MTH 443 - Homework 2

Daniel Takamori

October 2015

1 Problem 7

Let F be a field. The set $\{u_1, u_2, u_3, u_4\}$ is a basis for F^4 , where $u_1 = (1, 1, 1, 1), u_2 = (0, 1, 1, 1), u_3 = (0, 0, 1, 1), u_4 = (0, 0, 0, 1)$. Given and arbitrary vector $(a_1, a_2, a_3, a_4) \in F^4$, write down the explicitly unique expression of (a_1, a_2, a_3, a_4) as a linear combination of the u_j .

1.1

To discover the unique representation of $a=(a_1,a_2,a_3,a_4)\in F^4$ as a linear combination of the basis $\beta=\{u_1,u_2,u_3,u_4\}$ we will write a linear transformation, $T:F^4\to F^4$, from the standard basis, denoted δ , to β as $[T]^{\beta}_{\delta}$. The matrix representation of this linear transformation will map $e_i\mapsto u_i; i\in 1,2,3,4$.

$$[T]_{\alpha}^{\beta} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$
 (1)

Now we can solve the linear system:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix}$$
 (2)

$$a_1 = x_1 \tag{3}$$

$$a_2 = x_1 + x_2 \tag{4}$$

$$a_3 = x_1 + x_2 + x_3 \tag{5}$$

$$a_4 = x_1 + x_2 + x_3 + x_4 \tag{6}$$

$$x_1 = a_1 \tag{7}$$

$$x_2 = a_2 - a_1 \tag{8}$$

$$x_3 = a_3 - a_2 + a_1 \tag{9}$$

$$x_4 = a_4 - a_3 + a_2 - a_1 (10)$$

(11)

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 - a_1 \\ a_3 - a_2 + a_1 \\ a_4 - a_3 + a_2 - a_1 \end{bmatrix}$$
 (12)

2 Problem 8

Let V be a finite dimensional vector space, and let W_1 be a subspace of V.

- a) Prove that there exists a subspace W_2 of V such that $V=W_1\oplus W_2$.
- b) Give a concrete example showing that the space W_2 constructed in part (a) is not unique.

2.1 a

WLOG let dim(V) = n and dim(W) = m. Suppose $\beta = \{\beta_1, \beta_2, \dots, \beta_m\}$ is a basis for W_1 . Because both V and W_1 are finitely generated we can use the Replacement Theorem to extend β with a set of linearly independent vectors, $\gamma = \{\gamma_1, \gamma_2, \dots, \gamma_{n-m}\}$, where $\beta \cup \gamma$ generates V and $\beta \cap \gamma = \emptyset$. The span of any set of vectors forms a subspace and since we know the sets are linearly independent we see that $span(\beta \cap \gamma) = span(\beta) \cap span(\gamma) = W_1 \cap span(\gamma) = \{0\}$. The set $\beta \cup \gamma$ now forms a basis for V and as such each $v \in V$ can be written as a unique linear combination of the vectors in β and γ . $span(\gamma)$ is a subspace disjoint from W_1 besides the zero vector and thus is the complementing subspace to form $V = W_1 \oplus span(\gamma)$.

2.2 b

Let $V = \mathbb{F}^2$ and $W = span(\{(1,0)\})$. Clearly W is a subspace of V to which we could extend the set $\{(1,0)\}$ with either $\{(0,1)\}$ or $\{(1,1)\}$ to form 2 different subspaces of V, $W_2 = span(\{(0,1)\}, W_3 = span(\{(1,1)\})$. W_2, W_3 are disjoint from W besides $\{(0,0)\}$ and pair with W such that they have unique linear combinations to represent V. For example $\{(1,1)\} = 1 * (1,0) + 1 * (0,1) = 0 * (1,0) + 1 * (1,1)$.

3 Problem 9

Let α be the standard ordered basis for \mathbb{R}^2 , and let $\beta = \{(1,1),(2,1)\}$. Let γ be the standard ordered basis for \mathbb{R}^3 , and let $\delta = \{(1,1,0),(0,1,1),(2,2,3)\}$. Define $T: \mathbb{R}^2 \to \mathbb{R}^3$ by $T(a_1,a_2) = (a_1 - a_2, a_1, 2a_1 + a_2)$. Calculate $[T]_{\alpha}^{\gamma}, [T]_{\beta}^{\delta}, [T]_{\beta}^{\gamma}$.

3.1 $[T]_{\alpha}^{\gamma}$

The matrix representation of T from α to β just maps the standard \mathbb{R}^2 basis to \mathbb{R}^3 so T((1,0)) = (1,1,2) and T((0,1)) = (-1,0,1). This matrix shows that multiplication by α under it's own representation clearly takes it to first or second column, which is the transformed vectors in \mathbb{R}^3 .

$$[T]_{\alpha}^{\gamma} = \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 2 & 1 \end{bmatrix} \tag{13}$$

3.2 $[T]^{\delta}_{\alpha}$

The $[T]^{\gamma}_{\alpha}$ matrix can be thought of as a composition of basis changes $\alpha \xrightarrow{T} \gamma \to \delta$. This matrix takes vectors in α to their transformation by T under the δ basis. Introducting a new linear transformation $U: \mathbb{R}^3 \to \mathbb{R}^3$ we can view the composition of $[U]^{\delta}_{\gamma}[T]^{\gamma}_{\alpha} = [T]^{\delta}_{\alpha}$. The $[U]^{\delta}_{\gamma}$ matrix is the inverse of the representation of δ under γ as column vectors.

$$[T]_{\alpha}^{\delta} = [U]_{\gamma}^{\delta}[T]_{\alpha}^{\gamma} = [U]_{\gamma}^{\delta} \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 2 & 2 \\ 0 & 1 & 3 \end{bmatrix}^{-1} \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 2 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 2 & -2 \\ -3 & 3 & 0 \\ 1 & -1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 2 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} -1 & -1 \\ 0 & 3 \\ 2 & 0 \end{bmatrix}$$

$$(14)$$

3.3 $[T]^{\gamma}_{\beta}$

This matrix similarly can be decomposed into the product of a transformation from β to α and then applying the linear transformation $[T]^{\gamma}_{\alpha}$. So similarly to the previous part we construct another linear transformation, this time $S: \mathbb{R}^2 \to \mathbb{R}^2$ and look for the matrix representation of $[S]^{\alpha}_{\beta}$.

$$[T]^{\gamma}_{\beta} = [T]^{\gamma}_{\alpha}[S]^{\alpha}_{\beta} = \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 2 & 1 \end{bmatrix} [S]^{\alpha}_{\beta} = \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 2 \\ 3 & 5 \end{bmatrix}$$
(15)

4 Problem 10

Let $V = \{a_1, a_2, a_3\} \in \mathbb{R}^3 | a_1 + a_2 + a_3 = 0\}$, let $\alpha = \{(1, 0, -1), (0, 1, -1)\} = \{\alpha_1, \alpha_2\}$ and $\beta = \{(1, 1, -2), (1, -1, 0)\} = \{\beta_1, \beta_2\}$ be an ordered bases for V, and let $T : V \to V$ be a linear transformation define by $T(a_1, a_2, a_3) = (a_2, a_3, a_1)$. Calculate $[T]^{\alpha}_{\alpha}$ and $[T]^{\beta}_{\alpha}$.

4.1 $[T]^{\alpha}_{\alpha}$

The matrix $[T]^{\alpha}_{\alpha}$ represents the vector in \mathbb{R}^3 under the transformation by T under the basis α . The easiest way to go about this is to look at the transformation of α under the standard basis, and then rewrite as a linear combination of the α 's. In these systems, $a, b, c, d, e, f, g, h \in \mathbb{R}$.

$$T(\alpha_1) = (0, -1, 1) = a * \alpha_1 + b * \alpha_2 = 0 * \alpha_1 + (-1) * \alpha_2 \to (0, -1)$$
(16)

$$T(\alpha_2) = (1, -1, 0) = c * \alpha_1 + d * \alpha_2 = 1 * \alpha_1 + (-1) * \alpha_2 \to (1, -1)$$
(17)

So naturally we put the matrix together as the column vectors which shows that the matrix representation takes $\alpha_1 \mapsto (0, -1)$ and $\alpha_2 \mapsto (1, -1)$ in the alpha basis.

$$[T]^{\alpha}_{\alpha} = \begin{bmatrix} 0 & 1\\ -1 & -1 \end{bmatrix} \tag{18}$$

4.2 $[T]^{\beta}_{\alpha}$

This matrix should map the α basis to the transformed vectors under the β basis.

$$T(\alpha_1) = (0, -1, 1) = e * \beta_1 + f * \beta_2 = -\frac{1}{2} * \beta_1 + \frac{1}{2} * \beta_2 \to (-\frac{1}{2}, \frac{1}{2})$$
(19)

$$T(\alpha_2) = (1, -1, 0) = g * \beta_1 + h * \beta_2 = 0 * \beta_1 + 1 * \beta_2 \to (0, 1)$$
(20)

$$[T]^{\beta}_{\alpha} = \frac{1}{2} \begin{bmatrix} -1 & 0\\ 1 & 2 \end{bmatrix} \tag{21}$$

I talked with Sam Kowash on the last 2 problems.