

Complejidad de algoritmos

Complejidad de Algoritmos

complejidad

- Para hacer un uso adecuado de los recursos computacionales (procesamiento, almacenamiento) es muy importante poder analizar la complejidad de los algoritmos
- Ese análisis nos permite darnos una idea de cómo el algoritmo se comportará en relación a la escala del conjunto de datos
- Responde a la pregunta: ¿cómo crecerá la cantidad de recursos necesarios en la medida en que se agreguen más y más datos a la entrada?

La notación O grande es la representación relativa de la complejidad de un algoritmo.

- También llamada notación asintótica o notación de Landau
- Describe la forma en que el tiempo de ejecución (o el espacio de almacenamiento) escalan con respecto al tamaño de la entrada

Si llamamos **n** al conjunto de datos

Podemos medir un algoritmo de acuerdo con su comportamiento en función al tamaño de **n** y esa medida será **f(n)**

No nos interesa f(n), sino su tendencia en la medida que n aumenta $n \rightarrow \infty$

Sean algoritmos

Algoritmo 1
$$\rightarrow$$
 T(n) = 6 n² + 9

Algoritmo 2
$$\rightarrow$$
 T(n) = 14 n² + 6 n + 5

Cuando $n \to \infty$ las constantes y los términos de menor grado se hacen insignificantes y podemos caracterizar a ambos algoritmos con la misma tasa de crecimiento que es, en este caso, cuadrática

Definimos

$$O(g(n)) = \{ f(n) : \exists c \in \mathbb{R} \land n_0 \in \mathbb{N} / f(n) \le c \cdot g(n) \text{ para } n \ge n_0 \}$$

Digamos que:

$$f(n) = 5n^2 + 2n + 1 \in O(n^2)$$

$$g(n) = n^2$$

$$c = 8, f(n) \le 8n^2, n \ge 1$$

notación Ω

Definimos

$$\Omega(g(n)) = \{ f(n) : \exists c \in \mathbb{R} \land n_0 \in \mathbb{N} / c . g(n) \le f(n) \text{ para } n \ge n_0 \}$$

Digamos que:

$$f(n) = 5n^2 + 2n + 1 \in \Omega(n^2)$$

$$g(n) = n^2$$

$$c = 5 \land n_0 = 0, 5n^2 \le f(n), n \ge 0$$

Definimos

$$\Theta(g(n)) = \{ f(n) : \exists c_1, c_2 \in \mathbb{R} \land n_0 \in \mathbb{N} / c_1 . g(n) \le f(n) \le c_2 . g(n) \text{ para } n \ge n_0 \}$$

Digamos que:

$$f(n) = 5n^2 + 2n + 1 \in \Theta(n^2)$$

$$g(n) = n^2$$

$$c_1 = 5$$
, $c_2 = 8$, $n_0 = 0$, $5n^2 \le f(n) \le 8n^2$, $n \ge 0$

notación O: las más comunes

Constante	O(1)	int i = a + b;
Logarítmica	O(log n)	Búsqueda binaria
Lineal	O(n)	for(i=0; i <n; i++){<br=""> }</n;>
n log n	O(n log n)	Ordenamiento por Intercalación, Ordenamiento Rápido
Cuadrática	O(n²)	<pre>for(i=0; i<n; for(j="0;" i++){="" j++){="" j<n;="" pre="" }="" }<=""></n;></pre>
Cúbica	O(n³)	<pre>for(i=0; i<n; for(j="0;" for(k="0;" i++){="" j++){="" j<n;="" k++){="" k<n;="" pre="" }="" }<=""></n;></pre>
Exponencial	O(2 ⁿ)	Secuencia de Fibonacci recursiva
Factorial	O(n!)	Fuerza bruta

Time Complexity T(n) vs. n

Big-O Complexity Chart

$$O(1) = O(\)$$
 $O(\log(n)) = O(\)$
 $O((\log(n))^c) = O(\)$
 $O(n) = O(\)$
 $O(n \log(n)) = O(\)$
 $O(n \log(n)) = O(\)$
 $O(n^{1.5}) = O(\)$
 $O(n^2) = O(\)$
 $O(n^c) = O(\)$
 $O(c^n) = O(\)$

O, Ω y O determinan relaciones entre funciones

```
\ldots \subseteq O(\ldots) es una relación entre funciones:
     "ser del O de" o "ser a lo sumo del orden de"
     o "ser del orden de"
\ldots \subseteq \Omega(\ldots) es una relación entre funciones:
     "ser del \Omega de . . . " o "ser como mínimo del orden de"
     o "ser del orden de"
\ldots \subseteq \Theta(\ldots) es una relación entre funciones:
     "ser del O de . . . " o "ser exactamente del orden de"
     o "ser del orden de"
```


Array Sorting Algorithms

Algorithm	Time Comp	Space Complexity			
	Best	Average	Worst	Worst	
Quicksort	$\Omega(n \log(n))$	$\theta(n \log(n))$	O(n^2)	O(log(n))	
Mergesort	$\Omega(n \log(n))$	Θ(n log(n))	O(n log(n))	O(n)	
Timsort	$\Omega(n)$	$\Theta(n \log(n))$	O(n log(n))	0(n)	
Heapsort	$\Omega(n \log(n))$	$\theta(n \log(n))$	0(n log(n))	0(1)	
Bubble Sort	$\Omega(n)$	Θ(n^2)	O(n^2)	0(1)	
Insertion Sort	$\Omega(n)$	Θ(n^2)	O(n^2)	0(1)	
Selection Sort	$\Omega(n^2)$	Θ(n^2)	O(n^2)	0(1)	
Tree Sort	$\Omega(n \log(n))$	Θ(n log(n))	O(n^2)	0(n)	
Shell Sort	$\Omega(n \log(n))$	$\Theta(n(\log(n))^2)$	O(n(log(n))^2)	0(1)	
Bucket Sort	$\Omega(n+k)$	Θ(n+k)	O(n^2)	0(n)	
Radix Sort	Ω(nk)	0(nk)	0(nk)	0(n+k)	
Counting Sort	$\Omega(n+k)$	Θ(n+k)	0(n+k)	0(k)	
Cubesort	Ω(n)	Θ(n log(n))	0(n log(n))	0(n)	

Common Data Structure Operations

Data Structure	Time Complexity						Space Complexity		
	Average			Worst				Worst	
	Access	Search	Insertion	Deletion	Access	Search	Insertion	Deletion	
<u>Array</u>	0(1)	Θ(n)	Θ(n)	Θ(n)	0(1)	O(n)	0(n)	0(n)	0(n)
<u>Stack</u>	Θ(n)	Θ(n)	Θ(1)	Θ(1)	0(n)	0(n)	0(1)	0(1)	0(n)
<u>Queue</u>	Θ(n)	Θ(n)	Θ(1)	Θ(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Singly-Linked List	Θ(n)	Θ(n)	0(1)	0(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Doubly-Linked List	Θ(n)	Θ(n)	Θ(1)	Θ(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Skip List	$\theta(\log(n))$	$\Theta(\log(n))$	$\Theta(\log(n))$	$\Theta(\log(n))$	0(n)	0(n)	0(n)	0(n)	O(n log(n))
Hash Table	N/A	0(1)	Θ(1)	Θ(1)	N/A	0(n)	0(n)	0(n)	0(n)
Binary Search Tree	$\Theta(\log(n))$	$\Theta(\log(n))$	Θ(log(n))	$\Theta(\log(n))$	0(n)	0(n)	0(n)	0(n)	0(n)
Cartesian Tree	N/A	$\Theta(\log(n))$	$\Theta(\log(n))$	$\Theta(\log(n))$	N/A	0(n)	0(n)	0(n)	0(n)
B-Tree	$\Theta(\log(n))$	$\Theta(\log(n))$	$\Theta(\log(n))$	$\Theta(\log(n))$	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(n)
Red-Black Tree	$\Theta(\log(n))$	$\Theta(\log(n))$	Θ(log(n))	$\Theta(\log(n))$	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(n)
Splay Tree	N/A	$\Theta(\log(n))$	Θ(log(n))	$\Theta(\log(n))$	N/A	0(log(n))	0(log(n))	0(log(n))	0(n)
AVL Tree	$\Theta(\log(n))$	$\Theta(\log(n))$	Θ(log(n))	$\Theta(\log(n))$	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(n)
KD Tree	$\Theta(\log(n))$	$\Theta(\log(n))$	$\Theta(\log(n))$	$\Theta(\log(n))$	0(n)	0(n)	0(n)	0(n)	0(n)

algunas reglas para su cálculo

 Despreciar los términos de menor orden y las constantes multiplicativas

$$T(n) = 3 n^3 + 7 n^2 + 6 n + 5 = O(n^3)$$

 $T(n) = 12 n + log n = O(n)$

algunas reglas para su cálculo

2. Podemos calcular el tiempo de ejecución sumando el tiempo de ejecución de los fragmentos.

```
int a;
a = 5;
a++;
```

```
for(int i=0; i<n; i++)
{
      /* hacer algo */
}</pre>
```


Fragmento 1

O(1)

Fragmento 2

O(n)

Fragmento 3

 $O(n^2)$

algunas reglas para su cálculo

2. Podemos calcular el tiempo de ejecución sumando el tiempo de ejecución de los fragmentos.

```
int a;
a = 5;  O(1)
for(int i=0; i<n; i++)
{
    for(int j=0; j<n; j++)
    {
        /* hacer algo */</pre>
};
```

$$T(n) = O(1) + O(n) + O(n^2) = O(n^2)$$

