Distinguish between style of question

12 WATP 2008 paper

11. Four white crystalline substances in identical unmarked jars need to be identified. The substances are barium hydroxide, magnesium nitrate, sodium sulfate and aluminium carbonate.

Complete the following table giving a relevant distinguishing **chemical** test which will enable you to correctly identify each substance. Give the accompanying observation and your conclusion. Equations are unnecessary.

Test	Observation	Conclusion
1. To a little of each of		
the four solid samples,		
add		
2. To a little of each of		
the three remaining		
samples add water to		
dissolve,		
then		
3. To a little of the two		
remaining samples add		
water to dissolve,		
then		

(9 marks)

ANS	SWER		
	1.	Add hydrochloric acid.	(1)
		One white solid will produce bubbles of colourless gas.	(1)
		The substance which produces gas bubbles with the acid is the	
		aluminium carbonate. (1)	
	2.	Add BaCl ₂ (aq).	(1)
		One solution will produce a white precipitate.	
(1)			
		The substance which produced the white precipitate is the sodium	
		sulfate. (1)	
	3.	Add Na ₂ SO ₄ (aq).	(1)
		One solution will produce a white precipitate.	
(1)			
		The one which produces the white precipitate is the barium	
	INT 4	hydroxide. (1)	
		: There are a number of alternative answers to this question based on	
	vario	ous solubility rules.	
12 E	dwest	2004 paper	
9.	Th	ree solutions; A,B and C where known to be aluminium nitrate, lead nitrate	
	and	l sodium nitrate. Describe chemical tests that you would carry out to	
	and	d sodium nitrate. Describe chemical tests that you would carry out to	

determine the identity of the three solutions. Flame tests are not permitted. Write equations for any reactions used.			

[6 marks]

ANSWER

9. possible process:

Test	Result /Conclusion	Equation
Measure pH of solution.	Solution that is < pH 7 is aluminium nitrate [1]	$[Al(H_2O)_a]^{3^*}(aq) + H_2O(I) \longrightarrow [Al(OH)(H_2O)_3]^{2^*}(aq) + H_3O^*(aq)$ [1]
Add solution to sodium sulphate solution [1]	Solution that forms ppt is lead nitrate [1]	$Pb^{2^{-}}(aq) + SO_{4}^{2^{-}}(aq) \longrightarrow PbSO_{4}(s)$ [1]
	Remaining solution is sodium nitrate	

Other solutions possible based on solubilities.

12 Edwest 2003 paper

11. Explain how you could distinguish between the following pairs of compounds using chemical tests.

	Compounds	Description of Test	Observations
(a)	PbCl _{2(s)}		with PbCl _{2(s)}
	KCl _(s)		with KCl _(s)
(b)	CH ₃ CO ₂ C ₂ H ₅		with CH ₃ CO ₂ C ₂ H ₅
	C₃H₁CO₂H		with C ₃ H ₇ CO ₂ H
(c)	1-pentanol		with 1-pentanol
	2-ethyl-2-propanol		with 2-ethyl-2-propanol

[6 marks]

11.

	Compound	Test [1 mark each]	Observations [both required for	
	S	rest [1 mark each]	1 mark]	
(a)	$PbCl_{2(s)}$	dissolve in water and add	precipitate	
	$KCl_{(s)}$	OH^{-}/SO_{4}^{2-} to solution formed.	no precipitate	
(b)	CH ₃ CO ₂ C ₂ H	Add carbonate or	no fizzing indicator =	
	5	use indicator	neutral	
	C ₃ H ₇ CO ₂ H		fizzing indicator =	
	C3117CO211		acidic	
(c)	1-pentanol	Add acidified dichromate or	colour change: orange to green	
	1-pentanoi	permanganate	or purple to colourless	
	2-ethyl-2-		no visible change	
	propanol			

[6]

Description of Test

12 Edwest 2001 paper had to alter this question due to syllabus change

- 1. For each of the following pairs of substances, describe a **chemical test** that could be used to distinguish between the two substances. You must predict your observation for the same test with each substance.
 - (a) solutions of magnesium nitrate and zinc chloride.

	Observation with magnesium nitrate
	Observation with zinc chloride
(b)	samples of ammonia gas and nitrogen gas.
()	
	Description of Test
	Observation with ammonia gas
	Observation with nitrogen gas

[8 marks]

ANSWER

12 Edv	west 2008 paper
9.	A student places the following substances in jars in the laboratory: sodium carbonate, calcium carbonate, barium hydroxide, zinc hydroxide and sodium hydroxide.

Unfortunately he forgets to label the jars, and as they are all white solids, he does not know which one is which. Describe how you could carry out tests to distinguish between them. Write equations for any reactions that would occur in the tests. You are allowed to use normal laboratory reagents.

[7 marks]

ANSWER

9. [4 marks for correct tests to identify solids]

For example:

Test	Result	Identified
Add dilute acid to all solids	Those that give off a gas	sodium carbonate, calcium carbonate
Add both of these solids to water	Soluble in water	sodium carbonate
	Insoluble in water	calcium carbonate
Add water to the other three solids	Insoluble in water	zinc hydroxide
Add sodium carbonate solution to the other two solutions	White precipitate	barium hydroxide
	No precipitate	sodium hydroxide

[4 marks]

[Up to 3 marks for correct equations]

For example: equations must relate to the tests shown

$$2 H^{+} + Na_{2}CO_{3} \rightarrow 2 Na^{+} + CO_{2} + H_{2}O$$
 $2 H^{+} + CaCO_{3} \rightarrow Ca^{2+} + CO_{2} + H_{2}O$
 $Ba^{2+} + CO_{3}^{2-} \rightarrow BaCO_{3}$

[3 marks]

12 WATP 2007 paper4. A student carries out 4 experiments and makes the following observations:

Experiment	Observations
1	A green compound is heated strongly to produce a black residue, a brown gas and another gas which rekindles a glowing splint.
2	The black residue is mixed with sulfuric acid and is heated to produce a blue solution.
3	When sodium hydroxide is added to the blue solution a blue precipitate is formed.
4	When zinc powder is added to the blue solution from Experiment 2, a solid is obtained.

(a)	Write an equation showing what happened in Experiment 1	
	(2 marks)	
(b)	What is the name/formula of the blue precipitate in Experiment 3?	
	(1 mark)	
(c)	What type of reaction is occurring in Experiment 4?	
		(1 mark)

Tyson 2010 9

ANSWER

- 4. (a) $2Cu(NO_3)_2(s) \rightarrow 2CuO(s) + 4NO_2(g) + O_2(g)$
 - (2)
 - (b) Cu(OH)₂: Copper(II) hydroxide

(1)

(c) Metal displacement or redox

(1)

11 Edwest 2003 paper

9. Explain how you could distinguish between the following pairs of compounds using chemical tests.

	Compounds	Description of Test	Observations
(a)	$\mathrm{PbI}_{2(\mathrm{s})}$		with PbI _{2(s)}
	PbCO _{3(s)}		with PbCO _{3(s)}
(b)	$\mathrm{C_3H_6}$		with C ₃ H ₆
	$\mathrm{C_{3}H_{8}}$		with C ₃ H ₈
(c)	AlPO ₄		with AlPO ₄

	with K ₃ PO ₄
K ₃ PO ₄	

[6 marks]

ANSWERS

9.

	Compounds	Description of Test	Observations
(a)	PbI _{2(s)}		with PbI _{2(s)}
	PbCO _{3(s)}	add dilute acid	with PbCO _{3(s)}
(b)	C_3H_6		with C ₃ H ₆ decolourise
	$\mathrm{C_3H_8}$	add bromine water	with C ₃ H ₈ no reaction
(c)	AlPO₄	Add water	with AlPO ₄ no reaction
	K₃PO₄	Add water	with K ₃ PO ₄ solid dissolves

[6]

11 WATP 2005 paper this question modified due to syllabus change

4.	For each of the following pairs of substances, describe a chemical test that will
	enable you to distinguish between them. Include equations, relevant diagrams
	and <u>observations</u> where applicable.

a	Solid	Aluminium	Hydrovide	and solid	Rarium	Hydrovide
d.	Some	Alulllllllllll	пущохиче	ana sona	Darruin	пушохіце

b. Pentane and Pentene

c. Oxygen gas and Hydrogen gas.

(9 marks)

ANSWERS

- 4. For each of the following pairs of substances, describe a chemical test that will enable you to distinguish between them. Include <u>equations</u>, <u>relevant</u> <u>diagrams</u> and <u>observations</u> where applicable.
 - a Solid Aluminium Hydroxide and solid Barium Hydroxide
 - a. Add water to each solid.

(1 mark)

- Aluminium Hydroxide will not dissolve, barium hydroxide will dissolve.
- Ba(OH)_{2(s)} \rightarrow Ba²⁺_(aq) + 2OH⁻(aq)
- (2 marks)
- b Pentane and Pentene
 - b. Add a solution of a coloured halogen. eg Bromine water.
 - Pentane no reaction.
 - 1- Pentene → CH₂BrCHBrCH₂CH_{3 (1)}
 - Br_{2 (aq)} is a red/brown colour. On addition to pentene bromine water quickly decolourises leaving colourless solution.
- c Oxygen gas and Hydrogen gas
 - c. Place a glowing splint into both samples.
 - Oxygen will relight the glowing splint.
 - Hydrogen, (in the presence of oxygen from the atmosphere will produce the characteristic "pop".

$$2H_{2 (g)} + O_{2 (g)} \rightarrow 2H_{2}O_{(l)}$$

11 WATP 2006 paper8. Explain how you could distinguish between the following pairs of substances using **chemical** tests.

	Compounds	Description of test	Observations
(a)			with O ₂
	CO ₂ (g)		with CO ₂
(b)	NaCl(s)		with NaCl
	NaNO ₃ (s)		with NaNO ₃

[4 marks]

Tyson 2010 14

ANSWERS

8(a). Glowing splint test: with $O_2(g)$, the splint stays alight; with $CO_2(g)$, the splint goes out.

- OR Bubble through limewater: with $O_2(g)$, no reaction; with $CO_2(g)$, white ppt forms.
- OR Dissolve in water and test for pH (meter/litmus): with $O_2(g)$, remains neutral: with $CO_2(g)$, acidic soln. produced. (2)
- 8(b) Dissolve in water, then add AgNO₃(aq): with NaCl, white ppt forms; with NaNO₃, no visible reaction. (2)

Other school paper

1. For each of the following describe briefly a chemical test and observation by which you could distinguish between the substances listed.

Chemicals	Chemical test	What you would observe	n each case
Two black solids		With copper(II) oxide	
Copper(II) oxide and			
Iron(II) oxide			
		With iron(II) oxide	
Two colourless solutions		With potassium nitrate	
Potassium nitrate and			
Potassium chloride			
		With potassium chloride	

2. For each of the following, describe briefly a test and observation by which you could distinguish between the substance listed. You must indicate which of the two substances tested gives rise to the observation. No equations are necessary.

a)	Sodium nitrate solution and sodium sulfate solution.			
	Test:			
	Observation :			
		(1 mark)		
)	Carbon dioxide gas and hydrogen gas.	,		
	Test:			
	Observation:			
		(1 mark)		
)	Solid magnesium hydroxide and solid lead (II) sulfate.			
	Test:			
	Observation :			
		(1 mark)		
)	Ammonium chloride solution and potassium iodide solution.			
	Test:			
	Observation:			

(1 mark)

ANSWERS

1. For each of the following describe briefly a chemical test and observation by which you could distinguish between the substances listed.

Chemicals	Chemical test	What you would observe in each case
Copper(II) oxide and	Add dilute HCl to both solids	With copper(II) oxide the black solid will dissolve
Iron(II) oxide	!	to form a blue solution
	!	
	!	With iron(II) oxide the black solid will dissolve to
		form a green solution
Potassium nitrate and	Add aqueous AgNO ₃ to both	With potassium nitrate two colourless, clear
Potassium chloride	solutions	solutions combine to form a clear colourless
	,	solution
	1	
	!	With potassium chloride to clear, colourless
		solutions combine to form a white precipitate in a colourles solution

- 2. For each of the following, describe briefly a test and observation by which you could distinguish between the substance listed. You must indicate which of the two substances tested gives rise to the observation. No equations are necessary.
 - a) Sodium nitrate solution and sodium sulfate solution.

Test: Add barium nitrate solutions to both solutions.

Observation: When $Ba(NO_3)_2(aq)$ is added to $NaNO_3(aq)$ two clear, colourless solutions are combined and a clear, colourless solution is formed. When $Ba(NO_3)_2(aq)$ is added to $Na_2SO_4(aq)$ two clear, colourless solutions are combined and a white precipitate forms in a colourless solution.

(1 mark)

b) Carbon dioxide gas and hydrogen gas.

Test: Place a lighted taper in samples of both gases.

Observation: There is a loud 'pop' sound when the lighted taper is placed in H_2 gas sample. The lighted taper goes out when placed in the CO_2 gas sample.

(1 mark)

c) Solid magnesium hydroxide and solid lead (II) sulfate.

Test: Add dilute hydrochloric acid to both solids.

Observation: The solid magnesium hydroxide (white solid) would dissolve to form a clear, colourless solution. The solid lead II sulfate would not dissolve.

(1 mark)

d) Ammonium chloride solution and potassium iodide solution.

Test: Add dilute NaOH(aq) to both and heat gently.

Observation: With the $NH_4Cl(aq)$ two colourless solutions are combined and on heating a pungent gas is given off, the resulting solution is colourless with the $KI(aq)^-$ two colourless solutions are combined to form a colourless solution.

(1 mark)