

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : G10L 3/02, 9/00	A1	(11) International Publication Number: WO 96/02050 (43) International Publication Date: 25 January 1996 (25.01.96)
(21) International Application Number: PCT/US95/08616		(81) Designated States: AM, AU, BB, BG, BR, BY, CA, CN, CZ, EE, FI, GE, HU, IS, JP, KG, KP, KR, KZ, LK, LR, LT, LV, MD, MG, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TJ, TM, TT, UA, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ, UG).
(22) International Filing Date: 10 July 1995 (10.07.95)		
(30) Priority Data: 273,069 11 July 1994 (11.07.94) US		
(71) Applicant: VOXWARE, INC. [US/US]; 172 Tamarack Circle, Skillman, NJ 08558 (US).		Published <i>With international search report.</i>
(72) Inventor: AGUILAR, Joseph, G.; 5148 West Wolfe Drive, Oak Lawn, IL 60453 (US).		
(74) Agents: MORRIS, Francis, E. et al.; Pennie & Edmonds, 1155 Avenue of the Americas, New York, NY 10036 (US).		

(54) Title: HARMONIC ADAPTIVE SPEECH CODING METHOD AND SYSTEM

(57) Abstract

A method and system is provided for encoding and decoding of speech signals at a low bit rate. The continuous input speech (15) is divided into voiced and unvoiced time segments of a predetermined length. The encoder of the system (100) uses a linear predictive coding model for the unvoiced speech segments and harmonic frequencies decomposition for the voiced speech segment. Only the harmonic frequencies are determined using the discrete fourier transform of the voiced speech segments. The decoder (400) synthesizes voice speech segments using the magnitudes of the transmitted harmonics and estimates the phase of each harmonic from the signal in the preceeding speech segments. Unvoiced speech segments are synthesized using linear prediction coding coefficients obtained from codebook entries for the poles of the LPC coefficient polynomial. Boundary conditions between voiced and unvoiced segments are established to insure amplitude and phase continuity for improved output speech quality.

AM

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgyzstan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LJ	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Denmark	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam
GA	Gabon				

- 1 -

HARMONIC ADAPTIVE SPEECH CODING METHOD AND SYSTEM

BACKGROUND OF THE INVENTION

5 The present invention relates to speech processing and more specifically to a method and system for low bit rate digital encoding and decoding of speech using harmonic analysis and synthesis of the voiced portions and predictive coding of the unvoiced.
10 portions of the speech.

Reducing the bit rate needed for storage and transmission of a speech signal while preserving its perceptual quality is among the primary objectives of
15 modern digital speech processing systems. In order to meet these contradicting requirements various models of the speech formation process have been proposed in the past. Most frequently, speech is modeled on a short-time basis as the response of a linear system
20 excited by a periodic impulse train for voiced sounds or random noise for the unvoiced sounds. For mathematical convenience, it is assumed that the speech signal is stationary within a given short time segment, so that the continuous speech is represented
25 as an ordered set of distinct voiced and unvoiced speech segments.

Voiced speech segments, which correspond to vowels in a speech signal, typically contribute most
30 to the intelligibility of the speech which is why it is important to accurately represent these segments. However, for a low-pitched voice, a set of more than 80 harmonic frequencies ("harmonics") may be measured within a voiced speech segment within a 4 kHz bandwidth.
35 Clearly, encoding information about all harmonics of such segment is only possible if a large

number of bits is used. Therefore, in applications where it is important to keep the bit rate low, simplified speech models need to be employed.

5

One conventional solution for encoding speech at low bit rates is based on a sinusoidal speech representation model. U.S. Patent No. 5,054,072 to McAuley for example describes a method for speech 10 coding which uses a pitch extraction algorithm to model the speech signal by means of a harmonic set of sinusoids that serve as a "perceptual" best fit to the measured sinusoids in a speech segment. The system generally attempts to encode the amplitude envelope of 15 the speech signal by interpolating this envelope with a reduced set of harmonics. In a particular embodiment, one set of frequencies linearly spaced in the baseband (the low frequency band) and a second set of frequencies logarithmically spaced in the high 20 frequency band are used to represent the actual speech signal by exploiting the correlation between adjacent sinusoids. A pitch adaptive amplitude coder is then used to encode the amplitudes of the estimated harmonics. The proposed method, however, does not 25 provide accurate estimates, which results in distortions of the synthesized speech.

The McAuley patent also provides a model for predicting the phases of the high frequency harmonics 30 from the set of coded phases of the baseband harmonics. The proposed phase model, however, requires a considerable computational effort and furthermore requires the transmission of additional bits to encode the baseband harmonics phases so that very low bit 35 rates may not be achieved using the system.

U.S. Patent No. 4,771,465 describes a speech analyzer and synthesizer system using a sinusoidal encoding and decoding technique for voiced speech segments and noise excitation or multipulse excitation for unvoiced speech segments. In the process of encoding the voiced segments a fundamental subset of harmonic frequencies is determined by a speech analyzer and is used to derive the parameters of the remaining harmonic frequencies. The harmonic amplitudes are determined from linear predictive coding (LPC) coefficients. The method of synthesizing the harmonic spectral amplitudes from a set of LPC coefficients, however, requires extensive computations using high precision floating point arithmetic and yields relatively poor quality speech.

U.S. Patent Nos. 5,226,108 and 5,216,747 to Hardwick et al. describe an improved pitch estimation method providing sub-integer resolution. The quality of the output speech according to the proposed method is improved by increasing the accuracy of the decision as to whether given speech segment is voiced or unvoiced. This decision is made by comparing the energy of the current speech segment to the energy of the preceding segments. Furthermore, harmonic frequencies in voiced speech segments are generated using a hybrid approach in which some harmonics are generated in the time domain while the remaining harmonics are generated in the frequency domain. According to the proposed method, a relatively small number of low-frequency harmonics are generated in the time domain and the remaining harmonics are generated in the frequency domain. Voiced harmonics generated in the frequency domain are then frequency scaled, transformed into the time domain using a discrete

- 4 -

Fourier transform (DFT), linearly interpolated and finally time scaled. The proposed method generally does not allow accurate estimation of the amplitude 5 and phase information for all harmonics and is computationally expensive.

U.S. Patent No. 5,226,084 also to Hardwick et al. describes methods for quantizing speech while 10 preserving its perceptual quality. To this end, harmonic spectral amplitudes in adjacent speech segments are compared and only the amplitude changes are transmitted to encode the current frame. A segment of the speech signal is transformed to the 15 frequency domain to generate a set of spectral amplitudes. Prediction spectral amplitudes are then computed using interpolation based on the actual spectral amplitudes of at least one previous speech segment. The differences between the actual spectral 20 amplitudes for the current segment and the prediction spectral amplitudes derived from the previous speech segments define prediction residuals which are encoded. The method reduces the required bit rate by 25 exploiting the amplitude correlation between the harmonic amplitudes in adjacent speech segments, but is computationally expensive.

While the prior art discloses some advances toward achieving a good quality speech at a low bit 30 rate, it is perceived that there exists a need for improved methods for encoding and decoding of speech at such low bit rates. More specifically, there is a need to obtain accurate estimates of the amplitudes of the spectral harmonics in voiced speech segments in a 35 computationally efficient way and to develop a method and system to synthesize such voiced speech segments

- 5 -

without the requirement to store or transmit separate phase information.

5

10

15

20

25

30

35

SUMMARY OF THE INVENTION

Accordingly, it is an object of the present invention to provide a low bit-rate method and system for encoding and decoding of speech signals using adaptive harmonic analysis and synthesis of the voiced portions and predictive coding of the unvoiced portions of the speech signal.

It is another object of the present invention to provide a super resolution harmonic amplitude estimator for approximating the speech signal in a voiced time segment as a set of harmonic frequencies.

It is another object of the present invention to provide a novel phase compensated harmonic synthesizer to synthesize speech in voiced segments from a set of harmonic amplitudes and combine the generated speech segment with adjacent voiced or unvoiced speech segments with minimized amplitude and phase distortions to obtain good quality speech at a low bit rate.

These and other objectives are achieved in accordance with the present invention by means of a novel encoder/decoder speech processing system in which the input speech signal is represented as a sequence of time segments (also referred to as frames), where the length of the time segments is selected so that the speech signal within each segment is relatively stationary. Thus, dependent on whether the signal in a time segment represents voiced (vowels) or unvoiced (consonants) portions of the speech, each segment can be classified as either being voiced or unvoiced.

In the system of the present invention the continuous input speech signal is digitized and then divided into segments of predetermined length. For 5 each input segment a determination is next made as to whether it is voiced or unvoiced. Dependent on this determination, each time segment is represented in the encoder by a signal vector which contains different information. If the input segment is determined to be 10 unvoiced, the actual speech signal is represented by the elements of a linear predictive coding vector. If the input segment is voiced, the signal is represented by the elements of a harmonic amplitudes vector. Additional control information including the energy of 15 the segment and the fundamental frequency in voiced segments is attached to each predictive coding and harmonic amplitudes vector to form data packets. The ordered sequence of data packets completely represents the input speech signal. Thus, the encoder of the 20 present invention outputs a sequence of data packets which is a low bit-rate digital representation of the input speech.

More specifically, after the analog input speech 25 signal is digitized and divided into time segments, the system of the present invention determines whether the segment is voiced or unvoiced using a pitch detector to this end. This determination is made on the basis of the presence of a fundamental frequency 30 in the speech segment which is detected by the pitch detector. If such fundamental frequency is detected, the pitch detector estimates its frequency and outputs a flag indicating that the speech segment is voiced.

35 If the segment is determined to be unvoiced, the system of the present invention computes the roots of

- 8 -

a characteristic polynomial with coefficients which are the LPC coefficients for the speech segment. The computed roots are then quantized and replaced by a
5 quantized vector codebook entry which is representative of the unvoiced time segment. In a specific embodiment of the present invention the roots of the characteristic polynomial may be quantized using a neural network linear vector quantizer (LVQ1).

10

If the speech segment is determined to be voiced, it is passed to a novel super resolution harmonic amplitude estimator which estimates the amplitudes of the harmonic frequencies of the speech segment and
15 outputs a vector of normalized harmonic amplitudes representative of the speech segment.

A parameter encoder next generates for each time segment of the speech signal a data packet, the
20 elements of which contain information necessary to restore the original signal segment. For example, a data packet for an unvoiced speech segment comprises control information, a flag indicating that the segment is unvoiced, the total energy of the segment
25 or the prediction error power, and the elements of the codebook entry defining the roots of the LPC coefficient polynomial. On the other hand, a data packet for a voiced speech segment comprises control information, a flag indicating that the segment is
30 voiced, the sum total of the harmonic amplitudes of the segment, the fundamental frequency and a set of estimated normalized harmonic amplitudes. The ordered sequence of data packets at the output of the parameter encoder is ready for storage or transmission
35 of the original speech signal.

At the synthesis side, a decoder receives the ordered sequence of data packets representing unvoiced and voiced speech signal segments. If the 5 voiced/unvoiced flag indicates that a data packet represents an unvoiced time segment, the transmitted quantized pole vector is used as an index into a pole codebook to determine the LPC coefficients of the unvoiced synthesis (prediction) filter. A gain 10 adjusted white noise generator is then used as the input of the synthesis filter to reconstruct the unvoiced speech segment.

If the data packet flag indicates that a segment 15 is voiced, a novel phase compensated harmonic synthesizer is used to synthesize the voiced speech segment and provide amplitude and phase continuity to the signal of the preceding speech segment. Specifically, using the harmonic amplitudes vector of 20 the voiced data packet, the phase compensated harmonic synthesizer computes the conditions required to insure amplitude and phase continuity between adjacent voiced segments and computes the parameters of the voiced to unvoiced or unvoiced to voiced speech segment 25 transitions. The phases of the harmonic frequencies in a voiced segment are computed from a set of equations defining the phases of the harmonic frequencies in the previous segment. The amplitudes of the harmonic frequencies in a voiced segment are 30 determined from a linear interpolation of the received amplitudes of the current and the previous time segments. Continuous boundary conditions between signal transitions at the ends of the segment are finally established before the synthesized signal is 35 passed to a digital-to-analog converter to reproduce the original speech.

- 10 -

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be next be described in detail by reference to the following drawings in which:

5 Fig. 1 is a block diagram of the speech processing system of the present invention.

Fig. 2 is a schematic block diagram of the encoder used in the system of Fig. 1.

10 Fig. 3 illustrates the signal sequences of the digitized input signal $s(n)$ which define delayed speech vectors $S_M(M)$ and $S_{N,M}(N)$ used in the encoder of Fig. 2.

15 Figs. 4 and 5 are schematic diagrams of the transmitted parameters in an unvoiced and in a voiced data packet, respectively.

Fig. 6 is a flow diagram of the super resolution harmonic amplitude estimator (SRHAE) used in the encoder in Fig. 2.

20 Figs. 7A is a graph of the actual and the estimated harmonic amplitudes in a voiced speech segment.

Fig. 7B illustrates the normalized estimation error in percent % dB for the harmonic amplitudes of the speech segment in Fig. 7A.

25 Fig. 8 is a schematic block diagram of the decoder used in the system of Fig. 1.

Fig. 9 is a flow diagram of the phase compensated harmonic synthesizer in Fig. 8.

30 Figs. 10 A, B illustrate of the harmonics matching problem in the system of the present invention.

Fig. 11 is a flow diagram of the voiced to voiced speech synthesis algorithm.

35 Fig. 12 is a flow diagram of the unvoiced to voiced speech synthesis algorithm.

- 11 -

Fig. 13 is a flow diagram of the initialization of the system with the parameters of the previous speech segment.

5

10

15

20

25

30

35

DETAILED DESCRIPTION OF THE INVENTION

During the course of the description like numbers will be used to identify like elements shown in the figures. Bold face letters represent vectors, while vector elements and scalar coefficients are shown in standard print.

Fig. 1 is a block diagram of the speech processing system 10 for encoding and decoding speech in accordance with the present invention. Analog input speech signal $s(t)$, 15 from an arbitrary voice source is received at encoder 100 for subsequent storage or transmission over a communications channel. Encoder 100 digitizes the analog input speech signal 15, divides the digitized speech sequence into speech segments and encodes each segment into a data packet 25 of length I information bits. The encoded speech data packets 25 are transmitted over communications channel 101 to decoder 400. Decoder 400 receives data packets 25 in their original order to synthesize a digital speech signal which is then passed to a digital-to-analog converter to produce a time delayed analog speech signal 30, denoted $s(t-T_m)$, as explained in detail next.

A. The Encoder Block

Fig. 2 illustrates the main elements of encoder 100 and their interconnections in greater detail. Blocks 105, 110 and 115 perform signal pre-processing to facilitate encoding of the input speech. In particular, analog input speech signal 15 is low pass filtered in block 105 to eliminate frequencies outside the human voice range. Low pass filter (LPF) 105 has a cutoff frequency of about 4 KHz which is adequate for the purpose. The low pass filtered analog signal

is then passed to analog-to-digital converter 110 where it is sampled and quantized to generate a digital signal $s(n)$ suitable for subsequent processing. Analog-to-digital converter 110 preferably operates at a sampling frequency $f_s = 8 \text{ KHz}$ which, in accordance with the Nyquist criterion, corresponds to twice the highest frequency in the low pass filtered analog signal $s(t)$. It will be appreciated that other sampling frequencies may be used as long as they satisfy the Nyquist criterion. Finally, digital input speech signal $s(n)$ is passed through a high pass filter (HPF) 115 which has a cutoff frequency of about 100 Hz in order to eliminate any low frequency noise, such as 60 Hz AC voltage interference.

The filtered digital speech signal $s(n)$ is next divided into time segments of a predetermined length in frame segmenters 120 and 125. Digital speech signal $s(n)$ is first buffered in frame segmenter 120 which outputs a delayed speech vector $s_M(M)$ of length M samples. Frame segmenter 120 introduces a time delay of M samples between the current sample of speech signal $s(n)$ and the output speech vector $s_M(M)$. In a specific embodiment of the present invention, the length M is selected to be about 160 samples which corresponds to 20 msec of speech at a 8 KHz sampling frequency. This length of the speech segment has been determined to present a good compromise between the requirement to use relatively short segments as to keep the speech signal roughly stationary, and the efficiency of the coding system which generally increases as the delay becomes greater. Dependent on the desired temporal resolution, the delay between

- 14 -

time segments can be set to other values, such as 50, 100 or 150 samples.

5 A second frame segmenter 125 buffers N-M samples into a vector $S_{N-M}(N)$, the last element of which is delayed by N samples from the current speech sample s(n). Fig. 3 illustrates the relationship between delayed speech vectors $S_M(M)$, $S_{N-M}(N)$ and the digital .
10 input speech signal s(n). The function of the delayed vector $S_{N-M}(N)$ will be described in more detail later.

The step following the segmentation of digital input signal s(n) is to decide whether the current
15 segment is voiced or unvoiced, which decision determines the type of applied signal processing. Speech is generally classified as voiced if a fundamental frequency is imparted to the air stream by the vocal cords of the speaker. In such case the
20 speech signal is modeled as a superposition of sinusoids which are harmonically related to the fundamental frequency as discussed in more detail next. The determination as to whether a speech segment is voiced or unvoiced, and the estimation of
25 the fundamental frequency can be obtained in a variety of ways known in the art as pitch detection algorithms.

In the system of the present invention, pitch
30 detection block 155 determines whether the speech segment associated with delayed speech vector $S_M(M)$ is voiced or unvoiced. In a specific embodiment, block 155 employs the pitch detection algorithm described in Y. Medan et al., "Super Resolution Pitch Determination of Speech Signals", IEEE Trans. on Signal Processing, Vol. 39, pp 40-48, June 1991, which is incorporated

- 15 -

herein by reference. It will be appreciated that other pitch detection algorithms known in the art can be used as well. On output, if the segment is 5 determined to be unvoiced, a flag f_{uv} is set equal to zero and if the speech segment is voiced flag f_{uv} is set equal to one. Additionally, if the speech segment of delayed speech vector $s_M(M)$ is voiced, pitch detection block 155 estimates its fundamental 10 frequency F_0 which is output to parameter encoding block 190.

In the case of an unvoiced speech segment, delayed speech vector $s_M(M)$ is windowed in block 160 15 by a suitable window w to generate windowed speech vector $s_{WM}(M)$ in which the signal discontinuities to adjacent speech segments at both ends of the speech segment are reduced. Different windows, such as Hamming or Kaiser windows may be used to this end. In 20 a specific embodiment of the present invention, a M -point normalized Hamming window $w_H(M)$ is used, the elements of which are scaled to meet the constraint:

$$1 = \frac{1}{M} \sum_{m=0}^{M-1} w_H^2(m) \quad (1)$$

25

Windowed speech vector $s_{WM}(M)$ is next applied to block 165 for calculating the linear prediction coding (LPC) coefficients which model the human vocal tract. 30 As known in the art, in linear predictive coding the current signal sample $s(n)$ is represented by a combination of the P preceding samples $s(n-i)$, ($i=1, \dots, P$) multiplied by the LPC coefficients, plus a term which represents the prediction error. Thus, in 35 the system of the present invention, the current

- 16 -

sample $s(n)$ is modeled using the auto-regressive model:

$$s(n) = e_n - a_1 s(n-1) - a_2 s(n-2) - \dots - a_p s(n-P) \quad (2)$$

5

where a_1, \dots, a_p are the LPC coefficients and e_n is the prediction error. The unknown LPC coefficients which minimize the variance of the prediction error are

10 determined by solving a system of linear equations, as known in the art. A computationally efficient way to solve for the LPC coefficients is given by the Levinson-Durbin algorithm described for example in S.J. Orphanidis, "Optimum Signal Processing," McGraw 15 Hill, New York, 1988, pp. 202-207, which is hereby incorporated by reference. In a preferred embodiment of the present invention the number P of the preceding speech samples used in the prediction is set equal to 10. The LPC coefficients calculated in block 165 are 20 loaded into output vector a_{op} . In addition, block 165 outputs the prediction error power σ^2 for the speech segment which is used in the decoder of the system to synthesize the unvoiced speech segment.

25 In block 170 vector a_{op} , the elements of which are the LPC coefficients, is used to solve for the roots of the homogeneous polynomial equation

$$x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{p-1} x^{n-(p-1)} + a_p = 0 \quad (3)$$

30

which roots can be recognized as the poles of the autoregressive filter modeling the human vocal tract in Eq. (2). The roots computed in block 170 are ordered in terms of increasing phase and are loaded 35 into pole vector X_p . The roots of the polynomial equation may be found by suitable root-finding

5 routines, as described for example in Press et al., "Numerical Recipes, The Art of Scientific Computing," Cambridge University Press, 1986, incorporated herein by reference. Alternatively, a computer implementation using an EISPACK set of routines can be used to determine the poles of the polynomial by computing the eigenvalues of the associated characteristic matrix, as used in linear systems theory and described for 10 example in Thomas Kailath, "Linear Systems," Prentice Hall, Inc., Englewood Cliffs, N.J., 1980. The EISPACK mathematical package is described in Smith et al., "Matrix Eigen System Routines - EISPACK Guide," Springer-Verlag, 1976, pp. 28-29. Both publications 15 are incorporated by reference.

Pole vector X_p is next received at vector quantizer block 180 for quantizing it into a codebook entry X_{vQ} . While many suitable quantization methods 20 can be used, in a specific embodiment of the present invention, the quantized codebook vector X_{vQ} can be determined using neural networks. To this end, a linear vector quantizing neural network having a Kohonen feature map LVQ1 can be used, as described in 25 T. Kohonen, "Self Organization and Associative Memory," Series in Information, Sciences, Vol. 8, Springer-Verlag, Berlin-Heidelberg, New York, Tokyo, 1984, 2nd Ed. 1988.

30 It should be noted that the use of the quantized polynomial roots to represent the unvoiced speech segment is advantageous in that the dynamic range of the root values is smaller than the corresponding range for encoding the LPC coefficients thus resulting 35 in a coding gain. Furthermore, encoding the roots of the prediction polynomial is advantageous in that the

stability of the synthesis filters can be guaranteed by restricting all poles to be less than unity in magnitude. By contrast, relatively small errors in 5 quantizing the LPC coefficients may result in unstable poles of the synthesis filter.

The elements of the quantized X_{VQ} vector are finally input into parameter encoder 190 to form an 10 unvoiced segment data packet for storage and transmission as described in more detail next.

In accordance with the present invention, processing of the voiced speech segments is executed 15 in blocks 130, 140 and 150. In frame manager block 130 delayed speech vectors $S_M(M)$ and $S_{N-M}(N)$ are concatenated to form speech vector Y_N having a total length of N samples. In this way, an overlap of $N-M$ samples is introduced between adjacent speech segments 20 to provide better continuity at the segment boundaries. For voiced speech segments, the digital speech signal vector Y_N is modeled as a superposition of H harmonics expressed mathematically as follows:

$$25 \quad s_N(n) = \sum_{h=0}^{H-1} A_h(h) \cdot \sin(2\pi(h+1)\frac{f_0}{f_s}n + \theta_h) + z_n; \quad (4)$$

$n=0, 1, 2, \dots, N-1.$

where $A_h(h)$ is the amplitude corresponding to the h-th 30 harmonic, θ_h is the phase of the h-th harmonic, F_0 and f_s are the fundamental and the sampling frequencies respectively, z_n is unvoiced noise and N is the number of samples in the enlarged speech vector Y_N .

35 To avoid discontinuities of the signal at the ends of the speech segments and problems associated

with spectral leakage during subsequent processing in the frequency domain, speech vector Y_N is multiplied in block 140 by a window W to obtain a windowed speech vector Y_{WN} . The specific window used in block 140 is a Hamming or a Kaiser window. Preferably, a N point Kaiser window W_K is used, the elements of which are normalized as shown in Eq. (1). The window functions used in the Kaiser and Hamming windows of the present invention are described in Oppenheim et al., "Discrete Time Signal Processing," Prentice Hall, Englewood Hills, NJ, 1989. The elements of vector Y_{WN} are given by the expression:

15

$$y_{WN}(n) = w_K(n) \cdot y(n); \quad n=0,1,2,\dots,N-1 \quad (5)$$

25

Vector Y_{WN} is received in super resolution harmonic amplitude estimation (SRHAE) block 150 which estimates the amplitudes of the harmonic frequencies on the basis of the fundamental frequency F_0 of the segment obtained in pitch detector 155. The estimated amplitudes are combined into harmonic amplitude vector A_H which is input to parameter encoding block 190 to form voiced data packets.

Parameter encoding block 190 receives on input from pitch detector 155 the f_{vuv} flag which determines whether the current speech segment is voiced or unvoiced, a parameter E which is related to the energy of the segment, the quantized codebook vector X_{VQ} if the segment is unvoiced, or the fundamental frequency F_0 and the harmonic amplitude vector A_H if the segment is voiced. Parameter encoding block 190 outputs for each speech segment a data packet which contains all information necessary to reconstruct the speech at the receiving end of the system.

Figures 4 and 5 illustrate the data packets used for storage and transmission of the unvoiced and voiced speech segments in accordance with the present invention. Specifically, each data packet comprises control (synchronization) information and flag $f_{v/uv}$ indicating whether the segment is voiced or unvoiced. In addition, each package comprises information related to the energy of the speech segment. In an unvoiced data packet this could be the sum of the squares of all speech samples or, alternatively the prediction error power computed in block 165. The information indicated as the frame energy in the voiced speech segment in Fig. 5 is preferably the sum of the estimated harmonic amplitudes computed in block 150, as described next.

As shown in Fig. 4, if the segment is unvoiced, the corresponding data packet further comprises the quantized vector X_{VQ} determined in vector quantization block 180. If the segment is voiced, the data packet comprises the fundamental frequency F_0 and harmonic amplitude vector A_H from block 150, as show in Fig. 5. The number of bits in a voiced data package is held constant and may differ from the number of bits in an unvoiced packet which is also constant.

The operation of super resolution harmonic amplitude estimation (SRHAE) block 150 is described in greater detail in Fig. 6. In step 250 the algorithm receives windowed vector Y_{WN} and the $f_{v/uv}$ flag from pitch detector 155. In step 251 it is checked whether flag $f_{v/uv}$ is equal to one, which indicates voiced speech. If the flag is not equal to one, in step 252 control is transferred to pole calculation block 170 (see Fig. 2). If flag $f_{v/uv}$ is equal to one, step 253

- 21 -

is executed to determine the total number of harmonics H which is set equal to the integer number obtained by dividing the sampling frequency f_s by twice the
5 fundamental frequency F_0 . In order to adequately represent a voiced speech segment while keeping the required bit rate low, in the system of the present invention a maximum number of harmonics H_{max} is defined and, in a specific embodiment, is set equal to 30.

10

In step 254 it is determined whether the number of harmonics H computed in step 253 is greater than or equal to the maximum number of harmonics H_{max} and if true, in step 255 the number of harmonics H is set
15 equal to H_{max} . In the following step 257 the input windowed vector \mathbf{Y}_{WN} is first padded with N zeros to generate a vector \mathbf{Y}_{2N} of length 2N defined as follows:

$$\begin{aligned} Y_{2N}(n) &= Y_{WN}(n) \quad \text{for } n=0, \dots, N-1 \\ &= 0 \quad \text{for } n=N, \dots, 2N-1 \end{aligned} \quad (6)$$

20

The zero padding operation in step 257 is required in order to obtain the discrete Fourier transform (DFT) of the windowed speech segment in vector \mathbf{Y}_{WN} on a more finely divided set of frequencies.
25 It can be appreciated that dependent on the desired frequency separation, a different number of zeros may be appended to windowed speech vector \mathbf{Y}_{WN} .

Following the zero padding, in step 257 a 2N
30 point discrete Fourier transform of speech vector \mathbf{Y}_{2N} is performed to obtain the frequency domain vector \mathbf{F}_{2N} from which the desired harmonic amplitudes are determined. Preferably, the computation of the DFT is executed using any fast Fourier transform (FFT)
35 algorithm of length 2N. As well known, the efficiency of the FFT computation increases if the length N of

- 22 -

the transform is a power of 2, i.e. if $N = 2^L$. Accordingly, in a specific embodiment of the present invention the length $2N$ of the speech vector \mathbf{y}_{2N} may be
 5 adjusted further by adding zeros to meet this requirement. The amplitudes of the harmonic frequencies of the speech segment are calculated next in step 258 in accordance with the formula:

$$10 \quad A_H(h, F_0) = \frac{1}{N} \cdot \left[2 \cdot \sum_{k=\left[\frac{(h+1)F_0}{f_s}N\right]-B}^{\left[\frac{(h+1)F_0}{f_s}N\right]+B} \left[\sum_{n=0}^{2N-1} y_{2N}(n) \cdot e^{-j2\pi \frac{k}{2N} \cdot n} \right]^2 \right]^{\frac{1}{2}}; \quad (7)$$

$$h=0, 1, 2, \dots, H-1; \quad H \leq \left[\frac{f_s}{2F_0} \right]$$

15 where $A_H(h, F_0)$ is the estimated amplitude of the h -th harmonic frequency, F_0 is the fundamental frequency of the segment and B is the half bandwidth of the main lobe of the Fourier transform of the window function.

20 Considering Eq. (7) in detail we first note that the expression within the inner square brackets corresponds to the DFT of the windowed vector \mathbf{y}_{2N} which is computed in step 257 and is defined as:

$$25 \quad F(k) = \sum_{n=0}^{2N-1} y_{2N}(n) e^{-j2\pi \frac{k}{2N} \cdot n} \quad (8)$$

Multiplying each resulting DFT frequency sample $F(k)$ by its complex conjugate quantity $F^*(k)$ gives the
 30 power spectrum $P(k)$ of the input signal at the given discrete frequency sample:

$$P(k) = F(k) \cdot F^*(k) \quad (9)$$

which operation is mathematically expressed in Eq.(7) by taking the square of the discrete Fourier transform
 35 frequency samples $F(k)$. Finally, in Eq.(7) the harmonic amplitude $A_H(h, F_0)$ is obtained by adding

together the power spectrum estimates for the B adjacent discrete frequencies on each side of the respective harmonic frequency h , and taking the square root of the result, scaling it appropriately.

As indicated above, B is the half bandwidth of the discrete Fourier transform of the Kaiser window used in block 140. For a window length $N = 512$ the main lobe of a Kaiser window has 11 samples, so that B can be rounded conveniently to 5. Since the windowing operation in block 140 corresponds in the frequency domain to the convolution of the respective transforms of the original speech segment and that of the window function, using all samples within the half bandwidth of the window transform results in an increased accuracy of the estimates for the harmonic amplitudes.

Once the harmonic amplitudes $A_H(h, F_0)$ are computed, in step 259 the sequence of amplitudes is combined into harmonic amplitude vector A_H which is sent to the parameter encoder in step 260.

Figure 7A illustrates for comparison the harmonic amplitudes measured in an actual speech segment and the set of harmonic amplitudes estimated using the SRHAE method of the present invention. In this figure, a maximum number $H_{max} = 30$ harmonic frequencies were used to represent an input speech segment with fundamental frequency $F_0 = 125.36$ Hz. A normalized Kaiser window and zero padding as discussed above were also used. The percent error between the actual and estimated harmonic amplitudes is plotted in Fig. 7B and indicates very good estimation accuracy. The expression used to compute the percent error in Fig. 7B is mathematically expressed as:

$$E(h) = \frac{|A_a(h, F_0) - \hat{A}_a(h, F_0)|}{|A_H(h, F_0)|} \cdot 100\%; \quad \text{for } h=0, \dots, H-1. \quad (10)$$

5

10 The results indicate that SRHAE block 150 of the present invention is capable of providing an estimated sequence of harmonic amplitudes $A_H(h, F_0)$ accurate to within 1000-th of a percent. Experimentally it has also been found that for a higher fundamental frequency F_0 , the percent error over the total range of harmonics can be reduced even further.

15

B. The Decoder Block

20 Fig. 8 is a schematic block diagram of speech decoder 400 in Fig. 1. Parameter decoding block 405 receives data packets 25 via communications channel 101. As discussed above, data packets 25 correspond to either voiced or unvoiced speech segments as indicated by flag $f_{v/u}$. Additionally, data packets 25 comprise a parameter related to the segment energy E; the fundamental frequency F_0 and the estimated harmonic amplitudes vector A_H for voiced packets; and the quantized pole vector X_{vQ} for unvoiced speech segments.

25

30 If the current data packet 25 is unvoiced, the speech synthesis proceeds in blocks 410 through 460. Specifically, block 410 receives the quantized poles vector X_{vQ} and uses a pole codebook look up table to determine a poles vector X_p which corresponds most closely to the received vector X_{vQ} . In block 440 vector X_p is converted into a LPC coefficients vector a_p of length P. Unvoiced synthesis filter 460 is next initialized using the LPC coefficients in vector a_p . The unvoiced speech segment is synthesized by passing

35

- to the synthesis filter 460 the output of white noise generator 450 which output is gain adjusted on the basis of the transmitted prediction error power σ_e .
- 5 The operation of blocks 440, 450 and 460 defining the synthesis of unvoiced speech using the corresponding LPC coefficients is known in the art and need not be discussed in further detail. Digital-to-analog converter 500 completes the process by transforming
10 the unvoiced speech segment to analog speech signal.

The synthesis of voiced speech segments and the concatenation of segments into a continuous voice signal is accomplished in the system of the present
15 invention using phase compensated harmonic synthesis block 430. The operation of synthesis block 430 is shown in greater detail in the flow diagram in Fig. 9. Specifically, in step 500 the synthesis algorithm receives input parameters from the parameter decoding
20 block 405 which includes the $f_{v/uv}$ flag, the fundamental frequency F_0 and the normalized harmonic amplitudes vector A_H . In step 510 it is determined whether the received data packet is voiced or unvoiced as indicated by the value of flag $f_{v/uv}$. If this value is
25 not equal to one, in step 515 control is transferred to pole codebook search block 410 for processing of an unvoiced segment.

If flag $f_{v/uv}$ is equal to one, indicating a voiced
30 segment, in step 520 is calculated the number of harmonics H in the segment by dividing the sampling frequency f_s of the system by twice the fundamental frequency F_0 for the segment. The resulting number of harmonics H is truncated to the value of the closest
35 smaller integer.

- 26 -

Decision step 530 compares next the value of the computed number of harmonics H to the maximum number of harmonics H_{max} used in the operation of the system.

5 If H is greater than H_{max} , in step 540 the value of H is set equal to H_{max} . In the following step 550 the elements of the voiced segment synthesis vector V_0 are initialized to zero.

10 In step 560 the voiced/unvoiced flag $f_{v/u/v}$ of previous segment is examined to determine whether the segment was voiced, in which case control is transferred in step 570 to the voiced-voiced synthesis algorithm. If the previous segment was unvoiced, 15 control is transferred to the unvoiced-voiced synthesis algorithm. Generally, the last sample of the previous speech segment is used as the initial condition in the synthesis of the current segment as to insure amplitude continuity in the signal 20 transition ends.

In accordance with the present invention, voiced speech segments are concatenated subject to the requirement of both amplitude and phase continuity across the segment boundary. This requirement contributes to a significantly reduced distortion and a more natural sound of the synthesized speech. Clearly, if two segments have identical number of harmonics with equal amplitudes and frequencies, the 30 above requirement would be relatively simple to satisfy. However, in practice all three parameters can vary and thus need to be matched separately.

In the system of the present invention, if the 35 numbers of harmonics in two adjacent voiced segments are different, the algorithm proceeds to match the

- 27 -

smallest number H of harmonics common to both segments. The remaining harmonics in any segment are considered to have zero amplitudes in the adjacent segment.

The problem of harmonics matching is illustrated in Fig. 10 where two sinusoidal signals $s'(n)$ and $s(n)$ having different amplitudes A' and A and fundamental frequencies F_0 and f_0 have to be matched at the boundary of two adjacent segments of length M. In accordance with the present invention, the amplitude discontinuity is resolved by means of a linear amplitude interpolation such that at the beginning of the segment the amplitude of the signal $S(n)$ is set equal to A' while at the end it is equal to the harmonic amplitude A. Mathematically this condition is expressed as

$$A^-(m) + \frac{A(m) - A^-(m)}{M} \quad (11)$$

where M is the length of the speech segment.

In the more general case of H harmonic frequencies the current segment speech signal may be represented as follows:

$$S(m) = \sum_{h=0}^{H-1} \left(A^-(m) + \frac{A(m) - A^-(m)}{M} \cdot m \right) \sin((h+1)\Phi(m) + \xi(h)); \quad m=0, \dots, M-1. \quad (12)$$

30

where $\Phi(m) = 2\pi m F_0/f_0$; and $\xi(h)$ is the initial phase of the h-th harmonic. Assuming that the amplitudes of each two harmonic frequencies to be matched are equal, the condition for phase continuity may be expressed as an equality of the arguments of the sinusoids in Eq. (12) evaluated at the first

- 28 -

sample of the current speech segment. This condition can be expressed mathematically as:

$$\begin{aligned} 5 \quad (h+1)\Phi(0) + \xi(h) &= (h+1)\Phi^-(M) + \xi^-(h) \\ \xi(h) &= \Phi^-(M) + \xi^-(h); \quad \text{for } h=0, \dots, H-1 \end{aligned} \quad (13)$$

where Φ and ξ denote the phase components for the previous segment and term 2π has been omitted for convenience. Since at $m = 0$ the quantity $\Phi(m)$ is always equal to zero, Eq. (13) gives the condition to initialize the phases of all harmonics.

10 Fig. 11 is a flow diagram of the voiced-voiced synthesis block of the present invention which implements the above algorithm. Following the start step 600 in step 610 the system checks whether there is a DC offset V_0 in the previous segment which has to be reduced to zero. If there is no such offset, in steps 620, 622 and 624 the system initializes the elements of the output speech vector to zero. If 15 there is a DC offset, in step 612 the system determines the value of an exponential decay constant γ using the expression:

$$20 \quad \gamma = \frac{-\log(\frac{0.4}{|V_0|})}{M-1} \quad (14)$$

25 where V_0 is the DC offset value.

In steps 614, 616 and 618 the constant γ is used 30 to initialize the output speech vector $S(m)$ with an exponential decay function having a time constant equal to γ . The elements of speech vector $S(m)$ are given by the expression:

$$S(m) = V_0 e^{-\gamma m} \quad (15)$$

Following the initialization of the speech output
 5 vector, the system computes in steps 626, 628 and 630
 the phase line $\phi(m)$ for time samples $0, \dots, M$.

In steps 640 through 670 the system synthesizes a
 segment of voiced speech of length M samples which
 10 satisfies the conditions for amplitude and phase
 continuity to the previous voiced speech segment.
 Specifically, step 640 initializes a loop for the
 computation of all H harmonic frequencies. In step
 15 650 the system sets up the initial conditions for the
 amplitude and space continuity for each harmonic
 frequency as defined in Eqs. (11)-(13) above.

In steps 660, 662 and 664 the system loops
 through all M samples of the speech segment computing
 20 the synthesized voiced segment in step 662 using
 Eq. (12) and the initial conditions set up in step
 650. When the synthesis signal is computed for all M
 points of the speech segment and all H harmonic
 frequencies, following step 670 control is transferred
 25 in step 680 to initial conditions block 800.

The unvoiced-to-voiced transition in accordance
 with the present invention is determined using the
 condition that the last sample of the previous segment
 30 $S(N)$ should be equal to the first sample of the
 current speech segment $S(N+1)$, i.e. $S(N) = S(N+1)$.
 Since the current segment is voiced, it can be modeled
 as a superposition of harmonic frequencies so that the
 condition above can be expressed as:
 35 where A_i is the i -th harmonics amplitude, ϕ_i and θ_i are
 the i -th harmonics phase and initial phase,

- 30 -

$$S(N) = A_1(\phi_1+\theta_1) + A_2(\phi_2+\theta_2) + \dots + A_{H-1}\sin(\phi_{H-1}+\theta_{H-1}) + \xi. \quad (16)$$

5 respectively, and ξ is an offset term modeled as an exponential decay function, as described above.

Neglecting for a moment the ξ term and assuming that at time $n = N+1$ all harmonic frequencies have equal phases, the following condition can be derived:

10 $S(N) = \alpha [A_0 + A_1 + \dots + A_{H-1}] \Rightarrow$

$$\alpha = \frac{S(N)}{\sum_{i=0}^{H-1} A_i} = \sin(\phi_i + \theta_i); \quad i=0, \dots, H-1. \quad (17)$$

15 where it is assumed that $|\alpha| < 1$. This set of equations yields the initial phases of all harmonics at sample $n = N+1$, which are given by the following expression:

$$\theta_i = \sin^{-1}(\alpha) - \phi_i; \quad \text{for } i=0, \dots, H-1. \quad (18)$$

20 Fig. 12 is a flow diagram of the unvoiced-voiced synthesis block which implements the above algorithm. In step 700 the algorithm starts, following an indication that the previous speech segment was unvoiced. In steps 710 to 714 the vector comprising
25 the harmonic amplitudes of the previous segment is updated to store the harmonic amplitudes of the current voiced segment.

In step 720 a variable Sum is set equal to zero
30 and in the following steps 730, 732 and 734 the algorithm loops through the number of harmonic frequencies H adding the estimated amplitudes until the variable Sum contains the sum of all amplitudes of the harmonic frequencies. In the following step 740,
35 the system computes the value of the parameter α after checking whether the sum of all harmonics is not equal

to zero. In steps 750 and 752 the value of α is adjusted, if $|\alpha|>1$. Next, in step 754 the algorithm computes the constant phase offset $\beta = \sin^{-1}(\alpha)$.

- 5 Finally, in steps 760, 762 and 764 the algorithm loops through all harmonics to determine the initial phase offset θ_i for each harmonic frequency.

Following the synthesis of the speech segment,
10 the system of the present invention stores in a memory the parameters of the synthesized segment to enable the computation of the amplitude and phase continuity parameters used in the following speech frame. The process is illustrated in a flow diagram form in Fig.
15 13 where in step 800 the amplitudes and phases of the harmonic frequencies of the voiced frame are loaded. In steps 810 to 814 the system updates the values of the H harmonic amplitudes actually used in the last voiced frame. In steps 820 to 824 the system sets the
20 values for the parameters of the unused $H_{max}-H$ harmonics to zero. In step 830 the voiced/unvoiced flag $f_{v/u}$ is set equal to one, indicating the previous frame was voiced. The algorithm exits in step 840.

25 The method and system of the present invention provide the capability of accurately encoding and synthesizing voiced and unvoiced speech at a minimum bit rate. The invention can be used in speech compression for representing speech without using a
30 library of vocal tract models to reconstruct voiced speech. The speech analysis used in the encoder of the present invention can be used in speech enhancement for enhancing and coding of speech without the use of a noise reference signal. Speech
35 recognition and speaker recognition systems can use the method of the present invention for modeling the

phonetic elements of language. Furthermore, the speech analysis and synthesis method of this invention provide natural sounding speech which can be used in
5 artificial synthesis of a user's voice.

The method and system of the present invention may also be used to generate different sound effects. For example, changing the pitch frequency F_0 and/or the
10 harmonic amplitudes in the decoder block will have the perceptual effect of altering the voice personality in the synthesized speech with no other modifications of the system being required. Thus, in some applications while retaining comparable levels of intelligibility
15 of the synthesized speech the decoder block of the present invention may be used to generate different voice personalities. A separate type of sound effects may be created if the decoder block uses synthesis frame sizes different from that of the encoder. In
20 such case, the synthesized time segments will be expanded or contracted in time compared to the originals, changing their perceptual quality. The use of different frame sizes at the input and the output of an digital system, known in the art as time
25 warping, may also be employed in accordance with the present invention to control the speed of the material presentation, or to obtain a better match between different digital processing systems.

30 It should further be noted that while the method and system of the present invention have been described in the context of speech processing, they are also applicable in the more general context of audio processing. Thus, the input signal of the
35 system may include music, industrial sounds and others. In such case, dependent on the application,

- 33 -

it may be necessary to use sampling frequency higher or lower than the one used for speech, and also adjust the parameters of the filters in order to adequately represent all relevant aspects of the input signal.

5 When applied to music, it is possible to bypass the unvoiced segment processing portions of the encoder and the decoder of the present system and merely transmit or store the harmonic amplitudes of the input

10 signal for subsequent synthesis. Furthermore, harmonic amplitudes corresponding to different tones of a musical instrument may also be stored at the decoder of the system and used independently for music synthesis. Compared to conventional methods, music

15 synthesis in accordance with the method of the present invention has the benefit of using significantly less memory space as well as more accurately representing the perceptual spectral content of teh audio signal.

20 While the invention has been described with reference to a preferred embodiment, it will be appreciated by those of ordinary skill in the art that modifications can be made to the structure and form of the invention without departing from its spirit and

25 scope which is defined in the following claims.

30

35

I CLAIM:

1. A method for processing an audio signal comprising the steps of:
 - 5 dividing the signal into segments, each segment representing one of a succession of time intervals;
 - detecting for each segment the presence of a fundamental frequency;
 - if such a fundamental frequency is detected,
 - 10 estimating the amplitudes of a set of sinusoids harmonically related to the detected fundamental frequency, the set of sinusoids being representative of the signal in the time segment; and
 - encoding for subsequent storage and transmission
 - 15 the set of the estimated harmonic amplitudes, each amplitude being normalized by the sum of all amplitudes.
2. The method of claim 1 wherein the audio signal is a speech signal and following the step of detecting the method further comprises the step of determining whether a segment represents voiced or unvoiced speech on the basis of the detected fundamental frequency.
- 25 3. The method of claim 2 further comprising the steps of:
 - computing a set of linear predictive coding (LPC) coefficients for each segment determined to be unvoiced; and
 - 30 encoding the LPC coefficients by computing the roots of a LPC coefficients polynomial.
- 35 4. The method of claim 3 further comprising the step of encoding the linear prediction error power associated with the computed LPC coefficients.

- 35 -

5. The method of claim 4 wherein the step of
encoding the LPC coefficients comprises the step of
computing the roots of a LPC coefficients polynomial
5 and encoding the computed polynomial roots.

6. The method of claim 5 wherein the step of
encoding the computed polynomial roots comprises the
steps of: forming a vector of the computed polynomial
10 roots; and vector quantizing the formed vector using a
neural network to determine a vector codebook entry.

7. The method of claim 3 wherein each segment
determined to be unvoiced is windowed with a
15 normalized Hamming window prior to the step of
computing the LPC coefficients.

8. The method of claim 2 wherein the step of
estimating harmonic amplitudes comprises the steps of:
20 performing a discrete Fourier transform (DFT) of
the speech signal; and
computing a root sum square of the samples of the
power DFT of said speech signal in the neighborhood of
each harmonic frequency to obtain an estimate of the
25 corresponding harmonic amplitude.

9. The method of claim 8 wherein prior to the
step of performing a DFT the speech signal is windowed
by a window function providing reduced spectral
30 leakage.

10. The method of claim 9 wherein the used window
is a normalized Kaiser window.

- 36 -

11. The method of claim 9 wherein the computation of the DFT is accomplished using a fast Fourier transform (FFT) of the windowed segment.

5

12. The method of claim 9 wherein the estimates of the harmonic amplitudes $A_H(h, F_0)$ are computed according to the equation:

$$10 \quad A_H(h, F_0) = \frac{1}{N} \cdot \left[2 \cdot \sum_{k=\left[\frac{(h+1) \frac{2F_0}{f_s} N}{B}\right]-B}^{\left[\frac{(h+1) \frac{2F_0}{f_s} N}{B}\right]+B} \left[\sum_{n=0}^{2N-1} y_{2N}(n) \cdot e^{-j2\pi \frac{k}{2N} n} \right]^2 \right]^{\frac{1}{2}}$$

$$h=0, 1, 2, \dots, H-1; \quad H \leq \left[\frac{f_s}{2F_0} \right]$$

15 where $A_H(h, F_0)$ is the estimated amplitude of the h-th harmonic frequency; F_0 is the fundamental frequency; B is the half bandwidth of the main lobe of the Fourier transform of the window function; and $y_{2N}(n)$ is the windowed input signal padded with N zeros.

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
91

15. The method of claim 13 further comprising the step of forming a data packet corresponding to each voiced segment for subsequent transmission or storage,
- 5 the packet comprising a flag indicating that the speech segment is voiced, the fundamental frequency, the normalized harmonic amplitude vector and the sum of all harmonic amplitudes.
- 10 16. A method for synthesizing audio signals from data packets, at least one of the data packets representing a time segment of a signal characterized by the presence of a fundamental frequency, said at least one data packet comprising a sequence of encoded amplitudes of harmonic frequencies related to the fundamental frequency, the method comprising the steps of:
- for each data packet detecting the presence of a fundamental frequency; and
- 20 synthesizing an audio signal in response only to the detected fundamental frequency and the sequence of amplitudes of harmonic frequencies in said at least one data packet.
- 25 17. The method of claim 16 wherein the audio signals being synthesized are speech signals and wherein following the step of detecting the method further comprises the steps of:
- determining whether a data packet represents a
- 30 voiced or unvoiced speech segment on the basis of the detected fundamental frequency;
- synthesizing unvoiced speech in response to encoded information in a data packet determined to represent unvoiced speech; and
- 35 providing amplitude and phase continuity on the boundary between adjacent synthesized speech segments.

18. The method of claim 17 wherein the step of synthesizing unvoiced speech comprises the step of passing a white noise signal through an autoregressive digital filter the coefficients of which are the LPC coefficients corresponding to the unvoiced speech segment and the gain of the filter is adjusted on the basis of the prediction error power associated with the LPC coefficients.

10

19. The method of claim 17 wherein the step of synthesizing a voiced speech comprises the steps of: determining the initial phase offsets for each harmonic frequency; and synthesizing voiced speech using the encoded sequence of amplitudes of harmonic frequencies and the determined phase offsets.

20

20. The method of claim 17 wherein the step of synthesizing voiced speech comprises the steps of: computing the frequencies of the harmonics on the basis of the fundamental frequency of the segment; generating voiced speech as a superposition of harmonic frequencies with amplitudes corresponding to the encoded amplitudes in the voiced data packet and phases determined as to insure phase continuity at the boundary between adjacent speech segments.

30

21. The method of claim 17 wherein the step of providing amplitude and phase continuity on the boundary between adjacent synthesized speech segments comprises the steps of: determining the difference between the amplitude $A(h)$ of h-th harmonic in the current segment and the corresponding amplitude $A'(h)$ of the previous segment, the difference being denoted as $\Delta A(h)$; and

35

- 39 -

providing a linear interpolation of the current segment amplitude between the end points of the segment using the formula:

5 $A(h,m) = A(h,0) + m \cdot \Delta A(h)/M, \text{ for } m = 0, \dots, M-1.$

22. The method of claim 19 wherein the voiced speech is synthesized using the equation:

10 $S(m) = \sum_{h=0}^{H-1} (A^-(m) + \frac{\Delta A(m)}{M} \cdot m) \sin((h+1)\phi(m) + \xi(h));$
 $m=0, \dots, M-1. \quad (20)$

where $A^-(h)$ is the amplitude of the signal at the end of the previous segment; $\phi(m) = 2\pi m F_0/f_s$, where F_0 is the fundamental frequency and f_s is the sampling frequency; and $\xi(h)$ is the initial phase of the h-th harmonic.

23. The method of claim 22 wherein phase continuity for each harmonic frequency in adjacent voiced segments is insured using the boundary condition:

$\xi(h) = (h+1)\phi(M) + \xi^-(h),$

where $\phi(M)$ and $\xi^-(h)$ are the corresponding quantities of the previous segment.

24. The method of claim 22 wherein the initial phase for each harmonic frequency in an unvoiced-to-voiced transition is computed using the condition:

30 $\xi(h) = \sin^{-1}(\alpha);$

$$\alpha = \frac{S(M)}{\sum_{i=0}^{H-1} A_i}; \quad i=0, \dots, H-1.$$

- 40 -

where $S(M)$ is the M -th sample of the unvoiced speech segment; A_i are the harmonic amplitudes for $i = 0, \dots, H-1$; and $|\alpha| < 1$, and $\phi(m)$ is evaluated at 5 the $M+1$ sample.

25. The method of claim 24 further comprising the step of generating sound effects by changing the fundamental frequency F_0 and the values of the harmonic 10 amplitudes encoded in the data packet.

26. The method of claim 24 further comprising the step of generating sound effects by changing the length of the synthesized signal segments.

15 27. A system for processing audio signals comprising:

means for dividing an audio signal into segments, each segment representing one of a succession of time 20 intervals;

means for detecting for each segment the presence of a fundamental frequency;

means for estimating the amplitudes of a set of sinusoids harmonically related to the detected 25 fundamental frequency, the set of sinusoids being representative of the signal in the time segment; and means for encoding the set of harmonic

amplitudes, each amplitude being normalized by the sum of all amplitudes.

30 28. The system of claim 27 wherein the audio signal is a speech signal and the system further comprises means for determining whether a segment represents voiced or unvoiced speech on the basis of 35 the detected fundamental frequency.

- 41 -

29. The system of claim 28 further comprising:
means for computing a set of linear predictive
coding (LPC) coefficients corresponding to a speech
segment; and
5 means for encoding the LPC coefficients and the
linear prediction error power associated with the
computed LPC coefficients.

- 10 30. The system of claim 29 wherein the means for
encoding the LPC coefficients comprises means for
computing the roots of a LPC coefficients polynomial
and means for encoding polynomial roots into a
codebook entry.

- 15 31. The system of claim 30 wherein the means for
encoding polynomial roots comprises a neural network
providing the capability of vector quantizing the
polynomial roots into a vector codebook entry.

- 20 32. The system of claim 28 further comprising
windowing means providing the capability of
multiplying the signal segment with the coefficients
of a predetermined window function.

- 25 33. The system of claim 28 wherein the means for
estimating harmonic amplitudes comprises:
means for performing a discrete Fourier transform
(DFT) of a digitized signal segment; and
30 means for computing a root sum square of the
samples of the DFT in the neighborhood of a harmonic
frequency, said means obtaining an estimate of the
amplitude of the harmonic frequency.

- 35 34. The system of claim 33 wherein the means for
performing a DFT computation comprises means for

- 42 -

performing a fast Fourier transform (FFT) of the signal segment.

5 35. The system of claim 33 further comprising means for padding the input signal with zeros.

36. The system of claim 33 further comprising means for normalizing the computed harmonic
10 amplitudes.

37. The system of claim 36 further comprising means for forming a data packet corresponding to each unvoiced segment, the packet comprising a flag indicating that the speech segment is unvoiced, the codebook entry for the roots of the LPC coefficients polynomial and the linear prediction error power associated with the computed LPC coefficients; and means for forming a data packet corresponding to each voiced segment for subsequent transmission or storage, the packet comprising a flag indicating that the speech segment is voiced, the fundamental frequency, a vector of the normalized harmonic amplitudes and the sum of all harmonic amplitudes.
25

38. A system for synthesizing audio signals from data packets, at least one of the data packets representing a time segment of a signal characterized by the presence of a fundamental frequency, said at 30 least one data packet comprising a sequence of encoded amplitudes of harmonic frequencies related to the fundamental frequency, the system comprising:

means for determining the fundamental frequency of the signal represented by said at least one data
35 packet;

- 43 -

means for synthesizing an audio signal segment in response to the determined fundamental frequency and the sequence of amplitudes of harmonic frequencies in said at least one data packet; and

5 means for providing amplitude and phase continuity on the boundary between adjacent synthesized audio signal segments.

10 39. The system of claim 38 wherein the means for synthesizing comprises means for determining the initial phase offsets for each harmonic frequency.

15 40. The system of claim 39 wherein the means for providing amplitude and phase continuity comprises means for providing a linear interpolation between the values of the amplitude of the signal at the end points of the segment.

20 41. The system of claim 39 wherein the means for providing amplitude and phase continuity further comprises means for computing conditions for phase continuity between harmonic frequencies in adjacent speech segments in accordance with the formula:

25 $\xi(h) = (h+1)\phi(M) + \xi(h)$,
where $\xi(h)$ is the initial phase of the h -th harmonic of the current segment; $\phi(m) = 2\pi m F_0/f_s$, where F_0 is the fundamental frequency and f_s is the sampling frequency; and $\xi(M)$ and $\xi(h)$ are the 30 corresponding quantities of the previous segment.

42. The system of claim 41 further comprising means for generating sound effects by changing the fundamental frequency F_0 and the encoded values of the 35 harmonic amplitudes.

- 44 -

43. The system of claim 41 further comprising means for generating sound effects by changing the size of synthesized signal segments.

5

44. A system for synthesizing speech from data packets, the data packets representing voiced or unvoiced speech segments, comprising:

10 means for determining whether a data packet represents a voiced or unvoiced speech segment;

means for synthesizing unvoiced speech in response to encoded information in an unvoiced data packet;

15 means for synthesizing voiced speech segment signal in response only to a sequence of amplitudes of harmonic frequencies encoded in a voiced data packet; and

means for providing amplitude and phase continuity on the boundary between adjacent 20 synthesized speech segments.

45. The system of claim 44 wherein the means for synthesizing unvoiced speech comprises: means for generating white noise; a digital synthesis filter; 25 means for initializing the coefficients of the synthesis filter using a set of parameters representative of an unvoiced speech segment, and means for adjusting the gain of the synthesis filter.

30 46. The system of claim 44 wherein the means for synthesizing a voiced speech segment comprises means for determining the initial phase offsets for each harmonic frequency.

- 45 -

47. The system of claim 44 wherein the means for providing amplitude and phase continuity comprises means for providing a linear interpolation between the 5 values of the signal amplitude at the end points of the segment.

10

15

20

25

30

35

1/13

FIG.1

FIG.3

FIG.2

SUBSTITUTE SHEET (RULE 26)

3 / 13

SYNC	f_v/uv	PREDICTION POWER ERROR	CODEWORD VECTOR x_{vQ}

FIG.4

SYNC	f_v/uv	FUNDAMENTAL FREQUENCY F_0	FRAME ENERGY E	NORMALIZED HARMONIC AMPLITUDES VECTOR

FIG.5

4/13

FIG.6

5/13

FIG. 7A

6/13

FIG.7B

7/13

FIG.8

8/13

FIG.9

9/13

FIG. 10d

10/13

FIG. 10b

11 / 13

FIG.11

SUBSTITUTE SHEET (RULE 26)

FIG.12

SUBSTITUTE SHEET (RULE 26)

13 / 13

FIG.13

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US95/08616

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :G10L 3/02, 9/00

US CL :395/2.17

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 395/2.17, 2.14, 2.15, 2.28, 2.31, 2.33, 2.71, 2.74, 2.77

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS, IEEE CDROM Library

search terms:voice, unvoice, segments, lpc, interpolation, Hamming window, Kaiser window, vector quantization

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US, A, 4,797,926 (BRONSON ET AL) 10 January 1989, see fig. 1.	1-47
X	US, A, 4,771,465 (BRONSON ET AL.) 13 September 1988, see fig. 1 and fig. 2.	1-47
Y	US, A, 4,435,832 (ASADA ET AL.) 06 March 1984, see abstract.	16-26, 38-47
X	US, A, 4,802,221 (JIBBE) 31 January 1989, see abstract, fig. 3.	1-15, 27-37
A	US, A, 4,864,620 (BIALICK) 05 September 1989, see abstract.	1-47
X	US, A, 4,991,213 (WILSON) 05 February 1991, see fig. 3.	1-15, 27-37

Further documents are listed in the continuation of Box C. See patent family annex.

• Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A"		document defining the general state of the art which is not considered to be part of particular relevance
"E"	"X"	earlier document published on or after the international filing date
"L"		document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O"	"Y"	document referring to an oral disclosure, use, exhibition or other means
"P"	"Z"	document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

01 SEPTEMBER 1995

Date of mailing of the international search report

15 SEP 1995

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer
J. RICHMOND DORVIL

Telephone No. (703) 305-9645

INTERNATIONAL SEARCH REPORT

International application No. PCT/US95/08616

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US, A, 5,189,701 (JAIN) 23 February 1993, see fig. 1, fig. 3, and abstract.	1-47
A	US, A, 5,247,579 (HARDWICK ET AL) 21 September 1993, see abstract.	1-47
X	US, A, 5,303,346 (FESSELER ET AL) 12 April 1994, see abstract.	1-15, 27-37
Y	US, A, 5,327,521 (SAVIC ET AL.) 05 July 1994, see fig 2.	1-47
X, P	US, A, 5,369,724 (LIM) 29 November 1994, see fig. 4A.	1-47
A	IEEE, Proceedings of ICASSP 1986, Tokyo, McAulay et al., "Phase Modeling and its Application Sinusoidal Transform Coding", pp370-373.	1-47
X	IEEE, Proceedings of ICASSP 1988, Thompson, "Parametric Models of the Magnitude/Phase Spectrum for Harmonic Speech Coding", pp. 378-381.	1-47