# InforMARL: Scalable Multi-Agent Reinforcement Learning through Intelligent Information Aggregation

Siddharth Nayak<sup>1</sup>, Kenneth Choi<sup>1</sup>, Wenqi Ding<sup>1</sup>, Sydney Dolan<sup>1</sup>, Karthik Gopalakrishnan<sup>2</sup>, Hamsa Balakrishnan<sup>1</sup>

<sup>1</sup>Massachusetts Institute of Technology <sup>2</sup>Stanford University

{sidnayak, kenchoi, wenqi2, sydneyd, hamsa}@mit.edu kgopalakrishnan@stanford.edu







Credit: U.S. Naval Institute



Credit: The Robot Report









Plit



Key features expected from MARL algorithms:

- Decentralized execution
- Scalability
- Efficiency in sample complexity to train













































InforMARL 1

**DINaMo** 

Vary the amount of information included in observations for actor

Local Information Mode:



Global Information Mode:



Neighborhood Information Mode:



























































InforMARL 23

DINaMo





InforMARL 24

DINaMo

# **Experiments: Sample complexity**





# **Experiments: Scalability**

| Test   | m=3   |         |     | m=10  |        |     | m=15  |                 |     |
|--------|-------|---------|-----|-------|--------|-----|-------|-----------------|-----|
| Train  | R/m   | # col/m | S%  | R/m   | #col/m | S%  | R/m   | # col/ <i>m</i> | S%  |
| n=3    | 68.31 | 0.48    | 100 | 58.59 | 1.60   | 100 | 53.19 | 2.24            | 100 |
| n=7    | 58.30 | 0.61    | 100 | 53.25 | 1.43   | 99  | 46.39 | 2.31            | 99  |
| n = 10 | 57.27 | 0.64    | 99  | 52.10 | 1.68   | 100 | 48.15 | 2.20            | 99  |





# **Experiments: Scalability**

| Reward per agent Number of collisions per agent Success Rate |       |         |      |       |        |     |       |         |     |  |  |
|--------------------------------------------------------------|-------|---------|------|-------|--------|-----|-------|---------|-----|--|--|
| Test                                                         | m=3   |         |      | m=10  |        |     | m=15  |         |     |  |  |
| Train                                                        | R/m   | # col/m | S% • | R/m   | #col/m | S%  | R/m   | # col/m | S%  |  |  |
| n=3                                                          | 68.31 | 0.48    | 100  | 58.59 | 1.60   | 100 | 53.19 | 2.24    | 100 |  |  |
| n=7                                                          | 58.30 | 0.61    | 100  | 53.25 | 1.43   | 99  | 46.39 | 2.31    | 99  |  |  |
| n = 10                                                       | 57.27 | 0.64    | 99   | 52.10 | 1.68   | 100 | 48.15 | 2.20    | 99  |  |  |





## **Satellite Environment**

- Concurrent work in leveraging transfer learning for satellite environment
- More complex non-linear dynamics for all entities in the environment







#### **Conclusions and Future Work**

- Introduced a graph-based algorithm for scaling standard MARL algorithms to arbitrary scenarios.
- Uses just neighborhood information instead of global information required by previous methods.







Project Website



