Graf Teori

Graf

- Representasi dari sejumlah objek diskrit dimana beberapa pasang objek dihubungkan dengan garis.
- Objek disimbolkan dengan titik/simpul (vertex) dan hubungannya disimbolkan dengan garis/sisi (edge)

Contoh

 Graf yang menunjukkan kota-kota di Jawa Tengah dan hubungan ketetanggaannya

Sejarah

Teori Graf bermula dari masalah "7 Jembatan

Königsberg" (tahun 1736)

 Bisakah dari satu tempat, menyeberangi seluruh jembatan tersebut masing-masing sekali?

 Tiap wilayah diwakili dengan titik dan jembatan yang menghubungkan dua wilayah diwakili dengan garis yang menghubungkan dua titik

tersebut.

- Masalahnya sama seperti cara menggambar garis tersebut dengan pensil tanpa mengangkat pensil dari awal hingga akhir.
- Euler membuktikan bahwa hal tersebut tidak mungkin bisa dilakukan.

Hamilton

- Sir William Rowan Hamilton (1805 1865) mendesain sebuah mainan serupa graf.
- Bagaimana cara menjelajah semua kota tepat sekali dan kembali lagi ke kota semula.

Aplikasi Graf

 Sekarang graf digunakan untuk banyak hal : diantaranya untuk menyatakan komunitas di jaringan pertemanan

 Bahkan berkembang sangat besar (Sosial Media)

 Untuk menggambarkan koneksi jaringan komputer

 Dalam aplikasi GPS untuk mencari rute terpendek

 dan lain lain (di berbagai bidang)

Definisi Formal Graf

 Sebuah graf G adalah himpunan pasangan berurut dari himpunan titik tak kosong V, himpunan sisi E, dan fungsi ψ_G yang memetakan anggota E ke VxV

$$G = (V, E, \psi_G)$$

$$V \neq \emptyset$$

$$\psi_G: E \rightarrow V \times V$$

Contoh

- $V = \{v1, v2, v3, v4, v5, v6, v7, v8\}$
- E = {e1,e2,e3,e4,e5,e6,e7, e8,e9}

```
\psi_{G}(e1) = (v1,v4), \psi_{G}(e2) = (v1,v2), 

\psi_{G}(e3) = (v4,v5), \psi_{G}(e4) = (v2,v3), 

\psi_{G}(e5) = (v3,v5), \psi_{G}(e6) = (v5,v8), 

\psi_{G}(e7) = (v7,v8), \psi_{G}(e8) = (v3,v7), 

\psi_{G}(e9) = (v3,v6)
```


Definisi Formal Graf

Atau

 Graf G adalah himpunan pasangan berurut dari himpunan titik tak kosong V dan himpunan sisi E yang menghubungkan sepasang titik

$$G = (V, E)$$

$$V \neq \emptyset$$

$$E \subseteq V \times V$$

Contoh

- $V = \{v1, v2, v3, v4, v5, v6, v7, v8\}$
- E = {e1=(v1,v4), e2=(v1,v2),e3=(v4,v5), e4=(v2,v3),e5=(v3,v5), e6=(v5,v8),e7=(v7,v8),e8=(v3,v7),e9=(v3,v6)}

Contoh

- $V = \{a,b,c,d,e\}$
- E = {ab,be,bc,bd,ec,cd}

Latihan

Sebutkan himpunan titik dan himpunan sisi dari graf berikut

Latihan

Sebutkan himpunan titik dan himpunan sisi dari graf berikut

Istilah

- Ukuran dan Orde (size, order)
- Bertetangga (adjacent)
- Bertumpu (incident)
- Gelang (loop)
- Sisi ganda (multi edge)
- Jalan (walk)
- Jejak (trail)
- Lintasan (path)
- Sirkuit (cycle)
- Jarak (distance)

Ukuran dan Orde

- Orde dari sebuah graf (|V| atau v(G))
 ditentukan dari banyaknya titik yang ada pada
 graf tersebut
- Ukuran dari sebuah graf (|E| atau ε(G))
 ditentukan dari banyaknya sisi pada graf
 tersebut

- Berdasarkan ordenya, graf bisa dibagi menjadi 2 macam :
 - Graf berhingga : jika himpunan titiknya berhingga
 - Graf tak berhingga : jika himpunan titiknya tak berhingga

 Graf trivia adalah graf yang hanya memiliki satu titik dan tidak memiliki sisi.

Bertetangga

 Dua titik u dan v disebut bertetangga jika ada setidaknya sebuah sisi e yang menghubungkan u dan v.

u bertetangga dengan $v \leftrightarrow (u,v) \in E$

Bertumpuan

 Sebuah sisi e disebut bertumpu pada titik u dan v jika u dan v bertetangga melalui sisi e.

e bertumpu pada u dan $v \leftrightarrow e = (u,v)$

 Sebuah sisi pasti bertumpu ke dua buah titik (bisa titik yang sama atau titik yang berbeda)

Sisi Ganda

 Jika sepasang titik yang sama dihubungkan dengan lebih dari satu sisi, maka sisi-sisi tersebut disebut sebagai sisi ganda.

Gelang/Loop

 Jika sebuah sisi bertumpu ke titik yang sama, maka sisi tersebut disebut sebagai gelang/loop.

Derajat

- Derajat dari sebuah titik v (disimbolkan dengan deg(v)) adalah banyaknya sisi yang bertumpu pada titik tersebut. (loop dihitung 2)
- Derajat maksimal dari graf G (Δ(G)) adalah derajat terbesar dari titik-titik graf G
- Derajat minimal dari graf G (δ(G)) adalah derajat terkecil dari titik-titik graf G

$$deg(c) = 3$$

Contoh

- deg(a) = 1
- deg(b) = 4
- deg(c) = 3
- deg(d) = 2
- deg(e) = 2

- $\Delta(G) = 4$
- $\delta(G) = 1$

Teorema

 Jumlah derajat seluruh titik pada graf adalah dua kali ukuran graf tersebut

$$\sum deg(v_i) = 2.|E|$$

bisa dibuktikan menggunakan induksi matematika

Jalan (Walk)

- Sebuah jalan adalah barisan tak kosong w = v₀e₁v₁e₂v₂...e_kv_k
 dimana e_i = (v_{i-1},v_i) untuk 1 ≤ i ≤ k
- v₀ disebut titik pangkal dari jalan w
- v_k disebut titik ujung dari jalan w
- titik lainnya disebut titik internal
- panjang dari jalan w adalah k (banyak langkah yang dibutuhkan untuk berjalan dari titik pangkal ke titik ujung) = banyak sisi yang dilalui

Jejak (Trail) dan Lintasan (Path)

- Jejak adalah jalan dimana semua sisi yang dilalui berbeda.
- Lintasan adalah jalan dimana semua titik yang dilalui berbeda.

 Panjang jejak dan panjang lintasan dihitung dengan cara yang sama dengan panjang jalan.

Contoh

- Diberikan graf G berikut
- barisan $w = v_2 e_2 v_1 e_1 v_4 e_3 v_5 e_5 v_3 e_8 v_7$ adalah sebuah walk dari titik v_2 ke v_7
- panjang w = ?
- apakah jalan tersebut berupa jejak?
- apakah jalan tersebut berupa lintasan?

Sirkuit (Circuit) dan Lingkaran (Cycle)

- Jalan yang titik pangkal dan ujungnya sama disebut sebagai jalan tertutup (closed walk).
- Sebuah sirkuit adalah jejak yang tertutup (jejak yang titik pangkal dan titik ujungnya sama).
- Sebuah lingkaran dalah lintasan yang tertutup.
- c = v₃e₅v₅e₆v₈e₇v₇e₈v₃
 adalah sebuah sirkuit dengan panjang 4

Pada graf G:

 Sebutkan sebuah lingkaran dengan panjang 5

 Sebutkan sebuah closed walk dengan panjang 7

 Adakah sebuah sirkuit dengan panjang 8 pada graf tersebut?

