Model Selection to Find a Sufficient Model Fitting to Thermal Performance of Metabolic Traits*

Cong Liu[†]

Nov, 2020

^{*}Word Count: 2597

 $^{^\}dagger \mbox{Department}$ of Life Sciences (Silwood Park), Imperial College of Science, Technology and Medicine

1 Abstract

Determining thermal dependence of biological traits provides understanding in distribution patterns of species and is helpful in assessing the impact of climate change on biological systems. Here, I fitted four plausibe models to observed data of metabolic traits under different temperatures to calculate thermal performance curves. Model selection by either AIC or BIC were conducted to find one most sufficient model fitting to empirical data of each curve. In most curves, AIC and BIC give support to the same model and Ratkowsky model has the highest frequency of being selected. However, for some thermal performance curves in the dataset, the selected model fails in describing thermal dependence of metabolic traits, indicating that the four plausible models are not suitable and more models need to be involved. Overall, the results show that Ratkowsky model is sufficient for most thermal performance curves involved in this study.

1 Introduction

10

12

13

14

15

Temperature is an important abiotic factor that influences the functioning of organisms, especially for ectotherms whose body temperatures reflect that of their environments to different extent. It affects the rates of biochemical reactions and consequently has profound influence on different biological activities like metabolism, growth, development and reproduction [1]. And this can lead to further consequences in abundance and distribution of organisms [2]. Besides, interactions among species are also affected by thermal environment [3].

Thermal performance curve describes the dependence of performance (usually, the rate of a physiological activities or fitness) on temperature quanti-

tatively [1]. Generally, organisms response to temperature fluctuation in a similar manner. The value of performance peaks at some temperature point and decreases when temperature deviates from the maximum point, while extremely high or low temperatures are lethal [1, 4]. The mathematical modelling of thermal performance curve provides a framework for the estimation of physiological characters like the optimum temperature at which performance peaks, upper and lower thermal limits of performance, and thermal tolerance range [4]. Besides, it is also helpful in predicting performance of organisms when temperature fluctuates. Thus, thermal performance curve is helpful in better understanding distribution patterns of species. There is evidence that the thermal tolerance range of a species is often corresponded to the temperature fluctuation of its habitat, indicating the importance of temperature as a selective force in shaping distribution pattern [5, 6]. There is also evidence showing that thermal sensitivity plays a role in the dynamics of biodiversity [7]. Furthermore, investigations in thermal performance curve help better predict the impact of current climate change on biological process [4, 8]. Currently, there are numerous mathematical models with different properties that are used to illustrate thermal performance curves of different clades [4, 9]. Which model, or models are sufficient in describing thermal dependence of performance is the main concern of this study. Using a dataset of observed data from 841 thermal performance curves of different metabolic traits, I calculated these curves by fitting four plausible models to them. Then I conducted model selection to find one model that is most sufficient to describe the observed data. Akaike information criterion (AIC) or Bayesian information criterion (BIC) was used as model selection criterion [10]. Besides, whether metabolic trait or habitat type is corresponded to

models that get most support from empirical data was assessed.

55 2 Materials and Methods

56 2.1 Original Data

- 57 The original dataset used here is named as ThermRespData.csv and its field
- names are defined in another file called BiotraitsTemplateDescription.pdf.
- 59 Both files are accessible in
- 60 https://github.com/mhasoba/TheMulQuaBio/tree/master/content/data.
- The main fields of interest are OriginalTraitValue (trait values) and Con-
- 62 Temp (temperatures in Celsius scale). Each thermal performance curve is
- corresponded to a unique ID from 1 to 903. Among them 62 curves contain
- 64 negative trait values and were removed. So a total of 841 thermal perfor-
- 65 mance curves was used in following analysis.

66 2.2 Plausible Models

- 67 Denote by B the trait value and T the temperature. The function that
- describes the relationship between temperature and trait value is

$$B = B(T) \tag{1}$$

- Plausible models are: (1) quadratic polynomial model with constants B_0 ,
- 70 B_1 and B_2 :

$$B(T) = B_0 + B_1 T + B_2 T^2 (2)$$

(2) cubic polynomial model with constants B_0 , B_1 , B_2 and B_3 :

$$B(T) = B_0 + B_1 T + B_2 T^2 + B_3 T^3 (3)$$

72 (3) Briere model with constants B_0 , T_0 and T_m [11]:

$$B(T) = B_0 T (T - T_0) \sqrt{T_m - T}$$
(4)

 T_0 and T_m are lower and upper thermal limits of performance.

74 (4) Ratkowsky model with constants T_0 , T_m , a and b [12]:

$$B(T) = \{a(T - T_0)(1 - e^{b(T - T_m)})\}^2$$
(5)

 T_0 and T_m are lower and higher thermal limits of performance.

$_{76}$ 2.3 Model Fitting

77 To conduct model fitting, least square method was used, and non-linear

models were fitted using Levenberg-Marquardt algorithm [13, 14]. Maximum

79 iteration number was 200.

For fitting of Briere model, start values of T_0 and T_m were the lowest and

highest sampled temperatures of each curve and they are denoted by T_{0st}

and T_{mst} respectively. From Eq. (4),

$$B_0 = \frac{B(T)}{T(T - T_0)\sqrt{T_m - T}} \tag{6}$$

For each curve, remove samples with lowest and highest temperatures and

denote the rest as $\{(T_i, B_i), i = 1, 2, \dots, n-2\}$, where n is sample size. So

from Eq. (6), a rough estimation of B_0 , denoted by B_{0est} can be given by

$$B_{0est} = \frac{\sum_{i=1}^{n-2} \frac{B_i}{T_i(T_i - T_{0st})\sqrt{T_{mst} - T_i}}}{n-2}$$
 (7)

The start values of B_0 was taken from a uniform distribution between 0 and

⁸⁷ $2B_{0est}$. Each curve was fitted 100 times with different start values of B_0 .

As for fitting of Ratkowsky model, start values of T_0 and T_m were the lowest

a and highest sampled temperatures of each curve. Start values of a and b

were taken from set $\{10^i: i=-5,-4,-3,-2,-1,0,1,2,3,4\}$ iteratively. So

for each curve, there are ten start values of a and b, and 100 combinations

of them. Hence, each curve was fitted 100 times with different start values.

93 2.4 Model Selection

After model fitting, AIC and BIC of all models were calculated using following equations [10]:

$$AIC = -2L + 2k \tag{8}$$

96

$$BIC = -2L + klnn \tag{9}$$

where n is sample size, k is number of parameters in the model, and L is maximized log-likelihood value of the model. L is given by the following equation [10]:

$$L = -\frac{n}{2} ln \frac{RSS}{n} \tag{10}$$

where RSS is residual sum of squares of the model.

1 2.5 Model Averaging

In non-linear model fitting, dataset for each thermal performance curve was fitted 100 times and multiple solutions with similar AIC or BIC could be obtained. To find one most sufficient model supported by observed data, I conducted model averaging. Among all solutions obtained through dataset of one thermal performance curve, those with lowest AIC or BIC values were

selected and averaged. For one thermal performance curve, denote by l the number of optimal solutions with lowest AIC or BIC among all solutions obtained by non-linear model fitting, and θ_i the ith solution, then the parameters of averaged model, denoted by θ , is given by following equation [10, 15]:

$$\theta = \sum_{i=1}^{l} \omega_i \theta_i \tag{11}$$

The weight ω_i is given by smoothed AIC or BIC method [15]:

$$\omega_i = \frac{e^{-xIC_i/2}}{\sum_{i=1}^l e^{-xIC_i/2}}$$
 (12)

where xIC_i is the AIC or BIC of *i*th solution. Here, model averaging was conducted to solutions with equal AIC or BIC values, so

$$\omega_i = \frac{1}{l} \tag{13}$$

Then I calculated AIC and BIC of the averaged model and conducted model selection among linear and non-linear models.

117 2.6 Computating Tools

Most scripts are written in R 4.0.3, taking advantage of its powerful packages in model fitting and visualization, and of in-built functions for form
processing. R package minpack.lm was used for model fitting, while visualization was conducted by R packages ggplot2, gridExtra and cowplot. The
report was written using LaTeX because it is efficient in typesetting. A bash
script was used to compile LaTeX source code. Finally, a python3 script was
written to run all scripts using os module.

125 3 Results

126 3.1 Model Fitting and Selection

For each curve, models with lowest AIC or BIC were selected and they are 127 either quadratic, cubic, of Briere or of Ratkowsky. No curve has multiple 128 models equally supported by AIC or BIC. Among 841 thermal performance 129 curves, 639 (76.0%) of them can be fitted by Briere model, and 649 (77.2%) 130 of them can be fitted by Ratkowsky model. After model fitting, Briere or 131 Ratkowsky models with lowest AIC or BIC values among all solutions were 132 selected and averaged before further model selection. Figure. 1 provides 133 examples of models that were used in selection among linear and non-linear 134 models, and Figure 2 illustrates the distributions of AIC and BIC for each curve. 136

Figure 1: Examples of models used for model selection. Criterion of selection within non-linear models is AIC for subfigure **a**, **b** and **c**; and BIC for subfigure **d**, **e** and **f**. The IDs of thermal performance curves are: 148 (**a**), 204 (**b**), 322 (**c**), 138 (**d**), 237 (**e**), 519 (**f**).

Figure 2: The distribution of AIC and BIC. The lateral axis represents the IDs of curves, and the vertical axis represents values of AIC (a) or BIC (b). The colours of lines represent different plausible models.

When AIC is used as criterion for model selection, 57 (6.78%) curves are fitted by quadratic polynomial function and 160 (19.02%) curves for cubic polynomial function. As for non-linear models, 190 (22.59%) curves are fitted by Briere model, and the rest 434 (51.61%) curves are fitted by Ratkowsky model. When BIC is used for model selection, 218 (25.92%) curves are fitted by linear models (55 quadratic polynomial model and 163 cubic polynomial model). 191 (22.71%) curves are fitted by Briere model, while the rest 432 (51.37%) curves are fitted by Ratkowsky model. 18 curves are sufficiently fitted by different models under different criteria for model selection as shown in Table 1.

Table 1: Curves That AIC and BIC Support Different Models

ID	AIC-supported	BIC-supported	
99	Briere	Ratkowsky	
105	Ratkowsky	cubic	
232	Ratkowsky	Briere	
318	Ratkowsky	Briere	
330	Briere	Ratkowsky	
351	Briere	Ratkowsky	
426	Ratkowsky	Briere	
496	Briere	Ratkowsky	
569	Ratkowsky	Briere	
635	quadratic	cubic	
644	quadratic	cubic	
669	Ratkowsky	Briere	
681	Ratkowsky	Briere	
737	Briere	Ratkowsky	
745	Ratkowsky	Briere	
765	Briere	Ratkowsky	
827	Ratkowsky	Briere	
879	Briere	Ratkowsky	

3.2 Selected Models for Curves of Different Metabolic or Habitat Types

To assess preferred models for thermal performance curves of different metabolic 149 traits or species living in different habitat types, 18 curves were removed be-150 cause AIC and BIC supported different models. So a total of 823 curves were 151 involved. 152 In the original dataset, the metabolic trait of each curve is defined in the 153 field of StandardisedTraitName (trait name for comparison), which contains 154 three categories: gross photosynthesis rate, net photosynthesis rate and respiration rate. Another field relevant to trait name is OriginalTraitName 156 (trait name as it found in source). It should be noted there are four curves 157 have no StandardisedTraitName, while their OriginalTraitName are oxy-158 gen evolution rate in thylakoid membranes (IDs: 698, 699) and cell specific 159 photosynthesis rate (IDs: 441, 442). They were not involved in assessing 160 which model is suitable for different metabolic traits. As for habit type 161 of each curve, it is defined in another field (Habitat), which is composed 162 of four types: aquatic, freshwater, freshwater/terrestrial, marine and ter-163 restrial. Here I assessed which model is suitable for determining thermal 164 performance of species living in terrestrial or non-terrestrial (aquatic, freshwater, freshwater/terrestrial and marine) habitats. 166 Table 2 illustrates the sufficient models for thermal performance curves of 167 different metabolic traits. A total of 819 thermal performance curves of 168 three metabolic traits are involved. For models of each metabolic trait, non-169 linear model occupies a larger proportion (75.0% in gross photosynthesis rate, 78.8% in net photosynthesis rate, and 66.2% in respiration rate) than linear models. Besides, Ratkowsky model takes a bigger amount than Briere 172

model in all metabolic traits except gross photosynthesis rate.

174 Then I classified thermal performance curves according to whether the species

studied is specific in terrestrial habitats (Table 3). Non-linear model takes

the biggest amount of sufficient models for both two kinds of habitat type

177 (82.1% for terrestrial habitat and 55.2% of non-terrestrial habitat), and

Ratkowsky model occupies biggest proportion among four plausible models.

Table 2: Selected Models for Thermal Performance Curves of Different Metabolic Traits

Model	Gross photosynthesis rate	Net photosynthesis rate	Respiration rate	Total
Quadratic	0	19	36	55
Cubic	9	80	71	160
Briere	16	73	94	183
Ratkowsky	11	294	116	421
Total	36	466	317	819

Table 3: Selected Models for Thermal Performance Curves from Species in Different Habitat Types

Model	Terrestrial	Non-terrestrial	Total
Quadratic	21	34	55
Cubic	81	79	160
Briere	134	49	183
Ratkowsky	335	90	425
Total	571	252	823

3.3 Preferred Models May not Describe the Observed Data Sufficiently

Through model selection, I selected one model for each curve and it is the 181 most sufficient one in terms of describing the thermal performance curve 182 among four plausible models. However, the preferred models of some curves 183 still fail in describing thermal performance throughout the temperature 184 range between lower and upper thermal limits of performance. As the growth 185 of temperature in this range, performance is supposed to increases, peaks 186 at some point, and then drops [1, 4]. The preferred models of some curves are not bell-shaped (Figure. 3). Furthermore, ecologically unrealistic esti-188 mations of thermal limits of performance are also given by some selected 189 models (Figure 4).

Figure 3: Examples of preferred models that are not bell-shaped curves. IDs of thermal performance curves are: 456 (a), 841 (b), 455 (c), 600 (d). Mathematical expression of each model is given at the bottom of each subfigure. For these datasets, AIC and BIC support the same models with equal parameters.

Figure 4: Examples of preferred models that give unrealistic estimations of thermal limits of performance. IDs of thermal performance curves are: 81 (a), 215 (b), 46 (c), 254 (d). Criterion of model selection is AIC, and estimations of lower and upper thermal limits of performance, denoted as T_0 and T_m , are given at the bottom of each subfigure.

4 Discussion

Investigations in how organisms response to temperature fulctuation are helpful in better understanding the impact of recent and future climate

change on biological systems [16, 17]. In assessment of thermal performance, 194 it is important to choose an appropriate mathematical model that is best 195 supported by empirical data and is able to provide relatively precise esti-196 mations of dependent variable using given values of independent variable. 197 Currently, there are plenty of mathematical models used in fitting thermal 198 performance curves, and model selection criteria can be used to explicate 199 how sufficient a model is in describing thermal performance curves [4, 9, 10]. 200 In order to find which model is best supported by observed data of thermal 201 performance, I fitted four plausible models to a dataset composed of 841 202 thermal performance curves and conducted model averaging and selection 203 using either AIC or BIC as criterion. In most cases, AIC and BIC prefer 204 the same model. The results also showed that under both selection criteria, 205 Ratkowsky model is sufficient in quantifying thermal performance for about 206 51% of curves in the dataset. 207 In model selection, a set of plausible models are ranked by some criterion 208 and the most appropriate one is selected. AIC and BIC are two criterion for 209 model selection. They take both fit and model complexity into consideration 210 to balance under- and over-fitting to observed data [10, 18]. Although AIC 211 and BIC are quite similar in forms, they are divergent in theoretical motiva-212 tions. BIC is based on Bayesian statistical analysis and is an approximation 213 reflecting the probability that the plausible model is the true model that 214 generated the empirical data [19]. Minimized BIC is corresponded to max-215 imized posterior probability among all plausibilities and can be thought as 216 a criterion for model selection [20]. However, whether there is such a "true 217 model" is controversial [21], and the theoretical basis of BIC is disputed 218 [19]. As for AIC, it measures the predictive performance of each candidate 219 model by estimating Kullback-Leible information loss [19, 22, 23], and is

thus well-founded in information theory. Here, I conducted model selection using AIC and BIC as criterion respectively. In most cases, they prefer the 222 same model. However, I tend to use AIC as model selection criterion be-223 cause of its solid theoretical foundation. 224 In non-linear model fitting, an iterative algorithm is employed to gain a 225 numerical local optimal solution, which is sensitive to start values [13, 14]. 226 Here, I fitted each non-linear model 100 times with different start values 227 before model selection, attempting to find the global optimal solution. For 228 one thermal performance dataset, multiple solutions can be obtained by dif-229 ferent start values while they have equal and lowest AIC or BIC. This is 230 because of limited accuracy in numerical calculation of AIC and BIC by R 231 scripts. To deal with this, I conducted model averaging using smoothed AIC 232 or BIC method. When multiple plausible models get nearly equivalent sup-233 port from observed data (e.g. similar AIC or BIC values), model averaging 234 is a good method to give estimations of model parameters or predict values 235 of response variables [10]. 236 Generally, thermal performance curve is supposed to be a bell-shaped curve 237 with ecologically realistic lower and upper thermal limits of performance 238 [1, 4]. However, some models supported by AIC or BIC are not bell-shaped 239 curves, as exemplified in Figure 3. Others may give estimations of thermal 240 limits of performance that are too low or too high to be realistic, as ex-241 emplified in Figure 4. Such models may fit to the observed data well (e.g. 242 Figure 3d and Figure 4a), but fail in describing the whole thermal perfor-243 mance curve. A possible reason is that there are not enough sampes from a 244 wide enough temperature range to allow the models to capture the change 245 of performance over temperature in different ranges. For example, curve 215 only contains samples of relatively low temperature (i.e. temperatures of all

samples are no greater than the optimum temperature where performance peaks) as it is shown in Figure 4b. An alternative explanation is that none of the four plausible models are suitable for describing the observed data. AIC and BIC can only explicate the relative goodness of each model in a given set of models [10, 15, 18] and it is possible that no model in the given set can fit to the observed data sufficiently. Under these circumstances, more models are needed to be used in fitting and selection.

Overall, I conducted model fitting, averaging and selection using ob-255 served data of 841 thermal performance curves. Plausible models include 256 quadratic polynomial model, cubic polynomial model, Briere model and 257 Ratkowsky model. AIC and BIC were used as model selection criterion. 258 For most curves, AIC and BIC give support to the same model. The results 259 shows that for more than a half of thermal performance curves involved here, 260 Ratkowsky model is the most sufficient one among four plausibilities. When 261 curves are classified according to metabolic trait or habitat type of species, 262 Ratkowsky model is most sufficient one for a majority of curves in most cat-263 egories. However, some selected models cannot describe the whole thermal 264 performance curves or contain unrealistic parameters, indicating that none 265 of the four models is suitable for fitting to the observed data.

References

- [1] Brent J Sinclair, Katie E Marshall, Mary A Sewell, Danielle L Levesque,
 Christopher S Willett, Stine Slotsbo, Yunwei Dong, Christopher DG
 Harley, David J Marshall, Brian S Helmuth, et al. Can we predict ectotherm responses to climate change using thermal performance curves
 and body temperatures? Ecology Letters, 19(11):1372–1385, 2016.
- 273 [2] Patricia M Schulte, Timothy M Healy, and Nann A Fangue. Thermal 274 performance curves, phenotypic plasticity, and the time scales of tem-275 perature exposure. *Integrative and comparative biology*, 51(5):691–702, 2011.
- [3] Veronica S Grigaltchik, Ashley JW Ward, and Frank Seebacher. Thermal acclimation of interactions: differential responses to temperature change alter predator—prey relationship. *Proceedings of the Royal Society B: Biological Sciences*, 279(1744):4058–4064, 2012.
- [4] Sascha Krenek, Thomas U Berendonk, and Thomas Petzoldt. Ther mal performance curves of paramecium caudatum: a model selection
 approach. European Journal of Protistology, 47(2):124–137, 2011.
- [5] Jennifer M Sunday, Amanda E Bates, and Nicholas K Dulvy. Global
 analysis of thermal tolerance and latitude in ectotherms. *Proceedings* of the Royal Society B: Biological Sciences, 278(1713):1823–1830, 2011.
- [6] Susana Clusella-Trullas, Tim M Blackburn, and Steven L Chown. Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. *The American Naturalist*, 177(6):738–751, 2011.

- [7] Andrew P Allen, James H Brown, and James F Gillooly. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. *Sci*ence, 297(5586):1545–1548, 2002.
- ²⁹⁴ [8] Michael W Sears and Michael J Angilletta Jr. Introduction to the sym-²⁹⁵ posium: responses of organisms to climate change: a synthetic approach ²⁹⁶ to the role of thermal adaptation. *Integrative and comparative biology*, ²⁹⁷ 51(5):662–665, 2011.
- ²⁹⁸ [9] Michael J Angilletta Jr. Estimating and comparing thermal performance curves. *Journal of Thermal Biology*, 31(7):541–545, 2006.
- ³⁰⁰ [10] Jerald B Johnson and Kristian S Omland. Model selection in ecology ³⁰¹ and evolution. *Trends in ecology & evolution*, 19(2):101–108, 2004.
- [11] Jean-Francois Briere, Pascale Pracros, Alain-Yves Le Roux, and Jean Sebastien Pierre. A novel rate model of temperature-dependent development for arthropods. Environmental Entomology, 28(1):22–29, 1999.
- [12] DA Ratkowsky, RK Lowry, TA McMeekin, AN Stokes, and RE217594
 Chandler. Model for bacterial culture growth rate throughout the entire
 biokinetic temperature range. Journal of bacteriology, 154(3):1222–
 1226, 1983.
- [13] Ananth Ranganathan. The levenberg-marquardt algorithm. Tutoral on
 LM algorithm, 11(1):101-110, 2004.
- Manolis IA Lourakis et al. A brief description of the levenbergmarquardt algorithm implemented by levmar. Foundation of Research and Technology, 4(1):1–6, 2005.

- [15] Steven T Buckland, Kenneth P Burnham, and Nicole H Augustin.
 Model selection: an integral part of inference. *Biometrics*, pages 603–618, 1997.
- 317 [16] Joel G Kingsolver, Sarah E Diamond, and Lauren B Buckley. Heat 318 stress and the fitness consequences of climate change for terrestrial ec-319 totherms. Functional Ecology, 27(6):1415–1423, 2013.
- [17] David A Vasseur, John P DeLong, Benjamin Gilbert, Hamish S Greig,
 Christopher DG Harley, Kevin S McCann, Van Savage, Tyler D Tunney,
 and Mary I O'Connor. Increased temperature variation poses a greater
 risk to species than climate warming. Proceedings of the Royal Society
 B: Biological Sciences, 281(1779):20132612, 2014.
- ³²⁵ [18] Walter Zucchini. An introduction to model selection. *Journal of math-*³²⁶ ematical psychology, 44(1):41–61, 2000.
- ³²⁷ [19] Jouni Kuha. Aic and bic: Comparisons of assumptions and perfor-³²⁸ mance. Sociological methods & research, 33(2):188–229, 2004.
- [20] Ernst Wit, Edwin van den Heuvel, and Jan-Willem Romeijn. all models are wrong...: an introduction to model uncertainty. Statistica Neerlandica, 66(3):217–236, 2012.
- [21] George EP Box. All models are wrong, but some are useful. Robustness
 in Statistics, 202:549, 1979.
- [22] J deLeeuw. Akaike (1973) information theory and an extension of the
 maximum likelihood principle. University of California at Los Angeles,
 1992.

1337 [23] Kenneth P Burnham and David R Anderson. Multimodel inference: understanding aic and bic in model selection. Sociological methods & 1339 research, 33(2):261–304, 2004.