EEE109 Assignment 2 Chapter 4, 6, 7 and 8

- 1. The parameters of the MOSFET in the circuit shown in Figure 1 are $V_{TN}=0.8~{
 m V}$, and $\lambda=0.02~{
 m V}^{-1}$
 - (a) Determine R_S and R_D such that $I_{DQ}\,=\,0.1~\mathrm{mA}$ and $V_{DSQ}\,=\,5.5~\mathrm{V}$
 - (b) Find the small-signal transistor parameters.
 - (c) Determine the small-signal voltage gain.

Figure 1

- 2. Consider the circuit show in Figure 2. The transistor parameters are $\beta=100$ and $V_A = 100 \text{ V}$.
 - (a) Determine R_i
 - (b) Determine the small-signal voltage gain $A_{\it v}$

Figure 2

- 3. For the circuit in Figure 3, the transistor parameters are $\beta=120$, $V_{BE}(\text{on})=0.7$ V, and $V_A=50$ V. Let $R_{TH}=0.1(1+\beta)R_E$.
 - (a) Design a bias-stable circuit such that $I_{EQ}\,=\,1.5~\mathrm{mA}$
 - (b) Using the results of part (a), find the small-signal mid-band voltage gain
 - (c) Determine the output resistance R_o
 - (d) What is the lower 3 dB corner frequency?

4. The common-emitter circuit in Figure 4 is biased at $V_{CC}=24~{\rm V}$. The maximum transistor power is rated at $P_{Q,{\rm max}}=25~{\rm W}$. The other parameters of the transistor are $\beta=60$ and $V_{BE}({\rm on})=0.7~{\rm V}$.

Determine R_L and R_B such that the transistor is biased at the maximum power point.

