MAT 3775 Analyse de la régression

Chapitre 1 Préliminaires

P. Boily (uOttawa)

Session d'hiver – 2023

Aperçu

- 1.1 Variables aléatoires (p.3)
 - Espérance, variance, et covariance (p.4)
 - Distributions importantes (p.13)
- 1.2 Calcul multivarié (p.22)
- 1.3 Algèbre matricielle (p.23)
- 1.4 Formes quadratiques (p.25)
 - Théorème de Cochran (p.29)
 - Formes quadratiques importantes (p.30)
- 1.5 Optimisation (p.32)

1 – Préliminaires

L'analyse de régression n'est pas une discipline très compliquée ... à condition de bien maîtriser ses pré-requis. Dans ce cours, il sera utile de se familiariser avec un certain nombre de notions relatives :

- aux variables aléatoires ;
- au calcul à plusieurs variables ;
- à l'algèbre linéaire ;
- aux formes quadratiques, et
- à l'optimisation.

1.1 – Variables aléatoires

Une **épreuve aléatoire** est un **processus** pour lequel il est impossible de prédire le **résultat avec certitude**. L'**espace d'échantillonnage** S est l'ensemble des **résultats possibles** de l'épreuve aléatoire.

Une variable aléatoire Y associée est une fonction $Y: \mathcal{S} \to \mathbb{R}$. Si l'ensemble $Y(\mathcal{S}) = \{Y(s) \mid s \in \mathcal{S}\}$ est dénombrable, Y est une variable aléatoire discrète ; s'il ne l'est pas, Y est une variable aléatoire continue.

À chaque v.a. Y correspond une fonction de probabilité f(Y), qui spécifie les probabilités des valeurs prises par Y.

 Y_1 et Y_2 sont **indépendantes** lorsque leur **f.d.p. conjointe** $f(Y_1, Y_2)$ est le produit des **f.d.p. individuelles** $f(Y_1)f(Y_2)$.

1.1.1 – Espérance, variance, et covariance

L'opérateur d'espérance $E\{\cdot\}$ est défini par

$$\mathbf{E}\left\{Y\right\} = \begin{cases} \sum_{Y(s)} Y(s)f(Y(s)), & \text{si } Y \text{ est discrète} \\ \int_{\mathbb{R}} Yf(Y)\,dy, & \text{si } Y \text{ est continue} \end{cases}$$

L'espérance $\mathrm{E}\left\{Y\right\}$ est la **valeur moyenne** que l'on s'attend à observer si l'expérience est répétée à maintes reprises.

L'espérance est parfois aussi appelée la moyenne de Y, notée \overline{Y} ; c'est donc une mesure de la **tendance centrale** de Y.

L'opérateur de variance $\sigma^2\{\cdot\}$ est défini par

$$\sigma^{2} \{Y\} = E\{(Y - E\{Y\})^{2}\} = E\{Y^{2}\} - (E\{Y\})^{2}.$$

Il est souvent désigné par Var(Y). C'est une mesure de la **dispersion** de Y (les grandes variances sont associées à de **fortes dispersions**, et vice-versa).

L'opérateur de **covariance** $\sigma \{\cdot, \cdot\}$ est défini par

$$\sigma \{Y, W\} = E\{(Y - E\{Y\}) (W - E\{W\})\} = E\{YW\} - E\{Y\} E\{W\}.$$

Il est souvent désigné par Cov(Y, W). C'est une mesure de la **force de** la **relation linéaire** entre deux v.a. (les grandes magnitudes de covariance sont associées à la **linéarité**, mais "grand" est un concept relatif).

L'opérateur **écart-type** $\sigma \{\cdot\}$ est défini par

$$\sigma\left\{Y\right\} = \sqrt{\sigma^2\left\{Y\right\}}.$$

Il est toujours non négatif.

L'opérateur de corrélation $\rho \{\cdot, \cdot\}$ est défini par

$$\rho\left\{Y,W\right\} = \frac{\sigma\left\{Y,W\right\}}{\sigma\left\{Y\right\}\sigma\left\{W\right\}},$$

en supposant que $\sigma\{Y\} \sigma\{W\} \neq 0$.

Lorsque $\rho\{Y,W\}=0$, on dit que les v.a. sont non corrélées.

Propriétés des opérateurs

Soient Y, Y_i, W des v.a., et $a, b, c, a_i, b_i, c_i \in \mathbb{R}$, $i = 1, \ldots, n$. Alors:

• $E\{\cdot\}$ est linéaire sur l'espace de v.a. : $E\{aY+b\}=aE\{Y\}+b$ et

$$E\left\{\sum_{i=1}^{n} a_i Y_i\right\} = \sum_{i=1}^{n} a_i E\left\{Y_i\right\}$$

$$\sigma^{2} \left\{ \sum_{i=1}^{n} a_{i} Y_{i} \right\} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} \sigma \left\{ Y_{i}, Y_{j} \right\} = \sum_{i=1}^{n} a_{i}^{2} \sigma^{2} \left\{ Y_{i} \right\} + \sum_{i \neq j} a_{i} a_{j} \sigma \left\{ Y_{i}, Y_{j} \right\}$$

- $\bullet \ \sigma\{Y,Y\} = \sigma^2\{Y\} \text{ et } \sigma\{Y,W\} = \sigma\{W,Y\}$
- $\{Y_i\}$ sans corrélation \Longrightarrow

$$\sigma \left\{ \sum_{i=1}^{n} a_{i} Y_{i}, \sum_{i=1}^{n} c_{i} Y_{i} \right\} = \sum_{i=1}^{n} a_{i} c_{i} \sigma^{2} \left\{ Y_{i} \right\}$$

- $\sigma\left\{Y,W\right\} < 0 \iff$ les observations de Y au-dessus de \overline{Y} ont tendance à accompagner les observations de W en dessous de \overline{W} , et vice-versa
- $\sigma\left\{Y,W\right\} > 0 \iff$ les observations de Y au-dessus de \overline{Y} ont tendance à accompagner les observations de W au-dessus de \overline{W} , et vice-versa

- $\sigma\{Y,W\}=0 \implies Y \text{ et } W \text{ sont sans corrélation}$
- Y,W indépendantes $\implies \rho\{Y,W\} = 0$ (sans corrélation)
- $\rho\{Y,W\}=0 \implies Y,W$ indépendantes, cependant
- $|\rho\{Y,W\}| \le 1$ (conséquence de l'inégalité de Cauchy-Schwartz)
- $ullet |
 ho\left\{Y,W
 ight\}|=1\Longleftrightarrow Y=aW+b$ pour une paire $(a,b)\in\mathbb{R}^2$,

Vecteurs aléatoires

Si Y_1, \ldots, Y_n sont des variables aléatoires, alors

$$\mathbf{Y} = egin{pmatrix} Y_1 \\ dots \\ Y_n \end{pmatrix}$$

est un **vecteur aléatoire**. L'**espérance** de Y est

$$\operatorname{E}\left\{\mathbf{Y}\right\} = egin{pmatrix} \operatorname{E}\left\{Y_{1}\right\} \\ \vdots \\ \operatorname{E}\left\{Y_{n}\right\} \end{pmatrix}.$$

Les composantes de \mathbf{Y} n'ont pas nécessairement tous des distributions identiques.

La matrice de variance-covariance de Y est la matrice symétrique

$$\sigma^{2} \{ \mathbf{Y} \} = (g_{i,j}), \quad \text{où } g_{i,j} = \begin{cases} \sigma^{2} \{ Y_{i} \} & i = j \\ \sigma \{ Y_{i}, Y_{j} \} & i \neq j \end{cases}$$

ou encore

$$\sigma^{2} \{ \mathbf{Y} \} = \begin{pmatrix} \sigma^{2} \{ Y_{1} \} & \cdots & \sigma \{ Y_{1}, Y_{n} \} \\ \vdots & \ddots & \vdots \\ \sigma \{ Y_{1}, Y_{n} \} & \cdots & \sigma^{2} \{ Y_{n} \} \end{pmatrix}$$

Si les composantes de ${\bf Y}$ sont **indépendantes** et ont toutes la **même** variance σ^2 , alors

$$\sigma^2 \{ \mathbf{Y} \} = \sigma^2 \mathbf{I}_n.$$

En pratique, nous travaillons généralement avec des **échantillons** de v.a. Si I 'on observe $\{(X_i, Y_i)\}_{i=1}^n$ à partir de la distribution conjointe de (X, Y):

- $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ et $\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$, les **moyennes d'échantillon**, sont des estimateurs sans biais de $\operatorname{E}\{X\}$ et $\operatorname{E}\{Y\}$, respectivement ;
- $s_X^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$ et $s_Y^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i \overline{Y})^2$, les variances d'échantillon, sont des estimateurs sans biais de $\sigma^2 \{X\}$ et $\sigma^2 \{Y\}$;
- $s_{XY}=\frac{1}{n-1}\sum_{i=1}^n (X_i-\overline{X})(Y_i-\overline{Y})$, la covariance d'échantillon, est un estimateur sans biais de $\sigma\{X,Y\}$.

1.1.2 – Distributions importantes

La fonction de répartition (cumulative) (f.r.c.) de toute variable aléatoire continue Y est définie par

$$F_Y(y) = P(Y \le y) = \int_{-\infty}^{y} f_Y(t) dt$$

que l'on considère comme fonction d'une variable réelle y. Alternativement, nous pouvons décrire la **loi** (distribution) de Y via la relation suivante entre $f_Y(y)$ et $F_Y(y)$:

$$f_Y(y) = \frac{d}{dy}F_Y(y).$$

Fonction de probabilité

La fonction de densité de probabilité (f.d.p.) d'une variable aléatoire continue Y est une fonction intégrable $f_Y:Y(\mathcal{S})\to\mathbb{R}$ telle que :

- $f_Y(y) > 0$ pour tout $y \in Y(S)$ et $\lim_{y \to \pm \infty} f_Y(y) = 0$;
- $\int_{S} f_Y(y) \, dy = 1$;
- pour toute paire $(a,b) \in \mathbb{R}^2$,

$$P(a < Y < b) = P(a \le Y < b) = P(a < Y \le b) = P(a \le Y \le b)$$
$$= F_Y(b) - F_Y(a) = \int_a^b f(y) \, dy.$$

Loi normale : la f.r.c. de la v.a. $Y \sim \mathcal{N}(\mu, \sigma^2)$ est

$$F_Y(y) = P(Y \le y) = \Phi(y),$$

avec

$$f_Y(y) = \Phi'(y) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^2\right).$$

Loi χ^2 : la f.d.p. de la v.a. $Y \sim \chi^2(\nu)$ est

$$f_Y(y;\nu) = \begin{cases} \frac{y^{\frac{\nu}{2}-1}e^{-\frac{y}{2}}}{2^{\frac{\nu}{2}}\Gamma\left(\frac{\nu}{2}\right)}, & y > 0; \\ 0, & \text{autrement} \end{cases}$$

où $\Gamma(\cdot)$ représente la fonction Gamma.

Si $U_i \sim \chi^2(\nu_i)$, i=1,2, et U_1,U_2 sont indépendantes, alors

$$U = U_1 + U_2 \sim \chi^2(\nu_1) + \chi^2(\nu_2) = \chi^2(\nu_1 + \nu_2).$$

Il existe un lien important entre la loi normale centrée réduite $\mathcal{N}(0,1)$ et la loi $\chi^2(1)$: si $Z \sim \mathcal{N}(0,1)$, alors $Z^2 \sim \chi^2(1)$.

Loi de Student : si $Z \sim \mathcal{N}(0,1)$ et $U \sim \chi^2(\nu)$, Z,U indépendantes :

$$t = \frac{Z}{\sqrt{U/\nu}} \sim t(\nu),$$

suit une loi T de Student avec ν degrés de liberté.

Loi de Fisher : si $U_i \sim \chi^2(\nu_i)$, i=1,2 et U_1,U_2 indépendantes :

$$F = rac{U_1/
u_1}{U_2/
u_2} \sim F(
u_1,
u_2),$$

suit une loi de Fisher avec ν_1 et ν_2 degrés de liberté.

Je vous encourage à savoir lire les tableaux de f.r.c. et les fonctions R correspondantes :

- qt(), dt(), pt(), rt(), et
- qf(), df(), pf(), rf().

	$P(T \le t)$										
	0.60	0.75	0.90	0.95	0.975	0.99	0.995				
r	$t_{0.40}(r)$	$t_{0.25}(r)$	$t_{0.10}(r)$	$t_{0.05}(r)$	$t_{0.025}(r)$	$t_{0.01}(r)$	$t_{0.005}(r)$				
1 2	0.325 0.289	1.000 0.816	3.078 1.886	6.314 2.920	12.706 4.303	31.821 6.965	63.657 9.925				
3	0.277	0.765	1.638	2.353	3.182	4.541	5.841				

Table \	Table VII continued											
$P(F \le f) = \int_0^f \frac{\Gamma[(r_1 + r_2)/2](r_1/r_2)^{r_1/2} w^{r_1/2 - 1}}{\Gamma(r_1/2)\Gamma(r_2/2)(1 + r_1 w/r_2)^{(r_1 + r_2)/2}} dw$												
		Den.	Numerator Degrees of Freedom, r ₁									
α	$P(F \le f)$	f) d.f. r_2	1	2	3	4	5	6	7	8	9	10
0.05	0.95	1	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5	241.9
0.025	0.975		647.79	799.50	864.16	899.58	921.85	937.11	948.22	956.66	963.28	968.63
0.01	0.99		4052	4999.5	5403	5625	5764	5859	5928	5981	6022	6056
0.05	0.95	2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40
0.025	0.975		38.51	39.00	39.17	39.25	39.30	39.33	39.36	39.37	39.39	39.40
0.01	0.99		98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	99.39	99.40
0.05	0.95	3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79
0.025	0.975		17.44	16.04	15.44	15.10	14.88	14.73	14.62	14.54	14.47	14.42
0.01	0.99		34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.35	27.23
0.05	0.95	4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96
0.025	0.975		12.22	10.65	9.98	9.60	9.36	9.20	9.07	8.98	8.90	8.84
0.01	0.99		21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66	14.55
0.05	0.95	5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74
0.025	0.975		10.01	8.43	7.76	7.39	7.15	6.98	6.85	6.76	6.68	6.62
0.01	0.99		16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16	10.05
0.05	0.95	6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06
0.025	0.975		8.81	7.26	6.60	6.23	5.99	5.82	5.70	5.60	5.52	5.46
0.01	0.99		13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98	7.87
0.05	0.95	7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64
0.025	0.975		8.07	6.54	5.89	5.52	5.29	5.12	4.99	4.90	4.82	4.76
0.01	0.99		12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72	6.62

Théorème central limite

Théorème : soient X_1, \ldots, X_n des v.a. normales indépendantes de moyennes μ_1, \ldots, μ_n et d'écart-types $\sigma_1, \ldots, \sigma_n$. Alors

$$X_1 + \cdots + X_n \sim \mathcal{N}(\mu_1 + \cdots + \mu_n, \sigma_1^2 + \cdots + \sigma_n^2).$$

Si $\mu_i \equiv \mu$ et $\sigma_i^2 \equiv \sigma$ pour $i = 1, \ldots, n$, alors $X_1 + \cdots + X_n \sim \mathcal{N}(n\mu, n\sigma^2)$.

Théorème : soient X_1, \ldots, X_n des v.a. normales indépendantes de moyenne μ et d'écart-type σ . Soit \overline{X} la moyenne d'échantillon. Alors

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1).$$

Théorème : soient X_1, \ldots, X_n des v.a. indépendantes de moyenne μ et d'écart-type σ . Soit \overline{X} la moyenne d'échantillon. Alors

$$Z_n = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \to Z \sim \mathcal{N}(0, 1), \quad \text{lorsque } n \to \infty.$$

soient X_1, \ldots, X_n des v.a. normales indépendantes de moyenne μ et d'écarttype σ inconnu. Soit \overline{X} et S^2 la moyenne et la variance d'échantillon, respectivement. Alors

$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1),$$

suit une loi T de Student avec $\nu=n-1$ degrés de liberté.

1.2 – Calcul multivarié

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction **différentiable**. Si $\mathbf{Y} = (Y_1, \dots, Y_n)$, la **dérivée** de f par rapport à \mathbf{Y} est

$$abla_{\mathbf{Y}} f(\mathbf{Y}) = \begin{pmatrix} \frac{\partial f(\mathbf{Y})}{\partial Y_1} \\ \vdots \\ \frac{\partial f(\mathbf{Y})}{\partial Y_n} \end{pmatrix}.$$

Le gradient ∇ est un opérateur linéaire :

$$\nabla_{\mathbf{Y}}(af + bg)(\mathbf{Y}) = a\nabla_{\mathbf{Y}}f(\mathbf{Y}) + b\nabla_{\mathbf{Y}}g(\mathbf{Y}).$$

If $f(\mathbf{Y}) \equiv a$, alors $\nabla_{\mathbf{Y}} f(\mathbf{Y}) = \mathbf{0}$. Si $f(\mathbf{Y}) = \mathbf{Y}^{\mathsf{T}} \mathbf{v}$, alors $\nabla_{\mathbf{Y}} f(\mathbf{Y}) = \mathbf{v}$.

1.3 – Algèbre matricielle

Soient $A \in M_{m,n}(\mathbb{R})$ et Y un vecteur aléatoire. Si $\mathbf{W} = A\mathbf{Y}$, alors

$$\mathrm{E}\left\{\mathbf{W}\right\} = A\mathrm{E}\left\{\mathbf{Y}\right\} \quad \text{ et } \quad \sigma^{2}\left\{\mathbf{W}\right\} = A\sigma^{2}\left\{\mathbf{Y}\right\}A^{\mathsf{T}}.$$

De plus, si $\mathbf{Y} \sim \mathcal{N}\left(\mathrm{E}\left\{\mathbf{Y}\right\}, \sigma^{2}\left\{\mathbf{Y}\right\}\right)$, alors

$$\mathbf{W} \sim N\left(\mathrm{E}\left\{\mathbf{W}\right\}, \sigma^{2}\left\{\mathbf{W}\right\}\right) = \mathcal{N}\left(A\mathrm{E}\left\{\mathbf{Y}\right\}, A\sigma^{2}\left\{\mathbf{Y}\right\}A^{\top}\right).$$

Si
$$A \in M_{n,n}(\mathbb{R})$$
, la trace de A est $\operatorname{tr}(A) = \sum_{i=1}^n a_{ii} = a_{11} + a_{22} + \cdots + a_{nn}$.

La trace est un **opérateur linéaire** : tr(kA + B) = k tr A + tr B; on a aussi tr(AB) = tr(BA) (lorsque les matrices sont **compatibles**).

La **transposition** d'une matrice A, notée A^{\top} , est obtenue en interchangeant ses **lignes** et ses **colonnes**, ou simplement en **réfléchissant** la matrice le long de sa **diagonale principale**.

Propriétés: si $A \in M_{m,n}(\mathbb{R})$ et $k \in \mathbb{R}$, alors

$$(A^{\top})^{\top} = A$$

$$\bullet$$
 $k^{\top} = k$

$$(kA + B)^{\top} = kA^{\top} + B^{\top}$$

$$(AB)^{\top} = B^{\top}A^{\top}$$

1.4 – Formes quadratiques

Une forme quadratique symétrique en Y_1, \ldots, Y_n est une expression de la forme

$$Q_A(\mathbf{Y}) = \mathbf{Y}^{\mathsf{T}} A \mathbf{Y} = \sum_{i,j=1}^n a_{i,j} Y_i Y_j,$$

où A est une matrice symétrique $n \times n$ $(A^{\top} = A)$.

Un certain nombre de quantités importantes apparaissant en analyse de régression peuvent être exprimées sous de telles formes.

Les **degrés de liberté** d'une forme quadratique symétrique $Q_A(\mathbf{Y})$ peuvent être obtenus en calculant le **rang** de la matrice associée A.

Par exemple, la matrice symétrique associée à la forme quadratique symétrique $Q_A(\mathbf{Y}) = 4Y_1^2 + 7Y_1Y_2 + 2Y_2^2$ est

$$A = \begin{pmatrix} 4 & 7/2 \\ 7/2 & 2 \end{pmatrix};$$
 Q_A a 2 degrés de liberté.

Théorème: soient $Q_1, \ldots Q_K$ des formes quadratiques symétriques en \mathbf{Y} avec matrices symétriques associées A_1, \ldots, A_K , respectivement. Si $a_i \in \mathbb{R}$ pour tout $i=1,\ldots,K$, alors

$$Q = a_1 Q_1 + \dots + a_K Q_K$$

est une forme quadratique symétrique en ${f Y}$ avec matrice symétrique associée

$$A = a_1 A_1 + \dots + a_K A_K.$$

Pour une matrice B générale de dimension $n \times n$, nous avons

$$\nabla_{\mathbf{Y}} (\mathbf{Y}^{\mathsf{T}} B \mathbf{Y}) = (B^{\mathsf{T}} + B) \mathbf{Y}.$$

Ainsi le gradient d'une forme quadratique symétrique $Q_A(\mathbf{Y})$ est

$$\nabla_{\mathbf{Y}}Q_A(\mathbf{Y}) = 2A\mathbf{Y}.$$

On peut montrer que **chaque** expression de la forme $\mathbf{Y}^T\!B\mathbf{Y}$ peut être associée à une matrice symétrique A. Nous supposons donc que chaque forme de ce type est symétrique.

Le rôle joué par les formes quadratiques dans le calcul multi-variable est analogue au rôle joué par $f(x)=ax^2$ dans le calcul différentiel ordinaire.

Les valeurs propres d'une matrice A de taille $n \times n$ sont les racines du polynôme caractéristique $p_A(\lambda)$ de A: $p_A(\lambda) = \det(A - \lambda \mathbf{I}_n) = 0$.

Il existe n telles racines (complexes), pas nécessairement distinctes.

Si λ est une valeur propre de A, alors $\exists \mathbf{v} \neq \mathbf{0}$ tel que $A\mathbf{v} = \lambda \mathbf{v}$. Si de plus A est réelle et symétrique, toutes ses valeurs propres sont **réelles**.

Soit $Q_A(\mathbf{Y})$ une forme quadratique avec $eig(A) = \{\lambda_1, \dots, \lambda_n\} \subseteq \mathbb{R}$:

- si $\lambda_i > 0$ pour tout i, $Q_A(\mathbf{Y})$ et A sont dîtes **définies positives** ;
- si $\lambda_i < 0$ pour tout i, $Q_A(\mathbf{Y})$ et A sont dîtes **définies négatives** ;
- si $\lambda_i \lambda_j < 0$ pour une paire i, j quelconque, $Q_A(\mathbf{Y})$ et A sont **indéfinies**.

1.4.1 – Théorème de Cochran

Soient $\mathbf{Y} = (Y_1, \dots, Y_n) \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_n)$.

Supposons que

$$\mathbf{Y}^{\mathsf{T}}\mathbf{Y} = Q_1(\mathbf{Y}) + \dots + Q_K(\mathbf{Y}),$$

où les Q_k sont des formes quadratiques (semi-)définies positives avec $r_k (= \operatorname{rang}(A_k))$ degrés de liberté, pour $k = 1, \ldots, K$.

Si $r_1 + \cdots + r_K = n$, alors $Q_1(\mathbf{Y}), \ldots, Q_K(\mathbf{Y})$ sont indépendantes et

$$\frac{Q_k(\mathbf{Y})}{\sigma^2} \sim \chi^2(r_k), \quad k = 1, \dots, K.$$

En particulier, si K=2 et $r_1=r$, alors $Q_2(\mathbf{Y})/\sigma^2 \sim \chi^2(n-r)$.

1.4.2 – Formes quadratiques importantes

Pour tout entier positif n, nous définissons deux **matrices spéciales** :

$$\mathbf{J}_n = \mathbf{J} = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix}$$
 et $\mathbf{1}_{n \times 1} = \mathbf{1}_n = \mathbf{1} = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$.

On note que $\mathbf{1}_n^{\mathsf{T}} \mathbf{1}_n = n$ et $\mathbf{1}_n \mathbf{1}_n^{\mathsf{T}} = \mathbf{J}_n$. Soit $\mathbf{Y} = (Y_1, \dots, Y_n) \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_n)$ un vecteur aléatoire. Quelles sont les matrices symétriques associées à

$$Q_A(\mathbf{Y}) = \sum_{i=1}^n Y_i^2, \quad Q_B(\mathbf{Y}) = n\overline{Y}^2, \quad \text{et} \quad Q_C(\mathbf{Y}) = \sum_{i=1}^n (Y_i - \overline{Y})^2$$
?

Ré-écrivons les formes quadratiques en $\mathbf Y$ pour obtenir (page suivante) :

$$Q_A(\mathbf{Y}) = \mathbf{Y}^{\mathsf{T}} \mathbf{Y} = \mathbf{Y}^{\mathsf{T}} \mathbf{I}_n \mathbf{Y} \implies A = \mathbf{I}_n;$$

$$Q_B(\mathbf{Y}) = n \left(\frac{1}{n} \sum_{i=1}^n Y_i\right)^2 = \frac{1}{n} \sum_{i,j=1}^n Y_i Y_j = \frac{1}{n} \mathbf{Y}^\top \mathbf{1}_n \mathbf{1}_n^\top \mathbf{Y} \implies B = \frac{1}{n} \mathbf{J}_n;$$

$$Q_C(\mathbf{Y}) = \sum_{i=1}^n Y_i^2 - n\overline{Y}^2 = \mathbf{Y}^{\mathsf{T}} \mathbf{I}_n \mathbf{Y} - \frac{1}{n} \mathbf{Y}^{\mathsf{T}} \mathbf{J}_n \mathbf{Y} \implies C = \mathbf{I}_n - \frac{1}{n} \mathbf{J}_n.$$

Puisque rang(A) = n, rang(B) = 1, et rang(C) = n - 1, le théorème de Cochran implique que $Q_A(\mathbf{Y})$, $Q_B(\mathbf{Y})$, et $Q_C(\mathbf{Y})$ sont des v.a. indépendantes, et que

$$\frac{Q_A(\mathbf{Y})}{\sigma^2} = \frac{\mathbf{Y}^\top \mathbf{Y}}{\sigma^2} \sim \chi^2(n), \ \frac{Q_B(\mathbf{Y})}{\sigma^2} = \frac{n\overline{Y}^2}{\sigma^2} \sim \chi^2(1), \frac{Q_C(\mathbf{Y})}{\sigma^2} = \frac{\mathrm{SST}}{\sigma^2} \sim \chi^2(n-1).$$

1.5 – Optimisation

Soient A une matrice symétrique $n \times n$, $\mathbf{v} \in \mathbb{R}^n$, $c \in \mathbb{R}$, et

$$f(\mathbf{Y}) = \frac{1}{2}\mathbf{Y}^{\mathsf{T}}A\mathbf{Y} - \mathbf{Y}^{\mathsf{T}}\mathbf{v} + c.$$

Notons que f est **dérivable**. Les **points critiques** de f satisfont à

$$\nabla_{\mathbf{Y}} f(\mathbf{Y}) = A\mathbf{Y} - \mathbf{v} = \mathbf{0} \implies A\mathbf{Y} = \mathbf{v}.$$

Si A est inversible $(\det(A) \neq 0)$, le point critique $\mathbf{Y}^* = A^{-1}\mathbf{v}$ est unique.

Si A est singulière $(\det(A) = 0)$, il y a soit pas de point critique (si $\mathbf{v} \notin \mathbf{image}(A)$) ou une infinité de points critiques (si $\mathbf{v} \in \mathbf{image}(A)$).

Lorsque A est **inversible**:

- si A est **définie positive**, alors f atteint son **minimum global** en $\mathbf{Y}^* = A^{-1}\mathbf{v}$;
- si A est **définie négative**, alors f atteint son **maximum global** en $\mathbf{Y}^* = A^{-1}\mathbf{v}$;
- si A est **indéfinie** (c'est-à-dire que A possède des valeurs propres positives **et** des valeurs propres négatives), alors $\mathbf{Y}^* = A^{-1}\mathbf{v}$ est un **col** de f.

Si les valeurs propres peuvent être **nulle**, nous remplaçons "défini" par "semi-défini".