COMP6207 Algorithmic Game Theory

Lecture 16 Secretary Problem

Pavel Naumov
p.naumov@soton.ac.uk
Electronics and Computer Science
University of Southampton

Learning Outcomes

- By the end of this session, the students should be able to
 - **Describe** the secretary problem
 - Compare its online feature with previous offline problems
 - Compute the best strategy in the classical secretary problem

Offline vs. Online

- So far we have considered settings where all participants are present, the game is single-shot, and a centralised mechanism is in place
- So we have considered
 - offline setting (vs online setting)
 - single-shot game (vs repeated games)
- What if the participants arrive at different times (i.e. we are in an online setting)?

Another marriage problem

- When someone proposes to me, should I accept or reject the current proposer if
 - I know there are in total *n* men
 - I do not know the future proposers and their qualities
 - My current decision is irrevocable
- What is the best strategy to maximise the probability of finding the best partner?

A strategy

- Reject the first *k* candidates no matter how good they are.
 - Learn how good they are
 - Because there may be better ones later.
- After this, accept the first one who is better than all the first *k* candidates.
- If all the rest n k are worse than the best one among the first k, then accept the last one.

A Strategy (cont.)

- I want to determine, for each *k*, the probability that I appoint the best candidate.
- And then maximise this probability over all k.
- Suppose I accept candidate i (i > k).
- S: the event that I accept the best one (amongst all *n* candidates).
- S_i : the event that I accept the best one (amongst all n candidates), which is i.

$$\mathbf{Pr}[S] = \sum_{i=k+1}^{n} \mathbf{Pr}[S_i].$$

A Strategy (cont.)

- S_i : the event that I accept the best one, which is i.
- Let's compute $\mathbf{Pr}[S_i]$
- S_i : event S_i is true implies that candidate i is the best among the n people
 - probability: 1/n. (assuming uniform distribution in the classical problem)
- Recall that my strategy is to reject the first k candidates, event S_i is true also implies that candidates k + 1, ..., i 1 are all worse than the best one among 1, ..., k.
 - so that candidates k + 1, ..., i 1 are all rejected.
 - probability: k/(i-1). (The best one among the first i-1 appears in the first k.)
- So, $\Pr[S_i] = \frac{1}{n} \cdot \frac{k}{i-1}$

•
$$\mathbf{Pr}[S_i] = \frac{1}{n} \cdot \frac{k}{i-1} = \frac{k}{n(i-1)}$$
.

So
$$\Pr[S] = \sum_{i=k+1}^{n} \Pr[S_i]$$

$$=\sum_{i=k+1}^{n}\frac{k}{n(i-1)}$$

$$=\frac{k}{n}\cdot\sum_{i=k}^{n-1}\frac{1}{i}$$

$$\approx \frac{k}{n} \cdot (\ln(n-1) - \ln(k-1)). \quad n \to \infty$$

• Maximise this over all $k \in \{1,...,n\}$ we get

$k \approx n/e \approx 0.368 \cdot n$

- take derivative with respect to k, and set it equal to 0.

n-th harmonic number

$$Hn = \sum_{i=1}^{n} \frac{1}{i} \approx \ln(n)$$

The Secretary Problem

Hire the best secretary

n	1	2	3	4	5	6	7	8	9
k+1	1	1	2	2	3	3	3	4	4
Pr	1.0	0.5	0.5	0.433	0.433	0.428	0.414	0.410	0.406

- For small n we can find the optimal k using dynamic programming
- <u>Selling a house</u>: Given a series of offers, how many should you consider before accepting an offer?
- **Job hunting**: How many interviews should I take?
- **Ski rental**: Continuing to pay a repeating cost or paying a one-time cost which eliminates or reduces the repeating cost?

Is our solution 100% applicable in real life?

In practice,

- Number of applicants *n* maybe unknown
- The quality of the candidates follow some distributions (learn from statistics)
- The quality of the first k candidates is correlated with the quality of the future candidates.
- Explainable AI

•

Online mechanism design problems

- Limited-Supply Online Auctions
 - Selling online advertisement slots
 - Selling online digital goods
 - Books
 - Movies
 - Music
 - **—** ...
- Online matching
 - Job-machine scheduling
 - Employer-employee matching (job market)
 - Request a ride on Uber
 - **–** ...