#### Technische Universität Darmstadt





# TK1: Distributed Systems Programming & Algorithms

Chapter 3: Distributed Algorithms

Section 5: Local Algorithms

Lecturer: Prof. Dr. Max Mühlhäuser

Contributors: Michael Stein (michael.stein@tk.informatik.tu-darmstadt.de),

Immanuel Schweizer (schweizer@tk.informatik.tu-darmstadt.de)

Copyrighted material – for TUD student use only



# **OUTLINE**

- Motivation
- Local Algorithms in Theoretical Context
- Theory Meets Practice...
- Summary



### Introduction



• The size of the Internet increases rapidly!

**2015:** 15 Billion (Cisco, 2011)

2020: 20 Billion (IMS Research, 2010)





- Internet of Things
  - RFID
  - Sensors



One fundamental issue: Scalability



### Reducing the Scope of Knowledge



 Observation: Considering scalability, having a global view on the network is too expensive



- Intuition: Limiting interactions to the local neighborhood of individual nodes improves scalability
- Other desired properties (e.g., robustness)
- Problem: Trade-Off (Performance vs. Scope)
- What can be done based only on local knowledge?





# **Fundamental Questions**



- What is a local algorithm?
- What can be computed locally?





# **OUTLINE**

- Motivation
- Local Algorithms in Theoretical Context
- Theory Meets Practice...
- Summary



# **Graph Definitions**



- We use a graph G = (V,E) do model communication topologies
- Vertices (V) (also called nodes)
  - Denote networking devices
  - |V| = n
- Edges (E)
  - Denote connectivity between devices
  - Might be directed or undirected





# In Theory... The *LOCAL* Model



- Wide-spread deterministic model of distributed computing (Initially proposed by Linial [1992])
- The nodes perform globally synchronized communication rounds

Initially, each node has only task-specific input and no knowledge about other nodes in the network.

In each round, each node performs the following three consecutive steps:

- 1. Local computation
- 2. Send a message to each neighbor
- 3. Receive one message from each neighbor

After k rounds, the algorithm terminates and each node computes and announces its local output.



### Properties of the *LOCAL* model



- This model focuses on the locality in distributed processing [Linial 1992] and abstracts away restricting factors [Peleg 2000]
  - Computation is free
  - Message size is unbounded
- Observation: In k synchronous communication rounds, information may travel at most k hops through the network
- Bounding k, we are able to ensure that nodes have only restricted knowledge on the network!
- In the following, we focus on algorithms where k is a constant that is independent from the network size [Suomela 2013]
- Such algorithms run in constant time independently from the network size!



# kTC: An Example of an algorithm in the *LOCAL* Model



- Related Work: Local Algorithm kTC [Schweizer et al. 2012]
  - Round 1: Each node broadcasts its ID
  - Round 2: Each node broadcasts its 1-hop neighborhood

■ After Round 2: Remove the longest edge in each triangle (e.g., based on

signal strength)





# **Definition: k-hop Neighborhood**



When d(u,v) gives the hop count between u and v, the k-hop neighbors set of a node v is given by:

$$B_k(v) = \{u \in V_T : \min\{d(u, v), d(v, u)\} \le k\}$$

■ G<sub>k</sub>(v) is the subgraph of G that can be constructed in the *LOCAL* model by v in k rounds





## Limitations of the *LOCAL* Model



- What can be achieved in this model?
- In particular, there are two arguments that can be used to show that a certain problem can not be solved in this model [Suomela 2013]
  - Inherently non-local Problem
  - Impossibility of Symmetry Breaking



## **Inherently Non-Local Problems**



■ A problem is inherently non-local if the output of a node v depends on the initial input of a node outside of  $G_k(v)$ 

Example: Creating a spanning tree is inherently non-local[Suomela 2013]



■ The decision if (u<sub>1</sub>,u<sub>2</sub>) should be added to the tree depends on whether (v<sub>1</sub>,v<sub>2</sub>) is contained in the tree!





# **Impossibility of Symmetry Breaking**



- A distributed algorithm in the LOCAL model is equivalent to a function that maps local neighborhoods  $G_k$  to local outputs [Fraigniaud et al. 2013]
- As the model is deterministic, two nodes with an equal view of the graph produce the same output!
- Example: Impossibility to assign addresses in an n-cycle



Each node assigns itself the same address!



#### Results for the *LOCAL* Model



- Many papers investigate usage of the model in the context of graph-theoretical problems
- Possibility results regarding this model are rather pessimistic: Many problems can neither be solved exactly nor approximated in the LOCAL model in constant time ⊗
- A comprehensive collection of results is given in the survey by Suomela [2013]



# **OUTLINE**

- Motivation
- Local Algorithms in Theoretical Context
- Theory Meets Practice...
- Summary



### **Theory Meets Practice**



■ How do the *LOCAL* model and corresponding results map to the real world?

#### Problems:

- The *LOCAL* model is a synchronized round-based model. However, communication in practice is carried out asynchronously!
- Nodes do not have access to information that may be available in practice (environment-specific knowledge, locally observable message flow, etc.)
- The *LOCAL* model terminates after k rounds. What about algorithms that do not terminate at all?
- So... what is a local algorithm in practice? And how can we check the practical relevance of the theoretical results?
- → Just take a look at practical algorithms that claim to be local!



## **Applications of Local Algorithms**



- In the following application domains, there do exist algorithms that are considered to be local in corresponding publications
  - Addressing
  - Clustering
  - Connectivity
  - Load Balancing
  - Localization
  - Routing
  - Service Discovery

- Service Placement
- Sleep Control
- Video Streaming
- Graph-Theoretical Problems
- Topology Control
- Topology Mismatching

Next, we will give an exemplary insight into two of these domains



#### **Excursus on Wireless Sensor Networks**



- Large networks of small, strictly hardware-limited devices
  (e.g., only a few kBytes of RAM...)
- The devices are battery-powered
- Wireless communication interface with maximum transmission range
- The nodes aim at sensing their environment and send the data to a central base station
- → How to do routing?







# **Greedy Routing**



- Greedy forwarding
  - Each node knows its own coordinates
  - Source knows coordinates of destination



- Take the "closest" neighbor
- Close might be defined different to enhance the algorithm
- Works well on some networks, e.g., grid networks





# **Greedy Perimeter Stateless Routing**[Karp and Kung 2000]



- Doesn't work with voids in the network
  - Use greedy when possible, change to right hand rule otherwise

#### Right-hand rule

When arriving at a node x from node y, the next edge traversed is the next one sequentially counterclockwise from the edge (x,y)







# **Greedy Perimeter Stateless Routing**[Karp and Kung 2000]



- Works very well in random graphs
  - But: No edges are allowed to cross, otherwise it runs into a loop

- Start with x to u
  - X-u-z-w-u-x
- Solutions:
  - No crossing heuristic
    - Remove an edge that is encountered again
    - Might partition the network
  - Planar graphs
    - No crossings allowed
    - Topology Control!





# **Topology Control**









### **Topology Control**



- Make the topology "better" without:
  - Partitioning the network
  - Making the paths much longer
- What does "better" mean
  - Planarity as , for example, required by Greedy Perimeter Stateless Routing
  - Less logical neighbors
  - Allows for shrinking the transmission power of nodes
  - Less physical neighbors
    - Less interference



# **Relative Neighborhood Graph (RNG)**



Edge (u, v) exists if the intersection of the disks centered at u and v is free of other nodes.





# **Gabriel Graph (GG)**



■ Edge (u,v) exists iff disk(u,v) is free of other nodes







# **Topology Control**



- Easy to calculate locally
  - Only 1-hop information about position needed
- The resulting graph is planar and sparse
  - |E| ≤ 3 |V|

■ RNG ⊂ GG

Also: connected







# Relation of These Algorithms to the *LOCAL* Model?



- Intuitively, these algorithms are local
  - GPSR selects the next hop to the target coordinates based on the coordinates of the 1-hop neighbors
  - For GG and RNG, the edge removal decision depends on node coordinates in the 1-hop neighborhood
- What about the *LOCAL* model
  - GPSR is absolutely non-local according to the *LOCAL* model because data may be forwarded an arbitrary number of hops through the network
  - GG and RNG may indeed be implemented in the *LOCAL* model



## **Key Observations**



- Many problems that are not solvable in the theoretical model can be heuristically tackled in practice by local algorithms!
- Most importantly: Most of the investigated algorithms (e.g., GPSR) are not covered by the LOCAL model!



# Another Key Observation: Size of the "Local View"





A local view of only two hops is sufficient to tackle many problems!



# **How to Define Locality in Practice?**



- The algorithms claiming to be local differ from each other with respect to their degree of locality
- Hence, it is not meaningful to give a broad definition that covers all of them
- Open research question: Is it possible to define classes of locality?

Strictly local algorithms (hard requirements)

Distributed algorithms (low requirements)



# **OUTLINE**

- Motivation
- Local Algorithms in Theoretical Context
- Theory Meets Practice...
- Summary



# **Summary and Outlook**



- What is a local algorithm?
- Well, that depends on the chosen perspective...
- Local algorithms in theory...
- ... and in practice



# **Outlook: Local/Global Trade-off**



- Obviously, there is a trade-off between the performance of an algorithm and its degree of locality
- How can this trade-off be controlled?
  - Increasing k
  - Divide the network into regions and apply centralized algorithms?





#### References



- Pierre Fraigniaud, Mika Gs, Amos Korman, and Jukka Suomela. 2013. What Can Be Decided Locally Without Identifiers?. In Proceedings of the Symposium on Principles of Distributed Computing (PODC). 157–165.
- Lachezar Krumov, Adriana Andreeva, and Thorsten Strufe. 2010a. Resilient Peer-to-Peer Live-Streaming using Motifs. In Proceedings of the IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks (WoWMoM). 1–8.
- Lachezar Krumov, Immanuel Schweizer, Dirk Bradler, and Thorsten Strufe. 2010b. Leveraging Network Motifs for the Adaptation of Structured Peer-to-Peer-Networks. In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM). 1–5.
- G. Kulcsár, M. Stein, I. Schweizer, G. Varró, M. Mühlhäuser, A. Schürr. 2014. Rapid Prototyping of Topology Control Algorithms by Graph Transformation. In Proceedings of the International Workshop on Graph-Based Tools (GraBaTs).
- N. Linial. Locality in Distributed Graph Algorithms. SIAM Journal on Computing, 21(1)(1):193{201, February 1992.
- David Peleg. 2000. Distributed Computing: A Locality-Sensitive Approach. Monographs on Discrete Mathematics and Applications, Vol. 5. Society for Industrial and Applied Mathematics.
- Immanuel Schweizer, Michael Wagner, Dirk Bradler, Max Mühlhäuser, and Thorsten Strufe. 2012. kTC Robust and Adaptive Wireless Ad-hoc Topology Control. In Proceedings of the International Conference on Computer Communication Networks (ICCCN). 1–9.
- Jukka Suomela. 2013. Survey of Local Algorithms. Comput. Surveys 45, 2 (2013), 24:1–24:40.
- Brad Karp and H. T. Kung. 2000. GPSR: Greedy Perimeter Stateless Routing for Wireless Networks. In Proceedings of the ACM International Conference on Mobile Computing and Networking (MobiCom). 243–254.