

CAPE INSTITUTE OF TECHNOLOGY LEVENGIPURAM, KANYAKUMARI

Department of Electronics and Communication Enginering

IBM - NALAYA THIRAN

TITLE

SMART FARMER IOT – ENABLE SMART FARMING APPLICATION

TEAM MEMBERS

BAJILA .K	-	960519106025
LEKSHMI .S	-	960519106038
LESIYA .R	-	960519106039
MICHEAL ANNA DIZA .S	_	960519106307

MENTOR

TABLE OF CONTENTS

CHAPTER	TITLE
1.	INTRODUCTION
	1.1 Project Overview
	1.2 Purpose
2.	LITERATURE SURVEY
	2.1 Existing problem
	2.2 References
	2.3 Problem Statement Definition
3.	IDEATION & PROPOSED SOLUTION
	3.1 Empathy Map Canvas
	3.2 Ideation & Brainstorming
	3.3 Proposed Solution
	3.4 Problem Solution fit
4.	REQUIREMENT ANALYSIS
	4.1 Functional requirement
	4.2 Non-Functional requirements
5.	PROJECT DESIGN
	5.1 Data Flow Diagrams
	5.2 Solution & Technical Architecture
	5.3 User Stories

6.	PROJECT PLANNING & SCHEDULING
	6.1 Sprint Planning & Estimation
	6.2 Sprint Delivery Schedule
	6.3 Reports from JIRA
7.	CODING & SOLUTIONING
	7.1 Feature 1
	7.2 Feature 2
8.	TESTING
	8.1 Test Cases
	8.2 User Acceptance Testing
9.	RESULTS
	9.1 Performance Metrics
10.	ADVANTAGES & DISADVANTAGES
11.	CONCLUSION
12.	FUTURE SCOPE
13.	APPENDIX
	Source Code
	GitHub & Project Demo Link

INTRODUCTION

1.1PROJECT OVERVIEW

The objective of this project is to offer assistance to farmers in getting Live Data (Temperature, Humidity, Soil Moisture,Ph-Level,CO2 intake of plants) for efficient environment monitoring which will enable them to increase their overall yield and quality of products.

The parameters like temperature, humidity, and soil moisture are updated to the Watson IoT platform. The device will subscribe to the commands from the mobile application and control the motors accordingly. APIs are developed using Node-RED service for communicating with Mobile Application. A mobile application is developed using the MIT App inventor to monitor the sensor parameters and control the motors. Fast2sms app will send the SMS if there is in need.

1.2 PURPOSE

Nowadays Internet of Things (IoT) technology is one of the fastest growing fields in different domains including agriculture. Thanks to this technology, Smart farming systems know a cultural change toward modern agriculture which is more productive, consuming less water and even cheaper.

The main goal of my project is to use IoT in the agriculture field in order to collect data instantly (Soil moisture, Temperature, Humidity, Ph level, CO2 intake), which will help one to monitor some environment conditions remotely, effectively and enhance tremendously the production and therefore the income of farmers. The present prototype is developed using python which generates random data, IBM Watson that helps to collect instant data online, The mobile application is created to view the collected data. The alert message will be sent to the respective user through FAST2SMS.

LITERATURE SURVEY

2.1 EXISTING PROBLEM

CropX offers an integrated hardware and software system with a suite of decision and planning tools based on continuous monitoring of soil and crop conditions.

The sensors send the collected data to the Cloud and send back advice and insights accessible from any mobile device, tablet, or computer (iOS or Android). Know more to grow more with less - less water, less chemicals, less energy, less time, and less stress.

The CropX software uses GPS monitoring system to collect and show the data. The main problem is that it will not indicate the alert messages which warns the user on how to monitor the plants and immediate results will not be generated which is a major disadvantage.

Fig.2.1.1 Existing Technology

2.2 REFERENCE

https://cropx.com/technology/

2.3 PROBLEM STATEMENT DEFINITION

To make farming easier by choosing several constraints in agriculture and to overcome those constraints and increase production quality & quantity using IoT by building a mobile application.

CHAPTER 3 IDEATION AND PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

Fig3.1.1 Empathy Map Canvas

3.2 IDEATION AND BRAINSTORMING

Fig3.2.1 Ideation And Brainstorming

3.3 PROPOSED SOLUTION

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	To make farming easier by choosing several constraints in agriculture and to overcome those constraints, to increase production quality and quantity using IOT.
2.	Idea / Solution description	Using smart techniques like monitoring farms climate, smart irrigation and soil analysis.
3.	Novelty / Uniqueness	Solar power smart irrigation system which helps you to monitor temperature, moisture ,humidity using smart sensors.
4.	Social Impact / Customer Satisfaction	It is better than the present modern irrigation system by using this method we can control soil erosion. There will be better production yield.
5.	Business Model (Revenue Model)	As the productivity increases customer satisfaction also increases and hence need for the application also increases, which increases the revenue of the business.
6.	Scalability of the Solution	It is definetly scalable we ca increase the constraints when the problem arises.

3.4 PROPOSED SOLUTION FIT

REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENTS

Following are the functional requirements of the proposed solution

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)		
FR-1	IoT devices	Sensors and Wifi module.		
FR-2	Software	Web UI, Node-red, IBM Watson, MIT app		

Table4.1 Functional Requirements

4.2 NON-FUNCTIONAL REQUIREMENTS

Following are the non-functional requirements o the proposed solution

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Time consumability is less, Productivity is high.
NFR-2	Security	It has low level of security features due to integration of sensor data.
NFR-3	Reliability	Accuracy of data and hence it is Reliable.
NFR-4	Performance	Performance is high and highly productive.
NFR-5	Availability	With permitted network connectivity the application is accessible
NFR-6	Scalability	It is perfectly scalable many new constraints can be added

Table 4.2.1 Non-Functional Requirements

PROJECT DESIGN

5.1 DATA FLOW DIAGRAMS

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

Fig5.1.1 Simplified DFD

Fig5.1.2 Level 0 DFD

5.2 SOLUTION & TECHNICAL ARCHITECTURE

S.No	Component	Description	Technology
1.	User Interface	How user interacts with application e.g. Web UI, Mobile App, Chatbot etc.	MIT app
2.	Application Logic-1	Logic for a process in the application	Node red/IBM Watson/MIT app
3.	Application Logic-2	Logic for a process in the application	Node red/IBM Watson/MIT app
4.	Application Logic-3	Logic for a process in the application	Node red/IBM Watson/MIT app
5.	Database	Data Type, Configurations etc.	MySQL, NoSQL, etc.
6.	Cloud Database	Database Service on Cloud	IBM cloud.
7.	Temperature sensor	Monitors the temperature of the crop	
8.	Humidity sensor	Monitors the humidity	
9.	Soil moisture sensor (Tensiometers)	Monitors the soil temperature	
10.	Weather sensor	Monitors the weather	50
11.	Solar panel		20
12.	RTC module	Date and time configuration	
13.	Relay	To get the soil moisture data	

S.No	Characteristics	Description	Technology	
1.	Open-Source Frameworks	MIT app,Node-Red	Software	
2.	Scalable Architecture	Drone technology, pesticide monitoring ,Mineral identification in soil	Hardware	

Fig 5.2.1 Components and Technologies

5.3 USER STORIES

The user stories of the proposed solution are listed below

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer	IoT devices	USN-1	Sensors and wi-fi module		High	Sprint-1
Customer	Software	USN-2	IBM Watson IoT platform, Workflows for IoT scenarios using Node-red		High	Sprint-2
Customer	MIT app	USN-3	To develop an application using MIT		High	Sprint-3
Customer	Web UI	USN-4	To make the user to interact with the software.	User can access the app for the services.	High	Sprint-4

Fig 5.3.1 User Stories

PROJECT PLANNING AND SCHEDULING

6.1 SPRINT PLANNING AND ESTIMATION

The below table shows the planning and estimation of sprints

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Hardware	USN-1	Sensors and wi-fi module with python code.	2	High	Vishnu Priya, Thenmolhi, Swarna Prabha, Sneha
Sprint-2	Software	USN-2	IBM Watson IoT platform, Workflows for IoT scenarios using Node-red	2	High	Vishnu Priya, Thenmolhi, Swarna Prabha, Sneha
Sprint-3	МІТ арр	USN-3	To develop an mobile application using MIT	2	High	Vishnu Priya, Thenmolhi, Swarna Prabha, Sneha
Sprint-4	Web UI	USN-4	To make the user to interact with software.	2	High	Vishnu Priya, Thenmolhi, Swarna Prabha, Sneha

Table 6.1.1 Sprint Planning and Estimation

6.2 SPRINT DELIVERY SCHEDULE

The below table shows the schedule of sprints to be delivered

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022		5 th NOV 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022		12th NOV 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022		14 th NOV 2022

Table 6.2.1 Sprint Delivery Schedule

6.3 REPORTS FROM JIRA

Jira is a software application used for issue tracking and project management. The tool, developed by the Australian software company Atlassian, has become widely used by agile development teams to track bugs, stories, epics, and other tasks.

Fig 6.3.1 Report from JIRA

Fig 6.3.2 Report from JIRA

CODING & SOLUTIONING

7.1 FEATURE 1

After installation of python version 3.6.2, we have to install wiotp.sdk package to connect with IBM Watson IoT platform.

To install the package open the command prompt window and type the command as **pip install wiotp.sdk**.

Fig 7.1.1 Installing wiotp.sdk

7.2 FEATURE 2

Python code:

```
import wiotp.sdk.device
import time
import os
import datetime
import random
myConfig={
   "identity":{
    "orgId":"92zbfc",
       "typeId":"ESP32",
    "deviceId":"1234"
       },
    "auth": {
              "token":"12345678"
           }
    }
client=wiotp.sdk.device.DeviceClient(config=myConfig,logHandlers=None)
client.connect()
def myCommandCallback(cmd):
```

```
printf("Message received from IBM IoT
platform:%s"%cmd.daata['command'])
  m=cmd.data['command']
   if(m=="motoroff"):
    print("motor is switched on")
   elif(m=="motoroff"):
       print("motor is switched off")
   print("")
while True:
  soil=random.randint(14,20)
   temp=random.randint(21,37)
   hum=random.randint(60,80)
   soil ph=random.randint(5,8)
   Co2=random.randint(1000,1300)
myData={'soil moisture':soil,'temperature':temp,'humidity':hum,'soil ph':soil p
h,'Co2':Co2}
   client.publishEvent(eventId="status",msgFormat="json",data=myData,qos=0,
onPublish=None)
   print("published data successfully: %s",myData)
     time.sleep(5)
   client.commandCallback=myCommandCallback
client.disconnect()
```

Output:

Wiotp.sdk library is imported and we are using IBM Watson IoT platform's device details such as organisation id, device id, device type, authentication token.

Parameters like Soil moisture, temperature, humidity, Ph level, co2 are to be monitored by generating random values which decides the switching of the Motor, Delay is given in general.

In the Output screen you can visualize the connectivity to the IBM IoT platform and the values will be generated.

Fig 7.2.1 Output of the code

Fig 7.2.2 Output of code in IBM Watson IoT Platform

TESTING

8.1 TEST CASES

Fig 8.1.1 Test Case

8.2 USER ACCEPTANCE TESTING

The purpose of user acceptance testing is to briefly explain the test coverage and open issues of the product.

T

1. PurposeofDocument

The purpose of this document is to briefly explain thetestcoverageandopenissuesofthe [ProductName] project at the time of the release to User Acceptance Testing (UAT).

2.TestCaseAnalysis

This report shows the number of test cases that have passed, failed, and untested

Section	TotalCases	Not Tested	Fail	Pass
Python coding	3	0	0	3
Node-Red	4	0	0	4
Mit app(Front end and Back end) screen1	3	0	0	3
Mit app(Front end and Back end) screen2	4	0	0	4
FinalReportOutput	4	0	0	4

RESULTS

9.1 PERFORMANCE METRICS

Smart farmer IoT application project has a better future scope as its functional and non functional characteristics are scalable.

ADVANTAGES AND DISADVANTAGES

ADVANTAGES

Increased Production

Optimized crop treatment such as accurate planting, watering, pesticide application and harvesting directly affects production rates.

Water Conservation

Weather predictions and soil moisture sensors allow for water use only when and where needed.

Real-Time Data and Production Insight

Farmers can visualize production levels, soil moisture, sunlight intensity and more in real time and remotely to accelerate decision making process.

Lowered Operation Costs

Automating processes in planting, treatment and harvesting can reduce resource consumption, human error and overall cost.

Increased Quality of Production

Analysing production quality and results in correlation to treatment can teach farmers to adjust processes to increase quality of the product.

Accurate Farm and Field Evaluation

Accurately tracking production rates by field over time allows for detailed predicting of future crop yield and value of a farm.

Improved Livestock Farming

Sensors and machines can be used to detect reproduction and health events earlier in animals. Geofencing location tracking can also improve livestock monitoring and management.

Reduced Environmental Footprint

All conservation efforts such as water usage and increased production per land unit directly affect the environmental footprint positively.

Remote Monitoring

Local and commercial farmers can monitor multiple fields in multiple locations around the globe from an internet connection. Decisions can be made in real-time and from anywhere.

Equipment Monitoring

Farming equipment can be monitored and maintained according to production rates, labour effectiveness and failure prediction.

DISADVANTAGE

Lack of Infrastructure

Even if the farmers adopt IoT technology they won't be able to take benefit of this technology due to poor communication infrastructure. Farms are located in remote areas and are far from access to the internet. A farmer needs to have access to crop data reliably at any time from any location, so connection issues would cause an advanced monitoring system to be useless.

High Cost

Equipment needed to implement IoT in agriculture is expensive. However sensors are the least expensive component, yet outfitting all of the farmers' fields to be with them would cost more than a thousand dollars. Automated machinery cost more than manually operated machinery as they include cost for farm management software and cloud access to record data. To earn higher profits, it is significant for farmers to invest in these technologies however it would be difficult for them to make the initial investment to set up IoT technology at their farms.

Lack of Security

Since IoT devices interact with older equipment they have access to the internet connection, there is no guarantee that they would be able to access drone mapping data or sensor readouts by taking benefit of public connection. An enormous amount of data is collected by IoT agricultural systems which is difficult to protect. Someone can have unauthorized access IoT providers database and could steal and manipulate the data.

CONCLUSION

This project gave us the chance to learn new technologies and work with new tools, this was a real proof that IBM has taught us to be long-life learners and to master self-learning before teaching us other class materials. Of course, this project is a combination of what we learned from all the training and orientation sessions conducted by IBM, altogether with what we learned from other disciplines and also by ourselves about IoT.

In general, the project was successful and worked properly and succeeded in delivering the prototype on due time. We are proud and happy for this achievement especially that this our first theoretically, practically online stimulated project. It enabled us to get concrete results and to realize that we can indeed build products that would be beneficial in real life and that we can customize it upon demand as future projects.

FUTURE SCOPE

We can add other Arduino components or increasing sensors for more features, and to fetch more data that can be collected. An artificial intelligent system can be added to predict the production of goods. A GPS module can be integrated to enhance this Agriculture IoT Technology to full-fledged Agriculture Precision ready product.

APPENDIX

13.1 SOURCE CODE

```
## bits python code py - C\Users\Thermohi\Vivsraj\AppData\LocalPrograms\Python\Python\Gibbs python code py (3.6.2)

File Edit Format Run Options Window Help

Import to Import Import
```

13.2 SOFTWARES USED

IBM Watson IoT Platform

NodeRED

MIT APP INVENTOR

13.2 GitHub and Project Demo Link

mOuc2RQp3DY/view?usp=drivesdk

https://github.com/IBM-EPBL/IBM-Project-20150-1659713440