Dutline

Variational auto encoders

Latent-variable modeling, and compression is all you need

Diffusion models

Models based on iterative refinement

Normalizing flows

Invertible transformations

Why (deep) generative modeling? What is it, and what can it do for you?

Outline

What is it, and what can it do for you?

Variational auto encoders

Latent-variable modeling, and compression is all you need

Diffusion models

Models based on iterative refinement

Normalizing flows

Invertible transformations

Simulators

 $x \sim p(x)$

Simulators are ubiquitous: they prescribe a way to sample from the data distribution

Collider data

particles $\sim p(\text{particles})$

Cosmology data

particles $\sim p(\text{particles})$

Molecular dynamics

configurations $\sim p(\text{configurations})$

[C. Cesarotti with ATLAS]

[Aquarius simulation]

[E. Cances et al]