Introduction to Industrial Organization

Monopolistic Competition

Jian-Da Zhu

National Taiwan University

October 17, 2019

Outline

- Product Differentiation
- Theoretical models:
 - ▶ Bertrand model with differentiated products
 - Hotelling model
 - Salop circular model

Product Differentiation

Monopolistic Competition

- Monopolistic competition exhibits the following four features:
 - 1. There is a large number of firms, each producing a single variety of a differentiated product.
 - Each firm is negligible, in the sense that firms do not interact directly through strategic interdependence but only indirectly through aggregate demand effects.
 - 3. There are no entry or exit barriers so that economic profits are zero.
 - Each firm faces a downward-sloping demand curve and therefore enjoys market power.
- The first three features are related to perfect competition, and the last one is related to monopoly.
- Examples: the markets for restaurants, clothing, shoes, and service industries in large cities.

Product Differentiation

- Types of product differentiation:
 - Horizontal:
 - Definition: when the two prices are equal, some consumers prefer one product and other consumers prefer the other product.
 - Example: Pepsi and Coca Cola.
 - Vertical:
 - Definition: when the two prices are equal, all the consumers prefer the same product.
 - Example: BMW and Ford.
 - Mixed:
 - Example: hair-cutting, clothing,

Bertrand Model with Differentiated Products

- Model settings:
 - ▶ Two firms, firm 1 and firm 2, with marginal cost c.
 - ▶ Two kinds of products are produced separately by firm 1 and firm 2.
 - ▶ Demand function:

$$q_1 = a - b_1 p_1 + b_2 p_2;$$

 $q_2 = a - b_1 p_2 + b_2 p_1,$

where $b_1 > b_2 > 0$.

- ▶ Two firms decide the prices, p_1 and p_2 simultaneously.
- The profits maximization problem for firm 1:

$$\max_{p_1} \pi_1 = (p_1 - c)(a - b_1 p_1 + b_2 p_2).$$

Bertrand Model with Differentiated Products

First-order conditions:

$$a - b_1 p_1 + b_2 p_2 - b_1 p_1 + b_1 c = 0$$

• So the best response function for firm 1:

$$p_1 = \frac{a + cb_1 + b_2 p_2}{2b_1} \equiv \mathsf{BR}(p_2)$$

• Similarly, the best response function for firm 2:

$$p_2 = \mathsf{BR}(p_1) = \frac{a + cb_1 + b_2 p_1}{2b_1}.$$

Equilibrium

• In equilibrium, $p_1 = p_2 = p^*$, so

$$p^* = \frac{a + cb_1}{2b_1 - b_2}.$$

Equilibrium quantities:

$$q_1 = q_2 = q^* = \frac{ab_1 + cb_1b_2 - cb_1^2}{2b_1 - b_2}$$

- If $a > c(b_1 b_2)$, then $q^* > 0$.
- Example: If $b_1=2, b_2=1, a=5$ and c=1, then $p^*=\frac{7}{3}>c$. $q^*=\frac{8}{3}>0$.
- Firms have the incentives to differentiate their products.

Hotelling Model

Model Settings I

- One street with the length equal to 1.
- Consumers locate on the street **uniformly**. For instance, there are 100 consumers, and then 50 consumers are in $[0, \frac{1}{2}]$.
- Two firms, firm A and firm B, produce the homogeneous product with constant marginal cost c.
- Firm A locates at a, and firm B locates at 1 b.

Model Settings II

- ullet Prices set by firm A and firm B are P_A and P_B .
- Consumers' utilities:
 - only one unit demand with utility u.
 - prices: P_A or P_B .
 - transportation cost: if the distance is d, then the cost is td^2 .
 - For instance, the utility of consumer at x buying the product from firm A and firm B:

$$u - P_A - t(x - a)^2;$$

 $u - P_B - t(1 - b - x)^2.$

Model Settings III

- Two stage game:
 - Stage 1: firms A and B choose the location, $\{a, b\}$, simultaneously.
 - Stage 2: Two firms decide the prices, P_A and P_B , simultaneously.
- In the second stage:
 - ▶ Given the location, $\{a,b\}$, two firms decide the prices, , P_A and P_B .
 - ► To find out a consumer at x who is indifferent between firm A and firm B.

Second Stage

Obtain x from:

$$u - P_A - t(x - a)^2 = u - P_B - t(1 - b - x)^2.$$

Then

$$x = a + \frac{1 - a - b}{2} + \frac{P_B - P_A}{2t(1 - a - b)}.$$

• The demand function for two firms:

$$q_A(P_A, P_B) = a + \frac{1 - a - b}{2} + \frac{P_B - P_A}{2t(1 - a - b)};$$
$$q_B(P_A, P_B) = b + \frac{1 - a - b}{2} + \frac{P_A - P_B}{2t(1 - a - b)}.$$

• Product differentiation along the street.

Second Stage

- Note: an example when a=0, and b=0
 - If $P_A = P_B$: then $q_A = \frac{1}{2}$ and $q_B = \frac{1}{2}$.
 - ▶ If $P_A > P_B$: then

$$\begin{split} q_A &= \frac{1}{2} + \frac{P_B - P_A}{2t} < \frac{1}{2}; \\ q_B &= \frac{1}{2} + \frac{P_A - P_B}{2t} > \frac{1}{2}. \end{split}$$

• The profits maximization problem for firm A:

$$\max_{P_A} \pi_A = q_A(P_A, P_B)(P_A - c)$$

$$= \left(a + \frac{1 - a - b}{2} + \frac{P_B - P_A}{2t(1 - a - b)}\right)(P_A - c)$$

Second Stage

First-order condition:

$$P_A = at(1 - b - a) + \frac{t(1 - a - b)^2}{2} + \frac{P_B + c}{2} \equiv BR(P_B).$$

Similarly, the best response function for firm B:

$$P_B = bt(1 - b - a) + \frac{t(1 - a - b)^2}{2} + \frac{P_B + c}{2} \equiv \mathsf{BR}(P_A).$$

In equilibrium:

$$P_A^* = c + t(1 - b - a) \left(1 + \frac{a - b}{3} \right);$$

$$P_B^* = c + t(1 - b - a) \left(1 + \frac{b - a}{3} \right).$$

Note for Equilibrium

• Example: If a = b = 0, then

$$P_A^* = P_B^* = c + t$$

• If $a = b = \frac{1}{2}$ (two firms locate at the middle point),

$$P_A^* = P_B^* = c.$$

In this case, two products are homogeneous, so price is equal to marginal cost.

• If a > b, then $P_A^* > P_B^*$.

First Stage

• The profits maximization problem for firm A and firm B:

$$\max_{a} \pi_{A}(a,b) = (P_{A}^{*}(a,b) - c) q_{A} (P_{A}^{*}(a,b), P_{B}^{*}(a,b)).$$

$$\max_{b} \pi_{B}(a,b) = (P_{B}^{*}(a,b) - c) q_{B} (P_{A}^{*}(a,b), P_{B}^{*}(a,b)).$$

ullet To simplify the problem: we only consider the case a=b, so

$$P_A^* = c + t(1 - a - b) = c + t(1 - 2a); P_B^* = c + t(1 - 2a)$$

and

$$q_A(P_A^*, P_B^*) = q_B(P_A^*, P_B^*) = \frac{1}{2}.$$

Equilibrium

- In the first stage:
 - ► The profits maximization problem for firm A becomes:

$$\max_{a} \pi_{A}(a, b) = \frac{1}{2}(c + t(1 - 2a) - c) = \frac{1}{2}t(1 - 2a)$$

- ▶ We need to find the optimal a^* from $[0, \frac{1}{2}]$, so the optimal location $a^* = 0$.
- ► The equilibrium location strategies a* = b* = 0.
 ⇒ Maximal Differentiation Principle!
- Extension:
 - To the case without the assumption a = b.
 - To the case that two firms decide the location sequentially.
 - Drawback: hard to discuss the number of firms more than 2.

Other Cases

- Question: If two firms can not decide the price in the second stage, say $P_A=P_B=\bar{P}$, what will be the Nash equilibrium for the simultaneous location game?
- Answer: $a^* = b^* = 1/2$. Two firms locate at the center. Implication: they offer the same products.
- Question: From a social point of view, how should they locate their firms to minimize the travel cost of consumers?
- Answer: $a^* = b^* = 1/4$.

Salop Circular Model

Salop Circular Model

- Model settings:
 - ▶ A circle street with circumference equal to 1.
 - Consumers locate on the circle uniformly.
 - n firms in the market.
 - Firms are identical with cost function C(q) = F + cq.
 - ► Consumers' utilities:

$$u-P-t|d|,$$

where t|d| is the linear transportation cost for consumers.

- Two-stage game:
 - ▶ In the first stage: all the firms decide the location simultaneously.
 - ▶ In the second stage: all the firms decide the price simultaneously.

Maximal Differentiation Principle

- Based on maximal differentiation principle, n firms should locate uniformly on the circle with distance $\frac{1}{n}$ between each of them.
- Given the location, how do they decide the prices?

Demand

• Given price P by other firms and price P_i by firm i, obtain the consumer who are indifferent between firm i and firm i-1:

$$u - P_i - tx = u - P - (\frac{1}{n} - x)t$$

$$\Rightarrow x = -\frac{P_i - P}{2t} + \frac{1}{2n}.$$

• The demand for firm *i*:

$$q_i(P_i, P) = 2x = \frac{1}{n} - \frac{P_i - P}{t}.$$

- Note:
 - If $P_i > P$, then $q_i < \frac{1}{n}$.
 - If $P_i = P$, then $q_i = \frac{1}{n}$.
 - If $P_i < P$, then $q_i > \frac{1}{n}$.

Profits Maximization Problem

• The profits maximization problem for firm *i*:

$$\max_{P_i} \pi_i = (P_i - c)q_i(P_i, P) - F$$
$$= (P_i - c)\left(\frac{1}{n} - \frac{P_i - P}{t}\right) - F$$

• First-order condition:

$$\left(\frac{1}{n} - \frac{P_i - P}{t}\right) + \left(-\frac{1}{t}\right)(p_i - c) = 0$$

$$\Rightarrow P_i = \frac{t}{2n} + \frac{P + c}{2}.$$

• In equilibrium, $P_i = P = P^*$, so $P^* = c + \frac{t}{n}$, and $q^* = \frac{1}{n}$.

Equilibrium

- Implication of $P^* = c + \frac{t}{n}$:
 - ▶ If $n \to \infty$, $P^* \to c$. If there are two many firms in the market, market is competitive.
 - If there is no transportation cost, t=0, then $P^*=c$. Because of homogeneous product, the equilibrium price should be equal to the marginal cost.
 - ▶ If t > 0, then $P^* > c$. Product differentiation makes the price greater than the marginal cost.

Free Entry Case

- If more firms are free to enter into the market, what's the equilibrium number of firms?
- Use the zero profit condition to obtain the equilibrium number of firms n*.
- The profits for each firm:

$$\pi_i = \left(\frac{c + \frac{t}{n} - c}{n}\right) \frac{1}{n} - F = \frac{t}{n^2} - F$$

• By zero profit condition:

$$\frac{t}{n^2} - F = 0 \implies n^* = \sqrt{\frac{t}{F}}.$$

Free Entry Case

• The equilibrium price:

$$P^* = c + \frac{t}{n^*} = c + \sqrt{tF}.$$

- Note:
 - If F increases, then n^* decreases and P^* increases.
 - If t increases, then n^* increases and P^* increases.
- If we consider both the fixed costs for firms and the transportation costs for consumers, what is the "first-best" allocation?

Social Planner's Problem

• Transportation costs: $\left(\frac{1}{2n}\right)\left(\frac{t}{2n}\right)\left(\frac{1}{2}\right)\times 2\times n=\frac{t}{4n}.$

Social Planner's Problem

- Total costs include:
 - ▶ Transportation costs: $\frac{t}{4n}$.
 - ightharpoonup Fixed costs: nF.
- To minimize the total costs:

$$\min_{n} \ \frac{t}{4n} + nF$$

First-order condition:

$$-\frac{t}{4n^2} + F = 0 \implies n^{**} = \sqrt{\frac{t}{4F}} = \frac{1}{2}\sqrt{\frac{t}{F}} < n^*$$

- Summary:
 - ▶ The first-best number of firms: $n^{**} = \frac{1}{2} \sqrt{\frac{t}{F}}$.
 - ▶ Free-entry number of firms: $n^* = \sqrt{\frac{t}{F}}$.

Homework 4

- Please provide an example of product differentiation, including horizontal and vertical differentiation if possible, and answer the following questions:
 - Obtain the product prices and compare them. Do you find any differences among those with horizontal (vertical) differentiation?
 - If possible, obtain the market share of those products. Based on the prices and market shares (quantities), do you find any interesting phenomenon?
 - ▶ In your example, do you think that the new firm attempt to increase product differentiation? horizontal or vertical? Explain that.