Sage 9.2 Reference Manual: Databases Release 9.2

The Sage Development Team

CONTENTS

1	Cremona's tables of elliptic curves	3
2	The Stein-Watkins table of elliptic curves	17
3	John Jones's tables of number fields	21
4	The On-Line Encyclopedia of Integer Sequences (OEIS)	25
5	Local copy of Sloane On-Line Encyclopedia of Integer Sequences	43
6	FindStat - the Combinatorial Statistic Finder.	47
7	Frank Luebeck's tables of Conway polynomials over finite fields	75
8	Tables of zeros of the Riemann-Zeta function	77
9	Ideals from the Symbolic Data project	79
10	Cunningham table	81
11	Database of Hilbert Polynomials	83
12	Database of Modular Polynomials	85
13	Indices and Tables	87
Py	Python Module Index	
Ind	lex	91

There are numerous specific mathematical databases either included in Sage or available as optional packages. Also, Sage includes two powerful general database packages.

Sage includes the ZOPE object oriented database ZODB, which "is a Python object persistence system. It provides transparent object-oriented persistency."

Sage also includes the powerful relational database SQLite, along with a Python interface to SQLite. SQlite is a small C library that implements a self-contained, embeddable, zero-configuration SQL database engine.

- Transactions are atomic, consistent, isolated, and durable (ACID) even after system crashes and power failures.
- Zero-configuration no setup or administration needed.
- Implements most of SQL92. (Features not supported)
- A complete database is stored in a single disk file.
- Database files can be freely shared between machines with different byte orders.
- Supports databases up to 2 tebibytes (2^41 bytes) in size.
- Strings and BLOBs up to 2 gibibytes (2^31 bytes) in size.
- Small code footprint: less than 250KiB fully configured or less than 150KiB with optional features omitted.
- Faster than popular client/server database engines for most common operations.
- Simple, easy to use API.
- TCL bindings included. Bindings for many other languages available separately.
- Well-commented source code with over 95% test coverage.
- Self-contained: no external dependencies.
- Sources are in the public domain. Use for any purpose.

CONTENTS 1

2 CONTENTS

CHAPTER

ONE

CREMONA'S TABLES OF ELLIPTIC CURVES

Sage includes John Cremona's tables of elliptic curves in an easy-to-use format. An instance of the class Cremona-Database() gives access to the database.

If the optional full CremonaDatabase is not installed, a mini-version is included by default with Sage. It contains Weierstrass equations, rank, and torsion for curves up to conductor 10000.

The large database includes all curves in John Cremona's tables. It also includes data related to the BSD conjecture and modular degrees for all of these curves, and generators for the Mordell-Weil groups. To install it, run the following in the shell:

```
sage -i database_cremona_ellcurve
```

This causes the latest version of the database to be downloaded from the internet.

Both the mini and full versions of John Cremona's tables are stored in SAGE_SHARE/cremona as SQLite databases. The mini version has the layout:

```
CREATE TABLE t_class (conductor INTEGER, class TEXT PRIMARY KEY, rank INTEGER);
CREATE TABLE t_curve(class TEXT, curve TEXT PRIMARY KEY, eqn TEXT UNIQUE, tors_
→INTEGER);
CREATE INDEX i_t_class_conductor ON t_class(conductor);
CREATE INDEX i_t_curve_class ON t_curve(class);
```

while the full version has the layout:

```
CREATE TABLE t_class(conductor INTEGER, class TEXT PRIMARY KEY, rank INTEGER, L REAL, _
→deg INTEGER);
CREATE TABLE t_curve(class TEXT, curve TEXT PRIMARY KEY, eqn TEXT UNIQUE, gens TEXT, _
→tors INTEGER, cp INTEGER, om REAL, reg REAL, sha);
CREATE INDEX i_t_class_conductor ON t_class(conductor);
CREATE INDEX i_t_curve_class ON t_curve(class);
```

sage.databases.cremona.CremonaDatabase(name=None, mini=None, set_global=None) Initializes the Cremona database with name name. If name is None it instead initializes large Cremona database (named 'cremona'), if available or default mini Cremona database (named 'cremona mini').

If the Cremona database in question is in the format of the mini database, you must set mini=True, otherwise it must be set to False.

If you would like other components of Sage to use this database, mark set_global=True.

```
class sage.databases.cremona.LargeCremonaDatabase(name,
                                                                     read only=True,
                                                       build=False)
    Bases: sage.databases.cremona.MiniCremonaDatabase
```

The Cremona database of elliptic curves.

EXAMPLES:

```
sage: c = CremonaDatabase('cremona') # optional - database_cremona_ellcurve
sage: c.allcurves(11) # optional - database_cremona_ellcurve
{'a1': [[0, -1, 1, -10, -20], 0, 5],
'a2': [[0, -1, 1, -7820, -263580], 0, 1],
'a3': [[0, -1, 1, 0, 0], 0, 5]}
```

$\mathtt{allbsd}(N)$

Return the allbsd table for conductor N. The entries are:

```
[id, tamagawa_product, Omega_E, L, Reg_E, Sha_an(E)]
```

where id is the isogeny class (letter) followed by a number, e.g., b3, and L is $L^r(E,1)/r!$, where E has rank r.

INPUT:

• N - int, the conductor

OUTPUT: dict containing the allbsd table for each isogeny class in conductor N

EXAMPLES:

```
sage: c = CremonaDatabase()
sage: c.allbsd(12)  # optional - database_cremona_ellcurve
{}
sage: c.allbsd(19)['a3']  # optional - database_cremona_ellcurve
[1, 4.07927920046493, 0.453253244496104, 1.0, 1]
sage: c.allbsd(12001)['a1']  # optional - database_cremona_ellcurve
[2, 3.27608135248722, 1.54910143090506, 0.236425971187952, 1.0]
```

allgens(N)

Return the allgens table for conductor N.

INPUT:

• N - int, the conductor

OUTPUT:

• dict - id:[points, ...], ...

EXAMPLES:

```
sage: c = CremonaDatabase()
sage: c.allgens(12)  # optional - database_cremona_ellcurve
{}
sage: c.allgens(1001)['a1']  # optional - database_cremona_ellcurve
[[61, 181, 1]]
sage: c.allgens(12001)['a1']  # optional - database_cremona_ellcurve
[[7, 2, 1]]
```

degphi(N)

Return the degphi table for conductor N.

INPUT:

• N - int, the conductor

OUTPUT:

• dict - id:degphi, ...

EXAMPLES:

```
sage: c = CremonaDatabase()
sage: c.degphi(11)  # optional - database_cremona_ellcurve
{'a1': 1}
sage: c.degphi(12001)['c1']  # optional - database_cremona_ellcurve
1640
```

class sage.databases.cremona.MiniCremonaDatabase(name, read_only=True, build=False)

Bases: sage.databases.sql_db.SQLDatabase

The Cremona database of elliptic curves.

EXAMPLES:

```
sage: c = CremonaDatabase()
sage: c.allcurves(11)
{'a1': [[0, -1, 1, -10, -20], 0, 5],
   'a2': [[0, -1, 1, -7820, -263580], 0, 1],
   'a3': [[0, -1, 1, 0, 0], 0, 5]}
```

allcurves(N)

Return the allcurves table of curves of conductor N.

INPUT:

• N - int, the conductor

OUTPUT:

• dict - id:[ainvs, rank, tor], ...

EXAMPLES:

```
sage: c = CremonaDatabase()
sage: c.allcurves(11)['a3']
[[0, -1, 1, 0, 0], 0, 5]
sage: c.allcurves(12)
{}
sage: c.allcurves(12001)['a1'] # optional - database_cremona_ellcurve
[[1, 0, 0, -101, 382], 1, 1]
```

coefficients_and_data(label)

Return the Weierstrass coefficients and other data for the curve with given label.

EXAMPLES:

```
sage: c, d = CremonaDatabase().coefficients_and_data('144b1')
sage: c
[0, 0, 0, 6, 7]
sage: d['conductor']
144
sage: d['cremona_label']
'144b1'
sage: d['rank']
0
sage: d['torsion_order']
2
```

Check that trac ticket #17904 is fixed:

conductor_range()

Return the range of conductors that are covered by the database.

OUTPUT: tuple of ints (N1,N2+1) where N1 is the smallest and N2 the largest conductor for which the database is complete.

EXAMPLES:

```
sage: c = CremonaDatabase('cremona mini')
sage: c.conductor_range()
(1, 10000)
```

$\mathtt{curves}(N)$

Return the curves table of all *optimal* curves of conductor N.

INPUT:

• N - int, the conductor

OUTPUT:

• dict - id:[ainvs, rank, tor], ...

EXAMPLES:

Optimal curves of conductor 37:

```
sage: CremonaDatabase().curves(37)
{'al': [[0, 0, 1, -1, 0], 1, 1], 'bl': [[0, 1, 1, -23, -50], 0, 3]}
```

Note the 'h3', which is the unique case in the tables where the optimal curve doesn't have label ending in 1:

```
sage: sorted(CremonaDatabase().curves(990))
['al', 'bl', 'cl', 'dl', 'el', 'fl', 'gl', 'h3', 'i1', 'j1', 'k1', 'l1']
```

data_from_coefficients(ainvs)

Return elliptic curve data for the curve with given Weierstrass coefficients.

EXAMPLES:

```
sage: d = CremonaDatabase().data_from_coefficients([1, -1, 1, 31, 128])
sage: d['conductor']
1953
sage: d['cremona_label']
'1953c1'
sage: d['rank']
1
sage: d['torsion_order']
```

Check that trac ticket #17904 is fixed:

elliptic_curve(label)

Return an elliptic curve with given label with some data about it from the database pre-filled in.

INPUT:

• label - str (Cremona or LMFDB label)

OUTPUT:

• an sage.schemes.elliptic_curves.ell_rational_field. EllipticCurve_rational_field

Note: For more details on LMFDB labels see parse_lmfdb_label().

EXAMPLES:

```
sage: c = CremonaDatabase()
sage: c.elliptic_curve('11a1')
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: c.elliptic_curve('12001a1')  # optional - database_cremona_ellcurve
Elliptic Curve defined by y^2 + x*y = x^3 - 101*x + 382 over Rational Field
sage: c.elliptic_curve('48c1')
Traceback (most recent call last):
...
ValueError: There is no elliptic curve with label 48c1 in the database
```

You can also use LMFDB labels:

```
sage: c.elliptic_curve('462.f3')
Elliptic Curve defined by y^2 + x*y = x^3 - 363*x + 1305 over Rational Field
```

elliptic_curve_from_ainvs (ainvs)

Return the elliptic curve in the database of with minimal ainvs, if it exists, or raises a RuntimeError exception otherwise.

INPUT:

• ainvs - list (5-tuple of int's); the minimal Weierstrass model for an elliptic curve

OUTPUT: EllipticCurve

EXAMPLES:

Old (pre-2006) Cremona labels are also allowed:

```
sage: c.elliptic_curve('9450KKKK1')
Elliptic Curve defined by y^2 + x*y + y = x^3 - x^2 - 5*x + 7 over Rational_
→Field
```

Make sure trac ticket #12565 is fixed:

```
sage: c.elliptic_curve('10a1')
Traceback (most recent call last):
...
ValueError: There is no elliptic curve with label 10a1 in the database
```

isogeny_class(label)

Return the isogeny class of elliptic curves that are isogenous to the curve with given Cremona label.

INPUT:

• label - string

OUTPUT:

• list - list of EllipticCurve objects.

EXAMPLES:

```
sage: c = CremonaDatabase()
sage: c.isogeny_class('11a1')
[Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational_
→Field,
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 7820*x - 263580 over_
→Rational Field,
Elliptic Curve defined by y^2 + y = x^3 - x^2 over Rational Field]
sage: c.isogeny_class('12001a1') # optional - database_cremona_ellcurve
[Elliptic Curve defined by y^2 + x*y = x^3 - 101*x + 382 over Rational Field]
```

isogeny_classes (conductor)

Return the allcurves data (ainvariants, rank and torsion) for the elliptic curves in the database of given conductor as a list of lists, one for each isogeny class. The curve with number 1 is always listed first.

EXAMPLES:

```
sage: c = CremonaDatabase()
sage: c.isogeny_classes(11)
[[[[0, -1, 1, -10, -20], 0, 5],
        [[0, -1, 1, -7820, -263580], 0, 1],
        [[0, -1, 1, 0, 0], 0, 5]]]
sage: c.isogeny_classes(12001) # optional - database_cremona_ellcurve
[[[1, 0, 0, -101, 382], 1, 1]],
        [[[0, 0, 1, -247, 1494], 1, 1]],
        [[[0, 0, 1, -4, -18], 1, 1]],
        [[[0, 1, 1, -10, 18], 1, 1]]]
```

iter(conductors)

Return an iterator through all curves in the database with given conductors.

INPUT:

• conductors - list or generator of ints

OUTPUT: generator that iterates over EllipticCurve objects.

```
sage: [e.cremona_label() for e in CremonaDatabase().iter([11..15])]
['11a1', '11a2', '11a3', '14a1', '14a2', '14a3', '14a4', '14a5',
    '14a6', '15a1', '15a2', '15a3', '15a4', '15a5', '15a6', '15a7', '15a8']
```

iter_optimal(conductors)

Return an iterator through all optimal curves in the database with given conductors.

INPUT:

• conductors - list or generator of ints

OUTPUT:

generator that iterates over EllipticCurve objects.

EXAMPLES:

We list optimal curves with conductor up to 20:

```
sage: [e.cremona_label() for e in CremonaDatabase().iter_optimal([11..20])]
['11a1', '14a1', '15a1', '17a1', '19a1', '20a1']
```

Note the unfortunate 990h3 special case:

largest_conductor()

The largest conductor for which the database is complete.

OUTPUT:

• int - largest conductor

EXAMPLES:

```
sage: c = CremonaDatabase('cremona mini')
sage: c.largest_conductor()
9999
```

list (conductors)

Return a list of all curves with given conductors.

INPUT:

• conductors - list or generator of ints

OUTPUT:

• list of EllipticCurve objects.

```
sage: CremonaDatabase().list([37])
[Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field,
    Elliptic Curve defined by y^2 + y = x^3 + x^2 - 23*x - 50 over Rational.
    Field,
    Elliptic Curve defined by y^2 + y = x^3 + x^2 - 1873*x - 31833 over Rational.
    Field,
    Elliptic Curve defined by y^2 + y = x^3 + x^2 - 3*x + 1 over Rational Field]
```

list optimal(conductors)

Return a list of all optimal curves with given conductors.

INPUT:

• conductors - list or generator of ints list of EllipticCurve objects.

OUTPUT:

list of EllipticCurve objects.

EXAMPLES:

```
sage: CremonaDatabase().list_optimal([37])
[Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field,
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 23*x - 50 over Rational_
\rightarrowField]
```

$number_of_curves(N=0, i=0)$

Return the number of curves stored in the database with conductor N. If N = 0, returns the total number of curves in the database.

If i is nonzero, returns the number of curves in the i-th isogeny class. If i is a Cremona letter code, e.g., 'a' or 'bc', it is converted to the corresponding number.

INPUT:

- N int
- i int or str

OUTPUT: int

EXAMPLES:

```
sage: c = CremonaDatabase()
sage: c.number_of_curves(11)
3
sage: c.number_of_curves(37)
4
sage: c.number_of_curves(990)
42
sage: num = c.number_of_curves()
```

$number_of_isogeny_classes(N=0)$

Return the number of isogeny classes of curves in the database of conductor N. If N is 0, return the total number of isogeny classes of curves in the database.

INPUT:

• N - int

OUTPUT: int

```
sage: c = CremonaDatabase()
sage: c.number_of_isogeny_classes(11)
1
sage: c.number_of_isogeny_classes(37)
2
sage: num = c.number_of_isogeny_classes()
```

random()

Return a random curve from the database.

EXAMPLES:

```
sage: CremonaDatabase().random() # random -- depends on database installed
Elliptic Curve defined by y^2 + x*y = x^3 - x^2 - 224*x + 3072 over Rational_
\rightarrowField
```

smallest_conductor()

The smallest conductor for which the database is complete: always 1.

OUTPUT:

• int - smallest conductor

Note: This always returns the integer 1, since that is the smallest conductor for which the database is complete, although there are no elliptic curves of conductor 1. The smallest conductor of a curve in the database is 11.

EXAMPLES:

```
sage: CremonaDatabase().smallest_conductor()
1
```

sage.databases.cremona.build(name, data_tgz, largest_conductor=0, mini=False, decompress=True)

Build the CremonaDatabase with given name from scratch using the data_tgz tarball.

Note: For data up to level 350000, this function takes about 3m40s. The resulting database occupies 426MB disk space.

To create the large Cremona database from Cremona's data_tgz tarball, obtainable from http://homepages. warwick.ac.uk/staff/J.E.Cremona/ftp/data/, run the following command:

```
sage: d = sage.databases.cremona.build('cremona', 'ecdata.tgz') # not tested
```

sage.databases.cremona.class_to_int(k)

Convert class id string into an integer.

Note that this is the inverse of <code>cremona_letter_code()</code>.

EXAMPLES:

```
sage: import sage.databases.cremona as cremona
sage: cremona.class_to_int('ba')
26
sage: cremona.class_to_int('cremona')
821863562
sage: cremona.cremona_letter_code(821863562)
'cremona'
```

sage.databases.cremona.cremona_letter_code(n)

Return the Cremona letter code corresponding to an integer.

For example, 0 - a 25 - z 26 - ba 51 - bz 52 - ca 53 - cb etc.

Note: This is just the base 26 representation of n, where a=0, b=1, ..., z=25. This extends the old Cremona notation (counting from 0) for the first 26 classes, and is different for classes above 26.

INPUT:

• n (int) – a non-negative integer

OUTPUT: str

EXAMPLES:

```
sage: from sage.databases.cremona import cremona_letter_code
sage: cremona_letter_code(0)
'a'
sage: cremona_letter_code(26)
'ba'
sage: cremona_letter_code(27)
'bb'
sage: cremona_letter_code(521)
'ub'
sage: cremona_letter_code(53)
'cb'
sage: cremona_letter_code(2005)
'czd'
```

sage.databases.cremona.cremona_to_lmfdb(cremona_label, CDB=None)

Convert a Cremona label into an LMFDB label.

See parse_lmfdb_label() for an explanation of LMFDB labels.

INPUT:

- cremona_label a string, the Cremona label of a curve. This can be the label of a curve (e.g. '990j1') or of an isogeny class (e.g. '990j')
- CDB the Cremona database in which to look up the isogeny classes of the same conductor.

OUTPUT:

• lmfdb_label - a string, the corresponding LMFDB label.

EXAMPLES:

```
sage: from sage.databases.cremona import cremona_to_lmfdb, lmfdb_to_cremona
sage: cremona_to_lmfdb('990j1')
'990.h3'
sage: lmfdb_to_cremona('990.h3')
'990j1'
```

sage.databases.cremona.is_optimal_id(id)

Return True if the Cremona id refers to an optimal curve, and false otherwise.

The curve is optimal if the id, which is of the form [letter code][number] has number 1.

Note: 990h3 is the optimal curve in that class, so doesn't obey this rule.

INPUT:

• id - str of form letter code followed by an integer, e.g., a3, bb5, etc.

OUTPUT: bool

EXAMPLES:

```
sage: from sage.databases.cremona import is_optimal_id
sage: is_optimal_id('b1')
True
sage: is_optimal_id('bb1')
True
sage: is_optimal_id('c1')
True
sage: is_optimal_id('c2')
False
```

sage.databases.cremona.lmfdb_to_cremona(lmfdb_label, CDB=None)

Convert an LMFDB label into a Cremona label.

See parse_lmfdb_label () for an explanation of LMFDB labels.

INPUT:

- lmfdb_label a string, the LMFDB label of a curve. This can be the label of a curve (e.g. '990.j1') or of an isogeny class (e.g. '990.j')
- CDB the Cremona database in which to look up the isogeny classes of the same conductor.

OUTPUT:

• cremona_label - a string, the corresponding Cremona label.

EXAMPLES:

```
sage: from sage.databases.cremona import cremona_to_lmfdb, lmfdb_to_cremona
sage: lmfdb_to_cremona('990.h3')
'990j1'
sage: cremona_to_lmfdb('990j1')
'990.h3'
```

sage.databases.cremona.old_cremona_letter_code(n)

Return the *old* Cremona letter code corresponding to an integer.

For example:

```
1 --> A
26 --> Z
27 --> AA
52 --> ZZ
53 --> AAA
etc.
```

INPUT:

• n - int

OUTPUT: str

EXAMPLES:

```
sage: from sage.databases.cremona import old_cremona_letter_code
sage: old_cremona_letter_code(1)
'A'
sage: old_cremona_letter_code(26)
```

(continued from previous page)

sage.databases.cremona.parse_cremona_label(label)

Given a Cremona label that defines an elliptic curve, e.g., 11a1 or 37b3, parse the label and return the conductor, isogeny class label, and number.

For this function, the curve number may be omitted, in which case it defaults to 1. If the curve number and isogeny class are both omitted (label is just a string representing a conductor), then the isogeny class defaults to 'a' and the number to 1. Valid labels consist of one or more digits, followed by zero or more letters (either all in upper case for an old Cremona label, or all in lower case), followed by zero or more digits.

INPUT:

• label - str

OUTPUT:

- int the conductor
- str the isogeny class label
- int the number

EXAMPLES:

```
sage: from sage.databases.cremona import parse_cremona_label
sage: parse_cremona_label('37a2')
(37, 'a', 2)
sage: parse_cremona_label('37b1')
(37, 'b', 1)
sage: parse_cremona_label('10bb2')
(10, 'bb', 2)
sage: parse_cremona_label('11a')
(11, 'a', 1)
sage: parse_cremona_label('11')
(11, 'a', 1)
```

Valid old Cremona labels are allowed:

```
sage: parse_cremona_label('17CCCC')
(17, 'dc', 1)
sage: parse_cremona_label('5AB2')
Traceback (most recent call last):
...
ValueError: 5AB2 is not a valid Cremona label
```

sage.databases.cremona.parse_lmfdb_label(label)

Given an LMFDB label that defines an elliptic curve, e.g., 11.a1 or 37.b3, parse the label and return the conductor, isogeny class label, and number.

The LMFDB label (named after the L-functions and modular forms database), is determined by the following two orders:

- Isogeny classes with the same conductor are ordered lexicographically by the coefficients in the q-expansion of the associated modular form.
- Curves within the same isogeny class are ordered lexicographically by the a-invariants of the minimal model.

The format is <conductor>.<iso><curve>, where the isogeny class is encoded using the same base-26 encoding into letters used in Cremona's labels. For example, 990.h3 is the same as Cremona's 990j1

For this function, the curve number may be omitted, in which case it defaults to 1. If the curve number and isogeny class are both omitted (label is just a string representing a conductor), then the isogeny class defaults to 'a' and the number to 1.

INPUT:

• label - str

OUTPUT:

- int the conductor
- str the isogeny class label
- int the number

EXAMPLES:

```
sage: from sage.databases.cremona import parse_lmfdb_label
sage: parse_lmfdb_label('37.a2')
(37, 'a', 2)
sage: parse_lmfdb_label('37.b')
(37, 'b', 1)
sage: parse_lmfdb_label('10.bb2')
(10, 'bb', 2)
```

sage.databases.cremona.sort_key(key1)

Comparison key for curve id strings.

Note: Not the same as standard lexicographic order!

EXAMPLES:

```
sage: from sage.databases.cremona import sort_key
sage: l = ['ba1', 'z1']
sage: sorted(l, key=sort_key)
['z1', 'ba1']
```

sage.databases.cremona.split_code(key)

Split class + curve id string into its two parts.

```
sage: import sage.databases.cremona as cremona
sage: cremona.split_code('ba2')
('ba', '2')
sage: cremona.split_code('42')
Traceback (most recent call last):
...
ValueError: invalid curve ID: '42'
```

CHAPTER

TWO

THE STEIN-WATKINS TABLE OF ELLIPTIC CURVES

Sage gives access to the Stein-Watkins table of elliptic curves, via an optional package that you must install. This is a huge database of elliptic curves. You can install the database (a 2.6GB package) with the command

```
sage -i database_stein_watkins
```

You can also automatically download a small version, which takes much less time, using the command

```
sage -i database_stein_watkins_mini
```

This database covers a wide range of conductors, but unlike the *Cremona database*, this database need not list all curves of a given conductor. It lists the curves whose coefficients are not "too large" (see [SW2002]).

- The command SteinWatkinsAllData(n) returns an iterator over the curves in the n-th Stein-Watkins table, which contains elliptic curves of conductor between $n10^5$ and $(n+1)10^5$. Here n can be between 0 and 999, inclusive.
- The command SteinWatkinsPrimeData(n) returns an iterator over the curves in the n^{th} Stein-Watkins prime table, which contains prime conductor elliptic curves of conductor between $n10^6$ and $(n+1)10^6$. Here n varies between 0 and 99, inclusive.

EXAMPLES: We obtain the first table of elliptic curves.

```
sage: d = SteinWatkinsAllData(0)
sage: d
Stein-Watkins Database a.0 Iterator
```

We type next (d) to get each isogeny class of curves from d:

An isogeny class has a number of attributes that give data about the isogeny class, such as the rank, equations of curves, conductor, leading coefficient of *L*-function, etc.

```
sage: C.data
                                                           # optional - database_stein_
\hookrightarrow watkins
['11', '[11]', '0', '0.253842', '25', '+*1']
sage: C.curves
                                                           # optional - database_stein_
\hookrightarrow watkins
[[[0, -1, 1, 0, 0], '(1)', '1', '5'],
[[0, -1, 1, -10, -20], '(5)', '1', '5'],
[[0, -1, 1, -7820, -263580], '(1)', '1', '1']]
sage: C.conductor
                                                           # optional - database_stein_
→watkins
11
sage: C.leading_coefficient
                                                           # optional - database_stein_
\hookrightarrow watkins
'0.253842'
sage: C.modular_degree
                                                           # optional - database_stein_
→ watkins
' + * 1 '
sage: C.rank
                                                           # optional - database_stein_
→watkins
                                                           # optional - database_stein_
sage: C.isogeny_number
→watkins
1251
```

If we were to continue typing next(d) we would iterate over all curves in the Stein-Watkins database up to conductor 10^5 . We could also type for C in d: ...

To access the data file starting at 10^5 do the following:

Next we access the prime-conductor data:

```
sage: d = SteinWatkinsPrimeData(0)
sage: C = next(d)  # optional - database_stein_watkins
sage: C
Stein-Watkins isogeny class of conductor 11
```

Each call next (d) gives another elliptic curve of prime conductor:

```
sage: C = next(d)
                                                    # optional - database_stein_watkins
sage: C
                                                    # optional - database_stein_watkins
Stein-Watkins isogeny class of conductor 17
sage: C.curves
                                                    # optional - database_stein_watkins
[[[1, -1, 1, -1, 0], '[1]', '1', '4'],
[[1, -1, 1, -6, -4], '[2]', '1', '2x'],
[[1, -1, 1, -1, -14], '(4)', '1', '4'],
[[1, -1, 1, -91, -310], '[1]', '1', '2']]
sage: C = next(d)
                                                    # optional - database_stein_watkins
sage: C
                                                    # optional - database_stein_watkins
Stein-Watkins isogeny class of conductor 19
```

REFERENCE:

• [SW2002]

Class for iterating through one of the Stein-Watkins database files for all conductors.

iter levels()

Iterate through the curve classes, but grouped into lists by level.

EXAMPLES:

next()

 $\textbf{class} \texttt{ sage.databases.stein_watkins.SteinWatkinsIsogenyClass} (\textit{conductor})$

Bases: object

class sage.databases.stein_watkins.SteinWatkinsPrimeData(num)

Bases: sage.databases.stein_watkins.SteinWatkinsAllData

sage.databases.stein_watkins.ecdb_num_curves(max_level=200000)

Return a list whose N-th entry, for 0 <= N <= max_level, is the number of elliptic curves of conductor N in the database.

CHAPTER

THREE

JOHN JONES'S TABLES OF NUMBER FIELDS

In order to use the Jones database, the optional database package must be installed using the Sage command !sage -i database_jones_numfield

This is a table of number fields with bounded ramification and degree ≤ 6 . You can query the database for all number fields in Jones's tables with bounded ramification and degree.

EXAMPLES: First load the database:

```
sage: J = JonesDatabase()
sage: J
John Jones's table of number fields with bounded ramification and degree <= 6</pre>
```

List the degree and discriminant of all fields in the database that have ramification at most at 2:

List the discriminants of the fields of degree exactly 2 unramified outside 2:

List the discriminants of cubic field in the database ramified exactly at 3 and 5:

List all fields in the database ramified at 101:

(continued from previous page

```
Number Field in a with defining polynomial x^5 + 2*x^4 + 7*x^3 + 4*x^2 + 11*x - 6, Number Field in a with defining polynomial x^5 - x^4 - 40*x^3 - 93*x^2 - 21*x + 17]
```

class sage.databases.jones.JonesDatabase

Bases: object

get(S, var='a')

Return all fields in the database ramified exactly at the primes in S.

INPUT

- S list or set of primes, or a single prime
- var the name used for the generator of the number fields (default 'a').

EXAMPLES:

```
sage: J = JonesDatabase() # optional - database_jones_numfield
sage: J.get(163, var='z') # optional - database_jones_numfield
[Number Field in z with defining polynomial x^2 + 163,
Number Field in z with defining polynomial x^3 - x^2 - 54*x + 169,
Number Field in z with defining polynomial x^4 - x^3 - 7*x^2 + 2*x + 9]
sage: J.get([3, 4]) # optional - database_jones_numfield
Traceback (most recent call last):
...
ValueError: S must be a list of primes
```

ramified at (S, d=None, var='a')

Return all fields in the database of degree d ramified exactly at the primes in S. The fields are ordered by degree and discriminant.

INPUT:

- S list or set of primes
- d None (default, in which case all fields of degree <= 6 are returned) or a positive integer giving the degree of the number fields returned.
- var the name used for the generator of the number fields (default 'a').

EXAMPLES:

```
sage: J = JonesDatabase()
                                        # optional - database_jones_numfield
sage: J.ramified_at([101,109])
                                        # optional - database_jones_numfield
sage: J.ramified_at([109])
                                        # optional - database_jones_numfield
[Number Field in a with defining polynomial x^2 - 109,
Number Field in a with defining polynomial x^3 - x^2 - 36*x + 4,
Number Field in a with defining polynomial x^4 - x^3 + 14*x^2 + 34*x + 393
                                        # optional - database_jones_numfield
sage: J.ramified_at(101)
[Number Field in a with defining polynomial x^2 - 101,
Number Field in a with defining polynomial x^4 - x^3 + 13*x^2 - 19*x + 361,
Number Field in a with defining polynomial x^5 + x^4 - 6*x^3 - x^2 + 18*x + \dots
Number Field in a with defining polynomial x^5 + 2*x^4 + 7*x^3 + 4*x^2 + \dots
-11*x - 6,
Number Field in a with defining polynomial x^5 - x^4 - 40*x^3 - 93*x^2 - \dots
\hookrightarrow21*x + 17]
sage: J.ramified_at((2, 5, 29), 3, 'c') # optional - database_jones_numfield
[Number Field in c with defining polynomial x^3 - x^2 - 8*x - 28,
```

(continued from previous page)

```
Number Field in c with defining polynomial x^3 - x^2 + 10*x + 102, Number Field in c with defining polynomial x^3 - x^2 - 48*x - 188, Number Field in c with defining polynomial x^3 - x^2 + 97*x - 333]
```

unramified_outside (S, d=None, var='a')

Return all fields in the database of degree d unramified outside S. If d is omitted, return fields of any degree up to 6. The fields are ordered by degree and discriminant.

INPUT:

- S list or set of primes, or a single prime
- d None (default, in which case all fields of degree <= 6 are returned) or a positive integer giving the degree of the number fields returned.
- var the name used for the generator of the number fields (default 'a').

EXAMPLES:

```
sage: J = JonesDatabase()  # optional - database_jones_numfield
sage: J.unramified_outside([101,109]) # optional - database_jones_numfield
[Number Field in a with defining polynomial x - 1,
Number Field in a with defining polynomial x^2 - 101,
Number Field in a with defining polynomial x^2 - 109,
Number Field in a with defining polynomial x^3 - x^2 - 36*x + 4,
Number Field in a with defining polynomial x^4 - x^3 + 13*x^2 - 19*x + 361,
Number Field in a with defining polynomial x^4 - x^3 + 14*x^2 + 34*x + 393,
Number Field in a with defining polynomial x^5 + x^4 - 6*x^3 - x^2 + 18*x + ...
→4,
Number Field in a with defining polynomial x^5 + 2*x^4 + 7*x^3 + 4*x^2 + ...
→11*x - 6,
Number Field in a with defining polynomial x^5 - x^4 - 40*x^3 - 93*x^2 - ...
→21*x + 17]
```

sage.databases.jones.sortkey(K)

A completely deterministic sorting key for number fields.

```
sage: from sage.databases.jones import sortkey
sage: sortkey(QuadraticField(-3))
(2, 3, False, x^2 + 3)
```

THE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES (OEIS)

You can query the OEIS (Online Database of Integer Sequences) through Sage in order to:

- identify a sequence from its first terms.
- obtain more terms, formulae, references, etc. for a given sequence.

AUTHORS:

- Thierry Monteil (2012-02-10 2013-06-21): initial version.
- Vincent Delecroix (2014): modifies continued fractions because of trac ticket #14567
- Moritz Firsching (2016): modifies handling of dead sequence, see trac ticket #17330
- Thierry Monteil (2019): refactorization (unique representation trac ticket #28480, laziness trac ticket #28627)

EXAMPLES:

```
sage: oeis
The On-Line Encyclopedia of Integer Sequences (https://oeis.org/)
```

What about a sequence starting with 3, 7, 15, 1?

(continued from previous page)

```
1: The first 10672905501 terms were computed by _Eric W. Weisstein_ on Jul 17 2013.
2: The first 15000000000 terms were computed by _Eric W. Weisstein_ on Jul 27 2013.
```

```
sage: x = c.natural_object(); type(x)  # optional -- internet
<class 'sage.rings.continued_fraction.ContinuedFraction_periodic'>

sage: x.convergents()[:7]  # optional -- internet
[3, 22/7, 333/106, 355/113, 103993/33102, 104348/33215, 208341/66317]

sage: RR(x.value())  # optional -- internet
3.14159265358979
sage: RR(x.value()) == RR(pi)  # optional -- internet
True
```

What about posets? Are they hard to count? To which other structures are they related?

```
sage: p.cross_references(fetch=True) # optional -- internet # random
0: A000798: Number of different quasi-orders (or topologies, or transitive digraphs)
\rightarrowwith n labeled elements.
1: A001035: Number of partially ordered sets ("posets") with n labeled elements (or,
→labeled acyclic transitive digraphs).
2: A001930: Number of topologies, or transitive digraphs with n unlabeled nodes.
3: A006057: Number of topologies on n labeled points satisfying axioms T_0-T_4.
4: A079263: Number of constrained mixed models with n factors.
5: A079265: Number of antisymmetric transitive binary relations on n unlabeled points.
6: A263859: Triangle read by rows: T(n,k) (n>=1, k>=0) is the number of posets with n
\rightarrowelements and rank k (or depth k+1).
7: A316978: Number of factorizations of n into factors > 1 with no equivalent primes.
8: A319559: Number of non-isomorphic T_0 set systems of weight n.
9: A326939: Number of T_0 sets of subsets of {1..n} that cover all n vertices.
10: A326943: Number of T_0 sets of subsets of {1..n} that cover all n vertices and,
→are closed under intersection.
```

What does the Taylor expansion of the e^{e^x-1} function have to do with primes ?

```
sage: x = var('x'); f(x) = e^(e^x - 1)
sage: L = [a*factorial(b) for a,b in taylor(f(x), x, 0, 20).coefficients()]; L
[1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597,
27644437, 190899322, 1382958545, 10480142147, 82864869804, 682076806159,
5832742205057, 51724158235372]
```

(continued from previous page)

See also:

- If you plan to do a lot of automatic searches for subsequences, you should consider installing SloaneEncyclopedia, a local partial copy of the OEIS.
- Some infinite OEIS sequences are implemented in Sage, via the sloane_functions module.

Todo:

- in case of flood, suggest the user to install the off-line database instead.
- interface with the off-line database (or reimplement it).

4.1 Classes and methods

```
class sage.databases.oeis.FancyTuple
    Bases: tuple
```

This class inherits from tuple, it allows to nicely print tuples whose elements have a one line representation.

EXAMPLES:

```
sage: from sage.databases.oeis import FancyTuple
sage: t = FancyTuple(['zero', 'one', 'two', 'three', 4]) ; t
0: zero
1: one
2: two
3: three
4: 4
sage: t[2]
'two'
```

```
class sage.databases.oeis.OEIS
```

Bases: object

The On-Line Encyclopedia of Integer Sequences.

OEIS is a class representing the On-Line Encyclopedia of Integer Sequences. You can query it using its methods, but OEIS can also be called directly with three arguments:

- query it can be:
 - a string representing an OEIS ID (e.g. 'A000045').
 - an integer representing an OEIS ID (e.g. 45).
 - a list representing a sequence of integers.
 - a string, representing a text search.
- max_results (integer, default: 30) the maximum number of results to return, they are sorted according to their relevance. In any cases, the OEIS website will never provide more than 100 results.
- first_result (integer, default: 0) allow to skip the first_result first results in the search, to go further. This is useful if you are looking for a sequence that may appear after the 100 first found sequences.

OUTPUT:

- if query is an integer or an OEIS ID (e.g. 'A000045'), returns the associated OEIS sequence.
- if query is a string, returns a tuple of OEIS sequences whose description corresponds to the query. Those sequences can be used without the need to fetch the database again.
- if query is a list of integers, returns a tuple of OEIS sequences containing it as a subsequence. Those sequences can be used without the need to fetch the database again.

EXAMPLES:

```
sage: oeis
The On-Line Encyclopedia of Integer Sequences (https://oeis.org/)
```

A particular sequence can be called by its A-number or number:

The database can be searched by subsequence:

```
sage: search = oeis([1,2,3,5,8,13]); search # optional -- internet
0: A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.
1: A290689: Number of transitive rooted trees with n nodes.
2: A027926: Triangular array T read by rows: T(n,0) = T(n,2n) = 1 for n >= 0; T(n,2n) = 1
\rightarrow1) = 1 for n >= 1; T(n,k) = T(n-1,k-2) + T(n-1,k-1) for k = 2..2n-1, n >= 2.
                                                 # optional -- internet
sage: fibo = search[0]
                                                 # optional -- internet
sage: fibo.name()
'Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.'
sage: print(fibo.first_terms())
                                                 # optional -- internet
(0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418,
317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465,
14930352, 24157817, 39088169, 63245986, 102334155)
sage: fibo.cross_references()[0]
                                                 # optional -- internet
'A039834'
sage: fibo == oeis(45)
                                                 # optional -- internet
```

(continued from previous page)

```
True
sage: sfibo = oeis('A039834')
sage: sfibo.first_terms()
                                                 # optional -- internet
(1, 1, 0, 1, -1, 2, -3, 5, -8, 13, -21, 34, -55, 89, -144, 233,
-377, 610, -987, 1597, -2584, 4181, -6765, 10946, -17711, 28657,
-46368, 75025, -121393, 196418, -317811, 514229, -832040, 1346269,
-2178309, 3524578, -5702887, 9227465, -14930352, 24157817)
sage: tuple(abs(i) for i in sfibo.first_terms())[2:20] == fibo.first_terms()[:18]_
→ # optional -- internet
True
sage: fibo.formulas()[4]
                                                 # optional -- internet
F(n) = F(n-1) + F(n-2) = -(-1)^n F(-n).
sage: fibo.comments()[1]
                                                 # optional -- internet
"F(n+2) = number of binary sequences of length n that have no
consecutive 0's."
sage: fibo.links()[0]
                                                 # optional -- internet
'https://oeis.org/A000045/b000045.txt'
```

The database can be searched by description:

Note: The following will fetch the OEIS database only once:

```
sage: oeis([1,2,3,5,8,13])  # optional -- internet

0: A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.

1: A290689: Number of transitive rooted trees with n nodes.

2: A027926: Triangular array T read by rows: T(n,0) = T(n,2n) = 1 for n \ge 0; T(n,0) = 1 for n \ge 1; T(n,k) = T(n-1,k-2) + T(n-1,k-1) for k = 2..2n-1, n \ge 2.

sage: oeis('A000045')  # optional -- internet

A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.
```

Indeed, due to some caching mechanism, the sequence is not re-created when called from its ID.

browse()

Open the OEIS web page in a browser.

EXAMPLES:

```
sage: oeis.browse() # optional -- webbrowser
```

find by description (*description*, *max results=3*, *first result=0*)

Search for OEIS sequences corresponding to the description.

INPUT:

- description (string) the description the searched sequences.
- max_results (integer, default: 3) the maximum number of results we want. In any case, the
 on-line encyclopedia will not return more than 100 results.
- first_result (integer, default: 0) allow to skip the first_result first results in the search, to go further. This is useful if you are looking for a sequence that may appear after the 100 first found sequences.

OUTPUT:

• a tuple (with fancy formatting) of at most max_results OEIS sequences. Those sequences can be used without the need to fetch the database again.

EXAMPLES:

```
sage: oeis.find_by_description('prime gap factorization') # optional --_
→internet
0: A...: ...
1: A...: ...
2: A...: ...
sage: prime_gaps = _[2] ; prime_gaps # optional -- internet
A073490: Number of prime gaps in factorization of n.
                                            # optional -- internet
sage: oeis('beaver')
0: A...: ...eaver...
1: A...: ...eaver...
2: A...: ...eaver...
sage: oeis('beaver', max_results=4, first_result=2) # optional -- internet
0: A...: ...eaver...
1: A...: ...eaver...
2: A...: ...eaver...
3: A...: ...eaver...
```

find_by_entry(entry)

INPUT:

• entry – a string corresponding to an entry in the internal format of the OEIS.

OUTPUT:

• The corresponding OEIS sequence.

EXAMPLES:

find_by_id (*ident*, *fetch=False*)

INPUT:

- ident a string representing the A-number of the sequence or an integer representing its number.
- \bullet fetch (bool, default: False) whether to force fetching the content of the sequence on the internet.

OUTPUT:

• The OEIS sequence whose A-number or number corresponds to ident.

EXAMPLES:

```
sage: oeis.find_by_id('A000040') # optional -- internet
A000040: The prime numbers.

sage: oeis.find_by_id(40) # optional -- internet
A000040: The prime numbers.
```

find_by_subsequence (subsequence, max_results=3, first_result=0)

Search for OEIS sequences containing the given subsequence.

INPUT:

- subsequence a list of integers.
- max_results (integer, default: 3), the maximum of results requested.
- first_result (integer, default: 0) allow to skip the first_result first results in the search, to go further. This is useful if you are looking for a sequence that may appear after the 100 first found sequences.

OUTPUT:

• a tuple (with fancy formatting) of at most max_results OEIS sequences. Those sequences can be used without the need to fetch the database again.

EXAMPLES:

```
sage: oeis.find_by_subsequence([2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377]) # optional -- internet
0: A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) 3777 = 1.
1: A212804: Expansion of (1 - x)/(1 - x - x^2).
2: A177194: Fibonacci numbers whose decimal expansion does not contain any 3777 = digit 0.

sage: fibo = _[0]; fibo # optional -- internet
A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.
```

class sage.databases.oeis.OEISSequence (ident)

```
Bases: sage.structure.sage_object.SageObject, sage.structure.unique_representation.UniqueRepresentation
```

The class of OEIS sequences.

This class implements OEIS sequences. They are usually produced by calls to the On-Line Encyclopedia of Integer Sequences, represented by the class *OEIS*.

Note: Since some sequences do not start with index 0, there is a difference between calling and getting item, see __call__() for more details

```
sage: sfibo = oeis('A039834')
sage: sfibo.first_terms()[:10]  # optional -- internet
(1, 1, 0, 1, -1, 2, -3, 5, -8, 13)

sage: sfibo(-2)  # optional -- internet
1
sage: sfibo(3)  # optional -- internet
2
sage: sfibo.offsets()  # optional -- internet
```

(continued from previous page)

```
(-2, 6)

sage: sfibo[0]  # optional -- internet
1
sage: sfibo[6]  # optional -- internet
-3
```

$__call__(k)$

Return the element of the sequence self with index k.

INPUT:

• k – integer.

OUTPUT:

• integer.

Note: The first index of the sequence self is not necessarily zero, it depends on the first offset of self. If the sequence represents the decimal expansion of a real number, the index 0 corresponds to the digit right after the decimal point.

EXAMPLES:

```
sage: f = oeis(45)  # optional -- internet
sage: f.first_terms()[:10]  # optional -- internet
(0, 1, 1, 2, 3, 5, 8, 13, 21, 34)

sage: f(4)  # optional -- internet
3
```

```
sage: sfibo = oeis('A039834')  # optional -- internet
sage: sfibo.first_terms()[:10]  # optional -- internet
(1, 1, 0, 1, -1, 2, -3, 5, -8, 13)

sage: sfibo(-2)  # optional -- internet

sage: sfibo(4)  # optional -- internet
-3
sage: sfibo.offsets()  # optional -- internet
(-2, 6)
```

author()

Return the author of the sequence in the encyclopedia.

OUTPUT:

• string.

browse()

Open the OEIS web page associated to the sequence self in a browser.

EXAMPLES:

```
sage: f = oeis(45); f  # optional -- internet webbrowser
A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.
sage: f.browse()  # optional -- internet webbrowser
```

comments()

Return a tuple of comments associated to the sequence self.

OUTPUT:

• tuple of strings (with fancy formatting).

EXAMPLES:

cross_references (fetch=False)

Return a tuple of cross references associated to the sequence self.

INPUT:

• fetch - boolean (default: False).

OUTPUT:

- if fetch is False, return a list of OEIS IDs (strings).
- if fetch if True, return a tuple of OEIS sequences.

EXAMPLES:

```
sage: nbalanced = oeis("A005598"); nbalanced # optional -- internet
A005598: a(n) = 1 + Sum_{i=1..n} (n-i+1)*phi(i).

sage: nbalanced.cross_references() # optional -- internet
('A049703', 'A049695', 'A103116', 'A000010')

sage: nbalanced.cross_references(fetch=True) # optional -- internet
0: A049703: a(0) = 0; for n>0, a(n) = A005598(n)/2.
1: A049695: Array T read by diagonals; ...
2: A103116: a(n) = A005598(n) - 1.
3: A000010: Euler totient function phi(n): count numbers <= n and prime to n.

sage: phi = _[3] # optional -- internet</pre>
```

examples()

Return a tuple of examples associated to the sequence self.

OUTPUT:

• tuple of strings (with fancy formatting).

EXAMPLES:

```
sage: c = oeis(1203); c  # optional -- internet
A001203: Simple continued fraction expansion of Pi.

sage: c.examples()  # optional -- internet
0: Pi = 3.1415926535897932384...
1: = 3 + 1/(7 + 1/(15 + 1/(1 + 1/(292 + ...))))
2: = [a_0; a_1, a_2, a_3, ...] = [3; 7, 15, 1, 292, ...]
```

extensions_or_errors()

Return a tuple of extensions or errors associated to the sequence self.

OUTPUT:

• tuple of strings (with fancy formatting).

EXAMPLES:

first_terms (number=None)

INPUT:

• number – (integer or None, default: None) the number of terms returned (if less than the number of available terms). When set to None, returns all the known terms.

OUTPUT:

· tuple of integers.

EXAMPLES:

```
sage: f = oeis(45); f  # optional -- internet
A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.
sage: f.first_terms()[:10]  # optional -- internet
(0, 1, 1, 2, 3, 5, 8, 13, 21, 34)
```

Handle dead sequences, see trac ticket #17330

```
sage: oeis(5000).first_terms(12)  # optional -- internet
doctest:warning
...
RuntimeWarning: This sequence is dead: "A005000: Erroneous version of A006505.

→ "
(1, 0, 0, 1, 1, 1, 11, 36, 92, 491, 2537)
```

formulas()

Return a tuple of formulas associated to the sequence self.

OUTPUT:

• tuple of strings (with fancy formatting).

EXAMPLES:

id(format='A')

The ID of the sequence self is the A-number that identifies self.

INPUT:

• format – (string, default: 'A').

OUTPUT:

- if format is set to 'A', returns a string of the form 'A000123'.
- if format is set to 'int' returns an integer of the form 123.

EXAMPLES:

is_dead(warn_only=False)

Tell whether the sequence is dead (i.e. erroneous).

INPLIT

• warn_only – (bool, default: False), whether to warn when the sequence is dead instead of returning a boolean.

EXAMPLES:

A warn_only test is triggered as soon as some information on the sequence is queried:

is_finite()

Tell whether the sequence is finite.

Currently, OEIS only provides a keyword when the sequence is known to be finite. So, when this keyword is not there, we do not know whether it is infinite or not.

OUTPUT:

- True when the sequence is known to be finite.
- Unknown otherwise.

Todo: Ask OEIS for a keyword ensuring that a sequence is infinite.

EXAMPLES:

```
sage: s = oeis('A114288') ; s  # optional -- internet
A114288: Lexicographically earliest solution of any 9 X 9 sudoku, read by
→rows.

sage: s.is_finite()  # optional -- internet
True
```

```
sage: f = oeis(45); f  # optional -- internet
A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.
sage: f.is_finite()  # optional -- internet
Unknown
```

is_full()

Tell whether the sequence self is full, that is, if all its elements are listed in self.first_terms().

Currently, OEIS only provides a keyword when the sequence is known to be full. So, when this keyword is not there, we do not know whether some elements are missing or not.

OUTPUT:

- True when the sequence is known to be full.
- Unknown otherwise.

EXAMPLES:

```
sage: s = oeis('A114288'); s  # optional -- internet
A114288: Lexicographically earliest solution of any 9 X 9 sudoku, read by_
→rows.

sage: s.is_full()  # optional -- internet
True
```

keywords()

Return the keywords associated to the sequence self.

OUTPUT:

• tuple of strings.

```
sage: f = oeis(53); f # optional -- internet
A000053: Local stops on New York City Broadway line (IRT #1) subway.

sage: f.keywords() # optional -- internet
('nonn', 'fini', 'full')
```

links (browse=None, format='guess')

Return, display or browse links associated to the sequence self.

INPUT:

- browse an integer, a list of integers, or the word 'all' (default: None): which links to open in a
 web browser.
- format string (default: 'guess'): how to display the links.

OUTPUT:

- tuple of strings (with fancy formatting):
 - if format is url, returns a tuple of absolute links without description.
 - if format is html, returns nothing but prints a tuple of clickable absolute links in their context.
 - if format is guess, adapts the output to the context (command line or notebook).
 - if format is raw, the links as they appear in the database, relative links are not made absolute.

EXAMPLES:

name()

Return the name of the sequence self.

OUTPUT:

• string.

EXAMPLES:

natural_object()

Return the natural object associated to the sequence self.

OUTPUT:

- If the sequence self corresponds to the digits of a real number, returns the associated real number (as an element of RealLazyField()).
- If the sequence self corresponds to the convergents of a continued fraction, returns the associated continued fraction.

Warning: This method forgets the fact that the returned sequence may not be complete.

Todo:

- ask OEIS to add a keyword telling whether the sequence comes from a power series, e.g. for https://oeis.org/A000182
- discover other possible conversions.

EXAMPLES:

```
sage: ee = oeis('A001113'); ee  # optional -- internet
A001113: Decimal expansion of e.

sage: x = ee.natural_object(); x  # optional -- internet
2.718281828459046?

sage: x.parent()  # optional -- internet
Real Lazy Field

sage: x == RR(e)  # optional -- internet
True
```

```
sage: av = oeis('A087778'); av  # optional -- internet
A087778: Decimal expansion ... Avogadro...

sage: av.natural_object()  # optional -- internet
6.022141000000000?e23
```

```
sage: fib = oeis('A000045'); fib  # optional -- internet
A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.
sage: x = fib.natural_object(); x.universe()  # optional -- internet
Non negative integer semiring
```

```
sage: sfib = oeis('A039834'); sfib # optional -- internet
A039834: a(n+2) = -a(n+1) + a(n) (signed Fibonacci numbers) with a(-2) = a(-1) = 1; or Fibonacci numbers (A000045) extended to negative indices.
```

```
sage: x = sfib.natural_object() ; x.universe() # optional -- internet
Integer Ring
```

offsets()

Return the offsets of the sequence self.

The first offset is the subscript of the first term in the sequence self. When, the sequence represents the decimal expansion of a real number, it corresponds to the number of digits of its integer part.

The second offset is the first term in the sequence self (starting from 1) whose absolute value is greater than 1. This is set to 1 if all the terms are 0 or +-1.

OUTPUT:

• tuple of two elements.

EXAMPLES:

```
sage: f = oeis(45); f  # optional -- internet
A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.

sage: f.offsets()  # optional -- internet
(0, 4)

sage: f.first_terms()[:4]  # optional -- internet
(0, 1, 1, 2)
```

old_IDs()

Return the IDs of the sequence self corresponding to ancestors of OEIS.

OUTPUT:

• a tuple of at most two strings. When the string starts with M, it corresponds to the ID of "The Encyclopedia of Integer Sequences" of 1995. When the string starts with N, it corresponds to the ID of the "Handbook of Integer Sequences" of 1973.

EXAMPLES:

online_update()

Fetch the online OEIS to update the informations about this sequence.

programs (language='all', preparsing=True, keep_comments=False)

Return programs for the sequence self in the given language.

INPUT:

• language – string (default: 'all'), the chosen language. Possible values are 'all' for the full list, or any language name, for example 'sage', 'maple', 'mathematica', etc.

Some further optional input is specific to sage code treatment:

- preparsing boolean (default: True) whether to preparse sage code
- keep_comments boolean (default: False) whether to keep comments in sage code

OUTPUT:

If language is 'all', this returns a sorted list of pairs (language, code), where every language can appear several times.

Otherwise, this returns a list of programs in the language, each program being a tuple of strings (with fancy formatting).

EXAMPLES:

raw_entry()

Return the raw entry of the sequence self, in the OEIS format.

The raw entry is fetched online if needed.

OUTPUT:

· string.

EXAMPLES:

```
sage: f = oeis(45); f  # optional -- internet
A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.

sage: print(f.raw_entry())  # optional -- internet
%I A000045 M0692 N0256
%S A000045 0,1,1,2,3,5,8,13,21,34,55,89,144,...
%T A000045 10946,17711,28657,46368,...
...
```

references()

Return a tuple of references associated to the sequence self.

OUTPUT:

• tuple of strings (with fancy formatting).

```
sage: w = oeis(7540); w  # optional -- internet
A007540: Wilson primes: primes p such that (p-1)! == -1 (mod p^2).

sage: w.references()  # optional -- internet
0: A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 52.
1: C. Clawson, Mathematical Mysteries, Plenum Press, 1996, p. 180.
2: R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective,

⇒Springer, NY, 2001; see p. 29.

(continues on next page)
```

```
3: G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 

⇒5th ed., Oxford Univ. Press, 1979, th. 80.

...

sage: _[0] # optional -- internet

'A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 52.'
```

show()

Display most available informations about the sequence self.

EXAMPLES:

```
sage: s = oeis(12345)
                                                 # optional -- internet
                                                 # optional -- internet
sage: s.show()
TD
A012345
NAME
Coefficients in the expansion sinh(arcsin(x)*arcsin(x)) = 2*x^2/2!+8*x^4/4!
\leftrightarrow +248 \times x^6/6! +11328 \times x^8/8! + \dots
FIRST TERMS
(2, 8, 248, 11328, 849312, 94857600, 14819214720, 3091936512000,...
→831657655349760, 280473756197529600, 115967597965430077440, _
\rightarrow57712257892456911912960, 34039765801079493369569280)
0: https://oeis.org/A012345/b012345.txt
FORMULAS
OFFSETS
(0, 1)
URL
https://oeis.org/A012345
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
```

test_compile_sage_code()

Try to compile the extracted sage code, if there is any.

If there are several sage code fields, they are all considered.

Dead sequences are considered to compile correctly by default.

This returns True if the code compiles, and raises an error otherwise.

EXAMPLES:

One correct sequence:

```
sage: s = oeis.find_by_id('A027642') # optional -- internet
sage: s.test_compile_sage_code() # optional -- internet
True
```

One dead sequence:

```
sage: s = oeis.find_by_id('A000154') # optional -- internet
sage: s.test_compile_sage_code() # optional -- internet
doctest:warning
...
RuntimeWarning: This sequence is dead: ...
True
```

url()

Return the URL of the page associated to the sequence self.

OUTPUT:

• string.

EXAMPLES:

sage.databases.oeis.to_tuple(string)

CHAPTER

FIVE

LOCAL COPY OF SLOANE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES

The SloaneEncyclopedia object provides access to a local copy of the database containing only the sequences and their names. To use this you must download and install the database using SloaneEncyclopedia.install(), or SloaneEncyclopedia.install_from_gz() if you have already downloaded the database manually.

To look up a sequence, type

```
sage: SloaneEncyclopedia[60843] # optional - sloane_database
[1, 6, 21, 107]
```

To get the name of a sequence, type

```
sage: SloaneEncyclopedia.sequence_name(1) # optional - sloane_database
'Number of groups of order n.'
```

To search locally for a particular subsequence, type

```
sage: SloaneEncyclopedia.find([1,2,3,4,5], 1) # optional - sloane_database
[(15, [1, 2, 3, 4, 5, 7, 7, 8, 9, 11, 11, 13, 13, 16, 16, 16, 17, 19, 19, 23, 23, 23, 23, 23, 25, 25, 27, 27, 29, 29, 31, 31, 32, 37, 37, 37, 37, 37, 41, 41, 41, 41, 43, 43, 47, 47, 47, 47, 49, 49, 53, 53, 53, 53, 59, 59, 59, 59, 59, 59, 61, 61, 64, 64, 64, 64, 67, 67, 67, 71, 71, 71, 71, 73])]
```

The default maximum number of results is 30, but to return up to 100, type

```
sage: SloaneEncyclopedia.find([1,2,3,4,5], 100) # optional - sloane_database
[(15, [1, 2, 3, 4, 5, 7, 7, 8, 9, 11, 11, ...
```

Results in either case are of the form [(number, list)].

See also:

- If you want to get more informations relative to a sequence (references, links, examples, programs, ...), you can use the On-Line Encyclopedia of Integer Sequences provided by the OEIS module.
- Some infinite OEIS sequences are implemented in Sage, via the sloane_functions module.

AUTHORS:

- Steven Sivek (2005-12-22): first version
- Steven Sivek (2006-02-07): updated to correctly handle the new search form on the Sloane website, and it is now also smarter about loading the local database in that it does not convert a sequence from string form to a list of integers until absolutely necessary. This seems to cut the loading time roughly in half.

- Steven Sivek (2009-12-22): added the SloaneEncyclopedia functions install() and install_from_gz() so users can get the latest versions of the OEIS without having to get an updated spkg; added sequence_name() to return the description of a sequence; and changed the data type for elements of each sequence from int to Integer.
- Thierry Monteil (2012-02-10): deprecate dead code and update related doc and tests.

5.1 Classes and methods

${\bf class} \ \, {\tt sage.databases.sloane.SloaneEncyclopediaClass}$

Bases: object

A local copy of the Sloane Online Encyclopedia of Integer Sequences that contains only the sequence numbers and the sequences themselves.

find(seq, maxresults=30)

Return a list of all sequences which have seq as a subsequence, up to maxresults results. Sequences are returned in the form (number, list).

INPUT:

- seq-list
- maxresults int

OUTPUT: list of 2-tuples (i, v), where v is a sequence with seq as a subsequence.

install (oeis_url='http://oeis.org/stripped.gz', names_url='http://oeis.org/names.gz', overwrite=False)

Download and install the online encyclopedia, raising an IOError if either step fails.

INPUT:

- oeis_url string (default: "http://oeis.org...") The URL of the stripped.gz encyclopedia file.
- names_url string (default: "http://oeis.org...") The URL of the names.gz encyclopedia file. If you do not want to download this file, set names_url=None.
- overwrite boolean (default: False) If the encyclopedia is already installed and overwrite=True, download and install the latest version over the installed one.

install_from_gz (stripped_file, names_file, overwrite=False)

Install the online encyclopedia from a local stripped.gz file.

INPUT:

- stripped_file string. The name of the stripped.gz OEIS file.
- names_file string. The name of the names.gz OEIS file, or None if the user does not want it installed.
- overwrite boolean (default: False) If the encyclopedia is already installed and overwrite=True, install 'filename' over the old encyclopedia.

load()

Load the entire encyclopedia into memory from a file. This is done automatically if the user tries to perform a lookup or a search.

${\tt sequence_name}\,(N)$

Return the name of sequence N in the encyclopedia.

If sequence N does not exist, return ''. If the names database is not installed, raise an IOError.

INPUT:

• N - int

OUTPUT: string

EXAMPLES:

```
sage: SloaneEncyclopedia.sequence_name(1) # optional - sloane_database
'Number of groups of order n.'
```

unload()

Remove the database from memory.

```
sage.databases.sloane.copy_gz_file(gz_source, bz_destination)
```

Decompress a gzipped file and install the bzipped version.

This is used by SloaneEncyclopedia.install_from_gz to install several gzipped OEIS database files.

INPUT:

- gz_source string. The name of the gzipped file.
- bz_destination string. The name of the newly compressed file.

CHAPTER

SIX

FINDSTAT - THE COMBINATORIAL STATISTIC FINDER.

The FindStat database can be found at:

```
sage: findstat()
The Combinatorial Statistic Finder (https://www.findstat.org/)
```

Fix the following three notions:

- A combinatorial collection is a set S with interesting combinatorial properties,
- a combinatorial map is a combinatorially interesting map $f: S \to S'$ between combinatorial collections, and
- a combinatorial statistic is a combinatorially interesting map $s:S\to {f Z}.$

You can use the sage interface to FindStat to:

- identify a combinatorial statistic or map given the values on a few small objects,
- obtain more terms, formulae, references, etc. for a given statistic or map,
- edit statistics and maps and submit new statistics.

AUTHORS:

- Martin Rubey (2015): initial version.
- Martin Rubey (2020): rewrite, adapt to new FindStat API

6.1 The main entry points

findstat()	search for matching statistics.
findmap()	search for matching maps.

6.2 A guided tour

6.2.1 Retrieving information

The most straightforward application of the FindStat interface is to gather information about a combinatorial statistic. To do this, we supply <code>findstat()</code> with a list of (object, value) pairs. For example:

The result of this query is a list (presented as a sage.databases.oeis.FancyTuple) of matches. Each match consists of a $FindStatCompoundStatistics: S \to \mathbf{Z}$ and an indication of the quality of the match.

The precise meaning of the result is as follows:

The composition $f_n \circ ... \circ f_2 \circ f_1$ applied to the objects sent to FindStat agrees with all (object, value) pairs of s in the database.

Suppose that the quality of the match is (q_a, q_d) . Then q_a is the percentage of (object, value) pairs that are in the database among those which were sent to FindStat, and q_d is the percentage of (object, value) pairs with distinct values in the database among those which were sent to FindStat.

Put differently, if quality is not too small it is likely that the statistic sent to FindStat equals $s \circ f_n \circ ... \circ f_2 \circ f_1$. If q_a is large, but q_b is small, then there were many matches, but while the sought for statistic attains many distinct values, the match found by FindStat covers only (object, value) pairs for few values.

In the case at hand, for the match St000041, the list of maps is empty. We can retrieve the description of the statistic from the database as follows:

We can check the references:

If you prefer, you can look at this information also in your browser:

Another interesting possibility is to look for equidistributed statistics. Instead of submitting a list of (object, value) pairs, we pass a list of pairs (objects, values):

This results tells us that the database contains another entry that is equidistributed with the number of nestings on perfect matchings of size at most 10, namely the number of crossings. Note that there is a limit on the number of elements FindStat accepts for a query, which is currently 1000. Queries with more than 1000 elements are truncated.

Let us now look at a slightly more complicated example, where the submitted statistic is the composition of a sequence of combinatorial maps and a statistic known to FindStat. We use the occasion to advertise yet another way to pass values to FindStat:

Note that some of the matches are up to a global offset, which is then given. For example, we have:

Let us pick another particular result:

```
sage: s = next(s for s in r if s.statistic().id() == 51); s

→ optional -- internet
St000051oMp00061oMp00069 (quality [87, 86])
```

To obtain the value of the statistic sent to FindStat on a given object, apply the maps in the list in the given order to this object, and evaluate the statistic on the result. For example, let us check that the result given by FindStat agrees with our statistic on the following permutation:

```
sage: pi = Permutation([3,1,4,5,2]); pi.saliances()[0]
3
```

We first have to find out, what the maps and the statistic actually do:

(continues on next page)

6.2. A guided tour 49

```
def mapping(sigma):
    return sigma.increasing_tree_shape()
```

So, the following should coincide with what we sent FindStat:

```
sage: pi.complement().increasing_tree_shape()[0].node_number()
3
```

6.2.2 Editing and submitting statistics

Of course, often a statistic will not be in the database:

In this case, and if the statistic might be "interesting", please consider submitting it to the database using FindStatStatistic.submit().

Also, you may notice omissions, typos or even mistakes in the description, the code and the references. In this case, simply replace the value by using <code>FindStatFunction.set_description()</code>, <code>FindStatStatistic.set_code()</code> or <code>FindStatFunction.set_references_raw()</code>, and then <code>FindStatStatistic.submit()</code> your changes for review by the FindStat team.

6.3 Classes and methods

```
class sage.databases.findstat.FindStat
```

```
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.sage_object.SageObject
```

The Combinatorial Statistic Finder.

FindStat is a class preserving user information.

browse (

Open the FindStat web page in a browser.

EXAMPLES:

login()

Open the FindStat login page in a browser.

EXAMPLES:

set_user (name=None, email=None)

Set the user for the session.

INPUT:

- name the name of the user.
- email an email address of the user.

This information is used when submitting a statistic with FindStatStatistic.submit().

EXAMPLES:

```
sage: findstat().set_user(name="Anonymous", email="invalid@org")
```

Note: It is usually more convenient to login into the FindStat web page using the login () method.

user_email()

Return the user name used for submissions.

EXAMPLES:

```
sage: findstat().set_user(name="Anonymous", email="invalid@org")
sage: findstat().user_email()
'invalid@org'
```

user name()

Return the user name used for submissions.

EXAMPLES:

```
sage: findstat().set_user(name="Anonymous", email="invalid@org")
sage: findstat().user_name()
'Anonymous'
```

Bases: sage.structure.element.Element

A FindStat collection.

FindStatCollection is a class representing a combinatorial collection available in the FindStat database.

Its main use is to allow easy specification of the combinatorial collection when using findstat. It also provides methods to quickly access its FindStat web page (browse()), check whether a particular element is actually in the range considered by FindStat (in_range()), etc.

INPUT:

One of the following:

- a string eg. 'Dyck paths' or 'DyckPaths', case-insensitive, or
- an integer designating the FindStat id of the collection, or
- · a sage object belonging to a collection, or
- an iterable producing a sage object belonging to a collection.

EXAMPLES:

See also:

FindStatCollections

browse()

Open the FindStat web page of the collection in a browser.

EXAMPLES:

element_level(element)

Return the level of an element.

EXAMPLES:

elements_on_level(level)

Return an iterable over the elements on the given level.

EXAMPLES:

```
sage: from sage.databases.findstat import FindStatCollection
sage: FindStatCollection("Perfect Matchings").elements_on_level(4) #
    → optional -- internet
Perfect matchings of {1, 2, 3, 4}
```

first_terms (function, level=None)

Compute the first few terms of the given function, possibly restricted to a level, as a lazy list.

INPUT:

- function a callable
- level (optional), the level to restrict to

OUTPUT:

A lazy list of pairs of the form (object, value).

EXAMPLES:

```
sage: from sage.databases.findstat import FindStatCollection
sage: c = FindStatCollection("GelfandTsetlinPatterns") #
    → optional -- internet
sage: c.first_terms(lambda x: 1)[:10].list() #
    → optional -- internet
[([[1, 0], [0]], 1),
([[1, 0], [1]], 1),
([[2, 0], [0]], 1),
([[2, 0], [2]], 1),
([[2, 0], [2]], 1),
([[1, 1], [1]], 1),
([[1, 0, 0], [0, 0], [0]], 1),
([[1, 0, 0], [1, 0], [0]], 1),
([[1, 0, 0], [1, 0], [1]], 1),
([[3, 0], [0]], 1)]
```

from_string()

Return a function that returns the object given a FindStat representation.

OUTPUT:

The function that produces the sage object given its FindStat representation as a string.

EXAMPLES:

```
sage: from sage.databases.findstat import FindStatCollection
sage: c = FindStatCollection("Posets")
→optional -- internet
sage: p = c.from\_string()('([(0, 2), (2, 1)], 3)')
                                                                      #__
→optional -- internet
sage: p.cover_relations()
→optional -- internet
[[0, 2], [2, 1]]
sage: c = FindStatCollection("Binary Words")
                                                                      #__
→optional -- internet
sage: w = c.from_string()('010101')
→optional -- internet
sage: w in c._data["Code"].elements_on_level(6)
→optional -- internet
True
```

id()

Return the FindStat identifier of the collection.

OUTPUT:

The FindStat identifier of the collection as an integer.

EXAMPLES:

id_str()

Return the FindStat identifier of the collection.

OUTPUT:

The FindStat identifier of the collection as a string.

EXAMPLES:

in range(element)

Check whether an element of the collection is in FindStat's precomputed range.

INPUT:

• element – a sage object that belongs to the collection.

OUTPUT:

True, if element is used by the FindStat search engine, and False if it is ignored.

EXAMPLES:

$is_element(element)$

Return whether the element belongs to the collection.

EXAMPLES:

is_supported()

Check whether the collection is fully supported by the interface.

EXAMPLES:

levels_with_sizes()

Return a dictionary from levels to level sizes.

EXAMPLES:

name (style='singular')

Return the name of the FindStat collection.

INPUT:

• a string – (default:"singular") can be "singular", or "plural".

OUTPUT:

The name of the FindStat collection, in singular or in plural.

EXAMPLES:

to_string()

Return a function that returns a FindStat representation given an object.

OUTPUT:

The function that produces the string representation as needed by the FindStat search webpage.

class sage.databases.findstat.FindStatCollections

```
Bases: sage.structure.unique_representation.UniqueRepresentation, sage. structure.parent.Parent
```

The class of FindStat collections.

The elements of this class are combinatorial collections in FindStat as of January 2020. If a new collection was added to the web service since then, the dictionary _SupportedFindStatCollections in this module has to be updated accordingly.

EXAMPLES:

```
sage: from sage.databases.findstat import FindStatCollections
sage: sorted(c for c in FindStatCollections())
                                                                          #__
→optional -- internet
[Cc0001: Permutations,
Cc0002: Integer partitions,
Cc0005: Dyck paths,
Cc0006: Integer compositions,
Cc0007: Standard tableaux,
Cc0009: Set partitions,
Cc0010: Binary trees,
Cc0012: Perfect matchings,
Cc0013: Cores,
Cc0014: Posets,
Cc0017: Alternating sign matrices,
Cc0018: Gelfand-Tsetlin patterns,
Cc0019: Semistandard tableaux,
Cc0020: Graphs,
Cc0021: Ordered trees,
Cc0022: Finite Cartan types,
Cc0023: Parking functions,
Cc0024: Binary words,
Cc0025: Plane partitions,
Cc0026: Decorated permutations,
Cc0027: Signed permutations,
Cc0028: Skew partitions]
```

Element

alias of FindStatCollection

class sage.databases.findstat.FindStatCombinatorialMap

```
Bases: sage.structure.sage_object.SageObject
```

A class serving as common ancestor of FindStatStatistic and FindStatCompoundStatistic.

${\bf class} \ {\tt sage.databases.findstat.FindStatCombinatorialStatistic}$

```
Bases: sage.structure.sage_object.SageObject
```

A class providing methods to retrieve the first terms of a statistic.

This class provides methods applicable to instances of FindStatStatistic, FindStatCompoundStatistic and FindStatStatisticQuery.

first_terms()

Return the first terms of the (compound) statistic as a dictionary.

OUTPUT:

A dictionary from sage objects representing an element of the appropriate collection to integers.

This method is overridden in FindStatStatisticQuery.

EXAMPLES:

first_terms_str (max_values=1200)

Return the first terms of the statistic in the format needed for a FindStat query.

OUTPUT

A string, where each line is of the form object => value, where object is the string representation of an element of the appropriate collection as used by FindStat and value is an integer.

EXAMPLES:

generating_functions (style='polynomial')

Return the generating functions of the statistic as a dictionary.

The keys of this dictionary are the levels for which the generating function of of the statistic can be computed from the known data. Each value represents a generating function for one level, as a polynomial, as a dictionary, or as a list of coefficients.

INPUT:

• a string – (default:"polynomial") can be "polynomial", "dictionary", or "list".

OUTPUT:

- if style is "polynomial", the generating function is returned as a polynomial.
- if style is "dictionary", the generating function is returned as a dictionary representing the monomials of the generating function.
- if style is "list", the generating function is returned as a list of coefficients of the generating function. In this case, leading and trailing zeros are omitted.

EXAMPLES:

oeis_search (search_size=32, verbose=True)

Search the OEIS for the generating function of the statistic.

INPUT:

- search_size (default:32) the number of integers in the sequence. If this is chosen too big, the OEIS result may be corrupted.
- verbose (default:True) if true, some information about the search are printed.

OUTPUT:

• a tuple of OEIS sequences, see <code>sage.databases.oeis.OEIS.find_by_description()</code> for more information.

EXAMPLES:

Bases: sage.structure.element.Element, sage.databases.findstat.
FindStatCombinatorialMap

Initialize a compound statistic.

INPUT:

- id a padded identifier
- domain-(optional), the domain of the compound map
- codomain-(optional), the codomain of the compound map
- check whether to check that domains and codomains fit

If domain and codomain are given and check is False, they are not fetched from FindStat.

If id is the empty string, domain must be provided, and the identity map on this collection is returned.

browse()

Open the FindStat web page of the compound map in a browser.

EXAMPLES:

codomain()

Return the codomain of the compound map.

EXAMPLES:

domain()

Return the domain of the compound map.

EXAMPLES:

id_str()

Return the padded identifier of the compound map.

EXAMPLES:

maps()

Return the maps occurring in the compound map as a list.

EXAMPLES:

```
sage: findmap("Mp00099oMp00127").maps() #_
     → optional -- internet
[Mp00127: left-to-right-maxima to Dyck path, Mp00099: bounce path]
```

Initialize a compound statistic.

INPUT:

- id a padded identifier
- domain (optional), the domain of the compound statistic
- check whether to check that domains and codomains fit

If the domain is given and check is False, it is not fetched from FindStat.

browse()

Open the FindStat web page of the compound statistic in a browser.

EXAMPLES:

compound_map()

Return the compound map which is part of the compound statistic.

EXAMPLES:

domain()

Return the domain of the compound statistic.

EXAMPLES:

id_str()

Return the padded identifier of the compound statistic.

EXAMPLES:

statistic()

Return the statistic of the compound statistic.

EXAMPLES:

class sage.databases.findstat.FindStatFunction(id, data=None, function=None)

```
Bases: sage.structure.sage_object.SageObject
```

A class providing the common methods of FindStatMap and FindStatStatistic.

This class provides methods to access and modify properties of a single statistic or map of the FindStat database.

description()

Return the description of the statistic or map.

OUTPUT:

A string. For statistics, the first line is used as name.

domain()

Return the FindStat domain of the statistic or map.

OUTPUT:

The domain of the statistic or map as an instance of FindStatCollection.

EXAMPLES:

id()

Return the FindStat identifier of the statistic or map.

OUTPUT:

The FindStat identifier of the statistic or map, as an integer.

EXAMPLES

id_str()

Return the FindStat identifier of the statistic or map.

OUTPUT:

The FindStat identifier of the statistic or map, as a string.

EXAMPLES:

name()

Return the name of the statistic or map.

OUTPUT:

A string. For statistics, this is just the first line of the description.

EXAMPLES:

${\tt references}\,(\,)$

Return the references associated with the statistic or map.

OUTPUT:

An instance of sage.databases.oeis.FancyTuple, each item corresponds to a reference.

EXAMPLES:

references_raw()

Return the unrendered references associated with the statistic or map.

EXAMPLES:

```
sage: print(findstat(41).references_raw())
    →optional -- internet
[1] [[MathSciNet:1288802]]
[2] [[MathSciNet:1418763]]
```

reset()

Discard all modification of the statistic or map.

EXAMPLES:

sage_code()

Return the sage code associated with the statistic or map.

OUTPUT:

An empty string or a string of the form:

```
def statistic(x):
    ...
```

or:

```
def mapping(x):
    ...
```

set description (value)

Set the description of the statistic or map.

INPUT:

• a string – for statistics, this is the name of the statistic followed by its description on a separate line.

This information is used when submitting the statistic or map with submit ().

EXAMPLES:

```
sage: q = findstat([(d, randint(1, 1000)) for d in DyckWords(4)])
    →# optional -- internet
sage: q.set_description("Random values on Dyck paths.\nNot for submission.")
    →# optional -- internet
sage: print(q.description())
    →# optional -- internet
Random values on Dyck paths.
Not for submission.
```

set_references_raw(value)

Set the references associated with the statistic or map.

INPUT:

• a string – each reference should be on a single line, and consist of one or more links to the same item.

FindStat will automatically resolve the links, if possible. A complete list of supported services can be found at https://findstat.org/NewStatistic.

This information is used when submitting the statistic with submit ().

EXAMPLES:

set_sage_code(value)

Set the code associated with the statistic or map.

INPUT:

• a string – SageMath code producing the values of the statistic or map.

Contributors are encouraged to submit code for statistics using <code>FindStatStatistic.set_code()</code>. Modifying the "verified" SageMath code using this method is restricted to members of the FindStatCrew, for all other contributors this method has no effect.

EXAMPLES:

```
def statistic(x):
   return randint(1,1000)
```

class sage.databases.findstat.**FindStatMap**(parent, id)

Bases: sage.structure.element.Element, sage.databases.findstat. FindStatFunction, sage.databases.findstat.FindStatCombinatorialMap

A FindStat map.

FindStatMap is a class representing a combinatorial map available in the FindStat database.

This class provides methods to inspect various properties of these maps, in particular code ().

EXAMPLES:

See also:

FindStatMaps

browse()

Open the FindStat web page of the map in a browser.

EXAMPLES:

codomain()

Return the FindStat collection which is the codomain of the map.

OUTPUT:

The codomain of the map as a FindStatCollection.

EXAMPLES:

edit()

Open the FindStat web page for editing the map in a browser.

properties_raw()

Return the properties of the map.

OUTPUT:

The properties as a string.

set_name (value)

Set the name of the map.

INPUT:

• a string – the new name of the map.

This information is used when submitting the map with submit ().

set_properties_raw(value)

Set the properties of the map.

EXAMPLES:

```
sage: from sage.databases.findstat import FindStatMap
                                                                     #_
→optional -- internet
sage: FindStatMap(61).set_properties_raw(u'surjective')
→optional -- internet
sage: FindStatMap(61).properties_raw()
→optional -- internet
u'surjective'
sage: FindStatMap(61)
→optional -- internet
Mp00061 (modified): to increasing tree
sage: FindStatMap(61).reset()
→optional -- internet
sage: FindStatMap(61)
→optional -- internet
Mp00061: to increasing tree
```

submit()

Open the FindStat web page for editing the map in a browser.

Bases: sage.databases.findstat.FindStatMap

A class representing a query for FindStat (compound) maps.

```
class sage.databases.findstat.FindStatMaps(domain=None, codomain=None)
```

```
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent
```

The class of FindStat maps.

The elements of this class are combinatorial maps currently in FindStat.

EXAMPLES:

We can print a sample map for each domain and codomain:

```
sage: for cc_dom in ccs:
→optional -- internet
....: for cc_codom in ccs:
             print(cc_dom.name(style="plural") + " -> " + cc_codom.name(style=
→"plural"))
. . . . :
             try:
                print("
                              " + next(iter(FindStatMaps(cc_dom, cc_codom))).
. . . . :
\hookrightarrowname())
             except StopIteration:
. . . . :
                  pass
Permutations -> Permutations
   Lehmer-code to major-code bijection
Permutations -> Integer partitions
   Robinson-Schensted tableau shape
Permutations -> Dyck paths
   left-to-right-maxima to Dyck path
Integer partitions -> Permutations
Integer partitions -> Integer partitions
    conjugate
Integer partitions -> Dyck paths
   to Dyck path
Dyck paths -> Permutations
   to non-crossing permutation
Dyck paths -> Integer partitions
   to partition
Dyck paths -> Dyck paths
    reverse
```

Element

alias of FindStatMap

Bases: sage.databases.findstat.FindStatCompoundMap

Initialize a FindStat map match.

INPUT:

- matching_map, a compound map identifier
- quality, the quality of the match, as provided by FindStat
- domain-(optional), the domain of the compound map
- codomain-(optional), the codomain of the compound map

EXAMPLES:

quality()

Return the quality of the match, as provided by FindStat.

Bases: sage.databases.findstat.FindStatCompoundStatistic

Initialize a FindStat statistic match.

INPUT:

- matching_statistic, a compound statistic identifier
- offset, the offset of the values, as provided by FindStat
- quality, the quality of the match, as provided by FindStat
- domain (optional), the domain of the compound statistic

EXAMPLES:

```
sage: from sage.databases.findstat import FindStatMatchingStatistic
sage: FindStatMatchingStatistic("St000042oMp00116", 1, [17, 83]) # optional --
→internet
St000042oMp00116 with offset 1 (quality [17, 83])
```

info()

Print a detailed explanation of the match.

EXAMPLES:

offset()

Return the offset which has to be added to each value of the compound statistic to obtain the desired value.

quality()

Return the quality of the match, as provided by FindStat.

The quality of a statistic match is a pair of percentages (q_a, q_d) , where q_a is the percentage of (object, value) pairs that are in the database among those which were sent to FindStat, and q_d is the percentage of (object, value) pairs with distinct values in the database among those which were sent to FindStat.

EXAMPLES:

```
sage: from sage.databases.findstat import FindStatMatchingStatistic
sage: r = FindStatMatchingStatistic("St000042oMp00116", 1, [17, 83])

-# optional -- internet
sage: r.quality() #__
-- optional -- internet
[17, 83]
```

class sage.databases.findstat.FindStatStatistic(parent, id)

Bases: sage.structure.element.Element, sage.databases.findstat. FindStatFunction, sage.databases.findstat.FindStatCombinatorialStatistic

A FindStat statistic.

FindStatStatistic is a class representing a combinatorial statistic available in the FindStat database.

This class provides methods to inspect and update various properties of these statistics.

EXAMPLES:

```
sage: from sage.databases.findstat import FindStatStatistic
sage: FindStatStatistic(41) #

→ optional -- internet
St000041: The number of nestings of a perfect matching.
```

See also:

FindStatStatistics

browse()

Open the FindStat web page of the statistic in a browser.

EXAMPLES:

code()

Return the code associated with the statistic or map.

OUTPUT:

A string. Contributors are encouraged to submit sage code in the form:

```
def statistic(x):
    ...
```

but the string may also contain code for other computer algebra systems.

EXAMPLES:

```
sage: print(findstat(41).code())
    →optional -- internet
def statistic(x):
```

(continued from previous page)

```
return len(x.nestings())

sage: print(findstat(118).code()) #_

→ optional -- internet
(* in Mathematica *)
tree = {{{{}}, {{}}, {{}}, {{}}}, {{{}}}};
Count[tree, {{___}}, {{____}}, {{____}}}]}, {0, Infinity}]
```

edit (max_values=1200)

Open the FindStat web page for editing the statistic or submitting a new statistic in a browser.

set code (value)

Set the code associated with the statistic.

INPUT:

• a string – code producing the values of the statistic.

Contributors are encouraged to submit SageMath code in the form:

```
def statistic(x):
    ...
```

However, code for any other platform is accepted also.

This information is used when submitting the statistic with submit().

EXAMPLES:

set_first_terms(values)

Update the first terms of the statistic.

INPUT:

• a list of pairs of the form (object, value) where object is a sage object representing an element of the appropriate collection and value is an integer.

This information is used when submitting the statistic with <code>submit()</code>.

Warning: This method cannot check whether the given values are actually correct. Moreover, it does not even perform any sanity checks.

```
submit (max_values=1200)
```

Open the FindStat web page for editing the statistic or submitting a new statistic in a browser.

```
class sage.databases.findstat.FindStatStatisticQuery (data=None, values\_of=None, distribution\_of=None, domain=None, known\_terms=None, function=None, depth=2, debug=False)
```

Bases: sage.databases.findstat.FindStatStatistic

A class representing a query for FindStat (compound) statistics.

first terms()

Return the pairs of the known terms which contain singletons as a dictionary.

EXAMPLES:

class sage.databases.findstat.FindStatStatistics(domain=None)

```
 \begin{array}{ll} \textbf{Bases:} & \text{sage.structure.unique\_representation.UniqueRepresentation,} & \text{sage.} \\ \text{structure.parent.Parent} \end{array}
```

The class of FindStat statistics.

The elements of this class are combinatorial statistics currently in FindStat.

EXAMPLES:

We can print a list of the first few statistics currently in FindStat in a given domain:

Element

```
alias of FindStatStatistic
```

```
sage.databases.findstat.findmap(*args, **kwargs)
```

Return matching maps.

INPUT:

Valid keywords are: domain, codomain, values, distribution, depth and max_values. They have the following meanings:

- depth (default FINDSTAT_DEFAULT_DEPTH), an integer between 0 and FINDSTAT_MAX_DEPTH, specifying how many maps to apply to generate the given map.
- max_values (default FINDSTAT_MAX_VALUES), an integer specifying how many values are sent to the finder.

- domain, codomain, an integer or string of the form Cc1234, designates the domain and codomain of the sought for maps.
- values, distribution, data specifying the values or distribution of values of the sought for maps. The keyword arguments depth and max_values are passed to the finder. The data may be specified in one of the following forms:
 - a list of pairs of the form (object, value), or a dictionary from sage objects to sage objects.
 - a list of pairs of the form (list of objects, list of values), or a single pair of the form (list of objects, list of values). In each pair there should be as many objects as values.
 - a callable. In this case, the domain must be specified, also. The callable is then used to generate max_values (object, value) pairs.

The number of terms generated may also be controlled by passing an iterable collection, such as Permutations (3).

findmap also accepts at most three positional arguments as follows:

- a single positional argument, if none of domain, codomain, values or distribution are specified, is interpreted as a FindStat map identifier. If further arguments are given and it is a string, it is interpreted as a domain. If all this fails, it is interpreted as the specification of values.
- if two positional arguments are given, the first is interpreted as domain, and the second either as codomain or the specification of values.
- if three positional arguments are given, the first two are interpreted as domain and codomain, and the third as the specification of values.

OUTPUT:

An instance of a FindStatMap, FindStatMapQuery or FindStatMaps.

EXAMPLES:

A particular map can be retrieved by its Mp-identifier or number:

The database can be searched by providing a list of pairs:

or a dictionary:

Note however, that the results of these two queries need not compare equal, because we compare queries by the data sent, and the ordering of the data might be different.

Another possibility is to send a collection and a function. In this case, the function is applied to the first few objects of the collection:

In rare cases, it may not be possible to guess the codomain of a map, in which case it can be provided as second argument or keyword argument:

Finally, we can also retrieve all maps with a given domain or codomain:

sage.databases.findstat.findstat(query=None, values=None, distribution=None, domain=None, depth=2, $max_values=1000$)

Return matching statistics.

INPUT:

One of the following:

- an integer or a string representing a valid FindStat identifier (e.g. 45 or 'St000045'). The keyword arguments depth and max_values are ignored, values and distribution must be None.
- a list of pairs of the form (object, value), or a dictionary from sage objects to integer values. The keyword arguments depth and max_values are passed to the finder, values and distribution must be None.
- a list of pairs of the form (list of objects, list of values), or a single pair of the form (list of objects, list of values). In each pair there should be as many objects as values. The keyword arguments depth and max_values are passed to the finder.
- a collection and a list of pairs of the form (string, value), or a dictionary from strings to integer values. The keyword arguments depth and max_values are passed to the finder. This should only be used if the collection is not yet supported.
- a collection and a callable. The callable is used to generate max_values (object, value) pairs. The number of terms generated may also be controlled by passing an iterable collection, such

as Permutations (3). The keyword arguments depth and max_values are passed to the finder.

OUTPUT:

An instance of a FindStatStatistic, represented by

- the FindStat identifier together with its name, or
- a list of triples, each consisting of
 - the statistic
 - a list of strings naming certain maps
 - a number which says how many of the values submitted agree with the values in the database, when applying the maps in the given order to the object and then computing the statistic on the result.

EXAMPLES:

A particular statistic can be retrieved by its St-identifier or number:

The database can be searched by providing a list of pairs:

or a dictionary:

Note however, that the results of these two queries need not compare equal, because we compare queries by the data sent, and the ordering of the data might be different.

Another possibility is to send a collection and a function. In this case, the function is applied to the first few objects of the collection:

To search for a distribution, send a list of lists, or a single pair:

Alternatively, specify the distribution parameter:

Note that there is a limit, FINDSTAT_MAX_VALUES, on the number of elements that may be submitted to FindStat, which is currently 1000. Therefore, the interface tries to truncate queries appropriately, but this may be impossible, especially with distribution searches:

Finally, we can also retrieve all statistics with a given domain:

FRANK LUEBECK'S TABLES OF CONWAY POLYNOMIALS OVER FINITE FIELDS

class sage.databases.conway.ConwayPolynomials

Bases: collections.abc.Mapping

Initialize the database.

degrees (p)

Return the list of integers n for which the database of Conway polynomials contains the polynomial of degree n over GF (p).

EXAMPLES:

```
sage: c = ConwayPolynomials()
sage: c.degrees(60821)
[1, 2, 3, 4]
sage: c.degrees(next_prime(10^7))
[]
```

$has_polynomial(p, n)$

Return True if the database of Conway polynomials contains the polynomial of degree n over GF (p).

INPUT:

- p prime number
- n positive integer

EXAMPLES:

```
sage: c = ConwayPolynomials()
sage: c.has_polynomial(97, 12)
True
sage: c.has_polynomial(60821, 5)
False
```

polynomial(p, n)

Return the Conway polynomial of degree n over GF(p), or raise a RuntimeError if this polynomial is not in the database.

Note: See also the global function conway_polynomial for a more user-friendly way of accessing the polynomial.

INPUT:

• p – prime number

• n – positive integer

OUTPUT:

List of Python int's giving the coefficients of the corresponding Conway polynomial in ascending order of degree.

EXAMPLES:

```
sage: c = ConwayPolynomials()
sage: c.polynomial(3, 21)
(1, 2, 0, 2, 0, 1, 2, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)
sage: c.polynomial(97, 128)
Traceback (most recent call last):
...
RuntimeError: Conway polynomial over F_97 of degree 128 not in database.
```

primes()

Return the list of prime numbers p for which the database of Conway polynomials contains polynomials over GF(p).

EXAMPLES:

```
sage: c = ConwayPolynomials()
sage: P = c.primes()
sage: 2 in P
True
sage: next_prime(10^7) in P
False
```

class sage.databases.conway.DictInMapping(dict)

Bases: collections.abc.Mapping

Places dict into a non-mutable mapping.

CHAPTER

EIGHT

TABLES OF ZEROS OF THE RIEMANN-ZETA FUNCTION

AUTHORS:

- William Stein: initial version
- Jeroen Demeyer (2015-01-20): convert database_odlyzko_zeta to new-style package

```
sage.databases.odlyzko.zeta_zeros()
```

List of the imaginary parts of the first 2,001,052 zeros of the Riemann zeta function, accurate to within 4e-9.

In order to use zeta_zeros(), you will need to install the optional Odlyzko database package:

```
sage -i database_odlyzko_zeta
```

You can see a list of all available optional packages with sage --optional.

REFERENCES:

• http://www.dtc.umn.edu/~odlyzko/zeta_tables/index.html

EXAMPLES:

The following example prints the imaginary part of the 13th nontrivial zero of the Riemann zeta function:

```
sage: zz = zeta_zeros() # optional - database_odlyzko_zeta
sage: zz[12] # optional - database_odlyzko_zeta
59.347044003
sage: len(zz) # optional - database_odlyzko_zeta
2001052
```

IDEALS FROM THE SYMBOLIC DATA PROJECT

This file implements a thin wrapper for the optional symbolic data set of ideals as published on http://www.symbolicdata.org . From the project website:

For different purposes algorithms and implementations are tested on certified and reliable data. The development of tools and data for such tests is usually 'orthogonal' to the main implementation efforts, it requires different skills and technologies and is not loved by programmers. On the other hand, in many cases tools and data could easily be reused - with slight modifications - across similar projects. The SymbolicData Project is set out to coordinate such efforts within the Computer Algebra Community. Commonly collected certified and reliable data can also be used to compare otherwise incomparable approaches, algorithms, and implementations. Benchmark suites and Challenges for symbolic computations are not as well established as in other areas of computer science. This is probably due to the fact that there are not yet well agreed aims of such a benchmarking. Nevertheless various (often high quality) special benchmarks are scattered through the literature. During the last years efforts toward collection of test data for symbolic computations were intensified. They focused mainly on the creation of general benchmarks for different areas of symbolic computation and the collection of such activities on different Web site. For further qualification of these efforts it would be of great benefit to create a commonly available digital archive of these special benchmark data scattered through the literature. This would provide the community with an electronic repository of certified data that could be addressed and extended during further development.

EXAMPLES:

```
sage: sd = SymbolicData(); sd # optional - database_symbolic_data
SymbolicData with 372 ideals
sage: sd.ZeroDim__example_1 # optional - database_symbolic_data
Ideal (x1^2 + x2^2 - 10, x1^2 + x1 \times x2 + 2 \times x2^2 - 16) of Multivariate Polynomial Ring.
→in x1, x2 over Rational Field
sage: sd.Katsura_3 # optional - database_symbolic_data
Ideal (u0 + 2*u1 + 2*u2 + 2*u3 - 1,
      u1^2 + 2*u0*u2 + 2*u1*u3 - u2
       2*u0*u1 + 2*u1*u2 + 2*u2*u3 - u1,
      u0^2 + 2*u1^2 + 2*u2^2 + 2*u3^2 - u0) of Multivariate Polynomial Ring in u0_{10}
→u1, u2, u3 over Rational Field
sage: sd.get_ideal('Katsura_3',GF(127),'degrevlex') # optional - database_symbolic_
-data
Ideal (u0 + 2*u1 + 2*u2 + 2*u3 - 1,
      u1^2 + 2*u0*u2 + 2*u1*u3 - u2
       2*u0*u1 + 2*u1*u2 + 2*u2*u3 - u1,
       u0^2 + 2*u1^2 + 2*u2^2 + 2*u3^2 - u0) of Multivariate Polynomial Ring in u0_{tot}
→u1, u2, u3 over Finite Field of size 127
```

AUTHORS:

• Martin Albrecht <martinralbrecht@googlemail.com>

```
class sage.databases.symbolic_data.SymbolicData
    Bases: object
```

Database of ideals as distributed by the The Symbolic Data Project (http://symbolicdata.org).

This class needs the optional database_symbolic_data package to be installed.

```
get_ideal (name, base_ring=Rational Field, term_order='degrevlex')
```

Return the ideal given by 'name' over the base ring given by 'base_ring' in a polynomial ring with the term order given by 'term_order'.

INPUT:

- name name as on the symbolic data website
- base_ring base ring for the polynomial ring (default: QQ)
- term_order term order for the polynomial ring (default: degrevlex)

OUTPUT:

ideal as given by name in PolynomialRing (base_ring, vars, term_order)

EXAMPLES:

trait_names()

EXAMPLES:

CHAPTER

TEN

CUNNINGHAM TABLE

sage.databases.cunningham_tables.cunningham_prime_factors()

List of all the prime numbers occuring in the so called Cunningham table.

They occur in the factorization of numbers of type $b^n + 1$ or $b^n - 1$ with $b \in \{2, 3, 5, 6, 7, 10, 11, 12\}$.

Data from http://cage.ugent.be/~jdemeyer/cunningham/

DATABASE OF HILBERT POLYNOMIALS

class sage.databases.db_class_polynomials.**AtkinClassPolynomialDatabase**Bases: sage.databases.db_class_polynomials.ClassPolynomialDatabase

The database of Atkin class polynomials.

class sage.databases.db_class_polynomials.ClassPolynomialDatabase
 Bases: object

The database of Dedekind eta class polynomials.

class sage.databases.db_class_polynomials.HilbertClassPolynomialDatabase
 Bases: sage.databases.db_class_polynomials.ClassPolynomialDatabase

The database of Hilbert class polynomials.

EXAMPLES:

class sage.databases.db_class_polynomials.WeberClassPolynomialDatabase
 Bases: sage.databases.db_class_polynomials.ClassPolynomialDatabase

The database of Weber class polynomials.

CHAPTER

TWELVE

DATABASE OF MODULAR POLYNOMIALS

- **class** sage.databases.db_modular_polynomials.**AtkinModularCorrespondenceDatabase**Bases: sage.databases.db_modular_polynomials.ModularCorrespondenceDatabase
- ${\bf class} \ \ {\bf sage.databases.db_modular_polynomials.AtkinModularPolynomialDatabase} \ \ {\bf Bases:} \ \ {\it sage.databases.db_modular_polynomials.ModularPolynomialDatabase}$
 - The database of modular polynomials Phi(x,j) for $X_0(p)$, where x is a function on invariant under the Atkin-Lehner invariant, with pole of minimal order at infinity.
- **class** sage.databases.db_modular_polynomials.**ClassicalModularPolynomialDatabase**Bases: sage.databases.db_modular_polynomials.ModularPolynomialDatabase
 - The database of classical modular polynomials, i.e. the polynomials $Phi_N(X,Y)$ relating the j-functions j(q) and $j(q^N)$.
- - The database of modular correspondences in $X_0(p) \times X_0(p)$, where the model of the curves $X_0(p) = \mathbf{P}^1$ are specified by quotients of Dedekind's eta function.
- - The database of modular polynomials $Phi_N(X,Y)$ relating a quotient of Dedekind eta functions, well-defined on $X_0(N)$, relating x(q) and the j-function y(q).
- class sage.databases.db_modular_polynomials.ModularCorrespondenceDatabase
 Bases: sage.databases.db modular polynomials.ModularPolynomialDatabase
- class sage.databases.db_modular_polynomials.ModularPolynomialDatabase
 Bases: object

CHAPTER

THIRTEEN

INDICES AND TABLES

- Index
- Module Index
- Search Page

PYTHON MODULE INDEX

d

```
sage.databases.conway, 75
sage.databases.cremona, 3
sage.databases.cunningham_tables, 81
sage.databases.db_class_polynomials, 83
sage.databases.db_modular_polynomials, 85
sage.databases.findstat, 47
sage.databases.jones, 21
sage.databases.odlyzko, 77
sage.databases.oeis, 25
sage.databases.sloane, 43
sage.databases.stein_watkins, 17
sage.databases.symbolic_data, 79
```

90 Python Module Index

INDEX

call () (sage.databases.oeis.OEISSequence method), 32 Α allbsd() (sage.databases.cremona.LargeCremonaDatabase method), 4 allcurves() (sage.databases.cremona.MiniCremonaDatabase method), 5 allgens () (sage.databases.cremona.LargeCremonaDatabase method), 4 AtkinClassPolynomialDatabase (class in sage.databases.db_class_polynomials), 83 AtkinModularCorrespondenceDatabase (class in sage.databases.db_modular_polynomials), 85 AtkinModularPolynomialDatabase (class in sage.databases.db_modular_polynomials), 85 author() (sage.databases.oeis.OEISSequence method), 32 В browse() (sage.databases.findstat.FindStat method), 50 browse() (sage.databases.findstat.FindStatCollection method), 52 browse() (sage.databases.findstat.FindStatCompoundMap method), 58 browse() (sage.databases.findstat.FindStatCompoundStatistic method), 59 browse() (sage.databases.findstat.FindStatMap method), 64 browse() (sage.databases.findstat.FindStatStatistic method), 68 browse() (sage.databases.oeis.OEIS method), 29 browse() (sage.databases.oeis.OEISSequence method), 32 build() (in module sage.databases.cremona), 11 class_to_int() (in module sage.databases.cremona), 11 ClassicalModularPolynomialDatabase (class in sage.databases.db_modular_polynomials), 85 ClassPolynomialDatabase (class in sage.databases.db_class_polynomials), 83 code () (sage.databases.findstat.FindStatStatistic method), 68 codomain() (sage.databases.findstat.FindStatCompoundMap method), 59 codomain() (sage.databases.findstat.FindStatMap method), 64 coefficients_and_data() (sage.databases.cremona.MiniCremonaDatabase method), 5 comments () (sage.databases.oeis.OEISSequence method), 33 compound_map() (sage.databases.findstat.FindStatCompoundStatistic method), 60 conductor range() (sage.databases.cremona.MiniCremonaDatabase method), 6 ConwayPolynomials (class in sage.databases.conway), 75 copy_gz_file() (in module sage.databases.sloane), 45 cremona_letter_code() (in module sage.databases.cremona), 11

Symbols

```
cremona_to_lmfdb() (in module sage.databases.cremona), 12
CremonaDatabase() (in module sage.databases.cremona), 3
cross_references() (sage.databases.oeis.OEISSequence method), 33
cunningham_prime_factors() (in module sage.databases.cunningham_tables), 81
curves () (sage.databases.cremona.MiniCremonaDatabase method), 6
D
data_from_coefficients() (sage.databases.cremona.MiniCremonaDatabase method), 6
DedekindEtaClassPolynomialDatabase (class in sage.databases.db class polynomials), 83
DedekindEtaModularCorrespondenceDatabase (class in sage.databases.db_modular_polynomials), 85
DedekindEtaModularPolynomialDatabase (class in sage.databases.db_modular_polynomials), 85
degphi() (sage.databases.cremona.LargeCremonaDatabase method), 4
degrees () (sage.databases.conway.ConwayPolynomials method), 75
description() (sage.databases.findstat.FindStatFunction method), 60
DictInMapping (class in sage.databases.conway), 76
domain() (sage.databases.findstat.FindStatCompoundMap method), 59
domain() (sage.databases.findstat.FindStatCompoundStatistic method), 60
domain() (sage.databases.findstat.FindStatFunction method), 61
Ε
ecdb_num_curves() (in module sage.databases.stein_watkins), 19
edit () (sage.databases.findstat.FindStatMap method), 64
edit () (sage.databases.findstat.FindStatStatistic method), 69
Element (sage.databases.findstat.FindStatCollections attribute), 56
Element (sage.databases.findstat.FindStatMaps attribute), 66
Element (sage.databases.findstat.FindStatStatistics attribute), 70
element_level() (sage.databases.findstat.FindStatCollection method), 52
elements_on_level() (sage.databases.findstat.FindStatCollection method), 52
elliptic_curve() (sage.databases.cremona.MiniCremonaDatabase method), 7
elliptic_curve_from_ainvs() (sage.databases.cremona.MiniCremonaDatabase method), 7
examples () (sage.databases.oeis.OEISSequence method), 33
extensions_or_errors() (sage.databases.oeis.OEISSequence method), 34
F
FancyTuple (class in sage.databases.oeis), 27
find() (sage.databases.sloane.SloaneEncyclopediaClass method), 44
find_by_description() (sage.databases.oeis.OEIS method), 29
find_by_entry() (sage.databases.oeis.OEIS method), 30
find_by_id() (sage.databases.oeis.OEIS method), 30
find_by_subsequence() (sage.databases.oeis.OEIS method), 31
findmap() (in module sage.databases.findstat), 70
FindStat (class in sage.databases.findstat), 50
findstat() (in module sage.databases.findstat), 72
FindStatCollection (class in sage.databases.findstat), 51
FindStatCollections (class in sage.databases.findstat), 56
FindStatCombinatorialMap (class in sage.databases.findstat), 56
FindStatCombinatorialStatistic (class in sage.databases.findstat), 56
FindStatCompoundMap (class in sage.databases.findstat), 58
FindStatCompoundStatistic (class in sage.databases.findstat), 59
FindStatFunction (class in sage.databases.findstat), 60
```

```
FindStatMap (class in sage.databases.findstat), 64
FindStatMapQuery (class in sage.databases.findstat), 65
FindStatMaps (class in sage.databases.findstat), 65
FindStatMatchingMap (class in sage.databases.findstat), 66
FindStatMatchingStatistic (class in sage.databases.findstat), 67
FindStatStatistic (class in sage.databases.findstat), 68
FindStatStatisticQuery (class in sage.databases.findstat), 69
FindStatStatistics (class in sage.databases.findstat), 70
first_terms() (sage.databases.findstat.FindStatCollection method), 52
first_terms() (sage.databases.findstat.FindStatCombinatorialStatistic method), 57
first terms () (sage.databases.findstat.FindStatStatisticQuery method), 70
first terms () (sage.databases.oeis.OEISSequence method), 34
first_terms_str() (sage.databases.findstat.FindStatCombinatorialStatistic method), 57
formulas () (sage.databases.oeis.OEISSequence method), 34
from_string() (sage.databases.findstat.FindStatCollection method), 53
G
generating functions () (sage.databases.findstat.FindStatCombinatorialStatistic method), 57
get () (sage.databases.jones.JonesDatabase method), 22
get_ideal() (sage.databases.symbolic_data.SymbolicData method), 80
Н
has_polynomial() (sage.databases.conway.ConwayPolynomials method), 75
HilbertClassPolynomialDatabase (class in sage.databases.db_class_polynomials), 83
id() (sage.databases.findstat.FindStatCollection method), 53
id() (sage.databases.findstat.FindStatFunction method), 61
id() (sage.databases.oeis.OEISSequence method), 35
id str() (sage.databases.findstat.FindStatCollection method), 54
id_str() (sage.databases.findstat.FindStatCompoundMap method), 59
id_str() (sage.databases.findstat.FindStatCompoundStatistic method), 60
id str() (sage.databases.findstat.FindStatFunction method), 61
in_range() (sage.databases.findstat.FindStatCollection method), 54
info() (sage.databases.findstat.FindStatMatchingStatistic method), 67
install() (sage.databases.sloane.SloaneEncyclopediaClass method), 44
install from qz() (sage.databases.sloane.SloaneEncyclopediaClass method), 44
is_dead() (sage.databases.oeis.OEISSequence method), 35
is_element() (sage.databases.findstat.FindStatCollection method), 54
is_finite() (sage.databases.oeis.OEISSequence method), 35
is full() (sage.databases.oeis.OEISSequence method), 36
is_optimal_id() (in module sage.databases.cremona), 12
is_supported() (sage.databases.findstat.FindStatCollection method), 55
isogeny_class() (sage.databases.cremona.MiniCremonaDatabase method), 8
isogeny_classes() (sage.databases.cremona.MiniCremonaDatabase method), 8
iter() (sage.databases.cremona.MiniCremonaDatabase method), 8
iter_levels() (sage.databases.stein_watkins.SteinWatkinsAllData method), 19
iter_optimal() (sage.databases.cremona.MiniCremonaDatabase method), 9
```

```
J
Jones Database (class in sage.databases.jones), 22
K
keywords () (sage.databases.oeis.OEISSequence method), 36
L
LargeCremonaDatabase (class in sage.databases.cremona), 3
largest_conductor() (sage.databases.cremona.MiniCremonaDatabase method), 9
levels_with_sizes() (sage.databases.findstat.FindStatCollection method), 55
links() (sage.databases.oeis.OEISSequence method), 36
list() (sage.databases.cremona.MiniCremonaDatabase method), 9
list_optimal() (sage.databases.cremona.MiniCremonaDatabase method), 9
lmfdb_to_cremona() (in module sage.databases.cremona), 13
load() (sage.databases.sloane.SloaneEncyclopediaClass method), 44
login() (sage.databases.findstat.FindStat method), 50
M
maps () (sage.databases.findstat.FindStatCompoundMap method), 59
MiniCremonaDatabase (class in sage.databases.cremona), 5
ModularCorrespondenceDatabase (class in sage.databases.db_modular_polynomials), 85
ModularPolynomialDatabase (class in sage.databases.db_modular_polynomials), 85
module
    sage.databases.conway, 75
    sage.databases.cremona, 3
    sage.databases.cunningham_tables,81
    sage.databases.db_class_polynomials,83
    sage.databases.db_modular_polynomials,85
    sage.databases.findstat,47
    sage.databases.jones, 21
    sage.databases.odlyzko,77
    sage.databases.oeis, 25
    sage.databases.sloane,43
    sage.databases.stein_watkins, 17
    sage.databases.symbolic_data,79
Ν
name () (sage.databases.findstat.FindStatCollection method), 55
name () (sage.databases.findstat.FindStatFunction method), 61
name () (sage.databases.oeis.OEISSequence method), 37
natural_object() (sage.databases.oeis.OEISSequence method), 37
next() (sage.databases.stein_watkins.SteinWatkinsAllData method), 19
number_of_curves() (sage.databases.cremona.MiniCremonaDatabase method), 10
number_of_isogeny_classes() (sage.databases.cremona.MiniCremonaDatabase method), 10
0
OEIS (class in sage.databases.oeis), 27
oeis_search() (sage.databases.findstat.FindStatCombinatorialStatistic method), 58
OEISSequence (class in sage.databases.oeis), 31
offset() (sage.databases.findstat.FindStatMatchingStatistic method), 67
```

```
offsets() (sage.databases.oeis.OEISSequence method), 39
old_cremona_letter_code() (in module sage.databases.cremona), 13
old_IDs() (sage.databases.oeis.OEISSequence method), 39
online_update() (sage.databases.oeis.OEISSequence method), 39
Р
parse_cremona_label() (in module sage.databases.cremona), 14
parse_lmfdb_label() (in module sage.databases.cremona), 14
polynomial () (sage.databases.conway.ConwayPolynomials method), 75
primes () (sage.databases.conway.ConwayPolynomials method), 76
programs () (sage.databases.oeis.OEISSequence method), 39
properties_raw() (sage.databases.findstat.FindStatMap method), 64
Q
quality() (sage.databases.findstat.FindStatMatchingMap method), 66
quality() (sage.databases.findstat.FindStatMatchingStatistic method), 67
R
ramified_at() (sage.databases.jones.JonesDatabase method), 22
random() (sage.databases.cremona.MiniCremonaDatabase method), 10
raw_entry() (sage.databases.oeis.OEISSequence method), 40
references () (sage.databases.findstat.FindStatFunction method), 61
references () (sage.databases.oeis.OEISSequence method), 40
references_raw() (sage.databases.findstat.FindStatFunction method), 62
reset () (sage.databases.findstat.FindStatFunction method), 62
S
sage.databases.conway
    module, 75
sage.databases.cremona
    module, 3
sage.databases.cunningham_tables
    module, 81
sage.databases.db_class_polynomials
    module, 83
sage.databases.db_modular_polynomials
    module, 85
sage.databases.findstat
    module, 47
sage.databases.jones
    module, 21
sage.databases.odlyzko
    module, 77
sage.databases.oeis
    module, 25
sage.databases.sloane
    module, 43
sage.databases.stein_watkins
    module, 17
sage.databases.symbolic_data
```

```
module, 79
sage_code() (sage.databases.findstat.FindStatFunction method), 62
sequence_name() (sage.databases.sloane.SloaneEncyclopediaClass method), 44
set_code() (sage.databases.findstat.FindStatStatistic method), 69
set_description() (sage.databases.findstat.FindStatFunction method), 62
set_first_terms() (sage.databases.findstat.FindStatStatistic method), 69
set_name() (sage.databases.findstat.FindStatMap method), 65
set_properties_raw() (sage.databases.findstat.FindStatMap method), 65
set_references_raw() (sage.databases.findstat.FindStatFunction method), 63
set_sage_code() (sage.databases.findstat.FindStatFunction method), 63
set_user() (sage.databases.findstat.FindStat method), 50
show () (sage.databases.oeis.OEISSequence method), 41
SloaneEncyclopediaClass (class in sage.databases.sloane), 44
smallest_conductor() (sage.databases.cremona.MiniCremonaDatabase method), 11
sort key () (in module sage.databases.cremona), 15
sortkey() (in module sage.databases.jones), 23
split_code() (in module sage.databases.cremona), 15
statistic() (sage.databases.findstat.FindStatCompoundStatistic method), 60
SteinWatkinsAllData (class in sage.databases.stein_watkins), 19
SteinWatkinsIsogenyClass (class in sage.databases.stein_watkins), 19
SteinWatkinsPrimeData (class in sage.databases.stein_watkins), 19
submit () (sage.databases.findstat.FindStatMap method), 65
submit() (sage.databases.findstat.FindStatStatistic method), 69
SymbolicData (class in sage.databases.symbolic_data), 80
Т
test compile sage code() (sage.databases.oeis.OEISSequence method), 41
to_string() (sage.databases.findstat.FindStatCollection method), 55
to_tuple() (in module sage.databases.oeis), 42
trait_names() (sage.databases.symbolic_data.SymbolicData method), 80
U
unload() (sage.databases.sloane.SloaneEncyclopediaClass method), 45
unramified_outside() (sage.databases.jones.JonesDatabase method), 23
url () (sage.databases.oeis.OEISSequence method), 42
user_email() (sage.databases.findstat.FindStat method), 51
user_name() (sage.databases.findstat.FindStat method), 51
W
WeberClassPolynomialDatabase (class in sage.databases.db_class_polynomials), 83
Ζ
zeta_zeros() (in module sage.databases.odlyzko), 77
```