Xtremes Documentation

 $Version\ 0.1.0$

Author: Erik Haufs

CHAPTERS

Usag	ge	5
1.1	Installation	5
1.2	The modules	5
Time	e Series and Extreme Value Analysis	7
2.1	Step 1: Simulating Time Series Data	7
2.2	Step 2: Extracting Block Maxima	8
2.3	Step 3: Extracting High Order Statistics	8
2.4	Step 4: Estimating Parameters with PWM	8
2.5	Step 5: Maximum Likelihood Estimation (MLE)	9
2.6	Step 6: Analyzing Real Data	9
2.7	Conclusion	10
Boot	tstrap and MLE Tutorial	11
3.1	Step 1: Block Maxima Extraction	11
3.2	Step 2: Bootstrapping a Sample	12
3.3		12
3.4		12
3.5		13
3.6		13
Utili	ty Functions for Extreme Value Analysis	15
4.1	Step 1: Using the Sigmoid and Inverse Sigmoid Functions	15
4.2	Step 2: Calculating Probability Weighted Moments (PWM)	16
4.3		16
4.4	Step 4: Working with the GEV Distribution	16
4.5		17
4.6	Conclusion	17
Refe	erence: HigherOrderStatistics	19
5.1	Overview	19
5.2	Classes	19
5.3	The TimeSeries Class and its Functionalities	19
5.4		22
5.5	1	23
5.6		$\frac{-3}{24}$
5.7		$\frac{-}{25}$
5.8		28
5.9		31
	1.1 1.2 Time 2.1 2.2 2.3 2.4 2.5 2.6 2.7 Book 3.1 3.2 3.3 3.4 3.5 3.6 Utili 4.1 4.2 4.3 4.4 4.5 4.6 Reference 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	Time Series and Extreme Value Analysis 2.1 Step 1: Simulating Time Series Data 2.2 Step 2: Extracting Block Maxima 2.3 Step 3: Extracting High Order Statistics 2.4 Step 4: Estimating Parameters with PWM 2.5 Step 5: Maximum Likelihood Estimation (MLE) 2.6 Step 6: Analyzing Real Data 2.7 Conclusion Bootstrap and MLE Tutorial 3.1 Step 1: Block Maxima Extraction 3.2 Step 2: Bootstrapping a Sample 3.3 Step 3: Aggregating the Bootstrap Sample 3.4 Step 4: Maximum Likelihood Estimation (MLE) 3.5 Step 5: Running Full Bootstrap for MLE 3.6 Conclusion Utility Functions for Extreme Value Analysis 4.1 Step 1: Using the Sigmoid and Inverse Sigmoid Functions 4.2 Step 2: Calculating Probability Weighted Moments (PWM) 4.3 Step 3: Estimating GEV Parameters from PWM 4.4 Step 4: Working with the GEV Distribution 4.5 Step 5: Simulating Time Series Data 4.6 Conclusion Reference: HigherOrderStatistics 5.1 Overview 5.2 Classes 5.3 The TimeSeries Class and its Functionalities 5.4 Examples 5.5 The Bata Class and its Functionalities 5.6 Examples 5.7 The Data Class and its Functionalities 5.8 The PWM_estimators Class

	5.10	Running Extensive Simulations	38
	5.11	Examples	41
6	Refe	rence: Bootstrap	43
	6.1	Overview	43
	6.2	Classes	43
	6.3	The FullBootstrap Class	43
	6.4	The ML_Estimator Class	46
	6.5	Functions	48
	6.6	The circmax Function	48
	6.7	The uniquening Function	50
	6.8	The Bootstrap Function	50
	6.9	The aggregate_boot Function	51
	6.10	Examples	51
	6.11	References	53
7 Refe		rence: Miscellaneous	55
	7.1	Overview	55
	7.2	Basic Functions	55
	7.3	Examples	58
	7.4	The GEV and its Likelihood	58
	7.5	Examples	62
	7.6	Piece Wise Moment Estimation	62
	7.7	Examples	64
	7.8	Simulating Time Series	65
	7.9	Examples	68
Ind	lex		69

xtremes is a Python library for various utilities useful in Extreme Value Statistics. So far, you will find tools to fit more than one order statistics for parameter estimation as well as a Bootstrap device.

It is created within the $\operatorname{Clim}X$ treme project and will provide supplementary code and simulations for the papers yet to come.

Check out the *Usage* section for further information, including how to *Installation* the project.

Note: This project is under active and heavy development.

CHAPTER

ONE

USAGE

1.1 Installation

To use xtremes, in near future it will be possible to install it using pip:

```
(.venv) $ pip install xtremes
```

Until now, only a preliminary test version is avaiable:

```
(.venv) $ pip install -i https://test.pypi.org/simple/ test-xtremes
```

1.2 The modules

So far, three modules are implemented. The module xtremes.miscellaneous contains basic functionalities, whereas xtremes.HigherOrderStatistics is specialized on the influence of higher order statistics for Maximum Likelihood estimations. xtremes.Bootstrap provides a suitable Bootstrap device for block maxima.

For each module, there will be a tutorial and a subsection in the API reference.

6 Chapter 1. Usage

TIME SERIES AND EXTREME VALUE ANALYSIS

In this tutorial, we will explore how to use the functionalities provided in *HigherOrderStatistics.py* to simulate time series data, extract block maxima, and perform Maximum Likelihood Estimation (MLE) for extreme value distributions. We will also see how to work with real data to extract high-order statistics and compute MLE.

We will cover: - Simulating time series data using the *TimeSeries* class. - Extracting block maxima and high-order statistics from the simulated data. - Estimating parameters for GEV and Frechet distributions using PWM and MLE. - Analyzing real-world datasets for extreme value statistics.

Let's walk through each of these steps with code examples.

2.1 Step 1: Simulating Time Series Data

The first step is to simulate a time series dataset using the *TimeSeries* class. You can specify the length of the series, the type of distribution (e.g., GEV), and whether to apply any correlation structure (e.g., IID or ARMAX).

Here's how you can simulate a GEV-distributed time series:

```
from HigherOrderStatistics import TimeSeries

# Create a time series object with 100 data points, GEV distribution, and IID
correlation

ts = TimeSeries(n=100, distr='GEV', correlation='IID', modelparams=[0.5])

# Simulate the time series with 10 repetitions

ts.simulate(rep=10)

# Print the simulated time series data

print(ts.values)
```

2.2 Step 2: Extracting Block Maxima

Once the time series is generated, the next step is to extract block maxima from the data. Block maxima are the largest values within blocks of a certain size in the time series.

Here's how to extract block maxima with a block size of 5:

```
# Extract block maxima with a block size of 5
ts.get_blockmaxima(block_size=5, stride='DBM')

# Print the extracted block maxima
print(ts.blockmaxima)
```

In this example, the $get_blockmaxima()$ function divides the time series into blocks of size 5 and extracts the maximum value from each block. You can adjust the stride (e.g., 'DBM' for disjoint blocks or 'SBM' for sliding blocks).

2.3 Step 3: Extracting High Order Statistics

High-order statistics refer to the second, third, or higher-largest values within a block of data. You can extract these using the $get\ HOS()$ method.

Here's how to extract the top 2 largest values from each block:

```
# Extract the two highest values from each block
ts.get_HOS(orderstats=2, block_size=5, stride='DBM')
# Print the high-order statistics
print(ts.high_order_stats)
```

2.4 Step 4: Estimating Parameters with PWM

Once block maxima are extracted, you can estimate the parameters of the Generalized Extreme Value (GEV) distribution using Probability Weighted Moments (PWM). The *PWM_estimators* class handles this.

```
from HigherOrderStatistics import PWM_estimators

# Initialize PWM estimator with the time series data
pwm = PWM_estimators(ts)

# Compute PWM estimators for GEV parameters
pwm.get_PWM_estimation()

# Print the GEV parameter estimates
print(pwm.values)
```

2.5 Step 5: Maximum Likelihood Estimation (MLE)

To estimate the GEV or Frechet parameters using MLE, you can use the $ML_estimators$ class. This method fits the distribution to the block maxima or high-order statistics.

Here's how to perform MLE for the GEV distribution:

```
from HigherOrderStatistics import ML_estimators

# Initialize MLE estimator with the time series data
ml = ML_estimators(ts)

# Perform MLE for the GEV distribution
ml.get_ML_estimation()

# Print the MLE results
print(ml.values)
```

2.6 Step 6: Analyzing Real Data

You can also work with real-world datasets using the *Data* class. This class allows you to extract block maxima and high-order statistics, and perform MLE on the dataset.

Here's how to analyze a real dataset:

```
from HigherOrderStatistics import Data

# Initialize the Data class with a real dataset
data = Data([2.5, 3.1, 1.7, 4.6, 5.3, 2.2, 6.0])

# Extract block maxima
data.get_blockmaxima(block_size=2, stride='DBM')

# Extract high-order statistics
data.get_HOS(orderstats=2, block_size=2, stride='DBM')

# Perform MLE on the dataset
data.get_ML_estimation(FrechetOrGEV='GEV')

# Print the MLE results
print(data.ML_estimators.values)
```

2.7 Conclusion

In this tutorial, we explored how to simulate time series data, extract block maxima and high-order statistics, and perform MLE for extreme value distributions. We also saw how to analyze real-world data for extreme value statistics using block maxima and MLE.

THREE

BOOTSTRAP AND MLE TUTORIAL

In this tutorial, we will explore how to work with block maxima extraction, bootstrap resampling, and Maximum Likelihood Estimation (MLE) for extreme value distributions using the bootstrap.py code.

We will cover: - Block maxima extraction using the circmax() function. - Generating bootstrap samples with Bootstrap(). - Aggregating bootstrap samples and estimating Fréchet and GEV parameters using $ML_Estimator$. - Running full bootstrapping procedures for MLE with FullBootstrap.

Let's walk through each of these steps with code examples.

3.1 Step 1: Block Maxima Extraction

The first step in working with extreme value statistics is often to extract block maxima from a dataset. The circmax() function allows you to do this using either disjoint blocks or sliding blocks.

Here's how you can extract block maxima from a sample:

```
import numpy as np
from bootstrap import circmax

# Example dataset
sample = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

# Extract disjoint block maxima (DBM)
block_maxima_dbm = circmax(sample, bs=5, stride='DBM')
print("Disjoint Block Maxima (DBM):", block_maxima_dbm)

# Extract sliding block maxima (SBM)
block_maxima_sbm = circmax(sample, bs=3, stride='SBM')
print("Sliding Block Maxima (SBM):", block_maxima_sbm)
```

As you can see, circmax() allows you to specify the block size (bs) and the stride method (DBM or SBM). DBM extracts maxima from non-overlapping blocks, while SBM uses overlapping blocks, providing more block maxima.

3.2 Step 2: Bootstrapping a Sample

Next, we'll generate a bootstrap sample. Bootstrapping is a resampling technique used to estimate the variability of a statistic by randomly resampling the data with replacement.

Here's how you can generate a bootstrap sample from the block maxima we extracted earlier:

```
from bootstrap import Bootstrap
# Generate a bootstrap sample from the block maxima
boot_sample = Bootstrap(block_maxima_dbm)
print("Bootstrap Sample:", boot_sample)
```

In this case, the *Bootstrap()* function takes a list or array as input and returns a new sample of the same size, created by randomly selecting elements from the original data with replacement.

3.3 Step 3: Aggregating the Bootstrap Sample

Once you have a bootstrap sample, the next step is to aggregate the counts of unique values in the sample. This aggregation helps us prepare the data for MLE by summarizing the frequencies of the unique values.

Here's how you can aggregate the bootstrap sample:

```
from bootstrap import aggregate_boot

# Aggregate the counts of unique values in the bootstrap sample
aggregated_sample = aggregate_boot(boot_sample)
print("Aggregated Bootstrap Sample:", aggregated_sample)
```

Now, we have an aggregated sample that shows the unique values and their corresponding counts. This aggregated data will be used in the next step for MLE.

3.4 Step 4: Maximum Likelihood Estimation (MLE)

The *ML_Estimator* class allows us to perform MLE for either the Fréchet or GEV distribution using the aggregated bootstrap sample.

Let's first perform MLE for the Fréchet distribution:

```
from bootstrap import ML_Estimator
# Initialize the ML_Estimator with the aggregated bootstrap sample
estimator = ML_Estimator(aggregated_sample)

# Perform MLE for the Fréchet distribution
frechet_params = estimator.maximize_frechet()
print("Estimated Fréchet Parameters:", frechet_params)
```

Similarly, you can perform MLE for the GEV distribution:

```
# Perform MLE for the GEV distribution
gev_params = estimator.maximize_gev()
print("Estimated GEV Parameters:", gev_params)
```

With these methods, you can estimate the parameters (shape, scale, location) of both the Fréchet and GEV distributions using the MLE approach.

3.5 Step 5: Running Full Bootstrap for MLE

Finally, to estimate the variability of the MLE parameters, we can use the *FullBootstrap* class. This class applies the full bootstrapping procedure, including resampling, block maxima extraction, and MLE estimation, to obtain mean and standard deviation estimates for the parameters.

Here's how to run the full bootstrap procedure for the Fréchet distribution:

```
# Example dataset
sample = np.random.rand(100)

# Initialize FullBootstrap with the dataset
bootstrap = FullBootstrap(sample, bs=10, stride='DBM', dist_type='Frechet')

# Run the bootstrap procedure
bootstrap.run_bootstrap(num_bootstraps=100)

# Print the mean and standard deviation of the estimates
print("Mean of Bootstrap Estimates:", bootstrap.statistics['mean'])
print("Standard Deviation of Bootstrap Estimates:", bootstrap.statistics['std'])
```

This process generates multiple bootstrap samples, applies MLE to each, and calculates the mean and standard deviation of the resulting estimates. You can also do this for the GEV distribution by setting $dist\ type='GEV'$.

3.6 Conclusion

In this tutorial, we walked through the process of extracting block maxima, generating bootstrap samples, aggregating the data, and estimating parameters using MLE. We also saw how to apply the full bootstrap procedure to analyze the variability of the MLE estimates. This framework is essential when dealing with extreme value theory and understanding the uncertainty in parameter estimates.

UTILITY FUNCTIONS FOR EXTREME VALUE ANALYSIS

In this tutorial, we will explore the utility functions provided in *miscellaneous.py* that are used in the context of extreme value analysis. These functions include calculating probability-weighted moments, simulating time series, computing GEV distributions, and performing basic statistical tasks like sigmoid and inverse sigmoid transformations.

We will cover: - Basic mathematical functions like sigmoid() and mse(). - Functions related to Generalized Extreme Value (GEV) distributions such as $GEV_pdf()$, $GEV_cdf()$, and $PWM_estimation()$. - Simulating time series data using the $simulate_timeseries()$ function.

Let's go through each function step by step.

4.1 Step 1: Using the Sigmoid and Inverse Sigmoid Functions

The sigmoid function is used to map real-valued numbers into the range (0, 1), and the inverse sigmoid performs the opposite transformation.

Here's how you can use the *sigmoid()* and *invsigmoid()* functions:

```
from miscellaneous import sigmoid, invsigmoid

# Apply sigmoid transformation
x = [-2, -1, 0, 1, 2]
sigmoid_values = sigmoid(x)
print(sigmoid_values)

# Apply inverse sigmoid transformation
y = [0.1, 0.5, 0.9]
invsigmoid_values = invsigmoid(y)
print(invsigmoid_values)
```

The sigmoid function maps any real-valued input to a value between 0 and 1, while the inverse sigmoid transforms probabilities back to their original values.

4.2 Step 2: Calculating Probability Weighted Moments (PWM)

In extreme value theory, PWMs are used to estimate parameters of the Generalized Extreme Value (GEV) distribution. The function $PWM_estimation()$ computes the first three PWMs based on block maxima.

Here's how to compute PWM for a set of block maxima:

```
from miscellaneous import PWM_estimation

# Example block maxima data
maxima = [5, 8, 12, 15, 18]

# Compute PWM estimators
beta_0, beta_1, beta_2 = PWM_estimation(maxima)
print(f"0: {beta_0}, 1: {beta_1}, 2: {beta_2}")
```

These PWMs can then be used to estimate GEV parameters using the *PWM2GEV()* function, which converts PWMs to GEV parameters (shape, location, and scale).

4.3 Step 3: Estimating GEV Parameters from PWM

The function PWM2GEV() converts the first three PWM moments into GEV distribution parameters: shape (), location (), and scale ().

Here's how to compute GEV parameters from PWM estimators:

```
from miscellaneous import PWM2GEV

# PWM estimators
b_0, b_1, b_2 = 11.6, 11.2, 39.2

# Compute GEV parameters
gamma, mu, sigma = PWM2GEV(b_0, b_1, b_2)
print(f"GEV Shape (): {gamma}, Location (): {mu}, Scale (): {sigma}")
```

The PWM2GEV() function allows you to estimate the GEV distribution parameters based on the computed PWM moments.

4.4 Step 4: Working with the GEV Distribution

The module provides several functions to compute properties of the Generalized Extreme Value (GEV) distribution, including: - $GEV_pdf()$: Computes the Probability Density Function (PDF). - $GEV_cdf()$: Computes the Cumulative Distribution Function (CDF). - $GEV_ll()$: Computes the log-likelihood of the GEV distribution.

Here's how to use these functions:

```
from miscellaneous import GEV_pdf, GEV_cdf, GEV_ll

# Example data
x = [1, 2, 3, 4, 5]

# Compute GEV PDF

pdf_values = GEV_pdf(x, gamma=0.5, mu=2, sigma=1)
print("GEV PDF:", pdf_values)

# Compute GEV CDF

cdf_values = GEV_cdf(x, gamma=0.5, mu=2, sigma=1)
print("GEV CDF:", cdf_values)

# Compute GEV log-likelihood

ll_values = GEV_ll(x, gamma=0.5, mu=2, sigma=1)
print("GEV Log-Likelihood:", ll_values)
```

These functions allow you to work with GEV distributions for various tasks like computing probabilities, densities, or performing likelihood-based inference.

4.5 Step 5: Simulating Time Series Data

The *simulate_timeseries()* function is a powerful utility to generate time series data with different distributions and correlation structures. You can simulate IID (independent and identically distributed) data or time series with temporal dependence using ARMAX or AR models.

Here's how to simulate a time series:

```
from miscellaneous import simulate_timeseries

# Simulate an IID time series with GEV distribution
simulated_ts = simulate_timeseries(n=100, distr='GEV', correlation='IID', _____
__modelparams=[0.5], seed=42)

# Print the first 10 values
print(simulated_ts[:10])
```

This function supports various distributions (e.g., GEV, Frechet, GPD) and allows you to introduce temporal dependence using ARMAX or AR models.

4.6 Conclusion

In this tutorial, we explored several utility functions provided in *miscellaneous.py* for extreme value analysis. These functions help in tasks ranging from basic mathematical transformations (like sigmoid) to more advanced operations like PWM estimation, GEV parameter estimation, and time series simulation.

REFERENCE: HIGHERORDERSTATISTICS

This module is specialized in analyzing the influence of higher order statistics for Maximum Likelihood estimations.

5.1 Overview

The *xtremes.HigherOrderStatistics* module provides tools for analyzing higher order statistics and their influence on Maximum Likelihood estimations. It includes classes and functions for handling time series data, extracting block maxima, and performing statistical analysis.

5.2 Classes

5.3 The TimeSeries Class and its Functionalities

The *TimeSeries* class is used to handle and manipulate time series data. It provides methods for extracting block maxima and high order statistics.

class xtremes. HigherOrderStatistics. TimeSeries (n, distr='GEV', correlation='IID', modelparams=[0], ts=0)

Bases: object

TimeSeries class for simulating and analyzing time series data with optional correlation structures.

This class is designed to simulate time series data based on specified distributions and correlation types. It also provides methods to extract block maxima and high order statistics from the simulated data.

5.3.1 Parameters

 \mathbf{n}

[int] The length of the time series.

distr

[str, optional] The distribution to simulate the time series data from. Default is 'GEV' (Generalized Extreme Value).

correlation

[str, optional] The type of correlation structure. Options include ['IID', 'ARMAX', 'AR']. Default is 'IID' (independent and identically distributed).

modelparams

[list, optional] The parameters of the specified distribution. Default is [0].

 \mathbf{ts}

[float, optional] A parameter for controlling the time series characteristics, particularly for correlated series (e.g., in AR models). Must be in the range [0, 1]. Default is 0.

5.3.2 Attributes

values

[list] A list to store the simulated time series data.

distr

[str] The type of distribution used for generating the time series data.

corr

[str] The type of correlation structure applied to the time series.

modelparams

[list] The parameters of the chosen distribution model.

 \mathbf{ts}

[float] A parameter controlling the correlation or time series structure, if applicable.

len

[int] The length of the time series.

blockmaxima

[list] A list storing block maxima extracted from the simulated data.

high order stats

[list] A list storing the high order statistics extracted from the simulated data.

5.3.3 Methods

simulate(rep=10, seeds='default'):

Simulates time series data based on the given distribution and correlation type.

get blockmaxima(block size=2, stride='DBM', rep=10):

Extracts block maxima from the simulated time series data.

get HOS(orderstats=2, block size=2, stride='DBM', rep=10):

Extracts high order statistics from the simulated time series data.

5.3.4 Examples

```
get_HOS(orderstats=2, block size=2, stride='DBM', rep=10)
```

Extract high order statistics from simulated time series data.

High order statistics include values such as the second-largest value within each block of the time series.

Parameters

orderstats

[int, optional] The order of statistics to extract. Default is 2 (i.e., second-highest value).

block size

[int, optional] The size of blocks from which to extract the statistics. Default is 2.

stride

[str, optional] The stride or step type used for block extraction. Choose from ['SBM', 'DBM']. Default is 'DBM'.

rep

[int, optional] The number of repetitions for extracting high order statistics. Should match the number of simulations. Default is 10.

```
get_blockmaxima(block size=2, stride='DBM', rep=10)
```

Extract block maxima from simulated time series data.

Block maxima are the maximum values extracted from blocks of the time series data.

Parameters

block size

[int, optional] The size of blocks from which to extract maxima. Default is 2.

stride

[{str, int}, optional] The stride or step type used for block extraction. Choose from ['SBM' (Sliding Block Maxima), 'DBM' (Disjoint Block Maxima)] or specify an integer as a step size. Default is 'DBM'.

rep

[int, optional] The number of repetitions for maxima extraction. This should match the number of simulations. Default is 10.

```
simulate(rep=10, seeds='default')
```

Simulate time series data.

This method generates time series data based on the specified distribution, correlation type, and other parameters.

Parameters

rep

[int, optional] The number of repetitions (simulations) to run. Default is 10.

seeds

[{str, list}, optional] Seed(s) for random number generation. If 'default', a sequence of seeds is automatically generated based on the number of repetitions. If a list of seeds is provided, it must match the number of repetitions (rep). Default is 'default'.

Raises

ValueError

If the number of provided seeds does not match the number of repetitions.

5.4 Examples

1. Extract Block Maxima:

2. Extract High Order Statistics:

5.5 The HighOrderStats Class and its Functionalities

The *HighOrderStats* class is used to compute and analyze higher order statistics from the time series data. It provides methods for calculating log-likelihoods and performing Maximum Likelihood Estimation (MLE).

class xtremes. HigherOrderStatistics. HighOrderStats (TimeSeries)

Bases: object

HighOrderStats class for calculating and analyzing high-order statistics of time series data.

5.5.1 Notes

This class provides functionality for calculating Probability Weighted Moment (PWM) estimators and Maximum Likelihood (ML) estimators from a given TimeSeries object.

5.5.2 Methods

get PWM estimation():

Calculate the PWM estimators for the time series data.

get_ML_estimation(initParams='auto', FrechetOrGEV = 'Frechet', option=1, estimate pi=False):

Calculate the ML estimators for the time series data.

5.5.3 Attributes

TimeSeries

[TimeSeries] The TimeSeries object containing the time series data.

high order stats

[list] List of high-order statistics extracted from the TimeSeries object.

blockmaxima

[list] List of block maxima derived from the high-order statistics.

gamma true

[float] True gamma parameter of the GEV distribution derived from the TimeSeries object.

PWM estimators

[PWM_estimators] Instance of PWM_estimators class for calculating PWM estimators.

ML estimators

[ML estimators] Instance of ML estimators class for calculating ML estimators.

5.5.4 Example

get_ML_estimation(initParams='auto', r=None, FrechetOrGEV='Frechet')
Calculate the Maximum Likelihood (ML) estimators.

Parameters

initParams

[str or array-like, optional] Method for initializing parameters. Default is 'auto', which uses automatic parameter initialization.

r

[int, optional] Number of order statistics to calculate the log-likelihood on. If not specified, use all provided.

FrechetOrGEV

[str, optional] Whether to fit the Frechet or GEV distribution.

Notes

This function performs maximum likelihood estimation based on either the Frechet or GEV distribution.

```
get_PWM_estimation()
```

Calculate the Probability Weighted Moment (PWM) estimators.

5.6 Examples

1. Log Likelihood:

```
from xtremes.HigherOrderStatistics import HighOrderStats import numpy as np

hos_data = np.array([[0.1, 0.2], [0.3, 0.4], [0.2, 0.5], [0.4, 0.

6]])
hos = HighOrderStats(hos_data)
log_likelihood = hos.log_likelihood(gamma=0.5, mu=0, sigma=2, r=2)
print("Log_Likelihood:", log_likelihood)
```

2. Frechet Log Likelihood:

5.7 The Data Class and its Functionalities

The Data class is used to handle and manipulate real data for analysis.

class xtremes.HigherOrderStatistics.Data(values)

Bases: object

A class for analyzing data with block maxima and high order statistics.

This class provides methods to extract block maxima and high order statistics from a given dataset. It also supports Maximum Likelihood (ML) estimation for the parameters of either the Frechet or GEV distributions.

5.7.1 Parameters

values

[list or numpy.ndarray] The dataset from which block maxima and high order statistics are extracted. This should be a 1D array or list of values representing the time series or data.

5.7.2 Attributes

values

[list or numpy.ndarray] The dataset on which operations are performed.

len

[int] The length of the dataset.

blockmaxima

[list] List to store the block maxima extracted from the dataset.

bm indices

[list] List of indices corresponding to the positions of the block maxima in the original dataset.

high order stats

[list] List to store the high order statistics extracted from the dataset.

ML estimators

[ML_estimators_data] Object that stores and handles the ML estimation results for the Frechet or GEV parameters.

5.7.3 Methods

get blockmaxima(block size=2, stride='DBM'):

Extracts block maxima from the dataset.

get HOS(orderstats=2, block size=2, stride='DBM'):

Extracts high order statistics from the dataset.

get ML estimation(r=None, FrechetOrGEV='GEV'):

Computes ML estimations for the Frechet or GEV parameters.

5.7.4 Example

```
>>> # Initialize the Data object with a dataset
>>> data = Data([2.5, 3.1, 1.7, 4.6, 5.3, 2.2, 6.0])
>>> # Extract block maxima using a block size of 2
>>> data.get_blockmaxima(block_size=2, stride='DBM')
>>> print(data.blockmaxima)
>>> # Extract second-highest order statistics (HOS) with the same block_u
-size and stride
>>> data.get_HOS(orderstats=2, block_size=2, stride='DBM')
>>> print(data.high_order_stats)
>>> # Perform ML estimation using the extracted HOS, choosing between_u
-Frechet and GEV
>>> data.get_ML_estimation(FrechetOrGEV='GEV')
>>> print(data.ML_estimators.values)
```

$get_HOS(orderstats=2, block \ size=2, stride='DBM')$

Extract high order statistics (HOS) from the dataset.

High order statistics refer to statistics of interest beyond the maximum (e.g., second-highest, third-highest). This method extracts these statistics from blocks of the dataset.

Parameters

orderstats

[int, optional] The order of the statistic to extract (e.g., 2 for second-highest). Default is 2.

block size

[int, optional] The size of blocks from which to extract the statistics. Default is 2.

stride

[str or int, optional] The type of stride to use when extracting blocks. Choose from: - 'SBM': Sliding Block Maxima (step size 1) - 'DBM': Disjoint Block

Maxima (non-overlapping blocks) - int: Specifies the step size directly. Default is 'DBM'.

Returns

None

The high order statistics are stored in the *high_order_stats* attribute.

```
get_ML_estimation(r=None, FrechetOrGEV='GEV')
```

Compute Maximum Likelihood (ML) estimations for the Frechet or GEV parameters.

This method computes ML estimators for the parameters of either the Frechet or GEV distribution based on the high order statistics extracted from the data. If no high order statistics are available, it will first extract them.

Parameters

 \mathbf{r}

[int, optional] The number of order statistics to use in the ML estimation. If not specified, it uses all the extracted statistics.

FrechetOrGEV

[str, optional] The type of distribution to use for the ML estimation. Choose between 'Frechet' and 'GEV'. Default is 'GEV'.

Returns

None

The ML estimators are stored in the ML estimators attribute.

```
get_blockmaxima(block\_size=2, stride='DBM')
```

Extract block maxima from the dataset.

Block maxima are the largest values in each block of the dataset, where the block size and the stride (step size) determine how the blocks are divided.

Parameters

block size

[int, optional] The size of blocks for maxima extraction. Default is 2.

stride

[str or int, optional] The type of stride to use when extracting blocks. Choose from: - 'SBM': Sliding Block Maxima (step size 1) - 'DBM': Disjoint Block Maxima (non-overlapping blocks) - int: Specifies the step size directly. Default is 'DBM'.

Returns

None

The block maxima and their corresponding indices are stored in the block maxima and $bm_indices$ attributes.

5.8 The PWM_estimators Class

The PWM_estimators class is used to compute Probability Weighted Moment (PWM) estimators.

class xtremes. HigherOrderStatistics. PWM_estimators (TimeSeries)

Bases: object

Calculates Probability Weighted Moment (PWM) estimators from block maxima.

5.8.1 Notes

Probability Weighted Moments (PWMs) are used to estimate the parameters of extreme value distributions. The first three PWMs (denoted as $\beta_0, \beta_1, \beta_2$) are computed for each block maxima series, then converted into Generalized Extreme Value (GEV) parameters (γ, μ, σ) using the PWM2GEV function.

5.8.2 Parameters

param TimeSeries

TimeSeries object TimeSeries object containing block maxima or high order statistics.

5.8.3 Attributes

attribute blockmaxima

numpy.ndarray Array of block maxima extracted from the TimeSeries object.

attribute values

numpy.ndarray Array containing the PWM estimators (γ, μ, σ) for each block maxima series.

attribute statistics

dict Dictionary containing statistics (mean, variance, bias, mse) of the PWM estimators.

5.8.4 Methods

method get PWM estimation()

Compute PWM estimators for each block maxima series and convert them into GEV parameters.

method get statistics(gamma true)

Compute statistics of the PWM estimators using a true gamma value.

5.8.5 Raises

raises ValueError

If block maxima or high order statistics are not available in the TimeSeries object.

5.8.6 Examples

get_CIs(alpha=0.05, method='symmetric')

Compute the confidence interval (CI) for the PWM estimators.

Parameters

alpha

[float, optional] Significance level for the confidence interval. Default is 0.05, corresponding to a 95% confidence interval.

method

[str, optional] Method to compute the confidence interval. Two options are available: - 'symmetric': The confidence interval is computed using the symmetric quantiles. - 'minimal_width': The confidence interval is computed by finding the minimal-width interval that contains (1 - alpha) proportion of the bootstrap distribution. The default is 'symmetric'.

Returns

numpy.ndarray

A 2D array with shape (n_parameters, 2) containing the lower and upper bounds of the confidence interval for each parameter. The first column represents the lower bounds, and the second column represents the upper bounds.

Notes

The confidence intervals are based on bootstrap estimates of the MLE parameters, which means the confidence intervals are derived from the empirical distribution of the parameter estimates obtained from multiple bootstrap samples.

There are two methods available for calculating the confidence intervals: - 'symmetric': This method takes the alpha/2 and (1 - alpha/2) quantiles of the bootstrap distribution for each parameter. It is based on the assumption that the distribution is approximately symmetric and works well when the bootstrap distribution is roughly normal. - 'minimal_width': This method identifies the interval with the minimal width that contains (1 - alpha) proportion of the bootstrap samples. It is particularly useful when the bootstrap distribution is skewed or not symmetric.

get_PWM_estimation()

Compute PWM estimators for each block maxima series and convert them into GEV parameters.

get_statistics(gamma_true)

Compute statistics of the PWM estimators using a true gamma value.

Parameters

param gamma true

float True gamma value for calculating statistics.

xtremes.HigherOrderStatistics.automatic_parameter_initialization($PWM_estimators$, $corr.\ ts=0.5$)

Automatic parameter initialization for ML estimation.

5.8.7 Notes

This function is designed for initializing parameters for maximum likelihood estimation (ML) in statistical models. It automatically computes the probability weighted moment (PWM) estimators and adjusts them based on the specified correlation type ('ARMAX', 'IID', etc.). The 'ts' parameter is used to control the strength of temporal dependence in the model.

5.8.8 Parameters

param PWM estimators

list or numpy.array Probability weighted moment estimators.

param corr

str Correlation type for the model. Supported values are 'ARMAX', 'IID', etc.

param ts

float, optional Time series parameter controlling the strength of temporal dependence (default is 0.5).

return

numpy.ndarray Initial parameters for ML estimation.

5.8.9 See also

misc.PWM_estimation: Function for computing probability weighted moment estimators.

5.8.10 Examples

The $ML_estimators$, $Frechet_ML_estimators$, and $ML_estimators_data$ classes are used for performing Maximum Likelihood Estimation (MLE) and handling the results.

class xtremes. HigherOrderStatistics. ML_estimators(TimeSeries)

Bases: object

Maximum Likelihood Estimators (MLE) for GEV parameters.

This class calculates Maximum Likelihood Estimators (MLE) for the parameters of the Generalized Extreme Value (GEV) distribution using the method of maximum likelihood estimation.

5.9.1 Parameters

TimeSeries

[TimeSeries] The TimeSeries object containing the data for which MLE estimators will be calculated.

5.9.2 Attributes

values

[numpy.ndarray] An array containing the MLE estimators for each set of high order statistics.

statistics

[dict] A dictionary containing statistics computed from the MLE estimators.

5.9.3 Methods

```
__len__()
Returns the number of MLE estimators calculated.
```

```
\label{eq:continuity} \begin{array}{ll} \texttt{get\_ML\_estimation}(\texttt{PWM\_estimators} = \texttt{None}, \ \texttt{initParams} = \texttt{`auto'}, \ \texttt{option} = 1, \\ \texttt{estimate\_pi} = \texttt{False}) \end{array}
```

Computes the MLE estimators for the GEV parameters.

get statistics(gamma true)

Computes statistics from the MLE estimators.

5.9.4 Examples

 $get_ML_estimation(PWM\ estimators=None,\ initParams='auto',\ r=None)$

Compute Maximum Likelihood (ML) estimators for each series of high order statistics within the ML estimators class.

This method fits the Generalized Extreme Value (GEV) distribution to each series of high order statistics using Maximum Likelihood Estimation (MLE) by optimizing the log-likelihood function.

Parameters

PWM estimators

[PWM_estimators object, optional] An object containing PWM (Probability Weighted Moments) estimators. This is used for initializing the parameters in the ML estimation if *initParams* is set to 'auto'. Required if *initParams* is 'auto'.

initParams

[str or numpy.ndarray, optional] Initial parameters for the ML estimation. If 'auto', the initial parameters will be computed automatically using the $PWM_estimators$ object. If a NumPy array is provided, these will be used as initial parameter values. Default is 'auto'.

 \mathbf{r}

[int, optional] The number of order statistics to calculate the log-likelihood on. If not specified, all provided order statistics will be used.

Returns

None

This method updates the self.values attribute of the $ML_estimators$ object with the estimated parameters (gamma, mu, sigma) for each series of high order statistics.

Raises

ValueError

If initParams is set to 'auto' and no $PWM_estimators$ are provided, a ValueError is raised.

Notes

- This method performs Maximum Likelihood Estimation (MLE) to fit the Generalized Extreme Value (GEV) distribution to the high order statistics within the *ML estimators* class.
- The method uses optimization techniques such as Nelder-Mead (and optionally COBYLA) to minimize the negative log-likelihood.
- If *initParams* is set to 'auto', the initial parameters for the optimization are derived using the *PWM_estimators* object.
- The optimization results (gamma, mu, sigma) are stored in the *self.values* list for each series of high order statistics.

get_statistics(gamma_true)

Compute statistics of the ML estimators using a true γ value.

Parameters

param gamma true

float True γ value for calculating statistics.

$\verb|class| xtremes.HigherOrderStatistics.Frechet_ML_estimators(|\mathit{TimeSeries}|)|$

Bases: object

Maximum Likelihood Estimators (MLE) for Frechet parameters.

This class calculates Maximum Likelihood Estimators (MLE) for the parameters of the 2-parameter Frechet distribution using the method of maximum likelihood estimation on a series of high order statistics.

5.9.5 Parameters

TimeSeries

[TimeSeries] The TimeSeries object containing the data (high order statistics) for which MLE estimators will be calculated.

5.9.6 Attributes

values

[numpy.ndarray] An array containing the MLE estimators (alpha, sigma) for each set of high order statistics.

statistics

[dict] A dictionary containing computed statistics from the MLE estimators such as mean, variance, bias, and MSE.

5.9.7 Methods

 $__len__()$

Returns the number of MLE estimators calculated.

get ML estimation(PWM estimators=None, initParams='auto', r=None)

Computes the MLE estimators for the Frechet parameters (alpha, sigma).

get statistics(alpha true)

Computes statistics (mean, variance, bias, and MSE) of the MLE estimators using a true alpha value.

5.9.8 Examples

$\texttt{get_ML_estimation}(PWM_estimators = None, initParams = 'auto', r = None)$

Compute ML estimators (alpha, sigma) for each high order statistics series using Frechet distribution.

Parameters

PWM estimators

[PWM_estimators object, optional] PWM_estimators object containing PWM estimators for initializing parameters. Required if *initParams* is set to 'auto'.

initParams

[str or numpy.ndarray, optional] Initial parameters for ML estimation. 'auto' to calculate automatically using PWM estimators. If a numpy array is provided, these will be used as initial parameter values. Default is 'auto'.

 \mathbf{r}

[int, optional] Number of order statistics to calculate the log-likelihood on. If not specified, all provided order statistics will be used.

Returns

None

Updates the *self.values* attribute with the estimated parameters (alpha, sigma) for each series of high order statistics.

Raises

ValueError

If *initParams* is set to 'auto' and no *PWM_estimators* are provided.

get_statistics(alpha_true)

Compute statistics (mean, variance, bias, and MSE) of the ML estimators using the true α value.

Parameters

alpha true

[float] The true value of α to calculate bias, MSE, and other statistics.

Returns

None

Updates the *self.statistics* dictionary with calculated statistics such as mean, variance, bias, and MSE for both α and σ .

Notes

The statistics include: - Mean and variance for the estimated alpha and sigma values.

- Bias and mean squared error (MSE) for the alpha estimates.

```
xtremes.HigherOrderStatistics.log_likelihood(high\_order\_statistics, gamma=0, mu=0, siqma=1, r=None)
```

Calculate the GEV log likelihood based on the two highest order statistics in three different ways.

5.9.9 Parameters

high order statistics

[numpy.ndarray] A 2D array where each row contains the two highest order statistics for each observation.

gamma

[float, optional] The shape parameter () for the Generalized Extreme Value (GEV) distribution. Default is 0.

$\mathbf{m}\mathbf{u}$

[float, optional] The location parameter () for the GEV distribution. Default is 0.

sigma

[float, optional] The scale parameter () for the GEV distribution. Must be positive. Default is 1.

 \mathbf{r}

[int, optional] The number of order statistics to calculate the log-likelihood on. If not specified, it uses all provided statistics.

5.9.10 Returns

float

The calculated log likelihood.

5.9.11 Notes

- This function computes the log likelihood using the two highest order statistics and supports both the classical Gumbel case (=0) and the generalized case (=0).
- The *high_order_statistics* array should be structured with the two highest order statistics per observation as rows.
- The shape parameter controls the tail behavior of the distribution. When = 0, the distribution becomes the Gumbel type.
- The r parameter controls how many order statistics are used for the likelihood calculation, typically r=2 for two order statistics.

5.9.12 Example

```
>>> hos = np.array([[0.1, 0.2], [0.3, 0.4], [0.2, 0.5], [0.4, 0.6]])
>>> log_likelihood(hos, gamma=0.5, mu=0, sigma=2, r=2)
-7.494890426732856
```

Calculate the 2-parameter Frechet log likelihood based on the highest order statistics. The calculation can be done using either the joint likelihood of the top two order statistics or the product of their marginals.

5.9.13 Parameters

high order statistics

[numpy.ndarray] A 2D array where each row contains the two highest order statistics for each observation.

alpha

[float, optional] The shape parameter () for the Frechet distribution. Default is 1. Controls the tail behavior of the distribution.

sigma

[float, optional] The scale parameter () for the Frechet distribution. Must be positive. Default is 1.

r [int, optional] The number of order statistics to calculate the log-likelihood on. If not specified, it uses all provided statistics.

5.9.14 Returns

float

The calculated log likelihood for the given data under the Frechet distribution.

5.9.15 Notes

- This function computes the log likelihood using the two highest order statistics from each observation, with a focus on the Frechet distribution.
- The shape parameter *alpha* determines the heaviness of the tail in the distribution, and the scale parameter *sigma* must be strictly positive.
- The *high_order_statistics* array should be structured such that each row represents the two highest order statistics for an observation.
- The function can either calculate the joint likelihood of the top two order statistics or consider the product of their marginals, depending on the values used.

5.9.16 Example

```
>>> hos = np.array([[0.5, 1.0], [1.5, 2.0], [1.2, 2.2], [2.0, 3.0]])
>>> Frechet_log_likelihood(hos, alpha=2, sigma=1.5, r=2)
-15.78467219003245
```

5.10 Running Extensive Simulations

The *xtremes.HigherOrderStatistics* module also provides functions for running extensive simulations and performing multiple MLEs.

```
xtremes.HigherOrderStatistics.run_ML_estimation(file, corr='IID', gamma\_true=0, block\_sizes=[5, 10, 15, 20, 25, 30, 35, 40, 45, 50], stride='SBM', option=1, estimate pi=False)
```

Run maximum likelihood estimation (ML) for a given time series file.

5.10.1 Notes

This function reads a time series from a file and performs ML estimation for the specified correlation type, GEV shape parameter, block sizes, and stride type. It iterates over each block size, extracts block maxima, computes high order statistics, and performs ML estimation. The results are stored in a dictionary with the GEV shape parameter as the key and ML estimation results for each block size as the value.

5.10.2 Parameters

param file

str Path to the file containing the time series data.

param corr

str, optional Correlation type for the model (default is 'IID').

param gamma true

float, optional True value of the GEV shape parameter (default is 0).

param block sizes

list, optional List of block sizes for extracting block maxima (default is [5, 10, 15, 20, 25, 30, 35, 40, 45, 50]).

param stride

str, optional Stride type for block maxima extraction. Options are 'SBM' (sliding block maxima) or 'DBM' (default block maxima) (default is 'SBM').

param r

int, optional Number of order statistics to calculate the log-likelihood on. If not specified, use all provided

param estimate pi

bool, optional Flag indicating whether to estimate the pi parameter (default is False).

5.10.3 Example

5.10.4 Returns

return

dict Dictionary containing ML estimation results for each block size.

```
 \begin{array}{c} {\it xtremes.HigherOrderStatistics.run\_multiple\_ML\_estimations}(file,\ corr='IID', \\ gamma\_trues=array([-0.4,\ -0.3,\ -0.2,\ -0.1,\ 0., \\ 0.1,\ 0.2,\ 0.3,\ 0.4]), \\ block\_sizes=[5,\ 10,\ 15, \\ 20,\ 25,\ 30,\ 35,\ 40,\ 45, \\ 50[,\ stride='SBM', \\ option=1, \\ estimate\_pi=False, \\ parallelize=False) \\ \end{array}
```

Run multiple maximum likelihood estimations (ML) for a range of GEV shape parameter values.

5.10.5 Notes

This function performs ML estimation for a range of GEV shape parameter values specified in 'gamma_trues' and aggregates the results into a single dictionary. It iterates over each gamma value, calls the 'run_ML_estimation' function, and collects the results. If 'parallelize' is set to True, it runs the estimations concurrently using asyncio.

5.10.6 Parameters

param file

str Path to the file containing the time series data.

param corr

str, optional Correlation type for the model (default is 'IID').

param gamma trues

numpy.ndarray, optional Array of GEV shape parameter values to perform ML estimation for (default is np.arange(-4, 5, 1)/10).

param block sizes

list, optional List of block sizes for extracting block maxima (default is [5, 10, 15, 20, 25, 30, 35, 40, 45, 50]).

param stride

str, optional Stride type for block maxima extraction. Options are 'SBM' (sliding block maxima) or 'DBM' (default block maxima) (default is 'SBM').

param r

int, optional Number of order statistics to calculate the log-likelihood on. If not specified, use all provided

param estimate pi

bool, optional Flag indicating whether to estimate the pi parameter (default is False).

param parallelize

bool, optional Flag indicating whether to parallelize the ML estimations using asyncio (default is False).

5.10.7 Returns

return

dict Dictionary containing ML estimation results for each gamma value and block size.

5.11 Examples

1. Run ML Estimation:

2. Run Multiple ML Estimations:

```
from xtremes.HigherOrderStatistics import run_multiple_ML_

destinations
import numpy as np

result = run_multiple_ML_estimations("timeseries_data.pkl", corr=

display="illd", gamma_trues=np.arange(-4, 5, 1)/10, block_sizes=[10, 20, 0]

display="illd", option=1, estimate_pi=False, 0]

display="illd", option=1, estimate_pi=False,
```

5.11. Examples 41

REFERENCE: BOOTSTRAP

This module computes a Bootstrap procedure on disjoint or sliding block maxima.

6.1 Overview

The *xtremes.bootstrap* module provides tools for performing bootstrap procedures on block maxima. It includes classes and functions for extracting block maxima, resampling, and estimating parameters using Maximum Likelihood Estimation (MLE).

6.2 Classes

6.3 The FullBootstrap Class

class xtremes.bootstrap.FullBootstrap($initial_sample, bs=10, stride='DBM', dist type='Frechet'$)

Bases: object

A class to perform bootstrapping of Maximum Likelihood Estimates (MLE) for Fréchet or GEV distributions.

This class takes an initial sample and applies a bootstrap resampling procedure to estimate the variability of the MLE parameters for the specified distribution type (Fréchet or GEV). It uses block maxima extraction methods with disjoint or sliding blocks.

6.3.1 Parameters

initial sample

[list or numpy.ndarray] The initial dataset from which block maxima will be extracted and bootstrapped.

bs

[int, optional] Block size for the block maxima extraction. Default is 10.

stride

[{'DBM', 'SBM'}, optional] Stride type for block maxima extraction: - 'DBM' (Disjoint Block Maxima): Non-overlapping blocks. - 'SBM' (Sliding Block Maxima): Overlapping blocks. Default is 'DBM'.

dist type

[{'Frechet', 'GEV'}, optional] Distribution type to estimate the parameters for: - 'Frechet': Estimate parameters for the 2-parametric Fréchet distribution. - 'GEV': Estimate parameters for the 3-parametric Generalized Extreme Value (GEV) distribution. Default is 'Frechet'.

6.3.2 Attributes

circmaxs

[list] The block maxima extracted from the initial sample using the specified block size and stride.

values

[list] MLE estimates for each bootstrap sample after running the run_bootstrap method.

statistics

[dict] Dictionary containing summary statistics (mean and standard deviation) of the bootstrap estimates.

6.3.3 Methods

run bootstrap(num bootstraps=100)

Runs the bootstrap procedure and returns the MLE estimates for each bootstrap sample.

6.3.4 Example

get_CI(alpha=0.05, method='symmetric')

Compute the confidence interval (CI) for the Maximum Likelihood Estimate (MLE) parameters based on bootstrap samples.

Parameters

alpha

[float, optional] Significance level for the confidence interval. Default is 0.05, corresponding to a 95% confidence interval.

method

[str, optional] Method to compute the confidence interval. Two options are available: - 'symmetric': The confidence interval is computed using the symmetric quantiles. - 'minimal_width': The confidence interval is computed by finding the minimal-width interval that contains (1 - alpha) proportion of the bootstrap distribution. The default is 'symmetric'.

Returns

numpy.ndarray

A 2D array with shape (n_parameters, 2) containing the lower and upper bounds of the confidence interval for each parameter. The first column represents the lower bounds, and the second column represents the upper bounds.

Notes

The confidence intervals are based on bootstrap estimates of the MLE parameters, which means the confidence intervals are derived from the empirical distribution of the parameter estimates obtained from multiple bootstrap samples.

There are two methods available for calculating the confidence intervals: - 'symmetric': This method takes the alpha/2 and (1 - alpha/2) quantiles of the bootstrap distribution for each parameter. It is based on the assumption that the distribution is approximately symmetric and works well when the bootstrap distribution is roughly normal. - 'minimal_width': This method identifies the interval with the minimal width that contains (1 - alpha) proportion of the bootstrap samples. It is particularly useful when the bootstrap distribution is skewed or not symmetric.

```
plot\_bootstrap(param\_idx=0, param\_name='gamma', bins=30, output\_file=None, show=True)
```

Plot the bootstrap distribution for a specified parameter.

Parameters

param idx

[int, optional] Index of the parameter to plot (0 for the first parameter, 1 for the second, etc.). Default is 0.

bins

[int, optional] Number of bins to use for the histogram. Default is 30.

Notes

This method generates a histogram of the bootstrap estimates for the specified parameter and overlays the mean and confidence interval.

```
run_bootstrap(num bootstraps=100)
```

Run the bootstrap procedure and return the MLE estimates for each bootstrap sample.

Parameters

num bootstraps

[int, optional] Number of bootstrap iterations to run. Default is 100.

Returns

list

MLE estimates for each bootstrap sample.

Notes

The procedure uses bootstrapping to estimate the variability of the MLE parameters based on resampled block maxima. The MLE parameters are estimated for either the Fréchet or GEV distribution depending on the specified distribution type during initialization.

After running this method, the *values* and *statistics* attributes will contain the results of the bootstrap.

Example

6.4 The ML Estimator Class

class xtremes.bootstrap.ML_Estimator(aggregated data)

Bases: object

A class to perform Maximum Likelihood Estimation (MLE) for the Fréchet and Generalized Extreme Value (GEV) distributions on Bootstrap sample.

This class takes aggregated data where each value has a corresponding count and provides methods to compute the MLE of parameters for the 2-parameter Fréchet distribution and the 3-parameter GEV distribution.

6.4.1 Parameters

aggregated data

[numpy.ndarray] A 2D array where the first column contains unique values and the second column contains their respective counts.

6.4.2 Attributes

data

[numpy.ndarray] The unique values from the input aggregated data.

counts

[numpy.ndarray] The corresponding counts for the values from the input aggregated data

6.4.3 Methods

maximize frechet(initial params=[1, 1])

Maximizes the log-likelihood for the Fréchet distribution and returns optimized parameters.

maximize gev(initial params=[1, 1, 1])

Maximizes the log-likelihood for the GEV distribution and returns optimized parameters

6.4.4 Example

```
>>> aggregated_data = np.array([[5, 2], [10, 3], [15, 4]])
>>> estimator = ML_Estimator(aggregated_data)
>>> frechet_params = estimator.maximize_frechet()
>>> gev_
```

```
maximize_frechet(initial params=[1, 1])
```

Maximize the log-likelihood for the Fréchet distribution.

Parameters

initial params

[list, optional] Initial guess for the [alpha, sigma] parameters. Default is [1, 1].

Returns

numpy.ndarray

The optimized [alpha, sigma] parameters.

Notes

This method uses the scipy.optimize.minimize function with the L-BFGS-B algorithm to maximize the log-likelihood of the Fréchet distribution.

```
maximize_gev(initial params=[1, 1, 1])
```

Maximize the log-likelihood for the Generalized Extreme Value (GEV) distribution.

Parameters

initial params

[list, optional] Initial guess for the [mu, sigma, xi] parameters. Default is [1, 1, 1].

Returns

numpy.ndarray

The optimized [mu, sigma, xi] parameters.

Notes

This method uses the *scipy.optimize.minimize* function with the L-BFGS-B algorithm to maximize the log-likelihood of the GEV distribution.

6.5 Functions

6.6 The circmax Function

xtremes.bootstrap.circmax(sample, bs=10, stride='DBM')

Extract the block maxima (BM) from a given sample using different stride methods.

6.6.1 Parameters

sample

[numpy.ndarray] A 1D array containing the sample from which block maxima will be extracted.

 \mathbf{bs}

[int, optional] The block size (number of observations per block) used to divide the sample for block maxima extraction. Default is 10.

stride

[{'DBM', 'SBM'}, optional] The stride method used for extracting block maxima: - 'DBM' (Disjoint Block Maxima): Extracts maxima from non-overlapping blocks. - 'SBM' (Sliding Block Maxima): Extracts maxima using overlapping blocks. Default is 'DBM'.

6.6.2 Returns

numpy.ndarray

A 1D or 2D array containing the block maxima extracted from the sample. The result depends on the stride method used: - For 'DBM', returns a 1D array of block maxima. - For 'SBM', returns a 2D array where each row contains the block maxima extracted from overlapping blocks.

6.6.3 Raises

ValueError

If an invalid stride method is specified.

6.6.4 Notes

- 'DBM' (Disjoint Block Maxima) extracts block maxima from non-overlapping blocks of size bs.
- 'SBM' (Sliding Block Maxima) creates overlapping blocks, effectively increasing the number of block maxima compared to 'DBM'.
- In the 'SBM' setting, the circmax() method introduced by Bücher and Staud 2024 is used.

6.6.5 References

Bücher, A., & Staud, T. (2024). Bootstrapping Estimators based on the Block Maxima Method. arXiv preprint arXiv:2409.05529.

6.6.6 Example

```
>>> sample = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
>>> circmax(sample, bs=5, stride='DBM')
array([5, 10])
```

6.7 The uniquening Function

xtremes.bootstrap.uniquening(circmaxs)

Identify unique values and their counts from a list of arrays.

6.7.1 Parameters

circmaxs

[numpy.ndarray] A NumPy array containing block maxima values extracted from a sample.

6.7.2 Returns

list of tuples

A list where each element is a tuple containing two NumPy arrays: - The first array contains the unique values from the corresponding row in *circmaxs*. - The second array contains the counts of each unique value.

6.8 The Bootstrap Function

xtremes.bootstrap.Bootstrap(xx)

Generate a bootstrap sample by resampling with replacement from the input data.

6.8.1 Parameters

 $\mathbf{x}\mathbf{x}$

[list or numpy.ndarray] The input sample to resample from.

6.8.2 Returns

list

A new sample of the same size, created by randomly selecting elements from xx with replacement.

6.8.3 Notes

This function creates a bootstrap sample, which is commonly used in statistical resampling methods to estimate the variability of a statistic.

6.8.4 Example

```
>>> sample = [1, 2, 3, 4, 5]
>>> Bootstrap(sample)
[2, 5, 3, 1, 2] # Example output, actual result may vary
```

6.9 The aggregate_boot Function

```
xtremes.bootstrap.aggregate_boot(boot samp)
```

Aggregate counts of unique values from a list of tuples containing values and their counts.

6.9.1 Parameters

boot samp

[list of tuples] Each tuple contains two arrays: the first with values and the second with corresponding counts.

6.9.2 Returns

numpy.ndarray

A 2D array with two columns: the first column contains unique values, and the second column contains the aggregated counts.

6.9.3 Example

6.10 Examples

Here are some examples of how to use the *xtremes.bootstrap* module:

1. FullBootstrap Class:

(continued from previous page)

2. ML Estimator Class:

```
import numpy as np
from xtremes.bootstrap import ML_Estimator

aggregated_data = np.array([[5, 2], [10, 3], [15, 4]])
estimator = ML_Estimator(aggregated_data)
frechet_params = estimator.maximize_frechet()
print("Optimized Fréchet parameters:", frechet_params)
```

3. circmax Function:

```
import numpy as np
from xtremes.bootstrap import circmax

sample = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
block_maxima = circmax(sample, bs=5, stride='DBM')
print("Block Maxima (DBM):", block_maxima)

block_maxima = circmax(sample, bs=3, stride='SBM')
print("Block Maxima (SBM):", block_maxima)
```

4. uniquening Function:

```
import numpy as np
from xtremes.bootstrap import uniquening

circmaxs = np.array([[1, 2, 2, 3], [2, 3, 3, 4]])
unique_values = uniquening(circmaxs)
print("Unique values and counts:", unique_values)
```

5. Bootstrap Function:

```
from xtremes.bootstrap import Bootstrap

sample = [1, 2, 3, 4, 5]
bootstrap_sample = Bootstrap(sample)
print("Bootstrap sample:", bootstrap_sample)
```

6. aggregate boot Function:

```
(continued from previous page)
aggregated_counts = aggregate_boot(boot_samp)
print("Aggregated_counts:", aggregated_counts)
```

6.11 References

• Bücher, A., & Staud, T. (2024). Bootstrapping Estimators based on the Block Maxima Method. arXiv preprint arXiv:2409.05529.

6.11. References 53

REFERENCE: MISCELLANEOUS

This module is a collection for non-specialized, frequently used or basic functions.

7.1 Overview

The *xtremes.miscellaneous* module provides a variety of utility functions that can be used across different parts of your project. These functions are designed to be general-purpose and can help simplify common tasks.

7.2 Basic Functions

The following functions are basic utility functions provided by the *xtremes.miscellaneous* module:

xtremes.miscellaneous.sigmoid(x)

Compute the sigmoid function for the given input.

7.2.1 Parameters

param x

array like The input value or array.

7.2.2 Returns

return

numpy.ndarray
 The sigmoid of the input array. It has the same shape as
 \boldsymbol{x}

7.2.3 Notes

• The sigmoid function is defined as:

$$\operatorname{sigmoid}(x) = \frac{1}{1 + e^{-x}}$$

• It maps any real-valued number to the range (0, 1).

7.2.4 Example

```
>>> import numpy as np

>>> x = np.array([-2, -1, 0, 1, 2])

>>> sigmoid(x)

array([0.11920292, 0.26894142, 0.5 , 0.73105858, 0.88079708])
```

xtremes.miscellaneous.invsigmoid(y)

Compute the inverse sigmoid function for the given input.

7.2.5 Parameters

param y

float or array_like The input value or array, representing probabilities in the range [0, 1].

7.2.6 Returns

return

float or numpy.ndarray The inverse sigmoid of the input value or array.

7.2.7 Raises

ValueError

If the input value is outside the range [0, 1].

7.2.8 Notes

- The inverse sigmoid function finds the input value(s) that would produce the given output probability.
- It is the inverse of the sigmoid function: invsigmoid(sigmoid(x)) = x.

7.2.9 Example

```
>>> import numpy as np

>>> y = np.array([0.1, 0.5, 0.9])

>>> invsigmoid(y)

array([-1.3652469 , 0. , 1.3652469 ])
```

xtremes.miscellaneous.mse(gammas, gamma true)

Compute Mean Squared Error, Variance, and Bias of estimators.

7.2.10 Notes

Computes the Mean Squared Error (MSE), Variance, and Bias of a set of estimators given the true (theoretical) value. This function is intended for estimating the GEV shape parameter γ , but works for other estimators as well.

$$MSE(\hat{\gamma}) := \frac{1}{n-1} \sum_{i=1}^{n} (\hat{\gamma}_i - \gamma)^2$$

$$Var(\hat{\gamma}) := \frac{1}{n-1} \sum_{i=1}^{n} (\hat{\gamma}_i - \overline{\gamma})^2$$

$$Bias(\hat{\gamma}) := \frac{n}{n-1} (\gamma - \overline{\gamma})^2$$

Here, $\bar{\gamma}$ denotes the mean.

$$\overline{\gamma} := \frac{1}{n} \sum_{i=1}^{n} \gamma_i$$

Also note that:

$$MSE := Bias + Var$$

7.2.11 Parameters

param gammas

array_like Estimated values.

param gamma true

int or float True (theoretical) parameter.

7.2.12 Returns

return

tuple[float] MSE, variance, and bias.

7.2. Basic Functions 57

7.2.13 Raises

```
raise test_xtremes.miscellaneous.warning
If len(gammas)==1. NaNs are returned.
```

7.3 Examples

1. Sigmoid Function:

```
import numpy as np
from xtremes.miscellaneous import sigmoid

x = np.array([-2, -1, 0, 1, 2])
result = sigmoid(x)
print("Sigmoid Result:", result)
```

2. Inverse Sigmoid Function:

```
import numpy as np
from xtremes.miscellaneous import invsigmoid

y = np.array([0.1, 0.5, 0.9])
result = invsigmoid(y)
print("Inverse Sigmoid Result:", result)
```

3. Mean Squared Error (MSE):

```
from xtremes.miscellaneous import mse

gammas = [0.1, 0.2, 0.3]
gamma_true = 0.2
mse_value, variance, bias = mse(gammas, gamma_true)
print("MSE:", mse_value, "Variance:", variance, "Bias:", bias)
```

7.4 The GEV and its Likelihood

The following functions are related to the Generalized Extreme Value (GEV) distribution and its likelihood:

```
xtremes.miscellaneous.GEV_pdf(x, gamma=0, mu=0, sigma=1)
```

Compute the Probability Density Function (PDF) of the Generalized Extreme Value distribution.

7.4.1 Notes

Computes the probability density function of the Generalized Extreme Value distribution:

$$g(x) = \frac{\exp\left(-\left(1 + \gamma \frac{x - \mu}{\sigma}\right)^{-1/\gamma}\right) \cdot \left(1 + \gamma \frac{x - \mu}{\sigma}\right)^{-1 - 1/\gamma}}{\sigma}$$

7.4.2 Parameters

param x

int, float, list or numpy.ndarray GEV argument $x \in \mathbb{R}$.

param gamma

int, float, list or numpy.ndarray, optional GEV shape parameter $\gamma \in \mathbb{R}$. Default is 0.

param mu

int, float, list or numpy.ndarray, optional GEV location parameter $\mu \in \mathbb{R}$. Default is 0.

param sigma

int, float, list or numpy.ndarray, optional GEV scale parameter $\sigma > 0$. Default is 1.

7.4.3 Returns

return

numpy.ndarray or float The Probability Density Function values corresponding to the input x.

7.4.4 Example

```
>>> import numpy as np

>>> x = np.array([1, 2, 3, 4, 5])

>>> GEV_pdf(x, gamma=0.5, mu=2, sigma=1)

array([0.17603266, 0.23254416, 0.28556358, 0.33477888, 0.37960368])
```

 $xtremes.miscellaneous.GEV_cdf(x, gamma=0, mu=0, sigma=1, theta=1)$

Compute the Cumulative Density Function (CDF) of the Generalized Extreme Value distribution.

7.4.5 Notes

Computes the cumulative density function of the Generalized Extreme Value distribution:

$$G_{\gamma,\mu,\sigma}(x) = \exp\left(-\left(1 + \gamma \frac{x - \mu}{\sigma}\right)^{-1/\gamma}\right).$$

For $\gamma = 0$, the term can be interpreted as the limit $\lim_{\gamma \to 0}$:

$$G_{0,\mu,\sigma}(x) = \exp\left(-\exp\left(-\frac{x-\mu}{\sigma}\right)\right).$$

This function also allows the usage of an extremal index, another parameter relevant when dealing with stationary time series and its extreme values:

$$G_{\gamma,\mu,\sigma,\vartheta}(x) = \exp\left(-\vartheta\left(1+\gamma\frac{x-\mu}{\sigma}\right)^{-1/\gamma}\right).$$

7.4.6 Parameters

param x

int, float, list or numpy.ndarray GEV argument $x \in \mathbb{R}$.

param gamma

int, float, list or numpy.ndarray, optional GEV shape parameter $\gamma \in \mathbb{R}$. Default is 0.

param mu

int, float, list or numpy.ndarray, optional GEV location parameter $\mu \in \mathbb{R}$. Default is 0.

param sigma

int, float, list or numpy.ndarray, optional GEV scale parameter $\sigma > 0$. Default is 1.

param theta

int, float, list or numpy.
ndarray, optional Extremal index $\vartheta \in [0,1]$. Default is 1.

7.4.7 Returns

return

numpy.ndarray or float The Cumulative Density Function values corresponding to the input x.

7.4.8 Example

```
>>> import numpy as np

>>> x = np.array([1, 2, 3, 4, 5])

>>> GEV_cdf(x, gamma=0.5, mu=2, sigma=1, theta=0.8)

array([0.54610814, 0.62171922, 0.69703039, 0.77196099, 0.84644106])
```

xtremes.miscellaneous.GEV_ll(x, gamma=0, mu=0, sigma=1)

Compute the log-likelihood function of the Generalized Extreme Value distribution.

7.4.9 Notes

Computes the log-likelihood function of the Generalized Extreme Value distribution:

$$l(x) = -\left(1 + \gamma \frac{x - \mu}{\sigma}\right)^{-1/\gamma} - \frac{\gamma + 1}{\gamma} \log\left(1 + \gamma \frac{x - \mu}{\sigma}\right) - \log\sigma$$

7.4.10 Parameters

param x

int, float, list or numpy.ndarray GEV argument $x \in \mathbb{R}$.

param gamma

int, float, list or numpy.ndarray, optional GEV shape parameter $\gamma \in \mathbb{R}$.

param mu

int, float, list or numpy.ndarray, optional GEV location parameter $\mu \in \mathbb{R}$.

param sigma

int, float, list or numpy.ndarray, optional GEV scale parameter $\sigma > 0$.

7.4.11 Returns

return

numpy.ndarray or float The log-likelihood values corresponding to the input \boldsymbol{r}

7.4.12 Example

```
>>> import numpy as np

>>> x = np.array([1, 2, 3, 4, 5])

>>> GEV_11(x, gamma=0.5, mu=2, sigma=1)

array([-3.11578562, -2.23851549, -1.85551157, -1.57084383, -1.33403504])
```

7.5 Examples

1. GEV CDF:

```
import numpy as np
from xtremes.miscellaneous import GEV_cdf

x = np.array([1, 2, 3, 4, 5])
result = GEV_cdf(x, gamma=0.5, mu=2, sigma=1, theta=0.8)
print("GEV CDF Result:", result)
```

2. **GEV PDF**:

```
import numpy as np
from xtremes.miscellaneous import GEV_pdf

x = np.array([1, 2, 3, 4, 5])
result = GEV_pdf(x, gamma=0.5, mu=2, sigma=1)
print("GEV PDF Result:", result)
```

3. GEV Log-Likelihood:

```
import numpy as np
from xtremes.miscellaneous import GEV_ll

x = np.array([1, 2, 3, 4, 5])
result = GEV_ll(x, gamma=0.5, mu=2, sigma=1)
print("GEV Log-Likelihood Result:", result)
```

7.6 Piece Wise Moment Estimation

The following functions are related to Probability Weighted Moment (PWM) estimation:

 $xtremes.miscellaneous.PWM_estimation(maxima)$

PWM Estimation of GEV parameters.

7.6.1 Notes

Computes the first three Probability Weighted Moments $\beta_0, \beta_1, \beta_2$ on given block maxima, as introduced in Greenwood et al. (1979).

Let $M_{(1)} \leq M_{(2)} \leq \cdots \leq M_{(n)}$ be increasingly sorted block maxima. Then the first three PWMs are defined as:

$$\beta_0 := \frac{1}{n} \sum_{i=1}^n M_{(i)},$$

$$\beta_1 := \frac{1}{n(n-1)} \sum_{i=1}^n (i-1) M_{(i)},$$

$$\beta_2 := \frac{1}{n(n-1)(n-2)} \sum_{i=1}^n (i-1)(i-2) M_{(i)}.$$

7.6.2 Parameters

param maxima

list or numpy.array Sequence of maxima. len(maxima) must be greater than or equal to 3.

7.6.3 Returns

return

tuple of floats The first three PWMs: β_0 , β_1 , and β_2 .

7.6.4 References

Greenwood, J. A., Landwehr, J. M., Matalas, N. C., & Wallis, J. R. (1979). Probability weighted moments: Definition and relation to parameters of several distributions expressible in inverse form. Water Resources Research, 15(5), 1049–1054. https://doi.org/10.1029/wr015i005p01049

7.6.5 Example

```
>>> import numpy as np
>>> maxima = np.array([5, 8, 12, 15, 18])
>>> PWM_estimation(maxima)
(11.6, 11.2, 39.2)
```

xtremes.miscellaneous.PWM2GEV(b 0, b 1, b 2)

Compute estimators for the parameters of the GEV distribution from given PWM estimators.

7.6.6 Notes

Computes estimators for the parameters of the Generalized Extreme Value (GEV) distribution from given Probability Weighted Moment (PWM) estimators. As shown in Hosking et al. (1985), they follow the relationship:

$$\gamma = g_1^{-1} \left(\frac{3\beta_2 - \beta_0}{2\beta_1 - \beta_0} \right),$$

$$\sigma = g_2(\gamma) \cdot (2\beta_1 - \beta_0),$$

$$\mu = \beta_0 + \sigma \cdot g_3(\gamma),$$

where:

$$g_1(\gamma) := \frac{3^{\gamma} - 1}{2^{\gamma} - 1},$$

$$g_2(\gamma) := \frac{\gamma}{\Gamma(1 - \gamma)(2^{\gamma} - 1)},$$

$$g_3(\gamma) := \frac{1 - \Gamma(1 - \gamma)}{\gamma}.$$

Note that Γ denotes the gamma function. The values for $g_{\bullet}(0)$ are defined by continuity to result in:

$$g_1(0) = \frac{\log 3}{\log 2}, \quad g_2(0) = \frac{1}{\log 2}, \quad g_3(0) = -\gamma_{EM},$$

with $\gamma_{\rm EM}$ being the Euler-Mascheroni constant.

7.6.7 Parameters

param b 0

int or float PWM estimator for the first moment.

param b 1

int or float PWM estimator for the second moment.

param b 2

int or float PWM estimator for the third moment.

7.6.8 Returns

return

tuple of floats Estimators for the GEV parameters: shape parameter (γ) , location parameter (μ) , and scale parameter (σ) .

7.6.9 References

Hosking, J. R. M., Wallis, J. R., & Wood, E. F. (1985). Estimation of the Generalized Extreme-Value Distribution by the Method of Probability-Weighted Moments. Technometrics, 27(3), 251–261. https://doi.org/10.1080/00401706.1985.10488049

7.6.10 Example

```
>>> b_0 = 10

>>> b_1 = 20

>>> b_2 = 30

>>> PWM2GEV(b_0, b_1, b_2)

(0.289510206281886, 10.446586187753782, 15.207496500178042)
```

7.7 Examples

1. PWM Estimation:

```
import numpy as np
from xtremes.miscellaneous import PWM_estimation

maxima = np.array([5, 8, 12, 15, 18])
result = PWM_estimation(maxima)
print("PWM Estimation Result:", result)
```

2. PWM to GEV:

```
from xtremes.miscellaneous import PWM2GEV

b_0 = 10
b_1 = 20
b_2 = 30
result = PWM2GEV(b_0, b_1, b_2)
print("PWM to GEV Result:", result)
```

7.8 Simulating Time Series

The following functions are related to simulating time series data:

```
xtremes.miscellaneous.simulate_timeseries(n, distr='GEV', correlation='IID', modelparams=[0], ts=0, seed=None)
```

Simulate a Time Series for GEV.

7.8.1 Notes

This function allows simulating three different kinds of time series.

• The most basic time series is the IID (independent and identically distributed) case, where there is no temporal dependence. The distribution from which the random variables are drawn can be chosen via *distr*, and respective model parameters are passed via *modelparams*.

•For a stationary time series with temporal dependence, two models are available:

- ARMAX model: The next value is computed as the maximum of two values: $ts * X_{i-1}$ and $(1-ts) * Z_i$, where Z_i is drawn from a GPD (Generalized Pareto Distribution) specified by *modelparams*. The parameter ts controls the temporal dependence.
- AR (Autoregressive) model: Similar to ARMAX, but Z_i is drawn from a Cauchy distribution.

7.8.2 Parameters

param n

int Length of time series to simulate.

param distr

str, optional Distribution to draw from. Default is 'GEV'.

param correlation

str, optional Correlation type to specify, choose from ['IID', 'ARMAX', 'AR']. Default is 'IID'.

param modelparams

list, optional Parameters belonging to distr. Default is [0].

param ts

float, optional Time series parameter $\alpha \in [0,1]$. Default is 0.

param seed

int, optional Random seed for reproducibility. Default is None.

7.8.3 Returns

return

numpy.ndarray[float] Simulated time series.

7.8.4 Raises

ValueError

If an invalid model is specified.

7.8.5 See Also

Tutorial: Link to the associated tutorial.

7.8.6 Example

xtremes.miscellaneous.stride2int(stride, block size)

Integer from Stride.

7.8.7 Notes

This function is a utility when handling Block maxima (disjoint, sliding, striding). Apart from giving the stride directly, it is handy to have the additional options 'SBM' and 'DBM' for sliding and disjoint BM, respectively. This function converts exactly this.

7.8.8 Parameters

param stride

int or str Stride to be converted.

param block size

int Block size for conversion, ignored if stride=='SBM'.

return

int The converted stride.

7.8.9 Raises

TypeError

If stride is not an integer or string.

7.8.10 Examples

```
>>> stride2int(2, 10)
2
>>> stride2int('SBM', 10)
1
>>> stride2int('DBM', 10)
10
```

xtremes.miscellaneous.modelparams2gamma_true(distr, correllation, modelparams)

Extract gamma_true from model parameters.

7.8.11 Notes

For some models, it is possible to extract the true value of gamma theoretically. Whenever this is possible, the conversion should be subject to this function.

7.8.12 Parameters

param distr

str Valid distribution type.

param correllation

str Valid correlation type, currently ['IID', 'ARMAX', 'AR'].

param modelparams

list Valid model parameters.

return

numpy.ndarray[float] Gamma_true, if applicable. Returns None if gamma_true cannot be extracted.

7.8.13 Raises

ValueError

If the distribution or correlation type is not supported.

7.8.14 Examples

```
>>> modelparams2gamma_true('GEV', 'IID', [0.5])
0.5
>>> modelparams2gamma_true('GPD', 'ARMAX', [0.3])
0.3
>>> modelparams2gamma_true('Normal', 'IID', [0.5])
Traceback (most recent call last):
...
ValueError: Distribution type 'Normal' is not supported.
```

7.9 Examples

1. Simulate Time Series:

```
from xtremes.miscellaneous import simulate_timeseries

simulated_ts = simulate_timeseries(n=100, distr='GEV',__

correlation='IID', modelparams=[0.5], ts=0.7, seed=42)

print("Simulated Time Series:", simulated_ts[:10])
```

2. Stride to Integer:

```
from xtremes.miscellaneous import stride2int

stride = 'DBM'
block_size = 10
result = stride2int(stride, block_size)
print("Stride to Integer Result:", result)
```

3. Model Parameters to Gamma True:

```
from xtremes.miscellaneous import modelparams2gamma_true

distr = 'GEV'
correlation = 'IID'
modelparams = [0.5]
result = modelparams2gamma_true(distr, correlation, modelparams)
print("Model Parameters to Gamma True Result:", result)
```

INDEX

A	<pre>get_ML_estimation()</pre>
aggregate_boot() (in module xtremes.bootstrap), 51	$(xtremes. Higher Order Statistics. Frechet_ML_estimate method), 35$
<pre>automatic_parameter_initialization()</pre>	<pre>get_ML_estimation()</pre>
(in module	(xtremes. Higher Order Statistics. High Order Stats
xtremes. Higher Order Statistics), 30	method), 24
	<pre>get_ML_estimation()</pre>
В	$(xtremes. Higher Order Statistics. ML_estimators$
Bootstrap() (in module xtremes.bootstrap), 50	method), 32
\boldsymbol{c}	<pre>get_PWM_estimation()</pre>
C	(xtremes. Higher Order Statistics. High Order Stats
circmax() (in module xtremes.bootstrap), 48	method), 24
D	<pre>get_PWM_estimation()</pre>
	$(xtremes. Higher Order Statistics. PWM_estimators$
Data (class in xtremes. Higher Order Statistics),	method), 30
25	<pre>get_statistics()</pre>
F	$(xtremes. Higher Order Statistics. Frechet_ML_estimate$
Frechet_log_likelihood() (in module	method), 36
xtremes. Higher Order Statistics), 37	<pre>get_statistics()</pre>
Frechet_ML_estimators (class in	$(xtremes. Higher Order Statistics. ML_estimators$
xtremes. Higher Order Statistics), 34	method), 33
FullBootstrap (class in xtremes.bootstrap), 43	<pre>get_statistics()</pre>
- ,	$(xtremes. Higher Order Statistics. PWM_estimators$
G	method), 30
<pre>get_blockmaxima()</pre>	GEV_cdf() (in module xtremes.miscellaneous),
(xtremes. Higher Order Statistics. Data)	59
method), 27	GEV_11() (in module xtremes.miscellaneous),
	61
(xtremes. Higher Order Statistics. Time Section 1)	GEV_pdf() (in module xtremes.miscellaneous),
method), 21	58
<pre>get_CI() (xtremes.bootstrap.FullBootstrap</pre>	Н
method), 44	_HighOrderStats (class in
<pre>get_CIs() (xtremes.HigherOrderStatistics.PWM</pre>	$\begin{array}{ll} {\tt HighOrderStats} & (class & in \\ {\tt I_estimators} & xtremes. HigherOrderStatistics), 23 \\ \end{array}$
<pre>get_HOS() (xtremes.HigherOrderStatistics.Data</pre>	
method), 26	invsigmoid() (in module
<pre>get_HOS() (xtremes.HigherOrderStatistics.Time</pre>	
method), 21	1
<pre>get_ML_estimation()</pre>	L
(xtremes. Higher Order Statistics. Data	log_likelihood() (in module
method), 27	xtremes. Higher Order Statistics), 36

```
Μ
maximize_frechet()
        (xtremes.bootstrap.ML\ Estimator
        method), 47
maximize_gev() (xtremes.bootstrap.ML Estimator
        method), 48
ML_Estimator (class in xtremes.bootstrap), 46
                          (class
ML_estimators
        xtremes. Higher Order Statistics), 31
modelparams2gamma_true()
                               (in
                                      module
        xtremes.miscellaneous), 67
mse() (in module xtremes.miscellaneous), 57
Ρ
plot_bootstrap()
        (xtremes.bootstrap.FullBootstrap
        method), 45
PWM2GEV() (in module xtremes.miscellaneous),
PWM_estimation()
                           (in
                                      module
        xtremes.miscellaneous), 62
                           (class
PWM_estimators
                                           in
        xtremes. Higher Order Statistics), 28
R
run_bootstrap()
        (xtremes.bootstrap.FullBootstrap
        method), 46
run_ML_estimation()
                            (in
                                      module
        xtremes. Higher Order Statistics), 38
run_multiple_ML_estimations() (in module
        xtremes. Higher Order Statistics), 39
S
sigmoid() (in module xtremes.miscellaneous),
simulate() (xtremes.HigherOrderStatistics.TimeSeries
        method), 22
simulate_timeseries()
                             (in
                                      module
        xtremes.miscellaneous), 65
stride2int()
                                      module
        xtremes.miscellaneous), 66
Τ
TimeSeries
                         (class
                                           in
        xtremes. Higher Order Statistics), 19
U
uniquening() (in module xtremes.bootstrap),
        50
```

70 Index