Automatismes

Spécialité Mathématiques Terminale

Prénom ·	NOM ·

1.	On considère la fond	ction f définie su	$r \mid 0: +\infty \mid par f \mid$	$(x) = \ln(e^x + x) - x$

Laquelle de ces expressions est une autre expression de f(x) ?

ln(x)

 $\ln\left(e^{2x} + xe^{x}\right)$

 $ln(1 + xe^{-x})$

ln(1+x)

2. On considère la fonction f définie sur $]0;1[\cup]1;+\infty[$ par $f(x)=\ln(x)-\frac{1}{\ln(x)}$.

Quelle est la valeur de $\lim_{\substack{x \to 0 \\ x > 0}} f(x)$?

 $-\infty$

-1

0

 $+\infty$

3. On considère la fonction f définie sur $]0;1[\cup]1;+\infty[$ par $f(x)=\ln(x)-\frac{1}{\ln(x)}$.

Quelle est la valeur de $\lim_{x\to +\infty} f(x)$?

 $-\infty$

1

0

 $+\infty$

4. On considère la fonction f définie sur $]0;1[\cup]1;+\infty[$ par $f(x)=\ln(x)-\frac{1}{\ln(x)}$.

Quelle est la valeur de $\lim_{\substack{x \to 1 \\ x > 1}} f(x)$?

 $-\infty$

1 0

5. Soit f la fonction définie sur \mathbb{R} par $f(x) = \ln(1 + e^{-x})$.

Une expression de sa dérivée est...

$$f'(x) = \frac{e^{-x}}{1 + e^{-x}}$$

$$f'(x) = \frac{-e^{-x}}{1 + e^{-x}}$$

$$f'(x) = \frac{1}{1 + e^{-x}}$$
$$f'(x) = \frac{1}{1 - e^{-x}}$$

6. Quel est l'ensemble des solutions sur \mathbb{R} de l'inéquation $\ln(1+e^{2x}) > 0$?

$$\begin{bmatrix} \frac{1}{2}; +\infty \\ -\frac{1}{2}; +\infty \end{bmatrix}$$
$$\begin{bmatrix} 0; +\infty \end{bmatrix}$$

7. Quel est l'ensemble des solutions sur $\mathbb R$ de l'inéquation $\ln \left(3 - \mathrm{e}^{-2x}\right) > 0$?

$$\begin{vmatrix} \frac{1}{2}\ln(2); +\infty \\ \frac{-1}{2}\ln(2); +\infty \end{vmatrix}$$
$$\begin{vmatrix} -\infty; \frac{1}{2}\ln(2) \\ -\infty; \frac{-1}{2}\ln(2) \end{vmatrix}$$
$$\begin{vmatrix} -\infty; \frac{-1}{2}\ln(2) \\ \end{vmatrix}$$

8. Quel est l'ensemble des solutions sur \mathbb{R} de l'équation $2 [\ln(x)]^2 - 4 \ln(x) + 1 = 0$?

$$\left\{ 1 + \frac{\sqrt{2}}{2}; 1 - \frac{\sqrt{2}}{2} \right\} \\
\left\{ e^{1 + \frac{\sqrt{2}}{2}}; e^{1 - \frac{\sqrt{2}}{2}} \right\} \\
\left\{ \ln \left(1 + \frac{\sqrt{2}}{2} \right); \ln \left(1 - \frac{\sqrt{2}}{2} \right) \right\} \\
\varnothing$$

Code: Score final: