

Техническое описание

Когенерационная установка

JMS 320 GS-N.LC

with Island Operation

JMS 320

Электрическая выходная мощность

1067 кВт эл.

Тепловая выходная мощность

1241 кВт

Выбросы

NOx < 500 mg/Nm³ (5% O2) CO < 650 mg/Nm³ (5% O2)

0.01 Технические характеристики (модуля)	4
Габариты и вес (модуля)	5
Соединения Мощность / расход топлива	5 5
0.02 Технические характеристики двигателя Баланс тепловой энергии	6
Характеристики выхлопного газа	6
Данные воздуха горения	6
Уровень звукового давления Уровень звуковой мощности	7
0.03 Технические характеристики генератора	8
Константы реактивности и времени (предельный)	8
0.04 Технические характеристики рекуперации тепла	9
Общие данные - контур горячей воды	9
Общие данные - контур охлаждающей воды Теплообменник выхлопного газа	9
Вариант обвязки т/обменниками F	10
о.10 Технические параметры	11
1.00 Объём поставки - агрегат	12
1.01 Газовый двигатель внутреннего сгорания	13
1.01.01 Устройство двигателя	13
1.01.02 Дополнительная оснастка мотора	15
1.01.03 Дополнительное оборудование к двигателю	15
1.01.04 Стандартные инструменты (1 набор на станцию)	15
1.02 Синхронный генератор низких напряжений	15
1.03 Оборудование модуля	18
1.03.01 Система водяного охлаждения двигателя	19
1.03.02 Автоматическая система пополнения смазочного масла	19
1.03.03 Окислительный катализатор	20
1.04 Восстановление тепла	20
1.05.02 Газовая рампа 2-4 бар	21
1.07 Покраска	21
1.11 Шкаф управления модулями для каждого модуля с Dia.ne XT4 с	<u>.</u> -
индивидуальной синхронизацией выключателя генератора Визуализация посредством сенсорного дисплея:	21 22
визуализация посредством сенсорного дисплея: Центральная система управления двигателем и агрегатом:	22 26
Сообщения о неисправностях шкафа управления модулями:	27
1.11.03 Дистанционный сигнал через PROFIBUS-DP	30

09.06.2017/GE MV (05B4) Тех описание JMS320 400B.docx

1.11.06 Передача информации посредством DIA.NE XT4	30
1.20.03 Пусковая система	34
1.20.05 Электрический подогрев водяной рубашки	35
1.20.08 Гибкие соединения	35
1.20.10 Байпас выхлопного газа	36
1.20.25 Система безопасности на линии горячей воды	36
1.20.26 Насос на линии горячей воды –насос модульного типа	36
1.20.27 Устройство регулировки температуры на линии обратной воды	37
2.00 Электрическое оборудование	37
2.02 Система соединения с внешней сетью	37
2.03.02 Система регулирования мощности станции	38
2.04 Распределительное устройство генератора низковольтного напряже в соответствии с IEC/EN	
2.10.01 Мастер-синхронизация, встроенная в шкаф управления станцией_	40
2.10.04 Система управления станцией из 10 модулей	43
3.03.01 Шумоглушитель выхлопных газов	45
3.10.01 Система Охлаждения –контур низкой температуры	46
3.10.02 Система Охлаждения –контур высокой температуры	46
4.00 Поставка и установка	47
4.01 Транспортировка	47
4.02 Разгрузка 4.03 Монтаж	47 47
4.04 Складирование	47
4.05 Запуск и ввод в эксплуатацию	47
4.06 Пробная эксплуатация (включена)	47
4.07 Измерение вредных веществ (газоанализатор)	47
5.01 Объём поставки	47
5.02 Испытания и приёмка	49
5.02.01 Испытания двигателя	49
5.02.02 Испытания генератора 5.02.03 Испытания агрегата	49 49
•	
5.03 документация	50

09.06.2017/GE MV (05B4) Тех описание JMS320 400B.docx

3/50

0.01 Технические характеристики (модуля)

Данные при: Полной Частичной нагрузк нагрузке

нагрузк нагрузке					
	кВтч/Нм³		9,5		
			100%	75%	50%
	кВт	[2]	2 606	2 007	1 409
	Нм³/ч	*)	274	211	148
	кВт	[1]	1 095	821	548
	кВт эл.	[4]	1 067	798	529
	кВт		207	104	25
	кВт		121	109	95
	кВт		347	317	270
	кВт		566	445	330
	кВт	[5]	1 241	975	720
	кВт общий		2 308	1 773	1 249
	кВт	[9]	70	54	29
	кВт		~	~	~
ca.	кВт	[7]	91	~	~
	кВтч/кВтч	[2]	2,44	2,52	2,66
	ЭЛ.				
	кВтч/кВтч	[2]	2,38	2,45	2,57
ca.	кг/ч	[3]	0,33	~	~
	%		40,9%	39,8%	37,5%
	%		47,6%	48,6%	51,1%
	%	[6]	88,5%	88,3%	88,6%
	°C		90,0	85,7	81,6
	°C		70,0	70,0	70,0
	м³/ч		53,3	53,3	53,3
		кВт Нм³/ч кВт кВт эл. кВт кВт кВт кВт кВт кВт кВт кВт кВт кВ	кВт [2] Нм³/ч *) кВт [1] кВт эл. [4] кВт кВт кВт кВт кВт кВт кВт кВт (5) кВт общий кВт са. кВт [7] кВтч/кВтч [2] эл. кВтч/кВтч [2] эл. кВтч/кВтч [3] % % [6]	кВтч/Нм³ 9,5 100% кВт [2] 2 606 Нм³/ч *) 274 кВт [1] 1 095 кВт эл. [4] 1 067 кВт 207 кВт 347 кВт 566 кВт [5] 1 241 кВт общий 2 308 кВт общий 2 308 кВт общий 2 308 кВт [7] 91 кВт (7] 91 кВтч/кВтч [2] 2,44 эл. кВтч/кВтч [2] 2,38 са. кг/ч [3] 0,33 са. кг/ч [3] 0,33 % 40,9% % 47,6% % [6] 88,5%	кВтч/Нм³ 9,5 100% 75% кВт [2] 2606 2007 Нм³/ч *) 274 211 кВт [1] 1095 821 кВт эл. [4] 1067 798 кВт 207 104 кВт 121 109 кВт 566 445 кВт 566 445 кВт общий 2308 1773 кВт общий 2308 1773 кВт кВт ~ ~ са. кВт [9] 70 54 кВтч/кВтч [2] 2,44 2,52 эл. кВтч/кВтч [2] 2,44 2,52 эл. кВтч/кВтч [2] 2,38 2,45 са. кг/ч [3] 0,33 ~ % 40,9% 39,8% % 47,6% 48,6% % [6] 88,5% 88,3% °C 90,0 85,7 70,0 70,0 70,0

^{*)} Приближенное значение для задания размеров монтажа трубопровода

Указанные данные по теплу основаны на стандартных условиях эксплуатации согласно положению главы 0.10. Отклонения от стандартных условий могут привести к изменениям в тепловом балансе, которые необходимо учитывать при проектировании последовательности расположения охлаждающих теплообменников (газовоздушной смеси; аварийного;...). К общему отклонению ±8 % на отводимую тепловую мощность рекомендуется запланировать дополнительный расчетный резерв минимум +5 % для расчета параметров обратной охлаждающей мощности.

[[]_] Объяснения: см. 0.10 - Технические параметры

Габариты и вес (модуля)

Длина	ММ	~ 5 700
Ширина	ММ	~ 1 900
Высота	ММ	~ 2 300
Вес сухой	КГ	~ 14 400
Вес рабочий	КГ	~ 14 900

Соединения

• •		
Вход и выход горячей воды	DN/PN	100/10
Выход выхлопного газа	DN/PN	250/10
Топливный газ (модуля)	DN/PN	80/16
Дренаж воды ISO 228 (водогрейный контур)	G	1/2"
Отвод конденсата	DN/PN	50/10
Предохранительный клапан - водяная рубашка ISO 228	DN/PN	2x1½"/2,5
Предохранительный клапан - горячая вода	DN/PN	65/16
Пополнение смазочным маслом (трубопровод)	мм	28
Дренаж отработанного масла (трубопровод)	ММ	28
Водяная рубашка - наполнение (гибкий трубопровод)	мм	13
Вода интеркулера 1-ой ступени - вход/выход	DN/PN	80/10
Вода интеркулера 2-ой ступени - вход/выход	DN/PN	65/10

Мощность / расход топлива

Мощность при ISO усл.экспл-ции и топливе в соотв. с ICFN	кВт	1 095
Ср.эффективное давление в цилиндрах	бар	18,00
Тип топливного газа		Природный газ
Расчетное метановое число Мин. метан.число	мч d)	94 70
Степень сжатия	Epsilon	12,5
Мин./макс. давл.топливн. газа на вх. в сист. подачи газа	бар	2-4 c)
Допустимые колебания давления топливного газа	%	± 10
Макс. уровень колебаний давления топливного газа	мбар/сек	10
Макс. т-ра воды на входе в интеркулер 2-ой ступени	°C	40
Уд.коэфф. потребления топлива	кВтч/кВтч	2,38
Уд.расход масла	г/кВтч	0,30
Макс. температура масла	°C	90
Макс. температура водяной рубашки	°C	95
Требуемый объем масла при замене	л	~ 342

с) Более низкое давление газа по запросу d) На основе подсчета метанового числа программным обеспечением AVL 3.1 (подсчет без учета N2 и CO2)

0.02 Технические характеристики двигателя

Производитель		GE Jenbacher
Тип двигателя		J 320 GS-D05
Принцип работы		4х тактный вн.сгорания
Конфигурация		V 70°
Количество цилиндров		20
Внутренний диаметр цилиндра	ММ	135
Ход поршня	ММ	170
Рабочий объем	л	48,67
Частота вращения КВ	об/мин	1 500
Средняя скорость поршня	м/с	8,50
<u>Д</u> лина	ММ	3 320
Ширина	ММ	1 358
Высота	ММ	2 065
Вес сухой (дв-ля)	КГ	5 200
Вес рабочий	КГ	5 700
Момент инерции маховика	KΓM ²	8,61
Направление вращения (глядя на маховик)		против часовой
Уровень радиопомех VDE 0875		N
Мощность стартера	кВт	7
Напряжение стартера	В	24
Баланс тепловой энергии		
Подведенная энергия топлива	кВт	2 606
Интеркулер смеси	кВт	277
Масло	кВт	121
Водяная рубашка	кВт	347
Выхлопного газа, охлажденного до 180 °C	кВт	464
Выхлопного газа, охлажденного до 100 °C	кВт	600
Излучаемое тепло повехностей	кВт	54
Характеристики выхлопного газа		
Т-ра выхлопн. газа при полной нагрузке	°C [8]	442
Т-ра выхлопн. газа при bmpe= 13,5 [бар]	°C	~ 452
Т-ра выхлопн. газа при bmpe= 9 [бар]	°C	~ 477
Уд. массовый расход выхлопн. газа, влажного	кг/ч	5 665
Уд. массовый расход выхлопн. газа, сухого	кг/ч	5 260
Объем выхлопного газа, влажного	Нм³/ч	4 497
Объем выхлопного газа, сухого	Нм³/ч	3 992
Макс.допуст.противодавл. выхлопа на выходе	мбар	60
Данные воздуха горения		
Уд. массовый расход воздуха горения	кг/ч	5 485
Объем воздуха горения	Нм³/ч	4 244
Максимально допустимое падение давления в воздушном	мбар	10
фильтре		

Уровень звукового давления

Агрегат	ra a)	dB(A) re 20µPa	96
31,5	Гц	дБ	78
63	Гц	дБ	90
125	Гц	дБ	92
250	Гц	дБ	89
500	Гц	дБ	92
1000	Гц	дБ	90
2000	Гц	дБ	89
4000	Гц	дБ	87
8000	Гц	дБ	90
Выхлог	ı b)	dB(A) re 20µPa	122
31,5	Гц	дБ	97
63	Гц	дБ	108
125	Гц	дБ	118
250	Гц	дБ	110
500	Гц	дБ	113
1000	Гц	дБ	114
2000	Гц	дБ	117
4000	Гц	дБ	115
8000	Гц	дБ	114
Уровень звуковой мощности			
Агрегат		dB(A) re 1pW	117
		1 ' ' ' ' '	

120

130

6,28

7/50

 M^2

dB(A) re 1pW

M²

Площадь измерения

Площадь измерения

Выхлоп

а) средн. уровень мощн. звука на поверхности на расстоянии 1 м (при пересчете на распостранение звука в свободном пространстве) в соответствии с DIN 45635, точность - класс 3.

b) средн. уровень мощн. звука на поверхности на расстоянии 1 м в соответствии с DIN 45635, точность - класс 2. Диапазон действтелен для агрегатов до bmep =18 бар. (Добавить допуск на 1 дБ для всех значений при увеличении давления на 1 бар).

Допустимые отклонения при измерениях $\pm 3 \text{ dB}$

0.03 Технические характеристики генератора

Производитель		STAMFORD e)
Тип		PE 734 E e)
Номинальная мощность данного типа	кВА	1 625
Приводная мощность	кВт	1 095
Номинальная мощность при p.f. = 1,0	кВт	1 067
Номинальная мощность при p.f. = 0,8	кВт	1 058
Номинальная выход. мощность при p.f. = 0,8	кВА	1 322
Номинальная реактивная мощность при р.f. = 0,8	кВАр	793
Номинальная сила тока при р.f. = 0,8	Α	1 908
Частота тока	Гц	50
Напряжение	В	400
Скорость вращения	об/мин	1 500
Предельное значение скорости вращения	об/мин	1 800
Коэффициент мощности (Запаздывающий - Опережающий)		0,8 - 1,0
КПД при cos phi = 1,0	%	97,4%
КПД при cos phi = 0,8	%	96,6%
Момент инерции маховика	KΓM ²	44,50
Macca	КГ	3 506
Уровень радиопомех EN 55011 Class A (EN 61000-6-4)		N
Ik" начальный ток при симметричном коротком замыкании	кА	20,97
Is максимальный ток в асимметричной цепи короткого	кА	53,38
замыкания		
Класс изоляции		Н
Класс нагрева под нагрузкой		F
Макс. температура окружающей среды	°C	40

Константы реактивности и времени (предельный)

хd продольная ось синхронная реактивность	p.u.	2,06
хd' продольная ось переходное реактивное сопротивление	p.u.	0,12
хd" продольная ось сверхпереходное реактивное	p.u.	0,09
сопротивление		
х2 реактивное сопротивление обратной последовательности	p.u.	0,13
Td" постоянная времени сверхпереходного реакт. сопрот	мс	20
Та постоянная времени прямого тока	мс	20
Tdo' постоянная времени разомкнутой цепи	С	2,50

e) GE Jenbacher оставляет за собой право заменить поставщика и тип генератора. Указанные в Договоре параметры генератора изменяются при этом лишь в незначительной степени. Вырабатываемая электрическая мощность останется неизменной.

0.04 Технические характеристики рекуперации тепла

Общие данные - контур горячей воды

<u> </u>		
Общая тепловая вых. мощность	кВт	1 241
Температура обратной воды	°C	70,0
Температура прямой воды	°C	90,0
Расход горячей воды	м ³ /ч	53,3
Давление в контуре горячей воды	PN	10
минимальное рабочее давление	бар	3,5
максимальное рабочее давление	бар	9,0
Падение давления при циркуляции воды	бар	1,00
Макс. отклонения тем-ры в обратном трубопроводе	°C	+0/-5
Макс. уровень колебаний тем-ры в обратном трубопроводе	°С/мин.	10

Общие данные - контур охлаждающей воды

Отводимое тепло для рассеивания	кВт	70
Температура обратной воды	°C	40
Расход холодной воды	м³/ч	25
Ном.давл-е контуре хол.воды	PN	10
минимальное рабочее давление	бар	0,5
максимальное рабочее давление	бар	5,0
Потеря давл-я контуре хол.воды	бар	~
Макс. отклонения тем-ры в обратном трубопроводе	°C	+0/-5
Макс. уровень колебаний тем-ры в обратном трубопроводе	°С/мин.	10

Теплообменник выхлопного газа

Тип	трубчатый теплообменник	
Приблизит. падение давления выхлопного газа	бар	0,02
Подсоединение выхлопного газа	DN/PN	250/10
ВТОРИЧНЫЙ:		
Падение давления при циркуляции воды	бар	0,20
Подсоединение горячей воды	DN/PN	100/10

В случае заказа окончательная потеря давления определяется в ходе технических переговоров и отражается на технологической схеме.

Вариант обвязки т/обменниками F J 320 GS-D05

Контур горячей воды

Полезная тепловая энергия = 1 241 kW (±8 % дополн.расч. резерв +5 % резерв в системе охлажденя)

Расход горячей воды = 53,3 m³/h

Контур холодной воды (содержанием гликоля 37%)

0.10 Технические параметры

Все данные в технической спецификации основаны на полной нагрузке двигателя (если не указано другое) при указанных температурах и метановом числе и могут изменяться в связи с техническим развитием и модификациями.

Все значения давления следует понимать как избыточное давление.

- (1) Постоянная стандартная мощность ISO ICFN при указанном номинальном числе оборотов и стандартных условиях в соответствии с DIN-ISO 3046 и DIN 6271
- (2) Согласно DIN-ISO 3046 и DIN в 6271 с +5 % допустимым отклонением. Указанный КПД соответствует новому двигателю. Соблюдение инструкций GEJ по обслуживанию будет предотвращать значительное снижение эффективности в течение эксплуатации установки.
- (3)Среднее значение между интервалами смены масла в соответствии с графиком технического обслуживания, без объема заменяемого масла
- (4) При cos.phi = 1,0 в соответствии с VDE 0530 REM / IEC 34.1 с соответствующими допустимыми отклонениями, все насосы, приводимые в действие напрямую, включены в комплект поставки
- (5) Как общая мощность с допустимым отклонением ±8 %
- (6) В соответствии с вышеуказанными параметрами с (1) по (5).
- (7) Действительно только для двигателя и генератора; модуль и детали установки не учитываются (При cos.phi = 0,8)
- (8) Температура выхлопного газа с допустимым отклонением ±8 %
- (9) Intercooler heat on:
 - * standard conditions (Vxx) If the turbocharger design is done for air intake temperature > 30°C w/o de-rating, the intercooler heat of the 1st stage need to be increased by 2%/°C starting from 25°C. Deviations between 25 30°C will be covered with the standard tolerance.
 - * **Hot Country application (Vxxx)** If the turbocharger design is done for air intake temperature > 40°C w/o de-rating, the intercooler heat of the 1st stage need to be increased by 2%/°C starting from 35°C. Deviations between 35 40°C will be covered with the standard tolerance.

Уровень радиопомех

Системой зажигания газовых двигателей соблюдается граничный показатель по уровню радиопомех по норме CISPR 12 (30-75 МГц, 75-400 МГц, 400-1000 МГц) и по норме EN 55011 класс В (30-230 МГц, 230-1000 МГц).

Определение мощности

• Постоянная номинальная мощность ISO-ICFN:

Определение мощности, которую, по заявлению изготовителя, постоянно способен выдавать двигатель при указанной частоте оборотов, при выполнении предписанного изготовителем технического обслуживания в период времени между определенными им интервалами для необходимого капитального ремонта двигателя. Мощность определяется при рабочих условиях испытательного стенда изготовителя и перерасчитывается под стандартные условия.

Стандартные условия:

Барометрическое давление: 1000 мбар или 100 м над уров. моря

Температура воздуха: 25°C Относительная влажность: 30%

 Объёмные данные при нормальных условиях (топливный газ, воздух для горения, выхлопные газы):

09.06.2017/GE MV (05В4) Тех описание JMS320 400B.docx 11/**50**

Давление Температура 1013 мбар 0°C

Снижение мощности для двигателей с турбонаддувом

Стандартные параметры двигателей рассчитаны для работы на высоте ≤ **500 м** и при температуре всасываемого воздуха ≤ **30 °C** (T1)

Максимальная температура в машинном зале: 50 °C (T2) -> ошибка с остановом

При снижении метанового числа ниже указанного, включается система антидетонационного регулирования, которая сначала изменяет момент зажигания при полной номинальной нагрузке, затем следует снижение номинальной мощности.

В случае превышения граничных параметров напряжения и частоты для генератора, приведенных в ІЕС 60034-1 зона А, производится понижение мощности.

Граничные условия для газовых двигателей GE Jenbacher

Системная установка сконструирована с амортизацией колебаний согласно стандарту ISO 8528-9 и соответствует приведенным в данном стандарте граничным значениям.

Производственные материалы и системные установки должны соответствовать предписанию № **ТА 1100-0110, ТА 1100-0111 и ТА 1100-0112**.

Для консервирования необходимо соблюдать ТА 1000-0004.

Следует избегать транспортировки с помощью рельсового транспорта (см. ТА 1000-0046).

Несоблюдение вышеупомянутых ТА может привести к повреждениям двигателя/агрегата и, следовательно, к утрате гарантии!

Граничные условия для коммутационного устройства и электрического оборудования

Относительная влажность воздуха 50%, максимальная температура +40°.

Размещение на высоте не более 2000 м над уровнем моря.

1.00 Объём поставки - агрегат

Концепция агрегата:

Агрегат сконструирован компактно; двигатель и генератор соединены между собой и установлены эластично на опорной раме. Этим обеспечивается изоляция опорной рамы агрегата от и без того уже достаточно слабой вибрации двигателя и генератора. Остаточные незначительные вибрации устраняются установкой агрегата на изолирующие маты (например, силомерные). Это в принципе

позволяет размещать агрегат на любой поверхности, способной нести статическую нагрузку. Строительство специального фундамента не требуется, со стороны заказчика необходимо только принять меры для предотвращения передачи звука материалом пола.

1.01 Газовый двигатель внутреннего сгорания

Четырёхтактный, газовый двигатель внутреннего сгорания, с турбонаддувом и охладителем смеси, с высоковольтной системой зажигания и электронной системой контроля за подготовкой газовоздушной смеси. Двигатель оснащён новейшей

системой сжигания обеднённой газовоздушной смеси LEANOX,

разработанной и запатентованной GE JENBACHER.

1.01.01 Устройство двигателя

Блок двигателя

Цельный, сделан из специального чугуна с боковыми крышками на корпусе для легкого доступа к двигателю во время инспекционных осмотров.

Коленвал и коренные подшипники

Горячей штамповки, с закалённой и отполированной поверхностью, статически и динамически отбалансирован, расположен между цилиндрами; вкладыши коренных подшипников (верхний вкладыш: трёхкомпонентный / нижний вкладыш — с напылением), отверстия для принудительной смазки шатуна.

Гаситель крутильных колебаний

Необслуживаемая виско-муфта

Маховик

С зубчатым венцом для привода стартёром

Поршни

Цельные, сделанные из лёгкого сплава, с канавками для поршневых колец и масляными каналами для охлаждения; поршневые кольца и маслосъемные кольца из высококачественного материала, камера сгорания специально сконструирована и оптимизирована для работы на обедненной смеси.

Шатун

Горячей штамповки, термически обработанные, ; вкладыши подшипников шатуна (верхний вкладыш: с напылением / нижний вкладыш: с напылением) и вкладыш подшипника поршневого пальца.

Гильзы цилиндров

Центробежное литье, мокрые, заменяемые.

Головка цилиндров

Сконструирована для работы на меняющемся газе с наименьшими потерями и оптимальным расходом, специально разработана для двигателей GE Jenbacher, работающих на обедненной смеси; с водяным охлаждением, сделана из специального чугуна, индивидуально заменяемая; впрессованные кольца седла клапана, направляющие втулки клапанов и втулки свечей зажигания; впускные и выпускные клапаны - из высококачественного материала.

Вентиляция картера

Соединена с системой забора воздуха

Газораспределительный механизм

Кулачковый вал, со сменными толкателями, приводимый в движение коленвалом через промежуточный привод, смазка клапанов разбрызгиванием из коромысла

Система подготовки смеси

Газосмеситель, турбонагнетатель, трубопроводы смеси с компенсаторами, промежуточный охладитель с водяным охлаждением, дроссельная заслонка и распределительные трубопроводы к цилиндрам.

Система зажигания

Новейшая, полностью электронная, бесконтактная высоковольтная система зажигания с регулируемым извне моментом зажигания.

Система смазки

Все подвижные детали смазываются отфильтрованным маслом, подающимся с помощью центрального зубчатого масляного насоса. В контур смазочного масла включены редукционный и перепускной клапаны. Охлаждение смазочного масла осуществляется посредством теплообменника

Система охлаждения двигателя

Насос водяной рубашки охлаждения двигателя в комплекте с распределительными и сборными трубопроводами.

Выхлопная система

Турбонагнетатель и коллектор выхлопных газов

Измерение температуры выхлопного газа

Термопара на каждом цилиндре

Электронный регулятор

Для регулировки числа оборотов и мощности

Электронная регистрация числа оборотов для регулирования числа оборотов и мощности С помощью магнитного чувствительного элемента на зубчатом венце маховика.

Стартер

Электрический стартер, установлен на двигателе

1.01.02 Дополнительная оснастка мотора

В объём поставки входит набор первичных и деталей для обслуживания во время ввода в эксплуатацию.

1.01.03 Дополнительное оборудование к двигателю

Изоляция выхлопного трубопровода:

Изоляция выхлопного трубопровода легко устанавливается и снимается.

Датчики на двигателе:

- датчик температуры в водяной рубашке
- датчик давления в водяной рубашке
- датчик температуры смазочного масла
- датчик давления смазочного масла
- датчик температуры смеси
- датчик давления наддува
- датчик минимального и максимального уровня смазочного масла
- термопара для выхлопного газа на каждом цилиндре
- датчики детонации
- Датчик положения газосмеситель/дозатор подачи газа

Приводы на двигателе:

- соленоид дроссельная заслонка
- байпас турбонагнетателя
- управление газосмесителем/дозатором подачи газа

1.01.04 Стандартные инструменты (1 набор на станцию)

Инструменты, необходимые для проведения основных операций техобслуживания, входят в объём поставки и поставляются в инструментальном ящике.

1.02 Синхронный генератор низких напряжений

Двухподшипниковый агрегат состоит из основного генератора с внутренними полюсами, возбудителя с наружными полюсами и цифровой системы возбуждения. Регулятор получает питание от вспомогательной обмотки основного статора или от МЭГ.

Компоненты/узлы

- Сварной стальной корпус
- Сердечник статора из тонких изолированных пластин электротехнической стали с интегрированными каналами охлаждения
- Обмотка статора
- Коэффициент укорочения обмотки: 2/3
- Вал ротора с насаженными пластинчатыми полюсами, ротором возбудителя, МЭГ (зависит от типа) и вентилятором.

- Демпферная клетка
- Возбудитель с вращающимися выпрямляющими диодами и защитой от сверхнапряжений
- Динамическое балансирование по ISO 1940, качество балансирования G2,5
- Щит подшипника А, смазываемый подшипник качения
- Щит подшипника Б, смазываемый подшипник качения
- Охлаждение IC01: открытая вентиляция, вход воздуха напротив привода, выход на стороне привода
- Основная распределительная коробка с клеммами для подключения силового кабеля
- Распределительная коробка регулятора с дополнительными клеммами для управления регулятора и для температурного датчика
- Антиконденсатный обогрев
- 3 датчика Pt100 для контроля температуры обмотки + 3 резервных датчика
- 2 датчика Pt100 для контроля температуры подшипников

Опция:

• Преобразователь тока для защиты и измерений в нейтральной точке xx/1A, 10P10 15BA , xx/1A, 1FS5, 15BA

Электрические характеристики

- Исполнение согласно нормам IEC 60034, EN 60034, VDE 0530, ISO 8528-3, ISO 8528-9
- Диапазон регулирования напряжения: +/- 10 % номинального напряжения (длительно)
- Диапазон частоты: от -6 до +4% номинальной частоты
- Устойчивость к перегрузкам:
 Несимметричная нагрузка: неисправностях
 10% - на час в течение 6 часов, 50% - на 30 секунд максимум 8% I₂ при длительных нагрузках, I₂□t=20 при
- Высота над уровнем моря: < 1000 м
- Допустимая температура воздуха на входе в генератор: 5°C 40°C
- Максимальная относительная влажность воздуха: 90%
- Характеристика напряжения THD Ph-Ph: <3,5% на холостом ходу и <5% при полной линейной симметричной нагрузке
- Генератор способен работать параллельной с коммунальной сетью, а также с другими генераторами в автономном режиме
- Установившийся ток КЗ при 3-полюсном КЗ на клеммах: как минимум 3□номинальный ток в течение 5 сек.
- Угонная скорость: испытание на разнос длится 2 минуты со скоростью 1,2 номинальной согласно IEC 60034.

Цифровая система возбуждения ABB Unitrol 1010 в распределительной коробке регулятора (или дополнительной коробке – зависит от типа):

- Компактная прочная цифровая система возбуждения для номинальных токов возбуждения до 10 А (сверхток 20 А в течение 10 секунд)
- Быстрая регулировка и максимальное напряжение возбуждения улучшает стабильность работы при краткосрочных сбоях сетевого снабжения
- Входы/выходы для цифровых или аналоговых измерений свободного назначения, которое задается с помощью ПК-программы СМТ1000.
- Клеммы для тока:
 - Вход трехфазного питания от МЭГ или вспомогательной обмотки
 - Вход питания регулятора 24 В=

- Выход возбуждения
- Клеммы для измерений: 3-фазное напряжение машины, 1-фазное напряжение в сети, 1-фазный ток машины
- Аналоговые входы/выходы: 2 выхода и 3 входа (произвольного назначения), опорные выходы +10B/-10B
- Цифровые входы/выходы: 4 входа (произвольного назначения) и 8 входов/выходов (произвольного назначения)
- Шина RS485 для Modbus RTU или переменного тока (распределение реактивной нагрузки в автономных сетях размером до 31 агрегата GEJ), шина CAN для передачи данных по двум каналам
- Регулировка с плавным переходом между режимами работы:
 - Автоматический регулятор напряжения (AVR), точность 0,1% при температуре 25°C
 - Регулятор тока возбуждения (FCR)
 - Регулятор коэффициента мощности (PF)
 - Регулятор реактивной мощности (VAR)
- Ограничители, пресекающие выход из надежного и стабильного диапазона работы:
 - Ограничитель тока возбуждения (UEL min / OEL max.)
 - Ограничитель PQ-minimum
 - Ограничитель тока машины
 - Ограничитель В/Гц
 - Ограничитель напряжения машины
- Подстройка напряжения в процессе синхронизации
- Контроль вращающихся диодов -> контроль отказа диодов
- Два канала контроля разрешают следовать опорному значению, приходящему по шине CAN, на базе параллельно текущей автодиагностики. Предоставляется по заказу.
- Синхронизация предоставляется по заказу.
- Функция PSS расширение диапазона стабильного хода согласно IEEE 421.5-2005 2A/2B предоставляется по заказу.
- Компьютерное представление для исследования стабильности работы силовых установок (PSS Power System Stability) ABB 3BHS354059 E01
- Сертификаты: CE, cUL по UL508c (согласно CSA), DNV класс В

Программа пусконаладки и техобслуживания СМТ1000

(для обученных техников)

Компьютерная программа позволяет настраивать все параметры и ПИД-регуляторы, обеспечивающие стабильную работу, и наблюдать за поведением системы, опознавая и предупреждая на месте проблемы в ходе пусконаладки. СМТ1000 связана с UNITROL 1000 через Ethernet или USB-интерфейс, причем Ethernet разрешает дистанционное управление на расстояниях до 100 м.

Главное окно:

- Вид доступа и данные приборов
- Настройка параметров разрешена только при доступе CONTROL
- Светодиод сигнализирует, что все параметры сохранены в постоянной памяти.
- Окно опорных значений:
 - Перечень всех регуляторов и их режимов, перечень тревог, статус генератора и активных ограничителей.
 - Настройка опорных значений и рабочие шаги ПИД-настройки
- Осциллоскоп:

Запись по 20 каналам, можно выбрать 6 сигналов. Разрешение по времени 50 мсек. Данные можно сохранить на компьютере для последующего анализа.

• Измерения:

Все измерения, относящиеся к генератору, на одном экране.

Заводские испытания

Стандартная программа заводских испытаний производителя генератора содержит:

- Измерение сопротивления постоянного тока обмоток статора и ротора
- Проверка работы всех встроенных элементов (Pt100, антиконденсатный обогрев и т.п.)
- Измерение сопротивления изоляции следующих элементов:
 - обмотки статора и ротора
 - Рt100 или позистора в обмотке статора
 - Pt100 подшипников
 - антиконденсатного обогрева
- Характеристики холостого хода (остаточная намагниченность)
- Симметричность напряжения статора
- Направление вращающегося поля
- Высоковольтный тест обмотки статора (2 □ Uном + 1000В) и ротора (минимум 1500В).

1.03 Оборудование модуля

Опорная рама агрегата

Сварена из конструкционной стали, служит основанием для двигателя, генератора и теплообменников.

Эластичная муфта

Вставная, беззазорная муфта, с ограничителем крутящего момента, для соединения двигателя с генератором. Муфта изолирует от генератора основные крутильные колебания двигателя, создающие импульсы.

Защита муфты

Для центрированного и прочного соединения двигателя с генератором. С двумя окнами для вентиляции и контроля, с покрытием для муфты из перфорированного листа.

Антивибрационные крепления

Антивибрационные прорезиненные прокладки равномерно расположены между корпусами двигателя, генератора и опорной рамой, в зависимости от пункта тяжести. Антивибрационные прокладки (силомерные маты) для установки между опорной рамой и фундаментом поставляются отдельно.

Трубопровод выхлопного газа на агрегате

Подсоединение турбонагнетателя; вкл. компенсатор для выравнивания тепловых растяжений и вибраций.

Фильтр всасываемого воздуха

Воздушный фильтр сухого типа со сменными фильтрующими элементами, имеет гибкое соединение с газосмесителем и сервисный индикатор для контроля.

Шкаф интерфейсов

Закрытый со всех сторон стальной шкаф, передняя дверь с профильным резиновым уплотнением. Установлен на агрегате, подключен, готов к работе.

Покраска: RAL 7035

Защита: внешняя IP 54 внутренняя IP 20 (защита от прямого контакта с активными деталями)

Конструкция в соответствии с DIN VDE 0660, часть 500 или IEC 439-1 или EN 60 439-1/1990. Температура окружающей среды 5 - 40°C, Относительная влажность 70%

Размеры:

• высота 1000 mm

• ширина 800 mm (1000 mm в 4-й производственной серии)

• глубина 300 mm

Напряжение подаётся от зарядного устройства аккумуляторов.

Питание вспомогательных систем (заказывается у соответствующих поставщиков) $3 \times 400/230 \, \text{B}$, $50 \, \text{Гц}$, $16 \, \text{A}$

Состоит из:

- Клеммная шина
- Узлы децентрализованного ввода и вывода, соединённые интерфейсом шины с центральным управлением двигателя в шкафу управления модуля
- Блоков контроля частоты оборотов
- Измерительный преобразователь напряжения возбуждения
- Реле, защитные устройства, автоматы, защитный выключатель двигателя для управления клапанами и вспомогательными устройствами

1.03.01 Система водяного охлаждения двигателя

Система водяного охлаждения двигателя

Контур охлаждения закрытого типа, состоит из:

- Расширительного бака
- Арматуры заполнения (запорный клапан и клапан ограничения давления, манометр)
- Аварийного(-ых) клапана (-ов)
- Закорачивающего термостата (механический регулятор температуры)
- Всех без исключения необходимых трубопроводов на модуле
- Выпускных устройств и дренажных кранов
- Водяного насоса, включая обратный клапан
- Предподогрева охлаждающей воды

1.03.02 Автоматическая система пополнения смазочного масла

Автоматическое пополнение смазочного масла

Магнитный клапан в линии подачи смазочного масла регулируется с помощью датчика уровня, визуальный контроль - через смотровое стекло; контроль уровня масла с остановкой двигателя

при достижении отметки "МИН" и "МАКС"; ручное управление клапаном для первого заполнения системы или при замене масла.

Дренаж масла

Через запорный кран, проведенный через раму модуля.

Охлаждающий масляный насос

Смонтирован на опорной раме модуля; используется для охлаждения турбонагнетателя; время работы после остановки двигателя – 15 минут.

- масляный насос 250 Вт, 400/230В
- масляный фильтр
- необходимые трубопроводы

1.03.03 Окислительный катализатор

Неуправляемый каталитический нейтрализатор с металлическим корпусом и покрытием из нержавеющей стали служит для снижения уровня эмиссий.

Поставляется отдельно и устанавливается в трубопровод выхлопных газов после введения двигателя в эксплуатацию и проведения необходимых настроек.

1.04 Восстановление тепла

Теплообменники газовоздушная смесь/горячая вода, смазочное масло/горячая вода и водяная рубашка охлаждения двигателя/горячая вода установлены компактно на двигателе/опорной раме модуля, со всеми трубопроводами.

Теплообменник выхлопного газа не смонтирован, поставляется отдельно и устанавливается в блоке восстановления тепла при сборке агрегата.

Изоляция теплообменников и трубопроводов не входит в объём поставки.

Теплообменник газовоздушная смесь/горячая вода

Утилизация тепла осуществляется с помощью двухступенчатого теплообменника, установленного на двигателе. Первая ступень входит в контур горячей воды, для второй ступени необходима вода с более низкой температурой.

Теплообменник смазочное масло/горячая вода

Утилизация тепла осуществляется через установленный теплообменник, входящий в контур.

Теплообменник водяная рубашка охлаждения двигателя/горячая вода

Пластинчатый теплообменник, компактно установлен на опорной раме модуля, со всеми трудопроводами, для утилизации тепла из водяной рубашки охлаждения двигателя.

Теплообменник выхлопной газ/горячая вода

Одноканальный трубчатый теплообменник, поставляемый как компонент системы утилизации тепла выхлопных газов.

Теплообменник выхлопных газов состоит из:

- Входной камеры, с подсоединением для промывки
- Трубчатого теплообменника

- Выходной камеры с дренажом конденсата и с подсоединением для промывки
- Термопары для наблюдения за температурой выхлопного газа на выходе из теплообменника

1.05.02 Газовая рампа 2-4 бар

Поставляется в сборе, как отдельный блок, для установки в газовый трубопровод модуля.

Состоит из:

- запорная арматура
- Газового фильтра с чистотой фильтрации <3мкм
- Регулятора начального давления
- Регулятора высокого давления с предохранительным запорным клапаном
- Отрезком стабилизации со снижением давления
- Предохранительного спускного клапана
- Манометра с краном с нажимной кнопкой
- Электромагнитных клапанов
- Детектора утечек
- Переключателя давления газа (мин.)
- Регулятором газа

Газовая рампа соответствует требованиям DIN-DVGW.

Максимальное расстояние от выхода газовой рампы до входа газа в двигатель, включая гибкие соединения, составляет 2 м.

1.07 Покраска

• Структура: Маслостойкий грунт

Лаковое синтетическое покрытие

• Цвет: Двигатель: RAL 6018 (зелёный)

Опорная рама: RAL 6018 (зелёный)
Генератор: RAL 6018 (зелёный)
Шкаф интерфейса модуля: RAL 7035 (серый)
Шкаф управления: RAL 7035 (серый)

1.11 Шкаф управления модулями для каждого модуля с Dia.ne XT4 с индивидуальной синхронизацией выключателя генератора

Размеры:

• Высота: 2200 мм (с цоколем 200 мм) *)

Ширина: 800-1200 мм*)Глубина: 600 мм *)

Тип защиты:

• ІР42 внешняя

09.06.2017/GE MV (05B4) Тех описание JMS320 400B.docx 21/**50**

• ІР 20 внутренняя (защита от прямого контакта с активным частями)

*) исполнение шкафов управления зависит от проекта, технические характеристики определяются на основании предварительной проектной документации.

Питание стартовой аккумуляторной батареи и секционного блока управления 24 В пост. тока (минус заземлен).

Питание вспомогательного оборудования: (от поставщика энергоснабжающего оборудования) $3 \times 400/230 \, \text{B}$, $50 \, \text{Гц}$

Включает:

Систему управления двигателем DIA.NE

Конструкция:

- Визуализация посредством сенсорного дисплея
- Центральная система управления двигателем и агрегатом

Визуализация посредством сенсорного дисплея:

15" промышленный цветографический резистивный сенсорный дисплей.

Интерфейсы:

- Питание 24 В
- Разъем для VGA-дисплея
- USB-порт для резистивного сенсорного дисплея

Тип защиты передней панели DIA.NE XT: IP 65

Размеры: $ШxВx\Gamma = ок. 410x310x80 мм$

На экране отображается графическая мнемосхема и измеренные значения параметров.

Навигация осуществляется посредством экранных клавиш выбора, управляемых нажатием. Ввод чисел (заданных значений, параметров ...) выполняется с помощью блока сенсорной десятичной клавиатуры или ползунка.

Выбор рабочих параметров и синхронизации осуществляется с помощью сенсорной панели клавиш, которая может быть постоянно включена на любом экране.

Основные экраны (примеры):

Главный экран: Представление общего вида, состояния вспомогательного оборудования, запуск двигателя и рабочие параметры

23/50

ELE: Представление интеграции генератора с измеренными электрическими параметрами, синхронизация

ОПЦИЯ: Температура обмотки и подшипников генератора

Анализ тенденций:

Тенденция с разрешением 100 мс

Измеренные значения:

- 510 точек на графике наносятся историческим способом
- Интервал считывания = 100 мс
- Возможность доступа к исходным данным с разрешением 100 мс: 24 часа + макс. 5 000 000 изменений значения при остановках (60 мин. за одну остановку)

25/50

- Архивация степень 1: мин., макс., среднее значение при разрешении 1000 мс: 3 дня
- Архивация степень 2: мин., макс., среднее значение при разрешении 30 с: 32 дня
- Архивация степень 3: мин., макс., среднее значение при разрешении 10 мин.: 10 лет

Сообщения:

10 000 000 сообщений

Действия (управляющие действия) 1 000 000 действий

Системные сообщения:

100 000 системных сообщений

Центральная система управления двигателем и агрегатом:

Промышленная система управления на основе промышленного ПК модульной конструкции выполняет все функции управления процессом на стороне агрегата и двигателя (подготовка запуска, запуск, останов, последующее охлаждение, управление вспомогательным оборудованием), а также все функции регулирования.

Интерфейсы:

- Ethernet (витая пара) для доступа для дистанционного обслуживания
- Ethernet (витая пара) для соединения нескольких двигателей между собой
- Ethernet (витая пара) для соединения Powerlink с вводами и выводами системы управления.
- USB-порт для обновления программного обеспечения

Подсоединение к системе управления заказчика согласно списку дополнительного оборудования GE Jenbacher (ОПЦИЯ)

- Подчиненное устройство MODBUS-RTU
- Подчиненное устройство MODBUS-TCP,
- Подчиненное устройство PROFIBUS-DP (160 слов),
- Подчиненное устройство PROFIBUS-DP (190 слов),
- ProfiNet
- OPC

Функции регулирования:

- Регулирование частоты вращения на холостом ходу и в автономном режиме работы
- Регулирование мощности в параллельном режиме работы, в зависимости от поставленной задачи по внутреннему или внешнему заданному значению
- Регулирование LEANOX для регулирования давления наддува в зависимости от мощности генератора на клеммах и температуры наддува посредством газосмесителя с моторным приводом
- Регулирование по детонации: Перестановка момента зажигания, регулирование мощности и снижения температуры наддува (если предусмотрено заказчиком) при обнаружении детонации
- Выравнивание активной нагрузки нескольких модулей в автономном режиме (в зависимости от поставленной задачи)
- Линейное снижение мощности при превышении температуры нагрева и пропусках зажигания
- Линейное снижение мощности в зависимости от сигнала СН4 (если сигнал СН4 присутствует (в зависимости от поставленной задачи)
- Линейное снижение мощности в зависимости от давления газа (в зависимости от поставленной задачи)
- Линейное снижение мощности в зависимости от температуры впускаемого воздуха (в зависимости от поставленной задачи)

Измерительный мульти-преобразователь для регистрации следующих электрических измеренных значений генератора:

- Фазовые токи (с контрольной стрелкой)
- Ток в нейтрали
- Напряжения Ph/Ph и Ph/N
- Активная мощность (с контрольной стрелкой)

- Реактивная мощность
- Кажущаяся мощность
- Коэффициент мощности
- Частота
- Счетчики активной и реактивной энергии

Дополнительный вывод 0(4)-20 мА для активной мощности и импульсный вывод для активной энергии

В измерительный мульти-преобразователь встроены следующие функции контроля генератора:

- Ток перегрузки/короткое замыкание [51], [50]
- Перенапряжение [59]
- Пониженное напряжение [27]
- Асимметрия напряжения [64], [59N]
- Несимметричная нагрузка [46]
- Сбой возбудителя [40]
- Завышенная частота [81>]
- Пониженная частота [81<]

Выбор режимов работы, управляемый и блокируемый с помощью сенсорного дисплея, с возможностями выбора:

- ВЫКЛ.: пуск невозможен, работающий модуль сразу останавливается;
- РУЧНОЙ РЕЖИМ: возможна работа на полную мощность в ручном режиме (пуск, останов), неработающий модуль недоступен для автоматического режима работы.
- АВТОМАТИЧЕСКИЙ РЕЖИМ: автоматический режим по запросу на основании поступившего внешнего сигнала:

Выбор запроса, управляемый с помощью сенсорного дисплея, с возможностями выбора:

• Внешний запрос Выкл.: ВЫКЛ.

• Внешний запрос: ДИСТАНЦИОННО

• Перемыкание внешнего запроса: ВКЛ.

Сообщения о неисправностях шкафа управления модулями:

согласно «Списку сообщений о неисправностях» (часть документации)

Контроль – останавливающий, например:

- Давление масла мин.
- Уровень масла в двигателе мин.
- Уровень масла в двигателе макс.
- Температура масла макс.
- Давление охлаждающей жидкости мин.
- Давление охлаждающей жидкости макс.
- Температура охлаждающей жидкости макс.
- Превышенная частота вращения
- Контур аварийного останова/предохранительный контур
- Неисправность газового тракта
- Сбой запуска

- Сбой останова
- Условия пуска двигателя отсутствуют
- Условия работы двигателя отсутствуют
- Пропуски зажигания
- Температура смеси макс.
- Нарушения измерительного сигнала
- Силовой сигнал перегрузки/сбоя
- Перегрузка/короткое замыкание генератора
- Перенапряжение/пониженное напряжение генератора
- Завышенная/пониженная частота генератора
- Асимметрия напряжения генератора
- Несимметричная нагрузка генератора
- Обратная мощность генератора
- Температура обмотки генератора макс.
- Сбой синхронизации
- Детонационный сбой

Контроль – предупреждающий, например:

- Температура охлаждающей жидкости мин.
- Давление охлаждающей жидкости мин.
- Температура обмотки генератора макс.

Дистанционные сообщения:

(беспотенциальные контакты)

1S = 1 замыкающий контакт

1Ö = 1 размыкающий контакт

1W = 1 переключающий контакт

• Готов для запроса автоматического режима (н	а систему управления верхнего уровня) 1S
• Работа (пригатоль работаст)	10

Работа (двигатель работает)
 Запрос вспомогательного оборудования
 Общая неисправность ОСТАНОВ
 Общая неисправность ПРЕДУПРЕЖДЕНИЕ
 1Ö

Следующие сообщения и команды должны быть предоставлены заказчиком фирме GE Jenbacher:

•	Запрос модуля ((от системы управления верхнего уровня)	1S
•	Деблокировка во	спомогательного оборудования	1S

Индивидуальная синхронизация выключателя генератора в автоматическом режиме

Для автоматической синхронизации модуля с помощью выключателя генератора на шине питания/общей шине ПЛК (встроен в шкаф управления модулями).

Включает:

- Расширение аппаратных средств программируемого логического контроллера для автоматического выбора синхронизации и синхронизации модуля, а также для контроля ответного сигнала «Выключатель ВКЛ.».
- Выбор режимов синхронизации, управляемый и блокируемый с помощью сенсорного дисплея, с возможностями выбора:
 - РУЧНОЙ РЕЖИМ: Модуль необходимо выбрать вручную путем кратковременного нажатия кнопки выбора для синхронизации. Затем выполняется автоматическая синхронизация модуля
 - АВТОМАТИЧЕСКИЙ РЕЖИМ: Автоматическая синхронизация модуля после успешной деблокировки в системе управления модулем
 - ВЫКЛ. Выбор и синхронизация заблокированы Управление выключателем генератора в зависимости от режима синхронизации системы управления модулем, выбранного на сенсорной панели управления.
 - Выключатель генератора ВКЛ. сенсорная кнопка на DIA.NE XT
 - Выключатель генератора ВЫКЛ. сенсорная кнопка на DIA.NE XT
- Функция синхронизации с подстройкой частоты и следующей индикацией:
 - Двойной вольметр для контроля напряжения общей шины и генератора.
 - Двойной частотомер для контроля частоты общей шины и генератора.
 - Синхроноскоп для контроля условий синхронизации во время синхронизации.
- Реле напряжения для контроля напряжения общей шины (только в автономном режиме)

Сообщения о работе оборудования:

Выключатель генератора закрыт Выключатель генератора открыт

Дистанционные сообщения:

(беспотенциальные контакты)

Выключатель генератора ВКЛ.

Следующие сообщения и сигналы должны быть предоставлены фирме GE Jenbacher поставщиком распределительного устройства:

1 S

Ответные сигналы: Выключатель генератора ВКЛ. 1 S Выключатель генератора ВЫКЛ. 1 S Выключатель генератора готов к включению 1 S Сетевой выключатель ВКЛ. 1 S Сетевой выключатель ВЫКЛ. 1 S

Сетевое напряжение $3 \times 400/230 \text{ B}$ или $3 \times 110 \text{ B/v3}$ – другие измерительные напряжения по запросу!

Напряжение общей шины $3 \times 400/230 \text{ B}$ или $3 \times 110 \text{ B/v3}$ – другие измерительные напряжения по запросу!

Напряжение генератора 3 x Ошибка! Источник ссылки не найден. или 3 x 110 B/v3 – другие измерительные напряжения по запросу!

Реле напряжения с соединением звезда-звезда мин. с 50 ВА и кл. 0,5

Следующие сигналы и сообщения монтируются на клеммах фирмой GE Jenbacher для поставщика распределительного устройства:

Команда ВКЛ./ВЫКЛ. для выключателя генератора (контакт длительного включения)
 1 S + 1
 Ö

• Подача сигналов на расцепитель минимального напряжения 1 S

Максимальное расстояние между шкафом управления агрегатом и агрегатом/интерфейсным шкафом 30 м

Максимальное расстояние между шкафом управления агрегатом и силовым выключателем: 50 м

Максимальное расстояние между шкафом управления агрегатом и шкафом управления ведущего устройства: 50 м

Максимальное расстояние между генератором и панелью генератора: 30 м

1.11.03 Дистанционный сигнал через PROFIBUS-DP

Передача данных от системы управления модулем Jenbacher к системе управления и защиты заказчика по шине PROFIBUS-DP-Netzwerk в соответствии с нормой EN 50170/2. Скорость передачи данных: до 1,5 МБит/сек.

Передача данных через ведущую систему заказчика должна выполняться циклически.

Передаваемые данные:

Единичные сообщения о неполадках, рабочие сообщения, измерительные показатели мощности генератора, давление масла, температура масла, давление и температура охлаждающей воды, температура выхлопного газа в цилиндрах и выхлопном коллекторе.

Границы поставки GE Jenbacher:

Клемма шины RS485 в шкафу управления модулем

1.11.06 Передача информации посредством DIA.NE XT4

Общая информация

DIA.NE XT4 предлагает удаленный доступ через Ethernet.

Приложения:

1. DIA.NE XT4 HMI

DIA.NE XT4 HMI представляет собой человеко-машинный интерфейс (Human-Machine-Interface) системы управления модулями и визуализации DIA.NE XT4 газовых двигателей GE Jenbacher. Система предлагает широкие возможности при вводе в эксплуатацию, контроле, техобслуживании и диагностике установок.

09.06.2017/GE MV (05B4) Тех описание JMS320 400B.docx 30/**50**

Посредством установки программы DIA.NE XT4 HMI Client при существующем сетевом соединении и правах доступа можно создать связь с установками. Система работает с операционными системами Microsoft Windows (Windows XP, Windows 7, Windows 8)

Состав выполняемых функций

Функции визуализации на шкафе управления двигателем могут использоваться удаленно. К ним относятся управление и наблюдение, представление тенденций, управление аварийными сигналами, параметрами и доступ к записи данных в долговременную память. Доступ к нескольким установкам, а также с несколькими клиентами параллельно, обеспечивает дополнительные полезные функции, такие как многопользовательская система, дистанционное управление, возможности печати и экспорта, а также резервное копирование данных. DIA.NE XT4 существует в версиях на нескольких языках.

Опция – дистанционный запрос/дистанционное блокирование

Если переключатель режимов находится в положении «Автоматический режим», а переключатель запросов в положении «Дистанционно», то посредством элемента управления (кнопки) на DIA.NE XT4 HMI можно деблокировать (запросить) или блокировать (отозвать) модуль.

Примечание:

С этой опцией дополнительный запрос со стороны заказчика (посредством аппаратных средств или шины передачи данных) или автономный режим работы (система управления станцией GE Jenbacher, сетевое базовое регулирование и т. д.) нецелесообразен.

Опция – дистанционное квитирование (ТА 1100 - 0111 глава 1.7 и 1.9)

Комплект поставки:

- Пакет программного обеспечения DIA.NE XT4 HMI Client Setup (загрузка)
- Количество лицензий на DIA.NE XT4 HMI Client (одновременный доступ пользователя к серверу установки) как опция/лицензия

Количество	Доступ
лицензий	
1	1 пользователь может зарегистрироваться в то же самое время с
	одного ПК
	(рабочего места, диспетчерской или дома)
2	2 пользователя могут зарегистрироваться в то же самое время с
	одного ПК
	(рабочего места, диспетчерской или дома).
	Если уже зарегистрировались 2 пользователя с компьютеров,
	объединенных в локальную сеть (офис, диспетчерская,),
	то регистрация с домашнего компьютера уже невозможна.

Внимание! Данная опция включает только приложение DIA.NE XT4 HMI Client и лицензию – надежное соединение, предлагаемое компанией GE Jenbacher, HE обеспечивается! Надежное соединение должно быть обеспечено заказчиком (соединение по локальной сети или VPN-соединение) или может быть реализовано с помощью опции myPlant™.

Работы, выполняемые заказчиком

• Широкополосное сетевое соединение посредством Ethernet (100/1000BASE-TX) на штекере RJ45 (ETH3) на сервере DIA.NE XT4 в шкафу управления модулями.

- Стандартный ПК с клавиатурой, мышью или сенсорным дисплеем (расширение мин. 1024 * 768)
- Операционная система Windows XP SP3, Windows 7, Windows 8
- Совместимый с DirectX 9.0c или новее 3D-видеоадаптер с памятью 64 МБ или более

2. myPlant™ Discovery

myPlant™ является решением для передачи данных, разработанным компанией GE Jenbacher

Веб-приложение со следующими функциями:

- Визуализация текущего состояния двигателя (доступен, в работе, неисправность)
- Экран разных измеренных значений генераторной установки
- Визуализация показаний счетчика в виде графика тенденций (если к установке обеспечен «онлайн»-доступ или путем ручного ввода показаний счетчиков)
- График тенденций величины мощности (малое разрешение; только в случае «онлайн»-доступа к установке)
- Доступ к будущему магазину запасных частей
- Дистанционный доступ к параметрам установки посредством DIA.NE XT4 HMI Client (только в период гарантийного обслуживания или в случае наличия договора сервисного обслуживания (MSA, CSA))

myPlant™ стандартно входит в комплект гарантийного обслуживания и является частью договора технического обслуживания.

Комплект поставки

- Доступ к версии myPlant™ конечного потребителя максимум для 4 пользователей
- Соединение установки с системой myPlant™

Работы, выполняемые заказчиком

- Постоянный доступ к Интернет (кабельный или мобильный) (см. также опцию 3)
- Исходящий канал передачи данных (от сервера установки в Интернет) ВХОДЯЩИЕ каналы должны быть ЗАПРЕЩЕНЫ!

ВНИМАНИЕ! Заказчик должен принять технические меры защиты от прямого доступа из Интернета к серверу установки! (Например, путем использования сетевого брандмауэра)
Такая защита НЕ входит в объем услуг и не обеспечивается компанией GE Jenbacher!

09.06.2017/GE MV (05B4) Тех описание JMS320 400B.docx 32/**50**

3. система оповещения myPlant™ notification service

Автоматическая система оповещения о неисправностях для myPlant™ - включена для DIA.NE XT systems (все версии).

33/50

Функция

• Автоматическая передача сообщений двигателя заказчику по email или SMS в случае неисправности двигателя, старата/останова двигателя или потери связи.

Объем поставки

• Применения веб портала myPlant™

Требования к заказчику

• Двигатель должен быть подсоединён к системе myPlant™ по интернет связи

Оповещение myPlant™ notification является бесплатным в течении гарантийного срока, а также включается в качестве части любого сервисного соглашения (MSA, CSA).

5. Схема сети

Для информации!

1.20.03 Пусковая система

Стартерная батарея:

2 шт. 12 В свинцовая стартерная батарея, 200 А/ч (в соответствии с DIN 72311), в комплекте с защитным корпусом, клеммами и ареометром.

Контроль за уровнем зарядки аккумулятора

Контроль посредством регулятора зарядки

Зарядное устройство

Для зарядки стартерной батареи в соответствии с I/U-характеристикой и для питания подключенных потребителей постоянного тока.

Смонтирована в шкафу интерфейсов модуля или в шкафу управления модуля.

• Технические данные

Подключение к сети
 3 x 320 - 550 B, 47 - 63 Гц

Макс. потребление мощности
Номинальное постоянное напряжение
Устанавливаемый диапазон напряжения
24 В (+/-1%)
24В до 28,8В

• Номинальный ток 40 А

Габариты (ширина х высота х глубина)
 Класс защиты
 250 х 125 х 125 мм
 IP20 по норме IEC 529

Рабочая температура
 0 °С - 60 °С

• Класс защиты

• Класс влажности ЗКЗ, без конденсации

• Самоохлаждение воздухом

• Предписания EN60950,EN50178

UL/cUL (UL508/CSA 22.2)

Сигнализация:

Зелёный индикатор: Напряжение на выходе> 20,5 В

Жёлтый индикатор: Перегрузка, напряжение на выходе < 20,5 В

Красный индикатор: выключение

Управляющая память:

Аккумулятор 24 VDC/18 А/ч

1.20.05 Электрический подогрев водяной рубашки

Установлен в первичном контуре охлаждения водяной рубашки, состоит из:

- нагревательных элементов
- водяного насоса

При неработающем двигателе в водяной рубашке постоянно поддерживается температура между 56°C и 60°C. Благодаря этому сразу после запуска двигателя возможна его работа на полную мощность.

1.20.08 Гибкие соединения

В объём поставки GE Jenbacher входят следующие гибкие соединения на каждый модуль:

Штук Соединение	Блок	Размер Материал
2 Вход / выход горячей воды	DN/PN	100/10 нержавеющая
сталь 1 Выход выхлопного газа	DN/PN	250/10 нержавеющая
сталь 1 Вход топливного газа	DN/PN	100/10 нержавеющая
сталь 2 Вход / выход воды в охладителе смеси 2 Подключение смазочного масла	DN/PN mm	65/10 нержавеющая сталь 28 шланг

Все гибкие соединения поставляются в комплекте с необходимыми фланцами и уплотнениями.

1.20.10 Байпас выхлопного газа

Байпас выхлопных газов состоит из двух заслонок (приводимые в движение электрическим приводом), для закрытия входа и выхода выхлопных газов из теплообменника выхлопного газа, а также для открытия самого байпаса выхлопных газов. Байпас выхлопных газов начинает работать так только телпо выхлопных газов не может быть полностью использовано.

Объём поставки:

- 2 заслонки, **DN/PN** 250/10
- Привод от электродвигателя 3 х 400/230 В, 50 Гц
- Необходимые фланцы, ответные фланцы, уплотнения
- Управление заслонкой ОТКР/ЗАКР
- Байпас

1.20.25 Система безопасности на линии горячей воды

Датчики встроены в контур горячей воды. Поставляются отдельно.

Состоит из:

- 1 контрольный датчик потока (Сигнал выключения: поток МИН)
- 1 контрольный датчик давления (Сигнал выключения: давление МАКС)
- 1 температурный переключатель (Сигнал выключения: температура МАКС)
- 1 предохранительный клапан

1.20.26 Насос на линии горячей воды –насос модульного типа

Состоит из:

- насос модульного типа: с постоянным числом оборотов, для прокачки необходимого количества воды на каждом модуле (поставляется отдельно), 3 x 400/230 B , 50 Гц
- 2 манометра, до и после насоса

Параметры насоса рассчитываются исходя из потери давления в компонентах контура горячей воды, поставляемых GE Jenbacher, и максимальной внешней потери давления 0,5 бар.

1.20.27 Устройство регулировки температуры на линии обратной воды

Предназначена для поддержания постоянной температуры на входе в модуль путём подмешивания прямой воды.

Состоит из:

- 1 3-х ходового клапана с электроприводом (поставляется отдельно)
- 1 РТ 100 (Поставляется приложением или уже установлено на агрегате)
- 1 PID блок управления (смонтирован в шкафу управления)

2.00 Электрическое оборудование

Закрытый со всех сторон стальной шкаф, передняя дверь с профильным резиновым уплотнителем, все внутренние соединения выведены на клеммную колодку. Готов к монтажу над соответствующим кабельным каналом заказчика (двойное дно). Естественная вентиляция.

Класс защиты: внешняя ІР 42

внутренняя ІР 20 (защита от прямого контакта с активными

деталями)

Конструкция в соответствии с EN 61439-2 / IEC 61439-2 и ISO 8528-4 Температура окружающей среды 5 - 40°С, относительная влажность воздуха 70%

RAL 7035 Покраска: шкаф

основание **RAL 7020**

2.02 Система соединения с внешней сетью

Функция:

Для немедленного отключения генератора от сети в случае неполадок в сети.

- двухступенчатый контроль с ограничителем по высокому и низкому напряжению
- двухступенчатый контроль с ограничителем по высокой и низкой частоте тока
- отдельно устанавливаемые независимые интервалы контроля напряжения и частоты тока
- контроль скачковых изменений векторной характеристики или контроль df/dt для немедленного отключения генератора от сети, например, при автоматическом повторном включении
- общая индикация световыми диодами и буквенно-цифровая индикация на дисплее всех измеряемых и устанавливаемых параметров в рабочем и аварийном режимах
- блокировка несанкционированного доступа в систему управления посредством пароля

Объем поставки:

Цифровое защитное реле с блоком сохранения всех данных по измеряемым рабочим параметрам, неполадкам, а также система самодиагностики.

Parameter	Parameter limit	Max time delay[s]	Comments
49-51Hz			Do work normal
f<[ANSI 81U]	49Hz	0,5	Load reduction with 10% /HZ below 49Hz!
f<<[ANSI 81U]	48.5Hz	0,1	
f>[ANSI 810]	51,5Hz	0,1	Load reduction with 30% /HZ higher 51Hz!
U<[ANSI 27]	90%	1	Load reduction with 1%P /%U below 95%
U<<[ANSI 27]	80%	0,2	Load reduction with 1%P /%U below 95%
U>[ANSI 59]	110%	30	Load reduction with 1%P /%U above 105%
U>>[ANSI 59]	115%	0,2	Load reduction with 1% P/%U above 105%
Df/dt [ANSI 81R]	2Hz/s, 5 Periods		Cos phi range:
Or	Or		0,8ind (overexcited)
Vector shift	8° -3pol		- 1
[ANSI 78]			

2.03.02 Система регулирования мощности станции

Осуществляется по стандартному аналоговому сигналу, предоставляемому заказчиком Принцип работы:

Беспотенциальный сигнал (предоставляемый заказчиком) (0/4 - 20 mA = 50-100% номинальной мощности) является для регулятора мощности заданным значением, на основе которого соответствующая система управления агрегата регулирует мощность.

На станциях с несколькими агрегатами этот сигнал может последовательлно проходить через все

регуляторы мощности и ими выравниваться. Таким образом обеспечивается равномерное распределение нагрузки на все работающие агрегаты.

2.04 Распределительное устройство генератора низковольтного напряжения в соответствии с IEC/EN

Номинальное напряжение: 3x400/230V, 50Гц

Номинальный ток:2500 AСтруктура сети:TN-CS

Тип защиты: снаружи IP54, внутри IP20

Температура окружающего

пространства: от +5°до 40° С (50°С со снижением) **Стандарт/норма:** IEC/EN61439-1+2 и IEC/EN60204-1

Цвет шкафа: RAL 7035

Размеры: Высота: 2000 мм (+ цоколь)

• Ширина: 600мм

• Глубина: 600мм – 800мм

(в зависимости от кабельного отвода)

Функции

Выключатель генератора в случае возникновения ошибки и при рабочем останове газового мотора отсоединяет генератор от сети. Включение выключателя генератора осуществляется исключительно посредством системы управления газового мотора.

• Длина кабеля между распределительным устройством и шкафом управления модуля: < 50 м

В шкаф встраиваются следующие элементы:

- 1 силовой выключатель:

Монтаж: фиксированный

3-полюсный, с э/моторным приводом

Встроенное электронное отключающее устройство, состоящее из следующих элементов: регулируемый расцепитель с долговременной задержкой для защиты от перегрузки регулируемый селективный расцепитель для защиты от короткого замыкания расцепитель при недостаточном напряжении, разрядник рабочего тока, замыкающая катушка: 24 В пост. тока, сообщения о состоянии, команды и сигналы поступают через клеммы.

Запирается с помощью навесного замка

 Время включения:
 < 70 мсек.</td>

 Время отключения:
 < 60 мсек.</td>

Стойкость при коротких замыканиях 65кА:

Отключающая способность Icu; Ics (440/690 В перем. тока): 65/50кА Включающая способность Icm (440/690 В перем. тока): 143/105кА Стойкость при кратковременном воздействии тока Icw (1 сек.): 65кА

- - 3 преобразователя тока: **2500**A1 A, 1FS5, 30 BA (0,5FS5, 15 BA) на клеммах
- - 1 система медных шин, 5-полюсная (L1, L2, L3, PE, N + перемычка PEN) для подключения кабелей
- клеммная колодка для управляющего кабеля

- - вентилятор в шкафу управления с термостатической регулировкой
- - ограничитель перенапряжений типа 2 EN 61643-11, макс. превышение 2,5 кВ, для вспомогательных систем
- напряжение генератора для синхронизации и измерения через клеммы
- - напряжение на сборной шине для синхронизации через клеммы
- отвод для вспомогательных систем GEJ (3-полюсн., с хххА, только при 3х400/230 В,50 Гц)

2.10.01 Мастер-синхронизация, встроенная в шкаф управления станцией

Для 10 модулей и одного сетевого выключателя

Назначение:

Мастер-синхронизация служит для управления сетевого выключателя, а также для выбора и переключения отдельных модулей в автономный режим работы.

Объём поставки:

Содержит следующие основные узлы и компоненты:

- Управляющий переключатель
- Синхронизатор
- Необходимые соединительные реле
- Клеммная колодка для подходящих и отходящих кабелей (граница поставки)

Предпосылки:

- Каждый раз при возникновении неполадок в сети и связанным с этим переходом двигателей с параллельного на автономный режим работы предусмотренное заказчиком приспособление сброса нагрузки (предпочтительнее в релейном управлении с прямым расцеплением на группы потребителей) должно в течение 50 мсек после открытия сетевого выключателя снизить нагрузку потребителей настолько, чтобы она покрывалась мощностью, вырабатываемой двигателями в автономном режиме работы. Со стороны завода GE Jenbacher такие приспособления сброса нагрузки не предусмотрены.
- GE Jenbacher управляет и синхронизирует выключатели генератора отдельных модулей с помощью системы упраления модулей, а сетевой выключатель с помощью мастерсинхронизации. Все другие силовые выключатели на установке должны управляться или блокироваться заказчиком таким образом, чтобы в любой производственной ситуации была гарантирована бесперебойная работа установки.

Функционирование:

- Переключение модулей на автономный режим работы Переключение модулей на автономный режим работы осуществляется в зависимости от коэффициента использования модулей и настроек в системе визуалиции.
- Блокируемый переключатель «Ручной переключатель режимов автономной работы: "0"

 Автономный режим работы заблокирован. Ни один модуль не будет переключен на автономный режим работы. При возникновении

неполадок в сети происходит отключение модуля посредством

открытия выключателя генератора.

"1" ручной выбор «1» модуль будет переключен на автономный режим

работы. При возникновении неполадок в сети происходит отключение

модуля посредством открытия выключателя генератора Все

остальные работающие модули будут остановлены.

"2".."n" ручной выбор «2»..... «n» модули будут переключены на автономный

режим работы. При возникновении неполадок в сети происходит отключение модуля посредством открытия выключателя генератора.

Все остальные работающие модули будут остановлены.

 Блокируемый выбор "очередность выбора газовых двигателей":
 Очередность выбора модулей осуществляется в зависимости от коэффициента использования и в соответствии с блокируемым выбором.

• Время стабилизации сети

После восстановления сети выдерживается интервал 5 минут до автоматического «выбора синхронизации сетевого выключателя» для синхронизации установки с сетью.

• Переключатель выбора синхронизации

Блокируемый переключатель выбора синхронизации с положениями:

РУЧНОЙ ручное включение автоматической синхронизации ВЫКЛЮЧЕН выбор синхронизации и синхронизация заблокированы АВТОМАТИЧЕСКИЙ автоматический выбор синхронизации и автоматическая

синхронизация

Ручное включение автоматической синхронизации

Посредством нажатия на трехпозиционный выключатель сетевого выключателя ВКЛ/ВЫКЛ происходит включение автоматической синхронизации.

Автоматическая синхронизация

Самостоятельное включение автоматической синхронизации.

Управляющий выключатель
 Сетевой выключатель ВКЛ/ВЫКЛ/Выбор

• (Синхронизато	с выравнив	анием по часто	оте и следующи	ми показателями:
-----	--------------	------------------------------	----------------	----------------	------------------

двойной вольтметр – для контроля напряжения на сборных шинах и генераторе

двойной частотомер – для контроля частоты сборных шинах и

двоиной частотомер – для контроля частоты соорных шинах генераторе

синхроноскоп – для контроля условий синхронизации во время синхронизации

Визуализация/ программное обеспечение/ аварийный менеджмент:

Встроен в SPS (память с программным управлением) в системе управления станцией. Система **DIA.NE XT** (Dialog Network new generation)

Основные изображения синхронизации:

- обзорный экран «выключатель»
- обзорный экран «сеть»

• изображения параметров синхронизации

Контрольные функции/ сообщения о неполадках, показатели/рабочие сообщения:

- контрольные функции/сообщения о неполадках:
 - неполадки в реле наряжения на сборных шинах
- контрольные функции/ сообщения о неполадках на сетевом выключателе:
 - позиционное квитирование сетевого выключателя нарушено
 - неполадки сигнала 0 сетевого выключателя
 - неполадки сигнала 1 сетевого выключателя
 - неполадки при включении сетевого выключателя
 - неполадки при выключении сетевого выключателя
 - перегрузка/ короткое замыкание на сетевом выключателе
- контрольные функции/ сообщения о неполадках при сдаче электричества в сеть
 - неполадки в приборе наблюдения за сетью
- показатели сетевого выключателя:
 - сетевой выключатель ВКЛ/ВЫКЛ
 - синхронизация сетевой выключатель выбрана
- показатели сдачи электричества в сеть:
 - сеть в порядке / неполадки в сети
- показатели по каждому модулю:
 - выключатель генератора ВКЛ/ВЫКЛ

Следующие сигналы или сообщения должны быть предоставлены в распоряжение завода GE Jenbacher поставщиками электрического оборудования:

• возвратные сигналы	Сетевой выключатель замкнут	1 S
	Сетевой выключатель открыт	1 Ö
	Сетевой выключатель готов к включению	1 S

• напряжение на сборных шинах 3 х/ В

Преобразователь напряжения по схеме подключения звезда/звезда с мин. 50 ВА и класс 1.

• напряжение в сети 3 х/В

Преобразователь напряжения по схеме подключения звезда/звезда с мин. 50 ВА и класс 1.

Следующие беспотенциальные сигналы или сообщения будут предоставлены заводом GE Jenbacher в распоряжение поставщиков электрического оборудования на клеммах:

• команда выключения сетевого выключателя

1 S 1 S

• команда включения сетевого выключателя

Команды на включение и выключение поступают из устройства синхронизации GE JENBACHER до тех пор, пока из сетевого выключателя не поступит обратный сигнал открыт/ замкнут.

Преобразователь напряжения по схеме подключения звезда/звезда с мин. 50 ВА и класс 1.

Максимальное расстояние между главной синхронизацией и шкафом управления агрегата: 50м Максимальное расстояние между главной синхронизацией и силовым выключателем: 100м

2.10.04 Система управления станцией из 10 модулей

Базовый принцип работы: приоритет по электричеству с регулировкой сетевой приведенной мощности

Габариты:

Высота
 2200 мм (вкл. основание 200 мм)

Ширина 1000 ммГлубина 600 мм

Управляющее напряжение (предоставляется поставщиками соответствующего оборудования): От аккумуляторной батареи 24 В, постоянного тока, 16 А (допустимые пределы: мин. 22 В, макс. 30 В, включая коэффициент пульсации, коэффициент пульсации Uss макс. 3,6 В, минус заземлён) Питание вспомогательных систем (от поставщиков соответсвующего оборудования): 400/230 В, 50 Гц, 16 А

Назначение:

Система управления станцией служит для автоматического выбора или отключения отдельных модулей и для введения показателей заданной мощности в системы управления отдельных модулей в соответствии с электрической мощностью потребителей и электрической сетевой приведенной мощностью установки.

Объём поставки:

Включает в себя следующие основные узлы:

- программируемый блок управления
- все необходимые соединительные реле
- визуализация
- клеммная колодка для входящих и отходящих кабелей (граница поставки)

Условия:

- гидравлическая система и подсоединение к ней всех модулей, система отвода излишнего тепла, а также как система регулирования отопления должна быть выполнена заказчиком в соответствии с гидравлической схемой Е 9684, представленной GE Jenbacher.
- температура обратной воды: заданное значение не должно превышаться. Допустимое отклонение -20°C. Допустимая скорость изменений макс. 10°C/мин.

Принцип работы:

• включение и отключение отдельных модулей

Выбор и отключение отдельных модулей производится по потребности станции в электричестве в соответствии

с электрической мощностью потребителей

И

электрической сетевой приведенной мощностью,

как критериями регулирования и переключения.

Учет электрической сетевой приведенной мощности осуществляется посредством предоставляемого заказчиком измерительного преобразователя (O/4-20 мA, беспотенциальный измерительный сигнал). Потребляемая электрическая мощность рассчитывается сложением сетевой приведенной мощности и электрической мощности, производимой модулями. Для каждого модуля моменты включения/выключения устанавливаются в зависимости от

09.06.2017/GE MV (05B4) Тех описание JMS320 400B.docx 43/**50**

суммарной заданной мощности генераторов. Для каждого включения/выключения предусматривается установка демпфирующих интервалов включения/выключения.

• Регулировка мощности

Регулировка мощности модулей происходит таким образом, что сетевая приведенная мощность устанавливается на настраиваемый заданный показатель. Выбранные модули работают в диапозоне от 50 до 100% номинальной мощности с равномерно распределенной между ними нагрузкой.

• Интервалы:

Организацией, эксплуатирующей станцию устанавливается мин. перерыв между двумя, следующими непосредственно друг за другом включением и выключением модуля.

• Последовательность:

Последовательность пуска модулей определяется по коэффициенту использования модуля и в соответствии с блокируемым выбором:

"АВТОМАТИЧЕСКИЙ" последовательность выбора по количеству часов наработки

(выбирается модуль с наименьшим количеством часов

наработки).

"РУЧНОЙ", "1", "2", "3".. "n" ручной выбор ведущего модуля с фиксированной

последовательностью модулей

(последовательность: 1-2-3-n, 2-3-n-1, 3-n-1-2)

• Блокируемый выбор рабочего режима:

• "0", "1", "2"... ручной выбор числа модулей. Заданное значение

мощности модулей в соответствии с сетевым

регулированием от 50 – 100 % номинальной мощности

модулей.

• "АВТОМАТИЧЕСКИЙ" автоматический режим работы станции в соответствии с

основным режимом работы с выбором модулей и заданным значением мощности модулей в диапазоне от 50 до 100%.

Визуализация:

Графическое изображение и панель управления для отображения сообщений и измеряемых показателей системы управления станции и для отображения и ввода параметров регулирования для системы управления станцией.

Система DIA.NE XT (Dialog Network new generation)

Структура визуализации с управлением:

промышленный компьютер с 5,7" QVGA LCD цветным графическим дисплеем и 8 функциональных клавиш

10-значная клавиатура для ввода параметровклавиши выбора экрана и клавиши специальных функций

Интерфейсы:

- Ethernet (twisted pair) для подсоединения к серверу DIA.NE WIN
- Power Link: шина соединения с вводом/выводом управляющих устройств
- **ОПЦИЯ:** подсоединение к системе управления и защиты заказчика в соответствии со списком опций (MODBUS-RTU, PROFIBUS-DP)

Класс защиты: ІР 65 (спереди)

Размеры: Ширина x высота x глубина = приблизительно 212 x 255 x 95 мм

Программное обеспечение:

На экране ясно и функционально отображаются измеряемые величины, в том числе графически.

Управление дисплеем осуществляется с помощью клавиш выбора экрана и функциональных клавиш.

Основные изображения:

- обзорный экран "Электрооборудование"
- обзорный экран "Счётчики модулей" (рабочие часы)
- изображения управления и параметров управления
- системные данные (дата, время, пароль)

Аварийный менеджмент:

Эффективный диагностический инструментарий, запоминающий все сообщения о неисправностях в хронологическом порядке в виде таблицы, с записью времени.

Контрольные функции/индикация неисправностей, показания/рабочие сообщения

- Контрольные функции/индикация неисправностей
 - помехи измерительного сигнала
 - макс. температура обратной воды модуля мини-ТЭЦ (контроллер с беспотенциальным контактом предоставляется заказчиком)
 - мин. напряжение буферной батареи SPS
 - неполадки в центральном процессоре управления станцией
- Индикация статуса станции

В строке "Статус" отражается актуальное состояние станции, например:

- станция заблокирована
- приоритет по электричеству
- резервный режим работы
- пиковый режим работы
- Рабочие сообщения по каждому модулю:
 - Не готов /Готов /Запрошен системой управления станции
 - Рабочий режим ВКЛ/ВЫКЛ
 - Выключатель генератора ВКЛ/ВЫКЛ
- Показания (по каждому модулю):
 - Рабочие часы (с возможностью корректировки положения счетчика)
 - Электрическая мощность (заданная и фактическая)
- Рабочее состояние станции:
 - Сетевой выключатель ВКЛ/ВЫКЛ
 - Внешняя сеть в порядке/помехи во внешней сети
 - Электрическая сетевая приведенная мощность (заданная и фактическая)
 - Электрическая мощность потребителей
 - Суммарная мощность генераторов (заданное значение)

Дистанционные сигналы

(беспотенциальные контакты):

- Неполадки в центральном процессоре системы управления станцией
- общий сбой в системе управления станцией

3.03.01 Шумоглушитель выхлопных газов

Звуковая эмиссия:

Глушитель рассчитан на остаточный уровень шума **65** дБ (A) на расстоянии 10 м согласно норме DIN 45635 и ISO 3744. Расстояние измеряется от выхода выхлопного газа.

Материал:

Сталь или нержавеющая сталь, в зависимости от температуры выхлопного газа.

Объём поставки:

- шумоглушитель
- необходимые фланцы, уплотнения

Изоляция:

Со стороны заказчика следует предусмотреть изоляцию для снижения поверхностного излучения.

Толщина изоляции при размещении двигателей вне помещения:

 Для 50 дь(А) на расстоянии 10 м 	100 мм минеральной ваты, с покрытием из		
	оцинкованной стали толщиной 1 мм		
• От 55 дБ (А) на расстоянии 10 м	100 мм минеральной ваты, с покрытием из		

оцинкованной стали толщиной 0,75 мм
• Для < 50 дБ (А) на расстоянии 10 м
Толщина изоляции определяется индивидуально для каждого проекта

Толщина изоляции при размещении двигателей в помещении:

Толщину изоляции необходимо рассчитывать исходя из допустимого теплового излучения.

3.10.01 Система Охлаждения –контур низкой температуры

Для отвода неиспользуемой тепловой энергии газовоздушной смеси.

Уровень звукового давления 65 dB(A) на расстоянии 10 м (в соответствии с DIN 45635)

Состоит из (поставляется отдельно):

- радиатора
- насоса
- термостата
- предохранительных клапанов
- расширительного бачка

Рассчитана по теплообмену на окружающую температуру 35°C.

3.10.02 Система Охлаждения –контур высокой температуры

Для отвода тепловой энергии, если она не используется потребителем вообще или только частично.

Тепловая энергия из рубашки водяного охлаждения двигателя, системы охлаждения смеси, выхлопных газов и смазочного масла отводится через систему охлаждения с радиатором.

Уровень звукового давления 65 dB(A) на расстоянии 10 м (в соответствии с DIN 45635)

Состоит из:

- теплообменника горячая вода/гликоль
- выполненного как пластинчатый теплообменник
- радиатора
- насоса
- регулятора
- расширительного бачка

Рассчитана по теплообмену на окружающую температуру 35°C. Специальное изготовление по запросу.

4.00 Поставка и установка

4.01 Транспортировка

согласно контракту.

4.02 Разгрузка

Разгрузка, перемещение до места установки, установка и подгонка поставленного оборудования на подготовленный заказчиком фундамент в объём поставки GE Jenbacher не включены.

4.03 Монтаж

Сборка всех компонентов оборудования Jenbacher в объём поставки GE Jenbacher не включены.

4.04 Складирование

Заказчик должен подготовить достаточную по размерам площадку для складирования и хранения поставленного.

4.05 Запуск и ввод в эксплуатацию

Запуск и ввод в эксплуатацию проводится на основании контрольных листов GE Jenbacher включены. На станциях в островном режиме необходимо интернет- соединение.

4.06 Пробная эксплуатация (включена)

После ввода в эксплуатацию проводится 8-часовая пробная эксплуатация всей установки для подтверждения запрошенных параметров.

В это же время проводится инструктаж обслуживающего персонала по функционированию установки и ее экономичной эксплуатации.

4.07 Измерение вредных веществ (газоанализатор)

Измерение уровня вредных веществ для подтверждения гарантированного уровня эмиссий проводится работниками GE Jenbacher (затраты, на проведение таких замеров сотрудниками соответствующих служб по выбору заказчика, оплачиваются заказчиком).

5.01 Объём поставки

Электрическая часть

• Модуль

- до клемм в шкафу интерфейса модуля
- до клемм в клеммной коробке генератора (со стороны заказчика необходимо наличие креплений типа PG)
- Шкаф управления модуля
- до клеммной колодки
- Вспомогательные системы
- до клемм каждого из компонентов, поставляемых отдельно

Горячая вода

- До соединительных фланцев на линии прямой и обратной воды на модуле
- До соединительных фланцев на линии прямой и обратной воды на теплообменнике выхлопных газов

Вода с низкой температурой

До соединительных фланцев на модуле

Выхлопной газ

- До выходного фланца выхлопной трубы
- До входного и выходного фланца на теплообменнике выхлопных газов

Воздух для сжигания газа

Установленный на агрегате воздушный фильтр

Топливный газ

- до входного и выходного фланца газовой рампы
- до соединительного фланца линии топливного газа модуле

Система смазки

До фланцев системы смазки на модуле

Трубопроводы слива рабочих жидкостей и предохранительные стоки

До выхода трубопроводов на модуле

Коденсат

До слива кондесата на теплообменнике выхлопных газов

Изоляция

Изоляция теплообменников и трубопроводов в объем поставки не входит и должна быть выполнена заказчиком.

Первое заполнение генераторной установки

Рабочие жидкости для первого заполнения генераторной установки (смазочное масло, жидкость для охлаждения двигателя, антифриз, антикоррозионные добавки и электролит) не входят в объём поставки.

Состав и качество используемых материалов должны строго соответствовать "Техническим инструкциям" GE Jenbacher.

Для всех подключений со **стороны заказчика** должны быть предусмотрены соответствующие компенсаторы или гибкие соединения.

Все подключаемые к модулю кабели должны быть гибкими.

5.02 Испытания и приёмка

Внимание: имеются ІГ-поля

Компоненты модуля проходят следующие испытания и тесты.

5.02.01 Испытания двигателя

Проводятся в качестве комбинированного испытания двигателя и агрегата в соответствии с DIN ISO 3046 на испытательном стенде GE JENBACHER при 100%, 75% и 50% нагрузке. Результаты указываются в протоколе испытаний, на основании которого выдаётся соответствующий сертификат.

Испытываются:

- мощность двигателя
- расход топлива
- температура воды в рубашке охлаждения
- давление в системе смазки
- температура в системе смазки
- давление наддува
- температура выхлопного газа в каждом цилиндре

5.02.02 Испытания генератора

Проводит поставщик генератора на заводе-изготовителе.

5.02.03 Испытания агрегата

Двигатель тестируется на природном газе (метановое число 94). Из-за различий в качестве топлива, данные о производительности, достигаемые на испытательном стенде, могут отличаться от данных, заявленных в технической спецификации.

Комбинированные испытания двигателя и агрегата проводятся вместе со шкафами управления на испытательном стенде GE JENBACHER в соответствии требованиями ISO 8528, DIN 6280; результаты указываются в протоколе испытаний, на основании которого выдаётся соответствующий сертификат.

Среди прочих испытаний проводятся:

- Визуальный осмотр объёма поставки в соответствии со спецификациями.
- Функциональные тесты управления в соответствии с технической спецификацией:
 - запуск модуля в ручном и автоматическом режимах
 - регулирование мощности в ручном и автоматическом режиме
 - функционирование всех систем безопасности на модуле
- Измерения при 100%, 75% и 50% нагрузки:
 - частота
 - напряжение
 - сила тока
 - мощность генератора
 - коэффициент мощности
 - расход топлива
 - давление смазочного масла после фильтра
 - температура охлаждающей воды на выходе из двигателя

- давление наддува
- температура смеси
- эмиссия выхлопного газа (NOx)

Испытания агрегата проводятся с помощью оригинального генератора, за исключением случаев, когда он отсутствует по причине несоблюдения сроков. В этом случае испытания модуля проводятся с помощью тестового генератора.

Определенные технические характеристики компонентов, указанных выше, но которые не проходят испытания на испытательном стенде GE JENBACHER, подтверждаются соответствующими документами фирмы-изготовителя.

5.03 документация

Предварительная документация предоставляется через 60 дней после заказа, предусматривающего ясность по всем техническим вопросам

- чертеж агрегата 1)
- техническая схема 1)
- чертежи шкафов управления 3)
- перечень электрических интерфейсов 2)
- техническая спецификация системы управления 2)
- технические чертежи дополнительного оборудования (если входит в объём поставки GE Jenbacher) 1)

При поставке:

- схемы электрических соединений 3)
- список кабелей 3)

При сдаче в эксплуатацию (или по требованию заказчика):

- руководство по эксплуатации и техническому обслуживанию 4)
- каталог запасных частей 4)
- рабочий журнал 4)

Информация возможна на следующих языках:

- 1) немецкий, английский
- 2) немецкий, английский, французский, итальянский, испанский
- 3) немецкий, английский, французский, итальянский, испанский, голландский, венгерский, русский, польский, турецкий, чешский
- 4) немецкий, английский, французский, итальянский, испанский, голландский, венгерский, русский, польский, турецкий, чешский, словенский, словакский, сербский, шведский, румынский, португальский, норвежский, литовский, латвийский, болгарский, китайский, датский, эстонский, финский, греческий, хорватский

50/50