Xitao Wen, Chunxiao Diao, Xun Zhao, Yan Chen, Li Erran Li, Bo Yang, Kai Bu Northwestern University, Tsinghua University, Bell Labs Alcatel-Lucent, Zhejiang University

Compiling Minimum Incremental Update for Modular SDN Languages

Motivation

- Flowtable update bottleneck
 - 10s to 100s of rule edits per second
 - Full refresh of 5K entries takes minutes
- Goal: minimizing update size to speed up flowtable update
 - Only update the "diff"

Problem Statement

- Update rules whose content or priority changes
 - 3 rule adds + 2 priority updates
- Priority updates contribute over 90% in average!

Question: How can we minimize priority updates?

Diff with Reassigned Priority

- Idea: Modify priorities assigned by compiler
- Challenges:

Constraint 1: New priority assignment MUST observe rule dependency

Solution: Minimum dependency construction

Constraint 2: New priority values MUST be integers within [0, 65535]

Solution: Priority gap maintenance

Pattern	Priority
<1, 2>	3
<* , 2>	2
<* , *>	1
\bigcirc	Ы

Pattern	Priority
<1, 2>	5 ->3
<2 , *>	4 -> 2.5
<1, *>	3 -> 2
< *, 2>	3 -> 2
<3, *>	2 -> 1.5
<* , *>	1

3 rule edits!

Vew

Dependency Constraint

- Constraint 1: rule dependency
- Dependency inferred from priority value is problematic

	Pattern	Priority	A	A		Pattern	Priority
Α	<1, 2, *>	5	- 1	-1	Α	<1, 2, *>	5
В	< * , 2, 3>	4	ВС	В	В	< * , 2, 3>	4
			- 4 - 4 -	- * - * •	G	< * , 2, 4>	3
C	<1, *, 4>	4			C	<1, *, 4>	2
D	<1, *, 3>	3	DE		D	<1, *, 3>	3
Е	<*, *, 4>	3	- 1	- 1 X	Ε	<*, *, 4>	1
F	< *, *, 3>	2	F		F	< *, *, 3>	2
	Old	d		E		Ne	W

Dependency Constraint

Minimum dependency can be inferred from rule patterns

	Pattern	Priority	A		A		Pattern	Priority
Α	<1, 2, *>	5	- 1		- 1	Α	<1, 2, *>	5
В	< * , 2, 3>	4	В	C	B	В	< * , 2, 3>	4
			- 4	1-		G	<*, 2, 4>	3
C	<1, *, 4>	4				C	<1, *, 4>	2
D	<1, *, 3>	3		E		D	<1, *, 3>	3
Ε	<*, *, 4>	3	- 1		-1-1	E	<*, *, 4>	1
F	< * , * , 3>	2	F		F	F	<*, *, 3>	2
	Old	d			E	•	Ne	W

Dependency Constraint

 With minimum dependency graph, one can always generate minimum-size flowtable update if priority value is continuous

	Pattern	Priority
Α	<1, 2, *>	5
В	< *, 2, 3>	4
С	<1, *, 4>	4
D	<1, *, 3>	3
Е	<*, *, 4>	3
F	< * , * , 3>	2

	Pattern	Priority
Α	<1, 2, *>	5
В	< * , 2, 3>	4
G	<*, 2, 4>	3 -> 4.5
С	<1, *, 4>	2 -> 4
D	<1, *, 3>	3
Е	<*, *, 4>	±->3
F	<*, *, 3>	2

<u>Take-away:</u> Minimum dependency helps eliminate priority updates

How to obtain minimum dependency

Restored from prioritized flowtable after compilation

- Incurs complicated header space computation
- Constructed along with compilation
 - Rule dependency can be recursively inferred from policy composition process
 - Incurs little additional overhead over compilation

Incremental Dependency Construction

- Recursive construction of minimum dependency
 - Extend intermediate flowtables with dependency graph
 - Keep track of dependency during compilation
 - Parallel composition
 - Sequential composition

Incremental Dependency Construction

- Infer dependency for parallel composition
 - Graph cross-product
 - Intersection tests
 - Special treatment for compiler-specific data structure
- Sequential composition is similar except for the actions of the first operands

Maintaining Priority Value Distribution

Constraint 2: discrete priority values

- Integers ranging [o-65535] for OpenFlow
- If new rule is inserted between adjacent priority values,
 we have to shift existing rules to make room for them

Problem Statement

- Assign priority values for priority levels
- Objective: minimize the estimation of priority shifts

Online strategy

Undetermined future policy update sequence

Pattern	Priority
<1, 2>	5 -> 3
<2, *>	4 > 2.5
<1, *>	3 -> 2
<* , 2>	3 -> 2
<3, *>	2 > 1.5
<*, *>	1

K-factor strategy

- Key idea: proactively maintains the ratio between max priority gap and min priority gap
- Initiation
 - Distribute priority levels evenly on [o-65535]
- Invariance
 - Keep lengths of all gaps between [1/k, k] * mean length, where k is a parameter
- Cost
 - Amortized: O(1) per update

Evaluation

- Eliminates almost all priority updates
- 10x smaller on average compared to diff

Conclusion

- Minimum incremental update framework comprising of
 - Minimum update generation with dependency
 - K-factor strategy for priority gaps maintenance
- Future work
 - Dependency construction algorithms generic to policy languages
 - Lower bound of priority gap maintenance

Xitao Wen xitaowen2015@u.northwestern.edu

Question?