Задача A. Dynamic LCA

Имя входного файла: dynamic.in Имя выходного файла: dynamic.out Ограничение по времени: 5 секунд Ограничение по памяти: 256 мегабайт

Постановка задачи о наименьшем общем предке такова: дано дерево T с выделенным корнем и две вершины u и v, lca(u,v) — вершина с максимальной глубиной, которая является предком и u, и v. С помощью операции chroot(u) мы можем менять корень дерева, достаточно отметить u, как новый корень, и направить ребра вдоль пути от корня. Наименьшие общие предки вершин поменяются соответствующе.

Вам дано дерево T. Изначально корень этого дерева — вершина 1. Напишите программу, которая поддерживает эти две операции: lca(u, v) и chroot(u).

Формат входных данных

Входной файл состоит из нескольких тестов.

Первая строка каждого теста содержит натуральное число n — количество вершин в дереве $(1 \leqslant n \leqslant 100\,000)$. Следующие n-1 строк содержат по 2 натуральных числа и описывают ребра дерева. Далее идет строка с единственным натуральным числом m — число операций. Следующие m строк содержат операции. Строка ? u v означает операцию lca(u,v), а строка ! u — chroot(u). Последняя строка содержит число 0.

Сумма n для всех тестов не превосходит 100 000. Сумма m для всех тестов не превосходит 200 000.

Формат выходных данных

Для каждой операции ? u v выведите значение lca(u, v). Числа разделяйте переводами строк.

dynamic.in	dynamic.out
9	2
1 2	1
1 3	3
2 4	6
2 5	2
3 6	3
3 7	6
6 8	2
6 9	
10	
? 4 5	
? 5 6	
? 8 7	
! 6	
? 8 7	
? 4 5	
? 4 7	
? 5 9	
! 2	
? 4 3	
0	

Задача В. Декомпозиция

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.6 секунд Ограничение по памяти: 256 мегабайт

Рассмотрим дерево T. Назовем деревом декомпозиции корневое дерево D(T). Выберем любую из вершин дерева T, назовем ее r. Рассмотрим все компоненты связности дерева T, после удаления вершины r: S_1, S_2, \ldots, S_k . Тогда корнем D(T) будет вершина r, а детьми r в D(T) будут $D(S_1), D(S_2), \ldots, D(S_k)$.

Вам дано дерево T. Найдите дерево декомпозиции высоты не более 20. Высота дерева — максимальное число вершин в пути от корня до какой-то вершины.

Формат входных данных

Первая строка содержит $n \ (1 \leqslant 2 \cdot 10^5)$ — количество вершин дерева.

Следующие n-1 строк содержат пары чисел $u_i, v_i \ (1 \le u_i, v_i \le n)$, описывающие рёбра дерева.

Формат выходных данных

Выведите n чисел, где i-е — родитель вершины i в дереве декомпозиции. Если вершина — корень, выведите 0.

стандартный ввод	стандартный вывод
3	2 0 2
1 2	
2 3	
9	0 1 2 2 1 1 6 6 8
3 2	
4 2	
1 2	
5 1	
1 6	
7 6	
6 8	
8 9	

Задача С. Красим дерево

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.6 секунд Ограничение по памяти: 256 мегабайт

Дано взвешенное дерево. Вам необходимо выполнять 2 типа запросов:

- «1 v d c» покрасить все вершины на расстоянии не более d от v в цвет c. Изначально все вершины имеют цвет 0.
- «2 v» вывести цвет вершины v.

Формат входных данных

Первая строка содержит целое число $n\ (1\leqslant n\leqslant 10^5)$ — количество вершин в дереве.

Следующие n-1 содержат тройки чисел u_i, v_i, w_i ($1 \le u_i, v_i \le n, 1 \le w_i \le 10^4$). i-е ребро соединяет вершины u_i, v_i и имеет вес w_i .

В следующей строке содержится количество запросов q ($1 \le q \le 10^5$).

Каждая из следующих q строк содержит запрос какого-то типа:

- 1 v d c $(1 \le v \le n, 0 \le d \le 10^9, 0 \le c \le 10^9)$.
- $2 v (1 \leq v \leq n)$.

Формат выходных данных

Для каждого запроса второго типа выведите ответ на него.

стандартный ввод	стандартный вывод
2	20
1 2 1	10
4	
1 1 1 10	
1 1 0 20	
2 1	
2 2	
5	6
1 2 30	6
1 3 50	0
3 4 70	5
3 5 60	7
8	
1 3 72 6	
2 5	
1 4 60 5	
2 3	
2 2	
1 2 144 7	
2 4	
2 5	

Задача D. Найти ближайшую

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Дано дерево из n вершин, цвет i-й вершины равен a_i . Необходимо обработать q запросов (v_i, c_i) : найти расстояние от v_i до ближайшей вершины цвета c_i . Расстояние между вершинами — минимальное количество рёбер в пути между ними.

Формат входных данных

Первая строка содержит n ($1 \le n \le 10^5$).

Следующая строка содержит n-1 число $p_1, \ldots p_{n-1}$ $(0 \le p_i < i)$. p_i — отец вершины i.

Следующая строка содержит числа $a_1, \ldots, a_n \ (0 \leqslant a_i < n)$.

Следующая строка содержит число q ($1 \le q \le 10^5$).

Следующие q строк содержат числа v_i , c_i $(0 \le v_i < n, 0 \le c_i < n)$.

Формат выходных данных

Для каждого запроса выведите расстояние до ближайшей вершины требуемого цвета, или -1, если такой нет.

стандартный ввод	стандартный вывод
5	0 1 2 -1 2 1 2 1 1
0 1 1 3	
1 2 3 2 1	
9	
0 1	
0 2	
0 3	
1 0	
2 1	
2 2	
3 3	
3 1	
4 2	

Задача Е. Дерево

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1.5 секунд Ограничение по памяти: 256 мегабайт

Дано дерево из n вершин и q запросов.

Каждый запрос начинается с трех целых чисел k, m и r, и продолжается k вершинами дерева a_1, a_2, \ldots, a_k . Чтобы ответить на запрос, предположите, что дерево подвешено за вершину r. Рассмотрим разбиения данных k вершин на **не более чем** m групп так, что выполняются следующие условия:

- Каждая вершина принадлежит ровно одной группе, каждая группа содержит хотя бы одну вершину.
- Ни в одной группе нет двух вершин таких, что одна является предком (не обязательно непосредственным) другой.

Выведите количество различных таких разбиений по модулю $10^9 + 7$ для каждого запроса.

Формат входных данных

Первая строка содержит два целых числа n и q $(1 \le n, q \le 10^5)$ — количество вершин в дереве и количество запросов, соответственно.

Каждая из следующих n-1 вершин содержит два целых числа u и v ($1 \le u, v \le n, u \ne v$), обозначающие ребро между вершинами u и v. Гарантируется, что данный граф является деревом.

Каждая из следующих q строк начинается с трех целых чисел k, m и r $(1 \le k, r \le n, 1 \le m \le min(300, k))$ — количество вершин, максимальный размер группы и корень дерева для данного запроса, соответственно. После этого следуют k различных целых чисел a_1, a_2, \ldots, a_k $(1 \le a_i \le n)$ — вершины текущего запроса.

Гарантируется, что сумма значений k по всем запросам не превосходит 10^5 .

Формат выходных данных

Выведите q строк, где i-я строка содержит ответ на i-й запрос.

Примеры

стандартный ввод	стандартный вывод
7 2	2
5 4	0
2 6	
5 3	
1 2	
7 5	
4 6	
3 3 2 7 4 3	
3 1 4 6 2 1	
7 2	1
4 7	1
2 5	
4 1	
5 1	
5 6	
4 3	
3 3 2 7 1 4	
2 1 6 3 2	
5 2	2
3 5	1
4 5	
4 2	
1 4	
2 2 3 1 2	
2 2 4 5 4	

Замечание

Рассмотрим первый пример.

В первом запросе нужно разделить три данные вершины (7, 4 и 3) на не более чем три группы, считая, что корнем дерева является вершина 2. Когда дерево подвешено за вершину 2, вершина 4 является предком вершин 3 и 7. Поэтому нельзя все вершины отнести к одной группе. Есть только 1 способ разделить эти вершины на две группы: [4] и [3, 7]. Кроме того, есть один способ разделить данные вершины на три группы: [7], [4] и [3]. Таким образом, есть всего 2 способа разбить данные вершины на не более чем три группы.

Во втором запросе дерево подвешено за вершину 4, при этом 6 является предком 2, а 2 является предком 1. Поэтому нельзя все вершины отнести к одной группе.

Задача F. Гоша и праздники

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 4 секунды Ограничение по памяти: 512 мегабайт

Как известно, жители планеты Иннополис — очень педантичные люди. И даже когда дело касается праздников, они всегда хотят быть уверенными в том, что все пройдёт как по маслу. Так, расписание празднований всех событий на этой планете составлено почти на три миллиона лет вперёд! Гоша — большой любитель праздников. Он решил прилететь в какой-то из городов планеты Иннополис и посетить как можно больше праздников.

На планете Иннополис n городов, соединённых n-1 двунаправленными дорогами так, что из любого города планеты можно добраться до любого другого, возможно, посещая другие города. Каждое событие на Иннополисе характеризуется номером города c_i , в котором оно будет отпраздновано, и номером дня d_i , в который его будут праздновать.

Гоша настолько везучий человек, что день его прибытия на планету имеет номер 0 в календаре планеты Иннополис, причём исходно он может прилететь в любой город планеты. Гоша решил узнать, какое максимальное количество праздников он может посетить на этой планете. Для этого он обратился за помощью к вам.

Формат входных данных

В первой строке входного файла задано одно число n ($n \ge 1$) — количество городов Иннополиса. В следующих n-1 строках заданы описания дорог, каждая дорога задается числами a_i , b_i и l_i ($1 \le a_i, b_i, \le n$; $l_i \ge 1$) — номера городов, которые соединяет дорога и число дней, необходимых на ее преодоление.

В следующей строке задано число $m\ (m\geqslant 1)$ — число праздников на планете.

В следующих m строках заданы пары чисел c_i и d_i $(1 \leqslant c_i \leqslant n; d_i \geqslant 1)$ — номер города и номер дня, в который пройдёт i-й праздник.

Ограничения: $n \leq 2 \cdot 10^5$, $m \leq 2 \cdot 10^5$, $l_i \leq 10^9$, $d_i \leq 10^9$.

Формат выходных данных

В единственной строке выходного файла выведите одно число — максимальное количество праздников, которое может посетить Γ оша.

стандартный ввод	стандартный вывод
4	3
1 2 1	
2 3 1	
2 4 3	
4	
1 3	
2 4	
3 1	
4 5	
	0
11	8
2 1 2	
3 2 5	
4 1 5	
5 2 4	
6 5 1	
7 1 2	
8 3 4	
9 6 2	
10 7 2	
11 2 2	
9	
1 67	
1 34	
11 16	
5 97	
4 70	
2 20	
2 61	
2 26	
2 70	
10	8
2 1 1	
3 2 4	
4 2 4	
5 3 2	
6 4 5	
7 5 4	
8 3 1	
9 6 2	
10 7 5	
9	
7 34	
10 82	
2 48	
3 66	
8 98	
2 66 3 3	
8 59	
5 22	
0 22	

Задача G. В бухгалтерии опять всё перепутали

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Лупа и Пупа пошли получать зарплату. Но в бухгалтерии опять всё перепутали. Лупа получил зарплату за Пупу, а Пупа . . .

Пупа не хочет получать заЛупу и хочет доказать бухгалтерии, что она не права.

Пупа работает в крупной компании «MST Inc.», занимающейся информационным сопровождением «Всеберляндской олимпиады школьников по информатике». В компании «MST Inc.» работает n сотрудников, причём у каждого из них, кроме самой «MST», есть ровно один непосредственный начальник и несколько (возможно ноль) непосредственных подчинённых.

Всеми начальниками сотрудника компании «MST Inc.» называется множество, состоящее из его непосредственного начальника и множества начальников его непосредственного начальника. Известно, что у каждого сотрудника кроме самой «MST», «MST» входит в множество начальников этого сотрудника.

Множеством подчинённых у сотрудника называется множество, состоящее из него самого и множеств подчинённых у всех непосредственных подчинённых данного сотрудника. В частности, все сотрудники входят в множество подчинённых у «МST».

Каждый месяц каждому сотруднику начисляется зарплата, причём немаленькая, ведь иначе ни один сотрудник не согласился бы работать с «МЅТ». Известно, что в нулевой месяц работы организации, каждому сотруднику заплатили по c_i бурлей. В качестве поощрения сотрудников «МЅТ» придумала следующее правило: В каждый из следующих m месяцев берётся сотрудник с номером a_i и берётся число s_i — сумма зарплат всех сотрудников во множестве его начальников и подчинённых (включая его самого). Если это число оказывалось слишком большим, s_i берётся по модулю $10^9 + 7$. После этого берётся сотрудник с номером b_i , и к зарплате всех сотрудников, входящих во множество его начальников и подчинённых (включая его самого) прибавляется число s_i . С учётом этого изменения платится зарплата в i-й месяц и пересчитывается зарплата в следующие месяцы.

Вернёмся к Пупе. Пупа хочет показать бухгалтерии компании «MST Inc.» что она всё перепутала, а для этого ему надо узнать, сколько же ему должны были заплатить в каждый из месяцев с нулевого по m-й. К сожалению, в гениальной системе поощрения, разработанной «MST», не может разобраться никто. Поэтому эту задачу поручили вам.

Формат входных данных

В первой строке входных данных даны 2 числа n и m ($1 \le n, m \le 10^5$) — число сотрудников компании «MST Inc.» и последний день, когда выплачивалась зарплата Пупе.

Во второй строке записано n-1 число. i-е из них — номер непосредственного начальника сотрудника номер i (i принимает значения от 1 до n-1). При этом «MST» имеет номер 0 и не имеет непосредственного начальника. Пупа имеет номер n-1.

В третьей строке записано n чисел c_i ($1 \leqslant c_i \leqslant 10^9$) — зарплата i-го сотрудника в нулевой день.

В каждой из следующих m строк записано по 2 числа a_i и b_i ($0 \le a_i, b_i \le n-1$) — номер человека, на основе которого происходит поощрение и номер человека, к подчинённым и начальникам которого поощрение применяется (более подробно описано в условии).

Формат выходных данных

В единственной строке выведите m+1 число — зарплату Пупы в каждый из дней с 0-го по m-й. Напоминаем, что Пупа имеет номер n-1. Обратите внимание, что зарплата **не считается** по модулю 10^9+7 .

Tinkoff Generation 2019-2020. А. СПБ. Структуры данных на деревьях Санкт-Петербург, Дом, 2 мая 2020

Примеры

стандартный ввод	стандартный вывод
3 3	1 4 4 28
0 0	
1 1 1	
0 0	
2 1	
1 2	
4 3	0 1 6 20
0 1 1	
0 1 0 0	
0 1	
1 3	
2 3	

Замечание

Пояснение к первому примеру:

В первый день к зарплате каждого сотрудника прибавилось 3 бурля и зарплаты стали соответственно 4,4,4.

Во второй день к зарплате сотрудников с номерами 0,1 прибавилось по 8 бурлей и зарплаты стали соответственно 12,12,4.

Во третий день к зарплате сотрудников с номерами 0,2 прибавилось по 24 бурля и зарплаты стали соответственно 36,12,28.

Задача Н. Количество путей

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 5 секунд Ограничение по памяти: 256 мегабайт

Дано дерево из n вершин. Для каждого $d=1\dots n-1$ найдите количество путей длины d.

Формат входных данных

Первая строка содержит n $(1 \le n \le 50000)$ — количество вершин. Следующие n-1 строк содержат пары чисел u_i, v_i $(1 \le u_i, v_i \le n)$, описывающие рёбра дерева.

Формат выходных данных

Выведите n-1 число, где i-е — количество путей длины i.

стандартный ввод	стандартный вывод
3	2
1 2	1
2 3	

Задача І. Древландия

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1.5 секунд Ограничение по памяти: 512 мегабайт

В древландии есть города, и первый город — cmonuqa. Города соединены автобусными маршрутами так, что для города $i \neq 1$ есть автобус, который идёт оттуда в город p_i ($p_i < i$), именно в таком направлении.

В стране есть национальные блюда. Каждый город имеет своё специальное блюдо, оно и только оно может быть куплено там. Тип специального блюда для каждого города — один из типов национальных блюд.

Несколько друзей из нескольких городов хотят встретиться в одном городе для вечеринки. Они выбирают город такой, что, если они одновременно начнут туда идти, они встретятся там быстро, как только возможно. Путешествие на автобусе требует 1 единицу времени.

Они хотят купить некоторые блюда для вечеринки, соблюдая следующие требования:

- 1. Каждый друг должен купить одно и то же количество блюд.
- 2. Не должно быть двух блюд одного типа на вечеринке.
- 3. Каждый друг может купить только блюда, соответствующие городам, которые он посетил.

Для заданных запросов, найдите максимальное количество блюд, которое может быть на вечеринке.

Формат входных данных

Первая строка содержит три числа n, m, q.

- n количество городов
- т количество типов национальных групп
- \bullet q количество запросов

Вторая строка содержит n-1 чисел p_2, \ldots, p_n , описывающие автобусные маршруты.

Третья строка содержит n чисел a_1, \ldots, a_n , описывающие типы блюд, продающиеся в соответсвующих городах.

Следующие строки содержат описания запросов. Каждый запрос описывается в следующем формате: число c, обозначающее количество друзей, а затем c чисел $v_1, \ldots v_c$. Пусть ответ на предыдущий ответ равен X (для первого запроса X=0). Тогда друзья находятся в вершинах $(v_1-1+X) \bmod n+1,\ldots,(v_c-1+X) \bmod n+1$.

Не гарантируется, что для конкретного запроса все v_i различны.

- $2 \le n \le 3 \cdot 10^5$
- $1 \le m \le 1000$
- $1 \leqslant q \leqslant 5 \cdot 10^4$
- $1 \leqslant p_i < i$
- $1 \leqslant a_i \leqslant m$
- $2 \leqslant c \leqslant 5$
- $1 \leqslant v_i \leqslant n$

Формат выходных данных

Выведите q строк, i-я из которых — ответ на i-й запрос.

стандартный ввод	стандартный вывод
5 3 4	2
1 2 2 1	0
2 3 1 3 1	0
2 3 4	0
3 5 2 2	
4 3 4 2 5	
2 2 2	
11 6 3	6
1 2 2 4 5 4 5 8 9 4	4
5 6 1 1 2 3 2 3 4 5 2	2
3 3 10 8	
4 6 5 10 10	
2 9 6	