Teoria dei Sistemi (Mod. A)

Lezione 5: esercizi

Esercizio 1. Si consideri la matrice

$$F = \begin{bmatrix} 2 & -4 \\ 1 & -2 \end{bmatrix}.$$

Si calcoli la forma di Jordan di F e la matrice di cambio di base.

Esercizio 2. Sia

$$F = \begin{bmatrix} 1 & 1 & 1 \\ 0 & f & 1 \\ 0 & 0 & 1 \end{bmatrix}, \quad f \in \mathbb{R}.$$

Si calcoli la forma di Jordan di F al variare del parametro $f \in \mathbb{R}$ (non è richiesto il calcolo esplicito della matrice di cambio di base, quando non necessario).

Esercizio 3. Sia

$$F = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & f & 1 \\ 0 & 0 & 0 & 0 & f \end{bmatrix}, \quad f \in \mathbb{R}.$$

Si calcoli la forma di Jordan di F e la matrice di cambio di base al variare del parametro $f \in \mathbb{R}$.

Esercizio 4. Si consideri la matrice

$$F = \begin{bmatrix} 1 & 0 & 0 \\ f & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad f \in \mathbb{R}.$$

Si calcoli la forma di Jordan di F (senza un calcolo della matrice di cambio di base) e il polinomio minimo di F al variare di $f \in \mathbb{R}$.

Esercizio 5 (difficile). Si consideri la matrice

$$F = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}.$$

Si calcoli e^{Ft} , $t \ge 0$, sfruttando il teorema di Cayley–Hamilton.

Soluzioni

Esercizio 1.
$$F_J = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, T = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}.$$

Esercizio 2.
$$F_J = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & f \end{bmatrix}$$
 se $f \neq 0, 1, F_J = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ se $f = 0, F_J = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ se $f = 1$.

Esercizio 4.
$$F_J = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 se $f \neq 0, F_J = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ se $f = 0$.

Esercizio 5.
$$e^{Ft} = \begin{bmatrix} 2e^{-t} - e^{-2t} & e^{-t} - e^{-2t} \\ 2e^{-2t} - 2e^{-t} & 2e^{-2t} - e^{-t} \end{bmatrix}$$
.

(suggerimento: per Cayley-Hamilton abbiamo $\Delta_F(F) = 0 \Rightarrow F^k = \alpha_{1,k}F + \alpha_{0,k}I$, $\forall k$, con $\alpha_{0,k}, \alpha_{1,k} \in \mathbb{R}$. Quindi, $e^{Ft} = \alpha_0(t)I + \alpha_1(t)F$, con $\alpha_0(t)$ $\alpha_1(t)$ da determinarsi).