

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI I INŻYNIERII BIOMEDYCZNEJ

Symulacja Dyskretna Systemów Złożonych

Symulacja zagrożenia lawinowego w Tatrach Polskich

Autorzy: Marek Jachym, Wojciech Konieczkowicz

Kierunek studiów: Informatyka

Opiekun pracy: dr hab. inż. Jarosław Wąs

2 SPIS TREŚCI

Spis treści

1.	Przy	kłady elementów pracy dyplomowej	3
	1.1.	Liczba	3
	1.2.	Rysunek	3
	1.3.	Tabela	3
	1.4.	Wzory matematyczne	4
2.	Wpr	owadzenie	5
	2.1.	Cel	5
	2.2.	Opis problemu	5
	2.3.	Możliwe rozwiązanie	5
3.	Stwo	orzony model zjawiska	7
	3.1.	Opracowanie danych topograficznych.	7
		3.1.1. Format .las	7
		3.1.2. Wybór cech	8
		3.1.3. Triangulacja Delaunaya	8
	3.2.	Kompilacja	9
	3.3.	Narzędzia	9
	3.4.	Przygotowanie dokumentu	10
4.	Test	y	11
	4.1.	Test URL-a	11
	4.2.	Test dzielenia wdów	12
		4.2.1. Lorem ipsum	13

1. Przykłady elementów pracy dyplomowej

1.1. Liczba

Pakiet siunitx zadba o to, by liczba została poprawnie sformatowana:

 $1\ 234\ 567\ 890,098\ 765\ 432\ 1$

1.2. Rysunek

Pakiet subcaption pozwala na umieszczanie w podpisie rysunku odnośników do "podilustracji":

(a) (b)

Rys. 1.1. Przykład użycia \subcaption: (a) litera A, (b) litera B.

1.3. Tabela

Pakiet threeparttable umożliwia dodanie do tabeli adnotacji:

Tabela 1.1. Przykład tabeli

Nagłówek ^a
Tekst 1
Tekst 2

^a Jakiś komentarz...

1.4. Wzory matematyczne

Czasem zachodzi potrzeba wytłumaczenia znaczenia symboli użytych w równaniu. Można to zrobić z użyciem zdefiniowanego na potrzeby niniejszej klasy środowiska eqwhere.

$$E = mc^2 (1.1)$$

gdzie

m – masa

c~ – prędkość światła w próżni

Odległość półpauzy od lewego marginesu należy dobrać pod kątem najdłuższego symbolu (bądź listy symboli) poprzez odpowiednie ustawienie parametru tego środowiska (domyślnie: 2 cm).

2. Wprowadzenie

2.1. Cel

Celem niniejszej pracy jest stworzenie symulacji, która dostarcza w czasie rzeczywistym informacji dotyczących możliwego zagrożenia lawinowego na terenie Tatr w Polsce.

2.2. Opis problemu

Lawiny śnieżne są powszechnie występującym zagrożeniem na całym świecie i stanowią niebezpieczeństwo zarówno dla ludzi, jak i biznesu oraz infrastruktury. Instytucje w różnych państwach alarmują o zagrożeniu lawinowym w podobny sposób, choć można zauważyć, że im większe zagrożenie stanowi zjawisko samoistnego ruchu śniegu, tym bardziej szczegółowe są prognozy.

Głównym problemem przy określaniu ryzyka lawinowego jest złożoność tego zjawiska. Zależy ono zarówno od czynników stałych, do których zalicza się np. ukształtowanie terenu (1. typ uwarunkowań) oraz zmiennych, dotyczących stanu śniegu (2. typ uwarunkowań) oraz warunków meteorologicznych (3. typ uwarunkowań) (Woszczek 2016). Polskie instytucje wydają regularnie tzw. komunikaty lawinowe, są one jednak jedynie ogólnym zapisem zagrożenia - ratownicy zastrzegają, że informacje zawarte w komunikacie stanowią tylko podstawę do samodzielnej oceny.

Przedmiotem poniższej pracy jest więc próba zastosowania technologii, by zapewnić system wspomagający decyzje ekspertów w celu tworzenia jeszcze bardziej precyzyjnych ostrzeżeń. Symulacja sama w sobie nie stanowi profesjonalnego narzędzia, ale zawiera koncepcje i rozwiązania, które można zastosować przy tworzeniu niezawodnego i złożonego narzędzia dla państwowych instytucji.

2.3. Możliwe rozwiązanie

Na świecie modele przewidujące zagrożenie są tworzone w oparciu o metody statystyczne oraz metody uczenia maszynowego takie jak analiza najbliższego sąsiedztwa (ang. nearest neighbor analysis), analiza skupień (ang. cluster analysis), czy drzewa klasyfikacyjne (ang. classification trees) (Joshi, Kumar, Srivastava, Sachdeva, Ganju 2018). Są to jednak rozwiązania stworzone na podstawie wieloletnich

pomiarów (również dotyczących warunków pokrywy śnieżnej), do których nie uzyskano dostępu. Zdecydowano się więc oprzeć na wnioskach autorów publikacji, charakteryzujących najważniejsze czynniki stwarzające ryzyko.

W celu jak najdokładniejszego określania ryzyka wykorzystano bardzo precyzyjne informacje dotyczące ukształtowania terenu oraz dane pogodowe (dane dotyczące śniegu nie są ogólnodostępne i ich zmierzenie wymaga specjalistycznej wiedzy oraz narzędzi).

Korzystając z danych topograficznych uproszczono ukształtowanie powierzchni Tatr (każdy z obszarów o powierzchni ponad 2 km² reprezentowany jest przy pomocy około 110 punktów) i obliczono odpowiednie cechy. Następnie w połączeniu z cechami dotyczącymi warunków atmosferycznych możliwe stało się określenie ryzyka dla każdego takiego obszaru przy pomocy stworzonego wcześniej drzewa decyzyjnego. Dzięki takiemu podejściu, cały obszar Tatr Polskich podlega obserwacji, a w razie wystąpienia sprzyjających warunków (wykorzystano 2 z 3 istniejących uwarunkowań) w sposób zautomatyzowany wydaje się odpowiednie ostrzeżenia.

3. Stworzony model zjawiska

Niniejszy rozdział opisuje szczegółowo kolejne kroki oraz wykorzystane algorytmy niezbędne do uzyskania efektu końcowego.

3.1. Opracowanie danych topograficznych

3.1.1. Format .las

Na początkowym etapie pracy otrzymano pliki w formacie .las - każdy z nich reprezentujący ukształtowanie terenu wybranego obszaru.

Format .las został stworzony do przechowywania zbioru punktów w przestrzeni trójwymiarowej (ang. point cloud), otrzymanych przy pomocy metody Lidar, która polega na oświetlaniu wybranych punktów na powierzchni Ziemi laserem i zapisie jego odbicia przy pomocy sensorów. Dzięki tej metodzie powstają mapy o wysokiej rozdzielczości, stosowane w naukach o Ziemi (źródło: angielska wiki).

Otrzymane pliki zawierały średnio około 11 milionów punktów, przy czym każdy z nich reprezentował powierzchnię ponad 2 km².

Rys. 3.1. Uproszczona wizualizacja zbioru punktów z pliku .las przy użyciu biblioteki matplotlib

3.1.2. Wybór cech

Jak wspomniano już wcześniej, do oszacowania ryzyka lawinowego konieczne jest posiadanie danych dotyczących cech terenu. Bazując na pracy pani Izabeli Woszczak, skupiono się na obliczeniu taki cech, jak:

- forma terenu (skupiono się na żlebach);
- ekspozycja słoneczna;
- nachylenie powierzchni;
- piętro;
- wysokość.

3.1.3. Triangulacja Delaunaya

Sam zbiór punktów nie oferuje możliwości łatwego obliczania wyżej wymienionych cech, dlatego zastosowano uproszczenie powierzchni terenu przy pomocy triangulacji Delaunaya.

Jest to algorytm, który na podstawie zbioru punktów tworzy zbiór trójkątów, gdzie wierzchołki każdego trójkąta stanowią owe punkty. Własnością algorytmu jest, że maksymalizuje on najmniejsze z katów w powstałych trójkątach, unikając tzw. sliver triangles.

TE ZDJĘCIA POWINNY BYĆ DALEJ.

Rys. 3.2. Obszar przedstawiony jako zbiór punktów

Rys. 3.3. Ten samo obszar poddany triangulacji

Plik LATEXowy jest plikiem tekstowym, który oprócz tekstu zawiera polecenia formatujące ten tekst (analogicznie do języka HTML). Plik składa się z dwóch części:

- Preambuły określającej klasę dokumentu oraz zawierającej m.in. polecenia dołączającej dodatkowe pakiety;
- 2. Części głównej zawierającej zasadniczą treść dokumentu.

3.2. Kompilacja

Nie ma żadnych przeciwskazań do tworzenia dokumentów w LATEXu w języku polskim. Plik źródłowy jest zwykłym plikiem tekstowym i do jego przygotowania można użyć dowolnego edytora tekstów, a polskie znaki wprowadzać używając prawego klawisza Alt. Jeżeli po kompilacji dokumentu polskie znaki nie są wyświetlane poprawnie, to na 95% źle określono sposób kodowania znaków (należy zmienić opcje wykorzystywanych pakietów).

3.2. Kompilacja

Załóżmy, że przygotowany przez nas dokument zapisany jest w pliku test.tex. Kolejno wykonane poniższe polecenia (pod warunkiem, że w pierwszym przypadku nie wykryto błędów i kompilacja zakończyła się sukcesem) pozwalają uzyskać nasz dokument w formacie pdf:

```
latex test.tex
dvips test.dvi -o test.ps
ps2pdf test.ps

lub za pomocą PDFLATEX:
pdflatex test.tex
```

Przy pierwszej kompilacji po zmiane tekstu, dodaniu nowych etykiet itp., LATEX tworzy sobie spis rozdziałów, obrazków, tabel itp., a dopiero przy następnej kompilacji korzysta z tych informacji.

W pierwszym przypadku rysunki powinny być przygotowane w formacie eps, a w drugim w formacie pdf. Ponadto, jeżeli używamy polecenia pdflatex test.tex można wstawiać grafikę bitową (np. w formacie jpg).

3.3. Narzędzia

Do przygotowania pliku źródłowego może zostać wykorzystany dowolny edytor tekstowy. Niektóre edytory, np. GEdit, mają wbudowane moduły ułatwiające składanie tekstów w LaTeXu (kolorowanie składni, skrypty kompilacji, itp.).

Jednym z bardziej znanych środowisk do składania dokumentów L^aT_EXa jest *TeXstudio*, oferujące kompletne środowisko pracy. Zobacz: *http://www.texstudio.org*

Bardzo dobrym środowiskiem jest również edytor gEdit z wtyczką obsługującą LAT_EXa. Jest to standardowy edytor środowiska Gnome. Po instalacji wtyczki obsługującej LAT_EX zamienia się w wygodne i szybkie środowisko pracy.

Dla testu łamania stron powtórzenia powyższego tekstu.

Do przygotowania pliku źródłowego może zostać wykorzystany dowolny edytor tekstowy. Niektóre edytory, np. GEdit, mają wbudowane moduły ułatwiające składanie tekstów w LaTeXu (kolorowanie składni, skrypty kompilacji, itp.). Jednym z bardziej znanych środowisk do składania dokumentów LATeXa jest *TeXstudio*, oferujące kompletne środowisko pracy. Zobacz: *http://www.texstudio.org* Bardzo dobrym środowiskiem jest również edytor gEdit z wtyczką obsługującą LATeXa. Jest to standardowy edytor środowiska Gnome. Po instalacji wtyczki obsługującej LATeX zamienia się w wygodne i szybkie środowisko pracy. Po instalacji wtyczki obsługującej LATeX zamienia się w wygodne i szybkie środowisko pracy.

Do przygotowania pliku źródłowego może zostać wykorzystany dowolny edytor tekstowy. Niektóre edytory, np. GEdit, mają wbudowane moduły ułatwiające składanie tekstów w LaTeXu (kolorowanie składni, skrypty kompilacji, itp. itd. itp.). Jednym z bardziej znanych środowisk do składania dokumentów LaTeXa jest *TeXstudio*, oferujące kompletne środowisko pracy. Zobacz: *http://www.texstudio.org* Bardzo dobrym środowiskiem jest również edytor gEdit z wtyczką obsługującą LaTeXa. Jest to standardowy edytor środowiska Gnome. Po instalacji wtyczki obsługującej LaTeX zamienia się w wygodne i szybkie środowisko pracy.

Do przygotowania pliku źródłowego może zostać wykorzystany dowolny edytor tekstowy. Niektóre edytory, np. GEdit, mają wbudowane moduły ułatwiające składanie tekstów w LaTeXu (kolorowanie składni, skrypty kompilacji, itp.). Jednym z bardziej znanych środowisk do składania dokumentów LaTeXa jest *TeXstudio*, oferujące kompletne środowisko pracy. Zobacz: *http://www.texstudio.org* Bardzo dobrym środowiskiem jest również edytor gEdit z wtyczką obsługującą LaTeXa. Jest to standardowy edytor środowiska Gnome. Po instalacji wtyczki obsługującej LaTeX zamienia się w wygodne i szybkie środowisko pracy.

3.4. Przygotowanie dokumentu

Plik źródłowy IATEXa jest zwykłym plikiem tekstowym. Przygotowując plik źródłowy warto wiedzieć o kilku szczegółach:

Poszczególne słowa oddzielamy spacjami, przy czym ilość spacji nie ma znaczenia. Po kompilacji wielokrotne spacje i tak będą wyglądały jak pojedyncza spacja. Aby uzyskać twardą spację, zamiast znaku spacji należy użyć znaku tyldy.

- Znakiem końca akapitu jest pusta linia (ilość pusty linii nie ma znaczenia), a nie znaki przejścia do nowej linii.
- LATEX sam formatuje tekst. **Nie starajmy się go poprawiać**, chyba, że naprawdę wiemy co robimy.

4. Testy

4.1. Test URL-a

Wejdź na stronę https://www.google.pl/ i wpisz szukane zdanie.

14 4.2. Test dzielenia wdów

4.2. Test dzielenia wdów

Lorem ipsum dolor sit amet, ex est alia dolorem commune. Duo modo errem no. Ea harum doming atomorum mei. Consul animal malorum cu qui, sumo dicta graece an est, vim ei clita regione.

Vel eu quando doming fastidii, mei graeco indoctum an, legere theophrastus in pro. Te mei probatus eleifend interpretaris. Est no autem liber vituperatoribus, cu mea dicam constituto. Ea laudem tritani consectetuer sit, sanctus patrioque expetendis vix in. Duo id fugit adversarium signiferumque, an quot modus molestiae qui.

Ut paulo definiebas pro. Mea an quod esse. Et atomorum facilisis moderatius sit. Graeco iudicabit forensibus in vel. Eam cu lorem aeterno offendit, cu vix nulla congue posidonium. Vel lucilius evertitur vituperata no.

Mea eu graecis prodesset. Et tota eius nec. Ei etiam oratio has, vel ei homero eripuit invenire. Sed ex errem intellegebat, sea et elitr intellegat constituto. Nostro voluptua accusamus eos in, ei sale admodum has. Vim ne consetetur reformidans, ad has malis recusabo persequeris, per etiam virtute invenire in.

Te nihil eruditi eam, sit aperiam accusam mediocritatem at. Nec ne nonumy dictas disputationi, vis ridens sadipscing ex. Harum euripidis ex vix, at consetetur instructior signiferumque mel, at mei elitr honestatis. Id sit congue vituperata. Temporibus eloquentiam no eum.

Pro id esse phaedrum, nostro iudicabit eos ut. Sit ea aperiam alienum, harum audiam voluptua cu usu. Iudico invenire te vel, id suscipit disputando pri. Ut sumo expetenda mea.

Cum at idque nullam aperiam, vis ex aeque ponderum luptatum. Vix soluta graeco dissentiet ut, ut est reque periculis similique, ut dicta dicant repudiare sea. Ne dolor legendos signiferumque ius, at eirmod convenire qui. Suas numquam conceptam mei ex. Autem homero eos et, sea dicta alienum iudicabit ut.

Ea duo consulatu vulputate, id elit perpetua cum. His ei aeque saepe audiam. Prompta laoreet facilisi ne sed, per hinc consetetur te, oratio fuisset ullamcorper mel at. Quis suscipiantur ne nec, agam efficiendi usu in.

Vis eu iuvaret singulis appellantur, usu ex saepe omittantur. Sed possit mnesarchum at, usu illum choro oratio in, et debet dolor vix. Mel aperiri suscipiantur ne, te per illum fuisset, lorem pericula mei ad. Pri id tale lucilius dissentiet, id sea sonet expetenda. Agam sensibus persequeris sed no, eum at tamquam sanctus.

Omnis exerci soleat ut vis. Rebum vidisse sea ex. Ius animal gubergren efficiantur ad, mollis probatus nec ut. Meis platonem ex vel, ut qui tale tritani equidem. Vide meis fuisset mel at, nam an assum delenit gubergren. No illum reprimique vim, te augue nullam per, ludus dicant suscipiantur ne sed.

An pri mediocrem deseruisse, ad sumo audire dissentiet sit. Sit ea civibus lobortis. Etiam ceteros commune ei vis. Pro ei equidem vivendo. Quo ne prima periculis omittantur, ex rebum veritus sit, ei dolor maiestatis mea.

4.2. Test dzielenia wdów

4.2.1. Lorem ipsum

Et mel munere quodsi sapientem. Essent legimus ne pro. Est ornatus definiebas et. No habemus docendi ius, purto sapientem mei at. Tamquam vivendo necessitatibus has at, no habemus praesent nec. No quo modus iudicabit scriptorem. Modus intellegebat ea vim. Cu ius lorem regione offendit, ne accusata sensibus vituperatoribus quo. Sit ut iuvaret indoctum. Ut mea sale justo. Sapientem definitionem ius eu, at sea quem doming. Facete conclusionemque ut nec, vix at duis eius. Eos quot consequuntur et, ornatus liberavisse ne mei.

Per an dicam commodo tractatos, usu in timeam numquam tacimates. Case delectus eu sea, usu audiam eleifend tincidunt id, nec at decore discere mentitum. Ut elit veri eloquentiam his, ceteros tractatos ea has. Duo impetus scribentur et, eu quo errem everti, ad recusabo consulatu ius. Fastidii comprehensam pri ea, ex duo augue quando denique. Eos aeterno deserunt sententiae cu, ius quas tation patrioque ex.

Id autem scripta explicari nec, congue quidam possit te sit. Et usu ipsum bonorum graecis, ferri verear deterruisset eum cu. Purto porro accommodare cu vim. Cum ei tritani pertinacia voluptaria.

16 4.2. Test dzielenia wdów

Bibliografia

- [1] A. Diller. LaTeX wiersz po wierszu. Gliwice: Wydawnictwo Helion, 2000.
- [2] L. Lamport. LaTeX system przygotowywania dokumentów. Kraków: Wydawnictwo Ariel, 1992.
- [3] M. Szpyrka. On Line Alvis Manual. http://fm.ia.agh.edu.pl/alvis:manual. AGH University of Science and Technology. 2011.