```
\hbox{import numpy as np}\\
import pandas as pd
import matplotlib.pyplot as plt
import sklearn.datasets
from sklearn.model selection import train test split
# loading the data from sklearn
breast_cancer_dataset = sklearn.datasets.load_breast_cancer()
print(breast cancer dataset)
[] {'data': array([[1.799e+01, 1.038e+01, 1.228e+02, ..., 2.654e-01, 4.601e-01,
           [2.057e+01, 1.777e+01, 1.329e+02, ..., 1.860e-01, 2.750e-01,
           8.902e-02],
           [1.969e+01, 2.125e+01, 1.300e+02, ..., 2.430e-01, 3.613e-01,
           8.758e-021.
           [1.660e+01, 2.808e+01, 1.083e+02, ..., 1.418e-01, 2.218e-01,
           7.820e-02],
           [2.060e+01, 2.933e+01, 1.401e+02, ..., 2.650e-01, 4.087e-01,
           1.240e-01],
           [7.760e+00, 2.454e+01, 4.792e+01, ..., 0.000e+00, 2.871e-01,
           0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,
           1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0,
           1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1,
           1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0,
           0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
           1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1,
           1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0,
           0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0,
           1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1,
           1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
           0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1,
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0,
           0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0,
           1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1,
           1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0,
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1,
           1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
           1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
           1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1,
           1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1,
           'radius error', 'texture error', 'perimeter error', 'area error',
           'smoothness error', 'compactness error', 'concavity error', 'concave points error', 'symmetry error', 'fractal dimension error', 'worst radius', 'worst texture',
           'worst perimeter', 'worst area', 'worst smoothness', 'worst compactness', 'worst concavity', 'worst concave points',
           'worst symmetry', 'worst fractal dimension'], dtype='<U23'), 'filename': 'breast_cancer.csv', 'data_module': 'sklearn.dataset
    4
# loading the data to a data frame
data_frame = pd.DataFrame(breast_cancer_dataset.data, columns = breast_cancer_dataset.feature_names)
```

print the first 5 rows of the dataframe
data_frame.head()

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	 worst radius	worst texture	wor perimen
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419	0.07871	 25.38	17.33	184
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812	0.05667	 24.99	23.41	158
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069	0.05999	 23.57	25.53	152
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2597	0.09744	 14.91	26.50	98
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.1809	0.05883	 22.54	16.67	152

5 rows × 30 columns

```
# adding the 'target' column to the data frame
data_frame['label'] = breast_cancer_dataset.target
```

print last 5 rows of the dataframe
data_frame.tail()

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points
564	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890
565	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791
566	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302
567	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200
568	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000

5 rows × 31 columns

 $\mbox{\tt\#}$ number of rows and columns in the dataset $\mbox{\tt data_frame.shape}$

(569, 31)

 $\mbox{\tt\#}$ getting some information about the data data_frame.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 31 columns):

#	Column	Non-Null Count	, ,
0	mean radius	569 non-null	float64
1	mean texture	569 non-null	float64
2	mean perimeter	569 non-null	float64
3	mean area	569 non-null	float64
4	mean smoothness	569 non-null	float64
5	mean compactness	569 non-null	float64
6	mean concavity	569 non-null	float64
7	mean concave points	569 non-null	float64
8	mean symmetry	569 non-null	float64
9	mean fractal dimension	569 non-null	float64
10	radius error	569 non-null	float64
11	texture error	569 non-null	float64
12	perimeter error	569 non-null	float64
13	area error	569 non-null	float64
14	smoothness error	569 non-null	float64
15	compactness error	569 non-null	float64
16	concavity error	569 non-null	float64
17	concave points error	569 non-null	float64
18	symmetry error	569 non-null	float64
19	fractal dimension error	569 non-null	float64
20	worst radius	569 non-null	float64
21	worst texture	569 non-null	float64
22	worst perimeter	569 non-null	float64
23	worst area	569 non-null	float64
24	worst smoothness	569 non-null	float64
25	worst compactness	569 non-null	float64
26	worst concavity	569 non-null	float64
27	worst concave points	569 non-null	float64
28	worst symmetry	569 non-null	float64
29	worst fractal dimension		float64
30	label	569 non-null	int64

dtypes: float64(30), int64(1)
memory usage: 137.9 KB

checking for missing values
data_frame.isnull().sum()

mean radius mean texture mean perimeter mean area mean smoothness $\hbox{\it mean compactness}$ 0 mean concavity mean concave points 0 mean symmetry mean fractal dimension 0 radius error 0 texture error 0 perimeter error

```
area error
smoothness error
                          0
                          0
compactness error
concavity error
concave points error
                          0
symmetry error
fractal dimension error
                          0
worst radius
worst texture
worst perimeter
                          0
worst area
worst smoothness
                          0
                          0
worst compactness
worst concavity
                          0
worst concave points
                          0
worst symmetry
                          0
worst fractal dimension
                          0
                          0
dtype: int64
```

statistical measures about the data
data_frame.describe()

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	conca
count	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.00
mean	14.127292	19.289649	91.969033	654.889104	0.096360	0.104341	0.08
std	3.524049	4.301036	24.298981	351.914129	0.014064	0.052813	0.07
min	6.981000	9.710000	43.790000	143.500000	0.052630	0.019380	0.00
25%	11.700000	16.170000	75.170000	420.300000	0.086370	0.064920	0.02
50%	13.370000	18.840000	86.240000	551.100000	0.095870	0.092630	0.06
75%	15.780000	21.800000	104.100000	782.700000	0.105300	0.130400	0.13
max	28.110000	39.280000	188.500000	2501.000000	0.163400	0.345400	0.42

8 rows × 31 columns

checking the distribution of Target Varibale
data_frame['label'].value_counts()

1 357 0 212

Name: label, dtype: int64

data_frame.groupby('label').mean()

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	 worst radius
label											
0	17.462830	21.604906	115.365377	978.376415	0.102898	0.145188	0.160775	0.087990	0.192909	0.062680	 21.134811
1	12.146524	17.914762	78.075406	462.790196	0.092478	0.080085	0.046058	0.025717	0.174186	0.062867	 13.379801

2 rows × 30 columns

```
X = data_frame.drop(columns='label', axis=1)
```

Y = data_frame['label']

print(X)

```
0.05533 ...
                                                               38.25
     565
                                               23.690
                          0.05648 ...
                                               18.980
                                                               34.12
     566
                          0.07016 ...
                                               25.740
     567
                                                               39.42
     568
                          0.05884 ...
                                                9.456
                                                               30.37
          worst perimeter worst area worst smoothness worst compactness \
     0
                   184.60
                                2019.0
                                                  0.16220
                                                                      0.66560
                    158.80
                                1956.0
                                                  0.12380
                                                                      0.18660
     1
     2
                   152.50
                                1709.0
                                                  0.14440
                                                                      0.42450
     3
                    98.87
                                 567.7
                                                  0.20980
                                                                      0.86630
     4
                   152.20
                                1575.0
                                                  0.13740
                                                                      0.20500
                    166.10
                                2027.0
                                                  0.14100
                                                                      0.21130
     564
     565
                   155.00
                                1731.0
                                                  0.11660
                                                                      0.19220
     566
                                1124.0
                                                  0.11390
                                                                      0.30940
                   126.70
     567
                   184.60
                                1821.0
                                                  0.16500
                                                                      0.86810
     568
                    59.16
                                 268.6
                                                  0.08996
                                                                      0.06444
          worst concavity worst concave points worst symmetry
     0
                    0.7119
                                           0.2654
                                                           0.4601
     1
                    0.2416
                                          0.1860
                                                           0.2750
     2
                   0.4504
                                          0.2430
                                                           0.3613
                   0.6869
                                          0.2575
     3
                                                           0.6638
     4
                   0.4000
                                          0.1625
                                                           0.2364
     564
                    0.4107
                                          0.2216
                                                           0.2060
     565
                   0.3215
                                          0.1628
                                                           0.2572
     566
                   0.3403
                                          0.1418
                                                           0.2218
     567
                    0.9387
                                           0.2650
                                                           0.4087
     568
                   0.0000
                                          0.0000
                                                           0.2871
          worst fractal dimension
     0
                           0.11890
     1
                           0.08902
     2
                           0.08758
                           0.17300
     3
     4
                           0.07678
     564
                           0.07115
     565
                           0.06637
     566
                           0.07820
                           0.12400
     567
     568
                           0.07039
     [569 rows x 30 columns]
print(Y)
     0
            0
            0
     1
     2
            0
     3
            a
     4
            0
     564
            0
     565
     566
            0
     567
            0
     568
     Name: label, Length: 569, dtype: int64
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=2)
print(X.shape, X_train.shape, X_test.shape)
     (569, 30) (455, 30) (114, 30)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train_std = scaler.fit_transform(X_train)
X_test_std = scaler.transform(X_test)
# importing tensorflow and Keras
import tensorflow as tf
tf.random.set seed(3)
\quad \hbox{from tensorflow import keras} \\
```

```
# setting up the layers of Neural Network
model = keras.Sequential([
                   keras.layers.Flatten(input_shape=(30,)),
                   keras.layers.Dense(20, activation='relu'),
                   keras.layers.Dense(2, activation='sigmoid')
])
# compiling the Neural Network
model.compile(optimizer='adam',
          loss='sparse_categorical_crossentropy',
          metrics=['accuracy'])
# training the Meural Network
history = model.fit(X_train_std, Y_train, validation_split=0.1, epochs=10)
    Epoch 1/10
    13/13 [====
             Epoch 2/10
               13/13 [====
    Epoch 3/10
                     ========] - 0s 9ms/step - loss: 0.5282 - accuracy: 0.6797 - val_loss: 0.4313 - val_accuracy: 0.7174
    13/13 [====
   Epoch 4/10
    Epoch 5/10
                     ========] - 0s 11ms/step - loss: 0.3368 - accuracy: 0.8533 - val_loss: 0.2819 - val_accuracy: 0.9348
   13/13 [===:
    Epoch 6/10
    13/13 [======
                  =========] - 0s 8ms/step - loss: 0.2805 - accuracy: 0.8924 - val_loss: 0.2360 - val_accuracy: 0.9348
    Epoch 7/10
                  =========] - 0s 8ms/step - loss: 0.2383 - accuracy: 0.9242 - val_loss: 0.2025 - val_accuracy: 0.9565
   13/13 [====
    Epoch 8/10
   13/13 [============] - 0s 9ms/step - loss: 0.2088 - accuracy: 0.9389 - val_loss: 0.1769 - val_accuracy: 0.9565
    Epoch 9/10
   Epoch 10/10
               ===========] - 0s 6ms/step - loss: 0.1673 - accuracy: 0.9560 - val_loss: 0.1411 - val_accuracy: 0.9565
   13/13 [======
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['training data', 'validation data'], loc = 'lower right')
```

<matplotlib.legend.Legend at 0x7a9988657910>


```
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['training data', 'validation data'], loc = 'upper right')
     <matplotlib.legend.Legend at 0x7a9990571fc0>
```



```
loss, accuracy = model.evaluate(X_test_std, Y_test)
print(accuracy)
     4/4 [============== ] - 0s 5ms/step - loss: 0.1610 - accuracy: 0.9474
     0.9473684430122375
print(X_test_std.shape)
print(X_test_std[0])
      (114.30)
     [-0.04462793 -1.41612656 -0.05903514 -0.16234067 2.0202457 -0.11323672 0.18500609 0.47102419 0.63336386 0.26335737 0.53209124 2.62763999
       0.62351167 \quad 0.11405261 \quad 1.01246781 \quad 0.41126289 \quad 0.63848593 \quad 2.88971815
       \hbox{-0.41675911} \quad \hbox{0.74270853} \quad \hbox{-0.32983699} \quad \hbox{-1.67435595} \quad \hbox{-0.36854552} \quad \hbox{-0.38767294}
       0.32655007 -0.74858917 -0.54689089 -0.18278004 -1.23064515 -0.6268286 ]
Y_pred = model.predict(X_test_std)
     4/4 [=======] - 0s 3ms/step
print(Y_pred.shape)
print(Y_pred[0])
      (114, 2)
      [0.1203268 0.3640822]
print(X_test_std)
      \hbox{\tt [[-0.04462793 -1.41612656 -0.05903514 \dots -0.18278004 -1.23064515]}
        -0.6268286 ]
       [ \ 0.24583601 \ -0.06219797 \ \ 0.21802678 \ \dots \ \ 0.54129749 \ \ 0.11047691
        0.0483572 ]
       [-1.26115925 \ -0.29051645 \ -1.26499659 \ \dots \ -1.35138617 \ \ 0.269338
       -0.28231213]
      [ 0.72709489  0.45836817  0.75277276  ...  1.46701686  1.19909344
        0.65319961]
       -1.59557344]
       [ 0.84100232 -0.06676434  0.8929529  ...  2.15137705  0.35629355
        0.37459546]]
print(Y_pred)
```

[[1.20326802e-01 3.64082187e-01] [5.28105259e-01 5.19704163e-01]

```
[5.40566491e-03 6.48275375e-01]
           [9.42292750e-01 2.18392666e-02]
           [5.33543587e-01 5.49848258e-01]
           [8.66722882e-01 1.89862952e-01]
           [5.92583753e-02 2.99065411e-01]
          [1.78221762e-02 7.06589162e-01]
           [5.64010888e-02 5.66504359e-01]
          [6.79483414e-02 7.76070356e-01]
           [3.88196498e-01 5.37282467e-01]
           [2.12966040e-01 7.59332538e-01]
           [3.13081220e-02 2.76366740e-01]
           [1.72365278e-01 5.48351526e-01]
           [1.09903365e-02 5.50040245e-01]
           [6.65126264e-01 1.67448714e-01]
           [2.46714763e-02 7.08744228e-01]
           [3.65961380e-02 6.04149461e-01]
          [1.06286323e-02 4.65982914e-01]
           [8.21416199e-01 2.09669128e-01]
          [9.68247801e-02 4.84190553e-01]
           [3.05198040e-02 6.08542979e-01]
           [4.25501093e-02 6.07572258e-01]
           [3.38875689e-02 8.45533788e-01]
           [1.28269508e-01 7.37340510e-01]
           [7.61026561e-01 3.13024044e-01]
           [1.55834228e-01 6.20655715e-01]
           [3.10129851e-01 6.69140935e-01]
           [7.26426065e-01 4.13368970e-01]
          [7.48218775e-01 2.76744425e-01]
           [2.07317993e-01 8.53938282e-01]
           [6.34515658e-02 6.39049590e-01]
           [5.91087453e-02 6.78837180e-01]
           [8.56878161e-01 2.28726894e-01]
           [8.67484391e-01 2.61567354e-01]
           [1.01656079e-01 4.27403957e-01]
           [7.79800816e-03 5.31780303e-01]
           [2.59530216e-01 5.40467620e-01]
           [1.18292281e-02 7.29364276e-01]
           [9.34294984e-02 6.55003905e-01]
           [9.42937255e-01 6.41405210e-02]
           [6.05508387e-01 3.82730037e-01]
          [2.37397896e-03 3.51253003e-01]
           [3.36177796e-02 5.52823186e-01]
           [6.80146873e-01 3.80088568e-01]
           [4.92738336e-02 7.10263968e-01]
          [1.90360192e-02 8.52162063e-01]
           [5.17185871e-03 5.02076566e-01]
           [7.66647995e-01 1.93750292e-01]
           [7.39416420e-01 3.23774219e-01]
           [9.37079415e-02 8.04597914e-01]
          [7.06404150e-01 5.64650416e-01]
           [4.20975059e-01 5.78013182e-01]
          [1.97557695e-02 5.96377194e-01]
           [8.01853836e-03 6.36919379e-01]
           [5.40454566e-01 7.46417105e-01]
           [3.26421633e-02 5.04346251e-01]
          [1.20689499e-03 3.77044827e-01]
# argmax function
my_list = [0.25, 0.56]
index_of_max_value = np.argmax(my_list)
print(my_list)
print(index_of_max_value)
         [0.25, 0.56]
# converting the prediction probability to class labels
Y_pred_labels = [np.argmax(i) for i in Y_pred]
print(Y_pred_labels)
         input\_data = (11.76, 21.6, 74.72, 427.9, 0.08637, 0.04966, 0.01657, 0.01115, 0.1495, 0.05888, 0.4062, 1.21, 2.635, 28.47, 0.005857, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.01168, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758, 0.009758
# change the input data to a numpy array
input_data_as_numpy_array = np.asarray(input_data)
# reshape the numpy array as we are predicting for one data point
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)
# standardizing the input data
input_data_std = scaler.transform(input_data_reshaped)
```