本研究主要提出新的圓錐曲線製造方法。首先,若點集 $\{B_0,B_1,B_2,B_3,B_4\}$ 構成一個三梯五點形,則其必落在一拋 物線 Γ 上,且點集 $\{B_0,B_1,B_2,B_3,B_4\}$ 也會落在與拋物線 Γ 的軸平行的五道平行線上,當固定其中四點而改變其中一 點在平行線上的位置時,則會出現橢圓、雙曲線、二相交直線與二平行直線;第二,由一個一階點列 $l(A_1,A_2,A_3,A_4)$ 往平面上一點 B_0 投射,滿足 $\overrightarrow{B_kB_0} = k \, \overrightarrow{B_0A_k} \,$ 得 B_k , $k \in \{1,2,3,4\}$,依 $\overrightarrow{A_1A_2} : \overrightarrow{A_2A_3} : \overrightarrow{A_3A_4}$ 的不同比例, $B_0 \times B_1 \times B_2 \times B_3 \times B_4 \times B_$ B_4 會落於不同二次曲線上。最後,我們改變兩個線束基線夾角與線束中心在平面上的相對位置,用以製造各 種特定的圓錐曲線。

研究動機

當初在課堂上看到一題題目,有一矩形,以兩長邊中點為投射點,並將 \overline{OA} 與 \overline{EA} 切為4等分,對應線交點連同 投射點會位於一橢圓上,這與我們在課堂上給定兩焦點與長軸長或給定焦點、準線與離心率的製造方式截然不 同,這引發了我們的好奇心。

研究方法與過程

- 1. n 梯五點形:五邊形 ABCDE 中,頂點連線恰有n 組對邊平行,稱其為n 梯五點形 n=0,1,2,3
- 2. (1)點集與點列:平面上 $B_1 \, \cdot \, B_2 \, \cdot \, B_3 \, \cdot \, B_4 \cdots$ 稱為點集,記為 $\{B_k\}$ 。 而一直線p上的點集稱為點列,記為p(A,B,C,D),直線p稱為 p此點列的基。
 - (2)平面上過一點P的直線 $a \cdot b \cdot c \cdot d$ 稱為線束,記為P(a,b,c,d)。點P稱為線束的中心。

Ⅱ. 預備定理

Lemma1(朱德祥、朱維宗(2007))[1]: 兩透射對應的線束,其對應線的交點連同線束中心可構成二次曲線。 $\langle pf \rangle$ 設兩個線束的方程為 $G + \mu H = 0$, $G' + \mu' H' = 0$, 其中 $G \times H \times G' \times H'$ 是 $x_1 \times x_2 \times x_3$ 的一次齊次式,由於兩 線束成射影對應,有 $\mu' = \frac{\alpha\mu + \beta}{\gamma\mu + \delta}$, $\alpha\delta - \beta\gamma \neq 0$,解出 μ 和 μ' ,得二次齊式 $G'(\delta H - \gamma G) + H'(\beta H - \alpha G) = 0$,故得證。

I,此時G、H、I 共線。(可以用此定理製造圓錐曲線的切線)

Lemma3	Lemma3: 二次曲線 $ax^2 + bxy + cy^2 + dx + ey + f = 0$ 中,判別式: $H = a + c$; $\delta = b^2 - 4ac$; $\Delta = \frac{1}{2} \begin{vmatrix} 2a & b & d \\ b & 2c & e \\ d & e & 2f \end{vmatrix}$						
	$\delta < 0$	$\delta = 0$	$\delta > 0$				
$\Delta = 0$	一點	①若 $d^2 + e^2 > 4(a+c)f$ 為兩平行線 ②若 $d^2 + e^2 = 4(a+c)f$ 為兩重合直線 ③若 $d^2 + e^2 < 4(a+c)f$ 為空集合	兩相交直線				
$\Delta \neq 0$	① $H \cdot \Delta > 0$ 空集合 ② $H \cdot \Delta < 0$ 圓 或橢圓	拋物線	雙曲線				

Lemma5: 圓錐曲線上兩點的切線交點與這兩點的中點連線,拋物線平行於軸,橢圓和雙曲線會過中心

Ⅲ. 主定理

Theorem1(拉拉 move 法)

 L_0 、 L_1 、 L_2 、 L_3 、 L_4 依序相鄰等距且互相平行, B_0 、 B_1 、 B_2 、 B_3 、 B_4 任三點不共線,點 B_k \in L_k , $\overline{B_0B_3}$ // $\overline{B_1B_2}$,其中 $\overline{B_1B_2}$ // $\overline{B_0B_3}$;過 B_0 與 $\overline{B_1B_3}$ 平行的直線交 L_4 於 D_4 ,k=0,1,2,3,4,

- (1)當 $B_4 = D_4$,則 $\{B_k\}$ 會落在一拋物線上。
- (2)當 $\overline{B_4B_0}$ 不平行於 $\overline{B_3B_1}$,則①若 B_4 與 $\{B_1,B_2,B_3\}$ 位於 $\overline{D_4B_0}$ 之異側,或落在 $\overline{B_0B_3}$ 與 $\overline{B_1B_2}$ 間,則 $\{B_k\}$ 會落在一橢圓上。

②若 B_4 與 $\{B_1, B_2, B_3\}$ 位於 $\overline{D_4B_0}$ 之同側,且不落在 $\overline{B_0B_3}$ 與 $\overline{B_1B_2}$ 間,則 $\{B_k\}$ 會落在一雙曲線上。

Theorem2(點列 1234 Shoot 法)考慮滿足 $\overrightarrow{A_1A_2}: \overrightarrow{A_2A_3}: \overrightarrow{A_3A_4} = 1:1:m$ 的點列 $l(A_1,A_2,A_3,A_4)$ 及一投射中心 $B_0 \not\in l$,利用 k $\overrightarrow{A_kB_0} = \overrightarrow{B_0B_k}$ 的投射方式得 $\{B_k\}$, k=1,2,3,4 ,則①若 m=1 ,則 $\{B_k\} \in$ 拋物線,②若 m>1 或 $-\frac{1}{2} < m < 0$,則 $\{B_k\} \in$ 橢圓 ,③若 0 < m < 1 或 $m < -\frac{1}{2}$ 且 $m \neq \frac{1}{4} \cdot -1 \cdot -2$,則 $\{B_k\} \in$ 雙曲線。

Theorem3(交錯等距拉拉 move 法)

考慮滿足 $\overrightarrow{A_1A_2}: \overrightarrow{A_2A_3}: \overrightarrow{A_3A_4} = c:d:m$ 的點列 $l(A_1,A_2,A_3,A_4)$ 及一投射中心 $B_0 \not\in l$,用 $\frac{[\frac{k}{2}]c + [\frac{k+1}{2}]d}{d} \cdot \overrightarrow{A_kB_0} = \overrightarrow{B_0B_k}$ 的投射方式得 $\{B_k\}$, k=1,2,3,4 ,則

①若 m = c ,則 $\{B_k\} \in$ 拋物線,②若 $\frac{-d}{2} < m < 0$ 或 m > c ,則 $\{B_k\} \in$ 橢圓 ,③若 $m < \frac{-d}{2}$ 或 0 < m < c , $m \neq \frac{c}{2}$ 、 $\frac{cd}{2(c+d)}$ 、 -d 、 $-(d+\frac{d^2}{c})$,則 $\{B_k\} \in$ 雙曲線。

Theorem4(雙線束 Shoot 法) 一矩形 MNGH, $B_0 imes C_0 imes E imes F imes$ 原點 O 分別為 $\overline{MN} imes \overline{GH} imes \overline{NG} imes \overline{MH} imes \overline{B_0C_0}$ 之中點, $L_k imes A_k$ 分別為 $\overline{OE} imes \overline{A_0A_n}$ 的 n 等分點, B_k 為 $\overline{P_LL_k}$ 與 $\overline{P_AA_k}$ 之交點, k=1,2,...,n-1,若 $\overline{MN}=2a$, $\overline{NG}=2b$,則:

①當 $A_n = E$, $\{B_k\}$ 會落在圓或橢圓 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 上

②當
$$A_n = F$$
, $\{B_k\}$ 會落在雙曲線 $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ 上

Theorem5(全等三角形 Shoot 法) 考慮線束 $P_A(A_k)$ 、 $P_L(L_k)$,且 $P_A \neq P_L$, $\Delta P_A A_1 A_3 \simeq \Delta P_L L_1 L_3$, $\overline{A_k A_{k+1}}$: $\overline{$

①正對應: $A_k \mapsto L_k$;逆對應: $A_k \mapsto L_{4-k}$ ②翻: 在 $\alpha = 0^\circ$,投射方向相反;未翻: 在 $\alpha = 0^\circ$,投射方向同。則線束對應交點軌跡如下:

1	分類	正對應	逆對應		
未翻		$(1) \overrightarrow{v_A} \times \overrightarrow{v_L} : \underline{\mathbb{Q}} (2) \overrightarrow{v_A} / / \overrightarrow{v_L} : \phi$	(5) $\overrightarrow{P_AP_L}$ \times $\overrightarrow{v_A}$ 且 $\overrightarrow{P_AP_L}$ \times $\overrightarrow{v_L}$ 且 $\overrightarrow{v_A}$ \times $\overrightarrow{v_L}$: 雙曲線或兩相交直線	(6) $P_{A}\overrightarrow{P_{L}}//\overrightarrow{v_{A}}//\overrightarrow{v_{L}}$: 兩相交直線	
ŧ	詗	(3) $\overline{P_A B_2} \neq \overline{P_L B_2}$:雙曲線	(7) $\overrightarrow{v_A}$ \times $\overrightarrow{v_L}$: 雙曲線或橢圓或拋物線或兩相交直線或兩平行直線	,當 $\alpha=k\pi-2\angle P_{A}A_{2}A_{3}$, $k\in\mathbb{Z}$ 為拋物線或兩平行直線	
		$(4) \overline{P_A B_2} = \overline{P_L B_2} : 兩垂直直線$	$(8) \overrightarrow{P_A P_I} / (\overrightarrow{v_A}) / (\overrightarrow{v_I})$: 兩平行直線	(9) $\overrightarrow{P_AP_i} \times \overrightarrow{v_A}$ 且 $\overrightarrow{P_AP_i} \times \overrightarrow{v_i}$ 且 $\overrightarrow{v_i} / / \overrightarrow{v_i}$: 拋物線	

IV. 研究應用

Property1: $\overrightarrow{A_0A_1}$ 上取一點 A_k ,以 $\overrightarrow{B_kB_0} = kr \overrightarrow{B_0A_k}$ 作 B_k , $k = \overline{A_0A_k}$, $k \in \mathbb{R}$, $r \in \mathbb{R} - \{0\}$,則 $\{B_k\}$ 會落在一拋物線上。

Property2:考慮滿足相鄰等距的點列 $l(A_k)$ 及投射中心 $B_0 \neq l$,以 $k \overrightarrow{A_k} B_0 = \overrightarrow{B_0} B_k$ 得 $\{B_k\}$, k = 0,1,2,3,4, Γ為 $\{B_k\}$ 所在 的拋物線,則:① $\overline{A_0B_0}$ 為 Γ 過 B_0 的切線,②當 $\angle A_0B_0A_4=90^\circ$ 時, $\overline{B_0F}:\overline{B_2F}=\overline{B_0A_0}^2:\overline{B_0A_4}^2$,其中F為 Γ 的焦點。

Property3:考慮滿足 $\overrightarrow{A_1A_2}:\overrightarrow{A_2A_3}:\overrightarrow{A_3A_4}=1:n:m$ 的點列 $l(A_1,A_2,A_3,A_4)$ 及一投射中心 $B_0\not\in l$,以 $k\overrightarrow{A_kB_0}=\overrightarrow{B_0B_k}$ 得 $\{B_k\}$, $k=rac{1}{r},rac{2}{r},rac{3}{r},rac{4}{r}$, $r\in\mathbb{R}-\{0\}$,由 $\{B_k\}$ 構出之圓錐曲線彼此相似。

▲Thm. 1 拉拉 move 法

▲Thm. 2 點列 1234Shoot 法

▲Thm. 3 交錯等距拉拉 move 法

▲Thm. 5 ●全等三角形 Shoot 法

討論與未來展望

一、考慮滿足 $\overrightarrow{A_1A_2}: \overrightarrow{A_2A_3}: \overrightarrow{A_3A_4} = 1:n:m$ 的點列 $l(A_1,A_2,A_3,A_4)$ 及投射中心 $B_0 \not\in l$, $n,m \in \mathbb{R}$,以 $\Phi \cdot \overrightarrow{A_kB_0} = \overrightarrow{B_0B_k}$ 得 $\{B_k\}$,k = 1,2,3,4

1. 可透過中點連線段特殊比例來定住二次曲線中心:

- 2. B點集作中點皆落於五條相鄰等距且平行基線 l 之直線上:
- $eta \Phi = k$, $\{B_k\}$ 相鄰兩點做中點,相鄰中點再做中點,則中點間連線會平行點列 $l(A_k)$
- 3. 廣義拉拉 move 點列製造法:
- ,則 $\{B_k\}$ 屬於拋物線。分別更動 B_4 , A_4 ,圖形會與Thm.1、Thm.2的結論一一對應
- ②若 $n < -1, \Phi = k$,則 $\{B_{\iota}\}$ 必屬於雙曲線或退化型。

二、超雙基圓 Shoot 法':固定一基圓,另一基圓平移,使得 O_A 與 O_L 重合,令此時的 $\angle A_2O_AL_2=lpha$, $\varphi=\angle A_2O_AP_A$,k=1,2,3

翻正對應—α+φ≠π	未翻逆對應 $\overline{P_A B_2} \neq \overline{P_L B_2}$	未翻逆對應 $\overline{P_A B_2} = \overline{P_L B_2}$	翻逆對應 $-\overline{P_A B_2} \neq \overline{P_L B_2}$	翻逆對應 $-\overline{P_A B_2} = \overline{P_L B_2}$
マ = 0°	α = 71° φ = 90° 翻(左)・ 不翻(右) B ₁ B ₂ A ₃ C ₃	ロ = 120°	ロ = 93°	マ = 120° φ = 120° 翻(左)・不翻(右) B ₃ L ₁ A ₂ A ₃ P _L O _A O _A