Programação em Rede

Na aula anterior

Algoritmos de rotas dinâmicas

Na aula de hoje

Camada de transporte

Relembrando ...

Modelo OSI	Tipo	TCP/IP	
Aplicação			
Apresentação			
Sessão	Dados	Aplicação	
Transporte	Datagramas/Segmentos	Transporte	
Rede	Pacotes	Rede	
Enlace	Quadros	Acesso ao	
Física	Bits	meio	

Funções da camada de transporte

- Corrigir erros da camada de rede (detectar pacotes que não chegaram, por exemplo)
- Prover Qualidade de Serviço (QoS): quais conexões/pacotes devem ser priorizadas?
- Multiplexação de portas
- Prover interface de programação padronizada para os desenvolvedores

Corrigir erros da camada de rede

- Alguns erros de roteamento (a não existência de rota, por exemplo) podem ser detectados pela própria camada de rede
- Outros não: por exemplo suponha que um roteador recebeu um pacote porém antes de encaminhá-lo ficou sem luz?
- A camada de transporte adiciona um número de sequência aos pacotes (aqui chamados de datagramas) que permite a detecção de datagramas perdidos.

Exemplo:

- Um determinado arquivo é dividido em três datagramas
 - A camada de rede adiciona um ID sequencial em cada um (começando em 1, depois 2, 3, 4, etc)
 - Se após um tempo chegaram somente os datagramas 1, 3 e 4 houve um erro (ele pode ser ignorado ou pode ser solicitado o reenvio)
 - Se os pacotes chegarem fora de ordem (usando rotas diferentes, por exemplo) a camada de transporte deve reordenar os datagramas.

Qualidade de serviço (QoS)

- Se houver um link disponível com menos largura do que suficiente, o que pode ser feito?
 - Priorizar!
 - Porém, se a prioridade for feita pelo programador cada um vai marcar seus pacotes como prioritários
 - Muitas vezes a priorização é feita pelo Administrador de Redes com base em destinos, tipos de pacotes, horários, etc

Multiplexação de portas

- As portas são um número ente 0 e 65535 (2 bytes)
- Elas identificam qual programa deve receber um datagrama dentro de um mesmo computador/sistema operacional

Interface padronizada ao programador

 Como é a última camada abaixo da de aplicação (no TCP/IP) é o momento de prover uma interface padronizada aos programadores

Protocolos de transporte

- A camada oferece dois protocolos principais:
 - TCP (Transmission Control Protocol)
 - Orientado a conexão
 - UDP (User Datagram Protocol)
 - Não orientado a conexão

Diferenças TCP e UDP

- TCP
 - Requer conexão
 - O envio é confirmado
 - Usa mais largura de banda
 - Verificação de chegada é por conta do protocolo

- UDP
 - Não requer conexão
 - Envio não é confirmado
 - Usa menos largura de banda
 - Verifica é por conta do programador

 Uma análise superficial poderia indicar que o TCP é superior pois "facilita" a vida do programador mas ambos tem sua utilidade!

Estudo de caso:

Referências

- PERES, André; LOUREIRO, César Augusto Hass; SCHMITT, Marcelo Augusto Rauh. Redes de Computadores II: Níveis de Transporte e Rede. 2014.
- TANENBAUM, Andrew S. Redes de Computadores. 4^a. Edição. Editora Campus, 2003.