Прикладной статистический анализ данных Регрессионный анализ

Олег Бахтеев mipt.psad19@gmail.com

2019

Постановка задачи линейной регрессии

 $1, \ldots, n$ — объекты;

 x_1, \dots, x_k, y — признаки, значения которых измеряются на объектах;

 x_1,\dots,x_k — объясняющие переменные (предикторы, регрессоры, факторы, признаки);

y — зависимая переменная, отклик.

Хотим найти такую функцию f, что $y pprox f(x_1, \ldots, x_k)$;

$$\underset{f}{\operatorname{argmin}} \mathbb{E} \left(y - f \left(x_1, \dots, x_k \right) \right)^2 = \mathbb{E} \left(y | x_1, \dots, x_k \right).$$

$$\mathbb{E}\left(y\left|x_{1},\ldots,x_{k}\right.
ight)=f\left(x_{1},\ldots,x_{k}
ight)$$
 — модель регрессии;

$$\mathbb{E}\left(y\left|x_{1},\ldots,x_{k}
ight.
ight)=eta_{0}+\sum\limits_{j=1}^{k}eta_{j}x_{j}$$
 — модель линейной регрессии.

Здесь и далее n > k $(n \gg k)$.

Первое появление

Впервые такая постановка появляется в работе Гальтона 1885 г. «Регрессия к середине в наследственности роста».

$$y - \bar{y} \approx \frac{2}{3} (x - \bar{x})$$
.

Другие работы Гальтона

Метод наименьших квадратов (МНК)

Матричные обозначения:

$$X = \begin{pmatrix} x_{10} = 1 & x_{11} & \dots & x_{1k} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n0} = 1 & x_{n1} & \dots & x_{nk} \end{pmatrix}; \quad y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}; \quad \beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{pmatrix}.$$

Метод наименьших квадратов:

$$\sum_{i=1}^{n} \left(y_i - \sum_{j=0}^{k} \beta_j x_{ij} \right)^2 \to \min_{\beta};$$

$$\|y - X\beta\|_2^2 \to \min_{\beta};$$

$$2X^T (y - X\beta) = 0,$$

$$\hat{\beta} = \left(X^T X \right)^{-1} X^T y,$$

$$\hat{y} = X \left(X^T X \right)^{-1} X^T y.$$

Метод наименьших квадратов (МНК)

МНК в линейной регрессии даёт выборочную оценку линейной аппроксимации условного матожидания $\mathbb{E}\left(y\left|x\right.\right)$

Кроме $\|\cdot\|_2^2$ это делает любая дивергенция Брегмана:

$$D(y, X\beta) = \sum_{i=1}^{n} (\phi(y_i) - \phi(x_i\beta) - \phi'(x_i\beta)(y_i - x_i\beta)),$$

где ϕ — произвольная непрерывно дифференцируемая выпуклая функция.

- ullet Две прямые пересекаются в точке (\bar{x}, \bar{y}) .
- ullet Выборочный коэффициент корреляции между x и y среднее геометрическое $\hat{\theta}_1$ и ϕ_1 :

$$\hat{\theta}_1 = \frac{n \sum xy - \sum x \sum y}{n \sum x^2 - \left(\sum x\right)^2}, \quad \hat{\phi}_1 = \frac{n \sum xy - \sum x \sum y}{n \sum y^2 - \left(\sum y\right)^2},$$

$$\hat{r}_{xy} = \frac{n \sum xy - \sum x \sum y}{\sqrt{\left(n \sum x^2 - \left(\sum x\right)^2\right)\left(n \sum y^2 - \left(\sum y\right)^2\right)}}.$$

Goodness-of-fit

$$TSS = \sum_{i=1}^{n} \left(y_i - \bar{y}\right)^2 \quad \text{(Total Sum of Squares)};$$

$$ESS = \sum_{i=1}^{n} \left(\hat{y}_i - \bar{y}\right)^2 \quad \text{(Explained Sum of Squares)};$$

$$RSS = \sum_{i=1}^{n} \left(y_i - \hat{y}_i\right)^2 \quad \text{(Residual Sum of Squares)};$$

$$TSS = ESS + RSS.$$

Коэффициент детерминации:

$$R^2 = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}.$$

 $R^2 = r_{y\hat{y}}^2$ — квадрат коэффициента множественной корреляции y с X.

Приведённый коэффициент детерминации

Стандартный коэффициент детерминации всегда увеличивается при добавлении регрессоров в модель, поэтому для отбора признаков его использовать нельзя.

Для сравнения моделей, содержащих разное число признаков, можно использовать приведённый коэффициент детерминации:

$$R_a^2 = \frac{ESS/(n-k-1)}{TSS/(n-1)} = 1 - (1 - R^2) \frac{n-1}{n-k-1}.$$

Предположения модели

- ① Линейность отклика: $y = X\beta + \varepsilon$.
- ② Случайность выборки: наблюдения $(x_i, y_i), i = 1, \dots, n$ независимы.
- ③ Полнота ранга: ни один из признаков не является константой или линейной комбинацией других признаков ни в популяции, ни в выборке $(\operatorname{rank} X = k + 1)$.
- ullet Случайность ошибок: $\mathbb{E}\left(arepsilon\left|X\right.
 ight)=0.$

В предположениях (1-4) МНК-оценки коэффициентов eta являются несмещёнными:

$$\mathbb{E}\hat{\beta}_j = \beta_j, \ j = 0, \dots, k,$$

и состоятельными:

$$\forall \gamma > 0 \lim_{n \to \infty} P\left(\left|\beta_j - \hat{\beta}_j\right| < \gamma\right) = 1, \ j = 0, \dots, k.$$

Предположения модели

- ① Линейность отклика: $y = X\beta + \varepsilon$.
- ② Случайность выборки: наблюдения $(x_i, y_i), i = 1, \dots, n$ независимы.
- ③ Полнота ранга: ни один из признаков не является константой или линейной комбинацией других признаков ни в популяции, ни в выборке $(\operatorname{rank} X = k+1)$.
- ullet Случайность ошибок: $\mathbb{E}\left(arepsilon\left|X
 ight.
 ight)=0.$
- Гомоскедастичность ошибок: дисперсия ошибки не зависит от значений признаков: $\mathbb{D}\left(\varepsilon \mid X\right) = \sigma^2.$

(предположения Гаусса-Маркова).

Теорема Гаусса-Маркова: в предположениях (1-5) МНК-оценки имеют наименьшую дисперсию в классе оценок β , линейных по y.

Неправильное определение модели

Недоопределение: если зависимая переменная определяется моделью

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_{j-1} x_{j-1} + \beta_j x_j + \beta_{j+1} x_{j+1} + \dots + \beta_k x_k + \varepsilon,$$

а вместо этого используется модель

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_{j-1} x_{j-1} + \beta_{j+1} x_{j+1} + \dots + \beta_k x_k + \varepsilon,$$

то МНК-оценки $\hat{\beta}_0,\ldots,\hat{\beta}_{j-1},\hat{\beta}_{j+1},\ldots,\hat{\beta}_k$ являются смещёнными и несостоятельными оценками $\beta_0,\ldots,\beta_{j-1},\beta_{j+1},\ldots,\beta_k$.

Переопределение: если признак x_j не влияет на y, т. е. $\beta_j=0$, то МНК-оценка $\hat{\beta}$ остаётся несмещённой состоятельной оценкой β , но дисперсия её возрастает.

Дисперсия \hat{eta}_j

В предположениях (1-5) дисперсии МНК-оценок коэффициентов β задаются следующим образом:

$$\mathbb{D}\left(\left.\hat{\beta}_{j}\right|X\right) = \frac{\sigma^{2}}{TSS_{j}\left(1 - R_{j}^{2}\right)},$$

где $TSS_j = \sum\limits_{i=1}^n {(x_{ij} - \bar{x}_j)^2} \,, \; R_j^2$ — коэффициент детерминации при регрессии x_j на все остальные признаки из X.

- ullet Чем больше дисперсия ошибки σ^2 , тем больше дисперсия оценки \hat{eta}_j .
- ullet Чем больше вариация значений признака x_j в выборке, тем меньше дисперсия оценки \hat{eta}_i .
- ullet Чем лучше признак x_j объясняется линейной комбинацией оставшихся признаков, тем больше дисперсия оценки \hat{eta}_j .

Дисперсия \hat{eta}_j

 $R_j^2 < 1$ по предположению (3); тем не менее, может быть $R_j^2 pprox 1.$

В матричном виде:

$$\mathbb{D}\left(\hat{\beta} \middle| X\right) = \sigma^2 \left(X^T X\right)^{-1}.$$

Если столбцы X почти линейно зависимы, то матрица X^TX плохо обусловлена, и дисперсия оценок $\hat{\beta}_i$ велика.

Близкая к линейной зависимость между двумя или более признаками x_j называется мультиколлинеарностью.

Проблема мультиколлинеарности решается с помощью отбора признаков или использования регуляризаторов.

Бинарные признаки

Если x_j принимает только два значения, то они кодируются нулём и единицей. Например, если x_j — пол испытуемого, то можно задать x_j = [пол = мужской] .

Механизм построения регрессии не меняется.

Категориальные признаки

Как кодировать дискретные признаки x_j , принимающие более двух значений? Пусть y — средний уровень заработной платы, x — тип должности (рабочий / инженер / управляющий). Допустим, мы закодировали эти должности следующим образом:

Тип должности	x
рабочий	1
инженер	2
управляющий	3

и построили регрессию $y=\beta_0+\beta_1 x.$ Тогда для рабочего, инженера и управляющего ожидаемые средние уровни заработной платы определяются следующим образом:

$$y_{bc} = \beta_0 + \beta_1,$$

$$y_{pr} = \beta_0 + 2\beta_1,$$

$$y_{wc} = \beta_0 + 3\beta_1.$$

Согласно построенной модели, разница в средних уровнях заработной платы рабочего и инженера в точности равна разнице между зарплатами инженера и управляющего.

Фиктивные переменные

Верный способ использования категориальных признаков в регрессии — введение бинарных фиктивных переменных (dummy variables).

Пусть признак x_j принимает m различных значений, тогда для его кодирования необходима m-1 фиктивная переменная.

Способы кодирования:

	Dummy		Deviation	
Тип должности	x_1	x_2	x_1	x_2
рабочий	0	0	1	0
инженер	1	0	0	1
управляющий	0	1	-1	-1

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

- При dummy-кодировании коэффициенты β_1, β_2 оценивают среднюю разницу в уровнях зарплат инженера и управляющего с рабочим.
- ullet При deviation-кодировании коэффициенты eta_1,eta_2 оценивают среднюю разницу в уровнях зарплат рабочего и инженера со средним по всем должностям.

Вопросы

- f 0 Как найти доверительные интервалы для eta_j и проверить гипотезу $H_0\colon eta_j=0$?
- 2 Как найти доверительный интервал для значений отклика на новом объекте $y(x_0)$?
- ③ Как проверить адекватность построенной модели?

Предположение о нормальности ошибок

 $oldsymbol{0}$ Нормальность ошибок: $arepsilon\left|X
ight.\sim N\left(0,\sigma^{2}
ight)$.

Эквивалентная запись: $y \left| X \sim N\left(X eta, \sigma^2
ight)$.

 В предположениях (1-6) МНК-оценки совпадают с оценками максимального правдоподобия.

ММП:

$$\begin{split} p\left(\varepsilon_{i}\right) &= \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2\sigma}\varepsilon_{i}^{2}},\\ \ln\prod_{i=1}^{n}p\left(\varepsilon_{i}\right) &\to \max_{\beta},\\ \sum_{i=1}^{n}\left(-\frac{1}{2}\ln\left(2\pi\sigma\right) - \frac{1}{2\sigma}\varepsilon_{i}^{2}\right) &\to \max_{\beta},\\ \sum_{i=1}^{n}\varepsilon_{i}^{2} &= \sum_{i=1}^{n}\left(y_{i} - \sum_{j=0}^{k}\beta_{j}x_{ij}\right)^{2} &\to \min_{\beta}. \end{split}$$

Предположение о нормальности ошибок

- МНК-оценки \hat{eta} имеют наименьшую дисперсию среди всех несмещённых оценок eta.
- ullet МНК-оценки \hat{eta} имеют нормальное распределение $N\left(eta,\sigma^2\left(X^TX
 ight)^{-1}
 ight)$.
- ullet Несмещённой оценкой σ^2 является

$$\hat{\sigma}^2 = \frac{1}{n-k-1} RSS;$$

кроме того, $\frac{1}{\sigma^2}RSS\sim\chi^2_{n-k-1}.$

 $\bullet \ \forall c \in \mathbb{R}^{k+1}$

$$\frac{c^T \left(\beta - \hat{\beta}\right)}{\hat{\sigma} \sqrt{c^T \left(X^T X\right)^{-1} c}} \sim St(n - k - 1).$$

Доверительные и предсказательные интервалы

100(1-lpha)% доверительный интервал для σ :

$$\sqrt{\frac{RSS}{\chi^2_{n-k-1,1-\alpha/2}}} \leqslant \sigma \leqslant \sqrt{\frac{RSS}{\chi^2_{n-k-1,\alpha/2}}}.$$

Возьмём $c = \left(0 \dots 0 \frac{1}{i} \dots 0\right); \quad 100(1-\alpha)\%$ доверительный интервал для β_j :

$$\hat{\beta}_j \pm t_{n-k-1,1-\alpha/2} \hat{\sigma} \sqrt{(X^T X)_{jj}^{-1}}.$$

Для нового объекта x_0 возьмём $c=x_0; \quad 100(1-\alpha)\%$ доверительный интервал для $\mathbb{E}\left(y\mid x=x_0\right)=x_0^T\beta$:

$$x_0^T \hat{\beta} \pm t_{n-k-1,1-\alpha/2} \hat{\sigma} \sqrt{x_0^T (X^T X)^{-1} x_0}.$$

Чтобы построить предсказательный интервал для $y\left(x_{0}\right)=x_{0}^{T}\beta+\varepsilon\left(x_{0}\right),$ учтём ещё дисперсию ошибки:

$$x_0^T \hat{\beta} \pm t_{n-k-1,1-\alpha/2} \hat{\sigma} \sqrt{1 + x_0^T (X^T X)^{-1} x_0}.$$

нулевая гипотеза: $H_0\colon eta_j=0$

альтернатива: $H_1: eta_j < \neq > 0$

статистика: $T=rac{\hat{eta}_j}{\sqrt{rac{RSS}{n-k-1}\left(X^TX
ight)^{-1}_{jj}}}$

нулевое распределение: $\dot{St(n-k-1)}$

Пример: имеется 12 испытуемых, x — результат прохождения испытуемым составного теста скорости реакции, y — результат его теста на симулятора транспортного средства. Проведение составного теста значительно проще и требует меньших затрат, поэтому ставится задача предсказания y по x, для чего строится линейная регрессия согласно модели

$$y = \beta_0 + \beta_1 x + \varepsilon.$$

Значима ли переменная x для предсказания y?

$$H_0: \beta_1 = 0.$$

 $H_1: \beta_1 \neq 0 \Rightarrow p = 2.2021 \times 10^{-5}$.

нулевая гипотеза: $H_0 \colon eta_j = a$

альтернатива: $H_1: \beta_j < \neq > a$

статистика: $T = \frac{\hat{\beta}_j - a}{\sqrt{\frac{RSS}{n-k-1} \left(X^T X\right)_{jj}^{-1}}}$

нулевое распределение: $\dot{St(n-k-1)}$

Пример: по выборке из 506 жилых районов, расположенных в пригородах Бостона, строится модель средней цены на жильё следующего вида:

$$\ln price = \beta_0 + \beta_1 \ln nox + \beta_2 \ln dist + \beta_3 rooms + \beta_4 stratio + \varepsilon,$$

где nox — содержание в воздухе двуокиси азота, dis — взвешенное среднее расстояние от жилого района до пяти основных мест трудоустройства, rooms среднее число комнат в доме жилого района, stratio — среднее отношения числа студентов к числу учителей в школах района.

Коэффициент β_1 имеет смысл эластичности цены по признаку nox.

По экономическим соображениям интерес представляет гипотеза о том, что эластичность равна -1.

$$H_0: \beta_1 = -1.$$

 $H_1: \beta_1 \neq -1 \Rightarrow p = 0.6945.$

Критерий Фишера

$$\underset{n\times(k+1)}{X} = \begin{pmatrix} X_1 \\ n\times(k+1-k_1) \end{pmatrix}; \quad \underset{(k+1)\times 1}{\beta^T} = \begin{pmatrix} \beta_1^T \\ (k+1-k_1)\times 1 \end{pmatrix}^T;$$

нулевая гипотеза: $H_0: \beta_2 = 0$

альтернатива: $H_1\colon H_0$ неверна

статистика: $RSS_r = \|y - X_1\beta_1\|_2^2, RSS_{ur} = \|y - X\beta\|_2^2,$

 $F = \frac{(RSS_r - RSS_{ur})/k_1}{RSS_{uu}/(n-k-1)}$

нулевое распределение: $F(k_1, n-k-1)$

Критерий Фишера

Пример: для веса ребёнка при рождении имеется следующая модель:

$$weight = \beta_0 + \beta_1 cigs + \beta_2 parity + \beta_3 inc + \beta_4 med + \beta_5 fed + \varepsilon,$$

где cigs — среднее число сигарет, выкуривавшихся матерью за один день беременности, parity — номер ребёнка у матери, inc — среднемесячный доход семьи, med — длительность в годах получения образования матерью, fed — отцом. Данные имеются для 1191 детей.

Зависит ли вес ребёнка при рождении от уровня образования родителей?

$$H_0: \beta_4 = \beta_5 = 0.$$

 H_1 : H_0 неверна $\Rightarrow p = 0.2421$.

Связь между критериями Фишера и Стьюдента

Если $k_1=1$, критерий Фишера эквивалентен критерию Стьюдента для двусторонней альтернативы.

Иногда критерий Фишера отвергает гипотезу о незначимости признаков X_2 , а критерий Стьюдента не признаёт значимым ни один из них. Возможные объяснения:

- ullet отдельные признаки из X_2 недостаточно хорошо объясняют y, но совокупный эффект значим;
- признаки в X_2 мультиколлинеарны.

Иногда критерия Фишера не отвергает гипотезу о незначимости признаков X_2 , а критерий Стьюдента признаёт значимыми некоторые из них. Возможные объяснения:

- ullet незначимые признаки в X_2 маскируют влияние значимых;
- ullet значимость отдельных признаков в X_2 результат множественной проверки гипотез.

Критерий Фишера

 $H_0: \beta_1 = \cdots = \beta_k = 0$ нулевая гипотеза:

альтернатива: $H_1: H_0$ неверна статистика: $F = \frac{R^2/k}{\left(1 - R^2\right)/(n - k - 1)}$

F(k, n - k - 1)нулевое распределение:

Критерий Фишера

Пример: имеет ли вообще смысл модель веса ребёнка при рождении, рассмотренная выше?

$$H_0\colon \beta_1 = \dots = \beta_5 = 0.$$
 $H_1\colon H_0$ неверна $\Rightarrow p = 6.0331 \times 10^{-9}.$

Сравнение невложенных моделей

Пример: имеются две модели:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon, \tag{1}$$

$$y = \gamma_0 + \gamma_1 \log x_1 + \gamma_2 \log x_2 + \varepsilon. \tag{2}$$

Как понять, какая из них лучше?

Критерий Давидсона-Маккиннона

Пусть \hat{y} — оценка отклика по первой модели, \hat{y} — по второй. Подставим эти оценки как признаки в чужие модели:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 \hat{y} + \varepsilon,$$

$$y = \gamma_0 + \gamma_1 \log x_1 + \gamma_2 \log x_2 + \gamma_3 \hat{y} + \varepsilon.$$

При помощи критерия Стьюдента проверим

$$H_{01}: \beta_3 = 0, \ H_{11}: \beta_3 \neq 0,$$

 $H_{02}: \gamma_3 = 0, \ H_{12}: \gamma_3 \neq 0.$

H_{01}	Принята	Отвергнута
Принята	Обе модели хороши	Модель (1) значимо
		лучше
Отвергнута	Модель (2) значимо	Обе модели плохи
	лучше	

Пошаговая регрессия

- **Шаг 0**. Настраивается модель с одной только константой, а также все модели с одной переменной. Рассчитывается F-статистика каждой модели и достигаемый уровень значимости. Выбирается модель с наименьшим достигаемым уровнем значимости. Соответствующая переменная X_{e1} включается в модель, если этот достигаемый уровень значимости меньше порогового значения $p_E=0.05$.
- ullet Шаг $oldsymbol{1}$. Рассчитывается F-статистика и достигаемый уровень значимости для всех моделей, содержащих две переменные, одна из которых X_{e1} . Аналогично принимается решение о включении X_{e2} .
- Шаг 2. Если была добавлена переменная X_{e2} , возможно, X_{e1} уже не нужна. В общем случае просчитываются все возможные варианты исключения одной переменной, рассматривается вариант с наибольшим достигаемым уровнем значимости, соответствующая переменная исключается, если он превосходит пороговое значение $p_R=0.1$.

•

Эксперимент Фридмана

(Freedman, 1983): пошаговая регрессия несовместима с проверкой гипотез о значимости коэффициентов: критерии Фишера и Стьюдента антиконсервативны, если вычисляются на той же самой выборке, на которой настраивалась модель.

Отбор признаков с учётом эффекта множественной проверки гипотез

 $\forall c_1, \ldots, c_{k_1} \in \mathbb{R}^{k+1}$

$$t_j = \frac{c_j^T \left(\beta - \hat{\beta}\right)}{\hat{\sigma}\sqrt{c_j^T \left(X^T X\right)^{-1} c_j}}, \quad j = 1, \dots, k_1$$

имеют совместное распределение Стьюдента с числом степеней свободы n-k-1 и корреляционной матрицей

$$R = DC^{T} \left(X^{T} X \right)^{-1} CD,$$

$$C = (c_{1}, \dots, c_{k_{1}}),$$

$$D = \operatorname{diag} \left(c_{j}^{T} \left(X^{T} X \right)^{-1} c_{j} \right)^{-\frac{1}{2}}.$$

Для одновременной проверки значимости всех коэффициентов регрессии достаточно взять в качестве C единичную матрицу.

Значимость категориальных предикторов

Категориальный предиктор, кодируемый несколькими фиктивными переменными, необходимо включать или исключать целиком. Значимость соответствующих фиктивных переменных лучше проверять в совокупности.

В случае, когда по отдельности какие-то фиктивные переменные не значимы, допустимо объединять уровни категориального предиктора, основываясь на интерпретации.

Проверка предположений Гаусса-Маркова

- Предположения (1-2) проверить нельзя.
- Предположение (3) легко проверяется, без его выполнения построить модель вообще невозможно.
- Предположения (4-6) об ошибке ε необходимо проверять.

Оценивать ошибку ε будем при помощи **остатков**:

$$\hat{\varepsilon}_i = y_i - \hat{y}_i, \ i = 1, \dots, n.$$

Стандартизированные остатки:

$$\tilde{\varepsilon}_i = \frac{\hat{\varepsilon}_i}{\hat{\sigma}}, \ i = 1, \dots, n.$$

Строятся графики зависимости $\tilde{arepsilon}_i$ от \hat{y}_i , $x_{ij}, j=1,\ldots,k, i$.

Возможно, присутствуют выбросы

В данных имеется тренд

Гетероскедастичность

Стоит добавить квадрат признака x_j

Формальные критерии

- Проверка нормальности занятие 4.
- Проверка несмещённости: если остатки нормальны критерий Стьюдента (занятие 4), нет — непараметрический критерий (занятие 5).
- Проверка гомоскедастичности: критерий Бройша-Пагана.

Критерий Бройша-Пагана

нулевая гипотеза: $H_0 \colon \mathbb{D} \varepsilon_i = \sigma^2$ альтернатива: $H_1 \colon H_0$ неверна

статистика: $LM=nR_{\hat{arepsilon}^2}^2,~R_{\hat{arepsilon}^2}^2$ — коэффициент детерминации

при регрессии квадратов остатков на признаки

нулевое распределение: χ_k^2

Гетероскедастичность

Гетероскедастичность может быть следствием недоопределения модели.

Последствия гетероскедастичности:

- ullet МНК-оценки eta и R^2 остаются несмещёнными и состоятельными
- нарушаются предположения критериев Стьюдента и Фишера и методов построения доверительных интервалов для σ и β (независимо от объёма выборки)

Варианты:

- переопределить модель, добавить признаки, преобразовать отклик
- использовать модифицированные оценки дисперсии коэффициентов

Преобразование Бокса-Кокса

Пусть значения отклика y_1,\dots,y_n положительны. Если $\frac{\max y_i}{\min y_i}>10$, стоит рассмотреть возможность преобразования y. В каком виде его искать?

Часто полезно рассмотреть преобразования вида y^λ , но оно не имеет смысла при $\lambda=0.$

Вместо него можно рассмотреть семейство преобразований

$$W = \begin{cases} (y^{\lambda} - 1) / \lambda, & \lambda \neq 0, \\ \ln y, & \lambda = 0. \end{cases}$$

но оно сильно варьируется по λ .

Вместо него можно рассмотреть семейство преобразований

$$V = \begin{cases} \left(y^{\lambda} - 1\right) / \left(\lambda \dot{y}^{\lambda - 1}\right), & \lambda \neq 0, \\ \dot{y} \ln y, & \lambda = 0, \end{cases}$$

где $\dot{y} = \left(y_1 y_2 \dots y_n \right)^{1/n}$ — среднее геометрическое наблюдений отклика.

Метод Бокса-Кокса

Процесс подбора λ :

- f Q выбирается набор значений λ в некотором интервале, например, (-2,2);
- ② для каждого значения λ выполняется преобразование отклика V, строится регрессия V на X, вычисляется остаточная сумма квадратов $RSS(\lambda)$;
- ③ строится график зависимости $RSS(\lambda)$ от λ , по нему выбирается оптимальное значение λ :
- Ф выбирается ближайшее к оптимальному удобное значение λ (например, целое или полуцелое);
- f s строится окончательная регрессионная модель с откликом y^λ или $\ln y$.

Доверительный интервал для λ определяется как пересечение кривой $RSS\left(\lambda\right)$ с линией уровня $\min_{\lambda}RSS\left(\lambda\right)\cdot e^{\chi_{1,1-\alpha}^{2}/n}.$ Если он содержит единицу, возможно, не стоит выполнять преобразование.

Устойчивая оценка дисперсии Уайта

Если не удаётся избавиться от гетероскедастичности, при анализе моделей (дальше) можно использовать устойчивые оценки дисперсии. White's heteroscedasticity-consistent estimator (HCE):

$$\mathbb{D}\left(\left.\hat{\beta}\right|X\right) = \left(X^TX\right)^{-1}\left(X^T\operatorname{diag}\left(\hat{\varepsilon}_1^2,\ldots,\hat{\varepsilon}_n^2\right)X\right)\left(X^TX\right)^{-1}.$$

Асимптотика устойчивой оценки:

$$\begin{split} \sqrt{n} \left(\beta - \hat{\beta} \right) & \xrightarrow{d} N \left(0, \Omega \right), \\ \hat{\Omega} &= n \left(X^T X \right)^{-1} \left(X^T \operatorname{diag} \left(\hat{\varepsilon}_1^2, \dots, \hat{\varepsilon}_n^2 \right) X \right) \left(X^T X \right)^{-1}. \end{split}$$

Другие устойчивые оценки дисперсии

Элементы диагональной матрицы могут задаваться разными способами:

$$\begin{array}{ccc} \text{const} & \hat{\sigma}^2 \\ \text{HC0} & \hat{\varepsilon}_i^2 \\ \text{HC1} & \frac{n}{n-k} \hat{\varepsilon}_i^2 \\ \text{HC2} & \frac{\hat{\varepsilon}_i^2}{1-h_i} \\ \text{HC3} & \frac{\hat{\varepsilon}_i^2}{(1-h_i)^2} \\ \text{HC4} & \frac{\hat{\varepsilon}_i^2}{(1-h_i)} \end{array}$$

const — случай гомоскедастичной ошибки,

НСО — оценка Уайта,

НС1-НС3 — модификации МакКиннона-Уайта,

НС4 — модификация Крибари-Нето.

Расстояние Кука

Регрессия сильно подстраивается под далеко стоящие наблюдения.

Расстояние Кука

Расстояние Кука — мера воздействия i-го наблюдения на регрессионное уравнение:

$$D_{i} = \frac{\sum_{j=1}^{n} (\hat{y}_{j} - \hat{y}_{j(i)})^{2}}{RSS(k+1)} = \frac{\hat{\varepsilon}_{i}^{2}}{RSS(k+1)} \frac{h_{i}}{(1 - h_{i})^{2}},$$

 $\hat{y}_{j(i)}$ — предсказания модели, настроенной по наблюдениям $1,\dots,i-1,i+1,\dots,n,$ для наблюдения j:

 h_i — диагональный элемент матрицы $H = X (X^T X)^{-1} X^T$ (hat matrix).

Варианты порога на D_i :

- $D_i = 1$:
- $D_i = 4/n$;
- $D_i = 3\bar{D};$
- ullet визуально по графику зависимости D_i от \hat{y}_i .

Литература

- линейная регрессия в целом Wooldridge (много примеров, без матричной алгебры);
- критерий Давидсона-Маккиннона (Davidson-MacKinnon test) Davidson;
- множественная оценка значимости коэффициентов Bretz, 4.4;
- преобразование Бокса-Кокса (Box-Cox transformation) Дрейпер, гл. 14;
- устойчивые оценки дисперсии White, MacKinnon, Cribari-Neto;
- расстояние Кука (Cook's distance) Cook.

Дрейпер Н.Р., Смит Г. Прикладной регрессионный анализ, 2007.

Кобзарь А.И. Прикладная математическая статистика, 2006.

Bretz F., Hothorn T., Westfall P. Multiple Comparisons Using R, 2010.

Cook D.R., Weisberg S. Residuals and influence in regression, 1982.

Литература

Cribari-Neto F. (2004). Asymptotic inference under heteroskedasticity of unknown form. Computational Statistics & Data Analysis, 45(2), 215–233.

Davidson R., MacKinnon J. (1981). Several Tests for Model Specification in the Presence of Alternative Hypotheses. Econometrica, 49, 781-793.

Freedman D.A. A Note on Screening Regression Equations. The American Statistician, 37(2), 152-155.

MacKinnon J., White H. (1985). Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties. Journal of Econometrics, 29, 305–325.

White H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica: Journal of the Econometric Society, 48(4), 817–838.

Wooldridge J. Introductory Econometrics: A Modern Approach, 2016.

Кстати

http://news.nplus1.ru/43pB