КЛАССЫ СОПРЯЖЕННЫХ ЭЛЕМЕНТОВ

Сейчас мы введем одно из важнейших понятий всей теории групп.

§ 1. Классы сопряженных элементов

Рассмотрим возникающее в определении нормальной подгруппы условие xH=Hx. Домножая это равенство на x^{-1} справа и пользуясь ассоциативностью, мы видим, что оно эквивалентно равенству $xHx^{-1}=H$. Здесь xHx^{-1} понимается обычным образом, как $\{xhx^{-1}\mid h\in H\}$. Это мотивирует следующее определение.

Определение. Пусть $x,g \in G$. Элемент ${}^xg = xgx^{-1}$ называется сопряженным к g при помощи x слева. Два элемента $h,g \in G$ называются сопряженными в G, если найдется такое $x \in G$, что $h = xgx^{-1}$. Множество всех элементов, сопряженных с g в группе G, обозначается

$$q^G = \{xqx^{-1} \mid x \in G\}$$

и называется классом сопряженных элементов группы G с представителем g.

В дальнейшем вместо официального выражения класс сопряженных элементов мы часто употребляем общепринятые жаргонизмы класс сопряженности = conjugacy class и даже сопряженный класс = Konjugiertenklass.

Чтобы обозначить, что h и g сопряжены в G пишут $h \sim_G g$ или, если группа G зафиксирована контекстом, просто $h \sim g$. Элемент $g^x = x^{-1}gx$ называется сопряженным к g при помощи x справа. Резюмируем важнейшие свойства отображения $(x,g) \mapsto x^g$, которые будут многократно использоваться в дальнейшем.

Задача 1. Докажите, что

- $\bullet \ x^{hg} = (x^h)^g,$
- $\bullet (xy)^g = x^g y^g,$
- $(x^{-1})^g = (x^g)^{-1}$

Так как $g^x = x^{-1}gx = {}^{x^{-1}}g$, сопряжен к g при помощи x^{-1} слева, то ни понятие сопряженности, ни понятие сопряженного класса не меняются при замене сопряжения слева сопряжением справа. Разные авторы понимают выражение "элемент, сопряженный к g при помощи x" по-разному. Можно привести соображения в пользу и того и другого выбора, но нужно иметь в виду, что сопоставление элементу x левого сопряжения I_x при помощи этого элемента является гомоморфизмом G в симметрическую группу S_G , в то время, как сопоставление ему правого сопряжения $I_{x^{-1}}$ — антигомоморфизм (см. лекцию от гомоморфизамах в группах).

Предложение 1. Сопряженность в группе G является отношением эквивалентности.

Доказательство. Рефлексивность вытекает из того, что $1 \in G$. Симметричность вытекает из существования обратных: $h \sim_G g$ означает по определению, что найдется такое $x \in G$, что $xhx^{-1} = g$. Но тогда, разумеется, $h = x^{-1}gx$. Наконец, транзитивность вытекает из замкнутости G относительно умножения. Если $f \sim_G h$ и $h \sim_G g$, то найдутся такие $x,y \in G$, что $xfx^{-1} = h$ и $yhy^{-1} = g$. Но тогда $(yx)f(yx)^{-1} = y(xfx^{-1})y^{-1} = yhy^{-1} = g$.

Тем самым группа G представляется в виде ∂ изоюнктного объединения классов сопряженных элементов. Трансверсаль Z к отношению сопряженности называется **системой представителей** классов сопряженных элементов. По определению каждый элемент группы G сопряжен с каким-то элементом из Z, и никакие два различных элемента Z не сопряжены друг с другом. Далее в нашем курсе мы опишем классы сопряженных элементов группы S_n , а изучение классов сопряженных элементов в группе GL(n,K) обратимых матриц над полем и некоторых других "классических группах" составляет одну из больших тем в 3-м семестре университетского курса алгебры — "каноническая форма линейного оператора", "спектральная теория операторов".

Задача 2. Докажите, что если C — класс сопряженных элементов группы G, то $C^{-1} = \{g^{-1} \mid g \in G\}$ тоже класс сопряженных элементов группы G.

§ 2. Связь с централизаторами.

Один из наиболее часто используемых фактов элементарной теории групп состоит в том, что число элементов в G, сопряженных с g, равно $|G:C_G(g)|$. Точнее, имеет место следующий результат.

Предложение 2. Сопоставление $C_G(g)x \mapsto g^x$ определяет биекцию между множеством $C_G(g)\backslash G$ левых смежных классов G по $C_G(g)$ и классом g^G .

Доказательство. В самом деле, если два элемента x,y группы G лежат в одном и том же левом смежном классе G по $C_G(x)$, то найдется такое $u \in C_G(x)$, что x=uy. Тем самым, $g^x = g^{uy} = (g^u)^y = g^y$, так что это сопоставление действительно корректно определяет отображение $C_G(g)\backslash G \longrightarrow g^G$

Это отображение очевидно сюръективно, так как для каждого $x \in G$ его смежный класс $C_G(g)x$ переходит в g^x . С другой стороны, сопрягая равенство $g^x = g^y$, $x, y \in G$, при помощи y^{-1} , мы видим, что $g^{xy^{-1}} = g$ так что $xy^{-1} \in C_G(g)$, но это, как раз ровно и значит, что x и y лежат в одном левом смежном классе по $C_G(g)$.

Следствие 3. Для любого $g \in G$ имеет место равенство

$$|g^G| = |G: C_G(g)|.$$

В дальнейшем мы обобщим это утверждение на количество сопряженных с любым подмножеством $X \subseteq G$. А именно, количество сопряженных с X в G равно $|G:N_G(X)|$, просто для одноэлементного множества его нормализатор совпадает с централизатором.

§ 3. Классовое уравнение

Пусть теперь $Z = \{x_1, \dots, x_m\}$ — система представителей классов сопряженных элементов группы G, а $C_i = x_i^G$ — класс с представителем x_i . Тогда

$$G = C_1 \sqcup \ldots \sqcup C_m$$
.

Таким образом, если обозначить через $n_i = |C_i|$ порядок класса C_i , а через n = |G| порядок группы G, то $n = n_1 + \ldots + n_m$. Число m называется **числом классов** (Klassenzahl, class number) группы G, а равенство

$$|G| = |C_1| + \ldots + |C_m| = |G: C_G(x_1)| + \ldots + |G: C_G(x_m)|$$

— классовым уравнением (Klassengleichung, class equation).

Набор (n_1, \ldots, n_m) порядков классов сопряженных элементов является важнейшим арифметическим инвариантом группы G. Если, кроме того, $l_i = |C_G(x_i)|$ — порядок централизатора элемента x_i , то $n = n_i l_i$, а классовое уравнение можно переписать в виде

$$1 = \frac{1}{l_1} + \ldots + \frac{1}{l_m}.$$

Обычно сопряженные классы располагают в порядке возрастания их порядков, так что $n_1 \leq \ldots \leq n_m$, и, тем самым, $l_1 \geq \ldots \geq l_m$. Кроме того, обычно полагают $x_1 = 1$, так что $n_1 = 1$, $l_1 = n$.

Задача 3. Пусть G — конечная группа. Выберем по одному элементу g_1, \ldots, g_m из каждого класса C_1, \ldots, C_m сопряженных элементов. Докажите, что тогда $G = \langle g_1, \ldots, g_m \rangle$.

§ 4. Примеры описания сопряженных классов

Элементарные примеры Описание классов сопряженных элементов является одной из основных задач, которые мы должны решить, чтобы понять строение группы G. Вот несколько очевидных примеров.

- Класс элемента $x \in G$ в том и только том случае одноэлементный, когда x централен. В частности, группа G тогда и только тогда абелева, когда все ее сопряженные классы одноэлементны.
- В группе кватернионов Q два центральных класса $\{1\}$, $\{-1\}$, а три других сопряженных класса имеют вид $\{\pm i\}$, $\{\pm j\}$, $\{\pm k\}$. Напоминание: группой кватернионов называется группа из 8 элементов Q=

 $\{\pm 1, \pm i, \pm j, \pm k\}$ со следующей таблицей умножения 1 — нейтральный элемент, $i^2=j^2=k^2=-1$, ij=k, jk=i, ki=j, ji=-k, kj=-i, ik=-j, а -1 является центральным элементом, умножение на который меняет знак. Все оставшиеся записи в таблице Кэлли Q восстанавливаются из условий выше, например: (-1)(-1)=1 или $i(-k)=i\cdot 1\cdot (-k)=i(-1)(-1)(-k)=i(-1)k=(-1)ik=(-1)j=-j$.

• Пусть D_n — диэдральная группа. В этом случае классы сопряженных элементов описываются по разному, в зависимости от четности n. Проще всего убедиться в этом представляя себе D_n как группу симметрий правильного n-угольника. Группа D_n содержит n вращений на углы $2\pi m/n$, $m=0,\ldots,n-1$, и n отражений. Если n нечетно, то все отражения сопряжены в D_n : это отражения относительно прямых, соединяющих каждую из n вершин со серединой противоположной стороны. С другой стороны, если n четно, то отражения разбиваются на два класса: n/2 отражений относительно диагоналей n-угольника и n/2 отражений относительно прямых, соединяющих середины противоположных сторон. Вращения на углы $2\pi m/n$ и $2\pi (n-m)/n$ и только они сопряжены. Таким образом, при нечетном n вращения разбиваются на (n+1)/2 сопряженных класса, а при четном n- на n/2+1 класса. А именно, в случае четного n кроме тождественного вращения еще и вращение на угол π центрально, и его сопряженный класс состоит из одного элемента.

Дальнейшие примеры. А вот несколько классических примеров, которые обсуждаются далее в нашем курсе.

- \bullet Как мы увидим в лекции о группе перестановок, классы сопряженных элементов в симметрической группе S_n описываются цикленным типом.
- Классы сопряженных элементов в GL(n, K) описываются в третьем семестре университетского курса алгебры. В случае алгебраически замкнутого поля K эти классы описываются жордановой формой. В случае произвольного поля фробениусовой формой.
- В том же третьем семестре описаны классы сопряженности в $U(n,\mathbb{R})$ и $O(n,\mathbb{R})$.

§ 5. Классы сопряженных элементов в конечных группах

Порядок класса сопряженных элементов В настоящем параграфе, если противное не оговорено явно, мы предполагаем, что группа G конечна. Напомним, что сопряженный класс x^G находится в естественном биективном соответствии с $G/C_G(x)$. В самом деле, $yC_G(x)\mapsto yxy^{-1}$ устанавливает такую биекцию.

В частности, порядок класса C сопряженных элементов конечной группы G делит порядок этой группы.

Задача 4. Докажите, что порядок любого класса сопряженных элементов группы G не превосходит индекс ее центра.

Задача 5. Докажите, что порядок любого класса сопряженных элементов группы G не превосходит порядок ее коммутанта.

Задача 6. Докажите, что количество классов сопряженных элементов конечной группы G равно

$$\frac{1}{|G|}\sum |C_G(g)|, \quad g \in G.$$

Задача 7 (fusion). Пусть G — конечная группа, а $H \leq G$ — ее подгруппа индекса 2. Как связаны между собой порядки классов x^G и x^H ? Докажите, что для любого $h \in H$ либо $h^G = h^H$, либо h^G предствляется как объединение двух сопряженных классов в H.

Задача 8. Обобщается ли результат предыдущей задачи на подгруппу $H \leq G$ индекса p? Иными словами, верно ли, что для любого $h \in G$ либо h^G продолжает оставаться одним сопряженным классом в H, либо представляется в виде объединения p различных сопряженных классов в H?

Задача 9. Предположим, что порядок $g \in G$ по крайней мере 3. Покажите, что если класс g^G содержит нечетное число элементов, то $g \not\sim g^{-1}$.

Группы с двумя классами сопряженных элементов. Во всякой нетривиальной группе по крайней мере два класса сопряженными элементов. Следующая задача показывает, что C_2 является $e \partial u h c m b e h o i kohe e h$

Задача 10. Доказать, что если $G-\kappa$ онечная группа, содержащая ≥ 3 элементов, то в ней ≥ 3 сопряженных классов.

Решение. Целое число $n \ge 3$ редко делится на n-1.

Предостережение. Стоит предупредить читателя, что существуют *бесконечные* группы, в которых ровно два класса сопряженных элементов¹. Однако в таких группах порядок всех ненулевых элементов бесконечен.

Задача 11. Докажите, что если G бесконечная группа с двумя классами сопряженных элементов, то порядок любого $\neq 1$ элемента группы G бесконечен.

Решение. Предположим, что в G существует элемент $g \neq 1$ конечного порядка o(g) и p — какой-то простой делитель o(g). Тогда $o(g^{o(g)/p}) = p$. Так как все $\neq 1$ элементы группы G сопряжены, то все они имеют порядок p. Если p=2, то группа G абелева — противоречие. Пусть поэтому p>2. Тогда $g^2 \neq 1$ и, тем самым, $g^2 = xgx^{-1}$ для какого-то $x \neq 1$. Это значит, что для любого $m \in \mathbb{N}$ имеем $g^{2^m} = x^mgx^{-m}$ и, в частности, $g^{2^p} = g$. Но тогда $g^{2^p-1} = 1$ и $p|2^p-1$. Однако это утверждение представляется довольно сомнительным, так как по теореме Ферма $p|2^{p-1}-1$, так что, окончательно, $p|2^{p-1}$ — противоречие.

Теоремы Бернсайда. С использованием теории представлений Бернсайд доказал множество удивительных арифметических ограничений на количество сопряженных классов конечной группы и их порядки. Для небольших групп эти арифметические ограничения часто позволяют получить весьма детальную информацию о классах сопряженных элементов вообще без всяких вычислений. К сожалению, доказательства всех этих результатов, не опирающиеся на теорию представлений, настолько трудны, что их вообще невозможно изложить на начальном уровне. Ограничимся формулировкой двух типичных результатов в таком духе.

Теорема 4 (Бернсайд). Порядок |C| класса сопряженных элементов неабелевой конечной простой группы не может быть примарным числом.

Теорема 5 (Бернсайд). Пусть G — конечная группа нечетного порядка c s классами сопряженных элементов. Тогда $s \equiv |G| \pmod{16}$.

¹см. E. Schenkman "Group theory", N. Y., 1965, Ch.V, § 6