PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2004-111944

(43) Date of publication of application: 08.04.2004

(51)Int.CI.

H01F 7/02 H01F 41/02

(21)Application number: 2003-302486

(71)Applicant : SHIN ETSU CHEM CO LTD

(22)Date of filing:

27.08.2003

(72)Inventor: SATO KOJI

KAWABATA MITSUO **MINOWA TAKEHISA**

(30)Priority

Priority number : 2002250657

Priority date: 29.08.2002

Priority country: JP

(54) RADIAL ANISOTROPIC RING MAGNET AND MANUFACTURING METHOD OF THE SAME (57)Abstract:

PROBLEM TO BE SOLVED: To provide a radial anisotropic ring magnet which has excellent magnetic characteristics and a manufacturing method of the same in which the ring magnet is formed by a horizontal magnetic field vertical forming method.

SOLUTION: The magnet is characterized in that the angle formed by the central axis of the ring magnet and the direction of imparting a radial anisotropy is in the range of 80° to 100° over the whole magnet.

LEGAL STATUS

[Date of request for examination]

12.07.2005

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁(JP)

(12) 公 開 特 許 公 報(A)

(11)特許出顧公開番号

特開2004-111944

(P2004-111944A)

(43) 公開日 平成16年4月8日 (2004.4.8)

(51) Int.C1.7

HO1F 7/02 HO1F 41/02 FΙ

HO1F 7/02

HO1F 41/02

G

テーマコード(参考)

5E062

審査請求 未請求 請求項の数 9 〇L (全 14 頁)

(21) 出願番号 (22) 出願日

特願2003-302486 (P2003-302486) 平成15年8月27日 (2003.8.27)

(31) 優先權主張番号 特願2002-250657 (P2002-250657)

(32) 優先日

平成14年8月29日 (2002.8.29)

(33) 優先權主張国 日本国 (JP) (71) 出願人 000002060

信越化学工業株式会社

東京都千代田区大手町二丁目6番1号

(74) 代理人 100079304

弁理士 小島 隆司

(74) 代理人 100114513

弁理士 重松 沙織

(74) 代理人 100120721

弁理士 小林 克成

佐藤 孝治 (72) 発明者

福井県武生市北府2-1-5 信越化学工

業株式会社磁性材料研究所内

(72) 発明者 川端 光雄

福井県武生市北府2-1-5 信越化学工

業株式会社武生工場内

最終頁に続く

(54) [発明の名称] ラジアル異方性リング磁石及びその製造方法

(57)【要約】

【解決手段】磁石全般にわたり、リング磁石の中心軸とラジアル異方性付与方向とのなす 角度が80°以上100°以下であることを特徴とするラジアル異方性リング磁石。

【効果】本発明によれば、加圧成形により磁気特性の良好なラジアル異方性リング磁石を 提供し得る。

【選択図】なし

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、ラジアル異方性リング磁石及びその製造方法に関する。

【背景技術】

[0002]

フェライトや希土類合金のような結晶磁気異方性材料を粉砕し、特定の磁場中でプレス成形を行い作製される異方性磁石は、スピーカ、モータ、計測器、その他の電気機器等に広く使用されている。このうち特にラジアル方向に異方性を有する磁石は、磁気特性に優れ、自由な着磁が可能であり、またセグメント磁石のような磁石固定用の補強の必要もないため、ACサーボモータ、DCプラシレスモータ等に使用されている。特に近年はモータの高性能化にともない、長尺のラジアル異方性磁石が求められてきた。

10

[0003]

ラジアル配向を有する磁石は垂直磁場垂直成形法又は後方押し出し法により製造される。垂直磁場垂直成形法は、プレス方向より、コアを介して磁場を対向方向から印加し、ラジアル配向を得ることを特徴とするものである。即ち、垂直磁場垂直成形法は、図1に示されるように、配向磁場コイル2において発生させた磁場をコア4及び5を介して対向させ、コアよりダイス3を通過し、成形機架台1を経て循環するような磁気回路にて、充填磁石粉8をラジアル配向させるものである。なお、図中6は上パンチ、7は下パンチである。

20

[0004]

このように、この垂直磁場垂直成形装置において、コイルにより発生した磁界はコア、ダイス成形機架台、コアとなる磁路を形成させている。この場合、磁場漏洩損失低下のため、磁路を形成する部分の材料には強磁性体を用い、主に鉄系金属が使われる。しかし、磁石粉を配向させるための磁場強度は、以下のようにして決まってしまう。コア径をB(磁石粉充填内径)、ダイス径をA(磁石粉充填外径)、磁石粉充填高さをLとする。上下コアを通過した磁束がコア中央でぷっかり対向し、ダイスに至る。コアを通った磁束量はコアの飽和磁束密度で決定され、鉄製コアで磁束密度が20kG程度である。従って磁石粉充填内外径での配向磁場は、上下コアの通った磁束量を磁石粉充填部の内面積及び外面積で割ったものとなり、

30

2・π・(B/2)²・20/(π・A・L)=10・B²/(A・L) 外周となる。外周での磁場は内周より小さいので、磁石粉の充填部すべてにおいて良好な配向を得るには、外周で10k0e以上必要であり、このため、10・B²/(A・L)=10となり、従って、L=B²/Aとなる。成形体高さは充填粉の高さの約半分で、焼結時、更に8割程度になるので、磁石の高さは非常に小さくなる。このようにコアの飽和が配向磁界の強度を決定するためコア形状により配向可能な磁石の大きさ即ち高さが決まってしまい、円筒軸方向に長尺品を製造することが困難であった。特に、径が小さな円筒磁石では非常に短尺品しか製造することができなかった。

40

[0005]

また、後方押し出し法は設備が大掛かりで、歩留まりが惡く、安価な磁石を製造することが困難であった。

[0006]

このようにラジアル異方性磁石は、いかなる方法においても製造が困難であり、安く大量に製造することは難しく、ラジアル異方性磁石を用いたモータも非常にコストが高くなってしまうという不利があった。

[0007]

【特許文献1】特開平2-281721号公報

【特許文献2】特開平10-55929号公報

【発明の開示】

法を提供する。

- (1) 磁石全般にわたり、リング磁石の中心軸とラジアル異方性付与方向とのなす角度が 80°以上100°以下であることを特徴とするラジアル異方性リング磁石。
- (2) ラジアル異方性リング磁石におけるリング磁石中心軸との垂直面上において、ラジアル方向に対する磁石粉の平均配向度が80%以上であることを特徴とする(1) のラジアル異方性リング磁石。
- (3) リング磁石の中心軸方向の長さを内径で割った値が 0. 5 以上であることを特徴とする(1) 又は(2) のラジアル異方性リング磁石。
- (4)円筒磁石用成形金型のコアの少なくとも一部の材質に飽和磁束密度 5 k G 以上を有する強磁性体を用い、金型キャピティ内に充填した磁石粉を水平磁場垂直成形法により磁石粉に配向磁界を印加して成形することにより、ラジアル異方性リング磁石を製造する方法であって、下記(i)~(V)
- (i)磁場印加中、磁石粉を金型周方向に所定角度回転させる、
- (i i) 磁場印加後、磁石粉を金型周方向に所定角度回転させ、その後再び磁場を印加する、
- (i i i) 磁場印加中、磁場発生コイルを磁石粉に対し金型周方向に所定角度回転させる
- (i ∨) 磁場印加後、磁場発生コイルを磁石粉に対し金型周方向に所定角度回転させ、その後再び磁場を印加する、
- (∨)複数のコイル対を用い、1つのコイル対に磁場印加した後、他のコイル対に磁場を 印加する
- の操作のうち少なくとも一の操作を行い、磁石粉に対し一方向よりも多くの方向から磁場を印加して、加圧成形で製造され、磁石全般にわたりリング磁石の中心軸とラジアル異方性付与方向とのなす角度が80°以上100°以下であるラジアル異方性リング磁石を得ることを特徴とするラジアル異方性リング磁石の製造方法。
- (5) 充填磁石粉を回転させる際、コア、ダイス及びパンチのうち少なくとも1つを周方向に回転させることで充填磁石粉を回転せしめることを特徴とする(4) のラジアル異方性リング磁石の製造方法。
- (6) 磁場印加後充填磁石粉を回転させる際、強磁性コア及び磁石粉の残留磁化の値が50G以上であり、コアを周方向に回転させることで磁石粉を回転せしめることを特徴とする(4) のラジアル異方性リング磁石の製造方法。
- (7) 水平磁場垂直成形工程で発生する磁場が $0.5 \sim 10k0e$ であることを特徴とする $(4) \sim (6)$ のラジアル異方性リング磁石の製造方法。
- (8) 成形直前又は成形中の水平磁場垂直成形装置で発生する磁場が 0.5~3k0eであることを特徴とする(4)~(7)のラジアル異方性リング磁石の製造方法。
- (9)1回又は複数回の磁場印加後、コイルよりの発生磁場を0~0.5kOe未満にした状態で磁石粉を60~120°+n×180°(nは0以上の整数)で回転させ、更にその前に印加した磁場の1/20~1/3の大きさの磁場を印加し、印加後又は印加中成形することを特徴とする(4)~(8)のラジアル異方性リング磁石の製造方法。
- [0015]

本発明によれば、性能に優れ、組み立て作業性がよいラジアル異方性リング磁石を原価で大量に供給することができる。

【発明の効果】

[0016]

本発明によれば、磁気特性の良好なラジアル異方性リング磁石を提供し得る。

【発明を実施するための最良の形態】

[0017]

以下、本発明につき更に詳しく説明する。なお、以下では、主としてNdードモーB系の円筒 結磁石について説明するが、フェライト磁石、SmーCO系希土類磁石及び各種ポンド磁石等の製造においても有効であり、NdードモーB系磁石に限るものではない。

50

40

10

20

30

[0023]

また、組み立て作業性を考慮すると、リング磁石の中心方向の長さをリング磁石の内径で割った値(し寸/磁石内径)は 0 . 5 以上、好ましくは 0 . 5 ~ 5 0 とするとよい。 【 0 0 2 4 】

このようなラジアルリング磁石の製造方法は以下の水平磁場垂直成形法を採用することが好ましい。ここで、図3は、円筒磁石の成形時、磁場中配向を行うための水平磁場垂直成形装置の説明図であり、特にモータ用磁石の水平磁場垂直成形機である。ここで、図1の場合と同様、1は成形機架台、2は配向磁場コイル、3はゲイスを示し、また5のはコアを示す。6は上パンチ、7は下パンチ、8は充填磁石粉であり、また9はボールピースを示す。

[0025]

本発明においては、上記コア5のの少なくとも一部、好ましくは全体を飽和磁束密度5kG以上、好ましくは5~24kG、更に好ましくは10~24kGの強磁性体にて形成する。 かかるコア材質としては、Fe系材料、Co系材料及びそれらの合金材料等の素材を用いた強磁性体が挙げられる。

[0026]

このように、飽和磁東密度5kG以上を有する強磁性体をコアに使用すると、磁石粉に配向磁界を印加する場合、磁東は強磁性体に垂直に入ろうとするためラジアルに近い破を描く。従って、図40に示されるように、磁石粉充填部の磁界方向をラジアル配向に近づけることができる。これに対し、従来はコア56全体を非磁性又は磁石粉と同等の飽和磁東密度を有した材料を用いており、この場合、磁力線は図46に示したように、互いに平行で、図において中央付近はラジアル方向であるが、上側及び下側に向うにつれてコイルによる配向磁場方向となる。コアを強磁性体で形成してもコアの飽和磁束密度が5kG未満の場合、コアは容易に飽和してしまい、強磁性コアを用いたにもかかわらである。四46に近い状態となる。加えて、5kG未満では充填磁石粉の飽和密度(磁中の磁界方向に等しくなってしまう。

[0027]

また、コアの一部に5kG以上の強磁性体を用いた際も上記と同様な効果が得られ有効であるが、全体が強磁性体であることが好ましい。

[0028]

ただ、コア材質を単に強磁性体にて形成するだけでは、コイルによる配向磁場方向に対し垂直方向でラジアル配向とならない。磁場中に強磁性体の電場方向面では破壊体に引き寄せられるため、強磁性体の磁場方向面では破壊を度が上昇し、垂直方向では磁束密度が低下する。このため、強磁性体の面では磁束密度が上昇し、垂直方向では磁束密度が低下する。このために強場方向面では破壊を配向が得られ、垂直方向部ではあまり配向しない。これを補うために磁場をコイルに引きるのが得られ、垂直方向部ではかかに回転させ、不完全配向部を磁場方に引きるよりを配向が得られる。かかに立ては場合では、中でははの1/3以下の磁場中に相対的に回転させるといるはので磁場を変化させて再度配向することで、良好な磁石が得られる。よりははかので磁場を変化させて再度配向では、その後の配向時に垂直方向部となることがあり得るが、この部分の磁束密度は小さいので、最初の良好な配向はあまり乱されない。

[0029]

ここで、磁石粉をコイルによる発生磁場に対し、相対的に回転させる方法としては、下記(i)~(v)

- (i)磁場印加中、磁石粉を金型周方向に所定角度回転させる、
- (i i)磁場印加後、磁石粉を金型周方向に所定角度回転させ、その後再び磁場を印加す 7 .
- (i i i) 磁 場 印 加 中 、 磁 場 発 生 コ イ ル を 磁 石 粉 に 対 し 金 型 周 方 向 に 所 定 角 度 回 転 さ せ る

10

30

40

20

50

磁場が弱すぎて配向が改善されないため、 0. 5~3k O e とすることが好ましい。 更に、本発明では、数回にわたり配向させるとよいが、多段階で磁場を下げていくこと が好ましい。特に3回にわたり配向させることが好ましい。5回までにした方が特性の点 から好ましい。

(9)

[0035]

本発明は、上記のように成形するものであるが、それ以外は通常の水平磁場垂直成形法により磁石粉に配向磁界を印加して、50~2000k分子/cm²の加圧範囲で成形し、更に不活性がス下で1000~1200℃で焼結し、必要により時効処理、加工処理等を施し、焼結磁石を得ることができる。ここで、本発明においては、1回の給粉、1回の加圧で所用軸長の磁石を得ることができるが、複数回の加圧により磁石を得るようにしてもよい。

[0036]

なお、磁石粉としては、特に制限されるものではなく、Nd-Fe-B系の円筒磁石を製造する場合に好適であるほか、フェライト磁石、Sm-Co系希土類磁石、各種ポンド磁石等の製造においても有効であるが、いずれも平均粒径0.1~10μm、特に1~8μmの合金粉を用いて成形することが好ましい。

【実施例】

[0037]

以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に 制限されるものではない。

[実施例、比較例]

[0038]

せれぞれ純度 9 9. 7 重量%のN d、D y、F e、C O、M (MはA l、Si、C U) と純度 9 9. 5 重量%のBを用い、真空溶解炉で溶解鋳造してN d_2 F e_{14} B 系磁石合金 (N $d_{31.5}$ D y_2 F e_{62} C O $_3$ B $_1$ C U $_{0.2}$ A $l_{0.3}$ S i_1 (重量%)) インゴットを作製した。このインゴットをジョウクラッシャーで粗粉砕し、更に窒素気流中ジェットミル粉砕により平均粒径 3. 5 $_{L}$ m の微粉末を得た。この粉末を飽和磁束密度 2 0 k G の強磁性体コア(8 5 0 C)を配置し、図 3 の水平磁場垂直成形装置にて成形を行った。

[0039]

実施例1として、コイルの発生磁場4k〇eの磁場中において配向させた後、コイルを 90°回転させ、1k〇eの配向磁場を付与し、500k9 F/cm²の成形圧にて成形 した。この際の金型形状は φ 3 0 mm × φ 1 7 mm、キャピティ 6 0 mm、磁石粉の充填 率 3 3 %であった。成形体はAFガス中1090℃で1時間焼結を行い、引き続き490℃で1時間の熱処理を行った。このようにして得られたラジアル磁石 φ 2 6 mm × φ 1 9 mm × L 2 7 mm(L 寸/内径=1. 4)で、磁石中央部磁場方向 から 2 mm 角の磁石を 切り出し、VSMにて磁気測定を行ったところ、BF:12. 1kG、iHc:15kOe、配向度 8 9 %であった。また、リング磁石の中心軸 とラジアル異方性付与方向とのな す角度がLの中心で 8 7°、上 3 mm では 9 1°、下 3 mm では 8 9°であった。

[0040]

実施例 $2 \ 2 \ 0 \ 7$ 、実施例 $1 \ 2 \ 6$ 根 $3 \ 2 \ 8$ 、 $3 \ 7$ 化 $3 \ 7$ 化 3

[0041]

実施例3として、実施例1と同様な金型及び磁石粉を用い、磁石粉充填率32%とし、コイルの発生磁場4.5k0eの磁場中において配向させた後、先端部の残留磁化が0.

ろ、B F : 9 - 5 k G 、 i i H c : 1 6 k O e 、 配向度7 0 % であった。実施0 1 2 同一形状に磁石を加工し、モータ特性を測定した。

[0048]

これらの結果を表 1 に示す。

[0049]

【表1】

_ [久]		
	誘起電圧 (実効値)	トルクリップル
	[mV/rpm]	[mNm]
実施例1	15.7	6. 7
実施例2	15.8	6. 7
実施例3	15.6	6. 6
実施例4	15.3	6. 5
比較例1	13.2	8. 4
比較例2	9. 5	5. 9
比較例3	11.8	6. 3

20

30

[0050]

表 1 より、比較例に対し実施例ではトルクに相応する誘起電圧が大きく改善されており、本発明がモータ用磁石の製造方法として優れた方法であることがわかる。

また、図8は実施例1、図9は比較例3の着磁後のロータ磁石の表面磁束を測定したものである。実施例は比較例に対し各極が均一化しており、かつ極の面積が大きくなっており、実施例は大きな磁場を均一に発生できることがわかる。

【図面の簡単な説明】

[0051]

【図1】 ラジアル 異方性円筒磁石を製造する際に使用する従来の垂直磁場垂直成形装置を示す説明図であり、(丸)は縦断面図、(b)は(丸)図における A ー A ・ 線断面図である。

40

【図2】リング磁石の中心軸に対する種々のラジアル異方性付与方向の角度を示す説明図である。

【図3】円筒磁石を製造する際に使用する水平磁場垂直成形装置の一実施例を示す説明図であり、(a)は平面図、(b)は縦断面図である。

【図4】円筒磁石を製造する際に使用する水平磁場垂直成形装置で磁場発生時の磁力線の様子を模式的に示す説明図であり、(c.)は本発明に係る成形装置の場合、(b.)は従来の成形装置の場合である。

【図 5 】円筒磁石を製造する際に使用する成形装置で、回転式水平磁場垂直成形装置の一例を示す説明図である。

【図6】着磁機を用いて円筒磁石の着磁を行う様子を示す着磁模式図である。

50

[224]

[図7]

[図9]

[28]

