CS61B Lectures #27

Today:

- Selection sorts, heap sort
- Merge sorts
- Quicksort

Readings: Today: DS(IJ), Chapter 8; Next topic: Chapter 9.

Last modified: Tue Oct 23 23:02:59 2018

Sorting by Selection: Heapsort

Idea: Keep selecting smallest (or largest) element.

- Really bad idea on a simple list or vector.
- But we've already seen it in action: use heap.
- ullet Gives $O(N \lg N)$ algorithm (N remove-first operations).
- Since we remove items from end of heap, we can use that accumulate result:

Sorting By Selection: Initial Heapifying

- When covering heaps before, we created them by inserting initially empty heap.
- When given an array of unheaped data to start with, the faster procedure (assume heap indexed from 0):

- ullet Looks like the procedure for re-inserting an element after element of the heap is removed, repeated N/2 times.
- ullet But instead of being $\Theta(N \lg N)$, it's just $\Theta(N)$.

Cost of Creating Heap

 $1 \text{ node} \times 3 \text{ steps down}$

2 nodes \times 2 steps down

4 nodes \times 1 step down

ullet In general, worst-case cost for a heap with h+1 levels is

$$2^{0} \cdot h + 2^{1} \cdot (h - 1) + \dots + 2^{h-1} \cdot 1$$

$$= (2^{0} + 2^{1} + \dots + 2^{h-1}) + (2^{0} + 2^{1} + \dots + 2^{h-2}) + \dots + (2^{h-1}) + (2^{h-1} - 1) + \dots + (2^{1} - 1)$$

$$= 2^{h+1} - 1 - h$$

$$\in \Theta(2^{h}) = \Theta(N)$$

ullet Alas, since the rest of heapsort still takes $\Theta(N\lg N)$, this comprove its asymptotic cost.

Merge Sorting

Idea: Divide data in 2 equal parts; recursively sort halves; me sults.

- Already seen analysis: $\Theta(N \lg N)$.
- Good for external sorting:
 - First break data into small enough chunks to fit in mem sort.
 - Then repeatedly merge into bigger and bigger sequences.
- Can merge K sequences of arbitrary size on secondary stora $\Theta(K)$ storage:

```
Data[] V = new Data[K];
For all i, set V[i] to the first data item of sequence
while there is data left to sort:
    Find k so that V[k] is smallest;
    Output V[k], and read new value into V[k] (if
```

Illustration of Internal Merge Sort

For internal sorting, can use a binomial comb to orchestrate:

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

0: 0 1: 0 2: 0 3: 0

O elements processed

1 element processed

2 elements processed

3 elements pr

4 elements processed

6 elements processed

11 elements pr

Quicksort: Speed through Probability

Idea:

- Partition data into pieces: everything > a pivot value at tend of the sequence to be sorted, and everything \le on the l
- Repeat recursively on the high and low pieces.
- For speed, stop when pieces are "small enough" and do insert on the whole thing.
- Reason: insertion sort has low constant factors. By design, will move out of its will move out of its piece [why?], so whe are small, #inversions is, too.
- Have to choose pivot well. E.g.: median of first, last and items of sequence.

Example of Quicksort

- ullet In this example, we continue until pieces are size ≤ 4 .
- Pivots for next step are starred. Arrange to move pivot to line each time.
- Last step is insertion sort.

16	10	13	18	-4	-7	12	-5	19	15	0	22	2	29
-4	-5	-7	-1	18	13	12	2 10) 19) 15	5 C	2	2	29
-4	-5	-7	-1	15	13	12	* 10	0		.6	19*	22	
			-1				-			•	_		

• Now everything is "close to" right, so just do insertion sort:

					_									
-7 -5 -4 -1 0 10 12 13 15 16 18	19 2	19 7	8 19	16 18	16	15	13	12	10	0	-1	-4	-5	-7

Performance of Quicksort

- Probabalistic time:
 - If choice of pivots good, divide data in two each time: Θ with a good constant factor relative to merge or heap so
 - If choice of pivots bad, most items on one side each time
 - $\Omega(N\lg N)$ in best case, so insertion sort better for ne dered input sets.
- ullet Interesting point: randomly shuffling the data before sorting $\Omega(N^2)$ time \emph{very} unlikely!

Last modified: Tue Oct 23 23:02:59 2018

Quick Selection

The Selection Problem: for given k, find $k^{\dagger h}$ smallest element

- Obvious method: sort, select element #k, time $\Theta(N \lg N)$.
- ullet If $k \leq$ some constant, can easily do in $\Theta(N)$ time:
 - Go through array, keep smallest k items.
- Get probably $\Theta(N)$ time for all k by adapting quicksort:
 - Partition around some pivot, p, as in quicksort, arrange the ends up at dividing line.
 - Suppose that in the result, pivot is at index m, all eler pivot have indicies $\leq m$.
 - If m=k, you're done: p is answer.
 - If m>k, recursively select $k^{\mbox{th}}$ from left half of sequen
 - If m < k, recursively select $(k-m-1)^{\mbox{th}}$ from right sequence.

Selection Example

Problem: Find just item #10 in the sorted version of array:

Initial contents:

51	60	21	-4	37	4	49	10	40*	59	0	13	2	39	11	46	31
0																

Looking for #10 to left of pivot 40:

13	31	21	-4	37	4*	11	10	39	2	0	40	59	51	49	46	60
0													-	-	-	

Looking for #6 to right of pivot 4:

-4	0	2	4	37	13	11	10	39	21	31*	40	59	51	49	46	(
			'	4						,	'	•				

Looking for #1 to right of pivot 31:

Just two elements; just sort and return #1:

-4 0 2	4	21	13	11	10	31	37	39	40	59	51	49	46
			10		10		9				J 1	12	10

Result: 39

Selection Performance

ullet For this algorithm, if m roughly in middle each time, cost is

$$C(N) = \begin{cases} 1, & \text{if } N = 1, \\ N + C(N/2), & \text{otherwise.} \end{cases}$$

$$= N + N/2 + \ldots + 1$$

$$= 2N - 1 \in \Theta(N)$$

- ullet But in worst case, get $\Theta(N^2)$, as for quicksort.
- ullet By another, non-obvious algorithm, can get $\Theta(N)$ worst-ca for all k (take CS170).

Last modified: Tue Oct 23 23:02:59 2018