数字逻辑电路 (2020级本科生课程)

清华大学计算机系

陶品

taopin@tsinghua.edu.cn

办公室: FIT 3-531 (13717813059)

课程基本情况

- 教学形式:讲课,辅导,网上、定时和现场答疑
- 学时安排:3学分,共48学时
- ■教学内容
 - 第一章:前言和基本知识介绍
 - > 第二章 逻辑代数和化简方法
 - > 第三章:门电路
 - > 第四章: 组合逻辑电路
 - > 第五章: 肘序逻辑电路
 - > 第六章: 可编程逻辑电路
 - > 数字逻辑电路课程总复习

(第1周,前3学时)

(第2、3周, 共6学时)

(第4周, 共3学时)

(第5~7周, 共9学时)

(第8~12周,共15学时)

(第13~15周, 共9学时)

(第16周,3学时)

- 2.1 逻辑代数的基本运算与公式
- 2.2 公式法化简逻辑函数
- 2.3 图解法(卡诺图)化简逻辑函数
- 2.4 逻辑函数的表格法化简(Q-M法)

- ■2.3 图解法(卡诺图)化简逻辑函数
 - > 公式法化简的缺点
 - ✓ 需要掌握计算技巧, 容易出错;
 - ✓ 不容易判断结果是否为最简;

>图解法

√优点:直观明了,过程简单,可从图中直接求出最 简表达式;

√缺点:函数变量不能太多,一般为4变量及4变量以下;4变量以上用卡诺图化简比较困难。

- ■2.3 图解法(卡诺图)化简逻辑函数
 - > 逻辑代数中的两个重要概念
 - ✓ 最小项 (MinTerm)
 - ✓ 最大项 (MaxTerm)

- ■2.3 图解法(卡诺图)化简逻辑函数
 - > 最小项的定义
 - ✓ 设一个逻辑函数表达式中有n个变量,由它们组成的具有n个变量的"与项"中,每个变量以原变量或反变量的形式出现且仅出现一次,这个与项为最小项。

例如: n=3,对A、B、C,有8个最小项

 ABC
 ABC
 ABC
 ABC

 ABC
 ABC
 ABC
 ABC

- ■2.3 图解法(卡诺图)化简逻辑函数
 - > 最小项的性质
 - √n个变量有2n个最小项。
 - ✓对任意最小项,只有一组变量取值使它的值为1, 其他取值使该最小项为0
 - ✓任何逻辑函数均可表示为唯一的一组最小项之和 (与或), 称为标准的与或表达式
 - ✓某一最小项不是包含在F的原函数中,就是包含在F的 反函数中
 - √n个变量全体最小项之和 (与或) 必为"1"

- ■2.3 图解法(卡诺图)化简逻辑函数
 - > 最小项的表示
 - √ 将最小项表示为m_i, i是对应2进制表示的10进制 数值
- > 应用举例: n=3时8个最小项为 (C为高位, A低位)

$$m_0 = \overline{ABC}$$
 $m_1 = A\overline{BC}$ $m_2 = \overline{ABC}$ $m_3 = AB\overline{C}$ $m_4 = \overline{ABC}$ $m_5 = A\overline{BC}$ $m_6 = \overline{ABC}$ $m_7 = ABC$

- ■2.3 图解法(卡诺图)化简逻辑函数
 - > 举例:用最小项表示一个函数

$$F = \overline{AB} + BC + A\overline{BC}$$

$$= \overline{AB}(C + \overline{C}) + (A + \overline{A})BC + A\overline{BC}$$

$$= \overline{ABC} + \overline{ABC} + ABC + ABC$$

$$= m_6 + m_2 + m_7 + m_1$$

$$= \sum m^3 (1,2,6,7)$$

- ■2.3 图解法(卡诺图)化简逻辑函数
 - > 最大项的定义
 - ✓ 设一个逻辑函数表达式中有n个变量,由他们组成的具有n个变量的或项中,每个变量以原变量或反变量的形式出现且仅出现一次,则称这个项为最大项。

例如: n=3的最大项为

$$M_0 = A + B + C$$
 $M_1 = A + B + C$
 $M_2 = A + B + C$ $M_3 = A + B + C$
 $M_4 = A + B + C$ $M_5 = A + B + C$
 $M_6 = A + B + C$ $M_7 = A + B + C$

- ■2.3 图解法(卡诺图)化简逻辑函数
 - > 最大项的性质
 - ✓ n个变量有2ⁿ个最大项。
 - ✓ 对任意最大项,只有一组变量取值使它的值为0,其他取值使该最大项为1
 - ✓ 任何逻辑函数均可表示为唯一的一组最大项之和(或与), 称为标准的或与表达式
 - ✓ 某一最大项不是包含在F的原函数中,就是包含在F的反函数中
 - ✓ n个变量全体最大项之积(或与)必为"O"

- ■2.3 图解法(卡诺图)化简逻辑函数
 - > 举例:用最大项表示一个函数

$$F = (A + B) \bullet (A + B + C)$$

$$= [A + B + (C \bullet \overline{C})] \bullet (\overline{A} + B + C)$$

$$= (A + B + C) \bullet (A + B + \overline{C}) \bullet (\overline{A} + B + C)$$

$$= M_0 \bullet M_4 \bullet M_1$$

$$= \prod M^3(0,1,4)$$

- ■2.3 图解法(卡诺图)化简逻辑函数
 - > 最大项与最小项的关系
 - (1) 对于所有的i,相同i的最大项与最小项互补 $M_i = \frac{m_i}{M_i}$ $m_i = M_i$
 - (2)对于所有的i, $\sum m_i$ 和 $\prod M_i$ 互为对偶式

公式法化简 (不唯一、不好判断)

$$Y = \overline{A}\overline{B}C + \overline{A}\overline{B}\overline{C} + AB + AC + BC + ABC$$

$$Y = \bar{A}\bar{B} + AB + AC + BC$$

$$Y = \overline{A}\overline{B} + AB + (A + B)C$$

$$Y = \bar{A}\bar{B} + AB + \overline{\bar{A}}\,\bar{\bar{B}}C$$

$$Y = \overline{A}\overline{B} + \overline{A}\overline{B}C + AB$$

$$Y = \bar{A}\bar{B} + C + AB$$

吸收律

(Absorption)

$$\begin{cases} A + \overline{A} B = A + B \\ A \bullet (\overline{A} + B) = A \bullet B \\ A + A \bullet B = A \\ A(A + B) = A \end{cases}$$

- ■2.3 图解法(卡诺图)化简逻辑函数
 - ► 卡诺图: Karnaugh Map (by Maurice Karnaugh, 1953);
 - 卡诺图:逻辑函数的图示表示,把最小项填入卡诺图,利用相邻最小项的互补性,消去一个变量,实现化简。
 - > 卡诺图的构成
 - (1)由矩形或正方形组成的图形
 - (2)将矩形分成若干小方块,每个小方块对 应一个最小项。

- ■2.3 图解法(卡诺图)化简逻辑函数
 - >1变量卡诺图

整体为1

只有一个变量,将大方框划分 为左、右两部分,表示 A和A

也可以将大方框划分为上、下两部分,表示 A和A

1

A A

- ■2.3 图解法(卡诺图)化简逻辑函数
 - ▶2变量卡诺图:假设两个变量分别为A和B

一个变量用大方框左、 右两部分表示 A和A

另一个变量用大方框上、 下两部分表示B和B

将两图合二为一,可得 2变量卡诺图

$$\begin{array}{c|cccc}
 & A & A \\
\hline
B & AB & AB \\
B & AB & AB
\end{array}$$

- ■2.3 图解法(卡诺图)化简逻辑函数
 - >2变量卡诺图
- √一个整体可由代表4个最小项的四个小方格组成:

- ■2.3 图解法(卡诺图)化简逻辑函数
 - >3变量卡诺图
 - √一个整体分成8个小方格

B C	00	01	11	10
0	m_0	\mathbf{m}_1	m_3	m_2
1	m_4	m_5	m_7	m_6

注意:上表头编码按00-01-11-10循环??码顺序排列,而不是00-01-10-11

- ■2.3 图解法(卡诺图)化简逻辑函数
 - >循环码(格雷码)
 - ✓循环码的定义:相邻两个编码之间只有一位数不同, 而且首尾两个编码之间也只有一位数不同,这种编码叫循环码。
 - ✓ 2位循环码: → 00→01→11→10 →
 - ✓ 3位循环码: →000→001→011→010→110→111→101→100
 - √循环码的特点:每次只变一位;用在卡诺图上,可以消去最小项的多余变量。

■3变量卡 诺图的 含义

B C	A 00	01	11	10
0	m_0	\mathbf{m}_1	m_3	m_2
1	m_4	m_5	m_7	m_6

B	00	01	11	10
0	\overline{ABC}	\overline{ABC}	ABC	-ABC
1	ABC	ABC	ABC	- ABC

■3变量卡诺图化简

√3变量函数如何用卡诺图化简?

$$F = \overline{ABC} + A\overline{BC} = \overline{BC}$$
 $F = ABC + ABC + ABC + ABC = AC$
 $F = ABC + ABC = AC$

F = ABC + ABC + AB = ?

请用公式法和卡诺图法分别试一试

- ■2.3 图解法(卡诺图)化简逻辑函数
 - >4变量卡诺图

B D	00	01	11	10
00	m_0	m_1	m_3	m_2
01	m_4	m_5	m_7	m_6
11	m ₁₂	m ₁₃	m ₁₅	m ₁₄
10	m_8	m_9	m ₁₁	m ₁₀

- ■4变量卡诺图
 - >2个最小项相邻
- ▶合并后减少1个变量

$$F_1 = ABCD + ABCD = ABC$$

$$F_2 = ABCD + ABCD = BCD$$

$$F_3 = \overline{ABCD} + \overline{ABCD} = ACD$$

$$F_A = ABCD + ABCD = ABC$$

[D A	00	01	11	10
	00	m_0	m_1	m_3	m_2
	01	m_4	m_5	m_7	m_6
<u>-</u>	11	m ₁₂	m ₁₃	m ₁₅	m ₁₄
)	10	m_8	m_{o}	m_{11}	m_{10}

- ■4变量卡诺图
 - >4个最小项相邻
- ▶合并后减少2个变量

$$F_{1} = AC$$

$$F_{2} = AC$$

$$F_{3} = AC$$

$$F_{4} = AC$$

- ■4变量卡诺图
 - >8个最小项相邻
- ▶合并后减少3个变量

$$F_{1} = \overline{B}$$

$$F_{2} = A$$

$$F_{3} = B$$

$$F_{4} = \overline{A}$$

第二章逻辑代数 (50)

■最小项的卡诺图表示

在函数最小项对应的小方块填"1",其他方块填"0";

B	\ 00	01	11	10
0	0	1	0	1
1	0	0	1	1

- ■2.3 图解法(卡诺图)化简逻辑函数
 - > 卡诺图化简的步骤
- 1 画图:按照循环码规律指定卡诺图变量取值;
- 2填数:在函数最小项对应的小方块填"1",其他方块填"0";
- 3合并:合并相邻填"1"的小方块,两个方块合并消去一个变量(一维块);4个方块合并消去两个变量(二维块);
- 4 先大后小:合并过程中先找大圈合并,圈越大消去的变量越多;
- 5不要漏、不冗余:使每一最小项至少被合并包含过一次;每个合并的圈中,至少要有一个"1"没有被圈过,否则这个圈就是多余的。

- ■2.3 图解法(卡诺图)化简逻辑函数
 - ▶例1"与或"式化简:

$$F = ABC + ABC + ABC + ABC$$

化简结果: F = AB + AC

- ■2.3 图解法(卡诺图)化简逻辑函数
 - ▶例2"与或"式化简:

- ■2.3 图解法(卡诺图)化简逻辑函数
 - ▶例2"与或"式化简(续):

- ■2.3 图解法(卡诺图)化简逻辑函数
 - > 规则的深刻理解

- ■2.3 图解法(卡诺图)化简逻辑函数
 - > 卡诺图化简的步骤
- 1 画图:按照循环码规律指定卡诺图变量取值;
- 2填数:在函数最小项对应的小方块填"1",其他方块填"0";
- 3合并:合并相邻填"1"的小方块,两个方块合并消去一个变量(一维块);4个方块合并消去两个变量(二维块);
- 4 先大后小:合并过程中先找大圈合并,圈越大消去的变量越多;
- 5不要漏、不冗余:使每一最小项至少被合并包含过一次;每个合并的圈中,至少要有一个"1"没有被圈过,否则这个圈就是多余的。

= AC + AB + BC = AB + AC

AC

F = AB + AC

卡诺图中根据0化简出的函数是原函数的反函数。

理论依据: F + F = 1

- ■2.3 图解法(卡诺图)化简逻辑函数
 - >5变量函数的卡诺图化简

>5变量函数的卡诺图化简

$$F = B\overline{C} + A\overline{C}D + \overline{C}D\overline{E} + ABE + ABD\overline{E}$$

- > 卡诺图化简法
 - ✓ 优点:直观明了,过程简单,可从图中直接求出最简表达式;
 - ✓ 缺点:函数变量不能太多,一般为4变量及 4变量以下;4变量以上用卡诺图化简比较 困难,容易出错。

- ■2.3 图解法(卡诺图)化简逻辑函数
 - > 特殊形式的逻辑函数化简
 - ✓ 逻辑函数的基本形式: 单输出逻辑函数, F=f(A,B,C···)
 - ✓特殊形式的逻辑函数:
 - 1. 多输出逻辑函数
 - 2. 包含无关项(Don't Care)的逻辑函数

- ■2.3 图解法(卡诺图)化简逻辑函数
 - > 特殊形式的逻辑函数化简
 - ✓ 多输出逻辑函数:同一组输入变量,有两个以上的输出。

$$F_1 = f_1 (A,B,C\cdots)$$

 $F_2 = f_2 (A,B,C\cdots)$

- 夕輸出逻辑函数的化简:化简时,在"与或"表达式中要尽量寻找公共的"或"项,使公共项为多个函数共享,这时从单个输出看可能不是最简,但总体是最简。
- ✓ 多输出逻辑函数的化简 (不作为基本要求)

- ■2.3 图解法(卡诺图)化简逻辑函数
 - > 特殊形式的逻辑函数化简
 - ✓ 包含无关项 (Don't Care) 的逻辑函数:函数F的取值只和一部分最小项有关,另一部分最小项既可以取"0",也可以取"1",这些最小项称"无关项"或"任意项"。
 - ✓ "无关项"的两种情况:
 - 1. 这些输入组合不可能出现。
 - 2. 输入组合虽能出现,但无需关心最小项是"1"还是"0"。

■ 例1:设计一位十进制数的数值范围判断器,当x>=5,F=1;否则,F=0。(ABCD表示一位十进制数,A是低位,D是高位)

A	В	C	D	F
0	0	0	0	0
1	0	0	0	0
0	1	0	0	0
1	1	0	0	0
0	0	1	0	0
1	0	1	0	1
0	1	1	0	1
1	1	1	0	1
0	0	0	1	1
1	0	0	1	1
0	1	0	1	×
1	1	0	1	×
0	0	1	1	×
1	0	1	1	× × ×
0	1	1	1	×
1	1	1	1	×

$$F = AC + BC + D$$

■例2: 化简函数

$$F = \sum m^4(0,1,5,7,8,11,14) + \sum \Phi^4(3,9,12,15)$$

$$F = AB + A\overline{D} + \overline{BC} + BCD$$

■求例2的反函数

$$F = \sum m^{4}(0,1,5,7,8,11,14) + \sum \Phi^{4}(3,9,12,15)$$

$$A\overline{B}D$$

ABC

$$\overline{F} = B\overline{C}D + A\overline{B}D + A\overline{C}D + AB\overline{C}$$

有没有问题?

BCD 冗余!

■求例2的反函数

$$F = \sum_{} m^{4}(0,1,5,7,8,11,14)$$

$$+ \sum_{} \Phi^{4}(3,9,12,15)$$

$$01 \quad 0 \quad 1 \quad 1$$

$$11 \quad \times \quad 0 \quad \times$$

$$ABD \quad 10 \quad 1 \quad \times \quad 1$$

ABC

$$\overline{F} = ABD + ACD + ABC$$

- 2.3 图解法(卡诺图)化简逻辑函数——小结
 - 1) 公式法: 计算复杂,容易出错;难判断最简
 - 2) 图解法: 直观明了,过程简单,易判断最简;变量数≤4
 - 3) 最小项、最大项:性质,对函数的表示
 - 4) 图解法化简逻辑函数的规则
 - 5) 图解法求解反函数
 - 6) 图解法化简包含无关项的逻辑函数
 - 7) 图解法求解包含无关项的反函数

- 2.1 逻辑代数的基本运算与公式
- 2.2 公式法化简逻辑函数
- 2.3 图解法(卡诺图)化简逻辑函数
- 2.4 逻辑函数的表格法化简(Q-M法)

- 2.4 逻辑函数的表格法化简(Q-M法)
 - > 公式法:
 - ✓ 计算复杂,容易出错;
 - ✓ 难判断最简
 - > 图解法:
 - ✓ 直观明了,过程简单;
 - ✓ 易判断最简; 变量数≤4。

- ■多变量函数(变量个数>=5)如何 化简?
- >用新的工具完成: 计算机
- >我们能否从公式法和图解法中得到某些启示呢?

■化简函数

$$F = \sum m^{4}(2,4,6,8,9,10,12,13,15)$$

$$F = \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

$$= \overline{ABC} + \overline{ACD} + \overline{ABCD} + \overline{ABCD}$$

$$= \overline{ABC} + \overline{ACD} + \overline{BD} + \overline{ABCD}$$

$$= \overline{ABC} + \overline{ACD} + (\overline{B} + ABC)D$$

$$= \overline{ABC} + \overline{ACD} + (\overline{B} + AC)D$$

$$= \overline{ABC} + \overline{ACD} + \overline{BD} + \overline{ACD}$$

- ■如何利用计算机进行函数化简?
- >计算机的特点:
 - √适合做重复而又复杂的工作!
- ●能否从公式法有所发现?

$$F = \overline{ABCD} + \overline{ABCD}$$

$$+ \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

●教给计算机学习公式,并识别合并项,很困难!

●化简函数:用卡诺图

$$F = \sum_{} m^{4}(2,4,6,8,9,10,12,13,15) \qquad \overrightarrow{ACD}$$

$$ACD \qquad 00 \qquad 0 \qquad 0 \qquad 1$$

$$01 \qquad 1 \qquad 0 \qquad 0$$

$$BD \qquad 11 \qquad 1 \qquad 1 \qquad 0$$

$$10 \qquad 1 \qquad 1 \qquad 0 \qquad 1$$

$$F = BD + ABC + ACD + ACD$$

■如何利用计算机进行函数化简?

- >观察卡诺图
 - ✓通过两个相邻的"1" 合并减少一个变量。
 - ✓继续合并相邻项可再减少一个变量。
- 》问题: 相邻项通过组合方式 合并, 会产生重复!
- 》解决问题办法:设计一个较好的计算机算法,既可以合并,也

53 可以挑出必要的项。

- ■2.4 逻辑函数的表格法化简(Q-M法)
 - ▶ Q-M法是用分组表格法,基本思想是相邻两个最小项中有一个变量互补,这两相邻与项合成为一新的与项,从而消去一变量。
 - ➤ Q-M(Quine-McCluskey) 法和卡诺图法的化 简思路是一致的。

> 表格法

- ✓ 优点:适合于多变量的函数,化简过程规律性强,适用于 计算机算法实现。
- ✓ 缺点:人工进行表格法化简很繁琐。

- ■2.4 逻辑函数的表格法化简(Q-M法)
 - 一 什么情况下会出现"相邻两个最小项中有一个变量 互补"?从最小项的编号上看有什么规律?
 - > 观察:以4变量卡诺图为例:

✓ m1 同 m0,m3,m5,m9相邻,下标编号:

0001与0000,0011,0101,1001

√m1同m4,m8,m10,m13等不相邻,

下标编号为: 0001与0100,1000,1010,110

В				
DA	00	01	11	10
00 00	m_0	\mathbf{m}_1	m_3	m_2
01	m_4	m_5	m_7	m_6
11	m ₁₂	m_{13}	m ₁₅	m ₁₄
10	m_8	m_9	m ₁₁	m ₁₀

- ■2.4 逻辑函数的表格法化简(Q-M法)
 - >结论:

最小项编号中"1"的个数差=0, 肯定不相邻 最小项编号中"1"的个数差>=2, 肯定不相邻 最小项编号中"1"的个数差=1, 可能相邻!

〉按照最小项mi下标编号中二进制数"1"的个数进行分组比较,可以化简。

- ■2.4 逻辑函数的表格法化简(Q-M法)
 - > 表格法化简按照步骤进行:
 - ✓ (1) 求出函数全部的质蕴涵项,
 - √ (2) 从质蕴涵项中选出必要的质蕴涵项。

蕴涵项:函数"与或"表达式中的每个"与"项称为蕴涵项。

质蕴涵项:不能通过相邻项合并的蕴涵项称 为质蕴涵项。

- ■2.4 逻辑函数的表格法化简(Q-M法)
 - > 举例: 化简函数

 $F = \sum m^4(2,4,6,8,9,10,12,13,15)$

- 第一步:求出函数全部的质蕴涵项
- 1) 先把F中的各m_i,接下标i中 "1"的个数,由少到多,分组 排队列表(见表l)。组号是m_i中i 所包含"1"的个数。

表I

组号	最小项	D	C	В	A
	2	0	0	1	0
1	4	0	1	0	0
	8	1	0	0	0
	6	0	1	1	0
2	9	1	0	0	1
	10	1	0	1	0
	12	1	1	0	0
3	13	1	1	0	1
4	15	1	1	1	1

- ●2.4 逻辑函数的表格法化简(Q-M法)
 - 2) 在表1的相邻组间进行逐项搜索,寻找相邻项,把可以合并的记在表11中,并在表1中相应的最小项旁作记号"√"。表11所列均是变量数为n-1的与项(n是F的变量数),它们同样按与项所含"1"的个数由少到多,分组排列。
 - 3) 重复上述过程,直到不能合并为止。

 $F = \sum m^4(2, 4, 6, 8, 9, 10, 12, 13, 15)$

表I

组号	最小项	D	С	В	A	
	2	0	0	1	0	\bigvee_{i}
1	4	0	1	0	0	M
	8	1	0	0	0	\bigvee_{i}
	6	0	1	1	0	M
2	9	1	0	0	1	\bigvee
	10	1	0	1	0	\bigvee
	12	1	1	0	0	⋈
3	13	1	1	0	1	\bigvee_{i}
4	15	1	1	1	1	\bigvee

表II

组号	m	D	С	В	A
	2,6	0		1	0
	2,10	_	0	1	0
	4,6	0	1	-	0
1	4,12	_	1	0	0
	8,9	1	0	0	
	8,10	1	0		0
	8,12	1		0	0
2	9,13	1	_	0	1
	12,13	1	1	0	_
3	13,15	1	1		1

表II

组号	m	D	С	В	A	
	2,6	0	_	1	0	
	2,10	_	0	1	0	
	4,6	0	1	1	0	
1	4,12	_	1	0	0	
	8,9	1	0	0	_	ŀ
	8,10	1	0	_	0	
	8,12	1	_	0	0	ŀ
2	9,13	1	_	0	1	ŀ
	12,13	1	1	0	_	ŀ
3	13,15	1	1	_	1	

表III

1	组号	m	D	C	В	A
2	1	8,9,12,13	1		0	_

P

 P_4 在表I、II、III中,未打" $\sqrt{}$ " $\sqrt{}$ 的,标以P1~P7,称质蕴涵 P_5 项。全部质蕴涵项,完全覆 $\sqrt{}$ 盖了F的各最小项。

$$\begin{array}{lll}
\mathbf{V} & P_1 = \overline{A}B\overline{D} & P_2 = \overline{A}B\overline{C} & P_3 = \overline{A}C\overline{D} \\
\mathbf{V} & P_4 = \overline{A}BC & P_5 = \overline{A}CD & P_6 = ACD \\
\mathbf{P}_6 & P_7 = \overline{B}D
\end{array}$$

在卡诺图上看全部质蕴涵项

$$F = \sum m^4(2,4,6,8,9,10,12,13,15)$$

$$P_1 = ABD$$
 $P_2 = ABC$ $P_3 = ACD$ $P_4 = ABC$
 $P_5 = ACD$ $P_6 = ACD$ $P_7 = BD$
 0 0 1 1 10 由图可见, $P_1 \sim P_7$ 覆的全部最小项;对每它们是不能再和其它最小项合并了。
 $P_1 = ABD$ 0 0 由图还可见, $P_1 \sim P_7$ 不必要的质蕴涵项: $P_2 = ACD$ $P_3 = ACD$ $P_4 = ABC$

11

$$P_6 = ACD$$
 $P_7 = BD$

由图可见, $P_1 \sim P_7$ 覆盖了F的全部最小项;对每个P项, 它们是不能再和其它P项或 最小项合并了。

由图还可见,P₁~P₇中有 不必要的质蕴涵项:例如, 若P2, P3必须,则P1就不 必要。

■如何挑选必要的质蕴涵项?

从卡诺图上能否有所启发?

先观察P1, P2, P3___

$$P_1 = ABD P_2 = ABC$$

$$P_3 = ACD$$

从卡诺图中可以看出: P2, P3 可能是必要项, P1是冗余项。

原因: P1包含的两个最小项被P2

和P3所包含。

有没有什么启发?

■如何挑选必要的质蕴涵项?

如果一个P项中的最小项被其它P项全包含,则该P项是冗余项。编写算法比较复杂,因为P2,P3是否为冗余项不确定! 反过来看,先挑选必要的P项! 如果只观察P1、P2、P3,由于1010只被P2包含,0100只被P3包含,P2、P3为必需。

■如何挑选必要的质蕴涵项?

继续观察包含全部P项卡诺图 01 11 $P_1 = ABD P_2 = ABC$ () \mathbf{O} \mathbf{O} 00 $P_3 = ACD P_4 = ABC P_5 = ACD$ $P_{6} = ACD P_{7} = BD$ 0 ()发现P6和P7为必须保留的项! 原因是最小项1111只被P6包含, P6 1 11 1001只被P7包含。 既然P6和P7为必须保留的项, 0 保留P6和P7!

由于卡诺图不便用计算机处理,计算机处理表格比较方便,作出P项和最小项的对应表

- ■2.4 逻辑函数的表格法化简(Q-M法)
 - > 第二步:从全部质蕴涵项中选出必要的质蕴涵项。
 - 1) 先作 $P_1 \sim P_7 \sim P_7$

	、 乖	人小项			表	₹IV				
质蕴		大小项 m ₂	$\mathbf{m_4}$	\mathbf{m}_{6}	m_8	m_9	\mathbf{m}_{10}	m ₁₂	m ₁₃	m ₁₅
质蕴涵项	\mathbf{P}_1									
	$\mathbf{P_2}$									
	P_3									
	$\mathbf{P_4}$									
	P_5									
	\mathbf{P}_{6}									
	$\mathbf{P_7}$									

2) 进行"行列消去":检查所有的 m_i 对应的列,若在 m_i 对应列中只有一个 \triangle ,则该 \triangle 所对应的 P_j 项为必要;保留 P_j 并消去 P_j 对应的行。由于 P_j 项为必要, P_j 包含的所有 \triangle 对应的列(最小项m)均可消去。

 $ullet m_9$ 列只有一个 \triangle ,所以 P_7 为必要; P_7 有4个 \triangle ,分别对应 m_8 , m_9 , m_{12} , m_{13} 。 P_7 所蕴涵的 m_8 , m_9 , m_{12} , m_{13} 均可从表中删去。同理, P_6 也为必要, P_6 所蕴涵的 m_{13} , m_{15} 可以从表中删去。

■观察一下剩余P项和卡诺图的关系

- 3)进行"行消去":检查所有的 P_j ,对应的行,若在 P_j 对应的行中只有一个 \triangle , 再检查该 \triangle 所对应的列 m_i , 如果 m_i 还有其它的 \triangle ,则 P_j 项为非必要质蕴涵项F(因为其它的P中已经包含了 P_j , 消去 P_j 对应的行。
 - $ullet P_4$ 行只有一个 \triangle ,该 \triangle 对应的 m_8 列中还有其它的 \triangle (P_3 行); P_4 为非必要,消去 P_4 ,同理消去 P_5 。

4) 重复进行"行列消去"和"行消去", 直到消去全部的质蕴涵项为止。

 P_2, P_3 为必要质蕴涵项,保留并消去 P_2, P_3 和 m_2, m_4, m_6, m_{10} 列。算法结束。

直观来看:因 P_2 , P_3 蕴涵了表VI中所列全部m项 (m_2 , m_4 , m_6 , m_{10}),故 P_1 为非必要质蕴涵项

化简结果为: $F = P_2 + P_3 + P_6 + P_7 = \overline{ABC} + \overline{ACD} + ACD + \overline{BD}$

用卡诺图直观观察:

■为了便于同学们直观理解, 举例化 简如下函数(该函数为最简)

$$F = \sum_{} m^4(2,4,8,15)$$
 $= \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$
用表格法化简过程如何?

В				
DA	00	01	11	10
00 C	0	0	0	1
01	1	0	0	0
11	0	0	1	0
10	1	0	0	0

■第一步:求出函数全部的质蕴涵项

$$F = \sum m^4(2,4,8,15)$$

1) 先把F中的各m_i,接下标i中"1"的个数,由少到多,分组排队列表(见表l)。组号是m_i中i所包含"1"的个数。

表I

组号	最小项	D	C	В	A
	2	0	0	1	0
1	4	0	1	0	0
	8	1	0	0	0
4	15	1	1	1	1

- 2) 在表I的相邻组间进行逐项搜索,寻找相邻项,把可以合并的记在表II中,并在表I中相应的最小项旁作记号"√"。表II所列均是变量数为n-1的与项(n是F的变量数),它们同样按与项所含"1"的个数由少到多,分组排列。
- 3) 重复上述过程,直到不能合并为止。

P2

P3

P4

表I

组号	最小项	D	C	В	A
	2	0	0	1	0
1	4	0	1	0	0
	8	1	0	0	0
4	15	1	1	1	1

表II

组号	m	D C B A
1		

未打" $\sqrt{}$ "的,标以P1~P4

- ■第二步:从全部质蕴涵项中选出必要的质蕴涵项。
- 1) 先作 $P_1 \sim P_4 n m_i$ 对应的表格(表III)

表I							、最小项 表III					
组号	最小项	D	C	В	A		质蕴		m_2	m_4	m ₈	m ₁₅
	2	0	0	1	0	P1	涵项	\mathbf{P}_{1}				
1	4	0	1	0	0	P2		$\mathbf{P_2}$				
	8	1	0	0	0	P3		$\mathbf{P_3}$				
4	15	1	1	1	1	P4		$\mathbf{P_4}$				

2) 进行"行列消去":检查所有的m;对应的列,若在m;对应列中只 有一个 \triangle ,则该 \triangle 所对应的 P_j 项为必要;保留 P_j 并消去 P_j 对应的 行 o 由于 P_j 项为必要, P_j 包含的所有 \triangle 对应的列(最小项m)均 可消去。

质蕴

保留P1, P2, P3, P4

3) 进行"行消去"

4) 重复进行"行列消去"和"行 消去",直到消去全部的质蕴 涵项为止。

$$F = \sum_{m} m^{4}(2,4,8,15) = P1 + P2 + P3 + P4$$
$$= ABCD + ABCD + ABCD$$

■2.4 逻辑函数的表格法化简(Q-M法)

总结:表格法化简步骤:

- (1) 求出函数全部的质蕴涵项,
 - 1) 把F中的各mi,按下标i中"1"的个数,分组排队列表。
 - 2) 在列表逐项寻找相邻项并合并,并重新分组排列表。
 - 3) 重复上述过程,直到不能合并为止。
- (2) 从质蕴涵项中选出必要的质蕴涵项。
 - 1) 先作P和m对应的表格
 - 2) 进行"行列消去"
 - 3) 进行"行消去"
 - 4) 重复2) 和3), 直到消去全部的质蕴涵项为止。

第二章逻辑代数 (83)

- 2.4 逻辑函数的表格法化简(Q-M法)
- 表格法很繁琐,适合于编制计算机程序, 如果人工使用表格法,容易出错。
- 计算机辅助逻辑化简的其他方法,在高年级选修课程和研究生课程中还会学到。

第二章逻辑代数——小结

- 2.1 逻辑代数的基本运算与公式
- 2.2 公式法化简逻辑函数
- 2.3 图解法(卡诺图)化简逻辑函数
- 2.4 逻辑函数的表格法化简(Q-M法)

作业

■ 作业:

 $2.7 (1) \sim (3)$ $2.11 (1) \sim (3)$ $2.12 (1) \sim (3)$ $2.13 (1) \sim (3)$

作业

$2.7(1) \sim (3)$

- 2.7 将下列函数展开为最小项之和。
 - (1) $F = ABC + \overline{A} + \overline{B} + \overline{C}$
 - (2) $F = AB + A\overline{B} + \overline{A}B + \overline{C}\overline{D}$
 - (3) $F = \overline{A}(B + \overline{C})$
 - (4) $F = A(\overline{B} + C\overline{D}) + \overline{A}BCD$
 - (5) $F = A(B + CD) + A \overline{B}CD$

$2.11(1) \sim (3)$

- 2.11 用卡诺图将下列函数化为最简"与或"式。
 - (1) $F = \sum m^3(0,1,2,4,5,7);$
 - (2) $F = \sum m^4(0,1,2,3,4,6,7,8,9,11,15);$
 - (3) $F = \sum m^4(3,4,5,7,9,13,14,15);$
 - (4) $F = \sum m^4(2,3,6,7,8,10,12,14);$
 - (5) $F = \sum m^5(4,6,12,14,20,22,28,30);$
 - (6) $F = \prod M^{4}(3,4,6,7,11,13,15);$

$2.12(1) \sim (3)$

- 2.12 将下列具有无关最小项的函数化为最简"与或"式。
 - (1) $F = \sum m^4(0,2,7,13,15)$

无关最小项为 $\sum d(1,3,4,5,6,8,10)$;

(2) $F = \sum m^4(0,3,5,6,8,13)$

无关最小项为 $\sum d(1,4,10)$;

(3) $F = \sum m^4(0,2,3,5,7,8,10,11);$

无关最小项为 $\sum d(14,15)$;

(4) $F = \sum m^4(2,3,4,5,6,7,11,14)$

无关最小项为 $\sum d(9,10,13,15)$;

(5) $F = \prod M^4(1,4,6,9,12,13) + \prod D(0,5,10,15)$;

$2.13(1) \sim (3)$

- 2.13 用卡诺图将下列函数化为最简"与或"式;
 - (1) $F = ABC + \overline{A} \overline{B}C + \overline{A} \overline{B} \overline{C} + A \overline{B} \overline{C} + \overline{A} \overline{B} \overline{C};$
 - (2) $F = AC + ABC + A\overline{C} + \overline{A}\overline{B}\overline{C} + BC$;
 - (3) $F = \overline{B} \, \overline{D} + ABCD + \overline{A} \, \overline{B} \, \overline{C}$;
 - (4) $F = \overline{A}BCD + ABC + DC + D\overline{C}B + \overline{A}BC$;
 - (5) $F = A \overline{B} + \overline{A}C + B \overline{C} \overline{D} + BCE + B \overline{D}E$;