Primo Esercizio prova 9 Luglio

martedì 13 luglio 2021

10:57

Una procedura esegue un dato compito in meno di 10 secondi nel 70% delle esecuzioni inoltre la procedura esegue tale compito usando librerie esterne nel 60% delle esecuzioni. Se non usa librerie esterne, la procedura esegue il compito in meno di 10 secondi nell'80% delle esecuzioni. Calcolare la probabilità:

- 1) che la procedura esegua il compito in meno di 10 secondi e non usi librerie esterne.
- 2)che non esegua il compito in meno di 10 secondi e non usi librerie esterne.
- 3)che esegua il compito in meno di 10 secondi oppure usi librerie esterne.
- 4)chiamiamo A l'evento "la procedura esegue il compito in meno di 10 secondi " e B "la procedura usa librerie esterne ", valutare l'indipendenza

$$\frac{P(A|B)}{P(B)} = \frac{P(A \cap B)}{P(B)}$$

$$\Rightarrow P(A \cap \overline{B}) = P(A \mid \overline{B}) P(\overline{B})$$

$$P(B) = 60 \% = 0,6 \Rightarrow P(B) = 1 - P(B) = 1 - 0,6 = 0,4$$

1)
$$P(A \cap B) = P(A \mid B) P(B) = 0.8.0.4 = 0.32$$

2)
$$\underline{P}(\overline{A} \cap \overline{B}) = \underline{P}(\overline{A} | \overline{B}) \underline{P}(\overline{B}) = 0, 2 \cdot 0, 4 = 0, 08$$

3)
$$P(A \cup B) = P(B) + P(A \cap \overline{B}) = 0,6 + 0,32 = 0,92$$

$$P(A \cap \overline{B}) = P(\overline{B} \mid A) P(A)$$

$$P(A \cap B) = P(B \mid A) P(A)$$

$$P(A \cap B) = P(A \cap B) = P(A \cap B) = P(A \cap B)$$

$$P(A \cap B) = P(A \cap B) = P(A \cap B) = P(A \cap B)$$

$$P(A \cap B) = P(A \cap B) = P(A \cap B) = P(A \cap B)$$

$$P(A \cap B) = P(A \cap B) = P(A \cap B) = P(A \cap B)$$

$$P(A \cap B) = P(A \cap B) = P(A \cap B)$$

$$P(A \cap B) = P(A \cap B) = P(A \cap B)$$

$$P(A \cap B) = P(A \cap B) = P(A \cap B)$$

$$P(A \cap B) = P(A \cap B) = P(A \cap B)$$

$$P(A \cap B) = P(A \cap B) = P(A \cap B)$$

$$P(A \cap B) = P(A \cap B) = P(A \cap B)$$

$$P(A \cap B) = P(A \cap B) = P(A \cap B)$$

$$P(A \cap B) = P(A \cap B) = P(A \cap B)$$

$$P(A \cap B) = P(A \cap B) = P(A \cap B)$$

$$P(A \cap B) = P(A \cap B) = P(A \cap B)$$

$$P(A \cap B) = P(A \cap B) = P(A \cap B)$$

$$P(A \cap B) = P(A \cap B) = P(A \cap B)$$

$$P(A \cap B) = P(A \cap B) = P(A \cap B)$$

$$P(A \cap B) = P(A \cap B)$$

$$P(A$$

Secondo Esercizio Prova del 9 Luglio martedi 13 luglio 2021 11:12 Un esperimento consiste nel lanciare a caso 4 mostra testa con probabilità 1/4. Sia X la varia una ripetizione quando l'esito di un lancio è un

Un esperimento consiste nel lanciare a caso 4 monete truccate, nel senso che ciascuna moneta mostra testa con probabilità 1/4. Sia X la variabile aleatoria che conta il numero di ripetizioni (si ha una ripetizione quando l'esito di un lancio è uguale a quello del precedente). Sia Y la variabile aleatoria che vale 1 se il numero di volte che esce testa nei 4 lanci è maggiore strettamente del numero di volte che esce croce , altrimenti vale 0. Calcolare:

1)Densità discreta

2)Cov(X,Y)

3)E(X+Y)

	V	V					
1) TTTT	X 3	У 1	$\binom{1}{4}^4 = \frac{1}{256}$				
TTTC	3 2 1	1)	$\left(\frac{1}{4}\right)^3 \left(\frac{3}{4}\right) = \frac{3}{256}$	XY	0	1	
T T C T T C T T C T T C	1	1	(4) (4) 256	0	2.9	0	
CTTT	2	1]		O		0 3	1
T T C C T C T C	0	0	(1)2 /3/2 9	1	1 2 256	2.3/256	2
CTTC	1	0 6	$\left(\frac{4}{4}\right)^2 \cdot \left(\frac{3}{4}\right)^2 = \frac{9}{256}$	2	72 256	2. 3	
CTCT	0	0		3	256	1 256	1
CCTT	2	01	2	ty (y)	243 256	13 256	1
CTCC	1		$\left(\frac{1}{4}\right)\cdot\left(\frac{3}{4}\right)^3 = \frac{27}{256}$		250		
CCTC	1 2	0	σι				
CCCC	3	0	$\left(\frac{3}{4}\right)^4 = \frac{81}{256}$				

2-2-2-2

78 256

Om un esperimento si hanno a disposizione	2 monete Ms, Ms			
de monete. La prima monta my mostra Tean prob. 1/3, mentre la seconda, ma, mostra Tean prob. 1/4. Si sagere una delle due monete e la si lancia. 3 volte da probabilità di sagerere la moneta me	$\underline{P}(T m_1) = \frac{1}{3} \longrightarrow \underline{P}(\underline{e} m_1) = \frac{2}{3}$			
e de doppio de quella de segurar mei 3 1. Caledone la probabilità de ottemere mei 3	$P(T m_2) = \frac{1}{4} \longrightarrow P(c m_2) = \frac{3}{4}$			
Sanci 2 volte testa e 1 croce. Se mei 3 lanci si è ditenuto di volte testa e 1	$\int P(m_2) = 2 \cdot P(m_1)$			
croce, qual è la probabilità di aven solto la moneta my?	$\frac{2P(m_1)+P(m_2)=1}{2}$			
	$P(m_1) + 2 \cdot P(m_1) = 1$			
	$3 \cdot P(m_1) = 1$			
	$P(m_1) = \frac{1}{3}$			
	$P(M_2) = \frac{2}{3}$			

(i)
$$\rightarrow$$
 Se solgo m_{1}
 $P(2 \text{ Te 1c} \mid m_{11}) = 3 \cdot (\frac{1}{3})^{2} \cdot (\frac{2}{3}) = \frac{6}{27}$
 \rightarrow Se exolgo m_{2}
 $P(2 \text{ Te 1c} \mid m_{12}) = 3 \cdot (\frac{1}{4})^{2} \cdot (\frac{3}{4}) = \frac{9}{64}$

In totale

 $P(2 \text{ Te 1c} \mid m_{12}) = P(2 \text{ Te 1c} \mid m_{11}) P(m_{11}) + P(2 \text{ Te 1c} \mid m_{12}) P(m_{12})$
 $= \frac{6}{27} \cdot \frac{1}{3} + \frac{9}{64} \cdot \frac{2}{3} = \frac{145}{864}$

(ii) $P(m_{11} \mid 2 \text{ Te 1c}) = \frac{P(2 \text{ Te 1c} \mid m_{11}) \cdot P(m_{11})}{P(2 \text{ Te 1c})} = \frac{6}{27} \cdot \frac{1}{3} = \frac{64}{145}$
 $= \frac{64}{145} = \frac{145}{864}$

E	5. L					HAVE Brown 2	
bi bi	Abound di Tugusti e V la v.a	2 Ungli	.a.stu ibmi	ca la	Spancawalante	estationmente 2	2 bit uguali av 1
PORM	pete das mi	APWARACH-	1340 h				
14)0	blada la e	cob.	dhe	X2:	Ł		
K.	bledone lo grafico Westone E	- 67				ny dispunantane	
						X	
(;)	1	1	0	0	0	1	X ∈ {1,2,3,4}
	1	P	1	0	0	1	
	1	0	0	1	0	4	
	1	0	0	0	1	1	$P(X=1) = \frac{4}{10}$
	0	1	1	0	0	2	10
	0	1	0	1	0	2	
		1				Z	$\frac{P(X-Z)=\frac{3}{10}}{10}$
	0	0	1	0	1	3 3 4	40
	0	0	1	1	0	3	
		0	0	1	1	1	$\frac{1}{2}(x-3) = \frac{2}{10}$

(ii)
$$P(X \ge 2) = 1 - 2(X < 2) = 1 - P(X = 1) = 1 - \frac{4}{10} = \frac{6}{10}$$

(iii) $F(x) = \frac{9}{10}(X \le x)$
 $\frac{4}{10} + \frac{3}{10} = \frac{1}{10}$
 $\frac{4}{10} + \frac{3}{10} = \frac{1}{10}$
 $\frac{4}{10} + \frac{3}{10} = \frac{9}{10}$
 $\frac{4}{10} + \frac{3}{10} = \frac{9}{10}$

(inv)
$$E(X) = 1 \cdot \frac{4}{10} + 2 \cdot \frac{3}{10} + 3 \cdot \frac{2}{10} + 4 \cdot \frac{1}{10} = \frac{30}{10} = 2$$

$$= \frac{30}{10} = 2$$

$$E(X^{2}) = 1^{2} \cdot \frac{4}{10} + 2^{2} \cdot \frac{3}{10} + 3^{2} \cdot \frac{2}{10} + 4^{2} \cdot \frac{1}{10} = 5$$

$$Vor(X) = E[X^{2}) - E(X|^{2}) = 5 - 4 = 1$$

Esercizio 3

Definiamo una variabile aleatoria X secondo la seguente procedura. Si estrae una carta da un mazzo di 52 carte francesi. Se la carta è un JACK, una REGINA oppure un RE, allora X=2; se la carta è un ASSO allora X=1; altrimenti (quindi nel caso si estragga un numero da 1 a 10) si ha X=3. La variabile aleatoria Y è definita in accordo alla seguente procedura: se il seme della carta estratta (per determinare il valore di X) è CUORI, allora Y=X-1, altrimenti è Y=X+1.

- Determinare la densità discreta congiunta p(x, y);
- (ii) Stabilire se X ed Y sono indipendenti;
- (iii) Calcolare E(X · Y).

(i)	X = .	{ 1, la co 2, la co 3, altri	arta è u	u anno Ljadk,	regiue o	πε	
	Y = -{	X+1, S	la carita. Utrimenti	è di c	uou	Y∈ { 0,	1,3,2,4}
		0 1	2 3	0	12 52		
	2 3 1,(y)	0 3 52 0 0 1 3 52 52	0 52 52 52 52 52	52	52 36 52		

(ii)	$h(1,1) = 0 + \frac{1}{52} \cdot \frac{3}{52} = h_{X}(1) \cdot h_{Y}(1) \Rightarrow X \in Y \text{ mo indipend.}$
(ini)	$\mathbb{E}(X \cdot Y) = 1.2, \frac{3}{52} + 2.1. \frac{3}{51} + 2.3. \frac{9}{52} +$
	+3.2.9 + 3.4.24 = 444 - 111 - 121