

Faculty of Engineering and Technology

Electrical and Computer Engineering Department

INFORMATION RETRIEVAL WITH APPLICATIONS OF NLP ENCS4130

Assignment #1

Prepared by: Mazen Batrawi - 1190102

Instructor: Dr. Adnan Yahya

Section: 1

BIRZEIT

APR - 2023

My number: $1190102 \rightarrow \text{even}$

Dataset:

SET2= {Doc 21 breakthrough drug for schizophrenia

Doc 22 new schizophrenia drug

Doc 23 new approach for treatment of schizophrenia

Doc 24 new hopes for schizophrenia patients}

Part1

1. How many tokens and how many terms you have in your collection? We have 18 tokens (18 words), from these 18 we have 10 terms (distinct words).

2. Draw the term-document incidence matrix (1/0 matrix) for your document collection.

	Doc21	Doc22	Doc23	Doc24
breakthrough	1	0	0	0
drug	1	1	0	0
for	1	0	1	1
schizophrenia	1	1	1	1
new	0	1	1	1
approach	0	0	1	0
treatment	0	0	1	0
of	0	0	1	0
hopes	0	0	0	1
patients	0	0	0	1

3. Using the incidence matrix, what are the returned results for the queries for your set. For SET2: Q1= chizophrenia AND drug Q2= for AND NOT (drug OR approach).

Q1:
$$1111 \& 1100 = 1100 = Doc21 + Doc22$$

Q2: $1011 \& \sim (1100 | 0010) = 1011 \& \sim (1110) = 1011 \& 0001 = 0001 = Doc24$

4. If we have the operator W1 \B2 W2 to mean W1 must be at most 2 words before W2: can we answer such query from the Incidence Matrix? Why? Why Not?

It is not possible to determine the presence or absence of a term in a document solely based on the incidence matrix. Additionally, the incidence matrix does not provide information about the specific location of a term within a document.

5. Draw the inverted index that would be built for your document.

breakthrough	1	\rightarrow	21]		
drug	2	\rightarrow	21	21		
for	3	\rightarrow	21	23	24	
schizophrenia	4	\rightarrow	21	22	23	24
new	3	\rightarrow	22	23	24	
approach	1	\rightarrow	23			-
treatment	1	\rightarrow	23			
of	1	\rightarrow	23			
hopes	1	\rightarrow	24			
patients	1	\rightarrow	24			

Part2

6. Compute term frequency for each element/document and document frequency for each term then.

	DF	IDF	TF21	TF22	TF23	TF24
breakthrough	1	2	0.25	0	0	0
drug	2	1	0.25	0.33	0	0
for	3	0.42	0.25	0	0.167	0.2
schizophrenia	4	0	0.25	0.33	0.167	0.2
new	3	0.42	0	0.33	0.167	0.2
approach	1	2	0	0	0.167	0
treatment	1	2	0	0	0.167	0
of	1	2	0	0	0.167	0
hopes	1	2	0	0	0	0.2
patients	1	2	0	0	0	0.2

DF = Number of documents containing the term.

IDF = log2(N / DF), N = Number of documents.

Term frequency is the number of occurrences for each term in a document divided by the length of that document.

7. Replace the 1/0 of the incidence matrix by the corresponding tf-idf for that term/document.

$$w_{ij} = tf_{ij} * idfi$$

	Doc21	Doc22	Doc23	Doc24
breakthrough	0.5	0	0	0
drug	0.25	0.33	0	0
for	0.105	0	0.07014	0.084
schizophrenia	0	0	0	0
new	0	0.1386	0.07014	0.084
approach	0	0	0.334	0
treatment	0	0	0.334	0
of	0	0	0.334	0
hopes	0	0	0	0.4
patients	0	0	0	0.4

8. For set2 = {chizophrenia drug approach}

$$\operatorname{CosSim}(\boldsymbol{d}_{j}, \boldsymbol{q}) = \frac{\vec{d}_{j} \cdot \vec{q}}{\left|\vec{d}_{j}\right| \cdot \left|\vec{q}\right|} = \frac{\sum_{i=1}^{n} (w_{ij} \cdot w_{iq})}{\sqrt{\sum_{i=1}^{n} w_{ij}^{2} \cdot \sum_{i=1}^{n} w_{iq}^{2}}}$$

The query has the terms chizophrenia, drug, and approach. The numbers in the following vectors represent the count of each term in the query and the documents.

$$\begin{split} Q &= [0, 0.33, 0, 0, 0, 0.66, 0, 0, 0, 0] \\ Doc21 &= [0.5, 0.25, 0.105, 0, 0, 0, 0, 0] \\ Doc22 &= [0, 0.33, 0, 0, 0.1386, 0, 0, 0, 0, 0] \\ Doc23 &= [0, 0, 0.07014, 0, 0.07014, 0.33, 0.33, 0.33, 0, 0] \\ Doc24 &= [0, 0, 0.084, 0, 0.084, 0, 0, 0, 0.4, 0.4] \end{split}$$

CosSim(Doc21, Q) =
$$(0.25 * 0.33) / \sqrt{(0.33^2 + 0.66^2) * (0.25^2 + 0.5^2 + 0.105^2)} = 0.197$$
.

CosSim(Doc22, Q) =
$$(0.33 * 0.33) / \sqrt{(0.33^2 + 0.66^2) * (0.33^2 + 0.1386^2)} = 0.412$$
.
CosSim(Doc23, Q) = $(0.33 * 0.66) / \sqrt{(0.33^2 + 0.66^2) * (2 * 0.07014^2 + 3 * 0.33^2} = 0.509$.

CosSim(Doc24, Q) = 0 / ... = 0

From the results, we can see that the most relative document is Doc23 (The highest cosine similarity).