### Dinamika tekućina

Ivan Hip

Geotehnički fakultet, Sveučilište u Zagrebu



## Lagrangeov i Eulerov pristup

Lagrangeov pristup — prati se određena materijalna točka ili materijalni volumen

Eulerov pristup — uvodi se koncept polja

- fizikalna veličina (na primjer: temperatura, tlak, brzina) definirana je u svakoj točki prostora
- promatra se određeni dio prostora, takozvani kontrolni volumen

U statici su materijalni i kontrolni volumen identični pa nije bilo potrebe raditi razliku.

### Materijalni i kontrolni volumen



Slika: a) Materijalni volumen tekućine u 4 vremenska trenutka: pratimo točno određeni volumen tekućine pri istjecanju iz rezervoara. b) Interesira nas što se događa u cijevi — volumen cijevi je kontrolni volumen.

### Protok



Slika: Mjerenje protoka



### **Protok**

#### Srednji volumni protok

Volumen fluida koji u jediničnom vremenu prođe kroz cijev

$$Q \equiv \frac{\Delta V}{\Delta t}$$

### Trenutni volumni protok

$$Q = \lim_{\Delta t \to 0} \frac{\Delta V}{\Delta t} = \frac{dV}{dt}$$

#### Trenutni maseni protok

$$Q_m = \dot{m} = \lim_{\Delta t \to 0} \frac{\Delta m}{\Delta t} = \frac{dm}{dt}$$

# Protok kroz cijev površine presjeka S



$$Q = \lim_{\Delta t \to 0} \frac{\Delta V}{\Delta t} = \lim_{\Delta t \to 0} \frac{S\Delta r}{\Delta t} = S \lim_{\Delta t \to 0} \frac{\Delta r}{\Delta t} = S \frac{dr}{dt} = Sv$$

# Protok kroz proizvoljnu plohu $\Omega$

 u najopćenitijem slučaju kad brzina nije okomita na plohu i nije ista u svim točkama plohe ukupni volumni protok kroz plohu  $\Omega$  možemo izračunati integracijom

$$Q_{\Omega} \equiv \iint_{\Omega} \vec{v} \cdot d\vec{S} \qquad \left[\frac{m^3}{s}\right]$$

ullet korisno je uvesti pojam **srednje brzine** kroz plohu  $\varOmega$ 

$$\bar{v} \equiv \frac{Q_{\Omega}}{S} = \frac{1}{S} \iint_{\Omega} \vec{v} \cdot d\vec{S} \qquad \left[ \frac{1}{m^2} \cdot \frac{m^3}{s} = \frac{m}{s} \right]$$

• u slučaju kad je S površina presjeka cijevi  $\bar{v}$  je srednja brzina tečenja kroz cijev

### Jednadžba kontinuiteta za nestlačivi fluid



## Na manjem presjeku brzina je veća!



## Vektorska polja brzine i ubrzanja

U Eulerovom pristupu fluid je opisan poljima — temperatura i tlak su skalarna polja u svakoj točki prostora koji je ispunjen fluidom, a vektori brzine i ubrzanja čine vektorska polja brzine i ubrzanja koja su međusobno povezana očekivanom relacijom

$$\vec{a}(x, y, z, t) = \frac{d\vec{v}(x, y, z, t)}{dt}$$

U skladu s teorijom funkcija više varijabli totalni diferencijal polja brzine je

$$d\vec{v}(x,y,z,t) = \frac{\partial \vec{v}}{\partial x}dx + \frac{\partial \vec{v}}{\partial y}dy + \frac{\partial \vec{v}}{\partial z}dz + \frac{\partial \vec{v}}{\partial t}dt$$

pa je polje ubrzanja

$$\vec{a}(x,y,z,t) = v_x \frac{\partial \vec{v}}{\partial x} + v_y \frac{\partial \vec{v}}{\partial y} + v_z \frac{\partial \vec{v}}{\partial z} + \frac{\partial \vec{v}}{\partial t} = (\vec{v} \cdot \vec{\nabla})\vec{v} + \frac{\partial \vec{v}}{\partial t}$$

### Lokalno ubrzanje

#### Lokalno ubrzanje

Član  $\frac{\partial \vec{v}}{\partial t}$  različit je od nule ako se polje brzine mijenja u vremenu i naziva se **lokalno ubrzanje**.

#### Stacionarno tečenje

Ako nema promjene brzine u vremenu, tj. brzina u svakoj pojedinoj točki prostora (kontrolnog volumena) ostaje stalna i ne mijenja se u vremenu (pri čemu je brzina općenito različita u različitim točkama prostora!) tečenje je **stacionarno** i vrijedi

$$\frac{\partial \vec{v}}{\partial t} = 0$$

# Prijenosno (konvektivno) ubrzanje

Preostali članovi polja ubrzanja koji ne ovise eksplicitno o vremenu

$$v_x \frac{\partial \vec{v}}{\partial x} + v_y \frac{\partial \vec{v}}{\partial y} + v_z \frac{\partial \vec{v}}{\partial z} = (\vec{v} \cdot \vec{\nabla}) \vec{v}$$

nazivaju se prijenosno ili konvektivno ubrzanje.

Dakle, čak i u slučaju stacionarnog tečenja, kad se polje brzine ne mijenja u vremenu, pojedine čestice fluida se na svojoj putanji mogu ubrzavati i usporavati, ovisno o tome u kojoj točki polja se nalaze.

## Osnovna jednadžba hidrostatike

Iz uvjeta ravnoteže površinskih i volumenskih sila

$$\sum \vec{F}_S + \sum \vec{F}_V = \vec{0}$$

koje djeluju na mali volumen fluida  $\Delta V = \Delta x \, \Delta y \, \Delta z$ 

$$-\vec{\nabla} \rho \, \Delta V + \rho \, \vec{g}_{ef} \, \Delta V = \vec{0}$$

izvedena je osnovna jednadžba hidrostatike

$$\vec{\nabla} p = \rho \, \vec{g}_{ef}$$

Ako površinske i volumenske sile nisu u ravnoteži onda mora vrijediti 2. Newtonov zakon

$$\sum \vec{F}_S + \sum \vec{F}_V = m\vec{a}$$

to jest

$$- \vec{
abla} p \, \Delta V + 
ho \, ec{g}_{ extit{ef}} \, \Delta V = 
ho \, \Delta V \, ec{ extit{a}}$$

pri čemu je  $\vec{a}(x, y, z, t)$  polje ubrzanja koje se sastoji od prijenosnog i lokalnog ubrzanja pa slijedi

$$-\vec{
abla} p + 
ho \, ec{\mathbf{g}}_{\mathsf{ef}} = 
ho [(ec{\mathbf{v}} \cdot \vec{
abla}) ec{\mathbf{v}} + rac{\partial ec{\mathbf{v}}}{\partial t}]$$

i to je Eulerova dinamička jednadžba za strujanje idealne (neviskozne) tekućine

# Rješavanje Eulerove jednadžbe

Rješavanje Eulerove jednadžbe je veoma složeno pa ćemo se ograničiti na **stacionarno strujanje** u polju sile teže  $(\vec{g}_{ef} = -g \, \vec{k})$ 

$$-\vec{\nabla}p + \rho\,\vec{g} = \rho\,(\vec{v}\cdot\vec{\nabla})\vec{v}$$

Matematičkim manipulacijama moguće je taj izraz preformulirati u

$$\vec{\nabla} p + \rho g \vec{k} + \frac{1}{2} \rho \vec{\nabla} (v^2) = \rho [\vec{v} \times (\vec{\nabla} \times \vec{v})]$$

Ako se taj izraz pomnoži s malim pomakom duž putanje (strujnice)  $d\vec{r}$  desna strana izraza će zbog svojstva skalarnog produkta (produkt okomitih vektora je nula!) biti nula i ostaje

$$\vec{\nabla} p \cdot d\vec{r} + \rho g \vec{k} \cdot d\vec{r} + \frac{1}{2} \rho \vec{\nabla} (v^2) \cdot d\vec{r} = 0$$

### Projekcija na strujnicu

Uvažavajući

$$d\vec{r} = dx \, \vec{i} + dy \, \vec{j} + dz \, \vec{k}$$

i definiciju gradijenta dobije se

$$\vec{\nabla} p \cdot d\vec{r} = \frac{\partial p}{\partial x} dx + \frac{\partial p}{\partial y} dy + \frac{\partial p}{\partial z} dz = dp$$

tj. totalni diferencijal od p. Isto tako je  $\vec{\nabla}(v^2) \cdot d\vec{r}$  totalni diferencijal od  $v^2$ , a  $\vec{k} \cdot d\vec{r} = dz$  zbog ortogonalnost jediničnih vektora  $\vec{i}$ ,  $\vec{i}$  i  $\vec{k}$ . Rezultat

$$dp + \rho g dz + \frac{1}{2} \rho d(v^2) = 0$$

je projekcija Eulerove jednadžbe na strujnicu.

### Bernoullijeva jednadžba

Dobiveni izraz koji se sastoji samo od totalnih diferencijala može se lako integrirati duž strujnice, od neke točke A do točke B

$$\int_{A}^{B} dp + \int_{A}^{B} \rho g \, dz + \frac{1}{2} \int_{A}^{B} \rho \, d(v^{2}) = 0$$

i ako uzmemo da su stvarne tekućine praktički nestlačive (ho=konst.), integracijom (i preslagivanjem) dobije se

$$p_{A} + \rho g z_{A} + \frac{1}{2} \rho v_{A}^{2} = p_{B} + \rho g z_{B} + \frac{1}{2} \rho v_{B}^{2}$$

Kako je izbor točaka A i B na strujnici bio proizvoljan, mora vrijediti

$$p + \rho gz + \frac{1}{2}\rho v^2 = konst.$$

za sve točke duž strujnice i to je Bernoullijeva jednadžba.



## Ograničenja u primjeni Bernoullijeve jednadžbe

### Ograničenja u primjeni Bernoullijeve jednadžbe

Zbog pojednostavljenja i aproksimacija koje su načinjene tijekom izvoda primjena Bernoullijeve jednadžbe je ograničena na slučajeve kad su istovremeno ispunjeni svi ovi ograničavajući uvjeti

- neviskozno tečenje, to jest tečenje sa zanemarivim unutarnjim trenjem
- stacionarno tečenje  $(\frac{\partial \vec{v}}{\partial t} = 0)$
- nestlačivi fluid ( $\rho = konst.$ )
- tečenje duž strujnice.

Napomena: U specijalnom slučaju takozvanog bezvrtložnog polja brzina (kad je ispunjen uvjet  $\vec{\nabla} \times \vec{v} = 0$ ) valjanost Bernoullijeve jednadžbe nije ograničena samo duž strujnice.

U fizici je uobičajen zapis Bernoullijeve jednadžbe

$$p + \rho gz + \frac{1}{2}\rho v^2 = konst.$$

Taj oblik naziva se tlačni jer svi članovi imaju dimenziju tlaka i mjere se u paskalima:

$$[\rho] = Pa$$

$$[\rho gz] = [\rho][g][z] = \frac{kg}{m^3} \frac{m}{s^2} m = \frac{N}{m^2} = Pa$$

$$[\frac{1}{2}\rho v^2] = [\rho][v]^2 = \frac{kg}{m^3} \frac{m^2}{s^2} = \frac{N}{m^2} = Pa.$$

### Hidraulički, hidrostatički i dinamički tlak

Suma tri člana duž strujnice je konstantna

$$p + \rho gz + \frac{1}{2}\rho v^2 = konst.$$

#### Pojedini članovi imaju svoje nazive:

pgz je već poznati hidrostatički tlak

 $\frac{1}{2}\rho v^2$  naziva se *dinamički tlak* jer ovisi o brzini (zapravo bi precizniji naziv bio *kinematički tlak*)

p je hidraulički tlak

# Fizikalna interpretacija

Dinamički tlak

$$\frac{1}{2}\rho v^2$$

nesumnjivo podsjeća na izraz za kinetičku energiju tijela mase m koje se giba brzinom v

$$E_k = \frac{1}{2}mv^2$$

S obzirom da je  $ho = \frac{m}{V}$  slijedi da je

$$\frac{1}{2}\rho v^2 = \frac{\frac{1}{2}mv^2}{V} = \frac{E_k}{V}$$

tj. kinetička energija po jediničnom volumenu tekućine.

## Fizikalna interpretacija

Isto vrijedi i za hidrostatički tlak

$$\rho$$
gz

koji podsjeća na izraz za potencijalnu energiju u polju sile teže

$$E_{p,G} = mgz$$

S obzirom da je  $ho = \frac{m}{V}$  slijedi da je

$$\rho gz = \frac{mgz}{V} = \frac{E_{p,G}}{V}$$

tj. potencijalna energija sile teže po jediničnom volumenu tekućine.

## Specifična energija po jedinici volumena tekućine

#### Fizikalna interpretacija

Članovi u tlačnom obliku Bernoullijeve jednadžbe predstavljaju specifičnu energiju po jedinici volumena tekućine.

Ta interpretacija nije u kontradikciji sa činjenicom da se članovi mjere u paskalima, jer je

$$Pa = \frac{N}{m^2} = \frac{N}{m^2} \cdot \frac{m}{m} = \frac{Nm}{m^3} = \frac{J}{m^3}.$$

Paskal možemo interpretirati kao džul po kubnom metru, tj. kao mjeru za energiju po jediničnom volumenu.

## Fizikalna interpretacija hidrauličkog tlaka

- volumen tekućina se pod tlakovima koji nisu mnogo veći od atmosferskog tek neznatno smanjuje (tekućine su praktički nestlačive!)
- u proračunima se uzima da su volumen, a time i gustoća tekućina, konstantni
- ipak, tekućine jesu stlačive i u stlačenoj tekućini pohranjena je elastična potencijalna energija — kao što je pohranjena i u stlačenoj opruzi

Hidraulički tlak *p* odgovara **specifičnoj elastičnoj potencijalnoj energiji po jedinici volumena tekućine** koja je stlačena pod tim tlakom.

## Specifična energija po jedinici mase

- kad se koristi naziv specifična energija bez da se spomene da se odnosi na jedinični volumen obično se podrazumijeva da se radi o energiji po jediničnoj masi
- jednostavno je Bernoullijevu jednadžbu iz tlačnog oblika preoblikovati tako da pojedini članovi predstavljaju specifičnu energiju po jedinici mase: jednadžbu treba podijeliti s gustoćom tekućine  $\rho$

$$p + \rho gz + \frac{1}{2}v^2 = konst.$$
 / :  $\rho$ 

$$\frac{p}{\rho} + gz + \frac{1}{2}v^2 = \frac{konst.}{\rho} = \mathcal{E}$$

## Specifična energija po jedinici mase

ullet kad se podijeli s gustoćom ho energija po jediničnom volumenu postaje energija po jedinici mase

$$\frac{E}{V}$$
:  $\rho = \frac{E}{\rho V} = \frac{E}{m}$ 

• izraženo mjernim jedinicama

$$\frac{J}{m^3}$$
 :  $\frac{kg}{m^3} = \frac{J}{m^3} \frac{m^3}{kg} = \frac{J}{kg}$ 

 ovaj oblik Bernoullijeve jednadžbe se u praksi relativno rijetko koristi i nema neko posebno ime

# Visinski oblik Bernoullijeve jednadžbe

ullet osim sa gustoćom ho tlačni oblik Bernoullijeve jednadžbe može se podijeliti i s ubrzanjem slobodnog pada g

$$p + \rho gz + \frac{1}{2}\rho v^2 = konst.$$
 /:  $(\rho g)$ 

 dobije se oblik u kojem pojedini članovi imaju dimenziju duljine, tj. mjere se u metrima

$$\frac{p}{\rho g} + z + \frac{v^2}{2g} = H$$

postavlja se pitanje fizikalne interpretacije?

Lagrangeov i Eulerov pristup

• ako specifičnu energiju po jedinici volumena podijelimo i sa  $\rho$  i sa g slijedi

$$\frac{E}{V} : \rho : g = \frac{E}{\rho V} : g = \frac{E}{m} : g = \frac{E}{mg} = \frac{E}{G}$$

- nameće se očigledna interpretacija da se u ovom slučaju radi o specifičnoj energiji po jedinici težine tekućine
- lako je pokazati da je metar ekvivalentan džulu po njutnu

$$m = m \cdot \frac{N}{N} = \frac{Nm}{N} = \frac{J}{N}$$

Primjena Bernoullijeve jednadžbe

## Visinski oblik Bernoullijeve jednadžbe

Visinski oblik Bernoullijeve jednadžbe je

$$\frac{p}{\rho g} + z + \frac{v^2}{2g} = H$$

#### Pojedini članovi imaju svoje nazive:

 $\frac{p}{n\sigma}$  je tlačna visina (engl. pressure head)

z je geodetska visina (engl. elevation head)

 $\frac{v^2}{2\sigma}$  je brzinska visina (engl. velocity head)

H je ukupna energijska visina (engl. total head)

#### Piezometarska visina

- ullet tlačna visina u metrima može se interpretirati kao visina stupca tekućine gustoće ho u polju sile teže jakosti g uslijed kojeg nastaje tlak p
- ullet geodetska visina z mjeri se u odnosu na referentnu ravninu
- odabir referentne ravnine je zapravo proizvoljan
- suma tlačne i geodetske visine naziva se piezometarska visina (engl. piezometric head)

$$\Pi = \frac{p}{\rho g} + z$$

• taj naziv motiviran je činjenicom da je to upravo ona visina (u odnosu na referentnu ravninu) koja se očitava na piezometru

### Piezometar

## Pitotova cijev



# Venturijeva cijev

# Venturijeva cijev

# Venturijeva cijev

# Torricellijev zakon

# Torricellijev zakon