Repeated Games

By Marzie Nilipour Spring 2023

Introduction

• Many (most?) interactions occur more than once.

Firms in a marketplace

Political alliances

Friends (favor exchange...)

Workers (team production...)

Example

• A repeated Prisoner's Dilemma game (Cooperative Behavior)

Example

• A repeated Prisoner's Dilemma game (Cooperative Behavior)

	С	Δ
C	3,3	0,5
D	5,0	1,1

• Finitely repeated (n)

• Infinitely repeated $(n \rightarrow \infty)$

Finitely repeated PD game

Finitely repeated PD game

• By backward induction, NE is also (All D, All D).

Infinitely repeated games

- When $n \rightarrow \infty$ or
- When end of the game is not determined

Infinitely repeated games

- When $n \rightarrow \infty$ or
- When end of the game is not determined
- What is a player's utility for playing an infinitely repeated game?
 - Average reward
 - Discounted reward

Average Reward

Definition

Given an infinite sequence of payoffs r_1, r_2, \ldots for player i, the average reward of i is

$$\lim_{k \to \infty} \sum_{j=1}^{k} \frac{r_j}{k}.$$

Discounted Reward

Definition

Given an infinite sequence of payoffs r_1, r_2, \ldots for player i and discount factor β with $0 < \beta < 1$, i's future discounted reward is

$$\sum_{j=1}^{\infty} \beta^j r_j.$$

Discounted Reward

Definition

Given an infinite sequence of payoffs r_1, r_2, \ldots for player i and discount factor β with $0 < \beta < 1$, i's future discounted reward is

$$\sum_{j=1}^{\infty} \beta^j r_j.$$

- Two equivalent interpretations of the discount factor (β):
 - Currency depreciation over time
 - Probabilistic perspective:
 - β (continuing the game), 1- β (ending the game)

Strategy Space

- Some famous strategies (repeated PD):
 - Tit-for-tat: Start out cooperating. If the opponent defected, defect in the next round. Then go back to cooperation.
 - Trigger: Start out cooperating. If the opponent ever defects, defect forever.

Discounted Repeated Game

- Stage game: (N, A, u)
- Discount factors: $\beta_1, \ldots, \beta_n, \beta_i \in [0, 1]$
- Assume a common discount factor for now: $\beta_i = \beta$ for all i
- Payoff from a play of actions a^1, \ldots, a^t, \ldots :

$$\sum_{t} \beta_i^t u_i(a^t)$$

History

• Histories of length t: $H^t = \{h^t : h^t = (a^1, \dots, a^t) \in A^t\}$

• All finite histories: $H = \cup_t H^t$

• A strategy: $s_i: H \to [A_i]$

• $A_i = \{C, D\}$

• A history for three periods: (C, C), (C, D), (D, D)

• A strategy for period 4 would specify what a player would do after seeing (C,C),(C,D),(D,D) played in the first three periods...

- Both players defect forever after if anyone ever deviates: Grim Trigger
- Payoffs?

• Cooperate:
$$3 + \beta 3 + \beta^2 3 + \beta^3 3... = \frac{3}{1-\beta}$$

• Defect:
$$5 + \beta 1 + \beta^2 1 + \beta^3 1 \dots = 5 + \beta \frac{1}{1-\beta}$$

•	Difference:	-2 +	$\beta 2 +$	$\beta^2 2 +$	β^32	$=\beta \frac{2}{1-\beta}$	2
---	-------------	------	-------------	---------------	------------	----------------------------	---

	С	D
С	3,3	0,5
Δ	5,0	1,1

• Cooperate:
$$3 + \beta 3 + \beta^2 3 + \beta^3 3... = \frac{3}{1-\beta}$$

• Defect:
$$5 + \beta 1 + \beta^2 1 + \beta^3 1... = 5 + \beta \frac{1}{1-\beta}$$

•	Difference:	$-2 + \frac{1}{2}$	$\beta 2 +$	$\beta^{2}2 +$	$\beta^3 2$	$=\beta \frac{2}{1-\beta}$	2
---	-------------	--------------------	-------------	----------------	-------------	----------------------------	---

	С	D
С	3,3	0,5
D	5,0	1,1

• Difference is nonnegative if $\beta \frac{2}{1-\beta} - 2 \ge 0$ or $\beta \ge (1-\beta)$, so $\beta \ge 1/2$

What if we make defection more attractive:

• Cooperate:
$$3 + \beta 3 + \beta^2 3 + \beta^3 3... = \frac{3}{1-\beta}$$

• Defect:
$$10 + \beta 1 + \beta^2 1 + \beta^3 1... = 10 + \beta \frac{1}{1-\beta}$$

• Difference:
$$-7 + \beta 2 + \beta^2 2 + \beta^3 2... = \beta \frac{2}{1-\beta} - 7$$

•	Difference is nonnegative if $\beta \frac{2}{1-\beta}$ —	7 2	> 0	or 2β	\geq	7(1 -	β), so
	$\beta \geq 7/9$						

	С	D
С	3,3	0,10
D	10,0	1,1

Repeated Forwarder's Game

NE in Finite Repeated Game

In the finite-horizon Repeated Forwarder's Dilemma, the strategy profile (All-D, All-D) is a Nash equilibrium.

Repeated Forwarder's Game

Example strategies in the Forwarder's Dilemma:

Blue (t)	initial move	F	D	strategy name
Green (t+1)	F	F	F	AIIC
	F	F	D	Tit-For-Tat (TFT)
	D	D	D	AIID
	F	D	F	Anti-TFT

Analysis of Repeated Forwarder's Game

Infinite game with discounting:
$$\overline{u_i} = \sum_{t=0}^{\infty} u_i(t) \cdot \delta^t$$

Blue strategy	Green strategy
AIID	AIID
AIID	TFT
AIID	AIIC
AIIC	AIIC
AIIC	TFT
TFT	TFT

Blue utility	Green utility
0	0
1	-c
1/(1-δ)	-c/(1-δ)
$(1-c)/(1-\delta)$	$(1-c)/(1-\delta)$
$(1-c)/(1-\delta)$	$(1-c)/(1-\delta)$
(1-c)/(1-δ)	(1-c)/(1-δ)

Analysis of Repeated Forwarder's Game

Infinite game with discounting:
$$\overline{u}_i = \sum_{t=0}^{\infty} u_i(t) \cdot \delta^t$$

Blue strategy	Green strategy
AIID	AIID
AIID	TFT
AIID	AIIC
AIIC	AIIC
AIIC	TFT
TFT	TFT

Blue utility	Green utility
0	0
1	-c
1/(1-δ)	-c/(1-δ)
$(1-c)/(1-\delta)$	(1-c)/(1-δ)
$(1-c)/(1-\delta)$	(1-c)/(1-δ)
$(1-c)/(1-\delta)$	(1-c)/(1-δ)

TFT is the best strategy if δ is high enough!

NE in Infinite Repeated Game

In the Repeated Forwarder's Dilemma, if both players play AllD, it is a Nash equilibrium.

NE in Infinite Repeated Game

In the Repeated Forwarder's Dilemma, both players playing TFT is a Nash equilibrium (if δ >c).

NE in Infinite Repeated Game

In the Repeated Forwarder's Dilemma, both players playing TFT is a Nash equilibrium (if δ >c).

Sketch of Proof:

If one deviate in stage t, then its payoff is:

$$(I-\delta)[(I+\delta+\delta^2...+\delta^{t-1})(I-c)+\delta^t] = I-c+\delta^t(c-\delta)$$

Hence if " $\delta > c$ " there is no temptation to deviate

```
Or (i.e., other approach):

I-(I-c) \le \delta (u(C,C) \text{ forever} - u (D,D) \text{ forever})

c \le \delta ((1-c)/(1-\delta) - 0) \rightarrow \delta > c
```

Nash Equilibria

- With an infinite number of pure strategies, what can we say about Nash equilibria?
 - we won't be able to construct an induced normal form and then appeal to Nash's theorem to say that an equilibrium exists
 - Nash's theorem only applies to finite games

Nash Equilibria

- With an infinite number of pure strategies, what can we say about Nash equilibria?
 - we won't be able to construct an induced normal form and then appeal to Nash's theorem to say that an equilibrium exists
 - Nash's theorem only applies to finite games

 We can characterize a set of payoffs that are achievable under equilibrium, without having to enumerate the equilibria.

Definition

- Consider any n-player game G = (N, A, u) and any payoff vector $r = (r_1, r_2, \dots, r_n)$.
- Let $v_i = \min_{s_{-i} \in S_{-i}} \max_{s_i \in S_i} u_i(s_{-i}, s_i)$.
 - i's minmax value: the amount of utility i can get when -i play a minmax strategy against him

Definition

- Consider any n-player game G = (N, A, u) and any payoff vector $r = (r_1, r_2, \dots, r_n)$.
- Let $v_i = \min_{s_{-i} \in S_{-i}} \max_{s_i \in S_i} u_i(s_{-i}, s_i)$.
 - i's minmax value: the amount of utility i can get when -i play a minmax strategy against him

Definition

A payoff profile r is enforceable if $r_i \geq v_i$.

Definition

- Consider any n-player game G = (N, A, u) and any payoff vector $r = (r_1, r_2, \dots, r_n)$.
- Let $v_i = \min_{s_{-i} \in S_{-i}} \max_{s_i \in S_i} u_i(s_{-i}, s_i)$.
 - i's minmax value: the amount of utility i can get when -i play a minmax strategy against him

Definition

A payoff profile r is enforceable if $r_i \geq v_i$.

Definition

A payoff profile r is feasible if there exist rational, non-negative values α_a such that for all i, we can express r_i as $\sum_{a \in A} \alpha_a u_i(a)$, with $\sum_{a \in A} \alpha_a = 1$.

Folk Theorem

Theorem (Folk Theorem)

Consider any n-player game G and any payoff vector (r_1, r_2, \ldots, r_n) .

- 1. If r is the payoff in any Nash equilibrium of the infinitely repeated G with average rewards, then for each player i, r_i is enforceable.
- 2. If r is both feasible and enforceable, then r is the payoff in some Nash equilibrium of the infinitely repeated G with average rewards.