Tarea 1

Daniel Czarnievicz September 2018

Se puede acceder al repositorio donde se encuentra el código haciendo click aqui

1 Introducción

Simularemos los datos

```
N \sim Po(9) cantidad de observaciones x_i \sim Unif(0, 1) N observaciones y_i \sim Unif(0, 1) N observaciones
```

2 Simulaciones y tabla

```
N <- rpois(1, lambda=90)
x i <- runif(N, min=0, max=1)</pre>
y_i <- runif(N, min=0, max=1)</pre>
datos <- as_tibble(cbind(x_i, y_i))</pre>
a <- unclass(summary(datos))</pre>
dim(a) <- NULL</pre>
b <- sub(":.*", "", a)
a <- as.numeric(sub(".*:", "", a))</pre>
dim(a) < -c(6,2)
row.names(a) <- unique(b)</pre>
colnames(a) <- c("X", "Y")</pre>
print(xtable::xtable(a,
                        caption="Resumen de las variables X e Y",
                        digits=4,
                        label="tab:mytable"),
       type="latex")
```

En la Tabla 1 se observa que la mediana de las x es 0.5133.

	X	Y
Min.	0.0035	0.0006
1st Qu.	0.2971	0.2790
Median	0.5133	0.4280
Mean	0.5274	0.4462
3rd Qu.	0.7917	0.6548
Max.	0.9652	0.9860

Table 1: Resumen de las variables X e Y

3 Figura

```
datos %>%
    ggplot() +
    geom_point(aes(x_i, y_i)) +
    labs(x="X", y="Y") +
    theme(axis.ticks=element_blank())
```


Figure 1: Scatter plot de X y Y