Existential restrictions

Henriette Harmse

Prerequisites

Before doing this tutorial you need to have the following knowledge:

- Building blocks of OWL and Description Logics.
- SubClassOf vs EquivalentTo

Syntax

OWL	DL	
ObjectProperty: r		
Class: D		D r
EquivalentTo:	$D \equiv \exists r.C$	C
r some C		
Class: C		

Semantics

- $(\exists r.C)^{\mathcal{I}} = \{x \in \triangle^{\mathcal{I}} | \text{there is an } y \in \triangle^{\mathcal{I}} \text{ such that } (x,y) \in r^{\mathcal{I}} \text{ and } y \in C^{\mathcal{I}} \}$
- r some C (∃r.C) is the set of individuals such that for each individual x there is at least 1 individual y of type C that is linked to x via the object property (role) r.

Example using EquivalentTo

ObjectProperty: owns

Class: PetOwner

EquivalentTo: owns some Pet

Class: Pet

Example using SubClassOf

ObjectProperty: owns

Class: DogOwner

SubClassOf: owns some Pet

Class: Pet

Examples

Which of these individuals will be in ${\tt r}$ some C and therefore as well in D?

Examples

Which of these individuals will be in ${\tt r}$ some C and therefore as well in D?

Answer

Individuals 2, 3, 5

Variations on existential restrictions

Syntax

Name	OWL	DL
Unqualified	ObjectProperty: owns	
existential	Class: Owner	$Owner \equiv \exists owns \top$ or
restric-	EquivalentTo:	$Owner \equiv \exists owns$
tions	owns some owl:Thing	
Value re- strictions	ObjectProperty: citizenOf	
	Class: UKCitizen =	
	EquivalentTo:	0.10.0.20
	citizenOf.{UH	
	Individual: UK	
Existential restriction	DataProperty: name	
	Class: Person	Person ⊑
on data	SubClassOf:	∃ <i>name</i> .xsd:string
property	name some xsd:string	

Using existential restrictions with SubClassOf vs EquivalentTo

A Person have 1 or more name

Why did we use SubClassOf rather than EquivalentTo?

Using existential restrictions with SubClassOf vs EquivalentTo

Using existential restrictions with SubClassOf vs EquivalentTo

A DogOwner is a Person that owns a Dog

ObjectProperty: owns

Class: Dog

Class: Person

Class: DogOwner

EquivalentTo:

Person and owns some Dog