<u>江苏大学</u>

2012 年硕士研究生入学考试初试试题 (A_卷)

科目	代码:	854	_科目名称: _	概率论与数理统计	满分: _	150	分
注意:	①认真	阅读答题	纸上的注意事项;	②所有答案必须写在	答题纸上,	写在本	试题纸或
	草稿纸	上均无效	; ③本试题纸须图	直答题纸一起装入试题	袋中交回!		

854 概率论与数理统计 第 1 页 共 3 页
一、填空题(每空5分,共计40分)
1. 设事件 A, B 独立,且 $P(A) = 0.3$, $P(B) = 0.5$,则 $P(A \cup B) =$ 。
2. 从一大批次品率为 0.2 的产品中任取 10 件,随机变量 ξ 表示 10 件中的次品数,则 ξ 的分
布率为, <i>Dξ</i> =。
3. 设随机变量 ξ 的方差为 2,利用切比雪夫不等式估计 $P\{ \xi - E\xi \ge 4\}$,
4. 设随机变量 ξ , η 相互独立,且 $D\xi$ = 3, $D\eta$ = 4,则 $D(3\xi - 4\eta)$ =。
5. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \dots, X_n 为其样本,则 $Y = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2$ 服从分布
°
6. 设总体 $\xi \sim N(\mu, \sigma^2)$,其中 μ , σ^2 均未知,已知 $\xi_1, \xi_2, \cdots, \xi_n$ 为总体 ξ 的一个简单随
机样本,则 μ 的置信度为 $1-lpha$ 的置信区间为。
7. 将一枚硬币重复掷 n 次,以 X 和 Y 分别表示正面向上和反面向上的次数,则 X 与 Y 的相
关系数等于
二、(15分)甲乙两部机器制造同一种零件,甲出现废品率为3%,乙出现废品率为4%。甲
制造的零件数是乙机器制造的零件数的2倍。若加工出来的零件混合后放在一起。(1)求任
取一个零件是废品的概率;(2)若任取一个零件是废品,求它为甲机器制造的概率。

三、(12 分)设 $\hat{\theta}_1$ 和 $\hat{\theta}_2$ 是 θ 的两个独立的无偏估计量,且假定 $D\hat{\theta}_1=2D\hat{\theta}_2$,求常数 C_1,C_2 , 使得 $\hat{\theta} = C_1\hat{\theta}_1 + C_2\hat{\theta}_2$ 是 θ 的无偏估计,并使 $D\hat{\theta}$ 达到最小。

四、(15分)设总体 $X\sim N$ (40,5²), $X_1,\cdots X_n$ 为来自总体X的一个样本,样本均值为 \overline{X} ,

- (1) 抽取容量为 36 的样本, 求 P{38 < \bar{X} < 43};
- (2) 问:抽取样本容 n 为多大时,才能使 $P\{|\overline{X}-40|<1\}=0.95$.

(已知
$$\phi$$
(2.4) = 0.9918, ϕ (3.6) = 0.9998, ϕ (1.96) = 0.9750)

五、(15分)设随机变量的 ξ的分布律如下:

ξ	-2	0	1	3	4
p	$\frac{5}{20}$	$\frac{2}{20}$	$\frac{9}{20}$	α	$\frac{1}{20}$

- \vec{x} : (1) α 的值, (2) 随机变量 $\eta = \xi^2$ 的分布律,
- (3) $E\xi$, $D\xi$, (4) $E(2\xi+3)$, $D(3\xi-2)$

六、(16 分)设二维随机变量 (ξ, η) 的联合概率密度为

$$f(x, y) = \begin{cases} x^2 + kxy, & 0 \le x \le 1, \ 0 \le y \le 2; \\ 0, &$$
其他。

- (1) 求常数k; (2) 求关于 ξ 及关于 η 的边缘概率密度;
- (3) 问 ξ 和 η 是否相互独立,为什么? (4) 求概率 $P\left\{\xi<\frac{1}{2},\,\eta<\frac{1}{2}\right\}$ 。

七、(10 分)设总体 ξ 的密度函数为 $f(x) = \begin{cases} \lambda x^{\lambda-1}, & 0 < x < 1 \\ 0, & 其他 \end{cases}$,其中参数 $\lambda > 0$ 未知,

 x_1, x_2, \dots, x_n 是 ξ 的一组样本值,试求 λ 的最大似然估计值。

八、(12分)某切割机正常工作时,切割每段金属棒的平均长度为10.5厘米,今在某段时间

内随机地抽取 15 段进行测量,结果如下:(单位:厘米)

10.4, 10.6, 10.1, 10.4, 10.5, 10.3, 10.2, 10.9,

10.6, 10.8, 10.5, 10.7, 10.2, 10.7, 10.3

假定金属棒长度服从正态分布,问这段时间内该切割机工作是否正常? ($\alpha = 0.05$)

九、(15分)在考查硝酸钠的可溶性程度时 , 对一系列不同的温度观察它在 100ml 的水中溶解的硝酸钠的重量 , 得观察结果如下:

温度 x _i	0	4	10	15	21	29	36	51	68
重量 y _i	66. 7	71. 0	76. 3	80.6	85. 7	92. 9	99. 4	113. 6	125. 1

从经验和理论知 y_i 与 x_i 之间有关系式: $y_i=a+bx_i+\varepsilon_i$, $i=1,2,\cdots,9$. 且各 ε_i 独立同分布 于 $N(0,\sigma^2)$ 。试用最小二乘法估计 a ,b .

附表 1: 标准正态分布表

x	0.5	1	1.5	2	2.5	3
$\Phi(x)$	0.6915	0.8413	09332	0.9772	0.9938	0.9987

附表 2: t分布的上 α 分位表

n	$\alpha = 0.25$	$\alpha = 0.05$	$\alpha = 0.025$	$\alpha = 0.005$
14	0.6924	1.7613	2.1448	2.9768
15	0.6912	1.7531	2.1315	2.9467
16	0.6901	1.7459	2.1199	2.9208