Algoritmos y Estructura de Datos I Taller de Searching

Departamento de Computación, FCEyN, Universidad de Buenos Aires.

4 de Junio de 2018

Algoritmos de Búsqueda

Vamos a analizar algoritmos que resuelvan el siguiente problema (o derivados):

```
proc contiene(in s: seq\langle \mathbb{Z} \rangle, in x: \mathbb{Z}, out result: Bool){
    Pre \{True\}
    Post \{result = true \leftrightarrow (\exists i: \mathbb{Z})(0 \leq i < |s| \land_L s[i] = x)\}
}
```

► Recorremos la lista de una punta a la otra buscando el elemento.

```
s[0] | s[1] | s[2] | s[3] | s[4] | \dots | s[|s|-1]
```

Recorremos la lista de una punta a la otra buscando el elemento.

▶ Recorremos la lista de una punta a la otra buscando el elemento.

Recorremos la lista de una punta a la otra buscando el elemento.

Recorremos la lista de una punta a la otra buscando el elemento.

▶ Recorremos la lista de una punta a la otra buscando el elemento.

► Recorremos la lista de una punta a la otra buscando el elemento.

Eficiencia

En el peor caso recorremos toda la lista, es decir, hacemos |s| iteraciones.

Búsqueda binaria

Dado un arreglo ordenado, comparamos el elemento a buscar con el de la mitad de la secuencia. Si es mayor, buscamos a la derecha. Si es menor, a la izquierda.

Búsqueda binaria

Dado un arreglo ordenado, comparamos el elemento a buscar con el de la mitad de la secuencia. Si es mayor, buscamos a la derecha. Si es menor, a la izquierda.

Búsqueda binaria

Dado un arreglo ordenado, comparamos el elemento a buscar con el de la mitad de la secuencia. Si es mayor, buscamos a la derecha. Si es menor, a la izquierda.

Luántas iteraciones realiza el ciclo (en peor caso)?

¿Cuántas iteraciones realiza el ciclo (en peor caso)?

Número de iteración	high — low
0	s -1
1	$\cong (s -1)/2$
2	$\cong (s -1)/4$
3	$\cong (s -1)/8$
:	: :
t	$\cong (s -1)/2^t$

¿Cuántas iteraciones realiza el ciclo (en peor caso)?

Número de iteración	high — low
0	s -1
1	$\cong (s -1)/2$
2	$\cong (s -1)/4$
3	$\cong (s -1)/8$
:	:
t	$\cong (s -1)/2^t$

▶ Sea t la cantidad de iteraciones necesarias para llegar a high - low = 1.

$$1 \cong (|s|-1)/2^t$$
 entonces $2^t \cong |s|-1$ entonces $t \cong \log_2(|s|-1)$.

Descripción informal

- ▶ Dado un arreglo ordenado v, lo recorremos saltando de a bloques de m elementos.
- ▶ Paramos cuando el elemento a buscar es menor a $v[k \cdot m]$, para algún k.
- Luego hacemos una búsqueda lineal entre $v[(k-1) \cdot m]$ y $v[k \cdot m]$.

Descripción informal

- ▶ Dado un arreglo ordenado v, lo recorremos saltando de a bloques de m elementos.
- Paramos cuando el elemento a buscar es menor a $v[k \cdot m]$, para algún k.
- Luego hacemos una búsqueda lineal entre $v[(k-1) \cdot m]$ y $v[k \cdot m]$.

Ejemplo

Tomamos
$$m = 3$$

Descripción informal

- ▶ Dado un arreglo ordenado v, lo recorremos saltando de a bloques de m elementos.
- Paramos cuando el elemento a buscar es menor a $v[k \cdot m]$, para algún k.
- Luego hacemos una búsqueda lineal entre $v[(k-1) \cdot m]$ y $v[k \cdot m]$.

Ejemplo

Tomamos
$$m = 3$$

Descripción informal

- ▶ Dado un arreglo ordenado v, lo recorremos saltando de a bloques de m elementos.
- Paramos cuando el elemento a buscar es menor a $v[k \cdot m]$, para algún k.
- Luego hacemos una búsqueda lineal entre $v[(k-1) \cdot m]$ y $v[k \cdot m]$.

Ejemplo

Tomamos
$$m = 3$$

Descripción informal

- ▶ Dado un arreglo ordenado v, lo recorremos saltando de a bloques de m elementos.
- Paramos cuando el elemento a buscar es menor a $v[k \cdot m]$, para algún k.
- Luego hacemos una búsqueda lineal entre $v[(k-1) \cdot m]$ y $v[k \cdot m]$.

Ejemplo

Buscar el elemento x=10 en el siguiente array.

Tomamos m = 3

Descripción informal

- ▶ Dado un arreglo ordenado v, lo recorremos saltando de a bloques de m elementos.
- Paramos cuando el elemento a buscar es menor a $v[k \cdot m]$, para algún k.
- Luego hacemos una búsqueda lineal entre $v[(k-1) \cdot m]$ y $v[k \cdot m]$.

Ejemplo

Buscar el elemento x=10 en el siguiente array.

Tomamos m = 3

Código

Ustedes!

Eficiencia (1)

▶ ¿Cuántas iteraciones vamos a hacer en el peor caso?

Eficiencia (1)

- ¿Cuántas iteraciones vamos a hacer en el peor caso?
- ▶ En la iésima iteración hicimos $i \cdot m$ cantidad de iteraciones. En el peor caso, hacemos $\frac{n}{m}$ iteraciones.

Eficiencia (1)

- ¿Cuántas iteraciones vamos a hacer en el peor caso?
- ▶ En la iésima iteración hicimos $i \cdot m$ cantidad de iteraciones. En el peor caso, hacemos $\frac{n}{m}$ iteraciones.
- ▶ Por último, tenemos m-1 iteraciones más provenientes de la búsqueda lineal dentro del bloque.
- ► Con $m = \sqrt{n}$ se obtiene el mínimo valor de la función $\frac{n}{m} + m$. Por lo tanto, $m = \sqrt{n}$ es el tamaño de bloque óptimo.
- ▶ De esta manera, la cantidad de iteraciones nos queda del orden de \sqrt{n}

Eficiencia (2)

► Entonces, ¿ganamos o perdemos contra búsqueda binaria?

Eficiencia (2)

Entonces, ¿ganamos o perdemos contra búsqueda binaria?

Con este algoritmo, a diferencia de búsqueda binaria, hacemos menos retrocesos. Puede ser más útil en aplicaciones dosde sea costoso ir para atrás.

Descripción informal

- ▶ Dado un arreglo *ordenado*, lo recorremos de a potencias de 2 mientras el elemento actual sea menor al elemento a buscar.
- ► Cuando deja de cumplirse la condición, hacemos búsqueda binaria entre $\frac{i}{2}$ e i.

Ejemplo

Buscar el elemento x=14 en el siguiente array.

Empezamos con i = 1.

Descripción informal

- ▶ Dado un arreglo *ordenado*, lo recorremos de a potencias de 2 mientras el elemento actual sea menor al elemento a buscar.
- ► Cuando deja de cumplirse la condición, hacemos búsqueda binaria entre $\frac{i}{2}$ e i.

Ejemplo

Descripción informal

- ▶ Dado un arreglo *ordenado*, lo recorremos de a potencias de 2 mientras el elemento actual sea menor al elemento a buscar.
- ► Cuando deja de cumplirse la condición, hacemos búsqueda binaria entre $\frac{i}{2}$ e i.

Ejemplo

Descripción informal

- ▶ Dado un arreglo *ordenado*, lo recorremos de a potencias de 2 mientras el elemento actual sea menor al elemento a buscar.
- ► Cuando deja de cumplirse la condición, hacemos búsqueda binaria entre $\frac{i}{2}$ e i.

Ejemplo

Descripción informal

- ▶ Dado un arreglo *ordenado*, lo recorremos de a potencias de 2 mientras el elemento actual sea menor al elemento a buscar.
- ► Cuando deja de cumplirse la condición, hacemos búsqueda binaria entre $\frac{i}{2}$ e i.

Ejemplo

Descripción informal

- ▶ Dado un arreglo *ordenado*, lo recorremos de a potencias de 2 mientras el elemento actual sea menor al elemento a buscar.
- ► Cuando deja de cumplirse la condición, hacemos búsqueda binaria entre $\frac{i}{2}$ e i.

Ejemplo

Buscar el elemento x=14 en el siguiente array.

Código

Ustedes!

▶ Para llegar al *i-ésimo* índice vamos a hacer $log_2(i)$ iteraciones.

- ▶ Para llegar al *i-ésimo* índice vamos a hacer $log_2(i)$ iteraciones.
- ▶ Una vez allí, debemos hacer búsqueda binaria entre i y i/2. La cantidad de iteraciones va a ser algo como $log_2(i) + log_2(i i/2)$. Es decir, anda por el orden de log(i).

- ▶ Para llegar al *i-ésimo* índice vamos a hacer $log_2(i)$ iteraciones.
- ▶ Una vez allí, debemos hacer búsqueda binaria entre i y i/2. La cantidad de iteraciones va a ser algo como $log_2(i) + log_2(i-i/2)$. Es decir, anda por el orden de log(i).
- ► En el peor caso, vamos a hacer aproximadamente log(n) iteraciones. Entonces, ¿Qué ganamos con este algoritmo con respecto a la búsqueda binaria?

- ▶ Para llegar al *i-ésimo* índice vamos a hacer $log_2(i)$ iteraciones.
- ▶ Una vez allí, debemos hacer búsqueda binaria entre i y i/2. La cantidad de iteraciones va a ser algo como $log_2(i) + log_2(i-i/2)$. Es decir, anda por el orden de log(i).
- ► En el peor caso, vamos a hacer aproximadamente log(n) iteraciones. Entonces, ¿Qué ganamos con este algoritmo con respecto a la búsqueda binaria?
- ▶ Si el array es muuuy grande y de alguna manera sabemos que el número a buscar lo vamos a encontrar más bien al principio.