УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Дисциплина «Дискретная математика»

Курсовая работа

Часть 1 Вариант 89

> Выполнил студент: Павленко Иван Дмитриевич Р3117

Проверил: Поляков Владимир Иванович Функция $f(x_1,x_2,x_3,x_4,x_5)$ принимает значение 1 при $3<|x_41x_5-x_1x_2x_3|<6$ и неопределенное значение при $|x_41x_5-x_1x_2x_3|=1$

Таблица истинности

No॒	x_1	x_2	x_3	x_4	x_5	x_41x_5	$x_1x_2x_3$	x_41x_5	$x_1x_2x_3$	f
0	0	0	0	0	0	2	0	2	0	0
1	0	0	0	0	1	3	0	3	0	0
2	0	0	0	1	0	6	0	6	0	0
3	0	0	0	1	1	7	0	7	0	0
4	0	0	1	0	0	2	1	2	1	d
5	0	0	1	0	1	3	1	3	1	0
6	0	0	1	1	0	6	1	6	1	1
7	0	0	1	1	1	7	1	7	1	0
8	0	1	0	0	0	2	2	2	2	0
9	0	1	0	0	1	3	2	3	2	d
10	0	1	0	1	0	6	2	6	2	1
11	0	1	0	1	1	7	2	7	2	1
12	0	1	1	0	0	2	3	2	3	d
13	0	1	1	0	1	3	3	3	3	0
14	0	1	1	1	0	6	3	6	3	0
15	0	1	1	1	1	7	3	7	3	1
16	1	0	0	0	0	2	4	2	4	0
17	1	0	0	0	1	3	4	3	4	d
18	1	0	0	1	0	6	4	6	4	0
19	1	0	0	1	1	7	4	7	4	0
20	1	0	1	0	0	2	5	2	5	0
21	1	0	1	0	1	3	5	3	5	0
22	1	0	1	1	0	6	5	6	5	d
23	1	0	1	1	1	7	5	7	5	0
24	1	1	0	0	0	2	6	2	6	1
25	1	1	0	0	1	3	6	3	6	0
26	1	1	0	1	0	6	6	6	6	0
27	1	1	0	1	1	7	6	7	6	d
28	1	1	1	0	0	2	7	2	7	1
29	1	1	1	0	1	3	7	3	7	1
30	1	1	1	1	0	6	7	6	7	d
31	1	1	1	1	1	7	7	7	7	0

Аналитический вид

Каноническая ДНФ:

 $f = \overline{x_1} \, \overline{x_2} \, x_3 \, x_4 \, \overline{x_5} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, x_4 \, \overline{x_5} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, x_2 \, x_3 \, x_4 \, x_5 \vee x_1 \, x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, x_2 \, x_3 \, \overline{x_4} \, \overline{x_5} \vee x_1 \, x_2 \, x_3 \, \overline{x_4} \, \overline{x_5} \vee x_1 \, x_2 \, x_3 \, \overline{x_4} \, \overline{x_5} \vee x_1 \, x_2 \, x_3 \, \overline{x_4} \, \overline{x_5} \vee x_1 \, x_2 \, x_3 \, \overline{x_4} \, \overline{x_5} \vee x_1 \, x_2 \, x_3 \, \overline{x_4} \, \overline{x_5} \vee x_1 \, x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_5} \vee x_2$

Каноническая КНФ:

$$f = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5) (x_1 \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5) (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5})$$

$$(x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor \overline{x_5})$$

$$(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor x_5) (\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor x_5) (\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5) (\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5})$$

$$(\overline{x_1} \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5) (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5})$$

$$(\overline{x_1} \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor x_5) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5})$$

Минимизация булевой функции методом Квайна-Мак-Класки

Кубы различной размерности и простые импликанты

	$K^0(f)$		K^1	Z(f)	
m_4	00100	\checkmark	m_4 - m_6	001X0	10001
m_6	00110	√	m_4 - m_{12}	0X100	001X0
m_{10}	01010	\checkmark	m_{10} - m_{11}	0101X	0X100
m_{24}	11000	\checkmark	m_9 - m_{11}	010X1	0101X
m_9	01001	\checkmark	m_{24} - m_{28}	11X00	010X1
m_{12}	01100	\checkmark	m_6 - m_{22}	X0110	11X00
m_{17}	10001		m_{12} - m_{28}	X1100	X0110
m_{11}	01011	\checkmark	m_{11} - m_{15}	01X11	X1100
m_{28}	11100	\checkmark	m_{28} - m_{29}	1110X	01X11
m_{22}	10110	\checkmark	m_{28} - m_{30}	111X0	1110X
m_{15}	01111	√	m_{22} - m_{30}	1X110	111X0
m_{29}	11101	\checkmark	m_{11} - m_{27}	X1011	1X110
m_{27}	11011	\checkmark			X1011
m_{30}	11110	\checkmark			

Таблица импликант

Вычеркнем строки, соответствующие существенным импликантам (это те, которые покрывают вершины, не покрытые другими импликантами), а также столбцы, соответствующие вершинам, покрываемым существенными импликантами. Затем вычеркнем импликанты, не покрывающие ни одной вершины.

			0-кубы						
		0	0	0	Ŏ	1	1	1	
			1	1	1		1	1	
Простые импликанты		1	0		1		1	1	
1			1	1	1		0		
		0	0	1	1		0	1	
		6	10	11	15	24	28	29	
	10001								
A	001X0	X							
	0X100								
	0101X		x	X					
	010X1			X					
	11X00			21		X	v		
В	X0110	X				1	21		
	X1100						v		
	01X11			v	v		Λ.		
				1	/A.		v	Х	
	1110X						Λ 37	1	
	111X0						X		
	1X110								
	X1011			X					

Ядро покрытия:

$$T = \begin{cases} 0101X \\ 01X11 \\ 11X00 \\ 1110X \end{cases}$$

Получим следующую упрощенную импликантную таблицу:

		0-кубы		
		0		
		0 1		
Пр	остые импликанты			
		1		
		0		
		6		
A	001X0	X		
В	X0110	X		

Метод Петрика:

Запишем булево выражение, определяющее условие покрытия всех вершин:

$$Y = A \vee B$$

Возможны следующие покрытия:

$$C_{1} = \begin{Bmatrix} T \\ A \end{Bmatrix} = \begin{Bmatrix} 0101X \\ 01X11 \\ 11X00 \\ 1110X \\ 001X0 \end{Bmatrix} \qquad C_{2} = \begin{Bmatrix} T \\ B \end{Bmatrix} = \begin{Bmatrix} 0101X \\ 01X11 \\ 11X00 \\ 1110X \\ X0110 \end{Bmatrix}$$
$$S_{1}^{a} = 20 \qquad S_{2}^{a} = 20$$
$$S_{1}^{b} = 25 \qquad S_{2}^{b} = 25$$

Рассмотрим следующее минимальное покрытие:

$$C_{\min} = \begin{cases} 0101X \\ 01X11 \\ 11X00 \\ 1110X \\ 001X0 \end{cases}$$
$$S^{a} = 20$$
$$S^{b} = 25$$

Этому покрытию соответствует следующая МДНФ:

$$f = \overline{x_1} \, x_2 \, \overline{x_3} \, x_4 \vee \overline{x_1} \, x_2 \, x_4 \, x_5 \vee x_1 \, x_2 \, \overline{x_4} \, \overline{x_5} \vee x_1 \, x_2 \, x_3 \, \overline{x_4} \vee \overline{x_1} \, \overline{x_2} \, x_3 \, \overline{x_5}$$

Минимизация булевой функции на картах Карно

Определение МДНФ

$$f = \overline{x_1} \, x_2 \, \overline{x_3} \, x_4 \vee \overline{x_1} \, x_2 \, x_4 \, x_5 \vee x_1 \, x_2 \, \overline{x_4} \, \overline{x_5} \vee x_1 \, x_2 \, x_3 \, \overline{x_4} \vee \overline{x_1} \, \overline{x_2} \, x_3 \, \overline{x_5}$$

Определение МКНФ

$$f = (x_2 \lor x_3) \ (x_1 \lor x_4) \ (x_2 \lor \overline{x_5}) \ (\overline{x_1} \lor \overline{x_4}) \ (x_2 \lor x_4) \ (x_3 \lor x_4 \lor \overline{x_5}) \ (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_5)$$

Преобразование минимальных форм булевой функции

Факторизация и декомпозиция МДНФ

$$f=\overline{x_1}\,x_2\,\overline{x_3}\,x_4\vee\overline{x_1}\,x_2\,x_4\,x_5\vee x_1\,x_2\,\overline{x_4}\,\overline{x_5}\vee x_1\,x_2\,x_3\,\overline{x_4}\vee\overline{x_1}\,\overline{x_2}\,x_3\,\overline{x_5} \qquad S_Q=25 \quad \tau=2$$

$$f=x_1\,x_2\,\overline{x_4}\,\left(x_3\vee\overline{x_5}\right)\vee\overline{x_1}\,x_2\,x_4\,\left(\overline{x_3}\vee x_5\right)\vee\overline{x_1}\,\overline{x_2}\,x_3\,\overline{x_5} \qquad S_Q=19 \quad \tau=3$$

$$\varphi=x_3\,\overline{x_5}$$

$$\overline{\varphi}=\overline{x_3}\vee x_5$$

$$f=x_1\,x_2\,\overline{x_4}\,\left(x_3\vee\overline{x_5}\right)\vee\overline{x_1}\,x_2\,x_4\,\overline{\varphi}\vee\varphi\,\overline{x_1}\,\overline{x_2} \qquad S_Q=19 \quad \tau=4$$
 Декомпозиция нецелесообразна
$$f=x_1\,x_2\,\overline{x_4}\,\left(x_3\vee\overline{x_5}\right)\vee\overline{x_1}\,x_2\,x_4\,\left(\overline{x_3}\vee x_5\right)\vee\overline{x_1}\,\overline{x_2}\,x_3\,\overline{x_5} \qquad S_Q=19 \quad \tau=3$$

Факторизация и декомпозиция МКНФ

$$f = (x_2 \vee x_3) \ (x_1 \vee x_4) \ (x_2 \vee \overline{x_5}) \ (\overline{x_1} \vee \overline{x_4}) \ (x_2 \vee x_4) \ (x_3 \vee x_4 \vee \overline{x_5}) \ (x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_5) \qquad S_Q = 24 \quad \tau = 2$$

$$f = (x_2 \vee x_3 \, \overline{x_5}) \ (x_4 \vee x_1 \, x_2 \ (x_3 \vee \overline{x_5})) \ (\overline{x_1} \vee \overline{x_4}) \ (x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_5) \qquad S_Q = 21 \quad \tau = 4$$

$$\varphi = x_3 \, \overline{x_5}$$

$$\overline{\varphi} = \overline{x_3} \vee x_5$$

$$f = (x_2 \vee \varphi) \ (x_4 \vee x_1 \, x_2 \ (x_3 \vee \overline{x_5})) \ (\overline{x_1} \vee \overline{x_4}) \ (\overline{\varphi} \vee x_1 \vee \overline{x_2}) \qquad S_Q = 21 \quad \tau = 4$$
 Декомпозиция нецелесообразна
$$f = (x_2 \vee x_3 \, x_4 \, \overline{x_5}) \ (x_1 \vee x_4) \ (\overline{x_1} \vee \overline{x_4}) \ (x_3 \vee x_4 \vee \overline{x_5}) \ (x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_5) \qquad S_Q = 21 \quad \tau = 3$$

Синтез комбинационных схем

Будем анализировать схемы на следующих наборах аргументов:

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 0]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 1]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1, x_5 = 0]) = 1$$

$$f([x_1 = 0, x_2 = 1, x_3 = 0, x_4 = 1, x_5 = 0]) = 1$$

Булев базис

Схема по упрощенной МДНФ:

$$f = x_1 x_2 \overline{x_4} (x_3 \vee \overline{x_5}) \vee \overline{x_1} x_2 x_4 (\overline{x_3} \vee x_5) \vee \overline{x_1} \overline{x_2} x_3 \overline{x_5} (S_Q = 19, \tau = 3)$$

Схема по упрощенной МКНФ:

$$f = (x_2 \vee x_3 \, x_4 \, \overline{x_5}) \, \left(x_1 \vee x_4\right) \, \left(\overline{x_1} \vee \overline{x_4}\right) \, \left(x_3 \vee x_4 \vee \overline{x_5}\right) \, \left(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_5\right) \quad \left(S_Q = 21, \tau = 3\right)$$

Сокращенный булев базис (И, НЕ)

Схема по упрощенной МДНФ в базисе И, НЕ:

$$f = \overline{\overline{x_1 \, x_2 \, \overline{x_4} \, \overline{x_3} \, x_5}} \, \overline{\overline{x_1} \, x_2 \, x_4 \, \overline{\varphi}} \, \overline{\varphi \, \overline{x_1} \, \overline{x_2}} \quad (S_Q = 24, \tau = 6)$$

$$\varphi = x_3 \, \overline{x_5}$$

Схема по упрощенной МКНФ в базисе И, НЕ:

$$f = \overline{\overline{x_2}} \, \overline{\overline{x_3}} \, \overline{x_4} \, \overline{\overline{x_5}} \, \overline{\overline{x_1}} \, \overline{x_4} \, \overline{x_1} \, \overline{x_4} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \, \overline{\overline{x_1}} \, \overline{x_2} \, \overline{x_3} \, \overline{x_5} \quad (S_Q = 27, \tau = 5)$$

Универсальный базис (И-НЕ, 2 входа)

Схема по упрощенной МДН Φ в базисе И-НЕ с ограничением на число входов:

Схема по упрощенной МКНФ в базисе И-НЕ с ограничением на число входов:

$$f = \frac{\boxed{\boxed{\boxed{\boxed{\boxed{x_4}} \overline{x_1} \overline{x_3} x_5}} \boxed{\boxed{\boxed{\boxed{x_2}} \overline{x_3} \overline{x_4} \boxed{\boxed{\boxed{\boxed{\boxed{x_1}}}}}} \boxed{\boxed{\boxed{\boxed{\boxed{\boxed{x_1}}} \overline{x_1} \overline{x_2}} \boxed{\boxed{\boxed{\boxed{\boxed{x_2}}}} \boxed{\boxed{\boxed{\boxed{\boxed{\boxed{N_Q}}}}}} } } (S_Q = 38, \tau = 8)$$

