

Lab: Programming with data

Lisias Loback

Welcome to Data Science Lab: Split-Apply-Combine Strategy

- What is Data Science
- Understand the Split-Apply-Combine Strategy
- Calculations on Data
- Hands-on Experience

Data Science

Data Science is a multidisciplinary field that combines various techniques from statistics, computer science, and domain expertise to extract valuable insights and knowledge from data.

Key Components

- 1. Data Collection
- 2. Data Cleaning
- 3. Data Analysis
- 4. **Data Visualization**
- 5. Machine Learning

Importance

- 1. Informed Decision-Making
- 2. Improving Efficiency
- 3. **Personalization**
- 4. **Predictive Analytics**
- 5. Innovative Solutions
- 6. Competitive Advantage

Understanding Split-Apply-Combine Method

- 1. Map-Reduce
- 2. Resampling
- 3. Pivoting and Melting
- 4. Window Functions
- 5. Vectorization
- 6. Filtering and Subsetting
- 7. Aggregations
- 8. Cross-Tabulation
- 9. Data Transformation
- 10. Data Integration

The Split-Apply-Combine method is a data analysis paradigm that involves splitting a dataset into groups, applying a function to each group independently, and then combining the results back into a single dataset. This method is particularly useful for aggregating data, computing summary statistics, and performing group-wise transformations.

Sales Analysis

Customer Segmentation

Biological Research

Financial Reporting

Our Dataset: Animal Speeds

Animal	Class	Order	Max_Speed
Falcon	Bird	Falconiformes	389.0
Parrot	Bird	Psittaciformes	24.0
Lion	Mammal	Carnivora	80.2
Monkey	Mammal	Primates	NaN
Leopard	Mammal	Carnivora	58.09

Our Dataset: Steps Applied

Split by Class:

Birds: Falcon, Parrot

• Mammals: Lion, Monkey, Leopard

Apply Mean Function on Max_Speed:

• Birds: (389.0 + 24.0) / 2 = 206.5

• Mammals: (80.2 + 58.09) / 2 = 69.145

Animal	Class	Order	Max_Speed
Falcon	Bird	Falconiformes	389.0
Parrot	Bird	Psittaciformes	24.0
Lion	Mammal	Carnivora	80.2
Monkey	Mammal	Primates	NaN
Leopard	Mammal	Carnivora	58.09

Combine Results:

Class	Avg_Max_Speed
Bird	206.5
Mammal	69.145

Demonstration: Calculating Average Speeds

```
# Creating the data
data = [
    {'animal': 'falcon', 'class': 'bird', 'order': 'Falconiformes', 'max_speed': 389.0},
    {'animal': 'parrot', 'class': 'bird', 'order': 'Psittaciformes', 'max_speed': 24.0},
    {'animal': 'lion', 'class': 'mammal', 'order': 'Carnivora', 'max speed': 80.2},
    {'animal': 'monkey', 'class': 'mammal', 'order': 'Primates', 'max speed': None},
   {'animal': 'leopard', 'class': 'mammal', 'order': 'Carnivora', 'max speed': 58.09}
# Grouping by class and calculating average speed
from collections import defaultdict
grouped data = defaultdict(lambda: {'total speed': 0, 'count': 0})
for entry in data:
   class_name = entry['class']
   max speed = entry['max_speed']
   if max speed is not None:
       grouped data[class name]['total speed'] += max speed
       grouped data[class name]['count'] += 1
avg_speed = [{'class': class_name, 'avg_speed': (info['total_speed'] / info['count'])}
            for class_name, info in grouped_data.items()]
# Displaying the result
print(avg speed)
```


Calculating Average Speeds with pandas

Developer Environment: https://codesandbox.io/

Pandas: https://pandas.pydata.org/

https://pandas.pydata.org/docs/getting_started/index.html

https://www.w3schools.com/python/pandas/default.asp

https://www.w3schools.com/python/pandas/pandas_ref_dataframe.asp

Code:

https://github.com/lloback/labs/tree/main/split-apply-combine

Your Turn: Hands-on Practice

Load the dataset.

Perform the split-apply-combine method to calculate average max speeds.

Discuss the results with peers.

Q&A

Grus, J. (2019) Data Science from Scratch: First Principles with Python. O'Reilly Media.

Kotu, V. and Deshpande, B. (2018) Data science: Concepts and Practice. Morgan Kaufmann.