

# Data Warehouse Design

"Employee Domain"

Star Schema

Hijir Della Wirasti

17 November 2024

https://github.com/hijirdella/Data-Warehouse-Design.git https://www.linkedin.com/in/hijirdella/

### **Table of contents**

01

**Objectives** 

02

**Dataset Selection** 

03

**ERD Diagram** 

04

**Schema Description** 

05

**Data Mart** 

06

Conclusion



**Objectives** of the project

### **Objectives**

### Objective:

- Design a Data Warehouse (DWH) schema for the selected domain.
- 2. Create an Entity-Relationship Diagram (ERD).
- 3. Describe the schema as either a Star Schema.
- 4. Provide three sample queries for Data Mart tables.

### The goal

- 1. ERD Diagram
- 2. Star Schema Description
- 3. Sample Queries (Data Mart Tables)





# **Dataset**Selection

### **Dataset Selection**



### **Selected Dataset:**

**Employee SQL Dataset** 

### **Domain Overview:**

Employee records for HR analytics

### **Dataset Selection**





| 1    | SELECT * FROM public.fact_employee_performance ORDER BY performance_id ASC |                |                                    |                       |  |  |  |  |  |  |
|------|----------------------------------------------------------------------------|----------------|------------------------------------|-----------------------|--|--|--|--|--|--|
| Data | Output Message                                                             | s Notification | ns                                 |                       |  |  |  |  |  |  |
| =+   |                                                                            |                |                                    |                       |  |  |  |  |  |  |
|      | performance_id /<br>[PK] integer                                           | employee_id /  | performance_score double precision | performance_date date |  |  |  |  |  |  |
| 1    | 1                                                                          | 1              | 36.4784694903924                   | 2022-10-13            |  |  |  |  |  |  |
| 2    | 2                                                                          | 2              | 38.40222708316501                  | 2020-07-31            |  |  |  |  |  |  |
| 3    | 3                                                                          | 3              | 61.0410367577725                   | 2022-06-12            |  |  |  |  |  |  |
| 4    | 4                                                                          | 4              | 15.068316886181066                 | 2020-02-22            |  |  |  |  |  |  |
| 5    | 5                                                                          | 5              | 5 54.08936348060487                |                       |  |  |  |  |  |  |
| 6    | 6                                                                          | 6              | 80.67333418394043                  | 2022-03-24            |  |  |  |  |  |  |
| 7    | 7                                                                          | 7              | 45.78888591104575                  | 2022-04-21            |  |  |  |  |  |  |
| 8    | 8                                                                          | 8              | 48.15436852138222                  | 2022-08-28            |  |  |  |  |  |  |
| 9    | 9                                                                          | 9              | 94.05782915152795                  | 2022-03-25            |  |  |  |  |  |  |
| 10   | 10                                                                         | 10             | 95.32636516472932                  | 2021-07-26            |  |  |  |  |  |  |
| 11   | 11                                                                         | 11             | 83.25610647569377                  | 2020-11-26            |  |  |  |  |  |  |
| 12   | 12                                                                         | 12             | 12 28.01159941513005               |                       |  |  |  |  |  |  |
| 13   | 13                                                                         | 13             | 45.386553647844565                 | 2020-01-09            |  |  |  |  |  |  |
| 14   | 14                                                                         | 14             | 53.4976948478143                   | 2020-12-27            |  |  |  |  |  |  |
| Tota | al rows: 1000 of 100                                                       | 0 Query com    | plete 00:00:00.317                 | 2022 00 10            |  |  |  |  |  |  |



**ERD**Diagram

ERD Diagram (1)



The ERD (Entity-Relationship Diagram) represents a **star schema** design for an employee performance data warehouse. It consists of one fact table and three dimension tables, structured as follows:

#### **Fact Table**

- 1. fact\_employee\_performance
  - performance\_id (Primary Key): Unique identifier for each performance record.
  - employee\_id (Foreign Key): Links to the dim\_employee table, representing the employee being evaluated.
  - performance\_score: Numerical score measuring the employee's performance.
  - o **performance\_date**: Date of the performance evaluation.

This table stores the core business metrics and links to the dimension tables for detailed context.

ERD Diagram (2)



### **Dimension Tables**

### 1. dim\_department

- department\_id (Primary Key): Unique identifier for each department.
- department\_name: Name of the department (e.g., HR, IT, Sales).

Provides descriptive information about departments employees are associated with.

#### 2. dim\_education

- education\_id (Primary Key): Unique identifier for each education level.
- education\_level: Describes the education qualification (e.g., Bachelor's Degree, Master's Degree).

Contains data on employee education levels.

ERD Diagram (3)



### dim\_employee

- employee\_id (Primary Key): Unique identifier for each employee.
- **first\_name** and **last\_name**: Basic personal information.
- birt\_date: Date of birth.
- hire\_date: Date the employee was hired.
- gender: Gender of the employee.
- **department\_id** (Foreign Key): Links to the dim\_department table.
- education\_id (Foreign Key): Links to the dim\_education table.

Provides detailed information about employees, including their demographic details, department, and education.

ERD Diagram (4)



### **Relationships**

- The fact\_employee\_performance table connects to the dim\_employee table using employee\_id, enabling analysis of employee performance scores.
- The dim\_employee table connects to:
  - dim\_department through department\_id to relate employees to their departments.
  - dim\_education through education\_id to associate employees with their education qualifications.

This schema structure allows analytical queries to easily combine performance metrics with employee details, department context, and educational background, making it ideal for reporting and analysis.



# **Schema**Description

### Schema Description

### **Schema Description**

The schema is designed as a star schema to facilitate efficient analytical queries and reporting for employee performance data.

### Relationships

- fact\_employee\_performance → dim\_employee: Linked via employee\_id, providing employee-specific context to performance metrics.
- dim\_employee → dim\_department:
   Linked via department\_id, enabling grouping or filtering performance data by department.
- dim\_employee → dim\_education:
   Linked via education\_id, allowing performance comparisons based on education levels.

### Purpose of the Schema

This schema enables comprehensive analysis of employee performance by connecting it to demographic, departmental, and educational contexts. It is optimized for:

- 1. Aggregating performance metrics (e.g., average scores by department or education level).
- 2. Tracking trends over time (via performance\_date).
- 3. Cross-dimensional reporting to identify patterns and insights for strategic decision-making.

This star schema structure ensures simplicity, scalability, and ease of use for reporting and analysis.



**Data** Mart

## Data Mart 1. Performance by Department

- 1 SELECT \*
- 2 FROM data\_mart.dm\_performance\_by\_department
- 3 ORDER BY avg\_performance\_score DESC;

| Data | Output Messag         | es Notifications                        |                                  |                                        |                                        |                                        |  |  |  |  |
|------|-----------------------|-----------------------------------------|----------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|--|--|--|--|
| =+   |                       |                                         |                                  |                                        |                                        |                                        |  |  |  |  |
|      | department_id integer | department_name character varying (100) | total_performance_records bigint | avg_performance_score double precision | max_performance_score double precision | min_performance_score double precision |  |  |  |  |
| 1    | 10                    | Administration                          | 93                               | 53.89606946797804                      | 98.53116992937917                      | 1.1635648925892195                     |  |  |  |  |
| 2    | 5                     | Operations                              | 102                              | 51.323257590568915                     | 98.40633043792111                      | 0.40534835236372135                    |  |  |  |  |
| 3    | 2                     | Finance                                 | 95                               | 50.706955256809906                     | 99.99345392794964                      | 0.15092794211510885                    |  |  |  |  |
| 4    | 3                     | Marketing                               | 87                               | 50.18430453138673                      | 99.14297853905703                      | 1.7370520309907267                     |  |  |  |  |
| 5    | 4                     | IT                                      | 73                               | 50.10862996994088                      | 97.95346518123212                      | 4.220286700932396                      |  |  |  |  |
| 6    | 6                     | Sales                                   | 117                              | 49.45306361044393                      | 99.128372523017                        | 0.45168581411014763                    |  |  |  |  |
| 7    | 9                     | Customer Service                        | 111                              | 49.034953497140314                     | 99.95289276267422                      | 0.039422602567884546                   |  |  |  |  |
| 8    | 7                     | Legal                                   | 109                              | 47.764074868224895                     | 98.54524518444978                      | 1.71110360014457                       |  |  |  |  |
| 9    | 1                     | HR                                      | 104                              | 47.00113417872205                      | 99.47554551437605                      | 0.5512051713364441                     |  |  |  |  |
| 10   | 8                     | Research and Development                | 109                              | 46.75672340014453                      | 98.3939999617546                       | 0.40690617173697596                    |  |  |  |  |

### Data Mart 1. Performance by Department

### **Performance Analysis Summary:**

- **Top Performers**: Administration (53.89 avg, 98.53 max) and Operations (51.32 avg, 98.40 max) exhibit consistent high performance, setting benchmarks for other departments.
- **Mid Performers**: *Finance* (50.70), *Marketing* (50.18), and *IT* (50.10) maintain steady averages, reflecting reliable performance.
- **Low Performers**: *R&D* (46.75 avg), *Customer Service*, and *Legal* demonstrate lower averages, with wide gaps between min and max scores, signaling potential issues.
- **High Variance Across Departments**: Departments like *Legal* and *Customer Service* show significant differences between max and min scores, suggesting diverse performance levels. Conversely, *Administration* and *Operations* have more consistent scores.
- Insights: Improve underperforming departments through training or team restructuring, investigate causes of variance in Legal and Customer Service, and leverage top-performing departments as models for success.

## Data Mart 2. Performance by Education

- 1 SELECT \*
- 2 FROM data\_mart.dm\_performance\_by\_education
- 3 ORDER BY avg\_performance\_score DESC;

Data Output Messages Notifications

| =+ | 1           | <b>~</b> □      | ~                   |                                        | 40  | *                  | ~                                |                                        |                                        |                                        |                     |
|----|-------------|-----------------|---------------------|----------------------------------------|-----|--------------------|----------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|---------------------|
|    | edu<br>inte | cation_i<br>ger | d 🙃                 | education_level character varying (50) |     | (50)               | total_performance_records bigint | avg_performance_score double precision | max_performance_score double precision | min_performance_score double precision |                     |
| 1  | 2 A         |                 | Associate Degree    |                                        | е   | 214                | 51.57069875349984                | 99.48211848805857                      | 0.5512051713364441                     |                                        |                     |
| 2  |             |                 | 4                   | Master's Degree                        |     |                    | 193                              | 49.86262604346513                      | 99.99345392794964                      | 0.039422602567884546                   |                     |
| 3  |             |                 | 1                   | High School                            |     |                    | 194                              | 49.68513783950901                      | 99.47554551437605                      | 0.15092794211510885                    |                     |
| 4  |             |                 | 3 Bachelor's Degree |                                        | 209 | 49.228151487257485 | 99.128372523017                  | 0.40690617173697596                    |                                        |                                        |                     |
| 5  |             |                 | 5                   | Phl                                    | D   |                    |                                  | 190                                    | 46.95257079630433                      | 98.73801632977144                      | 0.24081114864653586 |

### Data Mart 2. Performance by Education

### **Performance Analysis Summary:**

- Top Performers:
  - a. **Associate Degree** has the highest average score (51.57), reflecting consistent performance.
  - b. **Master's Degree** follows with an average of 49.86 and the highest max score (99.99), showing exceptional individual potential.
- Mid-Level Performers:
  - a. **High School** graduates (49.68) outperform Bachelor's (49.22), showcasing strong capabilities despite lower education levels.
- Low Performers:
  - a. **PhD** holders have the lowest average (46.95), potentially due to role mismatch or overqualification.
- High Variance:
  - a. PhD and Bachelor's show wider score ranges, suggesting performance inconsistencies.

#### Recommendations:

- Leverage Associate and Master's Degree employees for consistent results.
- Investigate performance gaps for PhD holders and align roles better.
- Target training for Bachelor's and High School groups to reduce variability.

## Data Mart 3. Performance by Gender (1)

| 1 SELECT * FROM data_mart.dm_performance_by_gender |                              |                                  |                                        |                                        |                                        |  |  |  |  |
|----------------------------------------------------|------------------------------|----------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|--|--|--|--|
| Data                                               | Output Messages              | Notifications                    |                                        |                                        |                                        |  |  |  |  |
|                                                    |                              |                                  |                                        |                                        |                                        |  |  |  |  |
|                                                    | gender character varying (6) | total_performance_records bigint | avg_performance_score double precision | max_performance_score double precision | min_performance_score double precision |  |  |  |  |
| 1                                                  | Female                       | 271                              | 49.33558038574339                      | 99.47554551437605                      | 0.45168581411014763                    |  |  |  |  |
| 2                                                  | Male                         | 729                              | 49.57237713045363                      | 99.99345392794964                      | 0.039422602567884546                   |  |  |  |  |

### **Insights from Gender-Based Performance Data:**

#### 1. Performance Comparison:

 Males have a slightly higher average performance score (49.57) than females (49.33), indicating comparable performance across genders with minor differences.

#### 2. Max and Min Scores:

- Males achieved the highest maximum performance score (99.99), while females reached 99.47, showing high-performing individuals in both groups.
- Females have a higher minimum score (0.45) compared to males (0.03), suggesting fewer outliers or underperformers in the female group.

## Data Mart 3. Performance by Gender (2)

#### 3. Participation:

a. Males contribute significantly more to total performance records (729 vs. 271), possibly reflecting a larger workforce or more evaluated roles.

#### Recommendations:

- Ensure equal growth opportunities and address participation gaps to enhance diversity.
- Investigate factors contributing to the narrower score range in females for potential best practices.

## Data Mart 4. Performance Trends Over Time

| 127<br>128<br>129 | Performance Trends Over Time  SELECT *  FROM data mart.dm performance trends |                                  |                                        |                                        |                                        |  |  |  |  |  |  |
|-------------------|------------------------------------------------------------------------------|----------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|--|--|--|--|--|--|
| 130               | ORDER BY performance_month;                                                  |                                  |                                        |                                        |                                        |  |  |  |  |  |  |
| Data              | Output Messages Not                                                          | ifications                       |                                        |                                        |                                        |  |  |  |  |  |  |
| =+                |                                                                              | <u>*</u> ~                       |                                        |                                        |                                        |  |  |  |  |  |  |
|                   | performance_month timestamp with time zone                                   | total_performance_records bigint | avg_performance_score double precision | max_performance_score double precision | min_performance_score double precision |  |  |  |  |  |  |
| 1                 | 2020-01-01 00:00:00+07                                                       | 28                               | 44.052530019505234                     | 98.40633043792111                      | 6.147366379212982                      |  |  |  |  |  |  |
| 2                 | 2020-02-01 00:00:00+07                                                       | 24                               | 46.01416770354516                      | 97.60180611491944                      | 0.15092794211510885                    |  |  |  |  |  |  |
| 3                 | 2020-03-01 00:00:00+07                                                       | 30                               | 51.41198085569371                      | 94.7649855534654                       | 0.5512051713364441                     |  |  |  |  |  |  |
| 4                 | 2020-04-01 00:00:00+07                                                       | 20-04-01 00:00:00+07 25          |                                        | 94.38668820188005                      | 4.700922114065942                      |  |  |  |  |  |  |
| 5                 | 2020-05-01 00:00:00+07                                                       | 27                               | 42.62559169162599                      | 88.39794289375895                      | 4.195714017058982                      |  |  |  |  |  |  |
| 6                 | 2020-06-01 00:00:00+07                                                       | 31                               | 54.02221764790315                      | 96.32558183269526                      | 2.556657798173201                      |  |  |  |  |  |  |
| 7                 | 2020-07-01 00:00:00+07                                                       | 30                               | 45.269302793283984                     | 97.07536915010795                      | 6.962532627002149                      |  |  |  |  |  |  |
| 8                 | 2020-08-01 00:00:00+07                                                       | 40                               | 52.554763701350886                     | 98.3939999617546                       | 0.40690617173697596                    |  |  |  |  |  |  |
| 9                 | 2020-09-01 00:00:00+07                                                       | 43                               | 54.86500964135037                      | 96.0307629090104                       | 2.909867588641335                      |  |  |  |  |  |  |
| 10                | 2020-10-01 00:00:00+07                                                       | 18                               | 40.26845274843077                      | 98.34831252250262                      | 0.9858322954326759                     |  |  |  |  |  |  |
| 11                | 2020-11-01 00:00:00+07                                                       | 21                               | 51.524758209309915                     | 86.62816016205352                      | 15.455561539278007                     |  |  |  |  |  |  |
| 12                | 2020-12-01 00:00:00+07                                                       | 31                               | 57.61032734755107                      | 99.128372523017                        | 2.2629230016597335                     |  |  |  |  |  |  |
| Tota              | al rows: 36 of 36 Ouery co                                                   | omplete 00:00:00.175             |                                        |                                        | L                                      |  |  |  |  |  |  |

### Data Mart 4. Performance Trends Over Time

### **Insights:**

- 1. **Performance Fluctuations:** Average scores vary, peaking in October 2020 (54.86) and dipping in April 2020 (42.62), indicating seasonal or workload impacts.
- 2. **Consistent Top Scores:** Maximum scores stay near 99, showing strong top performers throughout.
- 3. **Low Scores:** Minimum scores highlight occasional underperformance, requiring targeted interventions.
- 4. **Growing Records:** An increase in performance records suggests expanding workforce or improved tracking.

Focus on low-performance periods for improvements and replicate strategies from high-performing months.



# Conclusion

### Conclusion on Schema and Data Mart Design

The schema follows a **star schema** structure, enabling efficient querying and data aggregation. The **dimensional tables** (e.g., dim\_department, dim\_education, dim\_employee) provide descriptive attributes, while the **fact table** (fact\_employee\_performance) captures measurable performance metrics, establishing clear relationships.

### **Key Benefits of the Design:**

#### Optimized Query Performance:

 The star schema minimizes joins by centralizing performance metrics in the fact table, making aggregations straightforward.

#### 2. Scalability and Flexibility:

 Additional dimensions (e.g., dim\_project, dim\_region) can be added without disrupting the schema's core structure.

### 3. Clear Analytical Objectives:

 The schema focuses on employee performance, allowing targeted analysis across departments, education levels, and gender.

# Thanks!

### Do you have any questions?

hijirdw@gmail.com https://github.com/hijirdella https://www.linkedin.com/in/hijirdella/

