Introduction to locality sensitive hashing

Andee Kaplan

Duke University
Department of Statistical Science
andrea.kaplan@duke.edu

February 8, 2018

Slides available at http://bit.ly/cimat-lsh

Goal and outline

Goal: Introduce locality sensitive hashing, a fast method of blocking for record linkage, and get some experience doing LSH in R.

- 1. Defining similarity
- 2. Representing data as sets (shingling)
- 3. Hashing
- 4. Hashing with compression (minhashing)
- 5. Too many pairs to compare! (LSH)
- 6. Evaluation

Finding similar items

We want to find similar items

- Maybe we are looking for near duplicate documents (plagiarism)
- More likely, we are trying to block our data which we can later pass to a record linkage process

How do we define similar?

Jaccard similarity

There are many ways to define similarity, we will use *Jaccard similarity* for this task.

$$Jac(S,T) = \frac{\mid S \cap T \mid}{\mid S \cup T \mid}$$

Figure: Two sets S and T with Jaccard similarity 3/7. The two sets share 3 elements in common, and there are 7 elements in total.

How to represent data as sets

We want to talk about similarity of data \Rightarrow we need sets to compare!

- One way is to construct from the data the set of short strings that appear within it
- Similar documents/datasets will have many common elements, i.e. many commong short strings
- We can do construct these short strings using shingling

k-shingling (how-to)

1. Think of a document or record as a string of characters

2. A *k*-shingle (k-gram) is any sub-string (word) of length *k* found within the document or record

3. Associate with each document or record the set of k-shingles that appear one or more times within it

Let's try

Suppose our document is the string "Hello world" and k = 2, then

the set of 2-shingles is {he, el, Il, lo, ow, wo, or, rl, ld}

the set of 3-shingles is {hel, ell, llo, low, owo, wor, orl, rld}

Your turn

We have the following two records:

	First name	Last name
129	MICHAEL	VOGEL
130	MICHAEL	MEYER

- 1. Compute the 2-shingles for each record
- 2. Using Jaccard similarity, how similar are they?

Your turn solution

- The 2-shingles for the first record are {mi, ic, ch, ha, ae, el, lv, vo, og, ge, el} and for the second are {mi, ic, ch, ha, ae, el, lm, me, ey, ye, er}.
- 2. There are 6 items in common {mi, ic, ch, ha, ae, el} and 16 items total {mi, ic, ch, ha, ae, el, lv, vo, og, ge, el, lm, me, ey, ye, er}, so the Jaccard similarity is $\frac{6}{16} = \frac{3}{8} = 0.375$

Useful packages/functions in R

Example data

Your turn

shinging and Jaccard similarity with $\ensuremath{\mathsf{R}}$

Hashing

Why do it?

Similarity preserving summaries of sets

Characteristic matrix

Minhashing

LSH (avoid pairwise comparisons)

Banding and buckets

Your turn

banding in ${\sf R}$

Putting it all together

"Easy" LSH in R

Evaluation

Your turn

perform LSH and evaluate how we did