AS PROJECT

by

Kajal Dusseja

PGP DSBA

Febuary'22

15-05-2022

Table of Contents

Problem 1	ļ
1.1 State the null and the alternate hypothesis for conducting one-way ANOVA for both Education and Occupation individually	1
1.2 Perform one-way ANOVA for Education with respect to the variable 'Salary'. State whether the null hypothesis is accepted or rejected based on the ANOVA results4	
1.3 Perform one-way ANOVA for variable Occupation with respect to the variable 'Salary'. State whether the null hypothesis is accepted or rejected based on the ANOVA results	5
1.4 If the null hypothesis is rejected in either (1.2) or in (1.3), find out which class means are significantly different. Interpret the result	_
1.5 What is the interaction between the two treatments? Analyze the effects of one variable on the other (Education and Occupation) with the help of an interaction plot	
1.6 Perform a two-way ANOVA based on the Education and Occupation (along with their interaction Education*Occupation) with the variable 'Salary'. State the null and alternative hypotheses and state your results. How will you interpret this result?	õ
1.7 Explain the business implications of performing ANOVA for this particular case study	7
Problem 2	3
2.1 Perform Exploratory Data Analysis [both univariate and multivariate analysis to be performed]. What insight do you draw from the EDA?)
2.2 Is scaling necessary for PCA in this case? Give justification and perform scaling)
2.3 Comment on the comparison between the covariance and the correlation matrices from this data.[on scaled data]	L
2.4 Check the dataset for outliers before and after scaling. What insight do you derive here? 12	<u>)</u>
2.5 Extract the eigenvalues and eigenvectors. [Using Sklearn PCA Print Both]	3
2.6 Perform PCA and export the data of the Principal Component (eigenvectors) into a data frame with the original features	1
2.7 Write down the explicit form of the first PC (in terms of the eigenvectors. Use values with two places of decimals only). [hint: write the linear equation of PC in terms of eigenvectors and corresponding features]	
2.7 Write down the explicit form of the first PC (in terms of the eigenvectors. Use values with two places of decimals	5

List of Figures

Figure 1.1: Salary Dataset info
Figure 1.1.1: Categories in Education
Figure 1.1.2: Categories in Occupation
Figure 1.2.1: ANOVA Table output for Education
Figure 1.3.1: ANOVA Table output for Occupation5
Figure 1.5.1: Interaction plot between Education and Occupation6
Figure 1.6.1: Two-way ANOVA Table6
Figure 2.1: Education dataset Info
Figure 2.2: Education Dataset Summary8
Figure 2.1.1: Histplot of various factors for Education Dataset9
Figure 2.1.2: Boxplot of various factors for Education Dataset9
Figure 2.1.3: Pairplot for multivariate analysis
Figure 2.1.4: Heatmap for multivariate analysis
Figure 2.2.1: Scaled data11
Figure 2.3.1: Covariance Matrix
Figure 2.3.2: Correlation Matrix
Figure 2.4.1: Outliers before Scaling
Figure 2.4.2: Outliers After Scaling
Figure: 2.5.1: Eigen Vectors and Eigen values
Figure: 2.6.1: PCA on Dataset
Figure: 2.6.2: Data in dataframe after PCA
Figure 2.7.1: Explicit form of PCA17
Figure 2.8.1: Output of PCA
Figure 2.8.2: PCA Data in Data frame18

Problem 1

Problem Statement:

Salary is hypothesized to depend on educational qualification and occupation. To understand the dependency, the salaries of 40 individuals [SalaryData.csv] are collected and each person's educational qualification and occupation are noted. Educational qualification is at three levels, High school graduate, Bachelor, and Doctorate. Occupation is at four levels, Administrative and clerical, Sales, Professional or specialty, and Executive or managerial. A different number of observations are in each level of education – occupation combination.

[Assume that the data follows a normal distribution. In reality, the normality assumption may not always hold if the sample size is small.]

Information of Salary Dataset:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 40 entries, 0 to 39
Data columns (total 3 columns):
               Non-Null Count
 #
     Column
                                 Dtype
---
     Education 40 non-null
                                 object
 0
     Occupation 40 non-null
                                 object
 1
 2
     Salary
                 40 non-null
                                 int64
dtypes: int64(1), object(2)
```

Figure 1.1: Salary Dataset Info

1.1 State the null and the alternate hypothesis for conducting one-way ANOVA for both Education and Occupation individually.

Approach	1. Identified the different population for independent factors Education and Occupation							
followed	using 'Categorical' function from pandas library.							
	2. Stated null and alternate hypothesis for factors Education and Occupation to conduct							
	one-way Anova.							
Output	In [10]: DF.Education = pd.Categorical(DF.Education) DF.Education.value_counts Name: Education, dtype: category Categories (3, object): [' Bachelors', ' Doctorate', ' HS-grad']>							
	Figure 1.1.1: Categories in Education							
	In [9]: DF.Occupation = pd.Categorical(DF.Occupation) DF.Occupation.value_counts Name: Occupation, dtype: category Categories (4, object): ['Adm-clerical', 'Exec-managerial', 'Prof-specialty', 'Sales']							
	Figure 1.1.2: Categories in Occupation							
Inference	Null and alternate hypothesis for Education:							
	H ₀ : $\mu_a = \mu_b = \mu_c = = \mu_k$ (All population(categories within Education that is Bachelors, Doctorate							
	and High-School Graduate) means are equal)							
	H_a : $\mu_a \neq \mu_b \neq \mu_c \neq \neq \mu_k$ (Not all population means are equal, or least one pair is unequal)							
	Null and alternate hypothesis for Occupation:							
	H_0 : $\mu_a = \mu_b = \mu_c = = \mu_k$ (All population(categories within occupation that is Administrative and							
	clerical, Executive and managerial, Professional, Sales) means are equal)							
	H_a : $\mu_a \neq \mu_b \neq \mu_c \neq \neq \mu_k$ (Not all population means are equal, or least one pair is unequal)							

1.2 Perform one-way ANOVA for Education with respect to the variable 'Salary'. State whether the null hypothesis is accepted or rejected based on the ANOVA results.

Approach followed	 One way ANOVA identifies effect of one variable in this case education. Using the ols function from statsmodels library the ANOVA table is generated for Education with respect to Salary. The ratio of Variance between samples to variance within sample denoted by F determines whether null hypothesis is rejected/accepted. The default confidence level (alpha = 0.05) is 95%. 							
Output	<pre>In [11]: formula = 'Salary ~ C(Education)' model = ols(formula, DF).fit() aov_table = anova_lm(model) print(aov_table)</pre>							
	df sum_sq mean_sq F PR(>F) C(Education) 2.0 1.026955e+11 5.134773e+10 30.95628 1.257709e-08 Residual 37.0 6.137256e+10 1.658718e+09 NaN NaN							
	Figure 1.2.1: ANOVA Table output for Education							
Inference	As it can been seen from the results above F value is less than 0.05 hence the null hypothesis for Education is rejected. That is to say population means for Education factors are not equal (at least one or all).							

1.3 Perform one-way ANOVA for variable Occupation with respect to the variable 'Salary'. State whether the null hypothesis is accepted or rejected based on the ANOVA results.

Approach followed	 One way ANOVA identifies effect of one variable in this case occupation. Using the ols function from statsmodels library the ANOVA table is generated for Occupation with respect to Salary. The ratio of Variance between samples to variance within sample denoted by F determines whether null hypothesis is rejected/accepted. The default confidence level (alpha = 0.05) is 95%. 								
Output	<pre>In [12]: formula = 'Salary ~ C(Occupation)' model = ols(formula, DF).fit() aov_table = anova_lm(model) print(aov_table)</pre>								
	df sum_sq mean_sq F PR(>F) C(Occupation) 3.0 1.125878e+10 3.752928e+09 0.884144 0.458508 Residual 36.0 1.528092e+11 4.244701e+09 NaN NaN								
	Figure 1.3.1: ANOVA Table output for Occupation								
Inference	As it can been seen from the results above F value is greater than 0.05 hence the null hypothesis								
1	for Occupation is accepted. That is to say population means for Occupation are equal.								

1.5 What is the interaction between the two treatments? Analyze the effects of one variable on the other (Education and Occupation) with the help of an interaction plot.

Approach followed	With the help of pointplot, an interaction plot between Education and Occupation is
	generated. This will help to analyze the effects between both factors.

Figure 1.5.1: Interaction plot between Education and Occupation

Inference

As can be seen from the pointplot,

- 1. For all occupations except Executive and Managerial, high school graduates have less salary than Bachelors and Doctorates.
- 2. A professional or specialist with bachelors has almost a similar salary as a high-school graduate.
- 3. Occupations of Administrative and clerical, Sales have same similar salary for Bachelors and Doctorate.
- 4. An Executive and Managerial with Doctorate has sightly high salary than a person with Bachelors. This implies that a person with Doctorate will earn much more as a Professional or Specialist than a person in Sales or Executive and Managerial.
- 5. Education does not have major effect on Occupation, it though has on Salary. A person with at least a Bachelors degree can earn a higher salary quite similar to a Doctorate in some occupations.

1.6 Perform a two-way ANOVA based on the Education and Occupation (along with their interaction Education*Occupation) with the variable 'Salary'. State the null and alternative hypotheses and state your results. How will you interpret this result?

1. Two-way ANOVA helps to understand the interaction between two independent variables									
in this case Education and Occupation and, also the influence one variable on another.									
2. 3 pair of the hypothesis is defined for a two-way ANOVA.									
3. One for each of the factors and one for the interaction between two factors in this case									
Education and Occupation.									
H_0 : $\mu_a = \mu_b = \mu_c = = \mu_k$ (All population(categories within Education that is Bachelors, Doctorate and									
High-School Graduate) means are equal)									
$μ_a ≠ μ_b ≠ μ_c ≠ ≠ μ_k$ (Not all population means are equal, or least one pair is unequal)									
H_0 : $\mu_a = \mu_b = \mu_c = = \mu_k$ (All population(categories within occupation that is Administrative and									
clerical, Executive and managerial, Professional, Sales) means are equal)									
H_a : $\mu_a \neq \mu_b \neq \mu_c \neq \neq \mu_k$ (Not all population means are equal, or least one pair is unequal)									
H ₀ : There is no interaction between Education and Occupation.									
H _a : There is interaction between Education and Occupation.									

Output In [13]: formula = 'Salary ~ C(Education) + C(Occupation) + C(Education):C(Occupation)' model = ols(formula, DF).fit() aov table = anova lm(model) print(aov_table) df sum_sq mean_sq 2.0 1.026955e+11 5.134773e+10 72.211958 C(Education) C(Occupation) 3.0 5.519946e+09 1.839982e+09 2.587626 C(Education):C(Occupation) 6.0 3.634909e+10 6.058182e+09 8.519815 Residual 29.0 2.062102e+10 7.110697e+08 PR(>F) C(Education) 5.466264e-12 C(Occupation) 7.211580e-02 C(Education):C(Occupation) 2.232500e-05 Residual Figure 1.6.1: Two-way ANOVA table As can be seen above, at 95% confidence value of alpha is 0.05 Inference 1. P-value for Education is less than 0.05, hence null hypothesis is rejected. 2. P-value for Occupation is more than 0.05, hence null hypothesis is accepted. 3. P-value for interaction between Education and Occupation is less than 0.05, hence null hypothesis is rejected. That to say there is no interaction between factors Education and Occupation.

1.7 Explain the business implications of performing ANOVA for this particular case study.

Answer	Based on observations on the dataset and ANOVA test following are business implications:
	1. It is important to complete high school graduation to get a job in majority of the occupations.
	2. The study reveals that degree of education matters when it comes to earning a higher salary.
	3. With the Bachelors degree a person can earn as much as a person with Doctorate degree in
	some occupations.
	4. With Doctorate degree a person can earn much more than a person with Bachelors but only
	in few specific occupations. This shows that it's important to understand what degree of
	Education can put you on higher salary range in a specific occupation as the requirement for
	all the occupations is not similar.

Problem 2:

Problem Statement:

The dataset Education - Post 12th Standard.csv contains information on various colleges. You are expected to do a Principal Component Analysis for this case study according to the instructions given. The data dictionary of the 'Education - Post 12th Standard.csv' can be found in the following file: Data Dictionary.xlsx.

Information of Education Dataset:

	<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 777 entries, 0 to 776</class></pre>								
	Data columns (total 18 columns):								
#	Column	Non-Null Count	Dtype						
0	Names	777 non-null	object						
1	1 1	777 non-null							
2	Accept	777 non-null	int64						
3	Enroll	777 non-null	int64						
4	Top10perc	777 non-null	int64						
5	Top25perc	777 non-null	int64						
6	F.Undergrad	777 non-null	int64						
7	P.Undergrad	777 non-null	int64						
8	Outstate	777 non-null	int64						
9	Room.Board	777 non-null	int64						
10	Books	777 non-null	int64						
11	Personal	777 non-null	int64						
12	PhD	777 non-null	int64						
13	Terminal	777 non-null	int64						
14	S.F.Ratio	777 non-null	float64						
15	perc.alumni	777 non-null	int64						
16	Expend	777 non-null	int64						
17	•	777 non-null							
dtyp), int64(16), ob							

Figure 2.1: Education Dataset Info

Summary of Education Dataset:

	count	mean	std	min	25%	50%	75%	max
Apps	777.0	3001.638353	3870.201484	81.0	776.0	1558.0	3624.0	48094.0
Accept	777.0	2018.804376	2451.113971	72.0	604.0	1110.0	2424.0	26330.0
Enroll	777.0	779.972973	929.176190	35.0	242.0	434.0	902.0	6392.0
Top10perc	777.0	27.558559	17.640364	1.0	15.0	23.0	35.0	96.0
Top25perc	777.0	55.796654	19.804778	9.0	41.0	54.0	69.0	100.0
F.Undergrad	777.0	3699.907336	4850.420531	139.0	992.0	1707.0	4005.0	31643.0
P.Undergrad	777.0	855.298584	1522.431887	1.0	95.0	353.0	967.0	21836.0
Outstate	777.0	10440.669241	4023.016484	2340.0	7320.0	9990.0	12925.0	21700.0
Room.Board	777.0	4357.526384	1096.696416	1780.0	3597.0	4200.0	5050.0	8124.0
Books	777.0	549.380952	165.105360	96.0	470.0	500.0	600.0	2340.0
Personal	777.0	1340.642214	677.071454	250.0	850.0	1200.0	1700.0	6800.0
PhD	777.0	72.660232	16.328155	8.0	62.0	75.0	85.0	103.0
Terminal	777.0	79.702703	14.722359	24.0	71.0	82.0	92.0	100.0
S.F.Ratio	777.0	14.089704	3.958349	2.5	11.5	13.6	16.5	39.8
perc.alumni	777.0	22.743887	12.391801	0.0	13.0	21.0	31.0	64.0
Expend	777.0	9660.171171	5221.768440	3186.0	6751.0	8377.0	10830.0	56233.0
Grad.Rate	777.0	65.463320	17.177710	10.0	53.0	65.0	78.0	118.0

Figure 2.2: Education Dataset Summary

2.1 Perform Exploratory Data Analysis [both univariate and multivariate analysis to be performed]. What insight do you draw from the EDA?

	Figure 2.1.3: Heatmap for multivariate analysis						
Inference	Following inferences are derive from Multivariate analysis:						
	 Application feature is highly positively correlated with application accepted, students enrolled and full-time graduates. 						
	 There is negative correlation between application and percentage of alumni. This shows not all students are part of alumni of their college or university. 						
	 The application with top 10, 25 of higher secondary class, outstate, room board, books, personal, PhD, terminal, S.F ratio, expenditure and Graduation ratio are positively correlated. 						

2.2 Is scaling necessary for PCA in this case? Give justification and perform scaling.

Output after scaling	 Scaling (also called data normalization) is a step of data pre-processing which helps to scale down the data for better understanding of data. Since the range of values of data may vary scaling becomes necessary step to standardize the data. For Education dataset, 'Names' column is dropped before applying scaling as it's a categorical field. Z-score scaling is performed on dataset which tells us how many standard deviation point is away from mean and also the direction. In [35]: from scipy.stats import zscore df_pca_scaled = DF_EDU.apply(zscore) df_pca_scaled.head().T										
	Out[35]: 0 1 2 3 4										
		Apps	-0.346882	-0.210884	-0.406866	-0.668261	-0.726176				
		Accept	-0.321205	-0.038703	-0.376318	-0.681682	-0.764555				
		Enroll	-0.063509	-0.288584	-0.478121	-0.692427	-0.780735				
		Top10perc	-0.258583	-0.655656	-0.315307	1.840231	-0.655656				
		Top25perc	-0.191827	-1.353911	-0.292878	1.677612	-0.596031				
		F.Undergrad	-0.168116	-0.209788	-0.549565	-0.658079	-0.711924				
		P.Undergrad	-0.209207	0.244307	-0.497090	-0.520752	0.009005				
		Outstate	-0.746356	0.457496	0.201305	0.626633	-0.716508				
		Room.Board	-0.964905	1.909208	-0.554317	0.996791	-0.216723				
		Books	-0.602312	1.215880	-0.905344	-0.602312	1.518912				
		Personal	1.270045	0.235515	-0.259582	-0.688173	0.235515				
		PhD	-0.163028	-2.675646	-1.204845	1.185206	0.204672				
		Terminal	-0.115729	-3.378176	-0.931341	1.175657	-0.523535				
		S.F.Ratio	1.013776	-0.477704	-0.300749	-1.615274	-0.553542				
		perc.alumni	-0.867574	-0.544572	0.585935	1.151188	-1.675079				
		Expend	-0.501910	0.166110	-0.177290	1.792851	0.241803				
	Grad.Rate -0.318252 -0.551262 -0.667767 -0.376504 -2.939613										
	Figure 2.2.1: Scaled data										

2.3 Comment on the comparison between the covariance and the correlation matrices from this data.[on scaled data]

Answer	Co-variance and correlation helps to understand the relation between dimensions and								s and					
	the dependency within them. Positive and negative values of co-variance & correlation													
	indicate whether they are directly/inversely proportional.													
Output of Covariance	Co	varian	ce Mat	rix							04 0	915540	10	
•	%s [[1.00128866 0.94466636 0.84791332 0.33927032 0.35209304 0.81554018 0.3987775 0.05022367 0.16515151 0.13272942 0.17896117 0.39120081													
	l							.2599265 .1926949		4694372] 4779465		34985		
	1	0.441	83938	-0.025	78774	0.0910	1577 0	.1136716	5 0.2	0124767		21633		
		0.338						.1248777 .1815271				88274		
								.1128561 .0642519				89629		
	1	0.339	27032	0.192	69493	0.1815	2715 1	.0012886	6 0.8	9314445	0.141			
			49205 76793		0552 37048			.1190116 .6617651		9343665 9562711]		51337		
	[0.352	09304	0.247	79465	0.2270	373 0	.8931444	5 1.0	0128866	0.199	70167		
								.115676 .5281271				56564		
	[.1414708 .1156986		9970167				
				0.280	06379	-0.2297	5792 0	.0186756	5 -0.0	7887464]		,, 4, 2		
	[0.398						.1054920 .0813041				24738 30637		
		0.142	08644	0.232	83016	-0.2811	5421 -0	.0836761	2 -0.2	5733218]				
						-0.1556 0.6550		.5630552 .0389049		9002449 9947232		02002 47594		
	l .							.6736456		7202613]		07017		
		-0.061	40453	0.655	09951	1.0012	8866 0	.3719590 .1281278	7 -0.1	9968518	0.329			
	Ш.,							.5023859 .1190116		2548915] 15676		69867		
	'	0.081	30416	0.038	90494	0.1281	2787 1	.0012886	6 0.1	7952581	0.026			
	l							.1125539 .0934366				60831		
	1	0.320	29384	-0.299	47232	-0.1996	8518 0	.1795258	1 1.0	0128866		94989		
								.0980180 .5325133				37472		
								.0269404 .4333193				28866		
	[0.369	96762	0.338	0184	0.3086	7133 0	.4917679	3 0.5	2542506	0.300	40557		
								.1000835 .4393646				68186		
	1	0.095	75627	0.176	45611	0.2375	7707 -0	.3853704	8 -0.2	9500852	0.286	06379		
								.0319704 .5845844				69832		
	[.4560722 .0402595				75792 32955		
		0.267	47453	-0.403	4484	1.0012	8866 0	.4182500	1 0.4	9153016]	l			
	'	0.259 -0.083						.6617651 .1125539		2812713 9801804		367565 31936		
	Ш.,							.0012886 .4956271				97464		
		-0.257	33218	0.572	02613	0.4254	8915 0	.0010622	6 -0.2	6969106	0.305	43094		
		0.289	90033	-0.307	10565	0.4915	3016 0	.3908457	1 1.0	0128866]]			
					Fig	ure 2.3	3.1: Co	varianc	е Ма	trix				
Output of Correlation		Apps	Accept	Enroll			F.Undergrad			Room.Board	Books	Personal	PhD	Termin
			1.000000		0.338834	0.351640	0.814491	0.398264			0.132559	0.178731		0.36949
								0.513069		-0.040232				
	Top10perc	0.338834	0.192447	0.181294	1.000000	0.891995	0.141289	-0.105356	0.562331	0.371480	0.118858	-0.093316	0.531828	0.49113
	Top25perc	0.351640	0.247476	0.226745	0.891995	1.000000	0.199445	-0.053577	0.489394	0.331490	0.115527	-0.080810	0.545862	0.52474
	F.Undergrad	0.814491	0.874223	0.964640	0.141289	0.199445	1.000000	0.570512	-0.215742	-0.068890	0.115550	0.317200	0.318337	0.30001
	P.Undergrad	0.398264	0.441271	0.513069	-0.105356	-0.053577	0.570512	1.000000	-0.253512	-0.061326	0.081200	0.319882	0.149114	0.14190
	Outstate	0.050159	-0.025755	-0.155477	0.562331	0.489394	-0.215742	-0.253512	1.000000	0.654256	0.038855	-0.299087	0.382982	0.40798
	Room.Board	0.164939	0.090899	-0.040232	0.371480	0.331490	-0.068890	-0.061326	0.654256	1.000000	0.127963	-0.199428	0.329202	0.37454
	Books	0.132559	0.113525	0.112711	0.118858	0.115527	0.115550	0.081200	0.038855	0.127963	1.000000	0.179295	0.026906	0.09995
	Personal	0.178731	0.200989	0.280929	-0.093316	-0.080810	0.317200	0.319882	-0.299087	-0.199428	0.179295	1.000000	-0.010936	-0.03061
	PhD	0.390697	0.355758	0.331469	0.531828	0.545862	0.318337	0.149114	0.382982	0.329202	0.026906	-0.010936	1.000000	0.84958
	Terminal	0.369491	0.337583	0.308274	0.491135	0.524749	0.300019	0.141904	0.407983	0.374540	0.099955	-0.030613	0.849587	1.00000
	S.F.Ratio	0.095633	0.176229	0.237271	-0.384875	-0.294629	0.279703	0.232531	-0.554821	-0.362628	-0.031929	0.136345	-0.130530	-0.16010
	perc.alumni	-0.090226	-0.159990	-0.180794	0.455485	0.417864	-0.229462	-0.280792	0.566262	0.272363	-0.040208	-0.285968	0.249009	0.26713
	Expend	0.259592	0.124717	0.064169	0.660913	0.527447	0.018652	-0.083568	0.672779	0.501739	0.112409	-0.097892	0.432762	0.43879
	Grad.Rate	U. 146/55	0.067313	-0.022341	0.494989	0.477281	-0.078773	-0.257001	0.571290	0.424942	0.001061	-0.269344	0.305038	0.28952
					Fig	ure 2 :	3.2: Co	rrelatio	n Ma	trix				ŕ
Inference	As can be	CAAA	from	ahov										
nference										+ - بام	- u - 1.	نامام:		اد عدا
								full-tim	_			igniy	correi	ated.
								top 25	_			J1		

2.4 Check the dataset for outliers before and after scaling. What insight do you derive here?

Answer	The outliers before applying the scaling and after scaling remains the same. This shows scaling does
	not do any treatment to outliers. It only normalises the data to a standard scale for better
	understanding.

2.5 Extract the eigenvalues and eigenvectors. [Using Sklearn PCA Print Both]


```
-1.22678028e-01,
                         -1.02491967e-01,
                                                7.88896442e-02,
       70783816e-01,
                         9.84599754e-03,
-2.32660840e-01,
                                               -2.21453442e-01,
     2.13293009e-01,
  -1.21613297e-02,
-5.41593771e-02,
[-9.02270802e-02,
                         -8.36048735e-02
                                                6.78523654e-01.
                         3.41099863e-01,
5.60672902e-01,
    -1.33663353e-01,
                         -9.44688900e-02.
                                              -1.85181525e-01.
    -2.54938198e-01,
                          2.74544380e-01,
4.19043052e-02],
                                              -2.55334907e-01,
    4.91388809e-02,
                          4.11400844e-02,
    5.25098025e-02,
6.40257785e-02,
-2.23105808e-01,
                                                3.44879147e-02.
                                               2.08471834e-02,
2.98324237e-01,
                          1.45492289e-02,
                          1.86675363e-01,
   -8.20292186e-02,
                          1.36027616e-01,
4.72045249e-01,
                                              -1.23452200e-01
     1.32286331e-01.
                         -5.90271067e-01],
  [ 4.30462074e-02,
-8.10481404e-03,
                         -5.84055850e-02, -6.93988831e-02, -2.73128469e-01, -8.11578181e-02,
     1.00693324e-01.
                          1.43220673e-01.
                                              -3.59321731e-01.
     3.19400370e-02,
                         -1.85784733e-02,
                                              -1.30727978e-01,
    -5.89734026e-02,
                          4.45000727e-01,
  6.92088870e-01,
[ 2.40709086e-02,
                          2.19839000e-01],
                         -1.45102446e-01,
     3.85543001e-02,
                         -8.93515563e-02,
                                                5.61767721e-02.
   -6.35360730e-02,
                         -8.23443779e-01.
                                                3.54559731e-01,
    -2.81593679e-02,
                         -3.92640266e-02,
  1.64850420e-02,
3.25982295e-01,
[ 5.95830975e-01,
                         -1.10262122e-02
                                               1.82660654e-01,
                          1.22106697e-01],
2.92642398e-01, -4.44638207e-01,
2.18838802e-02, -5.23622267e-01,
    1.02303616e-03,
1.25997650e-01,
                         -1.41856014e-01,
3.94547417e-02,
                                              -6.97485854e-02,
     1.14379958e-02,
                                                1.27696382e-01,
                         -1.77152700e-02,
-6.91969778e-02],
    -5.83134662e-02,
                                               1.04088088e-01,
     9.37464497e-02,
                          3.34674281e-02,
                                              -8.56967180e-02.
  [ 8.06328039e-02,
                                              -5.63728817e-02,
-5.84289756e-02,
-6.91126145e-01,
    -1.07828189e-01,
1.92857500e-02,
                         1.51742110e-01,
-3.40115407e-02,
    -6.68494643e-02,
6.71008607e-01,
                          2.75286207e-02.
                          4.13740967e-02,
     7.31225166e-02.
                          3.64767385e-021.
                         -1.45497511e-01,
  [ 1.33405806e-01,
                                               2.95896092e-02.
                         -6.17274818e-01,
     6.97722522e-01,
                          3.83544794e-02,
    2.09515982e-02,
                                                3.40197083e-03,
                         -3.09001353e-03,
    -9.43887925e-03,
1.58909651e-01,
                                              -1.12055599e-01,
-8.41789410e-03,
                         -2.08991284e-02,
    -2.27742017e-01,
4.59139498e-01,
-1.48738723e-01,
                         -3.39433604e-03],
                         -5.18568789e-01,
                                              -4.04318439e-01,
                          5.18683400e-02,
                                                5.60363054e-01,
                          1.01594830e-01,
   -5.27313042e-02,
2.88282896e-03,
                                              -2.59293381e-02,
                         -1.28904022e-02,
    -2.70759809e-02,
                         -2.12476294e-02,
                                                3.33406243e-03,
  -4.38803230e-02,
[ 3.58970400e-01,
                         -5.00844705e-03],
-5.43427250e-01,
    1.44986329e-01, 8.03478445e-02, 9.01788964e-03, 5.08995918e-02, 7.72631963e-04, -1.11433396e-03,
                                              -4.14705279e-01.
                                               1.14639620e-03,
1.38133366e-02,
    6.20932749e-03, -2.22215182e-03, -
-3.53098218e-02, -1.30710024e-02]])
                                               -1.91869743e-02,
In [24]: pca.explained_variance_
Out[24]: array([5.45052162, 4.48360686, 1.17466761, 1.00820573, 0.93423123,
                           0.84849117, 0.6057878 , 0.58787222, 0.53061262, 0.4043029 ,
                           0.31344588, 0.22061096, 0.16779415, 0.1439785 , 0.08802464,
                           0.03672545, 0.02302787])
                                 Figure: 2.5.1: Eigen Vectors and Eigen values
```

2.6 Perform PCA and export the data of the Principal Component (eigenvectors) into a data frame with the original features


```
Output
                             In [28]: tot = sum(eig_vals)
                                      var_exp = [( i /tot ) * 100 for i in sorted(eig_vals, reverse=True)]
                                      cum var exp = np.cumsum(var exp)
                                      cum var exp
                             Out[28]: array([ 32.0206282 , 58.36084263, 65.26175919, 71.18474841,
                                              76.67315352, 81.65785448, 85.21672597, 88.67034731,
                                              91.78758099, 94.16277251, 96.00419883, 97.30024023,
                                              98.28599436, 99.13183669, 99.64896227, 99.86471628,
                             In [36]: pca = PCA(n_components=5)
                                      X_pca= pca.fit_transform(df_pca_scaled)
                             In [30]: pca.components_
                             Out[30]: array([[ 0.2487656 , 0.2076015 , 0.17630359, 0.35427395, 0.34400128,
                                                0.15464096, \quad 0.0264425 \ , \quad 0.29473642, \quad 0.24903045, \quad 0.06475752, \\
                                              -0.04252854, 0.31831287,
                                                                       0.31705602, -0.17695789, 0.20508237,
                                               0.31890875, 0.25231565],
                                             [ 0.33159823, 0.37211675, 0.40372425, -0.08241182, -0.04477866,
                                               0.41767377, 0.31508783, -0.24964352, -0.13780888, 0.05634184,
                                               0.21992922, 0.05831132, 0.04642945, 0.24666528, -0.24659527,
                                              -0.13168987, -0.16924053],
                                             [-0.06309177, -0.10124947, -0.08298583, 0.03505557, -0.02414803,
                                               -0.06139256, 0.13968168, 0.04659896, 0.14896738, 0.67741165,
                                               0.49972111, -0.12702832, -0.06603759, -0.28984842, -0.14698927,
                                               0.22674391, -0.20806465],
                                             [ 0.28131048, 0.26781741, 0.16182682, -0.05154726, -0.10976653,
                                               0.10041227, -0.15855848, 0.13129135, 0.18499599, 0.08708922,
                                              -0.23071057, -0.53472484, -0.51944301, -0.16118948, 0.01731422,
                                               0.07927351, 0.26912907],
                                             [\ 0.00574198,\ 0.05578538,\ -0.05569409,\ -0.39543428,\ -0.42653376,
                                              -0.04345363, 0.30238534, 0.22253215, 0.56091945, -0.12728881,
                                              -0.22231105, 0.14016642, 0.20471965, -0.07938829, -0.21629741,
                                               0.07595799, -0.10926792]])
                                                           Figure: 2.6.1: PCA on dataset
                              In [37]: df_comp = pd.DataFrame(pca.components_,columns=list(df_pca_scaled))
                                        df_comp.T
                              Out[37]:
                                                           0
                                                    Apps
                                                    0.207602  0.372117  -0.101249  0.267817  0.055786
                                             Accept
                                              Enroll 0.176304 0.403724 -0.082986 0.161827 -0.055694
                                           Top10perc
                                                    0.354274 -0.082412 0.035056 -0.051547 -0.395434
                                          Top25perc 0.344001 -0.044779 -0.024148 -0.109767 -0.426534
                                         F.Undergrad 0.154641 0.417674 -0.061393 0.100412 -0.043454
                                         P.Undergrad 0.026443 0.315088 0.139682 -0.158558 0.302385
                                            Outstate 0.294736 -0.249644 0.046599 0.131291 0.222532
                                         Room.Board 0.249030 -0.137809 0.148967 0.184996 0.560919
                                             Books 0.064758 0.056342 0.677412 0.087089 -0.127289
                                            Personal -0.042529 0.219929 0.499721 -0.230711 -0.222311
                                                    0.317056 0.046429 -0.066038 -0.519443 0.204720
                                            Terminal
                                            S.F.Ratio -0.176958 0.246665 -0.289848 -0.161189 -0.079388
                                         perc.alumni 0.205082 -0.246595 -0.146989 0.017314 -0.216297
                                                    0.318909 -0.131690 0.226744 0.079273 0.075958
                                             Expend
                                           Grad.Rate
                                                   0.252316 -0.169241 -0.208065 0.269129 -0.109268
                                                    Figure: 2.6.2: Data in dataframe after PCA
```

2.7 Write down the explicit form of the first PC (in terms of the eigenvectors. Use values with two places of decimals only). [hint: write the linear equation of PC in terms of eigenvectors and corresponding features]

Answer

The Linear eq of 1 component:

0.25 * Apps + 0.21 * Accept + 0.18 * Enroll + 0.35 * Top10perc + 0.34 * Top25perc + 0.15 * F.Un dergrad + 0.03 * P.Undergrad + 0.29 * Outstate + 0.25 * Room.Board + 0.06 * Books + -0.04 * Pe rsonal + 0.32 * PhD + 0.32 * Terminal + -0.18 * S.F.Ratio + 0.21 * perc.alumni + 0.32 * Expend + 0.25 * Grad.Rate

Similarly, for the other components the explicit form is generated, refer to output below.

Output of explicit form of PCA

```
In [27]: for j in range (1, 18):
    print('inThe Linear eq of %s component: %j)
    for i in range(0,17):
        print('inThe Linear eq of %s components_[0][i],2),df_pca_scaled.columns[i],end="+")
    print('inThe Linear eq of 1 component:
        0.25 * Apps + 0.21 * Accept + 0.18 * Enroll + 0.35 * ToplOperc + 0.34 * Top2Sperc + 0.15 * F.Undergrad + 0.28 * S.F.Ratio + 0.21 * Pop. 1.05 * Apps + 0.21 * Accept + 0.18 * Enroll + 0.35 * ToplOperc + 0.34 * Top2Sperc + 0.15 * F.Undergrad + 0.28 * S.F.Ratio + 0.21 * perc.alumni + 0.32 * Expend + 0.25 * Grad.Rate +

The Linear eq of 2 component:
        0.25 * Apps + 0.21 * Accept + 0.18 * Enroll + 0.35 * ToplOperc + 0.34 * Top2Sperc + 0.15 * F.Undergrad + 0.03 * P.Undergrad + 0.29 * Outstate + 0.25 * Room.Board + 0.06 * Books + -0.04 * Personal + 0.32 * PhD + 0.32 * Terminal + -0.18 * S.F.Ratio + 0.21 * perc.alumni + 0.32 * Expend + 0.25 * Grad.Rate +

The Linear eq of 3 component:
        0.25 * Apps + 0.21 * Accept + 0.18 * Enroll + 0.35 * ToplOperc + 0.34 * Top2Sperc + 0.15 * F.Undergrad + 0.03 * P.Undergrad + 0.29 * Outstate + 0.25 * Room.Board + 0.06 * Books + -0.04 * Personal + 0.32 * PhD + 0.32 * Terminal + -0.18 * S.F.Ratio + 0.21 * perc.alumni + 0.21 * Expend + 0.25 * Grad.Rate +

The Linear eq of 3 component:
        0.25 * Apps + 0.21 * Accept + 0.18 * Enroll + 0.35 * ToplOperc + 0.34 * Top2Sperc + 0.15 * F.Undergrad + 0.03 * P.Undergrad + 0.25 * Apps + 0.21 * Accept + 0.18 * Enroll + 0.35 * ToplOperc + 0.34 * Top2Sperc + 0.15 * F.Undergrad + 0.03 * P.Undergrad + 0.25 * Apps + 0.21 * Accept + 0.18 * Enroll + 0.35 * ToplOperc + 0.34 * Top2Sperc + 0.15 * F.Undergrad + 0.03 * P.Undergrad + 0.25 * Apps + 0.21 * Accept + 0.18 * Enroll + 0.35 * ToplOperc + 0.34 * Top2Sperc + 0.15 * F.Undergrad + 0.03 * P.Undergrad + 0.25 * Room.Board + 0.06 * Books + -0.04 * Personal + 0.32 * PhD + 0.32 * Terminal + -0.18 * S.F.Ratio + 0.21 * perc.alumni + 0.32 * Expend + 0.25 * Grad.Rate +

The Linear eq of 5 component:
        0.25 * Apps + 0.21 * Accept + 0.18 * Enroll + 0.3
```

```
The Linear eq of 9 component:
0.25 * Apps + 0.21 * Accept + 0.18 * Enroll + 0.35 * Topl0perc + 0.34 * Top25perc + 0.15 * F.Undergrad + 0.03 * P.Undergrad + 0.29 * Outstate + 0.25 * Room.Board + 0.06 * Books + -0.04 * Personal + 0.32 * PhD + 0.32 * Terminal + -0.18 * S.F.Ratio + 0.21 * perc.alumni + 0.32 * Expend + 0.25 * Grad.Rate +
 The Linear eq of 10 component:
0.25 * Apps + 0.21 * Accept + 0.18 * Enroll + 0.35 * Topl0perc + 0.34 * Top25perc + 0.15 * F.Undergrad + 0.03 * P.Undergrad + 0.29 * Outstate + 0.25 * Room.Board + 0.06 * Books + -0.04 * Personal + 0.32 * PhD + 0.32 * Terminal + -0.18 * S.F.Ratio + 0.21 * perc.alumni + 0.32 * Expend + 0.25 * Grad.Rate +
The Linear eq of 11 component:
0.25 * Apps + 0.21 * Accept + 0.18 * Enroll + 0.35 * Top10perc + 0.34 * Top25perc + 0.15 * F.Undergrad + 0.03 * P.Undergrad + 0.29 * Outstate + 0.25 * Room.Board + 0.06 * Books + -0.04 * Personal + 0.32 * PhD + 0.32 * Terminal + -0.18 * S.F.Ratio + 0.21 * perc.alumni + 0.32 * Expend + 0.25 * Grad.Rate +
The Linear eq of 12 component:
0.25 * Apps + 0.21 * Accept + 0.18 * Enroll + 0.35 * Top10perc + 0.34 * Top25perc + 0.15 * F.Undergrad + 0.03 * P.Undergrad +
0.29 * Outstate + 0.25 * Room.Board + 0.06 * Books + -0.04 * Personal + 0.32 * PhD + 0.32 * Terminal + -0.18 * S.F.Ratio + 0.21
* perc.alumni + 0.32 * Expend + 0.25 * Grad.Rate +
0.25 * Apps + 0.21 * Accept + 0.18 * Enroll + 0.35 * Top10perc + 0.34 * Top25perc + 0.15 * F.Undergrad + 0.03 * P.Undergrad +
0.29 * Outstate + 0.25 * Room.Board + 0.06 * Books + -0.04 * Personal + 0.32 * PhD + 0.32 * Terminal + -0.18 * S.F.Ratio + 0.21 * perc.alumni + 0.32 * Expend + 0.25 * Grad.Rate +
0.25 * Apps + 0.21 * Accept + 0.18 * Enroll + 0.35 * Top10perc + 0.34 * Top25perc + 0.15 * F.Undergrad + 0.03 * P.Undergrad + 0.29 * Outstate + 0.25 * Room.Board + 0.06 * Books + -0.04 * Personal + 0.32 * PhD + 0.32 * Terminal + -0.18 * S.F.Ratio + 0.21 * perc.alumni + 0.32 * Expend + 0.25 * Grad.Rate +
The Linear ed of 15 component:
0.25 * Apps + 0.21 * Accept + 0.18 * Enroll + 0.35 * Topl0perc + 0.34 * Top25perc + 0.15 * F.Undergrad + 0.03 * P.Undergrad + 0.29 * Outstate + 0.25 * Room.Board + 0.06 * Books + -0.04 * Personal + 0.32 * PhD + 0.32 * Terminal + -0.18 * S.F.Ratio + 0.21 * perc.alumni + 0.32 * Expend + 0.25 * Grad.Rate +
The Linear eq of 16 component:
0.25 * Apps + 0.21 * Accept + 0.18 * Enroll + 0.35 * Topl0perc + 0.34 * Top25perc + 0.15 * F.Undergrad + 0.03 * P.Undergrad + 0.29 * Outstate + 0.25 * Room.Board + 0.06 * Books + -0.04 * Personal + 0.32 * PhD + 0.32 * Terminal + -0.18 * S.F.Ratio + 0.21 * perc.alumni + 0.32 * Expend + 0.25 * Grad.Rate +
The Linear eq of 17 component:
0.25 * Apps + 0.21 * Accept + 0.18 * Enroll + 0.35 * Top10perc + 0.34 * Top25perc + 0.15 * F.Undergrad + 0.03 * P.Undergrad +
0.29 * Outstate + 0.25 * Room.Board + 0.06 * Books + -0.04 * Personal + 0.32 * PhD + 0.32 * Terminal + -0.18 * S.F.Ratio + 0.21 * perc.alumni + 0.32 * Expend + 0.25 * Grad.Rate +
                                                                             Figure 2.7.1: Explicit form of PCA
```

2.8 Consider the cumulative values of the eigenvalues. How does it help you to decide on the optimum number of principal components? What do the eigenvectors indicate?

Answer

After adding the Eigen Values, we will get sum of 100.

To decide the optimum number of principal components:

- 1. Check for cumulative variance up to 90%
- 2. The incremental value between the components should not be less than five percent.

The Eigen vectors or PC for this case study is five, we can understand how much each variable contributes to the principal components. In other words, we can also say weights attached to each variable. With this Eigen vectors we can understand which variable has more weightage and influences the dataset in the principal components. The PCA reduces the multi collinearity and with this reduced collinearity we can runs models and improved efficiency scores.

After PCA multicollinearity is reduced.

```
Output
                                 In [28]: tot = sum(eig_vals)
                                            var_exp = [( i /tot ) * 100 for i in sorted(eig_vals, reverse=True)]
                                            cum var exp = np.cumsum(var exp)
                                            cum_var_exp
                                 Out[28]: array([ 32.0206282 ,
                                                                     58.36084263, 65.26175919,
                                                                                                    71.18474841,
                                                     76.67315352,
                                                                     81.65785448, 85.21672597,
                                                                                                     88.67034731,
                                                     91.78758099, 94.16277251, 96.00419883, 97.30024023,
                                                     98.28599436,
                                                                    99.13183669, 99.64896227, 99.86471628,
                                                                  ])
                                  In [36]: pca = PCA(n_components=5)
                                            X_pca= pca.fit_transform(df_pca_scaled)
                                 In [30]: pca.components_
                                 Out[30]: array([[ 0.2487656 ,
                                                                     0.2076015, 0.17630359, 0.35427395, 0.34400128,
                                                      0.15464096, 0.0264425, 0.29473642, 0.24903045,
                                                                                                                 0.06475752.
                                                      -0.04252854, 0.31831287,
                                                                                  0.31705602, -0.17695789, 0.20508237,
                                                      0.31890875, 0.25231565],
                                                    [ 0.33159823, 0.37211675, 0.40372425, -0.08241182, -0.04477866,
                                                       0.41767377, 0.31508783, -0.24964352, -0.13780888, 0.05634184,
                                                      0.21992922, 0.05831132, 0.04642945, 0.24666528, -0.24659527,
                                                      -0.13168987, -0.16924053],
                                                    [-0.06309177, -0.10124947, -0.08298583, 0.03505557, -0.02414803,
                                                      -0.06139256, 0.13968168, 0.04659896, 0.14896738, 0.67741165,
                                                       0.49972111, -0.12702832, -0.06603759, -0.28984842, -0.14698927,
                                                      0.22674391, -0.20806465],
                                                    [ 0.28131048, 0.26781741, 0.16182682, -0.05154726, -0.10976653,
                                                      0.10041227, -0.15855848, 0.13129135, 0.18499599, 0.08708922,
                                                      -0.23071057, -0.53472484, -0.51944301, -0.16118948, 0.01731422,
                                                      0.07927351, 0.26912907],
                                                    [\ 0.00574198,\ 0.05578538,\ -0.05569409,\ -0.39543428,\ -0.42653376,
                                                      -0.04345363, 0.30238534, 0.22253215, 0.56091945, -0.12728881,
                                                      -0.22231105,
                                                                     0.14016642,
                                                                                   0.20471965, -0.07938829, -0.21629741,
                                                      0.07595799, -0.10926792]])
                                                                     Figure 2.8.1: Output of PCA
                                 Out[33]:
                                                        Enroll Top10perc Top25perc F.Undergrad P.Undergrad Outstate Room.Board
                                                  Accept
                                                                                                                          PhD Terminal
                                                                             0.417674
                                        1 0.331598 0.372117 0.403724 -0.082412 -0.044779
                                                                                     0.315088 -0.249644
                                                                                                    -0.137809 0.056342 0.219929 0.058311 0.046429
                                                                                                                                    0.24666
                                        2 -0.063092 -0.101249 -0.082986 0.035056 -0.024148 -0.061393 0.139682 0.046599 0.148967 0.677412 0.499721 -0.127028 -0.066038 -0.28984
                                        3 0.281310 0.267817 0.161827 -0.051547 -0.109767
                                                                            0.100412
                                                                                     -0.158558 0.131291
                                                                                                    0.184996 0.087089 -0.230711 -0.534725 -0.519443 -0.16118
                                        4 0.005742 0.055785 -0.055694 -0.395434 -0.426534 -0.043454 0.302385 0.222532 0.560919 -0.127289 -0.222311 0.140166 0.204720 -0.07934
                                In [34]: plt.figure(figsize= (15,7)) sns.heatmap(df_comp, cmap= 'rainbow', annot = True, fmt = '.2f', yticklabels= ['PC0', 'PC1', 'PC2', 'PC3','PC4'])
                                        8 - 0.25 0.21 0.18 0.35 0.34 0.15 0.03 0.29 0.25 0.06 0.04 0.32 0.32
                                                                                             0.18 0.21 0.32 0.25
                                                                                         0.05 0.25
                                                                  0.32
                                           0.06 -0.10 -0.08 0.04 -0.02 -0.06 0.14 0.05
                                                                                                                  - 0.0
                                                                                                0.02 0.08 0.27
                                          0.28 0.27 0.16 -0.05 -0.11 0.10 -0.16 0.13 0.18 0.09
                                                                                                                  -0.2
                                                                                     0.14 0.20
                                                               Figure 2.8.2: PCA Data in Data frame
```

2.9 Explain the business implication of using the Principal Component Analysis for this case study. How may PCs help in the further analysis? [Hint: Write Interpretations of the Principal Components Obtained]

- 1. The Education dataset which has details about the multiple colleges and universities helps to study the various aspects of colleges, applications, fees, type of enrolments, etc.
- 2. The univariate and multivariate analysis helps to understand the data pattern for each variable and the correlation between variables.
- 3. From multivariate analysis, we saw that many variables are highly correlated.
- 4. With the help of scaling, data is brought down to one standard scale which gives better understanding of the dataset.
- 5. The Principal Component Analysis helps to reduce multicollinearity in dataset, which further helps to perform more analysis and derive results.
- 6. The PCA for this case study is 5 which shows the maximum variance of dataset.