PATENT ABSTRACTS OF JAPAN

(11)Publication numb r:

02-227489

(43) Date of publication of application: 10.09.1990

(51)Int.CI.

CO9K 19/54 CO9K 19/20 CO9K 19/30 CO9K 19/34 CO9K 19/42 CO9K 19/46 GO2F 1/13 GO2F 1/137

(21)Application number: 01-045476

(71)Applicant : DAINIPPON INK & CHEM INC

KAWAMURA INST OF CHEM RES

(22)Date of filing:

28.02.1989

(72)Inventor: TAKEHARA SADAO

OSAWA MASASHI NAKAMURA KAYOKO SHOJI TADAO OGAWA HIROSHI FUJISAWA NOBURU KURIYAMA TAKESHI

(54) FERROELECTRIC LIQUID CRYSTALLINE COMPOSITION

(57) Abstract:

PURPOSE: To obtain the subject composition giving liquid crystalline display element having excellent responsiveness and memory properties by adding specific compound as chiral dopant to liquid crystalline composition exhibiting optically inactive smectic C-phase.

CONSTITUTION: (C) A compound expressed by formula I (Ra and Rb are 2-10C alkyl; Za and Zb are -CO2- or -O-, etc.; X is expressed by formula II, etc.) is added as a chiral dopant to a mixture of (A) a middle-temperature range matrix liquid crystal comprising optically inactive and may be monotropic at ·10° C (i) a liquid crystalline compound (homologue) exhibiting bicyclic smectic C-phase or (ii) a liquid crystalline compound (homologue) exhibiting tricyclic smectic C-phase having cyclohexyl ring and (B) a liquid crystalline composition comprising optically inactive and may be monotropic at ·90° C (iii) a liquid crystalline compound exhibiting smectic C-phase of · tricyclic ring structure and (iv) high-temperature liquid crystal as homologue of the component (ii) to afford the aimed composition.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

[®] 公 開 特 許 公 報 (A) 平2-227489

千葉県佐倉市六崎1550-2-2-101

千葉県鎌ケ谷市鎌ケ谷1-7-18-507

千葉県佐倉市城内町76-2

千葉県船橋市古作町485

千葉県佐倉市坂戸631番地

千葉県佐倉市王子台 6-36-13

東京都板橋区坂下3丁目35番58号

®Int. Cl.⁵

識別記号

庁内整理番号

❸公開 平成2年(1990)9月10日

C 09 K 19/54 19/20 19/30

 $\mathbf{B}_{_{_{\mathbf{1}}}}$

6516-4H 6516-4H 6516-4H ※

審査請求 未請求 請求項の数 4 (全77頁)

②特 願 平1-45476

②出 顋 平1(1989)2月28日

⑫発 明 者 竹 原 貞 夫

 ⑩発明者
 大沢
 政志

 ⑩発明者
 中村
 佳代子

四条明者 東海林 忠生

②発 明 者 小 川 洋

⑩出 願 人 大日本インキ化学工業

株式会社

⑪出 顋 人 財団法人川村理化学研

究所

四代 理 人 弁理士 髙橋 勝利

最終頁に続く

明 細 書

1. 発明の名称

強誘電性液晶組成物

2. 特許請求の範囲

1. (1)光学的に不活性で、10℃以上における 任意の1度以上の温度巾の範囲でモノトロピック であってもよい、(a) 2 環構造のスメクチック C 相 を示す液晶化合物、白シクロヘキシル環を有する 3 環構造のスメクチック C 相を示す液晶化合物、 又はに上記(a)又は(b)の化合物のアルキル鎖の炭素 原子数又は構造のみが異なった同族体、から成る 中温域母体液晶と、②光学的に不活性で、スメク チックC相の上限温度が90℃以上であって、か つ少なくとも5℃以上の温度域においてモノトロ ピックでもよい、は3環若しくはそれ以上の環構 造から成り、スメクチックC相を示す液晶化合物、 又は心該化合物のアルキル鎖の炭素原子数又は構 造のみが異なった同族体から成るスメクチックC 相を示す髙温液晶、から成るスメクチックC相を 示す液晶組成物に、(3)キラルドーパントを添加し

て成る強誘電性液晶組成物において、キラルドー パントが一般式 (A)

$$\begin{array}{c} \text{CH}_3 \\ \vdots \\ \text{R}_a - \text{CH}_4 + \text{CH}_2 \\ \end{array} \begin{array}{c} \text{CH}_3 \\ \vdots \\ \text{CH}_4 - \text{R}_5 \end{array}$$

【式中、R®及びR®は各々独立的に炭素原子数2~10のアルキル基を表わし、Z®は一0一、一C00一、一0C0一又は単結合を表わし、Z®は一C00一又は一0一を表わす。C®及びC®は各々独立的に(R)又は(S)配置の不斉炭素原子を表わす。Xは一般式(B)

$$A \rightarrow Z' \rightarrow B \rightarrow Z' \rightarrow C$$

一般式(C)

又は一般式(D)

び D は、各々独立的に飽和又は不飽和の 5 員環又は6 員環の炭化水素環を表わすが、環中

の任意の $1 \sim 2$ 個の-CH= は、-N= 又は $-\stackrel{\cdot}{C}=$ に 置換されていても良く、また、環中の任意の $1\sim$ 2 個の $-CH_z$ ーは、-0-、-S-、-NH-、

O Y' || -C-、-CH-に置換されていても良く、また、

環中の任意の1~2個の-CH-は-C< に置換

されていても良い。 Y' はフッ素原子、塩素原子、 シアノ基、メチル基、メトキシ基を表わし、 Z' 、 Z* 又は Z* は各々独立的に単結合、 - C00 - 、 - 0C0 - 、 - CH₂O - 、 - OCH₂ - 、 - CH₂CH₂ - 、

又は — を表わし、 Z ¹ 及び Z ² は各々独

立的に請求項1記載の Z^1 又は Z^2 と同じものを表わし、mは0 又は1 を表わす。 Y^2 及び Y^2 は各々独立的にフッ素原子、塩素原子、シアノ基又は水素原子を表わすが、 Y^2 と Y^2 が同時に水素原子を表わすことはない。)

で表わされる請求項1記載の強誘電性液晶組成物。

3. 等方性液体状態からの冷却時において、3 度以上30度未満の温度幅を有するキラルネマチック相を経由し、該キラルネマチック相からよより 低温側の相に相転移する温度から、該相転移温度 の1度高温側までにおける温度域において、該キ ラルネマチック相における螺旋ピッチが3μm以 上である請求項1又は2記載の強誘電性液晶組成物。

4. キラルネマチック相からの冷却時において、 1度以上30度未満の温度幅を有するスメクチックA相を経由し、キラルスメクチックC相に相転移する請求項3記載の強誘電性液晶組成物。 O = C - 又は - CH = CH - を表わし、 Z 'は - CH₂ - 、
O = C - CH₂ CH₂ - 、 - CH = CH - 、 - C - CH₂ - 、 - C - 、
O = CH₂ - C - 、 - S - 、 又は - O - を表わし、 m 及び
n は各々独立的に O 又は 1 を表わす。)で表わされる液晶性分子の中心骨格(コア)部分を表わす。)で表わされる化合物を含有することを特徴とする、
室温を含む広い温度範囲でキラルスメクチック C
相を示す強誘電性液晶組成物。

2. X が一般式(E)

3. 発明の詳細な説明

〔産業上の利用分野〕

本発明は電気光学的表示材料として有用な新規液晶組成物に関するもので、特に強誘電性を有する液晶材料を提供するものであり、従来の液晶材料と比較して、特に応答性、メモリー性にすぐれた液晶表示素子への利用可能性を有する液晶材料を提供するものである。

〔從来技術〕

現在、広く用いられている液晶表示素子は主にネマチック液晶を利用したTN型と呼ばれるものであって、多くの長所・利点を有しているもののその応答性においては、CRT などの発光型の表示方式と比較すると、格段に遅いという大きな欠点があった。TN型以外の液晶表示方式も多く検討されているが、その応答性における改善はなかなかなされていない。

ところが、強誘電性スメクチック液晶を利用した液晶デバイスでは、従来のTN型液晶表示案子の100~1000倍の高速応答が可能で、かつ

多安定性を有するため、電源を切っても表示の記憶が得られる(メモリー効果)ことが、最近明らかになった。このため、光シャッターやブリンターヘッド、薄型テレビ等への利用可能性が極めて大きく、現在、各方面で実用化に向けて開発研究がなされている。

強誘電性液晶は、液晶相としてはチルト系のキラルスメクチック相に属するものであるが、その中でも、実用的に望ましいものは、最も粘度の低いキラルスメクチックC(以下、SC°と省略する。)相と呼ばれるものである。

(発明が解決しようとする課題)

S C* 相を示す液晶化合物(以下、S C* 化合物という。)はこれまでにも検討されてきており、既に数多くの化合物が合成されている。しかしなから、これらのS C* 化合物には単独では強誘電性液晶表示用光スイッチング素子として用いるための以下の条件、即ち、

(イ)室温を含む広い温度範囲で強誘電性を示すこと

相の高温域にN・相を有するではたかで、N・相を有するではたが一般的に有った。この長さを大きC・相とN・相の中間の温度はにスメクトのにはないで、N・相の温度域にスメクトのには、SAととじるのはないでは、Aとというでは、たいはないでは、ないでは、ないでは、ないでは、N・とのでは、ないでは、N・とのでは、N・とのでは、ないでは、N・とのでは、N・・のでは

高速応答性を示すには、例えば、第12回液晶 討論会における特別講演(同討論会予稿集P.98) で示されているように、低粘性のスメクチック C (以下、SCと省略する。)相を示す母体の液晶 組成物(以下、SC母体液晶という。)に、自発 分極(以下、Psと省略する。)の大きいSC* (ロ)高温域において適当な相系列を有するこ レ

(ハ) 特にキラルネマチック (以下、N*と省略する。) 相において長い螺旋ピッチを示すこと

(ニ) 適当なチルト角を持つこと

(ホ) 粘性が小さいこと

(へ)自発分極がある程度以上大きな値である こと

さらに

(ト)(ロ)及び(ハ)の結果として良好な配 向を示すこと

(チ) (ホ) 及び (へ) の結果として、高速の 応答性を示すこと

をすべて満足するようなものは知られていなかった。

そのため、現在では、SC*相を示す液晶組成物(以下、SC*液晶組成物という。)が検討用等に用いられているのが、実情である。

良好な配向性を得るためには、例えば、特開昭 161-153623号公報等に示されているように、SC*

化合物を添加する方式が優れている。この方式によれば、螺旋を生じさせる光学活性化合物の割合が少なくなるため、螺旋ピッチは比較的長くなるが、配向性が良好となるほど螺旋ピッチを長くしようとすると光学活性化合物の添加量を少量にする必要があり、そのため自発分極が小さくなすぎ、高速応答性が得られなくなってしまう問題点があった。

また、SC母体液晶としてこれまで用いられてきたものは、例えば、ジャパン・ディスプレイ'86 講演予稿集 (352ページ~) 又は特開昭 62-583号公報に記載されている。

(R, R' はアキラルなアルキル基を表わす。)

(R, R'は上記と同様。)

の如く、化合物自身又はその同族体が、SC相を示すものに限られるか、又はそれに加えて分子長」

軸に対して垂直方向に強いダイポール(分極)を 示すような液晶化合物を添加した組成物であり、 SC相の温度範囲を広く保つと粘性が大きくなり、 粘性を小さくするとSC相の温度範囲が狭くなる という問題点があった。

従って、従来技術では良好な配向性と高速応答性を同時に実現するのは困難なことであった。

本発明が解決しようとする課題は、高速応答性 及び配向性においてともに充分に満足できる強誘 電性液晶組成物を提供することにある。

〔課題を解決するための手段〕

本発明は上記課題を解決するために、以下に示す中温域母体液晶及び高温液晶を含有するSC母体液晶に、一般式(A)

で表わされる光学活性化合物を含有するキラルドーパントを添加して成るSC*液晶組成物を提供する。

5 員環又は6 員環の炭化水素環を表わすが、環中

の任意の 1 ~ 2 個の – CH = は、 – N = 又は – C = に 置換されていても良く、また、環中の任意の 1 ~ 2 個の – CH₂ – は、 – 0 – 、 – S – 、 – NH – 、

環中の任意の 1 ~ 2 個の - CH - は - C 〈 に 置換

されていても良い。Y' はファ素原子、塩素原子、シアノ基、メチル基、メトキシ基を表わし、Z'、 Z^2 又は Z^2 は各々独立的に単結合、-C00-、-OCO-、 $-CH_2O-$ 、 $-OCH_2-$ 、 $-CH_2CH_2-$ 、

一般式 (A) において、R* 及びR* は各々独立的に炭素原子数 2~10のアルキル基を表わし、Lは0~10の整数を表わし、Z* は一0~、 - C00~、 - 0C0~又は単結合を表わし、Z* は - C00~又は - 0~を表わす。C* 及びC** は各々独立的に(R)又は(S)配置の不斉炭素原子を表わす。Xは一般式(B)

$$A \longrightarrow Z^1 \longrightarrow B \longrightarrow Z^2 \longrightarrow \cdots (B)$$

一般式(C)

又は一般式(D)

び -- 〈D〉-- は、各々独立的に飽和又は不飽和の

特に一般式(A)において、Xが一般式(E)

$$-$$
E $-$ Z' $-$ F $-$ (Z' $-$ G $)$

立的に一般式(B)、(C)及び(D)の場合と同じ意味を表わし、mは0又は1を表わす。Y*及びY*は各々独立的にフッ素原子、塩素原子、

シアノ基又は水素原子を表わすが、 Y² と Y³ が 同時に水素原子を表わすことはない。) で表わされる化合物が特に好ましい。

中温域母体液晶として用いられる化合物の代表的なものを以下に掲げる。ただし、以下に示すー

般式において、 R_1 , R_2 は各々独立的に炭素原子数 $1\sim 1$ 8 のアルキル基を表わす。

(I-a)

$$(I-a-1) \qquad R_1 \longrightarrow \bigcap_{N} \bigcap_{N} OR_2$$

$$(I-a-2) \qquad R_1 0 \longrightarrow \bigcap_{N} \bigcap_{N} R_2$$

$$(1-a-3) \qquad R_1 0 \longrightarrow 0 R_2$$

$$(1-a-5) \qquad R_1 \longrightarrow N \qquad OR_2$$

$$(I-a-6) \qquad R_1 0 \longrightarrow R_2$$

$$(I-a-7) \qquad R_10 \longrightarrow 0R_2$$

$$(I-a-8)$$
 $R_1O \longrightarrow N$ OR_2

$$(I-a-9)$$
 $R_1 \longrightarrow 0$ R_2

$$(1-a-10) \qquad R_10 \longrightarrow R_2$$

$$(1-a-12) \qquad R, 0 \longrightarrow R, R$$

$$(1-a-15) \qquad R_10 \longrightarrow R_2$$

$$(I-a-16)$$
 $R_10 \longrightarrow OR_2$

$$(I-a-18) \qquad R_10 \longrightarrow \qquad \qquad F \qquad \qquad F \qquad \qquad OR_2$$

$$(I-a-19)$$
 $R_1 \longrightarrow N$ $OCOR$

$$(1-a-20)$$
 $R_1 \longrightarrow N$ $OCOR_2$

$$(I-a-21) \qquad R_10 \longrightarrow N \qquad OCOR_2$$

$$(I-a-22) \qquad R_10 \longrightarrow \bigvee_{N}^{R} OCOR_2$$

(I-a-23)
$$R_1 \longrightarrow N \longrightarrow OCOR_2$$

$$(I-a-24)$$
 $R_10 \longrightarrow N$ $OCOR_2$

$$(I-a-25) \qquad R_1 \longrightarrow N \longrightarrow P \longrightarrow OCOR_2$$

$$(1-a-26) \qquad R_1O \longrightarrow \bigvee^{R} OCOR_2$$

(
$$I - a - 27$$
) $R_1 COO \longrightarrow 0 R_2$

(1-a-29)
$$R_1 \circ CO \longrightarrow \bigcap_{N=N} OR_2$$

$$(1-a-41) \qquad R_1 \longrightarrow N \qquad \qquad OR_2$$

$$(1-a-45) \qquad R_10 \longrightarrow N \longrightarrow 0R_2$$

$$(1-a-32) \qquad R_10 \longrightarrow 0 \text{COR}_2$$

$$(1-a-33) \qquad R_10 \longrightarrow \qquad \qquad r \\ OCOR_2$$

$$(1-a-46) \qquad R_1 \longrightarrow N \longrightarrow OCOR_2$$

$$(I-a-48)$$
 R, $0 \longrightarrow N$ OCOR z

$$(I-a-50) \qquad R_1COO \longrightarrow N$$

(I - a - 52)
$$R_1 COO \longrightarrow N \longrightarrow OCOR_2$$

(1-a-53)
$$R_1COO \longrightarrow N$$
 $COOR_2$

特開平2-227489(7)

(1-a-54)
$$R_1 \circ CO \longrightarrow R_2$$

$$(1-a-55) \qquad R_1 \circ CO \longrightarrow N \longrightarrow OR$$

$$(1-a-63) \qquad R_1 \longrightarrow N \longrightarrow P$$

$$(1-a-64) \qquad R_1 \longrightarrow N \qquad \qquad P \qquad \qquad OR_2$$

$$(1-a-58) \qquad R_10 \longrightarrow \begin{matrix} N \\ \downarrow \\ \downarrow \end{matrix} \longrightarrow \begin{matrix} COOR_2 \end{matrix}$$

$$(1-a-67) \qquad R_1 \longrightarrow N \longrightarrow 0 R_2$$

(I-b)

$$(I-b-2) \qquad R_10 \longrightarrow C00 \longrightarrow OR_2$$

$$(1-b-3) \qquad R_10 \longrightarrow C00 \longrightarrow R_2$$

$$(I-b-10) \qquad R_1C00 \longrightarrow C00 \longrightarrow R_2$$

$$(1-b-4) \qquad R_10 \xrightarrow{F} C00 \xrightarrow{F} OR_2$$

$$(1-b-5) \qquad R_1 \longrightarrow C00 \longrightarrow OR_2$$

特閒平2-227489(8)

$$(1-b-15) \qquad R_1 \longrightarrow COO \longrightarrow OCOR_2$$

(1-b-16)
$$R_1 \longrightarrow COO \longrightarrow OCOR_2$$

(1-b-20)
$$R_1C00 \longrightarrow C00 \longrightarrow 0C0R_2$$

(1-b-23)
$$R_1COO \longrightarrow COO \longrightarrow COOR_2$$

$$(I-b-26) \qquad R_10 \longrightarrow C00 \longrightarrow C00R$$

$$(1-b-39) \qquad R_10 \longrightarrow C00 \longrightarrow C000R_1$$

$$(I-b-40)$$
 $R_1 \longrightarrow C00 \longrightarrow OC00R_2$

$$(I-c-1) \qquad R_10 \longrightarrow C00 \longrightarrow 0R_2$$

$$(1-c-2) \qquad R_10 \longrightarrow C00 \longrightarrow 0R_2$$

$$(1-c-3) \qquad R_10 \longrightarrow C00 \longrightarrow OCOR_2$$

$$(1-c-4) \qquad R_10 \longrightarrow C00 \longrightarrow OCOR_2$$

(1-c-7)
$$R_10 - \bigcirc R_2$$

(I-c-10)
$$R_10 \longrightarrow C00 \longrightarrow C00R_2$$

$$(1-c-21) \qquad R_10 \longrightarrow C00 \longrightarrow C00R_2$$

(1-c-25)
$$R_10 \longrightarrow C00 \longrightarrow OR_2$$

$$(1-c-26) \qquad R_10 \longrightarrow C00 \longrightarrow OR_2$$

(1-c-27)
$$R_1COO \longrightarrow COO \longrightarrow OR_2$$

$$(I-c-13) \qquad R_10 \longrightarrow C00 \longrightarrow C00R_2$$

$$(1-c-16) \qquad R_10 \longrightarrow C00 \longrightarrow C00R_2$$

(I-c-19)
$$R_10C0$$
 $C00$ $C00$ $C00R_2$

(1-c-29)
$$R_1000 \longrightarrow C00 \longrightarrow 0R_2$$

$$(1-c-30) \qquad R_10 \longrightarrow C00 \longrightarrow R_2$$

$$(1-c-31) \qquad R_10 \longrightarrow C00 \longrightarrow R_2$$

$$(1-c-32) \qquad R_1 COO \longrightarrow COO \longrightarrow R_2$$

(1-c-33)
$$R_1C00 \longrightarrow C00 \xrightarrow{N} R_2$$

$$(1-c-34) \qquad R_10 \longrightarrow C00 \longrightarrow R_2$$

(1-c-35)
$$R_10 \xrightarrow{r} C00 \xrightarrow{N} R_2$$

$$(I-c-36) \qquad R_1C00 \longrightarrow C00 \longrightarrow R_2$$

$$(I-c-37) \qquad R_1C00 \longrightarrow C00 \longrightarrow R_2$$

$$(1-c-38) \qquad R_10 \longrightarrow C00 \longrightarrow N$$

$$(1-c-39) \qquad R_10 \longrightarrow C00 \longrightarrow N \longrightarrow 0R_2$$

(1-c-40)
$$R_1COO \longrightarrow COO \longrightarrow N$$
 OR.

(1-c-41)
$$R_1COO \longrightarrow COO \longrightarrow N \longrightarrow OR_2$$

(1-c-42)
$$R_10 \longrightarrow C00 \longrightarrow N \longrightarrow OCOR_2$$

$$(1-c-43) \qquad R_10 \longrightarrow C00 \longrightarrow N \longrightarrow OC0R_2$$

(I-c-44)
$$R_1C00 \longrightarrow C00 \xrightarrow{N} OR_2$$

$$(1-c-55) \qquad R_10 \longrightarrow 000 \longrightarrow 000R_2$$

(I-c-57)
$$R_1C00 - N C00 - R_2$$

$$(1-c-58)$$
 R₁COO \longrightarrow COO \longrightarrow OR₂

(1-c-60)
$$R_1COO \longrightarrow N COO \longrightarrow OCOR_2$$

$$R_1O \longrightarrow COO \longrightarrow P \longrightarrow OR_2$$
 (1-c-46) $R_1COO \longrightarrow COO \longrightarrow OCOR_2$

$$(I-c-47) \qquad R_1C00 \longrightarrow C00 \longrightarrow N \longrightarrow OC0R_2$$

$$(I-c-49) \qquad R_1 \longrightarrow \begin{matrix} N \\ \downarrow \end{matrix} \longrightarrow C00 \longrightarrow OR_2$$

$$(1-c-50) \qquad R_1 \longrightarrow N \longrightarrow COO \longrightarrow OCOR_2$$

$$(1-c-51) \qquad R_1 \longrightarrow N \longrightarrow COO \longrightarrow OCOR_2$$

$$(1-c-52) \qquad R_10 \longrightarrow N \longrightarrow C00 \longrightarrow R_2$$

(l-d)

$$(I-d-1)$$
 $R_10 \longrightarrow COS \longrightarrow OR_2$

$$(I-d-2)$$
 $R_10 \longrightarrow cos \longrightarrow oR_2$

$$(1-d-3) \qquad R_10 \longrightarrow \cos \longrightarrow OR_2$$

$$(I-d-4)$$
 $R_1 \longrightarrow COS \longrightarrow OR_2$

$$(I-d-5)$$
 $R_10 \longrightarrow cos \longrightarrow R_2$

$$(I-d-6) \qquad R_10 \longrightarrow COS \longrightarrow R_2$$

$$(1-d-8) \qquad R_10 \longrightarrow C00 \longrightarrow C0SR_2$$

(I -d-11)
$$R_10 \longrightarrow C00 \longrightarrow SR_2$$

$$(I-d-12) \qquad R_10 \longrightarrow C00 \longrightarrow SR_2$$

(1 - d - 23)
$$R_1 O \longrightarrow COS \longrightarrow SR_2$$

$$(1-d-24) \qquad R_10 \longrightarrow COS \longrightarrow SR_2$$

$$(1-d-25) \qquad R_10 \longrightarrow N \longrightarrow SR_2$$

(I -e-1)

(1-e-2)

$$R_1 - H - CH_2CH_2 - OCO - OR_2$$

$$(1-d-15) \qquad R_1S \longrightarrow COO \longrightarrow OR_2$$

$$(1-d-16) \qquad R_1S \longrightarrow 0R_2$$

(1-d-18)
$$R_10 \longrightarrow COS \xrightarrow{N} R_2$$

$$(I-d-19) \qquad R_10 \longrightarrow cos \longrightarrow R_2$$

(1-d-20)
$$R_1COO \longrightarrow COS \longrightarrow R_2$$

(1 - d - 21)
$$R_1 O \longrightarrow COS \longrightarrow N \longrightarrow OR_2$$

(1-d-22)
$$R_10 \longrightarrow COS \longrightarrow OR_2$$

$$(1-f-1) \qquad R_1 0 \longrightarrow C = C \longrightarrow 0 R_2$$

$$(1-f-2) \qquad R_10 \longrightarrow C \equiv C \longrightarrow 0R_2$$

$$(1-f-3) \qquad R_10 \longrightarrow C = C \longrightarrow 0R_2$$

以上の化合物のうち、中温域母体液晶としては、式(Iーa)及び式(Iーb)で表わされる化合物が好ましく、式(Iーaー1)、式(Iーaー2)、式(Iーaー41)、式(Iーaー42)及び式(Iーbー1)で表わされる化合物が特に好ましい。

本発明で使用するSC母体液晶は、低粘性の中 温域母体液晶を用いた場合でも、SC相の温度範 囲を広くするために、高温液晶を含有する。

高温液晶として用いられる化合物の代表的なものを以下に掲げる。ただし以下に示す一般式において、R, R, は各々独立的に炭素原子数1~18のアルキル基を表わす。

(II - a - 1)

$$R \longrightarrow 0 R_2$$

$$R_1 \longrightarrow N \longrightarrow 0 R_2$$

$$R, O \longrightarrow N \longrightarrow OR$$

$$R_1 \leftarrow 0$$
 N OR_2

(Ⅲ-a-11)

(Ta-19)

(II - a - 12)

(🖺 - a - 20)

(II - a - 13)

$$R_1 - \bigcup_{N}^{N} - \bigcup_{N} - \bigcup_{n \in \mathbb{N}} R_2$$

(II -a-21)

$$R_1 \longrightarrow 0$$
 ocor 2

(II -a-14)

$$R : \stackrel{N}{\longleftrightarrow} R :$$

(🛚 -a-22)

$$R_1 \longrightarrow N$$
 OCOR 2

(II - a - 15)

$$R : \stackrel{N}{\longleftrightarrow} R z$$

(II - a - 23)

(🛮 - a - 16)

(II - a - 24

$$(\square -a-25)$$
 $R,C00 \leftarrow N$ $N \leftarrow OR_2$

(🛚 -a-33)

$$(II - a - 26)$$
 $R_1 COO \longrightarrow R_2$

$$(\coprod -a-34) \qquad R_1C00 - \bigcirc N - R_2$$

$$(\mathbb{I}_{-a-27}) \qquad R_1 coo \longrightarrow \bigvee_{i=1}^{N} \bigcap_{i=1}^{N} OR$$

$$(\Pi - a - 37)$$
 R, COO \bigwedge OR.

$$(\mathbb{I} - a - 38) \qquad R_1 0 \longrightarrow R_2$$

$$(III - a - 39)$$
 $R_1O \leftarrow N$ OR_2

$$(II - a - 32)$$
 $R_1 O \xrightarrow{N} R_2$

(II-b)

$$(\mathbb{I} - b - 1)$$
 $\mathbb{R}_1 - \bigcirc \longrightarrow \mathbb{R}_2$

$$(\mathbb{I} - b - 10) \qquad R_1 0 \longrightarrow R_2$$

(
$$\blacksquare$$
 -b-12) R₁0 \bigcirc OR₂

$$(\blacksquare -b-7) \qquad R_1 \longrightarrow 0 R_2$$

$$(\blacksquare -b-15) \qquad R_1 \longrightarrow N \longrightarrow R_2$$

			10 m 2 22/400 (14
(II - b-16)	$R_1 \leftarrow R_2$	(II - c)	
(M-b-17)	$R_1 \leftarrow 0$ OR 2	(II - c - 1)	R ₁ R ₂
(🖽 - b - 18)	$R_1 \leftarrow 0 R_2$	(II - c - 2)	$R_1 O \longrightarrow R_2$
(II - b-19)	R, C00 - R 2	(N - c - 3)	$R_1 = 0$
(II - b-20)	R , C000 - R 2	(III - c - 4)	R , 0 - R 2
(M - b - 21)	R , C00 - R 2	(🔟 - c - 5)	$R_1 C O O \longrightarrow N \longrightarrow R_2$
(III - b-22)	R, OCOR,	(II - c - 6)	$R_1C00 \xrightarrow{F} N R_2$
(II - b-23)	R 1 OCOR 2	(II - c - 7)	R, C00 - R2
(🏿 - b - 24)	$R \rightarrow 0 COR_2$	-(III - c - 8)	$R_1 O \longrightarrow N \longrightarrow OR_2$
(III -c-9)	$R_1 O \longrightarrow N \longrightarrow OR_2$	(E-c-17)	$R_1 \leftarrow N$ OCOR ₂
(II -c-10)	R, 0 - OR 2	(II - c - 18)	$R_1 \longrightarrow R_2$
(·田 - c - 11)	$R_1 O \xrightarrow{F} O R_2$	(M-c-19)	R 1 0 - R 2
(II - c - 12)	R, 0 -	(II - c - 20)	R , 0 - R z
(田-c-13)	R 1 - N - R 2	(III - c - 21)	$R, 0 \longrightarrow R_z$
(III - c - 14)	$R_1 \leftarrow N$ OR_2	(II - c - 22)	R , 0 — OR 2
(II -c-15)	$R_{i} \sim N$ OR_{i}	(II - c - 23)	$R_1 O \longrightarrow OR_2$
(III -c-16)	R, N DCOR;	(II - c - 24)	R, C00 - R2

特開平2-227489 (15)

$$(\mathbb{I} - d - 21)$$
 $R_10 \xrightarrow{\mathsf{F}} COOR_2$ $(\mathbb{I} - e - 3)$ $R_10 \xrightarrow{\mathsf{N}} \mathbb{I}$

$$(\mathbb{I} - d - 22) \qquad R_1 0 \longrightarrow H \longrightarrow OR_2$$

$$(\mathbb{I} - e - 4) \qquad R_1 \longrightarrow R$$

$$(II-d-23) \qquad R_10 \longrightarrow R_2 \qquad \qquad (II-e-5) \qquad R_10 \longrightarrow R_3 \longrightarrow R_4$$

$$(\mathbb{I}_{-d-24}) \qquad R_10 \xrightarrow{F} \qquad \qquad (\mathbb{I}_{-e-6}) \qquad R_10 \xrightarrow{N} \qquad S \xrightarrow{N} \qquad R_2$$

$$(\ \square - d - 25) \qquad R_1 0 \longrightarrow \qquad H \longrightarrow \qquad OR_2$$

$$(\blacksquare - d - 26) \qquad R_1 0 \longrightarrow H \longrightarrow OR_2$$

$$(\blacksquare - e - 8) \qquad R_1 0 \longrightarrow N - N \longrightarrow R_2$$

(II - e - 1)

(
$$\mathbb{H}$$
 -e-2) \mathbb{R} , 0 \mathbb{N} \mathbb{R} \mathbb{R}

$$(\square - e - 11) \qquad R_1 \longrightarrow R_2 \qquad (\square - e - 18) \qquad R_1 \longrightarrow OR_2$$

$$(\square - e - 16) \qquad R_1 \longrightarrow R_2 \qquad (\square - e - 23) \qquad R_1 \longrightarrow 0R_3$$

			50 th 1°2 227900 (17)
(II - f) (II - f - 1)	R 1 - C00- OR 2	(II - f - 8)	R 1 0 - C00 - C00 - R 2
(II - f - 2)	R, C000-0R ₂	(II - f - 9)	R 1 0 - C 0 0 - R 2
(III - f - 3)	$R_1 \leftarrow \bigcirc $	(II - f - 10)	R 10 - C00- OR 2
		(II - f - l 1)	R 10 - C00- OR 2
(III - f - 4)	R 1 0 - C00 - R 2	(II - f - 12)	R 1 0 - C 0 0 - O R 2
(III - f - 5)	R 1 0 - C00 - R 2	(H - f - 13)	$R_1 O \longrightarrow COO \longrightarrow OR_2$
(II - f - 6)	R, 0 - C00 - R,	(III - f - 14)	R 1 0 C 0 0 C 0 R 2
(II - f - 7)	R 1 0 - C00 - R 2	(II - f - 15) ·	R 1 0 - C00 - OR 2 .
(M-f-16)	R ,	(II - f - 24)	R , 0 - C00- C00R 2
(II - f - 17)	R , 0 - C00- C00R 2	(II - f - 25)	R 10 - C00 - C00 R 2
(II - f - 18)	R:0 - C00- OCOR2	(II - f - 26)	R 10 C00 C00R 2
(II - f - 19)	R, C00 - C00- Rz	(II - f - 27)	R,0 - C00- C00R 2
(II - f - 20)	R , COO - OR 2	(III - f - 28)	R , - C00- OR 2
(🖺 - f - 21)	R: -C00-C00R:	(II - f - 29)	R , - C00- OR 2
(III - f - 22)	R 1 - C00- C00R 2	(II - f - 30)	R, -C00-C00R2
(II - f - 23)	$R_1 \leftarrow \bigcirc $	(II - f - 31)	R, -()-coo-()-()- ocor,

特開平2-227489 (18)

$$(\mathbb{I} - f - 32)$$
 $\mathbb{R}_1 0 - \mathbb{C} = \mathbb{R}_2$

$$(\mathbb{I} - f - 35)$$
 $\mathbb{R}, 0 \longrightarrow \mathbb{C}00 \longrightarrow \mathbb{C}00$

$$(II - g - 6)$$
 $R \longrightarrow COO \longrightarrow COO \longrightarrow OR_{x}$

$$(III - g - 7)$$
 $R \longrightarrow COO \longrightarrow COO \longrightarrow OR_2$

$$(II-f-42)$$
 $R_1 \leftarrow H$ $COO \leftarrow F$ OR_2

(
$$II - g - 10$$
) R₁0 $-$ C00 $-$ C00 $-$ R₂

(
$$\blacksquare$$
 -g-12) R, \bigcirc COO \bigcirc OCO \bigcirc R 2

(II - h)

$$(\blacksquare - b - 1) \qquad R_1 \longrightarrow CH_2O \longrightarrow OR_2$$

$$(II - h - 2)$$
 $R_1 \longrightarrow CH_2O \longrightarrow OR_1$

$$(\mathbb{I} - h - 5) \qquad R_1 0 \longrightarrow CH_2 0 \longrightarrow R_2$$

$$(\mathbb{I} - h - 12) \quad R_1 0 \longrightarrow C H_2 0 \longrightarrow O R_2$$

$$(\mathbb{H} - h - 26) \quad R_1 O \longrightarrow CH_2 O \longrightarrow COOR_2$$

$$(\blacksquare -h - 30) \quad R_1 \longrightarrow CH_2O \longrightarrow COOR_2 \qquad (\blacksquare -h - 38) \quad R_1O \longrightarrow CH_2O \longrightarrow$$

(II - h - 37) R , 0 - CH 20- C

特開平2-227489 (21)

- (II i 19) R , COO CH z CH z CH z CH z
- (II i 20) R 1 COO CH 2 CH 2 OR 2
- (II i 21) R, CH2CH2-COOR2
- (II i 22) R: CH 2 CH 2 COOR 2
- (II i 23) R 1 CH 2 CH 2 COOR 2
- (II i 24) R, 0 CH 2 CH 2 COOR 2
- (II i 25) R 10 CH 2 CH 2 COOR 2
- F CH 2 CH 2 CH 2 COOR 2
- (II j 7) R C00 CH 2 O CH 2 O OR 2
- $(\Pi j 8)$ $R_1 0 \longrightarrow C00 \longrightarrow OCH_2 \longrightarrow OR_2$
- (II j 9) R 1 0 C00 CO OCH 2 CR 2
- (M j 10) R, 0 COO- OCH 2 R 2
- (II j 11) R, 0 C00- OCH 2 R 2
- (III j 12) $R_1 \bigcirc COO \bigcirc CH_2 \bigcirc R_2$
- (III j 13) R: OCO- CH 20 R:
- (II j 14) R, 0 OCO- CH z O R z

- (III i 27) R , O CH 2 CH 2 CH 2 COOR
- (🛮 j)
- (II j 1) R , 0 C00- CH 20 CH 20 R 2
- (II j 2) R 10 C00 CH 20 OR 2
- (II j 3) R 10 C00- CH 20 CH 20 OR 2
- (II j 4) R 10 C00- CH 20 CH 20 OR 2
- (II j 5) R, 0 C00- CH = 0 R =
- (II j 6) R C00- CH 20 OR 2
- $(\square j 15) \quad R_1 0 \xrightarrow{F} 0C0 \xrightarrow{} CH_2 0 \xrightarrow{} R_2$
- (II j 16) R , 0 OCO CH + 0 OR +
- (🛮 k)
- (II k 1) R , 0 CH 2 0 C00 R 2
- (II k 2) R₁0 CH₂0 COO OR₂
- $(\mathbb{H} k 3)$ $R_1 0 \longrightarrow CH_2 0 \longrightarrow C00 \longrightarrow OR_2$
- (II k 4) R 10 CH 20 C00 OR 2
- (II k 5) R, 0 CH 20 COO COO R 2

$$_{x}$$
 ($\mathbf{E} - \mathbf{k} - 6$) R_{1} \longrightarrow $CH_{2}O$ \longrightarrow COO \longrightarrow OR_{2}

$$(\blacksquare - k - 8) \qquad R_1 O \longrightarrow CH_2 O \longrightarrow OCO \longrightarrow OR_2$$

$$(II - k - 12)$$
 $R_1 - CH_2O - COO - R_2$

$$(\mathbb{II} - \ell - 5) \qquad R_10 \longrightarrow C00 \longrightarrow CH_2CH_2 \longrightarrow 0R_2$$

$$(II - \ell - 6)$$
 R, 0 COO CH 2 CH 2 CH 2 CH 2

$$(\blacksquare - \ell - 7) \qquad R_1 O \longrightarrow OCO \longrightarrow CH_2 CH_2 \longrightarrow OR_2$$

$$(\Pi - \ell - 8)$$
 R₁0 CO CH₂CH₂ OR₂

$$(\Pi - \ell - 10)$$
 R₁0 \longrightarrow 0C0 \longrightarrow CH₂CH₂ \longrightarrow OR₂

$$(\mathbf{II} - \ell - 12) \quad \mathbf{R}_1 \mathbf{0} \longrightarrow \mathbf{0} \mathbf{C} \mathbf{0} \longrightarrow \mathbf{C} \mathbf{H}_2 \mathbf{C} \mathbf{H}_2 \longrightarrow \mathbf{0} \mathbf{R}_2$$

$$(II-k-14)$$
 R₁0 \longrightarrow 0CH₂ \longrightarrow C00 \longrightarrow R₂

$$(\mathbf{II} - \mathbf{k} - 16)$$
 $\mathbf{R}_1 \mathbf{0} \longrightarrow \mathbf{0} \mathbf{CH}_2 \longrightarrow \mathbf{C00} \longrightarrow \mathbf{0} \mathbf{R}_2$

$$(II - \ell)$$

$$(II - \ell - 1)$$
 R₁0 \longrightarrow C00 \longrightarrow CH₂CH₂ \longrightarrow R₂

$$(\mathbf{H} - \boldsymbol{\ell} - 2) \quad \mathbf{R}_1 \mathbf{0} \longrightarrow \mathbf{C} \mathbf{0} \mathbf{0} \longrightarrow \mathbf{C} \mathbf{H}_2 \mathbf{C} \mathbf{H}_2 \longrightarrow \mathbf{R}_2$$

(II -
$$\ell$$
 -3) R₁0 \sim 0C0 \sim CH₂CH₂ \sim R₂

$$(\blacksquare - \ell - 4) \quad R_1 0 \xrightarrow{F} 0 C 0 \xrightarrow{C H_2 C H_2} - R_2$$

(II -
$$\ell$$
 -13) R, \leftarrow C00-CH₂CH₂-CH₂

$$(III - \ell - 14)$$
 R₁ \longrightarrow 0CO \longrightarrow CH₂CH₂ \longrightarrow OR₂

$$(II - \ell - 15)$$
 R₁ $- \bigcirc$ COO $- \bigcirc$ CH₂CH₂ $- \bigcirc$ OR₂

(
$$\mathbb{I} - \ell$$
 -16) R₁ \longrightarrow 0C0 \longrightarrow CH₂CH₂ \longrightarrow 0R₂

以下に掲げる複素環を有する化合物も高温液晶として使用することができる。また、以下に掲げる一般式で示される複素環を有する化合物におけるベンゼン環、シクロヘキサン環にフッ素原子、塩素原子又はシアノ基が置換した化合物も高温液晶として使用することができる。

特開平2-227489 (23)

- (🖺 m)
- $(\mathbb{I} \mathbb{I} 1) \quad \mathbb{R}_1 \longrightarrow \mathbb{R}_2$
- (II m 3) R, 0 \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow R₂
- (II m 4) R, 0 N C 00 OR 2
- - $(\mathbb{H} \mathbb{R} 7)$ $\mathbb{R}_1 \longrightarrow \mathbb{R}_2$
 - (II u 8) $R_1 \longrightarrow N$ $COO \longrightarrow OR_2$
 - $(\square m 17)$ $R_1 \leftarrow \bigcirc$ $COO \leftarrow \bigcirc$ $OCOR_2$
 - (II u 18) R , COO R 2
 - (III m 19) $R_1 \longrightarrow C00 \longrightarrow R_2$
 - (II m 20) R₁ \longrightarrow COO \longrightarrow OR₂
 - (II m 21) R₁0 \longrightarrow C00 \longrightarrow R₂
 - (II m 22) R 10 OR 2
- (II I 23) R₁0 \longrightarrow COO \longrightarrow OCOR₂
- (II m 24) R, COO COO R2

- (II-m-9) R₁0 C00 R₂
- $(II I 11) \qquad R_1 \longrightarrow N \longrightarrow C00 \longrightarrow OCOR_2$
- (II-m-12) R₁C00 R₂
- (III m 14) R, COO OR 2
- (III m 15) R₁0 C00 R₂
- $(\Pi n 16)$ R, 0 \longrightarrow C00 \longrightarrow OR z
- (II m 25) R, C00 C00 R;
- (II n 26) $R_1 \longrightarrow COO \longrightarrow OR_2$
- (III m 27) R, 0 C00 R,
- (III IR 29) $R_1 \leftarrow \bigcirc \searrow \bigcirc \bigcirc$ $COO \leftarrow \bigcirc \bigcirc$ $OCOR_2$
- (II - 30) R, C00 R2
- (II a 32) $R_1 \leftarrow N$ $COO \leftarrow OR_2$

特開平2-227489 (24)

$$(II - n - 35)$$
 R, $\langle O \rangle$ COO $\langle O \rangle$ OCOR:

$$(III - III - III$$

$$(II - a - 50)$$
 $R_1 \longrightarrow C00 \longrightarrow OR_2$

$$(\mathbb{I} - m - 51)$$
 R, $0 \leftarrow \bigcirc$ Coo \leftarrow R₂

$$(II - a - 52)$$
 R, $0 \longrightarrow$ OR_2

$$(II - II - 55)$$
 $R_1 \longrightarrow N$ $C00 \longrightarrow R_2$

$$(II - \alpha - 41)$$
 $R_1 \longrightarrow N$ $C00 \longrightarrow OCOR_2$

$$(II - a - 42)$$
 $R_1 COO \longrightarrow R_2$

$$(II - II - 43)$$
 $R_1 \leftarrow N$ $C00 \leftarrow R_2$

$$(II - m - 44)$$
 $R_1 \leftarrow N$ $COO \leftarrow OR_2$

$$(II - m - 46)$$
 R₁0 $<$ $\stackrel{N}{\bigcirc}$ \longrightarrow C00 $<$ OR₂

$$(II - \bullet - 47) \qquad R_1 \longrightarrow R_2 \longrightarrow C00 \longrightarrow C00R_2$$

$$(II - a - 58)$$
 R₁0 \xrightarrow{N} C00 \xrightarrow{N} OR₂

$$(II - m - 59)$$
 $R_1 \stackrel{N}{\longleftrightarrow} COO \stackrel{\frown}{\longleftrightarrow} OCOR_2$

$$(II - m - 61)$$
 $R_1 \leftarrow OO \leftarrow P_2$

$$(II - n - 62)$$
 $R_1 \leftarrow \bigcirc \bigcirc$

$$(\square - - 63)$$
 R₁0 \longrightarrow C00 \longrightarrow R₂

特開平2-227489 (25)

$$(II - B - 65)$$
 $R_1 \leftarrow \bigcirc C00 \leftarrow \bigcirc OCOR_2$

$$(\mathbb{I} - \mathbf{e} - 73)$$
 $\mathbb{R}_1 \longrightarrow \mathbb{C} 00 \longrightarrow \mathbb{R}_N \longrightarrow \mathbb{R}_2$

$$(II - a - 67)$$
 $R_1 \xrightarrow{N} C00 \xrightarrow{R_2}$

$$(II - m - 68)$$
 R, $\stackrel{R}{\longrightarrow}$ COO $\stackrel{\frown}{\longrightarrow}$ OR:

$$(II - m - 76)$$
 $R_1O \longrightarrow COO \longrightarrow N$ OR_2

$$(II - R - 77)$$
 R, \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc OCOR₂

$$(II - m - 71)$$
 $R_1 \longrightarrow N$ $COO \longrightarrow OCOR_2$

$$(II-m-79)$$
 $R_1 \longrightarrow C00 \longrightarrow R_2$

$$(II - m - 72)$$
 R₁C00 \sim \sim \sim \sim \sim \sim R₂

$$(II - m - 91)$$
 $R_1 \leftarrow \bigcirc$ $C00 \leftarrow \bigcirc$ R_2

特開平2-227489 (26)

(🛮 - n - 20)

(II - n - 12)

特開平2-227489 (27)

 $\langle\bigcirc
angle$ oco $-\!\langle\bigcirc
angle$ or,

(II -n-52)

(II - n - 44)

特開平2-227489 (28)

$$(\mathbf{H} \cdot \mathbf{n} - 53) \quad \mathbf{R}_1 \longrightarrow \mathbf{0} \times \mathbf{0}$$

$$(II-n-56)$$
 $R_1 \stackrel{N}{\longleftrightarrow} OCO \stackrel{\frown}{\longleftrightarrow} OR_2$ $(II-n-64)$ $R_1O \stackrel{\frown}{\longleftrightarrow} OCO \stackrel{\frown}{\longleftrightarrow} OR_2$

$$(\blacksquare -n-57) \qquad R_10 \xrightarrow{N} \longrightarrow OCO \xrightarrow{} OCO \xrightarrow{} OCOR_2$$

$$(\blacksquare -n-58) \qquad R_1O \xrightarrow{N} OCO \xrightarrow{} OCO \xrightarrow{} OR_2 \qquad (\blacksquare -n-66) \qquad R_1COO \xrightarrow{} OCO \xrightarrow{} OCO \xrightarrow{} R_2$$

$$(\ \underline{\mathbb{II}} - n - 59) \qquad R_1 \xrightarrow{N} \qquad 0 CO \xrightarrow{} \qquad 0 CO R_2 \qquad (\ \underline{\mathbb{II}} - n - 67) \qquad R_1 \xrightarrow{N} \qquad 0 CO \xrightarrow{} \qquad 0 CO \xrightarrow{} \qquad R_2$$

$$(III - n - 60) \qquad R_1 COO \longrightarrow OCO \longrightarrow R_2 \qquad (III - n - 68) \qquad R_1 \longrightarrow OCO \longrightarrow OR_2$$

$$(\Pi - n - 69) \qquad R_1 O \xrightarrow{N} OCO \xrightarrow{N} OCO \xrightarrow{N} OCOR_2$$

$$(\underline{\mathbb{H}}_{-n}-70) \qquad R_10 \xrightarrow{N} \qquad 000 \xrightarrow{N} \qquad 000 \xrightarrow{N} \qquad R_2$$

$$(II-n-71) \qquad R_1 \longrightarrow 0C0 \longrightarrow 0C0R_2 \qquad (III-n-79) \qquad R_1 \longrightarrow 0C0 \longrightarrow R_2$$

$$(\blacksquare -n - 75) \qquad R_1 O \longrightarrow OCO \longrightarrow R_2 \qquad (\blacksquare -n - 83) \qquad R_1 \longrightarrow OCO \longrightarrow R_2 \longrightarrow OCOR_2$$

$$(II - n - 76) \qquad R_1O \longrightarrow OCO \longrightarrow OR_2 \qquad (II - n - 84) \qquad R_1COO \longrightarrow OCO \longrightarrow R_2$$

特開平2-227489 (29)

$$(\blacksquare -n-85) \qquad R_1 \longrightarrow 000 \longrightarrow R_2$$

$$(\blacksquare -n-87) \qquad R_10 \longrightarrow \qquad \bigcirc \qquad \bigcirc \qquad \bigcirc \qquad R_2$$

$$(II - n - 88)$$
 $R_10 \longrightarrow 000 \longrightarrow 0R_2$

$$(\mathbb{I} - n - 91) \qquad R_1 \longrightarrow 0 CO \longrightarrow R_2$$

$$(II - n - 92)$$
 $R_1 \longrightarrow 0C0 \longrightarrow 0R_2$

$$(III - n - 101) \qquad R_1 \longrightarrow OCO \longrightarrow OCOR_2$$

$$(III - n - 102)$$
 R, COO \longrightarrow OCO \longrightarrow R₂

$$(\mathbb{I} - n - 103) \qquad R_1 \longrightarrow \bigcirc \longrightarrow \bigcirc \bigcirc \bigcirc \bigcirc \longrightarrow \bigcirc \stackrel{\mathsf{N}}{\longrightarrow} \bigcirc \qquad R_2$$

$$(\square - n - 105)$$
 $R_10 \longrightarrow$ $000 \longrightarrow$ R_2

$$(II - n - 106) \qquad R_10 \longrightarrow OC0 \longrightarrow OR_2$$

$$(\mathbb{I} - n - 107) \qquad R_1 \longrightarrow 0 \text{COR}_2$$

$$(\mathbb{I} - n - 108) \qquad R_1 COO \longrightarrow \qquad \bigcirc \qquad \bigcirc \qquad \bigcirc \qquad R_2$$

$$(II - n - 94)$$
 $R_10 \longrightarrow 000 \longrightarrow 0R_2$

$$(II-n-95)$$
 $R_1 \longrightarrow 000 \longrightarrow 000R_2$

$$(II - n - 96)$$
 $R_1C00 - \bigcirc$ $0C0 - \bigcirc$ R_2

$$(II - n - 97)$$
 $R_1 \longrightarrow CO \longrightarrow R_2$

$$(II - n - 98) \qquad R_1 \longrightarrow OCO \longrightarrow OR_2$$

$$(II - n - 99) \qquad R_10 \longrightarrow \qquad \bigcirc \qquad \bigcirc \qquad R_2$$

$$(\mathbf{II} - \mathbf{n} - 100) \qquad \mathbf{R}_1 \mathbf{0} \longrightarrow \mathbf{0} \mathbf{C} \mathbf{0} \longrightarrow \mathbf{0} \mathbf{R}_2$$

$$(III - o - 3)$$
 $R_1 O \longrightarrow N$ $CH_2 O \longrightarrow R_2$

$$(III - o - 4)$$
 $R_1O \longrightarrow N$ $CH_2O \longrightarrow OR_2$

$$(\Pi - o - 5)$$
 $R_1 \longrightarrow N$ $CH_2O \longrightarrow OCOR_2$

特開平2-227489(30)

特開平2-227489 (31)

$$(II - o - 41)$$
 $R_1 \longrightarrow N$ $CH_2O \longrightarrow OCOR_2$

$$(\Pi - o - 42)$$
 $R_1COO \longrightarrow N$ $CH_2O \longrightarrow R_2$

$$(II - o - 43)$$
 $R_1 \leftarrow 0$ $CH_2O \leftarrow 0$ R_2

$$(II - o - 53)$$
 $R_1 \longrightarrow CH_2O \longrightarrow OCOR_2$

$$(II - o - 47)$$
 $R_1 \stackrel{N}{\longleftrightarrow} CH_2O \stackrel{}{\longleftrightarrow} OCOR_2$

$$(II - o - 55) \qquad R_1 \stackrel{N}{\longleftrightarrow} \qquad CH_2O \stackrel{}{\longleftrightarrow} \qquad R_2$$

$$(II - o - 59) \qquad R_1 \xrightarrow{R} CH_2O \xrightarrow{} OCOR_2$$

$$(II - o - 67) \qquad R_1 \longrightarrow N \longrightarrow CH_2O \longrightarrow R_2$$

$$(III - o - 60)$$
 R₁C00 $\stackrel{R}{\longrightarrow}$ CH₂O $\stackrel{R}{\longrightarrow}$ R₂

$$(\Pi - o - 70)$$
 $R_10 \longrightarrow CH_20 \longrightarrow OR_2$

(
$$\mathbb{H} - 0 - 71$$
) $\mathbb{R}_1 \longrightarrow \mathbb{CH}_20 \longrightarrow \mathbb{C}O\mathbb{R}_2$

$$(III - o - 72) \quad R_1C00 \longrightarrow R_2$$

特開平2-227489 (32)

$$(\text{III} - \text{o} - 73) \qquad \text{R}_1 \longrightarrow \bigcirc \bigcirc \qquad \bigcirc \text{CH}_2 0 \longrightarrow \bigcirc \stackrel{\text{N}}{\longrightarrow} \text{R}_2$$

$$(\blacksquare -o-74) \qquad R_1 \longrightarrow \qquad CH_2O \longrightarrow \qquad N \longrightarrow OR_2$$

$$(\blacksquare -o-77) \qquad R_1 \longrightarrow \bigcirc \longrightarrow \bigcirc CH_2O \longrightarrow \bigcirc \stackrel{N}{\longrightarrow} OCOR_2$$

$$(\blacksquare - o - 78) \qquad R,COO \longrightarrow CH_zO \longrightarrow N R_z$$

$$(II - o - 80) \qquad R_1 \longrightarrow \bigcirc \longrightarrow \bigcirc CH_2O \longrightarrow \bigcirc \bigcirc \longrightarrow \bigcirc OR_2$$

$$(III - o - 91)$$
 $R_1 \leftarrow \bigcirc \frown$ $CH_2O \leftarrow \bigcirc \frown$ R_2

$$(III - o - 93)$$
 $R_1O \longrightarrow CH_2O \longrightarrow R_2$

(
$$\mathbb{I}$$
 -o-83) \mathbb{R} , \bigcirc CH₂O \bigcirc CCOR₂

(
$$II - o - 97$$
) $R_1 \longrightarrow CH_2O \longrightarrow R_2$

$$(\blacksquare -o-101) \qquad R_1 \longrightarrow CH_2O \longrightarrow OCOR_2$$

$$(II - o - 102)$$
 R, COO \longrightarrow CII $_2$ O \longrightarrow R $_2$

$$(\text{II} - \text{o} - 103) \qquad \text{R}_1 \longrightarrow \text{CH}_2 \text{O} \longrightarrow \text{R}_2$$

$$(\square - \circ - 104) \qquad R_1 \longrightarrow \bigcirc \longrightarrow \bigcirc CH_2O \longrightarrow \bigcirc \bigcirc \longrightarrow \bigcirc OR_2$$

特開平2-227489 (33)

特開平2-227489 (34)

(II-p-60)

-⟨○⟩- OCH 2-⟨○⟩- OR 2

(II -p-52)

特朗平2-227489 (35)

$$R_10 \xrightarrow{N} OCH_2 \longrightarrow R_2$$

$$(III - p - 62)$$
 $R_1 \sim N \sim 0$ $OCH_2 \sim 0$ OR_2

$$R_10 \stackrel{N}{\longrightarrow} OCH_2 \stackrel{}{\longrightarrow} OR_2$$

$$R_1 \xrightarrow{N} OCH_2 OCOR_2$$

$$(II - p - 64)$$
 $R_1 O \sim N \sim N$ $O C II 2 \sim O R_2$

$$(\square -p-67)$$
 $R_1 \longrightarrow N$ $OCH_2 \longrightarrow R_2$

$$R_1 O \longrightarrow OCH_2 \longrightarrow R_2$$

$$(M-p-68)$$
 R, \sim OCH $_{z}\sim$ OR $_{z}$

$$R: O \longrightarrow OCH_z \longrightarrow OR_z$$

$$(\Pi - p - 77) \qquad R_1 \longrightarrow OCH_2 \longrightarrow OCOR_2$$

$$(II - p - 78)$$
 $R,C00$ OCH_z R_2

$$(\Pi - p - 79)$$
 $R_1 \longrightarrow 0$ $CH_2 \longrightarrow R_2$

$$R_10 \longrightarrow 0$$
 OCII $z \longrightarrow R_2$

$$(\square - p - 80) \qquad R_1 \longrightarrow OCH_2 \longrightarrow OR_2$$

$$(II - p - 82)$$
 $R_10 \longrightarrow OCH_2 \longrightarrow OR_2$

特開平2-227489 (36)

$$(II-p-97)$$
 $R_1 \longrightarrow OCH_2 \longrightarrow R_2$

$$(\square - p - 98)$$
 $R_1 \longrightarrow 0 CH_2 \longrightarrow 0 CH_2 \longrightarrow 0 R_2$

$$(\Pi - p - 100)$$
 R, $0 \leftarrow \bigcirc$ OCH $z \leftarrow \bigcirc$ OR z

$$(III - q - 1) \quad R_1 \longrightarrow \bigcap_{N} CH_2CH_2 \longrightarrow R_2$$

$$(\blacksquare -q-3) \qquad R_1 O \longrightarrow \bigcap_{N} CH_2 CH_2 \longrightarrow R_2$$

$$(\Pi - q - 5)$$
 $R_1 \longrightarrow \bigcap_{y=1}^{N} CH_2CH_2 \longrightarrow OCOR_2$

$$(\Pi - p - 101) \qquad R_1 \longrightarrow OCH_2 \longrightarrow OCOR_2$$

$$(II - p - 103)$$
 $R_1 \longrightarrow OCH_2 \longrightarrow N$ R_2

$$(\blacksquare -p-104) \qquad R_1 \longrightarrow 0 CH_2 \longrightarrow 0 R_2$$

$$(\Pi - p - 105)$$
 $R_1 O \longrightarrow OCH_2 \longrightarrow R_2$

$$(\Pi - p - 106)$$
 R, $0 \longrightarrow 0$ CH $z \longrightarrow 0$ R $z \longrightarrow$

$$(II-p-107)$$
 $R_1 \longrightarrow OCH_2 \longrightarrow OCOR_2$

$$(III-p-108)$$
 $R_1C00 \longrightarrow 0CH_2 \longrightarrow R_2$

$$(\Pi - q - 9)$$
 $R_1 O \longrightarrow N$ $CH_2 CH_2 \longrightarrow R_2$

$$(\blacksquare -q-11) \qquad R_1 \longrightarrow \bigcap_{N} CH_2CH_2 \longrightarrow OCOR_2$$

特開平2-227489 (37)

$$(\blacksquare -q-25) \qquad R_1 \longrightarrow R_2 \longrightarrow R_2$$

$$(\mathbb{I} - q - 26) \qquad R_1 \longrightarrow R_2 \longrightarrow CH_2 CH_2 \longrightarrow 0R_2$$

$$(\square - q - 19)$$
 $R_1 \leftarrow \longrightarrow CH_2CH_2 \leftarrow \longrightarrow R_2$

$$(II - q - 27)$$
 $R_10 \longrightarrow R_2$ $CH_2 CH_2 \longrightarrow R_2$

$$(\mathbb{I}_{-q-31})$$
 $\mathbb{R}_1 \longrightarrow \mathbb{N}$ $\mathbb{R}_2 \oplus \mathbb{R}_2$

$$(\mathbb{H} - q - 33)$$
 $\mathbb{R}, 0 \longrightarrow \mathbb{R}_2$ \mathbb{R} \mathbb{R}

$$(\blacksquare -q - 41) \qquad R_1 \longrightarrow \bigvee_{N} \longrightarrow CH_2CH_2 \longrightarrow OCOR_2$$

$$(\Pi - q - 34)$$
 R₁0 \longrightarrow CH₂CH₂ \longrightarrow OR₂

$$(\mathbb{I} - q - 42)$$
 R, COO \longrightarrow \longrightarrow CH 2CH 2 \longrightarrow R 2

$$(\mathbb{H} - q - 43)$$
 $R_1 \longrightarrow R_2$ $CH_2 \longrightarrow R_2$

(
$$\mathbb{I}$$
 -q-36) \mathbb{R}_1 C00 \longrightarrow \mathbb{R}_2 CH₂ \longrightarrow \mathbb{R}_2

$$(\blacksquare -q - 44) \qquad R_1 \stackrel{n}{\swarrow} \qquad \qquad CH_2CH_2 \stackrel{}{\longleftarrow} \qquad OR_2$$

$$(II - q - 37)$$
 $R_1 \longrightarrow R_2$ $CH_2CH_2 \longrightarrow R_2$

$$(III - q - 38)$$
 $R_1 \longrightarrow N$ $CH_2CH_2 \longrightarrow OR_2$

$$(\blacksquare -q - 47) \qquad R_1 \stackrel{\text{N}}{\longleftrightarrow} \qquad \bigcirc \qquad \bigcirc \qquad CH_2CH_2 - \bigcirc \qquad \bigcirc \qquad OCOR_2$$

$$(\square - q - 48)$$
 R, COO $\stackrel{\circ}{N}$ CH, CH, $\stackrel{\circ}{N}$ R, $\stackrel{\circ}{N}$

特閒平2-227489 (38)

$$(\mathbb{II} - q - 57) \quad R_1 0 \xrightarrow{N} \qquad CH_2 CH_2 \xrightarrow{} \qquad R_2$$

$$(II - q - 51)$$
 $R_10 \longrightarrow CH_2CH_2 \longrightarrow R_2$

(
$$\mathbb{I}$$
 -q-60) $R_1C00 \rightarrow \mathbb{R}_2$ $CH_2CH_2 \rightarrow \mathbb{R}_2$

(
$$\mathbb{I} - q - 61$$
) $R_1 = N - N$ $CH_2 CH_2 = R_2$

$$(II-q-55)$$
 $R_1 \stackrel{N}{\longleftrightarrow} CH_2CH_2 \stackrel{}{\longleftrightarrow} R_2$

$$(II - q - 65)$$
 $R_1 \leftarrow OCOR_2$

$$(\mathbb{I} - q - 73) \qquad R_1 \longrightarrow CH_2 CH_2 \longrightarrow N \longrightarrow R_2$$

$$(\coprod -q-74) \qquad R_1 \longrightarrow CH_2CH_2 \longrightarrow N \longrightarrow OR_2$$

$$(\mathbb{I} - q - 67)$$
 $R_1 \longrightarrow N$ \longrightarrow $CH_2CH_2 \longrightarrow$ R_2

$$(II-q-75)$$
 R₁0 CH₂CH₂ \longrightarrow R₂

$$(II-q-76)$$
 R₁0 CH₂CH₂CH₂ \longrightarrow OR₂

$$(\coprod -q -70)$$
 R₁0 \xrightarrow{N} CH₂CH₂ $\xrightarrow{}$ OR₂

$$(\text{ III} - q - 78) \qquad \text{R}_1 \text{ COO} \longrightarrow \text{CH}_2 \text{ CH}_2 \longrightarrow \text{N} \longrightarrow \text{R}_2$$

$$(II - q - 71)$$
 $R_1 \longrightarrow 0$ $CH_2CH_2 \longrightarrow 0COR_2$

$$(\mathbb{Z} - q - 79) \qquad R_1 \longrightarrow CH_2CH_2 \longrightarrow R_2$$

$$(\mathbb{H} - q - 72)$$
 $R_1C00 \longrightarrow \mathbb{R}_2$ $CH_2CH_2 \longrightarrow \mathbb{R}_2$

$$(\mathbf{H} - \mathbf{q} - \mathbf{80}) \qquad \mathbf{R}_1 \longrightarrow \mathbf{CH}_2 \mathbf{CH}_2 \longrightarrow \mathbf{N} \qquad \mathbf{OR}_2$$

特開平2-227489 (39)

$$(\Pi - q - 82)$$
 R, 0 \longrightarrow CH₂CH₂ \longrightarrow OR₂

$$(II - q - 83) \qquad R_1 \longrightarrow CH_2CH_2 \longrightarrow N \longrightarrow OCOR_2$$

$$(II - q - 84)$$
 R₁COO \longrightarrow CH₂CH₂ \longrightarrow R₂

$$(II - q - 102)$$
 $R_1 COO$ $CH_2 CH_2$ R_2

$$(E-q-104)$$
 R. $CH_2CH_2 \leftarrow N$ OR:

$$(\Pi - q - 106)$$
 R₁0 \longrightarrow CH₂CH₂ \longrightarrow OR₂

$$(II-q-107)$$
 $R_1 \longrightarrow CH_2CH_2 \longrightarrow OCOR_2$

以上の化合物のうち、高温液晶としては、式 ($\Pi-a$)、式 ($\Pi-b$)及び式 ($\Pi-c$) で表わされる化合物が好ましく、式 ($\Pi-a-1$)、式 ($\Pi-a-1$)、式 ($\Pi-a-1$)、式 ($\Pi-c-1$)及び式 ($\Pi-c-3$)で表わされる化合物が特に好ましい。

本発明におけるSC母体液晶において、上記高温液晶の割合が多くなりすぎるとSC相の温度範囲は高温域まで広がるものの、粘性が高くなって応答性に悪影響を及ぼし、少ない場合にはSC相の温度範囲が狭くなってしまうので、その割合は5~80重量%が好ましく、10~50重量%が特に好ましい。

斯くして、SC相の温度域が広く、かつ低粘性であるSC母体液晶を得ることができる。これに、キラルドーパントを添加することにより、容易に高速応答性のSC^液晶組成物を得ることができる。

本発明で使用するキラルドーパントは、光学活性化合物から成り、その構成成分として、前記一般式 (A)

本発明で使用するキラルドーパントとしては、

$$(N-3) \qquad \begin{array}{c} CH_2 \\ + CH_2 \end{array}$$

$$(N-4) \qquad -0 \leftarrow CH_z \rightarrow 0 \leftarrow CH_z \rightarrow CH - C_zH_s$$

$$(N-6)$$
 $-0-C + CH_z + CH_{-CzH_3}$

$$(N-7) \qquad \begin{array}{c} CH_2 \\ \vdots \\ CH_2 \end{array}$$

$$(N-8) \qquad -0 \leftarrow CH_2 \rightarrow CH-R$$

$$(N-9)$$
 $-c-0 \leftarrow CH_2 \rightarrow CH_-R_3$

(1) S C * 相を示す化合物、(2) S C * 相以外の液晶相のみを示す化合物又は(3)液晶性を全く示さない化合物を用いることができるが、(3) の場合には、S C 母体液晶に添加して得られる S C * 液晶組成物の液晶性が低下する傾向を防止するために、液晶類似の骨格を有する化合物を用いることが好ましい。

キラルドーパントがSC* 液晶組成物にもたらす諸物性のうち重要なものは、その誘起する螺旋ピッチ、自発分極の向き及びその大きさであるが、これらはキラルドーパントを構成する各化合物の光学活性部位により最も大きな影響を受ける。

これまでキラルドーパント、SC*化合物又はネマチック液晶への添加剤として用いられてきた 光学活性化合物における光学活性基の代表的なも のを以下に掲げる。

$$(N-1) \qquad \begin{array}{c} CH_3 \\ - CH_2 \xrightarrow{h} CH - C_2H_3 \end{array}$$

$$(N-2) \qquad -0 \leftarrow CH_2 \rightarrow CH - C_2H_1$$

$$(N-14) \qquad \begin{array}{c} CH_3 \\ -CH-CH_2-OR_3 \end{array}$$

(IV - 18)
$$-0-CH_2CH_2-CH-CH_2CH_2CH=C-CH_3$$

$$(IV - 32)$$
 $-0 - CH - R$

(IV - 21)
$$-S \leftarrow CH_{2} \rightarrow CH(CH_{2}) \rightarrow CH_{3}$$

$$(N-39) \qquad -0-C-CH-CH < CH_{3} CH_{3}$$

(IV - 51)
$$\begin{array}{c} CH_{\bullet} & 0 \\ |\bullet & || \\ -CH & -C - S - R_{\bullet} \end{array}$$

(IV - 57)
$$-0 - CH_z - CH - R_s$$

$$(IV-52)$$
 $-CH_3 0 | CH_3 | C-N < CH_3 R_5$

$$(IV - 58)$$
 $\begin{array}{c} 0 & CN \\ || & || & \\ -C - 0 - CH - R_s \end{array}$

$$(IV - 55)$$
 $-0 - CH_z - CH - R_z$

$$(IV - 62)$$
 $-0 - CH - R_5$

$$(N - 69) - COOCH_2 - CH - R$$

$$(N-65)$$
 $-0-CH-CH_2-OR_5$

$$\begin{array}{c} CH_{2} \\ i = \\ O - CH - CH_{2} - (CH_{2}) \\ - O - CH - CH_{2} - (CH_{2}) \\ - O - CH - CH_{3} - (CH_{3}) \\ - O - CH$$

$$(N-67)$$
 $-cooch_2-ch-ch-ch-ch$

$$(N-75)$$
 $-0-CH_2-CH-OR_5$

$$(N-81)$$
 $-0-CH_2-CH-R_1$

$$(IV - 76)$$
 $-s - CH - R_s$

$$\begin{array}{ccc}
0 & CH_{3} \\
 & | & | & | \\
 & | & -S - CH - R_{3}
\end{array}$$

$$(IV - 78)$$
 $0 - CH_2 - CH - 0R_6$

$$(N-91) \qquad -\cos - cH \xrightarrow{CH}$$

$$(N-92)$$
 $-0-CH_2-CH-CH-R_3$

$$(N-93)$$
 $coo-ch_z-ch-ch-R$

上記各一般式において、mは1~4の整数を表わし、nは1~10の整数を表わし、R₂は炭素原子数3~8のアルキル基を表わし、R₂は炭素原子数2~10のアルキル基を表わし、R₃は炭素原子数1~10のアルキル基を表わし、R₃は炭素原子数1~4のアルキル基を表わす。

光学活性基として、式(N-1)~(N-22)で表わされる光学活性基のみを含有する光学活性化合物は、SC母体液晶に添加してSC。液晶組成物とした際に誘起される自発分極が非常に小さく、単独でSC。相を示す場合でもそのほとんどが10nC/cm²以下にすぎない。

一方、光学活性基として、式(N-31)~(N-95)で表わされる光学活性基を含有する光学活性化合物は、SC母体液晶に添加してSC*液晶組成物とした際に誘起する自発分極が大きく、単独でSC*相を示す場合などでは300nC/cm²以上の大きな値を示すものも存在する。

本発明においては、前述の一般式(A)におい

CH: | a = て、一般式 ー2 * ー CH — R * で表わされる光学活性 基が式 (N - 31) 又は式 (N - 32) で表わされる

光学活性基であり、一般式 R* -- CH-(CH_z) - Z* -- で表わされる光学活性基が式 (N-1)、式 (N-2)、式 (N-5)、式 (N-6)、式 (N-7)、式 (N-8)、式 (N-9)、式 (N-10)、式 (N-12)、式 (N-15)、式 (N-16)、式 (N-19)、式 (N-20)、式 (N-31) 又は式 (N-32) で表わされる光学活性基から選ばれることを特徴とするものである。

ÇH

一般式 R*- cH·← cH·→ 2*-で表わされる光学 活性基が式 (IV-31) 又は式 (IV-32) から選ば

CH 3

れる場合には、- 2 °- Cli - R° で表わされる光学活性基と、自発分極の向きを同一にしておく必要があるが、その他の場合には、式(N - 31)又は式(N - 32)で表わされる光学活性基と比較すると、

その誘起する自発分極は非常に小さいので特に、 同一にする必要はない。

CH:3

一般式 R*-CH-2+ Z*- 及び-Z*-CH-R*
で表わされる光学活性基による螺旋のピッチの向きは、一般的には相反していることが好ましく、その場合には、螺旋ピッチが非常に長いものも得ることも可能であるが、螺旋ピッチ調整の目的には、螺旋ピッチが非常に短いものも好都合であり、このような場合には両者による螺旋ピッチの向きが同一であるのが好ましい。

このような光学活性基を末端に有するような光 学活性化合物の基本骨格(一般式(A)における Xに相当する。)の代表的なものを以下に掲げる。

$$(V-10)$$
 $-\bigcirc$ OCH $_2$ $-\bigcirc$ CH $_2$ O $-\bigcirc$

特朗平2-227489 (45)

$$(V-19) \qquad -\bigcirc - CH_2CH_2 -\bigcirc -C00 -\bigcirc -$$

$$(V-14)$$
 \longrightarrow OCH $_2$ \longrightarrow COO \longrightarrow

$$(V-15)$$
 $-\bigcirc$ OCH $_2$ $-\bigcirc$ OCO $-\bigcirc$

$$(V-21)$$
 $-\bigcirc$ $C = C$ $-\bigcirc$

$$(V-22) \qquad -\bigcirc \bigcirc -\bigcirc \bigcirc \bigcirc -\bigcirc \bigcirc \bigcirc$$

$$(V-24) \qquad -\bigcirc \bigcirc - C = C -\bigcirc -0C0 -\bigcirc -\bigcirc$$

$$(V-31)$$
 $-\bigcirc$ \bigcirc

$$(V-26)$$
 \bigcirc \bigcirc \bigcirc \bigcirc

$$(V-32)$$
 $-\bigcirc$ \bigcirc

$$(V-27)$$
 $-\bigcirc$ $-\bigcirc$ N

$$(V-33)$$
 $-\bigcirc$ $N-N$

$$(V-28)$$
 $-\bigcirc$ N N

$$(V-35)$$
 $-\bigcirc$ \nearrow \bigcirc \nearrow \bigcirc \bigcirc \bigcirc \bigcirc

$$(V-36)$$
 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

特開平2-227489 (46)

$$(V-37)$$
 $-\bigcirc N$ $\bigcirc N$ $\bigcirc N$

$$(V-43)$$
 H \longrightarrow $N-N$

$$(V-38)$$
 $\stackrel{N}{\longleftrightarrow}$ \bigcirc \bigcirc $\stackrel{N}{\longleftrightarrow}$

$$(V-40)$$
 H

$$(V-41)$$
 \mathbb{R}

$$(V-42)$$
 H \longrightarrow N

$$(V-48)$$
 H H

$$(V-55)$$
 $-\bigcirc N$

$$(V-50)$$
 \longrightarrow N

$$(V-56)$$
 $\stackrel{N}{\sim}$

$$(V-59)$$
 N

$$(V-60)$$
 $-\langle O \rangle$

特開平2-227489 (47)

$$(V-61)$$
 $-\langle O \rangle$ H

$$(V-62)$$
 $-\sqrt{N}$ H

$$(V - 68)$$
 $- \bigcirc N$ $- \bigcirc C00$ $- \bigcirc C00$

$$(V-64)$$
 R

$$(V-65)$$
 $-\langle N \rangle$ H

$$(V-71)$$
 \longrightarrow V O \longrightarrow CH_2O \longrightarrow

$$(V-66)$$
 $-\sqrt{O}$ N H

$$(V-72)$$
 \longrightarrow \bigvee_{N} OCH $_{2}$ \longrightarrow

$$(V-79)$$
 $\stackrel{N}{\sim}$ OCH_2

$$(V-74)$$
 $-\bigcirc$ $-\bigcirc$ $-\bigcirc$ $-\bigcirc$ $-\bigcirc$ $-\bigcirc$ $-\bigcirc$

$$(V-82)$$
 $-\bigcirc$ OCH $_2$ $-\bigcirc$

$$(V-78)$$
 $\stackrel{N}{\smile}$ 0 0 0 0 0

特開平2-227489 (48)

$$(V-91)$$
 $-\bigcirc$ $000-\bigcirc$

$$(V-92)$$
 $-\bigcirc$ $000-\bigcirc$

$$(V-95)$$
 ~ 0 ~ 0 ~ 0 ~ 0

$$(V-96)$$
 $-\bigcirc N$ $-\bigcirc N$ $-\bigcirc C00-\bigcirc N$

$$(V-97) \qquad -\bigcirc N \qquad -\bigcirc -\bigcirc N \qquad -\bigcirc$$

$$(V-103)$$
 H \longrightarrow $C00$ \longrightarrow

$$(V-98)$$
 $-\bigcirc N$ $-\bigcirc N$ $-\bigcirc OCO -\bigcirc N$

$$(V-99)$$
 H $C00$

$$(V-106)$$
 H OCH_z $-$

$$(V-101)$$
 H \bigcirc $C00-$

$$(V-102)$$
 H \bigcirc -000 \bigcirc N

特開平2-227489 (49)

$$(V-115) \qquad - \underbrace{N}_{H} - \cos - \underbrace{O}_{N} + \underbrace{O}_{H} - \underbrace{O}_{N}$$

$$(V-116)$$
 H $OCO - ON$

$$(V-112) \qquad - \underbrace{H} \longrightarrow 000 - \underbrace{N}_{N} \bigcirc \longrightarrow -$$

$$(V-118)$$
 H OCH_2 OCH_3

$$(V-114) \qquad \begin{array}{c} H \\ \longrightarrow OCH_{5} \\ \longrightarrow \\ N \end{array}$$

$$(V-120)$$
 B $0C0$ 0 N N

$$(V-121) \qquad \begin{array}{c} H \\ \end{array} CH_2O \\ \begin{array}{c} \\ \end{array} O \\ \end{array}$$

$$(V-127)$$
 H \longrightarrow COO \longrightarrow COO

$$(V-128)$$
 H CH_2O N

$$(V-123) \qquad \begin{array}{c} \\ \\ \end{array} H \begin{array}{c} \\ \\ \end{array} C00 \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} N$$

$$(V-124)$$
 H $\rightarrow 000$

$$(V-130) \qquad - \begin{array}{c} H \\ \end{array} - CH_2O - \begin{array}{c} \\ \\ \end{array} - \begin{array}{c} \\ \\ \end{array}$$

$$(V-126)$$
 $H \longrightarrow OCH_z \longrightarrow O$

$$(V-132)$$
 \longrightarrow $H \longrightarrow 000 \longrightarrow$ \bigcirc

特開平2-227489 (50)

$$(V-141)$$
 H CH_2O O

$$(V-137) \qquad - \boxed{H} - CH_2O - \boxed{O}_N$$

$$(V-143)$$
 H $C00$

$$(V-138) \qquad - \boxed{H} \longrightarrow 0CH_2 \longrightarrow \boxed{O}$$

$$(V-151)$$
 \longrightarrow $C00 \longrightarrow$ N

$$(V-146)$$
 H OCH_2 O

$$(V-152)$$
 $\langle H \rangle - 000 - \langle O \rangle$

$$(V-147)$$
 \longrightarrow $C00 \longrightarrow$ $N \longrightarrow$

$$(V-153)$$
 H CH₂0 \leftarrow N

$$(V-148)$$
 \longrightarrow H OCO \longrightarrow N

$$(V-154)$$
 H OCH_2 N

$$(V-149)$$
 \longrightarrow $CH_2O \longrightarrow$ $N \longrightarrow$

$$(V-150)$$
 \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow

特開平2-227489 (51)

$$(V-163) \qquad - \underbrace{H} - C00 - \underbrace{O}_{N-N}$$

$$(V-164)$$
 H $0C0$ O $N-N$

$$(V-165) \qquad \begin{array}{c} \text{II} \\ \text{CH}_{2}0 \\ \end{array} \\ \begin{array}{c} \\ \text{N} \\ \text{N} \end{array}$$

$$(V-166)$$
 \longrightarrow H \longrightarrow OCH_z \longrightarrow $N=N$

$$(V-167)$$
 $\xrightarrow{\text{H}}$ $C00$ $\xrightarrow{\text{N}}$

$$(V-162) \qquad - H \qquad OCH_2 - OCH_$$

$$(V-168) \qquad \begin{array}{c} \text{H} \\ \text{OCO} \\ \text{N} \end{array}$$

$$(V-169) \qquad - H \rightarrow CH_{2}O - O \qquad N \rightarrow O$$

$$(V-170) \qquad \begin{array}{c} H \\ \hline \end{array} OCH_2 - \begin{array}{c} N \\ \hline \end{array}$$

$$(V-171) \qquad - \underbrace{H} - coo - \underbrace{O}_{N} - \underbrace{N}_{N}$$

$$(V-177) \qquad \begin{array}{c} H \\ \hline \end{array} \qquad \begin{array}{c} CH_2O \\ \hline \end{array} \qquad \begin{array}{c} CH_2O \\ \hline \end{array}$$

$$(V-172) \qquad \begin{array}{c} \text{H} \\ \text{OCO} \\ \text{O} \end{array}$$

$$(V-178)$$
 H O OCH_2

$$(V-173)$$
 H $CH_{2}O$ O N

$$(V-179) \qquad \begin{array}{c} \text{H} \\ \text{O} \\ \text{N} \end{array}$$

$$(V-180) \qquad \qquad H \qquad \bigcirc \qquad OCH_2 \sim \bigcirc$$

特周平2-227489 (52)

$$(V-181) \qquad - \underbrace{H} \bigcirc \bigcirc CH_{2}O - \underbrace{\bigcirc_{N}} \bigcirc$$

$$(V-183) \qquad - \underbrace{H} \bigcirc \bigcirc$$

$$(V-189)$$
 H \bigcirc CH_2O \bigcirc N

$$(V-184) \qquad \begin{array}{c} \text{H} \\ \text{OCO} \\ \text{OCO} \end{array} \longrightarrow \begin{array}{c} \text{N} \\ \text{N} \\ \text{N} \end{array}$$

$$(V-190)$$
 \longrightarrow $OCH_2 \longrightarrow$ $OCH_2 \longrightarrow$

$$(V-185) \qquad - H \qquad \bigcirc - CH_2O - \bigcirc N \qquad (V-191)$$

$$(V-191)$$
 H \bigcirc $C00$ \bigcirc $N-1$

$$(V-192)$$
 \longrightarrow 000 \longrightarrow 00

$$(V-193) \qquad \begin{array}{c} H \\ \hline \\ N-N \end{array}$$

$$(V-196)$$
 H OCO $\sim N$

特閒平2-227489 (53)

$$(V-206) \qquad - \bigcirc \qquad H - OCH_2 - \bigcirc \qquad - \bigcirc$$

$$(V-212)$$
 \longrightarrow H \longrightarrow 0C0 \longrightarrow N

$$(V-213) \qquad -\bigcirc \qquad \qquad H \qquad CH_2O - \bigcirc \qquad \qquad N$$

$$(V-214) \qquad - \bigcirc \qquad \qquad H \qquad 0CH_2 - \bigcirc \qquad \qquad N$$

$$(V-215) \qquad -\bigcirc \qquad \qquad H \qquad \stackrel{\circ}{\longrightarrow} \qquad \stackrel{\longrightarrow}{\longrightarrow} \qquad \stackrel{\circ}{\longrightarrow} \qquad \stackrel{\longrightarrow}{\longrightarrow} \qquad \stackrel{\circ}{\longrightarrow} \qquad \stackrel{\longrightarrow$$

$$(V-217) \qquad - \bigcirc \qquad H \rightarrow CH_{\pm}O - \bigcirc N \rightarrow N$$

$$(V-223) \qquad -\bigcirc \qquad \qquad H \qquad C00 \qquad -\bigcirc \qquad N$$

$$(V-218) \qquad - \bigcirc \qquad \qquad H \qquad OCH_2 - \bigcirc \stackrel{N}{\searrow} \qquad N$$

$$(V-219) \qquad -\bigcirc \qquad H \qquad C00 \longrightarrow N = N$$

$$(V-225) \qquad -\bigcirc \qquad H \qquad CH_2O -\bigcirc \qquad N$$

$$(V-220) \qquad -\bigcirc \qquad \qquad H \longrightarrow 000 \longrightarrow N \longrightarrow N$$

$$(V-226) \qquad - \bigcirc \qquad H \qquad OCH_z \sim N$$

$$(V-221) \qquad - \bigcirc \qquad H \rightarrow CH_{2}O - \bigcirc \qquad \rightarrow N-N$$

$$(V-222) \qquad - \bigcirc \qquad \qquad H \longrightarrow 0CH_{2} \longrightarrow N \longrightarrow N$$

$$(V-228)$$
 \longrightarrow N \longrightarrow 000 \longrightarrow

特開平2-227489 (54)

$$(V-235)$$
 H N $C00$ $C00$

$$(V-230) \qquad - \underbrace{H} \longrightarrow \underbrace{O} \longrightarrow OCH_2 \longrightarrow CO$$

$$(V-236)$$
 H 000 00

$$(V-237)$$
 $H \longrightarrow N \longrightarrow CH_2O \longrightarrow CH$

$$(V-238)$$
 H OCH = OCH =

$$(V-240)$$
 \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow

$$(V-241) \qquad - \underbrace{\qquad \qquad \qquad \qquad \qquad }_{N} CH_{2}O \qquad - \underbrace{\qquad \qquad }_{N}$$

$$(V-242)$$
 \xrightarrow{H} $\bigcirc N$ $\bigcirc N$ $\bigcirc N$

$$(V-248)$$
 H \sim 0C0 \sim

$$(V-243) \qquad \overbrace{H} \qquad \overbrace{N-N} \qquad C00 \qquad \boxed{\bigcirc}$$

$$(V-249)$$
 $H \longrightarrow N \longrightarrow CH_2O \longrightarrow$

$$(V-250) \qquad \begin{array}{c} H \\ \\ \end{array} \qquad \begin{array}{c} N \\ \end{array} \qquad \begin{array}{c} O \\ \\ \end{array} \qquad \begin{array}{c} O \\ \end{array} \qquad \begin{array}{c} C \\ \\ \end{array}$$

$$(V-246)$$
 \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow

$$(V-252)$$
 \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow

特開平2-227489 (55)

$$(V-254)$$
 \sqrt{O} H OCH_2

•

$$(V-261)$$
 $\stackrel{\text{H}}{\longleftrightarrow}$ H CH_2O

$$(V-262)$$
 $\stackrel{N}{\swarrow}$ $\stackrel{R}{\longrightarrow}$ $\stackrel{OCH_2}{\longleftarrow}$

$$(V-263) \qquad \bigcirc \stackrel{N}{\longrightarrow} \qquad \stackrel{H}{\longrightarrow} \qquad \bigcirc \bigcirc \bigcirc \longrightarrow$$

$$(V-264)$$
 $\bigcirc N$ $\bigcirc N$ $\bigcirc N$ $\bigcirc OCO$

$$(V-258) \qquad \bigcirc \qquad \boxed{H} - 0CH_2 - \bigcirc$$

$$(V-259)$$
 $N \longrightarrow H \longrightarrow C00 \longrightarrow$

$$(V-266) \qquad \boxed{\bigcirc_{N}^{N}} \qquad \boxed{H} \qquad OCH_{2} \qquad \boxed{\bigcirc}$$

$$(V-270) \qquad \sqrt{N} \qquad \qquad H \qquad OCH_2 - O$$

$$(V-271)$$
 \sqrt{N} H $C00$ $-$

$$(V-272)$$
 $\langle O \rangle$ $\langle H \rangle$ \rangle \rangle \rangle \rangle \rangle

$$(V-274)$$
 $\langle O \rangle$ H OCH_2

(V-367)

(V-360)

特開平2-227489 (62)

$$(V-450) \qquad -\bigcirc OCH_{z} -\bigcirc OCH_{z} -\bigcirc CN \qquad (V-457) \qquad -\bigcirc C00 -\bigcirc CN$$

$$(V-451) \qquad \begin{array}{c} CN \\ (V-458) \end{array} \qquad \begin{array}{c} CN \\ OCO \end{array}$$

$$(V-460) \qquad \begin{array}{c} CN \\ V-467) \end{array} \qquad \begin{array}{c} N \\ N \end{array} \qquad C00 - \begin{array}{c} CN \\ \end{array}$$

$$(V-461) \qquad \begin{array}{c} CN \\ \\ \\ \\ \\ \\ \\ \end{array}$$

$$(V-462) \qquad -\text{H} \leftarrow \text{C00} \qquad \text{CN} \qquad \text{CN} \qquad \text{CH}_{2}\text{O} \leftarrow \text{CH}_{2}\text{O} \leftarrow \text{CN} \qquad \text$$

$$(V-465) \qquad \begin{array}{c} \text{CN} \\ \text{(V-472)} \end{array} \qquad \begin{array}{c} \text{N} \\ \text{C00} \end{array}$$

特開平2-227489 (64)

$$(V-505) \qquad \begin{array}{c} CN \\ (V-512) \end{array} \qquad \begin{array}{c} CN \\ (V-512) \end{array}$$

$$(V-506) \qquad \begin{array}{c} CN \\ (V-513) \end{array} \qquad \begin{array}{c} CN \\ OC0 \end{array}$$

$$(V-516) \qquad \begin{array}{c} CN \\ (V-523) \end{array} \qquad \begin{array}{c} CN \\ \end{array}$$

$$(V-517) \qquad \begin{array}{c} CN \\ (V-524) \end{array} \qquad \begin{array}{c} CN \\ \end{array}$$

$$(V-518) \qquad \begin{array}{c} CN \\ V-525) \end{array} \qquad \begin{array}{c} CN \\ W \end{array}$$

$$(V-519) \qquad - \bigcirc \bigvee_{N=1}^{N} OCH_2 \longrightarrow \bigvee_{N=N}^{CN} (V-526) \qquad - \bigvee_{N=N}^{CN} H$$

$$(V-520) \qquad \begin{array}{c} CN \\ (V-527) \end{array} \qquad \begin{array}{c} N \\ N \end{array}$$

上記各基本骨格のベンゼン環にフッ素原子、塩素原子、臭素原子、メチル基、メトキシ基、シアノ基又はニトロ基が置換した各基本骨格も使用できるが、特にフッ素原子が置換した各基本骨格が好ましい場合が多い。

また、上記各基本骨格のうち、左右非対称なものについては、左右が逆のものも同様に使用可能

である.

上記のうち、式(V-1)~式(V-274)で表わされる基本骨格、及びそれらのベンゼン環にフッ素が置換したものが好ましく、式(V-1)~式(V-3)、式(V-7)~式(V-9)、式(V-17)、(V-18)、式(V-21)、式(V-22)又は式(V-25)~式(V-274)で表わされる基本骨格が特に好ましい。

具体的には例えば、以下の化合物を挙げること ができる。

· (N – 10)	(N-4)
CH,	CH ₃
(W - 11) CH ₃ CH ₃ CH ₃ (S. S) · C ₅ H ₄ · CH0C0 - O - C00 - C00 - C00 CH · n · C ₆ H _{1,3} (S. S) · C ₅ H ₄ · CH0C0 - O - C00 CH · n · C ₆ H _{1,3} CH ₃	$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{(S,R)-n-C_0H}_3\text{cH-CH_00CO} & \bigcirc \\ \end{array} \begin{array}{c} \text{CH}_3 \\ \downarrow \\ \downarrow \\ \downarrow \\ \times \\ \text{SA} \end{array}$
$ \begin{array}{c} \text{CH}_3 \\ \text{CA}_3 \\ \text{(S,R)-n-C_aH_{13}-CH-CH_2-0} \\ \text{(S,R)-n-C_aH_{13}-CH-CH_2-0} \\ \end{array} $	$ \begin{array}{c} \text{CH}_3 \\ \text{CA}_3 \\ \text{(S,R)-C_2H_3CH-COO} & \text{CD}_3 \\ \end{array} $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
(M - 14) CH, CH, (S,R)·C ₂ Hs,-CHC00 - ○ - C00 - C00 - C00CH·n-C ₆ H1, C→S ₄ ≠ 1	$(M-8)$ CH_3 $+ \frac{1}{10}$ $- \frac{1}{10}$ $-$
(N-15) CH3 CH3 (S,S)-n-C,H,3CH0CO - 〇 - 〇 - C00CH-n-C,H,3 油株物	(VI - 9) CH, (R,R)-n-C ₄ H,3-CH-0C0 — O — C00CH-n-C ₄ H;3 油林物

	(VI – 16)	
$ \begin{array}{c} (M-22) \\ \text{CH}_3 \\ (S,S) \cdot C_2 \text{H}_3 \text{CH} \cdot \text{CH}_4 \\ \end{array} $	CH ₃ (S,R).C ₂ H ₃ .CHCH ₂ O (O)-C00 (O)-C00CH-n.C ₄ H ₁₃ C-C	$68 C 79.5 C$ $C \rightarrow S_{A} \rightleftharpoons 1$ $M 43 C$ S_{A}
CH ₃ CH ₃ CH ₃ CH ₃ (S, S) - C _x H ₃ CH ₄	(W-17) CH, CH, CH, (S, S) - C_r H_s - CHCH_r 0 < O - C00 CH - n - C_r H_1, s	63.5°C 77°C C→S _A ← 1 M 47.5°C S _A
(W - 24) CH3 CH3 1.* (S, S) · C ₄ H ₃ CH · CH3 C→ S ₄ ₹≥ 1	CH3 CH3 	08°C C→ 1 C √ 67.5°C
$\begin{array}{c} \text{CH}_{3} & \text{CH}_{3} \\ \text{CS}_{3} \cdot \text{C}_{4} \cdot \text{B}_{4} \cdot \text{CH}_{4} \cdot \text{OCO} & \bigcirc $	$\begin{array}{c} \text{CH}_3 & \text{CH}_3 \\ \text{(S, R)} \cdot \text{C}_2 \text{H}_3 \cdot \text{CH} \cdot \text{CH}_2 \text{O} & \text{COOCH-n-C}_4 \text{H}_3 \end{array}$	
(W-26) CH ₃ (S, S) - C ₂ H ₃ - CH - C ₄ H _{1,3} C→ S ₄ ← S ₄ ← S ₄ C (S, S) - C ₄ H ₃ - CH - C ₄ H _{1,3} C → S ₄ ← S ₄ ← S ₄ C (S, S) - C ₄ H ₃ - CH - C ₄ H _{1,3} C → S ₄ ← S ₄ C ← S	$ \begin{array}{c} \text{CH}_3 & \text{CH}_3 \\ & & & & & & & & & $	98°c 12.5°c c→s, ← 1
$ \begin{array}{c} \text{CH}_{3} & \text{CH}_{3} \\ \text{(S,S)-C,H}_{3}\text{-CHCH,0CO} & \bigcirc $	(W - 21) CH ₃ (S, R) - C ₂ H ₃ - CH - CH ₂ 0 \longrightarrow C00 \longrightarrow C00 CH - n - C ₄ H ₁₃ C	48.5℃ 115℃ ℃→ SA ← → 1

(V - 34) CH3 (S, R) - C ₂ H ₃ CH - CH ₂ - C ₂ O	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(M-28) CH ₃ (S,R)-C ₂ H ₃ -CHCH ₂ 0C0 \(\int\cap{\infty}\rightarrow\infty\rightarrow\inf	35.5° 56.5° ° → N ← ⊃ ° ~ S
$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{(S,R)} \cdot \text{C}_z \text{H}_3 \text{CHCH}_z \text{O} & \bigcirc \\ \text{OCH}_{-n} \cdot \text{C}_z \text{H}_{13} \\ \end{array}$	78° 81.5° c → N° ₹ 1	(M - 29) CH ₃ (S, R) - C ₂ H ₃ CH-CH ₂ OCO \rightarrow O-CH-n-C ₄ H ₁₃	当状物
(M - 36) CH3	63.5°C 80°C C → N° ₹ 1 /// 50°C S.*	CH ₃ CH ₃ • • • • • • • • • •	78℃ C→N* ←→ 1
			·
(VI - 37) CH3 CH3 (S,S)-C,H,CH-C00 (O) 0C0 (O) 0CH-n-C,H;	75.5°C 86°C C→N°←≥ 1 // 72°C	$\begin{array}{c} CH_3 \\ CH_3 \\ * \\ (S,S) \cdot C_k H_3 CH \cdot CH_2 O \cdot \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc OCH \cdot n \cdot C_k H_3 .\end{array}$	1 €⇒ 11 ← ⊃ 2.599 2.60
		(VI – 32) CH ₃	
(S.S)-C,H,CH-C00 - (C)-000-(CH-n-C,H,1)	61 ° 67 ° C → N° ₹≥ 1 √ 49 ° Se°	(5, S) - C + H + CH - CH + O - O - O CO - O CH - n - C + H + 3	油状物
(N - 39)		(W – 33)	
CH, (S,R)-C ₂ H, CH-C00 - O - O - O - O - O C - O - O C - O - C - H, 1, 1	04°C 66°C C→N*=≥ 1 1 ≤> N √ 3 1 47°C	CH3 	79.5°C c 79.5°C 40.5°C 764.5°C Sc. 22 N°

	(N - 40)
(5,5)- C_2H_3CH - CH_2 \longleftrightarrow	CH ₃ (S, H) - C ₂ H ₃ - CH ₄ C00 - OC0 - OC0 - OCH - n - C ₄ H ₁₃ (S, H) - C ₂ H ₃ - CH ₄ C00 - OC0 - OC0 - OCH - n - C ₄ H ₁₃ (S, H) - C ₄ H ₃ - CH ₄ C00 - OC0 - OC0 - OCH - n - C ₄ H ₁₃ (S, H) - C ₄ H ₃ - CH ₄ C00 - OC0 - OC0 - OC0 - OCH - n - C ₄ H ₁₃ (S, H) - C ₄ H ₃ - CH ₄ C00 - OC0 - OC0 - OC0 - OC0 - OCH - n - C ₄ H ₁₃ (S, H) - C ₄ H ₃ - CH ₄ C00 - OC0 - OC0 - OC0 - OC0 - OCH - n - C ₄ H ₁₃ (S, H) - C ₄ H ₃ - CH ₄ C00 - OC0 - OC0 - OC0 - OC0 - OCH - n - C ₄ H ₁₃ (S, H) - C ₄ H ₃ - CH ₄ C00 - OC0 - O
(W - 47)	(W - 41)
CH ₃ (5, S) - C ₂ H ₃ - CHCH ₃ O ← ○ ← ○ ← ○ ← ○ ← ○ ← ○ ← ○ ← ○ ← ○ ←	$\begin{array}{c} \text{CH}, & \text{CH}, \\ \text{(S,S)-C,H,-CHCH,COO} & \text{CO} & \text{CO} & \text{CO} & \text{CH},, \\ \end{array}$
(VI – 48)	(W-42)
CH ₃ $\downarrow \vdots$	CH3 (S,R)-C2H3-CHCH2C00 (○) (○) (○) (○) (○) (○) (○) (○) (○) (○)
(W – 49)	(VI – 43)
CH ₃	(S, R) - C ₂ H ₃ CHCH ₂ \bigcirc CH ₃ CH ₁₃ CH ₁₃ \bigcirc CH ₃ \bigcirc C ₂ H ₃ CCH ₁₃ C ₃ .5°C 61°C \bigcirc C ₃ H ₃ CHCH ₂ \bigcirc C ₃ H ₃ CC \bigcirc C ₄ H ₁₃ \bigcirc C ₃ H ₃ C ₅ C \bigcirc S _c \rightleftharpoons S _s \bigcirc S _c \rightleftharpoons S _s \bigcirc
(VI — 50)	(VI - 44)
CH ₃ (S,S)-C ₂ H ₃ CH-C00 (O)	(S, S)- C_2H_3 CHCH2 \longleftrightarrow
(W - 51)	(VI - 45)
(S,R)-C,H,SCH-C00 \leftarrow O)-C00 \leftarrow O)-C00 \leftarrow O)-C0H-n-C,H,3 \rightarrow S6.5°C \nearrow 67°C Sc* \rightleftharpoons N*	(S, R) - C_xH_s CHCH $_x$ COO-COO-COO-COH-n-C.H, $_y$ 53. C 63.5°C CS, R) - C_xH_s CHCH $_x$ COO-COO-COH-n-C.H, $_y$ CON* \rightleftharpoons 1 \nearrow 21. C S _x

CH; 50°C 62°C 85.5°C -0°CH-n-CaH;; C→Sc*₹≥Sa ₹≥ I	Cll3 ** 62.5°C 85°C -0°CH-n-C ₄ H13 °C→S _A ←2 1 	5.5.7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	油铁物	市市市市	油状物
CH3 CH3 (S, S) - C2H3CH-C00 (S, S) - C2H3CH-C00 (S, S)	CH ₃ CH ₃ CH ₃ (S, R) - C ₂ H ₃ CH - C00 - C00 - C00 - C0C	(W − 54) CH ₃ * (S, S) - C _x H ₃ CHC00 ← O - C00 − C _x H ₁	(VI - 55) CH ₃ (S, S) - C _x H ₃ CHC00 \longleftrightarrow OCH - n - C ₄ H ₁₃	(M - 56) CH ₃ CH ₃ (S, R) - C ₂ H ₃ CHC00 - O - OCH - n - C ₆ H ₁₃	$ \begin{array}{c} (M-57) \\ \text{CH}_3 \\ (S,R)-C_2H_3CH-CH_2 \end{array} $
60.5°C C → 1 M 42°C	79.5°C C → J	$ \begin{array}{c} 17^{\circ}C \\ C \longrightarrow 1 \\ 1/2 \times 3.5^{\circ}C \end{array} $	82°C C → 1	35.5°C 50.5°C C→N* ₹≥ 1	24.C N* 24.C
$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{(S,R)-C,H,CH,r} \end{array} \longrightarrow \begin{array}{c} \text{CH}_3 \\ $	$(N - 59)$ CH_3 $(S, S) \cdot C_2H_3CH \cdot CH_2 \longrightarrow O$ $(S, S) \cdot C_2H_3CH \cdot CH_2 \longrightarrow O$	($VI - 60$) CH ₃ CH ₃ CH ₄ O \longrightarrow CH ₃ (S, S) - C ₂ H ₃ CHCH ₂ O \longrightarrow O CH - n - C ₄ H ₁₃	$\begin{array}{c} CH_3 \\ CH_3 \\ _* \\ (S,R) \cdot C_2H_3CH \cdot CH_2O \xrightarrow{N} \bigcirc \\ \end{array} \longrightarrow \begin{array}{c} CH_3 \\ _* \\ OOCO & \bigcirc \\ \end{array}$	$ \begin{array}{c} (M-62) \\ CH_3 \\ * \\ (S,R)-C_2H_3CHCH_2 \\ \end{array} $	$ \begin{array}{c} (W-63) \\ CH_3 \\ (S,R)\cdot C_2H_3 CHCH_2 \\ \end{array} $

上記中、Cは結晶相、N・はキラルネマチック相、SAはスメクチックA相、SC・はキラルスメクチックC相、SBはスメクチックB相、SEはスメクチックB相、SPはスメクチックE相、SXは帰属不明のスメクチック相を表わし、転移温度が未記載のものについては、結晶化のため測定できないものであり、融点が未記載のものは結晶化しないため測定できないものである。

以上のような一般式(A)で表わされる化合物 をキラルドーパントの構成成分として用いること による利点を、以下に挙げる。

(1) 片側にのみキラル基を有する化合物より強い自発分極を示しうる。

即ち、前記化合物と、次の一般式(E)

C H 。
R * - Z * - X - Z * - C H - R * … (E)
(式中、R * . Z * . X . Z * . C ***. R * は前述と同じ意味を有する)

で表わされるところの片側にのみ式 (N-31) 又は (N-32)で表わされる光学活性基を有する化合

螺旋ピッチを調整することが可能である。

前述のように良好な配向性を得るためには、そのN・相あるいはSC・相における螺旋ピッチが長いことが重要である。キラルドーパントはよりのであるとしてピッチが調整されているばよしもそのではないが、キラルドーパントの主成分としてないが、キラルドーパントの主成分としてないが、キラルドーが長い方が、その調整としてなる。また、螺旋ピッチが短い程、ある化合物では、その螺旋ピッチが短い程、ある化合物では、その螺旋ピッチが短かできるので好があることができるので好都合

一般式(A)の化合物は、キラルドーパントの構成成分として10重量%以上、好ましくは30 重量%以上、特に好ましくは50重量%以上用いるのが有効である。

キラルドーパントの他の構成成分としては、前述の式(V-1)~式(V-539)で表わされる基本骨格に、式(N-1)~式(N-95)で表わされる光学活性基の任意の2個、あるいは1個が側鎖として結合した化合物を用いることができる。

物をそれぞれSC母体液晶に添加して、その外揮値として自発分極を求めると、同一条件下では一般式(A)の化合物の方が、一般式

CH:

R*-ĊH+CH₂→1 2*-で表わされる光学活性 基が式(N-1)~式(N-22)で表わされる光 学活性基から選ばれる場合で、10~30 nC/cm² あるいはそれ以上であって、両側のキラル基によ る自発分極の単純和より大きく、式(N-31)、 式(N-32)、式(N-33)等で表わされる光学 活性基から選ばれる場合には、その自発分極の向 きをあわせることにより、さらに大きな自発分極 を得ることができる。

キラルドーパントとして用いる際には、その誘起する自発分極が大きい程、その使用量が少量ですむので、粘性の低いSC母体液晶の割合を多くでき、SC*液晶組成物の粘度低下が可能となり、結果として応答性の向上につながるものである。

(2) N* 相又はSC* 相に誘起する螺旋ピッチが非常に長い化合物、及び非常に短い化合物など、

(ただし、一般式 (A) の化合物を除く。)

SC・液晶組成物の自発分極の値は、3~30 nC/cm²の範囲にあるようにキラルドーパントの 添加割合を調整することが好ましく、SC・相を 示すキラルドーパントの場合、単独で100nc/

$$(W - 2i)$$

$$(W - 6i)$$

$$(W$$

本発明のSC®液晶組成物は、等方性液体状態からの冷却時において、まずN®相に相転移し、次いでSA相を経るか、あるいは直接SC®相を経るか、おるいは直接SC®相を示す温度範囲が好ましい。N®相を示す温度範囲が、3°未満であるため、降和にすみやかにSA相に相転移するため、降和で液晶分子を充分に配向しにくくなる傾向にあるので好ましくない。また、N®相を示す温度範囲

液晶組成物のSA相のみを拡大し、N* 相及びSC* 相を縮小するような場合には、SC母体液晶として、SC相の上限温度が高く、N相の温度範囲が広く、かつ、SC相→N相→1相の相系列を有するもの、又はSA相の相系列を有するものを相→SA相→N相→1相の相系列を有するものを用いればよい。

このようなキラルドーパントの傾向は、SC母体液晶に一定量のキラルドーパントを添加して得られるSC。液晶組成物の相転移温度の変化を測定することにより、容易に知ることができる。この結果から、SC。液晶組成物における各相、特にN。相を示す温度範囲は容易に調整することができる。

が30°以上である場合、SC°液晶組成物の透明点が高温になり、セルに液晶材料を充填する工程等における作業性に悪影響を及ぼす傾向にあるので好ましくない。

キラルドーパントは、キラルドーパント自体の 液晶性の有無にかかわらず、SC母体液晶に添加 した場合に、

- (i) N ・ 相を示す温度範囲を拡大する傾向にある もの、又は
- (2) N * 相を示す温度範囲を縮小する傾向にある もの

など、それぞれ固有の性質を有している。本発明のSC®液晶組成物のN®相を示す温度範囲を上記の好ましい範囲に調整するためには、(1)の場合、N相を示す温度範囲が狭いSC母体液晶、又は、N相を示さないSC母体液晶を用いればよく、(2)の場合、N相を示す温度範囲が広いSC母体液晶を用いればよい。この方法は、N®相に限らず、SA相及びSC®相についても同様に応用することができる。例えば、キラルドーパントがSC®

なる S C * 液晶組成物が配向上、特に好ましいものである。

本発明におけるA)で表わされる光学活性性に記式(A)で表わされる光学活性性記録といた場合、単一の化される光学活性性記録といた場合は、単一の化されるのである。 を用いた場合、単一の化される光学活性性に記憶にあるいる。 を開いた場合はであるいな範囲ではははいません。 であることもであるがな範囲ではははいません。 であることが実用的な範囲に螺旋ないが、はまたにはないではないでははいません。 ではないたでははいません。 ではないではないではないではない。 ではないではないではないではないではないではないではないにはないにはいる。 ではないにはないではないではないである。

複数の光学活性化合物を含む S C * 液晶組成物の N * 相に出現する螺旋のピッチ P (μm) は各光学活性物質の濃度を C i、各単位濃度あたりの螺旋のピッチを Pi (μm) とすると

 $\frac{1}{P} = \sum_{i=1}^{Ci}$ で表わされることはよく知られて

おり、(ここでは螺旋のピッチは右巻きを正、左巻きを負とする。)、これを用いてSC®液晶組成物のSA-N®点T。におけるPiをP‐i とする時、

$$\left| \sum_{i} \frac{Ci}{P_{\tau_0}i} \right| \leq \frac{1}{3} \left[好ましくは \left| \sum_{i} \frac{Ci}{P_{\tau_0}i} \right| \leq \frac{1}{10} \right]$$

となるように Ci を選べばよい。ここで Pi は N相を有する該 S C 母体液晶に各光学活性化合物を単位濃度添加することにより測定が可能である。実際には T。 は各 Ci によって変化するが、 各光学活性化合物を該 S C 母体液晶中に、 濃度 Σ Ci だけ添加したときの S A − N 点の変化などがら、かなり正確に類推できることが多く、 推定値 T。'とそれを用いて選ばれた組成物の T。とが大きく異なる場合には T。'に換えて T。を用いて再度測定すればよい。

本発明で使用するキラルドーパントとしては、一定量のSA母体液晶に添加することによって、ある程度以上の自発分極(以下、Psと省略する.)を誘起することが必要である。

前述の如く、SC*液晶組成物としては、その

用して行った.

実施例1(キラルドーパントの調製)

前記式 (VI ~ 25) の化合物 2 0 %、前記式 (VI ~ 30) の化合物 4 2 %及び

の化合物 3 8 % からなるキラルドーパント (以下 キラルドーパント (A) と称する。) を調製した。 また、上記 3 種の化合物の配合比をそれぞれ 2 0 %、 4 8 %、 3 2 % としたキラルドーパント (以 下、キラルドーパント (B) と称する。) を調製 した。

キラルドーパント(A)、(B)ともに、N相を有するSC母体液晶に20%添加した際に、N[®]相に誘起する螺旋ビッチが50~60℃の範囲で 10μ m以上と長いものであった。

実施例 2

中湿域母体液晶として、前記一般式(I-a-1)で表わされる化合物のうち、 P:の値が、特に室温付近で3~30nC/cm²の 題囲になるようにキラルドーパントの添加量を調整すればよい。しかしながら、キラルドーパント が誘起するP。の値が小さい場合には、そのには、その場合には、これに伴なって S C * 液晶組成物の粘性が大き傾向にあるの 結果、高速応答性が得られなくなる傾向にあるので好ましくない。従って、本発明で使用するキラルドーパントとしては、S C 母体液晶に 1 0 m C / cm²以上のP。を誘起できるものが特に ひましい。

〔実施例〕

以下に実施例をあげて本発明を具体的に説明するが、本発明の主旨及び適用範囲は、これらの実施例により限定されるものではない。なお、実施例中、「%」は「重量%」を表わす。また組成物の相転移温度の測定は、温度調節ステージを備えた偏光顕微鏡及び示差走査熱量計(DSC)を併

及び

前記一般式(I-b-1)で表わされる化合物の うち、

及び

及び高温液晶として、前記一般式(IIIーaー1)で表わされる化合物のうち

からなるSC母体液晶を調製した。

次にこのSC母体液晶65%と実施例1で得た キラルドーパント(B)35%からなるSC。液 晶組成物を調製した。

このSС°被晶組成物は、55℃以下でSС°相を、68.5℃以下でSA相を、75℃以下でSA相を、75℃以下でSA相を各々示し、それ以上の温度で等方性液体を配相となった。次いで、このSС°液晶組ピングーラに液がシングーラスセルの間になが、30℃で3カーをであるとをで、30℃で91μ秒という。このとをの自発分極は10.5 nC/cm²であった。また、チルト角は23.2°でコントラストも良好であった。

実施例3

1

実施例 2 において、高温液晶として、一般式 ($\Pi - a - 1$) で表わされる化合物に代えて、一 般式 ($\Pi - a - 10$) で表わされる化合物のうち、

実施例5

実施例 2 において、高温液晶として、一般式($\Pi - a - 1$)で表わされる化合物に代えて、一般式($\Pi - f - 42$)で表わされる化合物のうち

の化合物を用いた以外は実施例1と同様にして SC*液晶組成物を調製し、その電気光学応答速 度の測定を行った。

-2.5 51.5 67 73.5 相転移温度 (℃) C→ SC* ← SA ← N* ← 1 電気光学応答速度 105μ秒 (30℃) 参考例

実施例2において、高温液晶を用いず、中温域 母体液晶のみからなるSC母体液晶65%とキラルドーパント(B)35%からなるSC*液晶組成物を調製した。

このSC[®] 液晶組成物は、SC[®] 相の上限温度 が47.5℃であり(融点-4.5℃)、実施例2~ 5の各SC[®] 液晶組成物に対して大きく降下した。

合物を用いた以外は実施例1と同様にしてSC*液晶組成物を調製し、その電気光学応答速度の測定を行った。

-1 58 69 77.5 相転移温度(℃) C→ SC*→ SA → N* → I 電気光学応答速度 109μ秒(35℃) 実施例 4

実施例 2 において、高温液晶として、一般式 (田-a-1)で表わされる化合物に代えて、一 般式 (田-f-35)で表わされる化合物のうち

の化合物を用いた以外は実施例 1 と同様にして S C * 液晶組成物を調製し、その電気光学応答速 度の測定を行った。

-6.5 55.5 66.5 78 相転移温度 (℃) C→ SC*⇒ SA ⇄→ N* ⇄→ 1 電気光学応答速度 1 1 0 μ 秒 (3 0 ℃)

実施例 6

中温域液晶組成物として前記一般式(I-a-1)で表わされる化合物のうち

及び

前記一般式 (I-b-1) で表わされる化合物の うち、

及び

及び前記一般式(I-b-7)で表わされる化合物のうち

及び高温液晶として前記一般式(E-a-1)で 表わされる化合物のち

からなるSC母体液晶を調製した。

次にこのSC母体液晶65%と実施例1で得た キラルドーパント(A)35%からなるSC*液 品組成物を調製した。

実施例 2 と同様にして、その相転移温度及び、 電気光学応答速度を測定した。

-10 57 73 79 相転移温度 (℃) C→ SC ⇌ SA ⇌ N* ⇌ ! 電気光学応答速度: 1 3 5 μ秒 (2 6 ℃)

26℃におけるチルト角は23.2°でコントラストは良好であった。

実施例7

中温域母体液晶として、前記一般式 (I-a-1)で表わされる化合物のうち

(発明の効果)

本発明の強誘電性液晶組成物は、配向性及び高速応答性に優れており、かつ、室温を含む広い温度範囲で作動が可能な液晶材料である。

従って、本発明の強誘電性液晶組成物は、強誘 電性スメクチック液晶を利用した液晶デバイスの 材料として極めて有用である。

代理人 弁理士高橋勝利

前記一般式 (!- b - 1) で表わされる化合物のうち、

及び高温液晶として前記一般式(III — n — 1)で 表わされる化合物のち

$$\overrightarrow{R} = C_{\bullet}H_{17} - O - O - O - n - C_{\bullet}H_{13} O$$

化合物 6 0 重量部

からなるSC母体液晶を調製し、このSC母体液晶70%とキラルドーパント(A)30%から SC*液晶組成物を調製した。

実施例 2 と同様にして、その相転移温度及び電 気光学応答速度を測定した。

. 66.5 69 85 相転移温度 (℃) SC* ⇌ SA ⇌ N* ⇌ I 電気光学応答速度: 150μ秒 (25℃) 第1頁の続き

 ⑩発 明 者 藤 沢
 宣 埼玉県川口市並木 4 - 14 - 32

 ⑩発 明 者 栗 山 毅 千葉県佐倉市六崎1549 - 1 - 301