Shusen Wang

Value-Based Methods Actor-Critic Methods

Policy-Based Methods

Value Network and Policy Network

Definition: State-value function.

•
$$V_{\pi}(s) = \sum_{a} \pi(a|s) \cdot Q_{\pi}(s,a)$$
.

Definition: State-value function.

• $V_{\pi}(s) = \sum_{a} \pi(a|s) \cdot Q_{\pi}(s,a)$.

Policy network (actor):

- Use neural net $\pi(a|s; \theta)$ to approximate $\pi(a|s)$.
- θ : trainable parameters of the neural net.

Definition: State-value function.

• $V_{\pi}(s) = \sum_{a} \pi(a|s) \cdot Q_{\pi}(s,a)$.

Policy network (actor):

- Use neural net $\pi(a|s; \theta)$ to approximate $\pi(a|s)$.
- θ : trainable parameters of the neural net.

Value network (critic):

- Use neural net $q(s, \mathbf{a}; \mathbf{w})$ to approximate $Q_{\pi}(s, \mathbf{a})$.
- w : trainable parameters of the neural net.

Definition: State-value function.

• $V_{\pi}(s) = \sum_{a} \pi(a|s) \cdot Q_{\pi}(s,a) \approx \sum_{a} \pi(a|s;\theta) \cdot q(s,a;\mathbf{w}).$

Policy network (actor):

- Use neural net $\pi(a|s; \theta)$ to approximate $\pi(a|s)$.
- θ : trainable parameters of the neural net.

Value network (critic):

- Use neural net $q(s, \mathbf{a}; \mathbf{w})$ to approximate $Q_{\pi}(s, \mathbf{a})$.
- w : trainable parameters of the neural net.

Policy Network (Actor): $\pi(a|s,\theta)$

- Input: state s, e.g., a screenshot of Super Mario.
- Output: probability distribution over the actions.
- Let \mathcal{A} be the set all actions, e.g., $\mathcal{A} = \{\text{"left", "right", "up"}\}$.
- $\sum_{a \in \mathcal{A}} \pi(a|s, \theta) = 1$. (That is why we use softmax activation.)

Value Network (Critic): q(s, a; w)

- Inputs: state s and action a.
- Output: approximate action-value (scalar).

policy network (actor)

value network (critic)

Train the Neural Networks

Definition: State-value function approximated using neural networks.

• $V(s; \theta, \mathbf{w}) = \sum_{\mathbf{a}} \pi(\mathbf{a}|s; \theta) \cdot q(s, \mathbf{a}; \mathbf{w}).$

Definition: State-value function approximated using neural networks.

• $V(s; \theta, \mathbf{w}) = \sum_{\mathbf{a}} \pi(\mathbf{a}|s; \theta) \cdot q(s, \mathbf{a}; \mathbf{w}).$

- Update policy network $\pi(a|s; \theta)$ to increase the state-value $V(s; \theta, \mathbf{w})$.
 - Actor gradually performs better.
 - Supervision is purely from the value network (critic).

Definition: State-value function approximated using neural networks.

• $V(s; \theta, \mathbf{w}) = \sum_{\mathbf{a}} \pi(\mathbf{a}|s; \theta) \cdot q(s, \mathbf{a}; \mathbf{w}).$

- Update policy network $\pi(a|s; \theta)$ to increase the state-value $V(s; \theta, \mathbf{w})$.
 - Actor gradually performs better.
 - Supervision is purely from the value network (critic).
- Update value network $q(s, \mathbf{a}; \mathbf{w})$ to better estimate the return.
 - Critic's judgement becomes more accurate.
 - Supervision is purely from the rewards.

Definition: State-value function approximated using neural networks.

• $V(s; \boldsymbol{\theta}, \mathbf{w}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot q(s, \boldsymbol{a}; \mathbf{w}).$

- 1. Observe the state s_t .
- 2. Randomly sample action a_t according to $\pi(\cdot | s_t; \theta_t)$.
- 3. Perform a_t and observe new state s_{t+1} and reward r_t .
- 4. Update w (in value network) using temporal difference (TD).
- 5. Update θ (in policy network) using policy gradient.

Update value network q using TD

- Compute $q(s_t, a_t; \mathbf{w}_t)$ and $q(s_{t+1}, a_{t+1}; \mathbf{w}_t)$.
- TD target: $y_t = r_t + \gamma \cdot q(s_{t+1}, a_{t+1}; \mathbf{w}_t)$.

Update value network q using TD

- Compute $q(s_t, a_t; \mathbf{w}_t)$ and $q(s_{t+1}, a_{t+1}; \mathbf{w}_t)$.
- TD target: $y_t = r_t + \gamma \cdot q(s_{t+1}, a_{t+1}; \mathbf{w}_t)$.
- Loss: $L(\mathbf{w}) = \frac{1}{2} [q(s_t, a_t; \mathbf{w}) y_t]^2$.
- Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} \mid_{\mathbf{w} = \mathbf{w}_t}$.

Update policy network π using policy gradient

Definition: State-value function approximated using neural networks.

• $V(s; \boldsymbol{\theta}, \mathbf{w}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot q(s, \boldsymbol{a}; \mathbf{w}).$

Policy gradient: Derivative of $V(s_t; \theta, \mathbf{w})$ w.r.t. θ .

- Let $\mathbf{g}(\mathbf{a}, \mathbf{\theta}) = \frac{\partial \log \pi(\mathbf{a}|s, \mathbf{\theta})}{\partial \mathbf{\theta}} \cdot q(s_t, \mathbf{a}; \mathbf{w}).$
- $\frac{\partial V(s; \theta, \mathbf{w}_t)}{\partial \theta} = \mathbb{E}_{\mathbf{A}}[\mathbf{g}(\mathbf{A}, \theta)].$

Update policy network π using policy gradient

Definition: State-value function approximated using neural networks.

• $V(s; \boldsymbol{\theta}, \mathbf{w}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot q(s, \boldsymbol{a}; \mathbf{w}).$

Policy gradient: Derivative of $V(s_t; \theta, \mathbf{w})$ w.r.t. θ .

- Let $\mathbf{g}(\mathbf{a}, \mathbf{\theta}) = \frac{\partial \log \pi(\mathbf{a}|s, \mathbf{\theta})}{\partial \mathbf{\theta}} \cdot q(s_t, \mathbf{a}; \mathbf{w}).$
- $\frac{\partial V(s;\theta,\mathbf{w}_t)}{\partial \theta} = \mathbb{E}_{\mathbf{A}}[\mathbf{g}(\mathbf{A},\mathbf{\theta})].$

Algorithm: Update policy network using stochastic policy gradient.

- Random sampling: $a \sim \pi(\cdot | s_t; \theta_t)$. (Thus $g(a, \theta)$ is unbiased.)
- Stochastic gradient ascent: $\mathbf{\theta}_{t+1} = \mathbf{\theta}_t + \beta \cdot \mathbf{g}(\mathbf{a}, \mathbf{\theta}_t)$.

policy network (actor)

value network (critic)

Actor-Critic Method: Update Actor

Actor-Critic Method: Update Critic

- 1. Observe state s_t and randomly sample $a_t \sim \pi(\cdot | s_t; \theta_t)$.
- 2. Perform a_t ; then environment gives new state s_{t+1} and reward r_t .
- 3. Randomly sample $\tilde{a}_{t+1} \sim \pi(\cdot | s_{t+1}; \theta_t)$. (Do not perform $\tilde{a}_{t+1}!$)

- 1. Observe state s_t and randomly sample $a_t \sim \pi(\cdot | s_t; \theta_t)$.
- 2. Perform a_t ; then environment gives new state s_{t+1} and reward r_t .
- 3. Randomly sample $\tilde{a}_{t+1} \sim \pi(\cdot | s_{t+1}; \theta_t)$. (Do not perform $\tilde{a}_{t+1}!$)
- 4. Evaluate value network: $q_t = q(s_t, a_t; \mathbf{w}_t)$ and $q_{t+1} = q(s_{t+1}, \tilde{a}_{t+1}; \mathbf{w}_t)$.
- 5. Compute TD error: $\delta_t = q_t (r_t + \gamma \cdot q_{t+1})$.

 TD Target

- 1. Observe state s_t and randomly sample $a_t \sim \pi(\cdot | s_t; \theta_t)$.
- 2. Perform a_t ; then environment gives new state s_{t+1} and reward r_t .
- 3. Randomly sample $\tilde{a}_{t+1} \sim \pi(\cdot | s_{t+1}; \theta_t)$. (Do not perform $\tilde{a}_{t+1}!$)
- 4. Evaluate value network: $q_t = q(s_t, a_t; \mathbf{w}_t)$ and $q_{t+1} = q(s_{t+1}, \tilde{a}_{t+1}; \mathbf{w}_t)$.
- 5. Compute TD error: $\delta_t = q_t (r_t + \gamma \cdot q_{t+1})$.
- 6. Differentiate value network: $\mathbf{d}_{w,t} = \frac{\partial q(s_t, \mathbf{a_t}; \mathbf{w})}{\partial \mathbf{w}} \big|_{\mathbf{w} = \mathbf{w}_t}$.
- 7. Update value network: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \delta_t \cdot \mathbf{d}_{w,t}$.

- 1. Observe state s_t and randomly sample $a_t \sim \pi(\cdot | s_t; \theta_t)$.
- 2. Perform a_t ; then environment gives new state s_{t+1} and reward r_t .
- 3. Randomly sample $\tilde{a}_{t+1} \sim \pi(\cdot | s_{t+1}; \theta_t)$. (Do not perform $\tilde{a}_{t+1}!$)
- 4. Evaluate value network: $q_t = q(s_t, \mathbf{a}_t; \mathbf{w}_t)$ and $q_{t+1} = q(s_{t+1}, \tilde{\mathbf{a}}_{t+1}; \mathbf{w}_t)$.
- 5. Compute TD error: $\delta_t = q_t (r_t + \gamma \cdot q_{t+1})$.
- 6. Differentiate value network: $\mathbf{d}_{w,t} = \frac{\partial q(s_t, \mathbf{a_t}; \mathbf{w})}{\partial \mathbf{w}} \big|_{\mathbf{w} = \mathbf{w}_t}$.
- 7. Update value network: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \delta_t \cdot \mathbf{d}_{w,t}$.
- 8. Differentiate policy network: $\mathbf{d}_{\theta,t} = \frac{\partial \log \pi(\mathbf{a}_t|s_t,\theta)}{\partial \theta} \big|_{\theta=\theta_t}$.
- 9. Update policy network: $\mathbf{\theta}_{t+1} = \mathbf{\theta}_t + \beta \cdot q_t \cdot \mathbf{d}_{\theta,t}$.

- 1. Observe state s_t and randomly sample $a_t \sim \pi(\cdot | s_t; \theta_t)$.
- 2. Perform a_t ; then environment gives new state s_{t+1} and reward r_t .
- 3. Randomly sample $\tilde{a}_{t+1} \sim \pi(\cdot | s_{t+1}; \theta_t)$. (Do not perform $\tilde{a}_{t+1}!$)
- 4. Evaluate value network: $q_t = q(s_t, a_t; \mathbf{w}_t)$ and $q_{t+1} = q(s_{t+1}, \tilde{a}_{t+1}; \mathbf{w}_t)$.
- 5. Compute TD error: $\delta_t = q_t (r_t + \gamma \cdot q_{t+1})$.
- 6. Differentiate value network: $\mathbf{d}_{w,t} = \frac{\partial q(s_t, a_t; \mathbf{w})}{\partial \mathbf{w}} |_{\mathbf{w} = \mathbf{w}_t}$.
- 7. Update value network: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \delta_t \cdot \mathbf{d}_{w,t}$.
- 8. Differentiate policy network: $\mathbf{d}_{\theta,t} = \frac{\partial \log \pi(a_t|s_t,\theta)}{\partial \theta} \big|_{\theta=\theta_t}$.
- 9. Update policy network: $\mathbf{\theta}_{t+1} = \mathbf{\theta}_t + \beta \cdot q_t \cdot \mathbf{d}_{\theta,t}$.

- 1. Observe state s_t and randomly sample $a_t \sim \pi(\cdot | s_t; \theta_t)$.
- 2. Perform a_t ; then environment gives new state s_{t+1} and reward r_t .
- 3. Randomly sample $\tilde{a}_{t+1} \sim \pi(\cdot | s_{t+1}; \theta_t)$. (Do not perform $\tilde{a}_{t+1}!$)
- 4. Evaluate value network: $q_t = q(s_t, a_t; \mathbf{w}_t)$ and $q_{t+1} = q(s_{t+1}, \tilde{a}_{t+1}; \mathbf{w}_t)$.
- 5. Compute TD error: $\delta_t = q_t (r_t + \gamma \cdot q_{t+1})$.
- 6. Differentiate value network: $\mathbf{d}_{w,t} = \frac{\partial q(s_t, a_t; \mathbf{w})}{\partial \mathbf{w}} |_{\mathbf{w} = \mathbf{w}_t}$.
- 7. Update value network: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \delta_t \cdot \mathbf{d}_{w,t}$.
- 8. Differentiate policy network: $\mathbf{d}_{\theta,t} = \frac{\partial \log \pi(a_t|s_t,\theta)}{\partial \theta} \big|_{\theta=\theta_t}$.
- 9. Update policy network: $\mathbf{\theta}_{t+1} = \mathbf{\theta}_t + \beta \cdot \mathbf{\mathbf{d}}_{\theta,t}$.

Policy Gradient with Baseline

- 1. Observe state s_t and randomly sample $a_t \sim \pi(\cdot | s_t; \theta_t)$.
- 2. Perform a_t ; then environment gives new state s_{t+1} and reward r_t .
- 3. Randomly sample $\tilde{a}_{t+1} \sim \pi(\cdot | s_{t+1}; \theta_t)$. (Do not perform $\tilde{a}_{t+1}!$)
- 4. Evaluate value network: $q_t = q(s_t, a_t; \mathbf{w}_t)$ and $q_{t+1} = q(s_{t+1}, \tilde{a}_{t+1}; \mathbf{w}_t)$.
- 5. Compute TD error: $\delta_t = q_t (r_t + \gamma \cdot q_{t+1})$.
- 6. Differentiate value network: $\mathbf{d}_{w,t} = \frac{\partial q(s_t, \alpha_t, \mathbf{w})}{\mathsf{Baseline}^{\mathbf{w}}} |_{\mathbf{w} = \mathbf{w}_t}$.
- 7. Update value network: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \delta_t \cdot \mathbf{d}_{w,t}$.
- 8. Differentiate policy network: $\mathbf{d}_{\theta,t} = \frac{\partial \log \pi(a_t|s_t,\theta)}{\partial \theta} \big|_{\theta=\theta_t}$.
- 9. Update policy network: $\mathbf{\theta}_{t+1} = \mathbf{\theta}_t + \beta \cdot \mathbf{\delta}_t \cdot \mathbf{d}_{\theta,t}$.

Summary

Policy Network and Value Network

Definition: State-value function.

•
$$V_{\pi}(s) = \sum_{a} \pi(a|s) \cdot Q_{\pi}(s,a)$$
.

Definition: function approximation using neural networks.

- Approximate policy function $\pi(a|s)$ by $\pi(a|s;\theta)$ (actor).
- Approximate value function $Q_{\pi}(s, \mathbf{a})$ by $q(s, \mathbf{a}; \mathbf{w})$ (critic).

Roles of Actor and Critic

During training

- Agent is controlled by policy network (actor): $a_t \sim \pi(\cdot | s_t; \theta)$.
- Value network q (critic) provides the actor with supervision.

Roles of Actor and Critic

During training

- Agent is controlled by policy network (actor): $a_t \sim \pi(\cdot | s_t; \theta)$.
- Value network q (critic) provides the actor with supervision.

After training

- Agent is controlled by policy network (actor): $a_t \sim \pi(\cdot | s_t; \theta)$.
- Value network q (critic) will not be used.

Training

Update the policy network (actor) by policy gradient.

- Seek to increase state-value: $V(s; \theta, \mathbf{w}) = \sum_{a} \pi(a|s; \theta) \cdot q(s, a; \mathbf{w})$.
- Compute policy gradient: $\frac{\partial V(s;\theta)}{\partial \theta} = \mathbb{E}_{A} \left[\frac{\partial \log \pi(A|s,\theta)}{\partial \theta} \cdot q(s,A;\mathbf{w}) \right].$
- Perform gradient ascent.

Training

Update the policy network (actor) by policy gradient.

- Seek to increase state-value: $V(s; \theta, \mathbf{w}) = \sum_{a} \pi(a|s; \theta) \cdot q(s, a; \mathbf{w})$.
- Compute policy gradient: $\frac{\partial V(s;\theta)}{\partial \theta} = \mathbb{E}_{A} \left[\frac{\partial \log \pi(A|s,\theta)}{\partial \theta} \cdot q(s,A;\mathbf{w}) \right].$
- Perform gradient ascent.

Update the value network (critic) by TD learning.

- Predicted action-value: $q_t = q(s_t, a_t; \mathbf{w})$.
- TD target: $y_t = r_t + \gamma \cdot q(s_{t+1}, a_{t+1}; \mathbf{w})$
- Gradient: $\frac{\partial (q_t y_t)^2/2}{\partial \mathbf{w}} = (q_t y_t) \cdot \frac{\partial q(s_t, a_t; \mathbf{w})}{\partial \mathbf{w}}$.
- Perform gradient descent.

Thank you!