Question 1

$$\begin{bmatrix} 1 & 1 & 3 & -1 & 3 \\ 2 & -2 & 1 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 3 & -1 & 3 \\ 0 & -4 & -5 & 3 & -6 \end{bmatrix} R_{2} - 2R_{1}$$

$$\rightarrow \begin{bmatrix} 1 & 1 & 3 & -1 & 3 \\ 0 & 1 & 5/4 & -3/4 & 3/2 \end{bmatrix} - \frac{1}{4}R_{2}$$

$$\rightarrow \begin{bmatrix} 1 & 0 & \frac{7}{4} & -\frac{1}{4} & \frac{3}{2} \\ 0 & 1 & 5/4 & -\frac{3}{4} & \frac{3}{2} \end{bmatrix} R_{1} - R_{2}$$

$$So, \quad \chi_{1} + \frac{7}{4}\chi_{3} - \frac{\chi_{4}}{4} = \frac{3}{2}$$

So,
$$x_1 + \frac{7}{4}x_3 - \frac{x_4}{4} = \frac{3}{2}$$

 $x_2 + \frac{5}{4}x_3 - \frac{3}{4}x_4 = \frac{3}{2}$
Let $x_3 = t$ and $x_4 = s$. Then

$$x_1 = \frac{3}{2} - \frac{7}{4}t + \frac{5}{4}$$
 $x_2 = \frac{3}{2} - \frac{5}{4}t + \frac{3}{4}s$
 $x_4 = s$

Question 2

$$\Rightarrow \alpha \begin{bmatrix} 1 \\ 1 \end{bmatrix} + b \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix} + c \begin{bmatrix} -2 \\ 3 \\ 2 \\ 0 \end{bmatrix} + d \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -8 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{array}{l}
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=) \\
(=)$$

(b) Yes, the solution is
$$a = 2$$
, $b = 2$, $c = -3$, $d = 1$.

Austion 3

(a)
$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 2 & -1 & 1 & -2 & 0 \\ 3 & -1 & 2 & -1 & 0 \end{bmatrix}$$

- (b) Since the #eq = 3 and #var. = 4 and 4>3, then there are infinitely many solutions.
- (c) the equation one $x_1 - 3x_4 = 0$ $x_3 + 4x_4 = 0$ $x_2 = 0$

Set 24 = t, then

$$\begin{bmatrix} \chi_1 \\ \chi_2 \\ \tau_3 \\ \chi_4 \end{bmatrix} = \begin{bmatrix} 3t \\ 0 \\ -4t \\ t \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ -4 \\ 1 \end{bmatrix}$$
Exercise Solution

Question 4

$$\Rightarrow 2(AT)^{T} - 5\begin{bmatrix}10\\-12\end{bmatrix}^{T} = 4A - \begin{bmatrix}99\\-90\end{bmatrix}$$

$$\Rightarrow 2A - 5\left[\begin{array}{c} 1 & -1 \\ 0 & 2 \end{array}\right] = 4A - \left[\begin{array}{c} 9 & 9 \\ -9 & 0 \end{array}\right]$$

$$\Rightarrow 2A - \begin{bmatrix} 5 - 5 \\ 0 & 10 \end{bmatrix} = 4A - \begin{bmatrix} 9 & 9 \\ -9 & 0 \end{bmatrix}$$

$$= 3 \left[99 - \left[5-5 \right] - 4A - 2A \right]$$

$$\begin{array}{c}
(4) \\
-9 \\
-10
\end{array}$$

$$A = \begin{bmatrix} 2 & 7 \\ -9/2 & -5 \end{bmatrix}$$

Quistian 5

Assume A,B au obew symmetric. Then

$$(A-B)^T = A^T - B^T$$
 (Prop. transpose)
= $-A - (-B)$ (A₁B obew-sym.)
= $-A + B$
= $-(A-B)$

Henre, A-B is shew symmetric. 13

Quistian 6

- (a) True, rank = # leading ones = 2. (b) False, it always has the trivial Solution.
- (c) False.

$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 has solution $x_2 = 2$
 $x_3 = t$

For
$$t=0$$
, $\vec{z}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is a solution
For $t=1$, $\vec{x}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is also a
Polution. But $\vec{z}_1 + \vec{x}_2 = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$ is not
a solution because the second entry
is 4, not 2.

(d) False. The tonchusian is valid if the pystem is assumed to be consisted.