

ARM OS SUPPORT

STEFANO DI CARLO

ARCHITECTURAL SUPPORT FOR OPERATING SYSTEMS

- ARM system control coprocessor
- ► CP15 protection unit registers
- ► CP15 MMU registers
- ARM MMU architecture
- Context switching
- Input/Output

ARM SYSTEM CONTROL COPROCESSOR

- ► ARM system control coprocessor is an on-chip coprocessor, using coprocessor number 15 (CP15)
- It controls the operation of the
 - On chip cache
 - Memory management
 - Protections unit
 - Write buffer
 - Prefetch buffer
 - Branch target cache
 - System configurations signals

Register	Purpose
0	ID Register
1	Configuration
2	Cache Control
3	Write Buffer Control
5	Access Permissions
6	Region Base and Size
7	Cache Operations
9	Cache Lock Down
15	Test
4,8,10-14	UNUSED

- Register 0 (ID Register)
- ▶ Bits [3:0] → revision number,
 - ▶ bits [15:4] → 3-digit part number
 - ▶ bits [23:16] → architecture version
 - (0 for version 3,
 - 1 for version 4,
 - 2 for version 4T,
 - ▶ 4 for version 5T)
 - ▶ bits [31:24] → ASCII code of an implementer's trademark

- Register 1 (Configuration)
 - ► All bits are cleared on reset.
 - ► M → Protection unit,
 - C → data or unified cache,
 - W → write buffer,
 - B switches from little- to big-endian byte ordering,
 - I enables the instruction cache when this is separate from the data cache,
 - V causes the exception vectors to move to near the top of the address space,
 - ▶ S, Lck, F and Bnk are used to control the cache (on the ARM740T), and
 - nf and iA control various clock mechanisms (on the ARM940T).

- Register 2 (Cache Control)
 - ▶ It controls the cache ability of the eight individual protection regions
 - Bit 0 enables the cache for loads within region 0,
 - ▶ Bit 1 likewise for region 1, and so on.
 - ► The ARM940T has separate protection units on its instruction and data ports
 - ► Cop2 is used to determine which unit is accessed:
 - Cop2 = 0 gives access to the protection unit on the data port;
 - ► Cop2 = 1 gives access to the protection unit on the instruction port

- Register 3 (Write Buffer Control)
 - ▶ It defines whether or not the write buffer should be used for each of the protection regions.
 - The ARM940T instruction port is read-only,
 - ► The write buffer can only be enabled for the data port
 - and so Cop2 should always be zero

- Register 5 (Access Permission)
 - \triangleright 00 \rightarrow No access
 - ▶ 01 → Privileged modes
 - ► 10 → Privileged full access and user read only
 - ► 11 → Full access.
 - ► Again the ARM940T uses the Cop2 field to differentiate
 - ▶ 1→ instruction protection units
 - ▶ 0 → data protection units.

- Register 6 (Region Base and Size)
 - ▶ It defines the start address and size of each of the eight regions.

31	12 11	6	5	1	0
region base address	0000	0 0	size		Ε

10/3/2024 ARM OS Support

- Register 7 (Cache Operation)
 - ▶ It controls various cache operations and
 - its operation is different for the ARM740T and the ARM940T.
- Register 9 (Cache Lock Down)
 - ▶ It is used in the ARM940T to lock down areas of the cache.

- Register 15 (Test)
 - ▶ It is used in the ARM940T to modify the cache allocation algorithm from random to round-robin.
 - ► This is intended for use only during silicon production testing.

Register	Purpose	
0	ID Register	
1	Control	
2	Translation Table Base	
3	Domain Access Control	
5	Fault Status	
6	Fault Address	
7	Cache Operations	
8	TLB Operations	
9	Read Buffer Operations	
10	TLB Lockdown	
13	Process ID Mapping	
14	Debug Support	
15	Test and Clock Control	
4, 11–12	UNUSED	

14

- Register 0
 - ▶ Bits [3:0] → revision number,
 - ▶ bits [15:4] → 3-digit part number
 - ▶ bits [23:16] → architecture version
 - (0 for version 3,
 - 1 for version 4)
 - ▶ bits [31:24] → ASCII code of an implementer's

trademark

15

- Register 1 (Control)
 - ▶ All bits are cleared on reset.
 - ► M → MMUunit,
 - A → Address Alignment fault checking,
 - ► C → data or unified cache
 - W → write buffer,

31

- ▶ P → switches from 26 to 32 bit address range
- ▶ L → switches to late abort timeing
- ▶ B → switches from little- to big-endian byte ordering,
- ► S & R → modify the MMU system and ROM protection states
- ► F → controls the external coprocessor communications
- Z → enables branch prediction
- ▶ I → enables the instruction cache when this is separate from the data cache,
- V causes the exception vectors to move to near the top of the address space,
- ▶ RR → enables cache replacement algorithm

- Register 2 (Translation Table Base)
 - ▶ It contains the address of the start of the currently active first-level translation table

17

Register 3(Domain Access Control)

Value	Status	Description	
00	No access	Any access will generate a domain fault	
01	Client	Page and section permission bits are checked	
10	Reserved	Do not use	
11	Manager	Page and section permission bits are not checked	

10/3/2024 ARM OS Support

- Register 5 (Fault Status)
 - ▶ It indicates the type of fault and the domain of the last data access that aborted.
 - ▶ D is set on a data breakpoint.

- Register 6 (Fault Address)
 - ▶ It contains the address of the last data access that aborted.

- Register 7 (Cache Operation)
- It is used to perform a
 - Number of cache,
 - Write buffer,
 - Prefetch buffer and
 - ► Branch target cache clean and/or
 - ► Flush operations.
 - ▶ The data supplied should be either zero or a relevant virtual address.

- Register 8 (TLB Operations)
 - ▶ It is used to perform a number of
 - ► TLB operations,
 - ► Flushing single entries or the whole TLB and
 - ► Supporting unified or separate instruction and data TLBs

- Register 9 (Read Buffer Operation)
 - ▶ It is used to control the read buffer
- Register 10 (TLB Lockdown)
 - ► It is used to control TLB lockdown functions
- Register 13 (Process ID Mapping)
 - ▶ It is used to remap virtual addresses through a process ID register.

ARM MMU ARCHITECTURE

- An MMU performs two primary functions:
 - ▶ It translates virtual addresses into physical addresses.
 - ▶ It controls memory access permissions, aborting illegal accesses.

MEMORY GRANULARITY

- The units that can be used are:
 - Sections.
 - ▶ These are 1 Mbyte blocks of memory.
 - Large pages.
 - ► These are 64 Kbyte blocks of memory, and within a large page access control is applied to individual 16 Kbyte subpages.
 - Small pages.
 - ▶ These are 4 Kbyte blocks of memory, and within a small page access control is applied to individual 1 Kbyte subpages.
 - Tiny pages.
 - ▶ Some of the latest CPUs also support 1 Kbyte 'tiny' pages.

DOMAINS

- Domain is a group of sections or pages which have particular access permission
- ► The access control is based on two sorts of programs
 - Clients
 - ▶ Clients are users of domains and must observe the access permissions of the individual sections and pages that make up the domain.
 - Managers
 - ▶ Managers are the controllers of the domain and can bypass the access permissions of individual sections or pages

TRANSLATION PROCESS

- First Translation fetch
- Section Translation
- Page Translation
- Access Permissions

FIRST TRANSLATION FETCH

ACCESS PERMISSION CHECKING SCHEME

AP	s	R	Supervisor	User
00	0	0	No access	No access
00	1	0	Read only	No access
00	0	1	Read only	Read only
00	1	1	Do not use	
01	_	_	Read/write	No access
10	-	_	Read/write	Read only
11	-	-	Read/write	Read/write

Department of Control and Computer Engineering

THANK YOU!

