

COLLEGE CODE: 3105

COLLEGE NAME: DSCET

DEPARTMENT: AI AND DS

STUDENT NM-ID ROLL NO

DATE

Completed the project named as

TECHNOLOGY-PROJECT

NAME

SUBMITTED BY,

NAME POOJA S MOBILE NO 9884693700

Title

Energy Efficiency Optimization in Smart Buildings

Objective

The focus of Phase 4 is to enhance the energy efficiency of smart buildings by optimizing energy usage through AI-driven analytics, sensor integration, real-time monitoring, and adaptive control systems.

1. AI Model Optimization for Energy Management

Overview:

The AI model managing energy consumption will be refined to identify inefficiencies and predict energy demand patterns more accurately.

Performance Improvements:

- Model Retraining: The AI model is retrained using updated datasets including seasonal energy usage, occupancy

patterns, and environmental conditions.

- Predictive Optimization: Machine learning algorithms are enhanced to predict

energy spikes and adjust HVAC and lighting systems accordingly.

Outcome:

Post-optimization, the AI model demonstrates improved prediction accuracy and decision-making for energy adjustments, leading to measurable energy savings.

2. Real-Time Monitoring System Enhancement

Overview:

The monitoring system will be improved to detect and respond to energy anomalies and inefficiencies instantly.

Key Enhancements:

- Live Dashboards: Upgraded dashboards with real-time data visualization.
- Anomaly Detection: Alerts for unusual energy usage patterns.

Outcome:

Facilities can now respond immediately to energy surges, reducing waste and improving operational control.

3. Sensor Integration Performance

Overview:
Optimizing sensor networks for accurate data collection on temperature, occupancy, and light levels.
Key Enhancements:
- Sensor Calibration: Improved accuracy through recalibration.
- Network Optimization: Faster communication protocols.
Outcome:
The system delivers reliable environmental data, enabling precise control over energy-consuming systems.

4. Data Security and Privacy Performance
Overview:
With increased data collection, securing the system is paramount.
Key Enhancements:
- End-to-End Encryption using AES-256.
- Role-Based Access Controls.
Outcome:
System is compliant with data privacy regulations, ensuring data integrity and confidentiality.
5. Performance Testing and Metrics Collection
Overview:
Stress testing evaluates the scalability and energy-saving efficacy.
Implementation:
- Load Simulations for extreme scenarios.
- Metrics: Energy savings %, system uptime, anomaly detection rate.
Outcome:
The system performs well under load and shows up to 30% energy efficiency Outcome:
The system performs well under load and shows up to 30% energy efficiency
improvements.

Key Challenges in Phase 4 1. Data Noise - Solution: Filtering algorithms and sensor redundancy. 2. User Adaptation - Solution: Education campaigns, override permissions. з. Interoperability - Solution: Standard communication protocols. **Outcomes of Phase 4** 1. Improved AI Accuracy 2. Responsive Monitoring 3. Robust Sensor Integration 4. Secured Data Management

Next Steps for Finalization

Final deployment, additional tuning of the AI model, and user feedback collection.

Performance Metrics Screenshot for Phase 4

(Insert charts showing efficiency metrics and system performance here)

