GUÍA 3: Error de Método

1) Un laboratorio posee un voltímetro y un amperímetro calibrados. Con estos instrumentos se quiere estimar el valor de una resistencia midiendo la tensión entre sus bornes y la corriente eléctrica que circula a través de ésta, con el siguiente circuito:

Además se sabe que el voltímetro es un instrumento digital de 5 ½ dígitos - rango 200 V - exactitud declarada por el fabricante $\pm (0,05 \%$ lectura + 2 dígitos)- resistencia interna (Rv) ± 10000 (supongamos que se conoce con exactitud).

El amperímetro es un instrumento analógico de clase 0.2 – Alcance 150 mA – α_{MAX} 150 divisiones y su resistencia interna (Ra) 100 m Ω (supongamos que se conoce con exactitud). Se toman 10 mediciones que se muestran en la siguiente tabla:

N	1	2	3	4	5	6	7	8	9	10
v [v]	22,323	22,325	22,320	22,331	22,332	22,330	22,327	22,323	22,329	22,325
I [A]	145,1	145,2	144,9	145,7	145,2	146,3	145,3	145,1	145,9	145,4

Se pide estimar el valor de R con una probabilidad de 95%.

2) Se desea medir la tensión de un generador de audio.

GENERADOR: I	$Rg = 600\Omega$	VOLTÍMETRO:	True Rms
ſ	F = 15kHz ± 100ppm		4½ Dígitos
			$Rv = 1M\Omega$ $Cv = 220pF$
CABLE DE CONEX	(IÓN: Coaxil RG-58		±(0,05% + 2d)
	Cd = 2pF / cm		Rangos: 200mV – 2V – 20V– 200V– 1000V
	Largo = 75 cm		

- a) Dibuje el circuito correspondiente.
- b) Deduzca la ecuación del error de método, en función de los componentes del circuito.
- c) Si V_i = 1,8562V, determine el error de método, ¿es necesario corregirlo? ¿cuál es el valor corregido?
- d) Simule en LTSpice la variacion del error de metodo con la frecuencia de 10 a 15kHz
- e) Simule en LTSpice la variacion del error de metodo para 15kHz con la Rv

Medidas Electrónicas I

Ejercicio 3: Se dispone de un Sensor cuya tensión de salida presenta forma de onda triangular y Ro = 500Kohm El ingeniero dispone de un multímetro UT60A con el que efectuó 5 mediciones en modo DC y 5 mediciones en AC.

Determinar los valores Pico(+) y Pico(-) que entrega el sensor en vacio , con su incertidumbre Mediciones:

- a) Multímetro en escala DC, Vi promedio= 0,953V, STD=0,1mV
- b) Multímetro en escala AC, Vi promedio = 1,057V, STD=0,25mV

Range	Resolution	Accuracy	Overload Protection		
4V	1mV				
40V	10mV	士(1%+5)	1000V DC 750V AC rms continuous.		
400 V	100mV				
750V	1V	±(1.2%+5)			

Remarks

- Input impedance ≥10MΩ.
- Displays effective value of sine wave (mean value response).
- Frequency response 40Hz ~ 400Hz.

4) Se desea obtener el valor de la resistencia de canal de un transistor LDMOS RD15VHF1, para ello se intercala entre el terminal positivo de la fuente y DRAIN un amperímetro. El terminal de SOURCE se conecta al negativo de la fuente y en paralelo con la fuente, un voltímetro para medir la tensión de salida. Se hicieron mediciones simultaneas de tensión y corriente, obteniéndose para VGS=4V la siguiente tabla de resultados

Medidas Electrónicas I

5) Se utilizo una fuente de referencia para calibrar un voltímetro.

Fuente de Referencia: V_P = 1V , error: ±0,02% y R_i =0,5 Ω Voltímetro: 3½ dígitos, rangos 200mV - 2V - 20V, error (0,2% + 2d) y Ri = 10M Ω . V_I = 1,007V

- a) Dibuje el esquema propuesto.
- b) Nombre, clasifique y cuantifique todos los errores que intervienen en la calibración, incluso aquellos que son despreciables
- c)Presente el resultado de la calibración.