Algebra per Informatica

Foglio di esercizi 1

Esercizio 1. Siano dati i tre insiemi:

$$A = \{x \in \mathbb{N} : x \le 6\}, B = \{x \in \mathbb{Z} : -3 < x < 1\}, C = \{x \in B : x < 0\}.$$

Stabilire quali delle seguenti affermazioni sono vere e quali sono false:

$$0 \in A; \quad -1 \notin B; \quad 0 \in A \cup C; \quad -1 \in A \cap B;$$

$$C \subseteq A; \quad \{-2\} \in B \cap C; \quad \{-2\} \in \mathcal{P}(B); \quad \mathcal{P}(\{-2\}) \subseteq \mathcal{P}(A);$$

$$(1,1) \in A \times B; \quad \{(-1,0)\} \subseteq B \times A; \quad (A \times B) \cap (B \times A) \subseteq \mathbb{N} \times \mathbb{N}; \quad (A \times B) \cap (B \times A) = \emptyset.$$

Si ricorda che $\mathcal{P}(-)$ denota l'insieme delle parti di un insieme.

Esercizio 2. Quanti elementi ha l'insieme $A = \{x \in \mathbb{R} : x^3 = x\}$? E' vero che $A \subseteq \mathbb{N}$? E' vero che $A \subseteq \mathbb{Z}$? E' vero che $A \subseteq \mathbb{Q}$? Determinare $A \cap \mathbb{N}$.

Esercizio 3. Stabilire in ciascun caso se gli insiemi A e B sono uguali:

- (i) $A = \{(t, t+1) : t \in \mathbb{Z}\} \in B = \{(t-6, t-5) : t \in \mathbb{Z}\};$
- (ii) $A = \{(t, t+1) : t \in \mathbb{N}\} \in B = \{(t-6, t-5) : t \in \mathbb{N}\};$
- (iii) $A = \{(t, t+1) : t \in \mathbb{R}\} \in B = \mathbb{R}^2;$
- (iv) $A = \{n \in \mathbb{N} : n \text{ è dispari}\}, B = \{n^2 : n \in \mathbb{N}, n \text{ è dispari}\}.$

Esercizio 4. Siano A, B, C tre insiemi tali che $A \cap B = C$, $B \cap C = A$ e $C \cap A = B$. Provare che A = B = C.

Esercizio 5. Siano A e B due insiemi, dimostrare le seguenti proprietà:

- (i) $A \cap B = A \iff A \subseteq B$;
- (ii) $A \cup B = A \iff B \subseteq A$;
- (iii) $(B \setminus A) = \emptyset \iff B \subseteq A;$
- (iv) $(B \setminus A) = B \iff A \cap B = \emptyset$;
- (v) $B = (B \setminus A) \cup (A \cap B)$;
- (vi) $(B \setminus A) \cap (A \cap B) = \emptyset$.

Esercizio 6. Siano $A = \{x \in \mathbb{R} : x^2 + 3x + 4 = 0\}$ e $B = \{x \in \mathbb{R} : x^3 + 3x^2 = -4x\}$. Provare che A è un sottoinsieme proprio di B, cioè $A \subset B$ e $A \neq B$.

Esercizio 7. Per ogni $n \in \mathbb{N}$ sia $A_n = \{x \in \mathbb{N} : x > n\}$. Determinare l'insieme $\bigcap_{n \in \mathbb{N}} A_n$.

Esercizio 8. Per ogni $i \in \mathbb{N}$ sia $A_i = \{n \in \mathbb{Z} : n \neq 2i\}$. Determinare gli insiemi $A = \bigcup_{i \in \mathbb{N}} A_i$ e $B = \bigcap_{i \in \mathbb{N}} A_i$.

Esercizio 9. Siano $A = \{1, 2\}$ e $B = \{a, b\}$. Elencare tutti gli elementi di ciascuno dei seguenti insiemi:

$$A \times B$$
, $B \times A$, A^2 , B^3 , $\mathcal{P}(A \times B)$.