Ray Tracing: O Mundo Através De Raios de Luz XXXVI Jornada Giulio Massarani de Iniciação Científica, Tecnológica, Artística e Cultural

Thiago Barroso Perrotta Prof.º Ricardo G. marroquim

Universidade Federal do Rio de Janeiro

10 de outubro de 2014

Agenda

- Ray-tracer
 - O algoritmo
- 2 Extração de primitivas em nuvens de pontos
- Resultados
 - Contexto
 - Imagens
 - Conclusão
 - Referências

Ray-tracer

Conceituando

- Renderização de imagens
- Realismo
- % Mais sugestões? incrementar

Defina alguns objetos

- Especifique um material para cada objeto
- Defina algumas fontes de luz
- Para cada pixel
 - Atire um raio, a partir do centro do pixel, na direcão dos objetos
 - Compute, dentre os pontos atingidos, o mais próximo
 - Se o raio atingir um objeto
 - Use o material do objeto e as fontes de luz para computar a cor do pixel
 - Senão
 - Ponha a cor do pixel como preta

Objetos Esferas

Objetos Retângulos

Objetos Triângulos

Objetos _{Toros}

Objetos Cilindros

Objetos Planos

- Defina alguns objetos
- Especifique um material para cada objeto
- Defina algumas fontes de luz
- Para cada pixel
 - Atire um raio, a partir do centro do pixel, na direcão dos objetos
 - Compute, dentre os pontos atingidos, o mais próximo
 - Se o raio atingir um objeto
 - Use o material do objeto e as fontes de luz para computar a cor do pixel
 - Senão
 - Ponha a cor do pixel como preta

Materiais

Tipos de iluminação

- Ambiente
- Difusa
- Especular

Materiais

Tipos

- Matte = Luzes: Ambiente + Difusa
- Phong = Luzes: Ambiente + Difusa + Especular

Phong

- Defina alguns objetos
- Especifique um material para cada objeto
- Defina algumas fontes de luz
- Para cada pixel
 - Atire um raio, a partir do centro do pixel, na direcão dos objetos
 - Compute, dentre os pontos atingidos, o mais próximo
 - Se o raio atingir um objeto
 - Use o material do objeto e as fontes de luz para computar a cor do pixel
 - Senão
 - Ponha a cor do pixel como preta

Fontes de luz

Tipos

- Direcional
- Pontual

Pontual

- Defina alguns objetos
- Especifique um material para cada objeto
- Defina algumas fontes de luz
- Defina uma janela cuja superfície seja coberta com pixels
- Para cada pixel
 - Atire um raio, a partir do centro do pixel, na direcão dos objetos
 - Compute, dentre os pontos atingidos, o mais próximo
 - Se o raio atingir um objeto
 - Use o material do objeto e as fontes de luz para computar a cor do pixel
 - Senão
 - Ponha a cor do pixel como preta

Plano de visualização

- Número (horizontal + vertical) de pixels (ex.: 400×400)
- Tamanho de cada pixel ⇒ zoom

Diferentes resoluções

- Defina alguns objetos
- Especifique um material para cada objeto
- Defina algumas fontes de luz
- Defina uma janela cuja superfície seja coberta com pixels
- Para cada pixel
 - Atire um raio, a partir do centro do pixel, na direção dos objetos
 - Compute, dentre os pontos atingidos, o mais próximo
 - Se o raio atingir um objeto
 - Use o material do objeto e as fontes de luz para computar a cor do pixel
 - Senão
 - Ponha a cor do pixel como preta

Interseção entre raio e objetos

• Função Hit para cada objeto

- Defina alguns objetos
- Especifique um material para cada objeto
- Defina algumas fontes de luz
- Defina uma janela cuja superfície seja coberta com pixels
- Para cada pixel
 - Atire um raio, a partir do centro do pixel, na direção dos objetos
 - Compute, dentre os pontos atingidos, o mais próximo
 - Se o raio atingir um objeto
 - Use o material do objeto e as fontes de luz para computar a cor do pixel
 - Senão
 - Ponha a cor do pixel como preta

Agenda

- Ray-tracer
 - O algoritmo
- Extração de primitivas em nuvens de pontos
- Resultados
 - Contexto
 - Imagens
 - Conclusão
 - Referências

Extração de primitivas em nuvens de pontos

Conceituando

- Primitivas
 - cones
 - cilindros
 - planos
 - esferas
 - toros

Extração de primitivas em nuvens de pontos

Algoritmo RANSAC

- • w explicar, esquema, ... ← Daniel
- % possivelmente pseudocódigo nessa parte

Agenda

- Ray-tracer
 - O algoritmo
- Extração de primitivas em nuvens de pontos
- Resultados
 - Contexto
 - Imagens
 - Conclusão
 - Referências

Linguagem de Programação	C++ (gcc), com 0.0.
Kit gráfico	Qt 5
Gerenciamento de <i>build</i>	CMake
Framework de testes	Google Test

Ambiente

- Ubuntu 14.04 LTS 64-bit
- Intel Core i7 950 @ 3.07 GHz x 8 cores
- 16 GB de RAM

Alguns resultados

Ray-tracing

- % Imagens
- % Tabela

Alguns resultados

Extração de primitivas

- % Imagens
- % Tabela

O Futuro

Conclusão

- Ideias futuras
 - Ray-tracer
 - Esquemas de aceleração
 - Mais recursos
 - Paralelização
 - Extração de primitivas
 - Melhorar algoritmos (memória, performance)
 - Nuvens de pontos mais complexas
 - Serialização (salvar estados)

Referências

TODO

- [] Introducao
- [] Extracao de primitivas (RANSAC, etc)
- [] Exemplos finais + benchmarking de ray-tracer
- [] Exemplos finais + benchmarking de primitivas