Análisis Espacial y Modelos Estadísticos para el Estudio de Interacciones Humano-Fauna

Instituto de Neuroetología, Universidad Veracruzana

Septiembre 2025

Denise Spaan - Víctor Beltrán Francés

Objetivos del Curso

Conocer herramientas espaciales

Aprender a utilizar plataformas como Google Earth Engine y Google Colab para el procesamiento avanzado de datos geoespaciales.

Implementar técnicas de detección automática

Conocer plataformas para identificar especies mediante IA en datos de cámaras trampa (AddaxAI) y monitoreo acústico (BirdNet).

Aplicar modelos estadísticos en interacciones

Desarrollar análisis de interacciones humano-fauna mediante **GLMM**, modelos de distribución de especies y modelos de ocupación.

Estructura del Curso

Módulo I: Análisis Espaciales

Herramientas principales

- Google Earth Engine: plataforma de análisis geoespacial en la nube
- Google Colab: entorno interactivo para Python/Java/R con recursos computacionales gratuitos
- Bibliotecas espaciales: Geemap, landscapemetrics

Temas centrales

- Acceso y procesamiento de imágenes satelitales
- Cálculo de índices de vegetación y cambio de uso de suelo
- Integración de datos biológicos con capas ambientales

Aplicaciones Prácticas de Análisis Espacial

Fragmentación de hábitats

Análisis de conectividad del paisaje y su impacto en el movimiento de fauna silvestre mediante métricas espaciales avanzadas.

Uso de suelo

Identificación y evaluación de cambios en el uso de suelo de paisajes naturales en procesos de antropización.

Mapeo ecológico y climático

Obtención de datos y visualización espacial de variables ecológicas (índices de vegetación, cobertura forestal) y climáticas (temperatura, precipitación, incendios).

Módulo II: Codificación de Detección de Especies

Tecnologías de monitoreo

- Cámaras trampa: detección visual de vertebrados medianos y grandes
- Monitoreo acústico pasivo: identificación de vocalizaciones de aves, anfibios y mamíferos
- Telemetría y sensores remotos: seguimiento detallado de individuos específicos

Plataformas de IA

- AddaxAI: procesamiento automático de imágenes de cámaras trampa
- BirdNet: identificación de cantos de aves mediante aprendizaje profundo
- Implementación de modelos de detección de libre acceso y personalizados

Flujo de Trabajo para Detección <u>Automática</u>

Recolección de datos

Instalación adecuada de equipos, considerando factores como altura, ángulo, cobertura y duración del muestreo según las especies objetivo.

Preprocesamiento

Organización, filtrado y preparación de archivos para su análisis mediante herramientas como AddaxAI y BirdNet.

Detección automática

Aplicación de modelos de IA pre-entrenados o personalizados para identificar especies y comportamientos específicos.

Validación y refinamiento

Verificación manual de subconjuntos de datos, cálculo de tasas de falsos positivos/negativos y ajuste iterativo de los modelos.

Módulo III: Análisis Estadísticos

Modelos Lineales Generalizados Mixtos (GLMM)

- Análisis de factores que influyen en la frecuencia de avistamientos
- Incorporación de efectos aleatorios espaciales y temporales
- Interpretación de interacciones complejas entre variables

Modelos de Distribución de Especies (SDM)

- Algoritmos MaxEnt, Random
 Forest y Ensemble para predecir
 distribución
- Evaluación del efecto de variables climáticas y antropogénicas
- Proyecciones bajo escenarios de cambio climático y uso de suelo

Modelos de Ocupación (MO)

- Estimación de probabilidades de ocupación y detección
- Análisis de patrones de uso de hábitat temporales
- Modelado de interacciones interespecíficas y coexistencia

Estudio de Casos Prácticos

Caso 1:
Predicción de interacciones humano-mono araña

Aplicación de GLMM para evaluar cómo las carreteras, asentamientos y actividades turísticas afectan la frecuencia de interacciones entre humanos y monos araña (*Ateles geoffroyi*) en la Península de Yucatán.

Caso 2: Distribución potencial de Ficus sp.

Implementación de SDM para predecir áreas de distribución actual y futura de Ficus sp. en relación con la fragmentación forestal y proyecciones climáticas en Sulawesi (Indonesia).

Caso 3: Coexistencia de primates y comunidades rurales

Uso de modelos de ocupación para analizar factores que facilitan la coexistencia entre primates y humanos en paisajes antropizados de la Sulawesi.

Información Práctica y Recursos

Detalles logísticos

- Horario: 9:00 a 13:00 hrs
- Ubicación: Instituto de Neuroetología, UV
- Recomendable: Laptop personal, revisar temas a tratar e intentar aplicar casos propios
- Evaluación: Participación durante el curso y aportación crítica a debates y discusiones para el desaroolo y mejora del contenido.

Materiales y contacto

- Repositorio GitHub con código, ejemplos y datos de práctica.
- Bibliografía especializada y tutoriales.
- Bibliografía especializada y tutoriales en español
- Contacto:
 - victorbefra@gmail.com
 - dspaan@uv.mx