Chemie k maturitě

Stanislava Pojerová* 2020-2023

Abstrakt

Skripta v této podobě mají sloužit především studentům plánujícím maturitu z chemie. Pouhý přepis zpracovaného materiálu paní učitelky RNDr. Stanislavy Pojerové. Původní materiál je souborem pro kvintu a sextu víceletého gymnázia a byl zpracován během pandemie Covidu 19 v letech 2020 a 2021.

^{*}Sazba: Matyáš Levíček

Obsah podle tématu

1	Úvod	4					
1 2	Atom 2.1 Erwin Schrödinger 2.2 Kvantová čísla 2.2.1 Slupky, energetické hladiny (dráhy) 2.2.2 Podslupky 2.2.3 Tvary orbitů 2.3 Výstavbový princip 2.3.1 Znázornění orbitů a elektronů 2.3.2 Pravidla zaplňování orbitů 2.3.3 Elektronové konfigurace podle výstavbového principu 2.3.4 Zápis se vzácným plynem 2.3.5 Elektronové konfigurace podle valenčních elektronů 2.4 Jádro atomu						
3	3.6 Posuvové zákony 3.7 Jaderné reakce 3.7.1 Transmutace 3.7.2 Stěpení jader 3.7.3 Řetězová reakce 3.7.4 Projekt Manhattan	8 8 8 9 10 10 10 11 11 11					
4	4.1 Znázornění chemických vazeb 4.2 Kovalentní vazba 4.2.1 Nepolárně kovalentní 4.2.2 Polárně kovalentní 4.2.3 Iontová vazba 4.2.4 Koordinačně kovalentní 4.3 Dělení kovalentních vazeb podle počtu 4.4 Štěpení vazeb 4.5 Kovová vazba 4.6 Charakteristika vazeb 4.7 Slabé vazebné interakce 4.7.1 Van der Waalsovy síly	13 13 13 13 13 13 14 14 14					
5	Reakční kinetika	15					
6	Termochemie 10						
7	Acidobazický děj	17					
8	Redoxní děj a reakce	18					
9	Anorganické názvosloví	19					
10	Komplexní sloučeniny	20					

11	Periodický systém prvků (PSP)	21
12	O, H a jejich společné sloučeniny 12.1 Vodík	22 22
13	Prvky	23
	13.1 1. Hlavní podskupina - Alkalické kovy (tvoří hydroxidy)	23
	13.1.1 Analytické důkazy - zbarvení plamene	23
	13.1.2 Reakce	23
	13.1.3 Hydroxidy (Louhy, "žíravé alkálie")	24
	13.1.4 Význam	24
	13.2 2. Hlavní podskupina - Kovy alkalických zemin	25
	13.2.1 Reakce	25
	13.3 3. Hlavní podskupina - p ¹ prvky	26
	13.4 B (bor, borum, borine (en))	26
	13.4.1 Minerály	27
	13.5 Al (hliník, aluminium)	27
	13.5.1 Použití	27
14	Organická chemie - úvod	29
15	Nasycené uhlovodíky	30
16	Nenasycené uhlvodíky	31
17	Halogenderiváty	32
18	Dusíkaté deriváty	32
19	Organické deriváty	32
2 0	Maturitní otázky	33
21	Přehledy 21.1 Symmboly a značky	37

1 Úvod

Skripta pokrývají učivo nutné pro obstání u profilové zkoušky z chemie. Odvíjejí se od otázek k tomuto předmětu z kánonu Gymnázia Joachyma Barranda v Berouně.

Učivo je systematizováno v pořadí, které odpovídá výkladu na semináři Systematizace poznatků z chemie v oktávě na GJB.

Na konci dokumentu v příloze Přehledy je také obsah seřazený podle maturitních otázek - doporučuji proto elekronickou podobu, která umožňuje mezi tématy skákat přes hyperlinky a výrazně tak zjednodušuje orientaci v materiálu.

2 Atom

2.1 Erwin Schrödinger

Rakouský fyzik (1889 - 1961)

Definoval <u>ORBIT = ORBITAL</u> jako místo s 96% pravděpodobností výskytu e⁻

Matematicky vyjádřil vlnovou funkci Ψ (psí)

Nositel Nobelovy ceny za fyziku 1933

2.2 Kvantová čísla

hlavní n 1 až ∞ (zatím 7) udává energii orbitu

 $\mathbf{vedlejší}\ \mathbf{l}$ 0 až (n-1) udává $\underline{\mathbf{tvar}}$ orbitu

magnetické m -l...0...+l udává počet orbitalů a jejich orientaci

spinové s $-\frac{1}{2}$ nebo $\frac{1}{2}$ udává spin e⁻

2.2.1 Slupky, energetické hladiny (dráhy)

$$\begin{array}{ll} n=1\rightarrow K & n=3\rightarrow M \\ n=2\rightarrow L & n=4\rightarrow N \\ \vdots & \vdots & \vdots \end{array}$$

2.2.2 Podslupky

$$\begin{array}{l} l=0\rightarrow s \\ l=1\rightarrow p \end{array} \qquad \begin{array}{l} l=2\rightarrow d \\ l=3\rightarrow f \end{array}$$

2.2.3 Tvary orbitů

 $l=0 \rightarrow tvar$ orbitu s: kulově symetrický

 $l=1 \rightarrow tvar orbitu p: "ležatá osmička"$

 $l=2 \rightarrow tvar orbitu \ {\bf d}:$ "čtyřlístek"

 $l=3 \rightarrow$ tvar orbitu $\mathbf{f} \colon$ "velmi složitý tvar"

2.3 Výstavbový princip

2.3.1 Znázornění orbitů a elektronů v nich (\(\frac{1}{2}\), \(\frac{1}{2}\), \(\frac{1}{2}\),

a) prostorovým tvarem: s, p, d, f

Příklad:

Urči maximální počet \mathbf{e}^- ve slupce \mathbf{N}

$$\begin{array}{ll} N \Rightarrow n{=}4 \Rightarrow & 0(s) \Rightarrow m{=}0 \; (1 \; orbit) \\ & 1(p) \Rightarrow m{=}{-}1,\!0,\!1 \; (3 \; orbity) \\ & 2(d) \Rightarrow m{=}{-}2,\!-1,\!0,\!1,\!2 \; (5 \; orbity) \\ & 3(f) \Rightarrow m{=}{-}3,\!-2,\!-1,\!0,\!1,\!2,\!3 \; (7 \; orbity) \end{array}$$

Dohromady 16 orbitů * $2e^{-} = 32e^{-}$

...jelikož v každém orbitu mohou být 2 elektrony s opačným spinem (tzv. Pauliho vylučovací princip)

prázdný orbit = vakantní

2.3.2 Pravidla zaplňování orbitů

- 1. Pauliho vylučovací princip = jeden orbit zaplňují max. 2e⁻ s opačným spinem
- 2. Hundovo pravidlo: Nejprve se zaplňují orbity jedním $e^- \Rightarrow$ nespárované e^- mají stejný spin Příklad: $3d^7$: $3 \downarrow \uparrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$

Jedná se o tzv. <u>DEGENEROVANÉ</u> orbity (mají stejné \underline{n} a \underline{l} , liší se v m) \Rightarrow

- \Rightarrow orbity **s** nesjou degenerované, orbity **p** jsou 3x degenerované, orbity **d** 5x, **f** 7x
- 3. Výstavbový princip: nejprve se zaplňují orbity s nízkou energií \doteq v tomto pořadí: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 5d, 4f, 6p, 7s, 6d . . .
- 4. Pravidlo n+l: Když je součet n+l stejný, zaplňují se provně orbity s nižší hodnotou n.

2.3.3 Elektronové konfigurace podle výstavbového principu

$$\underline{\underline{13}} \text{Al: } 1\text{s}^2, \, 2\text{s}^2, \, 2\text{p}^6, \, 3\text{s}^2, \, 3\text{p}^1 \text{ (součet } \text{e}^- = \underline{\underline{13}}\text{)} \\ \underline{\underline{26}} \text{Fe}^- \colon 1\text{s}^2, \, 2\text{s}^2, \, 2\text{p}^6, \, 3\text{s}^2, \, 3\text{p}^6, \, 4\text{s}^2, \, 3\text{d}^{\underline{7}} \text{ (součet } \text{e}^- = \underline{\underline{27}} \text{ - protože se jedná o záporný iont, má e}^- \text{ navíc!)}$$

2.3.4 Elektronové konfigurace podle předcházejícího vzácného(inertního) plynu - 8.hlps

$$\underbrace{_{16}S\left[_{10}Ne\right]}_{16-10-6e^-}: \underbrace{_{3}s^2, 3p^4 \longrightarrow n} = zároveň \; \underline{\# \; periody} \; ve \; které se prvek nachází (S je ve 3. řádku PSP.)$$

Vždy se začíná orbitem ${\bf s}$ a pak další v pořadí výstavbového principu

$$\underbrace{_{35} Br \left[_{18} Ar\right]}_{35-18=17 e^{-}} : 4 s^{2}, 3 d^{10}, 4 p^{5} \\ \underbrace{_{53} I \left[_{36} Kr\right]}_{57-36=17 e^{-}} : 5 s^{2}, 4 d^{10}, 5 p^{5}$$

2.3.5 Elektronové konfigurace podle valenčních elektronů

Valenční vrstva(svéra, též hladina) je poslední od jádra pro daný atom

a) Konfigurace základních (hlavních) prvků (I.A - VIII.A):

Valenční e⁻ zaplňují ns a np. (Kontrola hlavního kvantového # = # periody)

Počet valenčních e⁻ = číslo skupiny ve které se prvek nachází. Například:

 $_{6}\mathrm{C}:2\mathrm{s}^{2},2\mathrm{p}^{2}:\quad 2\downarrow\uparrow,\ 2\downarrow\downarrow\downarrow\qquad\longrightarrow {}_{6}\mathrm{C}^{*}:2\mathrm{s}^{2},2\mathrm{p}^{2}:\quad 2\downarrow\downarrow,\ 2\downarrow\downarrow\downarrow\downarrow$

Uhlík se vyskytuje jako 2-vazný jen v CO (C=O), jinak je vždy 4-vazný

*= excitovaný stav \rightarrow e $^-$ přecházejí na vyšší energetické hladiny do nejbližšího vakantního(prázdného orbitu) v pořadí s \rightarrow p \rightarrow d \rightarrow f

b) Konfigurace přechodných prvků (skupiny B)

Valenční elektrony lezí v ns $^{0-2}, (n-1)d^{1-10} \ \longrightarrow tzv. \ \underline{d} \ prvky$

Jejich konfigurace není zcela pravidelná a často se od systému liší. Například:

 $_{29}\mathrm{Cu}:4\mathrm{s}^{1},3\mathrm{d}^{10}$ $_{24}\mathrm{Cr}:4\mathrm{s}^{1},3\mathrm{d}^{5}$

 $_{46}\text{Pd}:5\text{s}^{0},4\text{d}^{10}$ $_{23}\text{V}:4\text{s}^{2},3\text{d}^{3}$

c) Konfigurace vnitřně přechodných prvků (lanthanoidy, aktinoidy)

Prvky $\underline{f},$ kde valenční elektrony leží v ns $^2, (n-1)d^{0-2}, (n-2)f^{0-14}$

Tyto vrstvy jsou poznaménány značnýmy nepravidelnostmi v obsazování orbitů...

2.4 Jádro atomu

objev jádra: RUTHERFORD (1911-1920), planetární model apod. + objev protonu v jádře. Po něm provek $_{104}$ Rf(Rutherfordium) v PSP.

objev <u>neutronu</u> v jádře: THOMSON (1932)

$${}_{4}^{9}\text{Be} + {}_{2}^{4}\alpha \rightarrow {}_{6}^{12}\text{C} + {}_{0}^{1}\text{n}$$

+ objevy dalších částic, které se dělí do skupin apod.: bosony, fermiony, hadrony, kvarky, piony

Jádro se skládá z protonů a neutronů - počet **protonů se uvání jako levý spodní index**, zatímco celkový počet částic v jádře(nukleonové číslo, **protony+neutrony**) **se uvádí v levém horním indexu**

3 Radioaktivita

Uranové paprsky - objev Becquerel (1896) → ozáření fotografické desky (kámen **smolinec** z Jáchymova)

Marie Curie Sklodowská + manžel Pierre Curie - objev $_{84}$ Po (polonia) a $_{88}$ Ra (radia) \rightarrow paprsek = <u>radioaktivita</u> - V roce 1903 udělení Nobelovy ceny pro Marii, Piera a Becquerela K maturitě je třeba znát stručný životopis rodiny Curie a Sklodowských.

3.1 Terminy

- <u>IZOTOPY</u>: Stejné Z(protonové #), liší se počtem neutronů
 - -př. $^1_1\mathrm{H}$ (vodík, protium), $^2_1\mathrm{H}$ (deuterium), $^3_1\mathrm{H}$ (tritium)
 - př. $^{12}_6\mathrm{C},\,^{13}_6\mathrm{C},\,^{14}_6\mathrm{C}$ (radioaktivní) \Rightarrow radiouklíkové datování (stanovení stáří organických materiálů)
 - př. ${}^{235}_{92}$ U, ${}^{237}_{92}$ U, ${}^{238}_{92}$ U atd.
- IZOBARY: Jiné Z, stejná A(nukleonové #) př. $^{40}_{20}\mathrm{Ca}$ a $^{40}_{19}\mathrm{K}$
- <u>IZOTONY</u>: Stejný počet neutronů př. $^{12}_5\mathrm{B}$ a $^{13}_6\mathrm{C}$ (oba mají $7^1_0\mathrm{n})$

3.2 Druhy záření

- $\frac{4}{2}\alpha=\frac{4}{2}$ He alfa záření se šíří cca $\frac{1}{10}$ c (rychlosti světla), zachytí se i listem papíru
- $\beta^-=\frac{0}{-1}{\rm e}$ (elektron) šíří se cca $\frac{9}{10}{\rm c},$ záchyt kovovými fóliemi (alobal)
- $\beta^+ = {0 \atop +1} e$ (pozitron)

3.3 Poločas rozpadu $T_{\frac{1}{2}}$

Lepší název je poločas přeměny, jelikož né každá přeměna jádra musí být rozpadem (může se jednat třeba o emisi γ záření)

 $T_{\frac{1}{2}}=\frac{\ln 2}{\lambda}$, konstanta určující dobu, za kterou se rozpadne $\frac{1}{2}$ jader daného prvku \Rightarrow exponenciální graf. $T_{\frac{1}{2}}$ jednodlivých prvků zle najít v tabulkách:

- př. $^{14}_{6}\text{C} \rightarrow \text{T} \doteq 5.7$ tisíce let
- př. $^{208}_{84}\mathrm{Po} \rightarrow \mathrm{T} \doteq 2.9\mathrm{roku}$
- př. $^{209}_{84}$ Po \rightarrow T \doteq 103let
- př. $^{210}_{84}\mathrm{Po} \rightarrow \mathrm{T} \doteq 138.4\mathrm{dn}$ í

3.3.1 Úloha s poločasem rozpadu

Víme, že při svém vzniku vzorek obsahoval 1 atom $^{14}_6\mathrm{C}$ na 10^{12} atomů uhlíku $^{12}_6\mathrm{C}$ (jelikož tento poměr je v organickém materiálu v atmosféře dlouhodobě stálý)

Při posledním měření bylo ve vzorku nameřen poměř $1:1.414*10^{12}={}^{14}\mathrm{C}:{}^{12}\mathrm{C}.$

Poločas rozpadu uhlíku ¹⁴C je 5730let. Jak starý je vzorek?

- Původní koncentrace $^{14}\mathrm{C}$... $c_{\mathrm{p}} = (10^{12})^{-1} = 10^{-12}$
- Naměřená koncentrace $^{14}\mathrm{C}$... $c_{\mathrm{m}}=(1.414\times10^{12})^{-1}\doteq7.07\times10^{-13}$
- Poločas rozpadu $T_{\frac{1}{2}}=5730let$
- $\bullet\,$ Uplynulá doba od smrti vzorku ...
t=?

$$\begin{split} c_m &= c_p \times \left(\frac{1}{2}\right)^{t \ \div \ T_{\frac{1}{2}}} \\ &7.07 \times 10^{-13} = 10^{-12} \times \left(\frac{1}{2}\right)^{t \ \div \ 5730} \\ &\frac{7.07 \times 10^{-13}}{10^{-12}} = \left(\frac{1}{2}\right)^{t \ \div \ 5730} \\ &\log_{\frac{1}{2}} \left(\frac{7.07 \times 10^{-13}}{10^{-12}}\right) = t \ \div \ 5730 \\ &t = \log_{\frac{1}{2}} \left(\frac{7.07 \times 10^{-13}}{10^{-12}}\right) \times 5730 \\ &t \doteq 2866 let \end{split}$$

Vzorek tedy přestal příjmat atmosferický uhlík před $\doteq 2866$ lety.

3.4 Rozpadové řady

Přirozené:

1. URANOVA:	$_{92}^{238}\mathrm{U}\cdots\longrightarrow_{82}^{206}\mathrm{Pb}$	A = 4n + 2
2. THORIOVÁ:	$_{90}^{232}\mathrm{Th}\cdots\longrightarrow _{82}^{208}\mathrm{Pb}$	A = 4n
3. AKTINOURANOVÁ:	$^{235}_{99}$ U $\cdots \longrightarrow ^{207}_{99}$ Pb	A = 4n + 3

Umělá:

Příkad

Do které řady patří $^{234}_{92}$ U?

$$234 \div 4 = 58$$

$$34$$

$$2 \longleftarrow 4n + 2 \Rightarrow Uranová řada$$

Uran234 patří do uranové řady, protože zbytek po dělení jeho A (nukleonového #) čtyřmi je 2.

3.5 Umělá radioaktivita

dcera **Irene Curie** + manžel **F.J.Curie** Vznik umělých radioizotopů (medicína, konzervace potravin, sterilizace materiálů...)

$$^{27}_{13}\mathrm{Al} + ^{4}_{2}\alpha \longrightarrow ^{30}_{15}\mathrm{P} + ^{1}_{0}\mathrm{n}$$

$$^{238}_{92} + ^{1}_{0} \text{n} \longrightarrow ^{237}_{92} \text{U} + ^{21}_{0} \text{n}$$

Součet čísel na obou stranách se MUSÍ rovnat

proton: ¹₁p

neutron: 1_0 n

elektron: $_{-1}^{0}$ e

pozitron: $_{1}^{0}$ e

deuterium: ${}_{1}^{2}D = {}_{1}^{2}H$

tritium: ${}_{1}^{3}T = {}_{1}^{3}H$

 $_{2}^{4}\alpha = _{2}^{4}$ He

 $\beta^{-} = _{-1}^{0} e$

 $\beta^+ = 0$ e = pozitron

3.6 Posuvové zákony

Vytváří-li prvek:

- ${}^4_2\alpha \implies A 4, Z 2$
- $\beta^- \implies A, Z+1$
- $\beta^+ \implies A, Z-1$

Příklad: Napiš produkty přeměn:

1. rozpadem α:

 $^{226}_{88}$ Ra $\rightarrow ^{4}_{2}\alpha + ^{222}_{86}$ Rn

2. rozpadem β^- :

 $^{32}_{15}{
m P} \, o \, ^{0}_{-1}{
m e} + ^{32}_{16}{
m X}$

3. rozpadem β^+ :

 ${}^{11}_{6}{}^{C} \rightarrow {}^{0}_{1}{}^{e} + {}^{11}_{5}{}^{X}$

3.7 Jaderné reakce

Musí být dodržen:

- zákon zachování energie
- zákon zachování hybnosti
- zachování elektrického náboje
- zachování počtu nukleonů

Dělení: transmutace, štepení, fůze

3.7.1 Transmutace

Reakce při nichž se mění jádro prvku na jiné, které se liší maximálně o $\mathbf{2} \ \mathbf{v} \ \mathbf{Z}$ a o $\mathbf{4} \ \mathbf{v} \ \mathbf{A}$ Příklady:

$$^{209}_{83}\mathrm{Bi} \ + \ ^{4}_{2}\alpha \ \longrightarrow \ ^{211}_{85}\mathrm{Az} \ + \ 2^{1}_{0}\mathrm{n}$$

$$^{41}_{19}\mathrm{K} \; + \; ^2_{1}\mathrm{D} \; \longrightarrow \; ^{42}_{19}\mathrm{K} \; + \; ^1_{1}\mathrm{p}$$

$$^{10}_{5}$$
B + $^{1}_{0}$ n $\longrightarrow ^{7}_{3}$ Li + $^{4}_{2}$ α

10

3.7.2 Stěpení jader

Reakce při nichž se štěpí těžká jádra na (obvykle) 2 středně těžká jádra + neutron(y) + velké množství energie (v MeV - megaelektronvolt) Příklady:

$$^{235}_{92}\mathrm{U} \,+\, ^1_0\mathrm{n} \,\longrightarrow\, _{56}\mathrm{Ba} \,+\, _{36}\mathrm{Kr} \,+\, 3^1_0\mathrm{n}$$

$$^{235}_{92}$$
U + $^{1}_{0}$ n $\longrightarrow {}_{54}$ Xe + $_{38}$ Sr + $^{1}_{0}$ n

Jádra se štěpí s určitou pravděpodobností

3.7.3 Řetězová reakce

Potvrzeno na jaře 1939

Ze štěpení jádra atomem se uvolňují další neutrony, které štěpí další atomy atd.

Jako palivo se běžně používá izotop $^{235}_{92}\mathrm{U},$ občas také $^{239}_{94}\mathrm{Pu}$ (plutonium)

Řetězová štěpná reakce je kromě atomových elektráren také podstatou jaderné bomby.

ENRICO FERMI 2.12.1942 poprvé uskutečnil <u>řízenou řetězovou reakci</u> (v jaderném reaktoru na hřišti univezity v Chicagu). Fermi je nositelem Nobelovy ceny za z roku 1938 za přípravu 1. transuranu p Prvku s vyšší protonovým číslem než uran) $\mathbf{Z} = \mathbf{93} \to \mathbf{Np}$

3.7.4 Projekt Manhattan

"Otec" atomové bomby: Robert Oppenheimer

Dále na ní pracovali například: Fermi, Bohr, Einstein, Feinman, Meitner (žena), Heisenberg, Landau,

Kurčatov, Gamow

První užití jaderné zbraně: červenec 1945 Hirošima, poté Nagasaki

Termíny:

- \bullet obohacování uranu izotopem $^{235}_{92}\mathrm{U}$ (mezinárodní dohody zakazují nad 5%)
- kritické množství (critical mass) $^{235}_{92}$ U je zhruba 44.5kg (koule o průměru 16.8cm)
- atomový reaktor
- úložiště jaderného odpadu
- $\underline{\text{moderátor}}$ v jaderné elektrárně: snižuje rychlost volných neutronů: grafit, parafin, D_2O , sloučeny boru
- Těžká voda = D_2O voda obsahující izotop vodíku Deuterium $\binom{2}{1}D$) má jiné fyzikální i chemické vlastnosti. M=20, jiné body tání a mrznutí... Organizmy v ní nepřežívají

Jaderné elektrárny:

- Jaderná elektrárna Dukovany (ČR, v provozu od 1985)
- Jaderná elektrárna Temelín (ČR, v provozu od 2002)
- Jaderná elektrárna Chornobyl (Černobyl) na Ukrajině, velká havárie 26.dubna 1986 výbuch 4.
 jaderného bloku během experimentů s jeho odstavováním. Poblíž (3km) leží město Pripjať

3.7.5 Jaderná fůze

Též jaderná syntéza, termonukleární reakce

Skládání jader na jádra těžší.

Samovolně probíhá ve hvězdách, například ve Slunci (zatím na He).

Uvolňuje se obrovské množství energie. Spývají jádra bez elektronového obalu

Příklady:

$$^2_1\mathrm{D} \,+\,^2_1\mathrm{D}\,\longrightarrow\,^3_2\mathrm{He}\,+\,^1_0\mathrm{n}$$

$$\begin{array}{c} {7 \atop 3} \mathrm{Li} \ + \ {1 \atop 1} \mathrm{H} \ \longrightarrow \ 2_{2}^{4} \mathrm{He} \\ \\ {7 \atop 3} \mathrm{Li} \ + \ {1 \atop 1} \mathrm{D} \ \longrightarrow \ 2_{2}^{4} \mathrm{He} \ + \ {1 \atop 0} \mathrm{n} \\ \\ {1 \atop 1} \mathrm{D} \ + \ {1 \atop 1} \mathrm{T} \ \longrightarrow \ {2 \atop 1} \mathrm{He} \ + \ {1 \atop 0} \mathrm{n} \end{array}$$

Reaktory jsou v US a na jihu Francie. Zatím neumíme fůzy řídit.

Výhody: dostatek surovin (D,T), není odpad - jen netečné He, není radioaktivní (jen 3_1 Y), bezpečnost - zdá se, že se jedná o ideální zdroj energie.

4 Chemická vazba

Atomy se k sobě přibližují na optimální vzdálenost až se překryjí jejich valenční orbity a vznikne vazebný elektronový pár.

 $\underline{P\check{r}i~vzniku}$ chemické vazby se energie uvolňuje \to Stabilita

4.1 Znázornění chemických vazeb

- 1. prostorovým tvarem orbitů
- 2. valenční čárkou

 $H + H \longrightarrow H_2$

H—H

3. rámečky

 $H + H \longrightarrow H_2$

 \rightarrow \leftarrow

4.2 Kovalentní vazba

- společně sdílejí e

ELEKTRONEGATIVITA je schopnost atomu přitahovat vazebné e-.

V periodách roste, ve sloupcích klesá

Jedná se o bezrozměrné číslo (nemá jednotku)

4.2.1 Nepolárně kovalentní

Rozdíl elektronegativit mezi vázanými atomy od 0 - 0,4

4.2.2 Polárně kovalentní

Rozdíl elektronegativit mezi vázanými atomy od 0,4 - 1,7 Například $H^{\delta+}$ — $Cl^{\delta-}$ \longleftrightarrow $\delta=$ delta, částečný, parciální náboj

4.2.3 Iontová vazba

Rozdíl elektronegativit mezi vázanými atomy 1,7

Příklad: KBr \longrightarrow K⁺ + Br⁻ nebo NaCl \longrightarrow Na⁺ + Cl⁻

4.2.4 Koordinačně kovalentní

Vazba <u>DONOR-AKCEPTOR</u> - vazba mezi donorem (dárcem) a akceptorem (příjemcem) elektronového páru

Například: NH₄⁺, H₃O⁺

4.3 Dělení kovalentních vazeb podle počtu

Vazba jednoduchá

Vazba σ (sigma), leží na spojnici středů vázaných atomů: $\odot -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!-$

Násobné vazby

- a) v. dvojná: jedna vazba σ a jedna vazba π (pí), ležící mimo spojnici středů jader
- b) v. trojná: jedna vazba σ a DVĚ vazby π
- c) Teoreticky existují i více násobné vazby, v běžné chemii se však nevyskytují

4.4 Štěpení vazeb

1. <u>Homolitické</u> \longrightarrow RADIKÁLY (částice s volným e⁻)

Například: CH_3 — CH_3 \longrightarrow H_3C \cdot \cdot CH_3

2. Heterolitické — IONTY (jedna částice přebere celý elektronový pár)

Například: Na—Cl → Na⁺ + Cl⁻

4.5 Kovová vazba

Tzn. že jedna vazba Li—Li je tvořena $\frac{1}{4}\mathrm{e}^{-}$

4.6 Charakteristika vazeb

Vazba má svojí:

- <u>DÉLKU</u> (v nm), nejdelší je vazba jednoduchá, nejkratší pak trojná.
- <u>VAZEBNOU ENERIGII</u> (v kJ/mol), je to stejná energie, která se uvolní při vziku vazby. Největší má vazba trojná, nejmenší jednoduchá.

4.7 Slabé vazebné interakce

 $\doteq 10 x$ slabší než kovalentní vazba. Stojí na interakci DIPÓL—DIPÓL

4.7.1 Van der Waalsovy síly

Například v grafitu, v nukleových kyselinách a bílkovinách.

4.7.2 Vodíkové můstky

H—m

Vazba mezi vodíkem a elektronegativním prvkem (například N, O, F...) Stabilizují molekuly, ovlivňují jejich chemické vlastnosti. Vyskytují se v H₂O, HF, bazích nukleových kyselin, bílkovinách, NH₃ atd.

Ovlivňování ostatních molekul

Molekuly vody se navzájem ovlivňují

5 Reakční kinetika

6 Termochemie

7 Acidobazický děj

8 Redoxní děj a reakce

9 Anorganické názvosloví

10 Komplexní sloučeniny

11 Periodický systém prvků (PSP)

12 O, H a jejich společné sloučeniny

12.1 Vodík

izotopy:
$^{1}_{1}\mathrm{H}$ protium
$^2_1\mathrm{H}$ deuterium (0.02%)
$^{3}_{1}\text{H}$ tritium $(10^{-17}\%)$
H: $1s^1$ \downarrow atomární vodík má vysokou reaktivitu! proto se většinou vyskytuje jako molekulový vodík H_2 reakce $H_1 + H_2 \rightarrow H_3$ je evotermická

13 Prvky

13.1 1. Hlavní podskupina - Alkalické kovy (tvoří hydroxidy)

H, Li, Na, K, Rb, Cs, Fr (radioaktivní, 1940)

"Helenu Líbal Na Kolena Robot Cecil Franc"

- $s \uparrow Z(protonové \#): \uparrow \underline{m}, \uparrow r, \downarrow elektronegativita, \downarrow t_t, \downarrow t_v$
- $ns^1 \downarrow \rightarrow "s^1 prvky"$
- vystupují jako elektropozitivní malá IE, malá elektronegativita, vlevo v Beketovově řadě.
- \bullet oxidační # ve sloučeninách = I \rightarrow jsou redukčními činidly

Vlastnosti

• stříbrolesklé měkké kovy s malou hustotou (Li, Na, K jsou lehčí než voda)

Výroba

elektrolýza tavenin halogenidů:

• $Na^+Cl^- \rightarrow na katodě^-$

13.1.1 Analytické důkazy - zbarvení plamene

Plamenové zkoušky

- Li karmínově
- Na žlutá
- K fialová

Jsou **VELMI reaktivní** \rightarrow výskyt <u>jen ve sloučeninách</u> Musí se uchovávat v inertním prostředí N_2 , petroleji... Sloučeniny:

- NaCl halit sůl kamenná
- KCl sylvín
- Na_2CO_3 soda
- ullet NaHCO $_3$ jedlá soda
- K₂CO₃ potaš
- sloučeniny s NO₃ ledky (výbuch v Bejrůtu 2020)
- $\bullet~{\rm NaNO_3}$ ledek chilský

Výskyt v Zemské kůře Na: 2,4%, K: 2,6%

13.1.2 Reakce

1. s
$$H_2 \rightarrow HYDRIDY$$
: $2Na + H_2 \rightarrow 2NaH$

$$\begin{array}{lll} \text{2. s } \mathrm{O}_2 \rightarrow \mathrm{OXIDY:} & 4\mathrm{Li} + \mathrm{O}_2 \rightarrow 2\mathrm{Li}_2\mathrm{O} \\ \text{s } \mathrm{O}_2 \rightarrow \mathrm{PEROXIDY:} & 2\mathrm{Na} + \mathrm{O}_2 \rightarrow \mathrm{Na}_2\mathrm{O}_2 \\ \text{s } \mathrm{O}_2 \rightarrow \mathrm{HYPEROXIDY:} & \mathrm{K} + \mathrm{O}_2 \rightarrow \mathrm{KO}_2 \end{array}$$

3. s
$$N_2 \rightarrow NITRIDY$$
: $6Li + N_2 \rightarrow 2Li_3N$ (jen Li)

4. s halogeny
$$\rightarrow$$
 HALOGENIDY: $2Rb + Cl_2 \rightarrow 2RbCl$

5. s
$$H_2O \rightarrow HYDROXIDY$$
 (bouřlivě): $2K + 2H_2O \rightarrow 2KOH + H_2$

Jejich sloučeniny jsou často iontové, bazbarvé, rozpustné v H_2O

13.1.3 Hydroxidy (Louhy, "žíravé alkálie")

Leptají sklo, porcelán Výroba mýdel - zmýdelnění Jsou hydroskopické (přímají vzdušnou vlhkost):

$$2\underline{\text{NaOH}} + \underline{\text{CO}}_2 \rightarrow \underline{\text{Na}}_2\underline{\text{CO}}_3 + \underline{\text{H}}_2\underline{\text{O}}$$

Výroba: elektrolýza vodných ⊙ halogenidů: (H⁺ redukce na katodě⁻, Cl⁻ oxidace na anodě⁺)

$$H_2O \rightarrow H^+ + OH^-$$

$$NaCl \rightarrow Na^{+} + Cl^{-}$$

 $v \odot zůstává \ Na^+OH^- \ (\underline{\textbf{Na}} \ \textbf{se na katodě neredukuje} \Longleftarrow \textbf{postavení} \ \textbf{v} \ \textbf{Beketovově řadě}) \ Síla hydroxidů roste s jejich Z (protonové #)$

13.1.4 Význam

Li - výroba baterií (LiPo, LiFePo, LiIon), slouží při výrobě některých slitin

 \mathbf{Na} - redukční činidlo: $\mathrm{AlCl_3} + 3\mathrm{Na} \rightarrow \mathrm{Al} + 3\mathrm{NaCl}$

K, Na - biogenní prvky

- sodíková "pumpa" (fungování nervového systému)
- membránové potenciály šíření signálu v nervech

Poznámka

 \odot NaCl = solanka

Další dloučeniny:

- Na₂B₄O₇ · 10H₂O (**Borax**)
- NaCN
- Na_2SiO_3
- $K_2Cr_2O_7$
- KO₂ (hyperoxid draselný)
- K₃PO₄
- $Na_2SO_4 \cdot 10H_2O$ (Glauberova sůl)

13.2 2. Hlavní podskupina - Kovy alkalických zemin

Be, Mg, Ca, Sr, Ba, Ra (radioaktivní 1898 - manželé Marie a Peter Curie, smolinec) "Běžela Maqda Canyonem, Srážela Banány Ramenem"

- s \uparrow Z(protonové #): $\uparrow \underline{m}, \ \uparrow r, \ \downarrow$ elektronegativita
- $ns^2 \uparrow \downarrow \rightarrow "s^2 prvky"$
- elektropozitivní X+ \downarrow IE \rightarrow $X^{II}+2e^{-}$
- vystupují jako elektropozitivní (+II) malá IE, malá elektronegativita, vlevo v Beketovově řadě

Vlastnosti

- stříbrolesklé měkké kovy, kromě Be
- Be se nejvíce podobá Al, má amfoterní charakter!

Analytické důkazy - zbarvení plamene

Plamenové zkoušky

- Ca cihlová
- Sr karmínová
- Ba žlutozelená
- Mg silná záře (jako při řezání autogenem): $2\text{Mg} + \text{O}_2 \rightarrow 2\text{MgO}$

Jsou reaktivní méně než prvky 1.hlps ⇒ výskyt ve sloučeninách:

- CaCO₃ vápenec (aragonit, sintr, mramor, travertin. kalcit...)
- CaF_2 fluorit = kazivec
- $BaSO_4$ barit
- MgCO₃ magnezit
- $CaCO_3 \cdot MgCO_3$ dolomit
- $CaSO_4 \cdot 2H_2O$ sádrovec (sádra: $CaSO_4 \cdot \frac{1}{2}H_2O$)

Výroba

- a) elektrolýza tavenin jejich halogenidů: Ca²⁺Cl₂ (Ca²⁺ redukce na katodě⁻)
- b) aluminotermie (Al je redukční činidlo): $3BeO + Al \rightarrow 3Be + Al_2O_3$

13.2.1 Reakce

1. s
$$H_2 \rightarrow HYDRIDY$$
: $Ca + H_2 \rightarrow CaH_2$
2. s $O_2 \rightarrow OXIDY$: $2Ba + O_2 \rightarrow 2BaO$
s $O_2 \rightarrow PEROXIDY$: $Ba + O_2 \rightarrow BaO_2$ (peroxid barnatý!)
3. s $N_2 \rightarrow NITRIDY$: $3Sr + N_2 \rightarrow Sr_3N_2$
4. s $H_2O \rightarrow HYDROXIDY$: $Ca + 2H_2O \rightarrow Ca (OH)_2 + H_2$ (exotermická reakce) $Ca + 2H_2O \rightarrow Ca (OH)_2 + H_2$ (exotermická reakce) $Ca + 2H_2O \rightarrow Ca (OH)_2 + H_2$

Sloučeniny Ca (stavebnictví)

$$\underbrace{\mathrm{CaCO_3}}_{\mathrm{vápenec}} \ \overline{800^{\circ}\mathrm{C}} \ \underbrace{\mathrm{CaO}}_{\mathrm{pálen\'e}} \ \mathrm{+CO_2}$$

$$CaO + 2H_2O \rightarrow \underbrace{Ca(OH)_2}_{ha\S{e}n\acute{e}}$$
 vápno

$$\mathrm{Ca}\left(\mathrm{OH}\right)_{2} + \underbrace{\mathrm{CO}_{2} \downarrow}_{\mathrm{ze}\ \mathrm{vzduchu}} \ \rightarrow \ \mathrm{CaCO}_{3} + \mathrm{H}_{2}\mathrm{O}$$

...princip tvrdnutí malty

Podstata krasových jevů: Uhličitany jsou ve vodě nerozpustné, ale v přítomnosti CO_2 (ze vzduchu) se rozpouštějí:

$$CaCO_3 + CO_2 + H_2O \rightleftharpoons Ca(HCO_3)_2$$

Zpětná rekristalizace na $CaCO_3 = minerál <u>sintr</u> - krápníky$

- a) stalagnit ∧
- b) stalagtit \bigvee
- c) stalagnát spojený (..nenašel jsem vhodný znak x, btw proč všichni Češi znají krápníky, ale když se jich zeptáš na prvního prezidenta tak budou tupě čumět.)

Význam

Ca, Mg - biogenní prvky

Ca - kosti, zuby

Mg - součást molekuly chlorofilu

 $\bf Be$ - lehký tvrdý kov (o 30% lehční než Al), slitiny se používají pro výrobu nástrojů i raket, sloučeniny jsou toxické

Poznámka

Minerál beryl $[3BeO \cdot Al_2O_3 \cdot 6SiO_2]$ - oxidy smaragd(zelený) a akvamarín(modrý)

13.3 3. Hlavní podskupina - p^1 prvky

B, Al, Ga, In, Th
 "Byl Ale Gagarin Indická Tlama", "Běžela Alena Gálií, Indiáni Táhli jí"

$$\underbrace{B}_{nekov}, \underbrace{Al, Ga, In, Tl}_{kovy}$$

Valenční elektrony:
$$\underbrace{ns^2}_{\uparrow\downarrow}, \underbrace{np^1}_{\downarrow} \to \underline{hl}. (nejčastější oxidační \# = III)$$

13.4 B (bor, borum, borine (en))

Vázaný ve sloučeninách, nekovový prvek, málo reaktivní, využívá se jako moderátor v jaderných reaktorech (například v Jaderné elektrárně Temelín)

26

13.4.1 Minerály

 $\underline{\mathrm{borax}} = \mathrm{Na_2B_4O_7} \, \cdot \, 10\mathrm{H_2O}$

v analytiké chemii "boraxová perlička"- při 900°C \to sklovitá hmota, která se v přítomnosti různých iontů zabarvuje:

- \bullet Co^{2+} ... modrá
- Mn²⁺ ... fialová
- \bullet Cr³⁺ ... zelenáf

Příprava:

$$B_2O_3 + 3Mg \longrightarrow 2B + 3MgO$$

$$\rm B_2O_3 \ + \ 2Al \ \longrightarrow \ 2B \ + \ Al_2O_3$$

aluminotermie

Sloučeniny

Borany = borovodíky (obecný vzorec B_nH_{2n+2})

$$\underbrace{\mathrm{Mg_3B_2}}_{\text{borid hořečnatý}} + 6\mathrm{H_2O} \longrightarrow 3\mathrm{Mg}\left(\mathrm{OH}\right)_2 + \underbrace{\mathrm{B_2H_6}}_{\text{diboran - plyn}}$$

 $\mathrm{H_{3}BO_{3}}$ - kys trihydrogenboritá (ortoboritá), její $3\%\odot$ je "borová voda"

H₃BO₃ var, -H₂ HBO₂ (kyselina hydrogen boritá)

BN - nitrid boru

 B_4C - karbid boru - brusný materiál, velmi tvrdá černá krystalická látka. Používá se na výrobu neprůstřelných oděvů, brzdová a spojková obložení, nejtvrdší látka na zemi - brousí i diamanty

13.5 Al (hliník, aluminium)

3. nejrozšířenější prvek zemské kůry (8.3%) - první je kyslík, druhý křemík

je složkou vyvřelých minerálů **živce, slídy**, kaolinit, kryolit (Na₃ [AlF₆]), granát (Ca₃Al₂ (SiO₃)₃), beryl (Be₃Al₂Si₆O₁₈), tyrkys (Al₂ (OH)₃ PO₄H₂OCu), korund a jeho obdoby **rubín**, **safír**, **smaragd Bauxit** (AlO, je to směs oxidů hliníku a trochy železa), těží se v Austrálii, Brazílii, na Jamajce - **vyrábí se z něj Al**

Výroba

- 1. **Bayerový způsob** elektrolýza bauxitu při 980° C, elektrody z uhlíku. Na katodě (K⁻) se vylučuje Al. Na anodě (A⁺) dochází ke spalování uhlíku kyslíkem na CO a CO₂
- 2. z přímo z bauxitu

Vlastnosti

poměrně reaktivní (2Al + 6HCl \longrightarrow 2AlCl₃ + 3H₂) stříbrný kov, lehký, přijatelný vodič elektřiny odolný proti korozi (na povrchu vrstvička Al₂O₃), tažný (alobal), snadno se tvoří slitiny

13.5.1 Použití

- konstrukční kov (letadla, vesmírné lodě)
- protikorozivní prvek (Al₂O₃) takzvaná pacivizace kovů
- aluminotermie silné redukční účinky práškovitého Al:

$$\begin{array}{ll} 3\mathrm{SiO}_2 + 4\mathrm{Al} \rightarrow 3\mathrm{Si} + 2\mathrm{Al}_2\mathrm{O}_3 \\ \mathrm{Co}_2\mathrm{O}_3 + 2\mathrm{Al} \rightarrow 2\mathrm{Co} + \mathrm{Al}_2\mathrm{O}_3 \\ \mathrm{Cr}_2\mathrm{O}_3 + 2\mathrm{Al} \rightarrow 2\mathrm{Cr} + \mathrm{Al}_2\mathrm{O}_3 \end{array} \qquad \underbrace{\begin{array}{l} 3\mathrm{Mn}_3\mathrm{O}_4 + 8\mathrm{Al} \rightarrow 9\mathrm{Mn} + 4\mathrm{Al}_2\mathrm{O}_3 \\ \underline{\mathrm{Fe}_2\mathrm{O}_3 + 2\mathrm{Al}} \rightarrow 2\mathrm{Fe} + \mathrm{Al}_2\mathrm{O}_3 \end{array}}_{\mathrm{Termit}}$$

Sloučenina Al₂O₃ - bílý prášek (žáruvzdorný, materiál v nehořlavých cihlách), brusný materiál 3Na₂SO₄ + 2Al(OH)₃ \longrightarrow Al₂(SO₄)₃ + 6NaOH amfoterní charakter

$$\begin{array}{lll} \mathrm{Al}(\mathrm{OH})_3 \ + \ 3\mathrm{HNO}_3 \ \to \ \mathrm{Al}(\mathrm{NO}_3)_3 \ + \ 3\mathrm{H}_2\mathrm{O} \\ \mathrm{Al}(\mathrm{OH})_3 \ + \ \mathrm{KOH} \ \to \ \mathrm{K}[\mathrm{Al}(\mathrm{OH})_4] \end{array}$$

14 Organická chemie - úvod

15 Nasycené uhlovodíky

16 Nenasycené uhlvodíky

- 17 Halogenderiváty
- 18 Dusíkaté deriváty
- 19 Organické deriváty

20 Maturitní otázky

Tento seznam maturitních otázek je **pouze orientační!** - jelikož se může rok od roku měnit (naposledy aktualizován 2023) a především, jelikož **každá škola má vlastní seznam**. Tento seznam je (nebo byl) platný na Gymnáziu Joachima Barranda v Berouně. Maturitní otázky jsou hlavním tématem pro zkoušení, ale nejsou zcela vyčerpávající. Je vhodné naplnit čas zkoušení i tématy, která s otázkou souvisí. Například v otázce Radioaktivita je rozhodně žádoucí promluvit i o stavbě atomu a elementárních částicích (zde je možná i odbočka do fyziky).

1. Stavba atomu

základní chem. zákony, charakteristika element. částic vývoj představ o stavbě atomu, kvantová čísla, orbit elektronová konfigurace, pravidla zaplňování orbitů

2. Radioaktivita

přirozená a umělá radioaktivita druhy záření, posuvové zákony radioaktivní řady, atomový reaktor

3. Chemická vazba

vznik chem. vazby druhy chem. vazeb a jejich charakteristika štěpení vazby

4. Chemické reakce

energetický průběh reakce, rychlost chem. reakce typy chem. reakcí /proteolytické, redoxní, srážecí, komplexotvorné / termochemie, termochemické zákony

5. Acidobazický děj

teorie kyselin a zásad Brőnstedova teorie kyselin a zásad amfoterní látky, disociační konstanta kyselin a zásad vicesytné kyseliny, autoprotolýza, iontový součin vody Sőrensenův vodíkový exponent, hydrolýza

6. Redoxní děj

oxidace, redukce, oxidační, redukční činidla, redoxní pár výpočet, koeficientů redoxních rovnic, disproporcionalizační reakce Beketovova řada kovů, elektrolýza

7. Mendělejevův periodický systém

periodický zákon, jeho aplikace /velikost atomu, elektronegativita, ionizační energie/ kovy, nekovy chem. značky, vzorce, chemické názvosloví stechiometrické výpočty

8. Kyslík, vodík a jejich sloučeniny

výskyt, reakce, význam voda, peroxid vodíku vliv na životní prostředí

9. Prvky s

charakteristika prvků 1. a 2. hl. podskupiny jejich reakce, sloučeniny, význam

10. Prvky p1- p3

charakteristika prvků 3., 4., 5. hl. podskupiny reakce, sloučeniny, význam

11. Prvky p4- p8

charakteristika prvků 6., 7., 8. hl. podskupiny jejich reakce, sloučeniny, význam

12. Prvky d, f

charakteristika přechodných a vnitřně přechodných prvků reakce, sloučeniny, význam komplexní sloučeniny

13. Základní pojmy organické chemie

struktura, konformace, izomerie, optická aktivita, činidla, typy reakcí v organické chemii, reakční mechanismy

14. Nasycené a nenasycené uhlovodíky

charakteristika, vlastnosti, reakce, význam, alkanů, alkanů, alkadienů, alkinů názvosloví

15. Aromatické uhlovodíky

struktura benzenu, substituenty 1. a 2. třídy reakce, význam aromátů, názvosloví

16. Halogenderiváty a dusíkaté deriváty uhlovodíků

charakteristika, reakce, význam, názvosloví halogenderivátů, nitrosloučenin, aminů, azosloučenin

17. Deriváty uhlovodíků obsahujících kyslík / síru

charakteristika, reakce, význam, názvosloví alkoholů, fenolů, etherů a jejich sirných obdob

18. Karbonylové sloučeniny

charakteristika, reakce, význam, názvosloví aldehydů, ketonů, chinonů.

19. Karboxylové kyseliny

charakteristika, reakce, význam, názvosloví, soli karboxyl. kyselin, acyl k.k. substituční a funkční deriváty k.k.

20. Chemie přírodních látek

lipidy, terpeny, steroidy, heterocyklické sloučeniny alkaloidy, drogová závislost

21. Základní stavební látky organismů

biogenní prvky, chemické znaky živých soustav lipidy, sacharidy, aminokyseliny, bílkoviny

22. Metabolické přeměny zákl. organ. látek

metabolismus, ATP glykolýza, Krebsův cyklus, beta oxidace mastných kyselin, ornithinový cyklus

23. Sacharidy

fotosyntéza, dělení, vlastnosti, analytické důkazy, cyklické formy sacharidů, významné monosacharidy, disacharidy, polysacharidy glykolýza

24. Základní děje v organismech

fotosyntéza, chemosyntéza proteosyntéza nukleové kyseliny

25. Regulace biochemických dějů

hormony, enzymy, vitamíny

21 Přehledy

21.1 Symmboly a značky

- \odot Roztok
- ≐ Přibližně se rovná (například po zaokrouhlení)
- \cong Odpovídá
- \neq Nerovná se

 $\mathbf{X}_{\mathrm{index}}$ Spodní pravý index

 $\mathbf{X}^{\mathrm{index}}$ Vrchní pravý index, někdy mocnina

: A tak dále...

21.2 Vitaminy

Název	Skupina	Denní dávka	Zdroj	Význam	Projevy nedostatku	Poznámka
A (retinol)	tetraterpen	1.8-2mg	mléčný tuk, vaječný žloutek, játra, rybí tuk i maso, barevná ze- lenina	zajišťuje vidění, tvoří oční purpur, podílí se na tvoření bílkovin v kůži a ve sliznicích	šeroslepost, rohovatění kůže a sliznic, ucpávání vývodů žláz, postižení skloviny i zuboviny	nebezpečí hypervita- minózy z předávkování - bolest hlavy, koliky, průjmy
B (thiamin)	heterocykl	1.5mg	obiloviny(zejména klíčky), kvasnice, játra, vepřové maso	zasahuje především do metabolismu cukrů, zejména v centrálním nervstvu a ve svalech; podporuje činnost trávicího ústrojí	zvýšená únavnost, sklony ke křečím svalstva, srdeční poru- chy, trávicí poruchy, dispozice k zánětům nervů až onemocnění beri-beri	
B ₁ (riboflavin)		1.8mg	mléko, maso, kvasnice	jako účinná složka tzv. žlutého dýchacího fermentu je v každé buňce, kde se účastní oxidace živin	zardělost a palčivost jazyka, zduření rtů, bolavé koutky, po- ruchy sliznice hltanu a hrtanu	v 1 litry mléka je okolo 1mg
B ₃ (kys. pantotenová)	deriv. kys. máselné	7-10mg	játra, kvasnice, hrách, maso, mléko, vejce	účast v oxidoreduktázách a umožňuje syntézu bílkovin+ jako koenzym A má centrální postavení v metabolizmu	různé degenerace; u člověka pálení chodidel	je ve všech tkáních
B ₆ (pyridoxin)		2mg	kvasnice, obilné klíčky, mléko, luštěniny	podporuje účinek vitaminů B_1 a B_3	pomalé hojení zánětů, zhoršení regenerace sliznic	
B ₁₂ (kobala- min)		0.001mg	játra, maso, činností bakterií vznik ve střevech	nutný pro udržení normální krvetvorby	"zhoubná" chudokrevnost	ke vstřebávání vita- minu B ₁₂ je nutná přítomnost tzv. vnitřního faktoru
Kys. nikotinová	heterocykl	15-20mg	játra, ledviny, maso, kvasnice, houby	klíčová pro syntézu ribonuk- leových kyselin a bílkovin	záněty kůže, celková sešlost, poškození mozku	
Kys. listová	heterocykl	0.5-1mg	listová zelenina	zasahuje do metabolismu ami- nokyselin, je nutná pro tvorbu červených krvinek	chudokrevnost	

Název	Skupina	Denní dávka	Zdroj	Význam	Projevy nedostatku	Poznámka
C (kys. askorbová)	Sacharid deriv.	50-70mg	syrové ovoce a zelenina	katalyzuje oxidaci živin, udržuje dobrý stav vaziva a chrupavek, podporuje tvorbu protilátek	únava, snížená odolnost proti nakažlivým nemocem, krvácení, vypadávání zubů; při avitaminóze vzniká smrtelné onemocnění kurděje	předávkování C vitaminu může být i zdravý škodlivé
D (vit. antira- chitický)	steroid	400m.j.	rybí tuk, vzinká po ozáření UV v malém množství i v kůži	podílí se na řízení metabolismu Ca a P v těle	ztrácí-li organismus Ca a P, snaží se jej nahradit z kostí, za vývoje vzniká křivice, v dospělosti měknutí kostí, rachitis	hypervitaminóza D vede k ukládání Ca v ledvinách, srdci, stěnách cév a může ohrozit život
E (tokoferol)	deriv. to- kolu	5-20mg	obilné klíčky	podporuje činnost pohlavních žláz a správný průběh těhotenství	některé gestační poruchy	
H (Biotin)	heterocykl	0.15-0.3mg	kvasnice, játra, ledviny, bi- osyntéza ve střevech	je ve všech živočišných buňkách, podporuje jejich růst a dělení	záněty kůže, atrofie papil jazyka, unavenost, deprese, svalové bo- lesti, nechutenství	
K (vit. antihe- moragický)	deriv. naf- tochinonu	1mg	listové zele- niny, kvasnice, v tlustém střevě je tvořen činností mikroorganismů	oxidoreduktáza, tvorba pro- tisrážlivé látky protrombinu	krvácení do tkání a tělesných dutin, krvácení do mozku může zapříčinit smrt	

21.3 Přehled indikátorů