

دورة "استرجاع المعلومات" باللغة العربية - صيف ٢٠٢١ Information Retrieval – Summer 2021

6. Query Expansion

Tamer Elsayed Qatar University

What is the application?

Ad-hoc Search

Inside the IR Black Box

Indexing process (offline)

Search process (online)

Today

دورة "استرجاع المعلومات" باللغة العربية - صيف ٢٠٢١ Information Retrieval – Summer 2021

6. Query Expansion

Tamer Elsayed Qatar University

Queries sometimes are <u>not</u> good representation of information needs

Query Expansion

Adding more words (related, relevant, or of the same meaning) to the query for better retrieval

Today's Roadmap

- **o** Thesaurus-based methods
- **o** Query Logs
- o Relevance Feedback

THESAURUS-BASED METHODS

Thesaurus

O A data structure that shows words in groups of synonyms and related concepts.

- O Manually built
- O Automatically-built

Manually-built Thesaurus

o e.g., WordNet

car

motorcycle

Expand query by top k synonyms/related terms of each query term

problem?

Automatic Thesaurus

Main Idea

Words co-occurring in same documents/paragraphs are likely to be (in some sense) similar or related in meaning.

Using Term Vectors

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Each term is now represented by a real-valued vector of weights ∈ R^{|C|}

Compute similarity between terms

Query Expansion

Each term is represented by a vector

Compute similarity between term vectors

offline

online

Expand query by top k similar terms of each query term

Using Term Association Measures

Examples:

O Dice's Coefficient
$$\frac{2.n_{ab}}{n_a+n_b} \stackrel{rank}{=} \frac{n_{ab}}{n_a+n_b}$$

O Mutual Information

$$\log \frac{P(a,b)}{P(a)P(b)} = \log N \cdot \frac{n_{ab}}{n_a \cdot n_b} \stackrel{rank}{=} \frac{n_{ab}}{n_a \cdot n_b}$$

Query Expansion

Compute association measure between all pairs of terms

offline

online

Expand query by top k similar terms of each query term

Ad-hoc search is the typical task we do on Google.

- > Yes
- > No

Terms that co-occur in very few paragraphs, but co-occur in many documents, will have ... assuming the measure is based on paragraph context.

- > Yes
- > No

Example: "world cup"

world fifa football international nations day united cup football drink fifa glass plate world water cup

problem?

Using Context Vectors

- O Context vectors: Represent words by other words that co-occur with them.
 - e.g., top 35 most strongly associated words.
- O Use them as "virtual documents" in an inverted index.
- O Rank words for a query by ranking virtual documents

Example: "world cup"

Query Expansion

Compute association measure between all pairs of terms

Build the "context" index

offline

online

given the query,
rank virtual docs (terms)

Expand the query with top k terms

Using Query logs

- O Best source of information about queries and related terms
 - short pieces of text and click data

• Compute association measure between all pairs of terms from the *query logs*.

Query logs will usually give much better expansion terms.

- > Yes
- > No

In context vectors, postings actually represent "terms".

- > Yes
- > No

Today's Roadmap

- o Thesaurus-based methods
- o Query Logs
- **o** Relevance Feedback

Relevance Feedback

• From user perspective: it may be difficult to formulate a good query when you don't know the collection well, BUT easier to judge particular documents.

Idea: let user give feedback to the IR system about samples of what is relevant and what is not.

Relevance Feedback Process

- 1. User issues a (short, simple) query
- 2. The system retrieves (initial) results and show to user
- 3. The user marks some results as relevant or non-relevant.
- 4. The system computes a *better representation of the information need* based on feedback.
- 5. The system retrieves new results based on the new representation and show to user.

O Relevance feedback can go through one or more iterations.

Example 1: Image Search

Example 1: Image Search

Example 2: Text Search

O Initial query: New space satellite applications

O Initial Results

- 1. NASA Hasn't Scrapped Imaging Spectrometer
- 2. NASA Scratches Environment Gear From Satellite Plan
- 3. Science Panel Backs NASA Satellite Plan, But Urges Launches of Smaller Probes
- 4. A NASA Satellite Project Accomplishes Incredible Feat: Staying Within Budget
- 5. Scientist Who Exposed Global Warming Proposes Satellites for Climate Research
- 6. Report Provides Support for the Critics Of Using Big Satellites to Study Climate
- 7. Arianespace Receives Satellite Launch Pact From Telesat Canada
- 8. Telecommunications Tale of Two Companies
- O User then marks relevant documents with "+".
- **o** System learns new terms

Expanded Query after Rel. Feedback

2.074 <i>new</i>	15.106 <i>space</i>
------------------	---------------------

- 3.004 bundespost 2.806 ss
- 2.790 rocket 2.053 scientist
- 2.003 broadcast 1.172 earth
- 0.836 oil 0.646 measure

Results for Expanded Query

- 1. NASA Scratches Environment Gear From Satellite Plan
- 2. NASA Hasn't Scrapped Imaging Spectrometer
- 3. When the Pentagon Launches a Secret Satellite, Space Sleuths Do Some Spy Work of Their Own
- 4. NASA Uses 'Warm' Superconductors For Fast Circuit
- 5. Telecommunications Tale of Two Companies
- 6. Soviets May Adapt Parts of SS-20 Missile For Commercial Use
- 7. Gaping Gap: Pentagon Lags in Race To Match the Soviets In Rocket Launchers
- 8. Rescue of Satellite By Space Agency To Cost \$90 Million

Hopefully better results!

ROCCHIO ALGORITHM IN VSM

Theoretical Optimal Query

Key Concept: Centroid

- O Recall that, in VSM, we represent documents as points in a highdimensional space
- O The centroid is the center of mass of a set of points

$$\vec{\mu}(C) = \frac{1}{|C|} \sum_{\vec{d} \in C} \vec{d}$$

where C is a set of documents.

Rocchio Algorithm: Theory

o Rocchio seeks the query q_{opt} that maximizes:

$$\vec{q}_{opt} = \underset{\vec{q}}{\operatorname{argmax}} [sim(\vec{q}, C_r) - sim(\vec{q}, C_{nr})]$$

o For cosine similarity:

$$\vec{q}_{opt} = \frac{1}{|C_r|} \sum_{\overrightarrow{d_j} \in C_r} \vec{d_j} - \frac{1}{|C_{nr}|} \sum_{\overrightarrow{d_j} \in C_{nr}} \vec{d_j}$$

$$\vec{q}_{opt} = \vec{\mu}(C_r) - \vec{\mu}(C_{nr})$$

Challenge: we don't know the truly relevant docs

Rocchio Algorithm: in Practice

o Only small set of docs are known to be REL or non-REL

$$\vec{q}_m = \alpha \vec{q}_0 + \beta \frac{1}{|Dr|} \sum_{\vec{d}_j \in Dr} \vec{d}_j - \gamma \frac{1}{|D_{nr}|} \sum_{\vec{d}_j \in Dnr} \vec{d}_j$$

 \vec{q}_0 = original query vector

 D_r = set of known relevant doc vectors

 D_{nr} = set of known non-relevant doc vectors

 \vec{q}_m = modified query vector

 α = original query weight

B = positive feedback weight

y = negative feedback weight

New query moves toward relevant documents and away from non-relevant documents

Effect of Relevance Feedback on Query

Notes about setting weights: α , β , γ

- **o** Values of β , γ compared to α are set high when many judged documents are available.
- **o** In practice, +ve feedback is more valuable than -ve feedback (usually, set $\beta > \gamma$)
 - many systems only allow positive feedback ($\gamma = 0$).
 - Or, use only highest-ranked negative document.
- **o** When $\gamma > 0$, some weights in query vector can go -ve.
 - negative term weights are ignored (set to 0)

Effect of Relevance Feedback on Retrieval

- O Relevance feedback can improve recall and precision
- **O** In practice, relevance feedback is most useful for increasing *recall* in situations where recall is important.
- Empirically, one round of relevance feedback is often very useful. Two rounds is sometimes marginally useful.

Query Expansion?

Relevance Feedback: Problems

- O Long queries are inefficient for typical IR engine.
 - High cost for retrieval system.
 - Long response times for user.
- o Users are often reluctant to provide explicit feedback
- **o** It's often harder to understand why a particular document was retrieved after applying relevance feedback.

Solution?

In relevance feedback, positive feedback is much better than negative feedback.

- > Yes
- > No

In Rocchio, there is no way to completely ignore the initial query.

- > Yes
- > No

Is there a way to apply relevance feedback without user's input?

Pseudo (or Blind) Relevance Feedback

O Automates the "manual" part of true relevance feedback.

o Algorithm:

- Retrieve a ranked list of hits for the user's query
- Assume that the top k documents are relevant
- Do relevance feedback (e.g., Rocchio)

Pseudo (or Blind) Relevance Feedback

O Automates the "manual" part of true relevance feedback.

o Algorithm:

- Retrieve a ranked list of hits for the user's query
- Assume that the top k documents are relevant
- Do relevance feedback (e.g., Rocchio)
 - Select top T terms based on term weights (e.g., tf-idf)
 - Add them to the query

PRF (BRF)

- O Was proven to be useful for many IR applications
 - News search (learn names and entities)
 - Social media search (learn hashtags)
- O But can go horribly wrong for some queries.
- O Several iterations can cause query drift.
- o PRF is the most basic QE method for IR
 - Unsupervised
 - Language-independent
- **o** Efficiency?

Co-occurrence with PRF

o Pseudo-relevance feedback

 expansion terms based on term co-occurrence in top retrieved documents for initial query.

Implicit Feedback

- O Less reliable than explicit
- o But more useful than BRF

- o Click on links
 - assumptions?
- o Positive and negative?
- o Other forms of implicit feedback?

PRF is more efficient than standard retrieval.

- > Yes
- > No

Eye tracking can be used for getting implicit feedback.

- > Yes
- > No

Can we represent terms by "meaning"?

