Stanowisko

Analogowy emulator systemów dynamicznych

Dokumentacja techniczna KSIS-PP Poznań 2009

I. OPIS OGÓLNY. KONFIGURACJA I UŻYTKOWANIE

Podstawowe elementy składowe stanowiska HILSys:

- 1) analogowy emulator systemów dynamicznych HILSys zbudowany z wykorzystaniem układu scalonego MAX 265 (dwie sekcje filtrów analogowych),
- 2) karta I/O (wejścia-wyjścia): PCI-DAS 1602/12,
- 3) komputer PC ze środowiskiem graficznym VisSim i nakładką RealTimePRO.

Opis budowy i działania stanowiska.

Moduł analogowy HILSys służy do emulacji wielowymiarowych lub jednowymiarowych procesów dynamicznych o stałych bądź zmiennych własnościach dynamicznych. Konstrukcja modułu emulatora jest oparta o układ scalony MAX 265 zawierający w strukturze dwie niezależne sekcje filtrów analogowych. Własności dynamiczne torów dynamiki filtrów są określone poprzez wartości zewnętrznych elementów rezystancyjnych. Emulator HILSys posiada wyprowadzony zestaw potencjometrów oraz przełączników, za pomocą których można dokonać ręcznej zmiany własności wybranego toru dynamiki (opis funkcji poszczególnych potencjometrów i przełączników zawiera tabela 1). Każdy filtr z dedykowanym zestawem potencjometrów i przełączników tworzy tzw. sekcję emulatora (Sekcja a oraz Sekcja b). Każda sekcja posiada dwa sygnały wejściowe sterujące (U1, U2) oraz trzy sygnały wyjściowe (Y1,Y2,Y3). Dodatkowo emulator wyposażono w dwa niezależne źródła analogowego szumu losowego (wyjścia Na i Nb). Sekcje można wykorzystywać niezależnie jako dwa systemy SISO/MIMO, bądź można łączyć sygnały obu sekcji w konfiguracji szeregowej lub równoległej tworząc systemy bardziej złożone (np. wyższego rzędu). Łączenie szeregowe jest realizowane poprzez połączenie wybranych sygnałów wyjściowych jednej sekcji z wybranymi wejściami sekcji drugiej. Konfigurację równoległą umożliwia dodatkowy zestaw dwóch sumatorów analogowych (Sum1, Sum2) o czterech wejściach każdy. Sumując wybrane wyjścia obu sekcji lub wybranej jednej sekcji filtru istnieje możliwość realizacji konfiguracji równoległych torów dynamicznych o różnych właściwościach. Sumatory mogą służyć także do dodania szumu losowego do sygnału wyjściowego lub też do realizacji zakłócenia z torze sterowania. Widok ogólny emulatora HILSys ilustruje rys. 1.

Moduł emulatora spełnia rolę obiektu dynamicznego (jest to rzeczywisty obiekt analogowy) o nieznanych i potencjalnie zmiennych własnościach dynamicznych (zmiana położenia potencjometrów i

HILSys Dokumentacja techniczna

przełączników zewnętrznych skutkuje zmianą parametrów dynamiki obiektu). Komputer PC wraz z oprogramowaniem VisSim+Real-TimePRO umożliwia implementację różnych algorytmów sterowania lub identyfikacji rekurencyjnej w tzw. systemie szybkiego prototypowania. Komputer spełnia rolę szeroko rozumianego układu sterowania i nadzoru. Karta wejścia-wyjścia pozwala na wymianę sygnałów między modułem emulatora a oprogramowaniem VisSim w czasie 'rzeczywistym'.

Rys 1. Widok ogólny emulatora HILSys z opisem elementów płyty czołowej i tylnej

Rysunek 2 przedstawia schemat połączeń i przepływu sygnałów w systemie HILSys. Nazwy sygnałów zawarte na schemacie oraz pozostałe sygnały dostępne w systemie zebrano w Tabeli 2.

Rys 2. Schemat blokowy systemu szybkiego prototypowania HILSys (nazwy sygnałów wg TABELI 2)

TABELA 1. Opis funkcji potencjometrów i przełączników na płycie czołowej modułu emulatora HILSys

Potencjometr/ Przełącznik	Opis
P1a,b	Potencjometr zmiany pulsacji drgań własnych nietłumionych $\omega_{\scriptscriptstyle n}$
P2a,b	Potencjometr zmiany względnego współczynnika tłumienia ξ
P3a,b	Potencjometr zmiany amplitudy szumu losowego (skrajna pozycja P3 rozłącza tor szumu)
Sa,b	Przełącznik zmiany konfiguracji wyjść Y2a,b oraz Y1a,b (zmiana znaku Y2)
DSig	Ręczna zmiana stanu uniwersalnego binarnego sygnału cyfrowego

HILSys Dokumentacja techniczna

TABELA 2. Zestawienie sygnałów wejściowych i wyjściowych modułu HILSys

L.p.	Nazwa	Typ sygnału (wg ustawień karty I/0)*	Kierunek (względem modułu)	Złącze	Opis
1	U1a	Analogowy ±5V	IN (wyjście)	Z3	wejście sterujące 1 sekcji a
2	U2a	Analogowy ±5V	IN (wyjście)	Z3	wejście sterujące 2 sekcji a
3	Y1a	Analogowy ±5V	OUT (wyjście)	Z3	wyjście (-LP-BP) sekcji a
4	Y2a	Analogowy ±5V	OUT (wyjście)	Z3	wyjście BP (Band-Pass) sekcji a
5	Y3a	Analogowy ±5V	OUT(wyjście)	Z3	wyjście LP (Low-Pass) sekcji a
6	Sum14	Analogowy ±5V	IN(wejście)	Z3	wejście 4 sumatora 1
7	Na	Analogowy ±5V	OUT(wyjście)	Z3	wyjście generatora szumu losowego sekcji a
8	U1b	Analogowy ±5V	IN (wyjście)	Z2	wejście sterujące 1 sekcji b
9	U2b	Analogowy ±5V	IN (wyjście)	Z2	wejście sterujące 2 sekcji b
10	Y1b	Analogowy ±5V	OUT (wyjście)	Z2	wyjście (-LP-BP) sekcji b
11	Y2b	Analogowy ±5V	OUT (wyjście)	Z2	wyjście BP (Band-Pass) sekcji b
12	Y3b	Analogowy ±5V	OUT(wyjście)	Z2	wyjście LP (Low-Pass) sekcji b
13	Sum24	Analogowy ±5V	IN(wejście)	Z2	wejście 4 sumatora 2
14	Nb	Analogowy ±5V	OUT(wyjście)	Z2	wyjście generatora szumu losowego sekcji b
15	Sum1Out	Analogowy ±5V	OUT (wyjście)	Z1	wyjście sumatora 1 (suma Sum11 do Sum14)
16	Sum2Out	Analogowy ±5V	OUT (wyjście)	Z1	wyjście sumatora 2 (suma Sum21 do Sum24)
17	Sum11	Analogowy ±5V	IN (wyjście)	Z1	wejście 1 sumatora 1 (uniwersalne)
18	Sum12	Analogowy ±5V	IN (wyjście)	Z1	wejście 2 sumatora 1 (uniwersalne)
19	Sum13	Analogowy ±5V	IN (wyjście)	Z1	wejście 3 sumatora 1 (uniwersalne)
20	Sum21	Analogowy ±5V	IN (wyjście)	Z 1	wejście 1 sumatora 2 (uniwersalne)
21	Sum22	Analogowy ±5V	IN (wyjście)	Z1	wejście 2 sumatora 2 (uniwersalne)
22	Sum23	Analogowy ±5V	IN (wyjście)	Z 1	wejście 3 sumatora 2 (uniwersalne)
23	DSig	Cyfrowy TTL	OUT (wyjście)	Z0	sygnał uniwersalny zewnętrzny (pozostawiony do wykorzystania przez użytkownika)

^{*}Sygnały analogowe łączone z kartą I/O w trybie 'Single Ended'

Szczegóły konfiguracji modułu emulatora.

Podstawowymi elementami modułu emulatora HILSys są dwie sekcje filtrów analogowych (a i b) przedstawione schematycznie jako systemy dynamiczne MIMO na rysunku 3. Sygnał sterujący U1 jest podstawowym sygnałem wejściowym, dla którego znane są struktury transmitancji w torach dynamicznych U1-Y1, U1-Y2 oraz U1-Y3 (struktury te przedstawiono we wzorach (1) do (3)). Dwie wersje transmitancji G_1 oraz G_2 wynikają ze stanu przełącznika zmiany konfiguracji (patrz rys. 1), przy czym G_1^N i G_2^N dotyczy stanu '-1' przełącznika, natomiast G_1^P i G_2^P stanu '+1' (stany przełącznika przedstawiono na schemacie ideowym dołączonym do dokumentacji). Wartości parametrów transmitancji (1) do (3) dla każdej z sekcji filtrów są funkcją położenia pokręteł potencjometrów P1 i P2 wyprowadzonych na płytę czołową modułu emulatora (patrz rys. 1 oraz schematy ideowe dołączone do dokumentacji).

Rys 4. Schemat blokowy dwóch sekcji filtrów analogowych emulatora HILSys

$$G_{3}(s) = \frac{K_{3}\omega_{n}^{2}}{s^{2} + 2\xi\omega_{n}s + \omega_{n}^{2}} = \frac{Y_{3}(s)}{U_{1}(s)}$$
(1)

$$G_2^N(s) = \frac{-K_2 \omega_n^2 s}{s^2 + 2\xi \omega_n s + \omega_n^2} = \frac{Y_2^N(s)}{U_1(s)} \qquad G_2^P(s) = \frac{K_2 \omega_n^2 s}{s^2 + 2\xi \omega_n s + \omega_n^2} = \frac{Y_2^P(s)}{U_1(s)}$$
(2)

$$G_1^N(s) = \frac{-\omega_n^2(K_2 s + K_3)}{s^2 + 2 \xi \omega_s + \omega^2} = \frac{Y_1^N(s)}{U_1(s)} \qquad G_1^P(s) = \frac{\omega_n^2(K_2 s - K_3)}{s^2 + 2 \xi \omega_n s + \omega_n^2} = \frac{Y_1^P(s)}{U_1(s)}$$
(3)

Oprócz sekcji filtrów zrealizowano także dwa uniwersalne sumatory analogowe: Sum1 oraz Sum2. Sygnały wyjściowe sumatorów (Sum1Out, Sum2Out) stanowią sumę wszystkich czterech sygnałów wejściowych sumatora zgodnie z poniższymi zależnościami:

Do wejść sumatorów można doprowadzić dowolny z sygnałów analogowych dostępny w systemie HILSys, aby zrealizować żądaną konfigurację złożoną.

II. WYBRANE DANE TECHNICZNE

Poniżej przedstawiono tablicę z przypisaniem numerów kanałów sygnałów analogowych i cyfrowych na złączach taśmowych karty I/O typu PCI-DAS 1602/12.

Table 2-3. 16-channel single-ended mode pin out

Signal Name	Pin			Pin	Signal Name
GND	100		•	50	GND
EXTERNAL INTERRUPT	99		•	49	SSH OUT
n/c	98		•	48	PC +5 V
EXTERNAL D/A PACER GATE	97	_		47	n/c
D/A INTERNAL PACER OUTPUT	96		•	46	n/c
A/D INTERNAL PACER OUTPUT	95	_	•	45	A/D EXTERNAL TRIGGER IN
n/c	94			44	D/A EXTERNAL PACER IN
n/c	93		•	43	ANALOG TRIGGER IN
-12 V	92		•	42	A/D EXTERNAL PACER
GND	91			41	CTR 4 OUT
+12 V	90		•	40	CTR 4 GATE
GND	89		•	39	CTR 4 CLK
n/c	88			_38	D/A OUT 1
n/c	87	-	•	37	D/A GND 1
n/c	86	-		_36	D/A OUT 0
n/c	85	-		35	D/A GND 0
n/c	84			.34	n/c
n/c	83			33	n/c
n/c	82			_32	n/c
n/c	81		•	31	n/c
n/c	80			30	n/c
n/c	7.9			29	n/c
n/c	78	-		28	n/c
n/c	77		•	27	n/c
n/c	76	-		26	n/c
n/c	75		•	25	n/c
FIRSTPORTC Bit 7	74			24	n/c
FIRSTPORTC Bit 6	73	-		23	n/c
FIRSTPORTC Bit 5	72		•	22	n/c
FIRSTPORTC Bit 4	71		•	21	n/c
FIRSTPORTC Bit 3	70		•	20	n/c
FIRSTPORTC Bit 2	69		•	19	n/c
FIRSTPORTC Bit 1	68		•	18	LLGND
FIRSTPORTC Bit 0	67			_17	CH15 HI
FIRSTPORTB Bit 7	66	-	•	16	CH7 HI
FIRSTPORTB Bit 6	65			15	CH14 HI
FIRSTPORTB Bit 5	64		•	14	CH6 HI
FIRSTPORTB Bit 4	6.3		•	13	CH13 HI
FIRSTPORTB Bit 3	62		•	_12	CH5 HI
FIRSTPORTB Bit 2	61	_	•	11	CH12 HI
FIRSTPORTB Bit 1	60	-	•	10	CH4 HI
FIRSTPORTB Bit 0	59	_	•	9	CH11 HI
FIRSTPORTA Bit 7	58		•	8	CH3 HI
FIRSTPORTA Bit 6	57	-	•	7	CH10 HI
FIRSTPORTA Bit 5	56	-	•	6	CH2 HI
FIRSTPORTA Bit 4	55	-	•	5	CH9 HI
FIRSTPORTA Bit 3	.54	_	•	4	CH1 HI
FIRSTPORTA Bit 2	53	-	•	3	CH8 HI
FIRSTPORTA Bit 1	.52	_	•	2	CH0 HI
FIRSTPORTA Bit 0	51			1	LLGND
	1				
PCI	slot ↓				

Tabela 3 przedstawia przyporządkowanie poszczególnych sygnałów karty I/O do żył taśmy sygnałowej przedłużacza łączącego moduł emulatora ze złączem oryginalnej taśmy karty I/O. Nazwy kolumny pierwszej są pomocne w dokonaniu właściwej konfiguracji bloków wejść-wyjść na schemacie VisSim. Druga kolumna pozwala na podłączenie właściwej żyły taśmy przedłużacza do żądanego złącza modułu HILSys.

TABELA 3. Zestawienie	połączeń	przewodu	wielożyło	owego z	kanałami k	karty I/O

Nazwa sygnału karty I/O	Kolor żyły w przewodzie		
GND	NIEBIESKI		
SSH OUT	CZERWONY		
D/A OUT1	CZARNY		
D/A OUTO	BIAŁY		
CH6 HI	ZIELONY		
CH5 HI	BRĄZOWY		
CH4 HI	ŻÓŁTY		
CH3 HI	CZERWONY		
CH2 HI	NIEBIESKI		
CH1 HI	CZARNY		
CH0 HI	BIAŁY		
LLGND	ZIELONY		

Rysunek 4 przedstawia tabliczkę informacyjną umieszczoną na górnej osłonie modułu emulatora HILSys.

Rys 4. Tabliczka informacyjna modułu HILSys (Sa i Sb oznaczają przełączniki zmiany konfiguracji)

HILSys Dokumentacja techniczna

Do niniejszego dokumentu dołączono także:

- 1. schematy obwodów elektrycznych modułu HILSys
- 2. schematy ideowe konfiguracji modułu HILSys
- 3. kartę katalogową układu MAX 265-266* (plik *.pdf)
- 4. instrukcję do karty PCI-DAS 1602/12 (plik *.pdf)
- 5. instrukcje do oprogramowania VisSim oraz nakładki RealTimePRO (pliki *.pdf)

Aktualizacja: 30.06.2009

opracowanie: Maciej Michałek

^{*}W module HILSys wykorzystano konfigurację z rys.6 (Figure 6), str. 11