Log surfaces of almost K3 type and curves of genus 4

joint with Changho Han (and Valery Alexeer, Phil Engel)

Broader Content -

Problem - Understand compact moduli of varieties of (log) general type.

Fix E E Qso

Curves

my Projective coarse moduli well-understood. Deligne, Mumberd, Knudson, Hassett

Higher dim:

(SLC) Singularities

@ Kx+ &D ample.

moduli

(KSBA)

Köllar - Shepherd Bumon Alexeev Birkar - Cascini Hacon - McKeman Xu, Kovácz - Patakfalvi

- · Do not know much about the geometry (sing., tangent spaces, boundary comp...)
- · Probably hopeless satisfy Murphy's Law.

BUT. Important special cases are better behaved.

Ex. Kx~0

- · X an Abelian Variety
 DCX the theta divisor.

 (Alexeev 2002, Olsson 2008).
- . X a K3 surfaces of deg 2

 D E ILI Laza 2012

 D = Ram-div. of X-rp²

 (Alexeev-Engel-Thompson 2018).

Hacking: (2004). Fix a positive integer d.

KSBA compact. of \{(S, (3+E)D)}\}

(where S = P, DCS curve of deg of,

by & very small.

-). Smooth DM stack (if 37d).
 - · Fairly explicit description of the boundary
 - · d=4 recovers Schuberts compactification 8 M3.

Salient feature -

(S, (3+E)D) is log gen type

Ks + (3+E)D ample

barely 80.

" Almost K3!

Main def: Fix a positive rational $r = \frac{m}{n}$
An almost K3 Stable log surface is a
pair (S, D). - S : Connected, reduced, Coh. Mac., Proj. Surface - D : Effective weil divisor on S Such that
Such that () For all sufficiently small $\varepsilon > 0$, (S, (r+e) D) is stable. L SLC + Ks+(r+e)D ample. 2) nKs+ mD ~0
DU V of D are Of-Cartier
Pmk (1) Both Rs & D wie & Godiner (2) S smooth => S del Pezzo
Gual: Understand moduli of almost K3 by surfaces.
Today: A highly interesting special case $S \cong P^{\prime}_{\times}P^{\prime} \text{(generically)}.$ $D \subset S \text{bype (3,3)}.$

Aside: - Families IT: S -> B Plat proper Cohen-Macaulay rel dim 2 DCS a relative Weil divisor such that (i). WT and O(D) commute with base charge \(\forall i \in \mathbb{Z}.\)

(ii) All geometric fibers are almost K3 stable by surfaces.

Main theorem:

Let \mathfrak{X} be the moduli stack of smoothable almost K3 stable by surfaces (S,D) with $K_s^2 = 8$ & f(D) = 4. Then \mathfrak{X} is proper with proj coarse space. \mathfrak{D} irreducible \mathfrak{D} smooth.

(3) the boundary $(:= \mathcal{X} - \mathcal{Z}^{\circ})$ $\chi^{\circ} = \{(S_{1}D) \mid S_{1}S_{2}D_{3}D_{3}S_{4}D_{3}D_{3}S_{5}D_{3$

is an isomorphism onto the complement of the Gieseker-Petri Locus.

is the blow up of the hyperell lows.

Boundary:

S=R/P (S,D)D singular of type (3,3)

S = Quadric cone, DCS general in [-3 Ks]

S = Smoothing of P(1,2,9) at the

A.- sing.

DCS general (=> D hyperelliptic)

in $\left|-\frac{3}{2}K_{s}\right|$

@ S = Toric deg. of PXIP given by

 $D \in \left[-\frac{3}{2}K_{s}\right]$ genenic.

Proof: - (Dream) - Understand all Q-Gor. degenerations of P'x1P' & use this to get the boundary (Manetti, Haeleiny-Prokhonov for P²).

(Reality): - Tour de force.

Relaturship with other moduli spuees

- (1) X --- > M4
- © K3 surfaces.

(S,D) wo T = cyclic triple cov.

Lattice 901.

Hodge-Struct.

With M3-symm.

+ M3-action.

Type I period domain D

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}\end{array}\end{array} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c$$