Лабораторная работа № 5

Показатели вариации

Цель: приобрести навыки по вычислению среднего значения, дисперсии, среднего квадратичного отклонения, распределения и коэффициента вариации посредством среды Excel

Задание 1

Имеются данные о распределении 100 рабочих цеха по выработке в отчетном году (в процентах к предыдущему году). Всего n=100 значений. (см. задачу No1 лаб.р No4)

Ряд	103.4	115.2	127	131	 102,3	114.5	118	127
признаков								

Вычислить среднее значение, дисперсию, среднее квадратичное отклонение и коэффициент вариации распределения рабочих.

Математическая модель:

$$\Delta = \mathbf{x}_{\text{max}} - \mathbf{x}_{\text{min}} / \mathbf{k}$$

$$k = 1 + 1, 4 \ln n$$

$$m_{x} = \sum_{x_{i} < x} m_{i}$$

$$x_{\text{max}} = x_{\text{min}} - \frac{k}{2}$$

$$\begin{split} M(X) &= \sum_{i=1}^n x_i \cdot p_i. \\ D(X) &= \sum_{i=1}^n x_i^2 \cdot p_i - \left(\sum_{i=1}^n x_i \cdot p_i\right)^2. \\ \sigma(X) &= \sqrt{D(X)}. \end{split}$$

$$\mathcal{C} = \mathbf{v} = \frac{S}{M} \cdot 100\%$$

Результат:

Задание 2

Имеются данные о средних и дисперсиях заработной платы двух групп рабочих

Группа рабочих	Число рабочих	Средняя зар. плата одного рабочего в группе	Дисперсия зар. платы
Работающих на одном станке	40	2400	180000
Работающих на двух станках	60	3200	200000

Найти общую дисперсию, распределение рабочих по заработной плане и его коэффициент вариации

Математическая модель:

$$C = v = \frac{S}{M} \cdot 100\%$$

$$M(X) = \sum_{i=1}^{n} x_i \cdot p_i.$$

$$D(X) = \sum_{i=1}^{n} x_i^2 \cdot p_i - \left(\sum_{i=1}^{n} x_i \cdot p_i\right)^2.$$

$$\sigma(X) = \sqrt{D(X)}.$$

Результат:

