DCC638 - Introdução à Lógica Computacional 2024.1

Demonstrações

Área de Teoria DCC/UFMG

Demonstrações 1 / 26

Introdução

- Em diversas situações é preciso deduzir **conclusões** a partir de **premissas**:
 - em matemática: estabelecer verdades absolutas (teoremas),
 - em ciência da computação: verificar que propriedades de um sistema são válidas, dada sua especificação,
 - em política/filosofia: demonstrar que certas ideias são bem fundamentadas.

• O processo de derivar conclusões de premissas é uma argumentação.

• Uma demonstração é uma argumentação, formal, de que a verdade de uma afirmação segue a partir da verdade de um conjunto de premissas.

Demonstrações 2 / 26

Demonstrações em lógica proposicional

- Uma demonstração é uma sequência de proposições.
- As proposições iniciais são chamadas de **premissas**.
- A proposição final é chamada de conclusão.
- Cada proposição além das premissas deve ser derivada por um argumento válido.
- Uma demonstração válida é aquela em que a verdade de suas premissas implica, através de argumentos válidos, na verdade de sua conclusão.
 - Em outras palavras: toda valoração que torna as premissas verdadeiras deve também tornar a conclusão verdadeira.

Demonstrações 3 / 26

- Exemplo 1 Considere o seguinte argumento envolvendo proposições:
 - 1. "Se você está matriculado em Introdução à Lógica Computacional, você tem acesso à página da disciplina."
 - "Você está matriculado em Introdução à Lógica Computacional."
 Logo,
 - 3. "Você tem acesso à página da disciplina."

Essa é uma argumentação válida?

Ou seja, é verdade que a $\underline{\text{conclusão}}$ (3) é verdadeira sempre que as $\underline{\text{premissas}}$ (1) e (2) forem ambas verdadeiras?

Demonstrações 4 / 2

• Exemplo 1 (Continuação)

Solução. Vamos analisar a estrutura do argumento.

Sejam as proposições:

- p: "Você está matriculado em Introdução à Lógica Computacional", e
- q: "Você tem acesso à página da disciplina".

O argumento anterior pode ser visualizado como

$$\frac{p \qquad p \to q}{q}$$

representando que

- lacktriangledown se as premissas p e p o q são verdadeiras
- 2 então a conclusão q é verdadeira

• Exemplo 1 (Continuação)

Considerando *p* e *q* como variáveis proposicionais, podemos usar uma tabela da verdade para verificar que sempre que as premissas são verdadeiras, a conclusão também é.

		Premissas		Conclusão
р	q	$\mathbf{p} ightarrow \mathbf{q}$	р	q
T	T	T	T	T
T	F	F	T	F
F	T	T	F	T
F	F	T	F	F

Assim, o argumento

$$\frac{p \qquad p \to q}{q}$$

é válido.

• Note que $(p \land p \rightarrow q) \rightarrow q$ é uma tautologia!

- Um argumento válido pode ser interpretado como uma regra de preservação da verdade:
 - De premissas verdadeiras um argumento válido garante uma conclusão verdadeira.
 - 2. Por outro lado de premissas falsas qualquer conclusão é possível.

Demonstrações 7 / 26

- Um **argumento inválido** é aquele em que a verdade das premissas não garante a verdade da conclusão.
- Exemplo 2 Mostre que o argumento a seguir é inválido.

$$\frac{p o q}{p}$$

Demonstrações 8 / 2

- Um **argumento inválido** é aquele em que a verdade das premissas não garante a verdade da conclusão.
- Exemplo 2 Mostre que o argumento a seguir é inválido.

$$p o q$$
 q

Solução.

A terceira linha da tabela da verdade mostra que as premissas $p \rightarrow q$ e q podem ser ambas verdadeiros, e mesmo assim a conclusão q ser falsa. Assim, o formato de argumento é inválido.

		Premissas		Conclusão
р	q	$\mathbf{p} ightarrow \mathbf{q}$	q	р
Τ	T	T	T	T
T	F	F	F	T
F	T	T	T	F
F	F	T	F	F

Demonstrações 8 / 2

- Um **argumento inválido** é aquele em que a verdade das premissas não garante a verdade da conclusão.
- Exemplo 2 Mostre que o argumento a seguir é inválido.

$$p o q$$
 q

Solução.

A terceira linha da tabela da verdade mostra que as premissas $p \rightarrow q$ e q podem ser ambas verdadeiros, e mesmo assim a conclusão q ser falsa. Assim, o formato de argumento é inválido.

		Premissas		Conclusão
р	q	$\mathbf{p} ightarrow \mathbf{q}$	q	р
T	T	T	T	T
T	F	F	F	T
F	T	T	T	F
F	F	T	F	F

• Note que $(p \to q \land q) \to p$ não é uma tautologia!

• Exemplo 2 (Continuação)

Como um exemplo de como este formato de argumento é inválido, note que das premissas

- "Se Bill Gates ganhar na loteria, ela fica rico" e
- "Bill Gates é rico"

não se pode concluir que necessariamente

• "Bill Gates ganhou na loteria".

Demonstrações 9 / 2

Validade vs. verdade

- A <u>validade</u> é uma propriedade do argumento.
- A <u>verdade</u> é uma propriedade das premissas e <u>conclusões</u> do argumento.
- Exemplo 3

Considere o argumento

"Se a França é um país rico, então sua língua oficial é o inglês."

"A França é um país rico."

:. "A lingua oficial da França é o inglês."

Este argumento é um argumento válido.

Note, entretanto, que sua primeira <u>premissa é falsa</u>¹, assim como sua conclusão é falsa.

Demonstrações ...

10 / 26

¹Na valoração que usaríamos para estas proposições que corresponde à nossa realidade.

Argumentos válidos em lógica proposicional: validade vs. verdade

• Exemplo 3 (Continuação)

Considere o argumento:

"Se Londres é uma metrópole, então ela tem prédios altos." "Londres tem prédios altos."

:. "Londres é uma metrópole."

Este argumento é um argumento inválido.

Note, entretanto, que sua conclusão é verdadeira².

(Porém a veracidade da conclusão é incidental: ela não segue necessariamente da verdade das premissas.)

Demonstrações 11 / 26

²Na valoração que usaríamos para estas proposições que corresponde à nossa realidade.

Argumentos válidos em lógica proposicional: validade vs. verdade

- Em resumo, a conclusão de um argumento é garantidamente verdadeira se:
 - o argumento for válido, e
 - 2 todas as suas premissas forem verdadeiras.

Caso contrário, a verdade da conclusão não é garantida.

Demonstrações 12 / 26

- Argumentos válidos correspondem a tautologias
 - Nós os chamamos de regras de inferência

- Demonstrações complexas podem ser difíceis de verificar
 - Por exemplo, a tabela de verdade de uma demonstração envolvendo 10 variáveis tem 2¹⁰ = 1 024 linhas.

 Construímos demonstrações através de passos mais simples, usando regras de inferência.

Demonstrações 13 / 26

Regras de inferência

Demonstrações 14 / 26

Modus ponens (do latim para "modo de afirmação"):

$$\frac{p \qquad p \to q}{q} \; \mathrm{MP}$$

A regra de modus ponens nos diz que:

- 1. se uma afirmação condicional p o q é verdadeira, e
- a hipótese p do condicional é verdadeira, então
- 3. a conclusão q do condicional é necessariamente verdadeira.

Demonstrações 15 / 26

- Exemplo 4 Suponha que saibamos que
 - "Se fizer sol hoje, eu vou ao clube", e que
 - "Está fazendo sol hoje", então, por modus ponens, podemos concluir que
 - 3. "Eu vou ao clube."

Demonstrações 16 / 26

• Algumas regras de inferência comuns na lógica proposicional:

Nome	Inferência	Nome	Inferência
Modus ponens	$rac{p \qquad p ightarrow q}{q}$ MP	Adição disjuntiva	$\frac{p}{p \vee q}$ AD
Modus tollens	$rac{ ho ightarrow q}{\lnot ho}$ MT	Simplificação conjuntiva	$\frac{p \wedge q}{p}$ SC
Silogismo hipotético	$\frac{p \to q \qquad q \to r}{p \to r}$ SH	Adição conjuntiva	$\frac{p}{p \wedge q}$ AC
Silogismo disjuntivo	$\frac{p \vee q \qquad \neg p}{q} \text{SD}$	Resolução	$\frac{p \vee q \qquad \neg p \vee r}{q \vee r} $ R

Demonstrações 17 /

• Exemplo 5 | Justifique a argumentação abaixo:

"Se Zeus é humano, então Zeus é mortal.

Zeus não é mortal.

Logo, Zeus não é humano."

Demonstrações 18 / 26

• Exemplo 5 Justifique a argumentação abaixo:

"Se Zeus é humano, então Zeus é mortal.

Zeus não é mortal.

Logo, Zeus não é humano."

Solução. Sejam

- p a proposição "Zeus é humano", e
- q a proposição "Zeus é mortal".

O argumento utilizou modus tollens

$$\frac{p o q}{\neg p}$$
 MT

para concluir $\neg p$, ou seja, que Zeus não é humano.

Demonstrações 18 / 26

• Exemplo 6 Justifique a argumentação abaixo:

"Se chover hoje, não faremos um pique-nique hoje.

Se não fizermos um pique-nique hoje, faremos um pique-nique amanhã.

Logo, se chover hoje, faremos um pique-nique amanhã."

Demonstrações 19 / 26

• Exemplo 6 Justifique a argumentação abaixo:

"Se chover hoje, não faremos um pique-nique hoje.

Se não fizermos um pique-nique hoje, faremos um pique-nique amanhã.

Logo, se chover hoje, faremos um pique-nique amanhã."

Solução. Sejam

- p a proposição "Chove hoje",
- q a proposição "Não faremos um pique-nique hoje", e
- r a proposição "Faremos um pique-nique amanhã".

O argumento utilizou silogismo hipotético

$$\frac{p \to q \qquad q \to r}{p \to r} \text{ SH}$$

para concluir $p \rightarrow r$, i.e., que se chover hoje faremos um pique-nique amanhã.

Demonstrações 19 / 26

- É possível que precisemos aplicar várias regras de inferência para demonstrar uma conclusão a partir de premissas.
- Exemplo 7 Mostre que as premissas
 - (a) "Esta tarde não está ensolarada, e está mais frio hoje que ontem."
 - "Nós vamos nadar somente se estiver ensolarado."
 - "Se nós não formos nadar, vamos andar de canoa."
 - "Se formos andar de canoa, estaremos em casa antes do pôr do sol."

levam à conclusão:

"Estaremos em casa ao pôr do sol."

Demonstrações 20 / 2

• Exemplo 7 (Continuação)

Solução. Para formalizar os fatos que você sabe, vamos usar as proposições:

- p : "Esta tarde está ensolarada."
- q : "Está mais frio hoje que ontem."
- r: "Nós vamos nadar."
- s: "Nós vamos andar de canoa."
- t : "Estaremos em casa ao pôr do sol."

Assim, as premissas são:

$$\bigcirc \neg p \land q$$

$$r \rightarrow p$$

E a conclusão é t.

Demonstrações 21 / 26

• Exemplo 7 (Continuação)

Podemos construir um argumento para mostrar que as premissas levam à conclusão da seguinte forma:

Passo	Justificativa
1. $\neg p \land q$	Premissa (a)
2. <i>¬p</i>	Simplificação usando (1)
3. $r \rightarrow p$	Premissa (b)
4. <i>¬r</i>	Modus tollens usando (2) e (3)
5. $\neg r \rightarrow s$	Premissa (c)
6. <i>s</i>	Modus ponens usando (4) e (5)
7. $s \rightarrow t$	Premissa (d)
8. <i>t</i>	Modus ponens usando (6) e (7)

Demonstrações 22 / 2

• Exemplo 8 Ao sair para a universidade de manhã eu percebo que não estou usando meus óculos.

Ao tentar descobrir onde estão meus óculos, me lembro dos seguintes fatos, que são todos verdadeiros:

- Se meus óculos estão na bancada da cozinha, então eu os vi durante o café da manhã.
- Eu estava lendo o jornal na sala ou estava lendo o jornal na cozinha.
- Se eu estava lendo o jornal na sala, então meus óculos estão na mesinha de centro.
- Eu não vi meus óculos durante o café da manhã.
- Se eu estava lendo um livro na cama, então meus óculos estão no criado-mudo.
- Se eu estava lendo o jornal na cozinha, então meus óculos estão na bancada da cozinha.

Usando regras de inferência válidas, quero deduzir onde estão meus óculos.

Demonstrações 23 / 26

• Exemplo 8 (Continuação)

Solução. Para formalizar os fatos que eu sei, vamos usar as proposições:

- p : "Os meus óculos estão na bancada da cozinha."
- q : "Eu vi meus óculos durante café da manhã."
- r: "Eu estava lendo o jornal na sala."
- s : "Eu estava lendo o jornal na cozinha."
- t : "Meus óculos estão na mesinha de centro."
- u : "Eu estava lendo um livro na cama."
- v : "Meus óculos estão no criado-mudo."

Assim, os fatos que eu sei são:

- - r o t

Q

 \bullet $r \vee s$

(

 \bigcirc $s \rightarrow p$

• Exemplo 8 (Continuação)

Se eu quero deduzir onde estão os óculos eu preciso que os fatos que eu sei me permitam concluir:

- ou p (óculos na bancada da cozinha)
- ou t (óculos na mesinha do centro)
- ou v (óculos no criado mudo)
- Note que o "ou" acima deve ser exclusivo para que o conjunto de fórmulas que estamos escrevendo faça sentido.
 - Os óculos não podem estar simultaneamente em mais de um lugar.
 - Logo eu *não* devo conseguir deduzir simultaneamente mais do que uma das opções acima a partir das premissas.

Demonstrações 25 / 26

• Exemplo 8 (Continuação)

Podemos deduzir que os óculos se encontram na mesinha do centro da seguinte forma.

Passo	Justificativa
1. $p o q$	Premissa (a)
2. <i>¬q</i>	Premissa(d)
3. <i>¬p</i>	Modus tollens usando (1) e (2)
4. $s \rightarrow p$	Premissa (f)
5. <i>¬s</i>	Modus tollens usando (3) e (4)
6. <i>r</i> ∨ <i>s</i>	Premissa (b)
7. r	Silogismo disjuntivo usando (5) e (6)
8. $r \rightarrow t$	Premissa (c)
9. t	Modus ponens usando (7) e (8)

Como exercício, justifique que a partir das premissas não conseguimos deduzir que os óculos então na cozinha (p) ou no criado mudo (v).