Segmentez o	des	clients	d'un	site	e-commerce

Soutenance du projet n°4 : Parcours « Ingénieur Machine Learning »

Plan de la présentation :

- Présentation de la problématique, du cleaning effectué, du feature engineering et de l'exploration
- Présentation des différentes pistes de modélisation effectuées et du modèle final sélectionné
- Présentation de la simulation pour définir le délai de maintenance du modèle (contrat de maintenance)

Plan de la présentation :

- Présentation de la problématique, du cleaning effectué, du feature engineering et de l'exploration
- Présentation des différentes pistes de modélisation effectuées et du modèle final sélectionné
- Présentation de la simulation pour définir le délai de maintenance du modèle (contrat de maintenance)

La problématique du projet :

- Data set: données d'un site de e-commerce brésilien, sur ~ 2017-2018
- Paramètres : données de commandes/achats/ventes entre clients
- Segmenter l'ensemble des clients en plusieurs catégories, et en déduire une stratégie marketing
- Évaluer la stabilité dans le temps de ces catégories

L'exploration de la base de données

- 8 base de données différentes
- Segmentation RFM → 3 bases indispensables pour calculer ces paramètres
- On les fusionne selon leurs paramètres communs

Choix de la fenêtre temporelle pour calculer RFM

- Problème : moins de 3% des clients présents > 1 fois
- Solution : on fait le calcul sur les deux ans, pour être sûr de les inclure.

Création d'une base de données adaptée : obtention des paramètres RFM

Base de 100.000 éléments → TROP

 Sélection aléatoire de 10% des éléments (identifiant des clients « customer_unique_id »)

Pour chaque client:

- R = durée écoulée depuis la dernière date d'apparition [jour] (« order_purchase_timestamp»)
- F = nombre d'apparition dans la fenêtre temporelle (« customer_unique_id»)
- M = moyenne des montants dépensés sur la fenêtre temporelle [monnaie courante] (« payment_value»)

Création d'une base de données adaptée : obtention des paramètres RFM

Feature engineering : égaliser les variances entre paramètres

- Passage au log, puis StandardScaler ou QuantileTransformer.
- Malgré tout, la distribution de F pourrait poser des problèmes pour la clusterisation

Feature engineering

Nous avons décidé de rajouter quelques features aux 3 précédents, pour compléter RFM

- Note de satisfaction (« review_score » dans olist_order_reviews_dataset)
- Longueur du message d'avis (calculé à partir de review_comment_message dans olist_order_reviews_dataset)
- Statut de livraison de la commande (issu de « order_status » après one hot encoding)

Plan de la présentation :

- Présentation de la problématique, du cleaning effectué, du feature engineering et de l'exploration
- Présentation des différentes pistes de modélisation effectuées et du modèle final sélectionné
- Présentation de la simulation pour définir le délai de maintenance du modèle (contrat de maintenance)

Présentation des différentes pistes de modélisation effectuées : test d'un modèle simple

- On teste les features RFM avec KMeans
- On utilise 3 métriques pour estimer un nombre optimal de clusters

Résultat = entre 4 et 8

Présentation des différentes pistes de modélisation effectuées : test d'un modèle simple

Le feature scaling homogénéise un peu plus les silhouette des clusters, MAIS...

- oblige à une stratégie unique pour les clients récurrents (>1 achat)
- ne nous permet pas de trouver une stratégie simple sauf pour cluster « extrêmes » (récent et fort montant, ou l'inverse)

Présentation des différentes pistes de modélisation effectuées : ré-entreinement de KMeans sur RFM + features complémentaires

Mêmes considérations que pour RFM simple pour le nombre de clusters

Présentation des différentes pistes de modélisation effectuées : ré-entreinement de KMeans sur RFM + features complémentaires

		R	F	М	Score_m	Lenght_m	Bool_Delv_m
	count	mean	mean	mean	mean	mean	mean
С							
0	2214.0	307.820235	1.000000	158.700732	4.642276	62.827913	1.000000
1	2538.0	154.221434	1.000000	155.807277	4.586288	1.029945	1.000000
2	594.0	287.235690	2.289562	118.604221	4.056883	28.909933	0.978337
3	2698.0	413.694959	1.000000	158.932339	4.547813	0.393625	1.000000
4	1236.0	277.961165	1.000000	206.638495	1.426375	83.330097	1.000000
5	257.0	355.968872	1.050584	189.175966	1.661479	63.214008	0.000000

- Un peu de nuance apporté par les nouveaux paramètres, MAIS...
- Perte de variation inter clusters selon M

Présentation des différentes pistes de modélisation effectuées : KMeans sur (RFM + 3 features) réduites par TSNE

Encore une fois on obtient le même intervalle pour le nombre de clusters

Présentation des différentes pistes de modélisation effectuées : KMeans sur (RFM + 3 features) réduites par TSNE

- Les clusters formés sont plus homogènes entre eux (silhouette et répartition des éléments)
- Privilégier 8 clusters plutôt que 6 pour ré-obtenir suffisamment des nuances pour des stratégies

		R	F	М	Score_m	Lenght_m	Bool_Delv_m
	count	mean	mean	mean	mean	mean	mean
С							
0	1300.0	233.855385	1.000000	68.520531	4.789231	0.009231	1.000000
1	1093.0	275.499543	1.000000	132.305947	3.704483	57.137237	1.000000
2	1317.0	268.255885	1.000000	185.182855	3.173121	0.030372	1.000000
3	1153.0	417.982654	1.011275	128.181616	4.255854	14.092801	0.777103
4	822.0	340.801703	1.931873	96.551870	4.318478	20.891119	0.984346
5	890.0	288.088764	1.000000	199.356843	1.220225	101.323596	1.000000
6	1775.0	303.076620	1.000000	168.110158	4.993803	52.444507	1.000000
7	1187.0	235.787700	1.000000	311.306639	4.993260	0.000000	1.000000

Présentation des différentes pistes de modélisation effectuées : DBSCAN + RFM

Instable, très peu de marge de manoeuvre pour jouer sur la distance :

- Clusters complètement inhomogènes
- Beaucoup de points assimilés à du bruit

Conclusion : stratégie impossible

Présentation des différentes pistes de modélisation effectuées : DBSCAN + (RFM + 3 features) réduites par TSNE

Plus stable, MAIS:

- Clusters de taille pas comparable
- Permet des stratégies précises mais pour un nombre trop faible d'éléments

Conclusion : stratégie trop couteuse

Modèle final sélectionné : ré-entreinement de KMeans sur RFM + features complémentaires

Deux meilleures options:

- · KMeans sur RFM + features complémentaires
- KMeans sur (RFM + 3 *features*) réduites par TSNE

On choisit la première car :

- Un peu moins de clusters pour stratégie comparable
- Plus simple à mettre en oeuvre
- Plus directement interprétable dans l'espace initial des données

Plan de la présentation :

- Présentation de la problématique, du cleaning effectué, du feature engineering et de l'exploration
- Présentation des différentes pistes de modélisation effectuées et du modèle final sélectionné
- Présentation de la simulation pour définir le délai de maintenance du modèle (contrat de maintenance)

Schéma du protocole : calculer l'ARI à partir de clusterisations faites sur des *datasets* grandissant avec le temps.

1er essai : $(D_0, \Delta T) = (1 \text{ an, } +1 \text{ semaine}).$

- Clusters extrêmement stables (jamais ARI < 0.8)
- Probablement lié à l'évolution lente de la seule récence à chaque semaine.

On inverse le protocole : calculer l'ARI à partir de clusterisations faites sur des *datasets* diminuant avec le temps.

2ème essai : $(D_0, \Delta T) = (\sim 2 \text{ an, -1 semaine})$.

Ré-entraînement nécessaire à partir de 62 - 72 semaines.

L'instabilité des clusters débute sur très peu de features.

On regarde les deux clusterisations au bout de 77 semaines :

- 4 / 6 quasiment identiques.
- les 2 autres diffèrent par :
 - le nombre d'éléments ;
 - la récence R;
 - la longueur moyenne de commentaire.

-77 semaines, **avec** ré-entraînement

		R	F	М	Score_m	Lenght_m	Bool_Delv_m
	count	mean	mean	mean	mean	mean	mean
labels_k77							
0	135.0	0.000000	1.029630	142.308222	4.062963	24.829630	0.985185
2	388.0	50.814433	2.453608	92.039007	4.133862	26.829897	0.974227
3	426.0	73.187793	1.025822	227.944988	1.739437	66.607981	0.000000
4	994.0	54.718310	1.001006	170.210473	1.667002	80.190141	1.000000
1	1917.0	55.883672	1.000000	184.391440	4.782994	58.003652	1.000000
5	3559.0	48.866255	1.000000	158.266940	4.537230	0.107614	1.000000

-77 semaines, **sans** ré-entraînement

			R	F	М	Score_m	Lenght_m	Bool_Delv_m
		count	mean	mean	mean	mean	mean	mean
labels_l	k0							
	4	392.0	50.313776	2.448980	97.098316	4.126118	27.313776	0.974490
	5	427.0	73.016393	1.025761	228.288396	1.737705	66.669789	0.000000
	1	935.0	55.188235	1.000000	171.309754	1.629947	84.771123	1.000000
	2	1730.0	17.228902	1.000578	152.834575	4.452601	2.757803	0.999422
	0	1772.0	56.146727	1.000000	187.724786	4.784989	61.726862	1.000000
	3	2163.0	71.441516	1.000000	159.592469	4.531669	0.386038	1.000000

Conclusion et regard critique

- Segmentation RFM augmentée de 3 features interprétables facilement.
- Modèle KMeans() à 6 clusters, appliqué à un dataset avec scaling.
- Stratégie commerciale simple, mais grande stabilité temporelle des clusters.

Pistes d'améliorations :

- Calculer la fréquence de manière à avoir une distribution de valeurs continues.
- Plus de features ET transformées polynomiales pour affiner stratégie, quitte à passer par de la réduction de dimension importante.
- Utiliser *groupby*() plus tôt dans le projet pour accélérer les calculs RFM.