

Adult Census Income Prediction

LOW LEVEL DOCUMENT DESIGN

01.11.2021

Project By:

Hrishik V

Document Version Control

DATE ISSUED	VERSION	DESCRIPTION	AUTHOR
November 1, 2021	1	Initial LLD V1	HrishikV

1. Introduction

1.1 Why this Low Level Document?

The goal of LLD or a low-level design document is to give the internal logical design of the actual program code for Adult Census Income

Prediction. LLD describes the class diagrams with the methods and relations between classes and program specs. It describes the modules so that the programmer can directly code the program from the document.

1.2 Scope

Low-level design (LLD) is a component-level design process that follows a step-by-step refinement process. This process can be used for designing data structures, required software architecture, source code and ultimately, performance algorithms. Overall, the data organization may be defined during requirement analysis and then refined during data design work.

2. Architecture

Proposed Methodology

Deployment Process

3. Architecture Description

3.1 Data Description

The dataset named Adult Census Income is available in kaggle and UCI repository. This data was extracted from the 1994 census bureau dataset by Ronny Kohavi and Barry Becker (Data Mining and Visualization, Silicon Graphics). The prediction task is to determine whether a person makes over \$50K a year or not.

3.2 Data Preparation

This step includes all the necessary steps that take place in the life cycle of a data science project namely, Data cleaning, Exploratory Data Analysis (EDA), and outlier treatment. In this step, our data gets prepared to be fed to our ML model.

3.3 Model Development

This step contains all other necessary steps such as Feature Engineering, Feature Selection, Model Selection and Hyperparameter tuning to make the best possible model that can be made for accurate and correct prediction.

3.4 Deployment Process

In this step, we first develop the UI using Anvil and connect with our code in which our model is running with the help of an uplink and create a server using Flask which runs the uplink code (server code) using parallel execution or asynchronous execution and we will then upload the hole code in Heroku cloud using git and github. We will then set a cron job on that server to keep the server and server code running forever.

4. Unit Test Cases

Test Case Description	Pre-Requisite	Expected Result
-----------------------	---------------	-----------------

Verify whether the	Application	Application URL should be
Application URL is	URL should	accessible to the user
accessible to the user	be defined	
Verify whether the	1. Application URL	
Application loads	is accessible	
completely for the	2. Application is	
user when the URL is accessed	deployed	Application URL should be defined
Verify whether user is	Application is	User should be
able to see input	accessible	able to see input
fields.		fields
	Application is	User should be
Verify whether user is	accessible	able to edit all
able to edit all input		input fields
fields		
Verify whether user gets	Application is	User should get
Submit button to submit the	accessible	Submit button to
inputs		submit the inputs
	Application is	User should be
Verify whether user is	accessible	presented with
presented with		results on clicking submit
results on clicking submit		Submit
Verify whether the	Application is	
Volly Wilding the	accessible	
results are in		The results should be in
accordance to the		accordance to the
selections user made		selections user made

