Machine Learning Engineer Nanodegree

Capstone Project

Wenbo Ma

10/21/2016

1. Definition

Project Overview

In this project, I will investigate dataset from Kaggle Competition: Predicting Red Hat Business Value

Like many other companies, Red Hat is able to gather a great deal of information over time about the behavior of individuals who interact with them. This information contains characteristics of Red Hat's customers and their activities. Based on these characteristics and activities, I will build binary classification models to predict whether an individual has potential business value for Red Hat. The outcome will be a binary variable taking value on 0 or 1.

Three dataset are provided by Red Hat as follows:

Name	Size	Description	
people.csv	3.22MB	Customer's Characteristics	
act_train.csv	17.07MB	Activities and Outcome –	
		Training Set	
act_test.csv	4.03MB	Activities - Test Set	

Problem Statement

- Download the dataset and understand their structures and contents
- Figure out what are the dependent and independent variables and how to use and combine the three dataset
- Data preprocessing and exploratory analysis.
- Train a simple classifier and use it as an benchmark model
- Improve the benchmark model by feature engineering and parameters tuning
- Train the final model on entire training set and make prediction

Metrics

Area under ROC Curves (AUC) is used in this project for model comparison.

2. Analysis

Data Exploration

Dataset Name	Number of	Number of	Types of Features	Note
	Samples	Columns		
people.csv	189118	41	Categorical, Binary,	
			Numeric	
act_train.csv	2197291	15	Categorical, Numeric	One column is the outcome
				which is binary
act_test.csv	498687	14	Categorical	

There is a common feature named people_id in both people.csv and act_train.csv. This field is used as a key to merge people.csv and act_train.csv. This process also be applied to act_test.csv. After this preprocessing, the new data is as follows:

Dataset Name	Number of Samples	Number of Features	Types of Features	Note
Training Set	2197291	54	categorical, numerical	
Test Set	498687	54	categorical, numerical	

An important characteristic of the dataset is that only one feature is numerical and all the rest are categorical including binary.

Exploratory Visualization

Distribution of Dependent Variable (binary) in the Training Set

From the plot above, we can see the dependent variable is nearly equally distributed so that a stratified sampling in cross-validation stage may not necessary.

Distribution of Features' Type

From the plot above, we can see most variables are categorical variables (binary or more category). This characteristics of data make tree-based models a good candidate.

Number of Categories for Each Categorical Variable

Number of Categories for Categorical Variables excluding "people_id","activity_id","char_10_train" and "group_1"

Number of Categories for Categorical Variables further excluding "date_train" and "date_people"

From the three plots above, we can see that there are several variables having large amount of categories. The initial model will remove these variables as they may cause memory error in one-hot encoding, model building and prediction process. These variables can potentially be added back later depending on whether the initial model suffers from high variance or high bias (underestimate)

Distribution of char_38 by outcome (0 or 1)

From the plot above, we can see if char_38 is less than 40, the observations are more likely to have outcome 0 than 1. The feature char_38 may have some predictive power.

From the plot above, we can see if an observation has type 6, 7, 4, 5 or 2 in feature char_6_people, it is more likely to have outcome 0 than outcome 1. This feature char_6_people has some predictive power.

Algorithms and Techniques

Since there are 53 categorical variables and only 1 numeric variables, tree-based models may be appropriate for this problem. In addition, as ensemble models always performs well in large dataset, I use Gradient Boosting Tree algorithm for this project.

The most important two parameters needs to be tuned are number of trees and maximum number of nodes in the tree. 5 fold Cross validation are used to choose the best parameters.

Benchmark

A single Decision Tree Classifier is used as the benchmark model. The average AUC score from 5-fold cross validation on the training set is used as the benchmark AUC.

Parameters: max_depth:25

Benchmark model cross validation performance

Validation	AUC Train	AUC Valid	
1	0.9098	0.8952	
2	0.9181	0.8627	
3	0.9086	0.8955	
4	0.9108	0.7958	
5	0.9153	0.8781	
Average	0.9125	0.8655	

3. Methodology

Data Preprocessing

- Act_train.csv and act_test.csv file are merged with people.csv by feature "people_id".
- Feature "outcome" is taken out of the act_train dataset as the dependent variable
- "people_id", "activity_id", "date_train", "date_people" features are removed as they may not have predictive power (might be further preprocessed and added back in refinement)
- For all the categorical features including binary features, they are transformed to separate binary features with one-hot encoding

Implementation

- 5-fold cross validation is used in implementation. For each of the five validation, 4 folds are used as training set and the rest one is used as test set.
- Training set of transformed features (one-hot encoding) is put into Gradient Boosting Classifier from sklearn.ensemble library. For this initial model, parameters are set by default as follows:

Key Parameters	Default Value for Initial Model
N_estimators	100
Max depth	3

|--|

• Initial Model Performance

Validation	AUC on Training Set	AUC on Validation Set
1	0.8722	0.8760
2	0.8786	0.8499
3	0.8717	0.8787
4	0.8730	0.7824
5	0.8748	0.8640
Average	0.8741	0.8520

• Average AUC on validation set is used and reported to evaluate the model performance

Refinement:

- Grid search on parameters n_estimators and max_depth are implemented to get the best model based on validation AUC score.
- Parameter space:

n_estimators	max_depth
100	5,10,15,20,25
150	5,10,15,20,25
200	5,10,15,20,25

• AUC score is averaged among 5 validation set on 5-fold cross validation.

4. Results

Model Evaluation and Validation

Result for Grid Search on (number of trees, maximum depth of a single tree)

Number of Trees	Max Depth of a Single	Average AUC of 5 Fold	Average AUC of 5 Fold
	Tree	CV on Training Set	CV on Validation Set
	5	0.8834	0.8552
	10	0.9033	0.8629
100	15	0.9206	0.8672
	20	0.9354	0.8709
	25	0.9479	0.8744
	5	0.8857	0.8563
	10	0.9067	0.8642
150	15	0.9237	0.8681
	20	0.9385	0.8716
	25	0.9506	0.8753
200	5	0.8879	0.8569
	10	0.9096	0.8645

	15	0.9266	0.8689
200	20	0.9412	0.8728
	25	0.9529	0.8761
	30	0.9620	0.8786

The final model/parameters (200,30) is selected by the highest average AUC score.

The final model is robust since the AUC score on all the 5 cross-validation varies little. Therefore the model can be trusted.

Since this is a completed Kaggle competition, I was able to train the model on the entire original training set and compare the predicted value on the test set to the real value. It turns out that the AUC on the unseen dataset is 0.89. This result further validate that the model can be generalized well.

Justification

The validation AUC score is 0.8786 for the final model and 0.8655 for the benchmark model. Therefore, the final model is stronger than the benchmark.

The AUC score for the final model is much higher than that from random guess which is 0.5. Therefore, the marketing team in RedHat can leverage the predicted outcome from the final model in their marketing campaign and they would get a much better result than randomly approaching potential or existing customers.

5. Conclusion

Reflection

- One difficult I had in the project is that there are so many categorical variables and some of them have number of categories up to 29899(e.g. feature: group_1). When making prediction with fitted Gradient Boosting Trees model, I got memory error. To resolve this problem, I split the dataset into chunks and process the data chunk by chunk, which turned out to be an effective way.
- I also revisited Andrew Ng's machine learning course at Coursera during the project where I learned how to evaluate whether the model is suffering from high bias, high variance or both and how to improve the model accordingly. This is useful when I firstly fit the model with some categorical variables removed. I know I had to add back more variables as the AUC for the training and test set is very close which means the model was more likely suffering from high bias. This technique keeps me from going into the wrong direction.
- In addition, this is the first time I deal with so many categorical variables and I learned the gradient boosting tree algorithm and was able to understand the mathematics behind it. (my own note on understanding the mathematics behind gradient boosting trees is attached in a separate file)

Improvement

• The "date" feature isn't included in the model building process. If I were to include it and performed appropriate feature engineering, the final model performance would be better.

- The cross-validation and training time is very time consuming in a single machine. It takes days to get the final result. I am already learning Spark and distributed computing at edx and hopefully I could leverage these advanced computing technique in the near term to decrease the time.
- The winning solution at Kaggle competition uses xgboost algorithm. I should have implemented the same model. However, I couldn't install it correctly on my machine. I hope a simple installation process for Python at Windows system will be released soon so that I can implement the xgboost model to see whether a better performance could be achieved.