CMPSC 465 Spring 2024

Data Structures & Algorithms Mehrdad Mahdavi and David Koslicki

Worksheet 2

Wednesday, January 24, 2023

1. Growth Rate. Sort the following expressions from slowest to fastest growth rate. (You may assume all logarithms have base 2.)

(a) $(\sqrt{2})^{\log n}$

(g) n^3

(m) $n^{(\log \log n)^2}$

(b) n^2

(h) log(n!)

(n) $2^{2^{2n+1}}$

(c) n!(d) (log n)!

(i) 2^{2^n} (j) $n^{\frac{1}{\log n}}$

(o) $2^{\log n}$

(e) $(\frac{3}{2})^n$

(k) $\log \log n$

(p) $2^{\sqrt{2\log n}}$

(f) $(\log n)^2$

(I) $n2^n$

- (q) $\sqrt{\log n}$
- **2. Find run time.** How long does the recursive multiplication algorithm (given below) take to multiply a non-negative *n*-bit number by a non-negative *m*-bit number? Justify your answer.

```
Algorithm 1 multiply(x,y)
```

```
Input: An n-bit integer x and an m-bit integer y, where x, y \ge 0

Output: Their product x \cdot y

if y = 0 then

return 0

end if

z = \text{multiply}(x, \lfloor \frac{y}{2} \rfloor)

if y = \text{even then}

return 2z

else

return x + 2z

end if
```

- **3. Computing Factorials.** Consider the problem of computing $N! = 1 \times 2 \times \cdots \times N$.
 - 1. If *N* is a *b*-bit number, how many bits long is N! (Θ notation suffices)?
 - 2. Consider the simple algorithm to compute N! that does the multiplication in sequence, $1 \times 2 \times 3 \times ... \times N$. Analyze its running time.
- **4. Fibonacci growth.** The Fibonacci numbers F_0 , F_1 , F_2 ... are defined by the recurrence $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$. In this problem, we will confirm that this sequence grows exponentially fast and obtain some bounds on its growth.
 - (a) Use induction to prove that $F_n \ge 2^{0.5n}$ for $n \ge 6$.

- (b) Find a constant c > 0 such that $F_n \ge 2^{cn}$ for all $n \ge 3$. Show that your answer is correct.
- (c) Find the maximum constant c > 0 for which $F_n = \Omega(2^{cn})$.