课程编号: 10430494

课程时间:周一第二大节 (9:50-11:25) 六教6A403

周三第一大节 (8:00-9:35) 六教6A403

# 大学物理B(2)(电磁学、光学、量子物理)

主讲:季帅华

邮箱: shji@mail.tsinghua.edu.cn

电话: 62797539

办公室: 物理系理科楼C316

助教: 王晨阳

邮箱: cy-wang21@mails.tsinghua.edu.cn

# 教材:





大学物理学(电磁学) 大学物理学(光学、量 子物理)张三慧编著

# 参考书目:

《电磁学与电动力学》上册(胡友秋,程福臻,叶邦角编)

《电磁学》(贾起民,郑永令,陈暨耀编)

《新概念物理教程一电磁学》(赵凯华,陈熙谋编)

《光学》(崔宏滨,李永平,段开敏编)

《新概念物理教程一光学》(赵凯华,钟锡华编)

《原子物理学》(杨福家编)

《费恩曼物理学讲义》第3卷(量子物理)(潘笃武,李洪芳译)

作业:周一交作业;作业箱:27(收),28(发)

考试:期中第8周;期末第17/18周。

评分:考试约90%,作业约10%

| 课程进程 |             |
|------|-------------|
| 电磁学  | 静电场         |
|      | 电势          |
|      | 静电场中的导体     |
|      | 静电场中的电介质    |
|      | 稳恒电流        |
|      | 磁场和它的源      |
|      | 磁力          |
|      | 磁场中的磁介质     |
|      | 电磁感应        |
|      | 麦克斯韦方程组和电磁波 |
| 期中考试 |             |
| 光学   | 光的干涉        |
|      | 光的衍射        |
|      | 光的偏振        |
| 量子物理 | 波粒二象性       |
|      | 薛定谔方程       |
|      | 原子中的电子      |
|      | 固体中的电子      |
|      | 核与粒子物理      |
| 期末考试 |             |



# 电场



# 电磁波



量子力学



#### 磁场



麦克斯韦











奠基者



#### 大学物理学习过程中,哪些你认为是重要的

- A 数学方法和解题技巧
- B 物理概念和物理图像
- c 经典例题的讲解
- 建立实际问题的物理模型
- 学生之间以及师生之间的相互讨论
- F 较难的课后习题

# 电磁学



特斯拉线圈



特高压国家电网



国家电网规划



手机基站



日本磁悬浮列车(603公里/小时)



太阳风

#### 电磁学

- 一. 静电场
- 二. 电势
- 三. 静电场中的导体
- 四. 静电场中的电介质
- 五. 稳恒电流
- 六. 磁场和它的源
- 七. 磁力
- 八. 磁场中的磁介质
- 九. 电磁感应
- 十. 麦克斯韦方程组和电磁波

#### 电磁学与力、热学区别

力学: 粒子的运动(单个或多个)

$$\vec{F} = \frac{d\vec{p}}{dt}$$
  $\vec{p}$ ,  $\frac{1}{2}mv^2$ ,  $\vec{r} \times \vec{p}$ , .....

热学: 大量粒子的无规运动规律

统计方法 和 宏观热力学

电磁学: 带电粒子? 只是场量的源而已

电磁学: 场量的性质

$$\vec{E}(x, y, z, t), \quad \vec{B}(x, y, z, t)$$

法拉第最先提出来的概念

场:现代物理学的核心概念

#### 如何描述电场和磁场的性质

$$\vec{E}(x, y, z, t), \quad \vec{B}(x, y, z, t)$$



#### 数学描述矢量场的方法

闭合曲面的通量

闭合路径的环量



# 第一章 静电场

- 1.1 电荷
- 1.2 库仑定律
- 1.3 电场 电场强度
- 1.4 点电荷电场及叠加原理
- 1.5 电通量
- 1.6 静电场的高斯定律证明
- 1.7 高斯定律和电场线
- 1.8 高斯定理的应用

# 1.1 电荷

❖ 两种(正电荷负电荷)







# "天上的闪电"和电火花是同一物理现象

富兰克林







Nature 455, 1089 (2008)



水滴皇冠

❖ 电荷量子化 (charge quantization )

1906-1917年,密立根用液滴法首先从实验上证明了,微小粒子带电量的变化不连续。

$$Q = Ne$$

❖ 电量的相对论不变性



# ❖ 电荷守恒定律

电荷守恒定律是物理学中普遍的基本定律

$$\sum Q_i = c$$
 局域守恒

#### 1.2 库仑定律



1785年,库仑通过 扭称实验得到。

库仑定律:在真空中,两个静止点电荷之间的相互作用力大小,与它们的电量的乘积成正比,与它们之间距离的平方成反比;作用力的方向沿着它们的联线,同号电荷相斥,异号电荷相吸。

$$\vec{f} = \frac{q_1 q_2}{4\pi \,\varepsilon_0 r^2} \,\hat{r}$$

# (1) 库仑力很强



- (2)基本实验规律
- (3) 点电荷 理想模型



(4) 适用范围: 宏观 - 微观

在原子核内(<10-15m)

更小范围内倾向于反平方律仍然成立

#### (5) 电力叠加原理



$$\vec{f} = \sum_{i} \vec{f}_{i}$$

#### 1.3 电场 电场强度

早期: 超距作用

后来: 法拉第提出近距作用

并提出力线和场的概念



Michael Faraday (1791-1867)

#### 一. 电场

- 电荷在其周围产生电场。
- 电荷在电场中受力

静电场: 静止的电荷产生的电场



# 二. 电场强度 (electric field strength)

描述场中各点电场的强弱的物理量

空间带电体 电量为 Q

#### 试验电荷

- ●电量充分地小
- ●线度足够地小

试验表明:确定场点



比值 
$$\frac{\vec{f}}{q}$$
 与试验电荷无关

# 电场强度定义

$$\vec{E} = \frac{\vec{f}}{q}$$

$$|\vec{E} = \vec{E}(x, y, z)|$$

❖ 点电荷在电场中受力

$$\vec{f} = q\vec{E}$$



#### 1.4 点电荷电场及叠加原理

# 1. 点电荷的场强公式



$$ec{E} = rac{ec{f}}{q}$$

$$\vec{f} = \frac{Qq}{4\pi \,\varepsilon_0 r^2} \hat{r}$$

$$\vec{E} = \frac{Q}{4\pi \,\varepsilon_0 r^2} \hat{r}$$

球对称

#### 2. 场强叠加原理

#### 带电体由 n 个点电荷组成



# 由电力叠加原理

$$\vec{f} = \sum_{i=1}^{i=n} \vec{f}_i$$

由场强定义 
$$\vec{E} = \frac{\vec{f}}{q} = \frac{\sum_{i=1}^{j} \vec{f}_i}{q} = \sum_{i=1}^{n} \frac{\vec{f}_i}{q}$$

$$\vec{E} = \sum_{i} \vec{E}_{i}$$

或

$$\vec{E} = \sum_{i=1}^{n} \frac{q_i}{4\pi\varepsilon_0 r_i^2} \hat{r}_i$$

# 3 电荷离散分布的点电荷集

例 电偶极子的场

一对等量异号电荷,相距 [



# 点电荷场叠加

$$\begin{split} \vec{E} &= \vec{E}_{+} + \vec{E}_{-} \\ &= \frac{q_{+}}{4\pi \, \varepsilon_{0} r_{+}^{2}} \hat{r}_{+} + \frac{q_{-}}{4\pi \, \varepsilon_{0} r_{-}^{2}} \hat{r}_{-} \end{split}$$

$$= \frac{q}{4\pi\varepsilon_{0}r_{+}^{2}}\hat{r}_{+} + \frac{-q}{4\pi\varepsilon_{0}r_{-}^{2}}\hat{r}_{-}$$

$$= \frac{q}{4\pi\varepsilon_{0}} \left( \frac{\vec{r}_{+}}{r_{+}^{3}} - \frac{\vec{r}_{-}}{r_{-}^{3}} \right)$$



电偶极子 (electric dipole)

电偶极矩 (electric moment)

$$\vec{p} = q\vec{l}$$

$$\vec{E} = \frac{q}{4\pi\varepsilon_0} \left( \frac{\vec{r}_{+}}{r_{+}^3} - \frac{\vec{r}_{-}}{r_{-}^3} \right)$$

$$\vec{r}_{+} = \vec{r} - \frac{\vec{l}}{2}$$
  $\vec{r}_{-} = \vec{r} + \frac{\vec{l}}{2}$ 

$$r_{+}^{2} = r^{2} + \frac{l^{2}}{4} - \vec{r} \cdot \vec{l}$$
  $r_{-}^{2} = r^{2} + \frac{l^{2}}{4} + \vec{r} \cdot \vec{l}$ 



$$r_{+}^{-3} = r^{-3} \left[ 1 + \frac{l^2}{4r^2} - \frac{\vec{r} \cdot \vec{l}}{r^2} \right]^{-\frac{3}{2}}$$

$$(1+x)^{\alpha} \approx 1 + \alpha x + \frac{1}{2}\alpha(\alpha - 1)x^{2} + \dots$$

$$r \gg l$$

$$r_{+}^{-3} = r^{-3} \left( 1 + \frac{3\vec{r} \cdot \vec{l}}{2r^{2}} \right) \quad r_{-}^{-3} = r^{-3} \left( 1 - \frac{3\vec{r} \cdot \vec{l}}{2r^{2}} \right)$$

$$\vec{E} = \frac{q}{4\pi\varepsilon_{0}} \left( \frac{\vec{r}_{+}}{r_{+}^{3}} - \frac{\vec{r}_{-}}{r_{-}^{3}} \right)$$

$$\vec{E} = \frac{q}{4\pi\varepsilon_{0}r^{3}} \left[ \vec{r}_{+} - \vec{r}_{-} + (\vec{r}_{+} + \vec{r}_{-}) \frac{3}{2} \frac{\vec{r} \cdot \vec{l}}{r^{2}} \right]$$

$$\vec{r}_{-} + \vec{r}_{-} = -\vec{l}$$

$$\vec{r}_{+} + \vec{r}_{-} = 2\vec{r}$$

#### 电偶极子电场

$$\vec{E} = \frac{1}{4\pi \varepsilon_0 r^3} \left[ -\vec{p} + 3(\hat{r} \cdot \vec{p})\hat{r} \right]$$



$$\vec{E} = \frac{2p}{4\pi\varepsilon_0 r^3}$$

❖ 垂直连线上

$$\vec{E} = \frac{-\vec{p}}{4\pi\varepsilon_0 r^3}$$

# 电偶极子的电场



# 4 电荷连续分布的带电线



#### 线电荷密度

$$\lambda = \frac{dq}{dl}$$

#### 场强叠加原理

$$\vec{E} = \int_{(q)} \frac{1}{4\pi\varepsilon_0} \frac{\lambda dl}{r^2} \hat{r}$$

# 例 均匀带电圆环轴线上的场



解: 在圆环上任取电荷元  $dq = \lambda dl$ 

$$d\vec{E} = \frac{\lambda dl}{4\pi\varepsilon_0 r^2} \,\hat{r}$$



由对称性分析知,垂直z轴的场强为0

$$ec{E}=E_z\hat{z}$$



$$E = E_z = \int_{(q)} \frac{\lambda dl}{4\pi\varepsilon_0 r^2} \cos\theta$$

$$= \frac{\lambda \cos \theta}{4\pi \varepsilon_0 r^2} \int_{(q)} dl$$



$$E = \frac{zQ}{4\pi\varepsilon_0 \left(z^2 + R^2\right)^{3/2}}$$

若 
$$z \gg R$$
  $E = \frac{Q}{4\pi\varepsilon_0 z^2}$  点电荷

# 5 电荷连续分布的带电面



# 面电荷密度

$$\sigma = \frac{dq}{dS}$$

#### 场强叠加原理

$$\vec{E} = \int_{(q)} \frac{1}{4\pi\varepsilon_0} \frac{\sigma dS}{r^2} \hat{r}$$

# 例均匀带电环面中轴线上场强





#### 由对称性可知电场方向沿z轴方向

$$\vec{E} = \int d\vec{E}_z + \int d\vec{E}_\perp$$

$$dE_z = \frac{dq}{4\pi\varepsilon_0 r^2} \cos\theta = \frac{zdq}{4\pi\varepsilon_0 r^3}$$



$$E_{z}=\int\limits_{0}^{2\pi}\int\limits_{R_{1}}^{R_{2}}rac{z\sigma r_{\perp}darphi dr_{\perp}}{4\piarepsilon_{0}\left(z^{2}+r_{\perp}^{2}
ight)^{3/2}}$$

$$=\frac{z\sigma}{2\varepsilon_0}\left(\frac{1}{\sqrt{z^2+R_1^2}}-\frac{1}{\sqrt{z^2+R_2^2}}\right)$$

讨论: 
$$E_z = \frac{\sigma z}{2\varepsilon_0} \left[ \frac{1}{\sqrt{z^2 + R_1^2}} - \frac{1}{\sqrt{z^2 + R_2^2}} \right]$$

- ① 量纲正确;
- $② \diamondsuit z >> R_2,$

$$\frac{1}{\sqrt{z^2 + R^2}} = \frac{1}{z\sqrt{1 + R^2/z^2}} = \frac{1}{z}(1 + \frac{R^2}{z^2})^{-\frac{1}{2}} \approx \frac{1}{z}(1 - \frac{R^2}{2z^2})$$

$$E_z \approx \frac{\sigma}{2\varepsilon_0} \cdot \frac{R_2^2 - R_1^2}{2z^2} = \frac{q}{4\pi\varepsilon_0 z^2} , \quad$$
**合理。**

### 点电荷电场

③ E的分布:



④  $R_1 \rightarrow 0$ ,  $R_2 \rightarrow \infty$ ,此为均匀带电无限大平面:

$$egin{array}{c} \sigma \ \hline rac{\sigma}{2arepsilon_0} & rac{\sigma}{2arepsilon_0} \end{array}$$

$$E = |E_x| = \frac{\sigma}{2\varepsilon_0}$$

 $R_1 \rightarrow 0$ ,  $R_2 = R$  ,此为均匀带电圆盘情形:



$$E_z = \frac{\sigma z}{2\varepsilon_0} \left[ \frac{1}{|z|} - \frac{1}{\sqrt{z^2 + R^2}} \right]$$

$$= \frac{\sigma}{2\varepsilon_0} \cdot \frac{z}{|z|} \left( 1 - \frac{|z|}{\sqrt{z^2 + R^2}} \right)$$



(a)z轴上E=?



挖一圆孔的无 限大均匀带电 平面

(b) z >> 电荷线度处, E 有何特点?



# 6 电荷连续分布的带电体



## 体电荷密度

$$\rho = \frac{dq}{dV}$$

#### 场强叠加原理

$$\vec{E} = \int_{(q)} \frac{1}{4\pi\varepsilon_0} \frac{\rho dV}{r^2} \hat{r}$$

# 例均匀带电环柱轴线上的场强



$$\vec{E} = \vec{E}_z + \vec{E}_\perp$$

$$ec{E}=E_z\hat{z}$$



$$r = \left[ (z - z')^2 + r_{\perp}^2 \right]^{1/2}$$

$$dE_z = \frac{1}{4\pi\varepsilon_0} \frac{\rho dV}{r^2} \cos \theta$$
$$= \frac{1}{4\pi\varepsilon_0} \frac{(z - z')\rho dV}{\left[(z - z')^2 + r_\perp^2\right]^{3/2}}$$



# 场强叠加原理

$$E_{z} = \iiint\limits_{\substack{r_{\perp}\{R_{1}\rightarrow R_{2}\}\\ \varphi\{0\rightarrow 2\pi\}\\ z'\{-L,0\}}} \frac{1}{4\pi\varepsilon_{0}} \frac{(z-z')\rho \ r_{\perp}dr_{\perp}d\varphi dz'}{\left[r_{\perp}^{2}+(z-z')^{2}\right]^{3/2}}$$

$$E_z = \frac{\rho}{2\varepsilon_o} \left[ \sqrt{(z+L)^2 + R_1^2} - \sqrt{(z+L)^2 + R_2^2} - \sqrt{z^2 + R_1^2} - \sqrt{z^2 + R_2^2} \right]$$

$$L \to 0$$

$$E_z = \frac{\rho L z}{2\varepsilon_0} \left[ \frac{1}{\sqrt{z^2 + R_1^2}} - \frac{1}{\sqrt{z^2 + R_2^2}} \right]$$

#### 1.5 电通量(electric flux)





$$d\vec{S} = \hat{n}dS$$

类比流体场





 $\Delta t$  时间通过  $dS_{\perp}$  的流体体积  $v\Delta tdS_{\perp}$ 

通量 
$$vdS_{\perp} = \vec{v} \cdot d\vec{S}$$

电通量  $d\phi = \vec{E} \cdot d\vec{S}$ 

#### 通过任意曲面的电通量

把曲面分成许多个面积元,每一面元处视为匀强电场



$$\phi = \sum_{i} \vec{E}_{i} \cdot d\vec{S}_{i} \equiv \iint_{S} \vec{E} \cdot d\vec{S}$$

#### ❖ 通过闭合面的电通量



# 面元方向: 闭合面内指向面外

$$\phi = \sum_{i} \vec{E}_{i} \cdot d\vec{S}_{i} = \bigoplus_{S} \vec{E} \cdot \hat{n}dS$$

# 立体角\*

# 平面角

$$d\theta = \frac{dl}{r}$$

$$d\theta = \frac{dl\cos\varphi}{r}$$





# 立体角



$$d\Omega = \frac{dS}{r^2}$$



$$d\Omega = \frac{dS\cos\varphi}{r^2} = \frac{\hat{r}\cdot\hat{n}dS}{r^2} = \frac{\hat{r}\cdot d\vec{S}}{r^2}$$

# 闭合曲面所张的立体角





闭合曲面外一点:  $\Omega = 0$ 

闭合曲面内一点:  $\Omega = \iint \frac{dS_0}{r_0^2} = 4\pi$ 

#### 1.6 静电场的高斯定律证明\*

在真空中的静电场内,任一闭合面的电通量等于这闭合面所包围的电量的代数和除以 $\mathcal{E}_0$ 

$$\oiint_{S} ec{E} \cdot dec{S} = rac{\sum_{i} q_{i 
ightarrow i}}{\mathcal{E}_{0}}$$

#### 闭合面包围一点电荷



#### 点电荷在面元处的场强为

$$\vec{E} = \frac{q}{4\pi\varepsilon_0 r^2} \hat{r}$$

$$\vec{E} \cdot \hat{n}dS = \frac{q}{4\pi\varepsilon_0 r^2} \hat{r} \cdot \hat{n}dS = \frac{q}{4\pi\varepsilon_0} d\Omega$$

$$\iint_{S} \vec{E} \cdot \hat{n} dS = \frac{q}{4\pi\varepsilon_{0}} \iint_{S} d\Omega = \frac{q}{\varepsilon_{0}}$$

# 点电荷在闭合面外



$$\iint_{S} \vec{E} \cdot \hat{n}dS = \frac{q}{4\pi\varepsilon_{0}} \iint_{S} d\Omega = 0$$

点电荷q在曲面外

点电荷q在曲面内

$$\iint_{S} \vec{E} \cdot \hat{n} dS = \frac{q_{(S \text{ 曲面内电荷})}}{\mathcal{E}_{0}}$$

# 多个点电荷电场 叠加原理

$$\iint_{S} \vec{E} \cdot \hat{n}dS = \frac{\sum_{i} q_{|A|i}}{\varepsilon_{0}}$$
 连续分布 
$$\iiint_{V} \rho dV$$
 
$$\varepsilon_{0}$$

# 1.7 高斯定律和电场线

- 1. 闭合面内、外电荷对 $\vec{E}$ 都有贡献
- 2. 静电场性质的基本方程 有源场

3. 微分形式 
$$\nabla \cdot \vec{E} = \frac{1}{\varepsilon_0} \rho$$

#### 电场线(电力线)

用一族空间曲线形象描述场强分布,把这些曲线称为电场线(electric field line)或电力线 (electric line of force)



#### 1. 约定

方向: 力线上每一点的切线方向

大小:密度正比于该点电场强度

## 电场线的性质

1) 电场线起始于正电荷(或无穷远处),终止于负电荷,不会在没有电荷处中断;

#### (高斯定理)

2) 两条电场线不会相交;

#### (场的单值性)

3) 静电场的电力线不会形成闭合曲线。

#### (静电场环路定理)

## 【演示】

静电摆球 电场激发日光灯起辉 平面电荷的电场线

#### 1.8 高斯定理的应用

电荷的分布具有某种对称性的情况下利用高斯定理解电场比较方便

电场的对称性与电荷分布密切相关

例 均匀带电球面电场



# 球对称



#### 解:

球对称



# 选取合适的高斯面(闭合面)

$$\iint_{S} \vec{E} \cdot d\vec{S} = \iint_{S} EdS = E \iint_{S} dS = E4\pi r^{2}$$

$$=\frac{\sum_i q_i}{\mathcal{E}_0}$$

$$E = \frac{\sum_{i} q_{i}}{4\pi \, \varepsilon_{0} r^{2}}$$



$$E = \frac{\sum_{i} q_{i}}{4\pi\varepsilon_{0}r^{2}} = \begin{cases} 0 & \text{球内} \\ \frac{Q}{4\pi\varepsilon_{0}r^{2}} & \text{球外} \end{cases}$$

# 万有引力情况相似

# 如何理解面内场强为0 ?

#### 过P点作圆锥



#### 则在球面上截出两电荷元

$$dq_1 = \sigma dS_1 \quad dq_2 = \sigma dS_2$$

$$dE_1 = \frac{\sigma dS_1}{4\pi\varepsilon_0 r_1^2} = \frac{\sigma}{4\pi\varepsilon_0} d\Omega$$

$$dE_2 = \frac{\sigma dS_2}{4\pi\varepsilon_0 r_2^2} = \frac{\sigma}{4\pi\varepsilon_0} d\Omega$$

相互抵消

# 均匀带电球面内电场为零与平方反比率密切相关

闭合导体壳内电场为零也是相关的一个结果

由此实验验证库仑定律

$$\propto \frac{1}{r^{2+\varepsilon}}$$

# 例 均匀带电的无限长的直线

线密度 
$$\lambda$$

解: 对称性的分析

# 取合适的高斯面



$$\oint_{S} \vec{E} \cdot d\vec{S} = \iint_{\text{Min}} \vec{E} \cdot d\vec{S} + \iint_{\text{Min}} \vec{E} \cdot d\vec{S}$$

$$=E2\pi rl$$

$$=\frac{\lambda l}{\varepsilon_0}$$

$$E = \frac{\lambda}{2\pi\varepsilon_0 r}$$



# 例 无限大均匀带电平板电场

面电荷密度  $\sigma$ 



解: 对称性的分析

# 取合适的高斯面



# 思考题



半球面上均匀带电, 大圆面上的电场方向?