

	Kod ucznia
Mie	ejsce na metryczkę ucznia

Małopolski Konkurs Matematyczny dla uczniów szkół podstawowych województwa małopolskiego Etap rejonowy Rok szkolny 2021/2022

Drogi Uczniu!

- 1. Przed Tobą zestaw 17 zadań konkursowych, za które łącznie możesz uzyskać 60 punktów.
- 2. Na rozwiązanie zestawu masz **120 minut**. Komisja konkursowa 15 minut przed końcem przypomni Ci o upływającym czasie.
- 3. Brudnopis nie podlega ocenie.
- 4. <u>Nie podpisuj się imieniem i nazwiskiem, zakoduj pracę zgodnie z poleceniami Komisji Konkursowej.</u>
- 5. Nie używaj korektora ani długopisu zmazywalnego zadanie, w którym ich użyjesz nie będzie oceniane. Odpowiedzi udzielane przy użyciu ołówka nie będą oceniane.
- 6. Przekaż w depozyt członkom Komisji telefon komórkowy, jeśli go posiadasz przy sobie.
- 7. Staraj się, aby Twoja praca była czytelna. Pisz i rysuj wyraźnie, nie stosuj skrótów, zapisuj słowa w pełnym brzmieniu.
- 8. Stwierdzenie niesamodzielności pracy, korzystanie z kalkulatora lub przeszkadzanie innym spowoduje wykluczenie z udziału w konkursie.

Życzymy Ci satysfakcji z uczestnictwa w konkursie i powodzenia!

Karta odpowiedzi

Kod ucznia		

Numer	Liczba	Miejsce na odpowiedź					WYPEŁNIA KOMISJA	
zadania	punktów za zadanie	A	В	C	D	E	Przyznane punkty	
1.	2							
2.	2							
3.	2							
4.	2							
5.	2							
6.	2							
7.	2							
8.	2							
9.	3							
10.	3							
11.	3							
12.	3							
13.	3							
14.	3							

 Numer zadania
 1. – 14.
 15.
 16.
 17.
 SUMA

 pa punktów za zadanie
 34
 8
 10
 8
 60

zamknięte:

Liczba punktów za zadanie 34 8 10 8 60

Uzyskane punkty

Suma punktów za zadania

Kody sprawdzających:

Informacje dla ucznia – zadania zamknięte

- 1. W zadaniach od 1. do 8. podane są 4 odpowiedzi: A, B, C, D. W zadaniach od 9. do 14. podanych jest 5 odpowiedzi: A, B, C, D, E. Wybierz tylko jedną odpowiedź i wpisz wyraźnie znak X w odpowiedniej kratce w tabeli na karcie odpowiedzi. Jeśli zaznaczysz błędną odpowiedź, otocz ją kółkiem i wpisz X w inną kratkę.
- 2. Pamiętaj o wypełnieniu karty odpowiedzi!
- 3. Ostatnie trzy strony tego arkusza są przeznaczone na brudnopis.

Zadanie 1. **2**p

Rzeźbiarz ma dwa sześciany wykonane z tej samej masy plastycznej. Krawędź mniejszego sześcianu jest pięciokrotnie krótsza niż krawędź większego sześcianu. Ile waży mniejszy sześcian, jeśli większy waży 10 kg?

A. 8 dag

B. 40 dag

C. 80 dag

D. 200 dag

Zadanie 2. **2**p

Wiedząc, że $2^9 \approx 5 \cdot 10^2$ oraz $3^9 \approx 2 \cdot 10^4$, wybierz najdokładniejsze przybliżenie liczby 12^{19} .

A. $1.2 \cdot 10^{19}$

B. $3 \cdot 10^{20}$

C. $5 \cdot 10^{24}$

D. 10^{26}

Zadanie 3. **2p**

Liczba 5a-2b stanowi 40% liczby b-a. O ile procent liczba b jest większa od liczby a?

A. 225%

B. $166\frac{2}{3}\%$

C. 125%

D. $66\frac{2}{3}\%$

Zadanie 4. **2p**

Wszystkie ściany boczne pewnego graniastosłupa prostego mają takie samo pole, ale graniastosłup ten nie jest prawidłowy. Jakim wielokatem może być podstawa tego graniastosłupa?

A. trójkatem

B. trapezem prostokatnym **C.** prostokatem

D. rombem

Zadanie 5. 2p

Asia kupiła napój składający się z soku z aronii, soku z jabłek oraz wody. Sok z aronii stanowi 20% objętości napoju, sok z jabłek stanowi 48% objętości napoju, a resztę stanowi woda. Po wypiciu czwartej części początkowej objętości napoju, pozostały napój rozcieńczyła wodą (dolała wody i dokładnie wymieszała napój), by miał taką samą objętość, jak na początku. Następnie wypiła szóstą część rozcieńczonego napoju i ponownie dolała wodę do pozostałej części, tak by uzyskać początkową objętość. W jakim stosunku pozostają teraz objętość soku z aronii, objętość soku z jabłek i objętość wody w dwukrotnie rozcieńczonym napoju?

A. 5:12:8

B. 115:276:209

C. 5:12:23

D. 15:36:49

Zadanie 6. 2p

Według cennika pewnej firmy taksówkowej na rachunek klienta składają się dwie kwoty. Na początek klient płaci 6 złotych za przejazd samochodem 5-osobowym albo 8 złotych za przejazd 7-osobowym minivanem. Druga opłata jest zależna od liczby przejechanych kilometrów – stała stawka jest naliczana za każdy rozpoczęty kilometr trasy, niezależnie od pory, miejsca przejazdu i wyboru typu samochodu.

Klient przejechał trasę o długości 11,4 km minivanem i zapłacił 53,60 zł. Ile kosztuje przejechanie trasy dwukrotnie dłuższej samochodem 5-osobowym?

A. 91,20 zł

B. 93,40 zł

C. 97,20 zł

D. 103,20 zł

Zadanie 7. 2p

Wakacyjny remont szkoły rozpoczął się w poniedziałek 28 czerwca i miał trwać do 31 sierpnia włącznie. Ekipa remontowa pracowała po 8 godzin dziennie od poniedziałku do piątku. Na koniec trzydziestego dnia pracy zauważono, że ekipa zdążyła wykonać dokładnie połowę zaplanowanych robót. Ile dni pracy zostało na wykonanie drugiej połowy zaplanowanych robót?

A. 16

B. 17

C. 24

D. 35

Zadanie 8. 2p

Niech a = 0,(1), b = 0,(01) oraz c = 0,(001). Która z poniższych liczb jest równa liczbie $\frac{25}{22}$?

A. 10a + 2.5b

B. 1 + a + 36c

C. 1 + 13b + 5c

D. 10a + 25c

Zadanie 9. 3p

Filip oglądnął 73 filmy i każdemu z nich przyznał ocenę od 1 do 5 gwiazdek, przy czym każdej z ocen użył co najmniej raz. Gdy posortował te filmy według liczby przyznanych gwiazdek w kolejności od największej do najmniejszej, zauważył, że film znajdujący się dokładnie pośrodku listy otrzymał 3 gwiazdki, tak samo, jak film znajdujący się na ósmym miejscu od końca. Ile filmów otrzymało od Filipa 3 gwiazdki?

- A. co najmniej 29 i co najwyżej 34 filmy
- **B.** co najmniej 30 i co najwyżej 35 filmy
- C. co najmniej 29 i co najwyżej 68 filmów
- D. co najmniej 29 i co najwyżej 69 filmów
- E. co najmniej 30 i co najwyżej 69 filmów

Zadanie 10. 3p

W pudełku znajduje się 12 białych i 8 czarnych piłek. Wybierz zdanie prawdziwe.

- **A.** Jeżeli do pudełka dorzucimy 8 piłek czarnych, to prawdopodobieństwo wylosowania piłki czarnej zwiększy się dwukrotnie.
- **B.** Aby mieć pewność, że wylosujemy co najmniej trzy czarne piłki, musimy wylosować co najmniej 3 piłki, a co najwyżej 8 piłek.
- C. Jeżeli z pudełka zabierzemy jedną piłkę białą i jedną piłkę czarną, prawdopodobieństwo wylosowania piłki czarnej nie zmieni się.
- **D.** Aby mieć pewność, że wylosujemy co najmniej dwie piłki tego samego koloru, musimy wylosować co najmniej trzy piłki.
- **E.** Najmniejsza liczba piłek, którą musimy dorzucić, aby prawdopodobieństwo wylosowania piłki białej nie zmieniło się, to 20 piłek, w tym 12 piłek białych i 8 piłek czarnych.

Zadanie 11. 3p

Trzy kolejne wierzchołki równoległoboku ABCD znajdują się w punktach $B=\left(3+\sqrt{2},2-\sqrt{2}\right),$ $C=\left(5+\sqrt{2},\sqrt{2}+2\right)$ oraz $D=\left(-3+\sqrt{2},\sqrt{2}+2\right)$. Jakie będą współrzędne punktu przecięcia przekątnych równoległoboku ABCD?

A. (2, 2) **B.** (1,41, 2) **C.** $(1 + \sqrt{2}, \sqrt{2} + 2)$ **D.** $(3, \sqrt{2})$ **E.** $(\sqrt{2}, 2)$

Zadanie 12. 3p

Na płaszczyźnie poprowadzono 9 prostych, przy czym proste a, b i c są równoległe do siebie, tak jak proste d, e i f oraz proste g, h i i.

Dwanaście punktów przecięcia prostych połączono łamaną zamkniętą, tworząc wielokąt przedstawiony na rysunku obok. Wielokąt ten można podzielić na dwanaście przystających trójkątów różnobocznych. Ile wynosi suma kątów wewnętrznych tego wielokąta?

- **A.** 1440°
- **B.** 1620°
- **C.** 1800°
- **D.** 1980°
- **E.** 2160°

Zadanie 13. 3p

Rozważmy wszystkie liczby sześciocyfrowe, których zapis składa się z dwóch różnych cyfr występujących naprzemiennie. Ile spośród takich liczb jest podzielnych przez 36?

- **A.** 6
- **B.** 8
- **C.** 11
- **D.** 12
- **E.** 13

Zadanie 14. 3p

Adam jest o 6 lat młodszy od Bogdana i dwukrotnie młodszy od Celiny. Suma wieku Adama i Bogdana, gdy Celina była w wieku Bogdana, jest dwukrotnie mniejsza od sumy wieku Adama i Celiny, gdy Adam będzie w wieku Bogdana. Ile lat ma teraz Bogdan?

- **A.** 24
- **B.** 21
- **C.** 18
- **D.** 16
- **E.** 14

Informacje dla ucznia – zadania otwarte

- **1.** Rozwiązania i odpowiedzi do zadań otwartych od **15.** do **17.** zapisz czytelnie pod zadaniami w miejscu do tego przeznaczonym.
- 2. Wpisz swój kod ucznia w miejsca na górze stron 7, 9 i 11.
- 3. Pamiętaj o zapisaniu wszystkich obliczeń i odpowiedzi. Błędne obliczenia przekreślaj i zapisuj nowe.

Kod u	cznia		

Zadanie 15. 8p

Liczba półpierwsza to taka liczba naturalna, która jest iloczynem dokładnie dwóch, niekoniecznie różnych, liczb pierwszych.

- a) (1p) Ile jest liczb półpierwszych nie większych niż 15?
- b) (1p) Ile dzielników naturalnych może mieć liczba półpierwsza? Podaj wszystkie możliwości.
- c) (**3p**) Oceń prawdziwość podanych zdań. Wpisz PRAWDA lub FAŁSZ w miejsce wyznaczone po prawej stronie zdań I, II i III.

I	Suma dwóch dowolnych liczb półpierwszych jest liczbą pierwszą lub półpierwszą.	
II	NWW(p, q) = pq dla dowolnych liczb półpierwszych p i q .	
III	Kwadrat dowolnej liczby półpierwszej ma 5 lub 9 dzielników naturalnych.	

d) (3p) Zapisz liczbę 1260 jako iloczyn liczb półpierwszych. Podaj wszystkie możliwości.

Rozwiązanie:

Kod ucznia

Zadanie 16. 10p

I. Franek wyciął z papieru pasek w kształcie równoległoboku ABCD.

Następnie złożył pasek w trzech miejscach, jak pokazano na rysunku obok, tak iż wierzchołek *A* pokrył się z wierzchołkiem *B*, a wierzchołek *C* pokrył się z wierzchołkiem *D*. Krawędź zewnętrzna złożonego paska ma kształt ośmiokąta foremnego, a wewnętrzna – kwadratu. Szerokość paska papieru wynosi *x* cm.

- II. Dany jest ośmiokąt foremny o boku długości $\sqrt{2}$.
 - a) (3p) Oblicz pole powierzchni tego ośmiokąta. Zapisz obliczenia.
 - b) (3p) Oblicz długość najdłuższej przekątnej tego ośmiokąta. Zapisz obliczenia.

Rozwiązanie:

Kod ucznia

Zadanie 17. 8p

Sportowiec wykonał ćwiczenie "Alfa" złożone z dwunastu szybkich biegów oraz truchtu pomiędzy biegami. Każdy szybki bieg odbywał się na dystansie 200 metrów, które sportowiec pokonał sprintem ze średnią prędkością 8 m/s. Pomiędzy każdymi dwoma kolejnymi szybkimi biegami sportowiec nie zatrzymywał się, lecz biegł truchtem przez dokładnie 1 minutę.

- a) (2p) Ile minut trwało ćwiczenie "Alfa"? Zapisz obliczenia.
- b) (**2p**) Jaka była średnia prędkość truchtu sportowca, jeżeli w trakcie wykonywania ćwiczenia "Alfa" przebiegł łączny dystans 3,72 km? Zapisz obliczenia.

Liczba kilokalorii spalonych przez sportowca w trakcie 1 minuty biegu jest wprost proporcjonalna do jego średniej prędkości. Wykonanie całego ćwiczenia "Alfa" pozwoliło sportowcowi spalić 186 kcal.

- c) (2p) Ile średnio kilokalorii spalił ten sportowiec w trakcie 1 minuty biegu sprintem? Zapisz obliczenia.
- d) (**2p**) Ile kilokalorii spaliłby ten sportowiec, gdyby zamiast zmieniać prędkość pokonał ten sam dystans ze średnią prędkością 4 m/s? Zapisz obliczenia.

BRUDNOPIS

Pamiętaj! Wszelkie zapisy obliczeń i rozwiązań na tej stronie nie podlegaja ocenie.

BRUDNOPIS

Pamiętaj! Wszelkie zapisy obliczeń i rozwiązań na tej stronie nie podlegają ocenie.

BRUDNOPIS

Pamiętaj! Wszelkie zapisy obliczeń i rozwiązań na tej stronie nie podlegaja ocenie.

