Молекулярно-генетические маркеры

Туранов С.В.

ННЦМБ ДВО РАН

Лаб. Молекулярной систематики

Сергей Сергеевич Четвериков

...популяция, "как губка", впитывает рецессивные мутации, оставаясь при этом внешне однородной (Четвериков, 1928). 1. **Классическая теория.** Большинство признаков гомозиготны. Отбор непринципиален. Изменения селективно нейтральны. Г.Жд. Мёллер (США, СССР).

$$\frac{++++m+...+++}{++++++...+++}$$

$$\frac{A_3B_2C_2DE_5 \dots Z_2}{A_1B_7C_2DE_2 \dots Z_3} \quad \frac{A_2B_4C_1DE_2 \dots Z_1}{A_3B_5C_2DE_3 \dots Z_1}$$

Г.Дж. Мёллер

Ф.Г. Добржанский

Для решения фундаментальной проблемы необходим был метод, который мог бы свободно оценивать (if any) **гетерозиготность** — т.е. одновременно распознавать разные аллели одного и того же признака.

1957 г. – разработка гистохимических принципов визуализации ферментов (энзимов) и изозимов. **Хантер** и **Маркерт**.

Механизмы визуализации ферментов

«Полоски на киселе»

Ферменты, оказалось, проявляют такое свойство как полиморфизм.

Полиморфизм – проявление индивидуальной прерывистой изменчивости живых организмов.

Генетический полиморфизм:

- наличие в одной и той же популяции двух или более хорошо различимых форм, способных проявляться в потомстве одной самки и встречающихся с частотой, достаточно высокой для того, чтобы исключить поддержание самой редкой из них повторяющимися мутациями;
- наличие в популяции двух или более аллелей одного локуса, встречающихся с ощутимой частотой.

Изоферменты (или **изозимы**) — генетически детерминированные молекулярные формы одного и того же фермента, отличающиеся по первичной структуре.

Аллозимы – **изоферменты**, кодируемые аллелями одного и того же гена и отражающие внутривидовой полиморфизм.

Ограничения генетики изоферментов:

- **1.Избыточность генетического кода** (одну аминокислоту, как правило, кодируют несколько различающихся нуклеотидных триплетов).
- **2.Изменения в структуре белка могут не вызывать изменения подвижности** (полиморфизм есть, но его нельзя выявить).
- 3. Ферменты должны быть живыми (сложности с хранением).
- Альтернатива?
- ДНК.

Основные виды молекулярно-генетических маркеров, используемых в аквакультуре.

Marker	Abbreviation	Prior molecular information requirement	Type	Polymorphism or power	Expression
Allozyme	찬	Yes	Type I	Low	Codominant
Amplified fragment length polymorphism	AFLP	No	Type II	High	Dominant
Expressed sequence tags	EST	Yes	Type I	Low	Codominant
Insertions or deletions	Indels	Yes	Type I or Type II	Low	Codominant
Microsatellites	SSR	Yes	Mostly Type II	High	Codominant
Mitochondrial DNA	mtDNA	Yes	=):	-	Maternal inheritance
Random amplified polymorphic DNA	RAPD	No	Type II	Moderate	Dominant
Restriction fragment length polymorphism	RFLP	Yes	Type I or Type II	Low	Codominant
Single nucleotide polymorphisms	SNPs	Yes	Type I or Type II	High	Codominant

Рестриктазы. Полиморфизм длин рестрикционных фрагментов (ПДРФ, RFLP)

Механизм разрезания чужеродной ДНК ферментом рестрикции *E. coli*.

Вернер Арбер

Рестриктазы. Полиморфизм длин рестрикционных фрагментов (ПДРФ, RFLP)

Кодоминирование

Доминирование

Микросателлиты. Микросателлитная ДНК (VNTR, SSR, STR)

Фракционирование геномной ДНК в плавающем градиенте хлористого цезия.

RAPD (Randomly Amplified Polymorphic DNA)

Принцип RAPD-анализа

AFLP (Amplified Fragment Length Polymorphism)

polyacrylamide gel electrophoresis (only labeled fragments detectable)

AFLP (Amplified Fragment Length Polymorphism)

Последовательности нуклеотидов. Митохондриальная ДНК.

Некодирующая часть (контрольный регион) может быть использована для популяционно-генетических изысканий (внутривидовой уровень). Но есть исключения.

Белок-кодирующие фрагменты используются для филогенетических построений (в основном - надвидовой уровень).

Последовательности нуклеотидов. SNP (single nucleotide polymorphism).

SNP: частота в популяции > 6%

Мутация: частота в популяции < 1%

Литература:

- 1.Алтухов Ю.П., Салменкова Е.А., Курбатова О.Л., и др. Динамика популяционных генофондов при антропогенных воздействиях. Под редакцией Ю.П. Алтухова. М.: Наука. 2004г. 619 стр.
- 2. Кейлоу П. Принципы эволюции. 1986г.
- 3. Левонтин Р. Генетические основы эволюции. 1978г.