Add WeCkat powcoder

Week 5:

Network Flow (contd)

https://powcoder.com

Add WeChat powcoder

Nisarg Shah

Assignment Project Exam Help Recap Add WeChat powcoder

- Some more DP
 - Traveling salesman problem (TSP)

Assignment Project Exam Help

- Start of network flow https://powcoder.com
 Problem statement

 - > Ford-Fulkerson algo Wto Chat powcoder
 - > Running time
 - > Correctness using max-flow, min-cut

Assignment Project Exam Help This Lecture Chat powcoder

- Network flow in polynomial time
 - > Edmonds-Karp algorithm (shortest augmenting path)

Assignment Project Exam Help

- Applications of network flow
 - > Bipartite matching & Palys the Femm
 - > Edge-disjoint paths Wenger's theorem
 - Multiple sources/sinks
 - > Circulation networks
 - > Lower bounds on flows
 - > Survey design
 - > Image segmentation

Assignment Project Exam Help Ford-Fulkerson Recap

- Define the residual graph G_f of flow f
 - > G_f has the same vertices as G
 - Assignment Project Exam Help For each edge e = (u, v) in G, G_f has at most two edges
 - Forward edge $e^{\frac{https://powcoder.com}{(u,v)}}$ with capacity c(e) f(e)
 - We can send this much additional flow on e Add WeChat powcoder
 - Reverse edge $e^{rev} = (v, u)$ with capacity f(e)
 - The maximum "reverse" flow we can send is the maximum amount by which we can reduce flow on e, which is f(e)
 - \circ We only add each edge if its capacity >0

Assignment Project Exam Help Ford-Fulkerson Recap

Example!

Assignment Project Exam Help Ford-Fulkerson Recap

```
MaxFlow(G):
  // initialize:
  Set f(e) = 0 for all e in E am Help
  // while the the trops is powcode problem in G_f:
  While P = \text{FindPath}(s, t, \text{Residual}(G, f)) != \text{None:}
f = \text{Augment}(f, P)
    UpdateResidual(G, f)
  EndWhile
  Return f
```

Assignment Project Exam Help Ford-Fulkerson Recap

- Running time:
 - > #Augmentations:

 - o At every step, flow and capacities remain integers of For path P in G_f , bottleneck $(P,f) \geq 0$ implies bottleneck $(P,f) \geq 1$
 - \circ Each augmentation increases flow by at least 1 \circ At most $C = \sum_{e \text{ leaving } s} c(e)$ augmentations
 - > Time for an augmentation that powcoder
 - $\circ G_f$ has n vertices and at most 2m edges
 - \circ Finding an s-t path in G_f takes O(m+n) time
 - > Total time: $O((m+n) \cdot C)$

Assignment Project Exam Help Edmonds Karp Algorithm

• At every step, find the shortest path from s to t in G_f , and augment.

```
MaxFlow(GAssignment Project Ex Minimura humber of edges
  // initialize:
Set f(e) = 0 https://powcoder.com
  // Find shortest s-t path in G_f & augment:
  While P = BFS(s, t, Residual(G, f))! = None:
    f = Augment(f, P)
    UpdateResidual(G, f)
  EndWhile
  Return f
```

373F20 - Nisarg Shah <u>8</u>

Assignment Project Exam Help Proof Oxerwiew powcoder

Overview

- ▶ Lemma 1: The length of the shortest $s \rightarrow t$ path in G_f never decreases.

 (Proof ahead) Project Exam Help
- ▶ Lemma 2: After the shortest $s \to t$ path in G_f must strictly increase.
 - o (Proof ahead)Add WeChat powcoder
- > Theorem: The algorithm takes $O(m^2n)$ time.
 - o Proof:
 - Length of shortest $s \to t$ path in G_f can go from 0 to n-1
 - Using Lemma 2, there can be at most $m \cdot n$ augmentations
 - Each takes O(m) time using BFS.

Assignment Project Exam Help Level Graph WeChat powcoder

- Level graph L_G of a directed graph G = (V, E):
 - \triangleright Level: $\ell(v)$ = length of shortest $s \rightarrow v$ path
 - > Level graph $L_G = (V, E_P)$ is a subgraph of G where we only retain edges $(u, v) \in E$ where $\ell(v) = \ell(u) + 1$
 - o Intuition: Keep any the edges useful for shortest paths

Assignment Project Exam Help Level Graph Chat powcoder

- Level graph L_G of a directed graph G = (V, E):
 - \triangleright Level: $\ell(v)$ = length of shortest $s \rightarrow v$ path
 - > Level graph $L_G = (V, E_P)$ is a subgraph of G where we only retain edges $(u, v) \in E$ where $\ell(v) = \ell(u) + 1$
 - o Intuition: Keep any the edges useful for shortest paths
- Property: P is a shortest powpath in G if and only if P is an $s \to v$ path in L_G .

Assignment Project Exam Help Edmonds Karp Proof

- Lemma 1:
 - \triangleright Length of the shortest $s \rightarrow t$ path in G_f never decreases.
- Proof: Assignment Project Exam Help
 - > Let f and f' be flows before and after an augmentation step, and G_f and G_f between estimator graphs.

Residual graph $G_{f'}$ We Chat powced $G_{f'}$

Edmonds-Karp Proof.

NOT IN SYLLABUS

- Lemma 1:
 - \triangleright Length of the shortest $s \rightarrow t$ path in G_f never decreases.
- Proof: Assignment Project Exam Help
 - > Let f and f' be flows before and after an augmentation step, and G_f and G_f between estimators.
 - > Augmentation happens along a path in L_{G_f}
 - > For each edge on the path, we either remove it, add an opposite direction edge, or both.
 - > Opposite direction edges can't help reduce the length of the shortest $s \rightarrow t$ path (exercise!).

> QED!

Edmonds-Karp Proof.

NOT IN SYLLABUS

• Lemma 2:

> After at most m augmentations, the length of the shortest $s \rightarrow t$ path in G_f must strictly increase. Assignment Project Exam Help

Proof:

> In each augmentation prep, were now at least one edge from L_{G_f}

- Add WeChat powcoder
 Because we make the flow on at least one edge on the shortest path equal to its capacity
- > No new edges are added in L_{G_f} unless the length of the shortest $s \to t$ path strictly increases
- \triangleright This cannot happen more than m times!

Assignment Project Exam Help Edmonds-Karp Proof Overview

Overview

- ► Lemma 1: The length of the shortest $s \to t$ path in G_f never decreases. Assignment Project Exam Help
- Lemma 2: Aftattatsmost weather the shortest $s \to t$ path in G_f must strictly increase.

 Add WeChat powcoder
- > Theorem: The algorithm takes $O(m^2n)$ time.

Assignment Project Exam Help Edmonds-Karp Proof Overview

Note:

- \triangleright Some graphs require $\Omega(mn)$ augmentation steps
- > But we may be able to reduce the time to run each augmentation step

https://powcoder.com

- Two algorithms use this idea to reduce run time Add WeChat powcoder > Dinitz's algorithm [1970] $\Rightarrow O(mn^2)$

 - > Sleator-Tarjan algorithm [1983] $\Rightarrow O(m n \log n)$
 - Using the dynamic trees data structure

Assignment Project Exam Help Add WeChat powcoder

Assignment Project Exam Help Network Flow Applications https://powcoder.com

Add WeChat powcoder

Rail network sopposting to let let let in the second countries (Tolstoi 1930s)

Rail network sopposting to let let let in the second countries (Tolstoi 1930s)

Assignment Project Exam Help Integrality Theorem

 Before we look at applications, we need the following special property of the max-flow computed by Ford-Fulkerson and its variants Assignment Project Exam Help

• Observation: https://powcoder.com

- If edge capacities and its variants are also integral (i.e. the flow on each edge is an integer).
- Easy to check that each augmentation step preserves integral flow

Assignment Project Exam Help Bipartite Matching Coder

Problem

 \succ Given a bipartite graph $G = (U \cup V, E)$, find a maximum cardinality matching Assignment Project Exam Help

https://powcoder.com

• We do not know any efficient greedy or dynamic programming algorithm for this problem.

But it can be reduced to max-flow.

Bipartite Matching Coder

- Create a directed flow graph where we...
 - > Add a source node s and target node t
 - > Add edges, all of capacity 1:
 - $\circ s \rightarrow u$ for each $u \in U$, $v \rightarrow t$ for each $v \in V$
 - $\circ u \rightarrow v$ for each $(u, v) \in E$

Assignment Project Exam Help Bipartite Matching Coder

Observation

- > There is a 1-1 correspondence between matchings of size k in the original graph and flows with value k in the corresponding flow network. Exam Help
- Proof: (matchings: //integrall&low)m
 - > Take a matching $M = \{(u_1, v_1), \dots, (u_k, v_k)\}$ of size k > Construct the corresponding unique flow f_M where...
 - - o Edges $s \to u_i$, $u_i \to v_i$, and $v_i \to t$ have flow 1, for all $i=1,\ldots,k$
 - The rest of the edges have flow 0
 - > This flow has value k

Assignment Project Exam Help Bipartite Matching Coder

Observation

- > There is a 1-1 correspondence between matchings of size k in the original graph and flows with value k in the corresponding now het work. Exam Help
- Proof: (integrately w/ powed thing)m

 - > Take any flow f with value k> The corresponding unique matching M_f = set of edges from U to V with a flow of 1
 - \circ Since flow of k comes out of s, unit flow must go to k distinct vertices in *II*
 - \circ From each such vertex in U, unit flow goes to a distinct vertex in V

Uses integrality theorem

Assignment Project Exam Help Bipartite Matching Coder

- Perfect matching = flow with value n
 - \rightarrow where n = |U| = |V|
- Recall naive ford-fulkers or turning Helpe:
 - $> O((m+n) \cdot \text{https://powcoder.efcapacities of edges})$ leaving s
 - > Q: What's the Audoti We When proced foodbipartite matching?
- Some variants are faster...
 - \succ Dinitz's algorithm runs in time $O(m\sqrt{n})$ when all edge capacities are 1

Assignment Project Exam Help Hall's Marriage Theorem

- When does a bipartite graph have a perfect matching?
 - \triangleright Well, when the corresponding flow network has value n
 - > But can we interpret this condition in terms of edges of the original bipartite graph?
 - > For $S \subseteq U$, leth V be the set of all nodes in V adjacent to some node in S

Add WeChat powcoder

Observation:

- \triangleright If G has a perfect matching, $|N(S)| \ge |S|$ for each $S \subseteq U$
- > Because each node in S must be matched to a distinct node in N(S)

Assignment Project Exam Help Hall's Marriage Theorem

- We'll consider a slightly different flow network, which is still equivalent to bipartite matching
 - > All $U \to V$ edges now have ∞ capacity Assignment Project Exam Help > $s \to U$ and $V \to t$ edges are still unit capacity

Assignment Project Exam Help Hall's Marriage Theorem

- Hall's Theorem:
 - $\succ G$ has a perfect matching iff $|N(S)| \ge |S|$ for each $S \subseteq V$

Assignment Project Exam Help

- Proof (reverse direction, via network flow):
 https://powcoder.com
 Suppose G doesn't have a perfect matching

 - > Hence, max-flow = MeChat powcoder
 - \triangleright Let (A, B) be the min-cut
 - \circ Can't have any $U \to V$ (∞ capacity edges)
 - \circ Has unit capacity edges $s \to U \cap B$ and $V \cap A \to t$

Hall's Marriage Theorem

Hall's Theorem:

 \triangleright G has a perfect matching iff $|N(S)| \ge |S|$ for each $S \subseteq V$

Assignment Project Exam Help

- Proof (reverse direction, via network flow): https://powcoder.com $\Rightarrow cap(A, B) = |U \cap B| + |V \cap A| < n = |U|$

 - > So $|V \cap A| < Add WeChat powcoder$
 - \triangleright But $N(U \cap A) \subseteq V \cap A$ because the cut doesn't include any ∞ edges
 - > So $|N(U \cap A)| \le |V \cap A| < |U \cap A|$.

Some Nates Chat powcoder

- Runtime for bipartite perfect matching
 - > 1955: $O(mn) \rightarrow$ Ford-Fulkerson
 - > 1973: $O(m\sqrt{n}) \rightarrow \text{blocking flow (Hopcroft-Karp, Karzanov)}$ > 2004: $O(n^{2.378}) \rightarrow \text{fast matrix multiplication (Mucha-$
 - Sankowsi) https://powcoder.com
 - > 2013: $\tilde{O}(m^{10/7}) \rightarrow$ electrical flow (Madry) > Best running time is still an open question
- Nonbipartite graphs
 - ➤ Hall's theorem → Tutte's theorem
 - > 1965: $O(n^4) \rightarrow \text{Blossom algorithm (Edmonds)}$
 - > 1980/1994: $O(m\sqrt{n}) \rightarrow \text{Micali-Vazirani}$

Edge-Disjoint Paths der

Problem

- \succ Given a directed graph G=(V,E), two nodes s and t, find the maximum number of edge-disjoint $s \rightarrow t$ paths Assignment Project Exam Help
- > Two $s \to t$ paths P_s and P_w are degending joint if they don't share an edge

Assignment Project Exam Help Edge-Disjoint Paths Powcoder

- Application:
 - Communication networks
- Max-flowAformulatinProject Exam Help
 - Assign unit capacity on all edges https://powcoder.com

Assignment Project Exam Help Edge-Disjoint Paths der

• Theorem:

- \triangleright There is 1-1 correspondence between sets of k edgedisjoint $s \to t$ paths and integral flows of value k Assignment Project Exam Help • Proof (paths \to flow)
- - > Let $\{P_1, \dots, P_k\}$ to a second of the se
 - > Define flow f where f(e) = 1 whenever $e \in P_i$ for some i, and 0 otherwise
 - Since paths are edge-disjoint, flow conservation and capacity constraints are satisfied
 - Unique integral flow of value k

Assignment Project Exam Help Edge-Disjoint Paths der

• Theorem:

- \triangleright There is 1-1 correspondence between k edge-disjoint $s \rightarrow t$ paths and integral flows of value kAssignment Project Exam Help • Proof (flow \rightarrow paths)
- - > Let f be an integral flow wroadge. Rom
 - > k outgoing edges from s have unit flow Add WeChat powcoder > Pick one such edge (s, u_1)
 - - \circ By flow conservation, u_1 must have unit outgoing flow (which we haven't used up yet).
 - Pick such an edge and continue building a path until you hit t
 - \triangleright Repeat this for the other k-1 edges coming out of s with unit flow. ■

Assignment Project Exam Help Edge-Disjoint Paths Edge-Disjoint Paths

- Maximum number of edge-disjoint $s \rightarrow t$ paths
 - > Equals max flow in this network
 - > By max-flow min-cut theorem, also equals minimum cut Assignment Project Exam Help
 - > Exercise: minimum cut = minimum number of edges we need to deletatogisconnectatog
 - Hint: Show each direction separately (\leq and \geq)

Assignment Project Exam Help Edge-Disjoint Paths Powcoder

Exercise!

Show that to compute the maximum number of edge-disjoint *s-t* paths in an undirected graph, you can create a directed flow network by aboing each undirected edge in both directions and setting all capacities to 1 https://powcoder.com

Menger's ThearthWeChat powcoder

> In any directed/undirected graph, the maximum number of edge-disjoint (resp. vertex-disjoint) $s \rightarrow t$ paths equals the minimum number of edges (resp. vertices) whose removal disconnects s and t

Assignment Project Exam Help Multiple Sources / Sinks

Problem

F Given a directed graph G = (V, E) with edge capacities $c: E \to \mathbb{N}$, sources s_1, \dots, s_k and sinks t_1, \dots, t_ℓ , find the maximum total flow from sources to sinks.

https://powcoder.com

Assignment Project Exam Help Multiple Sources / Sinks

Network flow formulation

- > Add a new source s, edges from s to each s_i with ∞ capacity
- > Add a new sink t, edges from each t_i to t with ∞ capacity
- \triangleright Find max-flow from s to t
- > Claim: 1 − 1 dataespondence detween flows in two networks

Circulation WeChat powcoder

- Input
 - \triangleright Directed graph G = (V, E)
 - > Edge capacities $c: E \to \mathbb{N}$ > Node demands $d: V \to \mathbb{Z}$
- https://powcoder.com Output
 - > Some circulation f We Char powerder \circ For each $e \in E : 0 \le f(e) \le c(e)$

 - For each $v \in V : \sum_{e \text{ entering } v} f(v) \sum_{e \text{ leaving } v} f(v) = d(v)$
 - > Note that you need $\sum_{v:d(v)>0} d(v) = \sum_{v:d(v)<0} -d(v)$
 - > What are demands?

Assignment Project Exam Help Circulation WeChat powcoder

- Demand at v = amount of flow you need to take out at node v
 - > d(v) > 0: You need to take some flow out at v o So there should be d(v) more incoming flow than outgoing flow
 - o "Demand node" ttps://powcoder.com > d(v) < 0: You need to put some flow in at v
 - o So there should del Wie Chart progring flow than incoming flow
 - "Supply node"
 - > d(v) = 0: Node has flow conservation
 - Equal incoming and outgoing flows
 - "Transshipment node"

Assignment Project Exam Help Circulation WeChat powcoder

Example

Circulation WeChat powcoder

- Network-flow formulation G'
 - > Add a new source s and a new sink t
 - For each "supply" node v with d(v) < 0 add edge (s, v) with capacity—d(v)
 - > For each "demand": η polyweith d(v) > 0, add edge (v,t) with capacity d(v)

Add WeChat powcoder

• Claim: G has a circulation iff G' has max flow of value $\sum_{v:d(v)>0} d(v) = \sum_{v:d(v)<0} -d(v)$

Assignment Project Exam Help Circulation WeChat powcoder

Example

Assignment Project Exam Help Circulation WeChat powcoder

Example

Circulation with Lower Bounds

- Input
 - \triangleright Directed graph G = (V, E)
 - > Edge capacities $c: E \to \mathbb{N}$ and lower bounds $\ell: E \to \mathbb{N}$ > Node demands $d: V \to \mathbb{Z}$
- https://powcoder.com Output
 - - For each $v \in V : \sum_{e \text{ entering } v} f(v) \sum_{e \text{ leaving } v} f(v) = d(v)$
 - > Note that you still need $\sum_{v:d(v)>0} d(v) = \sum_{v:d(v)<0} -d(v)$

Assignment Project Exam Help Circulation with Lower Bounds

- Transform to circulation without lower bounds
 - > Do the following operation to each edge

- Claim: Circulation in G iff circulation in G'
 - > Proof sketch: f(e) gives a valid circulation in G iff $f(e) \ell(e)$ gives a valid circulation in G'

Assignment Project Exam Help Survey Designat powcoder

Problem

- > We want to design a survey about m products

 - \circ We have one question in mind for each product Assignment Project Exam Help \circ Need to ask product j's question to between p_j and p_j' consumers
- > There are a total of: 1/50 No Long Com
 - \circ Consumer i owns a subset of products O_i
 - We can ask coast the weather these products
 - \circ We want to ask consumer i between c_i and c_i' questions
- > Is there a survey meeting all these requirements?

Survey Designat powcoder

Bipartite matching is a special case

$$> c_i = c_i' = p_j = p_j' = 1$$
 for all i and j

Assignment Project Exam Help

- Formulate as circulation with lower bounds
 - > Create a network with special nodes s and t
 - > Edge from s to each wearship of with flow $\in [c_i, c_i']$
 - > Edge from each consumer i to each product $j \in O_i$ with flow $\in [0,1]$
 - \succ Edge from each product j to t with flow $\in [p_j, p_j']$
 - > Edge from t to s with flow in [0, ∞]
 - > All demands and supplies are 0

Assignment Project Exam Help Survey Design Project Exam Help Survey Design Project Exam Help

- Max-flow formulation:
 - > Feasible survey iff feasible circulation in this network

Assignment Project Exam Help Image Segmentation

- Foreground/background segmentation
 - > Given an image, separate "foreground" from "background"
- Here's the prigrem of PBwerPolint (or the plack thereof)

Assignment Project Exam Help Image Segmentation

- Foreground/background segmentation
 - > Given an image, separate "foreground" from "background"
- Here's whatsigmovethergiestusment Help

Assignment Project Exam Help Image Segmentationer

Informal problem

Given an image (2D array of pixels), and likelihood estimates of different pixels being foreground/background, label each Help pixel as foreground or background https://powcoder.com

Want to prevent having too many neighboring pixels where one is labeled foreground but the other is labeled background

Assignment Project Exam Help Image Segmentationer

Input

- > An image (2D array of pixels)
- $> a_i$ = likelihood of pixel *i* being in foreground Assignment Project Exam Help
- $> b_i$ = likelihood of pixel i being in background
- > $p_{i,j}$ = penalty lifetp's expansion one of them as foreground and the other as background)

 Add WeChat powcoder

Output

- > Label each pixel as "foreground" or "background"
- Minimize "total penalty"
 - \circ Want it to be high if a_i is high but i is labeled background, b_i is high but i is labeled foreground, or $p_{i,j}$ is high but i and j are separated

Image Segmentationer

Recall

- $> a_i =$ likelihood of pixels i being in foreground
- > b_i = likelihood of pixels i being in background > $p_{i,j}$ = penalty for separating pixels i and j elp
- > Let E =pairs of neighboring pixels nttps://powcoder.com

Output

- > Minimize tota Apoth Mye Chat powcoder
 - $\circ A = \text{set of pixels labeled foreground}$
 - $\circ B = \text{set of pixels labeled background}$
 - Openalty = $\sum_{i \in A} b_i + \sum_{j \in B} a_j + \sum_{(i,j) \in E} p_{i,j}$ $|A\cap\{i,i\}|=1$

Image Segmentationer

- Formulate as a min-cut problem
 - \triangleright Want to divide the set of pixels V into (A, B) to minimize

Assignment de project Exam Help
$$i \in A$$
 $j \in B$ $(i,j) \in E$ https://poweoder.com

- > Nodes: \circ Source s, target t, and v_i for each pixel i
- > Edges:
 - \circ (s, v_i) with capacity a_i for all i
 - $o(v_i,t)$ with capacity b_i for all i
 - (v_i, v_i) and (v_i, v_i) with capacity $p_{i,j}$ each for all neighboring (i, j)

Assignment Project Exam Help Image Segmentation

- Formulate as min-cut problem
 - > Here's what the network looks like

Assignment Project Exam Help

Image Segmentationer

 \triangleright Consider the min-cut (A, B) will add $p_{i,j}$ exactly once

If i and j are labeled differently, it

$$cap(A,B) = \sum_{i \in A} b_i + \sum_{j \in B} a_j + \sum_{(i,j) \in E} p_{i,j}$$

Assignment Project Example Help

Exactly what we want to minimize!

Assignment Project Exam Help Image Segmentationer

GrabCut [Rother-Kolmogorov-Blake 2004]

"GrabCut" — Interactive Foreground Extraction using Revated Graph Cuts

Carsten Rother* https://Vladimir Kolmogorov†

Andrew Blake[‡]

Figure 1: Three examples of GrabCut. The user drags a rectangle loosely around an object. The object is then extracted automatically.

Assignment Project Exam Help Profit Maximization (Yeaa...!)

Problem

- > There are *n* tasks
- > Performing task i generates a profit of p_{i} of
- > There is a set the form of the series of t
 - \circ $(i,j) \in E$ indicates that if we perform i, we must also perform j
- Goal

Add WeChat powcoder

> Find a subset of tasks S which, subject to the precedence constraints, maximizes $profit(S) = \sum_{i \in S} p_i$

- We can represent the input as a graph
 - > Nodes = tasks, node weights = profits,
 - Edges = precedence constraints
 Assignment Project Exam Help
 Goal: find a subset of nodes S with highest total weight
 - > Goal: find a subset of nodes S with highest total weight s.t. if $i \in S$ and t(i) f by the derivative f well

- Want to formulate as a min-cut
 - > Add source s and target t
 - \rightarrow min-cut $(A, B) \Rightarrow$ want desired solution to be $S = A \setminus \{s\}$
 - > Goals: Assignment Project Exam Help
 - cap(A, B) should nicely relate to profit(S)
 - o Precedence constitutions imports consected com
- Construction:
 - \triangleright Add each $(i, j) \in E$ with *infinite* capacity
 - \triangleright For each i:
 - o If $p_i > 0$, add (s, i) with capacity p_i
 - \circ If $p_i < 0$, add (i, t) with capacity $-p_i$

QUESTION: What is the capacity of this cut?

Exercise: Show that...

- 1. A finite capacity cut exists. Exam Help
- 2. If cap(A, B) then then derive a valid solution;
- 3. Minimizing (Y, \mathcal{B}) had x $PANY = fit(A \setminus \{s\})$
 - Show that $cap(A, B) = constant profit(A \setminus \{s\})$, where the constant is independent of the choice of (A, B)