Congruencias y circunferencia

J. A. Rodríguez-Velázquez

URV

Congruencias

- 1 Diremos que una colección de puntos en un espacio afín es una figura.
- ② Dos figuras A y B son congruentes si existe una isometría que transforma A en B, es decir, B se obtiene a partir de A mediante una combinación de isometrías.
- 3 Utilizaremos la notación $A \cong B$ para expresar la congruencia de A y B.

Congruencias

- 1 Diremos que una colección de puntos en un espacio afín es una figura.
- ② Dos figuras A y B son congruentes si existe una isometría que transforma A en B, es decir, B se obtiene a partir de A mediante una combinación de isometrías.
- 3 Utilizaremos la notación $A \cong B$ para expresar la congruencia de A y B.

Ejemplos

- 1 Dos segmentos de recta son congruentes si tienen la misma longitud.
- 2 Dos circunferencias son congruentes si tienen el mismo radio.
- 3 Dos ángulos son congruentes si tienen la misma amplitud.

Criterios de congruencia de triángulos

Prueba el criterio lado-lado de congruencia de triángulos.

Prueba el criterio lado-lado de congruencia de triángulos.

Solución

① Sean a,b,c y a',b,c' dos triángulos en el plano tales que d(a,b)=d(a',b'), d(a,c)=d(a'c') y d(b,c)=d(b',c').

Prueba el criterio lado-lado de congruencia de triángulos.

- ① Sean a,b,c y a',b,c' dos triángulos en el plano tales que d(a,b)=d(a',b'), d(a,c)=d(a'c') y d(b,c)=d(b',c').
- ② Sea ψ la aplicación afín definida por $\psi(a)=a'$, $\psi(b)=b'$ y $\psi(c)=c'$.

Prueba el criterio lado-lado de congruencia de triángulos.

- ① Sean a,b,c y a',b,c' dos triángulos en el plano tales que d(a,b)=d(a',b'), d(a,c)=d(a'c') y d(b,c)=d(b',c').
- ② Sea ψ la aplicación afín definida por $\psi(a)=a'$, $\psi(b)=b'$ y $\psi(c)=c'$.
- 3 Solo hay que probar que ψ es una isometría o, equivalentemente, que la aplicación lineal $\overrightarrow{\psi}$ es una isometría.

Prueba el criterio lado-lado de congruencia de triángulos.

- ① Sean a,b,c y a',b,c' dos triángulos en el plano tales que d(a,b)=d(a',b'), d(a,c)=d(a'c') y d(b,c)=d(b',c').
- ② Sea ψ la aplicación afín definida por $\psi(a)=a'$, $\psi(b)=b'$ y $\psi(c)=c'$.
- 3 Solo hay que probar que ψ es una isometría o, equivalentemente, que la aplicación lineal $\overrightarrow{\psi}$ es una isometría.
- ① Debemos probar que para todo punto x se cumple $\|\overrightarrow{\psi}(\overrightarrow{ax})\| = \|\overrightarrow{ax}\|$.

Prueba el criterio lado-lado de congruencia de triángulos.

- ① Sean a,b,c y a',b,c' dos triángulos en el plano tales que d(a,b)=d(a',b'), d(a,c)=d(a'c') y d(b,c)=d(b',c').
- ② Sea ψ la aplicación afín definida por $\psi(a)=a'$, $\psi(b)=b'$ y $\psi(c)=c'$.
- 3 Solo hay que probar que ψ es una isometría o, equivalentemente, que la aplicación lineal $\overrightarrow{\psi}$ es una isometría.
- 4 Debemos probar que para todo punto x se cumple $\|\overrightarrow{\psi}(\overrightarrow{ax})\| = \|\overrightarrow{ax}\|$.
- **5** Existen escalares λ_1 y λ_2 tales que $\overrightarrow{ax} = \lambda_1 \overrightarrow{ab} + \lambda_2 \overrightarrow{ac}$.

Prueba el criterio lado-lado de congruencia de triángulos.

- ① Sean a,b,c y a',b,c' dos triángulos en el plano tales que d(a,b)=d(a',b'), d(a,c)=d(a'c') y d(b,c)=d(b',c').
- ② Sea ψ la aplicación afín definida por $\psi(a) = a'$, $\psi(b) = b'$ y $\psi(c) = c'$.
- 3 Solo hay que probar que ψ es una isometría o, equivalentemente, que la aplicación lineal $\overrightarrow{\psi}$ es una isometría.
- 4 Debemos probar que para todo punto x se cumple $\|\overrightarrow{\psi}(\overrightarrow{ax})\| = \|\overrightarrow{ax}\|$.
- **5** Existen escalares λ_1 y λ_2 tales que $\overrightarrow{ax} = \lambda_1 \overrightarrow{ab} + \lambda_2 \overrightarrow{ac}$.
- **⑤** Entonces $\overrightarrow{\psi}(\overrightarrow{ax}) = \lambda_1 \overrightarrow{\psi}(\overrightarrow{ab}) + \lambda_2 \overrightarrow{\psi}(\overrightarrow{ac}) = \lambda_1 \overrightarrow{a'b'} + \lambda_2 \overrightarrow{a'c'}$.

Solución (Continuación)

Nótese que

$$\|\overrightarrow{b'a'} + \overrightarrow{a'c'}\|^2 = \|\overrightarrow{b'c'}\|^2 = \|\overrightarrow{bc}\|^2 = \|\overrightarrow{ba} + \overrightarrow{ac}\|^2.$$

De ahí que $\overrightarrow{b'a'} \cdot \overrightarrow{a'c'} = \overrightarrow{ba} \cdot \overrightarrow{ac}$. Así,

$$\begin{split} \|\overrightarrow{\psi}(\overrightarrow{ax})\|^2 &= \|\lambda_1 \overrightarrow{a'b'} + \lambda_2 \overrightarrow{a'c'}\|^2 \\ &= \lambda_1^2 \|\overrightarrow{a'b'}\|^2 + 2\lambda_1 \lambda_2 \overrightarrow{a'b'} \cdot \overrightarrow{a'c'} + \lambda_2^2 \|\overrightarrow{a'c'}\|^2 \\ &= \lambda_1^2 \|\overrightarrow{ab}\|^2 + 2\lambda_1 \lambda_2 \overrightarrow{ab} \cdot \overrightarrow{ac} + \lambda_2^2 \|\overrightarrow{ac}\|^2 \\ &= \|\lambda_1 \overrightarrow{ab} + \lambda_2 \overrightarrow{ac}\|^2 \\ &= \|\overrightarrow{ax}\|^2. \end{split}$$

Por lo tanto, $\overrightarrow{\psi}$ es una isometría, eso implica que ψ también lo es.

Ejercicio (Triángulo isósceles)

Prueba que d(a,c) = d(b,c) si y solo si $\alpha = \beta$.

Ejercicio (Triángulo isósceles)

Prueba que d(a,c) = d(b,c) si y solo si $\alpha = \beta$.

Solución

Sea m el punto medio de ab. Si d(a,c)=d(b,c), entonces $c\in B_{a|b}$, lo que implica $\overline{cm}\perp \overline{ab}$, por el Ejercicio 2.3. Por el criterio lado-lado los triángulos a,m,c y b,m,c son congruentes, lo que implica que $\alpha=\beta$.

Solución (Continuación)

Ahora asumimos que $\alpha=\beta$. Construimos la recta l paralela al lado ab y que pasa por c, una perpendicular a l que pasa por a, y otra perpendicular a l que pasa por b, como en la figura.

Nótese que d(a,d)=d(b,e) y, por el criterio ángulo-lado-ángulo, los triángulos a,d,c y b,e,c son congruentes, lo que implica que d(a,c)=d(b,c)

Ejercicio (Ortocentro)

Demuestra que las alturas de un triángulo son concurrentes.

Ejercicio (Ortocentro)

Demuestra que las alturas de un triángulo son concurrentes.

Ejercicio (Ortocentro)

Demuestra que las alturas de un triángulo son concurrentes.

Solución

Sea abc un triángulo y, por cada vértice, trazamos una paralela al lado opuesto, formando un nuevo triángulo def. Los triángulos abc, abd, acf y bce son congruentes. Por tanto, b es el punto medio de \overline{de} , a es el punto medio de \overline{df} y c es el de \overline{ef} . Como las mediatrices del triángulo def son concurrentes, las alturas de abc son concurrentes en el mismo punto.

Ejercicio (Recta de Euler)

En cualquier triángulo, el ortocentro, el circuncentro y el baricentro son colineales.

Ejercicio (Recta de Euler)

En cualquier triángulo, el ortocentro, el circuncentro y el baricentro son colineales.

Solución

Sea a,b,c un triángulo con baricentro g. Sea h la homotecia de centro g y razón $-\frac{1}{2}$. Sabemos que h asigna los vértices a,b y c del triángulo a los puntos medios a',b' y c' de los lados opuestos. Sea $\overrightarrow{v} \perp \overrightarrow{bc}$ y sea $L_{\overrightarrow{v}}$ el subespacio generado por \overrightarrow{v} . Así $H_a = a + L_{\overrightarrow{v}}$ pasa por a y es perpendicular al lado bc. Como h(a) = a' y $H_a//B_{b|c}$, tenemos $h(H_a) = a' + L_{\overrightarrow{v}} = B_{b|c}$. Por analogía, $h(H_b) = B_{a|c}$ y $h(H_c) = B_{a|b}$. Por tanto, si o es el ortocentro del triángulo, y o' es el circuncentro, entonces

$$h(o) = h(H_a \cap H_b \cap H_c) = B_{b|c} \cap B_{a|c} \cap B_{a|b} = o'.$$

Por lo tanto, g, o y o' son colineales.

Demuestra que en una circunferencia, un diámetro perpendicular a una cuerda corta la cuerda en el punto medio.

Demuestra que en una circunferencia, un diámetro perpendicular a una cuerda corta la cuerda en el punto medio.

Solución

En la figura, como \overline{OB} y \overline{OA} son radios, los triángulos OEB y OEA son congruentes (right angle-hypotenuse-side), y por eso el resultado se cumple. Si la cuerda \overline{AB} es un diámetro hacemos un razonamiento parecido para los triángulos DBO y DOA.

Demuestra que si \overline{ab} es una cuerda de una circunferencia de centro o, y m es el punto medio de \overline{ab} , entonces $\overline{ab} \perp \overline{om}$.

Demuestra que si \overline{ab} es una cuerda de una circunferencia de centro o, y m es el punto medio de \overline{ab} , entonces $\overline{ab} \perp \overline{om}$.

Solución

Como $\overline{oa} = \overline{ob}$, tenemos que $m \in B_{a|b}$, lo que implica que $\overline{om} \perp \overline{ab}$ (esto fue demostrado antes).

Observación

Nótese que en el ejercicio anterior, la recta L_{ab} que pasa por a y b es perpendicular a \overline{om} , lo que implica que cuando la longitud de la cuerda \overline{ab} se aproxima a cero, \overline{om} se convierte en un radio y la recta L_{ab} se convierte en una tangente, por lo que el radio es perpendicular a la tangente en el punto de contacto.

Corolario

La tangente a una circunferencia es perpendicular al radio de la circunferencia en el punto de tangencia.

Demostrar que para dos tangentes a una circunferencia con un punto común, la distancia entre ese punto de las rectas y los dos puntos de tangencia es la misma.

Demostrar que para dos tangentes a una circunferencia con un punto común, la distancia entre ese punto de las rectas y los dos puntos de tangencia es la misma.

Solución

Sean L_{ec} y L_{ea} tangentes a una circunferencia de centro o con puntos de tangencia c y a, respectivamente. Debemos probar que $\overline{ec} = \overline{ea}$. Como la tangente es perpendicular al radio en el punto de tangencia y $\overline{oc} = \overline{oa}$, los triángulos oce y oae son congruentes (right angle-hypotenuse-side). Como el lado \overline{oe} es común, y $\overline{oc} = \overline{oa}$ es el radio, concluimos que $\overline{ec} = \overline{ea}$.

Sea C una circunferencia y x un punto de C. Sea C_i , $i=1,2,\ldots$, una familia de circunferencias que son tangentes a C en x. Sea o_i el centro de C_i para cada i. Demostrar que los puntos o_1,o_2,\ldots son colineales.

Sea C una circunferencia y x un punto de C. Sea C_i , $i=1,2,\ldots$, una familia de circunferencias que son tangentes a C en x. Sea o_i el centro de C_i para cada i. Demostrar que los puntos o_1,o_2,\ldots son colineales.

Solución

Sea l la recta que es tangente a C en x. Como l es tangente a C_i para todo i, y el radio es perpendicular a la tangente en el punto de tangencia, concluimos que la recta l', que es perpendicular a l en x, pasa por el o_i para todo i.

Demuestra que si \overline{ac} es un diámetro, entonces el triángulo es rectángulo.

Demuestra que si \overline{ac} es un diámetro, entonces el triángulo es rectángulo.

Como
$$\alpha + (\alpha + \beta) + \beta = \pi$$
, obtenemos $\alpha + \beta = \frac{\pi}{2}$.

Demuestra que $\alpha = 2\beta$.

Solución

Considera la siguiente figura. Como $\beta = \zeta + \epsilon$, obtenemos

$$2\delta + \alpha = \pi = (\zeta + \delta) + (\varepsilon + \delta) + \beta = 2\delta + 2\beta.$$

Por lo tanto, $\alpha = 2\beta$.

Demuestra que $\alpha = 2\beta$.

Solución

Considera la siguiente figura. Como $\epsilon=\beta+\epsilon'$ y $\epsilon'=\zeta$, obtenemos

$$\alpha+\delta+\delta'+\zeta=\pi=\beta+(\epsilon+\delta)+\delta'=2\beta+\epsilon'+\delta+\delta'.$$

Por lo tanto, $\alpha = 2\beta$.

Ecuación de la circunferencia

Por definición, la ecuación cartesiana de una circunferencia de centro (h,k) y radio r está dada por

Ecuación de la circunferencia

Por definición, la ecuación cartesiana de una circunferencia de centro (h,k) y radio r está dada por

$$(x-h)^2 + (y-k)^2 = r^2$$
.

Determina el centro y el radio de la circunferencia de ecuación

$$x^2 + y^2 - 4x + 6y + 4 = 0.$$

Determina el centro y el radio de la circunferencia de ecuación

$$x^2 + y^2 - 4x + 6y + 4 = 0.$$

Solución

La ecuación es $(x-2)^2 + (y+3)^2 = 9$, lo que implica que el centro es (h,k) = (2,-3) y el radio es r=3.

Determina el centro y el radio de la circunferencia de ecuación

$$4x^2 + 4y^2 + 8x - 4y = 7.$$

Determina el centro y el radio de la circunferencia de ecuación

$$4x^2 + 4y^2 + 8x - 4y = 7.$$

Solución

La ecuación es $(x+1)^2+(y-\frac{1}{2})^2=3$, lo que implica que el centro es $(h,k)=(-1,\frac{1}{2})$ y el radio es $r=\sqrt{3}$.

Halla el centro y el radio de una circunferencia que pasa por los puntos (6,2) y (8,0), sabiendo que el centro es un punto que satisface la ecuación 3x+7y+2=0.

Halla el centro y el radio de una circunferencia que pasa por los puntos (6,2) y (8,0), sabiendo que el centro es un punto que satisface la ecuación 3x+7y+2=0.

Solución

La ecuación es $(x-h)^2 + (y-k)^2 = r^2$. Debemos determinar h, k y r. De ahí que,

$$(6-h)^{2} + (2-k)^{2} = r^{2}$$
$$(8-h)^{2} + (-k)^{2} = r^{2}$$
$$3h + 7k + 2 = 0.$$

Por lo tanto, h = 4, k = -2 y $r = 2\sqrt{5}$.

