Image Data
Adjustment &
Equalisation
(Week 9)

Piecewise Linear Adjustment

• Contrast-Stretching transformation is the one that uses Piecewise Linear Functions for mapping the pixels.

Linear Contrast VS Piecewise Linear Adjustment

Histogram Equalisation

- Histogram Equalization is a computer image processing technique used to improve the quality of the images.
- It accomplishes this by effectively spreading out the most frequent intensity values, i.e. stretching out the intensity range of the image.
- This method usually increases the global contrast of images when its usable data is represented by close contrast values.
- This allows for areas of lower local contrast to gain a higher contrast.

Conventional Histogram Equalisation

- It maps the input intensity levels to new levels using the cumulative distribution function (cdf) as a transformation function.
- Consider the input image I(i,j) of dimension $u \times v$ having L discrete intensity levels $X_0, X_1, \ldots, X_{L-1}$ (for 8-bit image, L = 256).
- For simplicity k^{th} intensity level X_k is denoted by k. The probability distribution function (pdf) for k^{th} intensity level is defined as:

$$p(X_k) = \aleph(X_k) / \left(\sum_{k=0}^{L-1} \aleph(X_k)\right) = \aleph(X_k) / N$$

where, k is an integer in the range 0 to L-1 i.e. $k \in [0, L-1]$, $\aleph(X_k)$ is number of pixels with k^{th} intensity level, and $N = u \times v$ is total number of pixels in the image.

Conventional Histogram Equalisation

- The histogram of an image, $H[X_l, Xu]$ is simply the plot of $\aleph(X_k)$ vs X_k , where X_l and X_n are lower and upper intensity levels respectively.
- The cumulative distribution function (cdf) is defined as:

$$c(X_k) = \sum_{q=0}^{k} p(X_q) \qquad \forall k \in [0, L-1]$$

where, $c(X_k)$ is the cdf at the k^{th} intensity level.

- The CHE method maps the input image I (having dynamic range (X_l, X_u) into the entire range (X_0, X_{l-1}) by using the cdf as a transformation function.
- Let T be the transformation function which maps the input intensity level X_k into output intensity level $T(X_k)$ is defined as:

$$T(X_k) = X_0 + [(X_{L-1} - X_0) \times c(X_k)]$$

where, [x] is the integer nearest to x.

Conventional Histogram Equalisation

Bi-/Multi-Histogram Equalisation

- The brightness preservation is commonly achieved by applying HE over multiple segmented histograms (sub-histograms), instead of global histogram.
- Let $H[X_l, X_u]$ be the global histogram of the input image I(i, j), where X_l and X_u are lower and uppermost intensities of the image. Let $H[X_l, X_u]$ be segmented into 'n' sub-histograms i.e.

$$H[X_l, X_u] = \bigcup_{r=1}^n H_r[X_l^{r,n}, X_u^{r,n}]$$

where, H_r represents r^{th} segment of H. $X_l^{r,n}$ and $X_u^{r,n}$ represents lower and uppermost boundaries of r^{th} (out of n) segment respectively.

• It should be noted that $X_l^{1,n} = X_l$ and $X_u^{n,n} = X_u$.

Bi-Histogram Equalisation: Mean Based Segmentation

• For the image I(i,j) having histogram $H[X_l,X_u]$ or its pdf $p(X_k)$, the mean intensity value (μ) of the image is defined as:

$$\mu = \left[\sum_{k=X_l}^{X_u} X_k \cdot p(X_k) \right]$$

- The mean intensity value μ is then selected as the threshold for decomposing the image histogram into two segments i.e. $H_1[X_l^{1,2},X_u^{1,2}]$ and $H_2[X_l^{2,2},X_u^{2,2}]$, where each segment represents a sub-image.
- Note that $H_1[X_l^{1,2},X_u^{1,2}]$ consists of $\{X_l,X_l+1,...,\mu\}$ intensity levels, and $H_2[X_l^{2,2},X_u^{2,2}]$ consists of $\{\mu+1,\mu+2,...,X_u\}$ intensity levels.
- The corresponding sub-images may be represented as:

$$I^{1,2} = \{I(i,j) | I(i,j) \le \mu, \quad \forall (i,j) \in I\}$$

 $I^{2,2} = \{I(i,j) | I(i,j) > \mu, \quad \forall (i,j) \in I\}$

Bi-Histogram Equalisation: Median Based Segmentation

 Assume that A is an array consisting of image pixels in the ascending or descending order, and N(A) is the number of elements in that array. If X_k is the middle index of A, then median intensity 'm' is defined as:

$$m = \begin{cases} A(X_k) & \text{if } N(A) \text{ is odd} \\ (A(X_k) + A(X_k + 1))/2 & \text{if } N(A) \text{ is even} \end{cases}$$

• The corresponding sub-images may be represented as:
$$I^{1,2} = \{I(i,j)|I(i,j) \leq m, \qquad \forall (i,j) \in I\}$$

$$I^{2,2} = \{I(i,j)|I(i,j) > m \qquad \forall (i,j) \in I\}$$

where, $I^{r,n}$ is the r^{th} sub-image out of total n sub-images.

• The mapping process is similar to that of CHE. The mapping of $r^{\rm th}$ segment is determined as:

$$T(k) = T(X_k) = X_l^{r,n} + [(X_u^{r,n} - X_l^{r,n}) \times c(k)]$$