ 1 & o \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} = \boxed{2} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Def. Let A be any square matrix (real or complex). A scalar & is called an eigenvalue of A if there exists a non-zero vector or such that

The vector x is an eigenvector associated with the eigenvalue 1.

Creometrically, an eigenvector of a matrix A is a nonzero vector I in the Rn such that the vectors I and Ix are parallel.

Algebraically, on eigenvector x is a non-trivial solution of the homogeneous system $(A-\lambda I)X=0$ of linear equations, i.e., an eigenvector or is a nonzero vector in the nullspace of (A-AI).

Consider $(A-\lambda I)x = 0$

Two unknowns 7 and x.

Note that $(A-\lambda I) x = 0$ has a nontrivial solution x iff λ satisfies the equation

$$\det(A-\lambda I)=0 \quad \left(c_0\lambda^{n}+c_1\lambda^{n-1}+\cdots+c_n=0\right)$$

The above equation is called the characteristic equation of A.

Eigenvalues (or characteristic roots) are the roots of the characteristic equation $\det(A-\lambda I) = 0$.

Eigenvectors (or eigen characteristic vectors) of A can be determined by solving the homogeneous system of equations $(A-\lambda I)_{\chi}=0$ for each eigenvalue χ .

The nullspace $Null(A \lambda I)$ is called the eigenspace of A corresponding to eigenvalue λ .

CAYLEY - HAMILTON THEOREM:

Every square matrix satisfies its own characteristic equation, i.e., $C_0A^m + C_1A^{m-1} + \cdots + C_m In = 0$.

(46)

Example: Use Cayley - Hamilton theorem to find

$$A^{-1}$$
 when $A = \begin{bmatrix} 2 & 4 \\ 3 & 5 \end{bmatrix}$

Characteristic equation ay A is

$$\begin{vmatrix} 2-\lambda & 4 \\ 3 & 5-\lambda \end{vmatrix} = 0$$

$$\Rightarrow$$
 10-7 λ + λ^2 -12=0

$$\Rightarrow \lambda^2 - 7\lambda - 2 = 0$$

By Cayley - Hamilton theorem

$$A^2 - 7A - 2In = 0$$

$$\Rightarrow A^{-1} = \frac{1}{2}(A-7I)$$

$$= \frac{1}{2} \left\{ \begin{bmatrix} 2 & 4 \\ 3 & 5 \end{bmatrix} - \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} \right\}$$

$$= \frac{1}{2} \begin{bmatrix} -5 & 4 \\ 3 & -2 \end{bmatrix}$$

Theorem: If x is characteristic vector of A corresponding to the characteristic value λ then kn is also a characteristic vector corresponding to the same characteristic value λ . Here k is any hongers scalar.

$$Ax = \lambda x \Rightarrow k(Ax) = k(\lambda x)$$

$$\Rightarrow$$
 $A(kx) = \lambda(kx)$

=) kx is a characteristic vector corresponding to the Characteristic

Theorem: If x is a characteristic vector of a matrix A then x cannot correspond to more than one enaracteristic value of A.

Proof: Let us assume

$$\Rightarrow \lambda_1 x = \lambda_2 x$$

$$\Rightarrow (\lambda_1 - \lambda_2) x = 0$$

Theorem: Two eigenvectors of a square matrix A corresponding to two distinct eigenvalues of A are linearly independent.

Solution: Let x1, x2 be the eigenvalues of A corresponding to two distinct eigenvalues 71, 72, respectively.

Then,
$$Ax_1 = \lambda_1 x_1 + Ax_2 = \lambda_2 x_2$$

Consider
$$C_1 x_1 + C_2 x_2 = 0$$
 — ① , $C_1, C_2 \in \mathbb{R}$.

then,
$$C_1Ax_1+C_2Ax_2=0$$

Clearly
$$\left|\frac{1}{\lambda_1}\frac{1}{\lambda_2}\right| = \lambda_2 - \lambda_1 \neq 0$$

Since
$$x_1 \neq 0 \notin x_2 \neq 0 \Rightarrow C_1 = 0 = C_2$$

Hence x, and x2 are linearly independent.

The If $\chi_1, \chi_2, \ldots, \chi_r$ be r eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_r$, respectively. Then $\chi_1, \chi_2, \ldots, \chi_r$ are linearly independent.

PROPERTIES OF EIGHENVALUES AND EIGHENVECTORS:

tet it be an eigenvalue of A and x be its corresponding eigenvector. Then,

- 1) $\propto A$ has eigenvalue $\propto \lambda$ and corresponding eigenvector \propto . $Ax = \lambda x \Rightarrow (\alpha A) x = (\alpha \lambda) x$.
- 21 Am has eigenvalues ym and corresponding eigenvectors or for any positive integer m.

 $Ax = \lambda x$ $\Rightarrow A \cdot Ax = A(\lambda x) \Rightarrow A^2x = \lambda Ax = \lambda \lambda x = \lambda^2 x$ $\Rightarrow \lambda^2$ is the eigenvalue of λ^2

- 3) A-kI has eigenvalue λ -k and corresponding vector κ . $Ax = \lambda x \Rightarrow Ax kIx = \lambda x kx \Rightarrow (A-kI)x = (\lambda-k)x$
- 4) A' (if it exists) has eigenvalue $1/\lambda$ and corresponding eigenvector x. $Ax = \lambda x \Rightarrow A'Ax = A'\lambda x \Rightarrow A'x = \frac{1}{\lambda}x$.
- 5) A and AT has same eigenvalues.
- 6) For a real matrix A if x+ iB is an eigenvalue then its conjugate x-iB is also an eigenvalue.

Theorem: The characteristic roots of a Hermitian matrix are real.

Porof: Recall: A is Hermitian (=) A*= A

tet a be a characteristic root of A and re its eigenvector.

Then, $Ax = \lambda x$

Premultiplying both sides by x*.

$$x^*Ax = x^*\lambda x = \lambda x^*x$$

Taking conjugate transform both sides.

$$(x^*Ax)^* = (7x^*x)^*$$

$$\Rightarrow x^*A^*x = 7x^*x \qquad (as(x^*)^* = x)$$

$$\Rightarrow x^*Ax = 7x^*x \qquad (as(x^*)^* = x)$$

 $\Rightarrow \chi^* A \chi = \bar{\chi} \chi^* \chi \qquad -2$

From ① \mathcal{A} \Rightarrow \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \Rightarrow $(\mathcal{A}\overline{\lambda})$ $\mathcal{A}^*\mathcal{A} = 0$

 $\Rightarrow \lambda - \bar{\lambda} = 0$ Since $x^* x \neq 0$.

F= κ €

=> A is real.

In a similar way, we can prove the following:

- i) The characteristic roots of a real symmetric matrix are all real.
- 2) The Characteristic roots of a skew-Hermitian matrix are either burnly imaginary or zero
- 3) The enaracteristic roots of a real skew-symmetric matrix are either powely imaginary or zero.

Theorem: The characteristic roots of a unitary motrix are of unit modulus.

Proof: Recall: unitary matrix A* A = I

Consider

$$Ax = \lambda x - 0$$

$$\Rightarrow (Ax)^* = (\lambda x)^* \Rightarrow x^* A^* = \overline{\lambda} x^* - 2$$

$$\Rightarrow x^* (A^*A) x = \overline{\lambda} \lambda x^* x$$

$$\Rightarrow 1-5\lambda = 0$$
 as $x^*x \neq 0$

$$\Rightarrow \overline{\lambda}\lambda = 1 \Rightarrow |\lambda|^2 = 1.$$

Concollary: The characteristic roots of an orthogonal matrix are of unit modulus.

LOCATION OF EIGIENVALUES:

Im(a) Skew-Hermitian (Ikew-Symmetric)

Unitary (orthogonal)

Hermition (Symmetric)

Re(A)

Find Eigenvalues and eigenvectors of

$$\mathcal{A} = \begin{bmatrix} 2 & \sqrt{2}^{1} \\ \sqrt{2}^{1} & 1 \end{bmatrix}$$

Sol: Characteristic polynomial is

$$\det (A - \lambda I) = 0$$

$$\Rightarrow \begin{vmatrix} 2-\lambda & \sqrt{2} \\ \sqrt{2} & 1-\lambda \end{vmatrix} = 0$$

$$\Rightarrow (2-\lambda)(1-\lambda)-2=0$$

$$\Rightarrow 2-3\lambda+\lambda^2-2=0$$

$$=) \lambda(\lambda - 3) = 0$$

Thus the eigenvalues are $\lambda_1 = 0$, $\lambda_2 = 3$.

$$\lambda_1 = 0$$
: $(A - \lambda I) x = 0$

$$\Rightarrow \begin{bmatrix} 2 & \sqrt{2} \\ \sqrt{2} & 1 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Choose
$$x_2 = x$$

$$\chi_1 = -\frac{\sqrt{2}}{2} = -\frac{2}{\sqrt{2}}$$

$$\begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} = \propto \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ 1 \end{bmatrix}$$

$$\lambda_2 = 3: \qquad \begin{bmatrix} -1 & \sqrt{2} \\ \sqrt{2} & -2 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} -1 & \sqrt{2} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Choose
$$x_2 = \alpha$$
, $x_1 = \sqrt{21} \propto$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \propto \begin{bmatrix} \sqrt{2}^1 \\ 1 \end{bmatrix}.$$

Note that eigenvectors are linearly independent.

Ex. Find eigenvalues and eigenvectors of

$$A = \begin{bmatrix} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

Characteristic polynomial: |A->I = 0

$$\begin{vmatrix} 3-\lambda & -2 & 0 \\ -2 & 3-\lambda & 0 \\ 0 & 0 & 5-\lambda \end{vmatrix} = 0$$

$$\Rightarrow$$
 $(3-\lambda)(3-\lambda)(5-\lambda) + 2(-2(5-\lambda)) = 0$

$$=$$
 $(\lambda - 1)(\lambda - 5)^2 = 0$

Eigenvalues 2,=1, 22,3=5

Gigenvectors: $\lambda_1 = L$: $(A - \lambda I) \chi = 0$

$$\Rightarrow \begin{bmatrix} 2 & -2 & 0 \\ -2 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 2 & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \begin{array}{c} \chi_{2} = \alpha \\ \chi_{3} = 0 \\ \chi_{1} = 2\alpha/2 = \alpha \end{array}$$

$$\begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

 $\lambda = 5: \begin{bmatrix} -2 & -2 & 0 \\ -2 & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \sim \begin{bmatrix} -2 & -2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$

$$\chi_2 = \alpha \quad \chi_3 = \beta \quad \chi_1 = -\infty$$

$$\begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \propto \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

 $\begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \alpha \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ Two linearly indep. eigenvector corresponds to $\lambda = 5$; $\begin{bmatrix} -1 & 1 & 1 & 0 \end{bmatrix} \bar{\beta} \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$

Ex. Find a basis for the eigenspace of

$$A = \begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

Ch. equation:

$$|A-\lambda I| = 0 = \begin{vmatrix} 2-\lambda & 1 & 0 & 0 & 0 \\ 0 & 2-\lambda & 1 & 0 & 0 \\ 0 & 0 & 2-\lambda & 1 & 0 \\ 0 & 0 & 0 & 2-\lambda & 1 \\ 0 & 0 & 0 & 0 & 2-\lambda \end{vmatrix} = 0$$

$$=) \lambda = 2,2,2,2,2.$$

eigenvector corresponding to $\lambda = 2$:

$$x_1 = x_1$$
 $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 0$

$$\begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \\ \chi_4 \\ \eta_5 \end{bmatrix} = \mathcal{A} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\text{Basis} = \left\{ (1_{10}, 0, 0, 0)^{\mathsf{T}} \right\}.$$

Algebraic Multiplicity: multiplicity of λ as a root of the characteristic polynomial.

Greometric Multiplicity: dimension of the eigenspace of 1.

(number of linearly independent eigenvectors

corresponding to an eigenvalue 7).

Theorem: The geometric multiplicity of an eigenvalue of a matrix A does not exceed its algebraic multiplicity.

. Geometric multiplicity & Algebraic multiplicity

Ex. Find the enaracteristic roots and the corresponding characteristic vectors of the matrix

$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

Characteristic equation:

=) $(2-\lambda)(\lambda-2)(\lambda-8)=0$ => $\lambda=2,2,8$.

Algebraic multiplicity of $\lambda = 2$ is 2.

 η η $\eta = 8$ is 1.

Eigenvector corresponding to $\lambda = 8$:

$$(A-\lambda I) \chi = 0$$

$$\begin{bmatrix} -2 & -2 & 2 \\ -2 & -5 & -1 \\ 2 & -1 & -5 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -2 & 2 \\ 0 & -3 & -3 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

These equations possess 3-2=1 linearly independent solution.

$$\begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \propto \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}, \quad \propto \neq 0 \qquad \text{Greometric multiplicity of} \\ \propto \in \mathbb{R}. \qquad \lambda = 8 \text{ is } 1.$$

Eigenvector corresponding to $\lambda = 2$:

These equations possess 3-1 = 2 linearly indep. solutions.

$$\chi_{1} = \alpha_{2}$$

$$\chi_{1} = \alpha_{1}$$

$$\chi_{1} = \frac{1}{2} \left(\alpha_{1} - \alpha_{2} \right)$$

$$\begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \end{bmatrix} = \alpha_{1} \begin{bmatrix} \gamma_{2} \\ 1 \\ 0 \end{bmatrix} + \alpha_{2} \begin{bmatrix} -1/2 \\ 0 \\ 1 \end{bmatrix}$$

Geometric multiplicity of $\lambda = 2$ is 2.