1 Review of Set Theory

1.1 Definitions

- A set is a collection of objects. The objects in a set are frequently called **elements**.
- If x is an element of set A, we write $x \in A$. If x is not an element of set A, we write $x \notin A$.
- A set with no elements is called the empty set, symbolised by ϕ or $\{\}$.
- The elements of a set must be unique
 - Eg 1
- Two sets A and B are equal \iff A and B contain the same elements. When two sets are equal, we write A = B.
 - Eg 2
- If A is a set with a finite number of elements (i.e. A is a finite set), we write n(A) = number of elements in A
 - Eg 3
- We say a set A is a **subset** of set $B \iff$ every element of A is in B. We write $A \subseteq B$
 - Egs 4 8
 - In class Problem 1

1.2 Set Operations

- Let U = universal set = set whose subsets are of interest. Let $A \subseteq U$ and $B \subseteq U$.
- We define the **complement of** A, A^c or A' to be the set $A' = \{x \mid x \notin A\}$
- We define the **relative complement of** A with respect to B to be the set $B A = \{x \mid x \in B \text{ and } x \notin A\}$
 - Eg 9
- The **union** of sets A and B, $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
 - Eg 10
 - We can **extend** this definition to a countable sequence of sets A_1, A_2, A_3, \ldots with the definition $\bigcup_{i=1}^{\infty} A_i = \{x \mid x \in A_i \text{ for some } i \in \mathbb{N}\}$
 - Eg 11
- The intersection of sets A and B, $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
 - We can **extend** this definition to a countable sequence of sets A_1, A_2, A_3, \ldots with the definition $\bigcap_{i=1}^{\infty} A_i = \{x \mid x \in A_i \text{ for all } i \in \mathbb{N}\}$
 - Eg 12 14
- If $A \cap B = \phi$, we say that A and B are disjoint.

1.3 Some properties about sets

- 1. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 2. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- 3. $(A \cup B)' = A' \cap B'$.
 - In general, $(\bigcup_{i=1}^{\infty} A_i)' = \bigcap_{i=1}^{\infty} A_i'$
- $4. (A \cap B)' = A' \cup B'.$
 - In general, $\left(\bigcap_{i=1}^{\infty} A_i\right)' = \bigcup_{i=1}^{\infty} A_i'$
- 5. $n(A \cup B) = n(A) + n(B) n(A \cap B)$
- 6. If $A \subseteq B$, then $n(A) \le n(B)$.
- Egs 15 17
- In class Problem 2
- Eg 18

2 Counting

- Multiplication Principle: If a compound action can be broken into a series of k component actions and each of these can be performed in n_1, n_2, \ldots, n_k ways respectively, then the compound action can be performed in $n_1 n_2 \ldots n_k$ ways.
 - Egs 19 21
 - In class Problem 3
- **Permutation Principle**: Suppose I have *n* **distinct** objects and I wish to select *r* of them, and the **order** in which I select them is important. Then there are
 - Specifically, the number of ways to arrange n distinct objects where the **order** in which they are selected is important is
 - Eg 22 24
- Combination Principle: Suppose I have n distinct objects and I wish to select r of them, and the order in which I select them is **NOT** important. Then there are
 - Eg 25, 26
 - Eg 27, 28
- The **Binomial Theorem**: If x and y are variables, and n is a non-negative integer, then $(x+y)^n \equiv \sum_{k=0}^n C_k^n x^{n-k} y^k$.
 - Eg 29

3 Probability

- 1. A random experiment or simply an experiment is an experiment whose outcomes cannot be predicted with certainty.
- 2. The sample space S of an experiment is the set of all possible outcomes for the experiment.
- 3. An event is a subset of the sample space.
 - Eg 30
- 4. Probability is the measure of occurrence of an event.
- 5. We denote the probability of event A happening Pr(A)
- 6. The function Pr satisfies the following axioms, known as Kolmogorov axioms:
 - (a) Axiom 1: For any event E, $0 \le \Pr(E) \le 1$.
 - (b) Axiom 2: Pr(S) = 1.
 - (c) Axiom 3: For any sequence of **mutually exclusive** events $\{E_n\}$ $n \ge 1$, that is $E_i \cap E_j = \phi$ for $i \ne j$, we have $\Pr(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \Pr(E_i)$. This axiom is known as **countable additivity**.
 - i. Specifically, for **mutually exclusive** events A, B and C, we have
- 7. When each outcome of an experiment is just as likely as another, as in the example of tossing a fair coin, the outcomes are said to be **equally likely**. In which case, we use the formula $\Pr(E)$ = number of outcomes favourable to event E/total number of outcomes = $\frac{n(E)}{n(S)}$.
- 8. It is very important to keep in mind that this definition of probability applies only to a sample space that has equally likely outcomes. Applying the definition to a space with outcomes that are not equally likely leads to incorrect conclusions.
 - (a) Eg 31 34

Some rules and theorems for Probability

1. Complementary Events

For any event E, Pr(E') = 1 - Pr(E)

- 2. For any two events A and B, $Pr(A) = Pr(A \cap B) + Pr(A \cap B')$. Similarly, $Pr(B) = Pr(B \cap A) + Pr(B \cap A')$.
- 3. Union of Events

For any two events A and B, $Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$.

- Note that if A and B are **mutually exclusive**, i.e. $Pr(A \cap B) = 0$, then we have a specific version of Axiom 3, which is $Pr(A \cup B) = Pr(A) + Pr(B)$.
- Note, also, that we can obtain an expression for $\Pr(A \cup B \cup C)$ using $\Pr(A \cup B) = \Pr(A) + \Pr(B) \Pr(A \cap B)$.

Egs 35 - 41

(a) In class Problem 4, In class Problem 5

Incorporating Counting Techniques into Probability

Egs 42 - 45

4 Conditional Probability and Independence

- 1. For any two events A and B with Pr(B) > 0, we define the **conditional** probability of A happening, given that B has occurred by $Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$.
- 2. Egs 46 50
- 3. In general, for n events $A_1, A_2, A_3, \ldots, A_n$, $\Pr(A_1 \cap A_2 \cap A_3 \cap \cdots \cap A_n) = \Pr(A_1) \Pr(A_2 \mid A_1) \Pr(A_3 \mid A_1 \cap A_2) \ldots \Pr(A_n \mid A_1 \cap A_2 \cap A_3 \cap \cdots \cap A_{n-1})$
- 4. Egs 51, 52

Note:

- 1. Realize that $Pr(A \cap B) = Pr(A|B) Pr(B)$ is also true.
- 2. All the results we have for unconditional probability are true for conditional probability as well, for example:
 - (a) the Kolmogorov axioms
 - (b) $\Pr(E'|C) = 1 \Pr(E|C)$. [Please note, though, that it IS NOT NECESSARILY TRUE that $\Pr(E|C') = 1 \Pr(E|C)$]
 - (c) $\Pr((A \cup B)|C) = \Pr(A|C) + \Pr(B|C) \Pr((A \cap B)|C)$
 - (d) $Pr(A|C) = Pr((A \cap B)|C) + Pr((A \cap B')|C)$

Bayes Formula

Essentially helps us to reverse the conditional probability order: $\Pr(B|A) = \frac{\Pr(A|B)\Pr(B)}{\Pr(A)}$. Bayes Formula in general states the following:

Suppose that the sample space S is the union of mutually exclusive events H_1, H_2, \ldots, H_n with $\Pr(H_i) > 0$ for each i. Then for **any** event A and **any** H_i , we have $\Pr(H_i|A) = \frac{\Pr(A|H_i)\Pr(H_i)}{\Pr(A)}$ where $\Pr(A) = \Pr(A|H_1)\Pr(H_1) + \Pr(A|H_2)\Pr(H_2) + \cdots + \Pr(A|H_n)\Pr(H_n)$.

In-class Problem 6

Eg 53, 54 In-class Problem 7

Independence

- 1. In terms of conditional probability, two events A and B are said to be statistically **independent** if and only if Pr(A|B) = Pr(A). [We also have Pr(B|A) = Pr(B)]
- 2. If A and B are independent, we then have $\Pr(A \cap B) = \Pr(A)\Pr(B)$. Why? We know that $\Pr(A \cap B) = \Pr(A|B)\Pr(B)$ is ALWAYS true. Therefore, with the independence of A and B, we have $\Pr(A \cap B) = \Pr(A)\Pr(B)$.
 - (a) More generally, if we have events A, B, C, ..., N which are all mutually independent of each other, then $\Pr(A \cap B \cap C \cap \cdots \cap N) = \Pr(A) \Pr(B) \Pr(C) ... \Pr(N)$
- 3. If A and B are independent then so are A and B'.
- 4. If A and B are independent then so are A' and B'.

Eg 55 - 58

In-class Problem 8

Odds

The odds in favour of an event E are defined as $\frac{\Pr(E)}{1-\Pr(E)}$. Thus, if someone says "the odds in favour of E are a:b", then $\Pr(E) = \frac{a}{a+b}$. Eg 59 - 61