Introduction to ontologies in computational biology

Robert Hoehndorf

Overview

General overview

Ontologies and the Semantic Web

Ontologies and graphs

Semantic Similarity

Machine learning and ontologies

Applications

Applied Ontology

- ▶ builds on philosophy, cognitive science, linguistics and logic
- ▶ with the purpose of understanding, clarifying, making explicit and communicating *people's assumptions* about the nature and structure of the world.
- orientation towards helping people (and machines) understand each other distinguishes applied ontology from philosophical ontology, and motivates its unavoidable interdisciplinary nature.
- ► Ontological analysis: study of content (of these assumptions) as such (independently of their representation)

Do we know what to Represent?

- ► First analysis, then representation
 - ► that's not always the case
- Computer scientists have focused on the structure of representations and the nature of reasoning more than on the content of such representations
- ► Essential ontological promiscuity of AI: any agent creates its own ontology based on its usefulness for the task at hand

Logic

Logic is neutral about content

► ...but very useful to describe the formal structure (i.e., the invariances) of content

Kinds of knowledge

- ► Fido is black: assertional
- ► Either Fido is black or Fido is not black: analytic, logical
- ► If Jack is a bachelor, then he is not married: analytic, terminological
 - ► Terminological knowledge is about relationships between terms and concepts

What is an ontology?

Ontology: the philosophical discipline

- ► Study of what there is (being *qua* being)
- ► reinterpreted for computer science: content *qua* content, independently of the way it is represented
- Study of the nature and structure of "reality" (a domain of discourse)
- ► A (philosophical) ontology: a structured system of entities assumed to exists, organized in categories and relations

Ontologies in CS

- ► Specific (theoretical or computational) artifacts expressing the intended meaning of a vocabulary in terms of primitive categories and relations describing the nature and structure of a domain of discourse
 - ► in order to account for the competent use of vocabulary in real situations

Ontologies in CS

- ► Gruber: "A specification of a conceptualization of a domain"
- ► Studer: "An ontology is a formal, explicit specification of a shared conceptualization"
- ► Guarino: "An ontology is a logical theory accounting for the intended meaning of a formal vocabulary, i.e. its ontological commitment to a particular conceptualization of the world. The intended models of a logical language using such a vocabulary are constrained by its ontological commitment. An ontology indirectly reflects this commitment (and the underlying conceptualization) by approximating these intended models."
- ► Horrocks: "an ontology [is] equivalent to a Description Logic knowledge base"

What is a conceptualization

- ► Formal structure of (a piece of) reality as perceived and organized by an agent, independently of:
 - ► the vocabulary used
 - ► the actual occurence of a specific situation
- ▶ Different situations involving the same objects, described by different vocabularies, may share the same conceptualization

Ontologies vs classifications

- Classifications focus on:
 - access, based on pre-determined criteria (encoded by syntactic keys)
- ► Ontologies focus on:
 - meaning of terms
 - ► nature and structure of a domain

Ontologies vs Knowledge bases

Knowledge base:

- ► Assertional component
 - ► reflects specific states of affairs
 - designed for problem solving
- ► Terminological component (ontology)
 - ► independent of states of affairs
 - designed to support terminological services
 - ▶ ... but independent of the actual terminology used
- Ontological formulas are invariant, necessary information
 - often expressed using modal logics or Description Logics

- classes represent kinds of things in the world
 - ► Arm, Apoptosis, Influenza, Homo sapiens, Drinking behavior, Membrane

- classes represent kinds of things in the world
 - Arm, Apoptosis, Influenza, Homo sapiens, Drinking behavior, Membrane
- instances of classes are individuals satisfying the classes' intension
 - my arm, the influenza I had last year, one ethanol molecule, etc.

- classes represent kinds of things in the world
 - Arm, Apoptosis, Influenza, Homo sapiens, Drinking behavior, Membrane
- instances of classes are individuals satisfying the classes' intension
 - my arm, the influenza I had last year, one ethanol molecule, etc.
- relations between instances arise from interactions, configurations, etc., of individuals
 - my arm is part of me, the duration of my influenza was 10 days

- classes represent kinds of things in the world
 - Arm, Apoptosis, Influenza, Homo sapiens, Drinking behavior, Membrane
- instances of classes are individuals satisfying the classes' intension
 - my arm, the influenza I had last year, one ethanol molecule, etc.
- relations between instances arise from interactions, configurations, etc., of individuals
 - my arm is part of me, the duration of my influenza was 10 days
- axioms specify the conditions that instances of a class must satisfy
 - every instance of Hand is a part of an instance of Arm

The Semantic Web

Web Ontology Language (OWL)

- ▶ OWL 2 is based on the Description Logic SROIQ(D)
- \blacktriangleright \mathcal{ALC} with
 - ▶ complex role inclusions: $r \circ s \subseteq r$
 - ▶ role hierarchy: $r \subseteq s$
 - ▶ role transitivity $r \circ r \subseteq r$
 - ▶ nominals: $\{a_1, ..., a_n\}$ as concept constructor
 - qualified number restrictions: $(\leq nr.Q)$
 - ▶ datatype properties: $\exists r. [\geq n(Integer)]$

Terminology

- ▶ Instances
- ► Properties
 - Object properties
 - ▶ Datatype properties
- Classes
- ► Meta-classes
 - ► OWL Full
 - ► Punning
- ▶ Axiom
 - ► Class axioms: Subclass, Equivalent class, Disjoint class
 - ► Property axioms
- Ontology
- ► OWL: Web Ontology Language

Syntax

- ▶ originally an extension of RDF and RDF Schema
- several different syntaxes

Consider the axiom $Parent \equiv Human \sqcap \exists hasChild. \top$

Functional Syntax

```
EquivalentClasses(:Parent
   ObjectSomeValuesFrom(:hasChild owl:Thing))
```

RDF/XML Syntax

RDF Turtle Syntax

OWL/XML Syntax

Manchester OWL Syntax

Class: Parent
 EquivalentTo:
 hasChild some owl:Thing

Manchester OWL Syntax

DL Syntax	Manchester Syntax	Example
$C \sqcap D$	C and D	Human and Male
$C \sqcup D$	C or D	Male or Female
$\neg C$	not C	not Male
∃ <i>R</i> . <i>C</i>	R some C	hasChild some Human
∀R.C	R only C	hasChild only Human
$(\geq nR.C)$	R min n C	hasChild min 1 Human
$(\leq nR.C)$	R max n C	hasChild max 1 Human
(= nR.C)	R exactly n C	hasChild exactly 1 Human
$\{a\} \sqcup \{b\} \sqcup \dots$	{a b}	{John Robert Mary}

OWL classes and namespaces

- ▶ ⊥ is owl:Nothing
- ▶ ⊤ is owl:Thing
- ▶ owl: is a namespace (http://www.w3.org/2002/07/owl#)
- owl:Thing expands to http://www.w3.org/2002/07/owl#Thing (a class IRI)
- ▶ all OWL entities (ontologies, classes, properties, instances) are referred to by an IRI
- ▶ namespaces define a common (IRI-)prefix, e.g.,
 - ► rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
 - ► rdfs: http://www.w3.org/2000/01/rdf-schema#
- can define own namespaces:

Namespace: mynamespace http://www.kaust.edu.sa#>Class: mynamespace:Student # http://www.kaust.edu.sa#Student

Object properties

- ► Object property characteristics:
 - ► transitive
 - ► symmetric, asymmetric
 - ► reflexive, irreflexive
 - functional, inverse functional
 - ► inverse of
- ► Domain and range

Annotation properties

- OWL entities (classes, properties, axioms, ontologies, etc.)
 can have annotations
- outside of OWL semantics (unless for OWL Full)
- useful to add labels, synonyms, explanation, (textual) definitions, authoring information, versions, etc.
- predefined: rdfs:label, owl:versionInfo, rdfs:comment, rdfs:seeAlso, rdfs:isDefinedBy
- ▶ Dublin Core

OWL Reasoning

- Classification: compute the most specific sub- and super-classes for each named class in an OWL ontology
- ► Subsumption: find all sub-, super- or equivalent classes of an OWL class description
- ► Consistency: find contradictions in OWL knowledge base
- ► Instantiation: is a and instance of C?

Complexity of reasoning in OWL

- ▶ OWL 2 (\mathcal{SROIQ}) is 2NEXPTIME-complete
- ▶ OWL (1) (SHOIN) is NEXPTIME-complete
- ▶ OWL Lite (SHIF) is EXPTIME-complete

OWL profiles

- ► OWL 2 EL: PTIME-complete
- ► OWL 2 RL: PTIME-complete
- ► OWL 2 QL: AC⁰ w.r.t. data size

OWL 2 EL

- ► Class axioms:
 - ► subclass, equivalent class, disjoint class
- ► Object property axioms:
 - domain and range restrictions, property inclusion, property chains, property equivalence, transitive and reflexive properties
- Class descriptions:
 - intersection, existential quantification, enumerations to a single individual
- ► Assertions: all

Why OWL?

- ► OWL exploits 20+ years of research on Description Logic
- ► well-defined semantics
- complexity and decidability well understood
- ► known algorithms
- scalability demonstrated in practise

Why OWL?

Major benefit is the large number of tools and infrastructure:

- ► Editors: Protege, WebProtege
- ► Reasoners: HermiT, Pellet, FaCT++, **ELK**, KAON2, RACER,...
- ► Explanation, justification
- ▶ Modularization
- ► APIs (esp. the OWL API)

OWL vs Databases

Database	OWL Ontology
Closed World Assumption	Open World Assumption
Unique Name Assumption	No UNA
Schema constraints data structure	Axioms behave like inference rules

Based on slides by Ian Horrocks

- ▶ hasPet some owl:Thing SubclassOf: Human
- ► Phoenix SubclassOf: petOf only Wizard
- ► HarryPotter: Wizard
- ▶ DracoMalfoy: Wizard
- ► HarryPotter hasFriend RonWeasley
- ► HarryPotter hasFriend HermioneGranger
- HarryPotter hasPet Hedwig

Query: Is Draco a friend of Harry Potter?

Based on slides by Ian Horrocks

- hasPet some owl:Thing SubclassOf: Human
- ► Phoenix SubclassOf: petOf only Wizard
- ► HarryPotter: Wizard
- DracoMalfoy: Wizard
- ► HarryPotter hasFriend RonWeasley
- HarryPotter hasFriend HermioneGranger
- HarryPotter hasPet Hedwig

Query: Is Draco a friend of Harry Potter?

- ► DB: No
- ► OWL: Don't know

- ▶ hasPet some owl:Thing SubclassOf: Human
- ► Phoenix SubclassOf: petOf only Wizard
- ► HarryPotter: Wizard
- ► DracoMalfoy: Wizard
- ► HarryPotter hasFriend RonWeasley
- ► HarryPotter hasFriend HermioneGranger
- ▶ HarryPotter hasPet Hedwig

- ▶ hasPet some owl:Thing SubclassOf: Human
- ► Phoenix SubclassOf: petOf only Wizard
- ► HarryPotter: Wizard
- ► DracoMalfoy: Wizard
- ► HarryPotter hasFriend RonWeasley
- HarryPotter hasFriend HermioneGranger
- ▶ HarryPotter hasPet Hedwig

- ► DB: 2
- ► OWL: At least 1

- ► hasPet some owl:Thing SubclassOf: Human
- ► Phoenix SubclassOf: petOf only Wizard
- ► HarryPotter: Wizard
- ► DracoMalfoy: Wizard
- ► HarryPotter hasFriend RonWeasley
- ► HarryPotter hasFriend HermioneGranger
- HarryPotter hasPet Hedwig
- ightharpoonup RonWeasley \neq HermioneGranger
- ► HarryPotter: hasFriend only {HerminoeGranger RonWeasley}

- ► hasPet some owl:Thing SubclassOf: Human
- ► Phoenix SubclassOf: petOf only Wizard
- ► HarryPotter: Wizard
- ► DracoMalfoy: Wizard
- ► HarryPotter hasFriend RonWeasley
- ► HarryPotter hasFriend HermioneGranger
- HarryPotter hasPet Hedwig
- ightharpoonup RonWeasley \neq HermioneGranger
- ► HarryPotter: hasFriend only {HerminoeGranger RonWeasley}

- ► DB: 2
- ► OWL: 2

- ► hasPet some owl:Thing SubclassOf: Human
- ► Phoenix SubclassOf: petOf only Wizard

Adding new facts:

- ► Dumbledore: Wizard
- ► Fawkes: Phoenix
- ► Fawkes isPetOf DumbleDore
- ► DB: Update rejects, constrain violation
- ► OWL: infer that Dumbledore is Human; infer that Dumbledore is a Wizard

Ontology-based information systems

Ontology like DB schema, instances like data Advantages:

- ► Relatively easy to maintain and update schema
- Query answers reflect both schema and data
- Can deal with incomplete information
- ► Answer intensional and extensional queries

Disadvantages:

- Semantic can seem counter-intuitive (OWA, UNA)
- ► Query answering (logical entailment) much more difficult

► Are cyclin dependent kinases *functionally* more similar to lipid kinases or to riboflavin kinases? How about *phenotypically*?

- Are cyclin dependent kinases *functionally* more similar to lipid kinases or to riboflavin kinases? How about *phenotypically*?
- ► Which protein in the *mouse* is functionally most similar to the zebrafish *gustducin* protein?

- ► Are cyclin dependent kinases *functionally* more similar to lipid kinases or to riboflavin kinases? How about *phenotypically*?
- ► Which protein in the *mouse* is functionally most similar to the zebrafish *gustducin* protein?
- ▶ Which mouse knockout resembles Bardet-Biedl Syndrome 8?

- Are cyclin dependent kinases *functionally* more similar to lipid kinases or to riboflavin kinases? How about *phenotypically*?
- ► Which protein in the *mouse* is functionally most similar to the zebrafish *gustducin* protein?
- ▶ Which mouse knockout resembles *Bardet-Biedl Syndrome 8*?
- ► Are there mouse knockouts that resemble the side effects of diclofenac?

- ► Are cyclin dependent kinases *functionally* more similar to lipid kinases or to riboflavin kinases? How about *phenotypically*?
- ► Which protein in the *mouse* is functionally most similar to the zebrafish *gustducin* protein?
- ▶ Which mouse knockout resembles Bardet-Biedl Syndrome 8?
- Are there mouse knockouts that resemble the side effects of diclofenac?
- ► Which genetic disease produces similar symptoms to ebola?

- Are cyclin dependent kinases *functionally* more similar to lipid kinases or to riboflavin kinases? How about *phenotypically*?
- ► Which protein in the *mouse* is functionally most similar to the zebrafish *gustducin* protein?
- ▶ Which mouse knockout resembles Bardet-Biedl Syndrome 8?
- ► Are there mouse knockouts that resemble the side effects of diclofenac?
- ► Which genetic disease produces similar symptoms to ebola?
- ▶ Does functional similarity correlate with phenotypic similarity?

Ontologies and graphs

- semantic similarity measures can be graph-based, feature-based, or model-based
- we may need to generate graphs from ontologies
 - ► *is-a* relations are easy
 - ▶ how about *part-of*, *regulates*, *precedes*, etc.?
- ► relational patterns are implicit in OWL axioms
 - ► in first order logic
 - ▶ needs to translate them into OWL
 - ► defined in OBO Relation Ontology

Relations as patterns

```
      ▶ X SubClassOf:
      Y: X \xrightarrow{\text{is-a}} Y

      ▶ X SubClassOf:
      part-of some Y: X \xrightarrow{\text{part-of}} Y

      ▶ X SubClassOf:
      regulates some Y: X \xrightarrow{\text{regulates}} Y

      ▶ X DisjointWith:
      Y: X \xleftarrow{\text{disjoint}} Y

      ▶ X EquivalentTo:
      Y: X \xleftarrow{\text{is-a}} Y, \{X, Y\}
```

Relations as patterns

- ► OBO Relation Ontology (RO):
 - ▶ https://github.com/oborel/obo-relations
- ► Basic Formal Ontology (BFO):
 - provides top-level classes
 - ► Continuant, Process, Function, Material object, etc.
 - used for some OBO Foundry ontologies
- ▶ RO and BFO provide a top-level system of classes and relations shared across many biomedical ontologies
 - even GO, although somewhat hidden!

Relations as patterns

- ► classes
 - a represent kinds of things in the world
 - b represent ideas in people's heads
 - c represent words

- classes
 - a represent kinds of things in the world
 - b represent ideas in people's heads
 - c represent words
- instances of a class are individuals that
 - a satisfy the class intension
 - b satisfy the axioms used to specify the class
 - c are always concrete, material entities

- classes
 - a represent kinds of things in the world
 - b represent ideas in people's heads
 - c represent words
- instances of a class are individuals that
 - a satisfy the class intension
 - b satisfy the axioms used to specify the class
 - c are always concrete, material entities
- relations between classes are
 - a interactions between instances of the class
 - b abbreviations of axioms that constrain two classes
 - c relations between ideas people have about the classes

- classes
 - a represent kinds of things in the world
 - b represent ideas in people's heads
 - c represent words
- instances of a class are individuals that
 - a satisfy the class intension
 - b satisfy the axioms used to specify the class
 - c are always concrete, material entities
- relations between classes are
 - a interactions between instances of the class
 - b abbreviations of axioms that constrain two classes
 - c relations between ideas people have about the classes
- axioms are
 - a specification of conditions that instances of classes must satisfy
 - b rules that can be executed to produce new knowledge
 - c statements that are considered to be true in a domain of knowledge

- semantic similarity measures similarity between classes
- semantic similarity measures similarity between instances of classes
- semantic similarity measures similarity between entities annotated with classes
- ► ⇒ reduce all of this to similarity between classes

What properties do we want in a similarity measure? A function $sim : D \times D$ is a similarity on D if, for all $x, y \in D$, the function sim is:

▶ non-negative: $sim(x, y) \ge 0$ for all x, y

What properties do we want in a similarity measure? A function $sim : D \times D$ is a similarity on D if, for all $x, y \in D$, the function sim is:

▶ non-negative: $sim(x, y) \ge 0$ for all x, y

▶ symmetric: sim(x, y) = sim(y, x)

What properties do we want in a similarity measure? A function $sim : D \times D$ is a similarity on D if, for all $x, y \in D$, the function sim is:

▶ non-negative: $sim(x, y) \ge 0$ for all x, y

▶ symmetric: sim(x, y) = sim(y, x)

ightharpoonup reflexive: $sim(x,x) = max_D$

- ▶ non-negative: $sim(x, y) \ge 0$ for all x, y
- ightharpoonup symmetric: sim(x, y) = sim(y, x)
- ightharpoonup reflexive: $sim(x,x) = max_D$
 - weaker form: sim(x, x) > sim(x, y) for all $x \neq y$

- ▶ non-negative: $sim(x, y) \ge 0$ for all x, y
- ightharpoonup symmetric: sim(x,y) = sim(y,x)
- ightharpoonup reflexive: $sim(x,x) = max_D$
 - weaker form: sim(x, x) > sim(x, y) for all $x \neq y$
- $ightharpoonup sim(x,x) > sim(x,y) \text{ for } x \neq y$

- ▶ non-negative: $sim(x, y) \ge 0$ for all x, y
- ightharpoonup symmetric: sim(x,y) = sim(y,x)
- ightharpoonup reflexive: $sim(x,x) = max_D$
 - weaker form: sim(x, x) > sim(x, y) for all $x \neq y$
- $ightharpoonup sim(x,x) > sim(x,y) \text{ for } x \neq y$
- ightharpoonup sim is a normalized similarity measure if it has values in [0,1]

► distance on shortest path (Rada *et al.*, 1989)

- distance on shortest path (Rada et al., 1989)
- $b dist_{Rada}(u, v) = sp(u, isa, v)$

- ► distance on shortest path (Rada *et al.*, 1989)
- $b dist_{Rada}(u, v) = sp(u, isa, v)$
- $\sum_{\substack{\text{dist}_{Rada}(u,v)+1}} sim_{Rada}(u,v) =$

- distance on shortest path
- ▶ distance(green, red)
 = 2
- $sim_{Rada}(green, red) = \frac{1}{3}$

- distance on shortest path
- distance(square, round) = 2
- $sim_{Rada}(square, round) = \frac{1}{3}$

- distance on shortest path
- distance(orange, color) = 2
 - $sim_{Rada}(orange, color) = \frac{1}{3}$

► shortest path is not always intuitive

- shortest path is not always intuitive
- ▶ we need a way to determine *specificity* of a class
 - number of ancestors
 - ► number of children
 - ▶ information content

- ► shortest path is not always intuitive
- we need a way to determine specificity of a class
 - number of ancestors
 - number of children
 - ▶ information content
- density of a branch in the ontology
 - number of siblings
 - ▶ information content

- ► shortest path is not always intuitive
- we need a way to determine specificity of a class
 - number of ancestors
 - number of children
 - ▶ information content
- density of a branch in the ontology
 - number of siblings
 - ▶ information content
- account for different edge types
 - non-uniform edge weighting

- ▶ term specificity measure $\sigma: C \mapsto \mathbb{R}$:

- ▶ term specificity measure $\sigma: C \mapsto \mathbb{R}$:
 - $ightharpoonup x \sqsubseteq y \to \sigma(x) \ge \sigma(y)$
- ▶ intrinsic:
 - $ightharpoonup \sigma(x) = f(depth(x))$
 - $ightharpoonup \sigma(x) = f(A(x))$ (for ancestors A(x))
 - $ightharpoonup \sigma(x) = f(D(x))$ (for descendants D(x))
 - many more, e.g., Zhou et al.:

$$\sigma(x) = k \cdot \left(1 - \frac{\log|D(x)|}{\log|C|}\right) + (1 - k) \frac{\log depth(x)}{\log depth(G_T)}$$

- ▶ term specificity measure $\sigma: C \mapsto \mathbb{R}$:
 - $ightharpoonup x \sqsubseteq y o \sigma(x) \geq \sigma(y)$
- ► intrinsic:
 - $ightharpoonup \sigma(x) = f(depth(x))$
 - $ightharpoonup \sigma(x) = f(A(x))$ (for ancestors A(x))
 - $ightharpoonup \sigma(x) = f(D(x))$ (for descendants D(x))
 - ► many more, e.g., Zhou et al.:

$$\sigma(x) = k \cdot \left(1 - \frac{\log |D(x)|}{\log |C|}\right) + (1 - k) \frac{\log depth(x)}{\log depth(G_T)}$$

- extrinsic:
 - $ightharpoonup \sigma(x)$ defined as a function of instances (or annotations) I
 - ► note: the number of instances monotonically decreases with increasing depth in taxonomies
 - Resnik 1995: $elC_{Resnik}(x) = -\log p(x)$ (with $p(x) = \frac{|I(x)|}{|I|}$)
 - in biology, one of the most popular specificity measure when annotations are present

► Resnik 1995: similarity between *x* and *y* is the information content of the *most* informative common ancestor

► Resnik 1995: similarity between *x* and *y* is the information content of the *most* informative common ancestor

► Resnik 1995: similarity between *x* and *y* is the information content of the *most* informative common ancestor

- ► Resnik 1995: similarity between *x* and *y* is the information content of the *most* informative common ancestor
 - $sim_{Resnik}(\mathit{Green}, \mathit{Red}) = 1.0$

- ► Resnik 1995: similarity between *x* and *y* is the information content of the *most* informative common ancestor
 - sim_{Resnik} (Green, Orange) = 1.0

- ► Resnik 1995: similarity between *x* and *y* is the information content of the *most* informative common ancestor
 - sim_{Resnik} (Square, Orange) 0.0

- ► (Red, Green) and (Orange, Green) have the same similarity
- ▶ need to incorporate the specificity of the compared classes

3.0

- ► many(!) others:
 - ▶ Jiang & Conrath 1997
 - ► Mazandu & Mulder 2013
 - ► Schlicker et al. 2009
 - ▶ ..

- we only looked at comparing pairs of classes
- ▶ mostly, we want to compare *sets* of classes
 - ▶ set of GO annotations
 - set of signs and symptoms
 - set of phenotypes
- ▶ two approaches:
 - compare each class individually, then merge
 - directly set-based similarity measures

similarity between a square-and-orange thing and a round-and-red thing

- similarity between a square-and-orange thing and a round-and-red thing
- Pesquita et al., 2007: $simGIC(X, Y) = \sum_{c \in A(X) \cap A(Y)} IC(c) \sum_{c \in A(X) \cup A(Y)} IC(c)$

- similarity between a square-and-orange thing and a round-and-red thing
- Pesquita et al., 2007: $simGIC(X, Y) = \sum_{c \in A(X) \cap A(Y)} IC(c) \sum_{c \in A(X) \cup A(Y)} IC(c)$
- $ightharpoonup simGIC(so, rr) = \frac{2}{11}$

- ► alternatively: use different merging strategies
- ► common: average, maximum, best-matching average

► Average:
$$sim_A(X, Y) = \frac{\sum_{x \in X} \sum_{y \in Y} sim(x, y)}{|X| \times |Y|}$$

- ► Max average: $sim_{MA}(X, Y) = \frac{1}{|X|} \sum_{x \in X} max_{y \in Y} sim(x, y)$
- ▶ Best match average: $sim_{BMA}(X, Y) = \frac{sim_{MA}(X, Y) + sim_{MA}(Y, X)}{2}$

- ► Semantic Measures Library:
 - comprehensive Java library
 - ► http://www.semantic-measures-library.org/
- ► R packages: GOSim, GOSemSim, HPOSim, LSAfun, ontologySimilarity,...
- ► Python: sematch, fastsemsim (GO only)

From Harispe et al., Semantic Similarity From Natural Language And Ontology Analysis, 2015.

- ► Shortest Path
 - applicable to arbitrary knowledge graphs
 - ► does not capture similarity well over all edge types, e.g., disjointWith, differentFrom, opposite-of, etc.
- ► Random Walk
 - ▶ with or without restart
 - ► iterated
 - ▶ does not consider edge labels ⇒ captures only adjacency of nodes
 - ► scores whole graph with *probability* of being in a state
 - can take multiple seed nodes
 - widely used to find disease genes

► feature learning on knowledge graph

- ► feature learning on knowledge graph
- ► e.g., iterated, edge-labeled random walk
 - ▶ walks form *sentences*
 - sentences form a corpus
 - feature learning on corpus through Word2Vec (or factorization of co-occurrence matrix)

- ► feature learning on knowledge graph
- ► e.g., iterated, edge-labeled random walk
 - ▶ walks form *sentences*
 - ► sentences form a *corpus*
 - feature learning on corpus through Word2Vec (or factorization of co-occurrence matrix)
 - with support for reasoning over bio-ontologies: https://github.com/bio-ontology-research-group/ walking-rdf-and-owl
 - Onto2Vec: https://github.com/ bio-ontology-research-group/onto2vec/

- ► feature learning on knowledge graph
- ► e.g., iterated, edge-labeled random walk
 - ▶ walks form *sentences*
 - sentences form a corpus
 - feature learning on corpus through Word2Vec (or factorization of co-occurrence matrix)
 - with support for reasoning over bio-ontologies: https://github.com/bio-ontology-research-group/ walking-rdf-and-owl
 - Onto2Vec: https://github.com/ bio-ontology-research-group/onto2vec/
- ► Translational knowledge graph embeddings: TransE, TransR, TransE, HolE, etc.
 - analogy-based
 - ► https://github.com/thunlp/KB2E

- ► feature learning on knowledge graph
- ► e.g., iterated, edge-labeled random walk
 - ▶ walks form *sentences*
 - sentences form a corpus
 - feature learning on corpus through Word2Vec (or factorization of co-occurrence matrix)
 - with support for reasoning over bio-ontologies: https://github.com/bio-ontology-research-group/ walking-rdf-and-owl
 - Onto2Vec: https://github.com/ bio-ontology-research-group/onto2vec/
- ► Translational knowledge graph embeddings: TransE, TransR, TransE, HolE, etc.
 - analogy-based
 - ► https://github.com/thunlp/KB2E
- generates (dense) feature vectors for nodes (classes, instances) and relations

Knowledge graph embeddings

Definition

Let $KG = (V, E, L; \vdash)$ be a knowledge graph with a set of vertices V, a set of edges $E \subseteq V \times V$, a label function $L: V \cup E \mapsto Lab$ that assigns labels from a label set Lab to vertices and edges, and an inference relation \vdash . A knowledge graph embedding is a function $f_{\eta}: KG \mapsto \mathbf{R}^n$ (subject to certain constraints).

Neuro-symbolic feature learning

- ► task: predict if FOXP2 is involved in disease *D*
- task: what chemicals could (directly or indirectly) affect FOXP2's function?
- which features are relevant?

Neuro-symbolic feature learning

► :FOXP2 :binds :MET

:coex :ST7 :hasFunction GO:0044708

- ➤ :FOXP2 :binds :MET :coex :ST7 :hasFunction GO:0044708
- ➤ :FOXP2 :hasFunction GO:0071625 subClassOf GO:0044708

- ➤ :FOXP2 :binds :MET :coex :ST7 :hasFunction GO:0044708
- ➤ :FOXP2 :hasFunction GO:0071625 subClassOf GO:0044708
- ► :FOXP2 :coex :TBR1 :coex :NKX2-1 :coex :TBR1 :coex ...

- ► skip-gram model learns representation/features for each node
 - ► Word2Vec model, given a word predicts context
 - ▶ use local and non-local information
- automated reasoning deductively closes the knowledge graph
 - ► making this a neuro-symbolic model
- useful for edge prediction, similarity, clustering, as feature vectors
 - ► edge prediction: analogy, classifier (e.g., SVM)

Ob:	Source type	Target type	Without reasoning		With reasoning	
Object property			F-measure	AUC	F-measure	AUC
has target	Drug	Gene/Protein	0.94	0.97	0.94	0.98
has disease annotation	Gene/Protein	Disease	0.89	0.95	0.89	0.95
has side-effect*	Drug	Phenotype	0.86	0.93	0.87	0.94
has interaction	Gene/Protein	Gene/Protein	0.82	0.88	0.82	0.88
has function*	Gene/Protein	Function	0.85	0.95	0.83	0.91
has gene phenotype*	Gene/Protein	Phenotype	0.84	0.91	0.82	0.90
has indication	Drug	Disease	0.72	0.79	0.76	0.83
has disease phenotype*	Disease	Phenotype	0.72	0.78	0.70	0.77

Alsharani et al. Neuro-symbolic representation learning on biological knowledge graphs. Bioinformatics, 2017.

The forkhead-box P2 (FOXP2) gene polymorphism has been reported to be involved in the susceptibility to schizophrenia; however, few studies have investigated the association between FOXP2 gene polymorphism and clinical symptoms in schizophrenia.

The forkhead-box P2 (FOXP2) gene polymorphism has been reported to be involved in the susceptibility to schizophrenia; however, few studies have investigated the association between FOXP2 gene polymorphism and clinical symptoms in schizophrenia.

- ► <u>:FOXP2</u> :binds :MET :coex :ST7 :hasFunction GO:0044708
- ► <u>:FOXP2</u> :hasFunction GO:0071625 subClassOf GO:0044708
- ► <u>:FOXP2</u> :coex :TBR1 :coex :NKX2-1 :coex :TBR1 :coex ...

The <u>:FOXP2</u> gene polymorphism has been reported to be involved in the susceptibility to schizophrenia; however, few studies have investigated the association between <u>:FOXP2</u> gene polymorphism and clinical symptoms in schizophrenia.

- ► :FOXP2 :binds :MET :coex :ST7 :hasFunction GO:0044708
- ► :FOXP2 :hasFunction GO:0071625 subClassOf GO:0044708
- ► :FOXP2 :coex :TBR1 :coex :NKX2-1 :coex :TBR1 :coex ...

Multi-modal feature learning: drug targets and indications

Alshahrani & H. Drug repurposing through multi-modal learning on knowledge graphs. BioRxiv, 2018.

Ontologies: axioms, not graphs!

Overview	Browse	DLQuery Download		
Annotation	Va	Value		
label	E	B cell apoptotic process		
definition		Any apoptotic process in a B cell, a lymphocyte of B lineage with the phenotype CD19-positive and capable of B cell mediated immunity.		
class	ŀ	http://purl.obolibrary.org/obo/GO_0001783		
ontology	(GO-PLUS		
Equivalent	ā	apoptotic process and (occurs in some B cell)		
SubClassOf	(occurs in some B cell, lymphocyte apoptotic process		
id	(GO:0001783		
has_obo_name	espace b	olological_process		

Ontologies: axioms, not graphs!

Gene Ontology:

- ▶ behavior DisjointWith: 'developmental process'
- ▶ behavior SubclassOf: only-in-taxon some metazoa
- ▶ 'cell proliferation' DisjointWith: in-taxon some fungi
- ▶ 'cell growth' EquivalentTo: growth and ('results in growth of' some cell)
- ▶ ..

Ontology embeddings

Definition

Let $O = (C, R, I; ax; \vdash)$ be an ontology with a set of classes C, a set of relations R, a set of instances I, a set of axioms ax and an inference relation \vdash . An ontology embedding is a function $f_{\eta}: C \cup R \cup I \mapsto \mathbf{R}^n$ (subject to certain constraints).

Ontology embeddings

Definition

Let $O = (C, R, I; ax; \vdash)$ be an ontology with a set of classes C, a set of relations R, a set of instances I, a set of axioms ax and an inference relation \vdash . An ontology embedding is a function $f_{\eta}: C \cup R \cup I \mapsto \mathbf{R}^n$ (subject to certain constraints).

We use co-occurrence within ax^{\vdash} to constrain the embedding function, where the constraints on co-occurrence are formulated using the Word2Vec skipgram model.

Onto2Vec

Predicting PPIs: trainable similarity measures

Smaili et al. Onto2Vec: joint vector-based representation of biological entities and their ontology-based annotations, Bioinformatics, 2018.

Visualizing embeddings

Ontologies Plus Annotations 2 Vec

Phenotype-based prediction of candidate genes

How to measure similarity?

- ► vector-based similarity measure
- ► cosine similarity: $sim(X, Y) = \frac{\sum_{i=1}^{n} X_i Y_i}{\sqrt{\sum_{i=1}^{n} X_i^2} \sqrt{\sum_{i=1}^{n} Y_i^2}}$
 - ightharpoonup bounded between [-1,1]
- ► Euclidean distance: $sim(X, Y) = \sqrt{\sum_{i=1}^{n} (X_i Y_i)^2}$
 - not bounded (and rarely used)
- any other kind of function
 - Neural Networks can approximate any function (universal approximation theorem)
 - "trainable" semantic similarity measures

How to measure similarity?

- many graph based semantic similarity measures for comparing two classes
- several set-based measures
 - ► directly set-based
 - merging pair-wise comparison
- most useful when comparing instances/annotations
- other approaches consider relations between instances:
 - path-based
 - ► random-walk
- very recent: knowledge graph embeddings
 - and any vector-based similarity measure

How to measure similarity?

Recommended reading:

- ► recommended, comprehensive overview: Sebastian Harispe et al. Semantic Similarity from Natural Language and Ontology Analysis. Morgan & Claypool Publishers, 2015
- Catia Pesquita et al. Semantic Similarity in Biomedical Ontologies. PLoS CB, 2009.
- Maximilian Nickel et al. A Review of Relational Machine Learning for Knowledge Graphs, Proceedings of the IEEE, 2016.

How to measure similarity: Quiz

- ► How many semantic similarity measures are there?
 - a One (and it is called The Semantic Similarity Measure)
 - b Three (graph-based, set-based, feature-based)
 - c Many (depending on context, many functions can determine similarity)

How to measure similarity: Quiz

- ► How many semantic similarity measures are there?
 - a One (and it is called The Semantic Similarity Measure)
 - b Three (graph-based, set-based, feature-based)
 - c Many (depending on context, many functions can determine similarity)
- Specificity of an ontology class
 - a depends on the number of children and ancestors, and the depth
 - b depends on the number of instances (or annotations)
 - c can improve similarity estimates significantly

How to measure similarity: Quiz

- ► How many semantic similarity measures are there?
 - a One (and it is called The Semantic Similarity Measure)
 - b Three (graph-based, set-based, feature-based)
 - c Many (depending on context, many functions can determine similarity)
- Specificity of an ontology class
 - a depends on the number of children and ancestors, and the depth
 - b depends on the number of instances (or annotations)
 - c can improve similarity estimates significantly
- ► In the presence of (relations between) instances, semantic similarity
 - a cannot be computed, it only works with ontologies
 - b can be estimated using only class specificity measures
 - c can be computed using knowledge graph embeddings

- ontologies are used almost everywhere in biology
- many applications of semantic similarity:
 - predicting interacting proteins
 - predict candidate genes
 - using the guilt-by-association principle, or without
 - predict drug targets and indications
 - ► as features in machine learning models

Hypothesis

Interacting proteins have similar functions.

- relies on background knowledge about functions (encoded in GO)
- ► "similarity" can mean:
 - ▶ part of the same pathway
 - ► siblings of a common super-class
 - ▶ located in the same location
- set-based comparison of GO functions
 - ► single GO hierarchy or all?
 - which similarity measure?

- ▶ no obvious choice of similarity measure
- ► depends on application
 - predicting PPIs in different organisms may benefit from a different similarity measure!
- different similarity measures may react differently to biases in data
- ► needs some testing and experience

Recommendations:

- ▶ use Resnik's information content measure
- ▶ use Resnik's similarity
- ▶ use Best Match Average
- ► use the full ontology
- classify your ontology using an automated reasoner before applying semantic similarity
 - ▶ although many ontologies come pre-classified
- ► ⇒ but there are many exceptions
 - ► similar location ⇒ use location subset of GO
 - ▶ developmental phenotypes ⇒ use developmental branch of phenotype ontology

Onto2Vec and OPA2Vec

Using feature learning to "learn" semantic similarity measures in a data- and application-driven way...

- choice of ontology determines the kind of similarity
- ► functional similarity: Gene Ontology
- ▶ anatomical, structural similarity: anatomy ontologies (Uberon, MA, FMA, etc.)
- ▶ phenotypic similarity: phenotype ontology (HPO, MP, etc.)
- chemical structural similarity: ChEBI

- phenotypic similarity used to:
 - diagnosis: similarity between patient phenotypes and disease phenotypes
 - also between patient phenotypes and gene-phenotype associations
 - ► Phenomizer: http://compbio.charite.de/phenomizer/
 - disease modules: similarity between disease and disease
 - clustering/stratification: similarity between patient and patient
 - disease gene discovery: similarity between patient/disease phenotypes and gene-phenotype associations
 - ▶ in humans
 - ▶ in model organisms
 - drug repurposing: side-effect similarity; similarity between side effect profile and gene-disease associations

- ► Guilt-by-association:
 - ► x is associated with y
 - \triangleright z is similar to x
 - ► therefore: z may be associated with y
- candidate genes (polygenic disease):
 - ► FunSimMat: similar function ⇒ similar/same disease
 - ▶ side effect similarity: similar side effects ⇒ similar targets/indications

- ► No guilt-by-association (abduction):
 - x causes a
 - ightharpoonup y has b
 - ► a similar to b
 - ► therefore: *b* is caused by *x*
- candidate genes (monogenic and polygenic disease):
 - ▶ Phenomizer: gene x causes phenotypes a; patient y has symptoms b; a is similar to b; therefore: gene x causes the symptoms in b
 - PhenomeNET: similar to Phenomizer but using model organism phenotypes (knockouts)
 - ▶ PhenomeDrug: knockout of gene x causes phenotypes a; drug y causes side effects b; a is similar to b; therefore: drug y inhibits x (or: phenotypes b are caused by inhibition of x)
 - ▶ needs to compare model organism phenotypes and human phenotypes ⇒ ontology alignment/integration/mapping

- comparing entities annotated with different ontologies/vocabularies of the same (or related) domains
 - medical: UMLS, HPO, DO, ORDO, NCIT, ICD, SNOMED CT, MeSH, ...
 - ▶ phenotype: HPO, MP, CPO, WBPhenotype, FBCV, MeSH, ...
 - ► chemical: ChEBI, MeSH, DrOn, RXNorm, DrugBank, ...
- ▶ needs mapping, alignment, or integration
 - mapping: given a term t, find corresponding class in ontology O
 - ► can be 1:1, 1:n, n:1, n:m
 - t can be from ontology, vocabulary, database, or text
 - use O for analysis
 - ▶ alignment: given two ontologies or vocabularies O_1 and O_2 , find all mappings between classes/terms in O_1 and O_2
 - applicable to ontologies and vocabularies
 - ightharpoonup use O_1 or O_2 for analysis
 - ▶ integration: given two ontologies O_1 and O_2 , combine both ontologies into a single ontology O
 - ► maintain meaning of classes
 - ▶ use *O* for analysis

- lexical mappings: use class labels (and synonyms) to find matches
 - ▶ hypertension (HP:0000822) and hypertension (MP:0000231)
- semantic mappings: use class axioms to find matches
 - ► pulmonary valve stenosis (MP:0006182) and Pulmonic stenosis (HP:0001642)
 - ▶ both definitions based on constricted (PATO:0001847) and pulmonary valve (UBERON:0002146)
- hybrid: combine lexical and semantic mappings

tools for ontology mapping, matching, integration:

- ► AgreementMaker Light: https://github.com/AgreementMakerLight/AML-Jar
 - structural (semantic) and lexical matches
 - ► can use domain-specific background knowledge
- ► LogMap: https:

//github.com/ernestojimenezruiz/logmap-matcher

- structural (semantic) and lexical matches
- biology-themed versions
- ► NCBO Annotator:

https://bioportal.bioontology.org/annotator

- lexical matches only
- can annotate full text
- recent tools and comprehensive ongoing evaluation:
 - ► OAEI: http://oaei.ontologymatching.org/

semantic similarity and text mining:

- find all occurrences of classes of one (or more) ontologies in text
 - using lexical matching or semantic annotations of text
 - ► TextPresso (http://www.textpresso.org/), NCBO Annotator

```
(https://bioportal.bioontology.org/annotator), WhatIzIt (http:
```

```
//www.ebi.ac.uk/webservices/whatizit/info.jsf)
```

- ontology-specific text normalization tools
 - ► DNorm (diseases), GNorm (gene names), OSCAR (chemicals),

...

 use for database construction (automatic annotation), relation extraction, network construction (co-occurrence network), etc.

- semantic similarity can be used as features in machine learning models
 - when annotation space is too large
 - ► e.g., GO: 50,000 classes
 - replace binary representation
 - ► to incorporate background knowledge
 - semantic similarity encodes implicitly for ontology structure and axioms
 - encodes for specificity of classes
 - ▶ negative: reduce all annotations to single value
 - leads to loss of information
 - but is easier to use by many machine learning methods

Summary

- many semantic similarity measures
 - ▶ graph-based
 - ► feature-based
- useful for similarity-based prediction
 - ► similar entities ⇒ guilt-by-association
 - different entities
- ► combine with data and text mining
- ► features in machine learning methods

Acknowledgements

- ► Sarah Alghamdi
- ► Mona Alsharani
- ► Imene Boudellioua
- ► Senay Kafkas
- ▶ Maxat Kulmanov
- ► Fatima Zohra Smaili

- ▶ if you have not done so *before* the tutorial, don't start now
 - ▶ you need to download a lot of data
 - you can just follow our demonstration and try later
 - (unless Internet is exceptionally fast for a conference Wifi, then just go ahead and do everything now)
- ► Jupyter Notebook
 - notebooks consist of code and rich text fragments
 - ▶ human readable (with nice figures) and executable
 - ▶ need to install the SciJava kernel (default: iPython)
 - very widely used
- https://github.com/bio-ontology-research-group/ ontology-tutorial

In the tutorial, we will

- ► download an ontology
- explore the ontology with OWLAPI
- classify the ontology with an OWL reasoner
 - and query using an OWL reasoner
- store the inferred version locally
- use the Semantic Measures Library to:
 - explore the ontology as graph
 - compute similarity between classes
 - ► use different similarity measures
 - compare patients to mice
- ► learn to use Onto2Vec and OPA2Vec
- ▶ you can build on this and extend for your own research!

Do the tutorial...

- ▶ now play with the Notebook:
 - ► look at the results list (check MGI)
 - ► try another disease (check OMIM)
 - ▶ or a drug effect (check SIDER)
- you can also test another ontology
 - ► GO for functional similarity
 - ► ChEBI for chemical (structural) similarity
 - or yeast phenotypes