17기정규세션 ToBig's 16기강의자 이예림

Regression Analysis

회귀분석

n t S

Unit 01 | 선형 회귀분석

Unit 02 | 회귀 진단

Unit 03 | 로지스틱 회귀분석

Unit 04 | 최대우도추정 & 평가 지표

Intro

1. 머신러닝 알고리즘

지도학습 (Supervised Learning)	비지도학습 (Unsupervised Learning)	강화학습 (Reinforcement Learning)
 입력과 결과값(Label) 이용한 학습 회귀(Regression) 분류(Classification) 	 입력만을 이용한 학습 군집화(Clustering) 	• Agent가 주어진 State에서 Action을 취했을 때, 이로부터 얻는 Reward를 최대화하는 방향으로 학습
Ex. 선형 회귀, 로지스틱 회귀, KNN, SVM, Decision Tree	Ex. K-Means Clustering	

Intro

2. 인과관계 VS 상관관계

인과관계(Causality)

• 어떤 사실과 다른 사실 사이의 원인과 결과 관계

상관관계(Association, Correlation)

- 두 변량 중 한쪽이 증가함에 따라, 다른 한 쪽이 증가 또는 감소하는 관계
- 상관관계가 존재할 때, 필연적으로 인과관계가 존재 하는 것은 아님

Intro

3. 편향(Bias) VS 분산(Variance)

Bias

- 데이터 내 모든 정보를 고려하지 않기에, 알고리즘이 지속적으로 잘못된 내용을 학습하는 경향성
- Underfitting과 관련

Variance

- Highly flexible model에 데이터를 fit함으로써, 실제 현상과 관계 없는 random한 것들까지 학습하는 알고리즘의 경향성
- Overfitting과 관련
- ★ Bias-Variance Trade-off

출처: https://www.quora.com/What-is-an-intuitive-explanation-for-bias-variance-tradeoff

n t S

Unit 01 | 선형 회귀분석

Unit 02 | 회귀 진단

Unit 03 | 로지스틱 회귀분석

Unit 04 | 최대우도추정 & 평가 지표

선형 회귀분석 (Linear Regression)

- <mark>회귀분석</mark> : 설명변수(X)에 대응하는 반응변수(Y)와 가장 비슷한 값(\widehat{Y})을 출력하는 함수를 찾는 과정
- <mark>선형 회귀분석</mark> : 반응변수와 한 개 이상의 설명변수와의 선형 상관관계를 모델링하는 회귀분석 기법
 - Ex. 시험 공부 시간(X)에 따른 시험 성적(Y)

Formulation :
$$Y = \beta_0 + \beta_1 X + \epsilon$$
 (※ 선형 상관관계 가정)

- β_0 , β_1 : 회귀계수(regression coefficients), unknown but random
- $\widehat{\beta_0}$, $\widehat{\beta_1}$: 예측된 회귀계수 \rightarrow 예측값 : $\widehat{Y} = \widehat{\beta_0} + \widehat{\beta_1} X$
- Loss = 실제값(Y) 예측값 (\hat{Y}) \rightarrow Loss를 최소화하는 방법이 <mark>최소제곱법(LSE)</mark>

Q. 주어진 데이터에 대해 더 optimal한 line은?

직관적으로, (b)가 더욱 optimal한 line!

:: (b)가 데이터와 회귀직선 간 거리가 더 가까움

최소제곱법 (LSE: Least Squares Estimation)

예측값(\hat{Y})과 실제값(Y) 간 차이(=잔차)의 제곱합을 최소화하는 알고리즘 \rightarrow 최적의 회귀계수(모수) 추정

Loss Function : $L = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$ \rightarrow L이 작을수록 좋은 회귀모델!

최소제곱법 (LSE: Least Squares Estimation) 단순선형회귀분석

$$Q = \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i)^2$$

정규방정식 (Normal Equation) 목적함수(Q)를 최소화하기 위한 <mark>편미분</mark>

$$\frac{\partial Q}{\partial \beta_0} = -2 \sum_{i} (Y_i - \beta_0 - \beta_1 X_i)$$

$$\frac{\partial Q}{\partial \beta_1} = -2 \sum_{i} X_i (Y_i - \beta_0 - \beta_1 X_i)$$

정규방정식을 풀면, 다음과 같은 결과를 얻게 된다.

최소제곱 추정치(Least Squares Estimator)

$$b_{1} = \frac{\sum (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum (X_{i} - \bar{X})^{2}}$$

$$b_{0} = \frac{1}{n} \left(\sum Y_{i} - b_{1} \sum X_{i} \right) = \bar{Y} - b_{1} \bar{X}$$

최소제곱법 (LSE: Least Squares Estimation) 다중선형회기분석

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_{p-1} X_{i,p-1} + \varepsilon_i$$

(6.18a) (6.18b)
$$\mathbf{Y}_{n \times 1} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} \qquad \mathbf{X}_{n \times p} = \begin{bmatrix} 1 & X_{11} & X_{12} & \cdots & X_{1,p-1} \\ 1 & X_{21} & X_{22} & \cdots & X_{2,p-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & X_{n1} & X_{n2} & \cdots & X_{n,p-1} \end{bmatrix}$$
(6.18c) (6.18d)
$$\mathbf{\beta}_{p \times 1} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \vdots \end{bmatrix}$$

$$\mathbf{\epsilon}_{n \times 1} = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \vdots \end{bmatrix}$$

제곱합 분해 (Partition of Sum of Squares)

FIGURE 2.7 Illustration of Partitioning of Total Deviations $Y_i - \bar{Y}$ —Toluca Company Example (not drawn to scale; only observations Y_1 and Y_2 are shown).

- ✓ 데이터 : Data on Lot Size & Work Hours, Toluca Company.
- ✓ 본 예시에서, (a)(=Total Deviations)는(b)와 (c)의 합으로 분해될 수 있다.

이미지 출처: Michael H. Kutner, Christopher J. Nachtsheim, John Neter, <Applied Linear Regression Models>

제곱합 분해 (Partition of Sum of Squares)

	자유도 (df)	제 <u>곱</u> 합 (SS)	제곱평균 (MS)	F
회귀 (Regression) SSR	р	SSR	MSR = SSR / p	F = MSR / MSE
잔차 (Residual) SSE	n-(p+1)	SSE	MSE = SSE / n-p-1	회귀식이 설명하지 못하는 작을수록 좋음!
총 (Total) SST	n-1	SST = SSR + SSE	Ex. 단순선형회귀분 → 잔차에 걸리는 제익 (따라서 자유도	<mark>조건은 2개!</mark>

n t S

Unit 01 | 선형 회귀분석

Unit 02 | 회귀 진단

Unit 03 | 로지스틱 회귀분석

Unit 04 | 최대우도추정 & 평가 지표

회귀진단 (Regression Diagnostics)

• 데이터가 회귀분석에 사용된 모형의 <mark>가정</mark>을 제대로 만족하고 있는지 확인하는 과정

[회귀모형 기본 가정]

- 1. <mark>선형성</mark>(Linearity) : 설명변수(X)와 반응변수(Y) 간 선형 관계
- 2. <mark>정규성</mark>(Normality) : 오차(Error)의 정규성
- 3. <mark>등분산성</mark>(Homoscedasticity) : 오차의 등분산성
- 4. <mark>독립성</mark>(Independence) : 오차의 독립성

그래프적 방법

1. 선형성(설명변수와 반응변수 간 선형 관계) 판단

- 설명변수와 반응변수 간 산점도(Scatter plot)를 그려 선형성 판단 가능
- x_1 과 y_1 간에는 선형 관계가 존재하지만, x_2 와 y_2 간에는 선형 관계가 존재한다고 보기 어렵다.

그래프적 방법

2. 정규성(오차가 정규분포를 따르는지) 판단

- <mark>잔차의 히스토그램</mark>을 그려 오차의 정규성 판단 가능 cf. [R] Shapiro-Wilk Normality Test
- e1, e2의 분포로 보아 좌측은 정규성 가정을 만족하고, 우측은 정규성 가정을 위배한다고 추정

그래프적 방법

3. <mark>등분산성</mark>(오차의 분산이 일정한지) 판단

- 설명변수에 대한 잔차 그림(Plot of e against X)으로 오차의 등분산성 판단 가능
- (a)의 band width는 일정(등분산)하지만, (c)의 band width는 점점 커짐(이분산)

그래프적 방법

4. 독립성(오차가 서로 독립인지) 판단

- <mark>설명변수와의 상관성, 자기 상관성</mark> 확인해서 독립성 판단 가능
- 직관적으로는, 잔차에 어떠한 패턴((b)~(e))이 있다면 독립적이지 않은 것!
- Durbin-Watson 검정, ACF

OLS: Ordinary Least Square

- Python statsmodel 패키지의 OLS 클래스 명령으로 선형 회귀분석 실시
- 모형 선택 기준
 - R-squared & Adj. R-squared
 - F-statistic
 - t-statistic
 - Durbin-Watson (오차의 자기상관)

OLS Regression Results							
Dep. Varia	ep. Variable: MEC		DV	OV R-squared:			0.741
Model:		OL:		Adj. F	R-squared:		0.734
Method:		Least Squares		F-statistic:			108.1
Date:	Мо	Mon, 18 Nov 201		Prob (F-statistic):		6.72e-135	
Time:		21:54:	23	Log-Likelihood:		-1498.8	
No. Observa	ations:	5	06	AIC:			3026.
Df Residua	ls:	4	92	BIC:			3085.
Df Model:			13				
Covariance	Type:	nonrobu	st				
========		========				=======	
	coef	std err		t	P> t	[0.025	0.975]
const	36.4595	5.103	7.	.144	0.000	26.432	46.487
CRIM	-0.1080	0.033	-3.	. 287	0.001	-0.173	-0.043
ZN	0.0464	0.014	3.	.382	0.001	0.019	0.073
INDUS	0.0206	0.061	0.	.334	0.738	-0.100	0.141
CHAS	2.6867	0.862	3.	.118	0.002	0.994	4.380
NOX	-17.7666	3.820	-4.	651	0.000	-25.272	-10.262
RM	3.8099	0.418	9.	.116	0.000	2.989	4.631
AGE	0.0007	0.013	0.	.052	0.958	-0.025	0.027
DIS	-1.4756	0.199	-7.	. 398	0.000	-1.867	-1.084
RAD	0.3060	0.066	4.	613	0.000	0.176	0.436
TAX	-0.0123	0.004	-3.	. 280	0.001	-0.020	-0.005
PTRATIO	-0.9527	0.131	-7.	. 283	0.000	-1.210	-0.696
В	0.0093	0.003	3.	.467	0.001	0.004	0.015
LSTAT	-0.5248	0.051	-10.	. 347	0.000	-0.624	-0.425
Omnibus:		178.0	4 1	Durbir	n-Watson:		1.078
Prob(Omnibus): 0.00				e-Bera (JB):		783.126	
Skew:				1 7		8.84e-171	
Kurtosis:		8.2		Cond.	•		1.51e+04

1. 결정계수(R-squared) & 조정된 결정계수(Adj. R-squared)

$$R^2 = \frac{SSR}{SSTO} = 1 - \frac{SSE}{SSTO}$$

전체 제곱합(SSTO) 중 회귀식으로 설명(SSR) 가능한 부분
→ 따라서, 결정계수는 <mark>클수록 좋다</mark>!

SST(SSTO) : 총제곱합

SSR: 회귀제곱합

SSE: 잔차제곱합

SST = SSR + SSE

$$R_a^2 = 1 - \frac{\frac{SSE}{n-p}}{\frac{SSTO}{n-1}} = 1 - \left(\frac{n-1}{n-p}\right) \frac{SSE}{SSTO}$$

결정계수의 문제점:

설명변수가 추가되면 SSR이 커지므로, 결정계수 값이 무조건 커짐!

 \downarrow

조정된 결정계수: 설명변수 개수에 대한 패널티 부과

잠깐! <mark>가설검정</mark> Intro (1)

<mark>가설검정</mark>: 모집단의 특징에 대한 통계적 가설을 표본을 통해 검토하는 방법

- 귀무가설(H₀, Null hypothesis)
 - ✓ 모집단의 특징에 대해 옳다고 제안하는 잠정적 주장
 - ✓ "~와 차이가 없다.", "~의 효과가 없다." 등의 형태
 - ✓ 직접 검정 대상, 기각(reject)하는 것이 목표
- 대립가설(H₁, Alternative hypothesis)
 - ✓ 귀무가설이 거짓이라면, 대안적으로 참이 되는 주장
 - ✓ "~와 차이가 있다.", "~의 효과가 있다." 등의 형태
 - ✓ 귀무가설이 기각되었을 때, 대안적으로 채택됨

잠깐! <mark>가설검정</mark> Intro (2)

<mark>가설검정</mark>: 모집단의 특징에 대한 통계적 가설을 표본을 통해 검토하는 방법

- 검정통계량
 - ✓ 귀무가설이 옳다는 가정 하에 구해지는 통계량
 - ✓ 표본이 추출되어 계산된 통계량은 <u>통계치</u>
- p-value
 - ✓ 귀무가설이 옳다는 가정 하에 검정통계량이 관측될 확률

잠깐! <mark>가설검정</mark> Intro (3)

<mark>가설검정</mark>: 모집단의 특징에 대한 통계적 가설을 표본을 통해 검토하는 방법

- 제1종오류
 - ✓ 귀무가설이 참인 상황에서 귀무가설을 기각하는 오류
 - ✓ 일반적으로, 제1종오류가 제2종오류보다 더 치명적
 - ✓ 따라서 제1종오류의 상한선 설정 = 유의수준

✓ 귀무가설이 거짓인 상황에서 귀무가설을 채택하는 오류

2. F-Statistic

```
OLS Regression Results
Dep. Variable:
                                MEDV
                                       R-squared:
                                                                        0.741
Model:
                                      Adj. R-squared:
                                                                        0.734
Method:
                     Least Squares F-statistic:
                                                                        108.1
                    Mon, 18 Nov 2019 Prob (F-statistic):
                                                                    6.72e-135
Date:
                            21:54:23 Log-Likelihood:
Time:
                                                                      -1498.8
No. Observations:
                                 506
                                      AIC:
                                                                        3026.
Df Residuals:
                                       BIC:
                                                                        3085.
                                 492
Df Model:
                                  13
Covariance Type:
                           nonrobust
```

- 귀무가설 (H_0) : $\beta_1 = \beta_2 = \dots = \beta_k = 0$ VS 대립가설 (H_1) : $\beta_j \neq 0$, for some j
- 모형 자체의 유의미함을 판단하는 기준
- 모든 설명변수의 계수가 0인지, 하나라도 0이 아닌지를 판별

3. t-Statistic

=======		========			========	
	coef	std err	t	P> t	[0.025	0.975]
const	36.4595	5.103	7.144	0.000	26.432	46.487
CRIM	-0.1080	0.033	-3.287	0.001	-0.173	-0.043
ZN	0.0464	0.014	3.382	0.001	0.019	0.073
INDUS	0.0206	0.061	0.334	0.738	-0.100	0.141
CHAS	2.6867	0.862	3.118	0.002	0.994	4.380
NOX	-17.7666	3.820	-4.651	0.000	-25.272	-10.262
RM	3.8099	0.418	9.116	0.000	2.989	4.631
AGE	0.0007	0.013	0.052	0.958	-0.025	0.027
DIS	-1.4756	0.199	-7.398	0.000	-1.867	-1.084
RAD	0.3060	0.066	4.613	0.000	0.176	0.436
TAX	-0.0123	0.004	-3.280	0.001	-0.020	-0.005
PTRATIO	-0.9527	0.131	-7.283	0.000	-1.210	-0.696
В	0.0093	0.003	3.467	0.001	0.004	0.015
LSTAT	-0.5248	0.051	-10.347	0.000	-0.624	-0.425

- 귀무가설(H_0) : $\beta_j = 0$ VS 대립가설(H_1) : $\beta_j \neq 0$
- 설명변수의 유의미함을 판단하는 기준
- 해당 설명변수의 계수가 0인지, 아닌지를 판별

4. Durbin-Watson (오차의 자기상관)

```
      Omnibus:
      178.041
      Durbin-Watson:
      1.078

      Prob(Omnibus):
      0.000
      Jarque-Bera (JB):
      /83.126

      Skew:
      1.521
      Prob(JB):
      8.84e-171

      Kurtosis:
      8.281
      Cond. No.
      1.51e+04
```

- ▸ Durbin-Watson : 오차의 독립성을 검정하기 위한 방법
- 0~4 범위의 값을 가지는데,
 - 0에 가깝다면: 양의 상관관계
 - 4에 가깝다면 : 음의 상관관계
 - 2에 가깝다면 : 오차항의 자기상관 없음 (<mark>독립성 만족</mark>)

변수 변환 (Transformation)

- 변수 변환을 통해 회귀분석의 기본 가정을 충족시킬 수 있다.
- Transformation on X
 - X와 Y 간 비선형적 관계를 선형으로 변환 가능
 - 오차항의 spread는 변하지 않음
- Transformation on Y
 - X와 Y 간 비선형적 관계를 선형으로 변환 가능
 - 오차항의 spread가 변화함

다중공선성 (Multicollinearity)

cf. 회귀분석의 목적이 '개별 회귀계수의 추정' 이 아닌 '반응변수의 예측'이면, 다중공선성의 존재가 큰 문제가 되지는 않는다.

- 회귀분석에서 <mark>설명변수들 간 강한 상관관계</mark>('strongly correlated')가 나타나는 문제
- Detection
 - ✓ 설명변수 산점도, heatmap, 상관계수 행렬
- 다중공선성이 존재하면, 회귀계수의 추정이 불안정
 - ✓ 분산이 매우 커져서 오류에 민감해짐
 - ✓ cf. [선형대수] 모든 column이 선형 독립(linearly independent)이어야, 하나 이상의 해가 존재

다중공선성의 진단 – VIF (Variance Influence Factor)

VIF(Variance inflation factor)

$$ext{VIF}_{ ext{i}} = rac{1}{1-R_i^2}$$
 VIF가 10 이상인 경우 다중공선성이 있는 변수라고 판단

 $R^2 > 0.9$ 이상인 경우, VIF > 10

- 일반적으로 VIF 값이 10보다 크다면, 다중공선성이 존재한다고 판단!
- 단, VIF 값이 크더라도 해당 설명변수가 통계적으로 유의하다면 제거하지 않는 편이 바람직하다.

다중공선성의 제거

- 설명변수 제거
 - 1. 다중공선성을 유발하는 설명변수 2개를 찾아, 각 변수를 제거했을 때 R-squared의 변동 확인
 - 2. 제거했을 때 R-squared 값이 유지되는 설명변수 제거
- PCA(주성분 분석, Principal Component Analysis)
- Ridge / Lasso Regression (일종의 패널티 부과)

다중공선성의 제거 – Ridge Regression(L2 Regression)

• <mark>정규화</mark>(Regularization)를 이용한 대표적인 <mark>shrinkage</mark> 방법

$$\beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4$$

- 좌측 모델은 '<mark>과적합</mark>(Overfitting)'
 - ✓ 현재 데이터(train data)를 완벽하게 설명 하고 있지만,
 - ✓ 미래 데이터(test data)에 대한 예측력은 떨어질 것
- 따라서, 우측 모델을 사용하는 편이 바람직
- · 정규화: 과적합 모델이 일반성을 갖추도록!

Unit 0<u>2 | 회귀진단</u>

다중공선성의 제거 – Ridge Regression(L2 Regression)

• <mark>정규화</mark>(Regularization)를 이용한 대표적인 <mark>shrinkage</mark> 방법

$$\beta_1, \beta_2, \dots, \beta_p$$

$$L(\beta) = \min_{\beta} \sum_{i=1}^{p} (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$
(1) Training accuracy (2) Generalization accuracy

- Training Accuracy에 Generalization
 Accuracy를 추가
 - 회귀계수(β)에 제약을 줄 수 있게 됨
 - ▶ 이렇게 계수 추정치를 줄여주는 정규화 방법이 'shrinkage'

다중공선성의 제거 – Ridge Regression(L2 Regression)

- <mark>정규화</mark>(Regularization)를 이용한 대표적인 <mark>shrinkage</mark> 방법
- Ridge Regression은 정규화 컨셉을 처음 도입한 모델
 - 기존 모델을 정규화하여, 조금 더 좋은 performance를 낼 수 있는 기초 기법

$$RSS = \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2$$

$$RSS + \lambda \sum_{j=1}^p eta_j^2$$

다중공선성의 제거 – Lasso Regression(L1 Regression)

- Ridge Regression과 유사하나, <mark>패널티 항으로 회귀계수의 절댓값 합을 이용</mark>
- Feature Selection과 관련 → 중요한 설명변수 몇 개만 추리고, 나머지는 0으로!

$$RSS = \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2$$

$$RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

Unit 02 | 회귀진단

다중공선성의 제거 – Elastic Net Regression

- Ridge Regression과 Lasso Regression의 절충
- 큰 데이터셋에서 잘 작동하며, L2, L1 norm에 대한 가중치를 조절해가면서 사용
 - 교차검증(Cross Validation)을 통해 하이퍼파라미터 튜닝
- [R] glmnet 패키지, glmnet() 함수

$$\underset{\beta_{j}}{\operatorname{argmin}} \left(\sum_{i=1}^{n} \left(y_{i} - \beta_{0} - \sum_{j=1}^{p} x_{ij} \beta_{j} \right)^{2} + \lambda \sum_{j=1}^{n} \left(\alpha \left| \beta_{j} \right| + (1 - \alpha) \beta_{j}^{2} \right) \right) (0 \leq \alpha \leq 1)$$

Unit 02 | 회귀진단

선형 회귀분석 마무리

- 1. 회귀모형 설정 : 반응변수 및 주요 설명변수 파악
- 2. 선형성 검토 : 산점도를 통해 상관관계 파악
- 3. 설명변수 검토 : 각 설명변수 분포 확인 및 다중공선성 점검
- 4. 모델 적합: 모델 회귀계수 추정 및 모형 적절성 검토
- 5. 변수 선택: 주요 설명변수 선택
- 6. 적합된 모형 검토 : 오차에 대한 기본 가정 확인
- 7. 최종 모형 선택

n t S

Unit 01 | 선형 회귀분석

Unit 02 | 회귀 진단

Unit 03 | 로지스틱 회귀분석

Unit 04 | 최대우도추정 & 평가 지표

- 반응변수 Y가 위와 같이 범주형(categorical) 변수라면, 선형 회귀분석은 적절하지 않다.
 - 이 경우, <mark>로지스틱 회귀분석</mark>으로 주어진 데이터를 <mark>분류</mark>할 수 있다.

로지스틱 회귀분석 (Logistic Regression)

- 범주형 데이터를 대상으로 하는 회귀분석, 일종의 <mark>분류</mark>(Classification) 기법
 - Ex. 제품 불량 여부(양품/불량), 고객 이탈 여부(이탈/잔류), 정상 거래 여부(정상/사기) 등

로지스틱 회귀는 선형 회귀와 비슷하나, 범주형 데이터를 분류하는 방향으로 선을 긋는다.

로지스틱 함수 (Logistic Function)

- 시그모이드(Sigmoid) 함수: 실수 전체를 정의역으로 하고, 유한한 범위 내에서 단조 증가
 - ✓ 딥러닝 활성화 함수로 활용

- <mark>로지스틱 함수</mark> : 음의 무한대(-∞)부터 양의 무한대(∞)까지의 실수값을 0부터 1 사이의 실수값으로
 - 대응시키는 시그모이드 함수
 - ✓ Output 범위: (0, 1) / Input에 대해 단조 증가

로지스틱 함수 식 – Odds ratio에 대한 Logit Transformation

• <mark>승산비(Odds ratio)</mark> : 실패 확률 대비 성공 확률 비율

odds ratio =
$$\frac{\mu}{1-\mu}$$

• <mark>로짓 변환(Logit Transformation)</mark> : Odds ratio에 log를 취하는 변환으로, 입력 값의 범위가 [0, 1] 일 때 출력 값의 범위를 (-∞, ∞)로 조정

$$z = \text{logit(odds ratio)} = \log\left(\frac{\mu}{1-\mu}\right)$$

선형 판별함수

$$ext{logitstic}(z) = \mu(z) = rac{1}{1 + \exp{\left(-z
ight)}}$$

- 로지스틱 함수를 사용하는 경우, z값과 μ 값 간에는 다음과 같은 관계가 성립한다.
 - z=0일 때 $\mu=0.5$
 - ullet z>0일 때 $\mu>0.5$ $ightarrow \hat{y}=1$
 - z < 0일 때 $\mu < 0.5 \,
 ightarrow \hat{y} = 0$

즉, z 가 분류 모형의 <mark>판별함수(decision function)의 역할</mark>을 한다고 볼 수 있다.

로지스틱 회귀분석 예제

- 1차원 설명변수를 가지는 분류문제
- 파이썬 StatsModels 패키지 활용

출처: 데이터 사이언스 스쿨, 6.1 로지스틱 회귀분석

로지스틱 회귀분석 예제

- StatsModels 패키지에서는 베르누이 분포를 따르는 로지스틱 회귀모형 Logit을 제공
- 사용 방법은 OLS 클래스와 동일
- summary 메소드로 리포트 출력

```
X = sm.add_constant(X0)
logit_mod = sm.Logit(y, X)
logit_res = logit_mod.fit(disp=0)
print(logit_res.summary())
```

Dep. Varia	ble:		y No. Ob	servations:		100
Model:		Logi	t Df Res	Df Residuals:		98
Method:		ML	.E Df Mod	del:		1
Date:	S	at, 06 Jun 202	0 Pseudo	R-squ.:		0.7679
Time:		10:01:0	5 Log-Li	ikelihood:		-16.084
		ie LL-Nu]	LL-Null: LLR p-value:		-69.295	
		t LLR p			5.963e-25	
	coef	std err	z	P> z	[0.025	0.975]
const	0.2515	0.477	0.527	0.598	-0.683	1.186
x1	4.2382	0.902	4.699	0.000	2.470	6.006

회귀계수의 해석

• 선형 회귀: 설명변수가 1만큼 증가할 때 <mark>반응변수</mark>의 변화량

• 로지스틱 회귀 : 설명변수가 1만큼 증가함에 따른 log(Odds)의 변화량

n t S

Unit 01 | 선형 회귀분석

Unit 02 | 회귀 진단

Unit 03 | 로지스틱 회귀분석

Unit 04 | 최대우도추정 & 평가 지표

회귀계수의 추정

- 선형 회귀분석 → 최소제곱합(LSE) 이용
- 로지스틱 회귀분석 → 최대 우도 추정법(MLE) 이용

최대 우도 추정법 (Maximum Likelihood Estimation)

- 회귀식이 비선형이므로, LSE 사용 불가
- Likelihood를 Maximize하는 parameter 추정

Probability(확률) VS Likelihood(우도, 가능도)

Probability(확률)

주어진(고정된) 확률 분포에서,
 특정 관측값이 나타날 가능성

Likelihood(우도, 가능도)

- 주어진(고정된) 관측값이, 특정 확률 분포에서 나타날 가능성
- 즉, 데이터가 특정 분포로부터 생성(generate)될 확률

MLE 직관적으로 이해하기

FIGURE 1.13

Densities for
Sample
Observations
for Two
Possible Values

of μ : $Y_1 = 250$, $Y_2 = 265$, $Y_3 = 259$.

- 세 개의 관측값 Y_1 , Y_2 , Y_3 은 (a) 분포보다는 (b) 분포로부터 생성되었을 것이라는 예측
- True parameter는 259(분포 (b)의 평균)일 가능성이 높아 보임

최대 우도 추정량(Maximum Likelihood Estimator) 찾기

$$L(\theta) = p(X|\theta) = \prod_{n=1}^{N} p(x_n|\theta)$$

수리적 편의(미분 용이)를 위해 양변에 log를 취한 후, -를 붙인 Negative log likelihood (목표 : minimize)

$$E(\theta) = -\ln L(\theta) = -\sum_{n=1}^{N} \ln p(x_n | \theta)$$

아래 식을 만족하는(편미분 값이 0이 되는) 모수 찾기

$$\frac{\partial}{\partial \theta} E(\theta) = -\frac{\partial}{\partial \theta} \sum_{n=1}^{N} \ln p(x_n | \theta) = -\sum_{n=1}^{N} \frac{\frac{\partial}{\partial \theta} p(x_n | \theta)}{p(x_n | \theta)} \stackrel{!}{=} 0$$

예제 - MLE for Normal Error Regression Model

$$f_i = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2} \left(\frac{Y_i - \beta_0 - \beta_1 X_i}{\sigma}\right)^2\right]$$

$$L(\beta_0, \beta_1, \sigma^2) = \prod_{i=1}^{n} \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left[-\frac{1}{2\sigma^2} (Y_i - \beta_0 - \beta_1 X_i)^2\right]$$
$$= \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i)^2\right]$$

Parameter	Maximum Likelihood Estimator		
eta_0	$\hat{\beta}_0 = b_0$ same as (1.10b)		
eta_1	$\hat{\beta}_1 = b_1$ same as (1.10a)		
σ^2	$\hat{\sigma}^2 = \frac{\sum (Y_i - \hat{Y}_i)^2}{n}$		
	$\sigma = \frac{1}{n}$		

회귀계수의 경우 LSE의 결과와 동일하며, 분산은 LSE의 결과와 근소한 차이

$$s^2 = MSE = \frac{n}{n-2}\hat{\sigma}^2$$

최종 로지스틱 회귀모델 – 최적의 parameter 적합

$$\pi(X) = f(X) = \frac{1}{1 + e^{-(\widehat{\beta_0} + \widehat{\beta_1}X_1 + \dots + \widehat{\beta_p}X_p)}} = \frac{1}{1 + e^{-\widehat{\beta}X}}$$

Cutoff(Threshold)

- 분류(Classification)를 위한 기준
- 로지스틱 함수로 구한 <mark>확률이 cutoff 이상이면 1, cutoff 이하이면 0으로</mark> 분류
- Cutoff을 조정하여 성능 조절 가능

성능 평가 지표 - 1. 정밀도 (Precision)

Confusion Matrix

	Actually Positive (1)	Actually Negative (0)
Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)
Predicted Negative (0)	False Negatives (FNs)	True Negatives (TNs)

※ True : 옳은 예측(정답) / False : 틀린 예측(오답)

<mark>정밀도 (Precision)</mark>

• 모델이 True로 분류한 것 중 실제 True인 것의 비율

• Precision =
$$\frac{TP}{TP + FP}$$

PPV(Positive Predictive Value)

성능 평가 지표 - 2. 재현율 (Recall)

Confusion Matrix

	Actually Positive (1)	Actually Negative (0)
Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)
Predicted legative (0)	False Negatives (FNs)	True Negatives (TNs)

※ True : 옳은 예측(정답) / False : 틀린 예측(오답)

<mark>재현율 (Recall)</mark>

• 실제 True인 것 중 모델이 True로 분류한 것의 비율

• Recall =
$$\frac{TP}{TP + FN}$$

• 통계학에서는 'Sensitivity'

성능 평가 지표 – 정밀도(Precision)와 재현율(Recall)

Ex. 날씨 예측(맑다/흐리다) 모델

- A: 실제 날씨가 맑은 날
- B: 모델이 날씨가 맑다고 예측(분류)한 날
- b = TP = 실제 날씨가 맑은 날을 모델이 날씨가 맑다고 예측(제대로 예측)한 날
- 이때,

✓ Precision =
$$\frac{b}{b+c}$$

✓ Recall =
$$\frac{b}{a+b}$$

✓ a의 영역이 줄어들면 c의 영역이 커지게 됨
 = 두 지표 간 Trade-off 관계

Precision과 Recall 간 Trade-off 관계를 표로 보면,

Ex. 날씨 예측(맑다/흐리다) 모델

Precision = 33.3% Recall = 40%

Precision = 20% Recall = 100%

성능 평가 지표 - 3. Accuracy

Confusion Matrix

	Actually Positive (1)	Actually Negative (0)
Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)
Predicted Negative (0)	False Negatives (FNs)	True Negatives (TNs)

※ True : 옳은 예측(정답) / False : 틀린 예측(오답)

정확도 (Accuracy)

• 예측 결과가 실제와 얼마나 동일한지 측정

• Accuracy =
$$\frac{TP+TN}{TP+FN+FP+TN}$$

- 가장 직관적으로 모델 성능 예측 가능
- 데이터 분포가 skewed(도메인 불균형) → 적합 X

성능 평가 지표 - 4. F1 Score

Confusion Matrix

	Actually Positive (1)	Actually Negative (0)
Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)
Predicted Negative (0)	False Negatives (FNs)	True Negatives (TNs)

※ True : 옳은 예측(정답) / False : 틀린 예측(오답)

• Precision과 Recall의 조화 평균

• F1 Score =
$$2 \times \frac{1}{\frac{1}{\text{Precision}} + \frac{1}{\text{Recall}}} = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

• 산술평균보다 큰 비중이 끼치는 bias ↓

성능 평가 지표 - 5. ROC Curve

ROC Curve

- Confusion Matrix에서 FPR, Recall(Sensitivity) 값 계산
 - FPR = $\frac{FP}{FP+TN}$ (False Positive Rate)
- AUC(=Area Under Curve) : ROC Curve 아래 면적
 - ✓ 최댓값은 1
 - ✓ 값이 클수록(FPR에 비해 Recall이 클수록) 모델 성능 좋음

로지스틱 회귀분석 마무리

- 1. 범주형 반응변수 Y 분류를 위한 기법
- 2. 로지스틱 함수의 출력값은 0과 1 사이
- 3. Logit 함수 : log(Odds) = log(p/(1-p))
- 4. Beta1: log(Odds)의 변화량
- 5. 최대 우도 추정법(MLE)으로 최적의 parameter 찾기
- 6. Cutoff value 조정을 통해 분류 성능 조정 가능

과 제

[과제 1]

- LSE 정규방정식, MSE 구현

[과제 2] 회귀분석 – Used Car Priced Prediction

- Ch 1, Ch 2를 토대로 자유롭게 회귀분석 & 회귀진단 진행
- 주석으로 설명 및 근거 자세하게 달아주세요 🙂

[과제 3] 로지스틱 회귀분석 - Credit Card Fraud Detection

- 파이썬 sklearn 패키지를 활용해 로지스틱 회귀분석 진행
- 성능지표 계산 및 해석
 - sklearn의 mean accuracy, f1 score 등
 - confusion matrix의 tp, fp, fn, tn 값
- 성능 개선 시도 (어떤 성능지표를 기준으로 했는지, 해당 지표 선택 이유 등)
- 주석으로 설명 및 근거 자세하게 달아주세요 ③

Reference

[강의안]

- 투빅스 14기 강재영님 강의안
- 투빅스 15기 장아연님 강의안
- 연세대학교 응용통계학과 김현태 교수님 <회귀분석> 강의안

[교재]

Michael H. Kutner, Christopher J. Nachtsheim, John Neter, <Applied Linear Regression Models>

[참고 자료]

- [선형, 로지스틱] 데이터 사이언스 스쿨 4장, 6장 (https://datascienceschool.net/intro.html)
- [로지스틱] <u>https://ratsgo.github.io/machine%20learning/2017/04/02/logistic/</u>
- [Ridge/Lasso Regression] Ridge regression(능형 회귀) 간단한 설명과 장점 (tistory.com)
- [회귀진단] Regression(03) 회귀진단 | DataLatte's IT Blog (heung-bae-lee.github.io)

Q & A

들어주셔서 감사합니다.