# Claims Investigation Committee Multi-Testing Input Device

ECE-4820: Electrical and Computer Engineering Design II

Dylan-Matthew Garza Daniel Baker Rohullah Sah

Department of Electrical and Computer Engineering Western Michigan University

> ZF Group Auburn Hills, MI

Fall 2024





- 1 Introduction
  - ZF
  - Need for Multi-Testing Input Device
- Design and Implementation
  - Project Specifications and Overview
  - Hardware Design
  - Cortex-M4 Firmware to Test Devices
  - Embedded Linux With Yocto Project
  - Inter-Processor Communication

#### What is 7F?

- Global technology company and Tier 1 automotive supplier
- Provides advanced safety systems and vehicle control solutions
- Partners with major OEMs: Daimler, Chrysler, Tesla, Waymo(Google), etc.
- A leading innovator in commercial vehicle technology



Figure 1: Source: google.com ZF Group Office in Auburn Hills, MI

### **Project Background**

- Claims Investigation Committee (CIC) required enhanced testing capabilities
- Focus on key component: Brake Signal Transmitter (BST)
- BST critical for highest volume commercial vehicle platform in North America (Daimler)
  - Daimler Truck AG World's largest commercial vehicle manufacturer
  - Previous parent company of Mercedez Benz before splitting in 2021
- Need for rapid, accurate analysis of field returns

# Need for Multi-Testing Input Device

### **Project Drivers**

- BST implementation in Daimler's new platform drive urgent need
- Current testing methods are too time-consuming for production volumes
- Need for quick validation of warranty claims
- Opportunity to expand test capabilities to other electronic components

### **Key Devices Under Test (DUTs)**

### 1. Brake Signal Transmitter (BST)

- Primary focus critical new component for 2025 production
- Acts as the brain that reads how hard a driver presses the brake.

#### 2. Continuous Wear Sensor (CWS)

- Works like a monitor for your brake pads and discs
- Warns when brakes are wearing down using voltage

#### 3. Pressure Sensor

- Continuously measures relative pressure in vehicle control systems
- 4. Electronic Stability Control Module (ESCM)
  - Acts as a safety system that helps prevent skidding and rollovers
  - Monitors the vehicle's movement and intervenes to keep it stable

- Introduction
  - ZI
  - Need for Multi-Testing Input Device
- Design and Implementation
  - Project Specifications and Overview
  - Hardware Design
  - Cortex-M4 Firmware to Test Devices
  - Embedded Linux With Yocto Project
  - Inter-Processor Communication

# **Project Specifications**

# What this project aims to accomplish:

- 1. Device Interfacing
  - 1.1 Properly read Device Signals using the ARM Cortex-M4 on the onboard microcontroller on the STM32MP157F-DK2:
    - PWM Duty Cycle
    - Frequency
    - Voltages through an analog-to-digital converter (ADC)
    - CAN frames

# Project Specifications (cont.)

# **Project Specifications**

- 2. Physical Components and Hardware
  - 2.1 Printed Circuit Board (PCB) for interfacing with DUT
  - 2.2 PCB for scaling and managing power for the DUT and to the microcontroller
  - 2.3 Enclosure for PCBs and STM32MP157F-DK2 board

# Project Specifications (cont.)

### What this project aims to accomplish:

#### 3. Software

- 3.1 Custom embedded Linux distribution that will run on the onboard ARM Cortex-A7 microprocessor on the STM32MP157F-DK2
- 3.2 Simple user interface web-based application
- 3.3 Custom Webserver to process information from web application to microcontroller
- 3.4 Communicate collected information from ARM Cortex-M4 to ARM Cortex-A7
- 3.5 Ability to download measured data, formatted as a CSV, through the web application

#### Project Specifications and Overview

### **Gantt Chart**



# **Budget Projection**

- Introduction
  - $\circ$  Z
  - Need for Multi-Testing Input Device
- Design and Implementation
  - Project Specifications and Overview
  - Hardware Design
  - Cortex-M4 Firmware to Test Device:
  - Embedded Linux With Yocto Project
  - Inter-Processor Communication

#### Hardware Design

# **Custom Hardware Design**

- 1 Introduction
  - Z
  - Need for Multi-Testing Input Device
- Design and Implementation
  - Project Specifications and Overview
  - Hardware Design
  - Cortex-M4 Firmware to Test Devices
  - Embedded Linux With Yocto Project
  - Inter-Processor Communication

# Firmware to Test Brake Signal Transmitter (BST)

#### Purpose

- Developed firmware on the onboard Cortex-M4 microcontroller to validate BST
- Ensures accurate detection of how hard a driver presses the brake pedal

#### Method

- Input Capture: Timers captures read two PWM signals from the BST
- ADC Reading: Optional string potentiometer for direct analog voltage measurements via ADC
- Processing: Calculates duty cycles, frequencies, and estimated stroke via timer interrupts
- Validation: Compare measurements against expected values according to product specifications to verify BST accuracy
- Results: Sends test results to the main processor for logging and user display



Figure 2: Product Specifications for BST

# Firmware to Test Continuous Wear Sensor (CWS)

Cortex-M4 Firmware to Test Devices

# Firmware to Test Pressure Sensor

- 1 Introduction
  - Z
  - Need for Multi-Testing Input Device
- Design and Implementation
  - Project Specifications and Overview
  - Hardware Design
  - Cortex-M4 Firmware to Test Devices
  - Embedded Linux With Yocto Project
  - Inter-Processor Communication

### **Embedded Linux**



Figure 3: Source: https://bootlin.com/ Embedded Linux system architecture

#### Why use embedded Linux?

- Industry standard for any embedded operating system
- Access to open-source software (OSS) and tools
- Networking and connectivity made easy
- Easily save/access data with filesystem

# Using The Yocto Project to Build a Custom Distribution

# What is the Yocto Project and why?

- Most popular set of tools for embedded Linux Development
- Collection of OSS tools to make a custom Linux distribution
- Independent of target architecture
- bitbake build tool handles metadata
- MetaData can be in the form of
  - software build/patch instructions
  - configuration files for software
- MetaData organized in its Layer Model



igure 4: Source: https://docs.yoctoproject.org ligh-level diagram representing how builds work using The Yocto Project

# Custom Linux Image for the STM32MP1-DK2

### What is used in the deployed image?

- ST's BSP (board support package) layer provides metadata
  - Hardware drivers
  - Kernel Configurations
  - Devicetree
- Custom layer meta-zf-project
  - nginx (webserver), wpa\_supplicant (Wi-Fi access client/ IEEE 802.1X supplicant)
  - recipes for custom applications (Web application, Server, Cortex-M4 Firmware)
  - Kernel configurations and custom Devicetree



Figure 5: Layer Model representation of this project for deploying onto a STM32MP1-DK2

- 1 Introduction
  - Z
  - Need for Multi-Testing Input Device
- Design and Implementation
  - Project Specifications and Overview
  - Hardware Design
  - Cortex-M4 Firmware to Test Device:
  - Embedded Linux With Yocto Project
  - Inter-Processor Communication

# Inter-Process Communication on a Heterogenous Architecture

# With a heterogenous architecture (ARM Cortex-A7 and ARM Cortex-M4) how can information be shared?

Hetergenous multiprocessor SoCs cannot directly communicate

# OpenAMP (Asymmetric Multi-Processing) Project

- Software framework that places standard protocol for shared memory
- Implemented on top of virtio framework
- STM provides virt\_uart driver for recieving/transmitting messages over RPMsg protocol
- STMP1 layer automatically enables the RPMSG tty driver kernel module
  - creates file in Linux filesystem: /dev/ttyRPMSG<X>
    can read and write to like a normal file
- remoteproc framework allows dynamic and remote loading of Cortex-M4 firmware
- Resource Table defined in firmware opens a trace in

sys/kernel/debug/remoteproc/remoteproc0/trace0

Used for logging measured data in CSV format



Figure 6: IPC between Linux (A7) and Microcontroller (M4)