Name: Gavali Deshabhakt Nagnath Subject: Selected Topics in Graph Theory

Roll No.: 202CD005 Course Instructor: Dr. Shyam Kamath

Assignment Number: 3

Q1. Give an example of a graph G for which $\chi(G) = 1 + \Delta(G)$.

Ans:

Any complete graph with n vertices follows above property. It comes from the Brooke's theorem.

We will consider a complete graph G with n = 5 vertices, then there will be n(n-1)/2 = 10 edges.

Here Maximum degreee of a vertex is 4 (as graph is complete it is also regular meaning all vertices has same degree) and chromatic number of graph is 5.

Q2. Prove or disprove: Orthogonal equivalance among $n \times n$ matrices is equivalance relation.

Ans:

Consider a graph G and let G' be its complement. Then these two graphs (G and G') being isomorphic means in particular that we have a bijctive vertex map

 $f: V(G) \to V(G')$ so there are equally many edges between u and v in G as there are between $f_1(u)$ and $f_1(u')$ in G'. If now $V(G) = \{u_1,...,u_n\}$ and $V(G') = \{u_1',...,u_n'\}$ then there must be a permutation σ such that $f_1(u_i) = u'_{\sigma(i)}$ for each i belongs to $\{1,...,n\}$. Then graphs G and G' are isomorphic. This also means that adjacency matrices A(G) and A(G') are orthogonally equivalent with respect to any labelling of their vertices. Hence, orthogonal equivalence among n x n matrices is equivalence relation

Q3. Let G be a simple graph with vertex labeling $V(G) = \{u_1, u_2, ..., u_n\}$. Let k be a natural number greater than zero. Prove that the entry $a_{ij}k$ in $A^k(G)$ is the number of distinct walks from u_i to u_i of length k in G.

Ans:

Let G be a graph with adjacency matrix A, and vertices u_1, \ldots, u_n . We proceed by induction on k to obtain the result.

Base Case:

Let k = 1. $A^1 = A$. $aij = the number of edges from <math>u_i$ to $u_j = the number of walks of length 1 from <math>u_i$ to u_j .

Inductive Step:

Assume true for k. Let bij be the ij^{th} entry of A^k , and let a_{ij} be the ij^{th} entry of A. By the inductive hypothesis b_{ij} is the number of walks of lengthk from u_i to u_j .

Consider the ij^{th} entry of $A^{k+1} = A*A^k = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{in}b_{2n} = \sum a_{im}b_{mj}$ (where m goes from 1 to n)

Consider $a_{i1}b_{1j}$ = number of walks of length k from u_1 to u_j times the number of walks of length 1 from u_i to u_1

- = the number of walks of length k+1 from u_i to u_j , where u_1 is the second vertex. This argument holds for each m, i.e. $a_{it}b_{tj}$
- = number of walks from u_i to v_j in which u_m is the second vertex

So the sum is the number of all possible walks from u_i to u_j . Hence proved.

Q4. Write an algorithm to construct a graph G for which $\kappa(G) = a$, $\lambda(G) = b$ and $\delta(G) = c$, where a, b and c are integers such that $0 < a \le b \le c$.

Ans:

Algorithm:

Given integers k, ℓ, d with $1 \le k \le \ell \le d$, here's how you can construct a graph G with $\kappa(G) = a, \lambda(G) = b$, and $\delta(G) = c$.

Take five disjoint sets V_1 , V_2 , V_3 , V_4 , V_5 with $|V_1|=1$, $|V_2|=c$, $|V_3|=b$, $|V_4|=a$, $|V_5|=c$, and take a surjection $f:V_3 \rightarrow V_4$.

The vertex set of G is $V_1 \cup V_2 \cup V_3 \cup V_4 \cup V_5$.

For the edge set of G take all edges xy where $\{x,y\} \subseteq V_1 \cup V_2$ or $\{x,y\} \subseteq V_2 \cup V_3$ or $\{x,y\} \subseteq V_4 \cup V_5$, and all edges xy where $x \in V_3$ and $y=f(x) \in V_4$.

We get a graph G with above mentioned constraints, such that G can be disconnected by removing either the a-vertices in V_4 or the b-edges between V_3 and V_4 , and that the vertex in V_1 has degree C.