

COSI 129a

Introduction to Big Data Analysis Fall 2016

Map Reduce

What is MapReduce?

It is a **programming framework** introduced by Google in 2004 to support **scalable** parallel and fault-tolerant computations over large data sets on clusters of computers.

Motivation

- Originally:
 - Web data analysis by Google
- Many others followed later:
 - Scientific data analysis
 - Business data analysis
 - O ...

Google: The Data Challenge

- Jeffrey Dean, Google Fellow, PACT'06 keynote speech:
 - 20+ billion web pages x 20KB = 400 TB
 - One computer can read 30-35 MB/sec from disk
 - ~ 4 months to read the web
 - ~ 1,000 hard drives just to store the web
 - Even more to "do" something with the data
- MapReduce CACM'08 article:
 - 100,000 MR jobs executed in Google every day
 - Total data processed > 20 PB of data per day

What is MapReduce?

It is a **programming framework** introduced by Google in 2004 to support **scalable** parallel and fault-tolerant computations over large data sets on clusters of computers.

What Does Scalable Mean?

- Operationally
 - In the past: "Works even if data does not fit in main memory"
 Now: "Can we make use of 1000s of cheap computers"
- Algorithmically
 - In the past: "If you have N data items, you must do no more than N^m operations": "polynomial time algorithms"
 - Now: "If you have N data items, you must do no more than N^m/k operations, for some large k (k: # machines)
 - Polynomial time algorithms must be parallelized
 - Soon: If you have N data items, you should not do more than N* log(N) operations
 - As data size goes up, you may only get to one pass of the data

Example: Find matching DNA sequences

- Given a set of sequences
 - Find all sequences equal to
 - "GATTACGAATTTA"

DNA sequence ("TACGAAACCCTAT")

Solution 1: Linear Search

"CGATCCGTAAATT" == GATTACGAATTTA NO

- Check one sequence at a time with our search target
- Time: N sequences means N computations
- Algorithmic complexity is order N : O(N)

Solution 2: Binary Search

Sort the sequences and start at the middle

Solution 2: Binary Search

CAAACCCAAATTT < GATTACGAATTTA

- Only 4 comparisons
- N records, log(N) comparisons
- Algorithmic complexity O(log(N)): more scalable

Example: Read Trimming

- Given a set of DNA sequences
- Trim the final n "characters" of each sequence
- Generate a new dataset

DNA sequence ("TACGAAACCCTAT") becomes TACGAAA

Solution 1: Linear Search Again

"TATAGCFFFFFC" becomes TATAGCF

"CGATCCGTAAATT" becomes GATTACG

- Check one sequence at a time
- Algorithmic complexity is fundamentally O(N)
 - We have to read every data item no matter what

Can we do better?

Takes O(N/k), N: # of data items, k: # of machines

Let's formalize this a bit

New Task: Convert TIFF images to PNG

New Task: Find most common word in each document

New Task: Find word frequency in millions of documents

COSI 129a

There is a pattern here....

New Task: Find word frequency across all documents

Task: Word frequency across all documents

- We do not want a bunch of histograms –we want one big histogram
- How can a single computer have access to every occurrence of a given word regardless of the document it appears in?

New Task: Find word frequency across all documents

Task: Word frequency across all documents

Map Reduce Framework

MapReduce in a Nutshell

- Here is the framework in simple terms:
 - Read lots of data.
 - Map: extract something that you care about from each record.
 - Shuffle and sort.
 - Reduce: aggregate, summarize, filter, or transform.
 - Write the results.

Map Reduce Programming Model

- Input/Output: each a set of key/value pairs
- Programmer specifies two functions:

map(in_key, in_value)->list (out_key, intemediate_value)

- Processes input key/value pair
- Produces set of intermediate pairs

reduce(out_key, list (intermediate_pairs))->list (out_value)

- Combines all intermediate values for a particular key
- Produces a set of merged output values (usually just one)

MapReduce in a Nutshell

• Given:

- a very large dataset
- o a well-defined computation to be performed on elements of this dataset (preferably, in a parallel fashion on a large cluster).

MapReduce programming model:

- Just express what you want to compute (map() & reduce()).
- Don't worry about parallelization, fault tolerance, data distribution, load balancing (MapReduce takes care of these).
- What changes from one application to another is the actual computation; the programming structure stays similar.

Distributed Word Count

count: for every word emit "1"

merge: sum the "1"'s of each word

<u>Distributed Word Count – MR Program</u>

 $map(k_1, v_1) \rightarrow list(k_2, v_2)$

reduce $(k_2, list(v_2)) \rightarrow list(v_2)$

```
map (String key, String value):
                                                  reduce (String key, Iterator values):
   // key: document name
                                                      // key: a word
   // value: document contents
                                                      // values: a list of counts
   for each word w in value:
                                                      int result = 0;
          EmitIntermediate(w, 1);
                                                      for each v in values:
                                                            result += v;
                                                      Emit( result);
       "document1", "to be or not to be"
                                        kev = "be"
                                                                   key = "or"
                                                       key = "not"
                                                                               kev = "to"
                  "be", "1"
                                        values = "1". "1"
                                                      values = "1"
                                                                   values = "1"
                                                                               values = "1", "1"
                  "or", "1"
```


Reduce Operation for Word Count

Reduce Abstraction

- Input: intermediate (key₂, (list(value₂))) pairs
- Output: final value(s) for each intermediate key
 - Output: list(value₂)
- Starting pairs are sorted by key
 - So all values with the same key will come one after the other
- Iterator supplies the values for a given key to the Reduce function.

Reduce Operation for Word Count

Anything missing between map and reduce?

Shuffle Phase

- Shuffle phase
 - Groups together all intermediate values associated with the same intermediate key, key₂, and passes them to the Reduce function
 - If we have R reducers, then we partition the intermediate key space into R pieces using a partitioning function
 - E.g., hash(key₂) mod R
- Shuffle function is provided by the MapReduce library

MapReduce Parallelization

- map() functions run in parallel, creating different intermediate values from different input data sets.
- reduce() functions also run in parallel, each working on a different output key.
- All values are processed independently.
- Bottleneck: The reduce phase can't start until the map phase is completely finished.

New Task: Count URL Access Frequency

- Input file with web page requests
 - Log file format: (request_id, webpage_URL)
 - Want to have (URL, count), where count is how many times a URL has been requested in these log files
- How would you do it?
 - o Map:
 - Input (file name, document contents)
 - Output: <webpage URL, "1">
 - o Reduce:
 - Input <URL, list ("1")>
 - Output count of "1" per each URL

Reverse Web-link Graph

- Forward Web-Link Graph
- Nodes represent web pages
- Edges represent links from one page to the other

Reverse Web-link Graph

- Map
 - Input Key: document name, Input Value: document content
 - Output Key: target URL, Output Value: source URL

COSI 129a

Reverse Web-link Graph

Reduce

- In: Key= target URL, Value: list of source URL
- Out: <target, list(sourceURL)>

Page 1 Link to 2

Page 2 Link to 4

Page 3 Link to 2

Page 4 Link to 3

Page 5 Link to 4

(3,4)

(4,5)

New Task: Term Vector Per Host

- Term Vector: <word, frequency> pairs
 - Only most important words (with frequency > x times)
- Input: web pages (URLs) to read from
 - Host: hostname is included in the web page URL
- Output: List of <hostname, term vector>
- Map:
 - In: Key: web page name, Value: web page content
 - Out: Key: Hostname and <term vector>
- Reduce
 - In: Key= hostname, Value: list<term vector>
 - Out: throws out infrequent words and emits <hostname, term vector>

Term Vector Per Host

New Task: Distributed Grep

grep: for every line that includes the pattern return that line (match)

Cat: puts all the matches in the output file

New Task: Social Network Analysis Count Friends

New Task: Matrix Multiplication

1	-2
4	3
-3	-2
0	4

C= A x B A has dimensions L, M B has dimensions, M, N

$$1x 1 + 3*4 + 4*(-3) + (-2)*0 = 1$$

For each (i,k) in output table, sum (A[i,j) * B[j,k]) for all j in 1..M

Matrix Multiplication in Map Reduce

 $C = A \times B$

A has dimensions L, M (2x4)

B has dimensions, M, N (4x2)

1	3	4	-2
6	2	-3	1

1	-2
4	3
-3	-2
0	4

A(1,1) is used to get C(1,1) & C(1,2)A(2,1) is used to get C(2,1) & C(2,2)

B(1,1) is used to get C(1,1) & C(2,1)

B(1,2) is used to get C(1,2) & C(2,1)

Map:

- o for each element (i,j) in A emit ((i,k), A[i,j]) for k in 1..N
- for each element (j,k) in B emit ((i,k), B[j,k]) for i in 1..L

• Reduce:

- Key = (i,k)
- \circ Value = sum_j(A[i,j] * B[j,k])

New Task: Inverted Index

- For each word w, we store all the documents that contain w.
 - Identify each documents by its doc id

```
E.g., "people" -> {doc 1, doc 3, ...}"task" -> {doc 4, doc 1, ...}
```


New Task: Inverted Index

New Task: Distributed Sort

- Input (key, record) pairs: sort by key
- Only need a map function:
 - For each record, emit <key, record> pair
- Reduce function emits all pairs unchanged
- Partition function: sorts the keys across the reducers
 - o [a-c] to partition 1, [d-f] to partition 2, etc
- Pre-processing step: Collect sample of keys to collect info about the distribution of keys
 - Use them to compute split points for the final sorting pass

MR for Sort

