

a 288 768 Case 1. The following represents graph of alternating sinusoidal voltage V= Vm sinOI \$ V= Vm sin (0 ± 17) The voltage here is lagging = $Vm sin \left(\Theta - \left(+ \frac{T}{4} \right) \right)$ = Vm sin (0-7/4) = Vmsin (0-45).

a 288 768 Case 1 The following represents graph of alternating sinusoidal voltage V= Vm sino = \$ v= Vm sin 0 ± 17 The voltage here is lagging = $Vm \sin \left(\Theta - \left(+ \frac{T}{4} \right) \right)$ = $Vm \sin \left(\Theta - T / 4 \right) = Vm \sin \left(\theta - 45 \right)$. Phasor diagram

Lagging --> -ve Leading --> +ve

a 550 912 (ase 2. The following graph represents alternating sinusoidal current. i = Im sin(0 + p) i = Im sin (0+1) leading The current is leading Yaxis . > Xaxi's

550 912

The instantaneous values of two alternating voltages are represented by $V_1 = 60 \sin \theta + V_2 = 40 \sin (0 + \pi/3)$. Find the sum of voltages and its differences.

$$V_1 = 60 \sin \Theta$$

Standard form $V = V_m \sin(\Theta \pm \Phi)$.
 $V_m = 60$ $\phi = 0$.
Polar form = $\left(\frac{V_m}{V_2}\right) \neq 0$
 $= (42.426, 20)$.

$$V_2 = 40 \sin(0 + \pi/3)$$
,
 $V_m = 40$ $\phi = \pi/3$ $\frac{\pi}{3} = \frac{180}{3} = 0$
Polar form = $(\frac{V_m}{2}, \angle \phi)$
 $= (28.28, \angle 60)$

To find rectangular form using Calci

Shift then -ve(rec)
Then put the value
and angle separated
by Shift+)

3 288 768 Q. The voltage drop across the tour series connected impedances are V1 = 60 sin(w+ 7), V2 = 75 sin(wt - 57), V3 = 100 cos(wt + 7), V4= Vmysin(wt+0) Calculate the values of Vm4 & \$44 if applied voltage across the series circuit is 140 sin (wt + 3T) VT = 140 sin (wt + 31) (Standard form) Polar = (\frac{\frac{1m}{\sqrt{2}}}{\sqrt{2}}, \langle \phi \) = (\frac{140}{\sqrt{2}}, \langle 108) = (99, \langle 108) Complex-form = -30.59 + 94.154j

周 026 624 Q Four wires p,q,π and s are connected to a common point. The currents in lines $p,q+\pi$ are $6\sin(\omega t + \frac{\pi}{3})$, $5\cos(\omega t + \frac{\pi}{3})$ $43\cos(\omega t + \frac{\pi}{3})$. Find the current in wire s. Standard form Polar form Complex. p= i = 6 sin (w++1) q=12=5 cos(wt + 1) I2 = -3.05 + 1.76j J2 = (3.53, L150) = 5 sin (wt + 57) 7 = 13 = 3 cos (wt + 7) I3 = (2.12, L150) I3=-1.83+1.06j = 3sin (w+ + 511)

Q. Three coils are connected in series. Each of them generates an emf of 230V. The emf of the second coil leads that of the first coil by 120°, and the emf of third coil lags behind that of the first by same angle. What is the resultant emf across the series combination of the coils.

let E_1 , E_2 & E_3 be the emf generated by 3 coils. Thus, polar form A_2 E_3 is E_4 = (230, 20). E_5 = 230 + j0 E_7 = (230, +2120) E_7 = -115 + 199.18 j E_8 = (230, -2120) E_8 = -115 - 199.18 j

combination of the coils = 288 768 let E, E2 & E3 be the emit generated by 3 coils. Thus, polar form & E, is $\bar{E}_1 = (230, 20)$. $\bar{E}_1 = 230 + j0$ $\overline{E}_{2} = (230, +2120)$ $\overline{E}_{3} = -115 + 199.18$ To calculate Resultant emf E = E, + E2 + E3 · (230+ j0) + (-115+ 199.18j) + (-115)+ 199.18j) E = 0 V/

$$\cos \Rightarrow \sin \left(+ \frac{\pi}{2} \right)$$

$$-\sin \Rightarrow \sin \left(+ \pi \right)$$