Содержание

L	Руб	ежный контроль 3	2
	1.1	Сформулировать определение несовместных событий. Как связаны свойства несов-	
		местности и независимости событий?	2
	1.2	Сформулировать геометрическое определение вероятности	2
	1.3	Сформулировать определение сигма-алгебры событий. Сформулировать ее основ-	
		ные свойства	2
	1.4	Сформулировать аксиоматическое определение вероятности. Сформулировать ос-	
		новные свойства вероятности	2
	1.5	Записать аксиому сложения вероятностей, расширенную аксиому сложения веро-	
		ятностей и аксиому непрерывности вероятности. Как они связаны между собой? .	3
	1.6	Сформулировать определение условной вероятности и ее основные свойства	3
	1.7	Сформулировать теоремы о формулах умножения вероятностей для двух событий	
		и для произвольного числа событий	3
	1.8	Сформулировать определение пары независимых событий. Как независимость двух	
		событий связана с условными вероятностями их осуществления?	3
	1.9	Сформулировать определение попарно независимых событий и событий, независи-	
		мых в совокупности. Как эти свойства связаны между собой?	4
	1.10	Сформулировать определение полной группы событий. Верно ли, что некоторые	
		события из полной группы могут быть независимыми?	4
	1.11	Сформулировать теорему о формуле полной вероятности	4
	1.12	Сформулировать теорему о формуле Байеса	4
	1.13	Дать определение схемы испытаний Бернулли. Записать формулу для вычисления	
		вероятности осуществления ровно k успехов в серии из n испытаний	4
	1.14	Сформулировать определение элементарного исхода случайного эксперимента и	
		пространства элементарных исходов. Сформулировать классическое определение	
		вероятности. Привести пример.	4
	1.15	Сформулировать классическое определение вероятности. Опираясь на него, дока-	
		зать основные свойства вероятности	5
	1.16	Сформулировать статистическое определение вероятности. Указать его основные	
		недостатки	5
	1.17	Сформулировать определение сигма-алгебры событий. Доказать ее основные свой-	
		ства	5

1.18	Сформулировать аксиоматическое определение вероятности. Доказать свойства ве-	
	роятности для дополнения события, для невозможного события, для следствия со-	
	бытия	5
1.19	Сформулировать аксиоматическое определение вероятности. Сформулировать свой-	
	ства вероятности для суммы двух событий и для суммы произвольного числа со-	
	бытий. Доказать первое из этих свойств	6
1.20	Сформулировать определение условной вероятности. Доказать, что она удовлетво-	
	ряет трем основным свойствам безусловной вероятности	6
1.21	Доказать теоремы о формулах умножения вероятностей для двух событий и для	
	произвольного числа событий	6
1.22	Сформулировать определение пары независимых событий. Сформулировать и до-	
	казать теорему о связи независимости двух событий с условными вероятностями	
	их осуществления	6
1.23	Сформулировать определение попарно независимых событий и событий, независи-	
	мых в совокупности. Показать на примере, что из первого не следует второе	7
1.24	Доказать теорему о формуле полной вероятности	7
1.25	Доказать теорему о формуле Байеса	7
1.26	Доказать формулу для вычисления вероятности осуществления ровно k успехов в	
	серии из в испытаний по суеме Бернуции	7

1 Рубежный контроль 2

1.1 Сформулировать определение несовместных событий. Как связаны свойства несовместности и независимости событий?

Определение. События и называются несовместными, если их произведение пусто . В противном случае события и называются совместными. Определение. События и называются независимыми, если () = () ().

1.2 Сформулировать геометрическое определение вероятности.

Геометрическое определение вероятности является обобщением классического определения на случай, когда $|\Omega|=$. Пусть 1. Ω R; 2. $(\Omega)<$, где — некая мера. Если =1, то — это длина; если =2, то — площадь; если =3 — объём. Можно определить меры и при больших ; 3. Возможность принадлежности некоторого элементарного исхода случайного эксперимента событию — пропорциональна мере этого события и не зависит от формы события и его расположения внутри Ω . Тогда Определение. Вероятностью случайного события Ω называют число $=()/(\Omega)$

1.3 Сформулировать определение сигма-алгебры событий. Сформулировать ее основные свойства.

1.4 Сформулировать аксиоматическое определение вероятности. Сформулировать основные свойства вероятности.

Пусть 1. Ω — пространство элементарных исходов некоторого случайного эксперимента; 2. — сигма-алгебра, заданная на Ω . Определение. Вероятностью (вероятностной

мерой) называется функция : \rightarrow R 1. = () >= 0 (аксиома неотрицательности); 2. (Ω) = 1 (аксиома нормированности); 3. Если 1, . . . , , . . . — попарно несовместные события, то вероятность осуществления их суммы равна сумме вероятностей осуществления каждого из них по отдельности: $(1 + \ldots + + \ldots) = (1) + \ldots + () + \ldots$ (расширенная аксиома сложения).

1.5 Записать аксиому сложения вероятностей, расширенную аксиому сложения вероятностей и аксиому непрерывности вероятности. Как они связаны между собой?

Сложение — Для любого конечного набора попарно несовместных событий $1, \ldots,$ вероятность осуществления их суммы равна сумме вероятностей осуществления каждого из них по отдельности. Расширенная — Если $1, \ldots, , \ldots$ — попарно несовместные события, то вероятность осуществления их суммы равна сумме вероятностей осуществления каждого из них по отдельности: $(1 + \ldots + + \ldots) = (1) + \ldots + () + \ldots$ (расширенная аксиома сложения). Непрерывность —

1.6 Сформулировать определение условной вероятности и ее основные свойства.

Пусть 1. и - два события, связанные с одним случайным экспериментом; 2. Дополнительно известно, что в результате эксперимента произошло событие Условной вероятностью осуществления события при условии, что произошло , называется число

Свойства идентичны свойствам обычной (безусловной) вероятности.

1.7 Сформулировать теоремы о формулах умножения вероятностей для двух событий и для произвольного числа событий.

Теорема. Формула умножения вероятностей для двух событий Пусть 1. , — события; 2. () > 0. Тогда () = () (|)

1.8 Сформулировать определение пары независимых событий. Как независимость двух событий связана с условными вероятностями их осуществления?

Пусть и — два события, связанные с некоторым случайным экспериментом. Определение. События и называются независимыми, если () = () ().

Замечание. Разумеется, в качестве определения независимых событий логично было бы использовать условия ($|\)=()$ или ($|\)=()$ (6) Однако эти условия имеют смысл лишь тогда, когда () или () отлично от нуля. Условие же () = ()() «работает» всегда без ограничений.

1.9 Сформулировать определение попарно независимых событий и событий, независимых в совокупности. Как эти свойства связаны между собой?

Определение. События $1, \ldots,$ называется попарно независимыми, если = ; , $1, \ldots,$ = Определение. События $1, \ldots,$ называются независимыми в совокупности, если $2, \ldots,$ $1 < 2 < \ldots < 1, \ldots,$ $= 1 \cdot \ldots \cdot 1 < 2$

1.10 Сформулировать определение полной группы событий. Верно ли, что некоторые события из полной группы могут быть независимыми?

Пусть Ω — пространство элементарных исходов, связанных с некоторым случайным экспериментом, а $(\Omega, ,)$ — вероятностное пространство этого случайного эксперимента. Определение. Говорят, что события $1, \ldots,$ образуют полную группу событий, если 1. () > 0, = 1, ; 2. =при $= ; 3. 1 + \ldots + = \Omega$. Да, верно.

1.11 Сформулировать теорему о формуле полной вероятности.

Теорема. Формула полной вероятности. Пусть 1. 1, . . . , — полная группа событий; 2. — событие. Тогда (это выражение называется формулой полной вероятности): () = ($|1)(1) + \ldots + (||)()$

1.12 Сформулировать теорему о формуле Байеса.

Теорема. Пусть 1. 1, . . . , — полная группа событий; 2. () > 0.

1.13 Дать определение схемы испытаний Бернулли. Записать формулу для вычисления вероятности осуществления ровно к успехов в серии из п испытаний.

Определение.

1.14 Сформулировать определение элементарного исхода случайного эксперимента и пространства элементарных исходов. Сформулировать классическое определение вероятности. Привести пример.

Определение. Множество Ω всех исходов данного случайного эксперимента называют пространством элементарных исходов. 1. Каждый элементарный исход является «неделимым», т. е. он не может быть разбит на более «мелкие» исходы; 2. В результате каждого эксперимента обязательно имеет место ровно один из входящих в Ω элементарных исходов.

1.15 Сформулировать классическое определение вероятности. Опираясь на него, доказать основные свойства вероятности

Свойства вероятности: 1. Вероятность () > 0 (неотрицательна). 2. $(\Omega) = 1$. 3. Если , — несовместные события, то (+) = () + () Доказательство:

1.16 Сформулировать статистическое определение вероятности. Указать его основные недостатки.

1. Некоторый случайный эксперимент произведён раз; 2. При этом некоторое наблюдаемое в этом эксперименте событие произошло раз.

У статистического определения полным-полно недостатков: 1. Никакой эксперимент не может быть произведён бесконечное много раз; 2. С точки зрения современной математики статистическое определение является архаизмом, т. к. не даёт достаточно базы для дальнейшего построения теории.

1.17 Сформулировать определение сигма-алгебры событий. Доказать ее основные свойства.

1.18 Сформулировать аксиоматическое определение вероятности. Доказать свойства вероятности для дополнения события, для невозможного события, для следствия события.

усть 1. Ω — пространство элементарных исходов некоторого случайного эксперимента; 2. — сигма-алгебра, заданная на Ω . Определение. Вероятностью (вероятностной

мерой) называется функция : \rightarrow R 1. = () > 0 (аксиома неотрицательности); 2. (Ω) = 1 (аксиома нормированности); 3. Если 1, . . . , , . . . — попарно несовместные события, то вероятность осуществления их суммы равна сумме вероятностей осуществления каждого из них по отдельности: $(1 + \ldots + + \ldots) = (1) + \ldots + (1) + \ldots$ (расширенная аксиома сложения).

Доказательства:

1.19 Сформулировать аксиоматическое определение вероятности. Сформулировать свойства вероятности для суммы двух событий и для суммы произвольного числа событий. Доказать первое из этих свойств.

Пусть 1. Ω — пространство элементарных исходов некоторого случайного эксперимента; 2. — сигма-алгебра, заданная на Ω . Определение. Вероятностью (вероятностной мерой) называется функция : \rightarrow R 1. = () > 0 (аксиома неотрицательности); 2. (Ω) = 1 (аксиома нормированности); 3. Если 1, . . . , , . . . — попарно несовместные события, то вероятность осуществления их суммы равна сумме вероятностей осуществления каждого из них по отдельности: $(1 + \ldots + + \ldots) = (1) + \ldots + () + \ldots$ (расширенная аксиома сложения).

Формулировка:

1.20 Сформулировать определение условной вероятности. Доказать, что она удовлетворяет трем основным свойствам безусловной вероятности.

Пусть 1. и — два события, связанные с одним случайным экспериментом; 2. Дополнительно известно, что в результате эксперимента произошло событие . Определение. Условной вероятностью осуществления события при условии, что произошло , называется число

Теорема: Пусть 1. Зафиксировано событие , () = 0; 2. (|) рассматривается как функция события . Тогда (|) обладает всеми свойствами безусловной вероятности. Доказательство:

- 1.21 Доказать теоремы о формулах умножения вероятностей для двух событий и для произвольного числа событий.
- 1.22 Сформулировать определение пары независимых событий. Сформулировать и доказать теорему о связи независимости двух событий с условными вероятностями их осуществления.

Пусть и — два события, связанные с некоторым случайным экспериментом. Определение. События и называются независимыми, если () = () (). Теорема. . . . 1. Пусть () >

- 0. Утверждение « и независимы» равносильно (|) = (); 2. Пусть () > 0. Утверждение « и независимы» равносильно (|) = ().
 - 1.23 Сформулировать определение попарно независимых событий и событий, независимых в совокупности. Показать на примере, что из первого не следует второе.

1.24 Доказать теорему о формуле полной вероятности.

Пусть Ω — пространство элементарных исходов, связанных с некоторым случайным экспериментом, а $(\Omega, ,)$ — вероятностное пространство этого случайного эксперимента. Определение. Говорят. что события $1, \ldots,$ образуют полную группу событий, если 1. () > 0, = 1, ; 2. = при $= ; 3. 1 + \ldots + = \Omega$. Теорема. Формула полной вероятности. Пусть $1. 1, \ldots,$ — полная группа событий; 2. — событие. Тогда (это выражение называется формулой полной вероятности): $() = (\mid 1)(1) + \ldots + (\mid)()$ Доказательство:

1.25 Доказать теорему о формуле Байеса.

Теорема

1.26 Доказать формулу для вычисления вероятности осуществления ровно k успехов в серии из n испытаний по схеме Бернулли..