# W13 – Testowanie układów cyfrowych

Henryk Maciejewski Jarosław Sugier

### Uszkodzenia i modele błędów

1. Modele błędów w układach cyfrowych

- 2. Generowanie wektorów testowych dla układów kombinacyjnych
  - Metody tablicowa
  - Metoda różnic boolowskich
  - Metoda pobudzenia ścieżek

B. Wilkinson, Układy cyfrowe, WKŁ.

### Modele błędów w układach cyfrowych

Rozważamy uszkodzenia prowadzące do <u>błędów logicznych</u> układu.

Zakładamy model: pojedynczy błąd "sklejenia":

stuck-at-0, stuct-at-1

Lokalizacje błędów: każdy sygnał wejściowy, wewnętrzny, wyjściowy



### Generowanie wektorów testowych - metoda tablicowa

#### Rozważamy układ:

$$z = F(x_1, x_2, x_3, x_4) = (x_1 + x_2 x_3) \overline{(x_2 x_3 + x_4)}$$

uszkodzenie  $\alpha$  = s-a-0 na wejściu  $x_4$ 

z = wartość funkcji bez uszkodzenia

 $z^{\alpha}$  = wartość funkcji z uszkodzeniem  $\alpha$ 

### Generowanie wektorów testowych - metoda tablicowa

#### Rozważamy układ:

$$z = F(x_1, x_2, x_3, x_4) = (x_1 + x_2x_3)\overline{(x_2x_3 + x_4)}$$

### Uszkodzenie wykrywają testy:

$$x^{1} = (1,0,0,1) = x_{1} \overline{x_{2}} \overline{x_{3}} x_{4}$$
  
 $x^{2} = (1,0,1,1) = x_{1} \overline{x_{2}} x_{3} x_{4}$   
 $x^{3} = (1,1,0,1) = x_{1} x_{2} \overline{x_{3}} x_{4}$ 

| <b>x1</b> | <b>x2</b> | х3 | х4 | Z | $z^{\alpha}$ | xor(z, z <sup>α</sup> ) |
|-----------|-----------|----|----|---|--------------|-------------------------|
| 0         | 0         | 0  | 0  | 0 | 0            | 0                       |
| 0         | 0         | 0  | 1  | 0 | 0            | 0                       |
| 0         | 0         | 1  | 0  | 0 | 0            | 0                       |
| 0         | 0         | 1  | 1  | 0 | 0            | 0                       |
| 0         | 1         | 0  | 0  | 0 | 0            | 0                       |
| 0         | 1         | 0  | 1  | 0 | 0            | 0                       |
| 0         | 1         | 1  | 0  | 0 | 0            | 0                       |
| 0         | 1         | 1  | 1  | 0 | 0            | 0                       |
| 1         | 0         | 0  | 0  | 1 | 1            | 0                       |
| 1         | 0         | 0  | 1  | 0 | 1            | 1                       |
| 1         | 0         | 1  | 0  | 1 | 1            | 0                       |
| 1         | 0         | 1  | 1  | 0 | 1            | 1                       |
| 1         | 1         | 0  | 0  | 1 | 1            | 0                       |
| 1         | 1         | 0  | 1  | 0 | 1            | 1                       |
| 1         | 1         | 1  | 0  | 0 | 0            | 0                       |
| 1         | 1         | 1  | 1  | 0 | 0            | 0                       |

## Metoda różnic boolowskich (*boolean* difference)

**Różnica boolowska** funkcji  $F(x_1, x_2, ..., x_n)$  wzgl. zmiennej  $x_j, 1 \le j \le n$ :

$$\frac{\partial F}{\partial x_j} = F(x_1, x_2, \dots, 0, \dots, x_n) \oplus F(x_1, x_2, \dots, 1, \dots, x_n) = F_{\overline{x_j}} \oplus F_{x_j}$$

- Funkcja n-1 zmiennych
- $\frac{\partial F}{\partial x_j} = 1$   $\rightarrow$  dla danego wektora wejściowego  $(x_i, i \neq j)$  wartość F zależy od zmiennej  $x_i$
- $\frac{\partial F}{\partial x_j} = 0$   $\rightarrow$  dla danego wektora wejściowego  $(x_i, i \neq j)$  wartość F <u>nie</u> zależy od  $x_j$

# Metoda różnic boolowskich (*boolean* difference)

Poprzedni przykład:  $z = F(x_1, x_2, x_3, x_4) = (x_1 + x_2x_3)\overline{(x_2x_3 + x_4)}$ 

$$F_{x_4} = (x_1 + x_2 x_3) \overline{(x_2 x_3 + 1)} = 0$$

$$F_{\overline{x_4}} = (x_1 + x_2 x_3) \overline{(x_2 x_3 + 0)} = (x_1 + x_2 x_3) \overline{x_2 x_3} = x_1 \overline{x_2 x_3}$$

$$\frac{\partial F}{\partial x_4} = F_{\overline{x_4}} \oplus F_{x_4} = x_1 \overline{x_2 x_3}$$

ightarrow stąd wektory testowe, uwzględniając warunek, aby  $x_4$  odróżniało się od uszkodzenia  $\alpha$ 

Wynik metody tablicowej:

$$x^{1} = (1,0,0,1) = x_{1} \overline{x_{2}} \overline{x_{3}} x_{4}$$
  
 $x^{2} = (1,0,1,1) = x_{1} \overline{x_{2}} x_{3} x_{4}$   
 $x^{3} = (1,1,0,1) = x_{1} x_{2} \overline{x_{3}} x_{4}$ 

$$\frac{\partial F}{\partial x_4} = F_{\overline{x_4}} \oplus F_{x_4} = x_1 \overline{x_2} \overline{x_3} = x_1 (\overline{x_2} + \overline{x_3}) = x_1 \overline{x_2} (x_3 + \overline{x_3}) + x_1 \overline{x_3} (x_2 + \overline{x_2})$$

$$= x_1 \overline{x_2} x_3 + x_1 \overline{x_2} \overline{x_3} + x_1 x_2 \overline{x_3}$$

stąd wektory testowe (przy  $x_4$  = 1, aby odróżniało się od uszkodzenia  $\alpha$ )  $x^1 = x_1 \overline{x_2} \overline{x_3} x_4 = (1,0,0,1)$   $x^2 = x_1 \overline{x_2} x_3 x_4 = (1,0,1,1)$   $x^3 = x_1 x_2 \overline{x_3} x_4 = (1,1,0,1)$ 

Wektory testowe dla błędów @  $x_i$  uzyskuje się jako:

$$x_j \frac{\partial F}{\partial x_j}$$
 dla s-a-0  $\overline{x_j} \frac{\partial F}{\partial x_j}$  dla s-a-1

### Metoda pobudzenia ścieżek (path sensitization)

Test = activate + propagate



Activate: wymuszamy w danym punkcie układu wartość przeciwną do błędu badanego w tym punkcie (np. wymuszamy 1, gdy badamy s-a-0)

<u>Propagate</u>: ustawiamy wartości sygnałów na pozostałych bramkach w układzie tak żeby spowodować propagację sygnału błędu (sygnału  $D / \overline{D}$ ) do zewnętrznego wyjścia układu.

#### Aktywowanie podstawowych bramek



#### Symbol D:

D: sygnał przy niewystępowaniu błędu ma mieć wartość 1

 $\overline{D}$ : sygnał przy niewystępowaniu błędu ma mieć wartość 0

#### Propagowanie sygnału D / $\overline{D}$ do wyjścia układu



Bramki XOR i XNOR zawsze propagują D (jako D albo  $\overline{D}$ )

#### Przykład



#### **Activate**

$$x_0 + x_1 = 1 \rightarrow x_0, x_1 \in \{01, 10, 11\}$$

#### **Propagate**

$$a = x_2 \cdot x_3 = 1$$
  $x_2 = x_3 = 1$   
 $b = 0$   $x_4 = 1$   
 $c = 0$   $x_5 = 0$ 

Stąd zbiór testów wykrywających uszkodzenie:



s-a-0 @ b



#### **Activate**

$$b = \overline{x_2 + x_3} = 1 \rightarrow$$

$$x_2 = x_3 = 0$$

Propagate – ścieżka do z<sub>1</sub>

$$a = 0 = x_1 \cdot x_2$$

$$x_1 x_2 \in \{00,01,10\}$$

$$c = 1 = x_3 \cdot x_4$$

$$x_3 = 1, x_4 = 1$$

Sprzeczność:  $x_3 = 0$  i  $x_3 = 1$   $\rightarrow$  błąd nie może być wykryty na wy  $z_1$ 

Propagate – ścieżka do z<sub>2</sub>

$$c = 0 = x_3 \cdot x_4$$

$$x_3 x_4 \in \{00,01,10\}$$

Zbiór testów wykrywających uszkodzenie:

#### Błędy równoważne w bramce

Błędy równoważne – wykrywane przez te same wektory testowe (zbiory wektorów testowych wykrywających każdy z błędów równoważnych są równe)

#### <u>Przykład – bramka OR:</u>

Błąd s-a-1 na każdym z wejściu – testuje wektor 000

0 \*-a-1 \overline{D}

Błędy s-a-1 na każdym z wejść - równoważne

Wektor 000 testuje też błąd s-a-1 na wyjściu

0  
0  
0  
0  
\*\* 
$$\bar{D}$$

Błędy s-a-1 na każdym z wejść i na wyjściu – równoważne (nierozróżnialne)

#### Przykład – bramka AND:

Błędy s-a-0 na każdym z wejść i na wyjściu – równoważne (nierozróżnialne)



? Błędy równoważne dla bramki NAND i NOR ?



#### Błędy niewykrywalne

W tym przykładowym układzie błąd s-a-0 jest niewykrywalny (dlaczego?)



Przyczyną niewykrywalnych błędów (pojedynczych) jest nadmiarowość w układzie

Zminimalizowana postać układu – nie ma błędów niewykrywalnych:

$$f = x_0 x_1 + \overline{x_1} x_2$$

Realizacja układów nieuproszczonych czasami konieczna (eliminacja hazardów, korzystanie z określonego typu bramek – np. dwuwejściowych) → stosuj dodatkowe wyjścia - wyprowadzenia punktów wewnętrznych (dla testowalności)