Roll No	
---------	--

TEC-101

B. TECH. (FIRST SEMESTER) END SEMESTER EXAMINATION, 2019

(All Branches)

BASIC ELECTRONICS ENGINEERING

Time: Three Hours

Maximum Marks: 100

Note: (i) All questions are compulsory.

- (ii) Answer any two sub-questions among (a), (b) and (c) in each main question:
- 1. Attempt any two parts of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) With the help of energy band diagram explain the mechanism of insulator, metal and semiconductor.
 - (b) Explain the contact potential in a p-n junction. An abrupt silicon p-n junction has $N_a = 1 \times 10^{16} \text{ cm}^{-3}$ on one side and $N_d = 1 \times 10^{17} \text{ cm}^{-3}$ on other side, determine its contact potential. Given $n_i = 1.5 \times 10^{10} \text{ cm}^{-3}$.
 - (c) With the help of suitable diagram explain the working principle of p-n junction diode. Draw its energy band diagram and also explain the mechanism drift and diffusion current component.
- 2. Attempt any two parts of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) Draw and explain the circuit diagram of full wave rectifier. Also draw its peak load voltage waveform. What will happen when a capacitor is placed across the load resistance of a full wave rectifier circuit? Explain with suitable waveform.

P. T. O.

(b) Fig. 1 shows a simple Zener diode voltage regulator circuit. The voltage across the load is to be maintained constant 12 V while the load current varies from 0 to 200 mA. Find the value of V_Z and R_S. Also find the maximum power rating of Zener diode:

- (c) What do you mean by unregulated and regulated power supply? Draw and explain the block diagram of a regulated power supply. Assume that the regulated supply produces little amount of ripple, then how it affect the performance of an audio amplifier and digital circuit.
- 3. Attempt any two parts of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) Explain common base configuration of BJT with suitable diagram. Also draw its input and output characteristics.
 - (b) A silicon BJT with $\beta = 100$, is shown in Fig. 2, compute the transistor parameters i_B , i_C , i_E and V_{CE} . In which mode the BJT is operating?
 - (c) Explain all three configurations of a BJT in terms of:
 - (i) Input impedance
 - (ii) Output impedance
 - (iii) Voltage gain
 - (iv) Current gain

Fig. 2

- 4. Attempt any two parts of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) Explain the ideal characteristics of an op-amp in terms of input impedance, output impedance, differential and common mode voltage gain, common mode rejection ration, slew rate. Under what condition the open loop gain become infinite?
 - (b) An op-amp based differential amplifier is shown in Fig. 3. Derive the expression for its output voltage (V_{out}) in terms of V1 and V2. Also find the value of the output voltage, assume $V_1 = 2$ V, $V_2 = 3$ V, when $R_1 = R_2 = 1$ k Ω , $R_3 = 5$ k Ω , and $R_4 = 8$ k Ω .

Fig. 3

- (c) Draw the circuit diagram and derive the expression for the output voltage of an op-amp based integrator. Also draw the output wave form when a square wave is applied at the input to this integrator.
- 5. Attempt any two parts of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) Find the following:
 - (i) $(10.11)_2 = (\dots)_{10}$
 - (ii) $(6.5)_{10} = (\dots)_5$
 - (iii) $(57.32)_8 = (\dots)_2$
 - (iv) $(257)_N = (140)_{10}$, find N
 - (v) $(103)_8 (45)_8 = (X)_5$, find X
 - (b) (i) Simply the following Boolean functions:

$$F = A \left(A + \overline{C} \left(\overline{AB + A\overline{C}} \right) \right)$$

- (ii) What is the difference between canonical form and standard forms of representation of Boolean function? Explain with suitable example.
- (c) (i) Convert the following Boolean function in SOP, POS and Canonical SOP form:

$$F = (AB + C)(B + \overline{C}D)$$

(ii) Minimize the given function $F = \Sigma$ (0, 2, 3, 6, 7) + d (8, 10, 11, 15) using K-Map in SOP and in POS form. Also realize using basic logic gates.