Lecture 35

GARCH Models Part 1

Arnab Hazra

Dow Jones Industrial Average (recap)

Fig. 1.4. The daily returns of the Dow Jones Industrial Average (DJIA) from April 20, 2006 to April 20, 2016.

Dow Jones Industrial Average (recap)

- ▶ It is easy to spot the financial crisis of 2008 in the figure.
- ► The data shown here are typical of return data $(R_t = \frac{X_t X_{t-1}}{X_{t-1}})$.
- If the return represents a small (in magnitude) percentage change then $\nabla \log(X_t) \approx R_t$. Either value, $\nabla \log(X_t)$ or $\frac{X_t X_{t-1}}{X_{t-1}}$ are called the return.
- ► The mean of the series appears to be stable with an average return of nearly zero, however, highly volatile periods tend to be clustered together.
- A problem in the analysis of these type of financial data is to forecast the volatility of future returns.
- Models such as ARCH and GARCH models and stochastic volatility models have been developed to handle these problems.

ARCH(1) model

- ▶ If R_t follows an AR(1) process, $Var(R_t|R_{t-1}, R_{t-2}, ...) = Var(R_t|R_{t-1}) = \sigma_W^2$.
- ► Typically, for financial series, *R*_t does not have a constant conditional variance, and highly volatile periods tend to be clustered together.
- ► The simplest ARCH model, the ARCH(1), models the return as

$$R_t = \sigma_t \varepsilon_t, \ \ \sigma_t^2 = \alpha_0 + \alpha_1 R_{t-1}^2$$

where ε_t 's are IID standard Gaussian white noise.

- ▶ With ARMA models, we must impose some constraints ($\alpha_0, \alpha_1 \ge 0$) on the model parameters to obtain desirable properties.
- ► The conditional distribution $R_t | R_{t-1} \sim N(0, \alpha_0 + \alpha_1 R_{t-1}^2)$.

AR(1)-type representation of ARCH(1) model

- ▶ We can write the ARCH(1) model as a non-Gaussian AR(1) model for R_t^2 .
- First, we write as

$$R_t^2 = \sigma_t^2 \varepsilon_t^2, \quad \alpha_0 + \alpha_1 R_{t-1}^2 = \sigma_t^2.$$

We subtract the two equations to obtain

$$R_t^2 - (\alpha_0 + \alpha_1 R_{t-1}^2) = \sigma_t^2 \varepsilon_t^2 - \sigma_t^2 \stackrel{\text{Notation}}{=} V_t.$$

- ▶ Here $V_t = \sigma_t^2(\varepsilon_t^2 1)$. Because ε_t^2 is the square of a N(0, 1) random variable, $\varepsilon_t^2 1$ is a shifted (to have mean-zero), χ_1^2 random variable.
- ▶ Overall, $R_t^2 = \alpha_0 + \alpha_1 R_{t-1}^2 + V_t$ where $V_t | R_{t-1} \sim (\alpha_0 + \alpha_1 R_{t-1}^2) \times (\chi_1^2 1)$.

Digression: Martingale

A basic definition of a discrete-time martingale is a discrete-time stochastic process $\{X_1, X_2, X_3, \ldots\}$ that satisfies for any time T,

$$E(|X_t|)<\infty,$$

$$E(X_{T+1}|X_1,\ldots,X_T)=X_T.$$

- ► We can define $X_t^* = X_t E(X_t | X_{t-1}, X_{t-2}, ..., X_1)$.
- Here, clearly,

$$E(X_t^*|X_{t-1}^*,X_{t-2}^*,\ldots,X_1^*)=E(X_t|X_{t-1},X_{t-2},\ldots,X_1)-E(X_t|X_{t-1},X_{t-2},\ldots,X_1)=0.$$

ightharpoonup Here X_t^* is called martingale difference.

Properties of GARCH

▶ We define $\mathcal{R}_s = \{R_s, R_{s-1}, \ldots\}$.

▶ Because $E(R_t|\mathcal{R}_{t-1}) = 0$, the process R_t is said to be a martingale difference.

ightharpoonup Because R_t is a martingale difference, it is also an uncorrelated sequence.

▶ Therefore, $E(R_t^2)$ and $Var(R_t^2)$ must be constant with respect to time t.

Properties of GARCH (contd.)

$$E(R_t) = EE(R_t|\mathcal{R}_{t-1}) = EE(R_t|R_{t-1}) = 0$$

$$Cov(R_{t+h}, R_t) = E(R_t R_{t+h}) = EE(R_t R_{t+h} | R_{t+h-1}) = ER_t E(R_{t+h} | R_{t+h-1}) = 0$$

$$E(R_t^2) = \operatorname{Var}(R_t) = \frac{\alpha_0}{1 - \alpha_1}$$

$$E(R_t^4) = \frac{3\alpha_0^2}{(1 - \alpha_1)^2} \times \frac{1 - \alpha_1^2}{1 - 3\alpha_1^2}$$

Thank you!