Machine Learning – Forecasting Energy (Electricity) Consumption

Spencer Rubin March 18, 2021

Project Summary

- Energy consumption fluctuates by season, period of the day, and climate
- Extreme weather events may impact peaks in energy demand
- Projecting demand for electricity can reduce power outages, improve customer satisfaction
- Can we utilize time series data, machine learning on electricity consumption to improve forecasting?

Data

- PJM Interconnection, Inc. transmission line serving multi-state, multi-utility region in eastern U.S.
- Hourly data of electricity consumption by utility company (megawatts)
- Data freely available via Kaggle:
 https://www.kaggle.com/robikscube/hourly-energy-consumption
 - Multiple .csv files per utility company under PJM

- Plotting all utility power as individual features
- Inconsistent time frames
- Utility changes w/in PJM

	AEP_MW	COMED_MW	DAYTON_MW	DEOK_MW	DOM_MW	DUQ_MW	FE_MW	PJME_MW	PJMW_MW
Datetime									22
2012-01-01	14397.375000	9894.000000	1715.125000	2629.913043	9475.250000	1504.916667	6571.583333	26920.916667	4902.875000
2012-01-02	16882.958333	11217.833333	2061.166667	3179.875000	10587.333333	1686.375000	7533.041667	30463.166667	5857.791667
2012-01-03	19687.333333	12487.833333	2352.083333	3503.375000	13584.708333	1883.500000	8889.125000	36219.208333	6965.708333
2012-01-04	19357.458333	12119.541667	2323.208333	3470.541667	14265.166667	1947.750000	8903.041667	39069.166667	7296.583333
2012-01-05	17448.541667	11694.000000	2155.833333	3210.125000	11898.708333	1794.750000	8425.541667	35579.583333	6425.333333

- Join individual features (columns):
 - Index Timeseries
 - Column = daily sum of utility power consumption

	Total_MW
Datetime	
2012-01-01	46188.163043
2012-01-02	53148.583333
2012-01-03	62387.958333
2012-01-04	62386.708333
2012-01-05	56627.500000

Exploring The Data

Exploring The Data

Resampled for weekly average

	Total_MW	Weeks
Datetime		
2012-01-01	46188.163043	1
2012-01-08	54688.875000	2
2012-01-15	55755.767857	3
2012-01-22	57336.458333	4
2012-01-29	53328.892857	5

Augmented Dicky-Fuller Test: Stationarity

Daily Summed

Result: Dicky-Fuller Test	
Test Statistics	-4.372127
p-value	0.000332
No. of lags used	26.000000
Number of observations used	2165.000000
critical value (1%)	-3.433374
critical value (5%)	-2.862876
critical value (10%)	-2.567481
dtype: float64	

Weekly Summed

Result: Dicky-Fuller Test	
Test Statistics	-8.085169e+00
p-value	1.426286e-12
No. of lags used	1.100000e+01
Number of observations used	3.020000e+02
critical value (1%)	-3.452190e+00
critical value (5%)	-2.871158e+00
critical value (10%)	-2.571895e+00
dtype: float64	

Train – Test Sets

- 6 years ~ 314 weeks
- Train set: 262 weeks (5-yr)
- Test set: 52 (1yr)

```
X = df_W.Total_MW
size = int(len(X) * 0.837)
train, test = X[0:size], X[size:len(X)]

print("Train set: " + str(len(train)) + " weeks")
print("Test set: " + str(len(test)) + " weeks")
```

Train set: 262 weeks Test set: 52 weeks

Persistence Model

Baseline model using the previous step (t-1) to predict the following step (t+1)

- RMSE: 4344
- Can we improve on the accuracy of this model?

Autocorrelation – Partial Autocorrelation

Autoregressive Integrated Moving Average (ARIMA)

ARIMA(6,1,1)

- RMSE: 4093
- Slightly reduced RMSE compared to persistence

ARIMA: Hyperparameter Tuning

Search over (p,d,q) values...

ARIMA(7,0,2) smaller RMSE

- RMSE: 3684
- Slightly reduced RMSE compared to persistence

Random Forest Regression Model

- Add column "Weeks"
- Create "supervised learning"

	Weeks	Total_MW
0	1	46188.163043
1	2	54688.875000
2	3	55755.767857
3	4	57336.458333

- RMSE: 4060
- Better than "persistence"

Model Performance

Conclusions

- All models performed well in predicting trends of power consumption
- Predicting peaks from unseasonal weather, extreme events may require further feature engineering
- Hyperparameter tuning can provide additional error reduction, improved accuracy
- Generalized trends can be well understood using ARIMA, Persistence Modeling, and Random Forest Regression

Future Considerations

- Adding additional features (e.g. weather, population of utility regions) can further support supervised learning models
- Correlation of features relating to predicting spikes in power may allow the model to more accurately predict summer and winter power consumption extremes
 - This can be critical for transmission line planning and performance
- Additional hyperparameter tuning of well performing models may increase accuracy
 - ARIMA(p,d,q) grid search
- Testing additional model types (e.g. Prophet, LSTM) can provide more detailed comparisons