

Final Presentation

NYC Taxi and Limousine Commission (TLC) Green taxi rides

Course: ALY 6110

Course Name: Data Management and Big Data

Professor: Patrick Kanza

Submitted By:

Harsh Samani - 001403994 Jainik Majmudar - 001878085 Sai Srujan Kumar Majeti - 001497341

Academic Term: Winter 2019 Date of Submission: 02/14/2019

Description:

The dataset provides below in the link were collected and provided to the NYC Taxi and Limousine Commission (TLC) by technology providers authorized under the Taxicab & Livery Passenger Enhancement Programs (TPEP/LPEP). The trip data was not created by the TLC, and TLC makes no representations as to the accuracy of these data.

- •Mission statement is to provide access to New Yorkers and Visitor
- •Types of taxis Green / Yellow / For-Hire
- •Data to NYC TLC is provided by Taxicab & Livery Passenger Enhancement Programs (TPEP/LPEP)

Analysis:

• Importing necessary libraries

```
In [3]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   sns.set_style('whitegrid')
   %matplotlib inline
```

• We have loaded the dataset using Pandas library in Python

```
taxi = pd.read_csv('/Users/jainikmajmudar/Downloads/green_tripdata_2018-06.csv')
```

• Use head function to view first 5 values and to view the type of data under respective columns

ta	taxi.head(5)											
	VendorID	lp	pep_pickup_datetime	lpep_dropoff_datetime	store_and_fwd_flag	RatecodelD	PULocationID	DOLocationID	passenger_count	trip_distance	fare_a	
0	2		2018-06-01 00:33:55	2018-06-01 00:36:13	N	1	66	33	5	0.51		
1	2		2018-06-01 00:40:36	2018-06-01 00:49:46	N	1	25	49	5	1.97		
2	2		2018-06-01 00:57:12	2018-06-01 01:02:58	N	1	61	49	5	1.40		
3	2		2018-06-01 00:10:13	2018-06-01 00:16:27	N	1	49	97	1	1.36		
4	1		2018-06-01 00:32:08	2018-06-01 00:52:06	N	1	75	127	1	7.90		

• Use describe function to get the basic statistical parameters for all the columns present in the dataset.

<pre>taxi.describe()</pre>											
	VendorID	RatecodelD	PULocationID	DOLocationID	passenger_count	trip_distance	fare_amount	extra	mta_tax	tip_am	
count	739373.000000	739373.000000	739373.000000	739373.000000	739373.000000	739373.000000	739373.000000	739373.000000	739373.000000	739373.000	
mean	1.838727	1.065254	111.230031	129.260628	1.357878	3.298843	13.906104	0.325185	0.489056	1.023	
std	0.367783	0.496413	74.388120	76.823702	1.041089	3.738948	12.779641	0.396634	0.081254	2.040	
min	1.000000	1.000000	1.000000	1.000000	0.000000	0.000000	-80.000000	-4.500000	-0.500000	-2.000	
25%	2.000000	1.000000	51.000000	62.000000	1.000000	1.100000	6.500000	0.000000	0.500000	0.000	
50%	2.000000	1.000000	82.000000	129.000000	1.000000	1.990000	10.000000	0.000000	0.500000	0.000	
75%	2.000000	1.000000	166.000000	193.000000	1.000000	3.970000	17.000000	0.500000	0.500000	1.700	
max	2.000000	6.000000	265.000000	265.000000	9.000000	143.100000	2113.000000	4.500000	0.500000	444.440	

 By using is NULL function, we can understand if we have any NULL values populated in any of the columns.

```
taxi.isnull().sum()
                                0
VendorID
lpep pickup datetime
                                0
lpep_dropoff_datetime
store and fwd flag
                                0
RatecodeID
                                0
PULocationID
DOLocationID
passenger count
                                0
trip distance
                                0
fare amount
extra
                                0
\mathtt{mta\_tax}
                                0
tip amount
                                0
tolls amount
                                0
                           739373
ehail fee
improvement_surcharge
                                0
total_amount
                                0
payment_type
                                0
trip_type
dtype: int64
```

• To understand the types of Vendors in the dataset, use value_counts function.

```
# Number of records provided by each of the LPEP provider 1 = Creative Mobile Technologies, LLC; 2= VeriFone Inc.
taxi['VendorID'].value_counts()
```

```
2 620132
1 119241
Name: VendorID, dtype: int64
```

• Now drop unnecessary columns which could saturate our analysis.

```
# Dropping the column ehail_fee as the whole column has nan values
taxi.drop(['ehail_fee'], axis=1,inplace = True)
```

• Since the column with datetime is an object datatype which needs to be changed in datetime datatype.

```
# The column with datetime is an object datatype which needs to be changed in datetime datatype
taxi['lpep_pickup_datetime'].dtype
dtype('0')
```

Now, changing timestamp to datatime datatype

```
# changing to datatime datatype
taxi['lpep_pickup_datetime'] = pd.to_datetime(taxi['lpep_pickup_datetime'])
taxi['lpep_pickup_datetime'].dtype

dtype('<M8[ns]')</pre>
```

• Creating new columns in the dataframe such as Hour_pickup, Month_pickup and Day of Week_pickup.

```
# splitting the lpep_pickup_datetime to a seperate column inti hours, month aand day of the week.

taxi['Hour_pickup'] = taxi['lpep_pickup_datetime'].apply(lambda time: time.hour)
taxi['Month_pickup'] = taxi['lpep_pickup_datetime'].apply(lambda time: time.month)
taxi['Day of Week_pickup'] = taxi['lpep_pickup_datetime'].apply(lambda time: time.dayofweek)
```

```
# Use the .map() with this dictionary to map the actual string names to the day of the week:
dmap = {0:'Mon',1:'Tue',2:'Wed',3:'Thu',4:'Fri',5:'Sat',6:'Sun'}
taxi['Day of Week_pickup'] = taxi['Day of Week_pickup'].map(dmap)
taxi.head(5)
```

	VendorID	lpep_pickup_datetime	lpep_dropoff_datetime	RatecodeID	PULocationID	DOLocationID	passenger_count	trip_distance	fare_amount	tip_amount
0	2	2018-06-01 00:33:55	2018-06-01 00:36:13	1	66	33	5	0.51	4.0	0.70
1	2	2018-06-01 00:40:36	2018-06-01 00:49:46	1	25	49	5	1.97	9.0	2.06
2	2	2018-06-01 00:57:12	2018-06-01 01:02:58	1	61	49	5	1.40	6.5	0.00
3	2	2018-06-01 00:10:13	2018-06-01 00:16:27	1	49	97	1	1.36	7.0	0.00
4	1	2018-06-01 00:32:08	2018-06-01 00:52:06	1	75	127	1	7.90	24.0	6.30

```
#Now performing same task for lpep_dropoff_datetime column and making into seperate column hours, month aand day of the
taxi['Hour_drop'] = taxi['lpep_dropoff_datetime'].apply(lambda time: time.hour)
taxi['Month_drop'] = taxi['lpep_dropoff_datetime'].apply(lambda time: time.month)
taxi['Day of Week_drop'] = taxi['lpep_dropoff_datetime'].apply(lambda time: time.dayofweek)
```

```
# Again use of the .map() function with this dictionary to map the actual string names to the day of the week:
dmap = {0:'Mon',1:'Tue',2:'Wed',3:'Thu',4:'Fri',5:'Sat',6:'Sun'}
taxi['Day of Week_drop'] = taxi['Day of Week_drop'].map(dmap)
taxi.head(5)
```

	VendorID	lpep_pickup_datetime	lpep_dropoff_datetime	RatecodeID	PULocationID	DOLocationID	passenger_count	trip_distance	fare_amount	tip_amount
0	2	2018-06-01 00:33:55	2018-06-01 00:36:13	1	66	33	5	0.51	4.0	0.70
1	2	2018-06-01 00:40:36	2018-06-01 00:49:46	1	25	49	5	1.97	9.0	2.06
2	2	2018-06-01 00:57:12	2018-06-01 01:02:58	1	61	49	5	1.40	6.5	0.00
3	2	2018-06-01 00:10:13	2018-06-01 00:16:27	1	49	97	1	1.36	7.0	0.00
4	1	2018-06-01 00:32:08	2018-06-01 00:52:06	1	75	127	1	7.90	24.0	6.30

• To Analyze trends

For the analysis, trying to find some similarities, trends among the two type of trips For the trip_type column 1 -> Street-hail type of trip, 2 -> Dispatch type of trip

```
# 1 = street hail, 2 = dispatch, counting trips by each of the type
taxi['trip_type'].value_counts()
```

: 1 727734

2 11639

Name: trip_type, dtype: int64

```
# Visually showing the distribution of both the type of trips
sns.countplot(x='trip_type',data=taxi,palette='viridis')
```

: <matplotlib.axes._subplots.AxesSubplot at 0x10b7a2be0>

20000

```
# At what time in tearms of hours is highest number of taxi rides took by the people.
time_hr1 = taxi['Hour_pickup'].value_counts().head(1)
print('Highest number of taxi rides requested in the particular hour : ', time_hrl)
Highest number of taxi rides requested in the particular hour: 18
Name: Hour_pickup, dtype: int64
# At what time in tearms of hours is highest number of Street hail type of trip (taxi rides) took by the people.
time_hr2 = taxi[taxi['trip_type'] == 1]['Hour_pickup'].value_counts().head(1)
print('Highest number of Street hail type of trip in the particular hour: ', time_hr2)
Highest number of Street hail type of trip in the particular hour : 18
Name: Hour_pickup, dtype: int64
# At what time in tearms of hours is highest number of dispatch type of trip (taxi rides) took by the people.
time hr3 = taxi[taxi['trip_type'] == 2]['Hour_pickup'].value_counts().head(1)
print('Highest number of dispatch type of trip in the particular hour: ', time_hr3)
Highest number of dispatch type of trip in the particular hour: 8
Name: Hour pickup, dtype: int64
Which is the most busiest day for taxi rides looking at dispatch type of trip and Street hail type of trip
busy_ridel= taxi[taxi['trip_type'] == 1]['Day of Week_drop'].value_counts()
print('The busiest day for Street Hail type ride is on :',busy_ridel)
The busiest day for Street Hail type ride is on : Sat
       127527
Fri
        98399
Thu
        95876
Wed
Sun
        93109
Tue
        91600
        89485
Name: Day of Week_drop, dtype: int64
busy_ride2= taxi['trip_type'] == 2]['Day of Week_drop'].value_counts()
print('The busiest day for dispatch type ride is on :',busy_ride2)
The busiest day for dispatch type ride is on : Sat
Fri
       2037
Sun
        1623
        1491
Mon
Thu
        1445
        1426
Tue
        1306
Name: Day of Week_drop, dtype: int64
#countplot of the Day of Week column with the hue based off of the trip type (dispatch & Street Hail) column.
sns.countplot(x='Day of Week_pickup',data=taxi,hue='trip_type',palette='viridis')
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
<matplotlib.legend.Legend at 0x10a5ac9b0>
   120000
   80000
```

• Which location is famous for the pickup for both the trip_type

• Finding the relationship between the total_amount and tip_amount

```
sns.lmplot(x='total_amount', y='tip_amount', hue='trip_type', data=taxi)
plt.xlabel('total_amount')
plt.ylabel('tip')
plt.title('Trend of tip with total_amount')
```

Text(0.5,1,'Trend of tip with total_amount')


```
taxi.loc[taxi['tip_amount'].idxmax()]
                                            2
VendorID
lpep_pickup_datetime
                         2018-06-30 16:54:07
lpep_dropoff_datetime
                         2018-06-30 17:08:24
RatecodeID
PULocationID
                                          166
DOLocationID
                                          246
passenger_count
                                           1
trip_distance
                                         4.48
fare_amount
                                           16
tip_amount
                                       444.44
total_amount
                                       461.24
payment_type
                                           1
trip_type
                                           1
Hour_pickup
                                           16
Month_pickup
                                           6
Day of Week_pickup
                                          Sat
Hour_drop
                                           17
Month_drop
                                           6
Day of Week_drop
                                          Sat
Name: 727733, dtype: object
```

• The rides which are requested are for how many people and is there any different between number of people take the ride from both trip type.

```
d5 = taxi[taxi['trip_type'] == 1]['passenger_count'].value_counts()
d5
1
     614765
2
     55770
5
      24801
6
      13580
3
      12553
4
       4776
0
       1487
8
         1
7
          1
Name: passenger_count, dtype: int64
d6 = taxi[taxi['trip_type'] == 2]['passenger_count'].value_counts()
d6
1
     9238
     1462
2
3
      454
4
      185
5
      184
0
       85
8
       12
7
       10
        7
        2
Name: passenger_count, dtype: int64
```

```
#by Street hail type
d7 = taxi[taxi['trip_type'] == 1]['payment_type'].value_counts()
d7
1
      412479
2
     310159
3
        3384
4
        1687
5
          25
Name: payment_type, dtype: int64
#by dispatch type
d7 = taxi[taxi['trip_type'] == 2]['payment_type'].value_counts()
d7
2
      6773
1
      4597
3
       158
4
       107
Name: payment_type, dtype: int64
\#countplot of the Day of Week column of the trip_type column using seaborn ploting.
sns.countplot(x='payment_type',data=taxi,hue='trip_type',palette='viridis')
```

<matplotlib.legend.Legend at 0x10dbb57f0>

plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)

Predicting Model

```
fig, ax = plt.subplots(figsize=(10,10))
sns.heatmap(taxi.corr(),cmap='coolwarm',annot=True, linewidths=1, annot_kws={"size":6})
```

<matplotlib.axes._subplots.AxesSubplot at 0x10dc0d748>

• Now understanding our features and labels.

```
X = taxi.iloc[:,[0,3,4,5,6,7,8,9,10,11,13,14,16,17]].values
y = taxi.iloc[:,12].values
from sklearn.cross validation import train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
/Users/jainikmajmudar/anaconda3/lib/python3.6/site-packages/sklearn/cross_validation.py:41: DeprecationWarning: This
module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes an
d functions are moved. Also note that the interface of the new CV iterators are different from that of this module. T
his module will be removed in 0.20.
  "This module will be removed in 0.20.", DeprecationWarning)
X_{train}
array([[ 2., 1., 255., ..., 6., 6., 6.],
       [ 2., 1., 129., ..., 6., 16.,
                                            6.],
       [ 2.,
               1., 185., ..., 6., 10.,
               1., 74., ..., 6., 17.,
1., 43., ..., 6., 19.,
                                             6.],
       [ 2.,
         1.,
       [ 2.,
              1., 244., ..., 6., 12.,
                                             6.]])
X_test
array([[ 2., 1., 95., ..., 6., 22., 6.],
       [ 2., 1., 41., ..., 6., 10., 6.],
[ 2., 1., 47., ..., 6., 14., 6.],
       [ 2., 1., 51., ..., 6., 17., 6.],
       [ 2., 1., 43., ..., 6., 19., 6.],
       [ 2., 1., 61., ..., 6., 2., 6.]])
y_train
array([1, 1, 1, ..., 1, 1, 1])
y_test
array([1, 1, 1, ..., 1, 1, 1])
```

Created Classification Algorithm

• Created Confusion Matrix using Classification Algorithm

```
# Creating confusion matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
array([[181806,
                  1291,
     [ 256,
                 2653]])
from sklearn.metrics import accuracy score
accuracy_score(y_test, y_pred)
0.997917162580338
#Creating a classification algorithm - Random forest classifier model, to predict the trip type
from sklearn.ensemble import RandomForestClassifier
classifier1 = RandomForestClassifier(random_state = 0)
classifier1.fit(X_train, y_train)
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
           max_depth=None, max_features='auto', max_leaf_nodes=None,
           min_impurity_decrease=0.0, min_impurity_split=None,
           min_samples_leaf=1, min_samples_split=2,
           min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,
           oob_score=False, random_state=0, verbose=0, warm_start=False)
y_pred1 = classifier1.predict(X_test)
y_pred1
array([1, 1, 1, ..., 1, 1, 1])
from sklearn.metrics import confusion_matrix
cm1 = confusion_matrix(y_test, y_pred1)
cm1
array([[181869,
                      66],
                   2666]])
        [ 243,
accuracy_score(y_test, y_pred1)
0.9983283200969466
Y predicted trip type = pd.DataFrame(y pred1, columns=['predictions Trip Type'])
```

Conclusion:

- In this we found, relationship between tips and total amount, we also found the trip type details what is the relation and which trip type is better on which time.
- Predicted which method will be the best for the predicting the trip and trip type.
- We can take both the methods for the consideration while predicting the results as for Logistic Regression we found accuracy to be 99.79% and for random forest classifier it is 99.83%. We just have a difference of 0.04% which doesn't make us fully confident to predict the best method.

References:

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

http://www.nyc.gov/html/tlc/downloads/pdf/data_dictionary_trip_records_green.pdf