"Calculus: Early Transcendantals" Notes

Samuel Lindskog

January 27, 2025

${\bf Contents}$

1	Section 1	1
	1.1 Subsection 1	1

1 Section 1

1.1 Subsection 1

Theorem 1.1 (Fubini's theorem). Let f(x,y) be continuous on a region R.

(a) If R is defined by $a \le x \le b$, $g_1(x) \le y \le g_2(x)$, with g_1 and g_2 continuous on [a,b], then

$$\iint_R f(x,y)dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y) dy dx.$$

Proposition 1.2. The area of a closed, bounded plane region R is

$$A = \iint_{R} dA.$$

Definition 1.3 (Path independence). Let \mathbf{F} be a vector field defined on an open region D in space, and suppose that for any two points A and B in D the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ along a path C from A to B in D is the same over all paths from A to B. Then the integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ is path independent in D and the field \mathbf{F} is conservative in D.

Theorem 1.4 (Fundamental theorem of line integrals). Let C be a smooth curve joining the point A to the point B in the plane or in space and parametrized by $\mathbf{r}(t)$. Let f be a differentiable function with a continuous gradient vector $\mathbf{F} = \nabla f$ on a domain D containing C. Then

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = f(B) - f(A).$$