OSCAR

Manual

Basic simulation

Essentially, to make a basic simulation one must:

- 1. import the OSCAR object from core_fct.mod_process;
- 2. define the For (forcing data) and Par (parameters) arguments;
- 3. call oscar with these arguments (and possibly other optional arguments, like Ini (initial state)).

The run_scripts folder contains a few extra basic examples.

Core structure

Here is a quick overview of the files contained in the <code>core_fct</code> folder and their content.

File	Content
cls_main	definition of the Model and Process classes upon which OSCAR v3 is based
fct_calib	functions to calibrate some of the model's parameters
fct_genD	functions to generate consistent timeseries of drivers
fct_genMC	functions to generate the Monte Carlo setup
fct_loadD	functions to load the primary drivers
fct_loadP	functions to load the primary parameters, some being loaded from files and others manually written therein
fct_process_alt	functions to replace some processes with alternative formulations
fct_misc	a bunch of useful functions, notably including the solving schemes, a generic loading function called <code>load_data</code> , and a function to regionally aggregate datasets called <code>aggreg_region</code>
mod_process	equations for the physical processes constituting OSCAR; also contains OSCAR and submodels

Thomas Gasser 2022-10-11

Dimensions, drivers, variables and parameters

Dimensions

Here is a table summerizing the various dimensions over which OSCAR's input, internal and output data may be defined. Additional dimensions can be added freely to the Ini, For and/or Par arguments, in which case they will be conserved throughout the run, which allows easily parallelizing experiments (e.g. scenarios). This can be heavy on the memory, however.

Dims	Description
year	time axis
config	Monte Carlo elements
spc_halo	species of halogenated compounds
box_osurf	pools for the surface ocean carbon cycling
reg_land	land carbon-cycle regions
bio_land	land carbon-cycle biomes
bio_from	origine biomes of the land-use perturbations
bio_to	destination biomes of the land-use perturbations
box_hwp	pools of harvested wood products
reg_pf	regions specific to the permafrost module
box_thaw	pools of thawed permafrost
spc_bb	species from biomass burning
reg_slcf	regions specific to SLCF regional saturation effects
reg_bcsnow	regions specific to BC deposition on snow

Drivers

Drivers are the forcing data that need to be prescribed to the model for it to be able to run. They must be prescribed using the <code>For</code> argument when calling a <code>Model</code> object. The model automatically connects the various processes it is made of, and deduces what input data are required, so that it will display an error message if some drivers are missing in <code>For</code>. Assuming <code>OSCAR</code> has been imported, a list of the model's drivers can be displayed with <code>OSCAR.var_in</code>. More information on the drivers is available in <code>core_fct.fct_loadD</code>.

omas Gasser 2022-10-11			
In code	In papers	Units	Dims
Eff	$E_{ m FF}$	PgC yr ⁻¹	year, reg_land
E_CH4	$E_{ m CH_4}$	TgC yr ⁻¹	year, reg_land
E_N20	$E_{ m N_2O}$	TgN yr ⁻¹	year, reg_land
E_Xhalo	$E_{\rm X}$	Gg yr ⁻¹	year, reg_land, spc_halo
E_NOX	$E_{ m NO_x}$	TgN yr ⁻¹	year, reg_land
E_CO	$E_{\rm CO}$	TgC yr ⁻¹	year, reg_land
E_VOC	$E_{ m VOC}$	Tg yr ⁻¹	year, reg_land
E_S02	E_{SO_2}	TgS yr ⁻¹	year, reg_land
E_NH3	$E_{ m NH_3}$	TgN yr ⁻¹	year, reg_land
E_OC	$E_{\rm OC}$	TgC yr ⁻¹	year, reg_land
E_BC	$E_{ m BC}$	TgC yr ⁻¹	year, reg_land
d_Acover	δA	Mha yr ⁻¹	year, reg_land, bio_from, bio_to
d_Hwood	δH	PgC yr ⁻¹	year, reg_land, bio_land
d_Ashift	δS	Mha yr ⁻¹	year, reg_land, bio_from, bio_to
RF_contr	RF _{con}	W m ⁻²	year
RF_volc	RF _{volc}	W m ⁻²	year
RF_solar	RF _{solar}	W m ⁻²	year

Variables

Each of the model's variable is defined through a Process object; and a Model object is essentially a collection of connected processes. Prognostic variables (i.e. state variables) are those defined through a time-differential equation, while diagnostic variables are defined at any time t as a function of prognostic variables and/or other diagnostic variables at that same time t. When solving, at every single timestep, the model first solves all prognostic variables, and only then calculates the diagnostic variables. Assuming OSCAR has been imported, a list of the model's variables can be displayed with OSCAR.proc_all, or somewhat equivalently with OSCAR.var_mid | OSCAR.var_out. Prognostic and diagnostic variables can be displayed with OSCAR.var_prog and OSCAR.var_diag, respectively. More information on each variable/process is available in core_fct.fct_process.

In code	In papers	Units	Dims	Prog?
D_pC02	F_{pCO_2}	ppm	-	
D_mld	$\Delta h_{ m mld}$	m	-	
D_dic	Δdic	µmol kg ⁻¹	-	
D_Fin	$\Delta F_{ m in}$	PgC yr ⁻¹	box_osurf	
D_Fout	$\Delta F_{ m out}$	PgC yr ⁻¹	box_osurf	
D_Fcirc	$\Delta F_{ m circ}$	PgC yr ⁻¹	box_osurf	
D_Focean	$\Delta F_{\downarrow { m ocean}}$	PgC yr ⁻¹	-	
D_Cosurf	$\Delta C_{ m surf}$	PgC	-	yes
f_fert	F _{fert}	1	reg_land, bio_land	
D_npp	Δηρρ	PgC Mha ⁻¹ yr ⁻¹	reg_land, bio_land	
f_igni	Figni	1	reg_land, bio_land	
D_efire	$\Delta e_{ m fire}$	PgC Mha ⁻¹ yr ⁻¹	reg_land, bio_land	
D_eharv	$\Delta e_{ m harv}$	PgC Mha ⁻¹ yr ⁻¹	reg_land, bio_land	
D_egraz	$\Delta e_{ m graz}$	PgC Mha ⁻¹ yr ⁻¹	reg_land, bio_land	
D_fmort1	$\Delta f_{ m mort1}$	PgC Mha ⁻¹ yr ⁻¹	reg_land, bio_land	
D_fmort2	$\Delta f_{ m mort2}$	PgC Mha ⁻¹ yr ⁻¹	reg_land, bio_land	
f_resp	F _{resp}	1	reg_land, bio_land	
D_rh1	$\Delta r h_1$	PgC Mha ⁻¹ yr ⁻¹	reg_land, bio_land	
D_fmet	$\Delta f_{ m met}$	PgC Mha ⁻¹ yr ⁻¹	reg_land, bio_land	
D_rh2	Δrh_2	PgC Mha ⁻¹	reg_land, bio_land	

omas Gasser		2022-10-	11	
In code	In papers	Units	Dims	Prog?
D_nbp	-	PgC Mha ⁻¹ yr ⁻¹	reg_land, bio_land	
D_cveg	$\Delta c_{ m veg}$	PgC Mha ⁻¹	reg_land, bio_land	yes
D_csoil1	$\Delta c_{ m soil1}$	PgC Mha ⁻¹	reg_land, bio_land	yes
D_csoil2	$\Delta c_{ m soil2}$	PgC Mha ⁻¹	reg_land, bio_land	yes
D_Fveg_bk	$\delta C_{ m veg,bk}$	PgC yr ⁻¹	reg_land, bio_land †	
D_Fsoil1_bk	$\delta C_{ m soil1,bk}$	PgC yr ⁻¹	reg_land, bio_land †	
D_Fsoil2_bk	$\delta C_{ m soil2,bk}$	PgC yr ⁻¹	reg_land, bio_land †	
D_Fslash1	$\Delta F_{\mathrm{slash1}}$	PgC yr ⁻¹	reg_land, bio_land †	
D_Fslash2	$\Delta F_{\mathrm{slash2}}$	PgC yr ⁻¹	reg_land, bio_land †	
D_Fhwp	$\Delta F_{ m hwp}$	PgC yr ⁻¹	reg_land, bio_land, box_hwp †	
D_NPP_bk	ΔNPP_{bk}	PgC yr ⁻¹	reg_land, bio_land †	
D_Efire_bk	$\Delta E_{\rm fire,bk}$	PgC yr ⁻¹	reg_land, bio_land †	
D_Eharv_bk	$\Delta E_{ m harv,bk}$	PgC yr ⁻¹	reg_land, bio_land †	
D_Egraz_bk	$\Delta E_{ m graz,bk}$	PgC yr ⁻¹	reg_land, bio_land †	
D_Fmort1_bk	$\Delta F_{ m mort1,bk}$	PgC yr ⁻¹	reg_land, bio_land †	
D_Fmort2_bk	$\Delta F_{ m mort2,bk}$	PgC yr ⁻¹	reg_land, bio_land †	
D_Rh1_bk	$\Delta Rh_{1,bk}$	PgC yr ⁻¹	reg_land, bio_land †	
D_Fmet_bk	$\Delta F_{ m met,bk}$	PgC yr ⁻¹	reg_land, bio_land †	
D_Rh2_bk	$\Delta Rh_{2,bk}$	PgC yr ⁻¹	reg_land, bio_land †	
D_Ehwp	$\Delta E_{ m hwp}$	PgC yr ⁻¹	<pre>reg_land, bio_land, box_hwp †</pre>	
D_NBP_bk	-	PgC yr ⁻¹	reg_land, bio_land †	
D_Eluc	$\Delta E_{ m LUC}$	PgC yr ⁻¹	-	
D_Fland	$\Delta F_{\downarrow \mathrm{land}}$	PgC yr ⁻¹	-	
D_Flasc	$\Delta F_{ m LASC}$	PgC yr ⁻¹	-	
D_Aland	ΔΑ	Mha	reg_land, bio_land	yes

In code	In papers	Units	Dims	Prog?
D_Cveg_bk	$\Delta C_{ m veg,bk}$	PgC	reg_land, bio_land †	yes
D_Csoil1_bk	$\Delta C_{ m soil1,bk}$	PgC	reg_land, bio_land †	yes
D_Csoil2_bk	$\Delta C_{ m soil2,bk}$	PgC	reg_land, bio_land †	yes
D_Chwp	$\Delta C_{ m hwp}$	PgC	reg_land, bio_land, box_hwp †	yes
f_resp_pf	-	1	reg_pf	
D_pthaw_bar	$\Delta ar{p}_{ m thaw}$	1	reg_pf	
d_pthaw	$\frac{\mathrm{d}}{\mathrm{d}t}p_{\mathrm{thaw}}$	yr ⁻¹	reg_pf	
D_pthaw	$\Delta p_{ m thaw}$	1	reg_pf	yes
D_Fthaw	$\Delta F_{ m thaw}$	PgC yr ⁻¹	reg_pf	
D_Ethaw	-	PgC yr ⁻¹	reg_pf, box_thaw	
D_Epf	$\Delta E_{ m pf}$	PgC yr ⁻¹	reg_pf	
D_Epf_CO2	-	PgC yr ⁻¹	reg_pf	
D_Epf_CH4	-	TgC yr ⁻¹	reg_pf	
D_Cfroz	$\Delta C_{ m froz}$	PgC	reg_pf	yes
D_Cthaw	$\Delta C_{ m thaw}$	PgC	reg_pf, box_thaw	yes
D_C02	$\Delta \mathrm{CO}_2$	ppm	-	yes
d_C02	$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CO}_2$	ppm yr ⁻¹	-	
AF	-	1	-	
kS	-	yr ⁻¹	-	
RF_CO2	$\Delta \mathrm{RF^{CO_2}}$	W m ⁻²	-	
D_Efire	$\Delta E_{ m fire}$	PgC yr ⁻¹	reg_land, bio_land	
D_Ebb_nat	-	TgX yr ⁻¹	reg_land, bio_land, spc_bb	
D_Ebb_ant	-	TgX yr ⁻¹	<pre>reg_land, bio_land, spc_bb</pre>	

In code	In papers	Units	Dims	Prog?
III code	iii papeis	Offics		Flog:
D_Ebb	$\Delta E_{ m bb}$	TgX yr ⁻¹	reg_land, bio_land, spc_bb	
D_CH4_lag	$\Delta \mathrm{CH_{4}}_{\mathrm{lag}}$	ppb	-	yes
D_N2O_lag	$\Delta N_2 O_{lag}$	ppb	-	yes
D_Xhalo_lag	ΔX_{lag}	ppt	spc_halo	yes
D_Ta	ΔT_A	K	-	
D_f_Qa	$\frac{\Delta Q_A}{Q_{A,0}}$	1	-	
f_k0H	F _{OH}	1	-	
D_Foh_CH4	-	TgC yr ⁻¹	-	
D_Fhv_CH4	-	TgC yr ⁻¹	-	
D_Fsoil_CH4	-	TgC yr ⁻¹	-	
D_Focean_CH4	-	TgC yr ⁻¹	-	
D_Fsink_CH4	$\Delta F_{\downarrow}^{ m CH_4}$	TgC yr ⁻¹	-	
D_Foxi_CH4	-	PgC yr ⁻¹	-	
D_ewet	$\Delta e_{ m wet}$	TgC Mha ⁻¹ yr ⁻¹	reg_land	
D_Awet	$\Delta A_{ m wet}$	Mha	reg_land	
D_Ewet	$\Delta E_{ m wet}$	TgC yr ⁻¹	reg_land	
D_CH4	$\Delta \mathrm{CH_4}$	ppb	_	yes
tau_CH4	-	yr	-	
RF_CH4	$\Delta \mathrm{RF}^{\mathrm{CH_4}}$	W m ⁻²	-	
RF_H2Os	ΔRF^{H_2Os}	W m ⁻²	-	
D_f_ageair	-	1	-	
f_hv	$F_{h\nu}$	1	-	
D_Fhv_N2O	-	TgN yr ⁻¹	-	

In code	In papers	Units	Dims	Prog?
D_Fsink_N2O	$\Delta F_{\downarrow}^{ m N_2O}$	TgN yr ⁻¹	-	
D_N20	$\Delta N_2 O$	ppb	-	yes
tau_N2O	-	yr	-	
RF_N2O	ΔRF^{N_2O}	W m ⁻²	-	
D_Foh_Xhalo	-	Gg yr ⁻¹	spc_halo	
D_Fhv_CH4	-	Gg yr ⁻¹	spc_halo	
D_Fother_CH4	-	Gg yr ⁻¹	spc_halo	
D_Fsink_CH4	$\Delta F_{\downarrow}^{X}$	Gg yr ⁻¹	spc_halo	
D_Xhalo	ΔX	ppt	spc_halo	yes
RF_Xhalo	ΔRF^X	W m ⁻²	spc_halo	
RF_halo	$\Delta \mathrm{RF}^{\mathrm{halo}}$	W m ⁻²	-	
D_03t	$\Delta O_3 t$	DU	-	
RF_03t	ΔRF^{O_3t}	W m ⁻²	-	
D_EESC	ΔEESC	ppt	-	
D_03s	$\Delta O_3 s$	DU	-	
RF_03s	ΔRF^{O_3s}	W m ⁻²	-	
D_Edms	$\Delta E_{ m DMS}$	TgS yr ⁻¹	-	
D_Ebvoc	$\Delta E_{ m BVOC}$	Tg yr ⁻¹	-	
D_Edust	-	Tg yr ⁻¹	-	
D_Esalt	-	Tg yr ⁻¹	-	
D_S04	ΔSO_4	Tg	-	
D_POA	ΔΡΟΑ	Tg	-	
D_BC	ΔΒC	Tg	-	
D_N03	ΔNO_3	Tg	-	

In code	In papers	Units	Dims	Prog?
D_SOA	ΔSOA	Tg	-	
D_Mdust	-	Tg	-	
D_Msalt	-	Tg	-	
RF_S04	ΔRF^{SO_4}	W m ⁻²	-	
RF_POA	ΔRF^{POA}	W m ⁻²	-	
RF_BC	$\Delta \mathrm{RF}^{\mathrm{BC}}$	W m ⁻²	-	
RF_NO3	$\Delta \mathrm{RF}^{\mathrm{NO}_3}$	W m ⁻²	-	
RF_SOA	$\Delta \mathrm{RF}^{\mathrm{SOA}}$	W m ⁻²	-	
RF_dust	-	W m ⁻²	-	
RF_salt	-	W m ⁻²	-	
D_AERsol	ΔAER_{sol}	Tg	-	
RF_cloud1	-	W m ⁻²	-	
RF_cloud2	-	W m ⁻²	-	
RF_cloud	$\Delta \mathrm{RF}^{\mathrm{cloud}}$	W m ⁻²	-	
RF_BCsnow	ΔRF^{BCsnow}	W m ⁻²	-	
RF_lcc	$\Delta \mathrm{RF}^{\mathrm{LCC}}$	W m ⁻²	-	
RF_nonCO2	-	W m ⁻²	-	
RF_wmghg	-	W m ⁻²	-	
RF_strat	-	W m ⁻²	-	
RF_scatter	-	W m ⁻²	-	
RF_absorb	-	W m ⁻²	-	
RF_AERtot	-	W m ⁻²	-	
RF_slcf	-	W m ⁻²	-	
RF_alb	-	W m ⁻²	-	
RF	ΔRF	W m ⁻²	-	

omas Gasser		2022-10-1	l	
In code	In papers	Units	Dims	Prog?
RF_warm	ΔRF_{warm}	W m ⁻²	-	
RF_atm	ΔRF_{atm}	W m ⁻²	-	
D_Tg	ΔT_G	К	-	yes
D_Td	ΔT_D	K	-	yes
d_Tg	$\frac{\mathrm{d}}{\mathrm{d}t}T_G$	K yr ⁻¹	-	
CFF	_	W m ⁻² K ⁻¹	-	
D_T1	ΔT_L	K	reg_land	
D_To	ΔT_S	K	-	
D_Pg	ΔP_G	mm yr ⁻¹	-	yes
D_P1	ΔP_L	mm yr ⁻¹	reg_land	
D_OHC	ΔΟΗС	ZJ	-	yes
d_OHC	$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{OHC}$	ZJ yr ⁻¹	-	
D_pH	-	1	-	

[†] default; can be altered through the fct_process_alt functions.

Parameters

Parameters are implicitly defined when creating a model's processes. When OSCAR is run, it does not check whether the needed parameters are actually provided in the Par argument. Primary parameters can be loaded with the <code>load_all_param</code> function defined in <code>core_fct.fct_loadP</code>. Many parameters have several possible values, and these different configurations are defined along the various <code>mod_</code> dimensions of the dataset containing the primary parameters. Sets of randomly drawn parameters for Monte Carlo runs can be generated using the <code>generate_config</code> function defined in <code>core_fct.fct_genMC</code>. More information on each parameter is available in <code>core_fct.fct_loadP</code>.

In code	In papers	Units	Dims	Mods
a_dic	$\alpha_{ m sol}$	μmol kg ⁻¹ [ppm m ⁻³] ⁻¹	_	-
mld_0	$h_{ m mld,0}$	m	-	mod_Focean_stru

In code	In papers	Units	Dims	Mods
A_ocean	$A_{ m ocean}$	m ²	-	mod_Focean_stru
To_0	$T_{S,0}$	K	-	mod_Focean_stru
v_fg	$v_{ m fg}$	yr ⁻¹	-	mod_Focean_stru
p_circ	$\pi_{ m circ}$	1	box_osurf	mod_Focean_stru
t_circ	$ au_{ m circ}$	yr	box_osurf	mod_Focean_stru
pCO2_is_Pade	-	bool	-	mod_Focean_chem
p_mld	$\pi_{ m mld}$	1	-	mod_Focean_trar
g_mld	γmld	K ⁻¹	-	mod_Focean_trar
fert_is_Log	-	bool	-	mod_Fland_fert
t_shift	$ au_{ m shift}$	yr	-	-
npp_0	η	PgC Mha ⁻¹ yr ⁻¹	reg_land,	mod_Fland_preir
igni_0	ı	yr ⁻¹	reg_land,	mod_Efire_preir
harv_0	$\epsilon_{ m harv}$	yr ⁻¹	reg_land,	mod_Eharv_preir
graz_0	$\epsilon_{ m graz}$	yr ⁻¹	reg_land,	mod_Egraz_preir
mu1_0	μ_1	yr ⁻¹	reg_land,	mod_Fland_preir
mu2_0	μ_2	yr ⁻¹	reg_land,	mod_Fland_preir
muM_0	$\mu_{ m met}$	yr ⁻¹	reg_land,	mod_Fland_preir
rho1_0	ρ_1	yr ⁻¹	reg_land,	mod_Fland_preir
rho2_0	$ ho_2$	yr ⁻¹	reg_land,	mod_Fland_preir

In code	In papers	Units	Dims	Mods
p_agb	$\pi_{ m agb}$	1	reg_land,	mod_Eluc_agb
b_npp	$eta_{ m npp}$	1	reg_land,	mod_Fland_trans
b2_npp	$\widetilde{eta}_{ ext{npp}}$	1	reg_land,	mod_Fland_trans
C02_cp	CO _{2 cp}	ppm	reg_land,	mod_Fland_trans
g_nppT	$\gamma_{\mathrm{npp},T}$	K ⁻¹	reg_land,	<pre>mod_Fland_trans mod_Fland_fert</pre>
g_nppP	$\gamma_{\mathrm{npp},P}$	[mm yr ⁻¹] ⁻¹	reg_land,	<pre>mod_Fland_trans mod_Fland_fert</pre>
g_rhoT	$\gamma_{{ m resp},T}$	K ⁻¹	reg_land,	<pre>mod_Fland_trans mod_Fland_resp</pre>
g_rhoT1	$\gamma_{\mathrm{resp},T_1}$	K ⁻¹	reg_land,	<pre>mod_Fland_trans mod_Fland_resp</pre>
g_rhoT2	$\gamma_{\mathrm{resp},T_2}$	K ⁻²	reg_land,	<pre>mod_Fland_trans mod_Fland_resp</pre>
g_rhoP	$\gamma_{{ m resp},P}$	[mm yr ⁻¹] ⁻¹	reg_land,	mod_Fland_trans
g_igniC	$\gamma_{\mathrm{igni},C}$	ppm ⁻¹	reg_land, bio_land	mod_Efire_trans
g_igniT	$\gamma_{\mathrm{igni},T}$	K ⁻¹	reg_land,	mod_Efire_trans
g_igniP	$\gamma_{\mathrm{igni},P}$	[mm yr ⁻¹] ⁻¹	reg_land,	mod_Efire_trans
t_hwp	$ au_{ m hwp}$	yr	box_hwp	mod_Ehwp_tau
w_t_hwp	-	1	-	mod_Ehwp_speed
p_hwp_bb	-	1	box_hwp	-

omas Gasser		2022-10-11		
In code	In papers	Units	Dims	Mods
p_hwp	$\pi_{ m hwp}$	1	reg_land, bio_land, box_hwp	mod_Ehwp_bb
a_bb	$a_{ m bb}$	TgX PgC ⁻¹	reg_land, bio_land, spc_bb	-
Cfroz_0	$C_{ m froz,0}$	PgC	reg_pf	mod_Epf_main
w_clim_pf	$\omega_{T_{ m pf}}$	1	reg_pf	mod_Epf_main
g_respT_pf	γ_{pf,T_1}	K ⁻¹	reg_pf	mod_Epf_main
g_respT2_pf	γ_{pf,T_2}	K ⁻²	reg_pf	mod_Epf_main
k_resp_pf	$\kappa_{ m resp,pf}$	1	reg_pf	mod_Epf_main
pthaw_min	$p_{ m thaw,min}$	1	reg_pf	mod_Epf_main
g_pthaw	$\gamma_{p_{ ext{thaw}}}$	K ⁻¹	reg_pf	mod_Epf_main
k_pthaw	$\kappa_{p_{ m thaw}}$	1	reg_pf	mod_Epf_main
v_thaw	$v_{ m thaw}$	yr ⁻¹	reg_pf	mod_Epf_main
v_froz	$v_{ m froz}$	yr ⁻¹	reg_pf	mod_Epf_main
p_pf_thaw	$\pi_{ m thaw}$	1	reg_pf, box_thaw	mod_Epf_main
t_pf_thaw	$ au_{ m thaw}$	yr	reg_pf, box_thaw	mod_Epf_main
p_pf_inst	-	1	-	-
p_pf_CH4	-	1	-	mod_Epf_CH4
ewet_0	$e_{ m wet,0}$	TgC yr ⁻¹	reg_land	mod_Ewet_preinc
Awet_0	$A_{ m wet,0}$	Mha	reg_land	mod_Ewet_preind
p_wet	$\pi_{ m wet}$	1	reg_land,	mod_Ewet_preind
g_wetC	$\gamma_{\mathrm{wet},C}$	ppm ⁻¹	reg_land	mod_Awet_trans
g_wetT	$\gamma_{\mathrm{wet},T}$	K ⁻¹	reg_land	mod_Awet_trans
			*	

In code	In papers	Units	Dims	Mods
g_wetP	$\gamma_{\mathrm{wet},P}$	[mm yr ⁻¹] ⁻¹	reg_land	mod_Awet_trans
a_C02	$a_{ m atm}^{ m CO_2}$	PgC ppm ⁻¹	-	-
a_CH4	$lpha_{ m atm}^{ m CH_4}$	TgC ppb ⁻¹	-	-
a_N20	$a_{ m atm}^{ m N_2O}$	TgC ppb ⁻¹	-	-
a_Xhalo	$\alpha_{ m atm}^{X}$	Gg ppt ⁻¹	spc_halo	-
a_S04	-	Tg TgS ⁻¹	-	-
a_POM	$lpha_{ m OM}^{ m OC}$	Tg TgC ⁻¹	-	mod_POA_conv
a_N03	-	Tg TgN ⁻¹	-	-
C02_0	CO ₂₀	ppm	-	-
CH4_0	CH ₄₀	ppb	-	-
N20_0	N_2O_0	ppb	-	-
Xhalo_0	X_0	ppt	spc_halo	-
p_CH4geo	-	1	-	-
g_ageair	Yage	K ⁻¹	-	mod_Fhv_ageair
w_t_OH	-	1	-	-
w_t_hv	-	1	-	-
t_OH_CH4	$ au_{ m OH}^{ m CH_4}$	yr	-	mod_Foh_tau
t_hv_CH4	$ au_{ m h u}^{ m CH_4}$	yr	-	-
t_soil_CH4	$ au_{ m soil}^{ m CH_4}$	yr	-	-
t_ocean_CH4	$ au_{ m ocean}^{ m CH_4}$	yr	-	-
x_OH_Ta	$\chi_{\mathrm{T_A}}^{\mathrm{OH}}$	1	-	mod_Foh_trans
x_OH_Qa	$\chi_{ m Q_A}^{ m OH}$	1	-	mod_Foh_trans
x_0H_03s	$\chi_{\mathrm{O_3s}}^{\mathrm{OH}}$	1	-	mod_Foh_trans
x_OH_CH4	χOH χCH4	1	-	mod_Foh_trans

In code	In papers	Units	Dims	Mods
x_OH_NOX	$\widetilde{\chi}_{ m NO_x}^{ m OH}$	1	-	mod_Foh_trans
x_0H_C0	$\widetilde{\chi}_{\mathrm{CO}}^{\mathrm{OH}}$	1	-	mod_Foh_trans
x_OH_VOC	$\widetilde{\chi}_{ m VOC}^{ m OH}$	1	-	mod_Foh_trans
x2_OH_NOX	$\chi_{ m NO_x}^{ m OH}$	[TgN yr ⁻¹] ⁻¹	-	mod_Foh_trans
x2_0H_C0	$\chi_{\mathrm{CO}}^{\mathrm{OH}}$	[TgC yr ⁻¹] ⁻¹	-	mod_Foh_trans
x2_OH_VOC	$\chi_{ m VOC}^{ m OH}$	[Tg yr ⁻¹] ⁻¹	-	mod_Foh_trans
w_clim_Ta	$\kappa_{\mathrm{T_A}}$	1	-	-
k_Qa	$\kappa_{ m Q_A}$	1	-	-
Ta_0	$T_{A,0}$	К	-	-
k_svp	$\kappa_{ m svp}$	1	-	-
T_svp	$T_{ m svp}$	К	-	-
03s_0	O_3s_0	DU	-	-
Enat_NOX	$E_{ m nat}^{ m NO_x}$	TgN yr⁻¹	-	-
Enat_CO	$E_{\mathrm{nat}}^{\mathrm{CO}}$	TgC yr ⁻¹	-	-
Enat_VOC	$E_{ m nat}^{ m VOC}$	Tg yr ⁻¹	-	-
kOH_is_Log	-	bool	-	mod_Foh_fct
t_hv_N2O	$ au_{ m hv}^{ m N_2O}$	yr	-	mod_Fhv_tau
x_hv_N20	$\chi_{ m N2O}^{ m h}$	1	-	mod_Fhv_trans
x_hv_EESC	$\chi_{ ext{EESC}}^{ ext{h} u}$	1	-	mod_Fhv_tran
x_hv_age	$\chi_{ m age}^{ m h}$	1	-	mod_Fhv_trans
t_OH_Xhalo	$ au_{ m OH}^X$	yr	spc_halo	-
t_hv_Xhalo	$ au_{ ext{h} u}^{X}$	yr	spc_halo	-
t_other_Xhalo	$ au_{ m othr}^X$	yr	spc_halo	-
p_reg_slcf	$\pi_{ m reg}$	1	reg_land, reg_slcf	-

In code	In papers	Units	Dims	Mods
w_reg_NOX	$\omega_{ m NO_x}$	1	reg_slcf	mod_03t_regsat
w_reg_CO	ω_{CO}	1	reg_slcf	mod_03t_regsat
w_reg_VOC	$\omega_{ ext{VOC}}$	1	reg_slcf	mod_03t_regsat
x_03t_CH4	$\chi^{ m O_3t}_{ m CH_4}$	DU	-	mod_03t_emis
x_03t_NOX	$\chi_{ m NO_x}^{ m O_3 t}$	DU [TgN yr ⁻¹] ⁻¹	-	mod_O3t_emis
x_03t_C0	$\chi_{ m CO}^{ m O_3 t}$	DU [TgC yr ⁻¹] ⁻¹	-	mod_O3t_emis
x_03t_V0C	$\chi_{ m VOC}^{ m O_3t}$	DU [Tg yr ⁻¹] ⁻¹	-	mod_03t_emis
G_03t	$\Gamma_{{ m O}_3 t}$	DU K ⁻¹	-	mod_O3t_clim
t_lag	$ au_{ m lag}$	yr	-	-
p_fracrel	π_{rel}^{X}	1	spc_halo	mod_03s_fracre
k_Br_Cl	$lpha_{ m Cl}^{ m Br}$	1	-	-
n_Cl	n_{Cl}^{X}	1	spc_halo	-
n_Br	n_{Br}^{X}	1	spc_halo	-
EESC_x	$EESC_{\times}$	ppt	-	-
k_EESC_N20	$\begin{array}{c} O_3 s \\ \frac{\chi_{N2O}}{O_3 s} \\ \chi_{EESC} \end{array}$	ppt ppb ⁻¹	-	mod_03s_nitrous
x_03s_EESC	$\chi_{ m EESC}^{ m O_3s}$	DU ppt ⁻¹	-	mod_03s_trans
G_03s	$\Gamma_{\mathrm{O}_{3}\mathrm{s}}$	DU K ⁻¹	-	mod_03s_trans
w_reg_SO2	ω_{SO_2}	1	reg_slcf	mod_SO4_regsat
w_reg_OC	$\omega_{ m OC}$	1	reg_slcf	mod_POA_regsat
w_reg_BC	$\omega_{ m BC}$	1	reg_slcf	mod_BC_regsat
t_S02	$ au_{\mathrm{SO}_2}$	yr	-	mod_SO4_load
t_DMS	$ au_{ m DMS}$	yr	-	mod_SO4_load
G_S04	$\Gamma_{\mathrm{SO_4}}$	Tg K ⁻¹	-	mod_SO4_load
t_OMff	$ au_{ m OM,ff}$	yr	-	mod_POA_load

In code	In papers	Units	Dims	Mods
t_OMbb	$ au_{ m OM,bb}$	yr	-	mod_POA_load
G_POA	$\Gamma_{ ext{POA}}$	Tg K ⁻¹	-	mod_POA_load
t_BCff	$ au_{ m BC,ff}$	yr	-	mod_BC_load
t_BCbb	$ au_{ m BC,bb}$	yr	-	mod_BC_load
G_BC	$\Gamma_{ m BC}$	Tg K ⁻¹	-	mod_BC_load
t_NOX	$ au_{ ext{NO}_{ ext{x}}}$	yr	-	mod_NO3_load
t_NH3	$ au_{ m NH_3}$	yr	-	mod_NO3_load
G_N03	$\Gamma_{ m NO_3}$	Tg K ⁻¹	-	mod_NO3_load
t_VOC	$ au_{ m VOC}$	yr	-	mod_SOA_load
t_BVOC	$ au_{ m BVOC}$	yr	-	mod_SOA_load
G_SOA	$\Gamma_{ m SOA}$	Tg K ⁻¹	-	mod_SOA_load
t_dust	-	yr	-	mod_Mdust_loa
G_dust	-	Tg K ⁻¹	-	mod_Mdust_loa
t_salt	-	yr	-	mod_Msalt_loa
G_salt	-	Tg K ⁻¹	-	mod_Msalt_loa
p_sol_SO4	$\pi_{ m sol}^{ m SO_4}$	1	-	mod_RFcloud_s
p_sol_POA	$\pi_{ m sol}^{ m POA}$	1	-	mod_RFcloud_s
p_sol_BC	$\pi_{ m sol}^{ m BC}$	1	-	mod_RFcloud_s
p_sol_NO3	$\pi_{ m sol}^{ m NO_3}$	1	-	mod_RFcloud_s
p_sol_SOA	$\pi_{ m sol}^{ m SOA}$	1	-	mod_RFcloud_s
p_sol_dust	-	1	-	mod_RFcloud_s
p_sol_salt	-	1	-	mod_RFcloud_s
rf_CO2	$a_{ m rf}^{ m CO_2}$	W m ⁻²	-	-
rf_CH4	$lpha_{ m rf}^{ m CH_4}$	W m ⁻² ppb ^{-0.5}	-	-
rf_N2O	$a_{ m rf}^{ m N_2O}$	W m ⁻² ppb ^{-0.5}	-	-

omas Gassei		2022-10-11		
In code	In papers	Units	Dims	Mods
k_rf_H2Os	$\frac{\alpha_{\rm rf}^{\rm H_2Os}}{\alpha_{\rm rf}^{\rm CH_4}}$	1	-	-
rf_Xhalo	$\alpha_{ m rf}^X$	W m ⁻² ppt ⁻¹	spc_halo	-
rf_03t	$a_{ m rf}^{ m O_3 t}$	W m ⁻² DU ⁻¹	-	mod_03t_radeff
rf_03s	$lpha_{ m rf}^{ m O_3 s}$	W m ⁻² DU ⁻¹	-	mod_03s_radeff
rf_S04	$lpha_{ m rf}^{ m SO_4}$	W m ⁻² Tg ⁻¹	-	mod_SO4_radeff
rf_POA	$lpha_{ m rf}^{ m POA}$	W m ⁻² Tg ⁻¹	-	mod_POA_radeff
rf_BC	$lpha_{ m rf}^{ m BC}$	W m ⁻² Tg ⁻¹	-	mod_BC_radeff
rf_NO3	$lpha_{ m rf}^{ m NO_3}$	W m ⁻² Tg ⁻¹	-	mod_NO3_radeff
rf_SOA	$lpha_{ m rf}^{ m SOA}$	W m ⁻² Tg ⁻¹	-	mod_SOA_radeff
rf_dust	-	W m ⁻² Tg ⁻¹	-	-
rf_salt	-	W m ⁻² Tg ⁻¹	-	-
k_adj_BC	$\kappa_{ m adj}^{ m BC}$	1	-	mod_BC_adjust
Phi_0	Φ	W m ⁻²	-	mod_RFcloud_ermod_RFcloud_sol
AERsol_0	AER _{sol,0}	Tg	-	<pre>mod_RFcloud_sol mod_RFcloud_erf mod_RFcloud_pre</pre>
p_reg_bcsnow	$\pi_{ m reg}$	1	reg_land,	-
w_reg_bcsnow	$\omega_{ m BCsnow}$	1	reg_bcsnow	mod_RFbcsnow_re
rf_bcsnow	$lpha_{ m rf}^{ m BCsnow}$	W m ⁻² [TgC yr ⁻¹] ⁻¹	-	mod_RFbcsnow_rt
p_trans	$\pi_{ m trans}$	1	-	-
alpha_alb	$lpha_{ m alb}$	1	reg_land,	<pre>mod_RFlcc_alb, mod_RFlcc_flux, mod_RFlcc_cover</pre>

In code	In papers	Units	Dims	Mods
F_rsds	$\phi_{ m rsds}$	W m ⁻²	reg_land	mod_RFlcc_flux
w_warm_volc	$\kappa_{ m warm}^{ m volc}$	1	-	-
w_warm_bcsnow	$\kappa_{\mathrm{warm}}^{\mathrm{BCsnow}}$	1	-	mod_RFbcsnow_wa
w_warm_lcc	$\kappa_{ m warm}^{ m LCC}$	1	-	mod_RFlcc_warme
p_atm_CO2	$\pi_{ m atm}^{ m CO_2}$	1	-	mod_Pg_radfact
p_atm_nonCO2	$\pi_{ m atm}^{ m noCO_2}$	1	-	mod_Pg_radfact
p_atm_03t	$\pi_{ m atm}^{ m O_3 t}$	1	-	mod_Pg_radfact
p_atm_strat	$\pi_{ m atm}^{ m strat}$	1	-	mod_Pg_radfact
p_atm_scatter	$\pi_{ m atm}^{ m scatter}$	1	-	mod_Pg_radfact
p_atm_absorb	$\pi_{ m atm}^{ m absorb}$	1	-	mod_Pg_radfact
p_atm_cloud	$\pi_{ m atm}^{ m cloud}$	1	-	mod_Pg_radfact
p_atm_alb	$\pi_{ m atm}^{ m alb}$	1	-	mod_Pg_radfact
p_atm_solar	$\pi_{ m atm}^{ m solar}$	1	-	mod_Pg_radfact
lambda_0	λ	K [W m ⁻²] ⁻¹	-	mod_Tg_resp
Th_g	$\frac{ au_{T_G}}{\lambda}$	yr W m ⁻² K ⁻¹	-	mod_Tg_resp
Th_d	$\frac{ au_{T_D}}{\lambda}$	yr W m ⁻² K ⁻¹	-	mod_Tg_resp
th_0	$\frac{\theta}{\lambda}$	W m ⁻² K ⁻¹	-	mod_Tg_resp
e_ohu	-	1	-	-
w_clim_T1	ω_{T_L}	1	reg_land	<pre>mod_Tl_pattern, mod_Tg_resp</pre>
w_clim_To	ω_{T_S}	1	-	<pre>mod_Tl_pattern, mod_Tg_resp</pre>
a_prec	α_{P_G}	mm yr ⁻¹ K ⁻¹	-	mod_Pg_resp
b_prec	eta_{P_G}	mm yr ⁻¹ [W m ⁻²] ⁻¹	-	mod_Pg_resp
w_clim_Pl	ω_{P_L}	1	reg_land	<pre>mod_Pl_pattern, mod_Pg_resp</pre>

Thomas Gasser 2022-10-11

In code	In papers	Units	Dims	Mods
p_ohc	$\pi_{ m ohc}$	1	-	-
pH_is_Log	-	bool	-	mod_pH_fct