ВВЕДЕНИЕ

В настоящее время микропроцессорная техника прочно внедрилась практически во все отрасли промышленности. Любое современное производство уже невозможно представить без мощных систем управления, реализованных на новейших разработках микроэлектроники. Однако, одновременно с внедрением новых технологий на производстве, в высших учебных заведениях знакомства с ними не происходит. Это связано как с консервативностью учебной программы, так и отсутствием необходимого оборудования. В итоге, выпускник ВУЗ-а либо не может быть принят на хорошую работу из-за отсутствия практических знаний, либо принимается на низкоквалифицированную должность для одновременного дополнительного обучения.

Этого возможно избежать, постоянно модернизируя учебную программу и подстраивая ее под современные тенденции развития промышленности. Путей развития несколько:

- 1. использование современного инструментария;
- 2. разработка современных методик обучения;
- 3. подключение студентов к самостоятельной творческой работе.

Каждый из этих путей обладает своими достоинствами и недостатками. Однако лишь комбинируя их, можно добиться максимальных результатов.

1. ТРЕБОВАНИЯ К ФУНКЦИОНАЛУ ОТЛАДОЧНЫХ ПЛАТ

Применяемые в учебном процессе отладочные платы должны быть максимально приспособлены для решения определенного круга исследовательских задач. Основное условие для работы с ними - простота и наглядность. В зависимости от уровня учебной программы, отладочные платы можно разделить на две категории:

- обучающие предназначенные для ознакомления с инструментом на начальном этапе обучения;
- специализированные, предназначенные для решения конкретных задач и используемые при более глубоком изучении предмета.

Как правило, лаборатории оснащены обучающими отладочными платами вроде EASYAVR5 и подобных, Однако, подобные отладочные платы без дополнительной обвязки не предназначены для решения многих задач, связанных с обработкой внешних аналоговых и цифровых сигналов, управлением устройствами, регулировкой и визуальными контролем за оборудованием.

К рассмотренным двум категориям отладочных плат можно добавить третью - универсальные, имеющие на своем борту как средства для наблюдения за работой функций микроконтроллера, так и средства для управления и контроля возможными внешними устройствами.

В зависимости от изучаемой специальности, на отладочную плату накладываются различные требования, но все они сводятся к нескольким пунктам:

- 1. возможность подключения большого количества датчиков и исполнительных механизмов;
 - 2. наличие органов управления и регулировки. Кнопки, потенциометры;
 - 3. органы индикации светодиоды, цифровые индикаторы, ЖК-индикаторы;
 - 4. производительный микроконтроллер с большим набором функций;
- 5. простота работы с отладочной платой. Современные интерфейсы связи с компьютером и оборудованием.

Разумеется, что только специально разработанное для конкретной задачи устройство удовлетворяет всем возможным требованиям. Но оно не универсально. Поэтому необходимо адаптировать как отладочную плату под задачу, так и саму задачу под отладочную плату.

2. ИССЛЕДОВАНИЕ РЫНКА

Перед разработкой собственной учебной платформы, необходимо изучить существующие предложения рынка. Информация о существующих платах и их функционале получена из [1, 2, 3].

Критерии выбора отладочных плат для оценки:

- 1. 8-разрядный микроконтроллер;
- 2. отличная от "микроконтроллер на макетной плате" конструкция, возможно представляющая интерес для специалиста по системам управления;
 - 3. наличие органов управления и индикации на плате;
 - 4. большое число выводов для подключения;
 - 5. наличие встроенного программатора;
 - 6. стоимость платы до 5 000 рублей.

Таким образом, в сравнительную таблицу были отобраны следующие отладочные платы:

- 1. STM8L-DISCOVERY микроконтроллер от ST на небольшой печатной плате с ЖК-индикатором. Встроенный отладчик, все выводы микроконтроллера доступны для подключения;
- 2. EasyElectronic PinBoard отладочная плата для разработчика встраиваемых систем от некоммерческой команды сайта EasyElectronics;
- 3. AT AVR BUTTERFLY отладочная плата с большим ЖК-индикатором, джойстиков для управления и некоторыми телеметрическими датчиками;
- 4. AVR IO, PIC IO отладочные платы с оптически развязанными входами и релейными выходами;
- 5. AT STK500 мощная отладочная плата с большим набором функций EVBAVR03, AVBAVR04 отладочные платы с некоторым набором органов управления, 7-сегментным дисплеем и большой областью для макетирования;
- 6. ME EASYAVR5, ME-EASYPIC5, ME-ESY8051B отладочные платы от MicroElectronica, специально предназначенные для учебного процесса. Отличаются фирмой-производителем установленного процессора. Имеют множество кнопок и светодиодов. позволяют подключать как символьные, так и графические ЖК-индикаторы;
- 7. PIC-MT(PIC-MT-USB) небольшая отладочная плата на PIC-контроллере с RS-232 (USB)-интерфейсом, несколькими кнопками управления и ЖК-индикатором;
- 8. PIC-MAXI-WEB отладочная плата с Ethernet-интерфейсом, позволяющая разработать на ее основе промышленный контроллер с поддержкой сетевого подключения;
- 9. MSP-EASYWEB2 единственная плата на 16-разрядном микроконтроллере MSP430. имеет большое число выводов микроконтроллера, ЖК-индикатор, кнопки управления и два релейных выхода. Идеально подходит для ресурсоемких вычислений, а наличие Ethernet-интерфейса позволит разработать на ее основе промышленный контроллер с работой по сети.
- 10. Arduino Mega специальная аппаратно-программная платформа для быстрого старта по работе с микроконтроллерами. Базовая плата с микроконтроллером больше ничего не содержит. Однако интересна своей модульной конструкцией типа "бутерброд" для подключения дополнительных модулей, как самодельных, так и заводских.

Таблица 1 : Сравнительная таблица отладочных плат

Функция\отладочная плата	STM8L-DISCOVERY	EasyElectronics PinBoard	AT AVR BUTTERFLY	AVR IO	PIC IO	PIC MT	AT STK500	AVBAVR03	AVBAVR04	ME-EASYAVR5	ME-EASYPIC5	ME-EASY8051B	PIC-MAXI-WEB	MSP-EASYWEB2	Arduino Mega
Область применения	O	У	C	C	С	C	О	C	C	О	О	О	С	C	O
Тип микроконтроллера	ARM	AVR	AVR	AVR	PIC	PIC	AVR	AVR	AVR	AVR	PIC	8051	PIC	MSP430	AVR
Разрядность микроконтроллера	8	8	8	8	8	8	8	8	8	8	8	8	8	16	8
Тактовая частота микроконтроллера, МГц	16	20	16	10	20	4	20	16	16	16	20	40	40	10	16
Количество свободных выводов	48	32	нет	4	4	нет	32	32	32	32	32	32	4	58	70
Сменный кварцевый резонатор	да	да	нет	нет	нет	нет	да	да	да	да	да	да	нет	нет	нет
Область для макетирования	нет	да	нет	нет	нет	нет	нет	да	да	нет	нет	нет	нет	нет	нет
Количество кнопок управления	1	8	джо йст ик	нет	нет	6	8	4	4	32	32	32	2	4	нет
Количество потенциометров	нет	5	нет	нет	нет	нет	нет	2	2	нет	нет	нет	1+ 12	нет	нет
Количество светодиодов	2	4+8	нет	4	4	1	8	8	8	32	32	32	нет	нет	нет
Наличие семисегментного индикатора	нет	нет	нет	нет	нет	нет	нет	да	да	да	да	нет	нет	нет	нет
Наличие ЖК-индикатора	да	да	Гра фич	нет	нет	да	нет	да	да	да	да	да	да	да	нет
Количество релейных выходов	нет	нет	нет	4	4	1	нет	2	1	нет	нет	нет	2	2	нет
Интерфейс UART/RS-232	нет	да	да	да	да	да	да	да	да	да	да	да	да	да	да
Интерфейс USB	да	да	нет	нет	нет	нет	нет	да	нет	да	да	да	нет	нет	да
Программатор на плате	да	да	нет	нет	нет	нет	да	нет	нет	да	да	да	нет	нет	нет
Разъемы программирования	usb _{JTAG}	usb ISP _{JTAG}	ISP	ISP	ICSP	ICSP	ISP JTAG	ISP JTAG	ISP JTAG	ISP JTAG USB	JTAG USB	ISP JTAG USB	ICSP	JTAG	ISP
Напряжение питания, В	3,3 5	9- 12	5	7- 12	7- 12	7- 12	7- 12	7- 12	7- 12	7- 12	7- 12	7- 12	7- 12	7- 12	7- 12
Стоимость, руб	565	2600	700	900	1300	1300	2800	1700	1700	4200	4200	3900	3800	3900	1600

Примечание: У - универсальная плата("придумай задачу сам"), С - специализированная(под конкретные задачи), О - ознакомительная(требуются дополнительные модули для решения определенных задач).

Таким образом, универсального средства, отвечающего всем вышеуказанным пунктам, на рынке не представлено.

3. ТЕХНИЧЕСКОЕ ЗАДАНИЕ НА РАЗРАБОТКУ

Необходимо разработать и изготовить единичный экземпляр универсальной отладочной платы для учебного процесса, разработать инструментарий (датчики, исполнительные элементы и т.п.) для решения узкоспециализированных задач, разработать лабораторные стенды по тематике специальности "ЭТУ", а также произвести экономический расчет себестоимости образовательного комплекта в серии 100штук.

Требования к отладочной плате:

- 1. Самодостаточная конструкция наплатное содержание всех необходимых для разработки компонентов;
 - 2. 8-разрядный микроконтроллер семейства Atmel;
 - 3. сменный внешний кварцевый резонатор;
- 4. разъемы для программирования ISP и JTAG. Желательно наличие USB-программатора;
 - 5. RS-232 интерфейс;
 - 6. максимально-возможное число свободных выводов микроконтроллера;
 - 7. наличие потенциометров;
 - 8. наличие кнопок управления;
 - 9. наличие светодиодного индикатора;
 - 10. наличие релейных выходов;
 - 11. наличие стабилизатора питания на плате
 - 12. наличие винтовых разъемов для подключения.

Требования к дополнительному инструментарию:

- 1. унификация разъемов;
- 2. универсальность применения;
- 3. простота конструкции.

Требования к лабораторным стендам:

- 1. тематика лабораторных стендов электротехнологические установки;
- 2. стенды должны моделировать работу реальных объектов или механизмов;
- 3. методика обучения должна быть направлена на ознакомление с устройством модулируемых объектов, а также на изучение определенных аспектов программирования микроконтроллеров.

4. РАЗРАБОТКА ПРИНЦИПИАЛЬНОЙ ЭЛЕКТРИЧЕСКОЙ СХЕМЫ

4.1 Выбор микроконтроллера и разработка обвязки

Разработке принципиальной схемы предшествует выбор основных компонентов устройства. В данном случае — это выбор микроконтроллера и преобразователей интерфейса. Используя каталог производителя [4], выбираем максимально функциональный универсальный микроконтроллер. Им являются микроконтроллера Atmega640, Atmega1280, Atmega2560, имеющие одинаковый набор функций, различающиеся объемом памяти — 64кбайт, 128 кбайт, 256кбайт соответственно. Из [5] получаем основные технические характеристики данного контроллера, а также назначение его выводов.

Технические характеристики:

- расширенная RISC архитектура. 135 команд процессора, 32 8-разрядных регистров общего назначения. производительность до 1MIPS на 1МГц;
 - аппаратный блок умножения;
 - 64/128/256кбайт FLASH памяти;
 - 4кбайт EEPROM памяти;
 - 8 кбайт ОЗУ;
 - 2 8-разрядных таймера/счетчика;
 - 4 16-разрядных таймера/счетчика;
 - таймер реального времени в независимым осцилятором;
 - 4 8-разрядных канала ШИМ
 - 12 каналов ШИМ с программируемой дискретизацией от 2 до 16 бит;
 - 16 канальный 10-разрядный АЦП последовательного приближения;
 - 4 программируемых UART;
 - Интерфейсы SPI, TWI, JTAG, ISP;
 - аналоговый компаратор;
 - сторожевой таймер;
 - прерывание по изменению уровня сигнала на ножке;
 - 86 программируемых линий ввода/вывода;
 - 100-ногий корпус TQFP-100.

Его выводы необходимо было распределить таким образом, чтобы на свободных выводах оставался максимальный набор альтернативных функций порта. Также, исходя из альтернативных функций выводов необходимо расположить микроконтроллер и основные компоненты так, чтобы разводка печатной платы была максимально эффективной. Все штырьковые и винтовые разъемы, а также разъем COM-порта и USB, должны располагаться по бокам печатной платы. Винтовые разъемы одного порта должны располагаться в один ряд. Штырьковые разъемы, не продублированные винтовыми допустимо располагать только с краю печатной платы. Все реле должны быть в одном углу, во время изменения положения ползунков переменных резисторов рука оператора не должна закрывать индикатор. То же относится и к кнопочному управлению. Сам микроконтроллер располагается по центру печатной платы. Корпус микроконтроллера предусматривает расположение выводов со всех четырех сторон. По 25 выводов на каждой стороне. Все эти моменты были определяющими в распределении функций микроконтроллера по компонентам отладочной платы. Полных список альтернативных функций выводов МК, а также их распределение на отладочной плате представлены в таблице 2.

Таблица 2 — разводка выводов микроконтроллера на плате

№ выв ода	назван	ца 2 — разводка Альтернативная функция	применение	№ выв ода	назва	Альтернативная функция	Применение
1	PG5	OC0B		51	PG0	#WR	
2	PE0	RXD0/PCINT8	USB	52	PG1	#RD	
3	PE1	TXD0		53	PC0	A8	Аноды 7-
4	PE2	XCK0/AIN0	Выведено на	54	PC1	A9	сегментного
5	PE3	OC3A/AIN1	разъем PORTE	55	PC2	A10	индикатора
6	PE4	OC3B/INT4		56	PC3	A11	
7	PE5	OC3C/INT5		57	PC4	A12	
8	PE6	T3/INT6		58	PC5	A13	
9	PE7	CLCK0/ICP3/I NT7		59	PC6	A14	
10	VCC		+5B	60	PC7	A15	
11	GND		Общий	61	VCC		+5B
12	PH0	RXD2	СОМ-порт	62	GND		Общий
13	PH1	TXD2		63	PJ0	RXD3/PCINT9	Пользователь
14	PH2	XCK2	Выведено на	64	PJ1	TXD3/PCINT10	ские кнопки
15	PH3	OC4A	разъем PORTH	65	PJ2	XCK3/PCINT11	
16	PH4	OC4B		66	PJ3	PCINT12	
17	PH5	OC4C		67	PJ4	PCINT13	
18	PH6	OC2B		68	PJ5	PCINT14	
19	PB0	#SS/PCINT0		69	PJ6	PCINT15	
20	PB1	SCK/PCINT1	ISP-разъем	70	PG2	ALE	Реле 1
21	PB2	MOSI/PCIN2		71	PA7	AD7	Катоды 7-
22	PB3	MISO/PCINT3		72	PA6	AD6	сегментного индикатора
23	PB4	OC2A/PCINT4		73	PA5	AD5	шдшштори
24	PB5	OC1A/PCINT5	Выведено на	74	PA4	AD4	
25	PB6	OC1B/PCINT6	разъем PORTGB	75	PA3	AD3	Реле 2
26	PB7	OC0A/ADC1C/ PCINT7		76	PA2	AD2	Реле 3
27	PH7	T4		77	PA1	AD1	Реле 4
28	PG3	TOSC2		78	PA0	AD0	Реле 5
29	PG4	TOSC1		79	PJ7		Реле 6
30	#RESET*			80	VCC		+5B
31	VCC		+5B	81	GND		Общий

^{*} Символ # означает инверсную логику и управление нулем.

32 GND	15/PCINT23 Выведено на
----------	------------------------

33	XTAL2		Кварцевый	83	PK6	ADC14/PCINT22	разъемы
----	-------	--	-----------	----	-----	---------------	---------

2.4	XTAL1			0.4	DIZ 5	ADC12/DCDIT21	DODTK1
34	AIALI		резонатор	84	PK5	ADC13/PCINT21	PORTK1 и PORTK2
35	PL0	ICP4	Выведено на	85	PK4	ADC12/PCINT20	PORTK2
36	PL1	ICP5	разъемы PORTL1 и	86	PK3	ADC11/PCINT19	
37	PL2	T5	PORTL2	87	PK2	ADC10/PCINT18	
38	PL3	OC5A		88	PK1	ADC9/PCINT17	
39	PL4	OC5B		89	PK0	ADC8/PCINT16	
40	PL5	OC5C		90	PF7	ADC7/TDI	Выведено на
41	PL6			91	PF6	ADC6/TDO	JTAG-разъем
42	PL7			92	PF5	ADC5/TMS	
43	PD0	SDL/INT0	Выведено на	93	PF4	ADC4/TCK	
44	PD1	SDA/INT1	разъемы PORTD1 и	94	PF3	ADC3	Потенциометр 1
45	PD2	RXD1/INT2	PORTD2	95	PF2	ADC2	Потенциометр 2
46	PD3	TXD1/INT3		96	PF1	ADC1	Потенциометр 3
47	PD4	ICP1		97	PF0	ADC0	Потенциометр 4
48	PD5	XCK1		98	ARE F		
49	PD6	T1		99	GND		Общий
50	PD7	Т0		10 0	AVC C		+5В +фильтр

Принципиальная схема обязательной обвязки микроконтроллера представлена на рисунке 1:

Рисунок 1: Обязательная обвязка микроконтроллера

4.2 разработка схемы питания

Питание на отладочную плату должно подаваться от широко-распространенных блоков питания с параметрами 7-12В 1А. При этом, всей электронной начинке платы требуется питание +5В. Таким образом необходимо применить стабилизатор напряжения. Самый распространенный стабилизатор напряжения питания — серия интегральных микросхем LM78. Применив 5В стабилизатор этой серии в поверхностно-монтажном исполнении можно получить стабилизированный источник питания 5В с номинальным током 0,75А.

Схема питания представлена на рисунке 2.

Рисунок 2: Схема 5В стабилизатора напряжения

4.3 Разработка схемы USB-UART конвертера с функцией программатора. Для USB-UART моста была использована микросхема FTDI FT232Rl. Из [6] была взята схема, предложенная производителем данной микросхемы с дополнением в виде конкретных разъемов (рисунок 3).

Рисунок 3: принципиальная схема USB-UART преобразователя с функцией программатора

Стрелками на схеме показаны функциональные выводы микроконтроллера, к которым подключается преобразователь. U3, U4,U6 – перемычки, позволяющие полностью отключать USB-UART конвертер от МК.

4.4 Разработка блока индикации.

Во время разработки блока индикации было решено реализовать наплатное исполнение 7-сегментного 4-х разрядного индикатора и подключение графического и символьного индикаторов через адаптеры. 4-х разрядный индикатор позволяет выводить 16-разрядное число в соответствующей системе счисления. Индикатор был выбран с общим катодом для того, чтобы все сигналы управления были прямыми — зажигание определенного сегмента единицей, зажигание определенного разряда единицей.

Рисунок 4: принципиальная схема подключения 7-сегментного индикатора

4.5 Разработка блока исполнительных реле.

Первоначальным условием было использование не менее 4 реле с переключающими контактами. При распределении выводов микроконтроллера число реле увеличилось до 6. В качестве реле были использованы миниатюрные 5В реле марки «TIANBO TR5VL-S-Z» с переключающими контактами на 24В и 1А.

Принципиальная схема подключения реле1 показана на рисунке 5. Подключение остальных реле аналогично.

Рисунок 5: Принципиальная схема подключения реле 1

4.6 Разработка кнопочного управления

Для кнопок были специально назначены ножки одного порта, имеющие прерывание по изменению состояния. Поскольку, внутри контроллера имеются подтягивающие резисторы, было решено замыкать кнопкой вывод на землю без необходимости использования дополнительных компонентов.

Рисунок 6: принципиальная схема подключения кнопок

4.7 разработка схемы подключения потенциометров — задатчиков аналоговых сигналов.

Потенциометры должны быть подключены ко входам АЦП микроконтроллера. Входы АЦП есть на двух портах — PORTF и PORTK. При этом свободными остаются 4 вывода PORTF. Номера конкретных ножек указаны в названии потенциометра на рисунке 7 и на самой печатной плате. Резисторы были использованы типа RS09-N-30 с номинальным сопротивлением 10 кОм

Рисунок 7: схема подключения потенциометров к микроконтроллеру

4.8 разработка RS232-UART конвертера

один из имеющихся в микроконтроллере UART интерфейсов было решено использовать для подключения к различным устройствам по RS-232 интерфейсу. В качестве преобразователя интерфейса была использована микросхема MAX232 в корпусе SOIC-16. Схема подключена была взята из датащита на эту микросхему [7]. Использованы только каналы TX и RX без дополнительных служебных линий.

Рисунок 8: Принципиальная схема UART-RS232 преобразователя

4.9 Распиновка разъемов ISP и JTAG

Распиновка данных разъемов жестко указана в стандартах программаторов для данных устройств. Разъем ISP может быть 6-контактным и 10-контактным. Большинство старых программаторов имеет 10-контактный разъем, поэтому было решено использовать именно его. [8] Соответствие выводов номерам ножек контроллера Atmega1280 смотреть в таблице 1.

Table 3-2. VRISP Connector pinout

Signal	6-Pin	10-Pin	I/O	Description
VTG	2	2	ı	Power is delivered from the target board
GND	6	3,4,6, 8,10	ı	Ground
MOSI	4	1	Output	Commands and data from AVRISP to target AVR
MISO	1	9	Input	Data from target AVR to AVRISP
SCK	3	7	Output	Serial Clock, Controlled by AVRISP
RESET	5	5	Output	Reset. Controlled by AVRISP

Рисунок 9: распиновка 6 и 10-контактного разъемов ISP

Распиновка разъема JTAG была также получена из официального документа [9], регламентирующего протокол для микроконтроллеров AVR. Спецификация требует наличия подтягивающих резисторов порядка 10 кОм к проводу питания на все информационные шины. Соответствие выводов номерам ножек контроллера Atmega1280 смотреть в таблице 1.

Рисунок 10: Распиновка выводов 10 контактного JTAG коннектора и схема подключения к микроконтроллеру

5 РАЗРАБОТКА ПЕЧАТНОЙ ПЛАТЫ

Для разработки печатной платы была использована САПР DipTrace, поскольку в ней разрабатывалась также и схема устройства. Данная САПР позволяет осуществить полный цикл разработки устройства от принципиальной схемы до комплекта выходных файлов для отправки на завод. Однако, помимо печатной платы заводского изготовления должна быть предусмотрена возможность изготовления платы в домашних условиях. Это значит, что металлизация переходных отверстий должна быть необязательной и может быть заменена перемычками. Также, к компонентам, полностью закрывающим контактные площадки, проводники должны подходить только с противоположной стороны.

Для завода требуется экспорт слоев в формат Gerber. К необходимым слоям относятся:

- 1. верхний слой разводки;
- 2. нижний слой разводки;
- 3. верхний слой защитной паяльной маски;
- 4. нижний слой защитной паяльной маски;
- 5. верхний слой маркировки;
- 6. файл сверловки.

Графические представления необходимых слоев указаны на рисунках 11-15. Информация о полученной печатной плате (меню DipTrace "файл-информация о плате»):

Количество выводов	638
Количество корпусов	110
Длина трасс	7671мм
Количество слоев	2
Ширина платы	150,37мм
Высота платы	112,41мм
Площадь	168887мм2
Отверстия	373.

Рисунок 11: Разводка нижнего слоя печатной платы

Рисунок 12: Разводка верхнего слоя печатной платы

Рисунок 13: маска нижнего слоя

Рисунок 14: маска верхнего слоя

Рисунок 15: маркировка верхнего слоя

6. РАЗРАБОТКА ИНСТРУМЕНТАРИЯ

В необходимый для работы инструментарий должны входить:

- 1. Датчик тока не менее 4 штук (3 переменного тока, 1 постоянного тока)
- 2. Датчик напряжения не менее 4 штук 3 переменного тока, 1 постоянного тока
- 3. силовой модуль с обратным диодом, с драйвером и оптической развязкой, в количестве не менее 10 штук
- 6.1 В качестве датчика тока возможно использовать датчик тока на эффекте холла ACS712ELCTR-20A-T от фирмы Allegro. Его диапазон измерения +-20A. Имеется возможность измерения тока любого типа, при наличии гальванической развязки.

Стоимость датчика:

125.57 рублей для партии менее 20штук

104.38 рублей для партии 20-50 штук

94.18 рублей для партии более 50 штук

В том числе печатная плата и провода 120 рублей/блок датчиков тока

6.3 В качестве датчика переменного напряжения возможно использовать трансформатор напряжения. Автором в одной из разработок в качестве таких датчиков были применены маломощные трансформаторы BV 201 0136. В номинальными параметрами на выходе 9В, 0,35ВА. Повышенное напряжение во-первых, требует установки делителя напряжения, во-вторых, позволяет также регулировать чувствительность в малом диапазоне напряжений.

Стоимость трансформатора:

91,75 рублей для партии менее 20 штук

76,27 рублей для партии 20-50 штук

68,81 рублей для партии более 50 штук

6.4 В качестве датчика постоянного напряжения возможно применение только датчиков без гальванической развязки в виде делителей напряжения. В случае постоянного напряжения 300В датчик должен содержать постоянный резистор на 295кОм и переменный на 10кОм.

Стоимость постоянного резистора

10 коп в пачке 500 штук

Стоимость переменного резистора 20 рублей в партии до 20 штук

15 рублей в партии более 20 штук.

В том числе печатная плата и провода 120 рублей/блок датчиков напряжения.

6.5 В качестве силового модуля было решено использовать уже имеющуюся разработку «Драйверно-транзисторный модуль версия 2», разработанный для дипломного проекта [10]. Он имеет параметры: 30А 600В. Каждому модулю необходим отдельный изолированный источник питания. По количеству силовых модулей (8) было решено использовать уже имеющуюся разработку 8-канального источника питания «Многоканальный блок питания силовых модулей версия 3», разработанный для проекта «3-х фазный компенсационный выпрямитель» [11] с новыми исправлениями и доработками в схемотехнике.

Стоимость силового модуля:

160 рублей/штука

Стоимость блока питания:

540 рублей/штука.

Таким образом, на минимальный комплект датчиков и модулей, исходя из партии комплектов 100 штук, требуется:

400 датчиков переменного тока 94.18 рублей х 400 штук = 28254 рублей в том числе 100 печатных плат датчиков тока 120 рублей х 100 штук = 12000 рублей

300 трансформаторов напряжения 68.81 рубля х 300 штук = 20643 рублей 100 датчиков постоянного напряжения 15,10 рублей х 100 штук = 1510 рублей В том числе 100 печатных плат датчиков напряжения 120 рублей х 100 штук = 12000 рублей

Силовых модулей 160 рублей х 800 штук 128000 рублей Блоков питания силовых модулей 540 рублей х 100 штук = 54000 рублей ИТОГО: 100 комплектов: 256407 рублей В пересчете на один комплект 2564 рубля.

РАССЧЕТ СЕБЕСТОИМОСТИ ОТЛАДОЧНОЙ ПЛАТЫ ДЛЯ СЕРИИ 100 7. ШТУК

Для расчета себестоимости необходимо привести полный список деталей для отладочной платы с их стоимость, в том числе и стоимость печатной платы.

Таблица 3 Список деталей отладочной платы.

Компонент	Значение/Тип	Корпус	Цена, руб	Количе ство	Стоимость для 100 плат
Винтовые разъемы		CY301-5.0-02P	3,5	24шт	8400
Разъем Bitbang		PLS-40 (1x40)	6/40ног	4ножки	60
C1, C2	22πΦ	CAP_0805	0,4	2шт	80
C3 - C8, C10 - C17, C19	0,1мкФ	CAP_0805	0,4	15шт	600
C9, C18	10мкФх6В	CAP_1210	5	2шт	1000
COM2		DRB-9MA	13	1шт	1300
CPU	ATmega2560-16AU	TQFP-100/14x14x0.5	279.62	1шт	27962
D1 -D6	SM4007	DIO_1206	0,78	6шт	468
DA1	L7805ABD2T	DPAK-2/X5.8	12,25	1шт	1225
DD1	FT232RL	SSO-28/W4	155	1шт	15500
DD2	MAX232CSE	SOP-16	25	1шт	2500
HL1		FYQ-3641AHR-11	35	1шт	3500
Разъемы штырьковые		IDC10M	5	8шт	4000
K1 - K6		G5V1	25	6шт	15000
L1, L2	10мкГн	IND_1206LQH32C	8	2шт	1600
Разъем питания		7-0088	4,5	1шт	450
Q1 - Q10	BC817	SOT-23	1,5	10шт	1500
R1, R2	1k	RES_0805	0,1	2шт	20
R3 - R13, R18 - R21	10к	RES_0805	0,1	15шт	150
R14, R15, R16, R17	300	RES_0805	0,1	4шт	40
Потенциометры с ручкой	10к	RS09-N-30 10 KOM	14,5	4шт	5800
Кнопки		KAN0610-0731B	3	6шт	1800
ДПП 1,685дм2 2маски, 2 маркировки, FR4, 1,5мм. Срок 5-6 недель				100шт	20962
Джамперы, разъемы UART0 и UART2		PLS-40 (1x40)	6/40ног	14ног	210
Разъем USB-B		USBB-1J	10	1шт	1000
Кварцевый резонатор	16МГц	HC49/S	4	1шт	400
Гнездо на плату под кварцевый резонатор			15/20ног	2 ножки	150
Всего компонентов				110штук	112177

Таким образом, общая стоимость деталей для 100 комплектов отладочных плат составляет 112177 рублей, что в пересчете на себестоимость одной печатной платы: 112177 рублей/100шт = 1121,77 рублей

таким образом, в серии отладочных плат 100 штук и более, себестоимость составляет менее 1200 рублей — данная плата стоит дешевле аналогичной EasyBoard при некотором большем функционале. Рыночная цена данной платы зависит от спроса на нее, а также стоимости сборки, проверки, упаковки.

Исходя из стоимости дополнительного комплекта 2564 рубля, общая стоимость базового набора может быть в пределах 5000-6000 рублей. Стоимость набор с методическими комплектами для проведения лабораторных работ не рассчитывалась.

8 ОТЛАДОЧНАЯ ПЛАТА ELECTROBOARD. ОБЩИЕ СВЕДЕНИЯ

8.1 Описание отладочной платы RLN Electroboard.

Отладочная плата RLN Electroboard позволяет разрабатывать и отлаживать разничные системы управления и контроля на ее основе. Мощный 8-разрядный микроконтроллер ATmega2560 имеет большую (256кб) память программ, что более чем достаточно для большинства приложений. Большое число функций микроконтроллера позволяет максимально оптимизировать устройство под архитектуру микроконтроллера. 57 выводов микроконтроллера доступно для подключения внешних устройств. К оставшимся выводам подключены расположенные на плате компоненты:

- 1. 4 потенциометра, подключенные к аналоговым входам микроконтроллера;
 - 2. 6 маломощных реле с переключающимися контактами;
 - 3. 4-х разрядный 7-сегментный индикатор;
 - 4. 5 кнопок;
 - 5. UART-RS232 преобразователь;
 - 6. UART-USB преобразователь.

24 вывода микроконтроллера, блоками по 8 выводов, выведены на винтовые клеммники, позволяющие беспаечным способом подключаться к микроконтроллеру. Встроенная в микроконтроллер защита вывода позволила упростить схемотехнику за счет отсутствия дополнительных внешних компонентов. При этом, винтовые разъемы продублированы обычными штырьковыми.

Все выходы реле также выведены на винтовые клеммники.

На плате имеется стабилизатор питания +5В. Таким образом, плату можно питать от универсального блока питания +7-12В с соответствующим разъемом.

Заменяемый кварцевый резонатор может пригодиться, например, для удобного пересчета коэффициентов деления таймеров счетчиков, АЦП и.т.п.

Расположение клеммников выбрано таким, чтобы шлейф подключенного к отладочной плате устройства не оказался под рукой оператора.

- 8.2 Основы работы с платой RLN Electroboard.
- 8,2,1 Перед началом работы с отладочной платой RLN Electroboard, необходимо убедиться в отсутствии на ней внешних повреждений. В случае их отсутствия плата признается годной к использованию и ее необходимо положить на ровную неметаллическую поверхность.
- 8,2,2 В случае программирования отладочной платы через уже имеющийся в ней загрузчик, плату требуется соединить с компьютером посредством кабеля USB-A USB-B. В противном случае, к плате требуется подключить программатор.

Список возможных программаторов можно узнать на сайте производителя.

Протестированные программаторы:

Avr ISPmkII

AVR ASP

BitBang

При отсутствии внешнего программатора можно воспользоваться BitBang программатором, соединив разъемы BitBang и ISP специальным переходником (в комплект не входит).

8,2,3 Подключите блок питания к отладочной плате через разъем питания. Блок питания подключите к сети. Если в микроконтроллере есть тестовая прошивка, то на дисплее начнется циклический счет от 0 до 9999. При этом, при нажатии кнопок управления, на индикаторе будет загораться номер кнопки и включаться соответствующее реле. Также, при изменении положения потенциометров, на

индикаторе некоторое время будет отображаться их новое значение.

- 8,2,4 для подключения к отладочной плате дополнительных устройств, отключите питание как отладочной платы, так и устройства.
- 8,2,5 для замены кварцевого резонатора отключите питание отладочной платы, аккуратно выньте старый кварцевый резонатор, установите необходимый, снова подайте питание на плату.
- 8,2,6 при использовании выводов JTAG разъема по собственному назначению учтите, что все информационные выводы подтянуты к питанию резистором на 10кОм.

ПРИЛОЖЕНИЕ А ПРИМЕРЫ ЛАБОРАТОРНЫХ РАБОТ НА БАЗЕ ОТЛАДОЧНОЙ ПЛАТЫ RLN ELECTROBOARD.

Приведенные примеры лабораторных работ могут быть предназначены как на время занятий, так и в качестве курсовых/дипломных работ.

Лабораторная работа №1. Разработка релейного регулятора температуры Цель: изучить принцип работы релейного регулятора.

Состав лабораторного стенда: отладочная плата, электрическая печь с датчиком температуры и управлением логическим сигналом. Подключение через штырьковый разъем.

Варианты заданий:

- 1. разработать алгоритм управления релейным регулятором;
- 2. разработать алгоритм вычисления инерционности печи/нагреваемого объекта;
- 3. разработать алгоритм управления релейным регулятором с учетом инерционности печи/ нагреваемого объекта в целях уменьшения перерегулирования;

Лабораторная работа №2. разработка регулятора температуры с регуляторами различных типов

Цель: изучить принцип работы замкнутой системы управления

Состав лабораторного стенда: Отладочная плата, электрическая печь с датчиком температуры с плавной регулировкой мощности на симисторах. Управление ШИМ (аналоговым) сигналом. Подключение через штырьковый разъем.

Варианты заданий:

- 1. разработать алгоритм управления регулятором с регуляторами П, ПИ, ПИД типов;
- 2. разработать алгоритм вычисления инерционности печи/нагреваемого объекта;
- 3. разработать алгоритм управления адаптивного регулятора температуры.

Лабораторная работа №3. разработка системы управления лифтом Цель: изучить свойства системы конечных автоматов.

Состав лабораторного стенда: отладочная плата, стенд «модель 4 этажного Лифта» [12] Размеры стенда 450x200x150.

Стенд имеет в своем составе:

- 1. главный привод на базе ДПТ с регулированием скорости;
- 2. 4 уровня остановок «кабины»;
- 3. беконтактные датчики положения кабины на базе герконов. Два уровня положения для реализации плавного пуска, останова кабины;
- 4. непрерывный датчик положения кабины на базе многооборотного резистора;
- 5. внешняя блок-панель кабины с кнопками нужных этажей, остановки кабины, открытия дверей;
- 6. блок панель шахты, с кнопками вызова лифта для поездки вверх и вниз;
- 7. индикаторы открытых дверей на этажах и кабины;
- 8. контактные датчики по краям шахты для экстренного отключения привода в случае выхода за границы этажей.

Подключение шлейфом через штырьковые разъемы.

Варианты заданий:

- 1. разработать алгоритм управления лифтом с использованием герконовых датчиков, блок-панелей кабины, без плавного пуска останова;
- 2. разработать алгоритм управления лифтом с использованием герконовых датчиков, блок-панелей кабины, с плавным пуском остановом;
- 3. разработать алгоритм управления лифтом с использование датчика положения на базе переменного резистора;
- 4. разработать алгоритм управления следящей системы. Потенциометр на плате должен задавать положение кабины лифта;

лабораторная работа №4. разработка релейного регулятора напряжения Цель: исследовать работу системы РПН

Состав лабораторного стенда: отладочная плата, ЛАТР, трансформатор с отводами, датчик напряжения. Подключение — к винтовым зажимам. Датчик напряжения подключается на выход трансформатора.

Варианты заданий:

- 1. разработать релейное регулирование напряжения в зависимости от положения ручки потенциометра на плате;
- 2. разработать релейное регулирование напряжения в зависимости от входного напряжения на трансформаторе;

Лабораторная работа №5. Исследование системы контроля и регулирования качества электроэнергии (курсовые и дипломные работы).

Цель: исследовать системы управления качеством напряжения

Состав лабораторного стенда: отладочная плата, блок датчиков напряжения, блок датчиков тока, блок силовых модулей, многоканальный блок питания, и т.п. Подключение к плате- комбинированное

Варианты заданий:

- 1. разработать однофазный измеритель коэффициента мощности;
- 2. разработать трехфазный измеритель коэффициента мощности;
- 3. разработать однофазный прибор учета активной реактивной мощности;
- 4. разработать измеритель ассиметрии трехфазной сети;
- 5. разработать однофазный корректор коэффициента мощности на базе конденсатора/индуктивности;
- 6. разработать блок вычисления коэффициентов для параллельно работающих компенсационных выпрямителей;

ЛИТЕРАТУРА

- 1. Каталог продукции копании «Терраэлектроника»[электронный ресурс], http://terraelectronica.ru
- 2. Каталог «средства разработки и отладки» чип-дип [электронный ресурс], http://www.chipdip.ru/catalog/show/microcontroller-tools.aspx
- 3. Каталог «Отладочные платы» [электронный ресурс], http://starterkit.ru/html/index.php?name=shop&cat=6
- 4. Каталог «8-разрядные микроконтроллеры семейства MegaAVR» [электронный ресурс], http://www.atmel.com/dyn/products/devices.asp? category id=163&family id=607&subfamily id=760
- 5. Atmega640/120/2560 Datasheet [электронный ресурс] http://www.atmel.com/dyn/resources/prod-documents/doc2549.pdf
- 6. FTDI FT232RL Datasheet [электронный ресурс] http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT232R.pdf
- 7. MAX232CSE Datasheet [электронный ресурс] http://www.farnell.com/datasheets/76791.pdf
- 8. AVR ISP User Guide [электронный ресурс] http://demo.cosolvent.com/ccs/main.php?
 g2 view=core.DownloadItem&g2 itemId=4143&g2 dl=1&g2 serialNumber=2
- 9. AVR JTAG ISE User Guide [электронный ресурс] http://www.atmel.com/dyn/resources/prod/documents/doc2475.pdf
- 10. Кашканов А.О. Выпускная квалификационная работа Разработка алгоритмов управления электроприводом на базе компенсационного выпрямителя с автономным инвертором тока /А.О. Кашканов, А.С. Плехов НГТУ 2011г.
- 11. Кашканов А.О. Проект 015 3-х фазный компенсационный выпрямитель на транзисторах /А.О. Кашканов, А.С. Плехов ООО Энергосбережение 2009-2011г.
- 12. Кашканов А.О. Проект 086 «лабораторный стенд «модель 4 этажного лифта»» /А.О. Кашканов, ООО Энергосбережение 2011г.