COT 5600 Quantum Computing Spring 2019

Homework 3

Out: Wed 04/08

Due: Wed 04/19

Problem 1 (Quantum Fourier transform)

Let $N=2^n$, $[N]=\{0,\ldots,N-1\}$, and $\omega=e^{2\pi i/N}$ be an Nth root of unity. The Quantum Fourier transform F_N of size N is

$$F_N = \frac{1}{\sqrt{N}} \sum_{k,\ell \in [N]} \omega^{k \cdot \ell} |k\rangle \langle \ell|.$$

Show that F_N is unitary.

Problem 2 (Quantum Phase estimation)

Let $\varphi \in [0,1)$ be arbitrary and

$$|\varphi\rangle = \bigotimes_{k=n-1,\dots,0} \frac{1}{\sqrt{2}} (|0\rangle + \exp(2\pi i 2^k \varphi)|1\rangle).$$

Create a Python notebook that lets you compute and plot the probabilities for measuring $x \in \{0,1\}^n$ when the state is

$$F_N^{\dagger}|\varphi\rangle$$

for different N and φ . The plot should look similar to the plots on the slides depicting the different probability distributions. Do not forget about the bit-reversal that we talked about in class.