Relaciones

Clase 08

IIC 1253

Prof. Cristian Riveros

¿cómo se definen los números naturales?

Para todo conjunto A considere el operador:

$$\sigma(A) = A \cup \{A\}$$

El conjunto de los números naturales se puede definir como sigue:

$$\begin{array}{lll} 0 & = & \varnothing \\ \\ 1 & = & \sigma(0) = \sigma(\varnothing) = \varnothing \cup \{\varnothing\} = \{\varnothing\} = \{0\} \\ \\ 2 & = & \sigma(1) = \sigma(\{\varnothing\}) = \{\varnothing\} \cup \{\{\varnothing\}\} = \{\varnothing, \{\varnothing\}\} = \{0, 1\} \\ \\ 3 & = & \sigma(2) = \sigma(\{\varnothing, \{\varnothing\}\}) = \{\varnothing, \{\varnothing\}\} \cup \{\{\varnothing, \{\varnothing\}\}\} \\ \\ & = & \{\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}\} = \{0, 1, 2\} \\ \\ & \vdots \end{array}$$

¿cuál es el significado del operador σ en \mathbb{N} ?

¿cómo modelamos redes con teoría de conjuntos?

¿cómo modelamos redes con teoría de conjuntos?

¿cómo modelamos las conecciones entre los nodos?

Grafos como conjuntos

Definición

Un grafo G sobre el dominio V es un subconjunto $E \subseteq \mathcal{P}(V)$ tal que para todo $e \in E$ se cumple que |e| = 2.

Ejemplo

- $V = \{a, b, c, d, e, f, g\}$
- $E = \{ \{a,b\}, \{a,c\}, \{a,d\}, \{a,g\}, \{b,e\}, \{c,d\}, \{d,e\}, \{d,f\}, \{e,f\}, \{e,g\} \}$

٠

Grafos como conjuntos

Definición

Un grafo G sobre el dominio V es un subconjunto $E \subseteq \mathcal{P}(V)$ tal que para todo $e \in E$ se cumple que |e| = 2.

Notación

- Los elementos en *V* los llamaremos los vértices o nodos del grafo.
- Los elementos en E los llamaremos las aristas del grafo.

Teoría de grafos será muy útiles durante el curso ...

Tablas o relaciones

Nombre	Curso
Marcelo	Tópicos avanzados en CS
Juan	Lógica
Cristian	Matemáticas Discretas

¿cómo representamos esta estructura con conjuntos?

Necesitamos relaciones

Una relación es una correspondencia de objetos de distintos dominios.

Varios ejemplos en matemáticas como:

menor que', 'subconjunto', 'igualdad', ...

Relaciones nos darán orden a nuestros objectos

Outline

Producto cartesiano

Relaciones

Representación

Operaciones

Outline

Producto cartesiano

Relaciones

Representación

Operaciones

Pares ordenados

Definición (informal)

Un pareja de objetos (a, b) es un par ordenado si se distingue un primer elemento y un segundo elemento.

¿cómo definimos pares ordenados con teoría de conjuntos?

Pares ordenados

Definición

Para dos elementos a y b, se define el par ordenado (a,b) como:

$$(a,b) = \{\{a\},\{a,b\}\}$$

Proposición

$$(a,b) = (c,d)$$
 si, y solo si $a = c$ y $b = d$

En particular,
$$(a, b) \neq (b, a)$$

Pares ordenados

Demostración:
$$(a, b) = (c, d)$$
 ssi $a = c$ y $b = d$

- (⇐) Trivial.
- (\Rightarrow) Suponga que (a,b)=(c,d). Por casos:
- 1. Si c = d, entonces $\{\{a\}, \{a, b\}\} \subseteq \{\{c\}, \{c, d\}\} = \{\{c\}\}:$

Por lo tanto,
$$a = c$$
 y $b = a = c$

- 2. Si $c \neq d$, entonces como $\{\{c\}, \{c, d\}\} \subseteq \{\{a\}, \{a, b\}\}$ se cumple:
 - $\{c,d\} \in \{\{a\},\{a,b\}\}$ entonces, $a \neq b$.
 - $\{c\} \in \{\{a\}, \{a, b\}\}$ entonces, $a = c \ y \ b = d$.

Termine los argumentos que faltan.

Pares ordenados (generalización)

Definición

Para tres elementos a, b, c se define el **triple ordenado** (a, b, c) como:

$$(a,b,c) = ((a,b),c)$$

■ En general, para a_1, \ldots, a_n , se define una n-tupla ordenada como:

$$(a_1, a_2, \ldots, a_n) = ((a_1, a_2, \ldots, a_{n-1}), a_n)$$

Proposición

$$(a_1, \ldots, a_n) = (b_1, \ldots, b_n)$$
 si, y solo si $a_i = b_i$ para todo $i \le n$

Demostración: ejercicio.

Producto cartesiano

Definición

■ Para dos conjuntos A y B se define el **producto cartesiano** como:

$$A \times B = \{ (a,b) \mid a \in A \land b \in B \}$$

■ En general, para conjuntos $A_1, ..., A_n$ se define el **producto cartesiano generalizado**:

$$A_1 \times A_2 \times \ldots \times A_n = \{(a_1, \ldots, a_n) \mid a_i \in A_i\}$$

Ejemplos

- $\blacksquare \mathbb{R} \times \mathbb{R}$
- $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$

Producto Cartesiano

Producto cartesiano

Algunas preguntas

- 1. $\lambda A \times B = B \times A$?
- 2. $(A \times B) \times C = A \times (B \times C)$?

Ejemplo

- $\{1\} \times \{2\} = \{2\} \times \{1\}$?

Outline

Producto cartesiano

Relaciones

Representación

Operaciones

Relaciones

Definición

Dado un conjunto A y B, R es una relación binaria sobre A y B si:

$$R \subseteq A \times B$$

Si B = A decimos que R es una relación binaria sobre A.

¿qué relaciones binarias conocen?

Ejemplo 1

Considere el conjunto A:

$$A = \{a, b, c, d, e\}$$

Considere la siguiente relación:

$$R_2 = \{(a,b),(b,b),(c,b),(c,d),(d,a),(d,d),(d,e)\}$$

- ¿es cierto que $(d, a) \in R_2$?
- ¿es cierto que $(c,c) \in R_2$?

Ejemplo 2

Nombre	Curso
Marcelo	Tópicos Avanzados en CS
Marcelo	Matemáticas Discretas
Juan	Lógica
Cristian	Matemáticas Discretas

Considere los siguientes conjuntos A y B:

$$A = \{Marcelo, Juan, Cristian\}$$

 $B = \{TACS, Lógica, MD\}$

Una relación que modela la tabla anterior es:

$$R_1 = \{(Marcelo, TACS), (Marcelo, MD), (Juan, Lógica), (Cristian, MD)\}$$

¿cuál es la diferencia entre una "tabla" y una relación?

Ejemplo 3

Considere el conjunto $\mathbb N$ y las relaciones:

$$T_1 = \{(a,b) \in \mathbb{N} \times \mathbb{N} \mid a \le b\}$$

$$T_2 = \{(a,b) \in \mathbb{N} \times \mathbb{N} \mid a < b\}$$

$$T_3 = \{(a,b) \in \mathbb{N} \times \mathbb{N} \mid a = b\}$$

- ¿es cierto que $T_1 \subseteq T_2$?
- ¿es cierto que $T_3 \subseteq T_1$?
- ¿es cierto que $(T_2 \cup T_3) = T_1$?

Relaciones (notación)

Definición

Para una relación R y un par (a,b) usaremos la siguiente notación:

$$\left. \begin{array}{c} (a,b) \in R \\ \text{o} \\ a \ R \ b \end{array} \right\} \quad \left(a,b \right) \text{ pertenece a la relación } R$$

$$\left(a,b \right) \notin R \\ \text{o} \\ a \ R \ b \end{array} \right\} \quad \left(a,b \right) \text{ NO pertenece a la relación } R$$

Ejemplos

- $(2,3) \in \{0,1\}$
- $(5,2) \notin ≤ 0 5 \nleq 2$

Ejemplo 4

Considere un conjunto A y las relaciones:

$$S_1 = \{(a,b) \in A \times A \mid a \in b\}$$

 $S_2 = \{(a,b) \in A \times A \mid a \subseteq b\}$

- ¿es cierto que $S_1 \subseteq S_2$?
- ¿es cierto que $S_2 \subseteq S_1$?

Ejemplo 5

Considere el conjunto $\mathbb N$ y la relación "a divide b":

```
a \mid b si, y solo si \exists k. \ k \in \mathbb{N} \land a \cdot k = b
```

- ¿es cierto que 18 | 72 ?
- ¿es cierto que 7 / 93 ?
- ¿es cierto que = ⊆ | ?
- **■** ¿es cierto que $\leq \subseteq |$?

Outline

Producto cartesiano

Relaciones

Representación

Operaciones

Representación de relaciones

- $1. \; \mathsf{Grafos} \; \mathsf{dirigidos}.$
- 2. Matrices sobre bits.

Grafos dirigidos

Definición

Un grafo dirigido G es un par (V, E) donde:

- V es un conjunto (vertices),
- $E \subseteq V \times V$ es una relación binaria sobre V (aristas).

Ejemplo

- $V = \{1, 2, 3, 4\}$
- $E = \{(1,4),(2,1),(2,3),(3,3),(3,4)\}$

Grafos dirigidos

Propiedad

Toda relación binaria R sobre A se puede ver como un grafo dirigido $G_R = (A, R)$.

Ejemplo

Considere el conjunto $A = \{a, b, c, d, e\}$ y la relación:

$$R = \{(a,b),(b,b),(c,b),(c,d),(d,a),(d,d),(d,e)\}$$

Representación matricial

Definición

Sea $A = \{a_1, a_2, ..., a_n\}$ un conjunto ordenado arbitrariamente y R una relación binaria sobre A. Definimos la matriz M_R de tamaño $n \times n$ como:

$$M_R[i,j] = \begin{cases} 1 & \text{si } a_i \ R \ a_j \\ 0 & \text{si } a_i \ R \ a_j \end{cases}$$

para todo $1 \le i \le n$ y $1 \le j \le n$.

Representación matricial

Ejemplo

Considere el conjunto $A = \{a, b, c, d, e\}$ y la relación:

$$R = \{(a,b),(b,b),(c,b),(c,d),(d,a),(d,d),(d,e)\}$$

Entonces la matriz M_R que representa a R es:

$$\begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

¿qué ventaja tiene la representación matricial de una relación?

Operaciones de bits y matrices

Operaciones sobre matrices

Dada dos matrices de bits M y N de tamaño n, definimos las matrices:

$$(M \lor N)[i,j] = M[i,j] \lor N[i,j]$$

$$(M \land N)[i,j] = M[i,j] \land N[i,j]$$

$$(\neg M)[i,j] = \neg M[i,j]$$

Para dos relacions $R \vee S$, ¿qué representa $M_R \vee M_S$? ¿ $M_R \wedge M_S$? ¿ $M_R \wedge M_S$?

Operaciones de bits y matrices

Operaciones sobre matrices

Dada dos matrices de bits M y N de tamaño n definimos el orden $M \le N$:

$$M[i,j] \leq N[i,j]$$

para todo $1 \le i \le n$ y $1 \le j \le n$ suponiendo que $0 \le 1$.

Para dos relacions R y S, ¿qué representa $M_R \le M_S$?

Outline

Producto cartesiano

Relaciones

Representación

Operaciones

Sea A un conjunto y R una relación sobre A.

Definición

Se definen las siguientes operaciones entre relaciones:

■ Proyección 1: $\pi_1(R)$ son todos los elementos que estan en la primera componente de R.

$$x \in \pi_1(R)$$
 ssi existe un $y \in A$ tal que $(x, y) \in R$

■ Proyección 2: $\pi_2(R)$ son todos los elementos que estan en la segunda componente de R.

$$y \in \pi_2(R)$$
 ssi existe un $x \in A$ tal que $(x, y) \in R$

Ejemplo

Considere el conjunto $A = \{a, b, c, d, e\}$ y la relación:

$$R = \{(a,b),(b,b),(c,b),(c,d),(d,a),(d,d),(d,e)\}$$

$$\begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

- ¿cuál es el conjunto $\pi_1(R)$?
- ¿cuál es el conjunto $\pi_2(R)$?

¿a qué corresponde $\pi_1(R)$ en la representación de grafo dirigido?

Sea A un conjunto y R, R_1 y R_2 relaciones sobre A.

Definición

Se definen las siguientes operaciones entre relaciones:

■ Inverso: R^{-1} son todos los pares (x, y) tal que $(y, x) \in R$.

$$R^{-1} = \{(x,y) \mid (y,x) \in R\}$$

■ Composición: $R_1 \circ R_2$ son todos los elementos (x, y) tal que existe un z que cumple $(x, z) \in R_1$ y $(z, y) \in R_2$.

$$R_1 \circ R_2 = \{(x,y) \mid \exists z \in A. (x,z) \in R_1 \ y \ (z,y) \in R_2\}$$

Ejemplo

Considere el conjunto $A = \{a, b, c, d, e\}$ y la relación:

$$R = \{(a,b),(b,b),(c,b),(c,d),(d,a),(d,d),(d,e)\}$$

$$\begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

- \blacksquare ¿cuál es la relación R^{-1} ?
- ¿cuál es la relación R ∘ R?

Caminos en grafos dirigidos

Sea G = (V, E) un grafo dirigido.

Definición

- Un camino en G es una secuencia v_0, v_1, \ldots, v_n tal que:
 - $v_i \in V$ para todo $0 \le i \le n$.
 - $(v_i, v_{i+1}) \in E$ para todo $0 \le i < n$.
- Un camino simple en *G* es un camino donde todos los nodos son distintos en la secuencia.
- El largo de un camino v_0, v_1, \ldots, v_n es igual a n, esto es, el al largo de la secuencia menos uno.

Caminos en grafos dirigidos

Ejemplo

- ¿cuál es un camino de largo 2? ¿y de largo 3?
- ¿cuál es un camino simple de largo 4? ¿y de largo 5?

¿qué significa el grafo de $R \circ R$? ¿y de $R \circ R \circ R$?

Multiplicación de matrices de bits

Definición

Dado dos matrices de bits M y N de tamaño $n \times n$, se define la multiplicación $M \cdot N$ tal que:

$$(M \cdot N)[i,j] = \bigvee_{k=1}^{n} M[i,k] \wedge N[k,j]$$

para todo $1 \le i \le n$ y $1 \le j \le n$.

Ejemplo

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Dada una relación R, ¿qué representa $M_R \cdot M_R$?