2020年北京市西城区高三一模化学试卷

本试卷共9页,100分。考试时长90分钟。考试时务必将答案写在答题卡上,在试卷上作答无效。考试结 第一部分下 束后,将本试卷和答题卡一并交回。

本部分共 14 题,每题 3 分,共 42 分。在每题列出的四个选项中,选出最符合题目要求的一项。

下列防疫物品的主要成分属于无机物的是

- 2. 化学与生产生活密切相关,下列说法不正确的是
 - A. 用食盐、蔗糖等作食品防腐剂
 - B. 用氧化钙作吸氧剂和干燥剂
 - C. 用碳酸钙、碳酸镁和氢氧化铝等作抗酸药
 - D. 用浸泡过高锰酸钾溶液的硅藻土吸收水果产生的乙烯以保鲜
- 3. 短周期元素 W、X、Y、Z 的原子序数依次增大。W 的气态氢化物遇湿润的红色石 蕊试纸变蓝色,X 是地壳中含量最高的元素,Y 在同周期主族元素中原子半径最大,Z 与 Y 形成的化合物的化学式为 YZ。下列说法不正确的是
 - A. W 在元素周期表中的位置是第二周期 VA 族
 - B. 同主族中 Z 的气态氢化物稳定性最强
 - C. X 与 Y 形成的两种常见的化合物中,阳离子和阴离子的个数比均为 2:1
- D. 用电子式表示 YZ 的形成过程为: Y + Z: → Y + [:Z:]

4. 下列变化过程不涉及氧化还原反应的是

				_
А	BXOFICH	С	D	
将铁片放入冷	向 FeCl ₂ 溶液中滴加	向 Na₂SO₃	向包有 Na ₂ O ₂	
的浓硫酸中无	KSCN 溶液,不变色,滴	固体中加入	粉末的脱脂棉	
明显现象	加氯水后溶液显红色	硫酸,生成无	上滴几滴蒸馏	2414
		色气体	水,脱脂棉燃烧	学全科教

- 5. 海水提溴过程中发生反应: $3Br_2 + 6Na_2CO_3 + 3H_2O == 5NaBr + NaBrO_3 + 6NaHCO_3$,下列说法正确的是
 - A. 标准状况下 2 mol H₂O 的体积约为44.8 L
 - B. 1 L 0.1 mol·L Na₂CO₃溶液中CO₃²⁻ 物质的量为0.1 mol
 - C. 反应中消耗 3 mol Br₂ 转移的电子数约为 5×6.02×10²³
 - D. 反应中氧化产物和还原产物的物质的量之比为5:1

6. 下列实验现象预测正确的是

	А	В	CA教育	D
Į.	NH ₄ Cl和Ca(OH) ₂ 1 mol·L ⁻¹ FeCl ₂ 溶液	稀盐酸 平 苯酚钠溶液	KMnO₄ ✓ 酸性溶液 ▼ 平苯	先加入碘水,再加入CCl4,振荡后静置
	烧杯中产生白色沉淀,	加盐酸出现白	KMnO4 酸性溶液	液体分层,下层呈
一段时间后沉淀无明		色浑浊,加热变	在苯和甲苯中均	无色
	显变化	澄清	褪色	ECN

7. 下列解释事实的方程式不正确的是

- A. 用 Na₂CO₃溶液将水垢中的 CaSO₄ 转化为 CaCO₃: CO₃²⁻+ Ca²⁺==CaCO₃↓
- B. 电解饱和食盐水产生黄绿色气体: 2NaCl + 2H₂O =电解= 2NaOH + H₂↑ +Cl₂↑
- C. 红热木炭遇浓硝酸产生红棕色气体: C+4HNO₃(浓)=加热= CO₂↑+4NO₂↑+2H₂O
- D. 用新制 Cu(OH)。检验乙醛,产生红色沉淀:

CH₃CHO + 2Cu(OH)₂ + NaOH == CH₃COONa + Cu₂O
$$\sqrt{+3H_2O}$$

8. 科学家提出由 WO₃ 催化乙烯和 2-丁烯合成丙烯的反应历程如右图(所有碳原子满足最外层八电子结构)。下列说法不正确的是

- A. 乙烯、丙烯和 2-丁烯互为同系物
- B. 乙烯、丙烯和2-丁烯的沸点依次升高
- C. III →IV 中加入的2-丁烯具有反式结构
- D. 碳、钨(W)原子间的化学键在III → IV → I 的过程中未发生断裂

9. 以富含纤维素的农作物为原料,合成 PEF 树脂的路线如下:

下列说法不正确的是

- A. 葡萄糖、果糖均属于多羟基化合物
- B. 5-HMF→FDCA 发生氧化反应
- C. 单体 a 为乙醇
- D. PEF 树脂可降解以减少对环境的危害

10. 向某密闭容器中充入 NO₂,发生反应: $2NO₂(g) \rightleftharpoons N₂O₄(g)$ 。其它条件相同时,不同 温度下平衡体系中各物质的物质的量分数如下表:(己知: N₂O₄为无色气体)

t/°C	27	35	49	70	三科教育	
NO ₂ %	20	25	40	66		
N ₂ O ₄ %	80	75	60	34	人科教	
是 平衡体系中 NO ₂ 的转化率为 9						

下列说法不正确的是

- A. 27℃时,该平衡体系中 NO。的转化率为9
- 平衡时, NO₂ 的消耗速率为 N₂O₄ 消耗速率的 2 倍
- C. 室温时,将盛有 NO2 的密闭玻璃球放入冰水中其颜色会变浅
- D. 增大 NO, 起始量, 可增大相同温度下该反应的化学平衡常数
- 11. 光电池在光照条件下可产生电压,如下装置可以实现光能源的充分利用,双极性膜 可将水解离为 H⁺和 OH⁻,并实现其定向通过。下列说法不正确的是
 - A. 该装置将光能转化为化学能并分解水
 - B. 双极性膜可控制其两侧溶液分别为酸性和碱性
 - C. 光照过程中阳极区溶液中的 n(OH⁻)基本不变
 - D. 再生池中的反应 2V²⁺+2H₂O^{催化剂}2V³⁺+ 2OH⁻+ H₂↑

- 12. 室温时,向 20 mL 0.1 mol L⁻¹ 的两种酸 HA、HB 中分别滴加 0.1 mol L⁻¹NaOH 溶液,其 pH 变化分别对应下图中的 I、II。下列说法不正确的是
 - A. 向 NaA 溶液中滴加 HB 可产生 HA
 - B. a 点,溶液中微粒浓度: c(A⁻) > c(Na⁺) > c(HA)
 - C. 滴加 NaOH 溶液至 pH=7 时,两种溶液中 c(A⁻)= c(B⁻)
 - D. 滴加 20 mL NaOH 溶液时, I 中 H₂O 的电离程度大于 II 中

13. 我国化学家侯德榜发明的"侯氏制碱法"联合合成氨工业生产纯碱和氮肥,工艺流 程图如下。碳酸化塔中的反应: NaCl + NH₃ + CO₂ + H₂O == NaHCO₃ ↓ +NH₄Cl。

- A. 以海水为原料, 经分离、提纯和浓缩后得到饱和氯化钠溶液进入吸氨塔
- B. 碱母液储罐"吸氨"后的溶质是 NH₄Cl 和 NaHCO₃
- C. 经 "冷析"和 "盐析"后的体系中存在平衡 NH₄Cl(s) = NH₄⁺ (aq) + Cl⁻ (aq)
- 该工艺的碳原子利用率理论上为 100%
- 14. 硅酸(H₂SiO₃)是一种难溶于水的弱酸,从溶液中析出时常形成凝胶状沉淀。实验 室常用 Na₂SiO₃ 溶液制备硅酸。某小组同学进行了如下实验:

	_					
	编号	I iii	II			
	实验	五灰石 a Na ₂ SiO ₃ 溶液	1 mol·L ⁻¹ 1 mol·L ⁻¹ Na ₂ CO ₃ 溶液 NaHCO ₃ 溶液			
	人到	攻首	b c F			
175	现象	a 中产生凝胶状沉淀	b 中凝胶状沉淀溶解, c 中无明显变化			
	列结论不正确的是 A. Na ₂ SiO ₃ 溶液一定显碱性					

下列结论不正确的是

- B. 由 I 不能说明酸性 H₂CO₃>H₂SiO₃
- C. 由II可知,同浓度时 Na₂CO₃ 溶液的碱性强于 NaHCO₃溶液
- D. 向 Na₂SiO₃ 溶液中通入过量 CO₂,发生反应: SiO₃²⁻+CO₂+H₂O==CO₃²⁻+H₂SiO₃↓

第二部分

本部分共 5 题, 共 58 分。

15.(15分) 莫西沙星主要用于治疗呼吸道感染,合成路线如下:

- (1) A 的结构简式是。
- (2) A→B 的反应类型是_____。
- (4)物质 a 的分子式为 C_6H_7N ,其分子中有____种不同化学环境的氢原子。
- (5) I 能与 NaHCO₃ 反应生成 CO₂,D+I→J 的化学方程式是_____。
 - (6) 芳香化合物 L 的结构简式是_____。
- (7) 还可用 A 为原料,经如下间接电化学氧化工艺流程合成 C,反应器中生成 C 的离子方程式是。

16. (9 分)水合肼($N_2H_4\cdot H_2O$)可用作抗氧剂等,工业上常用尿素[$CO(NH_2)_2$]和 NaClO 溶液反应制备水合肼。

已知: $I. N_2H_4\cdot H_2O$ 的结构如右图 (...表示氢键)。

II. N₂H₄·H₂O 沸点 118℃,具有强还原性。

- (1)将 Cl_2 通入过量 NaOH 溶液中制备 NaClO,得到溶液X,离子方程式是_____。
- (2)制备水合肼:将溶液 X 滴入尿素水溶液中,控制一定温度,装置如图 a (夹持及控温装置已略)充分反应后,A 中的溶液经蒸馏获得水合肼粗品后,剩余溶液再进一步处理还可获得副产品 NaCl 和 $Na_2CO_3\cdot 10H_2O$ 。

溶解度 /g Na₂CO₃ NaCl NaCl 图 b

①A 中反应的化学方程式是。

图 a

- ②冷凝管的作用是____。
- ③若滴加 NaClO 溶液的速度较快时,水合肼的产率会下降,原因是____。
- ④NaCl 和 Na₂CO₃ 的溶解度曲线如图 b。由蒸馏后的剩余溶液获得 NaCl 粗品的操作是____。
- (3) 水合肼在溶液中可发生类似 $NH_3 \cdot H_2O$ 的电离,呈弱碱性; 其分子中与 N 原子相连的 H 原子易发生取代反应。

①水合肼和盐酸按物质的量之比1:1 反应的离子方程式是____。

②碳酰肼(CH₆N₄O)是目前去除锅炉水中氧气的最先进材料,由水合肼与 DEC

(C2H5O-C-OC2H5) 发生取代反应制得。碳酰肼的结构简式是_____。

- 17.(9分)页岩气中含有较多的乙烷,可将其转化为更有工业价值的乙烯。
 - (1) 二氧化碳氧化乙烷制乙烯。

将 C₂H₆和 CO₂按物质的量之比为 1:1 通入反应器中,发生如下反应:

i.
$$C_2H_6(g) \iff C_2H_4(g) + H_2(g)$$

$$\Delta H_1 = +136.4 \text{ kJ·mol}^{-1}$$

ii.
$$CO_2(g) + H_2(g) \iff CO(g) + H_2O(g)$$

$$\Delta H_2 = +41.2 \text{ kJ·mol}^{-1}$$

iii.
$$C_2H_6(g) + CO_2(g) \iff C_2H_4(g) + CO(g) + H_2O(g)$$
 ΔH_3

$$\Delta H$$

- ②反应iv: C₂H₆(g) ← 2C(s) + 3H₂(g)为积碳反应,生成的碳附着在催化剂表 面,降低催化剂的活性,适当通入过量 CO2 可以有效缓解积碳,结合方程式解释其
- ③二氧化碳氧化乙烷制乙烯的研究热点之一是选择催化剂,相同反应时间, 不同温度、不同催化剂的数据如下表(均未达到平衡状态)

实验	t/°C		转化率/%		选择性/%	
编号			C ₂ H ₆	CO_2	C ₂ H ₄	СО
I	650	钴盐	19.0	37.6	17.6	78.1
II	650		32.1	23.0	77.3	10.4
III	600	铬盐	21.2	12.4	79.7	9.3
IV	550		12.0	8.6	85.2	5.4

【注】C2H4选择性:转化的乙烷中生成乙烯的百分比。

对比 I 和 II ,该反应应该选择的催化剂为_____,理由是_____。

随温度升高,C₂H₆的转化率升高,但 C₂H₄的选择 实验条件下, 铬盐作催化剂时, 性降低,原因是。

- (2) 利用质子传导型固体氧化物电解池将乙烷转化为乙烯,
- 示意图如右图:
 - ①电极 a 与电源的 极相连。
 - ②电极 b 的电极反应式是。

18.(11分)生物浸出是用细菌等微生物从固体中浸出金属离子,有速率快、浸出率 高等特点。氧化亚铁硫杆菌是一类在酸性环境中加速 Fe²⁺氧化的细菌,培养后能提供 Fe³⁺,控制反应条件可达细菌的最大活性,其生物浸矿机理如下图。

- (1) 氧化亚铁硫杆菌生物浸出 ZnS 矿。
 - ①反应 2 中有 S 单质生成,离子方程式是
 - ②实验表明温度较高或酸性过强时金属离子的浸出率均偏低,原因可能是。
- (2)氧化亚铁硫杆菌生物浸出废旧锂离子电池中钴酸锂(LiCoO₂)与上述浸出机 理相似,发生反应 1 和反应 3: LiCoO₂ + 3Fe = Li + Co + 3Fe + 3Fe + O₂ ↑
 - ①在酸性环境中,LiCoO, 浸出 Co²⁺的总反应的离子方程式是_____
- ②研究表明氧化亚铁硫杆菌存在时,Ag⁺钴浸出率有影响,实验研究 Ag⁺的作用。取 LiCoO, 粉末和氧化亚铁硫杆菌溶液于锥形瓶中, 分别加入不同浓度 Ag[†]的溶液, 钴 浸出率(图1)和溶液 pH(图2)随时间变化曲线如下: 。世全科教育

图 1 不同浓度 Ag+作用下钴浸出率变化曲线

图 2 不同浓度 Ag+作用下溶液中 pH 变化曲线

- I. 由图 1 和其他实验可知,Ag+能催化浸出 Co²⁺,图 1 中的证据是______
- II. Ag⁺是反应 3 的催化剂,催化过程可表示为:

反应 5: ……

反应 5 的离子方程式是_____。

- III. 由图 2 可知,第 3 天至第 7 天,加入 Ag+后的 pH 均比未加时大,结合反应解释 其原因:
- 19. (14 分) 研究不同 pH 时 $CuSO_4$ 溶液对 H_2O_2 分解的催化作用。

资料: a. Cu₂O 为红色固体,难溶于水,能溶于硫酸,生成Cu和 Cu²⁺。

- b. CuO₂ 为棕褐色固体,难溶于水,能溶于硫酸,生成Cu²⁺和 H₂O₂。
- c. H_2O_2 有弱酸性: $H_2O_2 \longleftrightarrow H^{\dagger} + HO_2^{-}$, $HO_2^{-} \longleftrightarrow H^{\dagger} + O_2^{-2}$.

编号	实验	现象		
I	向 1 mL pH=2 的 1 mol·L ⁻¹ CuSO ₄	出现少量气泡		
	溶液中加入 0.5 mL 30% H ₂ O ₂ 溶液			
II	向 1 mL pH=3的 1 mol·L ⁻¹ CuSO ₄	立即产生少量棕黄色沉淀 ,出现		
	溶液中加入 0.5 mL 30% H ₂ O ₂ 溶液	较明显气泡		
III	向 1 mL pH=5 的 1 mol·L ⁻¹ CuSO ₄	立即产生大量棕褐色沉淀,产生		
	溶液中加入 0.5 mL 30% H ₂ O ₂ 溶液	大量气泡		

(2)对III中棕褐色沉淀的成分提出 2 种假设: i.CuO ₂ , ii.Cu ₂ O 和 Cu	uO ₂ 的混合物。
为检验上述假设,进行实验 \mathbb{N} : 过滤 \mathbb{H} 中的沉淀,洗涤,加入过量硫	范酸,沉淀完全
溶解,溶液呈蓝色,并产生少量气泡。	新折

1	苦Ⅲ中生成的沉淀为 CuO₂,	其反应的离子方程式是	0
\			`

②依据IV中沉淀完全溶解,	甲同学认为假设 ii 不成立,	乙同学不同意甲同学
的观点,理由是	小学全种教	

(3)为探究沉淀中是否存在 Cu₂O,设计如下实验:

将III中沉淀洗涤、干燥后,取ag固体溶于过量稀硫酸,充分加热。冷却后调节 溶液 pH,以 PAN 为指示剂,向溶液中滴加 cmol·L⁻¹ EDTA 溶液至滴定终点,消耗 EDTA 溶

(已知: Cu^{2+} +EDTA== EDTA- Cu^{2+} , $M(CuO_2)$ =96 g·mol⁻¹, $M(Cu_2O)$ =144 g·mol⁻¹)

- (3) 结合方程式,运用化学反应原理解释Ⅲ中生成的沉淀多于Ⅱ中的原因: 中小学全科教
- (4) 研究 I、II、III中不同 pH 时 H_2O_2 分解速率不同的原因。

实验 V: 在试管中分别取 1mLpH=2、3、5 的1mol·L⁻¹ Na₂SO₄ 溶液,向其中各加入0.5 mL 30% H₂O₂ 溶液,三支试管中均无明显现象。

实验VI: _____(填实验操作和现象)说明 CuO_2 能够催化 H_2O_2 分解。

(5) 综合上述实验, $I \times II \times III$ 中不同 pH 时 H_2O_2 的分解速率不同的原因是_

2020年北京市西城区高三一模化学考试答案

第一部分(共42分)

每小题3分。

•							科教育
题号	1	2	3	4	5 4	6	7
答案	С	В	В	CAL	C	В	Α
题号	8	9	10	11	12	13	14
答案	∄ D	С	D	D	С	B	D

第二部分(共58分)

说明: 其他合理答案均可参照本参考答案给分。

15. (每空2分, 共15分)

- (2) 取代反应
- (3) 醛基
- (4) 4

$$\begin{array}{c|c}
H \\
N \\
-C
\end{array}$$

(7)
$$_{4\text{Ce}^{4+}}$$
 $_{+\text{H}_2\text{O}}$ $_{+\text{H}_2\text{O}}$ $_{+\text{Ce}^{3+}+4\text{H}^{+}+}$

- 16. (每空1分, 共9分)
- (1) Cl₂+2OH⁻= Cl⁻+ ClO⁻+H₂O(2 分)
 - (2) ①NaClO + CO(NH₂)₂ + 2NaOH = 定温度= N_2H_4 · H_2O + NaCl + Na₂CO₃ (2 分)
 - ②冷凝回流水合肼

- ③N₂H₄·H₂O 被 NaClO 氧化
- 4)加热至有大量固体析出,趁热过滤
- $1 N_2 H_4 \cdot H_2 O + H^{\dagger} = N_2 H_5^{\dagger} + H_2 O$ (3)
- O ② H₂NHN-C-NHNH₂

- 17. (每空1分,共9分)
 - (1) (1)+177.6
 - ②增大 CO₂ 的量,发生反应 C+CO₂ ==-定温度== 2CO,消耗 C,增大 CO₂ 的量, 反应 iii 的正反应进行程度增加,降低了 C₂H₆的浓度,反应 iv 进行的程度减小。
 - (3) 铬盐; 相同条件下, 选择铬盐时 C₂H₆ 的转化率和 C₂H₄ 的选择性均比钴盐高; 温度升高,反应 ii, iii, iv 的反应速率均增大,反应 iv 增大的更多。
 - (2) ①正极

$$2CO_2 + 2e^- + 2H^+ == CO + H_2O$$

18. (每空 2 分, 共 11 分)

(1)

$$12Fe^{3+} + ZnS = 2Fe^{2+} + S + Zn^{2+}$$

②细菌的活性降低或失去活性

(2)

- I.加入 Ag⁺明显提高了单位时间内钴浸出率, 即提高了钴浸出速率。

II.AgCoO₂+3Fe³⁺
$$\Longrightarrow$$
 Ag⁺+Co²⁺+3Fe²⁺+O₂ \uparrow

 $III.加入 Ag^{\dagger}$ 催化了反应 3,使 LiCoO $_2$ 浸出的总反应的化学反应速率加快, 时间内消耗 H⁺更多,故加入 Ag⁺后的 pH 比未加时大。

- 19. (每空2分,共14分)
- (1) $2H_2O_2 \stackrel{CuSO_4}{=} 2H_2O + O_2 \uparrow$

- (2) $1H_2O_2+Cu^{2+}==CuO_2 \downarrow +2H^+$
 - ②CuO₂与 H⁺反应产生的 H₂O₂具有强氧化性,在酸性条件下可能会氧化 Cu₂O 或 新想点 中小学全科教育 Cu,无法观察到红色沉淀 Cu
 - 1000a 96c 125a 12c
- (3) 溶液中存在 H₂O₂ ⇌ H⁺ +HO₂ ¬, HO₂ ⇌ H⁺ +O₂ ² ¬, 溶液 pH 增大, 两个平衡均正向移 动,O₂²~浓度增大,使得 CuO₂沉淀量增大
- (4) 将Ⅲ中沉淀过滤,洗涤,干燥,称取少量于试管中,加入30%H₂O₂溶液,立即产 生大量气泡, 反应结束后, 测得干燥后固体的质量不变
 - (5) CuO₂ 的催化能力强于 Cu²⁺; 随 pH 增大,Cu²⁺与 H₂O₂ 反应生成 CuO₂ 增多。

