TheNumbersBook.com 2010

Stewart: Chapter 3, # 3, 4, 5, 9, 10

Problem 3.3 Let $K = \mathbb{Q}(\zeta)$ where $\zeta = e^{\frac{2\pi i}{p}}$ for a rational prime p. In the ring of integers $\mathbb{Z}[\zeta]$, show that $\alpha \in \mathbb{Z}[\zeta]$ is a unit iff $N_K(\alpha) = \pm 1$.

(⇒) If α is a unit, then $\alpha^{-1} \in \mathbb{Z}[\zeta]$. Since $\sigma_i(1) = 1$ for all monomorphisms,

$$1 = \prod_{i} \sigma_{i}(1)$$

$$= \prod_{i} \sigma_{i}(\alpha \alpha^{-1})$$

$$= \prod_{i} \sigma_{i}(\alpha) \sigma_{i}(\alpha^{-1}) \text{ (σ is a homomorphism)}$$

$$= \prod_{i} \sigma_{i}(\alpha) \prod_{i} \sigma_{i}(\alpha^{-1})$$

$$= N_{K}(\alpha) N_{K}(\alpha^{-1})$$

Since N_K maps to the integers, the only possibility is $N_K(\alpha) = \pm 1$.

(\Leftarrow) Since $\mathbb{Z}[\zeta]$ is the ring of integers for K, α is an algebraic integer. Specifically, α , $\sigma(\alpha)$, \cdots , $\sigma_{p-2}(\alpha)$ are all algebraic integers (and so is their product, this we showed). We now see that:

$$\pm 1 = N_K(\alpha)$$

$$= \prod_{i=1}^{p-2} \sigma_i(\alpha)$$

$$= \alpha \prod_{i=2}^{p-2} \sigma_i(\alpha).$$

So both α and $\prod_{i=2}^{p-2} \sigma_i(\alpha)$ are units in O_K , as desired. In other words, α times some element $\beta = \prod_{i=2}^{p-2} \sigma_i(\alpha)$ equals the identity (up to reordering of plusses and minuses). Thus, α is a unit.

Problem 3.4 If $\zeta = e^{\frac{2\pi i}{3}}$, $K = \mathbb{Q}(\zeta)$, prove that the norm of $\alpha \in \mathbb{Z}[\zeta]$ is of the form $\frac{1}{4}(a^2+3b^2)$ where a,b are rational integers which are either both even or both odd. Using the result of Exercise 3, deduce that there are precisely six units in $\mathbb{Z}[\zeta]$ and find them all.

The minimal polynomial for K is $x^2 + x + 1$ which has the roots ζ , ζ^2 . But $\zeta - 2\zeta - 1 = \zeta^2$ so

$$\mathbb{Z}[\zeta] = \{a + b\zeta | a_0, a_1 \in \mathbb{Z}\}\$$

and by Theorem 3.5, this is the ring of integers of $\mathbb{Q}(\zeta)$. Notice that $\zeta = -\frac{1}{2} + \frac{\sqrt{3}}{2}$ so we can, equivalently, think of

$$\mathbb{Z}[\zeta] = \{\frac{2a_0 - a_1}{2} + a_1 \frac{\sqrt{-3}}{2} | a_0, a_1 \in \mathbb{Z}\}$$

where the monomorphisms are the identity and $\sqrt{-3} \rightarrow -\sqrt{-3}$. Taking the norm yields the desired form:

$$N_K(\alpha) = \left(\frac{2a_0 - a_1}{2} + a_1 \frac{\sqrt{-3}}{2}\right) \left(\frac{2a_0 - a_1}{2} - a_1 \frac{\sqrt{-3}}{2}\right)$$

$$= \frac{(2a_0 - a_1)^2}{4} + \frac{a_1^2}{4}3$$

$$= \frac{1}{4}(a^2 + 3b^2) \text{ (for } a, b \text{ rational integers)}$$

where $a = 2a_0 - a_1$ and $b = a_1$. Note that if $b = a_1$ is even then so is a. Similarly, if $b = a_1$ is odd, then so is a. Thus, a and b are both even or both odd.

From 3.3, we know that α is a unit iff $N_K(\alpha) = \frac{1}{4}(a^2 + 3b^2) = 1$. Rewriting, we have $a^2 + 3b^2 = 4$ which has exactly six solutions: (1,1), (2,0), (-1,-1), (-1,1), (1,-1), (-2,0). In other words, the six units are

$$\pm \frac{1}{2} \pm \frac{1}{2} \sqrt{-3}, \pm 1$$

Problem 3.5 If $\zeta = e^{\frac{2\pi i}{5}}$, $K = \mathbb{Q}(\zeta)$, prove that the norm of $\alpha \in \mathbb{Z}[\zeta]$ is of the form $\frac{1}{4}(a^2-5b^2)$ where a,b are rational integers. (Hint: in calculating $N(\alpha)$, firsct calculate $\sigma_1(\alpha)\sigma_4(\alpha)$ where $\sigma_i(\zeta) = \zeta^i$. Show that this is of the form $q + r\theta + s\phi$ where q,r,s are rational integers, $\theta = \zeta + \zeta^4$, $\phi = \zeta^2 + \zeta^3$. In the same way, establish $\sigma_2(\alpha)\sigma_3(\alpha) = q + s\theta + r\phi$.) Using Exercise 3, prove that $\mathbb{Z}[\zeta]$ has an infinite number of units.

By Theorem 3.5, $\mathbb{Z}[\zeta] = \{a_1 + a_2\zeta + a_3\zeta^2 + a_4\zeta^3\}$ is the ring of integers with the integral

basis $\{1, \zeta, \zeta^2, \zeta^3\}$.. Define $\sigma_i(\zeta) = \zeta^i$. Then

$$\begin{split} \sigma_{1}(\alpha)\sigma_{4}(\alpha) &= (a_{1} + a_{2}\zeta + a_{3}\zeta^{2} + a_{4}\zeta^{3})\sigma_{4}(a_{1} + a_{2}\zeta + a_{3}\zeta^{2} + a_{4}\zeta^{3}) \\ &= (a_{1} + a_{2}\zeta + a_{3}\zeta^{2} + a_{4}\zeta^{3})(a_{1} + a_{2}\sigma_{4}(\zeta) + a_{3}\sigma_{4}(\zeta)^{2} + a_{4}\sigma_{4}(\zeta)^{3}) \\ &= (a_{1} + a_{2}\zeta + a_{3}\zeta^{2} + a_{4}\zeta^{3})(a_{1} + a_{2}\zeta^{4} + a_{3}\zeta^{8} + a_{4}\zeta^{12}) \\ &= a_{1}^{2} + a_{1}a_{2}\zeta + a_{1}a_{3}\zeta^{2} + a_{1}a_{4}\zeta^{3} + a_{1}a_{2}\zeta^{4} + a_{2}^{2}\zeta^{5} + a_{2}a_{3}\zeta^{6} + a_{2}a_{4}\zeta^{7} + a_{1}a_{3}\zeta^{8} + a_{2} \\ &+ a_{3}\zeta^{9} + a_{3}^{2}\zeta^{1}0 + a_{3}a_{4}\zeta^{1}1 + a_{1}a_{4}\zeta^{1}2 + a_{2}a_{4}\zeta^{1}3 + a_{3}a_{4}\zeta^{1}4 + a_{4}^{2}\zeta^{1}5 \\ &= a_{1}^{2} + a_{1}a_{2}\zeta + a_{1}a_{3}\zeta^{2} + a_{1}a_{4}\zeta^{3} + a_{1}a_{2}\zeta^{4} + a_{2}^{2} + a_{2}a_{3}\zeta + a_{2}a_{4}\zeta^{2} + a_{1}a_{3}\zeta^{3} + a_{2}a_{3}\zeta^{4} \\ &+ a_{3}^{2} + a_{3}a_{4}\zeta + a_{1}a_{4}\zeta^{2} + a_{2}a_{4}\zeta^{3} + a_{3}a_{4}\zeta^{4} + a_{4}^{2} \\ &= (a_{1}^{2} + a_{2}^{2} + a_{3}^{2} + a_{4}^{2}) + (a_{1}a_{2} + a_{2}a_{3} + a_{3}a_{4})(\zeta + \zeta^{4}) + (a_{1}a_{3} + a_{1}a_{4} + a_{2}a_{4})(\zeta^{2} + \zeta^{3}) \\ &= q + r\theta + s\phi \end{split}$$

where q, r, s are rational integers, $\theta = \zeta_1 + \zeta_4$ and $\phi = \zeta_2 + \zeta_3$. Similarly,

$$\begin{split} \sigma_2(\alpha)\sigma_3(\alpha) &= \sigma_2(a_1 + a_2\zeta + a_3\zeta^2 + a_4\zeta^3)\sigma_3(a_1 + a_2\zeta + a_3\zeta^2 + a_4\zeta^3) \\ &= (a_1 + a_2\zeta^2 + a_3\zeta^4 + a_4\zeta^6)(a_1 + a_2\zeta^3 + a_3\zeta^6 + a_4\zeta^9) \\ &= a_1^2 + a_1a_2\zeta^2 + a_1a_2\zeta^3 + a_1a_3\zeta^4 + a_2^2\zeta^5 + a_1a_3\zeta^6 + a_1a_4\zeta^6 + a_2a_3\zeta^7 + a_2a_3\zeta^8 \\ &+ a_1a_4\zeta^9 + a_2a_4\zeta^9 + a_3^2\zeta^{10} + a_2a_4\zeta^{11} + a_3a_4\zeta^{12} + a_3a_4\zeta^{13} + a_4^2\zeta^{15} \\ &= a_1^2 + a_1a_2\zeta^2 + a_1a_2\zeta^3 + a_1a_3\zeta^4 + a_2^2 + a_1a_3\zeta + a_1a_4\zeta + a_2a_3\zeta^2 + a_2a_3\zeta^3 \\ &+ a_1a_4\zeta^4 + a_2a_4\zeta^4 + a_3^2 + a_2a_4\zeta + a_3a_4\zeta^2 + a_3a_4\zeta^3 + a_4^2 \\ &= (a_1^2 + a_2^2 + a_3^2 + a_4^2) + (a_1a_3 + a_1a_4 + a_2a_4)(\zeta + \zeta^4) + (a_1a_2 + a_2a_3 + a_3a_4)(\zeta^2 + \zeta^3) \\ &= q + s\theta + r\phi \end{split}$$

where q, s, r are rational integers. We know that

$$\zeta = \frac{1}{4}(-1+\sqrt{5}) + \sqrt{\frac{5}{8}} + \frac{\sqrt{5}}{8}$$

$$\zeta^2 = \frac{1}{4}(-1-\sqrt{5})\sqrt{\frac{5}{8}} - \frac{\sqrt{5}}{8}$$

$$\zeta^3 = \frac{1}{4}(-1-\sqrt{5}) - \sqrt{\frac{5}{8}} - \frac{\sqrt{5}}{8}$$

$$\zeta^4 = \frac{1}{4}(-1+\sqrt{5}) - \sqrt{\frac{5}{8}} + \frac{\sqrt{5}}{8}$$

Thus, we have that $\theta = \zeta + \zeta^4 = \frac{1}{2}(-1 + \sqrt{5})$ and $\phi = \zeta^2 + \zeta^3 = \frac{1}{2}(-1 - \sqrt{5})$. We can

finally calculate the norm:

$$\begin{split} N_K(\alpha) &= \sigma_1(\alpha)\sigma_4(\alpha)\sigma_2(\alpha)\sigma_3(\alpha) \\ &= (q + r\theta + s\phi)(q + s\theta + r\phi) \\ &= q^2 + qs\theta + qr\phi + rq\theta + rs\theta^2 + r^2\theta\phi + sq\phi + s^2\theta\phi + sr\phi^2 \\ &= q^2 + qs(\theta + \phi) + qr(\phi + \theta) + rs(\theta^2 + \phi^2) + (r^2 + s^2)\theta\phi \\ &= q^2 + qs(-1) + qr(-1) + rs(\frac{1}{2}(3 - \sqrt{5}) + \frac{1}{2}(3 + \sqrt{5})) + \frac{1}{4}(r^2 + s^2)(1 - 5) \\ &= \frac{1}{4}(4q^2 - 4qs - 4qr + 12rs + r^2 + s^2 - 5r^2) - \frac{1}{4}5s^2 \\ &= \frac{1}{4}(a^2 - 5b^2) \end{split}$$

where *a*, *b* are rational integers.

Finally, by Problem 3.3, α is a unit iff $N_K(\alpha) = \frac{1}{4}(a^2 - 5b^2) = \pm 1$. Rewriting yields $a^2 - 5b^2 = \pm 4$. This is a famous Diophantine equation that has infinitely many solutions. Thus, there is an infinite number of units.

Problem 3.9 Suppose p is a rational prime and $\zeta = e^{\frac{2\pi i}{p}}$. Given that the group of non-zero elements of Z_p is cyclic (see Appendix 1, Prop 6 for a proof) show that there exists a monomorphism $\sigma: Q(\zeta) \to C$ such that σ^{p-1} is the identity and all monomorphisms from $Q(\zeta)$ to C are of the form $\sigma^i(1 \le i \le p-1)$. If p-1 = kr, define $c_k(\alpha) = \alpha \sigma^r(\alpha) \sigma^{2r}(\alpha) \cdots \sigma^{(k-1)r}(\alpha)$. Show

$$N(\alpha) = c_k(\alpha) \cdot \sigma c_k(\alpha) \cdot \cdot \cdot \sigma^{r-1} c_k(\alpha).$$

Prove every element of $Q(\zeta)$ is uniquely of the form $\sum_{i=1}^{p-1} a_i \zeta^i$, and by demonstrating that $\sigma^r(c_k(\alpha)) = c_k(\alpha)$, deduce that $c_k(\alpha) = b_1 \eta_1 + \cdots + b_k \eta_r$, where

$$\nu_1 = \zeta + \sigma^r(\zeta) + \sigma^{2r}(\zeta) + \dots + \sigma^{(k-1)r}(\zeta)$$

and $\eta_{i+1} = \sigma^i(\eta_1)$.

Interpret these results in the case p=5, k=r=2, by showing that the residue class of 2 is a generator of the multiplicative group of non-zero elements of Z_5 . Demonstrate that $c_2(\alpha)$ is of the form $b_1\nu_1 + b_2\nu_2$ where $\nu_1 = \zeta + \zeta^4, \nu_2 = \zeta^2 + \zeta^3$. Calculate the norms of the following elements in $Q(\zeta)$: (i) $\zeta + 2\zeta^2$, (ii) $\zeta + \zeta^4$, (iii) $15\zeta + 15\zeta^4$, (iv) $\zeta + \zeta^2 + \zeta^3 + \zeta^4$.

Define $\sigma : \mathbb{Q}(\zeta) \to \mathbb{C}$ by

$$\sigma(\zeta) = \zeta^{p-1}$$

Note that $\sigma^i(\zeta) = \sigma(\zeta)^i = \zeta^{(p-1)^i} = e^{\frac{2\pi(p-1)^i}{p}}$. The term $\frac{(p-1)^i}{p}$ has the form $(p-1)^i (\bmod p)$, which is the general form of \mathbb{Z}_p . Thus, what the monomorphism σ^i does can be explained using \mathbb{Z}_p . Specifically, since

$$\gcd(p, p - 1) = 1$$

p-1 is a generator for \mathbb{Z}_p and so $(p-1)^i \in \mathbb{Z}_p^{\times}$ for $i=1,\cdots,p-1$. This proves that σ^i maps ζ to every power of ζ . Specifically, $(p-1)^{p-1}=1 \pmod{p}$ because $|\mathbb{Z}_p|=\phi(p)=p-1$ and so $(p-1)^{p-1}$ is the identity. This proves that σ^{p-1} is the identity monomorphism.

We now show that $N(\alpha) = c_k(\alpha)\sigma(c_k(\alpha))\cdots\sigma^{r-1}(c_k(\alpha))$. First, using the generic definition of norm, we have

$$N_K(\alpha) = \prod_{i=1}^{p-1} \sigma^i(\alpha)$$

$$= \alpha \prod_{i=1}^{p-2} \sigma^i(\alpha)$$

$$= \alpha \sigma^{1+2+\dots+p-2}(\alpha)$$

$$= \alpha \sigma^{(p-1)(p-2)/2}(\alpha) (1)$$

Now let us write out each $c_k(\alpha)$:

$$c_k(\alpha) = \alpha \sigma^r(\alpha) \sigma^{2r}(\alpha) \cdots \sigma^{(k-1)r}(\alpha)$$

$$\sigma c_k(\alpha) = \sigma(\alpha) \sigma^{r+1}(\alpha) \sigma^{2r+1}(\alpha) \cdots \sigma^{(k-1)r+1}(\alpha)$$

$$\cdots$$

$$\sigma^{r-1} c_k(\alpha) = \sigma^{r-1}(\alpha) \sigma^{2r-1}(\alpha) \sigma^{3r-1}(\alpha) \cdots \sigma^{(k-1)r+r-1}(\alpha)$$

Now note something remarkable: if we count the powers of σ in a zig-zag fashion (that is: go down, then move up, and count down again), we see that the powers are simply adding $1, 2, 3, \cdots$ all the way up to (k-1)r + r - 1 = kr - 1. Thus,

$$c_k(\alpha)\sigma c_k(\alpha)\cdots\sigma^{r-1}c_k(\alpha) = \alpha\sigma^{1+2+\cdots+kr-1}(\alpha)$$

$$= \alpha\sigma^{kr(kr-1)/2}$$

$$= \alpha\sigma^{(p-1)(p-2)/2}$$

$$= N(\alpha) \text{ (from above)}$$

as desired.

We now show that any element in $\mathbb{Q}(\zeta)$ can be written uniquely in the form $\sum_{i=1}^{p-1} a_i \zeta^i$. This follows from the definition of $\mathbb{Q}(\zeta)$ as a vector space. Now note that

$$\sigma^{r}(c_{k}(\alpha)) = \sigma^{r}(\alpha\sigma^{r}(\alpha)\sigma^{2r}(\alpha)\cdots\sigma^{(k-1)r}(\alpha))$$

$$= \sigma^{r}(\alpha)\sigma^{2r}(\alpha)\sigma^{3r}(\alpha)\cdots\sigma^{(k-2)r+r}\sigma^{kr}(\alpha)$$

$$= \sigma^{r}(\alpha)\sigma^{2r}(\alpha)\sigma^{3r}(\alpha)\cdots\sigma^{(k-2)r+r}\alpha \text{ (since } kr = p-1)$$

$$= c_{k}(\alpha) \text{ (since } \sigma \text{ commutes)}$$

Thus, we see that σ^r fixes $c_k(\alpha)$. We now use this result to show that

$$c_k(\alpha) = b_1 v_1 + \cdots + b_n v_n$$

First,

$$c_{k}(\alpha) = \sum_{i=1}^{p-1} a_{i} \zeta^{i}$$

$$\sigma^{r}(c_{k}(\alpha)) = \sigma^{r}(\sum_{i=1}^{p-1} a_{i} \zeta^{i})$$

$$c_{k}(\alpha) = \sum_{i=1}^{p-1} a_{i} \sigma^{r}(\zeta^{i}) \ (\sigma^{r} \text{ fixes } c_{k}(\alpha))$$

$$= \sum_{i=1}^{p-1} a_{i} \sigma^{ri}(\zeta)$$

$$= a_{1} \sigma^{r}(\zeta) + a_{2} \sigma^{2r}(\zeta) + \dots + a_{p-1} \sigma^{(p-1)r}(\zeta)$$

$$= a_{p-1} \zeta + a_{1} \sigma^{r}(\zeta) + \dots + a_{p-2} \sigma^{(p-2)r}(\zeta) \text{ (since } \sigma^{p-1} = 1)$$

$$= \underbrace{(\zeta + \dots + \zeta)}_{a_{p-1} \text{ terms}} + \underbrace{(\sigma^{r}(\zeta) + \dots + \sigma^{r}(\zeta))}_{a_{1} \text{ terms}} + \dots + \underbrace{(\sigma^{(p-2)r}(\zeta) + \dots + \sigma^{(p-2)r}(\zeta))}_{a_{p-2} \text{ terms}}$$

$$= (\zeta + \sigma^{r}(\zeta) \dots + \sigma^{(p-2)r}(\zeta)) + \dots + (\zeta + \sigma^{r}(\zeta) \dots + \sigma^{(p-2)r}(\zeta))$$

Now let $\eta_1 = \zeta + \sigma^r(\zeta) \cdots + \sigma^{(p-2)r}(\zeta)$ and since $\sigma(\zeta + \sigma^r(\zeta) + \cdots + \sigma^{(p-2)r}(\zeta)) = \zeta + \sigma^r(\zeta) + \cdots + \sigma^{(p-2)r}(\zeta)$, we have that

$$c_k(\alpha) = (\zeta + \sigma^r(\zeta) + \sigma^{(p-2)r}(\zeta)) + \dots + ((\zeta + \sigma^r(\zeta) + \sigma^{(p-2)r}(\zeta)))$$

= $b_1 \eta_1 + b_2 \sigma(\eta_1) + b_3 \sigma^2(\eta_1) + \dots + b_r \sigma^{r-1}(\eta_1)$

The above form gives precisely:

$$c_k(\alpha) = b_1 \eta_1 + b_2 \eta_2 + \dots + b_r \eta_r$$

We will now interpret these results in the case p=5 and k=2=r. Note that the residue class of 2 is a generator for \mathbb{Z}_5^\times since $2,2^2=4,2^3=3,2^4=1$. In this case, we define $\sigma(\zeta)=\zeta^2$ and this generates all 5-roots of unity. Using the notation above, we see that $c(\alpha)=b_1v_1+b_2v_2$ where $v_1=\zeta+\sigma^2(\zeta)=\zeta+\zeta^4$ and $v_2=\sigma(\zeta)+\sigma(\zeta^4)=\zeta^2+\zeta^3$.

We now calculate a couple of norms. To simplify our work, we will refer to the following table:

$$\sigma(\zeta) = \zeta^{2}$$

$$\sigma(\zeta^{2}) = \zeta^{4}$$

$$\sigma(\zeta^{3}) = \zeta$$

$$\sigma(\zeta^{4}) = \zeta^{3}$$

One more thing, the identity $\Phi(\zeta) = \zeta^4 + \zeta^3 + \zeta^2 + \zeta + 1 = 0$ will prove useful.

(i) To calculate norm of $\zeta + 2\zeta^2$, we first calculate $c_2(\zeta + 2\zeta^2)$:

$$c_2(\zeta + 2\zeta^2) = (\zeta + 2\zeta^2)\sigma^2(\zeta + 2\zeta^2) = (\zeta + 2\zeta^2)(\zeta^4 + 2\zeta^3) = 5 + 2\zeta^4 + 2\zeta$$

Thus,

$$N(\zeta + 2\zeta^{2}) = c_{2}(\alpha)\sigma(c_{2}(\alpha))$$

$$= (5 + 2\zeta^{4} + 2\zeta)\sigma(5 + 2\zeta^{4} + 2\zeta)$$

$$= (5 + 2\zeta^{4} + 2\zeta)(5 + 2\zeta^{3} + 2\zeta^{2})$$

$$= 25 + 14\zeta + 14\zeta^{2} + 14\zeta^{3} + 14\zeta^{4}$$

$$= 25 - 14$$

$$= 11$$

(ii) To calculate norm of $\zeta + \zeta^4$, we first calculate $c_2(\zeta + \zeta^4)$:

$$c_2(\zeta + \zeta^4) = (\zeta + \zeta^4)\sigma^2(\zeta + \zeta^4) = (\zeta + \zeta^4)(\zeta^4 + \zeta) = 2 + \zeta^2 + \zeta^3$$

Thus,

$$N(\zeta + \zeta^4) = c_2(\alpha)\sigma(c_2(\alpha))$$

$$= (2 + \zeta^2 + \zeta^3)\sigma(2 + \zeta^2 + \zeta^3)$$

$$= (2 + \zeta^2 + \zeta^3)(2 + \zeta^4 + \zeta)$$

$$= 4 + 3\zeta + 3\zeta^2 + 3\zeta^3 + 3\zeta^4$$

$$= 4 - 3$$

$$= 1$$

(iii) To calculate norm of $15\zeta + 15\zeta^4$, note that $c_2(15) = 15^2$. Thus,

$$N(15\zeta + 15\zeta^{4}) = N(15)N(\zeta + \zeta^{4})$$

$$= 15^{4}(4 + 3\zeta + 3\zeta^{2} + 3\zeta^{4})$$

$$= 15^{4}$$

(iv) Note that $\zeta + \zeta^2 + \zeta^3 + \zeta^4 + 1 = 0$ (cyclotomic polynomial) so $\zeta + \zeta^2 + \zeta^3 + \zeta^4 = -1$. Thus,

$$N(\zeta + \zeta^2 + \zeta^3 + \zeta^4) = c_2(-1)\sigma(c_2(-1)) = -1(-1)(-1)(-1) = 1$$

Problem 3.10 In $Z[\sqrt{-5}]$, prove 6 factorizes in two ways as

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

Verify that 2, 3, $1+\sqrt{-5}$, $1-\sqrt{-5}$ have no proper factors in $Z[\sqrt{-5}]$. (HINT: Take norms and note that if γ factorizes as $\gamma = \alpha \beta$, then $N(\gamma) = N(\alpha)N(\beta)$ is a factorization of rational integers.) Deduce that it is possible in $Z[\sqrt{-5}]$ for 2 to have no proper factors, yet 2 divides a product $\alpha\beta$ without dividing either α or β .

Suppose $6 = \alpha \beta$ for $\alpha = a + b\sqrt{-5} \in \mathbb{Z}[\sqrt{-5}]$ and $\beta = c + d\sqrt{-5} \in \mathbb{Z}[\sqrt{-5}]$. Then,

$$N_K(6) = N_K(\alpha\beta)$$

 $36 = N_K(\alpha)N_K(\beta)$
 $36 = (a^2 + 5b^2)(c^2 + 5d^2)$

The possible factorizations of 36 are $36 \times 1, 6 \times 6, 9 \times 4, 3 \times 12$ and 2×18 (up to reordering). It is easy to see that both 2×18 and 3×12 are impossible factorization as there is no way to express 2 (or 3)in the form $a^2 + 5b^2$. Now consider 36×1 . Then, $a = \pm 6, b = 0, c = \pm 1, d = 0$. For $6 \times 6, a = b = \pm 1, c = d = \pm 1$. For $9 \times 4, a = \pm 2, b = \pm 1, c = \pm 2, d = 0$. Testing all these possibilities on $6 = (a + b\sqrt{-5})(c + d\sqrt{-5})$ and noting that 6 has no factor of $\sqrt{-5}$, we dedude the only solutions: a = 2, b = 0, c = 3, d = 0 and a = b = 1, c = 1, d = -1. Thus,

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

We now show that 2 has no proper factors. Suppose $2 = \alpha \beta$, then $N_K(2) = 4 = N_K(\alpha)N_K(\beta) = (a^2 + 5b^2)(c^2 + 5d^2)$. The only possible values are $a = \pm 2$, b = 0, $c = \pm 1$, d = 0, which, when plugged back into the general form of an element, yields only 2 (plus or minus that). Thus, 2 has no proper factors. Similarly, $N_K(3) = 9 = N_K(\alpha)N_K(\beta) = (a^2 + 5b^2)(c^2 + 5d^2)$. The possible factorizations are 9×1 and 3×3 . Plugging in the respective a, b, c, d values returns 3 (plus or minus). Thus, 3 has no proper factors. Now consider $1 + \sqrt{-5}$. Then $N_K(1 + \sqrt{-5}) = 6$ and only $6 \cdot 1$ is a possibility (since 2×3 has 2 which can't be expressed by $a^2 + 5b^2$). Thus, $a^2 + 5b^2 = 6$, $c^2 + 5b^2 = 1$ and so $a = b = \pm 1$, $c = \pm 1$. These possibilities, when plugged into the general form for an element, return $1 + \sqrt{-5}$. Thus, $1 + \sqrt{-5}$ has no proper factors. Similarly, $N_K(1 - \sqrt{-5}) = 6$ and the same cases follow. Thus, $1 - \sqrt{-5}$ has no proper factors.

Finally, note that $2|6 = (1+\sqrt{-5})(1-\sqrt{-5})$ but $2 \ / (1+\sqrt{-5})$ and $2 \ / (1-\sqrt{-5})$.