SINTAXE Lógica Propositional Clássica

Marcelo Finger

Departamento de Ciência da Computação Instituto de Matemática e Estatística Universidade de São Paulo

2022

Tópicos

MOTIVAÇÃO

SINTAXE FORMAL

Ρκόχιμο Τόριςο

MOTIVAÇÃO

2 SINTAXE FORMAL

Teve greve de ônibus.

Teve greve de ônibus.

Maria trouxe o guarda-chuva.

Teve greve de ônibus. Maria trouxe o guarda-chuva. João atrasou para a aula

Teve greve de ônibus.

Maria trouxe o guarda-chuva.

João atrasou para a aula

...

Teve greve de ônibus.

Maria trouxe o guarda-chuva.

João atrasou para a aula

. . .

Está chovendo?

Teve greve de ônibus.

Maria trouxe o guarda-chuva.

João atrasou para a aula

. . .

Está chovendo? Pergunta não é proposição

```
Teve greve de ônibus.
```

Maria trouxe o guarda-chuva.

João atrasou para a aula

. . .

Está chovendo? Pergunta não é proposição

Feche a porta!

```
Teve greve de ônibus.
```

Maria trouxe o guarda-chuva.

João atrasou para a aula

. . .

Está chovendo? Pergunta não é proposição

Feche a porta! Comando não é proposição

Se teve greve de ônibus e não havia táxi na estação, então João atrasou para a aula.

Se está chovendo e Maria não trouxe o guarda-chuva, então Maria se molhou.

Se teve greve de ônibus e não havia táxi na estação, então João atrasou para a aula.

Se está chovendo e Maria não trouxe o guarda-chuva, então Maria se molhou.

Se teve greve de ônibus e não havia táxi na estação, então João atrasou para a aula.

Se está chovendo e Maria não trouxe o guarda-chuva, então Maria se molhou.

Se p e não q, então r.

Se teve greve de ônibus e não havia táxi na estação, então João atrasou para a aula.

Teve greve de ônibus.

João **não** se atrasou.

Se teve greve de ônibus e não havia táxi na estação, então João atrasou para a aula.

Teve greve de ônibus.

João **não** se atrasou.

Havia táxi na estação.

Se está chovendo e Maria não trouxe o guarda-chuva, então Maria se molhou. Está chovendo.

Maria não se molhou.

Se está chovendo e Maria não trouxe o guarda-chuva, então Maria se molhou. Está chovendo.

Maria não se molhou.

Maria trouxe o guarda-chuva.

Se p e não q, então r.

p.

Não r.

q.

Próximo Tópico

Motivação

SINTAXE FORMAL

• Conjunto infinito de símbolos proposicionais (ou átomos ou variáveis Booleanas).

MARCELO FINGER CS-IME-USP

- Conjunto infinito de símbolos proposicionais (ou átomos ou variáveis Booleanas).
 - Letras minúsculas p, q, r, . . .

10 / 15

- Conjunto infinito de símbolos proposicionais (ou átomos ou variáveis Booleanas).
 - Letras minúsculas p, q, r, . . .
 - Com ou sem sub/super-scritos: p_0, q', r_i^i, \dots

- Conjunto infinito de símbolos proposicionais (ou átomos ou variáveis Booleanas).
 - Letras minúsculas p, q, r, . . .
 - Com ou sem sub/super-scritos: p_0, q', r_i^i, \ldots
- Conectivos lógicos:

- Conjunto infinito de símbolos proposicionais (ou átomos ou variáveis Booleanas).
 - Letras minúsculas p, q, r, . . .
 - Com ou sem sub/super-scritos: $p_0, q', r_i^i, ...$
- Conectivos lógicos:
 - -

- Conjunto infinito de símbolos proposicionais (ou átomos ou variáveis Booleanas).
 - Letras minúsculas p, q, r, . . .
 - Com ou sem sub/super-scritos: $p_0, q', r_i^i, ...$
- Conectivos lógicos:
 - –
 - \(\forall \)

- Conjunto infinito de *símbolos proposicionais* (ou *átomos* ou *variáveis Booleanas*).
 - Letras minúsculas p, q, r, . . .
 - Com ou sem sub/super-scritos: $p_0, q', r_i^i, ...$
- Conectivos lógicos:
 - •
 - \
 - \

- Conjunto infinito de símbolos proposicionais (ou átomos ou variáveis Booleanas).
 - Letras minúsculas p, q, r, . . .
 - Com ou sem sub/super-scritos: p_0, q', r_i^i, \ldots
- Conectivos lógicos:
 - •
 - V
 - \
 - →

- Conjunto infinito de símbolos proposicionais (ou átomos ou variáveis Booleanas).
 - Letras minúsculas p, q, r, . . .
 - Com ou sem sub/super-scritos: p_0, q', r_i^i, \ldots
- Conectivos lógicos:
 - •
 - \
 - \
 - \bullet \rightarrow
- Parênteses

- Conjunto infinito de *símbolos proposicionais* (ou *átomos* ou *variáveis Booleanas*).
 - Letras minúsculas p, q, r, . . .
 - Com ou sem sub/super-scritos: p_0, q', r_i^i, \ldots
- Conectivos lógicos:
 - -
 - \
 - ^
 - \longrightarrow
- Parênteses
- Notação: φ, ψ : metavariáveis sobre fórmulas

Átomos

- Átomos
- Se φ é fórmula, então $(\neg \varphi)$ é fórmula

- Átomos
- Se φ é fórmula, então $(\neg \varphi)$ é fórmula
- Se φ e ψ são fórmulas, então $(\varphi \lor \psi)$ é fórmula

- Átomos
- Se φ é fórmula, então $(\neg \varphi)$ é fórmula
- Se φ e ψ são fórmulas, então $(\varphi \lor \psi)$ é fórmula
- Se φ e ψ são fórmulas, então $(\varphi \wedge \psi)$ é fórmula

- Átomos
- Se φ é fórmula, então $(\neg \varphi)$ é fórmula
- Se φ e ψ são fórmulas, então $(\varphi \lor \psi)$ é fórmula
- ullet Se arphi e ψ são fórmulas, então $(arphi \wedge \psi)$ é fórmula
- Se φ e ψ são fórmulas, então $(\varphi \to \psi)$ é fórmula

- Átomos
- Se φ é fórmula, então $(\neg \varphi)$ é fórmula
- Se φ e ψ são fórmulas, então $(\varphi \lor \psi)$ é fórmula
- Se φ e ψ são fórmulas, então $(\varphi \wedge \psi)$ é fórmula
- ullet Se arphi e ψ são fórmulas, então $(arphi
 ightarrow \psi)$ é fórmula
- (Cláusula maximal): Mais nada é uma fórmula

- Átomos
- Se φ é fórmula, então $(\neg \varphi)$ é fórmula
- Se φ e ψ são fórmulas, então $(\varphi \lor \psi)$ é fórmula
- Se φ e ψ são fórmulas, então $(\varphi \wedge \psi)$ é fórmula
- ullet Se arphi e ψ são fórmulas, então $(arphi
 ightarrow \psi)$ é fórmula
- (Cláusula maximal): Mais nada é uma fórmula

- Átomos
- Se φ é fórmula, então $(\neg \varphi)$ é fórmula
- Se φ e ψ são fórmulas, então $(\varphi \lor \psi)$ é fórmula
- Se φ e ψ são fórmulas, então $(\varphi \wedge \psi)$ é fórmula
- ullet Se arphi e ψ são fórmulas, então $(arphi
 ightarrow \psi)$ é fórmula
- (Cláusula maximal): Mais nada é uma fórmula

Backus Naur Form (BNF)
$$\varphi ::= p|(\neg \varphi)|(\varphi \lor \varphi)|(\varphi \land \varphi)|(\varphi \to \varphi)$$

p

p $(\neg q)$

$$egin{aligned} p \ (
eg q) \ (p \wedge (
eg q)) \end{aligned}$$

 \neg tem precedência sobre \land , \lor tem precedência sobre \rightarrow

$$\neg$$
 tem precedência sobre $\wedge,$ \vee tem precedência sobre \rightarrow

$$egin{aligned} p \ (
eg q) \ (p \wedge (
eg q)) \ ((p \wedge (
eg q)) &
ightarrow r) \end{aligned}$$

$$\neg$$
 tem precedência sobre \wedge , \vee tem precedência sobre \rightarrow

$$egin{aligned} p \ (\lnot q) &\Longrightarrow \lnot q \ (p \land (\lnot q)) \ ((p \land (\lnot q))
ightarrow r) \end{aligned}$$

$$\neg$$
 tem precedência sobre \wedge , \vee tem precedência sobre \rightarrow

$$\begin{array}{l}
p\\ (\neg q) \Longrightarrow \neg q\\ (p \land (\neg q)) \Longrightarrow p \land \neg q\\ ((p \land (\neg q)) \rightarrow r)
\end{array}$$

$$\neg$$
 tem precedência sobre \wedge , \vee tem precedência sobre \rightarrow

$$\begin{array}{l}
p\\ (\neg q) \Longrightarrow \neg q\\ (p \land (\neg q)) \Longrightarrow p \land \neg q\\ ((p \land (\neg q)) \rightarrow r) \Longrightarrow p \land \neg q \rightarrow r
\end{array}$$

$$p \wedge q \rightarrow r = (p \wedge q) \rightarrow r$$

$$p \wedge q \rightarrow r = (p \wedge q) \rightarrow r$$

 $\neg p \wedge r =$

$$p \wedge q \rightarrow r = (p \wedge q) \rightarrow r$$

 $\neg p \wedge r = (\neg p) \wedge r$

$$p \wedge q \rightarrow r = (p \wedge q) \rightarrow r$$

 $\neg p \wedge r = (\neg p) \wedge r$
 $p \wedge q \vee r =$

$$p \wedge q \rightarrow r = (p \wedge q) \rightarrow r$$

 $\neg p \wedge r = (\neg p) \wedge r$
 $p \wedge q \vee r = ???$ Precisa de parênteses!

$$p \wedge q \rightarrow r = (p \wedge q) \rightarrow r$$

 $\neg p \wedge r = (\neg p) \wedge r$
 $p \wedge q \vee r = ???$ Precisa de parênteses!
 $p \wedge q \wedge r =$

$$p \wedge q \rightarrow r = (p \wedge q) \rightarrow r$$

 $\neg p \wedge r = (\neg p) \wedge r$
 $p \wedge q \vee r = ???$ Precisa de parênteses!
 $p \wedge q \wedge r = (p \wedge q) \wedge r$

$$p \wedge q \rightarrow r = (p \wedge q) \rightarrow r$$

 $\neg p \wedge r = (\neg p) \wedge r$
 $p \wedge q \vee r = ???$ Precisa de parênteses!
 $p \wedge q \wedge r = (p \wedge q) \wedge r = p \wedge (q \wedge r)$

$$p \wedge q \rightarrow r = (p \wedge q) \rightarrow r$$

 $\neg p \wedge r = (\neg p) \wedge r$
 $p \wedge q \vee r = ???$ Precisa de parênteses!
 $p \wedge q \wedge r = (p \wedge q) \wedge r = p \wedge (q \wedge r)$ (associativa)

$$p \wedge q \rightarrow r = (p \wedge q) \rightarrow r$$

$$\neg p \wedge r = (\neg p) \wedge r$$

$$p \wedge q \vee r = ??? Precisa de parênteses!$$

$$p \wedge q \wedge r = (p \wedge q) \wedge r = p \wedge (q \wedge r) \text{ (associativa)}$$

$$p \rightarrow q \rightarrow r =$$

$$p \wedge q \rightarrow r = (p \wedge q) \rightarrow r$$

 $\neg p \wedge r = (\neg p) \wedge r$
 $p \wedge q \vee r = ???$ Precisa de parênteses!
 $p \wedge q \wedge r = (p \wedge q) \wedge r = p \wedge (q \wedge r)$ (associativa)
 $p \rightarrow q \rightarrow r = ???$ Precisa de parênteses!

ÁRVORE DE ANÁLISE SINTÁTICA

