Questions

1. Consider the intersection of a ray with the ellipsoid $4x^2 + 4y^2 + z^2 - 16 = 0$. Suppose that the viewpoint (i.e., the starting point of a view ray) is at $V = (1, -1, 0)^T$ and the viewing direction is $D = (0, 1, 1)^T$. Does the ray intersect the volume? If yes, compute the intersection points between them.

Solution: We represent the ray in the parametric form:

$$R(t) = V + Dt, \quad t \in [0, \infty)$$

= $(1, -1, 0)^T + t (0, 1, 1)^T$
= $(1, t - 1, t)^T$

Substitute R(t) into the ellipsoid equation, we have $5t^2 - 8t - 8 = 0$ which has two roots

$$t_0 = \frac{4 - 2\sqrt{14}}{5}$$

$$t_1 = \frac{4 + 2\sqrt{14}}{5}$$

We reject $t_0 < 0$. Hence, the ray R(t) intersects the ellipsoid at one point which is given by

$$R(t_1) = (1, \frac{2\sqrt{14} - 1}{5}, \frac{4 + 2\sqrt{14}}{5}).$$

2. Consider the intersection of a ray with a triangle. The three vertices of the triangle are A(2,0,2), B(0,3,-2), C(-2,3,2). We shoot a ray from the origin in the direction of (1,1,1). Does the ray intersect the triangle? If yes, compute the closest intersection point between them.

Solution: Let P be the plane containing the triangle ABC. Then P is given by

$$N \cdot (X - X_0) = 0,$$

where X_0 is a point on P (we take A as X_0) and N is the normal of P given by

$$N = AB \times AC$$

= $(-2, 3, -4)^T \times (-4, 3, 0)^T$
= $(12, 16, 6)^T$

The parametric representation of the ray R(t) is given by

$$R(t) = S + Dt, \quad t \in [0, \infty),$$

where S is the starting point (i.e., the origin), and D = (1, 1, 1). Substitute R(t) to the plane equation, and we have

$$t = \frac{N \cdot A}{N \cdot D} = 18/17.$$

Since t > 0, we have the intersection point $R(18/17) = (\frac{18}{17}, \frac{18}{17}, \frac{18}{17})$.