第2章矩阵

目录:

- 返回主页
- 2.1 矩阵的定义
- 2.2 矩阵的运算
- 2.3 矩阵的逆
- 2.4 矩阵的分块
- 2.5 矩阵的初等变换与初等矩阵
- 2.6 用初等变换求逆矩阵
- 2.7 矩阵的秩
- 习题 2 (A) 类
- 习题 2 (B) 类

2.1 矩阵的定义

生产实践和经济活动中,经常要利用矩阵这一有力工具.下面看几个例子.

例 1: 某航空公司在 A, B, C, D 四个城市之间开辟了若干条航线, 用图 2.1 表示四个城市间的航班图, 若从 A 到 B 有航班, 则用从 A 指向 B 的带箭头的线连接 A 与 B. 用表格表示如表 2-0 所示. 其中 $\sqrt{}$ 表示有航班. 为了便于研究, 记表 2-0 中的 $\sqrt{}$ 为 1, 空白处为 0, 则得到一个数表:

$$\begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

该数表反映了四个城市间的交通连接情况.

例 2: 假设一个经济系统由煤炭、电力和钢铁三个部门组成,各部门之间的分配如表 2–1所示,其中每栏中的数表示该部门总产出的比例. 如表 2–1中的第三栏所示,电力部门分配总产出的 40% 给煤炭部门,50% 给钢铁部门,剩下的 10% 给电力部门作为运转费用. 将表 2–1 简单地用数表

$$\begin{pmatrix} 0.0 & 0.4 & 0.6 \\ 0.6 & 0.1 & 0.2 \\ 0.4 & 0.5 & 0.2 \end{pmatrix}$$

表示, 它具体描述了经济系统各部门产出的分配情况.

表 2-1 煤炭、电力、钢铁三部门之间的分配

采购部门	部门的产出分配		
	煤炭	电力	钢铁
煤炭	0.0	0.4	0.6
电力	0.6	0.1	0.2
钢铁	0.4	0.5	0.2

$oldsymbol{M}$ 3: 含有 n 个未知量、 m 个方程的齐次线性方程组

$$\left\{egin{array}{l} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=0,\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=0,\ &\cdots\cdots\cdots& \ a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=0 \end{array}
ight.$$

的未知量的系数可排列成一个 m 行、 n 列的数表

$$egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn}, \end{pmatrix}$$

这样的表称为 $m \times n$ 矩阵, 可用黑体大写字母 $m{A}$ 表示. a_{ij} 称为矩阵 $m{A}$ 的元素, 它位于矩阵 $m{A}$ 的第 i 行、第 j 列的交叉处.

一般情况下,有如下定义.

定义 1: m imes n 个数按一定顺序排成一个 m 行、 n 列的矩形数表

$$egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

此数表称为 m 行 n 列矩阵,简称 m imes n 矩阵.矩阵一般用黑体大写字母 $m{A}, m{B}, m{C}, \cdots$ 表示,有时亦记为 $m{A} = (a_{ij})_{m imes n}, m{A} = (a_{ij})$ 或 $m{A}_{m imes n}$.

在 $m \times n$ 矩阵 \boldsymbol{A} 中, 如果 m = n, 就称 \boldsymbol{A} 为 n 阶方阵. 如果矩阵 \boldsymbol{A} 的元素 a_{ij} 全为实 (复)数, 就称 \boldsymbol{A} 为实 (复) 矩阵.

只有一行的矩阵

$$oldsymbol{A}=(a_1,a_2,\cdots,a_n)$$

称为行矩阵; 只有一列的矩阵

$$m{B} = egin{pmatrix} b_1 \ b_2 \ dots \ b_m \end{pmatrix}$$

称为列矩阵. 一般也可以将列矩阵用黑体小写字母表示.

当两个矩阵的行数相等、列数也相等时, 就称它们是同型矩阵.

元素都是零的矩阵称为零矩阵, 记作 O.

注意: 不同型的零矩阵是不同的.

在 n 阶方阵 $\mathbf{A} = (a_{ij})_{n \times n}$ 中,位于第 i 行与第 i 列交叉位置的元素 $a_{ii} (i=1,2,\cdots,n)$ 称为方阵 \mathbf{A} 的主对角线元素,其所在的对角线称为方阵的主对角线。下面介绍几种常见的特殊方阵。

(1) 三角形矩阵.

如果 n 阶方阵 $\mathbf{A}=(a_{ij})$ 中的元素满足条件 $a_{ij}=0 (i>j;i,j=1,2,\cdots,n)$,即 \mathbf{A} 的主对角线以下的元素全为零,则称 \mathbf{A} 为 n 阶上三角形矩阵,即

$$m{A} = \left(egin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \ 0 & a_{22} & \cdots & a_{2n} \ dots & dots & dots \ 0 & 0 & \cdots & a_{nn} \end{array}
ight).$$

如果 n 阶方阵 $\mathbf{A}=(a_{ij})$ 中的元素满足条件 $a_{ij}=0 (i < j; i,j=1,2,\cdots,n)$,即 \mathbf{A} 的主对角线以上的元素全为零,则称 \mathbf{A} 为 n 阶下三角形矩阵,即

2024/6/23 11:39

$$oldsymbol{A} = \left(egin{array}{cccc} a_{11} & 0 & \cdots & 0 \ a_{21} & a_{22} & \cdots & 0 \ dots & dots & dots \ a_{21} & a_{22} & \cdots & a_{2n} \end{array}
ight).$$

上三角形矩阵与下三角形矩阵统称为三角形矩阵.

(2) 对角矩阵.

如果 n 阶方阵 $\mathbf{A} = (a_{ij})$ 中的元素满足 $a_{ij} = 0 (i \neq j)$, 即 \mathbf{A} 的主对角线以外的元素全为零, 则称 \mathbf{A} 为 n 阶对角矩阵, 即

$$m{A} = egin{pmatrix} a_{11} & 0 & \cdots & 0 \ 0 & a_{22} & \cdots & 0 \ dots & dots & dots \ 0 & 0 & \cdots & a_{nn} \end{pmatrix}.$$

也记作 $\mathbf{\Lambda} = \operatorname{diag}(a_{11}, a_{22}, \dots, a_{nn})$. 显然, 对角矩阵既是上三角形矩阵, 也是下三角形矩阵.

(3) 数量矩阵.

如果 n 阶对角矩阵 $oldsymbol{A}=(a_{ij})$ 中的元素满足 $a_{ii}=a(i=1,2,\cdots,n)$,则称 $oldsymbol{A}$ 为数量矩阵,即

$$m{A} = egin{pmatrix} a & 0 & \cdots & 0 \ 0 & a & \cdots & 0 \ dots & dots & dots \ 0 & 0 & \cdots & a \end{pmatrix}.$$

(4) 单位矩阵.

如果 n 阶对角矩阵 $m{A}=(a_{ij})$ 中的元素满足 $a_{ii}=1(i=1,2,\cdots,n)$,则称 $m{A}$ 为 n 阶单位矩阵,记为 $m{E}_n$,简记为 $m{E}$,即

2024/6/23 11:39

第2音 矩阵

$$m{E} = egin{pmatrix} 1 & 0 & \cdots & 0 \ 0 & 1 & \cdots & 0 \ dots & dots & dots \ 0 & 0 & \cdots & 1 \end{pmatrix}.$$

返回顶部

2.2 矩阵的运算

矩阵的运算可以认为是矩阵之间一些基本的关系, 具体内容包括矩阵的加法、矩阵与数的乘法、矩阵的乘法以及矩阵的转置等.

2.2.1 矩阵的加法

首先给出两个矩阵相等的概念.

如果两个同型矩阵 \boldsymbol{A} 与 \boldsymbol{B} 的对应元素都相等,则称这两个矩阵相等,记为 $\boldsymbol{A}=\boldsymbol{B}$.

定义 2: 设有两个 $m \times n$ 矩阵 $m{A} = (a_{ij})$, $m{B} = (b_{ij})$, 那么 $m{A}$ 与 $m{B}$ 的和记为 $m{A} + m{B}$, 规定为

$$m{A} + m{B} = egin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \ dots & dots & dots \ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{pmatrix}.$$

注意: 两个矩阵只有同型时, 才能进行加法运算.

由于矩阵的加法归结为它们的元素的加法,也就是数的加法,所以不难验证矩阵的加法满足下列运算规律:

$$(1) \mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}; \qquad (交換律)$$

$$(2) (A + B) + C = A + (B + C).$$
 (结合律)

例 4: 有某种物资 (单位: t)需从两个产地运往三个销地,调运了两次,两次调运方案用矩阵分别表示为

第2音 矩阵

$$oldsymbol{A} = egin{pmatrix} 1 & 2 & 3 \ 2 & 5 & 3 \end{pmatrix}, \quad oldsymbol{B} = egin{pmatrix} 0 & 1 & 3 \ 2 & 1 & 2 \end{pmatrix},$$

则从各产地运往各销地的两次调运物资的总量为

$$egin{aligned} m{A} + m{B} &= egin{pmatrix} 1 & 2 & 3 \ 2 & 5 & 3 \end{pmatrix} + egin{pmatrix} 0 & 1 & 3 \ 2 & 1 & 2 \end{pmatrix} \ &= egin{pmatrix} 1 + 0 & 2 + 1 & 3 + 3 \ 2 + 2 & 5 + 1 & 3 + 2 \end{pmatrix} = egin{pmatrix} 1 & 3 & 6 \ 4 & 6 & 5 \end{pmatrix}. \end{aligned}$$

2.2.2 数与矩阵相乘

 \mathbf{c} 义 $\mathbf{3}$:数 λ 与矩阵 \mathbf{A} 的乘积记作 $\lambda \mathbf{A}$,规定为

$$\lambda oldsymbol{A} = egin{pmatrix} \lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1n} \ \lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2n} \ dots & dots & dots \ \lambda a_{m1} & \lambda a_{m2} & \cdots & \lambda a_{mn} \end{pmatrix}.$$

数乘矩阵满足下列运算规律 (设 $m{A}, m{B}$ 均为 $m \times n$ 矩阵, λ, μ 均为数):

- (1) $(\lambda \mu) \mathbf{A} = \lambda(\mu \mathbf{A});$
- (2) $(\lambda + \mu)\mathbf{A} = \lambda \mathbf{A} + \mu \mathbf{A}$;
- (3) $\lambda(\mathbf{A} + \mathbf{B}) = \lambda \mathbf{A} + \lambda \mathbf{B}$.

设矩阵 $\mathbf{A} = (a_{ij})$, 记 $-\mathbf{A} = (-1) \cdot \mathbf{A} = (-a_{ij})$, $-\mathbf{A}$ 称为 \mathbf{A} 的 负矩阵. 显然, 有

$$A + (-A) = O$$

其中 O 为各元素均为 0 的同型矩阵. 于是, 矩阵的减法定义为

$$\boldsymbol{A} - \boldsymbol{B} = \boldsymbol{A} + (-\boldsymbol{B}).$$

例 5: 已知

$$m{A} = egin{pmatrix} 1 & 1 & 2 & -1 \ 0 & 3 & 1 & 2 \ 2 & 1 & 0 & -1 \end{pmatrix}, \quad m{B} = egin{pmatrix} -2 & 1 & 1 & 1 \ 1 & 2 & 2 & 1 \ 0 & 2 & 1 & 3 \end{pmatrix},$$

求 $4oldsymbol{A}+2oldsymbol{B}$. $oxedsymbol{f G}$ 显示解答 $oxedsymbol{f G}$ 收起解答

• 利用SageMath在线代码模块求例 5 中的矩阵.

显示代码 收起代码

例 6: 设矩阵

$$m{A} = egin{pmatrix} 3 & 2 \ 0 & 8 \ -1 & 3 \ 2 & 1 \end{pmatrix}, \quad m{B} = egin{pmatrix} 3 & 1 \ 1 & 3 \ 4 & 6 \ 6 & 2 \end{pmatrix},$$

且有 $oldsymbol{A}+2oldsymbol{X}=oldsymbol{B}$,求矩阵 $oldsymbol{X}$. $oldsymbol{\mathbb{Q}}$ $oldsymbol{\mathbb{Q}}$ $oldsymbol{\mathbb{Q}}$ $oldsymbol{\mathbb{Q}}$ $oldsymbol{\mathbb{Q}}$

• 利用SageMath在线代码模块求例 6 中的矩阵.

显示代码 收起代码

2.2.3 矩阵与矩阵相乘

先来看一个例子.

例 7: 某地有四个工厂,生产三种产品. 矩阵 A 表示一年中各工厂生产各种产品的数量,矩阵 B 表示各种产品的单位价格 (单位:元)和单位利润(单位:元),矩阵 C 表示各工厂的总收入和总利润.

$$oldsymbol{A} = egin{pmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \ a_{41} & a_{42} & a_{43} \end{pmatrix}, \quad oldsymbol{B} = egin{pmatrix} b_{11} & b_{12} \ b_{21} & b_{22} \ b_{31} & b_{32} \end{pmatrix}, \quad oldsymbol{C} = egin{pmatrix} c_{11} & c_{12} \ c_{21} & c_{22} \ c_{31} & c_{32} \ c_{41} & c_{42} \end{pmatrix},$$

其中, $a_{ik}(i=1,2,3,4,k=1,2,3)$ 是第 i 个工厂生产第 k 种产品的数量, b_{k1} 及 $b_{k2}(k=1,2,3)$ 分别是第 k 种产品的单位价格和单位利润, c_{i1} 及 $c_{i2}(i=1,2,3,4)$ 分别是第 i 个工厂生产三种产品的总收入和总利润. 则:

第一个工厂的总收入为 $c_{11} = a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31}$,总利润为 $c_{12} = a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32}$;

第二个工厂的总收入为 $c_{21}=a_{21}b_{11}+a_{22}b_{21}+a_{23}b_{31},$ 总利润为 $c_{22}=a_{21}b_{12}+a_{22}b_{22}+a_{23}b_{32};$ 第三个工厂的总收入为 $c_{31}=a_{31}b_{11}+a_{32}b_{21}+a_{33}b_{31},$ 总利润为 $c_{32}=a_{31}b_{12}+a_{32}b_{22}+a_{33}b_{32};$ 第四个工厂的总收入为 $c_{41}=a_{41}b_{11}+a_{42}b_{21}+a_{43}b_{31},$ 总利润为 $c_{42}=a_{41}b_{12}+a_{42}b_{22}+a_{43}b_{32}.$

因此,矩阵 A, B, C 的元素之间有下列关系:

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{3j} \quad (i = 1, 2, 3, 4; j = 1, 2),$$

即矩阵 $m{C}$ 的元素 c_{ij} 是矩阵 $m{A}$ 的第 i 行元素与矩阵 $m{B}$ 的第 j 列对应元素的乘积之和. 称矩阵 $m{C}$ 是矩阵 $m{A}$ 与矩阵 $m{B}$ 的乘积.

定义 $m{4}$: 设 $m{A}=\left(a_{ij}
ight)_{m imes s}, m{B}=\left(b_{ij}
ight)_{s imes n}$,那么规定矩阵 $m{A}$ 与 $m{B}$ 的乘积是

$$oldsymbol{C} = (c_{ij})_{m imes n}$$
 ,

其中

$$egin{align} c_{ij} &= a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{is}b_{sj} = \sum_{k=1}^s a_{ik}b_{kj} \ & (i=1,2,\cdots,m; j=1,2,\cdots,n), \end{aligned}$$

并把此乘积记作 $oldsymbol{C} = oldsymbol{A}oldsymbol{B}$. 记号 $oldsymbol{A}oldsymbol{B}$ 常读作 $oldsymbol{A}$ 左乘 $oldsymbol{B}$ 或 $oldsymbol{B}$ 右乘 $oldsymbol{A}$.

特别地, 行矩阵 $(a_{i1},a_{i2},\cdots,a_{is})$ 与列矩阵 $\begin{pmatrix}b_{1j}\b_{2j}\ \vdots\b_{sj}\end{pmatrix}$ 相乘, 即

$$(a_{i1},a_{i2},\cdots,a_{is}) egin{pmatrix} b_{1j} \ b_{2j} \ dots \ b_{sj} \end{pmatrix} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{is}b_{sj}$$

是一个数 c_{ij} , 这表明若 C = AB, 则矩阵 C 的元素 c_{ij} 就是 A 的第 i 行与 B 的第 j 列对应元素的乘积之和.

注意: 只有当第一个矩阵 (左矩阵) 的列数与第二个矩阵 (右矩阵) 的行数相等时, 两个矩阵才能相乘. 两个矩阵相乘所得矩阵的行数同第一个矩阵 (左矩阵)的行数, 列数同第二个矩阵 (右矩阵) 的列数.

例 8: 设
$$m{A} = \begin{pmatrix} 0 & 0 & 0 \ a & b & c \end{pmatrix}, \quad m{B} = \begin{pmatrix} a_1 & 0 \ b_1 & 0 \ c_1 & 0 \end{pmatrix},$$

求 $oldsymbol{AB}$ 和 $oldsymbol{BA}$. $oldsymbol{oldsymbol{\Box}}$ $oldsymbol{oldsymbol{oldsymbol{oldsymbol{\Box}}}}$ $oldsymbol{oldsymbol{oldsymbol{BA}}}$ $oldsymbol{oldsymbol{\Box}}$

• 利用SageMath在线代码模块求例 8 中的矩阵.

显示代码 收起代码

例 9: 设 $\boldsymbol{A}, \boldsymbol{B}$ 分别是 $n \times 1$ 矩阵和 $1 \times n$ 矩阵,且

$$m{A} = egin{pmatrix} a_1 \ a_2 \ dots \ a_n \end{pmatrix}, \quad m{B} = (b_1, b_2, \cdots, b_n)\,,$$

计算 $oldsymbol{AB}$ 和 $oldsymbol{BA}$. $oldsymbol{oldsymbol{oldsymbol{oldsymbol{BA}}}$ $oldsymbol{oldsymbol{oldsymbol{oldsymbol{BA}}}$ $oldsymbol{oldsymbol{oldsymbol{BA}}}$ $oldsymbol{oldsymbol{oldsymbol{BA}}}$

• 利用SageMath在线代码模块求例 9 中的矩阵.

例 10: 对于一个含有 n 个未知量、 m 个方程的线性方程组

$$\left\{egin{array}{l} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1,\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2,\ \cdots\cdots\cdots\cdots\ a_{m1}x_1+a_{m2}x_2+\cdots+a_{mm}x_n=b_m, \end{array}
ight.$$

 $(a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mm}x_n - o_m)$

 $egin{aligned} oldsymbol{A} &= egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}, \quad oldsymbol{x} &= egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix}, \quad oldsymbol{b} &= egin{pmatrix} b_1 \ b_2 \ dots \ b_m \end{pmatrix}, \end{aligned}$

2024/6/23 11:39 第2章 知识 第2章 和识 第2章 和知识 第2章 和知识 第2章 和知识 第2章 和识 第2章 和知识 第2章 和知识 第2章 和知识 第2章 和知识 第2章 和知识 第2章 和知识 第2章 和

分别为 $m \times n$ 矩阵、 $n \times 1$ 矩阵和 $m \times 1$ 矩阵, 则该线性方程组可以写成如下矩阵形式:

$$Ax = b$$
.

在许多实际问题中,会遇到一组变量由另一组变量线性表示的问题,如 变量 y_1, y_2, \dots, y_m 可由变量 x_1, x_2, \dots, x_n 线性表示,即

$$\left\{egin{array}{l} y_1=a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n,\ y_2=a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n,\ &\cdots\cdots\cdots&\ y_m=a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n, \end{array}
ight.$$

这种由变量 x_1, x_2, \dots, x_n 到变量 y_1, y_2, \dots, y_m 的变换称为线性变换.

令

$$m{A} = egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \quad ($$
 称 $m{A}$ 为线性变换的系数矩阵 $),$

$$oldsymbol{x} = egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix}, \quad oldsymbol{y} = egin{pmatrix} y_1 \ y_2 \ dots \ y_m \end{pmatrix},$$

则上述线性变换可以写成矩阵的形式,即

$$y = Ax$$
.

Open Controls

 $egin{bmatrix} 0.00 & -1.00 \ 1.00 & 0.00 \end{bmatrix} egin{bmatrix} 2.00 \ 4.00 \end{bmatrix} = egin{bmatrix} -4.00 \ 2.00 \end{bmatrix}$ [单击并拖动向量的箭头]

图像变换(点击链接跳转)

注意: (1) 一般情况下, 矩阵的乘法不满足交换律, 即 $AB \neq BA$, 这从例 8 和例 9 中就可以看出. 若 AB = BA, 则称 $A \vdash B$ 可交换.

- (2) 当 AB = O 时, 不一定有 A = O 或 B = O. 如例 8 所示.
- (3) 矩阵的乘法不满足消去律,即当 $m{AC} = m{BC}$, 且 $m{C}
 eq m{O}$ 时, 不一定有 $m{A} = m{B}$.

例如,
$$oldsymbol{A}=egin{pmatrix} 1 & 2 \ 0 & 3 \end{pmatrix}, oldsymbol{B}=egin{pmatrix} 1 & 0 \ 0 & 4 \end{pmatrix}, oldsymbol{C}=egin{pmatrix} 1 & 1 \ 0 & 0 \end{pmatrix},$$
则 $oldsymbol{AC}=egin{pmatrix} 1 & 2 \ 0 & 3 \end{pmatrix} egin{pmatrix} 1 & 1 \ 0 & 0 \end{pmatrix} = egin{pmatrix} 1 & 1 \ 0 & 0 \end{pmatrix},$ $oldsymbol{BC}=egin{pmatrix} 1 & 0 \ 0 & 4 \end{pmatrix} egin{pmatrix} 1 & 1 \ 0 & 0 \end{pmatrix} = egin{pmatrix} 1 & 1 \ 0 & 0 \end{pmatrix}.$

显然, AC = BC, 且 $C \neq O$, 但 $A \neq B$.

但在运算都可行的情况下, 矩阵的乘法仍满足下列运算规律:

$$(1) (\mathbf{AB})\mathbf{C} = \mathbf{A}(\mathbf{BC}); \tag{结合律}$$

$$(2)$$
 $\mathbf{A}(\mathbf{B}+\mathbf{C}) = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C};$ (左分配律) $(\mathbf{B}+\mathbf{C})\mathbf{A} = \mathbf{B}\mathbf{A} + \mathbf{C}\mathbf{A};$ (右分配律)

$$(3)$$
 $\lambda(\mathbf{A}\mathbf{B}) = (\lambda \mathbf{A})\mathbf{B}$ (其中 λ 为数).

对于单位矩阵 E, 容易验证

$$oldsymbol{E}_m oldsymbol{A}_{m imes n} = oldsymbol{A}_{m imes n}, \quad oldsymbol{A}_{m imes n} oldsymbol{E}_n = oldsymbol{A}_{m imes n},$$

其中 E_m 与 E_n 分别表示 m 阶单位矩阵与 n 阶单位矩阵. 可见, 在矩阵乘积中, 单位矩阵类似于数 1 的作用.

有了矩阵的乘法, 就可以定义 n 阶方阵的幂. 设 A 是 n 阶方阵, k 是 正整数, 称

$$oldsymbol{A}^k = \underbrace{oldsymbol{A} \cdot oldsymbol{A} \cdot \cdots \cdot oldsymbol{A}}_{k \uparrow}$$

为方阵 A 的 k 次幂. 规定

$$oldsymbol{A}^0=oldsymbol{E}.$$

显然, 只有方阵的幂才有意义.

由于矩阵的乘法满足结合律, 所以方阵的幂满足下列运算规律:

$$oldsymbol{A}^k oldsymbol{A}^ au = oldsymbol{A}^{k+ au}, \quad oldsymbol{\left(A^k
ight)}^ au = oldsymbol{A}^{k au}$$

其中 k, τ 为正整数.

但因为矩阵的乘法一般不满足交换律, 所以对于两个 n 阶方阵 A 与 $oldsymbol{B}$, 一般来说, $(oldsymbol{A}oldsymbol{B})^k
eq oldsymbol{A}^k oldsymbol{B}^k$.

例 11: 设

$$m{A} = egin{pmatrix} \lambda & 1 & 0 \ 0 & \lambda & 1 \ 0 & 0 & \lambda \end{pmatrix}.$$

证明:

$$m{A}^n = egin{pmatrix} \lambda^n & n\lambda^{n-1} & rac{n(n-1)}{2}\lambda^{n-2} \ 0 & \lambda^n & n\lambda^{n-1} \ 0 & 0 & \lambda^n \end{pmatrix} (n \geqslant 2 \;$$
为正整数).

显示证明

收起证明

• 利用SageMath在线代码模块求例 11 中的矩阵 A^n .

显示代码 收起代码

2.2.4 矩阵的转置

定义 5: 把 $m \times n$ 矩阵 **A** 的行换成相应的列, 得到的 $n \times m$ 矩阵称为 $m{A}$ 的转 置矩阵, 记作 $m{A}^{\mathrm{T}}$ (或 $m{A}'$).

例如,矩阵

$$m{A} = \left(egin{matrix} 0 & 0 & 0 \ a & b & c \end{matrix}
ight)$$

的转置矩阵为

$$oldsymbol{A}^{ ext{T}} = egin{pmatrix} 0 & a \ 0 & b \ 0 & c \end{pmatrix}.$$

由矩阵的定义, 易得下列运算规律:

$$(1) \left(\boldsymbol{A}^{\mathrm{T}} \right)^{\mathrm{T}} = \boldsymbol{A};$$

(2)
$$(A + B)^{T} = A^{T} + B^{T}$$
;

(3)
$$(\lambda \mathbf{A})^{\mathrm{T}} = \lambda \mathbf{A}^{\mathrm{T}}$$
.

同时, 可以证明:

$$(4) (\boldsymbol{A}\boldsymbol{B})^{\mathrm{T}} = \boldsymbol{B}^{\mathrm{T}}\boldsymbol{A}^{\mathrm{T}}, (\boldsymbol{A}^{n})^{\mathrm{T}} = (\boldsymbol{A}^{\mathrm{T}})^{n}.$$

事实上,设 $m{A}=(a_{ij})_{m imes s}, m{B}=(b_{ij})_{s imes n}$,记 $m{A}m{B}=m{C}=(c_{ij})_{m imes n}, m{B}^{\mathrm{T}}m{A}^{\mathrm{T}}=m{D}=(d_{ij})_{n imes m}$,于是有

$$c_{ji} = \sum_{k=1}^s a_{jk} b_{ki},$$

而 $\boldsymbol{B}^{\mathrm{T}}$ 的第 i 行为 $(b_{1i}, b_{2i}, \cdots, b_{si})$, $\boldsymbol{A}^{\mathrm{T}}$ 的第 j 列为 $(a_{i1},a_{i2},\cdots,a_{is})^{\mathrm{T}}$, 因此

$$d_{ij} = (b_{1i}, b_{2i}, \dots, b_{si}) \left(egin{array}{c} a_{j1} \ a_{j2} \ dots \ a_{js} \end{array}
ight) = \sum_{k=1}^s b_{ki} a_{jk} = \sum_{k=1}^s a_{jk} b_{ki},$$

所以

$$d_{ij} = c_{ji} \quad (i = 1, 2, \cdots, n; j = 1, 2, \cdots, m),$$

即 $m{C}^{\mathrm{T}} = m{D}$,也就是 $(m{A}m{B})^{\mathrm{T}} = m{B}^{\mathrm{T}}m{A}^{\mathrm{T}}$. 类推可证 $(m{A}^n)^{\mathrm{T}} = (m{A}^{\mathrm{T}})^n$.

设 \boldsymbol{A} 为 n 阶方阵, 若 $\boldsymbol{A}^{\mathrm{T}}=\boldsymbol{A}$, 即

$$a_{ij}=a_{ji}\quad (i,j=1,2,\cdots,n),$$

那么, \boldsymbol{A} 称为对称矩阵; 若 $\boldsymbol{A}^{\mathrm{T}} = -\boldsymbol{A}$, 即

 $a_{ij}=-a_{ji}\quad (i,j=1,2,\cdots,n),$

那么, A 称为反对称矩阵.

例如,

$$m{A} = egin{pmatrix} 12 & 6 & 1 \ 6 & 8 & 0 \ 1 & 0 & 6 \end{pmatrix}$$

是三阶对称矩阵, 而

$$m{A} = \left(egin{array}{ccc} 0 & -1 & 2 \ 1 & 0 & 3 \ -2 & -3 & 0 \end{array}
ight)$$

是三阶反对称矩阵.

易知, 对称矩阵的特点: 它的元素以主对角线为对称轴对应相等; 而反对称矩阵的特点: 以主对角线为对称轴的对应元素的绝对值相等, 符号相反, 且主对角线上各元素均为 0.

$$m{A} = egin{pmatrix} 1 & -1 & 2 \ 1 & 0 & 3 \ -1 & 2 & -1 \end{pmatrix}, \quad m{B} = egin{pmatrix} 1 & 1 \ 2 & -1 \ 3 & 2 \end{pmatrix},$$

那么

$$m{A}m{B} = egin{pmatrix} 5 & 6 \ 10 & 7 \ 0 & -5 \end{pmatrix}, \ m{A}^{
m T} = egin{pmatrix} 1 & 1 & -1 \ -1 & 0 & 2 \ 2 & 3 & -1 \end{pmatrix}, \quad m{B}^{
m T} = egin{pmatrix} 1 & 2 & 3 \ 1 & -1 & 2 \end{pmatrix}, \ m{B}^{
m T}m{A}^{
m T} = egin{pmatrix} 5 & 10 & 0 \ 6 & 7 & -5 \end{pmatrix} = (m{A}m{B})^{
m T}. \end{array}$$

• 利用SageMath在线代码模块求例 12 中的矩阵.

显示代码 收起代码

例 13: 设 \mathbf{A} 是 n 阶反对称矩阵, \mathbf{B} 是 n 阶对称矩阵, 证明:

 $oldsymbol{AB} + oldsymbol{BA}$ 是 n 阶反对称矩阵. $oldsymbol{\mathbb{Q}}$ $oldsymbol{\mathbb{Q}}$ $oldsymbol{\mathbb{Q}}$ $oldsymbol{\mathbb{Q}}$ $oldsymbol{\mathbb{Q}}$

2.2.5 方阵的行列式

定义 6: 由 n 阶方阵 A 的元素构成的行列式 (各元素的位置不变), 称为方阵 A 的行列式, 记作 |A| 或 $\det A$.

应该注意, 方阵与行列式是两个不同的概念, n 阶方阵是 n^2 个数按一定方式排成的数表, 而 n 阶行列式则是这些数 (也就是数表 A) 按一定的运算法则所确定的一个数.

设 A, B 为 n 阶方阵, λ 为数,则有下列等式成立 (请读者自己证明):

- $(1) |\boldsymbol{A}^{\mathrm{T}}| = |\boldsymbol{A}|;$
- (2) $|\lambda \mathbf{A}| = \lambda^n |\mathbf{A}|$;
- $(3) |\mathbf{A}\mathbf{B}| = |\mathbf{A}| \cdot |\mathbf{B}|.$

例 14: 设 $m{A}$ 是 n 阶方阵,满足 $m{A}m{A}^{\mathrm{T}}=m{E}$,且 $|m{A}|=-1$,求 $|m{A}+m{E}|$. $|m{B}|$ (Velage)

返回顶部

2.3 矩阵的逆

解一元一次方程 ax = b,当 $a \neq 0$ 时,存在一个数 a^{-1} ,使 $x = a^{-1}b$ 为该方程的解;而求解多元一次方程,等价于求解该多元一次方程对应的矩阵形式 $\mathbf{A}\mathbf{x} = \mathbf{b}$,那么是否存在一个矩阵,使这个矩阵乘以 \mathbf{b} 等于 \mathbf{x} 呢?这就是下面要讨论的逆矩阵问题.

定义 7: 对于 n 阶方阵 A, 如果有一个 n 阶方阵 B, 满足

$$AB = BA = E$$

则称方阵 \boldsymbol{A} 可逆, 且把方阵 \boldsymbol{B} 称为 \boldsymbol{A} 的逆矩阵.

显然, 若 B 是 A 的逆矩阵, 则 A 也是 B 的逆矩阵.

例如,设

笙2音 矩阵

$$m{A}=egin{pmatrix}1&-1\1&1\end{pmatrix},\quad m{B}=egin{pmatrix}rac{1}{2}&rac{1}{2}\-rac{1}{2}&rac{1}{2}\end{pmatrix},$$

有

$$AB = BA = E$$
.

因此, B 是 A 的一个逆矩阵.

注意: 如果 A 是可逆的, 则 A 的逆矩阵唯一.

事实上, 设 B, C 都是 A 的逆矩阵, 则一定有

$$B = BE = B(AC) = (BA)C = EC = C,$$

由逆矩阵的唯一性, 通常将 \boldsymbol{A} 的逆矩阵记作 \boldsymbol{A}^{-1} .

 $m{ extbf{定义}}~8\colon~~$ 设 $m{A}=(a_{ij})$ 为 n 阶方阵, A_{ij} 为行列式 $|m{A}|$ 的元素 a_{ij} $(i,j=1,2,\cdots,n$)的代数余子式, 记

$$m{A}^* = egin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \ A_{12} & A_{22} & \cdots & A_{n2} \ dots & dots & dots \ A_{1n} & A_{2n} & \cdots & A_{nn}, \end{pmatrix}$$

称 $m{A}^*$ 为 $m{A}$ 的伴随矩阵.

利用行列式的按行(列)展开定理,可以证明

$$\boldsymbol{A}^*\boldsymbol{A} = \boldsymbol{A}\boldsymbol{A}^* = |\boldsymbol{A}|\boldsymbol{E}.$$

下面给出一个方阵可逆的充分必要条件.

 $m{ extbf{cru}}$ 1: 设 $m{A}$ 是 n 阶方阵, 则 $m{A}$ 可逆的充分必要条件是 $|m{A}|
eq 0$, 且 $m{A}^{-1} = rac{1}{|m{A}|}m{A}^*$,其中 $m{A}^*$ 为 $m{A}$ 的伴随矩阵. $m{m{GEFURF}}$ $m{m{WEUERF}}$

定义 9: 设 $m{A}$ 是 n 阶方阵,若 $|m{A}|=0$,则称 $m{A}$ 为奇异矩阵;否则,称 $m{A}$ 为非奇异矩阵.

由定理 1 可知, n 阶方阵 A 可逆的充分必要条件是 A 为非奇异矩阵.

第2音 矩阵

 $m{Ht\^{c}}\ 1$: 对于 n 阶方阵 $m{A}$,若存在 n 阶方阵 $m{B}$,使 $m{A}m{B}=m{E}$ (或 $m{B}m{A}=m{E}$),则 $m{A}$ 一定可逆,且 $m{B}=m{A}^{-1}$. oxdots

方阵的逆矩阵满足下列性质:

- (1) 若 \boldsymbol{A} 可逆,则 \boldsymbol{A}^{-1} 亦可逆,且 $\left(\boldsymbol{A}^{-1}\right)^{-1}=\boldsymbol{A};$
- (2) 若 \boldsymbol{A} 可逆,数 $\lambda \neq 0$, 则 $\lambda \boldsymbol{A}$ 亦可逆, 且 $(\lambda \boldsymbol{A})^{-1} = \frac{1}{\lambda} \boldsymbol{A}^{-1}$;
- (3) 若 $m{A}, m{B}$ 为同阶方阵且均可逆,则 $m{A}m{B}$ 亦可逆,且 $(m{A}m{B})^{-1} = m{B}^{-1}m{A}^{-1};$
 - (4) 若 $oldsymbol{A}$ 可逆,则 $oldsymbol{A}^{\mathrm{T}}$ 亦可逆,且 $oldsymbol{\left(A^{\mathrm{T}}\right)}^{-1}=oldsymbol{\left(A^{-1}\right)}^{\mathrm{T}};$
 - (5) 若 \boldsymbol{A} 可逆,则有 $\left|\boldsymbol{A}^{-1}\right| = \left|\boldsymbol{A}\right|^{-1}$;
- (6) 设 ${m A}={
 m diag}(a_1,a_2,\cdots,a_n)$, 则 ${m A}$ 可逆的充分必要条件是 $a_i\neq 0 (i=1,2,\cdots,n)$, 且 ${m A}^{-1}={
 m diag}\big(a_1^{-1},a_2^{-1},\cdots,a_n^{-1}\big)$.

这里只证明(3)和(4),其余的留给读者自己证明. [ascite] [wallie]

例 15: 求方阵

$$m{A} = egin{pmatrix} 2 & 2 & 2 \ 1 & 2 & 3 \ 1 & 3 & 6 \end{pmatrix}$$

的逆矩阵 $oldsymbol{A}^{-1}$. $oldsymbol{\mathbb{Q}}$ $oldsymbol{\mathbb{Q}}$ o

• 利用SageMath在线代码模块求例 15 中的逆矩阵.

例 16: 在第 1 章例 2 中, 令

$$m{A} = egin{pmatrix} 2 & -1 & -1 \ 3 & 4 & -2 \ 3 & -2 & 4 \end{pmatrix}, \quad m{x} = egin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix}, \quad m{b} = egin{pmatrix} 4 \ 11 \ 11 \end{pmatrix},$$

则线性方程组

第2音 拓阵

$$\left\{egin{array}{ll} 2x_1-x_2-x_3=4,\ 3x_1+4x_2-2x_3=11,\ 3x_1-2x_2+4x_3=11 \end{array}
ight.$$

可以写成矩阵形式:

$$Ax = b$$
.

由于 $|\mathbf{A}|=60\neq 0$, 故 \mathbf{A}^{-1} 存在, 且

$$m{A}^{-1} = egin{pmatrix} rac{1}{5} & rac{1}{10} & rac{1}{10} \ -rac{3}{10} & rac{11}{60} & rac{1}{60} \ -rac{3}{10} & rac{1}{60} & rac{11}{60} \end{pmatrix}.$$

于是, 方程组的解为

$$m{x} = m{A}^{-1}m{b} = egin{pmatrix} rac{1}{5} & rac{1}{10} & rac{1}{10} \ -rac{3}{10} & rac{11}{60} & rac{1}{60} \ -rac{3}{10} & rac{1}{60} & rac{11}{60} \end{pmatrix} egin{pmatrix} 4 \ 11 \ 11 \end{pmatrix} = egin{pmatrix} 3 \ 1 \ 1 \end{pmatrix}.$$

• 利用SageMath在线代码模块求例 16 中方程组的解.

显示代码 收起代码

例 17: 设

$$m{A} = egin{pmatrix} 1 & 2 & 3 \ 2 & 2 & 1 \ 3 & 4 & 3 \end{pmatrix}, \quad m{B} = egin{pmatrix} 2 & 1 \ 5 & 3 \end{pmatrix}, \quad m{C} = egin{pmatrix} 1 & 3 \ 2 & 0 \ 3 & 1 \end{pmatrix},$$

求矩阵 X, 并满足

$$AXB = C$$
.

• 利用SageMath在线代码模块求例 17 中的矩阵 X.

显示代码 收起代码

注意: 解矩阵方程时, 要区分矩阵的左乘与右乘. 因为矩阵的乘法不满足交换律, 所以不能混淆左乘与右乘.

例
$$18$$
: 设三阶方阵 $m{A}, m{B}$ 满足 $m{A}^{-1}m{B}m{A} = 6m{A} + m{B}m{A}$,且 $m{A} = \mathrm{diag}ig(rac{1}{2}, rac{1}{4}, rac{1}{7}ig)$,求 $m{B}$. 显示解答 以起解答

• 利用SageMath在线代码模块求例 18 中的矩阵 B.

例
$$m{19}$$
: 设 $m{A}$ 可逆, 且 $m{A}^*m{B}=m{A}^{-1}+m{B}$, 证明 $m{B}$ 可逆. 又当 $m{A}=egin{pmatrix}2&6&0\0&2&6\0&0&2\end{pmatrix}$ 时, 求 $m{B}$. 显示证明 (收起证明)

• 利用SageMath在线代码模块求例 19 中的矩阵 B.

定理 1 不仅给出了一个方阵可逆的判定准则, 同时也给出了求逆矩阵的一种方法, 这种方法称为伴随矩阵法. 当方阵的阶数比较小时, 这种方法是可行的, 但当方阵的阶数较高时, 这种方法就不太适用了. 在本章的第 6 节中我们将要介绍一种简便、实用的求逆矩阵的方法.

返回顶部

2.4 矩阵的分块

对于行数和列数比较多的矩阵 A, 在其计算过程中经常采用矩阵分块法, 使大矩阵的运算化为小矩阵的运算将矩阵 A 用若干条纵线和横线分成许多个小矩阵, 每个小矩阵称为 A 的子块, 以子块为元素的矩阵称为分块矩阵.

例如

$$m{A} = egin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \ a_{21} & a_{22} & a_{23} & a_{24} \ a_{31} & a_{32} & a_{33} & a_{34} \end{pmatrix},$$

将 A 分成子块的分法很多,下面列举三种分块形式:

$$(1) \left(\begin{array}{c|cccc} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ \hline a_{31} & a_{32} & a_{33} & a_{34} \end{array}\right);$$

$$(2) \left(\begin{array}{c|cccc} a_{11} & a_{12} & a_{13} & a_{14} \\ \hline a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{array}\right);$$

$$(3) \left(egin{array}{c|cccc} a_{11} & a_{12} & a_{13} & a_{14} \ a_{21} & a_{22} & a_{23} & a_{24} \ a_{31} & a_{32} & a_{33} & a_{34} \ \end{array}
ight).$$

在分法 (1) 中, 记

$$oldsymbol{A} = \left(egin{array}{cc} oldsymbol{A}_{11} & oldsymbol{A}_{12} \ oldsymbol{A}_{21} & oldsymbol{A}_{22} \end{array}
ight),$$

其中

$$egin{aligned} m{A}_{11} &= egin{pmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{pmatrix}, \quad m{A}_{12} &= egin{pmatrix} a_{13} & a_{14} \ a_{23} & a_{24} \end{pmatrix}, \ m{A}_{21} &= m{(a_{31}, a_{32})}\,, \quad m{A}_{22} &= m{(a_{33}, a_{34})}\,, \end{aligned}$$

即 A_{11} , A_{12} , A_{21} , A_{22} 为 A 的子块, 而 A 成为以 A_{11} , A_{12} , A_{21} , A_{22} 为元素的分块矩阵. 分法 (2)、(3)的分块矩阵, 请读者自己写出来.

分块矩阵的运算与普通矩阵的运算类似, 具体讨论如下.

(1) 设矩阵 \mathbf{A} 与 \mathbf{B} 为同型矩阵, 采用同样的分块法, 有

$$m{A} = egin{pmatrix} m{A}_{11} & m{A}_{12} & \cdots & m{A}_{1r} \ m{A}_{21} & m{A}_{22} & \cdots & m{A}_{2r} \ dots & dots & dots \ m{A}_{s1} & m{A}_{s2} & \cdots & m{A}_{sr} \end{pmatrix}, \quad m{B} = egin{pmatrix} m{B}_{11} & m{B}_{12} & \cdots & m{B}_{1r} \ m{B}_{21} & m{B}_{22} & \cdots & m{B}_{2r} \ dots & dots & dots & dots \ m{B}_{s1} & m{B}_{s2} & \cdots & m{B}_{sr} \end{pmatrix},$$

其中 \boldsymbol{A}_{ij} 与 \boldsymbol{B}_{ij} 亦为同型矩阵, 则

2024/6/23 11:39 第2词

$$m{A} + m{B} = egin{pmatrix} m{A}_{11} + m{B}_{11} & m{A}_{12} + m{B}_{12} & \cdots & m{A}_{1r} + m{B}_{1r} \ m{A}_{21} + m{B}_{21} & m{A}_{22} + m{B}_{22} & \cdots & m{A}_{2r} + m{B}_{2r} \ dots & dots & dots \ m{A}_{s1} + m{B}_{s1} & m{A}_{s2} + m{B}_{s2} & \cdots & m{A}_{sr} + m{B}_{sr} \end{pmatrix}.$$

设k为数,则

$$koldsymbol{A} = oldsymbol{A}k = egin{pmatrix} koldsymbol{A}_{11} & koldsymbol{A}_{12} & \cdots & koldsymbol{A}_{1r} \ koldsymbol{A}_{21} & koldsymbol{A}_{22} & \cdots & koldsymbol{A}_{2r} \ dots & dots & dots \ koldsymbol{A}_{s1} & koldsymbol{A}_{s2} & \cdots & koldsymbol{A}_{sr} \end{pmatrix}.$$

(2) 设 \boldsymbol{A} 为 $m \times l$ 矩阵, \boldsymbol{B} 为 $l \times n$ 矩阵, 将 \boldsymbol{A} , \boldsymbol{B} 分别分成

$$m{A} = egin{pmatrix} m{A}_{11} & \cdots & m{A}_{1t} \ drapprox & drapprox \ m{A}_{s1} & \cdots & m{A}_{st} \end{pmatrix}, \quad m{B} = egin{pmatrix} m{B}_{11} & \cdots & m{B}_{1r} \ drapprox & drapprox \ m{B}_{t1} & \cdots & m{B}_{tr} \end{pmatrix},$$

其中 $m{A}_{i1}, m{A}_{i2}, \cdots, m{A}_{it}$ 的列数分别等于 $m{B}_{1j}, m{B}_{2j}, \cdots, m{B}_{tj}$ 的行数, 则

$$oldsymbol{AB} = egin{pmatrix} oldsymbol{C}_{11} & \cdots & oldsymbol{C}_{1r} \ dots & dots \ oldsymbol{C}_{s1} & \cdots & oldsymbol{C}_{sr} \end{pmatrix}$$

其中 $oldsymbol{C}_{ij} = \sum_{k=1}^t oldsymbol{A}_{ik} oldsymbol{B}_{kj} (i=1,2,\cdots,s;j=1,2,\cdots,r).$

注意: 在分块矩阵的乘法中, 要求左矩阵的列的分法与右矩阵的行的分法是一致的.

例
$$20$$
: 设 $oldsymbol{A}=egin{pmatrix}1&0&0&0\0&1&0&0\-1&2&1&0\1&1&0&1\end{pmatrix},\quad oldsymbol{B}=egin{pmatrix}1&0&1&0\-1&2&0&1\1&0&4&1\-1&-1&2&0\end{pmatrix},$ 求 $oldsymbol{A}$

(3) 设

$$oldsymbol{A} = egin{pmatrix} oldsymbol{A}_{11} & oldsymbol{A}_{12} & \cdots & oldsymbol{A}_{1r} \ oldsymbol{A}_{21} & oldsymbol{A}_{22} & \cdots & oldsymbol{A}_{2r} \ dots & dots & dots \ oldsymbol{A}_{s1} & oldsymbol{A}_{s2} & \cdots & oldsymbol{A}_{sr} \end{pmatrix},$$

则

$$oldsymbol{A}^{ ext{T}} = egin{pmatrix} oldsymbol{A}_{11}^{ ext{T}} & oldsymbol{A}_{21}^{ ext{T}} & \cdots & oldsymbol{A}_{s1}^{ ext{T}} \ oldsymbol{A}_{12}^{ ext{T}} & oldsymbol{A}_{22}^{ ext{T}} & \cdots & oldsymbol{A}_{s2}^{ ext{T}} \ dots & dots & dots & dots \ oldsymbol{A}_{1r}^{ ext{T}} & oldsymbol{A}_{2r}^{ ext{T}} & \cdots & oldsymbol{A}_{sr}^{ ext{T}} \end{pmatrix}.$$

(4) 设方阵 A 的分块矩阵为

$$oldsymbol{A} = \left(egin{array}{cccc} oldsymbol{A}_1 & oldsymbol{O} & & & & \ & oldsymbol{A}_2 & & & & \ & & \ddots & & \ & oldsymbol{O} & & oldsymbol{A}_m \end{array}
ight),$$

除主对角线上的子块外, 其余子块都为零矩阵, 且 $A_i (i=1,2,\cdots,m)$ 为方阵, 则 A称为分块对角矩阵 (或准对角矩阵), 简记为 $\operatorname{diag}(A_1,A_2,\cdots,A_m)$.

准对角矩阵 A 的行列式具有下述性质:

$$\det \boldsymbol{A} = |\boldsymbol{A}_1| |\boldsymbol{A}_2| \cdots |\boldsymbol{A}_m|.$$

若有与 A 同阶的准对角矩阵

$$oldsymbol{B} = \left(egin{array}{cccc} oldsymbol{B}_1 & oldsymbol{O} & & & & \ & oldsymbol{B}_2 & & & & \ & & \ddots & & \ & oldsymbol{O} & & oldsymbol{B}_m \end{array}
ight),$$

其中 \boldsymbol{A}_i 与 $\boldsymbol{B}_i (i=1,2,\cdots,m)$ 亦为同阶方阵,则有

2024/6/23 11:39

$$m{AB} = \left(egin{array}{cccc} m{A}_1m{B}_1 & m{O} & & & \ & m{A}_2m{B}_2 & & & \ & \ddots & & & \ & m{O} & m{A} & m{B} \end{array}
ight)$$

若 $|oldsymbol{A}_i|
eq 0 (i=1,2,\cdots,m)$,则 $|oldsymbol{A}|
eq 0$,并有

$$m{A}^{-1} = egin{pmatrix} m{A}_1^{-1} & & m{O} & & & & \ & m{A}_2^{-1} & & & & & \ & & \ddots & & & \ & m{O} & & m{A}_m^{-1} \end{pmatrix}$$

例
$$21$$
: 设 $oldsymbol{A}=egin{pmatrix} 5 & 0 & 0 \ 0 & 3 & 1 \ 0 & 2 & 1 \end{pmatrix}$,求 $oldsymbol{A}^{-1}$. 显示解答 [收起解答]

例 22: 设 $oldsymbol{A},oldsymbol{C}$ 分别为 r 阶可逆矩阵、s 阶可逆矩阵,求分块矩阵

$$oldsymbol{X} = egin{pmatrix} oldsymbol{O} & oldsymbol{A} \ oldsymbol{C} & oldsymbol{B} \end{pmatrix}$$

的逆矩阵. 显示解答 收起解答

返回顶部

2.5 矩阵的初等变换与初等矩阵

本节将引入矩阵的初等变换的概念,并建立矩阵的初等变换与矩阵乘法的联系.

定义 10: 对矩阵施行的以下三种变换称为矩阵的初等行 (0) 变换:

- (1) 交换矩阵的第 i 行 (列) 和第 j 行 (列), 记为 $r_i \leftrightarrow r_j$ $(c_i \leftrightarrow c_j)$;
- (2) 以一个非零常数 k 乘以矩阵的第 i 行 (列), 记为 $k imes r_i\,(k imes c_i)$;
- (3) 把矩阵的第 i 行 (列) 所有元素的 k 倍加到第 j 行 (列) 对应的元素上,记为 $r_j + k imes r_i \, (c_j + k imes c_i)$.

初等行变换与初等列变换统称为矩阵的初等变换.

显然, 初等变换都是可逆的, 且逆变换也是同类的初等变换. 例如, $r_i \leftrightarrow r_j$ 的逆变换仍为 $r_i \leftrightarrow r_j$, $k \times r_i$ 的逆变换为 $\frac{1}{k} \times r_i$, $r_j + k \times r_i$ 的逆变换为 $r_j + (-k) \times r_i$.

定义 11: 如果矩阵 $m{A}$ 经有限次初等变换化为矩阵 $m{B}$,则称矩阵 $m{A}$ 与 $m{B}$ 等价,记为 $m{A}\cong m{B}$.

容易验证, 矩阵的等价关系具有下列性质:

- (1) 反身性: $\mathbf{A} \cong \mathbf{A}$;
- (2) 对称性: 若 $\mathbf{A} \cong \mathbf{B}$, 则 $\mathbf{B} \cong \mathbf{A}$;
- (3) 传递性: 若 $\mathbf{A} \cong \mathbf{B}, \mathbf{B} \cong \mathbf{C}$, 则 $\mathbf{A} \cong \mathbf{C}$.

例 23: 已知

$$m{A} = egin{pmatrix} 3 & 2 & 9 & 6 \ -1 & -3 & 4 & -17 \ 1 & 4 & -7 & 3 \ -1 & -4 & 7 & -3 \ \end{pmatrix},$$

对其作如下初等行变换:

$$egin{aligned} oldsymbol{A} & \xrightarrow{r_1 \leftrightarrow r_3} egin{pmatrix} 1 & 4 & -7 & 3 \ -1 & -3 & 4 & -17 \ 3 & 2 & 9 & 6 \ -1 & -4 & 7 & -3 \ \end{pmatrix} \ & \xrightarrow{r_2 + r_1} egin{pmatrix} 1 & 4 & -7 & 3 \ 0 & 1 & -3 & -14 \ 0 & -10 & 30 & -3 \ 0 & 0 & 0 & 0 \ \end{pmatrix} \ & \xrightarrow{r_3 + 10 \times r_2} egin{pmatrix} 1 & 4 & -7 & 3 \ 0 & 1 & -3 & -14 \ 0 & 0 & 0 & -143 \ 0 & 0 & 0 & 0 \ \end{pmatrix} = oldsymbol{B}, \end{aligned}$$

则 $oldsymbol{A}\congoldsymbol{B}$.

矩阵 B 称为行阶梯形矩阵, 它具有下列特征:

- (1) 元素全为零的行(简称零行)位于非零行的下方;
- (2) 各非零行的首非零元 (即该行从左至右的第一个不为零的元素) 的列标随着行标的增大而严格增大 (即首非零元的列标一定不小于行标).

对矩阵 B 再作初等行变换:

$$egin{aligned} m{B} & \xrightarrow{-rac{1}{143} imes r_3} egin{pmatrix} 1 & 4 & -7 & 3 \ 0 & 1 & -3 & -14 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{r_1 + (-4) imes r_2} egin{pmatrix} 1 & 0 & 5 & 59 \ 0 & 1 & -3 & -14 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 1 \end{pmatrix} \ m{r_1 + (-59) imes r_3} & m{r_2 + 14 imes r_3} & = m{C}, \end{aligned}$$

则有 $\boldsymbol{B} \cong \boldsymbol{C}$, 从而 $\boldsymbol{A} \cong \boldsymbol{C}$.

矩阵 C 称为行最简形矩阵, 它具有下列特征:

- (1) 它是行阶梯形矩阵;
- (2) 各非零行的首非零元都是 1;
- (3) 每个首非零元所在列的其余元素都是 0.

如果对矩阵 C 再作初等列变换:

$$egin{aligned} m{C} & \xrightarrow{c_3 + (-5) imes c_1} egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{c_3 \leftrightarrow c_4} egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 \end{pmatrix} \ = egin{pmatrix} m{E_3} & m{O} \ m{O} & m{O} \end{pmatrix} = m{D}. \end{aligned}$$

矩阵 D 的左上角为一个单位矩阵 E_3 , 其他各子块都是零矩阵. 称矩阵 D 为矩阵 A 的等价标准形.

事实上,有下面的结论.

定理 2: 任何一个矩阵 A 总可以经过有限次初等行变换化为行阶梯形矩阵, 并进一步化为行最简形矩阵.

定理 3: 任何一个矩阵都有等价标准形,矩阵 A 与 B 等价,当且仅当它们有相同的等价标准形.

注意: 与矩阵 A 等价的行阶梯形矩阵和行最简形矩阵不是唯一的,但矩阵 A 的等价标准形是唯一的.

两个等价的矩阵不一定是相等的,那么它们之间有什么关系呢?为此,我们引入初等矩阵的概念.

 $\mathbf{c} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v}$ 由单位矩阵 \mathbf{E} 经过一次初等变换得到的矩阵称为初等矩阵.

显然, 初等矩阵都是方阵, 三种初等变换对应着三种初等矩阵.

交换 E 的第 i 行和第 j 行 (或交换 E 的第 i 列和第 j 列), 得

用常数 k 乘 E 的第 i 行(或第 i 列), 得

将 ${m E}$ 的第 j 行的 k 倍加到第 i 行 (或将第 i 列的 k 倍加到第 j 列),

这三类矩阵就是全部的初等矩阵. 容易证明, 初等矩阵都是可逆的, 它们的逆矩阵还是初等矩阵. 事实上,

$$egin{aligned} oldsymbol{E}(i,j)^{-1} &= oldsymbol{E}(i,j), \quad oldsymbol{E}[i(k)]^{-1} &= oldsymbol{E}[i\left(rac{1}{k}
ight)] \ , \ oldsymbol{E}[i+j(k)]^{-1} &= oldsymbol{E}[i+j(-k)]. \end{aligned}$$

定理 $m{4}$: 对一个 $m{m} imes m{n}$ 矩阵 $m{A}$ 施行一次初等行变换,相当于用相应的 $m{m}$ 阶初等矩阵左乘 $m{A}$; 对 $m{A}$ 施行一次初等列变换,相当于用相应的 $m{n}$ 阶初等矩阵右乘 $m{A}$. $m{Gerice}$ $m{Weight}$

例如,对矩阵

$$oldsymbol{A} = \left(egin{matrix} 2 & 1 & 3 \ 0 & 1 & 2 \end{matrix}
ight),$$

有

第2章 矩阵

$$oldsymbol{E}[1+2(2)]oldsymbol{A}=\left(egin{matrix}1&2\0&1\end{matrix}
ight)\left(egin{matrix}2&1&3\0&1&2\end{matrix}
ight)=\left(egin{matrix}2&3&7\0&1&2\end{matrix}
ight),$$

而

$$oldsymbol{A} \xrightarrow{r_1+2 imes r_2} \left(egin{matrix} 2 & 3 & 7 \ 0 & 1 & 2 \end{array}
ight) = oldsymbol{E}[1+2(2)]oldsymbol{A}.$$

这说明对 $m{A}$ 施行的将第二行的元素乘以 $m{2}$ 加到第一行的对应元素上的初等行变换所得到的矩阵等于用初等矩阵 $m{E}[1+2(2)]$ 左乘 $m{A}$.

 $m{ extbf{ iny height}} m{ iny height} m{$

$$A = P_1 \cdots P_s B Q_1 \cdots Q_t$$
.

由于初等矩阵都是可逆矩阵, 因此还可以得到下面的推论.

推论 3: $m \times n$ 矩阵 \boldsymbol{A} 与 \boldsymbol{B} 等价的充分必要条件是存在 m 阶可逆矩阵 \boldsymbol{P} 和 n 阶可逆矩阵 Q, 使

$$A = PBQ$$
.

返回顶部

2.6 用初等变换求逆矩阵

本章第 3 节中给出了求逆矩阵的公式法——伴随矩阵法. 但对于较高阶的 矩阵, 用伴随矩阵法求逆矩阵的计算量太大. 下面给出另一种简便、可行的求逆矩阵的方法———初等变换法.

定理 5: 设 \mathbf{A} 是 n 阶方阵,则下面的命题是等价的:

- (1) \boldsymbol{A} 是可逆的;
- (2) $oldsymbol{A}\congoldsymbol{E},oldsymbol{E}$ 是n 阶单位矩阵;
- (3) 存在 n 阶初等矩阵 $extbf{ extit{P}}_1, extbf{ extit{P}}_2, \cdots, extbf{ extit{P}}_s$,使

$$\boldsymbol{A} = \boldsymbol{P}_1 \boldsymbol{P}_2 \cdots \boldsymbol{P}_s;$$

(4) $m{A}$ 可经过一系列初等行 (列)变换化为 $m{E}$. $oxdot{Becure 1}$ $oxdot{Velicity}$

下面介绍用初等变换求逆矩阵的方法.

若 \boldsymbol{A} 可逆, 由定理 5 的命题 (4) 和定理 4 知, 存在初等矩阵 $\boldsymbol{P}_1, \boldsymbol{P}_2, \cdots, \boldsymbol{P}_m$, 使

$$(2-2) P_m \cdots P_2 P_1 A = E.$$

上式两端右乘 A^{-1} ,则有

$$(2\text{-}3) \hspace{1cm} \boldsymbol{P}_m \cdots \boldsymbol{P}_2 \boldsymbol{P}_1 \boldsymbol{E} = \boldsymbol{A}^{-1}.$$

式 (2-2) 和式 (2-3) 表明, 对 \boldsymbol{A} 施行一系列初等行变换可将其化为 \boldsymbol{E} , 则 对 \boldsymbol{E} 施行相同的一系列初等行变换可将其化为 \boldsymbol{A}^{-1} . 于是得到用初等变换 求逆矩阵的方法: 构造一个 $n\times 2n$ 矩阵 $(\boldsymbol{A}:\boldsymbol{E})$, 用初等行变换将左边的 \boldsymbol{A} 化为 \boldsymbol{E} 时, 右边的 \boldsymbol{E} 便化为了 \boldsymbol{A}^{-1} , 即

$$(oldsymbol{A}\ \dot{oldsymbol{E}}\ oldsymbol{B}\ oldsymbol{(B}\ \dot{oldsymbol{E}}\ oldsymbol{A}^{-1}).$$

$$m{A} = egin{pmatrix} 0 & 1 & 2 \ 1 & 1 & 4 \ 2 & -1 & 0 \end{pmatrix},$$

求
$$oldsymbol{A}^{-1}$$
. 显示解答 $oldsymbol{\mathsf{ULRE}}$

- 例 24 中求逆矩阵的交互式行初等变换完成版 (点击链接跳转)
- 例 24 中求逆矩阵的交互式行初等变换自行演示 (点击链接跳转)
- 利用SageMath在线代码模块求例 24 中的逆矩阵.

注意: 也可以利用初等列变换求逆矩阵, 即

$$egin{pmatrix} oldsymbol{A} & oldsymbol{A} & oldsymbol{B} & oldsymbol{A} & oldsymbol{B} & oldsymbol{B} & oldsymbol{A} & oldsymbol{A$$

返回顶部

2.7 矩阵的秩

本节将通过矩阵的子式来判断矩阵的一个内在特性,即所谓矩阵的秩. 秩对于矩阵理论的研究和应用十分重要.

定义 13: 在一个 $s \times n$ 矩阵 $m{A}$ 中任意选定 k 行和 k 列, 位于这些选定的行和列的交叉位置的 k^2 个元素按原来的次序所组成的 k 阶行列式, 称为 $m{A}$ 的一个 k 阶子式.

显然, $k \leq \min\{s, n\}$ (s, n 中较小的一个).

例 25: 在矩阵

$$m{A} = egin{pmatrix} 1 & 1 & 3 & 6 & 1 \ 0 & 1 & -2 & 4 & 0 \ 0 & 0 & 0 & 5 & 3 \ 0 & 1 & 1 & 0 & 2 \end{pmatrix}$$

中, 选定第 1,3 行和第 3,4 列, 则位于其交叉位置的元素所组成的二阶行列式

$$\begin{vmatrix} 3 & 6 \\ 0 & 5 \end{vmatrix}$$

就是 $m{A}$ 的一个二阶子式. 易见, $m{A}$ 的二阶子式共有 ${
m C}_4^2\cdot{
m C}_5^2=60$ 个.

一般地, $s \times n$ 矩阵 **A** 的 k 阶子式共有 $C_s^k \cdot C_n^k$ 个.

定义 14: 设 A 为 $s \times n$ 矩阵, 如果至少存在 A 的一个 r 阶子式不为 0, 而 A的所有 r+1 阶子式 (如果存在的话) 都为 0, 则称数 r 为矩阵 A 的秩, 记为 r(A). 并规定零矩阵的秩等于 0.

由行列式的性质可知, 在 \boldsymbol{A} 中, 当所有 r+1 阶子式都为 0 时, 所有高于 r+1阶的子式也全为 0, 因此, 矩阵 \boldsymbol{A} 的秩 $r(\boldsymbol{A})$ 就是 \boldsymbol{A} 的非零子式的最高阶数. 若 $r(\boldsymbol{A})=r$, 则 \boldsymbol{A} 一定存在一个 r 阶非零子式, 称为 \boldsymbol{A} 的最高阶非零子式. 一般来说, \boldsymbol{A} 的最高阶非零子式可能不止一个.

例 26: 求矩阵

$$m{A} = egin{pmatrix} 1 & 2 & 3 \ 2 & 3 & -5 \ 4 & 7 & 1 \end{pmatrix}$$

的秩. 显示解答 收起解答

• 利用SageMath在线代码模块求例 26 中矩阵的秩.

显示代码 收起代码

$$m{A} = egin{pmatrix} a & 1 & 1 & 1 \ 1 & a & 1 & 1 \ 1 & 1 & a & 1 \ 1 & 1 & 1 & a \end{pmatrix}$$

的秩为 3,求 a 的值. $_{\tiny{f QSTRYS}}$ $_{\tiny{f WLRYS}}$

例 28: 求矩阵

$$m{A} = egin{pmatrix} 2 & -1 & 0 & 3 & -2 \ 0 & 3 & 1 & -2 & 5 \ 0 & 0 & 0 & 4 & -3 \ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

的秩. 显示解答 收起解答

从例 28 可以看出,一个行阶梯形矩阵的秩等于它的非零行的个数.

设矩阵 A 是一个 $s \times n$ 矩阵, 显然, 有 $r(A) \leqslant \min\{s,n\}$. 当 $r(A) = \min\{s,n\}$ 时, 称 A 为满秩矩阵; 否则称 A 为降秩矩阵.

利用定义计算矩阵的秩,需要由高阶到低阶考虑矩阵的子式,当矩阵的行数与列数较多时,是非常麻烦的.由于行阶梯形矩阵的秩实际上就是其非零行的个数,故行阶梯形矩阵的秩很容易判断.而矩阵都可以经过初等行变换化为行阶梯形矩阵,因而可考虑借助初等变换求矩阵的秩.

定理 6: 两个同型矩阵等价的充分必要条件是它们的秩相等. هاتواته والمواتقة والمواتقة المواتقة والمواتقة والمواتق

定理 6 表明, 初等变换不改变矩阵的秩. 因此利用定理 6 求一个矩阵的秩, 相关问题只需用初等行变换将矩阵化为行阶梯形矩阵, 则其非零行的个数便是矩阵的秩.

例 29: 设

第2音 矩阵

$$m{A} = egin{pmatrix} 3 & 2 & 0 & 5 & 0 \ 3 & -2 & 3 & 6 & -1 \ 2 & 0 & 1 & 5 & -3 \ 1 & 6 & -4 & -1 & 4 \end{pmatrix},$$

求 $r(m{A})$,并求 $m{A}$ 的一个最高阶非零子式. oxdots

例 30: 设

$$m{A} = egin{pmatrix} 1 & -1 & 1 & 2 \ 3 & \lambda & -1 & 2 \ 5 & 3 & \mu & 6 \end{pmatrix}$$

且 $r(oldsymbol{A})=2$,求 λ 与 μ 的值. $oxdot{ar{L}}$ $oxdot{ar{L}}$ $oxdot{ar{L}}$ $oxdot{ar{L}}$ $oxdot{ar{L}}$

例 31: 设 \mathbf{A} 为 n 阶可逆方阵, \mathbf{B} 为 $n \times m$ 矩阵. 证明:

$$r(oldsymbol{A}oldsymbol{B}) = r(oldsymbol{B})$$
. General (website)

返回顶部

习题 2 (A) 类

1. 设
$$m{A} = \begin{pmatrix} 1 & 2 & 1 & 2 \\ 2 & 1 & 2 & 1 \\ 1 & 2 & 3 & 4 \end{pmatrix}, m{B} = \begin{pmatrix} 4 & 3 & 2 & 1 \\ -2 & 1 & -2 & 1 \\ 0 & -1 & 0 & -1 \end{pmatrix}.$$

- (1) 计算 3A B, 2A + 3B;
- (2) 若 X 满足 A + X = B, 求 X;
- (3) 若 Y 满足 (2A Y) + 2(B Y) = O, 求 Y.

显示代码 收起代码

2. 计算下列矩阵的乘积:

$$(1) \begin{pmatrix} 1 \\ -1 \\ 2 \\ 3 \end{pmatrix} (3, 2, -1, 0);$$

$$(2) \begin{pmatrix} 5 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix};$$

$$(3) \ (1,2,3,4) \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix};$$

$$(4) \ (x_1,x_2,x_3) \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix};$$

$$(5) \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix};$$

$$(6) \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & -2 & 3 \\ 0 & 0 & 0 & -3 \end{pmatrix}.$$

3. 设
$$m{A} = egin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}, m{B} = egin{pmatrix} 1 & 2 & 1 \\ 1 & 3 & -1 \\ 2 & 1 & 4 \end{pmatrix}.$$

- (2) 问: $({m A} + {m B})({m A} {m B})$ 是否等于 ${m A}^2 {m B}^2$?

显示代码 收起代码

- 4. 举例说明下列命题是错误的:
 - (1) 若 $A^2 = O$, 则 A = O;
 - (2) 若 $\mathbf{A}^2 = \mathbf{A}$, 则 $\mathbf{A} = \mathbf{O}$ 或 $\mathbf{A} = \mathbf{E}$;
 - (3) 若 AX = AY, $A \neq O$, 则 X = Y.
- 5. 计算:

$$(1) \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}^3;$$

$$(3)$$
 $\begin{pmatrix} 1 & 0 \\ \lambda & 1 \end{pmatrix}^k$ (k 为正整数).

显示代码 收起代码

2024/6/23 11:39

6. 设
$$oldsymbol{A} = \left(egin{array}{cccc} a & b & c & d \ b & -a & d & -c \ -c & d & a & -b \ -d & -c & b & a \end{array}
ight)$$
, 求 $|oldsymbol{A}|$.

显示代码 收起代码

7. 已知线性变换

$$\left\{egin{array}{ll} x_1=&2y_1+y_2,\ x_2=-2y_1+3y_2+2y_3,\ x_3=&4y_1+y_2+5y_3; \end{array}
ight. \left. egin{array}{ll} y_1=-3z_1+z_2,\ y_2=&2z_1+z_3,\ y_3=&-z_2+3z_3. \end{array}
ight.$$

利用矩阵乘法,求从 z_1, z_2, z_3 到 x_1, x_2, x_3 的线性变换.

显示代码 收起代码

- 8. 设 $\overline{\boldsymbol{A}}, \overline{\boldsymbol{B}}$ 均为 n 阶方阵,且 \boldsymbol{A} 为对称矩阵,证明: $\boldsymbol{B}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{B}$ 也是对称矩阵.
- 9. 设 A, B 均为 n 阶对称方阵, 证明: AB 为对称矩阵的充分必要条件是 AB = BA.
- 10. 设 \boldsymbol{A} 为 n 阶对称矩阵, \boldsymbol{B} 为 n 阶反对称矩阵, 证明:
 - (1) B^2 是对称矩阵;
 - (2) AB BA 是对称矩阵, AB + BA 是反对称矩阵.

$$(2)$$
 $AB - BA$ 是 $AB + BA$ A

13. 求下列矩阵的逆矩阵

$$(1) \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix};$$

$$(2) \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix};$$

$$(3) \begin{pmatrix} 1 & 2 & -1 \\ 3 & 4 & -2 \\ 5 & -4 & -1 \end{pmatrix};$$

$$(4) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 2 & 1 & 3 & 0 \\ 1 & 2 & 1 & 4 \end{pmatrix}.$$

显示代码 收起代码

14. 利用逆矩阵, 解线性方程组

$$\left\{egin{array}{ll} x_1+&x_2+&x_3=1,\ &2x_2+2x_3=1,\ x_1-&x_2&=2. \end{array}
ight.$$

- 15. 证明下列命题:
 - (1) 若 \boldsymbol{A} , \boldsymbol{B} 是同阶可逆矩阵,则 $(\boldsymbol{A}\boldsymbol{B})^* = \boldsymbol{B}^*\boldsymbol{A}^*$;
 - (2) 若 $oldsymbol{A}$ 可逆且 $(oldsymbol{A}^*)^{-1} = ig(oldsymbol{A}^{-1}ig)^*;$
 - (3) 若 $\boldsymbol{A}\boldsymbol{A}^{\mathrm{T}}=\boldsymbol{E}$, 则 $\left(\boldsymbol{A}^{*}\right)^{\mathrm{T}}=\left(\boldsymbol{A}^{*}\right)^{-1}$.
- 16. 已知线性变换

$$\left\{egin{array}{l} x_1=2y_1+2y_2+\ y_3,\ x_2=3y_1+\ y_2+5y_3,\ x_3=3y_1+2y_2+3y_3. \end{array}
ight.$$

求从变量 x_1, x_2, x_3 到变量 y_1, y_2, y_3 的线性变换.

17. 解下列矩阵方程:

$$(1) \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \mathbf{X} = \begin{pmatrix} 4 & -6 \\ 2 & 1 \end{pmatrix};$$

$$(2) \mathbf{X} \begin{pmatrix} 2 & 1 & -1 \\ 2 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 & -1 \\ 2 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix};$$

$$(3) \begin{pmatrix} 1 & 4 \\ -1 & 2 \end{pmatrix} \mathbf{X} \begin{pmatrix} 2 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 0 & -1 \end{pmatrix};$$

$$(4) \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mathbf{X} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -4 & 3 \\ 2 & 0 & -1 \\ 1 & -2 & 0 \end{pmatrix}.$$

显示代码 收起代码

18. 设
$$m{A}=egin{pmatrix} 4 & 2 & 3 \ 1 & 1 & 0 \ -1 & 2 & 3 \end{pmatrix}, m{AB}=m{A}+2m{B},$$
 求 $m{B}.$

显示代码 收起代码

19. 设 m 次多项式 $f(x)=a_0+a_1x+\cdots+a_mx^m$, 记 $f(\boldsymbol{A})=a_0\boldsymbol{E}+a_1\boldsymbol{A}+\cdots+a_m\boldsymbol{A}^m$, 则 $f(\boldsymbol{A})$ 称为方阵 \boldsymbol{A} 的 m 次多

项式.

$$(1)$$
 设 $oldsymbol{A}=egin{pmatrix} \lambda_1 & \ & \lambda_2 \end{pmatrix}$, 证明:

$$m{A}^k = egin{pmatrix} \lambda_1^k & \ & \lambda_2^k \end{pmatrix} (k$$
 为正整数), $f(m{A}) = egin{pmatrix} f(\lambda_1) & \ & f(\lambda_2) \end{pmatrix};$

$$(2)$$
 设 $m{A}=m{P}^{-1}m{B}m{P}$, 证明: $m{B}^k=m{P}m{A}^{-1}, f(m{B})=m{P}f(m{A})m{P}^{-1}$.
20. 设 $m{P}^{-1}m{A}m{P}=m{\Lambda}$, 其中 $m{P}=\begin{pmatrix} -1 & -4 \\ 1 & 1 \end{pmatrix}$, $m{\Lambda}=\begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}$, 求 $m{A}^{10}$.

- 21. 设 \mathbf{A} 为 n 阶方阵, 证明:
 - (1) $|<math> \boldsymbol{A}| = 0,$ <math> $|<math> \boldsymbol{A}^*| = 0;$
 - (2) $|A| = |A|^{n-1}$.
- 22. 设

$$m{A} = egin{pmatrix} 5 & 2 & 0 & 0 \ 2 & 1 & 0 & 0 \ 0 & 0 & 7 & 3 \ 0 & 0 & 5 & 2 \ \end{pmatrix}, \quad m{B} = egin{pmatrix} 3 & 2 & 0 & 0 \ 4 & 5 & 0 & 0 \ 0 & 0 & 4 & 1 \ 0 & 0 & 6 & 2 \ \end{pmatrix}.$$

求: (1) \boldsymbol{AB} ; (2) \boldsymbol{BA} ; (3) \boldsymbol{A}^{-1} ; (4) $|\boldsymbol{A}|^k$ (k 为正整数).

23. 利用矩阵分块的方法, 证明下列矩阵可逆, 并求其逆矩阵:

$$(1) \begin{pmatrix} 1 & 2 & 0 & 0 & 0 \\ 2 & 5 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 3 & -1 \\ 0 & 0 & 2 & 1 \\ 2 & 1 & 0 & 0 \\ -2 & 3 & 0 & 0 \end{pmatrix};$$

$$(3) \begin{pmatrix} 2 & 0 & 1 & 0 & 2 \\ 0 & 2 & 0 & 1 & 3 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

24. 利用初等变换将下列矩阵化为等价标准形:

$$(1) \begin{pmatrix} 3 & 2 & -4 \\ 3 & 2 & -4 \\ 1 & 2 & -1 \end{pmatrix};$$

$$(2) \begin{pmatrix} 1 & -1 & 2 & 1 & 0 \\ 2 & -2 & 4 & 2 & 0 \\ 3 & 0 & 6 & -1 & 1 \\ 3 & 0 & 6 & 3 & 1 \end{pmatrix}.$$

25. 利用初等变换求下列矩阵的逆矩阵:

$$(1) \begin{pmatrix} 3 & 2 & 1 \\ 3 & 1 & 5 \\ 3 & 2 & 3 \end{pmatrix}$$

习题 25 中(1) 求逆矩阵的交互式行初等变换(点击链接跳转)

$$(2) \begin{pmatrix} 3 & -2 & 0 & -1 \\ 0 & 2 & 2 & 1 \\ 1 & -2 & -3 & -2 \\ 3 & 1 & 2 & 1 \end{pmatrix};$$

习题 25 中(2) 求逆矩阵的交互式行初等变换(点击链接跳转)

$$(3) \begin{pmatrix} -11 & 2 & 2 \\ -4 & 0 & 1 \\ 6 & -1 & -1 \end{pmatrix}$$

习题 25 中(3) 求逆矩阵的交互式行初等变换(点击链接跳转)

$$(4) \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

习题 25 中(4) 求逆矩阵的交互式行初等变换(点击链接跳转)

26. 求下列矩阵的秩:

27. 已知

$$m{A} = egin{pmatrix} 1 \ 2 \ 3 \end{pmatrix} (1,-1,0), \quad m{B} = egin{pmatrix} 1 & 2 & -1 \ 2 & a & 2 \ -1 & 2 & 3 \end{pmatrix}.$$

若 $r(\mathbf{AB} + \mathbf{B}) = 2$, 求 a.

返回顶部

2024/6/23 11:39

习题 2 (B) 类

1. 设 A, B 均为 n 阶方阵, 则下列选项中不成立的是 ().

A.
$$regin{pmatrix} m{A} & m{O} \ m{O} & m{A}^{\mathrm{T}}m{A} \end{pmatrix} = 2r(m{A})$$

B.
$$r \left(egin{array}{cc} m{A} & m{A}m{B} \ m{O} & m{A}^{\mathrm{T}} \end{array}
ight) = 2r(m{A})$$

C.
$$regin{pmatrix} m{A} & m{B}m{A} \ m{O} & m{A}^{\mathrm{T}}m{A} \end{pmatrix} = 2r(m{A})$$

D.
$$r\left(egin{array}{ccc} oldsymbol{A} & oldsymbol{O} \ oldsymbol{B}oldsymbol{A} & oldsymbol{A}^{\mathrm{T}} \end{array}
ight) = 2r(oldsymbol{A})$$

2. 已知矩阵 $m{A}=egin{pmatrix}1&0&-1\\2&-1&1\\-1&2&-5\end{pmatrix}$,若存在下三角形可逆矩阵 $m{P}$ 和上三

角形可逆矩阵 $oldsymbol{Q}$,使 $oldsymbol{PAQ}$ 为对角矩阵,则 $oldsymbol{P},oldsymbol{Q}$ 分别为 ().

A.
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}$

B.
$$\begin{pmatrix} 2 & -1 & 0 \\ -3 & 2 & 1 \end{pmatrix}$$
, $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

C.
$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & -1 & 0 \\ 3 & 2 & 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}$

D.
$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 3 & 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 2 & -3 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$

3. 设 $\boldsymbol{A}, \boldsymbol{B}$ 均为 n 阶方阵, 则必有 ().

A.
$$|{m A} + {m B}| = |{m A}| + |{m B}|$$

B.
$$oldsymbol{A}oldsymbol{B} = oldsymbol{B}oldsymbol{A}$$

C.
$$|m{A}m{B}| = |m{B}m{A}|$$

D.
$$({m A}+{m B})^{-1}={m A}^{-1}+{m B}^{-1}$$

4. 设 \boldsymbol{A} 为 $n(n \ge 2)$ 阶可逆矩阵, 交换 \boldsymbol{A} 的第一行和第二行得矩阵 \boldsymbol{B} , \boldsymbol{A}^* , \boldsymbol{B}^* 分别为 \boldsymbol{A} , \boldsymbol{B} 的伴随矩阵, 则().

A. 交换 A^* 的第一列和第二列得 B

B. 交换 A^* 的第一行和第二行得 B^*

C. 交换 A^* 的第一列和第二列得 -B

D. 交换 A^* 的第一行和第二行得 $-B^*$

5. 设 $\overline{m{A}}$ 为 \overline{n} 阶方阵,且 $|m{A}|=a
eq 0$,则 $|m{A}|=($). A. a B. $\frac{1}{a}$ C. a^{n-1} D. a^n

6. 已知
$$oldsymbol{Q}=egin{pmatrix}1&2&3\2&4&1\3&6&9\end{pmatrix}$$
, $oldsymbol{P}$ 为三阶非零矩阵,且满足 $oldsymbol{PQ}=oldsymbol{O}$,则

A. t=6 时, \boldsymbol{P} 的秩为 1

B. t=6 时, \boldsymbol{P} 的秩为 2

C. $t \neq 6$ 时, $m{P}$ 的秩为 1

D. $t \neq 6$ 时, **P** 的秩为 2

7. 设
$$m{A} = \begin{pmatrix} 2 & 1 \ -1 & 2 \end{pmatrix}$$
 , $m{E}$ 为二阶单位矩阵, 矩阵 $m{B}$ 满足 $m{B}m{A} = m{B} + 2m{E}$ 则 $|m{B}| =$

$$m{B}m{A} = m{B} + 2m{E}$$
, 则 $m{|B|} =$ _____. இருத்த

7. 设
$$m{A} = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$$
 , $m{E}$ 为二阶单位矩阵,矩阵 $m{B}$ 满足 $m{B}m{A} = m{B} + 2m{E}$, 则 $|m{B}| =$ ______. 显示答案 收起答案 8. 设 $m{A} = \begin{pmatrix} 1 & 2 & -2 \\ 4 & t & 3 \\ 3 & -1 & 1 \end{pmatrix}$, $m{B}$ 为三阶非零矩阵,且 $m{A}m{B} = m{O}$,则

$$t=$$
 _____. 🗓 Бал Хар (was $ag{was a same}$

$$t=$$
 _______. 显示答案 收起答案 _______. 以起答案 _______. 以是 $m{A}=egin{pmatrix} k & 1 & 1 & 1 \ 1 & k & 1 & 1 \ 1 & 1 & k & 1 \ 1 & 1 & 1 & k \end{pmatrix}$,且 $r(m{A})=3$,则 $k=$ _______. 显示答案 ______.

10. 设
$$m{A}$$
 为 $4 imes3$ 矩阵, 且 $m{r}(m{A})=2$, $m{B}=egin{pmatrix}1&0&2\\0&2&0\\-1&0&3\end{pmatrix}$, 则

$$r(oldsymbol{AB}) =$$
 . 🗓 显示答案 🛮 收起答案

 $r(m{A}m{B})=$ _____. 且示答案 收起答案 11. 设方阵 $m{A}$ 满足 $m{A}^2-m{A}-2m{E}=m{O}$,证明: $m{A}$ 及 $m{A}+2m{E}$ 都可逆,并求 $oldsymbol{A}^{-1}$ 及 $(oldsymbol{A}+2oldsymbol{E})^{-1}$. 国示答案 | 「收起答案 |

12. 设 $m{A}$ 是 n 阶方阵, 满足 $m{A}m{A}^{\mathrm{T}}=m{E}$, 且 $|m{A}|<0$, 求 $|m{A}+m{E}|$. 🖫 🖼

13. 若 $m{A}$ 为三阶方阵,且 $|m{A}|=rac{1}{2}$,求 $|(3m{A})^{-1}-2m{A}^*|$ 的值. $_{flackBark}$ $_{flackWebs}$

14. 设
$$oldsymbol{A}=egin{pmatrix} a_1 & & & & & \ & a_2 & & & \ & & \ddots & & \ & & & a_n \end{pmatrix}$$
 , 其中

 $a_i
eq a_j (i \neq j; i, j = 1, 2, \cdots, n)$. 证明: 与 $m{A}$ 可交换的只能是对角矩阵.

- 15. 设 \mathbf{A} 为 n 阶方阵 $(n \ge 2)$, 试证:
 - (1) 当 r(A) = n 时, $r(A^*) = n$;
 - (2) 当 r(A) = n 1 时, $r(A^*) = 1$;
 - (3) 当 r(A) < n-1 时, $r(A^*) = 0$.
- 16. 设 A, B 为 n 阶方阵, λ 为数, 证明矩阵的秩有下列性质:
 - $(1) \ r(\boldsymbol{A}) = r\left(\boldsymbol{A}^{\mathrm{T}}\right);$
 - (2) 当 $\lambda \neq 0$ 时, $r(\lambda \mathbf{A}) = r(\mathbf{A})$;
 - (3) $r(A + B) \leq r(A) + r(B)$;
 - $(4) r(\mathbf{AB}) \leqslant \min\{r(\mathbf{A}), r(\mathbf{B})\};$
 - (5) 如果 \boldsymbol{A} 可逆,则 $r(\boldsymbol{B}\boldsymbol{A}) = r(\boldsymbol{A}\boldsymbol{B}) = r(\boldsymbol{B})$.

返回顶部

Copyright © 2024 Hong All Rights Reserved