Solutions - Tutorial 4 of CL 250

Dev Moxaj Desai

Spring 2021

1. Let's assume α is a phase with mostly turpentine $(x_1 = 1)$ and β be the phase with purely water($x_2 = 1$).

As $x_1 \to 1$ we know that $\gamma_1 = 1$.

Hence, $x_1^{\alpha} \gamma_1^{\alpha} P_1^{sat} = y_1 P \Rightarrow P_1^{sat} = y_1 P$, similarly $P_2^{sat} = y_2 P$. $P_1^{sat} = 0.177$ bar, $P_2^{sat} = 1.013$ bar (given)

Using $y_1 + y_2 = 1$, we have $P = P_1^{sat} + P_2^{sat} = 1.19$ bar Hence, $y_1 = \frac{0.177}{1.19} \approx 0.1487$

 $y_2 = 1 - y_1 \approx 0.8513$

No. of moles of vapour $(n) = \frac{1}{18*0.8513} \approx 0.06526$ Kmoles per sec

Weight of turpentine condensed = $ny_1M \approx 1.358$ kg per one kg of water.

$$x_1^{\alpha} \gamma_1^{\alpha} P_1^{sat} = x_1^{\beta} \gamma_1^{\beta} P_2^{sat} = y_1 P \text{ and } x_2^{\alpha} \gamma_2^{\alpha} P_2^{sat} = x_2^{\beta} \gamma_2^{\beta} P_2^{sat} = y_2 P_2^{sat}$$

2. Given,
$$T = 348$$
 K. $P_1^{sat} \approx 1.218$ and $P_2^{sat} \approx 0.8827$
 $\gamma_1 = e^{2.821(1-x_1)^2}$ and $\gamma_2 = e^{2.821(1-x_2)^2}$
 $x_1^{\alpha} \gamma_1^{\alpha} P_1^{sat} = x_1^{\beta} \gamma_1^{\beta} P_1^{sat} = y_1 P$ and $x_2^{\alpha} \gamma_2^{\alpha} P_2^{sat} = x_2^{\beta} \gamma_2^{\beta} P_2^{sat} = y_2 P$
For a LLE, $x_1^{\alpha} \gamma_1^{\alpha} = x_2^{\alpha} \gamma_2^{\alpha} \Rightarrow \frac{y_1 \cancel{P}}{y_2 \cancel{P}} = \frac{x_1^{\alpha} \gamma_1^{\alpha} P_1^{sat}}{x_2^{\alpha} \gamma_2^{\alpha} P_2^{sat}} = \frac{P_1^{sat}}{P_2^{sat}}$
Using, $y_1 + y_2 = 1$ we have $y_1 \approx 0.5795$.

To solve for x_1^{α} and x_1^{β} solve $A(1-2x_1)=ln(\frac{1-x_1}{x_1})$, where A is 2.821. (this equation is taken from LLE solved problem 4)

After finding x_1^{α} we can find P.

3. For a SLE,
$$x_i \gamma_i = \psi_i$$

$$\psi = e^{\frac{\Delta H^{fus}}{RT_m}} \frac{(T - T_m)}{T} \Rightarrow \psi_i \approx 0.1264$$

Hence,
$$\gamma_1 = \frac{\psi_i}{x_i} \approx 3.75 \times 10^8$$

4. For ideal states, $\gamma_i^l = \gamma_i^s = 1$.

Hence, $x_i = z_i \psi_i$.

Using,
$$x_1 + x_2 = 1$$
 and $z_1 + z_2 = 1$ we have $x_1 = \frac{\psi_1(1 - \psi_2)}{\psi_1 - \psi_2}$ and $x_2 = \frac{\psi_2(1 - \psi_1)}{\psi_2 - \psi_1}$.

We know,
$$\psi = e^{\frac{\Delta H^{fus}}{RT_m} \frac{(T-T_m)}{T}}$$
.

We can find $\frac{x_1}{x_2}$ in terms of ψ , the only unknown being T. Using an appropriate solver (like desmos) we can find T.

5. For ideal solution, $\gamma_i^l = 1$. Assuming immissibility of species in solid state, $z_i \gamma_i^s = 1$.

Hence, $x_i = \psi_i$. Using $x_1 + x_2 = 1$ we have $\psi_1 + \psi_2 = 1$.

We know, $\psi = e^{\frac{\Delta H^{fus}}{RT_m} \frac{(T-T_m)}{T}}$

Substituing the above in $\psi_1 + \psi_2 = 1$ and using a solver (like desmos) gives us T_e . (Eutectic temperature)

Using $x_i = \psi_i$ we can find $x_{1,e}$.

- 6. Ideal solubility is given by $\frac{P_i^{sat}}{P}$. Given, T = 308 K. $P_1^{sat} = P_1^{sub} \approx 2.751 \times 10^{-4}$ bar. $\frac{P_1^{sat}}{P} = 2.751 \times 10^{-4} = \text{ideal solubility.}$
- 7. Taking napthelene as 1 and CO_2 as 2. Solubility $(x_1) = \frac{P_1^{sat}E}{P}$.

Assuming $\phi_1^{sat} \approx 1$ as $P_1^{sat} \approx 2.751 \times 10^{-4}$ bar (very low) as calculated in question 6. We know that $ln\hat{\phi}_1 = \frac{P}{RT}(B_{11} + y_2^2\delta_{12})$.

Assuming $y_2 \approx 1$ and taking P = 10 bar and T = 308 K we get $\hat{\phi}_1 \approx 0.793$.

Taking $V_1^S = 112$ cc per mole, we get $e^{\frac{V_1^S(P-P_1^{sat})}{RT}} \approx 1.044$.

We know $E = \frac{\phi_1^{sat}}{\hat{\phi}_1} e^{\frac{V_1^S(P-P_1^{sat})}{RT}} \approx 1.317$. Hence, $y_1 = 3.62 \times 10^{-5}$.