Wavelet alapú előfeldolgozás deep direkt vizuális odometriánál

Dámsa Levente Konzulensek: Dr. Szegletes Luca Dr. Blázovics László

Deep direkt vizuális odometria

Odometria

Vizuális odometria

Deep direkt vizuális odometria

https://www.researchgate.net/figure/THE-ODOMETRY-SCHEME-The-relations-3-4-allow-to-compute-the-robot-estimated-position_fig6_26764 7029

Deep direkt vizuális odometria

Odometria

Vizuális odometria

Deep direkt vizuális odometria

https://www.researchgate.net/profile/Wang-Xin-12/publication /332103736/figure/fig2/AS:742384337952771@15540096275 31/The-illustration-of-our-visual-odometry-framework-The-initial-state-vti-of-current.png

Deep direkt vizuális odometria

Odometria

Vizuális odometria

Deep direkt vizuális odometria

- feature based
- direkt

Kihívások

Adathalmazok

Hálózat architektúra

- CNN
- RNN

Robosztusság

Hardver limitáció

forrás:

https://www.forbes.com/sites/jonathanocallaghan/2021/04/22/nasas-perseverance-rover-has-made-ox ygen-on-mars-for-the-first-time-ever/

Cél

Hálózat: DeepVO

Neurális hálózat csökkentése

Jobb reprezentáció keresése

forrás: https://arxiv.org/abs/1709.08429

Wavelet transzformáció

Fourier transzformáció limit

Alkalmazások:

- Képtömörítés (JPEG)
- Agyi jelek
- Zajszűrés
- Éldetektálás

Continuous Wavelet Transform (CWT)

$$T(a,b) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} x(t) \, \psi^* \frac{(t-b)}{a} dt$$

Discrete Wavelet Transform (DWT)

$$T_{m,n} = \int_{-\infty}^{\infty} x(t) \, \psi_{m,n}(t) \, dt$$

Diszkrét Wavelet transzformáció

Hatékonyan implementálható filter bankokkal

KITTI

11 útvonal

10 FPS

Ground truth trajektória

forrás: http://www.cvlibs.net/datasets/kitti/

Wavelet alkalmazása

Feldolgozás:

- Összes együttható
- Együtthatók részhalmaza
- Hálózat kimenetén IDWT
- 3D wavelet

Módosítás:

- Bemenet méret csökkentése
- Hálózat egyszerűsítése
- FPGA használata

Wavelet alkalmazása

Feldolgozás:

- Összes együttható
- Együtthatók részhalmaza
- Hálózat kimenetén IDWT

Módosítás:

- Bemenet méret csökkentése
- Hálózat egyszerűsítése
- FPGA használata

Motherwavelet választása

Szakirodalom:

- kis kompakt tartó
- ortogonális/biortogonális tulajdonság
- db**N**, haar, sym

Wavelet dekompozíciós szint kiválasztása

3 szint

5 szint

Tanítás

Eredmények

Route	B_translation	$W_{translation}$	B_rotation	W_rotation
4	20.01	7.29	462.98	1931.91
5	575.40	200.89	31452.44	47205.97
7	286.71	204.87	4811.23	4081.76
9	504.15	190.41	19843.53	252777.87
10	358.78	153.42	7069.71	86960.68

1. táblázat. MSE hibaértékek baseline vs wavelet

Trajektóriák - test

Trajektóriák - train

Trajektóriák - test

Trajektóriák - train

Trajektóriák - test

Csökkentett hálózat

CNN rétegek kivétele(9 -> 6)

RNN hálózat rejtett rétegének csökkentése (1000 -> 500)

Tanítás: kb. 100 epoch

Baseline: DeepVO eredeti (200 epoch)

Trajektóriák - Eredeti vs. 100 epoch - test

Trajektóriák - Eredeti vs. 100 epoch - train

Trajektóriák - Eredeti vs. 100 epoch - test

Trajektóriák - Eredeti vs. 100 epoch - train

Trajektóriák - Eredeti vs. 100 epoch - test

Továbbfejlesztési lehetőségek

További tanítás

- több epoch
- más adathalmazok

Más architektúrák

Dekompozíciós szint és wavelet típus, mint hiperparaméter

Lidar, IMU sensor fusion

Alkalmazás 5G drónon

Kérdések

- A bevezetőben (1. fejezet) azt írja: "Ezen deep learning alapú algoritmusok felváltották a klasszikus módszereket, azonban a SLAM, és a vizuális odometria területén még nem történt meg az áttörés."
 Az irodalom alapján van-e ennek műszaki jellegű oka, vagy egyszerű konzervativizmus áll mögötte?
- A wavelet feldolgozást a kisebb neurális háló mérettel indokolja. (1. fejezet) Mekkora számítási kapacitás, illetve idő álla rendelkezésre, mennyire fontos ez a redukció?
- A 7.2. alfejezetben bemutatja, hogy a transzlációs hiba csökkent, a rotációs pedig nőtt a wavelet alkalmazásakor. Mi lehet ennek az oka?
- Mit gondol, lehetséges lenne-e a wavelet transzformáció jelenleg manuálisan meghatározott paramétereit (pl. típus, dekompozíciós szint) a tanítási folyamat részeként hangolni? Javíthatná-e ez az eredményeket?
- Mennyiben változnának az eredmények, ha: 1) az alap és a javasolt módszer azonos epoch-számig lenne tanítva 2) mindkét módszer az eredeti cikk [DeepVO] szerint 200 epoch-ig lenne tanítva?