

Semester 1 Examinations 2023/2024

Exam Code(s) Exam(s) Module(s) Module Code(s)	3BA1, 4BMU1, 3BMS2, 4BMS2, 3BS9, 4BS2 3rd/4th Arts, 3rd/4th Science. Euclidean and non-Euclidean Geometry MA3101
Repeat Paper	No
External Examiner(s) Internal Examiner(s)	Prof. Colva Roney-Dougal Dr. Tobias Rossmann Dr. A Mohajer*
<u>Instructions:</u>	Answer all four questions.
Duration No. of Pages Discipline(s)	2 hours 3 pages (including this cover page) Mathematics
Requirements: MCQ Release to Library Handout Statistical Tables/ Log Tables Cambridge Tables Graph paper Log Graph Paper Other Materials	Yes No No V Yes No No V Yes No No V Yes No No V Yes No V Students may use their own electronic calculators which must not be capable of storing text.

Q1 [25 marks]

Let $S^2 \subset \mathbb{R}^3$ be the sphere of radius one centred at the origin.

- (a) Define a great circle in S^2 and describe (without proof) the geodesic between two points on S^2 . [8 marks]
- (b) Show that in a spherical geodesic triangle on S^2 , the sum of any two sides is greater than the third side. [8 marks]
- (c) Let T be a triangle in S^2 with all sides of length $\pi/4$. Calculate the area of T. [9 marks]

Q2 [25 marks]

(a) Let $\mathbb U$ be the upper sheet of the hyperboloid and consider the curve γ in $\mathbb U$ defined by

$$\gamma: [2,3] \to \mathbb{U}$$
$$t \mapsto (\sqrt{2t-2}, t-1, t)$$

Calculate the length of γ .

[7 marks]

- (b) Compute the hyperbolic geodesic length between the two points x=(4,8,9), y=(2,2,3) on $\mathbb U.$ [6 marks]
- (c) Prove that the positive y-axis is a hyperbolic geodesic of the upper half plane \mathbb{H} . [6 marks]
- (d) Find the area of the hyperbolic (geodesic) triangle in the upper half plane \mathbb{H} with vertices (-3,0),(-2,0) and (-1,0). [6 marks]

Q3 [25 marks]

- (a) Let $\mathbb{P}(V)$ be a 3-dimensional projective space. Show that any two planes in $\mathbb{P}(V)$ intersect in a line. [8 marks]
- (b) If $M \in PGL_2(\mathbb{R})$ is a non-trivial involution $(M \neq \lambda id, M^2 = id)$ then it has either 0 or 2 fixed points. [8 marks]
- (c) Show that a bijective map $f: \mathbb{R}^2 \to \mathbb{R}^2$ which maps lines to lines must be affine, i.e., there exists a matrix $A \in GL_2(\mathbb{R})$ and a vector $b \in \mathbb{R}^2$ such that f(x) = Ax + b. [9 marks]

Q4 [25 marks]

- (a) Calculate the first and second fundamental forms as well as the Gaussian and Mean curvatures of the surface $z = x^2 y^2$. [10 marks]
- (b) Find the Gaussian curvature K at all points of the surface given by $z=x^2+y^2$. Evaluate $\int_R KdA$ where R is the region of the surface from z=0 to $z=a^2$ $(a\in\mathbb{R})$. [10 marks]
- (c) Give an example of a smooth cubic surface and describe all its lines.

 [5 marks]