DERWENT-

1997-017548

ACC-NO:

DERWENT.

199702

WEEK:

COPYRIGHT 2004 DERWENT INFORMATION LTD

TITLE:

Electroconductive resin compsns. for paints or adhesives - comprises ag. emulsion of acrylic! and epoxy! resins using polyester type emulsifier, metal powders and dispersants comprising metal salts of fatty acids

PATENT-ASSIGNEE: TATSUTA ELECTRIC WIRE & CABLE[TATD]

PRIORITY-DATA: 1995JP-0095143 (April 20, 1995)

PATENT-FAMILY:

PUB-NO

PUB-DATE

LANGUAGE PAGES MAIN-IPC

JP 08283517 A October 29, 1996 N/A

004 C08L 033/00

APPLICATION-DATA:

PUB-NO

APPL-DESCRIPTOR APPL-NO

APPL-DATE

JP 08283517A N/A

1995JP-0095143 April 20, 1995

INT-CL

C08K003/08, C08K005/098, C08L033/00, C08L063/00, C09D005/24, C09D133/00,

(IPC):

C09D163/00, C09J009/02, C09J163/00

ABSTRACTED-PUB-NO: JP 08283517A

BASIC-ABSTRACT:

Electroconductive resin compsns. are obtd. by kneading: (i) 100 pts.wt. metal powders; (ii) 12-20 pts.wt. (as solid component) binders of a mixt. of emulsions, using polyester type emulsifiers, of acrylic and epoxy resins; and (iii) 0.1-2 pts.wt. dispersants of metal salts of satd. or unsatd. fatty acids.

USE <u>- Electroconductive paints</u> or adhesives.

ADVANTAGE - The compsns. use no hazardous organic solvents. The thick coating of the compsns. show no cracking.

CHOSEN.

Dwg.0/0

DRAWING:

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平8-283517

(43)公開日 平成8年(1996)10月29日

-							(43)公	開日	平成8	年(1996)10月29日
(51) Int.CL* C 0 8 L		識別記号 LHR	庁内整理番号	F						技術表示箇所
		LJE		CO	8 L	33/00		L	HR	
C08K	3/08	LHU						L	JE	
	5/098			C.0		3/08		LI	ΗU	
COSL	63/00	NJP				5/098		LI	H Z	
			MC-Ac-Ak-A	C O	8 L	63/00		N.	I P	
			審査請求	木樹沢	間求	項の数3	OL	(全	4 頁)	最終質に続く
(21)出職番号	•	特顯平 7-95143		(71)	人類出	000108	742			
(22)出讀日		平成7年(1995)4月2	20日			タツタ	电線株式			3番1号
				(72) §	調者	脚田]	t-	мащ	L1 7 1 F	33番1号
							市岩田町	72丁	目3番1	上号 タツタ電
				(72) 5	拥者		-			
							时岩田町	2丁	目3番1	号 タツタ電
				(74) ft	進人	弁理士	#田	文=	G 12	名)
				(/4)10	埋人	押理士	鎌田	文二	(9 12	名)

(54) 【発明の名称】 導電性樹脂組成物

(57)【要約】

【目的】 有機溶剤を使用せず、作業環境に優しいもの とするとともに、途膜の厚付けを可能とする。

【構成】 金粉、銀粉又は銀メッキ銅粉100重量部に 対し、バインダーとして乳化剤にポリエステル系材料を 使用したアクリルエマルジョン及びエポキシエマルジョ ン (固形分) を、混合比 (重量%) 85~50/15~ 50、かつ合計で12重量部以上20重量部以下、分散 剤として水溶性のラウリン酸、ミリスチン酸等の飽和脂 肪酸またはオレイン酸、リノール酸等の不飽和脂肪酸の ナトリウム塩又はカリウム塩を0.1重量以上2重量以 下を混練して成る。

【特許請求の範囲】

【請求項1】 金属粉100重量部に対し、バインダー として乳化剤にボリエステル系材料を使用したアクリル エマルジョン及びエポキシエマルジョンを、その固形分 の合計で12重量部以上20重量部以下、分散剤として 水溶性の飽和脂肪酸または不飽和脂肪酸の金属塩を0. 1重量部以上2重量部以下を混練して成る導電性樹脂組 成物。

【請求項2】 上記金属粉を、金粉、銀粉又は銀メッキ 銅粉とし、上記分散剤の金属塩を、ナトリウム塩又はカ 10 リウム塩としたことを特徴とする請求項1記載の導電性 樹脂組成物。

【請求項3】 上記アクリルエマルジョンとエポキシエ マルジョンの固形分混合比率を、アクリルエマルジョン 85重量%~50重量%、エポキシエマルジョン15重 量%~50重量%としたことを特徴とする請求項1又は 2記載の導電性組成物。

【発明の詳細な説明】

[00011

組成物に関する。

[0002]

【技術的背景】従来、室温で乾燥し導電性を得る材料と して、銀、銅等の金属粉と室温乾燥が可能なアクリル樹 脂等をバインダーに使用した導電性塗料若しくは導電性 接着剤が市販されている。しかしながら、これらの導電 性塗料若しくは薄電性接着剤はバインダーであるアクリ ル樹脂等を溶解するために、有機溶剤を使用しており、 有機溶剤の人体への影響から作業環境に十分な注意をす る必要があった。

【0003】この有機溶剤の人体への影響を解決する手 段として、発明者等は、「特願平5-275664号」 に示したようにアクリル樹脂と水とのアクリルエマルジ ョンをバインダーとする導電性組成物を提案した。

[0004]

【発明が解決しようとする課題】しかしながら、この粗 成物は塗膜が厚くなると、乾燥後クラックが発生しやす いという欠点がその後の研究の結果判明した。

【0005】上記の実情の下、本発明では、溶媒が水で あるバインダーを使用し作業環境に優しく、さらに塗装 40 時の塗膜が厚くなってもクラックが発生せず導電性が安 定した導電性樹脂組成物を提供することを課題とする。

[0006]

【発明の課題解決のための手段】上記課題解決のため に、本発明は、金属粉100重量部に対し、バインダー として乳化剤にポリエステル系材料を使用したアクリル エマルジョン及びエポキシエマルジョンを、固形物の合 計で12重量部以上20重量部以下、分散剤として水溶 性の飽和脂肪酸または不飽和脂肪酸の金属塩を0.1重 る。

【0007】ここにおいて、上記金属粉としては、金 粉、銀粉、及び銀メッキ鍋粉などが使用できる。また、 これらの形状は、片状、樹脂状、球状、不定形などのい ずれの形状であっても良く、その粒径は100μm以下 が好ましく、特に1~30μmが好ましい。

【0008】上記エマルジョンは慣用的にいわれている 樹脂と水とのエマルジョン(Q/W)であって、その配 合量は、固形分が12重量部未満で金属粉のバインドが 悪くなり抵抗が高くなるとともに、密着性も低下する。 また、20重量部を超えると導電性を付与するための金 属粉の量が不足し、抵抗が高くなる。

【0009】そのアクリルエマルジョンは乳化剤にポリ エステル系のものを使用したものが良く、具体的な乳化 剤としてはポリエステルポリオールである。 アクリルエ マルジョンに通常使用されるアニオン系乳化剤では金属 粉の沈降が早く、金属粉の沈降後はハードケーキを形成 し、使用時の金属粉の再分散が難しく、使用できなくな る。また、アニオン系乳化剤を使用したアクリルエマル 【産業上の利用分野】この発明は、水溶性の導電性樹脂 20 ジョンはエマルジョンの中和工程でアミン系材料で中和 するため、銀メッキ銅粉との組合わせで使用した場合、 アミン系材料の残渣により銀メッキ銅粉の銅が溶解し、 鍋がイオン化するため好ましくない。

【0010】また、エポキシエマルジョンとしてはビス フェノールA型エマルジョン、変性ビスフェノールA型 エマルジョンなどが使用できる。

【0011】そのアクリルエマルジョンとエポキシエマ ルジョンの混合比率は、各々のエマルジョンの固形分で アクリルエマルジョン85重量%~50重量%、エポキ シエマルジョン15重量%~50重量%とするとよい。 30 アクリルエマルジョンの混合比率が85重量%を越える と、乾燥後の塗膜にクラックが発生し易く、アクリルエ マルジョンの混合比率が50重量%未満では塗膜の乾燥 が遅くなり易く、また、乾燥後の塗膜が柔らかく物理的 衝撃に耐えられなくなり易い。・

【0012】上記飽和脂肪酸または不飽和脂肪酸の金属 塩の配合量は0.1重量部未満では金属粉の分散が不十 分となり、抵抗が高くなる。また、2重量部を超えて添 加しても、導電性の向上効果は得られず、被着体との密 着性が低下する。

【0013】なお、本発明の範囲において十分な金属粉 の沈降防止効果が得られ、良好な導電性樹脂組成物とな り得るが、さらに金属粉の沈降防止を目的として板状若 しくは棒状の粉体、例えばタルク、チタン酸カリウムの ウィスカー等を添加すれば、その効果はより向上する。 【0014】その飽和脂肪酸の金属塩とは冷水に溶解が 可能なラウリン酸、ミリスチン酸などのナトリウム若し くはカリウム塩などである。また、不飽和脂肪酸の金属 塩にあってはオレイン酸、リノール酸などのナトリウム 量部以上2重量部以下を混練してなる構成としたのであ 50 若しくはカリウム塩などである。これらの分散剤の使用

3

は、金属粉のアクリルエマルジョンへの微細分散を促進 し、導電性の良好な塗膜を形成するので好ましい。

[0015]

【実施例】表1の組成(重量%)でもって実施例1~

6、比較例1~3及び従来例1~3を製作し、それらに*

*ついて各種の試験を行い、その結果を表1下欄に示す。 その組成物の混練、各種試験の詳細は下記のとおりであ

[0016]

【表1】

		1361										
	_	美	[施	例		出	· 較	例	描	- *	<i>6</i> N
	1	2	3	4	5	6	1	2	3	1	2	3
銀メッキ鋼粉	100	100	100	100			100	100	100	100	100	100
細約					100		†	 	†-		-	1,00
金粉			1	1	-	100	1	1	-	-	+	
707 NS1200(図形分) *1	6	17	9	9	9	9	9	10	1	20	16	12
分针补 BH-101(国份) #2	6	3	6	6	6	6	1	11	6	-	 "	
707 A-106 (国際分)‡3									9	_	├	
ラウリン酸ナトリム	2.0	0.1	0.5	0.5	0.5	0.5	1.0	2.2	1.0	2.0	0.1	0.5
チタン酸カリウムウィスカー				LO	1.0				1.0		4	
抵抗比(XII-1Ω-cm)	5.0	8.7	4.7	5.1	2.3	2.6	6.2	14.5	5.2	9.2	5.3	4.7
商着性	0	0	0	0	0	0	×	×	0	0	0	0
金属初の沈降	0	0	0	0	0	0	0	0	×	0	0	0
が操役のクラック	0	0	0	0	0	0	×	0	0	×	×	×
背色折出物	0	0	0	0	0	0	0	0	×	0		
操性	0	0	0	0	0	0	0	×	ô	0	0	0

#1 700 KS1200 :乳化剤にポリエステル系材料を使用したアクリルエマルジョン、

東亜合成化学株式会社製商品名

*2 分れみ BM-101:変性ビスフェノールA型エポキシエマルジョン

ナガセ化成工業株式会社商品名

\$3 700 A-106 : 乳化剤がアニオン性でアミンで中和したアクリルエマルジョン、

東亚合成化学株式会社的商品名

[0017]

【組成物の混練】各組成物を適当な容器に計量した後、 撹拌機で10分間撹拌し樹脂組成物とした。

[0018]

【比抵抗の測定方法(導電性)】ガラスエボキシ基板に ドクターブレードを使用し、2mm幅×60mm長に樹 脂組成物を塗布した後、室温で10分間放置乾燥した。 乾燥後の60mm長の樹脂組成物の抵抗値と厚みを測定 し、比抵抗を求めた。

[0019]

【密着性の評価方法】ガラスエポキシ基板に、ドクター ブレードで樹脂組成物を50mm×50mmの大きさに 塗布した後、室温で10分間乾燥後、塗膜にセロファン※50 ×:1時間以内に全ての金属粉が沈降し、再度撹拌して

※テープを貼りつけ、テープを引き剥がし、樹脂組成物と ガラスエポキシ基板との密着性を調べた。

40 〔評価基準〕

〇: 塗膜が剥がれない。

×: 塗膜が容易に剥がれる。

[0020]

【金属粉沈降性の評価方法】樹脂粗成物をガラスビンに 入れ、良く撹拌したのち放置し、金属粉が沈降するまで の時間を測定し、金属粉の沈降性を調べた。

〔評価基準〕

〇:24時間経過後も金属粉の沈降がなく、また1週間 放置後、沈降している金属粉を容易に再撹拌できる。

金属粉を分散するのが困難。

[0021]

【乾燥後のクラックの評価方法】樹脂組成物をガラスエ ボキシ基板に塗膜厚みが1mmになるようにドクターブ レードで塗布し、24時間乾燥後塗膜のクラックを目視 により調べた。

〔評価基準〕

〇:24時間経過後もクラックの発生なし。

×:24時間以内にクラックが発生する。

[0022]

【青色析出物の評価方法】樹脂組成物をガラスビンに入 れ、良く攪拌したのち放置し、銀メッキ銅粉の銅イオン が析出するか否かを調べた。

〔評価基準〕

〇:1週間経過後も青色析出物が発生しない。

×:3時間未満で背色折出物が発生する。

[0023]

【乾燥性の評価方法】樹脂組成物をガラスエポキシ基板 に塗膜厚みが1mmになるようにドクターブレードで塗

〔評価基準〕

〇:1時間経過後に指への付着がない。

×:24時間乾燥後も指に付着する。

【0024】上記試験結果から、各実施例が導電性樹脂 組成物として十分に使用に耐え得るものであることが理 解できる。一方、比較例1はエマルジョンが12重量部 未満のため、密着性が悪く、また、エポキシエマルジョ ンの比率が15重量%未満のため、乾燥後クラックが発 生する。比較例2はエマルジョンが20重量部を越え、 抵抗が高くなる。また、脂肪酸の金属塩が2重量部を越 えているため密着性が悪い。さらにエボキシエマルジョ ンの比率が50重量%越えているため、乾燥性が悪い。 10 比較例3はアクリルエマルジョンがアニオン系のアミン で中和したもののため、金属粉の沈降性及び青色析出物 で問題がある。このとき、チタン酸カリウムのウィスカ 一を添付しても、その沈路性、青色折出物が解消されな かった。 従来例1~3はエポキシエマルジョンを混入し ていないため、乾燥後にクラックが発生した。

[0025]

【発明の効果】本発明は、以上の様に構成したので、従 来有機溶剤を含む樹脂バインダーを使用した導電性樹脂 組成物で問題となっていた導電性樹脂組成物の使用時の 布し、24時間乾燥後塗膜の乾燥状態を指触により調べ 20 作業環境問題(有機溶剤による中毒)を解決し、作業環 境の著しい向上を図り得るとともに、塗膜を厚くしても クラックが発生しないので、塗膜の厚付けが可能であ る.

フロントペー	ジの	持さ
--------	----	----

(51) Int. Cl. ⁶ C O 9 D 5/24 133/00 163/00 C O 9 J 9/02	識別記号 PQW PFW PGG PKE JAS JAW JBB JFP	广内整理番号	F I C O 9 D 5/24 133/00 163/00 C O 9 J 9/02	PQW PFW PGG PKE JAS JAW JBB	技術表示箇所
	V 1 1		163/00	JFP	