Analise Exploratoria de Dados

Precificacao de Aluguels Temporarios - NYC

Amaury Nogueira Neto

Fevereiro de 2025

Sumario

- 1. Introducao
- 2. Visualização Inicial dos Dados
- 3. Estatisticas Descritivas
- 4. Valores Ausentes
- 5. Distribuicao dos Graficos
 - 5.1 Distribuicao de Precos e log(Preco)
 - 5.2 Distribuicao de Minimo de Noites
 - 5.3 Distribuicao do Numero de Reviews
 - 5.4 Distribuicao da Disponibilidade Anual
- 6. MatrIZ de Correlacao
- 7. Distribuicao Espacial dos PrecOS
- 8. Palavras mais Comuns em Anuncios
- 9. Insights e Hipoteses de Negocio
- 10. Justificativa do Pipeline e Validacao do Modelo
- 11. Respostas as Perguntas do Desafio
- 12. Explicacao da Previsao do Preco
- 13. Comparativo das Metricas dos Modelos
- 14. Analise de Residuos
- 15. Conclusao

1. Introducao

Este relatorio apresenta a analise exploratoria de dados sobre aluguels temporarios em NYC. Sao mostradas estatisticas descritivas, graficos, analise espacial e textual, alem de insights para decisoes de investimento. Foram implementadas melhorias no tratamento de outliers, engenharia de recursos (incluindo 'tempo_atividade' e visualizacao de log(price)) e na analise textual. Ademais, tres modelos preditivos foram otimizados, comparados e combinados em um ensemble para aumentar a robustez das previsoes. Por fim, uma analise de residuos foi realizada para avaliar os erros das previsoes.

2. Visualizacao Inicial dos Dados

++	+	+	++	+	+
+					
id nome	host_name	bairro_group	price	minimo_noites	numero_de_reviews
disponibilidade_365 tempo_atividade					
+===+====+====+========================	+========	+========	+======+	=======+	======+===
0 2595 Skylit Midtown Castle	Jennifer	Manhattan	l 225 l	1	45
355 2109	Jennirer	Mailliaccail	225	± 1	45
355 2109			4		
		•			·
1 3647 THE VILLAGE OF HARLEMNEW YORK !	Elisabeth	Manhattan	150	3	0
365 nan	,				. 1
++	+	+	++	+	+
+					
2 3831 Cozy Entire Floor of Brownstone	LisaRoxanne	Brooklyn	89	1	270
194 2064					
++	+	+	++	+	+
+					
3 5022 Entire Apt: Spacious Studio/Loft by central park	Laura	Manhattan	80	10	9
0 2292					
++	+	+	++	+	+
	Chris	Manhattan	200	3	74
129 2077					
++	+	+	++	+	+
+					

3. Estatisticas Descritivas

+	+	+-				+		+		+		+		+
max	coun		mean		std		min		25%	•		%	75%	
+======+ id 3.64872e+07		==+= 823	1.88983e+0	7	1.09203e+0)7 2	539	1	9.43593e	+06	1.9523	89e+07	2.891356	e+07
++ host_id 2.74321e+08	91	823	6.63295e+0	7	7.75634e+0	07 2	438	I	7.72046e	+06	3.0283	66e+07		
+ latitude 40.9131	91	823	40.7285	Ι	0.0553325		40.499		40.6892	+	40.721		40.7634	+
+ longitude -73.713	+ 91	.823	-73.9507		0.046473		-74.24	44	-73.9819	+	-73.95	14	-73.9343	+
+ price	9182	3	119.999	68	.1329	10		65		1	00	159		334
++ minimo_noites	9182	+- 3	6.93803	19	.8595	1		1			2	5		1250
++ numero_de_reviews	9182					0		1				24		+
+ reviews_por_mes	7380	+- 1	1.37812		.69195		.01		.19		0.71	2	.02	+
+ calculado_host_listings_count	9182	+- 3	6.64028		.0118	1		1			1	2		327
++ disponibilidade_365	9182	3	109.373	130	. 282	0		0			39	217		+
++ log_price 5.81114	+ 918	323	4.62631		0.578855	'				+	4.6051	+· 7	5.0689	l
+ tempo_atividade 	7380	1	2339.29	414	. 224	2061		2076		21	11	2432		+
+	+	+-				+		+		+		+		+

4. Valores Ausentes

+	++
I	Valores Ausentes
+	+======+
id	0
+	++
nome	30
+	++
host_id	0
h	+
host_name	42
bairro_group	0
ballio_group	0 1
bairro	45912
Dallio	45912
latitude	0
Tatitude	0
longitude	0
10119111de	· · · · · · · · · · · · · · · · · · ·
room_type	0
+	· · · · · · · · · · · · · · · · · · ·
price	0
1	· · · · · · · · · · · · · · · · · · ·
minimo_noites	
+	++
numero_de_reviews	
+	++
ultima_review	18022
+	++
reviews_por_mes	18022
+	++
calculado_host_listings_count	. 0
+	++
disponibilidade_365	
+	++
neighbourhood	45911
+	++
log_price	0
+	++
tempo_atividade	18022
+	++

5.1 Distribuicao de Precos e log(Preco)

Grafico: Distribuicao de Precos

Descricao: Exibicao da distribuicao dos precos (e seu log) apos remocao de outliers.

Eixo X: Preco (ou log(Preco)); Eixo Y: Frequencia.

Interpretacao: A distribuicao original mostra a concentracao dos precos, enquanto a distribuicao em log ajuda a visualizar melhor a cauda dos valores extremos.

Hipoteses de Negocio:

- Segmentos de mercado distintos podem ser identificados, possibilitando estrategias diferenciadas de precificacao.

5.2 Distribuicao de Minimo de Noites

Grafico: Distribuicao de Minimo de Noites

Descricao: Frequencia do numero minimo de noites exigidas.

Interpretacao: Picos indicam politicas comuns de reserva (ex.: 1 ou 3 noites).

- Estadia curta pode indicar alta rotatividade, sugerindo otimizacao operacional.
- Ajustar a politica de minimo de noites pode maximizar a ocupacao em periodos de alta demanda.

5.3 Distribuicao do Numero de Reviews

Grafico: Distribuicao do Numero de Reviews

Descricao: Frequencia do numero de avaliacoes por imovel.

Interpretacao: Imoveis com poucos reviews podem ser novos ou ter baixa ocupacao.

- Poucos reviews podem ser oportunidade para investimento em marketing.
- Alto numero de reviews pode indicar satisfacao dos clientes e maior valor agregado.

5.4 Distribuicao da Disponibilidade Anual

Grafico: Distribuicao da Disponibilidade Anual

Descricao: Exibe quantos dias os imoveis estao disponiveis ao longo do ano.

Interpretacao: Valores elevados indicam alta disponibilidade; valores baixos, alta demanda.

- Alta disponibilidade pode sugerir baixa demanda e necessidade de estrategias promocionais.
- Baixa disponibilidade pode evidenciar alta procura, possibilitando precificacao premium.

6. MatrIZ de Correlacao

Grafico: MatrIZ de Correlacao

Descricao: Correlacao entre variaveis numericas (Preco, Minimo de Noites, Numero de Reviews e Disponibilidade).

Interpretacao: Valores proximos de 1 ou -1 indicam forte correlacao; proximos de 0, baixa correlacao.

- Variaveis fortemente correlacionadas podem orientar segmentacao de mercado e precificacao.
- Correlacoes fracas sugerem necessidade de novas variaveis para melhorar os modelos.

7. Distribuicao Espacial dos PrecOS

Grafico: Distribuicao Espacial dos PrecOS

Descricao: Mapa de NYC com imoveis plotados e coloridos conforme o preco.

Interpretacao: Areas com cores intensas indicam precos elevados.

- Regioes com precos altos podem representar mercados premium.
- Regioes com precos baixos podem sinalizar oportunidades de investimento.

8. Palavras mais Comuns em Anuncios

Analise de Texto: Palavras mais Comuns em Anuncios

Descricao: Utilizando TF-IDF com n-grams (1,2), foram identificados termos predominantes nos titulos dos anuncios, divididos por faixas de preco.

Interpretacao: Termos presentes em anuncios de alto preco podem evidenciar atributos valorizados, enquanto os de baixo preco refletem características mais genericas.

Alto preco: Termos comuns em anuncios de alto preco: 1BR, apartment, bedroom.

Baixo preco: Termos comuns em anuncios de baixo preco: brooklyn, beautiful, apt.

9. Insights e Hipóteses de Negócio

- A analise geoespacial sugere que bairros centrais (ex.: Manhattan) apresentam precos elevados, enquanto areas emergentes podem oferecer melhor custo-beneficio.
- O tratamento de outliers permitiu identificar padroes reais, removendo distorcaoes causadas por valores extremos.
- Os modelos preditivos apresentaram desempenho similar, o que sugere que a integracao de diferentes abordagens (ensemble) pode aumentar a robustez das previsoes.
- A analise de termos em anuncios destaca atributos valorizados em imoveis de alto preco, enquanto termos genericos predominaram em imoveis de baixo preco.
- Uma revisao detalhada dos residuos pode apontar melhorias, como a incorporação de novas variaveis ou transformações adicionais.

10. Justificativa do Pipeline e Validacao do Modelo

O pipeline integra variaveis numericas, categoricas e textuais. As variaveis numericas (incluindo 'tempo_atividade') sao padronizadas com StandardScaler; as categoricas sao transformadas com TargetEncoder; e a variavel textual e processada com TF-IDF aprimorado com n-grams.

A validação utiliza StratifiedKFold e metricas como MAPE, R2 e RMSE, permitindo uma avaliação robusta e comparação detalhada dos modelos.

11. Respostas as Perguntas do Desafio

- a. Investimento em Apartamento para Aluguel:
- Apesar dos precos elevados em areas centrais, regioes emergentes podem oferecer bom custo-beneficio.
- b. Influencia do Numero Minimo de Noites e Disponibilidade:
- Um minimo de noites baixo tende a aumentar a frequencia de reservas, enquanto alta disponibilidade pode indicar estrategias diferenciadas.
- c. Padrao no Texto dos Anuncios:
- Termos como 'luxury' e 'designer' sao recorrentes em anuncios de alto preco, enquanto termos genericos aparecem em anuncios de menor valor.

12. Explicacao da Previsao do Preco

A previsao do preco foi realizada utilizando um pipeline que integra pre-processamento de variaveis numericas, categoricas e textuais. Modelos preditivos foram otimizados com RandomizedSearchCV e, posteriormente, combinados em um ensemble para melhorar a robustez das previsoes.

Os modelos foram avaliados com metricas como MAPE, R2 e RMSE.

13. Comparativo das Metricas dos Modelos

++	-+	+	++
	MAPE		RMSE
+===+==================================	=+=======	+=======	+======+
0 LGBMRegressor	0.287573	0.631133	41.2556
++	-+	+	++
1 RandomForestRegressor			
++	-+	-+	++
2 XGBoostRegressor	0.270462	0.672554	38.8703
++	-+	-+	++
3 Ensemble	0.236425	0.741844	34.5135
++	-+	+	++

14. Analise de Residuos

15. Conclusao

A EDA revelou padroes importantes nos precos dos aluguels em NYC, com destaque para a distribuicao original e em log do preco, e a variavel 'tempo_atividade' mostrou ser relevante para a modelagem. A utilizacao de n-grams no TF-IDF aprimorou a analise textual. Os tres modelos preditivos apresentaram desempenhos muito similares, e o ensemble das previsoes demonstrou potencial para aumentar a robustez das estimativas. A analise de residuos sugere que, embora os erros estejam razoavelmente distribuídos, novas variaveis e transformacoes podem ser exploradas para reduzir a variabilidade não explicada.