Show the following statements hold:

- 1. Suppose that $s_1, s_2, ..., s_{m+1}$ are elements of a vector space V and that $S = \{s_1, s_2, ..., s_m\}$ is linearly independent. Then $s_{m+1} \in span(S)$ if and only if $\{s_1, s_2, ..., s_m, s_{m+1}\}$ is linearly dependent.
- 2. If $S = \{v_1, v_2, ..., v_m\}$ spans the vector space V then there is a basis of V which is a subset of S.
- 3. If V is a finite-dimensional vector space and $S = \{v_1, v_2, ..., v_k\}$ is linearly independent, then there is a basis of V which contains S.
- 4. Suppose that $S = \{v_1, ..., v_n\}$ spans the vector space V and $S' = \{w_1, ..., w_m\}$ is a set of m linearly independent vectors in V. Then $m \le n$.
- 5. If W is a subspace of an n-dimensional vector space V then W is finite-dimensional with dimension $m \le n$. The case m = n holds if and only if W = V.
- 6. Suppose that $f: V \to W$ is a linear map, $\{w_1, ... w_r\}$ is a basis for the image of f and $\{v_1, ..., v_k\}$ is a basis for the kernel of f. For i = 1, ..., r, let $u_i \in V$ be such that $f(u_i) = w_i$. Then $S = \{u_1, ..., u_r, v_1, ... v_k\}$ is a basis for the vector space V.