ELEC-313 Lab 4: DC Motor Driver

October 9, 2013

Date Performed: October 09, 2013 Partners: Charles Pittman

Stephen Wilson

1 Objective

The objective is to construct, measure, and observe the behavior of two common diode circuits: a voltage rectifier, and a voltage regulator.

2 Equipment

Compact L290 Motor Driver Kit Function generator: HP 33120A

6 V DC Motor Multimeter:

Power supply: HP E3631A Oscilloscope: Agilent 54622D

3 Schematics

4 Procedure

4.1 Part One

4.2 Part Two

5 Results

Enable	L_1	L_2	$ m V_{out}$	$_{ m LED}$	Motor
L	L	L	$-0.01{ m V}$	off	off
${ m L}$	L	Η	$-0.01{ m V}$	off	off
${ m L}$	Η	\mathbf{L}	$-0.01{ m V}$	off	off
${ m L}$	Η	Η	$-0.01{ m V}$	off	off
Η	L	\mathbf{L}	$-0.18{ m V}$	off	off
H	L	Η	$5.7\mathrm{V}$	red	CW
H	\mathbf{H}	\mathbf{L}	$5.5\mathrm{V}$	green	CCW
H	Η	Η	$0.01\mathrm{V}$	both	off

Table 1: Logic Table

Duty Cycle	Vout
20%	$-3.01\mathrm{V}$
30%	$-3.39\mathrm{V}$
40%	$-3.76\mathrm{V}$
50%	$-4.13\mathrm{V}$
60%	$-4.49\mathrm{V}$
70%	$-4.84\mathrm{V}$
80%	$-5.19\mathrm{V}$

Table 2: Pulse-width modulation

- 6 Comparison of Results
- 7 Conclusion
- 8 Equations

$$\%_{diff} = \frac{|nominal - measured|}{nominal} \times 100\%$$
 (1)

$$V_r = V_{max} - V_{min} \tag{2}$$

$$\%_{reg} = \frac{V_{load} - V_{noload}}{V_{noload}} \times 100\%$$
 (3)