# Syntax: Introduction, Parsing and CFG

## Outline

- Syntax
- Grammar
- CFG
- Parsing- top down and bottom up
- CYK algorithm

# Syntax

- We discussed:
  - Language model --> word order
  - POS tagging --> word category
- Syntax: setting out togather
- the way words are arranged together
- How to order the words according to rules (grammar)

## Parse Tree



## Some basics

- Constituency: groups of words can behave as single units
- Noun Phrase: Harry the Horse, the Broadway coppers, they
- Preposition Phrase: On september, from Chickago,...
- Verb Phrase: book that flight, killed by Rama
- Constituent is identified by its head word

| Det     | Adj      | N    | V   | Det | Adj   | Adj | N     | Р  | Det | N     |
|---------|----------|------|-----|-----|-------|-----|-------|----|-----|-------|
| the     | little   | bear | saw | the | fine  | fat | trout | in | the | brook |
| Det Nom |          | V    | Det | Nom |       |     | Р     | NP |     |       |
| the     | the bear |      | saw | the | trout |     |       | in | it  |       |
| NP      |          | V    | NP  |     |       | PP  |       |    |     |       |
| He      |          | saw  | it  |     |       |     | there |    |     |       |
| NP      |          | VP   |     |     |       |     | PP    |    |     |       |
| He      |          | ran  |     |     |       |     | there |    |     |       |
| NP      |          | VP   |     |     |       |     |       |    |     |       |
| He      |          |      | ran |     |       |     |       |    |     |       |
|         |          |      |     |     |       |     |       |    |     |       |



#### Context Free Grammars

- Formal system for modeling constituent structure in English
- Aka Phrase structure grammar
- Set of rules (or productions)
- Example:
  - NP --> DET NOM
  - NP --> PropNoun
  - NOM --> NOM NOUN
  - Det --> a|the
  - NOUN --> flight

#### **CFG**

- CFG = {T, N, S, R}
  - T: Terminals
  - N: Non-terminals
  - S: Start symbol (belongs to T)
  - R: set of production rules X--> Y

## **CFG: Derivation**

- A CFG can be used to generate a set of strings.
   This sequence of rule expansions is called a derivation of the string of words.
- Commonly represent as Parse Tree
- If sentence can be represented by grammart--> its grammatical otherwise not grammatical (Panineeyam and Apanineeyam)

 $NP \rightarrow Det\ Nominal$   $NP \rightarrow ProperNoun$  $Nominal \rightarrow Noun \mid Nominal\ Noun$ 

Context-free rules can be hierarchically embedded, so we can combine the previous rules with others, like the following, that express facts about the lexicon:

 $Det \rightarrow a$   $Det \rightarrow the$   $Noun \rightarrow flight$ 



Figure 12.1 A parse tree for "a flight".

$$Noun \rightarrow flights \mid breeze \mid trip \mid morning \\ Verb \rightarrow is \mid prefer \mid like \mid need \mid want \mid fly \\ Adjective \rightarrow cheapest \mid non-stop \mid first \mid latest \\ \mid other \mid direct \\ Pronoun \rightarrow me \mid I \mid you \mid it \\ Proper-Noun \rightarrow Alaska \mid Baltimore \mid Los Angeles \\ \mid Chicago \mid United \mid American \\ Determiner \rightarrow the \mid a \mid an \mid this \mid these \mid that \\ Preposition \rightarrow from \mid to \mid on \mid near \\ Conjunction \rightarrow and \mid or \mid but \\ \hline \textbf{gure 12.2} \quad \textbf{The lexicon for } \mathcal{L}_0. \\ \hline \textbf{Grammar Rules} \quad \textbf{Examples} \\ \hline S \rightarrow NPVP \qquad \textbf{I + want a morning flight} \\ \hline NP \rightarrow Pronoun \qquad \textbf{I} \\ \mid Proper-Noun \qquad \textbf{Los Angeles} \\ \mid Det Nominal \qquad a + flight \\ Nominal \rightarrow Nominal Noun \qquad morning + flight \\ \mid Noun \qquad flights \\ \hline VP \rightarrow Verb \qquad \text{do} \\ \mid Verb NP PP \qquad \text{leave + Boston + in the morning} \\ \mid Verb PP \qquad \text{leaving + on Thursday} \\ \hline \end{tabular}$$

PP → Preposition NP from + Los Angeles

The grammar for  $\mathcal{L}_0$ , with example phrases for each rule.

| Noun →                    | flights   breeze   trip   morning      |
|---------------------------|----------------------------------------|
| Verb  ightarrow           | is   prefer   like   need   want   fly |
| $Adjective \rightarrow$   | cheapest   non-stop   first   latest   |
|                           | other direct                           |
| $Pronoun \rightarrow$     | me   I   you   it                      |
| $Proper-Noun \rightarrow$ | Alaska   Baltimore   Los Angeles       |
|                           | Chicago   United   American            |
| $Determiner \rightarrow$  | the   a   an   this   these   that     |
|                           | from   to   on   near                  |
| $Conjunction \rightarrow$ | and   or   but                         |

Figure 12.2 The lexicon for  $\mathcal{L}_0$ .

| Grammar               | Rules                             | Examples                        |
|-----------------------|-----------------------------------|---------------------------------|
| $S \rightarrow$       | NP VP                             | I + want a morning flight       |
| $NP \rightarrow$      | Pronoun                           | I                               |
| 1                     | Proper-Noun                       | Los Angeles                     |
|                       | Det Nominal                       | a + flight                      |
| $Nominal \rightarrow$ | Nominal Noun                      | morning + flight                |
| 1                     | Noun                              | flights                         |
| $VP \rightarrow$      | Verb                              | do                              |
|                       | Verb NP                           | want + a flight                 |
| j                     | Verb NP PP                        | leave + Boston + in the morning |
| i                     | Verb PP                           | leaving + on Thursday           |
| $PP \rightarrow$      | Preposition NP                    | from + Los Angeles              |
| igure 12.3 The gramm  | nar for $\mathcal{L}_0$ , with ex | ample phrases for each rule.    |



Figure 12.4 The parse tree for "I prefer a morning flight" according to grammar Lo.

#### **CFG**

- What is context?
- The non-terminal in the LHS of the grammar is independent of other terminals or nonternminals

# **Ambiguity**

 When more than one parse tree(derivation) for a single sentence



# Parsing Approaches

- Top-down
- Bottom-up

## Top-down



**Figure 13.3** An expanding top-down search space. Each ply is created by taking each tree from the previous ply, replacing the leftmost non-terminal with each of its possible expansions, and collecting each of these trees into a new ply.

# Bottom-up



## Top-down vs Bottom Up

- Top down never explores options that will not lead to a full parse, but can explore many options that never connect to the actual sentence.
- Bottom up never explores options that do not connect to the actual sentence but can explore options that can never lead to a full parse.
- Relative amounts of wasted search depend on how much the grammar branches in each direction.

# How efficiently search tree space?

- Dynamic Programming
- CYK algorithm
- O(n<sup>3</sup>) complexity

## Next

- CYK (brief)
- Probabilistic CFG