提交说明:

- (1) 对各种图或表格,大家可以纸上写好,贴到相应的地方.
- (2) 提交时, 请提交 pdf 文件.

第六次练习:

LR(0)分析表的构造

LR(0)分析表是 LR(0)分析器的重要组成部分,它是总控程序分析动作的依据。

首先设 GO 是一个状态转换函数:

$$GO(I_i, X) = I_i$$

其中, I_i 为包含某一个项目集的状态;X 为某一文法符号; I_j 为 I_i 关于文法符号 X 的后续状态,即 $I_{i=}$ {任何形如 $A \to \alpha X \bullet \beta$ 的项 $|A \to \alpha \bullet X \beta| \in I_i$ }

对于一个 LR(0)文法,可直接从它的项目集规范族和状态转换函数构造出 LR(0)分析表。下面是构造 LR(0)分析表的算法。

LR(0)分析表构造算法:

- 1) 对于 $A \rightarrow \alpha^{\bullet}X\beta \in I_i$,且 $GO(I_i, X) = I_i, X$ 是非终极符,则置 $GOTO[I_i, X] = i$
- 2) 对于 $A \rightarrow \alpha \bullet a\beta \in I_i$,且 $GO(I_i, a) = I_i$,a 是终极符,则置 $ACTION[I_i, a] = s_i$
- 3) 对于 $A \to \alpha^{\bullet} \in I_i$,且 $A \to \alpha$ 是文法的第 j 个产生式,则对文法中任何终极符 a(包括结束符号\$),置 ACTION[I_i , a] = r_i
- 4) 对于 S' → S• ∈ I_i,则置 ACTION[I_i, \$] = acc
- 5) 其他情况均置出错
- 1. 分别给出下列文法牟 LR(0)分析表和 SLR(1)分析表,并说明该文法不是 LR(0)文法.

$S \rightarrow A$

 $A \rightarrow A b \mid b B a$

 $B \rightarrow a A c \mid a A b$

