Kinematyka 2/15

Andrzej Kapanowski http://users.uj.edu.pl/~ufkapano/

WFAIS, Uniwersytet Jagielloński w Krakowie

2019

Podstawowe pojęcia

- Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny.
- Ruchem nazywamy wzajemne przemieszczanie się w przestrzeni, w miarę upływu czasu, jednych ciał względem innych.
- Ruch jest zjawiskiem względnym, tzn. ciało A poruszające się względem ciała B może w tym samym czasie spoczywać względem ciała C.
- Przykład: pasażer jadący pociągiem.
- Poprawny opis ruchu wymaga podania układu odniesienia, względem którego ruch jest opisywany. Układ odniesienia to układ współrzędnych związany z ustalonym ciałem lub zbiorem ciał.

Modele wykorzystywane do opisu ruchu

- Punkt materialny jest to ciało, którego rozmiary można pominąć w opisie jego ruchu.
- Przykład: ruch Ziemi wokół Słońca.
- Bryła sztywna jest to zbiór dużej liczby punktów materialnych, znajdujących się w określonych, nie zmieniających się odległościach wzajemnych.
- To samo ciało można raz uważać za punkt materialny, a drugi raz za bryłę sztywną.

Dalsze pojęcia

- Tor ruchu to krzywa utworzona przez punkty określające kolejne położenia ciała w przestrzeni.
- Droga s jest to długość toru (skalar).
- Położenie ciała względem danego układu odniesienia możemy określić za pomocą wektora położenia r.
 Wektor położenia łączy początek układu współrzędnych z aktualnym położeniem ciała w przestrzeni.
- Wektor przemieszczenia $\Delta \vec{r}$ łączy początkowe i końcowe położenie ciała, określone dla danego czasu obserwacji.

Ruch prostoliniowy

- Torem ruchu jest linia prosta. Dzięki temu możemy stosować opis skalarny zamiast wektorowego.
- Położenie ciała wyznaczamy na nieograniczonej osi x najczęściej względem początku osi (punkt zerowy). Oś ma kierunek dodatni i kierunek ujemny.
- Zmiana położenia od x_1 (chwila t_1) do x_2 (chwila t_2) wynosi $\Delta x = x_2 x_1$. Przemieszczenie Δx może być dodatnie, ujemne lub zerowe.
- Wygodnym sposobem przedstawienia ruchu jest wykreślenie jego położenia x jako funkcji czasu t - wykres x(t).

Wykres ruchu

Prędkość

Predkość średnia

$$v_{sr} = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1}.$$
 (1)

Prędkość chwilowa

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}.$$
 (2)

Jednostką prędkości jest m/s.

Przyspieszenie

Przyspieszenie średnie

$$a_{sr} = \frac{\Delta v}{\Delta t} = \frac{v_2 - v_1}{t_2 - t_1}.$$
 (3)

Przyspieszenie chwilowe

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt} = \frac{d}{dt} \left(\frac{dx}{dt} \right) = \frac{d^2 x}{dt^2}.$$
 (4)

Jednostką przyspieszenia jest m/s^2 .

Ruch ze stałym przyspieszeniem l

- Stałe przyspieszenie chwilowe a = const.
- Prędkość chwilowa $v = v_0 + at$, gdzie $v_0 = v(0)$.
- W tym ruchu zachodzi związek

$$a_{sr} = \frac{(v_0 + at_2) - (v_0 + at_1)}{t_2 - t_1} = a.$$
 (5)

- Położenie $x = x_0 + v_0 t + a t^2 / 2$, gdzie $x_0 = x(0)$.
- Prędkość średnia

$$v_{sr} = \frac{v_0(t_2 - t_1) + a(t_2^2 - t_1^2)/2}{t_2 - t_1} = \frac{2v_0 + a(t_2 + t_1)}{2},$$
(6)

$$v_{sr} = \frac{(v_0 + at_2) + (v_0 + at_1)}{2} = \frac{v_1 + v_2}{2}.$$
 (7)

Ruch ze stałym przyspieszeniem II

• Podstawowe równania ruchu ze stałym przyspieszeniem:

$$v = v_0 + at, \tag{8}$$

$$x = x_0 + v_0 t + a t^2 / 2. (9)$$

 Występuje 6 wielkości: x, v, a, t, x₀, v₀. Zwykle w równaniach występuje na raz 5 wielkości, czyli jedną można wyeliminować, np. czas,

$$v^2 = v_0^2 + 2a(x - x_0). (10)$$

Spadek swobodny i rzut pionowy

- Spadek swobodny jest to ruch wzdłuż prostej pionowej bez prędkości początkowej ($v_0 = 0$), z przyspieszeniem grawitacyjnym $g = 9.8 m/s^2$.
- Ustalamy, że oś x jest pozioma, a oś y skierowana pionowo w górę. Spadek swobodny będzie się odbywał wzdłuż osi y ze stałym przyspieszeniem a=-g.
- Rzut pionowy jest ruchem ciała wzdłuż prostej pionowej, którego prędkość początkowa jest zwrócona do góry $(v_0 > 0)$, a przyspieszenie wynosi a = -g.

Ruch prostoliniowy złożony

- Rozważmy dwa układy współrzędnych, układ spoczywający S i układ S' poruszający się ruchem jednostajnym z prędkością u względem układu S.
- Współrzędne ciała P w układach S i S' to odpowiednio x i x'.
- Zakładamy, że czas płynie w obu układach jednakowo, czyli t=t'. To założenie jest słuszne, gdy prędkości układu poruszającego się jest mała w porównaniu z prędkością światła w próżni, tzn. $u\ll c$.
- Związek między wielkościami:

$$x = x' + ut'$$
 (transformacja Galileusza), (11)

$$v = v' + u$$
 (prawo dodawania prędkości), (12)

$$a = a'$$
 (jednakowe przyspieszenia). (13)

Wielkości fizyczne

Podział wielkości fizycznych ze względu na własności transformacyjne.

- Skalary, tensory zerowego rzędu temperatura, ciśnienie, masa, energia, itp.
- Wektory, tensory pierwszego rzędu przemieszczenie, prędkość, przyspieszenie, siła, itp.
- Tensory drugiego rzędu moment bezwładności, przenikalność dielektryczna, itp.
- Tensory wyższych rzędów.

Własności wektorów

Przedstawienie graficzne wektora: strzałka.

Oznaczenia wektora: \vec{a} , a.

- Kierunek
- Zwrot (dwie możliwości dla ustalonego kierunku).
- Wartość (długość, moduł), $|\vec{a}| = a \ge 0$. *Uwaga*: a czasem oznacza współrzędną wektora!
- Punkt przyłożenia (nie zawsze istotny).
- Działania na wektorach.

Przykład: obrót w przestrzeni nie jest wektorem.

Działania na wektorach

- Mnożenie wektora przez liczbę, $\alpha \vec{a}$.
- Dodawanie (składanie) wektorów sposób geometryczny, a nie algebraiczny (reguła równoległoboku).

$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$
 (przemienność). (14)

$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$
 (łączność). (15)

Odejmowanie wektorów.

$$\vec{a} - \vec{b} = \vec{a} + (-1)\vec{b}.$$
 (16)

- Rozkład wektora na (wektory) składowe.
- Iloczyn skalarny wektorów.
- Iloczyn wektorowy wektorów.

Dodawanie wektorów

Rozkład wektora na składowe

- Dany wektor można zawsze traktować jako wektor wypadkowy wektorów składowych. Istnieje wiele możliwości rozkładu wektora na składowe. W praktyce często robimy rozkład wektora na składowe równoległe do osi ustalonego układu współrzędnych.
- Przykład: rozkład wektora w układzie prostokątnym na płaszczyźnie.

$$\vec{a} = \vec{a}_x + \vec{a}_y, \tag{17}$$

$$a_x = a\cos\theta, \ a_y = a\sin\theta,$$
 (18)

$$a^2 = a_x^2 + a_y^2$$
 (twierdzenie Pitagorasa). (19)

Analogicznie postępujemy w trzech wymiarach.

Wektory jednostkowe (wersory)

- Wektorem jednostkowym nazywamy wektor o długości 1, skierowany w określonym kierunku.
- Przykład: układ prawoskrętny w trzech wymiarach, wersory \hat{i} , \hat{j} , \hat{k} ,

$$\vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}. \tag{20}$$

Przykład: dodawanie wektorów na płaszczyźnie,

$$\vec{a} + \vec{b} = (a_x \hat{i} + a_y \hat{j}) + (b_x \hat{i} + b_y \hat{j}) = (a_x + b_x) \hat{i} + (a_y + b_y) \hat{j}.$$
(21)

Analogicznie postępujemy w trzech wymiarach.

lloczyn skalarny l

• Iloczyn skalarny wektorów daje skalar

$$\vec{a} \cdot \vec{b} = ab \cos \phi, \tag{22}$$

gdzie ϕ jest kątem pomiędzy wektorami.

• Iloczyn skalarny jest przemienny,

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}. \tag{23}$$

- Jednakowe wektory, $\vec{a} \cdot \vec{a} = a^2$.
- Wektory prostopadłe, $\phi=\pi/2$, $\vec{a}\cdot\vec{b}=0$.

lloczyn skalarny II

 Dla wersorów w prostokątnym układzie współrzędnych zachodzi

$$\hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1, \tag{24}$$

$$\hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = 0. \tag{25}$$

 Jeżeli wyrazimy dwa wektory przez wersory, to wykonując iloczyn skalarny korzystamy z rozdzielności mnożenia względem dodawania. Można wykazać, że

$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z. \tag{26}$$

lloczyn wektorowy l

Iloczyn wektorowy wektorów daje wektor (pseudowektor)

$$\vec{c} = \vec{a} \times \vec{b},\tag{27}$$

$$c = ab\sin\phi \text{ (długość)}, \tag{28}$$

 \vec{c} jest prostopadły do płaszczyzny wyznaczonej przez wektory \vec{a} i \vec{b} , zwrot wyznaczamy na podstawie reguły śruby prawoskrętnej (reguła korkociągu).

Iloczyn wektorowy nie jest przemienny,

$$\vec{b} \times \vec{a} = -(\vec{a} \times \vec{b}). \tag{29}$$

- Jednakowe wektory, $\vec{a} \times \vec{a} = 0$.
- Wektory równoległe, $\phi = 0$, $\vec{a} \times \vec{b} = 0$.

Reguła korkociągu

lloczyn wektorowy II

 Dla wersorów w prostokątnym układzie współrzędnych zachodzi

$$\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0, \tag{30}$$

$$\hat{i} \times \hat{j} = \hat{k}, \ \hat{j} \times \hat{k} = \hat{i}, \ \hat{k} \times \hat{i} = \hat{j}.$$
 (31)

 Jeżeli wyrazimy dwa wektory przez wersory, to wykonując iloczyn wektorowy korzystamy z rozdzielności mnożenia względem dodawania. Można wykazać, że

$$\vec{a} \times \vec{b} = (a_y b_z - b_y a_z)\hat{i} + (a_z b_x - b_z a_x)\hat{j} + (a_x b_y - b_x a_y)\hat{k}.$$
(32)

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}. \tag{33}$$

Ruch w dwóch wymiarach l

Przemieszczenie

$$\Delta \vec{r} = \vec{r}_2 - \vec{r}_1 = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} = \Delta x \hat{i} + \Delta y \hat{j}. \quad (34)$$

Predkość średnia

$$\vec{v}_{sr} = \frac{\Delta \vec{r}}{\Delta t} = \frac{\Delta x}{\Delta t} \hat{i} + \frac{\Delta y}{\Delta t} \hat{j}.$$
 (35)

Predkość chwilowa

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt} = \frac{dx}{dt}\hat{i} + \frac{dy}{dt}\hat{j}.$$
 (36)

Ruch w dwóch wymiarach II

- Wektor prędkości chwilowej ciała jest styczny do toru, po którym to ciało się porusza.
- Uwaga: wektor prędkości rysujemy często na tym samym rysunku, co wektor położenia; można porównywać kierunki tych wektorów, ale nie długości, ponieważ te wielkości fizyczne mają inne jednostki.
- Dla ruchu na płaszczyźnie opisanego przez x(t), y(t) możemy wyeliminować czas i otrzymać równanie toru ruchu ciała y = f(x).

Ruch w dwóch wymiarach III

Przyspieszenie średnie

$$\vec{a}_{sr} = \frac{\Delta \vec{v}}{\Delta t} = \frac{\Delta v_x}{\Delta t} \hat{i} + \frac{\Delta v_y}{\Delta t} \hat{j}.$$
 (37)

Przyspieszenie chwilowe

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt} = \frac{dv_x}{dt}\hat{i} + \frac{dv_y}{dt}\hat{j}.$$
 (38)

W ruchu krzywoliniowym przyspieszenie ciała nie jest styczne do toru. Wektor przyspieszenia ciała możemy rozłożyć na dwie składowe: przyspieszenie styczne i przyspieszenie normalne.

Ruch w dwóch wymiarach IV

- Najbardziej typowe ruchy krzywoliniowe płaskie to: rzut poziomy, rzut ukośny i ruch po okręgu.
- W rzucie poziomym prędkość początkowa jest skierowana poziomo, a przyspieszenie jest przyspieszeniem grawitacyjnym skierowanym pionowo w dół.
- W rzucie ukośnym prędkość początkowa jest skierowana pod pewnym kątem ostrym do poziomu, a przyspieszenie jest przyspieszeniem grawitacyjnym skierowanym pionowo w dół.
- W ruchu po okręgu torem ruchu jest okrąg.

Rzut poziomy

Rzut poziomy

Równanie ruchu

$$x = v_0 t, \ y = y_0 - gt^2/2.$$
 (39)

Równanie toru

$$y = y_0 - \frac{gx^2}{2v_0^2}. (40)$$

Rzut ukośny

Rzut ukośny

Równanie ruchu

$$x = v_0 t \cos \alpha, \ y = v_0 t \sin \alpha - gt^2/2. \tag{41}$$

Równanie toru

$$y = x \operatorname{tg} \alpha - \frac{gx^2}{2v_0^2 \cos^2 \alpha}.$$
 (42)

Zasięg rzutu ukośnego

$$y = 0, x_m = \frac{v_0^2 \sin(2\alpha)}{g}.$$
 (43)

Największy zasięg dla $\alpha = \pi/4$.

Ruch po okręgu l

- W ruchu po okręgu wektor prędkości ciała stale zmienia swój kierunek, czyli mamy ruch zmienny, w którym istnieje niezerowe przyspieszenie.
- Jeżeli w ruchu po okręgu wektor prędkości zachowuje stałą długość (nie kierunek!), to mówimy o ruchu jednostajnym po okręgu.
- Ruch jednostajny po okręgu jest ruchem okresowym, tzn. ruchem, który powtarza się w regularnych odstępach czasu.
- Czas trwania jednego pełnego obiegu po okregu nazywamy okresem

$$T = \frac{2\pi R}{v},\tag{44}$$

gdzie R jest promieniem okręgu, v wartością prędkości.

Ruch po okręgu II

Rozważmy równania ruchu:

$$\vec{r} = x\hat{i} + y\hat{j}, \ |\vec{r}| = R, \tag{45}$$

$$x = R\cos(\omega t), \ y = R\sin(\omega t), \tag{46}$$

gdzie $\omega=2\pi/T$ to częstość.

- Torem ruchu jest okrąg, $x^2 + y^2 = R^2$.
- Prędkość jest styczna do wektora położenia,

$$v_{x} = -\omega R \sin(\omega t) = -\omega y, \qquad (47)$$

$$v_y = \omega R \cos(\omega t) = \omega x,$$
 (48)

$$\vec{r} \cdot \vec{v} = xv_x + yv_y = -x\omega y + y\omega x = 0, \qquad (49)$$

$$v = \sqrt{v_x^2 + v_y^2} = \omega R. \tag{50}$$

Ruch po okręgu III

Przyspieszenie

$$a_{x} = -\omega^{2} R \cos(\omega t) = -\omega^{2} x, \tag{51}$$

$$a_y = -\omega^2 R \sin(\omega t) = -\omega^2 y, \tag{52}$$

$$\vec{a} = -\omega^2 x \hat{i} - \omega^2 y \hat{j} = -\omega^2 (x \hat{i} + y \hat{j}) = -\omega^2 \vec{r}.$$
 (53)

$$a = \omega^2 R = \frac{v^2}{R}$$
 (przyspieszenie dośrodkowe). (54)

• Częstotliwość f = 1/T, [f] = 1/s = 1Hz (herc).

Podsumowanie

- Wielkości fizyczne w kinematyce.
- Własności wektorów.
- Ruchy płaskie.
- Ruch po okręgu.