Hindi Vidya Prachar Samiti's Ramniranjan Jhunjhunwala College of Arts, Science and Commerce (Empowered Autonomous)

Programme: MSc. (Statistics) Part-1 Semester-2

Practical- 2.3.2

Most Powerful test

- Q.1. Let X_{1}, X_{2}, X_{10} be a random sample from $N(\mu, \sigma^{2})$. Find a best test of the hypothesis $H_{0}: \mu = 0, \sigma^{2} = 1$ against the alternative hypothesis $H_{1}: \mu = 1, \sigma^{2} = 4$ Data : 0.08, -1.69, -0.27, 2.67, -0.48, 0.52, 1.75, 0.75, 0.57, 0.60.
- Q.2. Let X_1, X_2, X_n be a random sample from a normal distribution with mean μ and variance 100. It is designed to test $H_0: \mu = 75$ against $H_1: \mu = 78$. Find test of level of significance 0.05 and with power equal to 0.90 approximately.
- Q.3. Let X_1, X_2, X_{10} be a random sample of size 10 from a $N(0, \sigma^2)$. Find a best critical region of size $\alpha = 0.05$ for testing $H_0: \sigma^2 = 1$ against $H_1: \sigma^2 = 2$. Is this a best critical region against alternative $H_1: \sigma^2 > 1$.
- Q.4. Find the Neyman-Pearson test of size α to test $H_0: \beta=1$ against $H_1: \beta=\beta_1(>1)$ based on a sample of size 1 from $f(x;\beta) = \begin{cases} \beta x^{\beta-1} & ; & 0 < x < 1 \\ 0 & ; & otherwise \end{cases}$
- Q.5. Let X_1, X_2, X_n be a random sample with common pdf

$$f_0(x) = \frac{1}{2\theta} \exp\left(-\frac{|x|}{\theta}\right); x \in R, \theta > 0$$

Find a size α MP test for testing $H_0: \theta = \theta_0$ versus $H_1: \theta = \theta_1 (> \theta_0)$

Q.6. Let X be an observation in (0,1). Find an MP size α test to test

$$H_0: X \sim f(x) = 4x$$
 if $0 < x < \frac{1}{2}$
= $4 - 4x$ if $\frac{1}{2} \le x \le 1$

against

$$H_1: X \sim f(x) = 1$$
 if $0 < x < 1$.

Find the power of your test.

	x				
	1	2	3	4	5
$f_0(x)$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$
$f_1(x)$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{6}$

- (a) Find the form of the MP test.
- (b) Find the size and the power of your test for various values of the cutoff point.
