الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: 2017

امتحان بكالوريا التعليم الثانوي

الشعبة: تقنى رياضي

المدة: 04 سا و 30 د

اختبار في مادة: التكنولوجيا (هندسة كهربائية)

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول الموضوع الأول نظام آلي لتوضيب حُزَم ورق مقاس A4

يحتوي هذا الموضوع على 8 صفحات (من الصفحة 15/1 إلى 15/8)

العرض: من الصفحة 15/1 إلى 15/5

العمل المطلوب: الصفحة 15/6

وثائق الإجابة: الصفحتان 15/7 و 15/8

دفتر الشروط:

1) هدف التألية : يسمح النظام بتعبئة حزم ورق A4 داخل علب.

2) وصف التشغيل:

يحتوي النظام على:

- أشغولة التعبئة: بعد حضور علبة فارغة تقوم الرافعة A بتعبئتها بخمس (5) حزم ورق A4 التي تنزل الواحدة تلوى الأخرى عبر قناة الإتيان. (نظام احضار العلب غير مدروس).
 - أشغولة التحويل إلى البساط: يتم تحويل العلبة المعبأة إلى البساط بخروج ذراع الرافعة $\bf B$ حتى الضغط على $\bf b_1$ ثم تعود حتى الضغط على $\bf b_0$ وتنتهى الأشغولة.
 - أشغولة التقديم: يتم تقديم العلبة الى مركز الطّي و المَسْك بواسطة المحرك M.
- أشغولة الطّي والمسك: عند الكشف عن علبة بواسطة 52 يتم طيّ جوانبها بالرافعتين D و D ثم مَسْكها بالرافعة E.
- 3) الاستغلال: يتطلب النظام حضور عامل مختص لعمليات القيادة والصيانة الدورية و عامل دون اختصاص لتصريف العلب الجاهزة وتزويد حامل المسّاكات وملء قناة الاتيان بالحزم الورقية.
 - 4) الأمن: حسب القوانين المعمول بها دوليا.

5) التحليل الوظيفى: الوظيفة الشاملة (مخطط النشاط 0-A)

6) المناولة الهيكلية: (الشكل1)

7) المناولة الزمنية:

33

GCI و يقوده متمن الفيادة والتهيئة GS و يقوده متمن القيادة والتهيئة

8) الاختيارات التكنولوجية:

عناصر القيادة والحماية	الملتقطات	المنفذات المتصدرة	المنفذات	الأشغولات
RT: مرحل حراري لحماية المحرك M. AU: زر التوقف الاستعجالي.	a ₁ , a ₀ , المتقطي نهاية الشوط لساق الرافعة A. الشوط لساق الكشف عن وجود حزمة الورق . Cp:خلية الكشف عن مرور حزمة (عدد الحزم N).	'dA+,dA: موزع 5/2 ثنائي الاستقرار ، تحكم كهروهوائي ~24v.	A: رافعة ثنائية المفعول لوضع حزم الورق في العلبة.	التعبئة
	b ₁ ,b ₀ : ملتقطي نهاية	-dB+,dB موزع 5/2	B: رافعة ثنائية المفعول	التحويل
Auto/Manu: مبدلة	الشوط لساق الرافعة B.	ثنائي الاستقرار ، تحكم	للتحكم في أداة التحويل	إلى
اختيار نمط	_ 3 3	ي - کهروهوائي -24V.	إلى البساط.	البساط
التشغيل (آلي/يدوي).	S2: ملتقط الكشف عن	KM: ملامس	بى . M: محرك لا تزامني ~3	•
•			ابرا: محرت لا ترامعي ۱۷۰ 220/380v	, " 1 1
MA: زر التشغيل.	حضور العلبة في مركز	كهرومغناطيسي ~24V	مزود بمخفض سرعة .	التقديم
Ar: زر التوقيف.	الطّي والمسك.			
	رد، ملتقطي نهاية $\mathbf{c}_1,\mathbf{c}_0$	-dC ⁺ ,dC: موزع 5/2	C: رافعة ثنائية المفعول	
	الشوط لساق الرافعة C.	ثنائي الاستقرار ، تحكم	للتحكم في أداة الطّي.	
ne uti . w		كهروهوائي ~24v.		
Init: زر التهيئة.	d ₁ , d ₀ : ملتقطي نهاية	-dD+,dD موزع 5/2	D: رافعة ثنائية المفعول	الطّي
RAZ: ارجاع يدوي	الشُوط لساق الرافعة D.	ثنائي الاستقرار ، تحكم	للتحكم في أداة الطّي.	والمسك
للعداد.		کهروهوائي~24v.	<u> </u>	
Réa: زر إعادة	e ₁ ,e ₀ : ملتقطي نهاية	5/2 موزع dE⁺,dE⁻	E: رافعة ثنائية المفعول	
التسليح.	الشُوط لساق الرافعة E.	ثنائي الاستقرار ، تحكم	للتحكم في أداة المسك.	
		كهروَهوائي~24v.	 1	

9) الانجازات التكنولوجية:

• دارة الكشف والعدّ: (الشكل7)

• دارة المنبه الصوتي: (الشكل 8)

مرجع الثنائيات

D₁: 1N4007

D₂: 1N4007

10) الوثائق التقنية:

• وثيقة الصانع للمقاحل في حالة التشغيل:

المقاحل المميزة	BC550	BC337	BC560	BC327
توتر جامع- باعث أعظمي VCE max	45 V	45 V	-45 V	-45 V
توتر العتبة للوصلة قاعدة-باعث VBE0	0,6 V	0,7 V	-0,6 V	-0,7 V
تيار الجامع الأعظمي IC max	100 mA	800 mA	100 mA	800 mA
النوع type	NPN	NPN	PNP	PNP

• وثيقة الصانع للثنائيات:

Diode	$\mathbf{V}_{\mathbf{INV}_{\mathbf{max}}}$	$\mathbf{I}_{\mathbf{Dmax}}$	$\mathbf{V_0}$
1N4007	1N4007 1000 V		0,7 V

العمل المطلوب:

الجزء الأول: (06.5 نقاط)

س1: أكمل النشاط البياني التنازلي A0 على وثيقة الإجابة1 (صفحة7/15).

س2: ارسم متمن الأشغولة 2 "التحويل الى البساط" من وجهة نظر جزء التحكم.

س3: أكمل معادلات التنشيط والتخميل للمراحل X11 و X12 و X13 من الأشغولة 1 "التعبئة" على وثيقة الاجابة 1 (صفحة 7/15).

س4: أكمل ربط المعقب الكهربائي للأشغولة 3 "التقديم" مع ربط المنفذ المتصدر على وثيقة الإجابة 1 (صفحة 15/7).

الجزء الثاني: (07 نقاط)

• دارة الكشف والعد: (الشكل 7) (صفحة 5/15).

 \mathbf{r} وما نوع المقاومة \mathbf{R}_{D} و الدارة \mathbf{R}_{D} وما نوع المقحل \mathbf{r}

 \mathbf{v}^{-} علما أن $\mathbf{R}_{1} = \mathbf{R}_{2}$ ، كيف يسمى هذا التوتر \mathbf{v}^{-}

س7: أكمل جدول التشغيل لدارة الكشف والعد على وثيقة الإجابة 2 (صفحة 15/8).

س 3: أكمل المخطط المنطقى للعداد على وثيقة الإجابة 2 (صفحة 8/15).

• دارة المنبه الصوتي: (الشكل8) (صفحة 5/51)

تستعمل هذه الدارة لتنبيه العامل بإشارة صوتية في حالة قُرْب نفاذ المسَّاكات.

سو: ما اسم هذه الدارة ؟

س 10 : باستعمال وثائق الصانع (صفحة 15/5) استخرج توتر العتبة للثنائيتين 10، D2، D1 ثم اختر المقاحل المناسبة للدارة مع تبرير الإجابة.

الجزء الثالث: (06.5 نقاط)

• خط التغذية : (الشكل6) (صفحة 4/15)

دارة الاستطاعة للمحرك M

س11: اذكر أسماء العناصر الثلاثة (1؟)،(2؟)،(3) المهيكلة لخط تغذية المحرك.

س 12: حدد نوع الإقلاع ؟ و ما وظيفة العنصر التقني؟

المحول Tr₂ (220/12v) المستعمل لتغذية الدارات الالكترونية أجريت عليه

 $U_{20} = 12,6V$; $P_{10} = 1,8W$: في الفــــراغ : – في الفــــراغ

 $I_{2cc} = I_{2n} = 3,5A$; $P_{1cc} = 2,1W$: في الدارة القصيرة

 \mathbf{v}_{13} : ماذا تمثل \mathbf{p}_{10} و \mathbf{p}_{10} ؛ واحسب نسبة التحويل في الفراغ.

يغذى هذا المحول حمولة مقاومية بالتيار الاسمى.

. ΔU_2 التوتر المقاومة المرجعة إلى الثانوي \mathbf{R}_{s} ثم أوجد الهبوط في التوتر ΔU_2

س 15: احسب الاستطاعة في الثانوي P_2 و مردود المحول.

وثيقة الإجابة 1 (تعاد مع أوراق الإجابة)

ج1) النشاط البياني التنازلي A0:

ج3) جدول معادلات التنشيط و التخميل

التخميل	التنشيط	المرحلة
		X11
X13+X200		X12
		X13

ج4) المعقب الكهربائي للأشغولة 3 "التقديم":

وثيقة الإجابة 2 (تعاد مع أوراق الإجابة)

ج7) جدول التشغيل لدارة الكشف والعد:

Q	R	S	حالة المقحلT	توتر الخروج V s	قيمة التوتر V +	
						غياب حزمة الورق
						حضور حزمة الورق

ج8) المخطط المنطقي للعداد:

انتهى الموضوع الأول

الموضوع الثاني نظام آلى للثقب و الطّى

يحتوي هذا الموضوع على 7 صفحات (من الصفحة 15/15 إلى 15/15)

العرض: من الصفحة 15/13 إلى 15/13

العمل المطلوب: الصفحة 15/14

وثيقة الإجابة: الصفحة 15/15

دفتر الشروط:

1) الهدف من التألية: يهدف النظام إلى ثقب وطيّ صفائح نحاسية بصفة آلية.

2) وصف التشغيل:

بعد الضغط على زر التشغيل Dcy وتحقق الشروط الابتدائية ينطلق العمل التحضيري.

- العمل التحضيري: الكشف عن صفيحة يؤدي إلى تقديمها ثم ثقبها لتحضير النظام للعمل الآلي.
 - العمل الآلي: ينطلق بتقديم الصفائح النحاسية ثم ثقبها و طيِّها في آن واحد .

أشغولة الطّي:

 ${\bf c}_1$ تبدأ الأشغولة بدخول ذراع الرافعة ${\bf B}$ حتى ${\bf b}_0$ ليتم طيُّ الصفيحة بنزول ذراع الرافعة ${\bf C}$ حتى ${\bf c}_1$ ثم يعود ،عندئذ يصعد ذراع الرافعة ${\bf B}$ لاستخراج الصفيحة المطوية وتنتهى الأشغولة.

ملحظة: عند الانتهاء من عد 48 صفيحة جاهزة يتوقف النظام لمدة 10s لتصريف العلبة المملوءة وإحضار علبة فارغة (نظام التصريف و الإحضار خارج عن الدراسة).

3) الأمن: حسب القوانين المعمول بها دوليا.

4) الاستغلال: يستوجب حضور عاملين واحد دون اختصاص لتعبئة الخزان بالصفائح النحاسية والثاني مختص في القيادة والصيانة الدورية.

5) الوظيفة الشاملة: مخطط النشاط: (A-0)

W: طاقة كهريائية وهوائية

تعليمات الاستغلال : E

C: أوامر التشغيل

N: R عدد حزم الورق في العلبة

t زمن التأجيل .

7) المناولة الزمنية: متمن القيادة و التهيئة (GCI) 100 $-\mathbf{S.p_0.b_1.c_0}$ dAAuto . Dcy Manu تهيئة النظام شروط أولية CI العمل التحضيري KM التشغيل 105 عمل تحضيري اليدوي $\mathbf{p_1}$ نهاية العمل التحضيري dP KM I/GPN: (1) $\mathbf{p_0}$ الإذن بالتشغيل الآلي Manu Auto متمن الأمن (GS): F/GCI:(100) F/GPN:(10,20,30) AU . RT . Réa متمن الإنتاج العادي (GPN): AU + RTمتمن أشغولة التقديم نهاية التقديم X1.X104.S 11 dAنهاية الطيّ نهاية الثقب a.N a.N 3-1 2-1 إرجاع العداد إلى الصفر X13 **12** t/12/10s 13 $\overline{\mathbf{X}}_{1}$

شبكة التغذية : 50 Hz : شبكة التغذية

—			
	المنفذات	المنفذات المتصدرة	الملتقطات
A	A: رافعة بسيطة المفعول	dA: موزع كهروهوائي 3/2 أحادي	a: ملتقط نهاية الشوط لذراع
التقا	لتقديم الصفيحة .	الاستقرار ~ 24v .	الرافعة A .
التقديم		T: مؤجلة.	s : ملتقط الكشف عن وجود
		· ·	الصفائح في مركز التقديم .
			N : عدد الصفائح الجاهزة. t=10s :زمن التأجيل .
D	1 . 11	7/2 st / . ID+ ID*	
	P: رافعة مزدوجة المفعول.	'd P +، dP : موزع کهروهوائ <i>ي</i> 5/2	p 1، p 0 : ملتقطي نهاية الشوط
الثقب М	M:محرك أحادي الطور.	ثنائي الاستقرار ~ 24v .	لذراع الرافعة P .
		KM: ملامس كهرومغناطيسي~24v	
В	B: رافعة مزدوجة المفعول.	-dB' ،dB' موزع کهروهوائي 5/2	b1،b0: ملتقطي نهاية الشوط
$\mathbf{c} \ $	C: رافعة مزدوجة المفعول	ثنائي الاستقرار ~v 24 .	لذراع الرافعة B.
الطّي		-dC+ 'dC: موزع كهروهوائي 5/2	c1،c0: ملتقطي نهاية الشوط
		ثنائي الاستقرار ~24v .	لذراع الرافعة C .

9) إنجازات تكنولوجية:

8) جدول الاختيارات التكنولوجية:

• دارة كشف و عد 48 صفيحة: (الشكل 1)

دارة المؤجلة T: (الشكل 2)

 $R=33K\Omega$ $C=220\mu F$ $Vz=6.2 \ v$ $0K\Omega \ \leq P \leq \ 100 \ K\Omega$

• دارة الميكرومراقب PIC 16F84A: (الشكل 3)

10) وثائق الصانع

المقاحل

2N2222	V _{CEmax} = 40v	I _{Cmax} =800mA	$V_{CESat} = 0.3V$	V _{be} =0.7V	β=100
BSS50	$V_{CEmax} = 30v$	$I_{Cmax} = 1A$	$V_{CESat} = 0.3V$	$V_{be} = 1.4V$	β >2000

الميكرومراقب PIC16F84A

المرحلات الكهرومغناطيسية (V23042A2)

24V	12V	5V	توتر التغذية
2A	2A	2A	التيار الأقصى
1800 Ω	500 Ω	100 Ω	مقاومة الوشيعة ∟R

العمل المطلوب:

الجزء الأول: (99 نقاط)

س1: أكمل مخطط التحليل الوظيفي التنازلي A0 على وثيقة الإجابة (صفحة 15/15)

س 2 : حدد الشروط الأولية CI في هذا النظام (صفحة 15/11).

س 3 : ما هو دور المراحل 1-X2 و 1-X3 في متمن الانتاج العادي GPN (صفحة 15/11).

س 4: أنشئ متمن الأشغولة 3 (الطّي) من وجهة نظر جزء التحكم.

س و: اكتب على شكل جدول معادلات التنشيط والتخميل لمتمن الأشغولة 1 (التقديم).

س₆: أكمل دارة المعقب الهوائي للأشغولة 1 (التقديم) على وثيقة الإجابة (صفحة 15/15). الجزء الثانى: (08 نقاط)

• دارة كشف وعد 48 صفيحة (الشكل1)(صفحة 15/12):

س 7: ما اسم المقحل BSS50 ؟

باستعمال وثائق الصانع للمرحلات الكهرومغناطيسية و المقاحل (صفحة 15/13)

س8: أوجد مقاومة المرحل KA ثم احسب شدة التيار I المار فيه.

سو: أكمل المخطط المنطقى للعداد على وثيقة الإجابة (صفحة 15/15).

• دارة المؤجلة T (الشكل 2) (صفحة 15/13):

س 10: ما نوع المؤجلة المستعملة ؟

t=10s المقاومة المتغيرة P المحصول على زمن التأجيل t=10s

• دارة الميكرومراقب PIC16F84A (الشكل 3) (صفحة 15/13): نقترح استبدال دارة المؤجلة T السابقة بدارة قابلة للبرمجة .

مستعينا بوثائق الصانع (صفحة 15/13)

س 12: حدّد المنافذ المستعملة كمداخل و المنافذ المستعملة كمخارج.

 $_{13}$ bsf PORTA,0 و movwf TRISA و movlw OX06 الجزء التعليمات $_{13}$ الجزء الثالث: (03 نقاط)

• شبكة التغذية:

تم قياس الاستطاعة التي توفرها الشبكة بطريقة الواطمترين فكانت النتائج:

 $P_B=P_2=340w \cdot P_A=P_1=1200w$

(S ، الظاهرية Q ، الارتكاسية (الردية) الظاهرية Q ، الظاهرية المرية Q

س15 : أوجد معامل الاستطاعة COSφ .

س16 : ماذا تقترح لرفع معامل الاستطاعة؟

اختبار في مادة: التكنولوجيا (هندسة كهربائية) / الشعبة: تقني رياضي / بكالوريا 2017

وثيقة الإجابة (تعادمع أوراق الإجابة)

ج 1 / مخطط التحليل الوظيفي التنازلي A0:

ج 6 / المعقب الهوائي للأشغولة 1 (التقديم):

ج 9 / المخطط المنطقي للعداد:

انتهى الموضوع الثاني

رمة (العلا	عناصر الإجابة
مجموع	مجزأة	الموضوع الاول
_	_	ج1) النشاط البياني التنازلي A0: على ورقة الاجابة
ن 1.5	مرحلة انتقال 0,25x4 الأشغولة + نداء جواب جواب	ع . متمن ألاشغولة 2 "التحويل الى البساط":
		ج3 . جدول التنشيط و التخميل: على ورقة الإجابة
_		ج4. المعقب الكهربائي للأشغولة 3"التقديم" مع ربط المنفذ المتصدر :على ورقة الاجابة
0.75 ن	0.25	ج5) دور المقاومة RD: تحديد التيار المار في الثنائية الكهروضوئية (تقبل الإجابة :حماية الثنائية الكهروضوئية)
	0.25	دور الدارة Aop: مضخم عملي مقارن نوع المقحل: MOSFET: T أو (مقحل ذو تأثير المجال بقناة N)
1ن	0.5 0.25 0.25	$V^-=Vcc.rac{R_2}{R_1+R_2}=rac{Vcc}{2}:$ حساب التوتر $V^-=6v$ $V^-=6v$ (لا تقبل إجابة أخرى $V^-=6v$)
		ج7) جدول التشغيل لدارة الكشف والعد: على ورقة الاجابة
		ج8) دارة العداد: على ورقة الاجابة

ئ 0.5	0,5	ج9) اسم الدارة: مضخم استطاعة : (صنف B) أو (دفع -جذب) أو (Push-Pull)
	0,5	$(\mathbf{V_0} = 0\;, \mathbf{7v}\;)\; \mathrm{D_1}\;;\; \mathrm{D_2}$ توتر عتبة الثنائيتين (10
1.5 ن	0, 5	المقاحل المناسبة للدارة: BC337(NPN) وBC327(PNP)
		التعليل: تم اختيار المقطين
	0,25	- لأنهما متكاملين
	0,25	و لهما توتر عتبة $ m V_{BE}$ مساو لتوتر العتبة للثنائيات -
		ج11) تسمية عناصر خط التغذية للمحرك M
		العنصر التسمية
0.75 ن	0,25x3	1؟ قاطع عازل أو فاصل عزل أو مقطاع (Q)
		2؟ ملامس كهرومغناطيسي (KM) ، (تقبل الاجابة ملامس تحكم)
		3؟ مرحل حراري (RT) (تقبل الاجابة مرحل حماية)
		(12ह
1 ن	0.5	- نوع الاقلاع : إ قلاع مباش ر
	0.5	- وظيفة العنصر التقني : كبح المحرك
	0.5	(تقبل الاجابات: مكبح ، مكبح كهربائي أو كهرومكبح ، مكبح بغياب التيار)
	0,5	ج13) P ₁₀ : تمثل الضياع في الحديد (الضياع المغناطيسي)
	0,5	P _{1CC} : تمثل ضياع جول في الظروف الاسمية (الضياع في النحاس)
1.75 ن	C	- نسبة التحويل في الفراغ .
	0.5	$m_0 = \frac{U_{20}}{U_1} = \frac{12.6}{220}$
	0.25	$m_0 - \frac{1}{U_1} - \frac{1}{220}$
	0.23	$m_0=0$, 057

-		
	0.5 0.25	$egin{aligned} \mathbf{Rs} & \mathbf{R_{1}} & \mathbf{R_{1}} & \mathbf{R_{2}} & \mathbf{R_{1}} & \mathbf{R_{2}} & \mathbf{R_{2}} & \mathbf{R_{3}} & \mathbf{R_{1}} & \mathbf{R_{1}} & \mathbf{R_{2}} & \mathbf{R_{3}} & \mathbf{R_{3}} & \mathbf{R_{3}} & \mathbf{R_{3}} & \mathbf{R_{4}} & R$
1.5 ن	0.5	$\Delta \mathrm{U}_2 = \mathrm{U}_{20} - \mathrm{U}_2$
	0.25	$\Delta \mathbf{U_2} = 12, 6 - 12 = 0.6 \ \mathbf{v}$
		أو بما أن الحمولة مقاومية واسمية إذن
		$\Delta \mathrm{U}_2 = \mathrm{Rs} \; . \; \mathrm{I}_{2\mathrm{n}}$
		$\Delta \mathbf{U_2} = 0.171 \cdot 3.5 = 0.6 \mathbf{v}$
		Δ02 = 0,171 . 3.3 0,0 1
	0.5	${f P}_2$ و الثانوي ${f P}_2$ الاستطاعة في الثانوي ${f P}_2={f U}_2$. ${f I}_2={f U}_2$. ${f I}_2={f U}_2$. ${f I}_2$. ${f I}_2$. ${f I}_2$
. 1 5	0.25	$P_2 = 12.3, 5 = 42 \text{ w}$
1.5 ن	0.5	$\eta = rac{P_2}{P_1} = rac{P_2}{P_2 + P_{10} + P_{1CC}}$
	0.25	$ \eta = \frac{42}{42 + 1.8 + 2.1} = 0.915 = 91.5\% $

صفحة 4 من 9

						_ 7 , 7 ;		
						رقة الاجابة 2	ور	
							ة الكشف و العد	ج7) جدول التشغيل لدارة
		Q	R	S	حالة المقحل T	توتر الخروج -V	قيمة التوتر +V	
1.5 ن	12 x	0	1	0	مسدود	0	$\mathbf{V}_{\mathbf{cesat}}$ (0)	في غياب حزمة
	0.125				أو (0)		1 1	الورق
	0.123	1	0	1	مشبع أو (1)	V _{cc} (12 v) أو	V_{cc} (12 v)	في حضور حزمة الورق
					(1) 3'	أو (1)	أو (1)	3,5
								$lue{}$
								♦
	البوابة						عداد	ج8) المخطط المنطقي لل
	0.5 المداخل	+5V ¬	<u> </u>					N N
	0.5	\ \ \	<u> </u>		- 			
2 ن	الدقاقة		—[]	Ja (Qa	Jb Qb	┵,	J _c Q _c
	0.5	н	⊸	•				>
	الارجاع		K	CLR	$\overline{\overline{\mathrm{Q}}}_{\mathrm{a}}$	$\mathbf{K}_{^{\mathbf{b}}}$ $\mathbf{CLR}^{\overline{\mathbf{Q}}_{\mathbf{b}}}$	J ∐,	Kc Qc
	الى		L	P.		CLK	L	CLR
	الصفر							
	0.5				RAZ		X10	

العلامة		عناصر الإجابة						
مجموع	مجزأة	الموضوع الثاني						
		ج1/ مخطط التحليل الوظيفي التنازلي للنشاط البياني A0 على وثيقة الإجابة						
0.5ن	0.125x4		$CI=s.p_0.b_1.c_0$	52/ الشروط الأولية CI :				
0.5ن	0.25x2		-X3: مراحل انتظار	ج3/ دور المراحل 1-X2 و 1.				
2 ن	مرحلة انتقال + فعل 0,25x6 جواب جواب دداء	30	dC+	ج4/ متمن الأشغولة 3 (الطّي				
2 ن				ج5/ جدول معادلات التنشيط و				
		تخميل	تنشيط	المراحل				
	0.25 x8	X ₁₁	$X_{13}.\overline{X}_1 + X_{200}$	X10				
		$X_{12} + X_{13} + X_{200}$	$X_{10}.X_{1}.X_{104}.S$	X11				
		X ₁₃ +X ₂₀₀	X ₁₁ .a.N	X12				
		$X_{10}+X_{200}$	X_{11} . a. $\overline{N} + X_{12}$. t	X13				
		الإجابة.	غولة 1 (التقديم) على وثيقة	ج6/ ربط المعقب الهوائي للأشد				

0.5 ن	0.5		INGTO	ينقتون N	ج7/ اسم المقحل BSS50 : مقحل دارلينقتون			
	0.5	${f R_L} = {f 500} \Omega$ 12v حسب توتر التغذية : KA عقاومة المرحل						
1.5 ن		في المرحل الكهر ومغناطيسي						
	0.75	V_{c}	$R_{CC} = R_L.I$	$+V_{CE sa}$	$_{t}\Rightarrow I$ =	$= \frac{V_{CC} - V}{R_L}$	$\frac{C_{CEsat}}{500} = \frac{12 - 0.3}{500}$	
	0.25						I= 23.4 mA	
		ج9/ المخطط المنطقي للعداد على ورقة الاجابة						
0.5 ن	0.5	ج10/ نوع المؤجلة المستعملة: مؤجلة بخلية RC						
		ج11 / قيمة المقاومة المتغيرة P للحصول على زمن تأجيل قدره 10s						
1.5 ن	1.25	$t = (R+P).C \ln \left(\frac{Vcc}{Vcc - (Vz + V_{BE})} \right) \longrightarrow P = \frac{t}{C \ln \left(\frac{Vcc}{Vcc - (Vz + V_{BE})} \right)}$						
	0.25	$P = \frac{10}{220.10^{-6} \ln \left(\frac{12}{12 - (6, 2 + 0, 7)} \right)} - 33.10^{3}$ $P = 20K\Omega$						
		ج12/ المنافذ المستعملة كمداخل و المنافذ المستعملة كمخارج المداخل: RA1, RA2 تقبل الإجابة (قطب 1 و قطب 18) المخارج: RA0, RA3 تقبل الإجابة (قطب 2 و قطب 17) و تقبل الإجابة على شكل جدول						
1 ن	0.25X4							
		RA4	RA3	RA2	RA1	RA0		
		X	0	1	1	0		
			ج13/ تفسير التعليمات : التغسير					
	0.5x3	movlw ox06		التفسير اشحن القيمة ₁₆ (06) في سجل العمل w				
1.5ن		movwf TRISA		أنقل محتوي سجل العمل w إلى السجل TRISA				
		bsf PORTA,0 (ظام)	اجعل RA0=1 أو (أشعِل مصباح توقف النظام)		

		ج14/ الاستطاعات
	0.5	- الفعالة : P=P ₁ +P ₂
	0.25	P=1540 w
2.25 ن		
	0.5	$ ext{Q=} \sqrt{3} \; . \; (ext{P}_1 ext{-} ext{P}_2) \ ext{Q=} ext{1490 VAR} $
	0.25	
	0.5	$S \! = \! (P^2 \! + \! Q^2)^{1/2}$ $S \! = \! 2142 \; VA$
	0.25	
0.5 ن	0.25	COSφ= P/S عامل الاستطاعة /15ج
	0.25	$COS\phi = 0$,72
0.25 ن	0.25	ج16/ لرفع معامل الاستطاعة نقترح: إضافة مكثفات

