Week 2

1 Independent random variables

Definition: Two random variables X_1, X_2 are said to be independent if,

$$P(X_1 = x_1, X_2 = x_2) = P(X_1 = x_1)P(X_2 = x_2) \quad \forall \ x_1 \in \mathcal{X}_1 \& \ x_2 \in \mathcal{X}_2$$

$$P(X_1 = x_1, X_2 = x_2)$$
 means that $X_1 = x_1$ **AND** $X_2 = x_2$ occur.

1.1 Claim

$$\sum_{x_2 \in \mathcal{X}_2} P(X_1 = x_1, X_2 = x_2) = P(X_1 = x_1)$$

Proof: Suppose A & B are disjoint/mutually exclusive. Then,

$$P(A \cap B) = 0$$
 & $P(A \cup B) = P(A) + P(B)$

Now the events $(X_1 = x_1) \cap (X_2 = x_2)$ are disjoint for different values of $x_2 \in \mathcal{X}_2$. (if $x_2 \neq x_2' \ \forall \ x_2 \in \mathcal{X}_2$)

$$\sum_{x_2 \in \mathcal{X}_2} P(X_1 = x_1, X_2 = x_2) = \sum_{x_2 \in \mathcal{X}_2} P((X_1 = x_1) \cap (X_2 = x_2))$$
$$= P\left(\bigcup_{x_2 \in \mathcal{X}_2} (X_1 = x_1) \cap (X_2 = x_2)\right)$$

Now,

$$\bigcup_{x_2 \in \mathcal{X}_2} [(X_1 = x_1) \cap (X_2 = x_2)] = (X_1 = x_1) \bigcap \left[\bigcup_{x_2 \in \mathcal{X}_2} (X_2 = x_2) \right]$$
$$= (X_1 = x_1) \bigcap [x_2 \in \mathcal{X}_2]$$

As $[x_2 \in \mathcal{X}_2]$ forms the entire sample space,

$$P\left(\bigcup_{x_2 \in \mathcal{X}_2} (X_1 = x_1) \cap (X_2 = x_2)\right) = P\left((X_1 = x_1) \bigcap [x_2 \in \mathcal{X}_2]\right)$$
$$= P\left((X_1 = x_1) \bigcap \Omega\right)$$
$$= P(X_1 = x_1)$$

2 Lemma

Suppose $X_1 \in \mathcal{X}_1 \& X_2 \in \mathcal{X}_2$ are **independent** random variables. Then,

$$H(X_1, X_2) = H(X_1) + H(X_2)$$

Proof:

$$\sum_{\substack{x_1 \in \mathcal{X}_1 \\ x_2 \in \mathcal{X}_2}} P(X_1 = x_1, X_2 = x_2) \log \left(\frac{1}{P(X_1 = x_1, X_2 = x_2)} \right)$$

$$= \sum_{x_1 \in \mathcal{X}_1} \sum_{x_2 \in \mathcal{X}_2} P(X_1 = x_1, X_2 = x_2) \left[\log \frac{1}{P(X_1 = x_1)} + \log \frac{1}{P(X_2 = x_2)} \right]$$

$$= \sum_{x_1 \in \mathcal{X}_1} \log \frac{1}{P(X_1 = x_1)} \left(\sum_{x_2 \in \mathcal{X}_2} P(X_1 = x_1, X_2 = x_2) \right)$$

$$+ \sum_{x_2 \in \mathcal{X}_2} \log \frac{1}{P(X_2 = x_2)} \left(\sum_{x_1 \in \mathcal{X}_1} P(X_1 = x_1, X_2 = x_2) \right)$$

From the previous claim,

$$H(X_1, X_2) = \sum_{x_1 \in \mathcal{X}_1} P(X_1 = x_1) \log \frac{1}{P(X_1 = x_1)}$$

$$+ \sum_{x_2 \in \mathcal{X}_2} P(X_2 = x_2) \log \frac{1}{P(X_2 = x_2)}$$

$$= H(X_1) + H(X_2)$$

2.1 Conditional probability distribution

What if $X_1 & X_2$ are not independent? Then we would use conditional probability distribution. i.e.

$$P(X_2 = x_2/X_1 = x_1) := \frac{P(X_2 = x_2, X_1 = x_1)}{P(X_1 = x_1)}, \quad P(X_1 = x_1) \neq 0$$

This definition for conditional probability satisfies the probability axioms and hence it is a valid probability measure.

2.2 Conditional entropy

Definition:

$$H(X_2/X_1) := \sum_{x_1 \in \mathcal{X}_1} P(X_2 = x_2) H(X_2/X_1 = x_1)$$

where,

$$H(X_2/X_1 = x_1) := \sum_{x_2 \in \mathcal{X}_2} P(X_2 = x_2/X_1 = x_1) \log \frac{1}{P(X_2 = x_2/X_1 = x_1)}$$

2.2.1 Support of a function

When P(X = x) = 0, it is not considered in calculating the entropy.

$$H(X) = -\sum_{\{x \in \mathcal{X}: P(X=x) \neq 0\}} P(X=x) log(P(X=x))$$

Suppose that $f\colon X\to R$ is a real-valued function whose domain is an arbitrary set X. The set-theoretic support of f, written $\mathrm{supp}(f)$, is the set of points in X where f is non-zero:

$$supp(X) = \{x \in X : f(x) \neq 0\}$$

Note: P(X = x) can be denoted as $P_X(x)$ or P(x). Hence:

$$H(X) = -\sum_{x \in supp(P)} P(x)log(P(x))$$

2.3 Chain Rule

$$H(X_1, X_2) = H(X_1) + H(X_2/X_1)$$
$$= H(X_2) + H(H_1/X_2)$$

Proof: