

Summary

EL 2805 - Reinforcement Learning

Alexandre Proutiere

KTH, The Royal Institute of Technology

Outline

- 1. Markov Decision Processes
- 2. RL problems
- 3. Stochastic Approximation and Stochastic Gradient Descent Algorithms
- 4. Policy evaluation and TD learning
- 5. Optimal control in RL
- 6. RL with function approximation
- 7. Policy Gradient methods
- 8. Actor-critic methods

1. Markov Decision Processes

1. MDPs

State space. S (finite). A state is available to the decision maker, and leads to Markovian dynamics.

Action space. For any $s \in S$, the set of available actions is A_s . $A = \bigcup_{s \in S} A_s$.

Dynamics. $\mathbb{P}[s_{t+1}=s'|s_t=s,a_t=a]=p_t(s'|s,a).$ Stationary dynamics if $p_t(s'|s,a)=p(s'|s,a).$

Rewards. At time t: $r_t(s,a)$ when $(s_t,a_t)=(s,a)$ (deterministic). Stationary rewards if $r_t(s,a)=r(s,a)$.

Finite Horizon MDP

A policy $\pi = (\pi_1, \dots, \pi_T)$ with $\pi_t : S \to A$ (or $\mathcal{P}(A)$).

Objective. Find a policy π (Markovian and deterministic) maximizing the expected reward accumulated in T rounds given the initial state s_1 :

$$\mathbb{E}[R(s_1, a_1^{\pi}, s_1^{\pi}, \dots, s_T^{\pi}, a_T^{\pi})] = \sum_{t=1}^{T} \mathbb{E}[r_t(s_t^{\pi}, a_t^{\pi}) | s_1^{\pi} = s_1].$$

Policy evaluation (Dynamic Programming). The state value function of π is

$$V^{\pi}(s) = \sum_{t=1}^{T} \mathbb{E}[r_t(s_t^{\pi}, a_t^{\pi})|s_1^{\pi} = s].$$

Define the rewards to go: $u_t^\pi(s) = \mathbb{E}\left[\sum_{u=t}^T r_u(s_u^\pi, a_u^\pi) \middle| s_t^\pi = s\right]$

- \bullet Start with: $u_T^\pi(s_T) = r_T(s_T, \pi(s_T))$ for all s_T
- \bullet Backward recursion to compute u^π_{t-1} from u^π_t

$$u_{t-1}^{\pi}(s_{t-1}) = r_{t-1}(s_{t-1}, a) + \sum_{j \in S} p_{t-1}(j|s_{t-1}, a)u_t^{\pi}(j)$$

We obtain: $V^{\pi}(s) = u_1^{\pi}(s)$ for any s.

Finite Horizon MDP

Optimal control. The value function V^* is the state value function of the best policy. It satisfies Bellamn's equations:

- For all s_T , $u_T^{\star}(s_T) = \max_a r_T(s_T, a)$
- For all $t = T 1, T 2, \dots, 1$

$$u_t^\star(s_t) = \max_{a \in A_{s_t}} \left[r_t(s_t, a) + \sum_{j \in S} p_t(j|s_t, a) u_{t+1}^\star(j) \right]$$

$$Q_t(s_t, a) \text{ optimal reward from } t \text{ if } a \text{ selected}$$

Value function: $V_T^{\star}(s) = u_1^{\star}(s)$, $\forall s \in S$.

An optimal policy π is obtained by selecting $\pi_t(s_t)$ at time t such that

$$Q_t(s_t, \pi_t(s_t)) = \max_{a \in A_{s_t}} Q_t(s_t, a)$$

Infinite Horizon Discounted MDP

Stationary dynamics and rewards. Stationary policy $\pi: S \to A$.

Objective. Find a policy π (Markovian and deterministic) maximizing the expected discounted reward given the initial state s_1 : $\sum_{t=1}^{\infty} \mathbb{E}[\lambda^{t-1} r(s_t^{\pi}, a_t^{\pi}) | s_1^{\pi} = s_1]$.

Policy evaluation. the state value function V^{π} is the average reward under π given the initial state, $V^{\pi}(s)$. It satisfies:

$$\forall s, \ V^{\pi}(s) = r(s, \pi(s)) + \lambda \sum_{j} p(j|s, \pi(s)) V^{\pi}(j).$$

(state, action)-value function $Q^{\pi}(s,a)$: the average reward under π given that the first action is a,

$$\forall (s, a), \ Q^{\pi}(s, a) = r(s, a) + \lambda \sum_{j} p(j|s, a) Q^{\pi}(j, \pi(j)).$$

Infinite Horizon Discounted MDP

Optimal control. Value function and optimal policy: $V^*(s) = \sup_{\pi \in MD} V^{\pi}(s)$ obtained by solving Bellman's equations through VI or PI algorithm:

$$\forall s, \quad V^{\star}(s) = \max_{a \in A_s} \quad \left[r(s, a) + \lambda \sum_{j \in S} p(j|s, a) V^{\star}(j) \right]$$

$$Q(s, a) \text{ optimal reward from state } s \text{ if } a \text{ selected}$$

An optimal policy π is stationary $\pi=(\pi_1,\pi_1,\ldots)$ where $\pi_1\in MD_1$ is defined by: for any s,

$$\pi_1(s) = \arg\max_{a \in A_s} Q(s, a)$$

Q is referred to as the Q-function.

Value Iteration

Algorithm: Value Iteration Input. Precision ϵ , discount factor λ

- 1. Initialization. Select a value function $V_0 \in \mathbb{R}^S$, n = 0, $\delta \gg 1$
- 2. Value improvement. While $(\delta > \frac{\epsilon(1-\lambda)}{\lambda})$ do
 - (a) $V_{n+1} = \mathcal{L}(V_n)$, i.e., $\forall s \in S$, $V_{n+1}(s) = \max_{a \in A_s} (r(s,a) + \lambda \sum_j p(j|s,a) V_n(j))$
 - (b) $\delta = ||V_{n+1} V_n||, n \leftarrow n + 1$
- 3. Output. Policy π with $\forall s \in S, \ \pi(s) \in \arg\max_{a \in A_s} (r(s,a) + \lambda \sum_j p(j|s,a) V_n(j))$

The above VI algorithm returns an ϵ -optimal policy π , i.e., for any $s \in \mathcal{S}$, $V^{\pi}(s) \geq V^{\star}(s) - \epsilon$.

Policy Iteration

Algorithm: Policy Iteration

- 1. Initialization. Select a policy π_0 arbitrarily, n=0
- 2. **Policy evaluation.** Evaluate the state value function V_n of π_n by solving:

$$\forall s \in S, \ V_n(s) = r(s, \pi_n(s)) + \lambda \sum_j p(j|s, \pi_n(s)) V_n(j)$$

3. **Policy improvement.** Update the policy:

$$\forall s \in S, \ \pi_{n+1}(s) \in \arg\max_{a \in A_s} (r(s, a) + \lambda \sum_j p(j|s, a) V_n(j))$$

4. **Stopping criterion.** If $\pi_{n+1} = \pi_n$, return π_n . Otherwise $n \leftarrow n+1$, and go to 2.

The **policy improvement theorem** states that under the PI algorithm, V_n is an increasing sequence, in the sense that for any $s \in \mathcal{S}$, $V_{n+1}(s) \geq V_n(s)$. In other words π_{n+1} is better than π_n . When the PI stops, it returns an optimal policy.

2. RL problems

Episodic RL problems

- Data: K episodes of length T (actions, states, rewards)
- Learning algorithm $\pi: \mathsf{data} \mapsto \pi_K \in MD$
- ullet Performance of π : how close π_K is from the optimal policy π^\star

Discounted RL problems

- ullet Data: trajectory of the system up to time t (actions, states, rewards)
- Learning algorithm $\pi: \mathsf{data} \mapsto \pi_t \in MD$
- Performance of π : how close π_t is from the optimal policy π^*

On vs. Off-policy learning

An **off-policy** learner learns the value of the optimal policy independently of the agent's actions.

The policy used by the agent is often referred to as the **behavior** policy, and denoted by π_b . Example: Q-learning.

An **on-policy** learner learns the value of the policy being carried out by the agent. The policy used by the agent is computed from the previous collected data. It is an *active learning* method as the gathered data is controlled.

Example: SARSA.

Exploration in RL problems

Exploration: RL is like trial-and-error: all actions in all states should be tested.

Off-policy learning: π_b should explore all actions.

On-policy learning: π_t should explore all actions, at **any** time t.

In RL, we use randomized policies.

 $\epsilon\text{-soft policies.}$ Select actions uniformly at random with probability $\epsilon>0.$

 ϵ -greedy policy w.r.t. R. Let $R: S \times A \to \mathbb{R}$ a (state, action) value function. π is ϵ -greedy policy w.r.t. R iff in state s, it selects $\arg\max_a R(s,a)$ w.p. $1-\epsilon$, and actions uniformly at random with probability ϵ .

3. Stochastic Approximation and

Stochastic Gradient Descent

Algorithms

Stochastic Approximation algorithm

Let $h: \mathbb{R}^d \to \mathbb{R}^d$ be a lipschitz continuous function. Root of h, i.e., x^* such that $h(x^*) = 0$. To this aim, we have access to noisy estimates of h, i.e., for a given x, we can get from an Oracle a random variable Y(x) with expectation h(x).

Robbins-Monro Stochastic Approximation algorithm:

- 1. Initialization: $x^{(0)} \in \mathbb{R}^d$
- 2. Iterations: for $k \ge 0$, $x^{(k+1)} = x^{(k)} + \alpha_k[Y(x^{(k)})]$

Stochastic Approximation algorithm

Noise process: $M_{k+1} = Y(x^{(k)}) - h(x^{(k)})$.

- A1. (Martingale difference) $\forall k$, $\mathbb{E}[M_{k+1}|x^{(k)},\dots,x^{(1)}]=0$ and $\forall k$, $\mathbb{E}[\|M_{k+1}\|_2^2 \mid x^{(k)},\dots,x^{(1)}] \leq c_0(1+\|x^{(k)}\|^2)$.
- A2. (Stability) $\dot{x}=h(x)$ has a unique globally stable equilibrium x^* . $\forall x$, $h_{\infty}(x)=\lim_{c\to\infty}\frac{h(cx)}{c}$ exists and 0 is the only globally stable point of $\dot{x}=h_{\infty}(x)$.

Convergence for decreasing learning rates. Under A1 and A2, if the learning rates α_k satisfy $\sum_{k=0}^{\infty} \alpha_k = \infty$ and $\sum_{k=0}^{\infty} \alpha_k^2 < \infty$, then $\lim_{k \to \infty} x^{(k)} = x^{\star}$ almost surely where x^{\star} is the unique globally stable point of $\dot{x} = h(x)$.

Convergence for fixed learning rates. When $\alpha_k \alpha$ for all k, the algorithm does not converge, but is guaranteed to be in a neighborhood of x^* at the limit. The neighborhood is of size proportional to α .

SGD algorithm

Let $f:\mathcal{C}\to\mathbb{R}$ be a convex function defined over the convex set \mathcal{C} . We wish to find the minimizer of f. To this aim, we can not evaluate the gradients of f, but get only unbiased estimates of these gradients. Specifically, for any $x\in\mathcal{C}$, an Oracle can reveal g(x), a r.v. such that $\nabla f(x)=\mathbb{E}[g(x)]$.

Kiefer-Wolfowitz SGD Algorithm:

- 1. Initialization: $x^{(0)}$
- 2. **Iterations:** for $k \ge 0$, $x^{(k+1)} = x^{(k)} \alpha_k g(x^{(k)})$

SGD can enjoy the same convergence guarantees as those of the SA algorithm, if

$$\mathbb{E}[g(x^{(k)})|x^{(k)},\dots,x^{(1)}] = 0.$$

4. Policy evaluation and TD

learning

Finite RL problems

To evaluate a policy π , we can use Monte Carlo methods (just simulate). First visit MC algorithm:

Monte Carlo prediction algorithm:

- 1. Initialization: $\forall s, V^{(0)}(s) = 0$
- 2. **Iterations:** for episode $i=1,\ldots,n$ generate $\tau_i=(s_1,a_{1,i},r_{1,i},\ldots,s_{T,i},a_{T,i},r_{T,i})$ under π G=0 for $t=T,T-1,\ldots,1$:
 - a. $G = r_{t,i} + G$
 - b. Unless $s_{t,i}$ appears in $\{s_{1,i},\ldots,s_{t-1,i}\}$ $V^{(i)}(s_{t,i})=V^{(i-1)}(s_{t,i})+\frac{1}{i}(G-V^\pi(s_{t,i}))$

Discounted RL problems: TD learning

Observe that the state value function of π satisfies $h(V^{\pi}) = 0$ where

$$\forall s, \ h(V)(s) = r(s, \pi(s)) + \lambda \sum_{j} p(j|s, \pi(s))V(j) - V(s).$$

TD(0) algorithm

1. Initialization.

Select a value function $V^{(1)}$

Initial state s_1

Number of visits: $\forall s, n_s^{(1)} = 1_{(s=s_1)}$

2. Value function updates. For all $t \ge 1$, select action $\pi(s_t)$ and observe the new state s_{t+1} and reward r_t .

Update the value function estimate: for all s,

$$V^{(t+1)}(s) = V^{(t)}(s) + 1_{(s_t=s)} \alpha_{n_s^{(t)}} \left(r_t + \lambda V^{(t)}(s_{t+1}) - V^{(t)}(s) \right)$$

Update for all s, $n_s^{(t+1)} = n_s^{(t)} + 1_{(s=s_t)}$

Discounted RL problems: TD learning

Remarks.

- 1. TD learning is an asynchronous Stochastic Approximation algorithm.
- 2. The learning rates α_n are typically chosen as for the SA algorithm.
- 3. In TD methods, the term $r_t + \lambda V^{(t)}(s_{t+1})$ is often referred to as the **target**.
- 4. Note that TD learning is a **bootstrapping** method because the targeted value in each iteration depends on the current estimate of V^{π} .

5. Optimal control in RL

Q-learning

Off-policy learning of the optimal policy; behavior policy π_b . The Q-function solves:

$$\forall (s, a), \quad Q(s, a) = r(s, a) + \lambda \sum_{j} p(j|s, a) \max_{b \in \mathcal{A}_b} Q(j, b).$$

Q-learning algorithm

Parameter. Step sizes (α_t)

- 1. Initialization. Select a Q-function $Q^{(0)} \in \mathbb{R}^{S \times A}$
- **2. Observations.** (s_t, a_t, r_t, s_{t+1}) under the behavior policy π_b
- **3.** Q-function improvement. For $t \ge 0$. Update the estimated Q-function as follows: $\forall s, a$,

$$\begin{split} Q^{(t+1)}(s,a) &= Q^{(t)}(s,a) \\ &+ 1_{(s_t,a_t)=(s,a)} \alpha_{n^{(t)}(s_t,a_t)} \left[r_t + \lambda \max_{b \in \mathcal{A}} Q^{(t)}(s_{t+1},b) - Q^{(t)}(s_t,a_t) \right] \end{split}$$

where
$$n^{(t)}(s,a) := \sum_{m=1}^{t} 1[(s,a) = (s_m, a_m)].$$

Q-learning

This is an asynchronous Stochastic Approximation algorithm because:

$$\mathbb{E}[r_t + \lambda \max_{b \in \mathcal{A}} Q^{(t)}(s_{t+1}, b) | s_t] = r(s_t, a_t) + \lambda \sum_{j} p(j | s_t, a_t) \max_{b \in \mathcal{A}_b} Q(j, b)$$

Convergence.

- 1. if the learning rates are appropriate;
- 2. the behavior policy explores enough: each (state, action) pairs should be visited infinitely often; example: under any ϵ -soft policies, e.g., π_b can be ϵ -greedy w.r.t. $Q^{(t)}$.

SARSA

SARSA is an on-policy learning algorithm. The algorithm maintains in step t both a policy π_t and its estimated (state, action) value function $Q^{(t)}$. In each iteration, SARSA

- updates π_t (the policy improvement step by taking the ϵ -greedy policy w.r.t. $Q^{(t)}$;
- updates $Q^{(t)}$ by applying a TD-learning step to evaluate the (state, action) value function of π_t .

The policy improvement step actually improves the policy (in average) according to the **policy improvement theorem**.

SARSA means (State, Action, Reward, State, Action), because the algorithm uses experiences of the type (s, a, r, s', a') generated under the policy π_t .

SARSA algorithm

Parameters. Step sizes (α_t) , Exploration rate $\epsilon > 0$

- 1. Initialization. Select a Q-function $Q^{(0)} \in \mathbb{R}^{S \times A}$
- **2. Observations.** $(s_t, a_t, r_t, s_{t+1}, a_{t+1})$ under π_t ϵ -greedy w.r.t. $Q^{(t)}$
- **3.** Q-function improvement. For $t \ge 0$. Update the estimated Q-function as follows: $\forall s, a,$

$$Q^{(t+1)}(s,a) = Q^{(t)}(s,a)$$

$$+ 1_{(s_t,a_t)=(s,a)} \alpha_{n^{(t)}(s_t,a_t)} \left[r_t + \lambda Q^{(t)}(s_{t+1},a_{t+1}) - Q^{(t)}(s_t,a_t) \right]$$

where
$$n^{(t)}(s,a) := \sum_{m=1}^{t} 1[(s,a) = (s_m, a_m)].$$

Under SARSA, π_t does not converge towards an optimal policy, because π_t is ϵ -soft. When ϵ is very small, π_t approximates an optimal policy when t is large.

6. RL with function

approximation

Function approximation

Beyond tabular MDPs. With large state and action spaces, Q-learning and SARSA converge very slowly (need to visit each (state, action) pairs a large number fo times).

Function approximation. Functions of interest such as the value function, the state value function of a policy, the Q-function belong to a set of parametrized functions. For example, $V^* \approx V_\theta \in \mathcal{V} = \{V_\mu : \mu \in \mathbb{R}^d\}$. One just needs to learn the parameter θ .

Examples.

- 1. Linear function approximation. In this case, we work with a basis of functions $\phi_1,\ldots,\phi_d:\mathbb{R}^S\to\mathbb{R}$, and $V_\theta(s)=\sum_{i=1}^d\theta_i\phi_i(s)$.
- 2. Deep learning. Here the value of the function is the output of a neural network. The function is hence parametrized by the weights of the network: $V_w(s)$.

Policy evaluation with function approximation

Stationary policy π for an infinite horizon discounted MDP. The goal is then to identify the parameter θ such that V^{π} and V_{θ} are as close as possible. We minimize over θ the mean TD square error:

$$J(\theta) = \frac{1}{2} \mathbb{E}_{s \sim \mu} [(r(s, \pi(s)) + \lambda \sum_{j} p(j|s, \pi(s)) V_{\theta}(j) - V_{\theta}(s))^{2}].$$

Semi-gradient method. The target is fixed and the gradient is taken w.r.t. $V_{\theta}(s)$ only.

$\mathsf{TD}(0)$ algorithm with function approximation

- 1. **Initialization.** θ , initial state s_1
- 2. **Iterations:** For every $t \geq 1$, observe s_t, a_t, r_t, s_{t+1} under π . Update θ as:

$$\theta \leftarrow \theta + \alpha(r_t + \lambda V_{\theta}(s_{t+1}) - V_{\theta}(s_t)) \nabla_{\theta} V_{\theta}(s_t)$$

SARSA with function approximation

The previous TD algorithms with function approximation can be applied to provide an approximation of the (state, action) value function of a given policy π . This can be implemented in the policy evaluation step of SARSA algorithm.

SARSA algorithm with function approximation

- 1. **Initialization.** θ , initial state s_1
- 2. Iterations: For every $t \geq 1$, compute π_t the ϵ -greedy policy w.r.t. Q_{θ} (policy improvement) take action a_t according to π_t , and observe r_t, s_{t+1} (alternative: select the " a_{t+1} " of the previous step as a_t) sample a_{t+1} according to π_t update θ as: (policy evaluation)

$$\theta \leftarrow \theta + \alpha(r_t + \lambda Q_{\theta}(s_{t+1}, a_{t+1}) - Q_{\theta}(s_t, a_t)) \nabla_{\theta} Q_{\theta}(s_t, a_t)$$

Q-learning with function approximation

Function approximation in Q-learning: minimize the mean square Bellman error.

Bellman error. If \tilde{Q} is an estimated Q-function, the corresponding Bellman error is defined as:

$$BE(s, a) = r(s, a) + \lambda \sum_{j} p(j|s, a) \max_{b} \tilde{Q}(j, b) - \tilde{Q}(s, a).$$

Objective function.

$$J(\theta) = \frac{1}{2} \mathbb{E}_{(s,a) \sim \mu_b} [BE(s,a)^2]$$

= $\frac{1}{2} \mathbb{E}_{(s,a) \sim \mu_b} [(r(s,a) + \lambda \sum_j p(j|s,a) \max_b Q_{\theta}(j,b) - Q_{\theta}(s,a))^2],$

where μ_b is the stationary distribution of (s,a) under the behavior policy π_b .

Semi-gradient method. The semi-gradient is

$$-\mathbb{E}_{(s,a)\sim\mu_b}\bigg[\underbrace{(r(s,a)+\lambda\sum_{j}p(j|s,a)\max_{b}Q_{\theta}(j,b)}_{\text{target}}-Q_{\theta}(s,a))\nabla_{\theta}Q_{\theta}(s,a)\bigg]$$

Q-learning with function approximation

Observing an experience (s, a, r, s') generated under π_b . The semi-gradient can be estimated (without bias) by:

$$-(r + \lambda \max_{b} Q_{\theta}(s', b) - Q_{\theta}(s, a)) \nabla_{\theta} Q_{\theta}(s, a))$$

Q-learning with function approximation

- 1. **Initialization.** θ , initial state s_1
- 2. Iterations: For every $t \geq 1$, compute π_t the ϵ -greedy policy w.r.t. Q_{θ} take action a_t according to π_t , and observe r_t, s_{t+1} update θ as:

$$\theta \leftarrow \theta + \alpha(r_t + \lambda \max_b Q_{\theta}(s_{t+1}, b) - Q_{\theta}(s_t, a_t)) \nabla_{\theta} Q_{\theta}(s_t, a_t)$$

Experience Replay and Fixing the Target

Issues of Q-learning with function approximation. (a) The successive updates are strongly correlated; (b) the target is not fixed, and the algorithm struggles to follow this moving target.

Experience replay. We maintain a buffer B of previous experiences (s,a,r,s'). At time t, we store the current experience in the buffer, but to update the Q-function parameter, we sample mini-batches of fixed size k from B uniformly at random. At time t Sample, we perform k updates: for $i=1,\ldots,k$, the experience (s_i,a_i,r_i,s_i') is sampled uniformly at random from B, and we do:

$$\theta \leftarrow \theta + \alpha(r_i + \lambda \max_b Q_{\theta}(s_i', b) - Q_{\theta}(s_i, a_i)) \nabla_{\theta} Q_{\theta}(s_i, a_i)$$

Fixed target. We use a second parameter ϕ for the target. The target is fixed for C successive steps, and then aligned to θ .

Q-learning with function approximation, ER, and fixed targets

Q-learning with function approximation, ER, and fixed targets

- 1. **Initialization.** θ and ϕ , replay buffer B, initial state s_1
- 2. **Iterations:** For every $t \geq 1$, compute π_t the ϵ -greedy policy w.r.t. Q_{θ} take action a_t according to π_t , and observe r_t, s_{t+1} store (s_t, a_t, r_t, s_{t+1}) in B sample k experiences (s_i, a_i, r_i, s_i') from B for $i = 1, \ldots, k$:

$$y_i = \begin{cases} r_i & \text{if episode stops in } s_i' \\ r_i + \lambda \max_b Q_\phi(s_i', b) & \text{otherwise} \end{cases}$$

update θ as:

$$\theta \leftarrow \theta + \alpha(y_i - Q_\theta(s_i, a_i)) \nabla_\theta Q_\theta(s_i, a_i)$$

every C steps: $\phi \leftarrow \theta$

7. Policy Gradient methods

Policy Gradient methods

Main principles.

- 1. Parametrize your (randomized) policy: $\pi \in \Pi = {\pi_{\theta} : \theta \in \mathbb{R}^d}$;
- 2. Formulate an objective to be maximized: $J(\theta) = \mathbb{E}_{s_1 \sim p}[V^{\pi_{\theta}}(s_1)];$
- 3. Compute the gradient of $J(\theta)$ (the policy gradient theorem);
- 4. Implement a Stochastic Gradient Ascent algorithm.

Episodic RL problems

1. and 2. Fixed time horizon T. Initial state distribution $s_1 \sim p$.

Objective function:

$$J(\theta) = \mathbb{E}_{s_1 \sim p_1}[V^{\pi_{\theta}}(s_1)].$$

3. Policy gradient theorem. Rewrite $V^{\pi_{\theta}}(s_1)$ as:

$$V^{\pi_{\theta}}(s_1) = \mathbb{E}_{\pi_{\theta}}\left[\sum_{t=1} r(s_t, a_t)\right] = \sum_{\tau} \pi_{\theta}(\tau) R(\tau),$$

where τ denotes the random trajectory of an episode, $\pi_{\theta}(\tau)$ is the probability to observe this trajectory under π_{θ} , and $R(\tau)$ is the total reward collected during the episode τ . we have:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(\tau) R(\tau)].$$

In the above expectations, $\mathbb{E}_{\pi_{\theta}}$ just indicates that the episode is generated under π_{θ} .

 $\nabla \log \pi_{\theta}(\tau) = \sum_{t=1}^{T} \nabla \log \pi_{\theta}(s_t, a_t)$ is referred to as the **score function**.

Episodic RL problems

4. The policy gradient theorem states that when generating τ under π_{θ} , then $\nabla_{\theta} \log \pi_{\theta}(\tau) R(\tau)$ constitutes an unbiased estimator of $\nabla_{\theta}J(\theta)$. This naturally leads to REINFORCE algorithm:

REINFORCE Algorithm:

- 1. **Initialization:** select $\theta^{(0)}$ arbitrarily
- 2. **Iterations:** For all $k \ge 0$, for episode k, generate a trajectory under $\pi_{\theta^{(k)}}$:

$$(s_{1,k} = s, a_{1,k}, r_{1,k}, \dots s_{T,k}, a_{T,k}, r_{T,k})$$

Update the parameter

Update the parameter

$$\theta^{(k+1)} = \theta^{(k)} + \alpha_k \left(\sum_{t=1}^T \nabla \log \pi_{\theta}(s_{t,k}, a_{t,k}) \right) \left(\sum_{t=1}^T r_{t,k} \right)$$

Episodic RL problems

REINFORCE is a SGD algorithm, and finds a local maxmizer of $J(\theta)$ (under the usual convergence conditions). In practice, the algorithm offers poor performance, because of the high variance of the gradient estimator $\nabla_{\theta} \log \pi_{\theta}(\tau) R(\tau)$. Three techniques can be used to reduce this variance:

- Batches. Generate n episodes (instead of 1) before updating θ ; this divides the variance by 1/n.
- Reward to go. Instead of $\nabla_{\theta} \log \pi_{\theta}(\tau) R(\tau)$, use $\sum_{t=1}^{T} \nabla \log \pi_{\theta}(s_{t}, a_{t}) \sum_{u=t}^{T} r(s_{u}, a_{u})$; this estimator remains Unbiased.
- Baseline. Adding a baseline helps and does not introduce any bias. When n episodes are generated under the same θ , a natural baseline is the empirical rewards observed in the n episodes:

$$b = \frac{1}{n} \sum_{i=1}^{n} \sum_{t=1}^{T} r(s_{t,i}, a_{t,i})$$

The update is computed using $\nabla_{\theta} \log \pi_{\theta}(\tau)(R(\tau) - b)$.

In practice, you may consider combining the three above techniques.

Discounted RL problems

- 1. and 2. Infinite time horizon discounted MDP. The objective is to maximize $J(\theta) = \mathbb{E}_{s_1 \sim p}[V^{\pi_{\theta}}(s_1)]$ over all possible θ .
- 3. Policy gradient theorem. Introduce the discounted stationary distribution ρ_{θ} under π_{θ} :

$$\forall s \in \mathcal{S}, \quad \rho_{\theta}(s) = (1 - \lambda) \sum_{s'} p(s') \sum_{k=1}^{\infty} \lambda^{k} \mathbb{P}_{\pi_{\theta}}[s_{k} = s | s_{1} = s']$$

We have:

$$\nabla J(\theta) = \frac{1}{1 - \lambda} \mathbb{E}_{s \sim \rho_{\theta}, a \sim \pi_{\theta}(s, \cdot)} \left[\nabla \log \pi_{\theta}(s, a) Q^{\pi_{\theta}}(s, a) \right]$$

There are two difficulties in using the above formula towards a SGD algorithm.

- (a) We need a critic to estimate $Q^{\pi_{\theta}}$ (see the next subsection);
- (b) Sampling s according to ρ_{θ} is not easy.

Sampling from the discounted stationary distribution

Existing literature. Most algorithms implicitly assume that ρ_{θ} is the stationary distribution of the state under π_{θ} : they are wrong! Indeed, ρ_{θ} depends on the discount factor.

With restarts. When you may restart the system when you wish, you can sample according to ρ_{θ} as follows. Generate $s_1 \sim p_1$; for $t \geq 1$, $a_t \sim \pi_{\theta}(s_t, \cdot)$, s_{t+1} drawn from $p(\cdot|s_t, a_t)$ with probability λ , and from p_1 with probability $1 - \lambda$. Then sampling a state randomly from the constructed trajectory corresponds to sampling from ρ_{θ} .

8. Actor-critic methods

Actor-critic algorithms

A policy gradient method with policy evaluation.

Policy gradient theorems.

Stationary MDPs with terminal state: $\nabla J(\theta) = \mathbb{E}_{(s,a)\sim \mu_{\theta}}\left[\nabla \log \pi_{\theta}(s,a)Q^{\pi_{\theta}}(s,a)\right];$ Discounted MDPs: $\nabla J(\theta) = \frac{1}{1-\lambda}\mathbb{E}_{s\sim \rho_{\theta},a\sim \pi_{\theta}(s,\cdot)}\left[\nabla \log \pi_{\theta}(s,a)Q^{\pi_{\theta}}(s,a)\right].$

Policy evaluation. The (state, action) value function of a stationary policy π satisfies:

$$\forall (s, a), Q^{\pi_{\theta}}(s, a) = r(s, a) + \sum_{j} p(j|s, a) \sum_{b} \pi_{\theta}(j, b) Q^{\pi_{\theta}}(j, b).$$

To evaluate $Q^{\pi_{\theta}}$, we can use TD learning and function approximation $Q^{\pi_{\theta}} \approx Q_{\phi}$: when the experience (s,a,r,s',a') is observed, we update ϕ following a semi-gradient descent algorithm:

$$\phi \leftarrow \phi + \beta(r + Q_{\phi}(s', a') - Q_{\phi}(s, a)) \nabla_{\phi} Q_{\phi}(s, a).$$

Q Actor-critic algorithms

QAC Algorithm:

- 1. Initialization: θ , ϕ , state $s \leftarrow s_1 \sim p_1$
- 2. Iterations: Loop

If
$$s = \emptyset$$
, $s \leftarrow s_1 \sim p_1$

Take action $a \sim \pi_{\theta}(s, \cdot)$ and observe r, s' (reward, next state)

Sample the next action $a' \sim \pi_{\theta}(s', \cdot)$

Update the parameters

$$\phi \leftarrow \phi + \beta (r + Q_{\phi}(s', a') - Q_{\phi}(s, a)) \nabla_{\phi} Q_{\phi}(s, a)$$

$$\theta \leftarrow \theta + \alpha (\nabla_{\theta} \log \pi_{\theta}(s, a) Q_{\phi}(s, a))$$

$$s \leftarrow s', \ a \leftarrow a'$$

Note that the learning rates α and β at which θ and ϕ are updated may differ. Typically, we wish to keep the same policy π_{θ} for a period long enough so as to be able to estimate $Q^{\pi_{\theta}}$. Hence, typically, α is chosen much smaller than β .

Actor-Critic algorithm with a baseline

Use a baseline to enhance the convergence properties of the algorithm.

The natural baseline is $V^{\pi_{\theta}}(s)$ since $V^{\pi_{\theta}}(s) = \mathbb{E}_{a \sim \pi_{\theta}(s,\cdot)}[Q^{\pi_{\theta}}(s,a)].$

Advantage function:
$$A^{\pi_{\theta}}(s, a) = Q^{\pi_{\theta}}(s, a) - V^{\pi_{\theta}}(s)$$
.

The policy gradient theorem states that:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{(s,a) \sim \mu_{\theta}} \left[\nabla \log \pi_{\theta}(s,a) A^{\pi_{\theta}}(s,a) \right].$$

Now when (s, a, r, s', a') is observed under π_{θ} , we get:

$$A^{\pi_{\theta}}(s, a) = r + \mathbb{E}[V^{\pi_{\theta}}(s')] - V^{\pi_{\theta}}(s)$$

Hence we can use and fit $V^{\pi_{\theta}} \approx V_{\phi}$ only! Using TD learning we get the following update:

$$\phi \leftarrow \phi + \beta(r + V_{\phi}(s') - V_{\phi}(s)) \nabla_{\phi} V_{\phi}(s).$$

Actor-Critic algorithm with a baseline

The following two versions of the A2C (Advantage Actor-Critic) algorithms implement these ideas.

A2C Algorithm (TD version)

- 1. **Initialization:** θ , ϕ , state $s \leftarrow s_1 \sim p_1$
- 2. Iterations: Loop

If
$$s = \emptyset$$
, $s \leftarrow s_1 \sim p_1$

Take action $a \sim \pi_{\theta}(s, \cdot)$

Observe r, s' (reward, next state)

Sample the next action $a' \sim \pi_{\theta}(s', \cdot)$

Update the parameters

$$\phi \leftarrow \phi + \beta(r + V_{\phi}(s') - V_{\phi}(s)) \nabla_{\phi} V_{\phi}(s)$$

$$\theta \leftarrow \theta + \alpha \left(\nabla_{\theta} \log \pi_{\theta}(s, a) (r + V_{\phi}(s') - V_{\phi}(s)) \right)$$

$$s \leftarrow s', \ a \leftarrow a'$$

An interesting blog

Lilian Weng (Open AI)

RL overview: https://lilianweng.github.io/posts/2018-02-19-rl-overview/

 $Policy\ gradients:\ https://lilianweng.github.io/posts/2018-04-08-policy-gradient/$