Universidade Federal de Roraima Departamento de Ciência da Computação Introdução a Sistemas Embarcados

Atividade - Aula 09

Prazo de Entrega: 15/03/2021

Aluno: André Leandro Schillreff dos Santos

[Questão – 01] Defina Microcontrolador e diferencie de Microprocessador.

Microcontrolador pode ser definido sendo um microprocessador de próposito especial, o mesmo contêm todos os circuitos integrados, periféricos necessários aos equipamentos normalmente utilizados na área de controle de processos.

A diferença entre microcontrolador e microprocessador é que o primeiro é um único circuito integrado onde estão um microprocessador, memórias de dados e programas, além de diversos periféricos de entrada e saída, já o segundo contém apenas um processador no circuito integrado, ele não dispõe de periféricos de entrada e saída e nem memórias integradas ao circuito.

[Questão - 02] Dado o esquema de pinagem do microcontrolador 8051 abaixo, descreva a função dos pinos em relação as suas portas.

1	P1.0	•		Vcc	40	
2 3 4 5 6 7 8 9 RXD 10				P0.0	39	A DO
	P1.1	8051 PO		11.5 15-11	38	-AD0
	P1.2		51	P0.1	37	-AD1
	P1.3		P0.2	36	-AD2	
	P1.4			P0.3	35	-AD3
	P1.5			P0.4	34	-AD4
	P1.6			P0.5	33	-AD5
	P1.7			P0.6		-AD6
	RST			P0.7	32	-AD7
	P3.0		*EA	/ VPP	31	-
TXD 11	P3.1		ALE /	PROG	30	-
*INT0 12	P3.2		*	PSEN	29	-03
*INT1 13	P3.3			P2.7	28	-A15
T0 14	P3.4			P2.6	27	-A14
T115	P3.5			P2.5	26	-A13
*WR16	P3.6			P2.4	25	-A12
*RD 17	P3.7			P2.3	24	-A11
18	XTAL2			P2.2	23	-A10
19					22	
20	XTAL1			P2.1	21	-A9
	Vss			P2.0		-A8

Os pinos 1 ao 8 são portas 1, cada um destes pinos pode ser configurado como uma entrada ou uma saída.

O pino 9 é RESET ou RST, um pulso lógico HI 5 Volts repõe o microcontrolador e ao aplicar um pulso lógico LO 0 Volts, o programa começa a execução a partir do início.

Os pinos 10 ao 17 são portas 3, igual à porta 1, cada um desses pinos podem servir como entrada ou saída. Além disso, todos eles possuem funções alternativas:

O pino 10 é RXD Serial entrada comunicação assíncrona ou Serial saída de comunicação síncrona.

O pino 11 é TXD Serial saída comunicação assíncrona ou saída de comunicação serial relógio síncrona.

- O pino 12 é INT0 interrupção 0 entrada.
- O pino 13 é INT1 Interrupção 1 de entrada.
- O pino 14 é T0 Contador 0 clock de entrada.
- O pino 15 é T1 Contador 1 entrada de clock.
- O pino 16 é WR Escrita-RAM externo adicional.
- O pino 17 é RD leitura da RAM externa.
- O pinos 18 e 19, X2, X1 entrada e saída do oscilador interno do microcontrolador.
- O pino 20 é o GND/terra -V.

O pinos 21 ao 28 são "portas 2", Se não houver intenção de utilizar memória externa então estes pinos da porta são configurados como entradas e saídas gerais. No caso de memória externa é usado, o byte de endereço mais elevado, isto é, endereços A8-A15 aparece nessa porta. Apesar de memória com capacidade de 64Kb não é usado, o que significa que nem todos os oito bits de porta são utilizados para a sua abordagem, o resto deles não estão disponíveis como entradas e saídas.

O pino 29 é SPEN, se uma ROM externo é usada para armazenar no programas, em soeguida, uma lógica zero 0 aparece nele toda vez que o microcontrolador lê um byte de memória.

O pino 30 é ALE . Antes da leitura da memória externa, o microcontrolador coloca o byte de endereço mais baixo A0-A7 em P0 e ativa a saída ALE. Depois de receber o sinal do pino ALE, o registro externo, geralmente 74HCT373 74HCT375 ou addon chip, memoriza o estado de P0 e usa-lo como um endereço de chip de memória. Imediatamente depois disso, o pino ALU é retornado a sua lógica de estado anterior e P0 é agora usado como um barramento de dados. Como se vê, a multiplexação de dados da porta é realizada por meio de um único circuito integrado adicional. Em outras palavras, esta porta é usada para dados e transmissão de endereço.

Pino 31 é EA . Ao aplicar a lógica zero a este pino, P2 e P3 são utilizados para transmissão de dados e endereço, sem levar em conta se há memória interna ou não. Isso significa que, mesmo um programa escrito para o microcontrolador, não será executado. Em vez disso, o programa escrito para ROM externo será executado. Através da aplicação de uma lógica para o pino EA, o microcontrolador irá usar duas memórias, primeiro interno, em seguida, externa.

Pinos 32 ao 39 são portas, igual à porta 2. se a memória externa não é usada, esses pinos podem ser usados como entradas e saídas gerais. Caso contrário, P0 é configurado como saída de endereço A0-A7, quando o pino ALE é colocada em alta 1 ou como saída de dados, quando o pino ALE é puxada para baixo 0.

Pino 40 é alimentação VCC +5 V.

Referências Bibliográficas:

8051 – O microcontrolaor da Intel. **Blog Nova Eletronica**, 2021. Disponível em: http://blog.novaeletronica.com.br/intel-8051/>. Acesso em 10 de março de 2021.

CARDOSO, Matheus. O que é um Microcontrolador. **leee Robotics e Automation Society**,2020. Disponível em: https://edu.ieee.org/br-ufcgras/o-que-e-um-microcontrolador/>. Acesso em 10 de março de 2021.