1 Евклидовы кольца, кольца главных идеалов, факториальные кольца

Определение 1.1 (Евклидово кольцо). R - ассоциативное, коммутативное кольцо с единицей, R - евклидово, если для каждого элемента a этого кольца существует его норма $\|a\|$.

Определение 1.2 (Евклидова норма). Это некоторая функция элемента кольца, такая что

- 1. $||a|| \in \omega$
- 2. если $a, b \neq 0$, то $||ab|| \ge \max(||a||, ||b||)$
- 3. если $a \neq 0$, то для любого b существуют d и r такие что b = da + r и $\|r\| < \|a\|$ или r = 0

Определение 1.3 (Кольцо главных идеалов). Кольцо главных идеалов - кольцо, в котором все идеалы главные

Теорема 1.1. *Каждое евклидово кольцо - кольцо главных идеалов* Доказательство.

Теорема 1.2. В кольце главных идеалов не существует бесконечно возрастающей цепи идеалов

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \dots$$

Доказательство.

Определение 1.4 (Простой элемент). Пусть R - ассоциативное, коммутативное кольцо с единицей, тогда a - простой, если из a=bc следует что b или c обратимы

Определение 1.5 (Факториальное кольцо). Пусть R - ассоциативное, коммутативное кольцо с единицей, тогда R - факториальное кольцо, если для каждого элемента $a \in R$

1. существует простые $b_1,...,b_n,$ такие что $a=b_1...b_n$

2. если $a=c_1...c_m$, где $c_1,...,c_m$ - простые, то m=n, существует перестановка σ , Такая что $c_i=e_ib_{\sigma(i)}$ Для обратимого e_i

Теорема 1.3. Существует нефакториальное кольцо

Теорема 1.4. R - целостное кольцо и $a \neq 0$, Тогда следующие условия эквивалентны

- 1. а необратимый
- 2. $aR \neq R$
- 3. Для любого $b \neq 0$ $abr \neq bR$
- 4. для некоторого $b \neq 0$ $abr \neq bR$

Доказательство.

 $1 \Rightarrow 2$

 $ab \neq 1$ для любого b, соответствено $aR \not\ni 1$, следовательно $aR \neq R$ $2 \Rightarrow 3$

Пусть $b \neq 0$. Допустим $abR = br \ni b$. Пусть для некоторого $e \in R$ верно abr = b, следовательно

$$arb - b = 0 \Rightarrow (ar - 1)b = 0 \Rightarrow ar - 1 = 0 \Rightarrow ar = 1$$

Теорема 1.5. пусть R - целостное кольцо главных идеалов, тогда R - факториальное

Доказательство.