Static Analysis by Abstract Interpretation and Decision Procedures

Julien Henry

October 13, 2014

Jury

David Monniaux Matthieu Moy Antoine Miné Cesare Tinelli Hugues Cassé Roland Groz Andreas Podelski Director
Co-Advisor
Reviewer
Reviewer
Examiner
Examiner
Examiner

CNRS Grenoble INP

ENS Paris

University of Iowa

IRIT

Grenoble INP University of Freiburg

Introduction

WCET

Static Analysis

- Used in Embedded and Safety Critical Systems (Astrée)
- Require strong guarantees that programs behave correctly

Principle of Static Analysis:

Look at the source code
Discover properties on programs that always hold (**invariants**)

[Spoiler Alert] - PAGAI Screenshot

```
int bicycle() {
                                                int bicycle() {
  int count=0, phase=0;
                                                  int /* reachable */
  for(int i=0; i<10000; i++) {
                                                      count=0, phase=0;
    if (phase == 0) {
                                                  for(int i=0; i<10000; // safe
      count += 2; phase = 1;
                                                                         i++) {
    } else if (phase == 1) {
                                                    /* invariant:
      count += 1; phase = 0;
                                                    -2*count+phase+3*i = 0
                                                    14998-count+phase >= 0
    }
                                                    1-phase >= 0
 assert(count <= 15000);
                                                    phase >= 0
 return count;
                                                    count-2*phase >= 0
                                                    if (phase == 0) {
                                                      // safe
                                                      count += 2; phase = 1;
                                                    } else if (phase == 1) {
                                                      // safe
                                                      count += 1; phase = 0;
                                                  /* assert OK */
                                                  assert(count <= 15000);
                                                  /* invariant:
                                                  -15000 + count = 0
                                                  return count;
```

Introduction Improve Precision of Al Modular Static Analysis Implementation: PAGAI WCET

Static Analysis Uses Over-Approximations

Introduction Improve Precision of Al Modular Static Analysis Implementation: PAGAI WCET

Static Analysis Uses Over-Approximations

Introduction Improve Precision of AI Modular Static Analysis Implementation: PAGAI WCET

Static Analysis Uses Over-Approximations

Introduction Improve Precision of AI Modular Static Analysis Implementation: PAGAI WCET

Static Analysis Uses Over-Approximations

Introduction Improve Precision of AI Modular Static Analysis Implementation: PAGAI WCET

Static Analysis Uses Over-Approximations

Introduction Improve Precision of AI Modular Static Analysis Implementation: PAGAI WCET

Static Analysis Uses Over-Approximations

Several Approaches to Formal Verification

Introduction Improve Precision of AI Modular Static Analysis Implementation: PAGAI WCET

Several Approaches to Formal Verification

Use Model Checking techniques in Abstract Interpretation

Summary

- Introduction
- Improving Abstract Interpretation with Decision Procedures
- Modular Static Analysis
- Implementation: The PAGAI Static Analyzer
- 5 Application: Bounding Worst-Case Execution Time (WCET)

Summary

- 1 Introduction
- Improving Abstract Interpretation with Decision Procedures
- Modular Static Analysis
- 4 Implementation: The PAGAI Static Analyzer
- 5 Application: Bounding Worst-Case Execution Time (WCET)

[Cousot & Cousot, 1977]

Abstract domain to over-approximate sets of states:

[Cousot & Cousot, 1977]

Abstract domain to over-approximate sets of states:

Boxes:

$$4 \le x \le 17$$

 $2 < y < 12$

[Cousot & Cousot, 1977]

Abstract domain to over-approximate sets of states:

Boxes:

$$4 \le x \le 17$$

 $2 < y < 12$

OCTAGONS:

$$\begin{array}{rcl}
10 \le & x + y & \le 24 \\
-6 \le & x - y & \le 13 \\
4 \le & x & \le 17 \\
2 \le & y & \le 12
\end{array}$$

[MinéPhD04]

[Cousot & Cousot, 1977]

Abstract domain to over-approximate sets of states:

Boxes:

$$4 \le x \le 17$$

 $2 < y < 12$

OCTAGONS:

$$\begin{array}{rcl}
10 \le & x + y & \le 24 \\
-6 \le & x - y & \le 13 \\
4 \le & x & \le 17 \\
2 \le & y & \le 12
\end{array}$$

[MinéPhD04]

CONVEX POLYHEDRA: $5x - 2y \ge 6$ $2x + y \le 38$

[CH78]

```
x = 0;
while (x < 1000)
{
    x++;
}</pre>
```

```
x \leftarrow 0
x < 1000?
x \leftarrow x + 1
```

```
x = 0;
while (x < 1000)
\begin{cases} x \neq 0 \end{cases}
x \neq 0
\begin{cases} x \neq 1000? \end{cases}
\begin{cases} x \neq 1000? \end{cases}
\begin{cases} x \neq 1000? \end{cases}
```

- ullet All abstract values (**intervals**) initialized to \emptyset
- Update until there is no more element to add

```
x = 0;
while (x < 1000)
\begin{cases} x < 1000? \\ x + +; \end{cases}
x < 1000?
```

- ullet All abstract values (**intervals**) initialized to \emptyset
- Update until there is no more element to add

```
x = 0;
while (x < 1000)
\begin{cases} x < 1000? \\ x < 1000? \end{cases}
x < x < 1000?
```

- ullet All abstract values (**intervals**) initialized to \emptyset
- Update until there is no more element to add

```
x = 0;
while (x < 1000)
\begin{cases} x \neq 0 \\ x \neq 1000? \end{cases}
x \neq 0
```

- ullet All abstract values (**intervals**) initialized to \emptyset
- Update until there is no more element to add

```
1000?
while
        (x < 1000)
                                 x < 1000?
                                                        x \leftarrow x + 1
      X++;
```

- All abstract values (intervals) initialized to Ø
- Update until there is no more element to add

```
1000?
while
        (x < 1000)
                                 x < 1000?
                                                        x \leftarrow x + 1
      X++;
```

- All abstract values (intervals) initialized to Ø
- Update until there is no more element to add

```
x = 0;
while (x < 1000)
x \ge 1000?
x < 0
x < 0
x \ge 1000?
x < x < 1000?
x < x < x < 1000?
```

- ullet All abstract values (**intervals**) initialized to \emptyset
- Update until there is no more element to add

```
x = 0;
while (x < 1000)
x \ge 1000?
x \leftarrow 0
x \ge 1000?
x \leftarrow x + 1
x < 1000?
```

- ullet All abstract values (**intervals**) initialized to \emptyset
- Update until there is no more element to add

```
x = 0;
while (x < 1000)
x \ge 1000?
x < 0
x < 0
x \ge 1000?
x < x < 1000?
x < x < x < 1000?
```

- ullet All abstract values (**intervals**) initialized to \emptyset
- Update until there is no more element to add

```
x = 0;
while (x < 1000)
x \ge 1000?
x < 0
x < 0
x \ge 1000?
x < x < 1000?
x < x < x < 1000?
```

- ullet All abstract values (**intervals**) initialized to \emptyset
- Update until there is no more element to add

```
x = 0;
while (x < 1000)
x = 0;
x = 0;
x = 0;
x = 0
x = 0;
x
```

- ullet All abstract values (**intervals**) initialized to \emptyset
- Update until there is no more element to add

```
WIDENING
                              > 1000?
while
       (x < 1000)
                              x < 1000?
                                                   x \leftarrow x + 1
     X++;
```

- All abstract values (intervals) initialized to Ø
- Update until there is no more element to add

```
x = 0;
while (x < 1000)
x \ge 1000?
x \leftarrow 0
x \ge 1000?
x \leftarrow x + 1
x < 1000?
```

Fixpoint computation:

- All abstract values (intervals) initialized to \emptyset
- Update until there is no more element to add

WCET

Introduction

Descending Sequence

Recover precision after an invariant is reached

Introduction

Descending Sequence

Recover precision after an invariant is reached

Introduction

Descending Sequence

Recover precision after an invariant is reached

Some Sources of Imprecision

Widening operator

Introduction

- Ensures termination, degrades precision
- ▶ Descending sequence sometimes helps...

WCET

Some Sources of Imprecision

- Widening operator
 - Ensures termination, degrades precision
 - ▶ Descending sequence sometimes helps...

- Control flow merges
 - ► Limited expressivity of the abstract domain

Some Sources of Imprecision

Widening operator

- Ensures termination, degrades precision
- Descending sequence sometimes helps...

Control flow merges

Limited expressivity of the abstract domain

In this thesis

Limit the bad effects of widenings and least upper bounds

Summary

- Introduction
- 2 Improving Abstract Interpretation with Decision Procedures
- Modular Static Analysis
- 4 Implementation: The PAGAI Static Analyzer
- 5 Application: Bounding Worst-Case Execution Time (WCET)

Least Upper Bound yields Imprecision

```
if (input())
    x = 1;
else
    x = -1;
    // (here)
if (x == 0)
    error();
v = 1 / x;
```

Introduction

Least Upper Bound yields Imprecision

```
if (input())
    x = 1;
else
    x = -1;
    // (here)
if (x == 0)
    error();
y = 1 / x;
```

Introduction

Least Upper Bound yields Imprecision

```
if (input())
    x = 1;
else
    x = -1;
    // (here)
if (x == 0)
    error();
y = 1 / x;
```

Introduction

Trace Partitioning [Mauborgne & Rival] Large Block Encoding [Beyer & al.]

WCET

[Monniaux & Gonnord, SAS11], [Henry & al, TAPAS12]

Introduction

Satisfiability Modulo Theory (SMT)

Boolean Satisfiability (SAT):

$$b_1 \wedge ((b_2 \wedge b_3) \vee (b_4))$$

Satisfiability Modulo Theory (SMT)

Boolean SATISFIABILITY (SAT):

$$b_1 \wedge ((b_2 \wedge b_3) \vee (b_4))$$

$$x \ge 0 \land ((y \ge x + 10 \land b_3) \lor (x + 1 \ge 0))$$

MODULO THEORY: Atoms can be interpreted in a given decidable theory

e.g. Linear Integer Arithmetic

[Monniaux & Gonnord, SAS11], [Henry & al, TAPAS12]

In practice: distinguish every paths between loop heads

[Monniaux & Gonnord, SAS11], [Henry & al, TAPAS12]

Usual algorithm: update an abstract value until it is an inductive invariant.

[Monniaux & Gonnord, SAS11], [Henry & al, TAPAS12]

Usual algorithm: update an abstract value until it is an inductive invariant.

[Monniaux & Gonnord, SAS11], [Henry & al, TAPAS12]

Usual algorithm: update an abstract value until it is an inductive invariant.

[Monniaux & Gonnord, SAS11], [Henry & al, TAPAS12]

Usual algorithm: update an abstract value until it is an inductive invariant.

[Monniaux & Gonnord, SAS11], [Henry & al, TAPAS12]

Usual algorithm: update an abstract value until it is an inductive invariant.

[Monniaux & Gonnord, SAS11], [Henry & al, TAPAS12]

Usual algorithm: update an abstract value until it is an inductive invariant.

[Monniaux & Gonnord, SAS11], [Henry & al, TAPAS12]

Usual algorithm: update an abstract value until it is an inductive invariant.

[Monniaux & Gonnord, SAS11], [Henry & al, TAPAS12]

Usual algorithm: update an abstract value until it is an inductive invariant.

[Monniaux & Gonnord, SAS11], [Henry & al, TAPAS12]

Usual algorithm: update an abstract value until it is an inductive invariant.

[Monniaux & Gonnord, SAS11], [Henry & al, TAPAS12]

Usual algorithm: update an abstract value until it is an inductive invariant.

[Monniaux & Gonnord, SAS11], [Henry & al, TAPAS12]

Usual algorithm: update an abstract value until it is an inductive invariant.

[Monniaux & Gonnord, SAS11], [Henry & al, TAPAS12]

Usual algorithm: update an abstract value until it is an inductive invariant.

[Henry & Monniaux & Moy, SAS12]

Observation: Imprecision due to widening spreads

Intuition: Widenings might enable paths that were previously infeasible

```
x = 0;
while (x < 1000) {
   if (x > 2000) { ... }
   x++;
}
```


- Do not consider these "spurious" transitions
- Eliminate them using descending sequences

[Henry & Monniaux & Moy, SAS12]

Compute **precise** invariants for a sequence of sub-programs ALGORITHM:

- Choose sub-program (= set of paths directly feasible)
- Ascending iterations
- Descending iterations

WCET

[Henry & Monniaux & Moy, SAS12]

- Choose sub-program (= set of paths directly feasible)
- Ascending iterations
- Descending iterations

[Henry & Monniaux & Moy, SAS12]

- Choose sub-program (= set of paths directly feasible)
- Ascending iterations
- Descending iterations

[Henry & Monniaux & Moy, SAS12]

- Choose sub-program (= set of paths directly feasible)
- Ascending iterations
- Descending iterations

[Henry & Monniaux & Moy, SAS12]

- Choose sub-program (= set of paths directly feasible)
- Ascending iterations
- Descending iterations

Extension 1: Disjunctive Invariants

Allow disjunctions of abstract values

Extension 2: Less SMT Queries

In the worst case, 2^n paths \implies exponential number of SMT queries

Introduction

"Interesting traces" far from the current abstract value

WCET

Extension 2: Less SMT Queries

In the worst case, 2^n paths \implies exponential number of SMT queries

"Interesting traces" far from the current abstract value

Intermediate Conclusion

- Abstract Interpretation can be parametrized in many ways
- From very cheap to very expensive
 - fixpoint computation techniques
 - abstract domains

Introduction

Run cheap techniques first, and refine program portions if needed (CEGAR)

Summary

Introduction

Introduction

- 2 Improving Abstract Interpretation with Decision Procedures
- Modular Static Analysis
- 4 Implementation: The PAGAI Static Analyzer
- 5 Application: Bounding Worst-Case Execution Time (WCET)

WCET

CONTRIBUTION: Modular Static Analysis

Input: Complicated CFG

Introduction

WCET

Select blocks/portions to be abstracted:

- Loops,
- Function calls,
- Complicated program portions

Select blocks/portions to be abstracted:

- Loops,
- Function calls.
- Complicated program portions

Implementation: PAGAI

Each block has input and output variables

Abstract each block with a logical formula.

 $\mathcal{R}_1(x^i, x^o)$ involves **inputs** and **outputs**

Example: $x^i > 0 \Rightarrow x^o = x^i + 1$

 \mathcal{R}_i initialized to **true** (= safe over-approximation)

SMT query:

"Is there a path to the error state?"

YES:

$$Model(x^{i}) = (x_{i} = 10)$$

 $Model(x^{o}) = (x_{o} = 12)$

$$x_i = 10 \land \mathcal{R}_1(x^i, x^o) \land x_o = 12$$

is SAT

SMT query:

"Is there a path to the error state?"

YES:

Model
$$(x^i) = (x_i = 10)$$

Model $(x^o) = (x_o = 12)$

$$x_i = 10 \land \mathcal{R}_1(x^i, x^o) \land x_o = 12$$
 is SAT

 \rightarrow Improve precision of $\mathcal{R}_1(x^i, x^o)$ s.t. the formula becomes UNSAT

Compute a new relation input context $x_i = 10$

Example:

$$x_i = 10 \Rightarrow x_0 \leq x_i$$

Compute a new relation input context $x_i = 10$

Example:

$$x_i = 10 \Rightarrow x_0 \leq x_i$$

Not very general...

Compute a new relation input context $x_i = 10$

Example:

$$x_i = 10 \Rightarrow x_0 \leq x_i$$

$$x_i > 0 \Rightarrow x_0 \leq x_i$$

$$x_i = 10 \land (x_o \le x_i) \land x_o = 12$$

no more possible

Search for new error trace

Until no trace is found...

Introduction

Search for new error trace Until no trace is found...

Introduction

Summary

Introduction

- Implementation: The PAGAI Static Analyzer

CONTRIBUTION: PAGAI Static Analyzer

[Henry & Monniaux & Moy, TAPAS12]

Static analyzer for C/C++/Ada/Fortran/... Written in C++, > 20,000 LOC

- Uses the LLVM compiler infrastructure
- Most approaches described here are implemented
- Numerical invariants
- PAGAI checks:
 - array out-of-bound accesses
 - integer overflows
 - assert over numerical variables
- Handles real-life programs
- Already used outside Verimag (Spain, India, ...)

Implementation: PAGAI

Comparisons of Various Techniques

Experiments on GNU projects: libgsl, libjpeg, libpng, gnugo, tar, ...

Software-Verification Competition

Introduction

Summary

Introduction

Introduction

- 2 Improving Abstract Interpretation with Decision Procedures
- Modular Static Analysis
- 4 Implementation: The PAGAI Static Analyzer
- 5 Application: Bounding Worst-Case Execution Time (WCET)

Target: Reactive Control Systems

```
void main() {
   while (1) {
      READ_INPUTS();
      COMPUTE();
      WRITE_OUTPUTS();
   }
}
```

Introduction

1 "big" infinite loop

 \sim Loop-free body

Goal: WCET for 1 loop iteration < some bound

CONTRIBUTION: Estimating WCET using SMT

[Henry & Asavoae & Monniaux & Maiza, LCTES14]

Input:

- Loop-free control-flow graph of the loop body
- local timings for basic blocks (# clock cycles)
 - given by an external tool, e.g. OTAWA
 - runs a panel of static analysis, sensitive to micro-architecture

Principle: Encode the problem into SMT and optimize a cost function

Output:

WCET for the entire CFG + Worst Case path

Optimization modulo Theory:

Introduction

We search for the trace maximizing the variable $\underline{\cos t}$. $\cos t = \operatorname{execution} time for the trace$

Using any off-the-shelf SMT solver

Optimization modulo Theory:

We search for the trace maximizing the variable \underline{cost} . cost = execution time for the trace

Using any off-the-shelf SMT solver

Binary Search strategy:

Maintain an interval containing the WCET

Initial interval [0, 100]

C

Introduction

100

< 32 / 42 >

Optimization modulo Theory:

We search for the trace maximizing the variable \underline{cost} . cost = execution time for the trace

Using any off-the-shelf SMT solver

Binary Search strategy:

- Initial interval [0, 100]
- Is there a trace where cost > 50? Yes, 70

Optimization modulo Theory:

We search for the trace maximizing the variable $\underline{\cos t}$. $\underline{\cos t} = \text{execution time for the trace}$

Using any off-the-shelf SMT solver

Binary Search strategy:

- Initial interval [0, 100]
- Is there a trace where cost > 50? Yes, 70
- new interval [70, 100]

Introduction Improve Precision of AI Modular Static Analysis Implementation: PAGAI WCET

Computing the WCET

Optimization modulo Theory:

We search for the trace maximizing the variable \underline{cost} . $\underline{cost} = \text{execution time for the trace}$

Using any off-the-shelf SMT solver

Binary Search strategy:

- Initial interval [0, 100]
- Is there a trace where cost > 50? Yes, 70
- new interval [70, 100]
- Is there a trace where cost > 85? No

Optimization modulo Theory:

We search for the trace maximizing the variable \underline{cost} . $\underline{cost} = \text{execution time for the trace}$

Using any off-the-shelf SMT solver

Binary Search strategy:

- Initial interval [0, 100]
- Is there a trace where cost > 50? Yes, 70
- new interval [70, 100]
- Is there a trace where cost > 85? No
- new interval [70, 85]

Optimization modulo Theory:

We search for the trace maximizing the variable $\underline{\cos t}$. $\underline{\cos t} = \text{execution time for the trace}$

Using any off-the-shelf SMT solver

Binary Search strategy:

- Initial interval [0, 100]
- Is there a trace where cost > 50? Yes, 70
- new interval [70, 100]
- Is there a trace where cost > 85? No
- new interval [70, 85]
- ...

Optimization modulo Theory:

We search for the trace maximizing the variable \underline{cost} . $\underline{cost} = \text{execution time for the trace}$

Using any off-the-shelf SMT solver

Binary Search strategy:

- Initial interval [0, 100]
- Is there a trace where cost > 50? Yes, 70
- new interval [70, 100]
- Is there a trace where cost > 85? No
- new interval [70,85]
- ... WCET!

Introduction

Approach Fails on Simple Examples

 b_1, \ldots, b_n unconstrained Booleans, **ci** and **ci**' are the timing costs

```
if (b_1) { /*c1=2*/ } else { /*c1=3*/ } //cost c1 if (b_1) { /*c1'=3*/ } else { /*c1'=2*/ } //cost c1' ... if (b_n) { /*cn=2*/ } else { /*cn=3*/ } //cost cn if (b_n) { /*cn'=3*/ } else { /*cn'=2*/ } //cost cn'
```

"Obviously" all traces take time (3+2)n = 5n.

Introduction

Approach Fails on Simple Examples

 b_1, \ldots, b_n unconstrained Booleans, **ci** and **ci**' are the timing costs

```
if (b_1) { /*c1=2*/ } else { /*c1=3*/ } //cost c1 if (b_1) { /*c1'=3*/ } else { /*c1'=2*/ } //cost c1' ... if (b_n) { /*cn=2*/ } else { /*cn=3*/ } //cost cn if (b_n) { /*cn'=3*/ } else { /*cn'=2*/ } //cost cn'
```

"Obviously" all traces take time (3+2)n = 5n.

SMT approach (using DPLL(\mathcal{T})) will find 5n, but in exponential time. . .

Why such high cost?

SMT solver relaxes the SMT formula into a Boolean abstraction

DPLL(T): [Nieuwenhuis & Oliveras & Tinelli, JACM06]

Introduction

Implementation: PAGAI

Why such high cost?

SMT solver relaxes the SMT formula into a Boolean abstraction

DPLL(T): [Nieuwenhuis & Oliveras & Tinelli, JACM06]

BLOCKING CLAUSE: Simple reason why it is UNSAT

THEORY ATOMS

 $c_n \leq 2$

$$c_1 \leq 3$$
 \cdots $c_n \leq 3$

 $c_1 \leq 2$

Introduction

$$\neg (c_1' \leq 2) \qquad \neg (c_n' \leq 2)$$

$$c_1' \leq 3$$

$$c_n' \leq 3$$

$$c_1 + c'_1 + \cdots + c_n + c'_n > 5n$$

BLOCKING CLAUSE?

BLOCKING CLAUSE: Simple reason why it is UNSAT

THEORY ATOMS

$$c_1 < 2$$

$$c_n \leq 2$$

$$c_1 \leq 3 \qquad \cdots \qquad c_n \leq 3$$

$$c_n \leq 3$$

$$\neg (c_1' \leq 2)$$

$$\neg (c_1' \leq 2) \qquad \neg (c_n' \leq 2)$$

$$c_1' \leq 3$$
 $c_n' \leq 3$

$$c_n' < 3$$

$$c_1 + c'_1 + \cdots + c_n + c'_n > 5n$$

BLOCKING CLAUSE

 $c_1 + c'_1 + \cdots + c_n + c'_n > 5n$

$$c_1 \leq 2$$

$$c_n \leq 2$$

$$e_1 \leq 3 \qquad \cdots \qquad e_n \leq 3$$

$$\neg (c_1' \leq 2)$$

$$\neg (c'_n \leq 2)$$

$$c_1' \leq 3$$

$$c_n' \leq 3$$

Only cuts one single program trace...

BLOCKING CLAUSE: **Simple** reason why it is **UNSAT**

THEORY ATOMS

$$c_1 \leq 2$$

$$c_n \leq 2$$

$$c_1 \leq 3 \qquad \cdots \qquad c_n \leq 3$$

$$c_n \leq 3$$

$$\neg (c_1' \leq 2)$$

$$\neg (c_1' \leq 2) \qquad \neg (c_n' \leq 2)$$

$$c_1' \leq 3$$
 $c_n' \leq 3$

$$c_n' \leq 3$$

$$c_1 + c'_1 + \cdots + c_n + c'_n > 5n$$

BLOCKING CLAUSE

$$c_1 \le 2$$

$$c_n \leq 2$$

$$c_1 \leq 3 \qquad \cdots \qquad c_n \leq 3$$

$$\neg (c_1' \leq 2)$$

$$\neg (c'_n \leq 2)$$

$$c_1' \leq 3$$

$$c_n' \leq 3$$

$$c_1+c_1'+\cdots+c_n+c_n'>5n$$

Only cuts one single program trace... 2ⁿ of them. The solver has to prove them inconsistent one by one. Introduction

Untractability Issue

Modular Static Analysis

SMT solvers miss "obvious" properties

```
if (b_i) { /* ci=2 */ } else { /* ci=3*/ }
if (b_i) { /* ci' = 3 */ } else { /* ci' = 2*/ }
```

"Obviously, $c_i + c_i' \le 5$ " \rightarrow easy for a static analyzer!

"Normal*" DPLL(\mathcal{T})-based SMT solvers do not invent new atomic predicates

^{*: [}Nieuwenhuis & Oliveras & Tinelli, JACM06], [Decision Procedures, Kroening & Strichman]

Untractability Issue

SMT solvers miss "obvious" properties

```
if (b_i) { /* ci=2 */ } else { /* ci=3*/ } if (b_i) { /* ci'=3 */ } else { /* ci'=2*/ }
```

"Obviously, $c_i + c_i' \le 5$ " \rightarrow easy for a static analyzer!

"Normal*" DPLL(\mathcal{T})-based SMT solvers do not invent new atomic predicates

Introduction

What if we simply conjoin these predicates to the SMT formula?

*: [Nieuwenhuis & Oliveras & Tinelli, JACM06], [Decision Procedures, Kroening & Strichman]

WCET

THEORY ATOMS

$$c_1 \leq 2$$

$$c_n \leq 2$$

$$c_1 \leq 3$$

$$\cdots$$
 $c_n \leq 3$

$$\neg (c_1' \leq 2)$$

$$\neg (c'_n \leq 2)$$

$$c_1' \leq 3$$

$$c_n' \leq 3$$

$$c_1+c_1'\leq 5 \qquad c_n+c_n'\leq 5$$

$$c_n + c'_n < 5$$

$$c_1 + c'_1 + \cdots + c_n + c'_n > 5n$$

BLOCKING CLAUSE?

$$c_1 \leq 2$$

$$c_n \leq 2$$

$$c_1 \leq 3$$

$$\cdots$$
 $c_n \leq 3$

$$\neg (c_1' \leq 2)$$

$$\neg (c'_n \leq 2)$$

$$c_1' \leq 3$$

$$c_n' \leq 3$$

$$c_1+c_1'\leq 5 \qquad c_n+c_n'\leq 5$$

$$c_n + c'_n < 1$$

$$c_1 + c'_1 + \cdots + c_n + c'_n > 5n$$

BLOCKING CLAUSE

$$c_n \leq 2$$

$$\cdots$$
 $c_n < 3$

$$\neg (c_1' \leq 2)$$

$$\neg (c'_n \leq 2)$$

$$c_1' \leq 3$$

$$c_n' < 3$$

$$c_1 + c_1' \le 5$$
 $c_n + c_n' \le 5$

$$c_n + c'_n \leq 5$$

$$c_1 + c'_1 + \cdots + c_n + c'_n > 5n$$

Prunes all the 2^n traces at once.

Introduction

Our Solution: a "Better" SMT Encoding

- Distinguish "portions" in the program.
- Compute upper bound B_i on WCET for each portion
- Conjoin these constraints to the previous SMT formula $c_1 + \cdots + c_5 \le B_1$, $c_6 + \cdots + c_{10} \le B_2$, etc.
- The obtained formula is equivalent
- Do the binary search as before

Solving time from "nonterminating after one night" to "a few seconds".

Experiments with ARMv7

OTAWA for Basic Block timings Z3 SMT solver, timeout 8h

	WCET bounds (#cycles)			Analysis time (seconds)		
Benchmark name	Otawa	SMT	gain	with cuts	no cuts	#cuts
statemate	3297	3211	2.6%	943.5	$+\infty$	143
nsichneu (1 iteration)	17242	13298	22.7%	≈22000	$+\infty$	378
cruise-control	881	873	0.9%	0.1	0.2	13
digital-stopwatch	1012	954	5.7%	0.6	2104.2	53
autopilot	12663	5734	54.7%	1808.8	$+\infty$	498
fly-by-wire	6361	5848	8.0%	10.8	$+\infty$	163
miniflight	17980	14752	18.0%	40.9	$+\infty$	251
tdf	5789	5727	1.0%	13.0	$+\infty$	254

- Mälardalen WCET Benchmarks
- SCADE designs
- Industrial Code

Conclusion (1/2)

THEORETICAL CONTRIBUTIONS:

SMT can be used in static analysis in many ways:

- Improve precision of abstract interpreters (least upper bounds + widening) (2 papers in SAS'12)
- incremental analysis
 - Modularity with summaries and counter-examples
- Worst-Case Execution Time estimation using optimization (LCTES'14)

FUTURE WORK:

Improve SMT solving with Abstract Interpretation

Conclusion (2/2)

PRACTICAL CONTRIBUTIONS:

PAGAI static analyzer for LLVM, robust implementation (TAPAS'12)

- Extensive experiments
- Competitive

```
http://pagai.forge.imag.fr
```

FUTURE WORK:

- Implement our modular static analysis
- Many improvements: data structures, floating points, etc.
- Combine with other program verifiers
- Tune for SV-COMP

Introduction

THEORY ATOMS				
$\textit{c}_1 \leq 2$	$c_n \leq 2$			
$c_1 \leq 3 \qquad \cdots$	$c_n \leq 3$			
$\neg (c_1' \leq 2)$	$\neg (c_n' \leq 2)$			
$\textit{c}_1' \leq 3$	$c_n' \leq 3$			
$c_1+c_1'\leq 5$	$c_n+c_n'\leq 5$			
$c_1 + c'_1 + \cdots + c'_n$	$c_n + c'_n > 5n$			

THANK YOU!

Modular Static Analysis

Introduction

Improve Precision of Al

Implementation: PAGAI

WCET

Introduction

CONTRIBUTION: Improve the Descending Sequence [Halbwachs & Henry, SAS12]

Descending sequence does not always work

$$X_1 = \{0\} \cup \{x \mid \exists x' \in X_2, x = x' + 1\} \cup X_1 \subseteq [0, +\infty)$$

 $X_2 = X_1 \cap \{x \mid x < 1000\} \subseteq [0, 999]$

CONTRIBUTION: Improve the Descending Sequence [Halbwachs & Henry, SAS12]

Descending sequence does not always work

Restart an analysis from a different, **well chosen**, initial value

$$X_1 = \{0\} \cup \{x \mid \exists x' \in X_2, x = x' + 1\} \cup X_1 \subseteq [0, +\infty)$$

 $X_2 = X_1 \cap \{x \mid x < 1000\} \subseteq [0, 999]$

CONTRIBUTION: Improve the Descending Sequence [Hallbwachs & Henry, SAS12]

- Select some program location supposedly already precise
- Reset the other to $\bot (= \emptyset)$
- Do ascending iterations

$$X_1 = \{0\} \cup \{x \mid \exists x' \in X_2, x = x' + 1\} \cup X_1 \subseteq [0, +\infty)$$

 $X_2 = X_1 \cap \{x \mid x < 1000\} \subseteq [0, 999]$

CONTRIBUTION: Improve the Descending Sequence [Halbwachs & Henry, SAS12]

- Select some program location supposedly already precise
- Reset the other to \bot (= \emptyset)
- Do ascending iterations

$$X_1 = \{0\} \cup \{x \mid \exists x' \in X_2, x = x' + 1\} \cup X_1 \subseteq [0, +\infty)$$

 $X_2 = X_1 \cap \{x \mid x < 1000\} \subseteq [0, 999]$

CONTRIBUTION: Improve the Descending Sequence [Hallbwachs & Henry, SAS12]

- Select some program location supposedly already precise
- Reset the other to $\bot (= \emptyset)$
- Do ascending iterations

$$X_1 = \{0\} \cup \{x \mid \exists x' \in X_2, x = x' + 1\} \cup X_1 \stackrel{?}{\subseteq} \bot$$

 $X_2 = X_1 \cap \{x \mid x < 1000\} \stackrel{?}{\subseteq} [0,999]$

CONTRIBUTION: Improve the Descending Sequence [Halbwachs & Henry, SAS12]

- Select some program location supposedly already precise
- Reset the other to \perp (= \emptyset)
- Do ascending iterations

$$X_1 = \{0\} \cup \{x \mid \exists x' \in X_2, x = x' + 1\} \cup X_1 \stackrel{?}{\subseteq} [0, 1000]$$

 $X_2 = X_1 \cap \{x \mid x < 1000\} \stackrel{?}{\subseteq} [0, 999]$

Syntactic criterion

Between control-flow merges and their immediate dominators.

Improve Precision of AI

For
$$P_2$$
:
 $c2 + c3 + c4 + c5 \le c2 + max(c3, c4) + c5$

Semantic criterion

Introduction

```
if (b_i) { /* timing 2 */ } else { /* timing 3*/ } if (b_i) { /* timing 3 */ } else { /* timing 2*/ }
```

- Slice the program w.r.t b_i.
- Recursively call the WCET procedure over the resulting graph
- The obtained WCET gives the upper bound for the portion

Note: Instead of recursive call, an Abstract Interpretation based technique would be possible...

WCET: Classical Approach

