Fused Optimal Transport Plan

Junhyoung Chung*

Department of Statistics Seoul National University Seoul 08826, Republic of Korea junhyoung0534@gmail.com

Abstract

The abstract paragraph should be indented $\frac{1}{2}$ inch (3 picas) on both the left- and right-hand margins. Use 10 point type, with a vertical spacing (leading) of 11 points. The word **Abstract** must be centered, bold, and in point size 12. Two line spaces precede the abstract. The abstract must be limited to one paragraph.

1 Introduction

2 Fused Optimal Transport Plan

Notations. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and (S, d_S) a compact metric space. A measurable map $X:\Omega \to S$ is called a random element with distribution $\mathbb{P}_X:=\mathbb{P}\circ X^{-1}$. We also introduce a feature space $M\subset \mathbb{R}^d$ which is compact, and call any one-to-one and continuous $f:S\to M$ a feature function. Throughout this study, we assume that $\operatorname{diam}(S)=\operatorname{diam}(M)=1$, where $\operatorname{diam}(A):=\sup_{x,x'\in A}d_A(x,x')$. For two probability measures μ,ν on S, denote by

$$\Pi(\mu, \nu) = \{\pi \text{ on } S \times S : \text{ the marginals are } \mu \text{ and } \nu\}$$

the set of all couplings between μ and ν . Lastly, we say a measurable map $T:S\to S$ pushes forward μ to ν if $\mu(T^{-1}(A))=\nu(A)$ for all $A\in\mathcal{B}(S)$, where $\mathcal{B}(S)$ is the Borel σ -algebra of S. We denote $T_{\#}\mu=\nu$ if T pushes forward μ to ν .

Fused optimal transport plan. For $0 \le \alpha \le 1$ and a feature function f, we consider

$$\inf_{\pi \in \Pi(\mathbb{P}_{X}, \mathbb{P}_{Y})} (1 - \alpha) \mathbb{E}_{(X,Y) \sim \pi} \left[\| f(X) - f(Y) \|_{2}^{2} \right] + \alpha \mathbb{E}_{\substack{(X,Y) \sim \pi \\ (X',Y') \sim \pi}} \left[K_{h}(X,X') \left| d_{S}(X,X') - d_{S}(Y,Y') \right|^{2} \right], \tag{1}$$

where $K_h: S \times S \to [0, \infty)$ is a bounded, continuous, and symmetric kernel with a bandwidth h > 0. We write $S_{\alpha,h}$ for the set of minimizers of (1).

Proposition 1 (Existence of a minimizer). For each $0 \le \alpha \le 1$ and h > 0, the problem (1) admits at least one minimizer; that is, $S_{\alpha,h} \ne \emptyset$.

3 Local Geometric Preserving Optimal Transport

This section discusses another method to learn an optimal transport while preserving local geometry, which actually coincides with (1) as $h \to 0$. We will investigate this later. We first state some technical assumptions.

^{*}https://junhyoung-chung.github.io/

Assumption 1. We assume the followings:

- (A1) S is an m-dimensional compact Riemannian manifold.
- (A2) The density of X, denoted by p_X , is twice-differentiable $(p_X \in C^2)$ and $c \le p_X \le C$ for some constants c, C > 0.
- (A3) S and M are C^2 -diffeomorphic, and f is a C^2 -diffeomorphism.
- (A4) $K_h(x,x') = h^{-(m+2)}\kappa(d_S(x,x')/h)$ for some $\kappa:[0,\infty)\to[0,\infty)$, where κ is (i) continuous, (ii) bounded, (iii) non-increasing, (iv) compactly supported, and (v) $\int_{\mathbb{R}^m} \kappa(\|u\|)du=1$.

Now, consider the following problem:

$$\min_{T \in \mathcal{C}^1: T_\# \mathbb{P}_X = \mathbb{P}_Y} (1 - \alpha) \mathbb{E}_{X \sim \mathbb{P}_X} \left[\| f(X) - f(T(X)) \|_2^2 \right] + \alpha \int_S \| (\mathcal{J}T)^\top (\mathcal{J}T) - I \|_F^2. \tag{2}$$

Theorem 1. For h > 0, let $R^{\pi}(h)$ be defined as

$$R^{\pi}(h) := \mathbb{E}_{\substack{(X,Y) \sim \pi \\ (X',Y') \sim \pi}} \left[K_h(X,X') \left| d_S(X,X') - d_S(Y,Y') \right|^2 \right].$$

Under Assumption 1, $R^{\pi}(h)$ converges to a limit $R^{\pi}(0)$ as $h \to 0$. In particular,

$$R^{\pi}(0) = ??$$

References

A Appendix