(15) Um mé to do para encontrar A-1

Algoritmo da inversão: Pora encontrar a in versa de uma matriz invertível A, encontre uma requência de operações elementares que reduza A à matriz identidade e depois efetue essa mes ma seguência de operações em In para obter A-1.

Ex1: Encontre a inversa de A= [123].

A I

$$\begin{bmatrix}
 0 & 2 & 3 & 1 & 0 & 0 \\
 2 & 5 & 3 & 0 & 1 & 0 & = -2L_1 + L_2 & 0 & 1 & -3 & -2 & 1 & 0 \\
 1 & 0 & 8 & 0 & 0 & 1 & = -L_1 + L_3 & 0 & -2 & 5 & -1 & 0 & 1 & = 2L_2 + L_3
 \end{bmatrix}$$

_									I			A-1		
(1)	2	0	-14	6	3	- 2	L2+L1	1	0	0	_40	16	9	
0	(1)	0	13	-5	-3			0	1	0	13	-5	-3	
			5-					Lo	0	1	5	-2	-1]	

Liego
$$A^{-1} = \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix}$$

Verificando:

$$A \cdot A^{-1} = \begin{bmatrix} 1 & 2 & 3 & | & -40 & 16 & 9 & | & 1 & 0 & 0 \\ 2 & 5 & 3 & | & 13 & -5 & | & -3 & | & = & 0 & 1 & 0 \end{bmatrix} = I$$

$$\begin{bmatrix} 1 & 0 & 8 & | & 5 & -2 & -1 & | & 0 & 0 & 1 \end{bmatrix}$$

EX2: Se A vao for invertivel, entao sera impossível redutir A a In por operações elementares. Isto é, em algum ponto do algoritmo de inversão, aporese ra un linha de Zeros no bodo esquerdo de [AII].

Aplicando o algoritmo, temos:

	A			+			_							
1	6	4	1	0	07		3	6	4	1	0	0		
2	4	-1	0	1	0	= -21+1-2	0	(-8)	-9	-2	1	0	=-1/2	
-1	2	5	0	0	1	= L1+L2	0	8	9	1	0	1_	8	

G linha de Zeros

Logo, A nas é invertivel.

Analisando sistemas homogenes (5H)

Seja um sistema homogéneo Ax = 0. Entas: $Ax = 0 \Rightarrow A^{-1}Ax = A^{-1}0 \Rightarrow Ix = 0 \Rightarrow x = 0$

Ou seja, um SH tem nomente a solução trivial, se e somente se, A for invertivel.

Ex: Determinar ex os sistemas homogêneos têm soluções não triviais.

a)
$$\begin{cases} x_1 + 2x_2 + 3x_3 = 0 \\ 2x_1 + 5x_2 + 3x_3 = 0 \end{cases} \Rightarrow A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$$

Pelo Ex1, A porsui inversa, 1090 o sistema porsui somente a solução trivial.

b)
$$\begin{cases} x_1 + 6x_2 + 4x_3 = 0 \\ 2x_1 + 4x_2 - x_3 = 0 \end{cases}$$
 $\begin{cases} 1 6 4 \\ 2x_1 + 4x_2 - x_3 = 0 \end{cases}$ $\begin{cases} 1 -1 2 5 \end{cases}$

Pelo Ex2, A não possui inversa, hogo o sistema possui reduções não triviais.