In the Claims

1	1. A method for reducing oxalate concentrations in an animal wherein said method
2	comprises administering a composition comprising a material selected from the group
3	consisting of oxalate-degrading microbes and oxalate-degrading enzymes.
1	2. The method, according to claim 1, wherein said method comprises administration
2	of oxalate-degrading enzymes.
1	3. The method, according to claim 2, wherein said oxalate-degrading enzymes are
2	derived from bacteria.
1	4. The method, according to claim 3, wherein said oxalate-degrading enzymes are
2	derived from bacteria of the group consisting of Clostridium, Pseudomonas, and oxalobacter.
1	5. The method, according to claim 2, wherein said enzymes are produced
2	recombinantly.
1	6. The method, according to claim 5, wherein said enzymes are produced
2	recombinantly in Escherichia coli.
1	7. The method, according to claim 2, which comprises administering formyl-CoA
2	transferase and oxalyl-CoA decarboxylase.
1	8. The method, according to claim 7, wherein said enzymes are produced
2	recombinantly.
1	9. The method, according to claim 2, wherein said oxalate-degrading enzymes are
2	expressed in plants which have been transformed with polynucleotides encoding said
3	oxalate-degrading enzymes.

1	10. The method, according to claim 1, wherein said method comprises administration
2	of oxalate-degrading microbes.
1	11. The method, according to claim 10, wherein said oxalate-degrading microbes
2	have been transformed with polynucleotides which encode said oxalate-degrading enzymes.
1	12. The method, according to claim 2, which further comprises administering an
2	additional factor selected from the group consisting of oxalyl CoA, MgCl ₂ and TPP.
1	13. The method, according to claim 10, which comprises administering whole viable
2	oxalate-degrading microbes.
1	14. The method, according to claim 13, wherein said microbes are Oxalobacter
2	formigenes.
1	15. The method, according to claim 13, wherein said microbes are selected from the
2	group consisting of Clostridium and Pseudomonas.
1	16. The method, according to claim 13, wherein said microbes colonize the
2,	intestines.
1	17. The method, according to claim 1, which is used to treat a patient whose
2	intestines have insufficient numbers of oxalate-degrading bacteria.
1	18. The method, according to claim 17, which is used to treat a patient whose natural
2	intestinal bacteria have been depleted due to treatment with antibiotics.

1	19. The method, according to claim 1, which is used to treat a domesticated animal,
2	said animal having deficient numbers of oxalate-degrading bacteria.
1	20. The method, according to claim 19, wherein said domesticated animal is selected
2	from the group consisting of dogs, cats, rabbits, ferrets, guinea pigs, hamsters and gerbils.
1	21. The method, according to claim 19, wherein said domesticated animal is an
2	agricultural animal.
1	22. The method, according to claim 21, wherein said agricultural animal is selected
2	from the group consisting of horses, cows and pigs.
1	23. The method, according to claim 19, which is used treat a domesticated animal,
2	said animal's natural intestinal bacteria having been depleted due to treatment with
3	antibiotics.
1	24. The method, according to claim 1, wherein said microbe or said enzyme is
2	formulated to reduce inactivation in the stomach.
1	25. The method, according to claim 24, wherein said formulation comprises a
2	coating which dissolves preferentially in the small intestine compared to the stomach.
1	26. A composition for reducing oxalate levels in an animal wherein said composition
2	comprises a material selected from the group consisting of oxalate-degrading microbes and
3	oxalate-degrading enzymes.
1	27. The composition, according to claim 26, wherein said composition comprises

2

whole, viable oxalate-degrading bacteria.

1	28. The composition, according to claim 20, wherein said composition comprises
2	cell lysate of oxalate-degrading bacteria.
1	29. The composition, according to claim 26, wherein said bacteria are Oxalobacter
2	formigenes.
1	30. The composition, according to claim 26, wherein said bacteria are selected from
2	the group consisting of Clostridium and Pseudomonas.
1	31. The composition, according to claim 26, wherein said composition comprises
2	oxalate-degrading enzymes.
1	32. The composition, according to claim 31, wherein said enzymes are formyl-CoA
2	transferase and oxalyl CoA decarboxylase.
1	33. The composition, according to claim 32, which further comprises a compound
2	selected from the group consisting of oxalyl CoA, MgCl ₂ , and TPP.
. 1	34. The composition, according to claim 26, wherein said composition is formulated
2	to reduce deactivation in the stomach.
1	35. The composition, according to claim 34, wherein said composition is coated with
2	a material which preferentially degrades in the small intestine.