氧化还原反应

内容回顾

✓电化学中氧化还原反应和电极电势

- > 原电池(盐桥)
- > 原电池的表示方法: 电池符号
- > 惰性导体作极板材料
- > 电极电势的概念
- > 标准电极电势

4. 标准电极电势和标准氢电极

- 电极电势反映了不同金属及其离子在溶液中得失电子的强弱。
- 确定了电极电势的大小,就可以确定一个原电池反应的正极和负极,以及一个氧化还原反应中的氧化剂和还原剂。

标准电极电势

当组成电极的物质均处于标准态时,电极的电势为标准电极电势,用 φ 。表示。

(温度 298K), 离子浓度: 1mol·L⁻¹, 气体分压: 100 kPa, 液体和固体为纯物质

方法: 电极电势的绝对值至今无法测量。电池的电动势可以精确测得,因此可通过组成原电池的方法测量标准电极电势。

必须有两个电极组成一个电路,其中一个是待测电极,另一个是已知值的参比电极。测出组成的原电池的电动势 E° ,就可以计算出待测电极的电极电势。

$$E^{\circ} = \varphi^{\circ}$$
(正极) - φ° (负极)

选择氢电极作为标准,将其电极电势定义为0。

定义:
$$\varphi^{\circ}(H^{+}/H_{2}) = 0$$

标准氢电极

吸附了H₂的铂片与溶液中的H⁺构成标准氢电极。

$$2H^+ + 2e \longrightarrow H_2$$

在标准氢电极和酸溶液之间的电势, 叫氢的标准电极电势, 今其值为0。

标准电极电势的测量

标准状态:

- ➤ 温度 298K
- ➢ 离子浓度: 1mol·L⁻¹
- ➤ 气体分压: 100 kPa
- 液体和固体为纯物质

标准电极电势符号: φ^{Θ}

(-)
$$Zn |ZnSO_4(1 mol \cdot L^{-1})| H^+(1 mol \cdot L^{-1}) |H_2(100 kPa)| Pt (+)$$

例子

在原电池中,当电流小到趋近于零时,克服电池内阻消耗的功也接近于零,此时原电池的标准电动势 E° 等于两个电极的标准电极电势之差。

$$E^{\ominus} = \varphi^{\ominus}$$
(正极) - φ^{\ominus} (负极)

298K时,测得 E° = 0.7628V,则 Zn^{2+}/Zn 电对的标准电极电势:

$$E^{\ominus} = \varphi^{\ominus}(\mathbb{E} \times \mathbb{W}) - \varphi^{\ominus}(\mathcal{D} \times \mathbb{W})$$
$$= \varphi^{\ominus}(\mathbf{H}^{+}/\mathbf{H}_{2}) - \varphi^{\ominus}(\mathbf{Z}\mathbf{n}^{2+}/\mathbf{Z}\mathbf{n})$$

$$\varphi^{\oplus}(Zn^{2+}/Zn) = -0.7628 \text{ V}$$

(-) $Pt \mid H_2(100 \text{ kPa}) \mid H^+(1 \text{ mol} \cdot L^{-1}) \parallel CuSO_4(1 \text{ mol} \cdot L^{-1}) \mid Cu (+)$

$$E^{\ominus}$$
 = 0.34 V = φ^{\ominus} (正极) - φ^{\ominus} (负极)
= φ^{\ominus} (Cu²⁺/Cu) - φ^{\ominus} (H⁺/H₂)
 φ^{\ominus} (Cu²⁺/Cu) = 0.34 V

Zn 比 Cu 更易失去电子变成离子,故Zn和 Cu组成原电池,电子必定从Zn极流向Cu极,电池的电动势为:

$$E^{\ominus} = \varphi^{\ominus}(Cu^{2+}/Cu) - \varphi^{\ominus}(Zn^{2+}/Zn) = 1.1V$$

氧化还原的本质是电子的传递,造成传递的原因是电子必定从低电势电极流向高电势电极。

注意点:

上述原电池装置不仅可以测定金属的标准电极电势,还可以用来测定非金属离子和气体的标准电极电势。

$$\varphi^{\ominus}(\operatorname{Cl}_2/\operatorname{Cl}^{-})$$

所测的 φ [©]为相对值,为该电极和标准氢电极组成电池的电动势,并非电极与相应的溶液间电位差的绝对值。

标准电极电势表

标准电极电势 $\boldsymbol{\varphi}^{\Theta}$ (25℃,在酸性溶液中)

	电	极	反	应		$oldsymbol{arphi}_{ m A}^{ \Theta} / { m V}$
	氧化型	电子	- 数	还原型		
最弱的氧化	剂 K ⁺	+ e	· 👄	K	最强的还原剂	-2.93
得	Ba ²⁺	+ 2	e- 🚞	Ba	↑失	-2.91
到	Ca^{2+}	+ 2	e =	Ca	去	-2.87
电	Na ⁺	+ e	$\stackrel{\cdot}{\Longrightarrow}$	Na	电	-2.71
子	Mg^{2+}	+ 2	e- ==	Mg	子	-2.37
或	Zn^{2+}	+ 2	e- 🚞	Zn	或	-0.76
氧	Fe ²⁺	+ 2	e- ==	Fe	还	-0.44
化	Sn ²⁺	+ 2	e- 🚞	Sn	原	-0.14
能	Pb ²⁺	+ 2	e- 🚞	Pb	能	-0.13
力	2H+	+ 2	e- 🚞	H_2	力	0.00
依	Sn ⁴⁺	+ 2	e- ==	Sn^{2+}	依	+0.14
次	Cu^{2+}	+ 2	e- 🚞	Cu	次	+0.34
増	I_2	+ 2	e- 🚞	2I-	増	+0.54
强	H ₃ AsO ₄ +2H	+ + 2	e- 🚞	HAsO ₂ -	+2H ₂ O 强	+0.56
177					723	

电极反应的通式为:氧化型 + ze = 还原型

原则上,表中任何两个电极反应所表示的 电极都可以组成原电池。电极电势低的为负极, 电极电势高的为正极。

$$\operatorname{Zn}^{2+} + 2e \rightleftharpoons \operatorname{Zn} \quad \varphi^{\Theta} = -0.76 \text{ V}$$
 $\operatorname{Cu}^{2+} + 2e \rightleftharpoons \operatorname{Cu} \quad \varphi^{\Theta} = +0.34 \text{ V}$

正极的电极反应减去负极的电极反应即原电池的电池反应。

$$Zn + Cu^{2+} = Zn^{2+} + Cu$$

电极电势高的电极,其氧化型的氧化能力强;电极电势低的电极,其还原型的还原能力强。于是根据标准电极电势表,原则上可以判断一种氧化还原反应进行的可能性。

标准电极电势Ф (25℃,在碱性剂	性溶液中)	
-------------------	-------	--

电	极	反	应		$\varphi_{\mathrm{B}}^{\ominus}/\mathrm{V}$
氧化型	电子	数	还原型	^ #	
写 Zn(OH) ₄ ² -	+ 2e	\Longrightarrow	Zn(s)+4OH-	人	-1.22
Fe(OH) ₂ (s)	+ 2e	\Rightarrow	Fe+2OH	去	-0.88
He(OH) ₂ (S) 2H ₂ O	+ 2e	\Rightarrow	$H_2(g)+2OH^-$	电	-0.83
子 Fe(OH) ₃ (s)	+ e-	\Longrightarrow	Fe(OH) ₂ (s)+OH	子	-0.56
S(s)	+ 2e-	\Longrightarrow	S^{2-}	或	-0.48
$S(s)$ $Cu(OH)_2(s)$	+ 2e	\Rightarrow	Cu+2OH-	还	-0.36
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	+ 3e	\Rightarrow	$Cr(OH)_3(s)+5OH$	I- 原	-0.12
NO ₃ -+H ₂ O	+ 2e	\Rightarrow	NO ₂ -+2OH-	能	+0.01
$\begin{array}{c c} Ag_2O(s)+H_2O \end{array}$	+ 2e	\Rightarrow	$2Ag(s)+2OH^{-}$	力	+0.34
ClO ₄ -+H ₂ O	+ 2e	\Rightarrow	ClO ₃ -+2OH-	依	+0.36
O_2+2H_2O	+ 4e	\rightleftharpoons	4OH-	次	+0.40
ClO ₃ -+3H ₂ O	+ 6e-	\Rightarrow	Cl-+6OH-	增	+0.62
虽 ↓ ClO ⁻ +H ₂ O	+ 2e	\Rightarrow	Cl ⁻ +2OH ⁻	强	+0.89

• • • • • • • • • • • • • •

几点说明:

- 1) 电极的电极反应均应写成还原反应的形式。 氧化型+ne ——还原型,用电对表示电极组成。
- 2) φ°值越大,表示氧化型物质的氧化能力越强,相应的还原型物质的还原能力越弱。
- 3) 标准电极电势与得失电子数多少无关,即与半反应中的系数无关,而取决于物质的本性。

$$\frac{\operatorname{Cl}_{2} + 2e \rightleftarrows 2\operatorname{Cl}^{-}}{\frac{1}{2}\operatorname{Cl}_{2} + e \rightleftarrows \operatorname{Cl}^{-}}\right\} \varphi^{\ominus}(\operatorname{Cl}_{2}/\operatorname{Cl}^{-}) = 1.358 \text{ V}$$

- 4) 表中所列数据为298K时的标准电极电势, φ 000 温度变化不大,室温范围内均可用表中数据。
- 5) 电极电势表分为两种介质: 酸性和碱性介质。
 - a) 在电极反应中,H+无论在反应物或产物中出现,皆应查酸表中的数据。
 - b) OH·无论在反应物或产物中出现,皆应 查碱表中的数据。
 - c) 电极反应中无H+或OH·时,从物质存在 形态考虑。

 Fe^{3+}/Fe^{2+} Zn^{2+}/Zn ZnO_2^{2-}/Zn

电极的类型

• 金属-金属离子电极

电极反应:

$$Zn^{2+} + 2e \longrightarrow Zn$$

电极符号:

 $Zn(s) | Zn^{2+}$

• 气体-离子电极

电极反应:

$$2H^{+} + 2e \rightleftharpoons H_{2}$$

$$Cl_{2} + 2e \rightleftharpoons Cl^{-}$$

电极符号:

Pt
$$\mid H_2(g) \mid H^+$$

Pt $\mid Cl_2(g) \mid Cl^-$

•金属-难溶盐(氧化物)-离子电极

电极组成:将金属表面沉积该金属的难溶盐(或氧化物),将其浸在与该盐有相同阴离子溶液中。

氯化银电极的电极反应:

 $AgCl + e \longrightarrow Ag + Cl^{-}$

电极符号: Ag | AgCl(s) | Cl

AgCl/Ag 与 Ag+/Ag电极:

相同点:均为Ag+和Ag之间的氧化还原反应。

不同点: Ag+/Ag电极的电极电势,与溶液中Ag+浓度有关。AgCl/Ag电极的电极电势 既与Ag+有关,还受控于Cl-浓度。

• 甘汞电极

电极反应:

$$\frac{1}{2}$$
Hg₂Cl₂ + $e \rightleftharpoons$ Hg(l) + Cl⁻¹

电极符号:

$$Hg \mid Hg_2Cl_2(s) \mid Cl^{-1}$$

$$\varphi^{\ominus}(\mathrm{Hg_2Cl_2/Cl^-}) = 0.268 \mathrm{V}$$

为了便于控制甘汞电极的电极电势,经常使用饱和甘汞电极。常用它代替标准氢电极作为参比电极。

 $\varphi(Hg_2Cl_2/Cl^2)$,饱和KCl溶液) = 0.2415 V

•氧化还原电极

电极反应:

$$Fe^{3+} + e \longrightarrow Fe^{2+}$$

电极符号:

 $Pt | Fe^{3+}, Fe^{2+}$

将 Pt 丝插入含 Cr^{3+} 和 $Cr_2O_7^{2-}$ 离子的溶液中:

$$Cr_2O_7^{2-} + 14H^+ + 6e \rightleftharpoons 2Cr^{3+} + 7H_2O$$

Pt | $Cr_2O_7^{2-}, Cr^{3+}$

5. 影响电极电势的因素-奈斯特方程

电极电势的大小,取决于电极的本性,还与溶液中离子的浓度、气体的压力、温度有关。

$$Zn(s) + Cu^{2+}(1mol \cdot L^{-1}) = Zn^{2+}(1mol \cdot L^{-1}) + Cu(s)$$

交点坐标为37,此时反应达平衡状态, $[Zn^{2+}]/[Cu^{2+}]$ 的比值即平衡常数 K^{θ} :

$$K^{\Theta} = \frac{[\mathbf{Zn}^{2+}]}{[\mathbf{Cu}^{2+}]} = 10^{37}$$

只要[Zn²⁺]/[Cu²⁺]增加,电池电动势就会下降,反之则电动势升高。

5. 影响电极电势的因素-奈斯特方程

电极电势的大小,取决于电极的本性,还与溶液中离子的浓度、气体的压力、温度有关。

$$Zn(s) + Cu^{2+}(1mol \cdot L^{-1}) = Zn^{2+}(1mol \cdot L^{-1}) + Cu(s)$$

交点坐标为37,此时反应达平衡状态, $[Zn^{2+}]/[Cu^{2+}]$ 的比值即平衡常数 K^{θ} :

$$K^{\Theta} = \frac{[\mathbf{Zn}^{2+}]}{[\mathbf{Cu}^{2+}]} = 10^{37}$$

只要[Zn²⁺]/[Cu²⁺]增加,电池电动势就会下降,反之则电动势升高。

奈斯特方程

$$Zn(s) + Cu^{2+}(1mol \cdot L^{-1}) = Zn^{2+}(1mol \cdot L^{-1}) + Cu(s)$$

Cu-Zn原电池中离子浓度与<u>电池电动势</u>的 定量关系:

$$E = E^{\Theta} - \frac{RT}{nF} \cdot \ln \frac{[\mathbf{Zn}^{2+}]}{[\mathbf{Cu}^{2+}]}$$

$$E = E^{\Theta} + \frac{RT}{nF} \cdot \ln \frac{[Cu^{2+}]}{[Zn^{2+}]}$$

法拉第常数 $F = 9.65 \times 10^4$ C·mol⁻¹

奈斯特方程指出了<u>电池电动势</u>与电池本性(标准电动势 E°)和电解质浓度之间的定量关系。描述了任意浓度时的E和 E° 之间的关系。

$$E = E^{\Theta} - \frac{RT}{nF} \cdot \ln \frac{[\mathbf{Zn}^{2+}]}{[\mathbf{Cu}^{2+}]}$$

在T = 298K时,将R = 8.314 J·mol⁻¹·K⁻¹ 与法拉第常数 $F = 9.65 \times 10^4$ C·mol⁻¹代入,将ln换为lg:

$$E = E^{\Theta} - \frac{0.0592}{n} \cdot \lg \frac{[Zn^{2+}]}{[Cu^{2+}]}$$

因
$$E = \varphi_{\text{正极}} - \varphi_{\text{负极}} = \varphi \left(\text{Cu}^{2+}/\text{Cu} \right) - \varphi \left(\text{Zn}^{2+}/\text{Zn} \right)$$

$$E^{\ominus} = \varphi_{\text{正极}}^{\ominus} - \varphi_{\text{负极}}^{\ominus} = \varphi^{\ominus}(\text{Cu}^{2+}/\text{Cu}) - \varphi^{\ominus}(\text{Zn}^{2+}/\text{Zn})$$

$$\varphi(\text{Zn}^{2+}/\text{Zn}) = \varphi^{\Theta}(\text{Zn}^{2+}/\text{Zn}) + \frac{0.0592}{n} \cdot \lg[\text{Zn}^{2+}]$$

$$\varphi(\text{Cu}^{2+}/\text{Cu}) = \varphi^{\Theta}(\text{Cu}^{2+}/\text{Cu}) + \frac{0.0592}{n} \cdot \lg[\text{Cu}^{2+}]$$

推广到一般电对:

氧化型
$$+ne$$
 还原型

$$\varphi = \varphi^{\circ} + \frac{0.0592}{n} \cdot \lg \frac{\left[\text{氧化型}\right]}{\left[\text{还原型}\right]}$$

 φ : 指定浓度下电极的电极电势

 φ° : 标准状态下电极的电极电势

n: 电极反应中得、失电子的数目

[氧化型]/[还原型]:参与电极反应的所有物质浓度次方之积/产物浓度次方之积,浓度次方应该等于系数。

$$Fe^{3+} + e \longrightarrow Fe^{2+}$$

$$\varphi = \varphi^{9} + \frac{0.0592}{1} \cdot \lg \frac{[Fe^{3+}]}{[Fe^{2+}]} = 0.771 + 0.0592 \lg \frac{[Fe^{3+}]}{[Fe^{2+}]}$$

$$2H^+ + 2e \longrightarrow H_2(g)$$

$$\varphi = \varphi^{\Theta} + \frac{0.0592}{2} \cdot \lg \frac{[H^+]^2}{p_{H_2}/p^{\Theta}} = \frac{0.0592}{2} \cdot \lg \frac{[H^+]^2}{p_{H_2}/p^{\Theta}}$$

$$Cr_2O_7^{2-} + 14H^+ + 6e \longrightarrow 2Cr^{3+} + 7H_2O$$

$$\varphi = \varphi^{\Theta} + \frac{0.0592}{6} \cdot \lg \frac{[Cr_2O_7^{2-}][H^+]^{14}}{[Cr^{3+}]^2}$$

5. 影响电极电势的因素-奈斯特方程

例7: 试计算在298K时,当Cl-离子的浓度 [Cl-] = 0.100mol·L-1时,Cl₂的分压为300 kPa时,求所组成的氯电极的电极电势。

解: 氯电极的电极反应 $Cl_2 + 2e \longrightarrow 2Cl^-$ 查表知 $\varphi^{\circ}(Cl_2/Cl^-) = 1.36 \text{ V}$

$$\varphi(\text{Cl}_2/\text{Cl}^-) = \varphi^{\Theta}(\text{Cl}_2/\text{Cl}^-) + \frac{0.0592}{2} \cdot \lg \frac{p(\text{Cl}_2)/p^{\Theta}}{[\text{Cl}^-]^2/c^{\Theta}}$$
$$= 1.36 + \frac{0.0592}{2} \lg \frac{3}{(0.100)^2}$$

$$=1.43 \text{ V}$$

浓度对电极电势值的影响

已知
$$Fe^{3+} + e \longrightarrow Fe^{2+}$$
, $\varphi^{\Theta} = +0.771 \text{ V}$

$$\varphi = \varphi^{\Theta} + \frac{0.0592}{1} \cdot \lg \frac{[Fe^{3+}]}{[Fe^{2+}]}$$

[Fe ³⁺]	1_				1000			1000
[Fe ²⁺]	1000	1000	1000	1000	100	10	1	0.1
$\varphi(V)$	0.594	0.653	0.712	0.771	0.830	0.889	0.948	1.01

 $[Fe^{3+}]/[Fe^{2+}]$ 的比值每增加10倍, φ 值增加0.0592V。 $[Fe^{3+}]$ 升高或 $[Fe^{2+}]$ 降低,电极电势升高, Fe^{3+} 夺电子能力加强。

例8: 计算下面原电池的电动势

(-)
$$Pt \mid H_2(p^{\Theta}) \mid H^+(10^{-3} \text{mol} \cdot L^{-1}) \mid H^+(10^{-2} \text{mol} \cdot L^{-1}) \mid H_2(p^{\Theta}) \mid Pt (+)$$

解: 正极和负极的电极反应均为

$$2H^+ + 2e \longrightarrow H_2$$

由公式
$$\varphi = \varphi^{\Theta} + \frac{0.0592}{2} \cdot \lg \frac{[H^+]^2}{p_{H_2}/p^{\Theta}}$$

$$\varphi_{-} = \varphi^{\Theta} + \frac{0.0592}{2} \cdot \lg(10^{-3})^{2}$$

$$\varphi_{+} = \varphi^{\Theta} + \frac{0.0592}{2} \cdot \lg(10^{-2})^{2}$$

$$E = \varphi_{+} - \varphi_{-} = 0.059 \text{ V}$$

仅由于溶液浓度差别构成的原电池, 叫浓 美电池。

酸度对电极电势值的影响

$$Cr_2O_7^{2-} + 14H^+ + 6e \longrightarrow 2Cr^{3+} + 7H_2O \quad \varphi^{\Theta} = +1.33 \text{ V}$$

固定[Cr₂O₇²⁻]=[Cr³⁺]=1 mol·L⁻¹, 改变[H⁺]:

$$\varphi = \varphi^{9} + \frac{0.0592}{6} \cdot \lg \frac{[Cr_{2}O_{7}^{2-}][H^{+}]^{14}}{[Cr^{3+}]^{2}}$$
$$= \varphi^{9} + \frac{0.0592}{6} \cdot \lg [H^{+}]^{14}$$

当[H⁺] = 1 mol·L⁻¹时, φ = 1.33 V 当[H⁺] = 10⁻³ mol·L⁻¹时, φ = 0.92 V

可见,随酸度增加, $K_2Cr_2O_7$ 的氧化性增强,可通过调节 $[H^+]$ 调节它的电极电势。

例9: 已知氢标准电极的电极反应 $2H^+ + 2e \longleftrightarrow H_2$ $\varphi^{\circ} = 0$ V,求算在 0.10 mol·L⁻¹的醋酸溶液中,使 $p(H_2)=100$ kPa时,氢电极的电势 $\varphi=?$

解: 在氢标准电极中,[H+]=1 mol·L-1

$$HAc \longrightarrow Ac^- + H^+$$

平衡时 0.10-x x x

$$K_{\rm a}^{\Theta} = \frac{[{\rm H}^{+}][{\rm Ac}^{-}]}{[{\rm HAc}]} = 1.8 \times 10^{-5}$$

因 $c_{\overline{w}}/K_{a}^{\circ} > 400$, $0.10 - x \approx 0.10$

$$x = 1.3 \times 10^{-3}$$

$$\varphi = \varphi^{\Theta} + \frac{0.0592}{2} \cdot \lg \frac{[H^+]^2}{p(H_2)} = -0.17 \text{ V}$$

沉淀对电极电势值的影响

$$Ag^+ + e \longrightarrow Ag \qquad \varphi^{\Theta} = 0.799 \text{ V}$$

若加入NaCl,生成AgCl沉淀后溶液中[Cl⁻]=1mol·L⁻¹,则[Ag⁺] = 1.6×10^{-10} mol·L⁻¹,电极的电极电势 = ?

$$\varphi = \varphi^{\Theta} + \frac{0.0592}{1} \cdot \lg \frac{[Ag^{+}]}{1}$$

$$= 0.799 + 0.0592 \cdot \lg(1.6 \times 10^{-10})$$

$$= 0.221 \text{ V}$$

0.221V是 AgCl(s) + $e \longrightarrow$ Ag(s) + Cl⁻ 这个新电对的标准电极电势。

由于沉淀产生了新的电对AgCl/Ag,电极变为金属-难溶盐-离子电极。

电对	φ [©] /V	Ksp	$[Ag^+]$
$AgI(s) + e \rightleftharpoons Ag(s) + I$	-0.152	9.3×10^{-17}	9.3×10^{-17}
$AgBr(s) + e \rightarrow Ag(s) + Br$	+0.071	5.0×10^{-13}	5.0×10^{-13}
$AgCl(s) + e \rightarrow Ag(s) + Cl$			
$Ag^+ + e^- \Longrightarrow Ag(s)$	+0.799		.6

自下而上, ϕ \in Ksp和[Afg]都在减小

卤化银的溶度积越小,Ag+离子的平衡浓度也越小,则AgX/Ag电对的标准电极电势值也越小,Ag+的氧化能力也降低。

6. 电池电动势与吉布斯自由能的关系

$$Zn + Cu^{2+} = Zn^{2+} + Cu$$

当氧化剂和还原剂直接接触时:

$$\Delta_{\rm r}G_{\rm m} < 0$$

$$\Delta_{\rm r}G_{\rm m} = 0$$

$$\Delta_{\rm r}G_{\rm m} > 0$$

恒温恒压条件下, 当反应以原电池方式进行时:

 $-\Delta_{\rm r}G_{\rm m}=W'$ (电池所能做的最大电功)

在电池反应中,原电池所做的最大电功等于化学反应自由能的降低:

 $-\Delta G = W'$ (电池电功)

lmol电子的电量即 $1F = 9.65 \times 10^4 \text{ C} \cdot \text{mol}^{-1}$ 若有n mol电子转移,则Q = nF

$$\Delta_{\rm r}G_{\rm m}=-nFE$$

如电池中所有物质均处于标准态,则 $E = E^{\circ}$

$$\Delta_{\rm r} G_{\rm m}^{\scriptscriptstyle \Theta} = -nFE^{\scriptscriptstyle \Theta}$$

 $\Delta_{\mathbf{r}}G_{\mathbf{m}}^{\circ}$: 标准自由能变

n: 得失电子数

F: 法拉第常数9.65×10⁴ C·mol⁻¹

 E° : 电池的标准电动势

例10:根据下列电池写出反应式并计算在298K时电池的标准电动势 E° 和反应的标准自由能变化 $\Delta_{r}G_{m}^{\circ}$ 的值。

(-) Zn $|ZnSO_{A}(1mol \cdot L^{-1})||CuSO_{A}(1mol \cdot L^{-1})|Cu(+)$ $Zn + Cu^{2+} = Zn^{2+} + Cu$ 解: 查表知 $\varphi^{\circ}(Cu^{2+}/Cu) = 0.34 \text{ V}$ $\varphi^{\circ}(\mathbf{Z}\mathbf{n}^{2+}/\mathbf{Z}\mathbf{n}) = -0.7628 \text{ V}$ $E = \varphi_{\text{证规}} - \varphi_{\text{负极}} = +1.10 \text{ V}$ $\Delta_{\rm r}G_{\rm m}=-nFE$ $\Delta_r G_m^{\Theta} = -2 \times 9.65 \times 10^4 \, \text{C} \cdot \text{mol}^{-1} \times 1.10 \, \text{V}$ $= -212 \text{ kJ} \cdot \text{mol}^{-1}$

例11: 已知锌汞电池的反应为

$$Zn(s) + HgO(s) = ZnO(s) + Hg(l)$$

根据标准自由能的数据,计算298K时该电池的电动势 E° 值。

解: 查表知 $\Delta_f G_m^{\Theta}(HgO) = -58.53 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_f G_m^{\Theta}(ZnO) = -318.2 \text{ kJ} \cdot \text{mol}^{-1}$

$$\Delta_{\rm r} G_{\rm m}^{\rm e} = -259.7 \text{ kJ} \cdot \text{mol}^{-1}$$

反应进度为1mol时,转移的电子为2mol。

$$\Delta_{\rm r}G_{\rm m}^{\Theta} = -nFE^{\Theta}$$
 $\Delta_{\rm r}G_{\rm m}^{\Theta} = -2FE^{\Theta}$

$$E^{\Theta} = 1.35 \text{ V}$$

四、电极电势的应用

- 1. 标准电极电势表的应用
 - ①判断氧化剂和还原剂的强弱
- ✓ 标准电极电势数值越小(负值越大),表示其电极 反应中还原型物质的还原性越强;数值越大(正值 越大),表示其电极反应中氧化型物质的氧化性越 强。
- ✓ 最强的还原剂在表的右上方,最强的氧化剂在表的左下方。