

DAYANANDA SAGAR COLLEGE OF ENGINEERING

(Autonomous Institution affiliated to VTU)

DEPARTMENT OF MATHEMATICS LESSON PLAN for EVEN semester: 2019

Subject: Engineering Mathematics-II
Subject Code: 18MA2ICMAT

Class:

Sem : II Staff:

Week	Hour	Date	Units		Details of Portion coverage
			M O D U L E	Linear differential equation with constant coefficient	Introduction- Linear differential equations: Solution of second and higher order equations with constant coefficients. Solution of Homogeneous and non-homogeneous Linear differential equation. Problems on Homogeneous linear differential equation. P.I of the form - $\frac{e^{ax}}{f(D)}$ P.I of the form - $\frac{sinax}{f(D)}$, $\frac{cosax}{f(D)}$ P.I of the form - $\frac{g(x)}{f(D)}$ where $\varphi(x)$ is polynomial in x. P.I of the form - $\frac{e^{ax}v}{f(D)}$, $\frac{x^v}{f(D)}$, $\frac{x^nv}{f(D)}$ Where V is a function of x. Some problems on $\frac{x^v}{f(D)}$, $\frac{x^nv}{f(D)}$ Where V is a function of x.
					Applications to oscillations of a spring Applications to L-C-R circuits.
			M O D U L E	Linear differential equation with variable coefficient and Partial differential Equations	Solution of Cauchy's, Legendre's LDE – Problems. Some more problems on cauchy's and Legendre's LDE Formation of PDE by elimination of arbitrary constants. Formation of PDE by elimination of arbitrary functions. Solution of Non homogeneous Partial differential equations by direct integration method – Problems. Solution of Linear partial differential equations of first order – Method of grouping. Solution of Linear partial differential equations of first order – Method of multipliers. Miscellaneous problems on Method of multipliers. Solution of one dimensional heat equations by variable separable method. Solution of one dimensional wave equations by variable separable method Finite differences, Interpolation/extrapolation using Newton's
			M O D U L E	Elementary Numerical methods	forward and backward difference formulae-Problems Some more problems on forward and backward difference formulae Newton's divided difference formula (All formulae without proof) - Problems Lagrange's formulae (All formulae without proof)- Problems Solution of Algebraic and transcendental equations— Newton-Raphson (only formulae)- Problems Regula-Falsi methods (only formulae)- Problems Numerical integration: Simpson's (1/3) th -Problems Simpson's (3/8) th rules -Problems

	Vector	Vector Differentiation: Introduction, Scalar and vector fields- definitions
M		Gradient, directional derivative -physical interpretation- definitions, problems
D U		Divergence - physical interpretation; solenoidal vector fields- problems
L		curl - physical interpretation; irrotational vector fields-problems
E		Some more problems on Gradient, Divergence and curl
3		Vector Integration :Line integrals - problems
		Theorems of Green, Gauss and Stokes(without proof)
		Problems on theorems
		Applications to work done by a force and flux
		Miscellaneous problems
		Infinite series: Inroduction,Convergence and divergence of infinite series- definition
M		Cauchy's root test (without proof) - Problems.
0		D'Alembert's ratio test (without proof)- Problems.
D		Some more problems
L E		Power series solutions-Series solution of Bessel's differential equation leading to $J_n(x)$
-		Bessel's function of first kind-orthogonality.
4		Proof of Recurrence relations for Bessel's function
		Proof of some more Recurrence relations for Bessel's function
		Series solution of Legendre's differential equation- Legendre polynomials
		Rodrigue's formula(without proof), problems.

Text Books:

- 1. B.S. Grewal: Higher Engineering Mathematics, Khanna Publishers, 43rd Ed., 2015.
- 2. E. Kreyszig: Advanced Engineering Mathematics, John Wiley &Sons, 10th Ed. (Reprint), 2016.
- 3. E. Kreyszig: Advanced Engineering Mathematics Volume I, John Wiley & Sons, 2014.
- 4. E. Kreyszig: Advanced Engineering Mathematics Volume II, John Wiley & Sons, 2014.

Referencebooks:

- C.RayWylie, Louis C. Barrett: "Advanced Engineering Mathematics", 6th Edition, McGraw-Hill Book Co., New York, 1995.
- 2. N.P.Bali and Manish Goyal: A Text Book of Engineering Mathematics, LaxmiPublishers, 7 Ed., 2010.
- 3. B.V.Ramana: "Higher EngineeringMathematics" 11th Edition, TataMcGraw-Hill, 2010.
- 4. Veerarajan T.,"Engineering Mathematicsfor Firstyear", TataMcGraw-Hill, 2008.
- 5. Thomas. G.B. and Finney. R. L."Calculus and Analytical Geometry"9th Edition, Pearson, 2012.

Web links and Video Lectures:

- 1. http://nptel.ac.in/courses.php?disciplineID=111
- 2. http://www.class-central.com/subject/math(MOOCs)
- 3. http://academicearth.org/