

カメラ座標系 ワールド座標系

ワールド座標系におけるカメラ座標系の位置姿勢は カメラの移動に応じて変化する

$$c_{camera} = \begin{bmatrix} R & T \\ 0^T & 1 \end{bmatrix} \tilde{X}_{world}$$

 $=RX_{world}+I$ **-**camera 平行移動

ここからわかること・・・

4.2 カメラ幾何

――ワールド座標系とカメラ座標系の関係

ワールド座標系におけるカメラ座標系の位置姿勢は カメラの移動に応じて変化する

▶回転や平行移動によって表される

$$\tilde{X}_{camera} = \begin{bmatrix} R & T \\ 0^T & 1 \end{bmatrix} \tilde{X}_{world}$$

ここからわかること・・・

4.2 カメラ幾何

――ワールド座標系とカメラ座標系の関係

$$egin{aligned} m{X}_{camera} &= m{R} m{X}_{world} + m{T}_{\Psi op
ho
ho
ho} \ m{ ilde{X}}_{camera} &= egin{bmatrix} R & T \ 0^T & 1 \end{bmatrix} m{ ilde{X}}_{world} \ m{X}_{world} &= m{beta}_0 \ m{beta}_{vorld} &= m{beta}_0 \ m{beta}_{vorld} &= m{beta}_{vorld} \ m{beta}_{vorld} &= m{T} \ m{beta}_{vorld} \ m{beta}_{vorld} \ m{beta}_{vorld} \ m{beta}_{vorld} &= m{T} \ m{beta}_{vorld} \ m{beta}_{vo$$

②
$$T = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
, $X_{world} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ を代入すると $X_{camera} = r_1$ 軸