

COMP110: Principles of Computing

Binary notation

Image credit: http://www.toothpastefordinner.com

► We write numbers in base 10

- ▶ We write numbers in base 10
- ► We have 10 **digits**: 0, 1, 2, ..., 8, 9

- ▶ We write numbers in base 10
- ► We have 10 **digits**: 0, 1, 2, ..., 8, 9
- ▶ When we write 6397, we mean:

- ▶ We write numbers in base 10
- ► We have 10 **digits**: 0, 1, 2, ..., 8, 9
- ▶ When we write 6397, we mean:
 - Six thousand, three hundred and ninety seven

- We write numbers in base 10
- ► We have 10 **digits**: 0, 1, 2, ..., 8, 9
- ▶ When we write 6397, we mean:
 - Six thousand, three hundred and ninety seven
 - (Six thousands) and (three hundreds) and (nine tens) and (seven)

- We write numbers in base 10
- ► We have 10 **digits**: 0, 1, 2, ..., 8, 9
- ▶ When we write 6397, we mean:
 - Six thousand, three hundred and ninety seven
 - (Six thousands) and (three hundreds) and (nine tens) and (seven)
 - $(6 \times 1000) + (3 \times 100) + (9 \times 10) + (7)$

- We write numbers in base 10
- ► We have 10 **digits**: 0, 1, 2, ..., 8, 9
- ▶ When we write 6397, we mean:
 - Six thousand, three hundred and ninety seven
 - (Six thousands) and (three hundreds) and (nine tens) and (seven)
 - $(6 \times 1000) + (3 \times 100) + (9 \times 10) + (7)$
 - $(6 \times 10^3) + (3 \times 10^2) + (9 \times 10^1) + (7 \times 10^0)$

- We write numbers in base 10
- ► We have 10 **digits**: 0, 1, 2, ..., 8, 9
- ▶ When we write 6397, we mean:
 - Six thousand, three hundred and ninety seven
 - (Six thousands) and (three hundreds) and (nine tens) and (seven)
 - $(6 \times 1000) + (3 \times 100) + (9 \times 10) + (7)$
 - $(6 \times 10^3) + (3 \times 10^2) + (9 \times 10^1) + (7 \times 10^0)$
 - Thousands Hundreds Tens Units

 6 3 9 7

▶ Binary notation works the same, but is base 2 instead of base 10

- Binary notation works the same, but is base 2 instead of base 10
- ▶ We have 2 digits: 0, 1

- Binary notation works the same, but is base 2 instead of base 10
- ▶ We have 2 digits: 0, 1
- ▶ When we write 10001011 in binary, we mean:

- Binary notation works the same, but is base 2 instead of base 10
- ▶ We have 2 digits: 0, 1
- ▶ When we write 10001011 in binary, we mean:

$$\begin{array}{l} (1\times2^7) + (0\times2^6) + (0\times2^5) + (0\times2^4) \\ + (1\times2^3) + (0\times2^2) + (1\times2^1) + (1\times2^0) \end{array}$$

- Binary notation works the same, but is base 2 instead of base 10
- ▶ We have 2 digits: 0, 1
- ▶ When we write 10001011 in binary, we mean:

$$\begin{array}{l} \left(1\times2^{7}\right)+\left(0\times2^{6}\right)+\left(0\times2^{5}\right)+\left(0\times2^{4}\right)\\ +\left(1\times2^{3}\right)+\left(0\times2^{2}\right)+\left(1\times2^{1}\right)+\left(1\times2^{0}\right)\\ =2^{7}+2^{3}+2^{1}+2^{0} \end{array}$$

- Binary notation works the same, but is base 2 instead of base 10
- ▶ We have 2 digits: 0, 1
- ▶ When we write 10001011 in binary, we mean:

$$(1 \times 2^7) + (0 \times 2^6) + (0 \times 2^5) + (0 \times 2^4) + (1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) = 2^7 + 2^3 + 2^1 + 2^0 = 128 + 8 + 2 + 1 \text{ (base 10)}$$

- Binary notation works the same, but is base 2 instead of base 10
- ▶ We have 2 digits: 0, 1
- ▶ When we write 10001011 in binary, we mean:

$$\begin{array}{l} \left(1\times2^{7}\right)+\left(0\times2^{6}\right)+\left(0\times2^{5}\right)+\left(0\times2^{4}\right)\\ +\left(1\times2^{3}\right)+\left(0\times2^{2}\right)+\left(1\times2^{1}\right)+\left(1\times2^{0}\right) \end{array}$$

$$=2^7+2^3+2^1+2^0$$

$$= 128 + 8 + 2 + 1$$
 (base 10)

$$= 139$$
 (base 10)

► Modern computers are digital

- ► Modern computers are digital
- Based on the flow of current in a circuit being either on or off

- Modern computers are digital
- Based on the flow of current in a circuit being either on or off
- Hence it is natural to store and operate on numbers in base 2

- Modern computers are digital
- Based on the flow of current in a circuit being either on or off
- Hence it is natural to store and operate on numbers in base 2
- ► The binary digits 0 and 1 correspond to off and on respectively

Converting to binary

https://www.youtube.com/watch?v=OezK_zTyvAQ

► A **bit** is a <u>binary digit</u>

- A bit is a binary digit
 - ► Can store a 0 or 1 (i.e. a boolean value)

- ► A bit is a binary digit
 - Can store a 0 or 1 (i.e. a boolean value)
 - ► The smallest possible unit of information

- A bit is a binary digit
 - Can store a 0 or 1 (i.e. a boolean value)
 - ► The smallest possible unit of information
- ► A byte is 8 bits

- ▶ A bit is a binary digit
 - Can store a 0 or 1 (i.e. a boolean value)
 - The smallest possible unit of information
- ► A byte is 8 bits
 - Can store a number between 0 and 255 in binary

- ▶ A bit is a binary digit
 - Can store a 0 or 1 (i.e. a boolean value)
 - The smallest possible unit of information
- ► A byte is 8 bits
 - Can store a number between 0 and 255 in binary
- A word is the number of bits that the CPU works with at once

- ▶ A bit is a binary digit
 - Can store a 0 or 1 (i.e. a boolean value)
 - The smallest possible unit of information
- ► A byte is 8 bits
 - Can store a number between 0 and 255 in binary
- A word is the number of bits that the CPU works with at once
 - ▶ 32-bit CPU: 32 bits = 1 word

- ▶ A bit is a binary digit
 - Can store a 0 or 1 (i.e. a boolean value)
 - The smallest possible unit of information
- ► A byte is 8 bits
 - Can store a number between 0 and 255 in binary
- A word is the number of bits that the CPU works with at once
 - ▶ 32-bit CPU: 32 bits = 1 word
 - ▶ 64-bit CPU: 64 bits = 1 word

- A bit is a binary digit
 - ► Can store a 0 or 1 (i.e. a boolean value)
 - The smallest possible unit of information
- ► A byte is 8 bits
 - Can store a number between 0 and 255 in binary
- A word is the number of bits that the CPU works with at once
 - ▶ 32-bit CPU: 32 bits = 1 word
 - ▶ 64-bit CPU: 64 bits = 1 word
- An n-bit word can store a number between 0 and 2ⁿ − 1

Bits, bytes and words

- A bit is a binary digit
 - Can store a 0 or 1 (i.e. a boolean value)
 - The smallest possible unit of information
- ► A byte is 8 bits
 - Can store a number between 0 and 255 in binary
- A word is the number of bits that the CPU works with at once
 - ▶ 32-bit CPU: 32 bits = 1 word
 - ▶ 64-bit CPU: 64 bits = 1 word
- An *n*-bit word can store a number between 0 and $2^n 1$
 - \triangleright 2¹⁶ 1 = 65,535

Bits, bytes and words

- A bit is a binary digit
 - Can store a 0 or 1 (i.e. a boolean value)
 - The smallest possible unit of information
- ► A byte is 8 bits
 - Can store a number between 0 and 255 in binary
- A word is the number of bits that the CPU works with at once
 - ▶ 32-bit CPU: 32 bits = 1 word
 - ▶ 64-bit CPU: 64 bits = 1 word
- An *n*-bit word can store a number between 0 and $2^n 1$
 - $ightharpoonup 2^{16} 1 = 65,535$
 - \triangleright 2³² 1 = 4,294,967,295

Bits, bytes and words

- A bit is a binary digit
 - Can store a 0 or 1 (i.e. a boolean value)
 - The smallest possible unit of information
- ► A byte is 8 bits
 - Can store a number between 0 and 255 in binary
- A word is the number of bits that the CPU works with at once
 - ▶ 32-bit CPU: 32 bits = 1 word
 - ▶ 64-bit CPU: 64 bits = 1 word
- An n-bit word can store a number between 0 and 2ⁿ − 1
 - \triangleright $2^{16} 1 = 65,535$
 - \triangleright 2³² 1 = 4,294,967,295
 - \triangleright 2⁶⁴ 1 = 18,446,744,073,709,551,615

► A **nibble** is 4 **bits**

- ► A **nibble** is 4 **bits**
- ► A kilobyte is 1000 or 1024 bytes

- ► A **nibble** is 4 **bits**
- ► A kilobyte is 1000 or 1024 bytes
 - $\qquad \qquad \bullet \quad 10^3 = 1000 \approx 1024 = 2^{10}$

- ► A **nibble** is 4 **bits**
- ► A kilobyte is 1000 or 1024 bytes
 - ► $10^3 = 1000 \approx 1024 = 2^{10}$
- ► A megabyte is 1000 or 1024 kilobytes

- ► A **nibble** is 4 **bits**
- ► A kilobyte is 1000 or 1024 bytes
 - ► $10^3 = 1000 \approx 1024 = 2^{10}$
- ► A megabyte is 1000 or 1024 kilobytes
- ► A gigabyte is 1000 or 1024 megabytes

- ► A **nibble** is 4 **bits**
- ► A kilobyte is 1000 or 1024 bytes
 - $ightharpoonup 100^3 = 1000 \approx 1024 = 2^{10}$
- ► A megabyte is 1000 or 1024 kilobytes
- ► A gigabyte is 1000 or 1024 megabytes
- ► A terabyte is 1000 or 1024 gigabytes

- ► A **nibble** is 4 **bits**
- ► A kilobyte is 1000 or 1024 bytes
 - $ightharpoonup 103 = 1000 \approx 1024 = 2^{10}$
- ► A megabyte is 1000 or 1024 kilobytes
- ► A gigabyte is 1000 or 1024 megabytes
- ► A terabyte is 1000 or 1024 gigabytes
- ▶ ...

 Other number bases than 2 and 10 are also useful

- Other number bases than 2 and 10 are also useful
- ► Hexadecimal is base 16

- Other number bases than 2 and 10 are also useful
- Hexadecimal is base 16
- Uses extra digits:
 - ► A=10, B=11, ..., F=15____

•	Other numbe
	bases than 2
	and 10 are
	also useful

- Hexadecimal is base 16
- Uses extra digits:
 - ► A=10, B=11, ..., F=15____

Hex	Dec	Hex	Dec	Hex	Dec
00	0	10	16	F0	240
01	1	11	17	F1	241
		:		:	
09	9	19	25	F9	249
0A	10	1A	26	FA	250
0B	11	1в	27	FB	251
0C	12	1C	28	FC	252
0D	13	1D	29	FD	253
ΟE	14	1E	30	FE	254
OF	15	1F	31	FF	255

2's Complement

► Arithmetic modulo N

- ► Arithmetic modulo N
- Numbers "wrap around" between 0 and N − 1

- ► Arithmetic modulo N
- Numbers "wrap around" between 0 and N − 1
- ► E.g. modulo 16:

- ► Arithmetic modulo N
- Numbers "wrap around" between 0 and N − 1
- ► E.g. modulo 16:

Modular arithmetic

- ► Arithmetic modulo N
- Numbers "wrap around" between 0 and N − 1
- ► E.g. modulo 16:

▶
$$14 + 7 = 5$$

▶ Present in many programming languages (including C++, C#, Python) as %

- ▶ Present in many programming languages (including C++, C#, Python) as %
- ▶ a % b gives the remainder of a divided by b

- ▶ Present in many programming languages (including C++, C#, Python) as %
- ▶ a % b gives the remainder of a divided by b
- ► E.g. 21 % 16 gives 5

- ▶ Present in many programming languages (including C++, C#, Python) as %
- ▶ a % b gives the remainder of a divided by b
- ► E.g. 21 % 16 gives 5
- Useful for wrapping around e.g. loop indexes or screen coordinates

► How can we represent negative numbers in binary?

- ► How can we represent negative numbers in binary?
- ightharpoonup Represent them modulo 2^n (for n bits)

- ► How can we represent negative numbers in binary?
- ightharpoonup Represent them modulo 2^n (for n bits)
- ▶ I.e. represent -a as $2^n a$

- How can we represent negative numbers in binary?
- ightharpoonup Represent them modulo 2^n (for n bits)
- ▶ I.e. represent -a as $2^n a$
- ▶ Instead of an *n*-bit number ranging from 0 to $2^n 1$, it ranges from -2^{n-1} to $+2^{n-1} 1$

- How can we represent negative numbers in binary?
- ightharpoonup Represent them modulo 2^n (for n bits)
- ▶ I.e. represent -a as $2^n a$
- ▶ Instead of an *n*-bit number ranging from 0 to $2^n 1$, it ranges from -2^{n-1} to $+2^{n-1} 1$
- \blacktriangleright E.g. 16-bit number ranges from -32768 to +32767

- How can we represent negative numbers in binary?
- ightharpoonup Represent them modulo 2^n (for n bits)
- ▶ I.e. represent -a as $2^n a$
- ▶ Instead of an *n*-bit number ranging from 0 to $2^n 1$, it ranges from -2^{n-1} to $+2^{n-1} 1$
- \blacktriangleright E.g. 16-bit number ranges from -32768 to +32767
- Note that the left-most bit can be interpreted as a sign bit: 1 if negative, 0 if positive or zero

Convert the absolute value to binary

- Convert the absolute value to binary
- ▶ Invert all the bits (i.e. change $0 \leftrightarrow 1$)

- Convert the absolute value to binary
- ▶ Invert all the bits (i.e. change $0 \leftrightarrow 1$)
- ► Add 1

- Convert the absolute value to binary
- ▶ Invert all the bits (i.e. change $0 \leftrightarrow 1$)
- ► Add 1
- ► (This is equivalent to subtracting the number from 2ⁿ... why?)

- Convert the absolute value to binary
- ▶ Invert all the bits (i.e. change $0 \leftrightarrow 1$)
- ► Add 1
- ► (This is equivalent to subtracting the number from 2ⁿ... why?)
- This is also the process for converting back from 2's complement, i.e. doing it twice should give the original number

 Allows all addition and subtraction to be carried out modulo 2ⁿ without caring whether numbers are positive or negative

- Allows all addition and subtraction to be carried out modulo 2ⁿ without caring whether numbers are positive or negative
- ▶ In fact, subtraction can just be done as addition

- Allows all addition and subtraction to be carried out modulo 2ⁿ without caring whether numbers are positive or negative
- ► In fact, subtraction can just be done as addition
- ▶ I.e. a b is the same as a + (-b), where a and -b are just n-bit numbers

Worksheet 2

Worksheet 2

Due next Friday!
Online quiz on LearningSpace

► Introduced in 1936 by Alan Turing

- ► Introduced in 1936 by Alan Turing
- ► Theoretical model of a "computer"

- ► Introduced in 1936 by Alan Turing
- Theoretical model of a "computer"
 - I.e. a machine that carries out computations (calculations)

► Has a finite number of **states**

- ► Has a finite number of states
- Has an infinite tape

- ► Has a finite number of states
- Has an infinite tape
- Each space on the tape holds a symbol from a finite alphabet

- Has a finite number of states
- Has an infinite tape
- Each space on the tape holds a symbol from a finite alphabet
- Has a tape head pointing at one space on the tape

- ► Has a finite number of states
- Has an infinite tape
- Each space on the tape holds a symbol from a finite alphabet
- Has a tape head pointing at one space on the tape
- ► Has a transition table which, given:
 - ► The current state
 - The symbol under the tape head

specifies:

- A new state
- A new symbol to write to the tape, overwriting the current symbol
- Where to move the tape head: one space to the left, or one space to the right

▶ In groups of 3-4

- ▶ In groups of 3-4
- ▶ Line up 5-10 chocolates of different colours this is your tape

- ▶ In groups of 3-4
- ▶ Line up 5-10 chocolates of different colours this is your tape
- ▶ Point your Drumstick Iolly at the leftmost chocolate

- ▶ In groups of 3-4
- ▶ Line up 5-10 chocolates of different colours this is your tape
- Point your Drumstick lolly at the leftmost chocolate
 - The lolly is your tape head, and the type of lolly is your state

- ▶ In groups of 3-4
- ▶ Line up 5-10 chocolates of different colours this is your tape
- Point your Drumstick lolly at the leftmost chocolate
 - The lolly is your tape head, and the type of lolly is your state
- Repeatedly apply the rules on the next slide

- ▶ In groups of 3-4
- ▶ Line up 5-10 chocolates of different colours this is your tape
- Point your Drumstick lolly at the leftmost chocolate
 - The lolly is your tape head, and the type of lolly is your state
- Repeatedly apply the rules on the next slide
- What computation does this machine perform?

- ▶ In groups of 3-4
- Line up 5-10 chocolates of different colours this is your tape
- Point your Drumstick lolly at the leftmost chocolate
 - The lolly is your tape head, and the type of lolly is your state
- Repeatedly apply the rules on the next slide
- What computation does this machine perform?
 - ► Hint: Milk = 0, White = 1...

Current	Current	New	New	Move
lolly	chocolate	lolly	chocolate	direction
Drumstick	Blank	Fruit	Blank	\leftarrow
Drumstick	Milk	Drumstick	White	\rightarrow
Drumstick	White	Drumstick	Milk	\rightarrow
Fruit	Blank	Swizzels	White	\rightarrow
Fruit	Milk	Swizzels	White	\leftarrow
Fruit	White	Fruit	Milk	\leftarrow
Swizzels	Blank	Stop	Blank	\rightarrow
Swizzels	Milk	Swizzels	Milk	\leftarrow
Swizzels	White	Swizzels	White	\leftarrow

 If a calculation can be carried out by a mechanical process at all, then it can be carried out by a Turing machine

- If a calculation can be carried out by a mechanical process at all, then it can be carried out by a Turing machine
- I.e. a Turing machine is the most "powerful" computer possible, in terms of what is possible or impossible to compute

- If a calculation can be carried out by a mechanical process at all, then it can be carried out by a Turing machine
- I.e. a Turing machine is the most "powerful" computer possible, in terms of what is possible or impossible to compute
- ► A machine, language or system is **Turing complete** if it can simulate a Turing machine