Линейные операторы

Содержание

§1	Линейные операторы. Ядро и образ	2
§2	Матрица линейного оператора	3
§3	Инвариантные подпространства	6
§ 4	Собственные векторы и собственные значения	8
§ 5	Характеристический многочлен	9
§6	Собственный базис и диагонализируемость	10
§7	Корневые векторы и корневые подпространства	12
§ 8	Структура нильпотентных операторов	14
§ 9	Жорданова нормальная форма оператора	17
§10	Построение жорданова базиса	20
§11	Многочлены от линейного оператора	23
§12	Аналитические функции от линейного оператора	26

Литература:

- В. Винберг Э. Б. Курс алгебры. М.: МЦНМО, 2013.
- **К.** Кострикин А. И. Введение в алгебру. Часть II. Линейная алгебра. М.: Физикоматематическая литература, 2000.
- Ф. Фаддеев Д. К. Лекции по алгебре. М.: «Наука», 1984.
- Г. Гайфуллин А. А., Пенской А. В., Смирнов С. В. Задачи по линейной алгебре и геометрии. М.: МЦНМО, 2014. (Содержит подробные решения)

Лекция I

B., c. 234-240, 200-205; **K.**, c. 60-77; **Φ.**, c. 314-319; **Γ.**, c. 40-44, 59-61;

Данный модуль посвящён теории линейных операторов в векторных пространствах, которая является основным источником приложений линейной алгебры в различных областях математики.

§1. Линейные операторы. Ядро и образ

Определение 1.1. *Линейным оператором* в векторном пространстве V (эндоморфизмом пространства V) называется отображение $A\colon V\to V$, удовлетворяющее условиям:

- 1. A(x+y) = Ax + Ay для любых $x, y \in V$;
- 2. $\mathcal{A}(\lambda x) = \lambda \mathcal{A}x$ для любых $x \in V$, $\lambda \in F$.

Множество всех линейных операторов в пространстве V будем обозначать $\operatorname{End}(V)$.

Пример 1.1. а) Нулевой оператор \mathcal{O} : переводит любой вектор любого пространства в нулевой;

- б) Тождественный оператор \mathcal{E} : переводит любой вектор любого пространства в себя:
 - в) «Растяжение» $\lambda \mathcal{E}$, $\lambda \neq 0$: переводит любой вектор x в вектор λx ;
 - г) Поворот на угол α линейный оператор в плоскости E^2 ;
- д) Пусть $V=U\oplus W,$ тогда проектор на U параллельно W является линейным оператором в V;
- е) Дифференцирование $\mathcal{D}\colon \mathbb{R}[x]_n \to \mathbb{R}[x]_n$ линейный оператор в пространстве многочленов с вещественными коэффициентами степени не выше n;
- ж) $\mathcal{T}\colon M_n(F)\to M_n(F)$ линейный оператор транспонирования в пространстве квадратных матриц размера $n\times n$ с элементами из поля F.

Линейные операторы в одном векторном пространстве можно складывать и умножать на скаляры как обычные функции: $(\mathcal{A} + \mathcal{B})x = \mathcal{A}x + \mathcal{B}x, (\lambda \mathcal{A})x = \lambda(\mathcal{A}x)$. Относительно этих операций они образуют векторное пространство. Далее, если $\mathcal{A}, \mathcal{B} \in \operatorname{End}(V)$, то их произведение (композиция) $\mathcal{A}\mathcal{B}$ также является линейным оператором. Умножение линейных операторов ассоциативно. Легко понять, что $\mathcal{E}\mathcal{A} = \mathcal{A}\mathcal{E} = \mathcal{A}$ для любого $\mathcal{A} \in \operatorname{End}(V)$. Столь же легко понять, что в общем случае $\mathcal{A}\mathcal{B} \neq \mathcal{B}\mathcal{A}$ (приведите пример). То есть операторы со сложением и умножением являются ассоциативным кольцом с единицей. Векторное пространство + кольцо + $((\lambda a)b = a(\lambda b) = \lambda(ab)) = ane fpa$ (см. \mathbf{B}_{\bullet} , с. 38-41).

Пример 1.2. Оператор транспонирования \mathcal{T} удовлетворяет условию $\mathcal{T}^2 = \mathcal{E}$ (пример *инволюции*), а проектор \mathcal{P} — условию $\mathcal{P}^2 = \mathcal{P}$ (пример *идемотента*).

Определение 1.2. Для линейного оператора \mathcal{A} определяется его *образ* $\operatorname{Im}(\mathcal{A}) = \{\mathcal{A}x \mid x \in V\}$ и *ядро* $\operatorname{Ker}(\mathcal{A}) = \{x \in V \mid \mathcal{A}x = 0\}.$

Замечание 1.1. Образ и ядро являются подпространствами в соответствующем векторном пространстве, то есть замкнуты относительно сложения векторов и умножения на скаляры.

Пример 1.3. a) $\text{Im}(\mathcal{O}) = \{0\}, \text{ Ker}(\mathcal{O}) = V \text{ в любом пространстве } V;$

- б) $\operatorname{Im}(\mathcal{E}) = V$, $\operatorname{Ker}(\mathcal{E}) = \{0\}$ в любом пространстве V;
- в) $\operatorname{Im}(\lambda \mathcal{E}) = V$, $\operatorname{Ker}(\lambda \mathcal{E}) = \{0\}$ в любом пространстве $V, \lambda \neq 0$;
- г) Образ оператора поворота в E^2 вся плоскость E^2 , его ядро только нулевой вектор.
- д) Если $V=U\oplus W$ и тогда $\mathcal P$ — проектор на U параллельно W, то $\operatorname{Im}\mathcal P=U,$ $\operatorname{Ker}\mathcal P=W;$
 - е) $\mathcal{D} \colon \mathbb{R}[x]_n \to \mathbb{R}[x]_n$, тогда $\operatorname{Im}(\mathcal{D}) = \mathbb{R}[x]_{n-1}$, $\operatorname{Ker}(\mathcal{D}) = \mathbb{R}[x]_0$ (константы);
 - ж) $\mathcal{T}: M_n(F) \to M_n(F)$, тогда $\operatorname{Im}(\mathcal{D}) = M_n(F)$, $\operatorname{Ker}(\mathcal{D}) = \{O\}$.

Теорема 1.1. dim Im A + dim Ker A = dim V.

Доказательство. Выберем базис e_1, e_2, \ldots, e_k подпространства $\operatorname{Ker} \mathcal{A}$ и дополним его векторами e_{k+1}, \ldots, e_n до базиса всего пространства V. Достаточно показать, что векторы $\mathcal{A}(e_{k+1}), \ldots, \mathcal{A}(e_n)$ составляют базис $\operatorname{Im} \mathcal{A}$. Они порожда-

ноказать, что векторы
$$\mathcal{A}(e_{k+1}), \dots, \mathcal{A}(e_n)$$
 составляют оазис пп \mathcal{A} . Они порождают образ, так как для любого $x = \sum_{i=1}^k \lambda_i e_i + \sum_{i=k+1}^n \lambda_i e_i$ имеем $\mathcal{A}x = \underbrace{\sum_{i=1}^k \lambda_i (\mathcal{A}e_i)}_0 + \underbrace{\sum_{i=k+1}^k \lambda_i e_i}_0$

$$+\sum_{i=k+1}^n \lambda_i(\mathcal{A}e_i) = \sum_{i=k+1}^n \lambda_i(\mathcal{A}e_i)$$
. Векторы $\mathcal{A}e_{k+1},\dots,\mathcal{A}e_n$ линейно независимы,

так как из равенства
$$0=\sum\limits_{i=k+1}^n\lambda_i(\mathcal{A}e_i)=\mathcal{A}\left(\sum\limits_{i=k+1}^n\lambda_ie_i\right)$$
 следует, что $\sum\limits_{i=k+1}^n\lambda_ie_i\in$

 $\operatorname{Ker} \mathcal{A}$ и является линейной комбинацией векторов e_1, e_2, \dots, e_k , что возможно только если все λ_i равны 0.

Следствие 1.1.1. Следующие свойства линейного оператора \mathcal{A} эквивалентни: 1) \mathcal{A} — изоморфизм; 2) $\operatorname{Ker} \mathcal{A} = \{0\}$; 3) $\operatorname{Im} \mathcal{A} = V$.

§2. Матрица линейного оператора

Если в пространстве V выбран базис e_1, e_2, \ldots, e_n , то линейный оператор можно задать матрицей.

Определение 2.1. Матрицей линейного оператора \mathcal{A} в базисе e_1, e_2, \dots, e_n называется матрица $A = (a_{ij})$, определяемая из равенств $\mathcal{A}e_j = \sum_{i=1}^n a_{ij}e_i$.

То есть в j-том столбце матрицы A стоят координаты образа j-того базисного вектора в базисе e_1, e_2, \ldots, e_n . Можно записать определение матрицы линейного оператора как $(\mathcal{A}e_1, \mathcal{A}e_2, \ldots, \mathcal{A}e_n) = (e_1, e_2, \ldots, e_n)A$. Для любых векторов $x_1, x_2, \ldots, x_n \in V$ существует единственный линейный оператор, переводящий e_1, e_2, \ldots, e_n в x_1, x_2, \ldots, x_n — это оператор, переводящий каждый вектор $u = \sum_{i=1}^n u_i e_i$ в вектор $\sum_{i=1}^n u_i x_i$. Таким образом, линейный оператор однозначно определяется своей матрицей и наоборот, любая квадратная матрица n-ного порядка является матрицей некоторого линейного оператора в данном базисе. Операциям над линейными оператора соответствуют такие же операции над их матрицами. Для линейных операций это очевидно, поэтому проверим для умножения.

Пусть $\mathcal{A}, \mathcal{B} \in \operatorname{End}(V), A, B$ — соответственно их матрицы в базисе e_1, e_2, \dots, e_n . Тогда $(\mathcal{AB})e_k = \mathcal{A}(\mathcal{B}e_k) = \mathcal{A}\left(\sum_{j=1}^n b_{jk}e_j\right) = \sum_{j=1}^n (\mathcal{A}e_j) = \sum_{i,j=1}^n a_{ij}b_{jk}e_i$, следовательно, матрица оператора \mathcal{AB} есть $C = (c_{ik})$, где $c_{ik} = \sum_{i=1}^n a_{ij}b_{jk}$, то есть

C = AB. Таким образом, кольцо $\mathrm{End}(V)$ изоморфно кольцу $M_n(F)$.

Замечание 2.1. Если $\dim V = n$, то размерность $\operatorname{End}(V)$ как векторного пространства равна n^2 .

Пример 2.1. а) Матрицей нулевого оператора \mathcal{O} является нулевая матрица O;

- б) Матрицей тождественного оператора ${\mathcal E}$ является единичная матрица E;
- в) Матрицей оператора «растяжения» $\lambda \mathcal{E}$ является скалярная матрица λE ;
- г) Матрица оператора поворота на угол α в плоскости E^2 в ортонормированном базисе: $\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$;
- д) Матрица проектора на \acute{U} параллельно W в объединении базисов U и W имеет блочный вид $\begin{pmatrix} E_k & 0 \\ 0 & 0 \end{pmatrix}$, $k=\dim U$;
 - е) Матрица оператора дифференцирования в базисе $x^n, x^{n-1}, \dots, x, 1$ имеет

вид
$$\begin{pmatrix} 0 & 0 & 0 & \dots & 0 & 0 \\ n & 0 & 0 & \dots & 0 & 0 \\ 0 & n-1 & 0 & \dots & 0 & 0 \\ 0 & 0 & n-2 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 1 & 0 \end{pmatrix};$$

 $^{^1}$ «Преподавание математики все еще страдает от энтузиазма, вызванного открытием этого изоморфизма. Следствием было то, что геометрия фактически исключалась и заменялась вычислениями <...> Мой опыт показывает, что доказательства, включающие в себя матрицы, могут быть сокращены на 50%, если выбросить матрицы» (Э. Артин. Геометрическая алгебра. М.: Изд-во «Наука», 1969 г., с. 28 и далее).

ж) Матрица оператора транспонирования в $M_2(F)$ в базисе из стандартных

ж) Матрица оператора транспонирования в
$$M_2(F)$$
 в базисе матричных единиц $E_{11}, E_{12}, E_{21}, E_{22}$ имеет вид
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix};$$

Найдём выражение для координат образа y вектора x при действии оператора \mathcal{A} : $y=\mathcal{A}x$. Пусть $x=\sum\limits_{j=1}^nx_je_j$, тогда $y=\mathcal{A}\left(\sum\limits_{j=1}^nx_je_j\right)=\sum\limits_{j=1}^nx_j(\mathcal{A}e_j)=$

 $=\sum\limits_{i,j=1}^n a_{ij}x_je_i=\sum\limits_{i=1}^n y_ie_i$, где $y_i=\sum\limits_{j=1}^n a_{ij}x_j$. Если X и Y — столбцы координат векторов x и y соответственно, то полученные равенства можно записать как Y = AX.

Пусть $e=\{e_1,e_2,\ldots,e_n\}$ и $\widetilde{e}=\{\widetilde{e}_1,\widetilde{e}_2,\ldots,\widetilde{e}_n\}$ — два базиса векторного пространства V. Выясним, как преобразуется матрица линейного оператора при переходе от одного базиса к другому. Пусть $C = (e \leadsto \tilde{e})$, тогда $(\tilde{e}_1, \tilde{e}_2, \dots, \tilde{e}_n) =$ $(e_1, e_2, \dots, e_n)C.$ $(\mathcal{A}\widetilde{e}_1, \mathcal{A}\widetilde{e}_2, \dots, \mathcal{A}\widetilde{e}_n) = (\mathcal{A}e_1, \mathcal{A}e_2, \dots, \mathcal{A}e_n)C = (e_1, e_2, \dots, e_n)AC = (e_1, e_2, \dots, e_n)C.$ $(\widetilde{e}_1,\widetilde{e}_2,\ldots,\widetilde{e}_n)C^{-1}AC$. Следовательно, если \widetilde{A} — матрица оператора \mathcal{A} в базисе \widetilde{e} , TO

$$\widetilde{A} = C^{-1}AC.$$

Одна из основных задач теории линейных операторов состоит в нахождении базиса, в котором матрица имеет «наиболее простой» вид.

Замечание 2.2. Определитель матрицы оператора зависит только от самого оператора, но не от базиса, в котором записана эта матрица. Действительно, $\det \widetilde{A} = \det(C^{-1}AC) = (\det C)^{-1} \det A \det C = \det A$. Это позволяет говорить об onpedenumeле onepamopa $\det A$ и рассмотреть невырожеденные onepamo**ры** в пространстве V, у которых $\det A \neq 0$. Невырожденные линейные оператора в пространстве V образуют группу GL(V), называемую **полной линейной** группой пространства V.

Кроме того, верна следующая

Теорема 2.1. dim Im $A = \operatorname{rank} A$.

Доказательство. Поскольку $\operatorname{Im} \mathcal{A}$ является линейной оболочкой образов базисных векторов e_1, e_2, \ldots, e_n , то dim Im \mathcal{A} является рангом системы векторов $\mathcal{A}e_1, \mathcal{A}e_2, \ldots, \mathcal{A}e_n$. Однако столбцы матрицы A и есть координаты этих векторов в базисе e_1, e_2, \ldots, e_n .

Замечание 2.3. В силу следствия 1.1.1 и теоремы 2.1 оператор обратим тогда и только тогда, когда он невырожденный.

§3. Инвариантные подпространства

Определение 3.1. Подпространство $U \leqslant V$ называется *инвариантным* относительно оператора \mathcal{A} (\mathcal{A} -инвариантным), если $\mathcal{A}U \leqslant U$, то есть для любого $x \in U$ его образ $\mathcal{A}x \in U$.

Замечание 3.1. Нулевое подпространство и всё пространство V инвариантны для любого оператора. Любое подпространство, содержащееся в ядре оператора \mathcal{A} , и любое подпространство, содержащее его образ, \mathcal{A} -инвариантны. Сумма и пересечение инвариантных подпространств являются инвариантными подпространствами.

Пример 3.1. Пусть оператор — осевая симметрия относительно оси абсцисс в декартовой системе координат на плоскости. Тогда $U_1 = \langle \mathbf{i} \rangle$ и $U_2 = \langle \mathbf{j} \rangle$ инвариантны, а $U_3 = \langle \mathbf{i} + \mathbf{j} \rangle$ — нет.

Пример 3.2. Инвариантные подпространства оператора дифференцирования в $\mathbb{R}[x]_n$ имеют вид $\mathbb{R}[x]_k$, $k \leq n$ (см. Γ , с. 61, задача 48).

Ограничение (*сужение*) $\mathcal{A}|_{U}$ линейного оператора \mathcal{A} на инвариантное подпространство U является линейным оператором в U.

Если выбрать базис e_1, e_2, \ldots, e_n пространства V так, чтобы инвариантное подпространство U было линейной облочкой первых k базисных векторов, то матрица оператора в этом базисе будет иметь вид $\begin{pmatrix} B & D \\ 0 & C \end{pmatrix}$, где B — матрица оператора $\mathcal{A}|_U$ в базисе e_1, e_2, \ldots, e_k . Обратно, если матрица оператора \mathcal{A} имеет такой блочный вид (где B — квадратная матрица размера $k \times k$, а под ней матрица из нулей), то $U = \langle e_1, e_2, \ldots, e_k \rangle$ — инвариантное подпространство.

Если удаётся разложить V в прямую сумму $V = V_1 \oplus V_2 \oplus \ldots \oplus V_k$ инвариантных подпространств V_i , то в базисе пространства V, составленном из базисов этих подпространств, матрица оператора $\mathcal A$ имеет блочно-диагональный вид

$$\begin{pmatrix} A_1 & & & \mathbf{O} \\ & A_2 & & \\ & & \ddots & \\ \mathbf{O} & & & A_k \end{pmatrix},$$

где A_i — матрица оператора $\mathcal{A}|_{V_i}$. Из этого ясно, что поиск инвариантных подпространств является важным шагом в решении задачи поиска «наиболее простого» вида матрицы линейного оператора.

Пример 3.3. Для оператора дифференцирования в $\mathbb{R}[x]_n$ инвариантные подпространства вложены друг в друга, поэтому ни у какого нетривиального инвариантного подпространства нет инвариантного прямого дополнения. Поэтому ни в каком базисе матрица этого оператора не может иметь блочно-диагональный вид.

Пример 3.4. Рассмотрим поворот на угол α вокруг какой-либо оси в пространстве E^3 . В ортонормированном базисе e_1, e_2, e_3 , если вектор e_3 направлен по оси поворота, матрица оператора поворота имеет вид

$$\begin{pmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{pmatrix},$$

который согласуется с разложением E^3 в прямую сумму $E^3 = \langle e_1, e_2 \rangle \oplus \langle e_3 \rangle$

Особую роль играют одномерные инвариантные подпространства, которые приводят к понятию собственного вектора.