Relatório — Propagação de informação em rede

Bruno Kenji Sato kenji.sato21@unifesp.br Guilherme Gimenes Diogo guilherme.gimenes@unifesp.br

Leonardo Loureiro Costa leonardo.costa@unifesp.br

Resumo—Entender o fluxo de informações em rede é chave para compreender o comportamento de doenças epidemiológicas. Neste relatório será apresentada a modelagem matemática do crescimento de uma população de patógenos em um determinado indivíduo e, também, como ela se espalha em uma rede livre de escala.

I. INTRODUÇÃO

A. Modelos matemáticos

Para modelar o comportamento do patógeno no corpo do indivíduo serão utilizadas as equações 1 e 2; a primeira modela uma curva logística; a segunda, uma parábola.

$$\frac{dV}{dt} = V.(1 - \frac{V}{k}).0, 1\tag{1}$$

Onde:

V(t): População do patógeno em um indivíduo t

 $\frac{dV}{dt}$: Taxa de variação do crescimento k: Limite da população

$$\frac{dC}{dt} = \gamma.C \tag{2}$$

Onde:

C: Representa o sistema imunológico t

 $\frac{dC}{dt}$: Taxa de variação do sistema imunológico γ : Eficiência do sistem imunológico

Para esta simulação serão consideradas as seguintes proposições:

- A população de patógeno cresce de forma logística, isto é: atinge uma população máxima, a qual não ultrapassa.
- Um indivíduo pode estar em 1 de três estados: suscetível, infectado — mas não transmissor — , e infectado e transmissor.
- A doença não é mortal e não há possibilidade de reinfecção.

B. Redes e Grafos

Para as simulações serão utilizados grafos gerados aleatoriamente, redes livres de escalas no modelo Barabási-Albert [1]. Essas redes proporcionam um grafo similar aos das relações interpessoais humanas: "the rich gets richer-- há muitos invidíduos com poucas conexões e poucos indivíduos com muitas conexões.

II. PROCEDIMENTO

A fim de obter os resultados da simulação o método de Euler foi aplicado nas equações diferenciais para a obtenção das equações 3 e 4.

$$\Delta V = V.(1 - \frac{V}{k}).0, 1.\Delta t \tag{3}$$

Onde:

V(t): População do patógeno em um indivíduo t k : Limite da população

$$\Delta C = \gamma . C. \Delta t \tag{4}$$

Onde:

C: Representa o sistema imunológico t γ : Eficiência do sistem imunológico

Desta forma é possível assumir um valor para Δt , para este relatório o valor utilizado será 0,01s.

Para este relatório serão analisadas 4 situações diferentes, dentre elas:

- 1) Simulação exemplo do modelo.
- 2) Análise da influência da intensidade do sistema imunológico de um indivíduo na quantidade de infectados transmissores.
- 3) Análise da influência do grau de conexão da rede no número de elementos infectados transmissores.
- 4) A influência do limiar de transmissibilidade no número total de infectados.

Para os itens 2 – 4 serão realizadas 10 simulações, todas com "seeds"aleatórias, de modo a obter uma maior precisão nas afirmações realizadas sobre os resultados, dado que o algorítimo é estocástico.

III. RESULTADOS

A. Situação 1

Para ilustrar o funcionamento da simulação o modelo foi testado com os parâmetros da tabela I.

Parâmetros	Valores
Tmax	1000
DT	0.01
k	100
θ	60
p	0.1%
N	20
M	4
pMin	0.01
pMax	0.08
seed	10
graphSeed	10
Ω	10

Tabela I

O grafo utilizado está ilustrado na figura 1

Figura 1: Grafo de uma rede com 20 elementos

Observam-se na figura 2 cinco gráficos, o de cima apresenta curvas, onde cada uma ilustra a população de patógenos dentro de cada indivíduo. Observa-se o crescimento inicialmente logístico que rapidamente decai exponencialmente. Uma linha em y=60 exemplifica o limiar que define se uma pessoa é ou não transmissora da doença.

Os três gráficos centrais mostram, respectivamente, da esquerda para a direita, a distribuição de graus do grafo gerado, um histograma de graus, e o tempo em que cada indivíduo transmissor primeiro

teve sua população de patógenos igual ou superior a 60 — ordenados em ordem crescente.

O último gráfico apresenta a quantidade de elementos transmissores da doença dado um determinado instante t.

Figura 2

B. Situação 2

Para as simulações da situação 2 e das seguintes foi utilizada a rede da figura 3, uma rede livre de escala, com 500 elementos e grau médio 4. De modo a manter uma uniformidade da rede, variando apenas os parâmetros da simulação e dos eventos estocásticos, os grafos gerados para cada uma das simulações possuem a mesma "seed— base para gerar números pseudoaleatórios — de geração.

A partir desse grafo foi simulado como a doença se espalharia. Os parâmetros utilizados estão presentes na tabela II. Onde Tmax representa o tempo máximo da simulação em segundos; DT, o passo de integração; k, a saturação da população de patógenos; θ , o limiar de transmissão; N, o número de elementos da rede; M, metade do grau médio de conexão; pMin e pMax, os parâmetros que definem o sistema imunológico do indivíduo; seed, a seed aleatória dos parâmetros estocásticos da simulação;

Figura 3: Grafo de uma rede com 500 elementos

Parâmetros	Valores
Tmax	1500
DT	0.01
k	100
θ	60
p	0.1%
N	500
M	2
pMin	_
pMax	_
seed	_
graphSeed	10
Ω	10

Tabela II

Simulações	pMin	pMax
SI Bom	0.04	0.10
SI Normal	0.01	0.08
SI Ruim	0.01	0.04

Tabela III

graphSeed, a seed do grafo da figura 3; e Ω , a taxa de amostragem da simulação.

A "seed"não possui valor fixo na tabela II pois seu valor foi gerado durante a simulação, utilizando o tempo real como parâmetro. pMin e pMax variaram segundo a tabela III.

A partir desses valores foram feitas 10 simulações para cada situação da tabela III. O gráfico da figura 4 mostra o número médio de infectados em função do tempo de cada uma das situações da eficiência do sistema imunológico. Observa-se que para valores maiores de pMin e pMax o número de casos diminui; para valores menores, aumenta.

As Simulações com o sistema imunológico bom

Figura 4: Média de 10 simulações da população transmissora da doença em função do tempo

resultaram em uma média de apenas 2,2 pessoas infectadas, com um desvio padrão de 1,4; as com o SI normal resultaram em uma média de 115,5 pessoas, com um desvio padrão de 26,3; as com o SI ruim resultaram em uma média de 447,6 pessoas, com um desvio padrão de 15,3 pessoas.

Dessa forma é possível afirmar que o número de infectados é maior quanto menos eficiente for o sistema imunológico.

C. Situação 3

Analogamente à situação 2, na situação 3 foram feitas 10 simulações para cada condição, sendo estas: uma rede de grau 2, uma rede de grau 4, e uma rede de grau 6. Os parâmetros da simulação estão presentes na tabela IV. A seed utilizada também é baseada no tempo real da simulação.

¥7 1
Valores
1500
0.01
100
60
0.1%
500
_
0.01
0.08
_
10
10

Tabela IV

Observa-se na figura 5 que quanto maior é o grau de conexão, mais pessoas se infectam com o patógeno ao ponto de se tornarem transmissoras.

Figura 5: Média de 10 simulações da população transmissora da doença em função do tempo

A média do número de transmissores para a rede de grau 2 é de 25 pessoas, com desvio padrão de 12,4; para a rede de grau 4 a média é de 108,6 pessoas e o desvio padrão de 55,5; para a rede de grau 6 a média é de 189,3 pessoas e o desvio padrão de 25,7.

Evidencia-se, portanto, que o aumento no grau de conexão da rede também influencia diretamente na quantidade de pessoas infectadas e na quantidade de pessoas transmissoras por unidade de tempo.

D. Situação 4

Analogamente às situações 2 e 3, na situação 4 foi testada a quantidade de infectados da rede quando o limiar de transmissibilidade é menor que o usual.

Os valores utilizados na simulação estão presentes na tabela V. Os valores de θ são 40 para as primeiras 10 simulações e 60 para as outras 10.

Parâmetros	Valores
Tmax	1500
DT	0.01
k	100
θ	_
p	0.1%
N	500
M	2
pMin	0.01
pMax	0.08
seed	_
graphSeed	10
Ω	10

Tabela V

Observa-se que na figura 6 há um aumento na quantidade de infectados transmissores quando o

limiar de transmissibilidade é mais baixo. Analogamente a um sistema imunológico ruim: quanto mais fácil for para um patógeno levar um indivíduo a um estado de transmissor, com mais força a doença se espalhará na rede.

A média do número de transmissores para a rede de transmissibilidade 40 é de 206,6 pessoas, com desvio padrão de 73,7; para a rede de transmissibilidade 60 a média é de 125,1 pessoas e o desvio padrão de 36,7.

Figura 6: Média de 10 simulações da população transmissora da doença em função do tempo

IV. CONCLUSÃO

A partir das simulações realizadas e das proposições assumidas a respeito do modelo matemático é possível concluir alguns aspectos do comportamento de doenças em rede, estes são:

- Quanto maior for a janela de exposição ao patógeno maior será a probabilidade de um indivíduo saudável contrair a doença de um indivíduo infectado transmissor com quem esta pessoa tenha contato.
- 2) Quanto maior for o grau de conexão da rede maior será, em média, o número de pessoas infectadas. Dessa forma, assumir que um distanciamento social reduz o grau de conexão da rede implica na redução do número total de infectados pela doença.
- 3) Quanto menor for o limiar de transmissibilidade maior será o número de infectados.

REFERÊNCIAS

[1] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. *science*, 286(5439):509–512, 1999.