$$S_m(t) = V_m g(t) \cos(2\pi f_c t + \Theta_m)$$

$$V_m = \sqrt{A_{ms}^2 + A_{mc}^2}, \quad \Theta_m = arctg(\frac{A_{ms}}{A_{mc}})$$
(3.4.)

КАМ можно рассматривать как комбинацию амплитудной и фазовой модуляции. Можно образовать определенную комбинацию M_1 уровней АМ и M_2 уровней позиционной ΦM , чтобы сконструировать комбинированное АМ- ΦM сигнальное созвездие, содержащее $M=M_1\cdot M_2$ точек пространства сигналов. Если $M_1=2^n$, $M_2=2^m$, то сигнальное созвездие сводится к мгновенной передаче $m+n=\log_2 M_1\cdot M_2$ двоичных символов, возникающих со скоростью $\frac{R}{m+n}$. Пространственная диаграмма комбинированной АМ- ΦM показана на рисунке 3.3.

Рисунок 3.3. Пространственная диаграмма комбинированной АМ-ФМ.

Для частного случая, когда амплитуда сигналов принимает ряд дискретных значений $\{(2m-1-M)d, m=\overline{1:M}\}$, пространственная диаграмма сигналов является прямоугольной, изображена она на рисунке 3.4.

Рисунок 3.4. Пространственная диаграмма сигналов КАМ.