Understanding the correlation of health predictors and diabetes diagnosis

By: Kierra Manuel

Today's Agenda

Background —	- 02
Data and Purpose ————————————————————————————————————	– 05
Programming in SAS ———	- 07
Programming in R	- 08
Analysis —	– 10
Interpretations ————————————————————————————————————	– 11
Conclusion —	– 13

Background

- "Racial and ethnic minorities, defined as American Indians and Alaska Natives, black or African Americans, Hispanics or Latinos, and Asian Americans, Native Hawaiians, and other Pacific Islanders, have a higher prevalence and greater burden of diabetes compared to whites, and some minority groups also have higher rates of complications." according to clinical.diabetesjournal.org.
- I chose this topic since I am of African
 American descent and I have many family
 member who have experienced complication
 with diabetes.
- I would like to know if there is a way to predict if someone has diabetes and how we can use this information to prevent diabetes

Background cont'd

4.9 million African-American adults, or 18.7% of all African
 Americans ≥ 20 years of age, have diagnosed or undiagnosed diabetes, compared to 7.1% of non-Hispanic white Americans.

The risk of diabetes is 77% higher among African Americans than among non-Hispanic white Americans.

In 2006, African Americans with diabetes were 1.5 times more likely to be hospitalized and 2.3 times more likely to die from diabetes than non-Hispanic whites.

Diabetes Statistics from clinical.diabetesjournal.org

Data and Purpose

This data came from the National Institute of Diabetes and Digestive and Kidney Diseases.

The purpose of this study is to diagnostically pedict whether or not a patient has diabetes based on certain health diagnostic measurements.

All the patients in this study are females at least 21 years of age and of the Primia Indian Heritage. The several medical predictor variables include the number of pregnancies, BMI, Insulin level, age, blood pressure, skin thickness, and diabetes pedigree function. 768 observations were collected.

The outcome variable 0 or 1 indicated whether a person has diabetes or not.

Data and Purpose cont'd

The response variable, Outcome of Diabetes Diagnosis, is binary, that is, true or false denoted 0 and 1 which is why Binary Logistic, Probit, and Complementary Log-Log Models were used for this analysis.

After comparing The Goodness of Fit Test for these three regression models, Probit Model has the lowest AIC, AICC, and BIC scores meaning it has the best fit.

Criteria For Assessing Goodness Of Fit			
Criterion DF Value Value/D			
Log Likelihood		-365.3907	
Full Log Likelihood		-365.3907	
AIC (smaller is better)		748.7813	
AICC (smaller is better)		749.0188	
BIC (smaller is better)		790.5754	

Criteria For Assessing Goodness Of Fit				
Criterion	DF	Value	Value/DF	
Log Likelihood		-355.9524		
Full Log Likelihood		-355.9524		
AIC (smaller is better)		729.9048		
AICC (smaller is better)		730.1423		
BIC (smaller is better)		771.6990		

Criteria For Assessing Goodness Of Fit			
Criterion	iterion DF Value Value/DF		
Log Likelihood		-356.6327	
Full Log Likelihood		-356.6327	
AIC (smaller is better)		731.2654	
AICC (smaller is better)		731.5029	
BIC (smaller is better)		773.0595	

Complementary Log-Log Model

Probit Model

Binary Logistic Model

Programming Output in SAS

The GENMOD Procedure

Model Information		
Data Set	WORK.DIABETES	
Distribution	Binomial	
Link Function Pro		
Dependent Variable	outcome	

Analysis Of Maximum Likelihood Parameter Estimates							
Parameter	DF	Estimate	Standard Error				Pr > ChiSq
Intercept	1	-5.3539	0.4484	-6.2328	-4.4750	142.55	<.0001
pregnancies	1	0.0722	0.0183	0.0362	0.1081	15.49	<.0001
glocose	1	0.0220	0.0022	0.0177	0.0263	102.26	<.0001
bloodpressure	1	-0.0053	0.0050	-0.0152	0.0045	1.13	0.2882
skinthickness	1	0.0027	0.0077	-0.0124	0.0177	0.12	0.7301
insulin	1	-0.0006	0.0007	-0.0019	0.0007	0.75	0.3853
ВМІ	1	0.0551	0.0103	0.0349	0.0753	28.60	<.0001
diabetespedfun	1	0.4425	0.1626	0.1239	0.7611	7.41	0.0065
age	1	0.0084	0.0055	-0.0024	0.0192	2.33	0.1266
Scale	0	1.0000	0.0000	1.0000	1.0000		

```
*fit probit model;

=proc genmod;

model outcome(event="1") = pregnancies glocose bloodpressure skinthickness insulin BMI diabetespedfun age / dist = binomial link = probit;
run;
```

```
*checking model fit;

proc genmod;
model outcome = / dist=binomial link=probit;
run;

data deviance_test;
deviance = -2*(-496.7420 - (-356.6327));
pvalue = 1 - probchi(deviance, 8);
run;

proc print noobs;
run;
```

Criteria For Assessing Goodness Of Fit			
Criterion	DF	Value	Value/DF
Log Likelihood		-355.9524	
Full Log Likelihood		-355.9524	
AIC (smaller is better)		729.9048	
AICC (smaller is better)		730.1423	
BIC (smaller is better)		771.6990	

Criteria For Assessing Goodness Of Fit			
Criterion	DF	Value	Value/DF
Log Likelihood		-496.7420	
Full Log Likelihood		-496.7420	
AIC (smaller is better)		995.4839	
AICC (smaller is better)		995.4891	
BIC (smaller is better)		1000.1277	

deviance	pvalue
280.219	0

```
Apply Probit Model
 summary(fitted.model <- glm(Outcome ~ Pregnancies + Glucose + BloodPressure + SkinThickness + Insulin + BMI + Di
 abetesPedigreeFunction + Age, data = diabetesexcel, family = binomial(link=probit)))
 ##
 ## Call:
 ## glm(formula = Outcome ~ Pregnancies + Glucose + BloodPressure +
        SkinThickness + Insulin + BMI + DiabetesPedigreeFunction +
 ##
        Age, family = binomial(link = probit), data = diabetesexcel)
 ##
 ## Deviance Residuals:
                 1Q Median
                                           Max
    -2.6538 -0.7315 -0.3762 0.7338 2.4245
 ##
 ## Coefficients:
 ##
                              Estimate Std. Error z value Pr(>|z|)
 ## (Intercept)
                            -5.3538932 0.4467068 -11.985 < 2e-16 ***
 ## Pregnancies
                             0.0721851 0.0187424 3.851 0.000117 ***
 ## Glucose
                             0.0219995 0.0021727 10.125 < 2e-16 ***
 ## BloodPressure
                             -0.0053349 0.0049651 -1.074 0.282605
 ## SkinThickness
                             0.0026553 0.0075884 0.350 0.726398
 ## Insulin
                             -0.0005706 0.0006836 -0.835 0.403851
 ## BMI
                             0.0550963 0.0102032
                                                   5.400 6.67e-08 ***
 ## DiabetesPedigreeFunction 0.4425297 0.1697900
                                                   2.606 0.009152 **
 ## Age
                             0.0083976 0.0055885
                                                   1.503 0.132929
```

Programming Code and output in R

```
Computing AICC for Probit Model
 p < -4
 n < -30
 print(AICC <- -2*logLik(fitted.model) + 2*p*n/(n-p-1))
 ## 'log Lik.' 721.5048 (df=9)
Output #BIC
 BIC(fitted.model)
 ## [1] 771.699
Checking model fit
 null.model <- glm(Outcome ~ 1, data = diabetesexcel,</pre>
                    family=binomial(link=probit))
 print(deviance <- -2*(logLik(null.model) - logLik(fitted.model)))</pre>
 ## 'log Lik.' 281.5791 (df=1)
 print(p.value <- pchisq(deviance, 8, lower.tail = FALSE))</pre>
```

Programming Code and output in R cont'd

Analysis

- According to the SAS and R Output, the p-value from the deviance test indicates the model is a good fit.
- The results from applying the probit model indicate that the number of pregnancies, glucose levels, BMI, and Diabetes
 pedigree function are predictors significant at the 5% significance level.
- The fitted model is Phi(Outcome) = -5.3539 + 0.0722*Pregnancies + 0.0220*Glucose 0.0053*BloodPressure + 0.0027*SkinThickness 0.0006*Insulin + 0.0551*BMI + 0.4425*DiabetesPedigreeFunction + 0.0084*Age

Interpretations

The estimated regression coefficients are interpreted as follows

Number of Pregnancies

As the number of pregnancies increase, the z-score of the estimated probability of outcome of diabetes increases by 0.0722

Glucose Levels

As glucose levels increase, the z-score of the estimated probability of outcome of diabetes increases by 0.0220

BMI

As BMI increases the z-score of the estimated probability of outcome of diabetes increases by 0.0551

Diabetes Pedigree Function

As the diabetes pedigree function score increases, the z-score of the estimated probability of outcome of diabetes increases by 0.4425

Here's a Prediction using health data from a participant in the study that was diagnosed with diabetes.

Using fitted model:

```
P^{o} = -5.3539 + 0.0722*10 + 0.0220*168 - 0.0053*74 +
```

0.0027*29.15 - 0.0006*155.55 + 0.0551*38 +

0.4425*0.537 + 0.0084*34 = 1.274298

In SAS:

```
*use fitted model for prediction;

data predict;
input pregnancies glocose bloodpressure skinthickness insulin BMI diabetespedfun age;
cards;
l0 168 74 29.15 155.55 38 0.537 34
;
run;

data diabetes;
set diabetes predict;
run;

= proc genmod;
model outcome (event="1") = pregnancies glocose bloodpressure skinthickness insulin BMI diabetespedfun age / dist = binomial link = probit;
output out=outdata p=presponse;
run;

= proc print data=outdata (firstobs=769) noobs;
var presponse;
run;
```

The SAS System

presponse 0.89876

In R:

#using fitted model for prediction
```{r}
print(predict(fitted.model, data.frame(Pregnancies=10, Glucose=168
BloodPressure=74, SkinThickness=29.15, Insulin=155.55, BMI=38,
DiabetesPedigreeFunction=0.537, Age=34), type = "response"))
```

0.9248097

Conclusion

There are predictors that are significant in determining if someone has diabetes. These predictors include the number of pregnancies, glucose levels, BMI, and diabetes pedigree function. These predictors are significant at the 5% significance level. The best models for this data are binary logistic, probit, and complementary log-log. Out of these three models, the probit model has the best fit with having the lowest goodness of fit scores. If we can manage these four predictors, we will be able to bring down diabetes diagnosis.

THANK YOU DR. OLGA AND STAT 410 CLASSMATES!