1 Matrizen

symmetrisch $A^T = A$, quadratisch

schiefsymmetrisch $A^T = -A$

hermitesch $A^H = A$, quadratisch unit $\tilde{\mathbf{A}}$ d'r $A^H A = I_n$ also $A^{-1} = A^H$ orthogonal $A^T A = I_n$ also $A^{-1} = A^T$

1.1 RegulÃďr

Sei $A^{m \times n}$ mit m Gleichungen und n Unbekannten **regul** $\tilde{\mathbf{A}}$ d'r mit Rang r:

- A ist quadratisch
- \bullet r=n
- A ist invertierbar
- ullet Die Zeilen- und Kolonnenvektoren sind linear unabh $\tilde{\mathrm{A}}$ d'ngig und erzeugen \mathbb{E}^m bzw. \mathbb{E}^n
- 0 ist kein Eigenwert
- $det(A) \neq 0$
- ullet Die lineare Abbildung A ist bijektiv
- fÃijr jedes b in Ax = b gibt es genau eine LÃűsung
- die Kolonnen bilden eine Basis

1.2 Multiplikation

 $A \cdot B = C$ ist definiert, falls A gleichviele Kolonnen hat wie B Zeilen. C hat dann gleichviele Zeilen wie A und gleichviele Kolonnen wie B.

2 LR-Zerlegung

$$Ax = b$$
, $PA = LR \Rightarrow Lc = Pb$, $Rx = c$

2.1 Pivotierung

3 VektorrÃďume

3.1 Vektor

 $\begin{array}{ll} \mathbf{L\tilde{A}d'nge,\ 2\text{-}Norm} & \quad ||x|| :\equiv \sqrt{\langle x,x\rangle} \\ \mathbf{Winkel} & \quad \varphi = \arccos(\frac{\langle x,y\rangle}{||x|| ||y||} \end{array}$

3.2 VektorrÃďume

Unterraum von span S mit $S = a_1, ..., a_2$ aufgespannt bzw. die Menge aller

Linearkombinationen von ${\cal S}$

Erzeugendensystem die Menge S

Basis linear unabhÃďngiges Erzeugendensystem

Dimension die Anzahl Basisvektoren

4 Lineare Abbilungen

Sei $F: X \mapsto Y$ mit dim X = n und dim Y = m

Matrixdarstellung A, so dass F(x) = Ax

Kern $\{x \in X; Fx = 0\}$, alle Vektoren in X, die auf 0 zeigen **Bild** alle Vektoren in Y, die von X mit F erreicht werden

Rang $F :\equiv \dim \operatorname{im} F$

Dimension des Kolonnenraums Dimension des Zeilenraums

Kolonnenraum im $A = \mathcal{R}(A)$, der von den Kolonnen von F aufgespannte Unter-

raum

Nullraum $\ker A = \mathcal{N}(A)$

Aus der **Dimensionsformel** dim X – dim ker F = Rang F folgt, falls F:

injektiv keine Kollisionen

Kolonnenvektoren linear unabhÃďngig

Rang $F = \dim X$ ker $F = \{0\}$

 $\mathbf{surjektiv}$ es wird jedes Element in Y erreicht

Rang $F = \dim Y$

bijektiv, d.h. Isomorphismus Rang $F = \dim X = \dim Y$

bijektiv, d.h. Automorphismus Rang $F = \dim X$

 $\ker\,F=0$

4.1 Bestimmung der Basis fÄijr Kern/Bild

- 1. Gauss anwenden
- 2. Basis des Bildes
 - (a) Alle linear unabhÃd'ngigen Kolonnenvektoren (alle mit Pivot)
- 3. Basis des **Kerns**
 - (a) Setze Fx = 0
 - (b) Berechne von freien Variablen abhÃďngige LÃűsung
 - (c) Klammere freie Variablen aus

BEISPIEL TODO

4.2 Bestimmung der Matrixdarstellung A von F bez $\tilde{\mathbf{A}}$ ijglich B_X und B_Y

Tipp: Die Kolonnen von A die Koordinatenvektoren der Bilder der Basisvektoren. BEISPIEL TODO

4.3 Transformation

$$x \in X \qquad \xrightarrow{F} \qquad y \in Y$$

$$\kappa_X \downarrow \uparrow \kappa_X^{-1} \qquad \kappa_Y \downarrow \uparrow \kappa_Y^{-1} \qquad \text{(Koordinatenabbildung bzgl. "alten" Basen)}$$

$$\boldsymbol{\xi} \in \mathbb{E}^n \qquad \xrightarrow{\mathbf{A}} \qquad \boldsymbol{\eta} \in \mathbb{E}^m \qquad \text{(Koordinatenbzgl. "alten" Basen)}$$

$$\mathbf{T}^{-1} \downarrow \uparrow \mathbf{T} \qquad \mathbf{S}^{-1} \downarrow \uparrow \mathbf{S} \qquad \text{(Koordinatenbzgl. "alten" Basen)}$$

$$\boldsymbol{\xi}' \in \mathbb{E}^n \qquad \xrightarrow{\mathbf{B}} \qquad \boldsymbol{\eta}' \in \mathbb{E}^m \qquad \text{(Koordinatenbzgl. "koordinatenbzgl. "koordinatenbzgl." (Koordinatenbzgl. "neuen" Basen)}$$

Es gilt also

$$y = F x, \quad \boldsymbol{\eta} = \mathbf{A} \boldsymbol{\xi}, \quad \boldsymbol{\xi} = \mathbf{T} \boldsymbol{\xi}', \quad \boldsymbol{\eta} = \mathbf{S} \boldsymbol{\eta}', \quad \boldsymbol{\eta}' = \mathbf{B} \boldsymbol{\xi}'$$
(5.49)

Diesen Formeln oder dem Diagramm entnimmt man, dass für die Abbildungsmatrix \mathbf{B} , die die Abbildung F bezüglich den "neuen" Basen in \mathbb{E}^m und \mathbb{E}^n beschreibt, gilt

$$\mathbf{B}\,\boldsymbol{\xi}'=\boldsymbol{\eta}'=\mathbf{S}^{-1}\,\boldsymbol{\eta}=\mathbf{S}^{-1}\,\mathbf{A}\,\boldsymbol{\xi}=\mathbf{S}^{-1}\,\mathbf{A}\,\mathbf{T}\,\boldsymbol{\xi}'$$

Da $\boldsymbol{\xi}'$ beliebig ist, ergibt sich

$$\mathbf{B} = \mathbf{S}^{-1}\mathbf{A}\mathbf{T}, \qquad \mathbf{A} = \mathbf{S}\mathbf{B}\mathbf{T}^{-1}.$$
 (5.50)

Aus Satz 5.16 folgt im übrigen wegen Rang $S^{-1} = Rang T = n$, dass Rang B = Rang A ist, und in ähnlicher Weise folgt aus Korollar 5.10, dass Rang F = Rang A ist:

Im Falle einer linearen Abbildung von X in sich, ist natürlich Y = X, $\kappa_Y = \kappa_X$, $\mathbf{S} = \mathbf{T}$. Aus (5.50) wird damit

$$\mathbf{B} = \mathbf{T}^{-1}\mathbf{A}\mathbf{T}, \qquad \mathbf{A} = \mathbf{T}\mathbf{B}\mathbf{T}^{-1}.$$
 (5.52)