CHAPTER FIVE

RTL NOR Gate

Digital flectronics.

Basic RTL AND Gate

If at <u>least one input</u> less than $V_{BE}(FA)$, then the corresponding Q is off. i.e. $I_E=0$

$$V_{OL} = 0$$

If <u>ALL inputs</u> are greater than $V_{\rm IH}$, then the corresponding Q is saturated.

$$V_{OH} = V_{CC} - N \times V_{CE}(sat)$$

RTL With Active Pull-Up Inverter

The object is to incresae the fan-out of RTL inverter gate (gives more current).

To accumplish active pull-up:

Basic assumptions: *
$$R_{CP} << R_C$$

$$R_{CP} \cong 0.1 \times R_C$$

 $R_{BS} = R_{BO}$ $\underline{\hspace{0.1cm}}$ and Q_0 & Q_s turn ON and OFF simultaneously

 Q_S provides logic inversion for Q_P such that Q_S & Q_P never turn ONsimutaneously

RTL With Active Pull-Up

Inverter

For V_{IN}≥V_{INH} (Logic High)

 $Q_O \& Q_S$ are ON (sat) $V_X = V_Y = 0.2V$. \rightarrow $V_X - V_Y < V_{BEP}(FA)$. i.e. Q_P is cut-off (very very large resistance)

For V_{IN}≤V_{INL} (Logic Low)

 Q_0 & Q_s are cut-off Q_p is ON (sat)

$$V_O = V_{CC} - V_{CE}(sat) - I_{CP}R_{CP}$$

Fan-Out of RTL With Active Pull-Up Inverter

Fan-out is limited by the <u>output</u> high state of the driving gate $Q_O \& Q_S$ are cut-off Q_P is ON (sat)

Equivalent cct of driving gate when output is high

Equivalent cct of <u>one load</u> gate when input is high

Fan-Out of RTL With Active Pull-Un Inverter

Fan-out is limited by the <u>output</u> high state of the driving gate $Q_O \& Q_S$ are cut-off Q_P is ON (sat)

As M increases, I_{FP} increases, then V_O decreases

Fan-Out of RTL With Active Pull-Up Inverter

The limiting factor for V_0 is that it must be sufficient to saturate Q_s and Q_0 of the load gates.

It is easy to saturate Q_S since its effective load seen by the collector is very large with negligible I_C and I_B since Q_P is cut-off

i.e. to saturate Q_s , we need:

Jr. Anas

Fan-Out of RTL With Active Pull-Up Inverter

Example

Determine the maximum fan-out for driving RTL gate, assuming $V_{CE}(sat) = 0.2V$, $V_{BE}(sat) = 0.8V$, $\beta_F = 25$, $V_{CC} = 5V$, $R_C = 1k\Omega$, $R_{BO} = R_{BS} = 10k\Omega$, $R_{CP} = 100\Omega$.

Solution

$$V_{OH}(\min) = 0.8 + \frac{10}{25} \left(\frac{5 - 0.2}{1} \right) = 2.7V$$

$$M = \frac{5 - 0.2 - 2.7}{2.7 - 0.8} \times \frac{10}{2 \times 0.1} = 55.3$$

M = 55

(without pull-up, *M* was 11. i.e. It increases 500%. See p. 10)

RTL SPICE Simulation

Example

- *Repeat the last example using PSPICE
- *Plot V_O as a function of V_{IN}
- *Refer to pages <u>67-68</u> in the text book.

Direct Coupled Transistor

Three-input DCTL NOR gate

Advantage: Reduce the packing density of RTL in integrated circuits form since the base resistors are eliminated

<u>Disadvantage</u>: Current hogging when V_o is at logic high for fan-out greater than one

Direct Coupled Transistor

Logic

Example

Consider a DCTL RTL inverter with fan-out be three with $V_{BE1}(FA) = 0.7V$, $V_{BE2}(FA) = 0.7V$, $V_{BE3}(FA) = 0.65V$. Determine the base current of each load gate for output high state.

Solution

HW #5:Solve Problems: 5.8, 5.11, 5.22, 5.24, 5.27, 5.28, 5.29 (hint: neglect I_{RP})

Solutions of Prob. 5.24 & 5.27:
On the white board