#### Announcement

- · Postponed HW6! HW5 due today midnight.
- . See Canvas announcements re midtern (Fri Feb 16, in-class)
- . Solving B&V book problems is good practice.
- . TA review session this Fri (recorded, but with live zoom office hours afternoon; please see Natalia's earlier aunouncement on Canvas.

# 6. Convex optimization problems: GP, SDP, and multi-objective optimization

- geometric programming (GP)
  - generalized inequality constraints
- → semidefinite programming
  - vector (multi-objective) optimization

## **Geometric programming**

opplication:

· mechanical design/

structures

· circuit design (amplifiers,

· chemical reactions PUS)

$$f(x) = cx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n},$$

$$f(x)=cx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n},\qquad \mathbf{dom}\, f=\mathbf{R}^n_{++}\text{ power allocation in wireless retworks}$$

with c>0; exponent  $\alpha_i$  can be any real number

posynomial function: sum of monomials

$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}, \quad \mathbf{dom} \, f = \mathbf{R}_{++}^n$$

#### geometric program (GP)

minimize 
$$f_0(x)$$
 subject to  $f_i(x) \leq 1, \quad i = 1, \dots, m$   $h_i(x) = 1, \quad i = 1, \dots, p$ 

with  $f_i$  posynomial,  $h_i$  monomial

## Geometric program in convex form

change variables to  $y_i = \log x_i$ , and take logarithm of cost, constraints

- monomial  $f(x) = cx_1^{a_1} \cdots x_n^{a_n}$  transforms to  $\lim_{x \to \infty} f(e^{y_1}, \dots, e^{y_n}) = a^T y + b \qquad (b = \log c) \quad \text{affine in } y$
- posynomial  $f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}$  transforms to

$$\log f(e^{y_1}, \dots, e^{y_n}) = \log \left( \sum_{k=1}^K e^{a_k^T y + b_k} \right)$$
  $(b_k = \log c_k)$ 

• geometric program transforms to convex problem

$$\begin{cases} \text{minimize} & \log\left(\sum_{k=1}^{K} \exp(\underline{a_{0k}^T}y + \underline{b_{0k}})\right) \\ \text{subject to} & \log\left(\sum_{k=1}^{K} \exp(\underline{a_{ik}^T}y + \underline{b_{ik}})\right) \leq 0, \quad i = 1, \dots, m \\ Gy + d = 0 \end{cases}$$

## Design of cantilever beam



- N segments with unit lengths, rectangular cross-sections of size  $w_i \times h_i$
- given vertical force F applied at the right end

#### design problem

minimize subject to upper & lower bounds on  $w_i$ ,  $h_i$  upper bound & lower bounds on aspect ratios  $h_i/w_i$  upper bound on stress in each segment upper bound on vertical deflection at the end of the beam

variables:  $w_i$ ,  $h_i$  for i = 1, ..., N

#### objective and constraint functions

- total weight  $w_1h_1 + \cdots + w_Nh_N$  is posynomial  $w_1h_1 + \cdots + w_Nh_N = 0$   $w_1h_2 + \cdots + w_Nh_N = 0$   $w_1h_2 + \cdots + w_Nh_N = 0$   $w_1h_2 + \cdots + w_Nh_N = 0$
- aspect ratio  $h_i/w_i$  and inverse aspect ratio  $w_i/h_i$  are monomials  $w_i^{-1}h_i^{-2} \leq 1 \text{ Ye}$
- ullet maximum stress in segment i is given by  $6iF/(w_ih_i^2)$ , a monomial
- the vertical deflection  $y_i$  and slope  $v_i$  of central axis at the right end of segment i are defined recursively as

$$\frac{v_i}{v_i} = 12(i - 1/2) \frac{F}{Ew_i h_i^3} + \underbrace{v_{i+1}}_{F} \rightarrow \underbrace{y_i}_{F} = 6(i - 1/3) \frac{F}{Ew_i h_i^3} + \underbrace{v_{i+1}}_{F} + \underbrace{y_{i+1}}_{F} +$$

for  $i=N,N-1,\ldots,1$ , with  $v_{N+1}=y_{N+1}=0$  (E is Young's modulus)  $v_i$  and  $y_i$  are posynomial functions of w, h

#### formulation as a GP

minimize 
$$w_1h_1 + \dots + w_Nh_N$$
 subject to  $w_{\max}^{-1}w_i \leq 1$ ,  $w_{\min}w_i^{-1} \leq 1$ ,  $i=1,\dots,N$  
$$h_{\max}^{-1}h_i \leq 1, \quad h_{\min}h_i^{-1} \leq 1, \quad i=1,\dots,N$$
 
$$S_{\max}^{-1}w_i^{-1}h_i \leq 1, \quad S_{\min}w_ih_i^{-1} \leq 1, \quad i=1,\dots,N$$
 
$$6iF\sigma_{\max}^{-1}w_i^{-1}h_i^{-2} \leq 1, \quad i=1,\dots,N$$
 
$$y_{\max}^{-1}y_1 \leq 1$$

note

• we write  $w_{\min} \leq w_i \leq w_{\max}$  and  $h_{\min} \leq h_i \leq h_{\max}$ 

$$w_{\min}/w_i \le 1, \qquad w_i/w_{\max} \le 1, \qquad h_{\min}/h_i \le 1, \qquad h_i/h_{\max} \le 1$$

• we write  $S_{\min} \leq h_i/w_i \leq S_{\max}$  as

$$S_{\min} w_i / h_i \le 1, \qquad h_i / (w_i S_{\max}) \le 1$$

## Minimizing spectral radius of nonnegative matrix (skip)

#### Perron-Frobenius eigenvalue $\lambda_{pf}(A)$

- exists for (elementwise) positive  $A \in \mathbf{R}^{n \times n}$
- ullet a real, positive eigenvalue of A, equal to spectral radius  $\max_i |\lambda_i(A)|$
- ullet determines asymptotic growth (decay) rate of  $A^k$ :  $A^k \sim \lambda_{
  m pf}^k$  as  $k \to \infty$
- alternative characterization:  $\lambda_{pf}(A) = \inf\{\lambda \mid Av \leq \lambda v \text{ for some } v \succ 0\}$

#### minimizing spectral radius of matrix of posynomials

- ullet minimize  $\lambda_{\mathrm{pf}}(A(x))$ , where the elements  $A(x)_{ij}$  are posynomials of x
- equivalent geometric program:

minimize 
$$\lambda$$
 subject to  $\sum_{j=1}^{n} A(x)_{ij} v_j/(\lambda v_i) \leq 1, \quad i=1,\ldots,n$ 

variables  $\lambda$ , v, x

convex problem with generalized inequality constraints

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \leq_{K_i} 0$ ,  $i = 1, ..., m$   
 $Ax = b$ 

$$f_i(x) \leq_{K_i} 0$$

$$\vdots$$

$$f_m(x) \leq_{K_m} 0$$

- $f_0: \mathbf{R}^n \to \mathbf{R}$  convex;  $\underline{f_i}: \underline{\mathbf{R}^n} \to \underline{\mathbf{R}^{k_i}}$   $\underline{K_i}$ -convex w.r.t. proper cone  $K_i$
- same properties as standard convex problem (convex feasible set, local optimum is global, etc.)

conic form problem: special case with affine objective and constraints

extends linear programming  $(\underline{K=\mathbf{R}_+^m})$  to nonpolyhedral cones

## Semidefinite program (SDP)

- inequality constraint is called linear matrix inequality (LMI)
- includes problems with multiple LMI constraints: for example,

$$\rightarrow x_1 \begin{bmatrix} \frac{\hat{F}_1}{0} & 0 \\ \frac{\tilde{F}_1}{0} & \frac{\tilde{F}_1}{\tilde{F}_1} \end{bmatrix} + x_2 \begin{bmatrix} \frac{\hat{F}_2}{0} & 0 \\ \frac{\tilde{F}_2}{0} & \frac{\tilde{F}_2}{\tilde{F}_2} \end{bmatrix} + \dots + x_n \begin{bmatrix} \frac{\hat{F}_n}{0} & 0 \\ \frac{\tilde{F}_n}{0} & \frac{\tilde{F}_n}{\tilde{F}_n} \end{bmatrix} + \begin{bmatrix} \frac{\hat{G}}{0} & 0 \\ \frac{\tilde{G}}{0} & \frac{\tilde{G}}{\tilde{G}} \end{bmatrix} \leq 0$$

$$A(x) = A_{0} + x_{1}A_{1} + x_{2}A_{2} + \cdots + x_{n}A_{n} \qquad x \in \mathbb{R}^{n}$$

$$A(x) \leq O$$

$$S_{+}^{n} \qquad A_{0} \qquad A_{1} \qquad A_{2}$$

$$\begin{bmatrix} 1-x_{1} & x_{2} & 0 \\ x_{2} & 5 & -x_{3}+1 \\ 0 & -x_{3}+1 & 0 \end{bmatrix} \leq O \Leftrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 1 \\ 0 & 1 & 0 \end{bmatrix} + \begin{bmatrix} -1 & 0 \\ 0 & 5 & 1 \\ 0 & 1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} x_{2} \\ 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$x = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{3} \end{bmatrix}$$

#### LP and SOCP as SDP

#### LP and equivalent SDP

$$\begin{array}{c|cccc} \mathsf{LP:} & \mathsf{minimize} & c^Tx & \mathsf{SDP:} & \mathsf{minimize} & c^Tx \\ \mathsf{subject to} & Ax \preceq b & \mathsf{subject to} & \mathsf{diag}(Ax-b) \preceq 0 \\ \hline & \mathsf{R^1_+} & \mathsf{Sppec} & \mathsf{part} & \mathsf{par$$

#### **SOCP** and equivalent **SDP**

SOCP: 
$$\begin{bmatrix} \text{minimize} & f^Tx \\ \text{subject to} & \|A_ix+b_i\|_2 \leq c_i^Tx+d_i, \quad i=1,\dots,m \\ \end{bmatrix}$$
 SDP: 
$$\begin{bmatrix} \text{minimize} & f^Tx \\ \text{subject to} & \begin{bmatrix} (c_i^Tx+d_i)I & A_ix+b_i \\ (A_ix+b_i)^T & c_i^Tx+d_i \end{bmatrix} \succeq 0, \quad i=1,\dots,m \\ \end{bmatrix}$$

- MA; x+b; || 2 \( \( \ci^{\tau} \tau + di \) \( \) assume: cixtoliza, ti  $\frac{\rightarrow (A_i \times b_i)^T (A_i \times b_i)}{(C_i \times d_i)^2} \leq \frac{(C_i \times d_i)^2}{(C_i \times d_i)^2}$ Schur complements lemma,

[AB] >0, A>0, C>0 C − BTA B > 0  $-\left(A_{i}x+b_{i}\right)^{T}\left(\frac{1}{\left(c_{i}^{T}x+d_{i}\right)^{2}}\right)\left(A_{i}x+b_{i}\right)+1\geqslant0$ it [(ci<sup>T</sup>x+di)<sup>2</sup> (Aix+bi)<sup>T</sup>] >0 - not an LMI

N) (Aix+bi)

Inxn - (Ai xebi) (Ai xebi) + (cixedi) > 0 (1) [(citx+di') (Aix+bi') > 0 > LMI/

(Citx+bi') (citx+di') I AKM

## **Eigenvalue minimization**

tion
$$\begin{cases} \min & t \\ x_i t \\ \lambda \max (A(x)) \leq t \end{cases}$$

minimize 
$$\lambda_{\max}(A(x))$$

where 
$$A(x) = A_0 + x_1 A_1 + \dots + x_n A_n$$
 (with given  $A_i \in \mathbf{S}^k$ )

equivalent SDP

minimize 
$$t$$
 subject to  $A(\underline{x}) \leq tI$ 

- variables  $x \in \mathbf{R}^n$ ,  $t \in \mathbf{R}$
- follows from

$$\lambda_{\max}(A) \leq t \iff A \leq tI$$

$$A - tI \leq 0 \iff \lambda_i(A - tI) \leq 0 \quad \forall i \iff \lambda_i(A) - t \leq 0 \quad \forall i \iff \lambda_{\max}(A) \leq t$$

#### **Matrix norm minimization**

$$\Rightarrow \text{minimize} \quad \underbrace{\|A(\mathbf{x})\|_2}_{\|A(x)\|_2 = \left(\lambda_{\max}(\underline{A(x)^T A(x)})\right)^{1/2}}_{\text{where } \underline{A(x)} = A_0 + x_1 A_1 + \dots + x_n A_n \text{ (with given } \underline{A_i \in \mathbf{R}^{p \times q})}_{\text{equivalent SDP}}$$

$$\begin{bmatrix} \text{minimize} & \underline{t} \\ \mathbf{x} & \mathbf{t} \\ \text{subject to} & \begin{bmatrix} \underline{t}I & A(\underline{x}) \\ A(\underline{x})^T & \underline{t}I \end{bmatrix} \succeq 0$$

- variables  $x \in \mathbf{R}^n$ ,  $t \in \mathbf{R}$

· GP

#### Minimum and minimal elements of a set

 $\preceq_K$  is not in general a <u>linear ordering</u>: we can have  $x \not\preceq_K y$  and  $y \not\preceq_K x$ <u>fotal ordering</u>



•  $x \in S$  is the minimum element of S with respect to  $\leq_K$  if

$$y \in S \implies x \preceq_K y$$



•  $x \in S$  is **a minimal element** of S with respect to  $\leq_K$  if

$$y \in S, \quad y \leq_K x \quad \Longrightarrow \quad y = x$$



## Multiobjective (vector) optimization

#### general vector optimization problem

• K=1R+ in all our multi-obj problems in this course!

minimize (w.r.t. 
$$K$$
)  $f_0(x)$   
subject to  $f_i(x) \leq 0, \quad i = 1, \dots, m$   
 $h_i(x) \leq 0, \quad i = 1, \dots, p$ 

vector objective  $f_0: \mathbf{R}^n \to \mathbf{R}^q$ , minimized w.r.t. proper cone  $K \in \mathbf{R}^q$ 

#### convex vector optimization problem

pojective 
$$f_0: \mathbf{R}^n \to \mathbf{R}^q$$
, minimized w.r.t. proper cone  $K \in \mathbf{R}^q$  wector optimization problem 
$$\begin{cases} \text{minimize (w.r.t. } K) & f_0(x) \\ \text{subject to} & f_1(x) \leq 0, \\ \hline M & I = 1, \dots, m \end{cases}$$

$$K\text{-convex, } f_1, \dots, f_m \text{ convex}$$

with  $f_0$  K-convex,  $f_1$ , . . . ,  $f_m$  convex

## Optimal and Pareto optimal points $\int_{-\infty}^{\infty} (x)$

 $f_6(x) = \begin{bmatrix} f_{01}(x) \\ f_{02}(x) \end{bmatrix}$ 

set of achievable objective values

$$\mathcal{O} = \{ f_0(x) \mid \underline{x \text{ feasible}} \}$$



- ullet feasible x is **optimal** if  $f_0(x)$  is a minimum value of  ${\mathcal O}$
- feasible x is **Pareto optimal** if  $f_0(x)$  is a minimal value of  $\mathcal O$





## Multiobjective optimization

vector optimization problem with  $K = \mathbf{R}_+^q$ 

$$f_0(x) = (F_1(x), \dots, F_q(x))$$

- q different objectives  $F_i$ ; roughly speaking we want all  $F_i$ 's to be small
- feasible  $x^*$  is optimal if

$$y \text{ feasible} \implies f_0(x^*) \leq f_0(y)$$



if there exists an optimal point, the objectives are noncompeting

ullet feasible  $x^{\mathrm{po}}$  is Pareto optimal if

$$y$$
 feasible,  $f_0(y) \leq f_0(x^{\mathrm{po}}) \implies f_0(x^{\mathrm{po}}) = f_0(y)$ 



if there are multiple Pareto optimal values, there is a trade-off between the objectives

## Regularized least-squares

minimize (w.r.t. 
$$\mathbb{R}^2_+$$
)  $(\|Ax - b\|_2^2, \|x\|_2^2)$ 

$$\mathbb{E}_{F_l(x)}$$

example for  $A \in \mathbf{R}^{100 \times 10}$ ; heavy line is formed by Pareto optimal points

## 1950's Markowitz portfolio opt.

## Risk return trade-off in portfolio optimization

minimize (w.r.t. 
$$\mathbf{R}_+^2$$
)  $(-\bar{p}^Tx, x^T\Sigma x)$  subject to  $\mathbf{1}^Tx=1, \quad x\succeq 0$ 

- $x \in \mathbb{R}^n$  is investment portfolio;  $x_i$  is fraction invested in asset i
- $p \in \mathbb{R}^n$  is vector of relative asset price changes; modeled as a random variable with mean  $\bar{p}$ , covariance  $\Sigma$  $P \sim \mathcal{D}(\bar{P}, \Sigma)$
- $\bar{p}^T x = \mathbf{E} r$  is expected return;  $x^T \Sigma x = \mathbf{var} r$  is return variance

return =  $\sum_{p' \neq i} \sum_{p' \neq j} E_{p}(p'x) = \sum_{p' \neq j} E_{p}(p'x) = E_{p}(p'x) = \sum_{p' \neq j} E_{p}(p'p')(p'p')$ 

example





refurn & nisk

6 - 18

### Scalarization for multicriterion problems

to find Pareto optimal points, minimize positive weighted sum

$$\underline{\lambda^T f_0(x)} = \underline{\lambda_1} F_1(x) + \dots + \underline{\lambda_q} F_q(x)$$

#### examples

• regularized least-squares problem of page 6–17

take 
$$\lambda = (1, \gamma)$$
 with  $\gamma > 0$ 

minimize 
$$||Ax - b||_2^2 + \mathbf{y}||x||_2^2$$

for fixed  $\gamma$ , a LS problem

$$\left\| \begin{bmatrix} A \\ \sqrt{8}I \end{bmatrix} \chi - \begin{bmatrix} b \\ 0 \end{bmatrix} \right\|_{2}^{2} \quad \chi = \tilde{A}^{\dagger} \tilde{b}$$

$$= (\tilde{A}^{\dagger} \tilde{A} + \tilde{8}^{\dagger} \tilde{L})^{-1} \tilde{A}^{\dagger} \tilde{b}$$



• risk-return trade-off of page 6–18

for fixed  $\gamma>0$ , a quadratic program

in praetice, discretize 8, solve one QP for each 8