(11) EP 1 553 239 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 17.09.2008 Bulletin 2008/38

(51) Int Cl.: E04B 9/12 (2006.01)

- (21) Application number: 04026847.6
- (22) Date of filing: 11.11.2004
- (54) Locking connector

Arretierverbindungsstück Connecteur de verrouillage

- (84) Designated Contracting States:

 AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
 HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR
- (30) Priority: 09.01.2004 US 754323
- (43) Date of publication of application: 13.07.2005 Bulletin 2005/28
- (73) Proprietor: Worthington Armstrong Venture Malvern, PA 19355 (US)
- (72) Inventors:
 - Sareyka, Brett W. West Chester PA 19382 (US)

- Lin, Yu Blue Bell PA 19422 (US)
- Platt, William J.
 Aston
 PA 19014 (US)
- (74) Representative: Hano, Christian et al v. Füner Ebbinghaus Finck Hano Mariahilfplatz 2 & 3 81541 München (DE)
- (56) References cited:

US-A- 4 108 563 US-A- 4 621 474 US-A- 4 317 641 US-A- 5 839 246

P 1 553 239 B1

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

30

35

40

45

50

BACKGROUND OF THE INVENTION

[0001] Suspended ceilings are used extensively in commercial and industrial buildings. In such ceilings, a metal grid framework of interconnected main beams and cross beams is hung from a structural ceiling by wires. The grid supports acoustical panels in rectangular openings formed in the grid.

1

[0002] This invention relates to locking connectors used in the grid to join a pair of opposing cross beams and a main beam at grid intersections.

[0003] Suspended ceilings having metal beams interconnected into a grid that supports panels are well known. (U.S. Patents 5,839,246 or U.S. 6,178,712, for instance).

[0004] The grid in such ceilings has, at each grid intersection, a pair of opposing cross beams and a main beam that form a connection.

[0005] Each cross beam in such a connection has a connector at its end that is thrust, or stabbed-in, from opposing sides of the main beam, through a slot in the main beam. The connectors are all identical.

[0006] The connector that is first inserted into the slot is prevented from being withdrawn back out of the slot by the cantilevered latch in the connector, in the form of a pivoted flexible leaf spring. Such latch, which is integral with the connector base and formed therefrom by punching, is biased toward an open position. The latch, which is cantilevered at an angle from the base of the connector, flexes toward a closed position under the restraint of the side of the slot when the connector is stabbed through the slot to make the connection, but which then reflexes back to its biased rest position to prevent withdrawal of the connector back out of the slot.

[0007] Another connector on an opposing cross beam, identical to the first connector thrust through the slot, is then stabbed through the slot in the reduced space in the slot alongside the first. The latch on the connector contacts the side of the slot close to the latch pivot, and is flexed toward a closed position.

[0008] In inserting particularly the second connector into the slot, with a linear stab-in motion, substantial work and force are necessary to make the connection.

[0009] This resistance arises virtually immediately as the second connector into the slot enters the slot, and continues throughout the travel of the connector until it is seated in a locked position, as described below, with the first connector into the slot.

[0010] Both connectors interconnect when the second connector into the slot is fully inserted. Detents formed from the connector base, in the form of bulbs, that have a cam side and a locking side, and the ends of the connectors, flex and reflex to engage in what is sometimes referred to as a connector-to-connector lock, or "handshake" lock. Such a "handshake" connection between the connectors prevents the connectors from being

pulled apart lineally out of the slot. The connectors are kept laterally and vertically together by the slot in the main beam.

[0011] In the seated locked position, the second connector is horizontally aligned with the first connector within the confines of the slot, so that the locking detents on the connectors are engaged and retained at the same level to form the connector-to-connector lock. Generally, the second connector must be either elevated or depressed as it passes into the slot to achieve such horizontal alignment. Hence, the profile of the leading edge of the connector is tapered to guide the connector during its travel through the main beam slot.

[0012] Such connectors of the generic kind are disclosed, for instance, in U.S. 5,839,246 or U.S. 4,317,641. This prior art refers to a locking connector for a suspended ceiling grid as described in the preamble of claim 1.

SUMMARY OF THE PRESENT INVENTION

[0013] The object of the present invention is to provide a locking connector that takes much less force, and less work, to make the connection.

[0014] There is less work and less force necessary, because, in inserting the second connector into the reduced area of the slot of the main beam, (1) there is a delay in the contact between the locking latch and the side of the slot, so that during the delay, (2) elements in the ensuing connection are positioned while offering the least resistance from frictional forces to such positioning, and (3) when contact between elements does occur, the elements are positioned to offer the least resistance to making a connection.

[0015] To achieve the above, the locking latch, which in its unflexed position, must extend laterally far enough out from the base of the connector to prevent withdrawal of the first connector through the slot before the second connector is inserted, is formed with a curved portion before extending in straight lever fashion.

[0016] This, as set forth in (1) above, delays contact between the latch and the side of the slot, when the second connector is inserted into the slot and, as set forth in (2) above, such contact is made further out along the latch from the pivot point, closer to the end of the latch, creating a longer lever arm, so that less force is needed to close the latch.

[0017] The outward end of the locking latch in an unflexed position, extends to the same position as the prior art straight latch pivoted at a sharp, acute angle. This position is necessary, so that the connector cannot be withdrawn after the latch passes through the slot.

[0018] Also, during the delay in (1) above, the second connector into the slot is being positioned vertically by the taper on the leading end of the connector, which engages either the top or bottom of the slot, to the same horizontal level as the first connector, without frictional resistance created in the connection of the prior art, where the locking latch, virtually immediately, forces the

15

20

first and second connection laterally together.

[0019] By adjusting the second connector into the slot more quickly vertically as it travels through the slot, the locking detents and connector ends that engage together by flexing, are in a position, as set forth in (3) above to offer the least resistance to such engagement.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020]

Figure 1 is a right side elevational of a connection of two cross beams through a slot in the main beam, showing the connectors of the invention engaged in a connector-to-connector lock.

Figure 2 is a right side elevational view of the connector of the invention, shown in the connection of Figure 1.

Figure 2a is a top sectional view of the connector of the invention, taken on the line A-A of Figure 2, with an enlarged circled portion showing the latch of the invention.

Figures 3 and 3a are views of a prior art corresponding to the views of Figures 2 and 2a.

Figure 3 is a side elevational view of a prior art connector.

Figure 3a is a top sectional view of a prior art connector taken on the line A-A of Figure 3, with an enlarged circled portion showing a prior art latch.

Figure 4 is a group of graphs, 4a, 4b, and 4c which represent the forces involved in making a connection.

Figure 4a is a graph of the force necessary to overcome resistance in making the connection of the prior art.

Figure 4b is a graph of the force necessary to overcome resistance in making the connection of the invention.

Figure 4c is a graph of the forces represented in 4a and 4b, overlapped.

DESCRIPTION OF THE PREFERRED EMBODIMENT

[0021] In the present drawings, a connection of the invention is shown in Figures 1, 1a, and the invention is shown more clearly in Figure 2 and 2a. In the present connection, main beam 20, shown in cross section, extends longitudinally in a ceiling grid. Identical connectors 21 and 22 have been stabbed through a slot 23 in the

web 25 of the main beam 20 and interconnect. The connectors 21 and 22 are connected respectively to cross beams 26 and 27 by rivets at 28. In the connection, the following occurs:

- (1) End 30 of connector 21 engages detent 31 to form a connector-to-connector connection, as does end 32 of connector 22 engage detent 33;
- (2) Locking latches 40 on connector 21 and connector 22 are in an unflexed position;
- (3) Backstops 35 and 36 on connectors 21 and 22 secure the ends 30 and 32 in the connector-to-connector lock; and
- (4) Connectors 21 and 22 are kept laterally and vertically constrained within slot 23 by the cross sectional configuration of the connectors, as well known in the art.

[0022] The general configuration so far described conforms to the prior art.

25 [0023] In making the connection shown in Figures 1 and 1a, and in the cited patents, a first connector, either connector 21 or 22, both being identical, is thrust or stabbed through the slot 23 in the prior art manner. In this explanation, it will assume connector 21 is first thrust 30 through the slot.

[0024] Locking latch 40 contacts side of slot 23 and is flexed enough to allow the latch 40 to pass through slot 23 and reflex back to a rest position, in a one way movement. In this position, the first connector 21 through the slot is retained within the slot 23.

[0025] The second connector 22 is then thrust through the slot 23 along side the first connector 21 through the slot 23. Again, locking latch 40 contacts side of slot 23, but now there is less room in the slot because a connector has already been inserted. The second connector 22 into the slot, as it is thrust through the slot 23, flexes the latch 40 toward a closed position, until the latch passes through the slot after which it flexes open to a rest position. The connectors 21 and 22 also form a connector-to-connector lock at this point, as seen in Figure 1, wherein the detents 31 and 33 and the beam ends 30 and 32 have flexed and then reflexed into a locked position, at rest.

[0026] In these stab-in connections, as the second connector into the slot, for instance connector 22, travels through the slot 23 to a seated position, after the first connector 21 into the slot has been inserted, the following occurs:

- (1) The second connector 22 is adjusted vertically within the slot 23.
- (2) The second connector 22 is forced laterally by a side of the slot 23 against the first connector 21.

55

25

(3) The locking latch 40 on the second connector 22 is flexed toward a closed position by a side of the slot 23 until the latch 40 passes through the slot 23, and then it springs open to a rest position as seen for instance in Figure 1.

(4) The locking detents 31 and 33 and connector ends 30 and 32 on the first and second connectors 21 and 22 are flexed apart as they contact one another, and then reflexed into a locking position.

[0027] In the prior art, (1) through (4) above overlapped or occurred virtually simultaneously, so that the force and work required to complete a connection 10 was not only the sum of the forces necessary to overcome the sum of the individual resistances created by (1), (2), (3) and (4) referred to immediately above, but also the force and work to overcome the friction created when forces (1), (2), (3) and (4) overlapped, or occurred simultaneously. These frictional resistances included:

- a. The friction between the latch 40 on the second connector 22 and the side of the slot 23 as the second connector 22 was being positioned vertically in the slot 23.
- b. The friction laterally between the base of the connectors 21 and 22.
- c. The friction between the top or bottom of the second connector 22 and the top or bottom of the slot 23 as the second connector 22 was being positioned vertically within the slot 23.
- d. The friction between the detents 31 and 33 and ends 30 and 32 on the first connector 21 into the slot and second connector 22 into the slot 23 as the second connector 22 was being vertically positioned within the slot 23.

[0028] In the prior art, in an attempt to reduce the total force and work required, the taper 37 or slope on the leading edge of a prior art connector 15, as seen in Figure 3, was made at a gradual incline, so the frictional forces could be spread throughout the length of the insertion, as the second connector into the slot 23 was being adjusted vertically.

[0029] The present invention reduces substantially the force necessary to overcome the resistance from the frictions (a), (b), (c) and (d) above and the forces necessary in (3) above to flex the locking latch 40 of the invention toward a closed position, and in (4) above to flex the detents 31 and 33 and ends 30 and 32 relative to one another to create the connector-to-connector interlock.

[0030] As in the prior art, in the present invention the cantilevered leaf spring latch 40 continues to be formed, as by punching, from the connector base 39, as seen, for instance, in Figures 2 and 2a. The latch of the prior

art, designated 10 as seen in Figures 3 and 3a, is in the form of a straight lever 11, pivoted at 12. It forms an acute sharp angle with the base 13 of prior art connector 15. [0031] In the present invention, the latch of the invention 40, as seen in Figures 2 and 2a, herein, is formed from the base 41 with a radius 42, for instance 0,1 cm (0,04 inches), before extending in straight lever fashion. The straight portion 43 of the latch of the invention 40 forms an angle of about 429 with the base 41. Such a curve in locking latch 40 increases the distance 46 the second connector 21 or 22, enters into the slot 23 before it contacts the side of the slot 23 at 47 to create a resistance from such latch of the invention 40 against the side of the slot 23. Such a curved locking latch of the invention 40 also reduces the distance 48 the latch of the invention 40 is in contact with the side of the slot 23 as it is being flexed toward a closed position as it passes through the slot 23, since it contacts the latch 40 closer to the end of the latch than does prior art straight latch 10.

[0032] Representative dimensions for the locking latch 40 of the invention are shown in Figure 2a.

[0033] Further, the first contact of the latch of the invention 40 with the side of the slot 23 is further out from the point 51 of the latch of the invention 40 where it is joined to on the base 41, since part of the curved part of the latch of the invention 40 extends in the plane of the base 41 and is not exposed to contact by the side of the slot 23. Point 51 is the cutting start and the bending start of the latch of the invention 40 as seen in Figure 2a.

[0034] Thus, the force exerted by the side of the slot 23 as the latch of the invention 40 passes through the slot is applied further from the pivot point 51 than in the prior art, thus requiring less force to pivot the latch of the invention 40, than in the prior art straight lever latch 10, since the force has a greater lever arm in the latch of the invention 40 when it meets the side of slot 23 as it is thrust into the connection.

[0035] Thus, less force over a shorter distance is required to collapse the latch of the invention 40 than was required to collapse latch 10 in the prior art. This results in substantially less work that has to be done to make a connection. This beneficial effect in one connection, is multiplied by the many connections required in forming a ceiling grid for a suspended ceiling.

[0036] In the connection improved by the present invention, during the time the connector is being inserted, it is necessary to adjust the connector vertically, so that when fully inserted, the connector fits vertically into the slot 23.

[0037] Since the force necessary to collapse the latch 10 of the prior art was substantial, and arose near the leading edge of the connector, the taper that guided the connector vertically to its fully seated position so that the connector was in place vertically when fully inserted, was gradual, to limit the added resistance at any one point in the insertion.

[0038] Thus, even when the connector-to-connector interlock was being created, wherein the detents were

45

flexing, the connector was still being adjusted vertically, in view of such necessity to make the taper gradual rather than abrupt, thereby creating still more resistance.

[0039] In the present invention, the taper 38 at the leading edge of the connector 21, 22 is made relatively abrupt, at a steeper angle, so that a relative immediate adjustment is made vertically to the connector as it is being inserted into the slot 23. Even though a more steep, immediate adjustment would normally require a greater insertion force than that of a gradual insertion, there is less, rather than more force required. This reduction in force is obtained by the delayed contact of the locking latch of the invention 40 with the side of slot 23, since there is virtually no drag or resistance from the locking latch of the invention 40.

[0040] There is a further benefit that is achieved by early vertical positioning of the connector within the slot 23 during insertion. As the detents 31 and 33, and the ends 30 and 32 of the first and second connectors of the invention 20 and 21 come into contact, the detents and ends are at a position relative to one another, vertically, where there is least resistance to flexing of these elements laterally into the locking position. Whereas in the prior art, contact was made between detents and ends, and force was exerted between these elements, off-center from their most flexible position, the force required to flex the detents and ends, was again substantial.

[0041] Figures 3 and 3a show a prior art connector, while Figures 2 and 2a show a locking connector of the present invention.

[0042] As seen in Figures 3 and 3a, prior art latch 10 in the form of straight lever 11, is pivoted at an acute angle to base 13 of a prior art connector 15. Dotted line 17 represents, in the enlarged portion, the side of slot 23 as the connector 15 of the prior art is inserted into the slot 23. The prior art connector 15 travels the distance at 16 before it encounters the side of the slot at 19, which is at a distance 18 from the end of the prior art latch 10. [0043] In Figures 2 and 2a, there is shown the connector of the invention 22, which is identical to the connector of the invention 21, with the latch of the invention 40. Again, as in Figure 3a, dotted line 17 in the enlarged portion, represents the side of slot 23 as the connector 22 is inserted into the slot 23. The connector 22 travels the distance 46 before it encounters the side of the slot 23 at 47. This is a distance 48 from the end of the latch of the invention 40.

[0044] The benefits of the present invention over the prior art are shown graphically in Figures 4a, 4b and 4c. [0045] Figure 4, including 4a, 4b, and 4c, shows the resistances encountered in a prior art connection compared to the forces encountered in a connection with the improved connector of the invention.

[0046] In the prior art, the line from 80 to 81 represents the resistance encountered during the initial insertion of the second connector into the slot, while the latch 10 is being flexed from its initial contact with the side of the slot 23, until the resistance reaches its highest at about

27 pounds at point 81.

[0047] The contact of the straight lever 11 of prior an latch 10 is relatively close to the pivot 12 during this travel. At 81, there is a drop off in resistance during travel to point 82 to about 10 pounds. The straight lever latch 10 of the prior art during this drop off, contacts the side of the slot 23 further out along its straight lever 11, as it travels through the slot 23, so less force is necessary, since the lever arm is longer than at the initial contact.

[0048] At 82 there is a rise again in resistance due to the flexing of the detents 31 and 33 and connector ends 30 and 32 while they are forming a connector-to-connector lock. The resistance rises to point 83 at which point the connector-to-connector lock is completed, and all elements have reflexed to a rest position with no further resistance or movement occurring.

[0049] The forces required to overcome the resistance encountered in making a connection with the improvement of the invention is shown graphically in Figure 4a. The same movement of the second connector 22 into the slot 23, having the latch of the invention 40, is shown. as was shown with the prior art connector, in Figure 4a. Initial contact with the side of the slot 23 occurs at 90 and rises to 91 where there is a resistance of about 14 pounds. There is a very slight drop off in resistance as the latch of the invention 40 passes through the slot. The resistance then rises to point 93 at about 16 pounds while the connector-to-connector lock is being formed as the detents 31 and 33 and connector ends 30 and 32 are flexing, after which there is a drop off at point 94, where all resistance ends after the connector-to-connector lock is formed.

[0050] The force necessary, and the distance over which the force must be applied, is obviously remarkably less, in making the connection, with the locking connector of the present invention.

[0051] Figure 4c overlaps the charts of Figures 4a and 4b with the locked position of the prior art connection, and the connection of the invention as an overlapped common point along the horizontal axis at 96. ΔX in the chart represent the distance of the delay in contact between the prior art latch 15, and the latch of the invention 40, with the side 17 of the slot 23, as the second connector into the slot is being inserted. Again, Figure 4c, in chart form, represents the substantial reduction in force, and work necessary to make the present connection, over that to make the prior art connection.

Claims

- 1. A locking connector (21, 22) for a suspended ceiling grid comprising a main beam (20) and cross beams (26, 27),
 - wherein the locking connector (21) is designed to be stabbed through a slot (23) in the main beam (20) to lock with an opposing identical

20

25

35

40

locking connector (22) already in the slot (23) and has a cantilevered locking latch (40) being integral with and pivoted from a base (41) in the locking connector (21), and

- wherein, when the locking connector (21, 22) is stabbed through the slot (23) in the main beam (20), the locking latch (40) can be forced by a side of the slot (23) to flex toward the base (41) to permit the locking latch (40) to pass through the slot (23), and when the locking connector (21, 22) has been stabbed through the slot (23), the locking latch (40) can flex back to its relaxed position wherein it is pivoted away from the base (41),

characterized in that the locking latch (40) is formed with a curved portion before extending in straight lever fashion.

- The locking connector according to claim 1, characterized in that the curved portion forms a radius of about 0.1 cm (0.04 inches).
- The locking connector according to claim 1, characterized in that the locking latch (40) has a straight portion (43) which forms an angle of about 42° with the base (41).
- 4. The locking connector according to claim 1, characterized in that a delay in contact between the side of the slot (23) and the locking latch (40) is provided when the locking connector (21, 22) is stabbed through the slot (23).

Patentansprüche

- Arretierverbindungsstück (21, 22) für ein Hängedekkengitter, das einen Hauptträger (20) und Querträger (26, 27) aufweist, wobei
 - das Arretierverbindungsstück (21) für ein Stekken durch einen Schlitz (23) in dem Hauptträger (20) zum Verriegeln mit einem gegenüberliegenden identischen, bereits in dem Schlitz (23) vorhandenen Arretierverbindungsstück (22) ausgelegt ist und eine auskragende Arretierlasche (40) aufweist, die ein Stück mit dem Arretierverbindungsstück (21) bildet und aus einer Basis (41) in dem Arretierverbindungsstück (21) herausgeschwenkt ist.
 - die Arretierlasche (40), wenn das Arretierverbindungsstück (21, 22) durch den Schlitz (23) in dem Hauptträger (20) gesteckt ist, von einer Seite des Schlitzes (23) zwangsweise zu der Basis (41) hin gebogen werden kann, so dass die Arretierlasche (40) in der Lage ist, durch den Schlitz (23) hindurchzugehen, und

 die Arretierlasche (40), wenn das Arretierverbindungsstück (21, 22) durch den Schlitz (23) hindurchgesteckt ist, sich in ihre entspannte Position zurückbiegen kann, in der sie von der Basis (41) weggeschwenkt ist,

dadurch gekennzeichnet,

- dass die Arretierlasche (40) mit einem gekrümmten Abschnitt versehen ist, bevor sie sich wie ein gerader Hebel erstreckt.
- Arretierverbindungsstück nach Anspruch 1, dadurch gekennzeichnet, dass der gekrümmte Abschnitt einen Radius von etwa 0,1 cm (0,04 Zoll) bildet.
- Arretierverbindungsstück nach Anspruch 1, dadurch gekennzeichnet, dass die Arretierlasche (40) einen geraden Abschnitt (43) hat, der mit der Basis (41) einen Winkel von etwa 42° bildet.
- Arretierverbindungsstück nach Anspruch 1, dadurch gekennzeichnet, dass eine Verzögerung beim dem Kontakt zwischen der Seite des Schlitzes (23) und der Arretierlasche (40) vorgesehen ist, wenn das Arretierverbindungsstück (21, 22) durch den Schlitz (23) gesteckt wird.

Revendications

- Connecteur de verrouillage (21, 22) pour une grille de plafond suspendu comprenant une poutre principale (20) et des traverses (26, 27),
 - dans lequel le connecteur de verrouillage (21) est conçu pour être planté à travers une fente (23) dans la poutre principale (20) pour se verrouiller avec un connecteur de verrouillage identique opposé (22) déjà dans la fente (23) et comporte un loquet de verrouillage en porte-à-faux (40) étant une partie intégrante d'une base (41) et pivoté depuis celle-ci dans le connecteur de verrouillage (21), et
 - dans lequel, lorsque le connecteur de verrouillage (21, 22) est planté à travers la fente (23) dans la poutre principale (20), le loquet de verrouillage (40) peut être forcé par un côté de la fente (23) pour fléchir vers la base (41) pour permettre au loquet de verrouillage (40) de passer à travers la fente (23), et lorsque le connecteur de verrouillage (21, 22) a été planté à travers la fente (23), le loquet de verrouillage (40) peut fléchir en retour vers sa position relâchée dans laquelle il est pivoté à écart de la base (41),

caractérisé en ce que le loquet de verrouillage (40)

est formé avec une partie incurvée avant de s'étendre à la manière d'un levier rectiligne.

- 2. Connecteur de verrouillage selon la revendication 1, caractérisé en ce que la partie incurvée forme un s rayon d'environ 0,1 cm (0,04 pouces).
- Connecteur de verrouillage selon la revendication 1, caractérisé en ce que le loquet de verrouillage (40) comporte une partie rectiligne (43) qui forme un angle d'environ 42° avec la base (41).
- Connecteur de verrouillage selon la revendication 1, caractérisé en ce qu'un retard de contact entre le côté de la fente (23) et le loquet de verrouillage (40) 15 est prévu lorsque le connecteur de verrouillage (21, 22) est planté à travers la fente (23).

20

25

30

35

40

45

50

55

EP 1 553 239 B1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 5839246 A [0003] [0012]
- US 6178712 B [0003]

US 4317641 A [0012]