

PROJECT REPORT Finance & Risk Analytics

PREEJA RAJESH PGP - DSBA 2020 - 2021

Contents

Pro	oblem Statement 1:	3
	Part 1 - Credit Risk	6
	1.1 Outlier Treatment	6
	1.2 Missing Value Treatment	14
	1.3 Transform Target variable into 0 and 1	14
		14
	1.4 Univariate analysis:	16
	Bi-Variate Analysis:	21
	1.5 Train Test Split	23
	1.6 Build Logistic Regression Model on most important variables on Train Dataset	23
	Model 1 – Logistic Regression	25
	Model 2 - Logistic Regression (Statsmodel)	27
	1.7 Validate the Model on Test Dataset and state the performance matrices	29
	Model 3 - Logistic Regression (Sklearn)	34
	1.8 Build a Random Forest Model on Train Dataset	35
	Model 4 - Random Forest	35
	1.9 Validate the Random Forest Model on test Dataset and state the performance matrices	35
	1.10 Build an LDA Model on Train Dataset	36
	Model 5 - Linear Discriminant Analysis (LDA)	36
	1.11 Validate the LDA Model on test Dataset and state the performance matr	
	1.12 Compare the performances of all the three models (include ROC Curve)	37
	1.13 Recommendation:	39
	Part 2 Market Risk:	40
	2.1 Draw Stock Price Chart for any 2 variables	42
	2.2 Calculate Returns	43
	2.3 Calculate Stock Means and Standard Deviation	44
	2.4 Draw a plot of Stock Means vs Standard Deviation and share insights	45

Problem Statement 1:

Businesses or companies can fall prey to default if they are not able to keep up their debt obligations. Defaults will lead to a lower credit rating for the company which in turn reduces its chances of getting credit in the future and may have to pay higher interests on existing debts as well as any new obligations. From an investor's point of view, he would want to invest in a company if it is capable of handling its financial obligations, can grow quickly, and is able to manage the growth scale.

A balance sheet is a financial statement of a company that provides a snapshot of what a company owns, owes, and the amount invested by the shareholders. Thus, it is an important tool that helps evaluate the performance of a business.

Data that is available includes information from the financial statement of the companies for the previous year (2015). Also, information about the Networth of the company in the following year (2016) is provided which can be used to drive the labeled field.

Data set for the Problem: Company_Data2015-2.xlsx

Importing the dataset

Data set:

	Co_Code	Co_Name	Networth Next Year	Equity Paid Up	Networth	Capital Employed	Total Debt	Gross Block	Net Working Capital
0	16974	Hind.Cables	-8021.60	419.36	-7027.48	-1007.24	5936.03	474.30	-1076.34
1	21214	Tata Tele. Mah.	-3986.19	1954.93	-2968.08	4458.20	7410.18	9070.86	-1098.88
2	14852	ABG Shipyard	-3192.58	53.84	506.86	7714.68	6944.54	1281.54	4496.25
3	2439	GTL	-3054.51	157.30	-623.49	2353.88	2326.05	1033.69	-2612.42
4	23505	Bharati Defence	-2967.36	50.30	-1070.83	4675.33	5740.90	1084.20	1836.23

Exploratory Data Analysis:

```
The number of rows (observations) is 3586 The number of columns (variables) is 67
```

Data types of all variables

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3586 entries, 0 to 3585
Data columns (total 67 columns):
Column

Data	columns (total 67 columns):		
#	Column	Non-Null Count	
		3586 non-null	
0	Co_Code		
1 2	Co_Name	3586 non-null	
	Networth_Next_Year	3586 non-null	
3	Equity_Paid_Up	3586 non-null	
4	Networth	3586 non-null	
5 6	Capital_Employed	3586 non-null	
	Total_Debt	3586 non-null	
7	Gross_Block	3586 non-null	
8	Net_Working_Capital	3586 non-null	
9	Curr_Assets	3586 non-null	
10	Curr_Liab_and_Prov	3586 non-null	
11	Total_Assets_to_Liab	3586 non-null	
12	Gross_Sales	3586 non-null	
13	Net_Sales	3586 non-null	float64
14	Other_Income	3586 non-null	float64
15	Value_Of_Output	3586 non-null	
16	Cost_of_Prod	3586 non-null	
17	Selling_Cost	3586 non-null	
18	PBIDT	3586 non-null	
19	PBDT	3586 non-null	
20	PBIT	3586 non-null	
21	PBT	3586 non-null	
22	PAT	3586 non-null	
23	Adjusted_PAT	3586 non-null	
24	CP	3586 non-null	
25	Rev_earn_in_forex	3586 non-null	
26	Rev_exp_in_forex	3586 non-null	
27	Capital_exp_in_forex	3586 non-null	
28	Book_Value_Unit_Curr	3586 non-null	
29	Book_Value_Adj_Unit_Curr	3582 non-null	float64
30	Market_Capitalisation	3586 non-null	float64
31	CEPS_annualised_Unit_Curr	3586 non-null	float64
32	Cash_Flow_From_Oper	3586 non-null 3586 non-null	float64
33 34	Cash_Flow_From_Inv	3506 non-null	float64
	Cash_Flow_From_Fin	3586 non-null	
35	ROG_Net_Worth_perc	3586 non-null	float64 float64
36	ROG_Capital_Employed_perc	3586 non-null	
37	ROG_Gross_Block_perc	3586 non-null	
38	ROG_Gross_Sales_perc	3586 non-null	
39	ROG_Net_Sales_perc	3586 non-null	float64
40	ROG_Cost_of_Prod_perc	3586 non-null	float64
41	ROG_Total_Assets_perc	3586 non-null	float64
42	ROG_PBIDT_perc	3586 non-null	float64
43	ROG_PBDT_perc	3586 non-null	float64
44	ROG_PBIT_perc	3586 non-null	
45 46	ROG_PBT_perc	3586 non-null	
46 47	ROG_PAT_perc	3586 non-null 3586 non-null	
7 /	ROG_CP_perc	JJOO HOH-HULL	float64

48	ROG Rev earn in forex perc	3586	non-null	float64
49	ROG_Rev_exp_in_forex_perc	3586	non-null	float64
50	ROG Market Capitalisation perc	3586	non-null	float64
51	Curr_Ratio_Latest	3585	non-null	float64
52	Fixed_Assets_Ratio_Latest	3585	non-null	float64
53	Inventory Ratio Latest	3585	non-null	float64
54	Debtors_Ratio_Latest	3585	non-null	float64
55	Total_Asset_Turnover_Ratio_Latest	3585	non-null	float64
56	Interest_Cover_Ratio_Latest	3585	non-null	float64
57	PBIDTM_perc_Latest	3585	non-null	float64
58	PBITM_perc_Latest	3585	non-null	float64
59	PBDTM_perc_Latest	3585	non-null	float64
60	CPM_perc_Latest	3585	non-null	float64
61	APATM_perc_Latest	3585	non-null	float64
62	Debtors_Vel_Days	3586	non-null	int64
63	Creditors_Vel_Days	3586	non-null	int64
64	Inventory_Vel_Days	3483	non-null	float64
65	Value_of_Output_to_Total_Assets	3586	non-null	float64
66	Value_of_Output_to_Gross_Block	3586	non-null	float64
dtyp	es: float64(63), int64(3), object(1)		

dtypes: float64(63), int64(3), object(1)
memory usage: 1.8+ MB

5 Point summary:

	Co_Code	Networth_Next_Year	Equity_Paid_Up	Networth	Capital_Employed
count	3586.000000	3586.000000	3586.000000	3586.000000	3586.000000
mean	16065.388734	725.045251	62.966584	649.746299	2799.611054
std	19776.817379	4769.681004	778.761744	4091.988792	26975.135385
min	4.000000	-8021.600000	0.000000	-7027.480000	-1824.750000
25%	3029.250000	3.985000	3.750000	3.892500	7.602500
50%	6077.500000	19.015000	8.290000	18.580000	39.090000
75%	24269.500000	123.802500	19.517500	117.297500	226.605000
max	72493.000000	111729.100000	42263.460000	81657.350000	714001.250000

Part 1 - Credit Risk

1.1 Outlier Treatment

Creating outlier identification (Lower & Upper whiskers) function

There are outliers in the dataset, let's use capping method to treat them

Let's check outliers (Lower and Upper whiskers) in these variables

- Networth_Next_Year (-175.74125, 303.52875000000006)
- Gross_Sales (-359.76875, 603.461250000001)
- Net_Sales (-348.06000000000006, 583.94)
- **PBT** (-11.28375, 18.64625)

1.2 Missing Value Treatment

There are missing values in the following variables of the dataset:

1. Book_Value_Adj_Unit_Curr	4
2. Curr_Ratio_Latest	1
3. Fixed_Assets_Ratio_Latest	1
4. Inventory_Ratio_Latest	1
5. Debtors_Ratio_Latest	1
6. Total_Asset_Turnover_Ratio_Latest	1
7. Interest_Cover_Ratio_Latest	1
8. PBIDTM_perc_Latest	1
9. PBITM_perc_Latest	1
10. PBDTM_perc_Latest	1
11. CPM_perc_Latest	1
12. APATM_perc_Latest	1
13. Inventory_Vel_Days	103

Let's treat these missing values with median (replacement with median elimin ates impact of outliers in the treatment)

1.3 Transform Target variable into 0 and 1

	default	Networth_Next_Year			default	Networth_Next_Year
0	1	-17.445	35	76	0	1978.8225
1	1	-17.445	35	77	0	1978.8225
2	1	-17.445	35	78	0	1978.8225
3	1	-17.445	35	79	0	1978.8225
4	1	-17.445	35	80	0	1978.8225
5	1	-17.445	35	81	0	1978.8225
6	1	-17.445	35	82	0	1978.8225
7	1	-17.445	35	83	0	1978.8225
8	1	-17.445	35	84	0	1978.8225
9	1	-17.445	35	85	0	1978.8225

0 3198 1 388 • Checking the proportion of default:

```
388/(3198+388) = 0.10819854991634133
```

10.8% Companies in the total dataset are prone to default

Checking summary statistics of default variable

```
3586.000000
count
            0.108199
mean
            0.310674
std
min
            0.000000
25%
            0.000000
50%
            0.000000
75%
            0.000000
            1.000000
max
Name: default, dtype: float64
```

Average default rate matches with overall default rate of 10.8%

- Let us check significance of variables 'PBT' in predicting Networth_Next_Year(default) before proceeding to model development.
 - Checking Descriptive statistics of the variable 'PBT'

```
3586.000000
count
          -8.115020
mean
std
         197.883559
min
        -513.947500
25%
         -41.235000
50%
           0.025000
75%
           61.957500
          372.377500
max
Name: ROG PBT perc, dtype: float64
```

• Checking Descriptive statistics of the variable 'PBT' for non-defaulters.

```
3198.000000
count
mean
         -1.161241
std
         193.633271
       -513.947500
min
25%
         -37.457500
50%
           2.175000
75%
          63.140000
         372.377500
Name: ROG PBT perc, dtype: float64
```

For companies whose have not defaulted, median 'Profit before tax is about 2.1'

• Checking Descriptive statistics of the variable 'PBT' for defaulters.

```
count
         388.000000
         -65.429936
mean
std
         222.064802
        -513.947500
min
25%
        -100.055000
50%
           0.00000
75%
          50.000000
         372.377500
max
Name: ROG_PBT_perc, dtype: float64
```

For companies whose have defaulted, median 'Profit before tax is about 0' In conclusion what it means is, typical good companies make a profit of about 2.1 un its per 100 units of income And a typical defaulted companies loses about 0 units per 100 units of income

1.4 Univariate analysis:

To measure the skeweness of every attribute:

Networth Next Year	1.751175
Equity Paid Up	2.086800
Networth	1.799108
Capital_Employed	1.783536
Total Debt	1.815459
Gross_Block	1.888628
Net_Working_Capital	1.924737
Curr_Assets	1.818667
Curr_Liab_and_Prov	1.808656
Total_Assets_to_Liab	1.825442
Gross_Sales	1.858550
Net Sales	1.855065
_	
Other_Income	1.764381
Value_Of_Output	1.848036
Cost of Prod	1.831873
Selling Cost	1.753899
PBIDT	1.754702
PBDT	1.668444
PBIT	1.759498
PBT	1.604391
PAT	1.573827
Adjusted PAT	1.590750
-	
CP	1.658778
Rev_earn_in_forex	1.454781
Rev exp in forex	1.552273
Capital_exp_in_forex	1.552139
Book Value Unit Curr	1.872894
Book_Value_Adj_Unit_Curr	59.877217
Market_Capitalisation	1.678750
CEPS annualised Unit Curr	1.834748
Cash Flow From Oper	1.708939
Cash Flow From Inv	-1.657783
Cash_Flow_From_Fin	-1.305180
ROG_Net_Worth_perc	0.865557
ROG Capital Employed perc	1.341156
ROG Gross Block perc	0.818541
ROG Gross Sales perc	1.848110
ROG_Net_Sales_perc	1.852963
ROG_Cost_of_Prod_perc	1.818736
ROG_Total_Assets_perc	1.343172
ROG_PBIDT_perc	1.089836
ROG PBDT perc	0.155558
ROG_PBIT_perc	0.810952
ROG_PBT_perc	-0.910237
ROG PAT perc	-0.535738
ROG CP perc	0.076314
ROG Rev earn in forex perc	-0.100233
	0.532183
ROG_Rev_exp_in_forex_perc	
ROG_Market_Capitalisation_perc	1.657618
Curr_Ratio_Latest	31.255716
Fixed Assets Ratio Latest	24.126480
Inventory Ratio Latest	27.006606
Debtors Ratio Latest	35.261410
DCDCOLD_Kacto_Hacesc	22.201410

10.360259 Total_Asset_Turnover_Ratio_Latest Interest Cover Ratio Latest 40.829653 -30.935896 PBIDTM perc Latest PBITM perc Latest -36.002893 PBDTM_perc_Latest -47.756985 CPM_perc_Latest -47.018189 APATM_perc_Latest -49.284357 Debtors Vel Days 2.216580 Creditors Vel Days 2.253606 Inventory_Vel_Days 3.556921 Value_of_Output_to_Total_Assets 0.982197 Value_of_Output_to_Gross_Block 2.094863 default 2.523672 dtype: float64

Bi-Variate Analysis:

Inference:

• First few variables (approx. 29 variables) are highly correlated to each other which shows in red - orange color.

Selected variables without multicollinearity

1.5 Train Test Split

Splitting arrays or matrices into random train and test subsets. Model will be fitted on train set and predictions will be made on the test set

```
X = Company.drop(['default','Networth_Next_Year'], axis=1)
y = Company['default']
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test =
train_test_split(X,y,test_size=0.33,random_state=42,stratify=Company['default'])
Company_train = pd.concat([X_train,y_train], axis=1)
Company_test = pd.concat([X_test,y_test], axis=1)
Company_train.to_csv('Company_train.csv',index=False)
Company_test.to_csv('Company_test.csv',index=False)
```

1.6 Build Logistic Regression Model on most important variables on Train Dataset

Before starting model building, let's look at the problem of multicollinearity. Multicollinearity occurs when two or more independent variables are highly correlated with one another in a regression model.

VIF

variables	VIE
Debtors_Ratio_Latest	1.021243e+00
Book_Value_Adj_Unit_Curr	1.022753e+00
Curr_Ratio_Latest	1.023580e+00
<pre>Inventory_Ratio_Latest</pre>	1.039941e+00
<pre>Interest_Cover_Ratio_Latest</pre>	1.079519e+00
Fixed_Assets_Ratio_Latest	1.091491e+00
ROG_Rev_earn_in_forex_perc	1.118596e+00
ROG_Rev_exp_in_forex_perc	1.194357e+00
ROG_Gross_Block_perc	1.278542e+00
<pre>Inventory_Vel_Days</pre>	1.284497e+00
ROG_Market_Capitalisation_perc	1.507138e+00
Creditors_Vel_Days	1.547699e+00
Debtors_Vel_Days	1.561576e+00
Value_of_Output_to_Gross_Block	1.623351e+00
Total_Asset_Turnover_Ratio_Latest	1.745511e+00
ROG_Cost_of_Prod_perc	1.905652e+00
ROG_Net_Worth_perc	2.151541e+00
Rev_earn_in_forex	2.418991e+00
Cash_Flow_From_Fin	2.425077e+00
	Book_Value_Adj_Unit_Curr Curr_Ratio_Latest Inventory_Ratio_Latest Interest_Cover_Ratio_Latest Fixed_Assets_Ratio_Latest ROG_Rev_earn_in_forex_perc ROG_Rev_exp_in_forex_perc ROG_Gross_Block_perc Inventory_Vel_Days ROG_Market_Capitalisation_perc Creditors_Vel_Days Debtors_Vel_Days Value_of_Output_to_Gross_Block Total_Asset_Turnover_Ratio_Latest ROG_Cost_of_Prod_perc ROG_Net_Worth_perc Rev_earn_in_forex

variables

0	Equity Paid Up	2.488868e+00
24	Capital exp in forex	2.650147e+00
23	Rev exp in forex	2.855170e+00
11	Other Income	
14	_ Selling Cost	
30	Cash Flow From Inv	3.004314e+00
62	Value of Output to Total Assets	3.037694e+00
27	Market Capitalisation	3.181710e+00
38	ROG Total Assets perc	3.214704e+00
25	Book Value Unit Curr	3.441361e+00
33	ROG_Capital_Employed_perc	3.465365e+00
3	Total Debt	3.869653e+00
28	CEPS annualised Unit Curr	4.021658e+00
5	Net_Working_Capital	4.454152e+00
29	Cash_Flow_From_Oper	4.477459e+00
4	Gross_Block	5.229333e+00
41	ROG_PBIT_perc	6.533250e+00
7	Curr_Liab_and_Prov	6.570884e+00
39	ROG_PBIDT_perc	7.503174e+00
1	Networth	7.526605e+00
43	ROG_PAT_perc	7.631506e+00
42	ROG_PBT_perc	8.752629e+00
44	ROG_CP_perc	9.122133e+00
6	Curr_Assets	1.102961e+01
40	ROG_PBDT_perc	1.150587e+01
13	Cost_of_Prod	1.286867e+01
17	PBIT	1.376020e+01
15	PBIDT	1.498045e+01
2	Capital_Employed	1.731066e+01
18	PBT	1.856289e+01
8	Total_Assets_to_Liab	2.134722e+01
20	Adjusted_PAT	2.278784e+01
21	СР	2.448345e+01
16	PBDT	2.595878e+01
19		3.390117e+01
9	Gross_Sales	5.752165e+01
36	ROG_Net_Sales_perc	1.199063e+02
35	ROG_Gross_Sales_perc	
12	Value_Of_Output	
10	-	2.046160e+02
56	- -	2.940952e+02
54	PBIDTM_perc_Latest	3.300852e+10
55	PBITM_perc_Latest	
57	CPM_perc_Latest	
58	APATM_perc_Latest	6.449423e+10

Here, we see that the value of VIF is high for many variables. Here, we may drop variables with VIF more than 5 (very high correlation) & build our model

Model 1 – Logistic Regression

Logit Regression Results							
Dep. Variable:	default		No. Obser	vations	:	2402	
Model:	Logit		Df Re	siduals	:	2367	
Method:	MLE		D	f Model:	1	34	
Date: Sur	n, 20 Dec 2020		Pseudo	R-squ.:	: 0.6113		
Time:	09:47:45		Log-Lik	elihood	:	-320.07	
converged:	True			LL-Null	:	-823.47	
Covariance Type:	nonrobust		LLR p-value:		: 2	.004e-189	
	coef	std err	z	P> z	[0.025	0.975]	
Intercept	t -1.0642	0.190	-5.597	0.000	-1.437	-0.692	
Debtors_Ratio_Lates	t -0.0015	0.003	-0.525	0.600	-0.007	0.004	
Book_Value_Adj_Unit_Cur	r -3.811e-05	0.000	-0.164	0.870	-0.000	0.000	
Curr_Ratio_Lates	t -0.0038	0.005	-0.724	0.469	-0.014	0.006	
Inventory_Ratio_Lates	t -0.0028	0.002	-1.267	0.205	-0.007	0.002	
Interest_Cover_Ratio_Lates	t -0.0019	0.001	-2.019	0.044	-0.004	-5.4e-05	
Fixed_Assets_Ratio_Lates	t -0.0009	0.001	-0.639	0.523	-0.003	0.002	
ROG_Rev_earn_in_forex_pero	-0.0012	0.004	-0.266	0.790	-0.010	0.008	
ROG_Rev_exp_in_forex_perc	-0.0027	0.002	-1.145	0.252	-0.007	0.002	
ROG_Gross_Block_pero	-0.0016	0.007	-0.247	0.805	-0.014	0.011	
Inventory_Vel_Days		0.001	0.702	0.483	-0.001	0.002	
ROG_Market_Capitalisation_pero		0.002	-0.138	0.890	-0.003	0.003	
Creditors_Vel_Days		0.000	1.309	0.191	-0.000	0.002	
Debtors_Vel_Days		0.000	-2.735	0.006	-0.002	-0.000	
Value_of_Output_to_Gross_Block	-0.0190	0.010	-1.926	0.054	-0.038	0.000	

Total_Asset_Turnover_Ratio_Latest	0.0280	0.036	0.775	0.438	-0.043	0.099
ROG_Cost_of_Prod_perc	-0.0027	0.001	-1.943	0.052	-0.005	2.35e-05
ROG_Net_Worth_perc	-0.0123	0.004	-3.007	0.003	-0.020	-0.004
Rev_earn_in_forex	0.0011	0.002	0.672	0.502	-0.002	0.004
Cash_Flow_From_Fin	0.0010	0.005	0.204	0.839	-0.009	0.011
Equity_Paid_Up	-0.0013	0.004	-0.372	0.710	-0.008	0.006
Capital_exp_in_forex	-0.0928	0.065	-1.433	0.152	-0.220	0.034
Rev_exp_in_forex	0.0041	0.002	2.125	0.034	0.000	0.008
Other_Income	0.0003	0.007	0.040	0.968	-0.014	0.015
Selling_Cost	-0.0113	0.011	-1.005	0.315	-0.033	0.011
Cash_Flow_From_Inv	-0.0024	0.005	-0.475	0.635	-0.012	0.007
Value_of_Output_to_Total_Assets	0.0934	0.190	0.493	0.622	-0.278	0.465
Market_Capitalisation	-0.0006	0.000	-2.618	0.009	-0.001	-0.000
ROG_Total_Assets_perc	-0.0151	0.007	-2.035	0.042	-0.030	-0.001
Book_Value_Unit_Curr	-0.1489	0.012	-12.512	0.000	-0.172	-0.126
ROG_Capital_Employed_perc	0.0115	0.006	1.834	0.067	-0.001	0.024
Total_Debt	0.0013	0.001	2.598	0.009	0.000	0.002
CEPS_annualised_Unit_Curr	-0.1013	0.039	-2.626	0.009	-0.177	-0.026
Net_Working_Capital	-0.0003	0.001	-0.259	0.796	-0.002	0.002
Cash_Flow_From_Oper	0.0006	0.004	0.157	0.875	-0.007	0.009

We can see that few variables are insignificant & may not be useful to discriminate cases of deault

Let us look at the adjusted pseudo R-square value

The adjusted pseudo R-square value is 0.570022460723017

Adjusted pseudo R-square seems to be lower than Pseudo R-square value which means there are insignificant variables present in the model. Let's try & remove variables whose p value is greater than 0.05 & rebuild our model

Model 2 - Logistic Regression (Statsmodel)

Logit Regression Results							
Dep. Variable:		default	No. O	bservatio	ns:	2402	
Model:		Logit	D	of Residua	ıls:	2389	
Method:		MLE		Df Mod	lel:	12	
Date:	Sun, 20 D	ec 2020	Pse	eudo R-sq	ıu.:	0.6031	
Time:	(9:47:46	Log	g-Likelihoo	od:	-326.87	
converged:		True		LL-N	ull:	-823.47	
Covariance Type:	no	onrobust	I	LLR p-val	ue:	5.426e-205	
		coef	std err	z	P> z	[0.025	0.975]
	Intercept	-0.9810	0.136	-7.196	0.000	-1.248	-0.714
Interest_Cover_Ra	tio_Latest	-0.0019	0.001	-2.185	0.029	-0.004	-0.000
Debtors_	Vel_Days	-0.0010	0.000	-2.290	0.022	-0.002	-0.000
Value_of_Output_to_Gro	ss_Block	-0.0215	0.009	-2.387	0.017	-0.039	-0.004
ROG_Cost_of_F	Prod_perc	-0.0028	0.001	-2.066	0.039	-0.005	-0.000
ROG_Net_W	orth_perc	-0.0132	0.004	-3.260	0.001	-0.021	-0.005
Rev_exp	_in_forex	0.0031	0.002	2.001	0.045	6.37e-05	0.006
Market_Cap	italisation	-0.0006	0.000	-2.933	0.003	-0.001	-0.000
ROG_Total_As	sets_perc	-0.0139	0.007	-1.924	0.054	-0.028	0.000
Book_Value_	Unit_Curr	-0.1523	0.011	-13.325	0.000	-0.175	-0.130
ROG_Capital_Emplo	yed_perc	0.0127	0.006	2.111	0.035	0.001	0.025
Т	otal_Debt	0.0010	0.000	3.068	0.002	0.000	0.002
CEPS_annualised_	Unit_Curr	-0.0940	0.036	-2.641	0.008	-0.164	-0.024

We can see that all variables are significant & may be useful to discriminate cases of deault.

Let us also check the multicollinearity of the model using Variance Inflation Factor (VIF) for the predictor variables.

	variables	VIF
0	Interest_Cover_Ratio_Latest	1.048556
1	Debtors_Vel_Days	1.104037
3	ROG_Cost_of_Prod_perc	1.208945
2	Value_of_Output_to_Gross_Block	1.265036
10	Total_Debt	1.708669
5	Rev_exp_in_forex	1.743560
6	Market_Capitalisation	1.852071
4	ROG_Net_Worth_perc	1.889759
7	ROG_Total_Assets_perc	3.016602
8	Book_Value_Unit_Curr	3.033404
11	CEPS_annualised_Unit_Curr	3.171242
9	ROG_Capital_Employed_perc	3.203777

We can see that multicollinearity still exists but let's not drop them as VIFs are not very high.

The adjusted pseudo R-square value is 0.5884863653102299

- We see that adjusted R sq is now close to Rsq, thus suggesting lesser insignificant variables in the model
- We also notice that current model has no insignificant variables and can be used for prediction purposes.

Checking the coefficients

```
-0.980968
Intercept
Interest Cover Ratio Latest
                                 -0.001881
Debtors Vel Days
                                 -0.001010
Value of Output to Gross Block
                                 -0.021505
ROG_Cost_of_Prod_perc
                                 -0.002791
ROG Net Worth perc
                                 -0.013181
Rev exp in forex
                                 0.003073
Market Capitalisation
                                 -0.000633
ROG Total Assets perc
                                 -0.013893
Book Value Unit Curr
                                 -0.152321
ROG Capital Employed perc
                                 0.012736
Total Debt
                                 0.000971
CEPS annualised Unit Curr
                                 -0.093962
dtype: float64
```

- Positive coefficient values means, higer that particular variable, more the chance of default.
- Similarly, less profitable and more chance of default.

Checking the descriptive statistics of predicted probabilities

```
array([1.46583616e-30, 6.14263635e-25, 1.50882736e-06, 5.0543842 6e-03, 6.95997211e-02, 9.99999654e-01])
```

1.7 Validate the Model on Test Dataset and state the performance matrices

Prediction on the Data

Let us first check the distribution plot of the logit function values

Inference:

From the above boxplot, we need to decide on one such value of a cut-off which will give us the most reasonable descriptive power of the model. Let us take a cut-off of 0.07 and check.

Checking the accuracy of the model using confusion matrix for training set

True Negative: 1791 False Positives: 351 False Negatives: 11 True Positives: 249

	precision	recall	f1-score	support
0 1	0.994 0.415	0.836 0.958	0.908 0.579	2142 260
accuracy macro avg weighted avg	0.704 0.931	0.897 0.849	0.849 0.744 0.873	2402 2402 2402

Inference:

- As observed above, accuracy of the model i.e. %overall correct predictions is 84%
- Sensitivity of the model is 95% i.e. 95% of those defaulted were correctly identified as defaulters by the model

Checking the accuracy of the model using confusion matrix for test set

True Negative: 882
False Positives: 174
False Negatives: 7
True Positives: 121

	precision	recall	f1-score	support
0 1	0.992 0.410	0.835 0.945	0.907 0.572	1056 128
accuracy macro avg weighted avg	0.701 0.929	0.890 0.847	0.847 0.740 0.871	1184 1184 1184

- As observed above, accuracy of the model i.e. %overall correct predictions is 84%
- Sensitivity of the model is 94% i.e. 94% of those defaulted were correctly identified as defaulters by the model

Let us take a cut-off of 0.08 and check if our predictions have improved

Checking the accuracy of the model using confusion matrix for training set

True Negative: 1823 False Positives: 319 False Negatives: 11 True Positives: 249

	precision	recall	f1-score	support
0 1	0.994	0.851 0.958	0.917 0.601	2142 260
accuracy macro avg weighted avg	0.716 0.934	0.904	0.863 0.759 0.883	2402 2402 2402

Inference:

• Accuracy of the model i.e. % overall correct predictions has increased from 84% to 86% and the sensitivity of the model is same as 95%.

- -- 8 - -- 1 --

Checking the accuracy of the model using confusion matrix for test set

True Negative: 897
False Positives: 159
False Negatives: 7
True Positives: 121

	precision	recall	f1-score	support
0 1	0.992 0.432	0.849	0.915 0.593	1056 128
accuracy macro avg weighted avg	0.712 0.932	0.897 0.860	0.860 0.754 0.880	1184 1184 1184

- Accuracy of the model i.e. %overall correct predictions is 86% & sensitivity of the model stands at 94%
- We may choose cutoff of 0.08 as it gave higher model sensitivity & overall accuracy of the model in test dataset

Model 3 - Logistic Regression (Sklearn)

Classification report for Train:

```
Confusion Matrix [[2107 35] [ 74 186]]
```

	precision	recall	f1-score	support
0 1	0.966 0.842	0.984 0.715	0.975 0.773	2142 260
accuracy macro avg weighted avg	0.904 0.953	0.850 0.955	0.955 0.874 0.953	2402 2402 2402

Classification report for Test:

```
Confusion Matrix [[1031 25] [ 35 93]]
```

	precision	recall	f1-score	support
0 1	0.967 0.788	0.976 0.727	0.972 0.756	1056 128
accuracy macro avq	0.878	0.851	0.949	1184 1184
weighted avg	0.948	0.949	0.948	1184

- Accuracy Score for Train set is **0.9546211490424646**
- Accuracy Score for Test set is **0.9493243243243243**

- Accuracy of the Logistic Model i.e. %overall correct predictions is 94% & sensitivity of the model stands at 73%
- 73% of those defaulted were correctly identified as defaulters by the model

1.8 Build a Random Forest Model on Train Dataset

Model 4 - Random Forest

Classification report for Train:

Confusion Matrix [[2128 14] [31 229]]				
	precision	recall	f1-score	support
0	0.986	0.993	0.990	2142
1	0.942	0.881	0.911	260
accuracy			0.981	2402
macro avg	0.964	0.937	0.950	2402
weighted ava	0.981	0.981	0.981	2402

1.9 Validate the Random Forest Model on test Dataset and state the performance matrices

Classification report for Test:

```
Confusion Matrix
[[1053 3]
[ 20 108]]
                  precision recall f1-score support
               0
                   0.981
                           0.997
                                     0.989
                                             1056
                    0.973
                           0.844
                                     0.904
                                              128
                                     0.981
                                              1184
         accuracy
                   0.977 0.920
        macro avg
                                     0.946
                                              1184
                    0.980
                            0.981
                                     0.980
     weighted avg
                                              1184
```

- Accuracy Score for Train set is 0.9812656119900083
- Accuracy Score for Test set is 0.9805743243243243

- Accuracy of the Random Forest Model i.e. %overall correct predictions is 98% & sensitivity of the model stands at 84%
- 84% of those defaulted were correctly identified as defaulters by the model.

1.10 Build an LDA Model on Train Dataset

Model 5 - Linear Discriminant Analysis (LDA)

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.metrics import confusion_matrix,classification_report,roc_auc_score,roc_curve,accuracy_score lda = LinearDiscriminantAnalysis() model_lda = lda.fit(X_train,y_train) lda_ypred_train = model_lda.predict(X_train) lda_ypred_test = model_lda.predict(X_test)

1.11 Validate the LDA Model on test Dataset and state the performance matrices

Model evaluation on test data set

Classification report for Test:

```
Confusion Matrix [[1041 15] [ 98 30]]
```

	precision	recall	f1-score	support
0	0.91	0.99	0.95	1056
1	0.67	0.23	0.35	128
accuracy			0.90	1184
macro avg weighted avg	0.79 0.89	0.61 0.90	0.65 0.88	1184 1184

- Accuracy Score for Train set is 0.906744379683597
- Accuracy Score for Test set is 0.9045608108108109

- Accuracy of the Random Forest Model i.e. %overall correct predictions is 90% & sensitivity of the model stands at 23%
- 23% of those defaulted were correctly identified as defaulters by the model which is very poor prediction.

1.12 Compare the performances of all the three models (include ROC Curve)

Train:

AUC for Logistic Regression Train Model_2 is **0.9644185879479996**AUC for Random Forest Train Model is **0.9908460820225525**AUC for Linear Discriminant Analysis Train Model is **0.90553939524 52775**

Test:

AUC for Logistic Regression Test Model_2 is **0.9505282315340909**AUC for Random Forest Test Model is **0.9876302083333333**AUC for Linear Discriminant Analysis Test Model is **0.872203480113 6364**

1.13 Recommendation:

- It appears that all models performed well for the defaulters, with precision, recall metrics all above 0.7.
- Both models' performance is almost the same for the non-defaulters and arguably the "more important" classification of whether a company is going to default or not.
- AUC for Random Forest Analysis Test Model is 98%
- AUC for Logistic Regression Model Test Model is 95%
- Accuracy of the Random Forest Model i.e. %overall correct predictions is 98% & sensitivity of the model stands at 84%
- Recall: 84% of those defaulted were correctly identified as defaulters by the model.
- Accuracy of the Logistic Model i.e. %overall correct predictions is 94% & sensitivity of the model stands at 73%
- Recall: 73% of those defaulted were correctly identified as defaulters by the model.

Part 2 Market Risk:

The dataset contains 6 years of information (weekly stock information) on the stock prices of 10 different Indian Stocks. Calculate the mean and standard deviation on the stock returns and share insights.

Data set for the Problem: Market+Risk+Dataset.csv

Importing the dataset

Data set:

	Date	Infosys	Indian Hotel	Mahindra & Mahindra	Axis Bank	SAIL	Shree Cement	Sun Pharma		ldea Vodafone	Jet Airways
0	31- 03- 2014	264	69	455	263	68	5543	555	298	83	278
1	07- 04- 2014	257	68	458	276	70	5728	610	279	84	303
2	14- 04- 2014	254	68	454	270	68	5649	607	279	83	280
3	21- 04- 2014	253	68	488	283	68	5692	604	274	83	282
4	28- 04- 2014	256	65	482	282	63	5582	611	238	79	243

Exploratory Data Analysis:

The number of rows (observations) is 314

The number of columns (variables) is 11

Data types of all variables

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 314 entries, 0 to 313

Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	Date	314 non-null	object
1	Infosys	314 non-null	int64
2	Indian_Hotel	314 non-null	int64
3	Mahindra_&_Mahindra	314 non-null	int64
4	Axis_Bank	314 non-null	int64
5	SAIL	314 non-null	int64
6	Shree_Cement	314 non-null	int64
7	Sun_Pharma	314 non-null	int64
8	Jindal_Steel	314 non-null	int64
9	Idea_Vodafone	314 non-null	int64
10	Jet_Airways	314 non-null	int64

dtypes: int64(10), object(1)

memory usage: 27.1+ KB

Now, let us check the basic measures of descriptive statistics for the continuous variables

5 Point summary:

	count	mean	std	min	25%	50%	75%	max
Infosys	314.0	511.340764	135.952051	234.0	424.00	466.5	630.75	810.0
Indian_Hotel	314.0	114.560510	22.509732	64.0	96.00	115.0	134.00	157.0
hindra_&_Mahindra	314.0	636.678344	102.879975	284.0	572.00	625.0	678.00	956.0
Axis_Bank	314.0	540.742038	115.835569	263.0	470.50	528.0	605.25	808.0
SAIL	314.0	59.095541	15.810493	21.0	47.00	57.0	71.75	104.0
Shree_Cement	314.0	14806.410828	4288.275085	5543.0	10952.25	16018.5	17773.25	24806.0
Sun_Pharma	314.0	633.468153	171.855893	338.0	478.50	614.0	785.00	1089.0
Jindal_Steel	314.0	147.627389	65.879195	53.0	88.25	142.5	182.75	338.0
Idea_Vodafone	314.0	53.713376	31.248985	3.0	25.25	53.0	82.00	117.0
Jet_Airways	314.0	372.659236	202.262668	14.0	243.25	376.0	534.00	871.0

2.1 Draw Stock Price Chart for any 2 variables

The above stock is on increasing trend since it does not have much concentration on one particular area.

2.2 Calculate Returns

Steps for calculating returns from prices:

Take logarithms Take differences

Checking the rows & columns of dataset

(314, 10)

Checking top 5 rows:

	Infosys	Indian_Hotel	Mahindra_&_Mahindra	Axis_Bank	SAIL	Shree_Cement	,
0	NaN	NaN	NaN	NaN	NaN	NaN	
1	-0.026873	-0.014599	0.006572	0.048247	0.028988	0.032831	
2	-0.011742	0.000000	-0.008772	-0.021979	-0.028988	-0.013888	
3	-0.003945	0.000000	0.072218	0.047025	0.000000	0.007583	
4	0.011788	-0.045120	-0.012371	-0.003540	-0.076373	-0.019515	

2.3 Calculate Stock Means and Standard Deviation

- Stock Means: Average returns that the stock is making on a week to week basis
- Stock Standard Deviation: It is a measure of volatility meaning the more a stock's returns vary from the stock's average return, the more volatile the stock

Calculating stock means

Infosys	0.002794
Indian Hotel	0.000266
Mahindra & Mahindra	-0.001506
Axis Bank	0.001167
SAIL	-0.003463
Shree Cement	0.003681
Sun_Pharma	-0.001455
Jindal_Steel	-0.004123
Idea_Vodafone	-0.010608
Jet Airways	-0.009548

dtype: float64

Calculating stock standard deviation

Infosys	0.035070
Indian_Hotel	0.047131
Mahindra_&_Mahindra	0.040169
Axis_Bank	0.045828
SAIL	0.062188
Shree_Cement	0.039917
Sun Pharma	0.045033
Jindal_Steel	0.075108
Idea Vodafone	0.104315
Jet Airways	0.097972

dtype: float64

2.4 Draw a plot of Stock Means vs Standard Deviation and share insights

Insights:

Stock with a lower mean & higher standard deviation do not play a role in a portfolio that has competing stock with more returns & less risk. Thus for the data we have here, we are only left few stocks:

- One with highest return and lowest risk &
- One with lowest risk and highest return

Therefore from pure *Returns* perspective, *Shree_Cement* looks good in this dataset & from pure *Risk* perspective (as measured by standard deviation), *Infosys* followed by *Shree_Cement* & *Mahindra_*&_*Mahindra* looks good in this datase