The picture can't be displayed.		

Most Enzymes are Proteins

Cofactor

Coenzyme

Prosthetic group

Holoenzyme

Apoenzyme

Apoprotein

TABLE 6-1	Some Inorganic Ions That Serve as Cofactors for Enzymes	
lons	Enzymes	
Cu ²⁺	Cytochrome oxidase	
Fe ²⁺ or Fe ³⁺	Cytochrome oxidase, catalase, peroxidase	
K ⁺	Pyruvate kinase	
Mg ²⁺	Hexokinase, glucose 6-phosphatase, pyruvate kinase	
Mn ²⁺	Arginase, ribonucleotide reductase	
Мо	Dinitrogenase	
Ni ²⁺	Urease	
Se	Glutathione peroxidase	
Zn ²⁺	Carbonic anhydrase, alcohol dehydrogenase, carboxypeptidases A and B	

Table 6-1
Lehninger Principles of Biochemistry, Fifth Edition

© 2008 W. H. Freeman and Company

TABLE 6–2 Some Coenzymes That Serve as Transient Carriers of Specific Atoms or Functional Groups				
Coenzyme	Examples of chemical groups transferred	Dietary precursor in mammals		
Biocytin	CO2	Biotin		
Coenzyme A	Acyl groups	Pantothenic acid and other compounds		
5'-Deoxyadenosylcobalamin (coenzyme B ₁₂)	H atoms and alkyl groups	Vitamin B ₁₂		
Flavin adenine dinucleotide	Electrons	Riboflavin (vitamin B ₂)		
Lipoate	Electrons and acyl groups	Not required in diet		
Nicotinamide adenine dinucleotide	Hydride ion (:H ⁻)	Nicotinic acid (niacin)		
Pyridoxal phosphate	Amino groups	Pyridoxine (vitamin B ₆)		
Tetrahydrofolate	One-carbon groups	Folate		
Thiamine pyrophosphate	Aldehydes	Thiamine (vitamin B ₁)		

Note: The structures and modes of action of these coenzymes are described in Part II.

Table 6-2
Lehninger Principles of Biochemistry, Fifth Edition

© 2008 W.H. Freeman and Company

Nomenclature

Remember the five basic reactions in biochemistry

TABLE 6-3	International C	lassification of Enzymes
Class no.	Class name	Type of reaction catalyzed
1	Oxidoreductases	Transfer of electrons (hydride ions or H atoms)
2	Transferases	Group transfer reactions
3	Hydrolases	Hydrolysis reactions (transfer of functional groups to water)
4	Lyases	Addition of groups to double bonds, or formation of double bonds by removal of groups
5	Isomerases	Transfer of groups within molecules to yield isomeric forms
6	Ligases	Formation of C—C, C—S, C—O, and C—N bonds by condensation reactions coupled to cleavage of ATP or similar cofactor

Table 6-3
Lehninger Principles of Biochemistry, Fifth Edition

© 2008 W. H. Freeman and Company

The picture can't be displayed.		

The picture can't be displayed.		

The picture can't be displayed.	

The picture can't be displayed.	

The picture can't be displayed.	
	The picture can't be displayed.

The picture can't be displayed.	

The picture can't be displayed.	1
в перише сапт се азавијка.	

EC 1.1.1.1

Common name: alcohol dehydrogenase

Reaction: an alcohol + NAD+ = an aldehyde or ketone + NADH + H+

Other name(s): aldehyde reductase; ADH; alcohol dehydrogenase (NAD); aliphatic alcohol dehydrogenase; ethanol dehydrogenase; NAD-dependent alcohol dehydrogenase; NAD-specific aromatic alcohol dehydrogenase; NADH-aldehyde dehydrogenase; primary alcohol dehydrogenase; yeast alcohol dehydrogenase

Systematic name: alcohol:NAD+ oxidoreductase

Comments: A zinc protein. Acts on primary or secondary alcohols or hemiacetals; the animal, but not the yeast, enzyme acts also on cyclic secondary alcohols.

CAS registry number: 9031-72-5

References:

- 1. Brändén, G.-I., Jörnvall, H., Eklund, H. and Furugren, B. Alcohol dehydrogenase. In: Boyer, P.D. (Ed.), *The Enzymes*, 3rd ed., vol. 11, Academic Press, New York, 1975, p. 103-190.
- 2. Jörnvall, H. Differences between alcohol dehydrogenases. Structural properties and evolutionary aspects. *Eur. J. Biochem.* 72 (1977) 443-452. [Medline UI: 77115786]
- 3. Negelein, E. and Wulff, H.-J. Diphosphopyridinproteid ackohol, acetaldehyd. *Biochem. Z.* 293 (1937) 351-389.
- 4. Sund, H. and Theorell, H. Alcohol dehydrogenase. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Eds.), *The Enzymes*, 2nd ed., vol. 7, Academic Press, New York, 1963, p. 25-83.
- 5. Theorell, H. Kinetics and equilibria in the liver alcohol dehydrogenase system. *Adv. Enzymol. Relat. Subj. Biochem.* 20 (1958) 31-49.

[EC 1.1.1.1 created 1961]

Reaction coordinate

Figure 6-2
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

Reaction coordinate

Figure 6-3
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

Ground state

Standard free-energy change

Biochemical standard free-energy change

Transition state

Activation energy

Reaction intermediate

Rate-limiting step

Rate-determining step

Equilibrium constant

Rate constant

Rate equation

Binding energy

TABLE 6-4	Relationship between $K'_{\rm eq}$ and $\Delta G'^{\circ}$	
K' _{eq}	ΔG'° (kJ/mol)	
10 ⁻⁶	34.2	
10 ⁻⁵	28.5	
10-4	22.8	
10 ⁻³	17.1	
10 ⁻²	11.4	
10 ⁻¹	5.7	
1	0.0	
10 ¹	-5.7	
10 ²	-11.4	
10 ³	-17.1	

Note: The relationship is calculated from $\Delta G'^{\circ} = -RT \ln K'_{\rm eq}$ (Eqn 6–3).

Table 6-4 *Lehninger Principles of Biochemistry, Fifth Edition*© 2008 W. H. Freeman and Company

TABLE 6-5

Some Rate Enhancements Produced by Enzymes

Cyclophilin	10 ⁵
Carbonic anhydrase	10 ⁷
Triose phosphate isomerase	10 ⁹
Carboxypeptidase A	10 ¹¹
Phosphoglucomutase	10 ¹²
Succinyl-CoA transferase	10 ¹³
Urease	10 ¹⁴
Orotidine monophosphate decarboxylase	10 ¹⁷

Weak interactions optimized in the

transition state

No enzyme Substrate (metal stick) Transition state (bent stick) Products (broken stick)

Figure 6-5a
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W.H. Freeman and Company

Enzyme complementary to substrate

Reaction coordinate

Enzyme complementary to transition state

Reaction coordinate

Figure 6-5c
Lehninger Principles of Biochemistry, Fifth Edition
2008 W. H. Freeman and Company

Reaction coordinate

Reaction

Rate enhancement

Figure 6-7
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

Figure 6-8
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

Amino acid residues	General acid form (proton donor)	General base form (proton acceptor)
Glu, Asp	R—COOH	R—COO-
Lys, Arg	R ⁺ N H H	R—NH₂
Cys	R—SH	R— S⁻
His	R—C=CH /+ HN NH H	R—C=CH HN N:
Ser	R-OH	R-O-
Tyr	R—OH	R—————————————————————————————————————

Figure 6-9
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W.H. Freeman and Company

Time

Figure 6-10
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

Figure 6-18d
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

Enzyme Kinetics

Enzyme kinetics

Initial rate (or initial velocity)

Maximum velocity

Pre-steady state

Steady state

Steady-state kinetics

Steady-state assumption

Michaelis constant

Michaelis-Menten equation

Figure 6-11
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

Figure 6-12
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

Double-reciprocal plot Dissociation constant Turnover number

Lineweaver-Burk Plot

$$V_{max} = 1/0.6897 = 1.45$$

 $K_m = -1/(-2.28) = 0.44 M)$

Eadie-Hofstee Plot

$$V_{\text{max}} = 1.30$$

$$K_{\rm m} = 0.354$$

Haynes-Woolf Plot

$$K_{\rm m} = 0.32$$

$$V_{max} = 0.80$$

Eisenthal-Cornish-Bowden Direct Plot Direct Linear Plot

TABLE 6–6 K _m for Some Enzymes and Substrates				
Enzyme		Substrate	<i>К_m</i> (тм)	
Hexokinase (bra	in)	ATP D-Glucose D-Fructose	0.4 0.05 1.5	
Carbonic anhydrase		HCO ₃	26	
Chymotrypsin		Glycyltyrosinylglycine N-Benzoyltyrosinamide	108 2.5	
β-Galactosidase		D-Lactose	4.0	
Threonine dehydratase		L-Threonine	5.0	

Table 6-6

Lehninger Principles of Biochemistry, Fifth Edition © 2008 W. H. Freeman and Company

Turnover Numbers, k _{cat} , of Some Enzymes			nzymes
Enzyme		Substrate	$k_{\rm cat}$ (s $^{-1}$)
Catalase		H ₂ O ₂	40,000,000
Carbonic anhydrase		HCO ₃	400,000
Acetylcholinesterase		Acetylcholine	14,000
$oldsymbol{eta}$ -Lactamase		Benzylpenicillin	2,000
Fumarase		Fumarate	800
RecA protein (an ATPase)		ATP	0.5

Table 6-7 *Lehninger Principles of Biochemistry, Fifth Edition*© 2008 W. H. Freeman and Company

Enzyme	Substrate	k _{cat} (s ⁻¹)	К _т (м)	k _{cat} /K _m (M ⁻¹ s ⁻¹)
Acetylcholinesterase	Acetylcholine	1.4 × 10 ⁴	9×10^{-5}	1.6 × 10 ⁸
Carbonic anhydrase	CO ₂ HCO ₃	1 × 10 ⁶ 4 × 10 ⁵	1.2×10^{-2} 2.6×10^{-2}	8.3 × 10 ³ 1.5 × 10 ³
Catalase	H ₂ O ₂	4×10^7	1.1×10^{0}	4 × 10
Crotonase	Crotonyl-CoA	5.7×10^{3}	2 × 10 ⁻⁵	2.8 × 10 ⁸
Fumarase	Fumarate Malate	8×10^2 9×10^2	5×10^{-6} 2.5×10^{-5}	1.6×10^{8} 3.6×10^{7}
β-Lactamase	Benzylpenicillin	2.0×10^{3}	2 × 10 ⁻⁵	1 × 10

Source: Fersht, A. (1999) Structure and Mechanism in Protein Science, p. 166, W. H. Freeman and Company, New York.

Table 6-8

Lehninger Principles of Biochemistry, Fifth Edition

© 2008 W. H. Freeman and Company

More complex systems

(a) Enzyme reaction involving a ternary complex

Random order

Ordered
$$S_2$$

 $E + S_1 \Longrightarrow ES_1 \Longrightarrow ES_1S_2 \longrightarrow E + P_1 + P_2$

(b) Enzyme reaction in which no ternary complex is formed

$$E + S_1 \Longrightarrow ES_1 \Longrightarrow E'P_1 \stackrel{P_1}{\Longleftrightarrow} E' \stackrel{S_2}{\Longleftrightarrow} E'S_2 \longrightarrow E + P_2$$

 $\frac{1}{[S_1]} \left(\frac{1}{mM} \right)$

Figure 6-14a
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

$$\frac{1}{[S_1]} \left(\frac{1}{mM} \right)$$

Reversible Inhibition

Competitive inhibition

Uncompetitive inhibition

$$E + S \Longrightarrow ES \longrightarrow E + P$$

$$\downarrow i \qquad \qquad \downarrow S$$

$$\downarrow K_i' \qquad \qquad \downarrow S$$

$$ESI \qquad \qquad \downarrow 1$$

$$\downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow I \qquad \downarrow I \qquad \downarrow S$$

$$\downarrow I$$

Mixed inhibition

Figure 6-15c
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

Box 6-2 figure 1
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

Box 6-2 figure 2
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

Box 6-2 figure 3
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

TABLE 6-9

Effects of Reversible Inhibitors on Apparent V_{max} and Apparent K_{m}

Inhibitor type	Apparent V _{max}	Apparent K _m
None	V _{max}	K _m
Competitive	V _{max}	αK_{m}
Uncompetitive	$V_{\sf max}/lpha'$	$K_{\rm m}/lpha'$
Mixed	$V_{max}/lpha'$	$\alpha K_{\rm m}/\alpha'$

Figure 6-17
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

Figure 6-21 part 1
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

Chymotrypsin (free enzyme)

Figure 6-21 part 2a Lehninger Principles of Biochemistry, Fifth Edition © 2008 W. H. Freeman and Company

Substrate (a polypeptide)

When substrate binds, the side chain of the residue adjacent to the peptide bond to be cleaved nestles in a hydrophobic pocket on the enzyme, positioning the peptide bond for attack.

ES complex

Figure 6-21 part 2b Lehninger Principles of Biochemistry, Fifth Edition

2008 W.H. Freeman and Company

Figure 6-21 part 2c
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

Figure 6-21 part 2d
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

Short-lived intermediate* (deacylation)

Figure 6-21 part 2e
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

Enzyme-product 2 complex

Figure 6-21 part 2f
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

Figure 6-21 part 2g
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

 k_{cat}/K_{m}

10

114

Box 6-3 figure 1
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

Figure 6-33
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company