第3章课后作业

- 1. 试描述下列正则式表达式定义的语言: (a|b)*a(a|b)(a|b)
- 2. 找出下图所示 NFA 中所有标号为 aabb 的路径,这个 NFA 接受 aabb 吗?

3. 将下图中的 NFA 转化为 DFA:

第4章课后作业

- 1. 考虑上下文无关文法: S→SS+|SS*|a 以及串 aa+a*
- (1) 给出这个串的一个最左推导;
- (2) 给出这个串的一个最右推导;
- (3) 给出这个串的一棵语法分析树;
- 2. 考虑上下文无关文法: S→0S1|01

给出该文法的预测分析表 (需要先提取左公因子并消除左递归);

- 3. 考虑上下文无关文法: S→SS+|SS*|a
- (1) 给出该文法的 Fisrt 集和 Follow 集;
- (2) 指出下列最右句型的句柄:

SSS+a*+

SS+a*a+

aaa*a++

(3) 给出串 aaa*a++自底向上的解析过程(完成下列表格);

栈	输入	句柄	动作	
\$	aaa*a++\$		移入	

第5章课后作业

1. 扩展右图中的 SDD, 使它可以像左图所示的那样处理表达式:

	产生式	语义规则		产生式	语义规则
1)	$L \to E \mathbf{n}$	L.val = E.val	1)	$T \to F T'$	T'.inh = F.val
2) 3)	$E \to E_1 + T$ $E \to T$	$E.val = E_1.val + T.val$ $E.val = T.val$			T.val = T'.syn
4)	$T \rightarrow T_1 * F$	$T.val = T_1.val \times F.val$	2)	$T' \to *FT'_1$	$T'_1.inh = T'.inh \times F.val$ $T'.syn = T'_1.syn$
,	$T \to F$	T.val = F.val	۵)	TI.	
6)	$F \rightarrow (E)$	F.val = E.val	3)	$T' \to \epsilon$	T'.syn = T'.inh
7)	$F o \mathbf{digit}$	$F.val = \mathbf{digit}.lexval$	4)	$F o \mathbf{digit}$	$F.val = \mathbf{digit}.lexval$

2. 对于图中的 SDD, 给出 int x,y,z 对应的注释语法分析树:

	产生式	语义规则
1)	$D \to T L$	L.inh = T.type
2)	$T o \mathbf{int}$	T.type = integer
3)	$T \to \mathbf{float}$	T.type = float
4)	$L \to L_1$, id	$L_1.inh = L.inh$
		$addType(\mathbf{id}.entry, L.inh)$
5)	$L o \mathbf{id}$	$addType(\mathbf{id}.entry, L.inh)$

3. 图中的 SDT 计算了一个由 0 和 1 组成的串的值,它把输入的符号串当做按照正二进制数来解释。改写这个 SDT,使得基础文法不再是左递归的,但仍然可以计算出整个输入串的相同的 B.val 的值:

$$B \rightarrow B_1 \ 0 \ \{B.val = 2 \times B_1.val\}$$

 $\mid B_1 \ 1 \ \{B.val = 2 \times B_1.val + 1\}$
 $\mid 1 \ \{B.val = 1\}$