Окружность и вписанность

Основные определения:

- (2) Радиус отрезок, соединяющий центр окружности и точку на окружности.
- (3) Хорда отрезок, соединяющий две точки на окружности.
- (4) Диаметр xopda, проходящая через центр окружности.
- (5) Касательная прямая, имеющая с окружностью одну общую точку.
- (6) Секущая прямая, имеющая с окружностью две общие точки.
- (7) Дуга— часть окружности, ограниченная двумя точками. Градусная мера дуги равна градусной мере соответственного центрального угла.
- (8) Центральный угол угол, вершина которого лежит в центре окружности.
- (9) Вписанный угол угол, вершина которого лежит на окружности, а стороны пересекают окружность.
- (10) Биссектриса угла луч, проведенный из вершины угла и делящий его пополам.
- (11) Серединный перпендикуляр прямая, проходящая через середину отрезка и перпендикулярная ему.
- (12) Вписанная окружность окружность, для которой стороны многоугольника являются касательными.
- (13) Описанная окружность окружность, проходящая через все вершины многоугольника.

Основные теоремы:

Свойство касательной: касательная перпендикулярна радиусу, проведенному в точку касания.

Свойство отрезков касательных: отрезки касательных, проведенных из одной точки, равны и образуют равные углы с прямой, проходящей через данную точку и центр окружсности.

Градусаная мера вписанного угла: градусная мера вписанного угла равна половине градусной меры дуги, на которую он опирается.

Градусная мера угла между касательной и хордой: градусная мера угла между касательной и хордой равна половине градусной меры дуги, заключенной между ними.

Равные дуги и равные хорды: равные хорды стягивают равные дуги.

Свойство пересекающихся хорд: если две хорды одной окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой.

Свойство отрезков секущих: если из точки, не лежащей на данной окружности, провести две секущие, то произведение отрезка одной секущей на ее внешнюю часть равно произведению отрезка другой секущей на ее внешнюю часть.

Свойство отрезка касательной и секущей: если из точки, не лежащей на данной окружности, провести касательную и секущую, то квадрат отрезка касательной равен произведению секущей на ее внешнюю часть.

Свойство точки, лежащей на биссектрисе угла: точка, лежащая на биссектрисе угла, равноудалена от сторон угла.

Свойство точки, лежащей на серединном перпендикуляре к отрезку: точка, лежащая на серединном перпендикуляре к отрезку, равноудалена от его концов.

Свойство центра вписанной окружности: центр вписанной в многоугольник окружности находится в точке пересечения биссектрис многоугольника.

Свойство центра описанной окружности: центр описанной около многоугольника окружности находится в точке пересечения серединных перпендикуляров к сторонам многоугольника.

Вписанный четырехугольник: четырехугольник вписан в окружность тогда и только тогда, когда сумма противоположных углов четырехугольника равна 180°.

Описанный четырехугольник: в четырехугольник можно вписать окружность тогда и только тогда, когда суммы противоположных сторон четырехугольника равны.

Пара полезных следствий:

Вписанные углы, опирающиеся на одну дугу, равны.

Вписанный угол, опирающийся на диаметр, равен 90°.