

Profit Maximisation of Deforestation based on Reinforcement Learning

Team SSZ: Huaxia Zhao(Speaker)
Guanqiao Sui
Zekun Song

Leibniz Universität Hannover 03.2022

Problem caused by Deforestation

Every year more than 10,000 kilometers of forest are deforested, 0.5 billion metric tons of carbon per year.

A Balance Solution

Interests of landowners

Influence between plants

Available in RL?

- Action_space
- Observation_space

Overview

Action space: 8 (0-7)

0	Do nothing
1-7	Cut down the corresponding age of trees

Observation space: (10*10*2)

10*10*1 → show the age of trees of corresponding grids

10*10*1 → show fertility of corresponding grids

- Each step(The order of some rules is important)
 - If tree not been cut down, the fertility of grid will reduce
 - If the tree age is 7, the empty grid around this tree, will get a seed, and grow up next year
 - If tree not been cut down, it will grow up, which will be influenced by fertility
 - If tree been cut down(empty grid), the fertility of grid will recover.
 - Move to next year(end at 15 year)

Parameters

WEIGHT_TIMBER WEIGHT_GREENHOUSE_GAS MAX_FERTILITY MINIMUM_REQ_GHG_10 MINIMUM_REQ_TIMBER_1 RANDOM_SEED

MINIMUM_REQ_GHG_10 = 0 MINIMUM_REQ_TIMBER_1 = 0

MINIMUM_REQ_GHG_10 = 2000 MINIMUM_REQ_TIMBER_1 = 50

Algorithm

- 1. Random test
- 2. Q-Learning
- 3. DQN
- 4. Policy Gradient

Q-learning

Policy Gradient

My Work

- 1. Coding: version 1, version 1.2 and version 2
- 2. Docstring
- 3. Parameters Adjusting
- 4. Documentation(part):
 - Experimental Reproducibility and Generalization
 - Reporting

Thank you for attention!

