QUANTUM CRYPTOGRAPHY

Master of Logic, University of Amsterdam, 2017
TEACHERS: Jan Czajkowski, Yfke Dulek, and Christian Schaffner

Homework problem set 2

Please hand in your solutions to these exercises in digital form (typed, or scanned from a neatly hand-written version) through Moodle no later than **Friday June 23**, **20:00h**.

Problem 1: Min-Entropy Chain rule for cq-states

Let $\rho_{XE}=\sum_x P_X(x)|x\rangle\langle x|\otimes \rho_E^x$ be a cq-state. Prove the following chain rule:

$$H_{\min}(X|E) \ge H_{\min}(X) - \log |E|$$
.

Hint: Use the fact that $0 \le \rho_E^x \le 1$.

Problem 2: injective functions are collapsing

Show that an injective function is collapsing, i.e. give a proof of Lemma 2 of our recent paper. You can ignore the oracles \mathcal{O} in the statement of Lemma 2 and in Definition 1.

Problem 3: A weak seeded extractor

For any $y \in \{0,1\}^n$, define $f_y : \{0,1\}^n \to \{0,1\}^n$ by $f_y(x) = x \oplus y$. Here, \oplus represents the bitwise parity (e.g., $11 \oplus 01 = 10$).

- (a) Show that the family $\mathscr{F} = \{f_y\}$ is 1-universal.
- **(b)** Show that the family $\mathscr{F} = \{f_u\}$ is not 2-universal.
- (c) How could you use \mathscr{F} to build a (k,0)-weak seeded randomness extractor Ext : $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$, for any $0 \le k \le n$? Is this extractor useful?
- (d) Alice and Bob have a k-source X for some k < n. They are impressed by the parameters in the previous subexercise, and decide to use \mathscr{F} to build a strong seeded randomness extractor as well. They know they

should not expect to securely extract more than k bits of key, so they define $\operatorname{Ext}(x,y):=(x_1\oplus y_1,...,x_k\oplus y_k)$, that is, the first k bits of $f_y(x)$. (From the exercise session, they know how to show that this set of functions is still 1-universal). Do you think this is a good idea? Give a lower bound to Eve's probability of guessing the key.