

¹ Product Specification

ZBA Model Number: BT22K-2042

Bluetooth HID module, Class 2 Doc version: 1.0

BT22K-2042

Description The BT22K-2042 is a Bluetooth 2.0 compliant Bluetooth Human Interface Device (HID) module, ideally suited to the integration of Bluetooth functionality in mouse and keyboard applications. The BT22K-2042 is designed on Broadcom BCM2042 chip solution.

Applications

- Wireless keyboards
- Wireless pointing devices: mice, trackballs
- Game controllers
- Joysticks
- Point of sale (POS) input devices
- Remote controls
- Remote sensors

Features

- Bluetooth 2.0 specification compliant
- Bluetooth HID profile version 1.0 compliant
- Integrated 8 Kbytes of non-volatile flash memory for storing Bluetooth address and configuration data.
- Programmable output power control which meets class 2 and class 3 requirements Excellent receiver sensitivity
- On-chip support for common keyboard and mouse interfaces eliminate using an external processor
- Programmable key-scan matrix interface, up to 8 x 20 key-scanning matrix.
- 3-axis quadrature signal decoder
- On-chip Power-On Reset (POR)
- Integrated 8051 microprocessor core
- Support for AFH

Functional Description The primary component on the module is the Broadcom BCM2042, which is a Bluetooth 2.0 compliant single-chip device. The baseband and radio are integrated into a single chip implemented in standard digital CMOS. The BCM2042 has an integrated 8051 microprocessor core that runs software from the link control layer up to the Host Control Interface (HCI). The baseband portion of the BCM2042 performs all time-critical functions required for high-performance Bluetooth operation. The radio incorporates complete receive and transmit functions, including PLL, VCO, LNA, PA, up-converter, down-converter, modulator, demodulator, and channel select filtering. The BCM2042 on-chip keyboard scanner is designed to sample the keys and store them into buffer registers without the need for the host micro controller to intervene. A state machine of three states – Idle, Scan, and Scan-End – controls the key scan block. The on-chip mouse signal decoder is designed to sample autonomously two quadrate signals commonly generated by optomechanical mouse apparatus. The GPIO signals can be used to control such items as LEDs and external ICs (eg. optical mouse sensor).

Bluetooth HID module Block Diagram

Specification

Product Name	Bluetooth HID module, Class 2	
Model Number	BT22K-2042	
Standard	Bluetooth V2.0	
Frequency Band	2.402GHz ~ 2.480GHz unlicensed ISM band	
Modulation Method	GFSK Spread Spectrum FHSS (Frequency Hopping Spread	
	Spectrum)	
RF Output Power	Class 2 (under 4 dBm)	
Antenna	PCB printing antenna	
DC power	Two battery cell, DC 3V	
Dimension	15 x 30.8 mm	

Physical Description

The BT-22K-2042 is a 15mm x 30.8 mm PCB with 48 pads located around the perimeter.

Pin#	Description	Pin #	Description
1	GND	25	P2_3
2	GND	26	P1_5
3	P4_4	27	3P0V
4	P4_3	28	P0_O
5	P1_4	29	P3_O

ZBA, Inc.

94 Old Camplain Road Hillsborough, NJ 08844 Ph: 908-359-2070 Fax: 908-595-0909 Web: http://www.zbausa.com/

6	P1_2	30	WP
7	P2_1	31	P0_5
8	P2_0	32	P0_4
9	P1_3	33	P0_7
10	P4_1	34	P0_6
11	P3_2	35	UP_TX
12	P3_3	36	UP_RX
13	3P0V_1	37	P0_2
14	P4_0	38	P2_5
15	p3_4	39	RESET_N
16	P3_5	40	P0_3
17	P1_7	41	P0_1
18	GND	42	P2_7
19	P1_6	43	P2_6
20	P2_2	44	P4_2
21	VBATT	45	P1_0
22	P2_4	46	P1-1
23	1P8V_1	47	P4-5
24	P3_1	48	GND

Table1:Pin Description

Table2a:GPIO PIN Description

- unicaution is in Decemporation				
Pin name	I/O	Power	Description	
		Domain		
uP_TX	0	VDD_MEM	Debug UART Transmit port	
uP_RX	I	VDD_MEM	Debug UART Receiver port after	
RESET_N	I	VDD_IO	A c t i v e low system reset- contains a weak pull up. Contains An internal POR hardware inside. No external reset monitor Needed.	

Table2b:GPIO PIN Description(Cont.)

Pin name	Default	POR State After native Function	
	Direction		Description
P0_0	input	floating	GPIO:P1_0 Keyboard Scan Input(ROW):KSO0 A/D CONVERTER Input
P0_1	input	floating	GPIO:P0_1 Keyboard Scan Input(ROW):KS11 A/D CONVERTER Input
P0_2	input	floating	GPIO:P0_2 Keyboard Scan Input(ROW):KS12 Quadrature:QDX0
P0_3	input	floating	GPIO:P0_3 Keyboard Scan Input(ROW):KS13 Quadrature:QDX1
P0_4	input	floating	GPIO:P0_4 Keyboard Scan Input(ROW):KS14 Quadrature:QDY0
P0_5	input	floating	GPIO:P0_5 Keyboard Scan Input(ROW):KS15 Quadrature:QDY1
P0_6	input	floating	GPIO:P0_6 Keyboard Scan Input(ROW):KS16 Quadrature:QDZ0
P0_7	input	floating	GPIO:P0_7 Keyboard Scan Input(ROW):KS17 Quadrature:QDZ1
P1_1	input	floating	GPIO:P1_1 Keyboard Scan Input(ROW):KSO1 A/D CONVERTER Input
P1_2	input	floating	GPIO:P1_2 Keyboard Scan Input(ROW):KSO2 A/D CONVERTER Input
P1_4	input	floating	GPIO:P1_4 Keyboard Scan Input(ROW):KSO4 A/D CONVERTER Input
P1_7	input	floating	GPIO:P1_7 Keyboard Scan Input(ROW):KSO7 A/D CONVERTER Input
P2_0	input	floating	GPIO:P2_0 Keyboard Scan Input(ROW):KSO8 A/D CONVERTER Input
p2_1	input	floating	GPIO:P2_1 Keyboard Scan Input(ROW):KSO9 A/D CONVERTER Input
p2_3	input	floating	GPIO:P2_1 Keyboard Scan Input(ROW):KSO11 A/D CONVERTER Input
P2_5	input	PD	GPIO: P2_5 Keyboard Scan Output

ZBA Inc.

20 7 1110.				
			(Column): KSO13 A/D CONVERTER Input SPI:MISO	
P2_6	input	PU	GPIO: P2_6 Keyboard Scan Output (Column): KSO14 Auxiliary Clock output:ACLKO A/D CONVERTER Input SPI:SPI_CLK	
P2_7	input	PU	GPIO: P2_7 Keyboard Scan Output (Column): KSO15 Auxiliary Clock output:ACLK1 A/D CONVERTER Input SPI: MISO	
P3_2	input	floating	GPIO: P3_2 (Can do PWM output) Keyboard Scan Output:KSO18 Optical Control Output:QOC0	
P3_3	input	floating	GPIO: P3_3 (Can do PWM output) Keyboard Scan Output (Column): KSO19 Optical Control Output:QOC1	
P3_4	input	PU	GPIO: P3_4 (Can do PWM output) Optical Control Output:QOC2 A/D CONVERTER Input Infrared Channel External PA Ramp Control:PA_Ramp	
P3_5	input	PU	GPIO: P3_5 (Can do PWM output) Optical Control Output:QOC3 A/D CONVERTER Input Infrared Channel	
P4_0	output*	high	GPIO: P4_0 Quadrature:QDX0 External Regulator En:VREG_EN A/D CONVERTER Input External T/R switch control:RX_PU	
P4_1	input	PD	GPIO: P4_1 Quadrature:QDX1 A/D CONVERTER Input External T/R switch control:TX_PU	
P4_2	input	floating	GPIO: P4_2 Quadrature:QDY0 A/D CONVERTER Input SPI:SPI_CLK Battery Detect pin in Default FW	
P4_3	input	floating	GPIO: P4_3 Quadrature:QDY1 A/D CONVERTER Input SPI:MISO	
P4_4	input	PU	GPIO: P4_4 Quadrature:QDZ0 A/D CONVERTER Input SPI:MISO	
P4_5	input	floating	GPIO: P4_5 Quadrature:QDZ1 A/D CONVERTER Input	

Table3: Maximum Electrical Rating

Rating	Symbol	Value	Unit
Voltage on the switching regulator #1 output pin	3PoV_1	3.3	V
Voltage on the switching regulator #2 output pin	1P8V_1	1.8 V	V
Voltage on input or output pin	-	Vss-0.3toVpp+0.3	V
Storage temperature range		-40 to 125	°C pin - stg

Table4: Power Supply

Rating	Minimum	Typical	Maximum	Unit		
DC Supply voltage for 3P0V	1.62		3.6	-V		
DC Supply voltage for VBATT	1.8	2.9	3.6	<		
Voltage on the switching regulator #1 output pin 3P0V_1	2.7	3.0	3. 3	V		
Voltage on the switching regulator #1 output 1P8V_1	1.5	1.6	1.8	V		
4 🔿						

^{1.}Overall performance degrades beyond Minimum and Maximum supply voltages.

Table 5: Typical Current Consumption

Operational Mode	Minimum	Typical	Maximum
Transmita	-	43mA	-
Receiveb	-	38mA	-
DM1(TZ mode)	-	28mA	-
	-	25mA	-
DM1(RX mode)			
Sniff mode. 10ma	-	2.35mA	-
Sniff mode,60ma	-	0.39mA	-
Sniff mode,100ma	-	0.24mA	-

Sniff mode,128s	-	0.018mA	-
Sleep (disconnected or Inter-Sniff.,state preserved)	-	50 ua	-
Deep sleep(disconnectd,wak e on interrupt)		16u a	-

a.Max current when receiver and baseband are both operating,100%on.

Table 6 Receiver RF Specifications (VDD_RF=1.5V,T=25°C)

Parameter	Minimum	Typical 3	Maximum	Unit
Peceiver Section				
Frequency range	2402		2480	
Overall Rx		-85	-80	dBm
sensitivity				
Input IP3		-10		dBm
Maximum input	-20	-10		dBm
Input impedance		50		Ω
- Input Impedance		- S11 <-10dB		-
for RF_IO:				
Interference				
Performance				
Co-Channel		9	11	dB
interference/I				
Adjacent (1 MHz)		-5	0	dB
interference,C/I				
Adjacent (2 MHz)		-35	-30	dB
interference,C/I				
Adjacent (>- 3		-43	-40	dB
MHz)interference/l				
Image frequency		-20	9 ²	dB
interference C/I				
Adjacent (1 MHz)		-35	-20 ²	dB
interference,				
In-band image				
frequency, C/I				

^{1.} The receiver sensitivity is measured at a BER of 0.1% on the device interface.

Table 7 Receiver RF Specifications (VDD_RF=1.5V,T=25)

ZBA, Inc.

b.Max current when transmitter and baseband are both operating,100% on.

^{2.} The maximum value represents the actual Bluetooth specification required for Bluetooth qualification as defined in the version 1.2 specification.

^{3.} Typical operating conditions are 1.8V operating voltage and 25 ambient temperature.

	1	<u> </u>	ı	1
Transmitter				
Section				
Frequency	2042		2480	Mhz
range				
Output power-	-2	0	4	
at max power				
setting				
Output power-	-26	-	-18	dBm
at minimum				
power setting				
Output power	-	2	-	
step size				
Output	•	50	-	Ω
impedance				
Output	-	S 1 1 <-10dB	-	
impedance for				
RF_IO				
In-Band				
Spurious				
Emission				
±500Khz		-	-20	dBc
20dB		900	1000	kHz
bandwidth				
M-N =2	_		-20	dBm
M-N ≥3	-		-40	dBm
Out-of-Band				dBm
Spurious				
Emission				
30Mhz- 1Ghz	-			dBm
1Ghz-	-		-36	dBm
12.75Ghz				
1.8Ghz- 1.9Ghz	•		-47	dBm
5.15Ghz-	-		-47	dBm
15.3Ghz				
LO				
Performance				
Lock time	-	180		us
Initial carrier	-	±25	±75	khz
frequency			_	1
tolerance				
Frequency drift	-			
DH1 packet	_	±20	±25	khz
DH3 packet	-	±20	±40	khz
DH5 packet	-	±20	±40	khz
Drift rate			+	
	-	10	0	kHz/50us
Frequency				
deviation		4==	Idla-1	
00001111	-	175	kHz±	

sequence in payload				
10101010 sequence in payload	-	-	kHz	
Channel spacing	-	1		MHz

- 1. Maximum value represents the actual Bluetooth specification required for Bluetooth qualification as defined in the version 1.2 specifications.
- 2. The spurious emissions during Idle Mode are the same as specified in Table 1: Receiver therefore Specifications.
- 3. The RF characteristics are measured at the chip interface.
- 4. Average deviation in payload.
- 5. Max deviation in payload for 99.9% of all frequency deviations.

94 Old Camplain Road Hillsborough, NJ 08844 Ph: 908-359-2070 Fax: 908-595-0909 Web: http://www.zbausa.com/

Recommended PCB layout

