Maths

Essential GCSE Maths 29.2

Essential GCSE Maths 29.2

Express the following in completed square form:

Part A Complete the square

$$x^2-x-5$$

$$(x-1)^2-4$$

$$(x-1)^2-6$$

$$(x+1)^2-6$$

Part B Complete the square

$$x^2 - 5x + 4$$

$$\left(x-rac{5}{2}
ight)^2-rac{9}{4}$$

$$(x-5)^2+4$$

$$\bigcirc \quad (x-5)^2-21$$

$$\left(x-\tfrac{5}{2}\right)^2+\tfrac{13}{2}$$

Maths

Essential GCSE Maths 27.4

Essential GCSE Maths 27.4

Without drawing graphs, find for each function	Without	drawing	graphs.	find for	each	function:
--	---------	---------	---------	----------	------	-----------

(i) the y-intercept (ii) where the graph crosses the x-axis.

Part A Find information about the curve

$$y = x^2 + x - 2$$

- (i) Find the y-intercept
- (ii) Where does the graph cross the x-axis?

Enter the lower value.

Enter the higher value.

Part B Find information about the curve

.,	_	r^2	\perp	6x	\perp	5
u	=	\boldsymbol{x}	+	$\mathbf{u}x$	_	υ

- (i) Find the y-intercept
- (ii) Where does the graph cross the x-axis?

Enter the lower value.

Enter the higher value.

Part C Find information about the curve

$$y = x^2 - 8x + 15$$

- (i) Find the y-intercept
- (ii) Where does the graph cross the x-axis?

Enter the lower value.

Enter the higher value.

<u>Home</u> Maths Algebra Simultaneous Equations Linear Quadratic 5

Linear Quadratic 5

A particle of mass 2M is travelling at speed u towards a stationary particle of mass M and collides head-on and elastically with it. After the collision both particles are moving -- the particle of mass 2M has a (non-zero) speed v and the particle of mass M has a (non-zero) speed v.

Using the laws of conservation of momentum and kinetic energy we can write down two simultaneous equations for the collision: 2Mu=2Mv+Mw and $\frac{1}{2}(2M)u^2=\frac{1}{2}(2M)v^2+\frac{1}{2}Mw^2$.

Find an expression for w, the final speed of the particle of mass M, in terms of u.

The following symbols may be useful: u, $\,$ v, $\,$ w

Find the corresponding expression for v, the final speed of the particle of mass 2M, in terms of u.

The following symbols may be useful: u , $\,\,$ v , $\,\,$ w

Created for isaacphysics.org by Julia Riley.

Home Maths Essential GCSE Maths 27.11

Essential GCSE Maths 27.11

Plot a graph of s against t for $0 \le t \le 7$, given that $u = 29.43 \, \text{m/s}$ and $a = -9.81 \, \text{m/s}^2$.

Part A What is the maximum height?

What is the maximum height reached? Give your answer to 3 s.f..

Part B How long to return to its starting height?

How long does a projectile modelled by this graph take to return to its starting height? You may assume the projectile was launched at t=0. Give your answer to 3 s.f..

Part C What is the relative position of the projectile?

At $t = 7 \, \text{s}$, what is the height of the projectile relative to its starting position? Give your answer to 3 s.f..

Maths

Quadratics: Graphs and Discriminants 2ii

Quadratics: Graphs and Discriminants 2ii

The quadratic equation $x^2 + kx + k = 0$ has no real roots for x.

Part A Find discriminant

Write down the discriminant of $x^2 + kx + k$ in terms of k.

The following symbols may be useful: \boldsymbol{k}

Hence find the set of values k can take.

	hat form does your answer take? Choose from the list below, where a and b are constants and $a < b$, and en find a and/or b .
	$\bigcirc k \leq a$
	k > a
	$igcap k \geq a$
	$\bigcirc a < k < b$
	$\bigcirc a \leq k \leq b$
	$igcap k < a ext{ or } k > b$
	$igcap k \leq a ext{ or } k \geq b$
Wr	ite down the value of a .
	rite down the value of b (or if your chosen form has no b , write "n").
Jsed with pe	rmission from UCLES, A Level, Paper 4721 (specimen).

Maths

Algebra and Roots: Cubics 2ii

Algebra and Roots: Cubics 2ii

The cubic equation $x^3 - 6x^2 + kx + 10 = 0$ has roots p - q, p + q and p.

Part A

Find p by considering the sum of roots.

The following symbols may be useful: p

Part B q

Find q by considering the product of roots. Take q to be positive.

The following symbols may be useful: q

Part C k

Find k.

The following symbols may be useful: \boldsymbol{k}

Adapted with permission from UCLES, A Level, OCR FP1 Specimen paper, Paper 4725, Question 2.

<u>Home</u> Maths Algebra Simultaneous Equations Linear-Quadratic 3

Linear-Quadratic 3

Solve the simultaneous equations $p^2 + 2pq + 4q^2 = 7$ and 2p = q + 1. (Where appropriate give your answer in the form of a proper or improper fraction.)

Part A p furthest from zero and q

Find the value of p furthest from zero given that $p^2+2pq+4q^2=7$ and 2p=q+1.

The following symbols may be useful: p, q

Find q for the value of p found above.

The following symbols may be useful: p, q

Part B p closest to zero and q

Find the value of p closest to zero given that $p^2+2pq+4q^2=7$ and 2p=q+1.

The following symbols may be useful: p, q

Find q for the value of p found above.

The following symbols may be useful: p, q

Created for isaacphysics.org by Julia Riley.

Home Maths Algebra Simultaneous Equations Linear-Quadratic 6

Linear-Quadratic 6

A particle of mass M, travelling at speed u, collides head-on and elastically with a stationary particle of mass m. After the collision the particles of mass M and of mass m travel at (non-zero) speeds v and w respectively.

By applying the laws of conservation of momentum and kinetic energy we can write down two simultaneous equations for the collision: Mu=Mv+mw and $\frac{1}{2}Mu^2=\frac{1}{2}Mv^2+\frac{1}{2}mw^2$

Find an expression for w, the speed of the particle of mass m after the collision, in terms of u, M and m.

The following symbols may be useful: M, $\,$ m, $\,$ u, $\,$ v, $\,$ w

Find the corresponding expression for v, the speed of the particle of mass M after the collision, in terms of u, M and m.

The following symbols may be useful: M, m, u, v, w

Created for isaacphysics.org by Julia Riley.

Home Maths Algebra Simultaneous Equations Linear-Quadratic 4

Linear-Quadratic 4

Starting with the equations v=u+at and $s=ut+\frac{1}{2}at^2$, eliminate t to find an equation relating $s,\,u,\,v$ and a. Give your answer as an equation with v^2 only on the left hand side.

The following symbols may be useful: a, $\,$ s, $\,$ u, $\,$ v

Created for isaacphysics.org by Julia Riley.