Functional Geometry Description of Escher's Fish

Milton Mazzarri Feb 1, 2017

Houston Elixir Meetup

Introduction

Square Limit

Figure 1: M.C. Escher's Square Limit

Source: https://www.wikiart.org/en/m-c-escher/square-limit

Functional Geometry

Functional Geometry is a paper by Peter Henderson[1, 2], which deconstructs the M.C. Escher woodcut "Square Limit".

A picture is an example of a complex object that can be described in terms of its parts. Yet a picture needs to be rendered on a printer or a screen by a device that expects to be given a sequence of commands. Programming that sequence of commands directly is much harder than having an application generate the commands automatically from the simpler, denotational description.

Denotational description v. Explicit Sequence of Commands

```
1 500c.requir_file("rectr.cx", Path.join(_SIR__ "././[br')]
2 Code.requir_file("fon_geo.ex", Path.join(_SIR__ "././[br')]
3 alias Function, as: F
5 f = F.grid(
6 f = F.grid(
7 f = F.grid(
9 f = F.grid(
1 f = F.gr
```

Figure 2: Denotational description v. explicit sequence of commands

Basic Operations

Note

The image it is located within a frame, but we do not consider the frame to be part of the picture.

Figure 3: The value f denotes the picture of the letter F

Basic operations on pictures

- rot(picture) :: picture
- flip(picture) :: picture
- rot45(picture) :: picture
- above(picture, picture) :: picture
- beside(picture, picture) :: picture
- over(picture, picture) :: picture

Rotation

Rotates a picture 90° anticlockwise.

Figure 4: rot(f)

Flip

Flip a picture through its vertical centre axis.

Figure 5: flip(f)

Rotation and Flip

Figure 6: rot(flip(f))

Rotation 45°

Rotates a picture about its top left corner, through 45° anticlockwise.

Figure 7: rot45(f)

Above

above(p, q) is the picture that has p in the upper half of its locating box and q in the lower half.

Figure 8: above(f, f)

Beside

beside(p, q) is the picture that has p in the left half of its locating box and q in the right half.

Figure 9: beside(f, f)

above/beside combination

Figure 10: above(beside(f, f) f)

Superposition

Figure 11: over(f, flip(f))

Laws

Laws

$$rot(rot(rot(rot(p)))) = p$$

Unit Test

```
test ``p is equal after fourth continuos rotations'' do
p = p()
p_rotated = p |> rot() |> rot() |> rot()

assert p_rotated.({0, 0}, {1, 0}, {0, 1}) == p.({0, 0}, {1, 0}, {0, 1})
end
```

$$rot(above(p,q)) = beside(rot(p), rot(q))$$

Unit Test

```
test ``rot(above(p, q)) must be equal to beside(rot(p), rot(q))'' do
p = p()

p_rotated = rot(above(p, p))
p_beside = beside(rot(p), rot(p))

assert
    p_rotated.({0, 0}, {1, 0}, {0, 1}) == p_beside.({0, 0}, {1, 0}, {0, 1})
end
```

Laws

$$rot(beside(p,q)) = above(rot(q), rot(p))$$

$$flip(beside(p,q)) = beside(flip(q), flip(p))$$

Square Limit

Basic patterns: p, q

Figure 12: p

Figure 13: q

Basic patterns: r, s

Figure 14: r

Figure 15: s

t.

t shows how nicely the four basic fish tiles fit together

Figure 16: t = quartetp, q, r, s

Figure 17: u = cycle(rot(q))

Figure 18: side1 = quartet(blank, blank, rot(t), t)

Figure 19: side2 = quartet(side1, side1, rot(t), t)

corner1

Figure 20: corner1 = quartet(blank, blank, blank, u)

corner2

Figure 21: corner2 = quartet(corner1, side1, rot(side1), u)

corner

```
corner = nonet(corner2, side2, side2, rot(side2), u, rot(t),
rot(side2), rot(t), rot(q))
```


Figure 22: corner

squarelimit

Figure 23: squarelimit = cycle(corner)

Implementation

Vectors

Figure 24: Basic vectors

Implementation

$$over(p,q)(a,b,c) = p(a,b,c) \cup q(a,b,c)$$

$$blank(a,b,c) = \{\}$$

beside
$$(p,q)(a,b,c) = p(a,\frac{b}{2},c) \cup q(a+\frac{b}{2},\frac{b}{2},c)$$

above
$$(p,q)(a,b,c) = p(a,b,\frac{c}{2}) \cup q(a+\frac{c}{2},b,\frac{c}{2})$$

Implementation

$$rot(p)(a,b,c) = p(a+b,c,-b)$$

$$flip(p)(a,b,c) = p(a+b,-b,c)$$

$$rot45(p)(a,b,c) = p(a + \frac{b+c}{2}, \frac{b+c}{2}, \frac{c-b}{2})$$

Future

- Add support for SVG Path.
- Escher's "Circuit Limit III" picture.
- Increase code coverage
- Include property-based tests (QuickCheck, Quixir)

Circuit Limit III

Figure 25: Circuit Limit III

Thanks!

https://github.com/milmazz/func_geo

https://github.com/milmazz/slides

References I

P. Henderson.
Functional geometry, 1982.

P. Henderson.

Functional geometry, 2002.