# Singular Value Decomposition (SVD)

Predictive Modeling & Statistical Learning

Gaston Sanchez

CC BY-SA 4.0

# Matrix Decompositions

### Decompositions

Matrix decompositions, also known as matrix factorizations

$$M = AB$$
 or  $M = ABC$ 

are a means of expressing a matrix as a product of usually two or three simpler matrices.

### Importance of Decompositions

#### What for?

Matrix decompositions make it easier to study the properties of matrices. Likewise, many computation tasks become easier with decompositions.

They play a relevant role in multivariate data analysis. Often, the solution to many techniques are obtained (or derived) from a matrix decomposition.

### Decompositions: What for?

- solving systems of linear equations
- ▶ inverting a matrix
- analyzing numerical stability of a system
- understanding the structure of data
- finding basis for column space (or row space) of a matrix

### Some Assumptions

#### Real Matrices

We will assume all matrices to be real matrices, i.e. matrices containing elements in the set of Real numbers.

### Dimensions $n \ge p$

Unless otherwise stated, we will also assume matrices with more rows than columns.

### **Decompositions**

A matrix decomposition can be described by an equation:

$$M = ABC$$

where the dimensions of the matrices are as follows:

- ▶ M is  $n \times p$  (assume n > p)
- ▶ A is  $n \times k$  (usually k < p)
- ▶ B is  $k \times k$  (usually diagonal)
- ightharpoonup C is  $k \times p$

### Matrix Decomposition



### Interpreting Decompositions

The equation that describes a decomposition:

$$M = ABC$$

- does not explain how to compute one
- does not explain how such decomposition can reveal the structures implicit in a data matrix.
- Seeing how a matrix decomposition reveals structure in a dataset is more complicated
- Each decomposition reveals a different kind of implicit structure

### Types of matrices

#### Two types of matrices

We concentrate on the two types of matrices important in statistics:

- general rectangular matrices used to represent data tables.
- positive semi-definite matrices used to represent covariance matrices, correlation matrices, and any matrix that results from a crossproduct.

### Two Special Decompositions

#### SVD and EVD

There are many types of matrix decompositions but for now we are going to consider only two:

- ► Singular Value Decomposition (SVD)
- ► Eigen-Value Decomposition (EVD)

### SVD

#### Singular Value Decomposition

- One of the most important decompositions in matrix algebra
- ► Can be applied to any rectangular matrix
- ► ANY: rectangular or square, singular or nonsigular.

## Singular Value Decomposition

An  $n \times p$  matrix M can be decomposed as:

$$M = UDV^{\mathsf{T}}$$

#### where

- ▶ U is a  $n \times p$  column *orthonormal* matrix containing the left singular vectors
- ▶ D is a  $p \times p$  diagonal matrix containing the singular values of M
- ightharpoonup V is a  $p \times p$  column **orthonormal** matrix containing the **right singular vectors**

### SVD

$$\mathbf{M} = \mathbf{U}\mathbf{D}\mathbf{V}^\mathsf{T}$$

$$\mathbf{M} = \begin{bmatrix} u_{11} & \cdots & u_{1p} \\ u_{21} & \cdots & u_{2p} \\ \vdots & \ddots & \vdots \\ u_{n1} & \cdots & u_{np} \end{bmatrix} \begin{bmatrix} l_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & l_p \end{bmatrix} \begin{bmatrix} v_{11} & \cdots & v_{p1} \\ \vdots & \ddots & \vdots \\ v_{1p} & \cdots & v_{pp} \end{bmatrix}$$

# SVD Diagram



When  ${\bf M}$  is of full rank p

### SVD Diagram



When M is of rank k < p

### SVD

#### Singular Value Decomposition

We can think of the SVD structure as the basic structure of a matrix. What do we mean by "basic"? Well, this has to do with what each of the matrices  $\mathbf{U}\mathbf{D}\mathbf{V}^\mathsf{T}$  represent.

- ▶ U is the orthonormalized matrix which is the most basic component. It's like the skeleton of the matrix.
- ▶ D is referred to as the *spectrum* and it is a scale component.
- V is an orientation component, also referred to as the rotation matrix.

#### SVD

▶ U is unitary, and its columns form a basis for the space spanned by the columns of M.

$$\mathbf{U}^\mathsf{T}\mathbf{U} = \mathbf{I}_p$$

ightharpoonup V is unitary, and its columns form a basis for the space spanned by the rows of M.

$$\mathbf{V}^\mathsf{T}\mathbf{V} = \mathbf{I}_p$$

▶ D has non-negative real numbers on the diagonal (assuming M is real).

# SVD in R

### svd() in R

#### svd() function

R provides the function svd() to perform a singular value decomposition of a given matrix

#### svd() output

A list with the following components

- d a vector containing the singular values
- u a matrix whose columns contain the left singular vectors
- v a matrix whose columns contain the right singular vectors

### SVD example in R

```
# X matrix
set.seed(22)
X = matrix(rnorm(20), 5, 4)
# singular value decomposition
SVD = svd(X)
# elements returned by svd()
names (SVD)
## [1] "d" "u" "v"
# vector of singular values
(d = SVD$d)
## [1] 3.9516353 2.0223602 1.4748193 0.4324292
```

# SVD example in R (con't)

```
# matrix of left singular vectors
(U = SVD\$u)
##
            [,1] [,2] [,3] [,4]
## [1,] -0.4251177 -0.53913435 -0.7232572 0.00979433
## [2,] 0.5268694 -0.76862769 0.2860048 0.05610045
## [3,] 0.5752546 0.04999546 -0.4421464 0.13107213
## [4.] 0.2215220 0.05272644 -0.1702161 -0.95123359
## [5,] -0.4021114 -0.33655016 0.4130778 -0.27337073
# matrix of right singular vectors
(V = SVD\$v)
##
            [,1] [,2] [,3]
                                            Γ.47
## [1,] 0.5708354 -0.7406782 0.33862988 0.1042716
## [2.] -0.2741800 -0.5295008 -0.76797328 0.2338189
## [3.] 0.2772481 0.3206239 -0.04462207 0.9046229
## [4,] 0.7225689 0.2611992 -0.54180782 -0.3407543
```

# SVD example in R (con't)

```
# U orthonormal (U'U = I)
t(U) %*% U
              [,1] [,2] [,3] [,4]
##
## [1,] 1.000000e+00 1.387779e-16 2.775558e-17 0.000000e+00
## [2.] 1.387779e-16 1.000000e+00 -2.775558e-17 -8.326673e-17
## [3.] 2.775558e-17 -2.775558e-17 1.000000e+00 5.551115e-17
## [4,] 0.000000e+00 -8.326673e-17 5.551115e-17 1.000000e+00
# V orthonormal (V'V = I)
t(V) %*% V
               [,1] [,2] [,3]
                                                    [,4]
##
## [1,] 1.000000e+00 -1.110223e-16 -5.551115e-17 1.110223e-16
## [2.] -1.110223e-16 1.000000e+00 8.326673e-17 1.942890e-16
## [3,] -5.551115e-17 8.326673e-17 1.000000e+00 -8.326673e-17
## [4,] 1.110223e-16 1.942890e-16 -8.326673e-17 1.000000e+00
```

# SVD example in R (con't)

```
\# X equals UD V'
U %*% diag(d) %*% t(V)
##
            [,1] [,2] [,3] [,4]
## [1.] -0.5121391 1.85809239 -0.76390728 -0.9221536
## [2.] 2.4851837 -0.06602641 0.08196190 0.8615624
## [3,] 1.0078262 -0.16276495 0.74302828 2.0029422
## [4.] 0.2928146 -0.19986068 -0.08402219 0.9365510
## [5,] -0.2089594  0.30056173 -0.79289452 -1.6157349
\# compare to X
            [,1] [,2] [,3] [,4]
##
## [1,] -0.5121391 1.85809239 -0.76390728 -0.9221536
## [2.] 2.4851837 -0.06602641 0.08196190 0.8615624
## [3,] 1.0078262 -0.16276495 0.74302828 2.0029422
## [4,] 0.2928146 -0.19986068 -0.08402219 0.9365510
## [5.] -0.2089594  0.30056173 -0.79289452 -1.6157349
```

# SVD and Cross-products

#### Data Matrix

#### Data

The analyzed data can be expressed in matrix format X:

$$\mathbf{X}_{n \times p} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}$$

- ightharpoonup n objects in the rows
- p variables in the columns

The cross-product matrix of columns of X can be expressed as:

$$\mathbf{X}^\mathsf{T}\mathbf{X} = \mathbf{V}\mathbf{D}^2\mathbf{V}^\mathsf{T}$$

The cross-product matrix of columns can be expressed as:

$$\begin{split} \mathbf{X}^\mathsf{T}\mathbf{X} &= (\mathbf{U}\mathbf{D}\mathbf{V}^\mathsf{T})^\mathsf{T}(\mathbf{U}\mathbf{D}\mathbf{V}^\mathsf{T}) \\ &= (\mathbf{V}\mathbf{D}\mathbf{U}^\mathsf{T})(\mathbf{U}\mathbf{D}\mathbf{V}^\mathsf{T}) \\ &= \mathbf{V}\mathbf{D}(\mathbf{U}^\mathsf{T}\mathbf{U})\mathbf{D}\mathbf{V}^\mathsf{T} \\ &= \mathbf{V}\mathbf{D}^2\mathbf{V}^\mathsf{T} \end{split}$$

The cross-product matrix of rows of X can be expressed as:

$$\mathbf{X}\mathbf{X}^\mathsf{T} = \mathbf{U}\mathbf{D}^2\mathbf{U}^\mathsf{T}$$

The cross-product matrix of rows can be expressed as:

$$\begin{split} \mathbf{X}\mathbf{X}^\mathsf{T} &= (\mathbf{U}\mathbf{D}\mathbf{V}^\mathsf{T})(\mathbf{U}\mathbf{D}\mathbf{V}^\mathsf{T})^\mathsf{T} \\ &= (\mathbf{U}\mathbf{D}\mathbf{V}^\mathsf{T})(\mathbf{V}\mathbf{D}\mathbf{U}^\mathsf{T}) \\ &= \mathbf{U}\mathbf{D}(\mathbf{V}^\mathsf{T}\mathbf{V})\mathbf{D}\mathbf{U}^\mathsf{T} \\ &= \mathbf{U}\mathbf{D}^2\mathbf{U}^\mathsf{T} \end{split}$$

One of the interesting things about SVD is that  ${\bf U}$  and  ${\bf V}$  are matrices whose columns are eigenvectors of product moment matrices that are *derived* from  ${\bf X}$ . Specifically,

- ▶ U is the matrix of eigenvectors of (symmetric)  $XX^T$  of order  $n \times n$
- ▶ V is the matrix of eigenvectors of (symmetric)  $\mathbf{X}^\mathsf{T}\mathbf{X}$  of oreder  $p \times p$

Of additional interest is the fact that D is a diagonal matrix whose main diagonal entries are the square roots of  $\Lambda,$  the common matrix of eigenvalues of  $XX^\mathsf{T}$  and  $X^\mathsf{T}X.$ 

# Rank Reduction

In terms of the diagonal elements  $l_1, l_2, \ldots, l_r$  of  $\mathbf{D}$ , the columns  $\mathbf{u_1}, \ldots, \mathbf{u_r}$  of  $\mathbf{U}$ , and the columns  $\mathbf{v_1}, \ldots, \mathbf{v_r}$  of  $\mathbf{V}$ , the basic structure of  $\mathbf{X}$  may be written as

$$\mathbf{X} = l_1 \mathbf{u_1} \mathbf{v_1}^\mathsf{T} + l_2 \mathbf{u_2} \mathbf{v_2}^\mathsf{T} + \dots + l_p \mathbf{u_p} \mathbf{v_p}^\mathsf{T}$$

which shows that the matrix X of rank p is a linear combination of r matrices of rank 1.

A very interesting and alternative way to represent the SVD is with the following formula:

$$\mathbf{X} = \sum_{k=1}^{p} l_k \mathbf{u_k} \mathbf{v_k}^\mathsf{T}$$

# SVD Diagram



SVD as sum of rank one matrices

#### SVD alternative formula:

$$\mathbf{X} = \sum_{k=1}^{p} l_k \mathbf{u_k} \mathbf{v_k}^\mathsf{T}$$

- ▶ This expresses the SVD as a sum of p rank 1 matrices.
- ► This result is formalized in what is known as the SVD theorem described by Carl Eckart and Gale Young in 1936, and it is often referred to as the Eckart-Young theorem.
- This theorem applies to practily any arbitrary rectangular matrix.

What if you take r < p terms?

$$\hat{\mathbf{X}} = \sum_{k=1}^{r} l_k \mathbf{u_k} \mathbf{v_k}^\mathsf{T}$$

How would  $\hat{\mathbf{X}}$  compare to  $\mathbf{X}$ ?

The SVD theorem of Eckart and Young is related to the important problem of approximating a matrix.

The basic result says that if X is an  $n \times p$  rectangular matrix, then the best r-dimensional approximation  $\hat{X}$  to X is obtained by minimizing:

$$min \|\mathbf{X} - \hat{\mathbf{X}}\|^2$$

The minimization problem:

$$min \|\mathbf{X} - \hat{\mathbf{X}}\|^2$$

is a special type of approximation: a least squares approximation.

The solution is obtained by taking the first r elements of matrices  $\mathbf{U}, \mathbf{D}, \mathbf{V}$  so that  $\hat{\mathbf{X}} = \mathbf{U_r} \mathbf{D_r} \mathbf{V_r}^\mathsf{T}$ 

### SVD rank-two approximation



SVD as sum of two rank one matrices

The best 2-rank approximation  $\hat{X}$  of X is given by:

$$\hat{\mathbf{X}} = l_1 \mathbf{u_1} \mathbf{v_1}^\mathsf{T} + l_2 \mathbf{u_2} \mathbf{v_2}^\mathsf{T}$$

We can say that the "information" contained in  $n \times p$  values is compressed into  $n \times 2$  values.