Električni krugovi - Lab

Lab 4. Priprema RLC Električni Krugovi 2. reda

Ime i Prezime:	
Asistent:	
Grupa:	

Napomena: Ukoliko nema dovoljno prostora neka student doda list papira na kojemu će postupak koji je doveo do rješenja. Lab Pripremu treba odštampati dvostrano i popuniti je te pričvrstiti dodatnu stranicu papira pomoću spajalice. Popunjena Lab Priprema se predaje asistentu na početku laboratorijskih vježbi.

Zadatak: Zadana su četiri slučaja vrijednosti električnih elemenata:

- a) $R=1k\Omega$, L=1mH, C=100nF;
- b) $R=200\Omega$, L=1mH, C=100nF;
- c) $R=20\Omega$, L=1mH, C=100nF;
- d) $R=0\Omega$, L=1mH, C=100nF.
- Za četiri slučaja elemenata koji su zadani u zadatku izvršiti normalizaciju po frekvenciji ω₀=10⁵rad/s i impedanciji R₀=100Ω, odn. izračunati normalizirane vrijednosti elemenata.

a)
$$R = 10$$
 , $L = 1$, $C = 1$;

b)
$$R=$$
 2 , $L=$ \land , $C=$ \land ;

c)
$$R = 0.2$$
 , $L = 1$, $C = 1$;

2. Za električne krugove prikazane slikom izračunati naponske prijenosne funkcije $T(s)=U_2(s)/U_1(s)$. Uvrstiti **normalizirane** vrijednosti elemenata iz 1 zadatka.

Naponske prijenosne funkcije:

1) $T_{(4)} = \frac{\frac{\Lambda}{LC}}{\Delta^2 + \frac{R}{I} \Delta + \frac{\Lambda}{LC}}$ 2) $T(s) = \frac{s^2}{s^2 + \frac{R}{1}s + \frac{1}{1-C}}$ $a)T(s)=\frac{s^2}{s^2+100+1}$ a) T(0) = 12+100+1 $f(s) = \frac{s^2}{s^2 + 2s + 1}$ $f(s) = \frac{s^2}{s^2 + 2s + 1}$ b) T(0) = 1 c) T(0) = 1 d)T(s)= 32 $d)T(s) = \frac{1}{s^2+1}$ 3) $T(s) = \frac{R}{L} s$ $s = \frac{R}{L} s + \frac{1}{L} s + \frac{1}{L} s$ 4) $T(s) = \frac{s^2 + \frac{\pi}{Lc}}{s^2 + \frac{R}{L}s + \frac{\Lambda}{Lc}}$ a) $T(s) = \frac{s^2 + 1}{s^2 + 10s + 1}$ $a)T(s) = \frac{100}{1^2 + 100 + 1}$ (b) $T(0) = \frac{20}{0^2 + 20+1}$ (c) $T(0) = \frac{0.20}{0^2 + 0.20+1}$ d) T(0) = 0b) T(0) = 32+1 c) T(0) = 02+1 d)T(0)=1

3. Za električne krugove prikazane slikom u prethodnom zadatku izračunati normalizirane polove naponske prijenosne funkcije i prikazati ih u kompleksnoj s-ravnini. Uvrstiti normalizirane vrijednosti elemenata. Izračunati **normalizirane** vrijednosti parametara ω_p i q_p te realni i imaginarni dio polova (vidi uputu).

- slučaj a: $q_p = Q \cdot \Lambda$ $\omega_p = \Lambda$

4. Za 4 električna kruga prikazana slikom u zadatku 2 izračunati izraze za amplitudnofrekvencijsku i fazno-frekvencijsku karakteristiku. Uvrstiti normalizirane vrijednosti elemenata za slučaj b).

$$|T(jw)| = \frac{1}{w^2 + 1}$$

$$W < 1 \Rightarrow \varphi(w) = \arctan \frac{2w}{w^2 - 1}$$

$$W > 1 \Rightarrow \varphi(w) = \arctan \frac{2w}{w^2 - 1}$$

$$W > 1 \Rightarrow \varphi(w) = \arctan \frac{2w}{w^2 - 1} - 180^\circ$$

$$W = 1 \Rightarrow \varphi = -90^\circ$$

$$|T(jw)| = \frac{w^2}{w^2 + 1}$$

$$W < 1 \Rightarrow \varphi(w) = 180^{\circ} + arctg \frac{2w}{w^2 - 1}$$

$$W > 1 \Rightarrow \varphi(w) = arctg \frac{2w}{w^2 - 1}$$

$$W = 1 \Rightarrow \varphi = +90^{\circ}$$

$$|T(gw)| = \frac{2w}{w^2 + 1}$$

$$w \neq 1 \Rightarrow \varphi(w) = 90^\circ + a = \sqrt{2} \frac{2w}{w^2 - 1}$$

$$w = 1 \Rightarrow \varphi = 0^\circ$$

$$W < 1$$

$$|T(jw)| = \frac{1-w^2}{w^2+1}$$

$$|Y(w)| = arct_0 \frac{2w}{w^2-1}$$

$$|W| = 1$$

$$|W|$$

5. Za 4 električna kruga prikazana slikom u zadatku 2 i uz uvrštene normalizirane vrijednosti elemenata za slučaj b) nacrtati funkcije amplitudno-frekvencijske i fazno-frekvencijske karakteristike. Prikaz karakteristika neka bude u području frekvencija ω=0.1 rad/s do 10 rad/s (dvije dekade).

(1) HORMALIZACIJA UZ
$$W_0 = 10^{5} \text{ red}/s$$
, $R_0 = 100\Omega$

FORMULE: $R_m = \frac{R}{R_0}$ $L_m = \frac{W_0 L}{R_0}$ $C_m = W_0 CR_0$

a) $R_m = \frac{1000}{100} = 10$ $L_m = \frac{10^{5} \cdot 10^{-3}}{100} = 1$ $C_m = 10^{5} \cdot 10^{-3} \cdot 10^{\circ} = 1$

b) $R_m = \frac{200}{100} = 2$ $L_m = 1$ $C_m = 1$

c) $R_m = \frac{20}{100} = 0.2$ $L_m = 1$ $C_m = 1$

d) $R_m = \frac{0}{100} = 0$ $L_m = 1$ $C_m = 1$

2) SHEMA 1) $T(s) = \frac{1}{L_0}$

a) $R = 10$, $L = 1$, $C = 1$ $\Rightarrow T(s) = \frac{1}{A^2 + 100} + 1$

c) $R = 2$, $L = 1$, $C = 1$ $\Rightarrow T(s) = \frac{1}{A^2 + 0.25 + 1}$

d) $R = 0$, $L = 1$, $C = 1$ $\Rightarrow T(s) = \frac{1}{A^2 + 0.25 + 1}$

SHEMA 2)
$$T(a) = \frac{A^2}{a^2 + \frac{R}{L}a + \frac{1}{C}}$$

a) $R = 10$, $L = 1$, $C = 1$ $\Rightarrow T(a) = \frac{A^2}{A^2 + 10a + 1}$
b) $R = 2$, $L = 1$, $C = 1$ $\Rightarrow T(a) = \frac{A^2}{A^2 + 2a + 1} = \frac{A^2}{(a + 1)^2}$
c) $R = 0$, $L = 1$, $C = 1$ $\Rightarrow T(a) = \frac{A^2}{A^2 + 2a + 1}$
d) $R = 0$, $L = 1$, $C = 1$ $\Rightarrow T(a) = \frac{A^2}{A^2 + 1}$

SHEMA 3)
$$T(a) = \frac{R}{L} \frac{\Lambda}{\Lambda^2 + \frac{R}{L} \Lambda + \frac{\Lambda}{LC}}$$

a) $R = 10$, $L = 1$, $C = 1$ $\longrightarrow T(a) = \frac{10a}{a^2 + 10a + 1}$

b) $R = 2$, $L = 1$, $C = 1$ $\longrightarrow T(a) = \frac{2a}{a^2 + 2a + 1} = \frac{2a}{(a + 1)^2}$

c) $R = 0.2$, $L = 1$, $C = 1$ $\longrightarrow T(a) = \frac{0.2a}{a^2 + 0.2a + 1}$

d) $R = 0$, $L = 1$, $C = 1$ $\longrightarrow T(a) = 0$

SHEMA 4) $T(a) = \frac{a^2 + \frac{\Lambda}{LC}}{a^2 + \frac{R}{L} \Lambda + \frac{1}{LC}}$

a) $R = 10$, $L = 1$, $C = 1$ $\longrightarrow T(a) = \frac{a^2 + 1}{A^2 + 10a + 1} = \frac{A^2 + 1}{A^2 + 2a + 1} = \frac{A^2 + 1}{A^2 + 0.2a + 1}$

c) $R = 0.2$, $L = 1$, $C = 1$ $\longrightarrow T(a) = \frac{A^2 + 1}{A^2 + 0.2a + 1}$

d) $R = 0$, $L = 1$, $C = 1$ $\longrightarrow T(a) = \frac{A^2 + 1}{A^2 + 0.2a + 1}$

a)
$$A^{2}+100+1=0$$
 $\Rightarrow A_{p,1,2}=-\frac{10}{2}\pm\frac{\sqrt{10^{2}-4}}{2}=-5\pm\sqrt{24}$
 $A_{p,1}=-9.899$ $A_{p,2}=-0.101$

$$b) s^{2} + 2o + 1 = 0 \implies sp_{1,2} = -\frac{2}{2} \pm \frac{\sqrt{2^{2}-4}}{2} = -1 + o = 1$$

$$sp_{1} = -1 \qquad sp_{2} = -1$$

c)
$$\Delta^2 + 0.2 \Delta + 1 = 0 \longrightarrow \Delta_{M,2} = -\frac{0.2}{2} \pm \frac{\sqrt{0.2^2 - 4}}{2} = -0.1 \pm j0.355$$

 $\Delta_{M,2} = -0.1 - j0.355$ $\Delta_{M,2} = -0.1 + j0.355$

d)
$$s^2+1=0 \implies s_{p,n,2}=\pm \dot{g}$$

 $s_{p,n}=-\dot{g}$, $s_{p,2}=+\dot{g}$

NORMALIZIRANE VRIJEDNOSTI PARAMETARA WP 1 21

(4.) SLUTAS & R=2, L=1, C=1

SHEMA 1)
$$T(a) = \frac{1}{\Lambda^2 + 2a + 1}$$
, we $a = gW \Rightarrow T(gW) = \frac{1}{-W^2 + j^2W + 1}$

$$|T(gW)| = \frac{1}{|maximil|} = \frac{1}{|(1-W)|^2 + (2W)^2} \Rightarrow T(gW) = \frac{1}{W^2 + 1}$$

$$|T(gW)| = \frac{1}{|maximil|} \Rightarrow T(gW) = \frac{1}{W^2 + 1}$$

$$|T(gW)| = \frac{1}{|w^4 + 2w^2 + 1} \Rightarrow T(gW) = \frac{1}{|w^2 + 1|}$$

$$|T(gW)| = \frac{1}{|w^4 + 2w^2 + 1} \Rightarrow T(gW) = \frac{1}{|w^2 + 1|}$$

$$|T(gW)| = \frac{1}{|w^4 + 2w^2 + 1|} \Rightarrow T(gW) = \frac{1}{|w^2 + 1|}$$

$$|T(gW)| = \frac{1}{|w^4 + 2w^2 + 1|} \Rightarrow T(gW) = \frac{1}{|w^2 + 1|}$$

$$|T(gW)| = \frac{1}{|w^4 + 2w^2 + 1|} \Rightarrow T(gW) = \frac{1}{|w^4 + 2w^2 + 1|}$$

$$|T(gW)| = \frac{1}{|w^4 + 2w^4 + 1|} \Rightarrow T(gW) = \frac{1}{|w^4 + 2w^4 + 1|}$$

$$|T(gW)| = \frac{1}{|w^4 + 2w^4 + 1|} \Rightarrow T(gW) = \frac{1}{|w^4 + 2w^4 + 1|}$$

$$|T(gW)| = \frac{1}{|w^4 + 2w^4 + 1|} \Rightarrow T(gW) = \frac{1}{|w^4 + 2w^4 + 1|}$$

$$|T(gW)| = \frac{1}{|w^4 + 2w^4 + 1|} \Rightarrow T(gW) = \frac{1}{|w^4 + 2w^4 + 1|}$$

$$|T(gW)| = \frac{1}{|w^4 + 2w^4 + 1|} \Rightarrow T(gW) = \frac{1}{|w^4 + 2w^4 + 1|}$$

$$|T(gW)| = \frac{1}{|w^4 + 2w^4 + 1|} \Rightarrow T(gW) = \frac{1}{|w^4 + 2w^4 + 1|}$$

$$|T(gW)| = \frac{1}{|w^4 + 2w^4 + 1|} \Rightarrow T(gW) = \frac{1}{|w^4 + 2w^4 + 1|}$$

$$|T(gW)| = \frac{1}{|w^4 + 2w^4 + 1|} \Rightarrow T(gW) = \frac{1}{|w^4 + 2w^4 + 1|}$$

$$|T(gW)| = \frac{1}{|w^4 + 2w^4 + 1|} \Rightarrow T(gW) = \frac{1}{|w^4 + 2w^4 + 1|}$$

$$|T(gW)| = \frac{1}{|w^4 + 2w^4 + 1|} \Rightarrow T(gW) = \frac{1}{|w^4 + 2w^4 + 1|}$$

$$|T(gW)| = \frac{1}{|w^4 + 2w^4 + 1|} \Rightarrow T(gW) = \frac{1}{|w^4 + 2w^4 + 1|}$$

$$|T(gW)| = \frac{1}{|w^4 + 2w^4 + 1|} \Rightarrow T(gW) = \frac{1}{|w^4 + 2w^4 + 1|}$$

$$|T(gW)| = \frac{1}{|w^4 + 2w^4 + 1|} \Rightarrow T(gW) = \frac{1}{|w^4 + 2w^4 + 1|}$$

$$|T(gW)| = \frac{1}{|w^4 + 2w^4 + 1|} \Rightarrow T(gW) = \frac{1}{|w^4 + 2w^4 + 1|}$$

$$|T(gW)| = \frac{1}{|w^4 + 2w^4 + 1|} \Rightarrow T(gW) = \frac{1}{|w^4 + 2w^4 + 1|}$$

$$|T(gW)| = \frac{1}{|w^4 + 2w^4 + 1|} \Rightarrow T(gW) = \frac{1}{|w^4 + 2w^4 + 1|}$$

$$|T(gW)| = \frac{1}{|w^4 + 2w^4 + 1|} \Rightarrow T(gW) = \frac{1}{|w^4 + 2w^4 + 1|}$$

$$|T(gW)| = \frac{1}{|w^4 + 2w^4 + 1|} \Rightarrow T(gW) = \frac{1}{|w^4 + 2w^4 + 1|}$$

$$|T(gW)| = \frac{1}{|w^4 + 2w^4 + 1|} \Rightarrow T(gW) = \frac{1}{|w^4 + 2w^4 + 1|}$$

$$|T(gW)| = \frac{1}{|w^4 + 2w^4 + 1|} \Rightarrow T(gW) = \frac{1}{|w^4 + 2w^4 + 1|}$$

$$|T(gW)| = \frac{1}{|w^4 + 2w^4 + 1|} \Rightarrow T(gW) = \frac{1}{|w^4 + 2w^4 + 1|}$$

$$|T(gW)| = \frac{1}{|w^4 + 2w^4 + 1|} \Rightarrow$$

SHEMA 3)
$$T(s) = \frac{2s}{s^2 + 2s + 1}$$
 $T(jw) = \frac{j2w}{-w^2 + j^2 2w + 1}$

$$|T(jw)| = \frac{|j2w|}{|-w^2 + j^2 2w + 1|} = \frac{2w}{w^2 + 1}$$

$$|Y(w)| = |Y[j^2w]| - |Y[-w + j^2w + 1] = 30^\circ + \text{aret} \frac{2w}{w^2 - 1}$$

$$|Y(w)| = |W \neq 1, |Y(w)| = 30^\circ + \text{aret} \frac{2w}{w^2 - 1}$$

SHEMA 4) $T(s) = \frac{s^2 + 1}{s^2 + 2s + 1}$ $\Rightarrow T(jw) = \frac{-w^2 + 1}{-w^2 + j^2 2w + 1}$

$$|T(jw)| = \frac{|1 - w^2|}{|1 - w^2 + j^2 2w|} = \frac{|1 - w^2|}{|w^2 + 1|}$$
 $w \leq 1 \Rightarrow |T(jw)| = \frac{1 - w^2}{w^2 + 1}$
 $w \leq 1 \Rightarrow |T(jw)| = \frac{w^2 - 1}{w^2 + 1}$
 $|T(jw)| = \frac{w^2 - 1}{w^2 + 1}$
 $|Y(w)| = |Y[-w^2 + j^2 2w + 1]$

$$\varphi(w) = \begin{cases}
 w \neq 1 \Rightarrow \varphi(w) = \operatorname{aretg} \frac{2w}{w^2 - 1} \\
 w = 1 \Rightarrow \varphi = -90^{\circ} \\
 w = 1 \Rightarrow \varphi = +90^{\circ}$$

(5.) IZRACUNAVANJE TOCAKA ZA GRAFOVE IT(&W) I 4(W)

b) R=2, L=1, C=1

FORMULE 12 ZADATKA 4.

SHEMA 1) TABLICA

W[md/s]	0.1	0.2	0,4	0.6	0.8	1	2	4	6	10
T(;w)	0.99	0.86	0.86	0.74	0.61	0.5	0.2	0.05	0.03	0.01
9(w)[°]	-11	-23	-44	-62	-77	-90	-127	-152	-161	-169

SHEMA 2) TABLICA

W[mod/s]	0,1	0.2	0.4	0.6	0.8	1	2	4	6	10
IT(jw)1								0.94	0.97	0.99
4(w)[°]	169	157	136	118	103	90	53	28	19	11

SHEMA 3) TABLICA

W[md (s)	0.1	0.2	0,4	0.6	0.8	1	2	4	6	10
1T(&W)1	0.20	0.38	0.69	0.28	0.98	1	0.8	0.47	0.32	0.2
Y(w)[0]			-	28		0	-37			

SHEMA 4) TABLICA

W[red/a]	0.1	0.2	0,4	0.6	0.8	1	2	4	6	10
1T(jw)1	0.98	0.32	0.02	0.47	0.22	0	0.6	0.28	0.95	0.98
9(w)[°]	-11	-23	-44	-62	-77	-90°/	53	28	19	11

U TOCKI W= 1 FUNKCIJA P(W) IMA DVOSTRVKU VRIJEDNOST P(=>W=1)=-300, P(W=1 e+)=+90° STO SE VIBI NA GRAFU P(W), TO JE TRENUTAK REZONANCIJE KADA JE LIJEVO OD W=1 VEÓI UTJECAJ XC, A DESNO VEĆI UTJECAJ XL.

STR. 10.