

1/39

Linguagens Formais e Autómatos / Compiladores

Linguagens Regulares, Expressões Regulares e Gramáticas Regulares

> Artur Pereira <artur@ua.pt>, Miguel Oliveira e Silva <mos@ua.pt

> > DETI, Universidade de Aveiro

Abril de 2020

Sumário

- Análise lexical revisitada
- 2 Linguagens regulares
- 3 Expressões regulares
- 4 Gramáticas regulares
- 5 Equivalência entre expressões regulares e gramáticas regulares

ACP (DETI/UA) LFA+C 2019/2020 Abril de 2020

Papel da análise lexical

Syntesis (back end)

Papel da análise lexical

- Converte a sequência de caracteres numa sequência de tokens
- Um token é um tuplo <token-name, attribute-value>
 - token-name é um símbolo (abstrato) representando um tipo de entrada
 - attribute-value representa o valor corrente desse símbolo
- Exemplo:

$$pos = pos + vel * 5;$$

é convertido em

- Tipicamente, alguns símbolos são descartados pelo analisador lexical
- O conjunto dos tokens corresponde a uma linguagem regular e é descrita usando expressões regulares e/ou gramáticas regulares

A classe das **linguagens regulares** sobre o alfabeto A define-se indutivamente da seguinte forma:

- O conjunto vazio, ∅, é uma linguagem regular (LR).
- 2 Qualquer que seja o $a \in A$, o conjunto $\{a\}$ é uma LR.

Note que:

- em $a \in A$, a é uma letra do alfabeto
- em {a}, a é uma palavra com uma letra
- Numa analogia Java, o primeiro é um 'a' e o segundo um "a"

ACP (DETI/UA) LFA+C 2019/2020 Abril de 2020

A classe das **linguagens regulares** sobre o alfabeto A define-se indutivamente da seguinte forma:

- O conjunto vazio, ∅, é uma linguagem regular (LR).
- 2 Qualquer que seja o $a \in A$, o conjunto $\{a\}$ é uma LR.
- **3** Se L_1 e L_2 são linguagens regulares, então $L_1 \cup L_2$ é uma LR.

Exemplo:

- Seja $L_1 = \{ab\}$, uma LR sobre o alfabeto $A = \{a, b, c\}$
- e $L_2 = \{bb, c\}$, outra LR sobre o mesmo alfabeto A
- então, $L_3 = L_1 \cup L_2 = \{ab, bb, c\}$ é uma LR sobre o mesmo alfabeto A

ACP (DETI/UA) LFA+C 2019/2020 Abril de 2020

A classe das **linguagens regulares** sobre o alfabeto A define-se indutivamente da seguinte forma:

- O conjunto vazio, ∅, é uma linguagem regular (LR).
- 2 Qualquer que seja o $a \in A$, o conjunto $\{a\}$ é uma LR.
- 3 Se L_1 e L_2 são linguagens regulares, então $L_1 \cup L_2$ é uma LR.
- **4** Se L_1 e L_2 são linguagens regulares, então $L_1 \cdot L_2$ é uma LR.

Exemplo:

- Seja $L_1 = \{ab\}$, uma LR sobre o alfabeto $A = \{a, b, c\}$
- e $L_2 = \{bb, c\}$, outra LR sobre o mesmo alfabeto A
- então, $L_3 = L_1 \cdot L_2 = \{ abbb, abc \}$ é uma LR sobre o mesmo alfabeto A

ACP (DETI/UA) LFA+C 2019/2020 Abril de 2020

A classe das **linguagens regulares** sobre o alfabeto A define-se indutivamente da seguinte forma:

- $oldsymbol{0}$ O conjunto vazio, \emptyset , \acute{e} uma linguagem regular (LR).
- 2 Qualquer que seja o $a \in A$, o conjunto $\{a\}$ é uma LR.
- 3 Se L_1 e L_2 são linguagens regulares, então $L_1 \cup L_2$ é uma LR.
- 4 Se L_1 e L_2 são linguagens regulares, então $L_1 \cdot L_2$ é uma LR.
- **5** Se L_1 é uma linguagem regular, então $(L_1)^*$ é uma LR.

Exemplo:

- Seja $L_1 = \{ab\}$, uma LR sobre o alfabeto $A = \{a, b, c\}$
- então, $L_2 = {L_1}^* = \{\varepsilon, ab, abab, ababab, ...\}$ é uma LR sobre o mesmo alfabeto

A classe das **linguagens regulares** sobre o alfabeto A define-se indutivamente da seguinte forma:

- O conjunto vazio, ∅, é uma linguagem regular (LR).
- 2 Qualquer que seja o $a \in A$, o conjunto $\{a\}$ é uma LR.
- 3 Se L_1 e L_2 são linguagens regulares, então $L_1 \cup L_2$ é uma LR.
- 4 Se L_1 e L_2 são linguagens regulares, então $L_1 \cdot L_2$ é uma LR.
- **5** Se L_1 é uma linguagem regular, então $(L_1)^*$ é uma LR.
- 6 Nada mais é linguagem regular.

Note que

• $\{\varepsilon\}$ é uma LR, uma vez que $\{\varepsilon\} = \emptyset^*$.

Definição de linguagem regular exemplo #1

 $\mathcal Q$ Mostre que a linguagem L, constituída pelo conjunto dos números binários começados em 1 e terminados em 0 é uma LR sobre o alfabeto $A=\{\mathtt{0},\mathtt{1}\}$

 \mathcal{R}

- pela regra 2 (elementos primitivos), {0} e {1} são LR
- pela regra 3 (união), $\{0,1\} = \{0\} \cup \{1\}$ é uma LR
- pela regra 5 (fecho), {0,1}* é uma LR
- pela regra 4 (concatenação), $\{1\} \cdot \{0,1\}^*$ é uma LR
- pela regra 4, $(\{1\} \cdot \{0,1\}^*) \cdot \{0\}$ é uma LR
- logo, $L = \{1\} \cdot \{0, 1\}^* \cdot \{0\}$ é uma LR

Definição de linguagem regular exemplo #2

 $\mathcal Q$ Qualquer linguagem L com um número finito de palavras é uma LR. Demonstre-o com base nesta definição.

 \mathcal{R}

- Seja $L=\{p_1,p_2,\cdots,p_N\}$, sendo $p_i, \text{com } i=1,\cdots,N, \text{cada uma das palavras de } L$
- Pela regra 2, obtém-se as LR básicas para obter os p_i
- Pela regra 4, obtém-se os p_i
- Pela regra 3, obtém-se L

Exemplo: $L = \{abc, ca\}$

- Pela regra 2, {a}, {b} e {c} são LR
- Pela regra 4, {abc} e {ca} são LR
- Pela regra 3, $L = \{abc, ca\}$ é LR

Expressões regulares Definição

O conjunto das **expressões regulares** sobre o alfabeto A define-se indutivamente da seguinte forma:

- 1 () é uma expressão regular (ER) que representa a LR {}.
- 2 Qualquer que seja o $a \in A$, $a \in A$ é uma ER que representa a LR $\{a\}$.
- 3 Se e_1 e e_2 são ER representando respectivamente as LR L_1 e L_2 , então $(e_1|e_2)$ é uma ER representando a LR $L_1 \cup L_2$.
- 4 Se e_1 e e_2 são ER representando respectivamente as LR L_1 e L_2 , então (e_1e_2) é uma ER representando a LR $L_1.L_2$.
- **5** Se e_1 é uma ER representando a LR L_1 , então e_1^* é uma ER representando a LR $(L_1)^*$.
- 6 Nada mais é expressão regular.

ACP (DETI/UA) LFA+C 2019/2020 Abril de 2020

[•] É habitual representar-se por ε a ER ()*. Representa a linguagem $\{\varepsilon\}$.

Expressões regulares Exemplos

Q Determine uma ER que representa o conjunto dos números binários começados em 1 e terminados em 0.

```
\mathcal{R} 1(0|1)*0
```

- $\mathcal Q$ Determine uma ER que represente as sequências definidas sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\}$ que satisfazem o requisito de qualquer \mathtt{b} ter um a imediatamente à sua esquerda e um \mathtt{c} imediatamente à sua direita.
- ${\cal R}$ O a pode aparecer sozinho; o c também; o b, se aparecer, tem de ter um a à sua esquerda e um c à sua direita. Ou seja, pode considerar-se que as palavras da linguagem são sequências de 0 ou mais a, c e abc.

 $\ensuremath{\mathcal{Q}}$ Determine uma ER que represente as sequências binárias com um número par de zeros.

$$\mathcal{R}$$
 $(1*01*01*)*|1* = 1*(01*01*)*$

Expressões regulares Propriedades da operação de escolha

- A operação de escolha goza das propriedades:
 - comutativa: $e_1 | e_2 = e_2 | e_1$
 - associativa: $e_1 \mid (e_2 \mid e_3) = (e_1 \mid e_2) \mid e_3 = e_1 \mid e_2 \mid e_3$
 - idempotência: $e_1 \mid e_1 = e_1$
 - existência de elemento neutro: $e_1 \mid () = () \mid e_1 = e_1$

Exemplo:

- comutativa: a | ab = ab | a
- associativa: a | (b | ca) = (a | b) | ca = a | b | ca
- idempotência: ab | ab = ab
- não há interesse prático em fazer uma união com o conjunto vazio
- note que em ANTLR, () representa a palavra vazia, não o conjunto vazio

ACP (DETI/UA) LFA+C 2019/2020 Abril de 2020

Expressões regulares

Propriedades da operação de concatenação

- A operação de concatenação goza das propriedades:
 - associativa: $e_1(e_2e_3) = (e_1e_2)e_3 = e_1e_2e_3$
 - existência de elemento neutro: $e_1\varepsilon = \varepsilon e_1 = e_1$
 - existência de elemento absorvente: $e_1() = ()e_1 = ()$
 - não goza da propriedade comutativa

- Exemplo:
 - associativa: a(bcc) = (abc)c = abcc = abcc
 - existência de elemento neutro: ab() = () ab = ab

ACP (DETI/UA) LFA+C 2019/2020 Abril de 2020

Expressões regulares Propriedades distributivas

- As expressões regulares gozam das propriedades:
 - distributiva à esquerda da concatenação em relação à escolha:

$$e_1(e_2 \mid e_3) = e_1e_2 \mid e_1e_3$$

distributiva à direita da concatenação em relação à escolha:

$$(e_1 \mid e_2)e_3 = e_1e_3 \mid e_2e_3$$

Exemplo:

distributiva à esquerda da concatenação em relação à escolha:

$$ab(a|cc) = aba|abcc$$

distributiva à direita da concatenação em relação à escolha:

$$(ab | a) cc = abcc | acc$$

Expressões regulares

Propriedades da operação de fecho de Kleene

- A operação de fecho goza das propriedades:
 - $(e^*)^* = e^*$
 - $(e_1^* \mid e_2^*)^* = (e_1 \mid e_2)^*$
 - $(e_1 \mid e_2^*)^* = (e_1 \mid e_2)^*$
 - $(e_1^* \mid e_2)^* = (e_1 \mid e_2)^*$
- Mas atenção:
 - $(e_1 \mid e_2)^* \neq e_1^* \mid e_2^*$
 - $(e_1 e_2)^* \neq e_1^* e_2^*$
- Exemplo:

•
$$b(a^*)^* = ba^*$$

•
$$(a^* | b^*)^* = (a | b)^*$$

•
$$(a|b^*)^* = (a|b)^*$$

•
$$(a^* | b)^* = (a | b)^*$$

•
$$(a|b)^* \neq a^*|b^*$$

•
$$(ab)^* \neq a^*b^*$$

Expressões regulares Precedência dos operadores regulares

- Na escrita de expressões regulares assume-se a seguinte precedência dos operadores:
 - fecho (*)
 - concatenação
 - escolha (|).
- O uso destas precedências em conjunto com as propriedades associativas da concatenação e da escolha permite a queda de alguns parêntesis e consequentemente uma notação simplificada.

Exemplo: a expressão regular

$$e_1|e_2e_3*$$

recorre a esta precedência para representar a expressão regular

$$(e_1)|(e_2((e_3)*))$$

Expressões regulares Exemplos revisitados

- Nos exemplos mostrados anteriomente já se tinha usado precedência
- ${\cal Q}$ Determine uma ER que representa o conjunto dos números binários começados em 1 e terminados em 0.

$$\mathcal{R} \ 1(0|1)^*0 = (1((0|1)^*))0$$

 $\mathcal Q$ Determine uma ER que represente as sequências definidas sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\}$ que satisfazem o requisito de qualquer \mathtt{b} ter um \mathtt{a} imediatamente à sua esquerda e um \mathtt{c} imediatamente à sua direita.

$$\mathcal{R}$$
 (a|abc|c)* = ((a|((ab)c))|c)*

 $\ensuremath{\mathcal{Q}}$ Determine uma ER que represente as sequências binárias com um número par de zeros.

$$\mathcal{R} \ 1^*(01^*01^*)^* = (1^*)((((0(1^*))0)(1^*)))^*)$$

Expressões regulares Exemplos

 $\mathcal Q\,$ Sobre o alfabeto $A=\{\mathtt{0},\mathtt{1}\}$ construa uma expressão regular que represente a linguagem

$$L = \{ \omega \in A^* : \#(0, \omega) = 2 \}$$

R 1*01*01*

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt a,\mathtt b,\cdots,\mathtt z\}$ construa uma expressão regular que represente a linguagem

$$L=\{\omega\in A^*\,:\,\#(\mathbf{a},\omega)=3\}$$

$$\mathcal{R}\ (b|c|\cdots|z)^*a(b|c|\cdots|z)^*a(b|c|\cdots|z)^*a(b|c|\cdots|z)^*$$

 Na última resposta, onde estão as reticências (...) deveriam estar todas as letras entre de y. Parece claro que faz falta uma forma de simplificar este tipo de expressões

Expressões regulares Extensões notacionais comuns

· uma ou mais ocorrências:

$$e^+ = e.e^*$$

• uma ou nenhuma ocorrência:

$$e? = (e|\varepsilon)$$

um símbolo do sub-alfabeto dado:

$$[a_1 a_2 a_3 \cdots a_n] = (a_1 | a_2 | a_3 | \cdots | a_n)$$

um símbolo do sub-alfabeto dado:

$$[a_1 - a_n] = (a_1 \mid \cdots \mid a_n)$$

um símbolo do alfabeto fora do conjunto dado:

$$[a_1a_2a_3\cdots a_n]$$

um símbolo do alfabeto fora do conjunto dado:

$$[a_1-a_n]$$

Expressões regulares Outras extensões notacionais

• n ocorrências de:

$$e\{n\} = \underbrace{e.e.\cdots.e}_{n}$$

de n₁ a n₂ ocorrências:

$$e\{n_1, n_2\} = \underbrace{e.e.\cdots.e}_{n_1, n_2}$$

n ou mais ocorrências:

$$e\{n,\} = \underbrace{e.e.\cdots.e}_{n}$$

- representa um símbolo qualquer
- representa palavra vazia no início de linha
- \$ representa palavra vazia no fim de linha
- \< representa palavra vazia no início de palavra
- \> representa palavra vazia no fim de palavra

Em ANTLR:

- x..y é equivalente a [x-y]
- ~ [abc] é equivalente a [^abc]

Expressões regulares

Exemplos de extensões notacionais

 $\mathcal Q\,$ Sobre o alfabeto $A=\{0,1\}$ construa uma expressão regular que reconheça a linguagem

$$L = \{\omega \in A^* \ : \ \#(0,\omega) = 2\}$$

$$\mathcal{R} \ 1^*01^*01^* = (1^*0) (1^*0) 1^* = (1^*0)\{2\} 1^*$$

 $\mathcal Q\,$ Sobre o alfabeto $A=\{\mathtt a,\mathtt b,\cdots,\mathtt z\}$ construa uma expressão regular que reconheça a linguagem

$$\begin{split} L &= \{\omega \in A^* \ : \ \#(\mathbf{a}, \omega) = 3\} \\ \mathcal{R} \ \ (\mathbf{b}|\mathbf{c}|\cdots|\mathbf{z})^*\mathbf{a}(\mathbf{b}|\mathbf{c}|\cdots|\mathbf{z})^*\mathbf{a}(\mathbf{b}|\mathbf{c}|\cdots|\mathbf{z})^* \\ &= ([\mathbf{b}-\mathbf{z}]^*\mathbf{a}) \, ([\mathbf{b}-\mathbf{z}]^*\mathbf{a}) \, ([\mathbf{b}-\mathbf{z}]^*\mathbf{a}) \, [\mathbf{b}-\mathbf{z}]^* \\ &= ([\mathbf{b}-\mathbf{z}]^*\mathbf{a}) \{3\} [\mathbf{b}-\mathbf{z}]^* \end{split}$$

Gramáticas regulares Introdução

Exemplo de gramática regular

$$\begin{array}{c} S \rightarrow \mathbf{a} \ X \\ X \rightarrow \mathbf{a} \ X \\ \mid \ \mathbf{b} \ X \\ \mid \ \varepsilon \end{array}$$

Exemplo de gramática não regular

- Letras minúsculas representam símbolos terminais e letras maísculas representam símbolos não terminais (o contrário do Antlr)
- Nas gramáticas regulares os símbolos não terminais apenas podem aparecer no fim

Gramáticas regulares Definição

Uma gramática é um quádruplo G = (T, N, P, S), onde

- T é um conjunto finito não vazio de símbolos terminais;
- N, sendo $N \cap T = \emptyset$, é um conjunto finito não vazio de símbolos não terminais;
- P é um conjunto de produções (ou regras de rescrita), cada uma da forma $\alpha \to \beta$, onde
 - $\alpha \in N$
 - $\beta \in T^* \cup T^*N$
- $S \in N$ é o símbolo inicial.

- A linguagem gerada por uma gramática regular é regular
 - Logo, é possível converter-se uma gramática regular numa expressão regular que represente a mesma linguagem e vice-versa

ACP (DETI/UA) LFA+C 2019/2020 Abril de 2020

Gramáticas regulares

Operações sobre gramáticas regulares

- As gramáticas regulares são fechadas sob as operações de
 - reunião
 - concatenação
 - fecho
 - intersecção
 - complementação
- As operações de intersecção e complementação serão abordadas mais adiante através de autómatos finitos

Reunião de gramáticas regulares Exemplo

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b,\mathtt c\}$, determine uma gramática regular que represente a linguagem

[•] Comece-se por obter as gramáticas regulares que representam L_1 e L_2 .

Reunião de gramáticas regulares Exemplo

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b,\mathtt c\}$, determine uma gramática regular que represente a linguagem

$$L = L_1 \cup L_2$$

sabendo que

$$L_1 = \{ \omega \mathbf{a} : \omega \in T^* \} \qquad L_2 = \{ \mathbf{a} \omega : \omega \in T^* \}$$

 \mathcal{R}

• E acrescentam-se as transições $S \to S_1$ e $S \to S_2$ que permitem escolher as palavras de L_1 e de L_2 , sendo S o novo símbolo inicial.

Reunião de gramáticas regulares Algoritmo

 \mathcal{D} Sejam $G_1=(T_1,N_1,P_1,S_1)$ e $G_2=(T_2,N_2,P_2,S_2)$ duas gramáticas regulares quaisquer, com $N_1\cap N_2=\emptyset$. A gramática G=(T,N,P,S) onde

é regular e gera a linguagem $L = L(G_1) \cup L(G_2)$.

• Para i=1,2, a nova produção $S\to S_i$ permite que G gere a linguagem $L(G_i)$

ACP (DETI/UA) LFA+C 2019/2020 Abril de 2020

Concatenação de gramáticas regulares Exemplo

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b,\mathtt c\}$, determine uma gramática regular que represente a linguagem

$$L=L_1\cdot L_2$$
 sabendo que
$$L_1=\left\{\omega \texttt{a} \ : \ \omega \in T^*\right\} \qquad L_2=\left\{\texttt{a}\omega \ : \ \omega \in T^*\right\}$$

$$S_1 \to \texttt{a} \ S_1 \qquad \qquad S_2 \to \texttt{a} \ X_2$$

$$\mid \texttt{b} \ S_1 \qquad \qquad X_2 \to \texttt{a} \ X_2$$

$$\mid \texttt{c} \ S_1 \qquad \qquad \mid \texttt{b} \ X_2$$

$$\mid \texttt{a} \qquad \qquad \mid \texttt{c} \ X_2$$

 \mathcal{R}

• Comece-se por obter as gramáticas regulares que representam L_1 e L_2 .

Concatenação de gramáticas regulares Exemplo

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b,\mathtt c\}$, determine uma gramática regular que represente a linguagem

$$L = L_1 \cdot L_2$$

sabendo que

$$L_1 = \{ \omega \mathbf{a} : \omega \in T^* \} \qquad L_2 = \{ \mathbf{a} \omega : \omega \in T^* \}$$

 \mathcal{R}

• A seguir substitui-se $S_1 \to a$ por $S_1 \to a$ S_2 , de modo a impor que a segunda parte das palavras têm de pertencer a L_2

Concatenação de gramáticas regulares Algoritmo

 \mathcal{D} Sejam $G_1=(T_1,N_1,P_1,S_1)$ e $G_2=(T_2,N_2,P_2,S_2)$ duas gramáticas regulares quaisquer, com $N_1\cap N_2=\emptyset$. A gramática G=(T,N,P,S) onde

$$T = T_1 \cup T_2$$

$$N = N_1 \cup N_2$$

$$P = \{A \to \omega S_2 : (A \to \omega) \in P_1 \land \omega \in {T_1}^*\}$$

$$\cup \{A \to \omega : (A \to \omega) \in P_1 \land \omega \in {T_1}^* N_1\}$$

$$\cup P_2$$

$$S = S_1$$

é regular e gera a linguagem $L = L(G_1) \cdot L(G_2)$.

- As produções da primeira gramática do tipo $\beta \in T^*$ ganham o símbolo inicial da segunda gramática no fim
- As produções da primeira gramática do tipo $\beta \in T^*N$ mantêm-se inalteradas
- As produções da segunda gramática mantêm-se inalteradas

ACP (DETI/UA) LFA+C 2019/2020 Abril de 2020

Fecho de gramáticas regulares Exemplo

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b,\mathtt c\}$, determine uma gramática regular que represente a linguagem

$$L={L_1}^*$$
 sabendo que $L_1=\{\omega ext{a}: \omega \in T^*\}$ $S_1 o ext{a} S_1 \ dots S_1 \ dots S_1$

 \mathcal{R}

Começa-se pela obtenção da gramática regular que representa L₁.

Fecho de gramáticas regulares Exemplo

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b,\mathtt c\}$, determine uma gramática regular que represente a linguagem

$$L = L_1^*$$

sabendo que

$$L_1 = \{ \omega \mathbf{a} : \omega \in T^* \}$$

 \mathcal{R}

- Acrescentando-se a transição $S \to S_1$ e substituindo-se $S_1 \to a$ por $S_1 \to a$ S_1 permite-se iterações sobre S_1
- Acrescentando-se $S \to \varepsilon$, permite-se 0 ou mais iterações

Fecho de gramáticas regulares Algoritmo

 ${\cal D}~$ Seja $G_1=(T_1,N_1,P_1,S_1)$ uma gramática regular qualquer. A gramática G=(T,N,P,S) onde

$$\begin{array}{lcl} T & = & T_1 \\ N & = & N_1 \, \cup \, \{S\} \quad \mathsf{com} \quad S \not \in N_1 \\ P & = & \{S \rightarrow \varepsilon, S \rightarrow S_1\} \\ & & \cup \, \{A \rightarrow \omega S \, : \, (A \rightarrow \omega) \in P_1 \, \wedge \, \omega \in {T_1}^*\} \\ & & \cup \, \{A \rightarrow \omega \, : \, (A \rightarrow \omega) \in P_1 \, \wedge \, \omega \in {T_1}^*N_1\} \end{array}$$

é regular e gera a linguagem $L = (L(G_1))^*$.

- As novas produções $S \to \varepsilon$ e $S \to S_1$ garantem que $(L(G_1))^n \subseteq L(G)$, para qualquer $n \ge 0$
- As produções que só têm terminais ganham o novo símbolo inicial no fim
- As produções que terminam num não terminal mantêm-se inalteradas

ACP (DETI/UA) LFA+C 2019/2020 Abril de 2020

Conversão de uma ER em uma GR exemplo

 $\mathcal Q$ Construa uma GR equivalente à ER $e=a|a(a|b|c)^*a$.

 \mathcal{R}

Coloque-se de forma arbórea

Q Construa uma GR equivalente à ER $e = a|a(a|b|c)^*a$.

 \mathcal{R}

Após converter as folhas (elementos primitivos) em GR

Q Construa uma GR equivalente à ER $e = a|a(a|b|c)^*a$.

 \mathcal{R}

Após aplicar a escolha (reunião) de baixo

Q Construa uma GR equivalente à ER $e = a|a(a|b|c)^*a$.

 \mathcal{R}

Simplificando

Q Construa uma GR equivalente à ER $e = a|a(a|b|c)^*a$.

 \mathcal{R}

Após aplicar o fecho

Construa uma GR equivalente à ER $e = a|a(a|b|c)^*a$.

 \mathcal{R}

Após aplicar a concatenação da esquerda

Q Construa uma GR equivalente à ER $e = a|a(a|b|c)^*a$.

 \mathcal{R}

Após aplicar a concatenação da direita

 $\mathcal Q$ Construa uma GR equivalente à ER $e=a|a(a|b|c)^*a$.

 \mathcal{R}

$$\begin{array}{lll} S \rightarrow S_1 & \mid & S_2 \\ S_1 \rightarrow & \mathsf{a} \\ S_2 \rightarrow & \mathsf{a} & S_8 \\ S_8 \rightarrow S_7 & \mid & S_3 \\ S_7 \rightarrow & \mathsf{a} & S_8 & \mid & \mathsf{b} & S_8 & \mid & \mathsf{c} & S_8 \\ S_3 \rightarrow & \mathsf{a} & & & \mathsf{a} \end{array}$$

e simplificando

$$S \rightarrow {\rm a} \mid {\rm a} \ S_8$$

$$S_8 \rightarrow {\rm a} \ S_8 \mid {\rm b} \ S_8 \mid {\rm c} \ S_8 \mid {\rm a}$$

Finalmente após aplicar escolha (reunião) de cima

Conversão de uma ER em uma GR Abordagem

- Dada uma expressão regular qualquer ela é:
 - · ou um elemento primitivo;
 - ou uma expressão do tipo e^* , sendo e uma expressão regular qualquer;
 - ou uma expressão do tipo $e_1.e_2$, sendo e_1 e e_2 duas expressões regulares quaisquer;
 - ou uma expressão do tipo $e_1|e_2$, sendo e_1 e e_2 duas expressões regulares quaisquer;
- Identificando-se as GR equivalentes às ER primitivas, tem-se o problema resolvido, visto que se sabe como fazer a reunião, a concatenação e o fecho de GR.

expressão regular	gramática regular
ε	$S \to \varepsilon$
a	S o a

Conversão de uma ER em uma GR Algoritmo de conversão

- Se a ER é do tipo primitivo, a GR correspondente pode ser obtido da tabela anterior.
- 2 Se é do tipo e^* , aplica-se este mesmo algoritmo na obtenção de uma GR equivalente à expressão regular e e, de seguida, aplica-se o fecho de GR.
- 3 Se é do tipo $e_1.e_2$, aplica-se este mesmo algoritmo na obtenção de GR para as expressões e_1 e e_2 e, de seguida, aplica-se a concatenação de GR.
- 4 Finalmente, se é do tipo $e_1|e_2$, aplica-se este mesmo algoritmo na obtenção de GR para as expressões e_1 e e_2 e, de seguida, aplica-se a reunião de GR.

 Na realidade, o algoritmo corresponde a um processo de decomposição arbórea a partir da raiz seguido de um processo de construção arbórea a partir das folhas.

Abordagem através de um exemplo

 \mathcal{R}

Q Obtenha uma ER equivalente à gramática regular seguinte

$$S
ightarrow$$
 a $S \mid$ c $S \mid$ aba X $X
ightarrow$ a $X \mid$ c $X \mid$ $arepsilon$

$$\mathcal{E} \quad = \quad \{(E, \varepsilon, S), (S, \mathbf{a}, S), (S, \mathbf{c}, S), (S, \mathbf{aba}, X), (X, \mathbf{a}, X), (X, \mathbf{c}, X), (X, \varepsilon, \varepsilon)\}$$

Transforma-se a gramática num conjunto de triplos

Abordagem através de um exemplo

 \mathcal{R}

Q Obtenha uma ER equivalente à gramática regular seguinte

$$S o$$
a $S\mid$ c $S\mid$ aba X
$$X o$$
a $X\mid$ c $X\mid$ ε
$$=\{(E,\varepsilon,S),(S,\mathrm{a},S),(S,\mathrm{c},S),(S,\mathrm{aba},X),(X,\mathrm{a},X),(X,\mathrm{c},X),(X,\varepsilon,\varepsilon)\}$$

$$\mathcal{E} = \{ (E, \varepsilon, S), (S, \mathbf{a}, S), (S, \mathbf{c}, S), (S, \mathbf{aba}, X), (X, \mathbf{a}, X), (X, \mathbf{c}, X), (X, \varepsilon, \varepsilon) \}$$

$$= \{ (E, \varepsilon, S), (S, (\mathbf{a} | \mathbf{c}), S), (S, \mathbf{aba}, X), (X, \mathbf{a}, X), (X, \mathbf{c}, X), (X, \varepsilon, \varepsilon) \}$$

• Transforma-se (S, a, S), (S, c, S) em (S, (a|c), S)

 $S \rightarrow a S \mid c S \mid aba X$

Abordagem através de um exemplo

 \mathcal{R}

Q Obtenha uma ER equivalente à gramática regular seguinte

$$X \to {\bf a} \ X \ | \ {\bf c} \ X \ | \ \varepsilon$$

$$= \ \{(E,\varepsilon,S),(S,{\bf a},S),(S,{\bf c},S),(S,{\bf aba},X),(X,{\bf a},X),(X,{\bf c},X),(X,\varepsilon,\varepsilon,S),(S,{\bf aba},X),(S,{\bf aba},X),($$

$$\begin{split} \mathcal{E} &= \{(E, \varepsilon, S), (S, \mathbf{a}, S), (S, \mathbf{c}, S), (S, \mathbf{aba}, X), (X, \mathbf{a}, X), (X, \mathbf{c}, X), (X, \varepsilon, \varepsilon)\} \\ &= \{(E, \varepsilon, S), (S, (\mathbf{a|c}), S), (S, \mathbf{aba}, X), (X, \mathbf{a}, X), (X, \mathbf{c}, X), (X, \varepsilon, \varepsilon)\} \\ &= \{(E, (\mathbf{a|c})^* \mathbf{aba}, X), (X, \mathbf{a}, X), (X, \mathbf{c}, X), (X, \varepsilon, \varepsilon)\} \end{aligned}$$

- Transforma-se (E, ε, S) , (S, (a|c), S), (S, aba, X) em $(E, (a|c)^*aba, X)$
- Note que o (a|c) passou a (a|c)*, porque se pode andar à volta do S zero ou mais vezes

 $S \rightarrow a S \mid c S \mid aba X$

Abordagem através de um exemplo

 \mathcal{R}

Q Obtenha uma ER equivalente à gramática regular seguinte

$$\begin{array}{lll} X \to \mathbf{a} \ X \ | \ \mathbf{c} \ X \ | \ \varepsilon \\ &= \ \{ (E, \varepsilon, S), (S, \mathbf{a}, S), (S, \mathbf{c}, S), (S, \mathbf{aba}, X), (X, \mathbf{a}, X), (X, \mathbf{c}, X), (X, \varepsilon, \varepsilon) \} \\ &= \ \{ (E, \varepsilon, S), (S, (\mathbf{a} | \mathbf{c}), S), (S, \mathbf{aba}, X), (X, \mathbf{a}, X), (X, \mathbf{c}, X), (X, \varepsilon, \varepsilon) \} \\ &= \ \{ (E, (\mathbf{a} | \mathbf{c})^* \mathbf{aba}, X), (X, \mathbf{a}, X), (X, \mathbf{c}, X), (X, \varepsilon, \varepsilon) \} \\ &= \ \{ (E, (\mathbf{a} | \mathbf{c})^* \mathbf{aba}, X), (X, (\mathbf{a} | \mathbf{c}), X), (X, \varepsilon, \varepsilon) \} \\ &= \ \{ (E, (\mathbf{a} | \mathbf{c})^* \mathbf{aba} (\mathbf{a} | \mathbf{c})^*, \varepsilon) \} \end{array}$$

Repetindo para X, obtém-se a ER desejada: (a|b|c)*aba(a|b|c)*

Conversão de uma GR em uma ER Algoritmo

- Uma expressão regular e que represente a mesma linguagem que a gramática regular G pode ser obtida por um processo de transformações de equivalência.
- Primeiro, converte-se a gramática G=(T,N,P,S) no conjunto de triplos seguinte:

$$\mathcal{E} = \{(E, \varepsilon, S)\}$$

$$\cup \{(A, \omega, B) : (A \to \omega B) \in P \land B \in N\}$$

$$\cup \{(A, \omega, \varepsilon) : (A \to \omega) \in P \land \omega \in T^*\}$$

 $\operatorname{com} E \not\in N$.

- A seguir, removem-se, por transformações de equivalência, um a um, todos os símbolos de N, até se obter um único triplo da forma (E,e,ε) .
- O valor de e é a expressão regular pretendida.

Algoritmo de remoção dos símbolos de N

- Para cada símbolo $B \in N$
 - **1** Substituir todos os triplos da forma (A, β_i, B) por um único (A, ω_1, B) , onde $\omega_1 = \beta_1 \mid \beta_2 \mid \cdots \mid \beta_n$
 - 2 Substituir todos os triplos da forma (B,α_i,B) por um único (B,ω_2,B) , onde $\omega_2=\alpha_1\mid\alpha_2\mid\cdots\mid\alpha_m$
 - 3 Substituir todos os triplos da forma (B,γ_i,C) por um único (B,ω_3,C) , onde $\omega_3=\gamma_1\mid \gamma_2\mid \cdots\mid \gamma_k$
 - 4 Substituir cada triplo de triplos da forma $((A, \omega_1, B), (B, \omega_2, B), (B, \omega_3, C))$ pelo triplo $(A, \omega_1\omega_2^*\omega_3, C)$

• Note que, se não existir qualquer triplo do tipo $(B,\alpha_i,B),\,\omega_2$ representa o conjunto vazio e consequentemente ${\omega_2}^*=\varepsilon$