Go to next item

Grade received 100% To pass 80% or higher

Assume that there are 2 happy people and 2 unhappy people in a and persons C and D are unhappy. If you were to randomly pick a that the person is happy. 1/2 1/4 3/4 0 0 Correct		/ 1 point
2. Assume that there are 2 happy people and 2 unhappy people in a land persons C and D are unhappy. If a friend showed you the part what is the probability that you choose person B? 1/2 1/4 3/4 1 Correct		/ 1 point
3. From the equations presented below, express the probability of a word happy in terms of the probability of a tweet containing the w $P(\text{Positive} \mid \text{"happy"}) = \frac{P(\text{Positive} \cap \text{happy"})}{P(\text{"happy"})}$ $P(\text{"happy"} \mid \text{Positive}) = \frac{P(\text{"happy"} \cap \text{Positive})}{P(\text{Positive})}$ ① $P(\text{Positive} \mid \text{"happy"}) = P(\text{"happy"} \mid \text{Positive})$ ② $P(\text{Positive} \mid \text{"happy"}) = P(\text{"happy"} \mid \text{Positive})$ ② $P(\text{Positive} \cap \text{"happy"}) = P(\text{"happy"} \mid \text{Positive})$ ② $P(\text{Positive} \cap \text{"happy"}) = P(\text{"happy"} \mid \text{Positive})$ ② $P(\text{Positive} \cap \text{"happy"}) = P(\text{"happy"} \mid \text{Positive})$ ③ $P(\text{Positive} \cap \text{"happy"}) = P(\text{"happy"} \mid \text{Positive})$ ③ $P(\text{Positive} \cap \text{"happy"}) = P(\text{"happy"} \mid \text{Positive})$	ord happy given that it is positive $\begin{aligned} &\text{re} \) \times \frac{P(\text{Positive})}{P(\text{Positive})} \\ &\text{ve} \) \times \frac{P(\text{"happy"})}{P(\text{Positive})} \\ &\text{ve} \) \times \frac{P(\text{Positive})}{P(\text{"happy"})} \end{aligned}$	/ 1 point
4. Bayes rule is defined as	3,	/ 1 point
5. Suppose that in your dataset, 25% of the positive tweets contain to 13% of the tweets in your dataset contain the word 'happy', and the positive. You observe the tweet: "happy to learn NLP. What is the round your answer up to two decimal places. Remember that 0.57 0.77 Orrect That's right. You just applied Bayes' rule.	nat 40% of the total number of tweets are probability that this tweet is positive? (Please,	/ 1 point
5. The log likelihood for a certain word w_i is defined as: log $(\frac{P(w_i pos)}{P(w_i rog)})$. ✓ Positive numbers imply that the word is positive. ✓ Correct ☐ Positive numbers imply that the word is negative. ✓ Negative numbers imply that the word is negative. ✓ Correct ☐ Negative numbers imply that the word is positive.	1	/ 1 point

7. The log likelihood mentioned in lecture, which is the log of the ratio between two probabilities is bounded

1/1 point

	 -1 0 0 0 0					
8.	When	imp	elementing naive Bayes, in which order should the following steps be implemented.	1/1 point		
	•	1.	Get or annotate a dataset with positive and negative tweets			
		2.	Preprocess the tweets: process_tweet(tweet) →			
		3.	Compute freq(w, class)			
		4.	Get P(w pos), P(w neg)			
		5.	$Get\lambda(w)$			
		6.	Compute logprior = log(P(pos) / P(neg))			
	0	1.	Get or annotate a dataset with positive and negative tweets			
		2.	Preprocess the tweets: process_tweet(tweet) \rightarrow			
		3.	Compute freq(w, class)			
		4.	$Get\lambda(w)$			
		5.	Get P(w pos), P(w neg)			
		6.	Compute logprior = log(P(pos) / P(neg))			
	0	1.	Get or annotate a dataset with positive and negative tweets			
		2.	Compute freq(w, class)			
		3.	Preprocess the tweets: process_tweet(tweet) →			
		4.	Get P(w pos), P(w neg)			
		5.	$Get\lambda(w)$			
		6.	Compute logprior = log(P(pos) / P(neg))			
	0	1.	Get or annotate a dataset with positive and negative tweets			
		2.	Compute freq(w, class)			
3. Preprocess the tweets: process_tweet(tweet) →						
4. Compute logprior = log(P(pos) / P(neg)						
		5.	Get P(w pos), P(w neg)			
		6.	$Get\lambda(w)$			
	⊘		rect that is correct.			
9.	To tes	t na	ive bayes model, which of the following are required?	1/1 point		
	_		$,Y_{val},\lambda,logprior$			
			$\langle Y_{val}, logprior angle$ $\langle \lambda, logprior angle$			
	O Y	val:	$\lambda, logprior$			
			rect s is correct.			
10	10. Which of the following is NOT an application of naive Bayes?					
Sentiment Analysis Author identification						
	O Information retrieval					
			disambiguation erical predictions			
	⊘ N					
		Thi	s is correct.			