алгоритмы оптимизации с адаптивным шагом и моментами второго порядка

Методы оптимизации в задаче предискажения сигнала

Масловский Александр

12 августа 2020

Масловский Александр Лекция 1 12 августа 2020

Постановка задачи

постановка исходной задачи: $\min_{W \in \mathbb{C}} f(x)$, где f – дифференцируемая функция типа :

$$\sum_{i=0}^{K} \frac{1}{K} (y_i - g(x_i))^2$$

где $\mathbf{g}(\mathbf{x}, \mathbf{W}) \, x, \, W \in \mathbb{C}$ - функция предыскажения сигнала

Масловский Александр Лекция 1 12 августа 2020 2

Adagrad

$$g_k = \nabla^r f(x^k, \{\xi_l^{k+1}\}_{l=1}^r)$$
$$x_{k+1} = x_k - \frac{h}{\sqrt{G_k + \epsilon}} \odot g_k$$

Bxog: learning rate h > 0, starting point $x^0 \in \mathbb{R}^n$, parameter $b_0 > 0$ for $k = 1, 2, \ldots$ do Sample $\nabla f(x^k, \{\xi_i\}_{i=1}^r)$ $b_k^2 = b_{k-1}^2 + \|\nabla f(x^k, \{\xi_i\}_{i=1}^r)\|^2$ $x^{k+1} = x^k - \frac{h}{b_k} \nabla f(x^k, \{\xi_i\}_{i=1}^r)$ end for=0

Масловский Александр Лекция 1 12 августа 2020 3/11

RMSProp

$$g_k = \nabla^r f(x^k, \{\xi_l^{k+1}\}_{l=1}^r)$$

$$G_{k+1} = \gamma G_k + (1 - \gamma)g_k^2 \text{ -exponential mean(smoothing)}$$

$$x_{k+1} = x_k - \frac{h}{\sqrt{G_{k+1} + \epsilon}} \odot g_k$$

Вход: learning rate $h, \gamma > 0$, starting point $x^0 \in \mathbb{R}^n$, parameter $b_0 > 0$ for $k = 1, 2, \ldots$ do Sample $\nabla f(x^k, \{\xi_i\}_{i=1}^r)$ $b_k^2 = \gamma b_{k-1}^2 + (1-\gamma) \|\nabla f(x^k, \{\xi_i\}_{i=1}^r)\|^2$ $x^{k+1} = x^k - \frac{h}{\sqrt{b_k} + \epsilon} \nabla f(x^k, \{\xi_i\}_{i=1}^r)$ end for=0

Масловский Александр Лекция 1 12 августа 2020

Adadelta

$$g_k = \nabla^r f(x^k, \{\xi_l^{k+1}\}_{l=1}^r)$$

$$G_{k+1} = \gamma_1 G_k + (1 - \gamma_1) g_k^2 \text{-(smoothing)}$$

$$\delta x_k = x_k - x_{k-1}$$

$$\delta x = \gamma_2 \delta x + (1 - \gamma_2) \delta x_k^2 \text{-(smoothing)}$$

$$x_{k+1} = x_k - \frac{\delta x}{\sqrt{G_{k+1} + \epsilon}} \odot g_k$$

 Масловский Александр
 Лекция 1
 12 августа 2020
 5 /

ADAM(Adaptive momdent estimation)

Bxog: learning rate $\alpha > 0$, momentum terms $\beta_1 > 0$, $\beta_2 > 0$, $\lambda \in \mathbb{R}$, parameter vector $\theta_0 \in \mathbb{R}^n$, vectors $m_0, v_0 \in \mathbb{R}^n$. **for** $k = 1, 2, \ldots$ **do**Sample $\nabla f(x^k, \{\xi_i\}_{i=1}^r)$ $m_k = \beta_1 m_{k-1} + (1 - \beta_1) \nabla f(x^k, \{\xi_i\}_{i=1}^r)$ $v_k = \beta_2 v_{k-1} + (1 - \beta_2) \nabla f(x^k, \{\xi_i\}_{i=1}^r)^2$ $\hat{m}_k = \frac{m_k}{1 - \beta_1^k}$ $\hat{v}_k = \frac{v_k}{1 - \beta_2^k}$ $\theta_k = \theta_{k-1} - (\frac{\alpha}{\sqrt{\hat{v}_{k-1}}} \hat{m}_k)$

end for=0

 Масловский Александр
 Лекция 1
 12 августа 2020
 6/11

Adam with decoupled weight decay

Вход: learning rate $\alpha > 0$, momentum terms $\beta_1 > 0$, $\beta_2 > 0$, $\lambda \in \mathbb{R}$, parameter vector $\theta_0 \in \mathbb{R}^n$, vectors $m_0, v_0 \in \mathbb{R}^n$.

for
$$k = 1, 2, ...$$
 do
Sample $\nabla f(x^k, \{\xi_i\}_{i=1}^r)$
 $m_k = \beta_1 m_{k-1} + (1 - \beta_1) \nabla f(x^k, \{\xi_i\}_{i=1}^r)$
 $v_k = \beta_2 v_{k-1} + (1 - \beta_2) \nabla f(x^k, \{\xi_i\}_{i=1}^r)^2$
 $\hat{m}_k = \frac{m_k}{1 - \beta_1^k}$
 $\hat{v}_k = \frac{v_k}{1 - \beta_2^k}$
 $\theta_k = \theta_{k-1} - (\frac{\alpha}{\sqrt{\hat{v}_k} + \epsilon} \hat{m}_k + \lambda \theta_{k-1})$
end for=0

4日 > 4日 > 4日 > 4日 > 日 り90

AMSGrad

end for=0

```
Вход: learning rate \alpha > 0, momentum terms \beta_1 > 0, \beta_2 > 0, \lambda \in \mathbb{R}, parameter vector \theta_0 \in \mathbb{R}^n, vectors m_0, v_0 \in {}^n. for k = 1, 2, \ldots do Sample \nabla f(x^k, \{\xi_i\}_{i=1}^r) m_k = \beta_1 m_{k-1} + (1-\beta_1) \, \nabla f(x^k, \{\xi_i\}_{i=1}^r) v_k = \beta_2 v_{k-1} + (1-\beta_2) \, \nabla f(x^k, \{\xi_i\}_{i=1}^r)^2 \hat{v}_k = \max(\hat{v}_{k-1}, v_k) \theta_k = \theta_{k-1} - \frac{\alpha}{\sqrt{\hat{v}_k} + \epsilon} m_k
```

 Масловский Александр
 Лекция 1
 12 августа 2020
 8/11

QHAdam(QUASI-Hyberbolic Adaptive momdent estimation)

Bxo β : learning rate $\alpha > 0$, momentum terms $\beta_1, \beta_2 > 0, \gamma_1, \gamma_2 > 0, \lambda \in \mathbb{R}$, parameter vector $\theta_0 \in \mathbb{R}^n$, vectors $m_0, v_0 \in \mathbb{R}^n$.

for
$$k = 1, 2, ...$$
 do
 $g_k = \nabla f(x^k, \{\xi_i\}_{i=1}^r)$
 $m_k = \beta_1 m_{k-1} + (1 - \beta_1) g_k$
 $v_k = \beta_2 v_{k-1} + (1 - \beta_2) g_k^2$
 $\theta_k = \theta_{k-1} - \alpha (\frac{(1 - \gamma_1)g_k + \gamma_1 \cdot m_k}{\sqrt{(1 - \gamma_1)g_k^2 + \gamma_2 \cdot v_k + \epsilon}})$

end for=0

 Масловский Александр
 Лекция 1
 12 августа 2020
 9/11

алгоритмы с адаптивным шагом

Алгоритм адаптивного градиентного спуска Малитского-Мищенко(2019)

1:
$$x^0 \in \mathbb{R}^d$$
, $\lambda_0 > 0$, $\theta_0 = +\infty$, $x^1 = x^0 - \lambda_0 \nabla f(x^0)$

2: **for**
$$k = 1, 2, \dots$$
 do

3:
$$\lambda_{k} = \min \left\{ \sqrt{1 + \theta_{k-1}} \lambda_{k-1}, \frac{\|x^{k} - x^{k-1}\|}{2\|\nabla f(x^{k}) - \nabla f(x^{k-1})\|} \right\}$$
4: $x^{k+1} = x^{k} - \lambda_{k} \nabla f(x^{k})$
5: $\theta_{k} = \frac{\lambda_{k}}{\lambda_{k-1}}$

4:
$$x^{k+1} = x^k - \lambda_k \nabla f(x^k)$$

5:
$$\theta_k = \frac{\lambda_k}{\lambda_{k-1}}$$

6 end for= $\hat{0}$

10 / 11

Масловский Александр Лекция 1 12 августа 2020

алгоритмы с адаптивным шагом

Алгоритм адаптивного градиентного спуска Малитского-Мищенко(2019) для SGD с моментным членом

1:
$$x^0 \in \mathbb{R}^d$$
, $\lambda_0 > 0$, $\Lambda_0 > 0$, $\theta_0 = \Theta_0 = +\infty$, $y^1 = x^1 = x^0 - \lambda_0 \nabla f(x^0)$

2: **for**
$$k = 1, 2, \dots$$
 do

3:
$$\lambda_{k} = \min \left\{ \sqrt{1 + \theta_{k-1}} \lambda_{k-1}, \frac{\|x^{k} - x^{k-1}\|}{2\|\nabla f(x^{k}) - \nabla f(x^{k-1})\|} \right\}$$
4:
$$\Lambda_{k} = \min \left\{ \sqrt{1 + \Theta_{k-1}} \Lambda_{k-1}, \frac{\|\nabla f(x^{k}) - \nabla f(x^{k-1})\|}{2\|x^{k} - x^{k-1}\|} \right\}$$

4:
$$\Lambda_k = \min \left\{ \sqrt{1 + \Theta_{k-1}} \Lambda_{k-1}, \frac{\|\nabla f(x^k) - \nabla f(x^{k-1})\|}{2\|x^k - x^{k-1}\|} \right\}$$

5:
$$\beta_k = \frac{\sqrt{1/\lambda_k} - \sqrt{\Lambda_k}}{\sqrt{1/\lambda_k} + \sqrt{\Lambda_k}}$$

6:
$$y^{k+1} = x^k - \lambda_k \nabla f(x^k)$$

7:
$$x^{k+1} = y^{k+1} + \beta_k (y^{k+1} - y^k)$$

8:
$$\theta_k = \frac{\lambda_k}{\lambda_{k-1}}, \, \Theta_k = \frac{\Lambda_k}{\Lambda_{k-1}}$$