磁阻效应实验数据处理

何金铭 PB21020660

1 原始数据

1.1 一些基本数据

励磁系数 α 2400Gs/A

1,3 方向的电阻 R_{13} 366.9 Ω

2,4 方向的电阻 R_{24} 443.6 Ω

1.2 电流方向为 1,3 方向, 2,4 方向断路, 测量 1,3 方向电阻

组数	1	2	3	4	5	6	7	8
I/mA	0	40	80	120	160	200	240	280
R_1/Ω	363.9	366.4	373.3	383.9	397.2	403.3	419.3	435.5
组数	9	10	11	12	13	14	15	16
I/mA	320	360	400	440	480	520	560	600
R_1/Ω	450.8	464.8	476.8	487.3	497.7	517.6	530.7	543.0
组数	17	18	19	20	21			
I/mA	640	680	720	760	800			
R_1/Ω	553.0	562.3	572.4	582.1	593.3			

表 1: 2,4 断路时的原始数据

1.3 电流方向为 1,3 方向, 2,4 方向短路, 测量 1,3 方向电阻

组数	1	2	3	4	5	6	7	8
I/mA	0	40	80	120	160	200	240	280
R_1/Ω	364.2	368.0	377.7	392.3	410.8	431.6	453.6	475.7
组数	9	10	11	12	13	14	15	16
I/mA	320	360	400	440	480	520	560	600
R_1/Ω	496.4	514.6	529.1	542.4	555.0	569.1	585.6	600.3
组数	17	18	19	20	21			
I/mA	640	680	720	760	800			
R_1/Ω	611.9	623.6	634.9	646.4	657.7			

表 2: 2,4 短路时的原始数据

1.4 电流方向为 1,3 方向, 测量 2,4 方向电阻

由于时间不够,未测量数据,只给出了测量方案,于下文中给出。

2 实验方案

2.1 电流方向为 1,3 方向, 2,4 方向断路, 测量 1,3 方向电阻

对于励磁电路, 使用 $V = 15v, I \in [0, 0.8A]$ 的恒流源。

图 1: 锑化铟片工作电流电路

对于锑化铟片所在的电路,使用恒流源(I=5mA)搭配平衡电桥电路进行测量,由于锑化铟片的电阻会随电流变化而变化,所以选择固定 R_2,R_3 阻值不变,变化 R_1 ,当 I_G 为 0 的时候,可以得到 $R_{sample}=R_1$ 。

实验方案

于 0 到 0.8A 的范围内变化励磁电流,每次变化 0.04A,每次调整微安表示数为 0,记录下相应的 R_1 。

2.2 电流方向为 1,3 方向, 2,4 方向短路, 测量 1,3 方向电阻

与上一个电路类似, 唯一的区别是 2,4 回路处于短路状态。

电流方向为 1,3 方向, 测量 2,4 方向电阻 2.3

图 2: 锑化铟片电路

1,3 方向为工作电流电路, 2,4 回路为测量电源内阻的回路。其中工作电路电流设定为 0.025mA 实验方案

于 0 到 0.8A 的范围内变化励磁电流,每次变化 0.05A,对于每个励磁电流,改变 5 次电阻箱 电阻,记录下阻值 R 并记录相应的电压表示数 U。

对于每一组的电阻和电压值进行拟合,

$$\frac{1}{U} = \frac{r}{E} \cdot \frac{1}{R} + \frac{1}{E} \tag{1}$$

获取拟合曲线 $\frac{1}{U}$ - $\frac{1}{R}$ 的截距和斜率,以此计算得 r。

数据处理 3

通过公式

$$B = \alpha \cdot I \tag{2}$$

$$\frac{\Delta R}{R(0)} = \frac{R - R(0)}{R(0)}\tag{3}$$

可以计算得: $B = \frac{\Delta R}{R(0)}$, 并作图。

3.1 电流方向为 1,3 方向, 2,4 方向断路, 测量 1,3 方向电阻

图 3: 2,4 回路断路时的 $\Delta R/R(0)$ -B 图

分析

- 1. 对于前五个数据 $\Delta R/R(0)$ 正比于磁感应强度 B 的平方,与理论符合。
- 2. 对于之后的数据 $\Delta R/R(0)$ 与磁感应强度 B 呈线性关系,与理论符合。

3.2 电流方向为 1,3 方向, 2,4 方向短路, 测量 1,3 方向电阻

图 4: 2,4 回路短路时的 $\Delta R/R(0)$ -B 图

分析

1. 对于前 9 个数据 $\Delta R/R(0)$ 正比于磁感应强度 B 的平方,与理论符合。

- 2. 对于之后的数据 $\Delta R/R(0)$ 与磁感应强度 B 呈线性关系,与理论符合。
- 3. 且对比 2,4 短路与断路时的情况,发现当磁感应强度 B 相同的时候,2,4 短路时的 $\Delta R/R(0)$ 较 2,4 断路时的大,可知 2,4 短路时磁阻效应更明显,符合理论。