Física Computacional Evaluación 2

Antonio José López Moreno

7 de Mayo de 2019

Parte 1. Para los sistemas agricolas es muy importante conocer el momento, en cual es necesario realizar un riego, así reducir el gasto de agua al máximo. El agua se pierde de dos formas, una por la evaporación y la otra de la transpiración de las plantas.

En este analisis de la evatranspiración es importante ver como se comporta la temperatura, la humedad relativa y la radiación solar, en este caso se calculara los promediso mensuales del año 2018 de estas propiedades.

Gráficas de los promedios mensuales

Parte 2. En la parte número dos de este problema se procedera a estimar la evotranspiración (ET0) con tres modelos diferentes,
Jansen y Haise

$$ET_0 = (0.0252Temp + 0.078)RS$$

Varianza 1

$$ET_0 = 0.0393RS(Tempmean + 9.5)^{0.5} - 0.19RS^{0.6}\varphi^{0.15} + 0.078(Tempmean + 20)(1 - \frac{RH}{100})$$

Varianza 4

$$ET_0 = 0.051(1 - \alpha)RS(Tempmean + 9.5)^{0.5} - 2.4(\frac{RS}{Ra})^2 +$$

$$0.048(Tempmean + 20)(1 - \frac{RH}{100})(0.5 + 0.536u_2) + 0.00012z$$

Tabla de ET0 mensual en el año 2018

	JanyHai	Var1	Var4	Mes
0	77.553930	22.000811	43.165927	1
1214	81.500686	24.969543	50.449047	2
2558	126.578692	34.694631	67.057178	3
4046	176.290800	45.482331	86.068343	4
5486	204.880366	52.006233	96.785325	5
6974	212.760134	52.987382	99.099546	6
8414	196.192421	48.962891	78.859969	7
9902	179.728331	45.273595	84.900674	8
11390	174.711811	43.777461	87.684736	9
12830	121.341812	32.452692	70.496390	10
14318	89.831619	24.441551	55.130708	11
15758	62.052610	18.454140	38.243952	12

Parte 3. En esta sección tres se quiere hacer un balance de energía, para aproximar el calor latente o evatranspiración.

$$R_n - G - \lambda ET - H = 0$$

