STATS 3005 Time Series III Assignment 5 2018

Assignment 5 is due by 5pm on Monday 22^{nd} October 2018.

Assignments are to be submitted in the hand-in box on Level 6, Ingkarni Wardli

1. Consider the AR(1) process

$$Y_t = 0.8Y_{t-1} + Z_t$$

where Z_t is a white noise process with $var(Z_t) = \sigma^2$.

- (a) Find the spectrum, $f_y(\omega)$.
- (b) Obtain a plot of the spectrum $f_y(\omega)$ for $\sigma^2 = 1$.
- (c) Let $U_t = DY_t = (1 B)Y_t$ be the process defined by differencing Y_t . Find the spectrum $f_u(\omega)$.
- (d) Obtain a plot of $|a(\omega)|^2$, where $a(\omega)$ is the transfer function of the differencing operator. Would you describe this a high pass filter, or a low pass filter?
- (e) Obtain a plot of the spectrum $f_u(\omega)$ for $\sigma^2 = 1$.
- 2. Consider the MA(2) process

$$Y_t = Z_t + 0.5Z_{t-1} + 0.5Z_{t-2}.$$

- (a) Find the spectrum by evaluating $f(\omega) = \sigma^2 |\theta(e^{i\omega})|^2$.
- (b) Write down the autocovariance function directly.
- (c) Using the inversion formula, find γ_0 .

[Assignment total: 20 marks]