Information Synchronization across Multilingual Semi-structured Tables

Siddharth Khincha¹, Chelsi Jain², Vivek Gupta^{3†}, Tushar Kataria^{3†}, Shuo Zhang⁴

¹IIT Guwahati, ²CTAE, Udaipur, ³University of Utah², ⁴Bloomberg,

1. Information Mismatch in Tables Across Languages

English Table

Hindi Table

- Janaki Ammal Infoboxes: English (right) vs. Hindi (left). Hindi lacks "British Rule of India" context.
- Value mismatches: (a) Hindi table doesn't state Died key's state. (b) Institution values differ -Hindi mentions "residence," English doesn't.
- Missing keys in Hindi table: "Thesis," "Awards," and "Alma Mater." Neither mentions parents, early education, or honors.

2. Problem Magnitude

- Articles in More than 300 languages.
- English has the most significant Wikipedia covering 23% (11%) of total pages (articles).

• Most users' edits (76%) are also done in English Wikipedia.

3. Our Contributions

- 1 InfoSyncDataset
- 100K entity-centric wikipedia Infoboxes table across 14 languages
- Approximately 3.5K human annotated table alignment pairs
- Proposed a two-step approach as a solution, include Information
- Alignment to mapped similar rows
- Update update missing/outdated rows for aligned tables across multilingual entity centric tables

4. Dataset Details :- Language and category selection

- 1 Languages
- Languages are selected to cover all the continents.
- 4 low resource Hindi(hi), Cebuano(ceb), , Turkish(tr), and Afrikaans(ak)
- 7 medium resource German(de), Korean(ko), Russian(ru), Arabic(ar), Chinese(zh), Swedish(sv), Dutch(nl)
- 3 high resource English(en), French(fr), Spanish(es)
- 2 Entities
- Each Entity selected contains an Infobox in at least 5 languages
- 3 Categories Selection
- 21 simple, diverse, and popular topics: Airport, Album, Animal, Athlete, Book, City, College, Company, Country, Food, Monument, Movie Musician, Nobel, Painting, Person, Planet, Shows, and Stadiums.

5. Method: Alignment

orpus-Based	Corpus-based : Align rows based on keys using their cosine similarity across a category using majority voting.
1	
Key Only	Key-only : This module aligns rows with <i>key</i> similarity score greater than a threshold value, only if they are mutually most similar keys
1	
Key Value Bidirectional	Key value bidirectional : This module aligns rows with <i>key+value</i> similarity score greater than a threshold value, only if they are mutually most similar rows.
1	Key value unidirectional : This module aligns rows with <i>key+value</i>
Key Value nidirectional	similarity greater than a threshold. They do not have to be mutually most similar.
	Multi-key : This module considers the case where one row from table
↓	needs to be mapped to multiple rows in the second table. It is valid
Multi-Key	multi-key alignment when the merge value-combination similarity score exceeds that of the most similar key.

6. Method: Rule-Based Update

P.R.	Rule Name	$\textbf{Logical Rule} \ \forall_{(\textbf{R}_{T_x},\textbf{R}_{T_y})} \ \textbf{L} \mapsto \textbf{R}$	Update Type
1	Row Transfer	$\forall_{(\mathbf{R}_{T_x}, \mathbf{R}_{T_y})} \mathbf{Al}_{T_x}^{T_y} (\mathbf{R}_{T_x}; \mathbf{R}_{T_y}) = 0$	Row Addition
		$\mapsto T_y \cup tr_x^y(R_{T_x}) \wedge Al_{T_x}^{T_y}(R_{T_x}; tr_x^y(R_{T_x})) = 1$	
2	Multi-Match	$\forall_{(R_{T_x},R_{T_y})}(\sum_{R_{T_y}}Al_{T_x}^{T_y}(R_{T_x};R_{T_y}))>1$	Row Delete
		$\mapsto \{T_{y} \setminus \bigcup_{(\forall_{\mathbf{R}_{T_{y}}} Al_{T_{x}}^{T_{y}}(\mathbf{R}_{T_{x}}; \mathbf{R}_{T_{y}}) = 1)} R_{T_{y}}^{r_{y}}\} \bigcup tr_{x}^{y}(\mathbf{R}_{T_{x}}) \bigwedge Al_{T_{x}}^{T_{y}}(\mathbf{R}_{T_{x}}; tr_{x}^{y}(\mathbf{R}_{T_{x}})) = 1$	
3	Time-based	$\forall_{(R_{T_x},R_{T_y})}Al_{T_x}^{T_y}(R_{T_x};R_{T_y}) = 1 \bigwedge (isTime(R_{T_x},R_{T_y}) = 1)$	Value Substitute
		$\bigwedge(\operatorname{exTime}(R_{T_x}) > \operatorname{exTime}(R_{T_y})) \mapsto R_{T_y} \leftarrow tr_x^y(R_{T_x})$	
4	Positive Trend	$\forall_{(R_{T_x},R_{T_y},PosTrend)}Al_{T_x}^{T_y}(R_{T_x};R_{T_y})=1\bigwedgeexKey(R_{T_x})\inPosTrend$	Value Substitute
	or	$\bigwedge_{T_x} R_{T_x} > R_{T_y} \mapsto R_{T_y} \leftarrow R_{T_x}$	
	Negative Trend	$\forall_{(R_{T_x},R_{T_y},NegTrend)}Al_{T_x}^{T_y}(R_{T_x};R_{T_y})=1\bigwedgeexKey(R_{T_x})\inNegTrend$	Value Substitute
		$\bigwedge R_{T_x} < R_{T_y} \mapsto R_{T_y} \leftarrow R_{T_x}$	
5	Append Value	$R_{T_x} = V \bigwedge \forall_{(R_{T_x}, R_{T_y})} Al_{T_x}^{T_y}(R_{T_x}; R_{T_y}) = 1 \bigwedge R_{T_x}[k] > R_{T_y}[k] $	Value Addition
		$\mapsto \forall_{(v \in \mathbf{R}_{T_x}[k] \land \notin tr_x^y(\mathbf{R}_{T_x}[k]))} \mathbf{R}_{T_y} \leftarrow \mathbf{R}_{T_y} \cup tr_x^y(v)$	
6	HR to LR	$(T_x, T_y) \in (HR, LR) \bigwedge \forall_{(R_{T_x}, R_{T_y})} Al_{T_x}^{T_y} (R_{T_x}; R_{T_y}) = 1$	Value Substitute
		$\bigwedge tr_x^{en}(\mathbf{R}_{T_x}) \neq tr_y^{en}(\mathbf{R}_{T_y}) \mapsto \mathbf{R}_{T_y} \leftarrow tr_x^y(\mathbf{R}_{T_x})$	
7	# Rows	$ T_x >> T_y \bigwedge \forall_{(R_{T_x}, R_{T_y})} Al_{T_x}^{T_y} (R_{T_x}; R_{T_y}) = 1 \bigwedge tr_x^{en} (R_{T_x}) \neq tr_y^{en} (R_{T_y})$	Value Substitute
		$\mapsto R_{T_y} \leftarrow tr_x^y(R_{T_x})$	
8	Rare Keys	$\forall_{(R_{T_x},R_{T_y},RarKeys)} Al_{T_x}^{T_y}(R_{T_x};R_{T_y}) = 1 \bigwedge tr_x^{en}(R_{t_x}) eq tr_y^{en}(R_{t_y})$	Value Substitute
		$\bigwedge \forall_{(R_{T_x},R_{T_y})} exKey(R_{T_x}) \in RarKey > exKey(R_{T_y}) \in RarKey \mapsto R_{T_y} \leftarrow R_{T_x}$	

7. Result: Alignment

Proposed similarity-based alignment method outperforms different multi-lingual baseline.

Method	l Match			UnMatch				
	$T_{en} \leftrightarrow T_x$	$T_x \leftrightarrow T_y$	$T_{en} \stackrel{*}{\longleftrightarrow} T_{hi}$	$T_{en} \stackrel{*}{\longleftrightarrow} T_{zh}$	$T_{en} \leftrightarrow T_x$	$T_x \leftrightarrow T_y$	$T_{en} \stackrel{*}{\longleftrightarrow} T_{hi}$	$T_{en} \stackrel{*}{\longleftrightarrow} T_{zh}$
SimCSE	75.78	68.46	77.93	80.47	79.11	76.3	73.31	74.91
LaBSE	85.25	78.44	88.98	89.1	87.03	81.7	88.98	85.06
mBERT-mp	80.98	73.74	82.9	86.73	82.68	80.22	76.73	81.85
XLM-R	83.38	75.02	86.85	88.08	85.42	80.65	83.14	83.1
MPNet	82.85	78.63	86.08	87.58	84.2	83.45	83.14	83.76
distill mBERT	84.55	77.45	87.64	88.7	86.3	82.28	83.14	84.3
Our Approach								
Corpus-based	61.86	56.74	57.34	69.33	70.51	71.73	54.01	63.11
+ Key Only	70.41	62.14	73.4	74.67	73.85	73.52	62.49	66.23
+ Key-Val-Bi	87.71	84.2	90.07	93.04	89.51	85.52	85.06	89.2
+ Key-Val-Uni	87.89	84.33	90.34	93.12	89.52	85.42	85.16	88.62
+ Multi-Key	87.91	84.36	90.14	92.8	89.3	85.46	84.98	88.15

8. Result: Update

Our rule-based method efficiently updates a large number of rows, with the highest number of updates being in row transfers.

Rules			Live Set	$T_{en} o T_x$	
R1	20320	18055	4213	21246	17675
R2	648	502	207	1395	1852
R3	546	399	75	443	347
R4	142	151	4	120	147
R5	3507	2116	784	3193	1960
R6	5237	3047	332	5062	2891
R7	2748	1899	990	2732	1855
R8	25	77	5	29	82
\overline{Al}	14967	9715	2851	14864	10657

9. Human Assisted Wikipedia Updates

Human evaluator update the Wikipedia Infobox with our mehtod recommendation.

Type	Total	Accept	Reject
Row Transfer	461	368(79.82%)	93(20.17%)
Value Substitution	70	52(74.28%)	18(25.72%)
Append Value	72	46(63.88%)	26(36.12%)
Total	603	466 (77.28%)	136(22.72%)

Ln Pairs	Total	Accept	Reject
$T_{en} o T_x$	204	161(78.92%)	43(21.07%)
$T_x \to T_y$	216	169(78.25%)	47(21.75%)
$T_x o T_{en}$	183	136(74.31%)	47(25.68%)
Total	603	466(77.28%)	137(22.71%)

10. Example

11. Key Takeaways

- Multilingual Tabular Information Synchronization is challenging problem.
- 2 Taking Wikipedia Infoboxes as our case study, we created InfoSync
- 3 A two-step sequential approach (a.) Alignment and (b.) Updation
- Alignment method outperforms baseline with an F1-score > 0.85
- The rule-based method received a 77.28 % approval rate on Wikipedia updates.