Что происходит?

Сегодня поговорим про сходимости в некоторых пространствах, зачем это надо, какие они бывают и куда их девать.

1 Прививки для туристов

Для начала давайте разберёмся в том, где мы, собственно говоря, работаем. Самое базовое понятие, это пространство, пространство X это просто множество с какими-то элементами (события, картошка, функции, буквально что угодно). \mathcal{F} - некоторый набор подмножеств этого пространства. (Обычно \mathcal{F} - поплукольцо, то есть

- 1) $\varnothing \in \mathcal{F}$,
- 2) $\forall A, B \subset \mathcal{F}, A \cap B \subset \mathcal{F},$
- 3) $\forall A, A_1 \subset A : \exists A_2, \dots, A_n \ s.t. \ A_1 \sqcup A_2 \sqcup \dots \sqcup A_n = A$)

Мерой будем называть функцию, которая умеет "измерять"эти подмножества, то бишь сопоставляет им какие-то действительные числа, формально $\mu: \mathcal{F} \to [0, +\infty]$. Свойства меры:

- 1. $\mu(\emptyset) = 0$
- 2. $\forall A, B s.t. A \cap B = \emptyset, \mu(A \cup B) = \mu(A) + \mu(B)$
- 3. Периодически говорят о счётной аддитивности (чтобы можно было сложить элементы по порядку и никто не умер).

Меру зовут вероятностной, когда \mathcal{F} это не просто набор подмножеств, а σ -алгебра. То есть

- 1. Само пространство $X \subset \mathcal{F}$
- 2. Ежели $A \subset \mathcal{F}$, то и $X \setminus A \subset \mathcal{F}$
- 3. Счетное объединение или пересечение множеств из $\mathcal F$ лежит в $\mathcal F$

Причём само μ теперь принимает значения от нуля до одного, то есть μ : $\mathcal{F} \to [0,1]$ и $\mu(X) = 1$. Теперь (X,\mathcal{F},μ) выглядит не так страшно и обозначает пространство с мерой.

2 Сходимости

В этот раз все сходимости имеют отношение к теорверу, поэтому рассмтариваются последовательности функций в вероятностных пространствах (пространствах с мерой, да не абы какой, а вероятностной!). В этот раз будут рассмотрены

- Сходимость в L^p (при p=1 она называется сходимостью в среднем, при p=2 в среднеквадратичном)
- Сходимость почти наверное
- Сходимость по вероятности (Частный случай сходимости по мере)
- Сходимость по распределению

2.1 Сходимость почти наверное

Самая сильная сходимость из всех присутствующих, поспорить с ней может только сходимость в L^p