AP Calculus BC

Unit 6 – Integration Techniques

Evaluate each indefinite integral

1) $\int (2x^3 - 3x^{-4} + \sec^2 x) dx$	$2) \int (\cos 8x) dx$	3) $\int \left(9x^{-\frac{1}{2}} + 9x^{\frac{1}{2}}\right) dx$
4) $\int \left(4x^{\frac{1}{3}} + 2x^{-\frac{2}{3}} + 6\right) dx$	$\int (\sec^2 x - 9) dx$	$6) \int \left(e^{8x} + 5x^{\frac{1}{2}}\right) dx$
$7) \int \frac{4x^4 - 15x^3}{x} dx$	8) $\int \frac{5+u}{u} du$	$9) \int \frac{36t^9 - 7}{t} dt$

- 10) Find the general solution to the exact differential equation: $\frac{dy}{dx} = -2\sin x e^{-x} + 7x^6$.
- 11) Find the particular solution to the exact differential equation: $\frac{ds}{dt} = -5 + 6\cos t$; s(0) = 2.
- 12) Solve the initial value problem: $\frac{dy}{dx} = -4e^x + \sin x$; y = -10 when x = 0.
- 13) Solve the initial value problem: $\frac{du}{dx} = 6x^5 4x^3 + 4$; u = -2 when x = 1.
- 14) Solve the initial value problem: $\frac{dx}{dt} = \frac{7}{t} \frac{3}{t^4} 2$; x = 10 when t = 1.
- 15) Find the function F that satisfies the following differential equations and initial conditions:

$$F''(x) = \cos x$$
; $F'(\pi) = 5$; $F(\pi) = 6$

AP Calculus BC – Worksheet 40

"Most Complicated" Rule

Find the indefinite integral

$1) \int (3x-4)^5 dx$	$2) \int 6x^2 \left(x^3 + 4\right)^5 dx$	$3) \int \frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}} dx$
$4) \int \sin x e^{\cos x} dx$	5) $\int \cot(3x)dx$	$6) \int \frac{x^2}{\left(1+x^3\right)^2} dx$
$7) \int \frac{\cos\sqrt{x}}{\sqrt{x}} dx$	$8) \int \frac{\sin x}{1 + \cos^2 x} dx$	9) $\int \frac{\sec^2 x}{\sqrt{\tan x}} dx$
$10) \int \frac{xdx}{\sqrt{1-x^2}}$	$11) \int \frac{(\ln x)^5}{x} dx$	$12) \int \frac{e^x}{4 - e^x} dx$
$13) \int \frac{1}{25x^2 + 1} dx$	14) $\int \sec(2x)\tan(2x)dx$	$15) \int \cot x \csc^2 x dx$

Answers

1) $\frac{1}{18}(3x-4)^6 + C$	$2) \frac{1}{3}(x^3 + 4)^6 + C$	3) $\frac{2}{3}(\sqrt{x}-1)^3+C$
$4) -e^{\cos x} + C$	$5) \frac{1}{3}\ln\left \sin\left(3x\right)\right + C$	6) $\frac{1}{9}(1+x^3)^3+C$
7) $2\sin\sqrt{x} + C$	8) $-\arctan(\cos x) + C$	9) $2\sqrt{\tan x} + C$
10) $-\sqrt{1-x^2} + C$	$11) \frac{1}{6} \left(\ln x \right)^6 + C$	$12) -\ln \left 4 - e^x \right + C$
13) $\frac{1}{5}\arctan(5x)+C$	$14) \ \frac{1}{2}\sec(2x) + C$	

Evaluate the indefinite integral by using the given substitution.

- $\int \cos(6x) dx$; u = 6x

- 2) $\int 63(9x-7)^{-8} dx$; u = 9x-7 | 3) $\int 28r^{6}(7-r^{7})dr$; $u = 7-r^{7}$

Use substitution to find the indefinite integral.

- 4) $\int 12(y^4 + 4y^2 + 8)^2(y^3 + 2y)dy$
- $\int \frac{5}{\left(5x-3\right)^2} dx$

6) $\int \sin(8z-9)dz$

 $7) \quad \int \frac{\ln^{14} x}{x} dx$

8) $\int \tan x dx$

- 9) $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$
- 10) The function f is continuous and $\int_{4}^{19} f(u) du = 10$. What is the value of $\int_{1}^{4} \left[x \cdot f(x^2 + 3) \right] dx$?

AP Calculus BC - Worksheet 42

The Definite Integral

1) The functions f and g are integrable and $\int_{2}^{4} f(x) dx = 6$, $\int_{2}^{7} f(x) dx = 8$, and $\int_{2}^{7} g(x) dx = 8$. Find the values of the following definite integrals:

a) \int_{a}	$\int_{1}^{4} f(x) dx$
---------------	------------------------

b) $\int_{7}^{2} g(x) dx$

c) $\int_{2}^{7} 9g(x)dx$

d) $\int_{1}^{7} f(x) dx$

- e) $\int_{2}^{7} \left[g(x) f(x) \right] dx$
- f) $\int_{2}^{7} \left[5g(x) f(x) \right] dx$

2) Evaluate $\int_{2}^{6} \frac{4}{x} dx$.

3) Evaluate $\int_0^5 \sqrt{y+4} dy$

4) Evaluate $\int_{0}^{1} (t^5 + 4t)^{1/2} (5t^4 + 4) dt$

5) Evaluate $\int_{3}^{7} \frac{18xdx}{9x^2 + 5}$

6) $\int_0^{\pi/4} \sin x dx =$

7) Evaluate $\int_0^{\pi/4} \frac{4\sin(4t)}{8 - \cos(4t)} dt$

- Use *u*-substitution to evaluate:
 - $\int_{0}^{\pi/8} 5^{\cos 4t} \sin 4t dt$

- 9) Use *u*-substitution to evaluate:
 - $\int_0^4 12x^2 e^{x^3} dx$

10) Evaluate $\int_0^{4/7} \frac{dx}{40x^2 + 16}$

1	$\int x \sin(6x) dx =$
2	$\int 9te^{2t} =$
3	$\int x^2 e^{10x} dx =$
4	$\int x^2 \cos(4x) dx =$
5	$\int 20x^2 \ln x dx =$
6	Solve the initial value problem: $\frac{dy}{dx} = 9x \csc^2(3x)$; $y = 1$ when $x = \frac{\pi}{2}$.
7	$\int 6x^3 e^{-5x} dx =$
8	$\int_0^{\pi/2} (x-2)\sin x dx =$
9	$\int_1^{e^2} x^5 \ln(x) dx =$

	If $\int x^2 \cos x dx = h(x) - \int 2x \sin x dx$, find $h(x)$.
--	--

- 2 Evaluate $\int x \sin(5x) dx$.
- 3 Evaluate $\int x \csc^2 x dx$
- Find the function y if $\frac{dy}{dx} = x \sec^2 x$ and y = 1 when x = 0.
- 5 Evaluate $\int_0^{\pi} t \sin 3t dt$
- 6 Evaluate $\int_0^1 (x^2 + 1)e^{-x} dx$
- 7 Evaluate $\int_{1}^{e} \frac{\ln x}{x^2} dx$
- The table gives the values of f, f', g, and g' for selected values of x. If $\int_0^3 f'(x)g(x)dx = 6$, then

$$\int_0^3 f(x)g'(x)dx = ?$$

X	0	3
f(x)	1	5
f'(x)	5	-3
g(x)	-4	3
g'(x)	3	2

Let f be a twice-differentiable function with selected values of f and its derivatives shown in the table. What is the value of $\int_0^3 x f''(x) dx$?

х	f(x)	f'(x)	f"(x)
0	2	-2	5
3	5	7	-2

1	Find the values of <i>A</i> and <i>B</i> that complete the partial fraction decomposition: $\frac{15x+93}{x^2+13+40} = \frac{A}{x+5} + \frac{B}{x+8}$
2	Find the values of <i>A</i> and <i>B</i> that complete the partial fraction decomposition: $\frac{4}{x^2 - 8x - 20} = \frac{A}{x - 10} + \frac{B}{x + 2}$
3	Find the values of <i>A</i> and <i>B</i> that complete the partial fraction decomposition: $\frac{15x+75}{x^2+11x+24} = \frac{A}{x+8} + \frac{B}{x+3}$
4	Find the values of <i>A</i> and <i>B</i> that complete the partial fraction decomposition: $\frac{9x-17}{x^2-4x+3} = \frac{A}{x-3} + \frac{B}{x-1}$
5	
	Evaluate $\int \frac{1}{64 - 121x^2} dx$
6	$\int \frac{9}{x^2 + 3x} dx =$
7	$\int \frac{11}{2x^2 - 9x - 5} dx =$
8	$\int_{1/2}^{1} \frac{2y+3}{y^2+y} dy =$
9	$\int_{4}^{5} \frac{4}{x^2 + 2x - 3} dx =$

Evaluate the integral or state that it diverges.

$1) \int_2^\infty \frac{5}{x^2} dx$	$2) \int_{-\infty}^{-27} x^{-\frac{1}{3}} dx$
3) $\int_{-\infty}^{-1} -2x^{-2} dx$	4) $\int_{2}^{\infty} \frac{4}{x^2 + 5x + 6} dx$
$5) \int_{15}^{\infty} x \ln(15x) dx$	6) $\int_0^7 (2x+3)(x^2+3x)^{-1/2} dx$
7) $\int_0^{16} \frac{1}{\sqrt{16-x}} dx$	8) $\int_{-\infty}^{1} \theta e^{\theta} d\theta$

Answers

1) $\frac{5}{2}$	2) Diverges	3) -2	4) $-4 \ln \frac{7}{8}$
5) Diverges	6) √ 70	7) 8	8) 0

AP Calculus BC – Worksheet 47

Integration using division / Review

Evaluate the integral or state that it diverges.

$1) \int \frac{x+4}{x+6} dx$	$2) \int \frac{t^3 - 4}{t + 2} dt$
3) $\int_{-1}^{1} x^{-\frac{1}{3}} dx$	$4) \int_{14}^{\infty} \frac{4}{v^2 - v} dv$
$5) \int_{-\infty}^{\infty} 16x^7 e^{-x^8} dx$	$6) \int_5^{11} \frac{18x}{9x^2 + 6} dx$
$7) \int x \sin\left(\frac{1}{5}x\right) dx$	$8) \int_1^{e^4} x^3 \ln x dx$
$9) \int 9x^3 e^{3x} dx$	$10) \int \frac{10r^4}{\sqrt{1-r^5}} dr$
11) $\int_0^{\pi/6} \cos^{-8} 2x \sin 2x dx$	

Answers

$1) x - 2\ln x + 6 + C$	2) $\frac{1}{3}t^3 - t^2 + 4t - 12\ln t + 2 + C$	3) 0	4) $-4 \ln \frac{13}{14}$
5) 0	6) $\ln \frac{1095}{231} = \ln \frac{365}{77}$	7) $-5x\cos\left(\frac{1}{5}x\right) + 25\sin\left(\frac{1}{5}x\right) + C$	8) $\frac{15}{16}e^6 + \frac{1}{16}$
9) $3x^3e^{3x} - 3x^{2e^{3x}} + 2xe^{3x} - \frac{54}{81}e^{3x} + C$		10) $-4(1-r^5)^{\frac{1}{2}}+C$	11) $\frac{2^7-1}{14}$

1	The velocity of an object is given by $v(t) = 7t^6 - 4t^2 + 12$ with $s(1) = 24$. Find $s(t)$.
2	Evaluate $\int \frac{4x^4 + 3}{4x^5 + 15x + 2} dx$
3	Use substitution to evaluate $\int_0^1 (x^3 + x)(x^4 + 2x^2 + 9)^{1/2} dx$
4	$\int x^2 \sin x dx =$
5	$\int_{1}^{2} \left(9x^{2} - 4x + 1\right) \ln x dx =$
6	$\int \frac{4}{x^2 + 3x + 2} dx =$
7	$\int_0^1 \frac{1}{1-x} dx =$
8	$\int_{1}^{\infty} \frac{x}{\left(1+x^{2}\right)^{2}} dx =$
9	$\int_{-1}^{1} \frac{3x^2 + 2x + 1}{x + 4} dx =$
10	If $\int_{-2}^{8} (3g(x)+2)dx = 35$ and $\int_{5}^{-2} g(x)dx = -12$, then $\int_{5}^{8} g(x)dx =$
11	For values of h very close to zero, find a function that best approximates $f(x) = \frac{\cos(x+h) - \cos x}{h}$.
12	$\lim_{x \to \infty} \frac{\ln(3x+5)}{\ln(2x^2-1)} =$