线性代数 中国科学技术大学 2023 春 欧氏空间

主讲: 杨金榜 地空楼 525

助教: 苏煜庭、陈鉴、夏小凡

正交变换在标准正交基下的矩阵

正交变换 $\mathscr{A} \xleftarrow{\mathsf{标}^{\mathsf{A}\mathsf{L}\mathsf{E}}\check{\nabla}^{\mathsf{A}}}$ 正交矩阵 A

定义(第一类变换,第二类变换)

设 A 为正交矩阵. 则 $A^TA = I$. 因此 $det(A) = \pm 1$.

- ① 若 det(A) = 1, 则称 \mathcal{A} 为第一类变换;
- ② 若 $\det(A) = -1$, 则称 \mathcal{A} 为第二类变换.

性质

设 ℳ 为欧氏空间 V上的正交变换.

- 则 Ø 的特征值模长都为 1. 特别地, 实特征值只可能为 ±1.
- ② 若 V 的维数为奇数且 A 为第一类正交变换, 则 1 为 A 的特征值.

推论

三维空间中的第一类正交变换保持一个向量不变,从而一定为旋转变换.

转置与伴随变换

定理

设 \mathscr{A} 为欧氏空间 V 上的线性变换. 设 \mathscr{A} 在标准正交基 e_1, \dots, e_n 下的 矩阵为 A. 则

- $(\mathscr{A}\alpha,\beta) = (\alpha,\mathscr{A}^*\beta), \quad (\forall \alpha,\beta \in V).$
- ② 线性变换 \mathscr{A}^* 在基 e_1, \dots, e_n 下的矩阵为 A^T . 称 △* 为 ৶ 的伴随变换.

性质

- $(\lambda \mathscr{A})^* = \lambda \mathscr{A}^*;$
- ⑤ 设 △ 为欧氏空间上的线性变换 则

 \mathscr{A} 正交 \Leftrightarrow $\mathscr{A}^*\mathscr{A} = \varepsilon \Leftrightarrow \mathscr{A}^*$ 正交.

对称变换与对称矩阵

定义(对称变换,自伴随变换)

设 \mathscr{A} 为欧氏空间 V 上的线性变换. 若 $\mathscr{A} = \mathscr{A}^*$, 则称 \mathscr{A} 为 V 上的对称 变换(或自伴随变换).

性质

实对称矩阵的特征值都为实数.

定理

设A 为某欧氏空间上的线性变换 \mathscr{A} 在某组标准正交基下的矩阵.则

定理

对称变换的不同特征值对应的特征向量正交.

推论

实对称矩阵 A 的属于不同特征值的特征向量正交.

实对称矩阵的对角化

定理

任意n 阶实对称矩阵A, 存在n 阶正交矩阵T 使得 $T^{-1}AT$ 为对角矩阵.

证明思路: 将一个单位特征向量扩充为一组标准正交基, 并得正交阵 T_n . 则 $T_n^{-1}AT_n=\begin{pmatrix} \lambda_1 & \\ & A_{n-1} \end{pmatrix}$, 其中 A_{n-1} 仍然为实对称. 归纳即可得证.

例

设
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
. 求正交矩阵 T 使得 $T^{-1}AT$ 为对角矩阵.

提示:
$$P_A(\lambda) = (\lambda - 5)(\lambda + 1)^2$$
.

欧氏空间的子空间*

定义(正交)

设 V_1,V_2 为欧氏空间 V 的两子空间. 若对任意 $a_1 \in V_1,a_2 \in V_2$ 都有 $(a_1,a_2)=0$, 则称 V_1 和 V_2 相互正交, 记为 $V_1 \perp V_2$. 若一个向量 a 满足 $\langle a \rangle \perp V_1$, 则称 a 与 V_1 正交, 记为 $a \perp V_1$.

定理

- ① 若 $V_1 \perp V_2$, 则 $V_1 + V_2$ 为直和;
- ② 若 V_1, V_2, \dots, V_r 两两正交,则 $V_1 + V_2 + \dots + V_r$ 为直和.

定义(正交补)

若 $V_1 \perp V_2$ 且 $V = V_1 + V_2$, 则称 V_1, V_2 互为正交补 (空间).

定理

欧氏空间的任意子空间的正交补存在且唯一.