Et cetera

Ben Antieau, Viktor Burghardt, Noah Riggenbach, Lucy Yang

Abstract

Dumping ground for other stuff: Notes, one-off observations, stuff that we can collectively use when preparing talks, etc.

Contents

1	Talk prep	1
2	References	1
3	Questions and directions	1
4	Thoughts & observations	2
5	Desperate Flailing	2
6	Modules with genuine involution	3

1 Talk prep

2 References

- Involutions of Azumaya algebras by First and Williams (2020 Documenta)
- \bullet Counterexamples in involutions of Azumaya algebras by First and Williams; much more readable than the 2020 Documenta paper

3 Questions and directions

Question 3.1 (Morita theory for $\operatorname{Cat}_{\infty}^{p}$). Let R be a Poincaré ring. Suppose given two R-algebras (suitably interpreted so their module categories are canonically endowed with R-linear Poincaré structures—perhaps \mathbb{E}_{σ}) A, B. Can we characterize

$$\operatorname{hom}_{\operatorname{Cat}_{\infty B}^{\operatorname{p}}}\left(\left(\operatorname{Mod}_{A}^{\omega}, \Omega_{A}\right), \left(\operatorname{Mod}_{B}^{\omega}, \Omega_{B}\right)\right)$$

in terms of something bimodule-like?

Question 3.2. On page 2 of the *Counterexamples* paper, First and Williams write that "existence of an extraordinary involution means classification of Azumaya algebras with involution...*cannot* be reduced to questions about projective modules and hermitian forms on them."

What if we replaced projective modules by perfect complexes?

Question 3.3. First–Williams show (see discussion in §4 of the *Counterexamples* paper) that coarse type classify many (most?) Azumaya algebras up to (étale-local) *isomorphism*.

What is a suitable derived version of "coarse type"?

promises re: organization but I will do my best to keep it reasonably readable

L: I make no

Question 3.4 (asked by Andrew Nov 2, 2024). C. Schlichtkrull shows in this paper that a map $BGL_1(R) \to K(R) \to THH(R) \to R$ in terms of the Hopf map η .

Is there a "Poincaré" version of this result?

4 Thoughts & observations

Question 4.1. When R has the Tate Poincaré structure and $(\operatorname{Mod}_A^{\omega}, M_A, N_A, N_A \to M_A^{tC_2})$ is invertible, then by invertibility have an equivalence $\operatorname{hom}_R(A,R) \simeq N_A \otimes_R N_{A^{\operatorname{op}}}$ of $A \otimes_R A^{\operatorname{op}}$ -modules. Restricting the left-hand side along the unit map $R \to A$ gives a map $N_A \otimes_R N_{A^{\operatorname{op}}} \to \operatorname{hom}_R(R,R) \simeq R$. Is this a perfect (R-linear) pairing?

I think using that $R^{\varphi C_2} \simeq R$ and combining the linear and bilinear part conditions, we get something like

$$M_A \otimes_R M_{A^{\mathrm{op}}} \simeq (N_A \otimes_R N_{A^{\mathrm{op}}})^{\otimes_R 2}$$
 as $A \otimes_R A^{\mathrm{op}}$ -bimodules.

Is this useful?

Brauer-Severi schemes We know there is a correspondence between Azumaya algebras A over X and Brauer-Severi schemes. What does a Poincaré structure on $\operatorname{Mod}_A^{\omega}$ mean 'geometrically' for D_{coh}^b of the corresponding Brauer-Severi scheme? (Lucy: I didn't get very far here, but just typing up what I had)

- $\operatorname{Mod}_A^{\omega}$ corresponds to α -twisted sheaves on X (see Proposition 3.2.2.1 of Max Lieblich's thesis)
- The bounded derived category of α -twisted sheaves on X includes as one 'piece' of a semiorthogonal decomposition on D^b_{coh} of the corresponding Brauer-Severi scheme (see Theorem 5.1 here)

5 Desperate Flailing

This section is a cronical of my thoughts about $\mathbb{G}_m^{\mathfrak{Q}}$.

Goal The goal is to build a Poincaré ring $\mathbb{G}_m^{\mathfrak{Q}} := (\operatorname{Mod}_R, \mathfrak{Q}_R)$ such that $B\mathbb{G}_m^{\mathfrak{Q}}(\underline{S}) = \operatorname{Pic}^p(\underline{S})$ for any Poincaré ring \underline{S} .

Lemma 5.1. Let
$$\underline{S}$$
 be a Poincaré ring. Then $\pi_0(\operatorname{Aut}_{\operatorname{Pn}(\operatorname{Mod}_S)}(S,u)) = \{s \in \pi_0(S)^{\times} | s = 1 \text{ in } \pi_0(S^{C_2})\}.$

Proof. Since the functor $\operatorname{Pn}(\operatorname{Mod}_S) \to \operatorname{Mod}_S$ is conservative it follows that an element of $\pi_0(\operatorname{Aut}_{\operatorname{Pn}(\operatorname{Mod}_S)}(S, u))$ must have underlying map an element of $\pi_0\operatorname{Aut}(S) = \pi_0(S)^{\times}$. Then in order for $s \in \pi_0(S)^{\times}$ to induce a map $(S, u) \to (S, u)$, the induced map $s^* : S^{C_2} \to S^{C_2}$ must satisfy $s^*(u) = u$. The pullback is given by multiplication by s, so this requirement translates into s being the unit, as desired.

The problem I thought existed maybe doesn't. Here is a candidate construction:

Construction 5.2. Define R to be the \mathbb{E}_{∞} ring given by $\mathbb{S}\{x^{\pm 1}, y^{\pm 1}\} \otimes_{\mathbb{S}\{z\}} \mathbb{S}$ where the map $\mathbb{S}\{z\} \to \mathbb{S}\{x^{\pm 1}, y^{\pm 1}\}$ is induced by the map $z \mapsto xy$, and the map $\mathbb{S}\{z\} \to \mathbb{S}$ is induced by $z \mapsto 1$. We can give R an \mathbb{E}_{∞} ring structure in Sp^{BC_2} by taking the trivial action on $\mathbb{S}\{z\}$ and \mathbb{S} , and taking the action induced by $x \mapsto y$ and $y \mapsto x$ on $\mathbb{S}\{x^{\pm 1}, y^{\pm 1}\}$. Thus in $\mathrm{CAlg}(\mathrm{Sp}^{BC_2})$ the ring R corepresents the functor $S \mapsto \{s \in \pi_0(S)^\times | s\sigma(s) = 1\}$.

Now take \underline{R} to be the Poincaré ring with underlying Borel C_2 structure as described in the previous paragraph and geometric fixed points $R^{\varphi C_2} = \mathbb{S}$ and the map $R^{\varphi C_2} \to R^{tC_2}$ given by the unit map. Endowing $R^{\varphi C_2}$ with the R-module structre given by $x,y\mapsto 1$, it remains to show that the unit map $R^{\varphi C_2}\to R^{tC_2}$ factors the Tate valued Frobenius $R\to R^{tC_2}$ in order to promote \underline{R} to a Poincaré ring. By construction of R it is then enough to show that on π_0 the Tate valued Frobenius sends $x,y\mapsto 1$ in $\pi_0(R^{tC_2})$. This map sends both x and y to $xy\in\pi_0(R^{tC_2})$. These are equal to 1 in $\pi_0(R^{tC_2})$ since the functor $(-)^{tC_2}$ is lax-monoidal so R^{tC_2} is a modules over $\mathbb{S}\{x^{\pm 1},y^{\pm 1}\}^{tC_2}\otimes_{\mathbb{S}\{z\}^{tC_2}}\mathbb{S}^{tC_2}$ which has the image of xy equal to 1.

Now consider another Poincaré ring \underline{S} . We then have that maps $\pi_0(\operatorname{Maps}(\underline{R},\underline{S}))$ is the data of a unit $s \in \pi_0(S)^{\times}$, a path $s\sigma(s) \to 1$ in $\Omega^{\infty}S$, and paths $x, y \to 1$ in $\Omega^{\infty}S^{\varphi C_2}$. This then agrees with \mathbb{G}_m^{φ} by the following lemma.

Lemma 5.3. Let $S \in \operatorname{CAlg}(\operatorname{Sp}^{BC_2})$ and $s \in \pi_0(S)^{\times}$. Then $s\sigma(s) = 1$ in $\pi_0(S)$ if and only if $(s \otimes s)^*$ acts by 1 on $\pi_0(S^{hC_2}) = \pi_0(\operatorname{Hom}_{S \otimes S}(S \otimes S, S)^{hC_2})$.

Proof. The 'only if' direction follows from the fact that the map $S^{hC_2} \to S$ is an S-bimodule map. Now suppose that $s\sigma(s) = 1$ in S. Then before taking homotopy fixed points the induced map $s^* = id$ because S is \mathbb{E}_{∞} .

6 Modules with genuine involution

Remark 6.1 (Lucy). I'm just going to put drafts of stuff pertaining to hermitian modules here. Eventually when it gets to be more complete, I will hopefully move this entire section over to the main file.

Meta-commentary There are (at least) three things we want to do:

- (a) Define a category of 'bimodules with involution over algebras with anti-involution' equipped with a forgetful functor $\Theta \colon \mathrm{BMod_{inv}}(-) \to \mathbb{E}_1 \, \mathrm{Alg}(-)^{hC_2}$.
- (b) Show that Θ is a coCartesian fibration. For this, it suffices to show that it is a *Cartesian* fibration and that it satisfies the hypotheses of [Lur09, Corollary 5.2.2.5]
 - I used to think that we could obtain this by 'bootstrapping' a result from Higher Algebra, plus some facts about assembly. This doesn't seem to be working, so I'm just going to try to do this directly (imitating certain aspects of Chapter 4 of higher algebra.)
- (c) Define a relative tensor product for hermitian bimodules
- (d) Show that the formula for the cocartesian pushforward along a map $A \to B$ in $\mathbb{E}_1 \operatorname{Alg}(-)^{hC_2}$ is something like $\otimes_{A \otimes A^{\operatorname{op}}} (B \otimes B^{\operatorname{op}}) \otimes_{B \otimes B^{\operatorname{op}}} B$.
 - In Higher Algebra, the formula for the cocartesian pushforward is proven in [Lur17, §4.6]; in particular, this is in the section on duality. In particular, see Proposition 4.6.2.17 and the paragraph immediately preceding this.
 - I don't know how to do this yet—while (a) and (b) are not useful if I can't show (c), I can't suss out the feasibility of (c) without (a) and (b) already in place.

Definition 6.2. Define a colored operad Assoc_{σ} as follows:

- (i) The colored operad has a single object, which we denote by a.
- (ii) For every finite set I, the set of operations $\operatorname{Mul}_{\operatorname{Assoc}_{\sigma}}\left(\left\{\mathfrak{a}_{i}\right\}_{i\in I},\mathfrak{a}\right)\simeq\mathcal{L}I\times\{\pm1\}^{I}$, where $\mathcal{L}I$ is the set of linear orderings on I and an element of $\{\pm1\}^{I}$ is a function $I\to\{\pm1\}$.
- (iii) Suppose given a map of finite sets $\alpha \colon I \to J$, together with operations $(\preceq_j, f_j \colon I_j \to \{\pm 1\}) \in \operatorname{Mul}_{\operatorname{Assoc}_\sigma}\left(\{\mathfrak{a}_i\}_{\alpha(i)=j},\mathfrak{a}\right)$ and $(\preceq_J, g \colon J \to \{\pm 1\}) \in \operatorname{Mul}_{\operatorname{Assoc}_\sigma}\left(\{\mathfrak{a}_j\}_{j\in J},\mathfrak{a}\right)$. Define a linear ordering on the set I as follows: $i \leq i'$ if $\alpha(i) \preceq_J \alpha(i')$ or $\alpha(i) = \alpha(i') = j$ and $i \preceq_j i'$ and g(j) = +1 or $\alpha(i) = \alpha(i') = j$ and $i \succeq_j i'$ and g(j) = -1. Finally, define a function

$$I \to \{\pm 1\}$$

 $i \mapsto f_{\alpha(i)}(i) \cdot g(\alpha(i))$,

where the multiplication on $\{\pm 1\}$ is the usual one.

L: or whatever we want to keep calling these

L: This is just an imitation of [Lur17, Definition 4.1.1.1], modified in accordance with ideas from §5.4.2.

¹Or just \mathbb{E}_2 .

Remark 6.3. There is a map of colored operads ι : Assoc \to Assoc $_{\sigma}$ which is the identity on objects and on operations $\operatorname{Mul}_{\operatorname{Assoc}}\left(\left\{\mathfrak{a}_{i}\right\}_{i\in I},\mathfrak{a}\right)\simeq\mathcal{L}I\to\operatorname{Mul}_{\operatorname{Assoc}_{\sigma}}\left(\left\{\mathfrak{a}_{i}\right\}_{i\in I},\mathfrak{a}\right)\simeq\mathcal{L}I\times\left\{\pm 1\right\}^{I}$ is $\operatorname{id}_{\mathcal{L}I}\times\left\{c_{1}\right\}$ where c_{1} is the constant function on I with value 1.

There is another map of colored operads ι^{rev} : Assoc \to Assoc $_{\sigma}$ which is the identity on objects and on operations $\text{Mul}_{\text{Assoc}}\left(\left\{\mathfrak{a}_{i}\right\}_{i\in I},\mathfrak{a}\right)\simeq\mathcal{L}I\to\text{Mul}_{\text{Assoc}_{\sigma}}\left(\left\{\mathfrak{a}_{i}\right\}_{i\in I},\mathfrak{a}\right)\simeq\mathcal{L}I\times\left\{\pm1\right\}^{I}$ sends a linear ordering ℓ to $(\ell^{\text{rev}},c_{-1})$ where c_{-1} is the constant function on I with value 1.

Definition 6.4. Let $\operatorname{Assoc}_{\sigma}^{\otimes}$ denote the associated ∞ -operad (via Construction 2.1.1.7 and Example 2.1.1.21 of [Lur17]).

Remark 6.5. Unwinding definitions

- Objects Assoc $_{\sigma}^{\otimes}$ are finite pointed sets $\langle n \rangle \in \operatorname{Fin}_*$
- Morphisms $\langle m \rangle \to \langle n \rangle$ consist of
 - $-\alpha:\langle m\rangle\to\langle n\rangle$ a map of finite pointed sets
 - for each $i \in \langle n \rangle^{\circ}$, a linear ordering \leq_i on the inverse image $\alpha^{-1}(\{i\})$
 - a map of sets $s: \alpha^{-1}(\langle m \rangle^{\circ}) \to \{\pm 1\}$
- For each pair of morphisms

$$(\beta: \langle \ell \rangle \to \langle m \rangle, \leq_i, s)$$
 $(\alpha: \langle m \rangle \to \langle n \rangle, \leq_i, t)$,

the composite is the triple $(\alpha \circ \beta, \preceq''_j, u)$ where \preceq''_j is the ordering on $(\alpha \circ \beta)^{-1}(\{i\})$ so that if $a, b \in \langle \ell \rangle$ so that $\alpha(\beta(a)) = \alpha(\beta(b))$, then $a \preceq''_j b$ if $\beta(a) \preceq_i \beta(b)$ or $\beta(a) =_i \beta(b) = i$ and $a \preceq_i b$ if s(i) = 1 or $a \succeq_i b$ if s(i) = -1. Finally $u(l) = s(l) \cdot t(\beta(l))$.

Definition 6.6. Define a category Δ_{σ}

- objects are pairs $([n], s: \{1, \dots, n\} \rightarrow \{\pm 1\})$
- a morphism from $([n], s: \{1, \dots, n\} \to \{\pm 1\})$ to $([m], t: \{0, 1, \dots, m\} \to \{\pm 1\})$ is an order-preserving map $[n] \to [m]$ in Δ .

Construction 6.7. Define a functor Cut: $\Delta_{\sigma}^{\text{op}} \to \operatorname{Assoc}_{\sigma}^{\otimes}$:

- For each ([n], s), we have $Cut([n], s) = \langle n \rangle$.
- Given a morphism $\alpha:([n],s)\to([m],t)$, the associated morphism $\mathrm{Cut}([n],s)\to\mathrm{Cut}([m],t)$ consists of
 - On underlying finite pointed sets $\langle m \rangle \rightarrow \langle n \rangle$, Cut agrees with that appearing in [Lur17, Construction 4.1.2.9]
 - Identifying the cut $\{k \mid k < j\} \sqcup \{k \mid k \geq j\}$ with the morphism j 1 < j, we may regard $s: \langle n \rangle^{\circ} \to \{\pm 1\}$ and likewise $t: \langle m \rangle^{\circ} \to \{\pm 1\}$. Define $u: \operatorname{Cut}(\alpha)^{-1}(\langle n \rangle^{\circ}) \to \{\pm 1\}$ to be the unique function so that $u(j)t(j) = s(\operatorname{Cut}(\alpha)(j))$.

Lemma 6.8. The functor $\operatorname{Cut} \colon \Delta_{\sigma}^{\operatorname{op}} \to \operatorname{Assoc}_{\sigma}^{\otimes}$ exhibits $\Delta_{\sigma}^{\operatorname{op}}$ as an approximation to the ∞ -operad $\operatorname{Assoc}_{\sigma}^{\otimes}$. L: I think the proof of this lemma is not too different from the proof of Proposition 4.1.2.11 of [Lur17]; the point here is just to unravel the definitions of locally coCartesian and Cartesian; the morphisms in $\Delta_{\sigma}^{\operatorname{op}}$ are a little more complicated than $\Delta^{\operatorname{op}}$, but not by much.

 $\textbf{Notation 6.9.} \ \, \text{Let} \ \, \mathcal{C}^{\otimes} \rightarrow \text{Assoc}_{\sigma}^{\otimes} \ \, \text{exhibit} \ \, \mathcal{C} \ \, \text{as} \ \, \mathbb{E}_{\sigma}\text{-monoidal.} \underline{\quad \text{Let} \ \, \mathcal{C}^{\circledast} \ \, \text{denote the fiber product} \ \, \mathcal{C}^{\otimes} \times_{\text{Assoc}_{\sigma}^{\otimes}} \Delta_{\sigma}^{\text{op}}.$

Definition 6.10. Define a colored operad BM_{inv}

(i) The set of objects of $BM_{\rm inv}$ has two elements, which we denote by $\mathfrak{a}, \mathfrak{m}$.

L: Note that when s, t are identically one, the resulting order \leq''_j agrees with the lexicographic order defined in [Lur17, Remark 4.1.1.4].

L: maybe better to write s as a function defined on the set of morphisms i < i + 1 in [n].

L: weakly enriched?? maybe need to add a new defn..

- (ii) Let $\{X_i\}_{i\in I}$ be a finite collection of objects of $\mathbf{BM}_{\mathrm{inv}}$ and let Y be another object of $\mathbf{BM}_{\mathrm{inv}}$. If $Y=\mathfrak{a}$, then $\mathrm{Mul}_{\mathbf{BM}_{\mathrm{inv}}}(\{X_i\}_{i\in I},Y)$ is the set of pairs consisting of a linear ordering on I and a function $I\to\{\pm 1\}$ if $X_i=\mathfrak{a}$ for all i, and empty otherwise. If $Y=\mathfrak{m}$, then $\mathrm{Mul}_{\mathbf{BM}_{\mathrm{inv}}}(\{X_i\}_{i\in I},Y)$ is the set of pairs consisting of a linear ordering $\{i_1< i_2< \cdots < i_n\}$ on I and a function $I\to\{\pm 1\}$ IF $X_{i_1}=\mathfrak{m}$ and $X_j=\mathfrak{a}$ for all $j\neq i_1$, and $\mathrm{Mul}_{\mathbf{BM}_{\mathrm{inv}}}(\{X_i\}_{i\in I},Y)$ is empty otherwise.
- (iii) The composition law on $\mathbf{BM}_{\mathrm{inv}}$ is determined by the composition of linear orderings, with reversal of linear orderings according to Definition 6.2

Remark 6.11. Restricting to the object $\mathfrak{a} \in BM_{inv}$, we see that BM_{inv} has a sub-colored operad which is canonically identified with $Assoc_{inv}$ of Definition 6.2.

Definition 6.12. Let $\mathcal{BM}_{inv}^{\otimes}$ denote the associated ∞ -operad (via Construction 2.1.1.7 and Example 2.1.1.21 of [Lur17]).

Remark 6.13. We can describe the category $\mathcal{BM}_{inv}^{\otimes}$ as follows:

- (1) An object of $\mathcal{BM}_{\text{inv}}^{\otimes}$ is a pair $(\langle n \rangle, S)$ where S is a subset of $\langle n \rangle^{\circ}$.
- (2) Morphisms $(\langle m \rangle, T) \to (\langle n \rangle, S)$ consist of a map $\alpha \colon \langle m \rangle \to \langle n \rangle$ in Assoc $_{\sigma}^{\otimes}$ satisfying:
 - The map α takes $T \cup \{*\}$ to $S \cup \{*\}$
 - For each $s \in S$, then $\alpha^{-1}(\{s\})$ contains exactly one element of t, and that element is minimal with respect to the linear ordering on $\alpha^{-1}(\{s\})$.

L: I've changed things a little so that S (in the notation of Higher Algebra) has been replaced by S^c —this way,we can regard [n] as representing the ordered set $\{-n < -n+1 < \cdots -1 < 0 < 1 < \cdots < n-1 < n\}$ where C_2 acts by $\cdot (-1)$ (or something along these lines). This is really a generalization of Notation 4.2.1.7 but for RM^{\otimes} .

Remark 6.14. Each morphism $\varphi \in \operatorname{Mul}_{\mathbf{BM}_{\operatorname{inv}}}(\{X_i\}_{i \in I}, Y)$ determines a linear ordering ℓ on the set I and a function $s \colon I \to \{\pm 1\}$. Passing from φ to the pair (ℓ, s) determines a map of colored operads $j \colon \mathbf{BM}_{\operatorname{inv}} \to \mathbf{Assoc}_{\operatorname{inv}}$. For any monoidal ∞ -category \mathcal{C} , restriction along j sends an \mathbb{E}_{σ} -algebra $A \colon \mathbf{Assoc}_{\operatorname{inv}} \to \mathcal{C}^{\otimes}$ to the pair (A, A) where A is regarded as an involutive bimodule over itself.

Construction 6.15. Define a functor MCut: $\Delta_{\sigma}^{\text{op}} \to BM_{\text{inv}}^{\otimes}$:

- For each ([n], s), we have $MCut([n], s) = \langle n+1 \rangle \simeq RCut_0([n])$ where RCut is from [Lur17, Construction 4.8.4.4].
- Given a morphism $\alpha \colon ([n], s) \to ([m], t)$, the associated morphism $\mathrm{MCut}([m], t) \to \mathrm{MCut}([n], s)$ consists of
 - On underlying finite pointed sets $\langle m+1 \rangle \rightarrow \langle n+1 \rangle$, MCut agrees with (the reverse of) that appearing in [Lur17, Construction 4.2.2.6]
 - Identifying the cut $\{k \mid k < j\} \sqcup \{k \mid k \geq j\}$ with the morphism j 1 < j, we may regard $s \colon \langle n+1 \rangle^{\circ} \to \{\pm 1\}$ and likewise $t \colon \langle m+1 \rangle^{\circ} \to \{\pm 1\}$. Define $u \colon \mathrm{MCut}(\alpha)^{-1}(\langle n+1 \rangle^{\circ}) \to \{\pm 1\}$ to be the unique function so that $u(j)t(j) = s(\mathrm{MCut}(\alpha)(j))$.

Remark 6.16. We can identify $\operatorname{Assoc}_{\sigma}^{\otimes}$ with the full subcategory of $\mathcal{BM}_{\operatorname{inv}}^{\otimes}$ spanned by objects of the form $(\langle n \rangle, \langle n \rangle^{\circ})$. We can regard Construction 6.7 as defining a functor $\Delta_{\sigma}^{\operatorname{op}} \to \mathcal{BM}_{\operatorname{inv}}^{\otimes}$. For each $([n], s) \in \Delta_{\sigma}^{\operatorname{op}}$, there is a map of sets $\theta \colon \operatorname{MCut}([n], s) \to \operatorname{Cut}([n], s)$ defined as in [Lur17, Remark 4.2.2.8]. Concretely, on underlying pointed sets, θ takes the form

$$\begin{split} \theta \colon \langle n+1 \rangle &\to \langle n \rangle \\ k &\mapsto \begin{cases} k-1 & \text{ if } k > 0 \\ * & \text{ if } k = 0, * \,. \end{cases} \end{split}$$

This construction determines a morphism γ in the ∞ -category Fun $(\Delta_{\sigma}^{op}, \mathcal{BM}_{inv}^{\otimes})$, or equivalently a map $\Delta_{\sigma}^{op} \times \Delta^{1} \to \mathcal{BM}_{inv}^{\otimes}$.

L: compare Higher Algebra Notation 4.2.1.6

L: more general?

L: hermitian

L: maybe this overloaded notation is not good. I'm running out of ideas.

L: check later

L: check that the signs s work out! **Lemma 6.17.** The morphism $\gamma \colon \Delta_{\sigma}^{op} \times \Delta^{1} \to \mathcal{BM}_{inv}^{\otimes}$ defined in Remark 6.16 exhibits $\Delta_{\sigma}^{op} \times \Delta^{1}$ as an approximation to the ∞ -operad $\mathcal{BM}_{inv}^{\otimes}$.

Definition 6.18. Let $\mathcal{C}^{\otimes} \to \operatorname{Assoc}_{\sigma}^{\otimes}$ be a fibration of ∞ -operads and let \mathcal{M} be an ∞ -category. Suppose given a fibration of ∞ -operads $q \colon \mathcal{O}^{\otimes} \to \mathcal{BM}_{\operatorname{inv}}^{\otimes}$ together with equivalences $\mathcal{O}_{\mathfrak{a}}^{\otimes} \simeq \mathcal{C}^{\otimes}$ and $\mathcal{O}_{\mathfrak{m}}^{\otimes} \simeq \mathcal{M}$. Let ${}^{\sigma}\operatorname{Mod}(\mathcal{M})$ denote the ∞ -category $\operatorname{Alg}_{/\mathcal{BM}}(\mathcal{O})$. We will refer to ${}^{\sigma}\operatorname{Mod}(\mathcal{M})$ as the ∞ -category of hermitian module objects of \mathcal{M} . Composition with the inclusion $\operatorname{Assoc}_{\sigma}^{\otimes} \to \mathcal{BM}_{\operatorname{inv}}^{\otimes}$ induces a categorical fibration

$${}^{\sigma}\mathrm{Mod}\left(\mathcal{M}\right) = \mathrm{Alg}_{/\mathcal{BM}}\left(\mathcal{O}\right) \to \mathrm{Alg}_{\mathrm{Assoc}_{\sigma}}\left(\mathcal{C}\right).$$

If A is an $\operatorname{Assoc}_{\sigma}$ -algebra object of \mathcal{C} , we let ${}^{\sigma}\operatorname{Mod}_{A}(\mathcal{M})$ denote the fiber ${}^{\sigma}\operatorname{Mod}(\mathcal{M}) \times_{\operatorname{Alg}_{\operatorname{Assoc}_{\sigma}}(\mathcal{C})} \{A\}$. We will refer to ${}^{\sigma}\operatorname{Mod}_{A}(\mathcal{M})$ as the ∞ -category of hermitian A-module objects of \mathcal{M} .

Example 6.19. Let $\mathcal{C}^{\otimes} \to \mathcal{BM}^{\otimes}$ be a fibration of ∞ -operads. Restriction along the map of ∞ -operads $\mathcal{BM}^{\otimes} \to \operatorname{Assoc}_{\sigma}^{\otimes}$ induced by Remark 6.14 induces a map $\mathbb{E}_{\sigma} \operatorname{Alg}(\mathcal{C}) \to {}^{\sigma} \operatorname{Mod}(\mathcal{C})$ which is a section of the projection map ${}^{\sigma} \operatorname{Mod}(\mathcal{C}) \to \mathbb{E}_{\sigma} \operatorname{Alg}(\mathcal{C})$.

Notation 6.20. Let $q: \mathcal{O}^{\otimes} \to \mathcal{BM}_{\mathrm{inv}}^{\otimes}$ be a fibration of ∞ -operads, so q exhibits $\mathcal{M} := \mathcal{O}_{\mathfrak{m}}^{\otimes}$ as weakly bi-enriched over $\mathcal{O}_{\mathfrak{a}}^{\otimes}$. Define a new simplicial set $\overline{\mathcal{M}}^{\otimes}$ by the following universal property

$$\hom_{\mathrm{sSet}_{/\Delta^{\mathrm{op}}_{\sigma}}}\left(K,\overline{\mathcal{M}}^{\circledast}\right) \simeq \hom_{\mathrm{sSet}_{/\mathcal{BM}^{\otimes}_{\mathrm{int}}}}\left(K\times\Delta^{1},\mathcal{O}^{\otimes}\right) \, .$$

Here we regard $K \times \Delta^1$ as a simplicial set over $\mathcal{BM}_{\text{inv}}^{\otimes}$ via the composite $K \times \Delta^1 \to \Delta_{\sigma}^{\text{op}} \times \Delta^1 \xrightarrow{\gamma} \mathcal{BM}_{\text{inv}}^{\otimes}$ where γ is from Remark 6.16.

Unwinding definitions, we see that a vertex in $\overline{\mathcal{M}}^{\otimes}$ lying over an object $([n], s: \{1, ..., n\} \to \{\pm 1\}) \in \Delta_{\sigma}^{\text{op}}$ corresponds to a morphism α in \mathcal{O}^{\otimes} whose image in $\mathcal{BM}_{\text{inv}}^{\otimes}$ is the map $(\langle n+1\rangle, \{0\}) \to (\langle n\rangle, \varnothing)$. Now let \mathcal{M}^{\otimes} denote the full simplicial subset of $\overline{\mathcal{M}}^{\otimes}$ spanned by those vertices for which α is inert.

Lemma 6.21. Let $q \colon \mathcal{O}^{\otimes} \to \mathcal{BM}_{\mathrm{inv}}^{\otimes}$ be a fibration of ∞ -operads, so q exhibits $\mathcal{M} := \mathcal{O}_{\mathfrak{m}}^{\otimes}$ as weakly bi-enriched over $\mathcal{O}_{\mathfrak{a}}^{\otimes}$. Then the associated functor $\mathcal{M}^{\circledast} \to \mathcal{C}^{\circledast}$ (Notation 6.9) is a locally coCartesian fibration.

References

[Lur09] Jacob Lurie. *Higher topos theory*. Vol. 170. Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2009, pp. xviii+925. ISBN: 978-0-691-14049-0; 0-691-14049-9. DOI: 10.1515/9781400830558. URL: https://doi.org/10.1515/9781400830558.

[Lur17] Jacob Lurie. *Higher algebra*. Manuscript available at https://www.math.ias.edu/~lurie/papers/HA.pdf. 2017.

L: Lurie gives this a name (Definition 4.2.1.12 weakly enriched)—not sure what to call this. something bi-enriched?

L: see Example 4.2.1.17 of higher algebra

L: fibration?

L: this might be off-revisit later!