Exercício: ULA em VHDL por Bruno de Carvalho Albertini 24/08/2020

Neste trabalho você irá familiarizar-se com o juiz de HDL usado nas disciplinas de hardware do PCS, descrevendo uma ULA (Unidade Lógica e Aritmética). Este trabalho é um simulado, apesar de serem atribuídas notas elas não contam na disciplina. Leia todo o arquivo até o final antes de enviar sua solução.

Introdução

Um processador pode ser visto como um projeto que utiliza o paradigma de unidade de controle e fluxo de dados. A unidade de controle é responsável pelo ciclo de busca, decodificação, execução e gravação dos dados, ciclo este que rege o funcionamento de um computador de uso geral pela sua característica programável. Já o fluxo de dados é composto por elementos de memória (e.g. banco de registradores), componentes de controle de fluxo (quase sempre combinatórios) e **unidades funcionais**.

O cálculo computacional é realizado nas unidades funcionais, portanto não é exagero afirmar que são os componentes principais de um processador. É possível construir máquinas com um ou até mesmo sem registradores, mas uma máquina sem uma unidade funcional simplesmente não realiza computação alguma.

Como as unidades funcionais são muito comuns, é costume juntar as principais funções computacionais em uma única unidade, que chamamos de ULA (Unidade Lógica e Aritmética). Como o próprio nome diz, uma ULA reune em um único componente operações lógicas (e.g. AND, OR, XOR, etc.) e aritméticas (adição, subtração, divisão, multiplicação, etc.), além de operações de comparação (menor, maior, igual, etc).

Atividades

As operações lógicas de uma ULA são feitas diretamente por portas lógicas. Para fazer um AND entre dois números binários, por exemplo, basta fazer um AND bit a bit. No entanto, as operações aritméticas são um pouco mais complexas e realizadas por unidades internas que realizam a operação desejada. A ULA que iremos construir possui 4 bits nas entradas de dados (representando um número binário em complemento de base) e suporta as operações da Tabela 1.

Sabemos então que a ULA possui efetivamente três unidades funcionais, a saber AND, OR e um somador, além da capacidade de inverter a entrada B antes de realizar qualquer operação. As operações AND, OR e adição são realizadas diretamente pelas unidades corres-

Não se preocupe se não entender alguns conceitos.

ALU, Arithmetic and Logic Unit.

OP	Unidade	Descrição
000	AND	A&B, bit a bit
001	0R	A B, bit a bit
010	adição	A + B
110	subtração	A - B

pondentes. A subtração pode ser obtida invertendo-se B e entrandose com 1 no carry-in, realizando a operação de soma com o complemento de base do número, o que equivale a subtração.

Tabela 1: Operações que podem ser realizadas pela ULA. O campo OP pode ser interpretado como $(Op_2Op_1Op_0)$, onde: Op_2 inverte B e Op_1Op_0 escolhe a função entre: 00:AND, 01:OR, ou 10:+.

Todos os números são interpretados como complemento de 2.

```
entity alu is
  port (
   A, B : in
               bit_vector(3 downto 0);
         : out bit_vector(3 downto o);
               bit_vector(2 downto o);
         : in
                                                  S
    Ζ
         : out bit; -- zero flag
                                              3
                                                        ULA 4-bits
   Ov
         : out bit; -- overflow flag
    Co
         : out bit -- carry out
    );
end entity alu;
```

Listagem 1: Entidade para a ULA

As entradas de dados são A e B, a saída dados é F, e a entrada de controle S seleciona qual operação a ULA realizará. Os sinais de estado são as saídas que indicam que o resultado é zero ou que o resultado é overflow. Além dos sinais de estados, ainda há uma saída de carry. A Figura 1 mostra o símbolo para a ULA e a Listagem 1 a entidade correspondente em VHDL.

Figura 1: Diagrama da ULA.

Se colocar no seletor de operações um valor não especificado na Tabela 1, o resultado é considerado inválido e pode ser qualquer coisa.

Note que não há entrada de carry.

S1A1 Implemente uma ULA seguindo estritamente a entidade fornecida, que suporte as operações de AND e OR. Esta atividade permite até 5 submissões e a nota será a maior nota dentre todas as suas submissões.

Simulado 1, Atividade 1, 5 envios, major nota

Resposta: A resposta correta para este problema está no arquivo alu_andor.vhd. Analise o arquivo com cuidado e envie para o juiz. Para treinar, altere a entidade (e.g. mude o nome da entidade ou de uma das portas de entrada ou saída) e envie novamente. Lembre-se que você só tem 5 chances para acertar o problema, então certifiquese que ao menos uma das suas submissões esteja correta. No pacote que recebeu, há um arquivo chamado alu_andor_tb.vhd que pode ser usado para testar sua ULA localmente usando um simulador (e.g. GHDL). Se achar necessário inclua mais casos de teste. Quando esgotar a quantidade de envios permitida, tente enviar novamente.

O juiz não mostra quantas submissões você ainda tem na interface de envio. então você deve controlar isso.

S1A2 Altere sua ULA para suportar, além das operações já suportadas, a soma e a subtração. Esta atividade permite até 10 submissões

Simulado 1, Atividade 2, 10 envios, última nota

e a nota é a da última submissão.

Resposta: A resposta para este problema está no arquivo (procure no pacote que recebeu) alu_somador.vhd, no entanto ela não está correta e você precisa corrigi-la antes de enviar. Use o testbench fornecido no arquivo alu_somador_tb.vhd para testar sua ULA antes de enviar. Comece enviando o arquivo fornecido e veja a resposta. Depois, encontre e conserte o erro na descrição e envie novamente. Lembrese que a nota é a da última submissão, então envie por último uma solução correta.

O testbench está correto e testa todos os casos possíveis.

S1A3 (Desafio Baby Shark) Altere sua ULA para suportar, além das operações já suportadas, a saída do flag zero, que deve ser alto quando o resultado na saída é zero. Esta atividade permite até 10 submissões e a nota cai de acordo com o número de envios (i.e. seu primeiro envio corresponde à nota atribuída pelo juiz, mas se enviar novamente, sua nota será diminuída proporcionalmente ao número de envios restantes).

Simulado 1, Atividade 3, 10 envios, decaimento linear

Resposta: Este é um desafio, então não foi fornecida uma solução para esta atividade. Você precisa partir da solução anterior e adicionar lógica suficiente para resolver o problema. Para este problema, foi fornecido um testbench (correto e completo) que testa se sua ULA está correta. Note que a cada envio, a nota do juiz é multiplicada proporcionalmente pela quantidade de envios restantes, então se você receber 10 do juiz na quinta submissão, ficará com nota 5 no e-Disciplinas.

Não se preocupe pois a nota não conta na média da disciplina!

S1A4 (Desafio Chuck Norris) Altere sua ULA para suportar, além das operações já suportadas, a saída dos flags restantes, carry-out e overflow, que devem ser altos quando o resultado produz um carryout ou um overflow, respectivamente. Caso aconteça um overfow, o resultado na saída deve condizer com a soma realizada pelo somador, mesmo errada. Esta atividade permite até 10 submissões e a nota é a mais alta.

Simulado 1, Atividade 4, 10 envios, maior nota

Resposta: Este desafio é para quem está se aprofundando na disciplina e não foi fornecida nenhuma resposta ou testbench! Você terá que fazer sua própria solução e sugere-se que faça também seu próprio testbench para testar sua solução antes de enviar para o juiz.

Instruções para Entrega

Para cada atividade deste simulado, há um link específico no e-Disciplinas. Acesse-o somente quando estiver confortável para enviar sua solução. Em cada atividade, você pode enviar apenas um único arquivo codificado em UTF-8. O nome do arquivo não importa, mas sim a descrição VHDL que está dentro. A entidade da implementação está na Listagem 1 e deve ser idêntica na sua solução ou o juiz não irá processar seu arquivo.

Quando acessar o link no e-Disciplinas, o navegador abrirá uma janela para envio do arquivo. Selecione-o e envie para o juiz. Jamais recarregue a página de submissão pois seu navegador pode enviar o arquivo novamente, o que vai ser considerado pelo juiz como um novo envio e pode prejudicar sua nota final. Caso desista do envio, simplesmente feche a janela.

Depois do envio, a página carregará automaticamente o resultado do juiz, quando você poderá fechar a janela. A nota dada pelo juiz é somente para a submissão que acabou de fazer. Sua nota na atividade poderá ser vista no e-Disciplinas e pode diferir da nota dada pelo juiz dependendo da estratégia de atribuição de notas utilizada pelo professor que montou o problema (veja a atividade 3).

Quando estiver elaborando sua solução, lembre-se que a ULA é um componente combinatório, então você não deve usar process. Para todos estes problemas, também não está permitido usar a bibliteca std_logic_1164, a textio e qualquer outra biblioteca não padronizada. Também certifique-se que não imprime nada na saída da simulação.

Atenção: não atualize a página de envio e não envie a partir de conexões instáveis (e.g. móveis) para evitar que seu arquivo chegue corrompido no juiz.

Qualquer editor de código moderno suporta UTF-8 (e.g. Atom, Sublime, Notepad++, etc).

Pode demorar alguns segundos até o juiz processar seu arquivo.