刚体转动惯量测量实验报告

郑晓旸

2024年5月16日

目录

1	实验目的	2
2	实验仪器	2
3	实验原理	2
	3.1 转动定律法	2
	3.2 扭摆法	2
4	实验数据及处理	3
	4.1 待测圆环参数测量	3
	4.2 转动定律法测量数据	3
	4.3 扭摆法测量数据	4
	4.3.1 测量扭力系数	4
5	误差分析	5
	5.1 系统误差	5
	5.2 随机误差	5
6	结论	5
7	复习思考题回答	6
	7.1 问题 1: 方法结果比较及合理性	6
	7.2 问题 2: 理论模型与实际情况的符合程度	6

1 实验目的

- 通过实验加深对刚体运动定律的理解
- 学习两种测量刚体转动惯量的实验方法
- 练习用曲线拟合方法处理数据

2 实验仪器

- PASCO 转动及扭摆实验组件 (包含支架、转动传感器、力传感器、铝盘、测试圆环、挂钩、砝码、金属丝等)
- 550 通用接口
- Capstone 软件
- 其它: 水平尺, 螺旋测微计, 游标卡尺, 钢卷尺, 电子天平等

3 实验原理

3.1 转动定律法

在转动惯量测量仪上,待测物体受到重力提供的外力矩 T 和摩擦力矩 T_{μ} 的作用,根据转动定律有:

$$T - T_{\mu} = (J + J_o + J_c)\beta \tag{1}$$

其中 J 为待测物体的转动惯量, J_c , J_o 分别为滑轮以及载物台等的转动惯量, β 为角加速度。外力矩大小为:

$$T = m(g - r_0 \beta)r_0 \tag{2}$$

其中m为砝码的质量,g为重力加速度, r_0 为滑轮半径。

通过测量不同重物作用下的角加速度 β_i ,绘制 $T-\beta$ 图像,用最小二乘法拟合数据点,可得到 总转动惯量 I 和摩擦力矩 T_u 。计算公式如下:

$$J = J_2 - J_1 \tag{3}$$

3.2 扭摆法

将待测物体悬挂在扭丝上,偏离平衡位置后释放,在扭力矩 T 的作用下做扭摆运动。其运动方程为:

$$J\ddot{\theta} = -k\theta \tag{4}$$

其中 k 为扭丝的扭力系数,特征角频率为:

$$\omega = \sqrt{\frac{k}{J}} \tag{5}$$

通过测量扭摆周期 T,计算转动惯量 J 的公式为:

$$J = \frac{kT^2}{4\pi^2} \tag{6}$$

4 实验数据及处理

4.1 待测圆环参数测量

表 1. 圆环参数测量数据

测量次数		2		4	5
外径 <i>D</i> / mm	76.46	76.48	76.46	76.48	76.48
内径 d / mm	53.78	53.72	53.52	53.64	53.56
质量 $m \mid g$			498.3		

计算得圆环的平均外径 D=76.87 mm,内径 d=43.64 mm,质量 m=498.3 g。理论转动惯量为:

$$I_0 = \frac{1}{8}m(D^2 + d^2) = \frac{1}{8} \times 0.4983 \times (0.07687^2 + 0.04364^2) = 486680 \,\mathrm{g} \cdot \mathrm{mm}^2 = 4.8668 \times 10^{-4} \,\mathrm{kg} \cdot \mathrm{m}^2$$
(7)

4.2 转动定律法测量数据

变化砝码质量,测量角加速度 β_i 和并根据角加速度和砝码质量计算力矩,公式如下:

$$T_i = m_i \cdot (g - r_0 \beta_i) \cdot r_0 \tag{8}$$

表 2: 转动定律法测量数据 (负载)

砝码质量 m / g	5	10	15	20	25	30	35
角加速度 β_i / (rad/s ²)	0.66	2.32	3.78	5.48	7.44	9.02	11.84
力矩 $T_i / (N \cdot m10^{-4})$	11.68	23.26	34.77	46.17	57.43	68.65	79.72

如图所示,通过线性拟合 T_i — β 数据,得到 T_i — β 关系为: $\beta=6.6625\times 10^{-4}{\rm kg\cdot m^2\cdot T_i}$ + $8.3205\times 10^{-4}rad/s^2$,其中 $r^2=0.998$

图 1: 转动定律法测量负载数据拟合图像

负载情况下的总转动惯量 $J_1 = J + J_c + j_o = 6.66 \times 10^{-4} \,\mathrm{kg \cdot m^2}$ 。

将圆环卸下转盘,重复测量得到空载载情况下的数据:

砝码质量 m / g	5	10	15	20	25	30	35
角加速度 β_i / (rad/s ²)	2.54	9.10	16.04	23.00	30.20	36.80	43.80
力矩 $T_i / (N \cdot m10^{-4})$	11.63	22.88	33.72	44.17	54.19	63.90	73.15

表 3: 转动定律法测量数据 (空载)

如图所示,通过线性拟合 $T_{ei}-\beta_e$ 数据,得到 $T_{ei}-\beta_e$ 关系为: $\beta=1.4845\times 10^{-4}{\rm kg\cdot m^2\cdot T_i}+9.1302\times 10^{-4}rad/s^2$,其中 $r^2=0.999$

图 2: 转动定律法测量孔载数据拟合图像

负载情况下的总转动惯量 $J_2 = J_c + j_o = 1.48 \times 10^{-4} \,\mathrm{kg \cdot m^2}$ 。 计算圆环的转动惯量为:

$$J = J_2 - J_1 = 6.66 \times 10^{-4} - 1.48 \times 10^{-4} = 5.18 \times 10^{-4} \,\mathrm{kg} \cdot \mathrm{m}^2$$
 (9)

4.3 扭摆法测量数据

4.3.1 测量扭力系数

表 4: 扭力系数测量数据					
测量序号	a(N/rad)	$\mathrm{b}(N)$	r		
1	0.365	3.78	0.999		
2	0.362	3.83	0.994		
3	0.353	3.70	0.996		

通过线性拟合 $T-\theta$ 数据取平均,得到扭力系数 $k=8.59\times 10^{-3}\,\mathrm{N\cdot m/rad}$ 。

并通过测量得到负载时和空载时的振动角频率分别为:取平均得到负载时的角频率 $\omega=3.64$ rad/s,空载时的角频率 $\omega_e=7.76$ rad/s。计算负载情况下的转动惯量 J_1 为:

$$J_1 = \frac{k}{\omega^2} = 6.48 \times 10^{-4} \,\mathrm{kg} \cdot \mathrm{m}^2$$
 (10)

て	衣 5: 扭刀糸剱侧里剱店							
测量序号	负载角频率 ω	空载角频率 ω_e						
1	3.64	7.76						
2	3.63	7.76						
3	3.65	7.76						
4	3.65	7.75						
5	3.64	7.77						

表 5: 扭力系数测量数据

计算空载情况下的转动惯量 J_2 为:

$$J_2 = \frac{k}{\omega^2} = 1.43 \times 10^{-3} \,\mathrm{kg} \cdot \mathrm{m}^2$$
 (11)

计算圆环的转动惯量为:

$$J = J_2 - J_1 = 6.48 \times 10^{-4} - 1.43 \times 10^{-4} = 5.05 \times 10^{-4} \,\mathrm{kg} \cdot \mathrm{m}^2 \tag{12}$$

5 误差分析

5.1 系统误差

在实验过程中,系统误差主要来自以下几个方面:

- 仪器校准不准确,例如游标卡尺和电子天平的校准误差。特别是电子天平,高度怀疑其准确性。
- 实验装置的摩擦力矩假设为常数,但实际上随转速变化。
- 扭摆法中,空气阻力和其他阻尼因素影响测量周期。

5.2 随机误差

实验数据的随机误差主要来自:

- 多次测量过程中的人为误差,例如读数误差。
- 设备灵敏度和数据采集系统的误差,例如传感器的采样率和精度。

6 结论

通过本次实验,我们使用转动定律法和扭摆法两种方法测量了圆环的转动惯量。结果如下:

- 转动定律法测得的转动惯量为 $1.76 \times 10^{-3} \, \text{kg} \cdot \text{m}^2$
- 扭摆法测得的转动惯量为 $9.26 \times 10^{-4} \, \mathrm{kg \cdot m^2}$

实验结果与理论值 $1.76\times 10^{-3}\,\mathrm{kg\cdot m^2}$ 比较接近,但仍存在一定误差。主要原因是实验过程中存在系统误差和随机误差。通过进一步改进实验方法和设备精度,可以减少误差,提高测量结果的准确性。

7 复习思考题回答

7.1 问题 1: 方法结果比较及合理性

在本实验中,我们通过转动定律法和扭摆法测量了圆环的转动惯量,并与理论计算进行了比较。 以下是各方法测量的结果:

- 转动定律法测得的转动惯量: $5.18 \times 10^{-4} \, \text{kg} \cdot \text{m}^2$
- 扭摆法测得的转动惯量: $5.05 \times 10^{-4} \, \text{kg} \cdot \text{m}^2$
- 理论计算的转动惯量: $4.8668 \times 10^{-4} \, \mathrm{kg \cdot m^2}$

比较这三者,可以看到:

- 转动定律法和扭摆法的测量结果非常接近,两者之间的差异为 $5.18 \times 10^{-4} 5.05 \times 10^{-4} = 0.13 \times 10^{-4} \, \text{kg} \cdot \text{m}^2$,约为 2.6%。这说明两种实验方法的测量结果是一致的,并且具有较高的可信度。
- 理论计算的转动惯量略小于实验测量值,转动定律法与理论计算值的差异为 $5.18 \times 10^{-4} 4.87 \times 10^{-4} = 0.31 \times 10^{-4} \,\mathrm{kg \cdot m^2}$,约为 6.04%;扭摆法与理论计算值的差异为 $5.05 \times 10^{-4} 4.87 \times 10^{-4} = 0.18 \times 10^{-4} \,\mathrm{kg \cdot m^2}$,约为 3.5%。

这种差异在合理范围内,原因如下:

- **实验误差**:在实际操作中,测量仪器和方法存在一定的误差,例如角加速度、扭摆周期的测量 精度有限,砝码质量和扭丝系数的测量存在误差等。
- 空气阻力和摩擦力:实验过程中不可避免地会受到空气阻力和摩擦力的影响,导致测量值稍大于理论值。
- **理论模型简化**: 理论计算假设刚体为理想模型,忽略了一些细节(如材料的均匀性、连接部位的摩擦等),实际情况可能更复杂。

综上所述,实验测量结果与理论计算值之间的差异在合理范围内,表明实验方法和理论模型在 一定程度上是可信的。

7.2 问题 2: 理论模型与实际情况的符合程度

实验中多次采用了理论模型拟合实验数据,主要体现在转动定律法和扭摆法中。拟合结果显示理论模型与实际情况的符合程度较好,具体分析如下:

• 转动定律法:

- 通过线性拟合 $T \beta$ 数据得到的关系式,拟合度 r^2 值非常接近 1(负载情况下为 0.998, 空载情况下为 0.999),表明理论模型 $T = (J + J_o + J_c)\beta + T_u$ 与实验数据高度吻合。
- 说明在实验过程中,理论模型较好地描述了转动系统中的力矩和角加速度的关系。

• 扭摆法:

- 通过线性拟合 $T-\theta$ 数据得到的扭力系数 k, 拟合度 r 值也非常接近 1 (如表格所示分别为 0.999、0.994、0.996),表明理论模型 $J\ddot{\theta}=-k\theta$ 与实际数据高度符合。
- 扭摆周期与转动惯量的关系式 $J = \frac{kT^2}{4\pi^2}$ 通过实验数据验证,所得结果与转动定律法的测量值接近,进一步验证了理论模型的准确性。

综合来看,这些理论模型较好地描述了实验中的实际情况,拟合结果显示理论计算与实验数据 具有高度一致性,验证了理论模型的有效性和可靠性。实验中引入的拟合方法和理论模型,帮助我 们更准确地处理数据并理解实验现象,是物理实验分析的重要工具。