

Hypothesis Testing - Handwritten Notes | MATH 312

Probability and Statistics

Drexel University
20 pag.

	WEEK 5
Note Tit	le 2/13/2007
	Hypothesis testing
	Terminologies:
	NULL HYPOTHESES (usually denoted by Ho)
	- "prior belief"
	ALTERNATIVE HYPOTHESIS (denoted by Ha)
	- "atternative belief"
	spical: collect data, use the data to decide thatin whether Ho Should be rejected.
	1. A TEST STATISTIC is a function of the
	semple data on which the decision is to be based.
	2. A REJECTION REGION is the set of all
	test statistic values for which to will be
	rejected.
	A TYPE I ERROR - rejecting the null hypothesis Ho when it is true
	A TYPE I ERROR – not rejecting Ho when Ho is false.

E.g.	
	Two Companies
	p= proportion of all potential subscribers
	who favor the 1st company over the 2nd
	$H_o: p=0.5$
	Ha: P = 0.5
	X = # of in a random sample of size 25 individuals
*	individuals who favor the 1st company
ਬ	individuals who favor the 1st company $x - an observed value of X$
(a)	Rejection region R'= Lx: x57 or x≥ 18}
(c)	Distribution of X when Ha is true lie. p=0.5)
	$P[X=x] = {\binom{25}{x}} {(\frac{1}{2})}^{x} {(1-\frac{1}{2})}^{25-x} $ region
≪	region
	Type I error] =?
·	$= P[X \leq 7 \text{ or } X > 18]$
	- 1 L X - 1 0 · X 9 / 8 J
	$= \sum_{\alpha=0}^{7} b(\alpha; 25, \frac{1}{2}) + (1 - \sum_{\alpha=0}^{17} b(\alpha; 25, \frac{1}{2})$
	x=0
	Table A.1 0.022 + 1-0.978
	- 420
	pg 138 = 0.044

d. $\beta(p) = P C Type T error when the true p] is P \neq 0.5$
is P \ 0.5
Note: Distribution of X when $P=0.3$ is $P[X=x] = {25 \choose x} (0.3)^{x} (1-0.3)^{25-x}$
$P[X=x] = {\binom{25}{25}} (0.3)^{25} (1-0.3)^{25-x}$
$\beta(0.3) = P[$ we fail to reject to when $P=0.3$
$\beta(0.3) = P[$ we fail to reject the when $P=0.3]$ = $P[$ $8 \le X \le 17] = P[X \le 17] - P[X \le 5]$
$= \sum_{x=0}^{7} b(x; 25, 0.3) - \sum_{x=0}^{7} b(x; 25, 0.3)$
×=0
Table A.1

	Tests about a population mean (Section 8.2)
	3 cases (as in the study of CI)
(I) normal population with known o
(D not neccessarily normal, but n large
	10) normal population, o not known, no not necessally large
(王)	$N(\mu, \sigma) - \sigma$ known
	want to decide if we should reject
	the null hypothesis Ho: µ=µ0 or not.
	we have a random sample
	$x_1, x_2, \dots, x_n \sim_{iid} N(?=\mu, \sigma)$
	Recall: if μ is really μ_0 , then
	$X = (x_1 + \cdots + x_n)/n \sim N(\mu_0, \sqrt[6]{n})$
	$\frac{\sqrt{-\mu_0}}{\sigma/\sqrt{n}} \sim N(0,1)$
	0/5N

One sample z test

NULL Hypothesis Ho: $\mu=\mu_0$

Test statistic value: $z = \sqrt{x - \mu_0}/\sigma/sn$

Alt. hypothesis

Rejection region for level & test

Ha: 4>40

そッそ。

Ha: ju < juo

そらーそん

Ha: 1+16

そうるが or をくーるが

Q: What's the rationale behind these?

A: The rejection regions are chosen in such a way that $P[Type I enor] = \infty$

'PLlype I enor] = &

Note: d√ → rejection region smaller (makes sense, right?)

```
What about Type II error?
                if \mu is not \mu_0 but is \mu' (>\mu_0)

(so we should reject the assume that \mu>\mu_0
                             PI type II error ]
accept Ho when
                                   = \mu' \neq \mu_0 but the Level of test fails to reject to
                           P[X< µ0+ Za To when µ= µ1
                                \Phi \left( \geq_{\alpha} + \frac{\mu_0 - \mu'}{\sigma/\sigma_0} \right)
                                        PCtype II emor] \
                    • of => P[ type II emor] $
                    · nf => PC type I enor] +
         How large should n be such that P[type II error]= 3?
             Solve: \Phi(z_{\chi} + \frac{\mu_0 - \mu'}{\sigma \sqrt{n}}) = \beta
                            -Z_{\beta} = Z_{\alpha} + \frac{\mu_0 - \mu'}{\sigma/\sigma} \quad \text{or} \quad n = \left[\frac{\sigma(z)}{\mu_0}\right]
```

T standard normal caf

Alternative Type II error prob. $\beta(\mu')$ hypothesis For a Level α test Ha: $\mu > \mu_0$ $\Phi(2\alpha + \frac{\mu_0 - \mu'}{\sigma' \sigma \pi'})$
hypothesis for a Level or test
Ha: u> uo (=x + \frac{\mu_0-\mu'}{\sigma'})
ノノ
Ha: $\mu < \mu_0$ - $\Phi (-3 + \mu_0 - \mu')$
The state of the s
Ha: m = 10 - m) - 1 (-34 + 10-1/2)
Sample Size or for which a level or test also has $\beta(\mu') = \beta$ at the alternative value μ^{1} is
test also has B(11)= A at the alternative value.
u^1 is
$\gamma = \begin{cases} \left[\frac{\sigma(2\alpha + 2\beta)}{\mu^{-\mu'}} \right]^{2} & (Ha: \mu > \mu) \\ Ha: \mu < \mu) \end{cases}$
$\gamma = \begin{cases} \frac{\sigma(2\alpha + 2\beta)}{\mu - \mu'} \end{cases}^2 (Ha: \mu > \mu \circ \mu \circ$
L LEMEN
[σ(== + = β)] ² (Ha: μ=μο)
$\mu_0 - \mu_1$
Bu through example 8.6 and 8.7 in class

(II) n large (underlying population distribution) Recall To the normal
$\frac{X-\mu}{5/\sqrt{n}}$ is approximately $N(0,1)$
So can use the tests in case(I) with the appropriate changes (basically just change of to
Read example 8.8

(III) n not necc. large normal population
Recall $T = \frac{X - \mu}{S \sqrt{n}}$ has a t-distribution with (n-1) d.o.f
The one-sample t-test
Null hypothesis: $\mu = \mu_0$
Test statistic value: $t = (\overline{x} - \mu_0)(s/\overline{n})$
Atternative hypothesis Rejection region for a level a test
Ha: μ>μο t≥toc, n-1
Ha: µ< µo t < -tan-1
Ha: u+ uo t=ten or -ten
Same reasoning behind the z-test:
e.g. PLtype I error] — de for type I
assume 11 error of for type I error
Ha: ut no P[T \in region when \(\mu = \mu_0 \)
So if we choose the rejection region to be:

rejection region. then we get what we want!
Determing B in this case is more complicated (can you see why?)
see P302
Read Example 8.9

B and sample size determination
B and sample size determinations What if Ho is not true, i.e.
$P = p' \neq P_o$
test Stechistic
$Z = \frac{\beta - \rho_o}{\sqrt{\rho_o(l - \rho_o)/n}}$ is no longer N(0). That like before, in order to calculate P[type II error], we need to first understan
Just like before, in order to calculate
the distribution of Z when the true p is p'.
$\hat{p} = \frac{x_{i+} + x_{i}}{n} x_{i} \stackrel{\text{iid}}{\sim} \text{Bernoulli } (p')$
nlarge so \hat{p} is approximately $N(p', \frac{p'(1-p')}{m})$
and \overline{Z} is approximately $N(\frac{p'-p_0}{\sqrt{p_0(1-p_0)}n}, \sqrt{\frac{p'(1-p')}{p_0(1-p_0)}})$
(Exercise: why?)

Alt. Hypothesis	β(ρ')
Ha: p>pa	Φ(Po - b, + 3 × 160(1-60) w)
, , ,	Jp' (1-p')m
Ha: P< Pa	T (Po - p' - 3 x√ Po (1-po)/n)
100	1- \$\(\frac{\fir}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\
Ha: p≠pa	Φ[<u>Po-p'+&/2 [Po(-po)/n</u>] [P'(1-p')/n]
1.60 1 1.60	J p'(1-p') m
	- [Po - p' - 24 [Po(1-po)/n]
	- ep [Po-ρ'-34 [Po(-ρο)/n]] - p'(-ρ')/n
	<u> </u>
(Exercise:	denine these yourself)
If d, (S	achieve these:
\sim	[= (1-ρ0) + = p (1-ρ')] one tailed test
n= }	D'-0 tailed
	tese -
U	Zx 1 Po (1-Po) + 7 p (1-p')
	P'-P0

```
( sample exam question!)
A deleren company advertises
              " at least 90% of packages are
          P = "true proportion of packages delivered
            P=0.8 [ only the company would know
                           secret, of course.
               on a level 0.01 test with n= 225 packages
likely can the test successful tell
the company is lying in the
ad.?
        H_0: P = 0.9
                                (the company's claim)
        Ha: P < 0.9
      B(0.8) = P[ level a01 test fails to reject when p=0.8
                1 - \overline{\phi}(2.00) = 0.0228
            level 0.01 test with n= 225 ] = 1- B(0.8)
```

If we want $d=\beta=0.01$
$\frac{\partial}{\partial x} > \frac{\partial}{\partial x} = 2.3$
$n = \begin{bmatrix} 2.33 \sqrt{0.9} & (0.1) \\ +2.83 \sqrt{0.8} & (0.2) \end{bmatrix}^2$
$n = \left[\frac{2.33\sqrt{(0.9)(0.1)} + 2.23\sqrt{(0.8)(0.2)}}{0.8 - 0.9} \right]^{2}$
~ 266.
Small sample test for p:
use binomial dispribution
(in stead of a CUT approx.)
see pg 309

P-values (section 8-4) ansider the following scenario: 10 = true average time to initial relief of of pain of a best-selling pain reliever the company considers introducing a newly developed μ = average time for the new pain reliever Ho: 4=10 Ha: µc 10 Company tells customers "We reject to lie. new reliever is better) based on a hypothesis testing analysis A oustomer satisfied with the best-selling reliever would view a Type I error serious, He Ishe (Contemplating a Switch to the new reliever) would question the validity of the company's claim; in particular, he/she may want to test the hypothesis with d = 0.05, 0.01, or even lower.

Pr	blem: The company's statement prevents an individual decision maker from reaching a
	Conclusion at Such a level (of a).
Reb	ited: may be the data gathered by the company
prob	ilem gives a z value that bardy fails into
	the rejection
	level 0 region.
	d=0.1
	d=0.1 rejection region
	Ha is rejected (using double to the
	Ho is rejected (using d=a1), but very
	marginally, and the
	customers do not know it from the statement .
	the statement (S).
	Co. the Composition to the orbits
	Can the company say bornething to the public which is more informative.?
	with 15 more informative.
	There is a nice solution to this, all you
	need to understand a Simple
	fact:
	[Read Ex. 8.5 and 8.15]

	Example		
	Ho:	$\mu = 1.5$	(or known in this case)
	Ha	μ=1.5 : μ>1.5	(o known in this case) = 0.20
	Lock	•	x, -, x32 given
	statistic = 3	<u>K - 1/5</u>	76 = 76,4+ 732
	value	(0,2)/\32	
	2	2.10	² 1.5742
	Level of Significance &	rejecton region	Conclusion
more	0.05	Z≥ 1.645	reject Ho
and more	0.025	₹>1.96	reject Ho
~picky"		Z7 2.33	do not reject to
type]	1 205	Z7258	do not reject Ho
KEY	X*	at which we s	critical & value witch from reject to
	6 7 P-value 6 < P-value	\Rightarrow reject \Rightarrow do not	Ho at level of reject to at level of twhich to can be
	O		rejected

For	a 7-test (2=test statistic value)
	Ties he was tailed
	$P = \begin{cases} 1 - \overline{\Phi}(3) & \text{for an upper-tailed} \\ \overline{\Phi}(3) & \text{for a lower-tailed} \\ \text{test} \end{cases}$
	(3) for a lower-tailed
	test
	2(一重(ほり) for a two-tailed test
Read	5x 8.17
For	a t-test, (caf of NCO,1)
	Cont of 10000
	Change the $\Phi()$ above to the
	C.d.f. of the t-distribution with
	C.d.f. of the t-distribution with (n-1) d.o.f. (n= sample size.)
Read	Бх 8.18
	For