

Prepoznavanje raka Prepoznavanje raka pluća i debelog crijeva na slikama koristeći CNN

PROJEKT IZ KOLEGIJA NEURONSKE MREŽE

L. GLAVINIĆ, D. JAMBROVIĆ, V. KOVAČIĆ, N. KRZNAR, F. PANKRETIĆ, F. PERKOVIĆ

NASTAVNIK: IVANA MATOVINOVIĆ

FER 2023./2024.

Sadržaj

- 1. Uvod
- 2. Konvolucijske neuronske mreže
- 3. Metode i materijali
- 4. Rezultati
- 5. Usporedba s prijašnjim radovima
- 6. Zaključak

Opis problema i motivacija

- Od raka svake godine obolijeva skoro 20 milijuna ljudi, a umire skoro 10 milijuna
- Rak pluća i slijepog crijeva čine preko 20% dijagnosticiranih i preko 25% smrtnih slučajeva
- Neuronske mreže mogle bi naučiti razlikovati između benignog ili malignog tkiva i time pomoći stručnjacima u ranoj detekciji razvoja raka

Number of new cases in 2020, both sexes, all ages

Total: 19 292 789 cases

Number of deaths in 2020, both sexes, all ages

Total: 9 958 133 deaths

Postojeća rješenja

- Mnoga prijašnja istraživanja s obećavajućim rezultatima
- Problemi:
 - 1. kompleksno preprocesiranje ulaza
 - 2. korišteni modeli zauzimaju puno memorije (nisu lako ugradivi u prijenosne uređaje)

Korišteni skup podataka

- Skup podataka LC25000, 2020.
- 25000 slika tkiva pluća i debelog crijeva
- Pet razreda:
 - Adenokarcinom tkiva debelog crijeva
 - Dobroćudno (benigno) tkivo debelog crijeva
 - Adenokarcinom plućnog tkiva
 - Dobroćudno (benigno) plućno tkivo
 - Karcinom pločastih (skvamoznih) stanica plućnog tkiva

Konvolucijska neuronska mreža (CNN)

- Inačica višeslojnog perceptrona temeljena na filtriranju slike (konvoluciji)
 - Determinističke, pogodne za analizu slika
- Niz konvolucijskih slojeva isprekidanih slojevima sažimanja
- Konvolucijski sloj primjenjuje filtere (jezgre) te na izlazu daje mapu značajki
- Sloj sažimanja smanjuje veličinu ulaza i povećava veličinu receptivnog polja mreže
- Uči se propagacijom unatrag

Metode i materijali

- Podjela skupa podataka na 3 podskupa:
 - Skup za učenje (70%)
 - Skup za validaciju (10%)
 - Skup za testiranje (20%)
- Odabrani modeli:
 - ResNet50
 - MobileNetV2
- Korištenje prijenosnog učenja (modeli predtrenirani na skupu podataka ImageNet)
- Modeli učeni 60 epoha

ResNet50

- 50-slojna konvolucijska neuronska mreža
- Rezidualne (preskočne) veze mreža treba naučiti rezidualnu funkciju (razlika izlaza naspram ulaza)
- Korištenje rezidualnih veza omogućava veću dubinu mreže tj. veći broj slojeva

ResNet50

- Naš model: ResNet50 "okosnica" + 5 slojeva
- Ukupan broj parametara: 49287557 (oko 50 milijuna, od toga otprilike pola zamrznuto)

MobileNetV2

- Cilj: dizajnirati arhitekturu prikladnu za ugradnju u uređaje s malom količinom memorije
- 53-slojna konvolucijska mreža s preskočnim vezama (po uzoru na rezidualne mreže)
- U prethodnoj verziji (MobileNetV1) uveden novi sloj: *Depthwise Separable Convolution*
- V2 uvodi novi blok: Inverted Residuals s konvolucijskim slojem Linear Bottleneck (dvije varijante ovisno o iznosu koraka)

MobileNetV2

- Naš model: MobileNetV2 "okosnica" + 3 sloja
- Ukupan broj parametara: 2576709 (oko 2.6 milijuna)

Rezultati

Performanse modela ResNet50 po epohama (učenje, validacija)

Performanse modela MobileNetV2 po epohama (učenje, validacija)

Mjere dobrote – ResNet50

Mjere dobrote – MobileNetV2

Matrice zabune

ResNet50

Confusion Matrix 1000 993 0 0 0 0 19.86% 0.0% 0.0% 0.0% 0.0% - 800 959 0 0 0.08% 19.18% 0.0% 0.0% 0.0% **Predicted Label** 600 965 1 0 16 0.02% 0.0% 0.0% 19.3% 0.32% 400 1035 0.0% 0.0% 0.0% 20.7% 0.0% - 200 1014 0 0 13 0.0% 0.0% 0.26% 0.0% 20.28% 0 2 3 4 Real Label

MobileNetV2

Točnosti modela

	Točnost			
Model	Skup za učenje Skup za testir			
ResNet50	99.45%	99.32%		
MobileNetV2	99.78%	98.65%		
AlexNet [6]	99.85%	98.4%		
CNN [7]	98.87%	96.33%		

Usporedba prosječnih mjera dobrote

Model	Točnost	Preciznost	F1	Specifičnost
ResNet50	99.73%	99.32%	99.32%	99.83%
MobileNetV2	99.46%	98.67%	98.66%	99.67%
AlexNet [26]	99.35%	98.39%	98.38%	99.60%
CNN [27]	96.33%	96.39%	96.38%	96.37%

Zaključak

- Za klasifikaciju slika tkiva pluća i debelog crijeva predložena dva modela:
 - ResNet50: najbolji po svim mjerama dobrote (točnost, preciznost, F1, specifičnost)
 - MobileNetV2: drugi najbolji po svim mjerama dobrote, s oko 2.6 milijuna parametara (naspram oko 50 milijuna za ResNet50 i oko 60 milijuna za AlexNet)
- Postignuti zadovoljavajući rezultati bez korištenja kompleksnog preprocesiranja ulaza
- Budući rad: daljnje istraživanje korištenja MobileNetV2 mreže i mogućnosti ugradnje iste u prenosive uređaje

Hvala na pozornosti