```
In [1]: using Graphs
    using GraphPlot
    using DataFrames
    using CSV
    using LinearAlgebra
```

Lucas Schmidt Ferreira de Araujo

Report 01

Exercice I

```
Alice - 1, Bob - 2, Gail - 3, Irene - 4, Carl - 5
Harry - 6, Jen - 7, David - 8, Ernest - 9, Frank - 10
```

This is a graph with:

• Number of nodes: n=10• Number of edges: m=15

```
In [2]: n = 10
        m = 15
        G = Graph(n) # graph with 10 vertices
        add_edge!(G, 1, 2)
        add_edge!(G,2,3)
        add_edge! (G, 4, 3)
        add_edge!(G,5,1)
        add_edge!(G,3,6)
        add_edge! (G, 4, 7)
        add_edge!(G,1,8)
        add_edge!(G,6,7)
        add_edge!(G,9,10)
        add_edge!(G,1,9)
        add_edge!(G,7,3)
        add_edge!(G,8,5)
        add_edge!(G,1,10)
        add_edge!(G,6,4)
        add_edge!(G,5,10)
        gplot(G, nodelabel=1:10)
```


c) The Density of the network is given by the formula

$$\rho = \frac{m}{\binom{n}{2}} = \frac{2m}{n(n-1)}$$

```
In [3]: \rho = 2*m/(n*(n-1))
println("The density \rho = *(\rho)")
```

d) The degree k_i of the node i is given by the number of edges conected to it

```
In [4]: degrees = degree(G)
    println("Node i | Degree ki")
    for v in 1:n
        println("i = $v, ki = $(degrees[v])")
    end
```

Node i | Degree ki i = 1, ki = 5 i = 2, ki = 2 i = 3, ki = 4 i = 4, ki = 3 i = 5, ki = 3 i = 6, ki = 3 i = 7, ki = 3 i = 8, ki = 2 i = 9, ki = 2 i = 10, ki = 3

e) The clustering coefficiente C_i for a node i is given by

 $C_i = \frac{\text{Number of links between neighbors of } i}{\text{Number of all possible conection between them}}$

```
In [5]: clust_coeff = local_clustering_coefficient(G)
       println("Node i | Coefficient Ci")
       for v in 1:n
          println("i = $v, Ci = $(clust_coeff[v])")
       end
      Node i | Coefficient Ci
      i = 1, Ci = 0.3
      i = 2, Ci = 0.0
      i = 3, Ci = 0.5
      i = 4, Ci = 1.0
      i = 6, Ci = 1.0
      i = 7, Ci = 1.0
      i = 8, Ci = 1.0
      i = 9, Ci = 1.0
```

f) The Closeness Centrality coefficient for a vertix i is given by the relation

$$C_B(v_i) = rac{n-1}{\sum_k d(v_k,v_i)}$$

```
In [6]: cb = closeness_centrality(G)
        println("Node i | Coefficient Cbi")
        for v in 1:n
            println("i = $v, Ci = $(cb[v])")
        end
       Node i | Coefficient Cbi
       i = 1, Ci = 0.5625
       i = 2, Ci = 0.5625
       i = 3, Ci = 0.5
       i = 4, Ci = 0.375
       i = 5, Ci = 0.4090909090909091
       i = 6, Ci = 0.375
       i = 7, Ci = 0.375
       i = 8, Ci = 0.391304347826087
       i = 9, Ci = 0.391304347826087
       i = 10, Ci = 0.4090909090909091
        f) The Degree of Centrality is devinde by
```

$$C_D = rac{d_v(s,t)}{d(s,t)}$$

Where

- ullet $d_v(s,t)-$ Is the number of shortest path that passe through the vertix v
- d(s,t)- Is the total amount of shortest paths

```
In [7]: cb = degree_centrality(G)
    println("Node i | Coefficient Cbi")
    for v in 1:n
        println("i = $v, Ci = $(cb[v])")
    end
```

Exercice II

a) Prepare a CSV with the edge list

15×2 DataFrame

Row	From	То			
	Int64	Int64			
1	1	2			
2	2	3			
3	4	3			
4	5	1			
5	3	6			
6	4	7			
7	1	8			
8	6	7			
9	9	10			
10	1	9			
11	7	3			
12	8	5			
13	1	10			
14	6	4			
15	5	10			
4					

Exercice III

a) The vector k of nodes degrees $k_i, \quad i \in \{1, 2, \dots, N\}$

k = Ae

```
In [9]: A = adjacency_matrix(G)
e = ones(n)
k = A * e
```

10-element Vector{Float64}:

- 5.0
- 2.0
- 4.0
- 3.0
- 3.0
- 3.0
- 3.0
- 2.0
- 2.0
- 3.0
- b) The ammount of links L in the network

$$L = \frac{1}{2}k \cdot e$$

In [10]:
$$L = .5 * sum(k.*e)$$

15.0

c) The matrix N whose elements n_{ij} is equal to the number of common neighbors of nodes i and j

$$N = AA^T - D$$

such that D is the diagonal matrix representing the degrees of the nodes

```
In [11]: N = A * transpose(A) - Diagonal(k)
       10×10 SparseArrays.SparseMatrixCSC{Float64, Int64} with 48 stored entries:
        · · 1.0 ·
                       2.0
                           · · 1.0 1.0 2.0
               · 1.0 1.0 1.0 1.0 1.0 1.0 1.0
       1.0 · · 2.0 · 2.0 2.0 ·
        • 1.0 2.0 • •
                           2.0 2.0
           1.0 · · · · · 1.0 2.0 1.0 1.0 2.0 · · ·
       2.0 1.0 ·
           1.0 2.0 2.0 · 2.0 · ·
                  · 1.0 · · · 1.0 2.0
· 2.0 · · 1.0 · 1.0
       1.0 1.0 ·
       1.0 1.0 ·
       2.0 1.0 ·
                   . 1.0
                                   2.0 1.0
```

d) The number T of triangles present in the network

$$T=rac{1}{6}trA^{3}$$

In [12]: $T = tr(A^3) / 6$

7.0

Report01 13/04/2024, 20:26

> e) How would you determine whether the network is connected only by looking at the adjacency matrix?

A Network is connected if all the nodes are connected to at least with 1 other node. Since the element a_{ij} of the matrix A^k represents the number of paths of size k from the node ito j, we might say that if there is any 0 entry in the A^n matrix then there is a point not connected with anybody and therefore the network is disconected

In [13]: A^n

10×10 S	parseAr	rays.Sp	arseMat	rixCSC{	Int64,	Int64}	with 10	0 store	d entrie	s:
25032	10328	9291	6376	18504	6376	6376	13858	13858	18504	
10328	6849	9870	8577	7762	8577	8577	5975	5975	7762	
9291	9870	23289	20648	5561	20648	20648	4232	4232	5561	
6376	8577	20648	18670	3774	18669	18669	2959	2959	3774	
18504	7762	5561	3774	14179	3774	3774	10654	10709	14090	
6376	8577	20648	18669	3774	18670	18669	2959	2959	3774	
6376	8577	20648	18669	3774	18669	18670	2959	2959	3774	
13858	5975	4232	2959	10654	2959	2959	8116	8082	10709	
13858	5975	4232	2959	10709	2959	2959	8082	8116	10654	
18504	7762	5561	3774	14090	3774	3774	10709	10654	14179	