First-Order Logic Continued

Sunday, September 27, 2020

Anstotelian Forms

"All A's are B's"

We have are B's"

$$\exists x. (A(x) \land B(x))$$

"Some A's are B's"

"Some A's are A's aren't B's"

 $\forall x. (A(x) \Rightarrow B(x))$
 $\exists x. (A(x) \land B(x))$

Translation exercises

Ex 1. Person(p) - p is a person

Loves
$$(x,y) - x$$
 loves y

"every person loves someone dise"

 $\forall x$. Person $(x) \rightarrow \exists y$. (Person $(y) \land Loves(x,y) \land x \neq y$))

"there is a person that everyone also loves"

 $\exists x \cdot (Person(x) \land (\forall y \cdot ((y \neq x \land Person(y)) \rightarrow Loves(y,x))))$
 $\exists x \cdot (Person(x) \land (\forall y \cdot ((y \neq x \land Person(y)) \rightarrow Loves(y,x))))$
 $\exists x \cdot (x \in y - x \text{ is an element of } y \text{ is an$

Ex 2. Set(s) - S is a set

$$X \in \mathcal{Y} - X$$
 is an element of \mathcal{Y}

"the empty set exists"

 $\exists S. (set(s) \land \neg (\exists x. x \in S))$
 $\exists S. (set(s) \land (\forall x. x \notin S))$

Negating statements

Table.

	True	False
Ax. 8 (x)	For any x, P(X)	For some x, $7l(x)$
(x)9.xE	For some x, P(x)	For any x,
AX.78(x)	For any X,	For some X, P(X)
Jx.7P(x)	For some X,	For any X,

Condusion.

i.e., push the regation across the quantifier, then flip the quantifier

Equivalences.

Ex.

Negate
$$\exists S. \left(Set(S) \land \forall x. \forall (x \in S)\right)$$
 Result!

$$\forall S. \left(Set(s) \rightarrow \exists_X. (x \in S) \right)$$

Restricted Quantifies

Quantifying over sets.

The notation $\forall x \in S \cdot P(x)$ means that "for any x that is an element of set S, P(x) holds".

(vacuously true if Sempty)

The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$. P(x) Means that

"The notation $\exists x \in S$

Note: Do not use other variations of this syntax!

Expressing uniqueness.

Ex. Way To Find Out (w) - w is a way to find out "there is only one way to find out" $\exists w. (Way To Find Out (w) \land (\forall x. Way To Find Out (x) \rightarrow (w = x)))$