A215

Forside

Ernö Rubik Rubik's Terninger

Formulerin

Programoversig

Gruppe Teori

Græns

Den Øvre Grænse Den Nedre Grænse

Begynderens

ociemba's

monstration

Resultatei

Konklusion

rocesanalys

samling

Rubik's Cube Netværk og Algoritmer

A215

Aalborg Universitet

23. juni 2010

Forsio

Ernö Rubik Rubik's Terninger

Problem Formuleri

Programoversig

Gruppe Teori

Grænse

Den Øvre Grænse Den Nedre Grænse Fremtiden

Begynderens

(ociemba's

emonstration

Resultate

Konklusion

Procesanaly:

psamling

Ungarn

- ▶ 1944
- ► Ingeniør
- ▶ Patent i 1977

Forsic

Ernö Rubik Rubik's Terningen

Formulerin

Programoversig

Gruppe Teori

Grænse

Den Øvre Grænse Den Nedre Grænse Fremtiden

Begynderens

Kociemba's

)emonstration

Resultate

Konklusion

Procesanaly:

- 27 cubies
- ▶ 6 faces
- ▶ 9 facelets

Introduktion Ernö Rubik Rubik's Terninge

Problem Formulering

Programoversigt

Gruppe Teori

Grænse

Den Øvre Grænse Den Nedre Grænse Fremtiden

egynderens

ociemba's

nonstration

Resultate

Conklusion

Procesanaly:

- ► How have the upper and lower bounds of the Rubik's Cube progressed and how have they been proven?
- ► How efficient is Kociemba's optimal solver compared to beginner's algorithm and how can this be tested?

Programoversigt

Rubik's Cube

Forside

Introduktion

Programoversigt

Gruppe Teori

Introduktion

Problem Formulering

Gruppe Teori

Grænser

Begynderens Algoritme

Kociemba's Optimale Løser

Demonstration

Resultater

Konklusion

Procesanalyse

A215

Forside

Introduktion

Ernö Rubik Rubik's Terninge

Formulerin

Programoversig

Gruppe Teori

Grænse

Den Øvre Grænse Den Nedre Grænse Fremtiden

Begynderens

(ociemba's

monstration

Resultate

Konklusion

Procesanaly

- Gruppe definition
 - ▶ (set, opperator)
- Rubik's gruppen
 - $M_1 * M_2 \in G$
 - ► Tomt move: e * M = M
 - ► Invers move: *M* og *M*′
 - Associative lov: $(M_1 * M_2) * M_3 = M_1 * (M_2 * M_3)$
- Undergruppe

Grænser

- ▶ Den øvre grænse
 - ▶ 22
 - Rokicki's set solver
- ▶ Den nedre grænse
 - **2**0
 - Super flip
- ► Fremtiden

, (213

1 Orside

Introduktior Ernö Rubik

Problem Formulerin

Programoversig

Gruppe Teori

Grænser

Den Øvre Grænse Den Nedre Grænse

Begynderens

(ociemba's

monstration

Resultatei

Conklusion

Procesanalyse

Den Øvre Grænse

Forsi

Introduktion

Problem Formulerir

Programoversigt

Gruppe Teori

Grænse

Den Øvre Grænse Den Nedre Grænse Framtiden

Segynderens

lociemba's

emonstration

Resultate

Konklusion

Procesanalyse

Den Øvre Grænse

Forsic

Introduktion

Problem Formulerir

Programoversigt

Gruppe Teori

Grænse

Den Øvre Grænse Den Nedre Grænse Fremtiden

Begynderens

ociemba's Optimale Løser

emonstration

Resultatei

Konklusion

Procesanalys

Den Øvre Grænse

Forsic

Introduktion

roblem

Programoversigt

Gruppe Teori

Grænse

Den Øvre Grænse Den Nedre Grænse

Begynderens

ociemba's Intimale I øser

emonstration

Resultatei

Konklusion

Procesanalys

Introduktion

Rubik's Terninger

Formulering

Frogramoversigu

Gruppe Teori

Grænse

Den Øvre Grænse Den Nedre Grænse Fremtiden

Begynderens Ugoritme

ociemba's

emonstration

Resultate

Konklusion

rocesanal

Fremtiden

... 5 Cub

I OI SIG

Ernö Rubik Rubik's Terninge

ormulering

Programoversigt

Gruppe Teori

Grænse

Den Øvre Grænse Den Nedre Grænse Fremtiden

> egynderens goritme

ociemba's Optimale Løser

emonstration

Resultate

Conklusion

Procesanalys

Introduktion Ernö Rubik Rubik's Terninge

Formuler

Programoversig

Gruppe Teori

Grænse

Den Øvre Grænse Den Nedre Grænse Fremtiden

Begynderens Algoritme

Kociemba's

monstration

Resultate

Konklusion

Procesanalyse

- Funktionalitet
- Implementeringen
 - ▶ Ikke analyserende
 - Lineær eksekvering
- Effektivisering
 - ▶ Flere algoritmer
 - Forskellige udgangspunkter

A215

Forside

Introduktion Ernö Rubik

Problem Formulerir

Programoversigt

Gruppe Teori

Græns

Den Øvre Grænse Den Nedre Grænse

Begynderens

Kociemba's Optimale Løser

emonetration

Resultate

Konklusion

Procesanal

- Funktionalitet
 - Undergruppen H
 - Bredde først søge algoritme
- Problemstillinger ved implementeringen
 - Langsom
 - ► Manglende opslag
- Effektivisering
 - ► Flere H'er
 - Nogle opslag

Demonstration

A215

Forside

Introduktion

Rubik's Terninger

Formulering

Programoversig

Gruppe Teori

Grænse

Den Øvre Grænse Den Nedre Grænse Fremtiden

> egynderens Igoritme

Kociemba's

Demonstration

Resultat

Konklusion

rocesanalys

Resultater

- Begynderens algoritme
 - ▶ 10.000.000 løste terninger
 - 50 scrambles per terning
 - ▶ 152 træk i gennemsnit
 - Løsning på under et millisekund

Forside

Introduktion

Ernö Rubik Rubik's Terninge

Formulering

Programoversigt

Gruppe Teori

Grænse

Den Øvre Grænse Den Nedre Grænse Fremtiden

Begynderens Algoritme

Kociemba's

Demonstration

Resultater

Konklusion

Procesanalys

Ernö Rubik Rubik's Terninge

Formule

Programoversig

Gruppe Teori

Græns

Den Øvre Grænse Den Nedre Græns

Segynderens

lociemba's

monstration

Resultater

Konklusion

Procesanaly

- ► Kociemba's optimal solver
 - Altid optimal løsning (jf. den øvre grænse)
 - ► Lang tid for hver løsning
 - ► Altid løsning inden for 18 millioner år

- How have the upper and lower bounds of the Rubik's Cube progressed and how have they been proven?
 - Den øvre grænse er bevist med Rokicki's set solver.
 - Den nedre grænse bevist ved test.

Introduktion Ernö Rubik

Problem Formulerin

Programoversigt

Gruppe Teori

Grænse

Den Øvre Grænse Den Nedre Grænse

egynderens

lociemba's Optimale Løse

emonstration

Resultat

Konklusion

Procesanalys

Introduktion Ernö Rubik Rubik's Terninge

Problem Formulerin

Programoversig

Gruppe Teori

Grænse

Den Øvre Grænse Den Nedre Grænse

egynderens

(ociemba's

monstration

Resultate

Konklusion

Procesanaly

- ► How efficient is Kociemba's optimal solver compared to beginner's algorithm and how can this be tested?
 - ► Twist-wise
 - ▶ Begynderens bruger i snit 151 træk
 - ► Kociemba's bruger altid under 22 træk
 - ► Time-wise
 - $ightharpoonup 1.2 \cdot 10^{18}$
 - Computer tests

- ▶ Projektplanlægning
 - Gruppesamarbejde
 - To mands grupper
- Rettelser løbende
- Samarbejde med vejleder
- Læringsmål

A215

Forside

Introduktion Ernö Rubik Rubik's Terninge

Formulering

Programoversigt

Gruppe Teori

Grænse

Den Øvre Grænse Den Nedre Grænse Fremtiden

Begynderens Algoritme

Kociemba's Optimale Løser

Demonstration

Resultate

Konklusion

Procesanalyse

Opsamling

Introduktion

Problem Formulering

Gruppe Teori

Grænser

Begynderens Algoritme

Kociemba's Optimale Løser

Demonstration

Resultater

Konklusion

Procesanalyse

Forside

Introduktion

Gruppe Teori