

# TrailerMate

## Team Jason

**Abdessamad Amadar** 

**Malaurie Bernard** 

Sarah Bobillot

**Emilie Fraumar** 

**Killian Gonet** 

Réda Kharoubi

**Antonin Laborde-Tastet** 



### Table of content







**Product description** 



**Main features** 



Release vision and backlog



**Sprint 1** 



**Risk analysis** 



**Operationnal requirement** 





















Context

Freight represents 30% of French road transport



in **2021**, French truck drivers travelled an average of 467 km per day, equivalent to 11h and 22 min on the road



500,000 road accidents are caused by tractor-trailers, resulting in 5,000 deaths, every year in the US



20% of truck drivers admit to have fallen asleep while driving



## **Product description**













#### Autonomous truck modelized by a car and its trailer





Helping reduce accidents
thanks to an autonomous nagivation
and a security system

















## **Main features**



#### Reverse maneuver & Parking assistance

- Perform a straight reverse gear during at least 10 meters
- Perform a reverse gear with a 90 degrees angle turn and no constraint concerning the width of the road
- Be able to **detect** the parking slot and **park automatically** Autonomous navigation



- The vehicle (trailer) can detect obstacles while reversing
- The vehicle can autonomously go from point A to point B using GPS



#### Security

- **Emergency** stop switch in the controller
- Switching to manual control when the vehicle is in automatic mode













## Project separate into 6 sprints lasting 2 weeks

 Sprint 0 : discovering the project, the car and the expectations of our teacher-clients and project plan development

• Sprint 1-2-3-4-5 : product development according to the user story and the planification made in the sprint 0











?

#### **SPRINTS**

Familiarize oneself with the car's structure

Focus on the control laws of the car

Obstacle detection and addition of the trailer to the system

Automatically park the car with the trailer

Implement a
GPS function in our fin
al product



## Release vision and backlog







Sprint 1

Moving forward with a fixed speed

Get an emergency button in the controller

Sprint 2

Make a model of the car in Matlab/Simulink

Implement basic controls to controller

Sprint 3

**Car can detect obstacles** 

Ride a straight reverse gear during at least 10 meters

**Understand the pre-existing** code

**Centralizing the code on ROS 2** 

Car adapt its speed to a manually or automatically

Implement all the control laws in Matlab

**Trailer can detect obstacles** 

**Get back the controller** manually when the car is in automatic mode

**Get values from sensors** 

Car take curves following the sensor value

Low priority

High

priority

**Looking for existing trailers** control loops



## Release vision and backlog







Sprint 4

Ride a reverse gear with a 90 degrees angle and no constraint

Make an interface to give error information to user

Sprint 5

Be able to detect the parking slot and park automatically

Go to point A to point B autonomously using GPS

Make an application to get the planned trajectory in top view

Car can stop itself when there is an obstacle

Ride a reverse gear with a 90 degrees angle and a constraint

Low priority

High

priority

**Car can avoid obstacles** 

**Detect traffic signs and adapt** the behaviour of the car to it



## Sprint 1









#### **SCRUM Master: Killian Gonet**

3 goals

**Understand car structure** 

**Design basic tasks** 

Use sensors/controller

**Existing code** 

Move forward/backward

**Emergency button** 

**ROS2 structure** 

**SoA** reverse control loops

**Get values from sensor** 



## ■ Risk analysis







#### Prevent project's problem

#### 4 example of tools



XProgramming: program in pairs



**Test Driven Development** 



Early Feedback : communication with client



**Error detection management** 



## Risk analysis



?



3

4

#### The five Essential Characteristics of Risks

Scope of the risk (Internal ,External, Material)

2 Description of the risk

Probability of occurrence



Criticity











#### Internal

**External** 

**Material** 



A teammate is sick and can't work

The demonstration doesn't work during sprint review

A sensor stop working







High





High

Medium



Replan his tasks / Discuss with client

Make a backup video

**Develop detection system /** emergency button

## **Operationnal requirement**

?

### Reverse gears



Parking in a place facilitated by markers



Reverse straight line for at least 10 meters without deviation ?

#### **Obstacle avoidance**



?

## **Emergency**





## **Questions?**

