

$$\Rightarrow \cos Q = \frac{19}{7 \times 3}$$
$$\Rightarrow Q = \cos^{-1} \left(\frac{19}{21}\right)$$

(ii) The given lines are parallel to the vectors, $\vec{b}_{\rm i}=\hat{i}-\hat{j}-2\hat{k}_{\rm and}$ $\vec{b}_{\rm 2}=3\hat{i}-5\hat{j}-4\hat{k}_{\rm c}$ respectively.

$$\begin{aligned} & \therefore \left| \vec{b}_{1} \right| = \sqrt{(1)^{2} + (-1)^{2} + (-2)^{2}} = \sqrt{6} \\ & \left| \vec{b}_{2} \right| = \sqrt{(3)^{2} + (-5)^{2} + (-4)^{2}} = \sqrt{50} = 5\sqrt{2} \\ & \vec{b}_{1} \cdot \vec{b}_{2} = (\hat{i} - \hat{j} - 2\hat{k}) \cdot (3\hat{i} - 5\hat{j} - 4\hat{k}) \\ & = 1 \cdot 3 - 1(-5) - 2(-4) \\ & = 3 + 5 + 8 \\ & = 16 \end{aligned}$$

$$\cos Q = \left| \frac{\vec{b}_{1} \cdot \vec{b}_{2}}{\left| \vec{b}_{1} \right| \left| \vec{b}_{2} \right|} \right|$$

$$\Rightarrow \cos Q = \frac{16}{\sqrt{6} \cdot 5\sqrt{2}} = \frac{16}{\sqrt{2} \cdot \sqrt{3} \cdot 5\sqrt{2}} = \frac{16}{10\sqrt{3}}$$

$$\Rightarrow \cos Q = \frac{8}{5\sqrt{3}}$$

$$\Rightarrow Q = \cos^{-1} \left(\frac{8}{5\sqrt{3}} \right)$$

Question 11:

Find the angle between the following pairs of lines:

(i)
$$\frac{x-2}{2} = \frac{y-1}{5} = \frac{z+3}{-3}$$
 and $\frac{x+2}{-1} = \frac{y-4}{8} = \frac{z-5}{4}$

(ii)
$$\frac{x}{2} = \frac{y}{2} = \frac{z}{1}$$
 and $\frac{x-5}{4} = \frac{y-2}{1} = \frac{z-3}{8}$

i. Answer

ii. Let
$$\vec{b}_1$$
 and \vec{b}_2 be the vectors parallel to the pair of lines,
$$\frac{x-2}{2} = \frac{y-1}{5} = \frac{z+3}{-3} \text{ and } \frac{x+2}{-1} = \frac{y-4}{8} = \frac{z-5}{4} \text{, respectively.}$$

$$\vec{b_1} = 2\hat{i} + 5\hat{j} - 3\hat{k}_{and} \vec{b_2} = -\hat{i} + 8\hat{j} + 4\hat{k}$$

$$|\vec{b}_1| = \sqrt{(2)^2 + (5)^2 + (-3)^2} = \sqrt{38}$$

$$|\vec{b}_2| = \sqrt{(-1)^2 + (8)^2 + (4)^2} = \sqrt{81} = 9$$

$$\vec{b}_1 \cdot \vec{b}_2 = (2\hat{i} + 5\hat{j} - 3\hat{k}) \cdot (-\hat{i} + 8\hat{j} + 4\hat{k})$$

= 2(-1) + 5 × 8 + (-3) · 4

$$= 2(-1) + 5 \times 8 + (-3)$$
$$= -2 + 40 - 12$$

The angle, Q, between the given pair of lines is given by the relation,

$$\cos Q = \frac{|\vec{b_1} \cdot \vec{b_2}|}{|\vec{b_1}||\vec{b_2}|}$$

$$\Rightarrow \cos Q = \frac{26}{9\sqrt{38}}$$

$$\Rightarrow Q = \cos^{-1}\left(\frac{26}{9\sqrt{38}}\right)$$

(ii) Let
$$\vec{b}_1, \vec{b}_2$$
 be the vectors parallel to the given pair of lines, $\frac{x}{2} = \frac{y}{2} = \frac{z}{1}$ and

$$\frac{x-5}{4} = \frac{y-5}{1} = \frac{z-3}{8}$$
, respectively.

$$\vec{b}_1 = 2\hat{i} + 2\hat{j} + \hat{k}$$

$$\vec{b}_2 = 4\hat{i} + \hat{j} + 8\hat{k}$$

$$|\vec{b}_1| = \sqrt{(2)^2 + (2)^2 + (1)^2} = \sqrt{9} = 3$$

$$|\vec{b}_2| = \sqrt{4^2 + 1^2 + 8^2} = \sqrt{81} = 9$$

$$|\vec{b}_1 \cdot \vec{b}_2| = (2\hat{i} + 2\hat{j} + \hat{k}) \cdot (4\hat{i} + \hat{j} + 8\hat{k})$$

$$= 2 \times 4 + 2 \times 1 + 1 \times 8$$

$$= 8 + 2 + 8$$

$$= 18$$

$$\cos Q = \frac{\left| \vec{b_1} \cdot \vec{b_2} \right|}{\left| \vec{b_1} \right| \left| \vec{b_2} \right|}$$

If Q is the angle between the given pair of lines, then

$$\Rightarrow \cos Q = \frac{18}{3 \times 9} = \frac{2}{3}$$
$$\Rightarrow Q = \cos^{-1}\left(\frac{2}{3}\right)$$

Question 12:

Find the values of
$$p$$
 so the line $\frac{1-x}{3} = \frac{7y-14}{2p} = \frac{z-3}{2}$ and

$$\frac{7-7x}{3p} = \frac{y-5}{1} = \frac{6-z}{5}$$
 are at right angles.

The given equations can be written in the standard form as

$$\frac{x-1}{-3} = \frac{y-2}{\frac{2p}{7}} = \frac{z-3}{2}$$
 and
$$\frac{x-1}{\frac{-3p}{7}} = \frac{y-5}{1} = \frac{z-6}{-5}$$

The direction ratios of the lines are
$$-3$$
, $\frac{2p}{7}$, $\frac{-3p}{7}$, 1 , -5 respectively.

Two lines with direction ratios, a_1 , b_1 , c_1 and a_2 , b_2 , c_2 , are perpendicular to each other, if $a_1a_2 + b_1 b_2 + c_1c_2 = 0$

$$\therefore (-3) \cdot \left(\frac{-3p}{7}\right) + \left(\frac{2p}{7}\right) \cdot (1) + 2 \cdot (-5) = 0$$

$$\Rightarrow \frac{9p}{7} + \frac{2p}{7} = 10$$

$$\Rightarrow 11p = 70$$

$$\Rightarrow p = \frac{70}{11}$$

Thus, the value of p is $\overline{11}$.

Ouestion 13:

$$\frac{x-5}{7} = \frac{y+2}{-5} = \frac{z}{1} \text{ and } \frac{x}{1} = \frac{y}{2} = \frac{z}{3}$$
 are perpendicular to each other.

The equations of the given lines are
$$\frac{x-5}{7} = \frac{y+2}{-5} = \frac{z}{1}$$
 and $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$

The direction ratios of the given lines are 7, -5, 1 and 1, 2, 3 respectively.

Two lines with direction ratios, a_1 , b_1 , c_1 and a_2 , b_2 , c_2 , are perpendicular to each other, if $a_1a_2 + b_1 b_2 + c_1c_2 = 0$

$$\therefore 7 \times 1 + (-5) \times 2 + 1 \times 3$$

= 0

Therefore, the given lines are perpendicular to each other.

Ouestion 14:

Find the shortest distance between the lines

$$\vec{r} = (\hat{i} + 2\hat{j} + \hat{k}) + \lambda(\hat{i} - \hat{j} + \hat{k})$$
 and

$$\vec{r} = 2\hat{i} - \hat{j} - \hat{k} + \mu \left(2\hat{i} + \hat{j} + 2\hat{k}\right)$$

Answer

The equations of the given lines are

$$\vec{r} = (\hat{i} + 2\hat{j} + \hat{k}) + \lambda(\hat{i} - \hat{j} + \hat{k})$$

$$\vec{r} = 2\hat{i} - \hat{j} - \hat{k} + \mu(2\hat{i} + \hat{j} + 2\hat{k})$$

It is known that the shortest distance between the lines, $\vec{r}=\vec{a}_{\rm l}+\lambda\vec{b}_{\rm l}$ and $\vec{r}=\vec{a}_{\rm 2}+\mu\vec{b}_{\rm 2}$. is

$$|(\vec{b}_1 \times \vec{b}_2) \cdot (\vec{a}_2 - \vec{a}_2)|$$

$$d = \frac{\left| \vec{b_1} \times \vec{b_2} \right|}{\left| \vec{b_1} \times \vec{b_2} \right|} \dots (1)$$

Comparing the given equations, we obtain

$$\vec{a}_1 = \hat{i} + 2\hat{j} + \hat{k}$$

$$\vec{b}_1 = \hat{i} - \hat{j} + \hat{k}$$

$$\vec{a}_2 = 2\hat{i} - \hat{j} - \hat{k}$$

$$\vec{b}_2 = 2\hat{i} + \hat{j} + 2\hat{k}$$

$$\vec{a}_2 - \vec{a}_1 = (2\hat{i} - \hat{j} - \hat{k}) - (\hat{i} + 2\hat{j} + \hat{k}) = \hat{i} - 3\hat{j} - 2\hat{k}$$

$$\vec{b}_1 \times \vec{b}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 2 & 1 & 2 \end{vmatrix}$$

$$\vec{b}_1 \times \vec{b}_2 = (-2 - 1)\hat{i} - (2 - 2)\hat{j} + (1 + 2)\hat{k} = -3\hat{i} + 3\hat{k}$$

$$\Rightarrow |\vec{b}_1 \times \vec{b}_2| = \sqrt{(-3)^2 + (3)^2} = \sqrt{9 + 9} = \sqrt{18} = 3\sqrt{2}$$

Substituting all the values in equation (1), we obtain

$$d = \left| \frac{\left(-3\hat{i} + 3\hat{k} \right) \cdot \left(\hat{i} - 3\hat{j} - 2\hat{k} \right)}{3\sqrt{2}} \right|$$

$$\Rightarrow d = \left| \frac{-3.1 + 3\left(-2 \right)}{3\sqrt{2}} \right|$$

$$\Rightarrow d = \left| \frac{-9}{3\sqrt{2}} \right|$$

$$\Rightarrow d = \frac{3}{\sqrt{2}} = \frac{3 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{3\sqrt{2}}{2}$$

Therefore, the shortest distance between the two lines is $\frac{3\sqrt{2}}{2}$ units.

******* END ******