1

1 Problemes numèrics i errors

- 1 Quant acuradament necessitem conèixer una aproximació de π per poder calcular $\sqrt{\pi}$ amb 4 decimals correctes?
- $\mathbf 2$ Calculeu la distància focal f d'una lent usant la fórmula

$$\frac{1}{f} = \frac{1}{a} + \frac{1}{b},$$

on $a=32\pm1\mathrm{mm}$ i $b=46\pm1\mathrm{mm}$. Doneu una estimació de l'error.

3 Segons una llegenda, Tales de Milet va calcular l'altura de la piràmide de Keops mesurant 3 longituds (la d'un bastó posat verticalment, la de la seva ombra, i la de l'ombra de la piràmide), i usant el resultat que relaciona quatre costats de dos triangles semblants:

$$\frac{a}{b} = \frac{c}{d}$$
.

Siguin $a = 1.5 \pm 0.05$, $b = 285.0 \pm 0.1$ i $c = 1.86 \pm 0.01$ (en metres).

- a) Enuncieu una fórmula que doni fites aproximades a primer ordre de la propagació de l'error de les dades, per a funcions $f: \mathbb{R}^n \to \mathbb{R}$. Apliqueu-lo a aquest cas per a trobar $d \pm \epsilon$.
- b) Calculeu un interval I, el més petit possible, tal que es pugui assegurar rigorosament $d \in I$. Escriviu-lo també en la forma $d \pm \epsilon$. (Indicació: Useu raonaments de monotonia).
- **4** Es vol calcular la quantitat $R = (\sqrt{5} \sqrt{3})^2$.
 - a) Demostreu que les 4 expressions següents són equivalents:

$$\left(\sqrt{5}-\sqrt{3}\right)^2$$
, $8-2\sqrt{3}\sqrt{5}$, $\frac{4}{\left(\sqrt{5}+\sqrt{3}\right)^2}$, $\frac{2}{4+\sqrt{3}\sqrt{5}}$.

- b) Suposem que $\sqrt{5}$ i $\sqrt{3}$ es coneixen només aproximadament, amb errors absoluts pròxims a 0 i de magnitud semblant. Quina de les 4 expressions de l'apartat anterior és millor numèricament per a calcular R?
- 5 Es considera el càlcul recurrent

$$\begin{cases} x_0, x_1 \text{ dades conegudes }, \\ x_n = 3x_{n-1} - 2x_{n-2} \quad \forall n \ge 2. \end{cases}$$

- a) Demostreu que $x_5 = 31x_1 30x_0$.
- b) Trobeu una fórmula explícita de x_n en funció de x_1 i x_0 . O sigui, trobeu f(n) i g(n) tals que $x_n=f(n)x_1+g(n)x_0$, $\forall n\geq 0$.
- c) Suposem que els càlculs es fan exactament (sense errors d'arrodoniment), i suposem que x_0 i x_1 es coneixen només aproximadament, amb uns errors absoluts fitats per ϵ . Demostreu que l'error absolut en el valor x_n obtingut, està fitat per $(2^{n+1}-3)\epsilon$.

- **6** Sigui $f(x,y) = x^y$, definida en el quadrat: $0 < x, y \le 10$.
 - a) Estudieu la propagació de l'error relatiu, a primer ordre. O sigui, cal trobar expressions E_x i E_y , dependents de x i de y, tals que, en primer ordre d'aproximació, es verifiqui

$$\frac{(\Delta f)}{f} \approx E_x \frac{(\Delta x)}{x} + E_y \frac{(\Delta y)}{y} ,$$

on el símbol Δ fa referència a l'error absolut en la variable que acompanya.

Per quins valors de x i de y hi ha problemes de propagació de l'error relatiu?

- b) Aplicació. Siguin $x=0.11(1\pm\epsilon)$ i $y=10(1\pm\epsilon)$, on $\epsilon=10^{-2}$. Trobeu una fita (a primer ordre en ϵ) de l'error relatiu en $f(x,y)=x^y$.
- 7 Sigui el sistema d'equacions lineals

$$\begin{cases} 3x + ay = 10 \\ 5x + by = 20 \end{cases}$$

on els valors a = 2.100 i b = 3.300 estan arrodonits al nombre de xifres que es mostren i les operacions es fan de manera exacta.

Calculeu un valor aproximat de x + y i una cota de l'error.

8 Per a cada $x \neq 0$, es considera la seva representació en punt flotant normalitzat, usant base 10 i 5 dígits de mantissa, arrodonint:

$$fl(x) = \pm d_0.d_1d_2d_3d_4 \cdot 10^e ,$$

on $e \in Z$, $d_i \in Z$, $0 \le d_i \le 9$, i = 0, 1, 2, 3, 4, i $d_0 \ne 0$ (condició de normalització). Per exemple, $fl(\pi) = +3.1416 \cdot 10^0$ i $fl(-0.012345678) = -1.2346 \cdot 10^{-2}$.

D'altra banda, es considera el següent algorisme per a fer la suma de dues representacions:

- Si els 2 exponents són diferents, aleshores es canvia la representació del valor que el té més petit, igualant l'exponent amb el més gran i canviant la mantissa adequadament (se suprimeix la condició de normalització i s'usen tants dígits decimals com calgui).
- Se sumen les mantisses exactament, amb tants dígits com calgui.
- S'adequa el resultat al sistema de representació, tornant a normalitzar i a arrodonir a 5 dígits (si cal).

Per exemple, $fl(9.8765 \cdot 10^2 + 4.3219 \cdot 10^1) \approx 9.8765 \cdot 10^2 + 0.43219 \cdot 10^2 \equiv 10.30869 \cdot 10^2 \approx 1.0309 \cdot 10^3$. Siguin $x=123.44321, \ y=0.0987$ i z=5.00511.

- a) Escriviu les representacions fl(x), fl(y) i fl(z).
- b) Calculeu fl(fl(fl(x) + fl(y)) + fl(z)) i fl(fl(x) + fl(fl(y) + fl(z))). Comproveu que no dóna el mateix. Quin seria el millor ordre per fer la suma?
- **9** Useu el desenvolupament de Taylor per evitar cancel·lacions o useu una reformulació en les següents expressions:

- a) $e^x e^{-x}$, per a $x \approx 0$.
- b) $\sin x \cos x$, per a $x \approx \pi/4$.
- c) $1 \cos x$, per a $x \approx 0$.
- d) $(\sqrt{1+x^2} \sqrt{1-x^2})^{-1}$ per a $x \approx 0$.
- **10** Sigui $a + b\mathbf{i} \in \mathbb{C}$, amb b > 0.
 - a) Demostreu que la seva arrel quadrada $u + v\mathbf{i}$ es pot calcular així:

$$u = +\left(\frac{r+a}{2}\right)^{1/2}$$
 i $v = +\left(\frac{r-a}{2}\right)^{1/2}$, on $r = +\left(a^2+b^2\right)^{1/2}$.

- b) Quin problema numèric es produeix quan $|a| \gg |b|$? Com es pot evitar?
- 11 El semiperíode d'oscil·lació del pèndol simple és $S=\pi(L/g)^{1/2}$, on L és la longitud i g és l'acceleració de la gravetat.
 - a) El pèndol de Foucault original (1851) media $L=67.0\pm0.01$ metres. Si es pren $\pi=3.142\pm\frac{1}{2}10^{-3}$ i $g=9.81\pm\frac{1}{2}10^{-2}$ metres/segons², doneu una aproximació del semiperíode S i una fita de l'**error absolut** d'aquest resultat (podeu trobar una fita rigorosa, o una fita aproximada usant propagació de l'error a primer ordre).
 - b) Se suposa que les operacions elementals i les funcions matemàtiques es fan en precisió finita, amb un **error relatiu** fitat per $u = 10^{-7}$. Trobeu una fita (a primer ordre en u) de l'**error absolut** en S degut a les operacions, quan s'usa la fórmula donada amb les dades aproximades conegudes de l'apartat a).
- 12 Sigui $A = \begin{pmatrix} a & e \\ e & d \end{pmatrix}$ una matriu 2×2 , real i simètrica. Per a trobar els seus valors propis (reals) s'usa l'algorisme: primer es calculen els coeficients b i c del polinomi característic $p(x) = x^2 + bx + c$ i després es resol p(x) = 0 usant la fórmula habitual.
 - a) Se suposa que les dades a, d i e es coneixen només aproximadament, amb **errors absoluts** fitats per ϵ . Treballant a primer ordre en ϵ , trobeu una fita de l'error absolut en els valors propis, que sigui de la forma $K\epsilon$, amb K independent dels elements de A.
 - b) Se suposa ara que els elements de A no tenen error, que ad < 0, i que cada operació elemental es fa amb un **error relatiu** fitat per $u \ll 1$. Treballant a primer ordre en u, trobeu fites dels errors relatius en b i en c de la forma Lu, amb L independent dels elements de A.
 - Notes: Canviar el signe d'un valor no introdueix cap error nou. Elevar un valor al quadrat sí que introdueix error.
- 13 Volem calcular el valor de la funció $F(x) = \sin x \cos x$ en el punt \bar{x} .
 - a) Treballant amb 4 xifres significatives i arrodoniment, calculeu F(0.785). Useu una fórmula millor des del punt de vista numèric. Compareu els resultats i comenteu-los.

- b) Suposem que no hi ha error en la representació del nombre \bar{x} i que usem un ordinador que comet errors relatius fitats per ϵ i 5ϵ en les operacions aritmètiques i en el càlcul de les funcions trigonomètriques, respectivament. Fiteu l'error comès en el càlcul de $F(\bar{x})$.
- 14 El semieix major, a, de l'òrbita d'un satèl·lit artificial que orbita al voltant de la terra amb un període de T segons es calcula mitjançant la fórmula:

$$a = \sqrt[3]{k\mu},$$

on $k=\left(\frac{T}{2\pi}\right)^2$ i μ és una constant gravitatòria (k es mesura en s^2 i μ en $\frac{Km^3}{s^2}$).

- a) Suposem que els valors $k = 1.25 \cdot 10^6$ i $\mu = 3.986 \cdot 10^5$ estan arrodonits al nombre de xifres que es mostren i que les operacions es fan de manera exacta. Fiteu l'error relatiu en el càlcul d'a.
- b) Per calcular a usem un ordinador que comet errors relatius fitats per ε en la representació en punt flotant de k i de μ i en l'operació producte. Suposem també que comet errors relatius fitats per 3ε en el càlcul de l'arrel. Doneu la millor fita aproximada de l'error relatiu en el càlcul d'a.
- 15 Usem un ordinador que comet errors relatius fitats per ϵ en la representació de nombres en punt flotant i en les operacions aritmètiques, i per 2ϵ i 5ϵ en el càlcul de l'arrel quadrada i de les funcions trigonomètriques, respectivament.

Doneu la millor fita (aproximada) per a l'error relatiu comès en el càlcul de $f(x,y) = \sin(x+\sqrt{y})$.

- a) S'avalua $f(x, y, z) = \tan(xy^2 z)$ per a $x = 3.25 \pm \frac{1}{2}10^{-2}$, $y = 0.792 \pm \frac{1}{2}10^{-3}$, i $z = 1.18 \pm \frac{1}{2}10^{-2}$. Calculeu una fita, aproximada a primer ordre, del resultat $f(3.25, 0.792, 1.18) \approx 1.158291$.
- b) En el mateix càlcul anterior, suposem ara que les dades no tenen error, però que cada operació individual (quadrat, producte, resta i funció trigonomètrica) es fa amb un error **relatiu** fitat per $u = 10^{-8}$. Trobeu una fita de l'error **absolut** en el resultat, a primer ordre en u.
- 17 En les reaccions químiques en què un compost es trasforma en dues substàncies més simples, convé fer càlculs de la forma

$$z = + \left(\frac{x}{x+y}\right)^{1/2} ,$$

on 0 < x, y.

- a) Si es coneixen les dades aproximades $x = 0.664 \pm \frac{1}{2}10^{-3}$ i $y = 9.87 \pm \frac{1}{2}10^{-2}$, doneu una bona aproximació de z, així com una fita, com més bona millor, de l'error absolut comès.
- b) Suposem ara que es coneixen unes dades x i y exactes, però que cada operació elemental (suma, divisió i arrel quadrada) es fa amb un error relatiu fitat per $u \ll 1$. Doneu una fita, aproximada a primer ordre en u, de l'error relatiu en el resultat z.
- 18 Usem un ordinador que comet errors relatius fitats per ϵ en la representació de nombres en punt flotant i en les operacions aritmètiques, i per 3ϵ en el càlcul de l'arrel cúbica. Doneu la millor fita (aproximadament) per a l'error relatiu comès en el càlcul de $\sqrt[3]{x+y}$, x,y>0.