

Subject: Machine Learning – I (DJ19DSC402)

Bhuvi Ghosh 60009210191

AY: 2022-23

Experiment 1

(Regression)

Aim: Implement Linear Regression on the given Dataset and apply Regularization to overcome overfitting in the model.

Theory:

• Linear Regression: Linear regression is a quiet and simple statistical regression method used for predictive analysis and shows the relationship between the continuous variables. Linear regression shows the linear relationship between the independent variable (X-axis) and the dependent variable (Y-axis), consequently called linear regression. If there is a single input variable (x), such linear regression is called simple linear regression. And if there is more than one input variable, such linear regression is called multiple linear regression. The linear regression model gives a sloped straight line describing the relationship within the variables.

The above graph presents the linear relationship between the dependent variable and independent variables. When the value of x (**independent variable**) increases, the value of y (**dependent variable**) is likewise increasing. The red line is referred to as the best fit straight line. Based on the given data points, we try to plot a line that models the points the best. *To calculate best-fit line linear regression uses a traditional slope-intercept form*.

$$y = mx + b \implies y = a_0 + a_1x$$

y= Dependent Variable; x= Independent Variable; a0= intercept; a1 = Linear regression coefficient.

• Cost function: The cost function helps to figure out the best possible values for a0 and a1, which provides the best fit line for the data points. Cost function optimizes the regression coefficients or weights and measures how a linear regression model is performing. The cost function is used to find the accuracy of the mapping function that maps the input variable to the output variable. This mapping function is also known as the Hypothesis function. In Linear Regression, Mean Squared Error (MSE) cost function is used, which is the average of squared error that occurred between the predicted values and actual values. By simple linear equation y=mx+b we can calculate MSE as: Let's y = actual values, y_i = predicted values

$$MSE = \frac{1}{N} \sum_{i=1}^{n} (y_i - (mx_i + b))^2$$

Using the MSE function, we will change the values of a0 and a1 such that the MSE value settles at the minima. Model parameters xi, b (a_0 , a_1) can be manipulated to minimize the cost function. These parameters can be determined using the gradient descent method so that the cost function value is minimum.

• **Gradient descent:** Gradient descent is a method of updating a0 and a1 to minimize the cost function (MSE). A regression model uses gradient descent to update the coefficients of the line (a0, a1 => xi, b) by reducing the cost function by a random selection of coefficient values and then iteratively update the values to reach the minimum cost function.

To update a_0 and a_1 , we take gradients from the cost function. To find these gradients, we take partial derivatives for a_0 and a_1 .

$$J = rac{1}{n} \sum_{i=1}^n (a_0 + a_1 \cdot x_i - y_i)^2 \ rac{\partial J}{\partial a_0} = rac{2}{n} \sum_{i=1}^n (a_0 + a_1 \cdot x_i - y_i) \ rac{\partial J}{\partial a_1} = rac{2}{n} \sum_{i=1}^n (a_0 + a_1 \cdot x_i - y_i) \cdot x_i \ rac{\partial J}{\partial a_0} = rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \ rac{\partial J}{\partial a_1} = rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_0 = a_0 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - a_1$$

- Regularization: When linear regression is underfitting there is no other way (given you can't add more data) then to increase complexity of the model making it polynomial regression (cubic, quadratic, etc...) or using other complex model to capture data that linear regression cannot capture due to its simplicity. When linear regression is overfitting, number of columns(independent variables) approach number of observations there are two ways to mitigate it
 - 1. Add more observations
 - 2. Regularization

Since adding more observations is time consuming and often not provided we will use regularization technique to mitigate overfitting. There are multiple regularization techniques, all

share the same concept of **adding constraints on weights** of independent variables(except theta_0) however they differ in way of constraining. We will go through three most popular regularization techniques: Ridge regression (L2) and Lasso regression (L1)

Lasso Regression

The word "LASSO" denotes Least Absolute Shrinkage and Selection Operator. Lasso regression follows the regularization technique to create prediction. It is given more priority over the other regression methods because it gives an accurate prediction. Lasso regression model uses shrinkage technique. In this technique, the data values are shrunk towards a central point similar to the concept of mean. The lasso regression algorithm suggests a simple, sparse models (i.e. models with fewer parameters), which is well-suited for models or data showing high levels of multicollinearity or when we would like to automate certain parts of model selection, like variable selection or parameter elimination using feature engineering. Lasso Regression algorithm utilises L1 regularization technique It is taken into consideration when there are more number of features because it automatically performs feature selection.

Residual Sum of Squares + λ * (Sum of the absolute value of the coefficients) The equation looks like:

$$\sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} x_{ij}\beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

• Ridge Regression

Ridge Regression is another type of regression algorithm in data science and is usually considered when there is a high correlation between the independent variables or model parameters. As the value of correlation increases the least square estimates evaluates unbiased values. But if the collinearity in the dataset is very high, there can be some bias value. Therefore, we create a bias matrix in the equation of Ridge Regression algorithm. It is a useful regression method in which the model is less susceptible to overfitting and hence the model works well even if the dataset is very small.

The cost function for ridge regression algorithm is:

Where λ is the penalty variable. λ given here is denoted by an alpha parameter in the ridge function. Hence, by changing the values of alpha, we are controlling the penalty term. Greater the values of alpha, the higher is the penalty and therefore the magnitude of the coefficients is reduced. We can conclude that it shrinks the parameters. Therefore, it is used to prevent multicollinearity, it also reduces the model complexity by shrinking the coefficient.

Lab Assignments to complete in this session

Use the given dataset and perform the following tasks:

Dataset 1: Simulate a sine curve between 60° and 300° with some random noise.

Dataset 2: food_truck_data.csv

Dataset 3: housing.csv

- 1. Perform Linear Regression on Dataset 1 and Dataset 2 by computing cost function and gradient descent from scratch.
- 2. Use sklearn to perform linear regression on Dataset 2, show the scatter plot for best fit line using matplotlib and show the results using MSE.
- 3. To perform regularization on linear model build using Linear Regression on Dataset2.

Q1) Perform Linear Regression on Dataset 1 and Dataset 2 by computing cost function and gradient descent from scratch.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('darkgrid')

[340] plt.rcParams['figure.figsize'] = (10,8)

[341] plt.style.use('ggplot')

[342] df=pd.read_csv('/content/foodtruck.txt')

[343] df.head()
```

	Population	Profit
0	6.1101	17.5920
1	5.5277	9.1302
2	8.5186	13.6620
3	7.0032	11.8540
4	5.8598	6.8233

```
[351] def cost_function(X, y, theta):
    m = len(y)
    y_pred = X.dot(theta)
    error = (y_pred - y) ** 2
    return 1/ (2*m) * np.sum(error)

[352] m = df.Population.size
    X = np.append(np.ones((m, 1)), df.Population.values.reshape(m, 1), axis=1)
    y = df.Profit.values.reshape (m, 1)
    theta = np.zeros((2, 1))
    cost_function (X, y, theta)

32.072733877455676
```

```
def gradient_descent(X, y, theta, alpha, iterations):
    m = len(y)
    costs =[]
    for i in range(iterations):
        y_pred = X.dot(theta)
        error = np.dot(X.transpose(), (y_pred - y))
        theta -= alpha * 1/m *error
        costs.append(cost_function(X, y, theta))
    return theta, costs
```

```
\frac{\checkmark}{0s} [354] theta, costs = gradient_descent(X, y, theta, alpha =0.01, iterations=100)
        print("h(x) = \{\} + \{\}x1".format(str(round(theta[0, 0], 2)), str(round(theta[1, 0], 2))))
        h(x) = -0.58 + 0.86x1
√ [355] from mpl_toolkits.mplot3d import Axes3D

/<sub>1s</sub> [356] theta_0 = np.linspace(-10, 10, 100)
        theta_1 = np.linspace(-1, 4, 100)
        cost_values = np.zeros((len(theta_0), len(theta_1)))
        for i in range(len(theta_0)):
          for j in range(len(theta_1)):
            t = np.array([theta_0[i], theta_1[j]])
            cost_values[i,j] = cost_function(X,y,t)
   fig = plt.figure(figsize = (13,30))
        ax = fig.gca(projection ='3d')
        surf = ax.plot_surface(theta_0, theta_1, cost_values, cmap ='viridis')
        fig.colorbar(surf, shrink=0.5, aspect=5)
        plt.xlabel("$\Theta_0$")
        plt.ylabel("$\Theta_1$")
        ax.set_zlabel("$J(\Theta)$")
        ax.view_init(30, 330)
        plt.show()
```



```
plt.plot(costs)
    plt.xlabel("Interation")
    plt.ylabel("$J(\Theta)$")
    plt.title("Values of cost function over iterations of gradient descent")
\Box Text(0.5, 1.0, 'Values of cost function over iterations of gradient descent')
                     Values of cost function over iterations of gradient descent
        6.6
        6.4
        6.2
     0
        6.0
        5.8
        5.6
                            20
                                                                                     100
                                              Interation
```

```
theta = np.squeeze(theta)
sns.scatterplot(x = "Population", y = "Profit", data=df)
x_value = [x for x in range(5, 25)]
y_value = [(x * theta[1] + theta[0]) for x in x_value]
sns.lineplot(x_value, y_value)
plt.xlabel("Population")
plt.ylabel("Profit")
plt.title("Linear regression Fit");
```

_ /usr/local/lib/python3.8/dist-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From versi
warnings.warn(

sine curve:

```
    [416] angle=np.arange(1.0466,5.2333,0.01)

       value=np.sin(angle)

' [417] df2=pd.DataFrame({'Angle':angle,'Value':value})

   df2.head()
   ₽
            Angle
                     Value
        0 1.0466 0.865726
        1 1.0566 0.870688
        2 1.0666 0.875563
        3 1.0766 0.880350
        4 1.0866 0.885049

  [421] plt.plot(df2['Angle'],df2['Value'])
        plt.title('Sine curve between 60 & 300')
        plt.xlabel('Angle')
        plt.ylabel('Value')
        plt.plot()
```



```
v [422] def cost_function(X, y, theta):
         m = len(y)
         y_pred = X.dot(theta)
         error = (y_pred - y) ** 2
         return 1/ (2*m) * np.sum(error)
/ [423] m = df2['Angle'].size
       X = np.append(np.ones((m, 1)), df2['Angle'].values.reshape(m, 1), axis=1)
       y = df2['Value'].values.reshape (m, 1)
       theta = np.zeros((2, 1))
       cost_function (X, y, theta)
       0.3017064980235726
_{0s}^{\checkmark} [424] def gradient_descent(X, y, theta, alpha, iterations):
         m = len(y)
         costs =[]
         for i in range(iterations):
           y_pred = X.dot(theta)
           error = np.dot(X.transpose(), (y_pred - y))
           theta -= alpha * 1/m *error
           costs.append(cost_function(X, y, theta))
         return theta, costs
  theta, costs = gradient_descent(X, y, theta, alpha =0.01, iterations=100)
       print("h(x) = \{\} + \{\}x1".format(str(round(theta[0, 0], 2)), str(round(theta[1, 0], 2))))
   h(x) = 0.2 + -0.13x1
\frac{\checkmark}{2} [426] theta_0 = np.linspace(-10, 10, 100)
        theta_1 = np.linspace(-1, 4, 100)
        cost_values = np.zeros((len(theta_0), len(theta_1)))
         for i in range(len(theta_0)):
          for j in range(len(theta 1)):
            t = np.array([theta_0[i], theta_1[j]])
             cost_values[i,j] = cost_function(X,y,t)
fig = plt.figure(figsize = (13,30))
        ax = fig.gca(projection ='3d')
        surf = ax.plot_surface(theta_0, theta_1, cost_values, cmap ='viridis')
        fig.colorbar(surf, shrink=0.5, aspect=5)
        plt.xlabel("$\Theta_0$")
        plt.ylabel("$\Theta_1$")
        ax.set_zlabel("$J(\Theta)$")
        ax.view_init(50, 330)
        plt.show()
```



```
plt.plot(costs)
plt.xlabel("Interation")
plt.ylabel("$J(\Theta)$")
plt.title("Values of cost function over iterations of gradient descent")
```

Text(0.5, 1.0, 'Values of cost function over iterations of gradient descent')

Values of cost function over iterations of gradient descent


```
theta = np.squeeze(theta)
sns.scatterplot(x='Angle',y='Value',data=df2)
x_value = [x for x in range(1,7)]
y_value = [(x * theta[1] + theta[0]) for x in x_value]
sns.lineplot(x_value, y_value)
plt.xlabel('Angle')
plt.ylabel('Value')
plt.title("Linear regression Fit");
```


Q2) Use sklearn to perform linear regression on Dataset 2, show the scatter plot for best fit line using matplotlib and show the results using MSE.

```
[364] x=df[['Population']].values
     y=df['Profit'].values
[365] from sklearn.model_selection import train_test_split
     x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=50)
[366] from sklearn.linear_model import LinearRegression
     model=LinearRegression(normalize=True)
     model.fit(x_train,y_train)
from sklearn.metrics import r2_score,mean_squared_error
y_pred=model.predict(x_test)
r2_score(y_test,y_pred)
0.7692165212249948
mean_squared_error(y_test,y_pred)
6.2839533213101
plt.scatter(x_test,y_test)
plt.plot(x_test,y_pred,color='blue')
plt.xlabel('Population')
plt.ylabel('Profit')
plt.title('Testing data regression line')
```



```
[370] y_pred=model.predict(x_train)
r2_score(y_train,y_pred)
```

0.6599689262184586

```
[371] mean_squared_error(y_train,y_pred)
```

10.478355821838129

```
plt.scatter(x_train,y_train)
plt.plot(x_train,y_pred,color='blue')
plt.xlabel('Population')
plt.ylabel('Profit')
plt.title('Training data regression line')
```


Q3)To perform regularization on linear model build using Linear Regression on Dataset2/Dataset3.

Ridge Regularisation:

```
[373] from sklearn.linear_model import Ridge
     from sklearn.linear_model import Lasso
     for i in [0.1,0.2,0.3,0.4,0.5]:
       ridge=Ridge(alpha=i)
       ridge.fit(x_train,y_train)
       y_pred=ridge.predict(x_train)
       r2score=r2_score(y_train,y_pred)
       y_pred=ridge.predict(x_test)
       r2pred=r2_score(y_test,y_pred)
       print(r2score,r2pred)
     0.6599689200244759 0.7691910524504921
     0.6599689014473278 0.7691655777127795
     0.6599688704942104 0.7691400970167561
     0.6599688271723163 0.7691146103673179
     0.6599687714888337 0.7690891177693572
[374] ridge.fit(x_train,y_train)
     y_pred=ridge.predict(x_test)
     mean_squared_error(y_test,y_pred)
     6.287422362388995
    y_pred=ridge.predict(x_train)
     mean_squared_error(y_train,y_pred)

☐ 10.478360589967252
```

▼ Lasso Regularisation:

```
(376] for i in np.arange(0.1,0.5,0.1):
         lasso=Lasso(alpha=i)
         lasso.fit(x_train,y_train)
         y_pred=lasso.predict(x_test)
         r2score=r2_score(y_test,y_pred)
         y_pred=lasso.predict(x_train)
         r2scorepred=r2_score(y_train,y_pred)
         print(r2score, r2scorepred)
       0.7677474874732502 0.6599488042361272
       0.766243041644535 0.6598884382891333
       0.7647031837388494 0.6597878283774765
       0.7631279137561929 0.6596469745011573

// [377] lasso.fit(x_train,y_train)
        y_pred=lasso.predict(x_test)
        mean_squared_error(y_test,y_pred)
       6.4497386943741395
   y_pred=lasso.predict(x_train)
        mean_squared_error(y_train,y_pred)
   [→ 10.488277046430392
```

```
( 394] df3=pd.read_csv('/content/Housing.csv')
() [395] df3.head()
             price area
                                  bathrooms stories mainroad guestroom basement hotwaterheating airconditioning
                                                                                                                   parking prefarea
                                                                                                                                    furnishingstatus
        0 13300000 7420
                                                                      no
                                                                               no
                                                                                               no
                                                                                                                                yes
                                                                                                                                             furnished
                                                           yes
        1 12250000 8960
                                           4
                                                                      no
                                                                               no
                                                                                                                                             furnished
        2 12250000 9960
                                                                                               no
                                                                                                                                         semi-furnished
                                                           yes
                                                                      no
                                                                               ves
                                                                                                               no
                                                                                                                                ves
        3 12215000 7500
                                           2
                                                   2
                                                                      no
                                                                                                                                             furnished
        4 11410000 7420
                                                   2
                                                                                                                                             furnished
                                                           yes
                                                                     ves
                                                                               ves
             for i in ['mainroad', 'guestroom', 'basement', 'hotwaterheating', 'airconditioning', 'parking', 'prefarea']:
                df3[i].replace({'yes':1,'no':0},inplace=True)
                df3[i].astype(int)
               from sklearn import preprocessing
              labelencoder=preprocessing.LabelEncoder()
              df3['furnishingstatus']=labelencoder.fit_transform(df3['furnishingstatus'])
      (398] df3['furnishingstatus'].value_counts()
                    227
                   178
              a
                   140
              Name: furnishingstatus, dtype: int64
```

Distribution of continuous values:

0.00000

2500

5000

7500

10000

area

12500

15000

17500

The distribution of values of area & price is right skewed.

1151065007385.001

▼ Ridge regression:

```
from sklearn.linear_model import Ridge
        from sklearn.linear_model import Lasso
        for i in [0.1,0.2,0.3,0.4,0.5]:
         ridge=Ridge(alpha=i)
         ridge.fit(x_train,y_train)
         y_pred=ridge.predict(x_train)
         r2score=r2_score(y_train,y_pred)
         y_pred=ridge.predict(x_test)
         r2pred=r2_score(y_test,y_pred)
         print(r2score,r2pred)
   O.6559642274721473 0.7111084306390987
       0.6559613607033558 0.7112270392535929
       0.6559566523680258 0.7113423869781459
       0.6559501571910763 0.7114545484996232
       0.6559419280195766 0.7115635962863993
(503] ridge.fit(x_train,y_train)
       y_pred=ridge.predict(x_test)
       mean_squared_error(y_test,y_pred)
       1092848482792.9276

  [504] y_pred=ridge.predict(x_train)
       mean_squared_error(y_train,y_pred)
       1151142856924.8835
```

▼ Lasso Regression:

```
  [505] for i in np.arange(0.1,0.5,0.1):
          lasso=Lasso(alpha=i)
         lasso.fit(x_train,y_train)
         y_pred=lasso.predict(x_test)
         r2score=r2_score(y_test,y_pred)
         y_pred=lasso.predict(x_train)
         r2scorepred=r2_score(y_train,y_pred)
         print(r2score, r2scorepred)
       0.7109865044443028 0.6559651959938898
       0.7109865247452284 0.6559651959934447
       0.7109865452346334 0.6559651959927058
       0.7109865655350295 0.6559651959916681

  [506] lasso.fit(x_train,y_train)
        y_pred=lasso.predict(x_test)
       mean_squared_error(y_test,y_pred)
       1095034778187.8232

v [507] y_pred=lasso.predict(x_train)
       mean_squared_error(y_train,y_pred)
```

1151065007392.931