Sprawozdanie z listy 1. - Obliczenia naukowe

Jakub Bachanek

25 października 2020

1 Zadanie 1.

1.1 Opis problemu

Celem zadania jest iteracyjne wyznaczenie następujących liczb:

- \bullet epsilon maszynowy macheps
- liczba maszynowa eta
- ullet liczba maszynowa MAX

dla typów Float16, Float32 oraz Float64, a następnie porównanie ich z wartościami zwracanymi przez funkcje wbudowane języka Julia oraz danymi zawartymi w pliku nagłówkowym float.h.

1.2 Rozwiązanie

 $\it Macheps$ wyznaczamy iteracyjnie poprzez dzielenie jedynki przez 2 dopóki warunek jest spełniony.

```
function calc(type)
  macheps = type(1.0)
  previous_macheps = type(1.0)

while type(1.0 + macheps) > 1
     previous_macheps = macheps
     macheps = macheps / 2
  end

println("My result macheps ", type, ": ", previous_macheps)
end
```

Liczba macheps jest dwa razy większa od precyzji arytmetyki ϵ , ponieważ jeśli odległość między dwoma kolejnymi liczbami maszynowymi wynosi macheps, to maksymalny błąd reprezentacji liczby w danej arytmetyce jaki można popełnić, to połowa tej odległości.

Liczbę maszynową eta wyznaczamy iteracyjnie poprzez dzielenie jedynki przez 2 dopóki eta jest większa od zera.

```
function calc(type)
   previous_eta = type(1.0)
   eta = type(1.0)

while eta > 0
      previous_eta = eta
      eta = eta / 2
   end

println("My result eta ", type, ": ", previous_eta)
end
```

Liczba eta jest równa liczbie MIN_{sub} , ponieważ eta jest największą liczbą większą od zera, która ma reprezentację w danej arytmetyce.

Funkcje floatmin (Float
32) oraz floatmin (Float
64) zwracają najmniejszą, znormalizowaną dodatnią liczbę reprezentowaną w danej ary
tmetyce. Jest ona równa liczbie MIN_{nor} .

Liczbę maszynową MAX wyznaczamy iteracyjnie poprzez mnożenie liczby maszynowej poprzedzającej jedynkę (wtedy mantysa składa się z samych jedynek) przez 2 dopóki MAX jest mniejszy od nieskończoności.

```
function calc(type)
   max = prevfloat(type(1.0))
   previous_max = max

while !isinf(max)
        previous_max = max
        max = max * 2
   end

println("My result max ", type, ": ", previous_max)
end
```

1.3 Wyniki i interpretacja

Poniższe tabele przedstawiają uzyskane przeze mnie wyniki.

	Тур	My result macheps	eps(type)	float.h
ſ	Float16	0.000977	0.000977	_
	Float32	1.1920929e-7	1.1920929e-7	1.1920928955e-07
İ	Float64	2.220446049250313e- 16	2.220446049250313e- 16	2.2204460493e-16

Тур	My result eta	<pre>nextfloat(type(0.0))</pre>
Float16	6.0e-8	6.0e-8
Float32	1.0e-45	1.0e-45
Float64	5.0e-324	5.0 e-324

	Тур	My result MAX	floatmax(type)	float.h
ĺ	Float16	$6.55\mathrm{e}4$	$6.55\mathrm{e}4$	_
İ	Float32	3.4028235 e38	$3.4028235\mathrm{e}38$	$3.4028234664\mathrm{e}{+38}$
	Float64	$1.7976931348623157\mathrm{e}308$	$1.7976931348623157\mathrm{e}308$	$1.7976931349\mathrm{e}{+308}$

Uzyskane przeze mnie wyniki zgadzają się z tymi zwracanymi przez wbudowane funkcje języka Julia oraz zawartymi w pliku float.h.

1.4 Wnioski

Metody iteracyjne obliczania macheps, eta oraz MAX okazały się prawidłowe. Arytmetyka zmiennoprzecinkowa niesie ze sobą szereg ograniczeń, o których należy zawsze pamiętać.

2 Zadanie 2.

2.1 Opis problemu

Celem zadania jest sprawdzenie poprawności stwierdzenia Kahana, że epsilon maszynowy można otrzymać obliczając wyrażenie:

$$3(\frac{4}{3}-1)-1$$

w arytmetyce zmiennoprzecinkowej.

2.2 Rozwiązanie

Obliczamy wyrażenie prostą funkcją dla każdego typu.

```
function calc(type)
    value = type(3.0) * (type(4.0)/type(3.0) - type(1.0)) - type(1.0)
    println("My result ", type, ": ", value)
end
```

2.3 Wyniki i interpretacja

Poniższa tabela przedstawia uzyskany wynik.

Тур	My result macheps	eps(type)
Float16	-0.000977	0.000977
Float32	1.1920929e-7	1.1920929e-7
Float64	-2.220446049250313e-16	2.220446049250313e-16

Wartości się zgadzają z dokładnością do wartości bezwzględnej. Różnice wynikają z reprezentacji nieskończonego rozwinięcia liczby $\frac{4}{3}$ na parzystej, bądź nieparzystej liczbie bitów mantysy tych typów.

2.4 Wnioski

Z uwagi na skończoną dokładność arytmetyki zmiennoprzecinkowej, wyniki obliczeń mogą być różne od naszych oczekiwań.

3 Zadanie 3.

3.1 Opis problemu

Celem zadania jest sprawdzenie rozmieszczenia liczb zmiennoprzecinkowych w arytmetyce Float64 w przedziałach $[\frac{1}{2}, 1], [1, 2], [2, 4].$

3.2 Rozwiązanie

Za pomocą funkcji bitstring możemy zobaczyć jak wyglądają bity liczby w arytmetyce Float64

Dla przedziału [1, 2]:

Dla przedziału $\left[\frac{1}{2},1\right]$:

```
bitstring(Float64(0.5))
bitstring(nextfloat(Float64(0.5)))
bitstring(prevfloat(Float64(1.0)))
bitstring(Float64(1.0))
Dla przedziału [2, 4]:
bitstring(Float64(2.0))
bitstring(nextfloat(Float64(2.0)))
bitstring(prevfloat(Float64(4.0)))
bitstring(Float64(4.0))
```

Liczba bitów mantysy w Float
64 jest stała i wynosi 52. Za ich pomocą możemy wyrazi
ć 2^{52} różnych liczb, które gdy cecha jest stała, są równo
odległe. Zatem krok między liczbami o tej samej cesze wynosi
 $2^{c-1023}\ast 2^{-52}$

3.3 Wyniki i interpretacja

Każda liczba zmiennopozycyjna w Float64 między $\frac{1}{2}$ i 1 może być przedstawiona jako $x=\frac{1}{2}+k\delta$, gdzie $k=1,2,...,2^{52}-1$ i $\delta=2^{-53}$.

Podobnie dla przedziału [2, 4], tylko wtedy $\delta = 2^{-51}$.

3.4 Wnioski

Rozkład liczb maszynowych jest równomierny dla liczb o takiej samej cesze. Krok między kolejnymi liczbami wzrasta natomiast wraz z cechą.

4 Zadanie 4.

4.1 Opis problemu

Celem zadania jest znalezienie w arytmetyce Float
64 liczby zmiennoprzecinkowej x w przedziale (1, 2) takiej, ż
e $x*\frac{1}{x}\neq 1$. Następnie należy znależć najmniejszą taką liczbę.

4.2 Rozwiązanie

Iterujemy po kolejnych liczbach, aż znajdziemy taką która nie spełnia warunku.

```
function search_number(num)
    x = nextfloat(Float64(num))

while x * (Float64(1.0) / x) == Float64(1.0)
    x = nextfloat(x)
    end

println("My result = ", x)
end

search_number(Float64(1.0))
search_number(Float64(0.0))
```

4.3 Wyniki i interpretacja

Tabela przedstawia otrzymaną liczbę dla a
) 1 < x < 2oraz b) najmniejszą taką, że x > 0

Punkt	My result x
a	1.000000057228997
b	5.0e-324

4.4 Wnioski

Przez niedokładne reprezentowanie liczb w arytmetyce Float64, obliczając nawet proste wyrażenia możemy otrzymać błędne wyniki.

5 Zadanie 5.

5.1 Opis problemu

Celem zadania jest obliczenie iloczynu skalarnego dwóch wektorów w arytmetyce Float32 oraz Float64 za pomocą czterech różnych algorytmów sumowania:

- "w przód"
- "w tył"
- ullet od największego do najmniejszego
- od najmniejszego do największego

5.2 Rozwiązanie

Poniższe funkcje odpowiadają kolejnym algorytmom sumowania.

```
function sum_a(x, y, type)
   s::type = 0.0
   for i = 1:length(x)
        s = s + type(x[i]) * type(y[i])
   end
   return s
end
function sum_b(x, y, type)
   s::type = 0.0
   for i = length(x):-1:1
        s = s + type(x[i]) * type(y[i])
    end
   return s
end
function sum_c(x, y, type)
   positive = zeros(type, 0)
   negative = zeros(type, 0)
   for i = 1:length(x)
        result::type = type(x[i]) * type(y[i])
        if result > 0.0
            append!(positive, result)
        else
            append!(negative, result)
        end
   end
```

```
part_sum_positive = foldl(+, sort(positive, rev=true))
   part_sum_negative = foldl(+, sort(negative))
   return part_sum_positive + part_sum_negative
end
function sum_d(x, y, type)
   positive = zeros(type, 0)
   negative = zeros(type, 0)
   for i = 1:length(x)
        result::type = type(x[i]) * type(y[i])
        if result > 0.0
            append! (positive, result)
        else
            append! (negative, result)
        end
    end
   part_sum_positive = foldl(+, sort(positive))
   part_sum_negative = foldl(+, sort(negative, rev=true))
   return part_sum_positive + part_sum_negative
end
```

5.3 Wyniki i interpretacja

Poniższa tabela przedstawia uzyskane wyniki w poszczególnych algorytmach.

Punkt	Result Float32	Result Float64
a	-0.4999443	1.0251881368296672e-10
b	-0.4543457	-1.5643308870494366e-10
c	-0.5	0.0
d	-0.5	0.0

Prawidłowa wartość = -1.00657107000000e-11.

Żaden z algorytmów w tych arytmetykach nie obliczył prawidłowej wartości. W obu arytmetykach nastąpiła utrata dokładności ze względu na błędy zaokrągleń, ponadto w przykładach c) oraz d) nastąpiła redukcja cyfr znaczących.

5.4 Wnioski

Zarówno kolejność obliczeń jak i same dane znacząco wpływają na dokładność wyników. Zawsze należy pamiętać o zjawisku redukcji cyfr znaczących i o tym,

że arytmetyka zmiennoprzecinkowa nie jest przemienna.

6 Zadanie 6

6.1 Opis problemu

Celem zadania jest obliczanie wartości poniższych funkcji dla kolejnych wartości argumentu $x=8^{-1},8^{-2},8^{-3},...$

$$f(x) = \sqrt{x^2 + 1} - 1$$
$$g(x) = \frac{x^2}{\sqrt{x^2 + 1} + 1}$$

6.2 Rozwiązanie

Iteracyjnie wyznaczamy wartości funkcji dla kilkunastu kolejnych argumentów i obserwujemy jak te wartości się zmieniają.

```
function f(x::Float64)
    return sqrt(x^2 + 1) - 1
end
function g(x::Float64)
    return x^2 / (sqrt(x^2 + 1) + 1)
end
function calc(n)
    functions = [f, g]
    for func in functions
        for i = 1:n
            x = Float64(1/(8^i))
            println("Function ", func, "(8^{(-)}, i, ")) = ", func(x))
        println()
    end
end
calc(13)
```

6.3 Wyniki i interpretacja

Poniższa tabela przedstawia wyniki obliczeń.

n	Result $f(8^{-n})$	Result $g(8^{-n})$
1	0.0077822185373186414	0.0077822185373187065
2	0.00012206286282867573	0.00012206286282875901
3	1.9073468138230965e-6	1.907346813826566e-6
4	2.9802321943606103e-8	2.9802321943606116e-8
5	4.656612873077393e- 10	4.6566128719931904e-10
6	7.275957614183426e- 12	7.275957614156956e- 12
7	1.1368683772161603e-13	1.1368683772160957e-13
8	1.7763568394002505e-15	1.7763568394002489e-15
9	0.0	2.7755575615628914e-17
10	0.0	4.336808689942018e-19
11	0.0	6.776263578034403e-21
12	0.0	1.0587911840678754e-22
13	0.0	1.6543612251060553e-24

Już od n=9 zauważamy, że dla funkcji f nastąpił znaczny spadek dokładności, natomiast g nadal podaje wiarygodne wyniki. Jest to spowodowane operacją odejmowania w funkcji f, ponieważ podczas niej dochodzi do redukcji cyfr znaczących. W przypadku funkcji g to zjawisko nie występuje.

6.4 Wnioski

Chcąc otrzymywać jak najbardziej dokładne wyniki obliczeń należy unikać między innymi odejmowania liczb o bardzo zbliżonych wartościach, ponieważ wtedy możemy spowodować redukcję cyfr znaczących.

7 Zadanie 7.

7.1 Opis problemu

Celem zadania jest obliczenie przybliżonej wartości pochodnej funkcji $f(x) = \sin x + \cos 3x$ w punkcie $x_0 = 1$ za pomocą wzoru:

$$f'(x_0)\approx \tilde{f}'(x_0)=\frac{f(x_0+h)-f(x_0)}{h}$$
oraz błędów |f'(x_0) - $\tilde{f}'(x_0)$ | dla $h=2^{-n}$ ($n=0,1,2,...,54$).

7.2 Rozwiązanie

Iteracyjnie obliczamy wartości ze wzorów dla kolejnych n.

```
function calc_derivative(f, x0::Float64, h::Float64)
   return (f(x0 + h) - f(x0)) / h
end
```

```
function f(x::Float64)
    return sin(x) + cos(3 * x)
end

function f_der(x::Float64)
    return cos(x) - 3 * sin(3 * x)
end

function calc()
    for n = 0:54
        h = Float64(2.0^(-n))
        println("Derivative value (for n = ", n, ") = ", calc_derivative(f, 1.0, h))
        println("Error (for n = ", n, ") = ", abs(calc_derivative(f, 1.0, h) - f_der(1.0)))
        println()
    end
end

calc()
```

7.3 Wyniki i interpretacja

Poniższa tabela przedstawia obliczone wyniki dla kolejnych n.

~				
n	$f'(x_0)$	$ f'(x_0) - \hat{f}'(x_0) $		
0	2.0179892252685967	1.9010469435800585		
1	1.8704413979316472	1.753499116243109		
2	1.1077870952342974	0.9908448135457593		
3	0.6232412792975817	0.5062989976090435		
4	0.3704000662035192	0.253457784514981		
5	0.24344307439754687	0.1265007927090087		
6	0.18009756330732785	0.0631552816187897		
7	0.1484913953710958	0.03154911368255764		
8	0.1327091142805159	0.015766832591977753		
9	0.1248236929407085	0.007881411252170345		
10	0.12088247681106168	0.0039401951225235265		
11	0.11891225046883847	0.001969968780300313		
12	0.11792723373901026	0.0009849520504721099		
13	0.11743474961076572	0.0004924679222275685		
14	0.11718851362093119	0.0002462319323930373		
15	0.11706539714577957	0.00012311545724141837		
16	0.11700383928837255	6.155759983439424e-5		
17	0.11697306045971345	3.077877117529937e-5		
18	0.11695767106721178	1.5389378673624776e-5		
19	0.11694997636368498	7.694675146829866e-6		

20	0.11694612901192158	3.8473233834324105e-6
21	0.1169442052487284	1.9235601902423127e-6
22	0.11694324295967817	9.612711400208696e-7
23	0.11694276239722967	4.807086915192826e-7
24	0.11694252118468285	2.394961446938737e-7
25	0.116942398250103	1.1656156484463054e-7
26	0.11694233864545822	5.6956920069239914e-8
27	0.11694231629371643	3.460517827846843e-8
28	0.11694228649139404	4.802855890773117e-9
29	0.11694222688674927	5.480178888461751e-8
30	0.11694216728210449	1.1440643366000813e-7
31	0.11694216728210449	1.1440643366000813e-7
32	0.11694192886352539	3.5282501276157063e-7
33	0.11694145202636719	8.296621709646956e-7
34	0.11694145202636719	8.296621709646956e-7
35	0.11693954467773438	2.7370108037771956e-6
36	0.116943359375	1.0776864618478044e-6
37	0.1169281005859375	1.4181102600652196e-5
38	0.116943359375	1.0776864618478044e-6
39	0.11688232421875	5.9957469788152196e-5
40	0.1168212890625	0.0001209926260381522
41	0.116943359375	1.0776864618478044e-6
42	0.11669921875	0.0002430629385381522
43	0.1162109375	0.0007313441885381522
44	0.1171875	0.0002452183114618478
45	0.11328125	0.003661031688538152
46	0.109375	0.007567281688538152
47	0.109375	0.007567281688538152
48	0.09375	0.023192281688538152
49	0.125	0.008057718311461848
50	0.0	0.11694228168853815
51	0.0	0.11694228168853815
52	-0.5	0.6169422816885382
53	0.0	0.11694228168853815
54	0.0	0.11694228168853815

Dokładna wartość = 0.11694228168853805

Od pewnego momentu zmniejszanie wartości h nie poprawia przybliżenia wartości pochodnej, ponieważ w liczniku odejmujemy coraz bliższe sobie liczby, co pociąga za sobą redukcję cyfr znaczących. Wartości 1+h są coraz bliżej 1, aż w pewnej chwili ją osiągają - dzieje się to dla n>52. Najlepsze przybliżenie otrzymujemy dla n=28.

7.4 Wnioski

Ograniczona dokładność arytmetyki zmiennoprzecinkowej nie pozwala nam obliczyć dokładnych wartości pewnych wyrażeń. Redukcja cyfr znaczących przy odejmowaniu liczb bliskich sobie może bardzo negatywnie wpłynąć na dokładność wyniku.