Started on	Thursday, 8 July 2021, 2:04 PM
State	Finished
Completed on	Thursday, 8 July 2021, 2:04 PM
Time taken	11 secs
Marks	0.00/50.00
Grade	0.00 out of 10.00 (0 %)

Not answered

Marked out of 1.00

Consider the function f: $Z \rightarrow N$, f(n) = -2n if n \leq 0 and f(n) = 2n + 1 if n > 0

Which statement is true?

- a. f is one-to-one, not onto
- b. f is one-to-one, and onto
- oc. f is not one-to-one, but onto
- d. f is not one-to-one, not onto

Not answered

Marked out of 1.00

If E is the **root** of the following tree, what is the **height** of the tree?

- oa. 5
- ob. 4
- oc. 3
- od. 2

Question 3	
Not answered	
Marked out of 1.00	
Let $A = \{1, 2, x\}$. What is the cardinality of the power set of A?	
Select one:	
○ a. 9	
○ b. 8	
○ c. 3	
○ d. 6	

Not answered

Marked out of 1.00

Are these two graphs isomorphic? If not, what is the reason?

- a. No, they are not isomorphic because they do not have the same number of vertices of degree 3.
- b. Yes, they are isomorphic.
- O. No, they are not isomorphic because the graph on the left is connected, and the graph on the right is not.
- d. No, they are not isomorphic because the vertices of degree 3 of the graph on the right form a circuit, and the graph on the left does not have that property.

Not answered

Marked out of 1.00

Determine the complexity of the following algorithm.

procedure giaithuat(a₁, a₂, a₃, ..., a_n: positive integers)

k:=0

for i: =1 to n do

if a_i < a_{i+1} then k:= k +1

print(k)

Select one:

a. O(n)

b. O(1)

c. None of the others

d. O(logn)

Question 6
Not answered
Marked out of 1.00
Which of these codes are prefix codes?
(i) a: 11, b: 011, c: 01, d:101
(ii) a: 01, b: 101, c: 11, d: 00
Select one:
a. (ii) only
ob. (i) only
c. Both (i) and (ii)
od. Neither (i) nor (ii)
Question 7
Not answered
Marked out of 1.00
How many vertices in a full binary tree with 50 leaves?
Select one:
_ a. 99
_ b. 100
c. 101
o d. 51

Not answered

Marked out of 1.00

n is any positive integer, which statements are true?

(i)
$$1^2 + 3^2 + 5^2 + ... + (2n-1)^2 = n^3$$

(ii)
$$1! + 2! + ... + n! = (n+1)! - 1$$

- a. (ii) only
- b. both
- oc. none
- d. (i) only

Question 9
Not answered
Marked out of 1.00
Suppose you have 15 novels, 10 history books, and 7 math books. In how many ways can you choose a book?
Select one:
a. None of these
○ b. 18
○ c. 32
od. 15.10.7

Not answered

Marked out of 1.00

Given f(x) = x + 2 and $g(x) = x^3$.

What is the composite function (fog)(x)?

Select one:

- a. None of the others
- b. $(fog)(x) = x^3(x+2)$
- o. $(fog)(x) = (x+2)^3$
- \bigcirc d. (fog)(x) = $x^3 + 2$

Ouestion 11

Not answered

Marked out of 1.00

Which of the following is/are true?

- a. If the graph has n edges, then minimum spanning trees have n-1 edges
- b. The spanning trees can have a cycle.
- oc. Removing one edge from the spanning tree will not make the graph disconnected
- od. None of the others

Not answered

Marked out of 1.00

Given $f(x) = x^2 \log x$, and $g(x) = x^2 + \log(x)$

Which of the following statements is TRUE?

(i) f(x) is O(g(x))

(ii) g(x) is O(f(x))

Select one:

- oa. none
- ob. both
- c. (i) only
- d. (ii) only

Question 13

Not answered

Marked out of 1.00

Match the numbers a and b such that $a \equiv b \pmod{5}$

a = 21

Choose...

a = 19

Choose...

a = 13

Choose...

Not answered

Marked out of 1.00

Find a proposition with the given truth table

p	q	3	
T	Т	F	
T	F	F	
F	Т	Т	
F	F	Т	7

- (i) ¬p v ¬q
- (ii) p v (¬p ^ q)
- (iii) (¬p ^ q) v (¬p ^ ¬q)

- a. (ii)
- b. (iii)
- o. (i)
- od. None of these

Question 17
Not answered
Marked out of 1.00
How many positive integers not exceeding 100 are divisible by 3 or 11?
Select one: a. 39
○ b. 40
o c. None of these
Od. 41
○ e. 42

Not answered

Marked out of 1.00

Delete one edge from each graph to obtain 2 new graphs. How many cut-edges in total of the new graphs? Select one:

a. 4

o b. 5

oc. 2

od. 6

e. 3

Question 19

Not answered

Marked out of 1.00

Given the function:

f: $\{a, b, c, d\} \rightarrow \{1, 2, 3, 4\};$

 $f = \{(a, 1), (b, 2), (c, 3), (d, 3)\}.$

Select correct statement(s).

Select one or more:

- a. f is not an onto function
- b. f is not 1-1
- c. f is a bijection
- d. f is an 1-1 function.
- e. f is an onto function

Suppose the product of two positive integers is $3.5^3.7^2$ and their **greatest common divisor** is 3.5^2 , what is their **least common multiple**?

- \bigcirc a. 5.7²
- \bigcirc b. 3.5^2
- oc. None of these
- \bigcirc d. $3.5^3.7^2$

Question 21	
Not answered	
Marked out of 1.00	
How many 1s are there in the adjacency matrix representing the graph K_6 ?	
Select one:	
_ a. 36	
o b. 15	
○ c. 5	
Od. 30	

Not answered

Marked out of 1.00

Apply the Prime algorithm to find the a minimum spanning tree for the following graph.

The minimum-cost is ____

- _ a. 8
- ob. 13
- C. 1
- and NI Calls als

a. None of the others
Question 23
Not answered
Marked out of 1.00
Construct the binary search tree for the sequence 6, 12, 5, 8, 2, 9, 0, 3. How many comparisons are required to locate number 3 in the search tree?
Select one:
○ a. 4
○ b. 5
○ c. None of the others
○ d. 3
○ e. 2

Not answered

Marked out of 1.00

The function $f(x) = x^3 + 2^x$ is ____

- \bigcirc a. $O(x^2)$
- b. None of these
- \bigcirc c. $O(x^3)$
- d. O(3^x)

Not answered

Marked out of 1.00

Which of the following graphs have an Euler circuit?

- a. Gonly
- ob. Neither G nor H
- c. Honly
- od. Both G and H

Question 27
Not answered
Marked out of 1.00
Convert (A13) ₁₃ to decimal expansion.
Select one:
a. None of the others
o b. 1706
oc. 1996
od. 1147
o e. 2017
Question 28
Not answered
Marked out of 1.00
Convert (23) ₇ to binary format
Select one:
a. 11001
o b. 11111
o c. None of these
od. 10001
o e. 10101

Question 29
Not answered
Marked out of 1.00
A full binary tree with 31 vertices has height at most
Select one:
○ a. 16
○ b. 15
○ c. 30
○ d. 5
○ e. None of tthese

Not answered

Marked out of 1.00

Suppose x, y are integers and

 $x \mod 12 = 9$

and

 $y \mod 6 = 2$,

Find

- (i) x mod 6
- (ii) xy mod 6

- a. (i): 3; (ii): 0
- b. (i): 2; (ii): 1
- o. (i): 1; (ii): 3
- d. (i): 3; (ii): 6

Not answered

Marked out of 1.00

Match a with b so that a is congruent to b modulo 7.

a = 11 Choose...

a = 17 | Choose...

a = 23 Choose...

Question 32

Not answered

Marked out of 1.00

Encrypt the message "LV" using the function $f(p) = (3p + 11) \mod 26$.

What is the result?

- oa. SF
- ob. SW
- o. XT
- od. None of the others
- e. VL

Not answered

Marked out of 1.00

How many rows appear in a truth table for each of these compound propositions?

 $(p \land r \land t) \leftrightarrow (p \land \neg t)$

Select one:

- a. 16
- ob. 8
- c. 5
- od. 32

Question **34**

Not answered

Marked out of 1.00

Let p, q be propositions. The proposition $(p \land \neg q) \rightarrow q$ is equivalent to _____

- a. None of the others
- b. ¬p ^ q
- C. p v ¬q
- od. ¬p∨q

Question 35
Not answered
Marked out of 1.00
Study the following arguments:
(i) Any computer science major must take Discrete Mathematics. Van is taking Discrete Mathematics. Therefore Van is a computer science major.
(ii) Any student of FPT university lives in the dorm. Van is living in a house. Therefore Van is not a student of FPT university.
Then, (i) is and (ii) is
Select one:
a. valid, invalid
ob. invalid, invalid
c. invalid, valid
od. valid, valid

Question 36
Not answered
Marked out of 1.00
Use Huffman coding algorithm to encode the word "football".
What is the average number of bits required to encode a character?
what is the average number of bits required to encode a character:
Select one:
○ a. 2.35
Ob. 2.5
oc. 2.45
od. 2.25
Question 37
Not answered
Marked out of 1.00
Find the <i>negation</i> of the statement "It is Thursday and it is cold."
Select one:
a. It is not Thursday and it is not cold.
b. It is Thursday and it is not cold.
C. None of the others
d. It is not Thursday or it is not cold.

7/8/2021 Quiz 2: Attempt review

Question 38 Not answered Marked out of 1.00
Study the following arguments: (i) Anne is smart if she knows discrete mathematics. She doesn't know discrete mathematics. Therefore, she is not smart. (ii) All parrots like fruit. My pet bird is not a parrot. Therefore, my pet bird does not like fruit. Then (i) is and (ii) is
Select one: a. logical, illogical b. illogical, illogical c. logical, logical d. illogical, logical

Not answered

Marked out of 1.00

Find the sum

$$\sum_{i=1}^{3} \sum_{k=1}^{2} (i+k)$$

- a. 21
- ob. 30
- oc. 9
- od. None of these
- e. 12

Question 40
Not answered
Marked out of 1.00

In the adjacency matrix of a pseudograph, the sum of all entries in the row corresponding to the vertex A equals 5. Given that there are two loops at A. Find the degree of A.

- a. 5
- ob. 3
- o. 7
- od. None of these
- e. 9

Not answered

Marked out of 1.00

Study the function f (k) satisfying

f(k) = 3f(k-1) - f(k-2), and f(1) = 1, f(2) = 2.

Find f(5).

- a. None of the others
- ob. 21
- oc. 19
- od. 15
- e. 18

Question 42
Not answered
Marked out of 1.00
Suppose that the connected graph G has 10 vertices and 10 edges. What is the least number of different spanning trees can be formed?
Select one:
○ a. None of the others
○ b. 10
○ c. 3
○ d. 45
○ e. 2

Question 43	
Not answered	
Marked out of 1.00	
Given a connected simple graph with adjacency matrix	
01101 10010 10010 01101 10010	
Which of the following statements is correct?	
Select one:	
○ a. None of these	
○ b. G has Euler circuits	
○ c. G has Euler paths, but no Euler circuits	
○ d. G does not have Euler paths	

Not answered

Marked out of 1.00

Which proposition is logically equivalent to $(p \rightarrow r) \land (\neg p \rightarrow r)$?

- (i) r
- (ii) p v ¬p v r
- (iii) ¬r
- (iv) p ^ r

- a. (iii)
- b. (iv)
- o. (ii)
- d. (i)

Not answered

Marked out of 1.00

Which of the following statements is the *negation* of $\forall x (P(x) \rightarrow Q(x))$

- (i) $\exists x (\neg P(x) \rightarrow \neg Q(x))$
- (ii) $\exists x (P(x) \land \neg Q(x))$
- (iii) $\forall x (Q(x) \rightarrow P(x))$

- a. None of the others
- b. (ii)
- C. (iii)
- d. (i)

Not answered

Marked out of 1.00

Find the prefix notation for the expression

$$a / b + (c - d) * e$$

- \bigcirc a. + / a b * c d e
- b. None of these
- \bigcirc c. a b / c d e * +
- \bigcirc d. / a b + c d e *

Not answered

Marked out of 1.00

Which of the following functions is $\Theta(n^2)$?

- \circ a. f(n) = 2017²⁰¹⁷n
- \bigcirc b. f(n) = 1² + 2² + 3² + ... + n²
- \circ c. f(n) = 2021n³ + 2021nlog(n²⁰²¹)
- od. $f(n) = n^3 + 3n$
- \circ e. f(n) = 1+2+3 + ... + n

Question 49
Not answered
Marked out of 1.00
Consider the statements for the graph Kn, n > 3
(i) K ₈ has a Hamilton circuit.
(ii) If $K_{3,n}$ has a Hamilton circuit, then $n = 3$.
Then, (i) is, and (ii) is
Select one:
a. false, false
ob. false, true
C. true, true
○ d. true, false

Not answered

Marked out of 1.00

The statement

$$p \wedge q \equiv p \vee q$$

is called ...

Select one:

- a. De Morgan law
- b. double negation law
- oc. domination laws
- od. idempotent law

«