2016年全国统一高考化学试卷 (新课标Ⅲ)

一、选择题.

1. (3分)化学在生活中有着广泛的应用,下列对应关系错误的是()

选项	化学性质	实际应用
Α	CIO ₂ 具有强氧化性	自来水消毒杀菌
В	SO ₂ 具有还原性	用作漂白剂
С	NaHCO₃ 受热易分解并且生成气体	焙制糕点
D	Al(OH) ₃ 分解吸收大量热量并有 H ₂ O 生成	阻燃剂

Λ.	
4	Δ

B. B

C. C

D. D

- 2. (3分)下列说法错误的是()
 - A. 乙烷光照下能与浓盐酸发生取代反应
 - B. 乙烯可以用作生产食品包装材料的原料
 - C. 乙醇室温下在水中的溶解度大于溴乙烷
 - D. 乙酸和甲酸甲酯互为同分异构体
- 3. (3分)下列有关实验的操作正确的是()

	实验	操作
Α	除去 NaHCO ₃ 固体中混有的 NH ₄ Cl	直接将固体加热
В	实验室收集 Cu 与稀硝酸反应成的	向上排空气法收集
	NO	
С	检验乙酸具有酸性	配制乙酸溶液,滴加 NaHCO ₃ 溶液有气泡
		产生
D	测定某稀硫酸的浓度	取 20.00ml 该稀硫酸于干净的锥形瓶中,
		用 0.1000mol/L 的 NaOH 标准液进行滴
		定

A. A

B. B

C. C

D. D

4. (3分)已知异丙苯的结构简式如图,下列说法错误的是()

A. 异丙苯的分子式为 C₉H₁₂

- B. 异丙苯的沸点比苯高
- C. 异丙苯中碳原子可能都处于同一平面
- D. 异丙苯和苯为同系物
- 5. (3 分)锌@空气燃料电池可用作电动车动力电源,电池的电解质溶液为 KOH 溶液,反应为 $2Zn+O_2+4OH^{@}+2H_2O$ —2Zn(OH) $_4$ ^{2®}. 下列说法正确的是
 - A. 充电时, 电解质溶液中 K⁺向阳极移动
 - B. 充电时, 电解质溶液中 c (OH[®]) 逐渐减小
 - C. 放电时,负极反应为: Zn+4OH[®]2e[®]─Zn(OH)₄^{2®}
 - D. 放电时, 电路中通过 2mol 电子, 消耗氧气 22.4L (标准状况)
- 6. (3分)四种短周期主族元素 W、X、Y、Z的原子序数依次增大,W、X的简单离子具有相同电子层结构,X的原子半径是短周期主族元素原子中最大的,W与Y同族,Z与X形成的离子化合物的水溶液呈中性.下列说法正确的是()
 - A. W 与 X 形成的化合物溶于水后溶液呈碱性
 - B. 简单离子半径: W < X < Z
 - C. 气态氢化物的热稳定性: W<Y
 - D. 最高价氧化物的水化物的酸性: Y>Z
- 7. (3分)下列有关电解质溶液的说法正确的是()
 - A. 向 0.1mol•L^{®1} CH₃COOH 溶液中加入少量水,溶液中<u>c(H⁺)</u>减小

 - C. 向盐酸中加入氨水至中性,溶液中 $\frac{c(NH_4^+)}{c(C1^-)} > 1$
 - D. 向 AgCl、AgBr 的饱和溶液中加入少量 AgNO₃,溶液中 $\frac{c(C1^-)}{c(Br^-)}$ 不变

二、解答题.

- 8. 过氧化钙微溶于水,溶于酸,可用作分析试剂、医用防腐剂、消毒剂.以下是一种制备过氧化钙的实验方法.回答下列问题:
 - (一) 碳酸钙的制备

- (1)步骤①加入氨水的目的是_____. 小火煮沸的作用是使沉淀颗粒长大, 有利于 .
- (2) 如图是某学生的过滤操作示意图,其操作不规范的是_____(填标号).

- a. 漏斗末端颈尖未紧靠烧杯壁
- b. 玻璃棒用作引流
- c. 将滤纸湿润, 使其紧贴漏斗壁
- d. 滤纸边缘高出漏斗
- e. 用玻璃棒在漏斗中轻轻搅动以加快过滤速度
- (二)过氧化钙的制备

- (3)步骤②的具体操作为逐滴加入稀盐酸,至溶液中尚存有少量固体,此时溶液呈_____性(填"酸"、"碱"或"中").将溶液煮沸,趁热过滤,将溶液煮沸的作用是_____.
- (4)步骤③中反应的化学方程式为_____,该反应需要在冰浴下进行,原因是 .
- (5)将过滤得到的白色结晶依次使用蒸馏水、乙醇洗涤,使用乙醇洗涤的目的是_____.

- (6)制备过氧化钙的另一种方法是:将石灰石煅烧后,直接加入双氧水反应,过滤后可得到过氧化钙产品.该工艺方法的优点是_____,产品的缺点是_____.
- 9. 煤燃烧排放的烟含有 SO_2 和 NO_x ,形成酸雨、污染大气,采用 $NaClO_2$ 溶液作为吸收剂可同时对烟气进行脱硫、脱硝。回答下列问题:
 - (1) NaClO₂ 的化学名称为_____。
 - (2) 在鼓泡反应器中通入含 SO₂、NO_x 的烟气,反应温度 323K,NaClO₂ 溶液浓度为 5×10[№] mol•L[№]1. 反应一段时间后溶液中离子浓度的分析结果如表。

离子	SO ₄ ²²	SO ₃ ²²	NO ₃ ²	NO ₂ ²	Cl ²
c/	8.35×10 ²⁴	6.87×10 ²⁶	1.5×10 ²⁴	1.2×10 ²⁵	3.4×10 ²³
(mol•L ²¹					
)					

- ①写出 NaClO₂ 溶液脱硝过程中主要反应的离子方程式_____。增加压强, NO 的转化率_____(填"提高"、"不变"或"降低")。
- ②随着吸收反应的进行,吸收剂溶液的 pH 逐渐_____(填"增大"、"不变"或"减小")。
- ③由实验结果可知,脱硫反应速率_____脱硝反应速率(填"大于"或"小于")原因是除了 SO₂ 和 NO 在烟气中初始浓度不同,还可能是
 - (3) 在不同温度下, $NaClO_2$ 溶液脱硫、脱硝的反应中 SO_2 和 NO 的平衡分压 P_e 如图所示。

- ①由图分析可知,反应温度升高,脱硫、脱硝反应的平衡常数均_____(填"增大"、"不变"或"减小")。
- ②反应 CIO₂[®]+2SO₃^{2®}—2SO₄^{2®}+CI[®]的平衡常数 K 表达式为 。

- (4) 如果采用 NaClO、Ca(ClO)₂替代 NaClO₂,也能得到较好的烟气脱硫效果。
- ①从化学平衡原理分析,Ca(CIO)₂相比 NaCIO 具有的优点是。
- ②已知下列反应:

$$SO_2 (g) +2OH^{2} (aq) =SO_3^{22} (aq) +H_2O (I) \triangle H_1$$

$$CIO^{2}$$
 (aq) $+SO_{3}^{22}$ (aq) $-SO_{4}^{22}$ (aq) $+CI^{2}$ (aq) $\triangle H_{2}$

$$CaSO_4$$
 (s) $\longrightarrow Ca^{2+}$ (aq) $+SO_4^{22}$ (aq) $\triangle H_3$

则反应
$$SO_2$$
 (g) $+Ca^{2+}$ (aq) $+CIO^{2}$ (aq) $+2OH^{2}$ (aq) $=$ $CaSO_4$ (s) $+H_2O$ (I) $+CI^{2}$ (aq) 的 \triangle H= 。

10. 以硅藻土为载体的五氧化二钒(V_2O_5)是接触法生产硫酸的催化剂. 从废 钒催化剂中回收 V_2O_5 既避免污染环境

又有利于资源综合利用. 废钒催化剂的主要成分为:

物质	V ₂ O ₅	V ₂ O ₄	K ₂ SO ₄	SiO ₂	Fe ₂ O ₃	Al ₂ O ₃
质量分数/%	2.2~2.9	2.8~3.1	22~28	60~65	1~2	<1

以下是一种废钒催化剂回收工艺路线:

回答下列问题:

- (1) "酸浸"时 V_2O_5 转化为 VO_2 ⁺,反应的离子方程式为_____,同时 V_2O_4 转成 VO^2 ⁺. "废渣 1"的主要成分是
- (2) "氧化"中欲使 3 mol 的 VO²⁺变为 VO₂+,则需要氧化剂 KClO₃ 至少为_____ mol.
- (3)"中和"作用之一是使钒以 V₄O₁₂^{4®}形式存在于溶液中."废渣 2"中含有_____.
- (5)"流出液"中阳离子最多的是_____.

(6) "沉钒"得到偏钒酸铵(NH₄VO₃)沉淀,写出"煅烧"中发生反应的化学方程 式 .

【[化学——选修 2: 化学与技术】(15 分)

11. (15 分)聚合硫酸铁(PFS)是水处理中重要的絮凝剂,如图是以回收废 铁屑为原料制备 PFS 的一种工艺流程.

回答下列问题

- (1) 废铁屑主要为表面附有大量铁锈的铁,铁锈的主要成分为 . 粉碎 过筛的目的是 .
- (2) 酸浸时最合适的酸是 , 写出铁锈与酸反应的离子方程式 .
- (3) 反应釜中加入氧化剂的作用是 , 下列氧化剂中最合适的是 (填标号).
- A. $KMnO_4$ B. Cl_2 C. H_2O_2 D. HNO_3

- (4) 聚合釜中溶液的 pH 必须控制在一定的范围内, pH 偏小时 Fe³⁺水解程度 弱,pH 偏大时则 .
- (5) 相对于常压蒸发,减压蒸发的优点是
- (6) 盐基度 B 是衡量絮凝剂絮凝效果的重要指标,定义式为 $B=\frac{3n(OH)}{n(Fe)}$ (n 为 物质的量). 为测量样品的 B 值,取样品 m g,准确加入过量盐酸,充分反 应,再加入煮沸后冷却的蒸馏水,以酚酞为指示剂,用 c mol•L™的标准 NaOH 溶液进行中和滴定(部分操作略去,已排除铁离子干扰).到终点时 消耗 NaOH 溶液 V mL. 按上述步骤做空白对照试验,消耗 NaOH 溶液 Vo mL,已知该样品中 Fe 的质量分数 w,则 B 的表达式为 .

【化学-选修 3: 物质结构与性质】(15分)

12. (15 分) 砷化镓(GaAs) 是优良的半导体材料, 可用于制作微型激光器或 太阳能电池的材料等. 回答下列问题:

- (1) 写出基态 As 原子的核外电子排布式 .
- (2) 根据元素周期律,原子半径 Ga_____As,第一电离能 Ga_____ As. (填"大于"或"小于")
- (3) AsCl₃分子的立体构型为_____, 其中 As 的杂化轨道类型为_____.
- (4) GaF₃ 的熔点高于 1000℃, GaCl₃ 的熔点为 77.9℃, 其原因是 .
- (5) GaAs 的熔点为 1238°C,密度为ρg•cm^{□3},其晶胞结构如图所示.该晶体的类型为______,Ga与As以______键键合.Ga和As的摩尔质量分别为M_{Ga}g•mol^{□1}和 M_{As}g•mol^{□1},原子半径分别为 r_{Ga}pm 和 r_{As}pm,阿伏伽德罗常数值为 N_A,则 GaAs 晶胞中原子的体积占晶胞体积的百分率为 .

四、【化学-选修 5: 有机化学基础】(15 分)

13. (15 分)端炔烃在催化剂存在下可发生偶联反应,成为 Glaser 反应.

2R□C=C□H 催化剂 R□C=C□C=C□R+H2

该反应在研究新型发光材料、超分子化学等方面具有重要价值.下面是利用 Glaser 反应制备化合物 E 的一种合成路线:

回答下列问题:

- (1) B 的结构简式为_____, D 的化学名称为_____.
- (2) ①和③的反应类型分别为 、 . . .
- (3) E 的结构简式为_____. 用 1mol E 合成 1, 4億二苯基丁烷, 理论上需要消耗氢气 mol.
- (4) 化合物 (HC ≡ C → C ≡ CH) 也可发生 Glaser 偶联反应生成聚合物,该

聚合反应的化学方程式为
(5) 芳香化合物 F 是 C 的同分异构体, 其分子中只有两种不同化学环境的氢,
数目比为 3: 1, 写出其中 3 种的结构简式
(6) 写出用 20苯基乙醇为原料(其他无机试剂任选)制备化合物 D 的合成路
线

2016年全国统一高考化学试卷 (新课标Ⅲ)

参考答案与试题解析

一、选择题.

1. (3分)化学在生活中有着广泛的应用,下列对应关系错误的是()

选项	化学性质	实际应用	
Α	CIO ₂ 具有强氧化性	自来水消毒杀菌	
В	SO ₂ 具有还原性	用作漂白剂	
С	NaHCO ₃ 受热易分解并且生成气体	焙制糕点	
D	AI(OH) ₃ 分解吸收大量热量并有	阻燃剂	
	H₂O 生成		

A. A B. B C. C D. D

【考点】EM: 氯、溴、碘及其化合物的综合应用; F5: 二氧化硫的化学性质; GF: 钠的重要化合物: GK: 镁、铝的重要化合物.

【专题】52:元素及其化合物.

【分析】A. 具有强氧化性,可用于杀菌消毒;

- B. 做漂白剂与漂白性有关;
- C. NaHCO₃不稳定,与酸反应生成二氧化碳气体;
- D. 氢氧化铝分解吸收热量。

【解答】解: A. ClO₂具有强氧化性,可使蛋白质变性,可用于杀菌消毒,故 A 正确;

- B. 做漂白剂与漂白性有关,与还原性无关,故 B 错误;
- C. NaHCO₃不稳定,与酸反应生成二氧化碳气体,可用于焙制糕点,故 C 正确;
- D. 氢氧化铝分解吸收热量,可用于阻燃剂,故 D 正确。

故选: B。

【点评】本题考查物质的性质与应用,为高考常见题型和高频考点,侧重考查 第9页(共32页) 学生的双基的掌握, 有利于培养学生良好的科学素养, 难度不大。

- 2. (3分)下列说法错误的是()
 - A. 乙烷光照下能与浓盐酸发生取代反应
 - B. 乙烯可以用作生产食品包装材料的原料
 - C. 乙醇室温下在水中的溶解度大于溴乙烷
 - D. 乙酸和甲酸甲酯互为同分异构体

【考点】HD: 有机物的结构和性质.

【专题】533: 有机反应.

【分析】A. 乙烷与浓盐酸不反应;

- B. 聚乙烯为食品包装材料:
- C. 乙醇与水分子间含氢键, 溴乙烷不含:
- D. 乙酸和甲酸甲酯的分子式相同,结构不同。

【解答】解: A. 乙烷与浓盐酸不反应,光照下可与卤素单质发生取代反应,故 A 错误:

- B. 聚乙烯为食品包装材料, 乙烯可合成聚乙烯, 故 B 正确;
- C. 乙醇与水分子间含氢键, 溴乙烷不含, 则乙醇室温下在水中的溶解度大于溴乙烷, 故 C 正确:
- D. 乙酸和甲酸甲酯的分子式相同,结构不同,二者互为同分异构体,故 D 正确:

故选: A。

【点评】本题考查有机物的结构与性质,为高频考点,把握官能团与性质的关系、有机反应为解答的关键,侧重分析与应用能力的考查,注意常见有机物的性质,题目难度不大。

3. (3分)下列有关实验的操作正确的是()

	实验	操作
А	除去 NaHCO ₃ 固体中混有的 NH ₄ Cl	直接将固体加热

В	实验室收集 Cu 与稀硝酸反应成	向上排空气法收集
	的 NO	
С	检验乙酸具有酸性	配制乙酸溶液,滴加 NaHCO ₃ 溶液有气
		泡产生
D	测定某稀硫酸的浓度	取 20.00ml 该稀硫酸于干净的锥形瓶
		中,用
		0.1000mol/L 的 NaOH 标准液进行滴定

A. A

B. B

C. C

D. D

【考点】U5: 化学实验方案的评价.

【专题】25:实验评价题.

【分析】A. 碳酸氢钠热稳定性较弱,加热易分解生成碳酸钠、二氧化碳和水;

- B. NO 与空气中氧气反应,不能用排空气法收集;
- C. 乙酸溶液中滴加 NaHCO3 溶液有气泡产生,证明乙酸的酸性大于碳酸;
- D. 该中和滴定实验中没有加入指示剂.

【解答】解: A. 由于碳酸氢钠加热易分解,不能利用加热的方法除去 NaHCO₃ 固体中混有的 NH₄Cl, 故 A 错误:

- B. NO 与氧气反应,应该用排水法收集,不能用排空气法收集,故 B 错误;
- C. 配制乙酸溶液,滴加 NaHCO₃溶液有气泡产生,证明乙酸的酸性大于碳酸,碳酸具有酸性,则证明乙酸具有酸性,故 C 正确;
- D. 稀硫酸与 NaOH 溶液的反应没有明显现象,需要滴入指示剂,否则无法完成实验,故 D 错误;

故选: C。

【点评】本题考查了化学实验方案的评价,题目难度不大,涉及物质分离与提纯、气体收集方法、中和滴定等知识,明确常见化学实验基本操作方法为解答关键,试题培养了学生的分析能力及化学实验能力.

4. (3分)已知异丙苯的结构简式如图,下列说法错误的是()

- A. 异丙苯的分子式为 C₉H₁₂
- B. 异丙苯的沸点比苯高
- C. 异丙苯中碳原子可能都处于同一平面
- D. 异丙苯和苯为同系物

【考点】HD:有机物的结构和性质.

【专题】534:有机物的化学性质及推断.

【分析】A. 由有机物结构简式可知有机物的分子式为 C_9H_{12} ;

- B. 异丙苯和苯均为分子晶体,相对分子质量越大,分子间作用力越强,沸点越高;
- C. 苯环为平面结构,与苯环直接相连的 C 在同一平面内,四面体 C 最多三原子 共平面;
- D. 异丙苯和苯的结构相似,分子组成上相差 3 个 CH₂原子团,互为同系物.

【解答】解: A. 由有机物结构简式可知有机物的分子式为 C9H12, 故 A 正确;

- B. 异丙苯和苯均为分子晶体,异丙苯的相对分子质量比苯大,故分子间作用力强与苯,沸点比苯高,故 B 正确:
- C. 苯环为平面结构, 但侧链中存在四面体结构, 故 C 错误:
- D. 异丙苯和苯的结构相似,分子组成上相差 $3 \land CH_2$ 原子团,互为同系物,故 D 正确。

故选: C。

- 【点评】本题考查有机物的结构和性质,为高考常见题型,侧重于学生的分析能力的考查,注意把握有机物的结构和官能团的性质,注意四面体碳最多 3 原子共平面,难度不大.
- 5. (3 分)锌@空气燃料电池可用作电动车动力电源,电池的电解质溶液为 KOH 溶液,反应为 $2Zn+O_2+4OH^{@}+2H_2O$ —2Zn(OH) $_4$ ^{2®}. 下列说法正确的是
 - A. 充电时, 电解质溶液中 K⁺向阳极移动
 - B. 充电时, 电解质溶液中 c (OH[®]) 逐渐减小

- C. 放电时,负极反应为: Zn+4OH[®]22e[®]─Zn(OH)₄^{2®}
- D. 放电时, 电路中通过 2mol 电子, 消耗氧气 22.4L (标准状况)

【考点】BH: 原电池和电解池的工作原理.

【专题】51I: 电化学专题.

【分析】根据 2Zn+O₂+4OH[®]+2H₂O—2Zn(OH)₄^{2®}可知,O₂中元素的化合价降低,被还原,应为原电池正极,Zn 元素化合价升高,被氧化,应为原电池负极,电极反应式为 Zn+4OH[®]22e[®]—Zn(OH)₄^{2®},充电时阳离子向阴极移动,以此解答该题。

【解答】解: A. 充电时阳离子向阴极移动,故A错误;

- B. 充电时,电池反应为 Zn (OH) ₄²ễ+2eễ━Zn+4OHễ, 电解质溶液中 c (OH[®]) 逐渐增大,故 B 错误;
- C. 放电时,负极反应式为 Zn+4OH型2e型 Zn (OH) ₄型 , 故 C 正确;
- D. 放电时,每消耗标况下 22.4L 氧气,转移电子 4mol,故 D 错误。故选: C。
- 【点评】本题考查原电池与电解池的基础知识,正确判断正负极、阴阳极,注意电极反应式的书写及电子转移的计算,正确判断化合价的变化为解答该题的关键,题目难度中等。
- 6. (3分)四种短周期主族元素 W、X、Y、Z的原子序数依次增大,W、X的简单离子具有相同电子层结构,X的原子半径是短周期主族元素原子中最大的,W与Y同族,Z与X形成的离子化合物的水溶液呈中性.下列说法正确的是()
 - A. W 与 X 形成的化合物溶于水后溶液呈碱性
 - B. 简单离子半径: W < X < Z
 - C. 气态氢化物的热稳定性: W<Y
 - D. 最高价氧化物的水化物的酸性: Y>Z

【考点】8F: 原子结构与元素周期律的关系.

【专题】51C:元素周期律与元素周期表专题.

- 【分析】四种短周期主族元素 W、X、Y、Z的原子序数依次增大,X的原子半径是短周期主族元素原子中最大的,则 X 为 Na. 由原子序数可知,Y、Z处于第三周期,而 Z 与 X (钠)形成的离子化合物的水溶液呈中性,则 Z 为 Cl. W、X 的简单离子具有相同电子层结构,且 W 与 Y 同族,W 在第二周期且是非金属元素,W 可能是氮(或)氧,则对应的 Y 为磷(或硫).
- 【解答】解:四种短周期主族元素 W、X、Y、Z的原子序数依次增大,X的原子半径是短周期主族元素原子中最大的,则 X为 Na.由原子序数可知,Y、Z处于第三周期,而 Z与 X(钠)形成的离子化合物的水溶液呈中性,则 Z为 Cl. W、X的简单离子具有相同电子层结构,且 W 与 Y 同族,W 在第二周期且是非金属元素,W 可能是氮(或)氧,则对应的 Y 为磷(或硫)。
- A. W 可能是氮或氧,与钠形成的化合物可能是氮化钠,氧化钠,过氧化钠, 它们与水反应都能生成氢氧化钠使溶液呈碱性,故 A 正确;
- B. X 离子(Na⁺)、W 离子的电子层为 2 层, Z 离子(Cl[®])电子层为 3 层,电子层结构相同,核电荷数越大离子半径越小,离子电子层越多离子半径越大,故简单离子半径大小顺序是: X<W<Z,故 B 错误;
- C. W 与 Y 处于同于主族,从上到下非金属性逐渐减弱,气态氢化物的热稳定性: W>Y,故 C 错误;
- D. Y 与 Z 处于同同期,从左到右非金属性逐渐增强,最高价氧化物的水化物的酸性: Z>Y, 故 D 错误。

故选: A。

- 【点评】本题考查结构性质位置关系应用,侧重对元素周期律的考查,正确推断各元素为解答关键,注意元素的不确定性,试题培养了学生的分析能力及灵活应用能力.
- 7. (3分)下列有关电解质溶液的说法正确的是()
 - A. 向 0.1mol L^{図1} CH₃COOH 溶液中加入少量水,溶液中<u>c(H⁺)</u>减小<u>c(CH₃COOH)</u>

C. 向盐酸中加入氨水至中性,溶液中
$$\frac{c(NH_4^+)}{c(C1^-)} > 1$$

D. 向 AgCl、AgBr 的饱和溶液中加入少量 AgNO₃,溶液中
$$\frac{c(C1^-)}{c(Br^-)}$$
不变

【考点】D5: 弱电解质在水溶液中的电离平衡; DO: 酸碱混合时的定性判断及有关 ph 的计算.

【专题】51G: 电离平衡与溶液的 pH 专题.

【分析】A. 加水促进电离,则 n(H⁺)增大, c(CH₃COOH)减小;

- B. 从 20°C升温至 30°C, 促进水解, Kh 增大;
- C. 向盐酸中加入氨水至中性,则 $c(H^+)=c(OH^{\mathbb{Q}})$,结合电荷守恒分析;
- D. 向 AgCl、AgBr 的饱和溶液中加入少量 AgNO₃,c(Ag⁺)相同, $\frac{c(C1^-)}{c(Br^-)}$ = $\frac{Ksp(AgC1)}{Ksp(AgBr)}$.

增大,但 c(CH₃COO[®])减小,K_a保持不变,则溶液中<u>c(H⁺)</u>增大,故 A 错误:

- C. 向盐酸中加入氨水至中性,则 c (H^+) = c (OH^{in}) ,由电荷守恒可知,溶液 $+ \frac{c(NH_4^{\ \ +)}}{c(C1^{\ \ -})} = 1 , \ to C 错误;$

D. 向 AgCl、AgBr 的饱和溶液中加入少量 AgNO₃,c(Ag⁺)相同, $\frac{c(C1^-)}{c(Br^-)}$ =

 $\frac{\text{Ksp}(\text{AgCl})}{\text{Ksp}(\text{AgBr})}$, K_{sp} 只与温度有关,而温度不变,则溶液中 $\frac{c(\text{Cl}^-)}{c(\text{Br}^-)}$ 不变,故 D

正确;

故选: D。

【点评】本题考查酸碱混合及弱电解质的电离,为高频考点,把握电离平衡、溶解平衡及酸碱混合定性分析等为解答的关键,侧重分析与应用能力的考查,注意平衡常数的应用及电荷守恒应用,题目难度中等.

二、解答题.

- 8. 过氧化钙微溶于水,溶于酸,可用作分析试剂、医用防腐剂、消毒剂.以下是一种制备过氧化钙的实验方法.回答下列问题:
- (一) 碳酸钙的制备

- (1) 步骤①加入氨水的目的是<u>调节溶液 pH 使 Fe(OH) $_3$ 沉淀</u>.小火煮沸的作用是使沉淀颗粒长大,有利于一过滤分离。.
- (2)如图是某学生的过滤操作示意图,其操作不规范的是<u>ade</u>(填标号).

- a. 漏斗末端颈尖未紧靠烧杯壁
- b. 玻璃棒用作引流
- c. 将滤纸湿润, 使其紧贴漏斗壁

- d. 滤纸边缘高出漏斗
- e. 用玻璃棒在漏斗中轻轻搅动以加快过滤速度
- (二) 过氧化钙的制备

- (3)步骤②的具体操作为逐滴加入稀盐酸,至溶液中尚存有少量固体,此时溶液呈<u>酸</u>性(填"酸"、"碱"或"中").将溶液煮沸,趁热过滤,将溶液煮沸的作用是除去溶液中溶解的二氧化碳.
- (4) 步骤③中反应的化学方程式为
 CaCl₂+2NH₃. H₂O+H₂O₂+6H₂O=CaO₂•8H₂O↓+2NH₄Cl , 该反应需要在冰浴下进行,原因是温度过高时双氧水易分解 .
- (5)将过滤得到的白色结晶依次使用蒸馏水、乙醇洗涤,使用乙醇洗涤的目的 是<u>去除晶体表面水分</u>.
- (6)制备过氧化钙的另一种方法是:将石灰石煅烧后,直接加入双氧水反应,过滤后可得到过氧化钙产品.该工艺方法的优点是<u>工艺简单、操作方</u>便_,产品的缺点是_纯度较低_.

【考点】U3:制备实验方案的设计.

【专题】548:制备实验综合.

【分析】(一)碳酸钙的制备

- 由流程可知,加盐酸,碳酸钙、铁的氧化物均溶解,加双氧水可氧化亚铁离子,加氨水将铁离子转化为沉淀,过滤后的滤液中含盐酸,加氨水中和酸,利用得到碳酸钙沉淀;
- (1) 碱可中和酸,小火煮沸利于沉淀生成;
- (2) 过滤遵循一贴二低三靠:
- (二)过氧化钙的制备
- 由流程可知,碳酸钙溶于盐酸后,至溶液中尚存有少量固体,过滤后,滤液中 氯化钙、氨水、过氧化氢反应生成 CaO₂、NH₄Cl、水;再过滤,洗涤得到过 氧化钙;制备过氧化钙的另一种方法是:将石灰石煅烧后,直接加入双氧水 反应,过滤后可得到过氧化钙产品,石灰石便宜易得,但纯度较低,以此来

解答.

【解答】解: (一)碳酸钙的制备

- 由流程可知,加盐酸,碳酸钙、铁的氧化物均溶解,加双氧水可氧化亚铁离子,加氨水将铁离子转化为沉淀,过滤后的滤液中含盐酸,加氨水中和酸,利用得到碳酸钙沉淀;
- (1) 步骤①加入氨水的目的是中和多余的盐酸,沉淀铁离子.小火煮沸的作用 是使沉淀颗粒长大,有利于过滤,

故答案为:调节溶液 pH 使 Fe (OH)₃沉淀;过滤分离;

- (2) a. 漏斗末端颈尖未紧靠烧杯壁,应漏斗末端颈尖紧靠烧杯壁,故错误:
- b. 玻璃棒用作引流, 使液体顺利流下, 故正确;
- c. 将滤纸湿润, 使其紧贴漏斗壁, 防止液体从滤纸与漏斗的缝隙流下, 故正确;
- d. 滤纸边缘应低于漏斗上边缘, 故错误:
- e. 玻璃棒不能在漏斗中轻轻搅动以加快过滤速度,可能捣破滤纸,过滤失败, 故错误:

故答案为: ade:

(二) 过氧化钙的制备

- 由流程可知,碳酸钙溶于盐酸后,至溶液中尚存有少量固体,过滤后,滤液中 氯化钙、氨水、过氧化氢反应生成 CaO_2 、 NH_4CI 、水; 再过滤,洗涤得到过 氧化钙:
- (3)步骤②的具体操作为逐滴加入稀盐酸,至溶液中尚存有少量固体,溶液中溶解二氧化碳,此时溶液呈酸性;将溶液煮沸,趁热过滤,将溶液煮沸的作用是除去溶液中溶解的二氧化碳,

故答案为:酸;除去溶液中溶解的二氧化碳;

- (4) 步骤 ③ 中反应的 化学方程式为 $CaCl_2+2NH_3$. $H_2O+H_2O_2=CaO_2+2NH_4Cl+2H_2O$,该反应需要在冰浴下进行,原因是温度过高时双氧水易分解,
- 故答案为: CaCl₂+2NH₃. H₂O+H₂O₂+6H₂O=CaO₂•8H₂O↓+2NH₄Cl; 温度过高时双 氧水易分解;

(5)将过滤得到的白色结晶依次使用蒸馏水、乙醇洗涤,使用乙醇洗涤的目的 是去除晶体表面水分,

故答案为: 去除晶体表面水分;

(6)制备过氧化钙的另一种方法是:将石灰石煅烧后,直接加入双氧水反应,过滤后可得到过氧化钙产品.该工艺方法的优点是原料来源丰富、操作简单,产品的缺点是纯度较低,

故答案为: 工艺简单、操作方便; 纯度较低.

- 【点评】本题考查物质的制备实验,为高频考点,把握制备实验原理、实验技能、物质的性质为解答的关键,侧重分析与实验能力的考查,注意物质的性质及应用,题目难度中等.
- 9. 煤燃烧排放的烟含有 SO₂ 和 NO_x,形成酸雨、污染大气,采用 NaClO₂ 溶液作为吸收剂可同时对烟气进行脱硫、脱硝。回答下列问题:

 - (2) 在鼓泡反应器中通入含 SO₂、NO_x 的烟气,反应温度 323K,NaClO₂ 溶液浓度为 5×10^{®3}mol•L^{®1}.反应一段时间后溶液中离子浓度的分析结果如表。

离子	SO ₄ ²²	SO ₃ ² ?	NO ₃ ²	NO ₂ ²	Cl®
c/	8.35×10 ²¹⁴	6.87×10 ²⁶	1.5×10 ²⁴	1.2×10 ²⁵	3.4×10 ²³
(mol•L ²¹					
)					

- ②随着吸收反应的进行,吸收剂溶液的 pH 逐渐 减小 (填"增大"、"不变"或"减小")。
- ③由实验结果可知,脱硫反应速率<u>大于</u>脱硝反应速率(填"大于"或"小于")原因是除了 SO₂和 NO 在烟气中初始浓度不同,还可能是<u>NO 溶解度</u>较低或脱硝反应活化能较高。
- (3) 在不同温度下, NaClO₂溶液脱硫、脱硝的反应中 SO₂和 NO 的平衡分压 P。

如图所示。

- ①由图分析可知,反应温度升高,脱硫、脱硝反应的平衡常数均<u>减小</u>(填"增大"、"不变"或"减小")。
- ②反应 ClO_2 ^{©+}2 SO_3 ^{2®+}2 SO_4 ^{2©+}Cl[©]的平衡常数 K 表达式为— $\frac{c(C1^-)c^2(SO_4^{-2-})}{c(C1O_2^-)c^2(SO_3^{-2-})}$

- (4) 如果采用 NaClO、Ca(ClO)₂ 替代 NaClO₂, 也能得到较好的烟气脱硫效果。
- ①从化学平衡原理分析,Ca(CIO)₂相比 NaCIO 具有的优点是 形成 $CaSO_4$ 沉 淀,反应平衡向产物方向移动, SO_2 转化率提高 。
- ②已知下列反应:

 $\mathsf{SO_2}\ (\mathsf{g})\ +\! \mathsf{2OH}^{\scriptscriptstyle \square}\ (\mathsf{aq})\ \text{---} \mathsf{SO_3}^{\scriptscriptstyle 2\mathbb{D}}\ (\mathsf{aq})\ +\! \mathsf{H}_2\mathsf{O}\ (\mathsf{I})\ \triangle \mathsf{H}_1$

 $CaSO_4$ (s) $\longrightarrow Ca^{2+}$ (aq) $+SO_4^{2-}$ (aq) $\triangle H_3$

则反应 SO_2 (g) $+Ca^{2+}$ (aq) $+CIO^2$ (aq) $+2OH^2$ (aq) $-CaSO_4$ (s) $+H_2O$ (I) $+CI^2$ (aq) 的 $\triangle H = \triangle H_1 + \triangle H_2 ? \triangle H_3$ 。

【考点】BB: 反应热和焓变; CB: 化学平衡的影响因素.

【专题】51E: 化学平衡专题.

【分析】(1) NaClO₂ 的化学名称为亚氯酸钠;

(2) ①亚氯酸钠具有氧化性,则 $NaClO_2$ 溶液脱硝过程中主要反应的离子方程 式为 $3ClO_2$ ^{®+4NO+4OH®=4NO3</sub>^{®+3Cl®+2H₂O; 正反应是体积减小的,则增加压强,NO 的转化率提高;}}

- ②根据反应的方程式 3ClO₂[®]+4NO+4OH[®]=4NO₃[®]+3Cl[®]+2H₂O 可知随着吸收反应的 进行氢氧根离子被消耗,吸收剂溶液的 pH 逐渐降低;
- ③由实验结果可知,在相同时间内硫酸根离子的浓度增加的多,因此脱硫反应速率大于脱硝反应速率。原因是除了 SO₂和 NO 在烟气中的初始浓度不同,还可能是二氧化硫的还原性强,易被氧化;
- ②根据反应的方程式 ClO_2 ^{®+2 SO_3 2®—2 SO_4 2®+Cl[®]可知平衡常数 K表达式为 $K=\frac{c(C1^-)c^2(SO_4^{2^-})}{c(C1O_2^-)c^2(SO_3^{2^-})};$}
 - (4)①如果采用 NaClO、Ca(ClO)₂ 替代 NaClO₂,由于生成的硫酸钙微溶,降低硫酸根离子浓度,促使平衡向正反应方向进行;
- ②则根据盖斯定律计算。

【解答】解: (1) NaClO₂ 的化学名称为亚氯酸钠,故答案为:亚氯酸钠;

- (2) ①亚氯酸钠具有氧化性,且 NaClO₂溶液呈碱性,则 NaClO₂溶液脱硝过程中主要反应的离子方程式为 3ClO₂[®]+4NO+4OH[®]=4NO₃[®]+3Cl[®]+2H₂O;正反应是体积减小的,则增加压强,NO的转化率提高,故答案为:3ClO₂[®]+4NO+4OH[®]=4NO₃[®]+3Cl[®]+2H₂O;提高;
- ②根据反应的方程式 3ClO₂[®]+4NO+4OH[®]=4NO₃[®]+3Cl[®]+2H₂O 可知随着吸收反应的 进行氢氧根离子被消耗,吸收剂溶液的 pH 逐渐降低,故答案为:减小;
- ③由实验结果可知,在相同时间内硫酸根离子的浓度增加的多,因此脱硫反应速率大于脱硝反应速率。原因是除了 SO₂和 NO 在烟气中的初始浓度不同,还可能是 NO 溶解度较低或脱硝反应活化能较高,故答案为:大于;NO 溶解度较低或脱硝反应活化能较高;

小,故答案为:减小;

②根据反应的方程式 $ClO_2^{\mathbb{R}+2SO_3^{\mathbb{Z}\mathbb{R}}-2SO_4^{\mathbb{Z}\mathbb{R}}+C\mathbb{R}}$ 可知平衡常数 K 表达式为 $K=\frac{c(C1^-)c^2(SO_4^{2-})}{c(C1O_2^-)c^2(SO_3^{2-})}$,故答案为: $\frac{c(C1^-)c^2(SO_4^{2-})}{c(C1O_2^-)c^2(SO_3^{2-})}$;

- (4)①如果采用 NaClO、Ca(ClO)₂ 替代 NaClO₂,生成硫酸钙沉淀,降低硫酸根离子浓度,促使平衡向正反应方向进行,所以 Ca(ClO)₂ 效果好,故答案为:形成 CaSO₄ 沉淀,反应平衡向产物方向移动,SO₂ 转化率提高;
- ②己知 SO₂ (g) +2OH[®] (aq) —SO₃^{2®} (aq) +H₂O (I) △H₁

$$CIO^{2}$$
 (aq) $+SO_{3}^{22}$ (aq) $-SO_{4}^{22}$ (aq) $+CI^{2}$ (aq) $\triangle H_{2}$

$$CaSO_4$$
 (s) $\longrightarrow Ca^{2+}$ (aq) $+SO_4^{22}$ (aq) $\triangle H_3$

则根据盖斯定律可知①+②②③即得到反应 SO_2 (g)+ Ca^{2+} (aq)+CIO[®](aq)+2OH[®](aq)— $CaSO_4$ (s)+ H_2O (l)+CI[®](aq) $\triangle H = \triangle H_1 + \triangle H_2$ $\triangle A_3$.,故答案为: $\triangle H_1 + \triangle H_2$ $\triangle A_3$ 。

- 【点评】本题考查氧化还原反应、盖斯定律、外界条件对反应速率和平衡状态的影响等,要求学生掌握基本概念,结合生活实际分析问题、解决问题,方程式的书写要遵循相关守恒,题目难度中等。
- **10.** 以硅藻土为载体的五氧化二钒(V_2O_5)是接触法生产硫酸的催化剂. 从废 钒催化剂中回收 V_2O_5 既避免污染环境

又有利于资源综合利用. 废钒催化剂的主要成分为:

物质	V ₂ O ₅	V ₂ O ₄	K ₂ SO ₄	SiO ₂	Fe ₂ O ₃	Al ₂ O ₃
质量分数/%	2.2~2.9	2.8~3.1	22~28	60~65	1~2	<1

以下是一种废钒催化剂回收工艺路线:

回答下列问题:

(1) "酸 浸 "时 V_2O_5 转 化 为 VO_2 ⁺, 反 应 的 离 子 方 程 式 为 $V_2O_5+2H^+=2VO_2^++H_2O_-$,同时 V_2O_4 转成 VO^{2+} . "废渣 1"的主要成分是

 SiO_2 .

- (2) "氧化"中欲使 3 mol 的 VO^{2+} 变为 VO_2^+ ,则需要氧化剂 $KCIO_3$ 至少为 ______0.5 mol.
- (3) "中和"作用之一是使钒以 V₄O₁₂⁴⁰形式存在于溶液中. "废渣 2"中含有<u>Fe</u> <u>(OH)</u>₃、Al (OH)₃.
- (5) "流出液"中阳离子最多的是 K^+ .
- (6) "沉钒"得到偏钒酸铵(NH_4VO_3)沉淀,写出"煅烧"中发生反应的化学方程式 $2NH_4VO_3$ ——— $V_2O_5+H_2O\uparrow+2NH_3\uparrow$.

【考点】P8: 物质分离和提纯的方法和基本操作综合应用.

【专题】545:物质的分离提纯和鉴别.

- 【分析】从废钒催化剂中回收 V_2O_5 ,由流程可知,"酸浸"时 V_2O_5 转化为 VO_2 ⁺, V_2O_4 转成 VO^2 ⁺.氧化铁、氧化铝均转化为金属阳离子,只有 SiO_2 不溶,则过滤得到的滤渣 1 为 SiO_2 ,然后加氧化剂 $KClO_3$,将 VO^2 ⁺变为 VO_2 ⁺,再加 KOH 时,铁离子、铝离子转化为 Fe(OH) $_3$ 、Al(OH) $_3$ 沉淀,同时中和硫酸,过滤得到的滤渣 2 为 Fe(OH) $_3$ 、Al(OH) $_3$,"离子交换"和"洗脱"可简单表示为: $4ROH+V_4O_{12}$ 离子交换 $R_4V_4O_{12}+4OH^{ll}$,由 ROH 为强碱性阴离子交换 从时间知,碱性条件下利用反应逆向移动,流出液中主要为硫酸钾,"沉钒"得到偏钒酸铵(NH_4VO_3)沉淀,"煅烧"时分解生成 V_2O_5 ,以此来解答.
- 【解答】解:从废钒催化剂中回收 V_2O_5 ,由流程可知,"酸浸"时 V_2O_5 转化为 VO_2^+ , V_2O_4 转成 VO^{2+} . 氧化铁、氧化铝均转化为金属阳离子,只有 SiO_2 不溶,则过滤得到的滤渣 1 为 SiO_2 ,然后加氧化剂 $KClO_3$,将 VO^{2+} 变为 VO_2^+ ,再加 KOH 时,铁离子、铝离子转化为 Fe(OH) $_3$ 、Al(OH) $_3$ 沉淀,同时中和硫酸,过滤得到的滤渣 2 为 Fe(OH) $_3$ 、Al(OH) $_3$,"离子交换"和"洗脱"可简单表示为: $4ROH+V_4O_{12}$ 离子交换 $R_4V_4O_{12}+4OH$,由 ROH 为强碱性阴离 洗脱

子交换树脂可知,碱性条件下利用反应正向移动,流出液中主要为硫酸钾, "沉钒"得到偏钒酸铵(NH₄VO₃)沉淀,"煅烧"时分解生成 V₂O₅,

(1)"酸浸"时 V_2O_5 转化为 VO_2^+ ,反应的离子方程式为 $V_2O_5^+2H^+=2VO_2^++H_2O_3^-$ 由上述分析可知滤渣 1 为 SiO_2 ,

故答案为: V₂O₅+2H+=2VO₂++H₂O; SiO₂;

(2) "氧化"中欲使 3 mol 的 VO^{2+} 变为 VO_2^+ ,由电子守恒可知,则需要氧化剂 $KClO_3$ 至少为 $\frac{3mol \times (5-4)}{[5-(-1)]}$ =0.5mol,

故答案为: 0.5;

- (3) 由上述流出分析可知滤渣 2 为 Fe (OH)₃、Al (OH)₃, 故答案为: Fe (OH)₃、Al (OH)₃;
- (4)利用强碱性阴离子交换树脂可"离子交换"和"洗脱",则应选择碱性条件下使用,且 OH®浓度大反应逆向移动提高洗脱效率,故答案为:碱;
- (5) 由上述分析可知,流出液中主要为硫酸钾,则"流出液"中阳离子最多的是 K+, 故答案为: K+;
- (6) "煅烧"中发生反应的化学方程式为 2NH₄VO₃————V₂O₅+H₂O个+2NH₃个, 故答案为: 2NH₄VO₃————V₂O₅+H₂O个+2NH₃个.
- 【点评】本题考查混合物分离提纯的综合应用,为高频考点,把握流程中发生的反应、混合物分离及实验技能为解答的关键,侧重分析与实验能力的考查,注意元素化合物与实验相结合的训练,综合性较强,题目难度中等.

【[化学——选修 2: 化学与技术】(15 分)

11. (15分)聚合硫酸铁(PFS)是水处理中重要的絮凝剂,如图是以回收废铁屑为原料制备 PFS 的一种工艺流程.

回答下列问题

- (1) 废铁屑主要为表面附有大量铁锈的铁,铁锈的主要成分为 <u>Fe₂O₃•xH₂O</u>. 粉碎过筛的目的是 选取细小颗粒,增大反应物接触面积, 提高"酸浸"反应速率 .
- (2) 酸浸时最合适的酸是<u>硫酸</u>,写出铁锈与酸反应的离子方程式_ $Fe_2O_3 \bullet xH_2O + 6H^+ = 2Fe^{3+} + (x+3)H_2O$.
- (3) 反应釜中加入氧化剂的作用是<u>氧化亚铁离子</u>,下列氧化剂中最合适的是 C (填标号).
- A. $KMnO_4$ B. Cl_2 C. H_2O_2 D. HNO_3
 - (4) 聚合釜中溶液的 pH 必须控制在一定的范围内,pH 偏小时 Fe³⁺水解程度弱,pH 偏大时则<u>容易生成 Fe(OH)₃,产率降低</u>.
 - (5) 相对于常压蒸发,减压蒸发的优点是<u>可以防止温度过高,聚合硫酸铁分</u>解.

【考点】RD:探究物质的组成或测量物质的含量.

【专题】544:定量测定与误差分析.

- 【分析】废铁屑粉粹过筛后加入酸浸,过滤得到滤液在反应釜中加入氧化剂氧化亚铁离子为铁离子,加入水和硫酸生成聚合硫酸铁,减压蒸发得到 PES 固体产品,
- (1) 铁锈的主要成分是氧化铁水合物,粉碎过筛是选取细小颗粒,增大反应物接触面积,提高"酸浸"反应速率;
- (2) 依据制备的物质聚合硫酸铁可知,酸化反应不能引入新的杂质,需要硫酸酸化,铁锈中氧化铁和酸反应生成铁离子和水;

- (3) 反应釜中加入氧化剂的作用是氧化亚铁离子为铁离子,氧化剂不引入新的杂质:
- (4) 铁离子易水解生成红褐色氢氧化铁胶体;
- (5) 减压蒸发在较低温度下可进行,防止温度过高而导致物质分解;
- (6) $B=\frac{3n(0H)}{n(Fe)}$ (n 为物质的量),n (OH®) = (V_0 @V) \times 10^{23} \times c mol•L®1,n (Fe) = $\frac{\pi wg}{56g/mol} = \frac{\pi w}{56}$ mol.
- 【解答】解: (1) 铁锈的主要成分是氧化铁水合物, 化学式为: Fe₂O₃•xH₂O, 粉碎过筛是选取细小颗粒, 增大反应物接触面积, 提高"酸浸"反应速率,
- 故答案为: Fe₂O₃•xH₂O; 选取细小颗粒,增大反应物接触面积,提高"酸浸"反应速率;
 - (2) 依据制备的物质聚合硫酸铁可知,酸化反应不能引入新的杂质,需要硫酸酸化,铁锈中氧化铁和酸反应生成铁离子和水,反应的离子方程式为: $Fe_2O_3 \bullet xH_2O + 6H^+ = 2Fe^{3+} + (x+3)H_2O$,

故答案为: H₂SO₄; Fe₂O₃•xH₂O+6H+=2Fe³⁺+ (x+3) H₂O;

- (3) 反应釜中加入氧化剂的作用是氧化亚铁离子为铁离子,氧化剂不引入新的杂质,A、B、D都会引入新的杂质,C中过氧化氢被还原生成水无杂质离子引入,故答案为:C;
- (4) 铁离子易水解生成红褐色氢氧化铁胶体,聚合釜中溶液的 pH 必须控制在一定的范围内,pH 偏小时 Fe³⁺水解程度弱,pH 偏大时则容易生成 Fe(OH) 3, 产率降低,

故答案为:容易生成 Fe(OH)3,产率降低;

(5)减压蒸发在较低温度下可进行,防止常压蒸发温度过高聚合硫酸铁分解, 故答案为:可以防止温度过高,聚合硫酸铁分解;

(6) n (OH²) = (V₀PV)
$$\times$$
 10^{P3} \times c mol•L^{P1}, n (Fe) = $\frac{\pi wg}{56g/mol} = \frac{\pi w}{56}$ mol, B=

$$\frac{3n(OH)}{n(Fe)}$$
 (n 为物质的量) =3× $\frac{(V_0-V)\times 10^{-3}L\times cmol/L}{\frac{mw}{56}mol}$ = $\frac{0.168c(V_0-V)}{mw}$,

故答案为: $\frac{0.168c(V_0-V)}{mw}$.

【点评】本题考查了物质组成探究、物质性质的分析、试剂选择和离子反应实质的理解应用,注意信息的分析,掌握基础是解题关键,题目难度中等.

【化学-选修 3: 物质结构与性质】(15分)

- 12. (15 分) 砷化镓(GaAs) 是优良的半导体材料,可用于制作微型激光器或太阳能电池的材料等. 回答下列问题:
 - (1) 写出基态 As 原子的核外电子排布式 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p³.
- (2) 根据元素周期律,原子半径 Ga<u>大于</u>As,第一电离能 Ga<u>小于</u>As. (填"大于"或"小于")
- (3) $AsCl_3$ 分子的立体构型为<u>三角锥形</u>,其中 As 的杂化轨道类型为_ $\underline{sp^3}$.
- (4) GaF₃ 的熔点高于 1000℃,GaCl₃ 的熔点为 77.9℃,其原因是<u>GaF₃ 为离子</u> 晶体,GaCl₃ 为分子晶体,离子晶体的熔点高<u></u>.
- (5) GaAs 的熔点为 1238℃,密度为ρg•cm^{®3},其晶胞结构如图所示.该晶体的类型为<u>原子晶体</u>,Ga 与 As 以<u>共价</u>键键合.Ga 和 As 的摩尔质量分别为 M_{Ga}g•mol^{®1}和 M_{As}g•mol^{®1},原子半径分别为 r_{Ga}pm 和 r_{As}pm,阿伏伽德罗常数值为 N_A,则 GaAs 晶胞中原子的体积占晶胞体积的百分率为

$$\frac{4\pi \times 10^{-30} \text{N}_{\text{A}} \rho (r_{\text{Ga}}^{3} + r_{\text{As}}^{3})}{3 (\text{M}_{\text{Ga}} + \text{M}_{\text{As}})} \times 100\%.$$

【考点】86:原子核外电子排布;8B:元素电离能、电负性的含义及应用;9I:晶胞的计算;9S:原子轨道杂化方式及杂化类型判断.

【专题】51D: 化学键与晶体结构.

【分析】(1) As为 VA族 33号元素, 电子排布式为: 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p³;

- (2) 同一周期,原子序数越小半径越大,同周期第一电离能从左到右,逐渐增大;
- (3) $AsCl_3$ 中价层电子对个数= σ 键个数+孤电子对个数= $3+\frac{5-3\times1}{2}$ =4,所以原子 杂化方式是 sp^3 ,由于有一对孤对电子对,分子空间构型为三角锥形;
- (4) GaF₃ 的熔点高于 1000°C, GaCl₃ 的熔点为 77.9°C, 其原因是 GaF₃ 为离子晶体, GaCl₃ 为分子晶体, 离子晶体的熔点高;
- (5) GaAs 的熔点为 1238°C,熔点较高,以共价键结合形成属于原子晶体,密度为 ρ g•cm®3,根据均摊法计算,As: $8 \times \frac{1}{8} + 6 \times \frac{1}{2} = 4$,Ga: $4 \times 1 = 4$,故其晶胞中原子所占的体积 $V_1 = (\frac{4}{3} \pi r^3_{As} \times 4 + \frac{4}{3} \pi r^3_{Ga} \times 4) \times 10^{1230}$,晶胞的

$$4 \times \frac{(M_{Ga} + M_{As})}{N_A}$$
 体积 $V_2 = \frac{m}{\rho} = \frac{1}{\rho}$,故 GaAs 晶胞中原子的体积占晶胞体积的百分

率为
$$\frac{V_1}{V_2}$$
×100%将 V_1 、 V_2 带入计算得百分率= $\frac{4\pi \times 10^{-30} \text{N}_{A} \rho (\text{r}_{Ga}^3 + \text{r}_{As}^3)}{3(\text{M}_{Ga} + \text{M}_{As})}$ ×100%.

- 【解答】解: (1) As 为 VA族 33号元素, 电子排布式为: 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p³, 故答案为: 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p³;
- (2)根据元素周期律,Ga与As位于同一周期,Ga原子序数小于As,故半径Ga大于As,同周期第一电离能从左到右,逐渐增大,故第一电离能Ga小于As,

故答案为:大于:小于;

- (3) $AsCl_3$ 中价层电子对个数= σ 键个数+孤电子对个数= $3+\frac{5-3\times1}{2}$ =4,所以原子 杂化方式是 sp^3 ,由于有一对孤对电子对,分子空间构型为三角锥形,故答案为:三角锥形; sp^3 ;
- (4) GaF₃ 的熔点高于 1000℃, GaCl₃ 的熔点为 77.9℃, 其原因是 GaF₃ 为离子晶体, GaCl₃ 为分子晶体, 离子晶体的熔点高,

故答案为: GaF₃为离子晶体, GaCl₃为分子晶体, 离子晶体的熔点高;

(5) GaAs 的熔点为 1238℃,熔点较高,以共价键结合形成属于原子晶体,密

度为 ρ g•cm^{®3},根据均摊法计算,As: $8 \times \frac{1}{8} + 6 \times \frac{1}{2} = 4$,Ga: $4 \times 1 = 4$,故其晶胞中原子所占的体积 $V_1 = (\frac{4}{3} \pi r^3_{As} \times 4 + \frac{4}{3} \pi r^3_{Ga} \times 4) \times 10^{1230}$,晶胞的

$$4 \times \frac{(M_{Ga} + M_{As})}{N_A}$$
 体积 $V_2 = \frac{m}{\rho} = \frac{1}{\rho}$,故 GaAs 晶胞中原子的体积占晶胞体积的百分

率为
$$\frac{V_1}{V_2}$$
×100%将 V_1 、 V_2 带入计算得百分率= $\frac{4\pi \times 10^{-30} \text{N}_{A} \rho (r_{Ga}^3 + r_{As}^3)}{3 (M_{Ga} + M_{As})}$ ×100%,

故答案为:原子晶体;共价; $\frac{4\pi \times 10^{-30} \text{N}_{A} \rho (r_{Ga}^{3} + r_{As}^{3})}{3 (M_{Ga} + M_{As})} \times 100\%.$

【点评】本题考查了分子空间构型、电子排布式、原子杂化方式、晶胞密度的 计算、电离能及半径大小比较等知识,综合性较强,最后的计算难度较大, 要求学生有较严谨的态度和扎实的基础,也是对学生能力的考查.

四、【化学-选修 5: 有机化学基础】(15分)

13. (15 分)端炔烃在催化剂存在下可发生偶联反应,成为 Glaser 反应.

该反应在研究新型发光材料、超分子化学等方面具有重要价值.下面是利用 Glaser 反应制备化合物 E 的一种合成路线:

回答下列问题:

- (2)①和③的反应类型分别为<u>取代反应</u>、<u>消去反应</u>

(5) 芳香化合物 F 是 C 的同分异构体,其分子中只有两种不同化学环境的氢,数 目 比 为 3: 1, 写 出 其 中 3 种 的 结 构 简 式

<u>三种</u>.

(6) 写出用 20苯基乙醇为原料 (其他无机试剂任选) 制备化合物 D 的合成路

【考点】HC:有机物的合成.

【专题】534: 有机物的化学性质及推断.

【分析】由 B 的分子式、C 的结构简式可知 B 为 ——CH₂—CH₃,则 A 与氯乙烷

发生取代反应生成 B,则 A 为 . 对比 C、D 的结构可知 C 脱去 2 分子 HCI,同时形成碳碳三键得到 D,该反应属于消去反应. D 发生信息中的偶联 反应生成 E 为 。

【解答】解:由B的分子式、C的结构简式可知B为 (CH₂-CH₃,则A与氯

乙烷发生取代反应生成 B,则 A 为 . 对比 C、D 的结构可知 C 脱去 2 分 子 HCl,同时形成碳碳三键得到 D,该反应属于消去反应. D 发生信息中的 偶联反应生成 E 为 - C = C - .

- (1) B 的结构简式为 ——CH₂—CH₃, D 的化学名称为苯乙炔
- 故答案为: (二)—CH₂—CH₃; 苯乙炔;
- (2)①和③的反应类型分别为取代反应、消去反应,

故答案为:取代反应、消去反应;

(4) 化合物 (HC ≡ C — C ≡ CH) 也可发生 Glaser 偶联反应生成聚合物,该聚合反应的化学方程式为: n HC ≡ C — C ≡ CH 催化剂 H + (n□1) H₂,

故答案为: n HC ≡ C — C ≡ CH 催化剂 H ← C ≡ C — C ≡ C → H + (n □ 1) H₂;

- (5) 芳香化合物 F 是 C 的同分异构体, 其分子中只有两种不同化学环境的氢,
 - 数 目 比 为 3: 1, 可 能 的 结 构 简 式 为 :

【点评】本题考查有机物的推断与合成、有机反应类型、限制条件同分异构体 书写、对信息的获取与迁移运用等,是对有机化学基础的综合考查,是有机 化学常考题型,熟练掌握官能团的性质与转化.