MAT 5210 Homework 4

- 1. Suppose β is a root of an irreducible polynomial $f(X) = X^3 + pX + q \in \mathbf{Z}[X]$. Verify that $1, \beta, \beta^2, \beta^3$ have traces 3, 0, -2p, -3q respectively. Compute $\operatorname{tr}(\beta^4)$, and deduce that $\Delta(1, \beta, \beta^2)^2 = -4p^3 27q^2$.
- 2. Suppose α is a root of a monic irreducible polynomial $f(X) \in \mathbf{Z}[X]$. Prove that if $\deg(f) = n$ and $K = \mathbf{Q}(\alpha)$, then show that

$$\Delta(1,\alpha,\ldots,\alpha^{n-1})^2 = (-1)^{\frac{n(n-1)}{2}} \operatorname{Norm}_{K/\mathbf{Q}}(f'(\alpha))$$

3. Let $K : \mathbf{Q}$ be a number field, and $\omega = \{\omega_1, \dots, \omega_n\}$ be a basis of K (as a \mathbf{Q} -vector space). Let $\theta = \{\theta_1, \dots, \theta_n\}$ be a subset of K such that

$$\theta_j = \sum_{k=1}^n c_{kj} \omega_k \qquad (c_{kj} \in \mathbf{Q})$$

for $1 \le j \le n$.

- (a) Prove that $\Delta(\theta) = \det(c_{ij})\Delta(\omega)$.
- (b) Hence show that θ is a basis of K if and only if $\Delta(\theta) \neq 0$ (Hint: take $\omega = \{1, \alpha, \dots, \alpha^{n-1}\}$ in Question 2).
- 4. Let K be a number field. Prove that the ring of integers \mathcal{O}_K is a Euclidean domain with Euclidean function

$$\operatorname{Norm}_{K/\mathbf{Q}}: \mathcal{O}_K \setminus \{0\} \to \mathbf{N} \setminus \{0\}$$

if and only if for all $\alpha \in K$, there exists $\beta \in \mathcal{O}_K$ such that $\left| \operatorname{Norm}_{K/\mathbf{Q}}(\alpha - \beta) \right| < 1$. Hence show that if $K = \mathbf{Q}(\sqrt{-d})$ with d = 1, 2, 3, 7, then \mathcal{O}_K is a Euclidean domain. (Hint: consider the nearest point on a lattice).

- 5. Suppose that $[K:\mathbf{Q}]=n$. We say an embedding $\sigma:K\hookrightarrow\mathbf{C}$ is real if $\sigma(K)\subset\mathbf{R}$, and complex if $\sigma(K)\subset\mathbf{C}\setminus\mathbf{R}$. Let there be a total of r real embeddings, and s pairs of conjugate complex embeddings $K\hookrightarrow\mathbf{C}$, with n=r+2s. Show that if $\omega=\{\omega_1,\ldots,\omega_n\}$ is an integral basis of the ring of integers \mathcal{O}_K , then the sign of $\Delta(\omega)^2\in\mathbf{Z}$ is $(-1)^s$. Verify this for $K=\mathbf{Q}(\alpha)$, where $\alpha^3=m$ is a non-cube integer.
- 6. (a) Show that $f(X) = X^3 X + 2$ is an irreducible polynomial in $\mathbb{Z}[X]$.

- (b) Let θ be a root of f(X) = 0. Calculate $\Delta(1, \theta, \theta^2)^2$.
- (c) **Stickelberger's Theorem** (see optional question) says that for any integral basis ω of \mathcal{O}_K , the discriminant $\Delta(\omega)^2$ satisfies $\Delta(\omega)^2 \equiv 0, 1 \pmod{4}$. Use it to show that $\{1, \theta, \theta^2\}$ is an integral basis of \mathcal{O}_K .
- 7. Suppose the monic polynomial $f \in \mathbf{Z}[X]$ satisfies Eisenstein's criterion at the prime p. Let α be a root of f and $K = \mathbf{Q}(\alpha)$. Show that $\mathbf{Z}[\alpha]$ is a subgroup of \mathcal{O}_K , and the index

$$[\mathcal{O}_K:\mathbf{Z}[lpha]]$$

is \underline{NOT} divisible by p.

Optional Question:

1. (Stickelberger's Theorem) Let K be a number field with $\sigma_i : K \hookrightarrow \mathbf{C}$ being the embeddings of \mathbf{C} .

Suppose $\omega = \{\omega_1, \ldots, \omega_n\}$ is an integral basis of \mathcal{O}_K , and $\Delta(\omega) := \det(\sigma_i(w_j))$. Let P be the sum of the positive terms of the expansion of the determinant $\Delta(\omega)$, and let N be the sum of the negative terms of the determinant of $\Delta(\omega)$, i.e.

$$\Delta(\omega) = \sum_{\tau \in A_n} \left(\prod_{i=1}^n \sigma_i(\omega_{\tau(i)}) \right) - \sum_{\tau \notin A_n} \left(\prod_{i=1}^n \sigma_i(\omega_{\tau(i)}) \right) = P - N.$$

(a) Let $(\mathbf{C} \supseteq)M \supseteq K \supseteq Q$ be the 'Galois closure' of $K: \mathbf{Q}$. Show that

$$P + N$$
, $PN \in \mathbf{Q} \ (= M^{\operatorname{Gal}(M/\mathbf{Q})})$

(b) Consequently, show that

$$\Delta(\omega)^2 = (P - N)^2 \equiv 0 \text{ or } 1 \pmod{4}.$$