Stepping a Window over Data

1..w 2 ..w+1 3 ..w+2 ... n-3w+1 ..n-2w n-2w+1 ..n-w n-2w+1 ..n-w

w is the width spanning each window
s is the slide == 1 that separates successive window starts
only the `first` currently windowed item expires with each slide

Symbols used

n is the data length, the tally of sequenced items

i,j indices into the data sequence (0 < i <= j <= n)

(a)
$$0 < i <= j <= n$$

w is the window width, counts the indices within one window

s is the windowing slide, counts the indices between window starts

ς is the window separation, counts nonoverlapping indices between windows

(b1)
$$\varsigma == s - w$$
 (b2) $w == s - \varsigma$ (b3) $s == \varsigma + w$

ω is the number of complete windows available given **n**, **w**

 $\dot{\omega}$ is the count of indices in the incomplete window (may be 0).

(d1)
$$\omega = \text{div}(\mathbf{n}, \mathbf{w})$$
 (d2) $\dot{\omega} = \text{rem}(\mathbf{n}, \mathbf{w})$ (d3) $\omega, \dot{\omega} = \text{div}(\mathbf{n}, \mathbf{w})$

index(window_j.start) - index(window_i.stop) counts the indices between window