Erstes Tutorium

Jendrik Stelzner

28. April 2017

1 Zur Definition des Polynomrings

Es sei R ein kommutativer Ring. Auf der Menge der endlichen Folgen auf R

$$R[\mathbb{N}] := \{(a_n)_{n \in \mathbb{N}} \mid a_i \in R \text{ für alle } i \in \mathbb{N}, a_i = 0 \text{ für fast alle } i \in \mathbb{N}\}$$
 (D)

wird eine Addition

$$(a_n)_{n\in\mathbb{N}} + (b_n)_{n\in\mathbb{N}} = (c_n)_{n\in\mathbb{N}} \quad \text{mit} \quad c_i = a_i + b_i \text{ für alle } i \in \mathbb{N}$$
 (A)

und eine Multiplikation

$$(a_n)_{n\in\mathbb{N}}\cdot (b_n)_{n\in\mathbb{N}}=(c_n)_{n\in\mathbb{N}}\quad \text{mit}\quad c_i=\sum_{j=0}^i a_jb_{i-j} \text{ für alle } i\in\mathbb{N}$$
 (M)

definiert. Zusammen mit dieser Addition und Multiplikation ist $R[\mathbb{N}]$ ein kommutativer Ring. Das Einselement ist gegeben durch $1_{R[\mathbb{N}]}=(1,0,0,\dots)$.

Wir führen nun die Notation $t := (0,1,0,0,\dots)$ ein. Induktiv ergibt sich für alle $n \geq 0$, dass

$$t^{0} = (1, 0, 0, \dots),$$

$$t^{1} = (0, 1, 0, 0, \dots),$$

$$t^{2} = (0, 0, 1, 0, 0, \dots),$$

$$\vdots$$

$$t^{n} = (0, \dots, 0, 1, 0, 0, \dots),$$

dass also $t^n = (\delta_{ni})_{i \in \mathbb{N}}$.

Für alle $r,s\in R$ gilt

$$(r,0,0,\dots)+(s,0,0,\dots)=(r+s,0,0,\dots)$$

und

$$(r, 0, 0, \dots) \cdot (s, 0, 0, \dots) = (r \cdot s, 0, 0, \dots).$$

Wir können deshalb R mit dem Unterring

$$\{(r,0,0,\dots)\mid r\in R\}\subseteq R[\mathbb{N}]$$

identifzieren. Für alle $r \in R$ und $(a_0, \ldots, a_n, 0, 0, \ldots) \in R[\mathbb{N}]$ git dann, dass

$$r \cdot (a_0, a_1, \dots, a_n, 0, 0, \dots) = (r, 0, 0, \dots) \cdot (a_0, \dots, a_n, 0, 0, \dots)$$
$$= (ra_0, \dots, ra_n, 0, 0, \dots).$$
(S)

Damit ergibt sich nun für jedes $(a_0, \ldots, a_n, 0, 0, \ldots) \in R[\mathbb{N}]$, dass

$$(a_0, a_1, \dots, a_n, 0, 0, \dots)$$

$$= (a_0, 0, 0, \dots) + (0, a_1, 0, 0, \dots) + \dots + (0, \dots, 0, a_n, 0, 0, \dots)$$

$$= a_0(1, 0, 0, \dots) + a_1(0, 1, 0, 0, \dots) + \dots + a_n(0, \dots, 0, 1, 0, 0, \dots)$$

$$= a_0t^0 + a_1t^1 + \dots + a_nt^n = \sum_{i=0}^n a_it^i.$$

Da $a_i=0$ für alle i>n gilt, lässt sich statt $\sum_{i=0}^n a_i t^i$ auch $\sum_{i=0}^\infty a_i t^i$ schreiben. Anstelle von (D) schreibt man nun

$$R[t] = \left\{ \sum_{i=0}^{\infty} a_i t^i \,\middle|\, a_i \in R \text{ für alle } i \in \mathbb{N}, a_i = 0 \text{ für fast alle } i \in \mathbb{N} \right\}. \tag{D'}$$

Die Addition (A) ist in dieser Schreibweise durch

$$\left(\sum_{i=0}^{\infty} a_i t^i\right) + \left(\sum_{i=0}^{\infty} b_i t^i\right) = \sum_{i=0}^{\infty} (a_i + b_i) t^i \tag{A'}$$

gegeben, und die Multiplikation (M) durch

$$\left(\sum_{i=0}^{\infty} a_i t^i\right) \cdot \left(\sum_{i=0}^{\infty} b_i t^i\right) = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{i} a_i b_{j-i}\right) t^i. \tag{M'}$$

Für $r \in R$ und $\sum_{i=0}^{\infty} a_i t^i \in R[t]$ ist (S) gegeben durch

$$r \cdot \left(\sum_{i=0}^{\infty} a_i t^i\right) = \sum_{i=0}^{\infty} (ra_i) t^i. \tag{S'}$$

Bemerkung. • Man bezeichnet das obige Element t as "Variable".

- Statt "t" lassen sich auch andere Buchstaben verwenden; beliebt sind T, x, X, y und Y.
- Die Multiplikation auf R[t] ist eindeutig dadurch bestimmt, dass 1. $t^i \cdot t^j = t^{i+j}$ für alle $i,j \in \mathbb{N}$,

- 2. $r \cdot (f \cdot g) = (r \cdot f) \cdot g = f \cdot (r \cdot g)$ für alle $r \in R$ und $f, g \in R[t]$,
- 3. Die Multiplikation ist distributiv in beiden Argumenten.
- Ist K ein Körper, so definiert (S') eine Skalarmultiplikation von K auf K[t], die zu einer K-Vektorraumstruktur auf K[t] führt. Eine K-Basis von K[t] ist dann durch die Familie $(t^n)_{n\in\mathbb{N}}$ gegeben.

2 Polynomdivision, Hauptideale und größte gemeinsame Teiler

Definition 1. Es sei R ein kommutativer Ring, und es seien $a, b \in R$. Dann ist a ein Teiler von b, bzw. a teilt b, falls es $c \in R$ mit b = ac gibt. Man schreibt dann $a \mid b$.

Definition 2. Es sei R eine kommutativer Ring, und es seien $a,b \in R$. Ein Element $d \in R$ heißt größter gemeinsamer Teiler von a und b, falls

- 1. $d \mid a \text{ und } d \mid b$, und
- 2. für jedes $d' \in R$ mit $d' \mid a$ und $d' \mid b$ gilt $d' \mid d$.

Von nun an sei K ein Körper.

Satz 3 (Polynomdivision / Teilen mit Rest). Es seien $f,g \in K[t]$ mit $g \neq 0$. Dann gibt es eindeutige Polynome $q,r \in K[t]$ mit

- 1. deg(r) < deg(g) und
- 2. f = qg + r.

Beweis. • Wir zeigen zunächst die Eindeutigkeit:

Es seien $q,q',r,r' \in K[t]$ mit $\deg(r),\deg(r') < \deg(g)$ und qg+r=f=q'g+r'. Dann gilt

$$(q - q')g = r' - r, (1)$$

Zum einen gilt dabei, dass

$$\deg(r'-r) \le \max\{\deg(r'), \deg(r)\} < \deg(g),$$

und zum anderen gilt

$$\deg((q - q')g) = \deg(q - q')\deg(g).$$

Daraus folgt, dass $\deg(q-q')\deg(g)<\deg(g)$ gilt. Deshalb gilt $\deg(q-q')<0$, also $\deg(q-q')=-\infty$ und somit q-q'=0. Aus (1) folgt damit auch, dass r'-r=0.

• Wir zeigen nun die Existenz per Induktion über $n \coloneqq \deg f$. Dabei sei $m \coloneqq \deg g$; dabei ist $m \ge 0$ da $g \ne 0$ gilt.

Als Induktionsanfang dient der Fall n < m. Dann lässt sich q = 0 und r = f wählen.

Es sei nun $n \geq m$, und es seien $f = a_n t^n + \sum_{i=0}^{n-1} a_i t^i$ und $g = b_m t^m + \sum_{j=0}^{m-1} b_j t^j$, wobei $b_m \neq 0$. Die beiden Polynome f und $\frac{a_n}{b_m} t^{n-m} g$ haben dann den gleichen Grad (hierfür sorgt der Faktor t^{n-m} sowie den gleichen Leitkoeffizienten (hierfür sorgt der Faktor $\frac{a_n}{b_m}$). In der Differenz $f - \frac{a_n}{b_m} t^{n-m} g$ löschen sich diese Leitkoeffizieten daher aus, weshalb

$$\deg\left(f-\frac{a_n}{b_m}t^{n-m}g\right)<\deg(f)$$

gilt. Nach Induktionsvoraussetzung gibt es deshalb $q,r\in K[t]$ mit $\deg(r)<\deg(g)$ und

$$f - \frac{a_n}{b_m} t^{n-m} g = qg + r,$$

und somit

$$f = \left(\frac{a_n}{b_m} t^{n-m}\right) g + r.$$

Dies zeigt die Existenz.

Bemerkung 4. Der obige Beweis von Satz 3 liefert ein konstruktives Verfahren zum Berechnen von q und r.

Wir zeigen im Folgenden mithilfe der Polynomdivision den folgenden Satz:

Satz 5. Je zwei Polynome $f,g \in K[t]$ besitzen einen größten gemeinsamen Teiler $d \in K[t]$, und es gibt $a,b \in K[t]$ mit d=af+bg.

Wir führen einen Beweis mithilfe von Idealen.

Definition 6. Eine Teilmenge $I \subseteq R$ eines kommutativen Rings R heißt Ideal falls I eine Untergruppe der additiven Gruppe von R ist, und $rx \in I$ für alle $r \in R$ und $x \in I$ gilt.

Beispiel 7. Es sei R ein kommutativer Ring.

- 1. Für jedes $a \in R$ ist $(a) \coloneqq \{ra \mid r \in R\}$ ein Ideal in R. Man bezeichnet ein Ideal dieser Form als Hauptideal.
- 2. Sind $I, J \subseteq R$ Ideale, so ist auch $I + J := \{x + y \mid x \in I, y \in J\}$ ein Ideale in R. Dies ist das kleinste Ideale in R, dass die beiden Ideale I und J enthält.
- 3. Induktiv folgt, dass für alle Ideale $I_1, \ldots, I_n \subseteq R$ auch

$$I_1 + \dots + I_n = \{x_1 + \dots + x_n \mid x_1 \in I_1, \dots, x_n \in I_n\}$$

ein Ideale in R ist.

(Alternativ lässt sich auch direkt Nachrechnen, dass für jede Familie $(I_{\lambda})_{\lambda \in \Lambda}$ von Idealen $I_{\lambda} \subseteq R$ die Summe

$$\sum_{\lambda \in \Lambda} I_{\lambda} = \left\{ \sum_{\lambda \in \Lambda} x_{\lambda} \,\middle|\, x_{\lambda} \in I_{\lambda} \text{ für alle } \lambda \in \Lambda, x_{\lambda} = 0 \text{ für fast alle } \lambda \in \Lambda \right\}$$

ein Ideal in R ist. Dies ist das kleinste Ideal in R, dass alle I_{λ} enhält.

4. Für alle a_1, \ldots, a_n ist

$$(a_1, \ldots, a_n) := (a_1) + \cdots + (a_n) = \{r_1 a_1 + \cdots + r_n a_n\}$$

ein Ideal in R.

Proposition 8. Jedes Ideal $I \subseteq K[t]$ ist von der Form I = (f) für ein $f \in I$, d.h. jedes Ideal in K[t] ist ein Hauptideal.

Beweis. Ist $I = \{0\}$, so lässt sich f = 0 wählen. Wir betrachten daher im Folgenden nur den Fall $I \neq \{0\}$.

Es sei $f \in I$ mit $f \neq 0$ von minimalen Grad. Dann gilt auch $af \in I$ für alle $a \in K[t]$, und somit $(f) \subseteq I$. Ist andererseits $g \in I$, so gibt es aufgrund der Polynomdivision $q, r \in K[t]$ mit $\deg(r) < \deg(f)$ und g = qf + r. Dann gilt $r = g - qf \in I$. Wegen der Gradminimalität von f muss bereits r = 0 gelte, und somit $g = qf \in (f)$.

Bemerkung 9. Für einen kommutativen Ring $R \neq \{0\}$ sind die folgenden Bedingungen äquivalent:

- 1. R ist ein Körper.
- 2. In R[t] ist ein "Teilen mit Rest" wie in Satz 3 möglich, d.h. für alle $f,g \in R[t]$ mit $g \neq 0$ gibt es $q,r \in R[t]$ mit $\deg(r) < \deg(g)$ und f = qg + r (die Eindeutigkeit von q und r wird hier nicht gefordert).
- 3. Der Ring R[t] ist ein Integritätsbereich und jedes Ideal $I \subseteq R[t]$ ist ein Hauptideal.

Insbesondere lässt sich an den ringtheoretischen Eigenschaften des Polynomrings R[t] schon erkennen, ob R ein Körper ist.

Wir können nun den größten gemeinsamen Teiler zweier Polynome idealtheoretisch beschreiben, und erhalten als Korollar einen Beweis für Satz 5.

Lemma 10. Es sei R ein kommutativer Ring, und es seien $f, g \in R$. Gibt es $d \in R$ mit (f,g)=(d), so ist d ein größter gemeinsamer Teiler von f und g.

Beweis. Da $f,g\in (f,g)=(d)$ gilt, gibt es $a,b\in R$ mit f=ad und g=bd, we shalb $d\mid f$ und $d\mid g$ gilt. Andererseits folgt aus $d\in (d)=(f,g)$, dass es $a,b\in R$ mit d=af+bg gibt. Is $d'\in R$ mit $d'\mid f$ und $d'\mid g$, so gilt auch $d'\mid (af+bg)=d$.

Beweis von Satz 5. Nach Proposition 8 gibt es $d \in K[t]$ mit (f,g) = (d). Nach Lemma 10 ist d ein größter gemeinsamer Teiler von f und g. Da $d \in (d) = (f,g)$ gilt, gibt es $a,b \in K[t]$ mit d = af + bg.

- Bemerkung 11. 1. Sind $d, d' \in K[t]$ zwei größte gemeinsame Teiler von $f, g \in K[t]$, so gibt es ein $\lambda \in K$, $\lambda \neq 0$ mit $d' = \lambda d$. Man spricht daher häufig von dem größten gemeinsamen Teiler zweier Polynome, und bezeichnet diesen mit ggT(f,g).
- 2. Da es in K[t] eine Division mit Rest gibt (Satz 3) lässt sich ein größter gemeinsamer Teiler von $f,g\in K[t]$ mit den euklidischen Algorithmus berechnen, sowie entsprechende $a,b\in K[t]$ mit ggT(f,g)=af+bg.

Bemerkung 12. Auch in $\mathbb Z$ ist eine Division mit Rest möglich, d.h. für alle $n,m\in\mathbb Z$ mit $m\neq 0$ gibt es eindeutige $q,r\in\mathbb Z$ mit n=qm+r; dies lässt sich analog zu Satz 3 zeigen, wobei man anstelle des Grades deg mit dem Betrag $|\cdot|$ arbeitet. Analog zu Proposition 8 lässt sich deshalb zeigen, dass jedes Ideal $I\subseteq\mathbb Z$ von der Form I=(n) für ein $n\in\mathbb Z$ ist.