OOPython

Задача 3. Численное интегрирование.

- 1. Создать иерархию классов (абстрактный родительский класс (**AbstractIntegral**) + классы наследники (**<methodName>Integral**)) для реализации вычислений по следующим методам численного интегрирования:
 - метод левых прямоугольников
 - метод правых прямоугольников
 - метод средних прямоугольников
 - метод трапеций
 - метод Симпсона 4-го порядка точности

В абстрактный класс поместить общие для всех методов численного интегрирования поля и методы. В классах наследниках реализовать только те поля и методы, которыми конкретный метод численного интегрирования отличается от других. (см. пример в lecture_7.ipynb).

Критерий корректности реализации иерархии – отсутствие повторений кода в определениях классов.

Подсказка: для вычислений с использованием \forall метода численного интегрирования справедлива общая формула:

$$I_{num} = \sum_{i=0}^{N} c_i f\left(x_i\right)$$

в которой $\{x_i\}_{i=0}^N$ — множество точек сетки на отрезке интегрирования, $\{c_i\}_{i=0}^N$ — список коэффициентов формулы конкретного метода, ассоциированных с соответствующими узлами сетки.

- 2. Тестирование: с помощью реализованных классов вычислить значения определенных интегралов с шагами численного интегрирования $h_n = \frac{1}{2^n}$, $n = \overline{0,14}$ на отрезке [0;2] от следующих подынтегральных функций:
 - $f(x) = \frac{5}{2 + 3x^2}$

 - $f(x) = \sqrt[3]{3 + 4x^2}$
 - $f(x) = \frac{2}{\sqrt{\pi}} \exp(-x^2)$

 \forall функции построить графики погрешности вычислений интеграла по формулам всех методов в первом списке в зависимости от шага численного интегрирования (в логарифмическом масштабе, аналогично **Задаче 2**).