MATH F111- Mathematics I

Saranya G. Nair Department of Mathematics

BITS Pilani

August 23, 2024

Integral test for Series

Does the series
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \dots$$
 converge?

Let us compare the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ with $\int_{1}^{\infty} \frac{1}{x^2} dx$.

Integral test for Series

Does the series
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \dots$$
 converge?

Let us compare the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ with $\int_{1}^{\infty} \frac{1}{x^2} dx$.

$$s_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$$

$$= f(1) + f(2) + \dots + f(n)$$

$$< f(1) + \int_1^n \frac{1}{x^2} dx$$

$$< f(1) + \int_1^\infty \frac{1}{x^2} dx = 1 + 1 = 2$$

Thus s_n is monotonically increasing and bounded above. Thus the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges.

Remark

The series and integral need not have the same value in the convergent

case as
$$\sum_{n=1}^{\infty} \frac{1}{n^2} \neq \int_{1}^{\infty} \frac{1}{x^2} dx = 1$$
.

Theorem

The Integral Test: Let a_n be a sequence of positive terms $(a_n > 0)$. Suppose that $a_n = f(n)$, where f is a continuous, positive, decreasing function of x for all $x \ge N$ (N a positive integer). Then the series $\sum_{n=N}^{\infty} a_n$ and the integral $\int_{-\infty}^{\infty} f(x) dx$ both converge or both diverge.

Let us prove this result when ${\it N}=1.$ The proof for general ${\it N}$ is similar. Thus we know that

• f is decreasing and $f(n) = a(n), \forall n$.

$$\int_{1}^{n+1} f(x)dx \le a_1 + a_2 + a_3 + \dots + a_n \le a_1 + \int_{1}^{n} f(x)dx$$

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ からぐ。

- If $\int_{1}^{\infty} f(x)dx = \lim_{n \to \infty} \int_{1}^{n} f(x)dx$ is finite, the RHS inequality shows that $\sum_{n=1}^{\infty} a_n$ is finite.
- If $\lim_{n\to\infty}\int_1^n f(x)dx$ is infinite, the LHS inequality shows that $\sum_{n=1}^\infty a_n$ is infinite.
- Hence the series and the integral are either both finite or both infinite.

$$\sum_{p=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots + \text{ for any fixed real number } p.$$

$$\sum_{p=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots + \text{ for any fixed real number } p.$$

Case I: Let p > 1.

$$\sum_{p=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots + \text{ for any fixed real number } p.$$

Case I: Let p > 1.

• $f(x) = \frac{1}{x^p}$ is continuous and decreasing for $x \ge 1$.

$$\sum_{p=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots + \text{ for any fixed real number } p.$$

Case I: Let p > 1.

• $f(x) = \frac{1}{x^p}$ is continuous and decreasing for $x \ge 1$.

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \lim_{b \to \infty} \int_{1}^{b} x^{-p} dx = \lim_{b \to \infty} \frac{x^{-p+1}}{-p+1} \Big|_{1}^{b}$$
$$= \frac{1}{p-1} \lim_{b \to \infty} \left(\frac{1}{b^{p-1}} - 1 \right)$$
$$= \frac{1}{p-1}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots + \text{ for any fixed real number } p.$$

Case I: Let p > 1.

• $f(x) = \frac{1}{x^p}$ is continuous and decreasing for $x \ge 1$.

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \lim_{b \to \infty} \int_{1}^{b} x^{-p} dx = \lim_{b \to \infty} \frac{x^{-p+1}}{-p+1} \Big|_{1}^{b}$$
$$= \frac{1}{p-1} \lim_{b \to \infty} \left(\frac{1}{b^{p-1}} - 1 \right)$$
$$= \frac{1}{p-1}$$

• Thus the series converges by the Integral test when p > 1.

By n th term test,

By n th term test, the series diverges.

Case III: Let 0 .

Then 1 - p > 0 and

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \lim_{b \to \infty} \int_{1}^{b} x^{-p} dx = \lim_{b \to \infty} \frac{x^{1-p}}{1-p} \Big|_{1}^{b}$$
$$= \infty$$

By n th term test, the series diverges.

Case III: Let 0 .

Then 1 - p > 0 and

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \lim_{b \to \infty} \int_{1}^{b} x^{-p} dx = \lim_{b \to \infty} \frac{x^{1-p}}{1-p} \Big|_{1}^{b}$$
$$= \infty$$

• Thus the series diverges by the Integral test when 0 .

Case IV: If p = 1,

By n th term test, the series diverges.

Case III: Let 0 .

Then 1 - p > 0 and

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \lim_{b \to \infty} \int_{1}^{b} x^{-p} dx = \lim_{b \to \infty} \frac{x^{1-p}}{1-p} \Big|_{1}^{b}$$
$$= \infty$$

• Thus the series diverges by the Integral test when 0 .

Case IV: If p = 1, we have the (divergent) harmonic series $1 + \frac{1}{2} + \frac{1}{2} + \cdots + \frac{1}{2}$

• The *p*-series test shows that the harmonic series is just barely divergent; if we increase *p* to 1.00000001, for instance, the series converges!!

- The p-series test shows that the harmonic series is just barely divergent; if we increase p to 1.000000001, for instance, the series converges!!
- The slowness with which the partial sums of the harmonic series approach infinity is impressive.

- The p-series test shows that the harmonic series is just barely divergent; if we increase p to 1.000000001, for instance, the series converges!!
- The slowness with which the partial sums of the harmonic series approach infinity is impressive.
- For instance, it takes more than 178 million terms of the harmonic series to move the partial sums beyond 20.

$$\exp \sum_{n=0}^{\infty} \frac{1}{n^2 + 1}.$$

$$\int_{1}^{\infty} \frac{1}{x^2 + 1} dx = \frac{\pi}{4}$$
 and thus the series converges by the integral test.

$$\int_{1}^{\infty} \frac{1}{x^2 + 1} dx = \frac{\pi}{4}$$
 and thus the series converges by the integral test.

3. Determine the convergence or divergence of the series. (Use integral test)

$$\int_{1}^{\infty} \frac{1}{x^2 + 1} dx = \frac{\pi}{4}$$
 and thus the series converges by the integral test.

3. Determine the convergence or divergence of the series. (Use integral test)

$$(i) \sum_{n=1}^{\infty} n e^{-n^2}$$

- 2. Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$.
- $\int_{1}^{\infty} \frac{1}{x^2 + 1} dx = \frac{\pi}{4}$ and thus the series converges by the integral test.
- 3. Determine the convergence or divergence of the series. (Use integral test)

$$(i) \sum_{n=1}^{\infty} n e^{-n^2}$$

$$(ii) \sum_{n=1}^{\infty} \frac{1}{2^{\ln n}}$$

We have seen how to determine the convergence of geometric series, *p*-series, and a few others. We can test the convergence of many more series by comparing their terms to those of a series whose convergence is already known.

We have seen how to determine the convergence of geometric series, *p*-series, and a few others. We can test the convergence of many more series by comparing their terms to those of a series whose convergence is already known.

Theorem

Direct Comparison test: Let $\sum a_n$ and $\sum b_n$ be two series $0 \le a_n \le b_n$.

We have seen how to determine the convergence of geometric series, *p*-series, and a few others. We can test the convergence of many more series by comparing their terms to those of a series whose convergence is already known.

Theorem

Direct Comparison test: Let $\sum a_n$ and $\sum b_n$ be two series

 $0 \le a_n \le b_n$. Then

• If $\sum b_n$ converges, then $\sum a_n$ also converges.

We have seen how to determine the convergence of geometric series, *p*-series, and a few others. We can test the convergence of many more series by comparing their terms to those of a series whose convergence is already known.

Theorem

Direct Comparison test: Let $\sum a_n$ and $\sum b_n$ be two series

- $0 \le a_n \le b_n$. Then
 - If $\sum b_n$ converges, then $\sum a_n$ also converges.
 - If $\sum a_n$ diverges, then $\sum b_n$ also diverges.

$$(i)\sum_{n=1}^{\infty}\frac{5}{5n-1}$$

$$(i)\sum_{n=1}^{\infty}\frac{5}{5n-1}$$

$$\frac{5}{5n-1} = \frac{1}{\frac{5n-1}{5}} = \frac{1}{n-\frac{1}{5}} > \frac{1}{n}.$$

$$(i)\sum_{n=1}^{\infty}\frac{5}{5n-1}$$

$$\frac{5}{5n-1} = \frac{1}{\frac{5n-1}{5}} = \frac{1}{n-\frac{1}{5}} > \frac{1}{n}.$$

Thus $\sum \frac{5}{5n-1}$ diverges as $\sum \frac{1}{n}$ diverges.

$$(ii)\sum_{n=1}^{\infty}\frac{1}{n!}$$

$$(i)\sum_{n=1}^{\infty}\frac{5}{5n-1}$$

$$\frac{5}{5n-1} = \frac{1}{\frac{5n-1}{5}} = \frac{1}{n-\frac{1}{5}} > \frac{1}{n}.$$

Thus $\sum \frac{5}{5n-1}$ diverges as $\sum \frac{1}{n}$ diverges.

$$(ii) \sum_{n=1}^{\infty} \frac{1}{n!} \\ 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots + \frac{1}{n!} < 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^{n-1}}$$

$$(i)\sum_{n=1}^{\infty}\frac{5}{5n-1}$$

$$\frac{5}{5n-1} = \frac{1}{\frac{5n-1}{5}} = \frac{1}{n-\frac{1}{5}} > \frac{1}{n}.$$

Thus $\sum \frac{5}{5n-1}$ diverges as $\sum \frac{1}{n}$ diverges.

$$(ii) \sum_{n=1}^{\infty} \frac{1}{n!} \\ 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots + \frac{1}{n!} < 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^{n-1}}$$
 Thus $\sum \frac{1}{n!}$ converges as $\sum \frac{1}{2^n}$ converges.

Theorem

Suppose that $a_n > 0$ and $b_n > 0$ for all $n \ge N$ for some $N \in \mathbb{N}$.

- (i) If $\lim_{n\to\infty}\frac{a_n}{b_n}=c>0$, then $\sum a_n$ and $\sum b_n$ both converge or diverge.
- (ii) If $\lim_{n\to\infty}\frac{\ddot{a_n}}{b_n}=0$ and $\sum b_n$ converges, then $\sum a_n$ converges.
- (iii) If $\lim_{n\to\infty}\frac{\ddot{a_n}}{b_n}=\infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

Limit comparison test

Proof of (i) : Since $\lim_{n \to \infty} \frac{a_n}{b_n} = c$, we have $\exists \ N \in \mathbb{N}$ such that

$$\left|\frac{a_n}{b_n}-c\right|<\frac{c}{2}.$$

i.e taking $\epsilon = \frac{c}{2}$. Thus for $n \geq N$,

$$\frac{c}{2}b_n < a_n < \frac{3c}{2}b_n$$

Use Comparison tests to conclude.

Which of the following series converge and, which diverge?

$$(i) \sum_{n=1}^{\infty} \frac{2n+1}{(n+1)^2}$$

$$(ii) \sum_{n=1}^{\infty} \frac{1}{2^n - 1}$$

$$(iii) \sum_{n=1}^{\infty} \frac{1+n \ln n}{n^2 + 5}$$

$$(iv) \sum_{n=1}^{\infty} \frac{\ln n}{n^{\frac{3}{2}}}$$

$$(ii)\sum_{n=1}^{\infty}\frac{1}{2^n-1}$$

$$(iii)\sum_{n=1}^{\infty}\frac{1+n\ln n}{n^2+5}$$

$$(iv)\sum_{n=1}^{\infty}\frac{\ln n}{n^{\frac{3}{2}}}$$