Variant 1. 2016-12-27. Please, don't forget to write you variant number. Sections A and B will make up 60% and 40% of the exam grade, respectively. Total duration of the exam is 120 min. Good luck! :)

SECTION A

- 1. Find the second order Taylor expansion of the function $f(x,y) = \sin(e^{2x} e^{3y})$ at a point x = 0, y = 0.
- 2. Find the limit

$$\lim_{x \to 0, y \to 0} \frac{x^2 y^2}{x^2 + 3y^8}$$

- 3. The function f is defined by $f(x,y) = x^3 + 5xy^2$. Consider the graph G of the function f
 - (a) Find a vector that is orthogonal to the surface of G at the x = 1, y = 1.
 - (b) Find a vector that is parallel to the surface of G at the x = 1, y = 1.
- 4. Using Lagrange multiplier method find and classify the constrained extrema of f(x, y, z) = 2x+3y+9z subject to $x^2 + y^2 + z^2 = 1$.
- 5. Consider the sets $B_n = (-1/n, (n+1)/n)$, and the set $A = \bigcap_{n=1}^{\infty} B_n$.
 - (a) Is the set A bounded? Open? Closed? Compact? Convex?
 - (b) Sketch the set $A \times A$.
- 6. Find the local maxima of the function $f(x,y) = (12-x)x\sin y + x^2\sin y\cos y$. Check whether these local maxima are the global ones.

SECTION B

- 7. Let $u(c_t)$ be utility function of consumption c_t at time t which is discrete, $t \in \mathbb{N}$, $(\mathbb{N} \text{set of natural numbers})$. Function u is continuously differentiable and strictly concave for c > 0, u(0) = 0, u'(c) > 0, $\lim_{c \to 0+} u'(c) = +\infty$.
 - (a) (5 points) Consider maximization problem: $\sum_{t=1}^{T} u(c_t) \to \max$ subject to $\sum_{t=1}^{T} c_t = s$, $c_t \ge 0$, where the parameter s is positive. Let T = 2. Show that if (c_1^*, c_2^*) is the optimal bundle then $c_1^* = c_2^*$.
 - (b) (7 points) Generalize this result for any natural T. You may refer to the Lagrange method.
 - (c) (8 points) Let $(c_1^*, c_2^*, c_3^*, \dots, c_T^*)$ be the optimal bundle. Find the limit of $\sum_{t=1}^T u(c_t^*)$ as $T \to \infty$ or show that it does not exist.
- 8. In the method of least squares the straight line a + bx is fit to the data $\{(x_i, y_i), i \in 1, 2, ..., n\}$, by minimizing the sum $S = \sum_{i=1}^{n} (y_i (a + bx_i))^2$ with respect to a and b.
 - (a) (15 points) Using first-order conditions find optimal a and b. Under what conditions does the solution for a and b exist?

Hint: you may find Cauchy-Schwartz inequality useful here.

Variant 2. 2016-12-27. Please, don't forget to write you variant number. Sections A and B will make up 60% and 40% of the exam grade, respectively. Total duration of the exam is 120 min. Good luck! :)

SECTION A

- 1. Find the second order Taylor expansion of the function $f(x,y) = \sin(e^{3x} e^{3y})$ at a point x = 0, y = 0.
- 2. Find the limit

$$\lim_{x \to 0, y \to 0} \frac{x^2 y^2}{x^2 + 5y^8}$$

- 3. The function f is defined by $f(x,y) = x^3 + 2xy^2$. Consider the graph G of the function f
 - (a) Find a vector that is orthogonal to the surface of G at the x = 1, y = 1.
 - (b) Find a vector that is parallel to the surface of G at the x = 1, y = 1.
- 4. Using Lagrange multiplier method find and classify the constrained extrema of f(x, y, z) = 2x+3y+3z subject to $x^2 + y^2 + z^2 = 1$.
- 5. Consider the sets $B_n = (-2/n, (n+2)/n)$, and the set $A = \bigcap_{n=1}^{\infty} B_n$.
 - (a) Is the set A bounded? Open? Closed? Compact? Convex?
 - (b) Sketch the set $A \times A$.
- 6. Find the local maxima of the function $f(x,y) = (12-x)x\sin y + x^2\sin y\cos y$. Check whether these local maxima are the global ones.

SECTION B

- 7. Let $u(c_t)$ be utility function of consumption c_t at time t which is discrete, $t \in \mathbb{N}$, $(\mathbb{N}$ set of natural numbers). Function u is continuously differentiable and strictly concave for c > 0, u(0) = 0, u'(c) > 0, $\lim_{c \to 0+} u'(c) = +\infty$.
 - (a) (5 points) Consider maximization problem: $\sum_{t=1}^{T} u(c_t) \to \max$ subject to $\sum_{t=1}^{T} c_t = s$, $c_t \ge 0$, where the parameter s is positive. Let T = 2. Show that if (c_1^*, c_2^*) is the optimal bundle then $c_1^* = c_2^*$.
 - (b) (7 points) Generalize this result for any natural T. You may refer to the Lagrange method.
 - (c) (8 points) Let $(c_1^*, c_2^*, c_3^*, \dots, c_T^*)$ be the optimal bundle. Find the limit of $\sum_{t=1}^T u(c_t^*)$ as $T \to \infty$ or show that it does not exist.
- 8. In the method of least squares the straight line a + bx is fit to the data $\{(x_i, y_i), i \in 1, 2, ..., n\}$, by minimizing the sum $S = \sum_{i=1}^{n} (y_i (a + bx_i))^2$ with respect to a and b.
 - (a) (15 points) Using first-order conditions find optimal a and b. Under what conditions does the solution for a and b exist?

Hint: you may find Cauchy-Schwartz inequality useful here.

Variant 3. 2016-12-27. Please, don't forget to write you variant number. Sections A and B will make up 60% and 40% of the exam grade, respectively. Total duration of the exam is 120 min. Good luck! :)

SECTION A

- 1. Find the second order Taylor expansion of the function $f(x,y) = \sin(e^{4x} e^{3y})$ at a point x = 0, y = 0.
- 2. Find the limit

$$\lim_{x \to 0, y \to 0} \frac{x^2 y^2}{x^2 + 8y^8}$$

- 3. The function f is defined by $f(x,y) = x^3 + 3xy^2$. Consider the graph G of the function f
 - (a) Find a vector that is orthogonal to the surface of G at the x = 1, y = 1.
 - (b) Find a vector that is parallel to the surface of G at the x = 1, y = 1.
- 4. Using Lagrange multiplier method find and classify the constrained extrema of f(x, y, z) = 2x+3y+4z subject to $x^2 + y^2 + z^2 = 1$.
- 5. Consider the sets $B_n = (-3/n, (n+3)/n)$, and the set $A = \bigcap_{n=1}^{\infty} B_n$.
 - (a) Is the set A bounded? Open? Closed? Compact? Convex?
 - (b) Sketch the set $A \times A$.
- 6. Find the local maxima of the function $f(x,y) = (12-x)x\sin y + x^2\sin y\cos y$. Check whether these local maxima are the global ones.

SECTION B

- 7. Let $u(c_t)$ be utility function of consumption c_t at time t which is discrete, $t \in \mathbb{N}$, $(\mathbb{N} \text{set of natural numbers})$. Function u is continuously differentiable and strictly concave for c > 0, u(0) = 0, u'(c) > 0, $\lim_{c \to 0+} u'(c) = +\infty$.
 - (a) (5 points) Consider maximization problem: $\sum_{t=1}^{T} u(c_t) \to \max$ subject to $\sum_{t=1}^{T} c_t = s$, $c_t \ge 0$, where the parameter s is positive. Let T = 2. Show that if (c_1^*, c_2^*) is the optimal bundle then $c_1^* = c_2^*$.
 - (b) (7 points) Generalize this result for any natural T. You may refer to the Lagrange method.
 - (c) (8 points) Let $(c_1^*, c_2^*, c_3^*, \dots, c_T^*)$ be the optimal bundle. Find the limit of $\sum_{t=1}^T u(c_t^*)$ as $T \to \infty$ or show that it does not exist.
- 8. In the method of least squares the straight line a + bx is fit to the data $\{(x_i, y_i), i \in 1, 2, ..., n\}$, by minimizing the sum $S = \sum_{i=1}^{n} (y_i (a + bx_i))^2$ with respect to a and b.
 - (a) (15 points) Using first-order conditions find optimal a and b. Under what conditions does the solution for a and b exist?

Hint: you may find Cauchy-Schwartz inequality useful here.

Variant 4. 2016-12-27. Please, don't forget to write you variant number. Sections A and B will make up 60% and 40% of the exam grade, respectively. Total duration of the exam is 120 min. Good luck! :)

SECTION A

- 1. Find the second order Taylor expansion of the function $f(x,y) = \sin(e^{5x} e^{3y})$ at a point x = 0, y = 0.
- 2. Find the limit

$$\lim_{x \to 0, y \to 0} \frac{x^2 y^2}{x^2 + 6y^8}$$

- 3. The function f is defined by $f(x,y) = x^3 + 4xy^2$. Consider the graph G of the function f
 - (a) Find a vector that is orthogonal to the surface of G at the x = 1, y = 1.
 - (b) Find a vector that is parallel to the surface of G at the x = 1, y = 1.
- 4. Using Lagrange multiplier method find and classify the constrained extrema of f(x, y, z) = 2x+3y+5z subject to $x^2 + y^2 + z^2 = 1$.
- 5. Consider the sets $B_n = (-4/n, (n+4)/n)$, and the set $A = \bigcap_{n=1}^{\infty} B_n$.
 - (a) Is the set A bounded? Open? Closed? Compact? Convex?
 - (b) Sketch the set $A \times A$.
- 6. Find the local maxima of the function $f(x,y) = (12-x)x\sin y + x^2\sin y\cos y$. Check whether these local maxima are the global ones.

SECTION B

- 7. Let $u(c_t)$ be utility function of consumption c_t at time t which is discrete, $t \in \mathbb{N}$, $(\mathbb{N}$ set of natural numbers). Function u is continuously differentiable and strictly concave for c > 0, u(0) = 0, u'(c) > 0, $\lim_{c \to 0+} u'(c) = +\infty$.
 - (a) (5 points) Consider maximization problem: $\sum_{t=1}^{T} u(c_t) \to \max$ subject to $\sum_{t=1}^{T} c_t = s$, $c_t \ge 0$, where the parameter s is positive. Let T = 2. Show that if (c_1^*, c_2^*) is the optimal bundle then $c_1^* = c_2^*$.
 - (b) (7 points) Generalize this result for any natural T. You may refer to the Lagrange method.
 - (c) (8 points) Let $(c_1^*, c_2^*, c_3^*, \dots, c_T^*)$ be the optimal bundle. Find the limit of $\sum_{t=1}^T u(c_t^*)$ as $T \to \infty$ or show that it does not exist.
- 8. In the method of least squares the straight line a + bx is fit to the data $\{(x_i, y_i), i \in 1, 2, ..., n\}$, by minimizing the sum $S = \sum_{i=1}^{n} (y_i (a + bx_i))^2$ with respect to a and b.
 - (a) (15 points) Using first-order conditions find optimal a and b. Under what conditions does the solution for a and b exist?

Hint: you may find Cauchy-Schwartz inequality useful here.