Abstract Algebra I David Cardozo

Nombre del curso: Abstract Algebra I

CÓDIGO DEL CURSO: MATE2101

UNIDAD ACADÉMICA: Departamento de Matemáticas

PERIODO ACADÉMICO: 201510 HORARIO: Ma y Vi, 2:00 a 3:50

Nombre Profesor(a) Principal: Mehdi Garrousian

HORARIO Y LUGAR DE ATENCIÓN: Mo y 17:00 a 18:00, Office H-409

1 Organization of the course

• 5 Homework 15 /

- Quizzes 10 /
- Exam
- Parciales 35 %

We will cover Chapter 1-9 skiping 6, which will include

2 Introduction

We begin with section 0.3, let us consider the following quotient group, let n be a fixed integer $\frac{\mathbb{Z}}{n\mathbb{Z}}$ which is described better as:

• $a \iff n|(a-b)$ in better notation $a \equiv b \mod n$

$$\frac{\mathbb{Z}}{n\mathbb{Z}} = \{\bar{0}...n - 1\}$$

Prove:

$$\bar{a} + \bar{b} = a + b$$
 $\bar{a}\bar{b} = \bar{a}\bar{b}$

Check that this is well defined. The strategy is to use that if $\bar{a}=\bar{a}$ and $\bar{b}=\bar{b}'$ and it should imply that $\bar{ab}=\bar{a'b'}$

Example 1.

$$\bar{2}x = \bar{1} \mod 6$$

 $\bar{2}x = \bar{1} \mod 5$

Observe that we can use a force-brute approach to solve each equation, and we see that the first one is not solvable, meanwhile the second is by $\bar{3}$. we now denote

$$\left(\frac{\mathbb{Z}}{n\mathbb{Z}}\right)^x = \{ \text{ Elements with a multiplicative inverse} \}$$

for example

$$\bar{2} \in (\frac{\mathbb{Z}}{n\mathbb{Z}})^x \text{for } n = 5$$

Theorem 1. The above group is given by $\{\bar{a} \in (\frac{\mathbb{Z}}{n\mathbb{Z}})^x : (a,n)=1\}$

Proof. Observe
$$(a,b) = \min \{ax + by > 0 : x,y \in \mathbb{Z}\}$$
 if we supoose $(a,n) = 1 \implies \exists x,y \in \mathbb{Z}$

Example 2. Compute the remainder of 37^{1000} in division by 29. Let us observe then $\left|\frac{\mathbb{Z}}{n\mathbb{Z}}\right| = \phi(n)$, and the properties of ϕ to calculate we use the prime decomposition. to solve the above problem we use Fermat little theorem.

$$a^{p-1} \equiv 1 \mod p$$

.

3 Basic Axioms

Definition 1. A binary opertion * on a set G is a function:

$$*: G \times G \to G$$

, *(a,b) = a*b which if it has the following properties:

- ullet * is associative, i.e
- * is Abelian or commutative, i.e

Example 3. Observe that the following sets are group (R, +), (R, \cdot) . The dot product fails since it is not an operation.

Definition 2. A group is an ordered pair (G,*) set with a binary operation such that the following properties hold:

- $\bullet \ * \ is \ associative$
- $\exists e \in G \forall g \in Gg * e = g = e * g$
- $\forall a \in G \exists b \in G \ s.t \ a * b = b * a = e$

G is abelian if * is abelian.

Example 4. $(\mathbb{R},+), (\mathbb{C}^x,\cdot), (M_{\mathbb{R}}(2,2),\cdot)$ is not associative, $GL_n(\mathbb{R}), (\frac{\mathbb{Z}}{n\mathbb{Z}},+)$

So it is clear that it depends on the ground set and the operation.

Example 5. If (A,*) and (B,\diamond) are groups then $A \times B$ has a natural group structure. Note: Prove that the operations hold the properties.

Theorem 2. If G is a group under *, then:

- ullet the identity is unique
- a^{-1} is unique for every a
- $(a^{-1})^{-1} = a$
- $(a*b)^{-1} = a^{-1}*b^{-1}$
- for any $a_1, a_2, \ldots, a_n \in G$, $a_1 * \ldots a_n$ is well-defined

Proof. Assume we have e and e' as identity, so that e' * e = e' and because e' is an identity e' = e' * e = e. Note: Write number 2. Let b, b' be inverses of a, b = be = b(ab'), then by associativity (ba)b' = eb' = b'. Note: For five use induction

Remark: Mathematics on a different planet

and is denoted by |x|. if there's no such n then $|x| = \infty$.

Proposition 1. Let G be a group and $a, b \in G$. The equations ax = b and ya = b has unique solutions.

Proof. Prove it! you will need left and right cancellation.

Example 6. No cancelation $\bar{2}\bar{3} = \bar{0} \mod 6$, observe that $\frac{Z}{6Z}$ is not a group **Definition 3.** The order of $x \in G$ is the least positive integer n such that $x^n = e$

Example 7. Order of $\bar{2}$ is 5 in $(\frac{\mathbb{Z}}{5\mathbb{Z}},+)$ where e=0, Order of $\bar{2}$ in $((\frac{\mathbb{Z}}{5\mathbb{Z}})^x,\cdot)$.

4 Dihedral Group

Geometric Group.

 $D_{2n} = \{\text{the group of symmetries of the ngon}\}\$

$$|D_{2n}=2n|$$

elements: n rotations through $\theta=0,\frac{2\pi}{n},2\frac{2\pi}{n},...,(n-1)\frac{2\pi}{n}$ and n more which are reflections thorough vertices. and n reflections thoriugh edges. Rotations through $\frac{2\pi}{n}=r$, there are n, and let s, .. |s|=n. and $s\neq r^i$ for any i.

- $s \neq r^j$ for any j.
- $sr^i \neq s^j$ for all $0 \leq i \neq j \leq n-1$
- $rs = sr^{-1}$, more generally
- $r^i s = s r^{-i}$ for $0 \le i \le n$

Definition 4. $S \subset G$, the subgroup generated by S, denoted $\langle S \rangle$ the smallest subgroup containing S. And formall $\bigcap_{S \subset H \ subgroup} H$ which is the collection all finite products and inverse of elements of S

Example 8. $< r > in D_{2n}$ is $\{r^i : i\}$ which is exactly $\frac{Z}{2Z}$, meanwhile $< s > = \frac{Z}{2Z}$ which $< r, s > = D_{2n}$

Any equation that the generators satisfy is called a **relation Notation** Presentation with generators and relations.

$$G = \langle S|R_1, \dots R_m \rangle$$

Example 9.

$$D_{2n} = \langle r, s | r^n = s^2 = 1, rs = sr^{-1} \rangle$$

Example 10. Symmetries of a regular tetrahedron = 12

5 Symmetric Group

Let Ω be a set then S_{Ω} be the set of bijection from $\Omega \to \Omega$:

$$S_{\Omega} = \{ \sigma : \sigma : \Omega \to \Omega \}$$

$$\Omega = [n] = \{1, 2, n\}$$

$$S_n := S_{[n]} \text{cycle} \quad (a_1 \to a_2 \dots a_m) \in S_n$$
 otherwise

We define elements $(ij)^{-1} = (ij) (ijk) = (jki)$, we observe $|S_n| = n!$

Example 11. $|S_3| = 6$ and S_3 is not abelian. S_n $n \geq 3$ is nonabelian.

Disjoint cycles commute, rearranging the elements inside a cycle doesnt change it

Matrix Group

Definition 5. A field is the smallest math structure in which we can perform addition, and multiplication and division by nonzero element. To be more precise, a field F is a set with two operations + and \times , such that:

- $a \cdot (b+c) = a \cdot b + a \cdot c$
- $F^{\times} = F \{0\}$ all nonzero elements are invertible.

Given any field F, we can construct $\mathrm{GL}_{\mathrm{n}}(F)$ this is the group of all the invertible matrices over F. to do: How many elements do we have in $|GL_n|$ (F_p) for case $2(p^2-1)(p^2-p)$

Recall that in the last class we saw that $G \circlearrowleft A$ which takes $g \in G$ to σg a permutation for $a \in A$ $\sigma_q(a) = g \cdot a$. observe that we define:

Definition 6.

$$Kernel(\phi) = \{g \in G | \sigma_g = id_(A)\}\$$
$$= \{g \in G | g \cdot a = afor \ all \ a \in A\}\$$

is a subgroup.

Example 12. Observe $G \odot G$ any groups acts on itself.

Example 13. V a vector space over F, $F - \{0\} = F^x \circlearrowright V$ by scalar multiplication

Example 14. $D_{2n} \circlearrowright [n] = \{1, \dots n\}$ so that $D_{2n} \to S_n$

So observe that for n = 3 we have that $D_6 \to S_3$, we observe that this is an isomorphism (it just need to satisfy injectivity since it has the same elements).

6 Subgroups

Exercises to be done: 3,9,12,15,17

Definition 7. Let G be a nonempty group. A subset H of G is a subgroup (denoted $H \leq G$), if H is closed under multiplications and inverses, more formally: $x, y \in H, x^{-1} \in H, \forall x, y \in H$

Example 15. $2\mathbb{Z} \leq \mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C} \leq ...$ with addition, and observe that $(\mathbb{Q}^x, \cdot) \not\leq (\mathbb{R}, +)$ since zero is not there

Proposition 2. $H \subseteq G$, then $H \leq G$ if and only if:

- 1. $H \neq \emptyset$
- 2. $\forall x, y \in H \quad xy^{-1} \in H$

Proof. By condition 1, $x \in H$, so, by (2) $e = xx^{-1} \in H$. Use (2), let x = e, $\forall y (y \in H \implies y^{-1} \in H)$

Exercise 6 G abelian torsion subgroup, $tor(G) = \{g \in G | |g| < \infty\}$ Observe it is not empty, we find that tor(G) is not empty. and we prove that in general, $|g| = |g^{-1}|$.

$$g^{n} = e \iff g^{-n} = e$$
$$(g^{-1})^{n} = e$$

Example $\mathrm{GL}_2(\mathbb{R})$, the $\mathrm{Tor}\,\mathrm{Gl}_2(\mathbb{R})$ is not a subgroup.

centralizers and normalizers

Definition 8. Let $A \subseteq subset$ G. The centralizer of A in G is $C_G(A) = \{g \in G | gag^{-1} = a \ \forall a \in A\}$

$$gag^{-1} = a \iff ga = ag$$

this is the set of all elements that commute with all elements of A

Example 16. $A = \{e\} \implies C_G(A) = G$, another **example** can be $r \notin C_D(\{s\})$ but $s \in C_{D_{2n}}(\{s\})$.

Show that $C_G(A)$ is a subgroup.

Proof.

$$g \in C_G(A) \stackrel{?}{\to} g^{-1} \in C_G(A)$$

ang we can observe that $gag^{-1} = a \implies a = g^{-1}ag$

Notation if $A=\{a\} \implies$ we write $C_g(a)$ Examples $C_{Q_8}(i)=\{\pm 1, \pm i\}$