LORENZO NICOLÈ MATERIALI POLIMERICI

MATERIALI POLIMERICI

Appunti

LORENZO NICOLÈ

DE - Dipartimento di Ingegneria Ingegneria Meccanica [LM-33] Università degli Studi di Ferrara

2022 - 2023 - version 1.0

Lorenzo Nicolè: Materiali Polimerici, Appunti, © 2022 - 2023

PROFESSORS: Francesco Mollica Valentina Mazzanti

LOCATION: Ferrara

TIME FRAME: 2022 - 2023

CONTENTS

ī	INTRODUZIONE AI MATERIALI POLIMERICI	1
1	MORFOLOGIA DEI MATERIALI POLIMERICI	3
П	PESI MOLECOLARI	5
2	PESI MOLECOLARI	7
3	VISCOELASTICITÀ	9
Ш	FLUIDI NON NEWTONIANI	11
4	FLUIDI NON NEWTONIANI	13
	4.1 Condizioni di flusso	13
	4.2 Effetti di sforzo normale e viscoelasticità	14
	4.2.1 Sforzo normale	14
	4.2.2 Viscoelasticità	15
	4.3 Effetti di plasticità	15
	4.4 Tissotropia	16
5	REOLOGIA (O REOMETRIA)	17
	5.1 La legge della viscosità	17
	5.1.1 La legge di Newton	17
	5.2 Le curve di flusso e di viscosità	18
IV	APPENDIX	19
Α	APPENDIX TEST	21
	A.1 Appendix Section Test	21
	A.2 Another Appendix Section Test	21
BII	BLIOGRAPHY	23

LIST OF FIGURES Andamento dello sforzo di taglio per diversi fluidi 14 Figure 4.1 Figure 4.2 Comportamento di un fluido polimerico 14 Comportamento dei fluidi con effetto di rigonfi-Figure 4.3 Figure 4.4 Rappresentazione del comportamento sotto l'effetto Figure 4.5 Caratteristica della viscosità in funzione del tempo 16 LIST OF TABLES Table A.1 LISTINGS Listing A.1 A floating example (listings manual) 22 ELENCO DELLE COSE DA FARE

ACRONYMS

Part I

INTRODUZIONE AI MATERIALI POLIMERICI

Accenni alla morfologia dei materiali polimerici

MORFOLOGIA DEI MATERIALI POLIMERICI

Part II PESI MOLECOLARI

PESI MOLECOLARI

VISCOELASTICITÀ

Part III

FLUIDI NON NEWTONIANI

Parte delle lezioni svolte dalla professoressa Valentina Mazzanti

FLUIDI NON NEWTONIANI

I materiali polimerici non possiedono comportamento newtoniano. Possiamo definire come "newtoniano" un fluido per il quale:

FLUIDO NEWTONIANO la viscosità dipende unicamente da temperatura e pressione: $\eta=\eta(T,p)$

Una prima relazione che lega la viscosità a temperatura e pressione può essere quella di *Arrhenius*:

$$\eta = \eta_1 e^{\frac{\Delta E}{R} \left(\frac{1}{1} - \frac{1}{T_0}\right)} e^{\beta (p - p_0)} \tag{4.1}$$

Resta evidente come:

- Se p $\uparrow \uparrow$ allora $\eta \uparrow \uparrow$.
- Se T $\uparrow \uparrow$ allora $\eta \downarrow \downarrow$.

Nello specifico, i fluidi non newtoniani presentano delle così dette **deviazioni** dal comportamento del fluido newtoniano. Ora verranno elencate e poi approfondite nello stesso ordine.

- La viscosità dipende dalle condizioni di flusso, in particolare dalla velocità di deformazione.
- 2. Possono esserci effetti di sforzo normale.
- 3. Possono esserci effetti di viscoelasticità.
- Possono esserci effetti di plasticità: ovvero fenomeni di snervamento.
- 5. Gli effetti sono conseguenze del tempo: tissotropia.

4.1 CONDIZIONI DI FLUSSO

Come accennato in precedenza, una deviazione dal comportamento di fluido newtoniano può essere quella della dipendenza dalle condizioni di flusso alle quali il fluido viene sottoposto. In particolare i fluidi non newtoniani dipendono fortemente dalla velocità di deformazione $\dot{\gamma}$. Perciò, vale:

$$\eta = \eta(\dot{\gamma}) \tag{4.2}$$

Figure 4.1: Andamento dello sforzo di taglio per diversi fluidi

Figure 4.2: Comportamento di un fluido polimerico

Funzione che lega la viscosità con la velocità di deformazione. Siccome lo **sforzo di taglio** vale, sia per fluidi newtoniani che non:

$$\tau = \eta \dot{\gamma} \tag{4.3}$$

Da cui, sostituendo la (4.2) alla (4.3) ne risulta:

$$\tau = \eta(\dot{\gamma})\dot{\gamma} \tag{4.4}$$

Dal grafico 4.1 si può dedurre che: all'aumentare dello sforzo di taglio il fluido si assottiglia (cioè ha comportamento **pseudo-plastico** e η diminuisce). Quasi tutti i materiali plastici hanno comportamento pseudo-plastico. Con η indipendente dal tempo. Se $\dot{\gamma}$ aumenta, significa che il fluido di assottiglia sempre di più perché viene speso molto sforzo di taglio per deformare l'oggetto. In generale viene considerato un vantaggio.

Per un fluido polimerico, si può tracciare un comportamento del tipo 4.2.

4.2 EFFETTI DI SFORZO NORMALE E VISCOELASTICITÀ

4.2.1 Sforzo normale

Se al fluido, all'interno di un qualsiasi contenitore, viene applicato uno sforzo esterno, questo risale grazie ad un movimento di rotazione circonferenziale provocato dall'aderenza. A livello circonferenziale, le catene

Figure 4.3: Comportamento dei fluidi con effetto di rigonfiamento dell'estruso

polimeriche sono sollecitate a trazione. Tuttavia, nel corso del tempo esse tenderanno a ritornare allo stadio iniziale di gomitolo statistico, esercitando una pressione sull'elemento rotante. Creando così aderenza. Questo viene anche chiamato **effetto Poisson**.

4.2.2 Viscoelasticità

Viene detto **effetto Barus** o di **rigonfiamento dell'estruso**. Vengono rappresentati nei grafici 4.3.

Si definisce che l'effetto di rigonfiamento:

$$De = \frac{\tau_r}{\tau_p} = \frac{\text{Tempo di rilassamento}}{\text{Tempo caratteristico del processo}} \tag{4.5}$$

Da cui ne deriva:

 $\tau_{\rm r} \ll \tau_{\rm p}~$ allora D $e \approx 0$ allora si dice che il fluido è poco elastico. Comportamento evidenziato al grafico 4.3b.

 $\tau_r pprox au_p$ allora De pprox 1 allora si dice che il fluido è più elastico. Sempre evidenziato al grafico 4.3b.

4.3 EFFETTI DI PLASTICITÀ

Un fluido pseudo-plastico possiede forze interne (intermolecolari) che che gli conferiscono il moto al di sotto di un certo valore τ , il fluido non muoverà fino a quando tale valore non verrà superato (Comportamento del fluido di **Bingham**). Sotto lo *Yield stress* il fluido si comporta come solido. Sopra lo *Yield stress*, lo sforzo cresce con $\dot{\gamma}$.

Il grafico 4.4 rappresenta i comportamenti di un fluido puramente pseudo-plastico e il fluido di Bingham. Entrambi hanno una legge del tipo:

Fluido di Bingham $\, \tau = \tau_{y} + \eta \dot{\gamma} \,$

FLUIDO PSEUDO-PLASTICO $\tau=\eta\dot{\gamma}$

Figure 4.4: Rappresentazione del comportamento sotto l'effetto plastico

Figure 4.5: Caratteristica della viscosità in funzione del tempo

4.4 TISSOTROPIA

La tissotropia si può presentare in due forme particolari:

FLUIDO REOPECTICO sono quei (pochi) fluidi che aumentano la loro viscosità all'aumentare del tempo.

FLUIDO TISSOTROPICO sono i fluidi, non newtoniani che diminuiscono la loro viscosità all'aumentare del tempo.

REOLOGIA (O REOMETRIA)

La reologia studia la deformazione di un corpo sotto l'azione di uno sforzo. I fluidi ideali, liquidi o gassosi che siano, si deformano irreversibilmente. L'energia di deformazione viene dissipata all'interno dei fluido sotto forma di calore, non può essere recuperata alla cessazione dello sforzo. Nella realtà non si trovano né fluidi ideali, né solidi ideali. Solo pochi liquidi si avvicinano, come comportamento a quello dei liquidi ideali. La maggior parte dei liquidi mostrano reologiacamente un comportamento che li classifica nella regione tra i liquidi e solidi: essi sono sia elastici che viscosi e possono perciò essere definiti "viscoelastici", che possono subire solo sforzi di taglio.

La resistenza di un fluido rispetto ad ogni cambiamento irreversibile dei suoi elementi di volume viene detta viscosità.

5.1 LA LEGGE DELLA VISCOSITÀ

5.1.1 La legge di Newton

LA misura della viscosità dei liquidi richiede dapprima la definizione dei parametri che riguardano il flusso. Si potranno poi trovare opportune condizioni per l'esecuzione dei test che consentono la misurazione delle grandezze in modo obbiettivo e riproducibile. Newton fu il primo a formulare la legge fondamentale della viscometria che descrive il comportamento di flusso di un liquido ideale.

$$\tau = \eta \cdot \dot{\gamma} \tag{5.1}$$

LO SFORZO DI TAGLIO Una forza F applicata ad un'area A (interfaccia tra il piatto superiore il il liquido sottostante) provoca un movimento di scorrimento nello strato liquido. la velocità di flusso che può essere mantenuta per una data forza sarà determinata dalla resistenza interna del liquido, cioè dalla sua viscosità.

$$p = \frac{\mathbf{F}}{A} = \left[\frac{N}{m^2}\right] = [Pa] \tag{5.2}$$

5.2 LE CURVE DI FLUSSO E DI VISCOSITÀ

la correlazione tra lo sforzo di taglio e gradiente di velocità che definisce il comportamento reologico di un liquido può essere graficamente riportato in un diagramma t/D. Il diagramma prende il nome di **curva di flusso**. Altro diagramma assai comune è quello che riporta η in funzione di D (velocità). Questo diagramma è detto **Curva di viscosità**.

Part IV APPENDIX

APPENDIX TEST

Lorem ipsum at nusquam appellantur his, ut eos erant homero concludaturque. Albucius appellantur deterruisset id eam, vivendum partiendo dissentiet ei ius. Vis melius facilisis ea, sea id convenire referrentur, takimata adolescens ex duo. Ei harum argumentum per. Eam vidit exerci appetere ad, ut vel zzril intellegam interpretaris.

More dummy text.

A.1 APPENDIX SECTION TEST

Test: Table A.1 (This reference should have a lowercase, small caps A if the option floatperchapter is activated, just as in the table itself \rightarrow however, this does not work at the moment.)

LABITUR BONORUM PRI NO	QUE VISTA	HUMAN
fastidii ea ius	germano	demonstratea
suscipit instructior	titulo	personas
quaestio philosophia	facto	demonstrated

Table A.1: Autem usu id.

A.2 ANOTHER APPENDIX SECTION TEST

Equidem detraxit cu nam, vix eu delenit periculis. Eos ut vero constituto, no vidit propriae complectitur sea. Diceret nonummy in has, no qui eligendi recteque consetetur. Mel eu dictas suscipiantur, et sed placerat oporteat. At ipsum electram mei, ad aeque atomorum mea. There is also a useless Pascal listing below: Listing A.1.

Listing A.1: A floating example (listings manual)

```
for i:=maxint downto 0 do
begin
{ do nothing }
end;
```

DECLARATION	
Put your declaration here.	
Ferrara, 2022 - 2023	
	 Lorenzo Nicolè

COLOPHON

This document was typeset using the typographical look-and-feel classicthesis developed by André Miede. The style was inspired by Robert Bringhurst's seminal book on typography "The Elements of Typographic Style". classicthesis is available for both LATEX and LAX:

```
https://bitbucket.org/amiede/classicthesis/
```

Happy users of classicthesis usually send a real postcard to the author, a collection of postcards received so far is featured here:

http://postcards.miede.de/

Final Version as of August 13, 2023 (classicthesis version 1.0).