

Trentino Tourist Facilities

Outdoor activities within Trentino region

Knowledge Graph Engineering 2024

Lorenzo Dongili Giulia Grotto Stefano Sacchet

Purpose Formalization

- Stores, organizes, and provides easy access to information about tourist facilities in the Trentino region, with a specific focus on **outdoor activities**.
- Mountain Adventure
- ☐ Sustainable Tourism and Ecotourism
- ☐ Contextual: **Climbing** Route, **Ski** Slope, **Hiking** Trail, **Cycle** Route
- Core: View Point, Restaurant, Ski Rent, Hotel

Issues

Language Definition

ConceptID	Word-en	Gloss-en				
UKC-50	location	A point or extent in space				
UKC-31769	view	The visual percept of a region				
UKC-15330	building	A structure that has a roof and walls and stands more or less permanently in one place				
UKC-18979	hotel	A building where travelers can pay for lodging and meals and other services				
UKC-22077	restaurant	A building where people go to eat				
ski_rental_OSM	ski_rental, ski rental	A shop that rents skis and related accessories.				
KGE24-2-22	sport location	A location or path where outdoor sport can be done				
KGE24-2-1	hiking trail	A path or track roughly blazed through wild or hilly country where to go hiking				
UKC-22959	ski trail	Trail or slope prepared for skiing				
cycleway OSM	cycleway	A separate way for the use of cyclists.				
KGE24-2-2	rock climbing route	A path by which a climber reaches the top of a mountain, a rock face or an ice-covered obstacle.				

Knowledge Definition

Data properties:

- Exploit OSM schema
- Maximize the reusability
- No object properties: only IS-A relationships

Issues:

- absence of the property way (list of coordinates) in the OSM ontology
- absence of some important (for our purpose) entities in the OSM ontology
- some CQs cannot be completely satisfied

Entities:

Entity Definition

- Entity identification with **both** OSMid and custom identifiers
- Entity mapping only for **leaf** nodes

Exploitation


```
1 PREFIX xsd: <a href="http://www.w3.org/2001/XMLSchema#">http://www.w3.org/2001/XMLSchema#>
 2 SELECT ?sector (MAX(xsd:decimal(?difficulty)) - MIN(xsd:decimal(?difficulty)) AS ?difficultyRange)
 3 - WHERE {
        # Retrieve all climbing routes with their sector and difficulty degree
        ?route <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
    <http://knowdive.disi.unitn.it/etype#/Rock_climbing_route>;
        <http://knowdive.disi.unitn.it/etype#/sector> ?sector ;
        <http://knowdive.disi.unitn.it/etype#/degree> ?difficulty .
 8 }
 9 GROUP BY ?sector
10 ORDER BY DESC(?difficultyRange)
11 LIMIT 5
 1 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
 2 SELECT DISTINCT ?crag ?sector ?viewName
 3 · WHERE {
        # Retrieve all Rock climbing route entities with crag, sector, and coordinates
        ?route <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
    <http://knowdive.disi.unitn.it/etype#/Rock_climbing_route> ;
               <http://knowdive.disi.unitn.it/etype#/crag> ?crag ;
               <http://knowdive.disi.unitn.it/etype#/sector> ?sector ;
               <http://knowdive.disi.unitn.it/etype#/coordinates> ?routeCoordString .
10
        # Parse the coordinates of the climbing route
11
        BIND(REPLACE(?routeCoordString, "^[\\[]+|[\\]]+$", "") AS ?routeTrimmedString)
12
        BIND(xsd:decimal(REPLACE(?routeTrimmedString, ",.*$", "")) AS ?routeLat)
13
        BIND(xsd:decimal(REPLACE(REPLACE(?routeTrimmedString, "^.*,", ""), "].*$", "")) AS ?routeLong)
14
15
        # Retrieve all View entities with name, elevation, and coordinates
16
        ?view <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://knowdive.disi.unitn.it/etype#/View> ;
17
              <http://knowdive.disi.unitn.it/etype#/name> ?viewName ;
18
              <http://knowdive.disi.unitn.it/etype#/coordinates> ?viewCoordString .
19
20
        # Parse the coordinates of the view
21
        BIND(REPLACE(?viewCoordString, "^[\\[]+|[\\]]+$", "") AS ?viewTrimmedString)
22
        BIND(xsd:decimal(REPLACE(?viewTrimmedString, ",.*$", "")) AS ?viewLong)
23
        BIND(xsd:decimal(REPLACE(REPLACE(?viewTrimmedString, "^.*,", ""), "].*$", "")) AS ?viewLat)
24
25
        # Compare the coordinates with a tolerance of ±0.008
        FILTER(ABS(?routeLat - ?viewLat) <= 0.008)
27
       FILTER(ABS(?routeLong - ?viewLong) <= 0.008)
28 }
29 ORDER BY ?craq ?sector ?climbingRouteName ?viewName
```

Evaluation

	Location	Building	Hotel	Restaurant	Ski Rental	Sport Location	Cycleway	Hiking Trail	Rock Climbing Route	Ski Trail	View
Location	16606	0	0	0	0	0	0	0	0	0	0
Building	0	15525	0	0	0	0	0	0	0	0	0
Hotel	0	0	16868	0	0	0	0	0	0	0	0
Restaurant	0	0	0	7424	0	0	0	0	0	0	0
Ski Rental	0	0	0	0	48	0	0	0	0	0	0
Sport Location	0	0	0	0	0	12969	0	0	0	0	0
Cycleway	0	0	0	0	0	0	5808	0	0	0	0
Hiking Trail	0	0	0	0	0	0	0	6065	0	0	0
Rock Climbing Route	0	0	0	0	0	0	0	0	10243	0	0
Ski Trail	0	0	0	0	0	0	0	0	0	6595	0
View	0	0	0	0	0	0	0	0	0	0	1274

Given a set of CQ, the etype coverage of Teleontology:

$$Cov_e(CQ_E) = \frac{|CQ_E \cap T_E|}{CQ_E} = \frac{8}{14} \approx 0.571$$

Given a set of CQ, the property coverage of the Teleontology:

$$COV_p(CQ_P) = \frac{|CQ_P \cap T_P|}{CQ_P} = \frac{24}{32} \approx 0.75$$

Entity connectivity for the whole KG:

$$EC(KG) = \sum_{X=1}^{N} EC(X) = 0$$

Property connectivity for the whole KG:

$$PC(KG) = \sum_{X=1}^{N} PC(X) = 15803$$

Conclusions

- \Box We had to narrow down the domain of interest (no Lake Tourism)
- Limited data availability
 - Missing data-values for some instances
 - Old datasets that are not updated
- CQs could have been more specific and gone into more detail
 - More specific attributes were not taken into account
- The initial purpose was respected
- We reused everything we could and made it as reusable as possible