Tutorial 2 report EE 5311 (Digital IC design)

- Amogh G. Okade (EP22B020)

Link to all the mean percentage error calculations using google sheets

Question 1

Part a)

- The nMOS is in saturation.
 Since V_G = V_D and V_{Tn} > 0, V_{DS} > V_{GS} V_{Tn}
 Therefore, the nMOS is in saturation.
- Plot of I_{DS} vs V_{GS} for L = 0.15 μ m and W = 0.42 μ m:-

Mean percentage error = 49.19%

Part b)

 Plot of the output characteristics (I_{DS} vs V_{DS}) for different gate-source voltages (V_{GS} = 0.6V, 1V, 1.4V, 1.8V):-

For Vgs = 0.6V, mean percentage error = 100%

• For Vgs = 1V, mean percentage error = 10.54%

• For Vgs = 1.4V, mean percentage error = 16.41%

• For Vgs = 1.8V, mean percentage error = 34.66%

Part c)

• Plot of I_{DS} vs V_{DS} for nMOSs of different sizes, keeping the W/L ratio constant (W/L = 0.42/0.15):-

 We can clearly notice the velocity saturation effect decreasing, as the overall length increases.

Question 2

Part a)

• The pMOS is in saturation. Since $V_G = V_D$ and $|V_{Tp}| > 0$, $V_{SD} > V_{SG} - |V_{Tp}|$ Therefore, the pMOS is in saturation.

• Plot of I_{SD} vs V_{SG} for L = 0.15 μ m and W = 0.42 μ m:-

Mean percentage error = 50.71%

Part b)

• Plot of the output characteristics (I_{SD} vs V_{SD}) for different gate-source voltages (V_{SG} = 0.6V, 1V, 1.4V, 1.8V):-

For Vsg = 0.6V, mean percentage error = 100%

For Vsg = 1V, mean percentage error = 25%

For Vsg = 1.4V, mean percentage error = 33.68%

• For Vsg = 1.8V, mean percentage error = 47.43%

Part c)

• Plot of I_{DS} vs V_{DS} for nMOSs of different sizes, keeping the W/L ratio constant (W/L = 0.42/0.15):-

• We can clearly notice the velocity saturation effect decreasing, as the overall length increases.