4

CAMPO E POTENCIAL ELÉTRICO

1. (UFJF 2017) Duas cargas elétricas, $q_1 = 1\mu C$ e $q_2 = -4\mu C$, estão no vácuo, fixas nos pontos 1 e 2, e separadas por uma distância d = 60 cm, como mostra a figura abaixo.

Como base nas informações, determine:

- a. A intensidade, a direção e o sentido do vetor campo elétrico resultante no ponto médio da linha reta que une as duas cargas.
- b. O ponto em que o campo elétrico resultante é nulo à esquerda de q_1 .

3. (UFPE 2010) Nos vértices de um triângulo isósceles são fixadas três cargas puntiformes iguais a $Q_1 = +1.0 \times 10^{-6}$ C; $Q_2 = -2.0 \times 10^{-6}$ C; e $Q_3 = +4.0 \times 10^{-6}$ C. O triângulo tem altura h = 3,0 mm e base D = 6,0 mm. Determine o módulo do campo elétrico no ponto médio M, da base, em unidades de 10^9 V/m.

TEXTO PARA AS PRÓXIMAS 2 QUESTÕES:

Dados:

Aceleração da gravidade: 10 m/s²

Densidade do mercúrio: 13,6 g/cm³

Pressão atmosférica: 1,0.10⁵ N/m²

Constante eletrostática: $k_0 = 1/4 \pi \epsilon_0 =$

9,0.10⁹ N.m²/C²

2. (UFPE 2012) Três cargas elétricas, $q_1 = -1.6\mu$ C, $q_2 = +1.0\mu$ C e $q_3 = -4.0\mu$ C, são mantidas fixas no vácuo e alinhadas, como mostrado na figura. A distância d = 1.0 cm. Calcule o módulo do campo elétrico produzido na posição da carga q_2 , em V/m.

4. (UFRJ 2008) Duas cargas puntiformes $q_1 = 2.0 \times 10^{-6}$ C e $q_2 = 1.0 \times 10^{-6}$ C estão fixas num plano nas posições dadas pelas coordenadas cartesianas indicadas a

seguir. Considere K = $1/(4\pi\epsilon_0)$ = 9.0×10^9 NC⁻² m².

Calcule o vetor campo elétrico na posição A indicada na figura, explicitando seu módulo, sua direção e seu sentido.

5. (UEG 2008) A figura a seguir representa as linhas de campo elétrico de duas cargas puntiformes.

Com base na análise da figura, responda aos itens a seguir.

- a. Quais são os sinais das cargas A e B? Justifique.
- b. Crie uma relação entre os módulos das cargas A e B. Justifique.
- c. Seria possível às linhas de campo elétrico se cruzarem? Justifique.

6. (FUVEST 2015) A região entre duas

placas metálicas, planas e paralelas está esquematizada na figura abaixo. As linhas tracejadas representam o campo elétrico uniforme existente entre as placas. A distância entre as placas é 5 mm e a diferença de potencial entre elas é 300 V. As coordenadas dos pontos A, B e C são mostradas na figura. Determine

- a. os módulos E_A , E_B e E_C do campo elétrico nos pontos A, B e C, respectivamente;
- b. as diferenças de potencial V_{AB} e V_{BC} entre os pontos A e B e entre os pontos B e C, respectivamente;
- c. o trabalho τ realizado pela força elétrica sobre um elétron que se desloca do ponto C ao ponto A.

Note e adote:

O sistema está em vácuo. Carga do elétron = -1,6x10⁻¹⁹ C.

7. (PUCRJ 2016) Duas partículas com cargas Q e -Q têm posições iniciais (x, y, z) = (0, 0, R) e (0, 0, 0), respectivamente. A carga -Q está fixa enquanto uma força (variável) leva a carga Q, em velocidade muito baixa e constante, até a nova posição (0, 0, 2R). Considere a constante eletrostática k conhecida.

Calcule a diferença de energia potencial do sistema entre a posição final e a posição inicial.

O trabalho total realizado pelas forças eletrostáticas nas cargas Q e -Q, ao longo do processo descrito no item anterior, é positivo, nulo ou negativo? Justifique.

TEXTO PARA A PRÓXIMA QUESTÃO:

Dados:

Aceleração da gravidade: 10 m/s²

Densidade do mercúrio: 13,6 g/cm³

Pressão atmosférica: 1,0.10⁵ N/m²

Constante eletrostática: $k_0 = 1/4 \pi \epsilon_0 = 9,0.10^9 \text{ N.m}^2/\text{C}^2$.

8. (UFPE 2012) O gráfico mostra a dependência do potencial elétrico criado por uma carga pontual, no vácuo, em função da distância à carga. Determine o valor da carga elétrica. Dê a sua resposta em unidades de 10-9C.

9. (UNESP 2011) Uma esfera condutora descarregada (potencial elétrico nulo), de raio $R_1 = 5.0$ cm, isolada, encontra-se

distante de outra esfera condutora, de raio R_2 = 10,0 cm, carregada com carga elétrica Q = 3,0 μ C (potencial elétrico não nulo), também isolada.

Em seguida, liga-se uma esfera à outra, por meio de um fio condutor longo, até que se estabeleça o equilíbrio eletrostático entre elas. Nesse processo, a carga elétrica total é conservada e o potencial elétrico em cada condutor esférico isolado descrito pela equação V = k.q/r, onde k é a constante de Coulomb, q é a sua carga elétrica e r o seu raio.

Supondo que nenhuma carga elétrica se acumule no fio condutor, determine a carga elétrica final em cada uma das esferas.

10. (UERJ	2011)	Em	um	labo	oratório,
um pesqi	uisador	coloc	uс	uma	esfera
eletricame	nte carre	egada	em	uma	câmara
na qual foi	feito vá	cuo.			

O potencial e o módulo do campo elétrico medidos a certa distância dessa esfera valem, respectivamente, 600 V e 200 V/m.

Determine o valor da carga elétrica da esfera.

11. (UFG 2010) Uma carga puntiforme Q gera uma superfície equipotencial de 2,0V a uma distância de 1,0m de sua posição. Tendo em vista o exposto, calcule a distância entre as superfícies equipotenciais que diferem dessa por 1.0V

13. (UFPE 2008) Duas cargas elétricas puntiformes, de mesmo módulo Q e sinais opostos, são fixadas à distância de 3,0 cm entre si. Determine o potencial elétrico no ponto A, em volts, considerando que o potencial no ponto B é 60 volts.

12. (ITA 2009) Três esferas condutoras, de raio a e carga Q, ocupam os vértices de um triângulo equilátero de lado b > a, conforme mostra a figura (1). Considere as figuras (2), (3) e (4), em que, respectivamente, cada uma das esferas se liga e desliga da Terra, uma de cada vez. Determine, nas situações (2), (3) e (4), a carga das esferas Q_1 , Q_2 e Q_3 , respectivamente, em função de a, b e Q_1 .

14. (UNICAMP 2018) Geradores de Van de Graaff têm a finalidade de produzir altas diferenças de potencial. Consistem em uma esfera metálica onde é acumulada a carga proveniente de uma correia em movimento. A carga é inicialmente depositada na parte inferior da correia, que está aterrada (potencial V = 0, ver figura), e é extraída da correia quando atinge a parte superior, que está no potencial V₀ fluindo para a esfera metálica. O movimento da correia é mantido por um pequeno motor.

- a. Em um gerador em operação, a carga transportada por unidade de comprimento da correia é igual a λ = 1,25 X 10⁻⁷ C/m. Se a taxa com que essa carga é transferida para a esfera metálica é dada por
- $i = 5.0 \times 10^{-9}$ C/s, qual é a velocidade da correia?
- b. Um fenômeno muito atraente que ocorre em pequenos geradores usados em feiras de ciências é a produção de faísca, decorrente de uma descarga elétrica, quando um bastão metálico aterrado é aproximado da esfera carregada do gerador. A descarga elétrica ocorre quando o módulo do campo elétrico na região entre a esfera e o bastão torna-se maior que a rigidez dielétrica do ar, que vale $E_{rd} = 3.0 \times 10^6$ V/m. Para simplificar, considere que a esfera de um gerador e a extremidade do bastão equivalem a duas placas metálicas paralelas com uma diferença de potencial de $V = 7.5 \times 10^4 \text{ V}$. Calcule a distância entre elas para que a descarga ocorra.

potencial V, de modo que a placa de cima fica com carga negativa e a de baixo, positiva. No centro da placa superior, está afixado um fio isolante de comprimento L < d com uma pequena esfera metálica presa em sua extremidade, como mostra a figura. Essa esfera tem massa m e está carregada com carga negativa -q. O fio é afastado da posição de equilíbrio de um ângulo θ , e a esfera é posta em movimento circular uniforme com o fio mantendo o ângulo θ com a vertical.

Determine

- a. O módulo E do campo elétrico entre as placas;
- b. Os módulos T e F respectivamente, da tração no fio e da força resultante na esfera;
- c. A velocidade angular ω da esfera.

Note e adote:

A aceleração da gravidade é g. Forças dissipativas devem ser ignoradas.

15. (FUVEST 2019) Duas placas metálicas planas e circulares, de raio R, separadas por uma distância d << R, estão dispostas na direção horizontal. Entre elas, é aplicada uma diferença de

1. a. Carga positiva gera campo de afastamento e carga negativa gera campo de aproximação. Assim os dois campos são de mesmo sentido, para a direita, como indicado na figura.

A intensidade do campo elétrico resultante é:

$$\mathsf{E} = \mathsf{E}_1 + \mathsf{E}_2 = \frac{k \left| q_1 \right|}{d_1^2} + \frac{k \left| q_2 \right|}{d_2^2} = \frac{9 \times 10^9 \cdot 10^{-6}}{\left(0,3 \right)^2} + \frac{9 \times 10^9 \cdot 4 \times 10^{-6}}{\left(0,3 \right)^2}$$

$$=10^5+4\times10^5 \Rightarrow$$

b. No ponto onde o vetor campo elétrico é nulo, os campos dessas duas cargas devem ter mesma intensidade e sentidos opostos, como indicado.

$$E_1 = E_2 = \frac{k|q_1|}{d^2} = \frac{k|q_2|}{(0,6+d)^2} \Rightarrow \frac{10^{-6}}{d^2} = \frac{4 \times 10^{-6}}{(0,6+d)^2} \Rightarrow \frac{1}{d^2} = \frac{4}{(0,6+d)^2} \Rightarrow \frac{1}{d^2} = \frac{4}{(0,6+d)^2} \Rightarrow \frac{1}{d^2} = \frac{4}{(0,6+d)^2} \Rightarrow \frac{1}{d^2} = \frac{2}{0,6+d} \Rightarrow 2 \ d = 0,6+d \Rightarrow d = 0,6 \ m = 60 \ cm.$$

Como esse ponto está a esquerda de q_1 a abscissa desse ponto é:

$$x = 60 - 60 \Rightarrow x = 0.$$

2. - Campo elétrico produzido pela carga q_1 na posição da carga q_2 :

$$\mathsf{E}_{q_1} = \frac{k_0 \cdot |\ q_1\ |}{\left(2.d\right)^2} \to \mathsf{E}_{q_1} = \frac{k_0 \cdot 16 \mu}{4.d^2} \to \mathsf{E}_{q_1} = 4 \mu. \frac{k_0}{d^2}$$

(horizontal para a esquerda)

- Campo elétrico produzido pela carga \mathbf{q}_2 na posição da carga \mathbf{q}_2 :

$$E_{q_2} = \frac{k_0 \cdot |q_2|}{(0)^2} \rightarrow E_{q_2} = 0$$

- Campo elétrico produzido pela carga q_3 na posição da carga q_2 :

$$\mathsf{E}_{q_3} = \frac{\mathsf{k}_0.\,|\,\mathsf{q}_3\,\,|}{(\mathsf{d})^2} \to \mathsf{E}_{q_3} = \frac{\mathsf{k}_0.4\mu}{\mathsf{d}^2} \to \mathsf{E}_{q_3} = 4\mu.\frac{\mathsf{k}_0}{\mathsf{d}^2}$$

(horizontal para a direita)

- Campo elétrico resultante:

$$\vec{E} = \vec{E}_{q_1} + \vec{E}_{q_2} + \vec{E}_{q_3}$$

$$\vec{E}_{q_1} \qquad \vec{E}_{q_3}$$

Como : $|\vec{E}_{q_1}| = |\vec{E}_{q_3}| : \vec{E} = 0$

E = 0.

3.05 V/m.

Dados: $r_1 = r_2 = D/2 = 3 \text{ mm} = 3.10^{-3} \text{m}; r_3 = h = 6 \text{ mm} = 6.10^{-3} \text{ m}; k = 9.10^{9} \text{N.m}^2/\text{C}^2.$

O vetor campo elétrico no ponto M resulta da superposição dos campos produzidos por cada carga. Como carga positiva cria campo de afastamento e carga negativa cria campo de aproximação, temos os vetores apresentados na figura a seguir.

Aplicando a expressão do módulo do vetor campo elétrico em um ponto distante r de uma carga fixa Q, considerando que o meio seja o vácuo:

$$E_1 = 9 \times 10^9 \frac{1,0 \times 10^{-6}}{\left(3,0 \times 10^{-3}\right)^2} = 1,0 \times 10^9 \text{ V/m;}$$

$$E = \frac{kQ}{r^2} \implies \left\{ E_2 = 9 \times 10^9 \frac{2,0 \times 10^{-6}}{\left(3,0 \times 10^{-3}\right)^2} = 2,0 \times 10^9 \text{ V/m;} \right.$$

$$E_3 = 9 \times 10^9 \frac{4,0 \times 10^{-6}}{\left(3,0 \times 10^{-3}\right)^2} = 4,0 \times 10^9 \text{ V/m.}$$

O módulo do vetor campo elétrico resultante é dado por:

$$E = \sqrt{(E_1 + E_2)^2 + E_3^2} = \sqrt{(1 \times 10^9 + 2 \times 10^9)^2 + (4 \times 10^9)^2} \implies$$

$$E = 5 \times 10^9 \text{ V/m}.$$

4. Como as distâncias do ponto A a cada uma das cargas q_1 e q_2 são iguais, e q_1 = $2q_2$, podemos concluir que $|E_1|$ = $2|E_2|$

Utilizando a Lei de Coulomb, temos

 $|E_2| = (kq_2)/d_2^2 = (9.0 \times 10^9 \times 1.0 \times 10^{-6})/(1 \times 10^{-2})^2$ = 9×10^7 N/C e $|E_1| = 18 \times 10^7$ N/C

Utilizando a regra do paralelogramo, obtemos:

$$|E_{A}| = 9 \sqrt{5} \times 10^{7} \text{ N/C}$$

Direção: $tg\alpha = |E_2|/|E_1| = 1/2$, onde α é o ângulo trigonométrico que E_{Δ} faz com o eixo 0x.

Sentido: de afastamento da origem, a partir do ponto A.

- 5. a. Cargas positivas são fontes de E enquanto cargas negativas são sorvedouros. Pela análise da figura, como as linhas de campo elétrico saem de B e chegam em A, conclui-se que A é negativa e B é positiva.
- b. Da figura, percebemos que da carga B saem o dobro de linhas de campo que chegam na carga A, portanto: $|Q_R| = 2 |Q_\Delta|$
- c. Não. Pois caso fosse possível, haveria diferentes vetores E em cada ponto de cruzamento das linhas de campo.
- 6. a. Dados: V = 300 V; $d = 5 \text{mm} = 5 \text{x} 10^{-3} \text{ m}$. A figura ilustra os dados.

Como se trata de campo elétrico uniforme, $E_A = E_B = E_C = E$.

$$Ed = V \implies E = \frac{V}{d} = \frac{300}{5 \times 10^{-3}} = 60 \times 10^{3} \implies E = 6 \times 10^{4} \text{ V/m}.$$

b. Da figura: $x_A = 1$ mm e $x_B = 4$ mm.

$$V_{AB} = E \; d_{AB} = E \big(x_B - x_A \big) = 6 \times 10^4 \, \big(4 - 1 \big) \times 10^{-3} \quad \Rightarrow \qquad V_{AB} = 180 \; \; V.$$

Como os pontos B e C estão na mesma superfície equipotencial:

$$V_{BC}=0\ V.$$

c. Dado: $q = -1.6 \times 10^{-19}$ C.

Analisando a figura dada: $V_{CA} = V_{BA} = -V_{AB} = -180V$.

$$\tau = q \ V_{CA} = -1.6 \times 10^{-19} \times (-180) \implies$$

$$\tau = 2.88 \times 10^{-17} \text{ J.}$$

7. a. A Energia potencial é dada por:

$$E_p = \frac{k \cdot Q \cdot q}{d}$$

Em que:

E_n = energia potencial elétrica;

k = constante eletrostática no vácuo;

Q = carga geradora do campo elétrico;

q = carga de prova;

d = distância entre as cargas

Então a diferença de energia potencial é:

$$\left| \Delta E_p \right| = \frac{k \cdot Q \cdot q}{2R} - \frac{k \cdot Q \cdot q}{R} \therefore \left| \Delta E_p \right| = \frac{k \cdot Q \cdot q}{2R}$$

- b. O trabalho total realizado pelas forças eletrostáticas é zero, pois as cargas se afastam pela aplicação de uma força variável externa que equilibra as forças eletrostáticas sendo a força resultante nula, pois o deslocamento se dá em velocidade constante.
- 8. O potencial elétrico criado por uma carga pontual é dado por: $V = k_0 \cdot Q/r$.

Do gráfico temos: V = 300 v e r = 0.15 m.

Ou seja:

$$V = \frac{k_0.Q}{r} \rightarrow 300 = \frac{9.10^9.Q}{0.15}$$

 $Q = 5.10^{-9} C.$

9. Após o contato, as esferas terão o mesmo potencial elétrico.

$$(01) \quad V_1 = V_2 \rightarrow \frac{kQ_1}{R_1} = \frac{kQ_2}{R_2} \rightarrow \frac{Q_1}{Q_2} = \frac{R_1}{R_2} = \frac{5}{10} = \frac{1}{2} \rightarrow Q_2 = 2Q_1$$

A carga total não muda, portanto:

$$Q_1 + Q_2 = 3$$
 (02)

Substituindo 01 em 02, vem:

$$Q_1 + 2Q_1 = 3 \rightarrow 3Q_1 = 3 \rightarrow \begin{cases} Q_1 = 1\mu C \\ Q_2 = 2\mu C \end{cases}$$

10. Dados: V = 600 V; E = 200 V/m; $k = 9 \times 10^9$ N.m²/C².

Como o Potencial elétrico é positivo, a carga é positiva. Então, abandonando os módulos, temos:

$$V = \frac{kQ}{r}$$

$$E = \frac{kQ}{r^2}$$
 $\Rightarrow \frac{V}{E} = \frac{kQ}{r} \times \frac{r^2}{kQ} \Rightarrow \frac{V}{E} = r \Rightarrow r = \frac{600}{200} \Rightarrow$

r = 3 m.

Substituindo na expressão do Potencial:

$$\begin{split} V &= \frac{kQ}{r} \quad \Rightarrow \quad Q = \frac{r \ V}{k} = \frac{3 \big(600 \big)}{9 \times 10^9} = 200 \times 10^{-9} \ \Rightarrow \\ Q &= 2 \times 10^{-7} \ C. \end{split}$$

11. A figura a seguir ilustra a situação.

$$V_2 = kQ/R_2$$
 (I)

$$V_1 = kQ/R_1$$
 (II)

$$V_3 = kQ/R_3$$
 (III)

Dividindo (II) por (I):

$$\frac{V_1}{V_2} = \frac{k_1 \ \aleph}{r_1} \times \frac{r_2}{k_1 \ \aleph} \quad \Rightarrow \quad \frac{V_1}{V_2} = \frac{r_2}{r_1} \quad \Rightarrow \quad \frac{3}{2} = \frac{1}{r_1}$$

$$r_1 = \frac{2}{3}m = 0,67 \text{ m}.$$

Dividindo (III) por (I):

$$\frac{V_3}{V_2} = \frac{k_1 \ \, \raisebox{-0.1em}{\backslash}}{r_3} \times \frac{r_2}{k_1 \ \, \raisebox{-0.1em}{\backslash}} \quad \Rightarrow \quad \frac{V_3}{V_2} = \frac{r_2}{r_3} \quad \Rightarrow \quad \frac{1}{2} = \frac{1}{r_3}$$

$$\Rightarrow$$
 r₂ = 2 m.

A distância d é:

$$d = r_3 - r_1 \implies d = 2 - 0.67 \implies d = 1.33 \text{ m}.$$

12. O ponto "aterrado" possui potencial nulo.

Na figura 2 temos então

$$V_{esf1} + V_{3,1} + V_{2,1} = 0$$

 $k \frac{Q_1}{a} + k \frac{Q}{b} + k \frac{Q}{b} = 0$

$$\frac{Q_1}{a} = \frac{-2Q}{b}$$

$$Q_1 = \frac{-2Qa}{h}$$

Na figura 3, temos:

$$V_{esf1} + V_{3,1} + V_{2,1} = 0$$

$$k\frac{Q_{2}}{a} + k\frac{Q_{1}}{b} + k\frac{Q}{b} = 0$$

$$\frac{Q_2}{a} + \frac{Q_1}{b} + \frac{Q}{b} = 0$$

$$\frac{Q_2}{a} = \frac{Q_1}{b} - \frac{Q_2}{b}$$

Substituindo-se a carga Q₁:

$$\frac{Q_2}{a} = +\frac{2Qa}{b^2} - \frac{Q}{b}$$

$$Q_2 = \frac{Qa}{b} \left(\frac{2a}{b} - 1 \right)$$

Na figura 4, temos

$$V_{esf1} + V_{3,1} + V_{2,3} = 0$$

$$k\frac{Q_3}{a} + k\frac{Q_1}{b} + k\frac{Q_2}{b} = 0$$

$$\frac{Q_3}{a} + \frac{Q_1}{b} + \frac{Q_2}{b} = 0$$

$$\frac{Q_3}{a} = -\frac{Q_1}{b} - \frac{Q_2}{b}$$

Usando-se as expressões de Q_1 e Q_2 :

$$\frac{Q_3}{a} = \frac{2Qa}{b^2} - \frac{Qa}{b^2} \left(\frac{2a}{b} - 1\right)$$

$$\frac{Q_3}{a} = \frac{Qa}{b^2} \left(2 - \frac{2a}{b} + 1 \right)$$

$$\frac{Q_3}{a} = \frac{Qa}{b^2} \left(3 - \frac{2a}{b} \right)$$

$$Q_3 = \frac{Qa^2}{b^2} \left(3 - \frac{2a}{b} \right)$$

13.

Denominando "d" a distância entre a carga –Q e o ponto B podemos escrever:

$$d+1=3 \rightarrow d=2,0cm$$

Lembre-se que o potencial gerado por uma carga puntiforme a uma distância $d \in V = Kq/d$

Calculando o potencial em B, concluímos:

$$V_{B} = \frac{kQ}{d_{_{1}}} + \frac{kQ}{d_{_{2}}} \rightarrow 60 = 9 \times 10^{9} \left(\frac{Q}{0,01} + \frac{-Q}{0,02}\right) = 9 \times 10^{9} \times 50Q$$

$$Q = \frac{60}{450 \times 10^9} = \frac{2}{15} \times 10^{-9} \, C$$

Calculando o potencial em A, concluímos:

$$V_{A} = \frac{kQ}{d_{_{1}}} + \frac{kQ}{d_{_{2}}} = kQ \left(\frac{1}{d_{_{1}}} - \frac{1}{d_{_{2}}}\right) = 9 \times 10^{9} \, x \frac{2}{15} \times 10^{-9} \left(\frac{1}{0,01} - \frac{1}{0,04}\right)$$

$$V_A = \frac{6}{5}(100 - 25) = 90V$$

14. a. Usando análise dimensional, nota-se que a velocidade pode ser dada pela expressão:

$$v = \frac{i}{\lambda} = \frac{5.0 \times 10^{-9}}{1.25 \times 10^{-7}} \left[\frac{C/s}{C/m} \right] = 0.04 \left[\frac{\cancel{C}}{s} \times \frac{m}{\cancel{C}} \right] \Rightarrow$$

b. Adotando a simplificação sugerida, a distância máxima para ocorrer faísca pode ser calculada pela expressão:

$$E_{rd} d_{m\acute{a}x} = V \Rightarrow d_{m\acute{a}x} = \frac{V}{E_{rd}} = \frac{7.5 \times 10^4}{3 \times 10^6} \Rightarrow d_{m\acute{a}x} = 1$$

15. a. Dado que d << R podemos aproximar o campo como sendo uniforme. Portanto:

$$V = E \cdot d$$

$$\therefore E = \frac{V}{d}$$

b. Ilustrando as forças na esfera, temos:

Onde,
$$F_{el} = qE = \frac{qV}{d}$$
. Logo:

Em y:
$$T\cos\theta = mg + \frac{qV}{d}$$

$$\therefore T = \frac{mgd + qV}{d\cos\theta}$$

$$Em \times: F = T sen\theta = \frac{mgd + qV}{dcos\theta} \cdot sen\theta$$
$$\therefore F = \frac{\left(mgd + qV\right)}{d} tg\theta$$

c. A força resultante atua como resultante centrípeta. Portanto:

$$F_{cp} = F$$

$$m\omega^2R=\frac{\left(mgd+qV\right)}{d}tg\theta$$

Onde, R = Lsen. Sendo assim:

$$F_{cp} = F$$

$$m\omega^2L\,sen\theta = \frac{\left(mgd+qV\right)}{d}\cdot\frac{sen\theta}{cos\theta}$$

$$\therefore \omega = \sqrt{\frac{mgd + qV}{mdL \cos \theta}}$$