

K-MEDIAS, Y AMIGOS

ALAN REYES-FIGUEROA
ELEMENTS OF MACHINE LEARNING

(AULA 14) 14.MARZO.2023

Suponga que tenemos un conjunto de datos $\mathbb{X} = \{\mathbf{x}_i\}_{i=1}^n$, con $\mathbf{x}_i \in \mathbb{R}^d$, y se quiere agrupar estos elementos en k conjuntos o categorías distintas.

- Definimos distancias entre observaciones $d(\mathbf{x}_i, \mathbf{x}_i)$ (e.g. distancia euclideana).
- Por otro lado, elegimos un representante para cada uno de los k grupos o categorías a construir (e.g. el centroide $\mathbf{c}_k \in \mathbb{R}^d$ del grupo).

El método de k-medias (ó k-means) elige al azar k representantes, y asigna cada dato \mathbf{x}_i al representante más cercano, según la distancia $d(\cdot,\cdot)$.

Algoritmo: (K-medias)

- 1. Para cada $g=1,2,3,\ldots,k$, elegimos de manera aleatoria el centroide $\mathbf{c}_g\in\mathbb{R}^d$ del grupo g.
- 2. Repetir hasta convergencia:
 - Asignar cada \mathbf{x}_i al representante más cercano según la métrica d, esto es:

$$h(\mathbf{x}_i) = g(i) \in C$$
, con $g(i) = \operatorname{argmin}_{1 \leq g \leq k} d(\mathbf{c}_g, \mathbf{x}_i)$.

 Recalcular los representantes como los centroides de los datos asociados a cada grupo

$$\mathbf{c}_g = \frac{1}{|\{i:g(i)=g\}|} \sum_{i:g(i)=g} \mathbf{x}_i, \quad g=1,2,\ldots,k.$$

- (a) Conjunto de datos X.
- (b) Se eligen aleatoriamente los centroides \mathbf{c}_g , k=2.
- (c) Cada \mathbf{x}_i se asocia con su centroide más cercano.
- (d) Se recalculan los centroides \mathbf{c}_g , k=2.
- (e) Cada \mathbf{x}_i se etiqueta con su centroide más cercano.
- (f) Repetir (b) a (e) hasta convergencia . . .

K-medias minimiza una función de costo de una manera particular: Sea \mathbf{c}_g el representante del grupo g, g(i) el grupo de \mathbf{x}_i , definimos

$$J(\mathbb{X}) = \min_{g} \min_{\mathbf{c}_g} \sum_{i:q(i)=q} ||\mathbf{x}_i - \mathbf{c}_g||^2$$
 (1)

En k-medias J se minimiza en dos pasos desacoplados:

- Fijando g, y minimizando sobre \mathbf{c}_g .
- Fijando \mathbf{c}_g , y minimizando sobre g.

Interpretación:

$$||\mathbf{x}_i - \mathbf{c}_g||^2 = ||\mathbf{x}_i - decoder(encoder(\mathbf{x}_i))||^2.$$
 (2)

Se trata de minimizar la varianza dentro de cada grupo. Entre mayor es *k* menor la varianza (2).

Al final, el algoritmo de k-means induce una partición de Voronoi sobre el espacio \mathbb{R}^d :

K-means clustering on the digits dataset (PCA-reduced data) Centroids are marked with white cross

https:

//stanford.edu/class/engr108/visualizations/kmeans/kmeans.html

Como la elección inicial de los \mathbf{c}_q es aleatoria, es posible obtener diferentes resultados:

Distintos resultados con k-means en el mismo conjunto de datos

Observaciones:

- Se sugiere replicar *k*-means varias veces (con diferentes inicializaciones). Esto permite que aparezcan diferentes estructuras de agrupamiento.
- El diagrama de Voronoi es útil, ya pensando en *k*-means como un método predictivo.

Existen diversas variantes:

- k-medianas.
- k-medioides.
- Fuzzy k-means.

K-medianas

Es una variante de k-medias. En lugar de utilizar el centroide \mathbf{c}_g como representante de cada grupo g, se utiliza la mediana.

Esta mediana se calcula, componente a componente, usando la distancia Manhattan (norma $||\cdot||_1$). De este modo, cada uno de los atributos o variables es una observación dentro del conjunto de datos.

Algoritmo: (K-medianas)

- 1. Para cada $j=1,2,3,\ldots,k$, elegimos de manera aleatoria el representante $\mathbf{c}_j\in\mathbb{R}^d$.
- 2. Repetir hasta convergencia:
 - Asignar cada \mathbf{x}_i al representante más cercano según la métrica d.
 - Recalcular los representantes como las medianas, componente a componente, de los datos asociados a cada grupo.

K-medianas

K-medioides

Es otra variante de k-medias. En lugar de utilizar el centroide \mathbf{c}_g como representante de cada grupo g, se utiliza el dato más cercano al centroide \mathbf{c}_g :

$$\mathbf{c}_g = \mathbf{x}_j, \; \mathsf{con} \, j = \mathsf{argmin}_\ell \left| \left| \mathbf{x}_\ell - \frac{1}{|g(i)|} \sum_{i: g(i) = g}^g \mathbf{x}_i \right| \right|^2$$

De este modo, cada uno de los representante se elige dentro del mismo conjunto de datos.

Algoritmo: (K-medioides)

- 1. Para cada $j=1,2,3,\ldots,k$, elegimos de manera aleatoria el representante $\mathbf{c}_j\in\mathbb{R}^d$.
- 2. Repetir hasta convergencia:
 - Asignar cada \mathbf{x}_i al representante más cercano según la métrica d.
 - Recalcular los representantes como el dato más cercano a ${f c}_g$.

K-medioides

Agrupamiento difuso:

El agrupamiento difuso (fuzzy clustering) es una clase de algoritmos de agrupamiento donde, en lugar de asignar un único grupo a cada dato \mathbf{x}_i , cada elemento tiene un grado de pertenencia (difuso) a cada uno de los grupos.

- surge de la necesidad de resolver una deficiencia del agrupamiento exclusivo (agrupación inequívoca).
- implementaciónes a partir del surgimiento de la lógica difusa (Zadeh, 1965).
- Se representa la similitud entre un elemento \mathbf{x}_i y un grupo g por una función, llamada función de pertenencia $\mathbf{w}_i : \mathbf{x}_i \to [0,1]^k$, que toma valores entre cero y uno.

Básicamente, a cada dato \mathbf{x}_i , el calsificador difuso asigna un vector de coeficientes

$$h(\mathbf{x}_i) = \mathbf{w}_i = (w_{i1}, w_{i2}, \dots, w_{ik}),$$

con $w_{ij} = \mathbb{P}(\mathbf{x}_i \in g_j)$.

Diferencias entre (a) hard-clustering, y (b) fuzzy-clustering.

Segmentación o classificación obtenida con fuzzy-clustering.

Para cada dato $\mathbf{x}_i \in \mathbb{R}^d$, consideramos un vector de coeficientes $\mathbf{w}_i = (w_{i1}, \dots, \mathbf{w}_{ik}) \in \mathbb{R}^k$, con $w_{ii} \geq 0, \forall j = 1, 2, \dots, k$.

Con este esquema, el centroide de un grupo g se calcula como el promedio ponderado de sus elementos:

 $\mathbf{c}_{j} = \frac{\sum_{i:g(i)=j} \mathbf{w}_{ij}^{m} \mathbf{x}_{i}}{\sum_{i:g(i)=j} \mathbf{w}_{ij}^{m}},$

m > o es un hiperparámetro que controla el suavizamiento. A mayor m, mayor difusividad.

Los pesos w_{ii} se recalculan como

$$w_{ij} = \frac{1}{\sum_{\ell=1}^{k} \left(\frac{||\mathbf{x}_i - \mathbf{c}_j||}{||\mathbf{x}_i - \mathbf{c}_\ell||}\right)^{\frac{2}{m-1}}}.$$

Algoritmo: (Fuzzy k-medias) Dado un conjunto de datos $\mathbb{X} = \{\mathbf{x}_i\}$, y un conjunto de clases $C = \{g_1, g_2, \dots, g_k\}$, el algoritmo construye una matriz $\mathbf{W} = (w_{ij}) \in \mathbb{R}^{n \times k}$ con los grados de pertenencia.

- 1. Para cada $j=1,2,3,\ldots,k$, elegimos de manera aleatoria el centroide $\mathbf{c}_i \in \mathbb{R}^d$. Elegimos pesos aleatorios \mathbf{w}_i (e.g. $\mathbf{w}_i = (1,1,\ldots,1)$, $\forall i$.
- 2. Repetir hasta convergencia:
 - Asignar cada \mathbf{x}_i al representante más cercano según la métrica d.
 - Recalcular los representantes como los centroides ponderados de los datos asociados a cada grupo.
 - Recalcular los grados de pertenencia w_{ij} .

Curvas de nivel de la partición difusa.

Aplicaciones

Segmentación de imágenes:

https:

//www.youtube.com/watch?v=yR7k19YBqiw&ab_channel=Computerphile

Observaciones:

- Como la distancia euclideana da igual peso a cada dimensión, mejor normalizar los datos (normalizar o estandarizar).
- Existen muchas heuristicas para elegir *k*, *e.g.* el método del "codo": cómo cambia la suma de variazas por grupo (1) en función de *k*.

Particiones obtenidas con diferentes valores de k.

 En muchas situaciones, k-medias falla.

Solución: transformar los datos o usar métodos donde $d(\cdot,\cdot)$ captura la forma local de los datos.

- Muchas veces se usa primero algun método de reducción de dimensión, cuando la dimensionalidad del espacio es muy alta.
 - Las distancias (euclideanas) pierden poder discriminativo en dimensiones altas. Se llama la maldicion de la alta dimensionalidad.
- Si los datos no son muy continuos, se prefiere tomar como representantes observaciones de la muestra (k-medianas, k-medioides).
- Miles de variantes! (también porque para conjuntos de datos grandes, el algoritmo básico es demasiado costoso).
- Es buena idea correr el algoritmo con diferentes puntos de arranque para evitar óptimos locales.

