Dynamique et Modelisation

Alessandro Pacco

February 8, 2020

Contents

1	Intr	roduction to dynamical systems	5
	1.1	System of order 1 with flow on the \mathbb{R} axis	6
	1.2	Potential Formulation	6
	1.3	System of order 2: the pendulum	6

4 CONTENTS

Chapter 1

Introduction to dynamical systems

Newton solved the 2-body problem in 1666.

Definition 1. Given $f: \mathbb{R}^N \to \mathbb{R}^N$, a dynamical system is a Cauchy problem of the form $\dot{x} = f(x)$ with $x(t_0) = x_0$, and where $x: \mathbb{R} \to \mathbb{R}^N$. We call N the number of degrees of freedom. \mathbb{R}^N is called the phase space. For a given solution x, the flow of f is $\phi(x_0,t) = x(t)$. A trajectory is one of the curves of the flow $\phi(x_k,t)$ (i.e. we change the initial condition x_k for the solution).

For example if we take a dynamical system of the form $\dot{x} = \mu x$, $\mu \in \mathbb{R}_{+}^{*}$, then the graphs are the following:

In general we can construct a solution to the Cauchy problem thanks to $x(t+\epsilon)=x(t)+\epsilon f(x)$. If for example we take $f(x)=\mu x$ then we have a linear dynamical system; if instead we decide to consider $f(x)=\mu x-x^2$ then we get a nonlinear dynamical system. For example if we take a harmonic oscillator then we get a differential equation of the form $m\ddot{x}+kx=0$, with $\omega^2=k/m$, which implies $\ddot{x}=-\omega^2 x$. Then we get a 2 order dynamical system (i.e. N=2) of the form

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -\omega^2 x_1 \end{cases}$$

Another example is the dumped harmonic oscillator:

$$\ddot{x} = -\gamma \dot{x} - \omega^2 x$$

which leads, with

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -\omega^2 x_1 - \gamma x_2 \end{cases}$$

to the matrix problem

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x_2} \end{pmatrix} = \begin{pmatrix} 0 & & 1 \\ -\omega^2 & & -\gamma \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

For example the dynamical system defined by

$$\ddot{x} = -\omega^2 x + \cos(\omega_F t)$$

has N=3, with

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -\omega^2 x_1 + \cos(\omega_F x_3) \\ \dot{x}_3 = 1 \end{cases}$$

The pendulum has an equation of the form

$$\ddot{x} + \frac{g}{l}\sin(x) = 0$$

which represents a dynamical system of order 2 which is not linear.

Now we take $f: \mathbb{R}^3 \to \mathbb{R}^3$, $x = (x_1, x_2, x_3)$. $\dot{x} = f(x)$, $f(x) = (-10x_1 + 10x_2, 28x_1 - x_2 - x_1x_3, -\frac{8x_3}{3} + x_1x_2)$ which was given by Lorentz in 1963.

Theorem 1. (Cauchy-Lipschitz): Given $\dot{x} = f(x)$; if f is locally Lipschitz, i.e. $\forall x_l \in \mathbb{R}^N$ there exists a neighborhood U of x_l such that $\forall (x,y) \in U^2$, $|f(x) - f(y)| \leq k|x - y|$, then there exists a unique trajectory passing for any point x of the phase space.

Example 1. : We consider the example of the bucket of water

...

1.1 System of order 1 with flow on the \mathbb{R} axis

Take $\dot{x} = \sin(x)$, $x(t_0) = x_0$. Then we have that

$$\int \frac{1}{\sin(x)} = \int dt \Rightarrow -\ln|\frac{1}{\sin(x)} + \cot(x)| = t + c, \ x_0 = \frac{\pi}{4}$$

we have the following graph for f(x):

Another example is given by $\dot{x} = x^2 - 1$: INSERT GRAPH

Another example is given by $\dot{x} = 10x - x^3$, which give the following graph: Insert graph.

The last example is given by $\dot{x} = f(x), \ f(x) = x - \cos(x)$: Insert graph

1.2 Potential Formulation

This technique consists basically in writing $f(x) = -\frac{dV}{dx}$. Then if we want to solve $\dot{x} = f(x) = -\frac{dV}{dx}$, we can write $\dot{v} = \frac{dV}{dx} \frac{dx}{dt} = -\left(\frac{dV}{dx}\right)^2$. Then we have to find the minimum of v (graph)

1.3 System of order 2: the pendulum

We have $Ml\ddot{\theta} = -Mg\sin\theta \Rightarrow \ddot{\theta} + \frac{g}{l}\sin\theta = 0$ and if θ is small we linearize and write $\ddot{\theta} + \frac{g}{l}\theta = 0$. The solution is then given by $\theta(t) = \theta_0\cos(\omega t + \phi)$, with $\omega = \sqrt{\frac{g}{l}}$, $T = 2\pi\sqrt{\frac{l}{g}}$.

Now, if we consider $\ddot{x} + \sin x = 0$, with

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -\sin x_1 \end{cases}$$

we obtain the following graph: graph

We can write the energy as $E = \frac{1}{2}\dot{\theta}^2 + \frac{g}{l}(1 - \cos\theta)$, E(0,0) = 0. The following differential equation follows:

$$\frac{dE}{dt} = \dot{\theta}(\ddot{\theta} + \frac{g}{l}\sin\theta) = 0$$