Efficient Estimation with a Finite Number of Simulation Draws per Observation

Kirill Evdokimov

Princeton University

Introduction

- Method of Simulated Moments, Indirect Inference, Efficient Method of Moments...
 - S = number of draws per observation
 - S can be fixed (different from MSL)

• AVar =
$$\left(G'\left(\Omega + \frac{1}{5}\Omega_{sim}\right)^{-1}G\right)^{-1}$$

- "Need $S \rightarrow \infty$ to achieve efficiency"
- This paper: fixed S (e.g., S=1) allows efficient estimation
 - with almost no additional computational or programming burden

Method(s) of Simulated Moments

Parameter θ is identified by

$$E[h(W_i, \theta)] = 0 \text{ iff } \theta = \theta_0.$$

and we can express

$$h(w,\theta) = \int g(w,\varepsilon,\theta) dF_{\varepsilon}(\varepsilon) = E_{\varepsilon}[g(w,\varepsilon_{i},\theta)],$$

for some known f_{ε} (typically vectors of Uniform[0,1] or N(0,1)).

- Hard to compute the integral, but could compute g for any ε .
 - e.g., models with complicated decisions or equilibrium computation for each i, ε_i , and θ .
- Could compute various (conditional) moments of Y_i (given X_i) by simulation
- Industrial Organization, Labor Economics, ...
- McFadden (1989), Pakes and Pollard (1989) ...

Method(s) of Simulated Moments

Define

$$g_{iS}\left(\theta\right) \equiv \frac{1}{S} \sum_{s=1}^{S} g\left(W_{i}, \varepsilon_{is}, \theta\right)$$

 $\varepsilon_{is} \in \mathbb{R}^{\dim(\varepsilon)}$ are i.i.d across *i* and *s*.

Note that

$$E\left[g_{iS}\left(\theta\right)\right]=E\left[g\left(W_{i},\varepsilon_{is},\theta\right)\right]=E\left[h\left(W_{i},\theta\right)\right]$$
 ,

hence we can form $\overline{g}_{S}\left(\theta\right)=\frac{1}{n}\sum_{i=1}^{n}g_{iS}\left(\theta\right)$ and estimate θ using

$$\hat{Q}_{MSM}\left(\theta\right) = \overline{g}_{S}^{\prime}\left(\theta\right) \Xi \overline{g}_{S}\left(\theta\right).$$

Remark: can allow non-i.i.d. ε_i (e.g., antithetic draws) and weakly dependent data.

$$\mathsf{MSM:}\ \hat{Q}_{\mathsf{MSM}}\left(\theta\right) = \overline{g}_{S}\left(\theta\right)' \Xi \overline{g}_{S}\left(\theta\right).$$

Standard result:

$$\sqrt{n}\left(\widehat{\theta}-\theta_{0}\right) \rightarrow N\left(0,\left(G'\Xi G\right)^{-1}G'\Xi\Omega_{gg}\Xi G\left(G'\Xi G\right)^{-1}\right),$$

$$\Omega_{gg} = E \left[g_{iS} \left(\theta_0 \right) g_{iS} \left(\theta_0 \right)' \right]$$

$$= E \left[\left(h \left(W_i, \theta_0 \right) + \Delta_{iS} \right) \left(h \left(W_i, \theta_0 \right) + \Delta_{iS} \right)' \right] = \Omega_{hh} + \frac{1}{S} \Omega_{sim},$$

where $\Omega_{\textit{sim}} = \Omega_{\Delta\Delta}$ and

$$\Delta_{iS} = \frac{1}{S} \sum_{s=1}^{S} \Delta_{is} = \frac{1}{S} \sum_{s=1}^{S} \underbrace{g\left(W_{i}, \varepsilon_{is}, \theta_{0}\right) - h\left(W_{i}, \theta_{0}\right)}_{\equiv \Delta_{is}}$$

What are we doing wrong?

$$g_S(W_i, \varepsilon_{iS}, \theta) = \frac{1}{S} \sum_{s=1}^{S} g(W_i, \varepsilon_{is}, \theta)$$

Let
$$S=1$$
, so $g_S\left(W_i, \varepsilon_{iS}, \theta\right) \equiv g\left(W_i, \varepsilon_i, \theta\right)$. Using
$$E\left[g\left(W_i, \varepsilon_i, \theta\right)\right] = 0$$

is inefficient, it ignores what we know about the ε_i .

What are we doing wrong?

$$g_{S}(W_{i}, \varepsilon_{iS}, \theta) = \frac{1}{S} \sum_{s=1}^{S} g(W_{i}, \varepsilon_{is}, \theta)$$

Let
$$S=1$$
, so $g_S\left(W_i, \varepsilon_{iS}, \theta\right) \equiv g\left(W_i, \varepsilon_i, \theta\right)$. Using
$$E\left[g\left(W_i, \varepsilon_i, \theta\right)\right] = 0$$

is inefficient, it ignores what we know about the ε_i .

Fact

We know:

- $E[\eta(\varepsilon_i)]$ for any $\eta(\cdot)$
- that $\varepsilon_i \perp W_i$

Auxiliary and Combined Moment Conditions

Fact

We know:

- $E[\eta(\varepsilon_i)]$ for any $\eta(\cdot)$
- that $\varepsilon_i \perp W_i$

Introduce Auxiliary moment conditions g_A :

$$g_{A}(W_{i}, \varepsilon_{i}) = \varphi_{W}(W_{i}) \otimes (\varphi_{\varepsilon}(\varepsilon_{i}) - E[\varphi_{\varepsilon}(\varepsilon_{i})]),$$

and Combined moment conditions g_C :

$$g_{C}(W_{i}, \varepsilon_{i}, \theta) \equiv \begin{pmatrix} g(W_{i}, \varepsilon_{i}, \theta) \\ g_{Ai}(W_{i}, \varepsilon_{i}) \end{pmatrix}.$$

Note that $E\left[g_{Ai}\left(W_{i},\varepsilon_{i}\right)\right]=0$.

Combined Moment Conditions

Combined Moment Conditions:

$$g_{C}(W_{i}, \varepsilon_{i}, \theta) \equiv \begin{pmatrix} g(W_{i}, \varepsilon_{i}, \theta) \\ g_{Ai}(W_{i}, \varepsilon_{i}) \end{pmatrix}, \quad \Omega_{CC} = \begin{pmatrix} \Omega_{gg} & \Omega_{gA} \\ \Omega_{Ag} & \Omega_{AA} \end{pmatrix}$$

Let

$$\Sigma_{g} \equiv \left(G' \Omega_{gg}^{-1} G
ight)^{-1}$$

and

$$\Sigma_{C} \equiv \left(\left(G' \ O_{p \times m_{A}} \right) \Omega_{CC}^{-1} \left(\begin{array}{c} G \\ O_{m_{A} \times p} \end{array} \right) \right)^{-1}$$
$$= \left(G' \left(\Omega_{gg} - \Omega_{gA} \Omega_{AA}^{-1} \Omega_{Ag} \right)^{-1} G \right)^{-1}$$

Combined Moment Conditions

For any fixed m_A we have $\Sigma_C \leq \Sigma_g$.

Why? We can write

$$\Omega_{gg} - \Omega_{gA}\Omega_{AA}^{-1}\Omega_{Ag} = E\left[
ho_i
ho_i'
ight]$$
 ,

where

$$\rho_i \equiv g_i - E\left[g_i g'_{Ai}\right] \Omega_{AA}^{-1} g_{Ai},$$

and $g_i \equiv g_i(W_i, \varepsilon_i, \theta_0)$.

Then
$$E\left[
ho_{i}g_{Ai}^{\prime}
ight]=0_{m imes m_{A}}$$
, hence

$$\Omega_{gg} = \Omega_{\rho\rho} + \Omega_{gA}\Omega_{AA}^{-1}\Omega_{Ag} \ge \Omega_{\rho\rho}.$$

Combined Moment Conditions

For any fixed m_A we have $\Sigma_C \leq \Sigma_g$.

Why? We can write

$$\Omega_{gg} - \Omega_{gA}\Omega_{AA}^{-1}\Omega_{Ag} = E\left[
ho_i
ho_i'
ight]$$
 ,

where

$$\rho_i \equiv g_i - E\left[g_i g'_{Ai}\right] \Omega_{AA}^{-1} g_{Ai},$$

and $g_i \equiv g_i(W_i, \varepsilon_i, \theta_0)$.

Then $E\left[
ho_i g_{Ai}'\right] = 0_{m \times m_A}$, hence

$$\Omega_{gg} = \Omega_{\rho\rho} + \Omega_{gA}\Omega_{AA}^{-1}\Omega_{Ag} \ge \Omega_{\rho\rho}.$$

This method is known as the control variates approach to reducing simulation errors in Statistics.

Efficient Simulation

Remember that
$$E\left[g_{Ai}\left(w, \varepsilon_{i}\right)\right] = \mathbf{0}_{m_{A} \times 1} \ \forall w$$
. Let
$$\mathcal{J} \equiv \left\{ \varphi : \mathcal{W} \times \mathcal{E} \rightarrow \mathbb{R}^{m} \colon \ E\left[\varphi\left(w, \varepsilon_{i}\right)\right] = 0 \text{ a.s. } \mathcal{W} \right\}.$$

Proposition

If $\{g_{A,j}(w,\varepsilon)\}_{j=1}^{\infty}$ is a collection of functions $g_{A,j} \in \mathcal{J}$ that can approximate any function in \mathcal{J} w.r.t. $\|\cdot\|_{L^2}$, i.e.,

$$\lim_{m_{A}\rightarrow\infty}\min_{\pi\in\mathbb{R}^{m_{A}}}E\left[\left(\phi\left(W_{i},\varepsilon_{i}\right)-\pi'g_{A}^{m_{A}}\left(W_{i},\varepsilon_{i}\right)\right)^{2}\right]=0.$$

Then

$$\Omega_{
ho
ho}
ightarrow \Omega_{hh}$$
 and $\Sigma_{ extsf{C}}
ightarrow \Sigma_{h}$ as $m_{ extsf{A}}
ightarrow \infty$. $(*)$

Efficient Simulation ctd.

The auxiliary moment function

$$g_{A}(w,\varepsilon) = \varphi_{W}(w) \otimes (\varphi_{\varepsilon}(\varepsilon) - E[\varphi_{\varepsilon}(\varepsilon_{i})])$$

satisfies the assumptions of the previous Proposition:

Corollary

Suppose $\left\{g_{A,j}\left(w,\varepsilon\right)\right\}_{j=1}^{\infty}$ is formed as a tensor product of $\varphi_{W}\left(\cdot\right)$ and $\left(\varphi_{\varepsilon}\left(\cdot\right)-E\left[\varphi_{\varepsilon}\left(\varepsilon_{i}\right)\right]\right)$, where φ_{W} and φ_{ε} are splines, polynomials, Fourier series, wavelets, ... Then

$$\Omega_{
ho
ho}
ightarrow \Omega_{hh}$$
 and $\Sigma_{ extsf{C}}
ightarrow \Sigma_{h}$ as $extsf{m}_{ extsf{A}}
ightarrow \infty.$ (*)

Semiparametric Efficiency (almost triv. consequence)

Let \mathcal{I}^{-1} denote the semiparametric efficiency bound for the parameters θ of our model.

Corollary

Suppose $\Sigma_h \to \mathcal{I}^{-1}$ as $m \to \infty$, and the conditions of the previous Proposition are satisfied. Then

$$\Sigma_C o \mathcal{I}^{-1}$$
 as $m, m_A o \infty$.

We have a semiparametrically efficient estimator with one simulation draw per observation.

Large Sample Theory

Let $\overline{g}_{n}\left(\theta\right):\Theta\rightarrow\mathbb{R}^{K}$ be a sequence of random functions and $S_{n}\left(\theta\right)\equiv\overline{g}_{n}\left(\theta\right)'\hat{W}\left(\theta\right)\overline{g}_{n}\left(\theta\right)/2,$

Let \mathcal{N} be a small neighborhood of θ_0 , $G \equiv \nabla_{\theta} g\left(\theta_0\right)$, and $\vartheta_n\left(\theta\right) \equiv 1 + \sqrt{n} \|\theta - \theta_0\|$.

Assumption 1: For a deterministic sequence $\alpha_n = o\left(\sqrt{n}\right)$ and $B_n \equiv B_{\alpha_n/\sqrt{n}}\left(\theta_0\right)$ the following conditions hold:

(i)
$$g(\theta_0) = 0$$
, and $\theta_0 \in int(\Theta)$, $\Theta \subset \mathbb{R}^p$;

(ii)
$$\exists c > 0 : \|g(\theta) - g(\theta_0)\| \ge c \|\theta - \theta_0\| \, \forall \theta \in \mathcal{N};$$

(iii)
$$\sup_{\theta \in \mathcal{N}} \sqrt{n} \|\overline{g}_{n}(\theta) - g(\theta)\| = o_{p}(\alpha_{n});$$

Assumption 1 ctd.:

(iv)
$$\sup_{\theta \in B_n} \sqrt{n} \|g(\theta) - G(\theta - \theta_0)\| / \vartheta_n(\theta) = o\left(\frac{1}{\alpha_n}\right);$$

(v) (Local S.E.)

$$\sup_{\theta \in B_{n}} \sqrt{n} \left\| \overline{g}_{n} \left(\theta \right) - g \left(\theta \right) - \overline{g}_{n} \left(\theta_{0} \right) \right\| / \vartheta_{n} \left(\theta \right) = o_{p} \left(\frac{1}{\alpha_{n}} \right);$$

- (vi) (a) $\hat{W}(\theta)$ is symmetric and $\exists C > 0$ such that $1/C \le \min_{\theta \in \mathcal{N}} \lambda_{\min} (\hat{W}(\theta))$ and $\lambda_{\max} (\hat{W}) \le C$ w.p.a.1;
- (b) $\|\hat{W} W\|_{\lambda} = o_p\left(\frac{1}{\alpha_n}\right)$ for some deterministic matrices W;
- (c) $\sup_{\theta \in B_n} (\|\hat{W}(\theta) \hat{W}\|_{\lambda} (1 + \alpha_n^2 / \vartheta_n^2(\theta))) = o_p(1)$ when $\hat{W}(\theta)$ depends on θ (Continuously Updating GMM);
- (vii) (a) $\sqrt{n}G'W\overline{g}_n(\theta_0) \rightarrow_d N(0, M_V)$, for a finite nonzero matrix M_V ; (b) $G'WG \rightarrow M_{GWG}$ for a finite nonsingular M_{GWG} .

Large Sample Theory

Theorem

Suppose Assumption 1 holds, $\hat{\theta} \rightarrow_p \theta_0$, and

$$S_n\left(\hat{\theta}\right) \leq \inf_{\theta \in \mathcal{N}} S_n\left(\theta\right) + o_p\left(n^{-1}\right).$$

Then for GMM and CUE estimators $\hat{\theta}$:

$$\sqrt{n} \left(\hat{\theta} - \theta_0 \right) \to_d N \left(0, M_{GWG}^{-1} M_V M_{GWG}^{-1} \right) \tag{1}$$

- Nonsmooth moment conditions (cf. Pakes and Pollard (1989))
- The number of moment conditions K can grow with n;
- $\alpha_n = o(n^{1/4})$, so can have $K^2/n = o(1)$ (up to logs)
 - for both GMM and CUE
 - appears to be new
 - e.g., (Lipschitz) conditional moments
 - tight: if $K^2 = Cn$, equation (1) generally does not hold
- cf. Chen, Linton, Kielegom ('03), Chen and Pouzo ('09,'12,'14), Cheng and Liao ('15), Donald, Imbens, and Newey ('03)

Large Sample Theory

Theorem

Suppose $\exists \epsilon_{QB} > 0$ such that Assumption 1 holds and $\sup_{\theta \in \mathcal{N}} \sqrt{n} \|\overline{g}_n(\theta) - g(\theta)\| = o_p(\alpha_n n^{-\epsilon_{QB}})$.

If in addition Assumption PRIOR holds, Theorem 1 of Chernozhukov & Hong (2003) holds.

Can be used for estimation and inference in models with nonsmooth moment conditions and increasing K.

These theorems apply to general moment condition-type models, not just MSM and the estimators in this paper.

Computational advantages:

- S = 1 vs S = 10
- works with finite m_A
- vs importance sampling
- vs quadratures
- implementation:
 - GMM and CUE, variations
 - $\hat{\Omega}_{AA}$ has a useful structure
 - Also, even for CUE we do not need to invert $\hat{\Omega}_{CC}(\theta)$ as we change θ , only $\hat{\Omega}_{gg}(\theta)$

Toy Model Illustration

Suppose $Y_i \sim N(\theta_0, 1)$, and we use MSM to estimate θ :

$$g_{i}(\theta) = Y_{i} - (\theta + \varepsilon_{i}), \quad \varepsilon_{i} \sim N(0, 1)$$

Then
$$\sqrt{n}\left(\hat{\theta}_{MSM}-\theta_{0}\right)\rightarrow_{d}N\left(0,2\right)$$
, since $\overline{g}_{n}\left(\theta\right)=\overline{Y}_{n}-\theta-\overline{\epsilon}_{n}$.

Combined moment conditions:

$$g_{iC}(\theta) = \begin{pmatrix} Y_i - (\theta + \varepsilon_i) \\ \varepsilon_i \end{pmatrix}, \quad \overline{g}_{C,n}(\theta) = \begin{pmatrix} \overline{Y}_n - \theta - \overline{\varepsilon}_n \\ \overline{\varepsilon}_n \end{pmatrix}$$

hence

$$\begin{split} \hat{Q}_{\textit{ES-MSM}}\left(\theta\right) &= & \overline{g}_{\textit{C},n}\left(\theta\right)' \Omega_{\textit{CC}}^{-1} \overline{g}_{\textit{C},n}\left(\theta\right) \\ &= & \left(\overline{Y}_{\textit{n}} - \theta\right)^{2} + \overline{\varepsilon}_{\textit{n}}^{2} + \textit{remainder}_{\textit{n}}\left(\theta\right), \end{split}$$

so
$$\sqrt{n}\left(\hat{\theta}_{ES\text{-}MSM}-\theta_{0}\right)\rightarrow_{d}N\left(0,1\right).$$

Indirect Inference Framework

Gouriéroux, Monfort, and Renault (1993), Smith (1993), Gallant and Tauchen (1996).

Data: $Y_i = y(X_i, \varepsilon_i; \theta_0)$

Simulation: $Y_{is}(\theta) \equiv y(\varepsilon_{is}, X_i; \theta)$

Auxiliary model: a combination of M- and/or Z-estimators, so that

Data:
$$\frac{1}{n} \sum_{i=1}^{n} \psi(Y_i, X_i, \hat{\beta}) = 0$$

Simulation:
$$\frac{1}{n}\sum_{i=1}^{n}\widetilde{\psi}_{i}\left(\theta,\widetilde{\beta}\left(\theta\right)\right)=0$$

where
$$\widetilde{\psi}_{i}\left(\theta,\beta\right)\equiv\frac{1}{S}\sum_{s=1}^{S}\psi\left(Y_{is}\left(\theta\right),X_{i},\beta\right)$$
.

Indirect Inference Framework

"Score-based" estimator :

$$\hat{\theta}_{II-SC} = \arg\min_{\theta \in \Theta} \left(\frac{1}{n} \sum_{i=1}^{n} \widetilde{\psi}_{i} \left(\theta, \hat{\beta} \right) \right)' \Xi_{II} \left(\frac{1}{n} \sum_{i=1}^{n} \widetilde{\psi}_{i} \left(\theta, \hat{\beta} \right) \right)$$

Asymptotic distribution with optimal weighting matrix:

$$\sqrt{n}\left(\hat{\theta}_{II\text{-SC}}-\theta_{0}\right)\rightarrow_{d}N\left(0,\Sigma_{II}\right)$$

$$\Sigma_{II} \equiv \left(\Psi_{\theta}' \Omega_{\psi - \widetilde{\psi}}^{-1} \Psi_{\theta} \right)^{-1} = \left(\Psi_{\theta}' \left[\left(1 + \frac{1}{5} \right) J \right]^{-1} \Psi_{\theta} \right)^{-1}$$

where

$$J = V\left[\psi\left(Y_{is}\left(\theta_{0}\right), X_{i}, \beta_{0}\right) - E\left[\psi\left(Y_{is}\left(\theta_{0}\right), X_{i}, \beta_{0}\right) \middle| X_{i}\right]\right]$$

Corrected Score Function

Can write $\hat{\theta}_{II-SC}$ as GMM with "stacked" moment function

$$v_i(\theta,\beta) \equiv \begin{pmatrix} \widetilde{\psi}_i(\theta,\beta) \\ \psi_i(\beta) \end{pmatrix}.$$

Same results as for MSM hold. Fix S=1 and replace ψ_{Ci} with

$$\widetilde{\psi}_{\mathit{C}\mathit{i}}\left(\theta,\beta\right) \equiv \psi\left(y\left(X_{\mathit{i}},\varepsilon_{\mathit{i}},\theta\right),X_{\mathit{i}},\beta\right) - \hat{\Omega}_{\widetilde{\psi}\mathit{A}}\hat{\Omega}_{\mathit{A}\mathit{A}}^{-1}g_{\mathit{A}\mathit{i}},\;\hat{\Omega}_{\widetilde{\psi}\mathit{A}} \equiv \mathit{E}\left[\widetilde{\psi}_{\mathit{i}}g_{\mathit{A}\mathit{i}}'\right].$$

Then, as for MSM estimator

$$\sqrt{n}\left(\hat{\theta}_{H,C}-\theta_{0}\right)\rightarrow_{d}N\left(0,\left(R_{\theta}^{\prime}J^{-1}R_{\theta}\right)^{-1}\right).$$

Simple Monte Carlo

DGP:

$$Y_i = \lambda \left(\beta_1 + \beta_2 X_i - U_i \right), \quad \begin{pmatrix} X_i \\ U_i \end{pmatrix} \sim_{iid} N \left(0, \begin{pmatrix} 1 & 0 \\ 0 & \sigma^2 \end{pmatrix} \right)$$

where $\beta_1=$ 0, $\beta_2=$ 1, $\sigma=$ 1.

Models:

$$L: \lambda(z) = 1/(1 + \exp(-z))$$

$$T: \lambda(z) = z1\{z > 0\}$$

$$B: \lambda(z) = 1\{z > 0\}$$

The moments:

$$g(W_{i}, \varepsilon_{i}, \theta) = \begin{pmatrix} Y_{i} - \lambda (\beta_{1} + \beta_{2}X_{i} - \sigma\varepsilon_{i}) \\ \cdots \\ Y_{i}^{K_{Y}} - \lambda^{K_{Y}} (\beta_{1} + \beta_{2}X_{i} - \sigma\varepsilon_{i}) \end{pmatrix} \otimes \varphi_{X}(X_{i}),$$

$$g_{A}(W_{i}, \varepsilon_{i}) = \varphi_{X}(X_{i}) \otimes \varphi_{\varepsilon}(\varepsilon_{i}).$$

	mbias	iqr	mad	RE	bias	std	rmse	RE
MSM w S=10	-0.000	0.107	0.053	1.000	-0.002	0.078	0.078	1.000
S=1								
MSM	-0.003	0.142	0.072	1.331	-0.002	0.105	0.105	1.332
ES-MSM:1	-0.000	0.102	0.051	0.953	-0.002	0.076	0.076	0.970
ES-MSM:2	-0.000	0.104	0.052	0.972	-0.002	0.078	0.078	0.994
ES-MSM:3	-0.000	0.108	0.054	1.016	-0.002	0.080	0.080	1.018
ES-MSM:4	-0.003	0.114	0.057	1.071	-0.002	0.085	0.085	1.082

Table: Model L: $\beta_1 = 0.0$, n = 200, $K_Z = 4$, $K_Y = 2$.

	mbias	iqr	mad	RE	bias	std	rmse	RE
MSM w S=10	0.020	0.118	0.060	1.000	0.020	0.088	0.090	1.000
S=1								
MSM	-0.001	0.159	0.080	1.348	-0.002	0.119	0.119	1.354
ES-MSM:1	0.014	0.117	0.058	0.988	0.014	0.086	0.088	0.986
ES-MSM:2	0.023	0.121	0.064	1.028	0.024	0.092	0.095	1.048
ES-MSM:3	0.024	0.129	0.066	1.095	0.024	0.096	0.099	1.098
ES-MSM:4	0.016	0.145	0.075	1.233	0.016	0.109	0.110	1.247

Table: Model L: $\beta_2 = 1.0$, n = 200, $K_Z = 4$, $K_Y = 2$.

	mbias	iqr	mad	RE	bias	std	rmse	RE
MSM w S=10	-0.033	0.081	0.048	1.000	-0.032	0.060	0.068	1.000
S=1								
MSM	0.002	0.108	0.054	1.336	0.004	0.081	0.081	1.356
ES-MSM:1	0.004	0.112	0.056	1.387	0.007	0.084	0.084	1.405
ES-MSM:2	-0.032	0.083	0.048	1.027	-0.030	0.062	0.069	1.040
ES-MSM:3	-0.040	0.080	0.050	0.984	-0.039	0.059	0.071	0.983
ES-MSM:4	-0.032	0.086	0.049	1.061	-0.030	0.064	0.071	1.067

Table: Model L: $\sigma = 1.0$, n = 200, $K_Z = 4$, $K_Y = 2$.

	mbias	iqr	mad	RE	bias	std	rmse	RE
MSM w S=10	0.001	0.073	0.036	1.000	0.001	0.055	0.055	1.000
S=1								
MSM	0.001	0.095	0.048	1.304	0.002	0.073	0.073	1.333
ES-MSM:1	0.000	0.070	0.035	0.961	0.000	0.053	0.053	0.973
ES-MSM:2	-0.000	0.072	0.036	0.984	0.000	0.053	0.053	0.980
ES-MSM:3	0.000	0.071	0.035	0.973	0.000	0.054	0.054	0.985
ES-MSM:4	-0.001	0.074	0.037	1.013	0.000	0.055	0.055	1.002

Table: Model L: $\beta_1 = 0.0$, n = 400, $K_Z = 4$, $K_Y = 2$.

	mbias	iqr	mad	RE	bias	std	rmse	RE
MSM w S=10	0.015	0.079	0.041	1.000	0.015	0.057	0.059	1.000
S=1								
MSM	0.002	0.106	0.053	1.345	0.002	0.078	0.078	1.373
ES-MSM:1	0.011	0.077	0.039	0.976	0.010	0.056	0.057	0.985
ES-MSM:2	0.017	0.080	0.041	1.009	0.016	0.058	0.060	1.014
ES-MSM:3	0.017	0.081	0.042	1.024	0.017	0.059	0.061	1.032
ES-MSM:4	0.013	0.083	0.042	1.052	0.012	0.061	0.062	1.076

Table: Model L: $\beta_2 = 1.0$, n = 400, $K_Z = 4$, $K_Y = 2$.

	mbias	iqr	mad	RE	bias	std	rmse	RE
MSM w S=10	-0.016	0.058	0.031	1.000	-0.016	0.043	0.045	1.000
S=1								
MSM	0.001	0.077	0.039	1.336	0.003	0.057	0.057	1.347
ES-MSM:1	0.003	0.079	0.039	1.365	0.005	0.059	0.059	1.375
ES-MSM:2	-0.015	0.060	0.032	1.040	-0.014	0.044	0.046	1.039
ES-MSM:3	-0.020	0.058	0.032	0.998	-0.020	0.042	0.047	0.995
ES-MSM:4	-0.016	0.058	0.031	1.008	-0.016	0.043	0.046	1.015

Table: Model L: $\sigma = 1.0$, n = 400, $K_Z = 4$, $K_Y = 2$.

	mbias	iqr	mad	RE	bias	std	rmse	RE
MSM w S=10	0.001	0.050	0.025	1.000	0.001	0.037	0.037	1.000
S=1								
MSM	0.001	0.069	0.034	1.384	0.001	0.051	0.051	1.374
ES-MSM:1	0.000	0.048	0.024	0.960	0.001	0.036	0.036	0.969
ES-MSM:2	0.000	0.047	0.024	0.953	0.001	0.036	0.036	0.971
ES-MSM:3	0.001	0.047	0.024	0.954	0.001	0.036	0.036	0.964
ES-MSM:4	0.001	0.048	0.024	0.968	0.001	0.036	0.036	0.971
ES-MSM:5	0.001	0.049	0.024	0.984	0.001	0.036	0.036	0.979

Table: Model L: $\beta_1 = 0.0$, n = 800, $K_Z = 4$, $K_Y = 2$.

	mbias	iqr	mad	RE	bias	std	rmse	RE
MSM w S=10	0.008	0.053	0.027	1.000	0.008	0.039	0.040	1.000
S=1								
MSM	-0.000	0.070	0.035	1.318	0.000	0.053	0.053	1.361
ES-MSM:1	0.005	0.053	0.026	0.995	0.005	0.038	0.039	0.986
ES-MSM:2	0.009	0.053	0.027	0.991	0.009	0.039	0.040	0.994
ES-MSM:3	0.010	0.053	0.027	1.009	0.010	0.039	0.040	1.000
ES-MSM:4	0.007	0.054	0.027	1.020	0.007	0.040	0.040	1.021
ES-MSM:5	0.006	0.056	0.028	1.061	0.006	0.040	0.041	1.043

Table: Model L: $\beta_2 = 1.0$, n = 800, $K_Z = 4$, $K_Y = 2$.

	mbias	iqr	mad	RE	bias	std	rmse	RE
MSM w S=10	-0.010	0.040	0.021	1.000	-0.009	0.030	0.031	1.000
S=1								
MSM	-0.000	0.055	0.027	1.354	0.001	0.040	0.040	1.358
ES-MSM:1	0.001	0.055	0.027	1.371	0.002	0.041	0.041	1.369
ES-MSM:2	-0.008	0.042	0.022	1.042	-0.007	0.031	0.032	1.041
ES-MSM:3	-0.011	0.039	0.022	0.977	-0.011	0.029	0.031	0.985
ES-MSM:4	-0.009	0.040	0.021	0.987	-0.009	0.029	0.031	0.984
ES-MSM:5	-0.009	0.039	0.021	0.974	-0.009	0.029	0.030	0.981

Table: Model L: $\sigma = 1.0$, n = 800, $K_Z = 4$, $K_Y = 2$.

	mbias	iqr	mad	RE	bias	std	rmse	RE
MSM w S=10	-0.048	0.160	0.085	1.000	-0.058	0.125	0.138	1.000
S=1								
MSM	-0.085	0.246	0.129	1.539	-0.106	0.194	0.221	1.555
ES-MSM:1	-0.089	0.218	0.117	1.362	-0.111	0.176	0.208	1.404
ES-MSM:2	-0.077	0.190	0.106	1.188	-0.092	0.151	0.177	1.207
ES-MSM:3	-0.071	0.179	0.100	1.119	-0.083	0.142	0.165	1.137
ES-MSM:4	-0.068	0.178	0.098	1.111	-0.081	0.141	0.163	1.129

Table: Model T: $\beta_1 = 0.0$, n = 200, $K_Z = 4$, $K_Y = 2$.

	mbias	iqr	mad	RE	bias	std	rmse	RE
MSM w S=10	0.043	0.173	0.091	1.000	0.050	0.133	0.142	1.000
S=1								
MSM	0.064	0.251	0.128	1.449	0.081	0.190	0.206	1.428
ES-MSM:1	0.058	0.192	0.100	1.107	0.066	0.148	0.162	1.116
ES-MSM:2	0.049	0.179	0.093	1.030	0.057	0.136	0.148	1.027
ES-MSM:3	0.054	0.185	0.097	1.067	0.061	0.141	0.154	1.065
ES-MSM:4	0.054	0.188	0.098	1.084	0.065	0.146	0.160	1.098

Table: Model T: $\beta_2 = 1.0$, n = 200, $K_Z = 4$, $K_Y = 2$.

	mbias	iqr	mad	RE	bias	std	rmse	RE
MSM w S=10	-0.058	0.118	0.075	1.000	-0.056	0.089	0.105	1.000
S=1								
MSM	0.083	0.200	0.110	1.689	0.107	0.180	0.209	2.011
ES-MSM:1	0.062	0.200	0.103	1.688	0.080	0.166	0.184	1.857
ES-MSM:2	-0.001	0.156	0.078	1.314	0.008	0.123	0.123	1.378
ES-MSM:3	-0.019	0.140	0.072	1.181	-0.014	0.106	0.107	1.189
ES-MSM:4	-0.029	0.133	0.070	1.125	-0.025	0.103	0.106	1.155

Table: Model T: $\sigma = 1.0$, n = 200, $K_Z = 4$, $K_Y = 2$.

	mbias	iqr	mad	RE	bias	std	rmse	RE
MSM w S=10	-0.020	0.111	0.056	1.000	-0.023	0.083	0.086	1.000
S=1								
MSM	-0.029	0.151	0.078	1.359	-0.035	0.113	0.119	1.362
ES-MSM:1	-0.038	0.132	0.069	1.193	-0.042	0.100	0.109	1.204
ES-MSM:2	-0.034	0.124	0.064	1.118	-0.038	0.093	0.100	1.113
ES-MSM:3	-0.029	0.120	0.060	1.077	-0.034	0.088	0.094	1.058
ES-MSM:4	-0.028	0.117	0.059	1.055	-0.033	0.087	0.093	1.049

Table: Model T: $\beta_1 = 0.0$, n = 400, $K_Z = 4$, $K_Y = 2$.

	mbias	iqr	mad	RE	bias	std	rmse	RE
MSM w S=10	0.020	0.116	0.058	1.000	0.024	0.086	0.089	1.000
S=1								
MSM	0.026	0.156	0.079	1.340	0.030	0.115	0.118	1.340
ES-MSM:1	0.023	0.125	0.064	1.078	0.026	0.092	0.096	1.077
ES-MSM:2	0.023	0.118	0.061	1.017	0.026	0.088	0.092	1.029
ES-MSM:3	0.024	0.117	0.061	1.002	0.026	0.088	0.092	1.026
ES-MSM:4	0.027	0.117	0.061	1.005	0.028	0.089	0.093	1.042

Table: Model T: $\beta_2 = 1.0$, n = 400, $K_Z = 4$, $K_Y = 2$.

	mbias	iqr	mad	RE	bias	std	rmse	RE
MSM w S=10	-0.034	0.083	0.048	1.000	-0.033	0.063	0.071	1.000
S=1								
MSM	0.030	0.120	0.061	1.434	0.035	0.090	0.096	1.425
ES-MSM:1	0.023	0.120	0.061	1.439	0.029	0.091	0.096	1.450
ES-MSM:2	-0.003	0.101	0.051	1.210	0.000	0.077	0.077	1.223
ES-MSM:3	-0.013	0.091	0.047	1.091	-0.010	0.068	0.069	1.088
ES-MSM:4	-0.017	0.087	0.046	1.044	-0.014	0.067	0.068	1.061

Table: Model T: $\sigma = 1.0$, n = 400, $K_Z = 4$, $K_Y = 2$.

	mbias	iqr	mad	RE	bias	std	rmse	RE
MSM w S=10	-0.008	0.078	0.040	1.000	-0.009	0.057	0.058	1.000
S=1								
MSM	-0.014	0.108	0.053	1.376	-0.016	0.079	0.081	1.384
ES-MSM:1	-0.017	0.093	0.048	1.188	-0.019	0.068	0.071	1.194
ES-MSM:2	-0.016	0.084	0.044	1.073	-0.017	0.063	0.065	1.097
ES-MSM:3	-0.014	0.080	0.041	1.021	-0.015	0.059	0.061	1.038
ES-MSM:4	-0.014	0.080	0.041	1.026	-0.015	0.059	0.061	1.029
ES-MSM:5	-0.013	0.081	0.041	1.030	-0.014	0.058	0.060	1.024

Table: Model T: $\beta_1 = 0.0$, n = 800, $K_Z = 4$, $K_Y = 2$.

	mbias	iqr	mad	RE	bias	std	rmse	RE
MSM w S=10	0.007	0.077	0.039	1.000	0.010	0.057	0.058	1.000
S=1								
MSM	0.010	0.105	0.052	1.362	0.013	0.078	0.079	1.373
ES-MSM:1	0.010	0.085	0.042	1.106	0.012	0.063	0.064	1.100
ES-MSM:2	0.009	0.080	0.040	1.036	0.012	0.058	0.060	1.026
ES-MSM:3	0.010	0.079	0.039	1.028	0.012	0.058	0.059	1.017
ES-MSM:4	0.011	0.080	0.040	1.033	0.013	0.058	0.059	1.020
ES-MSM:5	0.011	0.079	0.040	1.026	0.013	0.058	0.060	1.024

Table: Model T: $\beta_2 = 1.0$, n = 800, $K_Z = 4$, $K_Y = 2$.

	mbias	iqr	mad	RE	bias	std	rmse	RE
MSM w S=10	-0.021	0.058	0.034	1.000	-0.020	0.045	0.049	1.000
S=1								
MSM	0.013	0.081	0.042	1.406	0.015	0.062	0.064	1.389
ES-MSM:1	0.011	0.081	0.042	1.407	0.013	0.062	0.063	1.397
ES-MSM:2	-0.002	0.068	0.034	1.178	-0.002	0.052	0.052	1.173
ES-MSM:3	-0.007	0.062	0.031	1.067	-0.006	0.047	0.047	1.051
ES-MSM:4	-0.009	0.060	0.030	1.046	-0.009	0.046	0.046	1.026
ES-MSM:5	-0.011	0.059	0.030	1.024	-0.010	0.045	0.047	1.021

Table: Model T: $\sigma = 1.0$, n = 800, $K_Z = 4$, $K_Y = 2$.

	mbias	iqr	mad	RE	bias	std	rmse	RE
MSM w S=10	-0.003	0.163	0.082	1.000	-0.004	0.126	0.126	1.000
S=1								
MSM	0.000	0.204	0.102	1.249	-0.003	0.153	0.153	1.213
ES-MSM:1	-0.001	0.179	0.090	1.099	-0.002	0.136	0.136	1.078
ES-MSM:2	-0.003	0.176	0.087	1.079	-0.004	0.133	0.133	1.061
ES-MSM:3	-0.003	0.176	0.088	1.077	-0.004	0.134	0.134	1.062
ES-MSM:4	-0.002	0.179	0.090	1.096	-0.004	0.136	0.136	1.082

Table: Model B: $\beta_1 = 0.0$, n = 200, $K_Z = 4$, $K_Y = 1$.

	mbias	iqr	mad	RE	bias	std	rmse	RE
MSM w S=10	0.139	0.259	0.157	1.000	0.159	0.205	0.259	1.000
S=1								
MSM	0.093	0.290	0.150	1.118	0.111	0.225	0.251	1.099
ES-MSM:1	0.100	0.275	0.144	1.061	0.120	0.214	0.245	1.045
ES-MSM:2	0.131	0.271	0.156	1.045	0.154	0.211	0.262	1.032
ES-MSM:3	0.147	0.273	0.165	1.054	0.170	0.215	0.274	1.051
ES-MSM:4	0.159	0.284	0.176	1.098	0.178	0.221	0.284	1.081

Table: Model B: $\beta_2 = 1.0$, n = 200, $K_Z = 4$, $K_Y = 1$.

	mbias	iqr	mad	RE	bias	std	rmse	RE
MSM w S=10	0.002	0.110	0.055	1.000	0.001	0.081	0.081	1.000
S=1								
MSM	0.000	0.137	0.069	1.241	0.002	0.101	0.101	1.248
ES-MSM:1	0.001	0.119	0.060	1.079	0.001	0.089	0.089	1.094
ES-MSM:2	-0.001	0.116	0.058	1.048	0.001	0.085	0.085	1.055
ES-MSM:3	0.000	0.114	0.057	1.032	0.001	0.085	0.085	1.044
ES-MSM:4	0.001	0.112	0.056	1.017	0.001	0.084	0.084	1.041

Table: Model B: $\beta_1 = 0.0$, n = 400, $K_Z = 4$, $K_Y = 1$.

	mbias	iqr	mad	RE	bias	std	rmse	RE
MSM w S=10	0.066	0.152	0.087	1.000	0.072	0.116	0.137	1.000
S=1								
MSM	0.038	0.187	0.095	1.237	0.045	0.140	0.147	1.206
ES-MSM:1	0.042	0.176	0.088	1.158	0.048	0.129	0.138	1.108
ES-MSM:2	0.058	0.163	0.088	1.073	0.065	0.123	0.139	1.059
ES-MSM:3	0.065	0.161	0.091	1.059	0.072	0.124	0.143	1.062
ES-MSM:4	0.071	0.164	0.093	1.083	0.077	0.125	0.146	1.070

Table: Model B: $\beta_2 = 1.0$, n = 400, $K_Z = 4$, $K_Y = 1$.

	mbias	iqr	mad	RE	bias	std	rmse	RE
MSM w S=10	0.000	0.072	0.036	1.000	0.001	0.054	0.054	1.000
S=1								
MSM	0.001	0.097	0.049	1.341	0.000	0.071	0.071	1.328
ES-MSM:1	0.000	0.081	0.040	1.117	0.001	0.060	0.060	1.119
ES-MSM:2	0.001	0.076	0.038	1.046	0.000	0.057	0.057	1.064
ES-MSM:3	0.002	0.073	0.037	1.008	0.001	0.056	0.056	1.041
ES-MSM:4	0.001	0.074	0.037	1.021	0.001	0.056	0.056	1.040
ES-MSM:5	0.002	0.074	0.037	1.020	0.001	0.056	0.056	1.034

Table: Model B: $\beta_1 = 0.0$, n = 800, $K_Z = 4$, $K_Y = 1$.

	mbias	iqr	mad	RE	bias	std	rmse	RE
MSM w S=10	0.032	0.102	0.055	1.000	0.035	0.076	0.084	1.000
S=1								
MSM	0.017	0.130	0.065	1.278	0.020	0.097	0.099	1.273
ES-MSM:1	0.017	0.121	0.060	1.186	0.022	0.088	0.091	1.161
ES-MSM:2	0.027	0.113	0.057	1.112	0.031	0.084	0.089	1.097
ES-MSM:3	0.030	0.112	0.057	1.106	0.034	0.083	0.090	1.091
ES-MSM:4	0.032	0.110	0.058	1.084	0.037	0.083	0.091	1.091
ES-MSM:5	0.031	0.111	0.058	1.095	0.037	0.083	0.091	1.094

Table: Model B: $\beta_2 = 1.0$, n = 800, $K_Z = 4$, $K_Y = 1$.

Literature

- McFadden (1989), Pakes and Pollard (1989), Andrews (1994), Newey and McFadden (1994), Chen, Linton, and Van Keilegom (2003), Armstrong, Gallant, Hong, and Huiyu (2012), Chen and Pouzo (2012) ...
- Smith (1990, 1993), Gouriéroux, Monfort, and Renault (1993),
 Gallant and Tauchen (1996), Keane and Smith (2003); Gallant and
 Long (1997); Carrasco and Florens(2002); Lerman and Manski (1981), Lee and Song (2013)...
- Lee (1992,1995), Laffont, Ossard, and Vuong (1995), Kristensen and Salanié (2013) ...
- Geweke (1996), Chernozhukov and Hong (2004); Hajivassiliou, McFadden, and Ruud (1996), Ackerberg (2009)
- Control variates approach
- Brown and Newey (1998), Prokhorov and Schmidt (2009), Graham (2011); Newey (1985)