DATA SCIENCE CAREER TRACK CAPSTONE PROJECT-1

King County
House Price Prediction

Gokmen Oran March 2019

Table of Contents

- Problem Statement
- Data Specifications
- Data Wrangling
- Exploratory Data Analysis
- Inferential Statistics
- Machine Learning
- Conclusion

Problem Statement

"Is it possible to predict the sale price of a house from information about that house provided in the dataset, such as square footage of the home, number of bedrooms, number of bathrooms, number of floors, condition, grade, etc?"

Data Specifications

- Houses sold in King County, Seattle, Washington between May 2014 and May 2015.
- 21613 observations and 21 features
- No missing data
- Uploaded to the Kaggle website by the user harlfoxem (Data Source: https://www.kaggle.com/harlfoxem/houses alesprediction).

Data Wrangling

- "View", "Sqft_living15", "Sqft_lot15" features – further investigation from King County official website
- 177 duplicated rows kept the last entries, dropped the first ones
- "id", "date", "lat", "long" columns → dropped
- Removed 16 observations with zero bathroom or zero bedroom

Data Wrangling

- Removed 1 observation with 33 bedrooms
- "floors", "waterfront", "view", "condition", "grade" columns → category
- "zipcode" column → string

- 21419 rows and 17 columns left in the dataset
- Datatypes: category(5), float64(2), int64(9), object(1)

Correlation between the continuous variables

price ·	1	0.32	0.53	0.7	0.089	0.6	0.32	0.051	0.13	0.58	0.082		1.00
bedrooms	0.32	1	0.53	0.59	0.034	0.49	0.31	0.16	0.019	0.41	0.032		
bathrooms	0.53	0.53	1	0.76	0.088	0.69	0.28	0.51	0.051	0.57	0.088	-	0.75
sqft_living	0.7	0.59	0.76	1	0.17	0.88	0.43	0.32	0.055	0.76	0.18		
sqft_lot	0.089	0.034	0.088	0.17	1	0.18	0.015	0.052	0.0077	0.14	0.72	-	0.50
sqft_above	0.6	0.49	0.69	0.88	0.18	1	-0.053	0.42	0.023	0.73	0.19		
sqft_basement	0.32	0.31	0.28	0.43	0.015	-0.053	1	-0.13	0.072	0.2	0.018	-	0.25
yr_built	0.051	0.16	0.51	0.32	0.052	0.42	-0.13	1	-0.23	0.32	0.07		
yr_renovated	0.13	0.019	0.051	0.055	0.0077	0.023	0.072	-0.23	1	-0.0027	0.008		
sqft_living15	0.58	0.41	0.57	0.76	0.14	0.73	0.2	0.32	-0.0027	1	0.18	-	0.00
sqft_lot15	0.082	0.032	0.088	0.18	0.72	0.19	0.018	0.07	0.008	0.18	1		
	price -	bedrooms -	bathrooms -	sqft_living -	sqft_lot -	sqft_above -	sqft_basement -	yr_built -	yr_renovated -	sqft_living15 -	sqft_lot15 -	***	

Correlation between the continuous variables

- There are many zeros in the "sqft_basement" and "yr_renovated" variable.
- Created new two columns ('basement_present', 'renovated'), and changed their types into category.
- If the house has basement; 'basement_present' → 1, otherwise → 0
- If the house was renovated 'renovated' → 1, otherwise → 0

Relationship between 'house price' and the categorical variables ('waterfront', 'basement_present', 'renovated',

point-biserial correlation

	price
waterfront	0.26
basement_present	0.18
renovated	0.12

'house price' and 'waterfront' (r = 0.26)

'house price' and 'basement_present' (r = 0.18)

'house price' and 'renovated' (r = 0.12)

Spearman's rankorder correlation

Relationship between 'house price' and the categorical variables ('floors', 'view', 'condition', 'grade')

	price
floors	0.32
view	0.29
condition	0.016
grade	0.656

'house price' and 'floors' (r = 0.32)

'house price' and 'view' (r = 0.29)

'house price' and 'condition' (r = 0.016)

'house price' and 'grade' (r = 0.656)

Relationship between 'house price' and the categorical variables ('zipcode')

Zipcode	mean	min	max	count	std
98039	2.186843e+06	787500.0	6885000.0	49	1.163564e+06
98004	1.355387e+06	425000.0	7062500.0	315	7.472826e+05
98040	1.194230e+06	500000.0	5300000.0	282	6.074935e+05
98112	1.096192e+06	169317.0	3400000.0	268	5.947617e+05
98102	8.993954e+05	330000.0	7700000.0	104	7.902389e+05
98109	8.796236e+05	216650.0	3200000.0	109	4.552288e+05

There are 70 unique zip codes in the data, and when we examined the box plot, we can not infer any kind of relationship with price. However, we can say that the house prices in some specific zip code areas are high than the other zip code areas.

Relationship between 'house price' and the categorical variables ('zipcode')

Inferential Statistics

I performed the hypothesis testing to check if the correlation between price and other features (bedrooms, bathrooms, Sqft_living, and Sqft_above) happened by chance.

#H0: There is no significant correlation between number of bedroom and price.

#Ha: There is a correlation between **number of bedrooms** and **price**.

The p-value is less than level of significance 0.05, so we reject the null hypothesis. There is a correlation between number of bedrooms and price.

I also performed the hypothesis testing between **price** and other features mentioned above.

Algorithms

- Linear Regression (LR)
- Ridge Regression(RR)
- Lasso Regression(LassoR)
- Support Vector Regression(SVR)
- Decision Tree Regression (DTR)
- Random Forest Regression(RFR)
- Gradient Boosted Regression(GBR).

Performance Evaluation

- Mean Squared Error (MSE)
- Root Mean Square Error (RMSE)
- R2 score
- Mean_Absolute_Error (MAE)

(I evaluated the performance of SVR model only according to R2 score).

Additional Data Preparation before Applying Models

- I applied one-hot encoding on 'waterfront', 'floors', 'view', 'condition', 'grade', 'basement_present', 'renovated' features.
- I created the copy of 'h_data' dataset as 'h_data_copy'. I applied one-hot encoding on 6 zip codes, which have highest mean of house prices, on 'h_data' dataset and I dropped the "zipcode" feature. I used this version on LR, RL, LassoR, and SVR models. I used both version of "zipcode" feature (one-hot encoding applied version and original version) on tree-based models.

Additional Data Preparation before Applying Models

- I applied "pandas.profiling" to see the latest changes and their effects on datasets.
 'renovated1' feature is highly correlated with 'yr_renovated' feature (ρ = 0.99997).
 I decided to drop this feature.
- I divided the data into independent variables "X and X_copy" and target variables "y and y_copy".
- I created a new data frame named "evaluation_matrix" to store the metrics of models.

		LinearRe	g Ric	lge L	asso	SVF	R SVR_L
Mean_Squared_	Error(MSE)	3.37764e+1	0 3.3788e+	-10 3.37866	e+10	0.326739	9 0.253243
Root_Mean_Squared_E	error(RMSE)	18378	4 1838	315 18	3811	0.57161	0.503232
	R2_score	0.75197	1 0.7518	386 0.75	1895	0.67326	0.746757
Mean_Absolute_	Error(MAE)	12538	7 1253	394 12	5416	0.328629	9 0.332053
	Decision Tree	Decision Tree_ copy	Random Forest	Random Forest_ copy		Gradient Boosting	Gradient Boosting_ copy
Mean_Squared_ Error(MSE)		Tree_	_	Forest_			Boosting_

0.794496

109315

0.820588

88127.2

0.573935

127169

R2_score

Error(MAE)

Mean_Absolute_

0.56713

150482

26/31

0.8596496

83950.4

0.8088645

110167

Hyperparameter Tuning

- Linear Regression, Ridge, Lasso, and Decision Tree Regressor model →
 GridSearchCV.
- Random Forest Regressor and Gradient Boosting Regressor model →
 RandomizedSearchCV.
- cv = 5

Hyperparameter Tuning

	LinearReg_GSCV	Ridge_GSCV	Lasso_GSCV	DecisionTree_ GSCV	RandomForest_ RSCV	GradientBoost Regressor_ RSCV
Mean_Squared_Error(MSE)	3.37764e+10	3.3788e+10	3.37639e+10	4.19655e+10	2.47025e+10	2.25726e+10
Root_Mean_Squared_Error (RMSE)	183784	183815	183749	204855	157170	150242
R2_score	0.751971	0.751886	0.752063	0.691836	0.818603	0.834243
Mean_Absolute_Error(MAE)	125387	125394	125386	111556	88326.1	83265.6

Hyperparameter Tuning

Conclusion

- Gradient Boosted Regression (GBR) is the most effective model with the R2 score around 0.86.
- Random Forest Regression (RFR) is the second better model with the R2 score around 0.82.
- I would recommend using tree-based models, which have higher performance for predicting house prices in King County.