Growth and the Fragmentation of Production

Johannes Boehm ¹ Ezra Oberfield ²

Virtual International Trade & Macro Seminar

March 31, 2022

¹Sciences Po ²Princeton

Motivation

Since Adam Smith, economists have been postulating a link between specialization and productivity:

"The greatest improvement in the productive powers of labour [...] seem to have been the effects of the division of labour." (Wealth of Nations, Chapter 1, 1776)

In the context of supply chains: how is value chain broken down into work done by different plants?

2

Motivation

Since Adam Smith, economists have been postulating a link between specialization and productivity:

"The greatest improvement in the productive powers of labour [...] seem to have been the effects of the division of labour." (Wealth of Nations, Chapter 1, 1776)

In the context of supply chains: how is value chain broken down into work done by different plants?

This paper: study specialization in value chain *among plants* and growth. Setting: Indian manufacturing sector, pre-liberalization (1990) to 2015

Measure degree of vertical specialization ("span") of plants using data on plant inputs and outputs: do plants produce shirts from cloth or from yarn?

Preview of Results

- 1. Macro motivation: Specialization strongly positively correlated with level of development (cross-section) and growth (time dimension)
- 2. Micro relationships:
 - Larger plants are more specialized (cross section & time). Plants specialize when demand increases. ⇒ Non-homotheticity in input use
 - \cdot Demand shocks propagate both upstream and downstream. \Rightarrow scale economies

Interpretation (and quantification) through lens of a model:

- Firms face make-or-buy decision for every input, invest into input-specific cost ("supplier search") → scale economies
- Firms with higher TFP or demand draw select into being more specialized ightarrow nonhomotheticity

Use moments from micro relationships to identify sources of scale economies (in prep.)

Literature

Specialization and productivity:

- Theory: Young (1928), Stigler (1951), Rosen (1978), Baumgardner (1988), Becker and Murphy (1992), Rodriguez-Clare (1996), Akerman and Py (2010), Chaney and Ossa (2013)
- Empirical evidence: Baumgardner (1988), Brown (1992), Garicano and Hubbard (2009), Duranton and Jayet (2011), Tian (2018), Hansman et al. (2020), Chor et al. (2020), Bergeaud et al. (2021), Bartelme et al. (2021)

Smithian Growth:

· Boreland and Yang (1991), Kelly (1997), Legros, Newman, Proto (2014), Menzio (2020)

Indian Trade Liberalization:

• Panagariya (2004), Sivadasan (2009), Khandelwal and Topalova (2010), Goldberg et al. (2010), Peter and Ruane (2020)

4

Manufacturing Plants in India

Data: Indian Annual Survey of Industries, 1989/90-2014/15 (with gaps)

- · Plant-level panel survey of formal manufacturing plants
 - · All plants that have 100+ employees
 - 1/5 of all plants between 20 (10 if using power) and 100 employees

Most important part of the survey:

 Quantities, unit values & 5-digit product codes for all manufacturing output and intermediate inputs (domestic and imported)

Example product codes: Silk yarn, bleached (61222), beryllium copper wire (72246), aluminium ingots (73107)

	min	p25	p50	p75	max	count
# 5-digit Inputs	1	1	3	5	117	595460

Within narrow industries, firms use different inputs

(a) Input mixes for Bleached Cotton Cloth (63303)

(b) Input mixes for Polished Diamonds (92104)

Measuring the vertical span of production (Boehm & Oberfield, 2020)

Two steps:

- 1. Define a **vertical distance** $d_{\omega\hat{\omega}}$ of an input from an output (varies at product-pair level)
 - · Rough diamonds are more distant from polished diamonds than cut diamonds
 - · Similar to upstreamness of Alfaro et al. (2019)

2.

Vertical Distance of inputs from output – Intuition

- 1. For a given product ω , construct the materials cost shares of industry ω on each input
- 2. Recursively construct the cost shares of the input industries (and inputs' inputs, etc...), excluding all products that are further downstream.
- 3. Vertical distance between ω and ω' is the average number of steps between ω and ω' , weighted by the product of the cost shares.

 \Rightarrow Shirts \leftarrow Cloth: 1; Shirts \leftarrow Yarn: $0.3 \times 1 + 0.7 \times 1.0 \times 2 = 1.7$

Vertical Distance of inputs from output – Examples

Table 1: Vertical distance examples for 63428: Cotton Shirts

	Mean Vertical Distance
Fabrics/Cloths	1.66
Yarns	2.58
Ginned & pressed cotton	3.44
Raw cotton	4.09

Table 2: Vertical distance examples for 73107: Aluminium Ingots

	Vertical Distance
Anodes, copper	1.00
Aluminium scrap	1.19
Aluminium oxide	1.25
Bauxite, calcined	2.18
Caustic soda (sodium hydroxide)	2.39
Bauxite, raw	3.03
Coal	3.43

Measuring the vertical span of production (Boehm & Oberfield, 2020)

Two steps:

- 1. Define a **vertical distance** $d_{\omega\hat{\omega}}$ of an input from an output (varies at product-pair level)
 - · Rough diamonds are more distant from polished diamonds than cut diamonds
 - · Similar to upstreamness of Alfaro et al. (2019)
- 2. Construct each plant's vertical span: how far are the plant's inputs from the output?

$$\mathrm{span}_{jt} = \sum_{\hat{\omega}} \frac{X_{j\hat{\omega}}}{\sum_{\tilde{\omega}} X_{j\tilde{\omega}}} d_{\omega\hat{\omega}}$$

Long and short vertical span

Figure 1: Input mixes for Polished Diamonds (92104)

Motivational Facts about Vertical

Specialization

Fact 1: In richer districts, plants are more specialized (shorter vertical span)

Within industry \times year:

Fact 2: Increased vertical specialization positively correlated with state growth

Within plant, over time:

	Dependent variable: Vertical Span				
	(1)	(2)	(3)		
Log GDP/capita _{st}	-0.0716* (0.028)	-0.0601* (0.026)	-0.0551* (0.026)		
Year FE	Yes	Yes			
Plant FE	Yes	Yes			
5-digit Industry FE		Yes			
5-digit Industry × Year FE			Yes		
Plant × 5-digit Industry FE			Yes		
R^2	0.592	0.656	0.808		
Observations	270003	269399	163668		

Standard errors in parentheses, clustered at the state \times 5-dgt industry level. SP plants only.

 $^{^{+}}$ p < 0.10, * p < 0.05, ** p < 0.01

Fact 3: More specialized plants (shorter span) are larger

Plants with higher sales tend to have shorter vertical span (within industry \times year)

Other cross-sectional covariates

	Dependent variable: Vertical Span						
	(1)	(2)	(3)	(4)	(5)	(6)	
Materials Share of Cost	-0.250** (0.018)			-0.119** (0.015)			
Importer Dummy		-0.163** (0.0094)			-0.0143** (0.0055)		
Share of R-Inputs in Materials Cost			-0.260** (0.021)			-0.181** (0.021)	
Year FE Industry FE	Yes Yes	Yes Yes	Yes Yes	Yes	Yes	Yes	
Plant x Industry FE				Yes	Yes	Yes	
R ² Observations	0.310 332356	0.309 353694	0.322 347548	0.774 173141	0.765 186641	0.773 181958	

Standard errors in parentheses, clustered at the 5-dgt industry level.

⁺ *p* < 0.10, * *p* < 0.05, ** *p* < 0.01

Fact 4: Sales growth is correlated with increased vertical specialization

	Dependent variable: Vertical Span				
	(1)	(2)	(3)		
Log Sales	-0.0191*** (0.0013)	-0.0127*** (0.0014)	-0.0133*** (0.0016)		
Plant × Product FE Year FE	Yes Yes	Yes	Yes		
Product × Year FE District × Year FE		Yes	Yes Yes		
R ² Observations	0.765 186628	0.808 171726	0.817 150215		

Standard errors in parentheses, clustered at the state-industry level.

 $^{^{+}}$ p < 0.10, * p < 0.05, ** p < 0.01

Indian Trade Liberalization to get at causality

- · Until end of 80s: India in near-autarky
 - Import licensing system
 - \cdot Very high tariffs. Large variation (up to 355%), average \sim 80%. Was set in the 1950s.
- **July 1991:** Balance of Payments crisis. Removal of import licensing system, starts cutting tariffs.
- 1992-1997: Tariffs come down to average of 35%, ending up fairly uniform.
- $\cdot \Rightarrow$ tariff change was determined in the 50's
- ⇒ tariff changes are uncorrelated with 1992 industry characteristics (Khandelwal and Topalova, 2010: "as exogenous to the state of the industries as a researcher might hope for").

See also Panagariya (2004), Sivadasan (2009), Khandelwal and Topalova (2010), Goldberg et al. (2010).

Tariff changes act as demand & supply shocks

	С	Dependent variable: Δ log Sales
	(1)	(2)
Δ log Output Tariff	0.159 ⁺ (0.090)	0.235* (0.094)
$\Delta \log(1+ar{ au}_{\omega t}^{ ext{input}})$		-0.222+ (0.12)
Year-Pair FE	Yes	Yes
R ² Observations	0.0624 104996	0.0626 104985

Standard errors in parentheses, clustered at the state \times industry level.

 \Rightarrow We are going to use **changes in import tariffs** in the output good as a **demand shifter**

⁺ *p* < 0.10, * *p* < 0.05, ** *p* < 0.01

Demand shocks affect vertical specialization

	Dependent variable: Vertical Span					
	(1)	(2)	(3)	(4)	(5)	(6)
Log Sales	-0.0191** (0.0020)	-0.0190** (0.0020)	-0.0196** (0.0024)	-0.512 ⁺ (0.28)	-0.382 ⁺ (0.22)	-0.252 ⁺ (0.13)
$\log(1+\bar{\tau}_{j\omega t}^{\rm input})$		-0.0877** (0.026)	-0.0209 (0.050)		-0.0830 ⁺ (0.050)	0.0194 (0.065)
$\sum_{i} \alpha_{i} \log(1 + \bar{\tau}_{it}^{input}) \overline{\operatorname{span}}_{j}$			-0.0910 (0.056)			-0.218* (0.099)
$\sum_{i} \alpha_{i} \log(1 + \overline{\tau}_{it}^{input}) (distance_{\omega i} - \overline{span}_{j})$			-0.122 (0.095)			-0.336* (0.15)
Year FE Plant × Product FE	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
Estimator	OLS	OLS	OLS	IV	IV	IV
R ² Observations	0.765 186628	0.765 186628	0.731 145181	-1.049 138204	-0.569 138204	-0.229 137060

Columns (4) to (6) instrument log sales by the log output tariff.

Smith (1776): "The division of labour is limited by the extent of the market"

Standard errors in parentheses, clustered at the state-industry level. p < 0.10, p < 0.05, p < 0.01

Other empirical results

· Vertical specialization comes with a reduction in the number of intermediate inputs Demand shocks \Rightarrow Sales \Rightarrow # Inputs

· Tariff supply & demand shocks affect entry. Lower output tariffs decreases the number of plants Lower input tariffs increases the number of plants.

· Input tariffs affect input adoption. Lower input tariffs lead to an increased probability of plants using that input.

Taking stock

- \cdot Vertical span changes with demand \Rightarrow Production is non-homothetic
- Young (1928): Economies of scale? Increasing Returns? Network Externalities?

Key questions for growth: Are there increasing returns? What determines economies of scale? How to identify them?

Plant j in industry ω

Upstream entry and sales

	Dependent variable: log Sales					
	(1)	(2)	(3)	(4)	(5)	(6)
Avg. log #Producers in Upstream Ind.	0.0466** (0.0041)	0.0383** (0.0050)	0.0375** (0.0060)	0.0383* (0.017)	0.0613** (0.017)	0.0738** (0.018)
$\log(1+ar{ au}_{j\omega t}^{ ext{input}})$			-0.0243 (0.096)			-0.0208 (0.097)
$\sum_i lpha_i \log(1+ar{ au}_{it}^{ ext{input}}) (ext{distance}_{\omega i} - \overline{ ext{span}}_j)$			-0.330** (0.11)			-0.333** (0.11)
Year FE	Yes			Yes		
Industry × Year FE Plant × Industry FE	Yes	Yes Yes	Yes Yes	Yes	Yes Yes	Yes Yes
Estimator	OLS	OLS	OLS	IV	IV	IV
R ² Observations	0.942 215805	0.952 199039	0.954 142041	0.00183 215805	0.000631 199039	0.000277 142041

Standard errors in parentheses, clustered at the industry-year level. $^+$ p < 0.10, * p < 0.05, ** p < 0.01

Simple Model

- · Buying ω_1 from a supplier ('shirts from cloth')
- \cdot Buying ω_2 and ω_3 from suppliers ('shirts from yarn & dye')

1. Buying ω_1 from a supplier ('shirts from cloth')

Firms search for ω_1 suppliers. Search effort h_1 .

Cost of production:
$$c_{j\omega_0} = \frac{1}{q_j} w^{\alpha_l^0} \left(\tilde{c}_j^1 \right)^{1-\alpha_l^0}$$
 $\tilde{c}_j^1 = \min_{s \in S_j^1} \frac{\text{price}_s}{\text{match-specific prod}_{js}}$

Arrival rate of supplier matches + match-specific productivity so that $\tilde{c}_j^1 \sim EV(h_1v_1,\zeta)$

2. Buying ω_2 and ω_3 from suppliers ('shirts from yarn & dye')

Firms search for ω_2, ω_3 suppliers. Search efforts h_2, h_3

Cost of production:
$$c_{j\omega_0} = \frac{1}{q_j} w^{\alpha_l^0} \left(\underbrace{\frac{1}{b_j} w^{\alpha_l^1} (\tilde{c}_j^2)^{\alpha_2^1} (\tilde{c}_j^3)^{\alpha_3^1}}_{\sim EV \left((h_2 v_2)^{\alpha_2^1} (h_3 v_3)^{\alpha_3^1}, \zeta \right)} \right)^{1 - \alpha_l^0}$$

$$\tilde{c}_j^2 \sim EV(h_2 v_2, \zeta), \qquad \tilde{c}_j^3 \sim EV(h_3 v_3, \zeta), \qquad \chi(\log b_j) = \frac{\Gamma(1 - \zeta it)}{\Gamma(1 - \alpha_1^1 \zeta it)\Gamma(1 - \alpha_3^1 \zeta it)}$$

Search problem

- Firm born with productivity q_i , make search choice based only on that.
- Profits from sales to households, isoelastic demand, isoelastic search costs:

$$\max_{\{h\}_{i}} \mathbb{E}(\pi_{j}|q_{j},\{h\}_{i}) - \sum_{i=1,2,3} \frac{k}{1+\gamma} h_{i}^{1+\gamma}$$

$$A_{\omega_{0}} q^{\varepsilon-1} \mathbb{E}(c_{j}|q_{j},\{h\}_{i})^{1-\varepsilon} - \sum_{i=1,2,3} \frac{k}{1+\gamma} h_{i}^{1+\gamma}$$

$$A_{\omega_{0}} q^{\varepsilon-1} \left[h_{1} v_{1} + (h_{2} v_{2})^{\alpha_{2}^{1}} (h_{3} v_{3})^{\alpha_{3}^{1}} \right]^{(1-\alpha_{i}^{0}) \frac{\varepsilon-1}{\zeta}} - \sum_{i=1,2,3} \frac{k}{1+\gamma} h_{i}^{1+\gamma}$$

- Nonhomotheticity: return from searching in upstream industries (i.e. 2, 3) is more concave than in downstream industry (1).
 - \Rightarrow Plants born with high q will be more likely to be vertically specialized (use ω_1 rather than ω_2, ω_3). Size \leftrightarrow Span relationship in the data

Nonhomotheticity

- A firm with a higher Hicks-neutral productivity q_i will search more in all markets
- But if the elasticity of substitution across nests is higher than within nests then $\log h_1 \nearrow$ more than $\log h_2 \nearrow$ (or $\log h_3 \nearrow$).
 - Why? When organizational forms are substitutable, x_{ω_1} is more elastic than $(x_{\omega_2}, x_{\omega_3})$ bundle
 - Searching more in upstream industries would increase $(x_{\omega_2}, x_{\omega_3})$ by less, since extra labor also needs to get hired (compared to increase in x_1 from searching more in $\omega 1$)

Proposition

Under the optimal search effort, the probability of using ω_1 is

- · increasing in Hicks-neutral productivity q,
- \cdot increasing in the final consumer's demand for ω_0

Full Model

Demand & entry

Large number of industries ω , each with continuum of firms producing differentiated varieties

Consumption: Representative household has standard nested CES preferences

$$u = \left(\sum_{\omega} \delta_{\omega}^{\frac{1}{\eta}} u_{\omega}^{\frac{\eta-1}{\eta}}\right)^{\frac{\eta}{\eta-1}}, \qquad u_{\omega} = \left(\int_{J_{\omega}} u_{\omega j}^{\frac{\varepsilon-1}{\varepsilon}} dj\right)^{\frac{\varepsilon}{\varepsilon-1}}, \qquad \varepsilon > \eta > 1$$

Market Structure: Firms sell to firms further downstream, and to final consumers.

- Firms price at marginal cost when selling to other firms*
- Firms are monopolistically competitive when selling to final consumers.

Entry: Representative entrepreneur chooses

$$\max \sum_{\omega} J_{\omega} \bar{\pi}_{\omega}$$
 subject to $\left(\sum_{\omega} J_{\omega}^{\frac{1+\beta}{\beta}}\right)^{\frac{r}{1+\beta}} \leq 1$

This nests free entry $(\beta \to \infty)$ and inelastic entry $(\beta = 0)$ as special cases. Assume $\beta < \infty$.

Production: technology menu

Each firm produces using **production modules** that make up a **production tree** (of finite depth):

The firm faces a make-or-buy decision for each non-leaf production module.

Production modules: make-or-buy decision

A firm's **effective unit cost of input** $\tilde{\omega}$ (in production tree) is

$$c_{j\tilde{\omega}} = \min\{c_{j\tilde{\omega}}^{o}, c_{j\tilde{\omega}}^{i}\}$$

- 1. Buy input from supplier
 - · Search effort yields set of potential suppliers, $S_{i\tilde{\omega}}$
 - For each $s \in S_{j\tilde{\omega}}$: price p_s and match-specific productivity z_{js}

$$c_{j\tilde{\omega}}^{o} = \min_{s \in S_{j\tilde{\omega}}} \frac{p_{j}}{Z_{js}}$$

- 2. **Produce in-house** using a production module, $\rho(\tilde{\omega})$
 - Module-specific productivity draw, $b_{io(\tilde{\omega})}$
 - Module prod. fct. is Cobb-Douglas in labor and inputs $\hat{\Omega}_{\rho(\tilde{\omega})}$

$$c_{j\tilde{\omega}}^{i} = \frac{1}{b_{j\rho(\tilde{\omega})}} w^{\alpha_{\ell}^{\rho(\tilde{\omega})}} \prod_{\tilde{\omega} \in \hat{\Omega}_{\rho(\tilde{\omega})}} c_{j\tilde{\omega}}^{\alpha_{\tilde{\omega}}^{\rho(\tilde{\omega})}}$$

Firm's effective unit cost for its output ω is

$$c_{j\omega} = \frac{1}{q_j} w^{\alpha_\ell^{\rho(\omega)}} \prod_{\hat{\omega} \in \hat{\Omega}_{\rho(\omega)}} c_{j\hat{\omega}}^{\alpha_{\hat{\omega}}^{\rho(\omega)}}$$

Production modules: make-or-buy decision

A firm's **effective unit cost of input** $\tilde{\omega}$ (in production tree) is

$$c_{j\tilde{\omega}} = \min\{c_{j\tilde{\omega}}^{o}, c_{j\tilde{\omega}}^{i}\}$$

1. Buy input from supplier

- · Search effort yields set of potential suppliers, $S_{i\tilde{\omega}}$
- For each $\mathbf{s} \in S_{j\vec{\omega}}$: price $p_{\mathbf{s}}$ and match-specific productivity $z_{j\mathbf{s}}$

$$c_{j\tilde{\omega}}^{o} = \min_{s \in S_{j\tilde{\omega}}} \frac{p_{j}}{Z_{js}}$$

- 2. **Produce in-house** using a production module, $\rho(\tilde{\omega})$
 - Module-specific productivity draw, $b_{i\rho(\tilde{\omega})}$
 - Module prod. fct. is Cobb-Douglas in labor and inputs $\hat{\Omega}_{\rho(\tilde{\omega})}$

$$c_{j\bar{\omega}}^{i} = \frac{1}{b_{j\rho(\bar{\omega})}} w^{\alpha_{\ell}^{\rho(\bar{\omega})}} \prod_{\bar{\omega} \in \hat{\Omega}_{\rho(\bar{\omega})}} c_{j\bar{\omega}}^{\alpha_{\bar{\omega}}^{\rho(\bar{\omega})}}$$

Firm's effective unit cost for its output ω is

$$c_{j\omega} = \frac{1}{q_j} w^{\alpha_\ell^{\rho(\omega)}} \prod_{\hat{\omega} \in \hat{\Omega}_{\sigma(\omega)}} c_{j\hat{\omega}}^{\alpha_{\hat{\omega}}^{\rho(\omega)}}$$

Production modules: make-or-buy decision

A firm's **effective unit cost of input** $\tilde{\omega}$ (in production tree) is

$$c_{j\tilde{\omega}} = \min\{c_{j\tilde{\omega}}^{o}, c_{j\tilde{\omega}}^{i}\}$$

- 1. Buy input from supplier
 - · Search effort yields set of potential suppliers, $S_{i\tilde{\omega}}$
 - For each $s \in S_{j\tilde{\omega}}$: price p_s and match-specific productivity z_{js}

$$C_{j\tilde{\omega}}^{o} = \min_{s \in S_{j\tilde{\omega}}} \frac{p_{j}}{z_{js}}$$

- 2. Produce in-house using a production module, $\rho(\tilde{\omega})$
 - Module-specific productivity draw, $b_{i\rho(\tilde{\omega})}$
 - Module prod. fct. is Cobb-Douglas in labor and inputs $\hat{\Omega}_{\rho(\tilde{\omega})}$

$$c^i_{j\tilde{\omega}} = rac{1}{b_{j
ho(ilde{\omega})}} w^{lpha^{
ho(ilde{\omega})}_\ell} \prod_{\hat{\omega} \in \hat{\Omega}_{
ho(ilde{\omega})}} c^{lpha^{
ho(ilde{\omega})}_{j\hat{\omega}}}_{j\hat{\omega}}$$

Firm's effective unit cost for its output ω is

$$c_{j\omega} = \frac{1}{q_j} w^{\alpha_\ell^{\rho(\omega)}} \prod_{\hat{\omega} \in \hat{\Omega}_{\rho(\omega)}} c_{j\hat{\omega}}^{\alpha_{\hat{\omega}}^{\rho(\omega)}}$$

- 1. Firms born with q_j .

 Assume distribution of birth productivities has sufficiently thin tail
- 2. **Search.** Assume isoelastic and additive search cost, then the firm chooses search efforts $\{h_{j\hat{\omega}}\}_{\hat{\omega}}$ to maximize

$$\max_{\{h_{j\hat{\omega}}\}_{\hat{\omega}\in\hat{\Omega}_{\rho(\omega)}^{\infty}} E\left[\pi_{j}|q_{j},\{h_{j\hat{\omega}}\}_{\hat{\omega}}\right] - \sum_{\hat{\omega}} \frac{k}{1+\gamma} h_{j\hat{\omega}}^{1+\gamma}$$

- 1. Firms born with q_j .

 Assume distribution of birth productivities has sufficiently thin tail
- 2. Search. Assume isoelastic and additive search cost, then the firm chooses search efforts $\{h_{j\hat{\omega}}\}_{\hat{\omega}}$ to maximize

$$\max_{\{h_{j\hat{\omega}}\}_{\hat{\omega}\in\hat{\Omega}_{\rho(\omega)}^{\infty}} E\left[\pi_{j}|q_{j},\{h_{j\hat{\omega}}\}_{\hat{\omega}}\right] - \sum_{\hat{\omega}} \frac{k}{1+\gamma} h_{j\hat{\omega}}^{1+\gamma}$$

3. Productivity/supplier draws. If firm j chooses search effort $h_{j\hat{\omega}}$ for input in the production tree, number of supplier with match-specific productivity greater than z is Poisson with mean

$$h_{j\hat{\omega}}m(J_{\hat{\omega}})z^{-\zeta}$$

Log of module/task productivity $b_{j
ho}$ drawn from dist with characteristic function

$$\frac{\Gamma(1-\zeta it)}{\prod_{\hat{\omega}\in\hat{\Omega}_{\rho}}\Gamma(1-\alpha_{\hat{\omega}}^{\rho}\zeta it)}$$

Distribution is backward engineered to help with discrete choice.

4. Make/buy & supplier choice to minimize ex-post cost (⇔ maximize profit)

3. **Productivity/supplier draws.** If firm j chooses search effort $h_{j\hat{\omega}}$ for input in the production tree, number of supplier with match-specific productivity greater than z is Poisson with mean

$$h_{j\hat{\omega}}m(J_{\hat{\omega}})z^{-\zeta}$$

Log of module/task productivity $b_{j
ho}$ drawn from dist with characteristic function

$$\frac{\Gamma(1-\zeta it)}{\prod_{\hat{\omega}\in\hat{\Omega}_{\rho}}\Gamma(1-\alpha_{\hat{\omega}}^{\rho}\zeta it)}$$

Distribution is backward engineered to help with discrete choice.

4. Make/buy & supplier choice to minimize ex-post cost (⇔ maximize profit)

With functional form assumptions

Normalize w=1. Then the **distribution of unit cost of an input** $\tilde{\omega}$ conditional on $\{h_{j\hat{\omega}}\}$ is Weibull:

$$P\left(c_{j\tilde{\omega}}>c|\{h_{j\hat{\omega}}\}\right)=e^{-T_{j\rho(\tilde{\omega})}c^{\zeta}}$$

where

$$T_{j\rho(\tilde{\omega})} = \begin{cases} \prod_{\hat{\omega} \in \hat{\Omega}_{\rho(\tilde{\omega})}} \left(h_{j\hat{\omega}} v_{\hat{\omega}} + T_{j\rho(\hat{\omega})} \right)^{\alpha_{\hat{\omega}}^{\rho}}, & \text{input nodes} \\ \prod_{\hat{\omega} \in \hat{\Omega}_{\rho(\tilde{\omega})}} \left(h_{j\hat{\omega}} v_{\hat{\omega}} \right)^{\alpha_{\hat{\omega}}^{\rho}}, & \text{terminal production modules (leaves)} \end{cases}$$

where $v_{\hat{\omega}} \equiv m(J_{\hat{\omega}}) \int_0^\infty c^{-\zeta} dF_{\hat{\omega}}(c)$ indexes the cost distribution of suppliers.

 \Rightarrow Conditional on requiring input $\tilde{\omega}$, the probability that the firm uses a supplier for it is

$$\frac{h_{j\tilde{\omega}}\mathsf{v}_{\tilde{\omega}}}{h_{j\tilde{\omega}}\mathsf{v}_{\tilde{\omega}}+\mathsf{T}_{j\rho(\tilde{\omega})}}.$$

Demand shocks in ω

Proposition

If δ_{ω} increases (= positive demand shock),

- more entry in industry ω : $J_{\omega} \nearrow$
- the price level in industry ω falls: $p_{\omega} \setminus (\text{and } v_{\omega} \nearrow)$
- For each input $\hat{\omega}$, the probability of buying it (rather than making it) increases.

Demand shocks in ω

Proposition

If δ_{ω} increases (= positive demand shock),

- more entry in industry ω : $J_{\omega} \nearrow$
- the price level in industry ω falls: $p_{\omega} \setminus (\text{and } v_{\omega} \nearrow)$
- For each input $\hat{\omega}$, the probability of buying it (rather than making it) increases.

Intuition:

- (1) $\delta_{\omega} \nearrow \Rightarrow \bar{\pi}_{\omega} \nearrow \Rightarrow J_{\omega}$
- (2) $\delta_{\omega} \nearrow \Rightarrow \bar{\pi}_{\omega} \nearrow \Rightarrow$ search efforts $\nearrow \Rightarrow p_{\omega} \searrow$
- (3) Firms shift search effort toward more downstream suppliers

Demand shocks in upstream industry $\hat{\omega} \in \hat{\Omega}_{ ho(\omega)}$

Proposition

If $\delta_{\hat{\omega}}$ increases (= positive demand shock in the upstream industry), then if γ is sufficiently large (search effort not too elastic):

- · more entry in industry $\hat{\omega}$: $J_{\hat{\omega}} \nearrow$, $v_{\hat{\omega}} \nearrow$
- the fraction of ω firms buying $\hat{\omega}$ increases
- \cdot total sales in industry ω increase

Demand shocks in upstream industry $\hat{\omega} \in \hat{\Omega}_{\rho(\omega)}$

Proposition

If $\delta_{\hat{\omega}}$ increases (= positive demand shock in the upstream industry), then if γ is sufficiently large (search effort not too elastic):

- more entry in industry û: J_û →, v_û →
- the fraction of ω firms buying $\hat{\omega}$ increases
- \cdot total sales in industry ω increase

Intuition:

- (1) As before
 - More matches $m(J_{\hat{\omega}}) \nearrow$
 - firms in $\hat{\omega}$ search more \Rightarrow lower cost
- (2) $v_{\hat{\omega}} \nearrow \text{but } p_{\omega} \searrow$. If γ sufficiently large, $v_{\hat{\omega}} \nearrow \text{dominates for all } q$.
- (3) $v_{\omega} \nearrow$ and $p_{\omega} \searrow$, and demand elastic

Going forward

- Differentiated vs Standardized Inputs (preliminary) empirical patterns driven by use of differentiated inputs
- · Profits from firm-to-firm trade
 - Account explicitly for demand shocks from downstream sectors
 - · What is internalized?
- \cdot Identification of scale economies through h and m

Going forward

- Differentiated vs Standardized Inputs (preliminary) empirical patterns driven by use of differentiated inputs
- · Profits from firm-to-firm trade
 - Account explicitly for demand shocks from downstream sectors
 - · What is internalized?
- Identification of scale economies through h and m

Conclusion:

Indian Microdata suggests

- Internal economies of scale from search
- Possibly external economies of scale through matching process

Overall, try to make progress on quantitative models of growth. How important is "Smithian" growth?

Fact 1: In richer districts, plants are more specialized (shorter vertical span)

Within industry \times year:

Fact 2: Increased vertical specialization positively correlated with state growth

Within plant, over time:

		Dependent variable: Vertical Span					
	(1)	(2)	(3)				
Log GDP/capita _{st}	-0.0552	-0.0647	-0.0741+				
	(0.048)	(0.045)	(0.043)				
Year FE	Yes	Yes	Yes				
Plant FE	Yes	Yes					
5-digit Industry FE		Yes					
Plant × 5-digit Industry FE			Yes				
R^2	0.644	0.720	0.780				
Observations	95727	94754	61073				

Standard errors in parentheses, clustered at the state \times 5-dgt industry level. SP plants only.

 $^{^{+}}$ p < 0.10, * p < 0.05, ** p < 0.01

Fact 3: More specialized plants (shorter span) are larger

Plants with higher sales tend to have shorter vertical span (within industry \times year)

Fact 2: Increased vertical specialization is positively correlated with state growth

Within plant×industry, year:

Fact 4: Sales growth is correlated with increased vertical specialization

	Dep	Dependent variable: Δ log Sales					
	(1)	(2)	(3)	(4)			
Δ Vertical Span	-0.0655** (0.0082)	-0.0445** (0.0087)	-0.0284* (0.013)	-0.0259* (0.011)			
Year FE Product × Year FE Plant FE Plant × Product FE	Yes	Yes	Yes Yes	Yes Yes			
R ² Observations	0.00819 120436	0.149 111244	0.432 83026	0.431 74707			

Changes within plant-products

Standard errors in parentheses, clustered at the state-industry level.

 $^{^{+}}$ p < 0.10, * p < 0.05, ** p < 0.01

Details on tariff construction

We use UNCTAD tariffs, complemented by hand-digitized effective tariff rates for early years of the liberalization (1990-1996).

- Exclude agricultural tariffs (which changed in response to domestic shocks)
- Exclude mechanical & electrical machinery (HS headings 84, 85): long list of exceptions

Plants with shorter span are larger: Details

		Dependent variable: Log Sales					
	(1)	(2)	(3)	(4)	(5)		
Vertical Span	-0.719** (0.024)	-0.670** (0.023)	-0.431** (0.034)	-0.432** (0.034)	-0.193** (0.015)		
Age				0.00616** (0.0012)	-0.00314** (0.00068)		
Log Employment					1.067** (0.015)		
Year FE	Yes	Yes	Yes	Yes	Yes		
5-digit Industry FE	Yes	Yes					
District FE		Yes					
$Industry \times District \times Year FE$			Yes	Yes	Yes		
R^2	0.394	0.440	0.700	0.701	0.859		
Observations	353659	295094	140610	136831	136608		

Standard errors in parentheses, clustered at the 5-dgt industry level.

 $^{^{+}}$ p < 0.10, * p < 0.05, ** p < 0.01

Import Tariffs, India, 1990-2014

Changes since 1990: tariffs and sales

		Dep. var.: $oldsymbol{\Delta}_{1990}^t$ log Sales
	(1)	(2)
$\Delta_{1990}^t \log(1+ au_{\omega t}^{ ext{output}})$	1.302 ⁺ (0.75)	1.533 ⁺ (0.79)
$\Delta_{1990}^{t} \log(1 + \bar{ au}_{\omega t}^{input})$		-1.188 (0.77)
Year FE	Yes	Yes
R ² Observations	0.0852 2376	0.0903 2376

Standard errors in parentheses, clustered at the state × industry level.

 $^{^{+}}$ p < 0.10, * p < 0.05, ** p < 0.01

Changes since 1990: vertical span and demand

	Depende	nt variable: Δ	t ₁₉₉₀ Vertical Span
	(1)	(2)	(3)
Δ^t_{1990} log Sales	-0.147 ⁺ (0.084)		-0.237 ⁺ (0.12)
$\Delta_{1990}^t \log(1+ar{ au}_{it}^{ ext{input}})$		0.194 (0.24)	1.421 ⁺ (0.77)
$\Delta \sum_i lpha_i \log(1+ar{ au}_{it}^{ ext{input}}) (ext{distance}_{\omega i}-\overline{ ext{span}}_j)$			-0.747 (0.75)
$\Delta \sum_i lpha_i \log(1+ar{ au}_{it}^{ ext{input}}) \overline{ ext{span}}_j$			-1.031 ⁺ (0.62)
Year FE	Yes	Yes	Yes
R ² Observations	-0.194 2179	-0.255 2179	-0.498 2128

Standard errors in parentheses, clustered at the state \times industry level.

 $\Delta_{\rm 1990}^{t}$ log sales is instrumented by the change in the log output tariff since 1990.

 $^{^{+}}$ p < 0.10, * p < 0.05, ** p < 0.01

Demand shocks affect vertical specialization

	Dependent variable: Δ Vertical Span						
	(1)	(2)	(3)	(4)	(5)	(6)	
Δ log Sales	-0.0158** (0.0020)	-0.0160** (0.0020)	-0.0165** (0.0024)	-0.0301* (0.013)	-0.0457 ⁺ (0.025)	-0.0652 (0.052)	
$\Delta \log(1+ar{ au}_{j\omega t}^{ ext{input}})$		-0.0173 (0.020)	0.00538 (0.047)		-0.0354 (0.044)	-0.0188 (0.051)	
$\Delta \sum_i lpha_i \log(1 + ar{ au}_{it}^{ ext{input}}) (ext{distance}_{\omega i} - \overline{ ext{span}}_j)$			-0.00198 (0.087)			-0.0731 (0.14)	
$\Delta \sum_i lpha_i \log(1 + ar{ au}_{it}^{ ext{input}}) \overline{ ext{span}}_j$			-0.00455 (0.041)			-0.0478 (0.096)	
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	
Estimator	OLS	OLS	OLS	IV	IV	IV	
R ² Observations	0.00207 123666	0.00208 123666	0.00229 94795	0.000325 90115	-0.00220 90115	-0.00774 89301	

Standard errors in parentheses, clustered at the state-industry level. $^+$ p < 0.10, * p < 0.05, ** p < 0.01

Columns (3), (4) instrument Δ log sales by the change in the log output tariff.

Vertical span and demand, generated instruments à la Wooldridge (2002, Ch 6)

	Depender	nt variable: Ve	rtical Span
	(1)	(2)	(3)
Log Sales	-0.0908** (0.021)	-0.0839** (0.020)	-0.0931** (0.021)
$\log(1+ar{ au}_{j\omega t}^{ ext{input}})$		-0.0931* (0.039)	-0.0265 (0.057)
$\sum_i lpha_i \log(1+ au_{it}^{input})\overline{span}_j$			-0.133* (0.064)
$\sum_i \alpha_i \log(1 + \overline{ au}_{it}^{ ext{input}}) (ext{distance}_{\omega i} - \overline{ ext{span}}_j)$			-0.203 ⁺ (0.11)
Year FE Plant × Product FE	Yes Yes	Yes Yes	Yes Yes
Estimator	G-IV	G-IV	G-IV
R ² Observations	-0.0211 138204	-0.0168 138204	-0.0216 137060

Standard errors in parentheses, clustered at the state-industry level.

 $^{^{+}}$ p < 0.10, * p < 0.05, ** p < 0.01

Demand $\nearrow \Rightarrow$ firms reduce the actual number of inputs

	Dependent variable: # Inputs					
	(1)	(2)	(3)	(4)		
Log Sales	0.0477** (0.0033)	0.0479** (0.0032)	-1.321* (0.64)	-0.674* (0.34)		
$\log(1+\bar{\tau}_{j\omega t}^{\rm input})$		-0.244** (0.086)		-0.369** (0.10)		
Year FE Plant × Product FE	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
Estimator	OLS	OLS	IV	IV		
R ² Observations	0.871 188868	0.872 188803	-6.543 138938	-1.816 138898		

Changes within plant-products

Standard errors in parentheses, clustered at the state-industry level.

 $^{^{+}}$ p < 0.10, * p < 0.05, ** p < 0.01

Firms are more likely to adopt inputs when faced with a cost decrease

	Dependent var	Dependent variable: Input Used Dummy 1($X_{j\hat{\omega}t}>0$)				
	(1)	(2)				
$\log(1+ au_{it})$	-0.0506** (0.0067)	-0.0373** (0.0071)				
Year FE Plant × Input FE Plant × Product FE	Yes Yes	Yes Yes Yes				
R ² Observations	0.337 2460831	0.361 2454899				

Standard errors in parentheses.

 $^{^{+}}$ p < 0.10, * p < 0.05, ** p < 0.01

Supply and demand shifters determine entry

	Dependent	variable: log Producers $ J _{d\omega t}$
	(1)	(2)
$\log(1+ar{ au}_{it}^{ ext{input}})$	-0.108** (0.025)	-0.0496** (0.015)
$\log(1+ au_{it}^{ ext{output}})$	0.186** (0.021)	0.251** (0.013)
Year FE	Yes	
State FE	Yes	
Industry FE	Yes	
State × Year FE		Yes
State × Industry FE		Yes
R ²	0.481	0.844
Observations	548180	537013

Standard errors in parentheses.

The left-hand side is the log number of producers of a good ω at time t in state d.

⁺ *p* < 0.10, * *p* < 0.05, ** *p* < 0.01

Firms reduce the effective number of inputs when demand \nearrow

	Dependent variable: Inverse Input HHI					
	(1)	(2)	(3)	(4)		
Log Sales	0.0101 (0.0072)	0.0104 (0.0069)	-1.888 ⁺ (1.03)	-1.055 ⁺ (0.59)		
$\log(1+\bar{\tau}_{j\omega t}^{\rm input})$		-0.411 ⁺ (0.25)		-0.498* (0.24)		
Year FE Plant × Product FE	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
Estimator	OLS	OLS	IV	IV		
R ² Observations	0.807 192809	0.808 192809	-3.437 142270	-1.076 142270		

Changes within plant-products

Standard errors in parentheses, clustered at the state-industry level.

Effective # of inputs measured by the inverse of the HHI of cost shares. Results similar for

⁺ *p* < 0.10, * *p* < 0.05, ** *p* < 0.01

Sample of 1990 plants: upstream industry size and sales

		Dependent variable: log Sales					
	(1)	(2)	(3)	(4)	(5)	(6)	
Avg. log #Producers in Upstream Ind.	0.0655** (0.013)	0.0560** (0.018)	0.0551** (0.018)	0.0201 (0.043)	0.119** (0.044)	0.115** (0.044)	
$\log(1+ar{ au}_{j\omega t}^{ ext{input}})$			0.540* (0.26)			0.519* (0.26)	
Year FE	Yes			Yes			
Industry × Year FE		Yes	Yes		Yes	Yes	
Plant × Industry FE	Yes	Yes	Yes	Yes	Yes	Yes	
Estimator	OLS	OLS	OLS	IV	IV	IV	
R ² Observations	0.916 13683	0.943 9768	0.943 9757	0.00262 13683	-0.000638 9768	0.000690 9757	

Standard errors in parentheses, clustered at the industry-year level.

Sample: all SP plants observed in 1990

(except (3) and (6) which further condition on t < 2000)

 $^{^{+}}$ p < 0.10, * p < 0.05, ** p < 0.01

Upstream industry size and sales

	Dependent variable: log Sales						
	(1)	(2)	(3)	(4)	(5)	(6)	
Avg. log Sales in Upstream Ind.	0.00367** (0.00034)	0.00251** (0.00038)	0.00251** (0.00038)	0.00642* (0.0029)	0.00930** (0.0026)	0.00936** (0.0026)	
$\log(1+ au_{j\omega t}^{ ext{input}})$			0.0241 (0.085)			0.0193 (0.086)	
Year FE	Yes			Yes			
Industry × Year FE		Yes	Yes		Yes	Yes	
Plant × Industry FE	Yes	Yes	Yes	Yes	Yes	Yes	
Estimator	OLS	OLS	OLS	IV	IV	IV	
R^2	0.942	0.952	0.952	0.000572	-0.00304	-0.00311	
Observations	215805	199039	198727	215805	199039	198727	

Standard errors in parentheses, clustered at the industry-year level.

⁺ *p* < 0.10, * *p* < 0.05, ** *p* < 0.01

Fact 4: Sales growth is correlated with increased vertical specialization

	Dependent variable: Δ log Sales			
	(1)	(2)	(3)	(4)
△ Vertical Span	-0.0693** (0.0085)	-0.0668** (0.0085)	-0.0577** (0.011)	-0.0546** (0.011)
Δ R-Share in Materials	-0.0242* (0.012)	-0.0247* (0.012)	-0.0270 ⁺ (0.015)	-0.0346* (0.014)
Δ Vertical Span $ imes \Delta$ R-Share in Materials	-0.0359* (0.016)	-0.0408* (0.016)	-0.0549* (0.025)	-0.0544* (0.023)
Constant	0.194** (0.0046)	0.194** (0.0025)	0.181** (0.0015)	0.171** (0.00030)
Year FE Product FE	Yes	Yes Yes	Yes	Yes
Plant FE Plant × Product FE			Yes	Yes
R ² Observations	0.00825 116199	0.0409 115643	0.305 89440	0.314 80377

Unit Costs and Tariff changes

	Dependent variable: $oldsymbol{\Delta}_{1990}^t$ log Unit Cost		
	(1)	(2)	
$\Delta_{1990}^t \log(1+ au_{it}^{ ext{output}})$	-0.789** (0.10)	-0.949** (0.17)	
$\Delta_{1990}^t \log(1+ar{ au}_{j\omega t}^{ ext{input}})$		0.226 (0.17)	
Year FE	Yes	Yes	
R ² Observations	0.0566 920	0.0583 916	

Standard errors in parentheses, clustered at the state \times industry level.

⁺ *p* < 0.10, * *p* < 0.05, ** *p* < 0.01

Generalizations

Extreme value math extends to any finite "production tree"

- · Any (finite) number of inputs in each stage
- · Any (finite) depth of the tree

Conditional on search effort choices, the distributions of input unit costs are EV

Search choices depend on Hicks-neutral productivity and upstream cost distributions

 \Rightarrow solve search problem recursively starting with most upstream (leaf) nodes

Full Model:

- \cdot (Imperfectly) elastic entry into industries ω on a large "production tree"
- Positive profits from sales to households, marginal cost pricing to firms further downstream
- Firms born with Hicks-neutral q. Increasing returns to scale through input search.
- Potentially network economies through arrival rate of draws also depending on upstream sector characteristics.

Discrete Choice Math

 \cdot Lowest cost way of acquiring good $\omega-1$

$$\min \left\{ \min_{s \in S_1} \frac{p_s}{z_s} , \frac{1}{b_2} \min_{s \in S_2} w^{1-\alpha} \left(\frac{p_s}{z_s} \right)^{\alpha} \right\}$$

• Arrival of suppliers with $z_{\rm s}>z$ is Poisson with arrival rate $\propto z^{-\zeta}$

$$\min_{s \in S_1} \frac{p_s}{z_s} \sim Weibull(scale_1, \zeta)$$

$$\min_{s \in S_2} w^{1-\alpha} \left(\frac{p_s}{z_s}\right)^{\alpha} \sim Weibull\left(scale_2, \frac{\zeta}{\alpha}\right)$$
(1)

(3)

Discrete Choice Math

 \cdot Lowest cost way of acquiring good $\omega-1$

$$\min \left\{ \min_{s \in S_1} \frac{p_s}{z_s} , \frac{1}{b_2} \min_{s \in S_2} w^{1-\alpha} \left(\frac{p_s}{z_s} \right)^{\alpha} \right\}$$

- Arrival of suppliers with $z_{\rm s}>z$ is Poisson with arrival rate $\propto z^{-\zeta}$

$$\min_{s \in S_1} \frac{p_s}{z_s} \sim Weibull(scale_1, \zeta) \tag{1}$$

$$\min_{s \in S_2} w^{1-\alpha} \left(\frac{p_s}{z_s} \right)^{\alpha} \sim Weibull \left(scale_2, \frac{\zeta}{\alpha} \right) \tag{2}$$

$$\frac{1}{b_2} \min_{s \in S_2} w^{1-\alpha} \left(\frac{p_s}{z_s} \right)^{\alpha} \sim Weibull(scale_3, \zeta)$$
 (3)

· Follows from:

 $Z \sim \text{standard exponential}, \ Y \sim \alpha \text{-Stable} \qquad \Rightarrow \qquad (Z/Y)^{\alpha} \sim Z$

Nested CES Example

Imagine the production function was a Nested CES:

$$y_{j} = q \left\{ (A_{1}h_{1}x_{1})^{\frac{\eta-1}{\eta}} + \left[(A_{0}l)^{\frac{\phi-1}{\phi}} + (A_{2}h_{2}x_{2})^{\frac{\phi-1}{\phi}} \right]^{\frac{\phi}{\phi-1}\frac{\eta-1}{\eta}} \right\}^{\frac{\eta}{\eta-1}}$$

Proposition

If
$$\gamma \geq \eta - 2$$
 and $\gamma \geq \phi - 2$, then

$$\frac{d \ln h_1}{d \ln q} > \frac{d \ln h_2}{d \ln q} \qquad \textit{iff} \qquad \eta > \phi$$

Our setting is a special case with $\eta \to \infty$ and $\phi \to 1$.

Where does the nonhomotheticity come from?

• Imagine a production function where search effort is factor-augmenting.

$$\max_{h_1,h_2} \delta g \left\{ C \left(w, \frac{p_1}{h_1}, \frac{p_2}{h_2} \right) \right\} - \frac{h_1^{1+\gamma}}{1+\gamma} - \frac{h_2^{1+\gamma}}{1+\gamma}$$

• Levels of optimal search effort are determined by cost shares:

$$0 = -\delta g' \frac{p_i}{h_i^2} C_i \left(w, \frac{p_1}{h_1}, \frac{p_2}{h_2} \right) - h_i^{\gamma}$$

- Relative elasticity of h_1 vs h_2 is therefore determined by relative *elasticity* of cost shares ... and these are encoded in the Morishima elasticities of substitution σ_{21} , σ_{12}
- If γ sufficiently large, $d \log h_1/d \log q > d \log h_2/d \log q$ iff $\sigma_{21} > \sigma_{12}$.
- In particular that's satisfied when there is perfect substitutability between a nested and non-nested production function:

$$y_j = \begin{cases} q_j f(l_{j0}, x_{j1}) & \text{or} \\ q_j f(l_{j0}, g(l_{j1}, x_{j2})) \end{cases}$$

(assuming q is imperfectly substitutable...)

