

Issue Date:Jul.01.2009

Model No.: V470H2-LH1

Approval

TFT LCD Approval Specification

MODEL NO.: V470H2 – LH1

Approved By	TV Head Division	
	LY Chen	

Reviewed By	QA Dept.	Product Development Div.
	Hsin-nan Chen	WT Lin

Prepared By	LCD TV Marketing and Product Management Div.	
	CY Chang	TC Chao

Issue Date:Jul.01.2009

Model No.: V470H2-LH1

Approval

CONTENTS

REVISION HISTORY	4
1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 FEATURES	5
1.3 APPLICATION	5
1.4 GENERAL SPECIFICATIONS	5
2. ABSOLUTE MAXIMUM RATINGS	7
2.1 ABSOLUTE RATINGS OF ENVIRONMENT	7
2.2 PACKAGE STORAGE	8
2.3 ELECTRICAL ABSOLUTE RATINGS	8
2.3.1 TFT LCD MODULE	8
2.3.2 BACKLIGHT INVERTER UNIT	8
3. ELECTRICAL CHARACTERISTICS	9
3.1 TFT LCD MODULE	9
3.2 BACKLIGHT UNIT	11
3.2.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS	11
3.2.2 INVERTER CHARACTERISTICS ($T_a = 25 \pm 2 {}^\circ C$)	11
3.2.3 INVERTER INTERFACE CHARACTERISTICS	13
4. BLOCK DIAGRAM OF INTERFACE	15
4.1 TFT LCD MODULE	15
5. INPUT TERMINAL PIN ASSIGNMENT	16
5.1 TFT LCD Module Input	16
5.2 BACKLIGHT UNIT	19
5.3 INVERTER UNIT	20
5.4 BLOCK DIAGRAM OF INTERFACE	21
5.5 LVDS INTERFACE	23
5.6 COLOR DATA INPUT ASSIGNMENT	24
6. INTERFACE TIMING	25
6.1 INPUT SIGNAL TIMING SPECIFICATIONS	25
6.2 POWER ON/OFF SEQUENCE	28

Issue Date:Jul.01.2009

Model No.: V470H2-LH1

Approval

7. OPTICAL CHARACTERISTICS	29
7.1 TEST CONDITIONS.....	29
7.2 OPTICAL SPECIFICATIONS	30
8. PRECAUTIONS.....	33
8.1 ASSEMBLY AND HANDLING PRECAUTIONS	33
8.2 SAFETY PRECAUTIONS	33
9. DEFINITION OF LABELS.....	34
9.1 CMO MODULE LABEL	34
10. PACKAGING.....	36
10.1 PACKAGING SPECIFICATIONS	36
10.2 PACKAGING METHOD.....	36
11. MECHANICAL CHARACTERISTICS	38

Issue Date:Jul.01.2009

Model No.: V470H2-LH1

Approval**REVISION HISTORY**

Version	Date	Page (New)	Section	Description
Ver. 1.0	Apr. 22, 2009	All	A1	The Preliminary specification was first issued.
Ver. 1.1	May. 20, 2009	P38~P40	Chapter11.	Modify the enhanced ribs of Metal Frame Rear drawing.
Ver. 2.0	Jul. 01, 2009	All 36	All 10.1	The Approve specification was first issued. Modify Box dimensions

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V470H2-LH1 is a 47" TFT Liquid Crystal Display module with 12-CCFL Backlight unit and 2ch-LVDS interface.

This module supports 1920 x 1080 Full HDTV format and can display true 1.07G colors (10-bit/color). The inverter module for backlight is built-in.

1.2 FEATURES

- High brightness (500 nits)
- High contrast ratio (4000:1)
- Fast response time (Gray to gray average 4.5 ms)
- High color saturation (NTSC 72%)
- Full HDTV (1920 x 1080 pixels) resolution, true HDTV format
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- Optimized response time for 120 Hz frame rate
- Ultra wide viewing angle : Super MVA technology
- RoHS compliance

1.3 APPLICATION

- Standard Living Room TVs.
- Public Display Application.
- Home Theater Application.
- MFM Application.

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	1039.68 (H) x584.82 (V) (47" diagonal)	mm	(1)
Bezel Opening Area	1049(H) x 539 (V)	mm	
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1920 x R.G.B. x 1080	pixel	-
Pixel Pitch(Sub Pixel)	0.5405 (V) x 0.1805 (H)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	1.07G	color	-
Display Operation Mode	Transmissive mode / Normally black	-	-
Surface Treatment	Anti-Glare coating (Haze 11%)/ Hard coating (3H)	-	(2)

Note (1) Please refer to the attached drawings in chapter 9 for more information about the front and back outlines.

Note (2) The spec. of the surface treatment is temporarily for this phase. CMO reserves the rights to change this feature.

Issue Date:Jul.01.2009
Model No.: V470H2-LH1

Approval

1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Typ.	Max.	Unit	Note
Module Size	Horizontal (H)	-	1096	-	mm	(1), (2)
	Vertical (V)	-	640	-	mm	
	Depth (D)	-	52.7	-	mm	
Weight		-	(12400)	-	g	-

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Module Depth is between bezel to T-CON cover.

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Value		Unit	Note
		Min.	Max.		
Storage Temperature	TST	-20	+60	°C	(1)
Operating Ambient Temperature	TOP	0	50	°C	(1), (2)
Shock (Non-Operating)	SNOP	X, Y axis	-	50	G
		Z axis		35	G
Vibration (Non-Operating)	VNOP	-	1.0	G	(4), (5)

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. ($T_a \leq 40^{\circ}\text{C}$).
- (b) Wet-bulb temperature should be 39°C Max. ($T_a > 40^{\circ}\text{C}$).
- (c) No condensation.

Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65°C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65°C . The range of operating temperature may degrade in case of improper thermal management in final product design.

Note (3) 11 ms, half sine wave, 1 time for $\pm X, \pm Y, \pm Z$.

Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.

Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

2.2 PACKAGE STORAGE

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time, It is highly recommended to store the module with temperature from 0 to 35 °C at normal humidity without condensation.
- (b) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 TFT LCD MODULE

Item	Symbol	Value		Unit	Note
		Min.	Max.		
Power Supply Voltage	VCC	-0.3	13.5	V	(1)
Logic Input Voltage	VIN	-0.3	3.6	V	

2.3.2 BACKLIGHT INVERTER UNIT

Item	Symbol	Value		Unit	Note
		Min.	Max.		
Lamp Voltage	VW	—	3000	VRMS	
Power Supply Voltage	VBL	0	30	V	(1)
Control Signal Level	—	-0.3	7	V	(1), (3)

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) No moisture condensation or freezing.

Note (3) The control signals include On/Off Control, Internal PWM Control and External PWM Control.

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

(Ta = 25 ± 2 °C)

Parameter	Symbol	Value			Unit	Note
		Min.	Typ.	Max.		
Power Supply Voltage	VCC	10.8	12	13.2	V	(1)
Power Supply Ripple Voltage	VRP	-	-	350	mV	
Rush Current	IRUSH	-	-	3.6	A	(2)
Power Supply Current	White Pattern	-	-	1.1	--	(3)
	Vertical Stripe	-	-	1.8	2.1	
	Black Pattern	-	-	1.1	-	
LVDS interface	Common Input Voltage	VLVC	1.125	1.25	1.375	V
	Terminating Resistor	RT	-	100	-	ohm
CMOS interface	Input High Threshold Voltage	VIH	2.7	-	3.3	V
	Input Low Threshold Voltage	VIL	0	-	0.7	V

Note (1) The module should be always operated within the above ranges.

Note (2) Measurement condition:

Vcc rising time is 470us

Note (3) The specified power supply current is under the conditions at $V_{CC} = 12\text{ V}$, $T_a = 25 \pm 2^\circ\text{C}$, $f_v = 120\text{ Hz}$, whereas a power dissipation check pattern below is displayed.

a. White Pattern

Active Area

b. Black Pattern

Active Area

c. Vertical Stripe Pattern

Active Area

3.2 BACKLIGHT UNIT

3.2.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS

(Ta = 25 ± 2 °C)

Parameter	Symbol	Value			Unit	Note
		Min.	Typ.	Max.		
Lamp Input Voltage	VL	-	1175	-	VRMS	-
Lamp Current	IL	8.8	9.3	9.8	mARMS	(1)
Lamp Turn On Voltage	VS	-	-	1820	VRMS	Ta = 0 °C
		-	-	1620	VRMS	Ta = 25 °C
Operating Frequency	FL	40	-	70	KHz	
Lamp Life Time	LBL	50,000		-	Hrs	(2)

3.2.2 INVERTER CHARACTERISTICS (Ta= 25 ± 2 °C)

(Ta = 25 ± 2 °C)

Parameter	Symbol	Value			Unit	Note
		Min.	Typ.	Max.		
Power Consumption	P _{BL}	-	130	138	W	(5), IL =9.3mA
Power Supply Voltage	VBL	22.8	24.0	25.2	VDC	
Power Supply Current	IBL	-	5.4	-	A	Non Dimming
Input Ripple Noise	-	-	-	912	mVP-P	VBL=22.8V
Oscillating Frequency	FW	37	40	43	kHz	
Dimming Frequency	FB	150	160	170	Hz	
Minimum Duty Ratio	DMIN	-	20	-	%	

Note (1) Lamp current is measured by utilizing AC current probe.

Note (2) The lamp starting voltage V_S should be applied to the lamp for more than 1 second after startup.

Otherwise the lamp may not be turned on.

Note (3) The lamp frequency may produce interference with horizontal synchronous frequency of the display input signals, and it may result in line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.

Note (4) The life time of a lamp is defined as when the brightness is larger than 50% of its original value and the effective discharge length is longer than 80% of its original length (Effective discharge length is defined as an area that has equal to or more than 70% brightness compared to the brightness at

Issue Date:Jul.01.2009

Model No.: V470H2-LH1

Approval

the center point of lamp.) as the time in which it continues to operate under the condition at $T_a = 25 \pm 2^\circ C$ and $I_L = 9.0 \sim 9.6$ mA rms.

Note (5) The measurement condition of Max. value is based on 47" backlight unit under input voltage 24V, average lamp current 9.6 mA and lighting 30 minutes later.

3.2.3 INVERTER INTERFACE CHARACTERISTICS

Parameter	Symbol	Test Condition	Value			Unit	Note
			Min.	Typ.	Max.		
On/Off Control Voltage	VBLON	ON	—	2.0	—	5.0	V
		OFF	—	0	—	0.8	V
Internal PWM Control Voltage	VIPWM	MAX	—	2.85	3.0	3.15	V
		MIN	—	—	0	—	V
External PWM Control Voltage	VEPWM	HI	—	2.0	—	5.0	V
		LO	—	0	—	0.8	V
Status Signal	Status	HI	—	3.0	3.3	3.6	V
		LO	—	0	—	0.8	V
VBL Rising Time	Tr1	—	30	—	—	ms	10%-90%V _{BL}
VBL Falling Time	Tf1	—	30	—	—	ms	
Control Signal Rising Time	Tr	—	—	—	100	ms	
Control Signal Falling Time	Tf	—	—	—	100	ms	
PWM Signal Rising Time	TPWMR	—	—	—	50	us	
PWM Signal Falling Time	TPWMF	—	—	—	50	us	
Input Impedance	Rin	—	1	—	—	MΩ	
PWM Delay Time	TPWM	—	100	—	—	ms	
BLON Delay Time	T _{on}	—	300	—	—	ms	
	T _{on1}	—	300	—	—	ms	
BLON Off Time	Toff	—	300	—	—	ms	

Note (1) The Dimming signal should be valid before backlight turns on by BLON signal. It is inhibited to change the internal/external PWM signal during backlight turn on period.

Note (2) The power sequence and control signal timing are shown in the following figure. For a certain reason, the inverter has a possibility to be damaged with wrong power sequence and control signal timing.

Note (3) While system is turned ON or OFF, the power sequences must follow as below descriptions:

Turn ON sequence: VBL → PWM signal → BLON

Turn OFF sequence: BLOFF → PWM signal → VBL

Note (4) When the Dynamic CR has been turned on, the skipped range of VIPWM 2.85~3.15V, is suggested to avoid the abnormal phenomenon.

Issue Date:Jul.01.2009

Model No.: V470H2-LH1

Approval

4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD Module Input

CNF1 Connector Pin Assignment (FI-RE51S-HF(JAE) or equivalent)

Pin	Name	Description	Note
1	GND	Ground	(1)
2	N.C.	No Connection	
3	N.C.	No Connection	
4	N.C.	No Connection	
5	N.C.	No Connection	
6	N.C.	No Connection	
7	N.C.	No Connection	
8	N.C.	No Connection	
9	GND	Ground	
10	CH3_0N	Third Pixel Negative LVDS differential data input. Channel 0	(4)
11	CH3_0P	Third Pixel Positive LVDS differential data input. Channel 0	
12	CH3_1N	Third Pixel Negative LVDS differential data input. Channel 1	
13	CH3_1P	Third Pixel Positive LVDS differential data input. Channel 1	
14	CH3_2N	Third Pixel Negative LVDS differential data input. Channel 2	
15	CH3_2P	Third Pixel Positive LVDS differential data input. Channel 2	
16	GND	Ground	
17	CH3_CLKN	Third Pixel Negative LVDS differential clock input.	
18	CH3_CLKP	Third Pixel Positive LVDS differential clock input.	
19	GND	Ground	
20	CH3_3N	Third Pixel Negative LVDS differential data input. Channel 3	(4)
21	CH3_3P	Third Pixel Positive LVDS differential data input. Channel 3	
22	CH3_4N	Third Pixel Negative LVDS differential data input. Channel 4	
23	CH3_4P	Third Pixel Positive LVDS differential data input. Channel 4	
24	N.C.	No Connection	(1)
25	N.C.	No Connection	
26	CH4_0N	Fourth Pixel Negative LVDS differential data input. Channel 0	(4)
27	CH4_0P	Fourth Pixel Positive LVDS differential data input. Channel 0	
28	CH4_1N	Fourth Pixel Negative LVDS differential data input. Channel 1	
29	CH4_1P	Fourth Pixel Positive LVDS differential data input. Channel 1	
30	CH4_2N	Fourth Pixel Negative LVDS differential data input. Channel 2	
31	CH4_2P	Fourth Pixel Positive LVDS differential data input. Channel 2	
32	GND	Ground	
33	CH4_CLKN	Fourth Pixel Negative LVDS differential clock input.	
34	CH4_CLKP	Fourth Pixel Positive LVDS differential clock input.	
35	GND	Ground	(4)
36	CH4_3N	Fourth Pixel Negative LVDS differential data input. Channel 3	
37	CH4_3P	Fourth Pixel Positive LVDS differential data input. Channel 3	
38	CH4_4N	Fourth Pixel Negative LVDS differential data input. Channel 4	
39	CH4_4P	Fourth Pixel Positive LVDS differential data input. Channel 4	
40	N.C.	No Connection	(1)
41	N.C.	No Connection	

CNF2 Connector Pin Assignment (FI-RE51S-HF (JAE) or equivalent)

Pin	Name	Description	Note
1	N.C.	No Connection	(1)
2	N.C.	No Connection	
3	N.C.	No Connection	
4	N.C.	No Connection	
5	ODSEL	Overdrive Lookup Table Selection	(3)
6	N.C.	No Connection	(1)
7	SELLVDS	LVDS data format Selection	(2)
8	N.C.	No Connection	(1)
9	N.C.	No Connection	
10	DCREN	Dynamic Contrast Ratio Enable	(5)
11	GND	Ground	
12	CH1_0N	First Pixel Negative LVDS differential data input. Channel 0	(4)
13	CH1_0P	First Pixel Positive LVDS differential data input. Channel 0	
14	CH1_1N	First Pixel Negative LVDS differential data input. Channel 1	
15	CH1_1P	First Pixel Positive LVDS differential data input. Channel 1	
16	CH1_2N	First Pixel Negative LVDS differential data input. Channel 2	
17	CH1_2P	First Pixel Positive LVDS differential data input. Channel 2	
18	GND	Ground	
19	CH1_CLKN	First Pixel Negative LVDS differential clock input.	
20	CH1_CLKP	First Pixel Positive LVDS differential clock input.	
21	GND	Ground	
22	CH1_3N	First Pixel Negative LVDS differential data input. Channel 3	(4)
23	CH1_3P	First Pixel Positive LVDS differential data input. Channel 3	
24	CH1_4N	First Pixel Negative LVDS differential data input. Channel 4	
25	CH1_4P	First Pixel Positive LVDS differential data input. Channel 4	
26	N.C.	No Connection	(1)
27	N.C.	No Connection	
28	CH2_0N	Second Pixel Negative LVDS differential data input. Channel 0	(4)
29	CH2_0P	Second Pixel Positive LVDS differential data input. Channel 0	
30	CH2_1N	Second Pixel Negative LVDS differential data input. Channel 1	
31	CH2_1P	Second Pixel Positive LVDS differential data input. Channel 1	
32	CH2_2N	Second Pixel Negative LVDS differential data input. Channel 2	
33	CH2_2P	Second Pixel Positive LVDS differential data input. Channel 2	
34	GND	Ground	
35	CH2_CLKN	Second Pixel Negative LVDS differential clock input.	
36	CH2_CLKP	Second Pixel Positive LVDS differential clock input.	
37	GND	Ground	
38	CH2_3N	Second Pixel Negative LVDS differential data input. Channel 3	(4)
39	CH2_3P	Second Pixel Positive LVDS differential data input. Channel 3	
40	CH2_4N	Second Pixel Negative LVDS differential data input. Channel 4	
41	CH2_4P	Second Pixel Positive LVDS differential data input. Channel 4	
42	N.C.	No Connection	(1)
43	N.C.	No Connection	
44	GND	Ground	

45	GND	Ground	
46	GND	Ground	
47	N.C.	No Connection	(1)
48	Vin	Power input (+12V)	
49	Vin	Power input (+12V)	
50	Vin	Power input (+12V)	
51	Vin	Power input (+12V)	

Note (1) Please be reserved to open.

Note (2) Low or Open: VESA Format(default), connect to GND. High: JEIDA Format, connect to +3.3V.

Note (3) Overdrive lookup table selection. The overdrive lookup table should be selected in accordance with the frame rate to optimize image quality.

ODSEL	Note
L	Lookup table was optimized for 60 Hz frame rate.
H	Lookup table was optimized for 50 Hz frame rate.

Note (4) LVDS 4-Port Data Mapping

Port	CH of LVDS	Data Stream
1st Port	First pixel	1, 5, 9, , 1913, 1917
2nd Port	Second pixel	2, 6, 10, , 1914, 1918
3rd Port	Third pixel	3, 7, 11, , 1915, 1919
4th Port	Fourth pixel	4, 8, 12, , 1916, 1920

Note (5) Low : function disable (default), High : Dynamic Contrast Ratio function enable

5.2 BACKLIGHT UNIT

The pin configuration for the housing and the leader wire is shown in the table below.

CN3~CN26: BHR-04VS-1 (JST).

Pin	Name	Description	Wire Color
1	HV	High Voltage	Pink
2	HV	High Voltage	White

Note (1) The backlight interface housing for high voltage side is a model BHR-04VS-1, manufactured by JST. The mating header on inverter part number is SM02(12.0)B-BHS-1-TB(LF).

5.3 INVERTER UNIT

CN1: S14B-PH-SM4-TB(D)(LF)(JST) or equivalent

Pin №	Symbol	Feature
1	VBL	+24V
2		
3		
4		
5		
6	GND	GND
7		
8		
9		
10		
11	STATUS	Normal (3.3V) Abnormal(GND)
12	E_PWM	External PWM Control Signal
13	I_PWM	Internal PWM Control Signal
14	BLON	BL ON/OFF

Note (1) Pin 12: External PWM control (use pin 12): Pin 13 must open.

Note (2) Pin 13: Internal PWM control (use pin 13): Pin 12 must open.

Note (3) Pin 12 and Pin 13 can't open in the same period.

CN3~CN26: SM02(12.0)B-BHS-1-TB(LF)(JST) or equivalent

Pin №	Symbol	Description
1	CCFL HOT	CCFL high voltage
2	CCFL HOT	CCFL high voltage

5.4 BLOCK DIAGRAM OF INTERFACE

Issue Date:Jul.01.2009

Model No.: V470H2-LH1

Approval

AR0~AR9: First pixel R data
AG0~AG9: First pixel G data
AB0~AB9: First pixel B data
BR0~BR9: Second pixel R data
BG0~BG9: Second pixel G data
BB0~BB9: Second pixel B data
DE: Data enable signal
DCLK: Data clock signal

Notes (1) The system must have the transmitter to drive the module.

Notes (2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.

Notes (3) Two pixel data send into the module for every clock cycle. The first pixel of the frame is odd pixel and the second pixel is even pixel.

5.5 LVDS INTERFACE

VESA Format : SELLVDS = L or Open

JEIDA Format : SELLVDS = H

AR0~AR9: First Pixel R Data (9; MSB, 0; LSB)

AG0~AG9: First Pixel G Data (9; MSB, 0; LSB)

AB0~AB9: First Pixel B Data (9; MSB, 0; LSB)

DE : Data enable signal

DCLK : Data clock signal

RSVD : Reserved

5.6 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 10-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data input.

Color		Data Signal																														
		Red										Green										Blue										
		R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	G9	G8	G7	G6	G5	G4	G3	G2	G1	G0	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0	
Basic Colors	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	Red	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	Green	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	
	Blue	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Cyan	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Magenta	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Gray Scale Of Red	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red (1)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red (2)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		
	Red (1021)	1	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red (1022)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red (1023)	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale Of Green	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		
	Green (1021)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green (1022)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Green (1023)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray Scale Of Blue	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		
	Blue (1021)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0
	Blue (1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Blue (1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

(Ta = 25 ± 2 °C)

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Typ.	Max.	Unit	Note
LVDS Receiver Clock	Frequency	1/Tc	60	74.25	80	MHz	-
	Input cycle to cycle jitter	Trcl	-	-	200	ps	-
LVDS Receiver Data	Setup Time	Tlvsu	600	-	-	ps	-
	Hold Time	Tlvhd	600	-	-	ps	-
Vertical Active Display Term	Frame Rate		-	120	-	Hz	
	Total	Tv	1115	1125	1135	Th	Tv=Tvd+Tvb
	Display	Tvd	1080	1080	1080	Th	-
	Blank	Tvb	35	45	55	Th	-
Horizontal Active Display Term	Total	Th	1050	1100	1150	Tc	Th=Thd+Thb
	Display	Thd	960	960	960	Tc	-
	Blank	Thb	90	140	190	Tc	-

Note : Since the module is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this module would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM

LVDS INPUT INTERFACE TIMING DIAGRAM

6.2 POWER ON/OFF SEQUENCE

(Ta = 25 ± 2 °C)

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should follow the diagram below.

Note.

Power ON/OFF Sequence

- (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- (3) In case of VCC is in off level, please keep the level of input signals on the low or high impedance. If T2<0, that maybe cause electrical overstress failures.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Ta	25±2	°C
Ambient Humidity	Ha	50±10	%RH
Supply Voltage	VCC	12	V
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"		
Lamp Current	IL	9.3±0.5	mA
Oscillating Frequency (Inverter)	FW	40±3	KHz
Vertical Frame Rate	Fr	120	Hz

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in 7.1.

Item	Symbol	Condition	Min.	Typ.	Max.	Unit	Note
Contrast Ratio	CR	$\theta_x=0^\circ, \theta_y=0^\circ$ Viewing angle at normal direction	(3000)	(4000)	-	-	Note (2)
Response Time	Gray to gray		-	(4.5)	(9)	ms	Note (3)
Center Luminance of White	LC		(400)	(500)	-	cd/m ²	Note (4)
White Variation	δW		-	-	(1.3)	-	Note (7)
Cross Talk	CT		-	-	(4)	%	Note (5)
Color Chromaticity	Red	Rx	Typ. -0.03	(0.643)	Typ. +0.03	-	-
		Ry		(0.332)		-	
	Green	Gx		(0.272)		-	
		Gy		(0.599)		-	
	Blue	Bx		(0.152)		-	
		By		(0.067)		-	
	White	Wx		(0.285)		-	
		Wy		(0.295)		-	
	Color Gamut	C.G		(68)		%	NTSC
Viewing Angle	Horizontal	θ_x+	CR≥20	80	88	-	Deg. Note (1)
		θ_x-		80	88	-	
	Vertical	θ_Y+		80	88	-	
		θ_Y-		80	88	-	

Note (1) Definition of Viewing Angle (θ_x, θ_y):

Viewing angles are measured by Eldim EZ-Contrast 160R

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

$$\text{Contrast Ratio (CR)} = \frac{\text{Surface Luminance with all white pixels}}{\text{Surface Luminance with all black pixels}}$$

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (6).

Note (3) Definition of Gray-to-Gray Switching Time:

Optical Response

The driving signal means the signal of gray level 0, 124, 252, 380, 508, 636, 764, 892 and 1023.

Gray to gray average time means the average switching time of gray level 0, 124, 252, 380, 508, 636, 764, 892, 1023 to each other.

Note (4) Definition of Luminance of White (LC, LAVE):

Measure the luminance of gray level 1023 at center point and 5 points

LC = L (5), where L (X) is corresponding to the luminance of the point X at the figure in Note (6).

Issue Date:Jul.01.2009

Model No.: V470H2-LH1

Approval

Note (5) Definition of Cross Talk (CT):

$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where:

Y_A = Luminance of measured location without gray level 0 pattern (cd/m^2)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m^2)

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 1023 at 5 points

$$\delta W = \text{Maximum } [L(1), L(2), L(3), L(4), L(5)] / \text{Minimum } [L(1), L(2), L(3), L(4), L(5)]$$

8. PRECAUTIONS

8.1 ASSEMBLY AND HANDLING PRECAUTIONS

- [1] Do not apply rough force such as bending or twisting to the module during assembly.
- [2] It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- [3] Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight.
- [4] Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- [5] Do not plug in or pull out the I/F connector while the module is in operation.
- [6] Do not disassemble the module.
- [7] Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- [8] Moisture can easily penetrate into LCD module and may cause the damage during operation.
- [9] When storing modules as spares for a long time, the following precaution is necessary.
 - [9.1] Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity without condensation.
 - [9.2] The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.
- [10] When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

8.2 SAFETY PRECAUTIONS

- [1] The startup voltage of a Backlight is approximately 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the Backlight unit.
- [2] If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- [3] After the module's end of life, it is not harmful in case of normal operation and storage.

Issue Date:Jul.01.2009

Model No.: V470H2-LH1

Approval

9. DEFINITION OF LABELS

9.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

Model Name: V470H2-LH1

Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID: X X X X X X X Y M D L N N N N

Serial ID includes the information as below:

Manufactured Date:

Year: 0~9, for 2000~2009

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I ,O, and U.

Issue Date:Jul.01.2009

Model No.: V470H2-LH1

Approval

Revision Code: Cover all the change

Serial No.: Manufacturing sequence of product

Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

www.panlook.com

Issue Date:Jul.01.2009

Model No.: V470H2-LH1

Approval

10. PACKAGING

10.1 PACKAGING SPECIFICATIONS

- (1) 3 LCD TV modules / 1 Box
- (2) Box dimensions : 1190(L)x280(W)x725(H)mm
- (3) Weight : approximately 42 Kg (3 modules per box)

10.2 PACKAGING METHOD

Figures 10-1 and 10-2 are the packing method

Figure.10-1 packing method

Air Transportation &
Sea / Land Transportation (40ft Container)

Gross: 351kg

Sea / Land Transportation (40ft HQ Container)

Gross: 534kg

Figure.10-2 packing method

Issue Date: Jul.01.2009
Model No.: V470H2-LH1

Approval

11. MECHANICAL CHARACTERISTICS

Issue Date:Jul.01.2009
Model No.: V470H2-LH1

Approval

MARK	DESCRIPTION	DATE	CHANGE BY	APPROVAL BY	ECN NO.
▲	Modified Nov.30, 2009	05/19/2009	Ru YOUNG	Davis Wong	
▲	First release.	02/04/2009	Chen Lung Su	Davis Wong	

Version 2.0

Issue Date:Jul.01.2009
Model No.: V470H2-LH1

Approval

