Алгебра I, листочек 2

1. Докажите, что подгруппа индекса 2 нормальна.

Пусть $H \leq G$ – подгруппа индекса 2. Тогда у неё всего два правых и два левых смежных класса. $G = H \sqcup gH = H \sqcup Hg$ так как их всего двое и они оба дополнения к подгруппе, то они очевидно совпадут gH = Hg. Тогда $(gH)g^{-1} = (Hg)g^{-1} = H$, а значит H нормальна в G.

2. Пусть дана цепочка подгрупп $K \le H \le G$. Покажите, что (G : K) = (G : H)(H : K).

Обозначим за L(G, H) множество левых классов смежности H в G, а за TL(G, H) её трансверсаль. Тогда построим отображение:

$$\varphi : \mathrm{TL}(G, H) \times \mathrm{TL}(H, K) \longrightarrow \mathrm{L}(G, K)$$

 $(g, h) \mapsto ghK$

Покажем, что оно сюрьективно. Пусть $g \in G$, тогда g = g'h для некоторого $g' \in TL(G,H)$ и $h \in H$. А h = h'k для $h' \in TL(H,K)$, тогда gK = g'h'K. Теперь пусть ghK = g'h'K, так как $hK, h'K \in H$, то $gH \cap g'H \neq \emptyset$, а значит g = g', сократим на него. hK = h'K, тогда h = h', а значит ϕ – инъективно. Тогда (G : H)(H : K) = |TL(G,H)||TL(H,K)| = |L(G,K)| = (G : K).

3. Пусть дана цепочка нормальных подгрупп $K exttt{ riangle H} exttt{ riangle G}$. Верно ли, что K нормальна в G?

Это не верно, приведем контр пример. Пусть $G=A_4$, возьмём 2 её абелевы подгруппы $H=\{e,(12)(34),(13)(24),(14)(23)\}$ и $K=\{e,(12)(34)\}$. Так как H абелева, то очевидно, что K в ней нормальна. Проверим, что H нормальна в G:

$$(abc)(ab)(cd)(cba) = (ac)(bd)$$

$$(abcd)(ab)(cd)(dcba) = (ad)(cb)$$

$$(ab)(ab)(cd)(ab) = (cd)(ab)$$

$$(bc)(ab)(cd)(bc) = (bd)(ac)$$

$$(abcd)(ac)(bd)(dcba) = (ac)(bd)$$

Но K не нормальна в G, так как например (123)(12)(34)(321) = (13)(42).

4. (Теорема фон Дика) Пусть дана цепочка подгрупп $K \leq H \leq G$. Пусть H и K нормальны в G. Докажите, что $G/H \cong (G/K)/(H/K)$.

Обозначим каноничную проекцию $\pi: G \to G/H$. Так как $K \leq H = \mathrm{Ker}(\pi)$, то π индуцирует гомоморфизм $\pi': G/K \to G/H$, $gK \mapsto gH$, так как сдвиг g на любой элемент из K не изменит значение после π . Заметим, что $\mathrm{Ker}(\pi') = \mathrm{Ker}(\pi)/K = H/K$. Тогда запишем теорему о гомеоморфизме для π' , $G/H = \mathrm{Im}(\pi') \cong (G/K)/\mathrm{Ker}(\pi') = (G/K)/(H/K)$.

5. Пусть G – группа, и пусть $S \subseteq G$ – подмножество. Определим нормализатор множества S в G следующим образом:

$$N_S = \{ g \in G \mid gSg^{-1} = S \}.$$

Определим централизатор множества S в G следующим образом:

$$Z_S = g \in G \mid gs = sg \forall s \in S.$$

Проверьте, что централизатор и нормализатор являются подгруппами. Нормальны ли они?

Нетрудно заметить, что $e \in N_S$, Z_S . Пусть $a,b \in N_S$, тогда $abSb^{-1}a^{-1} = aSa^{-1} = S$, а значит $ab \in N_S$. Пусть $a,b \in Z_S$, тогда abS = asb = sab, $\forall s \in S$, тогда $ab \in Z_S$. Теперь пусть

 $g\in N_S$, тогда $g^{-1}Sg=g^{-1}(gSg^{-1})g=S$, а значит $g^{-1}\in N_S$ и N_S – подгруппа. Также $g\in Z_S$ и $s\in S$ $g^{-1}s=g^{-1}sgg^{-1}=g^{-1}gsg^{-1}=sg^{-1}$, а значит $g^{-1}\in Z_S$ и Z_S – подгруппа. Вообще говоря они не нормальны.

Пусть $S_3 = \{e, (12), (23), (31), (123), (321)\}$. $Z_{\{(12)\}} = \{e, (12)\}$, что очевидно, и $N_{\{(12)\}} = \{e, (12)\}$, что чуть менее очевидно, но можно проверить (23)(12)(23) = (31) и (123)(12)(321) = (13). Так вот эта подгруппа не нормальна, так как есть например предыдущее равенство.

6. Центром Z_G группы G называется подмножество элементов, которые коммутируют со всеми элементами G. Проверьте, что центр является нормальной подгруппой. Вычислите центр симметрической группы S_n .

Пусть $h \in Z_G$, тогда $ghg^{-1} = hgg^{-1} = h \in Z_G$, а значит Z_G нормальна в G.

Пусть $g \in Z_{S_n}$, n>2 тогда g раскладывается в произведение дизъюнктных циклов g=(...) ... (...), тогда если там будет цикл длинной большей 2 (abc ...), то умножение на (ab) справа выкинет из него a. (abc ...)(ab)=(bc ...), а умножение слева выкинет b, (ab)(abc ...) = (ac ...), поэтому эти два элемента не коммутируют, а значит ни транспозиция, ни элементы с такими длинными циклами не будут в центре. Тогда наверно g содержит хотя бы 2 цикла длинной 2? Но тогда найдется некоммутирующий 3 цикл (abc)(ab)(cd)=(bdc), но (ab)(cd)(abc)=(acd). Тогда $Z_{S_n}=1$, кроме случая $Z_{S_2}=\mathbb{Z}_2$.

- 7. Пусть G_1 , G_2 абелевы группы. Обозначим множество гомоморфизмов из G_1 в G_2 через $\text{Hom}(G_1, G_2)$.
 - Определите естественную операцию сложения гомоморфизмов и покажите, что $\operatorname{Hom}(G_1, G_2)$ обладает структурой абелевой группы.
 - Вычислите $\operatorname{Hom}(\mathbb{Z}/n,\mathbb{Z}/m)$ для $n,m \geq 0$.

Пусть $f,g \in \text{Hom}(G_1G_2)$ положим $f+g=(x\mapsto f(x)\cdot g(x))$. Очевидно, что эта операция ассоциативна. Единица тоже есть e=1. И обратный $-f=(x\mapsto f(x)^{-1})$. Проверим корректность $(-f)(xy)=f(xy)^{-1}=f(y)^{-1}f(x)^{-1}=f(x)^{-1}f(y)^{-1}=(-f)(x)\cdot (-f)(y)$, а значит обратный – гомоморфизм. Проверим корректность суммы $(f+g)(xy)=f(xy)g(xy)=f(x)f(y)g(x)g(y)=f(x)g(x)f(y)g(y)=(f+g)(x)\cdot (f+g)(y)$. Проверим абелевость, $f+g=(x\mapsto f(x)g(x))=(x\mapsto g(x)f(x))=g+f$.

Теперь пусть $\varphi \in \operatorname{Hom}(\mathbb{Z}_n,\mathbb{Z}_m)$. Тогда по теореме о гомеоморфизме φ распадается на каноничный эпиморфизм $\pi:\mathbb{Z}_n \to \mathbb{Z}_n/\operatorname{Ker}(\varphi)$, на изоморфизм $\psi:\mathbb{Z}_n/\operatorname{Ker}(\varphi) \leftrightarrow \operatorname{Im}(\varphi) \leq \mathbb{Z}_m$ и мономорфизма $i:\operatorname{Im}(\varphi) \hookrightarrow \mathbb{Z}_m$. Заметим, что $\operatorname{Ker}(\varphi) \leq \mathbb{Z}_n$, а значит $\operatorname{Ker}(\varphi) = d\mathbb{Z}_n$ и $\mathbb{Z}_n/\operatorname{Ker}(\varphi) \cong \mathbb{Z}_d$, где d|n. Но так как $\mathbb{Z}_d \hookrightarrow \mathbb{Z}_m$, а тогда d|m. Поэтому задача гомоморфизма на самом деле однозначно сводится к выбору двух натуральных чисел $d|n \land m$ и k < d, $k \land d = 1$. (все гомоморфизмы группы вычетов - умножения на взаимно простые с d числа)

$$\mathbb{Z}_n \xrightarrow{\pi} \mathbb{Z}_d \xleftarrow{\cdot k} \mathbb{Z}_d \xrightarrow{i} \mathbb{Z}_m$$

$$[a]_n \longmapsto [a]_d \longmapsto [ka]_d \longmapsto \frac{m}{d}[ka]_d$$

Где $m/d[ka]_d=m/d(ka+d\mathbb{Z})=mka/d+m\mathbb{Z}=[mka/d]_m$. Оно однозначно, так как для каждого гомоморфизма мы находим эти константы. И разные константы дают разные гомоморфизмы. Тогда порядок $|\mathrm{Hom}(\mathbb{Z}_n,\mathbb{Z}_m)|=\sum_{d|n\wedge m}\varphi(d)=n\wedge m$. при этом для $d=n\wedge m$ и $k=1,\,\varphi(1)=[m/d]_m$, то порядок этого элемента очевидно d, а значит $\mathrm{Hom}(\mathbb{Z}_n,\mathbb{Z}_m)\cong\mathbb{Z}_{m\wedge n}$.

8. Могут ли две неизоморфные группы иметь изоморфные нормальные подгруппы и изоморфные фактор-группы по ним? Может ли группа иметь две изоморфные нормальные подгруппы, фактор-группы по которым неизоморфны? Может ли группа иметь неизоморфные нормальные подгруппы, фактор-группы по которым изоморфны?

Две неизоморфные группы могут иметь изоморфные нормальные подгруппы и изоморфные фактор-группы по ним, например $\mathbb{Z}_4/2\mathbb{Z}_2\cong\mathbb{Z}_2\times\mathbb{Z}_2/\langle 0,(1,1)\rangle$.

Группа может иметь две изоморфные нормальные подгруппы, фактор-группы по которым неизоморфны, например $\mathbb{Z}_4 \times \mathbb{Z}_2/0 \times \mathbb{Z}_2 \cong \mathbb{Z}_4$, но $\mathbb{Z}_4 \times \mathbb{Z}_2/\langle 0,2 \rangle \times 0 \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

Группа может иметь неизоморфные нормальные группы, фактор-группы по которым изоморфны, например $\mathbb{Z}_4 \times \mathbb{Z}_4/\mathbb{Z}_4 \times 0 \cong \mathbb{Z}_4 \times \mathbb{Z}_2/\langle 0,2 \rangle \times \mathbb{Z}_2$

9. (Теорема Кэли) Докажите, что любая группа изоморфна подгруппе симметрической группы.

Пусть G - группа, тогда рассмотрим каноничное левое G-действие на G. Это действие является подгруппой симметрической группы G как множества.