一、选择题:

1. 如图所示,在真空中半径分别为 R 和 2R 的两个同心球面,其上分别均 匀地带有电荷+q 和-3q. 今将一电荷为+Q的带电粒子从内球面处由静止 释放,则该粒子到达外球面时的动能为:

(C)
$$\frac{Qq}{8\pi\varepsilon_0 R}$$
.

(D)
$$\frac{3Qq}{8\pi\varepsilon_0 R}$$
.

(B)

2. 真空中的细导线弯成半径为R的半圆形,通过的电流为I,则圆心处的磁感应强度的大小为

$$({\rm A}) \quad \frac{\mu_0}{4\pi} \frac{1}{R} \, .$$

(B)
$$\frac{\mu_0}{2\pi} \frac{1}{R}.$$

(D)
$$\frac{\mu_0}{4} \frac{1}{R}$$
.

3. 有一"无限大"带正电荷的平面,若设平面所在处为电 势零点,取 x 轴垂直带电平面,原点在带电平面上,则其 周围空间各点电势U随距离平面的位置坐标x变化的关系 曲线为: 「

4. 在电荷为-Q 的点电荷 A 的静电场中,将另一电荷为 Q的点电荷 B 从 a 点移到 b 点. a、b 两点距离点电荷 A 的距 离分别为 r_1 和 r_2 , 如图所示.则移动过程中电场力做的功为

(A)
$$\frac{-Q}{4\pi\varepsilon_0} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

(A)
$$\frac{-Q}{4\pi\varepsilon_0} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$
. (B) $\frac{qQ}{4\pi\varepsilon_0} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$.

(C)
$$\frac{-qQ}{4\pi\varepsilon_0} \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$
. (D) $\frac{-qQ}{4\pi\varepsilon_0(r_2 - r_1)}$

(D)
$$\frac{-qQ}{4\pi\varepsilon_0(r_2-r_1)}$$

7

5. 图中实线为某电场中的电场线, 虚线表示等势(位)面, 由图可 看出:

(A)
$$E_A > E_B > E_C$$
, $U_A > U_B > U_C$.

(B)
$$E_A < E_B < E_C$$
, $U_A < U_B < U_C$.

(C)
$$E_A > E_B > E_C$$
, $U_A < U_B < U_C$.

(D)
$$E_A < E_B < E_C$$
, $U_A > U_B > U_C$.

6. 磁场由沿空心长圆筒形导体的均匀分布的电 流产生, 圆筒半径为R, x 坐标轴垂直圆筒轴线, 原点在中心轴线上.图(A)~(E)哪一条曲线表示B -x 的关系?

]

(A)	0.	(B) $\frac{\mu_0 I}{4R}$.				$\langle a \rangle$	_	
(C)	$\frac{\sqrt{2}\mu_0I}{4R}.$	(D) $\frac{\mu_0 I}{R}$				(b)	\searrow	
(E)	$rac{\sqrt{2}\mu_0I}{8R}$.]				•	
8. 顺磁物]质的磁导率:							
(A)	比真空的磁导率略	分. (B)	比真空的磁导率	区略大.				
(C)	远小于真空的磁导	率. (D)	远大于真空的码	兹导率. []			
9. 如图,	长载流导线 ab 和	cd 相互垂直	,它们相距 <i>l</i> ,ad	b固定不动, cd能				
绕中点 o 转动,并能靠近或离开 ab .当电流方向如图所示时,导线 cd 将 $big ig ig I$								
(A)	顺时针转动同时	离开 ab.			c		d	
(B)	顺时针转动同时	靠近 <i>ab</i> .						
(C)	逆时针转动同时高	离开 <i>ab</i> .			,	$a \mid O^{-}$	\overrightarrow{I}	
(D)	逆时针转动同时	靠近 <i>ab</i> .	[]			<i>1</i>		
心圆,在 ⁻ 点的圆柱 示. 如磁	线围成的回路(两/一处用导线沿半径 一处用导线沿半径 形均匀磁场中,回 场方向垂直图面向 各图中哪个图上正	方向相连),]路平面垂直 ⁻]里,其大小	放在轴线通过 <i>O</i> 于柱轴,如图所 随时间减小,则	(A)		O. B) (B)	
[]							
L	1			(C)		0. B	(D)	
二、填空	题:(每题 3 分,共	计30分)						
若把电介	质充入电容器 2 (填增大、)	中,则电容	器 1 上的电势	充电.在电源保持联 差; 【放入待测磁场中的	电容器	1 极板_		
				的 p_m 与 z 轴平行时,				
				平行时,所受磁力矩				
^10 N· 感应强度	_	(刀門; 当 此多	及國的 $p_m \rightarrow y$ 抽	111时,丹文城沙水	2.79令・火	1工内A)	只文L DJ 16公	
_ / /- //	D 的 ,方向	1 先						
				都是十 σ ,如图所				
	B、 C 、 D 三个 D			m	$+\sigma$	$+\sigma$ -	$^{+}\sigma$	
$E_{\Lambda} =$		$E_{R}=$						
~A	,		·,		$A \mid$	$B \mid C$	D	
$E_C = _{}$	E_D	=	(设方向]向右为正).		$B \mid C$		
	r电荷 <i>q、</i> 半径为 R 大各向同性均匀电			壳外是介电常量为 ·				

7. 如图两个半径为 R 的相同的金属环在 a、b 两点接触(ab 连线为环直径),并相互垂直放置. 电流 I

沿 ab 连线方向由 a 端流入,b 端流出,则环中心 O 点的磁感应强度的大小为

5. 若在磁感应强度 $B=0.02T$ 的均匀磁场中,一电子沿着半径 $R=1.00~\mathrm{cm}$ 的	的圆周运动,
则该电子的动能 $E_K =$ eV.	
6. 金属圆板在均匀磁场中以角速度 ω 绕中心轴旋转,均匀磁场的方向平行	$_{-}\mid O$
于转轴,如图所示.这时板中由中心至	$igwedge ar{B} ig $
边缘点的总感应电动势的大小,方向	
7. 自感系数 $L=0.3$ H 的螺线管中通以 $I=8$ A 的电流时, 螺线管存储的磁场	
能量 W =	0
8. 坡印廷矢量 \vec{S} 的物理意义是:	O
其定义式为	
9. 有一根无限长直导线绝缘地紧贴在矩形线圈的中心轴 00′上,	
则直导线与矩形线圈间的互感系数为	

10. 电子质量 m,电荷 e,以速度 \bar{v} 飞入磁感应强度为 \bar{B} 的匀强磁场中, \bar{v} 与 \bar{B} 的 夹 角 为 θ , 电 子 作 螺 旋 运 动 , 螺 旋 线 的 螺 距 h=

, 半径 *l*

三、计算题

1.图中虚线所示为一立方形的高斯面,已知空间的场强分布为: $E_x = bx$, $E_y = 0$, $E_z = 0$. 高斯面边长 a = 0.1 m,常量 b = 1000 N/(C • m). 试求该闭合面中包含的净电荷.

- 2. 假想从无限远处陆续移来微量电荷使一半径为 R 的导体球带电.
 - (1) 当球上已带有电荷 q 时,再将一个电荷元 dq 从无限远处移到球上的过程中,外力作多少功?
 - (2) 使球上电荷从零开始增加到 0 的过程中,外力共作多少功?
- 3. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为 W_0 . 若断开电源,使其所带电荷保持不变,并把它浸没在相对介电常量为 ε , 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?
- 4.一面积为 S 的单匝平面线圈,在磁感应强度 $\vec{B}=B_0\sin\omega t\vec{k}$ 的均匀外磁场中以恒定角速度 ω 转动,

转轴与线圈共面且与 \vec{B} 垂直(\vec{k} 为沿z轴的单位矢量)。设t=0时线圈的正法向与 \vec{k} 同方向,求线圈中的感应电动势。

- 5.一圆柱形电容器,外筒的半径为 2 cm,内柱的半径可以适当选择,若其间充满各向同性的均匀电介质,该介质的击穿电场强度的大小为 $E_0=200~{\rm KV/cm}$. 试求该电容器可能承受的最高电压. (自然对数的底 e=2.7183)
- 6. 一根半径为 R 的长直导线载有电流 I,作一宽为 R、长为 I 的假想平面 S,如图所示。若假想平面 S 可在导线直径与轴 OO' 所确定的平面内离开 OO' 轴移动至远处. 试求当通过 S 面的磁通量最大时 S 平面的位置(设直导线内电流分布是均匀的).

一、选择题:

二、填空题:

1. 增大 , 增大

2.0.5 T, y 轴正方向

参考解:

 $\vec{M} = \vec{p}_m \times \vec{B}$, 由 \vec{p}_m 平行 y 轴时 M = 0 可知 \vec{B} 必与 y 轴平行,

$$\bar{p}_m$$
沿 z 轴时 M 最大,故有 $B = \frac{M}{p_m} = 0.5$ T

由 $\vec{M} = \vec{p}_m \times \vec{B}$ 定出 \vec{B} 沿y轴正方向.

3.
$$-3\sigma/(2\varepsilon_0)$$
, $-\sigma/(2\varepsilon_0)$, $\sigma/(2\varepsilon_0)$, $3\sigma/(2\varepsilon_0)$

4.
$$\frac{q}{4\pi \varepsilon R}$$

5. 3.51×10^3

参考解:
$$E_K = \frac{1}{2}mv^2 = q^2B^2R^2/(2m) = 5.62 \times 10^{-16} \text{ J} = 3.51 \times 10^3 \text{ eV}$$

6. 相同(或
$$\frac{1}{2}B\omega R^2$$
) , 沿曲线由中心向外

- 7. 9.6 J
- 8. 电磁波能流密度矢量 , $ar{S} = ar{E} imes ar{H}$
- 9. 0
- 10. $2\pi m v \cos \theta / (eB)$, $mv \sin \theta / (eB)$
- 三、计算题
- 1. 解:设闭合面内包含净电荷为 Q. 因场强只有 x 分量不为零,故只是二个垂直于 x 轴的平面上电场强度通量不为零,由高斯定理得:

$$-E_1S_1 + E_2S_2 = Q / \varepsilon_0$$
 ($S_1 = S_2 = S$)
則 $Q = \varepsilon_0S(E_2 - E_1) = \varepsilon_0Sb(x_2 - x_1)$
 $= \varepsilon_0ba^2(2a - a) = \varepsilon_0ba^3 = 8.85 \times 10^{-12} \text{ C}$

2.解: (1) 令无限远处电势为零,则带电荷为q的导体球,其电势为

$$U = \frac{q}{4\pi\varepsilon_0 R}$$

将 dq 从无限远处搬到球上过程中,外力作的功等于该电荷元在球上所具有的电

势能
$$dA = dW = \frac{q}{4\pi\varepsilon_0 R} dq$$

(2) 带电球体的电荷从零增加到Q的过程中,外力作功为

$$A = \int dA = \int_{0}^{Q} \frac{q \, dq}{4\pi\varepsilon_{0}R} = \frac{Q^{2}}{8\pi\varepsilon_{0}R}$$

3.解:因为所带电荷保持不变,故电场中各点的电位移矢量 \bar{D} 保持不变,

$$\nabla = \frac{1}{2}DE = \frac{1}{2\varepsilon_0\varepsilon_r}D^2 = \frac{1}{\varepsilon_r}\frac{1}{2\varepsilon_0}D_0^2 = \frac{w_0}{\varepsilon_r}$$

因为介质均匀,**:**电场总能量 $W = W_0 / \varepsilon_1$

4.#:
$$\Phi = BS \cos \omega t = B_0 S \sin \omega t \cos \omega t$$

$$d\Phi/dt = B_0 S(-\sin^2 \omega t + \cos^2 \omega t)\omega = B_0 S\omega \cos(2\omega t)$$

$$\mathcal{E}_i = -B_0 S\omega \cos(2\omega t)$$

5.解:设圆柱形电容器单位长度上带有电荷为 λ ,则电容器两极板之间的场强分布为 $E=\lambda/(2\pi\varepsilon r)$

设电容器内外两极板半径分别为 r_0 ,R,则极板间电压为

$$U = \int_{r}^{R} \vec{E} \cdot d\vec{r} = \int_{r}^{R} \frac{\lambda}{2\pi\varepsilon r} dr = \frac{\lambda}{2\pi\varepsilon} \ln \frac{R}{r_0}$$

电介质中场强最大处在内柱面上,当这里场强达到 E_0 时电容器击穿,这时应有 $\lambda = 2\pi\varepsilon r_0 E_0$

$$U = r_0 E_0 \ln \frac{R}{r_0}$$

适当选择 r_0 的值,可使 U 有极大值,即令

$$dU/dr_0 = E_0 \ln(R/r_0) - E_0 = 0$$

徘

$$r_0 = R/e$$

显然有 $\frac{\mathrm{d}^2 U}{\mathrm{d} \, r_0^2}$ < 0, 故当 $r_0=R/e$ 时电容器可承受最高的电压 $U_{\mathrm{max}}=RE_0/e=147~\mathrm{kV}$

6.解:设 x 为假想平面里面的一边与对称中心轴线距离,

$$\begin{split} \varPhi &= \int B \operatorname{d} S = \int_{x}^{R} B_{1} l \operatorname{d} r + \int_{R}^{x+R} B_{2} l \operatorname{d} r ,\\ \operatorname{d} S &= l \operatorname{d} r \\ B_{1} &= \frac{\mu_{0} I r}{2\pi R^{2}} \qquad (导线内) \\ B_{2} &= \frac{\mu_{0} I}{2\pi r} \qquad (导线外) \\ \varPhi &= \frac{\mu_{0} I l}{4\pi R^{2}} (R^{2} - x^{2}) + \frac{\mu_{0} I l}{2\pi} \ln \frac{x+R}{R} \end{split}$$

令 $d\Phi/dx = 0$, 得 Φ 最大时 $x = \frac{1}{2}(\sqrt{5} - 1)R$