Boolean Algebra

Dr. Pimal Khanpara

Outline

- □ Error Detection Codes (Chapter 1)
- □ Boolean Algebra (Chapter 2)
 - Basic Boolean Equations
 - Multiple Level Logic Representation
 - Basic Identities
 - Algebraic Manipulation
 - Complements and Duals
- Practice Problems

Error Detection using Parity Bits

- □ Additional bits used to identify transmission errors, are called parity bits
- □ Each message is sent with an extra bit (parity bit) to make the total number of 1's transmitted either odd or even
- □ Used to detect bit reversal errors
- □ Limitations??

Error Detection using Parity Bits

Odd parity		Even parity			
Message	 P	Message	P		
0000	1	0000	0		
0001	0	0001	1		
0010	0	0010	1		
0011	1	0011	0		
0100	0	0100	1		
0101	1	0101	0		
0110	1	0110	0		
0111	0	0111	1		
1000	0	1000	1		
1001	1	1001	0		
1010	1	1010	0		
1011	0	1011	1		
1100	1	1100	0		
1101	0	1101	1		
1110	0	1110	1		
1111	1	1111	0		

count the sum of each digit

^{-&}gt; if sum is 1 then even parity's p is 1 and odd parity's p is 0

^{-&}gt; if sum is 0 then even parity's p is 0 and odd parity's p is 1

^{*}ignore the carry if any

History

- □ Invented by George Boole
- "spring of 1847 that he put his ideas into the pamphlet called *Mathematical Analysis of Logic*." from wikipedia.com

Basic Boolean Equations

- For the basic gates/functions
- AND
 - $\mathbf{Z} = \mathbf{A} \mathbf{B}$
 - X = CDE

3 input gate

Y = F G H K

4 input gate

- \square OR
 - Z = A + B
 - Y = F + G + H + K 4 input gate

- NOT
 - $Z = \overline{A}$
 - $\mathbf{Y} = (\mathbf{F} \mathbf{G} \mathbf{H} \mathbf{K})$

actually 2-level logic

2-Level Logic

- Consider the following logic equation
 - Z(A,B,C,D) = AB + CD
 - The Z(A,B,C,D) means that the output is a function of the four variables within the ().
 - The AB and CD are terms of the expression.
 - This form of representing the function is an algebraic expression.
 - For this function to be True, either both A AND B are True OR both C AND D are True.

Truth table expression

□ Just like we had the truth tables for the basic functions, we can also construct truth tables for any function.

A	В	C	D	z	AB	CD
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	0	0	0
0	0	1	1	1	0	1
0	1	0	0	0	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	1	1	1	0	1
1	0	0	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	0	0	0
1	0	1	1		0	1
1	1	0	0	1 1	1	0
1	1	0	1	1	1	0
1	1	1	0	1	1	0
1	1	1	1	1	1	1

Examples of Boolean Equations

□ Some examples

- \blacksquare F = AB + CD + BD'
- $\mathbf{Y} = \mathbf{CD} + \mathbf{A'B'}$
- \blacksquare SUM = AB + A Cin + B Cin
- $P = A_0 A_1 A_2 A_3 A_4 B_0 B_1 B_2 B_3 B_4 + \dots$
- Equations can be very complex
- Usually desire a minimal expression

Basic Identities of Boolean Algebra

$$\Box$$
 3) X + 1 = 1

$$\Box$$
 5) X + X = X

$$\begin{array}{c|cccc} \square & 2) & X & \bullet & 1 = X \\ & & & \\ \hline & & A & 1 & RESULT \\ \hline & & 0 & 1 & 0 \\ & & 1 & 1 & 1 \end{array}$$

$$\Box$$
 4) X • 0 = 0

$$\Box$$
 6) $X \cdot X = X$

Basic Identities (2)

$$\Box$$
 7) X + X' = 1

$$\Box$$
 8) X • X' = 0

X'	RES		
1	0		
0	0		
	X' 1 0		

$$\Box$$
 9) (X')' = X

Basic Properties (Laws)

- □ Commutative
 - \blacksquare 10) X + Y = Y + X
- □ Associative
 - \blacksquare 12) X+(Y+Z)=(X+Y)+Z
- Distributive
 - $\blacksquare 14) X(Y+Z) = XY+XZ$
 - AND distributes over OR

- Commutative
 - $\blacksquare 11) \quad \mathbf{X} \cdot \mathbf{Y} = \mathbf{Y} \cdot \mathbf{X}$
- □ Associative
 - $\blacksquare 13) X(YZ) = (XY)Z$
- Distributive
 - $\blacksquare 15) X+YZ=(X+Y)(X+Z)$
 - OR distributes over AND

Basic Properties (2)

- □ DeMorgan's Theorem
- Very important in simplifying equations

$$\blacksquare 16) (X+Y)' = X' \cdot Y'$$

$$\blacksquare$$
 17) (XY)' = X' + Y'

X	Y	X + Y	$\overline{X+Y}$	_	X	Y	X	$\overline{\mathbf{Y}}$	<u>X•</u> <u>Y</u>
0	0	0	1		0	0	1	1	1
0	1	1	0		0	1	1	0	0
1	0	1	0		1	0	0	1	0
1	1	1	0		1	1	0	0	0

Where to use?

- □ These properties (Laws and Theorems) can be used to simplify equations to their simplest form.
 - Simplify F=X'YZ+X'YZ'+XZ $F = \overline{X}YZ + \overline{X}Y\overline{Z} + XZ$ $= \overline{X}Y(Z + \overline{Z}) + XZ \quad \text{by identity 14}$ $= \overline{X}Y \cdot 1 + XZ \quad \text{by identity 7}$

$$= \overline{X}Y + XZ$$
 by identity 2

Effect on implementation

 \Box F = X'YZ + X'YZ' + XZ

 \square Reduces to F = X'Y + XZ

Other examples

□ Examples from the text

■ 1)
$$\mathbf{X} + \mathbf{XY}$$

= $\mathbf{X} \cdot \mathbf{1} + \mathbf{XY} = \mathbf{X}(\mathbf{1} + \mathbf{Y}) = \mathbf{X} \cdot \mathbf{1} = \mathbf{X}$
Use 2 14 3 2

■ 3)
$$X+X'Y$$

= $(X+X')(X+Y) = 1 \cdot (X+Y) = X+Y$
Use 15 7

Further Examples

- □ Examples from the text
 - **■** 4) **X** (**X**+**Y**)
 - $= X \cdot X + X \cdot Y = X + XY = X(1+Y) = X \cdot 1 = X$
 - □ Use
- 14

6

14

- 3
- 2

- **■** 5) (X+Y) ·(X+Y')
- =XX+XY'+XY+YY'=X+XY'+XY+0=X(1+Y'+ Y)=X•1=X
- **■** 6) **X(X'+Y)**
- = XX'+XY = 0 + XY = XY

Consensus Theorem

- □ The Theorem gives us the relationship
 - XY + X'Z + YZ = XY + X'Z

■ How??

Application of Consensus Theorem

□ Consider

$$(A+B)(A'+C) = AA' + AC + A'B + BC$$

$$= AC + A'B + BC$$

$$= AC + A'B$$

Complement of a function

- □ In real implementations, sometimes the complement of a function is needed.
 - Have F=X'YZ'+X'Y'Z

$$F = \overline{X}Y\overline{Z} + \overline{X}\overline{Y}Z$$

$$F = \overline{X}Y\overline{Z} + \overline{X}\overline{Y}Z$$

$$= (\overline{X}Y\overline{Z}) \cdot (\overline{X}\overline{Y}Z)$$

$$= (X+\overline{Y}+Z) \cdot (X+Y+\overline{Z})$$

Duals

- □ What is meant by the dual of a function?
 - The *dual* of a function is obtained by interchanging OR and AND operations and replacing 1s and 0s with 0s and 1s.
- □ Shortcut to getting function complement
 - Starting with the equation on the previous slide
 - Generate the dual F=(X'+Y+Z')(X'+Y'+Z)
 - Complement each literal to get:
 - F'=(X+Y'+Z)(X+Y+Z')

Exercise Prolems

- \square X'Y' + Y' Z + XZ + XY + Y Z'
- \square Answer: X'Y' + XZ + Y Z'
- \square (AB + A'B')(CD+C'D') + (AC)'
- \square Answer: A' + C' + BD