[Total No. of Printed Pages: 3

Roll No

MCA-102

M.C.A. I Semester

Examination, November 2018

Mathematical Foundation of Computer Science

Time: Three Hours

Maximum Marks: 70

- Attempt any five questions. Note: i)
 - All questions carry equal marks.
- If A, B, C are any three sets, then prove that:
 - $A-(B\cup C)=(A-B)\cap (A-C)$
 - ii) $A \times (B \cup C) = (A \times B) \cup (A \times C)$
 - b) For the two mappings $f: R \to R$ defined by $f(x) = x^2 \forall x \in R$, and $g: R \to R$ defined by $g(x) = \sin x \, \forall x \in R$. Then show that $(g \circ f) x \neq (f \circ g) x$.
- 2. a) Let $A = \{1, 2, 3\}$, $B = \{a, b, c\}$ and $C = \{x, y, z\}$ be three sets. Let R and S be the relations from A to B and B to C respectively defined by $R = \{(1,b), (2,a)(2,c)\}$ and $S = \{(a, y), (b, x)(c, y)(c, z)\}$. Then find matrices M_R , $M_{\rm S}$ and $M_{\rm SOR}$
 - Prove that $5^{2n} 1$ is divisible by 24, where n is any positive integer.

https://www.rgpvonline.com

https://www.rgpvonline.com

[2]

- 3. a) i) Prove that $p \land q \Rightarrow q \lor p$ is a Tautology.
 - ii) Write converse, inverse and contrapositive of the conditional statement $p \Rightarrow q$.
 - b) Let $L = \{1, 2, 3, 4, 6, 8, 9, 12, 18, 24\}$ be ordered by the relation '|' where $x \mid y$ means x divides y. Then show that D_{24} the set of all divisors of the integer 24 is a sub lattice of the lattice (L,|).
- Draw the simplified switching circuit of the function:

$$F(x, y, z) = x \cdot y' \cdot z + (z + y) \cdot x'$$

- b) If (A, \leq) and (B, \leq) are two posets, then show that $(A \times B, \leq)$ is a poset where the ordering \leq on $A \times B$ defined by $(a,b) \le (a',b') \Leftrightarrow a \le a'$ in A and $b \le b'$ in B.
- Prove that intersection of two subgroups of a group G is a subgroup of G but union of two subgroups is not necessarily a subgroup of G.
 - Show that the set of numbers of the form $a+b\sqrt{2}$ with a and b as rational numbers, is a field.
- Explain the following:
 - Connected graph
 - Complete graph
 - iii) Spanning tree
 - iv) Binary tree

MCA-102 Contd...

https://www.rgpvonline.com

- b) Prove that the maximum number of edges in a simple graph with n vertices is $\frac{n(n-1)}{2}$.
- 7. a) Write the adjacency matrix of the graph:

b) Find shortest path from a to z for the following weighted graph:

- 8. a) Define numeric function. Find the generating function corresponding to numeric function $a_r = 2^r + 3^r$.
 - b) Solve the recurrence relation:

$$a_r - 6a_{r-1} + 8a_{r-2} = 0$$
 given $a_0 = 3$ and $a_1 = 2$.

https://www.rgpvonline.com