

Septic Shock Data Discovery Dataset

Keith R. Walley, MD

St. Paul's Hospital
University of British Columbia
Vancouver, Canada

VASST dataset Vasopressin and Septic Shock Trial

Dataset arising from VASST

- Septic shock is organ failure and really low blood pressure due to a severe infection.
- Your body's initial immune response to severe infection is to release many <u>cytokines</u> and other inflammatory mediators – which decrease blood pressure.
- Low blood pressure can be increased with norepinephrine or vasopressin.

VASST hypothesis

Low dose vasopressin infusion, in addition to conventional vasopressors, will decrease 28-day mortality in human septic shock, compared to norepinephrine infusion alone.

1) Lots of Clinical Data

>2000 fields/patient

	Norepinephrine (n=382)	Vasopressin (n=396)
Age, years	61.8 ±16	59.3 ±16.4
Male sex	229 (59.9)	246 (62.0)
Caucasian	320 (83.8)	336 (84.6)
Co-morbidities Ischemic heart disease	65 (17.0)	68 (17.1)
COPD	72 (18.8)	55 (13.9)
Chronic renal failure	48 (12.6)	40 (10.1)
Cancer	104 (27.2)	85 (21.4)
Pre-existing steroid use	86 (22.5)	82 (20.7)
Recent surgery	132 (34.6)	151 (38.0)
Time from eligibility to infusion, hrs	11.5 ± 9.4	11.9 ± 8.9

Values are n (%) or mean ± SD, as appropriate

Plasma vasopressin levels (n = 107)

Kaplan-Meier survival curve All patients

Kaplan-Meier survival curve Less severe shock

Serious adverse events

	Norepinephrine (n=382)	Vasopressin (n=397)	р
Myocardial infarction / ischemia	7 (1.8)	8 (2.0)	1.00
Cardiac arrest	8 (2.1)	3 (0.8)	0.14
Tachyarrythmia	3 (0.8)	4 (1.0)	1.00
Bradyarrythmia	3 (0.8)	4 (1.0)	1.00
Mesenteric ischemia	13 (3.4)	9 (2.3)	0.39
Digital ischemia	2 (0.5)	8 (2.0)	0.11
Cerebrovascular accident	1 (0.3)	1 (0.3)	1.00
Hyponatremia	1 (0.3)	1 (0.3)	1.00
Other	2 (0.5)	5 (1.3)	0.45
Total	40 (10.5)	41 (10.3)	1.00

2) 50+ cytokines

Russell et al. AJRCCM 2013; 188 (3): 356-364.

How cytokine data might be used

Plasma Ang-2 Levels Associated with Fluid Overload

%FO = (intake-output)/weight x 100%

3) We don't have gene expression (mRNA), but we have it in some datasets

Calvano et al. Nature 2005;437:1032-7.

4) 1M Single Nucleotide Polymorphisms (SNP) genotypes

What can be done with the data

- Clinical associations
 - Obesity associated with decreased survival
- Gene association studies
 - ADRB2, AGTRAP, SVEP1, IL17, PCSK9, etc
- Causal inference
 - Instrumental variables, Mendelian Randomization
- Mechanism of action
 - Inhibition, over-expression
- New discoveries
 - Link to other datasets, AI to discover patterns

Example clinical association

Example gene association

Example causal inference

Instrumental Variables -> Cause

Mendelian Randomization

Mendelian Randomization

IL1RN genotype ~ Sepsis survival

Meyer et al. Am J Respir Crit Care Med. 190(6):656-664, 2014

Mendelian Randomization

Example mechanism of action

Could PCSK9 inhibition increase pathogen lipid clearance?

Pcsk9 knockout mice ↑ LPS clearance, ↓ inflammation

Walley KR et al. Science Translational Medicine. 6(258):258ra143

Pcsk9 knockout mice ↓ physiologic response

PCSK9 antibody: ↑ CLP survival

LPS uptake by hepatocytes

Example link to other datasets

Example new approaches

- Took all fields from electronic health record
- Coloured according to how abnormal
- Used image recognition to find patterns associated with adverse outcome
 - Laboratory data, high frequency data
- Also looked to see where the algorithm spent the most time
 - Laboratory data, patient vital signs

<u>UBC co-investigators</u> John Boyd Jim Russell

U Penn co-investigators
Muredach Reilly
Nuala Meyer
Jason Christie
Jane Ferguson

Centre for

inding HRHeart Lung Innovation

¹H UBC and St. Paul's Hospital

Databases
VASST Investigators
People
Taka Nakada
Katherine Thain
Simone Thair
Lynda Lazosky Keith.Walley@hli.ubc.ca

