BAC 2020

الموضوع رقم01

BAC 2020

التمرين رقم 01:

I_عرف المفاهيم التالية:

التقدم الأعظمي (x_{\max}) ـ المؤكسد (Ox) ـ الأكسدة ـ المرجع (Re d) ـ الارجاع ـ تفاعل أكسدة ارجاع .

ا يلي: النصفية مبينا نوعها ،ثم استنتج الثنائية $(Ox/\operatorname{Re} d)$ المادلات النصفية مبينا نوعها ،ثم استنتج الثنائية النصفية مبينا نوعها ،ثم استنتج الثنائية المادلات النصفية المادلات النصفية مبينا نوعها ،ثم استنتج الثنائية المادلات المادلات النصفية المادلات المادل

$$.S_2O_3^{2-}(aq) \rightarrow S_4O_6^{2-}(aq) + ... -1$$

$$MnO_4^-(aq) + ...H^+(aq) + ... \rightarrow Mn^{2+}(aq) + ... = 3$$

$$.H_2O_2(aq) \rightarrow O_2(g) + ... + \underline{4}$$

$$H_3O^+(aq + ... \to H_2(g) + ... _5$$

III_جد المعادلتين النصفيتين للأكسدة والارجاع ، ثم استنتج الثنائيتين (Ox/Red) الداخلتين في التفاعل لما يلي:

$$.2MnO_4^-(aq) + 5H_2O_2(aq) + 6H^+(aq) = 2Mn^{2+}(aq) + 5O_2(g) + 8H_2O(l)$$

$$S_2O_8^{2-}(aq) + 2I^-(aq) = SO_4^{2-}(aq) + I_2(aq) _2$$

$$S_2O_3^{2-}(aq) + 2H^+(aq) = S(s) + SO_2(g) + H_2O(l)_3$$

$$MnO_4^-(aq) + 5Fe^{2+}(aq) + 8H^+(aq) = Mn^{2+}(aq) + 5Fe^{3+}(aq) + 4H_2O(l)$$

التمرين رقم 02:

نغمر قطعة من الألمنيوم النقي Al(s) كتالتها M=810mg في محلول حمض كلور الماء Al(s) نغمر قطعة من الألمنيوم النقي V=100mL حجمه V=100mL وتركيزه المولي V=100mL . $Al^{3+}(aq)$

1. اكتب المعادلتين النصفيتين للأكسدة والارجاع مع تحديد الثنائيتين $(Ox/\operatorname{Re} d)$ الداخلتين في التفاعل . 2. استنتج معادلة التفاعل أكسدة ارجاع .

3_انشئ جدول تقدم التفاعل.

مكنتنا الدراسة التجريبية من تحديد حجم غاز ثنائي الهيدروجين المنطلق عند نهاية التفاعل فوجدنا . $V_f(H_2) = 180 mL$

أ احسب قيمة التقدم الأعظمي x_{max} ثم حدد المتفاعل المحد علما أن التفاعل تام.

ب-احسب التركيز المولي C لمحلول حمض كلور الماء .

جـ جد قيمة التركيز المولي لشوارد $Al^{3+}(aq)$ عند نهاية التفاعل.

 $V_{M} = 24L.mol^{-1}$, $M(Al) = 27g.mol^{-1}$

التمرين رقم 03:ـ

من أجل تحديد التركيز المولي و C_a و لمحلول (S_a) لحمض كلور الماء (C_b) و لمحلول و من أجل تحديد التركيز الموليق قياس الناقلية الميدروكسيد الصوديوم ($Na^+ + OH^-$) على الترتيب ، تم إستخدام تقنية المعايرة عن طريق قياس الناقلية النوعية (σ).

- مصة من من من المحلول (S_b)، ثم بواسطة ماصة مزودة بإجاصة مص مكرنا سحاحة مدرجة سعتها 25m من المحلول (S_a) و سكبناه في كأس بيشر.
- بعد تحقيق التركيب التجريبي المناسب تمت المعايرة، و تم تسجيل قيم الناقلية النوعية (σ) بدلالة الحجم المضاف من السحاحة، و بالإعتماد على النتائج التجريبية تمكنا من رسم المنحنى $\sigma=f\left(V_b\right)$ المبين في الشكل 1.

1.أ. اكتب معادلة تفاعل المعايرة

ب انشئ جدول تقدم التفاعل.

2- اعتمادا على البيان:

 $.(S_a)$ للمحلول $C_a = 10^{-2} \, mol \, .L^{-1}$ للمحلول أ. ثأكد أن قيمة التركيز المولي

 $.V_{bE}$ ب استنتج حجم التكافؤ

 $.(S_b)$ للمحلول لي التركيز المولي المحلول التركيز المحلول التركيز المحلول ا

3- احسب قيمة الناقلية النوعية للمزيج التفاعلي عند نقطة التكافؤ.

 $\lambda (H_3O^+) = 35 mS.m^2.mol^{-1}$

 $\lambda(Cl^-) = 7,63 mS.m^2.mol^{-1}$

 $\lambda (OH^-)=19,2mS.m^2.mol^{-1}$

 $\lambda(Na^+)=5,01mS.m^2.mol^{-1}$

التمرين رقم40:

منه، m منه، (S_1) لبيكرومات البوتاسيوم (S_2) منه، البيكرومات البوتاسيوم (S_3)، و ذلك بإذابة كتلة منه، $V_0=100mL$ منه، المحصول على محلول تركيزه المولي $C_1=0,2mol.L^{-1}$ و حجمه

الستعملة في تحضير المحلول (S_1) . الستعملة المحلول المحلول المحلول.

 (S_1) عط البروتوكول التجريبي المستعمل في تحضير المحلول (S_1) .

II. نحقق مزيجا ستوكيومتريا، و ذلك بمزج حجما قدره V_1 من محلول بيكرومات البوتاسيوم، مع حجم قدره II. من محلول حمض الأكساليك $(H_2C_2O_4)(aq)$ تركيزه المولي C_2 مجهول، مع إضافة قطرات من حمض الكبريت المركز.

1.أ. اكتب المعادلتين النصفيتين للأكسدة و الإرجاع، ثم استنتج معادلة تفاعل أكسدة ارجاع ، علما أن الثنائيتين الداخلتين في التفاعل: $\left(Cr_2O_7^{2-}/Cr^{3+}\right)$ و $\left(CO_2/H_2C_2O_4\right)$.

ب انشئ جدول تقدم هذا التفاعل.

ي المتشكلة عند نهاية التفاعل (Cr^{3+}) المتشكلة عند نهاية التفاعل x_{\max} مكنتنا الدراسة تجريبية من تحديد قيمة كمية مادة شوارد x_{\max} مكنتنا الدراسة تجريبية من تحديد قيمة التقدم الأعظمي x_{\max}

3- احسب قيمة الحجم V_1 لبيكرومات البوتاسيوم، و قيمة التركيز المولي C_2 لحمض الأكساليك.

. المنطلق عند نهاية التفاعل. CO_2 المنطلق عند نهاية التفاعل

5 - احسب قيمة التركيز المولي لشوارد البوتاسيوم $^+$ K في المزيج التفاعلي.

 $V_m = 24L.mol^{-1}$. الحجم المولي في شرطي التجربة هو: $M\left(K_2Cr_2O_7\right) = 294\,g$. mol^{-1} . الحجم المولي في شرطي التجربة هو:

التمرين رقم05:

I نمزج في كأس بيشر حجما قدره $V_1=100m$ من محلول ليود البوتاسيوم $(K^++I^-)(aq)$ تركيزه المولي $V_1=100m$ مع حجم قدره $V_2=100m$ من محلول الماء الأكسيجيني $(H_2O_2)(aq)$ تركيزه المولي $V_2=100m$ مع حجم قدره $V_2=100m$ من حمض الكبريت المركز، فيحدث تحول كيميائي ينمذج بمعادلة التفاعل التالية: $2I^-(aq)+H_2O_2(aq)+2H^+(aq)=I_2(aq)+2H_2O(l)$

1- اكتب المعادلتين النصفيتين للأكسدة و الإرجاع، مع استنتاج الثنائيتين (Ox /Red) الداخلتين في التفاعل. 2- انشئ جدول تقدم التفاعل.

II. لتحديد كمية مادة ثنائي اليود (I_2) المتشكلة في المزيج عند نهاية التفاعل، نأخذ من المزيج السابق حجما قدره V=20mL و نضيف له قليلا من صمغ النشأ، و نعايره بواسطة محلول ثيوكبريتات الصوديوم قدره V=20mL و نضيف له قليلا من صمغ النشأ، و نعايره بواسطة محلول ثيوكبريتات الصوديوم $(2Na^++S_2O_3^{2-})(aq)$ تركيزه المولي ثيوكبريتات الصوديوم.

1- ارسم التركيب التجريبي المستعمل في هذه المعايرة، مع إرفاقه بالبيانات اللازمة.

2. اكتب معادلة تفاعل المعايرة إعتمادا على المعادلتين النصفيتين للأكسدة و الإرجاع، علما أن الثنائيتين الداخلتين في التفاعل هما: $\left(S_4O_6^{2-}/S_2O_3^{2-}\right)$ و $\left(S_4O_6^{2-}/S_2O_3^{2-}\right)$.

. اعتمادا على جدول تقدم تفاعل المعايرة، أكتب عبارة $n_{E}\left(I_{2}
ight)$ بدلالت V_{E} و عند التكافؤ.

4. أ. جد كمية مادة ثنائي اليود $n\left(I_{2}\right)$ الكلية المتشكلة في المزيج السابق.

بد استنتج قيمة التقدم الأعظمي x_{\max} ، ثم حدد المتفاعل المحد وقيمة التركيز المولي C_2 المعطيات: صمغ النشاء + محلول ثنائي اليود C_2 يعطي لنا اللون الأزرق.

التمرين رقم06:ـ

نغمر قطعة من الزنك Zn(s) كتلتها m في محلول حمض كلور الماء $(aq)(aq)^++Cl^-$ تركيزه المولي C=0,2mol/L منيحدث تفاعل كيميائي يـؤدي الى انطلاق غاز ثنائي المهيدروجين $H_2(g)$ و تشكل شوارد الزنك $Zn^{2+}(aq)$ و اختفاء قطعة الزنك كليا .

1_اكتب المعادلتين النصفيتين للأكسدة و الارجاع ثم حدد الثنائيتين (Ox/Red) الداخلتين في التفاعل، ثم استنتج معادلة التفاعل أكسدة ارجاع.

2 انشئ جدول تقدم التفاعل.

3_ مكنتنا الدراسة التجريبية من تحديد التركيز المولي لشوارد الهيدرونيوم عند نهاية التفاعل فوجدنا $\left[H_3O^+
ight]_f=0,1mol/L$.

. mأـ احسب قيمة التقدم الاعظمي x_{\max} ، ثم استنتج كتلة قطعة الزنك المستعملة

ب ماهو حجم محلول حمض كلور الماء الواجب استعماله للحصول على مزيج ابتدائي ستكيومتري؟ يعطى: $M\left(Zn\right)=65,4g\ /\ mol$

فيزياء تاشتة ______ الصفحة 03 من 03 _____ نحو البكالوريا الجزء 02 ____ الموضوع 10