

00000

ĐẠI HỌC BÁCH KHOA HÀ NỘI

HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

ONE LOVE. ONE FUTURE.

THUẬT TOÁN HÌNH HỌC

ONE LOVE. ONE FUTURE.

NỘI DUNG

- Công thức cơ bản
- Tìm bao lồi
- Kiểm tra 1 điểm nằm trong đa giác lồi


```
Điểm
struct Point {
double x, y;
};
```

Đường thẳng ax + by + c = 0
 struct Line {
 double a, b, c;
 };

• Vector \overrightarrow{AB} của hai điểm (X_A, y_A) và (X_B, y_B) (X_B, y_B) (X_B, y_B) (X_B, y_B) (X_B, y_B) (X_B, y_B)

- 3 điểm $A(x_A, y_A)$, $B(x_B, y_B)$ và $C(x_C, y_C)$ thẳng hàng khi:
- $\overrightarrow{AB} = k \times \overrightarrow{AC}$
- $x_B x_A = k \times (x_C x_A)$
- $y_B y_A = k \times (y_C y_A)$

• Để tránh phép chia cho 0:
$$(x_A - x_B) \times (y_A - y_C) = (x_A - x_C) \times (y_A - y_B)$$

• Tích vô hướng của $\overrightarrow{OA}(\underline{x_a}, y_a)$ và $\overrightarrow{OB}(\underline{x_b}, y_b)$

•
$$\overrightarrow{OA} \cdot \overrightarrow{OB} = x_a x_b + y_a y_b = |\overrightarrow{OA}| |\overrightarrow{OB}| \cos \alpha = \sqrt{x_a^2 + y_a^2} \sqrt{x_b^2 + y_b^2} \cos \alpha$$
,

$$\Rightarrow \cos \alpha = \frac{x_a x_b + y_a y_b}{\sqrt{x_a^2 + y_a^2} \sqrt{x_b^2 + y_b^2}}$$

- Vẽ đường thẳng d vuông góc với \overrightarrow{OA} , dựa vào $\cos \alpha$ ta có:
 - o Nếu $\overrightarrow{OA} \cdot \overrightarrow{OB} > 0$ thì A và B cùng phía so với đường thẳng d
 - \circ Nếu $\overrightarrow{OA} \cdot \overrightarrow{OB} = 0$ thì B nằm trên đường thẳng d
 - 0 Nếu $\overrightarrow{OA} \cdot \overrightarrow{OB} < 0$ thì A và B khác phía so với đường thẳng d

```
struct Point {
    int x, y;
    Point(int x, int y) : x(x), y(y) {}
};
double dist(Point &a, Point &b) {
    long long x = a.x - b.x; long long y = a.y - b.y;
    return sqrt(1LL * x*x + 1LL * y*y);
}
long long dot_product(Point &O, Point &A, Point &B) {
    long long xa = A.x - 0.x; long long ya = A.y - 0.y;
    long long xb = B.x - 0.x; long long yb = B.y - 0.y;
    return 1LL * xa * xb + 1LL * ya * yb;
}
int main(){
    Point O(2,5); Point A(5,6); Point B(6,2);
    double cos = dot_product(0,A,B)*1.0/(dist(0,A)*dist(0,B));
    cout << "cos = " << cos << endl;</pre>
```



```
struct Point {
    int x, y;
    Point(int x, int y) : x(x), y(y) {}
};
double dist(Point &a, Point &b) {
    long long x = a.x - b.x; long long y = a.y - b.y;
    return sqrt(1LL * x*x + 1LL * y*y);
}
long long dot product(Point &O, Point &A, Point &B) {
    long long xa = A.x - 0.x; long long ya = A.y - 0.y;
    long long xb = B.x - 0.x; long long yb = B.y - 0.y;
    return 1LL * xa * xb + 1LL * ya * yb;
}
int main(){
    Point O(2,5); Point A(5,6); Point B(1,1);
    double cos = dot_product(0,A,B)*1.0/(dist(0,A)*dist(0,B));
    cout << "cos = " << cos << endl;</pre>
```


- Tích có hướng của $\overrightarrow{OA}(x_a,y_a)$ và $\overrightarrow{OB}(x_b,y_b)$
- $\overrightarrow{OA} \times \overrightarrow{OB} = x_a y_b y_a x_b = |\overrightarrow{OA}| |\overrightarrow{OB}| \sin \alpha$ $\overrightarrow{OA} \times \overrightarrow{OB} = x_a y_b y_a x_b = \sqrt{x_a^2 + y_a^2} \sqrt{x_b^2 + y_b^2} \sin \alpha,$

- Vẽ đường thẳng d trùng với \overrightarrow{OA} , dựa vào $\sin lpha$ ta có:
 - \circ Nếu $\overrightarrow{OA} \times \overrightarrow{OB} > 0$ thì B ở bên trái so với đường thằng d (hướng xoay từ tia \overrightarrow{OA} đến tia \overrightarrow{OB} là **ngược** chiều kim đồng hồ)
 - \circ Nếu $\overrightarrow{OA} imes \overrightarrow{OB} = 0$ thì B nằm trên đường thẳng d
 - 0 Nếu $\overrightarrow{OA} imes \overrightarrow{OB} < 0$ thì B nằm bên phải so đường thẳng d (hướng xoay từ tia \overrightarrow{OA} đến tia \overrightarrow{OB} là **cùng** chiều kim đồng hỗ)
- Trị tuyệt đối của tích có hướng của hai vector \overrightarrow{OA} và \overrightarrow{OB} bằng hai lần diện tích tam giác \overrightarrow{OAB} .


```
struct Point {
    int x, y;
    Point(int x, int y) : x(x), y(y) {}
};
double dist(Point &a, Point &b) {
    long long x = a.x - b.x; long long y = a.y - b.y;
    return sqrt(1LL * x*x + 1LL * y*y);
}
long long cross_product(Point &O, Point &A, Point &B) {
    //tich vo huong 2 vector (0,A).(0,B)
    long long xa = A.x - 0.x; long long ya = A.y - 0.y;
    long long xb = B.x - 0.x; long long yb = B.y - 0.y;
    return 1LL * xa * yb - 1LL * ya * xb;
}
int main(){
    Point O(2,5); Point A(5,6); Point B(1,1);
    double sin = cross_product(0,A,B)*1.0/(dist(0,A)*dist(0,B));
    cout << "sin = " << sin << endl;</pre>
}
```



```
struct Point {
    int x, y;
    Point(int x, int y) : x(x), y(y) {}
};
double dist(Point &a, Point &b) {
    long long x = a.x - b.x; long long y = a.y - b.y;
    return sqrt(1LL * x*x + 1LL * y*y);
}
long long cross_product(Point &O, Point &A, Point &B) {
    //tich vo huong 2 vector (0,A).(0,B)
    long long xa = A.x - 0.x; long long ya = A.y - 0.y;
    long long xb = B.x - 0.x; long long yb = B.y - 0.y;
    return 1LL * xa * yb - 1LL * ya * xb;
}
int main(){
    Point O(2,5); Point A(5,6); Point B(0,6);
    double sin = cross_product(0,A,B)*1.0/(dist(0,A)*dist(0,B));
    cout << "sin = " << sin << endl;</pre>
}
```


- Gọi đường thẳng l_{AB} đi qua hai điểm $A(x_A,y_A)$ và $B(x_B,y_B)$
 - Vector $\overrightarrow{AB} = (x_B x_A, y_B y_A)$
 - Vector vuông góc $\overrightarrow{v} = (y_A y_B, x_B x_A)$
 - Mọi điểm P(x,y) nằm trên đường thẳng l_{AB} thì có $\overrightarrow{AP}\cdot\overrightarrow{v}=0$

$$(x - x_A)(y_A - y_B) + (y - y_A)(x_B - x_A) = 0$$

• Phương trình đường thẳng l_{AB} là ax + by + c = 0

$$\begin{cases} a = y_A - y_B \\ b = x_B - x_A \\ c = x_A y_B - y_A x_B \end{cases}$$

• Ví dụ: đường thẳng đi qua A(5, 6) và B(2, 5) có phương ∠ trình: (6-5)x + (2-5)y + (5x5 – 6x2) = 0 hay x – 3y + 13 = 0


```
struct Point {
    int x, y;
   Point(int x, int y) : x(x), y(y) {}
};
struct Line{
    int a,b,c;
};
void makeLine(Point& A, Point& B, Line& L){
   L.a = A.y - B.y;
   L.b = \underline{B.x} - A.x;
   L.c = A.x*B.y - A.y*B.x;
int main(){
    Point A(5,6); Point B(2,5); Line L;
    makeLine(A,B,L);
    cout << L.a << "x" << " + " << L.b << "y + " << L.c << " = 0";
```


• Đường thẳng l_{AB} đi qua hai điểm $A(x_A,y_A)$ và $B(x_B,y_B)$

•
$$(y_A - y_B)x + (x_B - x_A)y + (x_Ay_B - y_Ax_B) = 0$$
 (1)

- ullet Khoảng cách từ điểm $\mathcal{C}(x_{\mathcal{C}},y_{\mathcal{C}})$ đến đường thẳng l_{AB} là d
- Diện tích tam giác *ABC* là:

•
$$S_{ABC} = \frac{|\overrightarrow{AB} \times \overrightarrow{AC}|}{2} = \frac{|\overrightarrow{AB}| \times d}{2} \Rightarrow d = \frac{|\overrightarrow{AB} \times \overrightarrow{AC}|}{|\overrightarrow{AB}|}$$

•
$$\frac{|\overrightarrow{AB} \times \overrightarrow{AC}|}{|\overrightarrow{AB}|} = \frac{|(x_B - x_A)(y_C - y_A) - (y_B - y_A)(x_C - x_A)|}{\sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}}$$
(2)

- Từ (1) và (2), nếu đường thẳng l có phương trình là ax + by + c = 0 thì khoảng cách từ điểm $P(x_P, y_P)$ xuống đường thẳng l sẽ là:
- $dist(l, P) = \frac{|ax_P + by_P + c|}{\sqrt{a^2 + b^2}}$

o A và B không nằm cùng phía so với đường thẳng l_{CD} : $(\overrightarrow{CD} \times \overrightarrow{CA})(\overrightarrow{CD} \times \overrightarrow{CB}) \leq 0$

O Phương trình đường thẳng
$$l_{AB}$$
: $a_1x + b_1y + c_1 = 0$

$$\circ$$
 Phương trình đường thẳng l_{CD} : $a_2x+b_2y+c_2=0$


```
struct Point {
    int x, y;
    Point(int x, int y) : x(x), y(y) {}
};
struct Line{
    int a,b,c;
};
void makeLine(Point& A, Point& B, Line& L){
   L.a = A.y - B.y; L.b = B.x - A.x; L.c = A.x*B.y - A.y*B.x;
}
void intersection(Line& L1, Line& L2){
    double x = (L2.c*L1.b - L1.c*L2.b)*1.0/(L1.a*L2.b - L2.a*L1.b);
    double y = (L1.c*L2.a - L2.c*L1.a)*1.0/(L1.a*L2.b - L2.a*L1.b);
    cout << "Giao diem = (" << x << "," << y << ")" << endl;</pre>
}
int main(){
    Point A(3,1); Point B(6,4); Line LAB;
    Point C(2,5); Point D(7,0); Line LCD;
                                             intersection(LAB,LCD);
   makeLine(A,B,LAB); makeLine(C,D,LCD);
}
```


- Một đa giác được tạo thành bởi 1 đường gấp khúc không tự cắt với các cạnh P_0P_1 , P_1P_2 , P_2P_3 , ..., $P_{n-1}P_0$
- Trong đó đỉnh P_i có tọa độ (x_i, y_i)
 - \circ Cố định một đỉnh P_0
 - o Tính tổng S:
 - $S = \sum_{i=1}^{n-2} \overrightarrow{P_0 P_i} \times \overrightarrow{P_0 P_{i+1}}$
 - Diện tích của đa giác là $\frac{|S|}{2}$

Tìm bao lồi (P.08.13.05)

ullet Cho một tập n điểm P_i , tìm đa giác lồi có diện tích nhỏ nhất chứa tất cả các điểm đã cho.

• Dữ liệu

• Dòng 1: chứa số nguyên dương n (3 <= n <= 100000)

PaPix PaPi

P[0]

Kết quả

Dòng 1: ghi số nguyên dượng *m* là số điểm (đỉnh của đa giác) trên bao lồi tìm được

Dòng i+1 (i=1,2,...,m): ghi 2 số nguyên là tọa độ của điểm thứ i của bạo lồi tìm được

Sou y'es can the lies	
Mi ti goù quay tra (Po Pi) rgive de kini dog	٠ -
(DD) ngure de	ieu
Kim day	~ -
Pa: Pa, P2, P3, P4, P5, P6	PZIPR

stdin	stdout
6	4
4 5	5 3
5 3	8 7
5 6	3 7
2 5	2 5
8 7	
3 7	

Tìm bao lồi (P.08.13.05)

- Cho một tập n điểm P_i , tìm đa giác lồi có diện tích nhỏ nhất chứa tất cả các điểm đã cho.
- Thuât toán Graham Scan
 - Tìm điểm bên trái dưới nhất là điểm chắc chắn thuộc bao lồi. Cho điểm này thành điểm P_0
 - Sắp xếp n-1 điểm còn lại theo góc với gốc là điểm P_0 .
 - Tạo một stack $r ilde{\mathsf{o}} \mathsf{ng} \, S$ và thêm P_0 và P_1 vào S
 - Với n-2 điểm còn lại lặp lại các bước sau với từng điểm (P_i)
 - Lặp đi lặp lại việc xóa điểm ở đỉnh của stack S chừng nào CCW của 3 điểm sau không **dượng**:
 - $iggl \cdot$ (a) Điểm kề (trong stack) với điểm ở đỉnh của stack S
 - (b) Điểm ở đỉnh của stack ${\cal S}$
 - (c) Điểm P_i
 - Thêm P_i vào stack S
 - ullet Kết thúc ta được bao lồi là các đỉnh theo thứ tự cùng chiều kim đồng $\,$ hồ khi lấy từ stack $\,S\,$ ra.

Tìm bao lồi (P.08.13.05)

- Hàm counterclockwise xác định chiều quay tia OA đến OB
- CCW(O, A, B) được định nghĩa bằng

0, nếu
$$\overline{OA} \times \overline{OB} = 0$$

-1, nếu $\overline{OA} \times \overline{OB} < 0$ (quay \overline{OA} dên \overline{OB})

+1, nếu $\overline{OA} \times \overline{OB} > 0$

Tìm bao lồi (P.08.13.05) – MÃ GIẢ

```
struct Point {
    int x, y;
Point P[N];
int n:
vector<Point> C;
void input(){
    read n;
    for(int i = 0; i < n; i++)
       read P[i].x, P[i].y;
                           Po
```

```
dist2(Point a, Point b) { / binh phion khoa cach (a,b)
   x = a.x - b.x;
   y = a.y - b.y;
   return x*x + y*y;
                                          DA XOB
cross product(Point 0, Point A, Point B) {
   //tich vo huong 2 vector (0,A).(0,B)
   xa = A.x - 0.x; ya = A.y - 0.y;
   xb = B.x - 0.x; yb = B.y - 0.y;
   return xa * yb - ya * xb;
cmp(Point A, Point B){// so sand sindy try south
   cp = cross_product(P[0],A,B);
   return cp == 0 ? dist2(P[0],A) < dist2(P[0],B) : cp > 0;
ccw(Point a, Point b, Point c) {
   cp = cross_product(a, b, c);
   return cp == 0 ? 0 : (cp < 0 ? -1 : 1);
```

Tìm bao lồi (P.08.13.05) – MÃ GIẢ

HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

```
solve(){
                                                                                 main(){
   // find lowest point
                                                                                     input();
                                                                                     solve();
   k = 0;
    for i = 1 to n - 1 do {
        if(P[i].y < P[k].y \text{ or } P[i].y == P[k].y \text{ and } P[i].x < P[k].x) k = (i;)
    swap(P[0],P[k]);// let P[0] be the lowest point
    sort(P+1,P+n,cmp);
   C.push_back(P[0]);
                          C.push_back(P[1]);
   for i = 2 to n-1 do {
                                                                               + AB × APi
        while(C.size() > 1 and ccw(([C.size()-2], C[C.size()-1)(P[i]) <= 0)
           C.pop_back();
        C.push_back(P[i]);
   print C[0], C[1], . . ., C[C.size-1];
}
     ĐAI HOC BÁCH KHOA HÀ NÔI
```