Adjacency matrix of a graph: Square matrix with $a_{ij} = 1$ when there is an edge from node i to node j; otherwise $a_{ij} = 0$, $A = A^T$ for an undirected graph.

Affine Transformation: $T(v) = Av + v_0$ = linear transformation plus shift.

Back substitution: Upper triangular systems are solved in reverse order x_n to x_1 .

Basis for V: Independent vectors $v_1, ..., v_n$ whose linear combinations give every \mathbf{v} in \mathbf{v} . A vector space has many bases.

Block matrix: A matrix can be partitioned into matrix blocks, by cuts between rows and/or between columns, **Block multiplication** of **AB** is allowed if the block shapes permit (the columns of **A** and rows of **B** must be matching blocks).

Cayley-Hamilton Theorem: $p(\lambda) = \det(A - \lambda I) = zero \ matrix$.

Change of basis matrix M: The old basis vectors v_i are combinations $\sum m_{ij} w_i$ of the new basis vectors. The coordinates of $c_1 v_1 + \dots + c_n v_n = d_1 w_1 + \dots + d_n w_n$ are related by d = Mc. (For n = 2 set $v_1 = m_{11} w_1 + m_{21} w_2$, $v_2 = m_{12} w_1 + m_{22} w_2$.)

Characteristic equation: $\det(A - \lambda I) = 0$. The *n* roots are the eigenvalues of *A*.

Cholesky factorization: $A = CC^T = (L\sqrt{D})(L\sqrt{D})^T$ for positive eigenvalues of A.

Circulant matric C: Constant diagonals wrap around as in cyclic shift S. Every Circulant is $c_0 I + c_1 S + ... + c_{n-1} S_{n-1}$. $Cx = convolution \ c * x$. Eigenvectors in F.

Cofactor C_{ij} : Remove row i and column j; multiply the determinant by $(-1)^{i+j}$

Column picture of Ax = b: The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space C(A).

Column space C(A): consists of all linear combinations of the columns. The combinations are all possible vectors Ax.

Commuting matrices AB = BA: If diagonalizable, they share n eigenvectors.

Companion matrix: Put $c_1, ..., c_n$ in row n and put n-1 1's along diagonal 1. Then

$$\det(A - \lambda I) = \pm \left(c_1 + c_2 \lambda + c_3 \lambda^2 + \ldots\right)$$

Complete solution: $x = x_p + x_n$ to $Ax = b \cdot \left(Particular \ x_p \right) + \left(x_n \ in \ null space \right)$

Complex conjugate: $\overline{z} = a - ib$ for any complex number z = a + ib. Then $z\overline{z} = |z|^2 \Rightarrow (a - ib)(a + ib) = a^2 + b^2$

Covariance matrix Σ : When random variables x_i have mean = average value = 0, their covariances \sum_{ij} are the averages of $x_i x_j$. With means \overline{x}_i , the matrix $\sum = \text{mean of } (x - \overline{x})(x - \overline{x})^T$ is positive (semi) definite; it is diagonal if the x_i are independent.

Cramer's Rule for Ax = b: B_j has b replacing column j of A, and $x_i = \frac{\left|B_j\right|}{|A|}$.

Cross product $\mathbf{u} \times \mathbf{v}$ in \mathbf{R}^3 : Vector perpendicular to \mathbf{u} and \mathbf{v} , length $\|\mathbf{u}\| \|\mathbf{v}\| \|\sin \theta\| = \text{parallelogram area}$, computed as the "determinant" of $\begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \mathbf{i} & \mathbf{j} & \mathbf{k} \end{bmatrix}$, $\begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \mathbf{i} & \mathbf{j} & \mathbf{k} \end{bmatrix}$

Diagonal matrix D: $d_{ij} = 0$ if $i \neq j$. **Block diagonal**: zero outside square blocks D_{ij} .

Dimension of a vector space: $\dim(V) = \text{number of vectors in any basis for } V$.

Dot Product: $x^T y = x_1 y_1 + ... + x_n y_n$. Complex dot product is $\overline{x}^T y$. Perpendicular vectors have zero dot product. $(AB)_{ij} = (\text{row } i \text{ of } A) \cdot (\text{column } j \text{ of } B)$

Echelon matrix U: The first nonzero entry (the pivot) in each row comes after the pivot in the previous row. All zero rows come last.

Eigenvalue λ and eigenvector x: $Ax = \lambda x$ with $x \neq 0$ so $det(A - \lambda I) = 0$

Elimination: A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers ℓ_{ij} in L, or PA = LU with row exchanges in P, or EA = R with an invertible E.

Factorization: A = LU. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers ℓ_{ii} (and $\ell_{ii} = 1$) brings U back to A.

Fibonacci numbers: 0, 1, 1, 2, 3, 5, ... satisfy $F_n = F_{n-1} + F_{n-2} = \frac{\lambda^n - \lambda^n}{\lambda_1 - \lambda_2}$. Growth rate $\lambda_1 = \frac{1 + \sqrt{5}}{2}$ is the largest eigenvalue of the Fibonacci matrix $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$

Four Fundamental subspaces of A = C(A), N(A), $C(A^T)$, $N(A^T)$.

Free Columns of A: Columns without pivots; combinations of earlier columns.

- Free variables x_i : Column i has no pivot in elimination. We can give the n-r free variables any values, the Ax = b determines the r pivot variables (if solvable!).
- **Full column rank** r = n. Independent columns, $N(A) = \{0\}$, no free variables.
- **Full row rank** r = m. Independent rows, at least one solution to Ax = b, column space is all of \mathbb{R}^m . Full rank means full column rank or full column rank or full row rank.
- **Fundamental Theorem**: the nullspace N(A) and row space $C(A^T)$ are orthogonal complements (perpendicular subspaces of \mathbb{R}^n with dimensions r and n-r) from $Ax=\mathbf{0}$. Applied to A^T , the column space C(A) is the orthogonal complement of $N(A^T)$.
- **Independent vectors**: v_1 , ..., v_n . No combination $c_1v_1 + ... + c_nv_n = zero$ vector unless all $c_i = 0$. If the v's are the columns of A, the only solution to Ax = 0 is x = 0.
- **Least squares solution** \hat{x} : The vector \hat{x} that minimizes the error $\|e\|^2$ solves $A^T A \hat{x} = A^T b$. Then $e = b A \hat{x}$ is orthogonal to all columns of A.
- **Length** ||x||: Square root of x^Tx (Pythagoras in *n* dimensions).
- **Linear combination** $c\mathbf{v} + d\mathbf{w}$ or $\sum_{i} c_{i} v_{i}$. Vector addition and scalar multiplication.
- **Linear Transformation T**: Each vector v in the input space transforms to T(v) in the output space, and linearity requires T(cv + dw) = cT(v) + dT(w).
- **Linearly dependent** $v_1, ..., v_n$. A combination other than all $c_i = 0$ gives $\sum c_i v_i = 0$
- Linearly independent when the only solution to Ax = 0 is x = 0. No other combination Ax of the columns gives the zero vector.
- **Nullspace** of *A* consists of all solutins to Ax = 0. These solution vectors x are in \mathbb{R}^n . The Nullspace containing all solutions is denoted by N(A) or NS(A). $\{\vec{x} \in \mathbb{R}^n \mid Ax = 0\}$ is the nullspace of A, NS(A) (Can also be called **Kernel** of A: Ker(A))
- **Particular solution** x_p Any solution to Ax = b; often x_p has free variables = 0.
- **Permutation matrix P.** There are n! orders of 1, ..., n; the n! P's have the rows of I in those orders. PA puts the rows of A in the same order. P is a product of row exchanges P_{ij} ; P is even or odd (detP = 1 or -1) based on the number of exchanges.
- **Pivot columns of A:** Columns that contain pivots after row reduction; not combinations of earlier columns. The pivot columns are a basis for the column space.

Pivot d: The diagonal entry (first nonzero) when a row is used in elimination.

Rank of a matrix A (m by n) is the number of **nonzero rows** in the row-reduced echelon form of A. (it is the number of pivot). rank(A) = r

Reduced Row Echelon Form (rref): is a matrix (R) with each pivot column has only one nonzero entry (the pivots which is always 1).

Row space $C(A^T)$ = all combinations of rows of A. Column vectors by convention.

Schwarz inequality
$$|v.w| = ||v||.||w||$$
: Then $|v^T A w|^2 \le (v^T A v)(w^T A W)$ if $A = C^T C$

Singular matrix A: A square matrix that has no inverse: det(A) = 0.

Spanning set $v_1, ..., v_m$ for V: Every vector in V is a combination of $v_1, ..., v_m$.

Subspace: of a vector space is a set of vectors (including 0) that satisfies two requirements: if v and w are vectors in the subspace and c is any scalar, then v+w is in the subspace and cv is in the subspace

Symmetric matrix A: The transpose is $A^T = A$, and $a_{ij} = a_{ji}$. A^{-1} is also symmetric. All matrices of the form $R^T R$, LDL^T and $Q\Lambda Q^T$ are symmetric. Symmetric matrices have real eigenvalues in Λ and orthonormal eigenvectors in Q.

Trace of A: = sum of diagonal entries = sum of eigenvalues of A. Tr(AB) = Tr(BA).

Transpose matrix A^T : Entries $A_{ij}^T = A_{ji}$. A^T is n by m, A^TA is square, symmetric, positive semi-definite. The transposes of AB and A^{-1} are B^TA^T and $\left(A^T\right)^{-1}$