Zi-Jian Zhang

Education

2016–2020 Undergraduate School.

Southern University of Science and Technology (SUSTech), Shenzhen, China. Department of Physics.

- Overall GPA 3.88/4.0 (Rank: 2/55 in department)
- Supervisor: Man-Hong Yung

2019 summer **Summer research**.

University of Toronto (UofT), Toronto, Canada.

Department of Computer Science & Department of Chemistry.

- Topic: Mutual information-assisted Ansatz Construction in VQE
- O Supervisor: Alán Aspuru-Guzik and Thi Ha Kyaw

2013–2016 **High School**.

Shandong Experimental High School, Jinan, Shandong, China. Top 0.7% in the National College Entrance Examination in Shandong.

Research experience

I carried out intensive independent theoretical research and contributed *most* of the writing and theoretical works in following projects. The topic interests me most is the applications of near-term quantum computers.

Complexity **Group non-membership verification**.

- \circ Proposed a new quantum process to verify the yes instances of group non-membership (GNM) problems, reducing the depth of the quantum circuit needed from $O(n^5)$ to O(1).
- The new process has been demonstrated by our collaborators in USTC using an optic setup as a QMA game.
- I designed the new protocol with my collaborators. I proved the soundness and completeness of the new protocol.

Chemistry Mutual information in VQE, arXiv:2008.07553.

- Proposed a method for adaptive ansatz construction in VQE. The new method can take advantage of approximated pairwise mutual information between qubits.
- This is the first VQE algorithm that utilizes wavefunction approximated by classical method (to the best of our knowledge).
- I designed the algorithm and implemented it by ProjectQ. The numerical experiments are also carried out and analyzed by me.

Software **Programming framework for adaptive quantum circuit**, *Mizore*.

- I am developing the programming framework *Mizore* for adaptive ansatz construction in VQE, in which the quantum circuit grows in a optimal way to obtain lower energy estimation with less gate count.
- \circ I designed the framework and contributed more than 2/3 codes. Based on Mizore, I plan to try adaptive circuit construction technique on quantum subspace diagonalization (QSD), autoencoder (and other quantum ML) and quantum variational simulation (QVS).

Teaching Experience

Teaching Quantum Computing, 2020 Spring, SUSTech, with Prof. Man-Hong Yung.

Assistant • Design programming homework (In English, independently and solo).

- Help the students learn Python and quantum programming (ProjectQ).
- Give tutorial on the homework (In English).

Awards

- 2020 Excellent Undergraduate Thesis (Ranked first) Department of Physics, SUSTech
- 2020 Outstanding Graduates Department of Physics, SUSTech
- 2018 Excellent Undergraduate First Prize SUSTech
- 2017 Excellent Undergraduate First Prize SUSTech
- 2015 32th Chinese Physical Olympiad (in Provinces)- Second Prize Chinese Physical Society
- 2014 National Olympiad in Informatics in Provinces (NOIP) Second Prize China Computer Federation

Languages

English TOEFL:102, GRE: 330 (V160+Q170)+AW3.0

Japanese Elementary
Chinese Mother tongue