ROBOT LOCALISATION

ROBOT LOCALISATION

 Robot localization is the process of determining where a mobile robot is located with respect to its environment.

NAVIGATION PARADIGM

REFERENCE FRAME

- Reference frame is a coordinate system.
- Reference frames are used to describe state of the objects, like position, orientation and velocity, in that frame.
- Each frame \mathcal{F} is defined by its origin and three orthogonal vectors $\vec{\mathbf{x}}$, $\vec{\mathbf{y}}$ and $\vec{\mathbf{z}}$.
- A fixed global frame is called world frame \mathcal{F}_{W} .
- A moving reference frame is called body frame \mathcal{F}_{B} .
- We assume that frames follow the <u>right-hand rule</u>.

ROBOT POSITION

- Position is the translational offset of an object w.r.t a reference frame.
- Position is defined by three Cartesian coordinates x, y and z.
- Positions are represented by vectors $\mathbf{p} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3$.
- Position of a frame \mathcal{F}_B with respect to a frame \mathcal{F}_A is indicated by ${}^A\mathbf{p}_B$.
- We assume that positions are expressed in the <u>world</u> reference frame.
- Position is measured in *meters* [m].

ROBOT ORIENTATION

- **Orientation** is the directional displacement of an object w.r.t. a *reference frame*.
- Orientation can be parametrized by three Euler's angles: roll ϕ , pitch θ and yaw ψ .
- Orientation of a frame \mathcal{F}_B with respect to a frame \mathcal{F}_A is indicated by ${}^A \vartheta_B$.
- Orientation can be described by a rotation matrix ${}^{A}\mathbf{R}_{B}$.
- We assume that orientations are expressed in the world reference frame.
- Orientation is measured in radians [rad].

ROBOT POSE

- **Pose** is the combination of *position* and *orientation*.
- Pose fully describes the configuration of a body in the space.
- Pose can be interpreted as a homogeneous transformation matrix ${}^{A}\mathbf{T}_{B} = \begin{bmatrix} {}^{A}\mathbf{R}_{B} & {}^{A}\mathbf{p}_{B} \\ \mathbf{0} & 1 \end{bmatrix} \in \mathbb{R}^{4 \times 4}$.
- To apply a transformation ${}^{A}\mathbf{T}_{B}$ to a point ${}^{A}\mathbf{p}$: ${}^{B}\mathbf{p} = {}^{A}\mathbf{T}_{B}{}^{A}\mathbf{p}$.

ROBOT STATE

• State of a wheeled robot is

$$\begin{bmatrix} x \\ y \\ \theta \end{bmatrix}$$

ROBOT KINEMATICS

- **Kinematics** is the description of the rules of bodies motion.
- Kinematics of a wheeled robot is

$$\begin{cases} \dot{x} = v \cos \theta \\ \dot{y} = v \sin \theta \\ \dot{\theta} = \omega \end{cases}$$

• With discrete time $\Delta t[k] = t[k] - t[k-1]$:

$$\begin{cases} x[k+1] = x[k] + v[k] \cdot \cos \theta[k] \cdot \Delta t[k] \\ y[k+1] = y[k] + v[k] \cdot \sin \theta[k] \cdot \Delta t[k] \\ \theta[k+1] = \theta[k] + \omega[k] \cdot \Delta t[k] \end{cases}$$

WHEEL ENCODER

- Wheel encoder is an electromechanical device that measures the angular position of the wheel.
- Wheel encoders allows to estimate the travelled distance:

$$\Delta s = r \cdot \Delta \theta$$

WHEEL ODOMETRY

- Wheel odometry is the use of data from wheel encoders to estimate change in position.
- Wheel odometry is used for wheeled robots to estimate their position relative to a starting location.
- Wheel odometry is sensitive to errors due to the integration of velocity measurements over time.
- Wheel odometry is sensitive to wheel slip.
- Wheel odometry cannot solve the kidnapped robot problem.

DEAD RECKONING

- Dead reckoning is the estimation of a robot's pose based on its estimated acceleration, direction and time of travel with respect to a previous estimate.
- Dead reckoning can be implemented by using only inertial (<u>IMU</u>) data: acceleration and orientation.

INERTIAL MEASUREMENT UNIT

• **Inertial measurement unit** (IMU) combines <u>3 accelerometers</u> for *linear acceleration*, <u>3 gyroscopes</u> for *angular velocity* and <u>3 magnetometers</u> for *orientation*.

INERTIAL ODOMETRY

- Inertial odometry is the process of determining the position and orientation of a robot from robot's inertial information.
- *Position* calculation:

$$\mathbf{a}[k] = {}^{\mathbf{B}}\mathbf{R}_{\mathbf{W}}[k] \cdot {}^{\mathbf{B}}\mathbf{a}[k]$$

$$\mathbf{v}[k+1] = \mathbf{v}[k] + \mathbf{a}[k] \cdot \Delta t[k]$$

$$\mathbf{p}[k+1] = \mathbf{p}[k] + \mathbf{v}[k] \cdot \Delta t[k] + \frac{1}{2}\mathbf{a}[k] \cdot \Delta t[k]^{2}$$

$$\Delta \mathbf{p}[k]$$

• *Orientation* can be obtained directly form the <u>magnetometer</u>.

VISUAL ODOMETRY

- Visual odometry is the process of determining the position and orientation of a robot by analyzing the associated camera images.
- Visual odometry extracts the image feature points and tracks them in the image sequence.
- Depending on the camera setup, visual odometry can be monocular (single camera) or stereo (two cameras in stereo setup).

VISUAL-INERTIAL ODOMETRY

 Visual-inertial odometry (VIO) is the process of estimating the pose of a robot by using a camera and an IMU.

VIO uses images from a camera to estimate translation and data from IMU to estimate

rotation.

OPTICAL FLOW

- Optical flow is the pattern of apparent motion of objects in a visual scene caused by the relative motion between the <u>camera</u> and the scene.
- Optical flow can also be defined as the distribution of apparent velocities of movement of pixels in an image.
- Optical flow allows to estimate the linear (translational) velocity of the robot.

ROBOTIC MAPPING

- Robotic mapping is a problem of constructing a map by an autonomous robot.
- Mapping can be performed by moving lidar or cameras in the environment.

SIMULTANEOUS LOCALIZATION AND MAPPING

- Simultaneous localization and mapping (SLAM) is an approach for constructing a map of an unknown environment while simultaneously keeping track of robot's location.
- Popular approximate solution methods include the particle filter, extended Kalman filter and covariance intersection.
- SLAM algorithms are based on concepts in computational geometry (and computer vision).

LOOP CLOSURE

- Loop closure is a sub algorithm of SLAM for identifying previously visited locations to correct the accumulated errors in the robot's pose estimation.
- Loop closure is an iterative optimization algorithm.

GLOBAL POSITIONING SYSTEM

- Global positioning system (GPS) provides geolocation and time information to a GPS receiver anywhere on the Earth where there is an unobstructed line of sight
- GPS provides localization in the global reference frame.
- GPS has no coverage indoors.

