

PropENS – Panda Power Project

Jiahe Chu, Karim Kaaniche, Martin Oviedo, Rohith Sureshbabu, Taeyoung Kim Final Presentation Project Lab ENS Garching, 10 Feburary 2023

Overview

- Introduction
- Front-end
- Database
- Analysis
- Testing & Error Management

Introduction

Introduction: Project Overview

a toolbox using pandapower to do network simulations for different scenarios

Introduction: Code Structure

Front-end

Front-end: User Interface

Excel input files

- Define network topology and scenarios
- If do time series analysis: time steps Excel file needed

Python starting script

Read the Excel input files and executes the toolbox

Front-end: Python Starting Script

Topology

Topology: Code Structure

Topology: Objective

- Topologies are the different architectures that we can have for a Network. In our case we are considering electrical Networks.
- Exploring the topologies is to discover the main structure of the topologies, for example how many lines are there, or how many buses, or if there are some switches etc...
- Implement a variety of topologies

Topology: Main elements

Buses Lines Topology **Switches** • • • •

Topology: Four load branch vs Four loads with branches out

https://pandapower.readthedocs.io/en/v2.2.0/networks/test.html

Topology: Kerber Landnetze

Landnetz Freileitung 1

Landnetz Freileitung 2

https://pandapower.readthedocs.io/en/v2.1.0/networks/kerber.html

Topology: Simple example network vs Multi-Voltage Level Example Network

Topology: From a network Topology to Excel

https://pandapower.readthedocs.io/en/v2.2.0/networks/test.html

Scenario

Scenario: Code Structure

Scenario: Objective

- Modify the parameters of network elements that are flexible to alter in real life
- Providing the user with the freedom to experiment with these elements and how they can affect results in the power flow analysis
- Uses python-based functions
- Allows input from the user to modify (scale) the predefined scenarios

Scenario: Network Elements

Elements	Type	Parameter to be altered	Scaling Values (%)
Static Generator	Photovoltaic		
	Wind	Active and Reactive power	0 - 200
	Conventional Power Plants		
Load	-	Active and Reactive power	0 - 200
Transformer	-	Apparent power	0 - 200
Lines	-	Maximum thermal current	0 - 195
		Parallel lines	>=2
Storage	-	Maximum storable energy	0 - 100

Scenario: Logic flow

Scenario: Scaling the Parameters

Example: Load

p_mw	q_mvar	
0.008	0	
0.008	0	
0.008	0	
0.008	0	
0.008	0	
0.008	0	
0.008	0	
0.008	0	

p_mw	q_mvar	
0.004	0	
0.004	0	
0.004	0	
0.004	0	
0.004	0	
0.004	0	
0.004	0	
0.004	0	

Analysis

Analysis: Overview

Analysis: solve.py

Input
Network

Case
One Iteration
Time Series

Output
Results

Analysis: solve.py

Input
Network

One Iteration

PF/OPF

AC/DC

Plot

Output
Results

Input
Network

Time Series

Select Output

Solve PF

Read Temporary Files

Output
Results

Analysis: Overview

Analysis: save.py

Input
Network
Results

Sort

Parameters Values

Add Element Results

Add Scenario Results

Output

Scenario Results

Analysis: Overview

Analysis: excel_output.py

Analysis: simple and interactive plots

V_n: 0.4 kV Load: 0.007 lines 2W transformers external grid buses

Simple Plot Interactive Plot

Interactive Heat Map Plot

Analysis: Overview

Analysis: Analysis Summary Objective

- Giving an overview of violation components to the user
- Provide the information of Time Step, Location of violation and Value of the violating component

- Building a Function that is independent from other Analysis part
- Try using class feature for easy update
- Updating the information on existing result file without conflicting already existing features

Analysis: Analysis Summary WorkFlow

Analysis: Time Series Flexibility

Analysis: Reading Excel(def anal_sheet)

Time Step	Bus Index	Scenario Name	Zone	Name	Voltage Level [kV]	In Service	Voltage [p.u]
step	index	scenario	zone	name	vn_kv	in_service	vm_pu
*	-	-	-	7		T	_
0	0	basic		Trafostatio	10	1	1
0	1	basic		main_busb	0.4	1	0.99265488
0	2	basic		bus_1_1	0.4	1	0.98802016
0	3	basic		bus_1_2	0.4	1	0.9841526
0	4	basic		bus_1_3	0.4	1	0.98105507
0	5	basic		bus_1_4	0.4	1	0.97872987
0	6	basic		bus_1_5	0.4	1	0.97717877
0	7	basic		bus_1_6	0.4	1	0.97640292
0	8	basic		bus_2_1	0.4	1	0.98938788
0	9	basic		bus_2_2	0.4	1	0.98775309
0	0	pv		Trafostatio	10	1	0.9863354
0	1	pv		main_busb	0.4	1	0
0	2	pv		bus_1_1	0.4	1	0
0	3	pv		bus_1_2	0.4	1	0
0	4	pv		bus_1_3	0.4	1	0
0	5	pv		bus_1_4	0.4	1	0
0	6	pv		bus_1_5	0.4	1	0
0	7	να		bus 1 6	0.4	1	0
1	0	pv		Trafostatio	10	1	1
1	1	pv		main_busb	0.4	1	0.99178935
1	2	pv		bus_1_1	0.4	1	0.98662793
1	3	pv		bus_1_2	0.4	1	0.98232016
1	4	pv		bus_1_3	0.4	1	0.97886961
1	5	pv		bus_1_4	0.4	1	0.97627915
1		pv		bus_1_5	0.4	1	0.97455097
1				bus_1_6	0.4	1	0.97368652
2	0	pv		Trafostatio	10	1	1
2	1	pv		main_busb	0.4	1	0.99178935
2	2	pv		bus 1 1	0.4	1	0.98662793

Analysis: Selecting Data (def anal_info)

Analysis: Filtering Data (def anal_vol)

In case: Violation

	ndex	lime Ster	Bus Index	Scenario	Under Voltage (p.u)
0		0	5	basic	0.97873
1		0	6	basic	0.977179
2		0	7	basic	0.976403
3		0	1	pv	0
4		0	2	pv	0
5		0	3	pv	0
6		0	4	pv	0
7		0	5	pv	0
8		0	6	pv	0
9		0	7	pv	0
10		1	4	pv	0.97887
11		1	5	pv	0.976279
12		1	6	pv	0.974551
13		1	7	pv	0.973687

In case: No Violation

Default Violation Value

Undervoltage : 0.98[p.u]Overvoltage : 1.02[p.u]

Transformer overloading = 100[%]

Line overloading = 100[%]

```
Analyze the output grid
Analyzing Voltage of the Bus
100% | 70120/70120 [07:26<00:00, 156.99it/s]
Analyzing Loading of the Lines
100% | 70112/70112 [00:20<00:00, 3353.19it/s]
Analyzing Loading of the Transformer
100% | 8764/8764 [00:18<00:00, 476.28it/s]
You can find Analysis information on Summary Tab
```


Analysis: Updating the Data (def anal_excel)

Unhide Sheets with Pivot Tables

Create Dahsboard

Hide Sheets with Pivot Tables

5 basic

6 basic

7 basic

1 pv 2 pv 3 pv

5 pv 6 pv 7 pv 4 pv

5 pv

Data is updated into Summary tab

In case of Violation: violation data will be written

• In case of No-Violation

Time Step Bus Index Scenario Under Voltage [p.u] Time StepLine Index Scenario Line Loading Percentage[%] Time Step[rafo Index Scenario Transformer Loading Percentage[%] : '---' will be written

- Existing Macro/VBA remain untouched
- Adding more violation will be added in another column

Row information

: Time Step / Index of the Component / Scenario / Value of the Violation

0.9787

0.9772

0.9764

0.9746

0.9737 0.9789 0.9763 0.9746 0.9737 0.9789 0.9763

0.9746 0.9737

Analysis: Updating the Data (def anal_excel)

Unhide Sheets with Pivot Tables

Create Dahsboard

Hide Sheets with Pivot Tables

	Time Step Bus Index	Under Voltage [p.u]	Time Step	Une Index	Loading Percent[%]	Time Stepfra	afo Index Load	ling Percent[%]
0	0 5	0.9787	1	0	26.2184	0	0	65.6994
1	0 6	0.9772	2	O	26.2184	1	0	65.6994
2	0 7	0.9764	3	0	26.2184	2	0	65.6994
3	0 1	О	4	0	26.2184	3	0	65.6994
4	0 2	О	5	0	26.2184	4	0	65.6994
5	0 3	а	6	0	26.2184	5	0	65.6994
6	0 4	_	7	0	26.2184	6	0	65.6994
7	0 5		8	0	26.1007	7	0	65.6994
8	0 6		9	0	25.1167	8	0	65.407
9	0 7	_	15	0	25.0901	16	0	65.6888
10	1 4		16	O	26.2142	17	0	65.6994
11	1 5		17	0	26.2184	18	0	65.6994
12	1 6		18	0	26.2184	19	0	65.6994
13	1 7		19	0	26.2184	20	0	65.6994
14	2 4		20	0	26.2184	21	0	65.6994
15	2 5		21	0	26.2184	22	0	65.6994
16	2 6		22	o	26.2184	23	0	65.6994
17	2 7		23	0	26.2184	24	0	65.6994
18	3 4		24	0	26.2184	25	0	65.6994
19	3 5		25	0	26.2184	26	0	65.6994
20	3 6		26	0	26.2184	27	0	65.6994
21	3 7		27	0	26.2184	28	0	65.6994
22	4 4		28	0	26.2184	29	0	65.6994
23	4 5		29	О	26.2184	30	0	65.6994
24	4 6		30	0	26.2184	31	0	65.6994
25	4 7	0.07.07	31	0	26.2184	32	0	64.9971
26	5 4	0.27.02	32	0	25.9356	39	0	64.676
27	5 5		39	0	25.8063	40	0	65.6994
28	5 6		40	0	26.2184	41	0	65.6994
29	5 7		41	0	26.2184	42	0	65.6994
30	6 4		42	0	26.2184	43	0	65.6994
31	6 5		43	0	26.2184	44	0	65.6994
32	6 6		44	0	26.2184	45	0	65.6994
33	6 7		45	0	26.2184	46	0	65.6994
34	7 4	0.9789	46		26.2184	47		65.6994

- Checking in case of changing the standard value of violation
 - Line Loading: 25 [%]
 - Transformer Loading: 64 [%]

Testing & Error Management

Testing: Unit Test

Module	statements	missing	excluded	coverage
<pre>src\analysis\excel_output.</pre>	72	9	0	88%
<u>py</u> src\analysis\parameters.py	85	19	0	78%
<pre>src\analysis\plot.py</pre>	25	17	0	32%
<pre>src\analysis\save.py</pre>	51	5	0	90%
<pre>src\analysis\solver.py</pre>	42	8	0	81%
<pre>src\analysis\time_series_f</pre>	42	12	0	71%
<pre>unc.py src\frontend\generate_time series.py</pre>	33	1	0	97%
<pre>src\frontend\read_input.py</pre>	19	0	0	100%
<pre>src\scenarios\apply_scenar io.py</pre>	6	0	0	100%
<pre>src\scenarios\scenarios.py</pre>	45	9	0	80%
<pre>test\test_excel_output.py</pre>	36	1	0	97%
<u>test\test_generate_timeser</u> ies.py	14	1	0	93%
test\test_parameters.py	42	1	0	98%
<pre>test\test_read_input.py</pre>	52	1	0	98%
<pre>test\test_save.py</pre>	59	1	0	98%
<pre>test\test_scenarios.py</pre>	41	1	0	98%
<pre>test\test_solver.py</pre>	90	1	0	99%
<pre>test\test_time_series_func .py</pre>	41	1	0	98%
Total	795	88	0	89%

Example structure of test class

Test coverage

Error Management: System Overview

Example: Kerber Landnetze Freileitung 2

Check out our GitHub Repository:

