Programme de colles en mathématiques

BCPST1B Clémenceau

semaine 9 du 29 novembre au 3 décembre 2021

1 Nombres complexes

- 1.1 Définitions et opérations sur les complexes
- 1.1.1 forme algébrique d'un nombre complexe
- 1.1.2 opérations sur les complexes

somme, produit, inverse.

- 1.1.3 représentation géométrique d'un nombre complexe
- 1.1.4 conjugué d'un nombre complexe
- 1.1.5 module d'un nombre complexe
- 1.2 Formes trigonométriques et exponentielle d'un complexe
- 1.2.1 définition de e^{ix}
- 1.2.2 formules d'Euler et de Moivre
- 1.2.3 argument d'un complexe non nul
- 1.2.4 forme exponentielle d'un complexe non nul
- 1.3 Équations du second degré
- 1.3.1 racines carrées d'un nombre complexe
- 1.3.2 équation du second degré à coefficients réels
- 1.3.3 suites récurrentes linéaires d'ordre 2

2 Calculs de dérivées, primitives et intégrales

- 2.1 Calcul de dérivées
- 2.1.1 dérivées des fonctions usuelles
- 2.1.2 opérations sur les dérivées
- 2.1.3 dérivée de la composée de deux fonctions
- 2.1.4 dérivées partielles d'une fonction à 2 variables
- 2.2 Calcul de primitives
- 2.2.1 définition d'une primitive

on admet que les fonctions continues admettent des primitives

2.2.2 primitives des fonctions usuelles

2.2.3 formes usuelles à reconnaître

2.3 Calcul d'intégrales

2.3.1 définition de l'intégrale

l'intégrale est définie en terme d'aire sous la courbe.

2.3.2 premières propriétés

Chasles, linéarité, positivité, stricte positivité, croissance de l'intégrale ces propriétés sont admises et ne serviront qu'au calcul d'intégrales

2.3.3 calcul d'une intégrale à l'aide d'une primitive

2.3.4 intégration par parties

2.3.5 changement de variable "en pratique"

3 Informatique

Les listes : syntaxe, algorithmes élémentaires nécessitant un parcours de liste, algorithmes demandant la création d'une nouvelle liste

Compétences attendues

- 1. Savoir calculer avec des nombres complexes, en particulier savoir utiliser à bon escient module et conjugué pour ne pas systématiquement passer par la forme algébrique du complexe
- 2. Savoir mettre un complexe sous forme algébrique et sous forme exponentielle et utiliser la forme la plus adaptée selon le contexte
- 3. Déterminer les racines carrées d'un nombre complexe
- 4. Savoir résoudre une équation du second degré avec discriminant < 0, idem avec les suites récurrentes d'ordre 2
- 5. savoir déterminer le domaine de dérivabilité et calculer la dérivée d'une fonction
- 6. idem avec la primitive (à ce stade, le "domaine de primitivation" coïncide avec le domaine de continuité)
- 7. calcul d'intégrales avec les 3 méthodes vues en cours : détermination d'une primitive, intégration par parties, changement de variable
- 8. savoir manipuler les listes en Python, maîtriser les algorithmes élémentaires portant sur les listes