1/02/2024-Shift 1

EE24BTECH11021 - Eshan Ray

- 16) Let $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, a > b be an ellipse, whose eccentricity is $\frac{1}{\sqrt{2}}$ and the length of latus rectum is $\sqrt{14}$. Then the square of the eccentricity of $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is :
 - a) 3

 - b) $\frac{7}{2}$ c) $\frac{3}{2}$ d) $\frac{5}{2}$
- 17) Let 3, a, b, c be in A.P. and 3, a-1, b+1, c+9 be in G.P. Then, the arithmetic mean of a, b and c is :
 - a) -4
 - b) -1
 - c) 13
 - d) 11
- 18) Let $C: x^2 + y^2 = 4$ and $C: x^2 + y^2 4\lambda x + 9 = 0$ be two circles. If the set of all values of λ so that the circles C and C' intersect at two distinct points, is R - [a, b], then the point (8a + 12, 16b - 20) lies on the curve :
 - a) $x^2 + 2y^2 5x + 6y = 3$
 - b) $5x^2 y = -11$
 - c) $x^2 4y^2 = 7$
 - d) $6x^2 + y^2 = 42$
- 19) Let $5f(x) + 4f(\frac{1}{x}) = x^2 2$, $\forall x \neq 0$ and $y = 9x^2 f(x)$, then y is strictly increasing in
 - a) $\left(0, \frac{1}{\sqrt{5}}\right) \cup \left(\frac{1}{\sqrt{5}}, \infty\right)$
 - b) $\left(-\frac{1}{\sqrt{5}}, 0\right) \cup \left(\frac{1}{\sqrt{5}}, \infty\right)$ c) $\left(-\frac{1}{\sqrt{5}}, 0\right) \cup \left(0, \frac{1}{\sqrt{5}}\right)$

 - d) $\left(-\infty, -\frac{1}{\sqrt{5}}\right) \cup \left(0, \frac{1}{\sqrt{5}}\right)$
- 20) If the shortest distance between the lines $\frac{x-\lambda}{-2} = \frac{y-2}{1} = \frac{z-1}{1}$ and $\frac{x-\sqrt{3}}{1} = \frac{y-1}{-2} = \frac{z-2}{1}$ is 1, then the sum of all possible values of λ is :
 - a) 0
 - b) $2\sqrt{3}$
 - c) $3\sqrt{3}$
 - d) $-2\sqrt{3}$
- 21) If x = x(t) is the solution of the differential equation $(t+1) dx = (2x + (t+1)^4) dt, x(0) = 2$, then, x(1) equals ...

- 22) The number of elements in the set $S = \{(x, y, z) : x, y, z \in \mathbb{Z}, x + 2y + 3z = 42, x, y, z \ge 0\}$ equals ...
- 23) If the coefficient of x^{30} in the expansion of $\left(1 + \frac{1}{x}\right)^6 \left(1 + x^2\right)^7 \left(1 x^3\right)^8$; $x \neq 0$ is α then $|\alpha|$ equals ...
- 24) Let 3, 11, 15, ..., 403 and 2, 5, 8, 11, ..., 404 be two arithmetic progressions. Then the sum, of the common terms in them, is equal to ...
- 25) Let $\{x\}$ denote the fractional part of x and $f(x) = \frac{\cos^{-1}(1-\{x\}^2)\sin^{-1}(1-\{x\})}{\{x\}-\{x\}^3}$, $x \neq 0$. If L and R respectively denote the left and right hand limit of f(x) at x = 0, then $\frac{32}{\pi^2}(L^2 + R^2)$ is equal to ...
- 26) Let the line $L: \sqrt{2}x + y = \alpha$ passes through the point of the intersection $P(in \ the \ first \ quadrant)$ of the circle $x^2 + y^2 = 3$ and the parabola $x^2 = 2y$. Let the line L touch two circles C_1 and C_2 of equal radius $2\sqrt{3}$. If the centres Q_1 and Q_2 of the circles C_1 and C_2 lie on the y-axis, then the square of the area of triangle PQ_1Q_2 is equal to ...
- 27) Let $P = \{z \in C : |z+2-3i| \le 1\}$ and $Q = \{z \in C : |z(1+i)+\bar{z}(1-i)| \le -8\}$. Let in $P \cap Q$, |z-3+2i| be maximum and minimum at z_1 and z_2 respectively. If $|z_1|^2 + 2|z|^2 = \alpha + \beta \sqrt{2}$, where α, β are integers, then $\alpha + \beta$ equals ...
- 28) If $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{8\sqrt{2}\cos x}{(1+e^{\sin x})(1+\sin^4 x)} dx = \alpha\pi + \beta \log_e(3+2\sqrt{2}), \text{ where } \alpha, \beta \text{ are integers, then } \alpha^2 + \beta^2 \text{ equals } \dots$
- 29) Let the line of shortest distance between the lines

$$L_1: \overrightarrow{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda (\hat{i} - \hat{j} + \hat{k}) \text{ and}$$

$$L_2: \overrightarrow{r} = (4\hat{i} + 5\hat{j} + 6\hat{k}) + \mu (\hat{i} + \hat{j} - \hat{k})$$

intersect L_1 and L_2 at P and Q respectively. If (α, β, γ) is the midpoint of the line segment PQ, then $2(\alpha + \beta + \gamma)$ is equal to ...

30) Let $A = \{1, 2, 3, \dots, 20\}$. Let R_1 and R_2 be two relation on A such that

$$R_1 = \{(a, b) : b \text{ is divisible by } a\}$$

 $R_2 = \{(a, b) : a \text{ is an integral multiple of } b\}.$

Then, the number of elements in $R_1 - R_2$ is equal to ...