Lema do Bombeamento Linguagens Regulares

.)

EDUARDO FREIRE NAKAMURA

Instituto de Computação Universidade Federal do Amazonas nakamura@icomp.ufam.edu.br

¹Este material utiliza conteúdo das aulas fornecidas pelo Prof. Vilar da Câmara Neto (disponível em http://prof.vilarneto.com). ²Permissão de uso fornecida pelos autores.

 3 As figuras utilizadas neste material são de domínio público, disponíveis na Internet sem informações de direitos autorais.

Introdução

2

- Linguagens regulares são aquelas reconhecidas por AFs
 - Geradas por GRs
 - Representadas por ERs
- Há alguma característica comum às Linguagens Regulares tal que dada uma linguagem L, seja possível determinar se ela é ou não regular, antes de tentar construir um AF?

- Toda linguagem finita é regular!
- E se a linguagem for infinita?

Introdução

3

 O Lema do Bombeamento (LB) especifica uma propriedade comum à qualquer linguagem regular

- Outras linguagens não reconhecidas por AFs (não regulares) também possuem esta propriedade
 - Portanto, se L satisfaz o LB, não significa que L seja regular
 - Contudo, se *L* não satisfaz o LB, então *L* não é regular

Intuição

4

 O LB diz que qualquer linguagem infinita de dada classe pode ser bombeada e ainda pertencer àquela classe

- A linguagem pode ser bombeada se
 - Qualquer cadeia suficientemente longa na linguagem pode ser quebrada em pedaços
 - Alguns destes pedaços podem ser repetidos um número arbitrário de vezes (bombeada) para produzir uma cadeia mais longa na linguagem

- Para toda linguagem regular L, existe um AF que a reconhece
 - Seja o AF com o menor número de estados possível
 - Seja k, a quantidade de estados desse AF
 - Seja $z \in L$, tal que $|z| \ge k$
 - O Portanto, há uma sequência de estados $q_1, ..., q_f$ (q_f final e q_1 inicial), que reconhece z
 - O Como o AFD tem apenas k estados e $|z| \ge k$, ao menos um estado é visitado mais de uma vez
 - \circ Seja q_r o estado visitado múltiplas vezes
- A cada visita ao estado q_r uma cadeia de símbolos se repete, ou seja, é bombeada

Intuição

- Vamos dividir z em três subcadeias, ou seja z = uvw
 - \circ u é a parte que aparece antes de q_r
 - v é a parte que aparece entre duas ocorrências de q_r
 - w é a parte que aparece após a segunda ocorrência de q_r
- Podemos representar esta situação com o AFNE abaixo

7

- Assim,
 - Para todo i \geq 0, $uv^iw \in L$


```
uv^0w = uw \in L (v não ocorre)

uv^1w = uvw \in L (v ocorre uma vez)

uv^2w = u(vv)w \in L (v ocorre duas vezes)

uv^3w = u(vvv)w \in L (v ocorre três vezes)

\vdots

uv^nw = u(v^n)w \in L (v ocorre v vezes)
```

Exemplo 1

8

• $L_1 = 01*0$

Ou seja, $L_1 = \{00, 010, 0110, \dots\}$

- A cadeia 0<u>1</u>0 é bombeável em L₁
 - A porção sublinhada pode ser bombeada quantas vezes se queira
 - A palavra obtida pertencerá a L₁

• AF para L_1

- Quais cadeias são bombeáveis obtendo-se uma palavra de L₁?
 - 0 0110
 - 0 011110
 - 0 0111110
 - 00

Exemplo 2

9

Seja L₂ definida pelo AF abaixo

- Quais palavras pertencem a L_2 e são bombeáveis?
 - 0 010
 - 01010
 - 0 0101010
 - 0 010101010

Lema do Bombeamento

Lema: Seja L uma linguagem regular. Então existe uma constante k > 0, tal que para qualquer palavra z ∈ L com |z| ≥ k, existem u, v e w, satisfazem as seguintes condições

- \circ z = uvw
- $\circ |uv| \le k$
- \circ $\nu \neq \lambda$
- o uv^iw ∈ L para todo $i \ge 0$

 v é a subcadeia que pode ser bombeada (removida ou repetida arbitrariamente)

- z = uvw
- $|uv| \le k$
- ν ≠ λ
- $uv^iw \in L$ para todo $i \ge 0$
- 1. Supõe-se que *L* seja regular
- 2. Escolhe-se uma palavra z cujo tamanho seja maior que k, a constante do LB
- 3. Mostra-se que, para toda decomposição de z em u, v e w, existe i tal que uviw não pertence a L

O segredo é escolher z e i tais que uv^iw não pertence a L

- z = uvw
- $|uv| \le k$
- ν ≠ λ
- $uv^iw \in L$ para todo $i \ge 0$
- 1. Supõe-se que *L* seja regular
- Escolhe-se uma palavra z cujo tamanho seja maior que k, a ◀ constante do LB
- 3. Mostra-se que, para toda decomposição de z em u, v e w, existe i tal que uviw não pertence a L

- $L = \{x \in \{0,1\}^* \mid x = x^R\}$
- Provar que L não é regular
 - O Suponha L regular
 - O Seja $z = 0^k 10^k$, onde $k \in a$ constante referida no LB
 - O Neste caso, v possui apenas 0's, pois $z = uvw = 0^k 10^k$ e $|uv| \le k$
 - \circ v tem ao menos um 0, pois $v \neq \lambda$
 - O Portanto, $uv^2w = (0^{k+|v|})10^k$ não pertence a L, uma contradição
 - O Logo, L não pode ser regular

- z = uvw
- $|uv| \le k$
- ν ≠ λ
- $uv^iw \in L$ para todo $i \ge 0$
- 1. Supõe-se que *L* seja regular
- Escolhe-se uma palavra z cujo tamanho seja maior que k, a constante do LB
- 3. Mostra-se que, para toda decomposição de z em u, v e w, existe i tal que uviw não pertence a L

- $L = \{a^n b^n \mid n \in \mathbb{N}\}$
- Provar que L não é regular
 - Suponha L regular
 - O Seja $z = a^k b^k$, onde k é a constante referida no LB
 - O Neste caso, v possui apenas a's, pois $z = uvw = a^k b^k$ e $|uv| \le k$
 - \circ v tem ao menos um a, pois $v \neq \lambda$
 - O Portanto, $uv^2w = (a^{k+|v|})b^k$ não pertence a L, uma contradição
 - O Logo, L não pode ser regular

- z = uvw
- $|uv| \le k$
- ν ≠ λ
- $uv^iw \in L$ para todo $i \ge 0$
- 1. Supõe-se que *L* seja regular
- Escolhe-se uma palavra z cujo tamanho seja maior que k, a constante do LB
- 3. Mostra-se que, para toda decomposição de z em u, v e w, existe i tal que uviw não pertence a L

- $L = \{a^m b^n \mid m > n \in \mathbb{N}\}$
- Provar que L não é regular
 - Suponha L regular
 - O Seja $z = a^{k+1}b^k$, onde $k \in a$ constante referida no LB
 - O Neste caso, v possui apenas a's, pois $z = uvw = a^{k+1}b^k$ e $|uv| \le k$
 - \circ v tem ao menos um a, pois $v \neq \lambda$
 - O Portanto, $uv^{0}w = (a^{k+1-|v|})b^{k}$ não pertence a L, uma contradição
 - O Logo, L não pode ser regular

- z = uvw
- $|uv| \le k$
- ν ≠ λ
- $uv^iw \in L$ para todo $i \ge 0$
- 1. Supõe-se que *L* seja regular
- 2. Escolhe-se uma palavra z cujo tamanho seja maior que k, a constante do LB
- 3. Mostra-se que, para toda decomposição de z em u, v e w, existe i tal que uviw não pertence a L

- $L = \{ww \mid w \in \{0,1\}^*\}$
- Provar que L não é regular
 - Suponha L regular
 - O Seja $z = 1^k 01^k 0$, onde $k \in a$ constante referida no LB
 - O Neste caso, v possui apenas 1's, pois $z = uvw = 1^k01^k0$ e $|uv| \le k$
 - \circ v tem ao menos um 1, pois $v \neq \lambda$
 - O Portanto, $uv^2w = 1^{k+|v|}01^k0$ não pertence a L, uma contradição
 - O Logo, L não pode ser regular

Exercícios

16

Prove que os conjuntos abaixo não são linguagens regulares

- 1. $\{0^m 1^n \mid m < n\}$
- 2. $\{0^n 1^{2n} \mid n \ge 0\}$
- 3. $\{0^m 1^n 0^m \mid m, n \ge 0\}$
- 4. $\{10^n1^n \mid n \ge 0\}$