Линейни обикновени диференциални уравнения. Уравнения с постоянни коефициенти.

(Примерно развиване на въпроса за държавен изпит)

1. Задача на Коши. Разглеждаме линейното ОДУ от *n*-ти ред

(1)
$$L(x) := x^{(n)} + a_1(t) x^{(n-1)} + \dots + a_{n-1}(t) \dot{x} + a_n(t) x = f(t) ,$$

където a_1, a_2, \ldots, a_n са непрекъснати функции на времето t в някакъв интервал (α, β) .

Теорема за съществуване и единственост. За произволни $\xi_1, \xi_2, \dots, \xi_n, t_0 \in \mathbb{R}$, задачата на Коши

(2)
$$\begin{vmatrix} x^{(n)} + a_1(t) x^{(n-1)} + \dots + a_{n-1}(t) \dot{x} + a_n(t) x = f(t) & -\text{уравнение } (1) \\ x(t_0) = \xi_1, \quad \dot{x}(t_0) = \xi_2, \dots, \quad x^{(n-1)}(t_0) = \xi_n & -\text{начални условия} \end{cases}$$

има единствено решение, дефинирано върху интервала (α, β)

Доказателството на горната теорема може да бъде реализирано например след като сведем уравнението (2) до система от n линейни ОДУ от първи ред.

2. Линейни хомогенни уравнения. Частен случай на уравнението (1) е когато дясната част $f(t) \equiv 0$, т.е. на хомогенно уравнение

(3)
$$L(x) = x^{(n)} + a_1(t) x^{(n-1)} + \dots + a_{n-1}(t) \dot{x} + a_n(t) x = 0.$$

Основният резултат в теорията на линейните ОДУ е следната

Теорема за структурата на решенията. Множееството M от решенията на уравнението L(x) = 0 е изоморфно на линейното пространство \mathbb{R}^n .

Доказателство. Най-напред ще покажем, че M е линейно пространство. Наистина, ако x и y са решения на (3), а $\lambda, \mu \in \mathbb{R}$, то $\lambda x + \mu y$ също е решение на (3):

$$L(\lambda x + \mu y) = \lambda L(x) + \mu L(y) = 0.$$

Построяваме изображението ϕ от M в \mathbb{R}^n , което съпоставя на всяко решение началните данни на решението в точката t_0 . С формули това изразяваме така:

$$\phi : M \to \mathbb{R}^n$$

$$x(t) \mapsto (x, \dot{x}, \dots, x^{(n-1)})_{|t=t_0} = (x(t_0), \dot{x}(t_0), \dots, x^{(n-1)}(t_0)).$$

Ще докажем, че ϕ е търсеният изоморфизъм. Това ще стане в три стъпки. Първо, ϕ е линеен хомоморфизъм:

$$\phi(\lambda x + \mu y) = (\lambda x + \mu y, \lambda \dot{x} + \mu \dot{y}, \dots, \lambda x^{(n-1)} + \mu y^{(n-1)})_{|t=t_0}
= \lambda (x, \dot{x}, \dots, x^{(n-1)})_{|t=t_0} + \mu (y, \dot{y}, \dots, y^{(n-1)})_{|t=t_0}
= \lambda \phi(x) + \mu \phi(y).$$

Второ, тъй като за всеки набор $(\xi_1, \dots, \xi_n) \in \mathbb{R}^n$ задачата на Коши (2) с дясна част $f \equiv 0$ има решение, то ϕ е сюрективно.

И трето, при $\xi_1 = \cdots = \xi_n = 0$ задачата (2) с дясна част $f \equiv 0$ има единствено решение. Следователно ядрото $\mathrm{Ker}(\phi) = \{0\}$, т.е. ϕ е инективно.

Теоремата е доказана.

3. Дефиниция. Фундаментална система от решения (ФСР) на уравнението (3) наричаме който и да е базис $\{x_1, x_2, \dots, x_n\}$ в пространството от решения на това уравнение.

Еквивалентно е да кажем, че всяко решение x = x(t) се представя еднозначно като линейна комбинация (с постоянни коефициенти C_1, C_2, \ldots, C_n) на $\{x_1, x_2, \ldots, x_n\}$:

$$x(t) = C_1 x_1(t) + C_2 x_2(t) + \cdots + C_n x_n(t)$$
.

От доказателството на теоремата за структурата на решенията следва, че набор от решения $\{x_1, x_2, \dots, x_n\}$ е ФСР за (3) тогава и само тогава, когато demepmunanmama на Bponcku

$$\Delta(t) := \begin{vmatrix} x_1(t) & x_2(t) & \dots & x_n(t) \\ \dot{x}_1(t) & \dot{x}_2(t) & \dots & \dot{x}_n(t) \\ \dots & \dots & \dots & \dots \\ x_1^{(n-1)}(t) & x_2^{(n-1)}(t) & \dots & x_n^{(n-1)}(t) \end{vmatrix} \neq 0;$$

на практика е достатъчно да проверим за само за някое t_0 , че $\Delta(t_0) \neq 0$.

Наистина, ако $\Delta(\tau)=0$ за някое τ , то съществува нетривиална (не всички C_k са нули) линейна комбинация $x:=\sum_{k=1}^n C_k\,x_k(t)$ и такава, че $x(\tau)=\dot{x}(\tau)=\cdots=x^{(n-1)}(\tau)=0$. Но нулеви начални условия има само решението $x(t)\equiv 0$. Оттук и производните $x^{(m)}(t)\equiv 0$, следователно $\Delta(t)\equiv 0$ и $\{x_1,x_2,\ldots,x_n\}$ не е ФСР.

Накрая, доказателството на теоремата ни дава и следния алгоритъм за построяване на ФСР. Избираме начален момент, например $t_0=0$. След това избираме линейно независими начални данни, например $x_k^{(k-1)}(0)=1$ за всяко k, а останалите $x_k^{(m)}(0)=0$. Решенията на съответните n задачи на Коши (2) с нулева дясна част ни дават ФСР $\{x_1, x_2, \ldots, x_n\}$.

4. Нехомогенни уравнения с променливи коефициенти. Доказаното дотук ни дава възможност да определим структурата на решенията на уравнението (1)

$$L(x) = f$$
.

Нека $x_0 = x_0(t)$ е решение на (1) - такова съществува съгласно формулираната теорема за съществуване. Нека $\{x_1, x_2, \dots, x_n\}$ е ФСР за хомогенното уравнение L(x) = 0.

Тогава решенията x на нехомогенното уравнение L(x) = f се задават с формулата

$$x(t) = x_0(t) + C_1 x_1(t) + \cdots + C_n x_n(t)$$

за произволни константи C_1, \ldots, C_n .

Действително, $x-x_0$ е решение на хомогенното уравнение

$$L(x-x_0) = L(x) - L(x_0) = f(t) - f(t) = 0$$

и следователно се изразява линейно чрез фиксираната ФСР.

5. Уравнения с постоянни коефициенти. Разглеждаме уравнението

$$(4) x^{(n)} + a_1 x^{(n-1)} + \ldots + a_n x = 0,$$

където a_i са реални константи. Търсим $peannume\ peuenus$: за реални t, функцията x=x(t) взима реални стойности.

Съгласно теоремата за структурата, решенията на (4) образуват n-мерно линейно пространство. За разлика от общия случай, за (4) винаги можем посочим фундаментална система от решения $\{x_1, \ldots, x_n\}$, където x_i са изразени чрез елементарни функции на t, а именно експоненти, косинуси и синуси.

За намирането на ФСР се изисква първо да решим алгебричното уравнение

(5)
$$\lambda^{n} + a_{1} \lambda^{n-1} + \ldots + a_{n-1} \lambda + a_{n} = 0,$$

наричано характеристично уравнение на (4).

Нека $\lambda_1, \ldots, \lambda_n$ са корените на характеристичното уравнение. Между тях може да има кратни; може да има и комплексни корени. Известен факт от алгебрата е, че ако λ е комплексен корен с кратност k, то и комплексно спрегнатото му $\overline{\lambda}$ е корен на (5) със същата кратност k.

Чрез корените на (5) лесно построяваме фундаментална система от решения. В зависимост от изброените по-горе варианти,

- на прост реален корен λ съответства частното решение $e^{\lambda t}$,
- на s-кратен реален корен λ съответстват s частни решения

$$e^{\lambda t}$$
, $t e^{\lambda t}$, ..., $t^{s-1} e^{\lambda t}$,

— на двойка комплексно спрегнати прости корени $\lambda=\alpha+i\beta$ и $\overline{\lambda}=\alpha-i\beta$ съответстват две реални решения $e^{\alpha t}\,\cos\beta t\;,\;\;e^{\alpha t}\sin\beta t\;,$

– на s-кратен корен $\lambda=\alpha+i\beta$ и s-кратния корен $\overline{\lambda}=\alpha-i\beta$ съответстват 2s реални решения

 $e^{\alpha t}\cos\beta t$, $te^{\alpha t}\cos\beta t$, $t^2e^{\alpha t}\cos\beta t$, ..., $t^{s-1}e^{\alpha t}\cos\beta t$,

$$e^{\alpha t} \sin \beta t$$
, $te^{\alpha t} \sin \beta t$, $t^2 e^{\alpha t} \sin \beta t$, ..., $t^{s-1} e^{\alpha t} \sin \beta t$.

Фундаменталната система от решения $\{x_1, x_2, \dots, x_n\}$ формираме от изписаните погоре частни решения. Общото решение (4) на е

(6)
$$x = C_1 x_1(t) + C_2 x_2(t) + \ldots + C_n x_n(t) ,$$

където C_i са произволни реални константи.

Редактирано от Ангел Живков и Емил Хорозов