Il problema lineare dei minimi quadrati APPLICAZIONE:

Il polinomio di migliore approssimazione nel senso dei minimi quadrati

Felice lavernaro

Dipartimento di Matematica Università di Bari

15 Gennaio 2009

Premessa

Sia V sottospazio vettoriale di \mathbb{R}^n e $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ una sua base.

Abbiamo visto che:

$$\mathbb{R}^n = V \oplus V^{\perp}$$
$$\dim(V) + \dim(V^{\perp}) = n.$$

Inoltre, detta A la matrice le cui colonne sono i vettori \mathbf{v}_i , cioè: $A = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k]$, sappiamo che:

$$V = \operatorname{Im}(A);$$

 $V^{\perp} = \ker(A^{T}).$

Possiamo allora concludere con la seguente fondamentale proprietà dell'algebra delle matrici:

$$\mathbb{R}^n = \operatorname{Im}(A) \oplus \ker(A^T);$$

 $\dim(\operatorname{Im}(A)) + \dim(\ker(A^T)) = n$ num. di righe di A .

→ロト →回 → → 重 → → 重 → りへで

Vettore residuo

Consideriamo il sistema lineare di m equazioni in n incognite:

$$A\mathbf{x} = \mathbf{b}$$

Considerato per ogni $\mathbf{x} \in \mathbb{R}^n$ il vettore residuo

$$\mathbf{r}(\mathbf{x}) = \mathbf{b} - A\mathbf{x}$$

osserviamo che

$$\mathbf{x}$$
 è soluzione del sistema \iff $\mathbf{r}(\mathbf{x}) = \mathbf{0} \iff ||\mathbf{r}(\mathbf{x})|| = 0$,

dove $||\cdot||$ è una qualsiasi norma vettoriale.

Se m > n il sistema si dice sovradimensionato poiché contiene più equazioni che incognite (nelle applicazioni è spesso $m \gg n$).

In tal caso, in generale, il sistema non sarà compatibile poiché, salvo casi eccezionali, risulterà $rank(A) \neq rank([A, \mathbf{b}])$.

Non potendo allora essere $\mathbf{r}(\mathbf{x}) = \mathbf{0}$, ci si chiede allora se esiste un vettore \mathbf{x}^* che minimizza la norma del vettore residuo.

Il problema lineare dei minimi quadrati

Se come norma scegliamo la norma 2, il problema prima esposto prende il nome di *problema lineare dei minimi quadrati*.

Problema

Siano dati: $A \in \mathbb{R}^{m \times n}$ e $\mathbf{b} \in \mathbb{R}^m$, con $m \ge n$. Determinare \mathbf{x}^* tale che:

$$||\mathbf{b} - A\mathbf{x}^*||_2 = \min_{\mathbf{x} \in \mathbb{R}^n} ||\mathbf{b} - A\mathbf{x}||_2.$$

Teorema

Se il rango di A è massimo (cioè $\operatorname{rank}(A) = n$), il problema dei minimi quadrati ammette un'unica soluzione \mathbf{x}^* , che può essere ottenuta come soluzione del seguente sistema di n equazioni in n incognite:

$$A^T A \mathbf{x} = A^T \mathbf{b}$$

Tale sistema prende il nome di sistema normale.

◆ロト ◆団ト ◆豆ト ◆豆ト ・豆 ・ から○

Osservazione

Cominciamo ad osservare che, se rank(A) = n, il sistema normale

$$A^T A \mathbf{x} = A^T \mathbf{b}$$

ammette un'unica soluzione, cioè $\det(A^TA) \neq 0$. Per mostrare ciò, faremo vedere che:

$$A^T A \mathbf{x} = \mathbf{0} \Longrightarrow \mathbf{x} = \mathbf{0},$$

cioè che l'unica soluzione del sistema omogeneo $A^TAx = 0$ è quella nulla. Infatti, se per assurdo esistesse una soluzione non nulla $x \neq 0$, premoltiplicando il sistema per x^T otterremmo:

$$\mathbf{x}^T A^T A \mathbf{x} = \mathbf{x}^T \cdot \mathbf{0} \Leftrightarrow (A \mathbf{x})^T (A \mathbf{x}) = 0 \Leftrightarrow ||A \mathbf{x}||_2^2 = 0 \Leftrightarrow A \mathbf{x} = \mathbf{0}.$$

Ricordando che $A\mathbf{x}$ è una comb. lineare delle colonne di A, dall'ultima uguaglianza segue che le colonne di A sono linearmente dipendenti e questo è assurdo poiché implicherebbe $\operatorname{rank}(A) < n$.

(□▶◀∰▶◀불▶◀불▶ · 볼 · જ)९()

Dimostrazione del teorema

Poiché $\mathbb{R}^m = \operatorname{Im}(A) \oplus \ker(A^T)$ possiamo effettuare la seguente decomposizione del vettore **b**:

$$\mathbf{b} = \mathbf{b}_1 + \mathbf{b}_2, \quad \text{con } \mathbf{b}_1 \in \operatorname{Im}(A) = \mathbf{b}_2 \in \ker(A^T)$$

$$\mathbf{b}_1 \in \operatorname{Im}(A) \Longrightarrow \mathbf{b}_1^* \in \mathbb{R}^n \text{ tale che } \mathbf{b}_1 = A\mathbf{x}^* \text{ cioè } \mathbf{b}_1 - A\mathbf{x}^* = \mathbf{0}$$

$$\mathbf{b}_2 \in \ker(A^T) \Longrightarrow \mathbf{b}_2^T \mathbf{b}_2 = \mathbf{0} \text{ (ricordiam) o che } \ker(A^T) = (\operatorname{Im}(A))^{\perp})$$

Consideriamo il vettore residuo: $\mathbf{r}(\mathbf{x}) = \mathbf{b} - A\mathbf{x} = \mathbf{b}_1 - A\mathbf{x} + \mathbf{b}_2 = \mathbf{y} + \mathbf{b}_2$, dove abbiamo posto $\mathbf{y} = \mathbf{b}_1 - A\mathbf{x}$. Osserivamo the il vettore $\mathbf{y} \in \mathrm{Im}(A)$. Calcoliamo la norma 2 di $\mathbf{r}(\mathbf{x})$:

$$||\mathbf{r}(\mathbf{x})||_{2}^{2} = \mathbf{r}^{T} \cdot \mathbf{r} = (\mathbf{y} + \mathbf{b}_{2})^{T} (\mathbf{y} + \mathbf{b}_{2}) = (\mathbf{y}^{T} + \mathbf{b}_{2}^{T}) \cdot (\mathbf{y} + \mathbf{b}_{2})$$

$$= \mathbf{y}^{T} \mathbf{y} + \mathbf{y}^{T} \mathbf{b}_{2} + \mathbf{b}_{2}^{T} \mathbf{y} + \mathbf{b}_{2}^{T} \mathbf{b}_{2} = ||\mathbf{y}||_{2}^{2} + ||\mathbf{b}_{2}||_{2}^{2}$$

minimo valore di $||\mathbf{r}(\mathbf{x})||_2$ lo si ottiene in corrispondenza della scelta $\mathbf{x} = \mathbf{x}^*$; infatti si ha: $\mathbf{y} = \mathbf{b}_1 - A\mathbf{x}^* = \mathbf{0} \Rightarrow ||\mathbf{y}||_2 = 0$. Infine: $A\mathbf{x}^* = \mathbf{b}_1 \Rightarrow A^T A\mathbf{x}^* = A^T \mathbf{b}_1 \Rightarrow A^T A\mathbf{x}^* = A^T \mathbf{b}_1$

$$A\mathbf{x}^* = \mathbf{b}_1 \Rightarrow A^* A\mathbf{x}^* = \mathbf{A}^* \mathbf{b}_1 \Rightarrow A^* A\mathbf{x}^* = A^* \mathbf{b}_1$$

 $A^T A\mathbf{x}^* = A^T (\mathbf{b}_1 + \mathbf{b}_2) \Rightarrow A^T A\mathbf{x}^* = A^T \mathbf{b}$

Limiti dell'interpolazione polinomiale

Siano dati n+1 punti del piano (x_i,y_i) , $i=0,\ldots,n$ con i nodi x_i distinti. Sappiamo che esiste ed è unico il polinomio $p_n(x)$ di grado al più n che interpola i dati:

$$p_n(x_i) = y_i, \quad \forall i = 0, \dots, n$$
 condizioni di interpolazione

Il polinomio interpolante non è tuttavia appropriato quando:

- il numero di dati è elevato. In tal caso il polinomio potrà presentare forti oscillazioni tra un nodo e l'altro soprattutto verso gli estremi dell'intervallo, rappresentando male l'andamento dei dati (fenomeno di Runge). Inoltre un polinomio di grado elevato è spesso mal condizionato (es. polinomio di Wilkinson).
- le ordinate y_i sono affette da errore. Ciò avviene ad esempio quando le quantità y_i sono ricavate sperimentalmente. In tal caso non avrebbe molto senso far sì che il polinomio passi esattamente per i punti (x_i, y_i) .

Esempio: n=15 (16 punti)

Il polinomio interpolante $p_n(x)$ di grado 15, pur passando per i punti (x_i, y_i) non approssima bene l'andamento globale degli stessi dati.

Esempio: n=15 (16 punti)

Ad occhio, la funzione che i dati descrivono evidenzia una crescita mediamente lineare. È naturale approssimare i dati mediante una retta che, pur non passando esattamente per i punti (x_i, y_i) , se ne avvicini quanto più possibile.

Il polinomio di migliore approssimazione

Siano dati m+1 punti del piano $(x_i,y_i),\ i=0,\ldots,m$ con i nodi x_i distinti. Sia poi \mathcal{P}_n lo spazio vettoriale dei polinomi di grado al più n, e sia $p_n\in\mathcal{P}_n$ rappresentato lungo la base delle potenze:

$$p_n(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_{n-1} x + a_n$$

Supporremo $n \leq m$. Se imponiamo le condizioni di interpolazione $p_n(x_i) = y_i$ per $i = 0, \ldots, m$ otteniamo il sistema di m+1 equazioni nelle n+1 incognite a_0, a_1, \ldots, a_n :

$$\begin{cases} a_0 x_0^n + a_1 x_0^{n-1} + \ldots + a_{n-1} x_0 + a_n &= y_0 \\ a_0 x_1^n + a_1 x_1^{n-1} + \ldots + a_{n-1} x_1 + a_n &= y_1 \\ & \vdots & & \vdots \\ a_0 x_m^n + a_1 x_m^{n-1} + \ldots + a_{n-1} x_m + a_n &= y_m \end{cases}$$

Se, in particolare m > n il sistema sarà sovradeterminato e quindi, in generale, incompatibile.

Il polinomio di migliore approssimazione

La matrice dei coefficienti $(m+1) \times (n+1)$:

$$A = \begin{pmatrix} x_0^n & x_0^{n-1} & \dots & x_0 & 1 \\ x_1^n & x_1^{n-1} & \dots & x_1 & 1 \\ \vdots & & \vdots & & \vdots \\ x_m^n & x_m^{n-1} & \dots & x_m & 1 \end{pmatrix}$$

è detta matrice di Vandermonde. Si può dimostrare che se i nodi x_i sono distinti, il suo rango è massimo (ovvero rank(A) = n + 1).

Ha senso allora risolvere il sistema rettangolare nel senso dei minimi quadrati, cioè ricavare la soluzione che minimizza la norma 2 del residuo $||\mathbf{b} - A\mathbf{x}||_2$.

Il polinomio $p_n^*(x)$ che corrisponde a tale soluzione prende il nome di polinomio di migliore approssimazione nel senso dei minimi quadrati.

Il polinomio di migliore approssimazione

Si verifica facilmente (per esercizio) che in questo caso la norma 2 del vettore residuo è:

$$||\mathbf{b} - A\mathbf{x}||_2 = \sqrt{\sum_{i=0}^m (p_n(x_i) - y_i)^2}$$

Tale quantità prende il nome di scarto quadratico medio.

Supponiamo che i dati da approssimare evidenzino una dipendenza lineare tra i valori della grandezza y rispetto alla variabile x, come nel seguente esempio (21 punti).

Avrà senso allora approssimare i dati mediante un polinomio lineare (retta)

Definizione

La retta che approssima i dati (x_i, y_i) , i = 0, ..., m nel senso dei minimi quadrati, prende il nome di retta di regressione lineare.

Deriviamo l'equazione della retta di regressione lineare. Dovremo imporre le condizioni di interpolazione

$$p_1(x_i) = y_i, \qquad i = 0, \ldots, m$$

essendo

$$p_1(x) = a_0x + a_1$$

Otteniamo un sistema di m+1 equazioni nelle 2 incognite a_0 ed a_1 .

La matrice dei coefficienti $(m+1) \times 2$ del sistema è:

$$A = \begin{pmatrix} x_0 & 1 \\ x_1 & 1 \\ \vdots & \vdots \\ x_m & 1 \end{pmatrix}$$

che, come già osservato, avrà rango 2.

Il sistema normale $A^T A \mathbf{x} = A^T \mathbf{b}$ di 2 equazioni e 2 incognite sarà:

$$\begin{cases} \left(\sum_{i=0}^{m} x_{i}^{2}\right) a_{0} + \left(\sum_{i=0}^{m} x_{i}\right) a_{1} = \sum_{i=0}^{m} x_{i} y_{i} \\ \left(\sum_{i=0}^{m} x_{i}\right) a_{0} + (m+1) a_{1} = \sum_{i=0}^{m} y_{i} \end{cases}$$

Introducendo le quantità:

•
$$\bar{x} = \frac{1}{m+1} \sum_{i=0}^{m} x_i$$
 (valor medio delle ascisse x_i)

•
$$\bar{y} = \frac{1}{m+1} \sum_{i=0}^{m} y_i$$
 (valor medio delle ordinate y_i)

•
$$\operatorname{var}(\mathbf{x}) = \frac{1}{m+1} \sum_{i=0}^{m} (x_i - \bar{x})^2$$
 (varianza di \mathbf{x})

•
$$\operatorname{cov}(\mathbf{x}) = \frac{1}{m+1} \sum_{i=0}^{m} (x_i - \bar{x})(y_i - \bar{y})$$
 (covarianza di \mathbf{x})

la soluzione del sistema è

$$a_0 = \frac{\operatorname{cov}(\mathbf{x}, \mathbf{y})}{\operatorname{var}(\mathbf{x})}, \qquad a_1 = \bar{y} - a_0 \bar{x}$$

OSSERVAZIONE: il punto (\bar{x}, \bar{y}) appartiene alla retta.

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Per l'esempio precedente si ha:

$$a_0 = -1.9712$$
 $a_1 = 0.9623$

La norma 2 del vettore residuo è: $||\mathbf{r}(\mathbf{x})||_2 = 0.2918$.