CH 8 - Modular Arithmetics

Luke Lu • 2025-10-29

Basic Modular Arithmetics

≥ Info – Congruence and Modular Expression

Let m be a fixed positive integer. For integers a and b, we say that a is **congruent** to b **modulo** m, and write

$$a \equiv b \pmod{m}$$

if and only if $m \mid (a-b)$. For integers a and b such that $m \nmid (a-b)$, we write $a \not\equiv b \pmod{m}$. We refer to \equiv as **congruence**, and m as its **modulus**.

$$a \equiv b \pmod{m} \Longleftrightarrow m \mid (a-b) \Longleftrightarrow \exists k \in \mathbb{Z}, a-b = km \Longleftrightarrow \exists k \in \mathbb{Z}, a = km + b$$

Examples:

- 1. $6 \equiv 18 \pmod{12}$: $6 18 = -12, 12 \mid -12$
- 2. $73 \equiv 1 \pmod{2} : 13 1 = 72, 2 \mid 72$
- 3. $5 \equiv 1 \pmod{4} : 5 1 = 4, 4 \mid 4$
- 4. $24 \equiv 0 \pmod{24}$: $24 0 = 24, 24 \mid 24$
- 5. $-5 \equiv 7 \pmod{12}$: $-5 7 = -12, 12 \mid -12$

≥ Info — Equality Properties

- 1. Reflexivity: $\forall a \in \mathbb{Z}, a = a$
- 2. Symmetry: $\forall a, b \in \mathbb{Z}, a = b \Longrightarrow b = a$
- 3. Transitivity: $\forall a, b, c \in \mathbb{Z}, a = b \land b = c \Longrightarrow a = c$

≥ Info – Congruence Relations

 $\forall a, b, c \in \mathbb{Z}$

- 1. $a \equiv a \pmod{m}$
- 2. $a \equiv b \pmod{m} \implies b \equiv a \pmod{m}$
- 3. $a \equiv b \pmod{m} \land b \equiv c \pmod{m} \implies a \equiv c \pmod{m}$

🙀 Info — Modular Arithmetics

 $\forall a_1,a_2,b_1,b_2\in\mathbb{Z} \text{ and } \forall n\in\mathbb{N} \text{, if } a_1\equiv b_1 \,\, (\mathrm{mod}\, m) \text{ and } a_2\equiv b_2 \,\, (\mathrm{mod}\, m) \text{ then }$

- 1. $a_1 + a_2 \equiv b_1 + b_2 \pmod{m}$
- 2. $a_1-a_2\equiv b_1-b_2\ (\mathrm{mod}\, m)$
- 3. $a_1a_2 \equiv b_1b_2 \pmod{m}$
- 4. $a_1 + a_2 + ... + a_n \equiv b_1 + b_2 + ... + b_n \pmod{m}$
- 5. $a_i \equiv b_i \Longrightarrow a_1 a_2 ... a_n \equiv b_1 b_2 ... b_n \pmod{m}$
- 6. $\forall a, b \in \mathbb{Z} \text{ if } a \equiv b \pmod{m} \text{ then } a^n \equiv b^n \pmod{m}$
- 7. $\forall a, b, c \in \mathbb{Z}$, if $ac \equiv bc \pmod{m}$ and $\gcd(c, m) = 1$, then $a \equiv b \pmod{m}$

Proof

 $\forall a_1, a_2, b_1, b_2 \in \mathbb{Z} \text{ where } a_1 \equiv b_1 \pmod{m} \text{ and } a_2 \equiv b_2 \pmod{m}$

1. $a_1 + a_2 - b_1 - b_2 = a_1 - b_1 + a_2 - b_2 \pmod{m}$.

Since $a_1 \equiv b_1 \pmod{m}$ and $a_2 \equiv b_2$, therefore $m \mid (a_1 - b_1)$ and $m \mid (a_2 - b_2)$.

By DIC
$$m \mid (a_1 - b_1 + a_2 - b_2) \equiv m \mid (a_1 + a_2 - (b_1 + b_2)).$$

By definition of Congruence, $a_1 + a_2 \equiv b_1 + b_2 \pmod{m}$

2. $a_1 - a_2 - b_1 + b_2 = a_1 - b_1 + a_2 - b_2 \pmod{m}$.

Since $a_1 \equiv b_1 \pmod{m}$ and $a_2 \equiv b_2 \pmod{m}$, therefore $m \mid (a_1 - b_1)$ and $m \mid (a_2 - b_2)$.

By DIC
$$m \mid (a_1 - b_1 - a_2 + b_2) \equiv m \mid (a_1 - a_2 - (b_1 - b_2)).$$

By definition of Congruence, $a_1 - a_2 \equiv b_1 - b_2 \pmod{m}$

3. Since $a_1 \equiv b_1 \pmod{m}$ and $a_2 \equiv b_2 \pmod{m}$,

therefore $\exists k, l \in \mathbb{Z}$ s.t. $a_1 = km + b_1$; $a_2 = lm + b_2$.

$$a_1b_1 - b_1b_2 = (km + b_1)\big(lm + b^2\big) - b_1b_2 = klm^2 + kmb_2 + b_1lm + b_1lm + b_1b_2$$

$$(klm + kb_2 + b_1l) \cdot m \Longrightarrow m \mid (klm + kb_2 + b_1l).$$

Hence, $a_1 a_2 \equiv b_1 b_2 \pmod{m}$

Examples:

1. Is
$$5^9 + 62^{2000} - 14$$
 divisible by 7

$$5^9 + 62^{2000} - 14 \equiv 0 \pmod{7}$$

$$5^9 + 62^{2000} \equiv 0 \pmod{7}$$
 since $14 \equiv 0 \pmod{7}$

$$\left(5^{2}\right)^{4} \cdot 5 + (-1)^{2000} \equiv 0 \pmod{7} \text{ since } 62 \equiv -1 \pmod{7} \text{ because } 62 - (-1) = 63, 7 \mid 63 = 1 \pmod{7}$$

$$4^4 \cdot 5 + 1 \equiv 0 \pmod{7}$$
 since $25 \equiv 4 \pmod{7}$

$$2^2 \cdot 5 + 1 \equiv 0 \pmod{7}$$
 since $7 \mid (16 - 2)$

$$21 \equiv 0 \pmod{7}$$
 since $7 \mid 21$

$$\div 5^9 + 62^{2000} - 14 \equiv 0 \pmod{7} \text{ since } 7 \mid 5^9 + 62^{2000} - 14, \text{ meaning, } 5^9 + 62^{2000} - 14 \text{ is divisible by 7}.$$

2. Illustration of Congruence Divide

$$3 \equiv 27 \pmod{6}$$

$$3 \cdot 1 \equiv 3 \cdot 9 \pmod{6}, 1 \not\equiv 9 \pmod{6}$$
 since $\gcd(3, 6) \neq 1$

Congruence and Remaidners

≥ Info − Congruent Iff Same Remainder

 $\forall a, b \in \mathbb{Z}, a \equiv b \pmod{m}$ if and only if a and b have the same remainder when divided by m

≥ Info – Congruent to Remainder

 $\forall a, b \in \mathbb{Z}$ with $0 \le b < m, a \equiv b \pmod{m}$ if and only if a has a remainder b when divided by m

Examples:

1. What is the remaidner when $77^{100} \cdot 999 - 6^{83}$ divided by 4?

$$77 \equiv 1 \pmod{4}$$

$$999 \equiv -1 \pmod{4}$$

$$6 \equiv 2 \pmod{4}$$

$$\equiv 1^{100} \cdot -1 - 2^{83} \pmod{7}$$

$$\equiv -1 - 2^{82} \cdot 2 \equiv -1 - 2(4)^{41} \equiv -1 - 2(0) \equiv -1 \pmod{4}$$

By CTR $3 \equiv -1 \pmod{4}$, the remainder is 3

√ Tip — Divisibility by 3

For all non-negative integers a, a is divisible by 3 if and only if the sum of the digits in the decimal representation of a is divisible by 3