机密★启用前

海南省 2021 年普通高中学业水平选择性考试

化 学

注意事项:

- 1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如 需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上,写 在本试卷上无效。
 - 3. 考试结束后,将本试卷和答题卡一并交回。 可能用到的相对原子质量: H1 C12 N14 O16 Na23
- 一、选择题:本题共8小题,每小题2分,共16分。在每小题给出的四个选项中,只有一项是符合题目要求的。
- 1. 2020 年 9 月 22 日,中国向全世界宣布,努力争取 2060 年前实现碳中和。下列措施不利于大气中 CO₂ 减少的是
 - A. 用氨水捕集废气中的 CO₂,将其转化为氮肥
 - B. 大力推广使用风能、水能、氢能等清洁能源
 - C. 大力推广使用干冰实现人工增雨,缓解旱情
 - D. 通过植树造林,利用光合作用吸收大气中的 CO₂
- 2. 元末陶宗仪《辍耕录》中记载: "杭人削松木为小片,其薄为纸,熔硫磺涂木片顶端分许,名日发烛.....,盖以发火及代灯烛用也。"下列有关说法错误的是
 - A. 将松木削薄为纸片状有助于发火和燃烧
 - B. "发烛"发火和燃烧利用了物质的可燃性
 - C. "发烛"发火和燃烧伴随不同形式的能量转化
 - D. 硫磺是"发烛"发火和燃烧反应的催化剂
- 3. 用如图装置制取干燥的气体(a、b表示加入的试剂),能实现的是

选项	气体	a	b
A	H ₂ S	稀 H ₂ SO ₄	FeS
В	O_2	H ₂ O ₂ 溶液	MnO ₂
С	NO ₂	浓 HNO3	铁片
D	NH ₃	浓氨水	CaO

化学试题第1页(共6页)

- 4. 生活中处处有化学。下列说法错误的是
 - A. 天然橡胶的主要成分是聚苯乙烯 B. 天然气的主要成分是甲烷
 - C. 乙烯可用作水果催熟剂
- D. 苯酚可用作消毒剂
- 5. SF6可用作高压发电系统的绝缘气体,分子呈正八面体结构,如图所示。有关 SF6的说 法正确的是
 - A. 是非极性分子
 - B. 键角∠FSF 都等于 90°
 - C. S与F之间共用电子对偏向S
 - D. S 原子满足 8 电子稳定结构
- 6. 一次性鉴别等浓度的 KNO₃、NH₄Cl、Na₂CO₃三种溶液,下列方法不可行的是
 - A. 测定 pH

B. 焰色试验

C. 滴加 AlCl₃ 溶液

- D. 滴加饱和 Ca(OH)2 溶液, 微热
- 7. NA代表阿伏加德罗常数的值。下列说法正确的是
 - A. 0.1 mol ²⁷Al³⁺中含有的电子数为 1.3N_A
 - B. 3.9 g Na₂O₂ 中含有的共价键的数目为 0.1N_A
 - C. $0.1 \text{ mol } \text{ H} (H_2N-NH_2)$ 含有的孤电子对数为 $0.2N_A$
 - D. $CH_2=CH_2+H_2 \stackrel{\text{\tiny (MCM)}}{\longrightarrow} CH_3CH_3$, 生成 1 mol 乙烷时断裂的共价键总数为 N_A
- 8. 制备水煤气的反应 $C(s) + H_2O(g) \rightleftharpoons H_2(g) + CO(g)$ $\Delta H > 0$,下列说法正确的是
 - A. 该反应 ΔS<0
 - B. 升高温度, 反应速率增大
 - C. 恒温下, 增大总压, H₂O(g)的平衡转化率不变
 - D. 恒温恒压下,加入催化剂,平衡常数增大
- 二、选择题: 本题共6小题, 每小题4分, 共24分。每小题有一个或两个选项符合题意。 若正确答案只包括一个选项,多选得0分;若正确答案包括两个选项,只选一个且正确 得 2 分, 选两个且都正确得 4 分, 但只要选错一个就得 0 分。
- 9. 液氨中存在平衡: 2NH₃ ⇒ NH₄+ NH₅。如图所示为电解池装置,以 KNH₂ 的液氨溶液为 电解液, 电解过程中 a、b 两个惰性电极上都有气泡产生。下列有关说法正确的是
 - A. b 电极连接的是电源的负极
 - B. a 电极的反应为 2NH₃ + 2e⁻ == H₂↑ + 2NH₂⁻
 - C. 电解过程中, 阴极附近 K+浓度减小
 - D. 理论上两极产生的气体物质的量之比为 1:1
- 10. 短周期主族元素 X、Y、Z、W 的原子序数依次增大, XY 离子与 Y2 分子均含有 14 个 电子; 习惯上把电解饱和 ZW 水溶液的工业生产称为氯碱工业。下列判断正确的是
 - A. 原子半径: W>Z
- B. 最高价氧化物对应的水化物的酸性: Y>X
- C. 化合物 ZXY 的水溶液呈中性 D. $(XY)_2$ 分子中既有 σ 键又有 π 键

11. 关于 NH3 性质的解释合理的是

选项	性质	解释	
A	比 PH ₃ 容易液化	NH ₃ 分子间的范德华力更大	
В	熔点高于 PH ₃	N-H 键的键能比 P-H 大	
С	能与 Ag+以配位键结合	NH ₃ 中氮原子有孤电子对	
D	氨水中存在 NH4	NH3·H2O 是离子化合物	

12. 我国化工专家吴蕴初自主破解了"味精"的蛋白质水解工业生产方式。味精的主要成分为谷氨酸单钠盐。X 是谷氨酸(结构简式如下)的同分异构体,与谷氨酸具有相同的官能团种类与数目。下列有关说法正确的是

$$\begin{array}{c} \mathrm{HOOC} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{CH} - \mathrm{COOH} \\ | \\ \mathrm{NH_2} \end{array}$$

谷氨酸

- A. 谷氨酸分子式为 C₅H₈NO₄
- B. 谷氨酸分子中有 2 个手性碳原子
- C. 谷氨酸单钠能溶于水
- D. X的数目(不含立体异构)有8种
- 13. 25℃时,向 10.00 mL 0.1000 mol·L-¹的 NaHCO₃ 溶液中滴加 0.1000 mol·L-¹的盐酸,溶液的 pH 随加入的盐酸的体积 *V* 变化如图所示。下列有关说法正确的是
 - A. a点,溶液 pH>7 是由于 HCO;水解程度大于电离程度
 - B. b点, $c(Na^+) = c(HCO_3^-) + 2c(CO_3^{2-}) + c(C1^-)$
 - C. c点,溶液中的H+主要来自HCO3的电离
 - D. d点, $c(Na^+) = c(Cl^-) = 0.1000 \text{ mol} \cdot L^{-1}$
- 14. 依据下列实验和现象,得出结论正确的是

选项	实验	现象	结论
A	点燃无色气体 X,将生成的气体通入澄清石灰水	澄清石灰水先浑浊后 澄清	X为CO
В	25℃时,向无色的 Y 溶液中滴加 1~2 滴酚酞试液	溶液仍为无色	Y 溶液的 pH<7
С	在淀粉和 I ₂ 的混合溶液中滴加 KSCN 溶液 [已知: (SCN) ₂ 、SCN ⁻ 分别与卤素 单质、卤素离子性质相似]	溶液仍为蓝色	氧化性: (SCN) ₂ <i<sub>2</i<sub>
D	在稀 H ₂ SO ₄ 中加入少量 Cu ₂ O(s)	溶液由无色变为蓝色 并有红色固体生成	反应中 Cu ₂ O 既作氧 化剂又作还原剂

三、非选择题: 共5题,60分。

15. (10分)

无水 FeCls 常作为芳烃氯代反应的催化剂。某研究小组设计了如下流程,以废铁屑(含 有少量碳和 SiO₂ 杂质) 为原料制备无水 FeCl₃(s)。

已知: 氯化亚砜()熔点−101℃, 沸点 76℃, 易水解。 Cl-S-Cl

回答问题:

- (1)操作①是过滤,用到的玻璃仪器有烧杯、玻璃棒和。。
- (2)为避免引入新的杂质,试剂B可以选用 (填编号)。
 - a. KMnO₄溶液

- b. Cl₂水 c. Br₂水 d. H₂O₂溶液
- (3)操作②是蒸发结晶,加热的同时通入HCl(g)的目的是。
- (4) 取少量 D 晶体,溶于水并滴加 KSCN 溶液,现象是
- (5) 反应 D→E 的化学方程式为
- (6) 由 D 转化成 E 的过程中可能产生少量亚铁盐,写出一种可能的还原剂 并设计实验验证是该还原剂将 Fe³⁺还原

16. (10分)

碳及其化合物间的转化广泛存在于自然界及人类的生产和生活中。已知 25℃,100 kPa 时:

①1 mol 葡萄糖 [C₆H₁₂O₆(s)] 完全燃烧生成 CO₂(g)和 H₂O(l), 放出 2804 kJ 热量。

②CO(g) +
$$\frac{1}{2}$$
 O₂(g) == CO₂(g) $\Delta H = -283$ kJ·mol⁻¹

回答问题:

- (1) 25℃时, CO₂(g)与 H₂O(l)经光合作用生成葡萄糖 [C₆H₁₂O₆(s)]和 O₂(g)的热化学方程
- (2) 25℃, 100 kPa 时, 气态分子断开 1 mol 化学键的焓变称为键焓。已知 O=O、C=O 键的键焓分别为 495 kJ·mol⁻¹、799 kJ·mol⁻¹, CO₂(g)分子中碳氧键的键焓为 kJ·mol⁻¹。
- (3) 溶于水的 CO₂ 只有部分转化为 H₂CO₃(aq), 大部分以水合 CO₂ 的形式存在, 水合 CO_2 可用 $CO_2(aq)$ 表示。已知 25℃时, $H_2CO_3(aq) \rightleftharpoons CO_2(aq) + H_2O(1)$ 的平衡常数 K = 600,正 反应的速率可表示为 $\nu(H_2CO_3) = k_1 \cdot c(H_2CO_3)$, 逆反应的速率可表示为 $\nu(CO_2) = k_2 \cdot c(CO_2)$, 则 $k_2 =$ (用含 k_1 的代数式表示)。
- (4) 25°C时, 潮湿的石膏雕像表面会发生反应: CaSO₄(s) + CO₂⁻(aq) ⇌ CaCO₃(s) + SO₂⁻(aq), 其平衡常数 K = 。 [已知 $K_{sp}(CaSO_4) = 9.1 \times 10^{-6}$, $K_{sp}(CaCO_3) = 2.8 \times 10^{-9}$]
 - (5) 溶洞景区限制参观的游客数量,主要原因之一是游客呼吸产生的气体对钟乳石有破

17. (12分)

亚硝酰氯 (NOCI) 可作为有机合成试剂。

- ②沸点: NOCl 为-6°C, Cl₂ 为-34°C, NO 为-152°C。
- ③NOCI 易水解,能与O2反应。

某研究小组用 NO 和 Clo 在如图所示装置中制备 NOCl, 并分离回收未反应的原料。

回答问题:

- (1) 通入 Cl_2 和 NO 前先通入氩气,作用是 ; 仪器 D 的名称是 。
- (2)将催化剂负载在玻璃棉上而不是直接平铺在玻璃管中,目的是。
- (3) 实验所需的 NO 可用 NaNO₂和 FeSO₄溶液在稀 H_2SO_4 中反应制得,离子反应方程式为
- (4)为分离产物和未反应的原料,低温溶槽 A 的温度区间应控制在______, 仪器 C 收集的物质是
- (5) 无色的尾气若遇到空气会变为红棕色,原因是_____。
- 18. (14分)

二甲双酮是一种抗惊厥药,以丙烯为起始原料的合成路线如下:

$$CH_{3}CH = CH_{2} \xrightarrow{H_{2}O, H^{+}} CH_{3}CHCH_{3} \xrightarrow{\triangle} C_{3}H_{6}O \xrightarrow{HCN} H_{3}C \xrightarrow{C}CCN$$

$$A \qquad B \qquad CH_{3}CHCH_{3} \xrightarrow{\triangle} CH_{3}CHCH_{3} \xrightarrow{\triangle} CH_{3}CHCH_{3}$$

$$A \qquad B \qquad CH_{3}C \xrightarrow{C}CH_{3}CHCH_{3}$$

$$CH_{3}CH$$

回答问题:

- (1) A 的名称是_____, A 与金属钠反应的产物为_____和___和
- (2) B的核磁共振氢谱有 组峰。
- (3) A→B、B→C 的反应类型分别为____、___、___。
- (4) D中所含官能团名称为____、___、
- (5) D→E 的反应方程式为

已知: ①
$$R-Br \xrightarrow{NaCN} R-CN$$
 ② $-C \xrightarrow{C} C \xrightarrow{Br_2} -C \xrightarrow{O} C \xrightarrow{Br} Br$

19. (14分)

金属羰基配位化合物在催化反应中有着重要应用。HMn(CO)s 是锰的一种简单羰基配位化合物,其结构示意图如下。

回答问题:

- (1) 基态锰原子的价层电子排布式为。
- (2) 配位化合物中的中心原子配位数是指和中心原子 直接成键的原子的数目。HMn(CO)s 中锰原子的配位数为
 - (3) 第一电离能的大小: C O (填"大于"或"小于")。
- (4) CO_3^{2-} 中碳原子的杂化轨道类型是______,写出一种与具有相同空间结构的-1 价无机酸根离子的化学式
- (5) CH₃Mn(CO)₅可看作是 HMn(CO)₅中的氢原子被甲基取代的产物。CH₃Mn(CO)₅与 I₂反应可用于制备 CH₃I,反应前后锰的配位数不变,CH₃Mn(CO)₅与 I₂反应的化学方程式为
- (6) MnS 晶胞与 NaCl 晶胞属于同种类型,如图所示。前者的熔点明显高于后者,其主要原因是。。

以晶胞参数为单位长度建立坐标系,可以表示晶胞中各原子的位置,称为原子坐标。在晶胞坐标系中,a 点硫原子坐标为 $(1,\frac{1}{2},\frac{1}{2})$,b 点锰原子坐标为 $(0,\frac{1}{2},0)$,则 c 点锰原子坐标为_____。