Taking a Step Back

- We have looked at GLADC's approach closely.
- Perhaps it's a good time to take a step back and look at the problem we are dealing with.

Classifier Base Comparison

Datasets	GLADC	Dummy	Naive
MMP	0.696 ± 0.042	0.5 ± 0.0	0.5 ± 0.0
HSE	0.618 ± 0.110	0.5 ± 0.0	0.5 ± 0.0
p53	0.649 ± 0.216	0.497 ± 0.02	0.498 ± 0.0
BZR	0.715 ± 0.067	1	
DHFR	0.612 ± 0.041	1	
COX2	0.615 ± 0.044	1	
ENZYMES	0.583 ± 0.035	1	
IMDB	0.656 ± 0.023	1	
AIDS	0.993 ± 0.005	1	
NCI1	0.683 ± 0.011	0.5 ± 0.0	0.501 ± 0.001

Classifier Base Comparison (cont.)

- So is GLADC better than flipping a coin...
 - Yes.
- Both the dummy and naive classifiers have a comparable performance.
- Let's take a look at the datasets.
 - This may give us better insight on how to approach the problem.

HSE

HSE (cont.)

HSE (cont.)

MMP

MMP (cont.)

MMP (cont.)

p53

p53 (cont.)

P53 (cont.)

NCI1

p53 (cont.)

NCI1 (cont)

Datasets Analysis

- Edge and node count appear to not vary that much for normal and anomaly graphs.
- Nonetheless...
 - Node degree does appear to play a role.
 - Perhaps this was the key to the naive classifier's 'relative' success (not worse than flipping a coin).

Brainstorming (cont.)

- Not a lot of information about what makes graphs anomalous on each dataset.

Brainstorming (cont.)

- Can we use GANs for the task of generating graphs?
 - Proven to work better than simple encoders and decoders.
- Check:
 - X. Ma et al., "A Comprehensive Survey on Graph Anomaly Detection With Deep Learning," in IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 12, pp. 12012-12038, 1 Dec. 2023, doi: 10.1109/TKDE.2021.3118815.
 - Only source I found of people using GANs (not really related to GAD)
 - Zheng, P., Yuan, S., Wu, X., Li, J., & Lu, A. (2018). One-Class Adversarial Nets for Fraud Detection. https://doi.org/10.48550/arxiv.1803.01798