Professor: Denis Vogel Tutor: Marina Savarino

Aufgabe 4

- (a) Seien $f, g \in R[t]$ mit $f = f(t) = a_0 + a_1 t + ... + a_n t^n$ und $g = g(t) = b_0 + b_1 t + ... + b_m t^m$ wobei $a_i, b_j \in R$. Dann gilt aufgrund der Nullteilerfreiheit deg $f \cdot g = n + m$. Somit gilt insbesondere, dass wenn deg $(f \cdot g) = 0 \implies \deg(f) = \deg(g) = 0$. Somit existieren nur zu konstanten Polynomen der Form $h = r, r \in R$ Inverse. Dann gilt $R[t]^{\times} = R^{\times}$.
- (b) In $\mathbb{Z}/6\mathbb{Z}$ gilt $(x-\overline{2})(x-\overline{1})=\overline{2}\cdot\overline{3}=\overline{6}=\overline{0}$, was (a) widerspricht.
- (c) $\mathbb{Z}/6\mathbb{Z}$

Aufgabe 5

- (a) Seien $f, g \in \mathbb{R}[t]$. Dann gilt $\varphi(1) = 1, \varphi(f+g) = (f+g)(i) = f(i) + g(i) = \varphi(f) + \varphi(g)$ und $\varphi(f \cdot g) = (f \cdot g)(i) = f(i) \cdot g(i) = \varphi(f) \cdot \varphi(f)$. Sei außerdem $z = a + bi \in \mathbb{C}$. Dann ist $f = a + b \cdot t$ ein Urbild von z unter φ , da $\varphi(f) = f(i) = a + bi = z$.
- (b) $\varphi(t^2+1)=i^2+1=-1+1=0 \implies t^2+1 \in \ker \varphi$. Sei nun $f \in \mathbb{R}[t]$ mit $\deg f < 2, f \neq 0$, dann lässt sich f schreiben als f=a+bt mit $a,b\in\mathbb{R}, a$ und b nicht beide 0. Also ist $\varphi(f)=a+bi=z\in\mathbb{C}$ und da nicht a und b 0 sein dürfen ist $z\neq 0$.
- (c) Sei $f \in \ker \varphi$. Dann ist f(i) = 0 und nach Satz 4.6 gilt

$$f(t) = (t^2 + 1) \cdot q + \underbrace{r}_{\text{deg } r < 2}.$$

Wegen $(t^2+1)(i)=0$ ist auch $((t^2+1)\cdot q)(i)=0$. Folglich muss auch r(i)=0 gelten, was wegen $\deg r<2$ und (b) nur möglich ist, wenn r=0. Folglich gilt: $f(t)=(t^2+1)\cdot q$ und da $f\in\ker\varphi$ beliebig gewählt war, $\ker\varphi\subseteq(t^2+1)$. Trivialerweise ist auch $(t^2+1)\subseteq\ker\varphi$.

(d) Die erste Aussage folgt sofort aus dem Homomorphiesatz angewendet auf $\varphi : \mathbb{R}[t] \to \mathbb{C}$. In der Vorlesung wurde außerdem gezeigt, dass (t^2+1) genau dann ein maximales Ideal ist, wenn $\mathbb{R}[t]/(t^2+1) \cong \mathbb{C}$ ein Körper ist, was wegen der Isomorphie zu \mathbb{C} offensichtlich ist.

Aufgabe 6

(a) Da $\forall i \in I : i^1 \in I$ ist $I \subset \sqrt{I}$, also ist sofort auch $0 \in I$. Ist nun $r \in \sqrt{I}$, so $\exists n \in \mathbb{N} : r^n \in I$ und, da I ein Ideal ist, auch $a^n \cdot r^n \in I \implies a \cdot r \in \sqrt{I}$ für ein beliebiges $a \in R$. Seien nun $a, b \in \sqrt{I}$. Dann $\exists m, n \in \mathbb{N} : a^m \in I, b^n \in I$. Da I ein Ideal ist liegen also insbesondere auch alle Potenzen $b^n + r$, $r \in \mathbb{N}$ sowie $a^r b^n, r \in \mathbb{N}$ in I. Da dasselbe analog für a gilt, liegen $a^{x \cdot y} \ \forall x \geq m \lor y \geq n$ und alle Linearkombinationen solcher Ausdrücke in I, insbesondere also auch

$$(a+b)^{n+m} = \sum_{i=0}^{n+m} \binom{n+m}{i} a^i b^{n+m-i},$$

woraus wir sofort $a+b \in \sqrt{I}$ schließen können.

- (b) $r \in \sqrt{I} \implies r^n \in I \ (n \in \mathbb{N}) \xrightarrow{\underline{\text{Definition eines Primideals}}} r \in I \lor r^{n-1} \in I$. Setzt man die Definition des Primideals wieder für r^{n-1} ein, so folgt nach endlich vielen Rekursionsschritten $r \in I$. Dies gilt für alle $r \in I$, woraus sofort $I = \sqrt{I}$ folgt.
- (c) Für $R = I = \mathbb{Z}$ gilt offensichtlich $\sqrt{I} = I$, und nach Definition ist $\mathbb{Z} \subseteq \mathbb{Z}$ kein Primideal.

Aufgabe 7

- (a) Φ ist wohldefiniert: Sei J ein Ideal in R/I. Dann gilt $\Phi(J) = \pi^{-1}(J) = \{a \in R | \overline{a} \in J\}$. Da J ein Ideal ist, enthält es insbesondere $\overline{0}$. Da $\pi(a) = \overline{0} \ \forall a \in I$, gilt $I \subseteq \pi^{-1}(J)$. Wir verfizieren nun, dass $\pi^{-1}(J)$ ein Ideal sein muss. $a, b \in \pi^{-1}(J) \implies \pi(a) \in J, \pi(b) \in J \xrightarrow{J \text{ Ideal}} \pi(a) + \pi(b) = \pi(a+b) \in J \implies a+b \in \pi^{-1}(J)$. Außerdem gilt $r \in R, a \in \pi^{-1}(J) \implies \pi(r) \in R/I, \pi(a) \in J \xrightarrow{J \text{ Ideal}} \pi(r) \cdot \pi(a) = \pi(r \cdot a) \in J \implies r \cdot a \in \pi^{-1}(J)$.
 - Ψ ist wohldefiniert: Sei J ein Ideal in R/I mit $I \subseteq J$. Dann ist $\pi(J) \in R/I$. Wir verfizieren nun, dass $\pi(J)$ ein Ideal ist. $I \subseteq J \implies \overline{0} = \pi(I) \in \pi(J)$. Außerdem gilt $a,b \in \pi(J) \implies \pi^{-1}(a) \subseteq J, \pi^{-1}(b) \subseteq (J) \xrightarrow{J \text{ Ideal}} \forall \alpha \in \pi^{-1}(a) : \forall \beta \in \pi^{-1}(b) : \alpha + \beta \in J \implies \pi(\alpha + \beta) \in \pi(J) \implies \pi(\alpha) + \pi(\beta) \in \pi(J)$. Nun ist nach Konstruktion unabhängig von der Auswahl von α und β $\pi(\alpha) = a$ und $\pi(\beta) = b$, also $a + b \in J$. Schließlich bleibt noch zu zeigen: $a \in \pi(J), r \in R/I \implies \pi^{-1}(a) \subseteq J, \pi^{-1}(r) \subseteq R \xrightarrow{J \text{ Ideal}} \forall \alpha \in \pi^{-1}(a) : \forall \rho \in \pi^{-1}(r) : \alpha \cdot \rho \in \pi^{-1}(J) \implies \pi(\alpha \cdot \rho) \in J \implies \pi(\alpha) \cdot \pi(\rho) \in J$. Wir nutzen wieder, dass $\pi(\alpha) = a$ und $\pi(\rho) = r$, womit $a \cdot r \in J$ folgt.
 - Φ ist inklusionserhaltend: Seien A, B Ideale in R/I und gelte $A \subseteq B$. Dann ist $\Psi(A) = \{a_i | \overline{a_i} \in A\}$ und $\Psi(B) = \{b_i | \overline{b_i} \in B\}$. Da nun $A \subseteq B$ gilt, sind auch alle Repräsentanten der Elemente von A auch in B, we shalb $\Psi(A) \subseteq \Psi(B)$.
 - Ψ ist inklusionserhaltend: Seien A, B Ideale in R und gelte $A \subseteq B$. Dann ist $\Phi(A) = \{(a_i + I) | a_i \in A\}$ und $\Phi(B) = \{(b_i + I) | b_i \in B\}$. Da nun $\forall a \in A : a \in B$ gilt auch $\forall \overline{a} \in \Phi(A) : \overline{a} \in \Phi(B)$.
- (b) Beh: $\Psi \circ \Phi = id$

Beweis. Sei J ein Ideal in R/I und K ein Ideal in R. Dann ist $\Psi(\Phi(J)) = \Psi(\{r \in R | \pi(r) \in J\}) = \{\pi(r) \in R/I | \pi(r) \in J\} = J$ und $\Phi(\Psi(K)) = \Phi(\{\pi(r) | r \in K\}) = \{s \in R | \pi(s) \in \{\pi(r) | r \in K\}\} = \{s \in R | s \in K\} = K$. Folglich ist $\Psi \circ \Phi = \mathrm{id}_{R/I}$ und $\Phi \circ \Psi = \mathrm{id}_{R}$.

- (c) Für $\mathbb{Z}/5\mathbb{Z}$ existieren die Ideale:
 - (i) $\{\overline{0}\}$
 - (ii) $\{\overline{0}, \overline{3}, \overline{6}, \overline{9}, \overline{12}\}$
 - (iii) $\{\overline{0}, \overline{5}, \overline{10}\}$
 - (iv) $\mathbb{Z}/15\mathbb{Z}$

Beweis. Wir benutzen die Bijektion

$$A := \{ \text{Ideale } \tilde{I} \text{ in } R \text{ mit } 15\mathbb{Z} \subset \tilde{I} \} \xrightarrow{\sim} \{ \text{Ideale in } \mathbb{Z}/15\mathbb{Z} \} =: B$$

Offensichtlich ist $\mathbb{Z} \in A$, also ist $\pi(\mathbb{Z}) = \mathbb{Z}/15\mathbb{Z} \in B$. Genauso ist auch $\mathbb{Z}/15\mathbb{Z} \in A$, dieses Ideal wird auf $\pi(\mathbb{Z}/15\mathbb{Z}) = \overline{0} \in B$ abgebildet. Die einzigen weiteren Ideale in \mathbb{Z} , die $\mathbb{Z}/15\mathbb{Z}$ enthalten, sind die von den echten Teilern von 15 aufgespannten Ideale $3\mathbb{Z}$ bzw. $5\mathbb{Z}$. Diese werden auf $\pi(3\mathbb{Z}) = \{\overline{0}, \overline{3}, \overline{6}, \overline{9}, \overline{12}\} \in B$ bzw. $\pi(5\mathbb{Z}) = \{\overline{0}, \overline{5}, \overline{10}\} \in B$ abgebildet.