

Chapter 20: KMeans

Exercise 2: Shopping

Yêu cầu: Thực hiện Kmeans để phân cụm dữ liệu theo yêu cầu sau:

- Cho dữ liệu shopping_data.csv
- Tạo data.frame với 2 cột: Annual Income (k\$) và Spending Score (1-100)
- Trực quan hóa dữ liệu
- Áp dụng Elbow tìm k
- Áp dụng thuật toán K-Means để giải bài toán phân cụm theo K
- Vẽ hình, xem kết quả
- Nhận xét kết quả

```
In [1]: data <- read.csv("shopping_data.csv")
    print(head(data))
    print(is.data.frame(data))
    print(ncol(data))
    print(nrow(data))</pre>
```

```
Genre Age Annual.Income..k.. Spending.Score..1.100.
 CustomerID
               Male
                     19
                                         15
                                                                  39
               Male
                                         15
                     21
                                                                 81
           3 Female
                     20
                                         16
           4 Female
                                         16
                                                                 77
           5 Female
                                         17
                                                                 40
           6 Female
                                         17
                                                                  76
[1]
   TRUE
```

[1]

[1]

200

Annual Income vs Spending Score

Warning message in FUN(newX[, i], ...):
"NAs introduced by coercion"

TH

```
In [4]: # clustering
    set.seed(20)
    dataCluster <- kmeans(mydata[, 4:5], 5, nstart = 20)
    dataCluster</pre>
```

K-means clustering with 5 clusters of sizes 35, 23, 22, 81, 39

Cluster means:

	Annual.Incomek	Spending.Score1.100.	
1	88.20000	17.11429	
2	26.30435	20.91304	
3	25.72727	79.36364	
4	55.29630	49.51852	
5	86.53846	82.12821	

Clustering vector:

Within cluster sum of squares by cluster: [1] 12511.143 5098.696 3519.455 9875.111 13444.051 (between_SS / total_SS = 83.5 %)

Available components:

լլյ	"cluster"	centers	"totss"	"withinss"	"tot.withinss"
[6]	"betweenss"	"size"	"iter"	"ifault"	


```
In [5]: # Plot the chart
        dataCluster$cluster <- as.factor(dataCluster$cluster)</pre>
        plot(x = mydata$Annual.Income..k..,y = mydata$Spending.Score..1.100.,
             xlab = "Annual Income",
             ylab = "Spending Score",
             main = "Annual Income vs Spending Score", col = dataCluster$cluster,
             pch = 15
```

Annual Income vs Spending Score

library(factoextra) In [6]:

Loading required package: ggplot2

