

# Università di Pisa

Dipartimento di Informatica Corso di Laurea Triennale in Informatica

Corso 2° anno - 6 CFU

Statistica

**Professore:** Prof. Francesco Grotto

Autore: Filippo Ghirardini

# ${\bf Contents}$

| 1        | Stat | istica descrittiva                              |    |
|----------|------|-------------------------------------------------|----|
|          |      | 1.0.1 Campioni statistici                       | ,  |
|          |      | 1.0.2 Istogramma                                | ,  |
|          |      | 1.0.3 Indici statistici                         | ;  |
|          |      | 1.0.4 Quantili                                  | 4  |
|          |      | 1.0.5 Dati multi-variati                        | 4  |
| <b>2</b> | Pro  | pabilità e indipendenza                         | (  |
|          | 2.1  | Spazi di probabilità                            | (  |
|          | 2.2  | Probabilità discreta                            | ,  |
|          |      | 2.2.1 Probabilità uniforme su un insieme finito | ,  |
|          |      | 2.2.2 Calcolo combinatorio                      | ,  |
|          |      | 2.2.3 Funzione di massa                         |    |
|          | 2.3  | Probabilità condizionata                        | 8  |
|          | 2.4  | Indipendenza                                    |    |
|          | 2.5  | Entropia di Shannon                             |    |
|          | 2.6  | Densità di probabilità                          |    |
| 3        | Var  | abili aleatorie                                 | 1( |
|          | 3.1  | Legge du una variabile aleatoria                | 1( |

CONTENTS 1

# Statistica

Realizzato da: Filippo Ghirardini

A.A. 2023-2024

# 1 Statistica descrittiva

La statistica si occupa dello studio dei dati, ovvero della sua **raccolta**, **analisi** ed **interpretazione**. Le risposte dipendono dai dati e dalla conoscenza pregressa del problema, quindi da eventuali ipotesi ed assunzioni.

- Statistica descrittiva: quando i dati vengono analizzati senza fare assunzioni esterne per evidenziarne la struttura e rappresentarli in modo efficace
- Inferenza statistica: studia i dati utilizzando un modello probabilistico, ovvero supponendo che i dati siano valori assunti da variabili aleatorie con una certa distribuzione di probabilità dipendente da parametri non noti che devono essere stimati. Il modello potrà poi fare previsioni.

#### 1.0.1 Campioni statistici

**Definizione 1.0.1** (Popolazione). Insieme di oggetti o fenomeni che si vuole studiare su ognuno dei quali si può effettuare una stessa misura, ovvero un **carattere**. Può essere **ideale** o **reale**.

**Definizione 1.0.2** (Campione statistico). Un sottoinsieme della popolazione scelto per rappresentarla.

**Definizione 1.0.3** (Dati). Misure effettuate sul campione statistico.

Definizione 1.0.4 (Frequenza). Può essere:

- Assoluta: il numero di volte in cui questo esito compare nei dati
- Relativa: frazione di volte in cui questo esito compare sul totale dei dati

In generale dipendono dai dati e quindi non coincidono su tutta la popolazione.

Note 1.0.1. La scelta del campione in modo che sia rappresentativo è importante ma non verrà trattata.

#### 1.0.2 Istogramma

Consiste in una serie di colonne ognuna delle quali ha per base un intervallo numerico e per area la frequenza relativa dei dati contenuti nell'intervallo.

Osservazione 1.0.1. La scelta delle ampiezze degli intervalli di base è cruciale. Un buon compromesso deve essere individuato sulla base della numerosità dei dati e sulla loro distribuzione.

Può avere varie forme:

- Normale se ha la forma di una campana simmetrica
- Unimodale se si concentra su una colonna più alta o bimodale se su due. Può essere asimmetrica a destra o a sinistra in base alla concentrazione dei dati in base al picco
- Platicurtica se i dati sono concentrati in un certo intervallo o leptocurtica se sono composti da un gruppo centrale e da molti *outliers*

#### 1.0.3 Indici statistici

Dato un vettore  $x = (x_1, \dots, x_n) \in \mathbb{R}^n$  di dati numerici gli indici statistici sono quantità che riassumono alcune proprietà significative.

Definizione 1.0.5 (Media campionaria). La media aritmetica dei dati:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{1}$$

**Definizione 1.0.6** (Mediana). Il dato  $x_i$  tale che la metà degli altri valori è minore o uguale ad esso e l'altra metà maggiore o uguale.

Osservazione 1.0.2. La mediana è utile nel caso di dati molto asimmetrici ed è robusta rispetto alle code delle distribuzione. Al contrario la media campionaria viene facilmente spostata da dati molto piccoli o grandi.

**Definizione 1.0.7** (Varianza campionaria). Si usa per misurare la dispersione dei dati attorno alla media campionaria.

$$var(x) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
 (2)

È nulla se i dati sono tutti uguali. Possiamo mappare x diversamente:

- $x \mapsto x^2$  misura la media dei punti della media campionaria
- ullet  $x\mapsto x^3$  misura la **sample skewness**, ovvero l'asimmetria della distribuzione

$$b = \frac{1}{\sigma} \cdot \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^3 \tag{3}$$

•  $x \mapsto x^4$  misura la piattezza della distribuzione dei dati, ovvero la **curtosi** 

Definizione 1.0.8 (Scarto quadratico medio o deviazione standard).

$$\sigma(x) = \sqrt{var(x)} \tag{4}$$

**Proposizione 1.0.1.** Dato un campione di dati x ed un numero positivo d:

$$\frac{\#\{x_i: |x_i - \bar{x}| > d\}}{n - 1} \le \frac{var(x)}{d^2} \tag{5}$$

Il termine a sinistra è la frazione di dati che differiscono dalla media campionaria più di d.

#### 1.0.4 Quantili

**Definizione 1.0.9** (Funzione di ripartizione empirica). Dato  $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ :

$$F_e(t) = \frac{\#\{i | x_i \le t\}}{n} \tag{6}$$

Per ogni  $t \in \mathbb{R}$  restituisce la frequenza relativa dei dati minori o uguali a t. È sempre **non decrescente**  $e F_e(-\infty) = 0, F(+\infty) = 1.$ 

**Definizione 1.0.10** ( $\beta$ -quantile). Il dato  $x_i$  tale che:

- almeno  $\beta n$  dati siano  $\leq x_i$
- almeno  $(1 \beta)n$  dati siano  $\geq x_i$

Inoltre:

- Se  $\beta n$  non è intero vale  $x_{(\lceil \beta n \rceil)}$
- Se  $\beta n$  è intero è la media aritmetica tra  $x_{(\beta n)}$  e  $x_{(\beta n+1)}$

#### 1.0.5 Dati multi-variati

Consideriamo coppie di dati bivariati del tipo

$$(x,y) = ((x_1,y_1), \dots, (x_n,y_n))$$

Definizione 1.0.11 (Covarianza campionaria).

$$cov(x,y) = \sum_{i=1}^{n} \frac{(x_i - \bar{x})(y_i - \bar{y})}{n-1}$$
 (7)

**Definizione 1.0.12** (Coefficiente di correlazione). Dati  $\sigma(x) \neq 0$  e  $\sigma(y) \neq 0$ :

$$r(x,y) = \frac{cov(x,y)}{\sigma(x)\sigma(y)} \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{t})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$
(8)

Misura la presenza di una relazione lineare tra i dati x e y quantificata dalla retta di regressione.

Proposizione 1.0.2 (Disuguaglianza di Cauchy-Scwarz).

$$\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \le \sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$
(9)

e quindi

$$|r(x,y)| \le 1\tag{10}$$

La **retta di regressione** è un'approssimazione dei dati con  $y_i$  con una combinazione lineare affine a  $a + bx_i$ , ottenuta cercando il minimo della distanza dai dati da questa retta con i quadrati degli scarti. L'obiettivo è quindi di cercare i parametri a e b calcolando

$$\inf_{a,b \in \mathbb{R}} \sum_{i=1}^{n} (y_i - a - bx_i)^2 \tag{11}$$

**Teorema 1.0.1** (Retta di regressione). Se  $\sigma(x) \neq 0$  e  $\sigma(y) \neq 0$ , esiste un unico minimo al variare di  $a, b \in \mathbb{R}$  della quantità 11, dato da:

$$b^* = \frac{(n-1)cov(x,y)}{n \cdot var(x)} \qquad a^* = -b^* \bar{x} + \bar{y}$$
 (12)

e vale

$$\min_{a,b \in \mathbb{R}} \sum_{i=1}^{n} (y_i - a - bx_i)^2 = (1 - r(x,y)^2) \sum_{i=1}^{n} (y_i - \bar{y})^2$$
(13)

Quanto più r(x,y) è vicino a 1, tanto più i valori tendono ad allinearsi con la retta. Se vale 1 vuol dire che i punti sono tutti sulla retta. Il segno di r(x,y) corrisponde al segno del coefficiente angolare. Se è prossimo a zero allora non è una buona approssimazione.

# 2 Probabilità e indipendenza

La probabilità serve per quantificare l'incertezza misurando la fiducia che un evento possa accadere.

# 2.1 Spazi di probabilità

**Definizione 2.1.1** (Spazio campionario). Lo spazio di probabilità  $\Omega$  è l'insieme di tutti gli esiti possibili (eventi elementari)  $\omega$  dell'esperimento. Ogni affermazione sulle misure corrisponde ad un sottoinsieme  $A \subset \Omega$  degli esiti che la soddisfa. Ognuna delle affermazioni può essere combinata logicamente con le operazioni insiemistiche.

Definizione 2.1.2 (Eventi incompatibili).

$$A \cap B = \emptyset \tag{14}$$

**Definizione 2.1.3** (Esperimento composto). Se un esperimento è composto da una successione ordinata di n sotto-esperimenti, il suo spazio campionario è

$$\Omega = \{(\omega_1, \omega_2, \dots, \omega_n) | \omega_1 \in \Omega_1, \dots, \omega_n \in \Omega_n\}$$
(15)

dove  $\Omega_i$  è l'insieme degli esiti dell'i-esimo sotto-esperimento.

**Definizione 2.1.4** ( $\sigma$ -algebre). L'insieme di tutti i sottoinsiemi di  $\Omega$  che sia chiuso per le operazioni logiche come unione e intersezione.

Osservazione 2.1.1. Se due eventi sono incompatibili la probabilità che si realizzi uno qualsiasi dei due è la somma delle probabilità dei singoli eventi.

**Definizione 2.1.5** (Probabilità). È il grado di fiducia che un evento si realizzi. È compreso tra 0 e 1. Più precisamente, dato  $\Omega$  un insieme e F una  $\sigma$ -algebra di parti di  $\Omega$ , è una funzione  $\mathbb{P}: F \to [0,1]$  tale che:

- l'evento certo ha probabilità  $\mathbb{P}(\Omega) = 1$
- $(\sigma$ -addittività) se  $(A_n)_{n=1,2,...}$  è una successione di eventi a due a due disgiunti, vale

$$\mathbb{P}\left(\bigcup_{n=1}^{+\infty} A_n\right) = \sum_{n=1}^{+\infty} \mathbb{P}(A_n) \tag{16}$$

e nel caso di finiti sottoinsiemi disgiunti

$$\mathbb{P}\left(\bigcup_{n=1}^{N} A_n\right) = \sum_{n=1}^{+N} \mathbb{P}(A_n) \tag{17}$$

Note 2.1.1. Si dice **trascurabile** un evento A tale che  $\mathbb{P}(A) = 0$  e **quasi certo** un evento A tale che  $\mathbb{P}(A) = 1$ .

Proposizione 2.1.1. Proprietà della probabilità:

- $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$  e di conseguenza  $\mathbb{P}(\emptyset) = 0$
- $\bullet \ B \subset A \Longrightarrow \mathbb{P}(A \setminus B) = \mathbb{P}(A) \mathbb{P}(B)$
- $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$
- $\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) \mathbb{P}(A \cap B) \mathbb{P}(A \cap C) \mathbb{P}(B \cap C) + \mathbb{P}(A \cap B \cap C)$

**Proposizione 2.1.2** (Limite di una successione di eventi). Data una successione di eventi  $A_1, \ldots, A_n, \ldots$ , questa può essere:

- Crescente:  $A_n \subseteq A_{n+1}$  e quindi  $A = \bigcup_{n=1}^{+\infty} A_n = \lim_{n \to \infty} A_n$
- **Decrescente**:  $A_n \supseteq A_{n+1}$  e quindi  $A = \bigcap_{n=1}^{+\infty} A_n = \lim_{n \to \infty} A_n$

In entrambi i casi vale:

$$\mathbb{P}(A) = \lim_{n \to \infty} \mathbb{P}(A_n) \tag{18}$$

#### 2.2 Probabilità discreta

Definizione 2.2.1 (Probabilità discreta). Dato  $\Omega$  numerabile

$$\Omega = (\omega_1, \omega_2, \dots, \omega_n, \dots)$$

per ogni evento  $A \subset \Omega$ , la misura di probabilità è:

$$\mathbb{P}(A) = \sum_{\omega_i \in A} p_i = \sum_{\omega_i \in A} \mathbb{P}(\{\omega_i\})$$
(19)

#### 2.2.1 Probabilità uniforme su un insieme finito

Un esempio di probabilità discreta è quella uniforme su un insieme finito  $\Omega$ , ovvero dove

$$p_1 = p_2 = \ldots = p_N$$

In questo caso vale:

$$\mathbb{P}(A) = \frac{\#A}{\#\Omega} = \frac{\text{"casi favorevoli"}}{\text{"casi possibili"}} \qquad A \subseteq \Omega$$
 (20)

#### 2.2.2 Calcolo combinatorio

Alcune formule notevoli:

- Sequenze ordinate con ripetizione di k numeri da 1 a n:  $n^k$
- Ordinamenti possibili di  $\{1, \ldots, n\}$ : n!
- Sequenze ordinate senza ripetizione di k numeri di  $1, \ldots, n$

$$\frac{n!}{(n-k)!} \qquad 0 \le k \le n$$

• Sottoinsiemi di  $\{1,\ldots,n\}$  formati da k elementi

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} \qquad 0 \le k \le n$$

#### 2.2.3 Funzione di massa

Definizione 2.2.2 (Funzione di massa). Dato

$$\Omega = \{x_1, x_2, \ldots\} \subset \mathbb{R}$$

un sottoinsieme numerabile in cui ogni punto  $x_i$  può contenere successioni (che possono andare  $a \pm \infty$ ), la funzione di massa è

$$\Omega \ni x_i \mapsto p(x_u) = \mathbb{P}(\{x_i\}) \in [0, 1] \tag{21}$$

Se poniamo che la probabilità di ogni altro punto non appartenente al sottoinsieme vale 0

$$x \neq x_i \Longrightarrow p(x) = \mathbb{P}(\{x\}) = 0$$

allora possiamo estendere la funzione a  $\mathbb{R}$  e dire che

$$\mathbb{P}(A) = \sum_{i:x_i \in A} p(x_i) \qquad \forall A \subseteq \mathbb{R}$$
 (22)

Proposizione 2.2.1. Valgono:

$$p(x_i) \ge 0 \tag{23}$$

$$\sum_{i=1,2,\dots} p(x_i) = 1 \tag{24}$$

#### 2.3 Probabilità condizionata

Quando si è a conoscenza della realizzazione di un evento, cambia la valutazione di probabilità di ogni altro evento.

**Definizione 2.3.1** (Probabilità condizionata). Dati due eventi A, B con B non trascurabile, la probabilità condizionata di A rispetto a B è

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \tag{25}$$

**Proposizione 2.3.1** (Condizionamento ripetuto). Se l'intersezione di eventi  $A_1 \cap ... \cap A_{n-1}$  non è trascurabile vale

$$\mathbb{P}(A_1 \cap \ldots \cap A_n) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2 | A_1) \cdot \ldots \cdot \mathbb{P}(A_n | A_1 \cap \ldots \cap A_{n-1})$$
(26)

**Definizione 2.3.2** (Partizione). Una partizione di  $\Omega$  è una collezione di n eventi  $B_1, \ldots, B_n$  a due a due disgiunti tali che

$$B_1 \cup \ldots \cup B_n = \Omega \tag{27}$$

**Definizione 2.3.3** (Sistema di alternative). È una partizione di  $\Omega$  in eventi non trascurabili.

**Teorema 2.3.1** (Formula della probabilità o della fattorizzazione). Dato  $B_1, \ldots, B_n$  un sistema di alternative, per un qualunque evento A vale

$$\mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}(A|B_i)\mathbb{P}(B_i)$$
(28)

Definizione 2.3.4 (Formula di Bayes). Dati A e B due eventi non trascurabili vale

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A|B)\mathbb{P}(B)}{\mathbb{P}(A)}$$
 (29)

**Definizione 2.3.5** (Formula di Bayes - Alternative). Dati A un evento e  $B_1, \ldots, B_n$  un sistema di alternative vale

$$\mathbb{P}(B_i|A) = \frac{\mathbb{P}(A|B_i)\mathbb{P}(B_i)}{\sum_{j=1}^n \mathbb{P}(AB_j)\mathbb{P}(B_j)}$$
(30)

#### 2.4 Indipendenza

L'idea è che la conoscenza che si è realizzato un certo evento non modifica la valutazione di probabilità di un altro evento.

**Definizione 2.4.1.** Dati n eventi  $A_1, \ldots, A_n$ , questi sono indipendenti se per ogni k con  $2 \le k \le n$  e per ogni scelta di interi  $1 \le i_1 < i_2 < \ldots < i_k \le n$  vale

$$\mathbb{P}(A_{i_1} \cap \ldots \cap A_{i_k}) = \mathbb{P}(A_{i_1}) \cdot \ldots \cdot \mathbb{P}(A_{i_k})$$
(31)

Osservazione 2.4.1 (Complessità). Il numero di uguaglianze da verificare per n eventi è

$$2^{n}-n-1$$

Proposizione 2.4.1 (Spazi prodotto). Si consideri

$$\Omega = \{a = (a_1, \dots, a_n) | a_i = 0, 1\} = \{0, 1\}^n$$

su cui definiamo per ogni a la probabilità

$$\mathbb{P}(\{a\}) = p^{\#\{i:a_i=1\}}(a-p)^{\#\{i:a_i=0\}} = p^{\sum_{i=1}^n a_i}(a-p)^{n-\sum_{i=1}^n a_i}$$

E gli eventi

$$A_i = \{a \in \Omega : a_i = 1\}$$
  $i = 1, \dots, n$ 

sono indipendenti tra di loro, così come i complementari  $A_i^c$ .

Osservazione 2.4.2. Due eventi possono essere indipendenti anche in presenza di una relazione causale. Viceversa due eventi possono essere dipendenti anche in assenza di una relazione causale.

### 2.5 Entropia di Shannon

Una misura di probabilità può essere uno strumento per quantificare l'informazione.

**Definizione 2.5.1** (Entropia). Data una misura di probabilità discreta  $\mathbb{P}$  su  $\Omega = \{x_1, \dots, x_n\}$ , con  $p_i = \mathbb{P}(\{x_i\})$ , la sua entropia è data dalla funzione

$$H^{(n)}(p_1, \dots, p_n) = -\sum_{i=1}^n p_i \log(p_i)$$
 (32)

Proposizione 2.5.1. Valgono:

- 1. La funzione dell'entropia è simmetrica: scambiando  $p_i$  e  $p_j$  non cambia
- 2.  $H^{(n)}(1,0,\ldots,0)=0$
- 3. È coerente tra n diversi:  $H^{(n)}(p_1 = 0, p_2, ..., p_n) = H^{(n-1)}(p_2, ..., p_n)$
- 4.  $h^{(n)}(p_1,\ldots,p_n) \leq H^{(n)}(\frac{1}{n},\ldots,\frac{1}{n})$ , ovvero la massima entropia è data dalla distribuzione uniforme di probabilità
- 5. Data una probabilità su  $n \times m$  oggetti  $\Omega = \{x_{11}, \ldots, x_{ij}, \ldots, xnm\}$  con  $\mathbb{P}(x_{ij}) = q_{ij}$ , considerando gli eventi  $A_i = \{x_{i,1}, \ldots, x_{i,m}\}$  con  $\mathbb{P}(A_i) = p_1$  vale

$$H^{nm}(q_{11},\ldots,q_{ij},\ldots,q_{nm}) = H^{(n)}(p_1,\ldots,p_n) + \sum_{i=1}^n p_i H^{(m)}\left(\frac{q_{i1}}{p_1},\ldots,\frac{q_{im}}{p_i}\right)$$

ovvero l'entropia è data da quella relative al sistema di alternative  $A_i$  più la media pesata delle entropie relative nei blocchi  $A_i$ .

Teorema 2.5.1 (Shannon). Una funzione che soddisfa le 5 proprietà ha la forma

$$cH^{(n)} \qquad c > 0 \tag{33}$$

#### 2.6 Densità di probabilità

**Definizione 2.6.1** (Densità di probabilità). Una funzione non negativa  $f : \mathbb{R} \to [0, +\infty]$ , integrabile e tale che

$$\int_{-\infty}^{+\infty} f(x)dx = 1$$

La sua probabilità è

$$\mathbb{P}(A) = \int_{A} f(x)dx \qquad A \subseteq \Omega \tag{34}$$

Osservazione 2.6.1. La probabilità di ogni singolo punto è nulla

$$\mathbb{P}(\{t\}) = \int_{\{t\}} f(x)dx = 0 \tag{35}$$

e in generale

$$\mathbb{P}(A) = 0 \qquad \forall A \subset \mathbb{R} \tag{36}$$

# 3 Variabili aleatorie

Le variabili aleatorie sono funzioni dello spazio di probabilità. Permettono di scrivere osservazioni diverse fatte su uno stesso spazio  $\Omega$ .

**Definizione 3.0.1** (Variabile aleatoria).  $\dot{E}$  una funzione

$$X: \Omega \to \mathbb{R} \tag{37}$$

definita su uno spazio di probabilità.

# 3.1 Legge du una variabile aleatoria

Ad una variabile aleatoria sono associati eventi del tipo "X prende valori in un insieme  $A\subseteq\mathbb{R}$ :

$$\{X \in A\} = X^{-1}(A) = \{\omega \in \Omega : X(\omega) \in A\}$$