Attorn y Docket No.: N1085-00256 [TSMC 2003-0899]

What is claimed is:

1. A plasma etching apparatus comprising a chuck for retaining a substrate and hardware that includes oxygen therein such that said oxygen is released when an etching operation is carried out.

- 2. The plasma etching apparatus as in claim 1, wherein said chuck is substantially circular and said hardware comprises a focus ring that peripherally surrounds said chuck.
- 3. The plasma etching apparatus as in claim 1, wherein said chuck is substantially circular and said hardware comprises a focus ring that is annular in shape and at least a portion of said focus ring substantially continuously extends below a peripheral portion of said chuck.
- 4. The plasma etching apparatus as in claim 1, wherein said chuck comprises an electrostatic chuck.
- 5. The plasma etching apparatus as in claim 1, wherein said hardware comprises a focus ring composed primarily of quartz.
- 6. The plasma etching apparatus as in claim 1, wherein said hardware comprises a focus ring formed of a ceramic.
- 7. The plasma etching apparatus as in claim 2, further comprising a further focus ring, said focus ring and said further focus ring forming a focus ring set that peripherally surrounds said chuck.
- 8. A plasma etching apparatus comprising a chuck for retaining a substrate and a focus ring, at least one of said chuck and said focus ring including oxygen therein such that said oxygen is released when an etching operation is carried out.

- 9. A plasma etching apparatus comprising an etch chamber including therein a focus ring and a chuck for retaining a substrate, said focus ring maintainable at a temperature no greater than a temperature of said substrate while an etching operation is carried out upon said substrate.
- 10. The plasma etching apparatus as in claim 9, wherein said chuck comprises an electrostatic chuck and said substrate comprises a semiconductor substrate.
- 11. The plasma etching apparatus as in claim 9, wherein said focus ring maintains contact with said electrostatic chuck and said electrostatic chuck is cooled during said etching operation.
- 12. The plasma etching apparatus as in claim 11, wherein said focus ring is disposed peripherally around said substrate and includes a portion that rests on an annular landing section of electrostatic chuck.
- 13. The plasma etching apparatus as in claim 11, wherein said focus ring includes oxygen therein such that said oxygen is released during an etching process.
- 14. A method for etching a semiconductor device on a substrate, comprising: providing an etching tool including therein a chuck for retaining a substrate and an oxygen-impregnated focus ring; and performing an etch operation such that said oxygen is liberated.
- 15. The method as in claim 14, wherein said providing further includes providing a semiconductor substrate on said chuck and said etching operation includes a gas including $C_x F_v H_z$.

1	16. The method as in claim 14, wherein said providing includes providing a
2	substrate on said chuck and further comprising cooling said substrate with a gas that
3	includes oxygen.
1	17. The method as in claim 16, wherein said gas further include helium and
2	said cooling comprises directing said gas through openings in said chuck.
4	10 A method for etabing a substrate comprising:
1	18. A method for etching a substrate comprising:
2	providing an etching apparatus including an etching chamber having therein a
3	chuck for retaining a substrate and a focus ring;
4	etching a film on a substrate disposed on said chuck; and
5	maintaining said focus ring at a temperature no greater than a temperature of
6	said substrate and maintaining at least a portion of said focus ring in contact with said
7	chuck, during said etching.
1	19. The method as in claim 18, wherein said maintaining and said etching
2	occur substantially simultaneously.
1	20. The method as in claim 18, in which said focus ring is formed of quartz
2	and said chuck comprises an electrostatic chuck.
1	21. A method for etching a substrate comprising:
2	providing a substrate on a chuck;
3	etching said substrate ;
4	generating an oxygen plasma and performing a clean operation while said
5	substrate is on said chuck; and
6	further generating a further oxygen plasma and performing a further clean
7	operation while said substrate is positioned above said chuck or a further chuck.

22.

1

2

providing a semiconductor substrate on a chuck, said semiconductor substrate including

The method as in claim 21, wherein said providing a substrate comprises

1

2

1

2

3

1

2

3

1

2

3

4

5

6

7

8

9

10

11

- a dielectric layer formed thereon, and said etching comprises etching said dielectric
 layer.
- 1 23. The method as in claim 21, wherein said generating and said further 2 generating are performed in in-situ.
- 1 24. The method as in claim 21, wherein said etching includes using $C_xF_yH_z$ as 2 an etching gas.
 - 25. The method as in claim 21, wherein said further generating includes said substrate spaced above said chuck by pins that extend above said chuck.
 - 26. The method as in claim 22, wherein said dielectric layer includes a dielectric constant less than 3.2 and at least one of said first generating and said further generating includes a pressure less than 100 mT.
 - 27. The method as in claim 22, wherein said dielectric layer includes a dielectric constant greater than 3.2 and at least one of said generating and said further generating includes a pressure greater than 50 mT.
 - 28. A method for etching a semiconductor substrate comprising:
 - providing an etching tool having an etch chamber including a semiconductor substrate disposed on a chuck and substantially peripherally surrounded by a focus ring that includes oxygen incorporated therein;
 - performing an etching operation such that said oxygen is liberated;
 - during said performing, maintaining said focus ring at a temperature no greater than a temperature of said semiconductor substrate and at least partially in contact with said chuck;
 - after said performing, generating an oxygen plasma and cleaning said semiconductor substrate with said oxygen plasma while said semiconductor substrate is disposed on said chuck;

PH1\1138063.1 . 15

EXPRESS MAIL NO. EV 154828107 US

12

13

14

15

16

Attorney Docket No.: N1085-00256 [TSMC 2003-0899]

after said performing, generating a further oxygen plasma and further cleaning
said semiconductor substrate with said further oxygen plasma while said semiconductor
substrate is spaced over said chuck or a further chuck; and
cooling by directing a mixture of helium and oxygen through openings formed in
said chuck or said further chuck.

PH1\1138063.1 16