Proyecto

Fernández Vargas, Camila, Piña, Eric Alberto

Departamento de Mecatronica ITLA La Caleta, Boca Chica 20230111@itla.edu.do

Palabras Claves— LED, resistencia....

I. INTRODUCCION

Un carrito RC es un vehículo pequeño controlado a distancia mediante un transmisor inalámbrico. Estos carritos suelen tener motores eléctricos, ruedas y una batería, y pueden ser controlados para avanzar, retroceder, girar y realizar otras maniobras.

II. MARCO TEÓRICO

A. Amplificación de audio

se utilizan en amplificadores de audio para aumentar la potencia de las señales de audio antes de que se envíen a los altavoces.

B. Circuitos de acondicionamiento de señal se utilizan en circuitos de acondicionamiento de señal para convertir señales de sensores en señales compatibles con otros dispositivos electrónicos.

C. Comparadores

Se pueden configurar como comparadores para comparar dos voltajes y generar una señal de salida en función de cuál sea mayor.

III. MONTAJE EXPERIMENTAL

1. Lo que se utilizo los softwares de simulación:

1. Livewire

A. Aplicación con BJT

Diagrama de Sensor de Proximidad IR

Funcionamiento:

Emisión de infrarrojos: El LED infrarrojo emite una ráfaga de luz infrarroja.

Reflexión: La luz infrarroja incide sobre el objeto y se refleja en él.

Detección: El fotodiodo o fototransistor detecta la luz infrarroja reflejada.

Amplificación: El transistor BJT amplifica la señal del fotodiodo o fototransistor.

Señal de salida: La señal amplificada se convierte en una señal de salida que indica la presencia o ausencia del objeto.

Diagrama de Intermitentes

El circuito multivibrador a BJT está compuesto por dos transistores BJT (generalmente NPN) conectados en una configuración de "bistable" o "flip-flop". Cada transistor está conectado a una red de resistencias y condensadores que determinan la frecuencia y la forma de la señal de salida.

Diagrama de Focos delanteros C. Aplicación con OpAmp

Diagrama de Sensor de Temp

Detección de temperatura: El LM35 genera un voltaje analógico proporcional a la temperatura ambiente. Cuanto mayor sea la temperatura, mayor será el voltaje.

Amplificación: La señal de voltaje del LM35 se aplica a la entrada inversora de un amplificador operacional LM324 PCB 3D configurado como amplificador no inversor.

B. Aplicación con MOSFET

Diagrama PWM ventilador de enfriamiento

Señal de control genera una señal PWM que se aplica a la puerta de un MOSFET. La señal PWM determina el ancho de los pulsos de voltaje que se aplican al MOSFET.

PCB Creada

D. Kicad

Diagrama de la PCB

Fotos Físicas

DATASHEET DE COMPONENTES USADO:

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	LM158,A	LM 258,A	LM358,A	Unit
Vcc	Supply voltage	+/-16 or 32		٧	
V _i	Input Voltage	-0.3 to +32			٧
Vid	Differential Input Voltage	+32			٧
P _{tot}	Power Dissipation 1)	500			m W
	Output Short-circuit Duration 2)	Infinite			
Iin	Input Current 3)	50			m A
Toper	Opearting Free-air Temperature Range	-55 to +125	-40 to +105	0 to +70	°C
T _{stg}	Storage Temperature Range	-65 to +150			°C

Power discination must be considered to ensure maximum junction temporature (Till is not exceeded

Número de Parte: IRF9540N

Tipo de FET: MOSFET

Polaridad de transistor: P

ESPECIFICACIONES MÁXIMAS

Máxima disipación de potencia (Pd): 140 W

Voltaje máximo drenador - fuente |Vds|: 100 V

Voltaje máximo fuente - puerta |Vgs|: 20 V

Corriente continua de drenaje |Id|: 23 A

Temperatura máxima de unión (Tj): 175 °C

Número de Parte: IRF540N

Tipo de FET: MOSFET

Polaridad de transistor: N

ESPECIFICACIONES MÁXIMAS

Máxima disipación de potencia (Pd): 130 W

Voltaje máximo drenador - fuente |Vds|: 100 V

Voltaje máximo fuente - puerta |Vgs|: 20 V

Corriente continua de drenaje |Id|: 33 A

Temperatura máxima de unión (Tj): 175 °C

Número de Parte: 2N3904

Material: Si

Polaridad de transistor: NPN

ESPECIFICACIONES MÁXIMAS

Disipación total del dispositivo (Pc): 0.31 W

Tensión colector-base (Vcb): 60 V

Tensión colector-emisor (Vce): 40 V

Tensión emisor-base (Veb): 6 V

Corriente del colector DC máxima (Ic): 0.2 A

Temperatura operativa máxima (Tj): 135 °C

IV. CONCLUSIÓN

La construcción de un carrito RC con aplicaciones de sensores, PWM y circuitos electrónicos es un proyecto gratificante que puede conducir a una gran cantidad de aprendizaje y experimentación.

REFERENCIAS

Orozco-Morales, R., & Moreno-Campdesuner, I. (2016). Problemas del Análisis y Síntesis de Circuitos

Eléctricos. Parte 1. Grin Publishç