PHAS2423 - Self-Study - Cartesian Tensors - Problems

- (1) The summation convention.
- (a) Express the following using the summation convention.

(a.1)
$$x'_i = \sum_{j=1}^3 a_{ij} x_j;$$
 (a.2) $T'_{kl} = \sum_{i=1}^3 \sum_{j=1}^3 a_{ki} a_{lj} T_{ij};$ (a.3) $B'_{pqr} = \sum_{i=1}^3 \sum_{j=1}^3 \sum_{k=1}^3 L_{pi} L_{qj} L_{rk} B_{ijk}.$

(b) Write the following using explicit summation.

(b.1)
$$C_{jknm}A_nB_{jk}$$
; (b.2) $(\delta_{ij}\delta_{kl} + \delta_{il}\delta_{kj})A_{ik}$.

(c) Show that

(c.1)
$$\delta_{ij}\delta_{jk} = \delta_{ik}$$
; (c.2) $\delta_{ii} = N$.

(d) Evaluate

(d.1)
$$\delta_{ij}\delta_{jk}\delta_{km}\delta_{im}$$
; (d.2) $\epsilon_{jk2}\epsilon_{k2j}$; (d.3) $\epsilon_{23i}\epsilon_{2i3}$.

(2) Rotation.

(a) Orthogonality. An orthogonal matrix L has components L_{ij} . Evaluate the following:

(a.1)
$$L_{ij}L_{jk}$$
; (a.2) $L_{ji}L_{kj}$; (a.3) $L_{ij}L_{ik}$; (a.4) $L_{ij}L_{kj}$.

(b) Rotation. Show that the transformation matrix L for a rotation of the coordinate system by an angle θ about e_3 axis is

$$L = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(c) Consecutive rotations. Show that two consecutive rotations of the coordinate system by an angle θ about e_3 axis is also a rotation about the same axis with the

value of the rotation angle of 2θ .

(3) Transformation of tensors.

- (a) Contraction. Given that T_{ijk} and V_n are components of the 3rd order and 1st order tensors, respectively,
- (a.1) Show that T_{iij} is a 1st-order tensor.
- (a.2) Show that $T_{ijk}V_k$ is a 2nd-order tensor.
- (b) Outer product. If quantities A_{ij} and B_{kl} are components of 2nd order tensors, show that quantities T_{ijkl} formed by $T_{ijkl} = A_{ij}B_{kl}$ is a 4th-order tensor.
- (c) Vectors. For the case of a two-dimensional space
- (c.1) Show that $\mathbf{v} = (x_2, -x_1)$ transforms as a vector under rotation of the coordinate system.
- (c.2) Show that $\mathbf{v} = (x_2, x_1)$ is not a vector.
- (d) Scalars.
- (d.1) Show that the scalar product of vectors \boldsymbol{a} and \boldsymbol{b} is, indeed, a scalar.
- (d.2) Show that $\nabla \cdot \mathbf{v}$ is a scalar (assume that \mathbf{v} is a vector).
- (e) Higher order tensors. Demonstrate that matrix T represents a 2^{nd} order tensor:

$$\boldsymbol{T} = \left(\begin{array}{cc} x_2^2 & -x_1 x_2 \\ -x_1 x_2 & x_1^2 \end{array} \right).$$

(4) Quotient theorem. Given that A is an arbitrary tensor and B is a non-zero tensor, prove the quotient theorem for the following cases:

(a)
$$X_i A_{ij} = B_j$$
 (b) $X_{ij} A_k = B_{ijk}$

(5) Application of tensors ϵ_{ijk} and δ_{ij} Use properties of the Levi-Civita and Kronecker tensors to prove the following identities for vectors \boldsymbol{a} , \boldsymbol{b} , \boldsymbol{c} , and \boldsymbol{d} :

(a)
$$(\boldsymbol{a} \times \boldsymbol{b}) \cdot (\boldsymbol{c} \times \boldsymbol{d}) = (\boldsymbol{a} \cdot \boldsymbol{c})(\boldsymbol{b} \cdot \boldsymbol{d}) - (\boldsymbol{a} \cdot \boldsymbol{d})(\boldsymbol{b} \cdot \boldsymbol{c}).$$

$$(\boldsymbol{a}\times\boldsymbol{b})\times(\boldsymbol{c}\times\boldsymbol{d})=\left[\left(\boldsymbol{a}\times\boldsymbol{b}\right)\cdot\boldsymbol{d}\right]\boldsymbol{c}-\left[\left(\boldsymbol{a}\times\boldsymbol{b}\right)\cdot\boldsymbol{c}\right]\boldsymbol{d}$$

(c) Find an explicit expression for the i^{th} component of vector $\nabla \times (\nabla \times \boldsymbol{a})$.

(6) A rigid body consists of eight particles, each of mass m, held together by light rods. In a certain coordinate system the particles are at positions

$$\pm a(3,1,-1)$$
 $\pm a(1,-1,3)$ $\pm a(1,3,-1)$ $\pm a(-1,1,3)$.

The body rotates about an axis passing through the origin. Show that, if the angular velocity and angular momentum vectors are parallel, then their ratio must be $40ma^2$, $64ma^2$, or $72ma^2$.