Lecture 15

Behind us

- Functions of multiple variables
- Contour plots/level curves
- Level surfaces

Ahead

Today: partial derivatives and tangent planes

Friday: differentials and optimization

Read Sections 14.3, 14.4, 14.7. This is for your own safety.

Homework due tomorrow at 11 PM

Questions!

Medical emergency

Nedwina has defective ankles, but like a true Seattleite she has decided to climb Mt. Rainier. Her doctor says she cannot walk on any surface whose angle with the xy-plane is greater than $\pi/3$.

Nedwina knows a nerd who modeled her favorite part of Rainier by the equation $x^3 + z^2(y^2 + y^3) + x + y + z = 0$.

Can Nedwina stand at the point (0,0,0) without violating her doctor's orders?

What is the best linear approximation to the surface around the point (0,0,0)?

Here's the model with (0,0,0) indicated

A simpler situation

Find the tangent plane to the paraboloid $z=x^2+y^2$ at the point (1,1,2).

A silly observation

If we slice the whole package with a plane, we go from a surface and tangent plane to a curve and tangent line!

Partial derivatives

This process of restricting attention to one variable and taking derivatives "with respect to that variable" is called taking partial derivatives.

Formal definition: given a function of two variables f(x,y), the partial derivatives with respect to x and y at a point (a,b) are defined as follows.

$$egin{aligned} rac{\partial f}{\partial x} &= f_x(a,b) = \lim_{h o 0} rac{f(a+h,b) - f(a,b)}{h} \ rac{\partial f}{\partial u} &= f_y(a,b) = \lim_{h o 0} rac{f(a,b+h) - f(a,b)}{h} \end{aligned}$$

Rules

Treat one variable as a constant

Differentiate with respect to the other one

Rejoice

Example

For example, consider the function $f(x,y)=x^2+y^2$. To compute the partial derivative with respect to x, we treat y as a constant and do the usual one-variable differentiation:

$$\frac{\partial f}{\partial x} = 2x.$$

Do some! Compute the partial derivatives with respect to x and y of these functions.

$$egin{aligned} f(x,y) &= \sin(x)\cos(y) \ f(x,y) &= x^y \ f(x,y) &= y^5 \end{aligned}$$

Tangent planes to graphs

One of the main uses of partial derivatives is in producing tangent planes.

Theorem: for a function f(x,y), the tangent plane to the graph z=f(x,y) at the point (a,b,c) is given by the equation

$$z-c=f_x(a,b)(x-a)+f_y(a,b)(y-b)$$

Example: $f(x,y)=x^2+y^2$, (a,b,c)=(1,1,2), get the plane z-2=2(x-1)+2(y-1).

Why does this make sense?

If we take a vertical or horizontal trace, the tangent plane should give the tangent line. Does it?

The partial derivatives seem to capture just a vertical and horizontal trace. Is that really enough?

Try one!

Calculate the tangent plane to the graph of the function $f(x,y)=\sin(x)\cos(y)$ at the point $(a,b,\sin(a)\cos(b))$.

General formula for f(x,y) at (a,b,c):

$$z-c=f_x(a,b)(x-a)+f_y(a,b)(y-b)$$

Big but

Our nerd's Rainier model does not express z as a function of x and y:

$$x^3 + z^2(y^2 + y^3) + x + y + z = 0$$

What should we do?

Think of z as an implicit function of x and y!

Do you remember how implicit differentiation works?

Implicit partial derivatives

Follow the procedure you learned in the days of yore. Let's focus on partial derivatives with respect to x.

Pretend z is a function of x and y is a constant, so we have a partial derivative $\partial z/\partial x$.

Use the product rule, chain rule, etc., to take the derivative of the relation.

Solve for $\partial z/\partial x$ in terms of x, y, z.

Example: for the cone $z^2=x^2+y^2$ we get $2zz_x=2x$, so for z
eq 0 we have

$$\frac{\partial z}{\partial x} = \frac{x}{z} \,.$$

Tangent plane to cone

Continuing the cone example, at a point (a,b,c) of the circular cone $z^2=x^2+y^2$, we have $z_x(a,b)=a/c$ and $z_y(a,b)=b/c$. Thus, the tangent plane is

$$z-c=rac{a}{c}\left(x-a
ight) +rac{b}{c}\left(y-b
ight) ,$$

or, equivalently,

$$c(z-c) = a(x-a) + b(y-b).$$

For kicks, let's expand that:

$$cz - c^2 = ax - a^2 + by - b^2$$
.

Since $c^2=a^2+b^2$, we can simplify this to cz=ax+by. Nice!

Bizarre note: if we scale a, b, and c by the same number, the tangent plane does not change. Is there a reason for this?

Your turn!

Find the tangent plane to Mt. Rainier at (0,0,0).

The equation is $x^3+z^2(y^2+y^3)+x+y+z=0$.

Is the plane too steep for Nedwina?

Next time: differentials, optimization!

