

Theoretical aspects of Q-learning

. . .

Value iterati

Value iteration

Theoretical aspects of Q-learning

Masters thesis defense

Jacob Harder
Department of Mathematical Sciences
University of Copenhagen

26 June, 2020

Overview

Theoretical aspects of Q-learning

O-functions

Value iteratio

The goal of RL Q-functions Value iteration

Q-learning as AI

Theoretical aspects of Q-learning

The goal of RL

Q-IUIICLIOI

Value iteration

Machine learning

Theoretical aspects of Q-learning

The goal of RL

Value iteration

Machine Learning is "the study of computer algorithms that improve automatically through *experience*".

- Supervised learning: Tasks are learned from data based on feedback from a supervisor. E.g. image classification.
- Unsupervised learning: Data is given without evaluatory feedback, general trends about the data are analysed. E.g. principal component analysis, and cluster analysis.
- →¹ Reinforcement learning: Algorithms which learns through interactions with an *environment*.

¹"→": Our main area of focus in this thesis. (♠ > < ≥ > < ≥ > > ≥ ✓ < <

Challenges in RL

Theoretical aspects of Q-learning

The goal of RL

Value iteratio

Challenges in Reinforcement Learning include:

- Exploration-exploitation trade-off. Training and performing occurs simultaneously so one optimizes the total reward on some time horizon. This is studied in e.g. the multi-armed bandit problem.
- → Deriving optimal policies. Training and performing is distinguished and emphasis is put on the expected performance of the final derived policy rather than rewards occurring during training.

The environment

Theoretical aspects of Q-learning

The goal of RL

Value iteration

The **environment** in RL is often formalized as a **Markov decision process** (MDP), which consists of

- $\ensuremath{\mathcal{S}}$ a measurable space of states.
- ${\cal A}$ a measurable space of actions.
- $P: \mathcal{S} \times \mathcal{A} \leadsto \mathcal{S}$ a transition kernel².
- $R: \mathcal{S} \times \mathcal{A} \leadsto \mathbb{R}$ a reward kernel discounted by
- a discount factor $\gamma \in [0, 1)$.
- $\mathfrak{A}(s) \subseteq \mathcal{A}$ a set of admissable actions for each $s \in \mathcal{S}$.

²Here → denotes a *stochastic mapping* (to be defined soon).

→ ○ ○

Examples of MDPs

Theoretical aspects of Q-learning

The goal of RL

Value iteration

Examples of Markov decision processes include

- Board games where one plays against a fixed opponent, e.g. *chess* where the set of states \mathcal{S} is the set of all obtainable chess-positions.
- Time-descretized physics simulations with action inputs and reward outputs, including most single player video games and the classic *cartpole* example (balancing a stick).

The probability kernels

Theoretical aspects of Q-learning

The goal of RL

Q-functions

Probability kernel

A **probability kernel** (also called a *stochastic mapping*, *stochastic kernel* or *Markov kernel*) $\kappa: \mathcal{X} \leadsto \mathcal{Y}$ is a collection of probability measures $\kappa(\cdot \mid x)$, one for each $x \in \mathcal{X}$ such that for any measurable set $B \subseteq \mathcal{Y}$ the function $x \mapsto \kappa(B \mid x)$ is measurable.

The transition probability measure $P(\cdot \mid s, a)$ of the pair $(s,a) \in \mathcal{S} \times \mathcal{A}$ determines what states are likely to follow after being in state s and choosing action a. Similarly from the reward kernel R one obtains the measure $R(\cdot \mid s, a)$ determining the reward distribution following the timestep (s,a).

Policies

Theoretical aspects of Q-learning

The goal of RL

Value iteratio

Given a Markov decision process one can define a **policy** π by sequence of probability kernels $\pi = (\pi_1, \pi_2, \dots)$ where $\pi_i : \mathcal{H}_i \leadsto \mathcal{A}$ and $\mathcal{H}_i = \mathcal{S} \times \mathcal{A} \times \dots \times \mathcal{S}$ is the *history space* at the *i*th timestep.

Stochastic processes

Theoretical aspects of Q-learning

The goal of RL

Value iteration

An MDP $(\mathcal{S},\mathcal{A},P,R,\gamma)$ together with a policy $\pi=(\pi_1,\pi_2,\dots)$ and a distribution μ on \mathcal{S} give rise to a stochastic process $(S_1,A_1,S_2,A_2,\dots)\sim\kappa_\pi\mu$ such that for any $i\in\mathbb{N}$ we have $(S_1,A_1,\dots,S_i)\sim P\pi_{i-1}\dots P\pi_1\mu$ where $P\pi_{i-1}\dots P\pi_1$ denotes the *kernel-composition* of the probability kernels P,π_1,\dots,π_{i-1} . We denote by \mathbb{E}^π_s expectation over $\kappa_\pi\mu$ where $\mu=\delta_s$, that is, $S_1=s$ a.s.

Policy evaluation

Theoretical aspects of Q-learning

The goal of RL

Q IUIICUOIIS

For a policy π we can define the policy evaluation function:

Policy evaluation

Denote by $r(s, a) = \int x \, dR(x \mid s, a)$ the expected reward function. We define the **policy evaluation function** by

$$V_{\pi}(s) = \mathbb{E}_{s}^{\pi} \sum_{i=1}^{\infty} \gamma^{i-1} r \circ \rho_{i}$$

where ρ_i is projection onto (S_i, A_i) .

This an example of a (state-) value function, as it assigns a real number to every state $s \in \mathcal{S}$.

Finite policy evaluation

Theoretical aspects of Q-learning

The goal of RL

Value iteration

Similar to the infinite horizon policy evaluation we can also consider a finite horizon version:

Definition: Finite policy evaluation

We define the function $V_{n,\pi}:\mathcal{S}\to\mathbb{R}$ by

$$V_{n,\pi}(s) = \mathbb{E}_s^{\pi} \sum_{i=1}^n \gamma^{i-1} r \circ \rho_i$$

called the kth finite policy evaluation^a.

^aWhen n=0 we say $V_{0,\pi}=V_0:=0$ for any π .

Optimal value function

Theoretical aspects of Q-learning

The goal of RL

Value iteration

Definition: Optimal value functions

$$V_n^*(s) := \sup_{\pi \in R\Pi} V_{n,\pi}(s) = \sup_{\pi \in R\Pi} \mathbb{E}_s^{\pi} \sum_{i=1}^n r_i$$

$$V^*(s) := \sup_{\pi \in R\Pi} V_{\pi}(s) = \sup_{\pi \in R\Pi} \mathbb{E}_s^{\pi} \sum_{i=1}^{\infty} r_i$$

This is called the **optimal value function** (and the nth optimal value function). A policy $\pi^* \in R\Pi$ for which $V_{\pi^*} = V^*$ is called an **optimal policy**. If $V_{n,\pi^*} = V_n^*$ then π^* is called n-optimal.

Provided such an optimal policy π^* exists, obtaining such a policy is the ultimate goal of Reinforcement Learning.

Operators on value functions

Theoretical aspects of Q-learning

The goal of RL

Value iteration

The T-operators

For a stationary policy $\tau \in S\Pi$ and a value function

 $V:\mathcal{S} \to \mathbb{R} \in \mathcal{L}_{\infty}(\mathcal{S})$ we define the operators

The policy evaluation operator:

$$T_{\tau}V := s \mapsto \int r(s, a) + \gamma V(s') \, \mathrm{d}(P\tau)(a, s' \mid s)$$

The Bellman optimality operator:

$$TV := s \mapsto \sup_{a \in \mathfrak{A}(s)} \left(r(s, a) + \gamma \int V(s') \, dP(s' \mid s, a) \right)$$

Theoretical aspects of Q-learning

The goal of RL

Q-function

Value iteration

Q-functions

Theoretical aspects of Q-learning

Q-functions

A **Q-function** is simply any function assigning a real number to every state-action pair. They are also called (state-) *action value functions*.

A **Q-learning** algorithm is any algorithm which uses Q-functions to derive a policy for an environment³.

How to derive a policy from a Q-function? One way to do this is by picking *greedy actions*.

³Some authors refer to Q-learning as a specific variation of temporal difference learning, but this fails to capture many algorithms which are also referred to as Q-learning algorithms.

Greedy policies

Theoretical aspects of Q-learning

The goal of R

Value iteration

Let $Q: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ be a measurable Q-function and $\tau: \mathcal{S} \leadsto \mathcal{A}$ be a (stationary) policy.

Greedy policy

Define the set of *greedy actions* by

 $G_Q(s) := \mathop{\rm argmax}_{a \in \mathfrak{A}(s)} Q(s,a). \text{ If there exist a measurable set } G_O^{\tau}(s) \subseteq G_Q(s) \text{ for every } s \in \mathcal{S} \text{ such that }$

$$\tau\left(G_Q^{\tau}(s) \mid s\right) = 1$$

then τ is said to be **greedy** with respect to Q and is denoted τ_Q .

Q-function operators

Theoretical aspects of Q-learning

i ne goai o

Value iteration

Operators for Q-functions

For any stationary policy $\tau \in S\Pi$ and integrable Q-function

 $Q: \mathcal{S} \times \mathcal{A} \to \mathbb{R} \in \mathcal{L}_{\infty}(\mathcal{S} \times \mathcal{A})$ we define

Next-step operator:

$$P_{\tau}Q(s,a) = \int Q(s',a') d\tau P(s',a' \mid s,a)$$

Policy evaluation operator:

$$T_{\tau}Q(s,a) = r(s,a) + \gamma \int Q(s',a') d\tau P(s',a' \mid s,a)$$

Bellman optimality operator:

$$TQ(s,a) = r(s,a) + \gamma \int \max_{a' \in A} Q(s',a') \, \mathrm{d}P(s' \mid s,a)$$

where $T_a = T_{\delta_a}$.