Tutorato di Geometria 3B

Alessandro Giacchetto

aless and ro. giacchet to @gmail.com

Indice

1	Foglio 1: Basi, topologia prodotto, Hausdorff e chiusura	2
2	Foglio 2: Topologia prodotto, spazi metrici e second countable	3
3	Foglio 3: Spazi connessi	4
4	Foglio 4: Spazi connessi, compattezza e assiomi di separazione	5
5	Foglio 5: Compattezza, limit point compactness e countably compactness	6
6	Foglio 6: Esercizi vari di Topologia Generale	7
7	Foglio 7: Rivestimenti e omotopie	8
8	Foglio 8: Gruppo fondamentale	9

1 Foglio 1: Basi, topologia prodotto, Hausdorff e chiusura

Esercizio 1 (Munkres §14, esercizio 8).

(a) Mostrare che la collezione numerabile

$$\mathcal{B} = \{ (a, b) \mid a < b, a \in b \text{ razionali } \}$$

è una base che genera la topologia standard di R.

(b) Mostrare che la collezione

$$\mathcal{C} = \{ [a, b) \mid a < b, a \in b \text{ razionali } \}$$

genera una topologia diversa da \mathbb{R}_{ℓ} .

Esercizio 2 (Munkres §16, esercizio 8). Sia L una retta (orientata) del piano. Descrivere la topologia che L eredita come sottospazio di $\mathbb{R}_{\ell} \times \mathbb{R}$ e come sottospazio di $\mathbb{R}_{\ell} \times \mathbb{R}_{\ell}$.

Esercizio 3 (Munkres §16, esercizi 10-14).

- (a) Mostrare che la topologia dell'ordine è Hausdorff.
- (b) Mostrare che il prodotto di Hausdorff è Hausdorff.
- (c) Mostrare che il sottospazio di un Hausdorff è Hausdorff.
- (d) Mostrare che X è Hausdorff se e solo se la diagonale $\Delta = \{x \times x \mid x \in X\}$ è chiusa in $X \times X$.
- (e) Nella topologia del complemento finito su \mathbb{R} , dire a che punto o punti la successione $x_n = 1/n$ converge.

Esercizio 4 (Munkres §16, esercizio 18). Determinare la chiusura dei seguenti sottoinsiemi di I_0^2 .

$$\begin{split} A &= \left\{ \left. \frac{1}{n} \times 0 \mid n \in \mathbb{N} \right. \right\}, \\ B &= \left\{ \left. \left(1 - \frac{1}{n} \right) \times \frac{1}{2} \mid n \in \mathbb{N} \right. \right\}, \\ C &= \left\{ x \times 0 \middle| 0 < x < 1 \right\}, \\ D &= \left\{ \left. x \times \frac{1}{2} \middle| 0 < x < 1 \right. \right\}, \\ E &= \left\{ \left. \frac{1}{2} \times y \middle| 0 < y < 1 \right. \right\}. \end{split}$$

2 Foglio 2: Topologia prodotto, spazi metrici e second countable

Esercizio 5 (Munkres §19, esercizio 6). Sia x_1, x_2, \ldots una successione nello spazio prodotto $\prod_{\alpha} X_{\alpha}$. Provare che la successione converge al punto x se e solo se la successione $\pi_{\alpha}(x_1), \pi_{\alpha}(x_2), \ldots$ converge a $\pi_{\alpha}(x)$ per ogni α . Questo è ancora vero per la topologia box? Se sì, quale implicazione? Se no, trovare un controesempio.

Esercizio 6 (Munkres §19, esercizio 7 e §20, esercizio 5). Sia $\mathbb{R}^{\infty} \subset \mathbb{R}^{\omega}$ l'insieme delle successioni definitivamente nulle:

$$\mathbb{R}^{\infty} = \{\, (x_n) \in \mathbb{R}^{\omega} \mid \exists \bar{n} \in \mathbb{N} \ \text{t.c.} \ x_n = 0 \ \forall n \geqslant \bar{n} \,\}.$$

Trovare la chiusura di \mathbb{R}^{∞} in \mathbb{R}^{ω} nelle topologie prodotto, box e uniforme.

Esercizio 7 (Munkres §20, esercizio 3). Sia (X, d) uno spazio metrico.

- (a) Mostrare che d: $X \times X \to \mathbb{R}$ è continua.
- (b) Sia X' uno spazio topologico, pari ad X come insieme ma una topologia possibilmente diversa. Provare che se d: $X' \times X' \to \mathbb{R}$ è continua, allora la topologia di X' è più fine della topologia di X.

Ne segue che la topologia metrica è la topologia meno fine in cui la metrica d è una funzione continua.

Esercizio 8 (Munkres §20, esercizio 4.b). Considerare \mathbb{R}^{ω} con le topologie prodotto, uniforme e box. In quali topologie convergono le seguenti successioni?

$$\begin{array}{lll} \boldsymbol{w}_1 = (1,1,1,1,\dots) & \boldsymbol{x}_1 = (1,1,1,1,\dots) \\ \boldsymbol{w}_2 = (0,2,2,2,\dots) & \boldsymbol{x}_2 = (0,\frac{1}{2},\frac{1}{2},\frac{1}{2},\dots) \\ \boldsymbol{w}_3 = (0,0,3,3,\dots) & \boldsymbol{x}_3 = (0,0,\frac{1}{3},\frac{1}{3},\dots) \\ \dots & \dots & \dots \\ \boldsymbol{y}_1 = (1,0,0,0,\dots) & \boldsymbol{z}_1 = (1,1,0,0,\dots) \\ \boldsymbol{y}_2 = (\frac{1}{2},\frac{1}{2},0,0,\dots) & \boldsymbol{z}_2 = (\frac{1}{2},\frac{1}{2},0,0,\dots) \\ \boldsymbol{y}_3 = (\frac{1}{3},\frac{1}{3},\frac{1}{3},0,\dots) & \boldsymbol{z}_3 = (\frac{1}{3},\frac{1}{3},0,0\dots) \\ \dots & \dots & \dots & \dots \end{array}$$

Esercizio 9 (Munkres §30, esercizio 5.a e 6, caso \mathbb{R}_{ℓ}).

- (a) Mostrare che ogni spazio metrizzabile con un sottoinsieme denso numerabile è second countable.
- (b) Dedurne che \mathbb{R}_{ℓ} non è metrizzabile.

3 Foglio 3: Spazi connessi

Esercizio 10 (Munkres §23, esercizio 2). Sia $\{A_n\}$ una successione di sottospazi connessi di X, tali che $A_n \cap A_{n+1} \neq \emptyset$ per ogni n. Mostare che $\bigcup_n A_n$ è connesso.

Esercizio 11 (Munkres §23, esercizio 11). Sia p: $X \to Y$ una mappa quoziente con Y connesso. Mostare che se ogni fibra $p^{-1}(\{y\})$ è connessa, allora X è connesso.

Esercizio 12 (Munkres §24, esercizio 1).

- 1. Mostare che nessuno degli spazi (0,1), (0,1], [0,1] è omeomorfo ad uno degli altri. (*Suggerimento*: cosa succede se rimuoviamo un punto da uno degli spazi?)
- 2. Supponiamo che esistano delle inclusioni $f: X \to Y e g: Y \to X$. Mostare attraverso un esempio che X e Y non sono necessariamente omeomorfi.
- 3. Mostare che \mathbb{R}^n non è omeomorfo ad \mathbb{R} per n > 1.

Esercizio 13 (Munkres §24, esercizio 2). Sia $f: S^1 \to \mathbb{R}$ continua. Mostare che esiste necessariamente un punto $x \in S^1$ tale che f(x) = f(-x).

Esercizio 14 (Munkres §24, esercizio 3). Sia $f: X \to X$ continua. Mostare che se X = [0, 1], allora esiste necessariamente $x \in [0, 1]$ tale che f(x) = x, ovvero f ha necessariamente un punto fisso. Cosa succede se X = (0, 1] oppure X = (0, 1)?

Esercizio 15 (Munkres §24, esercizio 4). Sia X con la topologia dell'ordine. Mostrare che se X è connesso, allora è un continuo lineare.

4 Foglio 4: Spazi connessi, compattezza e assiomi di separazione

Esercizio 16 (Munkres §25, esercizio 1). Quali sono le componenti connesse e le componenti connesse per archi di \mathbb{R}_{ℓ} ? Quali sono le mappe continue $f: \mathbb{R} \to \mathbb{R}_{\ell}$?

Esercizio 17 (Munkres §25, esercizio 2).

- a) Quali sono le componenti connesse e le componenti connesse per archi di \mathbb{R}^{ω} con la topologia prodotto?
- b) Considerare \mathbb{R}^{ω} con la topologia uniforme. Mostrare che x e y appartengono alla stessa componente connessa se e solo se la successione

$$\mathbf{x} - \mathbf{y} = (\mathbf{x}_1 - \mathbf{y}_1, \mathbf{x}_2 - \mathbf{y}_2, \dots)$$

è limitata. (*Suggerimento*: è sufficiente considerare il caso y = 0.)

c) Considerare \mathbb{R}^{ω} con la topologia box. Mostrare che x e y appartengono alla stessa componente connessa se e solo se la successione x-y è definitivamente nulla. (*Suggerimento*: se la successione x-y *non* è definitivamente nulla, mostrare che esiste un omeomorfismo h di \mathbb{R}^{ω} tale che h(x) sia limitata e h(y) sia illimitata.)

I punti (b) e (c) dimostrano in particolare che \mathbb{R}^{ω} con la topologia uniforme e box non è connesso.

Esercizio 18 (Munkres §25, esercizio 3). Mostrare che il quadrato ordinato è localmente connesso, ma non localmente connesso per archi. Quali sono le componenti localmente connesse per archi?

Esercizio 19 (Munkres §25, esercizio 4). Sia X localmente connesso per archi. Dimostrare che ogni aperto connesso di X è connesso per archi^{*}.

Esercizio 20 (Munkres §26, esercizio 5). Siano A e B sottospazi compatti disgiunti in uno spazio di Hausdorff X. Mostrare che esistono aperti disgiunti U e V contenenti U e V rispettivamente.

Esercizio 21 (Munkres §26, esercizio 7). Mostrare che se Y è uno spazio compatto, allora la proiezione sul primo fattore π_1 : X × Y \rightarrow X è una mappa chiusa.

Esercizio 22 (Munkres §26, esercizio 9: generalizzazione del *tube lemma*). Siano A e B sottospazi di X ed Y rispettivamente. Sia N un aperto di $X \times Y$ contenente $A \times B$. Dimostrare che se A e B sono compatti, allora esistono aperti U e V di X ed Y rispettivamente, tali che

$$A\times B\subset U\times V\subset N.$$

Esercizio 23 (Munkres §30, esercizio 4). Mostrare che ogni spazio compatto metrizzabile X ha una base numerabile. (*Suggerimento:* considerare un ricoprimento di X di palle con raggi 1/n.)

Esercizio 24 (Munkres §30, esercizio 6). Mostrare che I_0^2 non è metrizzabile.

U è connesso ← U è connesso per archi.

^{*}Considerate il caso $X=\mathbb{R}^n$: questo è localmente connesso per archi, quindi per aperti U di \mathbb{R}^n si ha l'equivalenza

5 Foglio 5: Compattezza, limit point compactness e countably compactness

Esercizio 25 (Munkres §26, teorema 26.9). Sia X compatto, \mathcal{C} una collezione di chiusi di X con la seguente proprietà (detta anche *proprietà dell'intersezione finita*): per ogni collezione finita { C_1, \ldots, C_n } di \mathcal{C} , l'intersezione $C_1 \cap \cdots \cap C_n$ è non vuota. Provare che quindi l'intersezione $\bigcap_{C \in \mathcal{C}} C$ è non vuota[†].

Esercizio 26 (Munkres §27, esercizio 1). Sia X ordinato in cui ogni intervallo chiuso è compatto. Provare che X ha la proprietà dell'estremo superiore.

Esercizio 27 (Munkres §28, esercizio 1). Considerare $[0,1]^{\omega}$ con la topologia uniforme. Trovare un sottoinsieme infinito che non ha punti di limite (in particolare, $[0,1]^{\omega}$ uniforme non è compatto). Questo è un controesempio al teorema di Tychonoff nel caso della topologia uniforme.

Esercizio 28 (Munkres §28, esercizio 2). Mostrare che l'intervallo [0,1] non è *limit point compact* come sottospazio di \mathbb{R}_{ℓ} .

Esercizio 29 (Munkres §28, esercizio 4). Uno spazio X è detto *countably compact* se ogni ricoprimento numerabile di X ammette un sottoricoprimento finito. Mostrare che per uno spazio X che soddisfa T_1 , *countably compact* e *limit point compact* sono equivalenti. (*Suggerimento*: se nessun sottoricoprimento finito di $\{U_n\}_{n\in\mathbb{N}}$ ricopre X, scegliere $x_n\notin U_1\cup\cdots\cup U_n$ per ogni $n\in\mathbb{N}$.)

Esercizio 30 (Munkres §28, esercizio 5). Mostrare che X è *countably compact* se e solo se ogni successione decrescente di chiusi non vuoti

$$C_1 \supset C_2 \supset C_3 \supset \cdots$$

ha intersezione non vuota.

[†]Consideriamo il seguente caso particolare, noto come *teorema di intersezione di Cantor*: se $C_1 \supset C_2 \supset \cdots$ è una successione decrescente di compatti non vuoti di uno spazio topologico X, allora questi hanno intersezione non vuota. Tale teorema ha molte applicazioni.

6 Foglio 6: Esercizi vari di Topologia Generale

Esercizio 31 (Munkres §13, esercizio 7 e §17, esercizio 16). Sia $K = \{1/n \mid n \in \mathbb{N}_0\}$ e \mathcal{B}_K la base di \mathbb{R} generata dagli intervalli (a,b) e dagli insiemi $(a,b)\setminus K$. Denotiamo con \mathcal{T}_K la topologia generata da \mathcal{B}_K . Questa viene chiamata K-topologia e l'insieme dei reali dotato di tale topologia viene indicato con \mathbb{R}_K .

- (a) Per ciascuna coppia delle seguenti topologie su \mathbb{R} , determinare la relazione che vi intercorre (più fine o meno fine, strettamente più fine o meno fine, non comparabili):
 - T_s, la topologia standard,
 - \mathfrak{T}_{K} , la K-topologia (\mathbb{R}_{K}),
 - \mathcal{T}_{ℓ} , la topologia del limite inferiore (\mathbb{R}_{ℓ}),
 - \mathfrak{T}_u , la topologia del limite superiore (\mathbb{R}_u),
 - T_f, la topologia del complemento finito,
 - $\mathfrak{T}_{-\infty}$, la topologia che ha come base gli intervalli del tipo $(-\infty, \mathfrak{a})$.
- (b) Determinare la chiusura dell'insieme $K = \{1/n \mid n \in \mathbb{N}_0\}$ per ognuna di queste topologie. Quali di queste topologie sono di Hausdorff? Quali sono T_1 ?

Esercizio 32 (Munkres §16, esercizio 4). Siano X, Y spazi topologici. Dimostrare che la proiezione sul primo fattore $\pi_1: X \times Y \to X$ è un'applicazione aperta. In generale non è chiusa: dimostrare che la proiezione $\pi_1: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ non è un'applicazione chiusa (\mathbb{R} con la topologia standard).

Esercizio 33. Sia Y uno spazio di Hausdorff e f, g: $X \to Y$ applicazioni continue. Dimostrare che l'insieme $C = \{x \in X \mid f(x) = g(x)\}$ è chiuso in X.

Esercizio 34 (Munkres §27, esercizio 3). Sia \mathbb{R}_K l'insieme dei reali con la K-topologia.

- (a) Dimostrare che [0,1] come sottospazio di \mathbb{R}_K non è compatto.
- (b) Dimostrare che \mathbb{R}_K è connesso. (*Suggerimento:* $(-\infty,0]$ e $(0,\infty)$, come sottospazi di \mathbb{R}_K , hanno la topologia standard, quindi sono connessi.)
- (c) Dimostrare che \mathbb{R}_K non è connesso per archi.

Esercizio 35. Dimostrare che i seguenti spazi non sono limit point compact.

- (a) L'intervallo [0,1] in \mathbb{R}_K .
- (b) L'intervallo razionale $[0,1] \cap \mathbb{Q}$ (con la topologia sottospazio di \mathbb{R} standard).

Esercizio 36 (Munkres §33, esercizio 2 per spazi metrici). Sia X uno spazio metrico connesso con più di un punto. Dimostrare che X non è numerabile (*Suggerimento*: utilizzare l'esercizio 3 del foglio 2.)

Esercizio 37. Dimostrare che \mathbb{R}_K è Hausdorff, ma non è regolare e concludere che \mathbb{R}_K non è metrizzabile. Ciò prova che non è possibile sostituire l'ipotesi di regolarità con l'ipotesi Hausdorff nel I teorema di metrizzazione di Urysohn.

7 Foglio 7: Rivestimenti e omotopie

Esercizio 38 (Munkres §53, esercizio 4). Siano q: $X \to Y$ e r: $Y \to Z$ rivestimenti. Provare che se per ogni $z \in Z$ la fibra $r^{-1}(z)$ è finita, allora anche la composizione $p = r \circ q$: $X \to Z$ è un rivestimento.

Esercizio 39. Per un rivestimento p: $E \rightarrow B$, dimostrare le seguenti affermazioni.

- (a) Ogni fibra $p^{-1}(b)$ ha la topologia discreta.
- (b) p è un'applicazione aperta.
- (c) Se B è connesso, allora ogni fibra $p^{-1}(b)$ ha la stessa cardinalità.
- (d) Se B è compatto e ogni fibra $p^{-1}(b)$ è finita, allora E è compatto.

Esercizio 40 (Unicità del sollevamento). Sia p: $E \to B$ un rivestimento con $p(e_0) = b_0$. Considerare uno spazio X connesso e f: $X \to B$ un'applicazione continua con $f(x_0) = b_0$. Dimostrare che se esiste un sollevamento $\tilde{f}: X \to E$ di f con $\tilde{f}(x_0) = e_0$, allora questo è unico.

Esercizio 41 (Munkres §51, esercizio 3.b). Uno spazio X è detto contrattile se l'applicazione identità $id_X \colon X \to X$ è omotopa ad un'applicazione costante c_{x_0} , per un $x_0 \in X$. Dimostrare che uno spazio contrattile è connesso per archi.

Esercizio 42 (Munkres §51, esercizio 1 e lemma 51.1).

- (a) Se f, f': $X \to Y$ e g, g': $Y \to Z$ sono omotope, dimostrare che anche $g \circ f$ e $g' \circ f'$ lo sono.
- (b) Dimostrare che equivalenza di omotopia tra spazi topologici è una relazione di equivalenza.

8 Foglio 8: Gruppo fondamentale

Esercizio 43 (Munkres §59, esercizio 3.b). Calcolare il gruppo fondamentale di $\mathbb{R}^n \setminus \{0\}$ e dedurne che \mathbb{R}^2 e \mathbb{R}^n non sono omeomorfi per n > 2.

Esercizio 44 (Munkres §52, esercizio 3). Sia X connesso per archi, $x_0, x_1 \in X$. Se $\pi_1(X, x_0)$ è abeliano, dimostrare che presi due cammini α , β da x_0 a x_1 in X, le mappe indotte

$$\hat{\alpha}, \hat{\beta} : \pi_1(X, x_0) \rightarrow \pi_1(X, x_1)$$

coincidono: $\hat{\alpha} = \hat{\beta}$.

Esercizio 45.

- (a) Dimostrare che non esiste una retrazione $r: \mathbb{R}P^2 \to \mathbb{R}P^1$.
- (b) Sia $p: S^n \to \mathbb{R}P^n$ la proiezione che identifica un punto $x \in S^n$ con il punto antipodale -x. Dimostrare che non esiste un'applicazione continua $s: \mathbb{R}P^n \to S^n$ tale che $p \circ s = id_{\mathbb{R}P^n}$. (Suggerimento: distinguere i casi n = 1 e n > 1).

Esercizio 46.

- (a) Dimostrare che il nastro di Möbius N è omotopo ad S^1 (indicare una retrazione di deformazione su un opportuno sottospazio di N).
- (b) Dimostrare che non esiste una retrazione $r: N \to \partial N$ del nastro di Möbius N sul suo bordo (notare che $\partial N \cong S^1$).

Esercizio 47 (Facoltativo \mathfrak{Z}). Siano E, B, F spazi topologici. Una mappa continua suriettiva $\mathfrak{p} \colon \mathsf{E} \to \mathsf{B}$ è detta *fibrato topologico* con fibra tipica F se per ogni punto $\mathsf{b} \in \mathsf{B}$ esiste un intorno U di b e un omeomorfismo

$$\phi: U \times F \to p^{-1}(U)$$

tale che p \circ ϕ sia la proiezione sul primo fattore, ovvero il seguente diagramma è commutativo:

$$U \times F \xrightarrow{\varphi} p^{-1}(U)$$

$$pr_1 \downarrow \qquad p$$

Lo spazio E è detto totale, lo spazio B base.[‡]

(a) Lemma del sollevamento di un cammino per fibrati topologici. Sia $p: E \to B$ un fibrato topologico con fibra tipica F, tale che $p(e_0) = b_0$. Dato un cammino $f: [0,1] \to B$ con $f(0) = b_0$, dimostrare che esiste un unico sollevamento $\tilde{f}: [0,1] \to E$ con $\tilde{f}(0) = e_0$. (Suggerimento: ripercorre la dimostrazione del lemma di sollevamento di un cammino per rivestimenti.)

Considerare lo spazio proiettivo complesso $\mathbb{C}P^n$ così definito: due elementi $z, z' \in S^{2n+1} \subset \mathbb{C}^n$ si dicono equivalenti se esiste $\lambda \in U(1)$ tale che $z = \lambda z'$. Qui $U(1) = \{\lambda \in \mathbb{C} \mid |\lambda| = 1\}$ con la topologia sottospazio. Si definisce quindi la proiezione

$$p \colon S^{2n+1} \to \mathbb{C}P^n = \overset{S^{2n+1}}{/_{\sim}}.$$

Indicheremo un elemento di $\mathbb{C}P^n$ come [z], dove $z \in S^{2n+1}$. Poniamo su $\mathbb{C}P^n$ la topologia quoziente.

- (b) Provare che $\mathbb{C}P^n$ è uno spazio topologico compatto e connesso per archi e che $\mathfrak{p}\colon S^{2n+1}\to \mathbb{C}P^n$ è un fibrato topologico con fibra tipica U(1). (*Suggerimento:* considerare il ricoprimento di aperti $U_i=\{[z]\in \mathbb{C}P^n\mid z=(z_0,\ldots,z_n)\ e\ z_i\neq 0\}$.)
- (c) Dimostrare che $\pi_1(\mathbb{C}P^n)$ è banale. (*Suggerimento*: utilizzare il lemma del sollevamento di un cammino e ragionare sulla topologia delle fibre $\mathfrak{p}^{-1}([z_0])$.)

[‡]Intuitivamente, E è localmente il prodotto $E \times F$, ma non necessariamente in modo globale. Per esempio: il toro e la bottiglia di Klein sono gli spazi totali di fibrati topologici su S^1 con fibra tipica S^1 , ma mentre il toro è globalmente il prodotto $S^1 \times S^1$, la bottiglia di Klein lo è solo localmente. Lo stesso vale per il cilindro e il nastro di Möbius, entrambi spazi totali di fibrati su S^1 con fibra tipica l'intervallo [0,1].