Spis treści

1. Kombinatoryka2
1.1. Liczba wszystkich podzbiorów
1.2. Kombinacja bez powtórzeń
1.2.1. Właności dwumianu Newtona
1.3. Kombinacja z powtórzeniami
1.4. Wariacja z powtórzeniami
1.5. Wariacja bez powtórzeń
1.6. Permutacja
1.7. Permutacja z powtórzeniami
1.8. Podsumowanie 6
Definicje
Definicja 1.2.1 Kombinacja
Definicja 1.3.1 Multizbiór
Definicja 1.3.2 Kombinacja z powtórzeniami
Definicja 1.4.1 Wariacja
Definicja 1.6.1 Suriekcja
Definicja 1.6.2 Iniekcja
Definicja 1.6.3 Bijekcja 4
Twierdzenia
Twierdzenie 1.1.1 Liczba wszystkich podzbiorów
Twierdzenie 1.2.2 Liczba kombinacji bez powtórzeń
Twierdzenie 1.3.3 Liczba kombinacji z powtórzeniami
Twierdzenie 1.4.2 Liczba wariacji z powtórzeniami
Twierdzenie 1.5.1 Liczba wariacji bez powtórzeń
Twierdzenie 1.6.4 Liczba permutacji
Twierdzenie 1.7.1 Liczba permutacji z powtórzeniami

1. Kombinatoryka

1.1. Liczba wszystkich podzbiorów

Niech $X=\{a_1,a_2,...,a_n\}$. Moc |X|=n to ilość elementów w tym zbiorze.

Każdy podzbiór reprezentuje ciąg binarny długości n, gdzie 1 na pozycji i oznacza, że a_i znajduje się w podzbiorze. Z tego powodu liczba wszystkich podzbiorów to liczba ciągów bitowych o długości n.

Twierdzenie 1.1.1 (Liczba wszystkich podzbiorów)

Liczba wszystkich podzbiorów zbioru n-elementowego to 2^n .

1.2. Kombinacja bez powtórzeń

Definicja 1.2.1 (Kombinacja)

Kombinacja to każdy k-elementowy podzbiór n-elementowego zbioru.

Pierwszym elementem do podzbioru może być dowolny z n elementów zbioru. Drugi możemy wybrać z pozostałych na n-1 sposobów, i tak dalej aż do k-tego elementu, który wybieramy z n-k+1 tych, które zostały. Otrzymujemy n(n-1)...(n-k+1). Ponieważ kolejność w zbiorach nie ma znaczenia wynik dzielimy przez k! co daje $\frac{n!}{k!(n-k)!}=\binom{n}{k}$, gdzie $\binom{n}{k}$ to dwumian Newtona.

Twierdzenie 1.2.2 (Liczba kombinacji bez powtórzeń)

Liczba podzbiorów k-elementowych bez powtórzeń z n-elementowego zbioru to $\binom{n}{k}$.

1.2.1. Właności dwumianu Newtona

$$\binom{n}{k} = \binom{n}{n-k}$$

Uzasadnienie: Zamiast wybierać k osób z n osobowej grupy, które pójdą do kina, można wybrać n-k osób które nie pójdą.

Własność 1.2.4
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Uzasadnienie: k osób z n osobowej klasy możemy wybrać na $\binom{n}{k}$ sposobów (lewa strona równania).

Możemy też rozważyć dwa przypadki. W pierszym przewodniczący klasy znajduje się w wybranej grupie. Wtedy resztę grupy wybieramy z pozostałych uczniów na $\binom{n-1}{k-1}$ sposobów. W drugim przewodniczący nie znajduje się w wybranej grupie a wszystkich k uczniów wybieramy z reszty klasy na $\binom{n-1}{k}$ sposobów (prawa strona równania).

1.3. Kombinacja z powtórzeniami

Definicja 1.3.1 (Multizbiór)

Multizbiór (wielozbiór) uogólnienie pojęcia zbioru, w którym w odróżnieniu od klasycznych zbiorów jeden element może występować wiele razy

Definicja 1.3.2 (Kombinacja z powtórzeniami)

Kombinacja k-elementowa z powtórzeniami elementów zbioru X to dowolny multizbiór złożony z elementów zbioru X.

Niech $X=\{1,2,...,n\}$. Chcemy wybrać k elementową kombinację z powtórzeniami. Tworzymy n szufladek i i-tej szufladki wkładamy tyle kulek, ile razy wybieramy i-ty element. Mamy k kulek, które oznaczymy 0 i n-1 przegródek między szufladkami, które oznaczymy 1.

Przykład: Ciąg 000101100 oznacza 3 kulki w pierszej szufladzie, 1 kulkę w drugiej, 0 w trzeciej i 2 w czwartej.

Każdy taki ciąg długości odpowiada jednej kombinaji z powtórzeniami. Liczba tych kombinacji to liczba ciągów binarnych długości k+n-1 z k jedynkami, czyli $\binom{k+n-1}{k}$.

Twierdzenie 1.3.3 (Liczba kombinacji z powtórzeniami)

Liczba kombinacji k-elementowych z powtórzeniami z elementów zbioru n-elementowego to $\binom{k+n-1}{k}$.

1.4. Wariacja z powtórzeniami

Definicja 1.4.1 (Wariacja)

Wariacja to uporządkowany wybór elementów ze zbioru, gdzie kolejność ma znaczenie

Liczba wariacji k-elementowych z powtórzeniami zbioru n-elementowego jest równa liczbie funkcji postaci

$$f:[k]\to X,$$

gdzie $[k] = \{1, 2, ..., k\}$, a moc X wynosi |X| = n.

Każdemu z k elementów można przypisać dowolną z n wartości.

Twierdzenie 1.4.2 (Liczba wariacji z powtórzeniami)

Liczba wariacji k-elementowych z powtórzeniami zbioru n-elementowego wynosi n^k .

1.5. Wariacja bez powtórzeń

Liczba k-elementowych wariacji bez powtórzeń zbioru n-elementowego jest równa liczbie różnowartościowych funkcji postaci

$$f: [k] \to x$$
, gdzie $|X| = n$.

Pierwszemu elementowi przypisujemy jedą z n wartości, durgiemu jedną z n-1 pozostałych, i tak dalej.

Twierdzenie 1.5.1 (Liczba wariacji bez powtórzeń)

Liczba k-elementowych wariacji bez powtórzeń zbioru n-elementowego wynosi

$$n(n-1)...(n-k+1) = \frac{n!}{(n-k)!}$$

1.6. Permutacja

Definicja 1.6.1 (Suriekcja)

Suriekcja to funkcja przyjmująca jako swoje wartości wszystkie elementy przeciwdziedziny.

Definicja 1.6.2 (Iniekcja)

Iniekcja to funkcja różnowartościowa

Definicja 1.6.3 (Bijekcja)

Bijekcja to funkcja, która jest jednocześnie iniekcją i suriekcją. Każdy element z dziedziny jest w relacji z dokładnie jednym elementem przedziwniedziny i odwrotnie.

Liczba bijeckji zbioru n elementowego

$$f: X \to Y$$
, gdzie $|X| = |Y| = n$

wynosi n!

Permutacja to szczególny przypadek bijeckji gdzie X=Y.

Twierdzenie 1.6.4 (Liczba permutacji)

Liczba permutacji zbioru n-elementowego wynosi n!.

1.7. Permutacja z powtórzeniami

Niech $X=\{x_1,x_2,...,x_t\}$ będzie multizbiorem o mocy n, który zawiera element x_i o krotności n_i dla każdego i=1,2,...,t.

Wtedy

$$\sum_{i=1}^{t} n_i = n.$$

Jeżeli wszystkie wystąpienia elementu x_i ponumerujemy, to staną się one rozróżnialne, a X stanie się zbiorem. Liczba permutacji będzie wynosić n!. Wynik ten trzeba podzielić przez $n_i!$ aby z powrotem stały się nierozróżnialne.

Twierdzenie 1.7.1 (Liczba permutacji z powtórzeniami)

Liczba permutacji z powtórzeniami nelementowego zbioru, gdzie kolejne elementy mają krotności $n_1,n_2,...,n_t$ wynosi

$$\frac{n!}{n_1! \cdot n_2! \cdot \ldots \cdot n_t!}$$

1.8. Podsumowanie

Twierdzenie 1.1.1 (Liczba wszystkich podzbiorów)

Liczba wszystkich podzbiorów zbioru n-elementowego to 2^n .

Definicja 1.2.1 (Kombinacja)

Kombinacja to każdy k-elementowy podzbiór n-elementowego zbioru.

Twierdzenie 1.2.2 (Liczba kombinacji bez powtórzeń)

Liczba podzbiorów k-elementowych bez powtórzeń z n-elementowego zbioru to $\binom{n}{k}$.

Własność 1.2.3

$$\binom{n}{k} = \binom{n}{n-k}$$

Własność 1.2.4

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Definicja 1.3.1 (Multizbiór)

Multizbiór (wielozbiór) uogólnienie pojęcia zbioru, w którym w odróżnieniu od klasycznych zbiorów jeden element może występować wiele razy

Definicja 1.3.2 (Kombinacja z powtórzeniami)

Kombinacja k-elementowa z powtórzeniami elementów zbioru X to dowolny multizbiór złożony z elementów zbioru X.

Twierdzenie 1.3.3 (Liczba kombinacji z powtórzeniami)

Liczba kombinacji k-elementowych z powtórzeniami z elementów zbioru n-elementowego to $\binom{k+n-1}{k}$.

Definicja 1.4.1 (Wariacja)

Wariacja to uporządkowany wybór elementów ze zbioru, gdzie kolejność ma znaczenie

6

Twierdzenie 1.4.2 (Liczba wariacji z powtórzeniami)

Liczba wariacji k-elementowych z powtórzeniami zbioru n-elementowego wynosi n^k .

Twierdzenie 1.5.1 (Liczba wariacji bez powtórzeń)

Liczba k-elementowych wariacji bez powtórzeń zbioru n-elementowego wynosi

$$n(n-1)...(n-k+1) = \frac{n!}{(n-k)!}$$

Definicja 1.6.1 (Suriekcja)

Suriekcja to funkcja przyjmująca jako swoje wartości wszystkie elementy przeciwdziedziny.

Definicja 1.6.2 (Iniekcja)

Iniekcja to funkcja różnowartościowa

Definicja 1.6.3 (Bijekcja)

Bijekcja to funkcja, która jest jednocześnie iniekcją i suriekcją. Każdy element z dziedziny jest w relacji z dokładnie jednym elementem przedziwniedziny i odwrotnie.

Twierdzenie 1.6.4 (Liczba permutacji)

Liczba permutacji zbioru n-elementowego wynosi n!.

Twierdzenie 1.7.1 (Liczba permutacji z powtórzeniami)

Liczba permutacji z powtórzeniami n elementowego zbioru, gdzie kolejne elementy mają krotności $n_1,n_2,...,n_t$ wynosi

$$\frac{n!}{n_1! \cdot n_2! \cdot \ldots \cdot n_t!}$$