Module 2 Graded Quiz

Due Feb 6 at 11:59pm **Points** 10 **Questions** 10 **Available** after Jan 23 at 12am **Time Limit** 300 Minutes **Allowed Attempts** 3

Take the Quiz Again

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	14 minutes	10 out of 10

Score for this attempt: 10 out of 10

Submitted Feb 6 at 4:15pm This attempt took 14 minutes.

Question 1 "Every child is younger than his mother" can be represented by the following first-order logic formula. vx (C(x) → Y(x, m(x))) Which of the options is the category of C? Variable Object constant Predicate Quantifier Function constant

Question 2

1 / 1 pts

Which of the following statements are true for any first-order formula F and G, and for any interpretation I?

- 1. $(F \wedge G)^I = \wedge (F,G)$
- 2. $(\neg F)^I = \neg (F^I)$
- 3. $\exists w F(w)^I = t$ iff, for some object constant $c, F(c)^I = t$
 - 1, 2

Correct!

- 2
- 3
- 1, 3

Question 3

1 / 1 pts

Which of the options best represents the English sentence "dogs and cats are animals"?

- \bigcirc $\forall x (dog(x) \land cat(x) \rightarrow animal(x))$
- \bigcirc \forall x(dog(x) \land cat(x) \land animal(x))
- \bigcirc \forall x(dog(x) \lor cat(x) \lor animal(x))
- Correct!
- \bigcirc $\forall x (dog(x) \lor cat(x) \rightarrow animal(x))$

Question 4

1 / 1 pts

Assume that the signature consists of the object constant Me, the unary predicate constant Male, and the binary predicate constant Parent, and nothing else. Which of the following first-order logic formulas express the following English sentence?

"I have no daughters"

Choose all that apply. (Hint: there are 2 correct answers.)

Correct!

- $\neg \exists x (\neg Male(x) \land Parent(Me, x))$
- $\exists x(Male(x) \land Parent(Me, x))$

Correct!

- $\forall x (Parent(Me, x) -> Male(x))$
- $\forall x (Male(x) \land \neg Parent(Me, x))$

Question 5 1 / 1 pts

Let P be the only predicate constant that is unary, and I an interpretation such that the universe is the set of all ASU students. For any $\xi \in |I|$, P^I(ξ) = t iff ξ has taken CSE 579. Which of the following first-order logic formulas express the following English sentence?

"There exists at most one student who took CSE 579."

Choose all that apply.

Correct!

 \bigvee $\forall x \forall y [(P(x) \land P(y)) \rightarrow (x=y)]$

Correct!

- $[(\exists x P(x)) \land (\forall x \forall y (P(x) \land P(y)) \rightarrow (x=y))] \lor (\neg \exists x P(x))$
- $\qquad [(\exists x P(x)) \land (\forall x \forall y \ (P(x) \land P(y)) \rightarrow (x=y))]$

Question 6 1 / 1 pts

Let the underlying signature be {a, P, Q}, where a is an object constant, P is a unary predicate constant, and Q is a binary predicate constant. Assume object variables range over the set N of nonnegative integers, and the signature is interpreted as follows:

- a represents the number 10,
- P(x) represents the condition "x is a prime number,"
- Q(x, y) represents the condition "x is less than y."

Which of the following first-order logic formulas express the following English sentence?

"x equals 9."

Choose all that apply.

_	
Ω	v/\
Wla.	ΧJ

Correct!

 $Q(x, a) \land \neg \exists y [Q(x, y) \land Q(y, a)]$

_				
\cap	5 V	٠١.	$\neg P$	/v/
\J\c	1 X	. 1/\	- 1	

Correct!

 $\mathbb{Q}(x, a) \land \forall y[Q(x, y) -> (y = a \lor Q(a, y))]$

,	Question 7	1 / 1 pts
	Is the following first-order formula satisfiable? ∀xy(x = y)	
	Unsatisfiable	
Correct!	Satisfiable	

Question 8 1 / 1 pts

Let σ be the signature {a, b, P} where a, b are object constants and P is a binary predicate constant. Choose all Herbrand interpretations of σ that satisfy the following formula.

 $\forall x,y \ (P(x,y) \to P(y,x))$

P(a,b)

Correct!

{P(a,a)}

Correct!

{P(a,a), P(a,b), P(b,a)}

Correct!

∅ (empty set)

Question 9

1 / 1 pts

Find the Herbrand model I of the following first-order formula whose signature is {a, b, P}.

$$(\neg P(a) \lor \bot) \land (\exists x P(x))$$

Correct!

$$P(a)' = f, P(b)' = t$$

$$P(a)' = t$$

$$P(a)' = t, P(b)' = t$$

$$\square P(a)' = f$$

Question 10

1 / 1 pts

Which option contains the free variables in the following formula? $\exists y P(x,y) \land \neg \exists x P(x,y)$
Both x and y
○ x
No free variable
У

Quiz Score: 10 out of 10