Análise Combinatória, Probabilidade e Aplicações XLVI Programa de Verão IME/USP - 2017 LISTA DE EXERCÍCIOS 1

• Entrega: em sala, no dia 18/01/2017.

• Exercícios para entrega: 3, 9, 11, 13, 15 e 20.

Exercício 1. Preencha a lacuna com a relação apropriada.

- 1(a) $\{a\}$ $\{a,b,c,d\}$.
- **1(b)** $\{\emptyset\}$ $\{\emptyset, a, b\}$.
- 1(c) $\{-3,3\}$ __ $\{x \in \mathbb{N} : x^2 9 = 0\}.$
- 1(d) $\emptyset_{-}\{x \in \mathbb{R} : x^2 + 1 = 0\}.$

Exercício 2. Sejam $A, B \in C$ subconjuntos de $\mathcal{U} = \mathbb{Z}$ em que

$$A = \{x \in \mathcal{U} : x = 2k, \ k \in \mathbb{N}\},\$$

$$B = \{x \in \mathcal{U} : x = 8k, \ k \in \mathbb{N}\} \text{ e}$$

$$C = \{x \in \mathcal{U} : x = 2k - 1, \ k \in \mathbb{Z}\}.$$

Determine:

- **2(a)** $A^c \in C^c$.
- **2(b)** $A \cap B$, $B \cap C$ e $A \cup C$.
- **2(c)** $(A \cap C^c)^c$.

Exercício 3. Dados $A, B_1, \ldots, B_n, n \ge 1$, subconjuntos de $\mathcal{U} = \mathbb{Z}$, mostre que

3(a) $(A^c)^c = A$.

3(b)
$$\left(\bigcup_{i=1}^n B_i\right)^c = \bigcap_{i=1}^n B_i^c \in \left(\bigcap_{i=1}^n B_i\right)^c = \bigcup_{i=1}^n B_i^c.$$

 $\mathbf{3(c)}$ Se $\mathcal{B} = \{B_1, \ldots, B_n\}$ é uma partição de \mathcal{U} , então a coleção $\{B_1 \cap A, \ldots, B_n \cap A\}$ é uma partição de A.

Exercício 4. Suponha que $\{A_i : i \in \mathbb{N}\}$ é uma coleção de subconjuntos de um espaço universal bem definido \mathcal{U} . Qual(s) da(s) alternativa(s) é verdadeira

4(a)
$$\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = \{x \in \mathcal{U} : x \in A_k \text{ para infinitos } k \in \mathbb{N}^*\}.$$

4(b)
$$\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k = \{x \in \mathcal{U} : x \in A_k \text{ para todo } k \text{ excepto um número finito de } k \in \mathbb{N}^* \}.$$

Exercício 5. Um amigo mostrou-me 5 livros diferentes de matemática, 8 livros diferentes de física e 9 livros diferentes de química e pediu-me para escolher 2 livros com a condição de que eles não fossem da mesma matéria. De quantas maneiras eu posso escolhê-los?

Exercício 6. Com relação a palavra TEORIA.

- **6(a)** Quantos anagramas existem?
- **6(b)** Quantos anagramas começam com T?
- **6(c)** Quantos anagramas começam com T e terminam com A?
- **6(d)** Quantos anagramas começam com uma vogal?

Exercício 7. Dado $N = p_1^{\alpha_1} \times p_2^{\alpha_2} \times \ldots \times p_n^{\alpha_n}$, em que os p_i 's são primos e distintos, calcular o número de divisores de N.

Exercício 8. Quantos são os números que podemos formar usando todos os dígitos 1, 1, 1, 1, 2 e 3.

Exercício 9. De quantas maneiras podemos distribuir n objetos em duas caixas, de modo que nehuma caixa fique vazia, quando

- **9(a)** Os objetos e as caixas são diferentes?.
- **9(b)** Os objetos são iguais e as caixas diferentes?.

Exercício 10. (Pedras de Dominó) Cada pedra de dominó é constituída de 2 números. As peças são simétricas, de modo que o par de números não é ordenado. Quantas peças diferentes podem ser formadas se usarmos os números $0, 1, \ldots, n, n \in \mathbb{N}^*$?

Exercício 11(a). Um químico pussui 10 tipos de substâncias: $\{A_1, \ldots, A_{10}\}$. De quantos modos poderá combinar 6 dessas substâncias se, entre as dez, duas não podem estar juntas?

Exercício 11(b). O mesmo químico tem a hipótese de que ao dissolver 5 doses de 2 ml das substâncias $\{A_1, \ldots, A_{10}\}$ (as doses podem ser repetidas) em 5 ml de água, obterá um solução útil ao combate da Dengue. O químico precisa fazer um experimento no laboratório com todas as soluções possíveis. Qual é número máximo de testes a serem feitos pelo químico? (Suponha que a ordem de dissolução não afeta a solução final).

Exercício 12. De quantos modos podemos formar uma roda de ciranda com 6 crianças, de modo que duas dessas não fiquem juntas? Suponha agora que você tem 15 balas de caramelo e pretende dividi-las entre estas 6 crianças de modo que cada criança receba ao menos uma bala. De quantos modos poderia fazer isto?

Exercício 13. Seja \mathcal{F} a classe de funções que associam o conjunto $\{1, \ldots, 2n + 1\}$ ao conjunto $\{1, \ldots, 2n\}, n \geq 1$, isto é

$$\mathcal{F} = \{f : \{1, \dots, 2n+1\} \to \{1, \dots, 2n\}\}.$$

Sejam ainda os seguintes subconjuntos de \mathcal{F} :

 \mathcal{I} : constituído pelas funções de \mathcal{F} que associam a cada número ímpar um número par,

 \mathcal{S} : constituído pelas funções sobrejetoras de \mathcal{F} .

Determine $|\mathcal{F}|, |\mathcal{I}| \in |\mathcal{S}|$.

Exercício 14. Quantas são as permutações simples dos números $1, \ldots, n$ nas quais o elemento que ocupa a k-esima posição é maior que k-4, para todo k?

Exercício 15. Determine os números de possíveis de anagramas das palavaras SUSSURRO, VESTIBULAR e BATATA.

Exercício 16. Sejam A e B conjuntos dos números naturais com |A|=m e |B|=n, m e n naturais não nulos.

- **16(a)** Quantas são as funções $f: A \to B$?.
- **16(b)** Quantas são as funções injetoras $f: A \to B$?.
- **16(c)** Quantas são as funções estritamente crescentes $f: A \to B$?.
- **16(d)** Quantas são as funções não decrescentes $f: A \to B$?.

Exercício 17. Para cada inteiro positivo n, define-se $\varphi(n)$ como sendo a número de inteiros que são primos com n e não superiores a n. Se a decomposição de n em fatores primos é da forma $n = p_1^{\alpha_1} p_r^{\alpha_r} \dots p_r^{\alpha_r}$, em que p_1, \dots, p_r são primos e distintos, mostre que

17(a)
$$\varphi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\dots\left(1 - \frac{1}{p_r}\right).$$

17(b) Use 17(a) e calcule $\varphi(20)$ e $\varphi(p)$, em que p é um número primo.

Exercício 18. Escrevem-se os inteiros de 1 a 17999. Quantas vezes o algarismo zero é escrito?

Exercício 19. Qual é a soma de todas as permutações de todos os números de 8 algarismos distintos formados a partir dos números 1, 2, 3, 4, 5, 6, 7, 8.

Exercício 20. Quantas são as soluções não negativas da inequação

$$x + y + z \le 2$$
?