Markov Decision Process

Hwanjo Yu POSTECH

http://di.postech.ac.kr/hwanjoyu

So far: search problems

Uncertainty in the real world

Applications

- Robotics: decide where to move, but actuators can fail, hit unseen obstacles, etc.
- Resource allocation: decide what to produce, don't know the customer demand for various products
- Agriculture: decide what to plant, but don't know weather and thus crop yield

Volcano crossing

Roadmap

MDP modeling

Policy evaluation

Policy iteration

Value iteration

Dice game

Example: dice game

- For each round r = 1, 2, ...
 - You choose stay or quit.
 - If quit, you get \$10 and we end the game.
 - If stay, you get \$4 and then I roll a 6-sided dice.
 - If the dice results in 1 or 2, we end the game.
 - Otherwise, continue to the next round.

Rewards

If follow policy "quit":

Expected utility:

$$1(10) = 10$$

Rewards

If follow policy "stay":

total rewards (utility)

Expected utility:

$$4 + \frac{2}{3}(4) + \frac{2}{3} \cdot \frac{2}{3}(4) + \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3}(4) + \dots = 12$$

MDP for dice game

Example: dice game

- For each round r = 1, 2, ...
 - you choose stay or quit.
 - If quit, you get \$10 and we end the game.
 - If stay, you get \$4 and then I roll a 6-sided dice.
 - If the dice results in 1 or 2, we end the game.
 - Otherwise, continue to the next round.

Markov Decision Process (MDP)

Definition: Markov Decision Process

- States: the set of states
- $s_{\text{start}} \in \text{States}$: starting state
- Actions(s): possible actions from state s
- T(s, a, s'): probability of s' if take action a in state s
- Reward(s, a, s'): reward for the transition (s, a, s')
- IsEnd(s): whether s is an end of game
- $0 \le \gamma \le 1$: discount factor (default: 1)

Search problems

Definition: search problem

- States: the set of states
- $s_{\text{start}} \in \text{States}$: starting state
- Actions(s): possible actions from state s
- Succ(s, a): where we end up if take action a in state s
- Cost(s, a) : cost for taking action a in state s
- IsEnd(s): whether s is an end of game
- $0 \le \gamma \le 1$: discount factor (default: 1)

Succ
$$(s, a) \Rightarrow T(s, a, s')$$

Cost $(s, a) \Rightarrow \text{Reward}(s, a, s')$

Transitions

Definition: transition probabilities

• The transition probabilities T(s, a, s') specify the probability of ending up in state s' if taken action a in state s.

Example: transition probabilities

```
s a s T(s,a,s')

In quit end 1

In stay in 2/3

In stay end 1/3
```

Probabilities sum to one

Example: transition probabilities

$$s$$
 a s $T(s,a,s')$

In quit end 1

In stay in 2/3

In stay end 1/3

• For each state *s* and action *a*:

$$\sum_{s' \in \text{States}} T(s, a, s') = 1$$

• Successors: s' such that T(s, a, s') > 0

Transportation example

Example: transportation

- Street with blocks numbered 1 to n.
- Walking from s to s + 1 takes 1 minute.
- Taking a magic tram from s to 2s takes 2 minutes.
- How to travel from 1 to n in the least time?
- Tram fails with probability 0.5.

What is a solution?

Search problem: path (sequence of actions)

MDP:

Definition: policy

• A policy π is a mapping from each state $s \in \text{States}$ to an action $a \in \text{Actions}(s)$.

Example: volcano crossing

```
s \pi(s)
```

$$(1,1)$$
 S

$$(2,1)$$
 E

$$(3,1)$$
 N

•••

Roadmap

MDP modeling

Policy evaluation

Policy iteration

Value iteration

Evaluating a policy

Definition: utility

- Following a policy yields a random path (an episode).
- The utility of a policy is the (discounted) sum of the rewards on the path (this is a random quantity). For example of the dice game,

Path	Utility
[in; stay, 4, end]	4
[in; stay, 4, in; stay, 4, in; stay, 4, end]	12
[in; stay, 4, in; stay, 4, end]	8
[in; stay, 4, in; stay, 4, in; stay, 4, in; stay, 4, end]	16

Definition: value (expected utility)

• The value of a policy is the expected utility.

Evaluating a policy: volcano crossing

Value: 3.7

Utility: -50.4

Discounting

Definition: utility

- Path: $s_0a_1r_1s_1a_2r_2s_2$, ... (action, reward, new state).
- The **utility** with discount γ is

$$u_1 = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots$$

- Discount $\gamma = 1$ (save for the future):
 - [stay, stay, stay]: 4 + 4 + 4 + 4 = 16
- Discount $\gamma = 0$ (live in the moment):
 - [stay, stay, stay]: $4 + 0 \cdot (4 + \cdots) = 4$
- Discount $\gamma = 0.5$ (balanced life):
 - [stay, stay, stay]: $4 + \frac{1}{2} \cdot 4 + \frac{1}{4} \cdot 4 + \frac{1}{8} \cdot 4 = 7.5$

Policy evaluation

Definition: value of a policy

• Let $V_{\pi}(s)$ be the expected utility received by following policy π from state s (labeling the state nodes)

Definition: Q-value of a policy

• Let $Q_{\pi}(s, a)$ be the expected utility of taking action a from state s, and then following policy π (labeling the chance nodes)

Policy evaluation

Plan: define recurrences relating value and Q-value

•
$$V_{\pi}(s) = \begin{cases} 0 & \text{If IsEnd}(s) \\ Q_{\pi}(s, \pi(s)) & \text{otherwise.} \end{cases}$$

•
$$Q_{\pi}(s, a) = \sum_{s'} T(s, a, s') [\text{Reward}(s, a, s') + \gamma V_{\pi}(s')]$$

Dice game

Let π be the "stay" policy: $\pi(in) = stay$

•
$$V_{\pi}(\text{end}) = 0$$

•
$$V_{\pi}(\text{in}) = \frac{1}{3} (4 + 1 \cdot V_{\pi}(\text{end})) + \frac{2}{3} (4 + 1 \cdot V_{\pi}(\text{in}))$$

In this case, can solve in closed form:

•
$$V_{\pi}(in) = 12$$

Policy evaluation

Key idea: iterative algorithm

• Start with arbitrary policy values and repeatedly apply recurrences to converge to true values.

Algorithm: policy evaluation

- Initialize $V_{\pi}^{(0)}(s) \leftarrow 0$ for all states s.
- For iteration $t = 1, ..., t_{PE}$:
 - For each state s:

$$V_{\pi}^{(t)}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [\text{Reward}(s, \pi(s), s') + \gamma V_{\pi}^{(t-1)}(s')]$$

Policy evaluation implementation

• How many iterations (t_{PE})? Repeat until values don't change much:

$$\max_{s \in States} |V_{\pi}^{(t)}(s) - V_{\pi}^{(t-1)}(s)| \le \epsilon$$

• Don't store $V_{\pi}^{(t)}$ for each iteration t, need only last two:

$$V_{\pi}^{(t)}$$
 and $V_{\pi}^{(t-1)}$

Complexity

Algorithm: policy evaluation

- Initialize $V_{\pi}^{(0)}(s) \leftarrow 0$ for all states s.
- For iteration $t = 1, ..., t_{PE}$:
 - For each state *s*:

$$V_{\pi}^{(t)}(s) \leftarrow \underbrace{\sum_{s'} T(s, \pi(s), s') [\text{Reward}(s, \pi(s), s') + \gamma V_{\pi}^{(t-1)}(s')]}_{O_{\pi}^{(t-1)}(s, \pi(s))}$$

MDP complexity

- S states
- A actions per state
- S' successors (number of S' with T(S, a, S') > 0)

Time: $O(t_{PE}SS')$

Policy evaluation on dice game

Let π be the "stay" policy: $\pi(in) = stay$

•
$$V_{\pi}^{(t)}(\text{end}) = 0$$

•
$$V_{\pi}^{(t)}(\text{in}) = \frac{1}{3}(4 + V_{\pi}^{(t-1)}(\text{end})) + \frac{2}{3}(4 + 1 \cdot V_{\pi}^{(t-1)}(\text{in}))$$

s end in
$$V_{\pi}^{(t)} \quad 0.00 \quad 12.00 \quad (t=100 \text{ iterations})$$

Converges to $V_{\pi}(in) = 12$

Policy evaluation example

- $\pi(s) = "m ove"$
- $T(s, \pi(s), s') = 0.5$ except $T(s_C, \pi(s), s_{End}) = 1$
- Reward $(s, \pi(s), s') = -0.1$ except Reward $(s_C, \pi(s), s_{End}) = 4$

Policy evaluation computation

Summary so far

- MDP: graph with states, chance nodes, transition probabilities, rewards
- Policy: mapping from state to action (solution to MDP)
- Value of policy: expected utility over random paths
- Policy evaluation: iterative algorithm to compute value of policy

Roadmap

MDP modeling

Policy evaluation

Policy iteration

Value iteration

Policy improvement

So far: policy evaluation computes value of a fixed policy π

Goal: improve π to something slightly better π_{new}

Recall: $Q_{\pi}(s,a)$ is the expected utility of first taking action a in state s, and then following π

Algorithm: policy improvement

Input: value of policy V_{π}

Output: new policy π_{new}

- For each state s:
 - Compute $Q_{\pi}(s, a)$ from $V_{\pi}(s)$ for each a
 - $\pi_{\text{new}}(s) = \arg \max_{a \in A \text{ dions } (s)} Q_{\pi}(s, a)$

Policy improvement

Example: dice game

Suppose $\pi(in) = quit$.

Step 1:

- $Q_{\pi}(\text{in, quit}) = 10$
- $Q_{\pi}(\text{in, stay}) = \frac{2}{3}(4+10) + \frac{1}{3}(4+0) \approx 10.67$

Step 2:

• $\pi_{\text{new}}(\text{in}) = \text{stay}$

Policy improvement

Algorithm: policy improvement

Input: value of policy V_{π}

Output: new policy π_{new}

- For each state s:
 - Compute $Q_{\pi}(s, a)$ from $V_{\pi}(s)$ for each a
 - $\pi_{\text{new}}(s) = \arg \max_{a \in A \text{ dions } (s)} Q_{\pi}(s, a)$

MDP complexity

- *S* states
- A actions per state
- S' successors (number of S' with T(S, a, S') > 0)

Time: O(SAS')

Policy iteration

Idea: rinse and repeat

Algorithm: policy iteration

- $\pi \leftarrow$ arbitrary
- For $t = 1, ..., t_{PI}$ (or until π stops changing):
 - Run *policy evaluation* to compute V_{π}
 - Run *policy improvement* to get π_{new}
 - $\pi \leftarrow \pi_{\text{new}}$

Time: $O(t_{PI}(t_{PE}SS' + SAS'))$

Implementation trick: warm start policy evaluation with previous V_{π}

Roadmap

MDP modeling

Policy evaluation

Policy iteration

Value iteration

Optimal value and policy

Goal: try to get directly at maximum expected utility

Definition: optimal value

• The **optimal value** $V_{\mathrm{opt}}(s)$ is the maximum value attained by any policy.

Optimal values and Q-values

Optimal value if take action a in state s:

$$Q_{\text{opt}}(s, a) = \sum_{s'} T(s, a, s') [\text{Reward}(s, a, s') + \gamma V_{\text{opt}}(s')]$$

Optimal value from state *s*:

$$V_{\text{opt}}(s) = \begin{cases} 0 & \text{If IsEnd}(s) \\ \max_{a \in A \text{ dions } (s)} Q_{\text{opt}}(s, a) & \text{otherwise.} \end{cases}$$

Optimal policies

Given $Q_{
m opt}$, read off the optimal policy:

$$\pi_{\text{opt}}(s) = \underset{a \in Ad\text{ions}(s)}{arg \max} Q_{\text{opt}}(s, a)$$

Value iteration

Algorithm: value iteration [Bellman, 1957]

- Initialize $V_{\text{opt}}^{(0)}(s) \leftarrow 0$ for all states s.
- For iteration $t = 1, ..., t_{VI}$:
 - For each state s:

$$V_{\text{opt}}^{(t)}(s) \leftarrow \max_{a \in \text{Actions}} \sum_{(s)} T(s, a, s') [\text{Reward}(s, a, s') + \gamma V_{\text{opt}}^{(t-1)}(s')]$$

$$Q_{\text{opt}}^{(t-1)}(s, a)$$

Time: $O(t_{VI}SAS')$

Value iteration: dice game

```
s end in V_{\mathrm{opt}}^{(t)} \qquad 0.00 \qquad \qquad 12.00 \quad (t=100 \, \mathrm{iterations}) \pi_{\mathrm{opt}}(s) \qquad \text{-} \qquad \mathrm{stay}
```

Convergence

Theorem: convergence

- Suppose either
 - discount γ < 1, or
 - MDP graph is acyclic.
- Then value iteration and policy iteration both converge to the correct answer.

Example: non-convergence

• discount $\gamma = 1$, zero rewards

Summary of algorithms

- Policy evaluation: (MDP, π) $\rightarrow V_{\pi}$
- Policy improvement: (MDP, V_{π}) $\rightarrow \pi_{\text{new}}$
- Policy iteration: MDP $\rightarrow (V_{\text{opt}}, \pi_{\text{opt}})$
- Value iteration: MDP $\rightarrow (V_{\text{opt}}, \pi_{\text{opt}})$

Unifying idea

Algorithms:

- Search DP computes FutureCost(s)
- Policy evaluation computes policy value $V_{\pi}(s)$
- Value iteration computes optimal value $V_{
 m opt}(s)$

Recipe:

- Write down recurrence (e.g., $V_{\pi}(s) = ... V_{\pi}(s')$...)
- Turn into iterative algorithm (replace mathematical equality with assignment operator)

Summary

- Markov decision processes (MDPs) cope with uncertainty
- Solutions are **policies** rather than paths
- Policy evaluation computes policy value (expected utility)
- Policy iteration and value iteration computes optimal value (maximum expected utility) and optimal policy
- Main technique: write recurrences -> algorithm
- Next time: reinforcement learning when we don't know rewards, transition probabilities