

You are given a tree (a simple connected graph with no cycles). The tree has N nodes numbered from 1 to N and is rooted at node 1.

Find the maximum number of edges you can remove from the tree to get a forest such that each connected component of the forest contains an even number of vertices.

Input Format

The first line of input contains two integers N and M. N is the number of vertices, and M is the number of edges. The next M lines contain two integers u_i and v_i which specifies an edge of the tree.

Constraints

• $2 \le N \le 100$

Note: The tree in the input will be such that it can always be decomposed into components containing an even number of nodes.

Output Format

Print the number of removed edges.

Sample Input

- 10 9
- 2 1 3 1
- 5 2
- 6 1
- 7 2
- 8 6 9 8
- 10 8

Sample Output

2

Explanation

On removing edges (1,3) and (1,6), we can get the desired result.

Original tree:

Decomposed tree:

Submissions: 18513 Max Score: 50 Difficulty: Medium Rate This Challenge: ☆☆☆☆☆

```
C++
 Current Buffer (saved locally, editable) & 40
 1 ★#include <cmath>
 2 #include <cstdio>
   #include <vector>
    #include <iostream>
 5
    #include <algorithm>
 6
    using namespace std;
 7
 8
9
   int main() {
        /* Enter your code here. Read input from STDIN. Print output to STDOUT */
10
        return 0;
11
12
    }
13
                                                                                                               Line: 1 Col: 1

    Test against custom input

                                                                                                    Run Code
                                                                                                                 Submit Code
1 Upload Code as File
```

Copyright © 2017 HackerRank. All Rights Reserved

Join us on IRC at #hackerrank on freenode for hugs or bugs.

Contest Calendar | Interview Prep | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Terms Of Service | Privacy Policy | Request a Feature