0

FROM DECISION TREE TO ADABOOST

WHAT WE INTRODUCED?

Characteristics and applications of trees and forest

CODE

How to predict Home Credit Default Risk using AdaBoost?

0

BACKGROUND

Can you predict how capable each applicant is of repaying a loan?

ADABOOST

What is AdaBoost?
What are the pros and cons of AdaBoost?

INTRODUCTION

- CODE

- Data chosen: Home credit default risk
- •File chosen: application_{train|test}.csv
- •Has 124 relevant rows in HomeCredit_columns_description.csv
- link:https://www.kaggle.com/competitions/home-c redit-default-risk/data?select=application_test.csv

X) H	Home credit csv file										
1	А	В	С	D	E						
1		Table	Row	Description	Special						
2	1	application_{train test}.csv	SK_ID_CURR	ID of loan in our sample							
3	2	application_{train test}.csv	TARGET	Target variable (1 - client with payment	difficulties: he/she had late payment r						
4	5	application_{train test}.csv	NAME_CONTRACT_TYPE	Identification if loan is cash or revolving	3						
5	6	application_{train test}.csv	CODE_GENDER	Gender of the client							
6	7	application_{train test}.csv	FLAG_OWN_CAR	Flag if the client owns a car							
7	8	application_{train test}.csv	FLAG_OWN_REALTY	Flag if client owns a house or flat							
8	9	application_{train test}.csv	CNT_CHILDREN	Number of children the client has							
9	10	application_{train test}.csv	AMT_INCOME_TOTAL	Income of the client							
10	11	application_{train test}.csv	AMT_CREDIT	Credit amount of the loan							
11	12	application_{train test}.csv	AMT_ANNUITY	Loan annuity							
12	13	application_{train test}.csv	AMT_GOODS_PRICE	For consumer loans it is the price of the							
13	14	application_{train test}.csv	NAME_TYPE_SUITE	Who was accompanying client when he	was applying for the loan						
14	15	application_{train test}.csv	NAME_INCOME_TYPE	Clients income type (businessman, wor	king, maternity leave,)						
15	16	application_{train test}.csv	NAME_EDUCATION_TYPE	Level of highest education the client ac	hieved						
16	17	application_{train test}.csv	NAME_FAMILY_STATUS	Family status of the client							
17	18	application_{train test}.csv	NAME_HOUSING_TYPE	What is the housing situation of the clie	ent (renting, living with parents,)						
18	19	application_{train test}.csv	REGION_POPULATION_RELATIVE	Normalized population of region where							
19	20	application_{train test}.csv	DAYS_BIRTH	Client's age in days at the time of applic	time only relative to the application						
20	21	application_{train test}.csv	DAYS_EMPLOYED	How many days before the application to	t time only relative to the application						
14 4	H () Home credit csv file 🖫										

Also because, used in a number of research papers...

Financial fraud detection model: Based on random forest

C Liu, Y Chan, SH Alam Kazmi, H Fu - ... of economics and finance, 2015 - papers.ssrn.com
... In this study, we introduced Random Forest (RF) for financial ... partial correlation analysis and
Multidimensional analysis. The ... models and concluded that Random Forest has the highest ...

\$\frac{1}{12}\$ Save \$90 Cite Cited by 119 Related articles All 11 versions

Forecasting stock index movement: A comparison of support vector machines and random forest

M Kumar, M Thenmozhi - Indian institute of capital markets 9th ..., 2006 - papers.ssrn.com ... Recently, a support vector machine (SVM), and random forest regression based ... in finance. There are few studies for the application of SVM and random forest regression in financial ...

☆ Save 50 Cite Cited by 204 Related articles 50

Online supply chain **financial** risk assessment based on improved **random forest**

H Zhang, Y Shi, J Tong - Journal of Data, Information and Management, 2021 - Springer ... This article applies the improved stochastic forest algorithm to online supply chain financial ... of the online supply chain financial risk assessment based on improved random forest. Data ... ☆ Save 99 Cite Cited by 10 Related articles

Predicting bank financial failures using random forest

Z Rustam, GS Saragih - ... Workshop on Big Data and Information ..., 2018 - ieeexplore.ieee.org ... introduce random forest to predict bank financial failures occurring as a result of the financial ... The aim of this research is to see how of the application and accuracy of random forest. All ... ☆ Save 99 Cite Cited by 14 Related articles All 2 versions

[PDF] An Adaboost Algorithm Based Analysis Method of Nonstationary Financial Data

V Chang, T Li, Z Zeng - researchgate.net

... nonstationary **data**, and also demonstrate a feasible practice in **financial** trading. The **data** of future contract is used in our analysis. The future we test **Adaboost** algorithm is a contract ...

☆ Save 55 Cite Related articles ১5

Financial prediction of real estate based on random forest

Z He, L Pan - ... Workshop on Advanced Algorithms and Control ..., 2022 - spiedigitallibrary.org

... , this algorithm has a big **advantage**, it combines the ability to ... **Adaboost** algorithm is implemented by changing the **data** ... This paper uses the **financial data** of Stock A real estate listed ...

☆ Save 55 Cite All 2 versions

AdaBoost models for corporate bankruptcy prediction with missing data

L Zhou, KK Lai - Computational Economics, 2017 - Springer

- ... -financial firms have been selected and bankruptcy prediction is based on the financial data
- ... How to take advantage of the whole data set in bankruptcy prediction. These two problems ...
- ☆ Save 55 Cite Cited by 33 Related articles All 6 versions

TREES

DECISION TREES

In machine learning, a decision tree is a predictive model that represents a mapping relationship between attributes and values.

CHARACTERISTICS OF DECISION TREES

Advantage

- Simple to understand and to interpret
- Less Data Preparation
- Able to handle both numerical and categorical data.

Disadvantage

- Unstable
- Can cause overfitting

MAJORITY VOTING

The random forest classifier combines a number of decision trees to improve the accuracy of the classification.

The final output is determined by the mode of the classes of the individual tree output.

Majority rule is a principle that means the decision-making power belongs to the group that has the most members.

APPLICATION OF RANDOM FOREST

Predict cardiovascular disease

Predict online buying behavior

Detect credit card fraud

. . .

CHARACTERISTICS OF RANDOM FOREST

Advantage

- Relatively high accuracy
- Stable
- Can process data with large number of features and samples
- Works well with both categorical and continuous variables
- Automatically handle missing values

Disadvantage

- Complexity
- Longer Training Period

ADABOOST

IMPROVMENT

SHORTCOMINGS OF TREE

```
> (tb.tree = table(tree.yhat, graph$TARGET))

tree.yhat     0      1
          0      282682     24825
          1      0      0
> Accuracy <- sum(diag(tb.tree))/sum(tb.tree)
> Accuracy
[1] 0.9192701
```

Female Will not default

Gender

Male

Will not default

 $Default? \sim Gender$

> table(graph\$GENDER)

F M XNA 202448 105059 4

BOOSTING - A BETTER ENSEMBLE LEARNING

Random Forest – Bagging

- 1. Choose a part of samples randomly
- 2. All the models are generate the same time
- 3. Take samples with same weights
- 4. Each model has the same weight

1. Can we use the whole data set?

- 2. Can we generate models based on the previous one?
- 3. Can we give more weights to difficult samples?
- 4. Can we give different weights to models?

BOOSTING - A BETTER ENSEMBLE LEARNING

Random Forest – Bagging

1. Choose a part of samples randomly

1. Can we use the whole data set?

In sample selection: Training set for adaboost is the same, only the weight of each sample is changing

- 2. All the models are generate the same time
- 2. Can we generate models based on the previous one?

In the order of calculation: The classify function for adaboost must be generated sequentially

3. Take samples with same weights

3. Can we give more weights to difficult samples?

In the sample weights: Adaboost adjusts the sample weights if error occurred in previous model

4. Each model has the same weight

4. Can we give different weights to models?

In the prediction function: The weights for predictor function in adaboost changed based on the error rate

CODE

ADAPTIVE BOOSTING

- The weak learners in AdaBoost are decision trees with a single split, called decision stumps.
- Each stump chooses a feature, say X2, and a threshold, T, and then splits the examples into the two groups on either side of the threshold.
- Sequential updating of weights on data points
- Form a final model from weak learners

CODE

BAGGING VS BOOSTING

Random Forest – Bagging

Adaboost – Boosting

Chose sample for each tree

All data set were trained More probability to drawn misclassification sample

Majority of trees leads to the answer

Use weights when combining trees

DATA CODE

 ϵ : error rate in current model

TREE

$$\omega_i^{new} = \omega_i^{old} \ for \ the \ correct \ points$$

0

$$\omega_i^{new} = rac{1-\epsilon}{\epsilon} \omega_i^{old} \ for \ the \ wrong \ points$$

Then normalize ω_i

DATA CODE

 ϵ : error rate in current model

$$\omega_i^{new} = \omega_i^{old} \ for \ the \ correct \ points$$

0

$$\omega_i^{new} = rac{1-\epsilon}{\epsilon} \omega_i^{old} \ for \ the \ wrong \ points$$

Then normalize ω_i

 $\epsilon_k: error\ rate\ for\ k^{th}model$

$$lpha_k = log(rac{1-\epsilon_k}{\epsilon_k})$$

 $final\ model = \Sigma \alpha_i * weak\ learner_i$

From presentation group 9

UNDERSTANDING

ADABOOST

PSEUDOCODE

Initialize $w_i = \frac{1}{n}$ for all $i \in \{1, ..., n\}$

For t = 1 to T:

INTRO

Fit $C_t(x)$ and minimize error using weight w_i

Compute weighted error: $\epsilon_t = \mathbf{w}^T I(\mathbf{y} \neq C_t(x))$

Compute $\alpha_t = \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$

Update $w_i \coloneqq w_i e^{\alpha_m l(\mathbf{y} \neq C_t(x))}$ and normalize it

 $(x_1, y_1), \dots, (x_n, y_n), x$ is predictor and $y \in \{-1,1\}$ is response

t is number of iteration

0

 $C_t(x)$ is a weak classifier trained in iteration t

 w_i is the weight of observation $i \in (1, ..., n)$

 \boldsymbol{w} is the column vector $\begin{bmatrix} w_1 & w_2 & ... & w_{n-1} & w_n \end{bmatrix}^T$

 α_t is the model $C_t(x)$ weighting

I() is the indicator variable function (output vector for simplicity)

DATA

EXAMPLE

TREE

W	GENDER	CAR	HOUSE	TARGET
0.125	M	Y	Y	-1
0.125	M	Y	N	1
0.125	M	Y	N	-1
0.125	M	N	Υ	1
0.125	F	N	N	1
0.125	F	Y	Y	-1
0.125	F	Y	Y	-1
0.125	F	N	Υ	-1

Initialize
$$w_i = \frac{1}{n}$$
 for all $i \in \{1, ..., n\}$

For t = 1 to T:

Fit $C_t(x)$ and minimize error using weight w_i

Compute weighted error: $\epsilon_t = \mathbf{w}^T I(\mathbf{y} \neq C_t(x))$

Compute
$$\alpha_t = \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$$

Update $w_i \coloneqq w_i e^{\alpha_m l(\mathbf{y} \neq \mathcal{C}_t(x))}$ and normalize it

EXAMPLE

TREE

W	GENDER	CAR	HOUSE	TARGET
0.125	М	Y	Y	-1
0.125	M	Y	N	1
0.125	M	Y	N	-1
0.125	M	N	Υ	1
0.125	F	N	N	1
0.125	F	Y	Y	-1
0.125	F	Y	Y	-1
0.125	F	N	Y	-1

Initialize
$$w_i = \frac{1}{n}$$
 for all $i \in \{1, ..., n\}$

For $t = 1$ to T :

Fit $C_t(x)$ and minimize error using weight w_i

Compute weighted error: $\epsilon_t = \mathbf{w}^T I(\mathbf{y} \neq C_t(x))$

Compute
$$\alpha_t = \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$$

Update $w_i \coloneqq w_i e^{\alpha_m l(\mathbf{y} \neq \mathcal{C}_t(x))}$ and normalize it

EXAMPLE

TREE

W	GENDER	CAR	HOUSE	TARGET
0.125	М	Υ	Y	-1
0.125	M	Y	N	1
0.125	M	Y	N	-1
0.125	M	N	Y	1
0.125	F	N	N	1
0.125	F	Υ	Y	-1
0.125	F	Y	Y	-1
0.125	F	N	Υ	-1

Initialize
$$w_i = \frac{1}{n}$$
 for all $i \in \{1, ..., n\}$

For t = 1 to T:

Fit $C_t(x)$ and minimize error using weight w_i

Compute weighted error: $\epsilon_t = \mathbf{w}^T I(\mathbf{y} \neq C_t(x))$

Compute
$$\alpha_t = \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$$

Update $w_i \coloneqq w_i e^{\alpha_m l\left(oldsymbol{y}
eq \mathcal{C}_t(x)\right)}$ and normalize it

INFORMATION GAIN (ID3)			
GENDER 0.0484			
CAR	CAR 0.122		
HOUSE	0.122		

t	T
1	2

EXAMPLE

W	GENDER	CAR	HOUSE	TARGET
0.125	М	Y	Y	-1
0.125	М	Y	N	1
0.125	M	Y	N	-1
0.125	M	N	Υ	1
0.125	F	N	N	1
0.125	F	Υ	Y	-1
0.125	F	Y	Y	-1
0.125	F	N	Υ	-1

Initialize $w_i = \frac{1}{n}$ for all $i \in \{1, ..., n\}$

For t = 1 to T:

Fit $C_t(x)$ and minimize error using weight w_i

Compute weighted error: $\epsilon_t = \mathbf{w}^T I(\mathbf{y} \neq C_t(x))$

Compute
$$\alpha_t = \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$$

Update $w_i\coloneqq w_i e^{lpha_m l\left(oldsymbol{y}
eq \mathcal{C}_t(x)
ight)}$ and normalize it

INFORMATION GAIN (ID3)			
GENDER 0.0484			
CAR 0.122			
HOUSE 0.122			

CODE

EXAMPLE

TREE

W	GENDER	CAR	HOUSE	TARGET
0.125	М	Y	Y	-1
0.125	M	Y	N	1
0.125	M	Y	N	-1
0.125	M	N	Y	1
0.125	F	N	N	1
0.125	F	Y	Y	-1
0.125	F	Y	Y	-1
0.125	F	N	Y	-1

Initialize
$$w_i = \frac{1}{n}$$
 for all $i \in \{1, ..., n\}$

For t = 1 to T:

Fit $C_t(x)$ and minimize error using weight w_i

Compute weighted error: $\epsilon_t = \mathbf{w}^T I(\mathbf{y} \neq C_t(x))$

Compute
$$\alpha_t = \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$$

Update $w_i \coloneqq w_i e^{\alpha_m l(\mathbf{y} \neq \mathcal{C}_t(x))}$ and normalize it

t	T
1	2

TREE

CODE

EXAMPLE

W ERRORENDER	CAR	HOUSE	TARGET
0.125 * 0 = 0	Y	Υ	-1
0.125 * 1 = 0.125	Y	N	1
0.125 * 0 = 0	Y	N	-1
0.125 * 0 = 0	N	Y	1
0.125 * 0 = 0	N	N	1
0.125 * 0 = 0	Y	Y	-1
0.125 * 0 = 0	Y	Y	-1
0.125 * 1 = 0.125	N	Y	-1

For t = 1 to T:

Fit $C_t(x)$ and minimize error using weight w_i

Compute weighted error: $\epsilon_t = \mathbf{w}^T I(\mathbf{y} \neq C_t(x))$

Compute
$$\alpha_t = \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$$

Update $w_i \coloneqq w_i e^{lpha_m l \left(oldsymbol{y}
eq \mathcal{C}_t(x)
ight)}$ and normalize it

t	T
1	2

CODE

EXAMPLE

W	GENDER	CAR	HOUSE	TARGET
0.125	M	Y	Y	-1
0.125	M	Y	N	1
0.125	M	Y	N	-1
0.125	M	N	Y	1
0.125	F	N	N	1
0.125	F	Y	Y	-1
0.125	F	Y	Y	-1
0.125	F	N	Y	-1

For t = 1 to T:

Fit $C_t(x)$ and minimize error using weight w_i

Compute weighted error: $\epsilon_t = \mathbf{w}^T l(\mathbf{y} \neq C_t(x))$

Compute
$$\alpha_t = \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$$

Update $w_i \coloneqq w_i e^{lpha_m l\left(oldsymbol{y}
eq \mathcal{C}_t(x)
ight)}$ and normalize it

ERR	t	T
0.25	1	2

EXAMPLE

W	GENDER	CAR	HOUSE	TARGET
0.125	М	Y	Υ	-1
0.125	M	Y	N	1
0.125	M	Y	N	-1
0.125	M	N	Υ	1
0.125	F	N	N	1
0.125	F	Y	Υ	-1
0.125	F	Y	Y	-1
0.125	F	N	Y	-1

For t = 1 to T:

Fit $C_t(x)$ and minimize error using weight w_i

Compute weighted error: $\epsilon_t = \mathbf{w}^T l(\mathbf{y} \neq C_t(x))$

Compute
$$\alpha_t = \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$$

Update $w_i\coloneqq w_i e^{lpha_m l\left(oldsymbol{y}
eq \mathcal{C}_t(x)
ight)}$ and normalize it

A1	t	T
ln(3)	1	2

ADA

CODE

DATA

EXAMPLE

TREE

W	GENDER	CAR	HOUSI	TARGET
0.125	0.12	25 * 1 = 0.12	 5	-1
0.125	0.12	 25 * 3 = 0.37	 5	1
0.125	0.125 * 1 = 0.125			-1
0.125	0.125 * 1 = 0.125			1
0.125	0.125 * 1 = 0.125			1
0.125	0.125 * 1 = 0.125			-1
0.125	0.125 * 1 = 0.125			-1
0.125		25 * 3 = 0.37		-1
	0.17			

For t = 1 to T:

Fit $C_t(x)$ and minimize error using weight w_i

Compute weighted error: $\epsilon_t = \mathbf{w}^T l(\mathbf{y} \neq C_t(x))$

Compute
$$\alpha_t = \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$$

Update
$$w_i \coloneqq w_i e^{lpha_m l\left(oldsymbol{y}
eq \mathcal{C}_t(x)
ight)}$$
 and normalize it

A1	t	T
ln(3)	1	2

CODE

EXAMPLE

W	GENDER W	(SUM = 1.5)	HOUSI	TARGET
0.125		0.125	_	-1
0.125		0.375		1
0.125		0.125		-1
0.125		0.125		1
0.125		0.125		1
0.125		0.125		-1
0.125				-1
0.125		0.125		-1
		0.375		

For t = 1 to T:

Fit $C_t(x)$ and minimize error using weight w_i

Compute weighted error: $\epsilon_t = \mathbf{w}^T I(\mathbf{y} \neq C_t(x))$

Compute
$$\alpha_t = \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$$

Update
$$w_i \coloneqq w_i e^{lpha_m l\left(oldsymbol{y}
eq \mathcal{C}_t(x)
ight)}$$
 and normalize it

A1	t	T
ln(3)	1	2

ADA

DATA

CODE

EXAMPLE

TREE

W	GENDER	CAR	HOUSI		TARGET
0.125	0.12	25/1.5 = 0.08	3		-1
0.125	0.3	75/1.5 = 0.25	5		1
0.125	0.12	0.125/1.5 = 0.083			
0.125	0.125/1.5 = 0.083				1
0.125	0.125/1.5 = 0.083				1
0.125	0.125/1.5 = 0.083				-1
0.125	0.125/1.5 = 0.083				-1
0.125	0.125/1.5 = 0.083				-1
0.125					-1

For t = 1 to T:

Fit $C_t(x)$ and minimize error using weight w_i

Compute weighted error: $\epsilon_t = \mathbf{w}^T I(\mathbf{y} \neq C_t(x))$

Compute
$$\alpha_t = \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$$

Update
$$w_i \coloneqq w_i e^{lpha_m l\left(oldsymbol{y}
eq \mathcal{C}_t(x)
ight)}$$
 and normalize it

A1	t	T
ln(3)	1	2

CODE

EXAMPLE

W	GENDER	CAR	HOUSE	TARGET
0.083	М	Y	Y	-1
0.25	M	Υ	N	1
0.083	M	Y	N	-1
0.083	M	N	Υ	1
0.083	F	N	N	1
0.083	F	Y	Y	-1
0.083	F	Y	Y	-1
0.25	F	N	Υ	-1

Initialize
$$w_i = \frac{1}{n}$$
 for all $i \in \{1, ..., n\}$

For t = 1 to T:

Fit $C_t(x)$ and minimize error using weight w_i

Compute weighted error: $\epsilon_t = \mathbf{w}^T I(\mathbf{y} \neq C_t(x))$

Compute
$$\alpha_t = \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$$

Update
$$w_i \coloneqq w_i e^{lpha_m l\left(oldsymbol{y}
eq \mathcal{C}_t(x)
ight)}$$
 and normalize it

A1	t	T
ln(3)	1	2

DATA

EXAMPLE

TREE

W	GENDER	CAR	HOUSE	TARGET
0.083	М	Y	Υ	-1
0.25	M	Y	N	1
0.083	M	Y	N	-1
0.083	M	N	Y	1
0.083	F	N	N	1
0.083	F	Y	Υ	-1
0.083	F	Y	Y	-1
0.25	F	N	Υ	-1

Fit $C_t(x)$ and minimize error using weight w_i

Compute weighted error: $\epsilon_t = \mathbf{w}^T I(\mathbf{y} \neq C_t(x))$

Compute
$$\alpha_t = \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$$

Update $w_i \coloneqq w_i e^{\alpha_m l(\mathbf{y} \neq \mathcal{C}_t(x))}$ and normalize it

A1	t	T
ln(3)	2	2

CODE

EXAMPLE

TREE

W	GENDER	CAR	HOUSE	TARGET
0.083	М	Y	Y	-1
0.25	M	Υ	N	1
0.083	M	Y	N	-1
0.083	M	N	Υ	1
0.083	F	N	N	1
0.083	F	Υ	Y	-1
0.083	F	Y	Y	-1
0.25	F	N	Υ	-1

Initialize
$$w_i = \frac{1}{n}$$
 for all $i \in \{1, ..., n\}$

For t = 1 to T:

Fit $C_t(x)$ and minimize error using weight w_i

Compute weighted error: $\epsilon_t = \mathbf{w}^T I(\mathbf{y} \neq C_t(x))$

Compute
$$\alpha_t = \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$$

Update $w_i \coloneqq w_i e^{\alpha_m l(\mathbf{y} \neq \mathcal{C}_t(x))}$ and normalize it

INFORMATION GAIN (ID3)		
GENDER	0.244	
CAR	0.049	
HOUSE	0.279	

A1	t	T
ln(3)	2	2

CODE

EXAMPLE

W	GENDER	CAR	HOUSE	TARGET
0.083	М	Y	Y	-1
0.25	M	Υ	N	1
0.083	M	Y	N	-1
0.083	M	N	Y	1
0.083	F	N	N	1
0.083	F	Υ	Y	-1
0.083	F	Y	Y	-1
0.25	F	N	Υ	-1

Initialize
$$w_i = \frac{1}{n}$$
 for all $i \in \{1, ..., n\}$

For t = 1 to T:

Fit $C_t(x)$ and minimize error using weight w_i

Compute weighted error: $\epsilon_t = \mathbf{w}^T I(\mathbf{y} \neq C_t(x))$

Compute
$$\alpha_t = \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$$

Update $w_i\coloneqq w_i e^{lpha_m l\left(oldsymbol{y}
eq \mathcal{C}_t(x)
ight)}$ and normalize it

INFORMATION GAIN (ID3)			
GENDER	0.244		
CAR	0.049		
HOUSE	0.279		

CODE

EXAMPLE

TREE

W	GENDER _{ERROR} CAR	HOUSE	TARGET
0.083	0.083 * 0 = 0	Y	-1
0.25	0.25 * 0 = 0	N	1
0.083	0.083 * 1 = 0.083	N	-1
0.083	0.083 * 0 = 0	Y	1
0.083	0.083 * 1 = 0.083	N	1
0.083	0.083 * 0 = 0	Y	-1
0.083	0.083 * 0 = 0	Y	-1
0.25	0.25 * 0 = 0	Υ	-1

Initialize
$$w_i = \frac{1}{n}$$
 for all $i \in \{1, ..., n\}$

For t = 1 to T:

Fit $C_t(x)$ and minimize error using weight w_i

Compute weighted error: $\epsilon_t = \mathbf{w}^T I(\mathbf{y} \neq C_t(x))$

Compute
$$\alpha_t = \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$$

Update $w_i \coloneqq w_i e^{lpha_m l \left(oldsymbol{y}
eq \mathcal{C}_t(x)
ight)}$ and normalize it

ERR	A1	t	T
0.17	ln(3)	2	2

EXAMPLE

W	GENDER	CAR	HOUSE	TARGET
0.083	М	Y	Y	-1
0.25	M	Υ	N	1
0.083	M	Y	N	-1
0.083	M	N	Υ	1
0.083	F	N	N	1
0.083	F	Y	Y	-1
0.083	F	Y	Y	-1
0.25	F	N	Υ	-1

Initialize
$$w_i = \frac{1}{n}$$
 for all $i \in \{1, ..., n\}$

For t = 1 to T:

Fit $C_t(x)$ and minimize error using weight w_i

Compute weighted error: $\epsilon_t = \mathbf{w}^T l(\mathbf{y} \neq C_t(x))$

Compute
$$\alpha_t = \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$$

Update $w_i \coloneqq w_i e^{lpha_m I\left(oldsymbol{y}
eq \mathcal{C}_t(x)
ight)}$ and normalize it

A2	A1	t	T
In(5)	ln(3)	2	2

CODE

DATA ADA

W	GENDER	CAR	HOUSI	TARGET
0.083	0.08	83 * 1 = 0.08	3	-1
0.25		25 * 1 = 0.25		1
0.083		0.25 * 1 = 0.25		-1
0.083	0.083 * 1 = 0.083		1	
0.083	0.083 * 5 = 0.417		1	
0.083	0.083 * 1 = 0.083		-1	
0.083	0.083 * 1 = 0.083		-1	
0.25		25 * 1 = 0.25	5	-1
	0.4	23 1 - 0.23		

For t = 1 to T:

Fit $C_t(x)$ and minimize error using weight w_i

Compute weighted error: $\epsilon_t = \mathbf{w}^T l(\mathbf{y} \neq C_t(x))$

Compute
$$\alpha_t = \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$$

Update $w_i\coloneqq w_i e^{lpha_m l\left(oldsymbol{y}
eq \mathcal{C}_t(x)
ight)}$ and normalize it

A2	A1	t	T
In(5)	ln(3)	2	2

DATA

EXAMPLE

TREE

W	GENDER W (SUM = 1.67) HOUSE	TARGET
0.083	0.083 * 1 = 0.083	-1
0.25	0.25 * 1 = 0.25	1
0.083	0.083 * 5 = 0.417	-1
0.083	0.083 * 1 = 0.083	1
0.083	0.083 * 5 = 0.417	1
0.083	0.083 * 1 = 0.083	-1
0.083	0.083 * 1 = 0.083	-1
0.25		-1
	0.25 * 1 = 0.25	

For t = 1 to T:

Fit $C_t(x)$ and minimize error using weight w_i

Compute weighted error: $\epsilon_t = \mathbf{w}^T I(\mathbf{y} \neq C_t(x))$

Compute
$$\alpha_t = \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$$

Update $w_i\coloneqq w_i e^{lpha_m l\left(oldsymbol{y}
eq \mathcal{C}_t(x)
ight)}$ and normalize it

A2	A1	t	T
In(5)	ln(3)	2	2

TREE

DATA

CODE

EXAMPLE

W	GENDER W (SUM = 1.67) HOUSE	TARGET
0.083	0.083	-1
0.25	0.25	1
0.083	0.417	-1
0.083	0.083	1
0.083	0.417	1
0.083		-1
0.083	0.083	-1
0.25	0.083	-1
	0.25	

Initialize
$$w_i = \frac{1}{n}$$
 for all $i \in \{1, ..., n\}$

For t = 1 to T:

Fit $C_t(x)$ and minimize error using weight w_i

Compute weighted error: $\epsilon_t = \mathbf{w}^T l(\mathbf{y} \neq C_t(x))$

Compute
$$\alpha_t = \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$$

Update $w_i \coloneqq w_i e^{lpha_m l\left(oldsymbol{y}
eq \mathcal{C}_t(x)
ight)}$ and normalize it

A2	A1	t	T
ln(5)	ln(3)	2	2

DATA

CODE

EXAMPLE

GENDER	CAR	HOUSI		TARGET
0.08	B3/1.67 = 0.0	5		-1
0.2		5		1
				-1
			1	
	0.417/1.67 = 0.25			1
			-1	
			-1	
	0.25/1.67 = 0.15			-1
	0.08 0.2 0.4: 0.08 0.08	0.083/1.67 = 0.0 0.25/1.67 = 0.15 0.417/1.67 = 0.2 0.083/1.67 = 0.0 0.417/1.67 = 0.2 0.083/1.67 = 0.0 0.083/1.67 = 0.0	0.083/1.67 = 0.05 0.25/1.67 = 0.15 0.417/1.67 = 0.25 0.083/1.67 = 0.05 0.083/1.67 = 0.05 0.083/1.67 = 0.05	0.083/1.67 = 0.05 0.25/1.67 = 0.15 0.417/1.67 = 0.25 0.083/1.67 = 0.05 0.083/1.67 = 0.05 0.083/1.67 = 0.05

For t = 1 to T:

Fit $C_t(x)$ and minimize error using weight w_i

Compute weighted error: $\epsilon_t = \mathbf{w}^T l(\mathbf{y} \neq C_t(x))$

Compute
$$\alpha_t = \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$$

Update
$$w_i \coloneqq w_i e^{lpha_m l\left(oldsymbol{y}
eq \mathcal{C}_t(x)
ight)}$$
 and normalize it

A2	A1	t	T
In(5)	ln(3)	2	2

TREE

EXAMPLE

W	GENDER	CAR	HOUSE	TARGET
0.05	М	Y	Υ	-1
0.15	М	Y	N	1
0.25	M	Y	N	-1
0.05	М	N	Y	1
0.25	F	N	N	1
0.05	F	Y	Y	-1
0.05	F	Y	Y	-1
0.15	F	N	Y	-1

Initialize
$$w_i = \frac{1}{n}$$
 for all $i \in \{1, ..., n\}$

For t = 1 to T:

Fit $C_t(x)$ and minimize error using weight w_i

Compute weighted error: $\epsilon_t = \mathbf{w}^T l(\mathbf{y} \neq C_t(x))$

Compute
$$\alpha_t = \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$$

Update $w_i \coloneqq w_i e^{lpha_m l\left(oldsymbol{y}
eq \mathcal{C}_t(x)
ight)}$ and normalize it

A2	A1	t	T
In(5)	ln(3)	2	2

PSEUDOCODE (TESTING)

$$C(x) = sign(\sum_{t=1}^{I} \alpha_t C_t(x))$$

DATA

EXAMPLE

GENDER	CAR	HOUSE	TARGET
F	Y	N	?

 $sign(\alpha_1C_1(Gender = M, Car = Y, House = N) + \alpha_2C_2(Gender = M, Car = Y, House = N))$

$$= sign(\ln(3)(-1) + \ln(5)(1))$$

$$= sign(-1.09 + 1.61)$$

$$= sign(0.51)$$

= 1

A1	A2
ln(3)	ln(5)

ALGORITHM COMPLEXITY

Given:

INTRO

- T(X) complexity of training for weak learner
- t(X) complexity of testing for weak learner
- \circ **T** number of iteration
- on number of samples
- p number of predictors
- Training Phase for Adaboost: $O(\tau T(X) + \tau n)$
- Testing Phase for Adaboost: O(tt(X))
- Weak Learner of Decision Tree with depth = 1:
- Training Phase of weak learner: T(X) = O(np)
- Testing Phase of weak learner: t(X) = O(1)
- Training Phase = $O(\tau np)$ (why?)

Initialize $w_i = \frac{1}{n}$ for all $i \in \{1, ..., n\}$

For t = 1 to T:

Fit $C_t(x)$ and minimize error using weight w_i

Compute weighted error: $\epsilon_t = \mathbf{w}^T I(\mathbf{y} \neq C_t(x))$

Compute $\alpha_t = \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$

Update $w_i\coloneqq w_i e^{lpha_m l\left(oldsymbol{y}
eq \mathcal{C}_t(x)
ight)}$ and normalize it

$$C(x) = sign(\sum_{t=1}^{T} \alpha_t C_t(x))$$

OVERVIEW OF

THE DATASET

FEATURES OF THE DATASET Home Credit Default Risk

- A Kaggle machine learning competition
- Behavioral Science related (predicting whether or not a client will repay a loan or have difficulty)
- Large sample size
- Imbalanced data
- Many predictor variables
- Adaboost performs better

•

ADVANTAGES OF ADABOOST

High precision (greatly improve the accuracy of the decision tree, comparable to SVM).

The weight of each classifier fully considered by AdaBoost (relative to Bågging algorithm and Random Forest algorithm).

Various methods to build sub-classifiers (AdaBoost provides a framework).

Good use of weak classifiers for cascading.

Simple, efficient, easy to write and almost no overfitting.

No parameters to adjust during the training process.

LIMITATIONS OF ADABOOST

Training is time-consuming (reselect the best segmentation point for the current classifier each time).

Classification accuracy drops due to data imbalance.

The number of AdaBoost iterations (i.e.he number of weak classifiers) is not easy to set. Cross-validation can be used to make the determination.

0

Sensitive to noisy data and anomalous data.

APPLICATION SCENARIOS OF ADABOOST

For binary or multi-category scenarios

Baseline for classification tasks (simple, no overfitting, no need to adjust the classifier)

For feature selection (feature selection)

0

UNDERSTANDING

CODE

THE CODE

- Ensure that you have put the "application_train.csv" and "application test.csv" in the same location as .ipynb
- The code run for too long (more than 3 seconds) → it is normal
- If the library cannot be used, use "pip install" on anaconda prompt

THE CODE

#library
import math

import pandas as pd #pandas
import numpy as np #numpy
import matplotlib.pyplot as plt

USEFUL FOR DATA ANALYTICS

from sklearn.ensemble import AdaBoostClassifier as ada #Adaboost
from sklearn.metrics import confusion_matrix as cf #confusion matrix
from sklearn.metrics import roc_curve, auc #ROC and AUC calculation

MACHINE LEARNING RELATED

from scipy.stats import rankdata

THE CODE


```
#loading the data
trainingSet = pd.read_csv("application_train.csv")
testingSet = pd.read_csv("application_test.csv")
```

LOAD ALL DATA

THE CODE

```
#Data preprocessing
#Filling Missing Data
trainingSet = trainingSet.fillna(0)
testingSet = testingSet.fillna(0)

#Splitting training and testing X Y
trainY = trainingSet["TARGET"]
trainX = trainingSet.drop(columns = ["SK_ID_CURR", "TARGET"])
testX = testingSet.drop(columns = ["SK_ID_CURR"])

#dummy variables
trainX = pd.get_dummies(trainX)
testX = pd.get_dummies(testX)
trainX, testX = trainX.align(testX, join = "inner", axis = 1)
```


EXAMPLE

OCCUPATION
Driver
Staff
Manager
Staff
Staff
Manager
Staff
Driver

CODE

THE CODE

TREE

Initialize
$$w_i = \frac{1}{n}$$
 for all $i \in \{1, ..., n\}$

For
$$t = 1$$
 to T :

Fit $C_t(x)$ and minimize error using weight w_t

Compute weighted error:
$$\epsilon_t = \mathbf{w}^T l(\mathbf{y} \neq \mathbf{c}_t^T(\mathbf{x}))$$

Compute
$$\alpha_t = \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$$

0

Update
$$w_i \coloneqq w_i e^{lpha_m I \left(\mathbf{y} \neq \mathcal{C}_t(x) \right)}$$
 and normalize it

#Setting up a class for Adaboost

base_estimator = None #default is 1 level desicion tree, change it to any classifier if you wish to n_estimators = 20 #the max number of n the boosting needs to stop random state = 938 #PS938. "seed"

PARA FOR THE MODEL

model = ada(base_estimator = base_estimator, n_estimators = n_estimators, random_state = random_state) #setting up adaboost

THE CODE

#fit the model

a = model.fit(trainX,trainY)

#do the prediction trainY_pred = model.predict_proba(trainX)[:, 1]

TESTING PHRASE

0

THE CODE

```
#output the prediction for the submission
test_Y = model.predict_proba(testX)[:, 1]
```

```
test_Y = result2 >= q
df1 = pd.DataFrame(test_Y, columns=["TARGET"])
df2 = testingSet['SK_ID_CURR']
```

```
df3 = pd.concat([df2,df], axis=1)
df3.to_csv("result.csv",index=False)
```


EXPORT RESULT TO THE COMPETITION FOR THE SCORE

ADABOST INTRO TREE BOOST CODE ADA DATA

THE CODE

```
fpr, tpr, _ = roc_curve(trainY, trainY_pred)
plt.figure()
1w = 2
plt.plot(
    fpr,
    tpr,
    color="darkorange",
   lw=lw,
    label="ROC curve (area = %0.4f)" % roc_auc,
plt.plot([0, 1], [0, 1], color="navy", lw=lw, linestyle="--")
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC of ada")
plt.legend(loc="lower right")
plt.show()
```


ROC CURVE

CAN AUC BE IMPROVED WITH MORE ITERATIONS?

0

INTRO

BOOST

ADA

DATA

CODE

CONCLUSION

TREE

Home Credit Default Risk

TREES AND RANDOM FORESTS

Features and Applications

BOOSTING

Advantages over Trees and Random Forest

ADABOOST

Cons & Pros and Applications

THANKS

