

Physical Properties of Local Wave Field Synthesis using Linear Loudspeaker Arrays

Fiete Winter and Sascha Spors

University of Rostock Institute of Communications Engineering

AES 138th Convention 10.05.2015, Warsaw

Sound Field Synthesis vs. Local Sound Field Synthesis

2D Rayleigh-Integral

$$S(\mathbf{x},\omega)$$
 • \mathbf{x}_s

$$P(\mathbf{x}, \omega) = -\int_{-\infty}^{\infty} \underbrace{\frac{\partial S(\mathbf{x}_0, \omega)}{\partial \mathbf{n}_0}}_{D_0(x_0, \omega)} G_0(\mathbf{x} - \mathbf{x}_0, \omega) dx_0 = S(\mathbf{x}, \omega) \text{ for } x \in V_0$$

Finite Spacing of Loudspeakers - Spatial Sampling

$$\mathbf{x}_{s} = [0, -1, 0]^{T}$$

Finite Length of Array - Spatial Truncation

$$\mathbf{x}_{s} = [0, -1, 0]^{T}, f = 1kHz$$

$$D_0^{\mathrm{tr}}(x_0,\omega)=D_0\left(x_0,\omega\right)\cdot w_0\left(x_0\right)$$

Systemtheoretic View

Wavenumber-Spectrum

ullet propagating for $|k_{\rm X}| \leq rac{\omega}{{
m c}}$, evanescent for $|k_{\rm X}| > rac{\omega}{{
m c}}$, $\omega = 2\pi f$

Truncation - Geometric Approximation and Spectrum

• energy concentrated between $k_x = \frac{\omega}{c} \cos \beta_0$ and $k_x = \frac{\omega}{c} \cos \alpha_0$

Spatial Aliasing - Qualitative Illustration

- Aliasing frequency inside the listening area: $f_0^{\rm al} = \frac{c}{\Delta x_0(\cos \alpha_0 \cos \beta_0)}$
- Truncation increases aliasing frequency

Basic Principle

$$\mathbf{x}_{s} = [0, -1, 0]^{T}, f = 1.5 \text{kHz}, L_{0} = 10 \text{m}$$

$$S(\mathbf{x},\omega)$$
 • \mathbf{x}_s

$$P(\mathbf{x},\omega) = \int_{-\infty}^{\infty} \underbrace{\int_{-\infty}^{\infty} \underbrace{\frac{\partial S(\mathbf{x}_{l},\omega)}{\partial \mathbf{n}_{l}}}_{D_{0}(x_{0},\omega)} D_{fs}(\mathbf{x}_{0} - \mathbf{x}_{l},\omega) dx_{l} G_{0}(\mathbf{x} - \mathbf{x}_{0},\omega) dx_{0}}_{D_{0}(x_{0},\omega)}$$

Systemtheoretic View

Truncation in Local Domain

• energy concentrated between $k_X = \frac{\omega}{c} \cos \beta_I$ and $k_X = \frac{\omega}{c} \cos \alpha_I$

Truncation in Loudspeaker Domain

• energy concentrated between $k_{x}=rac{\omega}{c}\coseta_{0}$ and $k_{x}=rac{\omega}{c}\coslpha_{0}$

Truncation in Both Domains

energy concentrated between

$$k_{x} = \frac{\omega}{c}\cos(\max{(\alpha_{0}, \alpha_{l})})$$
 and $k_{x} = \frac{\omega}{c}\cos(\min{(\beta_{0}, \beta_{l})})$

Smoothing of Truncation Artifacts

Sampling

- spatial sampling has to be sufficient in local domain to avoid additional aliasing
- aliasing frequency inside the listening area:

$$f_0^{\mathsf{al}} = \frac{c}{\Delta x_0(\cos(\max{(\alpha_0, \alpha_l)}) - \cos(\min{(\beta_0, \beta_l)}))}$$

Conlusion

- local WFS defines a smaller listening area surrounded by focused sources
- aliasing frequency can be increased by shrinking the listening area
- number of focused sources has to be sufficient to avoid additional spatial aliasing

Outlook

- close connection between spatial aliasing frequency of WFS systems and perceived coloration [Wierstorf2014]
- perceptual experiments comparing coloration in WFS, LWFS and NFC-HOA

[Wierstorf2014, Perceptual Assessment of Sound Field Synthesis, PhD thesis]

This research has been supported by EU FET grant Two!EARS, ICT-618075.