

MEMORANDUM

ที่ / No : วผ.ทผก.

52/2562

วันที่ /Date : 9

เมษายน 2562

ส่วนวิศวกรรมกระบวนการผลิต โทร. 46232 หน่วยงานผู้ส่ง / From:

เรียน / To : ผจ.วผ.

สำเนา / CC:

เรื่อง / Subject: การศึกษากลไกการเกิด Particle FeS₂ เนื่องจากการกัด

กร่อนใน Benfield Unit

1. ความทั่วไป

้ก๊าซุธรรมชาติที่ส่งมาให้แก่โรงแยกก๊าซุธรรมชาติหน่วยที่ 1 มีส่วนผสม ของก๊าซเชื้อเพลิงที่เป็นสารประกอบไฮโดรคาร์บอนหลายชนิด นอกจากนี้ยังมี ก๊าซอื่น ๆ ปะปนมาด้วย เช่น N₂, CO₂ และ H₂S เป็นต้น ก๊าซที่ปะปนมานี้ไม่มี ประโยชน์ในการให้พลังงานความร้อนแต่กลับส่งผลเสียโดยเป็นก๊าซพิษและ ก๊าซกรด

โรงแยกก๊าซธรรมชาติหน่วยที่ 1 มีหน่วยกำจัดก๊าซกรดคือ Benfield Unit และมีการตรวจพบการอุดตันที่ระบบที่วาล์ว LV-001 และ Strainer ของ X-70101 อยู่บ่อยครั้งดังรูปที่ 1 อันเนื่องมาจากมีเศษ Particle ที่หลุดร่วงมา จาก Benfield Wash Column (T-70101) ส่งผลโรงแยกก๊าซธรรมชาติ หน่วยที่ 1 ไม่สามารถเดินเครื่องเพื่อกำจัด CO₂ ได้ จึงมีการหยุดเดินเครื่องเพื่อ ทำความสะอาดอุปกรณ์ดังกล่าวส่งผลให้สูญเสียรายได้ประมาณวันละ 7,500,000 บาท/Train ในช่วงที่หยุดเดินเครื่องเพื่อทำความสะอาด หน่วยงาน วผ. ได้ทำการศึกษากลไกการเกิดของ Particle ดังกล่าวเพื่อหาแนวทางในการ ยับยั้งและป้องกันต่อไป

รูปที่ **1** การอุดตันที่ระบบที่วาล์ว LV-001 และ Strainer ของ X-70101 **2. ผลการศึกษา**

2.1 ผลการศึกษาองค์ประกอบของ Particle ที่บริเวณ LV-001 และ STR-X70101

จากการนำตัวอย่างที่อุปกรณ์ต่าง ๆ ที่ตรวจพบ Particle อุดตันเพื่อไป วิเคราะห์หาองค์ประกอบของสารประกอบด้วยเทคนิค XRF และ XRD แสดงดัง ตารางที่ 1 และรูปที่ 1 ตามลำดับ จากตารางที่ 1 พบว่าที่ LV-001 และ STR-X70101 องค์ประกอบส่วนใหญ่ประกอบด้วยธาตุ Fe และ S และจากรูปที่ 2 พบว่าที่ LV-001 และ STR-X70101 เป็นสารประกอบ FeS₂ (Marcasite)

* <u>หมายเหตุ</u> วิเคราะห์โดย งานวิเคราะห์เชิงฟิสิกส์ ฝ่ายสนับสนุนเทคนิค ด้านวิเคราะห์ลักษณะเฉพาะของวัสดุ ศูนย์เทคโนโลยีโลหะและวัสดุ แห่งชาติ (รายงานผลวันที่ 23 พฤษภาคม 2561)

ตารางที่ 1 ผลการตรวจสอบวิเคราะห์ตัวอย่างที่มาอุดตันที่ Downstream Equipment ด้วยเทคนิค XRF (ตัวอย่างวันที่ 4 พฤษภาคม 2561)

Sample	Metal (%w/w)							Carb	Compoun
Name	S	K	V	Fe	Ni	Zn	Cr	on	d
								(%w	(XRD
								/w)	result)*
LV-001	43.	12.	0.2	44.	0.2	0.3	N.	0.52	FeS ₂
	63	52	4	02	2	6	D.		(Marcasite)
STR-	59.	2.0	0.2	37.	0.4	0.4	N.	0.56	FeS_2
X70101	25	6	5	06	2	1	D.		(Marcasite)

^{*} รายงานผล ตามเอกสารแนบที่ 1

รูปที่ 2 XRD Pattern ของผลึกที่ LV-001 และ Strainer ของ X-70101

2.2 ผลการศึกษากระบวนการการเกิดผลึก FeS₂

จากการศึกษาจากงานวิจัยที่เกี่ยวข้องของ Shujun Gao และคณะ ปี 2561 ซึ่งได้ทำการทดลองโดยใช้ Autoclave ขนาด 7 ลิตร ใช้แผ่นเหล็ก Carbon Steel จุ่มลงไปในสารละลาย โดยป้อน H₂S/N₂ เข้าสู่ Autoclave อย่างต่อเนื่องแสดงดังรูปที่ 3 โดยสภาวะที่ใช้ในการทดลองแสดงดังตารางที่ 2 (ตามเอกสารแนบที่ 2)

รูปที่ 3 การทดลองโดยใช้ Autoclave 7 L

ตารางที่ 2 สภาวะที่ใช้ในการทดลอง

Parameter	Value

Temperature	120 °C		
Total pressure	8.92 bar		
$[H_2S]$	0.00385 mol/L		
Initial pH at 120 °C	4.0		
pH_2S	0.10 bar		
Rotating speed	1000 rpm		
Duration	1, 4, 7, and 21		
	day(s)		

จากการทดลองพบว่าเมื่อเวลาผ่านไประบบจะเกิดการสร้างแผ่นฟิล์ม Fe₃O₄ ที่บริเวณแผ่นเหล็กแสดงดังสมการที่ 1

$$3Fe^{2+} + 4H_2O \rightarrow Fe_3O_4 + 8H^+ + 2e^-$$
(1)

โดยความหนาของแผ่นฟิล์ม Fe_3O_4 ไม่เปลี่ยนแปลงแปลงตามเวลา เนื่องจากมีการอัตราการสร้างของแผ่นฟิล์มเท่ากันกับอัตราการสูญเสียไปใน ปฏิกิริยา และแผ่นฟิล์มนี้สามารถป้องกันและลดอัตราการกัดกร่อนที่อุณหภูมิสูง ได้ เนื่องจากฟิล์ม Fe_2O_3 จะไปเคลือบแผ่นเหล็กไว้ทำให้ H_2S ไม่สามารถ ส้มผัสกับแผ่นเหล็กได้โดยตรง นอกจากนี้แผ่นฟิล์ม Fe_3O_4 ยังสามารถทำ ปฏิกิริยากับ H_2S เกิดเป็น FeS ได้ แสดงดังสมการที่ 2

$$Fe_3O_4+3H_2S+8H^++2e^- \rightarrow 3FeS+4H_2O$$
 (2)

โดยความหนาของแผ่นฟิส์ม FeS มีค่าเพิ่มขึ้นและสามารถเปลี่ยนเฟสได้ เป็น Mackinawite (FeS) →Troilite (FeS) →Pyrrhotite (Fe_{1-x}S) → Pyrite & Marcasite (FeS₂) ตามกาลเวลา

ซึ่งหากเปรียบเทียบกับระบบ Benfield Unit แสดงดังรูปที่ 4 และสภาวะ ที่ในระบบแสดงดังตารางที่ 3 แผ่นเหล็กที่ใช้ในการทดลองเปรียบเสมือนผนัง ของ Benfield Wash Column (T-70101) ซึ่งเป็น Carbon Steel เหมือนกัน สำหรับระบบ Benfield Unit ของโรงแยกก๊าซธรรมชาติหน่วยที่ 1 ก่อนที่จะทำการนำ Feed Gas เข้าจะต้องมีการ Passivation เพื่อสร้างฟิล์ม Fe₂O₃

ป้องกันการกัดกร่อนที่เกิดขึ้นในระบบก่อนทุกครั้งที่ และเนื่องจากระบบมี H₂S ที่ปะปนมากับ Feed Gas ทำให้เกิดการสร้างฟิล์ม FeS เหมือนดังสมการที่ (2) เช่นเดียวกันกับการทดลองข้างต้น และเมื่อเวลาผ่านไปแผ่นฟิล์มจะมีความหนา เพิ่มมากขึ้นและเปลี่ยนเฟสไปเป็น FeS₂ ทำให้หลุดติดมากับสารละลาย Benfield (K₂CO₃) ส่งผลให้เกิดการอุดตันของอุปกรณ์ต่าง ๆ บริเวณ Down Steam ได้ โดยฟิล์ม Passivation (Fe₂O₃) ในระบบ Benfield Unit ความ หนาของชั้นฟิล์มจะลดลงและเปลี่ยนเป็น FeS₂ เรื่อย ๆ ตามกาลเวลา

ร**ูปที่ 4** Benfield Wash Column (T-70101) **ตารางที่ 3** สภาวะในระบบ Benfield Unit

Parameter	Value
Temperature	100-
Total	110 °C
pressure	44 bar
[H ₂ S]	0.00117
	mol/L

2.2 ผลการศึกษาการกำจัดแผ่นฟิล์ม FeS₂

จากการศึกษาจากงานวิจัยที่เกี่ยวข้องของ Dr. Tao Chen และคณะ ปี 2559 ซึ่งได้ทำการทดลองโดยใช้สารละลาย (Dissolution) ที่ pH ต่างๆ เพื่อสลายแผ่นฟิล์ม FeS₂ ที่เกิดจาก H₂S จาก Feed Gas ทำปฏิกิริยากับผนัง ท่อที่อุณหภูมิและความดันสูง จากการทดลองพบว่าสารละลายที่มีประสิทธิภาพ ในการสลายแผ่นฟิล์มดังกล่าวได้ดีที่สุดคือ 15% HCl (pH < 0) แต่ทำให้เกิด การกัดกร่อนที่บริเวณของผนังท่อสูงที่สุด ในขณะที่สารละลาย Alkaline Dissolver (pH > 12) มีการกัดกร่อนที่บริเวณของผนังท่อน้อยที่สุด แต่ ประสิทธิภาพในการสลายแผ่นฟิล์มต่ำ (ตามเอกสารแนบที่ 3)

จากการประชุมร่วมกันกับหน่วยงาน วผ., บง. และ ตร. เพื่อหาข้อสรุป ในการกำจัดแผ่นฟิล์ม FeS₂ ที่ผนังของหอ T-70101 วิธีใช้สารละลายจึงไม่ เหมาะสมเนื่องจากสารละลายที่ใช้อาจไปกัดกร่อนผนังของหอได้ ดังนั้นจึงกำจัด ด้วยวิธี Grit Blasting โดยใช้ทรายไปขัดบริเวณผนังของหอที่มีแผ่นฟิล์มติด อยู่ ซึ่งหลังจากการขัดผนังของหอมีความสะอาดและเรียบเนียนดังรูปที่ 5

ร**ูปที่ 5** ผนังของหอ T-70101 ก่อนและหลังการทำ Grit Blasting

3. สรุปผลการศึกษา

จากการวิเคราะห์โดยเทคนิค XRD สามารถสรุปได้ว่า ในระบบ Benfield Unit ของโรงแยกก๊าซธรรมชาติหน่วยที่ 1 Particle ที่มาอุดตันที่อุปกรณ์ต่างๆ คือ **FeS₂** ซึ่ง เกิดจากการทำปฏิกิริยากันระหว่างฟิล์ม Passivation (Fe₂O₃) และ H₂S เกิดเป็น FeS เมื่อเวลาผ่านไปก็จะสามารถเปลี่ยนเฟสไปเป็น FeS₂ (Marcasite) ซึ่งเป็นเฟสที่มีความสเถียรที่สุด สำหรับโรงแยกก๊าซธรรมชาติ หน่วยที่ 1 เริ่มเดินเครื่องตั้งแต่ ปี 2528 รวมระยะเวลาประมาณ 30 ปีจึงตรวจ พบ FeS₂ ทั้งนี้ขึ้นอยู่ความเข้มข้นของ H₂S ใน Feed Gas ด้วย

<u>แนวทางแก้ไข</u> : ปัจจุบันหน่วยงาน บง. ได้ทำ Grit Blasting ที่ผนังของหอ T-70101 เพื่อเอาฟิล์ม FeS₂ ออก

ทั้ง 2 Train

<u>แนวทางป้องกัน</u> : ทำการ Passivation ให้สมบูรณ์โดยใช้เวลา 72 ชั่วโมง (ตามข้อมูล Manual Benfield Unit

GSP1)

หากมีการ Passivation ระบบที่ดีและสมบูรณ์จะสามารถลดและป้องกัน การกัดกร่อนบริเวณผนังหอ T-70101 ได้ ในทางตรงกันข้ามถ้าหากมีการ Passivation ที่ไม่ดีหรือไม่สมบูรณ์ทำให้เกิดการข้ามกระบวนการโดย H₂S จะ ไปกัดกร่อนผนังหอแทนการกัดกร่อนบริเวณฟิล์ม Passivation ซึ่งจะเกิด ผลเสียที่มากกว่าหากผนังหอถูกกัดกร่อน ในอนาคต Particle ของ FeS₂ ก็ยัง สามารถเกิดขึ้นได้อยู่แต่อาจจะต้องใช้เวลานานในการก่อตัว ดังนั้นควรติดตาม การอุดตันอย่างใกล้ชิด

_____ (นายทศพล ปานสัสดี) วิศวกร

