BIG M Method

Small Recap in Simplex Method

Variables in Simplex Method

- Simplex method is the method to solve (LPP) models which contain two or more decision variables.
- <u>Basic variables</u>: Are the variables which coefficients One in the equations and Zero in the other equations.
- Non-Basic variables: Are the variables which coefficients are taking any of the values, whether positive or negative or zero.
- Slack, surplus & artificial variables:
 - a) If the inequality be less than or equal, then we add a slack variable + S to change to =.
 - b) If the inequality be greater than or equal, then we subtract a surplus variable S to change to =.
 - c) If we have = we use artificial variables.

BIG - M method focuses on the LPP with = constraints.

Step 1: Express the problem in the standard form.
☐ Modify the constraints so that the RHS of each constraint is nonnegative
Convert each inequality constraint to standard form (If constraint is a \leq constraint, add a slack variable s_i and if constraint is a \geq constraint, subtract an excess/surplus variable e_i).
Step 2: Add non-negative artificial variables to the left side of each of the equations corresponding to constraints of the type \geq or =.
Step 3: Assign a very large penalty cost (-M for Maximization and M for Minimization) with artificial variables in the objective function.
If the LP is a MAX problem, add (for each artificial variable) -Mai to the objective function where M denote a very large positive number.
If the LP is a MIN problem, add (for each artificial variable) Mai to the objective function where M denote a very large positive number.
Step 4: Solve the transformed problem by the simplex. Since each artificial variable will be in the starting basis, all artificial variables must be eliminated from row 0 before beginning the simplex. Now (In choosing the entering variable, remember that M is a very large positive number!).
If all artificial variables are equal to zero in the optimal solution, we have found the optimal solution to the original problem.

Minimize
$$z = 4x_1 + x_2$$

Subject to:
 $3x_1 + x_2 = 3$
 $4x_1 + 3x_2 >= 6$
 $x_1 + 2x_2 <= 4$
 $x_1, x_2 >= 0$

Add a slack variable $[S_3]$ in the third constraint and subtract a surplus variable $[S_2]$ in the second constraint as shown below.

Minimize
$$z = 4x_1 + x_2$$

Subject to:
 $3x_1 + x_2 = 3$
 $4x_1 + 3x_2 - S_2 = 6$
 $x_1 + 2x_2 + s_3 = 4$
 $x_1, x_2, S_2, s_3 >= 0$

Now, [as mentioned in Step 2] add non-negative artificial variables to the left side of each of the equations corresponding to constraints of the type \geq or = [First and second constraint] as shown below.

Minimize
$$z = 4x_1 + x_2$$

Subject to:
 $3x_1 + x_2 + R_1 = 3$
 $4x_1 + 3x_2 - S_2 + R_2 = 6$
 $x_1 + 2x_2 + s_3 = 4$
 $x_1, x_2, S_2, s_3, R_1, R_2 >= 0$

Now, assign a very large penalty cost (-M for Maximization and M for Minimization) with artificial variables in the objective function.

Since the LP is a MIN problem, add (for each artificial variable) MR_1 and MR_2 to the objective function where M denote a very large positive number as shown here.

Minimize
$$z = 4x_1 + x_2 + MR_1 + MR_2$$

Subject to:

$$3x_1 + x_2 + R_1 = 3$$

$$4x_1 + 3x_2 - S_2 + R_2 = 6$$

$$x_1 + 2x_2 + S_3 = 4$$

$$x_1, x_2, S_2, s_3, R_1, R_2 >= 0$$

We can now set x_1 , x_2 and S_2 to zero and use R_1 , R_2 and s_3 as the starting basic feasible solution.

Now, construct the SIMPLEX table as usual and solve the LPP.

Basic	Z	X ₁	\mathbf{x}_2	S_2	R_1	R_2	s_3	Solution
Z	1	-4	-1	0	-M	-M	0	0
R_1	0	3	1	0	1	0	0	3
R_2	0	4	3	-1	0	1	0	6
s_3	0	1	2	0	0	0	1	4

With this, it is not possible to proceed with the simplex method. Modify the above table into a table suitable to apply simplex method as shown below.

Basic	Z	X ₁	X_2	S_2	R_1	R_2	S ₃	Solution
Z	1	-4+7M	-1+4M	-M	0	0	0	9M
R ₁	0	3	1	0	1	0	0	3
R_2	0	4	3	-1	0	1	0	6
s_3	0	1	2	0	0	0	1	4

After this, it is similar to the normal Simplex Method. Since this is a minimization problem, select the entering variable with the most positive objective row coefficient. In the case of Maximization problem, select the entering variable with the most negative objective row coefficient.