

Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Робототехника	и комплексная	автоматизация»
-----------	----------------	---------------	----------------

КАФЕДРА «Системы автоматизированного проектирования (РК-6)»

РАСЧЁТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к научно-исследовательской работе студента

на тему

«Исследование оптимизированных алгоритмов параллельного обхода графов с циклами»

Студент <u>РК6-11М</u>		Тришин И.В.	
группа	подпись, дата	ФИО	
Руководитель НИРС		Соколов А.П.	
	подпись, дата	ФИО	

РЕФЕРАТ

научно-исследовательская работа студента: 10 с., 0 рис., 0 табл., 2 источн.

Тип работы: научно-исследовательская работа студента.

Тема работы: «Исследование оптимизированных алгоритмов параллельного обхода графов с циклами».

Объект исследования: параллельные алгоритмы.

Основная задача, на решение которой направлена работа: провести обзор алгоритмов параллельного обхода ориентированного графа в контексте задачи обхода графовой модели по методологии GBSE.

Цели работы: определить направление исследования и разработки алгоритмов для решения задачи

В результате выполнения работы: 1) рассмотрены стандартные алгоритмы на графах и оценена их применимость к поставленной задаче; 2) проведён анализ достоинств и недостатков предыдущих реализаций алгоритма обхода моделей ГПИ; 3) предложены улучшения для существующих алгоритмов.

СОКРАЩЕНИЯ

DFD диаграмма потоков данных (Data Flow Diagram).

 $\Gamma\Pi M$ графоориентированная программная инженерия.

СОДЕРЖАНИЕ

\mathbf{C}	ОКРАЩЕНИЯ	3			
В	ведение	5			
1	Постановка задачи	6			
2	Аналитический обзор				
	2.1 Стандартные алгоритмы				
	2.2 Предыдущие реализации	7			
3	Предложенные изменения				
3.	АКЛЮЧЕНИЕ	S			
Л	Литература				

ВВЕДЕНИЕ

В настоящее время в научном сообществе приобретают всё большую популярность различные программные инструменты, направленные на упрощение проведения исследований и вычислительных экспериментов. В частности, целый комплекс подобных инструментов предоставляют так называемые научные системы управления потоком задач (англ. scientific workflow systems). Инструменты, доступные пользователю в данных системах позволяют описывать сценарии вычислительных экспериментов в виде набора вычислительных задач и зависимостей между ними. Как правило, зависимости между задачами описываются в виде ориентированного графа. Вместе с этим возникает проблема выполнения задач в порядке, определяемом ориентированным графом зависимостей. Как правило, в качестве графа зависимостей применяют диаграммы потоков данных (DFD), но существуют и другие подходы.

В частности, в разработанном в МГТУ им. Баумана подходе для описания сложных вычислительных методов и вычислительных экспериментов ГПИ применяется идея «состояний данных» и переходов между ними.[1]. Данный подход имеет свою специфику и особенности реализации, поэтому стандартные алгоритмы, применяющиеся при обходе диаграмм потоков данных применимы к графам переходов между состояниями данных ГПИ лишь частично или не применимы вовсе.

Таким образом, целью работы является аналитический обзор стандартных алгоритмов на графах, анализ ранних реализаций алгоритмов обхода графов в ГПИ и поиск аспектов в них, которые могут быть улучшены или оптимизированы.

1 Постановка задачи

Для графовой модели, построенной по принципу ГПИ была сформулирована задача обхода (см. заметку от 23.01.2023)[2] и требования к алгоритму обхода. Главным требованием к разрабатываемому алгоритму был признано единство интерфейса взаимодействия с различными вычислительными ресурсами, поскольку одним из главных требований к системе, использующей ГПИ, является производительность и возможность задействовать любые доступные ресурсы.

2 Аналитический обзор

2.1 Стандартные алгоритмы

В результате проведённого аналитического обзора стандартных алгоритмов на графах была выявлена их ограниченная применимость к поставленной задаче (см. заметку от 07.01.2023)[2]. Так, в частности, рассмотренные алгоритмы поиска в глубину и в ширину и, кроме того, топологической сортировки применимы только на подготовительных стадиях обхода графовой модели.

2.2 Предыдущие реализации

Были рассмотрены ранее разработанные алгоритмы для реализаций программного инструментария, использующего ГПИ, на языках руthon и С++. (см. заметку от 22.01.2023)[2] В них были выделены достоинства и недостатки. В результате было определено, что ни одна из предыдущих реализаций не отвечает всем сформулированным требованиям, а потому требует доработки и развития.

3 Предложенные изменения

В результате анализа поставленных требований к алгоритму обхода были предложены алгоритмические решения для их выполнения. Так, одним из главных предложенных изменений стало введение в алгоритм предварительной стадии, на которой определяются точки синхронизации параллельных потоков обработки, выделяются все необходимые для обхода ресурсы (см. заметку от 23.01.2023)[2].

ЗАКЛЮЧЕНИЕ

По результатам выполнения исследовательской работы можно сделать следующие выводы.

- 1. Стандартные алгоритмы на графах применимы к поставленной задаче только в рамках решения некоторых возникающих в процессе обхода подзадач.
- 2. Ни один из ранее разработанных алгоритмов обхода не отвечает обновлённым требованиям в полном объёме.
- 3. Часть поставленных требований может быть удовлетворена при внесении в алгоритм предложенных изменений.

Таким образом, планируется продолжать разработку алгоритма обхода графовых моделей и его улучшение с целью выполнения всех поставленных требований. Кроме того, планируется реализация обновлённого алгоритма на языке C++ и его тестирование на реальных примерах графовых моделей.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Соколов А.П. Першин А.Ю. Графоориентированный программный каркас для реализации сложных вычислительных методов // Программирование. 2018. № X.
- 2 Научно-исследовательские заметки по направлению «Разработка систем инженерного анализа и ресурсоёмкого ПО» [Электронный ресурс] / Соколов А.П., Крехтунова Д., Ершов В. [и др.]. 2023.

Выходные данные

Тришин И.В.. Исследование оптимизированных алгоритмов параллельного обхода графов с циклами по дисциплине «Модели и методы анализа проектных решений». [Электронный ресурс] — Москва: 2023. — 10 с. URL: https://sa2systems.ru: 88 (система контроля версий кафедры РК6)

Постановка: © • @должность научного руководителя (Соколов А.П. Решение и вёрстка: студент группы РК6-11М, Тришин И.В.

2023, осенний семестр

@keywordsen@,,