Assignment 1

CS 2813 - Discrete Structures

Lucas Ho September 4, 2023

Question 0: This book[1] has the the answer to everything. What is the question?

What is the meaning of life?

Question 1: The propositions p NAND q and p NOR q are denoted by $p \mid q$ and $p \downarrow q$, respectively.

a. Construct a truth table for the logical operators NAND and NOR.

	р	q	$p \mid q$	$p \downarrow q$
ſ	Т	Т	F	F
	\mathbf{T}	F	Τ	F
	F	Τ	Т	F
	\mathbf{F}	F	Т	Т

b. Show that $p \mid q$ is logically equivalent to $\neg(p \land q)$.

	p	q	$\neg(p \land q)$	$p \mid q$
ſ	Τ	Т	F	F
١	\mathbf{T}	F	$^{\mathrm{T}}$	Т
١	\mathbf{F}	Т	$^{\mathrm{T}}$	Т
١	\mathbf{F}	F	T	${ m T}$

Question 2: A proposition is satisfiable if some setting of the variables makes the proposition true. For example, $p \land \neg q$ is satisfiable because the expression is true if p is true and q is false. On the other hand, $p \land \neg p$ is not satisfiable because the expression as a whole is false for both settings of p. But determining whether or not a more complicated proposition is satisfiable is not so easy. How about this one?

$$(p \lor q \lor r) \land (\neg p \lor \neg q) \land (\neg p \lor \neg r) \land (\neg r \lor \neg q)$$

a. Find whether or not the previous compound proposition is satisfiable?

р	q	r	$p \lor q \lor r$	$\neg p \vee \neg q$	$\neg p \lor \neg r$	$\neg r \lor \neg q$
Τ	F	F	${ m T}$	${ m T}$	Т	Т

The previous compound proposition is satisfiable.

b. Given the following disjunctions, determine whether each is satisfiable. Use a different approach to how you solved a).

- i) $(p \lor q \lor \neg r) \land (p \lor \neg q \lor \neg s) \land (p \lor \neg r \lor \neg s) \land (\neg p \lor \neg q \lor \neg s) \land (p \lor q \lor \neg s)$ This proposition is satisfiable for any p or q as long as r and s are false.
- ii) $(\neg p \lor \neg q \lor r) \land (\neg p \lor q \lor \neg s) \land (p \lor \neg q \lor \neg s) \land (\neg p \lor \neg r \lor \neg s) \land (p \lor q \lor \neg r) \land (p \lor \neg r \lor \neg s)$

This proposition is not satisfiable as it is not possible for both $(\neg p \lor \neg q \lor r)$ and $(p \lor q \lor \neg r)$ to both occur.

iii)
$$(p \lor q \lor r) \land (p \lor \neg q \lor \neg s) \land (q \lor \neg r \lor s) \land (\neg p \lor r \lor s) \land (\neg p \lor q \lor \neg s) \land (p \lor \neg q \lor \neg r) \land (\neg p \lor \neg q \lor s) \land (\neg p \lor \neg r \lor \neg s)$$

This proposition is not satisfiable because p is unable to be both true and false. p is of note here because after expanding the compound proposition with logical equivalences, there are propositions of $(p \land \neg p)$ which help determine satiability.

c. Alice claims she wrote an 'efficient' algorithm for determining whether a compound proposition is satisfiable or not. Bob believes Alice; can Bob use Alice's algorithm to determine whether a compound proposition p is a tautology or not?

Yes

d. Why is it not easy to generalize a truth table for any complex proposition? In other words, is there a more efficient solution to this problem? Do you think Alice from c) is lying?

You can use logical equivalences to solve any complex propositions so Alice is not lying.

Question 3: Show that $\neg p \rightarrow (q \rightarrow r)$ and $q \rightarrow (p \lor r)$ are logically equivalent. Use Logical Equivalences not truth tables.

$$\begin{array}{l} p \ \lor \ (q \rightarrow r) \\ p \ \lor \neg q \ \lor \ r \\ \neg q \ \lor \ p \ \lor \ r \\ q \rightarrow (p \ \lor \ r) \end{array}$$

REFERENCES

[1] D. Adams. The Hitchhiker's Guide to the Galaxy. San Val, 1995.