

Taller Introducción a la ecuación de 2° Álgebra 9°

Germán Avendaño Ramírez *

Nombre:	Curso:	Fecha:

Guía

Introducción

Un cohete de juguete es lanzado verticalmente hacia arriba desde el suelo, como se ilustra en el dibujo. Si su rapidez inicial es de 120 pies/segundo a y la única fuerza que se le opone es la fuerza de gravedad, entonces la altura del cohete después de t segundos está dada por la expresión

$$h = -16t^2 + 120t$$

Algunos valores de h para los primeros 7 segundos de vuelo se muestran en la siguiente tabla

 $^a\mathrm{Un}$ pie equivale a 12 pulgadas y una pulgada, a 2,54 cm aproximadamente

t (sec)	0	1	2	3	4	5	6	7
h (pies)	0	104	176	216	224	200	144	56

Podemos ver en la tabla que, al ascender el cohete, alcanza la altura de 180 pies sobre el piso en algún instante entre t=2 y t=3 segundos. Al descender, el cohete alcanza la altura de 180 pies sobre el piso en algún instante entre los 5 y 6 segundos. Para encontrar

^{*}Lic. Mat. U.D., M.Sc. U.N.

los valores exactos para los cuales h = 180 pies, debemos solucionar la ecuación

$$180 = -16t^2 + 120t \qquad \text{\'o}$$
$$16t^2 - 120t + 180 = 0$$

Como se indica en el siguiente cuadro, una ecuación de esta clase se llama ecuación $cuadrática\ en\ t.$ Antes de aprender a resolver estas ecuaciones, debemos resolver el problema planteado y encontrar los instantes para los cuales el cohete se encuentra a una altura de 180 pies sobre el suelo.

Terminología		Definición	Ejemplos	
Ecuación o	cuadrática	Una ecuación que puede ser escri-	$4x^2 = 8 - 11x,$	
en x		ta de la forma $ax^2 + bx + c = 0$,	x(3+x) = 5,	
		donde $a \neq 0$	$4x = x^2$	

Para poder resolver ecuaciones de esta tipo, debemos hacer uso del siguiente teorema:

Si $p \ge q$ son expresiones algebraicas, entonces:

$$pq=0$$
 sí y solamente sí $p=0$ o $q=0$

Ejemplo

Solucione la ecuación $3x^2 = 10 - x$

Solución: Para usar el método de factorización, es necesario que solamente aparezca 0 en un lado de la ecuación. Luego procedemos así:

$$3x^2 = 10 - x \qquad \text{ecuación dada}$$

$$3x^2 + x - 10 = 0 \qquad \text{sumando } x - 10$$

$$(3x - 5)(x + 2) = 0 \qquad \text{Factorizando}$$

$$3x - 5 = 0, \quad x + 2 = 0 \qquad \text{Teorema del factor cero}$$

$$x = \frac{5}{3}, \quad x = -2 \qquad \text{Solucionando para } x$$

Luego las soluciones de la ecuación dada son $\frac{5}{3}$ y -2

Ejercicios

Revisión de conceptos

En los puntos 1 y 2, llene los espacios en blanco

- 1. Una ecuación de la forma $ax^2 + bx + c = 0$, donde a, b y c son números reales y $a \neq 0,$ es una _____ o una ecuación polinómica de segundo grado en x
- 2. La parte b^2-4ac de la fórmula general para solucionar una ecuación cuadrática se denomina _____ y determina el tipo de solución de la ecuación cuadrática.
- 3. Mencione cuatro métodos para solucionar una ecuación cuadrática.
- 4. ¿Qué representa la ecuación $S=-16t^2+v_0t+s_0?$ ¿Qué significan v_0 y $s_0?$

Nivel I

1. Indica cuales de las siguientes igualdades son ecuaciones de 2° grado

a)
$$x^2 + 9 = 25$$

f)
$$x(x-2x) = x^2(x-3) - 1$$

b)
$$3x^2 = 0$$

c)
$$2x^2 - 7x = x^2 - 5 + 7x$$

$$g) \frac{x}{3} + \frac{x^2}{6} = x^2$$

d)
$$(x+1)^2 - x^2 = x+9$$

e)
$$3x(x+1) = 2x(x+1)$$

$$h) \ \frac{6x^2}{5} + x^2 = \frac{11x^2}{5} + 3$$

2. Comprueba si los valores dados a la incógnita son soluciones de la ecuación propuesta en cada caso:

a)
$$3x^2 - 10x + 3 = 0;$$
 $x = 0, x = \frac{1}{2}$

$$x = 0, x = \frac{1}{3}$$

b)
$$2x^2 - 3x = x + 2x^2$$
; $x = 0, x = 5$

$$x = 0, x = 5$$

c)
$$(2x+1)\left(x-\frac{1}{3}\right)=0;$$
 $x=1, x=\frac{1}{3}$

$$x = 1, x = \frac{1}{3}$$

d)
$$4(x^2+9) = x^2+144$$
; $x = 6, x = -6, x = 1$

e)
$$\left(x - \frac{1}{2}\right) \left(\frac{1}{2} - x\right) = 0;$$
 $x = \frac{1}{2}, x = -\frac{1}{2}$

$$x = \frac{1}{2}, x = -\frac{1}{2}$$

f)
$$x(x-2) = x^2 + 1;$$
 $x = 0, x = \frac{1}{2}$

$$x = 0, x = \frac{1}{2}$$

3. Resuelva las siguientes ecuaciones incompletas:

a)
$$x^2 - 9 = 0$$

$$(x^2 - 1) = 0$$

$$x^2 - 16 = 0$$

a)
$$x^2 - 9 = 0$$
 b) $x^2 - 1 = 0$ c) $x^2 - 16 = 0$ d) $-x^2 + 25 = 0$

4. Resuelve las siguientes ecuaciones incompletas:

a)
$$x^2 - x = 0$$

c)
$$-x^2 - 10x = 0$$

b)
$$-x^2 + 9x = 0$$

d)
$$2x^2 + 11x = 0$$

5. Resuelva las siguientes ecuaciones incompletas

a)
$$x^2 = 0$$

a)
$$x^2 = 0$$
 b) $3x^2 = 0$

c)
$$-x^2 = 0$$
 d) $-2x^2 = 0$

$$d) -2x^2 = 0$$

6. Resuelva las siguientes ecuaciones completas

a)
$$x^2 + 7x + 12 = 0$$

c)
$$x^2 + 2x - 15 = 0$$

b)
$$x^2 - 7x - 18 = 0$$

d)
$$2x^2 + 11x + 5 = 0$$

7. Resuelva las siguientes ecuaciones:

a)
$$25x(x+1) = -4$$

b)
$$2x(x+3) = (3(x-1))$$

c)
$$(2x-3)^2 = 8x$$

d)
$$\frac{x^2+2}{5} - \frac{x^2+x}{2} = \frac{3x+1}{10}$$

e)
$$1 - 5x\left(1 - \frac{3}{2}\right) = \frac{x}{2}$$

$$f) \ 2x(3x-4) - (1-3x)(1+x) = -2$$

8. Exprese matemáticamente las siguientes afirmaciones indicando si son ciertas o falsas:

- a) Si al cuadrado de ocho le añado 8 unidades, obtengo setenta y seis
- b) La mitad del cuadrado de cuarenta y dos es ochocientos cuarenta
- c) Ciento cincuenta y dos disminuido en ocho unidades, da el cuadrado de doce
- d) El doble del cuadrado de 3 es 18

9. La mitad del cuadrado de un número es 242. Hállelo.

10. La suma de un número y su cuadrado es 20. Calcúlelo.

11. Si a un número le sumo la mitad de su cuadrado, el resultado es 3/2, ¿De qué número se trata?

12. Si a un número le sumo su triple y le resto su cuadrado, el resultado es -5. Halle dicho número.

13. Solucione el problema del cohete planteado al iniciar esta guía.