第四次练习

1. 求下列极限

(1)
$$\lim_{x\to 0} \frac{\sqrt{1+x} + \sqrt{1-x} - 2}{x^2}$$
 (2) $\lim_{x\to 0} \frac{3\sin x + x^2 \cos \frac{1}{x}}{(1+\cos x)\ln(1+x)}$ (3) $\lim_{x\to \infty} \frac{\sqrt{4x^2 + x - 1} + x + 1}{\sqrt{x^2 + \sin x}}$

$$(4) \lim_{x \to 1} \frac{\sqrt{3-x} - \sqrt{1+x}}{x^2 + x - 2} \quad (5) \lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x} + \sqrt{x}}}{\sqrt{2x + 1}} \quad (6) \lim_{x \to 1} \frac{(1 - \sqrt{x})(1 - \sqrt[3]{x}) \cdots (1 - \sqrt[n]{x})}{(1 - x)^{n - 1}}$$

(7)
$$\lim_{x \to 0} \frac{\sqrt{1 + \tan x} - \sqrt{1 - \tan x}}{e^x - 1}$$
 (8)
$$\lim_{x \to \frac{\pi}{4}} \tan 2x \cdot \tan \left(\frac{\pi}{4} - x\right)$$
 (9)
$$\lim_{n \to \infty} \frac{n^3 (1 - \cos \frac{1}{n^2})}{\sqrt{n^2 + 1} - n}$$

2. 求
$$a,b$$
,使得 $\lim_{x\to 0} \frac{\sin x}{e^x - a} (\cos x - b) = 5$.

3. 若
$$\lim_{x \to -1} \frac{x^3 - ax^2 - x + 4}{x + 1} = c$$
 为有限值,求 a, c .

4. 求
$$a,b$$
,使得 $\lim_{x\to +\infty} \left(5x - \sqrt{ax^2 - bx + 1}\right) = 2$.

5. 求
$$k$$
, 使 $\sqrt{x+\sqrt{x+\sqrt{x}}}$ 与 x^k 为当 $x\to 0$ 时的同阶无穷小。

6. 求
$$a$$
,使得当 $x \to 0$ 时, $(1-ax^2)^{\frac{1}{4}} - 1$ 与 $x \sin x$ 是等价无穷小量。

7. 设
$$x_0 \in (a,b)$$
, 在 $[a,b]$ 上恒有 $f(x) \leqslant f(x_0)$, 且极限 $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ 存在。

证明:
$$\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = 0$$
.

8. 讨论下列函数的间断点及其类型: (1)
$$y = \frac{x}{\sin x}$$
; (2) $f(x) = \lim_{t \to x} \left(\frac{\sin t}{\sin x} \right)^{\frac{x}{\sin t - \sin x}}$

9. 求函数
$$f(x) = \begin{cases} \cos \frac{\pi x}{2}, & |x| \le 1 \\ |x-1|, & |x| > 1 \end{cases}$$
 的间断点并判断其类型.

10. 求下列极限:

$$(1) \lim_{n \to \infty} \left(\frac{a - 1 + \sqrt[n]{b}}{a} \right)^n (a > 0, b > 0) \qquad (2) \lim_{h \to 0} \frac{\log_a(x + h) + \log_a(x - h) - 2\log_a x}{h^2} (x > 0)$$

(3)
$$\lim_{\Delta x \to 0} \frac{(x + \Delta x)^n - x^n}{\Delta x}$$

(3)
$$\lim_{\Delta x \to 0} \frac{(x + \Delta x)^n - x^n}{\Delta x}$$
 (4) $\lim_{x \to 0} \frac{2 \tan \frac{x}{2} - \sin x}{x^3}$

$$(5) \lim_{x\to 0} \frac{e^{\tan x} - e^{\sin x}}{\tan x - \sin x}$$

(6)
$$\lim_{x\to\infty} \left(\cos\frac{1}{x} + \sin\frac{1}{x}\right)^x$$

- 11. 证明: (1) $f(x) = \cos \frac{1}{x}$ 在区间 (0, 1) 内不一致连续;
- (2) $g(x) = x \cos \frac{1}{x}$ 在区间 (0, 1) 内一致连续。
- 12. 若定义在 $(0,+\infty)$ 上的函数 f(x) 满足 $f(x_1 \cdot x_2) = f(x_1) + f(x_2)$,且 f(x) 在 x=1 处连
- 续,证明: f(x)在 $(0,+\infty)$ 上连续.
- 13. 若 $f(x) \in C([0,2a])$, 且 f(0) = f(2a), 证明: $\exists c \in [0,a]$, st. f(c) = f(c+a).
- 14. 证明: 方程 $x = a \sin x + b$ (a > 0, b > 0) 至少有一个不大于 a + b 的正根.
- 15. 设 f(x) 在 $[a,+\infty)$ 上一致连续, $\varphi(x)$ 在 $[a,+\infty)$ 上连续,且 $\lim_{x\to+\infty} [f(x)-\varphi(x)]=0$,证明 $\varphi(x)$ 在[a,+∞)上一致连续。
- 16. 设f(x)在 $[a,+\infty)$ (a>0)上满足 Lipschitz 条件,证明:

(1)
$$\frac{f(x)}{x}$$
在[a ,+ ∞)上有界; (2) $\frac{f(x)}{x}$ 在[a ,+ ∞)上一致连续.