Introduction to HAETAE:

Post-quantum Signature Scheme based on Hyperball Bimodal Rejection Sampling

Jung Hee Cheon^{1,2}, **Hyeongmin Choe**¹, Julien Devevey³, Tim Güneysu⁴, Dongyeon Hong², Markus Krausz⁴, Georg Land⁴, Junbum Shin², Damien Stehlé^{3,5}, MinJune Yi^{1,2}

¹Seoul National University, ²CryptoLab Inc., ³École Normale Supérieure de Lyon, ⁴Ruhr Universität Bochum, ⁵Institut Universitaire de France

February 22, 2023

Table of Contents

- 1. Brief Introduction to HAETAE
- 2. Preliminaries:
 - Digital signatures
 - Lattice hard problems and lattice-based signatures
 - Details of "Fiat-Shamir with aborts"
 - Rejection sampling
 - Bimodal rejection sampling

3. Dive into HAETAE:

- HAETAE, in theory
 - Hyperball bimodal rejection sampling
 - Compression techniques
- Implementation
 - Parameters and concrete security
 - Reference implementation
- 4. Upcoming updates!

HAETAE

- Digital signature scheme
- Secure against quantum attacks
 - based on lattice hard problems MLWE and MSIS
 - follows Fiat-Shamir with aborts framework, secure in QROM
- Simple but short
 - simpler than Falcon¹ & shorter than Dilithium¹
 - optimal rejection rate with simple rejection condition
- Design rationale
 - Fiat-Shamir with aborts framework
 - using Bimodal rejection sampling
 - randomness sampling from Hyperball distribution

HAETAE HEAAN

HAETAE

- Digital signature scheme
- Secure against quantum attacks
 - based on lattice hard problems MLWE and MSIS
 - follows Fiat-Shamir with aborts framework, secure in QROM
- Simple but short
 - simpler than Falcon¹ & shorter than Dilithium¹
 - optimal rejection rate with simple rejection condition
- Design rationale
 - Fiat-Shamir with aborts framework
 - using Bimodal rejection sampling
 - randomness sampling from Hyperball distribution

HAETAE HEAAN

¹NIST 2022 PQC signature standards

HAETAE

- Digital signature scheme
- Secure against quantum attacks
 - based on lattice hard problems MLWE and MSIS
 - follows Fiat-Shamir with aborts framework, secure in QROM
- Simple but short
 - simpler than Falcon¹ & shorter than Dilithium¹
 - optimal rejection rate with simple rejection condition
- Design rationale
 - Fiat-Shamir with aborts framework
 - using Bimodal rejection sampling
 - randomness sampling from **Hyperball** distribution

¹NIST 2022 PQC signature standards

1. Brief Introduction to HAETAE

2. Preliminaries:

- Digital signatures
- Lattice hard problems and lattice-based signatures
- Details of "Fiat-Shamir with aborts"
 - Rejection sampling
 - Bimodal rejection sampling

3. Dive into HAETAE:

- HAETAE, in theory
 - Hyperball bimodal rejection sampling
 - Compression techniques
- Implementation
 - Parameters and concrete security
 - Reference implementation

4. Upcoming updates!

Digital signatures

Conventional signatures work as:

Digital signatures

Conventional signatures work as:

Digital signatures work as:

Digital signatures

Digital signatures work as:

Necessary properties:

Correctness:

$$Verify(vk, m, Sign(sk, m)) = accept$$

Unforgeability: No one else than Alice can make a new signature.
 More formally,

For a given verification key and some message-signature pairs, no adversary can forge a new valid signature.

1. Brief Introduction to HAETAE

2. Preliminaries:

- Digital signatures
- Lattice hard problems and lattice-based signatures
- Details of "Fiat-Shamir with aborts"
 - Rejection sampling
 - Bimodal rejection sampling

3. Dive into HAETAE:

- HAETAE, in theory
 - Hyperball bimodal rejection sampling
 - Compression techniques
- Implementation
 - Parameters and concrete security
 - Reference implementation

4. Upcoming updates!

Lattice hard problems

Lattice-based cryptography is the generic term for constructions of cryptographic primitives that involve lattices ... are currently important candidates for post-quantum cryptography. - Wikipedia

Lattice-based cryptography bases its security on lattice hard problems, which are studied for the last 20–30 years with strong theoretical backgrounds:

- SVP and GapSVP $_{\lambda}$ are NP-hard for randomized **reductions** on some limited parameters [Ajt96, HR07].
- worst-case to average-case **reductions** [Ajt96], meaning that worst-case problems are not harder than average-case problems.
- Useful hard problems: NTRU, LWE, SIS, MLWE, MSIS, etc: hard problems for random instances.

Lattice hard problems

Lattice-based cryptography is the generic term for constructions of cryptographic primitives that involve lattices ... are currently important candidates for post-quantum cryptography. - Wikipedia

Lattice-based cryptography bases its security on lattice hard problems, which are studied for the last 20–30 years with strong theoretical backgrounds:

- SVP and GapSVP $_{\lambda}$ are NP-hard for randomized **reductions** on some limited parameters [Ajt96, HR07].
- worst-case to average-case reductions [Ajt96], meaning that worst-case problems are not harder than average-case problems.
- Useful hard problems: NTRU, LWE, SIS, MLWE, MSIS, etc: hard problems for random instances.

Lattice-based signatures

Fiat-Shamir with abort

Hash-and-Sign

Lattice-based signatures

Fiat-Shamir with abort

Hash-and-Sign

Lattice-based signatures

Fiat-Shamir with abort:

KeyGen : output (sk = s, vk = t), where $t = As \mod q$ and s is short.

Sign(sk = s, m): for short y, output $(c = H(\mathbf{A}\mathbf{y} \bmod q, m), \mathbf{z} = \mathbf{y} + c\mathbf{s})$ via rejection sampling.

 $\mathsf{Verify}(\mathsf{vk} = \mathbf{A},\ m,\ \mathbf{s}): \ \mathsf{check} \ \mathsf{whether} \ c = H(\mathbf{Az} - c\mathbf{t} \bmod q, m) \ \mathsf{and} \ \mathbf{z} \ \mathsf{is} \ \mathsf{short}.$

Correctness:

- First, ${\bf y}$ and ${\bf s}$ are short. Since $c=H(\cdot)$ is binary, $c{\bf s}$ is also short. Thus, ${\bf z}={\bf y}+c{\bf s}$ is short.
- It holds that $Az ct = A(y + cs) ct = Ay \mod q$ since $As = t \mod q$.

1. Brief Introduction to HAETAE

2. Preliminaries:

- Digital signatures
- Lattice hard problems and lattice-based signatures
- Details of "Fiat-Shamir with aborts"
 - Rejection sampling
 - Bimodal rejection sampling

3. Dive into HAETAE:

- HAETAE, in theory
 - Hyperball bimodal rejection sampling
 - Compression techniques
- Implementation
 - Parameters and concrete security
 - Reference implementation

4. Upcoming updates!

Fiat-Shamir with aborts

Basic "Fiat-Shamir with aborts" framework [Lyu09, Lyu12]

KeyGen : output (sk = s, vk = t), where $t = As \mod q$ and s is short.

Sign(sk = s, m): for short y, output $(c = H(\mathbf{Ay} \mod q, m), \mathbf{z} = \mathbf{y} + c\mathbf{s})$ via rejection sampling.

 $\mathsf{Verify}(\mathsf{vk} = \mathbf{A},\ m,\ \mathbf{s}): \ \mathsf{check} \ \mathsf{whether} \ c = H(\mathbf{Az} - c\mathbf{t} \bmod q, m) \ \mathsf{and} \ \mathbf{z} \ \mathsf{is} \ \mathsf{short}.$

Signature schemes following the "Fiat-Shamir with aborts" framework have well-studied **quantum security** [KLS18].

Unforgeability

- Key security: vk does not leak sk (LWE).
- ullet Zero-knowledge (HVZK): (c, \mathbf{z}) does not leak sk (rejection sampling).
- (Special) Soundness: cannot convince Bob without sk (SIS).

Fiat-Shamir with aborts

Basic "Fiat-Shamir with aborts" framework [Lyu09, Lyu12]

KeyGen : output (sk = s, vk = t), where $t = As \mod q$ and s is short.

Sign(sk = s, m): for short y, output $(c = H(\mathbf{Ay} \mod q, m), \mathbf{z} = \mathbf{y} + c\mathbf{s})$ via rejection sampling.

Verify(vk = \mathbf{A} , m, \mathbf{s}): check whether $c = H(\mathbf{Az} - c\mathbf{t} \mod q, m)$ and \mathbf{z} is short.

Signature schemes following the "Fiat-Shamir with aborts" framework have well-studied **quantum security** [KLS18].

Unforgeability:

- Key security: vk does not leak sk (LWE).
- Zero-knowledge (HVZK): (c, \mathbf{z}) does not leak sk (rejection sampling).
- (Special) Soundness: cannot convince Bob without sk (SIS).

Naı̈vely, $(c, \mathbf{z} = \mathbf{y} + c\mathbf{s})$ can leak some partial information of $\mathbf{s}.$

Suppose we have an ultimate number of pairs $(c, \mathbf{z} = \mathbf{y} + c\mathbf{s})$ so that we can collect \mathbf{z} 's for the same c. Then the distribution of \mathbf{z} can be drawn as:

depending on the distribution of y (e.g. discrete Gaussian or uniform).

The distribution leaks $c\mathbf{s}$, i.e. the secret key $\mathbf{s}\mathbf{k}$.

⇒ Rejection sampling prevents this leakage

Naïvely, $(c, \mathbf{z} = \mathbf{y} + c\mathbf{s})$ can leak some partial information of \mathbf{s} .

Suppose we have an ultimate number of pairs $(c, \mathbf{z} = \mathbf{y} + c\mathbf{s})$ so that we can collect \mathbf{z} 's for the same c. Then the distribution of \mathbf{z} can be drawn as:

depending on the distribution of y (e.g. discrete Gaussian or uniform).

The distribution leaks $c\mathbf{s}$, i.e. the secret key sk.

⇒ Rejection sampling prevents this leakage.

Naïvely, $(c, \mathbf{z} = \mathbf{y} + c\mathbf{s})$ can leak some partial information of \mathbf{s} .

Suppose we have an ultimate number of pairs $(c, \mathbf{z} = \mathbf{y} + c\mathbf{s})$ so that we can collect \mathbf{z} 's for the same c. Then the distribution of \mathbf{z} can be drawn as:

depending on the distribution of y (e.g. discrete Gaussian or uniform).

The distribution leaks $c\mathbf{s}$, i.e. the secret key sk.

 \Longrightarrow Rejection sampling prevents this leakage.

Rejection sampling rejects the pair (c, \mathbf{z}) with a certain probability², then restarts. This makes the distribution of signature independent to sk:

If $p_{\mathsf{t}}(\mathbf{x}) \leq M \cdot p_{\mathsf{s}}(\mathbf{x})$ for almost all $x = (c, \mathbf{z})$, the followings are identical:

- i) sampling from source distribution p_{s} with rejection sampling ($\mathcal{A}^{\mathsf{real}}$
- ii) sampling from target distribution p_{t} and reject with probability $\frac{1}{M}$ ($\mathcal{A}^{\mathsf{ideal}}$

 $^{^2}$ a function of (c, \mathbf{z}) .

Rejection sampling rejects the pair (c, \mathbf{z}) with a certain probability², then restarts. This makes the distribution of signature independent to sk:

If $p_t(\mathbf{x}) \leq M \cdot p_s(\mathbf{x})$ for almost all $x = (c, \mathbf{z})$, the followings are identical:

- i) sampling from source distribution p_s with rejection sampling ($\mathcal{A}^{\text{real}}$)
- ii) sampling from target distribution p_{t} and reject with probability $\frac{1}{M}$ $(\mathcal{A}^{\mathsf{ideal}})$

$$\mathcal{A}^{\mathsf{real}}$$
 :

1: $\mathbf{x} \leftarrow p_{\mathsf{s}}$

2: Return $\mathbf x$ with probability $\min\left(\frac{p_{\mathbf t}(\mathbf x)}{M\cdot p_{\mathbf s}(\mathbf x)},1\right)$ 2: Return $\mathbf x$ with probability $\frac{1}{M}$

3: Else repeat 1-2

 A^{ideal} .

1: $\mathbf{x} \leftarrow p_{\mathsf{t}}$

3: Else repeat 1-2

²a function of (c, \mathbf{z}) .

The run-time of rejection sampling depends on the constant M (\approx ratio between green and purple areas).

To decrease M, [DDLL13] modified $\mathbf{z} = \mathbf{y} + c\mathbf{s}$ to

$$\mathbf{z} = \mathbf{y} + (-1)^b c\mathbf{s}$$

with modulus 2q instead of q:

Note that M does not change if \mathbf{y} is chosen from the uniform interval.

The run-time of rejection sampling depends on the constant M (\approx ratio between green and purple areas).

To decrease M, [DDLL13] modified $\mathbf{z} = \mathbf{y} + c\mathbf{s}$ to

$$\mathbf{z} = \mathbf{y} + (-1)^b c\mathbf{s}$$

with modulus 2q instead of q:

Note that M does not change if \mathbf{y} is chosen from the uniform interval.

The run-time of rejection sampling depends on the constant M (\approx ratio between green and purple areas).

To decrease M, [DDLL13] modified $\mathbf{z} = \mathbf{y} + c\mathbf{s}$ to

$$\mathbf{z} = \mathbf{y} + (-1)^b c\mathbf{s}$$

with modulus 2q instead of q:

Note that M does not change if \mathbf{y} is chosen from the uniform interval.

CS

However, this makes "secure" implementation³ much harder. It is basically due to "reject with probability a function of sk."

For e.g., for \approx 120 bits security⁴⁵,

³an implementation secure against physical attacks (side-channel attacks)

⁴core-SVP hardness

 $^{^{5}}$ size= |sig| + |vk|

However, this makes "secure" implementation³ much harder. It is basically due to "reject with probability a function of sk."

For e.g., for \approx 120 bits security⁴⁵,

³an implementation secure against physical attacks (side-channel attacks)

⁴core-SVP hardness

1. Brief Introduction to HAETAE

2. Preliminaries:

- Digital signatures
- Lattice hard problems and lattice-based signatures
- Details of "Fiat-Shamir with aborts"
 - Rejection sampling
 - Bimodal rejection sampling

3. Dive into HAETAE:

- HAETAE, in theory
 - Hyperball bimodal rejection sampling
 - Compression techniques
- Implementation
 - Parameters and concrete security
 - Reference implementation

4. Upcoming updates!

HAETAE, in theory

The design rationale of HAETAE:

- Fiat-Shamir with aborts framework
- using Bimodal rejection sampling
- randomness sampling from Hyperball distribution

We now focus on **Hyperball** and the changes thereafter.

HAETAE, in theory

The design rationale of HAETAE:

- Fiat-Shamir with aborts framework
- using Bimodal rejection sampling
- randomness sampling from Hyperball distribution

We now focus on **Hyperball** and the changes thereafter.

Previously, the randomness ${\bf y}$ was chosen from either discrete Gaussian or uniform hypercube⁶.

⁶The vectors \mathbf{y} and \mathbf{z} are high-dimensional vectors, so uniform in an interval is indeed a uniform hypercube.

We, instead, use $uniform\ hyperball\ distribution\ for\ sampling\ y\ [DFPS22];$

- to exploit optimal rejection rate,
- to reduce signature and verification key sizes,

and use the **bimodal approach** [DDLL13];

- for more compact signature sizes,
- for a simpler rejection condition, which leads to the easier implementation of secure rejection.

We, instead, use $uniform\ hyperball\ distribution\ for\ sampling\ y\ [DFPS22];$

- to exploit optimal rejection rate,
- to reduce signature and verification key sizes,

and use the bimodal approach [DDLL13];

- for more compact signature sizes,
- for a simpler rejection condition, which leads to the easier implementation of secure rejection.

Recap: we return $\mathbf{x} = (c, \mathbf{z})$ with probability $\min\left(\frac{p_{\mathbf{t}}(\mathbf{x})}{M \cdot p_{\mathbf{s}}(\mathbf{x})}, 1\right)$.

We reject $\mathbf{x}=(c,\mathbf{z})$ sampled from a source distribution $p_{\rm s}$ to a target distribution $p_{\rm t}$, where

- ullet $p_{
 m s}$: uniform in a hyperball of radii B centered at $\pm c{
 m s}$
 - union of two large balls
- p_t : uniform in a smaller hyperball of radii B' centered at zero
 - a smaller ball in the middle

Recap: we return $\mathbf{x} = (c, \mathbf{z})$ with probability $\min\left(\frac{p_{\mathbf{t}}(\mathbf{x})}{M \cdot p_{\mathbf{s}}(\mathbf{x})}, 1\right)$.

We reject $\mathbf{x}=(c,\mathbf{z})$ sampled from a source distribution $p_{\rm s}$ to a target distribution $p_{\rm t}$, where

•
$$p_s(\mathbf{x}) = \frac{1}{2 \cdot \mathsf{vol}(\mathcal{B}(B))} \cdot \chi_{\parallel \mathbf{z} - c\mathbf{s} \parallel < B} + \frac{1}{2 \cdot \mathsf{vol}(\mathcal{B}(B))} \cdot \chi_{\parallel \mathbf{z} + c\mathbf{s} \parallel < B}$$

•
$$p_{\mathsf{t}}(\mathbf{x}) = \frac{1}{\mathsf{vol}(\mathcal{B}(B))} \cdot \chi_{\parallel \mathbf{z} \parallel < B'}$$
.

This leads to

$$\frac{p_{\mathsf{t}}(\mathbf{x})}{M \cdot p_{\mathsf{s}}(\mathbf{x})} = \frac{\chi_{\|\mathbf{z}\| < B'}}{\chi_{\|\mathbf{z} - c\mathbf{s}\| < B} + \chi_{\|\mathbf{z} + c\mathbf{s}\| < B}}$$

$$0 if \mathbf{z} \notin \mathcal{B}(B'),$$

$$= 1/2 if \mathbf{z} \in \mathcal{B}(B') \cap \mathcal{B}(B, c\mathbf{s}) \cap \mathcal{B}(B, -c\mathbf{s}),$$

$$1 if \mathbf{z} \in \mathcal{B}(B') \setminus (\mathcal{B}(B, c\mathbf{s}) \cap \mathcal{B}(B, -c\mathbf{s}))$$

Hyperball bimodal rejection sampling

Recap: we return $\mathbf{x} = (c, \mathbf{z})$ with probability $\min\left(\frac{p_{\mathbf{t}}(\mathbf{x})}{M \cdot p_{\mathbf{s}}(\mathbf{x})}, 1\right)$.

We reject $\mathbf{x}=(c,\mathbf{z})$ sampled from a source distribution $p_{\rm s}$ to a target distribution $p_{\rm t}$, where

$$\bullet \ p_{\mathbf{s}}(\mathbf{x}) = \tfrac{1}{2 \cdot \mathrm{vol}(\mathcal{B}(B))} \cdot \chi_{\parallel \mathbf{z} - c\mathbf{s} \parallel < B} + \tfrac{1}{2 \cdot \mathrm{vol}(\mathcal{B}(B))} \cdot \chi_{\parallel \mathbf{z} + c\mathbf{s} \parallel < B},$$

•
$$p_{\mathsf{t}}(\mathbf{x}) = \frac{1}{\mathsf{vol}(\mathcal{B}(B))} \cdot \chi_{\parallel \mathbf{z} \parallel < B'}$$

This leads to

$$\frac{p_{\mathsf{t}}(\mathbf{x})}{M \cdot p_{\mathsf{s}}(\mathbf{x})} = \frac{\chi_{\|\mathbf{z}\| < B'}}{\chi_{\|\mathbf{z} - c\mathbf{s}\| < B} + \chi_{\|\mathbf{z} + c\mathbf{s}\| < B}}$$

$$0 \quad \text{if } \mathbf{z} \notin \mathcal{B}(B'),$$

$$= 1/2 \quad \text{if } \mathbf{z} \in \mathcal{B}(B') \cap \mathcal{B}(B, c\mathbf{s}) \cap \mathcal{B}(B, -c\mathbf{s}),$$

$$1 \quad \text{if } \mathbf{z} \in \mathcal{B}(B') \setminus (\mathcal{B}(B, c\mathbf{s}) \cap \mathcal{B}(B, -c\mathbf{s}))$$

for some M > 0.

Hyperball bimodal rejection sampling

That is, we return $\mathbf{x} = (c, \mathbf{z})$ with probability

- 0: if $\|\mathbf{z}\| \ge B'$,
- 1/2: else if $\|\mathbf{z} c\mathbf{s}\| < B$ and $\|\mathbf{z} + c\mathbf{s}\| < B$,
- 1: otherwise.

Since $\mathbf{z} = \mathbf{y} + (-1)^b c\mathbf{s}$, we can do even simpler,

- if $\|\mathbf{z}\| \geq B'$, reject,
- else if $\|2\mathbf{z} \mathbf{y}\| < B$, reject with probability 1/2,
- otherwise, accept,

resulting in a signature, uniform in a hyperball $\mathcal{B}(B')$

Hyperball bimodal rejection sampling

That is, we return $\mathbf{x} = (c, \mathbf{z})$ with probability

- 0: if $\|\mathbf{z}\| \ge B'$,
- 1/2: else if $\|\mathbf{z} c\mathbf{s}\| < B$ and $\|\mathbf{z} + c\mathbf{s}\| < B$,
- 1: otherwise.

Since $\mathbf{z} = \mathbf{y} + (-1)^b c\mathbf{s}$, we can do even simpler,

- if $\|\mathbf{z}\| \geq B'$, reject,
- else if $||2\mathbf{z} \mathbf{y}|| < B$, reject with probability 1/2,
- otherwise, accept,

resulting in a signature, uniform in a hyperball $\mathcal{B}(B')$.

Compression techniques

To reduce the size of the signature, we use two compression techniques:

- High, Low, and Least Significant Bits
 - basically, it is $\operatorname{mod}^{\pm} \alpha$ for some power-of-two integer $\alpha \mid 2(q-1)$.
 - some optimizations for better sizes⁸, e.g., HighBits^{hint} and LowBits^{hint}: conserving one bit from HighBits while making LowBits a little bit complicated

- Encoding via range Asymmetric Numeral System (rANS encoding)
 - rANS encoding is a type of entropy coding.
 - ullet adapted from [Dud13], we encode high bits of signature within it's entropy +1 bit.

⁸newly updated!

1. Brief Introduction to HAETAE

2. Preliminaries:

- Digital signatures
- Lattice hard problems and lattice-based signatures
- Details of "Fiat-Shamir with aborts"
 - Rejection sampling
 - Bimodal rejection sampling

3. Dive into HAETAE:

- HAETAE, in theory
 - Hyperball bimodal rejection sampling
 - Compression techniques

Implementation

- Parameters and concrete security
- Reference implementation

4. Upcoming updates!

Parameters and concrete security

Parameters sets	HAETAE120	HAETAE180	HAETAE260				
Target security	120	180	260				
q	64513	64513	64513				
(k,ℓ)	(2,4)	(3,6)	(4,7)				
Unforgeability (strong unforgeability for randomized version)							
Classical core-SVP	123 (100)	189 (156)	258 (216)				
Quantum core-SVP	108 (87) 166 (137)		227 (190)				
Key security against key-recovery attack							
Classical core-SVP	125	236	288				
Quantum core-SVP	109	208	253				
Sizes (in Bytes)							
sig	1468	2285	2781				
vk	1056	1500	2000				
	1056	1568	2080				

Table: Security and sizes for HAETAE.

Parameters and concrete security.

HAETAE has reasonable sizes and is easily implementable, and also seems securely maskable.

Targeting 120-bit security, we summarize recent lattice-based signatures. Sizes are shown in bytes. The prefixes *d* and *int* imply *discrete* and *integer*, respectively. Note that dHyperball requires continuous Gaussian at 0. Note that verification is fast enough in all the schemes.

Scheme	siq	vk	KeyGen	KeyGen Sign	
Jeneme	sig	UK	Reyden	sampling	rejection
Dilithium-2	2420	1312	fast	Hypercube	$\ \cdot\ _{\infty} < B$
Bliss-1024 ⁹	1700	1792	fast	dGaussian at 0	reject with prob. $f(sk,Sig)$
HAETAE120	1468	1056	fast	dHyperball at 0	$\ \cdot\ _2 < B$
Mitaka-512 ¹⁰	713	896	slow	dGaussian at 0 & intGaussian at $H(m)$	none
Falcon-512	666	897	slow	d $Gaussian$ at $H(m)$	none

Table: Comparison between different lattice-based signature schemes.

 $^{^{9}}$ modified Bliss (to ≥ 120 bit-security) in Dilithium paper.

¹⁰Mitaka-512 has 102 bits of security

Reference Implementation

Benchmark (CPU cycles and time elapsed)

- GNU/Linux with Linux kernel version 5.4.0.
- AMD Ryzen 3700x.
- The compiler gcc 9.4.0 with -O3 and -fomit-frame-pointer.

	HAETAE120	HAETAE180	HAETAE260
Keygen	730k	1,329k	1,867k
Sign	4,427k	6,843k	8,438k
Verify	491k	789k	1,145k
Total cycles	5,525k	8,961k	11,450k
Time elapsed	1.611ms	2.584ms	3.360ms

Table: Benchmark of current HAETAE (on-going)

Upcoming updates! H. Choe

Upcoming updates

Missing parts in the first round submission:

- rANS encoding
- rejection sampling for secret key
- min-entropy analysis

Modifications:

- Toward smaller sizes:
 - new compression and rANS encoding for hint
- Toward secure implementation:
 - get rid of floating-point arithmetic: numerical analysis and fixed-point Gaussian sampling is included for hyperball uniform sampling
- Toward faster implementation:
 - NTT/CRT-based implementation

The updated version will be uploaded to SMAUG & HAETAE website: http://kpqc.cryptolab.co.kr/.

Thanks!

Any question?

References I

[Ajt96] M. Ajtai.
Generating hard instances of lattice problems (extended abstract).
In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC '96, page 99–108, New York, NY, USA, 1996. Association for Computing Machinery.

[BG14] Shi Bai and Steven D Galbraith. An improved compression technique for signatures based on learning with errors. In Cryptographers' Track at the RSA Conference, pages 28–47. Springer, 2014.

[DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice signatures and bimodal gaussians. In Annual Cryptology Conference, pages 40–56. Springer, 2013.

[DFPS22] Julien Devevey, Omar Fawzi, Alain Passelègue, and Damien Stehlé. On rejection sampling in lyubashevsky's signature scheme. Cryptology ePrint Archive, Number 2022/1249, 2022. To be appeared in Asiacrypt, 2022. https://eprint.iacr.org/2022/1249.

◆□▶ ◆□▶ ◆■▶ ■ りへで

References II

[DKL+18] Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and Damien Stehlé.

Crystals-dilithium: A lattice-based digital signature scheme.

IACR Transactions on Cryptographic Hardware and Embedded Systems, pages 238–268, 2018.

[DLP14] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest.

Efficient identity-based encryption over ntru lattices.

In International Conference on the Theory and Application of Cryptology and Information Security, pages 22–41. Springer, 2014.

[DP16] Léo Ducas and Thomas Prest.

Fast fourier orthogonalization.

In Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, pages 191–198, 2016.

[Duc14] Léo Ducas.

Accelerating bliss: the geometry of ternary polynomials.

Cryptology ePrint Archive, Paper 2014/874, 2014.

https://eprint.iacr.org/2014/874.

References III

[ETWY22]

[Dud13] Jarek Duda.

Asymmetric numeral systems: entropy coding combining s

Asymmetric numeral systems: entropy coding combining speed of huffman coding with compression rate of arithmetic coding, 2013.

ArXiv preprint, available at https://arxiv.org/abs/1311.2540.

[EFG⁺22] Thomas Espitau, Pierre-Alain Fouque, François Gérard, Mélissa Rossi, Akira Takahashi, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu.

Mitaka: A simpler, parallelizable, maskable variant of.

In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 222–253. Springer, 2022.

Thomas Espitau, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu.

Shorter hash-and-sign lattice-based signatures.

In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology – CRYPTO. 2022.

[FHK+18] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang.

Falcon: Fast-fourier lattice-based compact signatures over ntru.

Submission to the NIST's post-quantum cryptography standardization process, 36(5), 2018.

References IV

[GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann.

Practical lattice-based cryptography: A signature scheme for embedded systems. In International Workshop on Cryptographic Hardware and Embedded Systems, pages 530–547. Springer, 2012.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan.

Trapdoors for hard lattices and new cryptographic constructions.

In Proceedings of the fortieth annual ACM symposium on Theory of computing, pages 197-206, 2008.

[HHGP+03] Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H Silverman, and William Whyte.

Ntrusign: Digital signatures using the ntru lattice.

In Cryptographers' track at the RSA conference, pages 122-140. Springer, 2003.

[HR07] Ishay Haviv and Oded Regev.

Tensor-based hardness of the shortest vector problem to within almost polynomial factors.

In Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, STOC '07, page 469–477, New York, NY, USA, 2007. Association for Computing Machinery.

References V

[KLS18] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner.

A concrete treatment of Fiat-Shamir signatures in the quantum random-oracle model.

In Advances in Cryptology - EUROCRYPT, pages 552-586. Springer, 2018.

[Lyu09] Vadim Lyubashevsky.

Fiat-shamir with aborts: Applications to lattice and factoring-based signatures. In International Conference on the Theory and Application of Cryptology and Information Security, pages 598–616. Springer, 2009.

[Lyu12] Vadim Lyubashevsky.

Lattice signatures without trapdoors.

In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 738–755. Springer, 2012.

HAETAE description (high-level)

```
\mathsf{KeyGen}(1^{\lambda})
```

- 1: $\mathbf{A}_{\text{gen}} \leftarrow \mathcal{R}_q^{k \times (\ell-1)}$ and $(\mathbf{s}_{\text{gen}}, \mathbf{e}_{\text{gen}}) \leftarrow S_\eta^{\ell-1} \times S_\eta^k$ 2: $\mathbf{b} = \mathbf{A}_{\text{gen}} \cdot \mathbf{s}_{\text{gen}} + \mathbf{e}_{\text{gen}} \in \mathcal{R}_\eta^k$
 - 3: $\mathbf{A} = (-2\mathbf{b} + q\mathbf{j} \mid 2\mathbf{A}_{gen} \mid 2\mathbf{Id}_k) \mod 2q$ and write $\mathbf{A} = (\mathbf{A}_1 \mid 2\mathbf{Id}_k)$
 - 4: s=(1,sgen,egen)
 - 5: **if** $\sigma_{max}(rot(s_{gen})) > \gamma$, then restart
 - 6: Return sk=s, vk=A

$\mathsf{Sign}(\mathsf{sk}, M)$

```
1: \mathbf{y} \leftarrow U(\mathcal{B}_{(1/N)\mathcal{R},(k+\ell)}(B))
```

- 2: $c = H(\mathsf{HighBits}^{\mathsf{hint}}_{2a}(\mathbf{A}[\mathbf{y}], \alpha), \mathsf{LSB}([y_0]), M) \in \mathcal{R}_2$
- 3: $\mathbf{z} = (\mathbf{z}_1, \mathbf{z}_2) = \mathbf{y} + (-1)^b c \cdot \mathbf{s} \text{ for } b \leftarrow U(\{0,1\})$
- 4: $\mathbf{h} = \operatorname{HighBits}_{2q}^{\operatorname{high}}(\mathbf{A} \lfloor \mathbf{z} \rceil qc\mathbf{j}, \alpha) \operatorname{HighBits}_{2q}^{\operatorname{high}}(\mathbf{A}_1 \lfloor \mathbf{z}_1 \rceil qc\mathbf{j}, \alpha) \mod^+ \frac{2(q-1)}{\alpha}$
- 5: **if** $\|\mathbf{z}\|_2 \ge B'$, then restart
- 6: **if** $||2\mathbf{z} \mathbf{y}||_2 < B$, then restart with probability 1/2
- 7: Return $\sigma = (\text{Encode}(\text{HighBits}(|\mathbf{z}_1|, a)), \text{LowBits}(|\mathbf{z}_1|, a), \text{Encode}(\mathbf{h}), c)$

Verify(vk, $M, \sigma = (x, \mathbf{v}, h, c)$)

- 1: $\tilde{\mathbf{z}}_1 = \mathsf{Decode}(x) \cdot a + \mathbf{v}$ and $\tilde{\mathbf{h}} = \mathsf{Decode}(h)$
- 2: $\mathbf{w} = \tilde{\mathbf{h}} + \text{HighBits}_{2a}^{\text{hint}} (\mathbf{A}_1 \tilde{\mathbf{z}}_1 qc\mathbf{j}, \alpha) \text{ mod}^+ \frac{2(q-1)}{q}$
- 3: $w' = LSB(\tilde{z}_0 c)$
- 4: $\tilde{\mathbf{z}}_2 = [\mathbf{w} \cdot \alpha + w' \mathbf{j} (\mathbf{A}_1 \tilde{z}_1 q \mathbf{c} \mathbf{j})]/2 \mod^{\pm} q$
- 5: $\tilde{\mathbf{z}} = (\tilde{\mathbf{z}}_1, \tilde{\mathbf{z}}_2)$
- 6: Return $(c=H(\mathbf{w}, w', M)) \land (\|\tilde{\mathbf{z}}\| < B'')$