Université de Strasbourg

RAPPORT DE STAGE

Modelisation de l'equation du transfer radiatif et reconstruction de la densite par un reseau de neurones

Auteur : Roussel Desmond NZOYEM

Maitres de stage : Emmanuel FRANCK Laurent NAVORET Vincent VIGON

Enseignant référent : Christophe PRUD'HOMME

Stage realise dans le cadre du Master CSMI du 15 juin 2020 au 15 aout 2020 au sein de l'equipe MOCO a l'UFR de mathématiques et d'informatique

Annee academique 2020 - 2021

Table des matières

1	Introduction	1
2	Présentation de l'IRMA 2.1 Structure de l'organisation	2 2 2
3	Résolution de l'EDP en 1D3.1Schéma de splitting3.2Implémentation3.2.1Configuration d'une simulation3.2.2Sauvegarde des données3.3Résultats	3 3 3 3 3
4	Résolution de l'EDP en 2D 4.1 Schéma de splitting	4 4 4 4 4
5	Apprentissage 5.1 Les couches utilisées 5.2 Configuration de l'entrainement 5.3 Différents Modèles 5.3.1 Régression 5.3.1.1 en 1D 5.3.1.2 en 2D 5.3.2 Classification	5 5 5 5 5 5 5
6	Bilan du stage6.1 Ressources utilisées6.2 Journal de bord6.3 Difficultés rencontrées et solutions apportées6.4 Les apports du stage	6 6 6 6
7	Conclusion	7
A	Comment reproduire les resultats? A.1 Execution du code 1D/2D	8 8 8

Liste des abbreviations

ETR Equation (du) Transfert RadiatifETL Equilibre Thermique Local

Liste des symboles

ρ	densite du milieu	$kg m^{-3}$
σ_a	opacite d'absorption	m^{-1}
σ_c	opacite de diffusion (de scattering)	m^{-1}
С	vitesse de la lumiere	${\rm ms^{-1}}$

Introduction

Présentation de l'IRMA

2.1 Structure de l'organisation

(ORGANIGRAMME)

2.2 L'équipe MOCO

Résolution de l'EDP en 1D

- 3.1 Schéma de splitting
- 3.2 Implémentation
- 3.2.1 Configuration d'une simulation
- 3.2.2 Sauvegarde des données
- 3.3 Résultats

Résolution de l'EDP en 2D

- 4.1 Schéma de splitting
- 4.2 Implémentation
- 4.2.1 Configuration d'une simulation
- 4.2.2 Sauvegarde des données
- 4.3 Résultats

Apprentissage

- 5.1 Les couches utilisées
- 5.2 Configuration de l'entrainement
- 5.3 Différents Modèles
- 5.3.1 Régression
- 5.3.1.1 en 1D
- 5.3.1.2 en 2D
- 5.3.2 Classification

Bilan du stage

- 6.1 Ressources utilisées
- 6.2 Journal de bord
- 6.3 Difficultés rencontrées et solutions apportées
- 6.4 Les apports du stage

Conclusion

Annexe A

Comment reproduire les resultats?

A.1 Execution du code 1D/2D

Pour compiler le code de resolution de l'EDP, on a deux options :

- Utiliser Cmake
- Utiliser Docker

A.2 Sauvegarde des resulats

A.3 Execution des notebook et apprentissage