Fisher matrix for gravitational wave forecasting

Jacopo Tissino, Ulyana Dupletsa

2024-02-20

When we build Einstein Telescope, how many compact
binary signals will it be able to detect?
How well will it localize them in the sky?

How well will it measure their parameters?

Matched filtering

The gravitational-wave detection problem: we have data

$$d(t) = \underbrace{h_{\theta}(t)}_{\text{GW}} + \underbrace{n_{\text{Gaussian}}(t) + n_{\text{non-Gaussian}}(t)}_{\text{noise } n(t)}$$

and we want to find where h(t) is, while typically $|h|\ll |n|$. The Gaussian component has a spectral density $S_n(f)$. Let's assume we want to use a linear filter:

$$\hat{
ho}(au) = \int d(t+ au)f(t)\mathrm{d}t$$

We want to maximize the "distinguishability" of the signal: we can quantify it with the signal-to-noise ratio

$$\frac{S}{N} = \frac{\hat{\rho}(\text{a signal is present})}{\text{root-mean-square of } \hat{\rho}}$$

Ignoring the non-Gaussian part of the noise, the optimal solution is $\hat{\rho} \propto (d|h),$ where

$$(a|b) = 4\Re \int_0^\infty \frac{a(f)b^*(f)}{S_n(f)} \mathrm{d}f,$$

Optimal signal-to-noise ratio

The signal-to-noise ratio statistic is

$$\rho = \frac{S}{N} = \frac{(d|h)}{\sqrt{(h|h)}}$$

With the expected noise realization ($\langle n(t) \rangle = 0$):

$$\rho_{\rm opt} = \sqrt{(h|h)} = 2\sqrt{\int_0^\infty \frac{|h(f)|^2}{S_n(f)}} {\rm d}f \,. \label{eq:rhopt}$$

If we do not have the data, this is a good proxy. For a real detector, we do injection studies and compute a False Alarm Rate (FAR).

SNR thresholds

What is a "high enough" value for the SNR?

Without time shifts nor non-Gaussianities, the SNR would simply follow a χ^2 distribution with two degrees of freedom: "five σ " significance with a threshold of $\rho=5.5$.

In real data this has to be estimated through injections:

$$\mathsf{FAR} = \mathsf{FAR}_8 \exp\left(-\frac{\rho - 8}{\alpha}\right) \,.$$

For BNS in O1: $\alpha=0.13$ and ${\rm FAR_8}=30000 {\rm yr^{-1}}.$

Gravitational wave data analysis

Suppose we measure $d=h_{\theta}+n$, where our model for $h_{\theta}=h(t;\theta)$ depends on several parameter (typically, between 10 and 15).

We can estimate the parameters $\boldsymbol{\theta}$ by exploring the posterior distribution

$$p(\theta|d) = \mathcal{L}(d|\theta)\pi(\theta) = \mathcal{N} \exp\left((d|h_\theta) - \frac{1}{2}(h_\theta|h_\theta)\right)\pi(\theta)\,,$$

where $\pi(\theta)$ is our prior distribution on the parameters. We are neglecting non-Gaussianities in the noise, and assuming its spectral density is known!

The posterior is explored stochastically (with MCMC, nested sampling...) yielding many samples θ_i distributed according to $p(\theta|d)$, with which can compute summary statistics:

- mean $\langle \theta_i \rangle$,
 variance $\sigma_i^2 = \langle (\theta_i \langle \theta_i \rangle)^2 \rangle$,
 - $\qquad \qquad \text{covariance } \mathcal{C}_{ij} = \langle (\theta_i \langle \theta_i \rangle) (\theta_j \langle \theta_j \rangle) \rangle.$

At this stage, we are not making any approximation, and the covariance matrix is just a summary tool - the full posterior is still available.

Parameter dependence of CBC signals

A discussion of the parameters a BNS signal depends on, with relative error (σ_x/x) values computed from the parameter estimation of GW170817.

Intrinsic parameters

- \blacktriangleright masses m_1 and m_2 : $\sigma_x/x \sim 10\%$,
- **b** chirp mass \mathcal{M} : $\sigma_x/x \sim 0.1\%$.

$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$$

 $\qquad \qquad \mathbf{mass \ ratio} \ q = m_1/m_2 : \ \sigma_x/x \sim 20\%.$

We are measuring the *detector-frame* mass:

$$\mathcal{M} = \mathcal{M}_{\mathsf{source}}(1+z)$$

Alternative parametrization:

- **>** symmetric mass ratio $\nu = \mu/M = q/(1+q)^2$: $\sigma_x/x \approx 4\%$

total mass $M=m_1+m_2$: $\sigma_x/x\approx 3\%$

aligned spin: χ_{1z} and χ_{2z} : $\sigma_x/x \sim 3$ and 10 respectively,

precessing spin χ_n : compatible with zero,

• effective aligned spin $\chi_{\text{eff}} = (m_1 \chi_{1z} + m_2 \chi_{2z})/(m_1 + m_2)$: $\sigma_x/x \sim 1$ (compatible with zero)

$$lacksquare$$
 tidal polarizability Λ_1 and Λ_2 : $\sigma_x/x\sim 1.5$,

effective tidal parameter $\widetilde{\Lambda}$: $\sigma_x/x \sim 1.8$

parameter
$$\Lambda$$
: $\sigma_x/x \sim 0.0$

 $\Lambda_i = \frac{2}{3} \kappa_2 \left(\frac{R_i c^2}{G m_i} \right)^5$

Extrinsic parameters

- **distance** $d_L \sigma_x/x \sim 20\%$,
- degeneracy with the **inclination** of the source, ι : $\sigma_{x}/x \sim 10\%$.
- **arrival time** at geocenter t_{\oplus} ,
- \triangleright phase ϕ ,
- **polarization** angle ψ : $\sigma_x \sim 0.3$ rad,
- **sky position** (ra, dec): $\sigma_r \sim 2$ deg and 9deg.

\$1 \$ sky area in steradians:

$$\Delta\Omega_{1\sigma} = 2\pi |\cos(\text{dec})| \sqrt{\sigma_{\text{ra}}^2 \sigma_{\text{dec}}^2 - \text{cov}_{\text{ra, dec}}^2}$$

90 sky area, in square degrees:

$$\Delta\Omega_{90\%} \approx -\log(1-0.9)\Delta\Omega_{1\sigma} \left(\frac{180 \text{ deg}}{\pi \text{ rad}}\right)^2$$

For GW170817, using the posterior covariance matrix, this approximation yields $28 {\rm deg}^2$.

GW150914 comparison

- $ightharpoonup \sigma_{\mathcal{M}}/\mathcal{M} = \sigma_{\mathcal{M}}/M \approx 3\%$: not so many cycles
- ▶ two-detector event: sky area was 600deg², but the Gaussian approximation gives 1800deg².

Correlation structure

We can compute Pearson correlation coefficients:

$$\rho_{ij} = \frac{\mathrm{cov}(\theta_i, \theta_j)}{\sigma_i \sigma_j}$$

Antenna pattern

The strain at the detector depends on the antenna pattern:

$$h(t) = h_{ij}(t)D_{ij}(t) = h_+(t)F_+(t) + h_\times(t)F_\times(t)\,. \label{eq:hamiltonian}$$

Virgo antenna pattern

One ET antenna pattern

Fisher matrix

In the Fisher matrix approximation, we are approximating the likelihood as

$$\mathcal{L}(d|\theta) \approx \mathcal{N} \exp\left(-\frac{1}{2}\Delta\theta^i \mathcal{F}_{ij}\Delta\theta^j\right)$$

where $\Delta \theta^i = \theta^i - \langle \theta^i \rangle$.

A **multivariate normal distribution**, with covariance matrix $\mathcal{C}_{ij}=\mathcal{F}_{ij}^{-1}$. This is a good approximation for the posterior in the high-SNR limit, since the prior matters less then.

The Fisher matrix \mathcal{F}_{ij} can be computed as the scalar product of

the derivatives of waveforms:

 $\mathcal{F}_{ij} = \left. \left\langle \partial_i \partial_j \mathcal{L} \right\rangle \right|_{\theta = \left\langle \theta \right\rangle} = \left(\partial_i h | \partial_j h \right) = 4 \Re \int_0^\infty \frac{1}{S_n(f)} \frac{\partial h}{\partial \theta_i} \frac{\partial h^*}{\partial \theta_i} \mathrm{d}f \,.$

For N detectors,

$$\mathcal{F}_{ij} = \sum_{k=1}^{N} \mathcal{F}_{ij}^{(k)}$$

The covariance matrix can be evaluated in seconds, while full parameter estimation takes hours to weeks.

Also, it is easy in the Fisher approach to account for new effects such as the rotation of the Earth.

Tricky step computationally: inverting \mathcal{F}_{ij} to get \mathcal{C}_{ij} .