Syntax

$$e = x \mid \lambda x.e \mid e e$$
 (Expressions)
$$v = \lambda x.e$$
 (Values)
$$a = A[v]$$
 (Answers)
$$A = [] \mid (\lambda x.A) e$$
 (Answer Contexts)
$$E = [] \mid E \mid (\lambda x.E[x]) \mid E \mid (\lambda x.E) \mid e$$
 (Evaluation Contexts)

Notions of Reduction

$$\begin{split} (\lambda x. E[x]) \, v \quad \boldsymbol{\beta}_{\mathbf{need}} \quad E[x] \{ x := v \} \\ (\lambda x. A[v]) \, e \, e' \quad \mathbf{assoc\text{-}L} \quad (\lambda x. A[v \, e']) \, e \\ (\lambda x. E[x]) \, ((\lambda y. A[v]) \, e) \quad \mathbf{assoc\text{-}R} \quad (\lambda y. A[(\lambda x. E[x]) \, v]) \, e \end{split}$$

 $\mathbf{need} = \boldsymbol{\beta}_{\mathbf{need}} \cup \mathbf{assoc\text{-}L} \cup \mathbf{assoc\text{-}R}$

 \rightarrow : compatible closure of **need**

 \rightarrow : reflexive, transitive closure of \rightarrow

 \Rightarrow : parallel extension of \rightarrow

Definition 1 (\Rightarrow) . Parallel reduction of all non-overlapping redexes.

inition 1 (
$$\Rightarrow$$
). Parattet realization of all non-overlapping realizes.

$$e \Rightarrow e \qquad (1)$$

$$(\lambda x.E[x]) v \Rightarrow E'[x]\{x := v'\} \qquad if E[x] \Rightarrow E'[x], v \Rightarrow v' \qquad (2)$$

$$(\lambda x.A[v]) e_1 e_2 \Rightarrow (\lambda x.A'[v'e'_2]) e'_1 \qquad if A[v] \Rightarrow A'[v'], e_1 \Rightarrow e'_1, e_2 \Rightarrow e'_2 \qquad (3)$$

$$(\lambda x.E[x]) ((\lambda y.A[v]) e) \Rightarrow (\lambda y.A'[(\lambda x.E'[x]) v']) e' \qquad if E[x] \Rightarrow E'[x], A[v] \Rightarrow A'[v'], e \Rightarrow e' \qquad (4)$$

$$e_1 e_2 \Rightarrow e'_1 e'_2 \qquad if e_1 \Rightarrow e'_1, e_2 \Rightarrow e'_2 \qquad (5)$$

$$\lambda x.e \Rightarrow \lambda x.e' \qquad if e \Rightarrow e' \qquad (6)$$

Theorem 1 (Church-Rosser). If $e \rightarrow e_1$ and $e \rightarrow e_2$, $\exists e' \ s.t. \ e_1 \rightarrow e'$ and $e_2 \rightarrow e'$.

Proof. Use Diamond Property of \Rightarrow .

Lemma 1 (Diamond Property of \Rightarrow). If $e \Rightarrow e_1$ and $e \Rightarrow e_2$, $\exists e'$ s.t. $e_1 \Rightarrow e'$ and $e_2 \Rightarrow e'$.

Proof. By structural induction on proof of $e \Rightarrow e_1$. All cases make use of lemmas 2 and 3.

Case $e = e_1$. (base)

Then $e_1 \Rightarrow e_2$, so $e' = e_2$.

Case $e \Rightarrow e_1$ by $\Rightarrow def(2)$.

Subcase $e \Rightarrow e_2$ by $\Rightarrow def(2)$.

- $e_1 \Rightarrow e'$ by substitution lemma
- $e_2 \Rightarrow e'$ by substitution lemma

Subcase $e \Rightarrow e_2$ by $\Rightarrow def(5)$.

- $e_1 \Rightarrow e'$ by substitution lemma
- $e_2 \Rightarrow e'$ by $\Rightarrow def(2)$

Case $e \Rightarrow e_1$ by $\Rightarrow def(3)$.

Subcase $e \Rightarrow e_2$ by $\Rightarrow def(3)$.

- $e_1 \Rightarrow e'$ by $\Rightarrow def(5)$
- $e_2 \Rightarrow e'$ by $\Rightarrow def(5)$

Subcase $e \Rightarrow e_2$ by $\Rightarrow def(5)$.

- $e_1 \Rightarrow e'$ by $\Rightarrow def(5)$
- $e_2 \Rightarrow e'$ by $\Rightarrow def(3)$

Case $e \Rightarrow e_1$ by $\Rightarrow def(4)$.

Subcase $e \Rightarrow e_2$ by $\Rightarrow def(4)$.

- $e_1 \Rightarrow e'$ by $\Rightarrow def(5)$
- $e_2 \Rightarrow e'$ by $\Rightarrow def(5)$

Subcase $e \Rightarrow e_2$ by $\Rightarrow def(5)$.

- $e_1 \Rightarrow e'$ by $\Rightarrow def(5)$
- $e_2 \Rightarrow e'$ by $\Rightarrow def(4)$

Case $e \Rightarrow e_1$ by $\Rightarrow def(5)$.

 $e \Rightarrow e_2$ subcases by $\Rightarrow def(2), (3), (4), (5),$ analogous to above cases.

Case $e \Rightarrow e_1$ by $\Rightarrow def(6)$.

Claim holds by IH.

Lemma 2 $(E[x] \text{ closed under } \Rightarrow)$. If e = E[x], $x \in fv(E[x])$, and $e \Rightarrow e'$, then for some E', e' = E'[x], $x \in fv(E'[x])$.

Proof. Structural induction on E.

Case E = [].

$$e = e' = x, E' = [].$$

Case $E = E_1 e_1$.

IH: $E_1[x] \Rightarrow E'_1[x]$, so $E_1[x] e_1 \Rightarrow E'_1[x] e'_1$.

 $E'_1[x] e'_1$ is not **need** redex by $E'_1[x] \notin v$, by lemma 4, so $E' = E'_1 e'_1$,

Case $E = (\lambda y. E_2[y]) E_1$.

IH: $E_2[y] \Rightarrow E_2'[y]$, $E_1[x] \Rightarrow E_1'[x]$, so $(\lambda y.E_2[y]) E_1[x] \Rightarrow (\lambda y.E_2'[y]) E_1'[x]$.

 $(\lambda y. E_2'[y]) E_1'[x]$ is not $\boldsymbol{\beta}_{\mathbf{need}}$ redex by $E_1'[x] \notin v$, by lemma 4.

 $(\lambda y. E_2'[y]) E_1'[x]$ is not **assoc-L** redex by $E_2'[y] \notin a$, by lemma 4.

 $(\lambda y. E_2'[y]) E_1'[x]$ is not **assoc-R** redex by $E_1'[x] \notin a$, by lemma 4.

so $E' = (\lambda y. E_2'[y]) E_1'$,

Case $E = (\lambda y.E_1) e_1$.

IH: $E_1[x] \Rightarrow E_1'[x]$, so $(\lambda y.E_1[x]) e_1 \Rightarrow (\lambda y.E_1'[x]) e_1'$

 $(\lambda y. E_1'[x]) e_1'$ is not $\boldsymbol{\beta}_{need}$ redex by $E_1'[x] \neq E_2[y]$.

 $(\lambda y. E_1'[x]) e_1'$ is not **assoc-L** redex by $E_1'[x] \notin a$, by lemma 4.

 $(\lambda y. E_1'[x]) e_1'$ is not **assoc-R** redex by $E_1'[x] \neq E_2[y]$.

so $E' = (\lambda y. E'_1) e'_1$,

Lemma 3 $(A[v] \text{ closed under } \Rightarrow)$. If e = A[v] and $e \Rightarrow e'$, then e' = A'[v'].

Proof. Structural induction on A.

Case
$$A = []$$
. $e' = v'$

Case
$$A = (\lambda x. A_1) e_1$$
.

IH: $A_1[v] \Rightarrow A_1'[v']$, so $(\lambda x. A_1[v]) e_1 \Rightarrow (\lambda x. A_1'[v']) e_1'$. $(\lambda x. A_1'[v']) e_1'$ is not $\boldsymbol{\beta}_{\mathbf{need}}$ redex by $A_1'[v'] \neq E[x]$, by lemma 5. $(\lambda x. A_1'[v']) e_1'$ is not **assoc-L** redex by e was not. $(\lambda x. A_1'[v']) e_1'$ is not **assoc-R** redex by $A_1'[v'] \neq E[x]$, by lemma 5. so $e' = (\lambda x. A_1'[v']) e_1'$,

Lemma 4. If e = E[x], $e \notin a$.

Proof. By structural induction on E.

Case
$$E = []$$
.

Case
$$E = E_1 e_1$$
.

IH:
$$E_1[x] \notin a$$
, so $E_1[x]$ is not a λ .

Case
$$E = (\lambda y. E_2[y]) E_1$$
.

IH:
$$E_2[y] \notin a$$
, $E_1[x] \notin a$,

Case
$$E = (\lambda y.E_1) e_1$$
.

IH:
$$E_1[x] \notin a$$

Lemma 5. If e = a, then $\not\exists E$ s.t. e = E[x].

Lemma 6. If $e = E[x], x \in fv(E[x]), \not\exists E', y \neq x, y \in fv(E') \text{ s.t. } e = E'[y].$

Lemma 7. If e = E[x], $x \in fv(E[x])$, E[x] is not a **need** redex.