HiPAS

Requirements and Design Presentation CEC EPC-17-047

30 September 2019

SLAC National Accelerator Laboratory is operated for the US Department of Energy by Stanford University under Contract No. DE-AC02-76SF00515

Deliverables

SLAC

This presentation covers the products of Task 2:

- HIPAS GridLAB-D Release Requirements Presentation
- Performance and Baseline Analysis Presentation
- Software Upgrade Design Presentation
- Performance Specifications Presentation
- Testing Plan Presentation
- Software Design Presentation

Scope of requirements and design analysis

- Current GridLAB-D use-cases studied
- Requirement and design analysis
 - Module design analysis
 - Core system requirements
- Summary

Overview: Advanced Simulation Program workflow

Overview: Project timelines and status

Use-Cases

VADER (DOE/SETO in collaboration with SCE)

SLAC

Visualization & Analysis for Distributed Energy Resources

Real-time simulation of hardware-in-the-loop

Based on IEEE-123

DSO simulation for "smart-grid" controls

Feeder switch and voltage control coordination

Distributed energy resource integration

Includes solar PV, battery, and load control

PowerNET with Markets (SLAC/CEC EPC 15-047)

SLAC

Market-based "smart-grid" distribution systems operation Behind-the-meter voltage control resources

Simulate impact of voltage control in appliances

Cloud-based distribution system operations

Simulate impact of cloud coordination and optimization

Retail real-time price simulation

- Compute costs under different pricing mechanisms
- Estimate revenue potential from wholesale markets

GRIP (DOE/GMLC in collaboration with SCE & NRECA)

SLAC

Grid Resilience Intelligence Platform

Anticipate rare/large events

Prepare for emergency operations

Absorb the impact of rare/large events

Ride-through an emergency event

Adapt to changes in the wake of rare/large events

Recover from an emergency event

GridLAB-D Open Workspace

- UI/UX for workflow-based GridLAB-D simulation
 - Focus on ICA use case
- Integration requirements for GridLAB-D core
 - UI API (model control, etc.)
 - OpenFIDO API (data control, etc.)
 - UX API (server control, etc.)

Open Framework for Integrated Data Operations

- Enable multi-org sharing of models and data
 - Import, curate, and export network models and data
 - Supprt weather data, model templates, data libraries
- Support multiple model and data formats
 - Provide UI to directly manage models and data
 - Provide API for applications to access models and data

Requirements and Design Analysis

Physical models for key commercial building types

Focus on office, retail, and major building systems

Data-driven models (e.g., support for CEUS data)

Enable use of measured data to support simulations

Support for composite load model

Incorporate modern load models into GridLAB-D

Data-driven model (e.g., RBSA)

Use measurement data to drive residential load models

Composite load model support expansion

Support modern load models in GridLAB-D

Simplified physical building models

Reduce model complexity to increase speed

Enhanced physical appliance models

Enable appliance control model to simulate DER/DR

Tariff model to support general tariff evaluation

Expand support for new/prospective CPUC tariffs

Transactive model is based on one technology only

- Enable study of transactive energy systems
- Add simulation of settlement infrastructure(s)

High-performance access

Support for parallel initialization & progressive queries

Alternate data storage/access systems

- Postgres
- MariaDB
- Python pandas dataframes (local only)
- AWS boto support (e.g., S3 buckets)

Support for re-entrant/parallel simulations

Enable multiple/concurrent runs per job

Support for machine-learning based solver(s)

Enable fast powerflow solvers when appropriate

Equipment/environmental vulnerability analysis

- Impacts from wind, fire, and ice on equipment
- Impact of equipment failure on vegetation

Cloud development and distribution support

- Docker (with mysql, apache2)
- Code integration & release management (e.g., GitHub, CircleCI)

Subcommands to manage simulation environment

- Runtime environment configuration management
- Weather/climate data manager (download, info)
- Templates/libraries (download, create, submit, review)

Full access to core capabilities

- Modeling interface at runtime using JSON and CIM
- Full and direct control of simulation environment
- Access using high level languages (e.g. python)

Access to all subcommands through both CLI and API

- Configuration manager for simulation system
- Management of weather and climate data
- Management of model templates
- Control of containers and servers

Commercial building data and models

- Support data-driven building simulation
- Support physics-based commercial building simulation

Residential building data and models

- Support data-driven home simulation
- Simplify physics-based residential building simulation

General support for automatic file conversion

- Support for {JSON,XML}← GLM → {XML,JSON}
- Direct support for CIM ← GLM → CIM

Augmented validation testing for new capabilities

- Upgrade validation procedures to detect new issues
- Improve performance of validation test
- Add new tests for new capabilities

Multi-environment validation (host, docker, cloud)

Allow scaling of simulation deployment

Template model validation and review

Support community of users who create/share models

Online documentation

- Separate user, modeler, and developer wikis
- Automatic version matching of documentation

Training

- Short topical tutorial videos (links from wiki pages)
- Revise structured training courses for communities

Summary of requirements identified

SLAC

	VADER	PowerNET	GRIP	GLOW	OpenFIDO
Commercial				Libraries	CEUS
Residential		DER		Templates Weather	RBSA
Markets		RTP			Tariffs
Database		MySQL			MySQL, S3
Powerflow	IEEE-123, Controls, & DER		Pole vulnerability		
GLD Core				Solvers	GitHub
Validation				Docker	Docker
Workflows				CircleCI	CircleCI
Formats				API	JSON, CIM
Training				Videos	Videos
Documentation				github.io	github.io

Principal Investigator:

David P. Chassin, PhD

dchassin@slac.stanford.edu

GridLAB-D Project Repository:

https://github.com/dchassin/gridlabd

SLAC Project Team

SLAC

David P. Chassin

Marie-Louise Arlt

Lily Buechler

Velvet Gaston

Jonathan Goncalves

Alyona Ivanova

Siobhan Powell

Mikaela Quintos

Berk Serbetcioglu

Nani Sarosa

Karen Schooler

Subcontractors and Partners

SLAC

<u>Gridworks</u> <u>National Grid</u>

Matt Tisdale Pedram Jahangiri

Andrew Spreen

Mac Roche <u>PNNL</u>

Tom McDermott

Jason Fuller

Frank Tuffner