

## **BRAINWARE UNIVERSITY**

## Class Test 1 (2nd Semester) – March, 2025

Program Name – Bachelor of Computer Applications BCA47111(T) – Design and Analysis of Algorithm

Time - 60 minutes Full Marks: 20

## (Multiple Choice Type Question)

|                    | 1. Choose the correct                   | t alt    | ernative from the follo                    | owii  | ng: -                                         |      | $[8 \times 1 = 8]$     |
|--------------------|-----------------------------------------|----------|--------------------------------------------|-------|-----------------------------------------------|------|------------------------|
| i)                 | Define complexity t                     | he re    | currence relation T(n)                     | = 87  | $\Gamma(n/2) + n2$                            |      |                        |
| a)                 | O(n)                                    |          | O(n2)                                      |       | O(log2 n)                                     | d)   | O(n3)                  |
| ii)                | $\Omega$ - notation provide             | es an    | asymptotic                                 |       |                                               |      |                        |
| a)                 | Upper bound                             |          | Lower bound                                | c)    | One that is sandwiched between the two bounds | d)   | None of these          |
| iii)               | What is the result of                   | the      | recurrences which fall                     | unde  |                                               | heoi | em? let                |
|                    | the recurrence be given                 | ven b    | by $T(n)=aT(n/b)+f(n)$ as                  | nd f  | (n)=nc?                                       |      |                        |
| a)                 | $T(n) = O(nlog_b a)$                    | b)       | T(n) = O(nc log n)                         | c)    | T(n) = O(f(n))                                | d)   | T(n) = O(n2)           |
| ; <sub>177</sub> ) | What is the worst of                    | oco ti   | me complexity of binar                     | er co | norch?                                        |      |                        |
| iv)                |                                         |          | O(log n)                                   | •     | O(n log n)                                    | 4)   | $O(n^2)$               |
| α)                 | O(II)                                   | U)       | O(log II)                                  | C)    | O(II log II)                                  | u)   | O(ii )                 |
| v)                 | Which sorting algor                     | ithm     | has the best worst-case                    | e tin | ne complexity?                                |      |                        |
| a)                 | Quick Sort                              | b)       | Merge Sort                                 | c)    | Bubble Sort                                   | d)   | Insertion Sort         |
| :\                 | Which complies als                      | . 14 أست | un in book onited for a c                  |       | d                                             |      |                        |
| vi)                | Linear Search                           |          | nm is best suited for a s<br>Binary Search |       | •                                             | 47   | Juman Coonah           |
| a)                 | Linear Search                           | U)       | Billary Search                             | C)    | Interpolation Search                          | u)   | Jump Search            |
| vii                | ) In Quick Sort, the w                  | orst-    | case time complexity of                    | occu  | rs when:                                      |      |                        |
| a)                 | Pivot is always the                     | b)       | Pivot is always the                        | c)    | Both a and b                                  | d)   | None of the above      |
|                    | smallest element                        |          | largest element                            |       |                                               |      |                        |
| vii                | i) Which of the follow                  | _        | •                                          |       | -                                             |      |                        |
| a)                 | Merge Sort is an in-                    | b)       | Quick Sort is an in-                       | c)    | Both are in-place                             | d)   | Neither is an in-place |
|                    | place sorting                           |          | place sorting                              |       | sorting algorithms                            |      | sorting algorithm      |
|                    | algorithm, but Quick                    |          | algorithm, but                             |       |                                               |      |                        |
|                    | Sort is not                             |          | Merge Sort is not                          |       |                                               |      |                        |
|                    |                                         |          | (Short Answer                              | Гур   | e Question)                                   |      |                        |
| An                 | Answer all questions of the following:- |          |                                            |       |                                               |      | $[6 \times 2 = 12]$    |
| 2.                 |                                         |          |                                            |       |                                               |      |                        |
| 3.                 |                                         |          |                                            |       |                                               |      |                        |
| 4.                 | Explain the concept of                  | nive     | ot in Quick Sort                           |       |                                               |      |                        |

**5.** Difference between Binary Search and interpolation search.

Solved using the Substitute Method: T(n) = T(n-1) + nSolved using the Master Theorem:  $T(n) = 2T(n/2) + n \log n$ 

6.

7.