```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsRegressor
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
import math
# Example Data (Replace this with your actual dataset)
# Columns: wt% TiC, Laser Power (W), Velocity (mm/s), Gas Flow Pressure (MPa), Pulse Frequency
(Hz), Surface Roughness
data = {
  'wt% TiC': [3,3,3,3,3],
  'Laser Power (W)': [2000,2000,2000,2500,2500],
  'Velocity (mm/s)': [10,10,10,20,20],
  'Gas Flow Pressure (MPa)': [0.7,0.7,0.7,1,1],
  'Pulse Frequency (Hz)': [7,10,13,7,10],
  'Surface Roughness': [4.21,4.29,4.36,4.58,4.62]
}
# Converting data to a DataFrame
df = pd.DataFrame(data)
# Splitting data into features (X) and target (y)
X = df[['wt% TiC', 'Laser Power (W)', 'Velocity (mm/s)', 'Gas Flow Pressure (MPa)', 'Pulse Frequency
(Hz)']]
y = df['Surface Roughness']
# Splitting data into training and testing sets (80% training, 20% testing)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Initializing the KNN Regressor
knn = KNeighborsRegressor(n_neighbors=4) # K=5
```

```
# Training the model
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
# Calculating performance metrics
r2 = r2_score(y_test, y_pred)
mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
rmse = math.sqrt(mse)
# Printing results
print(f"R^2 Score: {r2}")
print(f"Mean Absolute Error (MAE): {mae}")
print(f"Mean Squared Error (MSE): {mse}")
print(f"Root Mean Squared Error (RMSE): {rmse}")
# Optional: Visualize actual vs predicted values
import matplotlib.pyplot as plt
plt.scatter(y_test, y_pred, color='blue', label='Predictions')
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], color='red', linestyle='--',
label='Ideal Fit')
plt.xlabel('Actual Surface Roughness')
plt.ylabel('Predicted Surface Roughness')
plt.legend()
plt.title('Actual vs Predicted Surface Roughness')
plt.show()
```


import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

import math

Example Data (Replace this with your actual dataset)

Columns: wt% TiC, Laser Power (W), Velocity (mm/s), Gas Flow Pressure (MPa), Pulse Frequency (Hz), Surface Roughness

```
data = {
```

```
'wt% TiC': [3,3,3,3,3],
  'Laser Power (W)': [2000,2000,2000,2500,2500],
  'Velocity (mm/s)': [10,10,10,20,20],
  'Gas Flow Pressure (MPa)': [0.7,0.7,0.7,1,1],
  'Pulse Frequency (Hz)': [7,10,13,7,10],
  'Surface Roughness': [4.21,4.29,4.36,4.58,4.62]
}
# Converting data to a DataFrame
df = pd.DataFrame(data)
# Splitting data into features (X) and target (y)
X = df[['wt% TiC', 'Laser Power (W)', 'Velocity (mm/s)', 'Gas Flow Pressure (MPa)', 'Pulse Frequency
(Hz)']]
y = df['Surface Roughness']
# Splitting data into training and testing sets (80% training, 20% testing)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Scaling the data for better performance
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Building the ANN model
model = Sequential([
  Dense(64, activation='relu', input_dim=X_train_scaled.shape[1]), # Input layer
  Dense(32, activation='relu'), # Hidden layer 1
  Dense(16, activation='relu'), # Hidden layer 2
  Dense(1, activation='linear') # Output layer
```

```
])
# Compiling the model
model.compile(optimizer='adam', loss='mean_squared_error', metrics=['mae'])
# Training the model
history = model.fit(X_train_scaled, y_train, epochs=100, batch_size=8, verbose=1,
validation_split=0.1)
# Predicting on the test set
y_pred = model.predict(X_test_scaled)
# Calculating performance metrics
r2 = r2_score(y_test, y_pred)
mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
rmse = math.sqrt(mse)
# Printing results
print(f"R^2 Score: {r2}")
print(f"Mean Absolute Error (MAE): {mae}")
print(f"Mean Squared Error (MSE): {mse}")
print(f"Root Mean Squared Error (RMSE): {rmse}")
# Optional: Visualize training history
import matplotlib.pyplot as plt
# Plot loss
plt.plot(history.history['loss'], label='Train Loss')
```

plt.plot(history.history['val_loss'], label='Validation Loss')

plt.xlabel('Epochs')

```
plt.legend()
plt.title('Training and Validation Loss')
plt.show()

# Plot actual vs predicted values
plt.scatter(y_test, y_pred, color='blue', label='Predictions')
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], color='red', linestyle='--', label='Ideal Fit')
plt.xlabel('Actual Surface Roughness')
plt.ylabel('Predicted Surface Roughness')
plt.legend()
plt.title('Actual vs Predicted Surface Roughness')
plt.show()
```

Epoch 1/100	on3.10/dist-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `input shape`/'input dim` argument to a layer. When using Sequential models, prefer using an `
super()init(a	activity_regularizer-activity_regularizer, **Noargs) — 22 2s/step - loss: 19.7374 - mae: 4.4404 - val loss: 20.3002 - val mae: 4.5056
Epoch 2/100 1/1	— 8s 372ms/step - loss: 19.3081 - mae: 4.3918 - val loss: 20.0452 - val mae: 4.4772
Epoch 3/100 1/1	
Epoch 4/100	—— 8s 52ms/step - loss: 18.5222 - mae: 4.3010 - val_loss: 19.5560 - val_mae: 4.4222
Epoch 5/100	— 8s 135ms/step - loss: 18.1319 - mae: 4.2551 - val loss: 19.3238 - val mae: 4.3959
Epoch 6/100	
Epoch 7/100	95 51mS/step - loss: 17-3619 - mme: 4-1630 - val loss: 18.8346 - val mme: 4-13399
Epoch 8/100	95 53mS/step - loss: 17.0202 - mme: 4.1215 - val loss: 18.5870 - val mme: 4.3113
Epoch 9/100 1/1	
Epoch 10/100 1/1	
Epoch 11/100 1/1	
Epoch 12/100 1/1	
Epoch 13/100 1/1	—— 8s 66ms/step - loss: 15.5254 - mae: 3.9356 - val_loss: 17.3080 - val_mae: 4.1603
Epoch 14/100 1/1	—— 8s 132ms/step - loss: 15.2143 - mae: 3.8958 - val_loss: 17.0522 - val_mae: 4.1294
Epoch 15/100	- 05 129ms/step - loss: 14.8923 - mae: 3.8541 - val loss: 16.7896 - val mae: 4.6975
Epoch 16/100	
Epoch 17/100	
Epoch 18/100 1/1	
Epoch 19/100	
Epoch 20/100	- 85 57ms/step - loss: 13.1581 - mae: 3.6214 - val_loss: 15.4137 - val_mae: 3.9260
Epoch 21/100 1/1	
Epoch 22/100 1/1	
Epoch 23/100 1/1	
Frach 34/500	95 (2/BS) (SLE) - 1055; 11, 3790 - 1882; 5, 3380 - V41 1055; 13, 9532 - V41 1882; 3, 7357
Epoch 26/100 1/1	
Epoch 27/100 1/1	
Epoch 28/100	
Epoch 29/100 1/1	95 5/ms/step - 1055: 10.1057 - mage: 3.1792 - val_055: 15.0202 - val_mage: 3.0092 — 85 5/ms/step - loss: 9.7648 - mag: 3.1152 - val loss: 12.7879 - val mage: 3.5648
Epoch 30/100	- 05 Sims/step - loss: 9.3621 - mae: 3.6493 - val loss: 12.3855 - val mae: 3.5193
Epoch 31/100	• 5.2ms/step - 1033. 9.3021 - mae: 2.9813 - val_033. 12.3037 - val_mae: 3.5259 • 65 52ms/step - 1035: 8.9554 - mae: 2.9813 - val loss: 12.0593 - val mae: 3.4727
Epoch 32/100 1/1	•• 5.2m3/step - 1033, 6.3534 - mae: 2.9166 - val loss: 11.7294 - val mae: 3.4248
Epoch 33/100	● 5 3ms/step - 1033, 6.7453 - mae: 2.75100 - val_053, 11.7294 - val_mae: 3.4740
Epoch 34/100 1/1	- 05 58ms/step - 1055: 67.7131 - mae: 2.7625 - val loss: 11.6428 - val mae: 3.3231
Epoch 35/100 1/1	## 05 55ms/step - 10ss: 7.7131 - mae: 2.7025 - Val_10ss: 11.09128 - Val_mae: 3.3231 ### 05 55ms/step - loss: 7.2983 - mae: 2.6053 - Val_loss: 10.6915 - Val_mae: 3.2698
Epoch 36/100 1/1	—
Epoch 37/100	—
Epoch 38/100	● 5 3ms/step - 10ss: 6.4691 - mae: 2.4415 - val_u0ss: 9.6978 - val_mae: 3.1381 ● 85 3ms/step - loss: 6.6691 - mae: 2.4415 - val_loss: 9.6678 - val_mae: 3.6996
Epoch 39/100	—
Epoch 40/100	
Epoch 41/100	
Epoch 42/100 1/1	— es 65ms/step - 10ss: 4.8750 - mae: 2.1776 - val_10ss: 8.5041 - val_mae: 2.9162 — es 65ms/step - 10ss: 4.4917 - mae: 2.8855 - val 10ss: 8.1362 - val mae: 2.8524
Epoch 43/100	
1/1 Epoch 44/100	
Epoch 45/100	
Epoch 46/100	
1/1 — Epoch 47/100	
1/1 — Epoch 48/100 1/1 —	
Epoch 49/100	
1/1	

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score

from sklearn.neighbors import KNeighborsRegressor

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

import math

import matplotlib.pyplot as plt

Example Data (Replace this with your actual dataset)

data = {

```
'wt% TiC': [3,3,3,3,3],
  'Laser Power (W)': [2000,2000,2000,2500,2500],
  'Velocity (mm/s)': [10,10,10,20,20],
  'Gas Flow Pressure (MPa)': [0.7,0.7,0.7,1,1],
  'Pulse Frequency (Hz)': [7,10,13,7,10],
  'Surface Roughness': [4.21,4.29,4.36,4.58,4.62]
}
# Converting data to a DataFrame
df = pd.DataFrame(data)
# Splitting data into features (X) and target (y)
X = df[['wt% TiC', 'Laser Power (W)', 'Velocity (mm/s)', 'Gas Flow Pressure (MPa)', 'Pulse Frequency
(Hz)']]
y = df['Surface Roughness']
# Splitting data into training and testing sets (80% training, 20% testing)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Scaling the data for ANN and better performance
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# ---- KNN Model ----
knn = KNeighborsRegressor(n_neighbors=4)
knn.fit(X_train, y_train)
knn_predictions = knn.predict(X_test)
# ---- ANN Model ----
# Building the ANN
```

```
model = Sequential([
  Dense(64, activation='relu', input_dim=X_train_scaled.shape[1]),
  Dense(32, activation='relu'),
  Dense(16, activation='relu'),
  Dense(1, activation='linear')
])
model.compile(optimizer='adam', loss='mean_squared_error', metrics=['mae'])
model.fit(X_train_scaled, y_train, epochs=100, batch_size=8, verbose=1, validation_split=0.1)
# ANN Predictions
ann_predictions = model.predict(X_test_scaled).flatten()
# ---- Combining Predictions ----
# Simple Averaging
ensemble_predictions = (knn_predictions + ann_predictions) / 2
# ---- Performance Metrics ----
def calculate_metrics(y_true, y_pred, model_name):
  r2 = r2_score(y_true, y_pred)
  mae = mean_absolute_error(y_true, y_pred)
  mse = mean_squared_error(y_true, y_pred)
  rmse = math.sqrt(mse)
  print(f"\n{model_name} Performance:")
  print(f"R^2 Score: {r2}")
  print(f"Mean Absolute Error (MAE): {mae}")
  print(f"Mean Squared Error (MSE): {mse}")
  print(f"Root Mean Squared Error (RMSE): {rmse}")
  return r2, mae, mse, rmse
```

```
calculate_metrics(y_test, knn_predictions, "KNN")
# Metrics for ANN
calculate_metrics(y_test, ann_predictions, "ANN")
# Metrics for Ensemble
calculate_metrics(y_test, ensemble_predictions, "Ensemble (KNN + ANN)")
plt.plot(history.history['loss'], label='Train Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.title('Training and Validation Loss')
plt.show()
# ---- Visualization ----
plt.scatter(y_test, knn_predictions, color='blue', label='KNN Predictions')
plt.scatter(y_test, ann_predictions, color='green', label='ANN Predictions')
plt.scatter(y_test, ensemble_predictions, color='purple', label='Ensemble Predictions')
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], color='red', linestyle='--',
label='Ideal Fit')
plt.xlabel('Actual Surface Roughness')
plt.ylabel('Predicted Surface Roughness')
plt.legend()
plt.title('Actual vs Predicted Surface Roughness')
```

plt.show()

