Formeln	
Lineare Regression	Regularisierung
$\begin{aligned} & \textbf{Hypothese:} \\ & h_{\theta(x)} = \theta_0 + \theta_1 x_1 + \ldots + \theta_n x_n \\ & \textbf{Kostenfunktion (MSE):} \\ & J(\theta) = \operatorname{frac}\{1\}\{2n\} \sum_{\{i=1\}}^n \left(h_{\theta(x^{\{(i)\}})} - y^{\{(i)\}}\right)^2 \\ & \textbf{Ziel:} \min_{\theta} J(\theta) \\ & \textbf{Multivariat:} \\ & \text{Mehrere Features } x_1, x_2, \ldots, x_n \\ & \textbf{Polynom-Regression:} \\ & h_{\theta(x)} = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \ldots \end{aligned}$	Kostenfunktion mit L2-Regularisierung: $J(\theta) = \operatorname{frac}\{1\}\{2n\} \sum \left(h_{\theta(x^{\{(i)\}})} - y^{\{(i)\}}\right)^2 + \lambda \sum_{\{j=1\}}^d \theta_j^2$ Effekt von λ : $\bullet \lambda = 0 \to \operatorname{kein} \operatorname{Penalty}$ $\bullet \operatorname{großes} \lambda \to \operatorname{starke} \operatorname{Bestrafung}, \operatorname{Underfitting}$
Gradient Descent	Bias-Term θ_0 wird oft nicht regularisiert
$\label{eq:Update-Regel:} \begin{aligned} & \textbf{Update-Regel:} \\ & \theta_j \coloneqq \theta_j - \alpha \ \text{frac}\{\partial\} \big\{ \partial \theta_j \big\} J(\theta) \end{aligned}$	
Für lineare Regression: $\theta_j \coloneqq \theta_j + \alpha \operatorname{frac}\{1\}\{n\} \sum_{\{i=1\}}^n \left(y^{\{(i)\}} - h_{\theta(x^{\{(i)\}})}\right) \cdot x_j^{\{(i)\}}$	
Lernrate α : Zu groß \rightarrow Divergenz, zu klein \rightarrow langsame Konvergenz	
Logistische Regression	
Sigmoidfunktion: $g(z) = \operatorname{frac}\{1\}\{1 + e^{\{-z\}}\}$	Support Vector Machines Ziel:
Hypothese: $h_{\theta(x)} = g(\theta^T x)$	$m \in \atop \{w,b\} (\operatorname{frac}\{1\}\{2\} \; w ^2 + C \sum x i_i)$ Nebenbedingungen:
Klassifikation:	$y^{\{(i)\}}ig(w^Tx^{\{(i)\}}+big)ge1-xi_i$ mit xi_ige0
$egin{aligned} h_{ heta(x)}ge0.5 & ightarrow ext{Klasse 1} \ h_{ heta(x)} &< 0.5 ightarrow ext{Klasse 0} \end{aligned}$	C kontrolliert Trade-off:
Entscheidungsgrenze:	großes $C \to$ weniger Fehler, kleines $C \to$ größerer Margin
$\theta_0 + \theta_1 x_1 + \theta_2 x_2 = 0$	Kernel-Trick:
0 1 1 1 1 2 2 2	