

Focus the Discrepancy: Intra- and Inter-Correlation Learning for Image Anomaly Detection

ICCV 2023

Xincheng Yao Shanghai Jiao Tong University

WED-PM

Coauthors: Ruoqi Li, Zefeng Qian, Yan Luo, Chongyang Zhang*

Preview

How humans recognize anomalies?

Larger patch-wise discrepancies

Weaker patch-to-normal-patch correlations

So, Focus the Discrepancy!

- 1. Patch-wise representations are different from the normal visuals
- 2. Different from most patches within one image
- 2. Deviate from our accumulated knowledge of normality

Preview

FOD: Focus the Discrepancy

Three parts: Patch-wise Discrepancy Branch, Intra-Correlation Branch, Inter-Correlation Branch.

Outline

- 1 Motivation
- Our Approach: Focus the Discrepancy
- 3 Experiments
- 4 Ablations
- 5 Conclusions

Motivation

Our core insight: AD by sufficiently focusing the discrepancy!

Analogy to humans:

- Patch patterns that differentiate from the normal visuals (local).
- Image regions that destroy textures or structures (within image).
- Novel appearances that deviate from accumulated knowledge of normality (cross image).

Focus the Discrepancy, Model Overview:

Three parts: Patch-wise Discrepancy Branch, Intra-Correlation Branch, Inter-Correlation Branch.

- ICCV23 Shanghai Jiao Tong University
- Patch-Wise Reconstruction Discrepancy

- This corresponds to the first recognition view:
 patch-wise discrepancy.
- For simplicity, we employ feature reconstruction.
- Learning objective:

$$\mathcal{L}_{l} = ||\hat{X} - X||_{2} + \left(1 - \frac{\hat{X} \cdot X}{||\hat{X}||_{2}||X||_{2}}\right)$$

L2 distance + cosine distance

Shanghai Jiao Tong University

- Intra-Correlation Learning Branch
- This corresponds to the second recognition view: intra-image discrepancy.
- We explicitly take advantage of the self-attention maps as intra-correlation matrices.
- So, how to learn?
- We introduce RBF kernel based Target Correlation:

$$T_k^g = \frac{1}{2\pi\sigma_x\sigma_y} \exp\left(-\frac{||x_{ij} - x_{i'j'}||_2^2}{2(\sigma_x^2 + \sigma_y^2)}\right)$$
$$i, i' \in \{1, \dots, H\}; j, j' \in \{1, \dots, W\}$$

Then, measure distance by KL:

$$\operatorname{Div}(\mathcal{T}^g, \mathcal{S}^g) = \frac{1}{K} \sum_{k=1}^K \left(KL(T_k^g || S_k^g) + KL(S_k^g || T_k^g) \right)$$

- Entropy Constraint
- Why?
- Learned correlation distributions of normal patches may also easily concentrate on the adjacent patches.
- So, we further introduce an entropy constraint item for making normal patches establish strong associations with most normal patches.
- Then, we maximize the entropy and minimize the KL:

$$\mathcal{L}_g = \lambda_1 \operatorname{Div}(\mathcal{T}^g, \mathcal{S}^g) - \lambda_2 \operatorname{Ent}(\mathcal{S}^g)$$

SHANGHAI JIAO TONG UNIVERSITY

- Inter-Correlation Learning Branch
- This corresponds to the third recognition view: inter-image discrepancy.
- We can effectively take advantage of the known normal patterns from the normal training set by External Reference Features.
- Patch-wise averaged features are good empirically.
- So, how to learn?
- Loss function has opposite optimization direction to \mathcal{L}_g :

$$\mathcal{L}_e = -\lambda_1 \text{Div}(\mathcal{T}^e, \mathcal{S}^e) + \lambda_2 \text{Ent}(\mathcal{S}^e)$$

I2Correlation

I2Correlation: the residual features are more conducive to **spotlight** the abnormal patterns.

Experiments

Datasets:

- MVTecAD: 5534 high-resolution images, 15 categories, 73 anomaly types, and 1900 abnormal regions.
- BTAD: This dataset contains 2830 real-world images of 3 industrial products.
- MVTec3D-RGB: This dataset contains 4147 RGB images from 10 real-world categories.

Metrics:

 Area under the curve of the receiver operating characteristic (AUROC), image-level and pixel-level.

Experiments

Comparison with SOTAs:

Discrepancy Type	Method Venue		Image-level AUROC	Pixel-level AUROC
	STAD [4]	CVPR 2020	0.877	0.939
	PaDiM [11]	ICPR 2020	0.955	0.975
	DFR [57]	Neurocomputing 2021	/	0.950
	FCDD [25]	ICLR 2021	/	0.920
	MKD [41]	CVPR 2021	0.877	0.907
Patch-wise	Hou et al. [17]	ICCV 2021	0.895	/
Representation	Metaformer [54]	ICCV 2021	0.958	/
Discrepancy	DRAEM [64]	ICCV 2021	0.980	0.973
	RDAD [12]	CVPR 2022	0.985	0.978
	SSPCAB [34]	CVPR 2022	0.989	0.972
	DSR [65]	ECCV 2022	0.982	/
	NSA [43]	ECCV 2022	0.972	0.963
	UniAD [62]	NIPS 2022	0.966	0.966
	UTRAD [8]	Neural Networks 2022	0.960	0.967
	PatchSVDD [60]	ACCV 2020	0.921	0.957
Datah ta matah	DifferNet [36]	WACV 2020	0.949	/
Patch-to-patch	CFLOW [15]	WACV 2022	0.983	0.986
Feature	CS-FLOW [37]	WACV 2022	0.987	/
Distance	Tsai et al. [15]	WACV 2022	0.981	0.981
	PatchCore [35]	CVPR 2022	0.991	0.980
Others	CutPaste [21]	CVPR 2021	0.952	0.960
	Wang et al. [51]	CVPR 2021	/	0.91
	SPD [68]	ECCV 2022	0.946	0.946
Patch-wise&Intra&Inter	FOD (Ours)	-	0.992	0.983

Detailed Results (same backbone):

	ı							
	Image-level Anomaly Detection							
Category	DRAEM	PatchSVDD	MKD	PatchCore	CFLOW	FOD		
	[64]		[41]	[35]	[15]	(Ours)		
Carpet	0.978	0.963	1.000	1.000	0.987	1.000		
Grid	1.000	0.892	0.975	0.992	0.996	1.000		
Leather	1.000	0.953	0.956	1.000	1.000	1.000		
Tile	0.998	0.969	0.999	1.000	0.999	1.000		
Wood	0.991	0.989	0.989	0.985	0.991	0.991		
Bottle	0.993	0.976	0.989	1.000	1.000	1.000		
Cable	0.929	0.899	0.972	0.992	0.976	0.995		
Capsule	0.984	0.763	0.979	0.984	0.977	1.000		
Hazelnut	1.000	0.912	0.997	1.000	1.000	1.000		
Metal nut	0.989	0.941	0.972	1.000	0.993	1.000		
Pill	0.981	0.791	0.971	0.954	0.968	0.984		
Screw	0.939	0.825	0.870	0.953	0.919	0.967		
Toothbrush	1.000	0.992	0.886	0.906	0.997	0.944		
Transistor	0.914	0.874	0.956	0.995	0.952	1.000		
Zipper	1.000	0.982	0.981	0.989	0.985	0.997		
Mean	0.980	0.915	0.966	0.983	0.983	0.992		

- In addition to pill, screw and toothbrush, our method achieves more than 99% AUROC in all other classes, others only achieve this on 9 classes.
- Our method performs much better on global and logical anomalies.

Experiments

More Results:

Method	DRAEM	PatchSVDD	MKD	PatchCore	CFLOW	FOD		
	[64]	[60]	[41]	[35]	[15]	(Ours)		
BTAD Dataset								
Image-level AUROC	0.922	0.924	0.935	0.934	0.948	0.960		
Pixel-level AUROC	0.942	0.964	0.965	0.976	0.978	0.975		
MVTec3D-RGB Dataset								
Image-level AUROC	0.757	0.743	0.688	0.839	0.851	0.884		
Pixel-level AUROC	0.974	0.852	0.970	0.977	0.974	0.976		

• We can outperform the best competitors on both BTAD and MVTec3D-RGB datasets.

Ablations

Ablation study results:

Recognition Views	Entropy Constraint	Reference Features	Anomaly Scoring	MVTecAD	BTAD	MVTec3D-RGB	Avg
Patch-wise	/	/	Rec	0.972	0.954	0.790	0.905
Intra	w/o	/	Div	0.700	0.811	0.708	0.740
	w/	/	Div	0.911	0.822	0.717	0.817
	w/	/	Rec&Div	0.974	0.952	0.818	0.915
Inter	w/	Mean	Rec&Div	0.980	0.958	0.832	0.923
	w/	Coreset	Rec&Div	0.925	0.884	0.700	0.836
Intra+Inter	w/	Mean	Div	0.896	0.922	0.814	0.877
Patch-wise+Intra +Inter (Ours)	w/	Mean	Rec&Div	0.992	0.960	0.884	0.945

- 1. The entropy constraint is quite effective and necessary in the intra- and inter-correlation branches.
- 2. The reconstruction errors and the intra- and inter-correlations can collaborate to improve detection performance.
- 3. Our FOD can surpass the pure reconstruction Transformer by 4.0% absolute improvement.

Qualitative Results

Detection effect of different anomalies

Visualization of intra- and inter-correlations

Conclusions

Anomalies are recognized through sufficient comparisons with normals.

Focus the Discrepancy!

Thanks!

Contact Us: sunny_zhang@sjtu.edu.cn