

IMPACT DE LA RELATION DE DOMINANCE SUR LES STRATÉGIES DE NÉGOCIATION COLLABORATIVE

PRÉSENTÉ PAR: LYDIA OULD OUALI

ENCADRANTS:

- Nicolas Sabouret (LIMSI-CNRS)
- Charles Rich (WPI)

CONTEXTE

Négociation collaborative

- Trouver le meilleur compromis
- Maximiser les gains des deux parties

Relation sociale

Dominance

- Relation dyadique: (Dominant et Soumis)
- Capacité à exprimer des comportements de pouvoir

Psychologie sociale:

- Complémentarité dans la dominance améliore les résultats de négociation
- 2. Améliore la « value creation »
- 3. La complémentarité **renforce** la relation **d'appréciation**.

Impact de la relation de dominance sur les stratégies de négociation

CONTEXTE

Relation de dominance et comportements de pouvoir

- 1. Exigences et concessions (Dedreu et al 95)
 - Dominance associée à haut niveau d'exigence dans la négociation et manque de concessions
- 2. Soit vs Autrui (Fiske 93, DeDreu et al 95)
 - Individu dominant est centré sur soit et prend peu en considération l'autre
- 3. Mener la négociation (Dedreu and VanKleef, O4)
 - Engager la négociation
 - Contrôler le flow de la négociation

OBJECTIFS

- Etape 1: Modéliser les comportements de pouvoirs
 - Modèle computationnel de négociation collaborative
 - Stratégies de décision basée sur le pouvoir
 - Validation du modèle décisionnel (IVA17, Hatem)
- Etape 2: Simuler la relation de dominance complémentaire entre agent et utilisateur
 - Implémentation de la relation de dominance avec « la théorie de l'esprit »
 - Validation du modèle

MODÈLE COMPUTATIONNEL DE NÉGOCIATION SUR LES PRÉFÉRENCES

Goal choose an option (ex: Restaurant).

Domain model

Option = {criterion_1, ..., criterion_n}

Ex: Restaurant = {cuisine, Price, ambiance}

- + Ordre partiel et transitive.
- + Score de satisfaction Inverse de l'ordre des successeurs

S: Ensemble des valeurs satisfiables

$$S = \{v \in S, sat(v) \ge pow\}$$

MODÈLE COMPUTATIONNEL DE NÉGOCIATION SUR LES PRÉFÉRENCES

Preferences

Other preferences

Shared proposals

Communication

Partage préférences

Enoncer une préférence **State Preference(X)**

Demander une préférence Ask Preference(X)

Négociation

Faire une proposition **Propose(X)**

Rejeter une proposition Reject(X)

Accepter une proposition Accept(X)

MODÈLE DÉCISIONNEL BASÉ SUR LA RELATION DE POUVOIR

<u>Principe 1</u>: Le pouvoir est associé à un haut niveau d'exigences et un bas niveau de **concessions**

> Implementation: Conditions pour accepter des propositions

Concessions

- pow → self(t)
- Self décroît dans le temps

Niveau d'exigence

Acc: Ensemble des valeurs acceptables

$$Acc = \{v \in Acc, sat(v) \geqslant Self\}$$

MODÈLE DÉCISIONNEL BASÉ SUR LA RELATION DE POUVOIR

<u>Principe 2</u>: Individus avec pouvoir élevé est égocentrique

Implémentation: Choix de la valeur a proposer

+ Prendre en compte ses préférences et les préférences de l'autre

$$self \cdot sat_{self} + (1 - self) \cdot sat_{other}$$

Principe 3: Individu avec pouvoir élevé mène la négociation

Implémentation: Choix de la prochain acte dialogique

- Règles de décision.
- Définir des priorités dans le choix de l'acte dialogique:
 - Pouvoir élevé: Actes de négociation (Propose, CounterPropose)
 - Pouvoir faible: actes informatifs (AskPreference)

- Utilisation de la théorie de l'esprit simuler la complémentarité.
- Pow_{Self} = 1 Pow_{other}
- Adaptation du modèle décisionnel pour comprendre le comportement de l'interlocuteur

Deviner le comportement de pouvoir exprimé par l'autre

Explosion combinatoire

Pour chaque critère Ci

$$|HC_i| = (|C_i| + 1)!$$

 $|M_H| = \prod_{i=1}^{n} (|HC_i|)$

Model of other

- Valeur de Pow
- Modèle de préférences

Mental model

- Raisonnement sur l'autre (Adaptation du processus décisionnel)
 - Etape 1 : Hypothèses sur les préférences de l'autre:
 - Représentation partielle des préférences de l'interlocuteur
 - Hypothèse forte: Préférences avec un ordre total

Ordre total

Ordre de préférences connu

۲ ۸	D		D}
$\{A$, D,	C,	Uß

rank(value)	1	2	3	4
Nb predecessors	3	2	1	0
sat(value)	0	0.33	0.66	1

M_pow : Hypothèses sur valeurs satisfiables

Pour chaque pow: Nb valeurs **satisfiables**

	Hypotheses		
Hypothesis	pow	M_{pow}	
H1	0.3	$\{(A, B, C), (A, B, D), (A, C, D), (B, C, D)\}$	
H2	0.4	$\{(A, B), (A, C), (A, D), (B, C), (B, D), (C, D)\}$	
Н3	0.5	$\{(A, B), (A, C), (A, D), (B, C), (B, D), (C, D)\}$	
H4	0.6	$\{(A, B), (A, C), (A, D), (B, C), (B, D), (C, D)\}$	
H5	0.7	$\{(A), (B), (C), (D)\}$	
Н6	0.8	$\{(A), (B), (C), (D)\}$	
H7	0.9	$\{(A), (B), (C), (D)\}$	

- Raisonnement sur l'autre (Adaptation du processus décisionnel)
 - Etape 2 : Adaptation du processus décisionnel avec connaissance partielle

Satisfiabilité

$$sat_{S_i}(v) = \begin{cases} True & \text{if } v \in S_i \\ False & \text{otherwise} \end{cases}$$

Acceptabilité

- Acc: Valeurs acceptables
- Self_other ≥ Pow (concession)
 - M: Valeurs acceptables mais non satisfiables
 - k: Valeurs acceptées mais non satisfiables

$$Acc(v, pow) = C_{|D|-(|S_i|+k)}^{|M|-k}$$

Contrôle du dialogue

$$pow_{other} = \begin{cases} > 0.5 & \text{if } \frac{history(Propose)}{hisotry} > 0.5\\ \leq 0.5 & \text{if } \frac{history(Ask)}{hisotry} > 0.5 \end{cases}$$

- Raisonnement sur l'autre (Adaptation du processus décisionnel)
 - Etape 2 : Mise à jour des hypothèses + calcul d'une valeur de pow

StatePreference ou Reject

- Communiquer une préférence.
- Supprimer les hypothèses non concordantes.

$$score(h_i, t) = \frac{|M_h(h_i, t)|}{|M_h(h_i, init)|}$$

Accept ou Propose

- valeur forcément acceptable
- Score normalisé du score d'acceptabilité

$$pow_{other} = \underset{h_i \in H_{pow}}{\operatorname{arg\,max}(score(h_i, t))}$$

TRAVAIL EFFECTUÉ

Etape 1: comportements de pouvoir

- Implémentation du modèle de négociation collaborative basé sur le pouvoir
- Validation de la perception des comportements de pouvoir (Agent/Agent et Humain/Agent)

Etape 2: Simulation de la relation de dominance

- Implémentation d'un modèle de l'autre (ToM)
- Valider le modèle de la ToM
 - Validation de la prédiction du comportement de l'autre
 - Etude de l'impact de la relation de dominance sur la négociation

EVALUATION (DISCUSSION CPU)

 Évaluer l'impact de la relation de dominance sur le processus de négociation Humain/agent

Comportements similaires Vs complémentaires

EVALUATION

Conditions expérimentales

- Dyads complémentaires : L'agent complète le comportement de l'utilisateur. (Valeur de pouvoir complémentaire)
- Dyads similaires: L'agent adopte le même comportement ou stratégie que l'utilisateur (même valeur de pouvoir)
- Condition contrôle (Question)
 - Neutre
 - Dom + soumis

Procédure

- Renseignements sur les préférences des participants.
- Explication de l'interface graphique.
- Interaction avec les 3 agents. (Inter-sujet ou Intra-sujet)

EVALUATION

- Hypothèses (expliquer clairement
 - 1. Dyades avec un comportement complémentaire permet d'obtenir de meilleur résultats
 - 1. Score de satisfiabilité de la dernière valeur (Q: quel test statistique à effectuer, moyenne des sat ?)
 - 2. L'utilisateur se sent plus confortable avec un agent qui a un comportement complémentaire
 - 1. Test d'agréabilité. (Q: existe-t-il un test d'agréabilité dans une interaction ?)
 - 3. Une complémentarité dans les stratégies permet une convergence plus rapide.
 - 1. Calculer le nombre de tours nécessaires pour que la négociation converge.

QUESTIONS OUVERTES

Merci de votre attention!