Modelagem Multivariada de Heteroscedasticidade para estimativa de Risco Dinâmico em Otimização de Portfólio

Introdução

O problema de otimização de portfólio é um desafio fundamental na teoria financeira que envolve a alocação eficiente de recursos em diferentes ativos. O objetivo é encontrar a combinação ideal de investimentos que maximize o retorno esperado para um determinado nível de risco, levando em conta restrições de investimento como limitações de alocação e liquidez. Central ao problema é a definição de uma medida de risco, responsável por quantificar o potencial de perda financeira associado à um portfólio, sendo este um tópico de considerável atenção acadêmica [1, 2, 3, 4].

A medida de risco tradicional em otimização de portfólio é variância, seguindo o método de Média-Variância proposto por Markowitz [5]. Apesar de conveniente devido à sua simplicidade esta medida não possui muitas propriedades desejáveis [6], tornando comum o uso de medidas mais elaboradas [7, 8, 9]. Um dos problemas da variância(separação sujeito verbo?), compartilhado por muitas medidas mais sofisticadas, é a suposição que risco é estático no tempo, enquanto mercados financeiros são dinâmicos e sujeitos à constante variação temporal [10]. Métricas de risco que tentam capturar a natureza dinâmica de uma carteira de investimentos são apropriadamente denominadas "medidas de risco dinâmicas".

A incorporação de medidas de risco dinâmicas em otimização de portfólio pode ser útil para a geração de representações mais precisas de risco instantâneo [11] e para a construção de portfólios dinâmicos, cuja distribuição de investimentos evolui ao longo do tempo por meio de políticas de rebalanceamento [12, 13]. Como várias medidas de risco são calculadas a partir da matriz de covariância das séries temporais de preços ou retornos dos ativos de uma carteira, a modelagem temporal da matriz de covariância é uma forma de gerar métricas de risco dinâmicas que é bem estudada na literatura [14, 15].

A modelagem temporal da matriz de covariância de um conjunto de séries temporais é essencialmente um problema de modelagem de heteroscedasticidade multivariada. Dentre os modelos tradicionais com esta finalidade, os propostos por Engle [?] [?] geram medidas de risco dinâmicas mais representativas que suas contrapartidas estáticas [12, 13, 11]. As dificuldades de especificação, identificação e complexidade computacional dos modelos de Engle e seus derivados [16], resultantes principalmente de sua natureza paramétrica, sugerem o uso de modelos de aprendizado de máquina como uma alternativa mais flexível.

A aplicação de algoritmos de aprendizado de máquina para modelagem temporal de matrizes de covariância atinge resultados melhores que abordagens tradicionais em alguns trabalhos [?, ?, ?]. Aprendizado profundo, em particular, apresenta resultados promissores em estudos recentes [?, ?, ?].

O objetivo do projeto proposto é investigar soluções de otimização de portfólio a partir de uma medida de risco dinâmica obtida por meio de modelagem multivariada de heteroscedasticidade de preços e retornos de ativos financeiros. Serão explorados modelos paramétricos, não paramétricos e híbridos com uma ênfase em aprendizado profundo. (incluir isso?) Como objetivo secundário será escrito um sistema para avaliação prática do método de otimização de portfólio desenvolvido.

Referencial Teórico

Demonstrar conhecimento da linha de pesquisa escolhida destacando em que pontos a proposta de projeto poderá contribuir na expansão do estado da arte

Metodologia

Demonstrar clareza em dar soluções para a linha de pesquisa escolhida

Cronograma

Conforme estabelecido pela estrutura curricular do PPGCC será cursada a disciplina Projeto e Análise de Algoritmos do Núcleo Comum. Das disciplinas das linhas de pesquisa de Inteligência Artificial e Otimização há interesse do candidato em cursar Fundamentos de Estatística para Ciência dos Dados B, Aprendizado Profundo, Aprendizado de Máquina, Programação Não Linear e Programação Estocástica. Das demais destaca-se a matéria Finanças Quantitativas e Gerenciamento de Risco. As matérias serão cursadas de acordo com o planejamento conjunto do aluno e orientador e oferta.

As atividades pertinentes à pesquisa do candidato serão distribuídas entre os quatro semestres da seguinte maneira:

- 1. Revisão de literatura e experimentos iniciais com base de dados M6.
- 2. Início de desenvolvimento de sistema de otimização e elaboração do método proposto.
- 3. Finalização do sistema de otimização. Experimentos com o método proposto. Ajustes no método.
- 4. Avaliação de experimentos finais e redação de dissertação.

Referências

- [1] S. Emmer, M. Kratz, and D. Tasche, "What is the best risk measure in practice? a comparison of standard measures," 2015.
- [2] M. B. Righi and D. Borenstein, "A simulation comparison of risk measures for portfolio optimization," *Finance Research Letters*, vol. 24, pp. 105–112, 2018.
- [3] L. W. Hoe, J. S. Hafizah, I. Zaidi, et al., "An empirical comparison of different risk measures in portfolio optimization," Business and Economic Horizons, vol. 1, no. 1, pp. 39–45, 2010.
- [4] H. P. Ramos, M. B. Righi, P. C. Guedes, and F. M. Müller, "A comparison of risk measures for portfolio optimization with cardinality constraints," *Expert Systems with Applications*, p. 120412, 2023.
- [5] H. Markowitz, "Portfolio selection," *The Journal of Finance*, vol. 7, no. 1, pp. 77–91, 1952.
- [6] R. T. Rockafellar, S. P. Uryasev, and M. Zabarankin, "Deviation measures in risk analysis and optimization," *University of Florida, Department of Industrial & Systems Engineering Working Paper*, no. 2002-7, 2002.
- [7] P. S. N. Gambrah and T. A. Pirvu, "Risk measures and portfolio optimization," *Journal of Risk and Financial Management*, vol. 7, no. 3, pp. 113–129, 2014.
- [8] E. N. Sereda, E. M. Bronshtein, S. T. Rachev, F. J. Fabozzi, W. Sun, and S. V. Stoyanov, "Distortion risk measures in portfolio optimization," *Handbook of portfolio construction*, pp. 649–673, 2010.
- [9] A. Adam, M. Houkari, and J.-P. Laurent, "Spectral risk measures and portfolio selection," *Journal of Banking & Finance*, vol. 32, no. 9, pp. 1870–1882, 2008.
- [10] P. F. Procacci and T. Aste, "Portfolio optimization with sparse multivariate modeling," *Journal of Asset Management*, vol. 23, no. 6, pp. 445–465, 2022.
- [11] J. E. Weirum and C. E. Jensin, "Creating optimal portfolios of stocks with time-varying risk," Master's thesis, 2013.

- [12] M. Ilbasmis, "Asset allocation with dynamic conditional correlations (dcc) model," *Pamukkale University Journal of Social Sciences*, pp. 150–175, 2022.
- [13] D. M. Holten and L. H. Sendstad, "Evaluation dynamic covariance matrix forecasting and portfolio optimization," Master's thesis, 2012.
- [14] V. Zakamulin, "A test of covariance-matrix forecasting methods," *The Journal of Portfolio Management*, vol. 41, no. 3, pp. 97–108, 2015.
- [15] L. K. Chan, J. Karceski, and J. Lakonishok, "On portfolio optimization: Forecasting covariances and choosing the risk model," The review of Financial studies, vol. 12, no. 5, pp. 937–974, 1999.
- [16] A. Silvennoinen and T. Teräsvirta, "Multivariate garch models," in *Handbook of financial time series*, pp. 201–229, Springer, 2009.