Descripción de las prácticas

Rios Quijada Danira

20 de Febrero de 2015

1. Área

En esta práctica realizamos un programa que calcula el área de un círculo, introduciendole el radio de discho círculo.

1.1. Código

```
Program Circle_area
Implicit None
Real *8 :: radius , circum , area
Real *8 :: PI = 4.0 * atan(1.0)
Integer :: model_n = 1
print * , 'Enter a radius:'
read * , radius !
circum = 2.0 * PI * radius
area = radius * radius * PI
print * , 'Program number = ' , model_n
print * , 'Radius = ' , radius
print * , 'Circumference = ' , circum
print * , 'Area = ' , area
End Program Circle_area
```

1.2. Compilación

```
Archivo Editar Ver Terminal Pestañas Ayuda

dmriosq@ltsp28:-/ProgFortran/ProgramacionF/Producto3$ ./Areac.out

Enter a radius:

4

Program number = 1

Radius = 4.0000000000000000

Circumference = 25.132741928100586

Area = 50.265483856201172

dmriosq@ltsp28:-/ProgFortran/ProgramacionF/Producto3$
```

2. Volumen

En esta práctica realizamos un programa que calcula el volumen de un líquido en un recipiente esférico, dependiendo del radio del recipiente y de la altura a la que se encuentre dicho líquido.

2.1. Código

```
Program Volumen_altura
   Implicit None
   Real *8 :: radio , vol , altura
Real *8 :: PI = 4.0 * atan(1.0)
   Integer :: model_n = 2
   print * , 'Enter a radius:'
read * , radio
print * , 'Enter a height:'
read * , altura
   vol = (PI*(altura*altura))*(radio-(altura/3))
   print * , 'Program number =' , model_n
   print * , 'Radius =' , radio
print * , 'Height=' , altura
   print * , 'Volumen =' , vol
End Program Volumen_altura
```

2.2. Compilación

3. Limites

En esta práctica realizamos un programa que determina la precisión de la maquina en la que se esta ejecutando el programa.

3.1. Código

```
! Limits . f90 : Determines machine precision

Program Limits
    Implicit None
    Integer :: i , n
    Real * 4 :: epsilon_m , one
    n=60 ! Establish the number of iterations
! Set initial values :
    epsilon_m = 1.0
one = 1.0
! Within a DOLOOP, calculate each step and print .
! This loop will execute 60 times in a row as i is
! incremented from 1 to n ( since n = 60) :
    do i = 1, n , 1 ! Begin the doloop
    epsilon_m = epsilon_m / 2.0 ! Reduce epsilon m
    one = 1.0 + epsilon_m ! Recalculate one
    print * , i , one , epsilon_m ! Print values so far
end do ! End loop when i>n
```

3.2. Compilación

4. Math

En esta práctica realizamos un programa que calcula la raíz cuadrada real de -1, la arctan de 2 y el log de 0, los cuales son valores indefinidos o inexistentes en los reales.

4.1. Código

```
| Math . f90 : demo some Fortran math functions
| Program Math_test ! Begin main program |
| Real *8 :: i, p, x = -1.0 , y = 0, z = 2.0, w ! Declare variables x, y, z |
| i = SQRT (x) ! Call the sine function |
| p = LOG (y) ! Call the exponential function |
| w= ASIN (z) |
| print * , i, p, w ! Print x, y, z |
| End Program Math_test ! End main program
```

4.2. Compilación

5. Funciones

En esta práctica realizamos un programa que calcula el valor de una función de 2 variables.

5.1. Código

```
! Function . f90 : Program calls a simple function
!
Real *8 Function f (x,y)
   Implicit None
   Real *8 :: x, y
   f = 1.0 + sin(x*y)
End Function f
Program Main
   Implicit None
   Real *8 :: Xin =0.25 , Yin =2. , c , f ! declarations ( also f)
   c = f ( Xin , Yin )
write ( * , * ) 'f(Xin, Yin) = ' , c
End Program Main
```

5.2. Compilación

6. Subrutina

En esta práctica realizamos una subrutina, el cual es un subproceso, que forma parte de un proceso principal.

6.1. Código

```
! Subroutine . f90 : Demonstrates the call for a simple subroutine !
Subroutine g(x, y, ans1 , ans2 )
   Implicit None
   Real (8) :: x , y , ans1 , ans2 ! Declare variables
   ans1 = sin (x*y) + 1 . ! Use sine intrinsic func.
   ans2 = ans1**2
End Subroutine g
!
Program Main
   Implicit None
   Real *8 :: Xin =0.25 , Yin =2.0 , Gout1 , Gout2
   call g( Xin , Yin , Gout1 , Gout2 ) ! Call the subr g
   write ( * , *) 'The answers are:' , Gout1 , Gout2
End Program Main
```

6.2. Compilación

