Lecture 12

Tuesday, February 28, 2017 8:45 PM

Simplicial homology:

* Fundamental group is not good for detecting high-dimensional spale e.g. $\pi_1(S^n) = 0$ $n \ge 2$

· TI, of any CW Complex X is determined by X^2

=> Higher homotopy group ~~ not easy to Calculate

* Homology is an earier invariant to calculate

Det An n-simplex is the convex hull of n+1 affinely independent pts Vo,..., Vn EIRN i.e. vectors V,-Vo, V2-Vo,..., Vn-Vo are linearly indep.

0-Simplex

0-Simplex
1-Simplex
2-Simplex
Vo
V1

1-Simplex
V2

1-Simplex
V2

No
V1

No
V1

IR^{nt1} Standard n-simplex $\Delta^{N} = \left[(1,0,...,0), (0,1,0...,0), ..., (0,0,...,1) \right]$

 $= \left\{ (t_0, t_1, ..., t_n) \in \mathbb{R}^{n+1} \mid \sum_{i=1}^n t_i = 1, t_i \geqslant 0 \text{ for all } i \right\}$

Canonical linear homes: $\Delta^n \longrightarrow [v_0, ..., v_n]$ $(t_0,t_1,...,t_n) \longrightarrow \sum_{i=1}^n t_i v_i$

Det $[V_0, V_1, ..., \hat{V_i}, ..., V_n]$ with fall $[V_0, V_1, ..., \hat{V_i}, ..., V_n]$ V_0

Det A Δ -Complex Stron a top. Shaw X is a Collection of maps $\sigma_{\alpha} : \Delta^n \longrightarrow X$ for each n = s.t.

(1) on lon is inj and each pt of X is in the image of exactly one of on (intenion of Δ^n

Det. Elements of Ker ∂_n are called n-cyclin: $\mathbb{Z}_n^{\Delta} = \ker(\partial_n)$. Elements of $\operatorname{Im}(\partial_{n+1})$ are called n-boundaries: $B_n^{\Delta} = \operatorname{Im}(\partial_{n+1})$ n-Simplicial homology group of $X: H_n^{\Delta}(X) = \overline{Z_n^{\Delta}}$ $\Delta_{n}(x) \xrightarrow{\partial_{n}} \Delta_{n-1}(x) \xrightarrow{\partial_{n-1}} \Delta_{n-2}(x) \longrightarrow \cdots \xrightarrow{\partial_{2}} \Delta_{1}(x) \xrightarrow{\partial_{1}} \Delta_{o}(x) \xrightarrow{\partial_{0}} 0$ $H^{\Delta}(X) = I_{m} \partial n$ $X = \{pt\} \qquad \Delta_i(X) = 0 \qquad i > 0 \qquad 0 \longrightarrow \mathbb{Z} \qquad 0 \longrightarrow \mathbb{Z} \qquad i = 0$ $\Delta_i(X) = \mathbb{Z} \qquad i = 0$ Ex 3 X = T $\begin{array}{c}
a \\
U \\
C
\end{array}$ $\Rightarrow \partial a = 0, \partial b = 0, \partial C = 0 \Rightarrow \partial_1 = 0$ $\partial U = a + b - C \Rightarrow \partial (U - L) = 0$ $\partial L = a + b - C$ generator the De Complex Str. $\partial_1 a = W - V$ $\partial_1 b = W - V$ $\partial_1 C = 0$ \longrightarrow Ker $\partial_1 = gen$ by $\{b - a, C\} = gen$ by $\{c + b - a, C\}$ In $\partial_1 = gen.$ by $\{w - v\}$ \longrightarrow $H_o^{\Delta}(\mathbb{RP}^2) = \mathbb{Z}$ $\partial_2 U = C + a - b^2 = C - (b - a)$ $\partial_2 U = C + a - b^2 = C + b - a$ $\partial_2 U = C + a - b^2 = C + b - a$ $\lim_{n \to \infty} \partial_2 : g_{n} b_{2} \{C + b - a, C + a - b^2\} = g_{n} b_{2} \{C + b - a, 2c\}$