High-content Analysis for Unusual Targets

Michelle Arkin UCSF

Our Mission

Provide UCSF with small molecule discovery capabilities to

- advance understanding of cell/protein function
- identify promising new targets and leads
- advance technologies for challenging targets

Why Do Lead Discovery in Academia?

- Academic research often drives biological innovation in medicine
- Academic research can also drive technological innovation in drug discovery
- Address major unmet medical needs that are neglected by the pharmaceutical industry

SMDC Cores and Functions

Screening & Informatics

- Liquid-handling robotics
- Deck of 180K small molecules
- Genome-wide siRNA screening
- Biochemical, high-content, and fragment screens
- Chemo-informatics

Lead Discovery

- Grant-funded collaborative model
- Medicinal chemistry (8 FTEs)
- In vitro & in silico ADME-Tox
- Multiple programs in diverse TAs
 Typanosomiasis Malaria Neurodegeneration Cancer

Technology Development

- Fragment screening (MS, SPR)
 - charter member of the CBC (NCI)
 - will focus on challenging targets
- Targeted prodrug technology

High Content Analysis In Screening

HCA: automated microscopy

- Multi-color fluorescence and bright field
- Fixed or live cell
- Automated data collection
- Image-analysis algorithms

Benefits

- Statistical rigor
- Subcellular localization
- Multi-parameteric readouts

INCell Analyzer 1000 (GE)

50% of SMDC screening projects use HCA in drug discovery, target discovery, and developmental biology

Target Discovery and Developmental Biology

Small-molecule modulators of ciliagenesis

Pancreas regeneration

Growth of kidney-cell cysts

Victoria Wu, Jeremy Reiter; Olov Andersson, Didier Stainier; Paul Brakeman

Challenges of Tropical Parasitic Diseases

Figure 1: Map showing geographic overlap and distribution of the seven most common neglected tropical diseases Reproduced with permission from Hotez.¹⁰

Challenges of Tropical Parasitic Diseases

- Parasites are endemic throughout the world
 - Kill millions of people, annually
 - Over 1B people at risk (200,000 infected with S. mansoni alone)
- Target product profiles account for poverty and challenges of distribution in rural and under-developed areas
- Traditionally, a poor linkage between drug-discovery technology and parasite expertise
- The Sandler Foundation supports the Center for Basic Research in Parasitic Disease
 - Mission: to provide a pipeline, from target discovery to clinical trials in Malaria, Leishmaniasis, HAT, Chagas' Disease, and Schistosomiasis
 - SMDC serves as the HTS core and the Medicinal Chemistry core for the Sandler Center

Five neglected tropical diseases

SANDLER CENTER
FOR BASIC RESEARCH
IN PARASITIC DISEASES

Recent Programs in Neglected Disease

- Cell-based and targeted discovery for Trypanosoma cruzi
- Cell-based assay for Leishmania
- Automated screen for Schistosoma mansoni
- Kinase-directed discovery for Trypanosoma brucei
- Targeted pro-drug therapy for P. falciparum
- HTS for Giardia, E. histolytica, Neglaria

SANDLER CENTER
FOR BASIC RESEARCH
IN PARASITIC DISEASES

Developing HCS Assay for Amastigote stage of T. *Cruzi*

- Causative agent of Chagas Disease
 - Insect-transmitted disease affecting 18 million people in rural Latin America
 - Acute phase (blood) is not completely cleared,
 leading to chronic phase (heart) and sudden
 heart failure

- Current treatments
 - Two antiques: benznidazole and nifurtimox
 - 180-day treatment cycle
- The Sandler Center is developing K11777, a vinyl sulfone inhibitor of the cysteine protease cruzain

Facilitating Lead Discovery for T. cruzi

Lead discovery assay funnel was lengthy and qualitative

Format: 96-well

Assay: 72-hour; cell-based *T. cruzi* growth inhibition

Readout: High-content analysis

Developing High-content Screen for T. cruzi

- Detect host nuclei and kinetoplast DNA with DAPI
- Simultaneous measurement of parasite inhibition and cytotoxicity
- Readily adapted to other strains and mammalian cell types

Identification of Non-peptidic Vinylsulfones

Bryant, Kerr, et al *Bioorg. Med. Chem. Lett.* **2009**, *19*, 6218-6221

SMDC-256047 bound to cruzain (1.75 Å)

Comparing 256047 (yellow) and K777 (blue)

SMDC Correlation between HCS Screen and Survival

			42-day assay 3-day assay		,	
Compound ID Chemotype		Chemotype	T. cruzi-infected J774 macrophage tested @ 10 uM (days survivial)	<i>T. cruzi</i> IC ₅₀ (uM)	Cell toxicity IC ₅₀ (uM)	Selectivity
	256123	vinylsulfone	> 30	0.4	8	20
	256122	vinylsulfone	> 30	2	> 20	> 10
	256157	vinylsulfone	> 30	2	20	10
	256162	vinylsulfone	> 30	2	18	9
	256037	vinylsulfone	toxic to macrophage	2	13	7
	256002	vinylsulfone	toxic to macrophage	5	16	3
	256064	vinylsulfone	toxic to macrophage	4	7	2
800 800 800 8	256171	oxadiazole	19	11	> 20	> 1
	256189	oxadiazole	5 (not active)	17	> 20	> 1
	281566	oxadiazole	5 (not active)	> 20	> 20	> 1

For Cysteine protease inhibitors, anti-proliferation correlates with trypanosidal activity

Screening of FDA compounds identifies known and novel hits for T. cruzi

Compound	^a Selectivity window	^b Therapeutic use	Reported trypanosome-related effect
Furazolidone	> 125	anti-bacterial	trypanocidal
Terconazole	> 65	anti-fungal	
Nitrofurazone	> 25	anti-bacterial	trypanocidal
Amiodarone	24	arrhythmia	trypanocidal
Azelastine	16	allergy	
Nelfinavir	13	anti-viral (HIV)	anti- <i>Toxoplasma</i>
Haloperidol	12	psychosis	anti- <i>Toxoplasma</i>
Fluphenazine	8	psychosis	trypanocidal (<i>T.brucei</i>)
Dihydroergocristine	7	vascular dementia	
Raloxifene	6	osteoporosis	
Carvedilol	6	congestive heart failure	Chagas cardiomyopathy

High-content assay ready for lead optimization and screening

Schistosomiasis is a Major Public Health Issue

Very Prevalent

- At least 200 million currently infected, in 74 countries
- Socio-economic impact is second after malaria (among parasites)
- Praziquantel is only treatment

Assay Development Challenges

- Does not propagate in culture
- •Genetically heterogeneous and possible non-sexual genetic transfer
- •Multiple phenotypes expected, based on movement, death kinetics

Current State-of-the-Art

Selection by Visual Phenotyping

Table 1. Phenotype descriptors for schistosomula in response to known anthelmintic compounds

Compound* F	Primary screen (7 d)	Confirmatory screen (7 d)	Confirmatory screen (24 h)
Hexachlorphene	Dead	Dead	None
Hycanthone	Dead	Dead	Dark, overactive
Niclosamide	Dead	Dead	Dead
Praziquantel	Degenerate but mobile	Degenerate but mobile	Rounded, overactive
Pyrvinium pamoat	e Dead	Dead	Rounded

Taken from [44]. *Compounds tested at 1 μM.

Six phenotypes identified from anthelmintics and drug screen

Lead Discovery for Schistosomiasis

- 96-well plates
- Visual detection of phenotypes
- Screened ~2000-compound "drugs"
- Identified hits with activity in mouse

The manual approach shows value of plate-based screening

Potential Advantages to High-Content Analysis

- Throughput
- Precision/quantification
- Subtlety of phenotypes
- Significant challenges in assay development and memory usage

Comparison of data-collection specifications: camera vs HCA systems

Model	IN Cell 2000	IN Cell 1000	AxioCam MRc
CCD Size (megapixel)	4.2	1.2	
Movie Frame-rate (frames/sec)	~ 10	1.3	15-20
Memory storage/30-sec movie	~320Mb w/o bin	~80 Mb	~80 Mb
Light Source	200 W Metal arc	100 W Xe	Tungsten
Environmental Control	Yes	No	No
Autofocus, automated x-y stage	Yes	Yes	No
Automated quantitative analysis	Yes	Yes	CART analysis*
3-D Deconvolution	Yes	No	No
Image Stitching	Yes	No	No

Challenges to Automation

- 1. Scaling up worm culture
- Automated dispensing of worms into 96 or 384 wells
- 3. Collecting images
 - Plating conditions
 - Time, Z-axis stacks
- 4. Analyzing time-lapse images
 - Segmentation
 - Defining descriptors
 - Tracking motions

Critical Bottlenecks Identified and Addressed

1. Scale-up worm production

- Innoculate snail "farm" in lab
- Induce shed of cercariae into media
- Prepare schistosomula by filtration, removing tails
- Yield > 120,000 schisto/shed

- Currently 96-well format, 384 in progress
- ~30 worms/well in U-bottom or 100-200 worms/well in flat-well
- Very sensitive to liquid handling: solved through paddle stirring

SMDC Collecting images: Bright field vs Staining

Bright field: easy to collect, hard to segment

Fluorescence: searching for the right vital dyes

Fig Images of Schistosomula A) Bright field b) Red fluorescence and image analysis masking Green outline = body segmentation; yellow outline = small intensly stained structures

SMDC Segmentation by Seeded-Watershed Algorithm

- 1. Topology-driven parasite segmentation
 - identify touching concave-convex regions that are prominent enough to ensure branching of the medial axis
 - Parasites are separated by cutting these regions
- 2. Convolute with a multi-directional Gaussian kernel
 - Local intensity maxima correspond to the interior of each parasite

Algorithm-based Classification

- 1. Parasite segmentation
- 2. Track over time via mean-shift algorithm
- 3. Define shape and appearance-based features for each parasite in each frame
- 4. Seven phenotypes identified (including the 6 found from visual scoring)

SMDC And Then, There are Adult Worms

Somules: 60 x 200 um Adults: 1 cm long, sexually dimorphic

HCA Contributes to Lead Discovery for Neglected Parasitic Diseases

- Driving biological innovation in medicine
 - High-throughput screening for lead-like molecules and siRNA
- Driving technological innovation in drug discovery
 - Replacing/supplementing low-throughput and/or low informationcontent assays
- Address major unmet medical needs that are neglected by the pharmaceutical industry
 - Fuel a drug-discovery engine in not-for-profit pharmaceuticals

Our Team

