

Estimating $ZZ\to ll\nu\nu$ background in the $ll+E_T^{miss}$ final state using $Z\gamma\to ll\gamma$ data

A Thesis

submitted to
Indian Institue of Science Education and Research, Pune
in partial fulfillment of the requirements for the
BS-MS Dual Degree Programme

by

Mangesh Sonawane

Registration Number: 20121083

Indian Institute of Science Education and Research, Pune Dr. Homi Bhabha Road,
Pashan, Pune 411008, INDIA

Conducted at : DESY Notkestraße 85, 22607, Hamburg Germany

Supervisor: Dr. Beate Heinemann ©Mangesh Sonawane 2018 All rights reserved

Certificate

This is to certify that this dissertation, entitled "Estimating $ZZ \to ll\nu\nu$ background in the $ll + E_T^{miss}$ final status using $Z\gamma \to ll\gamma$ data", submitted towards the partial fulfilment of the BS-MS dual degree programme at the Indian Institute of Science Education and Research (IISER), Pune, represents the work carried out by Mangesh Sonawane at the Deutsches Elektronen-Synchrotron (DESY), Hamburg, under the supervision of Dr. Beate Heinemann, Professor of Experimental Particle Physics at the Institute of Physics, University of Freiburg, during the academic year 2017-2018.

Mangesh Sonawane

Dr. Beate Heinemann

Committee:

Dr. Beate Heinemann Dr. Seema Sharma

onawane, my mentors, Dr. Sourabh Dube and IISER, without whose timely advice

Declaration

I hereby declare that the matter containined within the thesis entitled "Estimating $ZZ \to ll\nu\nu$ background in the $ll + E_T^{miss}$ final status using $Z\gamma \to ll\gamma$ data", contains the results of the work carried out by me at the Deutsches Elektronen-Synchrotron (DESY) Hamburg, under the supervision of Dr. Beate Heinemann, and the same has not been submitted elsewhere for any other degree.

Mangesh Sonawane

Dr. Beate Heinemann

Committee:

Dr. Beate Heinemann Dr. Seema Sharma

Acknowledgements

I would like to express my deepest gratitude for Dr. Beate Heinemann for her guidance and patient mentoring. It's not just technical skills that I have acquired under her supervision, but also an understanding of how a physicist approaches the subject and tackles the inevitable problems that surface.

 \langle placeholder \rangle

Abstract

In the search for Dark Matter (DM) at the LHC, SM particles are produced in association with DM particles, which are invisible as they don't interact with the detector. Thus events with large imbalance in transverse momentum are of interest. One such signature is $ll + E_T^{miss}$. The dominant background contributing to the search for DM in the $ll + E_T^{miss}$ is $ZZ \to ll\nu\nu$. Currently, this background is determined using Monte Carlo simulation, with an uncertainty of $\approx 10\%$ [1]. The goal of this study is to establish a data driven method to estimate this background, and reduce the uncertainty. Using $Z\gamma \to ll\gamma$, which is a process with low backgrounds and has a high $BR*\sigma$, it is possible to estimate the $ZZ \to ll\nu\nu$ contribution. In regions where $p_T(\gamma) \gg M_Z$, the two processes are kinematically similar. They have the same production mechanisms, but differ due to the photon and Z boson couplings to the quarks being different, as well as the difference in mass (photons are massless, while Z bosons are massive). Introducing a transfer factor R as the ratio $\sigma(ZZ)/\sigma(Z\gamma)$ which is determined from simulation, the contribution of $ZZ \to ll\nu\nu$ to the background can be estimated from $Z\gamma \to ll\gamma$ data. The uncertainty on the prediction of R due to theoretical aspects is estimated in this work.

Contents

Abstract		i
1	Introduction	2
2	The Large Hadron Collider	4
3	Analysis	6

Chapter 1

Introduction

Chapter 2

The Large Hadron Collider

Chapter 3

Analysis

Bibliography

[1] Search for an invisibly decaying Higgs boson or dark matter candidates produced in association with a Z boson in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

ATLAS Collaboration

arXiv:1708.09624

[2] Using γ + jets to calibrate the Standard Model $Z(\rightarrow \nu\nu)$ + jets background to new processes at the LHC

S. Ask, M. A. Parker, T. Sandoval, M. E. Shea, W. J. Stirling Cavendish Laboratory, University of Cambridge, CB3 0HE, UK; 2011 [arXiv:1107.2803]

- [3] 2017 Review of Particle Physics Particle Listings
 C. Patrignani et al. (Particle Data Group)
 Chin. Phys. C, 40, 100001 (2016)
- [4] Monte Carlo for FeMtobarn processes (MCFM) v8.0 User Manual John Campbell, Keith Ellis, Walter Giele, Ciaran Williams https://mcfm.fnal.gov/
- [5] New parton distribution functions from a global analysis of quantum chromodynamics Sayipjamal Dulat, Tie Jiun Hou, Jun Gao, Marco Guzzi, Joey Huston, P. Nadolsky, Jon Pumplin, Carl Schmidt, Daniel Stump, C. P. Yuan arXiv:1506.07443
- [6] PDF4LHC recommendations for LHC Run II [arXiv:1510.03865]
- [7] Parton distributions in the LHC era: MMHT 2014 PDFs
 L. A. Harland-Lang, A. D. Martin, P. Motylinski, R. S. Thorne arXiv:1412.3989
- [8] Parton distributions for the LHC Run II The NNPDF Collaboration: Richard D. Ball, Valerio Bertone, Stefano Carrazza, Christopher S. Deans, Luigi Del Debbio, Stefano Forte, Alberto Guffanti, Nathan P. Hartland, Jose I. Latorre, Juan Rojo, Maria Ubiali arXiv:1410.8849
- [9] LHAPDF6: parton density access in the LHC precision era Andy Buckley, James Ferrando, Stephen Lloyd, Karl Nordstrom, Ben Page, Martin Ruefenacht, Marek Schoenherr, Graeme Watt arXiv:1412.7420
- [10] Isolated photons in perturbative QCD
 S. Frixione
 Phys. Lett.B429(1998)369-374, hep-ph/9801442