Predictive Modeling of Exercise-Induced Glycemic Outcomes Using Generative Deep Learning

Oriol Bustos¹, BSc.; Júlia Soler¹, MSc.; Omer Mujahid¹, PhD; Josep Vehí¹, PhD

¹Institute of Informatics and Applications, Universitat de Girona

Motivation

- Physiological models do not fully capture the complexity of glucose homeostasis.
- Data-driven models learn from real-life data, including lifestyle factors

Methods

- Implementation of a Wasserstein Conditional GAN.
- Produces shifted sequences with 120 min. prediction horizon.
- Inputs: estimated active: insulin, carbohydrates and exercise.
- **Data**: 60 standard insulin pump patients from **T1DEXI** dataset who were assigned **aerobic exercise**.
- Physical activity modeled via differential equation, with amplitude and temporal tau dependant on intensity.

Figure 4: GAN architecture for training.

Conclusions

- Data-based virtual patients show potential in predicting exercise-induced glycemic outcomes
- Model realistically replicates glucose-insulin dynamics
- We are working on adding other exercise types included in T1DEXI

Data-driven virtual patients

- Generative Adversarial Networks (GANs) can capture the complex and unpredictable stochasticity seen in real patients.
- Previous implementations focused on modeling patient responses to insulin and meals using GANs [2].
- **Objective**: Extend our simulator to incorporate **exercise activities**, aiming to replicate the behavioral patterns and long-term glycemic outcomes.

Figure 3: Overlay of multiple generated 24-hour blood glucose profiles: Demonstrating simulator stochasticity under identical inputs from [2].

Results

Comparison of Real vs. Generated BG Drop during exercise

Figure 5: Boxplot of the drop in blood glucose concentration during exercise activity from baseline to nadir (minima during the activity).

Figure 6: Comparative table of glycemic outcomes for generated vs. real patients on sedentary and active days

References:

- [1] Pompa, Marcello, et al. "A comparison among three maximal mathematical models of the glucose-insulin system." PloS one 16.9 (2021)
- [2] Mujahid, O., et al. "Generative deep learning for the development of a type 1 diabetes simulator". Communications Medicine, (51), (2024)
- [3] Noguer J, et al. "Generation of Individualized Synthetic Data for Augmentation of the Type 1 Diabetes Data Sets Using Deep Learning Models". Sensors. (2022)

