Cálculo Diferencial e Integral en Varias Variables

Mauro Polenta Mora

CLASE 12 - 18/09/2025

Series

Proposición (condición necesaria de convergencia)

Si $\sum a_n$ converge, entonces $\lim_{n\to\infty} a_n = 0$.

Demostración

Suponemos que $\sum a_n$ converge, es decir que:

• $\lim s_n = S$

Y a partir de esto, la siguiente subsucesión también converge al mismo punto:

• $\lim s_{n-1} = S$

Con esto podemos construir la prueba observando que:

- $\begin{array}{ll} \bullet & a_n=s_n-s_{n-1}, \ \mathrm{entonces:} \\ \bullet & \lim a_n=\lim s_n-\lim s_{n-1}=0 \end{array}$

Lo que concluye la prueba.

Ejemplo 1

• $\sum \frac{1}{n(n+1)}$

Por fracciones simples, podemos reescribir la serie de la siguiente forma:

• $\sum (\frac{1}{n} - \frac{1}{n+1})$

Esto nos permite llegar al siguiente razonamiento con la reducida enésima:

$$\begin{split} s_n &= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{2} - \frac{1}{4}\right) + \ldots + \left(\frac{1}{n} - \frac{1}{n-1}\right) \\ &= 1 - \frac{1}{n+1} \end{split}$$

Y por lo tanto se tiene que:

• $\lim_{n\to\infty} s_n = 1$

Entonces:

$$\bullet \quad \sum_{i=1}^{+\infty} \frac{1}{n(n+1)} = 1$$

Ejemplo 2

• $\sum \log(1+\frac{1}{n})$

Simplificando un poco podemos llegar a una expresión más amigable:

$$\log\left(1 + \frac{1}{n}\right)$$

$$= \log\left(\frac{n+1}{n}\right)$$

$$= \log(n+1) - \log(n)$$

Y con esto, todo indica a que tenemos otra serie convergente, ya que nos pasará algo muy similar que en el ejemplo anterior con la reducida enésima:

$$\begin{split} s_n &= (\log(2) - \log(1)) + (\log(3) - \log(2)) + (\log(4) - \log(3)) + \ldots + (\log(n+1) - \log(n)) \\ &= \log(n+1) - \log(1) \end{split}$$

Y por lo tanto se tiene que:

• $\lim_{n\to\infty} s_n = +\infty$

Entonces la serie $\sum \log(1 + \frac{1}{n}) = +\infty$, o sea diverge.

Series de términos positivos

Comenzaremos con los resultados más fuertes de este tema, que son para series de términos poisitivos, es decir:

• $\sum a_n \cos a_n \ge 0$

Tengamos presente que entonces las series de términos positivos tienen reducida enésima monótona creciente. Esto implica que la serie puede converger o diverger, pero no oscilar.

Proposición 3.38 (criterio de comparación)

Sean $\sum a_n$ y $\sum b_n$, series de términos positivos tales que $a_n \leq b_n \quad \forall n > n_0 \text{ con } n_0 \in \mathbb{N}$. **Entonces:**

- Si $\sum b_n$ converge, entonces $\sum a_n$ converge también Si $\sum a_n$ diverge, entonces $\sum b_n$ diverge también

Demostración

Llamemos:

- $\bullet \quad A_n = a_1 + a_2 + \ldots + a_n$
- $B_n = b_1 + b_2 + \dots + b_n$

Entonces a partir de n_0 , tenemos que $A_n - A_{n_0} \le B_n - B_{n_0}$.

Punto 1:

Si B_n converge a L, entonces L es cota de A_n y por lo tanto tenemos que A_n está acotada. Además como es monótona creciente, podemos decir que converge.

Punto 2:

Si A_n diverge, en particular no está acotada, por lo tanto B_n tampoco está acotada. Además como es creciente, podemos decir que diverge.

Observación

Observar que en esta demostración (y esto es general para las series), los primeros n_0 términos no importan. Los que importan son los "últimos" términos de la serie. La convergencia de la serie se juega en el infinito.

Ejemplos 3.39

Caso #1

Estudiemos la serie denóminada como armónica:

• $\sum \frac{1}{n}$

Observando que $\forall x$ se tiene que $\log(1+x) \leq x$, en particular se tiene también que:

• $\log(1 + \frac{1}{n}) \le \frac{1}{n}$

Como ambas son de términos positivos, podemos utilizar el criterio de comparación. En un ejemplo anterior ya observamos que $\sum \log(1+\frac{1}{n})$ diverge, y por lo tanto usando el criterio se tiene que $\sum \frac{1}{n}$ también diverge.

Caso #2

Si $\alpha < 1$, entonces $\frac{1}{n^{\alpha}} < \frac{1}{n}$. Y como $\sum \frac{1}{n}$ diverge, por el criterio de comparación

• $\sum \frac{1}{n^{\alpha}}$ también diverge