Learning Overcomplete Latent Variable Models through Tensor Decompositions

Anima Anandkumar

U.C. Irvine

Joint work with Rong Ge and Majid Janzamin.

Tensor-Based Learning

Multi-view mixtures

Spherical Gaussian mixtures

Indep. Component Analysis

Sparse Coding

General Framework

- Discover hidden structure in data: unsupervised and semi-supervised learning of latent variable models.
- Moment-based estimation: Compute low order moments (up to fourth order) from observed data.

In this talk

- Unsupervised and semi-supervised learning through tensor decomposition
- Overcomplete models: Number of latent components greater than observed dimension.
- Tight sample complexity bounds: Novel concentration bounds for tensors.

CANDECOMP/PARAFAC (CP) Decomposition

• $a \otimes b \otimes c$ is a rank-1 tensor whose \mathbf{i}^{th} entry is $a(i_1) \cdot b(i_2) \cdot c(i_3)$.

CANDECOMP/PARAFAC (CP) Decomposition

- $a \otimes b \otimes c$ is a rank-1 tensor whose \mathbf{i}^{th} entry is $a(i_1) \cdot b(i_2) \cdot c(i_3)$.
- \bullet For tensor T, find decomposition into rank one terms

$$T = \sum_{j \in [k]} w_j a_j \otimes b_j \otimes c_j, \quad a_j, b_j, c_j \in \mathcal{S}^{d-1}.$$

CANDECOMP/PARAFAC (CP) Decomposition

- $a \otimes b \otimes c$ is a rank-1 tensor whose \mathbf{i}^{th} entry is $a(i_1) \cdot b(i_2) \cdot c(i_3)$.
- For tensor T, find decomposition into rank one terms

$$T=\sum_{j\in [k]}w_ja_j\otimes b_j\otimes c_j,\quad a_j,b_j,c_j\in \mathcal{S}^{d-1}.$$

CANDECOMP/PARAFAC (CP) Decomposition

- $a \otimes b \otimes c$ is a rank-1 tensor whose **i**th entry is $a(i_1) \cdot b(i_2) \cdot c(i_3)$.
- For tensor T, find decomposition into rank one terms

The find decomposition into rank one terms
$$T=\sum_{j\in [k]}w_ja_j\otimes b_j\otimes c_j,\quad a_j,b_j,c_j\in \mathcal{S}^{d-1}.$$

- k: tensor rank. d: ambient dimension.
- k < d: undercomplete and k > d: overcomplete.

In this talk: guarantees for overcomplete tensor decomposition

Outline

- Introduction
- 2 Summary of Results
- Tensor Decomposition
- 4 Guarantees for Alternating Minimization
- 5 Conclusion and Other Results

Spherical Gaussian Mixtures

Assumptions

- *k* components, *d*: observed dimension.
- Component means a_i incoherent: randomly drawn from the sphere.
- Spherical variance $\frac{\sigma^2}{d}I$ (assume known).

Spherical Gaussian Mixtures

Assumptions

- k components, d: observed dimension.
- Component means a_i incoherent: randomly drawn from the sphere.
- Spherical variance $\frac{\sigma^2}{d}I$ (assume known).

In this talk: special case

- Noise norm $\sigma^2 = 1$: same as signal.
- Uniform probability of components.

Spherical Gaussian Mixtures

Assumptions

- k components, d: observed dimension.
- Component means a_i incoherent: randomly drawn from the sphere.
- Spherical variance $\frac{\sigma^2}{d}I$ (assume known).

In this talk: special case

- Noise norm $\sigma^2 = 1$: same as signal.
- Uniform probability of components.

Tensor For Learning (Hsu, Kakade 2012)

$$M_3 := \mathbb{E}[x^{\otimes 3}] - \sigma^2 \sum_{i \in [d]} (\mathbb{E}[x] \otimes e_i \otimes e_i + \ldots)$$

Semi-supervised Learning of Gaussian Mixtures

- n unlabeled samples, m_j : samples for component j.
- No. of mixture components: $k = o(d^{1.5})$
- No. of labeled samples: $m_j = \tilde{\Omega}(1)$.
- No. of unlabeled samples: $n = \tilde{\Omega}(k)$.

Our result: achieved error with n unlabeled samples

$$\max_{i} \|\widehat{a}_{i} - a_{i}\| = \widetilde{O}\left(\sqrt{\frac{k}{n}}\right) + \widetilde{O}\left(\frac{\sqrt{k}}{d}\right)$$

- Can handle (polynomially) overcomplete mixtures.
- Extremely small number of labeled samples: polylog(d).
- Sample complexity is tight: need $\tilde{\Omega}(k)$ samples!
- Approximation error: decaying in high dimensions.

Unsupervised Learning of Gaussian Mixtures

Conditions for recovery

- No. of mixture components: $k = C \cdot d$
- No. of unlabeled samples: $n = \tilde{\Omega}(k \cdot d)$.
- ullet Computational complexity: $ilde{O}\left(e^{C^2}\right)$

Our result: achieved error with n unlabeled samples

$$\max_{i} \|\widehat{a}_{i} - a_{i}\| = \widetilde{O}\left(\sqrt{\frac{k}{n}}\right) + \widetilde{O}\left(\frac{\sqrt{k}}{d}\right)$$

- Error: same as before, for semi-supervised setting.
- Sample complexity: worse than semi-supervised, but better than previous works (no dependence on condition number of A).
- Computational complexity: polynomial when $k = \Theta(d)$.

Multi-view Mixture Models

- Linear model: $x_i = A_i h + z_i$.
- Incoherence: The columns of A_i are incoherent (randomly drawn from sphere).
- The noise z_i satisfy RIP, e.g. Gaussian, Bernoulli.
- Same results as Gaussian mixtures.

Independent Component Analysis

- Independent sources, unknown mixing.
- Blind source separation of speech, image, video..
- Form cumulant tensor $M_4 := \mathbb{E}[x^{\otimes 4}] \dots$
- n samples. k sources. d dimensions.
- x = Ah. Columns of A are incoherent.
- Sources h are kurtotic.

Learning Result

- Semi-supervised: $k = o(d^2)$, $n \ge \max(k^2, k^4/d^3)$.
- Unsupervised: k = O(d), $n \ge k^3$.

$$\max_{i} \min_{f \in \{-1,1\}} \|f\widehat{a}_i - a_i\| = \tilde{O}\left(\sqrt{\frac{k^2}{\min\left(n, \sqrt{d^3 n}\right)}}\right) + \tilde{O}\left(\frac{\sqrt{k}}{d^{1.5}}\right)$$

Sparse Coding

- Sparse coefficients, unknown dictionary.
- Image compression, feature learning...
- x = Ah. Columns of A are incoherent.

• n samples. k dictionary elements. d dimensions. s avg. sparsity.

Learning Result

- Semi-supervised: $k = o(d^2)$, $n \ge \max(sk, s^2k^2/d^3)$.
- Unsupervised: k = O(d), $n \ge sk^2$.

$$\max_{i} \min_{f \in \{-1,1\}} \|f\widehat{a}_i - a_i\| = \tilde{O}\left(\sqrt{\frac{sk}{\min\left(n, \sqrt{d^3n}\right)}}\right) + \tilde{O}\left(\frac{\sqrt{k}}{d^{1.5}}\right)$$

Outline

- Introduction
- 2 Summary of Results
- Tensor Decomposition
- 4 Guarantees for Alternating Minimization
- 5 Conclusion and Other Results

CANDECOMP/PARAFAC (CP) Decomposition

• $a \otimes b \otimes c$ is a rank-1 tensor whose \mathbf{i}^{th} entry is $a(i_1) \cdot b(i_2) \cdot c(i_3)$.

CANDECOMP/PARAFAC (CP) Decomposition

- $a \otimes b \otimes c$ is a rank-1 tensor whose \mathbf{i}^{th} entry is $a(i_1) \cdot b(i_2) \cdot c(i_3)$.
- \bullet For tensor T, find decomposition into rank one terms

$$T = \sum_{j \in [k]} w_j a_j \otimes b_j \otimes c_j, \quad a_j, b_j, c_j \in \mathcal{S}^{d-1}.$$

CANDECOMP/PARAFAC (CP) Decomposition

- $a \otimes b \otimes c$ is a rank-1 tensor whose **i**th entry is $a(i_1) \cdot b(i_2) \cdot c(i_3)$.
- For tensor T, find decomposition into rank one terms

$$T=\sum_{j\in [k]} w_j a_j\otimes b_j\otimes c_j,\quad a_j,b_j,c_j\in \mathcal{S}^{d-1}.$$

CANDECOMP/PARAFAC (CP) Decomposition

- $a \otimes b \otimes c$ is a rank-1 tensor whose **i**th entry is $a(i_1) \cdot b(i_2) \cdot c(i_3)$.
- For tensor T, find decomposition into rank one terms

The find decomposition into rank one terms
$$T=\sum_{j\in [k]}w_ja_j\otimes b_j\otimes c_j,\quad a_j,b_j,c_j\in \mathcal{S}^{d-1}.$$

- k: tensor rank. d: ambient dimension.
- k < d: undercomplete and k > d: overcomplete.

In this talk: guarantees for overcomplete tensor decomposition

Background on Tensor Decomposition

$$T = \sum_{i \in [k]} w_i a_i \otimes b_i \otimes c_i, \quad a_i, b_i, c_i \in \mathcal{S}^{d-1}.$$

Theoretical Guarantees

- Tensor decompositions in psychometrics (Cattell '44).
- CP tensor decomposition (Harshman '70, Carol & Chang '70).
- Identifiability of CP tensor decomposition (Kruskal '76).
- Orthogonal decomposition: (Zhang & Golub '01, Kolda '01).
- Tensor decomposition through (lifted) linear equations (Lawthauwer '07): works for overcomplete tensors.
- Tensor decomposition through simultaneous diagonalization: perturbation analysis (Goyal et. al '13, Bhaskara '13)

Background on Tensor Decompositions (contd.)

$$T = \sum_{i \in [k]} w_i a_i \otimes b_i \otimes c_i, \quad a_i, b_i, c_i \in \mathcal{S}^{d-1}.$$

Practice: Alternating least squares (ALS)

- Let $A = [a_1 | a_2 \dots a_k]$ and similarly B, C.
- ullet Fix estimates of two of the modes (say for A and B) and re-estimate the third.
- Iterative updates, low computational complexity.
- No theoretical guarantees.

In this talk: analysis of alternating minimization

Alternating Minimization

$$T = \sum_{i \in [k]} w_i a_i \otimes b_i \otimes c_i, \quad a_i, b_i, c_i \in \mathcal{S}^{d-1}.$$

Rank-1 Updates

- Initialization: $a^{(0)}, b^{(0)}, c^{(0)}$.
- Update in t^{th} step: fix $a^{(t)}, b^{(t)}$ and

$$c^{(t)} \propto T(a^{(t)}, b^{(t)}, I) = \sum_{i \in [k]} w_i \langle a_i, a^{(t)} \rangle \langle b_i, b^{(t)} \rangle c_i.$$

Best Rank-1 Approximation

$$\min_{a,b,c\in\mathcal{S}^{d-1},w\in\mathbb{R}} ||T-w\cdot a\otimes b\otimes c||_F.$$

Challenges

• Optimization problem: non-convex, multiple local optima.

Best Rank-1 Approximation

$$\min_{a,b,c\in\mathcal{S}^{d-1},w\in\mathbb{R}} ||T-w\cdot a\otimes b\otimes c||_F.$$

Challenges

- Optimization problem: non-convex, multiple local optima.
- Alternating minimization: improves above objective in each step.

Best Rank-1 Approximation

$$\min_{a,b,c\in\mathcal{S}^{d-1},w\in\mathbb{R}} ||T-w\cdot a\otimes b\otimes c||_F.$$

Challenges

- Optimization problem: non-convex, multiple local optima.
- Alternating minimization: improves above objective in each step.
- Recovery of a_i, b_i, c_i 's?

Best Rank-1 Approximation

$$\min_{a,b,c\in\mathcal{S}^{d-1},w\in\mathbb{R}} ||T-w\cdot a\otimes b\otimes c||_F.$$

Challenges

- Optimization problem: non-convex, multiple local optima.
- Alternating minimization: improves above objective in each step.
- Recovery of a_i, b_i, c_i 's? Not true in general.

Best Rank-1 Approximation

$$\min_{a,b,c\in\mathcal{S}^{d-1},w\in\mathbb{R}} ||T-w\cdot a\otimes b\otimes c||_F.$$

Challenges

- Optimization problem: non-convex, multiple local optima.
- Alternating minimization: improves above objective in each step.
- Recovery of a_i, b_i, c_i 's? Not true in general.
- Noisy tensor decomposition: exact T not available, robustness? sample complexity?

Natural conditions under which Alt-Min has guarantees?

Special case: Orthogonal Setting

- $\langle a_i, a_j \rangle = 0$, for $i \neq j$. Similarly for b, c.
- Alternating updates:

$$c^{(t)} \propto T(a^{(t)}, b^{(t)}, I) = \sum_{i \in [k]} w_i \langle a_i, a^{(t)} \rangle \langle b_i, b^{(t)} \rangle c_i.$$

• a_i, b_i, c_i are stationary points.

[&]quot;Tensor Decompositions for Learning Latent Variable Models" by A. Anandkumar, R. Ge, D. Hsu, S.M. Kakade and M. Telgarsky. Preprint, October 2012.

Special case: Orthogonal Setting

- $\langle a_i, a_j \rangle = 0$, for $i \neq j$. Similarly for b, c.
- Alternating updates:

$$c^{(t)} \propto T(a^{(t)}, b^{(t)}, I) = \sum_{i \in [k]} w_i \langle a_i, a^{(t)} \rangle \langle b_i, b^{(t)} \rangle c_i.$$

- a_i, b_i, c_i are stationary points.
- ONLY local optima for best rank-1 approximation problem.
- Guaranteed recovery through alternating minimization.

[&]quot;Tensor Decompositions for Learning Latent Variable Models" by A. Anandkumar, R. Ge, D. Hsu, S.M. Kakade and M. Telgarsky. Preprint, October 2012.

Special case: Orthogonal Setting

- $\langle a_i, a_j \rangle = 0$, for $i \neq j$. Similarly for b, c.
- Alternating updates:

$$c^{(t)} \propto T(a^{(t)}, b^{(t)}, I) = \sum_{i \in [k]} w_i \langle a_i, a^{(t)} \rangle \langle b_i, b^{(t)} \rangle c_i.$$

- a_i, b_i, c_i are stationary points.
- ONLY local optima for best rank-1 approximation problem.
- Guaranteed recovery through alternating minimization.
- Perturbation Analysis: Under poly(d) number of random initializations and bounded noise conditions.

[&]quot;Tensor Decompositions for Learning Latent Variable Models" by A. Anandkumar, R. Ge, D. Hsu, S.M. Kakade and M. Telgarsky. Preprint, October 2012.

Limitations

• Not ALL tensors have orthogonal decomposition (unlike matrices).

Limitations

- Not ALL tensors have orthogonal decomposition (unlike matrices).
- Orthogonal forms: cannot handle overcomplete tensors (k > d).

Limitations

- Not ALL tensors have orthogonal decomposition (unlike matrices).
- Orthogonal forms: cannot handle overcomplete tensors (k > d).
- Overcomplete representations: redundancy leads to flexible modeling, noise resistant, no domain knowledge.

Limitations

- Not ALL tensors have orthogonal decomposition (unlike matrices).
- Orthogonal forms: cannot handle overcomplete tensors (k > d).
- Overcomplete representations: redundancy leads to flexible modeling, noise resistant, no domain knowledge.

Undercomplete tensors $(k \le d)$ with full rank components

- Assume A, B, C have full column rank.
- Whitening: Compute multilinear transformation to obtain an orthogonal form.
- Limitations: depends on condition number, sensitive to noise.

So far

General tensor decomposition: NP-hard.

Orthogonal tensors: too limiting.

[&]quot;Guaranteed Tensor Decomposition via Alternating Minimization" by M. Janzamin, A. Anandkumar, and R. Ge. Preprint, Jan 2014.

So far

- General tensor decomposition: NP-hard.
- Orthogonal tensors: too limiting.
- Tractable cases? Covers overcomplete tensors?

[&]quot;Guaranteed Tensor Decomposition via Alternating Minimization" by M. Janzamin, A. Anandkumar, and R. Ge. Preprint, Jan 2014.

So far

- General tensor decomposition: NP-hard.
- Orthogonal tensors: too limiting.
- Tractable cases? Covers overcomplete tensors?

Our framework: Incoherent Components

- $|\langle a_i, a_j \rangle| = O\left(1/\sqrt{d}\right)$ for $i \neq j$. Similarly for b, c.
- Can handle overcomplete tensors. Satisfied by random (generic) vectors.

[&]quot;Guaranteed Tensor Decomposition via Alternating Minimization" by M. Janzamin, A. Anandkumar, and R. Ge. Preprint, Jan 2014.

So far

- General tensor decomposition: NP-hard.
- Orthogonal tensors: too limiting.
- Tractable cases? Covers overcomplete tensors?

Our framework: Incoherent Components

- $|\langle a_i, a_j \rangle| = O\left(1/\sqrt{d}\right)$ for $i \neq j$. Similarly for b, c.
- Can handle overcomplete tensors. Satisfied by random (generic) vectors.

Guaranteed recovery for alternating minimization?

[&]quot;Guaranteed Tensor Decomposition via Alternating Minimization" by M. Janzamin, A. Anandkumar, and R. Ge. Preprint, Jan 2014.

Analysis of One Step Update

Basic Intuition

ullet Let \hat{a},\hat{b} be "close to" a_1,b_1 . Alternating update:

$$\begin{split} \hat{c} &\propto T(\hat{a}, \hat{b}, I) = \sum_{i \in [k]} w_i \langle a_i, \hat{a} \rangle \langle b_i, \hat{b} \rangle c_i, \\ &= w_1 \langle a_1, \hat{a} \rangle \langle b_1, \hat{b} \rangle c_1 + T_{-1}(\hat{a}, \hat{b}, I). \end{split}$$

Analysis of One Step Update

Basic Intuition

• Let \hat{a},\hat{b} be "close to" a_1,b_1 . Alternating update:

$$\hat{c} \propto T(\hat{a}, \hat{b}, I) = \sum_{i \in [k]} w_i \langle a_i, \hat{a} \rangle \langle b_i, \hat{b} \rangle c_i,$$
$$= w_1 \langle a_1, \hat{a} \rangle \langle b_1, \hat{b} \rangle c_1 + T_{-1}(\hat{a}, \hat{b}, I).$$

• $T_{-1}(\hat{a},\hat{b},I)=0$ in orthogonal case, when $\hat{a}=a_1,\hat{b}=b_1.$

Analysis of One Step Update

Basic Intuition

• Let \hat{a}, \hat{b} be "close to" a_1, b_1 . Alternating update:

$$\hat{c} \propto T(\hat{a}, \hat{b}, I) = \sum_{i \in [k]} w_i \langle a_i, \hat{a} \rangle \langle b_i, \hat{b} \rangle c_i,$$
$$= w_1 \langle a_1, \hat{a} \rangle \langle b_1, \hat{b} \rangle c_1 + T_{-1}(\hat{a}, \hat{b}, I).$$

- $T_{-1}(\hat{a},\hat{b},I)=0$ in orthogonal case, when $\hat{a}=a_1,\hat{b}=b_1$.
- Can it be controlled for incoherent (random) vectors?

Outline

- Introduction
- Summary of Results
- Tensor Decomposition
- 4 Guarantees for Alternating Minimization
- 5 Conclusion and Other Results

Results for one step update

• Incoherence: $|\langle a_i, a_j \rangle| = O\left(1/\sqrt{d}\right)$ for $i \neq j$. Similarly for b, c.

- Spectral norm: $\|A\|, \|B\|, \|C\| \le 1 + O\left(\sqrt{\frac{k}{d}}\right)$. $\|T\| \le (1 + o(1))$.
- Tensor rank: $k = o(d^{1.5})$. Weights: For simplicity, $w_i \equiv 1$.
- $\operatorname{dist}(\hat{a}, a) := \min_{f} \|f\hat{a} a\|$ for normalized \hat{a}, a .

Results for one step update

• Incoherence: $|\langle a_i, a_j \rangle| = O\left(1/\sqrt{d}\right)$ for $i \neq j$. Similarly for b, c.

• Spectral norm:
$$\|A\|, \|B\|, \|C\| \le 1 + O\left(\sqrt{\frac{k}{d}}\right)$$
. $\|T\| \le (1 + o(1))$.

- Tensor rank: $k = o(d^{1.5})$. Weights: For simplicity, $w_i \equiv 1$.
- $\operatorname{dist}(\hat{a}, a) := \min_{f} \|f\hat{a} a\|$ for normalized \hat{a}, a .

Lemma (AGJ 2014)

 $\operatorname{dist}(a_1,\hat{a}) \leq \epsilon$, similarly for \hat{b} , and $1 - \epsilon^2 > f(\epsilon;k,d)$, after one step

$$\operatorname{dist}(\hat{c}, c_1) \le \frac{f(\epsilon; k, d)}{1 - \epsilon^2 - f(\epsilon; k, d)}.$$

Results for one step update

• Incoherence: $|\langle a_i, a_j \rangle| = O\left(1/\sqrt{d}\right)$ for $i \neq j$. Similarly for b, c.

• Spectral norm:
$$\|A\|, \|B\|, \|C\| \le 1 + O\left(\sqrt{\frac{k}{d}}\right)$$
. $\|T\| \le (1 + o(1))$.

- Tensor rank: $k = o(d^{1.5})$. Weights: For simplicity, $w_i \equiv 1$.
- $\operatorname{dist}(\hat{a}, a) := \min_{f} \|f\hat{a} a\|$ for normalized \hat{a}, a .

Lemma (AGJ 2014)

 $\operatorname{dist}(a_1, \hat{a}) \leq \epsilon$, similarly for \hat{b} , and $1 - \epsilon^2 > f(\epsilon; k, d)$, after one step

$$\operatorname{dist}(\hat{c}, c_1) \le \frac{f(\epsilon; k, d)}{1 - \epsilon^2 - f(\epsilon; k, d)}.$$

•
$$f(\epsilon; k, d) := O\left(\frac{\sqrt{k}}{d} + \max\left(\frac{1}{\sqrt{d}}, \frac{k}{d^{1.5}}\right)\epsilon + \epsilon^2\right).$$

• $\frac{\sqrt{k}}{d}$: approximation error, rest: error contraction.

- Initialization: $\operatorname{dist}(a_1, \hat{a}) \leq \epsilon_0$, similarly for \hat{b} and $\epsilon_0 < \operatorname{const.}$
- Noise: $\hat{T} := T + E$, and $||E|| \le 1/\operatorname{polylog}(d)$.
- Approximation error: $\epsilon_T := \|E\| + \tilde{O}\left(\frac{\sqrt{k}}{d}\right)$

- Initialization: $\operatorname{dist}(a_1, \hat{a}) \leq \epsilon_0$, similarly for \hat{b} and $\epsilon_0 < \operatorname{const.}$
- Noise: $\hat{T} := T + E$, and $||E|| \le 1/\operatorname{polylog}(d)$.
- ullet Approximation error: $\epsilon_T := \|E\| + ilde{O}\left(rac{\sqrt{k}}{d}
 ight)$

Theorem (Local Convergence)

After $O(\log(1/\epsilon_T))$ steps of alternating rank-1 updates,

$$dist(a_1, a^{(t)}) = O(\epsilon_T).$$

- Initialization: $\operatorname{dist}(a_1, \hat{a}) \leq \epsilon_0$, similarly for \hat{b} and $\epsilon_0 < \operatorname{const.}$
- Noise: $\hat{T} := T + E$, and $||E|| \le 1/\operatorname{polylog}(d)$.
- ullet Approximation error: $\epsilon_T := \|E\| + ilde{O}\left(rac{\sqrt{k}}{d}
 ight)$

Theorem (Local Convergence)

After $O(\log(1/\epsilon_T))$ steps of alternating rank-1 updates,

$$\operatorname{dist}(a_1, a^{(t)}) = O(\epsilon_T).$$

• Linear convergence: up to approximation error.

- Initialization: $\operatorname{dist}(a_1, \hat{a}) \leq \epsilon_0$, similarly for \hat{b} and $\epsilon_0 < \operatorname{const.}$
- Noise: $\hat{T} := T + E$, and $||E|| \le 1/\operatorname{polylog}(d)$.
- Approximation error: $\epsilon_T := \|E\| + \tilde{O}\left(\frac{\sqrt{k}}{d}\right)$

Theorem (Local Convergence)

After $O(\log(1/\epsilon_T))$ steps of alternating rank-1 updates,

$$dist(a_1, a^{(t)}) = O(\epsilon_T).$$

- Linear convergence: up to approximation error.
- Guarantees for overcomplete tensors: $k = o(d^{1.5})$ and for p^{th} -order tensors $k = o(d^{p/2})$.

- Initialization: $\operatorname{dist}(a_1, \hat{a}) \leq \epsilon_0$, similarly for \hat{b} and $\epsilon_0 < \operatorname{const.}$
- Noise: $\hat{T} := T + E$, and $||E|| \le 1/\operatorname{polylog}(d)$.
- Approximation error: $\epsilon_T := \|E\| + \tilde{O}\left(\frac{\sqrt{k}}{d}\right)$

Theorem (Local Convergence)

After $O(\log(1/\epsilon_T))$ steps of alternating rank-1 updates,

$$\operatorname{dist}(a_1, a^{(t)}) = O(\epsilon_T).$$

- Linear convergence: up to approximation error.
- Guarantees for overcomplete tensors: $k = o(d^{1.5})$ and for p^{th} -order tensors $k = o(d^{p/2})$.
- Requires good initialization. What about global convergence?

SVD Initialization

- Find the top singular vectors of $T(I, I, \theta)$ for $\theta \sim \mathcal{N}(0, I)$.
- Use them for initialization. *L* trials.

SVD Initialization

- Find the top singular vectors of $T(I, I, \theta)$ for $\theta \sim \mathcal{N}(0, I)$.
- Use them for initialization. L trials.

Assumptions

SVD Initialization

- Find the top singular vectors of $T(I, I, \theta)$ for $\theta \sim \mathcal{N}(0, I)$.
- Use them for initialization. L trials.

Assumptions

• Number of initializations: $L \ge k^{\Omega(k/d)^2}$, Tensor Rank: k = O(d)

SVD Initialization

- Find the top singular vectors of $T(I, I, \theta)$ for $\theta \sim \mathcal{N}(0, I)$.
- Use them for initialization. L trials.

Assumptions

- Number of initializations: $L \ge k^{\Omega(k/d)^2}$, Tensor Rank: k = O(d)
- No. of Iterations: $N = \Theta(\log(1/\epsilon_T))$. Recall ϵ_T : approx. error.

SVD Initialization

- Find the top singular vectors of $T(I, I, \theta)$ for $\theta \sim \mathcal{N}(0, I)$.
- Use them for initialization. L trials.

Assumptions

- Number of initializations: $L \ge k^{\Omega(k/d)^2}$, Tensor Rank: k = O(d)
- No. of Iterations: $N = \Theta(\log(1/\epsilon_T))$. Recall ϵ_T : approx. error.

Theorem (Global Convergence) $\operatorname{dist}(a_1, a^{(N)}) \leq O(\epsilon_T)$.

SVD Initialization

- Find the top singular vectors of $T(I, I, \theta)$ for $\theta \sim \mathcal{N}(0, I)$.
- Use them for initialization. L trials.

Assumptions

- Number of initializations: $L \ge k^{\Omega(k/d)^2}$, Tensor Rank: k = O(d)
- No. of Iterations: $N = \Theta(\log(1/\epsilon_T))$. Recall ϵ_T : approx. error.

Theorem (Global Convergence)
$$\operatorname{dist}(a_1, a^{(N)}) \leq O(\epsilon_T)$$
.

Corollary: Differing Dimensions

- If $a_i, b_i \in \mathbb{R}^{d_u}$ and $c_i \in \mathbb{R}^{d_o}$, and $d_u \geq k \geq d_o$.
- $k = O(\sqrt{d_u d_o})$ for incoherent vectors. $k = O(d_u)$ if A, B orthogonal.
- Same guarantees. Can handle one overcomplete mode.

High-level Intuition for Sample Bounds

- Multi-view Model: $x_1 = Ah + z_i$, where z_i is noise.
- Exact moment $T = \sum_i w_i a_i \otimes b_i \otimes c_i$.
- Sample moment: $\hat{T} = \frac{1}{n} \sum_i x_1^i \otimes x_2^i \otimes x_3^i$.

Naive Idea: $\|\hat{T} - T\| \le \| \max(\hat{T}) - \max(T) \|$, apply matrix Bernstein's.

- Our idea: Careful ϵ -net covering for $\hat{T} T$.
- $\hat{T}-T$ has many terms, e.g. all-noise term: $\frac{1}{n}\sum_i z_1^i\otimes z_2^i\otimes z_3^i$ and signal-noise terms.
- $\bullet \text{ Need to bound } \frac{1}{n} \sum_i \langle z_1^i, u \rangle \langle z_2^i, v \rangle \langle z_3^i, w \rangle \text{, for all } u, v, w \in \mathcal{S}^{d-1}.$
- Classify inner products into buckets and bound them separately.

Tight sample bounds for a range of latent variable models

Outline

- Introduction
- 2 Summary of Results
- Tensor Decomposition
- 4 Guarantees for Alternating Minimization
- **5** Conclusion and Other Results

Conclusion

Summary

- Analysis of alternating rank-1 updates under incoherent components.
- (Approx.) local convg. $k = o(d^{1.5})$, global convg. k = O(d).
- Efficient learning and tight sample complexity for various latent variable models.

Other Works on Tensor Decompositions

Large-Scale Cloud Implementation on REEF

- F. Huang, N. Karampatziakis, S. Matusevych, P. Mineiro, A. Anandkumar, "Tensor Decompositions on REEF," under preparation.
- Code will soon be available.

Parallelized Hierarchical Tensor Decomposition

- F. Huang, U. N. Niranjan, A. Anandkumar, "Integrated Structure and Parameter Learning in Latent Tree Graphical Models," on ArXiv.
- Code available at https://github.com/FurongHuang/StructureParameterLatentTree.git
- Talk tomorrow at Learning Tractable Probabilistic Models (LTPM) workshop at 14:00.

Tensor Factorization on REEF

Large-scale implementation

- Map-Reduce: huge overhead in disk reading, container allocation.
- REEF: Retainable Evaluator Execution Framework.
- Advantage: Open source distributed system with one time container allocation, keep the tensor in memory

Solution: REEF

Preliminary Evaluation

New York Times Corpus

- Documents n = 300,000
- Vocabulary d = 100,000
- Topics k = 100

	Stochastic Variational Inference	Tensor Decomposition
Perplexity	4000	3400

	SVI	1 node Map Red	1 node REEF	4 node REEF
overall	2 hours	4 hours 31 mins	68 mins	36 mins
Whiten		16 mins	16 mins	16 mins
Matricize		15 mins	15 mins	4 mins
ALS		4 hours	37 mins	16 mins