Data Processing - Final Project

Iker Aldasoro Marculeta

Jon Lejardi Jericó

Table of Contents

- 1.Introduction
- 2. Analysis of Input Variables
- 3. Text Preprocessing
- 4. Vector representation
- 5. Regression Models
- 6. Result Comparison

1 output

Integer variable "rating"

10 inputs

4 text variables6 integers

Tokenization

• Divide phrases into words

Homogeneization

- Lemmatization
- Convert to lowercase

Cleaning

 Remove stop words, extra white spaces, special characters ···

```
def NTLK_clean(text):
    """NLT pipeline using NTLK
   Args:
       text (category): Category of the dataset to apply the NLP
   Returns:
       _type_: Tokenized word
   stop_words = set(stopwords.words("english"))
   if not isinstance(text, str):
       return ""
   try:
       # Initialize lemmatizer
       lemmatizer = WordNetLemmatizer()
       # Convert to lowercase
       text = text.lower()
       # Remove special characters and digits
       text = re.sub(r"[^a-zA-Z\s]", "", text)
       # Remove extra whitespace
       text = " ".join(text.split())
       # Remove extra whitespace
       text = lemmatizer.lemmatize(text)
       # Basic word tokenization (split by space)
       tokens = word tokenize(text)
       # Remove stopwords
       tokens = [token for token in tokens if token not in stop_words]
       return " ".join(tokens)
   except Exception as e:
       print(f"Error in text preprocessing: {str(e)}")
       return ""
```

Code:

Output:

```
3. Applying NLT Pipeline
0    1. Place the stock, lentils, celery, carrot, t...
1    Combine first 9 ingredients in heavy medium sa...
2    In a large heavy saucepan cook diced fennel an...
3    Heat oil in heavy large skillet over medium-hi...
4    Preheat oven to 350°F. Lightly grease 8x8x2-in...
Name: directions_pre, dtype: object

0    place stock lentils celery carrot thyme salt m...
1    combine first ingredients heavy medium saucepa...
2    large heavy saucepan cook diced fennel onion b...
3    heat oil heavy large skillet mediumhigh heat a...
4    preheat oven f lightly grease xxinch glass bak...
Name: directions_post, dtype: object
```

Vector Representation

Convert text data into **Word vectors** (numerical) to make inputs compatible to ML models.

- <u>TF-IDF</u>: Context-agnostic and focuses on word importance (20130, 1000).
- <u>Word2Vec</u>: Captures shallow word relationships, lacks full contextual understanding:
 (20130, 100), vector size 100 and window 5. -> Mean vector
- BERT: Context-aware and provides deep contextual embeddings (20130, 768).

Neural Networks

Multi-Layer NN for regression

- 2 hidden layers (128 and 64 features).
- ReLu activation function.
- 30% dropout.

	Train R ²	Test R ²
TD-IDF	0,6869	0,1346
Word2Vec	0,206	0,1339
BERT	0,2843	0,0985

BERT

TF-IDF

Word2Vec

Random Forest


```
# Train Random Forest
rf_model = RandomForestRegressor(n_estimators=10, random_state=42)
# rf_model.fit(X_train_t.numpy(), y_train_t.numpy().ravel())
rf_model.fit(X_train, y_train)

# Get predictions
rf_train_predictions = rf_model.predict(X_train)
rf_test_predictions = rf_model.predict(X_test)

# Calculate metrics
rf_train_r2 = r2_score(y_train, rf_train_predictions)
rf_test_r2 = r2_score(y_test, rf_test_predictions)
rf_train_mse = mean_squared_error(y_train, rf_train_predictions)
rf_test_mse = mean_squared_error(y_test, rf_test_predictions)
```

	Train R ²	Test R ²
TD-IDF	0,8489	0,1388
Word2Vec	0,844	0,1419
BERT	0,8378	0,1037

We used RoBERTa as a model but the results were not better

Problems

Bad regression model results.

Possible solutions

- Try different models.
- Find correlated inputs.

THANK YOU VERY MUCH

Iker Aldasoro

Jon Lejardi