Diagrammatic Semantics for Symmetric Traced Monoidal Categories

George Kaye

04 March 2021

University of Birmingham

What's the point?

We can model compositional processes.

G

$$((t \otimes f \cdot \mathsf{AND}) \otimes f) \cdot \mathsf{OR} \quad \rightsquigarrow \quad (f \otimes f) \cdot \mathsf{OR} \quad \rightsquigarrow \quad f$$

$$(t \otimes f \otimes f) \cdot (\mathsf{AND} \otimes \mathsf{id}_1) \cdot \mathsf{OR} \quad \rightsquigarrow \quad ?$$

$$\mathsf{Tr}^1((\sigma_{1,1} \cdot \mathsf{NOR} \cdot \prec) \otimes \mathsf{id}_1 \cdot \mathsf{id}_1 \otimes (\mathsf{NOR} \cdot \prec) \cdot \sigma_{1,1} \otimes \mathsf{id}_1)$$

Graphical languages for monoidal categories

Categories

Generators

Composition

Categories – identity morphisms

$$id_A : A \rightarrow A \qquad id_B : B \rightarrow B$$

Monoidal categories

Monoidal categories – monoidal unit

$$\mathsf{id}_I:I\to I$$

Monoidal categories – functoriality

We did it - bureaucracy is no more!

Symmetric monoidal categories

Symmetry

$$\sigma_{A,B}: A \otimes B \rightarrow B \otimes A$$

Symmetric monoidal categories – axioms

Naturality

Hexagon

Self-inverse

PROPs

A PROP is a monoidal category where the objects are natural numbers and tensor product is addition.

Free categories

A signature is a set of generators.

$$\{ \prec : 1 \rightarrow 2, \succ : 2 \rightarrow 1 \}$$

We create terms by combining generators.

Bending the wires

All our wires have gone from left to right.

Can we bend them?

We can in a compact closed category.

Bending the wires

Compact closed categories have flexible causality.

In some cases this is bad.

Symmetric traced monoidal categories

The trace is a single atomic action.

Symmetric traced monoidal categories – axioms

Tightening

$$\operatorname{Tr}^X(\operatorname{id}_X\otimes g\cdot f\cdot\operatorname{id}_X\otimes h)=g\cdot\operatorname{Tr}^X(f)\cdot h$$

Yanking

$$\mathsf{Tr}^{X}(\sigma_{X,X})=\mathsf{id}_{X}$$

Symmetric traced monoidal categories – axioms

Superposing

$$\operatorname{Tr}^X(f\otimes\operatorname{id}_A)=\operatorname{Tr}^X(f)\otimes\operatorname{id}_A$$

Exchange

$$\operatorname{Tr}^{Y}(\operatorname{Tr}^{X}(f)) = \operatorname{Tr}^{X}(\operatorname{Tr}^{Y}(\sigma_{Y,X} \otimes \operatorname{id}_{A} \cdot f \cdot \sigma_{X,Y} \otimes \operatorname{id}_{A}))$$

Free traced categories

From here on, we will fix an arbitrary traced PROP $Term_{\Sigma}$, generated freely over some signature Σ .

Adding extra structure

Graphical calculi 'absorb' the painful axioms of categories.

Does this solve all of our problems?

No.

We often work in categories with extra structure.

Adding extra structure

Naturality of Cartesian copy

$$f \cdot \Delta_n = \Delta_n \cdot f \otimes f$$

$$- \boxed{f} - \boxed{\Delta} = - \boxed{\Delta} \boxed{f} - \boxed{f}$$

We need to define our graphs a little more rigorously...

Combinatorial diagrams

String graphs

Hypergraphs

Hypergraphs

Hypergraphs

Labelled hypergraphs

$$\Sigma = \{ \prec \ : \ 1 \ \rightarrow \ 2, \succ \ : \ 2 \ \rightarrow \ 1 \}.$$

Hypergraph morphisms

Bijective maps \Rightarrow isomorphism.

Hypergraphs are not enough

Splitting wires

Interfaces

Interfaced linear hypergraphs

Labelled interfaced linear hypergraphs

Interfaced linear hypergraph morphisms

Bijective maps + preserves interface \Rightarrow isomorphism \equiv .

Soundness and completeness

Soundness

Equal terms
in the category
Isomorphic interpretations
⇒ as hypergraphs

Composition

Monoidal tensor

Symmetry

We can build up larger symmetries by composing symmetries and identities.

The problem with trace

Trace of the identity

$$\operatorname{\mathsf{id}}_A:A o A \qquad \operatorname{\mathsf{Tr}}^A(\operatorname{\mathsf{id}}_A):I o I$$

But...

Homeomorphism

Trace is defined recursively over the number of wires.

Interpreting terms as graphs

We assemble our hypergraphs into a traced PROP $\mathsf{HypTerm}_\Sigma$.

$$[\![-]\!] \; : \; \mathsf{Term}_\Sigma \; \to \; \mathsf{HypTerm}_\Sigma$$

Interpreting terms as graphs

Soundness

Theorem (Soundness)

For any morphism $f,g \in \mathbf{Term}_{\Sigma}$, if f=g under the equational theory of the category, then their interpretations as linear hypergraphs are isomorphic.

Definability

An interfaced linear hypergraph A set of corresponding terms in the category

Stacking

First we set an order \leq on our edges and stack them.

Tracing

Then we trace around all the outputs of the stack:

 $\text{Tr}^3(?\cdot \prec \otimes \succ)$

Shuffling

We then connect everything up:

(Exercise: follow around the wires, make sure this is correct)

Definability

$$\langle\!\langle - \rangle\!\rangle \;:\; \text{HypTerm}_{\Sigma} \;\to\; \text{Term}_{\Sigma}$$

Proposition (Definability)

For every well-formed hypergraph F then $[\![\langle F \rangle \rangle\!]\!] \equiv F$.

Coherence

But we cannot conclude completeness yet!

An interfaced linear
hypergraph
Unique morphism in the
category, up to the
equational theory

Coherence

Fortunately, we just need to show it for swapping two edges.

Proposition (Coherence)

For all orderings of edges \leq_x on a hypergraph F,

$$\langle\!\langle F \rangle\!\rangle_{\leq_1} = \langle\!\langle F \rangle\!\rangle_{\leq_2} = \cdots = \langle\!\langle F \rangle\!\rangle_{\leq_n}$$

Completeness

Theorem (Completeness I)

For any interfaced linear hypergraph H, $[\![\langle H \rangle \rangle]\!] \equiv H$.

Theorem (Completeness II)

For any morphism $f \in \mathbf{Term}_{\Sigma}$, $\langle \langle \llbracket f \rrbracket \rangle \rangle = f$.

Graph rewriting

Rewrite rules

We express extra structure as additional axioms.

These axioms can be expressed as rewrite rules.

Rewrite rules

First let's see how it works with normal hypergraphs.

For a set of axioms $\mathcal{E} \in \text{Term}_{\Sigma}$, we write $[\![\mathcal{E}]\!]$ for their conversion into spans like this.

First we identify a matching morphism.

We also need an explicit morphism to denote the interfaces.

We then compute the pushout complement.

Then we perform a pushout on $C \leftarrow K \rightarrow R$.

We write $G \leadsto_{\|\mathcal{E}\|} H$ if rewriting can be performed in this way.

Adhesive categories

Not all structures are compatible with DPO rewriting.

The framework of adhesive categories is often used to ensure that pushout complements are always unique, if they exist.

Proposition

The category of (vanilla) hypergraphs is adhesive.

Adhesive categories

Unfortunately, \mathbf{LHyp}_{Σ} is not adhesive...

We'll just do the rewriting in Hyp instead!

Trimming

Reinterfacing

Rewrite rule

Generalisation

Can we generalise to arbitrary STMCs?

Just add vertex labels!

Conclusion

We have a sound and complete graphical language for STMCs.

We can reason in STMCs purely graphically.

We can add extra axioms using graph rewrites.

Just formulate the axioms as rewrite rules.

References i

F. Bonchi, F. Gadducci, A. Kissinger, P. Sobociński, and F. Zanasi.

Rewriting modulo symmetric monoidal structure. In 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–10. IEEE, 2016.

H. Ehrig, M. Pfender, and H. J. Schneider. **Graph-grammars: An algebraic approach.**In 14th Annual Symposium on Switching and Automata Theory (swat 1973), pages 167–180. IEEE, 1973.

References ii

M. Hasegawa.

On traced monoidal closed categories.

Mathematical Structures in Computer Science, 19(2):217-244, 2009.

A. Kissinger.

Pictures of processes: Automated graph rewriting for monoidal categories and applications to quantum computing, 2012.

P. Selinger.

A survey of graphical languages for monoidal categories.

In New structures for physics, pages 289-355. Springer, 2010.