LGN5830 - Biometria de Marcadores Genéticos Tópico 3: Mapas Genéticos I Segregação Mendeliana

Antonio Augusto Franco Garcia

http://about.me/augusto.garcia augusto.garcia@usp.br

> Departamento de Genética ESALQ/USP 2015

- Teste de Segregação
 - Testes de Hipóteses
 - p-valores
 - Teste de Aderência
- 2 Múltiplos Testes
 - Princípios
 - Correção de Bonferroni
 - False Discovery Rate (FDR)
- Referências

- Teste de Segregação
 - Testes de Hipóteses
 - p-valores
 - Teste de Aderência
- Múltiplos Testes
 - Princípios
 - Correção de Bonferroni
 - False Discovery Rate (FDR)
- Referências

- Teste de Segregação
 - Testes de Hipóteses
 - p-valores
 - Teste de Aderência
- Múltiplos Testes
 - Princípios
 - Correção de Bonferroni
 - False Discovery Rate (FDR)
- Referências

- Teste de Segregação
 - Testes de Hipóteses
 - p-valores
 - Teste de Aderência
- Múltiplos Testes
 - Princípios
 - Correção de Bonferroni
 - False Discovery Rate (FDR)
- Referências

Etapas Cartoon Guide to Statistics

Hipóteses

Step 1. FORMULATE ALL HYPOTHESES.

HO, THE NULL HYPOTHESIS, IS USUALLY THAT THE OBSERVATIONS ARE THE RESULT PURELY OF CHANCE.

Har THE ALTERNATE HYPOTHESIS, IS THAT THERE IS A REAL EFFECT, THAT THE OBSERVATIONS ARE THE RESULT OF THIS REAL EFFECT, PLUS CHANCE VARIATION.

Etapas Cartoon Guide to Statistics

Estatística do Teste

Step 2. THE TEST STATISTIC. IDENTIFY A STATISTIC THAT WILL ASSESS THE EVIDENCE AGAINST THE NULL HYPOTHESIS.

Etapas Cartoon Guide to Statistics

• Obtenha o p-valor

Step 3. P-VALUE:

A PROBABILITY STATEMENT WHICH
ANSWERS THE QUESTION: IF THE
NULL HYPOTHESIS WERE TRUE, THEN
WHAT IS THE PROBABILITY OF
OBSERVING A TEST STATISTIC AT
LEAST AS EXTREME AS THE ONE WE
OBSERVED?

Etapas Cartoon Guide to Statistics

Tome a decisão

Step 4. COMPARE THE P-VALUE TO A FIXED SIGNIFICANCE LEVEL, α .

lpha acts as a cut-off point below which we agree that an effect is statistically significant. That is, if

P-VALUE ≤ α

THEN WE RULE OUT THE NULL HYPOTHESIS HO AND AGREE THAT SOMETHING ELSE IS GOING ON.

Teste t

- Uma população homogênea foi genotipada com um marcador dominante
- Deseja-se saber se o peso dos indivíduos é diferente em função do genótipo do marcador (presença/ausência)
- Dados:

$$\mu_1 = 17.5$$
 $n_1 = 20$
 $\sigma_1^2 = 7.4$
 $\mu_2 = 15.0$
 $n_2 = 18$
 $\sigma_2^2 = 6.9$

- H_0 : $\mu_1 = \mu_2$ vs H_a : $\mu_1 \neq \mu_2$
- Estatística:

$$t = \frac{\mu_1 - \mu_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_1}}}$$

Teste t

- Uma população homogênea foi genotipada com um marcador dominante
- Deseja-se saber se o peso dos indivíduos é diferente em função do genótipo do marcador (presença/ausência)
- Dados:

$$\mu_1 = 17.5$$
 $n_1 = 20$
 $\sigma_1^2 = 7.4$
 $\mu_2 = 15.0$
 $n_2 = 18$
 $\sigma_2^2 = 6.9$

- H_0 : $\mu_1 = \mu_2$ vs H_a : $\mu_1 \neq \mu_2$
- Estatística:

$$t = \frac{\mu_1 - \mu_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_1}}}$$

Teste t

- Uma população homogênea foi genotipada com um marcador dominante
- Deseja-se saber se o peso dos indivíduos é diferente em função do genótipo do marcador (presença/ausência)
- Dados:

$$\mu_1 = 17.5$$
 $n_1 = 20$ $\sigma_1^2 = 7.4$ $\mu_2 = 15.0$ $n_2 = 18$ $\sigma_2^2 = 6.9$

- H_0 : $\mu_1 = \mu_2$ vs H_a : $\mu_1 \neq \mu_2$
- Estatística:

$$t = \frac{\mu_1 - \mu_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2^2}}}$$

Teste t

- Uma população homogênea foi genotipada com um marcador dominante
- Deseja-se saber se o peso dos indivíduos é diferente em função do genótipo do marcador (presença/ausência)
- Dados:

$$\mu_1 = 17.5$$
 $n_1 = 20$
 $\sigma_1^2 = 7.4$
 $\mu_2 = 15.0$
 $n_2 = 18$
 $\sigma_2^2 = 6.9$

- H_0 : $\mu_1 = \mu_2$ vs H_a : $\mu_1 \neq \mu_2$
- Estatística:

$$t = \frac{\mu_1 - \mu_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_1}}}$$

Teste t

- Uma população homogênea foi genotipada com um marcador dominante
- Deseja-se saber se o peso dos indivíduos é diferente em função do genótipo do marcador (presença/ausência)
- Dados:

$$\mu_1 = 17.5$$
 $n_1 = 20$
 $\sigma_1^2 = 7.4$
 $\mu_2 = 15.0$
 $n_2 = 18$
 $\sigma_2^2 = 6.9$

- H_0 : $\mu_1 = \mu_2$ vs H_a : $\mu_1 \neq \mu_2$
- Estatística:

$$t = \frac{\mu_1 - \mu_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

Teste t

$$\mu_1 = 17.5$$
 $n_1 = 20$ $\sigma_1^2 = 7.4$ $\mu_2 = 15.0$ $n_2 = 18$ $\sigma_2^2 = 6.9$

- \bullet $t_{obs} = 2.88$, $t_{0.05;36} = 2.028$
- Conclusão?

Teste t

$$\mu_1 = 17.5$$
 $n_1 = 20$ $\sigma_1^2 = 7.4$ $\mu_2 = 15.0$ $n_2 = 18$ $\sigma_2^2 = 6.9$

- \bullet $t_{obs} = 2.88$, $t_{0.05;36} = 2.028$
- Conclusão?

- $\bullet\,$ População com $\mu=16$ e $\sigma^2=7.15$ (distribuição normal)
- 10000 pares de amostras (com reposição) com $n_1=20$ e $n_2=18$
- ullet Estatística t para cada par de amostras

- ullet População com $\mu=16$ e $\sigma^2=7.15$ (distribuição normal)
- 10000 pares de amostras (com reposição) com $n_1=20$ e $n_2=18$
- ullet Estatistica t para cada par de amostras

- $\bullet\,$ População com $\mu=16$ e $\sigma^2=7.15$ (distribuição normal)
- 10000 pares de amostras (com reposição) com $n_1=20$ e $n_2=18$
- ullet Estatística t para cada par de amostras

- $\bullet\,$ População com $\mu=16$ e $\sigma^2=7.15$ (distribuição normal)
- 10000 pares de amostras (com reposição) com $n_1=20$ e $n_2=18$
- ullet Estatística t para cada par de amostras

2.5%	97.5%
-2.040624	2.023649

- Teste de Segregação
 - Testes de Hipóteses
 - p-valores
 - Teste de Aderência
- Múltiplos Testes
 - Princípios
 - Correção de Bonferroni
 - False Discovery Rate (FDR)
- Referências

- Neyman-Pearson: significativo ou não-significativo (comparação com o nível de significância)
- Fisher: uso dos p-valores

p-valor

- Fisher nunca disse explicitamente como os cientistas devem interpretar o p-valor
- Fisher: "... below p of 0.01 one can declare an effect (that is significance), above 0.2 not (that is – insignificant), and in-between it might be smart to do another experiment."

- Neyman-Pearson: significativo ou não-significativo (comparação com o nível de significância)
- Fisher: uso dos p-valores

p-valor

- Fisher nunca disse explicitamente como os cientistas devem interpretar o p-valor
- Fisher: "... below p of 0.01 one can declare an effect (that is significance), above 0.2 not (that is insignificant), and in-betweer it might be smart to do another experiment."

- Neyman-Pearson: significativo ou não-significativo (comparação com o nível de significância)
- Fisher: uso dos *p-valores*

p-valor

- Fisher nunca disse explicitamente como os cientistas devem interpretar o p-valor
- Fisher: "... below p of 0.01 one can declare an effect (that is significance), above 0.2 not (that is – insignificant), and in-between it might be smart to do another experiment."

- Neyman-Pearson: significativo ou não-significativo (comparação com o nível de significância)
- Fisher: uso dos *p-valores*

p-valor

- Fisher nunca disse explicitamente como os cientistas devem interpretar o *p-valor*
- Fisher: "... below p of 0.01 one can declare an effect (that is significance), above 0.2 not (that is insignificant), and in-between it might be smart to do another experiment."

- Abordagem frequentista: uso do p-valor e do α como evidências para se testar uma dada hipótese
- Para se testar hipóteses científicas, geralmente dois modelos são comparados: H_0 : $\theta=0$ e H_1 : $\theta\neq0$
- Testes estatísticos são realizados para medir desvios da hipótese de nulidade
- ullet Há muita confusão na literatura sobre p e lpha

- Abordagem frequentista: uso do p-valor e do α como evidências para se testar uma dada hipótese
- Para se testar hipóteses científicas, geralmente dois modelos são comparados: H_0 : $\theta=0$ e H_1 : $\theta\neq0$
- Testes estatísticos são realizados para medir desvios da hipótese de nulidade
- ullet Há muita confusão na literatura sobre p e lpha

- Abordagem frequentista: uso do p-valor e do α como evidências para se testar uma dada hipótese
- Para se testar hipóteses científicas, geralmente dois modelos são comparados: H_0 : $\theta=0$ e H_1 : $\theta\neq0$
- Testes estatísticos são realizados para medir desvios da hipótese de nulidade
- ullet Há muita confusão na literatura sobre p e lpha

- Abordagem frequentista: uso do p-valor e do α como evidências para se testar uma dada hipótese
- Para se testar hipóteses científicas, geralmente dois modelos são comparados: H_0 : $\theta=0$ e H_1 : $\theta\neq0$
- Testes estatísticos são realizados para medir desvios da hipótese de nulidade
- ullet Há muita confusão na literatura sobre p e lpha

Testes de Hipóteses

- (1) O p-valor é a probabilidade de estar errado caso H_0 seja verdadeiro
- (2) O *p-valor* é a probabilidade observar falsos positivos
- (3) Se LOD=3, o $\emph{p-valor}$ é igual a 10^{-3}
- FIQUE ATENTO! Um erro muito comum é assumir que α é o p-valor observado
- SÃO EQUIVALENTES: falsa descoberta (false discovery), erro tipo I, falso positivo

Testes de Hipóteses

VERDADEIRO OU FALSO?

- (1) O p-valor é a probabilidade de estar errado caso H_0 seja verdadeiro
- (2) O *p-valor* é a probabilidade observar falsos positivos
- (3) Se LOD=3, o p-valor è igual a 10^{-3}

FIQUE ATENTO! Um erro muito comum é assumir que α é o p-valor observado

SÃO EQUIVALENTES: falsa descoberta (false discovery), erro tipo I, falso positivo

- (1) O p-valor é a probabilidade de estar errado caso H_0 seja verdadeiro
 - FALSO! Esta é a definição de lpha
- (2) O p-valor é a probabilidade observar falsos positivos
- (3) Se LOD = 3, o p-valor é igual a 10^{-3}
- FIQUE ATENTO! Um erro muito comum é assumir que α é o *p-valor* observado
- SÃO EQUIVALENTES: falsa descoberta (false discovery), erro tipo I, falso positivo

Testes de Hipóteses

- (1) O p-valor é a probabilidade de estar errado caso H_0 seja verdadeiro FALSO! Esta é a definição de α
- ralso: Esta e a definição de a
- (2) O p-valor é a probabilidade observar falsos positivos
- (3) Se LOD = 3, o p-valor e igual a 10^{-1}
- FIQUE ATENTO! Um erro muito comum é assumir que α é o p-valor observado
- SÃO EQUIVALENTES: falsa descoberta (false discovery), erro tipo I, falso positivo

Testes de Hipóteses

- (1) O p-valor é a probabilidade de estar errado caso H_0 seja verdadeiro FALSO! Esta é a definição de α
- (2) O *p-valor* é a probabilidade observar falsos positivos FALSO!
- (3) Se LOD = 3, o p-valor é igual a 10^{-1}

- FIQUE ATENTO! Um erro muito comum é assumir que lpha é o $\emph{p-valor}$ observado
- SÃO EQUIVALENTES: falsa descoberta (false discovery), erro tipo I, falso positivo

Testes de Hipóteses

- (1) O p-valor é a probabilidade de estar errado caso H_0 seja verdadeiro
 - FALSO! Esta é a definição de lpha
- (2) O *p-valor* é a probabilidade observar falsos positivos FALSO!
- (3) Se LOD = 3, o p-valor $\acute{\mathbf{e}}$ igual a 10^{-3}
- FIQUE ATENTO! Um erro muito comum é assumir que α é o p-valor observado
- SÃO EQUIVALENTES: falsa descoberta (false discovery), erro tipo I, falso positivo

- (1) O p-valor é a probabilidade de estar errado caso H_0 seja verdadeiro FALSO! Esta é a definição de α
- (2) O *p-valor* é a probabilidade observar falsos positivos FALSO!
- (3) Se LOD = 3, o p-valor é igual a 10^{-3} FALSO!
- FIQUE ATENTO! Um erro muito comum é assumir que lpha é o $\emph{p-valor}$ observado
- SÃO EQUIVALENTES: falsa descoberta (false discovery), erro tipo I, falso positivo

p-valores

Testes de Hipóteses

VERDADEIRO OU FALSO?

- (1) O p-valor é a probabilidade de estar errado caso H_0 seja verdadeiro
 - FALSO! Esta é a definição de lpha
- (2) O *p-valor* é a probabilidade observar falsos positivos FALSO!
- (3) Se LOD = 3, o p-valor é igual a 10^{-3} FALSO!

FIQUE ATENTO! Um erro muito comum é assumir que α é o p-valor observado

SÃO EQUIVALENTES: falsa descoberta (false discovery), erro tipo I, falso positivo

Testes de Hipóteses

VERDADEIRO OU FALSO?

- (1) O p-valor é a probabilidade de estar errado caso H_0 seja verdadeiro FALSO! Esta é a definição de α
- (2) O *p-valor* é a probabilidade observar falsos positivos FALSO!
- (3) Se LOD = 3, o *p-valor* é igual a 10^{-3} FALSO!
- FIQUE ATENTO! Um erro muito comum é assumir que α é o $\emph{p-valor}$ observado
- SÃO EQUIVALENTES: falsa descoberta (false discovery), erro tipo I, falso positivo

p-valores

Testes de Hipóteses

Definição

O p-valor é definido como a probabilidade de observar valores mais extremos da estatística do teste sob H_0 do que o valor observado.

Sendo T a estatística do teste que assume valores positivos $_{\scriptscriptstyle 1}$

$$p = Pr(T \ge T_{obs}|H_0)$$

p-valores

Testes de Hipóteses

Definição

O p-valor é definido como a probabilidade de observar valores mais extremos da estatística do teste sob H_0 do que o valor observado. Sendo T a estatística do teste que assume valores positivos,

$$p = Pr(T \ge T_{obs}|H_0)$$

Teste de Segregação Teste de Aderência

Conteúdo

Teste de Segregação

- Testes de Hipóteses
- p-valores
- Teste de Aderência
- Múltiplos Testes
 - Princípios
 - Correção de Bonferroni

Retrocruzamentos

Fundamentos

Dados

Cana-de-açúcar (1:1), Garcia et al. 2006

Retrocruzamentos

$$\chi^{2} = \sum \frac{(n.obs - n.esp)^{2}}{n.esp} = \frac{(n_{1} - n/2)^{2}}{n/2} + \frac{(n_{2} - n/2)^{2}}{n/2} =$$
$$= \frac{(n_{1} - n_{2})^{2}}{n} \sim \chi_{1}^{2}$$

Teste de Segregação Teste de Aderência

Retrocruzamentos

$$\begin{array}{c|cccc} & AA & Aa \\ \hline \text{Freq. esperada} & 1/2 & 1/2 \\ \text{n. esp.} & n/2 & n/2 \\ \text{n. obs.} & n_1 & n_2 \\ \hline \end{array}$$

$$\chi^{2} = \sum \frac{(n.obs - n.esp)^{2}}{n.esp} = \frac{(n_{1} - n/2)^{2}}{n/2} + \frac{(n_{2} - n/2)^{2}}{n/2} =$$
$$= \frac{(n_{1} - n_{2})^{2}}{n} \sim \chi_{1}^{2}$$

Retrocruzamentos

$$\chi^{2} = \sum \frac{(n.obs - n.esp)^{2}}{n.esp} = \frac{(n_{1} - n/2)^{2}}{n/2} + \frac{(n_{2} - n/2)^{2}}{n/2} =$$
$$= \frac{(n_{1} - n_{2})^{2}}{n} \sim \chi_{1}^{2}$$

Quantos GLs?

Retrocruzamentos

	AA	Aa
Freq. esperada	1/2	1/2
n. esp.	n/2	n/2
n. obs.	n_1	n_2

$$\chi^{2} = \sum \frac{(n.obs - n.esp)^{2}}{n.esp} = \frac{(n_{1} - n/2)^{2}}{n/2} + \frac{(n_{2} - n/2)^{2}}{n/2} =$$
$$= \frac{(n_{1} - n_{2})^{2}}{n} \sim \chi_{1}^{2}$$

Quantos GLs? 1 (para $\theta = 1/2$)

Retrocruzamento

• Faça o teste da segregação mendeliana para um dos marcadores

Distribuição de frequências

Resultados usando o R

```
chi.square p.valor
[1,] 4.281553398 0.03852812
[2,] 3.504854369 0.06118923
[3,] 2.805825243 0.09392250
[4,] 3.504854369 0.06118923
[5.] 2.805825243 0.09392250
[6.] 2.184466019 0.13940941
[7.] 1.640776699 0.20021894
[8.] 0.242718447 0.62224957
[9.] 0.087378641 0.76753650
[10,] 0.087378641 0.76753650
[11,] 0.087378641 0.76753650
[12,] 0.009708738 0.92150913
[13,] 0.786407767 0.37518855
[14,] 0.242718447 0.62224957
```

Populações F_2

Dados

Milho (1:2:1), Sibov et al. 2003

 F_2

	AA	Aa	aa
Freq. esperada	1/4	1/2	1/4
n. esp.	n/4	n/2	n/4
n. obs.	n_1	n_2	n_3

$$\chi^{2} = \sum \frac{(n.obs - n.esp)^{2}}{n.esp} = \frac{(n_{1} - n/4)^{2}}{n/4} + \frac{(n_{2} - n/2)^{2}}{n/2} + \frac{(n_{3} - n/4)^{2}}{n/4} \sim \chi_{2}^{2}$$

 F_2

	AA	Aa	aa
Freq. esperada	1/4	1/2	1/4
n. esp.	n/4	n/2	n/4
n. obs.	n_1	n_2	n_3

$$\chi^{2} = \sum \frac{(n.obs - n.esp)^{2}}{n.esp} = \frac{(n_{1} - n/4)^{2}}{n/4} + \frac{(n_{2} - n/2)^{2}}{n/2} + \frac{(n_{3} - n/4)^{2}}{n/4} \sim \chi_{2}^{2}$$

 F_2

	AA	Aa	aa
Freq. esperada	1/4	1/2	1/4
n. esp.	n/4	n/2	n/4
n. obs.	n_1	n_2	n_3

$$\chi^{2} = \sum \frac{(n.obs - n.esp)^{2}}{n.esp} = \frac{(n_{1} - n/4)^{2}}{n/4} + \frac{(n_{2} - n/2)^{2}}{n/2} + \frac{(n_{3} - n/4)^{2}}{n/4} \sim \chi_{2}^{2}$$

Quantos GL?

 F_{2}

	AA	Aa	aa
Freq. esperada	1/4	1/2	1/4
n. esp.	n/4	n/2	n/4
n. obs.	n_1	n_2	n_3

$$\chi^{2} = \sum \frac{(n.obs - n.esp)^{2}}{n.esp} = \frac{(n_{1} - n/4)^{2}}{n/4} + \frac{(n_{2} - n/2)^{2}}{n/2} + \frac{(n_{3} - n/4)^{2}}{n/4} \sim \chi_{2}^{2}$$

Quantos GL?

Dois: θ_1 e θ_2 (multinomial)

RILs

$$\begin{array}{c|cccc} & AA & aa \\ \hline \text{Freq. esperada} & 1/2 & 1/2 \\ \text{n. esp.} & n/2 & n/2 \\ \text{n. obs.} & n_1 & n_2 \\ \hline \end{array}$$

$$\chi^2 = \sum \frac{(n.obs - n.esp)^2}{n.esp} = \frac{(n_1 - n_2)^2}{n} \sim \chi_1^2$$

1 GL

Conteúdo

- Teste de Segregação
 - Testes de Hipóteses
 - p-valores
 - Teste de Aderência
- Múltiplos Testes
 - Princípios
 - Correção de Bonferroni
 - False Discovery Rate (FDR)
- Referências

Polvo Paul

2010 FIFA World Cup

Teams ✓	Stage ⊯	Date ⋈	Prediction ⋈	Result ⊯	Outcome 🖂
Germany vs Australia	Group stage	13 June	Germany ^[22]	4-0	Correct
Germany vs Serbia	Group stage	18 June	Serbia ^[22]	0-1	Correct
Ghana vs Germany	Group stage	23 June	Germany ^[22]	0-1	Correct
Germany vs England +	Round of 16	27 June	Germany ^[23]	4-1	Correct
== Argentina vs Germany ===	Quarter-finals	3 July	Germany ^[24]	0-4	Correct
Germany vs Spain	Semi-finals	7 July	Spain ^[25]	0-1	Correct
Uruguay vs Germany	3rd place play-off	10 July	Germany ^[26]	2-3	Correct
Netherlands vs Spain	Final	11 July	Spain ^[27]	0–1	Correct

Acaso?

• Qual a probabilidade de observar este evento (excluindo empates)?

- Qual a probabilidade de observar este evento (excluindo empates)?
- $(\frac{1}{2})^8$
- 1 em 256

- Qual a probabilidade de observar este evento (excluindo empates)?
- $(\frac{1}{2})^8$
- 1 em 256
- A fama do polvo começou após acertar o resultado de Alemanha vs Inglaterra

- Qual a probabilidade de observar este evento (excluindo empates)?
- $(\frac{1}{2})^8$
- 1 em 256
- A fama do polvo começou após acertar o resultado de Alemanha vs Inglaterra
- Porém, com 178 indivíduos, há grande chance de alguém acertar o resultado de uma série de 8 jogos

- Qual a probabilidade de observar este evento (excluindo empates)?
- $(\frac{1}{2})^8$
- 1 em 256
- A fama do polvo começou após acertar o resultado de Alemanha vs Inglaterra
- Porém, com 178 indivíduos, há grande chance de alguém acertar o resultado de uma série de 8 jogos
 - Qual a probabilidade de encontrar duas pessoas que fazem aniversário na mesma data, numa sala com pessoas tomadas ao acaso?

- Qual a probabilidade de observar este evento (excluindo empates)?
- $(\frac{1}{2})^8$
- 1 em 256
- A fama do polvo começou após acertar o resultado de Alemanha vs Inglaterra
- Porém, com 178 indivíduos, há grande chance de alguém acertar o resultado de uma série de 8 jogos
 - Qual a probabilidade de encontrar duas pessoas que fazem aniversário na mesma data, numa sala com pessoas tomadas ao acaso?
 - Com 57 pessoas, a probabilidade é 99%! (http://goo.gl/5irBA)

- Mapeamento Genético: normalmente, os testes são realizados repetidas vezes
- $1-\alpha$: probab. de não cometer erro tipo I em um teste
- $(1-\alpha)^m$: prob. de não cometer *erro tipo I* nos m testes
- ullet Note que estamos assumindo que os m testes são independentes
- α^* : erro conjunto tipo I
- Logo, $1-\alpha^*=(1-\alpha)^m$ e $\alpha^*=1-(1-\alpha)^m$

- Mapeamento Genético: normalmente, os testes são realizados repetidas vezes
- $1-\alpha$: probab. de não cometer erro tipo I em um teste
- $(1-\alpha)^m$: prob. de não cometer *erro tipo I* nos m testes
- ullet Note que estamos assumindo que os m testes são independentes
- α^* : erro conjunto tipo I
- Logo, $1 \alpha^* = (1 \alpha)^m$ e $\alpha^* = 1 (1 \alpha)^m$

- Mapeamento Genético: normalmente, os testes são realizados repetidas vezes
- 1α : probab. de não cometer erro tipo I em um teste
- ullet $(1-lpha)^m$: prob. de não cometer *erro tipo I* nos m testes
- ullet Note que estamos assumindo que os m testes são independentes
- α^* : erro conjunto tipo I
- Logo, $1-\alpha^*=(1-\alpha)^m$ e $\alpha^*=1-(1-\alpha)^m$

 Mapeamento Genético: normalmente, os testes são realizados repetidas vezes

- 1α : probab. de não cometer erro tipo I em um teste
- ullet $(1-lpha)^m$: prob. de não cometer *erro tipo I* nos m testes
- ullet Note que estamos assumindo que os m testes são independentes
- α^* : erro conjunto tipo I
- Logo, $1 \alpha^* = (1 \alpha)^m$ e $\alpha^* = 1 (1 \alpha)^m$

- Mapeamento Genético: normalmente, os testes são realizados repetidas vezes
- 1α : probab. de não cometer erro tipo I em um teste
- ullet $(1-lpha)^m$: prob. de não cometer *erro tipo I* nos m testes
- ullet Note que estamos assumindo que os m testes são independentes
- α*: erro conjunto tipo I
- Logo, $1 \alpha^* = (1 \alpha)^m$ e $\alpha^* = 1 (1 \alpha)^m$

- Mapeamento Genético: normalmente, os testes são realizados repetidas vezes
- 1α : probab. de não cometer erro tipo I em um teste
- ullet $(1-lpha)^m$: prob. de não cometer *erro tipo I* nos m testes
- ullet Note que estamos assumindo que os m testes são independentes
- α^* : erro conjunto tipo I
- Logo, $1-\alpha^*=(1-\alpha)^m$ e $\alpha^*=1-(1-\alpha)^m$

Múltiplos Testes

Exemplo - Mouse Data

- m = 14
- $\alpha = 0.05$
- Qual a probabilidade de ocorrer pelo menos um falso positivo nos 14 testes?

Princípios

Múltiplos Testes

Exemplo - Mouse Data

- m = 14
- $\alpha = 0.05$
- Qual a probabilidade de ocorrer pelo menos um falso positivo nos 14 testes?
- Resp.: $\alpha^* = 0.51$

Princípios

Múltiplos Testes

Simulação: 350 marcadores, n=300 (RC)

Múltiplos Testes

Conteúdo

- Teste de Segregação
 - Testes de Hipóteses
 - p-valores
 - Teste de Aderência
- Múltiplos Testes
 - Princípios
 - Correção de Bonferroni
 - False Discovery Rate (FDR)
- Referências

Bonferroni

Šidák

$$1 - \alpha^* = (1 - \alpha)^m$$

$$\sqrt[m]{1 - \alpha^*} = 1 - \alpha$$

$$\alpha = 1 - \sqrt[m]{1 - \alpha^*}$$

Bonferroni

$$\alpha^* = 1 - (1 - \alpha)^m = m\alpha - {m \choose 2}\alpha^2 + {m \choose 3}\alpha^3 - {m \choose 4}\alpha^4 + \cdots$$

$$\alpha \approx \frac{\alpha^*}{m}$$

Bonferroni

Šidák

$$1 - \alpha^* = (1 - \alpha)^m$$

$$\sqrt[m]{1 - \alpha^*} = 1 - \alpha$$

$$\alpha = 1 - \sqrt[m]{1 - \alpha^*}$$

Bonferroni

$$\alpha^* = 1 - (1 - \alpha)^m = m\alpha - {m \choose 2}\alpha^2 + {m \choose 3}\alpha^3 - {m \choose 4}\alpha^4 + \cdots$$

$$\alpha \approx \frac{\alpha^*}{m}$$

Bonferroni

Exemplo - Mouse Data

- m = 14
- $\alpha^* = 0.05$
- Qual valor de α deve ser usado em cada teste para garantir esse valor global de 5%?

Bonferroni

Exemplo - Mouse Data

- m = 14
- $\alpha^* = 0.05$
- Qual valor de α deve ser usado em cada teste para garantir esse valor global de 5%?
- Resp.: $\alpha = 0.00357$ (menor que 0.05)

Bonferroni

Simulação: 350 marcadores, n=300 (RC)

Múltiplos testes - mapas genéticos

Pontos para reflexão

- ullet Os m testes são independentes no caso dos mapas genéticos?
- São graves as consequências de não descartar marcas que não segregam mendelianamente?
 - SIM Fu e Ritland. 1994, Lorieux et al. 1995a, b; Vogl e Xu 2000; Luo e Xu 2003; Luo et al. 2005; Wang et al. 2005 NÃO Zhao-Bang Zeng
 - TALVEZ Xu, S. 2008. Quantitative trait locus mapping can benefit from segregation distortion. *Genetics* 180 (4): 2201-2208.
- A correção de Bonferroni é conhecidamente conservativa.

Múltiplos testes - mapas genéticos

Pontos para reflexão

- ullet Os m testes são independentes no caso dos mapas genéticos?
- São graves as consequências de não descartar marcas que não segregam mendelianamente?

SIM Fu e Ritland. 1994, Lorieux et al. 1995a, b; Vogl e Xu 2000; Luo e Xu 2003; Luo et al. 2005; Wang et al. 2005

NAO Zhao-Bang Zeng

TALVEZ Xu, S. 2008. Quantitative trait locus mapping can benefit from segregation distortion. *Genetics* 180 (4): 2201-2208.

A correção de Bonferroni é conhecidamente conservativa.

Múltiplos testes - mapas genéticos

Pontos para reflexão

- ullet Os m testes são independentes no caso dos mapas genéticos?
- São graves as consequências de não descartar marcas que não segregam mendelianamente?

SIM Fu e Ritland. 1994, Lorieux et al. 1995a, b; Vogl e Xu 2000; Luo e Xu 2003; Luo et al. 2005; Wang et al. 2005

NAO Zhao-Bang Zeng

TALVEZ Xu, S. 2008. Quantitative trait locus mapping can benefit from segregation distortion. *Genetics* 180 (4): 2201-2208.

A correção de Bonferroni é conhecidamente conservativa.

Múltiplos testes - mapas genéticos

Pontos para reflexão

- ullet Os m testes são independentes no caso dos mapas genéticos?
- São graves as consequências de não descartar marcas que não segregam mendelianamente?

SIM Fu e Ritland. 1994, Lorieux et al. 1995a, b; Vogl e Xu 2000; Luo e Xu 2003; Luo et al. 2005; Wang et al. 2005

NÃO Zhao-Bang Zeng

TALVEZ Xu, S. 2008. Quantitative trait locus mapping can benefit from segregation distortion. *Genetics* 180 (4): 2201-2208.

A correção de Bonferroni é conhecidamente conservativa.

Múltiplos testes - mapas genéticos

Pontos para reflexão

- ullet Os m testes são independentes no caso dos mapas genéticos?
- São graves as consequências de não descartar marcas que não segregam mendelianamente?

SIM Fu e Ritland. 1994, Lorieux et al. 1995a, b; Vogl e Xu 2000; Luo e Xu 2003; Luo et al. 2005; Wang et al. 2005

NÃO Zhao-Bang Zeng

- TALVEZ Xu, S. 2008. Quantitative trait locus mapping can benefit from segregation distortion. *Genetics* 180 (4): 2201-2208.
- A correção de Bonferroni é conhecidamente conservativa.

Múltiplos testes - mapas genéticos

Pontos para reflexão

- ullet Os m testes são independentes no caso dos mapas genéticos?
- São graves as consequências de não descartar marcas que não segregam mendelianamente?

SIM Fu e Ritland. 1994, Lorieux et al. 1995a, b; Vogl e Xu 2000; Luo e Xu 2003; Luo et al. 2005; Wang et al. 2005

NÃO Zhao-Bang Zeng

- TALVEZ Xu, S. 2008. Quantitative trait locus mapping can benefit from segregation distortion. *Genetics* 180 (4): 2201-2208.
- A correção de Bonferroni é conhecidamente conservativa.

"Naive approach" para mapas genéticos

• Assumindo independência condicional (propriedade markoviana)

$$\underbrace{M_1, M_2, \dots, M_i}_{\text{37.5 cM}}, \underbrace{M_{i+1}, M_{i+2}, \dots, M_m}_{\text{37.5 cM}}$$

$$\underbrace{M_1, M_2, \dots, M_i}_{(1-\alpha) \cdot 1 \dots \cdot 1}, \underbrace{M_{i+1}, M_{i+2}, \dots, M_m}_{(1-\alpha) \cdot 1 \dots \cdot 1}$$

$$1 - \alpha^* = (1 - \alpha)^2 = (1 - \alpha)^{m^*}$$

Número de Testes

$$m^* = \frac{L}{37.5}$$

Múltiplos Testes

Conteúdo

- Teste de Segregação
 - Testes de Hipóteses
 - p-valores
 - Teste de Aderência
- Múltiplos Testes
 - Princípios
 - Correção de Bonferroni
 - False Discovery Rate (FDR)
- Referências

- False Discovery Rate: alternativa para controle do erro tipo I
- Seu uso é frequente em experimentos de expressão gênica, SNPs (genômica), etc (e várias outras áreas)
- Motivação: usar $\alpha=0.05$ (ou $\alpha=0.01$) fornece muitos falso positivos; usar α^* elimina muitos positivos verdadeiros
- Princípio: dados os resultados significativos, determina-se quantos deles (proporção) são verdadeiramente significativos (1 FDR)

- False Discovery Rate: alternativa para controle do erro tipo I
- Seu uso é frequente em experimentos de expressão gênica, SNPs (genômica), etc (e várias outras áreas)
- Motivação: usar $\alpha=0.05$ (ou $\alpha=0.01$) fornece muitos falso positivos; usar α^* elimina muitos positivos verdadeiros
- Princípio: dados os resultados significativos, determina-se quantos deles (proporção) são verdadeiramente significativos (1-FDR)

- False Discovery Rate: alternativa para controle do erro tipo I
- Seu uso é frequente em experimentos de expressão gênica, SNPs (genômica), etc (e várias outras áreas)
- Motivação: usar $\alpha=0.05$ (ou $\alpha=0.01$) fornece muitos falso positivos; usar α^* elimina muitos positivos verdadeiros
- Princípio: dados os resultados significativos, determina-se quantos deles (proporção) são verdadeiramente significativos (1-FDR)

- False Discovery Rate: alternativa para controle do erro tipo I
- Seu uso é frequente em experimentos de expressão gênica, SNPs (genômica), etc (e várias outras áreas)
- Motivação: usar $\alpha=0.05$ (ou $\alpha=0.01$) fornece muitos falso positivos; usar α^* elimina muitos positivos verdadeiros
- Princípio: dados os resultados significativos, determina-se quantos deles (proporção) são verdadeiramente significativos (1 -FDR)

Resultados possíveis

m p-valores

	Signif.	Não signif.	Total
H_0 verdadeiro H_a verdadeiro	F T	$m_0 - F$ $m_1 - T$	$m_0 \\ m_1$
Total	S	m-S	m

	Signif.	Não signif.	Total
H_0 verdadeiro H_a verdadeiro Total	F T S	$m_0 - F$ $m_1 - T$ $m - S$	$m_0 \\ m_1 \\ m$

Definição

FDR: É a proporção esperada de falsas descobertas dentre as hipóteses ${\cal H}_0$ rejeitadas

$$\frac{\text{n. falsos positivos}}{\text{n. testes significativos}} = \frac{F}{F+T} = \frac{F}{S}$$

$$FDR = E\left[\frac{F}{F+T}\right] = E\left[\frac{F}{S}\right]$$

	Signif.	Não signif.	Total
H_0 verdadeiro H_a verdadeiro Total	F T S	$m_0 - F$ $m_1 - T$ $m - S$	$m_0 \\ m_1 \\ m$

Definição

FDR: É a proporção esperada de falsas descobertas dentre as hipóteses ${\cal H}_0$ rejeitadas

$$\frac{\text{n. falsos positivos}}{\text{n. testes significativos}} = \frac{F}{F+T} = \frac{F}{S}$$

$$FDR = E\left[\frac{F}{F+T}\right] = E\left[\frac{F}{S}\right]$$

	Signif.	Não signif.	Total
H_0 verdadeiro H_a verdadeiro Total	F T S	$m_0 - F$ $m_1 - T$ $m - S$	$m_0 \ m_1 \ m$

- Seja t o threshold (limiar) usado para considerar os p-valores como significativos (0 $< t \le 1$)
- Para m muito grande (p. ex., milhares):

$$FDR(t) = E\left[\frac{F(t)}{S(t)}\right] \approx \frac{E[F(t)]}{E[S(t)]}$$

- Uma estimativa de E[S(t)] é o número S(t) observado (isto é, o número observado de $\emph{p-valores}$ menores ou iguais a \emph{t})
- $E[F(t)] = m_o.t$

	Signif.	Não signif.	Total
H_0 verdadeiro H_a verdadeiro Total	F T S	$m_0 - F$ $m_1 - T$ $m - S$	$m_0 \ m_1 \ m$

- Seja t o threshold (limiar) usado para considerar os p-valores como significativos (0 $< t \le 1$)
- Para m muito grande (p. ex., milhares):

$$FDR(t) = E\left[\frac{F(t)}{S(t)}\right] \approx \frac{E[F(t)]}{E[S(t)]}$$

- Uma estimativa de E[S(t)] é o número S(t) observado (isto é, o número observado de $\emph{p-valores}$ menores ou iguais a \emph{t})
- $E[F(t)] = m_o.t$

	Signif.	Não signif.	Total
H_0 verdadeiro H_a verdadeiro Total	F T S	$m_0 - F$ $m_1 - T$ $m - S$	$m_0 \ m_1 \ m$

- Seja t o threshold (limiar) usado para considerar os p-valores como significativos (0 $< t \le 1$)
- Para m muito grande (p. ex., milhares):

$$FDR(t) = E\left[\frac{F(t)}{S(t)}\right] \approx \frac{E[F(t)]}{E[S(t)]}$$

- Uma estimativa de E[S(t)] é o número S(t) observado (isto é, o número observado de $\emph{p-valores}$ menores ou iguais a \emph{t})
- $E[F(t)] = m_o.t$

	Signif.	Não signif.	Total
H_0 verdadeiro H_a verdadeiro Total	F T S	$m_0 - F$ $m_1 - T$ $m - S$	$m_0 \ m_1 \ m$

- Seja t o threshold (limiar) usado para considerar os p-valores como significativos (0 $< t \le 1$)
- Para m muito grande (p. ex., milhares):

$$FDR(t) = E\left[\frac{F(t)}{S(t)}\right] \approx \frac{E[F(t)]}{E[S(t)]}$$

- Uma estimativa de E[S(t)] é o número S(t) observado (isto é, o número observado de $\emph{p-valores}$ menores ou iguais a \emph{t})
- $E[F(t)] = m_o.t$

	Signif.	Não signif.	Total
H_0 verdadeiro H_a verdadeiro Total	F T S	$m_0 - F$ $m_1 - T$ $m - S$	$m_0 \\ m_1 \\ m$

- Note que m_0 não é conhecido!
- É usual considerar $\pi_0=m_0/m$, e não m_0 (fácil interpretação)

	Signif.	Não signif.	Total
H_0 verdadeiro H_a verdadeiro Total	F T S	$m_0 - F$ $m_1 - T$ $m - S$	$m_0 \\ m_1 \\ m$

- Note que m_0 não é conhecido!
- ullet É usual considerar $\pi_0=m_0/m$, e não m_0 (fácil interpretação)

FDR

	Signif.	Não signif.	Total
H_0 verdadeiro	F	$m_0 - F$ $m_1 - T$	m_0
H_a verdadeiro	T		m_1
Total	S	m - S	m

- Note que m_0 não é conhecido!
- ullet É usual considerar $\pi_0=m_0/m$, e não m_0 (fácil interpretação)

Estimativa do FDR

$$\widehat{FDR}(t) = \frac{m_0.t}{S(t)} = \frac{\hat{\pi}_0 m.t}{S(t)}$$

FDR

FDR

Simulação - 350 locos (1:1) sob H_0

FDR

Cálculo

$$\widehat{FDR}(t) = \frac{\widehat{\pi}_0 m.t}{S(t)}$$

$$t = \frac{\widehat{FDR}(t).S(t)}{\widehat{\pi}_0 m}$$

Simulação

100 ind., 5000 marc. (3500 1:1 e 1500 3:1), teste para 1:1

 π_0

Estimativas de π_0

Análise visual

$$\hat{\pi}_0 = \frac{0.8 \times 750}{0.2 \times 2200 + 0.8 \times 750} = 0.59$$

• Software Q-VALUE http:

```
library(qvalue)
q. <- qvalue(X[,1])
q.
$pi0
[1] 0.5648856
$qvalues
     [1] 1.756017e-11 9.618898e-11 ...
...</pre>
```

Valor Real

•
$$\pi_0 = \frac{m_0}{m} = \frac{3500}{3500 + 1500} = 0.70$$

 π_0

Estimativas de π_0

Análise visual

$$\hat{\pi}_0 = \frac{0.8 \times 750}{0.2 \times 2200 + 0.8 \times 750} = 0.59$$

Software Q-VALUE

```
http:
//genomine.org/qvalue/
```

```
library(qvalue)
q. <- qvalue(X[,1])
q.

$pi0
[1] 0.5648856

$qvalues
[1] 1.756017e-11 9.618898e-11 ...
```

Valor Real

•
$$\pi_0 = \frac{m_0}{m} = \frac{3500}{3500 + 1500} = 0.70$$

 π_0

Estimativas de π_0

Análise visual

$$\hat{\pi}_0 = \frac{0.8 \times 750}{0.2 \times 2200 + 0.8 \times 750} = 0.59$$

Software Q-VALUE

```
http:
//genomine.org/qvalue/
```

```
library(qvalue)
q. <- qvalue(X[,1])
q.
$pi0
[1] 0.5648856
$qvalues
[1] 1.756017e-11 9.618898e-11 ...
```

Valor Real

$$\bullet$$
 $\pi_0 = \frac{m_0}{m} = \frac{3500}{3500 + 1500} = 0.70$

FDR vs Erro Tipo I

	Signif.	Não signif.	Total
H_0 verdadeiro H_a verdadeiro Total	F T S	$m_0 - F$ $m_1 - T$ $m - S$	$m_0 \\ m_1 \\ m$

- Erro Tipo I: $\frac{II}{II+III}$
- FDR: $\frac{II}{I+II}$

Comparação

$$t = \frac{FDR(t).i}{\pi_0 m}$$
$$\alpha = \frac{\alpha^*}{m}$$

Atenção FDR é conservativo

FDR vs Erro Tipo I

	Signif.	Não signif.	Total
H_0 verdadeiro H_a verdadeiro Total	F T S	$m_0 - F$ $m_1 - T$ $m - S$	$m_0 \\ m_1 \\ m$

• Erro Tipo I: $\frac{II}{II+III}$

ullet FDR: $rac{II}{I+II}$

Comparação

$$t = \frac{FDR(t).i}{\pi_0 m}$$
$$\alpha = \frac{\alpha^*}{m}$$

Atenção FDR é conservativo

FDR vs Erro Tipo I

	Signif.	Não signif.	Total
H_0 verdadeiro	F	$m_0 - F$	m_0
H_a verdadeiro	T	$m_1 - T$	m_1
Total	S	m - S	m

- Erro Tipo I: $\frac{II}{II+III}$
- FDR: $\frac{II}{I+II}$

Comparação

$$t = \frac{FDR(t).i}{\pi_0 m}$$
$$\alpha = \frac{\alpha^*}{m}$$

Atenção

FDR é conservativo

Dados reais

Hedenfalk et al. 2001

- Expressão diferencial de 3226 genes (câncer)
- Usando p-valor 0.001 para determinar significância, encontraram 51 genes diferencialmente expressos (sugestivos), sendo apenas 9-11 deles tomados como diferencialmente expressos
- Com base nos q-valores (limiar 0.05), Storey e Tibshirani (2003)

Dados reais

Hedenfalk et al. 2001

- Expressão diferencial de 3226 genes (câncer)
- Usando p-valor 0.001 para determinar significância, encontraram 51 genes diferencialmente expressos (sugestivos), sendo apenas 9-11 deles tomados como diferencialmente expressos

Múltiplos Testes

• Com base nos q-valores (limiar 0.05), Storey e Tibshirani (2003) encontraram evidências de que 160 genes são diferencialmente expressos (sendo que cerca de 8 desses 160 possivelmente sejam falsos positivos)

Considerações Finais

- FDR: balanço entre o número de falsos positivos e o número de positivos verdadeiros
- Interessante para estudos exploratórios (ex: expressão gênica), em que não faz sentido preocupar-se em demasia com os genes sob H_0
- Não é recomendado para mapas genéticos ou QTLs (!)
- Pode ser interessante para Mapeamento Associativo
- Trabalhos recentes consideram o problema da dependência dos testes (discutiremos oportunamente)

Considerações Finais

- FDR: balanço entre o número de falsos positivos e o número de positivos verdadeiros
- ullet Interessante para estudos exploratórios (ex: expressão gênica), em que não faz sentido preocupar-se em demasia com os genes sob H_0
- Não é recomendado para mapas genéticos ou QTLs (!)
- Pode ser interessante para Mapeamento Associativo
- Trabalhos recentes consideram o problema da dependência dos testes (discutiremos oportunamente)

Considerações Finais

- FDR: balanço entre o número de falsos positivos e o número de positivos verdadeiros
- ullet Interessante para estudos exploratórios (ex: expressão gênica), em que não faz sentido preocupar-se em demasia com os genes sob H_0
- Não é recomendado para mapas genéticos ou QTLs (!)
- Pode ser interessante para Mapeamento Associativo
- Trabalhos recentes consideram o problema da dependência dos testes (discutiremos oportunamente)

Considerações Finais

- FDR: balanço entre o número de falsos positivos e o número de positivos verdadeiros
- ullet Interessante para estudos exploratórios (ex: expressão gênica), em que não faz sentido preocupar-se em demasia com os genes sob H_0
- Não é recomendado para mapas genéticos ou QTLs (!)
- Pode ser interessante para Mapeamento Associativo
- Trabalhos recentes consideram o problema da dependência dos testes (discutiremos oportunamente)

Considerações Finais

- FDR: balanço entre o número de falsos positivos e o número de positivos verdadeiros
- ullet Interessante para estudos exploratórios (ex: expressão gênica), em que não faz sentido preocupar-se em demasia com os genes sob H_0
- Não é recomendado para mapas genéticos ou QTLs (!)
- Pode ser interessante para Mapeamento Associativo
- Trabalhos recentes consideram o problema da dependência dos testes (discutiremos oportunamente)

Principais Referências

- Storey, John D.; Tibshirani, Robert Statistical significance for genomewide studies *Proc. Nat. Acad. Sci.* 100: 9440-9445, 2003
- Storey, John D.
 False Discovery Rates
 International Encyclopedia of Statistical Science 1: 504-508, 2011
 - Käll, L.; Storey, J. D.; MacCoss, M. J.; Noble, W. S. Posterior error probabilities and false discovery rates: two sides of the same coin

Journal of Proteome Research 7: 40-44, 2008