INSTITUTO FEDERAL Catarinense Campus	CURSO: Bacharelado em Ciência da Computação.		
	COMPONENTE CURRICULAR: Estrutura de Dados 1	TURMA: Férias	
	ALUNOS: Claudionei Lovato Serafini		
	PROFESSOR(A): Tiago Heineck		
	DATA ENTREGA: 23/01/2024		

Atividade 01 - Listas Encadeada

<u>Tipos de Listas Encadeadas</u>

Lista Encadeada:

A **Lista Encadeada** é a versão mais simples e direta entre as estruturas de dados. Ela se destaca por ser flexível, na qual cada nó guarda não apenas seu próprio valor, mas também a referência ao próximo nó. Esta característica torna a lista encadeada eficiente para operações que envolvem adicionar ou remover elementos, já que, ao contrário dos arrays, não há a necessidade de realocar ou reorganizar toda a estrutura.

- A Lista Encadeada é uma estrutura de dados linear onde cada elemento é representado por um nó.
- Cada nó contém dois campos principais: o valor (ou dado) e um ponteiro para o próximo nó na sequência.
- É uma estrutura simples, onde os nós são conectados de forma sequencial.
- A primeira posição da lista é chamada de cabeça(head) e a última posição aponta para null.
- As operações comuns em Listas Encadeadas incluem a inserção e a remoção de elementos.
- Vantagens: Fácil inserção/remoção no início e no meio da lista.
- Desvantagens: Acesso aleatório é lento, pois é necessário percorrer a lista sequencialmente.

Lista Duplamente Encadeada:

A **Lista Duplamente Encadeada** eleva a flexibilidade em comparação a **Lista Encadeada**. Cada nó mantém duas referências: uma para o próximo nó e outra para o anterior. Esta característica bidirecional facilita a navegação para frente e para trás através

da lista, tornando certas operações mais intuitivas e eficientes, especialmente aquelas que necessitam de revisão ou retrocesso frequente.

- A Lista Duplamente Encadeada é uma variação da Lista Encadeada em que cada nó possui um ponteiro para o próximo e outro para o nó anterior.
- Isso permite a navegação em ambas as direções, facilitando operações que envolvem retroceder na lista.
- A primeira posição é chamada de cabeça (head), e a última é chamada de cauda (tail).
- As operações de inserção e remoção são mais complexas devido à necessidade de atualizar os ponteiros de ambos os lados do nó.
- Vantagens: Navegação bidirecional, o que pode ser útil em algumas situações.
- Desvantagens: Requer mais memória para armazenar os ponteiros extras.

Lista Encadeada Circular:

A **Lista Encadeada Circular** oferece uma perspectiva única ao conectar o final da lista de volta ao início, formando um círculo contínuo de elementos. Essa configuração elimina a noção tradicional de 'começo' e 'fim' da lista, permitindo uma interação contínua e cíclica. Essa característica pode ser particularmente útil em aplicações que necessitam de uma repetição contínua dos elementos, como em algoritmos de round-robin.

- A Lista Encadeada Circular é uma variação da Lista Encadeada em que o último nó aponta para o primeiro, criando um ciclo.
- Isso significa que não há um "fim" da lista, e a navegação pode continuar indefinidamente.
- A operação de inserção no final da lista é otimizada, pois não é necessário percorrer toda a lista para encontrar o último nó.
- A remoção de um elemento pode ser mais complexa, pois os ponteiros devem ser atualizados para manter a circularidade.
- Vantagens: Inserção eficiente no final, acesso circular.
- Desvantagens: Navegação em sentido único, complicada remoção de elementos específicos.

Como as linguagens de programação implementam Vetores, Matrizes, Listas, e como são feitas estruturas sequências ou listas encadeadas.

Estrutura	Implementação em Linguagens de Programação	Tipo de Estrutura
Vetores	Em linguagens como C, C++, Java, Python, etc., os vetores são implementados como estruturas sequenciais. Os elementos são armazenados em posições contíguas de memória, e o acesso a um elemento é feito por meio de um índice inteiro.	Estrutura Sequencial
Matrizes	Matrizes também são implementadas como estruturas sequenciais na maioria das linguagens. Elas são compostas por linhas e colunas, com cada elemento acessado por dois índices, um para a linha e outro para a coluna.	Estrutura Sequencial
Listas	Listas podem ser implementadas de duas maneiras: como estruturas sequenciais (arrays) ou como listas encadeadas. Em linguagens como Python, as listas são implementadas como arrays dinâmicos, enquanto em outras linguagens, como C/C++, as listas encadeadas podem ser implementadas manualmente ou por meio de bibliotecas.	Pode ser Sequencial ou Encadeada