Chapter 4: Nominal and Effective Interest Rates

Session 9-10-11 Dr Abdelaziz Berrado

Topics to Be Covered in Today's Lecture

- Section 4.1: Nominal and Effective Interest Rates statements
- Section 4.2: Effective Annual Interest Rates

Section 4.1 NOMINAL & EFFECTIVE RATES

- Review Simple Interest and Compound Interest (from Chapter 1)
- Compound Interest
 - Interest computed on Interest
 - For a given interest period
- The time standard for interest computations One Year
- One Year: Can be segmented into:
 - 365 days
 - 52 Weeks
 - 12 Months
 - One quarter: 3 months 4 quarters/year
- Interest can be computed more frequently than one time a year

4.1 Common Compounding Frequencies

- Interest May be computed (compounded):
 - Annually One time a year (at the end)
 - Every 6 months − 2 times a year (semi-annual)
 - Every quarter 4 times a year (quarterly)
 - Every Month 12 times a year (monthly)
 - Every Day 365 times a year (daily)
 - **–** ...
 - Continuous infinite number of compounding periods in a year.

4.1 Quotation of Interest Rates

- Interest rates can be quoted in more than one way.
- Example:
 - Interest equals "5% per 6-months"
 - Interest is "12%" (12% per what?)
 - Interest is 1% per month
 - "Interest is "12.5% per year, compounded monthly"
- Thus, one must "decipher" the various ways to state interest and to calculate.

4.1 Two Common Forms of Quotation

- Two types of interest quotation
 - 1. Quotation using a Nominal Interest Rate
 - 2. Quoting an Effective Periodic Interest Rate
- Nominal and Effective Interest rates are common in business, finance, and engineering economy
- Each type must be understood in order to solve various problems where interest is stated in various ways.

4.1 Notion of a Nominal Interest Rate

- A *Nominal* Interest Rate, r.
- Definition:

A Nominal Interest Rate, *I*, is an interest Rate that does not include any consideration of compounding

Nominal means, "in name only", not the real rate in this case.

4.1 Quoting a Nominal Interest Rate

- Interest rates may be quoted (stated communicated) in terms of a nominal rate.
- You will see there are two ways to quote an interest rate:
 - 1. Quote the Nominal rate
 - 2. Quote the true, effective rate.
- For now we study the nominal quotation.

4.1 Definition of a Nominal Interest Rate

• Mathematically we have the following definition:

r = (interest rate per period)(No. of Periods)

Examples Follow.....

4.1 Examples – Nominal Interest Rates

- 1.5% per month for 24 months
 - Same as: (1.5%)(24) = 36% per 24 months
- 1.5% per month for 12 months
 - Same as (1.5%)(12 months) = 18%/year
- 1.5% per month for 6 months
 - Same as: (1.5%)(6 months) = 9%/6 months or semiannual period
- 1% per week for 1 year
 - Same as: (1%)(52 weeks) = 52% per year

4.1 Nominal Rates.....

- A nominal rate (so quoted) do not reference the frequency of compounding. They all have the format "r% per time period"
- Nominal rates can be misleading
- We need an alternative way to quote interest rates....
- The true *Effective Interest Rate* is then applied....

4.1 The Effective Interest Rate (EIR)

- When so quoted, an Effective interest rate is a true, periodic interest rate.
- It is a rate that applies for a stated period of time
- It is conventional to use the year as the time standard
- So, the EIR is often referred to as the Effective Annual Interest Rate (EAIR)

4.1 The EAIR

- Example:
 - "12 per cent compounded monthly"
- Pick this statement apart:
 - 12% is the nominal rate
 - "compounded monthly" conveys the frequency of the compounding throughout the year
 - This example: 12 compounding periods within a year.

4.1 The EAIR and the Nominal Rate

- The EAIR adds to a nominal rate by informing the user of the frequency of compounding within a year.
- Notation:
- It is conventional to use the following notation for the EAIR

• The EAIR is an extension of the nominal rate – "r"

4.1 Focus on the Differences

• Nominal Rates:

- Format: "r\% per time period, t"
- Ex: 5% per 6-months"

• Effective Interest Rates:

- Format: "r% per time period, compounded 'm' times a year.
- 'm' denotes or infers the number of times per year that interest is compounded.
- Ex: 18% per year, compounded monthly

4.1 Which One to Use: "r" or "i"?

- Some problems may state only the nominal interest rate.
- Remember: Always apply the Effective Interest Rate in solving problems.
- Published interest tables, closed-form time value of money formula, and spreadsheet function assume that only Effective interest is applied in the computations.

4.1 Time Based Units Associated with Interest Rate Statements

- Time Period, t Interest rates are stated as %
 per time period. (t usually in years)
- Compounding Period, (CP) Length of time between compounding operations.
- Compounding Frequency-Let "m" represent the number of times that interest is computed (compounded) within time period "t".

4.1 Effective Rate per CP

• The Effective interest Rate per compounding period, CP is:

4.1 Example:

• Given:

r = 9% per year, compounded monthly

Effective Monthly Rate: 0.09/12 = 0.0075 = <u>0.75%/month</u>

Here, "m" counts months so, m = 12 compounding periods within a year.

4.1 Example 4.1

• Given, "9% per year, compounded quarterly"

CP equals a quarter (3 – months)

4.1 Example 4.1 (9%/yr: Compounded quarterly)

• Given, "9% per year, compounded quarterly"

Qtr. 1 Qtr. 2	Qtr. 3	Qtr. 4
---------------	--------	--------

What is the Effective Rate per Quarter?

- \geq i_{Qtr.} = 0.09/4 = 0.0225 = 2.25%/quarter
- > 9% rate is a nominal rate;
- ➤ The 2.25% rate is a true effective monthly rate

4.1 Example 4.1 (9%/yr: Compounded quarterly)

• Given, "9% per year, compounded quarterly"

Qtr. 1: 2.25%	Qtr. 2:2.25%	Qtr. 3:2.25%	Qtr. 4:2.25%
---------------	--------------	--------------	--------------

The effective rate (true rate) per quarter is 2.25% per quarter

4.1 Statement: 9% compounded monthly

- r = 9% (the nominal rate).
- "compounded monthly means "m" = 12.
- The true (effective) monthly rate is:
 - 0.09/12 = 0.0075 = 0.75% per month

4.1 Statement: 4.5% per 6 months – compounded weekly

- Nominal Rate: 4.5%.
- Time Period: 6 months.
- Compounded weekly:
 - Assume 52 weeks per year
 - 6-months then equal 52/2 = 26 weeks per 6 months
- The true, effective weekly rate is:
 - (0.045/26) = 0.00173 = 0.173% per week

4.1 Table 4.1

- It can be unclear as to whether a stated rate is a nominal rate or an effective rate.
- Three different statements of interest follow.....

4.1 Varying Statements of Interest Rates

- "8% per year, compounded quarterly"
 - Nominal rate is stated: 8%
 - Compounding Frequency is given
 - Compounded quarterly
 - True quarterly rate is $0.8/4 = 0.02 = \frac{2\% \text{ per}}{\text{quarter}}$

Here, one must calculate the effective quarterly rate!

4.1 Effective Rate Stated

- "Effective rate = 8.243% per year, compounded quarterly:
 - No nominal rate given (must be calculated)
 - Compounding periods m = 4
- No need to calculate the true effective rate!
 - It is already given: 8.243% per year!

4.1 Only the interest rate is stated

- "8% per year".
- Note:
 - No information on the frequency of compounding.
 - Must assume it is for one year!
 - "m" is assumed to equal "1".
- <u>Assume</u> that "8% per year" is a true, effective annual rate!
 - No other choice!

Section 4.2 Effective Annual Interest Rates

- Here, we show how to calculate true, effective, annual interest rates.
- We assume the year is the standard of measure for time.
- The year can be comprised of various numbers of compounding periods (within the year).

4.2 Typical Compounding Frequencies

- Given that one year is the standard:
 - m = 1: compounded annually (end of the year);
 - m = 2: semi-annual compounding (every 6 months);
 - m = 4: quarterly compounding;
 - m = 12: monthly compounding;
 - m = 52: weekly compounding;
 - m = 365: daily compounding;
- Could keep sub-dividing the year into smaller and smaller time periods.

4.2 Calculation of the EAIR

- EAIR "the Effective Annual Interest Rate".
- The EAIR is the true, annual rate given a frequency of compounding within the year.
- We need the following notation......

4.2 EAIR Notation

- r = the nominal interest rate per year.
- m = the number of compounding periods within the year.
- \mathbf{i} = the effective interest rate per compounding period (r/m)
- i_a or i_e = the true, effective annual rate given the value of m.

4.2 Derivation of the EAIR relationship

- Assume \$1 of principal at time t = 0.
- Conduct a period-by-period Future Worth calculation.
- Notation "problem".
 - At times, "i" is used in place of "ie" or "ia".
 - So, "i" can also represent the true effective annual interest rate!

4.2 Deriving the EAIR... Consider a one-year time period.

$$P = 1.00$$

Invest \$1 of principal at time t = 0 at interest rate i per year.

One year later, $F = P(1+ia)^1$

4.2 Deriving the EAIR...

• Interest could be compounded more than one time within the year!

$$$F=$P(1+ia)^{1}$$
 0^{1}
 2
 3
 4
 5
 m
 1
 $$P=1.00

Assume the one year is now divided into "m" compounding periods.

Replace "i" with "i_a" since m now > 1.

4.2 Rewriting....

- $F = P + P(i_a)$
- Now, the rate i per CP must be compounded through all "m" periods to obtain F₁
- Rewrite as:

$$- F = P + P(\mathbf{i_a}) = P(1 + \mathbf{i_a})$$

$$- F = P(1 + i)^m$$

4.2 Two similar expressions for F

- We have two expressions for F;
- $F = P(1 + i_a);$
- $F = P(1 + i)^m$;
- Equate the two expressions;
- $P(1 + i_a) = P(1 + i)^m$;
- $R(1 + i_a) = R(1 + i)^m$;

Solve i_a in terms of "i".

4.2 Expression for i_a

• Solving for i_a yields;

$$1 + i_a = (1+i)^m \tag{1}$$

$$i_a = (1 + i)^m - 1$$
 (2)

If we start with a nominal rate, "r" then....

4.2 The EAIR is.....

- Given a nominal rate, "r"
- $i_{\text{Compounding period}} = r/m$;
- The EAIR is calculated as;

EAIR =
$$(1 + r/m)^m - 1$$
. (3)

Or,
$$i_{\text{Compounding period}} = (1 + i_a)^{1/m} - 1$$

Then: Nominal rate – "r" =
$$(i)(m)$$
 (4)

4.2 Example: EAIR given a nominal rate.

- Given: interest is 8% per year compounded quarterly".
- What is the true annual interest rate?
- Calculate:

EAIR =
$$(1 + 0.08/4)^4 - 1$$

EAIR = $(1.02)^4 - 1 = 0.0824 = 8.24\%/year$

4.2 Example: "18%/year, comp. monthly"

 What is the true, effective annual interest rate?

$$r = 0.18/12 = 0.015 = 1.5\%$$
 per month.

1.5% per month is an effective monthly rate.

The effective annual rate is:

$$(1 + 0.18/12)^{12} - 1 = 0.1956 = 19.56\%/$$
year

4.2 Previous Example

- "18%, c.m. (compounded monthly)
- Note:
 - Nominal Rate is 18%;
 - The true effective monthly rate is 1.5%/month;
 - The true effective annual rate is 19.56%/year.
- One nominal rate creates 2 effective rates!
 - Periodic rate and an effective annual rate.

4.2 EAIR's for 18%

- m = 1
 - EAIR = $(1 + 0.18/1)^1 1 = 0.18(18\%)$
- m = 2 (semiannual compounding)
 - EAIR = $(1 + 0.18/2)^2 1 = 18.810\%$
- m = 4 (quarterly compounding)
 - EAIR = $(1 + 0.18/4)^4 1 = \underline{19.252\%}$
- m = 12 (monthly compounding)
 - EAIR = $(1 + 0.18/12)^{12} 1 = 19.562\%$
- m = 52 (weekly compounding)
 - EAIR = $(1 + 0.18/52)^{52} 1 = 19.684\%$

4.2 Continuing for 18%.....

- m = 365 (daily compounding).
 - EAIR = $(1 + 0.18/365)^{365} 1 = 19.714\%$
- m = 365(24) (hourly compounding).
 - $EAIR = (1 + 0.18/8760)^{8760} 1 = 19.72\%$
- Could keep subdividing the year into smaller time periods.
- Note: There is an apparent limit as "m" gets larger and larger...called continuous compounding.

4.2 Example: 12% Nominal

	No. of	EAIR	EAIR
	Comp. Per.	(Decimal)	(per cent)
Annual	1	0.1200000	12.00000%
semi-annual	2	0.1236000	12.36000%
Quartertly	4	0.1255088	12.55088%
Bi-monthly	6	0.1261624	12.61624%
Monthly	12	0.1268250	12.68250%
Weekly	52	0.1273410	12.73410%
Daily	365	0.1274746	12.74746%
Hourly	8760	0.1274959	12.74959%
Minutes	525600	0.1274968	12.74968%
seconds	31536000	0.1274969	12.74969%

12% nominal for various compounding periods

Assignments and Announcements

- Assignments due at the beginning of next class:
 - Read Sections 4.2, 4.3, 4.4, 4.5,

Topics to Be Covered in Today's Lecture

- Section 4.3: Payment Period (PP)
- Section 4.4: Equivalence: Comparing PP to CP
- Section 4.5: Single Amounts: CP >= PP
- Section 4.6: Series Analysis PP >= CP
- Section 4.7: Single Amounts/Series with PP < CP

Section 4.3: Payment Period (PP)

- Recall:
 - CP is the "compounding period"
- PP is now introduced:
 - PP is the "payment period"
- Why "CP" and "PP"?
 - Often the frequency of depositing funds or making payments does not coincide with the frequency of compounding.

4.3 Comparisons:

• Example 4.4

Three different interest charging plans. Payments are made on a loan every 6 months. Three interest plans are presented:

- 1. 9% per year, c.q. (compounded quarterly).
- 2. 3% per quarter, (compounded quarterly).
- 3. 8.8% per year, c.m. (compounded monthly)

Which Plan has the lowest annual interest rate?

4.3 Comparing 3 Plans: Plan 1

- 9% per year, c.q.
- Payments made every 6 months.

9%, c.q. = 0.09/4 = 0.045 per 3 months = 2.25% per 3 months

Rule: The interest rate must match the payment period!

4.3 The Matching Rule

- Again, the interest must be consistent with the payment period!
- We need a 6-month effective rate and then calculate the 1 year true, effective rate!
- To compare the 3 plans:
 - Compute the true, effective 6-month rate or,
 - Compute the true effective 1 year rate.
 - Then one can compare the 3 plans!

4.3 Comparing 3 Plans: Plan 1

- 9% per year, c.q. = 2.25%/quarter
- Payments made every 6 months.

True 6-month rate is:

$$(1.0225)^2 - 1 = 0.0455 = 4.55\%$$
 per 6-months

EAIR =
$$(1.0225)^4 - 1 = 9.31\%$$
 per year

4.3 Plan 2

- 3% per quarter, c.q.
- Effective=3%/quarter
- Find the EIR for 6-months
- Calculate:
 - For a 6-month effective interest rate -
 - $-(1.03)^2 1 = 0.0609 = 6.09\%$ per 6-months
 - Or, for a 1 year effective interest rate -
 - $-(1.03)^4 1 = 12.55\%/year$

4.3 Plan 3:" 8.8% per year, c.m."

- "r" = 8.8%
- "m" = 12
- Payments are twice a year
- 6-month nominal rate = 0.088/2 = 4.4%/6-months ("r" = 0.044)
- EIR_{6-months} = $(1 + 0.044/6)^6 1 = (1.0073)^6 1 = 4.48\%/6$ 6-months
- EIR_{12-months} = $(1 + 0.088/12)^{12} 1 = 9.16\%/year$

4.3 Summarizing the 3 plans....

Plan No.	6-month	1-year
1	4.55%	9.31%
2	6.09%	12.55%
3	4.48%	9.16%

Plan 3 presents the lowest interest rate.

4.3 Can be confusing???

- The 3 plans state interest differently.
- Difficult to determine the best plan by mere inspection.
- Each plan must be evaluated by:
 - Calculating the true, effective 6-month rate
 Or,
 - Calculating the true, effective 12 month, (1 year) true, effective annual rate.
 - Then all 3 plans can be compared using the EIR or the EAIR.

Section 4.4: Equivalence: Comparing PP to CP

- Reality:
 - PP and CP's do not always match up;
 - May have monthly cash flows but...
 - Compounding period different than monthly.
- Savings Accounts for example;
 - Monthly deposits with,
 - Quarterly interest earned or paid;
 - They don't match!
- Make them match! (by adjusting the interest period to match the payment period.)

Situations

<u>Situation</u>	Text Reference
------------------	----------------

•
$$PP = CP$$
 Sections 4.5 and 4.6

Section 4.5

Single Amounts: PP >= CP

Example1:

- "r" = 15%, c.m. (compounded monthly)
- Let P = \$1500.00
- Find F at t = 2 years.
- 15% c.m. = 0.15/12 = 0.0125 = 1.25%/month.
- n = 2 years OR 24 months
- Work in months or in years

4.5 Single Amounts: PP >= CP

- Approach 1. (n relates to months)
- State:

```
- F_{24} = $1,500(F/P,0.15/12,24);
```

$$-$$
 i/month = $0.15/12 = 0.0125 (1.25\%);$

-
$$F_{24} = $1,500(F/P,1.25\%,24);$$

-
$$F_{24} = \$1,500(1.0125)^{24} = \$1,500(1.3474);$$

$$- F_{24} = $2,021.03.$$

4.5 Single Amounts: CP >= CP

- Approach 2. (n relates to years)
- State:
 - $F_2 = $1,500(F/P,i\%,2);$
 - Assume n = 2 (years) we need to apply an annual effective interest rate.
 - i/month = 0.0125
 - EAIR = $(1.0125)^{12}$ 1 = 0.1608 (16.08%)
 - $F_2 = $1,500(F/P,16.08\%,2)$
 - $F_2 = \$1,500(1.1608)^2 = \$2,021.19$
 - Slight roundoff compared to approach 1

Suggest you work this in 6- month time frames
Count "n" in terms of "6-month" intervals

i/6 months = 0.12/2 = 6%/6 months; n counts 6month time periods

4.5 Example 2.
$$F_{20} = 3$$
• Compound Forward

 $r = 12\%/yr, c.s.a.$

\$\frac{12\%}{500} \frac{14}{500} \frac{16}{500} \frac{14}{500} \frac{16}{500} \frac{18}{500} \frac{20}{500} + \frac{1}{500} \frac{16}{500} \frac{1}{500} + \frac{1}{500} \frac{1}{500}

4.5 Example 2.

IF n counts years, interest must be an annual rate.

\$3,000

EAIR =
$$(1.06)^2 - 1 = 12.36\%$$

Compute the FV where n is years and i = 12.36%!

Section 4.6 Series Analysis – PP >= CP

- Find the effective "i" per payment period.
- Determine "n" as the total number of payment periods.
- "n" will equal the number of cash flow periods in the particular series.
- Example follows.....

4.6 Series Example

Consider:

A = \$500 every 6 months

Find
$$F_7$$
 if "r" = 20%/yr, c.q. (PP > CP)

We need i per 6-months – effective.

i_{6-months} = adjusting the nominal rate to fit.

4.6 Series Example

- Adjusting the interest
- r = 20%, c.q.
- i/qtr. = 0.20/4 = 0.05 = 5%/qtr.
- 2-qtrs in a 6-month period.
- $i_{6-months} = (1.05)^2 1 = 10.25\%/6-months$.
- Now, the interest matches the payments.
- $F_{\text{year 7}} = F_{\text{period } 14} = $500(F/A, 10.25\%, 14)$
- F = \$500(28.4891) = \$14,244.50

4.6 This Example: Observations

- Interest rate must match the frequency of the payments.
- In this example we need effective interest per 6-months: Payments are every 6-months.
- The effective 6-month rate computed to equal 10.25% un-tabulated rate.
- Calculate the F/A factor or interpolate.
- Or, use a spreadsheet that can quickly determine the correct factor!

4.6 This Example: Observations

- Do not attempt to adjust the payments to fit the interest rate!
- This is Wrong!
- At best a gross approximation do not do it!
- This type of problem almost always results in an untabulated interest rate
 - You have to use your calculator to compute the factor or a spreadsheet model to achieve exact result.

Section 4.7 Single Amounts/Series with PP < CP

- This situation is different than the last.
- Here, PP is less than the compounding period (CP).
- Raises questions?
- Issue of <u>interperiod compounding</u>
- An example follows.

4.7 Interperiod Compounding Issues

- Consider a one-year cash flow situation.
- Payments are made at end of a given month.
- Interest rate is "r = 12%/yr, c.q."

4.7 Interperiod Compounding

• r = 12%/yr. c.q.

Note where some of the cash flow amounts fall with respect to the compounding periods!

4.7 Take the first \$200 cash flow

• Will any interest be earned/owed on the \$200 since interest is compounded at the end of each quarter?

The \$200 is at the end of month 2 and will it earn interest for one month to go to the end of the first compounding period?

The last month of the first compounding period. Is this an interest-earning period?

4.7 Interperiod Issues

- The \$200 occurs 1 month before the end of compounding period 1.
- Will interest be earned or charged on that \$200 for the one month?
- If not then the revised cash flow diagram for all of the cash flows should look like.....

4.7 No interperiod compounding

All negative CF's move to the end of their respective quarters and all positive CF's move to the beginning of their respective quarters.

4.7 No interperiod compounding

Now, determine the future worth of this revised series using the F/P factor on each cash flow.

4.7 Final Results: No interperiod Comp.

• With the revised CF compute the future worth.

"r" = 12%/year, compounded quarterly

"i" = 0.12/4 = 0.03 = 3% per quarter

$$F_{12} = [-150(F/P3\%,4) - 200(F/P,3\%,3) + (-175 +90)(F/P,3\%,2) + 165(F/P,3\%,1) - 50]$$

= \$-357.59

4.7 Interperiod Compounding

• r = 12%/yr. c.q.

The cash flows are not moved and equivalent P, F, or A values are determined using the effective interest rate per payment period

4.7 Interperiod Compounding

If the inter-period compounding is earned, then we should compute the effective interest rate per compounding period.

i=3% is the effective quarterly rate

$$I_{\text{monthly}} = (1+i)^{1/3} - 1 = (1.03)^{1/3} - 1 = 0.99\%$$

Topics to Be Covered in Today's Lecture

- Section 4.8: Continuous Compounding
- Section 4.9: Interest Rates that vary over time

Section 4.8 Continuous Compounding

• Recall:

- $EAIR = i = (1 + r/m)^m 1$
- What happens if we let m approach infinity?
- That means an infinite number of compounding periods within a year or,
- The time between compounding approaches "0".
- We will see that a limiting value will be approached for a given value of "r"

• We can state, in general terms for the EAIR:

$$i = (1 + \frac{r}{m})^m - 1$$

Now, examine the impact of letting "m" approach infinity.

• We re-define the EAIR general form as:

$$(1+\frac{r}{m})^m - 1 = \left[\left(1 + \frac{r}{m} \right)^{\frac{m}{r}} \right]^r - 1$$

Note – the term in brackets has the exponent changed but all is still the same....

- There is a reason for the re-definition.
- From the calculus of limits there is an important limit that is quite useful.
- Specifically:

$$\lim_{h \to \infty} \left(1 + \frac{1}{h} \right)^h = e = 2.71828$$

• Substituting we can see:

$$\lim_{m\to\infty} \left(1+\frac{r}{m}\right)^{\frac{m}{r}} = e,$$

• So that:

$$i = \lim_{m \to \infty} \left[\left(1 + \frac{r}{m} \right)^{\frac{m}{r}} \right]^{r} - 1 = e^{r} - 1.$$

Summarizing.....

• The EAIR when interest is compounded continuously is then:

 $EAIR = e^r - 1$

Where "r" is the nominal rate of interest compounded continuously.

This is the max. interest rate for any value of "r" compounded continuously.

- Example:
- What is the true, effective annual interest rate if the nominal rate is given as:
 - r = 18%, compounded continuously
 - Or, r = 18% c.c.

Solve $e^{0.18} - 1 = 1.1972 - 1 = 19.72\%/year$

The 19.72% represents the MAXIMUM EAIR for 18% compounded anyway you choose!

4.8 Finding "r" from the EAIR/cont. compounding

• To find the equivalent nominal rate given the EAIR when interest is compounded continuously, apply:

$$r = \ln(1+i)$$

4.8 Example

- Given r = 18% per year, cc, find:
 - A. the effective monthly rate
 - B. the effective annual rate
- a. r/month = 0.18/12 = 1.5%/monthEffective monthly rate is $e^{0.015} - 1 = 1.511\%$
- b. The effective annual interest rate is $e^{0.18} 1 = 19.72\%$ per year.

4.8 Example

- An investor requires an effective return of at least 15% per year.
- What is the minimum annual nominal rate that is acceptable if interest on his investment is compounded continuously?

To start: $e^r - 1 = 0.15$

Solve for "r"

4.8 Example

- $e^r 1 = 0.15$
- $e^r = 1.15$
- $ln(e^r) = ln(1.15)$
- r = ln(1.15) = 0.1398 = 13.98%

A rate of 13.98% per year, cc. generates the same as 15% true effective annual rate.

4.8 Final Thoughts

- When comparing different statements of interest rate one must always compute to true, effective annual rate (EAIR) for each quotation.
- Only EAIR's can be compared!
- Various nominal rates cannot be compared unless each nominal rate is converted to its respective EAIR!

Section 4.9 Interest Rates that vary over time

- In practice interest rates do not stay the same over time unless by contractual obligation.
- There can exist "variation" of interest rates over time quite normal!
- If required, how do you handle that situation?

4.9 Interest Rates that vary over time

- Best illustrated by an example.
- Assume the following future profits:

4.9 Varying Rates: Present Worth

- To find the Present Worth:
 - Bring each cash flow amount back to the appropriate point in time at the interest rate according to:
- $P = F_1(P/F.i_1,1) + F_2(P/F,i_1)(P/F,i_2) + ...$
- + $F_n(P/F,i_1)(P/F,i_2)(P/F,i_3)...(P/F,i_n,1)$

This Process can get computationally involved!

4.9 Period-by-Period Analysis

- $P_0 =:$
- 1. \$7000(P/F,7%,1)
- 2. \$7000(P/F,7%,1)(P/F,7%,1)
- 3. $\$35000(P/F,9\%,1)(P/F,7\%,1)^2$
- 4. \$25000(P/F,10%,1)(P/F,9%,1)(P/F,7%,1)²

Equals: \$172,816 at t = 0...

Work backwards one period at a time until you get to "0".

4.9 Varying Rates: Approximation

- An alternative approach that approximates the present value:
- Average the interest rates over the appropriate number of time periods.
- Example:
 - $\{7\% + 7\% + 9\% + 10\%\}/4 = 8.25\%;$
 - Work the problem with an 8.25% rate;
 - Merely an approximation.

4.9 Varying Rates: Single, Future Cash

Objective: Find P₀ at the varying rates

$$P_0 = \$10,000(P/F,8\%,1)(P/F,9\%,1)(P/F,10\%,1)(P/F,11\%,1)$$

= \$10,000(0.9259)(0.9174)(0.9091)(0.9009)

$$=$$
 \$10,000(0.6957) $=$ \$6,957

4.9 Varying Rates: Observations

- We seldom evaluate problem models with varying interest rates except in special cases.
- If required, best to build a spreadsheet model
- A cumbersome task to perform.

Chapter 4 Summary

- Many applications use and apply nominal and effective compounding
- Given a nominal rate must get the interest rate to match the frequency of the payments.
- Apply the effective interest rate per payment period.
 - PP >= CP (adjusting the interest period to match the payment period)
 - PP < CP (Consider inter-period compounding or not?)
- When comparing varying interest rates, must calculate the EAIR in order to compare.

Chapter Summary – cont.

- All time value of money interest factors require use of an effective (true) periodic interest rate.
- The interest rate, *i*, and the payment or cash flow periods must have the same time unit.
- One may encounter varying interest rates and an exact answer requires a sequence of interest rates cumbersome!

Assignments and Announcements

- Homework 3 due a week from today
- Assignments due at the beginning of next class:
 - Answer the three online quizzes on chapter 4 on the text's website.
 - Read chapter 5.1, 5.2 and 5.3