Name:

Student Number:

ECOSYSTEMS: FOOD WEB WORKSHEET

1. As part of your graduate studies, you have created a simple freshwater community in a tank (in your lab). The table below gives the relative biomass of each population in the tank:

Relative biomass	Organism
500	Coelastrum
56	Halteria
6	Calanoid copepods
600	Microcystis
1	Mysis

- **a.** Based on the information provided above, draw a food web representing your lab ecosystem. Make sure you include the following:
 - i. a heterotrophic bacteria (i.e., a decomposer not shown in the table)
 - ii. arrows that indicate the direction of energy flow (e.g., prey → predator)
 - iii. inorganic carbon (in the form of CO₂) entering the food web
 - iv. carbon leaving the food web (in the form of CO₂)

You can also draw arrows leaving organisms separately and not all congregating to a box as shown above. During the class you have done one exercise on this so you know how it should be done. *Continued on next page...*

Name:

Student Number:

2. Make a prediction: What do you expect to happen to the population of producers and overall biomass of the tank in each of the scenarios listed below?

Prediction (circle one):		(circle one):	
Scenario	Population of producers will:	Biomass of the tank ecosystem will:	Explain the reasoning behind your prediction:
You add phosphorous (a limiting nutrient) to the tank	increase	increase	Addition of the limiting nutrient will enable more growth of the producers, which will transfer biomass to the rest of the community.
You add a parasite to the tank, which decimates the Mysis population	increase	increase	Removal of the top trophic level (<i>Mysis</i>) will cause a trophic cascade that increases the abundance of producers. This could <u>increase</u> the biomass of the tank because more of the nutrients are now in the producers
You introduce a predator that consumes only <i>Microcystis</i> (<i>Note: Microcystis</i> is the only nitrogen fixing species in the tank)	decrease	decrease	Reducing the biomass of a producer will reduce overall biomass. Reducing nitrogen fixation (i.e., entry of nitrogen into the system) will also reduce the productivity of the other producer, again lowering biomass. Lower producer biomass = lower consumer biomass. (Note: Can accept "no change" if a reasonable explanation is provided — e.g., nitrogen is not limiting, so the other producer will still be able to grow and make up for the loss in biomass).