The 3 axioms in Probability

3.1 Let E, F be events and S be a non-empty sample space.

$$P(E) = \frac{n(E)}{n(S)}$$

$$\therefore 0 \le n(E) \le n(S)$$

$$\therefore \frac{0}{n(S)} \le \frac{n(E)}{n(S)} \le \frac{n(S)}{n(S)}$$

$$0 \le P(E) \le 1$$

If
$$E = S$$
, $P(S) = \frac{n(S)}{n(S)} = 1$

If
$$E \cap F = \emptyset$$
 then $n(E \cup F) = n(E) + n(F)$

$$\therefore P(E \cup F) = \frac{n(E \cup F)}{n(S)}$$

$$= \frac{n(E) + n(F)}{n(S)}$$

$$= \frac{n(E)}{n(S)} + \frac{n(F)}{n(S)}$$

$$= P(E) + P(F)$$

Conclusion

Axiom 1
$$0 \le P(E) \le 1$$

Axiom 2
$$P(S) = 1$$
, $S =$ sample space

Axiom 3
$$P(E \cup F) = P(E) + P(F)$$
 if $E \cap F = \emptyset$

Example 1

An unbiased (公平) coin is tossed (擲)3 times. What is the probability of getting

- (a) 3 heads;
- (b) 2 heads and 1 tail;
- (c) at least 1 tail?

 $S = \{HHH, HHT, HTH, THH, TTH, THT, HTT, TTT\}, n(S) = 8$

(a) $E = \text{event of 3 heads} = \{\text{HHH}\}, n(E) = 1$

$$P(E) = \frac{n(E)}{n(S)} = \frac{1}{8}$$

(b) $F = \text{event of 2 heads and 1 tail} = \{\text{HHT, HTH, THH}\}, n(F) = 3$

$$P(E) = \frac{3}{8}$$

(c) G = event of at least 1 tail

$$G' = S \setminus G = \text{event of no tail} = E$$

$$:: G \cap E = \emptyset$$

$$P(G) = 1 - P(G')$$
= 1 - P(E)
= 1 - \frac{1}{\infty} = \frac{7}{\infty}

3.2 Theorem ϕ = empty set. A, B = arbitrary events

- (a) $P(\phi) = 0$
- (b) P(A') = 1 P(A)
- (c) $P(A \cap B') = P(A) P(A \cap B)$
- (d) If $A \subset B$, then $P(A) \leq P(B)$
- (e) $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Proof: (a) $n(\phi) = 0$, (number of elements in the empty set)

$$P(\phi) = \frac{n(\phi)}{n(S)} = \frac{0}{n(S)} = 0$$

(b) $A \cap A' = \emptyset$

 $A \cup A' = S$, the sample space.

$$P(S) = 1$$
 (by axiom 2)

$$P(A \cup A') = 1$$

$$P(A) + P(A') = 1$$
 (by axiom 3)

$$P(A') = 1 - P(A)$$

(c) $n(A \cap B') = n(A) - n(A \cap B)$

$$P(A \cap B') = P(A) - P(A \cap B)$$

A'

Α

(d) If $A \subset B$, then $n(A) \le n(B)$

$$P(A) = \frac{n(A)}{n(S)} \le \frac{n(B)}{n(S)} = P(B)$$

(e)

 $A \cap B$

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

$$\therefore P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

3.3 Miscellaneous Examples

Example 2 A number is picked at random from the set $\{1, 2, 3, \dots, 70\}$.

Let A = event of multiple of 2, B be the event of multiple of 3.

Find P(A), P(B), $P(A \cap B)$ and $P(A \cup B)$.

Solution: $A = \{2, 4, 6, \dots, 70\}, n(A) =$ ____

$$B = \{3, ___ \}, n(B) = ____$$

$$A \cap B = \{ \text{multiple of 6} \} = \{ \underline{\qquad} \}, n(A \cap B) = \underline{\qquad} \}$$

$$P(A) =$$
_____; $P(B) =$ _____; $P(A \cap B) =$ _____

By theorem (e),
$$P(A \cup B) = ___ + __ = __ = ___$$

[Ans.
$$\frac{1}{2}$$
, $\frac{23}{70}$, $\frac{11}{70}$, $\frac{47}{70}$]

Example 3 In a class of 45 students, 25 students failed in Mathematics, 20 students failed in Physics and 10 students failed in both subjects. A student is selected at random.

- (a) How many students passed in both subjects?What is the probability that the selected student passed in both subjects?
- (b) What is the probability that the selected student failed in Mathematics but passing in Physics?

Solution

(a)
$$S = \{ \text{the class} \}, n(S) = 45$$

$$A = \{\text{students failed in Maths}\}, n(A) = 25$$

$$B = \{\text{students failed in Physics}\}, n(B) = 20$$

$$A \cap B = \{\text{students failed in both subjects}\}, n(A \cap B) = 10$$

 $P(A \cup B)$

= P(the selected student failed in Maths or Physics)

$$= P(A) + P(B) - P(A \cap B)$$
 (theorem (e))

P(passed in both subjects)

$$= 1 - P(A \cup B)$$
 (theorem (b))

(b) Number of students failed in Maths but passed in Physics =
$$n(A \cap B')$$

$$\therefore P(A \cap B') = P(A) - P(A \cap B)$$
 (theorem (c))

[Ans. 10, $\frac{2}{9}$, $\frac{1}{3}$]