

(51) Internationale Patentklassifikation ⁶ : C12Q 1/68		A2	(11) Internationale Veröffentlichungsnummer: WO 99/45142 (43) Internationales Veröffentlichungsdatum: 10. September 1999 (10.09.99)
<p>(21) Internationales Aktenzeichen: PCT/DE99/00558</p> <p>(22) Internationales Anmeldedatum: 2. März 1999 (02.03.99)</p> <p>(30) Prioritätsdaten: 198 08 884.1 3. März 1998 (03.03.98) DE</p> <p>(71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): NOVEMBER AG NOVUS MEDICATUS BERTLING GESELLSCHAFT FÜR MOLEKULARE MEDIZIN [DE/DE]; Ulrich-Schalk-Strasse 3 a, D-91056 Erlangen (DE).</p> <p>(72) Erfinder; und (75) Erfinder/Anmelder (<i>nur für US</i>): BERTLING, Wolf [DE/DE]; Meisenweg 22, D-91056 Erlangen (DE).</p> <p>(74) Anwalt: GASSNER, Wolfgang; Nägelsbachstrasse 49a, D-91052 Erlangen (DE).</p>		<p>(81) Bestimmungsstaaten: CA, JP, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).</p> <p>Veröffentlicht <i>Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.</i></p>	
<p>(54) Title: AGENT AND METHOD FOR DETECTING CHEMICAL SUBSTANCES</p> <p>(54) Bezeichnung: MITTEL UND VERFAHREN ZUM NACHWEIS CHEMISCHER SUBSTANZEN</p> <p>(57) Abstract</p> <p>The invention relates to an agent for detecting chemical substances or physical properties, comprising: a first polynucleotide (1) or peptide sequence having a first (3) fluorophore group, the first end (E1) of said sequence being bonded on a solid phase (5) and a second polynucleotide (1a) or peptide sequence having a second (4) fluorophore group, the second end (E2) of said sequence having a group (6) that can be bonded or attached to the chemical substance (7) to be detected or that is sensitive to the physical property to be detected. The first polynucleotide (1) or peptide sequence can be attached to the second polynucleotide (1a) or peptide sequence in such a way that a spatial relationship enabling an interaction between the first (3) and the second fluorophore group (4) is produced. When the chemical substance (7) is attached to the group (6) and/or the influence of an external force is exerted on the group (6, 12), the spatial relation can be eliminated thereby generating a fluorescent reaction.</p> <p>(57) Zusammenfassung</p> <p>Die Erfindung betrifft ein Mittel zum Nachweis chemischer Substanzen oder physikalischer Eigenschaften, mit einer eine erste (3) fluorophore Gruppe aufweisenden ersten Polynukleotid- (1) oder Peptidsequenz, deren erstes Ende (E1) an eine feste Phase (5) gebunden ist und einer eine zweite (4) fluorophore Gruppe aufweisenden zweiten Polynukleotid- (1a) oder Peptidsequenz, deren zweites Ende (E2) an die nachzuweisende chemische Substanz (7) bind- bzw. anlagerbare oder eine für die nachzuweisende physikalische Eigenschaft empfindliche Gruppe (6) aufweist, wobei die erste Polynukleotid- (1) oder Peptidsequenz an die zweite Polynukleotid- (1a) oder Peptidsequenz so anlagerbar ist, dass eine Wechselwirkung zwischen der ersten (3) und der zweiten fluorophoren Gruppe (4) ermöglichte räumliche Beziehung herstellbar ist, und wobei bei Anlagerung der chemischen Substanz (7) an die Gruppe (6) und/oder Einwirkung einer äußeren Kraft auf die Gruppe (6, 12) die räumliche Beziehung aufhebt- und damit eine Fluoreszenzreaktion erzeugbar ist.</p>			

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische Republik Mazedonien	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland	ML	Mali	TR	Türkei
BG	Bulgarien	HU	Ungarn	MN	Mongolei	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MR	Mauretanien	UA	Ukraine
BR	Brasilien	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Island	MX	Mexiko	US	Vereinigte Staaten von Amerika
CA	Kanada	IT	Italien	NE	Niger	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NL	Niederlande	VN	Vietnam
CG	Kongo	KE	Kenia	NO	Norwegen	YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NZ	Neuseeland	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik Korea	PL	Polen		
CM	Kamerun			PT	Portugal		
CN	China	KR	Republik Korea	RO	Rumänien		
CU	Kuba	KZ	Kasachstan	RU	Russische Föderation		
CZ	Tschechische Republik	LC	St. Lucia	SD	Sudan		
DE	Deutschland	LI	Liechtenstein	SE	Schweden		
DK	Dänemark	LK	Sri Lanka	SG	Singapur		
EE	Estland	LR	Liberia				

Mittel und Verfahren zum Nachweis chemischer Substanzen

Die Erfindung betrifft ein Mittel und ein Verfahren zum Nachweis 5 chemischer Substanzen und physikalischer Eigenschaften.

Aus der US 5,607,834 ist es bekannt, zum Nachweis einer Nukleotidsequenz einen Primer mit einer Haarnadelschleife zu verwenden. Dabei sind an den gegenüberliegenden Schleifenabschnitten der Haarnadelschleife ein erstes und ein zweites 10 fluorophores Molekül vorgesehen. Die fluorophoren Moleküle sind hier so ausgebildet, daß durch den strahlungslosen Energieübergang die Fluoreszenz gelöscht wird. Wenn der Primer allerdings mit einem komplementären Gegenstrang hybridisiert, 15 wird die Haarnadelschleife geöffnet. Die eine Fluoreszenz lösche räumliche Beziehung zwischen dem ersten und dem zweiten fluorophoren Molekül wird geändert. Damit ist eine Fluoreszenz beobachtbar. - Dieses Verfahren eignet sich nur zum Nachweis von Nukleotidsequenzen.

20

Aus David J. Holme und Hazel Peck: Analytical biochemistry, Longnamm, London und New York, 1983, Seiten 243-244 ist es allgemein bekannt, zum Nachweis von Antigenen Fluro-Immonoassays zu verwenden.

25

Aufgabe der vorliegenden Erfindung ist es, ein Mittel und ein Verfahren anzugeben, die sich universell zum Nachweis chemischer Substanzen und physikalischen Eigenschaften eignen.

30 Diese Aufgabe wird durch die Merkmale der Ansprüche 1 und 13 gelöst. Zweckmäßige Ausgestaltungen ergeben sich aus den Merkmalen der Ansprüche 2 bis 12 und 14 bis 32.

Nach Maßgabe der Erfindung ist ein Mittel zum Nachweis chemischer Substanzen oder physikalischer Eigenschaften vorgesehen, mit

5

einer eine erste fluorophore Gruppe aufweisenden ersten Polynukleotid- oder Peptidsequenz, deren erstes Ende an eine feste Phase gebunden ist und

10 einer eine zweite fluorophore Gruppe aufweisenden zweiten Polynukleotid- oder Peptidsequenz, deren zweites Ende eine an die nachzuweisende chemische Substanz bind- bzw. anlagerbare oder eine für die nachzuweisende physikalische Substanz empfindliche Gruppe aufweist,

15

wobei die erste Polynukleotid- oder Peptidsequenz an die zweite Polynukleotid- oder Peptidsequenz so anlagerbar ist, dass eine eine Wechselwirkung zwischen dem ersten und dem zweiten fluorophoren Molekül ermöglichte räumliche Beziehung herstellbar ist,

25 und wobei bei Anlagerung der chemischen Substanz an die Gruppe und/oder Einwirkung einer äußeren Kraft auf die Gruppe die räumliche Beziehung aufhebt und damit eine Fluoreszenzreaktion erzeugbar ist.

Das Mittel ist universell zum Nachweis chemischer Substanzen und physikalischer Eigenschaften geeignet. Zur Prüfung der Frage, ob eine bestimmte chemische Substanz in einer Lösung 30 enthalten ist, wird das Mittel mit der Lösung in Kontakt gebracht. Wenn die chemische Substanz in der Lösung enthalten ist, lagert sie sich an die Gruppe an. Durch Einwirkung einer

von der festen Phase weg gerichteten äußern Kraft, z.B. einer Zentrifugalkraft, wird die räumliche Beziehung zwischen der ersten und der zweiten fluorophoren Gruppe geändert. Es ist eine Fluoreszenzreaktion beobachtbar. Dabei kann es sich um
5 die Lösung einer bei Vorliegen der räumlichen Beziehung gebildeten Fluoreszenz handeln. Die Fluoreszenzreaktionen beruhen hier im wesentlichen auf dem sogenannten Förster-Effekt.

Zur Lösung der Aufgabe ist des weiteren ein Verfahren zum
10 Nachweis chemischer Substanzen oder physikalischer Eigenschaften vorgesehen, mit

15 einer eine erste fluorophore Gruppe aufweisenden ersten Polynukleotid- oder Peptidsequenz, deren erstes Ende an eine feste Phase gebunden ist und

20 einer eine zweite fluorophore Gruppe aufweisenden zweiten Polynukleotid- oder Peptidsequenz, deren zweites Ende eine an die nachzuweisende chemische Substanz bind- bzw. anlagerbare oder eine für die nachzuweisende physikalische Eigen-
schaft empfindliche Gruppe aufweist,

25 wobei die erste Polynukleotid- oder Peptidsequenz an die zweite Polynukleotid- oder Peptidsequenz so angelagert wird, dass eine eine Wechselwirkung zwischen dem ersten und dem zweiten fluorophoren Molekül ermöglichte räumliche Beziehung gebildet wird,

30 und wobei bei Anlagerung der chemischen Substanz an die Gruppe und/oder Einwirkung einer äußeren Kraft auf die Gruppe die räumliche Beziehung aufgehoben und damit eine Fluoreszenzreaktion erzeugt wird.

Das Verfahren eignet sich universell zum Nachweis chemischer Substanzen und physikalischer Eigenschaften, wie z.B. das Vorhandensein eines Magnetfelds. Dazu kann z.B. eine magnetische chemische Substanz an die Gruppe gekoppelt werden oder eine magnetische Gruppe vorgesehen sein. Bei Anlegen eines Magnetfelds, welches die chemische Substanz bzw. Gruppe weg von der festen Phase zieht, wird die räumliche Beziehung zwischen dem ersten und dem zweiten fluorophoren Molekül aufgehoben. Es ist eine Fluoreszenzreaktion beobachtbar, welche das Vorhandensein eines Magentfelds anzeigt. Das erfindungsgemäße Verfahren ist außerdem schneller als herkömmliche Verfahren zum Nachweis chemischer Substanzen, wie das ELISA-Verfahren, weil zum Nachweis ein zeitaufwendiger Umsatz eines farbgebenden Substrats nicht erforderlich ist und weil die Waschschrifte zur Entfernung ungebundener Antikörper entfallen.

Nach einer Ausgestaltung sind die erste und die zweite Polynukleotid- oder Peptidsequenz zu einem Molekül verbunden. In diesem Fall kann die räumliche Beziehung in Form einer Sekundärstruktur, insbesondere als Haarnadelschleife, Helix oder Faltblattstruktur, ausgebildet sein. Vorteilhafterweise sind das erste fluorophore Molekül an einem ersten Schleifenabschnitt und das zweite fluorophore Molekül gegenüberliegend an einem zweiten Schleifenabschnitt der Haarnadelschleife in einem eine Wechselwirkung ermöglichen Abstand gebunden.

Bei der festen Phase kann es sich um einen, vorzugsweise elektrisch leitfähigen, Kunststoff handeln. Dieser enthält zweckmäßigerweise ein Polycarbonat, Trimethylthiophen, Thiophen, Triaminobenzol und/oder ein Polycarben.

Die Polynukleotidsequenz kann eine Desoxyribinukleinsäure (DNA), eine Phosphothionatnukleinsäure (PTO) oder eine Peptid-Nukleinsäure (PNA) sein. Statt dessen können aber auch ein 5 Peptid oder ein Protein verwendet werden. Bei der Fluoreszenzreaktion kann es sich um die Erzeugung oder das Löschen von Fluoreszenz handeln.

Nachfolgend werden Ausführungsbeispiele des Mittels und Verfahrens anhand der Zeichnung näher erläutert. Hierin zeigen 10

Fig. 1 eine schematische Darstellung des Mittels,

15 Fig. 2 eine schematische Ansicht nach Fig. 1, mit einem daran gebundenen Antigen und

Fig. 3 eine schematische Ansicht nach Fig. 2, wobei die Sekundärstruktur aufgehoben ist,

20 Fig. 4 eine schematische Darstellung eines zweiten Mittels im ersten Zustand,

25 Fig. 5 eine schematische Darstellung nach Fig. 4, wobei das zweite Mittel im zweiten Zustand ist,

Fig. 6 eine schematische Darstellung eines dritten Mittels im ersten Zustand und

30 Fig. 7 eine schematische Darstellung nach Fig. 6, wobei das dritte Mittel im zweiten Zustand ist.

In Fig. 1 ist das Mittel schematisch dargestellt. Eine DNA 1 weist eine Haarnadelschleife 2 mit einem ersten 2a und einem korrespondierenden zweiten gegenüberliegenden Schleifenabschnitt 2b auf. Am ersten Schleifenabschnitt 2a ist eine erste fluorophore Gruppe 3 und am zweiten Schleifenabschnitt 2b ein Quencher 4 gebunden. Zwischen der ersten fluorophoren Gruppe 3 und dem Quencher 4 besteht eine Wechselwirkung, welche Fluoreszenz löscht oder die Wellenlänge des emittierten Lichts spezifisch verändert. Statt des Quenchers 4 kann auch 10 eine zweite fluorophore Gruppe vorgesehen sein. Dabei kann es sich um eine Donorgruppe handeln. In diesem Fall besteht die erste fluorophore Gruppe aus einer Akzeptorgruppe. In der nachfolgenden Tabelle sind geeignete Donor-/Akzeptorverbindungen wiedergegeben:

15

Donor	Akzeptor
Fluorescein	Fluorescein
6-Carboxy-Fluorescein	6-Carboxymethyl-Rhodamin
Fluorescein	Tetramethylrhodamin
IAEDANS (= 5-(((2-iodoacyl)amino)ethyl)amino)naphthalene-1-sulonsäure)	Fluorescein
EDANS (= 5-((2-aminomethyl)amino)naphthalen-1-sulfonsäure	DABCYL (4-dimethylaminoazobenzen-4'-sulfoylchlorid)
BODIPY FL	BODIPY FL

Ein erstes Ende E1 der DNA 1 ist an eine feste Phase 5, z.B. ein Polycarbonat, gebunden. An einem zweiten Ende E2 der DNA 1 ist ein Antikörper 6, z.B. ein CD4-Antikörper, gebunden.

20

Fig. 2 zeigt das in Fig. 1 dargestellte Mittel, wobei an den Antikörper 6 ein nachzuweisendes Antigen 7, z.B. ein CD4-

Antigen, gebunden ist. Ein Stoff 8 ist aus einer weiteren an das Antigen 7 anlager- bzw. bindbaren Gruppe 9, z.B. ein CD4-Antikörper, und einem superparamagnetischen Partikel 10 gebildet. Als superparamagnetische Partikel können magnetische beads verwendet werden, wie sie von den Firmen MILTENY oder DYNATECH angeboten werden. Solche magnetischen beads können mittels Biotin an einen CD4-Antikörper zur Bildung des Stoffs 8 gekoppelt werden. Statt des superparamagnetischen Partikels 10 kann auch eine superparamagnetische Gruppe Verwendung finden. Die weitere Gruppe 9 ist ebenfalls an das nachzuweisende Antigen 7 gebunden.

Fig. 3 zeigt das in Fig. 2 gezeigte Mittel mit angelagertem Antigen 7 und einen daran gekoppelten Stoff 8. Die Haarnadelschleife 2 ist hier aufgehoben. Die Akzeptorgruppe 3 und der Quencher 4 sind soweit voneinander entfernt, daß keine Wechselwirkung zwischen ihnen mehr besteht. Mit dem Bezugszeichen 11 ist ein Magnet bezeichnet.

Die Funktion des Mittels ist folgende:

Einer das nachzuweisende Antigen 7 enthaltenden Probe wird der Stoff 8 zugesetzt. Die weitere Gruppe 9 des Stoffs 8 bindet an das Antigen 7. Dann wird das Mittel gemäß Fig. 1 mit der Probe in Kontakt gebracht. Das Antigen 7 bindet nun (mit daran gekoppeltem Stoff 8) an die Gruppe 6. Nachfolgend wird der Magnet 11 in die Nähe der Probe gebracht. Das Magnetfeld ist so ausgebildet, daß die superparamagnetischen Partikel 10 von der festen Phase 1 wegbewegt werden. Durch die dadurch auf die DNA 1 wirkende Kraft wird die Haarnadelschleife 2 aufgehoben. Die DNA 1 bildet ein langgestrecktes Molekül. Die Wechselwirkung zwischen der vormals gegenüberliegenden ersten

fluorophoren Gruppe 3 und dem Quencher 4 fällt weg. Bei Anregung der ersten fluorophoren Gruppe 3 ist nun eine Fluoreszenz beobachtbar. Die Fluoreszenzreaktion dient zum Nachweis des Antigens 7. - Es kann zum Nachweis auch ein Donor-/ Akzeptorpaar verwendet werden, bei dem bei Bestehen der Wechselwirkung eine verstärkte und bei Aufhebung der Wechselwirkung eine abgeschwächte Fluoreszenz bewirkt wird.

Das Mittel kann nun aus der Probe entfernt werden. Gleichzeitig wird damit das nachgewiesene Antigen 7 der Probe entzogen.

Das Mittel kann infolge des bei Vorliegen des nachzuweisenden Antigens 7 bewirkten Fluoreszenzsignals automatisch durch einen Roboter der Probe entfernt und zur Durchführung weiterer Verfahrensschritte an eine dazu vorgesehene Einrichtung übergeben werden.

In Fig. 4 weist eine DNA oder PNA 1 eine Haarnadelschleife 2 mit einem ersten Schleifenabschnitt 2a und einem dazu komplementären zweiten Schleifenabschnitt 2b auf. Am ersten Schleifenabschnitt 2a ist eine erste fluorophore Gruppe 3 und am zweiten Schleifenabschnitt 2b eine zweite fluorophore Gruppe 4 gebunden. Die fluorophoren Gruppen 3, 4 weisen einen räumlichen Abstand auf, der bei entsprechender Anregung einen Fluoreszenz-Energie-Transfer erlaubt. Bei den fluorophoren Gruppen 3, 4, kann es sich um ein Donor/Akzeptor-Paar oder ein Donor/Quencher-Paar handeln. Dabei kann sowohl der ersten fluorophoren Gruppe 3 als auch der zweiten fluorophoren Gruppe 4 die Donor- oder Akzeptorfunktion zukommen.

Die Haarnadelschleife 2 wird mit einer ersten Kraft F1 zusammengehalten. Die DNA 1 ist mit einem Ende E1 an die feste Phase 5 gebunden. Dabei kann es sich um Polysterol oder Polycarbonat handeln. Es kann am einen Ende der DNA 1 Biotin vor-
5 gesehen sein, welches zur Bindung an die feste Phase mit einer dort vorgesehenen Streptavidinbeschichtung reagiert.

Am zweiten Ende E2 der DNA 1 ist eine Gruppe 12 gebunden. Dabei kann es sich um einen Antikörper, ein Antigen, einen Rezeptor oder einen Liganden handeln. Sofern der Nachweis physikalischer Eigenschaften geführt werden soll, kann es sich bei der Gruppe auch um eine magnetische 12 oder eine elektrisch geladene Gruppe handeln.
10

15 In Fig. 5 ist das Mittel gemäß Fig. 4 im zweiten Zustand gezeigt. Auf die magnetische Gruppe 12 wirkt eine zweite Kraft F2. Dabei handelt es sich um eine Magnetkraft. Die zweite Kraft F2 ist größer als die erste Kraft F1.

20 Bei Anlegen der zweiten Kraft F2 wird die DNA 1 gestreckt. Die Haarnadelschleife 2 wird zerstört. Die räumliche Beziehung zwischen der ersten 3 und der zweiten fluorophoren Gruppe 4 wird aufgehoben. Es ist kein Fluoreszenz-Energie-Transfer mehr möglich. Die fluorophoren Eigenschaften der ersten 3 und der zweiten fluorophoren Gruppe 4 ändern sich. Auf
25 der Grund der Änderung der fluorophoren Eigenschaften ist ein Nachweis eines Vorliegens eines Magnetfelds möglich.

In den Fig. 6 und 7 ist ein drittes Mittel zum Nachweis chemischer Substanzen oder physikalischer Eigenschaften gezeigt.
30 Dabei ist an die feste Phase 5 eine erste DNA 1a gebunden, welche die erste fluorophore Gruppe 3 trägt. Die erste DNA 1a

ist abschnittsweise komplementär zu einer zweiten DNA 1b, an deren zweites Ende die magnetische Gruppe 12 gebunden ist. Die zweite DNA 1b trägt einen Quencher 4.

5 Die erste DNA 1a und die zweite DNA 1b sind so ausgebildet, dass bei Aneinanderlagerung ihrer komplementären Sequenzabschnitte die erste fluorophore Gruppe 3 und der Quencher 4 eine räumliche Beziehung eingehen können, welche einen Fluoreszenz-Energie-Transfer ermöglicht.

10 Bei Anlegen eines Magnetfelds wird auf die magnetische Gruppe 12 eine von der festen Phase 5 weggerichtete Kraft F2 ausgeübt. Die zweite Kraft F2 ist größer als die erste Kraft F1, mit welcher die erste DNA 1a und die zweite DNA 2a im in Fig. 15 6 gezeigten ersten Zustand zusammengehalten werden. Unter Einwirkung der zweiten Kraft F2 löst sich die zweite DNA 1b von der ersten DNA 1a ab. Die räumliche Beziehung zwischen der ersten fluorophoren Gruppe 3 und dem Quencher 4 wird aufgehoben. Es ist kein Fluoreszenz-Energie-Transfer mehr möglich. Dadurch wird eine Fluoreszenzreaktion bedingt, die das 20 Vorhandensein eines Magnetfelds anzeigt.

'Beispiel: Herstellung eines Magnetfeldsensors

25 1. Synthese eines DNA-Hybrids einer mit fluoreszenzaktiven Gruppe.

Zwei Oligonukleotide einer Länge von 40 Basen werden synthetisiert. Die Sequenzen der Oligonukleotide sind zueinander 30 komplementär. Der Schmelzpunkt der Oligonukleotide liegt bei ca. 70°C. Ein erstes Oligonukleotid trägt am 3'Ende einen Aminolinker und am 5'Ende eine Fluoreszein-Gruppe. Ein zwei-

tes Oligonukleotid trägt am 3' Ende eine Dabcyl-Gruppe und am 5' Ende ein Biotin-Molekül. Die vom Hersteller (TibMol Biol, Berlin) im gefriergetrockneten Zustand gelieferten Oligonukleotide werden in einer Konzentration von 100 mM in sterilen Wasser gelöst. Je 100 µl der Lösungen werden in einem 500 µl Reaktionsgefäß zusammengeführt und 5 Min. auf 95°C erhitzt. Danach wird die Probe 15 Min. auf 68°C (2 Min. unterhalb des Schmelzpunktes der Oligonukleotide) abgekühlt und dann bei 4°C gelagert.

10

2. Kopplung des DNA-Hybrids an eine Maleinsäureanhydrid-aktivierte Kunststoffoberfläche

In jeder Kavität einer Maleinsäureanhydrid-aktivierten Mikrotiterplatte (Pierce, KMF, Berg.-Gladbach) wird 100 µl der synthetisierten DNA-Hybrids gegeben. Die DNA wird über Nacht unter Schütteln bei 4°C mit der Oberfläche inkubiert. Anschließend wird die Lösung von der Oberfläche abgezogen und 3 mal mit je 150 µl sterilen Wasser gewaschen. Zur Absättigung von vorhandenen aktivierten Bindungsstellen wird die Oberfläche 3 mal mit 150 µl sterilen 10 mM TrisCl, 1mM EDTA 5 Min. bei Raumtemperatur inkubiert. Die Oberfläche wird in sterilen 100 µl mM TrisCl, 1 mM EDTA ph 8 bei 4°C gelagert.

25 3. Bindung an superparamagnetische Partikel

Streptavidin-beschichtete superparamagnetische Partikel der (Dynal, Hamburg) werden 1:1 (v/v) in 10 mM TrisCl, 1 mM EDTA ph 8 suspendiert. Ca. 5 µl Partikel-Suspension werden jeweils 30 in ein beschichtetes Well der Mikrotiterplatte gegeben. Die Partikel werden durch leichtes Nachstoßen der Mikrotiterplat-

te auf der Oberfläche verteilt. Die Suspension wird 15 Min. bei Raumtemperatur inkubiert.

4. Nachweis eines Magnetfelds mittels eines FET-basisierten
5 Sensors

Die Fluoreszenz der Mikrotiterplatte wird im Mikrotiterplat-
tenreader und im Fluoreszenzmikroskop beobachtet. Dabei wird
als Anregungsenergie die Wellenlänge zur Anregung des Fluo-
reszein bei 491 nm und die Emission bei 515 nm gemessen. In
die Lösung wird in definierten Abständen vom Boden der Mikro-
titerplatte ein Permanentmagnet eingeführt und nach 20 Sek.
wieder entfernt. Die Erhöhung der Fluoreszenz zeigt das Vor-
handensein eines magnetischen Felds an. Als Kontrolle dient
15 eine Mikrotiterplatte, die ein fixiertes DNA-Hybrid, das
identisch behandelt wurde aber kein Biotin trägt.

Bezugszeichenliste

- 1 DNA
- 1a erste DNA
- 5 1b zweite DNA
- 2 Haarnadelschleife
- 2a erster Schleifenabschnitt
- 2b zweiter Schleifenabschnitt
- 3 erste fluorophore Gruppe
- 10 4 Quencher
- 5 feste Phase
- 6 erster Antikörper
- 7 Antigen
- 8 Stoff
- 15 9 zweiter Antikörper
- 10 superparamagnetisches Partikel
- 11 Permanentmagnet
- 12 magnetische Gruppe

- 20 E1 erstes Ende
- E2 zweites Ende
- F1 erste Kraft
- F2 zweite Kraft

Patentansprüche

1. Mittel zum Nachweis chemischer Substanzen oder physikalischer Eigenschaften, mit

5

einer einer ersten (3) fluorophore Gruppe aufweisenden ersten Polynukleotid- (1a) oder Peptidsequenz, deren erstes Ende (E1) an eine feste Phase (5) gebunden ist und

10

einer einer zweiten (4) fluorophore Gruppe aufweisenden zweiten Polynukleotid- (1b) oder Peptidsequenz, deren zweites Ende (E2) eine an die nachzuweisende chemische Substanz (7) bind- bzw. anlagerbare oder eine für die nachzuweisende physikalische Eigenschaft empfindliche Gruppe (6, 12) aufweist,

15

wobei die erste Polynukleotid- (1a) oder Peptidsequenz an die zweite Polynukleotid- (1b) oder Peptidsequenz so anlagerbar ist, dass eine eine Wechselwirkung zwischen dem ersten (3) und dem zweiten fluorophoren Molekül (4) ermöglichte räumliche Beziehung herstellbar ist,

20

und wobei bei Anlagerung der chemischen Substanz (7) an das zweite Ende (E2) und/oder Einwirkung einer äußeren Kraft (F2) auf die Gruppe (6, 12) die räumliche Beziehung aufhebt und damit eine Fluoreszenzreaktion erzeugbar ist.

25

2. Mittel nach Anspruch 1, wobei die erste (1a) und die zweite Polynukleotid- oder Peptidsequenz (1b) zu einem Molekül (1) verbunden sind.

3. Mittel nach Anspruch 1 oder 2, wobei die räumliche Beziehung in Form einer Sekundärstruktur (2), insbesondere als Haarnadelschleife, Helix oder Faltblattstruktur, ausgebildet ist.
5
4. Mittel nach einem der Ansprüche 1 bis 3, wobei die erste fluorophore Gruppe (3) an einem ersten Schleifenabschnitt (2a) und die zweite fluorophore Gruppe (4) gegenüberliegend an einem zweiten Schleifenabschnitt (2b) der Haarnadelschleife (2) in einem eine Wechselwirkung ermöglichen-
10 den Abstand gebunden sind.
5. Mittel nach einem der vorhergehenden Ansprüche, wobei die feste Phase (5) ein, vorzugsweise elektrisch leitfähiger,
15 Kunststoff ist.
6. Mittel nach einem der vorhergehenden Ansprüche, wobei der Kunststoff ein Polycarbonat, Trimethylthiophen, Thiophen, Triaminobenzol und/oder ein Polycarben enthält.
20
7. Mittel nach einem der vorhergehenden Ansprüche, wobei die erste fluorophore Gruppe (3) eine Akzeptorgruppe und die zweite fluorophore Gruppe (4) eine Donorgruppe ist.
25
8. Mittel nach einem der vorhergehenden Ansprüche, wobei die erste fluorophore Gruppe (3) durch einen Quencher ersetzt ist.
30
9. Mittel nach Anspruch 7 oder 8, wobei die Akzeptorgruppe (3) 6-Carboxy-Tetramethyl-Rhodamin, Tetramethylrhodamin, Fluoreszein, DABCYL oder Bodipy Fl ist.

10. Mittel nach Anspruch 7 oder 9, wobei die Donorgruppe 6-Carboxy-Fluorescein, Fluorescein, IADEANS, EDANS oder Bodipy F1 ist.
- 5 11. Mittel nach einem der vorhergehenden Ansprüche, wobei die Nukleotidsequenz (1, 1a, 1b) DNA, PTO oder PNA ist.
- 10 12. Mittel nach einem der vorhergehenden Ansprüche, wobei die Gruppe (6) ein Antikörper, ein Rezeptor, eine DNA-, PTO-, Peptid- oder PNA-Sequenz ist.
13. Verfahren zum Nachweis chemischer Substanzen oder physikalischer Eigenschaften, mit
- 15 einer eine erste fluorophore Gruppe (3) aufweisenden ersten Polynukleotid- (1a) oder Peptidsequenz, deren erstes Ende (E1) an eine feste Phase (5) gebunden ist und einer eine zweite fluorophore Gruppe (4) aufweisenden zweiten Polynukleotid- (1b) oder Peptidsequenz, deren zweites Ende (E2) eine an die nachzuweisende chemische Substanz (7) bind- bzw. anlagerbare oder eine für die nachzuweisende physikalische Eigenschaft empfindliche Gruppe (6) aufweist,
- 20 25 wobei die ersten Polynukleotid- (1a) oder Peptidsequenz an die zweite Polynukleotid- (1b) oder Peptidsequenz so angelagert wird, dass eine eine Wechselwirkung zwischen dem ersten (3) und dem zweiten fluorophoren Molekül (4) ermöglichte räumliche Beziehung gebildet wird,
- 30

und wobei bei Anlagerung der chemischen Substanz (7) an die Gruppe (6) und/oder Einwirkung einer äußeren Kraft auf die Gruppe (6) die räumliche Beziehung aufgehoben und damit eine Fluoreszenzreaktion erzeugt wird.

5

14. Verfahren nach Anspruch 13, wobei die erste (1a) und die zweite Polynukleotid- oder Peptidsequenz (1b) zu einem Molekül (1) verbunden sind.

10 15. Verfahren nach Anspruch 13 oder 14, wobei die räumliche Beziehung in Form einer Sekundärstruktur (2), insbesondere als Haarnadelschleife, Helix oder Faltblattstruktur, ausgebildet ist.

15 16. Verfahren nach einem der Ansprüche 13 bis 15, wobei die erste fluorophore Gruppe (3) an einem ersten Schleifenabschnitt (2a) und die zweite fluorophore Gruppe (4) gegenüberliegend an einem zweiten Schleifenabschnitt (2b) der Haarnadelschleife (2) in einem eine Wechselwirkung ermöglichen Abstand gebunden sind.

20 17. Verfahren nach einem der Ansprüche 13 oder 16, wobei die feste Phase (5) ein, vorzugsweise elektrisch leitfähiger, Kunststoff ist.

25

18. Verfahren nach einem der Ansprüche 13 bis 17, wobei der Kunststoff ein Polycarbonat, Trimethylthiophen, Thiophen, Triaminobenzol und/oder ein Polycarben enthält.

30 19. Verfahren nach einem der Ansprüche 13 bis 18, wobei die erste fluorophore Gruppe (3) eine Akzeptorgruppe und die zweite fluorophore Gruppe (4) eine Donorgruppe ist.

20. Verfahren nach einem der Ansprüche 13 bis 19, wobei die erste fluorophore Gruppe (3) durch einen Quencher ersetzt ist.

5

21. Verfahren nach Anspruch 19, wobei die Akzeptorgruppe (3) 6-Carboxy-Tetramethyl-Rhodamin, Tetramethylrhodamin, Fluoreszein, DABCYL oder Bodipy Fl ist.

10 22. Verfahren nach Anspruch 19 oder 21, wobei die Donorgruppe 6-Carboxy-Fluorescein, Fluoreszein, IADEANS, EDANS oder Bodipy Fl ist.

15 23. Verfahren nach einem der Ansprüche 13 bis 22, wobei die Nukleotidsequenz (1, 1a, 1b) DNA, PTO oder PNA ist.

24. Verfahren nach einem der Ansprüche 13 bis 24, wobei die Gruppe (7) ein Antikörper, ein Rezeptor, eine DNA-, PTO-, Peptid- oder PNA-Sequenz ist.

20

25. Verfahren nach Anspruch 24, wobei der die chemische Substanz (7) enthaltenden Probe ein Stoff (8) zugegeben wird, der eine weitere zur Anlagerung an die chemische Substanz (7) geeignete Gruppe (9) mit einem daran gebundenen superparamagnetischen Partikel (10) enthält.

26. Verfahren nach Anspruch 25, wobei die nachzuweisende chemische Substanz (7) an die Gruppe (6) und an die weitere Gruppe (9) gebunden wird.

30

27. Verfahren nach Anspruch 26, wobei ein Magnetfeld angelegt wird, so daß das superparamagnetische Partikel (10) von

der festen Phase (5) wegbewegt und dadurch die Sekundärstruktur (2) aufgehoben oder geändert wird.

28. Verfahren nach einem der Ansprüche 13 bis 27, wobei die
5 Fluoreszenz mittels eines mit einer Datenverarbeitungs-einrichtung verbundenen Fluorometers erfaßt wird.
29. Verfahren nach Anspruch 28, wobei aus der zeitlichen Änderung der Fluoreszenzintensität die Konzentration der
10 nachzuweisenden chemischen Substanz (7) ermittelt wird.
30. Zusammenstellung von Mitteln (Kit) zur Durchführung des
Verfahrens nach Anspruch 13, mit

15 a1) einer einer im Bereich einer Sekundärstruktur (2) ei-ne erste (3) und eine damit in Wechselwirkung stehende zweite fluorophore Gruppe (4) aufweisenden Polynukleo-tidsequenz (1), deren erstes Ende (E1) an eine feste Pha-se (5) gebunden und deren zweites Ende (E2) eine an die nachzuweisende chemische Substanz (7) bind- bzw. anlagerbare oder eine für die nachzuweisende physikalische Ei-genschaft empfindliche Gruppe (6) aufweist, wobei bei An-lagerung der chemischen Substanz die Gruppe (6) und/oder Einwirkung einer äußeren Kraft (F2) auf die Gruppe (6,
20 12) die räumliche Beziehung aufhebbar und damit eine
25 Fluoreszenzreaktion erzeugbar ist

30 oder

a2) einer eine erste (3) fluorophore Gruppe aufweisenden ersten Polynukleotid- (1a) oder Peptidsequenz, deren er-stes Ende (E1) an eine feste Phase (5) gebunden ist und

einer eine zweite fluorophore Gruppe (4) aufweisenden zweiten Polynukleotid- (1a, 1b) oder Peptidsequenz, deren zweites Ende (E2) eine an die nachzuweisende chemische Substanz (7) bind- oder anlagerbare oder eine für die nachzuweisende physikalische Eigenschaft empfindliche Gruppe (6, 12) aufweist, wobei die erste Polynukleotid- (1a) oder Peptidsequenz an die zweite Polynukleotid- (1b) oder Peptidsequenz so angelagert wird, dass eine eine Wechselwirkung zwischen der ersten (3) und der zweiten 10 fluorophoren Gruppe (4) ermöglichte räumliche Beziehung herstellbar ist, und wobei bei Anlagerung der chemischen Substanz (7) an die Gruppe (6) und/oder Einwirkung einer äußeren Kraft (F2) auf die Gruppe (6, 12) die räumliche Beziehung aufhebbar und damit eine Fluoreszenzreaktion 15 erzeugbar ist.

31. Zusammenstellung von Mitteln nach Anspruch 30 enthaltend einen Stoff (8), der eine weitere zur Anlagerung an die chemische Substanz (7) geeignete Gruppe (9) mit einem daran gebundenen superparamagnetischen Partikel (10) ent- 20 hält.
32. Zusammenstellung von Mitteln (Kit) nach Anspruch 31, ent- haltend einen Magneten (11).

Fig. 1

2/4

Fig. 3

Fig. 5

Fig. 4

*Fig. 7**Fig. 6*

(51) Internationale Patentklassifikation ⁶ : G01N 33/543, 33/58, C12Q 1/68, G01R 33/02		A3	(11) Internationale Veröffentlichungsnummer: WO 99/45142 (43) Internationales Veröffentlichungsdatum: 10. September 1999 (10.09.99)
(21) Internationales Aktenzeichen: PCT/DE99/00558 (22) Internationales Anmeldedatum: 2. März 1999 (02.03.99)		(81) Bestimmungsstaaten: CA, JP, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(30) Prioritätsdaten: 198 08 884.1 3. März 1998 (03.03.98) DE		Veröffentlicht Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.	
(71) Anmelder (für alle Bestimmungsstaaten ausser US): NOVEMBER AG NOVUS MEDICATUS BERTLING GESELLSCHAFT FÜR MOLEKULARE MEDIZIN [DE/DE]; Ulrich-Schalk-Strasse 3 a, D-91056 Erlangen (DE). (72) Erfinder; und (73) Erfinder/Anmelder (nur für US): BERTLING, Wolf [DE/DE]; Meisenweg 22, D-91056 Erlangen (DE). (74) Anwalt: GASSNER, Wolfgang; Nägelebachstrasse 49a, D-91052 Erlangen (DE).		(88) Veröffentlichungsdatum des internationalen Recherchenberichts: 28. Oktober 1999 (28.10.99)	

(54) Title: AGENT AND METHOD FOR DETECTING CHEMICAL SUBSTANCES

(54) Bezeichnung: MITTEL UND VERFAHREN ZUM NACHWEIS CHEMISCHER SUBSTANZEN

(57) Abstract

The invention relates to an agent for detecting chemical substances or physical properties, comprising: a first polynucleotide (1) or peptide sequence having a first (3) fluorophore group, the first end (E1) of said sequence being bonded on a solid phase (5) and a second polynucleotide (1a) or peptide sequence having a second (4) fluorophore group, the second end (E2) of said sequence having a group (6) that can be bonded or attached to the chemical substance (7) to be detected or that is sensitive to the physical property to be detected. The first polynucleotide (1) or peptide sequence can be attached to the second polynucleotide (1a) or peptide sequence in such a way that a spatial relationship enabling an interaction between the first (3) and the second fluorophore group (4) is produced. When the chemical substance (7) is attached to the group (6) and/or the influence of an external force is exerted on the group (6, 12), the spatial relation can be eliminated thereby generating a fluorescent reaction.

(57) Zusammenfassung

Die Erfindung betrifft ein Mittel zum Nachweis chemischer Substanzen oder physikalischer Eigenschaften, mit einer eine erste (3) fluorophore Gruppe aufweisenden ersten Polynukleotid- (1) oder Peptidsequenz, deren erstes Ende (E1) an eine feste Phase (5) gebunden ist und einer eine zweite (4) fluorophore Gruppe aufweisenden zweiten Polynukleotid- (1a) oder Peptidsequenz, deren zweites Ende (E2) eine an die nachzuweisende chemische Substanz (7) bind- bzw. anlagerbare oder eine für die nachzuweisende physikalische Eigenschaft empfindliche Gruppe (6) aufweist, wobei die erste Polynukleotid- (1) oder Peptidsequenz an die zweite Polynukleotid- (1a) oder Peptidsequenz so anlagerbar ist, dass eine Wechselwirkung zwischen der ersten (3) und der zweiten fluorophoren Gruppe (4) ermöglichte räumliche Beziehung herstellbar ist, und wobei bei Anlagerung der chemischen Substanz (7) an die Gruppe (6) und/oder Einwirkung einer äußeren Kraft auf die Gruppe (6, 12) die räumliche Beziehung aufhebt und damit eine Fluoreszenzreaktion erzeugbar ist.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Amenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische Republik Mazedonien	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland	ML	Mali	TR	Türkei
BG	Bulgarien	HU	Ungarn	MN	Mongolei	TT	Trinidad und Tobago
BJ	Benin	IE	Ireland	MR	Mauretanien	UA	Ukraine
BR	Brasiliien	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Island	MX	Mexiko	US	Vereinigte Staaten von Amerika
CA	Kanada	IT	Italien	NE	Niger	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NL	Niederlande	VN	Vietnam
CG	Kongo	KE	Kenia	NO	Norwegen	YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NZ	Neuseeland	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik Korea	PL	Polen		
CM	Kamerun	KR	Republik Korea	PT	Portugal		
CN	China	KZ	Kasachstan	RO	Rumänien		
CU	Kuba	LC	St. Lucia	RU	Russische Föderation		
CZ	Tschechische Republik	LI	Liechtenstein	SD	Sudan		
DE	Deutschland	LK	Sri Lanka	SE	Schweden		
DK	Dänemark	LR	Liberia	SG	Singapur		
EE	Estland						

INTERNATIONAL SEARCH REPORT

International Application No
PCT/DE 99/00558

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 G01N33/543 G01N33/58 C12Q1/68 G01R33/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 G01N C12Q G01R

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>EP 0 745 690 A (THE PUBLIC HEALTH RESEARCH INSTITUTE OF THE CITY OF NEW YORK) 4 December 1996 (1996-12-04)</p> <p>column 5, line 20 - column 7, line 15; figure 10 column 24, line 50 - column 29, line 53; claims 1-7</p> <p>---</p> <p>US 5 156 972 A (D. ISSACHAR) 20 October 1992 (1992-10-20)</p> <p>abstract; figure 9 column 6, line 5 - column 8, line 68 column 9, line 63 - column 13, line 8; claims; examples 3,6</p> <p>---</p> <p>-/-</p>	<p>1-4, 7-16, 19-24, 28,30</p> <p>1,2, 7-10, 12-14, 19-22, 24,28-30</p>
X		

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

9 September 1999

15/09/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Luzzatto, E

INTERNATIONAL SEARCH REPORT

International Application No

PCT/DE 99/00558

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 97 09342 A (SCRIPTGEN PHARMACEUTICALS) 13 March 1997 (1997-03-13) page 3, line 20 – page 4, line 17; figures 4,5,24,5,27 page 10, line 12 – page 12, line 12 page 17, line 17 – page 18, line 27; claim 9; example 10 ---	1-4, 7-10, 13-16, 19-22,30
A	EP 0 762 122 A (BAYER AG) 12 March 1997 (1997-03-12) the whole document ---	1,13
P,X	WO 98 51819 A (NANOGEN, INC.) 19 November 1998 (1998-11-19) the whole document ---	1,13

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/DE 99/00558

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
EP 745690	A 04-12-1996	US AU AU CA JP	5925517 A 702598 B 5232496 A 2176266 A 9107996 A	20-07-1999 25-02-1999 21-11-1996 13-11-1996 28-04-1997
US 5156972	A 20-10-1992	IL CA	92955 A 2024548 A	21-10-1994 06-03-1991
WO 9709342	A 13-03-1997	CA EP JP	2203832 A 0791008 A 10509053 T	13-03-1997 27-08-1997 08-09-1998
EP 762122	A 12-03-1997	DE CA JP	19530078 A 2183204 A 9054094 A	20-02-1997 17-02-1997 25-02-1997
WO 9851819	A 19-11-1998	AU	7474098 A	08-12-1998

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PC./DE 99/00558

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
 IPK 6 G01N33/543 G01N33/58 C12Q1/68 G01R33/02

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestpräzisionsstufe (Klassifikationssystem und Klassifikationssymbole)
 IPK 6 G01N C12Q G01R

Recherchierte aber nicht zum Mindestpräzisionsstufe gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	<p>EP 0 745 690 A (THE PUBLIC HEALTH RESEARCH INSTITUTE OF THE CITY OF NEW YORK) 4. Dezember 1996 (1996-12-04)</p> <p>Spalte 5, Zeile 20 - Spalte 7, Zeile 15; Abbildung 10 Spalte 24, Zeile 50 - Spalte 29, Zeile 53; Ansprüche 1-7 ---</p>	<p>1-4, 7-16, 19-24, 28,30</p>
X	<p>US 5 156 972 A (D. ISSACHAR) 20. Oktober 1992 (1992-10-20)</p> <p>Zusammenfassung; Abbildung 9 Spalte 6, Zeile 5 - Spalte 8, Zeile 68 Spalte 9, Zeile 63 - Spalte 13, Zeile 8; Ansprüche; Beispiele 3,6 ---</p>	<p>1,2, 7-10, 12-14, 19-22, 24,28-30</p>
		-/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kolidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

9. September 1999

15/09/1999

Name und Postanschrift der Internationalen Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
 Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Luzzatto, E

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/DE 99/00558

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Seite	Betr. Anspruch Nr.
X	WO 97 09342 A (SCRIPTGEN PHARMACEUTICALS) 13. März 1997 (1997-03-13) Seite 3, Zeile 20 – Seite 4, Zeile 17; Abbildungen 4,5,24,5,27 Seite 10, Zeile 12 – Seite 12, Zeile 12 Seite 17, Zeile 17 – Seite 18, Zeile 27; Anspruch 9; Beispiel 10 ----	1-4, 7-10, 13-16, 19-22,30
A	EP 0 762 122 A (BAYER AG) 12. März 1997 (1997-03-12) das ganze Dokument ----	1,13
P,X	WO 98 51819 A (NANOGEN, INC.) 19. November 1998 (1998-11-19) das ganze Dokument -----	1,13

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PC1, DE 99/00558

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie			Datum der Veröffentlichung
EP 745690	A 04-12-1996	US	5925517 A		20-07-1999
		AU	702598 B		25-02-1999
		AU	5232496 A		21-11-1996
		CA	2176266 A		13-11-1996
		JP	9107996 A		28-04-1997
US 5156972	A 20-10-1992	IL	92955 A		21-10-1994
		CA	2024548 A		06-03-1991
WO 9709342	A 13-03-1997	CA	2203832 A		13-03-1997
		EP	0791008 A		27-08-1997
		JP	10509053 T		08-09-1998
EP 762122	A 12-03-1997	DE	19530078 A		20-02-1997
		CA	2183204 A		17-02-1997
		JP	9054094 A		25-02-1997
WO 9851819	A 19-11-1998	AU	7474098 A		08-12-1998