Complements Lattice:

A Lattice in which every element has a complement is known as complemented Lattice.

Distributive Lattice:

A Lattice which follows distributive law is known as Distributive Lattice.

Distributive Law: For any three elements a, b, 9

i)
$$a \lor (b \land c) = (a \lor b) \land (a \lor c)$$
 and
ii) $a \land (b \lor c) = (a \land b) \lor (a \land c)$

$$5elements$$

$$5c_3 = \frac{5 \times 4 \times 3}{371 \times 1} = 10$$

Q. Construct

iii) [
$$D_{32}$$
: |] \nearrow

$$D_3 = 21, 2, 4, 83$$

Total Order:

A partial-order relation in which every pair of elements are COMPARABLE, is known as Totally-ordered relation (or) Linearly-ordered (or) chain

* Every chain is Distributive

COMPARABLE: In a relation 'R',

Two elements \underline{x} , \underline{y} are comparable $\Leftrightarrow \underline{x} \underline{R} \underline{y}$ (or) $\underline{y} \underline{R} \underline{x}$ $(\underline{x},\underline{y}) \in \mathbb{R} \quad (\underline{o}\underline{y}) \in \mathbb{R}$

Boolean Algebra Structure:

A Lattice which is both distributive and complemented, is known as Boolean Algebra structure

Ex: Construct $[P(A) : \subseteq]$ Where $A = \{a, b, c\}$ and P(A) is a powerset of 'A'

$$= 2ay \lor \phi$$

aiven structure

$$.: [\rho(A):\subseteq]$$
 is

$$\therefore [p(A): \subseteq]$$
 is

 $RHS = \left[\frac{1}{2} a_{3}^{2} v_{2}^{2} b_{3}^{2} \right] \wedge \left[\frac{1}{2} a_{3}^{2} v_{2}^{2} a_{1} c_{3}^{2} \right]$ $= \left[\frac{1}{2} a_{3}^{2} b_{3}^{2} \right] \wedge \left[\frac{1}{2} a_{3}^{2} c_{3}^{2} \right]$ $= \frac{1}{2} a_{3}^{2}$

Distributive

Distributive & Complemented

Boolean algebra structure.

Transitive Closure:

If 'R' is any relation on a set 'A' then transitive closure of 'R' denoted by R* is the smallest transitive relation on A which contains R.

Reflexive Closure:

If 'R' is any relation on a set A then reflexive closure of R denoted b R[#] is the smallest reflexive relation on A which contains R

$$\mathcal{R}$$
 = $R \cup \Delta_A$

Ex: If
$$A = \{a, b, c\}$$

$$R = \{(a, b), (b, c)\}$$

$$R^{\#} = \{(a, b), (b, c), (a, a), (b, b), (c, c)\}$$

Symmetric Closure:

If 'R' is any relation on a set 'A' then symmetric closure of R denoted by R+ is

 R^+ = The smallest symmetric relation on A which contains $R = R \cup R^{-1}$

Ex: Let
$$A = \{a, b, c\}$$
 and $R = \{(a, b), (b, c)\}$ then $R^+ = \{(a, b), (b, c), (b, a), (c, b)\}$

R () Something = Symmetric = R+.

 $\{(1, 2), (2, 3), (3, 4), (5, 4)\}$ on the set $A = \{1, 2, 3, 4, 5\}$ is _____

$$R = \underbrace{2}_{(2,5)}, \underbrace{(2,5)}_{(3,4)}, \underbrace{(5,4)}_{3}$$

$$1 \longrightarrow 2 \longrightarrow 3 = (1,3) \not\in R$$

$$2 \longrightarrow 3 \longrightarrow 4 = (2,4) \not\in R$$

$$3 \longrightarrow 4$$

$$5 \longrightarrow 4$$

$$R' = \int (1,2), (2,3), (3,4), (5,4) \int U \int (1,3), (2,4) \int (2,4)$$

Formula:

If A is a set with n elements then

- i) Number of reflexive relations on $A = 2^{n(n-1)}$ ii) Number of Irreflexive relations on $A = 2^{n(n-1)}$

 - iii) Number of symmetric relations on $A = 2^{\frac{n(n+1)}{2}}$
 - iv) Number of anti-symmetric relations on $A = 2^n . 3^{\frac{n(n)}{2}}$
 - v) Number of asymmetric relations on $A = 3^{\frac{n(n-1)}{2}}$

Q. Find the possible number of reflexive relations on 5-elements set?

No of Reflexive one lations =
$$2^{n(n-1)}$$

$$= 2^{5\times 4}$$

$$= 2^{2^{\circ}}$$

$$= (2^{10})^{2^{\circ}}$$

$$= 10,48.576$$

- Q. Let A be a finite set of size n. the number of elements in the power set of $A \times A$ is (GATE-93)
 - a) 2^{2^n}
 - b) 2^{n^2}
 - c) 2ⁿ
 - d) n²

$$|A_xA| = nxn = n^2$$

$$n(A) = |A| = n$$

$$|AxA| = nxn = n^{2}$$

$$|p(AxA)| = 2^{n^{2}}$$

- Q. Let $X = \{2,3,6,1/2,2/4\}$. Let \leq be the partial order defined by $x \leq y$ if x divides y. the number of edges in the Hasse diagram of (X, \leq) is (GATE-96)
 - a) 3
 - b) 4 🗸
 - c) 9
 - d) None of these

Q. Suppose A is finite set with n elements. The number of elements in the largest equivalence relation of A is

A= {a,b,c} (GATE-98)

largest equivalence relation of
$$\overline{A}$$
 is

 $A = \{a,b,c\}$ (GATE-
a) n

 $A = \{a,b,c\}$ (GATE-
b) $A = \{a,b,c\}$ (GATE-
b) $A = \{a,b,c\}$ (GATE-
b) $A = \{a,b,c\}$ ($A = \{a,b,c\}$)

 $A = \{a,b,c\}$

 $n \times n = n$

Q. Let R₁ & R₂ be two equivalence relations on a set. Consider the following (GATE-98) assertions:

- i) $R_1 \cup R_2$ is an equivalence relation
- $A = \{a,b,c,d\}$ $R_{1} = \{(a,a),(b,b),(c,c),(d,d),(a,b),(b,a)\}$ $R_{2} = \{(a,a),(b,b),(c,c),(d,d),(b,c),(c,b)\}$ $R_{1} \cap R_{2} = eq$ $A = \{a,b,c,d\}$ $R_{1} \cap R_{2} = eq$ $A = \{a,b,c,d\}$ $R_{1} \cap R_{2} = eq$ $A = \{a,b,c,d\}$ $R_{2} = \{(a,a),(b,b),(c,c),(d,d),(b,c),(c,b)\}$ $R_{3} \cap R_{2} = eq$ $A = \{a,b,c,d\}$ $R_{4} \cap R_{2} = eq$ $A = \{a,b,c,d\}$ $R_{4} \cap R_{2} = eq$ $A = \{a,b,c,d\}$ $R_{5} \cap R_{2} = eq$ $A = \{a,b,c,d\}$ $R_{6} \cap R_{2} = eq$ $A = \{a,b,c,d\}$ ii) $R_1 \cap R_2$ is an equivalence relation

Which of the following is correct?

a) Both assertions are true
$$R_1 \cap R_2 = eq$$

- b) Assertion (i) is true but assertion (ii) is not true
- c) Assertion (ii) is true but assertion (i) is not true
- d) Neither (i) nor (ii) is true

Q. The number of binary relations on a set with n elements is: (GATE-99)

- a) n²
- b) 2ⁿ
- c) 2^{n²}
- d) None of these

$$(x, y) R (u, v) i \underbrace{x < u} \& y > v$$
. then R is

a) neither a partial order nor an equivalence relation

R is defined on set? $R: A \longrightarrow A$ $R: R_1 \longrightarrow R_2$

- b) A partial order but not a total order
- c) a total order
- d) An equivalence relation

NOT reflexive.

=) NOT Equivalence

of ((2,4), (u,v)),

set
$$R = \{ (1,2), (3,4), \frac{2}{3} \}$$

Q. Let S be a set of n elements. The number of ordered pairs in the largest and the smallest equivalence relations on S are (GATE-07)

a) n and n

- b) n² and n
- c) n^2 and 0
- d) n and 1

- Q. Consider the binary relation $R = \{(x, y), (x, z), (z, x), (z, y)\}$ on the set $\{x, y, z\}$. which one of the following is TRUE? (GATE-09)
 - a) R is symmetric but NOT anti-symmetric
 - b) R is NOT symmetric but anti-symmetric
 - c) R is both symmetric and anti-symmetric
 - d) R is neither symmetric nor anti-symmetric

Not symmetric.
$$(x,y) \in R$$
 But $(y,x) \notin R$
Not anti-Symm $(x,z),(z,x) \in R$ But $x \neq \overline{z}$

ACI

Q. What is the possible number of reflexive relations on a set 5 elements?

(GATE-10)

a)
$$2^{10}$$

b)
$$2^{15}$$

c)
$$2^{20}$$

d)
$$2^{25}$$

Q. Consider the set $X = \{a, b, c, d, e\}$ under the partial ordering

$$R = \{ (\underbrace{a,\,a),\,(a,\,b),\,(a,\,c),\,(a,\,d),\,(a,\,e),\,(b,\,b),\,(b,\,c),\,(b,\,e),\,(c,\,c),\,(c,\,e),\,(d,\,d),\,(d,\,e),\,(e,\,e) \}.$$

The Hasse diagram of the partial order (X, R) is shown below.

for every pair there is a Join (v) and Meet (n) bvc=c bvd=e bnc=b bnd=a

The minimum number of ordered pairs that need to be added to R to make (X, R) a lattice is _____.

AC

Q. The complement(s) of the element 'a' in the lattice shown in Fig. is (are)......

Complements (a) =
$$d, b, c, e$$

(GATE-88)

Q. The transitive closure of the relation $\{(1, 2), (2, 3), (3, 4), (5, 4)\}$

On the set
$$A = \{1, 2, 3, 4, 5\}$$
 is_____

$$R^* = \frac{\{(1,3),(2,4),(1,4)\}}{\{(1,2),(2,3),(3,4),(5,4),(1,3),(2,4),(1,4)\}}$$

$$R^* = \frac{\{(1,2),(2,3),(3,4),(5,4),(1,3),(2,4),(1,4)\}}{\{(1,3),(2,4),(1,4)\}}$$

- Q. Let R be a non-empty relation on a collection of sets defined by A^RB if and only if $A \cap B = \phi$. Then, (pick the true statement) (GATE-96)
 - a) R is reflexive and transitive
 - b) R is symmetric and not transitive
 - c) R is an equivalence relation
 - d) R is not reflexive and not symmetric

$$ARB \iff AnB = \phi$$
 $Ref: ARA \iff AnA = \phi (False)$
 $Ref: ANA = A$
 $ANA = A$
 $ANA = A$

NOT Reflexive.

Symmetric: If also then
$$bRa + 4a_1b$$

Her: $ARB + bRa + BRA$
 $ARB \Rightarrow ARB = b$
 $BRA = b$
 $BRA = bRA$

Transitive:

If aRb, bRc then aRc, Yarb, c

If $AnB = \phi$, $Bnc = \phi$ then $Anc = \phi$ A = £1,23 B = £3,43 C = £1,53 $AnB = \phi$, $Bnc = \phi$, But $AnC \neq \phi$ NOT Transitive.

Q. The binary relation
$$R = \{(1, 1), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4)\}$$
 on the set $A = \{1, 2, 3, 4\}$ is $(GATE-98)$

- a) Reflexive, symmetric and transitive.
- b) Neither reflexive nor irreflexive but transitive
- c) Irreflexive, symmetric and transitive
- d) irreflexive and antisymmetric

$$2 \rightarrow 1 \rightarrow 1$$

$$2 \rightarrow 2$$

$$3$$

$$2 \qquad (2,1)$$

$$2 \qquad (2,2)$$

$$3 \qquad (2,2)$$

$$4 \qquad (2,4)$$

If a relation R is both symmetric and transitive, then R is reflexive. For this, Mr. X offers the following proof.

"from xRy, using symmetry we get yRx. Now because R is transitive, xRy and yRx together imply xRx. Therefore, R is reflexive"

Briefly point out the flaw in Mr. X's proof.

Trans: aRb, bRc then aRc xRy, yRx then xRx.

Empty = $\phi = Sym$, trans, = NoTrueb

b) Give an example of a relation R which is symmetric and transitive but not reflexive. T(1) = 3 + 3

$$R = \underbrace{\sum_{i=1}^{n} \frac{1,2,3,4}{5}}_{Ab} \underbrace{\sum_{i=1}^{n} \frac{1,2,3,4}{5}}_{C} \underbrace{\sum_{i=1}^{n} \frac{1,2,2,4}{5}}_{C} \underbrace{\sum_{i=1}^{n} \frac{1,2,2,4}{5}}_{C} \underbrace{\sum_{i=1}^{n} \frac{1,2,2,4}{5}}_{C} \underbrace{\sum_{i=1}^{n} \frac{1,2,2,4}{5$$

- Q. A relation R is defined on the set of integers as xRy iff (x + y) is even. Which of the following statements is true? (GATE-00)
 - a) R is not an equivalence relation
 - b) R is an equivalence relation having 1 equivalence class
 - c) R is an equivalence relation having 2 equivalence classes

d) R is an equivalence relation having 3 equivalences classes

$$\chi Ry$$
 iff $(\chi + y)$ even
 $2+4 = 6 \longrightarrow \text{even}$
 $3+5 = 8 \longrightarrow \text{even}$
 $7+8 = 15 \longrightarrow \text{odd}$

