圏と表現論 演習問題

@naughiez

Contents

2	表現		1
	2.3	多元環と線形圏のより細かい対応	2

第2章表現

§ 2.3 多元環と線形圏のより細かい対応

 \Bbbk を可換体(可換環でもよい)とする. また,左加群の圏を $\operatorname{Mod}(X)$,右加群の圏を $\operatorname{Mod}(X^{\operatorname{op}})$ で表し,小線形圏全体のなす線形圏を $\operatorname{Cat}(\Bbbk)$ と表す.

PROBLEM 2.3.2

A を多元環, $e \in A$ を冪等元とする. このとき次を示せ.

- i) $1-e \in A$ も冪等元である.
- ii) e が A の中に左逆元または右逆元を持てば、e=1 である.
- iii) 部分集合 $S \subset A$ が $eS \subset S$ を満たせば、 $eS = \{a \in S \mid a = ea\}$ となる.

Proof. (i) e が冪等元だから, $(1-e)^2 = 1 - 2e + e^2 = 1 - e$ となる.

(ii) $e' \in A$ を e の左逆元とすると,e = e(ee') = ee' = 1. e が右逆元を持つ場合も同様に確かめられる.

(iii) $S = \emptyset$ のときは明らか、 $S \neq \emptyset$ とする、 $S' \coloneqq \{a \in S \mid a = ea\}$ とおく、

まずSの任意の元 $a \in S$ について, $ea = (e^2)a = e(ea)$ だから, $eS \subset S'$ が分かる.

逆に, 元 $a \in S$ が a = ea を満たすとき, $ea \in eS$ より, $a \in eS$ となる. よって $S' \subset eS$.

PROBLEM 2.3.5

A を多元環, $e \in A$ をその冪等元とする.右 A 加群 M について,写像 $\phi: \mathsf{Hom}_A(eA,M) \to Me$ と $\psi: Me \to \mathsf{Hom}_A(eA,M)$ を

$$\phi: f \mapsto f(e)e$$
,
 $\psi: me \mapsto (x \mapsto mex)$

によって定める.

このとき次を示せ.

i) 写像 ϕ と ψ は互いに逆な線形写像である. 特に、ベクトル空間としての同型

$$\operatorname{Hom}_A(eA, M) \cong Me$$

を得る.

- ii) M=A のとき,上の同型 $\operatorname{Hom}_A(eA,A)\cong Ae$ は左 A 加群としての同型となる.
- iii) M = eA のとき,上の同型 $End_A(eA) \cong eAe$ は多元環としての同型となる.

Proof. (i) 写像 ϕ と ψ がともに線形写像であることはよい.

 ψ が ϕ の左逆写像であること:

 $f \in Hom_A(eA, M)$ を任意に取ると、 $\psi(f(e)e)$ は写像 $x \mapsto f(e)ex$ である.特に

$$\psi(\phi(f))(ea) = f(e)e(ea) = f(e^3a) = f(ea) \quad (a \in A)$$

であるから、 $\psi(\phi(f))=f$ となる. よって $\psi\circ\phi=\mathrm{id}_{\mathsf{Hom}_A(eA,M)}$.

 ψ が ϕ の右逆写像であること:

任意の $m \in M$ に対して

$$\phi(\psi(me)) = ((me)e)e = me^3 = me$$

が成り立つから、 $\phi \circ \psi = id_{Me}$.

(ii) ϕ が A 準同型であることを示せばよい.

元 $a \in A$ と $f \in Hom_A(eA, A)$ を任意に取ると

$$\phi(af) = (af)(e)e = a(f(e))e = a(f(e)e) = a\phi(f)$$

だから、 ϕ は A 準同型である.

(iii) ϕ が多元環準同型であることを示せばよい.

元 $f,g \in \operatorname{End}_A(eA)$ を任意に取ると,

$$\phi(fg) = (fg)(e)e = f(e)g(e)e = f(e)eg(e)e = \phi(f)\phi(g)$$

だから、 ϕ は多元環準同型である.

PROBLEM 2.3.9

圏 lk-Cat_f を、有限対象の小線形圏からなる lk-Cat の充満部分圏とする.

また、圏 k-Algcoi を

- ・対象: (\mathbb{I}_{k} -Alg_{coi})₀ = {(A,E) | A は多元環, $E \subset A$ は A の直交冪等元の完全系},
- ・射: \mathbb{k} -Alg_{coi}((A,E),(A',E')) = { $f:A \to A' \mid f$ は多元環準同型で $f(E) \subset E'$ },
- ・射の合成:通常の写像の合成,
- ・恒等射: $id_{(A,E)} = id_A$

で定義する.

このとき,以下で定義される函手 $Cat: k-Alg_{coi} \to k-Cat_f$ と $Mat: k-Cat_f \to k-Alg_{coi}$ が互いに擬逆であり,特に圏同値 $k-Alg_{coi} \simeq k-Cat_f$ が成り立つことを示せ.

函手 Cat: k-Alg_{coi} → k-Cat_f を

- ・ k-Alg_{coi} の対象 (A,E) \in (k-Alg_{coi}) $_0$ に対して圏 $\mathcal{C}_{A,E}$ = $\mathsf{Cat}(A,E)$ \in k- Cat_f は
 - 対象: $(\mathcal{C}_{A,E})_0 \coloneqq E$,
 - 射: $\mathcal{C}_{A.E}(x,y) \coloneqq yAx$,
 - 射の合成: 多元環 A における積,
 - 恒等射: $id_x := x \cdot 1 \cdot x = x$,
- ・ \mathbb{k} -Alg_{coi} の射 $f:(A,E) \to (A',E')$ に対して函手 $F_f = \mathsf{Cat}(f):\mathcal{C}_{A,E} \to \mathcal{C}_{A',E'}$ は
 - 対象: $x \mapsto f(x)$,
 - 射: $a \in A$ のとき $yax \mapsto f(yax) = f(y)f(a)f(x)$

で定義し、函手 Mat: k-Cat_f → k-Alg_{coi} を

・ \mathbb{k} -Cat_f の対象 $\mathcal{C} \in (\mathbb{k}$ -Cat_f)₀ に対して \mathbb{k} -Alg_{coi} の対象 $(A_{\mathcal{C}}, E_{\mathcal{C}}) = \mathsf{Mat}(\mathcal{C}) \in \mathbb{k}$ -Alg_{coi} は

$$A_{\mathcal{C}} := \coprod_{x,y \in \mathcal{C}_0} \mathcal{C}(x,y), \quad E_{\mathcal{C}} := \left\{ e_x := \left(\operatorname{id}_x \delta_{(y,z),(x,x)} \right)_{y,z \in \mathcal{C}_0} \;\middle|\; x \in \mathcal{C}_0 \right\},$$

・ \mathbb{k} -Cat_f の射 $F: \mathcal{C} \to \mathcal{C}'$ に対して多元環準同型 $f_F: A_{\mathcal{C}} \to A_{\mathcal{C}'}$ は

$$f_F\left((a_{y,x})_{y,x\in\mathcal{C}_0}\right)\coloneqq \left(F(a_{y,x})\right)_{v,x\in\mathcal{C}_0} \quad (a_{y,x}\in\mathcal{C}(x,y),x,y\in\mathcal{C}_0)$$

で定義する. ただし線形圏 $C \in (\mathbb{k}\text{-Cat}_f)_0$ に対し, $A_C = \coprod_{x,y \in C_0} C(x,y)$ は \mathbb{k} 加群としての外部直和であり,積を

$$(a_{y,x})_{y,x\in\mathcal{C}_0}\cdot(b_{y,x})_{y,x\in\mathcal{C}_0}:=\left(\sum_{z\in\mathcal{C}_0}a_{y,z}\circ b_{z,x}\right)_{y,x\in\mathcal{C}_0} \quad (a_{y,x},b_{y,x}\in\mathcal{C}(x,y),x,y\in\mathcal{C}_0)$$

と定める.単位元は $\sum_{x \in \mathcal{C}_0} \mathrm{id}_x$ である.

Proof. Mat が Cat の左擬逆であること:

各 (A, E) ∈ (Ik-Alg_{coi})₀ に対し

$$A = \bigoplus_{x,y \in E} yAx$$

が成り立つことに注意する. 実際、相異なる $(y,x) \neq (y',x') \in E \times E$ に対して元 $yax = y'a'x' \in yAx \cap y'Ax'$ を任意に取ると、 $x \neq x'$ ならば yax = (yax)x = (y'a'x)'x = 0 となり、 $y \neq y'$ ならば yax = y(yax) = y(y'a'x') = 0

となるから、いずれの場合でも $yAx \cap y'Ax' = 0$ が分かる. また、任意の元 $a \in A$ は

$$a = \left(\sum_{y \in E} y\right) a \left(\sum_{x \in E} x\right) = \sum_{x, y \in E} y ax$$

と書けるから、 $A = \sum_{x,y \in E} yAx$ となる. 以上より $A = \bigoplus_{x,y \in E} yAx$.

そこで多元環準同型 $\alpha_{A,E}:A\to A_{\mathcal{C}_{A,E}}$ を内部直和と外部直和の間の自然な同型

$$A = \bigoplus_{x,y \in E} yAx \to \coprod_{x,y \in E} yAx$$

とすれば、準同型の族 $\alpha = (\alpha_{A,E})_{(A,E) \in (\mathbb{k}-\mathsf{Alg}_{\mathsf{coi}})_0}$ は自然同型 $\alpha : \mathsf{id}_{\mathbb{k}-\mathsf{Alg}_{\mathsf{coi}}} \to \mathsf{Mat} \circ \mathsf{Cat}$ を定める.

ただし、 \Bbbk -Alg_{coi} の射 $f:(A,E)\to (A',E')$ と元 $a\in A$ に対して等式 $(y'f(a)x')_{y',x'\in E'}=(f(y)f(a)f(x))_{y,x\in E}$ が成り立つことは、内部直和 $A'=\bigoplus_{x',y'\in E'}y'A'x'$ における等式

$$\left(\sum_{y' \in E'} y'\right) f(a) \left(\sum_{x' \in E'} x'\right) = f(a) = \left(\sum_{y \in E} f(y)\right) f(a) \left(\sum_{x \in E} f(x)\right)$$

から従う.

$$(A,E) \xrightarrow{\alpha_{A,E}} \operatorname{Mat}(\operatorname{Cat}(A,E)) = \left(A_{\mathcal{C}_{A,E}}, E_{\mathcal{C}_{A,E}}\right)$$

$$\downarrow \operatorname{Mat}(\operatorname{Cat}(f))$$

$$\downarrow (A',E') \xrightarrow{\alpha_{A',E'}} \operatorname{Mat}(\operatorname{Cat}(A',E')) = \left(A_{\mathcal{C}_{A',E'}}, E_{\mathcal{C}_{A',E'}}\right)$$

$$a \xrightarrow{\alpha_{A,E}} (yax)_{y,x \in E}$$

$$\downarrow \operatorname{Mat}(\operatorname{Cat}(f))$$

Mat が Cat の右擬逆であること:

各 $C \in (\mathbb{k}\text{-Cat}_f)_0$ に対して函手 $\beta_C : C \to C_{Ac,E_c}$ を

- · 対象: $x \mapsto e_x$,
- ・射: $f: x \to y$ のとき $f \mapsto e_y(f \delta_{(z,w),(y,x)})_{z,w \in \mathcal{C}_0} e_x$

で定義する. これらはそれぞれ全単射

$$C_0 \to (C_{A_C, E_C})_0$$
, $C_1 \to (C_{A_C, E_C})_1$

となっているから、問 1.4.5 より函手 $\beta_{\mathcal{C}}: \mathcal{C} \to \mathcal{C}_{A_{\mathcal{C}},E_{\mathcal{C}}}$ は同型.

残りは、函手の族 $\beta = (\beta_{\mathcal{C}})_{\mathcal{C} \in (\mathbb{k}-\mathsf{Cat}_{\mathsf{f}})_0}$ が自然変換 $\beta : \mathsf{id}_{\mathbb{k}-\mathsf{Cat}_{\mathsf{f}}} \to \mathsf{Cat} \circ \mathsf{Mat}$ となることを示せばよい.

圏 \mathbb{k} -Cat_f の対象 $\mathcal{C},\mathcal{C}' \in (\mathbb{k}$ -Cat_f)₀ と射 $F:\mathcal{C} \to \mathcal{C}'$ を任意に取る.

対象 $x \in C$ については

$$\begin{split} \mathsf{Cat}(\mathsf{Mat}(F))(e_x) &= f_F(e_x) = f_F\left((\mathsf{id}_x\,\delta_{(y,z),(x,x)})_{y,z\in\mathcal{C}_0}\right) \\ &= \left(F(\mathsf{id}_x\,\delta_{(y,z),(x,x)})\right)_{y,z\in\mathcal{C}_0} \\ &= e_{F(x)} \end{split}$$

であるから、 $(Cat(Mat(F)) \circ \beta_C)_0 = (\beta_{C'} \circ F)_0$. 圏 C の射 $f: x \to y$ については

$$\begin{split} \mathsf{Cat}(\mathsf{Mat}(F)) \left(e_{y}(f \, \delta_{(z,w),(y,x)})_{z,w \in \mathcal{C}_{0}} e_{x} \right) &= f_{F}(e_{y}) f_{F} \left((f \, \delta_{(z,w),(y,x)})_{z,w \in \mathcal{C}_{0}} \right) f_{F}(e_{x}) \\ &= e_{F(y)} (F(f \, \delta_{(z,w),(y,x)}))_{z,w \in \mathcal{C}_{0}} e_{F(x)} \\ &= e_{F(y)} (F(f) \delta_{(z',w'),(F(y),F(x))})_{z',w' \in \mathcal{C}'_{0}} e_{F(x)} \end{split}$$

であるから、 $(Cat(Mat(F)) \circ \beta_{\mathcal{C}})_1 = (\beta_{\mathcal{C}'} \circ F)_1$.

以上より、 $\beta: id_{\mathbb{k}\text{-Cat}_f} \to \mathsf{Cat} \circ \mathsf{Mat}$ は自然変換である. よって β は自然同型となる.

