ELEKTRİK DEVRE TEMELLERİ DERS NOTLARI

7. Sunum

Thevenin Teoremi

THEVENIN VE NORTON TEOREMLERI

• Thevenin ve norton teoremleri en güçlü analiz tekniklerindendir.

THEVENIN EŞDEĞER TEOREMİ

NORTON EŞDEĞERTEOREMİ

THEVENIN YAKLAŞIMI

NORTON YAKLAŞIMI

THEVENIN VE NORTON TEOREMLERİNE BAŞKA BİR BAKIŞ

• Bu eşdeğerlik kaynak dönüşümü olarak da görülebilir. Burada dirençle seri bağlı bir gerilim kaynağının; dirençle paralel bağlı bir akım kaynağına nasıl dönüştürüleceği görülmektedir.

KAYNAK DÖNÜŞÜMÜ

- Kaynak dönüşümü bir devrenin karmaşıklığını azaltmak için iyi bir gereçtir.
- Ne zaman uygulanabilir?
- "İdeal kaynaklar" kaynakların gerçek davranışları için iyi bir model değildirler. Gerçek bir batarya kısa devre edildiğinde sonsuz akım üretmez.

KAYNAK DÖNÜŞÜMÜ

MODELLER BIRBIRINE ESDEGERDIR EGER; $R_{\nu} = R_{I} = R$ $V_{S} = RI_{S}$

Thevenin veya Norton
 Eşdeğerini elde etmek için
 Kaynak Dönüşümü
 kullanılabilir,

THEVENIN ANALIZI

- Thevenin Teoremi: bir elektrik devresinde gerekli dönüşümler yapıldıktan sonra, devre bir gerilim kaynağı ile ona seri bağlı bir direnç ile gösterilmesidir.
- Elde edilen devreye Thevenin Eşdeğeri denir.
- Gerilim kaynakları kısa devre, akım kaynakları ise açık devre yapılarak Thevenin eşdeğer direnci bulunur.
- Burada amaç karmaşık olan devreyi basitleştirmek, devreyi daha kolay değerlendirmektir.
- Kaynaklı (bağımlı ve/veya bağımsız) ve dirençli her devre, bir gerilim kaynağı ve bir dirençli devreye dönüştürebilir.

THEVENIN ANALIZI

THEVENIN ANALIZI

Thevenin Eşdeğerinin Hesaplanması

- Thevenin eşdeğerini belirlemenin temel adımları
 - $-v_{oc}$ yi bul
 - $-R_{Th} (= v_{oc}/i_{sc})$ yi bul

Thevenin Analizi İşlem Basamakları

- 1. Açık devre gerilimini hesapla, V_{oc}.
- 2. Thevenin eşdeğer direncini hesapla, R_{Th}
 - (a) eğer sadece bağımsız kaynak varsa bütün gerilim kaynakları kısa devre, bütün akım kaynakları açık devre yapılır.
 - (b) eğer sadece bağımlı kaynak varsa hesaplama için bir test gerilim veya akım kaynağı kullanılır.

$$R_{Th} = V_{Test} / I_{test}$$

- (a) hem bağımlı hem de bağımsız kaynak birlikte kullanılmışsa V_{OC}/I_{SC}'den R_{Th}'yi hesaplarız.
- 3. Devre V_{OC} ve ona seri bağlı R_{Th} , ye dönüştürülür.

Not: İşlem basamağı 2(b)'de eşdeğer devre sadece R_{Th} 'den oluşur, gerilim kaynağı yoktur.

R_L üzerinde düşen gerilimi bulunuz,

$$R_t = 2 + \frac{(3)(6)}{3+6} = 4 \Omega$$

$$v_{oc} = \frac{6}{6+3}(18) = 12 \text{ V}$$

$$12 i_1 + 10 i_1 - 6 (i_2 - i_1) = 0$$
$$6 (i_2 - i_1) + 3 i_2 - 18 = 0$$

$$i_1 = \frac{1}{2} A$$

$$i_2 = \frac{7}{3} A$$

$$v_{oc} = 3 i_2 + 10 i_1 = 3 \left(\frac{7}{3}\right) + 10 \left(\frac{1}{2}\right) = 12 \text{ V}$$

Denklemler V_X için çözüldüğünde, $V_X=3/7$ V bulunur. V_X bilindiğine göre I_1 , I_2 ve I_3 hesaplanabilir.

$$I_{1} = \frac{V_{X}}{1k} = \frac{3}{7}mA$$

$$I_{0} = I_{1} + I_{2} + I_{3}$$

$$= \frac{1}{I_{0}}mA$$

$$I_{2} = \frac{1 - 2V_{X}}{1k} = \frac{1}{7}mA$$

$$I_{3} = \frac{1}{I_{3}} = \frac{1}{I_{3}}mA$$

$$I_{1} = \frac{1}{I_{3}} = \frac{1}{I_{3}}mA$$

$$I_{2} = \frac{1}{I_{3}} = \frac{1}{I_{3}}mA$$

$$I_{3} = \frac{1}{I_{3}} = \frac{1}{I_{3}}mA$$

$$-12 + 6000 i_a + 2000 i_a + 1000 i_a = 0$$
$$i_a = 4/3000 \text{ A}$$

$$v_{oc} = 1000 \ i_a = \frac{4}{3} \ V$$

$$i_a = 0$$
 (kısa devreden dolayı)
 $-12 + 6000 i_{sc} = 0 \implies i_{sc} = 2 \text{ mA}$
 $R_t = \frac{v_{oc}}{i_{sc}} = \frac{\frac{4}{3}}{.002} = 667 \Omega$

$$i_b = \frac{\frac{4}{3}}{667 + R}$$

Örnek:

Şekildeki devrede R1 = 13 Ω , R2 = 7 Ω , R3 = 5 Ω , R4 = 8 Ω , R5 = 15 Ω dur. Bu devrede R₄ direnci için,

- A) Thevenin eşdeğer gerilimini bulunuz.
- B) Thevenin eşdeğer direncini bulunuz.
- C) Thevenin eşdeğer devresini kurunuz.
- D) Thevenin eşdeğer akımını hesaplayınız.
- E) R4 üzerindeki gerilimi bulunuz.

Çözüm:

A) Thevenin eşdeğer gerilimini bulalım.

Bunun için R₄ direncini çıkaralım.

1 numaralı göz için Kirchoff gerilim kanunu uygulayalım.

$$-60 + 13.I_1 + 7I_1 + 5I_1 + 10 = 0$$

$$25I_1 = 50$$

$$I_1 = 2 A$$

R₃ direnci üzerinden sadece I₁ akımı geçmektedir. Bu akım R₃ üzerinde,

2.5 = 10 V gerilim meydana getirir. Bu gerilim V_2 kaynağı ile seri bağlantılıdır. AC kolundaki toplam gerilim,

$$V_{AC} = 10 + 10 = 20 \text{ Volt olur.}$$

Şimdi I₃ akımını bularak R₅ direnci üzerindeki potansiyeli hesaplayalım.

$$-30 + 15I_3 = 0$$

$$I_3 = 2 A$$

$$V_{R5} = 2.15 = 30 \text{ V}$$

 R_4 üzerindeki gerilim, $V_{AC} - V_{AD}$ ile bulunabilir.

$$V_{R4} = 20 - 30$$

$$V_{R4} = -10 V$$

Sonucun negatif çıkması R_4 direncinin V_3 kaynağına bakan kısmının pozitif olduğunu gösterir. Devre üzerinde göstermek gerekirse bu durum dikkate alınır.

Bu değer Thevenin eşdeğer gerilimidir.

$$V_{Th} = -10 V$$

B) Thevenin eşdeğer direnci.

Thevenin eşdeğer direncini bulmak için R4 direncini çıkaralım ve gerilim kaynaklarını kısa devre yapalım.

AB arasındaki eşdeğer direnci bulurken A noktasını devrenin girişi, B noktasını devrenin çıkışı kabul ederiz.

$$R_{1,2} = 13 + 7 = 20 \Omega$$

$$R_{1,2,3} = \frac{20.5}{25}$$

$$R_{1,2,3} = 4 \Omega$$

R₅ direnci kısa devre olmaktadır. AB arasındaki eşdeğer dirence bir etkisi olmaz.

$$R_{AB} = 4 \Omega$$

$$R_{Th} = 4 \Omega$$

C) Thevenin eşdeğer devresi.

Thevenin eşdeğer devresini kurarken V_{Th} = -10 olduğundan, akımın B noktasından gireceğini gözönüne alalım. Bunun için B noktasını yukarı, A noktasını aşağı getirelim.

Eğer A noktasını yukarıdaki yerine koyacak olursak, V_{Th} kaynağının alt kısmını pozitif, üst kısmını negatif yapmalıyız.

D) Thevenin eşdeğer akımı.

Thevenin akımını bulmak için R₄ direncini yerine takalım.

$$R_{es} = 4 + 8 = 12 \Omega$$

$$I = \frac{10}{12}$$

$$I = 0.83 A$$

$$I_{Th} = 0.83 A$$

E) R4 üzerindeki gerilim.

 R_4 üzerindeki gerilim I_{Th} ile R_4 direncinin çarpımına eşittir.

$$V_{R4} = 0.83.8$$

$$V_{R4} = 6,64 \text{ V}$$

Active Learning

Şekildeki devrede $8,65\Omega$ üzerinden geçen akımı thevenin teoremiyle çözünüz.

