ESERCITAZIONE 2

Algebre di Boole e funzioni logiche Circuiti combinatori e sequenziali Codici di correzione di errore

Algebre di Boole e funzioni logiche (1)

1) Rappresentare le funzioni logiche F e G in termini delle variabili A, B e C, in forma normale congiuntiva e disgiuntiva e poi con solo operazioni NOR:

A	В	C	F	G
0	0	0	1	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	0
1	1	0	0	1
1	1	1	1	0

Algebre di Boole e funzioni logiche (1) Idea (1)

- Forma normale disgiuntiva
 - 1. Per ogni riga tavola verità con valore 1
 - Variabili con valore 0 in forma negata
 - Variabili con valore 1 in forma positiva
 - 3. Prodotto tra variabili
 - 2. Somma espressioni ottenute

- Forma normale congiuntiva
 - Per ogni riga tavola verità con valore 0
 - Variabili con valore 0 in forma positiva
 - Variabili con valore 1 in forma negata
 - 3. Somma tra variabili
 - 2. Prodotto espressioni ottenute

Algebre di Boole e funzioni logiche (1) Idea (2)

Passare da Forma normale congiuntiva (POS) a Forma NOR

Algebre di Boole e funzioni logiche (2)

2) Rappresentare in forma minima la funzione logica \overline{A} \overline{B} \overline{C} \overline{D} + \overline{A} \overline{B} C \overline{D} + \overline{A} BCD

Algebre di Boole e funzioni logiche (2) Idea (1)

Forma minima:

- Consenso tra coppie congiunzioni
- Tutte variabili uguali, a meno di una negata
- Genero nuova congiunzione con solo le variabili per cui vale il consenso
 - Esempio $\bar{A} \; \bar{B} + \bar{A} \; B \rightarrow \bar{A}$
- Itero il procedimento fino a che non è più possibile comprimere

Circuiti combinatori e sequenziali

Circuiti combinatori e sequenziali (1)

1) Si costruisca un circuito multiplexer con 8 dati in input, un output e 3 input di controllo, che sia effettivamente in grado di calcolare il valore di verità di una funzione booleana a quattro variabili.

La funzione da calcolare è la seguente: $\overline{A} \ \overline{B} \ \overline{C} \ \overline{D} + \overline{A} \ B \ \overline{C} \ D + A \ \overline{B} \ \overline{C} \ \overline{D}$

Circuiti combinatori e sequenziali (1) Idea (1)

Un multiplexer a 3 input di controllo può rappresentare qualsiasi tavola di verità di una funzione booleana a 3 variabili. Per forzarlo a calcolare una funzione booleana a quattro variabili si deve conoscere la sua struttura interna, illustrata in figura. Sul libro (**Architettura dei calcolatori**, Tanenbaum), si trova a pagina 144.

Circuiti combinatori e sequenziali (1) Idea (2)

Anno accademico 2017/2018

Circuiti combinatori e sequenziali (2)

2) Un chip MSI molto comune è il sommatore a 4 bit. È possibile agganciare quattro di questi chip per ottenere un sommatore a 16 bit? Disegnarlo, se possibile. Quanti pin avrà il nuovo sommatore?

Circuiti combinatori e sequenziali (2) Idea (1)

L'adder a 4 bit altro non è che la giustapposizione di 4 circuiti full-adder a un bit (sul libro, si tratta di questo argomento alle pagine 149-150).

Circuiti combinatori e sequenziali (2) **Idea (2)**

I valori in ingresso sono indicati come le coppie di 4 pin A₁, A₂, A₃, A₄ e B₁, B₂, B₃, B4, che rappresentano i bit dal meno al più significativo dei valori A e B. Gli output sono i 4 bit risultanti e marcati con le tag S₁, ..., S₄. I riporti, invece sono rappresentati dalle tag C₁ per quello in ingresso e C₀ per quello in uscita.

Anno accademico 2017/2018

Circuiti combinatori e sequenziali (3)

3) Si studi un circuito flip-flop pilotato dal fronte di salita del clock. Lo si modifichi in modo tale che sia pilotato dal fronte di discesa del clock.

Circuiti combinatori e sequenziali (3) Idea (1)

Il circuito flip-flop pilotato dalla salita del clock è mostrato in figura.

Per tutti gli aspetti teorici relativi al funzionamento e all'utilizzo del flip-flop, vi consiglio di vedere, sempre sul Tanenbaum, la pagine 157 e successive. Nella domanda, si fa riferimento al flip-flop temporizzato, indicato sul libro come flip-flop D.

