# Simple linear regression: I. introduction

Miaoyan Wang

Department of Statistics UW Madison

## Simple linear regression

#### References:

- Chapter 2 in JF (Julian J. Faraway)
- Chapter 2.1-2.9, 2.11 in RC (Ronald Christensen)

Both textbooks are available in Canvas/files/textbook/

### Example: Wetland Species Richness

- A study was performed on insect species richness in 58 wetlands in Ontario, Canada.
- The goal of the study was to determine the relationship between forest density around the wetland and insect species richness.
- The investigators sample insects in each wetland and then recorded the number of species present in each sample.
- The percent forest cover within a 1500-meter buffer around the wetland was also recorded, among other wetland characteristics.

# Example: Wetland Species Richness

| wetland      |         | X     | wetland |               | X     |
|--------------|---------|-------|---------|---------------|-------|
| wetland<br>1 | у<br>10 | 0.056 | 30      | <u>у</u><br>5 | 0.637 |
| 2            | 8       | 0.050 | 31      | 6             | 0.037 |
|              |         |       |         |               |       |
| 3            | 10      | 0.637 | 32      | 9             | 0.580 |
| 4            | 8       | 0.815 | 33      | 4             | 0.705 |
| 5            | 10      | 0.676 | 34      | 11            | 0.439 |
| 6            | 9       | 0.871 | 35      | 8             | 0.705 |
| 7            | 4       | 0.467 | 36      | 5             | 0.680 |
| 8            | 3       | 0.684 | 37      | 10            | 0.396 |
| 9            | 3       | 0.496 | 38      | 10            | 0.467 |
| 10           | 4       | 0.415 | 39      | 5             | 0.306 |
| 11           | 7       | 0.680 | 40      | 10            | 0.684 |
| 12           | 7       | 0.773 | 41      | 6             | 0.415 |
| 13           | 9       | 0.319 | 42      | 10            | 0.684 |
| 14           | 10      | 0.127 | 43      | 10            | 0.340 |
| 15           | 3       | 0.306 | 44      | 7             | 0.871 |
| 16           | 6       | 0.676 | 45      | 9             | 0.871 |
| 17           | 8       | 0.684 | 46      | 7             | 0.680 |
| 18           | 10      | 0.546 | 47      | 18            | 0.263 |
| 19           | 10      | 0.542 | 48      | 12            | 0.396 |
| 20           | 15      | 0.263 | 49      | 6             | 0.306 |
| 21           | 11      | 0.488 | 50      | 4             | 0.359 |
| 22           | 7       | 0.359 | 51      | 6             | 0.439 |
| 23           | 7       | 0.680 | 52      | 8             | 0.542 |
| 24           | 6       | 0.393 | 53      | 4             | 0.705 |
| 25           | 4       | 0.773 | 54      | 11            | 0.127 |
| 26           | 3       | 0.815 | 55      | 7             | 0.496 |
| 27           | 11      | 0.642 | 56      | 10            | 0.263 |
| 28           | 8       | 0.580 | 57      | 10            | 0.127 |
| 29           | 11      | 0.396 | 58      | 11            | 0.546 |
|              |         |       |         |               |       |

## Example: Wetland Species Richness



#### Specific Goals

- To describe the relationship between the percent forest cover (x) and the number of species (y).
- To estimate or predict the number of species for a given percent forest cover.
- Q: How to account for uncertainty in the fitted line and variation?



## Modeling Idea

- Model y by a random variable Y.
- Regard x as fixed, or condition on x (x could be modeled by a random variable X.)
- Consider the model of Y conditional on X = x:

$$E(Y|X=x) = \beta_0 + \beta_1 x.$$

•  $\beta_0, \beta_1$  are fixed unknown parameters (i.e., the intercept and slope) characterizing the relationship between X and Y.

## Simple Linear Regression Model

The formal simple linear regression (SLR) model for the data  $(x_i, y_i)$  is:

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

for  $i = 1, 2, \ldots, n$ , where

- $Y_i$  is the *i*th response variable.
- $X_i$  is the *i*th **explanatory variable** (also called predictors, covariates).
- $\varepsilon_i$  is the *i*th **random error** term.
- The random errors follow a normal distribution with mean zero and variance  $\sigma^2$  and are independent of each other.
- That is,  $\varepsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$ . iid = independently and identically distributed

#### Features of Simple Linear Regression Model

#### Under the SLR model for the data $(x_i, y_i)$ :

- Simple one explanatory variable only
- Linear parameters enter the model linearly.
- Regression Galton: taller fathers tend to have shorter sons;
  regression toward the mean
- Randomness Q: What kind of distribution does Y; have?
- Independence The random errors are independent and thus the response variables are (conditionally) independent.
  - Q: What kind of independence?
  - Q: What kind of dependence?
- The model parameters are:  $\beta_0, \beta_1, \sigma^2$ .

### Model Assumptions

 A straight line relationship between the response variable Y and the explanatory variable X:

$$E(Y_i|X_i) = \beta_0 + \beta_1 x_i.$$

Equal variance:

$$Var(Y_i|X_i) = \sigma^2$$
.

• Independence (conditional on  $X_i, X_i'$ ):

$$Cov(Y_i, Y_{i'}) = 0$$
 for  $i \neq i'$ .

Normal distribution:

$$Y_i|X_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2).$$

## **Equivalent Model Assumptions**

#### Equivalently, the assumptions are

 A straight line relationship between the response variable Y and the explanatory variable X:

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
 where  $E(\varepsilon_i) = 0$ 

• Equal variance:

$$Var(\varepsilon_i) = \sigma^2$$
.

• Independence:

$$Cov(\varepsilon_i, \varepsilon_{i'}) = 0$$
 for  $i \neq i'$ .

Normal distribution:

$$\varepsilon_i \sim N(0, \sigma^2)$$
.

Q:  $\varepsilon_i$  are iid. How about  $Y_i$ ? iid? Not iid? It depends?

#### Model Parameters

- The model parameters are  $\beta_0, \beta_1$ , and  $\sigma^2$  (population parameters).
- $\beta_0$  and  $\beta_1$ : regression coefficients.
- $\beta_0$ : **intercept**. When the model scope includes x = 0,  $\beta_0$  can be interpreted as the mean of Y at x = 0.
- $\beta_1$ : **slope**. Interpreted as the change in the mean of Y per unit increase in x.
- $\sigma^2$ : error variance, sometimes written as  $\sigma^2_{\varepsilon}$  or  $\sigma^2_{Y|_X}$ .

Q: How to estimate the model parameters based on data?

#### Estimation of Model Parameters

- Our goal is to estimate these model parameters by estimators  $\hat{\beta}_0$ ,  $\hat{\beta}_1$ , and  $\hat{\sigma}^2$ , based on data.
- Two methods:
  - Least squares (LS).
  - Maximum likelihood (ML).