1.
$$\int \frac{2x+3}{(x-2)(x+5)} dx = \int \frac{A}{(x-2)} + \frac{B}{x+5} dx = \frac{1}{(x-2)(x+5)} dx = \frac{1}{(x-2)(x+5)} + \frac{B}{(x-2)} dx = \frac{1}{(x-2)(x+5)} + \frac{B}{(x-2)(x+5)} dx = \frac{1}{(x-2)(x+5)} + \frac{B}{(x-2)(x+5)} dx = \frac{1}{(x-2)(x+5)} + \frac{1}{(x-2)(x+5)} dx = \frac{1}{(x-2)(x+5)} + \frac{1}{(x+5)} dx = \frac{1}{(x-2)(x+5)} + \frac{1}{(x+5)} dx = \frac{1}{(x-2)(x+5)} + \frac{1}{(x+5)} dx = \frac{1}{(x-2)(x+5)} + \frac{1}{(x+5)(x+5)} dx = \frac{1}{(x+5)(x+5)} dx =$$

$$= \frac{e^{2\pi} \sin 3x}{3} - \frac{2}{3} \left(-\frac{e^{2\pi} \cos 3x}{3} + \frac{2}{3} \int e^{2\pi} \cos 3x dx \right)$$

$$\int e^{2\pi} \cos 3x dx = \frac{e^{2\pi} \sin 3x}{3} + \frac{2e^{2\pi} \cos 3x}{3} - \frac{4}{9} \int e^{2\pi} \cos 3x dx$$

$$\frac{13}{9} \int e^{2\pi} \cos 3x dx = \frac{e^{2\pi} \sin 3x}{3} + \frac{2e^{2\pi} \cos 3x}{9}.$$

$$\int e^{2\pi} \cos 3x dx = \frac{3e^{2\pi} (3\sin 3x + 2e^{2\pi} \cos 3x)}{3}.$$

$$\int xe^{-x} dx = -xe^{-x} \left| \frac{\ln 2}{n} + \int e^{-x} dx \right| = .$$

$$U = x \qquad dU = dx$$

$$dV = e^{-x} dx \qquad V = -e^{-x}$$

$$= -\frac{\ln 2}{2} - \int e^{-x} d(-x) = -\frac{\ln 2}{2} - e^{-x} \left| \frac{\ln 2}{n} - \frac{\ln 2}{n} \right| = .$$

$$= -\frac{\ln 2}{2} - \frac{1}{2} + 1 = \frac{1 - \ln 2}{2}.$$

14.
$$y = e^{x}$$
 $[-\pi, \pi]$

15. $p_{nn} = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{x} dx = \frac{1}{2\pi} e^{x} \int_{-\pi}^{\pi} = \frac{e^{\pi} - e^{-\pi}}{2\pi}$

16. $q_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} e^{x} \cos nx dx = \frac{1}{2\pi} e^{x} \int_{-\pi}^{\pi} e^{\pi} e^{x} dx$

17. $u = e^{x}$ $du = e^{x} dx$

18. $u = e^{x}$ $du = e^{x} dx$

19. $u = e^{x}$ $du = e^{x} dx$

19. $u = e^{x}$ $du = e^{x} dx$

10. $u = e^{x}$ $du = e^{x} dx$

10. $u = e^{x}$ $du = e^{x} dx$

11. $u = e^{x}$ $du = e^{x} dx$

12. $u = e^{x}$ $du = e^{x} dx$

13. $u = e^{x}$ $du = e^{x} dx$

14. $u = e^{x}$ $du = e^{x} dx$

15. $u = e^{x}$ $du = e^{x} dx$

16. $u = e^{x}$ $du = e^{x} dx$

17. $u = e^{x}$ $du = e^{x} dx$

18. $u = e^{x}$ $du = e^{x} dx$

19. $u = e^{x}$ $du = e^{x} dx$

19. $u = e^{x}$ $du = e^{x} dx$

20. $u = e^{x}$ $du = e^{x} dx$

21. $u = e^{x}$ $du = e^{x} dx$

22. $u = e^{x}$ $du = e^{x} dx$

23. $u = e^{x}$ $du = e^{x} dx$

24. $u = e^{x}$ $du = e^{x} dx$

25. $u = e^{x}$ $du = e^{x} dx$

26. $u = e^{x}$ $du = e^{x} dx$

27. $u = e^{x}$ $du = e^{x} dx$

28. $u = e^{x}$ $du = e^{x} dx$

29. $u = e^{x}$ $du = e^{x} dx$

29. $u = e^{x}$ $du = e^{x} dx$

20. $u = e^{x}$ $du = e^{x} dx$

20. $u = e^{x}$ $du = e^{x} dx$

21. $u = e^{x}$ $du = e^{x} dx$

22. $u = e^{x}$ $du = e^{x} dx$

23. $u = e^{x}$ $du = e^{x} dx$

24. $u = e^{x}$ $du = e^{x} dx$

25. $u = e^{x}$ $du = e^{x} dx$

26. $u = e^{x}$ $du = e^{x} dx$

27. $u = e^{x}$ $du = e^{x}$

28. $u = e^{x}$ $du = e^{x}$

29. $u = e^{x}$ $du = e^{x}$

29. $u = e^{x}$

20. $u = e^{x}$

20. $u = e^{x}$

20. $u = e^{x}$

20. $u = e^{x}$

21. $u = e^{x}$

22. $u = e^{x}$

23. $u = e^{x}$

24. $u = e^{x}$

24. $u = e^{x}$

25. $u = e^{x}$

26. $u = e^{x}$

27. $u = e^{x}$

28. $u = e^{x}$

29. $u = e^{x}$

29. $u = e^{x}$

20. $u = e^{x}$

20. $u = e^{x}$

20. $u = e^{x}$

21. $u = e^{x}$

22. $u = e^{x}$

23. $u = e^{x}$

24. $u = e^{x}$

24. $u = e^{x}$

25. $u = e^{x}$

26. $u = e^{x}$

27. $u = e^{x}$

28. $u = e^{x}$

29. $u = e^{x}$

20. $u = e^{x}$

20. $u = e^{x}$

20. $u = e^{x}$

21

$$\frac{1}{n} \int_{-\pi}^{\pi} e^{x} \cos nx \, dx = \frac{1}{n} \left(\frac{e^{-n} - e^{n}}{n^{2}} - \frac{1}{n^{2}} \int_{-\pi}^{\pi} e^{x} \sin nx \, dx \right)$$

$$\frac{n^{2} + 1}{n^{2}} \int_{-\pi}^{\pi} e^{x} \cos nx \, dx = \frac{e^{-n} - e^{n}}{n^{2}}$$

$$\int_{-\pi}^{\pi} e^{x} \cos nx \, dx = \frac{e^{-n} - e^{n}}{n^{2} + 1}$$

$$\frac{1}{n^{2}} \left(\frac{e^{-n} - e^{n}}{n^{2}} - \frac{1}{n^{2}} \left(\frac{e^{-n} - e^{n}}{n^{2} + 1} \right) \right) = \frac{1}{n^{2}} \left(\frac{e^{-n} - e^{n}}{n^{2} + 1} \right)$$

$$= \frac{1}{n} \int_{-\pi}^{\pi} e^{x} \sin nx \, dx = \frac{1}{n} \left(-\frac{e^{x} \cos nx}{n} \right) \left(\frac{1}{n} + \frac{1}{n} \right) \left(\frac{e^{x} \cos nx}{n} \right)$$

$$U = e^{x} \qquad dU = e^{x} dx$$

$$dV = \sin nx \, dx \qquad V = -\frac{1}{n} \cos nx \, dx$$

$$dV = \cos nx \, dx \qquad V = \frac{1}{n} \sin nx \, dx$$

$$dV = \cos nx \, dx \qquad V = \frac{1}{n} \sin nx \, dx$$

$$dV = \cos nx \, dx \qquad V = \frac{1}{n} \sin nx \, dx$$

$$dV = \cos nx \, dx \qquad V = \frac{1}{n} \sin nx \, dx$$

$$dV = \cos nx \, dx \qquad V = \frac{1}{n} \sin nx \, dx$$

$$dV = \cos nx \, dx \qquad V = \frac{1}{n} \sin nx \, dx$$

$$dV = \cos nx \, dx \qquad V = \frac{1}{n} \sin nx \, dx$$