Algebra Autumn 2025 Frank Sottile 29 August 2025

Second Homework

Write your answers neatly, in complete sentences. I highly recommend recopying your work before handing it in. Correct and crisp proofs are greatly appreciated; oftentimes your work can be shortened and made clearer.

The last two problems were partially done in class. This is an opportunity to polish your skills at writing mathematics in a clear and organized manner.

Hand in at the start of class, Thursday 4 September:

- 1. Let G be a group, H be a subgroup of G, and $g \in G$. Prove that gHg^{-1} is a subgroup of G and that it is isomorphic to H.
- 2. Show that a group G cannot be the union of two proper subgroups. Show that the additive group of ordered pairs of integers $\mathbb{Z} \oplus \mathbb{Z}$ is the union of three proper subgroups, by exhibiting three such subgroups.
- 3. Let A, B be groups with elements $a \in A$ and $b \in B$. What is the order of the element $(a, b) \in A \times B$?
- 4. Assume that $G = \{e, a, b, c\}$ is a group with four elements and identity e. Suppose that G has no element of order four. Prove that there is a unique group structure for G and deduce that G is abelian. What is the case if G has an element of order 4?
- 5. Prove that every finitely generated subgroup of the rational numbers \mathbb{Q} is cyclic. Give an example (with proof) of a subgroup of \mathbb{Q} that is not finitely generated.
- 6. Let D_4 be the group under matrix multiplication generated by the real 2×2 matrices $S := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and $R := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Show that D_4 is a nonabelian group of order 8.
 - Let \square be the square with vertices $(\pm 1, \pm 1)$ in \mathbb{R}^2 . Show that D_4 acts on \square , and is its group of symmetries, called the $dihedral\ group$ of order 8.
- 7. Let Q_8 be the group generated by the complex 2×2 matrices $\mathbf{i} := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and $\mathbf{j} := \begin{pmatrix} 0 & \sqrt{-1} & \sqrt{-1} \\ \sqrt{-1} & 0 \end{pmatrix}$. Show that Q_8 is a nonabelian group of order 8. Hint: Observe that $\mathbf{i}\mathbf{j} = \mathbf{j}\mathbf{i}^3$, so that every element of Q_8 has the form $\mathbf{i}^a\mathbf{j}^b$. Note further that $\mathbf{i}^4 = \mathbf{j}^4 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, the identity. This is the quaternion group.
 - Comparing subgroups, or the number of elements of different orders, show that Q_8 is not isomorphic to D_4 .