University of Minnesota Duluth

Newton's Method for 2 Dimensional Functions

Noah Wong Advisor: Bruce Peckham

Newton's Method

Figure: Example of Newton's Method

Newton's method for the function $H: \mathbb{R} \to \mathbb{R}$

$$N_H(x) = x - \frac{H(x)}{H'(x)}$$

Newton's method for the function $H: \mathbb{R} \to \mathbb{R}$

$$N_H(x) = x - \frac{H(x)}{H'(x)}$$

If
$$H(x) = x^2 - 1$$
 then

$$N_H(x) = \frac{x^2 + 1}{2x}$$

Newton's method for the function $H: \mathbb{R} \to \mathbb{R}$

$$N_H(x) = x - \frac{H(x)}{H'(x)}$$

If $H(x) = x^2 - 1$ then

$$N_H(x) = \frac{x^2 + 1}{2x}$$

Orbits are defined as $x_0, x_1 = N_H(x_0), x_2 = N_H(x_1), \dots, x_{n+1} = N_H(x_n), \dots$

The nth term in the sequence is the iterative function applied n times.

Newton's method for the function $H: \mathbb{R} \to \mathbb{R}$

$$N_H(x) = x - \frac{H(x)}{H'(x)}$$

If $H(x) = x^2 - 1$ then

$$N_H(x) = \frac{x^2 + 1}{2x}$$

Orbits are defined as $x_0, x_1 = N_H(x_0), x_2 = N_H(x_1), \dots, x_{n+1} = N_H(x_n), \dots$

The *nth* term in the sequence is the iterative function applied *n* times. If $x_0 = 5$ we get the sequence of $5, \frac{13}{5}, \frac{97}{65}, \frac{6817}{6305}, \cdots \rightarrow 1$

Newton's method for the function $H: \mathbb{R} \to \mathbb{R}$

$$N_H(x) = x - \frac{H(x)}{H'(x)}$$

If $H(x) = x^2 - 1$ then

$$N_H(x) = \frac{x^2 + 1}{2x}$$

Orbits are defined as $x_0, x_1 = N_H(x_0), x_2 = N_H(x_1), \dots, x_{n+1} = N_H(x_n), \dots$

The *nth* term in the sequence is the iterative function applied *n* times. If $x_0=5$ we get the sequence of $5,\frac{13}{5},\frac{97}{65},\frac{6817}{6305},\cdots \to 1$ If $x_0=-\frac{1}{3}$ we get the sequence of $-\frac{1}{3},-\frac{5}{3},-\frac{17}{15},-\frac{257}{255},\cdots \to -1$

Cobweb Diagrams

Graph of $N_H(x) = \frac{x^2+1}{2x}$ and reference line

Iterating a **fixed point** returns the fixed point so x is fixed if

$$N_H(x) = x$$

Iterating a **fixed point** returns the fixed point so x is fixed if

$$N_H(x) = x$$

The roots of H are the fixed points of Newton's method applied to H.

$$N_H(x) = x - \frac{H(x)}{H'(x)}$$

Iterating a **fixed point** returns the fixed point so x is fixed if

$$N_H(x) = x$$

The roots of H are the fixed points of Newton's method applied to H.

$$N_H(x) = x - \frac{H(x)}{H'(x)}$$

A fixed point p for N_H is **attracting** if $|N'_H(p)| < 1$.

Iterating a **fixed point** returns the fixed point so x is fixed if

$$N_H(x) = x$$

The roots of H are the fixed points of Newton's method applied to H.

$$N_H(x) = x - \frac{H(x)}{H'(x)}$$

A fixed point p for N_H is **attracting** if $|N'_H(p)| < 1$.

$$N'_{H}(x) = \frac{H(x)H''(x)}{(H'(x))^{2}}$$

If H(p) = 0 and $H'(p) \neq 0$ then $N'_H(p) = 0$.

Newton's Fractal for $H(z) = z^2 - 1$

The different color represent the **basin of attraction** for each fixed point. The basin of attraction is the set of all points which converge to the given fixed point.

Newton's Fractal for $H(z) = z^2 - 1$

One-Dimensional vs. Two-Dimensional

Newton's Fractal for $H(z) = z^2 - 1$

Complex Newton's Method

Complex version has a similar function

$$N_H(z) = \frac{z^2 + 1}{2z}$$

Complex Newton's Method

Complex version has a similar function

$$N_H(z)=\frac{z^2+1}{2z}$$

The line y = 0 is **invariant**, any point that starts on this line its orbit will remain on the line y = 0.

Complex Perturbation

The function we are exploring

$$F(z)=z^2-1+A\bar{z}$$

where \bar{z} is the complex conjugate and A is a complex **parameter**, A = a + bi.

Complex Perturbation

The function we are exploring

$$F(z)=z^2-1+A\bar{z}$$

where \bar{z} is the complex conjugate and A is a complex **parameter**,

A = a + bi.

Complex Newton's Method for F(z)

$$N_F(z) = z - \frac{F(z)}{F'(z)}$$

Complex Perturbation

The function we are exploring

$$F(z)=z^2-1+A\bar{z}$$

where \bar{z} is the complex conjugate and A is a complex **parameter**,

A = a + bi.

Complex Newton's Method for F(z)

$$N_F(z) = z - \frac{F(z)}{F'(z)}$$

The real two-dimensional version of F(z) is

$$F\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x^2 - y^2 - 1 + ax + by \\ 2xy - ay + bx \end{pmatrix}$$

2D Newton's Method

Complex Newton's Method for F(z)

$$N_F(z) = z - \frac{F(z)}{F'(z)}$$

2D Newton's Method

Complex Newton's Method for F(z)

$$N_F(z) = z - \frac{F(z)}{F'(z)}$$

Newton's Method for the two dimensional function F is

$$N_F \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} - JF^{-1} \begin{pmatrix} x \\ y \end{pmatrix} F \begin{pmatrix} x \\ y \end{pmatrix}$$

2D Newton's Method

Complex Newton's Method for F(z)

$$N_F(z) = z - \frac{F(z)}{F'(z)}$$

Newton's Method for the two dimensional function *F* is

$$N_F \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} - JF^{-1} \begin{pmatrix} x \\ y \end{pmatrix} F \begin{pmatrix} x \\ y \end{pmatrix}$$

 JF^{-1} represents the inverse of the Jacobian Matrix of F. The Jacobian is given by

$$JF\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{\partial F_1}{\partial x} & \frac{\partial F_1}{\partial y} \\ \frac{\partial F_2}{\partial x} & \frac{\partial F_2}{\partial y} \end{pmatrix}$$

$$F(z) = z^2 - 1 + A\bar{z}$$

The corresponding two-dimensional function for F(z) is

$$F\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x^2 - y^2 - 1 + ax + by \\ 2xy - ay + bx \end{pmatrix}$$

$$F(z) = z^2 - 1 + A\bar{z}$$

The corresponding two-dimensional function for F(z) is

$$F\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x^2 - y^2 - 1 + ax + by \\ 2xy - ay + bx \end{pmatrix}$$

Using Newton's Method for 2-dimensional functions

$$N\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} - JF^{-1}\begin{pmatrix} x \\ y \end{pmatrix} F\begin{pmatrix} x \\ y \end{pmatrix}$$

$$F(z) = z^2 - 1 + A\bar{z}$$

The corresponding two-dimensional function for F(z) is

$$F\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x^2 - y^2 - 1 + ax + by \\ 2xy - ay + bx \end{pmatrix}$$

Using Newton's Method for 2-dimensional functions

$$N\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} - JF^{-1}\begin{pmatrix} x \\ y \end{pmatrix} F\begin{pmatrix} x \\ y \end{pmatrix}$$

This has the Jacobian Matrix of

$$JF\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a+2x & b-2y \\ b+2y & -a+2x \end{pmatrix}$$

Newton's Method for $F(z) = z^2 - 1 + A\overline{z}$

Newton's 2 Dimensional Iteration Function

$$N_F \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{a(1+x^2-y^2)-2x(1-by+x^2+y^2)}{a^2+b^2-4(x^2+y^2)} \\ \frac{b(1+x^2-y^2)-2y(-1+ax+x^2+y^2)}{a^2+b^2-4(x^2+y^2)} \end{pmatrix}$$

where x and y represents the real and imaginary components of the original F(z) respectively.

Newton's Method for $F(z) = z^2 - 1 + A\overline{z}$

Newton's 2 Dimensional Iteration Function

$$N_F \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{a(1+x^2-y^2)-2x(1-by+x^2+y^2)}{a^2+b^2-4(x^2+y^2)} \\ \frac{b(1+x^2-y^2)-2y(-1+ax+x^2+y^2)}{a^2+b^2-4(x^2+y^2)} \end{pmatrix}$$

where x and y represents the real and imaginary components of the original F(z) respectively.

We restrict our complex parameter to be real, b=0, resulting in a simpler system we can analyze.

Newton's Fractal

Newton's Fractal for $F(z) = z^2 - 1 + 0.5\bar{z}$

Four Root Case

When $|a| > \frac{2\sqrt{3}}{3}$ there are four roots.

Animation Real Axis

Critical Circle

The critical points of F(z)

$$Det(JF\binom{x}{y}) = a^2 + b^2 - 4(x^2 + y^2) = 0$$

Critical Circle

The critical points of F(z)

$$Det(JF\binom{x}{y}) = a^2 + b^2 - 4(x^2 + y^2) = 0$$
$$\frac{a^2 + b^2}{4} = x^2 + y^2$$
$$(\frac{|A|}{2})^2 = x^2 + y^2$$

This is the **critical circle** centered at the origin with radius half of the magnitude of the parameter *A*.

Critical Circle

The critical points of F(z)

$$Det(JF\binom{x}{y}) = a^2 + b^2 - 4(x^2 + y^2) = 0$$
$$\frac{a^2 + b^2}{4} = x^2 + y^2$$
$$(\frac{|A|}{2})^2 = x^2 + y^2$$

This is the **critical circle** centered at the origin with radius half of the magnitude of the parameter *A*.

$$N_A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{a(1+x^2-y^2)-2x(1-by+x^2+y^2)}{a^2+b^2-4(x^2+y^2)} \\ \frac{b(1+x^2-y^2)-2y(-1+ax+x^2+y^2)}{a^2+b^2-4(x^2+y^2)} \end{pmatrix}$$

Invariant Line $x = \frac{a}{2}$

There is an invariant line $I = \{(x,y)|x = \frac{a}{2}\}$. Points on I follow the equation.

Invariant Line $x = \frac{a}{2}$

There is an invariant line $I = \{(x, y) | x = \frac{a}{2}\}$. Points on I follow the equation.

$$N_F \begin{pmatrix} a/2 \\ y \end{pmatrix} = \begin{pmatrix} a/2 \\ \frac{y^2 - 1 + \frac{3a^2}{4}}{2y} \end{pmatrix}$$

Invariant Line One Dimensional

For $y \in I$

$$N_{l}(y) = \frac{y^{2} - 1 + \frac{3a^{2}}{4}}{2y}$$

Figure: Graphical Iteration for $N_I(y)$ with a = 1

Conjugacy

Doubling Map $D(x) = 2x \pmod{1}$

Newton's Method on I

Doubling Map

Doubling Map $D(x) = 2x \pmod{1}$ for $x \in [0, 1)$

Eventually fixed points q are points that after a certain number of iterations become fixed.

$$q = \frac{k}{2^n}$$
 $k = 0, 1, \dots, 2^n - 1$

$$D^{n}(q) = 2^{n}(\frac{k}{2^{n}}) = k \pmod{1} = 0$$

Doubling Map Conjecture

Newton's Method with Bulbs labeled

Doubling Map Conjecture

Newton's Method with Bulbs labeled

The critical circle maps to the region to the right of the invariant line I.

Doubling Map Conjecture

Newton's Method with Bulbs labeled

The critical circle maps to the region to the right of the invariant line I. Bulbs are preimages of the critical circle.

Pure imaginary animation

Future Work

Questions: Why are there large portions of non-convergence for certain values of b.

Future Work

Explain the dynamics for all values of A.

Figure: Newton's Fractal for $f(z) = z^2 - 1 + (2 + 1.5i)\bar{z}$

The End

Thank you!