ODIN: Ocular Divergence relNtegration

Intro Text	Concept Drawing	
System Diagram		System description

ODIN: Ocular Divergence relNtegration

Translation/rotation correction	Concept Drawing
Software description	SW diagram

Human

Eye Monitoring

X: 0.31 Y: 1.54

Gaze Inference

Gaze Prediction

Eye Model

Gaze Correction

FOV Render

Human

Uncorrected Ocular Rotational Divergence

Corrected Ocular Rotational Divergence

Corrected Ocular Rotational Divergence

Describe your invention: What problem(s) does your invention solve?

There is a class of Oculomotor disorders that result in divergence of gaze. Sometimes this divergence can be overcome by physical therapy or via rewiring of visual integration. In many cases, there is no cure, and patients must learn to cope with diplopia (double vision), vertigo, and other problems associated with an inability to use the eyes in concert. Oculomotor Divergence relNtegration (ODIN) is a method to manipulate the field of view (FOV) for each eye independently to reconstruct an integrated POV rendering, tailor made for the user's needs.

Your Idea - Provide a high-level summary of your idea that includes a figure or flowchart.

What is the basic principle?

The FOV is manipulated digitally, based on inputs from both eyes, Head Mounted Video (HMV) positional information, and Eye tracking information. FOV is recentered on the focus both eyes, so that a corrected Point of View (POV) is created. Basically, if one eye is crooked—this uncrooks the picture it sees.

How is it better than known solutions?

Current treatment for diplopia is with prism glasses. However, prism glasses are a fixed translation and do not deal with a partially or totally paralized condition. Using dynamic gaze information allows the correction to be constantly adjusted to bring both eyes a coherent image.

Provide a more detailed description of your invention, highlighting what is new

Which of our competitors use a similar idea?

How would we be able to determine if someone outside of Intel was using your idea?

To the best of your knowledge, identify any other pertinent information related to your idea

What is the value of your idea to Intel

To the best of your knowledge, identify any other pertinent information related to your idea

F_lvout = F_model(F_lvin, F_rvin)

F_rvout = F_model(F_lvin, F_rvin)

ITG

Boyd Phelps

Ashish Giani

Bang Sutanto

Khalid Maklai

Gaze ajusted FOV

Default FOV with Gaze Targets

		POC	Acceptable	Ideal	Oculus	VIVE	FOVE	VIVE 2
Display	Display Tech	LCD	OLED	Fast OLED	OLED	OLED	OLED	
	Refresh	60fps	90fps	120fps	90fps	90fps	90fps	
	Latency	100ms	25ms	5ms	10ms	10ms	10ms	
	Resolution	1080p	1440p	16k	1080р	1080p	1440р	
	Field of View	90	110	210	110	110	100	
Front facing Camera	Camera Tech	Single	Dual	Dual	None	CCA	None	
	Refresh	60fps	90fps	120fps	N/A	N/A	N/A	
	Latency	16ms	10ms	8ms	N/A	N/A	N/A	
	Resolution	1080p	1440p	8k	N/A	N/A	N/A	
	Angle of Coverage	120	140	240	N/A	N/A	N/A	
Gaze Tracking	Gaze Tracking frequency	30Hz	60Hz 120Hz	300Hz	N/A	N/A	120Hz	
	Gaze Tracking Latency	20ms	10ms	5ms	N/A	N/A	14ms	
	Gaze Tracking Resolution	640x480	1080р	8k	N/A	N/A	640x480?	
	FOV Adjustment	20ms	10ms	5ms	N/A	N/A	N/A	
ering Engine	Motion to Render	100ms	50ms	5ms	50ms	50ms	50ms	

Renderi

Jan	Feb	Mar		April	May		June	
Today		Finals				Finals	Done	

Opens

Dispose of Opens

Technical

ARs and next steps

Visual system review