بسم الله الرحمن الرحيم

تمرینهای دوم گراف – درس ریاضیات گسسته نیمسال دوم ۹۲-۹۳ – دانشگاه شریف

تكاليف:

- ثابت کنید در یک گراف ساده با حداقل دو راس، دو راس هستند که درجهشان برابر است.
- ۲. ثابت کنید اگر یک گراف دوبخشی k-منتظم باشد(٥٥) در این صورت تعداد رئوس این گراف زوج
 است.

1.2.30. Let G be a simple graph with vertices v_1, \ldots, v_n . Let A^k denote the kth power of the adjacency matrix of G under matrix multiplication. Prove that entry i, j of A^k is the number of v_i , v_j -walks of length k in G. Prove that G is bipartite if and only if, for the odd integer r nearest to n, the diagonal entries of A' are all 0. (Reminder: A walk is an **ordered** list of vertices and edges.)

r یا n است یا n-1. علاوه بر این دقت کنید که در یک walk یک یال می تواند چندبار پیموده شود.

1.3.12. (!) Prove that an even graph has no cut-edge. For each $k \ge 1$, construct a 2k + 1-regular simple graph having a cut-edge.

گراف زوج گرافی است که درجه همه راس های آن زوج باشد.

سوال های امتیازی:

 ۱. یک صفحه شطرنج ۸ در ۸ داریم که گوشه بالا سمت چپ و پایین سمت راست آن را حذف کرده-ایم. با کمک گراف های دو بخشی ثابت کنید نمی توان این صفحه را با دومینوهای ۱ در ۲ پوشاند.

1.3.13. (+) A mountain range is a polygonal curve from (a, 0) to (b, 0) in the upper half-plane. Hikers A and B begin at (a, 0) and (b, 0), respectively. Prove that A and B can meet by traveling on the mountain range in such a way that at all times their heights above the horizontal axis are the same. (Hint: Define a graph to model the movements, and use Corollary 1.3.5.) (Communicated by D.G. Hoffman.)

سوال برای تمرین بیشتر:

- **1.1.35.** (!) Prove that K_n decomposes into three pairwise-isomorphic subgraphs if and only if n + 1 is not divisible by 3. (Hint: For the case where n is divisible by 3, split the vertices into three sets of equal size.)
- **1.2.42.** Let G be a connected simple graph that does not have P_4 or C_4 as an induced subgraph. Prove that G has a vertex adjacent to all other vertices. (Hint: Consider a vertex of maximum degree.) (Wolk [1965])

- **1.2.43.** (+) Use induction on k to prove that every connected simple graph with an even number of edges decomposes into paths of length 2. Does the conclusion remain true if the hypothesis of connectedness is omitted?
- **1.3.16.** (+) For $k \geq 2$ and $g \geq 2$, prove that there exists an k-regular graph with girth g. (Hint: To construct such a graph inductively, make use of an k-1-regular graph H with girth g and a graph with girth $\lceil g/2 \rceil$ that is n(H)-regular. Comment: Such a graph with minimum order is a (k, g)-cage.) (Erdős–Sachs [1963])
- 1.3.31. (!) Use complete graphs and counting arguments (not algebra!) to prove that
 - a) $\binom{n}{2} = \binom{k}{2} + k(n-k) + \binom{n-k}{2}$ for $0 \le k \le n$. b) If $\sum n_i = n$, then $\sum \binom{n_i}{2} \le \binom{n}{2}$.
- **1.3.35.** (+) Let n and k be integers such that 1 < k < n 1. Let G be a simple n-vertex graph such that every k-vertex induced subgraph of G has m edges.
- a) Let G' be an induced subgraph of G with l vertices, where l > k. Prove that $e(G') = m \binom{l}{k} / \binom{l-2}{k-2}$.
- b) Use part (a) to prove that $G \in \{K_n, \overline{K_n}\}$. (Hint: Use part (a) to prove that the number of edges with endpoints u, v is independent of the choice of u and v.)
- **1.3.60.** (+) Let d be a list of integers consisting of k copies of a and n-k copies of b, with $a \ge b \ge 0$. Determine necessary and sufficient conditions for d to be graphic.