

Lecture 11

Yao Li

Department of Statistics and Operations Research
UNC Chapel Hill

Introduction

- Read Chapter 12
- Additional Package
 - > library(forcats)
 - Part of the tidyverse
- For Variables with,
 - Fixed Set of Values
 - Known Set of Values
- Factors Are on a New Level

- Eye Color Distribution
 - Randomly Sample 50 People
 - Distribution via Bar Plot
 - How to Make More Informative?

- Eye Color Distribution (Cont.)
 - Display Eye Colors Absent From Sample
 - > scale_x_discrete(drop=F)

- Eye Color Distribution (Cont.)
 - Display in order

- Survey Results
 - How Would You Describe Dr. Example's Teaching?
 - Magical
 - Alright
 - Regular
 - Inferior
 - Offensive
 - Class of 80 Students Answer End-of-the-Year Survey

- Survey Results (Cont.)
 - Distribution of Results

What is Wrong?

Survey Results (Cont.)

Ordinal Categorical Variable

- Urbanicity
 - Classification {1,2,3,4}
 - Sample 1000 Households and Record Their Urbanicity
 - What Would Make this Better?

- Urbanicity
 - Data Dictionary
 - 1 = Metropolitan
 - 2 = Burbs
 - 3 = Rural
 - 4 = Isolated

Factor Variable Architecture

Factor Variables
 Have Levels

```
Height = c("Tall", "Short", "Tall",
           "Tall", "Short", "Medium",
           "Short", "Medium", "Tall")
Height.fct = as.factor(Height)
print (Height)
## [1] "Tall"
                "Short" "Tall"
                                  "Tall"
## [9] "Tall"
levels (Height)
## NULL
print(Height.fct)
## [1] Tall Short Tall
                          Tall
                                   Short Medium Short Medium Tall
## Levels: Medium Short Tall
levels(Height.fct)
   [1] "Medium" "Short" "Tall"
```


Default: Alphabetical

Factor: Level Order

Level Order May Be Specified

```
Height2.fct = factor(Height, levels=c("Short", "Medium", "Tall"))
levels(Height2.fct)

## [1] "Short" "Medium" "Tall"

print(Height2.fct)

## [1] Tall Short Tall Tall Short Medium Short Medium Tall

## Levels: Short Medium Tall
```

Factor: Label

Levels May Be
 Labeled

```
Height3.fct = factor(Height, levels=c("Short", "Medium", "Tall"),
                    labels=c("S", "M", "T"))
levels(Height3.fct)
## [1] "S" "M" "T"
print(Height3.fct)
## [1] T S T T S M S M T
## Levels: S M T
Height4.fct = factor(Height, levels=c("Short", "Medium", "Tall"),
                     labels=c("Short", "Not Short", "Not Short"))
levels(Height4.fct)
## [1] "Short" "Not Short"
print(Height4.fct)
## [1] Not Short Short
                          Not Short Not Short Short
                                                         Not Short Short
## [8] Not Short Not Short
## Levels: Short Not Short
```



```
Height3.fct = factor(Height,levels=c("Short","Medium","Tall"),
                    labels=c("S", "M", "T"))
ggplot(data=tibble(x=Height3.fct)) +
   geom bar(aes(x),fill="lightskyblue1") +
   theme minimal()
count
```

```
Height4.fct = factor(Height, levels=c("Short", "Medium", "Tall"),
                    labels=c("Short", "Not Short", "Not Short"))
ggplot(data=tibble(x=Height4.fct)) +
  geom bar(aes(x),fill="lightskyblue1") +
  theme minimal()
                    Short
                                                  Not Short
```

General Social Survey

University of Chicago

About the GSS

The General Social Survey

Since 1972, the General Social Survey (GSS) has provided politicians, policymakers, and scholars with a clear and unbiased perspective on what Americans think and feel about such issues as national spending priorities, crime and punishment, intergroup relations, and confidence in institutions.

About the GSS

General Social Survey

- Sample Provided in gss_cat
- Factor Variables Included
 - Marital
 - Race
 - Income Range
 - Political Party
 - Religion
 - Denomination

```
Social=gss cat
glimpse (Social)
## Observations: 21,483
## Variables: 9
## $ year
             <int> 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, ...
## $ marital <fct> Never married, Divorced, Widowed, Never married, Divor...
## $ age
             <int> 26, 48, 67, 39, 25, 25, 36, 44, 44, 47, 53, 52, 52, 51...
## $ race
             <fct> White, White, White, White, White, White, White...
## $ rincome <fct> $8000 to 9999, $8000 to 9999, Not applicable, Not appl...
## $ partyid <fct> Ind, near rep, Not str republican, Independent, Ind, nea...
## $ reliq
            <fct> Protestant, Protestant, Protestant, Orthodox-christian...
             <fct> Southern baptist, Baptist-dk which, No denomination, N...
## $ tvhours <int> 12, NA, 2, 4, 1, NA, 3, NA, 0, 3, 2, NA, 1, NA, 1, 7, ...
```

Summary by Race

```
race.summary = Social %>%
           group by (race) %>%
           summarize(
             n=n(),
             avg.age=mean(age,na.rm=T),
             avg.tv=mean(tvhours,na.rm=T)
race.summary
## # A tibble: 3 x 4
   race n avg.age avg.tv
   <fct> <int> <dbl> <dbl>
## 1 Other 1959 39.5 2.76
## 2 Black 3129 43.9 4.18
## 3 White 16395 48.7 2.77
levels (Social$race)
## [1] "Other"
                                                        "Not applicable"
                       "Black"
                                        "White"
levels(race.summary$race)
## [1] "Other"
                       "Black"
                                        "White"
                                                        "Not applicable"
```

Comparing TV Hours

- fct_reorder()
 - f = Factor Variable
 - x = Numeric Vector
 - fun = Optional Function If Multiple Values of x for Each Value of f (Default: Median)

Example 1: Reorder

Example 2: Reorder

Useful Functions

- Other Useful Functions
 - fct_relevel() = Specify Variable and the Specific Levels You Want in The Front
 - fct_rev() = Specify Variable and Reverses the Level Order
 - fct_infreq() = Order Levels Based on Increasing Frequency
- Combine Functions as Necessary

Types of Ordering

- Different Types of Ordering
 - Nominal = "Arbitrary"
 - Ordinal = "Principled"
- Example: Race vs Income
 - Race Levels are Arbitrary
 - Income Levels are Principled

```
head(Social[,c("race", "rincome")])
## # A tibble: 6 x 2
    race rincome
   <fct> <fct>
## 1 White $8000 to 9999
## 2 White $8000 to 9999
## 3 White Not applicable
## 4 White Not applicable
## 5 White Not applicable
## 6 White $20000 - 24999
str(Social[,c("race", "rincome")])
                                                21483 obs. of 2 variables:
## Classes 'tbl df', 'tbl' and 'data.frame':
## $ race : Factor w/ 4 levels "Other", "Black", ..: /3 3 3 3 3 3 3 3 3 3 ...
## $ rincome: Factor w/ 16 levels "No answer","Don't know",..: 8 8 16 16 16 5
levels (Social$race)
## [1] "Other"
                                                          "Not applicable"
                        "Black"
                                         "White"
levels (Social$rincome)
   [1] "No answer"
                                                           "$25000 or more"
                      "Don't know"
                                         "Refused"
    [5] "$20000 - 24999" "$15000 - 19999" "$10000 - 14999" "$8000 to 9999"
    [9] "$7000 to 7999" "$6000 to 6999" "$5000 to 5999" "$4000 to 4999"
## [13] "$3000 to 3999" "$1000 to 2999" "Lt $1000"
                                                           "Not applicable"
```

Original Boxplot

Pull `Not applicable` to the front

Level Change + Rev

Modifying Factor Levels

- Purpose for Modifying Levels
 - Abbreviate or Better Names
 - Collapse Unimportant Levels
 - Group Categories
- Useful Functions
 - fct_recode() = Rename Levels
 - fct_collapse() = Collapse Levels
 - fct_lump() = Create Subgroups

Modifying Factor Levels

Marital Counts

Recode Levels

Example 1: Recode Levels

```
Marriage2 = Social %>%
            mutate (marital2=fct recode (marital,
                   "Unknown" = "No answer",
                    "Single" = "Never married"
            )) %>%
            count (marital, marital2) %>%
            mutate(prop=n/sum(n))
print (Marriage2)
## # A tibble: 6 x 4
## marital marital2
                            n
                                prop
   <fct> <fct> <fct> <int> <dbl>
  1 No answer Unknown 17 0.000791
  2 Never married Single 5416 0.252
  3 Separated
                 Separated 743 0.0346
  4 Divorced
                Divorced 3383 0.157
  5 Widowed
                Widowed 1807 0.0841
## 6 Married
                Married 10117 0.471
```

Collapse Levels

Example 2:Collapse Levels

```
levels (Social$marital)
## [1] "No answer"
                      "Never married" "Separated"
                                                      "Divorced"
## [5] "Widowed"
                      "Married"
Marriage3 = Social %>%
             mutate (marital2=fct collapse (marital,
                     Alone = levels(marital) [c(2,4,5)],
                     Together = levels(marital)[c(6)],
                     Confused = levels(marital)[c(1,3)]
             )) %>%
             group by (marital, marital2) %>%
             summarize(n=n()) %>%
             ungroup() %>%
             mutate(prop=n/sum(n))
print (Marriage3)
## # A tibble: 6 x 4
    marital marital2
                                    prop
                <fct> <int>
    <fct>
                                    <dbl>
## 1 No answer
                Confused
                              17 0.000791
  2 Never married Alone 5416 0.252
## 3 Separated
                  Confused 743 0.0346
## 4 Divorced Alone
                            3383 0.157
## 5 Widowed
              Alone
                           1807 0.0841
                  Together 10117 0.471
## 6 Married
```

Lumping Levels

Example 3: Lumping Levels

```
Marriage4 = Social %>%
           mutate(marital2=fct lump(marital)) %>%
           count (marital, marital2) %>%
           mutate(prop=n/sum(n))
print(Marriage4)
## # A tibble: 6 x 4
   marital marital2
                               n
                                  prop
          <fct>
    <fct>
                        <int>
                                 <dbl>
## 1 No answer Other
                        17 0.000791
## 2 Never married Never married 5416 0.252
## 3 Separated Other 743 0.0346
## 4 Divorced Divorced 3383 0.157
## 5 Widowed
             Other
                          1807 0.0841
## 6 Married
              Married
                           10117 0.471
```

Lumping Levels

Example 3: Lumping Levels

```
Marriage5 = Social %>%
            mutate(marital2=fct lump(marital,2)) %>%
            count (marital, marital2) %>%
            mutate(prop=n/sum(n))
print (Marriage5)
## # A tibble: 6 x 4
    marital marital2
                                n
                                    prop
           <fct>
    <fct>
                           <int>
                                   <dbl>
  1 No answer Other
                               17 0.000791
## 2 Never married Never married 5416 0.252
## 3 Separated Other
                          743 0.0346
  4 Divorced Other
                             3383 0.157
## 5 Widowed
             Other
                             1807 0.0841
## 6 Married
               Married
                             10117 0.471
```