1 Задание 2

1.1 Задача 1

Докажите, что в циклической группе конечного порядка всякая подгруппа является циклической.

Пусть H < G, где G — циклическая группа с порождающим элементом $a, u b \in H : b = a^n$, при чём b такое, что n — наименьшая степень, при которой a^n входит в подгруппу. Тогда $\forall c \in H$ можно записать: $c = a^m, m = n \cdot d + r, (m > n)$, но тогда и a^r будет входить в подгруппу, т.к. $a^q = e,$ (q — порядок элемента). $a^{q-n} = b^{-1} \in H \longrightarrow (b^{-1})^d \cdot c = a^{dq-dn} \cdot a^{nd+r} = a^{dq} \cdot a^r = a^r \in H$, получили противоречие, т.к. $0 \le r < n$, а n — по условию минимальная степень c таким свойством, сл-но r = 0, но это и будет означать, что подгруппа циклическая, т.к. $\forall c \in H \exists d : b^d = e$.

1.2 Задача 2

Порядок элемента а равен d (конечное число). Найти порядок элемента a^k . По определению $a^d=e$, где d — наименьшее такое число. Тогда $(a^k)^q=e$, где q — искомый порядок, то есть $a^{kq}=e\longrightarrow d|kq$, где q — наименьшее,

получаем, что $q = \frac{\text{HOK}(\mathbf{d}, \mathbf{k})}{k}$. Ответ: $q = \frac{\text{HOK}(\mathbf{d}, \mathbf{k})}{k}$.

1.3 Задача 3

Найдите все подгруппы циклической группы порядка n.

Пусть а – порождающий элемент G и H < G. $a^n = e$, е должна будет принадлежать любой подгруппе, следовательно $q|n,b=a^q$, где b – порождающий элемент подгруппы, то есть число подгрупп не можеть быть больше количества делителей n. Но и меньше тоже не может, потому что каждый делитель порождает подгруппу, и эти подгруппы не совпадают.

Ответ: Все делители числа n.

1.

Сколько различных решений имеет уравнение $x^k = e$ в группе C_m , где $k, m \in \mathbb{N}$?

Пусть $a^y = x$ (т.к. циклическая группа), тогда уравнение принимает вид: $a^{yk} = e = a^m$, то есть уравнение равносильно следующему: m|yk, будем искать кол-во решений при условии, что y < m (т.е. решения разные). у должен

делиться на $\frac{\text{HOK}(m,\,k)}{k}$, чтобы выполнялось первое условие. При наложении второго получим кол-во решений для у равное $\frac{km}{\text{HOK}(m,\,k)} = \text{HOД}(k,\,m)$.

2.

Найдите все элементы порядка 10 в группе C_100 .

По прошлой задаче решений будет HOД(100, 10) = 10, вот они слева на право:

$$a^{10}, a^{20}, a^{30}, a^{40}, a^{50}, a^{60}, a^{70}, a^{80}, a^{90}, a^{100}.$$

где а - порождающий элемент, $a^100 = e$ и $(a^p)^{10}$ – искомое. Ответ: $\{a^{10}, a^{20}, a^{30}, a^{40}, a^{50}, a^{60}, a^{70}, a^{80}, a^{90}, a^{100}.\}$

2 ОВАиТК