Learning deep representations by mutual information estimation and maximization

January 22, 2020

▶ Imagine we have two random variables X and Y = E(X), where Y is obtained by encoding X via E(.).

- Imagine we have two random variables X and Y = E(X), where Y is obtained by encoding X via E(.).
- ▶ By Donsker-Varadhan inequality for any function *f* we have:

$$I(X;Y) \triangleq \mathsf{D}_{\mathsf{KL}}[p(x,y) \parallel p(x)p(y)] \geq \underset{p(x,y)}{\mathbb{E}}[f(x,y)] - \log \underset{p(x)p(y)}{\mathbb{E}}\left[e^{f(x,y)}\right]$$

- Imagine we have two random variables X and Y = E(X), where Y is obtained by encoding X via E(.).
- ▶ By Donsker-Varadhan inequality for any function *f* we have:

$$I(X;Y) \triangleq \mathsf{D}_{\mathsf{KL}}[p(x,y) \parallel p(x)p(y)] \geq \underset{p(x,y)}{\mathbb{E}}[f(x,y)] - \log \underset{p(x)p(y)}{\mathbb{E}}\left[e^{f(x,y)}\right]$$

▶ This looks like a discriminator!

- Imagine we have two random variables X and Y = E(X), where Y is obtained by encoding X via E(.).
- ▶ By Donsker-Varadhan inequality for any function *f* we have:

$$I(X;Y) \triangleq \mathsf{D}_{\mathsf{KL}}[p(x,y) \parallel p(x)p(y)] \geq \underset{p(x,y)}{\mathbb{E}}[f(x,y)] - \log \underset{p(x)p(y)}{\mathbb{E}}\left[e^{f(x,y)}\right]$$

- ▶ This looks like a discriminator!
- Let's train a discriminator T_{ω} to maximize:

$$\mathbb{E}_{p(x,y)}[T_{\omega}(x,y)] - \log \mathbb{E}_{p(x)p(y)}\left[e^{T_{\omega}(x,y)}\right]$$

- Imagine we have two random variables X and Y = E(X), where Y is obtained by encoding X via E(.).
- ▶ By Donsker-Varadhan inequality for any function *f* we have:

$$I(X;Y) \triangleq \mathsf{D}_{\mathsf{KL}}[p(x,y) \parallel p(x)p(y)] \geq \underset{p(x,y)}{\mathbb{E}}[f(x,y)] - \log \underset{p(x)p(y)}{\mathbb{E}}\left[e^{f(x,y)}\right]$$

- ▶ This looks like a discriminator!
- Let's train a discriminator T_{ω} to maximize:

$$\mathbb{E}_{p(x,y)}[T_{\omega}(x,y)] - \log \mathbb{E}_{p(x)p(y)}\left[e^{T_{\omega}(x,y)}\right]$$

▶ I.e. T_{ω} is trained to distinguish between paired examples (x, E(x)) and unpaired examples (x, y') (i.e. $y' \neq E(x)$).

- Imagine we have two random variables X and Y = E(X), where Y is obtained by encoding X via E(.).
- ▶ By Donsker-Varadhan inequality for any function *f* we have:

$$I(X;Y) \triangleq \mathsf{D}_{\mathsf{KL}}[p(x,y) \parallel p(x)p(y)] \geq \underset{p(x,y)}{\mathbb{E}}[f(x,y)] - \log \underset{p(x)p(y)}{\mathbb{E}}\left[e^{f(x,y)}\right]$$

- This looks like a discriminator!
- Let's train a discriminator T_{ω} to maximize:

$$\mathbb{E}_{p(x,y)}[T_{\omega}(x,y)] - \log \mathbb{E}_{p(x)p(y)}\left[e^{T_{\omega}(x,y)}\right]$$

- ▶ I.e. T_{ω} is trained to distinguish between paired examples (x, E(x)) and unpaired examples (x, y') (i.e. $y' \neq E(x)$).
- ▶ If we did a good job in training T_{ω} then we'll have a good MI estimate between X and Y.

▶ Just use your discrminator T_{ω} to train an encoder $E_{\psi}!$

- ▶ Just use your discrminator T_{ω} to train an encoder E_{ψ} !
- lackbox Updating an encoder will force use to retrain a discriminator T_ω

- ▶ Just use your discrminator T_{ω} to train an encoder E_{ψ} !
- lackbox Updating an encoder will force use to retrain a discriminator \mathcal{T}_{ω}
- ► Then let's train them in parallel, just like a GAN model!

- ▶ Just use your discrminator T_{ω} to train an encoder E_{ψ} !
- lackbox Updating an encoder will force use to retrain a discriminator T_ω
- ▶ Then let's train them in parallel, just like a GAN model!
- It's exactly like a GAN model, but encoder E_{ψ} helps discriminator T_{ω} instead of spoofing it since both try hard to increase the lower bound:

- ▶ Just use your discrminator T_{ω} to train an encoder E_{ψ} !
- lackbox Updating an encoder will force use to retrain a discriminator T_ω
- ▶ Then let's train them in parallel, just like a GAN model!
- It's exactly like a GAN model, but encoder E_{ψ} helps discriminator T_{ω} instead of spoofing it since both try hard to increase the lower bound:
 - $ightharpoonup T_{\omega}$ tries to increase LB to provide an accurate MI estimate.

- ▶ Just use your discrminator T_{ω} to train an encoder E_{ψ} !
- lacktriangle Updating an encoder will force use to retrain a discriminator T_ω
- ▶ Then let's train them in parallel, just like a GAN model!
- It's exactly like a GAN model, but encoder E_{ψ} helps discriminator T_{ω} instead of spoofing it since both try hard to increase the lower bound:
 - $ightharpoonup T_{\omega}$ tries to increase LB to provide an accurate MI estimate.
 - $ightharpoonup E_{\psi}$ tries to increase it because it will increase the MI

▶ Imagine we have a dataset of images $x_1, ..., x_n$ and an encoder $y = E_{\psi}(x)$.

- ▶ Imagine we have a dataset of images $x_1, ..., x_n$ and an encoder $y = E_{\psi}(x)$.
- ▶ Is it a reasonable objective to maximize I(X, Y), i.e. MI between the whole input and the whole output?

- ▶ Imagine we have a dataset of images $x_1, ..., x_n$ and an encoder $y = E_{\psi}(x)$.
- ▶ Is it a reasonable objective to maximize I(X, Y), i.e. MI between the whole input and the whole output?
- ▶ No! Because a lot of information is irrelevant (for classification):

- ▶ Imagine we have a dataset of images $x_1, ..., x_n$ and an encoder $y = E_{\psi}(x)$.
- ▶ Is it a reasonable objective to maximize I(X, Y), i.e. MI between the whole input and the whole output?
- ▶ No! Because a lot of information is irrelevant (for classification):

- ▶ Imagine we have a dataset of images $x_1, ..., x_n$ and an encoder $y = E_{\psi}(x)$.
- ▶ Is it a reasonable objective to maximize I(X, Y), i.e. MI between the whole input and the whole output?
- ▶ No! Because a lot of information is irrelevant (for classification):

▶ Let's maximize MI between local patches and the output then!

▶ Pre-encode an image into 3d-tensor $c = C_{\psi}(x)$ of "local" feature vectors.

- ▶ Pre-encode an image into 3d-tensor $c = C_{\psi}(x)$ of "local" feature vectors.
- ▶ Compute a "global" feature vector $y = E_{\psi}(c)$ (by avg-pooling followed by MLP, for example).

- ▶ Pre-encode an image into 3d-tensor $c = C_{\psi}(x)$ of "local" feature vectors.
- ▶ Compute a "global" feature vector $y = E_{\psi}(c)$ (by avg-pooling followed by MLP, for example).
- ▶ Train T_{ω} , C_{ψ} , E_{ψ} to maximize I(c, y).

- ▶ Pre-encode an image into 3d-tensor $c = C_{\psi}(x)$ of "local" feature vectors.
- ▶ Compute a "global" feature vector $y = E_{\psi}(c)$ (by avg-pooling followed by MLP, for example).
- ▶ Train T_{ω} , C_{ψ} , E_{ψ} to maximize I(c, y).
- ▶ I.e. our T_{ω} takes c and y as inputs and outputs a scalar score.

- ▶ Pre-encode an image into 3d-tensor $c = C_{\psi}(x)$ of "local" feature vectors.
- ▶ Compute a "global" feature vector $y = E_{\psi}(c)$ (by avg-pooling followed by MLP, for example).
- ▶ Train T_{ω} , C_{ψ} , E_{ψ} to maximize I(c, y).
- ▶ I.e. our T_{ω} takes c and y as inputs and outputs a scalar score.

M x M features drawn from another image

▶ Do the same as for the global objective, but split *c* into local features and maximize:

$$\frac{1}{M^2}\sum_{i,j}I(c_{i,j}(x),y)$$

▶ Do the same as for the global objective, but split *c* into local features and maximize:

$$\frac{1}{M^2} \sum_{i,j} I(c_{i,j}(x), y)$$

▶ I.e. we maximize the MIs between local patches and a global vector.

▶ Do the same as for the global objective, but split *c* into local features and maximize:

$$\frac{1}{M^2}\sum_{i,j}I(c_{i,j}(x),y)$$

- ▶ I.e. we maximize the MIs between local patches and a global vector.
- ▶ This forces the model to encode useful global information.

▶ Do the same as for the global objective, but split *c* into local features and maximize:

$$\frac{1}{M^2}\sum_{i,j}I(c_{i,j}(x),y)$$

- ▶ I.e. we maximize the MIs between local patches and a global vector.
- ▶ This forces the model to encode useful global information.

M x M features drawn from another image

▶ In practice we combine both the global and local objectives during training.

- ▶ In practice we combine both the global and local objectives during training.
- ▶ We also need to regularize the representations to be similar to some simple prior distribution.

- In practice we combine both the global and local objectives during training.
- ▶ We also need to regularize the representations to be similar to some simple prior distribution.
- ▶ They conduct a ton of experiments on different datasets and for different downstream tasks demonstraing SotA results.

- In practice we combine both the global and local objectives during training.
- ▶ We also need to regularize the representations to be similar to some simple prior distribution.
- They conduct a ton of experiments on different datasets and for different downstream tasks demonstraing SotA results.
- ► There are some different variants on how to reformulate the LB to make the training more stable.

- In practice we combine both the global and local objectives during training.
- ▶ We also need to regularize the representations to be similar to some simple prior distribution.
- They conduct a ton of experiments on different datasets and for different downstream tasks demonstraing SotA results.
- ► There are some different variants on how to reformulate the LB to make the training more stable.
- There are some gritty details on how to do negative sampling properly.

- ▶ In practice we combine both the global and local objectives during training.
- ▶ We also need to regularize the representations to be similar to some simple prior distribution.
- They conduct a ton of experiments on different datasets and for different downstream tasks demonstraing SotA results.
- ► There are some different variants on how to reformulate the LB to make the training more stable.
- There are some gritty details on how to do negative sampling properly.
- ▶ The paper is written quite ambigously and a lot of important details are scattered all over the manuscript... (i.e. how we do summarization of *c* into *y*, what prior do we use, etc)