Positional Encodings and Length Generalization for Generative Transformers

2024-11-22

Li Peng-Hsuan 李朋軒

Agenda

Positional Encodings

→ Transformer, absolute PE, relative PE

No Positional Encodings

→ Generative transformer, NoPE

Length Generalization

→ Out-of-distribution, extrapolation, interpolation

Agenda

Positional Encodings

→ Transformer, absolute PE, relative PE

No Positional Encodings

→ Generative transformer, NoPE

Length Generalization

→ Out-of-distribution, extrapolation, interpolation

Transformer

Transformer: Permutation Equivariant

Transformer: Proportion Equivariant

Transformer: Sequence Modeling

Positional Encodings

APE

- → Encodes <u>Absolute positions</u>
- → Adds to input embedding

RPE

- → Encodes token-token <u>Relative</u> distances
- → Modifies attention weights

Sine Wave APE

Sinusoidal APE: Sine & Cosine Waves

$$PE_a \cdot PE_b = \cos a \cos b + \sin a \sin b = \cos(a - b)$$

Additive RPE

Normal attention score between q, k

$$score(q, k) = q \cdot k$$

T5/Alibi attention score between q@a and k@b

$$score(q, k, a, b) = q \cdot k + f(|a - b|)$$

f: a decreasing function

Rotary RPE (RoPE)

RoPE attention score between q@a and k@b

$$rotate(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

$$score(q, k, a, b) = rotate(a)q \cdot rotate(b)k = q^{T} rotate(a - b)k$$

Positional Encodings

Sinusoidal APE1

$$\Rightarrow \operatorname{score}(\boldsymbol{q}, \boldsymbol{k}, a, b) = \left(\boldsymbol{q} + \begin{pmatrix} \cos a \\ \sin a \end{pmatrix}\right)^T \left(\boldsymbol{k} + \begin{pmatrix} \cos b \\ \sin b \end{pmatrix}\right) = \boldsymbol{q}^T \boldsymbol{k} + \cos(a - b) + \boldsymbol{q}^T \begin{pmatrix} \cos b \\ \sin b \end{pmatrix} + \begin{pmatrix} \cos a \\ \sin a \end{pmatrix}^T \boldsymbol{k}$$

T5² / Alibi³ additive RPE

 \Rightarrow score(q, k, a, b) = $q^T k + f(|a - b|)$, f: a decreasing function

RoPE⁴

$$\Rightarrow \operatorname{score}(\boldsymbol{q}, \boldsymbol{k}, a, b) = \boldsymbol{q}^{T} \begin{pmatrix} \cos(a - b) & -\sin(a - b) \\ \sin(a - b) & \cos(a - b) \end{pmatrix} \boldsymbol{k}$$

[1] Attention Is All You Need.

https://doi.org/10.48550/arXiv.1706.03762

[2] Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer.

https://doi.org/10.48550/arXiv.1910.10683

[3] Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation.

https://doi.org/10.48550/arXiv.2108.12409

[4] RoFormer: Enhanced Transformer with Rotary Position Embedding. https://doi.org/10.48550/arXiv.2104.09864

Agenda

Positional Encodings

→ Transformer, absolute PE, relative PE

No Positional Encodings

→ Generative transformer, NoPE

Length Generalization

→ Out-of-distribution, extrapolation, interpolation

Transformer

Generative Transformer

Generative Transformer

- Prepends a unique *<bos>* token to input sequence
- Only allows backward attention

Also called **G**enerative **P**re-**T**raining (GPT)

No Positional Encodings (NoPE/NoPos)

NoPE attention score between q@a and k@b

$$score(q, k, a, b) = q^T k$$

No Positional Encodings

NoPE attention score between q@a and k@b

$$score(\boldsymbol{q}, \boldsymbol{k}, a, b) = \boldsymbol{q}^T \boldsymbol{k}$$

NoPE

Theorem. Generative transformer with NoPE can encode both absolute and relative positions.

Transformer: Proportion Equivariant

Transformer + NoPE

Transformer + NoPE

In-Distribution Perplexity

Seq Length	256	512	1024	2048
NoPos	14.98	13.82	13.10	12.87
Learned	14.94	13.77	13.05	12.72
Sinusoidal	14.84	13.66	12.93	12.62
ALiBi	14.65	13.37	12.51	12.06

	WikiText-103	The Pile
NoPos	20.97	13.10
Learned	20.42	13.05
Sinusoidal	20.16	12.93
ALiBi	19.71	12.51

Model Size	125M	350M	760M	1.3B
NoPos	22.15	16.87	14.29	13.10
Learned	22.04	16.84	14.21	13.05
Sinusoidal	21.49	16.58	14.04	12.93
ALiBi	19.94	15.66	13.53	12.51

	MLM Perplexity
NoPos	147.18
Learned	4.06
Sinusoidal	4.07
ALiBi	4.00

Absolute Position Inference

Attention Pattern Similarity

Attention Distance Pattern

Normalized Attended Distance (\bar{d})

Normalized Attended Distance (\bar{d})

Normalized Attended Distance (\bar{d})

Agenda

Positional Encodings

→ Transformer, absolute PE, relative PE

No Positional Encodings

→ Generative transformer, NoPE

Length Generalization

→ Out-of-distribution, extrapolation, interpolation

Sequence Lengths

L: max length that has sufficient training sequences

E.g., 3,072

L': max possible sequence length

E.g., 128,000

 $L < l \le L'$: out-of-distribution lengths \rightarrow OOD positional encodings

Generalize to OOD lengths

Negative reasons, L is limited in practice by

Data sparsity

Computation resources

• Positive reasons, large L' is often desirable for it enables

Longer context, more complex instructions, more in-context examples

Longer generation, more reasoning steps

Direct Extrapolation

Direct Extrapolation Performance

Direct Extrapolation Performance

Extrapolation by Interpolation

Extrapolation by Interpolation

Interpolation for RoPE

YaRN*

- Scale rotation wavelengths
- Do not scale high frequency dimensions
- Change scale at each time step
- Finetuned on ~0.1% pretraining data size

Interpolation for RoPE

Agenda

Positional Encodings

→ Transformer, absolute PE, relative PE

No Positional Encodings

→ Generative transformer, NoPE

Length Generalization

→ Out-of-distribution, extrapolation, interpolation