Enunciado

Se necesita disponer de un sistema de acceso personal mediante tarjetas. Se dispone de aprox 50 tarjetas codificadas y un lector de códigos que emite por línea serie 19200,8,n,1 el código de la tarjeta (un byte)

Luego de RESET, el sistema estará en la etapa de programación, hasta que se pasen por el lector 10 tarjetas diferentes, mediante <u>interrupción serie</u> guardará los códigos en una tabla de RAM interna y después de recibir el último enciende un LED_VERDE.

A partir de ese momento, cada vez que se pasa una tarjeta por el lector el sistema controla si está en la lista grabada durante programación y si la encuentra realiza un pulso (no importa su duración) para abrir

la puerta de ingreso.

RECARGA_TMR1 EQU 0xFD

SCON_INICIAL EQU b'01010000

Si no la encuentra realiza un pulso (no importa su duración) en LED_ROJO

Solucion

```
$bitdef.h
           ;manejo de a bits
$ioAT89C52.h ;incluye los registros del microcontrolador
    NAME main
    PUBLIC main
    PUBLIC Isr_Serie
    PUBLIC Interrupciones
                             ;Declaro todas mis subrutinas
    PUBLIC Recibo
    PUBLIC Busqueda
;Constantes
INT_PRIORIDAD EQU 0x00
                                   ;prioridad baja, viene en 0 pero aseguro.
IE_HABILITADAS EQU
                      b'10010000
                                  ;habilitación llave ES y EA
;Para TIMERs
TMOD_INICIAL EQU b'00100000 ;Pongo modo 2 el timer 1 y tmr0 no se usa
TCON INICIAL EQU
                     b'01000000
                                  ;Registro de control de timers, tmr1 ON y tmr0 no se usa
```

;Cuenta de Recarga del Timer 1 para 19200 baudios (SMOD=1)

;Modo 1 (SM0=0;SM1=1) y Recepción habilitada

```
;Puerto I/O
RX_SERIE_I EQU P3.0 ;entrada de recepción serie
LED_VERDE EQU P3.2 ;Led verde
LED_ROJO
            EQU P3.5 ;Led Rojo
CERRADURA EQU P3.4 ;Puerta
     ASEG
     org 0000h
     ljmp main
     ASEG
     org 0023H
                   ;vector de Interrupción Serie
     ljmp lsr_Serie ;salto a lsr_Serie.
dato_rx
        ds 1
                     ;Guardo aca lo que llega por el puerto serie
hay_dato_rx ds 1 ;flag de que hay un dato recibido puerto serie. En '1', hay dato, en '0', no hay dato . RI
bandera
            ds 1
    ORG 0030h ;punto de inicio del Programa
tabla
       ds 10
                 ;Creo la tabla para las 10 tarjetas
   RSEG RCODE
main
;**Inicializaciones
   call Interrupciones ;Subrutina para Inicializar Interrupciones
```

setb RX_SERIE_I ;aseguro puerto de recepción serie como entrada

```
;Inicializo variables
           hay_dato_rx,#0x00
                                 ;Inicializo en 0, no me llego nada todavía!
    mov
           R0,#tabla
                            ;Guardo posición de la tabla en RO
    mov
           R2,#10D
                            ;para contar las 10 tarjetas
    mov
           bandera, #00D ;Bandera inicia en 0
    mov
;Inicia el loop principal
Loop_ppal:
                              ;subrutina para ver si llego algo
    call Recibo
                              ;Bandera para saber si pase a la etapa 2
          A, bandera
    mov
                              ;Si paso de aca es que estoy en la etapa 2
    cjne A,#1, Loop_ppal
lectura:
                             ;Posiciono el puntero en el inicio de la tabla
           R0,#tabla
    mov
    call Busqueda
                             ;Salto a la subrutina de busqueda
                             ;Me quedo en un loop procesando las tarjetas leidas
    jmp
          lectura
;fin del loop principal
;Subrutina para la recepcion de las tarjetas
Recibo:
    push PSW
    mov A,hay_dato_rx
                               ;Muevo a A la bandera que se activa en la interrupcion
    mov hay_dato_rx,#0x00
                                 ;limpio el flag
    cjne A,#1,Salir
                          ;Tengo algo sigo, sino salgo
           @RO, dato_rx
                              ;Guardo algo en la tabla
    mov
          R0
                        ;Aumento el puntero
    INC
                          ;Pregunto si el contador de las 10 llego a cero.
    djnz R2, Salir
                             ;activo bandera, quiere decir que termino de llegar las 10 tarjetas
    mov bandera, #1
    setb LED_VERDE
                             ;Dejo prendido el led verde
Salir:
          PSW
    pop
    ret
```

:------

;Subrutina para la busqueda de las tarjetas

Busqueda:

push PSW

mov R3,#10D ;Para ver en las 10 posiciones de la tabla

mov A,hay_dato_rx ;Muevo la bandera a A

mov hay_dato_rx,#0x00 ;limpio el flag

cjne A,#1,Salir_buscar ;Tengo algo sigo, sino salgo

compara:

mov A,dato_rx ;Muevo el dato leido a A

mov B,@RO ;Muevo el dato de la tabla a B

cjne A,B,saltear ;Comparo dato recibido por serie y dato ya guardado en la tabla

setb CERRADURA ;Pulso para abrir puerta

clr CERRADURA

jmp Salir_buscar ;Salto a Salir_buscar

saltear:

inc RO ;Incremento el puntero

djnz R3, compara ;Si no busque 10 veces vuelvo a comparar

;Si ya busque en mis 10 tarjetas y no se encontro

setb LED_ROJO ;pulso al led rojo

clr LED_ROJO

Salir_buscar:

pop PSW

ret

·_____ Interrupciones: ;Cargo las constantes que defini arriba mov TL1, #RECARGA_TMR1 ;Recargo la parte baja del Timer 1 TH1, #RECARGA_TMR1; Recargo la parte alta del Timer 1 mov TMOD, #TMOD_INICIAL ;Inicializo Timer/Counter Mode Register mov mov TCON, #TCON_INICIAL ;Inicializo Timer/Counter Control Register mov SCON,#SCON_INICIAL ;Inicializo puerto serie mov IP,#INT_PRIORIDAD ;Prioridad baja para todos mov IE,#IE_HABILITADAS ;Habilito las interrupciones según la cte setb PCON ;Porque tengo que transmitir a 19200 baudios ret Isr_Serie: push PSW ;Resguardo PSW Que_fue: jnb SCON_RI, Salir_serie ;Pregunto por precaucion, pero no transmito nada. Es_recepcion: ;Entro aca cuando recibo cpl SCON_RI ;Vuelvo RI a 0 mov dato_rx, SBUF ;Guardo lo recibido en dato mov hay_dato_rx, #01H ;Levanto bandera de que llego algo jmp Salir_serie ;salto y salgo Salir_serie: pop PSW ;Levanto el PSW resguardado reti

END main