

Задачи с дропбокса

2.4

Двумерная случайная величина равномерна распределена в эллипсе. Найти маргинальную плотность.

$$S_0 = \Gamma_{ab}$$

$$\sqrt{\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}}} = 1$$

3.4 Кси 1 и кси 2 распределены по нормальному закону $m1 = 0 \ m2 = 2$

3. 4)
$$\xi_1 = N_1(0,1)$$
 $m = 0$, $\sigma = 1$ $\xi_2 = N(2,1)$ $m = 2$ $\sigma = 1$ $P\{\xi_1 - \xi_2 > 2\} - ?$

 $[\xi_1 - \xi_2] = Z$ тоже будет по нормальному

$$MZ = ME1 - ME2 = 0 - 2 = -2$$

$$DZ = DE1 + DE2 = 2$$

P{2 < Z < +inf} =
$$\Phi((b-m)/sigm) - \Phi((a-m)/sigm)$$

= $\Phi(+inf) - \Phi((2 + 2) / 2) = 1 - \Phi(2)$

4.4 Кидают 2 монеты, найти коэффициент корреляции

2 броска	выпала решка	() 1	2	ру
Выпал орел					
0		0.0	0,00	0.25	0.25
1		0.0	0.5	0,00	0.5
2		0.25	0,00	0,00	0.25
рх		0.25	0.5	0.25	1
0.5	может выпасть сначала решка, потом орел или наоборот				

$$MX = \text{суммa}(\text{pxi} * \text{xi}) = 0*0.25 + 1*0.5 + 2*0.25 = 1$$

 $MY = \text{суммa}(\text{pyj} * \text{yj}) = 0*0.25 + 1*0.5 + 2*0.25 = 1$

$$DX = \underbrace{\text{cymma}(xi^*xi^*pxi)}_{\text{DY}} - (MX)^2 = 0.5 + 1 - 1 = 0.5$$

$$cov(x, y) = \sum_{i=0}^{2} (x_i - MX)(y_i - MY)p_{i,j} = (0-1)(2-1)(0.25) + (1-1)(0)(0-1)(0.25) = -0.5$$

$$ro = -0.5/0.5 = -1$$

5.3 В цехе 20 станков типа A-6 штук типа B-11 типа C-3. Вероятность выпустить хорошую деталь для станка A-0.5 для станка B-0.7 C-0.9. Каков процент хороших деталей выпускаемых цехом.

3) В цехе 20 станков, типа -6 штук, типа B-11, типа C-3. Вероятность выпустить хорошую деталь для станка A-0.5, для станка B-0.7, C-0.9. Каков процент хороших деталей выпускаемых цехом.

H1 - станок 1 типа P(H1) = 0.3 H2 - 2 типа P(H2) = 0.55 H3 - 3 типа P(H3) = 0.15

А - выпущена хорошая деталь

P(A|H1) = 0.5 P(A|H2) = 0.7P(A|H3) = 0.9

P(A) - ?

P(A) = 0.3 * 0.5 + 0.55 * 0.7 + 0.15 * 0.9 =

5.4 Случайная величина закон распределения Найти плотность распределения по эта

f 4) Случайная величина $\eta(\omega) = \xi(\omega)^2 - 1$, закон распред. $f_{\xi}(x) = \frac{1}{\pi(x^2 + 1)}$. Найти плотность $y = x^2 - 1$ распределения по η .

т.к
$$\eta(\omega) = \xi(\omega)^2 - 1$$
 не монотонная функция то разбиваем на 2 части до 0 и после $x = \pm \sqrt{\frac{1}{2}}$

 $\frac{d}{dy}\left(\sqrt{y+1}\right) = \frac{1}{2\sqrt{y+1}} \qquad \qquad \frac{d}{dy}\left(-\sqrt{y+1}\right) = -\frac{1}{2\sqrt{y+1}}$

$$fy = \underbrace{\frac{1}{pi^*(y+1+1)}}_{2\sqrt{y+1}} * | \frac{1}{2\sqrt{y+1}} | \frac{1}{pi^*(y+1+1)} * | \frac{1}{2\sqrt{y+1}} | \frac{1}{pi^*(y+1+1)} = \frac{1}{pi^*(y+1+1)}$$

6.3

Спутник передает на землю сведения об облачности. Вероятность облачности на территории, наблюдаемой со спутника, равна 0.6. Из-за помех в канале связи правильный прием сообщения со спутника осуществляется лишь с вероятностью 0.95. Сообщение, переданное со спутника, принято как облачность. Какова вероятность того, что

действительно наблюдается облачность?

6.3

Спутник передает на землю сведения об облачности. Вероятность облачности на территории, наблюдаемой со спутника, равна 0.6. Из-за помех в канале связи правильный прием сообщения со спутника осуществляется лишь с вероятностью 0.95. Сообщение, переданное со спутника, принято как облачность, Какова вероятность того, что действительно наблюдается облачность?

Н1 - облачность P(H1) = 0.6 H2 - нет облачности P(H2) = 0.4

А - данные переданы корректно P(A) = 0.95 P(B) = 0.05 В - были помехи

Приняли H1, какова вероятность, что А

Р(АН1(облачность без помех)) = 0.6 * 0.95 Р(ВН2(приняли облачость, но ясно)) = 0.05 * 0.4

Р(А|Н1) = 1

6.4 f(x, y) равномерно распределена в G (ромб)

7.3 По дороге едут грузовая и легковая машины. Грузовых в 4 раза больше, чем легковых. Найти с какой вероятностью машина, покидающая бензоколонку грузовая.

3) По дороге едут груз и легковая машины, груз. в 4 раза больше чем легковая, вероятность того что груз. машина заед. на бензоколонку -0.05, а легковая -0.15.

Найти с какой вероятностью машина покидающая бензозаправку – грузовая.

Найти вероятность того, что машина на заправке – грузовая.

Н1 – Выбрана грузовая(Вероятность случайно выбрать грузовую)

Н2 - Выбрана легковая (Вероятность случайно выбрать легковую)

$$P(H1) = 4/5$$

$$P(H2) = 1/5$$

А – автомобилю нужна дозаправка

$$P(A|H1) = 0.05$$

$$P(A|H2) = 0.15$$

G – на заправку приехала грузовая

По Байесу:

$$P(H1|A) = (P(A|H1)*P(H1)) / P(A) = 0.04/0.07 = 4/7$$

$$P(A) = (P(A|H1)*P(H1)) + (P(A|H2)*P(H2)) = 0.05*0.8 + 0.15*0.2 = 0.07$$

7.4 Дана эта найти математическое ожидание и дисперсию

4) Дано:
$$\eta(\omega) = 2\xi_1(\omega) - 3\xi_2(\omega)$$
 $M[\xi_1(\omega)] = 0$, $M[\xi_2(\omega)] = 2$, $D[\xi_1(\omega)] = 2$, $D[\xi_2(\omega)] = 2$ cov $[\xi_1(\omega), \xi_2(\omega)] = -1$, $M[\eta(\omega)] - ?$ $D[\eta(\omega)] - ?$

$$Z = 2X - 3Y$$

$$MX = 0$$

$$MY = 2$$

$$DX = 2$$

$$DY = 1$$

$$cov(X, Y) = -1$$

MZ, DZ?

$$MZ = M[2X - 3Y] = 2MX - 3MY = 0 - 6 = -6$$

 $DZ = D[2X - 3Y] = 4DX + 9DY + 2*2*(-3)cov(X, Y) = 8 + 9 - 12*(-1) = 29$

- 8.3 2 машинистки. одна напечатала 1/3 часть рукописей, вторая 2/3. Вероятность, что первая ошиблась. Найдена ошибка, какова вероятность, что ошиблась первая.
- 3) 2 машинистки одна напечатала 1/3 часть рукописей, вторая 2/3. Вероятность что первая ошиблась $P(A \mid H_1) = 0,15$, вторая $P(A \mid H_2) = 0,1$ Найдена ошибка , какова вероятность, что ошиблась первая.

Н1 – выбрана первая машинистка

Н2 – выбрана вторая машинистка

$$P(H1) = 1/3$$

$$P(H2) = 2/3$$

А – совершена ошибка

$$P(A|H1) = 0.15$$

$$P(A|H2) = 0.1$$

$$P(H1|A) = ?$$

8.4 две независимые случайные величины, равномерно распределены на отрезке. Найти вероятность, что корни уравнения комлексные

4) $\alpha(\omega)$ $\beta(\omega)$ - 2 независ. случ. величины, равномерно распределены на отрезке [0,h], где 0 < h < 1 Найти вероятность, что корни уравнения $x^2 - 2\alpha x + \beta = 0$ - комплексные.

Solutions:

$$x = a - \sqrt{a^2 - b}$$

$$x = \sqrt{a^2 - b} + a$$

Найти вероятность того, что дискриминант отрицательный ($a^2-b < 0$)?

 $a^2 - b$ нужно найти распределение.

$$fa(x) = 1/h$$
 если $0 \le x \le h$; 0 -иначе

$$fb(x) = 1/h$$
 если $0 < x < h$; 0 -иначе

Синяя и зеленая – ограничение по h

$$P(\beta > \alpha^2) = \iint_D f(\alpha, \beta) d\alpha d\beta$$

совместная плотность = произведение плотностей т.к а и b независимы = 1/h^2

$$P(\beta > \alpha^{2}) = \iint_{D} f(\alpha, \beta) d\alpha d\beta = \iint_{D} \frac{1}{h} \frac{1}{h} d\alpha d\beta =$$

$$= \frac{1}{h^{2}} \int_{0}^{h} d\beta \int_{0}^{\sqrt{\beta}} d\alpha = \frac{1}{h^{2}} \int_{0}^{h} \sqrt{\beta} d\beta = \frac{1}{h^{2}} \frac{\beta^{3/2}}{3/2} \Big|_{0}^{h} = \frac{2h^{2/3}}{3h^{2}} = \frac{2}{3} \sqrt{2}$$

9.3 В первой урне 5 белых и 4 черных шара, во второй урне 4 белых и 2 черных шара. Найти вероятность того, что вытащенный черный шар из первой урны.

А – вытащили черный шар

Н1 – первая урна

Н2 – вторая урна

P(H1) = 0.5

P(H2) = 0.5

P(A|H1) = 4/9

P(A|H2) = 1/3

P(H1|A) - ?

$$P(A) = 6/15$$

$$P(H1|A) = (P(A|H1) * P(H1)) / P(A) = (4/9 * 0.5) / (6/15)$$

9.4 кси и эта независимы. Найти вероятность кси меньше эта

4) Найти $P\{\xi(\omega) < \eta(\omega)\}$ если $\xi(\omega)$ и $\eta(\omega)$ независимы, и

$$f_{\xi}(x) = \frac{1}{\pi(1+x^2)} \quad f_{\eta}(y) = \begin{cases} e^{-y}, y \ge 0\\ 0, y < 0 \end{cases}$$

$$\int_{0}^{+\infty} e^{-y} dy \int_{-\infty}^{\infty} \frac{1}{\pi(1+x^{2})} dx =$$

$$\int_{0}^{+\infty} \int_{0}^{+\infty} e^{-y} dy \left(\operatorname{carch} g(x) \right) \Big|_{-\infty}^{\infty}$$

$$\int_{0}^{+\infty} \int_{0}^{+\infty} e^{-y} dy \left(\operatorname{carch} g(y) + \frac{1}{2} \right)$$

$$dv = w - v du$$

$$dv = e^{-\gamma} d - y$$

$$u = \operatorname{arctg}(y) = -\frac{1}{2} \operatorname{arctg}(y) e^{-\gamma} + \frac{1}{\sqrt{2}} \int_{0}^{\infty} \frac{e^{-\gamma} y}{1 + y^{2}} dy - \frac{1}{2} (e^{-\gamma}) \Big|_{0}^{+\infty}$$

$$du = \frac{1}{1 + y^{2}} + \frac{1}{\sqrt{2}} \int_{0}^{\infty} \frac{e^{-\gamma} y}{1 + y^{2}} dy - \frac{1}{\sqrt{2}} (e^{-\gamma}) \Big|_{0}^{+\infty}$$

$$v = \int e^{-\gamma} d - y = e^{-\gamma}$$

10.3 Вал дефекты найти вероятность что деталь поступила в ремонт хотя бы с одной поломкой

3) ВАЛ: равновозможны след. дефекты: $p_1=0,2$ $p_2=0,5$ $p_3=0,7$. Найти вероятность что деталь поступила в ремонт хотя бы с одной поломкой.

$$P(\text{хотя бы 1 поломка}) = 1 - P(\text{исправна})$$

 $P(\text{исправна}) = \text{нe}(\text{p1}) + \text{нe}(\text{p2}) + \text{нe}(\text{p3}) = 0.8 + 0.5 + 0.3 = 0.12$

10.4 случайный вектор равномерно распределен в круге Найти условную вероятность

4) $(\xi(\omega), \eta(\omega))$ – случайный вектор равномерно распред. в круге R=1, найти условную вероятность распред.

Sкруга =
$$pi*r*r = (r=1)= pi$$

$$f(xy) = \begin{cases} 1/\pi & (x,y) \in G \\ 0 & (x,y) \notin G \end{cases}$$

$$f(x|y) = f(xy)/f(y)$$

$$\int_{0}^{1} y = \int_{-\infty}^{+\infty} f(x, y) dx = \int_{-\sqrt{2-y^{2}}}^{-\sqrt{2-y^{2}}} dx = \left(\frac{1}{2} \left(2\sqrt{1-y^{2}} \right) \right) \quad \text{J} \in [1, 1]$$

$$= \int_{0}^{+\infty} f(x, y) dx = \int_{-\sqrt{2-y^{2}}}^{-\sqrt{2-y^{2}}} dx = \left(\frac{1}{2} \left(2\sqrt{1-y^{2}} \right) \right) \quad \text{J} \in [1, 1]$$

$$= \int_{0}^{+\infty} f(x, y) dx = \int_{0}^{+\infty} \frac{1}{2} dx = \left(\frac{1}{2} \left(2\sqrt{1-y^{2}} \right) \right) \quad \text{J} \in [1, 1]$$

$$\begin{cases}
\frac{1}{2\sqrt{1-y^2}} & x, y \in D \\
\sqrt{1-y^2} & x, y \in D
\end{cases}$$
Where one $y \notin [-1, 1]$

Задачи из 2020

В корзине 6 белых и 5 черных шаров. Один потеряли. После этого вытащили 2 шара и они оказались белыми. Найти вероятность того, что потерян белый шар(P(A|B) - ?).

А – потерян белый шар

В – вытащили 2 белых шара

$$P(A|B) = P(AB)/P(B) = (P(B|A)*P(A))/P(B)$$

$$P(B|A) = 5/10 * 4/9 = 2/9$$

$$P(A) = 6/11$$

$$P(B) = 6/11 * 5/10$$

$$P(A|B) = (12/99) / (3/11) = (12*11) / (99*3) = 4/9$$

Для разнообразия посчитаем

С – потерян черный шар

$$P(C|B) = (P(B|C)*P(C))/P(B)$$

$$P(B|C) = 6/10 * 5/9 = 1/3$$

$$P(C) = 5/11$$

$$P(B) = 6/11 * 5/10 = 6/22$$

$$P(C|B) = (5/33) / (6/22) = 5/6 * 2/3 = 10/18 = 5/9$$

Т.к. P(A|B) + P(C|B) = 1, то все найдено правильно (скорее всего)

Даны функции плотностей двух случайных векторов Одна распределена нормально, другая равномерно.

Найти D[X-Y], если cov(x,y)=2

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}, \ x \in \mathbb{R}$$

DX у нормального = сигма^2

DY у равномерного = $((b-a)^2)/12$

$$D[X-Y] = DX + DY + 2*1*(-1)*cov(x,y) = сигма^2 + ((b-a)^2)/12 - 4$$

В урне 5 белых и 10 черных шаров, найти вероятность, что достанут два белых шара

- а) если первый шар возвращается
- б) не возвращается

А – достали 2 белых шара

А1 – 1й шар белый

А2 – 2й шар белый

a)
$$P(A1) * P(A2) = 5/15 * 5/15$$

6)
$$P(A1A2) = P(A1) * P(A2|A1) = 5/15 * 4/14$$

Дана функция плотности X, f(x) = 1 / (Pi(1 + x)). Найти функцию плотности $Y = X^2 + 1$

<333333

$$f_{(X)} = \frac{1}{\eta(1+X)}$$
Тимонин.4

$$f_{(Y)} = \frac{1}{\eta(1+X)}$$

Есть ящик с 25 шарами 10 ч, 15 б, один шар пропал, после этого достают рандомный шар, найдите вероятность, что вынутый шар - белый

А – вытянутый шар белый

Н1 – пропал черный шар

Н2 – пропал белый шар

Н1 и Н2 гипотезы

P(A|H1) = 15/24

P(A|H2) = 14/24

P(H1) = 10/25

P(H2) = 15/25

P(A) = P(A|H1)*P(H1) + P(A|H2)*P(H2) = ...

X и Y распределены равномерно (0,6), найти $P{Y \le X^2 + X}$

В корзине 12 шаров: 5 черных и 7 белых. Случайно вытащили 3 из них. Какова вероятность, что вытащили как минимум 2 черных. (2 или 3)

А – вытащили 2 черных

В - вытащили 3 черных

P(вытащили как минимум 2 черных) = <math>P(A) + P(B) = (5*7)/110 + 5/110 = 4/11

3 перестановки: бчч, чбч, ччб

$$P(A) = 7/12*5/11*4/10 + 5/12*7/11*4/10 + 5/12*4/11*7/10 = (или) = 5/12*4/11*7/10 * 3 = (5*7)/110$$

1 перестановка: ччч

P(B) = 5/12*4/11*3/10 = 5/110

Случайная величина X равномерно распределена на промежутке [0;2], а CB У равномерно распределена на промежутке [1;5]. X и У независимы. Найти $M[(X^2)Y]$ и $D[(X^2)Y]$

MX = 1

MY = 3

 $DX = ((b-a)^2) / 12$ для равномерного

DX = 1/3

DY = 4/3

$$DX = M[X^2] - (MX)^2$$

 $M[X^2] = (MX)^2 + DX = 1 + 1/3 = 4/3$

$$M[Y^2] = (MY)^2 + DY = 9 + 4/3 = 31/3$$

$$M(X^{1}) = \int_{-\infty}^{+\infty} x^{1} \int_{-\infty}^{\infty} dx = \int_{0}^{2} x^{1} \cdot \frac{1}{2} dx = \frac{1}{2} \left(\frac{x^{5}}{5}\right)_{0}^{p} = \frac{1}{5}$$

 $M[(X^2)Y] = (T.к. \text{ независимы}) = M[X^2] * M[Y] = 4/3 * 3 = 4$

 $\frac{D[(X^2)Y]}{D[(X^2)Y]} = M[((X^2)Y)^2] - (M[(X^2)Y])^2 = M[(X^4)(Y^2)] - 16 = 16/5 * 31/3 - 16$

 $M[(X^4)(Y^2)] = \text{т.к}$ независимы = $M[X^4] * M[Y^2] = 16/5 * 31/3$

Случайные величины Х и У распределены по законам

 $X \sim N(2, 1)$

 $Y \sim N(-3, 2)$

Найти P{Y <= X - 5}

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}, \ x \in \mathbb{R}$$

Обозначается $X \sim N(m, \sigma^2)$.

Найти
$$P{Y \le X - 5} = P{Y - X + 5 \le 0} = (Z = Y - X + 5) = P{Z \le 0}$$

MX = mx = 2 (т.к. нормальное)

MY = my = -3

$$MZ = M[Y-X+5] = MY - MX + 5 = -3 - 2 + 5 = 0$$

$$cov(x, y) = M(XY) - MX*MY$$

 $DX = сигма^2 = 1$

DY = 2

Давайте скажем, что x и y независимы???? => cov(x, y) = 0

$$DZ = D[Y-X+5] = DY + DY -2cov(x, y) = 1 + 2 = 3$$

$$P{Z < 0} = \Phi((0-m)/\text{сигмa}) - \Phi((-inf-m)/\text{сигмa}) = \Phi(0) - \Phi(-inf) = 0.5 - 0 = 0.5$$

Найти плотность распределения случайной величины $Y = X^2 - 2X$

$$fx = \{e^{(-x)}, x >= 0, \\ 0, x < 0\}$$

Колганов Доп

X1 X2 – нормальное распределение $P\{X2 < X1 + 5\}$ - ?

$$m1 = -2$$
, $m2 = 3$, $DX1 = 4$, $DX2 = 3$

$$Z = X2 - X1 - 5$$

$$P{Z < 0} - ?$$

$$MZ = M[X2-X1-5] = MX2 - MX1 - 5 = 3 + 2 - 5 = 0$$

$$DZ = D[X2-X1-5] = DX2 + DX1 - 2cov(x, y) = ($$
независимы $) = DX2 + DX1 = 7$

$$P{Z < 0} = \Phi((0-0)/sqrt(7)) - \Phi((-inf - 0)/sqrt(7)) = \Phi(0) - \Phi(inf) = 0.5$$

Дана совместная плотность $4xye^{(-(x^2)-(y^2))}$ при x>0, y>0 Зависимы ли случайные величины X и Y? коррелируемы?

$$f(x,y) = \begin{cases} 4xye^{-x^{2}-y^{2}} & x \neq 0, y > 0 \\ 0, x + x \neq 0 \end{cases}$$

$$f(x) = \int_{x^{2}}^{4x} 4ye^{-x^{2}-y^{2}} dy = \begin{cases} -x^{2}-y^{2} & y = 0 \\ -2ydy & y = 0 \end{cases}$$

$$= \frac{4x}{-2} \int_{x^{2}}^{4x} e^{-x^{2}-y^{2}} dy = -2x(e^{-x^{2}-y^{2}}) \Big|_{x^{2}}^{4x} dy = -2x(e^{-x^{2}-y^{2}}) \Big|_{x^{2}}^{4$$

Определение. Случайные величины X и Y называют некоррелированными, если cov(X,Y)=0.

т.к. независимы, то cov = 0 => некоррелированные

СВ Х и У распределены по нормальному закону, независимые

m = 0, сигма = 1

Найти $P{4 <= x^2 + y^2 <= 9}$

$$M[X^2] = DX + (MX)^2 = 1 + 0 = 1$$

СВ X и У распределены по нормальному закону, независимые

m = 0, сигма = 1

Найти P{4<= x^2 + y^2 <= 9

Левушкин.4

$$\begin{cases}
(x,y) = \int_{-1}^{2\pi} \left(x\right) \cdot \int_{-1}^{2\pi} \left(x\right) \cdot \left(x\right) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x^{2}}{2}} \cdot \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x^{2}}{2}} - \frac{1}{2\pi} \cdot e^{-\frac{x^{2}}{2}} - \frac{1}{2\pi} \cdot e^{-\frac{x^{2}}{2}} \right) \\
\int_{-1}^{2\pi} \left(x\right) \cdot \int_{-1}^{2\pi} \left(x\right) \cdot \left(x\right) \cdot$$

У РЛС (радио-локационная станция)(локатор вращается)) вероятность обнаружить цель за цикл обзора без помех p1, с помехой p2, вероятность, что будет установлена помеха во время цикла - p

Найти вероятность, что за п циклов найдется хотя бы 1 цель

А - обнаружили цель

Н1 - установлено что сейчас нет помех

Н2 - установлено что сейчас есть помехи

$$P(H2) = p$$

$$P(H1) = 1 - p$$

$$P(A|H1) = p1$$

$$P(A|H2) = p2$$

$$P(A) = P(A|H1) * P(H1) + P(A|H2) * P(H2) = p1 * (1 - p) + p2 * p$$

$$Pn(1 \le k) = 1 - (1 - P(A))n$$

Случайный вектор равномерно распределен в области G. G – эллипс. Найти маргинальные плотности

Случайный вектор (X, Y) равномерно распределен в области G $G = \{(x, y) : (x/a)^2 2 + (y/b)^2 2 < 1\}$ Найти маргинальные плотности $X = \frac{1}{2}\sqrt{a^3b^2 - a^2y^2}$ $X = \frac{1}{2}\sqrt{a^3b^2 - a^$

Есть 5 пассажиров Они могут выйти на 2-9 этажах Найти вероятность того Что каждый выйдет на разных этажах

А - пассажиры вышли на разных этажах

$$P(A) = 8/8 * 7/8 * 6/8 * 5/8 * 4/8$$

2 вариант:

ЭИ - комбинация из чисел от 2-9

Всего ЭИ = 8^5

Нужно разместить 5 человек по 8 этажей:

$$A_8^5 = 8!/3! = 8*7*6*5*4$$

$$P(A) = 8*7*6*5*4 / 8^5$$

52 карты, 4 вынимают.

A = { хотя бы 1 червовая }

 $B = \{ \text{ хотя бы 1 бубновая } \}$

C = A + B

P(**C**) - ?

Всего 13 ♥ и 13 ♦

$$P(A+B) = 1$$
 - $P($ вытянули ноль \bigcirc и вытянули ноль \spadesuit $) = 1$ - $26/52 * 25/51 * 24/50 * 23/49 = 0.944$

Поезд проезжает мимо станции каждые 2 минуты. Человек приходит в случайное время на станцию. Какова вероятность что ему придется ждать меньше одной минуты?

Х - время когда пришел человек между двумя отправками поездов

 $X \in (0, 2)$ мин.

$$\begin{cases} |x| - \int_{-\frac{1}{2}}^{\frac{1}{2}} dx = \frac{x}{2} \\ |x| - \int_{-\frac{1}{2}}^{\frac{1}{2}} dx = \frac{x}{2} \end{cases}$$

$$\begin{cases} |x| - \int_{-\frac{1}{2}}^{\frac{1}{2}} dx = \frac{x}{2} \\ |x| - \int_{-\frac{1}{2}}^{\frac{1}{2}} dx = \frac{x}{2} \end{cases}$$

$$P\{X < 1\} = 0.5$$

Сообщение передают три раза. Вероятность успеха в первый раз 0.2, во второй раз 0.3, в третий раз 0.4. Найдите вероятность того, сообщение по итогу передастся. имеется ввиду хоть раз за три попытки.

А - сообщение передастся

$$P(A) = 1 - 0.8 * 0.7 * 0.6$$

Из колоды (36 карт) случайным образом достают 3 карты.

А={хотя бы 1 карта пика}, В={хотя бы одна карта буба}. Найти Р(АВ)

 $P(AB) = 1 - P(вытянули ноль <math>\spadesuit$ или вытянули ноль \spadesuit)

$$P(A+B) = P(A) + P(B) - P(AB)$$

 $P(AB) = P(A) + P(B) - P(A+B)$

P(A + B) = 1 - P(вытянули ноль • и вытянули ноль •) = 1 - 18/36 * 17/35 * 16/34

P(A) = P(B) = 1 - P(вытянули ноль определенной масти) = 1 - 27/36 * 26/35 * 25/34

$$P(AB) = \dots$$

Случайная величина N количество выпадений орла за 5 подбрасываний монетки, величина К – сумма очков на двух костях подброшенных одновременно. Найти Р{К+N<=14}

случайная величина N - кол во выпадений орла за 5 подбрасываний монетки, величина К - сумма очков на двух костях подброшенных одновременно.

Прирост зарплаты нормальная величина с параметрами.... Определить вероятность что у 9 человек прирост будет не меньше 10%

Прирост зарплаты нормальная величина с параметрами.... Определить вероятность что у 9 человек прирост будет не меньше 10%

$$\mathcal{J}(z) = \frac{1}{6\sqrt{2\pi}} e^{-\frac{(z-m)^2}{26^2}}$$

$$P(10 \le X) = 1 - P(X<10) = 1 - \left(\oint_0 \left(\frac{10-m}{6} \right) - \oint_0 \left(-\infty \right) = y$$

$$P(g) = C_g y^g \cdot (1-y)^o = y^g$$

точно?

Случайный вектор (X, Y) равномерно распределен на $D=\{(x, y): (0<=x<=1) \land (0<=y<=1)\}$. Найти маргинальную плотность по X.

СВ (X, Y) равномерно распределен на D={(x, y): $(0<=x<=1) \land (0<=y<=1)$ }. Найти маргинальную плотность по X.

$$\begin{cases} (x,y) = \begin{cases} 1, (x,y) \in I \end{cases} \\ (x,y) = \begin{cases} 1, (x,y$$