

TEORIA DA LIGAÇÃO QUÌMICA FICHA 4

Teoria de Orbitais Moleculares (TOM)

- a) A partir das combinações lineares ligante e anti-ligante das orbitais 1s de dois átomos de Hidrogénio, H_a e H_b, construa o diagrama de orbitais moleculares para o H₂.
 - b) Construa ainda os diagramas para as espécies H_2^+ , He_2 e He_2^+ .
 - c) Determine a ordem de ligação para cada uma das 4 espécies e ordene por ordem crescente de comprimento de ligação.
- 2. A partir do diagrama de orbitais moleculares sem mistura sp, construa um diagrama com mistura sp. Escreva a combinação linear das orbitais atómicas para cada orbital molecular assim formada. Verifique quais as orbitais que:
 - a) se tornam mais ligantes
 - b) se tornam mais anti-ligantes
 - c) permanecem inalteradas
 - d) se tornam menos ligantes
 - e) se tornam menos anti-ligantes.
- 3. a) Construa o diagrama de orbitais moleculares para todas as moléculas diatómicas homonucleares envolvendo os elementos do 2º período.
 - b) Verifique quais as paramagnéticas.
 - c) Explique a razão pela qual existe a molécula de Be₂.
 - d) Compare a diferença de energia entre as orbitais 2s e 2p dos primeiros elementos do 2º período com a respectiva diferença de energia no oxigénio e no flúor. Construa o diagrama de orbitais moleculares para a molécula de O₂ assumindo que não existe mistura sp. Verifique se existem diferenças nas propriedades magnéticas e ordem de ligação que se deduzem através de um diagrama sem mistura, relativamente às que obteria se utilizasse um diagrama com mistura.
 - e) Ordene os comprimentos de ligação para as espécies: O_2 , O_2^+ , O_2^{2+} , e O_2^{2-} .
- 4. a) Compare a diferença de energia entre as orbitais 3s e 3p no átomo de cloro com a respectiva diferença entre as orbitais 2s e 2p no azoto. Diga qual o tipo de diagrama mais adequado para descrever a molécula de Cl₂ e construa-o.
 - b) Determine a ordem de ligação.
 - c) Explique porque razão a distância de ligação na molécula de Cl_2 (1.988 Å) é superior à do ião Cl_2^+ (1.8917 Å).

- 5. A configuração electrónica de estado fundamental do ScO é $3\sigma^1$ e a do ScF $3\sigma^2$. As distâncias de ligação das duas moléculas são respectivamente 1.668 Å e 1.791 Å.
 - a) O que é que isto indica sobre o carácter ligante ou antiligante da orbital molecular 3 σ ?
 - b) Espera que a distância de ligação no ScO⁺ seja maior ou menor que no ScO? Justifique.
 - 6.O radical OH foi observado no espaço interestelar.
 - a) Formule a sua estrutura electrónica em termos da teoria de orbitais moleculares, utilizando apenas as orbitais 1s do hidrogénio e 2p (E2p(O)= -15.8 eV) do oxigénio.
 - b) Em que tipo de orbital molecular está o electrão desemparelhado? Essa orbital molecular está associada tanto ao hidrogénio como ao oxigénio ou está localizada num dos átomos?
 - c) Explique porque razão o espectro electrónico do OH (radical) tem mais uma transição que o do OH⁻.
 - 7. Considere o diagrama de orbitais moleculares do BF e a tabela que faz corresponder a cada orbital molecular a combinação linear de orbitais atómicas que lhe deu origem.

Orb. Molecular	lσ	2σ	lπ	1π	3σ	2π	2π	4σ
Orbital Atómica								
2s (F)	0.938	0.388	0.000	0.000	-0.091	0.000	0.000	-0.794
2px (F)	0.000	0.000	0.925	0.000	0.000	-0.423	0.000	0.000
2py (F)	0.000	0.000	0.000	0.925	0.000	0.000	-0.423	0.000
2pz (F)	-0.120	0.810	0.000	0.000	0.274	0.000	0.000	0.703
2s (B)	0.100	-0.345	0.000	0.000	0.907	0.000	0.000	0.677
2px (B)	0.000	0.000	0.248	0.000	0.000	0.986	0.000	0.000
2py (B)	0.000	0.000	0.000	0.248	0.000	0.000	0.986	0.000
2pz (B)	0.090	-0.178	0.000	0.000	-0.461	0.000	0.000	1.121

Molécula de BF

- a) No diagrama de orbitais moleculares, as orbitais atómicas do flúor estão representadas do lado esquerdo ou do lado direito? Justifique.
- b) Quais as orbitais atómicas de ambas as espécies que contribuem para a orbital molecular 1σ ?
- c) Quais as que contribuem em maior extensão?
- d) Porque razão as orbitais $2p_x$ e $2p_y$ de cada átomo não contribuem para as orbitais de simetria σ ?
- e) As orbitais 2π são do tipo ligante ou antiligante? Escreva a respectiva combinação linear das orbitais atómicas para cada orbital 2π .
- f) Faça corresponder a orbital molecular da figura ao lado a uma das orbitais no diagrama, justificando a escolha.
- g) Ordene as distâncias de ligação do BF, BF⁺ e BF⁻.
- h) Junto às orbitais moleculares apresenta-se uma superfície de isodensidade electrónica mapeada com os potenciais electrostáticos. Verifique sobre que átomo se localiza a carga negativa.

- 8. À semelhança do diagrama para a molécula de BF, construa o diagrama de orbitais moleculares para a molécula de CO, sabendo que a energia da orbital 2s do carbono é de -19.4 eV e das orbitais 2p é de -10.6 eV. No oxigénio a orbital 2s apresenta o valor de -32.3 eV e as orbitais 2p apresentam o valor de -15.8 eV. Se a mistura sp for forte:
- a) A molécula de monóxido de carbono (CO) terá uma orbital π como HOMO.
- b) A molécula de monóxido de carbono (CO) terá uma orbital σ como HOMO.
- c) O coeficiente da orbital 1σ no átomo de carbono na molécula de monóxido de carbono (CO) terá um valor superior ao do coeficiente no átomo de oxigénio.
- d) O coeficiente da orbital 2σ no átomo de carbono na molécula de monóxido de carbono (CO) terá um valor inferior ao do coeficiente no átomo de oxigénio.
- 9. Usando a teoria de orbitais moleculares:
- a)Trace o diagrama de orbitais moleculares para a molécula de hidreto de berílio, BeH2, identificando as orbitais atómicas que participam em cada orbital molecular.
- b)Trace o diagrama de orbitais moleculares para a molécula de água, H₂O, recorrendo ao diagrama de Walsh, que mostra a variação de energia das orbitais moleculares numa molécula do tipo AH₂, com o ângulo de ligação.
- c) Indique a razão de no diagrama de Walsh a energia da primeira orbital molecular, $\sigma(s)$, diminuir com o ângulo de ligação.
- 10. Faça a descrição completa da ligação/estrutura electrónica da molécula de CH4 no âmbito da:
- a)Teoria do enlace de valência.
- b)Teoria de orbitais moleculares.