24.118: Paradox and Infinity

Ryan Lacey <rlacey@mit.edu>
Collaborator(s): Evan Thomas

May 10, 2014

- 1. (a) Yes. There are no non-empty subsets of an empty set, so it is trivially well ordered.
 - (b) No. $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset))) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$ There is no least element between \emptyset and $\{\{\emptyset\}\}$ because neither is a subset of the other.
 - (c) No. $\mathcal{P}(\mathcal{P}(\emptyset)) \{\emptyset\} = \{\emptyset, \{\emptyset\}\} \{\emptyset\} = \{\{\emptyset\}\}\}$ Set containing one element is trivially well ordered as there is only one subset and thereby the one element is the least element.
 - (d) No. $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset))) \{\{\emptyset\}\} = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\} \{\{\emptyset\}\} = \{\emptyset, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$ There still is no ordering between \emptyset and $\{\{\emptyset\}\}$ as described in (b).
 - (e) Yes. $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset))) \{\{\{\emptyset\}\}\} = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}, \{\emptyset, \{\emptyset\}\}\}\} \{\{\{\emptyset\}\}\}\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$ Every subset comparison has a least element.
- 2. (a) Proof by contradiction, assume that there is some α that is a smaller ordinal than \emptyset . Then by our definition α must be an element of \emptyset . But \emptyset has no elements. Thus we arrive at a contradiction and can conclude that there is no smaller ordinal than \emptyset .
 - (b) Proof by contradiction, assume that there is some α containing infinitely many members that is a smaller ordinal than ω . Then ω must contain some element N that is not within α such that α could be represented as $1_0, 2_0, 3_0, ...$ and that ω can be represented as $1_0, 2_0, 3_0, ..., N$. By definition, however, α is infinite so any N chosen will be a member of that ordinal. Thus α and ω contain the same elements, so we can conclude that no infinite sequence can be smaller than ω .
- 3. (a) Map element 0_0 from ordinal ω to the element ω from the ordinal ω' . Then map each element n_0 from ordinal ω to the element $(n-1)_0$ from the ordinal ω' . Pairing elements in this manner would give the following 1-to-1 correspondence between ω and ω'

(b) The shape of ω is |||... while the shape of ω' is |||...| so they are not isomorphic. As was shown with the 1-to-1 correspondence above, the positions had to be rearranged to get from one ordering to the other (specifically element ω from ω' was brought from the last position to the first position).

- 4. (i) True
 - (ii) False
 - (iii) True
 - (iv) True
 - (v) True
 - (vi) False
 - (vii) True
 - (viii) False
 - (ix) False
 - (x) True
- 5. (i) |||...|||...|||...
 - (ii) |||...|||...|||...
 - (iii) |||...|||...|||...|||...
 - $(iv) \ |||...|||...|||...|||... \ ... \ |||...|||...|||... \ ... \ ||||...|||... \ ... \ |||...|||...|||... \ ... \$
 - (v) Take Ω to be |||...|||...|||... ... |||...|||...|||... ... |||...|||... ... |||...|||...|||...|||...|||...|||... from above. Then we have $\Omega\Omega\Omega$...