Supplemental Note on ard-NMF

Amaro Taylor-Weiner*

Derivation of joint half-normal exponential prior Given the formulation for the priors on w_{fk} and h_{kn} and λ_k from Tan et al. (2012) we derive \hat{b} for the mixed data model.

$$\mathbb{E}\left[w_{fk}, h_{kn}\right] = \mathbb{E}\left[\mathbb{E}\left[w_{fk}, h_{kn} | \lambda_k\right]\right]$$

$$\mathbb{E}\left[\mathbb{E}\left[w_{fk}, h_{kn} | \lambda_k\right]\right] = \mathbb{E}\left[\mathbb{E}\left[w_{fk} | \lambda_k\right] \mathbb{E}\left[h_{kn} | \lambda_k\right]\right] = \mathbb{E}\left[\lambda_k \sqrt{\frac{2\lambda_k}{\pi}}\right]$$

$$= \sqrt{\frac{2}{\pi}} \int_0^\infty \lambda_k^{\frac{3}{2}} f_{\lambda_k} d\lambda_k = b^{\frac{3}{2}} \frac{\sqrt{2}\Gamma(a - \frac{3}{2})}{\sqrt{\pi}\Gamma(}$$

Finally we solve for \hat{b} :

$$\hat{b} = \frac{\mu_V \sqrt{2} \Gamma(a - \frac{3}{2})}{K \sqrt{\pi} \Gamma(a)}$$