

Authenticated Encryption

Chosen ciphertext attacks

Example chosen ciphertext attacks

Adversary has ciphertext c that it wants to decrypt

• Often, adv. can fool server into decrypting certain ciphertexts (not c)

Often, adversary can learn partial information about plaintext

Chosen ciphertext security

Adversary's power: both CPA and CCA

- Can obtain the encryption of arbitrary messages of his choice
- Can decrypt any ciphertext of his choice, other than challenge (conservative modeling of real life)

Adversary's goal: Break sematic security

Chosen ciphertext security: definition

 $\mathbb{E} = (E,D)$ cipher defined over (K,M,C). For b=0,1 define EXP(b):

Chosen ciphertext security: definition

 \mathbb{E} is CCA secure if for all "efficient" A:

$$Adv_{CCA}[A,E] = Pr[EXP(0)=1] - Pr[EXP(1)=1]$$
 is "negligible."

Example: CBC with rand. IV is not CCA-secure

Dan Boneh

Authenticated enc. \Rightarrow CCA security

Thm: Let (E,D) be a cipher that provides AE.

Then (E,D) is CCA secure!

In particular, for any q-query eff. A there exist eff. B_1 , B_2 s.t.

$$Adv_{CCA}[A,E] \le 2q \cdot Adv_{CI}[B_1,E] + Adv_{CPA}[B_2,E]$$

Proof by pictures

Dan Boneh

So what?

Authenticated encryption:

 ensures confidentiality against an active adversary that can decrypt some ciphertexts

Limitations:

- does not prevent replay attacks
- does not account for side channels (timing)

End of Segment