Genetic association analysis

Jan Graffelman¹

¹Department of Statistics and Operations Research Universitat Politècnica de Catalunya Barcelona, Spain

jan.graffelman@upc.edu

December 13, 2018

Jan Graffelman (UPC) 1 / 32

Contents

- Introduction
- 2 Allele based tests
- Genotype based tests
- 4 Computer exercise

Jan Graffelman (UPC) 2 / 32

Genetic association studies

Goal:

• Investigate associations between markers and a trait (disease).

Designs:

- Unrelated subjects (population-based)
- Related subjects from pedigrees (family-based)

We will focus on population-based association studies

Jan Graffelman (UPC) 3 / 32

Preliminaries

- The trait (Y_i) (e.g. disease) we wish to understand is binary (dichotomous).
- $Y_i = 1$ individual i has the trait, $Y_i = 0$, individual i does not have the trait.
- The marker is a bi-allelic polymorphism (e.g. AA, Aa and aa)

Jan Graffelman (UPC) 4 / 32

Levels of analysis

- Tests of association at the level of alleles
 - We are sampling alleles
 - Alleles assumed to be independent
 - Rely on the Hardy-Weinberg equilibrium assumption
 - Chi-square test of the alleles by trait cross table
 - Fisher exact test of the alleles by trait cross table
 - Test on the odds ratio of the alleles by trait cross table
- Tests of association at the level of the genotypes
 - We are sampling individuals
 - Hardy-Weinberg equilibrium assumption is not needed
 - Co-dominant, dominant and recessive Chi-square tests
 - Cochran-Armitage trend test
 - Logistic regression

Jan Graffelman (UPC) 5 / 32

The data table

	aa	aA	AA	Total
Cases	<i>r</i> ₀	r_1	<i>r</i> ₂	r
Controls	<i>s</i> ₀	s_1	<i>s</i> ₂	s
Total	<i>n</i> ₀	n_1	n ₂	n

Jan Graffelman (UPC) 6 / 32

Computer exercise

The alleles test

Introduction

• Let p be the allele frequency of the A allele.

$$\begin{cases} H_0: p_{cases} = p_{controls} \\ H_1: p_{cases} \neq p_{controls} \end{cases}$$

- The test assumes **Hardy-Weinberg** equilibrium
- The test is a χ^2 test for independence in a 2 \times 2 table of alleles.

	a	Α	Total	ρ̂
Cases	$r_a=2r_0+r_1$	$r_A=2r_2+r_1$	2r	$r_A/(2r)$
Controls	$s_a=2s_0+s_1$	$s_A=2s_2+s_1$	2 <i>s</i>	$s_A/(2s)$
Total	$n_a=2n_0+n_1$	$n_A=2n_2+n_1$	2 <i>n</i>	$n_A/(2n)$

Jan Graffelman (UPC) 7 / 32

The alleles test

Chi-square test for independence

$$X^{2} = \sum_{i,j}^{2} \frac{(o_{ij} - e_{ij})^{2}}{e_{ij}}$$

- Expected count $e_{ij} = \text{total row } i \times \text{total colum } j/\text{total of table}$
- If H_0 is true, then $X^2 \sim \chi_1^2$
- p-value = $P\left(\chi_1^2 \ge X^2\right)$

Example alleles test

A polymorphism in the Dopamine receptor is supposed to be involved in Schizophrenia. In a case-control study, the following data were obtained:

	11	12	22	Total
Cases	7	69	57	133
Controls	20	56	33	109
Total	27	125	90	242

	1	2	Total
Cases	83	183	266
Controls	96	122	218
Total	179	305	484

Jan Graffelman (UPC) 9 / 32

Example alleles test

Introduction

	1	2	Total
Cases	83	183	266
Controls	96	122	218
Total	179	305	484

	1	2	Total
Cases	98.38	167.62	266
Controls	80.62	137.38	218
Total	179	305	484

$$X^{2} = \frac{(83 - 98.38)^{2}}{98.38} + \dots + \frac{(122 - 137.38)^{2}}{137.38} = 8.4671$$

$$p-value = P\left(\chi_{1}^{2} \le 8.4671\right) = 0.0036$$

Jan Graffelman (UPC) 10 / 32

R code alleles test

```
> X <- matrix(c(7,69,57,20,56,33),byrow=TRUE,ncol=3)
> colnames(X) <- c("11","12","22")</pre>
> rownames(X) <- c("Cases", "Controls")
> X
         11 12 22
         7 69 57
Cases
Controls 20 56 33
> Y <- cbind(2*X[.1]+X[.2].2*X[.3]+X[.2])
> colnames(Y) <- c("1","2")
> Y
Cases
         83 183
Controls 96 122
> chisq.test(Y,correct=FALSE)
Pearson's Chi-squared test
data: Y
X-squared = 8.4671, df = 1, p-value = 0.003616
```

Jan Graffelman (UPC) 11 / 32

Fisher's Exact test

- ullet Often used for cross tables with low counts in the margin, or when $e_{ij} < 5$.
- If the margins are considered fixed, the probability of the table can be calculated, using the hypergeometric distribution.
- The exact p-value is the sum of the probabilities of all possible tables with the same margins that have a probability that is less or equal than the observed table.

For the same data:

```
> Y

cases 83 183
controls 96 122
> fisher.test(Y)

Fisher's Exact Test for Count Data

data: Y
p-value = 0.00448
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.3903016 0.8512261
sample estimates:
odds ratio
0.5770451
```

Odds ratio test for alleles

Definition of odds

Odds =
$$\frac{P(\text{success})}{P(\text{failure})} = \frac{P(\text{disease})}{P(\text{no disease})} = \frac{p}{1-p}$$

• The Odds ratio (OR) compares the odds of the disease for the two alleles:

$$OR = \frac{ ext{Odss of disease with A allle}}{ ext{Odss of disease with B allle}}$$

$$\begin{array}{c|cccc} & A & B \\ \hline Cases & \textit{n}_{11} & \textit{n}_{12} \\ Controls & \textit{n}_{21} & \textit{n}_{22} \\ \end{array}$$

$$OR = \frac{(n_{11}/n_{21})}{(n_{12}/n_{22})} = \frac{n_{11} \times n_{22}}{n_{12} \times n_{21}}$$

- An odds ratio based test assumes an additive model: AA doubles the risk of AB.
- OR = 1 corresponds to independence; OR > 1 or OR < 1 implies association.
- Known result:

$$V\left(\ln\left(OR\right)\right) = \frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}}$$

Allows calculation of confidence intervals for the OR.

Jan Graffelman (UPC)

Odds ratio test for alleles

	1	2	Total
Cases	83	183	266
Controls	96	122	218
Total	179	305	484

$$\frac{OR}{OR} = \frac{83 \cdot 122}{96 \cdot 183} = 0.5764$$

$$\textit{se}_{\textit{ln}(\textit{OR})} = \sqrt{\frac{1}{83} + \frac{1}{183} + \frac{1}{96} + \frac{1}{122}} = 0.1900$$

$$CI(\mathsf{True\ In}(\mathsf{OR})) = \mathsf{In}\left(\mathit{OR}\right) \pm z_{\alpha/2} \mathsf{se}_{\mathit{In}(\mathit{OR})}$$

$$CI(\text{True OR}) = e^{\ln(OR) \pm z_{\alpha/2} se_{\ln(OR)}}$$

$$CI(\text{True OR}) = e^{\ln(0.5764) \pm 1.96 \cdot 0.1900} = (0.397; 0.837)$$

Jan Graffelman (UPC) 14 / 32

The data table

	aa	аA	AA	Total
Cases	<i>r</i> ₀	r_1	<i>r</i> ₂	r
Controls	<i>s</i> ₀	s_1	<i>s</i> ₂	s
Total	<i>n</i> ₀	n_1	n_2	n

We can test for association using different genetic models:

- A codominant model
- A dominant model
- A recessive model
- An additive model

Jan Graffelman (UPC) 15 / 32

Genetic association models

Jan Graffelman (UPC) 16 / 32

We

- We test the null hypothesis of no effect of the marker on the trait.
- Formally:

Codominant test

$$\begin{cases} H_0: P(Y=1|AA) = P(Y=1|Aa) = P(Y=1|aa) \\ H_1: \text{ At least one pair different} \end{cases}$$

Test statistic

$$X^2 = \sum_{i,j} \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$$

- Under H_0 , we have $X^2 \sim \chi_2^2$
- The test makes no assumptions about the relationship between genotype and trait.
- Under H_1 , each genotype can have a different disease rate.
- The test can reject the null if the data support heterozygote advantage (overdominance).

Jan Graffelman (UPC) 17 / 32

Example codominant test

TNF genotype (G/A polymorphism) in a study on acne patients and controls

	GG	GA	AA	Total
Cases	66	43	4	113
Controls	99	15	0	114
Total	165	58	4	227

Jan Graffelman (UPC) 18 / 32

R code codominant test

Introduction

```
> X <- matrix(c(66,43,4,99,15,0),byrow=TRUE,ncol=3)
> colnames(X) <- c("GG", "GA", "AA")
> rownames(X) <- c("Acne", "Contro")
> X
      GG GA AA
Acne 66 43 4
Contro 99 15 0
> results <- chisq.test(X)
Warning message:
In chisq.test(X): Chi-squared approximation may be incorrect
> print(results)
Pearson's Chi-squared test
data: X
X-squared = 24.1133, df = 2, p-value = 5.806e-06
> results$expected
                      GA
      82.13656 28.87225 1.991189
Acne
Contro 82.86344 29.12775 2.008811
> fisher.test(X)
Fisher's Exact Test for Count Data
data: X
p-value = 1.97e-06
alternative hypothesis: two.sided
```

Computer exercise

Dominant test

Introduction

• Columns in the original table are combined to produce 2×2 tables.

Dominant model:

	aa	aA or AA	Total
Cases	<i>r</i> ₀	$r_1 + r_2$	r
Controls	s 0	$s_1 + s_2$	s
Total	n_0	$n_1 + n_2$	n

Test:

 $\left\{ \begin{array}{l} \textit{H}_0 : \text{Disease does not depend on presence of A} \\ \textit{H}_1 : \text{Disease does depend on the presence of A} \end{array} \right.$

Statistic:

$$X^2 = \sum_{i,j} \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$$

• Under H_0 , we have $X^2 \sim \chi_1^2$

Jan Graffelman (UPC)

Computer exercise

Computer exercise

R code dominant test

Introduction

```
> Y <- cbind(X[.1],X[.2]+X[.3])
> colnames(Y) <- c("GG", "GA or AA")
> rownames(Y) <- c("Acne", "Control")
> Y
       GG GA or AA
       66
                 47
Acne
Control 99
             15
> results <- chisq.test(Y)
> print(results)
Pearson's Chi-squared test with Yates' continuity correction
data: Y
X-squared = 21.7021, df = 1, p-value = 3.184e-06
> results <- chisq.test(Y,correct=FALSE)
> print(results)
Pearson's Chi-squared test
data: Y
X-squared = 23.1122, df = 1, p-value = 1.528e-06
>
```

Jan Graffelman (UPC) 21 / 32

Recessive test

Recessive model:

	aa or aA	AA	Total
Cases	$r_0 + r_1$	r ₂	r
Controls	$s_0 + s_1$	s ₂	s
Total	$n_0 + n_1$	<i>n</i> ₂	n

Test:

 $\left\{ \begin{array}{l} \textit{H}_0: \mbox{Disease does not depend on being homozygote AA} \\ \textit{H}_1: \mbox{Disease does depend on being homozygote AA} \end{array} \right.$

Statistic:

$$X^2 = \sum_{i,j} \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$$

• Under H_0 , we have $X^2 \sim \chi_1^2$

Jan Graffelman (UPC) 22 / 32

The additive genetic model

- Basic idea: disease risk increases as a function of the number of alleles (0,1 or 2).
- There are two tests for the additive genetic model
 - The alleles test
 - Cochran-Armitage trend test

Jan Graffelman (UPC) 23 / 32

Armitage trend test

Introduction

• The trend test is based on the linear regression model

$$Y = \beta_0 + \beta_1 X + \varepsilon,$$

- X is the disease status (0 or 1)
- Y is the number of A alleles (0, 1 or 2)
- Tests $H_0: \beta_1 = 0$ against $H_1: \beta_1 \neq 0$
- Armitage trend test statistic

$$A = \frac{\hat{\beta}_1^2}{V(\hat{\beta}_1)} = n \cdot r_{xy}^2$$

• Under H_0 , $A \sim \chi_1^2$.

Computer exercise

Example Armitage trend test

Introduction

	GG	GΑ	AA	Total
Cases	66	43	4	113
Controls	99	15	0	114
Total	165	58	4	227

$$A = 227 \cdot (0.3253)^2 = 24.02$$

$$P(\chi_1^2 \ge 24.02) = 9.49e - 07$$

Jan Graffelman (UPC) 25 / 32

Logistic regression

Introduction

Logit (or logistic) function:

$$logit(\pi) = \frac{\pi}{1 - \pi}$$

Inverse of the logit function

$$logit^{-1}(\pi) = \frac{e^{\pi}}{e^{\pi} + 1}$$

Using $logit(\pi)$ as the response is the basis of logistic regression

Computer exercise

The logistic regression model

$$\pi(x) = E(Y|x) = P(Y = 1|x)$$

$$y = \pi(x) + \varepsilon \quad y \sim Bin(n, \pi(x))$$

$$g(x) = \ln\left(\frac{\pi(x)}{1 - \pi(x)}\right) = \beta_0 + \beta_1 x$$

$$\pi(x) = \frac{e^{\beta_0 + \beta_1 x}}{e^{\beta_0 + \beta_1 x} + 1}$$

Note that

Introduction

•
$$0 \le \pi(x) \le 1$$

•
$$-\infty < g(x) < +\infty$$

Jan Graffelman (UPC) 27 / 32

Model and likelihood

$$L(\beta_0, \beta_1) = \prod_{i=1}^n \pi(x_i)^{y_i} [1 - \pi(x_i)]^{1 - y_i}$$

$$I(\beta_0, \beta_1) = \sum_{i=1}^n \{ y_i \ln [\pi(x_i)] + (1 - y_i) \ln [1 - \pi(x_i)] \}$$

We maximize $I(\beta_0, \beta_1)$ by numerical methods

Jan Graffelman (UPC) 28 / 32

Odds ratios and logistic regression with genetic predictors

- One genotype is the reference genotype (e.g. AA)
- Of interest are the odds ratios

$$OR_{BB} = rac{ ext{Odss disease for a BB person}}{ ext{Odds disease AA person}}$$
 $OR_{AB} = rac{ ext{Odss disease for a AB person}}{ ext{Odds disease AA person}}$

- These OR are estimated by logistic regression.
- Logistic regression is attractive as it allows to adjust for covariates.
- Model

$$\ln\left(\frac{\pi_i}{1-\pi_i}\right) = \beta_0 + \beta_{AB}I_{AB} + \beta_{BB}I_{BB}$$

• $OR_{AB}=e^{\hat{eta}_{AB}}$ and $OR_{BB}=e^{\hat{eta}_{BB}}$

Introduction

Example logistic regression in R

```
Cases \leftarrow c(GG=66,AG=43,AA=4)
Controls \leftarrow c(GG=99.AG=15.AA=0)
cas <- rep(c("GG","AG","AA"),Cases)</pre>
con <- rep(c("GG","AG","AA"),Controls)</pre>
ncas <- length(cas)</pre>
ncon <- length(con)</pre>
y <- c(rep(1,ncas),rep(0,ncon))
x <- factor(c(cas,con))</pre>
out.lm <- glm(y~x, family = binomial(link = "logit"))</pre>
summary(out.lm)
or <- exp(coefficients(out.lm))</pre>
```

Jan Graffelman (UPC) 30 / 32

Computer exercise

A particular SNP is supposed to be involved in Alzheimer's disease. A case control study has been
performed, obtaining the following results:

	MM	Mm	mm
Cases	112	278	150
Controls	206	348	150

- Perform the alleles test for this data set.
- Perform Armitage trend test for this data set.
- Plot the risk of disease as a function of the number of m alleles. Fit a linear model and add the regression line to the plot. Test the null hypothesis $\beta_1 = 0$.
- Is there evidence for association of this marker with the disease?
- Also test for association using a codominant, a dominant and a recessive model.
- Which model seems most appropriate?
- Estimate odds ratios using logistic regression

Jan Graffelman (UPC) 31 / 32

Bibliography

• Laird, N.M. & Lange, C. (2011) The fundamentals of modern statistical genetics. Springer.

Jan Graffelman (UPC) 32 / 32