CS 2

Introduction to **Programming Methods**

First Foray: Sorting

How do you sort a bunch of integers?

- setup: an array A of int, of size A.length
 - later on, we'll deal with arbitrary types, not just int
- now, how do we proceed?
 - $\,\blacksquare\,\,$ not surprisingly, many algorithms to pick from
- let's start with a simple one: Bubble Sort
 - repeatedly step through the list, looking at pairs of adjacent items and swapping them if needed

Bubble Sort Live

- can you optimize it a bit?
 - do we always need to go to the end?

CS2 - INTRODUCTION TO PROGRAMMING METHODS

2

Bubble Sort Code [Java]

```
public static void bubbleSort(int[] A)
int i, temp;
int n_remain = A.length-1;
                                    // elts from 0 to n_remain-1 are left to sort
while (n_remain>0) {
                                    // until done
  last = 0;
                                    // initialize the last one swapped
  for (i = 0; i<n_remain-1; i++) {
                                    // bubbling up
    if (A[i] > A[i+1]) {
                                    // if out of order...
       temp = A[i];
                                    // ...then swap the two
      A[i] = A[i+1];
      A[i+1] = temp;
       last = i;
                                    // & remember which one was last swapped
  n_remain = last;
                                    // from n_left and up is sorted
```

CS2 - INTRODUCTION TO PROGRAMMING METHODS

Questions to think about

Efficiency

- assuming that we only count #comparisons
 - what's the best case scenario?
 - what's the worst case scenario?
- can we do better than that?
 - what's the theoretical limit of #comparisons?

Generality

- "template" sorting code
 - that works for any type of value?
 - you just saw that (briefly) last week...

CS2 - INTRODUCTION TO PROGRAMMING METHODS

.

Computational Complexity

How to analyze an algorithm?

- time to code, time to debug, and time to run
 - but different inputs/machine/memory size/coding details/... lead to different timings
- more abstract way: expected performance
 - without knowing the environment, or even the code!
 - interested in how scalable the algorithm is
 - think "order of magnitude" for large inputs
 - often counts number of operations for an input size of n
 - example: the simplest way to compute an average of n values will take about n operations (n-1 additions, 1 division)

CS2 - INTRODUCTION TO PROGRAMMING METHODS

Complexity Analysis Notation

Big-O notation

- only cares about most significant term in n
 - details do not matter for large n... (asymptotic behavior)
 - n+4 operations \rightarrow O(n); n²+3n ops \rightarrow O(n²); 10 ops \rightarrow O(1); n!+4 \rightarrow O(n!) and you are in trouble...
 - we'll say that an algorithm has constant / linear / quadratic / {...} complexity based on its O(.)
- more formally:
 - O(f(n)) means $Time(n) \le C \cdot f(n)$ for large enough n
 - $\Omega(g(n))$ means C. $g(n) \le Time(n)$ for infinitely many n
 - $\Theta(h(n))$ means O(h(n)) and $\Omega(h(n))$

CS2 - INTRODUCTION TO PROGRAMMING METHODS

_

What Is It Good For?

Predicting computational times

- if your algorithm is O(n) and it takes 1 second for n=1000, how long will it take for n=100,000?
 - ~100 s.
- what if it's $O(n^2)$?
 - ~10,000 s.
- ...if nothing worse happens for large n's
 - running out of memory, you playing angry birds while it computes, etc..., can make it slower than expected

CS2 - INTRODUCTION TO PROGRAMMING METHODS

R

Additional Considerations

Let's go back to Bubble Sort

- what is its complexity?
- well, hard to say...
 - best case scenario? worst case scenario? average case?

Usually, one uses worst case scenario

- n-1 + n-2 + n-3 + ... + 1 ops = ??
 - 1+2+3+...+n = n(n+1)/2 (easy to prove)
- So $O(n^2)$ it is.
- best case? "average"?

CS2 - INTRODUCTION TO PROGRAMMING METHODS

c

Different Sorting, Better Sorting

Slew of quadratic-time sorting methods

- insertion sort
 - insert kth element within first sorted (k-1) elements

CS2 - INTRODUCTION TO PROGRAMMING METHODS

Different Sorting, Better Sorting

Slew of quadratic-time sorting methods

- insertion sort
 - insert kth element within first sorted (k-1) elements
- see also selection sort
 - select smallest and move to front; repeat

Now here's a stupid idea...

- n twice larger, complexity 4 times larger
- but half smaller $\rightarrow \frac{1}{4}$ the time complexity
- so what about splitting the problem in 2?
 - and somehow "merge" the two halves quickly...

CS2 - INTRODUCTION TO PROGRAMMING METHODS

11

Bottom-up Merge Sort

A faster approach (suppose n=2^m for now)

- idea: split into smaller sets, then merge
 - m multiple passes; array divided into smaller subarrays of size 2^k (k=0...m-1) then adjacent subarrays are merged
 - merging two sorted lists is fast (complexity?)
 - so timing is improved!
 - code a bit messy (indices not trivial to get right the first time)
 - total complexity?

http://andreinc.net/2010/12/26/bottom-up-merge-sort-non-recursive/

But... much simpler if we use recursion

divide and conquer—more on this later

CS2 - INTRODUCTION TO PROGRAMMING METHODS

Before then...

Assuming a comparison-based method... what is the best complexity we can get?

- for n numbers, how many permutations?
 - $n \cdot (n-1) \cdot (n-2) \dots \cdot 2 \cdot 1 = n!$
- the sorted list is only *one* of these n! combos
- each comparison kills half the permutations
 - e.g., for 1,2,3: (123), (132), (213), (231), (312), (321)
 - if A[1]\A[2], then we are left with (123), (132), (231)
 - like the "20 questions" game... (can find one out of 2²⁰)
- so sorting is $\Omega(\log_2 n!) = \Omega(n \log n)$ (Stirling's)

CS2 - INTRODUCTION TO PROGRAMMING METHODS