CS2040 – Data Structures and Algorithms

Lecture 8 – Heaps of Fun chongket@comp.nus.edu.sg

Outline

What are you going to learn in this lecture?

- Motivation: Abstract Data Type: PriorityQueue
- With major help from VisuAlgo Binary Heap Visualization
 - Binary Heap data structure and its operations
 - Creating a Heap from a set of N numbers in O(N)
 - Heap Sort in O(N log N)

Reference in CP4 book 1: Page 78-80

Abstract Data Type: PriorityQueue (1)

Imagine that you are the Air Traffic Controller:

- You have scheduled the next aircraft X to land in the next 3 minutes, and aircraft Y to land in the next 6 minutes
- Both have enough fuel for at least the next
 15 minutes and both are just 2 minutes away
 from your airport

The next few slides are hidden...

(in public copy)

Attend the lecture to figure out

There will be two options presented and you will have to decide

- Raise AND wave your hand if you choose option 1
- Raise your hand but do NOT wave it if you choose option 2
- Do nothing if you are not sure what to do

Abstract Data Type: PriorityQueue (2)

- Suddenly, you receive an urgent SOS message that another aircraft Z is running out of fuel and request to land soon
- The pilot of aircraft Z
 estimates that he only
 have 3 minutes of flying
 time and approximately
 3 minutes away from
 airport......
- You...

You...

- 1. Let aircraft Z lands first...
- 2. Stick with the original plan...

Abstract Data Type: PriorityQueue

Important Basic Operations:

- Enqueue(x)
 - Put a new item x in the priority queue PQ (in some order)
- y ← Dequeue()
 - Return an item y that has the highest priority (key) in the PQ
 - If there are more than one item with highest priority, return the one that is inserted first (FIFO)

Note: We can always define highest priority = higher number or it's opposite: highest priority = lower number

A Few Points To Remember

Data Structure (DS) is...

 A way to store and organize data in order to support efficient insertions, searches, deletions, queries, and/or updates

Most data structures have some properties

 Each operation on that data structure has to maintain those properties

PriorityQueue Implementation (1)

The array is circular: We just manipulate front+back pointers to define the active part of array

(Circular) Array-Based Implementation (Strategy 1)

- Property: The content of array is always in correct order
- Enqueue(x)
 - Find the correct insertion point, O(N) recall insertion sort
- y ← Dequeue()
 - Return the front-most item which has the highest priority, O(1)

Index	0 (front)	1 (back)	
Key	Aircraft X*	Aircraft Y*	
		Aircraft Z**	

We do not need to close the gap, just advance the front pointer, O(1)

Index	0 (front)	1	2 (back)
Key	Aircraft Z**	Aircraft X*	Aircraft Y*

PriorityQueue Implementation (2)

(Circular) Array-Based Implementation (Strategy 2)

- Property: dequeue() operation returns the correct item
- Enqueue(x)
 - Put the new item at the back of the queue, O(1)
- y ← Dequeue()
 - Scan the whole queue, return first item with highest priority, O(N)

Index	0 (front)	1	2 (back)		
Key	Aircraft X*	Aircraft Y*	Aircraft Z**		

PriorityQueue Implementation (3)

If we just stop at CS2040 1st half knowledge level:

Strategy	Enqueue	Dequeue
Circular-Array-Based PQ (1)	O(N)	O(1)
Circular-Array-Based PQ (2)	O(1)	O(N)
Can we do better?	O(?)	O(?)

If N is large, our queries are slow...

INTRODUCING BINARY HEAP DATA STRUCTURE

Complete Binary Tree

Introducing a few concepts:

- Complete Binary Tree
 - Binary tree in which every level, except possibly the last,
 is completely filled, and all nodes are as far left as possible
 - If every level including last is filled → Perfect binary tree root

Height of a complete binary tree of n items

= number of levels-1

= max edges from root to deepest leaf

Internal vertices =
Every node other than
leaves & root

The Height of a Complete Binary Tree of **n** Items is...

- 1. O(**n**)
- 2. O(sqrt **n**)
- 3. $O(\log n)$
- 4. O(1)

Memorize this answer!
We will need that for *nearly*all time complexity analysis
of binary heap operations

size(A)

Storing a Complete Binary Tree

Q: Why not 0-based?

As a 1-based compact array: A[1..size(A)]

0	1	2	3	4	5	6	7	8	9	10	11
NIL	90	19	36	17	3	25	1	2	7	-	-

heapsize \leq size(A)

Navigation operations:

- parent(i) = floor(i/2), except for i = 1 (root)
- left(i) = 2*i, No left child when: left(i) > heapsize
- right(i) = 2*i+1, No right child when: right(i) > heapsize

Binary Heap Property

Binary Heap property (except root)

- $A[parent(i)] \ge A[i]$ (Max Heap)
- $A[parent(i)] \leq A[i]$ (Min Heap)

```
Q: Can we write Binary

Max Heap property as:

A[i] ≥ A[left(i)]

&&

A[i] ≥ A[right(i)]

?
```

Without loss of generality, we will use (Binary Max)
Heap for all examples in this lecture, and it will store
only distinct integer values

The largest element in a **Binary Max Heap** is stored at...

- 1. One of the leaves
- 2. One of the internal vertices
- 3. Can be anywhere in the heap
- 4. The root

Insert(v) – Pseudo Code

ShiftUp – Pseudo Code

This name is <u>not unique</u>, the alternative names are: ShiftUp/BubbleUp/IncreaseKey/etc

ExtractMax - Pseudocode

```
ExtractMax()
  \max V \leftarrow A[1] // O(1)
  A[1] \leftarrow A[heapsize] // O(1)
  heapsize \leftarrow heapsize-1 // \circ(1)
  ShiftDown (1) // (?)
  return maxV
// Preliminary analysis:
// Time complexity of ExtractMax() depends on
// time complexity of ShiftDown()
```

ShiftDown – Pseudo Code

```
Again, the name is not unique:
ShiftDown(i)
                             ShiftDown/BubbleDown/Heapify/etc
  while i <= heapsize
    maxV \leftarrow A[i]; max id \leftarrow i;
    if left(i) <= heapsize and maxV < A[left(i)]</pre>
       \max V \leftarrow A[left(i)]; \max id \leftarrow left(i)
    if right(i) <= heapsize and maxV < A[right(i)]</pre>
       maxV \leftarrow A[right(i)]; max id \leftarrow right(i)
    // be careful with the implementation
    if (\max id != i)
       swap(A[i], A[max id])
       i ← max id;
    else
       break; // Analysis: ShiftDown() runs in
```

PriorityQueue Implementation (4)

Now, with knowledge of *non linear DS*:

Strategy	Enqueue	Dequeue
Circular-Array-Based PQ (1)	O(N)	O(1)
Circular-Array-Based PQ (2)	O(1)	O(N)
Binary-Heap (actually uses array too)	Insert(key) O(log N)	ExtractMax() O(log N)

Summary so far:

Heap data structure is an efficient data structure -- O(log N) enqueue/dequeue operations -- to implement ADT priority queue where the 'key' represent the 'priority' of each item

Next Items:

- Creating a Binary Max Heap from an ordinary Array, the O(N log N) version
- And the faster O(N) version
- Heap Sort, O(N log N)
- Barebones Java Implementation of Binary Max Heap

LECTURE BREAK

CreateHeap (arr), O(N log N) Version

CreateHeap (arr), O(N) version

```
CreateHeap(arr)
  heapsize ← size(arr)
  A[0] \leftarrow 0 // dummy entry
  for i = 1 to heapsize // copy the content O(N)
    A[i] \leftarrow arr[i-1]
  for i = parent(heapsize) down to 1 // O(N/2)
    ShiftDown(i) // O(log N)
// Analysis: Is this also O(N log N) ??
// No... soon, we will see that this is just O(N)
                     // Inventor: Robert W. Floyd
```

CreateHeap (arr) Analysis... (1)

Recall: What is the height of a complete binary tree (heap) of size **N**? _____

Recall: What is the cost to run shiftDown(i)? _____

Q: How many nodes are there at height **h** of a perfect binary tree? _____

CreateHeap (arr) Analysis... (2)

Cost of CreateHeap (arr) is thus:

$$\sum_{\substack{h=0 \\ \text{Sum over} \\ \text{all levels}}}^{\text{F of nodes at heighth}} \frac{Costfor a level}{Costfor a level} = \sum_{h=0}^{\text{Costfor a}} \frac{Costfor a level}{Costfor a level} = \sum_{\substack{h=0 \\ \text{Sum over} \\ \text{all levels}}}^{\text{Costfor a level}} \frac{Costfor a level}{Costfor a level} = \sum_{h=0}^{\text{Costfor a}} \frac{Costfor a level}{Costfor a level} = \sum_{\substack{h=0 \\ \text{Sum over} \\ \text{all levels}}}^{\text{Costfor a level}} \frac{Costfor a level}{Costfor a level} = \sum_{h=0}^{\text{Costfor a level}} \frac{Costfor a level}{Costfor a level} = \sum_{\substack{h=0 \\ \text{Sum over} \\ \text{Costfor a level}}}^{\text{Costfor a level}} Costfor a level} = \sum_{\substack{h=0 \\ \text{Sum over} \\ \text{Costfor a level}}}^{\text{Costfor a level}} Costfor a level} = \sum_{\substack{h=0 \\ \text{Sum over} \\ \text{Costfor a level}}}^{\text{Costfor a level}} Costfor a level} = \sum_{\substack{h=0 \\ \text{Sum over} \\ \text{Costfor a level}}}^{\text{Costfor a level}} Costfor a level} = \sum_{\substack{h=0 \\ \text{Sum over} \\ \text{Costfor a level}}}^{\text{Costfor a level}} Costfor a level} = \sum_{\substack{h=0 \\ \text{Sum over} \\ \text{Costfor a level}}}^{\text{Costfor a level}} Costfor a level} = \sum_{\substack{h=0 \\ \text{Sum over} \\ \text{Costfor a level}}}^{\text{Costfor a level}} Costfor a level} = \sum_{\substack{h=0 \\ \text{Sum over} \\ \text{Costfor a level}}}^{\text{Costfor a level}} Costfor a level} = \sum_{\substack{h=0 \\ \text{Sum over} \\ \text{Costfor a level}}}^{\text{Costfor a level}} Costfor a level} = \sum_{\substack{h=0 \\ \text{Sum over} \\ \text{Costfor a level}}}^{\text{Costfor a level}} Costfor a level} = \sum_{\substack{h=0 \\ \text{Sum over} \\ \text{Costfor a level}}}^{\text{Costfor a level}} Costfor a level} = \sum_{\substack{h=0 \\ \text{Sum over} \\ \text{Costfor a level}}}^{\text{Costfor a level}} Costfor a level} = \sum_{\substack{h=0 \\ \text{Sum over} \\ \text{Costfor a level}}}^{\text{Costfor a level}} Costfor a level} = \sum_{\substack{h=0 \\ \text{Sum over} \\ \text{Costfor a level}}}^{\text{Costfor a level}} Costfor a level} = \sum_{\substack{h=0 \\ \text{Sum over} \\ \text{Costfor a level}}}^{\text{Costfor a level}} Costfor a level} = \sum_{\substack{h=0 \\ \text{Sum over} \\ \text{Costfor a level}}}^{\text{Costfor a level}} Costfor a level} = \sum_{\substack{h=0 \\ \text{Sum over} \\ \text{Costfor a level}}}^{\text{Costfor a level}} Costfor a level} Costfor a level} = \sum_{\substack{h=0 \\ \text{Sum over} \\ \text{Costfor a level}}}^{\text{Costfor a level}} Cos$$

Can check WolframAlpha:

http://www.wolframalpha.com/input/?i=0%2F1+%2B+1%2F2+%2B+2%2F4+%2B+3%2F8+%2B+4%2F16+...

Review: We have already learnt MergeSort. It can sort **N** items in...

- 1. $O(N^2)$
- 2. O(N log N)
- 3. O(**N**)
- 4. O(log **N**)

HeapSort(arr) Pseudo Code

With a Binary (Max) Heap, we can do sorting too ©

- Just call ExtractMax() N times
- If we do not have a Binary (Max) Heap yet, simply build one!

```
HeapSort(array)
   CreateHeap(array) // O(?)
   N ← size(array)
   for i from 1 to N // O(N)
        A[N-i+1] ← ExtractMax() // ~O(log N)
   return A
// Inventor: John William Joseph Williams
```


HeapSort (arr) Analysis

```
HeapSort (arr)
  CreateHeap(arr) // The best we can do is
 N \leftarrow size(arr)
  for i from 1 to N // O(N)
    A[N-i+1] \leftarrow ExtractMax() // O(log N)
  return A
// Analysis: Thus HeapSort runs in O(
// Heapsort can be made in-place if we reuse the
// input array "arr" as the binary heap too.
// However HeapSort is not "cache friendly"
```

Java Implementation

Priority Queue ADT

BinaryHeap Class (Java file given)

- ShiftUp(i) used in Insert(key)
- ShiftDown(i) used in ExtractMax()
- CreateHeapSlow(arr) and CreateHeap(arr)
- HeapSort(arr)

Testing/Training Binary Heap knowledge on Visualgo ©

- Go to http://visualgo.net/training.html
- Click Binary Heap
- Set the question difficulty (go from easy to hard)
- Set the number of questions (try 5 to 10 questions)
- Set a suitable time limit (20 to 60 mins)

Summary

In this heavy VisuAlgo lecture, we have looked at:

- Heap DS and its application as efficient PriorityQueue
- Storing (max) heap as a compact array and its operations
 - Remember how we always try to maintain complete binary tree and (max) heap property in all our operations!
- Building a (max) heap from a set of numbers in O(N) time
- Simple application of Heap DS: O(N log N) HeapSort

We will still be using PriorityQueue later on in CS2040