

Problems with Convolution

When working with massive data, convolutions may lead to the following problems:

Slow Training

Analyzing every details from a massive database of images will result in long training times.

Poor Performance

Model might learn irrelevant details during training leading to poor performance on unseen datasets.

The Pooling Layer

The Pooling Layer

- Reduces complexity of the image data by downsampling the feature maps.
- It focuses on essential details and maintains the overall pattern or structure.

Types of Pooling

The two main types of pooling are:

Original 4×4 Feature Map

- Max Pooling
- Average Pooling

Max pooling takes the maximum value from each path of the feature map.

1	3	2	4
5	6	7	8
9	2	10	1
4	3	2	0

Applying 2×2 Max Pooling

Input 4×4 Feature Map

Max pooling takes the maximum value from each path of the feature map.

1	3	2	4
5	6	7	8
9	2	10	1
4	3	2	0

Applying 2×2 Max Pooling

Input 4×4 Feature Map

Max pooling takes the maximum value from each path of the feature map.

1	3	2	4
5	6	7	8
9	2	10	1
4	3	2	0

Applying 2×2 Max Pooling

Input 4×4 Feature Map

Max pooling takes the maximum value from each path of the feature map.

1	3	2	4
5	6	7	8
9	2	10	1
4	3	2	0

Applying 2×2 Max Pooling

6	8
9	10

Input 4×4 Feature Map

Input Image

Max Pooled Image

Average pooling takes the average value from each path of the feature map.

1	3	2	4
5	6	7	8
9	2	10	1
4	3	2	0

= (1+3+5+6)/4 =3.75
Rounded down to 3

Input 4×4 Feature Map

Average pooling takes the average value from each path of the feature map.

1	3	2	4
5	6	7	8
9	2	10	1
4	3	2	0

	= (2+4+7+8)/4=5.25
Rounded down to 5	Rounded down to 5

3	5

Input 4×4 Feature Map

Average pooling takes the average value from each path of the feature map.

1	3	2	4
5	6	7	8
9	2	10	1
4	3	2	0

= (10+1+2+0)/4=3.25
Rounded down to 3

3	5
4	3

Input 4×4 Feature Map

Input Image

Average Pooled Image

Pooling Formula

1	3	2	4
5	6	7	8
9	2	10	1
4	3	2	0

3	5
4	3

Input 4×4 Feature Map

Output size =
$$\frac{W - P_s}{S}$$
 + 1

- W = Width of the input
- P_s = Pooling Size
- S = Stride used

Pooling Formula

1	3	2	4
5	6	7	8
9	2	10	1
4	3	2	0

3	5
4	3

Input 4×4 Feature Map

Output size =
$$\frac{W - P_s}{S}$$
 + 1

The Pooling Layer

Recognize objects regardless of their position or orientation.

Contributes to the model's generalization ability.

Up Next : Module 2: Building Blocks for Image Recognition