SỞ GD&ĐT HÀ TĨNH THPT CHUYÊN HÀ TĨNH

NĂM HỌC 2022 - 2023

Pre04 HSG11

(Đề thi có 03 trang, gồm 03 bài)

Môn thi: TIN HỌC

Thời gian làm bài: 180 phút

Kỳ THI CHỌN HỌC SINH GIỎI LỚP 11 THPT

TỔNG QUAN BÀI THI

	Tên bài	File chương	File dữ liệu vào	File kết quả
Bài 1	Siêu nguyên tố	SUPPRIME.*	SUPPRIME.INP	SUPPRIME.OUT
Bài 2	Tổng nhỏ nhất	ASMIN.*	ASMIN.INP	ASMIN.OUT
Bài 3	Dãy con chia hết	QBSEQ.*	QBSEQ.INP	QBSEQ.OUT

Dấu * được thay thế bởi PAS hoặc CPP của ngôn ngữ lập trình được sử dụng tương ứng là Pascal hoặc C++.

Bài 1. SIÊU NGUYÊN TỐ (7,0 điểm)

Xét dãy vô hạn P chứa các số nguyên tố sắp xếp theo thứ tự tăng dần, Các số nguyên tố được đánh số từ 1 trở đi. Như vậy ta có $P_1=2, P_2=3, P_3=5, \ldots, P_{52}=239, \ldots$

Số nguyên tố P_i được gọi là siêu nguyên tố nếu i cũng là một số nguyên tố. Như vậy, 3 và 5 là các số siêu nguyên tố, còn 239 – không phải là siêu nguyên tố.

Các số siêu nguyên tố được sắp xếp theo thứ tự tăng dần và đánh số từ 1 trở đi.

Yêu cầu: Cho số nguyên k ($1 \le k \le 500$). Hãy xác định số siêu nguyên tố thứ k.

 ${\bf D}{\tilde{\bf w}}$ liệu: Vào từ file văn bản SUPPRIME.INP gồm một dòng chứa số nguyên k.

Kết quả: Đưa ra file văn bản SUPPRIME.OUT số siêu nguyên tố tìm được.

Các số trên một dòng của input/output files được/phải ghi cách nhau ít nhất một dấu cách.

Ràng buộc:

- Có 50% số điểm ứng với các test có $k \le 20$;
- Có 50% số điểm ứng với các test có $100 < k \le 500$.

Ví dụ:

SUPPRIME.INP	SUPPRIME.OUT
3	11

Bài 2: TỔNG NHỔ NHẤT (7,0 điểm)

Cho hai dãy số nguyên $A=(a_1,a_2,...,a_m)$ và $B=(b_1,b_2,...,b_n)$ hãy tìm một phần tử a_i trong dãy A và một phần tử b_j trong dãy B có $|a_i+b_j|$ là nhỏ nhất có thể $(1 \le i \le m; 1 \le j \le n)$.

Dữ liệu: Vào từ file văn bản ASMIN.INP

- Dòng 1 chứa hai số nguyên dương $m, n \le 10^5$
- Dòng 2 chứa m số nguyên $a_1, a_2, ..., a_m$ ($\forall i: |a_i| < 2.10^9$)
- Dòng 3 chứa n số nguyên b_1, b_2, \dots, b_n $(\forall j: |b_j| < 2.10^9)$

Kết quả: Ghi ra file văn bản ASMIN.OUT hai chỉ số i và j của hai phần tử tương ứng tìm được.

Các số trên một dòng của Input/Output files được/phải ghi cách nhau ít nhất một dấu cách.

Ràng buộc:

- Có 60% số điểm ứng với 60% các test có $n, m \le 10^3$;
- Có 40% số điểm ứng với 40% các test có $n, m \le 10^5$.

Ví dụ

ASMIN.INP	ASMIN.OUT
4 5	24
1829	
-5 -6 3 -7 -4	

Giải thích: $|a_2 + b_4| = |8 + (-7)| = 1$

Bài 3: DÃY CON CHIA HẾT (6,0 điểm)

Cho một dãy gồm n ($n \le 1000$) số nguyên dương A_1 , A_2 ,..., A_n và số nguyên dương k ($k \le 50$). Hãy tìm dãy con gồm nhiều phần tử nhất của dãy đã cho sao cho tổng các phần tử của dãy con này chia hết cho k.

Dữ liệu: Vào từ file văn bản QBSEQ.INP:

- Dòng đầu tiên chứa hai số n, k ghi cách nhau bởi ít nhất 1 dấu trống.
- Các dòng tiếp theo chứa các số A_1 , A_2 ,..., A_n được ghi theo đúng thứ tự cách nhau ít nhất một dấu trống hoặc xuống dòng.

Kết quả: Đưa ra file văn bản QBSEQ.OUT Gồm 1 dòng duy nhất ghi số lượng phần tử của dãy con dài nhất thoả mãn.

Ràng buộc:

- Có 40% số test ứng với 40% số điểm của bài có $n \le 20$;
- Có 60% test khác ứng với 60% số điểm của bài có có $n \le 10^3$;

Ví dụ:

QBSEQ.INP	QBSEQ.OUT
10 3	9
2357	
96127	
11 15	

Hê	2t
-Thí sinh không được sử dụng tài liệu.	
-Cán bộ coi thi không giải thích gì thêm.	
Họ và tên thí sinh:	Số báo danh: