СЕНЗОРСКИ СИСТЕМИ

Лабораториска вежба бр. 2

20 Мај, 2021 Скопје Марија Грнчаровска 161273

СОДРЖИНА

1.	Имплементација на програмата 3)
	1.1.	Користени податоци 3	3
	1.2.	Дефинирање на функции 4	ļ
2.	Анал	иза на добиените податоци5	5
	2.1.	Графички приказ на МА(1), МА(2) и МА(3) отделно 5	5
	2.2.	Анализа на процентот на реализирани трансмисии 5	5
	2.3.	Анализа на Mean Square Error	6

1. Имплементација на алгоритмите

1.1 Користени податоци

Избраниот dataset се состои од приближно 56 570 сензорски мерења. Сензорите се поставени на 8 локации и вршат мерења на температурата, светлината и влажноста на секои 5 минути.

Преземени се од https://data.melbourne.vic.gov.au/Environment/Sensor-readings-with-temperature-light-humidity-ev/ez6b-syvw.

Програмата ја изработив во Jupyter Notebook користејќи различни библиотеки за читање и пресметка на предикциите како numpy, pandas, statsmodelapi; и matplotlib модулот за графичка претстава на резултатите.

На почеток го наоѓаме сензорот со најмногу мерења и вршиме проверка дали постои податок од ненумерички тип.

```
In [23]: # Finding the sensor with most measurements

column_mac = df['mac']

dictionary = dict()

for data in column_mac:
    dictionary.setdefault(data, 0)
    dictionary.setdefault(data, 0)
    dictionary[data] += 1
    dictionary

Out[23]: {'0013a20040b40b4755': 2728,
    '0013a20040b516ed': 2915,
    '0013a20040b516ed': 2915,
    '0013a20040b5186e': 2918,
    '0013a20040b5186e': 2903,
    '0013a20040b515e2': 2903,
    '0013a20040b515837': 4598,
    '0013a20040b51537': 4598,
    '0013a20040b3157': 12038,
    '0013a20040b31583': 19119)

In [24]: data_needed = df.loc[df['mac'] == '0013a20040b31583']
    data_needed

# 19119 rows x 20 columns
```

Резултатите од тоа се:

Data: 19119 NaN Data: 0

Threshold-от се движи од 0-4, со чекор од 0,1.

```
# DEFINING THRESHOLD FROM 0 TO 5 NITH STEP 0.1 : 1, 1.1, 1.2, 1.3, 1.4, ..., 4.8, 4.9, 5.0 threshold = [round(x,1) for x in np.arange(0,4.1, 0.1)]
```

1.2 Дефинирање на функции

Алгоритам за МА(1)

```
In [26]:
    def moving_average_1(serie, threshold):
        transmitted = 0;
        arr = []
        count = 0
        mse = 0.0
        for data an serie:
        if math.isnan(data):
            continue;
        if count=0;
            arr.apend(data)
            transmitted + 1
        else:
        if(abs(data - arr[0]) > threshold):
            arr(0] = data
            transmitted + 1
        else:
        #print(data, arr[0])
            error = round((arr[0] - data)**2,5)
        mse += error
        count +=1
        #print(count, transmitted)
        return round(transmitted*1.0/count*100, 2), mse/count
```

Дефинирање на генеричка функција за МА

2. Анализа на добиените резултати

За графичкиот приказ на податоците користев 2 метрики:

- % на реализирани трансмисии и
- MSE

2.1. Графички приказ за МА (1), МА (2) и МА (3)

Moving Avegage (1)

Moving Average (2)

Moving Average (3)

2.2. Анализа на процентот на реализирани трансмисии

TRANSMITTED PERCENTAGE

Од графикот се гледа дека најголем процент на пратени податоци се добиваат со користење на MA(3) алгоритмот, без разлика на вредноста на threshold-от.

2.3. Анализа на MSE

MSE

Во однос на MSE, при помал threshold грешката што се појавува е приближно иста, а за поголемите вредности на threshold-от најмала грешка се појавува со MA(1).