CSE-3024: Web Mining Lab

Lab-14: Social Network Visualizer

Slot : L7+L8

Name: TANMAY MAHAJAN

Reg.No: 19BCE1735

Dataset: Krackhardt High Tech Managers

 Matrix: Commands to compute and display the adjacencymatrix and other matrices based on the adjacency, such as Laplacian matrix, Degree Matrix Cocitation Matrix. You can also plot the adjacency matrix.

ADJACENCY MATRIX

Network name: Krackhardt's High-tech managers Actors: 21

The adjacency matrix of a social network is a NXN matrix where each element (i,j) is the value of the edge from actor i to actor j, or θ if no edge exists.

Actor/Actor	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
1	0	1	0	1	0	Θ	0	1	Θ	0	Θ	0	8	Θ	0	1	θ	1	0	0	1
2	0	θ	0	0	0	1	1	0	0	θ	θ	0	8	Θ	0	0	θ	0	θ	0	1
3	1	1	0	1	0	1	1	1	1	1	1	1	0	1	0	0	1	1	0	1	1
4	1	1	θ	θ	0	1	0	1	0	1	1	1	θ	Θ	θ	1	1	1	0	1	1
5	1	1	0	0	0	1	1	1	0	1	1	0	1	1	0	1	1	1	1	1	1
6	0	Θ	0	0	0	0	0	0	0	θ	0	0	θ	Θ	0	0	θ	0	θ	0	1
7	0	1	0	0	0	1	0	0	0	0	1	1	0	1	0	0	1	1	0	0	1
8	0	1	Θ	1	Θ	1	1	θ	θ	1	1	Θ	0	Θ	0	0	θ	1	θ	Θ	1
9	1	1	Θ	0	0	1	1	1	9	1	1	1	8	1	0	1	1	1	0	0	1
10	1	1	1	1	1	Θ	0	1	0	8	1	0	1	Θ	1	1	1	1	1	1	Θ
11	1	1	0	0	0	θ	1	0	0	0	0	0	0	0	0	0	θ	0	0	0	0
12	0	0	0	0	0	Θ	1	0	0	θ	0	0	0	Θ	θ	0	θ	Θ	0	0	1
13	1	1	0	0	1	θ	0	0	1	θ	0	0	8	1	θ	0	θ	1	0	0	θ
14	0	1	0	0	0	Θ	1	0	0	θ	0	0	θ	θ	0	0	θ	1	θ	0	1
15	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1
16	1	1	Θ	0	Θ	0	Θ	0	θ	1	θ	Θ	θ	Θ	0	9	θ	1	θ	Θ	8
17	1	1	Θ	1	0	Θ	1	0	Θ	0	θ	0	8	Θ	0	0	0	Θ	0	0	1
18	1	1	1	1	1	Θ	1	1	1	1	1	0	1	1	1	1	θ	0	1	1	1
19	1	1	1	0	1	θ	1	0	0	1	1	0	0	1	1	0	θ	1	0	1	0
20	1	1	0	0	0	1	0	1	θ	θ	1	1	θ	1	1	1	1	1	θ	0	1
21	0	1	1	1	0	1	1	1	0	0	0	1	θ	1	0	0	1	1	0	1	θ

Adjacency matrix report, Created by <u>Social Network Visualizer</u> v3.0.4: Tue, 19.Apr.2022 08:27:46 Computation time: 11 msecs

COCITATION MATRIX REPORT

Network name: Krackhardt's High-tech managers Actors: 21

The Cocitation matrix, $C = A^T * A$, is a NxN matrix where each element (i,j) is the number of actors that have outbound ties/links to both actors i and j. The diagonal elements, C_{1i} , of the Cocitation matrix are equal to the number of inbound edges of i (inbegree). C is a symmetric matrix.

Actor/Actor	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
1	13	13	4	5	5	6	8	8	4	8	9	5	4	8	4	7	7	10	4	7	8
2	13	18	5	8	5	9	11	10	4	9	11	7	4	10	4	8	9	15	4	8	12
3	4	5	5	4	4	2	4	4	2	3	4	2	3	4	3	3	3	4	3	5	2
4	5	8	4	8	3	4	6	6	3	4	5	3	3	4	2	4	4	6	3	5	6
5	5	5	4	3	5	1	3	3	3	3	4	1	3	4	3	3	2	4	3	4	2
6	6	9	2	4	1	10	7	7	2	6	8	7	2	7	1	5	8	9	2	5	9
7	8	11	4	6	3	7	13	6	3	7	7	4	3	7	2	4	5	8	3	6	10
8	8	10	4	6	3	7	6	10	3	6	8	6	4	7	3	8	8	9	4	7	8
9	4	4	2	3	3	2	3	3	4	3	3	2	2	4	1	2	2	3	2	3	3
10	8	9	3	4	3	6	7	6	3	9	8	4	3	6	2	5	5	8	3	6	7
11	9	11	4	5	4	8	7	8	3	8	11	6	4	8	4	7	8	10	4	7	9
12	5	7	2	3	1	7	4	6	2	4	6	7	1	6	1	4	7	7	1	4	6
13	4	4	3	3	3	2	3	4	2	3	4	1	4	3	2	4	3	3	4	4	3
14	8	10	4	4	4	7	7	7	4	6	8	6	3	10	3	5	7	9	3	6	7
15	4	4	3	2	3	1	2	3	1	2	4	1	2	3	4	3	2	3	2	3	2
16	7	8	3	4	3	5	4	8	2	5	7	4	4	5	3	8	6	7	4	5	7
17	7	9	3	4	2	8	5	8	2	5	8	7	3	7	2	6	9	9	3	6	7
18	10	15	4	6	4	9	8	9	3	8	10	7	3	9	3	7	9	15	3	7	10
19	4	4	3	3	3	2	3	4	2	3	4	1	4	3	2	4	3	3	4	4	3
20	7	8	5	5	4	5	6	7	3	6	7	4	4	6	3	5	6	7	4	8	5
21	8	12	2	6	2	9	10	8	3	7	9	6	3	7	2	7	7	10	3	5	15

Values: integers only - Max value: 18 - Min value: 1

DEGREE MATRIX REPORT

Network name: Krackhardt's High-tech managers Actors: 21

The degree matrix D of a social network is a NxN matrix where each element (i,i) is the degree of actor i and all other elements are zero.

Actor/Actor	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
1	6	0	0	Θ	θ	0	0	0	Θ	0	θ	0	θ	0	Θ	θ	θ	0	0	0	0
2	0	3	0	Θ	0	0	0	0	0	0	0	0	0	0	0	0	θ	0	0	0	0
3	θ	θ	15	0	0	Θ	θ	Θ	0	0	0	θ	0	Θ	Θ	0	θ	θ	0	θ	0
4	0	0	0	12	0	0	0	0	0	0	θ	0	θ	0	0	0	0	0	0	0	0
5	θ	0	Θ	Θ	15	0	0	0	0	0	θ	0	θ	0	Θ	0	θ	0	0	0	0
6	Θ	0	Θ	Θ	0	1	0	0	0	Θ	θ	0	0	0	Θ	0	θ	0	0	0	0
7	θ	θ	θ	θ	θ	Θ	8	Θ	Θ	0	θ	θ	θ	Θ	Θ	θ	θ	Θ	Θ	θ	9
8	0	0	0	0	Θ	0	0	8	0	0	θ	0	θ	0	0	0	0	0	0	0	0
9	θ	0	Θ	Θ	θ	0	Θ	0	13	Θ	θ	θ	θ	0	Θ	θ	θ	0	Θ	0	0
10	θ	Θ	Θ	Θ	0	Θ	Θ	0	Θ	14	θ	0	θ	0	Θ	0	θ	Θ	0	0	Θ
11	θ	θ	θ	θ	θ	Θ	θ	Θ	Θ	Θ	3	θ	θ	Θ	Θ	0	θ	Θ	Θ	θ	9
12	Θ	0	0	0	Θ	0	0	0	0	0	θ	2	θ	0	Θ	0	0	0	0	0	Θ
13	θ	0	Θ	θ	θ	0	Θ	0	0	Θ	θ	θ	6	0	Θ	θ	θ	0	Θ	0	0
14	θ	Θ	Θ	Θ	0	Θ	Θ	Θ	0	Θ	θ	Θ	θ	4	Θ	0	θ	Θ	0	0	Θ
15	θ	θ	θ	θ	θ	Θ	θ	Θ	Θ	Θ	θ	θ	θ	Θ	20	0	θ	θ	Θ	θ	9
16	0	0	0	Θ	Θ	0	0	0	0	0	θ	0	θ	0	Θ	4	0	0	0	0	0
17	θ	0	θ	θ	θ	0	0	0	Θ	Θ	θ	Θ	θ	0	Θ	0	5	0	Θ	0	0
18	θ	0	Θ	Θ	0	Θ	Θ	0	0	Θ	0	0	0	0	Θ	0	0	17	0	0	Θ
19	θ	θ	θ	θ	θ	Θ	θ	Θ	Θ	Θ	θ	θ	0	θ	Θ	0	θ	θ	11	θ	9
20	0	0	0	0	Θ	0	0	0	0	0	θ	0	θ	0	0	0	θ	0	0	12	Θ
21	θ	0	θ	θ	θ	0	Θ	0	0	0	Θ	Θ	Θ	0	Θ	0	θ	0	Θ	0	11

Values: integers only - Max value: 20 - Min value: 0

LAPLACIAN MATRIX REPORT

Network name: Krackhardt's High-tech managers Actors: 21

The laplacian matrix L of a social network is a NxN matrix with L = D - A, where D the degree matrix and A the adjacency matrix. The elements of L are: $-L_{i,j} = d_i$, if i = j, $-L_{i,j} = -1$, if $i \neq j$ and there is an edge (i,j) and all other elements zero.

Actor/Actor	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
1	6	-1	θ	-1	0	Θ	Θ	-1	0	θ	θ	θ	θ	θ	θ	-1	θ	-1	θ	θ	-1
2	0	3	0	0	0	-1	-1	0	0	0	0	0	0	0	0	θ	θ	0	θ	θ	-1
3	-1	-1	15	-1	0	-1	-1	-1	-1	-1	-1	-1	θ	-1	θ	θ	-1	-1	0	-1	-1
4	-1	-1	0	12	0	-1	0	-1	0	-1	-1	-1	Θ	θ	0	-1	-1	-1	0	-1	-1
5	-1	-1	θ	0	15	-1	-1	-1	0	-1	-1	0	-1	-1	θ	-1	-1	-1	-1	-1	-1
6	0	0	0	0	0	1	0	0	0	0	0	0	0	0	θ	θ	0	0	θ	θ	-1
7	0	-1	0	0	0	-1	8	0	0	θ	-1	-1	Θ	-1	θ	θ	-1	-1	θ	θ	-1
8	0	-1	0	-1	0	-1	-1	8	0	-1	-1	θ	Θ	θ	0	θ	θ	-1	θ	θ	-1
9	-1	-1	Θ	0	0	-1	-1	-1	13	-1	-1	-1	θ	-1	θ	-1	-1	-1	θ	θ	-1
10	-1	-1	-1	-1	-1	0	0	-1	0	14	-1	0	-1	0	-1	-1	-1	-1	-1	-1	0
11	-1	-1	0	0	0	0	-1	0	0	θ	3	θ	Θ	θ	θ	θ	θ	θ	θ	θ	Θ
12	0	0	0	0	0	0	-1	0	0	θ	0	2	Θ	θ	0	θ	θ	θ	θ	θ	-1
13	-1	-1	Θ	0	-1	Θ	Θ	0	-1	θ	θ	0	6	-1	θ	θ	θ	-1	θ	θ	Θ
14	Θ	-1	0	0	0	0	-1	0	0	θ	θ	0	0	4	0	θ	θ	-1	θ	θ	-1
15	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	20	-1	-1	-1	-1	-1	-1
16	-1	-1	0	0	0	0	0	0	0	-1	Θ	0	0	θ	0	4	θ	-1	θ	θ	Θ
17	-1	-1	Θ	-1	0	Θ	-1	0	0	θ	θ	0	θ	θ	θ	θ	5	θ	θ	θ	-1
18	-1	-1	-1	-1	-1	0	-1	-1	-1	-1	-1	0	-1	-1	-1	-1	θ	17	-1	-1	-1
19	-1	-1	-1	0	-1	Θ	-1	0	0	-1	-1	θ	Θ	-1	-1	θ	0	-1	11	-1	θ
20	-1	-1	0	0	0	-1	0	-1	0	0	-1	-1	0	-1	-1	-1	-1	-1	0	12	-1
21	0	-1	-1	-1	0	-1	-1	-1	0	θ	θ	-1	θ	-1	θ	θ	-1	-1	θ	-1	11

Values: integers only - Max value: 20 - Min value: -1

2. Cohesion: Measures related to the cohesion of the network. Reciprocity, Symmetry, Geodesic Distances & Average Distance, Eccentricity, Network Diameter as well as Connectedness, Clustering Coefficient, Walks and Reachability.

RECIPROCITY (r) REPORT

Network name: Krackhardt's High-tech managers Actors: 21

Reciprocity, r, is a measure of the likelihood of vertices in a directed network to be mutually linked.

SocNetV supports two different methods to index the degree of reciprocity in a social network:

- The arc reciprocity, which is the fraction of reciprocated ties over all actual ties in the network.

- The dyad reciprocity which is the fraction of actor pairs that have reciprocated ties over all pairs of actors that have any connection.

In a directed network, the arc reciprocity measures the proportion of directed edges that are bidirectional. If the reciprocity is 1, then the adjacency matrix is structurally symmetric. Likewise, in a directed network, the dyad reciprocity measures the proportion of connected actor dyads that have bidirectional ties between them.

In an undirected graph, all edges are reciprocal. Thus the reciprocity of the graph is always 1.

Reciprocity can be computed on undirected, directed, and weighted graphs.

r range: θ ≤ r ≤ 1

Arc reciprocity: 90 / 190 = 0.473684 Of all actual ties in the network, 47.3684% are reciprocated.

Dyad reciprocity: 45 / 145 = 0.310345 Of all pairs of actors that have any ties, 31.0345% have a reciprocated connection.

Reciprocity proportions per actor:

Actor:	Label:	Symmetric:	nonSymmetric:	nsym out/nsym:	nsym in/nsym:	nsym out/out‡	nsym in/in:
1	vl	0.315789	0.684211	0.230769	0.769231	0.5	0.769231
2	v2	0.190476	0.889524	0.0588235	0.941176	0.333333	0.888889
3	v3	0.3	0.7	0.857143	0.142857	0.8	0.4
4	v4	0.6	0.4	0.75	0.25	0.5	0.25
5	v5	0.4	0.6	0.916667	0.0833333	0.733333	0.2
6	v6	0.181818	0.818182	θ	1	0	0.9
7	v7	0.666667	0.333333	0.142857	0.857143	0.125	0.461538
8	v8	0.444444	0.555556	0.4	8.6	0.5	0.6
9	v9	0.117647	0.882353	0.8	0.2	0.923077	0.75
10	v10	0.695652	0.304348	0.857143	0.142857	0.428571	0.111111
11	v11	0.142857	0.857143	0.166667	0.833333	0.666667	0.989891
12	v12	0.444444	0.555556	θ	1	Θ	0.714286
13	v13	0.4	0.6	0.666667	0.333333	0.666667	0.5
14	v14	0.428571	0.571429	0.125	0.875	0.25	0.7
15	v15	0.333333	0.666667	1	0	0.8	θ
16	v16	0.5	0.5	0.166667	0.833333	0.25	0.625
17	v17	0.428571	0.571429	0.25	0.75	0.4	0.666667
18	v18	0.9375	0.0625	1	0	0.117647	θ
19	v19	0.533333	0.466667	1	θ	0.636364	θ
20	v20	0.3	0.7	0.642857	0.357143	0.75	0.625
21	v21	0.846154	0.153846	θ	1	0	0.266667

Symmetric Proportion of reciprocated ties involving the actor to the total incoming and outgoing ties. nonSymmetric One minus symmetric non-symmetric outgoing ties to the total non-symmetric ties. nonSym UniVnoNSym Proportion of non-symmetric incoming ties to the total non-symmetric ties. nonSym UniVnoNSym Proportion of non-symmetric incoming ties to the total non-symmetric ties. nonSym UniVnoTym Proportion of non-symmetric outgoing ties to the total outgoing ties. nonSym UniVnoTym Proportion of non-symmetric incoming ties to the total incoming ties

SHORTEST PATHS (GEODESICS) MATRIX REPORT

Network name: Krackhardt's High-tech managers Actors: 21

The geodesics matrix of a social network is a NAN matrix where each element (i,j) is the number of shortest paths(geodesics) from actor i to actor j, or infinity if no shortest path exists.

Actor/Actor	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
1	1	1	2	1	1	4	4	1	1	4	3	2	1	2	1	1	2	1	1	3	1
2	8	1	1	1	2	1	1	1	3	5	1	2	2	2	3	4	2	2	2	1	1
3	1	1	1	1	2	1	1	1	1	1	1	1	2	1	3	6	1	1	2	1	1
4	1	1	3	1	2	1	7	1	1	1	1	1	2	3	3	1	1	1	2	1	1
5	1	1	4	6	1	1	1	1	2	1	1	3	1	1	4	1	1	1	1	1	1
6	5	1	1	1	1	1	1	1	2	.4	6	1	1	1	2	3	1	1	1	1	1
7	3	1	2	3	1	1	1	2	1	1	1	1	1	1	1	1	1	1	1	2	1
8	4	1	3	1	2	1	1	1	1	1	1	3	2	3	2	3	4	1	2	4	1
9	1	1	3	6	2	1	1	1	1	1	1	1	2	1	2	1	1	1	2	3	1
10	1	1	1	1	1	7	9	1	4	1	1	4	1	7	1	1	1	1	1	1	10
11	1	1	5	1	2	2	1	1	2	5	1	1	2	1	2	1	1	2	2	6	3
12	8	2	1	1	2	2	1	1	3	5	1	1	2	2	3	4	2	2	2	1	1
13	1	1	1	2	1	3	5	4	1	3	3	1	1	1	1	4	2	1	2	2	6
14	1	1	2	2	1	3	1	2	1	1	2	2	1	1	1	1	2	1	1	2	1
15	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
16	1	1	2	3	2	1	2	3	1	1	2	15	2	1	2	1	1	1	2	2	3
17	1	1	1	1	5	4	1	3	5	1	2	3	5	2	7	2	1	4	5	2	1
18	1	1	1	1	1	10	1	1	1	1	1	7	1	1	1	1	9	1	1	1	1
19	1	1	1	5	1	6	1	7	3	1	1	4	4	1	1	6	6	1	1	1	9
20	1	1	3	6	2	1	9	1	2	4	1	1	2	1	1	1	1	1	2	1	1
21	5	1	1	1	1	1	1	1	2	4	6	1	1	1	2	3	1	1	1	1	1

Values: integers only - Max value: 15 - Min value: 1

ECCENTRICITY (e) REPORT

Network name: Krackhardt's High-tech managers Actors: 21

The eccentricity e measures how far, at most, is each node from every other node.

In a connected graph, the eccentricity e of a vertex is the maximum geodesic distance between that vertex and all other vertices. In a disconnected graph, the eccentricity e of all vertices is considered to be infinite.

Actor:	Label #	e‡
1	v1	2
2	v2	3
3	v3	2
4	v4	2
5	v5	2
6	v6	3
7	v7	2
8	v8	2
9	v9	2
10	v10	2
11	v11	3
12	v12	3
13	v13	2
14	v14	2
15	v15	1
16	v16	3
17	v17	3
18	v18	2
19	v19	2
20	v20	2
21	v21	2

Max e (Graph Diameter) = 3 (node 2) Min e (Graph Radius) = 1 (node 15) e classes = 3

- $\mathbf{e} = \mathbf{1}$ when the node is connected to all others (star node). $\mathbf{e} > \mathbf{1}$ when the node is not directly connected to all others. Larger eccentricity means the actor is farther from others. $\mathbf{e} = \mathbf{\infty}$ there is no path from that node to one or more other nodes.

CLUSTERING COEFFICIENT (CLC) REPORT

Network name: Krackhardt's High-tech managers Actors: 21

The local Clustering Coefficient, introduced by Watts and Strogatz (1998) quantifies how close each node and its neighbors are to being a complete subgraph (clique).

For each node u, the local CLC score is the proportion of actual links between its engighbors divided by the number of Links that could pressibly exist between them.

The CLC Index is used to characterize the translitizity of a network. A value close to one indicates that the old is involved in many transities relations. CLC is the normalized CLC, divided by maximum CLC found in this network. CLC range: 0 s CLC s 1

Node :	Label:	CLC #	CLC' #	%CLC' #
1	vl	0.833333	0.833333	83.333333
2	v2	1.080808	1.808080	100.000000
3	v3	0.666667	0.666667	66.666667
4	v4	0.633333	0.633333	63.333333
5	V5	0.750808	0.758080	75.000000
6	v6	0.000000	0.868686	0.000000
7	v7	0.484762	0.404762	48.476198
8	v8	0.833333	0.833333	83.333333
9	v9	0.000000	0.000000	0.000000
10	v10	0.553571	0.553571	55.357143
11	v11	0.000000	0.000000	8.000000
12	v12	1.080808	1.008080	100.000000
13	v13	1.080808	1.888888	100.000000
14	v14	1.080800	1.000000	100.000000
15	v15	0.833333	0.833333	83.333333
16	v16	0.833333	0.833333	83.333333
17	v17	0.666667	0.666667	66.666667
18	v18	0.447619	0.447619	44.761905
19	v19	0.916667	0.916667	91.666667
20	v20	0.833333	0.833333	83.333333
21	v21	0.463636	0.463636	46.363636

Max CLC = 1.000000 (node 2) Min CLC = 0.000000 (node 6)

CLC Mean = 0.650933 CLC Variance = 2.152611

GROUP / NETWORK AVERAGE CLUSTERING COEFFICIENT (GCLC)

GCLC = 0.650933

Range: $\theta < GCLC < 1$ $GCLC = \theta$, when there are no cliques (i.e. acyclic tree). GCLC = 1, when every node and its neighborhood are complete cliques.

TOTAL WALKS MATRIX

Network name: Krackhardt's High-tech nanagers Actors: 21

The Total Wolks matrix of a social metwork is a WMM matrix where each element (i,j) is the total number of walks of any length (less than or equal to 20) between actor i and actor j, or 0 if no walk exists Avails is a sequence of edges and vertices, where each edge's emploints are the two vertices adjacent to it. To a walk, vertices and edges may repeat. Warmings falks count conference pairs of odds:

Actor/Acter	1	2		4	5	6	7	8		10	11	12	13	14	15	16	
	118675474974785848	199679713689593408	61148139668251264	103238930833707056	43667589374753194	123855999349863424	153237266412799872	118831251399986112	36384968955271832	81854148252441849	118966544822626592	89943679533919568	39468806936000184	182142411527528328	44022013611779448	81167205760937136	961519
	35227215765351848	59272233156243528	18151001547910452	30645085918328368	12962135624455788	36764985019753032	45486418337320960	32898763961768344	18889129725141216	24297381219582664	32938924805863112	24827838286897984	11697973433692720	30319598933717768	13057341793431458	24093391586714600	285413
3	241994124516416736	407171893699784896	124688699535391936	210517083577781888	89643672578165600	252557863222051872	312469939027884672	225998773951868352	74191664126369184	166918838971639168	226274654316859552	165054261273155136	89359482891207760	200281143661627200	89766387923977952	165518077277020960	196865
	187247218636816320	315056428484332800	96489878692888368	162091303424142304	68899118937941984	195421097540074400	241779122065209024	174870534200249248	57407107640157368	129150203210940200	175084001504550592	127713643416863376	62179566116529176	161161205507605856	69458324659658368	120066339163897888	151701
5	249023606035158368	418999483679044992	128318675582911296	216632215243671072	91630226523975872	259894201702408448	321546612425568784	232563620102304320	76346794681253760	171759289988656896	232847514284125536	169848782048826364	82693777188810384	214331325421683744	92373935389387264	170317838768715680	201761
6	21079891126758900	35468378465733476	18861520783346636	18337954341192296	7756514442587142	22000088959432072	27218976145648152	19686558498841112	6462769314382327	14539453468268788	19718582187223352	14377728678434680	7090042470268116	18143183619287592	7819469533866934	14417434373256652	17079
	95685596419550512	160997650600753600	49302488675830176	83239428849226896	35208288058279764	99862547642219776	123552659643239488	89360960810805872	29335727246309904	65997317939312152	89470045190060800	65263218587171394	31774511295618148	82355327841118488	35494045084185320	65443456259291992	77525
8	143155548882997689	246069136976182752	73761622331607248	124534794819875968	52675228580283864	149404699798060128	184846659861766298	133693239837978384	43889282113407888	96738913661578489	133856441344925968	97640524983979392	47537955333735964	123212608301823856	53192762558991584	97910178382991584	115985
9	186268115247433056	313409019193938240	95975590724745536	162039555548705760	68538842084801888	194399253537126464	248514875004932832	173956147704476016	57186929649374544	128474885298882726	174168498797919272	127045837232090816	61854433245246688	160318504197418240	69095131646739824	127396688696598592	150916
10	294153411600352764	494933518603129984	151564036576788672	255891825578601216	100236099264630352	306994052784563520	379819546885564864	274710431435847648	90182996630152736	202086713956405376	275045774930434848	200629970240131008	97680123857950968	253173952348387392	109114588254972512	201184032812813472	238325
11	39240155620234568	58881159643582888	15581393513955752	26305710495221464	11127106986017536	31560225336831192	39046979398741856	28241338975947929	9271165045678456	20857571457623849	28275813629649298	20625569189251168	19941910197997526	26027302179278832	11217419205493016	28692528982648449	245960
	32673172875392872	54974878895851864	16835917997575596	28423256511766184	12022355129394514	34099450010107236	42188562942163968	36513538436964616	10017090589106528	22535698774733104	30550786799099820	22285030435240532	19849847299992698	28121367979052492	12119933557967772	22346572995229940	26472
13	122581131955191936	206251253878494624	63160549681137776	106636565830755680	45104707410222688	127932150414153936	158290366875819328	114478752640443232	37581483390373256	84540001398443392	114618498719854288	83607559409287376	40705766712268496	185583959626586048	45470795094992432	83838451292125888	99316
	78611028672588736	132268586441132672	40504731979034920	68385811149908688	28925556393047484	82042625934183856	101504874948388288	73414989464043888	24180928266764268	54228459996483904	73504668330740160	53617356616398736	26104524745451304	67659473116034800	29160328284619584	53765426969698008	63691
15	357729253598355136	601984272857153408	184321811469636160	311198139486548352	131629338488719984	373345162919496256	461910545214075968	334884831354844996	109674268651685552	246736940194786528	334491853163229696	243992443842878288	118791883437423968	367892839018528600	132697696718192896	244666255893921664	299831
16	95956267902792544	161453073975402592	49441953482565736	83474893892891136	35397875862861192	100145034510500432	123991558284858964	89613741358926488	29418710946182152	66184998451415792	89723134316656320	65447832316635168	31864393770768960	82588291109512864	35594449189782712	65628574034651512	77744
17	74006948924172720	124521823052548672	38132455659167696	64188600525739664	27231448446611140	77237564904818272	95559951618772016	69115230635960384	22689388463476544	51944883665832872	69199600709078472	59477102709375048	24575638587875232	63696882557892552	27452470175290776	58616506961975616	59951
18	341922641671516736	578673691125765129	177207884727413472	209187394001035328	126549005312658560	350935052799034240	444003041439797952	321190010275254656	105441374526312880	237214092612872000	321582092127997952	234575519696675488	114207093676177136	296009670743357760	127576210090561648	235223326685138688	278649
19	245669202503931744	413355467126874688	126582382863399888	213714130958147104	90395946930373072	256393368798554888	317215307802669760	225430936232200448	75318386326300768	169445654834837468	229711006363667584	167560881030586240	81579873560664880	211444234629184384	91129637870559568	168823619472968256	199843
20	182377692482492496	396863112986418304	93971030617829928	158655173982954624	67107329817012016	190339002536288160	235491446472406432	176322874377716860	55914186044673680	125791540229671472	178538798283148864	124392339444060736	69562532587329248	156970068671256128	67652998714675912	124735862985231696	147763
21	171983691284888864	292739624176945632	89645979020483808	151353919576796976	64018689989249360	181578579261683888	224652865159516000	162493709793787949	53340714834059096	120001937803518624	162682947279483776	118667135855242680	57775119491390256	149745462943751456	64538292228428072	118994848568938656	149963

Values: integers only
- Max values 6,01904e-17
- Min values = (usually denotes unconnected nodes, in distance matrix)

3. Prominence: Methods to measure how prominent (important) each actor (node) is inside the network. Contains all Centrality and Prestige measures: Degree Centrality, Closeness Centrality, Betweenness Centrality, Stress Centrality, Eccentricity Centrality, Power Centrality, Information Centrality, Eigenvector Centrality, Degree Prestige, Pagerank Prestige, and Proximity Prestige.

DEGREE CENTRALITY (DC) REPORT

Network name: Krackhardt's High-tech managers Actors: 21

In undirected networks, the DC index is the sum of edges attached to a node u.

In directed networks, the index is the sum of outbound arcs from node u to all adjacent nodes (also called "outDegree Centrality"). If the network is weighted, the DC score is the sum of weights of outbound edges from node u to all adjacent nodes.

Note: To compute inDegree Centrality, use the Degree Prestige measure.

DC' is the standardized index (DC divided by N-1 (non-valued nets) or by sumDC (valued nets).

DC range: 0 ≤ DC ≤ 20 DC' range: 0 ≤ DC' ≤ 1

Node :	Label #	DC \$	DC' 1	%DC'
1	v1	6.000000	0.300000	30.000000
2	v2	3.000000	0.150000	15.000000
3	v3	15.000000	0.750000	75.000000
4	v4	12.000000	0.600000	60.000000
5	V5	15.000000	0.750000	75.000000
6	v6	1.000000	0.050000	5.000000
7	v7	8.000000	0.400000	40.000000
8	v8	8.000000	0.400000	40.000000
9	v9	13.000000	0.650000	65.000000
10	v10	14.000000	0.700000	70.000000
11	v11	3.000000	0.150000	15.000000
12	v12	2.000000	0.100000	10.000000
13	v13	6.000000	0.300000	30.000000
14	v14	4.000000	0.200000	20.000000
15	v15	20.000000	1,000000	100.000000
16	v16	4.000000	0.200000	20.000000
17	v17	5.000000	0.250000	25.000000
18	v18	17.000000	0.850000	85.000000
19	v19	11.000000	0.550000	55.000000
20	v20	12.000000	0.600000	60.000000
21	v21	11.000000	0.550000	55.000000

DC Sum = 190.000000

Max DC' = 1.000000 (node 15) Min DC' = 0.050000 (node 6) DC' classes = 14

DC' Sum = 9.500000 DC' Mean = 0.452381 DC' Variance = 0.070828

CLOSENESS CENTRALITY (CC) REPORT

Network name: Krackhardt's High-tech managers

Actors: 21

The CC index is the inverted sum of geodesic distances from each node u to all other nodes. Note: The CC index considers outbound arcs only and isolate nodes are dropped by default. Read the Manual for more.

CC' is the standardized index (CC multiplied by (N-1 minus isolates)).

CC range: 0 ≤ CC ≤ 0.05 (1 / Number of node pairs excluding u)

CC' range: 0 ≤ CC' ≤ 1 (CC'=1 when a node is the center of a star graph)

Node :	Label #	CC ‡	CC. 1	%CC'
1	v1	0.029412	0.588235	58.823529
2	v2	0.022222	0.444444	44.44444
3	v3	0.040000	0.800000	80.000000
4	v4	0.035714	0.714286	71.428571
5	v5	0.040000	0.800000	80.000000
6	v6	0.020833	0.416667	41.666667
7	v7	0.031250	0.625000	62.500000
8	v8	0.031250	0.625000	62.500000
9	v9	0.037037	0.740741	74.074074
10	v10	0.038462	0.769231	76.923077
11	v11	0.022222	0.444444	44.44444
12	v12	0.021739	0.434783	43.478261
13	v13	0.029412	0.588235	58.823529
14	v14	0.027778	0.555556	55.55556
15	v15	0.050000	1.000000	100.000000
16	v16	0.027027	0.540541	54.054054
17	v17	0.025000	0.500000	50.000000
18	v18	0.043478	0.869565	86.956522
19	v19	0.034483	0.689655	68.965517
20	v20	0.035714	0.714286	71.428571
21	v21	0.034483	0.689655	68.965517

CC Sum = 0.677516

Max CC' = 1.000000 (node 15) Min CC' = 0.416667 (node 6)

CC' classes = 15

CC' Sum = 13.550323 CC' Mean = 0.645253 CC' Variance = 0.023174

BETWEENNESS CENTRALITY (BC)

Network name: Krackhardt's High-tech managers Actors: 21

The BC index of a node u is the sum of $\delta_{(s,t,u)}$ for all $s,t\in V$ where $\delta_{(s,t,u)}$ is the ratio of all geodesics between s and t which run through u. Read the Manual for more. BC' is the standardized index (BC divided by (N-1)(N-2)/2 in symmetric nets or (N-1)(N-2) otherwise.

BC range: 0 ≤ BC ≤ 380 (Number of pairs of nodes excluding u)

BC' range: $0 \le BC' \le 1$ (BC'=1 when the node falls on all geodesics)

Node:	Label #	BC #	BC'	%BC' #
1	v1	13.746825	0.036176	3.617586
2	v2	5.935714	0.015620	1.562030
3	v3	6.604762	0.017381	1.738095
4	v4	13.708730	0.036076	3.607561
5	V5	5.078571	0.013365	1.336466
6	v6	0.000000	0.00000	0.000000
7	v7	27.624603	0.072696	7.269632
8	v8	3.974603	0.010459	1.045948
9	v9	3.953968	0.010405	1.040518
10	v10	18.296825	0.048150	4.814954
11	v11	1.198413	0.003154	0.315372
12	v12	0.253968	0.000668	0.066834
13	v13	0.892857	0.002350	0.234962
14	v14	0.588889	0.001550	0.154971
15	v15	6.132540	0.016138	1.613826
16	v16	0.700000	0.001842	0.184211
17	v17	2.531746	0.006662	0.666249
18	v18	88.916667	0.233991	23.399123
19	v19	0.753968	0.001984	0.198413
20	v20	7.979365	0.020998	2.099833
21	v21	60.126984	0.158229	15.822891

BC Sum = 269.000000

Max BC' = 0.233991 (node 18) Min BC' = 0.000000 (node 6) BC' classes = 21

BC' Sum = 0.707895 BC' Mean = 0.033709 BC' Variance = 0.003231

BC' DISTRIBUTION

STRESS CENTRALITY (SC)

Network name: Krackhardt's High-tech managers

Actors: 21

The SC index of each node u is the sum of $\sigma_{(s,t,u)}$: the number of geodesics from s to t through u. SC' is the standardized index (SC divided by sumSC).

SC range: $0 \le SC \le 380$

SC' range: 0 ≤ SC' ≤ 1 (SC'=1 when the node falls on all geodesics)

Node ‡	Label:	SC #	SC' #	%SC' #
1	V1	24.000000	0.040201	4.020101
2	v2	20.000000	0.033501	3.350084
3	v3	32.000000	0.053601	5.360134
4	v4	43.000000	0.072027	7.202680
5	v5	22.000000	0.036851	3.685092
6	v6	0.000000	0,000000	0.000000
7	v7	40.000000	0.067002	6.700168
8	v8	21.000000	0.035176	3.517588
9	v9	14.000000	0.023451	2.345059
10	v10	49.000000	0.082077	8.207705
11	v11	7.000000	0.011725	1.172529
12	v12	2.000000	0.003350	0.335008
13	v13	3.000000	0.005025	0.502513
14	v14	4.000000	0.006700	0.670017
15	v15	27.000000	0.045226	4.522613
16	v16	3.000000	0.005025	0.502513
17	v17	13.000000	0.021776	2.177554
18	v18	159.000000	0.266332	26.63316
19	v19	4.000000	0.006700	0.670017
20	v20	35.000000	0.058626	5.862647
21	v21	75.000000	0.125628	12.56281

SC Sum = 597.000000

Max SC' = 0.266332 (node 18) Min SC' = 0.000000 (node 6)

BC classes = 19

SC' Sum = 1.000000 SC' Mean = 0.047619 SC' Variance = 0.003358

ECCENTRICITY CENTRALITY (EC)

Network name: Krackhardt's High-tech managers Actors: 21

The EC score of a node u is the inverse maximum geodesic distance from u to all other nodes in the network. This index is also known as Harary Graph Centrality. EC is standardized.

EC range: $0 \le EC \le 1$ (EC=1 when the actor has ties to all other nodes)

Node :	Label #	EC=EC' \$	%EC * \$
1	v1	0.500000	50.000000
2	V2	0.333333	33.333333
3	v3	0.500000	50.000000
4	v4	0.500000	50.000000
5	V5	0.500000	50.000000
6	v6	0.333333	33.333333
7	v7	0.500000	50.000000
8	v8	0.500000	50.000000
9	v9	0.500000	50.000000
10	v10	0.500000	50.000000
11	v11	0.333333	33.333333
12	v12	0.333333	33.333333
13	v13	0.500000	50.000000
14	v14	0.500000	50.000000
15	v15	1.000000	100.000000
16	v16	0.333333	33,333333
17	v17	0.333333	33.333333
18	v18	0.500000	50.000000
19	v19	0.500000	50.000000
20	v20	0.500000	50.000000
21	v21	0.500000	50.000000

Max EC = 1.000000 (node 15) Min EC = 0.333333 (node 2) EC classes = 3

EC Sum = 10.000000 EC Mean = 0.476190 EC Variance = 0.019274

EC DISTRIBUTION

FC DT21KTR01TON

EIGENVECTOR CENTRALITY (EVC)

Network name: Krackhardt's High-tech managers Actors: 21

The Eigenvector Centrality of each node is the i_{th} element of the leading eigenvector of the adjacency matrix, that is the eigenvector corresponding to the largest positive eigenvalue. Proposed by Bonacich (1972), the Eigenvector Centrality is an extension of the simpler Degree Centrality because it gives each actor a score proportional to the scores of its neighbors. has lots of thas ties to other nodes with high EVC. The eigenvector centralities are also known as Gould indices. EVC' is the scaled EVC (EVC divided by max EVC). EVC'' is the standardized index (EVC divided by the sum of all EVCs).

EVC range: 0 \leq EVC < 1 (The eigenvector has unit euclidean length)

EVC' range: 0 ≤ EVC' ≤ 1

Node ‡	Label #	EVC \$	EVC' #	EAC:	%EVC'
1	v1	0.138872	0.331747	0.035851	33.174663
2	v2	0.041222	0.098475	0.010642	9.847452
3	v3	0.283177	0.676473	0.073104	67.647285
4	v4	0.219113	0.523433	0.056566	52.343278
5	v5	0.291403	0.696123	0.075228	69.612312
6	v6	0.024667	0.058927	0.006368	5.892695
7	v7	0.111970	0.267481	0.028906	26.748050
8	v8	0.167518	0.400178	0.043246	40.017848
9	v9	0.217968	0.528696	0.056270	52.869579
10	v1θ	0.344213	0.822279	0.088861	82.227944
11	v11	0.035386	0.084534	0.009135	8.453364
12	v12	0.038234	0.091335	0.009870	9.133492
13	v13	0.143442	0.342665	0.037031	34.266455
14	v14	0.091989	0.219750	0.023748	21.975008
15	v15	0.418608	1.000000	0.108067	100.00000
16	v16	0.112286	0.268237	0.028988	26.823712
17	v17	0.086602	0.206880	0.022357	20.687978
18	v18	0.402452	0.961405	0.103896	96.148485
19	v19	0.287478	0.686746	0.074214	68.674619
20	v28	0.213415	0.509820	0.055095	50.982047
21	v21	0.203593	0.486356	0.052559	48.635579

Max EVC = 0.418608 (node 15) Min EVC = 0.024667 (node 6) EVC classes = 21

EVC Sum = 3.873607 EVC Mean = 0.184457 EVC Variance = 0.013594

DEGREE PRESTIGE (DP)

Network name: Krackhardt's High-tech managers Actors: 21

The DP index, also known as InDegree Centrality, of a node u is the sum of inbound edges to that node from all adjacent nodes. If the network is weighted, DP is the sum of inbound arc weights (Indegree) to node u from all adjacent nodes. DP' is the standardized index (DP divided by N-1).

DP range: θ ≤ DP ≤ 20 DP' range: 0 ≤ DP' ≤ 1

Node :	Label #	DP #	DP'	%DP' \$
1	v1	13.000000	0.650000	65.000000
2	v2	18.000000	0.900000	90.000000
3	v3	5.000000	0.250000	25.000000
4	v4	8.000000	0.400000	40.000000
5	v5	5.000000	0.250000	25.000000
6	v6	10.000000	0.500000	50.000000
7	v7	13.000000	0.650000	65.000000
8	v8	10.000000	0.500000	50.000000
9	v9	4.000000	0.200000	20.000000
10	v10	9.000000	0.450000	45.000000
11	v11	11.000000	0.550000	55.000000
12	v12	7.000000	0.350000	35.000000
13	v13	4.000000	0.200000	20.000000
14	v14	10.000000	0.500000	50.000000
15	v15	4.000000	0.200000	20.000000
16	v16	8.000000	0.400000	40.000000
17	v17	9.000000	0.450000	45.000000
18	v18	15.000000	0.750000	75.000000
19	v19	4.000000	0.200000	20.000000
20	v20	8.000000	0.400000	40.000000
21	v21	15.000000	0.750000	75.000000

DP Sum = 190.000000

Max DP' = 0.900000 (node 2) Min DP' = 0.200000 (node 9) DP' classes = 10

DP' Sum = 9.500000 DP' Mean = 0.452381 DP' Variance = 0.039399

POWER CENTRALITY (PC)

Network name: Krackhardt's High-tech managers Actors: 21

The PC index, introduced by Gil and Schmidt, of a node u is the sum of the sizes of all Nth-order neighbourhoods with weight 1/n. PC' is the standardized index: The PC score divided by the total number of nodes in the same component minus 1

PC range: 0 ≤ PC ≤ 20

PC' range: $0 \le PC' \le 1$ (PC'=1 when the node is connected to all (star).)

Node:	Label #	PC#	PC'	%PC'
1	v1	13.000000	0.650000	65.000000
2	v2	10.166667	0.508333	50.833333
3	v3	17.500000	0.875000	87.500000
4	v4	16.000000	0.800000	80.000000
5	v5	17.500000	0.875000	87.500000
6	v6	9.000000	0.450000	45.000000
7	v7	14.000000	0.700000	70.000000
8	v8	14.000000	0.700000	70.000000
9	v9	16.500000	0.825000	82.500000
10	v10	17.000000	0.850000	85.000000
11	v11	10.166667	0.508333	50.833333
12	v12	9.666667	0.483333	48.333333
13	v13	13.000000	0.650000	65.000000
14	v14	12.000000	0,600000	60.000000
15	v15	20.000000	1.000000	100.000000
16	v16	11.833333	0.591667	59.166667
17	v17	11.666667	0.583333	58.333333
18	v18	18.500000	0.925000	92.500000
19	v19	15.500000	0.775000	77.500000
20	v20	16.000000	0.800000	80.000000
21	v21	15.500000	0.775000	77.500000

PC Sum = 298.500000

Max PC' = 1.000000 (node 15) Min PC' = 0.450000 (node 6) PC classes = 15

PC' Sum = 14.925000 PC' Mean = 0.710714 PC' Variance = 0.023433

PAGERANK PRESTIGE (PRP)

Network name: Krackhardt's High-tech managers Actors: 21

Actors: 21
The PRP is an importance ranking index for each node based on the structure of its incoming links/edges and the rank of the nodes linking to it.
For each node u the algorithm counts all inhound links (edges) to it, but it normalizes each inbound link from a node v by the outDegree of v.
The PR values correspond to the principal eigenvector of the normalized link matrix.
Note: In weighted relations, each backlink to a node u from another node v is considered to have weight=1 but it is normalized by the sum of outbound edge weights of v. Therefore, nodes with high outLink weights give smaller percentage of their PR to node u.

PRP' is the scaled PRP (PRP divided by max PRP).

PRP range: (1-d)/N = 0.00714286 s PRP

PRP' range: 0 ≤ PRP' ≤ 1

Node 1	Label #	PRP#	PRP'	%PRP' #
1	v1	0.049403	0.301668	30.166828
2	v2	0.093901	0.573390	57.339841
3	v3	0.026966	0.164664	16.466434
4	v4	0.046045	0.281165	28.116491
5	v5	0.016316	0.099631	9.963121
6	v6	0.071589	0.437143	43.714266
7	v7	0.104030	0.635239	63.523915
8	v8	0.041879	0.255726	25.572585
9	v9	0.014957	0.091335	9.133494
10	v10	0.029546	0.188416	18.041610
11	v11	0.038822	0.237861	23.786873
12	v12	0.039610	0.241871	24.187148
13	v13	0.014144	0.086368	8.636838
14	ν14	0.043975	0.268524	26.852400
15	v15	0.015949	0.097392	9.739217
16	v16	0.027697	0.169127	16.912732
17	v17	0.042329	0.258471	25.847114
18	v18	0.072104	0.440289	44.028865
19	v19	0.014144	0.086370	8.636965
20	v20	0.032681	0.199559	19.955880
21	v21	0.163765	1.000000	100.000000

Challenging Task

We expect that the user who receives the gift voucher will send it to their friends in the network. You want the voucher to reach as many nodes as possible. However, we now want to ensure that the voucher reaches the nodes in the lowest average number of hops.

i. Which centrality measure should be computed to identify the suitable person to forward the voucher?

Betweenness Centrality

ii. Now a competitor has developed a strategy to remove a person from the network in order to disrupt the distribution of your company's voucher. Identify the single riskiest person to be removed under your competitor's strategy?

BETWEENNESS CENTRALITY (BC)

Network name: unnamed Actors: 7

The BC index of a node u is the sum of $\delta_{(s,t,u)}$ for all $s,t\in V$ where $\delta_{(s,t,u)}$ is the ratio of all geodesics between s and t which run through u. Read the Manual for more. BC' is the standardized index (BC divided by (N-1)(N-2)/2 in symmetric nets or (N-1)(N-2) otherwise.

BC range: $0 \le BC \le 30$ (Number of pairs of nodes excluding u)

BC' range: $\theta \leq$ BC' \leq 1 (BC'=1 when the node falls on all geodesics)

Node #	Label #	BC #	BC' \$	%BC' #
1		0.000000	0.000000	0.000000
2		0.000000	0.00000	0.000000
3	2	0.000000	0.000000	0.000000
4	0	8.000000	0.266667	26.666667
5	2	9.000000	0.300000	30.000000
6	12	1.000000	0.033333	3.333333
7	16	0.000000	0.000000	0.000000

BC Sum = 18.000000

Max BC' = 0.300000 (node 5) Min BC' = 0.000000 (node 1) BC' classes = 4

BC' Sum = 0.600000 BC' Mean = 0.085714 BC' Variance = 0.015828

BC' DISTRIBUTION

As Node 5 has the highest Betweenness Centrality, removing that node will hamper the organisation distribution of vouchers.