- 1. a) $x = 3 4t \Rightarrow \star : \frac{-x+3}{4} = t$
 - $y = 2 3t \stackrel{\star}{\Rightarrow} y = 2 3(\frac{-x+3}{4}) \equiv y = \frac{3x}{4} \frac{1}{4}$

- b) $= x = 1 t^2$
 - y = t 2
 - $-2 \le t \le 2$
 - No es función

- $c) \quad \bullet \quad x = t^2 + t$
 - $y = t^2 t$
 - $-2 \le t \le 2$
 - No es función

- $d) \quad \bullet \quad x = t^2$
 - $y = t^3 4t$
 - $-3 \le t \le 3$
 - No es función

- 2. a) r = 2
 - p = (0,0)
 - $x^2 + y^2 = 4$

$$\begin{cases} x(t) = 2 \cdot \cos(t) \\ y(t) = 2 \cdot \sin(t) \\ 0 \le t < 2\pi \end{cases}$$

\overline{t}	x	y
$\frac{\pi}{2}$	0	2
$\frac{\pi}{3\pi}$	-2	0
$\frac{3\pi}{2}$	0	-2

- b) r = 1
 - p = (1,3)
 - $(x-1)^{2} + (y-3)^{2} = 1$ $\int x(t) = 1 + \cos(t)$ $y(t) = 3 + \sin(t)$

Į	y(t) =	3 + si	$\mathbf{n}(t)$
l	$0 \le t <$	~	` '

t	x	y
$\frac{\pi}{2}$	1	4
π	0	3
$\frac{3\pi}{2}$	1	2

- c) r = 3
 - p = (0, 2)
 - $(x)^2 + (y-2)^2 = 9$

$$\begin{cases} x(t) = 3 \cdot \cos(t) \\ y(t) = 2 + 3\sin(t) \\ 0 \le t < 2\pi \end{cases}$$

t	x	y
$\frac{\pi}{2}$	0	5
π	-3	2
$\frac{3\pi}{2}$	0	-1

3. a)

4.
$$a$$
) $\star : r = -2\sin(\theta)$

•
$$x = \cos(\theta) * r \stackrel{\star}{\Rightarrow} x = \cos(\theta) \cdot (-2\sin(\theta))$$

•
$$x = \sin(\theta) * r \stackrel{\star}{\Rightarrow} y = -2\sin^2(\theta)$$

$$\begin{cases} x(t) = -2 \cdot \cos(t) \sin(t) \\ y(t) = -2 \sin^2(\theta) \\ 0 \le t < \pi \end{cases}$$

t	x	y
$\frac{\pi}{4}$	-1	-1
$\frac{\frac{\pi}{4}}{\frac{\pi}{2}}$	0	-2
π	0	0
$\frac{3\pi}{4}$	1	-1

$$b) \quad \bullet \quad \star : r = 1 - \cos(\theta)$$

•
$$x = r \cdot \cos(\theta) \stackrel{\star}{\Rightarrow} x = \cos(\theta) - \cos^2(\theta)$$

•
$$y = r \cdot \sin(\theta) \stackrel{\star}{\Rightarrow} y = \sin(\theta) - \sin(\theta) \cdot \cos(\theta)$$

$$r=\sqrt{x^2+t^2}\stackrel{\star}{\equiv}$$

$$\frac{\cos(\theta) = \frac{x}{\sqrt{x^2 + t^2}}}{\sqrt{x^2 + t^2}} = 1 - \cos(\theta) = \frac{x}{\sqrt{x^2 + y^2}}$$

$$\sqrt{x^2 + t^2} = 1 - \frac{x}{\sqrt{x^2 + y^2}} \equiv \frac{2x + 2}{\sqrt{x^2 + y^2}} = \frac{2x + 2}{\sqrt{x^2 + y^2}}$$

$$x^{2} + y^{2} = \sqrt{x^{2} + y^{2}} - x$$

$$\begin{cases} x(\theta) = \cos(\theta) - \cos^2(\theta) \\ y(\theta) = \sin(\theta) - \sin(\theta) \cdot \cos(\theta) \\ 0 \le \theta < 2\pi \end{cases}$$

t	x	y
0	0	0
π	-2	0

