Recap

- SRF, DDSRF, DSOGI, MCCF, Discrete SRF were implemented in Simulink
- Intuitive applet plots and comparisons between schemes

Presently used design

- The design of the <u>loop filter</u> $(k_p \text{ and } k_i)$ used in all the schemes were taken as is, from literature
 - Intention was to match the results with those in the literature
- All schemes rely on the Wiener optimization method
 - A good <u>trade-off</u> between filtering characteristic and dynamic response

Motivation for our design

- Filtering aspect of the PLL is taken care of by the modifications as seen in DDSRF, DSOGI, MCCF etc.
- e.g. in MCCF
- Result: decoupling of filtering characteristic and dynamic performance

A novel design optimization method

How does it work?

- Gives a single (k_p, k_i) pair for a given grid condition, pertaining to user specifications
- Variables (grid situation + user specification) are:
 - ☐ Frequency excursion
 - ☐ Phase jump
 - ☐ Error band
 - ☐ Settling time
- Demo

Advantages

- Existing methods involve trial and error as infinitely many (k_p, k_i) pairs may arise for a particular situation
- Both error and damping is <u>optimized</u>
- 3D lookup table can be loaded on the DSP/microcontroller
 - ✓ Depending on a set of grid situation at any time instant, the optimized values can be picked
 - ✓ Theoretical inferences can be made for educational purposes

Hardware implementation

 Work has been started on the MSP430 Launchpad with basic testing and debugging of the ADC and PWM modules Thank you

Conventional SRF PLL

Filtering characteristic v/s Dynamic response

Filtering
$$\rightarrow \frac{1}{Bandwidth}$$

Dynamic performance \rightarrow Bandwidth

Wiener method: a good trade-off between filtering and dynamic response

MCCF - PLL

MCCF PLL

3D lookup table - k_p

Phase jump (rad)

3D lookup table - k_i

Phase jump (rad)

3D lookup table – damping ratio

3D lookup table – time constant

Phase jump (rad)

3D lookup table - w_n

Error quantization

$$E = \frac{2e^{-\delta\omega_n t_0}}{\omega_n \sqrt{1 - \delta^2}} \sqrt{\Delta\omega_{step}^2 + \phi^2 \omega_n^2 - 2\Delta\omega_{step} \phi \omega_n \delta}$$

Damping optimization

$$(-2\omega_n t_0 c_2)\delta^3 + (-c_2 + \omega_n t_0 c_1)\delta^2 + (c_1 + 2\omega_n t_0 c_2)\delta + (-c_2 - \omega_n t_0 c_1) = 0$$

where
$$c_1 = \Delta \omega_{step}^2 + \phi^2 \omega_n^2$$

 $c_2 = \Delta \omega_{step} \phi \omega_n$

Damping optimization - comparisons

