Алгоритми та структури даних. Основи алгоритмізації

Додаток 1

Міністерство освіти і науки України
Національний технічний університет України «Київський політехнічний інститут імені
Ігоря Сікорського"
Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження лінійних алгоритмів»

Варіант <u>25</u>

Виконав студент <u>Павленко Микита Андрійович</u>

(шифр, прізвище, ім'я, по батькові)

Перевірив Вечерковська Анастасія Сергіївна

(прізвище, ім'я, по батькові)

Алгоритми та структури даних. Основи алгоритмізації

Лабораторна робота 6 Дослідження складних рекурсивних алгоритмів

Мета - дослідити особливості роботи рекурсивних алгоритмів та набути практичних навичок їх використання під час складання програмних специфікацій підпрограм.

Варіант 25 Завдання

Отримати всі піфагорові трійки натуральних чисел, кожне з яких не перевищує n, тобто всі такі трійки натуральних чисел a, b, c, що a2+b2=c2 ($a \le b \le c \le n$).

1) Постановка задачі

За допомогою підпрограми та рекурсивного процесу знайти всі трійки піфагорових чисел, що не перевищують п.

2) Побудова математичної моделі

Таблиця імен змінних:

Змінна	Тип	Ім'я	Призначення
Границя обчислення	Цілий	n	Вхідні дані
Перше число	Цілий	a	Проміжні дані
піфагорової трійки			
Друге число піфагорової	Цілий	b	Проміжні дані
трійки			
Третє число піфагорової	Цілий	c	Проміжні дані
трійки			

Отже, математичне формулювання задачі зводиться до складання логіки підпрограми, реалізації рекурсії та знаходження з їх допомогою трьох значень, що задовольняють заданим умовам.

3) Псевдокод алгоритму

```
Крок 1:
Ф
```

Функція Recur_a (a, b, c)

Перевірка знайденої трійки чисел

Все функція

початок

Введення **n**

Перебір елементів с, b

кінець

Крок 2:

Функція Recur_a (a, b, c)

Якщо (a > b) то

Return

Все якщо

Якщо (a*a + b*b == c*c) то

Виведення результату

Все якщо

Recur_a(a+1, b, c)

Все функція

початок

Введення **n**

Перебір елементів с, b

кінець

Крок 3:

Функція Recur_a (a, b, c)

Якщо (a > b) то

Return

Все якщо

Якщо
$$(a*a + b*b == c*c)$$
 то

Виведення результату

Все якщо

 $Recur_a(a+1,\,b,\,c)$

Все функція

початок

Введення п

Для \mathbf{c} від 1 до \mathbf{n} повторити

Для \mathbf{b} від 1 до \mathbf{n} повторити

Виклик функції **Recur_a(1, b, c)**

кінець

4) Блок-схема алгоритму

Крок 3

5) Код програми

Робота з прикладом n = 10

```
    Консоль отладки Microsoft Visual Studio
    Enter the edge (n)
    10
    3 4 5
    6 8 10
```

Робота з прикладом n = 20

```
Консоль отладки Microsoft Visual Studio
Enter the edge (n)
20
3 4 5
6 8 10
5 12 13
9 12 15
8 15 17
12 16 20
```

5) Випробування алгоритму

Блок	Дія
	Початок
1	Введення: n = 10

2	c = 1
	b = 1
	a = 1
3	(a > b) == false
	$(\mathbf{a}^*\mathbf{a} + \mathbf{b}^*\mathbf{b} == \mathbf{c}^*\mathbf{c}) == \text{false}$
	$\mathbf{a} = 2$
4	$(\mathbf{a} > \mathbf{b}) == \text{true}$
5	c = 2
	$\mathbf{b} = 1$
	a = 1
6	(a > b) == false
	(a*a + b*b == c*c) == false
	$\mathbf{a} = 2$
7	(a > b) == true
8	$\mathbf{b} = 2$
	$\mathbf{a} = 1$
9	(a > b) == false
	(a*a + b*b == c*c) == false
	$\mathbf{a} = 2$
10	(a > b) == false
	(a*a + b*b == c*c) == false
	$\mathbf{a} = 3$
11	(a > b) == true
•••	•••
13	c = 5
	$\mathbf{b} = 4$
	a = 3
14	(a > b) == false
	(a*a + b*b == c*c) == true
15	Вивід: 3 4 5
	•••

16	c = 10 b = 8 a = 6
17	(a > b) == false (a*a + b*b == c*c) == true
18	Вивід: 6 8 10
	Кінець

Блок	Дія
	Початок
1	Введення: 15
2	Виведення: 3 4 5
	6 8 10
	5 12 13
	9 12 15
	Кінець

Блок	Дія
	Початок
1	Введення: 20
2	Виведення: 3 4 5
	6 8 10
	5 12 13
	9 12 15
	8 15 17
	12 16 20
	Кінець

6) Висновки

Я дослідив особливості роботи рекурсивних алгоритмів та набув практичних навичок їх використання під час складання програмних специфікацій підпрограм. Успішно виконав поставлену задачу.