

UNIVERSIDADE Cálculo de

FEDERAL DA GRANDE DOURADOS	2	
Várias Variáveis — Avaliação P1	3	
Prof. Adriano Barbosa	4	
29/11/2023	5	
	Nota	

Matemática

Todas as respostas devem ser justificadas.

- 1. Determine se as afirmações são verdadeiras ou falsas. Prove as verdadeiras e dê um contra-exemplo para as falsas.
 - (a) Se f é uma função, então $\lim_{(x,y)\to(2,5)} f(x,y) = f(2,5)$.
 - (b) Se $f(x,y) \to L$ quando $(x,y) \to (a,b)$ ao longo de toda reta que passa por (a,b), então $\lim_{(x,y)\to(a,b)} f(x,y) = L.$
 - (c) O limite $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+2y^2}$ não existe.
- 2. Seja z = f(x, y), onde $x = r \cos \theta$ e $y = r \sin \theta$:
 - (a) Encontre $\frac{\partial z}{\partial r}$ e $\frac{\partial z}{\partial \theta}$.
 - (b) Mostre que

$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2}\left(\frac{\partial z}{\partial \theta}\right)^2.$$

- 3. Encontre todos os pontos cuja direção de maior variação da função $f(x,y)=x^2+y^2-2x-4y$ é (1,1).
- 4. Dada $f(x,y) = x^3 6xy + 8y^3$:
 - (a) Encontre os pontos críticos de f.
 - (b) Classifique os pontos críticos de f em máximo local, mínimo local ou ponto de sela.
- 5. Encontre os pontos do cone $z^2 = x^2 + y^2$ que estão mais próximos do ponto (-4, -2, 0).