

Disciplina: Algoritmos e Estruturas de Dados II

Álvaro Luiz Fazenda

alvaro.fazenda@unifesp.br

Bibliografia básica

- Projeto de algoritmos com implementações em PASCAL e C
 - Nívio Ziviani Thomson 2004
 - Capítulo 1 (seção 1.3 e 1.4)
- Algoritmos Teoria e Prática
 - Thomas H. Cormem et al Elsevier 2002
 - Capítulo 3

Porque estudar algoritmos?

- Computadores reais apresentam restrições em velocidade de processamento e de espaço de armazenamento, que variam conforme o custo financeiro do sistema utilizado
 - Tempo de computação e espaço de armazenagem são recursos limitados que devem ser usados de forma otimizada!
- O desempenho total do sistema depende tanto da escolha de algoritmos eficientes quanto do hardware

Porque estudar algoritmos? (II)

- O projeto de algoritmos é fortemente influenciado pelo estudo de seus comportamentos ou eficiência
 - Existem várias opções de algoritmos a serem utilizados, variando os aspectos de tempo de execução e espaço de armazenamento ocupado
 - Estudo comum nas áreas de: pesquisa operacional, otimização, teoria dos grafos, estatística, probabilidades, entre outras

Análise de algoritmos (Cormem at al., 2002)

- Analisar um Algoritmo significa prever os recursos de que o algoritmo necessitará
 - Preocupação principal: tempo de execução
 - Analisando-se vários algoritmos candidatos para resolver um problema pode-se identificar os mais eficientes
 - E descartar os de qualidade inferior
- Pode-se considerar o uso de um computador genérico:
 - RAM (Random-access machine)
 - Execuções de instruções sequenciais (sem concorrência)
 - Instruções comuns em computadores reais
 - Sem hierarquia de acesso a memória

Análise de um algoritmo particular

- Qual é o custo de se usar um dado algoritmo para resolver um problema específico, independentemente do hardware?
 - Para uma dada instância do programa, o custo depende, entre outros, dos seguintes fatores:
 - Quantidade de dados de entrada;
 - Forma dos dados de entrada;
 - Espécie de dispositivos de armazenamento utilizados.
 - Características que devem ser investigadas:
 - Número de vezes que cada parte do algoritmo deve ser executada para uma dada instância;
 - Quantidade de memória necessária.

Análise de uma classe de algoritmos

- Toda uma família de algoritmos pode ser investigada
- Procura-se identificar um que seja o melhor possível para algoritmos da mesma classe
- Coloca-se limites para a complexidade computacional dos algoritmos pertencentes à classe

Custo computacional de um Algoritmo

- Determinando o menor custo possível para resolver problemas de uma dada classe, temos a medida da dificuldade inerente para resolver o problema
- Quando o custo de um algoritmo é igual ao menor custo possível, o algoritmo é ótimo para a medida de custo considerada
- Podem existir vários algoritmos para resolver o mesmo problema
- Se a mesma medida de custo é aplicada a diferentes algoritmos, então é possível compará-los e escolher o mais adequado

Medindo tempo do programa executável

Problemas:

- Resultados são dependentes do compilador e de opções de compilação;
- Resultados são dependentes do hardware;
- Acesso a memória pode causar lentidão quando se testam grandes quantidades de dados.

Vantagens:

Serão considerados tanto os custos reais das operações como os custos não aparentes, tais como alocação de memória, indexação, carga, dentre outros.

Tempo executável: Exemplo


```
#include<time.h>
int main(){
 clock t start = clock();
  long int t, n, a;
  scanf("%ld", &n);
  for(t=0;
            t<n;
                    t++)
    a++;
 printf("Time elapsed: %f\n",
     ((double)clock() - start)/
     CLOCKS PER SEC);
  return;
```

```
fazenda@unifespsjc: ~/cursos/EDII-Unifesp/notas
                                                                         _ 🗆 🗙
Arquivo Editar Ver Terminal Ajuda
fazenda@unifespsjc:~/cursos/EDII-Unifesp/notas$
fazenda@unifespsjc:~/cursos/EDII-Unifesp/notas$
fazenda@unifespsjc:~/cursos/EDII-Unifesp/notas$
fazenda@unifespsic:~/cursos/EDII-Unifesp/notas$
fazenda@unifespsjc:~/cursos/EDII-Unifesp/notas$ more tamanho.txt
400000000
fazenda@unifespsic:~/cursos/EDII-Unifesp/notas$ time ./progl.x < tamanho.txt
Tamanho=400000000
Time elapsed: 1.210000
       0m1.222s
real
       0m1,216s
user
       0m0.004s
SVS
fazenda@unifespsjc:~/cursos/EDII-Unifesp/notas$
```

Modelo matemático de custo computacional

- Usa-se um modelo matemático baseado em um computador idealizado
- Deve ser especificado o conjunto de operações e seus custos de execuções
- Ignora-se o custo de algumas das operações e considera-se apenas as operações mais significativas
 - Ex.: Algoritmos de ordenação: Consideramos o número de comparações entre os elementos do conjunto a ser ordenado e ignoramos as operações aritméticas, de atribuição e manipulações de índices, etc.

Análise inicial do custo de um

programa

```
C1
#include<time.h>
int main() {
                                                C2
  clock t start = clock();
  long int t, n, a;
                                                   C4
  scanf("%ld", &n);
                                                          n*C5
  for (t=0;
             t<n;
                     t++)
                                                                   n*C6
    a++; ~
  printf("Time elapsed: %f\n",
                                                                n*C7
    ((double)clock() - start)/
     CLOCKS_PER_SEC);
                                                       C8
  return;
```

Custo total do programa

Tempo total depende do tempo de cada instrução Cx, assim:

$$Ctot = C1 + C2 + C3 + n*C4 + n*C5 + n*C6 + C7$$

•
$$Ctot = C1 + C2 + C3 + C7 + n(C4 + C5 + C6)$$

$$C8 = C1 + C2 + C3 + C7$$

$$C9 = C4 + C5 + C6$$

$$Ctot = C8 + nC9$$

Custo total do programa (II)

- Considerando:
 - C8 = 20 s
 - C9 = 10 s
 - N = 1..40

Vê-se que o custo de
 f(n) = n*C domina o
 problema para grandes
 valores de n

Custo total do programa (III)

- Para grandes valores de **n** pode-se desconsiderar C8 na análise de custo do programa exemplo
- Pode-se considerar, também, uma função *f(n)* que deverá indicar a quantidade de instruções a ser executada no laço, dentro do programa exemplo
 - A Função f(n) deverá indicar a complexidade do algoritmo estudado

Função de Complexidade f(n)

- *f(n)* é denominada Função de Complexidade de Tempo, e representa a medida de custo necessária para executar um algoritmo para um problema de tamanho n
 - A complexidade de tempo na realidade não representa tempo diretamente, mas o número de vezes que determinada operação considerada relevante é executada
- Pode-se usar também uma função para se medir o custo de memória (Função de complexidade de espaço)

Exemplo: Maior Elemento

• Considere o algoritmo para encontrar o maior elemento de um vetor de inteiros A[n], $n \ge 1$

```
int Max(int* A, int n) {
   int i, Temp;

Temp = A[0];
  for (i = 1; i < n; i++)
      if (Temp < A[i])
      Temp = A[i];
  return Temp;
}</pre>
```

Seja f uma função de complexidade tal que f(n) é o número de comparações envolvendo os elementos de A, se A contiver n elementos. Qual é a função f(n)?

Exemplo: Maior Elemento

Considere o algoritmo para encontrar o maior elemento de um vetor de inteiros A[n], $n \ge 1$

Seja f uma função de complexidade tal que f(n) é o número de comparações envolvendo os elementos de A, se A contiver n elementos. Qual é a função f(n)?

Exemplo: Maior Elemento

Teorema

Qualquer algoritmo para encontrar o maior elemento de um conjunto com n elementos, $n \ge 1$, faz pelo menos n - 1 comparações.

Prova

Cada um dos n-1 elementos tem de ser investigado por meio de comparações, que é menor do que algum outro elemento. Logo, n-1 comparações são necessárias.

Tamanho da entrada de dados

- Conforme já visto, a medida do custo de execução de um algoritmo depende principalmente do tamanho da entrada dos dados
- É comum considerar o tempo de execução de um programa como uma função do tamanho da entrada
- Para alguns algoritmos, o custo de execução é uma função da entrada particular dos dados, não apenas do tamanho da entrada

Tamanho da entrada de dados (II)

- No caso da função Max do programa do exemplo, o custo é uniforme sobre todos os problemas de tamanho n
- Já para um algoritmo de ordenação isso não ocorre: se os dados de entrada já estiverem quase ordenados, então pode ser que o algoritmo trabalhe menos

Casos a Serem Analisados

- Melhor caso: menor tempo de execução sobre todas as entradas de tamanho n
- **Pior caso:** maior tempo de execução sobre todas as entradas de tamanho *n*
- **Caso médio (ou caso esperado):** média dos tempos de execução de todas as entradas de tamanho *n*

• Melhor Caso \leq Caso Médio \leq Pior Caso

Maior e Menor Elemento

Seja f(n) o número de comparações entre os elementos de A. Logo, f(n) = 2(n - 1) para o melhor caso, pior caso e caso médio.

```
void MaxMin1(int* A, int n, int* pMax, int* pMin)
{
   int i;

   *pMax = A[0];
   *pMin = A[0];
   for (i = 1; i < n; i++) {
        if (A[i] > *pMax) *pMax = A[i];
        if (A[i] < *pMin) *pMin = A[i];
   }
}</pre>
```

Maior e Menor Elemento (II)

MinMax1 pode ser facilmente melhorado: a comparação A[i] < *pMin só é necessária quando a comparação A[i] > *pMax dá falso.

```
void MaxMin2(int* A, int n, int* pMax, int* pMin)
{
   int i;

   *pMax = A[0];
   *pMin = A[0];
   for (i = 1; i < n; i++) {
       if (A[i] > *pMax) *pMax = A[i];
       else if (A[i] < *pMin) *pMin = A[i];
   }
}</pre>
```

Maior e Menor Elemento (III)

Melhor caso:

- quando os elementos estão em ordem crescente
- f(n) = n 1

Pior caso:

- quando o maior elemento é o primeiro no vetor
- f(n) = 2(n-1)

Caso médio:

- A[i] é maior do que *Max* a metade das vezes
- f(n) = 3n/2 3/2

Maior e Menor Elemento (IV)

- Considerando o número de comparações realizadas, é possível obter um algoritmo mais eficiente:
 - Compare os elementos de A aos pares, separando-os em dois subconjuntos (maiores em um e menores em outro), a um custo de n/2 comparações.
 - O máximo é obtido do subconjunto que contém os maiores elementos, a um custo de n/2 1 comparações.
 - O mínimo é obtido do subconjunto que contém os menores elementos, a um custo de n/2 1 comparações.

Maior e Menor Elemento (V)


```
void MaxMin3(int* A, int n, int* pMax, int* pMin)
 int i;
 if ((n % 2) > 0) { *pMax = A[n-1]; *pMin = A[n-1]; }
 else
  if (A[n-2] > A[n-1]) { *pMax = A[n-2]; *pMin = A[n-1]; } \longrightarrow Comparação 1
  else
            \{ *pMax = A[n-1]; *pMin = A[n-2]; \}
 for (i = 1; i < n-1; i += 2)
  if (A[i - 1] > A[i]) — Comparação 2
   if (A[i] < *pMin) *pMin = A[i]; _____ Comparação 4
  else
   if (A[i] > *pMax) *pMax = A[i]; ______ Comparação 4
```

Maior e Menor Elemento (VI)

- Quantas comparações são feitas em MaxMin3?
 - 1^a comparação feita 1 vez
 - 2ª comparação feita n/2 1 vezes
 - 3^a e 4^a comparações feitas n/2 1 vezes

$$f(n) = 1 + n/2 - 1 + 2 * (n/2 - 1)$$

$$f(n) = (3n-6)/2 + 1$$

$$f(n) = 3n/2 - 3 + 1 = 3n/2 - 2$$

No pior caso, melhor caso e caso médio

Comparação dos algoritmos

- Os algoritmos *MaxMin2* e *MaxMin3* são superiores ao algoritmo *MaxMin1* de forma geral.
- O algoritmo *MaxMin3* é superior ao algoritmo *MaxMin2* com relação ao pior caso e bastante próximo quanto ao caso médio

Os três	f(n)			
algoritmos	Melhor caso	Pior caso	Caso médio	
MaxMin1	2(n-1)	2(n-1)	2(n-1)	
MaxMin2	n-1	2(n-1)	3n/2 - 3/2	
MaxMin3	3n/2 - 2	3n/2 - 2	3n/2 - 2	

Comportamento assintótico

- O parâmetro n fornece uma medida da dificuldade para se resolver o problema, que tem complexidade f(n)
- Para valores suficientemente pequenos de *n*, qualquer algoritmo custa pouco para ser executado, mesmo os ineficientes
 - A escolha do algoritmo não é um problema crítico para problemas de tamanho pequeno
- Logo, a análise de algoritmos é realizada para valores grandes de *n*
- Estuda-se o comportamento assintótico das funções de custo (ou funções de complexidade de tempo), ou seja, o comportamento destas funções, ou ordem de crescimento, para valores grandes de *n*

Exemplo

• Diferentes formas de se calcular: 1+2+...+n

Algorithm A	Algorithm B	Algorithm C	
sum = 0 for i = 1 to n sum = sum + i	sum = 0 for i = 1 to n { for j = 1 to i sum = sum + 1 }	sum = n * (n + 1) / 2	

Exemplo – Algoritmo 1

for
$$i = 1$$
 to n
sum = sum + i
1 2 3 n

Exemplo – Algoritmo 2


```
for i = 1 to n
     for j = 1 to i
         sum = sum + 1
i = 1
i = 2
       X X
    O(1 + 2 + ... + n) = O(n^2)
```


	Algorithm A	Algorithm B	Algorithm C
Assignments	n + 1	1 + n(n+1)/2	1
Additions	n	n(n+1)/2	1
Multiplications	000	CONTROL OF THE CONTROL OF	1
Divisions			1
Total operations	2n + 1	$n^2 + n + 1$	4
	O(n)	O(-2)	O(1)
	O(n)	$O(n^2)$	$\mathbf{U}(1)$

Gráfico do Número de operações

Exemplo prático - eficiência:

- Ordenação por Inserção (InsertSort):
 f(n) = C1 n²
- Ordenação por Intercalação (MergeSort):

$$f(n) = C2 \ n \ lg(n)$$

- Onde *C1* e *C2* não depende: de *n* (constantes)
- C1 < C2 $(C1=2 \ e \ C2=50)$

Ex. prático – eficiência (II)

Computador A:

- 1 Tops (Tera Operations per seconds – 1 trilhão de oper. por seg.)
- InsertSort
- Computador B:
 - 1 Gops (Giga operations per seconds − 1 Bilhão ...)
 - MergeSort

Comportamento assintótico de funções

O que acontece quando *n* aumenta?

$$P_1(n) = 10n^{10} + 100n^2 + 10000n + 1/n$$

$$P_2(n) = 10n^{10}$$

Somente o termo de mais alta ordem (n¹⁰) é relevante para grandes valores de *n*

Comportamento assint. de funções (II)

- Eficiência Assintótica: relevante apenas a ordem de crescimento do tempo de execução do algoritmo
 - Preocupa-se, apenas, com a maneira pela qual o tempo de execução aumenta com a variação no tamanho dos dados de entrada
 - Em geral, um algoritmo assintóticamente mais eficiênte é a melhor opção de escolha para a maioria das variações de entrada, exceto as muito pequenas

Notação assintótica para Algoritmos

• Permite classificar classes de algoritmos conforme sua complexidade computacional:

- $\Theta(f(n))$ "Teta"
- O(f(n)) "Ozão"
- o(f(n)) "Ozinho"
- $\Omega(f(n))$ "Omega"
- $\omega(f(n))$ "Omegazinho"

Notação O (Limite assintótico superior)

- Dada uma função g(n), denota-se por O(g(n)) o conjunto de funções:
 - $O(g(n)) = \{f(n) : \text{ existem}$ constantes positivas $c \in n_0$ tais que $0 \le f(n) \le cg(n)$ para todo $n \ge n_0$ }
- Ou seja, uma função f(n) pertence ao conjuto O(g(n)) se existir uma constante positiva c tal que ela possa estar com custo abaixo ou igual a cg(n), para n suficientemente grande

Notação O (II)

- Dominação assintótica:
 - Definição: Uma função g(n) domina assintoticamente outra função f(n) se f(n) = O(g(n))
 - Exemplo: quando dizemos que o tempo de execução T(n) de um programa é $O(n^2)$, significa que existem constantes c e n_0 tais que, para valores de $n \ge n_0$, $T(n) \le cn^2$

Notação O - exemplo

- $f(n) = (n+1)^2$
- Logo f(n) é $O(n^2)$, quando $n\theta = 1$ e c = 4
- Isto porque $(n+1)^2 \le 4n^2$ para $n \ge 1$

Notação O - exemplo

- g(n) = n e $f(n) = n^2$
- Sabemos que g(n) é $O(n^2)$, pois para $n \ge 1$, $n \le n^2$
- Entretanto, f(n) não é O(n)
- Suponha que existam constantes c e n_0 tais que para todo $n \ge n_0$, $n^2 \le cn$
- Se $c \ge n$ para qualquer $n \ge n_0$, então deveria existir um valor para c que possa ser maior ou igual n para todo n

Notação O – exemplo 2

- $f(n) = 3n^3 + 2n^2 + n$ é $O(n^3)$
- Basta mostrar que $3n^3 + 2n^2 + n \le 6n^3$ para $n \ge 0$
- A função $f(n) = 3n^3 + 2n^2 + n$ é também $O(n^4)$, entretanto, essa afirmação é mais fraca do que dizer que f(n) é $O(n^3)$

Operações com a Notação O

$$f(n) = O(f(n))$$

$$c \times O(f(n)) = O(f(n)) \quad c = constante$$

$$O(f(n)) + O(f(n)) = O(f(n))$$

$$O(O(f(n)) = O(f(n))$$

$$O(f(n)) + O(g(n)) = O(max(f(n), g(n)))$$

$$O(f(n))O(g(n)) = O(f(n)g(n))$$

$$f(n)O(g(n)) = O(f(n)g(n))$$

Notação O

- Dada uma função g(n), denota-se por $\Theta(g(n))$ o conjunto de funções:
 - $\Theta(g(n)) = \{f(n) : \text{ existem constantes positivas } c_1, c_2 \in n_0 \text{ tais que } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ para todo } n \ge n_0 \}$
 - Ou seja, uma função f(n) pertence ao conjunto $\Theta(g(n))$ se existirem constantes positivas c_1 e c_2 tais que ela possa ser imprensada entre $c_1g(n)$ e $c_2g(n)$, para n suficientemente grande.

Notação 🛛 (II)

• Como $\Theta(g(n))$ é um conjunto:

$$f(n) \in \Theta(g(n))$$

- Comumente escreve-se: " $f(n) = \Theta(g(n))$ "
- g(n) é um limite assintoticamente restrito para f(n)
 - $oldsymbol{\Theta}$ define limites superior e inferior

Notação (III)

- Exemplo: $f(n) \in \Theta(n^2)$:
 - Considerando: $f(n) = \frac{1}{2}n^2 3n$
 - $f(n) = \Theta(n^2) ??$
 - $c_1 n^2 \le (\frac{1}{2}n^2 3n) \le c_2 n^2$ (Para todo $n \ge n_0$)
 - Dividindo a equação por n²:
 - $c_1 \le (1/2 3/n) \le c_2$
 - Desigualdade da direita: $c_2 = 1/2$ para qualquer n>0
 - Desigualdade da esquerda: $c_1 = 1/14$ para $n \ge 7$
 - Assim: $\frac{1}{2}n^2 3n = \Theta(n^2)$
 - Existem outras combinações possíveis
 - Importante encontrar uma!

Notação (IV)

- Exemplo: $f(n) \notin \Theta(n^2)$:
 - Considerando: $f(n) = 6n^3$, $f(n) \neq \Theta(n^2)$??
 - Supondo que existam c_2 e n_0 tais que: $6n^3 \le c_2 n^2$ para todo $n \ge n_0$
 - Implica: $n \le c_2/6$ Que não é válido!! pois c_2 é constante e sempre poderá existir um valor de n suficientemente grande
 - Pois n pode crescer até o infinito a partir de n_0 ,

Notação Ω (Limite assintótico inferior)

Dada uma função g(n), denota-se por $\Omega(g(n))$ o conjunto de funções:

- $\Omega(g(n)) = \{f(n) : \text{ existem}$ constantes positivas $c \in n_0$ tais que $0 \le cg(n) \le f(n)$ para todo $n \ge n_0$
 - Ou seja, uma função f(n) pertence ao conjuto $\Omega(g(n))$ se existir uma constante positiva c tal que ela possa estar com custo superior ou igual a cg(n), para n suficientemente grande

Notação o (limite estritamente superior)

- Dada uma função g(n), denota-se por o(g(n)) o conjunto de funções:
 - $o(g(n)) = \{f(n) : \text{ existem constantes positivas } c \in n_0 \text{ tais }$ que $0 \le f(n) < cg(n) \text{ para todo } n \ge n_0 \}$
- Ou seja, uma função f(n) pertence ao conjuto o(g(n)) se existir uma constante positiva c tal que ela possa estar com custo abaixo a cg(n), para n suficientemente grande
- A função f(n) se torna insignificante em relação a g(n) à medida que n se aproxima do infinito:

Notação ω (limite estritamente inferior)

- Dada uma função g(n), denota-se por $\omega(g(n))$ o conjunto de funções:
 - $\omega(g(n)) = \{f(n) : \text{ existem constantes positivas } c \in n_0 \text{ tais }$ que $0 \le cg(n) < f(n) \text{ para todo } n \ge n_0 \}$
 - Ou seja, uma função f(n) pertence ao conjuto $\omega(g(n))$ se existir uma constante positiva c tal que ela possa estar com custo acima de cg(n), para n suficientemente grande
 - A função f(n) se torna arbitrariamente grande em relação a g(n) à medida que n se aproxima do infinito:

Transitivity:

•

$$f(n) = \Theta(g(n))$$
 and $g(n) = \Theta(h(n))$ imply $f(n) = \Theta(h(n))$, $f(n) = O(g(n))$ and $g(n) = O(h(n))$ imply $f(n) = O(h(n))$, $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$ imply $f(n) = \Omega(h(n))$, $f(n) = o(g(n))$ and $g(n) = o(h(n))$ imply $f(n) = o(h(n))$, $f(n) = \omega(g(n))$ and $g(n) = \omega(h(n))$ imply $f(n) = \omega(h(n))$.

Reflexividade:

Reflexivity:

 $f(n) = \Theta(f(n)),$

$$f(n)=O(f(n)),$$

$$f(n) = \Omega(f(n)).$$

Simetria:

Symmetry:

 $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$.

Simetria de transposição

Transpose symmetry:

.

$$f(n) = O(g(n))$$
 if and only if $g(n) = \Omega(f(n))$, $f(n) = o(g(n))$ if and only if $g(n) = \omega(f(n))$.

Classes de Comport. Assintótico

- Se f é uma função de complexidade para um algoritmo F, então O(f) é considerada a complexidade assintótica ou o comportamento assintótico do algoritmo F
- Se as funções f e g dominam assintoticamente uma a outra, os algoritmos associados são equivalentes
 - Nestes casos, o comportamento assintótico não serve para comparar os algoritmos
 - Exemplo: dois algoritmos F e G aplicados à mesma classe de problemas, sendo que F leva três vezes o tempo de G ao serem executados, isto é, f(n) = 3g(n), sendo que O(f(n)) = O(g(n))
 - O comportamento assintótico não serve para comparar os algoritmos, pois eles diferem apenas por uma constante

Complexidade Constante

- f(n) = O(1)
 - Algoritmos de complexidade O(1) são ditos de complexidade constante
 - As instruções do algoritmo são executadas um número fixo de vezes

Complexidade Logarítmica

- $f(n) = O(\log n)$
 - Típico em algoritmos que transformam um problema em outros menores
 - Quando n é mil, $log_2 n \approx 10$, quando n é 1milhão, $log_2 n \approx 20$
 - Para dobrar o valor de *log n* temos de considerar o quadrado de *n*
 - A base do logaritmo muda pouco estes valores: quando $n \not\in 1$ milhão, o $log_2 n \not\in 20$ e o $log_{10} n \not\in 6$

Complexidade Linear

- f(n) = O(n)
 - Em geral, um pequeno trabalho é realizado sobre cada elemento de entrada
 - É a melhor situação possível para um algoritmo que tem de processar/produzir *n* elementos de entrada/saída
 - Cada vez que n dobra de tamanho, o custo de execução dobra

Complexidade n log n

- $f(n) = O(n \log n)$
 - Típico em algoritmos que quebram um problema em outros menores, resolvem cada um deles independentemente e ajuntando as soluções depois
 - Quando $n \notin 1$ milhão, $nlog_2 n \notin cerca de 20$ milhões
 - Quando *n* é 2 milhões, $nlog_2 n$ é cerca de 42 milhões, pouco mais do que o dobro

Complexidade Quadrática e cúbica

- Comuns em programas para computação científica
- Quadrátrica: $f(n) = O(n^2)$
 - Ocorrem quando os itens de dados são processados aos pares, muitas vezes em um laço aninhado dentro de outro
 - Quando n é mil, o número de operações é da ordem de 1 milhão
 - Sempre que *n* dobra, o custo de execução é multiplicado por 4
- Cúbica: $f(n) = O(n^3)$
 - Sempre que n dobra, o tempo de execução fica multiplicado por 8

Complexidade Exponencial

- $f(n) = O(2^n)$
 - Comum na solução de problemas quando se usa força bruta para resolvê-los
 - Quando *n* é 20, o tempo de execução é cerca de 1 milhão. Quando *n* dobra, o custo é elevado ao quadrado
- f(n) = O(n!)
 - Um algoritmo de complexidade O(n!) é dito ter complexidade exponencial, apesar de O(n!) ter comportamento muito pior do que $O(2^n)$
 - $n = 20 \rightarrow 20! = 2432902008176640000$
 - $n = 40 \rightarrow \text{número com } 48 \text{ dígitos}$

Hierarquia:

• $O(1) < O(\log n) < O(n) < O(n\log n) < O(n^2) < O(n^3) < O(2^n) < O(n!)$

Comparação de Funções de Complexidade

 Algoritmo Linear O(1) executa 1 MOPS (milhões de operações por segundo) – Tabela de Garey & Johnson (1979)

Função	Tamanho n						
de custo	10	20	30	40	50	60	
n	0,00001	0,00002	0,00003	0,00004	0,00005	0,00006	
	s	s	s	s	s	s	
n^2	0,0001	0,0004	0,0009	0,0016	0,0.35	0,0036	
	s	s	s	s	s	s	
n^3	0,001	0,008	0,027	0,64	0,125	0.316	
	s	s	s	s	s	s	
n^5	0,1	3,2	24,3	1,7	5,2	13	
	s	s	s	min	min	min	
2^n	0,001	1	17,9	12,7	35,7	366	
	s	s	min	dias	anos	séc.	
3^n	0,059 s	58 min	6,5 anos	3855 séc.	10 ⁸ séc.	10 ¹³ séc.	

Comparação de Funções de Complexidade (II)

Função de	Computador	Computador	Computador
custo	atual	100 vezes	1.000 vezes
de tempo		mais rápido	mais rápido
n	t_1	$100\ t_1$	$1000\ t_1$
n^2	t_2	$10 \ t_2$	$31,6 \ t_2$
n^3	t_3	$4,6 t_3$	$10 \ t_3$
2^n	t_4	$t_4 + 6, 6$	$t_4 + 10$

Exercício


```
void exercicio1(int n)
{
   int i, a;
   a=0; i=0;
   while (i<n)
   {
      a+=i;
      i+=2;
   }
}</pre>
```

```
void exercicio2(int n)
{
  int i, j, a;
  a=0;
  for (i=0; i<n; i++)
    for (j=0; j<i; j++)
      a+=i+j;
}</pre>
```

Exercício


```
void exercicio1(int n)
  int i, a;
  a=0; i=0;
  while (i<n)</pre>
    a+=i;
     i+=2;
```

```
void exercicio2(int n)
  int i, j, a;
  a = 0;
  for (i=0; i<n; i++)
    for (j=0; j<i; j++)
      a+=i+j;
```

Obs: Adaptado de Jurandy Almeida Jr