

1987-2021 考研数学一、三概率统计真题与 解答

作者: i44 统计考研

时间: 2021.3.28

特别声明

本题集整理了 1987 年至 2021 年考研数学一、三中所有概率论与数理统计真题。不论你考数学一还是数学三,都建议把这些题目做一做。其中考研数学试题的分类经历过两次改革。从 1987 年到 1996 年,数学一、二对应我们现在的数学一;数学三对应我们现在的数学二;数学四、五对应我们现在的数学三。从 1997 年到 2008 年,数学一对应我们现在的数学一;数学二对应我们现在的数学二;数学三、四对应我们现在的数学三。从 2009 年开始,试题的分类和我们现在的一样,即数学一、数学二、数学三。另外,在今后的考研中,选择题和填空题的分数占比还是很大的,建议在复习的过程中加强这方面的练习。这一次先整理出来题目,后续会继续跟进答案的整理。如有任何问题,可以关注微信公众号: i44 统计考研,后台回复好友,添加微信。希望这份题集可以帮助到考研的同学!

目录

1	考研	文学概率统计真题	1
	1.1	1987 年真题	1
		1.1.1 1987 数一	1
		1.1.2 1987 数四	1
		1.1.3 1987 数五	2
	1.2	1988 年真题	2
		1.2.1 1988 数一	2
		1.2.2 1988 数四	3
		1.2.3 1988 数五	3
	1.3	1989 年真题	4
		1.3.1 1989 数一	4
		2941	4
		<i>y</i> ··	5
	1.4	1990 年真题	6
		1.4.1 1990 数一	6
		1.4.2 1990 数四	6
		1.4.3 1990 数五	7
	1.5	1991 年真题	8
		1.5.1 1991 数一	8
		1.5.2 1991 数四	8
		1.5.3 1991 数五	9
	1.6	1992 年真题	9
		1.6.1 1992 数一	9
		1.6.2 1992 数四 10	0
		1.6.3 1992 数五 1	1
	1.7	1993 年真题	1
		1.7.1 1993 数一 1	1
		1.7.2 1993 数四 12	2
		1.7.3 1993 数五 12	2
	1.8	1994 年真题	3
		1.8.1 1994 数一	3
		1.8.2 1994 数四	4
		1.8.3 1004 粉五 1/2	1

目录 — iii —

1.9	1995 年真题	15
	1.9.1 1995 数一	15
	1.9.2 1995 数四	15
	1.9.3 1995 数五	16
1.10	1996 年真题	17
	1.10.1 1996 数一	17
	1.10.2 1996 数四	17
	1.10.3 1996 数五	18
1.11	1997 年真题	18
	1.11.1 1997 数一	18
	1.11.2 1997 数三	19
	1.11.3 1997 数四	20
1.12	1998 年真题	20
	1.12.1 1998 数一	20
	1.12.2 1998 数三	21
	1.12.3 1998 数四	22
1.13	1999 年真题	23
	1.13.1 1999 数一	23
	1.13.2 1999 数三	23
	1.13.3 1999 数四	24
1.14	2000 年真题	25
	1.14.1 2000 数一	25
	1.14.2 2000 数三	25
	1.14.3 2000 数四	26
1.15	2001 年真题	27
	1.15.1 2001 数一	27
	1.15.2 2001 数三	28
	1.15.3 2001 数四	28
1.16	2002 年真题	29
	1.16.1 2002 数一	29
	1.16.2 2002 数三	30
	1.16.3 2002 数四	30
1.17	2003 年真题	31
	1.17.1 2003 数一	31
	1.17.2 2003 数三	32
	1.17.3 2003 数四	32
1.18	2004 年真题	33
	1.18.1 2004 数一	33

目录 - iv -

	1.18.2 2004 数三	 		 	34
	1.18.3 2004 数四	 		 	35
1.19	2005 年真题	 		 	36
	1.19.1 2005 数一				36
	1.19.2 2005 数三	 		 	36
	1.19.3 2005 数四	 		 	37
1.20	2006年真题				38
	1.20.1 2006 数一	 		 	38
	1.20.2 2006 数三	 			39
	1.20.3 2006 数四	 		 2.4	40
1.21	2007年真题	 		 . / ^	41
	1.21.1 2007 数一	 	7./	 	41
	1.21.2 2007 数三	 	<i>^</i>	 	42
	1.21.3 2007 数四				42
1.22	2008年真题				43
	1.22.1 2008 数一	 		 	43
	1.22.2 2008 数三	 		 	44
	1.22.3 2008 数四				45
1.23	2009年真题	 		 	46
	1.23.1 2009 数一	 		 	46
	1.23.2 2009 数三				46
1.24	2010年真题	 		 	47
	1.24.1 2010 数一	 		 	47
	1.24.2 2010 数三	 		 	48
1.25	2011年真题	 		 	49
	1.25.1 2011 数一	 		 	49
	1.25.2 2011 数三	 		 	50
1.26	2012 年真题	 		 	51
	1.26.1 2012 数一	 		 	51
	1.26.2 2012 数三	 		 	51
1.27	2013 年真题	 		 	52
	1.27.1 2013 数一	 		 	52
	1.27.2 2013 数三	 		 	53
1.28	2014年真题	 		 	54
	1.28.1 2014 数一	 		 	54
	1.28.2 2014 数三	 		 	55
1.29	2015 年真题	 		 	56
	1.29.1 2015 数一	 		 	56

目录

		1.29.2 2015 数三	56
	1.30	2016 年真题	57
		1.30.1 2016 数一	57
		1.30.2 2016 数三	58
	1.31	2017 年真题	59
		1.31.1 2017 数一	59
		1.31.2 2017 数三	60
	1.32	2018 年真题	61
		1.32.1 2018 数一	61
		1.32.2 2018 数三	62
	1.33	2019 年真题	62
		1.33.1 2019 数一	62
		1.33.2 2019 数三	63
	1.34	2020 年真题	64
		1.34.1 2020 数一	64
		1.34.2 2020 数三	65
	1.35	2021 年真题	66
		1.35.1 2021 数一	66
		1.35.2 2021 数三	67
2	22 F	cbk 工用4种	69
_		送	
	2.1	22 应统互助群 + 真题班	69

第一章 考研数学概率统计真题

1.1 1987 年真题

1.1.1 1987 数一

1987 年数学一真题

(a). 在一次试验中事件 A 发生的概率为 p ,现进行 n 次独立试验,则 A 至少发一次的概率为;而事件 A 至多发生一次的概率为
一次的概念 · 而重供 A 至夕 生 十二次的概念 · 为
次时城华为,而事什五王多及王 、
(b). 三个箱子,第一个箱子有4个黑球1个白球,第二个箱子中有3个白球3

- 黑球, 第三个箱子中有3个黑球5五个白球, 现随机地取一个箱子, 再从这个 箱子中取一个球,这个球为白球的概率为 _____,已知取出的是白球,此 球属于第二箱的概率是
- (c). 已知连续随机变量 X 的密度为 $f(x) = \frac{1}{\sqrt{\pi}}e^{-x^2+2x-1}$, 则 X 的数学期望为 _____, *X* 的方差为 _____.
- 2. 计算题。
 - (a). 设随机变量 X, Y 相互独立, 其概率密度函数分别为

$$f_X(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & \not \exists \quad \vdots \end{cases}; f_Y(y) = \begin{cases} e^{-y} & y > 0 \\ 0 & y \le 0 \end{cases}, \tag{1.1}$$

求随机变量 Z = 2X + Y 的概率密度函数 $f_z(z)$.

1.1.2 1987 数四

1987年数学四真题

- 1. 判断题。
 - (a). 连续型随机变量取任何给定实数值的概率都等于 0.
- 2. 选择题。
 - (a). 若二事件 A 和 B 同时出现的概率 P(AB)=0, 则:
 - (1) A 和 B 互不相容 (互斥) (2) AB 是不可能事件
 - (3) AB 未必是不可能事件
- (4) P(A) = 0 或 P(B) = 0

- 3. 计算题。
 - (a). 已知随机变量 X 的概率分布为 P(X = 1) = 0.2, P(X = 2) = 0.3, P(X = 2)3) = 0.5, 试写出 X 的分布函数 F(x).

1.2 1988 年真题 - 2 -

- (b). 已知随机变量 Y 的概率密度为 $f(y)=\left\{ egin{array}{ll} \frac{y}{a^2}e^{-\frac{y^2}{2a^2}} & y\geq 0 \\ 0 & y<0 \end{array} \right.$,求随机变量 $Z=\frac{1}{2}$ 的数学期望 EZ.
- (c). 设有两箱同种零件. 第一箱内装 50 件, 其中 10 件一等品; 第二箱内装有 30 件, 其中 18 件一等品. 现从两箱中随机挑出一箱, 然后从该箱中先后随机取出两个零件(取出的零件均不放回), 试求:
 - I. 先取出的零件是一等品的概率 p;
 - II. 在先取出的零件是一等品的条件下,第二次取出的零件仍然是一等品的条件概率 q.

1.1.3 1987 数五

1987 年数学五真题

- 1. 判断题。
 - (a). 连续型随机变量取任何给定实数值的概率都等于 0.
- 2. 选择题。
 - (a). 对于任二事件 A 和 B, 有 P(A B) =

(1)
$$P(A) - P(B)$$
 (2) $P(A) - P(B) + P(AB)$

(3)
$$P(A) - P(AB)$$
 (4) $P(A) - P(\bar{B}) - P(A\bar{B})$

- 3. 计算题。
 - (a). 已知随机变量 X 的概率分布为 P(X = 1) = 0.2, P(X = 2) = 0.3, P(X = 3) = 0.5, 试写出 <math>X 的分布函数 F(x) ,并求 X 的数学期望和方差。
 - (b). 设有两箱同种零件. 第一箱内装 50 件, 其中 10 件一等品; 第二箱内装有 30 件, 其中 18 件一等品. 现从两箱中随机挑出一箱, 然后从该箱中先后随机取出两个零件(取出的零件均不放回), 试求:
 - I. 先取出的零件是一等品的概率 p;
 - II. 在先取出的零件是一等品的条件下,第二次取出的零件仍然是一等品的条件概率 q.

1.2 1988 年真题

1.2.1 1988 数一

1988 年数学一真题

- 1. 填空题。
 - (a). 设三次独立实验中,事件 A 出现的概率相等. 若已知 A 至少出现一次的概率等于 $\frac{19}{27}$,则事件 A 在一次试验中出现的概率为_____.
 - (b). 在区间 (0,1) 中随机地取两个数,则事件"两数之和小于 $\frac{6}{5}$ "的概率为_____.

1.2 1988 年真题 - 3 -

(c). 设随机变量 X 服从均值为 10, 均方差为 0.02 的正态分布. 已知 $\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du$, $\Phi(2.5) = 0.9938$, 则 X 落在区间 (9.95,10.05) 内的概率为______.

2. 计算题。

(a). 设随机变量 X 的概率密度函数为 $f_X(x) = \frac{1}{\pi(1+x^2)}$,求随机变量 $Y = 1 - \sqrt[3]{X}$ 的概率密度函数 $f_Y(y)$.

1.2.2 1988 数四

1988 年数学四真题

- 1. 填空题。
 - (a). 假设 $P(A) = 0.4, P(A \cup B) = 0.7,$ 那么
 - I. 若 A 与 B 互不相容,则 P(B) =
 - II. 若 A 与 B 相互独立,则 P(B) =_____
- 2. 判断题。
 - (a). 若事件 A, B,C 满足等式 A ∪C=B∪C, 则 A=B.
- 3. 计算题。
 - (a). 玻璃杯成箱出售,每箱 20 只,假设各箱含 0,1,2 只残次品的概率是 0.8,0.1 和 0.1,一顾客欲购买一箱玻璃杯,在购买时,售货员随意取一箱,而顾客开箱随 机观察 4 只,若无残次品,则购买下该玻璃杯,否则退回.试求:
 - (1) 顾客买下该箱的概率 α ;
 - (2) 在顾客买下的一箱中,确实没有残次品的概率 β .
 - (b). 某保险公司多年的统计资料表明,在索赔户中被盗索赔户占 20%,以 *X* 表示在随意抽查的 100 个索赔户中因被盗向保险公司索赔的户数.
 - (1) 写出 X 的概率分布;
 - (2) 利用棣莫佛拉普拉斯定理,求出索赔户不少于 14 户且不多于 30 户的概率的近似值.
 - (c). 假设随机变量 X 在区间 (1,2) 上服从均匀分布. 试求随机变量 $Y = e^{2x}$ 的概率 密度 f(y).

1.2.3 1988 数五

1988 年数学五真题

- 1. 计算题。
 - (a). 玻璃杯成箱出售,每箱 20 只,假设各箱含 0,1,2 只残次品的概率是 0.8,0.1 和 0.1,一顾客欲购买一箱玻璃杯,在购买时,售货员随意取一箱,而顾客开箱随 机观察 4 只,若无残次品,则购买下该玻璃杯,否则退回.试求:
 - (1) 顾客买下该箱的概率 α ;
 - (2) 在顾客买下的一箱中,确实没有残次品的概率 β .

1.3 1989 年真题 -4-

(b). 假设有十只同种电器元件,其中有两只废品装配仪器时从这批元件中任取一只,如是废品,则倒掉重新任取一只;若仍是废品,则扔掉再取一只.试求在取到正品之前,已取出的废品只数的分布,数学期望和方差.

(c). 假设随机变量 X 在区间 (1,2) 上服从均匀分布. 试求随机变量 $Y = e^{2x}$ 的概率 密度 f(y).

1.3 1989 年真题

1.3.1 1989 数一

1989年数学一真题

1.	填空题。

- (a). 已知随机事件 A 的概率 P(A) = 0.5, 随机事件 B 的概率 P(B) = 0.6 及条件 概率 $P(B \mid A) = 0.8$, 则和事件 $A \cup B$ 的概率 $P(A \cup B) =$ _____.
- (b). 甲, 乙两人独立的对同一目标射击一次, 其命中率分别为 0.6 和 0.5. 现已知目标被命中,则它是甲射中的概率是
- (c). 若随机变量 ξ 在 (1,6) 上服从均匀分布,则方程 $x^2 + \xi x + 1 = 0$ 有实根的概率 是_____.

2. 计算题。

(a). 设随机变量 X 与 Y 独立,且 X 服从均值为 1, 标准差 (均方差) 为 $\sqrt{2}$ 的正态分布,而 Y 服从标准正态分布,试求随机变量 Z=2X-Y+3 的概率密度函数.

1.3.2 1989 数四

1989年数学四真题

1. 填空题.

$$P\left\{|X|<\tfrac{\pi}{6}\right\} = \underline{\hspace{1cm}}.$$

(b). 设随机变量X 的数学期望 $EX = \mu$,方差 $DX = \sigma^2$,则由切比雪夫 (chebyshev) 不等式,有 $P\{|X - \mu| \ge 3\sigma\} \le$ _____.

2. 选择题.

- (a). 以 A 表示事件 "甲种产品畅销, 乙种产品滞销", 则其对立事件 \bar{A} 为 ()
 - (A) "甲种产品滞销, 乙种产品畅销"
 - (B) "甲, 乙产品均畅销"
 - (C) "甲种产品滞销"

1.4 1990 年真题 -5-

(D) "甲种产品滞销或乙种产品畅销"

3. 计算题.

- (a). 已知随机变量X 和Y 的联合密度为 $f(x,y) = \begin{cases} e^{-(x+y)} & \hbox{ 若} 0 < x < \infty, 0 < y < +\infty \\ 0 & \hbox{ 其他} \end{cases}$ 试求: (1) $P\{X < Y\}$; (2) E(XY)
- (b). 设随机变量在 [2,5] 上服从均匀分布. 现在对 X 进行三次独立观测. 试求至少有两次观测值大于 3 的概率.

1.3.3 1989 数五

1989 年数学五真题

- 1. 填空题.
 - (a). 设随机变量 X_1, X_2, X_3 相互独立,其中 X_1 在 [0,6] 上服从均匀分布, X_2 服从 正态分布 $N\left(0,2^2\right), X_3$ 服从参数为 $\lambda=3$ 的泊松分布. 记 $Y=X_1-2X_2+3X_3$,则 DY= ______.

$$P\{|X| < \frac{\pi}{6}\} =$$
_____.

- 2. 选择题.
 - (a). 以 A 表示事件 "甲种产品畅销,乙种产品滞销",则其对立事件 \bar{A} 为 ()
 - (A) "甲种产品滞销, 乙种产品畅销"
 - (B) "甲, 乙产品均畅销"
 - (C) "甲种产品滞销"
 - (D) "甲种产品滞销或乙种产品畅销"
- 3. 计算题.
 - (a). 已知随机变量 X 和 Y 的联合概率分布为:

$\overline{(X,Y)}$	(0,0)	(0,1)	(1,0)	(1,1)	(2,0)	(2,1)
$P\{X = x, Y = y\}$	0.10	0.15	0.25	0.20	0.15	0.15

求: (1) X 的概率分布; (2) X+Y 的概率分布; (3) Z= $\sin \frac{\pi(X+Y)}{2}$ 的数学期望.

4. 某仪器装有三只独立工作的同型号电子元件,其寿命 (单位: 小时) 都服从同一指数分布,分布密度为 $f(x) = \begin{cases} \frac{1}{600}e^{-\frac{x}{600}}, & \exists x>0\\ 0, & \exists \leq 0 \end{cases}$,试求:在仪器使用的最初 200小时内,至少有一只电子元件损坏的概率 α .

1.4 1990 年真题 - 6-

1.4 1990 年真题

1.4.1 1990 数一

1990年数学一真题

1.	填空题

- (a). 已知随机变量 X 的概率密度函数 $f(x) = \frac{1}{2}e^{-|x|}, -\infty < x < +\infty$,则 X 的概率分布函数F(x)=______.
- (b). 设随机事件 A, B 及其事件 $A \cup B$ 的概率分别为 0.4,0.3 和 0.6, 若 \bar{B} 表示 B 的 对立事件,那么积事件 $A\bar{B}$ 的概率 $P(A\bar{B})$ =
- (c). 已知离散型随机变量 X 服从参数为 2 的泊松分布,则随机变量 Z=3X-2 的数学期望 E(Z)= _____

2. 计算题.

(a). 设二维变量 (X,Y) 在区域 D: 0 < x < 1, |y| < x 内服从均匀分布,求关于 X 的边缘概率密度函数及随机变量 Z = 2X + 1 的方差 D(Z).

1.4.2 1990 数四

1990年数学四真题

- 1. 填空题.
 - (a). 一射手对同一目标独立的进行四次射击,若至少命中一次的概率为 $\frac{80}{81}$,则射手的命中率为
- 2. 选择题.
 - (a). 设 A, B 为两随机事件,且 $B \subset A$,则下列式子正确的是
 - (A) P(A+B) = P(A)
 - (B) P(AB) = P(A)
 - (C) $P(B \mid A) = P(B)$
 - (D) P(B A) = P(B) P(A)
 - (b). 设随机变量 X 和 Y 相互独立, 其概率分布为

m	-1	1	m	-1	1
$P\{X=m\}$	$\frac{1}{2}$	$\frac{1}{2}$	$P\{Y=m\}$	$\frac{1}{2}$	$\frac{1}{2}$

则下列式子正确的是

- (A) X = Y
- (B) $P{X = Y} = 0$
- (C) $P\{X = Y\} = \frac{1}{2}$
- (D) $P{X = Y} = 1$
- 3. 计算题.

1.5 1991 年真题 - 7-

(a). 从 $0,1,2,\cdots,9$ 等十个数字中任意选出三个不同的数字, 试求下列事件的概率: $A_1=\{$ 三个数字中不含 0 和 $5\}; A_2=\{$ 三个数字中含 0 但不含 5 $\}.$

(b). 一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时),已知X和Y的联合分布函数为:

$$F(x,y) = \begin{cases} 1 - e^{-0.5x} - e^{-0.5y} + e^{-0.5(x+y)} & x \ge 0, y \ge 0 \\ 0 & \sharp \ \Box \end{cases}$$

- (1) 问 *X* 和 *Y* 是否独立?
- (2) 求两个部件的寿命都超过 100 小时的概率 α .
- (c). 某地抽样调查结果表明,考生的外语成绩 (百分制) 近似服从正态分布,平均成绩为72分,96分以上的占考生总数的2.3%,试求考生的外语成绩在60分至84分之间的概率. [附表] (表中Φ(x)是标准正态分布函数)

x	0	0.5	1.0	1.5	2.0	2.5	3.0
$\Phi(x)$	0.500	0.692	0.841	0.933	0.977	0.994	0.999

1.4.3 1990 数五

1990年数学五真题

1. 填空题.

- (a). 已知随机变量 $X \sim N(-3,1), Y \sim N(2,1),$ 且 X,Y 相互独立,设随机变量 Z = X 2Y + 7, 则 $Z \sim$ _____.
- 2. 选择题.
 - (a). 已知随机变量 X 服从二项分布,且 EX = 2.4, DX = 1.44,则二项分布的 参数 n, p 的值为
 - (A) n = 4, p = 0.6
 - (B) n = 6, p = 0.4
 - (C) n = 8, p = 0.3
 - (D) n = 24, p = 0.1

3. 计算题.

- (a). 从 $0,1,2,\cdots,9$ 等十个数字中任意选出三个不同的数字, 试求下列事件的概率: $A_1 = \{ \text{ 三个数字中不含 } 0 \text{ 和 } 5 \}; A_2 = \{ \text{ 三个数字中含 } 0 \text{ 但不含 } 5 \}.$
- (b). 甲乙两人独立地各进行两次射击,假设甲的命中率为 0.2, 乙的为 0.5, 以 X 和 Y 分别表示甲和乙的命中次数,试求 X 和 Y 联合概率分布.
- (c). 某地抽样调查结果表明,考生的外语成绩 (百分制) 近似服从正态分布,平均成绩为72分,96分以上的占考生总数的2.3%,试求考生的外语成绩在60分至84分之间的概率. [附表] (表中Φ(x) 是标准正态分布函数)

x	0	0.5	1.0	1.5	2.0	2.5	3.0
$\Phi(x)$	0.500	0.692	0.841	0.933	0.977	0.994	0.999

1.5 1991 年真题 - 8-

1.5 1991 年真题

1.5.1 1991 数一

1991年数学一真题

- 1. 填空题.
 - (a). 若随机变量 X 服从均值为 2 ,方差为 σ^2 的正态分布,且 $P\{2 < X < 4\} = 0.3$,则 $P\{X < 0\} =$ _____.
 - (b). 随机地向半圆 $0 < y < \sqrt{2ax x^2}(a > 0)$ 内郑一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与 x 轴的夹角小于 $\frac{\pi}{4}$ 的概率为_____.
- 2. 计算题.
 - (a). 设二维随机变量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} 2e^{-(x+2y)} & x > 0, y > 0\\ 0 & \end{cases}$$
 (1.2)

求 Z=X+2Y 的分布函数.

1.5.2 1991 数四

1991 年数学四真题

1. 填空题.

(a). 设随机变量
$$X$$
 的分布函数为 $F(x) = P(X \le x) =$
$$\begin{cases} 0, & \exists x < -1 \\ 0.4, & \exists -1 \le x < 1 \\ 0.8, & \exists 1 \le x < 3 \\ 1, & \exists x \ge 3 \end{cases} ,$$
 则 X 的概率分布为

2. 选择题.

- (a). 设 A 和 B 是任意两个概率不为零的不相容事件,则下列结论正确的是
 - $(A) \bar{A} 与 \bar{B} 不相容$
 - (B) Ā与 B 相容
 - (C) P(AB)=P(A)P(B)
 - (D) P(A B) = P(A).
- (b). 对于任意两个随机变量 X 和 Y , 若 E(XY) = EXEY, 则
 - (A) D(XY)=DXDY
 - (B) D(X+Y)=DX+DY
 - (C) X 和 Y 独立
 - (D) X 和 Y 不独立
- 3. 计算题.

1.6 1992 年真题 - 9 -

- (a). 假设随机变量 X 和 Y 在圆域 $x^2 + y^2 \le r^2$ 上服从联合均匀分布,(1) 求 X 和 Y 的相关系数 ρ ; (2) 问 X 和 Y 是否独立?
- (b). 设总体 X 的概率密度为

$$p(x,\lambda) = \begin{cases} \lambda a x^{a-1} e^{-\lambda x^{\alpha}} & x > 0\\ 0 & x \le 0 \end{cases}$$
 (1.3)

其中 $\lambda > 0$ 中是未知参数, a>0 是已知常数. 试根据来自总体 X 的简单随机样本 X_1, X_2, \dots, X_n , 求 λ 的最大似然估计量 $\hat{\lambda}$.

1.5.3 1991 数五

1991 年数学五真题

- 1. 填空题.
 - (a). 设 A, B 为随机事件, $P(A) = 0.7, P(A B) = 0.3, 则 <math>P(\overline{AB}) =$
- 2. 选择题.
 - (a). 设 A 和 B 是任意两个概率不为零的不相容事件,则下列结论正确的是
 - $(A) \bar{A} 与 \bar{B}$ 不相容
 - (B) \bar{A} 与 \bar{B} 相容
 - (C) P(AB)=P(A)P(B)
 - (D) P(A B) = P(A).

3. 计算题.

- (a). 一汽车沿一街道行驶,需要经过三个均设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且红绿两种信号显示的时间相等. 以 X 表示汽车首次遇到红灯前已通过的路口的个数.
 - (1) 求 X 的概率分布;(2) E_{1+X}^{-1} .
- (b). 在电源电压不超过 200 伏、在 200 240 伏和超过 240 伏三种情形下,某种电子元件损坏的概率分别为 0.1, 0.001 和 0.2, 假设电源电压 X 服从正态分布 $N(220, 25^2)$, 试求
 - (1) 该电子元件损坏的概率 α ;
 - (2) 该电子元件损坏时, 电源电压在 200 240 伏的概率 β .

[附表] 表中 $\Phi(x)$ 是标准正态分布函数)

x	0.10	0.20	0.40	0.60	0.80	1.00	1.20	1.40
$\Phi(x)$	0.530	0.579	0.655	0.726	0.788	0.341	0.335	0.919

1.6 1992 年真题

1.6.1 1992 数一

1992年数学一真题

1.6 1992 年真题 - 10 -

1. 填空题.

(a). 已知 $P(A)=P(B)=P(C)=\frac{1}{4}$, P(AB)=0, $P(AC)=P(BC)=\frac{1}{16}$, 则事件 A,B,C 全不发生的概率为_____.

注 该题为 2020 年考研数学概率统计第 7 题原型题。

(b). 设随机变量 X 服从参数为 1 的指数分布,则数学期望 $E(X+e^{-2X})=$ ______

2. 计算题.

(a). 设随机变量 X 与 Y 独立,X 服从正态分布 $N\left(\mu,\sigma^2\right)$,Y 服从 $[-\pi,\pi]$ 上的均匀分布,试求 Z=X+Y 的概率分布密度. (计算结果用标准正态分布函数 $\Phi(x)$ 表示,其中 $\Phi(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-\frac{t^2}{2}}dt$)

1.6.2 1992 数四

1992 年数学四真题

- 1. 填空题.
 - (a). 将 C, C, E, E, I, N, S 等七个字母随机地排成一行,那么恰好排成英文单词 SCIENCE 的概率为 .
- 2. 选择题.
 - (a). 设当事件 A 与 B 同时发生时,事件 C 必发生,则
 - (A) P(C) < P(A) + P(B) 1
 - (B) P(C) > P(A) + P(B) 1
 - (C) P(C) = P(AB)
 - (D) $P(C) = P(A \cup B)$
 - (b). (5) 设 n 个随机变量 X_1, X_2, \dots, X_n 独立同分布, $DX_1 = \sigma^2, \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i,$ $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2,$ 则
 - (A) S 是 σ 的无偏估计量
 - (B) S 是 σ 的最大似然估计量
 - (C) S 是 σ 的相合估计量 (即一致估计量)
 - (D) S 与 \bar{X} 相互独立.

3. 计算题.

(a). 假设测量的随机误差 $X \sim N(0, 10^2)$, 试求在 100 次独立重复测量中,至少有三次测量误差的绝对值大于 19.6 的概率 α , 并利用泊松分布求出 α 的近似值 (要求小数点后取两位有效数字).

λ	1	2	3	4	5	6	7
$e^{-\lambda}$	0.368	0.135	0.050	0.018	0.007	0.002	0.001

(b). 一台设备由三大部件构成,在设备运转中各部件需要调整的概率相应为 0.10, 0.20 和 0.30. 假设各部件的状态相互独立,以 X 表示同时需要调的部件数,试求 X 的数学期望 EX 和方差 DX.

1.7 1993 年真题 - 11 -

- (c). 设二维随机变量 (X,Y) 的概率密度为 $f(x,y) = \left\{ \begin{array}{ll} e^{-y} & 0 < x < y \\ 0 & \text{其 它} \end{array} \right.$,求
 - (1) 求随机变量 X 的密度 $f_X(x)$;
 - (2) 概率 $P\{X + Y \le 1\}$.

1.6.3 1992 数五

1992 年数学五真题

- 1. 填空题.
 - (a). 设对于事件 A, B, C, 有 $P(A) = P(B) = P(C) = \frac{1}{4}, P(AB) = P(BC) = 0, P(AC) = \frac{1}{8},$ 则三个事件 A, B, C 中至少出现一个的概率为_____.
- 2. 选择题.
 - (a). 设当事件 A 与 B 同时发生时,事件 C 必发生,则

(A)
$$P(C) < P(A) + P(B) - 1$$

(B)
$$P(C) > P(A) + P(B) - 1$$

(C)
$$P(C) = P(AB)$$

(D)
$$P(C) = P(A \cup B)$$

- 3. 计算题.
 - (a). 假设测量的随机误差 $X \sim N(0, 10^2)$, 试求在 100 次独立重复测量中,至少有三次测量误差的绝对值大于 19.6 的概率 α , 并利用泊松分布求出 α 的近似值(要求小数点后取两位有效数字).

λ	1	2	3	4	5	6	7
$e^{-\lambda}$	0.368	0.135	0.050	0.018	0.007	0.002	0.001

(b). 一台设备由三大部件构成,在设备运转中各部件需要调整的概率相应为 0.10, 0.20 和 0.30. 假设各部件的状态相互独立,以 X 表示同时需要调的部件数,试 求 X 的数学期望 EX 和方差 DX.

1.7 1993 年真题

1.7.1 1993 数一

1993年数学一真题

- 1. 填空题.
 - (a). 一批产品共有 10 个正品和 2 个次品,任意抽取两次,每次抽一个,抽出后不放回,则第二次抽出的是次品的概率为 .
 - (b). 设随机变量 X 服从 (0,2) 的均匀分布,则随机变量 $Y = X^2$ 在 (0,4) 内概率分布密度 $f_Y(y) =$ ______.
- 2. 计算题.

1.7 1993 年真题 - 12 -

- (a). 设随机变量 X 的概率分布密度为 $f(x) = \frac{1}{2}e^{-|x|}, -\infty < x < +\infty$.
 - (1) 求 X 的数学期望 EX 和方差 DX;
 - (2) 求 X 与 |X| 的协方差; 并问 X 与 |X| 是否不相关?
 - (3) 问 *X* 与 |*X*| 是否相互独立? 为什么?

1.7.2 1993 数四

1993 年数学四真题

- 1. 填空题.
 - (a). 设总体 X 的方差为 1,根据来自 X 的容量为 100 的简单随机样本,测得样本均值为 5,则 X 的数学期望的置信度近似等于 0.95 的置信区间为 .
- 2. 选择题.
 - (a). 假设事件 A 和 B 满足 P(B | A) = 1 , 则
 - (A) A 是必然事件
 - (B) $P(B | \bar{A}) = 0$
 - (C) $A \supset B$
 - (D) $A \subset B$
 - 注该题无正确答案。
 - (b). 设随机变量 X 的密度函数为 $\varphi(x)$, 且 $\varphi(-x) = \varphi(x)$, F(x) 是 X 的分布函数,则对任意实数 a ,有
 - (A) $F(-a) = 1 \int_0^a \varphi(x) dx$
 - (B) $F(-a) = \frac{1}{2} \int_0^a \varphi(x) dx$
 - (C) F(-a) = F(a)
 - (D) F(-a) = 2F(a) 1
- 3. 计算题.
 - (a). 设随机变量 X 和 Y 同分布, X 的概率密度为 $f(x) = \begin{cases} \frac{3}{8}x^2 & 0 < x < 2, \\ 0 & \text{其他} \end{cases}$
 - (1) 已知事件 $A = \{X > a\}$ 和 $B = \{Y > a\}$ 独立,且 $P(A \cup B) = \frac{3}{4}$,求常数 a;
 - (2) 求 $\frac{1}{X^2}$ 的数学期望.
 - (b). 假设一大型设备在任何长为 t 的时间内发生故障的次数 N(t) 服从参数为 λt 的 1 的分布.
 - (1) 求相继两次故障之间时间间隔 T 的概率分布;
 - (2) 求在设备已经无故障工作8小时的情形下,再无故障运行8小时的概率Q.

1.7.3 1993 数五

1993年数学五真题

1. 填空题.

1.8 1994 年真题 - 13 -

(a). 设 10 件产品有 4 件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率为

2. 选择题.

- (a). 设随机变量 X 与 Y 均服从正态分布, $X \sim N(\mu, 4^2)$, $Y \sim N(\mu, 5^2)$,记 $p_1 = P\{X \le \mu 4\}$, $p_2 = P\{Y \ge \mu + 5\}$,则
 - (A) 对任何实数 μ , 都有 $p_1 = p_2$
 - (B) 对任何实数 μ ,都有 $p_1 < p_2$
 - (C) 只对 μ 的个别值,才有 $p_1 = p_2$
 - (D) 对任何实数 μ , 都有 $p_1 > p_2$

3. 计算题.

- (a). 设随机变量 X 和 Y 独立,都在区间 [1,3] 上服从均匀分布; 引进事件 $A = \{X \leq a\}, B = \{Y \leq a\}$
 - (1) 已知 $P(A \cup B) = \frac{7}{9}$, 求常数 a;
 - (2) 求 $\frac{1}{X}$ 的数学期望.
- (b). 假设一大型设备在任何长为 t 的时间内发生故障的次数 N(t) 服从参数为 λt 的 1 的公布.
 - (1) 求相继两次故障之间时间间隔 T 的概率分布;
 - (2) 求在设备已经无故障工作8小时的情形下,再无故障运行8小时的概率Q.

1.8 1994 年真题

1.8.1 1994 数一

1994年数学一真题

1. 填空题.

- (b). 设相互独立的随机变量 X,Y 具有同一分布律, 且 X 的分布律为

$$\begin{array}{c|cc} X & 0 & 1 \\ \hline P & \frac{1}{2} & \frac{1}{2} \end{array}$$

则随机变量 $Z = \max\{X, Y\}$ 的分布律为:_____

2. 计算题.

- (a). 若随机变量 X 和 Y 分别服从正态分布 N(1,3²) 和 N(0,4²),且 X 与 Y 的相关 系数 $\rho_{XY} = -\frac{1}{2}$,设 $Z = \frac{X}{3} + \frac{Y}{2}$,
 - (1) 求 Z 的数学期望 EZ 和和方差 DZ;
 - (2) 求 X 与 Z 的相关系数 ρ_{XZ} ;
 - (3) 问 X 与 Z 是否独立? 为什么?

1.8 1994 年真题 - 14 -

1.8.2 1994 数四

1994年数学四真题

1. 填空题.

(a). 设随机变量 X 的概率密度为 $f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & \text{其} & \text{他} \end{cases}$,以 Y 表示对 X 的三次独立重复观察中事件 $\{X \leq \frac{1}{2}\}$ 出现的次数,则 $P\{Y = 2\} = \underline{\hspace{1cm}}$.

2. 选择题.

- (a). 设 0 < P(A) < 1, 0 < P(B) < 1, $P(A \mid B) + P(\bar{A} \mid \bar{B}) = 1$, 则
 - (A) 事件 A 和 B 互不相容
 - (B) 事件 A 和 B 互相对立
 - (C) 事件 A 和 B 互不独立
 - (D) 事件 A 和 B 相互独立
- (b). 设 X_1, X_2, \cdots, X_n 是来自正态总体 $N\left(\mu, \sigma^2\right)$ 的简单随机样本, \bar{X} 是样本均值,记 $S_1^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i \bar{X}\right)^2$, $S_2^2 = \frac{1}{n} \sum_{i=1}^n \left(X_i \bar{X}\right)^2$, $S_3^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i \mu\right)^2$ $S_4^2 = \frac{1}{n} \sum_{i=1}^n \left(X_i \mu\right)^2$,则服从自由度为 n-1 的 t 分布的随机变量是 (A) $t = \frac{\bar{X} \mu}{S_1/\sqrt{n-1}}$ (B) $t = \frac{\bar{X} \mu}{S_2/\sqrt{n-1}}$ (C) $t = \frac{\bar{X} \mu}{S_3/\sqrt{n}}$ (D) $t = \frac{\bar{X} \mu}{S_3/\sqrt{n}}$

3. 计算题.

- (a). 假设随机变量 X_1, X_2, X_3, X_4 相互独立,且同分布 $P\left\{X_i=0\right\}=0.6, P\left\{X_i=1\right\}=0.4 (i=1,2,3,4)$. 求行列式 $X=\left|\begin{array}{cc}X_1&X_2\\X_3&X_4\end{array}\right|$ 的概率分布.
- (b). 假设由自动生产线加工的某种零件的内径 X(毫米) 服从正态分布 $N(\mu,1)$, 内径小于 10 或大于 12 的为不合格品,其余为合格品,销售每件合格品获利,销售每件不合格品亏损,已知销售利润 T(单位:元)与销售零件的内径 X 有如

下关系:
$$T = \begin{cases} -1 & X < 10 \\ 20 & 10 \le X \le 12 \end{cases}$$
 问平均内径 μ 取何值时,销售一个零件的 $-5 & X > 12$

平均利润最大?

1.8.3 1994 数五

1994年数学五真题

1. 填空题.

- (a). 假设一批产品中一,二,三等品各占 60%,30%,10%,从中随意取出一件,结果不是三等品,则取到的是一等品的概率为
- 2. 选择题.

1.9 1995 年真题 - 15 -

- (a). 设 0 < P(A) < 1, 0 < P(B) < 1, $P(A \mid B) + P(\bar{A} \mid \bar{B}) = 1$, 则
 - (A) 事件 A 和 B 互不相容
 - (B) 事件 A 和 B 互相对立
 - (C) 事件 A 和 B 互不独立
 - (D) 事件 A 和 B 相互独立

3. 计算题.

- (a). 假设随机变量 X 的概率密度为 $f(x) = \begin{cases} 2x & 0 < x < 1 \\ 0 & \text{其它} \end{cases}$ 现在对 X 进行 n 次独立重复观测,以 V_n 表示观测值不大于 0.1 的次数,试求随机变量 V_n 的概率分布.
- (b). 假设由自动生产线加工的某种零件的内径 X(毫米) 服从正态分布 $N(\mu,1)$, 内径小于 10 或大于 12 的为不合格品,其余为合格品,销售每件合格品获利,销售每件不合格品亏损,已知销售利润 T (单位:元)与销售零件的内径 X 有如下关系: $T=\left\{ egin{array}{ll} -1 & X < 10 \\ 20 & 10 \leq X \leq 12 \end{array} \right.$ 问平均内径 μ 取何值时,销售一个零件的-5 & X > 12 平均利润最大?

1.9 1995 年真题

1.9.1 1995 数一

1995 年数学一真题

1. 填空题

- (a). 设 X 表示 10 次独立重复射击命中目标的次数,每次射中目标的概率为 0.4 ,则 X^2 的数学期望 $E(X^2) =$ _____.
- (b). 设 X 和 Y 为两个随机变量,且 $P\{X \ge 0, Y \ge 0\} = \frac{3}{7}$, $P\{X \ge 0\} = P\{Y \ge 0\} = \frac{4}{7}$,则 $P\{\max(X,Y) \ge 0\} = \underline{\hspace{1cm}}$.

2. 计算题

(a). 设 X 的概率密度为 $f_X(x) = \begin{cases} e^{-x}, & x \ge 0, \\ 0, & x < 0, \end{cases}$ 求 $Y = e^x$ 的概率密度 $f_Y(y)$.

1.9.2 1995 数四

1995 年数学四真题

1. 填空题

(a). 设 X_1, X_2, \dots, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的简单随机样本,其中参数 μ 和 σ^2 未知记 $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i, Q^2 = \sum_{i=1}^n (X_i - \bar{X})^2$,则假设 $H_0: \mu = 0$ 的 t 检验使用统计量 t = 0

1.9 1995 年真题 - 16-

2. 选择题

- (a). 设随机变量 X 和 Y 独立同分布,记 U=X-Y, V=X+Y,则随机变量 U 与 V 必然
 - (A) 不独立
 - (B) 独立
 - (C) 相关系数不为零
 - (D) 相关系数为零
- (b). 设随机变量 X 服从正态分布 $N\left(\mu,\sigma^2\right)$, 则随着 σ 的增大, 概率 $P\{|X-\mu|<\sigma\}$
 - (A) 单调增大
 - (B) 单调减小
 - (C) 保持不变
 - (D) 增减不定

3. 计算题

- (a). 假设一厂家生产的每台仪器,以概率为 0.70 可以直接出厂;以概率 0.30 需进一步调试,经调试后以概率 0.80 可以出厂;以概率 0.20 定为不合格品不能出厂. 现该厂新生产了 $n(n \ge 2)$ 台仪器(假设各台仪器的生产过程相互独立),求:
 - (1) 全部能出厂的概率 α ;
 - (2) 其中恰好有两件不能出厂的概率 β ;
 - (3) 其中至少有两件不能出厂的概率 θ .
- (b). 已知随机变量 X 和 Y 的联合概率密度为 $\varphi(x,y) = \begin{cases} 4xy, \quad \hbox{$ \ddot{x} \ 0 \le x \le 1, 0 \le y \le 1$} \\ 0, \quad & \hbox{$\sharp$ } \end{cases}$ 也 求 X 和 Y 的联合分布函数 F(x,y).

1.9.3 1995 数五

1995 年数学五真颢

1. 填空题

(a). 设 X 是一个随机变量,其概率密度为 $f(x) = \begin{cases} 1+x, & -1 \le x \le 0 \\ 1-x, & 0 < x \le 1 \end{cases}$,则方差 $DX = \qquad .$

2. 选择题

- (a). 设随机变量 X 服从正态分布 $N\left(\mu,\sigma^2\right)$, 则随着 σ 的增大,概率 $P\{|X-\mu|<\sigma\}$
 - (A) 单调增大
 - (B) 单调减小
 - (C) 保持不变
 - (D) 增减不定
- 3. 计算题

1.10 1996 年真题 - 17-

(a). 假设一厂家生产的每台仪器,以概率为 0.70 可以直接出厂;以概率 0.30 需进一步调试,经调试后以概率 0.80 可以出厂;以概率 0.20 定为不合格品不能出厂. 现该厂新生产了 $n(n \ge 2)$ 台仪器(假设各台仪器的生产过程相互独立),求:

- (1) 全部能出厂的概率 α ;
- (2) 其中恰好有两件不能出厂的概率 β ;
- (3) 其中至少有两件不能出厂的概率 θ .
- (b). 假设随机变量 X 服从参数为 2 的指数分布,证明: $Y = 1 e^{-2X}$ 在区间 (0,1) 上服从均匀分布.

1.10 1996 年真题

1.10.1 1996 数一

1996年数学一真题

1. 填空题.

- (a). 设工厂 A 和工厂 B 的产品的次品率分别为 1% 和 2%, 现从 A 和 B 的产品分别占 60% 和 40% 的一批产品中随机抽取一件,发现是次品,则该次品属 A 生产的概率是
- (b). 设 ξ, η 是两个相互独立且均服从正态分布 $N\left(0, \left(\frac{1}{\sqrt{2}}\right)^2\right)$ 的随机变量, 则随机变量 $|\xi \eta|$ 的数学期望 $E(|\xi \eta|) =$ ______.

2. 计算题.

- (a). 设 ξ, η 是相互独立且服从同一分布的随机变量,已知 ξ 的分布律为 $P(\xi = i) = \frac{1}{3}, i = 1, 2, 3$. 又设 $X = \max\{\xi, \eta\}, Y = \min\{\xi, \eta\}$
 - (1) 写出二维随机变量 (X,Y) 发分布律;
 - (2) 求随机变量 X 的数学期望.

1.10.2 1996 数四

1996 年数学四真题

1. 填空题.

(a). 设由来自正态总体 $X \sim N(\mu, 0.9^2)$,容量为 9 的简单随机样本,得样本均值 $\bar{X} = 5$,则未知参数 μ 的置信度为 0.95 的置信区间是______.

2. 选择题.

- (a). 已知 0 < P(B) < 1, 且 $P[(A_1 + A_2) \mid B] = P(A_1 \mid B) + P(A_2 \mid B)$, 则下列 选项成立的 (A) $P[(A_1 + A_2) \mid \bar{B}] = P(A_1 \mid \bar{B}) + P(A_2 \mid \bar{B})$
 - (B) $P(A_1B + A_2B) = P(A_1B) + P(A_2B)$
 - (C) $P(A_1 + A_2) = P(A_1 \mid B) + P(A_2 \mid B)$
 - (D) $P(B) = P(A_1) P(B \mid A_1) + P(A_2) P(B \mid A_2)$

1.11 1997 年真题 - 18-

3. 计算题.

(a). 假设一部机器在一天内发生故障的概率为0.2, 机器发生故障时全天停止工作, 若一周5个工作日里无故障, 可获得利润10万元; 发生一次故障仍可获得利润5万元; 发生二次故障多获得利润0元; 发生三次或三次以上故障就要亏损2万元. 求一周内期望利润是多少?

- (b). 考虑一元二次方程 $x^2 + Bx + C = 0$, 其中 B, C 分别是将一枚股子接连郑两次 先后出现的点数. 求方程有实根的概率 p 和有重根的概率 q.
- (c). 设 X_1, X_2, \dots, X_n 独立且与 X 同分布, $EX^k = \alpha_k (k = 1, 2, 3, 4)$. 求证: 当 n 充分大时, $Z_n = \frac{1}{n} \sum_{i=1}^n X_i^2$ 近似服从正态分布,并求出其分布参数.

1.10.3 1996 数五

1996年数学五真题

1. 填空题.

(a). 一实习生用同一台机器接连独立地制造 3 个同种零件,第 i 个零件是不合格品的概率 $p_i = \frac{1}{i+1}(i=1,2,3)$,以 X 表示 3 个零件中合格品的个数,则 P(X=2)=

2. 冼择颢.

- (a). 设 A, B 为任意两个事件,且 $A \subset B, P(B) > 0$,则下列选项必然成立的是
 - $(A) P(A) < P(A \mid B)$
 - (B) $P(A) \leq P(A \mid B)$
 - (C) $P(A) > P(A \mid B)$
 - (D) $P(A) \ge P(A \mid B)$

3. 计算题.

- (a). 假设一部机器在一天内发生故障的概率为 0.2, 机器发生故障时全天停止工作, 若一周 5 个工作日里无故障, 可获得利润 10 万元; 发生一次故障仍可获得利润 5 万元; 发生二次故障多获得利润 0 元; 发生三次或三次以上故障就要亏损 2 万元. 求一周内期望利润是多少?
- (b) 某电路装有三个同种电气元件,其工作状态相互独立,且无故障工作时间都服从参数为 $\lambda > 0$ 的指数分布. 当三个元件都无故障时,电路正常工作,否则整个电路不能正常工作,试求电路正常工作的时间T的概率分布.

1.11 1997 年真题

1.11.1 1997 数一

1997年数学一真题

1. 填空题.

1.11 1997 年真题 - 19-

(a). 袋中有 50 个乒乓球,其中 20 个是黄球,30 个是白球,今有两人依随机从袋中各取一球,取后不放回,则第二个人取得黄球的概率是

2. 选择题.

- (a). 设两个相互独立的随机变量 X 和 Y 方差分别为 4 和 2, 则随机变量 3X 2Y 的方差是
 - (A) 8
 - (B) 16
 - (C) 28
 - (D) 44

3. 计算题.

- (a). 从学校趁汽车到火车站的途中有 3 个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是 ²/₅,设途中遇到红灯的次数,求随机变量 X 的分布律. 分布函数和数学期望.
- (b). 设总体 X 的概率密度为 $f(x) = \begin{cases} (\theta+1)x^{\theta} & 0 < x < 1 \\ 0 & \text{其他} \end{cases}$, 其中 $\theta > -1$ 是未 知参数, X_1, X_2, \cdots, X_n 是来自总体的一个容量为 n 的简单随机样本, 分别用 矩估计法和极大似然估计法求 θ 的估计量.

1.11.2 1997 数三

1997年数学三真题

1. 填空题.

(a). 设随机变量 X 和 Y 相互独立且都服从正态分布 N (0,3²), 而 X_1, X_2, \cdots, X_9 和 Y_1, Y_2, \cdots, Y_9 分别是来自总体 X 和 Y 的简单随机样本,那么统计量 $U = \frac{X_1 + X_2 + \cdots + X_9}{\sqrt{Y_1^2 + \cdots + Y_9^2}}$ 服从的分布为_____.

2. 选择题.

(a). 设两个随机变量 X 与 Y 相互独立同分布,且 $P\{X=-1\}=P\{Y=-1\}=\frac{1}{2}$, $P\{X=1\}=P\{Y=1\}=\frac{1}{2}$,则下列各式中成立的是

(A)
$$P\{X = Y\} = \frac{1}{2}$$

(B)
$$P\{X = Y\} = 1$$

(C)
$$P\{X + Y = 0\} = \frac{1}{4}$$

(D)
$$P\{XY=1\}=\frac{1}{4}$$

3. 计算题.

- (a). 假设随机变量 X 的绝对值不大于 1; $P\{X=-1\}=\frac{1}{8}, P\{X=1\}=\frac{1}{4}$; 在事件 $\{-1 < X < 1\}$ 出现的条件下, X 在 (-1,1) 内的任一子区间上取值的条件概率与该子区间长度成正比. 试求 X 的分布函数 $F(x)=P\{X \le x\}$.
- (b). 游客乘电梯从底层到电视塔顶层观光;电梯于每个整点的第 5 分钟、25 分钟和 55 分钟从底层起行. 假设一游客在早八点的第 X 分钟到达底层侯梯处,且 X 在 [0,60] 上均匀分布,求该游客等候时间的数学期望.

1.12 1998 年真题 - 20 -

(c). 两台同样的自动记录仪,每台无故障工作的时间服从参数为5的指数分布;首先开动其中一台,当其发生故障时停用而另一台自动开动. 试求两台记录仪无故障工作的总时间 T 的概率密度 f(t)、数学期望和方差.

1.11.3 1997 数四

1997年数学四真题

1.	填空题

- (a). 设 A, B 是任意两个随机事件,则 $P\{(\bar{A}+B)(A+B)(\bar{A}+\bar{B})(A+\bar{B})\} = \underline{\hspace{1cm}}$
- (b). 设随机变量 X 服从参数为 (2,p) 的二项分布, 随机变量 Y 服从参数为 (3,p) 的二项分布. 若 $P\{X \ge 1\} = \frac{5}{6}$, 则 $P\{Y \ge 1\} = \underline{\hspace{1cm}}$.

2. 选择题.

(a). 设 X 是一随机变量, $EX = \mu, DX = \sigma^2(\mu, \sigma > 0$ 常数), 则对任意常数 c, 必有

(A)
$$E(X - c)^2 = EX^2 - c^2$$

(B)
$$E(X - c)^2 = E(X - \mu)^2$$

(C)
$$E(X - c)^2 \le E(X - \mu)^2$$

(D)
$$E(X - c)^2 \ge E(X - \mu)^2$$

3. 计算题.

- (a). 假设随机变量 X 的绝对值不大于 1; $P\{X=-1\}=\frac{1}{8}, P\{X=1\}=\frac{1}{4}$; 在事件 $\{-1 < X < 1\}$ 出现的条件下, X 在 (-1,1) 内的任一子区间上取值的条件概率与该子区间长度成正比. 试求
 - (1)X 的分布函数 $F(x) = P\{X \le x\}$.
 - (2)X 取负值的概率 p.
- (b). 假设随机变量 Y 服从参数为 $\lambda=1$ 的指数分布,随机变量 $X_k=\left\{ egin{array}{cc} 0, & \hbox{ $ \overrightarrow{A}Y\leq k$} \\ 1, & \hbox{ $ \overrightarrow{A}Y>k$} \end{array} \right.$, (k=1,2), 求:
 - $(1)X_1$ 和 X_2 的联合概率分布;
 - (2) $E(X_1+X_2)$.

1.12 1998 年真题

1.12.1 1998 数一

1998年数学一真题

1. 填空题.

(a). 设平面区域 D 由曲线 $y = \frac{1}{x}$ 及直线 $y = 0, x = 1, x = e^2$ 所围成,二维随机变量 (X,Y) 在区域 D 上服从均匀分布,则 (X,Y) 关于 X 的边缘概率密度在x = 2 处的值为_____.

1.12 1998 年真题 - 21 -

2. 选择题.

(a). 设 A, B 是随机事件, 且 $0 < P(A) < 1, P(B) > 0, P(B \mid A) = P(B \mid \bar{A})$, 则必有

(A)
$$P(A \mid B) = P(\bar{A} \mid B)$$

(B)
$$P(A \mid B) \neq P(\bar{A} \mid B)$$

(C)
$$P(AB) = P(A)P(B)$$

(D)
$$P(AB) \neq P(A)P(B)$$

3. 计算题.

- (a). 设两个随机变量 X, Y 相互独立,且都服从均值为 0、方差为 $\frac{1}{2}$ 的正态分布,求随机变量 [X-Y] 的方差.
- (b). 从正态总体 N (3.4,6²) 中抽取容量为 n 的样本, 如果要求其样本均值位于区间 (1.4,5.4) 内的概率不小于 0.95,问样本容量 n 至少应取多大? 附表: 标准正态 分布表 $\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$

Z	1.28	1.645	1.96	2.33
$\Phi(z)$	0.900	0.950	0.975	0.990

(c). 设某次考试的考生成绩服从正态分布,从中随机抽取 36 位考生的成绩,算得平均成绩为 66.5 分,标准差为 15 分,问在显著性水平 0.05 下,是否可以认为这次考试全体考生的平均成绩为 70 分?并给出检验过程.

附: t 分布表
$$P\{t(n) \le t_p(n)\} = p$$

 $t_{0.95}(35) = 1.6896 \ t_{0.975}(35) = 2.0301 \ t_{0.95}(36) = 1.6883 \ t_{0.975}(36) = 2.0281$

1.12.2 1998 数三

1998 年数学三真题

1. 填空题.

(a). 设 X_1, X_2, X_3, X_4 是来自正态总体 $N(0, 2^2)$ 的简单随机样本, $X = a(X_1 - 2X_2)^2 + b(3X_3 - 4X_4)^2$,则当 $a = _____$, $b = _____$ 时,统计量 X 服从 χ^2 分布,其自由度为

2. 选择题.

(a). 设 $F_1(x)$ 与 $F_2(x)$ 分别为随机变量 X_1 与 X_2 的分布函数,为使 $F(x)=aF_1(x)-bF_2(x)$ 是某一随机变量的分布函数,在下列给定的各组数值中应取

(A)
$$a = \frac{3}{5}, b = -\frac{2}{5};$$

(B)
$$a = \frac{2}{3}, b = \frac{2}{3}$$
;

(C)
$$a = -\frac{1}{2}, b = \frac{3}{2};$$

(D)
$$a = \frac{1}{2}, b = -\frac{3}{2}$$

3. 计算题.

(a). 一商店经销某种商品,每周进货的数量 X 与顾客对该种商品的需求量 Y 是相互独立的随机变量,且都服从区间 [10,20]上的均匀分布.商店每售出一单位

1.13 1999 年真题 - 22 -

商品可得利润 1000 元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品获利润为 500 元. 试计算此商店经销该种商品每周所得利润的期望值.

- (b). 设有来自三个地区的各 10 名、15 名和 25 名考生的报名表,其中女生的报名 表分别为 3 份、7 份和 5 份. 随机地取一个地区的报名表,从中先后抽出两份.
 - (1) 求先抽到的一份是女生表的概率 p;
 - (2) 已知后抽到的一份是男生表,求先抽到的一份是女生表的概率 q.

1.12.3 1998 数四

1998年数学四直题

1.	填空题
1.	¹ 县 T 从

(a). 设一次试验成功的概率为 p,进行 100 次独立重复试验,当 p=_____时,成功次数的标准差的值最大;其最大值为_____.

2. 选择题.

- (a). 设 A、B、C 是三个相互独立的随机事件,且 0<P(C)<1,则在下列给定的四对事件中不相互独立的是
 - (A) $\overline{A+B} = C$
 - (B) \overline{AC} 与 \bar{C}
 - (C) $\overline{A-B} = \bar{C}$
 - (D) $\overline{AB} = \bar{C}$.
- (b). 设 $F_1(x)$ 与 $F_2(x)$ 分别为随机变量 X_1 与 X_2 的分布函数,为使 $F(x) = aF_1(x) bF_2(x)$ 是某一随机变量的分布函数,在下列给定的各组数值中应取
 - (A) $a = \frac{3}{5}, b = -\frac{2}{5};$
 - (B) $a = \frac{2}{3}, b = \frac{2}{3}$;
 - (C) $a = -\frac{1}{2}, b = \frac{3}{2};$
 - (D) $a = \frac{1}{2}, b = -\frac{3}{2}$

3. 计算题.

- (a) 求某种商品每周的需求量 X 是服从区间 [10,30] 上均匀分布的随机变量,而经销商进货数量为区间 [10,30] 中的某一整数,商店每销售一单位商品可获利 500元;若供大于求则削价处理,每处理 1 单位商品亏损 100元;若供不应求,则可从外部调剂供应,此时每 1 单位商品仅获利 300元,为使商品所获利润期望值不小于 9280元,试确定最少进货量.
- (b). 某箱装有 100 件产品,其中一、二、三等品分别为 80 件、10 件和 10 件,现 在从中随机抽取一件,记 $X_i = \begin{cases} 1 & \text{若抽到} i \text{ 等品} \\ 0 & \text{其 他} \end{cases}$ (i = 1, 2, 3),试求:
 - (1) 随机变量 X_1 与 X_2 的联合分布;
 - (2) 随机变量 X_1 与 X_2 的相关系数 ρ .

1.13 1999 年真题 - 23 -

1.13 1999 年真题

1.13.1 1999 数一

1999 年数学一真题

- 1. 填空题.
 - (a). 设两两相互独立的三事件 A B, 和 C 满足条件: ABC= \emptyset , $P(A) = P(B) = P(C) < \frac{1}{2}$, 且已知 $P(A \cup B \cup C) = \frac{9}{16}$, 则 P(A) =_____.
- 2. 选择题.
 - (a). 设两个相互独立的随机变量 X 和 Y 分别服从 N(0,1) 和 N(1,1), 则

(A)
$$P(X + Y \le 0) = \frac{1}{2}$$

(B)
$$P(X + Y \le 1) = \frac{1}{2}$$

(C)
$$P(X - Y \le 0) = \frac{1}{2}$$

(D)
$$P(X - Y \le 1) = \frac{1}{2}$$

- 3. 计算题.
 - (a). 设随机变量 X 和 Y 相互独立,下表列出了二维随机变量 (X,Y) 联合分布律及关于 X 和关于 Y 的边缘分布中的部分数值,试将其余数值填入表中的空白处.

X	y_1	y_2	y_3	$P\left\{X = x_i\right\} = p_i$
x_1		$\frac{1}{8}$		
x_2	$\frac{1}{8}$			
$P\{Y = y_j\} = p_j$	$\frac{1}{6}$			1

- (b). 设总体 X 的概率密度为 $f(x) = \begin{cases} \frac{6x^2}{\theta^3}(\theta x), & 0 < x < \theta, \\ 0, & \text{其他} \end{cases}$ 取自总体 X 的简单随机样本.
 - (1) 求 θ 的矩估计量 $\hat{\theta}$;
 - (2) 求 $\hat{\theta}$ 的方差 $D(\hat{\theta})$

1.13.2 1999 数三

1999 年数学三真题

- 1. 填空题.
 - (a). (4) 在天平上重复称量一重为 a 的物品,假设各次称量结果相互独立且同服从正态分布 $N\left(a,0.2^2\right)$,若以 $\overline{X_n}$ 表示 n 次称量结果的算术平均值,则为使 $P\left\{\left|\overline{X_n}-a\right|<0.1\right\}\geq0.95,n$ 的最小值应不小于自然数______.
 - (b). 设随机变量 $X_{ij}(i,j=1,2,\cdots,n;n\geq 2)$ 独立同分布, $EX_{ij}=2$, 则行列式

1.13 1999 年真题 - 24 -

$$Y = egin{bmatrix} X_{11} & X_{12} & \dots & X_{1n} \\ X_{21} & X_{22} & \dots & X_{2n} \\ \dots & \dots & \dots & \dots \\ X_{n1} & X_{n2} & \dots & X_{nn} \end{bmatrix}$$
的数学期望 $EY =$ ______.

2. 选择题.

- (a). 设随机变量 $X_i \sim \begin{pmatrix} -1 & 0 & 1 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{pmatrix}$ (i = 1, 2), 且满足 $P\{X_1 X_2 = 0\} = 1$, 则 $P\{X_1 = X_2\}$ 等于
 - (A) 0
 - (B) $\frac{1}{4}$
 - (C) $\frac{1}{2}$
 - (D) 1

3. 计算题.

(a). 假设二维随机变量 (X,Y) 在矩形 $G = \{(x,y) \mid 0 \le x \le 2, 0 \le y \le 1\}$ 上服从均匀分布,记

$$U = \begin{cases} 0 & X \le Y \\ 1 & X > Y \end{cases}, \quad V = \begin{cases} 0 & X \le 2Y \\ 1 & X > 2Y \end{cases}$$

- (1) 求 U 和 V 的联合分布;
- (2) 求 U 和 V 的相关系数 r.
- (b). 设 $X_1, X_2, \dots X_9$ 是来自正态总体 X 的简单随机样本, $Y_1 = \frac{1}{6}(X_1 + \dots + X_6)$, $Y_2 = \frac{1}{3}(X_7 + X_8 + X_9)$, $S^2 = \frac{1}{2}\sum_{i=7}^9(X_i Y_2)^2$, $Z = \frac{\sqrt{2}(Y_1 Y_2)}{S}$, 证明统计量 Z 服从自由度为 Z 的 t 分布.

1.13.3 1999 数四

1999 年数学四真题

- 1. 填空题.
 - (a). 设 X 服从参数为 λ 的泊松分布, 且已知 E[(X-1)(X-2)]=1,则 $\lambda =$ _____.
- 2. 选择题.
 - (a) 设随机变量 X 和 Y 的方差存在且不等于 0, 则 D(X+Y)=DX+DY 是 X 和 Y
 - (A) 不相关的充分条件, 但不是必要条件
 - (B) 独立的必要条件, 但不是充分条件
 - (C) 不相关的充要条件
 - (D) 独立的充要条件
 - (b). 设 X 服从指数分布,则 $Y = \min\{X, 2\}$ 的分布函数
 - (A) 是连续函数
 - (B) 至少有两个间断点

1.14 2000 年真题 - 25-

- (C) 是阶梯函数
- (D) 恰有一个间断点

3. 计算题.

- (a). 设二维随机变量 (X,Y) 在矩形 $G = \{(x,y) \mid 0 \le x \le 2, 0 \le y \le 1\}$ 上服从均匀分布,试求边长为 X 和 Y 的矩形面积 S 的概率密度 f(s).
- (b). 已知随机变量 X_1 和 X_2 的概率分布 $X_1 \sim \begin{bmatrix} -1 & 0 & 1 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{bmatrix}$, $X_2 \sim \begin{bmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$, 且 $P(X_1X_2=0)=1$,
 - (1) 求 X_1 和 X_2 的联合分布;
 - (2) 问 X_1 和 X_2 是否独立? 为什么?

1.14 2000 年真题

1.14.1 2000 数一

2000年数学一真题

- 1. 填空题.
 - (a). 设两个相互独立的事件 A 和 B 都不发生的概率为 $\frac{1}{9}$, A 发生 B 不发生的概率 与 B 发生 A 不发生的概率相等,则 P(A) =______.
- 2. 选择题.
 - (a). 设二维随机变量 (X, Y) 服从二维正态分布,则随机变量 ξ =X+Y 与 η =X-Y 不相 关的充分必要条件为
 - (A) E(X)=E(Y)

(B)
$$E(X^2) - [E(X)]^2 = E(Y^2) - [E(Y)]^2$$

(C)
$$E(X^2) = E(Y^2)$$

(D)
$$E(X^2) + [E(X)]^2 = E(Y^2) + [E(Y)]^2$$

3. 计算题...

- (a). 某流水生产线上每个产品不合格的概率为p,0<p<1,各产品合格与否相互独立,当出现一个不合格产品时即停机检修. 设开机后第一次停机时已生产了的产品个数为X,求X的数学期望E(X)和方差D(X).
- (b). 设某种元件的使用寿命 X 的概率密度为 $f(x;\theta) = \begin{cases} 2e^{-2(x-\theta)}, & x>0 \\ 0, & x\leq 0 \end{cases}$,其中 $\theta>0$ 为未知参数. 又设 x_1,x_2,\cdots,x_n 是 X 的一组样本观测值,求参数 θ 的最大似然估计值.

1.14.2 2000 数三

2000年数学三真题

1. 填空题.

1.14 2000 年真题 - 26 -

(b). 设随机变量 X 在区间 [-1,2] 上服从均匀分布; 随机变量 $Y = \begin{cases} 1, & X > 0 \\ 0, & X = 0 \end{cases}$ 则方差 DY =______.

2. 选择题.

- (a). 在电炉上安装了 4 个温控器,其显示器的误差是随机的,在使用过程中,只要有两个温控器显示的温度不低于临界温度 t_0 ,电炉就断电,以 E 表示时间 "电炉断电",而 $T_{(1)} \le T_{(2)} \le T_{(3)} \le T_{(4)}$ 为 4 个温控器显示的按递增顺序排列的温度值,则事件 E 等于
 - (A) $\{T_{(1)} \geq t_0\}$.
 - (B) $\{T_{(2)} \geq t_0\}$.
 - (C) $\{T_{(3)} \geq t_0\}$.
 - (D) $\{T_{(4)} \geq t_0\}$.

3. 计算题.

- (a). 假设 0.50, 1.25, 0.80, 2.00 是来自总体 X 的简单随机样本值. 已知 $Y = \ln X$ 服从正态分布 $N(\mu, 1)$.
 - (1) 求 X 的数学期望 EX(记 EX为b);

 - (3) 利用上述结果求 b 的置信度为 0.95 的置信区间

1.14.3 2000 数四

2000年数学四真题

1. 填空题.

(a). 设随机变量 X 在区间 [-1,2] 上服从均匀分布; 随机变量 $Y=\left\{ egin{array}{ll} 1, & X>0 \\ 0, & X=0 \\ -1, & 其他 \end{array} \right.$ 则方差 DY=______.

2. 选择题.

- (a). 设 A,B,C 三个事件两两独立,则 A,B,C 相互独立的充分必要条件是 (A) A 与 BC 独立
 - (B) AB 与 $A \cup C$ 独立

1.15 2001 年真题 - 27 -

- (C) AB 与 AC 独立
- (D) $A \cup B$ 与 $A \cup C$ 独立
- (b). 在电炉上安装了 4 个温控器,其显示器的误差是随机的,在使用过程中,只要有两个温控器显示的温度不低于临界温度 t_0 ,电炉就断电,以 E 表示时间 "电炉断电",而 $T_{(1)} \leq T_{(2)} \leq T_{(3)} \leq T_{(4)}$ 为 4 个温控器显示的按递增顺序排列的温度值,则事件 E 等于
 - (A) $\{T_{(1)} \geq t_0\}$.
 - (B) $\{T_{(2)} \geq t_0\}$.
 - (C) $\{T_{(3)} \geq t_0\}$.
 - (D) $\{T_{(4)} \geq t_0\}$.

3. 计算题.

- (a). 设二维随机变量 (X,Y) 的密度函数为 $f(x,y) = \frac{1}{2} [\varphi_1(x,y) + \varphi_2(x,y)]$, 其中 $\varphi_1(x,y)$ 和 $\varphi_2(x,y)$ 都是二维正态密度函数,且它们对应的二维随机变量的相 关系数分别为 $\frac{1}{3}$ 和 $\frac{-1}{3}$,它们的边缘密度对应的随机变量的数学期望都是零,方 差都是 1.
 - (1) 求随机变量 X 和 Y 的密度函数 $f_1(x)$ 和 $f_2(y)$ 及 X 和 Y 的相关系数 ρ (可以直接利用二维正态密度的性质).
 - (2) 问 *X* 和 *Y* 是否独立? 为什么?
- (b). 设 A, B 是二随机事件; 随机变量 $X = \begin{cases} 1, \; \overline{A}A \, \text{出现}, \\ -1, \; \overline{A}A \, \text{不出现}, \end{cases}, Y = \begin{cases} 1, \; \overline{A}B \, \text{出现}, \\ -1, \; \overline{A}B \, \text{不出现}, \end{cases}$ 试证明随机变量 X 和 Y 不相关的充分必要条件是 $A \in B$ 相互独立.

1.15 2001 年真题

1.15.1 2001 数一

2001年数学一真题

1	填空题	
J	共工处	į,

(a). 设随机变量 X 的方差为 2, 则根据切比雪夫不等式有估计 $P\{X - E(X) | \ge 2\} \le$ _____.

2. 选择题.

- (a). 将一枚硬币重复掷 n 次,以 X 和 Y 分别表示正面向上和反面向上的次数,则 X 和 Y 的相关系数等于
 - A.-1
 - B.0
 - $C_{\frac{1}{2}}$
 - D.1
- 3. 计算题.

1.15 2001 年真题 - 28-

- (a). 设某班车起点站上客人数 X 服从参数 $\lambda(\lambda > 0)$ 的泊松分布,每位乘客在中途下车的概率为 P(0 < P < 1),且途中下车与否相互独立,以 Y 表示在中途下车的人数,求
 - (1) 在发车时有 n 个乘客的条件下,中途有 m 人下车的概率;
 - (2) 二维随机变量 (X,Y) 的概率分布.
- (b). 设总体 X 服从正态分布 $N(\mu, \sigma^2)$ ($\sigma > 0$),, 从该总体中抽取简单随机样本, 其样本均值为 $\bar{X} = \frac{1}{2n} \sum_{i=1}^{2n} X_i$, 求统计量 $Y = \sum_{i=1}^{n} (X_i + X_{n+i} 2\bar{X})^2$ 数学期望 E(Y).

1.15.2 2001 数三

2001年数学三真题

1. 填空题.

- (a). 设随机变量 X,Y 的数学期望都是 2 ,方差分别为 1 和 4 ,而相关系数为 0.5. 则根据切比雪夫不等式 $P\{|X-Y|\geq 6\}\leq$ _____.
- (b). 设总体 X 服从正态分布 $N\left(0,0.2^2\right)$,而 $X_1,X_2,\cdots X_{15}$ 是来自总体 X 的简单随机样本,则随机变量 $Y=\frac{X_1^2+X_2^2+\cdots X_{15}^2}{2\left(X_{11}^2+X_2^2+\cdots X_{15}^2\right)}$ 服从______ 分布,参数为

2. 选择题.

- (a). 将一枚硬币重复掷 n 次,以 X 和 Y 分别表示正面向上和反面向上的次数,则 X 和 Y 的相关系数等于
 - A.-1
 - B.0
 - $C.\frac{1}{2}$
 - D.1

3. 计算题.

- (a). 生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重 50 千克,标准差为 5 千克. 若用最大载重量为 5 吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于 0.977. (Φ(2)= 0.977,其中 Φ(X) 是标准正态布函数).
- (b). 设随机变量 X 和 Y 的联合分布是正方形 $G = \{(x,y) \mid 1 \le x \le 3, 1 \le y \le 3\}$ 上的均匀分布,试求随机变量 U = |X Y| 的概率密度 p(u).

1.15.3 2001 数四

2001年数学四真题

1. 填空题.

(a). 设随机变量 X,Y 的数学期望都是 2 ,方差分别为 1 和 4 ,而相关系数为 0.5. 则根据切比雪夫不等式 $P\{|X-Y| \geq 6\} \leq$ _____.

1.16 2002 年真题 - 29 -

2. 选择题.

- (a). 对于任意二事件 A 和 B, 与 $A \cup B = B$ 不等价的是
 - (A) $A \subset B$;
 - (B) $\bar{B} \subset \bar{A}$;
 - (C) $A\bar{B} = \phi$;
 - (D) $\bar{A}B = \phi$.
- (b). 将一枚硬币重复掷 n 次,以 X 和 Y 分别表示正面向上和反面向上的次数,则 X 和 Y 的相关系数等于
 - A.-1
 - B.0
 - $C_{\frac{1}{2}}$
 - D.1

3. 计算题.

- (a). 生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重 50 千克,标准差为 5 千克. 若用最大载重量为 5 吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于 0.977. $(\Phi(2)=0.977,$ 其中 $\Phi(X)$ 是标准正态布函数).
- (b). 设随机变量 X 和 Y 的联合分布在以点 (0,1),(1,0),(1,1) 为顶点的三角形区域上服从均匀分布,试求随机变量 U=X+Y 的方差.

1.16 2002 年真题

1.16.1 2002 数一

2002 年数学一真题

1. 填空题.

(a). 设随机变量 X 服从正态分布 $N(\mu, \sigma^2)(\sigma > 0)$, 且二次方程 $y^2 + 4y + X = 0$ 无实根的概率为 $\frac{1}{2}$, 则 $\mu = ______$.

2. 选择题.

- (a). 设 X_1 和 X_2 是任意两个相互独立的连续型随机变量,它们的概率密度分别为 $f_1(x)$ 和 $f_2(x)$,分布函数分别为 $F_1(x)$ 和 $F_2(x)$,则
 - $(A) f_1(x) + f_2(x)$ 必为某一随机变量的概率密度.
 - (B) $f_1(x)f_2(x)$ 必为某一随机变量的概率密度.
 - (C) $F_1(x) + F_2(x)$ 必为某一随机变量的分布函数.
 - $(D) F_1(x)F_2(x)$ 必为某一随机变量的分布函数

3. 计算题.

(a). 设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{1}{2}\cos\frac{x}{2}, & 0 \le x \le \pi \\ 0, & \text{其他} \end{cases}$ 对 X 独立地重

复观察 4 次,用 Y 表示观察值大于 $\frac{\pi}{3}$ 的次数,求 Y^2 的数学期望.

(b). 设总体 X 的概率分布为:

其中 θ ($0 < \theta < \frac{1}{2}$) 是未知参数,利用总体 X 的如下样本值 3, 1, 3, 0, 3, 1, 2, 3,求 θ 的矩估计值和最大似然估计值.

1.16.2 2002 数三

2002 年数学三真题

- 1. 填空题.
 - (a). 设随机变量 X 和 Y 的联合概率分布为

$X \setminus Y$	-1	0	11	
0	0.07	0.18	0.15	
1	0.08	0.32	0.20	

则 X^2 和 Y^2 的协方差 $cov(X^2, Y^2) =$ _____.

- (b). 设总体 X 的概率密度为 $f(x,\theta) = \begin{cases} e^{-(x-\theta)} & x \geq \theta \\ 0 & x < \theta \end{cases}$,而 X_1, X_2, \dots, X_n 是来自总体 X 的简单随机样本,则未知参数 θ 的矩估计量为
- 2. 选择题.
 - (a). 设随机变量 X 和 Y 都服从标准正态分布,则
 - (A) X + Y 服从正态分布
 - (B) $X^2 + Y^2$ 服从 χ^2 分布
 - (C) X^2 和 Y^2 都服从 χ^2 分布
 - (D) X^2/Y^2 服从 F 分布.
- 3. 计算题.
 - (a). 假设随机变量 U 在区间 [-2,2] 上服从均匀分布, 随机变量

$$X = \begin{cases} -1, & U \le -1, \\ 1, & U > -1; \end{cases}, Y = \begin{cases} -1, & U \le 1 \\ 1, & U > 1 \end{cases}$$
, 试求:

- (1) X 和 Y 的联合概率分布;
- (2) D(X + Y).
- (b). 假设一设备开机后无故障工作的时间 X 服从指数分布,平均无故障工作的时间 EX 为 5 小时,设备定时开机,出现故障时自动关机,而在无故障的情况下工作 2 小时便关机. 试求该设备每次开机无故障工作的时间 Y 的分布函数 F(y).

1.16.3 2002 数四

2002 年数学四真题

1.17 2003 年真题 - 31 -

1. 填空题.

(a). 设随机变量 X 和 Y 的联合概率分布为

$X \setminus Y$	-1	0	1
0	0.07	0.18	0.15
1	0.08	0.32	0.20

则 X 和 Y 的相关系数 $\rho =$

2. 冼择题.

- (a). 设随机变量 X_1, X_2, \dots, X_n 相互独立, $S_n = X_1 + X_2 + \dots + X_n$,则根据列维一林德伯格 (Levy-Lindberg) 中心极限定理,当 n 充分大时, S_n 近似服从正态分布,只要 X_1, X_2, \dots, X_n
 - (A) 有相同的数学期望
 - (B) 有相同的方差
 - (C) 服从同一指数分布
 - (D) 服从同一离散型分布

3. 计算题.

- (a). 设 AB 是任意二事件, 其中 A 的概率不等于 0 和 1, 证明: $P(B \mid A) = P(B \mid \bar{A})$ 是事件 A 与 B 独立的充分必要条件.
- (b). 假设一设备开机后无故障工作的时间 X 服从指数分布,平均无故障工作的时间 EX 为 5 小时,设备定时开机,出现故障时自动关机,而在无故障的情况下工作 2 小时便关机. 试求该设备每次开机无故障工作的时间 Y 的分布函数 F(y).

1.17 2003 年真题

1.17.1 2003 数一

2003年数学一真题

1. 填空题.

- 項至趣.

 (a). 设二维随机变量 (X,Y) 的概率密度为 $f(x,y) = \begin{cases} 6x, & 0 \le x \le y \le 1 \\ 0, & \text{其他} \end{cases}$ 则 $P\{X+Y<1\} =$
- (b). 已知一批零件的长度 X (单位: cm) 服从正态分布 $N(\mu,1)$, 从中随机地抽取 16 个零件,得到长度的平均值为 40 (cm) ,则 μ 的置信度为 0.95 的置信区间是 . (注: 标准正态分布函数值 $\Phi(1.96) = 0.975$, $\Phi(1.645) = 0.95$)

- (a). 设随机变量 $X \sim t(n)(n > 1)$, $Y = \frac{1}{X^2}$, 则
 - (A) $Y \sim \chi^2(n)$

(B)
$$Y \sim \chi^2(n-1)$$

1.17 2003 年真题 - 32 -

- (C) $Y \sim F(n, 1)$
- (D) $Y \sim F(1, n)$

3. 计算题.

- (a). 已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙 箱中仅装有3件合格品,从甲箱中任取3件产品放入乙箱后,求:(1)乙箱中 次品件数X的数学期望;
 - (2) 从乙箱中任取一件产品是次品的概率.
- (b). 设总体 X 的概率密度为 $f(x) = \begin{cases} 2e^{-2(x-\theta)}, & x > \theta \\ 0, & x \le \theta \end{cases}$, 其中 $\theta > 0$ 是未知参数.

从总体 X 中抽取简单随机样本 X_1, X_2, \dots, X_n , 记 $\hat{\theta} = \min(X_1, X_2, \dots, X_n)$.

- (1) 求总体 X 的分布函数 F(x);
- (2) 求统计量 $\hat{\theta}$ 的分布函数 $F_{\hat{\theta}}(x)$;
- (3) 如果用 $\hat{\theta}$ 作为 θ 的估计量,讨论它是否具有无偏性.

1.17.2 2003 数三

2003年数学三真题

1. 填空题.

- (a). 设随机变量 X 和 Y 的相关系数为 0.9, 若 Z = X 0.4, 则 Y 与 Z 的相关系数 为
- (b). 设总体 X 服从参数为 2 的指数分布, X_1, X_2, \dots, X_n 来自总体 X 的简单随机 样本,则当 $n \to \infty$ 时, $Y_n = \frac{1}{n} \sum_{i=1}^n X_i^2$ 依概率收敛于_____.

2. 选择题.

- (a). 将一枚硬币独立地掷两次,引进事件 A_1 ={ 掷第一次出现正面 }, A_2 ={ 掷第二次出现正面 }, A_3 ={ 正反面各出现一次 }, A_4 ={ 正面出现两次 },则事件
 - (A) A₁,A₂,A₃ 相互独立
 - (B) A2,A3,A4 相互独立
 - (C) A₁,A₂,A₃ 两两独立
 - (D) A2, A3, A4 两两独立

3. 计算题.

- (a). 设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{1}{3\sqrt[3]{x^2}}, & \exists x \in [1,8] \\ 0, & \text{其他} \end{cases}$; $F(x) \not = X$ 的分布函数,求随机变量 Y=F(X) 的分布函数.
- 布函数,求随机受量 $Y = \Gamma(A)$ 的现在分词 $Y = \Gamma(A)$ 的概率分布为 $X \sim \begin{pmatrix} 1 & 2 \\ 0.3 & 0.7 \end{pmatrix}$. 而 Y 的概率密度为 f(x),求随机变量 U = X + Y 的概率密度 g(u).

1.17.3 2003 数四

2003年数学四真题

1.18 2004 年真题 - 33 -

1. 填空题.

(a). 设随机变量 X 和 Y 的相关系数为 0.5,EX=EY=0, $EX^2 = EY^2$ =2,则 $E(X + Y)^2$ = _____.

2. 选择题.

- (a). 对于任意二事件 A 和 B,
 - (A) 若 $AB \neq \emptyset$, 则 A, B 一定独立.
 - (B) 若 $AB \neq \emptyset$, 则 A, B 有可能独立.
 - (C) 若 $AB = \emptyset$, 则 A, B 一定独立.
 - (D) 若 $AB = \emptyset$, 则 A, B 一定不独立.
- (b). 设随机变量 X 和 Y 都服从正态分布,且它们不相关,则
 - (A) X 与 Y 一定独立.
 - (B) (X, Y) 服从二维正态分布.
 - (C) X 与 Y 未必独立.
 - (D) X + Y 服从一维正态分布.

3. 计算题.

- (a). 设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{1}{3\sqrt[3]{x^2}}, & \exists x \in [1,8] \\ 0, & \text{其他} \end{cases}$; F(x) 是 X 的分布函数,求随机变量 Y=F(X) 的分布函数.
- (b). 对于任意二事件 A 和 B ,0 < P(A) < 1 ,0 < P(B) < 1 , $\rho = \frac{P(AB) P(A)P(B)}{\sqrt{P(A)P(B)P(\bar{A})P(\bar{B})}}$ 称做事件 A 和 B 的相关系数.
 - (1) 证明事件 A 和 B 独立的充分必要条件是其相关系数等于零;
 - (2) 利用随机变量相关系数的基本性质,证明 $|\rho| \le 1$.

1.18 2004 年真题

1.18.1 2004 数一

2004年数学一真题

1. 填空题.

(a). 设随机变量 X 服从参数为 λ 的指数分布,则 $P\{X > \sqrt{DX}\} =$ _____.

- (a). 设随机变量 X 服从正态分布 N(0,1), 对给定的 $\alpha(0 < \alpha < 1)$, 数 u_{α} 满足 $P\{X > u_{\alpha}\} = \alpha$, 若 $P\{X \mid < x\} = \alpha$, 则 x 等于
 - (A) $u_{\frac{\alpha}{2}}$.
 - (B) $u_{1-\frac{\alpha}{2}}$
 - (C) $u_{\frac{1-\alpha}{2}}$.
 - (D) $u_{1-\alpha}$.
- (b). 设随机变量 $X_1, X_2, \dots, X_n (n > 1)$ 独立同分布,且其方差为 $\sigma^2 > 0$. 令 Y =

1.18 2004 年真题 - 34 -

 $\frac{1}{n}\sum_{i=1}^n X_i$, 则

- (A) $Cov(X_1, Y) = \frac{\sigma^2}{n}$.
- (B) $\operatorname{Cov}(X_1, Y) = \sigma^2$.
- (C) $D(X_1 + Y) = \frac{n+2}{n}\sigma^2$.
- (D) $D(X_1 Y) = \frac{n+1}{n}\sigma^2$.

3. 计算题.

- (a). 设 A, B 为随机事件,且 $P(A) = \frac{1}{4}, P(B \mid A) = \frac{1}{3}, P(A \mid B) = \frac{1}{2}, \diamondsuit X = \begin{cases} 1, & A \text{ 发生} \\ 0, A \text{ 不发生} \end{cases}$, $Y = \begin{cases} 1, & B \text{ 发生} \\ 0, B \text{ 不发生} \end{cases}$ 求:
 - (I) 二维随机变量 (X,Y) 的概率分布;
 - (II) X 和 Y 的相关系数 ρ_{XY} .
- (b). 设总体 X 的分布函数为 $F(x,\beta) = \begin{cases} 1 \frac{1}{x^{\beta}}, x > 1 \\ 0, x \leq 1 \end{cases}$, 其中未知参数 $\beta > 1$
 - $1.X_1, X_2, \cdots, X_n$ 为来自总体 X 的简单随机样本,求:
 - (I) β 的矩估计量;
 - (II) β 的最大似然估计量.

1.18.2 2004 数三

2004年数学三真题

1. 填空题.

- (a). 设随机变量 X 服从参数为 λ 的指数分布,则 $P\{X > \sqrt{DX}\} =$ _____.
- (b). 设总体 X 服从正态分布 $N\left(\mu_1, \sigma^2\right)$, 总体 Y 服从正态分布 $N\left(\mu_2, \sigma^2\right)$, $X_1, X_2, \cdots X_{n_1}$ 和 $Y_1, Y_2, \cdots Y_{n_2}$ 分别是来自总体 X 和 Y 的简单随机样本,则 $E\left[\frac{\sum_{i=1}^{n_1}\left(X_i-\bar{X}\right)^2+\sum_{j=1}^{n_2}\left(Y_j-\bar{Y}\right)^2}{n_1+n_2-2}\right]=\underline{\qquad}.$

2. 选择题

- (a). 设随机变量 X 服从正态分布 N(0,1), 对给定的 $\alpha(0 < \alpha < 1)$, 数 u_{α} 满足 $P\{X > u_{\alpha}\} = \alpha$, 若 $P\{X \mid < x\} = \alpha$, 则 x 等于
 - (A) $u_{\frac{\alpha}{2}}$.
 - (B) $u_{1-\frac{\alpha}{2}}$
 - (C) $u_{\frac{1-\alpha}{2}}$.
 - (D) $u_{1-\alpha}$.

3. 计算题.

- (a). 设 A,B 为随机事件,且 $P(A) = \frac{1}{4}, P(B \mid A) = \frac{1}{3}, P(A \mid B) = \frac{1}{2}, 令 X = \begin{cases} 1, & A \text{ 发生} \\ 0, A \text{ 不发生} \end{cases}$, $Y = \begin{cases} 1, & B \text{ 发生} \\ 0, B \text{ 不发生} \end{cases}$ 求:
 - (I) 二维随机变量 (X,Y) 的概率分布:
 - (II) X 和 Y 的相关系数 ρ_{XY} .

1.19 2005 年真题 - 35 -

- (b). 设随机变量 X 的分布函数为 $F(x,\alpha,\beta) = \begin{cases} 1 \left(\frac{\alpha}{x}\right)^{\beta}, & x > \alpha \\ 0, & x \leq \alpha \end{cases}$ 其中参数 $\alpha > 0, \beta > 1$. 设 X_1, X_2, \cdots, X_n 为来自总体 X 的简单随机样本.
 - (I) 当 $\alpha = 1$ 时,求未知参数 β 的矩估计量;
 - (II) 当 $\alpha = 1$ 时, 求未知参数 β 的最大似然估计量;
 - (III) 当 $\beta = 2$ 时, 求未知参数 α 的最大似然估计量.

1.18.3 2004 数四

2004 年数学四真题

- 1. 填空题.
 - (a). 设随机变量 X 服从参数为 λ 的指数分布,则 $P\{X > \sqrt{DX}\} =$ _____.
- 2. 选择题.
 - (a). 设随机变量 X 服从正态分布 N(0,1), 对给定的 $\alpha(0 < \alpha < 1)$, 数 u_{α} 满足 $P\{X > u_{\alpha}\} = \alpha$, 若 $P\{X | < x\} = \alpha$, 则 x 等于
 - (A) $u_{\frac{\alpha}{2}}$.
 - (B) $u_{1-\frac{\alpha}{2}}$
 - (C) $u_{\frac{1-\alpha}{\alpha}}$.
 - (D) $u_{1-\alpha}$.
 - (b). 设随机变量 $X_1, X_2, \cdots, X_n (n > 1)$ 独立同分布,且其方差为 $\sigma^2 > 0$. 令 $Y = \frac{1}{n} \sum_{i=1}^n X_i$, 则
 - (A) $\operatorname{Cov}(X_1, Y) = \frac{\sigma^2}{n}$.
 - (B) $Cov(X_1, Y) = \sigma^2$.
 - (C) $D(X_1 + Y) = \frac{n+2}{n}\sigma^2$.
 - (D) $D(X_1 Y) = \frac{n+1}{n}\sigma^2$.
- 3. 计算题.
 - (a). 设 A, B 为随机事件,且 $P(A) = \frac{1}{4}, P(B \mid A) = \frac{1}{3}, P(A \mid B) = \frac{1}{2}, 令 X = \begin{cases} 1, & A \text{ 发生} \\ 0, A \text{ 不发生} \end{cases}$, $Y = \begin{cases} 1, & B \text{ 发生} \\ 0, B \text{ 不发生} \end{cases}$ 求:
 - (I) 二维随机变量 (X,Y) 的概率分布;
 - (II) X 和 Y 的相关系数 ρ_{XY} .
 - (b). 设随机变量 X 在区间 (0,1) 上服从均匀分布, 在 X = x(0 < x < 1) 的条件下, 随机变量 Y 在区间 (0,x) 上服从均匀分布, 求:
 - (I) 随机变量 X 和 Y 的联合概率密度;
 - (II) Y 的概率密度;
 - (III) 概率 $P\{X + Y > 1\}$.

1.19 2005 年真题

1.19.1 2005 数一

2005年数学一真题

- 1. 填空题.
 - (a). 从数 1,2,3,4 中任取一个数,记为 X, 再从 $1,2,\cdots,X$ 中任取一个数,记为 Y, 则 $P\{Y=2\}=$ _____.

-36-

- 2. 选择题.
 - (a). 设二维随机变量(X,Y)的概率分布为

X\Y	0	1
0	0.4	a
1	b	0.1

已知随机事件 $\{X = 0\}$ 与 $\{X + Y = 1\}$ 相互独立,则

(A)
$$a = 0.2, b = 0.3$$

(B)
$$a = 0.4, b = 0.1$$

(C)
$$a = 0.3, b = 0.2$$

(D)
$$a = 0.1, b = 0.4$$

- (b). 设 $X_1, X_2, \dots, X_n (n \ge 2)$ 为来自总体 N(0,1) 的简单随机样本, \bar{X} 为样本均值, S^2 为样本方差,则
 - (A) $n\bar{X} \sim N(0,1)$

(B)
$$nS^2 \sim \chi^2(n)$$

(C)
$$\frac{(n-1)\bar{X}}{S} \sim t(n-1)$$

(D)
$$\frac{(n-1)X_1^2}{\sum_{i=2}^n X_i^2} \sim F(1, n-1)$$

- 3. 计算题.
 - (a). 设二维随机变量 (X,Y) 的概率密度为

$$f(x,y) = \begin{cases} 1, 0 < x < 1, 0 < y < 2x \\ 0, & \text{ if } \text{ it.} \end{cases}$$

- (I) (X,Y) 的边缘概率密度 $f_X(x), f_Y(y)$;
- (II) Z = 2X Y 的概率密度 $f_Z(z)$.
- (b). 设 $X_1, X_2, \dots, X_n (n > 2)$ 为来自总体 N(0,1) 的简单随机样本, \bar{X} 为样本均值,记 $Y_i = X_i \bar{X}, i = 1, 2, \dots, n, 求$:
 - (I) Y_i 的方差 DY_i , $i = 1, 2, \dots, n$;
 - (II) Y_1 与 Y_n 的协方差 $Cov(Y_1, Y_n)$.

1.19.2 2005 数三

2005 年数学三真题

1.19 2005 年真题 - 37 -

1. 填空题.

(a). 从数 1,2,3,4 中任取一个数,记为 X, 再从 $1,2,\cdots,X$ 中任取一个数,记为 Y, 则 $P\{Y=2\}=$

(b). 设二维随机变量(X,Y)的概率分布为

已知随机事件 $\{X=0\}$ 与 $\{X+Y=1\}$ 相互独立,则 a=______,b=_____

2. 选择题.

(a). 设一批零件的长度服从正态分布 $N(\mu, \sigma^2)$, 其中 μ, σ^2 均未知,现从中随机抽取 16 个零件测得样本均值 $\bar{x}=20(\text{ cm})$, 样本标准差 s=1(cm), 则 μ 的置信 度为 0.90 的置信区间是

(A)
$$\left(20 - \frac{1}{4}t_{0.05}(16), 20 + \frac{1}{4}t_{0.05}(16)\right)$$

(B)
$$(20 - \frac{1}{4}t_{0.1}(16), 20 + \frac{1}{4}t_{0.1}(16)).$$

(C)
$$(20 - \frac{1}{4}t_{0.05}(15), 20 + \frac{1}{4}t_{0.05}(15))$$

(D)
$$(20 - \frac{1}{4}t_{0.1}(15), 20 + \frac{1}{4}t_{0.1}(15))$$

3. 计算题.

(a). 设二维随机变量 (X,Y) 的概率密度为 $f(x,y) = \begin{cases} 1, & 0 < x < 1, 0 < y < 2x \\ 0, & 其他 \end{cases}$

求:

- (I) (X,Y) 的边缘概率密度 $f_X(x), f_Y(y)$;
- (II) Z = 2X Y 的概率密度 $f_Z(z)$;

(III)
$$P\{Y \le \frac{1}{2} \mid X \le \frac{1}{2}\}.$$

- (b). 设 $X_1, X_2, \dots, X_n (n > 2)$ 为来自总体 $N (0, \sigma^2)$ 的简单随机样本,其样本均值为 \bar{X} . 记 $Y_i = X_i \bar{X}, i = 1, 2, \dots, n$.
 - (I) 求 Y_i 的方差 $DY_i, i = 1, 2, \dots, n$;
 - (II) 求 Y_1 与 Y_n 的协方差 $Cov(Y_1, Y_n)$;
 - (III) 若 $c(Y_1 + Y_n)^2$ 是 σ^2 的无偏估计量,求常数 c.

1.19.3 2005 数四

2005 年数学四真题

1. 填空题.

- (a). 从数 1,2,3,4 中任取一个数,记为 X, 再从 $1,2,\cdots,X$ 中任取一个数,记为 Y, 则 $P\{Y=2\}=$ _____.
- 2. 选择题.
 - (a). 设二维随机变量(X,Y)的概率分布为

X\Y	0	1
0	0.4	a
1	b	0.1

已知随机事件 $\{X = 0\}$ 与 $\{X + Y = 1\}$ 相互独立,则

- (A) a = 0.2, b = 0.3
- (B) a = 0.4, b = 0.1
- (C) a = 0.3, b = 0.2
- (D) a = 0.1, b = 0.4
- (b). 设 $X_1, X_2, \dots, X_n, \dots$ 为独立同分布的随机变量列, 且均服从参数为 $\lambda(\lambda > 1)$ 的指数分布, 记 $\Phi(x)$ 为标准正态分布函数, 则

(A)
$$\lim_{n\to\infty} P\left\{\frac{\sum_{i=1}^{n} X_i - n\lambda}{\lambda\sqrt{n}} \le x\right\} = \Phi(x)$$

(B) $\lim_{n\to\infty} P\left\{\frac{\sum_{i=1}^{n} X_i - n\lambda}{\sqrt{n\lambda}} \le x\right\} = \Phi(x)$
(C) $\lim_{n\to\infty} P\left\{\frac{\lambda\sum_{i=1}^{n} X_i - n\lambda}{\sqrt{n}} \le x\right\} = \Phi(x)$
(D) $\lim_{n\to\infty} P\left\{\frac{\sum_{i=1}^{n} X_i - n\lambda}{\sqrt{n\lambda}} \le x\right\} = \Phi(x)$

(D)
$$\lim_{n\to\infty} P\left\{\frac{\sum_{i=1}^n X_i - \lambda}{\sqrt{n}} \le x\right\} = \Phi(x)$$

3. 计算题.

- 求:
 - (I) (X,Y) 的边缘概率密度 $f_X(x), f_Y(y)$;
 - (II) Z = 2X Y 的概率密度 $f_Z(z)$;
 - (III) $P\{Y \leq \frac{1}{2} \mid X \leq \frac{1}{2}\}.$
- (b). 设 $X_1, X_2, \dots, X_n (n > 2)$ 为独立同分布的随机变量, 且均服从 N(0,1), 记
 - (I) Y_i 的方差 DY_i , $i = 1, 2, \dots, n$;
 - (II) Y_1 与 Y_n 的协方差 $Cov(Y_1, Y_n)$;
 - (III) $P\{Y_1 + Y_n \le 0\}$

1.20 2006 年真题

1.20.1 2006 数一

- 1. 填空题.
 - (a). 设随机变量 X 与 Y 相互独立,且均服从区间 [0,3] 上的均匀分布,则 $P\{\max\{X,Y\} \leq$ 1} =_____.
- 2. 选择题.
 - (a). 设 A, B 为随机事件,且 $P(B) > 0, P(A \mid B) = 1,$ 则必有 (A) $P(A \cup B) > P(A)$.

1.20 2006 年真题 - 39 -

- (B) $P(A \cup B) > P(B)$.
- (C) $P(A \cup B) = P(A)$.
- (D) $P(A \cup B) = P(B)$.
- (b). 设随机变量 X 服从正态分布 $N(\mu_1, \sigma_1^2)$, 随机变量 Y 服从正态分布 $N(\mu_2, \sigma_2^2)$, 且 $P\{|X \mu_1| < 1\} > P\{|Y \mu_2| < 1\}$, 则必有
 - (A) $\sigma_1 < \sigma_2$.
 - (B) $\sigma_1 > \sigma_2$.
 - (C) $\mu_1 < \mu_2$.
 - (D) $\mu_1 > \mu_2$.

3. 计算题.

(a). 设随机变量 X 的概率密度为 $f_x(x) = \begin{cases} \frac{1}{2}, & -1 < x < 0 \\ \frac{1}{4}, & 0 \le x < 2 \Leftrightarrow Y = X^2, F(x, y) \\ 0, & \text{其他} \end{cases}$

为二维随机变量 (X,Y) 的分布函数. 求:

- (I) Y 的概率密度 $f_Y(y)$;
- (II) $F\left(-\frac{1}{2}, 4\right)$.
- (b). 设总体 X 的概率密度为 $f(x;\theta) = \begin{cases} \theta, 0 < x < 1 \\ 1 \theta, 1 \le x < 2, \quad \text{其中 } \theta \text{ 是未知参数} \\ 0, \quad \text{其他} \end{cases}$ $(0 < \theta < 1).X_1, X_2, \cdots, X_n$ 为来自总体 X 的简单随机样本, 记 N 为样本值 x_1, x_2, \cdots, x_n 中小于 1 的个数。求 θ 的最大似然估计.

1.20.2 2006 数三

2006 年数学三真题

- 1. 填空题.
 - (a). 设随机变量 X 与 Y 相互独立,且均服从区间 [0,3] 上的均匀分布,则 $P\{\max\{X,Y\}\leq 1\} =$ _____.
 - (b). 设总体 X 的概率密度为 $f(x) = \frac{1}{2}e^{-|x|}(-\infty < x < +\infty), X_1, X_2, \cdots, X_n$ 为总体 X 的简单随机样本,其样本方差为 S^2 ,则 $ES^2 =$.
- 2. 选择题.
 - (a). 设随机变量 X 服从正态分布 $N\left(\mu_1, \sigma_1^2\right)$, 随机变量 Y 服从正态分布 $N\left(\mu_2, \sigma_2^2\right)$, 且 $P\left\{|X \mu_1| < 1\right\} > P\left\{|Y \mu_2| < 1\right\}$, 则必有
 - (A) $\sigma_1 < \sigma_2$.
 - (B) $\sigma_1 > \sigma_2$.
 - (C) $\mu_1 < \mu_2$.
 - (D) $\mu_1 > \mu_2$.
- 3. 计算题.

1.20 2006 年真题 - 40 -

(a). 设随机变量 X 的概率密度为 $f_X(x) = \begin{cases} \frac{1}{2}, & -1 < x < 0 \\ \frac{1}{4}, & 0 \le x < 2, \ \diamondsuit \quad Y = X^2, F(x,y) \\ 0, & 其他 \end{cases}$

为二维随机变量 (X,Y) 的分布函数. 求:

- (I) 求 Y 的概率密度 $f_y(y)$;
- (II) Cov(X, Y);
- (III) $F\left(-\frac{1}{2}, 4\right)$.
- (b). 设总体 X 的概率密度为 $f(x;\theta) = \begin{cases} \theta, & 0 < x < 1 \\ 1 \theta, 1 \le x < 2, & \text{其中 } \theta \text{ 是未知参数} \\ 0, & \text{其他} \end{cases}$ $(0 < \theta < 1).X_1, X_2, \cdots, X_n$ 为来自总体 X 的简单随机样本,记 N 为样本值 x_1, x_2, \cdots, x_n 中小于 1 的个数. 求:
 - $(I) \theta$ 的矩估计;
 - (II) θ 的最大似然估计.

1.20.3 2006 数四

2006 年数学四真题

- 1. 填空题.
 - (a). 设随机变量 X 与 Y 相互独立,且均服从区间 [0,3] 上的均匀分布,则 $P\{\max\{X,Y\}\leq 1\}=$ _____.
- 2. 选择题.
 - (a). 设随机变量 X 服从正态分布 $N\left(\mu_1, \sigma_1^2\right)$, 随机变量 Y 服从正态分布 $N\left(\mu_2, \sigma_2^2\right)$, 且 $P\left\{|X \mu_1| < 1\right\} > P\left\{|Y \mu_2| < 1\right\}$, 则必有
 - (A) $\sigma_1 < \sigma_2$.
 - (B) $\sigma_1 > \sigma_2$.
 - (C) $\mu_1 < \mu_2$.
 - (D) $\mu_1 > \mu_2$.
- 3. 计算题.
 - (a). 设二维随机变量 (X,Y) 的概率分布为

$\mathbf{X}\setminus\mathbf{Y}$	-1	0	1
-1	a	0	0.2
0	0.1	b	0.2
1	0	0.1	c

其中 a,b,c 为常数,且 X 的数学期望 $EX=-0.2,P\{Y\leq 0\mid X\leq 0\}=0.5,$

- 记 Z = X + Y, 求
- (I) a, b, c 的值;
- (II) Z 的概率分布;
- (III) $P{X = Z}$

1.21 2007 年真题 -41-

(b). 设随机变量 X 的概率密度为 $f_X(x) = \begin{cases} \frac{1}{2}, & -1 < x < 0 \\ \frac{1}{4}, & 0 \le x < 2, \ \diamondsuit \quad Y = X^2, F(x,y) \\ 0, & 其他 \end{cases}$

为二维随机变量 (X,Y) 的分布函数. 求:

- (I) 求 Y 的概率密度 $f_y(y)$;
- (II) Cov(X, Y);
- (III) $F\left(-\frac{1}{2}, 4\right)$.

1.21 2007 年真题

1.21.1 2007 数一

- 1. 选择题.
 - (a). 某人向同一目标独立重复射击,每次射击命中目标的概率为 p(0 ,则此人第 4 次射击恰好第 2 次命中目标的概率为
 - (A) $3p(1-p)^2$
 - (B) $6p(1-p)^2$
 - (C) $3p^2(1-p)^2$
 - (D) $6p^2(1-p)^2$
 - (b). 设随机变量 (X,Y) 服从二维正态分布,且 X 与 Y 不相关, $f_x(x),f_y(y)$ 分别表示 X,Y 的概率密度,则在 Y=y 的条件下,X 的条件概率密度 $f_{X|Y}(x\mid y)$ 为
 - (A) $f_X(x)$
 - (B) $f_Y(y)$
 - (C) $f_X(x)f_Y(y)$
 - (D) $\frac{f_X(x)}{f_Y(y)}$
- 2. 填空题.
 - (a). 在区间 (0,1) 中随机地取两个数,则这两个数之差的绝对值小于 $\frac{1}{2}$ 的概率为______.
- 3. 计算题.
 - (a). 设二维随机变量(X,Y)的概率密度为 $f(x,y) = \begin{cases} 2-x-y, 0 < x < 1, 0 < y < 1 \\ 0, 其它 \end{cases}$
 - (I) 求 $P\{X > 2Y\}$
 - (II) 求 Z = X + Y 的概率密度 $f_z(z)$.
 - (b). 设总体 X 的概率密度为 $f(x,\theta)=\left\{egin{array}{l} \frac{1}{2\theta},0< x<\theta\\ \frac{1}{2(1-\theta)},\theta\leq x<1 \end{array}\right.$,其中参数 $\theta(0<\theta<0,$ 其它
 - 1) 未知, X_1, X_2, \dots, X_n 是来自总体 X 的简单随机样本, X 是样本均值.

1.21 2007 年真题 - 42 -

- (I) 求参数 θ 的矩估计量 $\hat{\theta}$;
- (II) 判断 $4\bar{X}^2$ 是否为 θ^2 的无偏估计量,并说明理由.

1.21.2 2007 数三

2007年数学三真题

1. 选择题.

- (a). 某人向同一目标独立重复射击,每次射击命中目标的概率为 p(0 ,则此人第 4 次射击恰好第 2 次命中目标的概率为
 - (A) $3p(1-p)^2$
 - (B) $6p(1-p)^2$
 - (C) $3p^2(1-p)^2$
 - (D) $6p^2(1-p)^2$
- (b). 设随机变量 (X,Y) 服从二维正态分布,且 X 与 Y 不相关, $f_x(x)$, $f_y(y)$ 分别表示 X, Y 的概率密度,则在 Y=y 的条件下,X 的条件概率密度 $f_{X|Y}(x\mid y)$ 为
 - (A) $f_X(x)$
 - (B) $f_Y(y)$
 - (C) $f_X(x)f_Y(y)$
 - (D) $\frac{f_X(x)}{f_Y(y)}$

2. 填空题.

(a). 在区间 (0,1) 中随机地取两个数,则这两个数之差的绝对值小于 $\frac{1}{2}$ 的概率为

3. 计算题.

- (a). 设二维随机变量 (X,Y) 的概率密度为 $f(x,y) = \begin{cases} 2-x-y, 0 < x < 1, 0 < y < 1 \\ 0, 其它 \end{cases}$
 - (I) 求 $P\{X > 2Y\}$
 - (II) 求 Z = X + Y 的概率密度 $f_z(z)$.
- (b). 设总体 X 的概率密度为 $f(x,\theta)=\left\{egin{array}{l} \frac{1}{2\theta},0< x<\theta\\ \frac{1}{2(1-\theta)},\theta\leq x<1 \end{array}\right.$,其中参数 $\theta(0<\theta<0$,其它
 - 1) 未知, X_1, X_2, \dots, X_n 是来自总体 X 的简单随机样本, \bar{X} 是样本均值.
 - (I) 求参数 θ 的矩估计量 $\hat{\theta}$;
 - (II) 判断 $4\bar{X}^2$ 是否为 θ^2 的无偏估计量,并说明理由.

1.21.3 2007 数四

2007年数学四真题

- (a). 某人向同一目标独立重复射击,每次射击命中目标的概率为 p(0 ,则此人第 4 次射击恰好第 2 次命中目标的概率为
 - $(A) 3p(1-p)^2$
 - (B) $6p(1-p)^2$
 - (C) $3p^2(1-p)^2$
 - (D) $6p^2(1-p)^2$
- (b). 设随机变量 (X,Y) 服从二维正态分布,且 X 与 Y 不相关, $f_x(x)$, $f_y(y)$ 分别表示 X, Y 的概率密度,则在 Y=y 的条件下,X 的条件概率密度 $f_{X|Y}(x\mid y)$ 为
 - (A) $f_X(x)$
 - (B) $f_Y(y)$
 - (C) $f_X(x)f_Y(y)$
 - (D) $\frac{f_X(x)}{f_Y(y)}$
- 2. 填空题.
 - (a). 在区间 (0,1) 中随机地取两个数,则这两个数之差的绝对值小于 $\frac{1}{2}$ 的概率为 .
- 3. 计算题.
 - (a). 设二维随机变量 (X,Y) 的概率密度为 $f(x,y) = \begin{cases} 2-x-y, 0 < x < 1, 0 < y < 1 \\ 0, 其它 \end{cases}$
 - (I) 求 $P\{X > 2Y\}$
 - (II) 求 Z = X + Y 的概率密度 $f_z(z)$.
 - (b). 设随机变量 X 与 Y 独立同分布,且 X 的概率分布为 $\frac{X \mid 1 \mid 2}{P \mid \frac{2}{3} \mid \frac{1}{3}}$ 记 $U = \max\{X,Y\}, V = \min\{X,Y\}, \bar{x}$
 - (I) (U, V) 的概率分布;
 - (II) U 与 V 的协方差 Cov(U, V)

1.22 2008 年真题

1.22.1 2008 数一

- 1. 选择题.
 - (a). 随机变量 X,Y 独立同分布,且 X 的分布函数为 F(x),则 $Z = \max\{X,Y\}$ 分 布函数为
 - (A) $F^{2}(x)$
 - (B) F(x)F(y)
 - (C) $1 [1 F(x)]^2$
 - (D) [1 F(x)][1 F(y)]

1.22 2008 年真题 **- 44 -**

(b). 随机变量 $X \sim N(0,1), Y \sim N(1,4),$ 且相关系数 $\rho_{XY} = 1,$ 则

(A)
$$P{Y = -2X - 1} = 1$$

(B)
$$P{Y = 2X - 1} = 1$$

(C)
$$P{Y = -2X + 1} = 1$$

(D)
$$P{Y = 2X + 1} = 1$$

2. 填空颢.

- (a). 设随机变量 X 服从参数为 1 的泊松分布,则 $P\{X = EX^2\} =$ __
- 3. 计算题.
 - (a). 设随机变量 X = Y 相互独立, X 概率分布为 $P\{X = i\} = \frac{1}{3}(i = -1, 0, 1)$, Y 的概率密度为 $f_Y(y) = \begin{cases} 1 & 0 \le y \le 1 \\ 0 & 其它 \end{cases}$, 记 Z = X + Y
 - (I) $Rightharpoonup P(Z \le \frac{1}{2} \mid X = 0)$
 - (II) 求 Z 的概率密度 $f_z(z)$.
 - (b). 设 X_1, X_2, \dots, X_n 是总体为 $N(\mu, \sigma^2)$ 的简单随机样本,记

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2, \quad T = \bar{X}^2 - \frac{1}{n} S^2$$

- (I) 证明 $T \in \mu^2$ 的无偏估计量;
- (II) 当 $\mu = 0$, $\sigma = 1$ 时,求 DT.

1.22.2 2008 数三

2008年数学三真题

- 1. 选择题.
 - (a). 随机变量 X, Y 独立同分布,且 X 的分布函数为 F(x),则 $Z = \max\{X, Y\}$ 分 布函数为
 - (A) $F^{2}(x)$
 - (B) F(x)F(y)
 - (C) $1 [1 F(x)]^2$
 - (D) [1 F(x)][1 F(y)]
 - (b). 随机变量 $X \sim N(0,1), Y \sim N(1,4),$ 且相关系数 $\rho_{XY} = 1,$ 则
 - (A) $P{Y = -2X 1} = 1$
 - (B) $P{Y = 2X 1} = 1$
 - (C) $P{Y = -2X + 1} = 1$
 - (D) $P{Y = 2X + 1} = 1$
- 2. 填空题.
 - (a). 设随机变量 X 服从参数为 1 的泊松分布,则 $P\{X = EX^2\} = ____.$
- 3. 计算题.
 - (a). 设随机变量 X 与 Y 相互独立, X 概率分布为 $P\{X=i\} = \frac{1}{2}(i=-1,0,1)$, Y

1.23 2009 年真题 - 45 -

的概率密度为
$$f_Y(y)=\left\{ egin{array}{ll} 1 & 0\leq y\leq 1 \\ 0 & \mbox{其它} \end{array} \right., \quad \mbox{记 } Z=X+Y$$
 (I) 求 $P\left\{Z\leq \frac{1}{2}\mid X=0\right\}$

- (II) 求 Z 的概率密度 $f_z(z)$.
- (b). 设 X_1, X_2, \dots, X_n 是总体为 $N(\mu, \sigma^2)$ 的简单随机样本,记

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2, \quad T = \bar{X}^2 - \frac{1}{n} S^2$$

- (I) 证明 $T \in \mu^2$ 的无偏估计量;
- (II) 当 $\mu = 0$, $\sigma = 1$ 时,求 DT.

1.22.3 2008 数四

2008 年数学四真题

- 1. 选择题.
 - (a). 随机变量 X,Y 独立同分布,且 X 的分布函数为 F(x),则 $Z=\max\{X,Y\}$ 分布函数为
 - (A) $F^2(x)$
 - (B) F(x)F(y)
 - (C) $1 [1 F(x)]^2$
 - (D) [1 F(x)][1 F(y)]
 - (b). 随机变量 $X \sim N(0,1), Y \sim N(1,4),$ 且相关系数 $\rho_{XY} = 1,$ 则

(A)
$$P{Y = -2X - 1} = 1$$

(B)
$$P{Y = 2X - 1} = 1$$

(C)
$$P{Y = -2X + 1} = 1$$

(D)
$$P{Y = 2X + 1} = 1$$

- 2. 填空题.
 - (a). 设随机变量 X 服从参数为 1 的泊松分布,则 $P\{X = EX^2\} =$ ______
- 3. 计算题.
 - (a). 设随机变量 X 与 Y 相互独立,X 概率分布为 $P\{X=i\}=\frac{1}{3}(i=-1,0,1)$, Y 的概率密度为 $f_Y(y)=\left\{ egin{array}{ll} 1 & 0\leq y\leq 1 \\ 0 & \mbox{其它} \end{array} \right.$, 记 Z=X+Y
 - (I) $R P \{Z \leq \frac{1}{2} \mid X = 0\}$
 - (II) 求 Z 的概率密度 $f_z(z)$.
 - (b). 设某企业生产线上产品合格率为 0.96, 不合格产品中只有品可进行再加工, 且 再加工合格率为 0.8, 其余均为废品,每件合格品获利 80 元,每件废品亏损 20 元,为保证该企业每天平均利润不低于 2 万元,问企业每天至少应生产多少件产品?

1.23 2009 年真题 - 46-

1.23 2009 年真题

1.23.1 2009 数一

2009年数学一真题

1. 选择题.

- (a). 设随机变量 X 的分布函数为 $F(x) = 0.3\Phi(x) + 0.7\Phi\left(\frac{x-1}{2}\right)$, 其中 $\Phi(x)$ 为标准 正态分布的分布函数,则 EX =
 - (A) 0
 - (B) 0.3
 - (C) 0.7
 - (D) 1
- - (A) 0
 - (B) 1
 - (C) 2
 - (D)3

2. 填空题.

- (a). 设 $X_1, X_2, \cdots X_m$ 为来自二项分布总体 B(n, p) 的简单随机样本, \bar{X} 和 S^2 分别为样本均值和样本方差. 若 $\bar{X} + kS^2$ 为 np^2 的无偏估计量,则 k =_____.
- 3. 计算题.
 - (a). 袋中有 1 个红球、2 个黑球与 3 个白球。现有放回地从袋中取两次,每次取一个球. 以 X,Y,Z 分别表示两次取球所取得的红球、黑球与白球的个数.
 - (I) $\mathcal{R} P\{X = 1 \mid Z = 0\}$
 - (II) 求二维随机变量 (X,Y) 的概率分布.
 - (b). 设总体 X 的概率密度为 $f(x) = \begin{cases} \lambda^2 x e^{-\lambda x}, & x > 0 \\ 0, & \text{其他,} \end{cases}$ 其中参数 $\lambda(\lambda > 0)$ 未 知, X_1, X_2, \cdots, X_n 是来自总体 X 的简单随机样本
 - (I) 求参数 λ 的矩估计量;
 - (II) 求参数 λ 的最大似然估计量.

1.23.2 2009 数三

2009 年数学三真题

- 1. 选择题.
 - (a). 设事件 A 与事件 B 互不相容,则

1.24 2010 年真题 - 47 -

- (A) $P(\bar{A}\bar{B}) = 0$
- (B) P(AB) = P(A)P(B)
- (C) P(A) = 1 P(B)
- (D) $P(\bar{A} \cup \bar{B}) = 1$
- - (A) 0
 - (B) 1
 - (C) 2
 - (D)3

2. 填空题.

(a). 设 $X_1, X_2, \cdots X_m$ 为来自二项分布总体 B(n, p) 的简单随机样本, \bar{X} 和 S^2 分别为样本均值和样本方差. 若统计量 $T = \bar{X} - S^2$, 则 ET =______.

3. 计算题.

- (a). 设二维随机变量 (X,Y) 的概率密度为 $f(x,y) = \begin{cases} e^{-x}, & 0 < y < x \\ 0, &$ 其他
 - (I) 求条件概率密度 $f_{Y|X}(y|x)$;
 - (II) 求条件概率 $P\{X \le 1 \mid Y \le 1\}$.
- (b). 袋中有 1 个红球、2 个黑球与 3 个白球。现有放回地从袋中取两次,每次取一个球. 以 X,Y,Z 分别表示两次取球所取得的红球、黑球与白球的个数.
 - (I) $\Re P\{X = 1 \mid Z = 0\}$
 - (II) 求二维随机变量 (X,Y) 的概率分布.

1.24 2010 年真题

1.24.1 2010 数一

2010年数学一真题

- (a). 设随机变量 X 的分布函数 $F(x)=\left\{egin{array}{ll} 0, & x<0 \\ rac{1}{2}, & 0\leq x<1, & \text{则 P}\{X=1\}=1-e^{-x}, & x\geq 1 \end{array}\right.$
 - (A) 0
 - (B) $\frac{1}{2}$
 - (C) $\frac{1}{2} e^{-1}$
 - (D) $1 e^{-1}$
- (b). 设 $f_1(x)$ 为标准正态分布的概率密度, $f_2(x)$ 为 [-1,3] 上均匀分布的概率密度,

1.24 2010 年真题 - 48 -

若
$$f(x) = \begin{cases} af_1(x), & x \le 0 \\ bf_2(x), & x > 0 \end{cases}$$
 $(a > 0, b > 0)$ 为概率密度,则 a, b 应满足

- (A) 2a + 3b = 4
- (B) 3a + 2b = 4
- (C) a + b = 1
- (D) a + b = 2
- 2. 填空题.
 - (a). 设随机变量 X 的概率分布为 $P\{X=k\} = \frac{C}{k!}, k=0,1,2,\cdots,$ 则 $EX^2 = \underline{\hspace{1cm}}$
- 3. 计算题.
 - (a). 设二维随机变量 (X,Y) 的概率密度为

$$f(x,y) = Ae^{-2x^2 + 2xy - y^2}, -\infty < x < +\infty, -\infty < y < +\infty$$

求常数 A 及条件概率密度 $f_{Y|X}(y \mid x)$.

(b). 设总体 X 的概率分布为

$$\begin{array}{c|ccccc} X & 1 & 2 & 3 \\ \hline p & 1-\theta & \theta-\theta^2 & \theta^2 \end{array}$$

其中参数 $\theta \in (0,1)$ 未知. 以 N_i 表示来自总体 X 的简单随机样本 (样本容量为n) 中等于 i 的个数 (i=1,2,3). 试求常数 a_1,a_2,a_3 , 使 $T=\sum_{i=1}^3 a_i N_i$ 为 θ 的无偏估计量,并求 T 的方差.

1.24.2 2010 数三

2010年数学三真题

(a). 设随机变量
$$X$$
 的分布函数 $F(x)=\left\{ egin{array}{ll} 0, & x<0 \\ rac{1}{2}, & 0\leq x<1, & 则 \ P\{X=1\}=1-e^{-x}, & x\geq 1 \end{array}
ight.$

- (A) 0
- (B) $\frac{1}{3}$
- (C) $\frac{1}{2} e^{-1}$
- (D) $1 e^{-1}$
- (b). 设 $f_1(x)$ 为标准正态分布的概率密度, $f_2(x)$ 为 [-1,3] 上均匀分布的概率密度,

若
$$f(x) = \begin{cases} af_1(x), & x \le 0 \\ bf_2(x), & x > 0 \end{cases}$$
 (a > 0, b > 0) 为概率密度,则 a, b 应满足

- (A) 2a + 3b = 4
- (B) 3a + 2b = 4
- (C) a + b = 1
- (D) a + b = 2
- 2. 填空题.

1.25 2011 年真题 - 49 -

(a). 设 $X_1, X_2, \dots X_n$ 是来自总体 $N(\mu, \sigma^2)(\sigma > 0)$ 的简单随机样本,记统计量 $T = \frac{1}{n} \sum_{i=1}^{n} X_i^2$,则 ET =_____.

3. 计算题.

(a). 设二维随机变量 (X,Y) 的概率密度为

$$f(x,y) = Ae^{-2x^2 + 2xy - y^2}, -\infty < x < +\infty, -\infty < y < +\infty$$

求常数 A 及条件概率密度 $f_{Y|X}(y \mid x)$.

- (b). 箱中装有6个球,其中红、白、黑球的个数分别为1,2,3个. 现从箱中随机 地取出2个球,记 X 为取出的红球个数,Y 为取出的白球个数.
 - (I) 求随机变量 (X,Y) 的概率分布;
 - (II) 求 Cov(X, Y).

1.25 2011 年真题

1.25.1 2011 数一

- 1. 选择题.
 - (a). 设 $F_1(x)$ 与 $F_2(x)$ 为两个分布函数,其相应的概率密度 $f_1(x)$ 与 $f_2(x)$ 是连续函数,则必为概率密度的是
 - (A) $f_1(x) f_2(x)$
 - (B) $2f_2(x)F_1(x)$
 - (C) $f_1(x)F_2(x)$
 - (D) $f_1(x)F_2(x) + f_2(x)F_1(x)$
 - (b). 设随机变量 X 与 Y 相互独立, 且 EX 与 EY 存在, 记 $U = \max\{X,Y\}, V = \min\{X,Y\},$ 则 E(UV) =
 - (A) $EU \cdot EV$
 - (B) $EX \cdot EY$
 - (C) $EU \cdot EY$
 - (D) $EX \cdot EV$
- 2. 填空题.
 - (a). 设二维随机变量 (X,Y) 服从正态分布 $N(\mu,\mu;\sigma^2,\sigma^2;0)$,则 $E(XY^2) =$ ______
- 3. 计算题.
 - (a). 设随机变量 X 与 Y 的概率分布分别为

X	0	1	Y	-1	0	1
Р	1/3	2/3	P	1/3	1/3	1/3

$$\coprod P\left\{X^2 = Y^2\right\} = 1$$

- (I) 求二维随机变量 (X,Y) 的概率分布;
- (II) 求 Z = XY 的概率分布;

1.26 2012 年真题 - 50 -

- (III) 求 X 与 Y 的相关系数 ρ_{XY} .
- (b). 设 X_1, X_2, \dots, X_n 为来自正态总体 $N(\mu_0, \sigma^2)$ 的简单随机样本, 其中 μ_0 已知, $\sigma^2 > 0$ 未知. \bar{X} 和 S^2 分别表示样本均值和样本方差.
 - (I) 求参数 σ^2 的最大似然估计 $\widehat{\sigma^2}$;
 - (II) 计算 $E\widehat{\sigma^2}$ 和 $D\widehat{\sigma^2}$.

1.25.2 2011 数三

2011年数学三真题

- 1. 选择题.
 - (a). 设 $F_1(x)$ 与 $F_2(x)$ 为两个分布函数,其相应的概率密度 $f_1(x)$ 与 $f_2(x)$ 是连续函数,则必为概率密度的是
 - (A) $f_1(x) f_2(x)$
 - (B) $2f_2(x)F_1(x)$
 - (C) $f_1(x)F_2(x)$
 - (D) $f_1(x)F_2(x) + f_2(x)F_1(x)$
 - (b). 设总体 X 服从参数为 $\lambda(\lambda > 0)$ 的泊松分布, $X_1, X_2, \cdots, X_n (n \ge 2)$ 为来自该总体的简单随机样本. 则对于统计量 $T_1 = \frac{1}{n} \sum_{i=1}^n X_i$ 和 $T_2 = \frac{1}{n-1} \sum_{i=1}^{n-1} X_i + \frac{1}{n} X_n$,有
 - (A) $ET_1 > ET_2, DT_1 > DT_2$
 - (B) $ET_1 > ET_2, DT_1 < DT_2$
 - (C) $ET_1 < ET_2, DT_1 > DT_2$
 - (D) $ET_1 < ET_2, DT_1 < DT_2$
- 2. 填空题.
 - (a). 设二维随机变量 (X,Y) 服从正态分布 $N(\mu,\mu;\sigma^2,\sigma^2;0)$,则 $E(XY^2) =$ ______
- 3. 计算题.
 - (a). 设随机变量 X 与 Y 的概率分布分别为

X	0	1	Y	-1	0	1
Р	1/3	2/3	Р	1/3	1/3	1/3

 $\coprod P\{X^2 = Y^2\} = 1$

- (I) 求二维随机变量 (X,Y) 的概率分布;
- (II) 求 Z = XY 的概率分布;
- (III) 求 X 与 Y 的相关系数 ρ_{XY} .
- (b). 设二维随机变量 (X,Y) 服从区域 G 上的均匀分布, 其中 G 是由 x-y=0, x+y=2 与 y=0 所围成的三角形区域.
 - (I) 求 X 的概率密度 $f_X(x)$;
 - (II) 求条件概率密度 $f_{X|Y}(x \mid y)$.

1.26 2012 年真题

1.26.1 2012 数一

2012年数学一真题

- 1. 选择题.
 - (a). 设随机变量 X 与 Y 相互独立,且分别服从参数为 1 与参数为 4 的指数分布,则 $P\{X < Y\} =$
 - (A) $\frac{1}{5}$
 - (B) $\frac{1}{3}$
 - (C) $\frac{2}{3}$
 - (D) $\frac{4}{5}$
 - (b). 将长度为1m的木棒随机地截成两段,则两段长度的相关系数为
 - (A) 1
 - (B) $\frac{1}{2}$
 - $(C) \frac{1}{2}$
 - (D) -1
- 2. 填空题.
 - (a). 设 A, B, C 是随机事件, A 与 C 互不相容, $P(AB) = \frac{1}{2}, P(C) = \frac{1}{3}, \quad P(AB \mid \bar{C}) = _____.$
- 3. 计算题.
 - (a). 设二维离散型随机变量 (X,Y) 的概率分布为

$X \setminus Y$	0	1	2
0	1/4	0	1/4
1	0	1/3	0
2	1/12	0	1/12

- (I) $\bar{x} P\{X = 2Y\};$
- (II) 求 Cov(X Y, Y).
- (b). 设随机变量 X 与 Y 相互独立且分别服从正态分布 $N\left(\mu,\sigma^2\right)$ 与 $N\left(\mu,2\sigma^2\right)$, 其中 σ 是未知参数且 $\sigma > 0$, 记 Z = X Y.
 - (I) 求 Z 的概率密度 $f(z; \sigma^2)$;
 - (II) 设 Z_1, Z_2, \dots, Z_n 为来自总体 Z 的简单随机样本,求 σ^2 的最大似然估计量 $\hat{\sigma}^2$;
 - (III) 证明 $\hat{\sigma}^2$ 为 σ^2 的无偏估计.

1.26.2 2012 数三

2012年数学三真题

1.27 2013 年真题 - 52 -

1. 选择题.

- (a). 设随机变量 X 与 Y 相互独立,且都服从区间 (0,1) 上的均匀分布,则 $P\{X^2 + Y^2 \le 1\} =$
 - (A) $\frac{1}{4}$
 - (B) $\frac{1}{2}$
 - (C) $\frac{\pi}{8}$
 - (D) $\frac{\pi}{4}$
- (b). 设 X_1, X_2, X_3, X_4 是来自总体 $N\left(1, \sigma^2\right)(\sigma > 0)$ 的简单随机样本,则统计量 $\frac{X_1 X_2}{|X_3 + X_4 2|}$ 的分布为
 - (A) N(0,1)
 - (B) t(1)
 - (C) $\chi^2(1)$
 - (D) F(1,1)

2. 填空题.

- (a). 设 A, B, C 是随机事件,A 与 C 互不相容, $P(AB) = \frac{1}{2}, P(C) = \frac{1}{3}, P(AB | \bar{C}) = ____.$
- 3. 计算题.
 - (a). 设二维离散型随机变量 (X,Y) 的概率分布为

X\Y	0	1	2
0	1/4	0	1/4
1	0	1/3	0
2	1/12	0	1/12

- (I) $Rightharpoonup P\{X = 2Y\};$
- (II) 求 Cov(X Y, Y).
- (b). 设随机变量 X 与 Y 相互独立,且都服从参数为 1 的指数分布,记 $U = \max\{X,Y\}, \quad V = \min\{X,Y\}$
 - (I) 求 V 的概率密度 $f_V(v)$;
 - (II) 求 E(U+V).

1.27 2013 年真题

1.27.1 2013 数一

2013年数学一真题

- (a). 设 X_1, X_2, X_3 是随机变量,且 $X_1 \sim N(0,1)$, $X_2 \sim N(0,2^2)$, $X_3 \sim N(5,3^2)$, $p_i = P\{-2 \le X_i \le 2\}$ (i = 1,2,3),则
 - (A) $p_1 > p_2 > p_3$
 - (B) $p_2 > p_1 > p_3$

1.27 2013 年真题 -53-

- (C) $p_3 > p_1 > p_2$
- (D) $p_1 > p_3 > p_2$
- (b). 设随机变量 $X \sim t(n), Y \sim F(1, n)$, 给定 $\alpha(0 < \alpha < 0.5)$, 常数 c 满足 $P\{X > 0.5\}$ $c\} = \alpha, \, \mathbb{M} P\left\{Y > c^2\right\} =$
 - (A) α
 - (B) 1α
 - (C) 2α
 - (D) $1 2\alpha$

2. 填空题.

(a). 设随机变量 Y 服从参数为 1 的指数分布, α 为常数且大于零, 则 $P\{Y \leq \alpha+1 \mid$ $Y > \alpha \} =$.

3. 计算题.

计算题. (a). 设随机变量 X 的概率密度为 $f(x)=\left\{ egin{array}{ll} \frac{1}{9}x^2, & 0 < x < 3, \\ 0, & \text{其他} \end{array} \right.$ 令随机变量 Y=

$$\begin{cases} 2, & X \le 1 \\ X, & 1 < X < 2, \\ 1, & X \ge 2. \end{cases}$$

- (I) 求 Y 的分布函数;
- (II) 求概率 $P\{X \leq Y\}$.
- (b). 设总体 X 的概率密度为 $f(x;\theta) = \begin{cases} \frac{\theta^2}{x^3} \cdot e^{-\frac{\theta}{x}} & x > 0, \\ 0, & \text{其他} \end{cases}$ 且大于零. X_1, X_2, \cdots, X_n 为来自总体 X 的简单随机样本.
 - (I) 求 θ 的矩估计量;
 - (II) 求 θ 的最大似然估计量.

1.27.2 2013 数三

2013年数学三真题

- (a). 设 X_1, X_2, X_3 是随机变量,且 $X_1 \sim N(0,1)$, $X_2 \sim N(0,2^2)$, $X_3 \sim$ $N(5,3^2), p_i = P\{-2 \le X_i \le 2\} (i = 1,2,3), \text{ }$
 - (A) $p_1 > p_2 > p_3$
 - (B) $p_2 > p_1 > p_3$
 - (C) $p_3 > p_1 > p_2$
 - (D) $p_1 > p_3 > p_2$
- (b). 设随机变量 X 和 Y 相互独立, 且 X 和 Y 的概率分布分别如下,则 $P\{X+Y=$ 2 =
 - (A) $\frac{1}{12}$ (B) $\frac{1}{8}$ (C) $\frac{1}{6}$ (D) $\frac{1}{2}$

1.28 2014 年真题 - 54 -

- 2. 填空题.
 - (a). 设随机变量 X 服从标准正态分布 N(0,1), 则 $E(Xe^{2X}) =$ _____.
- 3. 计算题.
 - 计异趣. (a). 设 (X,Y) 是二维随机变量 ,X 的边缘概率密度为 $f_X(x) = \begin{cases} 3x^2, & 0 < x < 1 \\ 0, & \text{其他} \end{cases}$,在给定 X = x(0 < x < 1) 的条件下 Y 的条件概率密度为 $f_{Y|X}(y \mid x) = \begin{cases} \frac{3y^2}{x^3}, & 0 < y < x \\ 0, & \text{其他} \end{cases}$ (I) 求 (X,Y) 的概率密度 f(x,y);
 - (II) 求 Y 的边缘概率密度 $f_Y(y)$;
 - (III) $Rightharpoonup P\{X > 2Y\}$.
 - (b). 设总体 X 的概率密度为 $f(x;\theta) = \begin{cases} \frac{\theta^2}{x^3} \cdot e^{-\frac{\theta}{x}} & x > 0, \\ 0, & \text{其中 } \theta \end{cases}$ 为未 知参数 且大于零. X_1, X_2, \cdots, X_n 为来自总体 X 的简单随机样本.
 - (I) 求 θ 的矩估计量;
 - (II) 求 θ 的最大似然估计量.

1.28 2014 年真题

1.28.1 2014 数一

- 1. 选择题.
 - (a). 设随机事件 A 与 B 相互独立,P(B) = 0.5, P(A B) = 0.3,则 P(B A) = 0.5
 - (A) 0.1
 - (B) 0.2
 - (C) 0.3
 - (D) 0.4
 - (b). 设连续型随机变量 X_1 与 X_2 相互独立且方差均存在, X_1 与 X_2 的概率密度分别为 $f_1(x)$ 与 $f_2(x)$, 随机变量 Y_1 的概率密度为 $f_{Y_1}(y) = \frac{1}{2} (f_1(y) + f_2(y))$, 随机变量 $Y_2 = \frac{1}{2} (X_1 + X_2)$, 则
 - (A) $EY_1 > EY_2, DY_1 > DY_2$
 - (B) $EY_1 = EY_2, DY_1 = DY_2$
 - (C) $EY_1 = EY_2, DY_1 < DY_2$
 - (D) $EY_1 = EY_2, DY_1 > DY_2$
- 2. 填空题.
 - (a). 设总体 X 的概率密度为 $f(x;\theta) = \begin{cases} \frac{2x}{3\theta^2}, \theta < x < 2\theta \\ 0, 其他 \end{cases}$, 其中 θ 是未知参数,

1.28 2014 年真题 -55-

> X_1, X_2, \cdots, X_n 为来自总体 X 的简单随机样本. 若 $c\sum_{i=1}^n X_i^2$ 是 θ^2 的无偏估 计,则 c = .

3. 计算题.

- (a). 设随机变量 X 的概率分布为 $P\{X=1\} = P\{X=2\} = \frac{1}{2}$, 在给定 X=i 的条 件下,随机变量 Y 服从均匀分布 U(0,i), i=1,2.
 - (I) 求 Y 的分布函数 $F_Y(y)$;
 - (II) 求 EY.
- (b). 设总体 X 的分布函数为 $F(x;\theta) = \begin{cases} 1 e^{-\frac{x^2}{\theta}}, x \ge 0, \ \text{其中}\theta \ \text{是未} \\ 0, x < 0 \end{cases}$ 大于零, X_1, X_2, \cdots, X_n 为来自总体 X 的简单随机
 - (I) 求 $EX 与 EX^2$;
 - (II) 求 θ 的最大似然估计量 $\hat{\theta}_n$.
 - (III) 是否存在实数 a, 使得对任何 $\varepsilon > 0$, 都有 $\lim_{n \to \infty} P\left\{ \left| \hat{\theta}_n a \right| \ge \varepsilon \right\} = 0$?

1.28.2 2014 数三

2014年数学三真题

1. 选择题.

- (a). 设随机事件 A = B 相互独立, P(B) = 0.5, P(A B) = 0.3, 则 P(B A) = 0.3(A) 0.1

 - (B) 0.2
 - (C) 0.3
 - (D) 0.4
- (b). 设 X_1, X_2, X_3 为来自正态总体 $N(0, \sigma^2)$ 的简单随机样本,则统计量 S= $\frac{X_1-X_2}{\sqrt{2}|X_3|}$ 服从的分布为
 - (A) F(1,1)
 - (B) F(2,1)
 - (C) t(1)
 - (D) t(2)

2. 填空题.

(a). 设总体 X 的概率密度为 $f(x;\theta) = \begin{cases} \frac{2x}{3\theta^2} & \theta < x < 2\theta \\ 0 &$ 其它 , 其中 θ 是未知参数, X_1, X_2, \cdots, X_n 为来自总体 X 的简单随机样本. 若 $E\left(c\sum_{i=1}^n X_i^2\right) = \theta^2$, 则 c = .

3. 计算题.

- (a). 设随机变量 X 的概率分布为 $P\{X=1\} = P\{X=2\} = \frac{1}{2}$, 在给定 X=i 的条 件下,随机变量 Y 服从均匀分布 U(0,i), i=1,2.
 - (I) 求 Y 的分布函数 $F_Y(y)$;
 - (II) 求 EY.

1.29 2015 年真题 - 56 -

- (b). 设随机变量 X,Y 的概率分布相同,X 的概率分布为 $P\{X=0\}=\frac{1}{3}, P\{X=1\}=\frac{2}{3},$ 且 X 与 Y 的相关系数 $\rho_{XY}=\frac{1}{2},$
 - (I) 求 (X,Y) 的概率分布;

1.29 2015 年真题

1.29.1 2015 数一

2015年数学一真题

- 1. 选择题.
 - (a). 若 A, B 为任意两个随机事件,则
 - (A) $P(AB) \le P(A)P(B)$
 - (B) $P(AB) \ge P(A)P(B)$
 - (C) $P(AB) \le \frac{P(A) + P(B)}{2}$
 - (D) $P(AB) \ge \frac{P(A) + P(B)}{2}$
 - (b). 设随机变量 X, Y 不相关,且 EX = 2, EY = 1, DX = 3,则 E[X(X+Y-2)] = 0
 - (A) -3
 - (B) 3
 - (C) -5
 - (D)5
- 2. 填空题.
 - (a). 设二维随机变量 (X,Y) 服从正态分布 N(1,0;1,1;0),则 $P\{XY-Y<0\}=$ ______
- 3. 计算题.
 - (a). 设随机变量 X 的概率密度为 $f(x) = \begin{cases} 2^{-x} \ln 2, x > 0, \\ 0, x \leq 0. \end{cases}$,对 X 进行独立重复的观测,直到第 2 个大于 3 的观测值出现时停止,记 Y 为观测次数.
 - A 70 m. v
 - (I) 求 Y 的概率分布;
 - (II) 求 EY.
 - (b). 设总体 X 的概率密度为 $f(x;\theta) = \begin{cases} \frac{1}{1-\theta}, & \theta \leq x \leq 1, \\ 0, & \text{其他.} \end{cases}$ 为来自该总体的简单随机样本.
 - (I) 求 θ 的矩估计量;
 - (II) 求 θ 的最大似然估计量.

1.29.2 2015 数三

2015年数学三真题

1.30 2016 年真题 - 57 -

- (a). 若 A, B 为任意两个随机事件,则
 - (A) $P(AB) \le P(A)P(B)$
 - (B) $P(AB) \ge P(A)P(B)$
 - (C) $P(AB) \le \frac{P(A) + P(B)}{2}$
 - (D) $P(AB) \ge \frac{P(A) + P(B)}{2}$
- (b). 设总体 $X \sim B(m, \theta), X_1, X_2, ..., X_n$ 为来自该总体的简单随机样本, \bar{X} 为样本均值,则 $E\left[\sum_{i=1}^n (X_i \bar{X})^2\right] =$
 - (A) $(m-1)n\theta(1-\theta)$
 - (B) $m(n-1)\theta(1-\theta)$
 - (C) $(m-1)(n-1)\theta(1-\theta)$
 - (D) $mn\theta(1-\theta)$
- 2. 填空题.
 - (a). 设二维随机变量 (X,Y) 服从正态分布 N(1,0;1,1;0),则 $P\{XY-Y<0\}=$
- 3. 计算题.
 - (a). 设随机变量 X 的概率密度为 $f(x) = \begin{cases} 2^{-x} \ln 2, x > 0, \\ 0, x \le 0. \end{cases}$,对 X 进行独立重复的观测,直到第 2 个大于 3 的观测值出现时停止,记 Y 为观测次数.
 - (I) 求 Y 的概率分布;
 - (II) 求 EY.
 - (b). 设总体 X 的概率密度为 $f(x;\theta)=\left\{ egin{array}{ll} \frac{1}{1-\theta}, & \theta \leq x \leq 1, \\ 0, & \text{其他.} \end{array} \right.$ 为来自该总体的简单随机样本.
 - (I) 求 θ 的矩估计量;
 - (II) 求 θ 的最大似然估计量.

1.30 2016 年真题

1.30.1 2016 数一

- 1. 选择题.
 - (a). 设随机变量 $X \sim N(\mu, \sigma^2)$ ($\sigma > 0$), 记 $p = P\{X \le \mu + \sigma^2\}$, 则
 - (A) p 随着 μ 的增加而增加
 - (B) p 随着 σ 的增加而增加
 - (C) p 随着 µ 的增加而减少
 - (D) p 随着 σ 的增加而减少
 - (b). 随机试验 E 有三种两两不相容的结果 A_1, A_2, A_3 , 且三种结果发生的概率均为 $\frac{1}{3}$. 将试验 E 独立重复做 2 次,X 表示 2 次试验中结果 A_1 发生的次数,Y 表示 2 次试验中结果 A_2 发生的次数,则 X 与 Y 的相关系数为

1.30 2016 年真题 - 58 -

- $(A) \frac{1}{2}$
- (B) $-\frac{1}{3}$
- (C) $\frac{1}{3}$
- (D) $\frac{1}{2}$

2. 填空题.

(a). (14) 设 $x_1, x_2, ..., x_n$ 为来自总体 $N(\mu, \sigma^2)$ 的简单随机样本, 样本均值 $\bar{x} = 9.5$, 参数 μ 的置信度为 0.95 的双侧置信区间的置信上限为 10.8 ,则 μ 的置信度为 0.95 的双侧置信区间为 ...

3. 计算题.

- (a). 设二维随机变量 (X,Y) 在区域 $D = \{(x,y) \mid 0 < x < 1, x^2 < y < \sqrt{x}\}$ 上服从均匀分布,令 $U = \left\{ \begin{array}{l} 1, X \leq Y \\ 0, X > Y \end{array} \right.$
 - (I) 写出 (X,Y) 的概率密度;
 - (II) 问U与X是否相互独立?并说明理由;
 - (III) 求 Z = U + X 的分布函数 F(z).
- (b). 设总体 X 的概率密度为 $f(x,\theta) = \begin{cases} \frac{3x^2}{\theta^3}, & 0 < x < \theta \\ 0, & \text{其他} \end{cases}$, 其中 $\theta \in (0, +\infty)$ 为未知参数. X_1, X_2, X_3 为来自总体 X 的简单随机样本,令 $T = \max(X_1, X_2, X_3)$. (I) 求 T 的概率密度;
 - (II) 确定 a, 使得 aT 为 θ 的无偏估计.

1.30.2 2016 数三

2016年数学三真题

1. 选择题.

- (a). 设 A, B 为随机事件,且 0 < P(A) < 1, 0 < P(B) < 1, 如果 $P(A \mid B) = 1,$ 则 (A) $P(\bar{B} \mid \bar{A}) = 1$
 - (B) $P(A | \bar{B}) = 0$
 - $(\mathbf{D})\mathbf{I}(\mathbf{II}|\mathbf{D})$
 - (C) $P(A \cup B) = 1$
 - (D) $P(B \mid A) = 1$
- (b). 设随机变量 X 与 Y 相互独立,且 $X \sim N(1,2), Y \sim (1,4), 则 D(XY) =$
 - (A) 6
 - (B) 8
 - (C) 14
 - (D) 15

2. 填空题.

- (a). 设袋中有红、白、黑球各1个,从中有放回地取球,每次取1个,直到三种颜色的球都取到时停止,则取球次数恰好为4的概率为_____.
- 3. 计算题.

1.31 2017 年真题 - 59 -

(a). 设二维随机变量 (X,Y) 在区域 $D = \{(x,y) \mid 0 < x < 1, x^2 < y < \sqrt{x}\}$ 上服从均匀分布,令 $U = \left\{ \begin{array}{l} 1, X \leq Y \\ 0, X > Y \end{array} \right.$

- (I) 写出 (X,Y) 的概率密度;
- (II) 问U与X是否相互独立?并说明理由;
- (III) 求 Z = U + X 的分布函数 F(z).
- (b). 设总体 X 的概率密度为 $f(x,\theta) = \begin{cases} \frac{3x^2}{\theta^3}, & 0 < x < \theta \\ 0, & \text{其他} \end{cases}$, 其中 $\theta \in (0,+\infty)$ 为未知参数. X_1, X_2, X_3 为来自总体 X 的简单随机样本,令 $T = \max(X_1, X_2, X_3)$. (1) 求 T 的概率密度;
 - (II) 确定 a, 使得 aT 为 θ 的无偏估计.

1.31 2017 年真题

1.31.1 2017 数一

- 1. 选择题.
 - (a). 设 A,B 为随机事件. $0 < P(A) < 1, 0 < P(B) < 1, 则 <math>P(A \mid B) > P(A \mid \bar{B})$ 的充分必要条件是
 - (A) $P(B | A) > P(B | \bar{A})$.
 - (B) $P(B \mid A) < P(B \mid \bar{A})$
 - (C) $P(\bar{B} \mid A) > P(B \mid \bar{A})$.
 - (D) $P(\bar{B} \mid A) < P(B \mid \bar{A})$.
 - (b). 设 $X_1, X_2, \dots, X_n (n \ge 2)$ 为来自总体 $N(\mu, 1)$ 的简单随机样本,记 $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$,则下列结论不正确的是
 - (A) $\sum_{i=1}^{n} (X_i \mu)^2$ 服从 χ^2 分布.
 - (B) $2(X_n X_1)^2$ 服从 χ^2 分布.
 - (C) $\sum_{i=1}^{n} (X_i \bar{X})^2$ 服从 χ^2 分布.
 - (D) $n(\bar{X} \mu)^2$ 服从 χ^2 分布.
- 2. 填空题.
 - (a). 设随机变量 X 的分布函数为 $F(x) = 0.5\Phi(x) + 0.5\Phi\left(\frac{x-4}{2}\right)$, 其中 $\Phi(x)$ 为标准 正态分布函数,则 EX =______.
- 3. 计算题.
 - - (I) \bar{x} $P(Y \leq EY)$;
 - (II) 求 Z = X + Y 的概率密度.

1.31 2017 年真题 - 60 -

(b). 某工程师为了解一台天平的精度,用该天平对一物体的质量做 n 次测量,该物体的质量 μ 是已知的. 设 n 次测量结果 X_1, X_2, \cdots, X_n 相互独立且均服从正态分布 $N(\mu, \sigma^2)$,该工程师记录的是 n 次测量的绝对误差 $Z_i = |X_i - \mu|$ $(i = 1, 2, \cdots n)$,利用 $Z_1, Z_2, \cdots Z_n$ 估计 σ .

- (I) 求 Z_i 的概率密度;
- (II) 利用一阶矩求 σ 的矩估计量;
- (III) 求 σ 的最大似然估计量.

1.31.2 2017 数三

2017年数学三真题

1. 选择题.

- (a). 设 A, B, C 为三个随机事件,且 A 与 C 相互独立,B 与 C 相互独立,则 $A \cup B$ 与 C 相互独立的充分必要条件是
 - (A) A 与 B 相互独立.
 - (B) A 与 B 互不相容.
 - (C) AB 与 C 相互独立.
 - (D) AB 与 C 互不相容.
- (b). 设 $X_1, X_2, \dots, X_n (n \ge 2)$ 为来自总体 $N(\mu, 1)$ 的简单随机样本,记 $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$,则下列结论不正确的是
 - (A) $\sum_{i=1}^{n} (X_i \mu)^2$ 服从 χ^2 分布.
 - (B) $2(X_n X_1)^2$ 服从 χ^2 分布.
 - (C) $\sum_{i=1}^{n} (X_i \bar{X})^2$ 服从 χ^2 分布.
 - (D) $n(\bar{X} \mu)^2$ 服从 χ^2 分布.

2. 填空题.

(a). 设随机变量 X 的概率分布为 $P\{X=-2\}=\frac{1}{2}$, $P\{X=1\}=a,\{X=3\}=b,$ 若 EX=0, 则 DX=_____.

3. 计算题.

- - $\frac{1}{2}$, Y的概率密度为 $f(y) = \begin{cases} 2y, & 0 < y < 0 \end{cases}$ 其他
 - (I) $\bar{\mathbf{x}}$ $P(Y \leq EY)$;
 - (II) 求 Z = X + Y 的概率密度.
- (b). 某工程师为了解一台天平的精度,用该天平对一物体的质量做 n 次测量,该物体的质量 μ 是已知的. 设 n 次测量结果 X_1, X_2, \cdots, X_n 相互独立且均服从正态分布 $N(\mu, \sigma^2)$,该工程师记录的是 n 次测量的绝对误差 $Z_i = |X_i \mu|$ ($i = 1, 2, \cdots n$),利用 $Z_1, Z_2, \cdots Z_n$ 估计 σ .
 - (I) 求 Z_i 的概率密度;
 - (II) 利用一阶矩求 σ 的矩估计量;

1.32 2018 年真题 - 61 -

(III) 求 σ 的最大似然估计量.

1.32 2018 年真题

1.32.1 2018 数一

2018年数学一真题

1. 选择题.

- (a). 设随机变量 X 的概率密度 f(x) 满足 f(1+x) = f(1-x), 且 $\int_0^2 f(x) dx = 0.6$, 则 P(X < 0) =
 - (A) 0.2.
 - (B) 0.3.
 - (C) 0.4
 - (D) 0.5.
- (b). 设总体 X 服从正态分布 $N(\mu, \sigma^2) \cdot x_1, x_2, \cdots, x_n$ 是来自总体 X 的简单随机样本,据此检验假设: $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0, \mu$
 - (A) 如果在显著性水平 $\alpha = 0.05$ 下拒绝 H_0 , 那么在显著性水平 $\alpha = 0.01$ 下必拒绝 H_0 .
 - (B) 如果在显著性水平 $\alpha = 0.05$ 下拒绝 H_0 , 那么在显著性水平 $\alpha = 0.01$ 下必接受 H_0 .
 - (C) 如果在显著性水平 $\alpha = 0.05$ 下接受 H_0 , 那么在显著性水平 $\alpha = 0.01$ 下必 拒绝 H_0 .
 - (D) 如果在显著性水平 $\alpha = 0.05$ 下接受 H_0 , 那么在显著性水平 $\alpha = 0.01$ 下必接受 H_0 .

2. 填空题.

(a). 14. 设随机事件 A 与 B 相互独立,A 与 C 相互独立, $BC = \varnothing$. 若 $P(A) = P(B) = \frac{1}{2}$, $P(AC \mid AB \cup C) = \frac{1}{4}$, 则 P(C) =_____.

3. 计算题.

- (a). 设随机变量 X 与 Y 相互独立,X 的概率分布为 $P\{X=1\}=P\{X=-1\}=\frac{1}{2},Y$ 服从参数为 λ 的泊松分布. 令 Z=XY.
 - (1) 求 Cov(X, Z);
 - (2) 求 Z 的概率分布.
- (b). 设总体 X 的概率密度为 $f(x;\sigma) = \frac{1}{2\sigma}e^{-\frac{|x|}{\sigma}}, -\infty < x < +\infty$, 其中 $\sigma \in (0, +\infty)$ 为未知参数, X_1, X_2, \cdots, X_n 是来自总体 X 的简单随机样本. 记 σ 的最大似然估计量为 $\hat{\sigma}$.
 - (1) 求 $\hat{\sigma}$;
 - (2) 求 $E(\hat{\sigma})$ 和 $D(\hat{\sigma})$.

1.33 2019 年真题 - 62-

1.32.2 2018 数三

2018年数学三真题

1. 选择题.

- (a). 设随机变量 X 的概率密度 f(x) 满足 f(1+x) = f(1-x), 且 $\int_0^2 f(x) dx = 0.6$, 则 P(X < 0) =
 - (A) 0.2.
 - (B) 0.3.
 - (C) 0.4
 - (D) 0.5.
- (b). 设 $X_1, X_2, \dots, X_n (n \ge 2)$ 为来自总体 $N(\mu, \sigma^2)$ 的简单随机样本,令 $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i, S = \sqrt{\frac{1}{n-1} \sum_{i=1}^n \left(X_i \bar{X} \right)^2}, \quad S^* = \sqrt{\frac{1}{n-1} \sum_{i=1}^n \left(X_i \mu \right)^2},$ 则
 - (A) $\frac{\sqrt{n}(\bar{X}-\mu)}{S} \sim t(n)$
 - (B) $\frac{\sqrt{n}(\tilde{\bar{X}}-\mu)}{S} \sim t(n-1)$.
 - (C) $\frac{\sqrt{n}(\bar{X}-\mu)}{S^*} \sim t(n)$
 - (D) $\frac{\sqrt{n}(\bar{X}-\mu)}{S^*} \sim t(n-1)$.

2. 填空题.

- (a). 随机事件 A, B, C 相互独立,且 $P(A) = P(B) = P(C) = \frac{1}{2}$,则 $P(AC \mid A \cup B) = _____$.
- 3. 计算题.
 - (a). 设随机变量 X 与 Y 相互独立,X 的概率分布为 $P\{X=1\} = P\{X=-1\} = \frac{1}{2}, Y$ 服从参数为 λ 的泊松分布. 令 Z=XY.
 - (1) 求 Cov(X, Z);
 - (2) 求 Z 的概率分布.
 - (b). 设总体 X 的概率密度为 $f(x;\sigma) = \frac{1}{2\sigma}e^{-\frac{|x|}{\sigma}}, -\infty < x < +\infty$, 其中 $\sigma \in (0, +\infty)$ 为未知参数, X_1, X_2, \cdots, X_n 是来自总体 X 的简单随机样本. 记 σ 的最大似然估计量为 $\hat{\sigma}$.
 - (1) 求 $\hat{\sigma}$;
 - (2) 求 $E(\hat{\sigma})$ 和 $D(\hat{\sigma})$.

1.33 2019 年真题

1.33.1 2019 数一

- 1. 选择题.
 - (a). 设 A, B 为随机事件, 则 P(A) = P(B) 的充分必要条件是 A. $P(A \cup B) = P(A) + P(B)$

1.33 2019 年真题 - 63 -

- B. P(AB) = P(A)P(B).
- C. $P(A\bar{B}) = P(B\bar{A})$
- D. $P(AB) = P(\bar{A}\bar{B})$.
- (b). 设随机变量 X 与 Y 相互独立, 且都服从正态分布 $N(\mu, \sigma^2)$, 则 $P\{|X-Y| < 1\}$ A. 与 μ 无关, 而与 σ^2 有关.
 - B. 与 μ 有关, 而与 σ^2 无关.
 - C. 与 μ , σ^2 都有关.
 - D. 与 μ, σ^2 都无关.

2. 填空题.

填空趣.

(a). 设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{x}{2}, & 0 < x < 2, \\ 0, & \text{其他,} \end{cases}$ 函数, EX 为 X 的数学期望, 则 $P\{F(X) > EX - 1\} = \dots$.

3. 计算题.

- (a). 设随机变量 X 与 Y 相互独立, X 服从参数为 1 的指数分布, Y 的概率分布为 $P\{Y=-1\}=p, P\{Y=1\}=1-p(0< p<1). 令 <math>Z=XY$
 - (I)求 Z 的概率密度;
 - (II) p 为何值时, X 与 Z 不相关?
 - (III) X 与 Z 是否相互独立?
- (b). 设总体 X 的概率密度为

$$f(x; \sigma^2) = \begin{cases} \frac{A}{\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, & x \geqslant \mu \\ 0, & x < \mu \end{cases}$$

其中 μ 是已知参数, $\sigma > 0$ 是未知参数, A 是常数. X_1, X_2, \cdots, X_n 是来自总体 X 的简单随机样本.

- (I) 求 A;
- (II) 求 σ^2 的最大似然估计量.

1.33.2 2019 数三

2019 年数学三真题

1. 选择题.

(a). 设 A, B 为随机事件,则 P(A) = P(B) 的充分必要条件是

A.
$$P(A \cup B) = P(A) + P(B)$$
.

- B. P(AB) = P(A)P(B).
- C. $P(A\bar{B}) = P(B\bar{A})$
- D. $P(AB) = P(\bar{A}\bar{B})$
- (b). 设随机变量 X 与 Y 相互独立, 且都服从正态分布 $N\left(\mu,\sigma^2\right)$, 则 $P\{|X-Y|<1\}$
 - A. 与 μ 无关, 而与 σ^2 有关.
 - B. 与 μ 有关, 而与 σ^2 无关.

1.34 2020 年真题 - 64-

- C. 与 μ , σ^2 都有关.
- D. 与 μ, σ^2 都无关.

2. 填空题.

(a). 设随机变量 X 的概率密度为. $f(x) = \begin{cases} \frac{x}{2}, & 0 < x < 2, \\ 0, & \text{其他}, \end{cases}$ 数, EX 为 X 的数学期望, 则 $P\{F(X) > EX - 1\} =$ _____.

3. 计算题.

- (a). 设随机变量 X 与 Y 相互独立, X 服从参数为 1 的指数分布,Y 的概率分布为 $P\{Y=-1\}=p, P\{Y=1\}=1-p(0< p<1). 令 <math>Z=XY$
 - (I)求 Z 的概率密度;
 - (II) p 为何值时, X 与 Z 不相关?
 - (III)X 与 Z 是否相互独立?
- (b). 设总体 X 的概率密度为

$$f(x; \sigma^2) = \begin{cases} \frac{A}{\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, & x \geqslant \mu \\ 0, & x < \mu, \end{cases}$$

其中 μ 是已知参数, $\sigma > 0$ 是未知参数, A 是常数. X_1, X_2, \dots, X_n 是来自总体 X 的简单随机样本。

- (I)求A;
- (II) 求 σ^2 的最大似然估计量.

1.34 2020 年真题

1.34.1 2020 数一

2020年数学一真题

1. 选择题.

(a). 设 A, B, C 为三个随机事件, 且

$$P(A) = P(B) = P(C) = \frac{1}{4}, \quad P(AB) = 0, \quad P(AC) = P(BC) = \frac{1}{12}$$

则 A, B, C 中恰有一个事件发生的概率为

- A. $\frac{3}{4}$.
- B. $\frac{2}{3}$
- C. $\frac{1}{2}$.
- D. $\frac{5}{12}$
- (b). 设 X_1, X_2, \dots, X_{100} 为来自总体 X 的简单随机样本, 其中 $P\{X = 0\} = P\{X = 1\} = \frac{1}{2}$. $\Phi(x)$ 表示标准正态分布函数,则利用中心极限定理可得 $P\left\{\sum_{i=1}^{100} X_i \leq 55\right\}$ 的近似值为
 - A. $1 \Phi(1)$
 - B. $\Phi(1)$

1.34 2020 年真题 - 65 -

C. $1 - \Phi(0.2)$

D. $\Phi(0.2)$

- 2. 填空题.
 - (a). 设 X 服从区间 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 上的均匀分布, $Y = \sin X$, 则 $\text{Cov}(X, Y) = \underline{\hspace{1cm}}$
- 3. 计算题.
 - (a). 设随机变量 X_1, X_2, X_3 相互独立, 其中 X_1 与 X_2 均服从标准正态分布, X_3 的概率分布为 $P\{X_3=0\}=P\{X_3=1\}=\frac{1}{2}\cdot Y=X_3X_1+(1-X_3)X_2$
 - (I) 求二维随机变量 (X_1, Y) 的分布函数, 结果用标准正态分布函数 $\Phi(x)$ 表示 (II) 证明随机变理 Y 服从标准正态分布.
 - (b). 设某种元件的使用寿命 T 的分布函数为

$$F(t) = \begin{cases} 1 - e^{-\left(\frac{t}{\theta}\right)^m}, & t \geqslant 0, \\ 0, & \text{ #.d.}, \end{cases}$$

其中 θ ,m为参数且大于零.

- (I) 求概率 $P\{T > t\}$ 与 $P\{T > s + t \mid T > s\}$, 其中 s > 0, t > 0
- (II) 任取 n 个这种元件做寿命试验, 测得它们的寿命分别为 t_1, t_2, \dots, t_n . 若 m 已知, 求 θ 的最大似然估计值 $\hat{\theta}$.

1.34.2 2020 数三

2020年数学三真题

- 1. 选择题.
 - (a). 设 A, B, C 为三个随机事件, 且

$$P(A) = P(B) = P(C) = \frac{1}{4}, \quad P(AB) = 0, \quad P(AC) = P(BC) = \frac{1}{12}$$

则 A, B, C 中恰有一个事件发生的概率为

- A. $\frac{3}{4}$.
- B. $\frac{2}{3}$
- C. $\frac{1}{2}$.
- D. $\frac{3}{12}$
- (b). 设随机变幅 (X,Y) 服从二维正态分布 $N\left(0,0;1,4;-\frac{1}{2}\right)$,则下列随机变量中服从标准正态分布且与 X 独立的是
 - A. $\frac{\sqrt{5}}{5}(X+Y)$
 - B. $\frac{\sqrt{5}}{5}(X Y)$
 - C. $\frac{\sqrt{3}}{3}(X+Y)$
 - D. $\frac{\sqrt{3}}{3}(X Y)$
- 2. 填空题.
 - (a). 设随机变量 X 的概率分布为 $P\{X=k\}=\frac{1}{2^k}, k=1,2,3,\cdots,Y$ 表示 X 被 3 除的余数,则 E(Y)=_____.
- 3. 计算题.

1.35 2021 年真题 - 66-

(a). 设二维随机变量 (X,Y) 在区域 $D = \{(x,y) \mid 0 < y < \sqrt{1-x^2}\}$ 上服从均匀分布, 令

$$Z_1 = \begin{cases} 1, & X - Y > 0 \\ 0, & X - Y \le 0, \end{cases} \quad Z_2 = \begin{cases} 1, & X + Y > 0 \\ 0, & X + Y \le 0 \end{cases}$$

- (I) 求二维随机变量 (Z_1, Z_2) 的概率分布;
- (II) 求 Z_1 与 Z_2 的相关系数.
- (b). 设某种元件的使用寿命 T 的分布函数为

$$F(t) = \begin{cases} 1 - e^{-\left(\frac{t}{\theta}\right)^m}, & t \geqslant 0, \\ 0, & \text{ 其他}, \end{cases}$$

其中 θ , m 为参数且大于零.

- (I) 求概率 $P\{T > t\}$ 与 $P\{T > s + t \mid T > s\}$, 其中 s > 0, t > 0
- (II) 任取 n 个这种元件做寿命试验, 测得它们的寿命分别为 t_1, t_2, \dots, t_n . 若 m 已知, 求 θ 的最大似然估计值 $\hat{\theta}$.

1.35 2021 年真题

1.35.1 2021 数一

2021 年数学一真题

- (a). 设 A, B 为随机事件, 且 0 < P(B) < 1, 下列命题中为假命题的是
 - (A) 若 $P(A \mid B) = P(A)$, 则 $P(A \mid \bar{B}) = P(A)$.
 - (B) 若 $P(A \mid B) > P(A)$, 则 $P(\bar{A} \mid \bar{B}) > P(\bar{A})$.
 - (C) 若 $P(A \mid B) > P(A \mid \bar{B})$, 则 $P(A \mid B) > P(A)$.
 - (D) 若 $P(A \mid A \cup B) > P(\bar{A} \mid A \cup B)$, 则 P(A) > P(B).
- (b). 设 $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$ 为来自总体 $N(\mu_1, \mu_2; \sigma_1^2, \sigma_2^2; \rho)$ 的简单随 机样本, 令 $\theta = \mu_1 \mu_2, \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i, \bar{Y} = \frac{1}{n} \sum_{i=1}^n Y_i, \hat{\theta} = \bar{X} \bar{Y}, 则$
 - (A) $\hat{\theta}$ 是 θ 的无偏估计, $D(\hat{\theta}) = \frac{\sigma_1^2 + \sigma_2^2}{n}$.
 - (B) $\hat{\theta}$ 不是 θ 的无偏估计, $D(\hat{\theta}) = \frac{\sigma_1^2 + \sigma_2^2}{\pi}$.
 - (C) $\hat{\theta}$ 是 θ 的无偏估计, $D(\hat{\theta}) = \frac{\sigma_1^2 + \sigma_2^2 2\rho\sigma_1\sigma_2}{n}$.
 - (D) $\hat{\theta}$ 不是 θ 的无偏估计, $D(\hat{\theta}) = \frac{\sigma_1^2 + \sigma_2^2 2\rho_{\sigma_1\sigma_2}}{n}$.
- (c). 设 X_1, X_2, \dots, X_{16} 是来自总体 $N(\mu, 4)$ 的简单随机样本, 考虑假设检验问题: $H_0: \mu \leq 10, H_1: \mu > 10, \Phi(x)$ 表示标准正态分布函数, 若该检验问题的拒绝 域为 $W = \{\bar{X} \geq 11\}$, 其中 $\bar{X} = \frac{1}{16} \sum_{i=1}^{16} X_i$, 则 $\mu = 11.5$ 时, 该检验犯第二类 错误的概率为
 - (A) $1 \Phi(0.5)$.
 - (B) $1 \Phi(1)$.
 - (C) $1 \Phi(1.5)$.

1.35 2021 年真题 -- 67-

(D) $1 - \Phi(2)$.

2. 填空题.

(a). 甲、乙两个盒子中有 2 个红球和 2 个白球, 先从甲盒中任取一球, 观察颜色后放人乙盒, 再从乙盒中任取一球, 令 X, Y 分别表示从甲盒和乙盒中取到的红球的个数, 则 X 与 Y 的相关系数为

3. 计算题.

- (a). 在区间 (0,2) 上随机取一点, 将该区间分成两段, 较短一段的长度记为 X, 较长一段的长度记为 Y. 令 $Z = \frac{Y}{X}$,
 - (I) 求 X 的概率密度;
 - (II) 求 Z 的概率密度;
 - (III) $\Re E\left(\frac{X}{V}\right)$.

1.35.2 2021 数三

2021 年数学三真题

1. 选择题.

- (a). 设 A, B 为随机事件, 且 0 < P(B) < 1, 下列命题中为假命题的是
 - (A) 若 $P(A \mid B) = P(A)$, 则 $P(A \mid \bar{B}) = P(A)$.
 - (B) 若 $P(A \mid B) > P(A)$, 则 $P(\bar{A} \mid \bar{B}) > P(\bar{A})$.
 - (C) 若 $P(A \mid B) > P(A \mid \bar{B})$, 则 $P(A \mid B) > P(A)$.
 - (D) 若 $P(A \mid A \cup B) > P(\bar{A} \mid A \cup B)$, 则 P(A) > P(B).
- (b). 设 $(X_1, Y_1), (X_2, Y_2), \cdots, (X_n, Y_n)$ 为来自总体 $N(\mu_1, \mu_2; \sigma_1^2, \sigma_2^2; \rho)$ 的简单随 机样本, 令 $\theta = \mu_1 \mu_2, \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i, \bar{Y} = \frac{1}{n} \sum_{i=1}^n Y_i, \hat{\theta} = \bar{X} \bar{Y}, 则$
 - (A) $\hat{\theta}$ 是 θ 的无偏估计, $D(\hat{\theta}) = \frac{\sigma_1^2 + \sigma_2^2}{n}$.
 - (B) $\hat{\theta}$ 不是 θ 的无偏估计, $D(\hat{\theta}) = \frac{\sigma_1^2 + \sigma_2^2}{n}$
 - (C) $\hat{\theta}$ 是 θ 的无偏估计, $D(\hat{\theta}) = \frac{\sigma_1^2 + \sigma_2^2 2\rho\sigma_1\sigma_2}{n}$.
 - (D) $\hat{\theta}$ 不是 θ 的无偏估计, $D(\hat{\theta}) = \frac{\sigma_1^2 + \sigma_2^2 2\rho_{\sigma_1\sigma_2}}{n}$.
- (c). (10) 设总体 X 的概率分布为 $P\{X=1\}=\frac{1-\theta}{2}, P\{X=2\}=P\{X=3\}=\frac{1+\theta}{4},$ 利用来自总体的样本值 1,3,2,2,1,3,1,2, 可得 θ 的最大似然估计值为
 - (A) $\frac{1}{4}$.
 - (B) $\frac{3}{8}$.
 - (C) $\frac{1}{2}$.
 - (D) $\frac{5}{8}$.

2. 填空题.

- (a). 甲、乙两个盒子中有 2 个红球和 2 个白球, 先从甲盒中任取一球, 观察颜色后放人乙盒, 再从乙盒中任取一球, 令 X,Y 分别表示从甲盒和乙盒中取到的红球的个数, 则 X 与 Y 的相关系数为
- 3. 计算题.

1.35 2021 年真题 - 68 -

(a). 在区间 (0,2) 上随机取一点,将该区间分成两段,较短一段的长度记为 X,较长一段的长度记为 Y. 令 $Z=\frac{Y}{X}$,

- (I) 求 X 的概率密度;
- (II)求Z的概率密度;
- (III) 求 $E\left(\frac{X}{Y}\right)$.

第二章 22 应统互助群

2.1 22 应统互助群 + 真题班

欢迎加入22应统互助群和22应统真题班!

- 1. 方式: 关注微信公众号: i44 统计考研,后台回复好友,添加微信,加群费为 200 元,两项服务在一个群内!
- 2. 时间: 答疑时间为 9 月初到 22 考研初试前一天, 真题班时间为 22 考研初试前 100 天

3. 内容:

- (a). 答疑内容涉及考研数学一、三的概率论与数理统计以及 432 应统专业课概率 论与数理统计常见题目,如茆诗松老师《概率论与数理统计教程》上的题目。 希望同学们在问问题时,把题目拍完整。
- (b). 22 应统真题班涉及常见院校专业课真题(共 100*3=300 道)。每天在群内分享 3 道题目和答案。如果对某一道题有疑惑,可以提出来,我们进行讲解。选材来自于茆诗松、李贤平、陈希孺、韦来生等老师的书中经典常考题目,一些院校本科生概率统计期中期末考试题,还有一些常见高校的真题,如:清华大学、北京大学、中国科学技术大学、南开大学、复旦大学、北京师范大学、中山大学、华东师范大学、兰州大学等,包括但不限于上述院校!每天同学们可以在打卡任务上完成每天布置的题目,无论对错,都要试着自己做一做!很多题目可以用多种方法解决,去年 21 应统真题班的同学就做得很不错,经常可以看到很多优秀的解法。

4. 福利:

- (a). 常见院校真题和部分解析,如:中山大学、中央财经大学、华东师范大学、东北财经大学、中国科学技术大学、浙江工商大学、辽宁大学、东北师范大学、武汉理工大学、大连理工大学、中南财、上财、暨南大学、山东大学、中国人民大学等,包括但不限于上述院校,以及21应统真题班的题目和答案!
- (b). 常见院校本科生期中期末考试题,如:北大、清华、复旦、中科大、中山、南 开、上财、西交、北航、厦大、上交等,包括但不限于上述院校!
- (c). 常见知识点总结:对称性总结、递推法总结、常见分布转换、均匀分布总结、 正态分布总结、一元线性回归总结等。

5. 注意:

- (a). 由于我今年前半年比较忙,所以答疑只能大概从9月初开始。结合往年应统 互助群同学的情况,大家一般是暑假以后开始问题增多。所以不会太耽误大 家复习,希望有意加入的同学们早点加群,早点结合群里的资料进行复习。
- (b). 群内禁止水群,禁止分享一切外边的链接,只允许讨论与考研相关的内容;否

则,一经发现,立即踢出群,不退群费。希望同学们考虑好再决定是否加入!一旦加入,中途想退出,也不退群费!