

No. 2642A

LC5734, 5734H

SINGLE-CHIP 4-BIT MICROCOMPUTER WITH LCD DRIVERS FOR LOW-VOLTAGE, LOW-OWER USE

General Description

The LC5734/5734H are single-chip 4-bit microcomputers with LCD drivers. The features of the LC5734/5734H include low-voltage operation, low power dissipation, etc. The standby function, which can be used to stop/start the ceramic resonator oscillation, facilitates the low power dissipation of the system. The LC5734/5734H are ideally suited for use in timepiece/timer function-provided infrared remote control transmitter applications.

♦ Hardware Features

- ROM 2048 x 8 bits
- RAM 128 x 4 bits

Instruction execution time

LC5734 17.6µs 2.0V to 6.0V (455kHz ceramic resonator OSC) LC5734H 4.0µs l........ 4.5V to 6.0V (2.0MHz ceramic resonator OSC)

- · Current dissipation 3µA typ at 3V (Standby mode)
- Input/output pins Number of input pins: 8

Number of input/output pins: 8 (8 x 8 key matrix configuration available)

Number of dedicated output pins: 3 (carrier-only output pins: 2, alarm-only output pins: 1)

LCD drivers

LCD display system	Number of drivable segments
Static	27 segments (max)
1/2bias-1/2duty	54 segments (max)
1/2bias-1/3duty	81 segments (max)

- · Possible to use LCD drive output pins as output -only ports (mask option-selectable)
- · Remote control carrier modulation control output On-chip 1/12 divider

Carrier frequency: 38kHz (455kHz ceramic resonator OSC, 1/3duty or 1/2duty selectable)

System clock automatic selection at the standby mode (2 OSC circuits)

Ceramic resonator OSC circuit (455kHz) System clock/clock for remote control carrier Crystal OSC circuit (32,768kHz) Time-base clock and system clock

On-chip melody function 3 octaves

· On-chip segment PLA

The LCD driver output can be used to support any LCD panel layout without software processing.

- On-chip step-down circuit for LCD power supply
- · Shipping style: FLP-64 (or chip)

♦ Sofrware Features

- · Powerful instruction set: 91 instructions
- Table read instruction (possible to set table in all ROM areas)
- · 1-level subroutine nesting
- On-chip time-base 15-bit divider (delivers overflow signal every 32ms or 64ms/100ms/500ms when a 32.768kHz crystal OSC is used)
- HALT function
- Standby function Possible to stop ceramic resonator OSC with the execution of an instruction. (The time-base clock is changed to the system clock automatically.)

Application Development Support System

- Evaluation chip (LC5797) is available for application development and the dedicated equipment is available as the application development tools.
- SDS-410 system
 - Using the SDS-410, program development (editing, assembling) for microcomputer application circuit may be done. (IBM-PC or its equivalent also available)
- EVA-510 + TB-5734 + DCB-1 + Application evaluation board + LC5797 (**Rev. 2.0 or greater)
 By connecting to the SDS-410, application development program correction and debugging may be done.
- TB-5734 + DCB-1 + Application evaluation board + LC5797
 By using the EPROM (2732) with application development program data written in, mounting evaluation may be done.

Note) The application evaluation board is constructed by the user.

LEDs or LCDs may be used for display.

The EVA-510 is a modified version of the EVA-410 whose monitor ROM is replaced by the SCR-5734.

* The IBM-PC is an IBM-made product.

Note) Since the evaluation chip and the LC5734, 5734H differ in RAM capacity, be sure to check the RAM capacity when preparing or debugging programs.

LC5734: 128 x 4 bits LC5797: 256 x 4 bits

Package Dimensions 3026B-Q64BIC (unit: mm) Package Dimensions 3026B-Q64BIC (unit: mm) Package Dimensions 3026B-Q64BIC (unit: mm) 33 0.15 49 SANYO: QIP64B 2.15 SANYO: QIP64B 2.15

When mounting the QIP package on the board, do not dip it in solder.

Note) When developing programs, take care of the DPH value. The usable DPH values are 0 to 7. We will be free from any blame even if you use DPH=8 to FH to develop programs.

Equivalent Circuit Block Diagram

Pad Assignment of LSI Chip

Chip size: 5.48mm x 3.70mm

Chip thickness: 480um

Pad size: 120um x 120um

Note) SEG14 to 27 can be used for output ports. (mask option-selectable)

Pad Name and Coordinates

QII	P64 Pin A	ssignment			QI	P64 Pin A	ssignment		•
	Pad No.	Pin Name	Χ (μm)	Υ (μm)		Pad No.	Pin Name	Χ (μm)	Υ (μm)
26	1	Vpp	-300	2590	57	34	CUP1	45	-2590
27	2	S4	-485	2590	58	35	CUP2	255	-2590
28	3	S3		2590	59	36	S2	460	2590
29	4	M1	−1020	2590	60	37	S1	685	-2590
30	5	M2	-1245	2590	61	38	RES	915	-2590
31	6	M3	-1470	2590	62	39	OSCIN	1215	-2590
32	7	M4	-1700	2590	63	40	OSCOUT	1440	-2590
	8	TEST	-1700	2355	64	41	TEST	1700	-2590
ł	9	TEST	-1700	2130	1	42	P00	1700	-2265
-33	l 10 l	SEG14	-1700	1860	2	43	P01	1700	1975
34	11	SEG15	-1700	1640	3	44	P02	1700	<u></u> 1680
35	12	SEG16	-1700	1420	4	45	P03	1700	-1390
36	13	SEG17	1700	1200	5	46	COM2	1700	-960
37	14	SEG18	−1700	980	6	47	SEG1	1700	-605
38	15	SEG19	<u></u> 1700	760	7	48	SEG2	1700	-385
39	16	SEG20	1700	540	8	49	SEG3	1700	—165
40	17	SEG21	-1700	320	9	50	SEG4	1700	55
41	18	SEG22	-1700	100	10	51	SEG5	1700	275
42	19	SEG23	1700	-120	11	52	SEG6	1700	495
43	20	SEG24	-1700	340	12	53	SEG7	1700	715
44	21	SEG25	-1700	-560	13	54	SEG8	1700	935
45	22	SEG26	-1700	−780	14	55	SEG9	1700	1160
46	23	SEG27	-1700	-1000	15	56	SEG10	1700	1380
47	24	COM1	-1700	1180	16	57	SEG11	1700	1600
48	25	P13	-1700	—1405	17	58	SEG12	1700	2590
49	26	P12	-1700	-2590	18	59	SEG13	1 45 5	2590
50	27	P11	1470	-2590	19	60	COM3	1225	2590
51	28	P10	1260	-2590	20	61	ALM1	1020	2590
52	29	CFOSC1	-104Ò	-2590	21	62	C-PORT2	810	2590
53	30	CFOSC2	-840	-2590	22	63	C-PORT1	615	2590
54	31	TEST	630	-2590	23	64	Vss2	330	2590
55	32	Т3	-405	-2590	24	65	Vss1	110	2590
56	33	32Hz	—180	-2590	25	66	BAK	—105	2590

[•] The values (X, Y) indicate the coordinates of each pad center with the center of the chip as the origin.

Sample Application Circuit

Notes for developing an LC5730 series microcomputer-used system

The low current dissipation is a distinctive feature of the LC5730 series microcomputers. However, it is not easy to determine the total current to be dissipated in an LC5730 series microcomputer-used system by actual measurement when you develop a software, because much current flows in the peripherals of the evaluation tools.

For a system which requires low current dissipation, check the current dissipation using an evaluation sample before mass-producing the system.

· Pin Description

Pad No.	Pin Name	Input/ Output	Circuit Configuration	Function
3 9 4 0	OSCOUT	Input	OSCIN OSCOUT OSCOUT OSCOUT OSCOUT OSCOUT OSCOUT OSCOUT OSCOUT OSCOUT OSCOUT	1) Crystal OSC mode A crystal is connected across OSCIN and OSCOUT for oscillation. 2) RC OSC mode R (external resistance) is connected across OSCIN and OSCOUT and C
			Mask BAK option 2	(external capacitance) is connected across OSCIN and VDD for oscillation.
37 36 3 2	S1 S2 S3 S4	Input	Mask option	Input-only port LSI system is reset by applying VDD to S1 to S4 simultaneously.
4 5 6 7	M1 M2 M3 M4	Input	Mask	Input-only port.
38	RES	Input		Input pin for resetting LSI system.
66	BAK			(-) power supply pin for logic unit inside the LSI.
61	ALM1	Output	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Output-only pin Used to deliver *4kHz, 2kHz, 1kHz modulation signal with the execution of an instruction. Also used to deliver non-modulation signal. Used to deliver melody signal of 3 octaves with the execution of an instruction.
63 62	C-PORT1 C-PORT2	Output	~	Output-only pins Delivers carrier for remote control transmission. Possible to select 38kHz or 57kHz (carrier frequency) by mask option.
1	V _{DD}			(+) power supply pin
64 65	Vss2 Vss1			For EXT-V version, (-) power supply is applied to VSS2. Also used as LCD drive power supply. External parts are connected as shown below. Connection of external parts VDD

^{*4}kHz, 2kHz, 1kHz: For 32.768kHz crystal OSC application, Proportional to OSC frequency.

Pad No.	Pin Name	Input/ Output	Circuit Configuration	Function
34	CUP1			Pins for connecting voltage step-down
35	CUP2			capacitor
24	COM1	Output		Output pins for LCD panel common plate
46	COM2		VDD +	The following pin is used in each case.
60	COM3	1	〕 ⊢	Static - 1/2duty 1/3duty
			° † '_	COM1
		1	Vss1	COM2
				COM3
				Alternating 32Hz 32Hz 43Hz
			→ Vss2	(Alternating frequency is for 32,768kHz crystal OSC application.)
10			── Voo	Output pins for LCD panel segments
\$			<u>~</u> }⊢	Mask option permits SEG14 to SEG27
23	Segment		<u> </u>	(pad No. 10 to 23) to be used as output
47	driver	Output	<u>E</u>	ports.
5	dirite:	Į.	i	
59			Vss2	
33	32Hz	Test		Test pins (not used by user)
32	Т3			
41	l y			
8,	TEST			
9	J			
42	P-00	Input/		4-bit input/output port
43	P-01	Output		Mask option can be used to select C-MOS
44	P-02		T Mask	output or P-ch open drain output.
45	P-03		option	
			Mask	
			option	
28	P-10	Input/	- 	4-bit input/output port
27	P-11	Output		Mask option can be used to select C-MOS
26 25	P-12 P-13		Mask	output or P-ch open drain output.
20	-13		option	
			₩ ₩ Mask	
			option	
			'	
29	CF-OSC1	Input	│	Input pin used to provide OSC and also
			 	used for internal clock generation.
			CF-OSC1 一片	When no ceramic resonator is used, this
				input pin is set at "L" level by mask option.
30	CF-OSC2	Output	Mask J H	Output pin used to provide OSC.
30	01-0002	Carpar		Satpat pin assa to provide ooo,
			Control signal BAK	
			Control signar	
			CF-0SC2	

Note) is connected to VSS2.

● EXT-V-Version 1-1 (Xtal OSC + CF OSC)

Absolute Maximum Rating	js/Ta=25±2	°C, V _{DD} =0V		Unit
Maximum Supply	V _S S1		-7.0 to +0.3	V
Voltage	VSS2		-7.0 to +0.3	V
Maximum Input	V _{IN1}	OSCIN, 32Hz, CF-OSC1	V _{SS2} -0.3 to 0.3	V
Voltage	V _{IN2}	S1-4, M1-4, TEST, RES, P00-03, P10-13	V _{SS2} 0.3 to 0.3	V
Maximum Output	VOUT1	32Hz, CUP2, OSCOUT, CF-OSC2	V _{SS2} -0.3 to 0.3	V
Voltage	VOUT2	SEGOUT, COM1, COM2, COM3, CUP1, ALM1, C-PORT1, C-PORT2, P00-03, P10-13	V _{SS2} 0.3 to 0.3	V
Operating Temperature	Topr		-30 to +80	°c
Storage Temperature	Tsta		-40 to +125	°C

Allowable Operating Conditions/Ta=-30 to +80°C, VDD=0V min Unit typ max Supply Voltage VSS1 -6.0-1.30٧ -6.0 -2.0 ٧ VSS2 ٧ Input "H"-Level Voltage S1-4, M1-4, P00-03, P10-13 V_{IH1} 0.3 X VSS2 V Input "L"-Level Voltage V_{IL1} S1-4, M1-4, P00-03, P10-13 0,7 X VSS2 VSS2 0.25 X V Input "H"-Level Voltage RES V_{IH2} VSS2 Input "L"-Level Voltage 0.75 X ٧ RES V_{SS2} V₁L2 VSS2 Operating Frequency Crystal OSC1 32 32,768 33 kHz fopg1 65.536 70 Crystal OSC2 60 kHz fopg2 CF OSC (Fig. 13),(Cycle time 16µs 380 455 500 kHz fCF at CF=500kHz)

lectrical Characteristic	s/ 1a30 to	.00 C, VDD-0V	min	typ	max	Unit
Input Resistance	RIN1A	VSS2=-2.9V, VIL=VSS2+0.4V, "L"-level hold tr., *1, Fig. 4	150	300	1000	kΩ
•	RIN1B	VSS2=2.9V, "L"-level puil-in Tr., *1, Fig. 4	60	100	150	kΩ
	R _{IN2A}	V _{SS2} =-2.9V, V _I H=-0.4V, "H"-level hold tr., *4, Fig. 4	200	600	2000	kΩ
	R _{IN3}	V _{SS2} =-2.9V, TEST, RES	10		300	kΩ
Output "H"-Level Voltage	V _{OH1}	V _{SS2} =-2.9V, I _{OH} =-0.4μA, *2	-0.2			٧
Output "L"-Level Voltage	V _{OL1}	V _{SS2} =-2.9V, I _{OL} =0.4μA, *2			V _{SS2} +0.2	٧
Output "H"-Level Voltage	V _{OH2}	V _{SS2} =-2.9V, I _{OH} =4μA, COM1, COM2, COM3	-0.2			٧
Output "M"-Level Voltage	V _{OM}	V _{SS2} =-2.9V, I _{OH} =-4µA, I _{OL} =4µA, COM1, COM2, COM3	V _{SS2/2} -0.2		V _{SS2/2} +0.2	V
Output "L"-Level Voltage	V _{OL2}	V _{SS2} =-2.9V, I _{OL} =4µA COM1, COM2, COM3			V _{SS2} +0.2	V

Continued from preceding page.

'	1 2 to 1					
			min	typ	max	Unit
Output "H"-Level	Vонз	V _{SS2} =-2.4V, I _{OH} =-250µA, ALM1	-0.65	•		٧
Voltage						_
Output "L"-Level	V _{OL3}	VSS2=-2.4V, IOL=250µA, ALM1			Vss2	V
Voltage					+0.65	
Output Current (H) 1	IOH1	V _{SS2} =-3.0V, V _{OH} =-1.5V, C-PORT1		-12	6	mΑ
Output Current (L) 1	I _{OL1}	V _{SS2} =-3.0V, V _{OL} =V _{SS2} +0.9V, C-PORT1	3	7		mA
Output Current (H) 2	I _{OH2}	V _{SS2} =-3.0V, V _{OH} =-1.5V, C-PORT2	-	-12	6	mΑ
Output Current (L) 2	l _{OL2}	V _{SS2} =-3.0V, V _{OL} =V _{SS2} +0.9V,	4	8		mΑ
•		C-PORT2	_			
Output Current (H) 3	ГОНЗ	V _{SS2} =-3.0V, V _{OH} =-0.45V, *3			45	μA
Output Current (L) 3	IOL3	VSS2=-3.0V, VOL=VSS2+0.45, *3	45		1	μA
Output Current (H) 4	IOH4	V _{SS2} =-3.0V, V _{OH} =-0.45V, *4			-450	μA
Output Current (L) 4	IOL4	V _{SS2} =-3.0V, V _{OL} =V _{SS2} +0.45V, *4	450	-		μА
Output Voltage (halver)	V _{SS1}	V _{SS2} =-2.9V, C1=C2=0.1µF,		-1.45	-1.35	٧
		fopg=32.768kHz, Fig. 5				
Supply Current	I _{DD1}	VSS2=-3.0V, 32.768kHz Xtal OSC,		3.0	15	μA
		Ta≦ 50°C, HALT mode, C1=C2=0.1μA,				
,		Cg=20pF, Cl≦25kΩ, CF stop, Fig. 5				
Supply Current	I _{DD2}	VSS2=-3.0V, 65.536kHz Xtal OSC,		8.0	30	μA
		Ta≦50°C, HALT mode, C1=C2=0.1µF		1		
		(Cd=20pF), Cg=10pF, Cl≦25kΩ,				
		CF stop, Fig. 5				
Supply Current	I _{DD3}	V _{SS2} =-3.0V, 455kHz CF OSC,		80	300	μА
		HALT mode, C1=C2=0.1μF,				
		C _{CFI} =C _{CFO} =150pF, Rf=1MΩ,				_
		Xtal stop, Ta≦50°C, Fig. 10				
OSC Start Voltage 1	VStt1	Cg=20pF, Ta=25°C	-2.3			V
OSC Hold Voltage 1	VHOLD1	32.768kHz Xtal OSC (CI ≦ 25kΩ), Fig. 3			-2.0	V
OSC Start Time 1	tstt1	V _{SS2} =-2.3V, Cd=Cg=20pF, Ta=25°C			10	S
		32.768kHz Xtal OSC (CI ≦ 25kΩ), Fig. 3			'	
OSC Start Voltage 2	Vstt2	Cg=10pF,	2.6	ļ .		٧
OSC Hold Voltage 2	VHOLD2	65.536kHz Xtal OSC (CI≦25kΩ), Fig. 3			-2.4	V
OSC Start Time 2	tstt2	V _{SS2} =-2.6V, C _g =10pF, (C _d =20pF),			10	s
		Ta=25°C 65.536kHz Xtal OSC (CI≦25kΩ), Fig. 3				}
OSC Start Voltage 3	Vstt3	CCFI=CCFO=150pF, 455kHz CF OSC,	-2.0			V
OSC Hold Voltage 3	VHOLDS	Ta=25 $^{\circ}$ C, Rf=1M Ω , Fig. 11			-2.0	V
OSC Start Time 3	tstt3	CCFI=CCFO=150pF, VSS2=-2.0V,			30	ms-
		Ta=25°C 455kHz CF OSC, Rf=1MΩ, Fig. 11				

• EXT-V Version 1-2 (RC OSC + CF OSC)

Absolute Maxin	num Ratings/	Γa ≃2 5±2°C	, V _{DD} =0V
-----------------------	--------------	--------------------	-----------------------

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Unit
VSS1		-7.0 to +0.3	٧
V _{SS2}		-7.0 to +0.3	V
VIN1	OSCIN, 32Hz, CF-OSC1	V _{SS2} -0.3 to 0.3	٧
V _{IN2}	S1-4, M1-4, TEST, RES, P00-03, P10-13	V _{SS2} -0.3 to 0.3	V
V _{OUT1}	32Hz, CUP2, OSCOUT, CF-OSC2	V _{SS2} 0.3 to 0.3	V
V _{OUT2}	SEGOUT, COM1, COM2, COM3, CUP1, ALM1,	V _{SS2} -0.3 to 0.3	V
	C-PORT1, C-PORT2, P00-03, P10-13		
Topr		-30 to +80	°C
Tstg		-40 to +125	°C
	VSS1 VSS2 VIN1 VIN2 VOUT1 VOUT2	VSS2 VIN1 OSCIN, 32Hz, CF-OSC1 VIN2 S1-4, M1-4, TEST, RES, P00-03, P10-13 VOUT1 32Hz, CUP2, OSCOUT, CF-OSC2 VOUT2 SEGOUT, COM1, COM2, COM3, CUP1, ALM1, C-PORT1, C-PORT2, P00-03, P10-13 Topr	VSS1 -7.0 to +0.3 VSS2 -7.0 to +0.3 VIN1 OSCIN, 32Hz, CF-OSC1 VSS2-0.3 to 0.3 VIN2 S1-4, M1-4, TEST, RES, P00-03, P10-13 VSS2-0.3 to 0.3 VOUT1 32Hz, CUP2, OSCOUT, CF-OSC2 VSS2-0.3 to 0.3 VOUT2 SEGOUT, COM1, COM2, COM3, CUP1, ALM1, C-PORT1, C-PORT2, P00-03, P10-13 VSS2-0.3 to 0.3 Topr -30 to +80

Allowable Operating Conditions/Ta=-30 to +70°C, VDD=0V

on the control of the						
			min	typ	max	Unit
Supply Voltage	V _{SS1}		-6.0		-1.3	٧
	V,SS2		-6.0		-2.0	٧
Input "H"-Level Voltage	VIH1	S1-4, M1-4, P00-03, P10-13	0.3 X		0	٧
			V _{SS2}			
Input "L"-Level Voltage	VIL1	S1-4, M1-4, P00-03, P10-13	V _{SS2}		0.7 X	V
					V _{SS2}	
Input "H"-Level Voltage	V _{IH2}	RES	0.25 X		0	٧
			V _{SS2}			
Input "L"-Level Voltage	VIL2	RES	V _{SS2}		0.75 X	٧
					VSS2	
Operating Frequency	fopg1	RC OSC (Fig. 12)		32.768		kHz
	fCF	CF OSC (Fig. 13)	380	455	500	kHz

lectrical Characteristics/T			min	typ	max	Unit
Input Resistance	R _{IN1A}	VSS2=2.9V, VIL=VSS2+0.4V, "L"-level hold tr., *1, Fig. 4	150	300	1000	kΩ
	R _{IN1B}	V _{SS2} =-2.9V,	60	100	150	kΩ
	R _{IN2A}	"L"-level pull-in Tr., *1, Fig. 4 VSS2=-2.9V, VIH=-0.4V,	200	300	2000	kΩ
	R _{IN3}	"H"-level hold tr., *4, Fig. 6 VSS2=-2.9V, TEST, RES	10		300	kΩ
Output "H"-Level Voltage	VOH1	VSS2=-2.9V, I _{OH} =-0.4μA, *2	-0.2			V
Output "L"-Level Voltage	VOL1	VSS2=-2.9V, I _{OL} =0.4μA, *2			V _{SS2} +0.2	V
Output "H"-Level Voltage	V _{OH2}	V _{SS2} =-2.9V, I _{OH} =-4μA, COM1, COM2, COM3	-0.2			٧
Output "M"-Level Voltage	Voм	V _{SS2} =-2.9V, I _{OH} =-4μA, I _{OL} =4μA, COM1, COM2, COM3	V _{SS2/2} -0.2		V _{SS2/2} +0.2	V
Output "L"-Level Voltage	V _{OL2}	VSS2=-2.9V, I _{OL} =4µA COM1, COM2, COM3			V _{SS2} +0.2	٧
Output "H"-Level Voltage	VOH3	VSS2=-2.4V, I _{OH} =-250µA, ALM1	-0.65			٧
Output "L"-Level Voltage	V _{OL3}	VSS2=-2.4V, I _{OL} =250µA, ALM1			V _{SS2} +0.65	٧
Output Current (H) 1	lOH1	V _{SS2} =-3.0V, V _{OH} =-1.5V, C-PORT1		-12	-6	mΑ
Output Current (L) 1	OL1	V _{SS2} =-3.0V, V _{OL} =V _{SS2} +0.9V, C-PORT1	4	8		mA
Output Current (H) 2	I _{OH2}	V _{SS2} =-3.0V, V _{OH} =-1.5V, C-PORT2		-12	6	mΑ
Output Current (L) 2	IOL2	V _{SS2} =-3.0V, V _{OL} =V _{SS2} +0.9V, C-PORT2	4	8		mA
Output Current (H) 3	I _{OH3}	V _{SS2} =-3.0V, V _{OH} =-0.45V, *3	- '		-45	μA
Output Current (L) 3	IOL3	V _{SS2} =-3.0V, V _{OL} =V _{SS2} +0.45, *3	45			μA
Output Current (H) 4	I _{OH4}	V _{SS2} =-3.0V, V _{OH} =-0.45V, *4			-450	μA
Output Current (L) 4 Output Voltage (halver)	VSS1	$V_{SS2}=-3.0V$, $V_{OL}=V_{SS2}+0.45V$, *4 $V_{SS2}=-2.9V$, $R_{ext}=470k\Omega$, $C_{ext}=30pF$, $C_{1}=C_{2}=0.1\mu F$, Fig. 9	450		-1,35	μA
Supply Current 1	IDD1	VSS2= $-3.0V$, Rext= $470k\Omega$, Cext= $30pF$, C1=C2= $0.1\mu F$, CF stop, Ta $\leq 50^{\circ}$ C, Fig. 9		40	150	μA
Supply Current 2	I _{DD2}	V _{SS2} =-3.0V, 455kHz CF OSC, C1=C2=0.1μF, CR OSC stop, Ta≤50°C, Fig. 10		80	300	μA
OSC Start Voltage	Vstt	455kHz CF OSC,	-2.0		1	V
OSC Stop Voltage	VHOLD	$C_{CFI}=C_{CFO}=150$ pF, wait time 1 sec, Rf=1M Ω , Fig. 11			-2.0	V
OSC Start Time	tstt	455kHz CF OSC, V _{SS2} =-2.0V C _{CFI} =C _{CFO} =150pF Rf=1MΩ, Fig. 11			30	ms

^{*1} S1, S2, S3, S4, M1, M2, M3, M4

^{*2} LCD driver output pins of SEGOUT1 to 13 and SEGOUT14 to 27

^{*3} Output pins (used as output port) of SEGOUT14 to 27

^{*4} P-00, P-01, P-02, P-03, P-10, P-11, P-12, P-13

• LC5734H Specifications 2-1 (Xtal OSC + CF OSC)

Absolute Maximum Rating	gs/Ta=25±2	°C, V _{DD} =0V	İ	Unit
Maximum Supply	V _{SS1}		-7.0 to +0.3	V
Voltage	V _{SS2}		-7.0 to +0.3	V
Maximum Input	V _{IN1}	OSCIN, 32Hz, CF-OSC1	V _{SS2} -0.3 to 0.3	V
Voltage	V _{IN2}	S1-4, M1-4, TEST, RES, P00-03, P10-13	V _{SS2} -0.3 to 0.3	V
Maximum Output	V _{OUT1}	32Hz, CUP2, OSCOUT, CF-OSC2	V _{SS2} -0.3 to 0.3	V
Voltage	V _{OUT2}	SEGOUT, COM1, COM2, COM3, CUP1, ALM1, C-PORT1, C-PORT2, P00-03, P10-13	V _{SS2} -0.3 to 0.3	V
Operating Temperature	Topr		-30 to +80	°c
Storage Temperature	Tstg		-40 to +125	°c

Illowable Operating Condi	LIOHS/ I d=	-30 to +60 C; VDD=0V	min	typ	max	Unit
Supply Voltage	V _{SS1}		-6.0		-2.2	V
	V _{SS2}		-6.0		-4.5	٧
Input "H"-Level Voltage	VIH1	S1-4, M1-4, P00-03, P10-13	0.3 X V _{SS2}		0	٧
Input "L"-Level Voltage	VIL1	S1-4, M1-4, P00-03, P10-13	V _{SS2}		0.7 X VSS2	V
Input "H"-Level Voltage	V _{IH2}	RES	0,25 X V _{SS2}		0	٧
Input "L"-Level Voltage	V _{IL2}	RES	V _{SS2}		0.75 X VSS2	٧
Operating Frequency	fopg1	Crystal OSC1	32	32.768	33	kHz
	fopg2	Crystal OSC2	60	65.536	70	kHz
,	fCF	CF OSC (Fig. 10), (Cycle time 4µs at CF=2000kHz)	380	•	-2.2 -4.5 0 0.7 X VSS2 0 0.75 X VSS2 33	kHz

rectrical Characteristic	s/ i a= –30 to ·	+80 C, VDD=0V	min	typ	max	Unit
Input Resistance	R _{IN1A}	"L"-level hold tr., *1, Fig. 4 VSS2=-5.0V, "L"-level pull-in Tr., *1, Fig. 4 VSS2=-5.0V, V _I H=-0.4V, "H"-level hold tr., *4, Fig. 6 VSS2=-5.0V, TEST, RES VSS2=-5.0V, I _O H=-0.4μA, *2 VSS2=-5.0V, I _O H=-4μA, COM1, COM2, COM3 VSS2=-5.0V, I _O H=-4μA, I _O L=4μA, COM1, COM2, COM3 VSS2=-5.0V, I _O L=4μA	70	200	600	kΩ
	R _{IN1B}	,	60	100	150	kΩ
	RIN2A		100	400	1000	kΩ
	R _{IN3}	VSS2= -5.0V, TEST, RES	10		300	kΩ
Output "H"-Level Voltage	V _{OH1}	V _{SS2} = -5.0V, I _{OH} =-0.4µA, *2	-0.2	- 11.		V
Output "L"-Level Voltage	V _{OL1}	V _{SS2} =-5.0V, I _{OL} =0.4μA, *2			V _{SS2} +0.2	V
Output "H"-Level Voltage	V _{OH2}		-0.2			٧
Output "M"-Level Voltage	V _{OM}	1	V _{SS2/2} -0.2		· V _{SS2/2} +0.2	٧
Output "L"-Level Voltage	V _{OL2}	V _{SS2} = -5.0V, I _{OL} =4μA COM1, COM2, COM3			V _{SS2} +0.2	٧

Continued from preceding page.

	bağa.	ı				
<u> </u>		V 50V 1 050 4 11114	min	typ	max	Unit
Output "H": Level Voltage	<u>Vонз</u>	V _{SS2} =-5.0V, I _{OH} =-250µA, ALM1	-0.65		14	V
Output"L"-Level Voltage	VOL3	V _{SS2} =-5.0V, I _{OL} =250μA, ALM1			V _{SS2} +0.65	\ \
Output Current (H) 1	IOH1	V _{SS2} =-5.0V, V _{OH} =-2.5V, C-PORT1		-20	-10	mΑ
Output Current (L) 1	lOL1	V _{SS2} =-5.0V, V _{OL} =V _{SS2} +0.9V, C-PORT1	3	7		mA
Output Current (H) 2	I _{OH2}	V _{SS2} =-5.0V, V _{OH} =-2.5V, C-PORT2		-20	-10	mΑ
Output Current (L) 2	lOL2	VSS2=-5.0V, VOL=VSS2+0.9V,C-PORT2	4	8		
Output Current (H) 3	ГОНЗ	V _{SS2} =-5.0V, V _{OH} =-0.75V, *3			-75	μA
Output Current (L) 3	lOL3	VSS2=-5.0V, VOL=VSS2+0.75V, *3	75	·		μA
Output Current (H) 4	IOH4	V _{SS2} =-5.0V, V _{OH} =-0.75V, *4			-750	μA
Output Current (L) 4	I _{OL4}	VSS2=-5.0V, VOL=VSS2+0.75V, *4	750			μΑ
Output Voltage (halver)	V _{SS1}	V _{SS2} =-5.0V, C1=C2=0.1μF,			-2.4	٧
		fopg=32.768kHz, Fig. 5				
Supply Current	1סם	V _{SS2} =5.0V, 32.768kHz, Xtal OSC,		8.0	50	μA
		HALT mode, C1=C2=0.1µF,				
		Cg=20pF, Cl \leq 25k Ω , CF stop,				
		Ta≦50°C, Fig. 5				
Supply Current	I _{DD2}	V _{SS2} =-5.0V, 65.536kHz Xtal OSC,		20	100	ДA
		HALT mode, C1=C2=0.1µA (Cd=20pF),		l		
		Cg=10pF, Cl ≦ 25kΩ, CF stop,				
		Ta≦50°C, Fig. 5		l		
Supply Current	I _{DD3}	V _{SS2} =-5.0V, 455kHz CF OSC,		300	400	μА
		HALT mode, C1=C2=0.1µF,				
		CCF1=CCF0=150pF, Rf=1MΩ,				
		Ta≦50°C, Fig. 1				
Supply Current	¹ DD4	V _{SS2} =-5.0V, 2000kHz CF OSC,		350	500	μA
		HALT mode, C1=C2=0.1µF,				
		CCF1=CCF0=33pF, Xtal stop,				
		Rf=1MΩ, Ta≦50°C, Fig. 10		-		
OSC Start Voltage 1	Vstt1	Cg=20pF, 32.768kHz Xtal OSC,	-2.3			٧
OSC Hold Voltage 1	VHOLD1	(Cl≦25kΩ), Fig. 3			-2.0	V
OSC Start Time 1	tstt1	V _{SS2} =-2.3V, C _g =20pF,			10	S
		32.768kHz Xtal OSC, (CI ≦ 25kΩ), Fig. 3				
OSC Start Voltage 2	Vstt2	Cg=10pF, 65.536kHz Xtal OSC	-2.6			V
OSC Hold Voltage 2	VHOLD2	(Cd=20pF), (Cl≦25kΩ), Fig. 3			-2.4	٧
OSC Start Time 2	tstt2	V _{SS2} =-2.6V, C _g =10pF, (C _d =20pF)			10	S
·		65.536kHz Xtal OSC, (Cl \leq 25k Ω), Fig. 3				
OSC Start Voltage 3	Vstt3	Rf=1M Ω , wait time 1 sec,	-2.0			V
OSC Hold Voltage 3	VHOLD3	C _{CFI} =C _{CFO} =150 _p F, 455kHz CF OSC,			-2.0	٧
_		Fig. 11		,		
OSC Start Time 3	tstt3	VSS2=-4.5V, CCFI=CCFO=150pF,			30	ms
		Rf=1MΩ, 455kHz CF OSC, Fig. 11				-

• LC5734H Specifications 2-2 (RC OSC + CF OSC)

Absolute Maximum Rating	ıs/Ta=25±2	°C, V _{DD} =0V		Unit
Maximum Supply	VSS1		-7.0 to +0.3	V
Voltage	V _{SS2}		-7.0 to +0.3	V
Maximum Input	V _{IN1}	OSCIN, 32Hz, CF-OSC1	VSS2-0.3 to 0.3	V
Voltage	V _{IN2}	S1-4, M1-4, TEST, RES, P00-03, P10-13	V _{SS2} -0.3 to 0.3	V
Maximum Output	VOUT1	32Hz, CUP2, OSCOUT, CF-OSC2	VSS2-0.3 to 0.3	V
Voltage	VOUT2	SEGOUT, COM1, COM2, COM3, CUP1, ALM1, C-PORT1, C-PORT2, P00-03, P10-13	V _{SS2} -0.3 to 0.3	V
Operating Temperature	Topr		-30 to +80	°C
Storage Temperature	Tstg		-40 to +125	°C

Illowable Operating Condi	tions/Ta=	-30 to +80 C, VDD=0V	min	typ	max	Unit
Supply Voltage	V _{SS1}		-6.0		-2.2	V
	V _{SS2}		-6.0	<u> </u>	-4.5	V
Input "H"-Level Voltage	VIH1	S1-4, M1-4, P00-03, P10-13	0.3 X V _{SS2}		0	V
Input "L"-Level Voltage	VIL1	S1-4, M1-4, P00-03, P10-13	V _{SS2}		0.7 X V _{SS2}	V
Input "H"-Level Voltage	V _{IH2}	RES	0.25 X V _{SS2}		0	V
Input "L"-Level Voltage	VIL2	RES	V _{SS2}		0.75 X V _{SS2}	V
Operating Frequency	fopg1	RC OSC (Fig. 12)		32.768		kHz
	fCF	CF OSC (Fig. 13) (Cycle time 4µs at fCF=2000kHz)	380		2000	kHz

Electrical Characteristics/T	8=-30 to 1	-80 C, VDD=0V	min	typ	max	
Input Resistance	RIN1A	VSS2=-5.0V, VIL=VSS2+0.4V, "L"-level hold tr., *1, Fig. 4	150	300	1000	kΩ
	RIN1B	V _{SS2} =-5.0V,	60	100	150	kΩ
		"L"-level pull-in Tr., *1, Fig. 4				
	RIN2A	V _{SS2} =-5.0V, V _{IH} =-0.4V,	200	300	2000	kΩ
	1 11127	"H"-level hold tr., *4, Fig. 6				
	R _{IN3}	V _{SS2} =-5.0V, TEST, RES	10		300	kΩ
Output "H"-Level	VOH1	V _{SS2} =-5.0V, I _{OH} =-0.4µA, *2	-0.2			V
Voltage	10111	1002 110 17 011 11 72 7			1	
Output "L"-Level	V _{OL1}	V _{SS2} =-5.0V, I _{OL} =0.4μA, *2			V _{SS2}	V
Voltage	"0"	302 323,02 323,			+0.2	
Output "H"-Level	V _{OH2}	V _{SS2} =-5.0V, I _{OH} =-4µA,	-0.2			l v
Voltage	0112	COM1, COM2, COM3				
Output "M"-Level	Voм	V _{SS2} =-5.0V, I _{OH} =-4μA,	V _{SS2/2}		VSS2/2	l v
Voltage	"	I _{OL} =4µA, COM1, COM2, COM3	-0.2		+0.2	
Output "L"-Level	V _{OL2}	VSS2=-5.0V, I _{OL} =4µA	-		VSS2	l v
Voltage	022	COM1, COM2, COM3			+0.2	
Output "H"-Level	V _{OH3}	VSS2=-5.0V, I _{OH} =-250µA, ALM1	-0.65		1	V
Voltage	1003	VS32 0.0 V, IOH 2003/1, NEMI	0.00			•
Output "L"-Level	V _{OL3}	VSS2=-5.0V, IOL=250µA, ALM1			V _{SS2}	V
Voltage	'023	1932 6.61, 102 200, 1, 112			+0.65	
Output Current (H) 1	I _{OH1}	V _{SS2} =-5.0V, V _{OH} =-2.5V, C-PORT1	-	-20	-10	mA
Output Current (L) 1	I _{OL1}	VSS2=-5.0V, VOL=VSS2-0.9V,	3	7		mΑ
	"0"	C-PORT1		•		""
Output Current (H) 2	IOH2	V _{SS2} =-5.0V, V _{OH} =-2.5V, C-PORT2		-20	-10	mA
Output Current (L) 2	IOL2	V _{SS2} =-5.0V, V _{OL} =V _{SS2} +0.9V,	4	8		mA
•		C-PORT2			1	
Output Current (H) 3	ЮНЗ	V _{SS2} =-5.0V, V _{OH} =-0.75V, *3			–75	μA
Output Current (L) 3	I _{OL3}	V _{SS2} =-5.0V, V _{OL} =V _{SS2} +0.75V, *3	75			μA
Output Current (H) 4	IOH4	V _{SS2} =-5.0V, V _{OH} =-0.75V, *4			–750 .	μА
Output Current (L) 4	I _{OL4}	VSS2=-5.0V, VOL=VSS2+0.75V, *4	750			μA
Output Voltage (halver)	V _{SS1}	VSS2= $-5.0V$, Rest=470k Ω , Cest=30pF,			-2.4	V
		C1=C2=0.1µF, Fig. 9				
Supply Current	IDD1	VSS2=-5.0V, fRC=32kHz,		200	400	μА
		C1=C2=0.1µF, HALT mode, Ta≦50°C,				'
		CF stop, Fig. 9				
Supply Current	I _{DD2}	V _{SS2} =-5.0V, 455kHz CF OSC,		300	·400	μA
•		C1=C2=0.1µF, RC OSC stop,				
		CCFI=CCFO=150pF, Rf=1MΩ,				
		HALT mode, Ta≦50°C, Fig 10				
Supply Current	I _{DD3}	V _{SS2} =-5.0V, 2MHz CF OSC,		350	500	μА
		RC OSC stop, CCFI=CCFO=33pF,			+	
		Rf=1MΩ, HALT mode, Ta≦50°C, Fig. 10				
OSC Start Voltage	Vstt	455kHz CF, wait time 1sec,	-2.0			V
OSC Stop Voltage	VHOLD1	CCFI=CCFO=150pF, Rf=1MΩ, Fig. 11			-2.0	٧
OSC Start Time	tstt	V _{SS2} =-4.5V, 455kHz CF OSC,			30	ms
		C _{CFI} =C _{CFO} =150pF, Rf=1MΩ, Fig. 11			i	

^{*1} S1, S2, S3, S4, M1, M2, M3, M4

^{*2} LCD driver output pins of SEGOUT1 to 13 and SEGOUT14 to 27

^{*3} Output pins (used as output port) of SEGOUT14 to 27

^{*4} P-00, P-01, P-02, P-10, P-11, P-12, P-13

Fig. 1 Input configuration of \$1-4, M1-4

Fig. 4 Input configuration of \$1-4, M1-4

Fig. 2 Current dissipation, output voltage test circuit.

Fig. 5 Current dissipation, output voltage test circuit.

Fig. 3 Oscillation start voltage, oscillation start time, frequency stability, oscillation hold voltage test circuit.

Fig. 6 Input configuration of P00-03, P10-13

Unit (capacitance: F)

Fig. 7 Crystal oscillator

Fig. 11 Oscillation start voltage, oscillation start time, frequency stability, oscillation hold voltage test circuit.

Fig. 8 Current dissipation, output voltage test circuit.

Fig. 12 RC oscillation

Fig. 9 Current dissipation, output voltage test circuit.

Fig. 13 CF oscillation

Fig. 10 Current dissipation, output voltage test circuit.

Unit (resistance: Ω, capacitance: F)

LC5734 Instruction Map Instruction set: 91 instructions 1-cycle instruction ······· 1-byte instruction 2-cycle instruction ······ 2-byte instruction LOWER Ε 6 D F UPPER HALT TAAT TWRT TMEL 0 CSP CST RC5 S05 JMP Х ASR0 ASR1 ASL0 ASL1 SDPL SDPH EDPL EDPH 1 JMP* PAGE MTR RTS MPCL MPCM MPCH 2 MVI X 3 LDI X 4 BAZ X BAB0 X 5 BANZ X BAB1 X 6 BCNH X BAB2 X 7 BCH X BAB3 X ADC SBC ADD SUB ADN AND EOR 0R ADC* SBC* ADD* SUB* ADN* AND* EOR* 0R* 8 DDPL SUBI 9 ADÇI SBCI ADDI ADNI ANDI EORI ORI INC DEC IDPL IDPH DDPH ISP DSP JSR IPM LDA LSP LHLT L500 IPS Α Х STA SSP В MDPL X С MDPH X D SIC Ε MSP X SAS X F RCF SOF NOP NOP SPDR X RBAK SBAK CSEC OUT LDPL LDPH NOP

Instruction Set of LC5734

Summary of LC5734 Instructions

Symbol	Meaning				
AC	: Accumulator	M(DP)	: Memory addressed by DP	(),[]	: Contents
ACn	: Accumulator bit	[P()]	: Contents of port ()	←	: Transfer direction, result
DP	: Data pointer	PC	: Program counter	٨	: AND
EDP	: Save data pointer	STACK	: Stack register	V	: OR
SP	: Strobe pointer	[M(DP)]	: Contents of memory	₩	: Exclusive OR
CF	: Carry flag		addressed by DP		
TREG	: Temporary register	STSn	: Status register		
SCFn	: Start condition flag n	CSTF	: Chrono start flag		
HEFn	: Halt release enable flag n	PDF	: Pull-down flag		
L(SP)	: LCD latch specified by SP	PAGE	: Page latch		
М	: Memory	PGX	: Current Page		

		Mnemonic		Ir	ns tr	ucti	ion	co	de		Bytes	Cycles	Function	Description	Status flag
		MINERALITY	D7	D6	D5	D4	Dз	D2	Dı	Do	6	⋩	1 Sheplan		to be affecte
	RCF	Reset CF	1	1	1	1	0	0	0	0	1	1	CF - 0	The CF is reset.	CF
	SCF	Set CF	1	1	1	1	0	0	0	1	1	1	CF - 1	The CF is set.	CF
	ASR0	Shift Right AC & MSB=0	0	0	0	1	1	0	0	0	1	1	ACn - ACn+1 AC ₃ - 0	The AC contents are shifted right and 0 is loaded to the MSB.	
	ASR1	Shift Right AC & MSB=1	0	0	0	1	1	0	0	1	1	1	ACn - ACn+1 AC3 - 1	The AC contents are shifted right and 1 is loaded to the MSB.	
	ASL0	Shift Left AC & LSB=0	0	0	0	1	1	0	1	0	1	1	ACn - ACn-1 AC0 + 0	The AC contents are shifted left and 0 is loaded to the LSB.	
	ASL1	Shift Left AC & LSB=1	0	0	0	1	1	0	1	1	1	1	ACn - ACn-1 AC0 - 1	The AC contents are shifted left and 1 is loaded to the LSB.	
	INC	Increment M(DP)	1	0	0	1	1	0	0	0	1	1	M(DP),AC M(DP)+1	The memory M(DP) contents are incremented (+1) and are loaded to the M(DP) and AC.	
	DEC	Decrement M(DP)	1	0	0	1	1	0	0	1	1	1	M(DP),AC + M(DP)-1	The memory M(DP) contents are decremented (—1) and are loaded to the M(DP) and AC.	
Household to the second	TAAT	Read table data from program ROM	teed table data rom program ROM 0 0 0 0 0 0 1 1 2 AC, TREG + ROM (PGX, AC, M(DP)) addressed by the PC whose low-order 8 b replaced with the contents of the AC and M(DP) are loaded to the AC and TREG.			The contents of the ROM on current page addressed by the PC whose low-order 8 bits are replaced with the contents of the AC and M(DP) are loaded to the AC and TREG.									
	MTR	Store TREG to M(DP)	0	0	0	1	0	0	1	0	1	1	M(DP) - TREG	The TREG contents are stored to the M(DP).	
	ADC	Add M(DP) to AC with CF	1	0	0	0	0	0	0	0	1	1	AC + (AC)+[M(DP)] +(CF)	The AC, memory [M(DP)], CF contents are binary-added and the result is loaded to the AC.	CF
	ADC*	Add M(DP) to AC with CF	1	0	0	0	1	0	0	0	1	1	AC, M(DP) (AC)+[M(DP)] *(CF)	The AC, memory [M(DP)], CF contents are binary-edded and the result is loaded to the AC and M(DP).	CF
	SBC	Subtract M(DP) from AC with CF	1	0	0	0	0	0	0	1	1	1	AC - (AC)+[M(DP)] +(CF)	The memory M(DP) contents are binary- subtracted from the AC, CF contents and the result is loaded to the AC.	CF
	SBC*	Subtract M(DP) from AC with CF	1	0	0	0	1	O	0	1	1	1	AC, M(DP) +- (AC)+[M(DP)] +(CF)	The memory M(DP) contents are binary- subtracted from the AC, CF contents and the result is loaded to the AC and M(DP).	CF
	ADD	Add M(DP) to AC	1	0	0	0	0	0	1	0	1	1	AC + (AC)+(M(DP))	The AC, memory [M(DP)] contents are binary-added and the result is loaded to the AC.	CF
SUOT:	ADD*	Add M(DP) to AC	1	0	0	0	1	O	1	0	1	1	AC, M(DP) + (AC)+[M(DP)]	The AC, memory [M(DP)] contents are binary- added and the result is loaded to the AC and M(DP).	CF
Operation instructions	SUB	Subtract M(DP) from AC	1	0	0	0	0	0	1	1	1	1	AC AC+(M(DP)) +1	The memory M(DP) contents are binery-sub- tracted from the AC contents and the result is loaded to the AC.	CF
	SUB*	Subtract M(DP) from AC	1	0	0	0	1	C) 1	1	1	1	AC, M(DP) (AC)+[M(DP)] +1	The memory M(DP) contents are binary-sub- tracted from the AC contents and the result is loaded to the AC and M(DP).	CF
	ADN	Add M(DP) to AC	1	0	0	0	C	1	C	0	1	1	AC + (AC)+[M(DP)]	The AC, memory [M(DP)] contents are binary added and the result is loaded to the AC.	
	ADN*	Add M(DP) to AC	1	0	0	0	1	1	1 0	0	1	1	AC, M(DP) + (AC)+[M(DP)]	The AC, memory [M(DP)] contents are binary- added and the result is loaded to the AC and M(DP).	
	AND	AND M(DP) to AC	1	0	0	0) 1) 1	1	1	AC + (AC)A[M(DP)]	The AC contents and memory [M(DP)]content are ANDed and the result is loaded to the AC.	s
	AND*	AND M(DP) to AC	1	0	0	0) 1	1) () 1	1	1	AC, M(DP) + (AC) \(\Lambda\)[M(DP)]	The AC contents and memory [M{DP}] contents are ANDed and the result is loaded to the AC and M(DP).	
	EOR	Exclusive OR M(DP) to AC	1	0	0	0) 1	1 1	1 0	1	1	AC (AC)+[M(DP)]	The AC contents and memory [M(DP)] contents are Exclusive-ORed and the result is loaded to the AC.	
	EOR*	EOR* Exclusive OR M(DP) to AC			0	0) 1	1	1 1	i 0	1	1	AC, M(DP) - (AC)V[M(DP)]	The AC contents and memory [M(DP)] contents are Exclusive-ORed and the result is loaded to the AC and M(DP).	

Conti	nued	from	preceding	page.

اون	ntinuea T	rom preceding pa	ige.	·							_	_			
Instruction		Mnemonic	D7				on o		e D1 D(Bytes	Cycles	CACIAS	Punction	Description	Status flag to be affected
	OR	OR M(DR) to AC	1	0	0	0	0	1	1 1	1	1		AC - (AC)V[M(DP)]	The AC contents and memory [M(DP)] contents are ORed and the result is loaded to the AC.	
	OR*	OR M(DR) to AC	1	0	0	0	1	1	1 1	1	1		AC, M(DP) +- (AC)V[M(DP)]	The AC contents and memory [M(DP)] contents are ORed and the result is loaded to the AC and M(DP).	
	ADCI X	Add Immediate data to ACC with CF	1 -						0 0 X1 X		2	2	AC - (AC)+X+(CF)	The AC, CF contents and Immediate data X are binary-added and the result is loaded to the AC.	CF
suo	SBCI X	Subtract Immediate data from AC with CF	,						0 1 X1 X		2	?	AC ~ (AC)+X+(CF)	Immediate data X is binary-subtracted from the AC contents and the result is loaded to the AC.	CF
Operation instructions	ADDI X	Add Immediate data to AC							1 0 X1 X		2	2	AC - (AC)+X	The AC contents and Immediate data X are binary-added and the result is loaded to the AC.	CF
eration	SUBIX	Subtrect Immediate data from AC							1 1 X1 X	- 1	2	2	AC +- (AC)+X+1	Immediate data X is binary-subtracted from the AC contents and the result is loaded to the AC.	CF
ô	ADNI X	Add Immediate data to AC							0 C	_	2	2	AC (AC)+X	The AC contents and Immediate data X are binary-added and the result is loaded to the AC.	
	ANDI X	AND Immediate							0 1 X1 X		1	2	AC (AC)AX	The AC contents and Immediate data X are ANDed and the result is loaded to the AC.	
	EORI X	Exclusive OR Immediate data to AC							1 (X1 X	•	1	2	AC - (AC)VX	The AC contents and Immediate data X are Exclusive-ORed and the result is loaded to the AC.	
	ORIX	OR Immediate data							1 1 X1 X		2	2	AC (AC)VX	The AC contents and Immediate data X are ORed and the result is loaded to the AC.	
	SDPL	Store AC to DPL	0	0	0	1	1	1	0 0	1	Ť	1	DPL + (AC)	The AC contents are loaded to the DPL.	
	SDPH	Store AC to DPH	+						0 1	+	1	-	DPH - (AC)	The AC contents ere loaded to the DPH.	
<u>پ</u>	EDPL	Exchange DPL with EDPL	0	0	0	1	1	1	1 () 1	1	1	(OPL)≒(EDPL)	The DPL contents and EDPL contents are exchanged.	
instructions	EDPH	Exchange DPH with EDPH	0	0	0	1	1	1	1 1	1	1	1	(OPH)\$(EDPH)	The DPH contents and EDPH contents are exchanged.	}
Ę	IDPL	Increment DPL	1	0	0	1	1	0	1 () 1	1	1	DPL +- (DPL)+1	The DPL contents are incremented +1.	
latio	DDPL	Decrement DPL	†,		0	1	1	0	1 '	1 1	1	1	DPL + (DPL)-1	The DPL contents are decremented -1.	
manipulation	IDPH	Increment DPH	+	_	0	1	1	1	0 () 1	†	1		The DPH contents are incremented +1.	
	DDPH	Decrement DPH	+-							-	4	\dashv	DPH (DPH)-1	The DPH contents are decremented -1.	
pointe	LDPL	Load AC from DPL	_						0		✝	\neg		The DPL contents are loaded to the AC.	
Data p	LDPH	Load AC from DPH	+			_	_		1 (+	┿	-		The DPH contentes are loaded to the AC.	
	MDPL X	Move Immediate	1	0	1	1	Х3	Х2	X1 X	0 1		1	DPL - X	Immediate data X is loaded to the DPL.	
	MDPH X	Move Immediate Date to DPH	1	1	0	0	ХЗ	X2	X1 X	0 1	1	1	DPH + X	Immediate data X is loaded to the DPH.	
	LHLT	Load Halt Release Flag	1	0	1	0	1	0	1	ווי		1	AC - (STS2) STS2 + 0	The STS2 contents are transferred to the AC and then the STS2 is reset.	SCF1-4
2	L500	Load AC from STS1	1,	0	1	0	1	1	0 (0 1		1	AC = (STS1) SCF0 = 0	The STS1 contents are transferred to the AC and then the SCF0 is reset.	SCFO
ctio	CSP	Chrono Stop	10	0	0	0	0	1	0	0 1	+	1	CSTF = 0	The CSTF is reset.	CSTF
instructions	CST	Chrono Start	0	0	0	0	0	1	0	1 1	+	1	CSTF + 1	The CSTF is set.	CSTF
Flag manipulation in		Reset HEFO	0	0	0	0	0	1	1	0 1		1	HEFO + 0	The HEFO is reset so that the helt mode re- lease by an overflow from the predivider is inhibited.	HEF0
Flagra	SC5	Set HEFO	0	0	0	0	0	1	1	1	1	1	HEF0 + 1	The HEFO is set so that an overflow signal from the predivider releases the halt mode.	HEF0
								-							

Instruction		Mnemonic				ucti					8	8		Func	tion			Description	Status flag		
Instr		,,,,,,	D7	D6	D5	D4	D3 ¹	D2	D1	Dφ	B.	ζ							to be affected		
	ISP	Increment SP	1	0	0	1	1	1	1	0	1	1		SP (SP)+	- 						
(stan	DSP	Decrement SP	1	0	0	1	1	1	1	1	1	1	;	SP - (SP)-	P + (SP)-1 The SP contents are decremented -1.						
g e	LSP	Load AC from SP	1	0	1	0	1	0	1	0	1	1	[,	AC + (SP)		The	SP contents a	re loaded to the AC.			
ALC: COURT	SSP	Store AC to SP	1	0	1	0	1	1	1	0	1	1	1	SP - (AC)		The	AC contents a	ere loaded to the SP.			
aqo4S	MSP X	Move Immediate data to SP	1	1	1	0	Х3	X2	X1	Χo	1	1	;	SP + X		Imm	nediate date X	is loaded to the SP.			
sua	LDA	Load AC from [M(DP)]	1	0	1	0	1	0	0	1	1	1		AC - [MID	P}]	The the		DP)] contents are loaded to			
Load/store instructions	STA	Store AC to [M(DP)]	1	0	1	0	1	1	0	1	1	1		M(DP) + (A	AC)	The M(D		are loaded to the memory			
d/store i	MVIX	Move Immediate deta to M(DP)	lete to M(DP).								_										
Loa	LDIX	Load AC with Immediate data	0	0	1	1	Х3	Х2	Χı	Χo	1	1		AC - X		Imm	nediate data X	is loeded to the AC.			
	HALT	HALT	0	0	0	0	0	0	0	0	1	1		The follow	ion of CPU ing condition release con						
1	SIC X	Set/Reset HALT	1	1	0	1	X3	X2	2 X 1	Χo	1	1	Ť	X0 - X3			Operation	n			
		Release Enable Flag											r	X0=1	The HEF1	is set	t so that the si	gnal from the predivider re-	HEF1 to 4		
5		!											-	Y 1	leases the l			sing of signal at input port S	-		
Ę											1			X1=1	releases the			sting of triginal of import point of			
٤													r	X2=1	The HEF3	is set	t so that the ri	ising of signal at input port M	1		
۱ŧ		1											}	X3=1	releases th			/10-second pulse releases the	┨		
CPU control instructions												L	\downarrow	^3-1	halt mode		t so that the t				
	NOP	No Operation	1	1	1	1	1	1	1	1	1	1	1								
	RBAK	Reset Back-up Mode	1	1	1	1	1	0	0	0	1	1		BCF - 0		The	a backup mode	e is released.			
	SBAK	Set Back-up	1	1	1	1	1	0	0	1	1	1		BCF - 1			-	om Li battery, VSS2 is			
	ŀ	Mode															_	gic unit. When powered ery, EXT-V, the OSC circuit is			
												l					ibled in invert				
	IPS	Input Port-S to	1	0	1	0	1	1	1	1	1	1	1	AC + [P(S	91	The	•	t input port S is loaded to the			
Input/output instructions	IPM	Input Port-M to	1	0	1	0	1	0	0	0	1	1		AC + [PIN	A)]	The AC.					
Į	SAS X	Set Alarm Sound	1	1	1	1	1	0	1	0	2	2	2			Wev	veforms specif	fied by X7 to X0 are delivered			
Įž			x	7 X	6 X	5 X	4 X	3 X;	2 X	1 X(ļ				the ALM1.		1		
18	I										}		ŀ	X7 – X0	X7 X		X5 X4	X3 X2 X1 X0	4		
Į														Control contents	Alarm ton melody		Octave Control	Musical Scal Control			
=															select						
1													_[signal				<u> </u>		

Alarm OFF at X3 to X0 = 1

Continued		

nstanction	Mnemonic		Instruction code	Bytes	Cycles	Function	Description	Status fleg to be affected	
Ë			D7 D6 D5 D4 D3 D2 D1 D0						
	RAS	Reset Alarm Sound	1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1	2	2	■SAS FF	The ALM1 outputs are set to "L" level		
	SPDR X	Set/Reset PDF-Registor	1 1 1 1 0 1 X1X0	1	1	PDF X Bit contents X0=0	The pull-down MOS Tr at the corresponding input port is turned ON/OFF. Operation S-Terminal Pull down Tr OFF	PDF	
						X0=1 X1=0 X1+1	S-Terminal Pull down Tr ON M-Terminal Pull down Tr OFF M-Terminal Pull down Tr ON		
	OUT	Write AC & M(DP) to LCD Latch L(SP) (SP=#O to C)	1 1 1 1 1 0 0	1	1		The AC, memory [M(DP)] contents are loaded to the LCD latch L(SP) directly addressed by the SP.		
		SP=#D Move AC to CTL3				CTL3+(AC)	Output AC contents to CTL3.		
suc		SP=#E Write AC to P(P00-03)				P(P0)-AC	The AC contents are loaded to the Port PO.		
Instructions		SP=#F Write AC to P(P10-13)		-	Ī	P(P1)+AC	The AC contents are loaded to the Port P1.		
ii a	IN	SP=#D Load AC from STS3				AC+(STS3)	Load STS3 contents into AC.		
Input/output		SP=#E Input Port-P0 to AC		† - ′	Ť	AC+[P(P0)]	The input data at Port PO is loaded to the AC.		
٤		SP=#F Input Port-P1 to AC	!		<u> </u>	AC+[P(P1)]	The input data at Port P1 is loaded to the AC.		
	TWRT	Read Table data from Program ROM & Write Tabe data to LCD Latch (SP) (SP=#O to C)	0 0 0 0 0 0 1 0	1	2		current page,addressed by the AC, M(DP) the LCD latch L(SP) addressed by the SP.		
		SP=#D Read Table deta from Program ROM & Write Tabe data to CTL3				1 '	ROM table date at the address in the cified by AC and [M(DP)].		
		SP=#E Read Table data from Program ROM & Write Teble data to P(P00 to 03)		ļ			e ROM table data at the address in the cified by AC and [M(DP)].		
		SP=#F Read Table Data from Program ROM & Write Table data to P(P10 to 13)					e ROM table date at the address in the clified by AC and [M{DP}].		
	TMEL	Set Table data to Alarm Sound data	0 0 0 0 0 0 1 1			contents is set to alarm table data are delivered	The data of ROM, on current page, addressed by the AC, M(DP) contents is set to alarm sound data and weveforms specified by the table data are delivered at ALM1. (Same as SAS instruction)		
	JMP X	Jump	0 0 0 0 1 X ₁ 0 X ₉ X ₈ X ₇ X ₆ X ₅ X ₄ X ₃ X ₂ X ₁ X ₀	Į.	2	PC10PC0X10X0	The data specified by X10 to X0 is loaded to the PC to cause an unconditional jump.		
	BABO X	Branch on AC bit 0 High	0 1 0 0 1 X10X9X8 X7X6X5X4X3X2X1X0	1	2	PC10-PC0-X10-X0 if AC0-[1]	If bit 0 af the AC is "1", a jump occurs. If "0", the PC is incremented +1.		
	BAB1 X	Brench on AC bit 1 High	0 1 0 1 1 X10 X9 X8 X7 X6 X5 X4 X3 X2 X1 X0	1	2	PC10-PC0-X10-X0 if AC1=[1]	If bit 1 of the AC is "1", a jump occurs. If "0", the PC is incremented +1.		
	BA82 X	Branch on AC bit 2 High	0 1 1 0 1 X10 X9 X8 X7 X6 X5 X4 X3 X2 X1 X0	1	2	PC10-PC0-X10-X0 if AC2=[1]	If bit 2 of the AC is "1", a jump occurs. If "0", the PC is incremented +1.		
	вавз х	Branch on AC bit 3 High	0 1 1 1 1 X ₁₀ X ₉ X ₈ X ₇ X ₆ X ₅ X ₄ X ₃ X ₂ X ₁ X ₀	2	2	PC10-PC0-X10-X0 if AC3=[1]	If bit 3 of the AC is "1", a jump occurs. If "0", the PC is incremented +1.		
ruction	BANZ X	Branch on AC	0 1 0 1 0 X ₁₀ X ₉ X ₈ X ₇ X ₆ X ₅ X ₄ X ₃ X ₂ X ₁ X ₀	2	2				
Jump instructions	BAZX	Branch on AC	0 1 0 0 0 X10X9X8	2	12	PC10-PC0-X10-X0			
3	BCNH X	Branch on CF	0 1 1 0 0 X ₁ 0X9X8	2	2	PC10-PC0+X10-X0	If the CF is "O", a Jump occurs.		
	всн х	Brench on CF	0 1 1 1 0 X ₁ 0X ₉ X ₈	2	2				
	PAGE	High Page Set	0 0 0 1 0 0 0 1	+-	1	if CF=1 PAGE [M(DP)]	If "0", the PC is incremented +1. The memory [M(DP)] contents are loaded		

Continued from preceding page.

Instruction		Instruction code D7 D6 D5 D4 D3 D2 D1 D0							D ₀	Bytes	Cycles	Function .	Description	Status flag to be affected	
Jump	JMP*	Jump to the Address modified by PAGE AC and M(DP)	0	0	0	1	0	0	0	0	1	1	PC10-PC8-(PAGE) PC7-PC4-(AC) PC3-PC0+[M(DP)]	An unconditional jump occurs to a page specified by the PAGE and an address low-order 8 bits of the PC which are loaded with the AC and memory M(DP) contents.	
Subroutine instructions		Jump Subroutine	1 X7						-	Х8 Х0	1	2	STACK - PC+2 PC10-PC0-X10-X0	A subroutine is called.	
	RTS	Return from Subroutine	0	0	0	1	0	0	1	1	1	1	PC (STACK)	A return from a subroutine occurs.	
Other instructions	MPCL	Move PC0 — PC3 to M(DP)	0	0	0	1	0	1	0	0	1	1	M(DP)PC3PC0	The contents of the low-order 4 bits of the PC are stored in the memory M(DP).	
	месм	Move PC4 — PC7 to M(DP)	0	0	0	1	0	1	0	1	1	1	M(DP)-PC7-PC4	The contents of the medium-order 4 bits of the PC are stored in the memory M(DP).	
	МРСН	Move PC8 — PC10 to M(DP)	0	0	0	1	0	1	1	0	1	1	M(DP)-PC10-PC8	The contents of the high-order 3 bits of the PC ere stored in the memory M(DP).	
	CSEC	Clear SEC Counter	1	1	1	1	1	0	1	1	1	1		The high-order 5 bits of the predivider are reset and the SCF0, SCF1, SCF4 are reset.	SCF0 SCF1 SCF4

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.