Real Analysis I: Proof from Notes

Chris Hayduk

October 15, 2019

Problem 1. Prove the number of equivalence classes for the relation $x \sim y$ if $x - y \in \mathbb{Q}$.

Suppose $x, y \in \mathbb{Q} \cap [0, 1)$. Then $\exists a, b, m, n \in \mathbb{Z}$ such that,

$$x = \frac{a}{b}$$
$$y = \frac{m}{n}$$

Thus, we have,

$$x - y = \frac{a}{b} - \frac{m}{n}$$
$$= \frac{an}{bn} - \frac{mb}{bn}$$
$$= \frac{an - mb}{bn}$$

We know that the integers are closed under multiplication and addition, so $(an-mb), bn \in \mathbb{Z}$. Thus, $x-y \in \mathbb{Q}$.

Now suppose $x \in \mathbb{Q} \cap [0,1)$ and $y \in \mathbb{I} \cap [0,1)$.