Aufgabe 11

Gegeben sei das das GF(4)

+	0	1	2	3	<u> </u>	0	1	2	
0	0	1	2 3 0	3	0	0	0	0	
1	1	0	3	2	1	0	1	2	
2	2	3	0	1	2	0	2	3	
3	3	2	1	0	3	0	3	1	

und das Polynom

$$g(Q) = Q^2 + 1$$

über diesem GF(4).

- a.) Untersuchen Sie, ob g(Q) zur Erzeugung eines zyklischen quaternären Codes mit der Codewortlänge N= 4 geeignet ist. Falls ja, wieviele Informationsstellen K und welche Coderate hat der zugehörige quaternäre Code? Wie lautet das zugehörige Checkpolynom h(Q)?
- b.) Vervollständigen Sie die nachfolgende Syndromtabelle

	e_{i}			$e_i(Q)$	$S_i(Q) = e_i(Q) \mod g(Q)$	S_{i}
0	0	0	1	1		
0	0	0	2	2		
0	0	0	3	3		
0	0	1	0	Q		
0	0	2	0	2Q		
0	0	3	0	3 <i>Q</i>		
0	1	0	0	Q^2		
0	2	0	0	$2Q^2$		
0	3	0	0	$3Q^2$		
1	0	0	0	Q^3		
2	0	0	0	$2Q^3$		
3	0	0	0	$3Q^3$		

Lassen sich alle Einzelsymbolfehler erkennen? Lassen sich alle Einzelsymbolfehler korrigieren? Wie groß ist die Distanz t des Codes?

- c.) Berechnen Sie, falls möglich, das systematische Codewort für $a(Q) = Q^2 + 2Q + 1$.
- d.) Berechnen Sie das systematische Codewort für a(Q) = 2Q + 3.
- e.) Überprüfen Sie das unter d.) ermittelte Codewort auf seine Gültigkeit.
- f.) Es wir das fehlerbehaftete Codewort

$$y(D) = 3Q^2 + 2Q + 3$$

empfangen. Dekodieren Sie dieses Codewort unter Verwendung der Syndromtabelle aus Aufgabenteil b.). Wie lautet das korrigierte Codewort?