Tutorial 6

Exercise 3

- 32. Determine which of the following sets are bases for \mathbb{R}^3 .
 - (a) $S_1 = \{(1,0,-1), (-1,2,3)\}.$
 - (b) $S_2 = \{(1,0,-1), (-1,2,3), (0,3,0)\}.$
 - (c) $S_3 = \{(1,0,-1), (-1,2,3), (0,3,3)\}.$
 - (d) $S_4 = \{(1,0,-1), (-1,2,3), (0,3,0), (1,-1,1)\}.$
- Find a basis for the solution space of each of the following homogeneous systems.

(c)
$$\begin{cases} x_1 + 3x_2 - x_3 + 2x_4 = 0 \\ -3x_2 + x_3 = 0 \\ x_1 - x_4 = 0. \end{cases}$$

- 40. Let $u_1 = (1,0,1,1)$, $u_2 = (-3,3,7,1)$, $u_3 = (-1,3,9,3)$, $u_4 = (-5,3,5,-1)$ and let $S = \{u_1, u_2, u_3, u_4\}$ and $V = \operatorname{span}(S)$.
 - (a) Find a non-trivial solution to the equation

$$au_1 + bu_2 + cu_3 + du_4 = 0.$$

- (b) Express u_3 and u_4 (separately) as linear combinations of u_1 and u_2 .
- (c) Find a basis for and determine the dimension of V.
- (d) Find a subspace W of \mathbb{R}^4 such that $\dim(W) = 3$ and $\dim(W \cap V) = 2$. Justify your answer.
- 44. Let $U = \text{span}\{u_1, u_2, u_3\}$ and $V = \text{span}\{v_1, v_2, v_3\}$ be subspaces of \mathbb{R}^5 such that $\dim(U \cap V) = 2$. Suppose W is the smallest subspace of \mathbb{R}^5 that contains both U and V. Determine all possible dimensions of W. Justify your answers.
- 46. (a) Let $u_1 = (1, 2, -1)$, $u_2 = (0, 2, 1)$, $u_3 = (0, -1, 3)$. Show that $S = \{u_1, u_2, u_3\}$ forms a basis for \mathbb{R}^3 .
 - (b) Suppose w = (1, 1, 1). Find the coordinate vector of w relative to S.
 - (c) Let $T = \{v_1, v_2, v_3\}$ be another basis for \mathbb{R}^3 where $v_1 = (1, 5, 4)$, $v_2 = (-1, 3, 7)$, $v_3 = (2, 2, 4)$. Find the transition matrix from T to S.
 - (d) Find the transition matrix from S to T.
 - (e) Use the vector w in Part (b). Find the coordinate vector of w relative to T.
- 49. Let $S = \{u_1, u_2, u_3\}$ be a basis for \mathbb{R}^3 and $T = \{v_1, v_2, v_3\}$ where

$$v_1 = u_1 + u_2 + u_3$$
, $v_2 = u_2 + u_3$ and $v_3 = u_2 - u_3$.

- (a) Show that T is a basis for \mathbb{R}^3 .
- (b) Find the transition matrix from S to T.