COMP9020: Foundations of Computer Science

Assignment 2

Name: Hongpei Luo

zID: z5246892

Problem 1:

(a): According to the definition, there has:

$$\begin{split} R_1; R_2 &= \{(a,c): \text{there is a } b \text{ with } (a,b) \in R_1 \text{ and } (b,c) \in R_2 \} \\ (R_1; R_2); R_3 &= \{(a,d): \text{there are } b, d \text{ with } (a,b) \in R_1, (b,c) \in R_2 \text{ and } (c,d) \in R_3 \} \\ R_2; R_3 &= \{(b,d): \text{there is a } c \text{ with } (b,c) \in R_2 \text{ and } (c,d) \in R_3 \} \\ R_1; (R_2; R_3) &= \{(a,d): \text{there are } b, c \text{ with } (a,b) \in R_1 \text{ and } (b,c) \in R_2, (c,d) \in R_3 \} \\ \therefore (a,b) \in R_1, (b,c) \in R_2, (c,d) \in R_3. \end{split}$$
Then $(a,c) \in R_1; R_2, (b,d) \in R_2; R_3, (a,d) \in R_1; (R_2; R_3), \text{also, } (a,d) \in (R_1; R_2); R_3.$ Above, $(R_1; R_2); R_3 = R_1; (R_2; R_3) \text{ is proved.}$

(b): From the definition, we know $(a,b) \in R_r$

Cause $I = \{ (x,x) \mid x \in S \}, \therefore (a,a), (b,b) \in I$

There has: $I; R = \{ (a,b): \text{ there is a } a \text{ with } (a,a) \in I \text{ and } (a,b) \in R_i \}$

 R_i ; $I = \{(a,b) : \text{there is a } b \text{ with } (a,b) \in R_i \text{ and } (b,b) \in I \}$

So, $(a,b) \in I; R_1$, also, $(a,b) \in R_1; I$.

 $I; R_1 = R_1; I = R_1$ where $I = \{(x,x): x \in S\}$ is proved.

- (c): We can give a counterexample to disprove $(R_1; R_2)^{\leftarrow} = R_1^{\leftarrow}; R_2^{\leftarrow}$. When $R_1 = \{(1,5)\}, R_2 = \{(5,7)\}, (1,7) \in R_1; R_2$, but $R_1^{\leftarrow} = \{(5,1)\}, R_2^{\leftarrow} = \{(7,5)\}, R_1^{\leftarrow}; R_2^{\leftarrow} = \emptyset$, $\therefore (R_1; R_2)^{\leftarrow} \neq R_1^{\leftarrow}; R_2^{\leftarrow}$
- (d): $(R_1 \cup R_2)$; $R_3 = \{ (a,c) : \text{there is a } b \text{ with } (a,b) \in R_1 \cup R_2 \text{ and } (b,c) \in R_3 \}$ There are 3 situations for $(a,b) \in R_1 \cup R_2$:
 - (1) $(a,b) \in R_1$, $(a,b) \notin R_2$: $R_1; R_3 = \{ (a,c) : \text{ there is a } b \text{ with } (a,b) \in R_1 \text{ and } (b,c) \in R_3 \}$ $R_2; R_3 = \emptyset$. $\therefore (a,c) \in (R_1; R_3) \cup (R_2; R_3)$, also, $(a,c) \in (R_1 \cup R_2); R_3$. So, $(R_1 \cup R_2); R_3 = (R_1; R_3) \cup (R_2; R_3)$.
 - (2) $(a,b) \notin R_1$, $(a,b) \in R_2$: $R_1; R_3 = \emptyset$ $R_2; R_3 = \{ (a,c) : \text{ there is a } b \text{ with } (a,b) \in R_2 \text{ and } (b,c) \in R_3 \}$ $\therefore (a,c) \in (R_1; R_3) \cup (R_2; R_3), \text{ also, } (a,c) \in (R_1 \cup R_2); R_3.$ So, $(R_1 \cup R_2); R_3 = (R_1; R_3) \cup (R_2; R_3).$
 - (3) $(a,b) \in R_1$, $(a,b) \in R_2$ $R_1; R_3 = \{(a,c) : \text{there is a } b \text{ with } (a,b) \in R_1 \text{ and } (b,c) \in R_3\}$ $R_2; R_3 = \{(a,c) : \text{there is a } b \text{ with } (a,b) \in R_2 \text{ and } (b,c) \in R_3\}$ $\therefore (a,c) \in (R_1; R_3) \cup (R_2; R_3)$, also, $(a,c) \in (R_1 \cup R_2); R_3$. So, $(R_1 \cup R_2); R_3 = (R_1; R_3) \cup (R_2; R_3)$.

Above the 3 situations, $(R_1 \cup R_2)$; $R_3 = (R_1; R_3) \cup (R_2; R_3)$ is proved.

(e): We can give a counterexample to disprove R_1 ; $(R_2 \cap R_3) = (R_1; R_2) \cap (R_1; R_3)$. When $R_1 = \{(1,5), (1,6)\}$, $R_2 = \{(5,7)\}$, $R_3 = \{(6,7)\}$: R_1 ; $(R_2 \cap R_3) = \emptyset$, $(R_1; R_2) \cap (R_1; R_3) = \{(1,7)\}$, which means R_1 ; $(R_2 \cap R_3) \neq (R_1; R_2) \cap (R_1; R_3)$. So, this relation is disproved.

Problem 2:

(a): We can assume P(j) has the proportion like $R^i = R^j$. Approach to prove when $R^i = R^{i+1}$, then $R^j = R^i$ for all $j \ge i$:

[B]: P(i) is true

[I]: Suppose there is a P(k) coincidently for some $k \ge i$, then $R^k = R^i$, for R^{k+1} :

$$R^{k+1} := R^k \cup (R^k; R)$$
 (definition of R^{k+1})
 $= R^i \cup (R^i; R)$ (IH)
 $= R^{i+1}$ (definition of R^{i+1})
 $= R^i$ (definition of R^i)

So, $R^k = R^i$, also, $R^{k+1} = R^i$, in this way, P(k) implies P(k+1).

Above, it's proved if there is an i such that $R^i = R^{i+1}$, then $R^j = R^i$ for all $j \ge i$.

- **(b):** Cause we assume P(j), then $R^{j+1} := R^i \cup (R; R^i)$, there has a relation that $R^j \subseteq R^{j+1}$ for all $j \ge 0$, according to the definition of transitivity, for all $k \le i$, $R^k \subseteq R^i$. We've showed that $R^k = R^i$ for all $k \ge i$ in (a), so $R^k \subseteq R^i$ when $k \ge i$. Therefore, $R^k \subseteq R^i$ for all $k \ge 0$.
- (c): Approach to show P(n) holds for all $n \in \mathbb{N}$:

We know for all $m \in \mathbb{N}$: $R^n; R^m = R^{n+m}$, $R^0 := I = \{(x,x) : x \in S\}$, and $I; R_1 = R_1; I = R_2$ from Problem 1 (b),

when
$$n = 0$$
: there has: R^0 ; $R^m = I$; R^m

$$= R^m; I$$

$$= R^m$$

$$= R^{0+m}$$

When $n \neq 0$:

From $R^{i+1} := R^i \cup (R; R^i)$ for $i \ge 0$, we know $R^{n+1} := R^n \cup (R; R^n)$ for $n \in \mathbb{N}$:

P(n) holds.

$$R^{n}; R^{m} = R^{n+m}$$

$$R^{n+1}; R^{m} = (R^{n} \cup (R; R^{n})); R^{m}$$

$$= (R^{n}; R^{m}) \cup ((R; R^{n}); R^{m})$$

$$= R^{n+m} \cup (R; (R^{n}; R^{m}))$$

$$= R^{n+m} \cup (R; R^{n+m})$$

$$= R^{n+m} \cup (R^{n^{0}}; R^{n+m})$$

$$= R^{n+m} \cup R^{n^{0}+n+m}$$

$$= R^{n+m} \cup R^{1+n+m}$$

$$= R^{n+1+m}$$

P(n) holds.

Above, P(n) holds for all $n \in \mathbb{N}$.

(d): From the above questions in problem 2, we know that $R^{k+1} \subseteq R^k$. If $(a,c) \in R^{k+1}$, then there exists $b_0, b_1, b_2, \dots, b_{k-1}, b_k, b_{k+1} \in S$, so that $a = b_0$, $c = b_{k+1}$, also, $(b_i, b_{i+1}) \in R$ for $0 \le i \le k$.

Because S has k elements, there exists i, j with $0 \le i \le j \le k+1$, like $b_i = b_j$, which means $(b_i, b_j) \in R$, also, $(a, c) \in R^{k+1-(j-i)}$. As j > i, $k+1-(j-1) \le k$, then $(a, c) \in R^n$ for some $n \le k$.

We can know $R^n \subseteq R^k$ in (b), then $(a,c) \in R^k$.

So, that's why $R^k = R^{k+1}$ when |S| = k.

(e): We can assume $(a,b) \in R^k$, $(b,c) \in R^k$. Then there has $b_1,b_2,\ldots,b_{n-1},b_n$, when $n \le k$, and $C_1,C_2,\ldots,C_{r-1},C_r$ when $r \le k$.

Then: (a,b_1) , (b_i,b_{i+1}) for $1 \le i \le n$, (b_n,b) , (b,c_1) , (c_i,c_{i+1}) for $1 \le i \le r$, (c_r,c) , which means $(a,c) \in R^{n+r+1}$. In (b) and (d), we know $R^{n+r+1} \subseteq R^k$, then $(a,c) \in R^k$. Therefore, R^k is transitive.

(f): From (e), we can know that $(R \cup R^{\leftarrow})^K$ is transitive.

$$(a,b) \in R, (b,a) \in R^{\leftarrow}, \quad \therefore \{(a,b), (b,a)\} \subseteq R \cup R^{\leftarrow},$$

Because of the content of the problem, then $(R \cup R^{\leftarrow})^0 = I$.

$$(a,a) \in (R \cup R^{\leftarrow})^0$$
 and $(R \cup R^{\leftarrow})^0 \subseteq (R \cup R^{\leftarrow})^k$

$$(a,a) \in (R \cup R^{\leftarrow})^0 \subseteq (R \cup R^{\leftarrow})^k$$
 then, $(R \cup R^{\leftarrow})^k$ is reflexive.

So, $R \cup R^{\leftarrow}$ is symmetric.

Also,
$$(R \cup R^{\leftarrow})^1 = I \cup (R \cup R^{\leftarrow})$$
, $(R \cup R^{\leftarrow})^1 = (R \cup R^{\leftarrow})^0 \cup ((R \cup R^{\leftarrow}); (R \cup R^{\leftarrow})^0)$
So, $(R \cup R^{\leftarrow})^1$ is summetric.

We can assume that $(R \cup R^{\leftarrow})^n$ is symmetric, where $n \ge 1$.

Known from (c) that $(R \cup R^{\leftarrow})^{n+1} = (R \cup R^{\leftarrow})^1; (R \cup R^{\leftarrow})^n, (R \cup R^{\leftarrow})^{n+1} = (R \cup R^{\leftarrow})^n; (R \cup R^{\leftarrow})^1$ there has $(a,c) \in (R \cup R^{\leftarrow})^{n+1}$, then $(a,b) \in (R \cup R^{\leftarrow})^1, (b,c) \in (R \cup R^{\leftarrow})^n$,

so,
$$(b,a) \in (R \cup R^{\leftarrow})^1$$
, $(c,b) \in (R \cup R^{\leftarrow})^n$, $(c,a) \in (R \cup R^{\leftarrow})^{n+1}$.

Then, $(R \cup R^{\leftarrow})^{n+1}$ is symmetric, so, $(R \cup R^{\leftarrow})^k$ is symmetric.

Above, it's proved that $(R \cup R^{\leftarrow})^k$ is an equivalence relation.

Problem 3: (a): Binary tree data structure can be defined as either: (B) an empty tree (R) a node followed by two binary trees (b): The count function: count(T): (where T = 0 means the binary tree is empty) (B): if (T=0): return 0 (R): else: return count(T_1) + count(T_2) +1 (where T_1 is the left child binary tree, and T_2 is the right child binary tree) The leaves function: (c): leaves(T): (B): if (T = 0): (where T = 0 means the binary tree is empty) return $\frac{1}{2}$ (R): else: $\lfloor \text{leaves}(T_1) + \text{leaves}(T_2) \rfloor$ (where T_1 is the left child binary tree, and T_2 is the right child binary tree) The internal function: (d): internal(T): (where T = 0 means the binary tree is empty) (B): if (T = 0): return $-\frac{1}{2}$ (R): else: return $\lfloor internal(T_1) + internal(T_2) \rfloor + 1$ (where T_1 is the left child binary tree, and T_2 is the right child binary tree) There are two situations: (e): (1) There is one node in the binary tree, according to the definition we showed in (b) and (c), internal(T) = 0, leaves(T) = 1, which fits leaves(T) = 1 + internal(T) P(T) holds. (2) When there are nodes more than one, suppose leaves (T) = 1 + internal(T) holds, according to the definition we show in (b) and (c), then: leaves(T) = $\lfloor leaves(T_1) + leaves(T_2) \rfloor$ = |1 + internal(T)|

Above, it's proved P(T) holds for all binary tree T.

= 1 + internal(T)

P(T) hods.

Problem 4:

(a): Defining the requirements as formulas of propositional logic firstly:

Ap: Alpha uses channel hi; Aq: Alpha uses channel lo; Bp: Bravo uses channel hi; Bq: Bravo uses channel lo; Cp: Charlie uses channel hi; Cq: Charlie uses channel lo; Dp: Delta uses channel hi; Dq: Delta uses channel lo.

According to the definition of propositional formulas:

(i)
$$\varphi_1 = ((Ap \lor Aq) \land (Bp \lor Bq) \land (Cp \lor Cq) \land (Dp \lor Dq))$$

(ii)
$$\varphi_2 = ((\neg Ap \lor \neg Aq) \land (\neg Bp \lor \neg Bq) \land (\neg Cp \lor \neg Cq) \land (\neg Dp \lor \neg Dq))$$

(iii)
$$\varphi_3 = (\neg((Ap \land Bp) \lor (Aq \land Bq))) \land (\neg((Bp \land Cp) \lor (Bq \land Cq))) \land (\neg((Cp \land Dp) \lor (Cq \land Dq)))$$

(b): (i) Following is the satisfying truth assignment:

$$\varphi_1 = ((Ap \lor Aq) \land (Bp \lor Bq) \land (Cp \lor Cq) \land (Dp \lor Dq))$$

$\boldsymbol{\varphi}_{_{1}}$	$Ap \lor Aq$	$Bp \vee Bq$	$Cp \lor Cq$	$Dp \lor Dq$
T	T	T	T	T

$$\varphi_{\gamma} = ((\neg Ap \lor \neg Aq) \land (\neg Bp \lor \neg Bq) \land (\neg Cp \lor \neg Cq) \land (\neg Dp \lor \neg Dq))$$

$\varphi_2 = ((\neg Ap \lor \neg Aq) \land (\neg Bp \lor \neg Bq) \land (\neg Cp \lor \neg Cq) \land (\neg Dp \lor \neg Dq))$								
$\boldsymbol{\varphi}_{\scriptscriptstyle 2}$	$Ap \wedge Aq$	$Bp \wedge Bq$	$Cp \wedge Cq$	$Dp \wedge Dq$				
T	F	F	F	F				

$$\varphi_3 = (\neg((Ap \land Bp) \lor (Aq \land Bq))) \land (\neg((Bp \land Cp) \lor (Bq \land Cq))) \land (\neg((Cp \land Dp) \lor (Cq \land Dq)))$$

$\boldsymbol{\varphi}_{\scriptscriptstyle 3}$	$Ap \wedge Bp$	$Aq \wedge Bq$	$Bp \wedge Cp$	$Bq \wedge Cq$	$Cp \wedge Dp$	$Cq \wedge Dq$
T	F	F	F	F	F	F

Recapitulative truth assignment:

Ap	Aq	Вр	Bq	Ср	Cq	Dp	Dq	$\boldsymbol{\varphi}_{_{1}}$	$\boldsymbol{\varphi}_{\scriptscriptstyle 2}$	$\boldsymbol{\varphi}_{_{3}}$	$\varphi_1 \wedge \varphi_2 \wedge \varphi_3$
F	Т	F	T	F	T	F	T	T	T	T	T
T	F	T	F	Т	F	T	F	T	T	T	T

So, for these two situation in recapitulative truth assignment, all requirements are met.

- (ii) To avoid interference, the near networks cannot use the same channel, so there are 2 situations:
 - (1) When Alpha uses channel lo, Bravo uses channel hi, Charlie uses the channel lo, Delta uses the channel hi;
 - (2) When Alpha uses channel hi, Bravo uses channel lo, Charlie uses the channel hi, Delta uses the channel lo.