Validating the Correctness of Hardware Implementations of the NBS Data Encryption Standard, 1980, NBS Special Publication 500–20 (Washington: U.S. Department of Commerce, National Bureau of Standards). [3]

Meyer, C.H. and Matyas, S.M. 1982, *Cryptography: A New Dimension in Computer Data Security* (New York: Wiley). [4]

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading, MA: Addison-Wesley), Chapter 6. [5]

Vitter, J.S., and Chen, W-C. 1987, *Design and Analysis of Coalesced Hashing* (New York: Oxford University Press). [6]

7.6 Simple Monte Carlo Integration

Inspirations for numerical methods can spring from unlikely sources. "Splines" first were flexible strips of wood used by draftsmen. "Simulated annealing" (we shall see in $\S 10.9$) is rooted in a thermodynamic analogy. And who does not feel at least a faint echo of glamor in the name "Monte Carlo method"?

Suppose that we pick N random points, uniformly distributed in a multidimensional volume V. Call them x_1, \ldots, x_N . Then the basic theorem of Monte Carlo integration estimates the integral of a function f over the multidimensional volume,

$$\int f \, dV \approx V \, \langle f \rangle \, \pm V \sqrt{\frac{\langle f^2 \rangle - \langle f \rangle^2}{N}} \tag{7.6.1}$$

Here the angle brackets denote taking the arithmetic mean over the N sample points,

$$\langle f \rangle \equiv \frac{1}{N} \sum_{i=1}^{N} f(x_i) \qquad \langle f^2 \rangle \equiv \frac{1}{N} \sum_{i=1}^{N} f^2(x_i)$$
 (7.6.2)

The "plus-or-minus" term in (7.6.1) is a one standard deviation error estimate for the integral, not a rigorous bound; further, there is no guarantee that the error is distributed as a Gaussian, so the error term should be taken only as a rough indication of probable error.

Suppose that you want to integrate a function g over a region W that is not easy to sample randomly. For example, W might have a very complicated shape. No problem. Just find a region V that $includes\ W$ and that can easily be sampled (Figure 7.6.1), and then define f to be equal to g for points in W and equal to zero for points outside of W (but still inside the sampled V). You want to try to make V enclose W as closely as possible, because the zero values of f will increase the error estimate term of (7.6.1). And well they should: points chosen outside of W have no information content, so the effective value of N, the number of points, is reduced. The error estimate in (7.6.1) takes this into account.

General purpose routines for Monte Carlo integration are quite complicated (see §7.8), but a worked example will show the underlying simplicity of the method. Suppose that we want to find the weight and the position of the center of mass of an

Copyright (C) 1986-1992 by Cambridge University Press. Programs Copyright (C) 1986-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America). Sample page from NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43064-X) Copyright (C) 1986-1992 by Cambridge University Press. Programs Convints (C) 1986-1992 by Cambridge University Press. Programs Convints (C) 1986-1992 by Cambridge University Press.