31	25	24	20	19	15	14	12	11	7	6		0	
	imm[31:12]								rd	op	ocode		$\mathbf{Type}\text{-}\mathbf{U}$
imm[20 10:1 11 19:12]								rd	op	ocode		$\mathbf{Type}\text{-}\mathbf{UJ}$	
	imm[11:0] rs1 funct3								rd	op	ocode		Type-I
imm[12 10:5] rs2				rs1	fun	ct3	imm	[4:1 11]	op	ocode		$\mathbf{Type}\text{-}\mathbf{SB}$	
imm[11	:5]	r	\cdot s2		rs1	fun	ct3	imr	n[4:0]	op	ocode		$\mathbf{Type}\text{-}\mathbf{S}$
funct5	funct2	r	\cdot s2		rs1	fun	ct3		rd	op	ocode		$\mathbf{Type}\text{-}\mathbf{R}$

RV32I Base Integer Instruction Set

			ICV OZI DO	se meger m	Sur action	DCU		
		im	ım[31:12]			rd	0110111	LUI rd, imm
		im	ım[31:12]			rd	0010111	AUIPC rd, imm
		imm[20]	10:1 11 19:1	.2]		rd	1101111	JAL rd, disp
	imm[11	:0]		rs1	000	rd	1100111	JALR rd, rs1, imm
imm[12 1	10:5]		rs2	rs1	000	imm[4:1 11]	1100011	BEQ rs1, rs2, disp
imm[12 1	10:5]		rs2	rs1	001	imm[4:1 11]	1100011	BNE rs1, rs2, disp
imm[12 1	imm[12 10:5] rs2				100	imm[4:1 11]	1100011	BLT rs1, rs2, disp
imm[12 1	10:5]		rs2	rs1	101	imm[4:1 11]	1100011	BGE rs1, rs2, disp
imm[12 1	[0:5]		rs2	rs1	110	imm[4:1 11]	1100011	BLTU rs1, rs2, disp
imm[12 1	10:5]		rs2	rs1	111	imm[4:1 11]	1100011	BGEU rs1, rs2, disp
	imm[11	:0]		rs1	000	rd	0000011	LB rd, imm(rs1)
	imm[11	:0]		rs1	001	rd	0000011	LH rd, imm(rs1)
	imm[11	:0]		rs1	010	rd	0000011	LW rd, imm(rs1)
	imm[11	:0]		rs1	100	rd	0000011	LBU rd, imm(rs1)
	imm[11	:0]		rs1	101	rd	0000011	LHU rd, imm(rs1)
imm[11	:5]		rs2	rs1	000	imm[4:0]	0100011	SB rs2, imm(rs1)
imm[11	:5]		rs2	rs1	001	imm[4:0]	0100011	SH rs2, imm(rs1)
imm[11:5] rs2				rs1	010	imm[4:0]	0100011	SW rs2, imm(rs1)
	imm[11	:0]		rs1	000	rd	0010011	ADDI rd, rs1, imm
	imm[11	:0]		rs1	010	rd	0010011	SLTI rd, rs1, imm
	imm[11	:0]		rs1	011	rd	0010011	SLTIU rd, rs1, imm
	imm[11	:0]		rs1	100	rd	0010011	XORI rd, rs1, imm
	imm[11	:0]		rs1	110	rd	0010011	ORI rd, rs1, imm
	imm[11	:0]		rs1	111	rd	0010011	ANDI rd, rs1, imm
000000	0	S	hamt5	rs1	001	rd	0010011	SLLI rd, rs1, imm
000000	0	S	hamt5	rs1	101	rd	0010011	SRLI rd, rs1, imm
010000	0	s	hamt5	rs1	101	rd	0010011	SRAI rd, rs1, imm
00000	00		rs2	rs1	000	rd	0110011	ADD rd, rs1, rs2
01000	00		rs2	rs1	000	rd	0110011	SUB rd, rs1, rs2
00000	00		rs2	rs1	001	rd	0110011	SLL rd, rs1, rs2
00000	00		rs2	rs1	010	rd	0110011	SLT rd, rs1, rs2
00000	00		rs2	rs1	011	rd	0110011	SLTU rd, rs1, rs2
00000	00		rs2	rs1	100	rd	0110011	XOR rd, rs1, rs2
00000	00		rs2	rs1	101	rd	0110011	SRL rd, rs1, rs2
01000	00		rs2	rs1	101	rd	0110011	SRA rd, rs1, rs2
00000	00		rs2	rs1	110	rd	0110011	OR rd, rs1, rs2
00000 00 rs2		rs2	rs1	111	rd	0110011	AND rd, rs1, rs2	
0000 pred pred succ			00000	000	00000	0001111	FENCE	
000000	00	(00000	00000	001	00000	0001111	FENCE.I

RV64I Base Integer Instruction Set (in addition to RV32I)

iı	mm[11:0]	rs1	110	$^{\mathrm{rd}}$	0000011
iı	mm[11:0]	rs1	011	rd	0000011
imm[11:5]	rs2	rs1	011	imm[4:0]	0100011
000000	shamt6	rs1	001	rd	0010011
000000	shamt6	rs1	101	rd	0010011
010000	shamt6	rs1	101	rd	0010011
iı	mm[11:0]	rs1	000	rd	0011011
0000000	rs1	001	rd	0011011	

LWU rd, imm(rs1)
LD rd, imm(rs1)
SD rs2, imm(rs1)
SLLI rd, rs1, imm
SRLI rd, rs1, imm
SRAI rd, rs1, imm
ADDIW rd, rs1, imm
SLLIW rd, rs1, imm

31	25	24	20	19	15	14	12	11	7	6		0	
	imm[11:0]			rs		fun	ct3		rd		opcode		Type-I
funct5	funct2	1	rs2	rs		fun	ct3		rd		opcode		Type-R

RV64I Base Integer Instruction Set (in addition to RV32I) contd

000000	0000000		rs1	101	rd	0011011
0100000		shamt5	rs1	101	rd	0011011
00000	00	rs2	rs1	000	rd	0111011
01000	00	rs2	rs1	000	rd	0111011
00000	00	rs2	rs1	001	rd	0111011
00000	00	rs2	rs1	101	rd	0111011
01000	00	rs2	rs1	101	rd	0111011

SRLIW rd, rs1, imm SRAIW rd, rs1, imm ADDW rd, rs1, rs2 SUBW rd, rs1, rs2 SLLW rd, rs1, rs2 SRLW rd, rs1, rs2 SRAW rd, rs1, rs2

RV32M Standard Extension for Integer Multiply and Divide

00000	01	rs2	rs1	000	rd	0110011
00000	01	rs2	rs1	001	rd	0110011
00000	01	rs2	rs1	010	rd	0110011
00000	01	rs2	rs1	011	rd	0110011
00000	01	rs2	rs1	100	rd	0110011
00000	01	rs2	rs1	101	rd	0110011
00000	01	rs2	rs1	110	rd	0110011
00000	01	rs2	rs1	111	rd	0110011

MUL rd, rs1, rs2 MULH rd, rs1, rs2 MULHSU rd, rs1, rs2 MULHU rd, rs1, rs2 DIV rd, rs1, rs2 DIVU rd, rs1, rs2 REM rd, rs1, rs2 REMU rd, rs1, rs2

RV64M Standard Extension for Integer Multiply and Divide (in addition to RV32M)

201 0 2112 2000				pro arra z	(1101011 00 101 0=111)
00000	01	rs2	rs1	000	rd	0111011
00000	01	rs2	rs1	100	rd	0111011
00000	01	rs2	rs1	101	rd	0111011
00000	01	rs2	rs1	110	rd	0111011
00000	01	rs2	rs1	111	$^{\mathrm{rd}}$	0111011

MULW rd, rs1, rs2 DIVW rd, rs1, rs2 DIVUW rd, rs1, rs2 REMW rd, rs1, rs2 REMUW rd, rs1, rs2

RV32A Standard Extension for Atomic Instructions

00010	aqrl	00000	rs1	010	rd	0101111
00011	aqrl	rs2	rs1	010	rd	0101111
00001	aqrl	rs2	rs1	010	rd	0101111
00000	aqrl	rs2	rs1	010	rd	0101111
00100	aqrl	rs2	rs1	010	rd	0101111
01000	aqrl	rs2	rs1	010	rd	0101111
01100	aqrl	rs2	rs1	010	rd	0101111
10000	aqrl	rs2	rs1	010	rd	0101111
10100	aqrl	rs2	rs1	010	rd	0101111
11000	aqrl	rs2	rs1	010	rd	0101111
11100	aqrl	rs2	rs1	010	rd	0101111

LR.W aqrl, rd, (rs1)
SC.W aqrl, rd, rs2, (rs1)
AMOSWAP.W aqrl, rd, rs2, (rs1)
AMOADD.W aqrl, rd, rs2, (rs1)
AMOXOR.W aqrl, rd, rs2, (rs1)
AMOOR.W aqrl, rd, rs2, (rs1)
AMOAND.W aqrl, rd, rs2, (rs1)
AMOMIN.W aqrl, rd, rs2, (rs1)
AMOMAX.W aqrl, rd, rs2, (rs1)
AMOMINU.W aqrl, rd, rs2, (rs1)
AMOMINU.W aqrl, rd, rs2, (rs1)
AMOMINU.W aqrl, rd, rs2, (rs1)
AMOMAXU.W aqrl, rd, rs2, (rs1)

RV64A Standard Extension for Atomic Instructions (in addition to RV32A)

00010	aqrl	00000	rs1	011	rd	0101111
00011	aqrl	rs2	rs1	011	rd	0101111
00001	aqrl	rs2	rs1	011	rd	0101111
00000	aqrl	rs2	rs1	011	rd	0101111
00100	aqrl	rs2	rs1	011	rd	0101111
01000	aqrl	rs2	rs1	011	rd	0101111
01100	aqrl	rs2	rs1	011	rd	0101111
10000	aqrl	rs2	rs1	011	rd	0101111
10100	aqrl	rs2	rs1	011	rd	0101111
11000	aqrl	rs2	rs1	011	rd	0101111
11100	aqrl	rs2	rs1	011	rd	0101111

LR.D aqrl, rd, (rs1)
SC.D aqrl, rd, rs2, (rs1)
AMOSWAP.D aqrl, rd, rs2, (rs1)
AMOADD.D aqrl, rd, rs2, (rs1)
AMOXOR.D aqrl, rd, rs2, (rs1)
AMOOR.D aqrl, rd, rs2, (rs1)
AMOAND.D aqrl, rd, rs2, (rs1)
AMOMIN.D aqrl, rd, rs2, (rs1)
AMOMIN.D aqrl, rd, rs2, (rs1)
AMOMAX.D aqrl, rd, rs2, (rs1)
AMOMINU.D aqrl, rd, rs2, (rs1)
AMOMINU.D aqrl, rd, rs2, (rs1)
AMOMAXU.D aqrl, rd, rs2, (rs1)

31		25	24	20	19	15	14	12	11	7	6		0	
		imm[11:0]				rs1	fun	ct3		rd		opcode		Type-I
	imm[11]	:5]		rs2		rs1	fun	ct3	imı	m[4:0]		opcode		Type-S
f	funct5	funct2		rs2		rs1	fun	ct3		rd		opcode		Type-R

RV32S Standard Extension for Supervisor-level Instructions

						_
0000000	00000	00000	000	00000	1110011	SCALL
0000000	00001	00000	000	00000	1110011	SBREAK
0001000	00000	00000	000	00000	1110011	SRET
0001000	0001000 00001		000	00000	1110011	SFENCE.VM
0001000	00010	00000	000	00000	1110011	WFI
0011000	00110	00000	000	00000	1110011	MRTH
0011000	00101	00000	000	00000	1110011	MRTS
0010000	00101	00000	000	00000	1110011	HRTS
1100000000	000	00000	010	rd	1110011	RDCYCLE rd, csr, rs1
1100000000	001	00000	010	rd	1110011	RDTIME rd, csr, rs1
1100000000	010	00000	010	rd	1110011	RDINSTRET rd, csr, rs1
1100100000	000	00000	010	rd	1110011	RDCYCLEH rd, csr, rs1
1100100000	001	00000	010	rd	1110011	RDTIMEH rd, csr, rs1
1100100000	010	00000	010	rd	1110011	RDINSTRETH rd, csr, rs1
imm[11:0]]	rs1	001	rd	1110011	CSRRW rd, csr, rs1
imm[11:0	imm[11:0]			rd	1110011	CSRRS rd, csr, rs1
imm[11:0	rs1	011	rd	1110011	CSRRC rd, csr, rs1	
imm[11:0]	imm5	101	rd	1110011	CSRRWI rd, csr, imm5	
imm[11:0	imm5	110	rd	1110011	CSRRSI rd, csr, imm5	
imm[11:0]	imm5	111	rd	1110011	CSRRCI rd, csr, imm5	
						-

RV32F Standard Extension for Single-Precision Floating-Point

	imm[11:0]	randara Ext	rs1	010	rd	0000111	FLW frd, imm(rs1)
		rs2		010		0100111	1 ' ' '
imm[11			rs1		imm[4:0]		FSW frs2, imm(rs1)
rs3	00	rs2	rs1	rm	rd	1000011	FMADD.S rm, frd, frs1, frs2, frs3
rs3	00	rs2	rs1	rm	rd	1000111	FMSUB.S rm, frd, frs1, frs2, frs3
rs3	00	rs2	rs1	rm	rd	1001011	FNMSUB.S rm, frd, frs1, frs2, frs3
rs3	00	rs2	rs1	$^{ m rm}$	rd	1001111	FNMADD.S rm, frd, frs1, frs2, frs3
00000	00	rs2	rs1	rm	rd	1010011	FADD.S rm, frd, frs1, frs2
00001	00	rs2	rs1	$_{ m rm}$	rd	1010011	FSUB.S rm, frd, frs1, frs2
00010	00	rs2	rs1	rm	rd	1010011	FMUL.S rm, frd, frs1, frs2
00011	00	rs2	rs1	rm	rd	1010011	FDIV.S rm, frd, frs1, frs2
00100	00	rs2	rs1	000	rd	1010011	FSGNJ.S rm, frd, frs1, frs2
00100	00	rs2	rs1	001	rd	1010011	FSGNJN.S rm, frd, frs1, frs2
00100	00	rs2	rs1	010	rd	1010011	FSGNJX.S rm, frd, frs1, frs2
00101	00	rs2	rs1	000	rd	1010011	FMIN.S rm, frd, frs1, frs2
00101	00	rs2	rs1	001	rd	1010011	FMAX.S rm, frd, frs1, frs2
01011	00	00000	rs1	rm	rd	1010011	FSQRT.S rm, frd, frs1, frs2
10100	00	rs2	rs1	000	rd	1010011	FLE.S frd, rs1, frs2
10100	00	rs2	rs1	001	rd	1010011	FLT.S frd, rs1, frs2
10100	00	rs2	rs1	010	rd	1010011	FEQ.S frd, rs1, frs2
11000	00	00000	rs1	rm	rd	1010011	FCVT.W.S rm, rd, frs1
11000	00	00001	rs1	rm	rd	1010011	FCVT.WU.S rm, rd, frs1
11010	00	00000	rs1	rm	rd	1010011	FCVT.S.W rm, frd, rs1
11010	00	00001	rs1	rm	rd	1010011	FCVT.S.WU rm, frd, rs1
11100	00	00000	rs1	000	rd	1010011	FMV.X.S rd, frs1
11100	00	00000	rs1	001	rd	1010011	FCLASS.S rd, frs1
11110	00	00000	rs1	000	rd	1010011	FMV.S.X frd, rs1

31	25	24	20	19	15	14	12	11	7	6		0	
	imm[11:0]			rs	1	fun	ct3	re	d		opcode		Type-I
funct5	funct2	rs	2	rs	1	fun	ct3	re	d		opcode		Type-R
imm[1	1:5]	rs	2	rs	1	fun	ct3	imm	[4:0]		opcode		Type-S

RV32F Standard Extension for Single-Precision Floating-Point contd

00000000011	00000	010	rd	1110011	FRCSR rd,
00000000010	00000	010	rd	1110011	FRRM rd,
00000000001	00000	010	rd	1110011	FRFLAGS
00000000011	rs1	001	rd	1110011	FSCSR rd,
00000000010	rs1	001	rd	1110011	FSRM rd, o
00000000001	rs1	001	rd	1110011	FSFLAGS
00000000010	imm5	101	rd	1110011	FSRMI rd,
00000000001	imm5	101	rd	1110011	FSFLAGSI

FRCSR rd, csr, rs1
FRRM rd, csr, rs1
FRFLAGS rd, csr, rs1
FSCSR rd, csr, rs1
FSRM rd, csr, rs1
FSFLAGS rd, csr, rs1
FSFLAGS rd, csr, rs1
FSRMI rd, csr, imm5
FSFLAGSI rd, csr, imm5

RV64F Standard Extension for Single-Precision Floating-Point (in addition to RV32F)

11000	00	00010	rs1	rm	rd	1010011	FC
11000	00	00011	rs1	rm	rd	1010011	FC
11010	00	00010	rs1	rm	rd	1010011	FC
11010	00	00011	rs1	rm	rd	1010011	FC

FCVT.LU.S rm, rd, frs1 FCVT.LU.S rm, rd, frs1 FCVT.S.L rm, frd, rs1 FCVT.S.LU rm, frd, rs1

RV32D Standard Extension for Double-Precision Floating-Point

imm[11:0]			rs1	011	rd	0000111
imm[11:5]		rs2	rs1	011	imm[4:0]	0100111
rs3	01	rs2	rs1	rm	rd	1000011
rs3	01	rs2	rs1	rm	rd	1000111
rs3	01	rs2	rs1	rm	rd	1001011
rs3	01	rs2	rs1	rm	rd	1001111
00000	01	rs2	rs1	rm	rd	1010011
00001	01	rs2	rs1	$_{ m rm}$	rd	1010011
00010	01	rs2	rs1	rm	rd	1010011
00011	01	rs2	rs1	rm	rd	1010011
00100	01	rs2	rs1	000	rd	1010011
00100	01	rs2	rs1	001	rd	1010011
00100	01	rs2	rs1	010	rd	1010011
00101	01	rs2	rs1	000	rd	1010011
00101	01	rs2	rs1	001	rd	1010011
01000	00	00001	rs1	rm	rd	1010011
01000	01	00000	rs1	$_{ m rm}$	rd	1010011
01011	01	00000	rs1	rm	rd	1010011
10100	01	rs2	rs1	000	rd	1010011
10100	01	rs2	rs1	001	rd	1010011
10100	01	rs2	rs1	010	rd	1010011
11000	01	00000	rs1	rm	rd	1010011
11000	01	00001	rs1	rm	rd	1010011
11010	01	00000	rs1	rm	rd	1010011
11010	01	00001	rs1	rm	rd	1010011
11100	01	00000	rs1	001	rd	1010011

FLD frd, imm(rs1) FSD frs2, imm(rs1) $FMADD.D\ rm,\ frd,\ frs1,\ frs2,\ frs3$ FMSUB.D rm, frd, frs1, frs2, frs3 FNMSUB.D rm, frd, frs1, frs2, frs3 ${\rm FNMADD.D~rm,~frd,~frs1,~frs2,~frs3}$ FADD.D rm, frd, frs1, frs2 $FSUB.D\ rm,\,frd,\,frs1,\,frs2$ $FMUL.D\ rm,\,frd,\,frs1,\,frs2$ $FDIV.D\ rm,\ frd,\ frs1,\ frs2$ FSGNJ.D rm, frd, frs1, frs2 FSGNJN.D rm, frd, frs1, frs2 FSGNJX.D rm, frd, frs1, frs2 FMIN.D rm, frd, frs1, frs2 FMAX.D rm, frd, frs1, frs2 $FCVT.S.D\ rm,\ frd,\ frs1$ $FCVT.D.S\ rm,\ frd,\ frs1$ FSQRT.D rm, frd, frs1 FLE.D frd, rs1, frs2 $FLT.D\ frd,\ rs1,\ frs2$ $\rm FEQ.D~frd,~rs1,~frs2$ FCVT.W.D rm, rd, frs1 $FCVT.WU.D\ rm,\ rd,\ frs1$ FCVT.D.W rm, frd, rs1 FCVT.D.WU rm, frd, rs1 FCLASS.D rd, frs1

RV64D Standard Extension for Double-Precision Floating-Point (in addition to RV32D)

Γ	11000	01	00010	rs1	$_{ m rm}$	rd	1010011
	11000	01	00011	rs1	rm	rd	1010011
	11100	01	00000	rs1	000	rd	1010011
	11010	01	00010	rs1	$^{\mathrm{rm}}$	rd	1010011
Γ	11010	01	00011	rs1	$_{ m rm}$	rd	1010011
Г	11110	01	00000	rs1	000	rd	1010011

FCVT.L.D rm, rd, frs1 FCVT.LU.D rm, rd, frs1 FMV.X.D rd, frs1 FCVT.D.L rm, frd, rs1 FCVT.D.LU rm, frd, rs1 FMV.D.X frd, rs1

15	13	12	10	9 7	6 5	4 2	1 0	
funct3				imm8		rd'	op	Type-CIW
funct3		in	nm3	rs1'	imm2	rd'	op	$\mathbf{Type}\text{-}\mathbf{CL}$
funct3		im	nm3	rs1'	imm2	rs2'	op	Type-CS
funct3		imm1		rd/rs1		$_{ m imm5}$		Type-CI
funct3				imm11			op	Type-CJ
funct3		in	nm3	rs1'		imm5	op	Type-CB
funct4		rd/rs1		rs2		op	Type-CR	
funct3			imm	6		rs2	op	Type-CSS

RV32C Standard Extension for Compressed Instructions

	100 520 5		Table 101 Col.	iipi esseu iii		00	7
000			n[5:4 9:6 2 3]		1		C.ADDI4SPN rd, rs1, imm
001		n[5:3]	rs1'	imm[7:6]	rd'	00	C.FLD frd, imm(rs1)
010		n[5:3]	rs1'	imm[2 6]	rd'	00	C.LW rd, imm(rs1)
011		n[5:3]	rs1'	imm[2 6]	rd'	00	C.FLW frd, imm(rs1)
101	imn	n[5:3]	rs1'	imm[7:6]	rs2'	00	C.FSD frs2, imm(rs1)
110	imn	n[5:3]	rs1'	imm[2 6]	rs2'	00	C.SW rs2, imm(rs1)
111	imn	n[5:3]	rs1'	imm[2 6]	rs2'	00	C.FSW frs2, imm(rs1)
000	0		00000		00000	01	C.NOP
000	imm[5]		rs1/rd		nm[4:0]	01	C.ADDI rd, rs1, imm
001			imm[11 4 9:8 10 6	[7]3:1[5]		01	C.JAL rd, disp
010	imm[5]		rs1/rd	iı	mm[4:0]	01	C.LI rd, rs1, imm
011	imm[17]		rd		m[16:12]	01	C.LUI rd, imm
011	imm[9]		rs1/rd	imn	n[4 6 8:7 5]	01	C.ADDI16SP rd, rs1, imm
100	imm[5]	00	rs1'/rd'		nm[4:0]	01	C.SRLI rd, rs1, imm
100	imm[5]	01	rs1'/rd'	iı	mm[4:0]	01	C.SRAI rd, rs1, imm
100	imm[5]	10	rs1'/rd'	iı	mm[4:0]	01	C.ANDI rd, rs1, imm
100	0	11	rs1'/rd'	00	rs2'	01	C.SUB rd, rs1, rs2
100	0	11	rs1'/rd'	01	rs2'	01	C.XOR rd, rs1, rs2
100	0	11	rs1'/rd'	10	rs2'	01	C.OR rd, rs1, rs2
100	0	11	rs1'/rd'	11	rs2'	01	C.AND rd, rs1, rs2
100		11	rs1'/rd'	00	rs2'	01	C.SUBW rd, rs1, rs2
100	1	11	rs1'/rd'	01	rs2'	01	C.ADDW rd, rs1, rs2
101			imm[11 4 9:8 10 6	7 3:1 5]		01	C.J rd, disp
110	imm	[8 4:3]	rs1'	imm[7:6 2:1 5]		01	C.BEQZ rs1, rs2, disp
111	imm	[8 4:3]	rs1'	imm[7:6 2:1 5]		01	C.BNEZ rs1, rs2, disp
000	imm[5]		rd	imm[4:0]		10	C.SLLI rd, rs1, imm
001	imm[5]		rd	imi	m[4:3 8:6]	10	C.FLDSP frd, imm(rs1)
010	imm[5]		rd	imi	m[4:2 7:6]	10	C.LWSP rd, imm(rs1)
011	imm[5]		rd	imi	m[4:2 7:6]	10	C.FLWSP frd, imm(rs1)
1000			rs1		00000	10	C.JR rd, rs1, imm
1000			rd		rs2	10	C.MV rd, rs1, rs2
100	1	00	000	00	000	10	C.EBREAK
1001			rs1		00000	10	C.JALR rd, rs1, imm
1001			rd		rs2	10	C.ADD rd, rs1, rs2
101		imm[5:3			rs2	10	C.FSDSP frs2, imm(rs1)
110		imm[5:2]			rs2	10	C.SWSP rs2, imm(rs1)
111		imm[5:2	[7:6]		rs2	10	C.FSWSP frs2, imm(rs1)

RV64C Standard Extension for Compressed Instructions (in addition to RV32C)

011	imm	1[5:3]	rs1'	[mm[7:6]	rd'	00	
111	imm[5:3]		rs1'	imm[7:6]	rs2'	00	1
001	imm[5]		rs1/rd	ir	01	1	
011	imm[5]	rs1/rd		imm[4:3 8:6]		10	1
111		imm[5:3	[8:6]		rs2	10	1

C.LD rd, imm(rs1)
C.SD rs2, imm(rs1)
C.ADDIW rd, rs1, imm
C.LDSP rd, imm(rs1)
C.SDSP rs2, imm(rs1)