Ciencias de Datos con R: Fundamentos Estadísticos

Ana M. Bianco, Jemina García y Mariela Sued

Conjuntas - Marginales - Condicionales

Conjunta, Marginal y Condicional

• Probabilidad marginal I:

$$p_X(x) = \sum_{y} p_{XY}(x, y)$$

• Probabilidad puntual condicional:

$$p_{Y|X=x}(y) = \mathbb{P}(Y = y \mid X = x) = \frac{p_{XY}(x,y)}{p_X(x)}$$

Regla Multiplicativa

$$p_{XY}(x,y) = p_X(x) p_{Y|X=x}(y)$$

 $p_{XY}(x,y) = p_Y(y) p_{X|Y=y}(x)$

Probabilidad Marignal II

$$p_X(x) = \sum_{y} p_{X|Y=y}(x) \, p_Y(y)$$

Mezclas- Caso discreto

- Sea Y una variable discreta.
- Sea $p_{X|Y=y}(\cdot)$ la puntual de $X \mid Y=y$
- ullet La puntual de X está dada por

$$p_X(x) = \sum_{y} p_{X|Y=y}(x) p_Y(y).$$

• Notemos que $p_Y(y) \ge 0$ y $\sum_y p_Y(y) = 1$.

Mezclas- Caso discreto

- Sea Y una variable discreta.
- Sea $p_{X|Y=y}(\cdot)$ la puntual de $X \mid Y=y$
- ullet La puntual de X está dada por

$$p_X(x) = \sum_{y} p_{X|Y=y}(x) p_Y(y).$$

- Notemos que $p_Y(y) \ge 0$ y $\sum_y p_Y(y) = 1$.
- Sean $a_i \ge 0$, $\sum_{i=1}^k a_i = 1$
- Sea $p_i(\cdot)$ es una puntual para todo $i, i \leq i \leq k$
- Tenemos que

$$p(x) = \sum_{i=1}^{k} a_i p_i(x) \quad \text{ es una puntual}$$

p se dice mezcla.

Mezclas- Caso Continuo - Ejemplo alturas

- Sea Y una variable discreta (Género)
- \bullet Sea $f_{X\mid Y=y}$ la función de densidad de $X\mid Y=y$
 - $f_{X|Y=1} = f_1$ densidad de altura entre los hombres.
 - $f_{X|Y=0}=f_0$ densidad de altura entre las mujeres.
- ullet La densidad de X está dada por

$$f_X(x) = \sum_{y} f_{X|Y=y}(x) \ p_Y(y).$$

Mezclas- Caso Continuo

- Sean $a_i \ge 0$, $\sum_{i=1}^k a_i = 1$
- Sea $f_i(\cdot)$ es una puntual para todo i, $i \leq i \leq k$
- Tenemos que

$$f(x) = \sum_{i=1}^{k} a_i f_i(x)$$
 es una densidad

f se dice mezcla.

Clasificación - Un poco de Jerga

- $\bullet \ \, \mathsf{Prior} \colon \, \mathbb{P}(Y=y)$
- Likelihood: $X \mid Y = y$
 - Caso discreto: $p_{X|Y=y}$
 - ullet Caso continuo: $f_{X|Y=y}$
- Posterior: $\mathbb{P}(Y = y \mid X = x)$.
- De Bayes tenemos que
 - Caso discreto:

$$\mathbb{P}(Y = y \mid X = x) = \frac{p_{X|Y=y}(x) \, \mathbb{P}(Y = y)}{p_X(x)}$$

Caso continuo:

$$\mathbb{P}(Y = y \mid X = x) = \frac{f_{X|Y=y}(x) \, \mathbb{P}(Y = y)}{f_X(x)}$$

Posterior ∼ Likelihood * Prior

Generalización de la regla Multiplicativa

Regla Multiplicativa al derecho y al revés - \mathcal{D} de distribución.

$$\mathcal{D}_{XY} \sim \mathcal{D}_X * \mathcal{D}_{Y|X}$$

 $\mathcal{D}_{XY} \sim \mathcal{D}_Y * \mathcal{D}_{X|Y}$