Parallel Programming using CUDA

Traditional Computing

Von Neumann architecture: instructions are sent from memory to the CPU

Serial execution: Instructions are executed one after another on a single Central Processing Unit (CPU)

Problems:

- More expensive to produce
- More expensive to run
- Bus speed limitation

Parallel Computing

Official-sounding definition: The simultaneous use of multiple compute resources to solve a computational problem.

Benefits:

- Economical requires less power and cheaper to produce
- Better performance bus/bottleneck issue

Limitations:

- New architecture Von Neumann is all we know!
- New debugging difficulties cache consistency issue

Flynn's Taxonomy

Classification of computer architectures, proposed by Michael J. Flynn

- •SISD traditional serial architecture in computers.
- •SIMD parallel computer. One instruction is executed many times with different data (think of a for loop indexing through an array)
- •MISD Each processing unit operates on the data independently via independent instruction streams. Not really used in parallel

•MIMD – Fully parallel and the most common form of parallel computing.

Single DATA Multiple

Single STREAM Multiple		
Single	Single Instruction Single Data SISD	Single Instruction Multiple Data SIMD
INSTRUCTION STREAM		
Multiple	Multiple Instruction Single Data	Multiple Instruction Multiple Data
	MISD	MIMD

Enter CUDA

CUDA is NVIDIA's general purpose parallel computing architecture.

- designed for calculation-intensive computation on GPU hardware
- CUDA is not a language, it is an API
- we will mostly concentrate on the C implementation of CUDA

What is GPGPU?

- General Purpose computation using GPU in applications other than 3D graphics
 - GPU accelerates critical path of application
- Data parallel algorithms leverage GPU attributes
 - Large data arrays, streaming throughput
 - Fine-grain SIMD parallelism
 - Low-latency floating point (FP) computation

- Game effects (FX) physics, image processing
- Physical modeling, computational engineering, matrix algebra, convolution, correlation, sorting

CUDA Goals

- Scale code to hundreds of cores running thousands of threads
- The task runs on the gpu independently from the cpu

CUDA Structure

- Threads are grouped into thread blocks
- Blocks are grouped into a single grid
- The grid is executed on the GPU as a kernel

Scalability

- Blocks map to cores on the GPU
- Allows for portability when changing hardware

Terms and Concepts

Each block and thread has a unique id within a block.

- threadIdx identifier for a thread
- blockIdx identifier for a block
- blockDim size of the block

Unique thread id:

(blockIdx*blockDim)+threadIdx.x

Terms and Concepts

- Assume a hypothetical ID grid and ID block architecture: 4 blocks, each with 8 threads.
- For Global Thread ID 26:
 - gridDim.x = 4 x I
 - blockDim.x = 8 x I
 - Global Thread ID = blockldx.x * blockDim.x + threadIdx.x
 - \bullet = 3 x 8 + 2 = 26

NVCC compiler

- •Compiles C or PTX code (CUDA instruction set architecture)
- •Compiles to either PTX code or binary (cubin object)

Development: Basic Idea

- 1. Allocate equal size of memory for both host and device
- 2. Transfer data from host to device
- 3. Execute kernel to compute on data
- 4. Transfer data back to host

Kernel Function Qualifiers

- __device___
- __global___
- __host___

Example in C:

CPU program

void increment_cpu(float *a, float b, int N)

CUDA program

__global__ void increment_gpu(float *a, float b, int N)

Variable Type Qualifiers

- Specify how a variable is stored in memory
- device
- __shared___
- constant

Example:

```
__global__ void increment_gpu(float *a, float b, int N)
{
    __shared__ float shared[];
}
```

Calling the Kernel

 Calling a kernel function is much different from calling a regular function

```
Void main(){
Int blocks = 256;
Int threadsperblock = 512;
    mycudafunc<<<blocks,threadsperblock>>>(some parameter);
}
```

GPU Memory Allocation / Release

```
Host (CPU) manages GPU memory:
   cudaMalloc (void ** pointer, size t nbytes)
   cudaMemset (void * pointer, int value, size_t count);
   cudaFree (void* pointer)
Void main(){
   int n = 1024;
   int nbytes = 1024*sizeof(int);
   int * d_a = 0;
   cudaMalloc( (void**)&d_a, nbytes );
   cudaMemset( d_a, 0, nbytes);
   cudaFree(d_a);
```

Memory Transfer

cudaMemcpy(void *dst, void *src, size_t nbytes, enum cudaMemcpyKind direction);

- returns after the copy is complete blocks CPU
- thread doesn't start copying until previous CUDA calls complete

enum cudaMemcpyKind

- cudaMemcpyHostToDevice
- cudaMemcpyDeviceToHost
- cudaMemcpyDeviceToDevice