Solver: Shao Jie

Email Address: yews0012@e.ntu.edu.sg

1. (a)

(i)

M1 execution time = IC x CPI x clock period = $2x10^9$ x 2 x (1/200 000 000) = 20 s M2 execution time = IC x CPI x clock period = $2x10^9$ x 3 x (1/400 000 000)

= 15 s

(ii) Speed up of M1 over M2 = M1 execution time/ M2 execution time = 20/15 = 1.33

(b) Speed up of M1 =
$$((1-E)*20 + E*20/S) / 20$$

= $((1-E) + E/S)$

(c) Speed up of M1 =
$$((1-U)*0 + U*20) / 20$$

= $(0+U*20) / 20$
= U

(d)

addi \$t0, \$zero, 200;
addi \$t1, \$zero, 100;
loop | lw \$t2, 0(\$a1);
| lw \$t3, 0(\$a2);
addi \$t4, \$ t2, \$t3;
sw \$t4, 0(\$a0);
addi \$a1, \$a1, 4;
addi \$a2, \$a2, 4;
addi \$a0, \$a0, 4;
addi \$t0, \$ t0, -1;
beq \$t0,\$t1, break;
j loop;
break

(e)

CISC	RISC
Emphasis on hardware	Emphasis on software
Includes multi-clock	Single-clock,
complex instructions	reduced instruction only
Memory-to-memory:	Register to register:
"LOAD" and "STORE" incorporated in	"LOAD" and "STORE"
instructions	are independent instructions
Small code sizes,	Low cycles per second,
high cycles per second	large code sizes
Transistors used for storing	Spends more transistors
complex instructions	on memory registers

2. (a)

(i)

datapath for ADD/ADDI/ SW/ Load Word instructions

200ps + 1000ps+ 200ps + 1500ps + 2000ps +200ps =5100ps

datapath for ADD/ADDI/ SW/ LW and BEQ instructions

Red lines show the execution paths of BEQ instruction.

200ps + 1000ps + 200ps + 1500 = 2900ps

CSEC 17th - Past Year Paper Solution 2016-2017 Sem2 CE/CZ3001 - ADVANCED COMPUTER ARCHITECTURE

(ii)

R-type: $1/2.9^{-9} = 344.82 \text{ MHz}$

I-type: $1/5.1^{-9} = 196.07 \text{ MHz}$

maximum operating frequency f_{max} \preceq [V - V_{th}]²/V,
 V_{th} is called the threshold voltage, the gate-source voltage at which the transistor just starts conducting. (Note that MOS transistor has three terminals: Gate, Source, and Drain)

if V_{th} is small compared to V then the maximum usable frequency

(iii)

The voltage is reduced from 2volt to 1volt. Since the maximum operating frequency is directly proportionate to (V^2/V) which is V. Then $((V/2)^2/(V/2)) = (V^2/4)/(V/2) =$ V/2. Thus, maximum operating frequency is also reduced by factor of 2.

R-type: $(1/2.9^{-9})/2 = 172.41 \text{ MHz}$

(b)

(i) Full Data forwarding

1	F	D	E	М	W									
2		F	D	Ε	M	W								
3			F	S	D	E	М	W						
4					F	D	E_	М	W					
5						F	D	E	M					
6				- (F	D	E	М	W			
7								F	D	E	М	W		
8									F	D	E	M	W	
9										F	D	Ē	М	W

(ii)

1	F	D	E	М	W															
2		F	D	Е	М	W														
3			F	S	S	D	Е	М	W											
4						F	S	S	D	E	М	W								
5									F	S	S	D	Е	М						
6												F	D	Е	М	W				
7													F	D	E	М	W			
8	T													F	D	E	М	W		
9	1														F	S	5	D	М	W

Without data forwarding

\$s0 = 0x00000000,

\$s1 = 0x00001000,

\$s2 = 0x00000100

Signed Hex to decimal: 0xFFFC = -4 - - 4

Total number of iterations: 100/4 = 25

Steady state CPI = (No of instructions + no of stalls)/ No of instructions

Steady state CPI (without data forwarding) = (9 + 8)/9 = 17/9

Steady state CPI (with data forwarding) = (9 + 1)/9 = 10/9

3. (a)

(i)

addi \$s1, \$zero, 100 Loop: lw \$t1, 0(\$t0) addi \$t1, \$t1, 8 sw \$t1, 0(\$t0) addi \$t0, \$t0, 4 addi \$s1, \$s1,-1 bne \$s1, \$zero, Loop

lw \$t1, 0(\$t0)
nop
sw \$t1, 0(\$t0)

CPI = 7/6 (1st instruction is not included because it is only ran once, thus it is not included in the steady state CPI)

(b) Comparison of Processor Technologies

Performance and power consumption vs flexibility

General Purpose Processor (GPP)

- Hardware features
 - the program to be run and necessary data could be made available at the main memory
 - general data-path: consists of a general ALU and usually a large register file
 - multiple levels of cache for reducing memory latency
- Maximum flexibility
 - programmable: supports several high-level languages
 - can be used for any general application
- Other key features
 - short time-to-market
 - low NRE cost
 - high-power consumption

Application-Specific Instruction-Set Processor (ASIP)

- Application-specific instruction-set processor (ASIP): a microprocessor tailored to benefit a specific application or a domain of applications
 - Ex: signal processing, image processing, video processing, and digital communication, etc.
- Instruction set of ASIP is customized for the type of computation involved in the specific application
- Requirement on flexibility should be just sufficient instead of unlimited like general purpose processor
- To achieve highest performance with minimum of power consumption, silicon cost and design cost

Graphic Processing Unit (GPU)

- GPU is a processor -specialized for graphics.
- GPU is flexible to implement any algorithm instead of being only for graphics to have more utilization efficiency and high performance: **GPU** computing
- Heterogeneous execution model(CPU is the host, GPU is the device)
- Programming model is "Single Instruction Multiple Thread" (SIMT)

ftp://download.nvidia.com/developer/c uda/seminar/TDCl_Arch.pdf

Graphic Processing Unit (GPU)

- Motivation of GPU computing
 - parallel computing by massively data parallel stream processing [1]
 - using thousands of threads.
 - implemented in hundreds of cores
 - cost-effective: cheap
 - using already available hardware
- GPUs involve high latency and provide high throughput processing
- CPU performs low latency low throughput computation
- Embedded systems are usually real-time

For reporting of errors and errata, please visit pypdiscuss.appspot.com Thank you and all the best for your exams! ©