SIKKIM MANIPAL UNIVERSITY

III SEMESTER B.Tech(CSE) SAMPLE QUESTIONS, SET-2 DISCRETE MATHEMATICS (LATTICE)

MA 1308

1. If X is a nonempty set, then show that $(P(X), \preceq)$ is lattice with respect to the relation $A \preceq B \iff A \subseteq B, A, B \in P(X)$.

Hint: Show that $A \vee B = A \cup B$, $A \wedge B = A \cap B$.

- 2. In a lattice (L, \preceq) , show that $a \wedge (b \wedge c) = (a \wedge b) \wedge c$, for all $a, b, c \in L$.
- 3. In a lattice (L, \preceq) , show that $a \vee (b \vee c) = (a \vee b) \vee c$, for all $a, b, c \in L$.
- 4. In a lattice (L, \preceq) , show that $a \wedge (a \vee b) = a \vee (a \wedge b) = a$, for all $a, b \in L$.
- 5. In a lattice (L, \preceq) , if $a \preceq b$, show that $a \wedge b = a$, $a \vee b = b$.
- 6. In a lattice (L, \preceq) , if $a \preceq b$, $c \preceq d$, show that $a \wedge c \preceq b \wedge d$, $a \vee c \preceq b \vee d$.
- 7. In a lattice (L, \leq) , show that $a \wedge b = a$ if and only if $a \vee b = b$.
- 8. In a lattice (L, \preceq) , show that $(a \wedge b) \vee (a \wedge c) \preceq a \wedge (b \vee c)$, for all $a, b, c \in L$.

Hint: $a \wedge b \leq a$, b and so, $a \wedge b \leq a$, $b \vee c$ i.e. $a \wedge b$ is a lower bound of a and $b \vee c$. Hence, $a \wedge b \leq a \wedge (b \vee c)$.

Similarly, show $a \wedge c \leq a \wedge (b \vee c)$.

Hence, $(a \wedge b) \vee (a \wedge c) \preceq a \wedge (b \vee c)$.

- 9. In a lattice (L, \preceq) , show that $a \vee (b \wedge c) \preceq (a \vee b) \wedge (a \vee c)$, for all $a, b, c \in L$.
- 10. Show that in a lattice, if the meet operation is distributive over the join operation, then join operation is distributive over the meet operation.
- 11. Show that in a lattice, if the join operation is distributive over the meet operation, then meet operation is distributive over the join operation.
- 12. Show that in a distributive lattice, if the complement of an element exists, then it is unique.
- 13. In a distributive lattice (L, \preceq) , if $a \wedge b = a \wedge c$ and $a \vee b = a \vee c$, then show that b = c. **Hint:**

$$b = b \lor (a \land b) = b \lor (a \land c) = (b \lor a) \land (b \lor c)$$

$$= (a \lor b) \land (b \lor c)$$

$$= (a \lor c) \land (b \lor c)$$

$$= (a \land b) \lor c$$

$$= (a \land c) \lor c$$

$$= c$$

- 14. Show that in a Boolean lattice $(L, \vee, \wedge, \bar{a})$, $\overline{a \vee b} = \overline{a} \wedge \overline{b}$, for all $a, b \in L$.
- 15. Show that in a Boolean lattice $(L, \vee, \wedge, \bar{})$, $\overline{a \wedge b} = \overline{a} \vee \overline{b}$, for all $a, b \in L$.