Recurrent Neural Networks

An unrolled recurrent neural network.

Recurrent Neural Networks have loops.

The Problem of Long-Term Dependencies

RNN Networks

The repeating module in a standard RNN contains a single layer.

LSTM Networks

Long Short Term Memory networks- are a special kind of RNN

The repeating module in an LSTM contains four interacting layers.

LSTM Networks

Long Short Term Memory networks- are a special kind of RNN

- Forget gate : \mathbf{f}_t 에 의해 제어되며 장기 상태 \mathbf{c}_t 의 어느 부분을 삭제할지 제어한다.
- Input gate : \mathbf{i}_t 에 의해 제어되며 \mathbf{g}_t 의 어느 부분이 장기 상태 \mathbf{c}_t 에 더해져야 하는지 제어한다.
- ullet Output gate : \mathbf{o}_t 는 장기 상태 \mathbf{c}_t 의 어느 부분을 읽어서 \mathbf{h}_t 와 \mathbf{y}_t 로 출력해야 하는지 제어한다.

LSTM Networks

Long Short Term Memory networks- are a special kind of RNN

- Forget gate : f_t에 의해 제어되며 장기 상태 c_t의 어느 부분을 삭제할지 제어한다.
- Input gate : \mathbf{i}_t 에 의해 제어되며 \mathbf{g}_t 의 어느 부분이 장기 상태 \mathbf{c}_t 에 더해져야 하는지 제어한다.
- Output gate : \mathbf{o}_t 는 장기 상태 \mathbf{c}_t 의 어느 부분을 읽어서 \mathbf{h}_t 와 \mathbf{y}_t 로 출력해야 하는지 제어한다.

$$\begin{aligned} \mathbf{f}_t &= \sigma \left(\mathbf{W}_{xf}^T \cdot \mathbf{x}_t + \mathbf{W}_{hf}^T \cdot \mathbf{h}_{t-1} + \mathbf{b}_f \right) \\ \mathbf{i}_t &= \sigma \left(\mathbf{W}_{xi}^T \cdot \mathbf{x}_t + \mathbf{W}_{hi}^T \cdot \mathbf{h}_{t-1} + \mathbf{b}_i \right) \\ \mathbf{o}_t &= \sigma \left(\mathbf{W}_{xo}^T \cdot \mathbf{x}_t + \mathbf{W}_{ho}^T \cdot \mathbf{h}_{t-1} + \mathbf{b}_o \right) \\ \mathbf{g}_t &= \tanh \left(\mathbf{W}_{xg}^T \cdot \mathbf{x}_t + \mathbf{W}_{hg}^T \cdot \mathbf{h}_{t-1} + \mathbf{b}_g \right) \\ \mathbf{c}_t &= \mathbf{f}_t \otimes \mathbf{c}_{t-1} + \mathbf{i}_t \otimes \mathbf{g}_t \\ \mathbf{y}_t, \mathbf{h}_t &= \mathbf{o}_t \otimes \tanh(\mathbf{c}_t) \end{aligned}$$

- $\mathbf{W}_{xf}, \mathbf{W}_{xi}, \mathbf{W}_{xo}, \mathbf{W}_{xg}$: 입력 벡터 \mathbf{x}_t 에 연결된 네 개의 레이어에 대한 가중치 행렬
- $\mathbf{W}_{hf}, \mathbf{W}_{hi}, \mathbf{W}_{ho}, \mathbf{W}_{hg}$: 이전 타임스텝의 단기 상태 \mathbf{h}_{t-1} 에 연결된 네 개의 레이어에 대한 가중치 행렬
- $\mathbf{b}_f, \mathbf{b}_i, \mathbf{b}_o, \mathbf{b}_g$: 네 개의 레이어에 대한 편향(bias), 텐서플로(TensorFlow)에서는 \mathbf{b}_f 를 $\frac{1}{2}$ 로 초기화하여 학습 시작시에 모든것을 잃어버리는 것을 방지한다.

Step-by-Step LSTM Walk Through

Long Short Term Memory networks– are a special kind of RNN

1. Decide how much information we're going to throw away from the cell state.

Forget gate

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

Step-by-Step LSTM Walk Through

Long Short Term Memory networks– are a special kind of RNN

- 2. To decide what new information we're going to store in the cell state.
- (1) Decide which values we'll update
- (2) Combine these 2 to create an update to the state

Input gate

$$i_t = \sigma\left(W_i \cdot [h_{t-1}, x_t] + b_i\right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Step-by-Step LSTM Walk Through

Long Short Term Memory networks– are a special kind of RNN

3. Time to update the old cell state, C_{t-1} , into the new cell state C_t

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Step-by-Step LSTM Walk Through

Long Short Term Memory networks– are a special kind of RNN

4. We need to decide what we're going to output.

Output gate

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$