$$f(x_{1}--x_{n}|\theta)=\prod_{i=1}^{n}f(x_{i}|\theta)=\prod_{i=1}^{n}\theta x_{i}^{\theta-1}=\theta^{n}\left(\prod_{i=1}^{n}x_{i}\right)^{\theta-1}=\theta^{n}\cdot e^{(\theta-1)\ln\left(\prod_{i=1}^{n}x_{i}\right)}=\theta^{n}\cdot e^{(\theta-1)\ln\left(\prod_{i=1}^{n}x_{i}\right)}=\theta^{n}\cdot e^{(\theta-1)\ln\left(\prod_{i=1}^{n}x_{i}\right)}$$

Por el Teorema de factorización, el estadistico $S(X_1-X_n)=\sum_{i=1}^n L_n(X_i)$ es suficiente. Además, éste es completo ya que al pertenecer fixio) a la familia de distribuciones exponencial uni paramétrica, es estados suficiente que $\Pi(\theta)=(\theta-1)$ contenga un rectangulo abierto IR, es decin, un intervalo. Esto, en efecto, se cumple por lo que podemos concluir que al ser T, restanador insesgado de $Z(\theta)$, función de S, estadistico suficiente y completo, entonces $T=-\frac{1}{h}\sum_{i=1}^{n}L_n(X_i)$ es el ECUMV.

Ejercicio 7.- Sen $(X_1 - X_n)$ una m.as. con $X r f_{\theta}(x) = \frac{x}{\theta^2} e^{\frac{x^2}{2\theta^2}}$ con x > 0 y $\theta > 0$. Hallar un estadístico suficiente y completo para θ .

Hallar Ent estimador de máxima verosimilitud para θ^2 y comprobar si además es eficiente para estimar $Z(\theta)=\theta^2$.

$$f(x_1 - x_n | \theta) = \prod_{i=1}^n f(x_i | \theta) = \prod_{i=1}^n \frac{x_i}{\theta^2} e^{\frac{x_i^2}{\theta^2}} = \frac{1}{\theta^n} \cdot \prod_{i=1}^n x_i \cdot e^{\frac{\sum_i x_i^2}{2\theta^2}}$$

Por el Teorema de factorización, el esta dístico $S(X_1-X_n)=\sum_{i=1}^n X_i^2$ es suficiente. Además, es completo pues al tra tarse de la familia exponencial uniparamétrica es suficiente comprobar que $\Pi(\theta)=\frac{1}{2\theta^2}$ contiene un intervalo abierto de R. Efectivamente, esto último es cierto por lo que $S=\sum_{i=1}^n X_i^2$ es suficiente y completo.