So an instance for CLIQUE would be something like $\langle G = \langle V, E \rangle$, $k \rangle$, and an instance for CNFSAT would be something like C1 \land C2 \land C3, where C_i being a clause that contains literals. First, think of the clique of size k as a k-tuple. For each $u \in V$, for each i = 1, ..., k, let $x_{u, i} = 1$ if and only if the vertex u occupies position i in the k-tuple that's the clique. Now, for the $x_{u, i}$'s, there would exist a vertex v for each position i in the k-tuple, it means there exists at least k vertices that's in the clique. Now, let each $x_{u, i}$ that's equal to 1 be a clause of the instance for CNFSAT, it would satisfy if and only if CLIQUE satisfies. Because for $x_{u, i}$'s, they are only a clause when they equal to 1, hence the instance for CNFSAT would be $1 \land 1 \land ... \land 1$, which is satisfied. And when there's no $x_{u, i} = 1$ for any i in the k-tuple, the CLIQUE isn't satisfied and CNFSAT isn't satisfied either, as $1 \land 1 \land 0 \land ... \land 1$ is not satisfied, hence CLIQUE \leq_k CNFSAT.