Instituto Tecnológico de Estudios Superiores de Monterrey

Implementación de robótica inteligente

Actividad 5.2: Control de posición

Profesor:

Alfredo García Suarez

Integrantes

Daniel Castillo López A01737357 Emmanuel Lechuga Arreola A01736241 Paola Rojas Domínguez A01737136

23 de Abril de 2025

Control de lazo abierto

Ventajas:

- No requiere sensores ni retroalimentación, sólo se definen las velocidades de referencia, lo que simplifica su implementación.
- Presenta una menor carga computacional debido a que no realiza cálculo de errores ni ajustes dinámicos, todo está predefinido.
- El control de lazo abierto es ideal para simulaciones controladas, es decir donde los entornos no presentan perturbaciones o ruido.

Desventajas:

- La trayectoria sólo será precisa si el modelo cinemático y la ejecución son perfectos.
- El control de lazo abierto presenta poca robustez, es decir no reacciona ante obstáculos, variaciones o perturbaciones
- No corrige errores

Control de lazo cerrado

Ventajas:

- Se calcula el error entre la posición deseada y la real, y se ajustan las velocidades dinámicamente para corregir constantemente el error.
- Existe una mayor precisión en la trayectoria incluso cuando hay errores o perturbaciones
- Puede adaptarse a cambios no modelados o a imprecisiones en el entorno.

Desventajas:

- Debido a que son necesarios más cálculos por iteración, posee una mayor complejidad computacional.
- Existe la posibilidad de oscilaciones en la trayectoria si la ganancia K no está bien definida, lo que puede generar inestabilidad.
- Requiere conocer la posición actual en todo momento, es decir, necesita retroalimentación precisa.

Comparación de resultados

Figura 2. Murciélago lazo abierto vs lazo cerrado

Figura 3. Mariposa lazo abierto vs lazo cerrado

Conclusión

El control de lazo abierto requiere que el programador defina manualmente las velocidades lineales y angulares del robot para cada segmento de la trayectoria. Esto lo hace más tedioso y menos flexible, ya que implica conocer con precisión los parámetros necesarios para seguir trayectorias específicas. Sin embargo, este tipo de control permite que el robot siga

trayectorias más exactas y geométricamente más exactas a la imagen de origen, lo que es útil en entornos estructurados y predecibles.

Por otro lado, el control de lazo cerrado, permite especificar una lista de puntos deseados y el controlador se encarga de calcular las velocidades para seguir esa trayectoria. Esto simplifica la programación y hace que el sistema sea más adaptable a diferentes trayectorias o entornos. Aunque las trayectorias que sigue el robot no son rectas, son más suaves y continuas, lo que puede evitar movimientos y cambios bruscos.