FÍSICA NUCLEAR

Método e recomendacións

Desintegración radioactiva

- 1. O período de semidesintegración do 30 Sr é 28 anos. Calcula:
 - a) A constante de desintegración radioactiva expresada en s⁻¹.
 - b) A vida media do 90 Sr.
 - c) A actividade inicial dunha mostra de 6,25 mg.
 - d) A masa que queda desa mostra 100 anos máis tarde.
 - e) O tempo necesario para que se desintegre o 70 % dos átomos iniciais.
 - f) Representa nunha gráfica, de forma cualitativa, a variación da masa en función do tempo.

Datos: $N_{A} = 6,022 \cdot 10^{23} \text{ mol}^{-1}$; masa atómica do ${}^{90}_{38}\text{Sr} = 90 \text{ g} \cdot \text{mol}^{-1}$.

Problema modelo baseado no A.B.A.U. Xuño 17

Rta.: a) $\lambda = 7.8 \cdot 10^{-10} \text{ s}^{-1}$; b) $\tau = 40 \text{ anos}$; c) $A_0 = 3.28 \cdot 10^{10} \text{ Bq}$; d) m = 0.53 mg; e) t = 49 anos

Datos	Cifras significativas: 3
Período de semidesintegración	$T_{\frac{1}{2}} = 28,0 \text{ anos} = 8,84 \cdot 10^8 \text{ s}$
Masa da mostra	$m_0 = 6.25 \text{ mg} = 6.25 \cdot 10^{-3} \text{ g}$
Tempo para calcular a masa restante	$t = 100 \text{ anos} = 3,16 \cdot 10^9 \text{ s}$
Fracción de mostra desintegrada	f = 70,0 % = 0,700
Masa atómica do % Sr	$M = 90.0 \text{ g} \cdot \text{mol}^{-1}$
Número de Avogadro	$N_{\rm A} = 6.022 \cdot 10^{23} \rm mol^{-1}$
Incógnitas	
Vida media	au
Constante de desintegración radioactiva	λ
Actividade inicial dunha mostra de 6,25 mg.	A_{o}
Masa que queda desa mostra 100 anos máis tarde.	m
Tempo necesario para que a masa redúzase de 1 mg a 0,25 mg	t
Ecuacións	
Lei da desintegración radioactiva	$N = N_0 \cdot e^{-\lambda \cdot t}$
201 44 4002000 14400000114	$\lambda = \ln (N_0 / N) / t$
Cando $t = T$, $N = N_0 / 2$	$T_{\frac{1}{2}} = \ln 2 / \lambda$
Vida media	$ au = 1 / \lambda$
Actividade radioactiva	$A = -d N / d t = \lambda \cdot N$

Solución:

a) Calcúlase a constante radioactiva a partir do período de semidesintegración

$$\lambda = \frac{\ln 2}{T_{1/2}} = \frac{0.693}{8.84 \cdot 10^8 \, [s]} = 7.84 \cdot 10^{-10} \, \text{s}^{-1}$$

b) Calcúlase a vida media a partir da constante radioactiva

$$\tau = \frac{1}{\lambda} = \frac{1}{7,84 \cdot 10^{-10} \, [\, s^{-1}]} = 1,27 \cdot 10^9 \, s = 40,4 \, anos$$

c) Calcúlanse cantos átomos hai en 6,25 mg de Sr

$$N = 6,25 \cdot 10^{-3} \text{ g} _{38}^{90} \text{Sr} \quad \frac{1 \text{ mol} _{38}^{90} \text{Sr}}{90,0 \text{ g} _{38}^{60} \text{Sr}} \quad \frac{6,022 \cdot 10^{23} \text{ átomos} _{38}^{90} \text{Sr}}{1 \text{ mol} _{38}^{90} \text{Sr}} \quad \frac{1 \text{ núcleo} _{38}^{90} \text{Sr}}{1 \text{ átomos} _{38}^{90} \text{Sr}} = 4,18 \cdot 10^{19} \text{ núcleos} _{38}^{90} \text{Sr}$$

Despois calcúlase a actividade radioactiva

$$A = \lambda \cdot N = 7.84 \cdot 10^{-10} [s^{-1}] \cdot 4.18 \cdot 10^{19} [núcleos] = 3.28 \cdot 10^{10} Bq$$

d) Calcúlase a masa con a ecuación da lei de desintegración radioactiva

$$N = N_0 \cdot e^{-\lambda \cdot t}$$

Como a masa é proporcional á cantidade de núcleos, $m = M \cdot N / N_{A}$, pódese obter unha expresión similar á lei da desintegración radioactiva, na que aparece a masa no canto da cantidade de átomos:

$$m \cdot \frac{N_{\overline{A}}}{M} = m_0 \cdot \frac{N_{\overline{A}}}{M} e^{\lambda \cdot t}$$

$$m=6,25 \, [\text{mg}] \cdot e^{-7,84 \cdot 10^{-10} [s^{-1}] \cdot 3,16 \cdot 10^9 [s]} = 0,526 \, \text{mg}$$

e) Calcúlase o tempo na ecuación da lei de desintegración radioactiva expresada en forma logarítmica.

$$-\ln (N/N_0) = \ln (N_0/N) = \lambda \cdot t$$

Se desintegrouse o 70 %, queda o 30 %.

$$t = \frac{\ln(N_0/N)}{\lambda} = \frac{\ln(100 \text{ átomos}_{38}^{90} \text{Sr}/30 \text{ átomos}_{38}^{90} \text{Sr})}{7,84 \cdot 10^{-10} [\text{s}^{-1}]} = 1,8 \cdot 10^9 \text{ s} = 49 \text{ anos}$$

Análise: Posto que nese tempo a mostra reduciuse a un 30 %, pouco máis da cuarta parte = $\left(\frac{1}{2}\right)^2$,

transcorreron algo menos de 2 períodos de semidesintegración (56 anos), polo que 49 anos parece un resultado razoable.

f) A gráfica é unha función exponencial decrecente.

A maior parte das respostas pode calcularse coa folla de cálculo <u>FisicaBachGl.ods</u> Cando estea no índice, manteña pulsada a tecla «↑» (maiúsculas) mentres fai clic na cela

Desintegración radioactiva

do capítulo

ao capitaro		
Física moderna	Desintegr	Desintegración radioactiva

Faga clic nas celas de cor salmón e elixa as opcións como se mostra. Escriba os datos nas celas de cor branca e bordo azul.

Período de semidesintegración	T =	28	anos	
Masa inicial	$m_0 =$	6,25	mg	
Desintégranse		70	%	
Despois de	$\Delta t =$			
Masa atómica	M =	90	g/mol	
Tempo	t =	100		anos

Para obter os primeiros resultados faga clic na cela cor salmón debaixo de «Constante» e elixa «Vida media». Faga clic na cela cor salmón debaixo de « τ» e elixa «Bq»

a)		Constante	λ =	$7,84 \cdot 10^{-10} \text{ s}^{-1}$
b)		Vida media	$\tau =$	1,27·10 ⁹ s
		Actividade <mark>Bq</mark>		
c)	Inicial	3,28·10 ¹⁰		
	Queda un 30%	$9,84 \cdot 10^9$	en	48,6 anos
	En 100 anos	$2,76 \cdot 10^9$		

Para os seguintes resultados, cambie «Bq» por «mg», e elixa «anos» na cela salmón da dereita:

		N	Masa <mark>m</mark>	ng	
	Inicial		6,25		
e)	Queda un 30%		1,88	en	48,6 <mark>anos</mark>
d)	En 100 anos	(),526		

Enerxía nuclear

- 1. O isótopo do boro ¹⁰₅B é bombardeado por unha partícula α e prodúcese ¹³C e outra partícula.
 - a) Escribe a reacción nuclear.
 - b) Calcula a enerxía liberada por núcleo de boro bombardeado.
 - c) Calcula a enerxía liberada si considérase 1 g de boro.
 - d) Calcula a enerxía de enlace nuclear do 63 C.
 - e) Calcula a súa enerxía de enlace por nucleón.

Datos: masa atómica(${}_{5}^{10}B$) = 10,0129 u; masa atómica(${}_{6}^{13}C$) = 13,0034 u; masa(α) = 4,0026 u; masa(protón) = 1,0073 u; $c = 3 \cdot 10^8$ m/s; $N_{A=} 6,022 \cdot 10^{23}$ mol ${}^{-1}$; 1 u = 1,66 \cdot 10 ${}^{-27}$ kg. (*P.A.U. Sep. 16*) **Rta.:** a) ${}_{5}^{10}B + {}_{2}^{4}Hei \longrightarrow {}_{6}^{13}C + {}_{1}^{1}H$; b) $E = 7,17 \cdot 10^{-13}$ J/átomo; c) $E_{2} = 43,1$ GJ/g

Datos Masa: boro-10 carbono-13 partícula α protón	Cifras significativas: 3 $m({}_{5}^{10}B) = 10,0129 \text{ u}$ $m({}_{6}^{13}C) = 13,0034 \text{ u}$ $m({}_{2}^{2}He) = 4,0026 \text{ u}$ $m({}_{1}^{1}H) = 1,0073 \text{ u}$
Número de Avogadro	$N_{\rm A=6,022\cdot10^{23}\ mol^{-1}}$
Unidade de masa atómica	$1 \text{ u} = 1,66 \cdot 10^{-27} \text{ kg}$
Velocidade da luz no baleiro	$c = 3,00 \cdot 10^8 \text{ m/s}$
Incógnitas	
Enerxía liberada por núcleo de boro bombardeado	E
Enerxía liberada / g de boro	E_2
Outros símbolos	
Constante de desintegración radioactiva	λ
Ecuacións	
Equivalencia masa enerxía de Einstein	$E = m \cdot c^2$

Solución:

a) Escríbese a reacción nuclear aplicando os principios de conservación do número másico e da carga eléctrica nos procesos nucleares.

$${}^{10}_{5}\mathrm{B} + {}^{4}_{2}\mathrm{Hei} \longrightarrow {}^{13}_{6}\mathrm{C} + {}^{1}_{1}\mathrm{H}$$

b) Calcúlase o defecto de masa

$$\Delta m = m(^{13}_{6}C) + m(^{14}_{1}H) - (m(^{10}_{5}B) - m(^{4}_{2}He)) = 13,0034 [u] + 1,0073 [u] - (10,0129 [u] + 4,0026 [u]) = -0,00480 u$$

$$\Delta m = -0,00480 u \cdot 1,66 \cdot 10^{-27} \text{ kg/u} = -7,97 \cdot 10^{-30} \text{ kg}$$

Calcúlase a enerxía equivalente segundo a ecuación de Einstein

$$E = m \cdot c^2 = 7,97 \cdot 10^{-30} \text{ [kg]} \cdot (3,00 \cdot 10^8 \text{ [m/s]})^2 = 7,17 \cdot 10^{-13} \text{ J/átomo B}$$

c) Calcúlase a cantidade de átomos de boro que hai en 1 g de boro.

$$N = 1,00 \text{ g B} \quad \frac{1 \text{ mol B}}{10,0129 \text{ g B}} \quad \frac{6,022 \cdot 10^{23} \text{ átomos}}{1 \text{ mol}} = 6,01 \cdot 10^{22} \text{ átomos B}$$

Calcúlase a enerxía para 1 g de boro

$$E_2 = 7,15 \cdot 10^{-13} \text{ [J/átomo B]} \cdot 6,01 \cdot 10^{22} \text{ [átomos B/g B]} = 4,31 \cdot 10^{10} \text{ J} = 43,1 \text{ GJ/g B}$$

d) O defecto de masa é a diferenza entre a masa do núcleo de \$\frac{13}{6}\$C e a suma das masas dos protóns e neutróns que o forman. O número de protóns é o número atómico, 6, e o de neutróns é 7, a diferenza entre o número másico 13 e o número de protóns 6.

$$\Delta m = m(_{6}^{13}C) - 6 \cdot m(_{1}^{1}H) - 7 \cdot m(_{0}^{1}n) = 13,0034 \text{ [u]} - 6 \cdot 1,0073 \text{ [u]} - 7 \cdot 1,008665 \text{ [u]} = -0,101 \text{ u}$$

$$\Delta m = -0,101 \text{ [u]} \cdot \frac{1 \text{ [g]}}{6,02 \times 10^{23} \text{ [u]}} \cdot \frac{1 \text{ [kg]}}{10^{3} \text{ [g]}} = -1,68 \cdot 10^{-28} \text{ kg}$$

A enerxía equivalente calcúlase coa ecuación de Einstein

$$E_e = m \cdot c^2 = 1,68 \cdot 10^{-28} \text{ [kg]} \cdot (3,00 \cdot 10^8 \text{ [m/s]})^2 = 1,51 \cdot 10^{-11} \text{ J/átomo}^{-13}\text{C}$$

e) A enerxía de enlace por nucleón calcúlase dividindo entre o número de nucleóns:

$$E_{\rm en} = \frac{1,51 \cdot 10^{-11} \, [\, \text{J/átomo C}\,]}{13 \, [\, \text{nucleóns/átomo C}\,]} = 1,16 \cdot 10^{-12} \, \text{J/nucleón}$$

A maior parte das respostas pode calcularse coa folla de cálculo <u>FisicaBachGl.ods</u>
Cando estea no índice, manteña pulsada a tecla «↑» (maiúsculas) mentres fai clic na cela
<u>Enerxía nuclear</u>

do capítulo

Tr/ 1

Física moderna EnerNuclear Enerxía nuclear

Faga clic nas celas de cor salmón e elixa as opcións como se mostra. Escriba os datos nas celas de cor branca e bordo azul.

Carga	(e+)	Masa		
Partícula proxectil	2	4,0026	u	
Núclido diana	5	10,0129	u	
Núclido formado	6	13,0034	u	
Partícula emitida	1	1,0073	u	
2ª partícula emitida				
Masa da mostra		1	g	N. diana

Os resultados son:

$${}^{4}_{2}\text{He} + {}^{10}_{5}\text{B} \rightarrow {}^{13}_{6}\text{C} + {}^{1}_{1}\text{H}$$
Defecto de masa $\Delta m = -7,17\cdot10^{-13}$

$$\text{Enerxía da mostra} \quad E = 43,1$$

$$GJ / g \, {}^{10}_{5}\text{B}$$

Para calcular a enerxía de enlace do carbono-13, hai que borrar todos os datos excepto o do carbono

	Carga	(e⁺)	Masa	
Partícula pro	oxectil			

Los resultados son agora:

Masa da mostra

Enerxía de enlace $E_e = -1,51 \cdot 10^{-11}$ J/átomo

Se cambiamos agora «/átomo» por «/nucleón» obtemos:

Enerxía de enlace $E_e = -1,16 \cdot 10^{-12}$ J/nucleón

Cuestións e problemas das <u>Probas de avaliación do Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha folla de cálculo de LibreOffice ou OpenOffice do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión <u>CLC09</u> de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de traducindote, de Óscar Hermida López.

Procurouse seguir as <u>recomendacións</u> do Centro Español de Metrología (CEM)

Actualizado: 20/01/22

Sumario

FISICA N	IICIEAD	•

Desintegración radioactiva1
1. O período de semidesintegración do 30 Sr é 28 anos. Calcula:
a) A constante de desintegración radioactiva expresada en s ⁻¹
b) A vida media do 90Sr
c) A actividade inicial dunha mostra de 6,25 mg
d) A masa que queda desa mostra 100 anos máis tarde
e) O tempo necesario para que se desintegre o 70 % dos átomos iniciais
f) Representa nunha gráfica, de forma cualitativa, a variación da masa en función do tempo
Enerxía nuclear
1. O isótopo do boro 5ºB é bombardeado por unha partícula α e prodúcese 6ºC e outra partícula3
a) Escribe a reacción nuclear
b) Calcula a enerxía liberada por núcleo de boro bombardeado
c) Calcula a enerxía liberada si considérase 1 g de boro
d) Calcula a enerxía de enlace nuclear do 6°C
e) Calcula a súa enerxía de enlace por nucleón

Método e recomendacións