Математический Анализ 2, Коллоквиум III

Версия от 17.03.2021 20:40

Содержание

1.	Сооственный интеграл, зависящий от параметра. Теорема о непрерывности по параметру. Теорема о	
	дифференцировании по параметру под знаком интеграла. Теорема об интегрировании по параметру под	
	знаком интеграла	. 3
	1.1. Собственный интеграл, зависящий от параметра.	. 3
	1.2. Теорема о непрерывности по параметру	. 3
	1.3. Теорема о дифференцировании по параметру под знаком интеграла	4
	1.4. Теорема об интегрировании по параметру под знаком интеграла	. 5
2.	Равномерная сходимость семейства функций. Определение. Критерий Коши равномерной сходимости	. 7
	2.1. TDB	. 7
3.	Свойства равномерно сходящегося семейства функций. Теорема о предельном переходе. Теорема о непре-	
	рывности по параметру. Теорема об интегрировании по параметру. Теорема о дифференцировании по	
	параметру	. 7
	3.1. TBD	. 7
4.	Равномерная сходимость несобственного интеграла. Определение. Критерий Коши равномерной сходи-	
	мости несобственного интеграла. Мажорантный признак Вейерштрасса равномерной сходимости несоб-	
	ственного интеграла. Вторая интегральная теорема о среднем (для собственного интеграла). Признаки	
	Дирихле и Абеля равномерной сходимости несобственного интеграла	. 7
	4.1. TBD	. 7
5.	Свойства равномерно сходящегося несобственного интеграла. Теорема о предельном переходе под знаком	
	несобственного интеграла. Монотонный предельный переход и теорема Дини и равномерной сходимо-	
	сти семейства функций. Следствие из теоремы Дини о монотонном предельном переходе под знаком	
	несобственного интеграла. Теорема о непрерывности несобственного интеграла по параметру	
	5.1. TBD	. 7
6.	Свойства равномерно сходящегося несобственного интеграла. Теорема о дифференцировании по пара-	
	метру под знаком несобственного интеграла. Теорема о собственном интегрировании по параметру под	
	знаком несобственного интеграла. Теорема о несобственном интегрировании по параметру под знаком	
	несобственного интеграла.	. 7
	6.1. TBD	. 7
7.	Эйлеровы В- и Г- функции. Определение В-функции, ее область определения и свойства: симметрич-	
	ность, формула понижения, случайно натурально-значных аргументов. Формула Эйлера – Гаусса. Фор-	
	мула дополнения (с использованием разложения sin в бесконечное произведение без доказательства).	
	Связь между В- и Г- функциями	. 7
	7.1. TBD	. 7

8.	Абстрактные ряды Фурье. Пространство квадратично-интегрируемых функций \mathcal{R}_2 (определение). Ска-	
	лярное произведение и норма в этом пространстве (определение). Ортогональная и ортонормированная	
	система элементов (определение). Стандартная тригонометрическая система на $[-\pi;\pi]$, ее ортогональ-	
	ность и нормы элементов. Ряд в пространстве квадратично-интегрируемых функций и его сходимость	
	(определение). Непрерывность скалярного произведения. Равенство Парсеваля.	7
	8.1. TBD	7
9.	Абстрактные ряды фурье. Коэффициенты и ряды Фурье (определение). Коэффициенты и ряд Фурье	
	по стандартной тригонометрической системе на $[-\pi;\pi]$. Лемма о перпендикуляре. Неравенство Бесселя.	
	Из полноты пространства следует сходимость ряда Фурье. Ряд и частичная сумма ряда Фурье как наи-	
	лучшее приближение. Полная ортогональная система (определение). Критерии полноты ортогональной	
	системы (представимость любого элемента его рядом Фурье; равенство Парсеваля; отсутствие ненуле-	
	вого элемента, ортогонального всем элементам системы)	7
	9.1. TBD	7
10.	Тригонометрический ряд Фурье. Теорема о сходимости тригонометрического ряда Фурье в средне-	
	квадратичном (без доказательства полноты тригонометрической системы). Представление частичной	
	суммы ряда Фурье через ядро Дирихле. Лемма Римана. Условие Дини и теорема о поточечной сходи-	
	мости ряда Фурье. Разложение sin в бесконечное произведение	7
	10.1. TBD	7
11.	Тригонометрический ряд Φ урье. Теорема о почленном дифференцировании ряда Φ урье. Теорема о связи	
	гладкости функции и скорости убывания ее коэффициентов Фурье. Теорема о связи гладкости функции	
	и скорости сходимости ее ряда Φ урье. Теорема о полноте тригонометрической системы	7
	11.1. TBD	7

1. Собственный интеграл, зависящий от параметра. Теорема о непрерывности по параметру. Теорема о дифференцировании по параметру под знаком интеграла. Теорема об интегрировании по параметру под знаком интеграла.

1.1. Собственный интеграл, зависящий от параметра.

Определение. Собственным интегралом, зависящем от параметра, будем называть интеграл вида

$$F(y) = \int_{\alpha(y)}^{\beta(y)} f(x, y) dx,$$

где α и β это некие функции, определенные для y из некоторого отрезка [c;d].

Часто α и β являются константами и интеграл принимает следующий вид:

$$F(y) = \int_{\alpha}^{\beta} f(x, y) dx.$$

1.2. Теорема о непрерывности по параметру

Теорема. Рассмотрим $G = [a;b] \times [c;d]$ и пусть функция $f:G \to \mathbb{R}$ — непрерывна на ограниченном замкнутом множестве, откуда следует, что она равномерно непрерывна.

Пусть α , β непрерывны на отрезке [c;d], тогда функция

$$F(y) = \int_{\alpha(y)}^{\beta(y)} f(x, y) dx$$

равномерно непрерывна на [c;d].

Доказательство. Докажем непрерывность.

Пусть функция f ограничена каким-то числом M.

В силу непрерывности α и β для любого $\varepsilon > 0$ существует $\delta > 0$, что из условия $|y - y_0| < \delta$ следует $|\alpha(y) - \alpha(y_0)| < \varepsilon$ и $|\beta(y) - \beta(y_0)| < \varepsilon$.

В силу равномерной непрерывности f для любого $\varepsilon>0$ существует $\delta>0,$ что из условия $|y-y_0|<\delta$ следует $|f(x,y)-f(x,y_0)|<\varepsilon.$

Воспользуемся этим:

$$|F(y) - F(y_0)| = \left| \int_{\alpha(y)}^{\beta(y)} f(x,y) \mathrm{d}x - \int_{\alpha(y_0)}^{\beta(y_0)} f(x,y_0) \mathrm{d}x \right|$$

$$= \left| \int_{\alpha(y)}^{\beta(y)} f(x,y) \mathrm{d}x - \int_{\alpha(y_0)}^{\beta(y_0)} f(x,y) \mathrm{d}x + \int_{\alpha(y_0)}^{\beta(y_0)} f(x,y) \mathrm{d}x - \int_{\alpha(y_0)}^{\beta(y_0)} f(x,y_0) \mathrm{d}x \right|$$

$$\leq \left| \int_{\alpha(y)}^{\beta(y)} f(x,y) \mathrm{d}x - \int_{\alpha(y_0)}^{\beta(y_0)} f(x,y) \mathrm{d}x \right| + \left| \int_{\alpha(y_0)}^{\beta(y_0)} f(x,y) \mathrm{d}x - \int_{\alpha(y_0)}^{\beta(y_0)} f(x,y_0) \mathrm{d}x \right|$$

$$[- \text{ оценим слагаемое с модулем интеграла как интеграл модуля }]$$

$$\leq \left| \int_{\alpha(y)}^{\beta(y)} f(x,y) dx - \int_{\alpha(y_0)}^{\beta(y_0)} f(x,y) dx \right| + \int_{\alpha(y_0)}^{\beta(y_0)} \left| f(x,y) - f(x,y_0) \right| dx$$

[— раскроем первое слагаемое; для понимания представьте, что $\alpha(y) < \alpha(y_0) < \beta(y_0) < \beta(y)$]

$$= \left| \int_{\alpha(y)}^{\alpha(y_0)} f(x,y) dx + \int_{\beta(y_0)}^{\beta(y)} f(x,y) dx \right| + \int_{\alpha(y_0)}^{\beta(y_0)} \left| f(x,y) - f(x,y_0) \right| dx$$

$$\leq \int_{\alpha(y)}^{\alpha(y_0)} \underbrace{\left| f(x,y) \right|}_{\leq M} dx + \int_{\beta(y_0)}^{\beta(y)} \underbrace{\left| f(x,y) \right|}_{\leq M} dx + \int_{\alpha(y_0)}^{\beta(y_0)} \underbrace{\left| f(x,y) - f(x,y_0) \right|}_{\leq \varepsilon} dx$$

$$\leq (\alpha(y_0) - \alpha(y)) \cdot M + (\beta(y) - \beta(y_0)) \cdot M + (\beta(y_0) - \alpha(y_0)) \cdot \varepsilon$$

$$= 2 \cdot \varepsilon \cdot M + (\beta(y) - \alpha(y)) \cdot \varepsilon = \varepsilon',$$

то есть выбирая $\delta>0$ мы можем сделать так, что $|F(y)-F(y_0)|<\varepsilon'$ для любого $\varepsilon'>0$.

Теперь немного о том, зачем нам эта теорема. Если вместо отрезка [c;d] рассмотреть $[c;+\infty)$, то утверждение из теоремы остается верным и из равномерной непрерывности f(x,y) на $[a;b] \times [c;+\infty)$ следует

$$\exists \lim_{y \to +\infty} F(y) = \lim_{y \to +\infty} \int_{\alpha(y)}^{\beta(y)} f(x,y) \mathrm{d}x = \int_{\alpha(y)}^{\beta(y)} \lim_{y \to +\infty} f(x,y) \mathrm{d}x.$$

1.3. Теорема о дифференцировании по параметру под знаком интеграла.

Для простоты изложения будем рассматривать $a = \alpha(y)$ и $b = \beta(y)$. Тогда

$$F(y) = \int_{a}^{b} f(x, y) \mathrm{d}x.$$

Теорема. Если f непрерывна на $G = [a; b] \times [c; d]$, а также производная $\frac{\partial f}{\partial y}$ существует и непрерывна на G, то F непрерывно дифференцируема на [c; d].

Причем эта производная может быть вычислена:

$$F'(y) = \int_{a}^{b} \frac{\partial f}{\partial y}(x, y) dx.$$

Доказательство. Необходимо доказать, что отношение стремится в пределе к интегралу:

$$D = \frac{F(y) - F(y_0)}{y - y_0} - \int_a^b \frac{\partial f}{\partial y}(x, y_0) dx = \int_a^b \frac{f(x, y) - f(x, y_0)}{y - y_0} dx - \int_a^b \frac{\partial f}{\partial y}(x, y_0) dx.$$

По теореме о среднем (теорема Лагранжа, 1 курс) на отрезке $[y_0;y]$ найдется точка y^* такая, что

$$f(x,y) - f(x,y_0) = \frac{\partial f}{\partial y}(x,y^*) \cdot (y-y_0).$$

Подставим в нашу разность:

$$|D| = \dots = \Big| \int_{a}^{b} \frac{f(x,y) - f(x,y_{0})}{y - y_{0}} dx - \int_{a}^{b} \frac{\partial f}{\partial y}(x,y_{0}) dx \Big| = \Big| \int_{a}^{b} \frac{\partial f}{\partial y}(x,y^{*}) dx - \int_{a}^{b} \frac{\partial f}{\partial y}(x,y_{0}) dx \Big|$$

$$= \Big| \int_{a}^{b} \left(\frac{\partial f}{\partial y}(x,y^{*}) - \frac{\partial f}{\partial y}(x,y_{0}) \right) dx \Big| \leqslant \int_{a}^{b} \underbrace{\left| \frac{\partial f}{\partial y}(x,y^{*}) - \frac{\partial f}{\partial y}(x,y_{0}) \right|}_{\leqslant \varepsilon} dx \leqslant (b - a) \cdot \varepsilon.$$

Последний переход получается в силу равномерной непрерывности $\frac{\partial f}{\partial y}$ на G и того, что $|y^*-y^*|\leqslant |y-y_0|<\varepsilon$.

То есть мы доказали, что $\frac{F(y) - F(y_0)}{y - y_0}$ равномерно стремится к числу $\int_a^b \frac{\partial f}{\partial y}(x, y_0) dx$, то есть существует предел, который мы и называем производной F'(y).

Непрерывность производной получается как следствие предыдущей теоремы (о непрерывности по параметру), где в роли непрерывной функции выступает $\frac{\partial f}{\partial v}$.

Иногда мы не можем взять какой-то интеграл, но с помощью этой теоремы мы можем взять производную интеграла, а зная производную потом найти сам интеграл.

1.4. Теорема об интегрировании по параметру под знаком интеграла.

Пусть $F(y) = \int\limits_{a}^{b} f(x,y) \mathrm{d}x$. Мы хотим эту функцию проинтегрировать, то есть найти $\int\limits_{c}^{d} F(y) \mathrm{d}y$. Возникает вопрос, можно ли переставить интегралы.

Теорема. Если f непрерывна на множестве $G = [a;b] \times [c;d]$ (то есть она интегрируема на G), и выполняются следующие два пункта:

- при любом значении $y \in [c;d]$ функция f(x,y) интегрируема по x, то есть существует $\int\limits_a^b f(x,y)\mathrm{d}x;$
- при любом значении $x \in [a;b]$ функция f(x,y) интегрируема по y, то есть существует $\int\limits_{c}^{d}f(x,y)\mathrm{d}y;$

то эти интегралы равны друг другу.

Доказательство. Доказательство следует из теоремы Фубини о том, что повторные интегралы равны двойном интегралу по прямоугольнику:

$$\int_{a}^{b} f(x,y) dx = \iint_{G} f(x,y) dx dy = \int_{c}^{d} f(x,y) dy.$$

Интегрирование по параметру также иногда позволяет вычислить интеграл, который по-другому вычислить невозможно.

- 2. Равномерная сходимость семейства функций. Определение. Критерий Коши равномерной сходимости.
- 2.1. TDB
- 3. Свойства равномерно сходящегося семейства функций. Теорема о предельном переходе. Теорема о непрерывности по параметру. Теорема об интегрировании по параметру. Теорема о дифференцировании по параметру.
- 3.1. TBD
- 4. Равномерная сходимость несобственного интеграла. Определение. Критерий Коши равномерной сходимости несобственного интеграла. Мажорантный признак Вейерштрасса равномерной сходимости несобственного интеграла. Вторая интегральная теорема о среднем (для собственного интеграла). Признаки Дирихле и Абеля равномерной сходимости несобственного интеграла.
- 4.1. TBD
- 5. Свойства равномерно сходящегося несобственного интеграла. Теорема о предельном переходе под знаком несобственного интеграла. Монотонный предельный переход и теорема Дини и равномерной сходимости семейства функций. Следствие из теоремы Дини о монотонном предельном переходе под знаком несобственного интеграла. Теорема о непрерывности несобственного интеграла по параметру.
- 5.1. TBD
- 6. Свойства равномерно сходящегося несобственного интеграла. Теорема о дифференцировании по параметру под знаком несобственного интеграла. Теорема о собственном интегрировании по параметру под знаком несобственного интеграла. Теорема о несобственном интегрировании по параметру под знаком несобственного интеграла.
- 6.1. TBD
- 7. Эйлеровы В- и Г- функции. Определение В-функции, ее область определения и свойства: симметричность, формула понижения, случайно натурально-значных аргументов. Формула Эйлера Гаусса. Формула дополнения (с использованием разложения sin в бесконечное произведение без доказательства). Связь между В- и Г-функциями.
- 7.1. TBD
- 8. Абстрактные ряды Фурье. Пространство квадратично-интегрируемых функций \mathcal{R}_2 (определение). Скалярное произведение и норма в этом пространстве (определение). Ортогональная и ортонормированная система элементов (определение). Стандартная тригонометрическая система на $[-\pi;\pi]$, ее ортогональность и нормы элементов. Ряд в пространстве квадратично-интегрируемых функций и его сходимость (определение). Непрерывность скалярного произведения. Равенство Парсеваля.
- 8.1. TBD
- 9. Абстрактные ряды фурье. Коэффициенты и ряды Фурье (определение). Коэффициенты и ряд Фурье по стандартной тригонометрической системе на $[-\pi;\pi]$. Лемма о перпендикуляре. Неравенство Бесселя. Из полноты пространства следует сходимость ряда Фурье. Ряд и частичная сумма ряда Фурье как наилучшее приближение.