Control Systems Engineering (EYAG-1005): **Unit 03**

Luis I. Reyes-Castro

Escuela Superior Politécnica del Litoral (ESPOL)

Guayaquil - Ecuador

Semester: 2017-T1

- First-order Systems
- 2 Second-order Systems
- 3 Steady-state Errors

- First-order Systems
- 2 Second-order Systems
- 3 Steady-state Errors

First-order Systems

Definition:

We say that a system with transfer function G(s) is of first-order if:

$$G(s) = \frac{K}{s + \sigma}$$
 for some $K, \sigma > 0$

First-order Systems

Step response, *i.e.*, r(t) = u(t):

$$R(s) = \frac{1}{s} \implies c(t) = \mathcal{L}^{-1}[R(s)G(s)]$$

$$\Rightarrow c(t) = \mathcal{L}^{-1}\left[\frac{K}{s(s+\sigma)}\right]$$

$$\Rightarrow c(t) = \mathcal{L}^{-1}\left[\frac{K/\sigma}{s} - \frac{K/\sigma}{s+\sigma}\right]$$

$$\Rightarrow c(t) = \left[\frac{K}{\sigma} - \frac{K}{\sigma}e^{-\sigma t}\right]u(t), \quad \forall t \in \mathbb{R}$$

$$\Rightarrow c(t) = \frac{K}{\sigma} - \frac{K}{\sigma}e^{-\sigma t}, \quad \forall t \geq 0$$

- First-order Systems
- 2 Second-order Systems
- 3 Steady-state Errors

Second-order Systems

Recall the following results from elementary algebra:

■ For any $\alpha, \beta, \gamma \in \mathbb{R}$ the roots of the second-order polinomial

$$D(s) = \alpha s^2 + \beta s + \gamma$$

are as follows:

$$s_1 \; = \; -\frac{\beta}{2\alpha} + \frac{\sqrt{\beta^2 - 4\,\alpha\,\gamma}}{2\,\alpha} \qquad \qquad s_2 \; = \; -\frac{\beta}{2\alpha} + \frac{\sqrt{\beta^2 - 4\,\alpha\,\gamma}}{2\,\alpha}$$

Therefore:

- If $\beta^2 > 4 \alpha \gamma$ then the roots are repeated and different.
- If $\beta^2 = 4 \alpha \gamma$ then the roots are repeated and identical.
- If β^2 < 4 $\alpha \gamma$ then the roots are complex conjugates.

Second-order Systems

lacksquare For any $a,b\in\mathbb{R}$ the roots of the second-order polinomial

$$D(s) = s^2 + as + b$$

are as follows:

$$s_1 = -\frac{a}{2} + \frac{\sqrt{a^2 - 4b}}{2}$$
 $s_2 = -\frac{a}{2} - \frac{\sqrt{a^2 - 4b}}{2}$

Therefore:

- If $a^2 > 4b$ then the roots are repeated and different.
- If $a^2 = 4b$ then the roots are repeated and identical.
- If $a^2 < 4b$ then the roots are complex conjugates.

- First-order Systems
- 2 Second-order Systems
- 3 Steady-state Errors

Recall the reference signals:

TABLE 7.1 Test waveforms for evaluating steady-state errors of position control systems

Waveform	Name	Physical interpretation	Time function	Laplace transform	
r(t)	Step	Constant position	1	$\frac{1}{s}$	
r(t)	Ramp	Constant velocity	t	$\frac{1}{s^2}$	
r(t)	Parabola	Constant acceleration	$\frac{1}{2}t^2$	$\frac{1}{s^3}$	

Recall the following property of the Laplace Transform:

Final Value Theorem

For any function f(t) defined for $t \ge 0$ with Laplace Transform F(s) we have that:

$$\lim_{t\to\infty} f(t) = \lim_{s\to 0} s F(s)$$

Steady-state errors for simple feedthrough systems:

$$E(s) = R(s) - C(s) = R(s) - T(s)R(s)$$

$$\implies E(s) = R(s)[1 - T(s)]$$

$$\implies e(\infty) = \lim_{t \to \infty} e(t) = \lim_{s \to 0} s E(t) = \lim_{s \to 0} s R(s)[1 - T(s)]$$

■ Step input r(t) = u(t) :

$$R(s) = \frac{1}{s} \implies e_{step}(\infty) = \lim_{s \to 0} 1 - T(s)$$

■ Ramp input r(t) = t u(t):

$$R(s) = \frac{1}{s^2} \implies e_{ramp}(\infty) = \lim_{s \to 0} \frac{1 - T(s)}{s}$$

■ Parabolic input $r(t) = (1/2) t^2 u(t)$:

$$R(s) = \frac{1}{s^3} \implies e_{parabolic}(\infty) = \lim_{s \to 0} \frac{1 - T(s)}{s^2}$$

Steady-state errors for unity-feedback systems:

$$E(s) = R(s) - C(s) = R(s) - G(s) E(s)$$

$$\implies E(s) [1 + G(s)] = R(s)$$

$$\implies E(s) = \frac{R(s)}{1 + G(s)}$$

$$\implies e(\infty) = \lim_{t \to \infty} e(t) = \lim_{s \to 0} s E(t) = \lim_{s \to 0} \frac{s R(s)}{1 + G(s)}$$

■ Step input r(t) = u(t):

$$R(s) = rac{1}{s} \qquad \Longrightarrow \qquad e_{step}(\infty) \ = \ \lim_{s o 0} \ rac{1}{1 + G(s)}$$

■ Ramp input r(t) = t u(t):

$$R(s) = rac{1}{s^2} \qquad \Longrightarrow \qquad e_{ramp}(\infty) \ = \ \lim_{s o 0} \ rac{1}{s \ G(s)}$$

■ Parabolic input $r(t) = (1/2) t^2 u(t)$:

$$R(s) = rac{1}{s^3} \implies e_{parabolic}(\infty) = \lim_{s o 0} rac{1}{s^2 G(s)}$$

Furthermore, for unity-feedback systems:

■ Position constant K_p :

$$K_p = \lim_{s \to 0} G(s) \implies e_{step}(\infty) = \frac{1}{1 + K_p}$$

■ Velocity constant K_v :

$$K_{\nu} = \lim_{s \to 0} s G(s) \implies e_{ramp}(\infty) = \frac{1}{K_{\nu}}$$

■ Acceleration constant K_a :

$$K_a = \lim_{s \to 0} s^2 G(s) \implies e_{parabolic}(\infty) = \frac{1}{K_a}$$

System Type: Number of integrators (poles at s = 0) on the forward path.

Steady-state error as a function of system type:

Input		Type 0		Type 1		Type 2	
	Steady-state error formula	Static error constant	Error	Static error constant	Error	Static error constant	Error
Step, $u(t)$	$\frac{1}{1+K_p}$	$K_p = \text{Constant}$	$\frac{1}{1+K_p}$	$K_p = \infty$	0	$K_p = \infty$	0
Ramp, $tu(t)$	$\frac{1}{K_{\nu}}$	$K_v = 0$	∞	$K_v = \text{Constant}$	$\frac{1}{K_{\nu}}$	$K_{ u}=\infty$	0
Parabola, $\frac{1}{2}t^2u(t)$	$\frac{1}{K_a}$	$K_a = 0$	∞	$K_a = 0$	∞	$K_a = \text{Constant}$	$\frac{1}{K_a}$

For non-unity non-unity-feedback systems, simply re-write the system in unity-feedback form:

