

Barick Chung

Employment: 2014-present Senior Lecturer, Department of Economics, CUSZ – Shenzhen. 2012-2014. Lecturer, School of Economics and Finance, University of Hong Kong. 2006-2012 Instructor, Department of Economics, CUHK – Hong Kong.

2003-2007 Ph.D. (Business) Indiana University – Bloomington. 1987-1991 BS.Sc. (Economics) Chinese University of Hong Kong – Hong Kong.

Research paper: Chung, Barick, "Two Level Price Discrimination and Vertical Relationship" (March 05, 2012). Available at SSRN: http://ssrn.com/abstract=1997070.

Homepage: Deleted Facebook: Deleted Wechat ID: barickchung

ECO 2011 (Sections L07-10) **Basic Microeconomics**

Barick Chung Department of Economics 235-18822 Zhiren Building, 409 barickchung@cuhk.edu.cn

17:39:33

0

Demand is said to be inelastic when the elasticity is less than +1

Demand is said to be **unit elastic** when the elasticity is +1

Demand is said to be $\mbox{\bf elastic}$ when the elasticity is greater than +1

17:39:33

8

Pindyck and Rubinfeld, 2013, p. 35:

Income elasticity is the percentage change in the quantity demanded resulting from a 1-percent increase in income.

$$E_{I} = \frac{\% \Delta Q}{\% \Delta I} = \frac{\frac{\Delta Q}{Q}}{\frac{\Delta I}{I}} = \frac{I}{Q} \times \frac{1}{\frac{\Delta I}{\Delta Q}}$$

17:39:33

11

Pindyck and Rubinfeld, 2013, p. 35:

Cross-price elasticity is the percentage change in the quantity demanded of one good resulting from a 1-percent increase in the price of another.

$$E_{AB} = \frac{\% \Delta Q_A}{\% \Delta P_B} = \frac{\frac{\Delta Q_A}{Q_A}}{\frac{\Delta P_B}{P_B}} = \frac{P_B}{Q_A} \times \frac{1}{\frac{\Delta P_B}{\Delta Q_A}}$$

17:39:33

12

Pindyck and Rubinfeld, 2013, p. 36:

Price elasticity of supply is the percentage change in the quantity supplied resulting from a 1-percent increase in price.

$$E_{p}^{S} = \frac{\% \Delta Q^{S}}{\% \Delta P} = \frac{\frac{\Delta Q^{S}}{Q^{S}}}{\frac{\Delta P}{P}} = \frac{P}{Q^{S}} \times \frac{1}{\Delta Q^{S}} \qquad P \qquad S$$

17:39:33

13

Suppose the demand function for good \boldsymbol{X} is:

$$Q_x^d = F (P_x, P_y, P_z, Income, Taste, ...)$$

Quantity demanded of good x

Price of other goods

Demand function

17:39:33

14

Suppose the demand function for good X is:

$$Q_x^d = F (P_x, P_y, P_z, Income, Taste, ...)$$

Income elasticity of demand measures the responsiveness of quantity demanded $(Q_x^{\ d})$ to changes in its income (I)

$E_{I} =$	% char	nge in q	uantity de	manded	(2)			
<i>L</i> _I –	9	% chang	e in inco	ne	10	\mathcal{J}_{λ}	Y	Qd
EI	=	Z		- =	(2	3	-	<u> </u>
F_	>	70	<u>د</u> ک	<u>√0,</u>	<u>></u>	3379	Δ	7
17:39:33	₹0	`	:44:	Ia	< ,	<u></u>	>0	15

Income Elasticity of Demand A good is a Normal Good if (and only if): income elasticity is positive, A good is an Inferior Good if (and only if): income elasticity is negative

The demand function is:

17:39:33

 $Q_x^d = F(P_x, P_y, P_z, Income, Taste, ...)$ Cross-price elasticity of demand measures the responsiveness of quantity demanded (Q_x^d) to changes in the price of other goods $(P_y \text{ or } P_z)$. $E_{AB} = \frac{\% \text{ change in quantity demanded for good A}}{\% \text{ change in price of good B}}$

Cross-price elasticity of demand

A pair of goods are **Substitutes** if (and only if): the **cross-price elasticity** of demand is positive

A pair of goods are **Complements** if (and only if): the **cross-price elasticity** of demand is negative

17:39:33

	Example #1:		
	A company finds that quantity demands is a function of: $Q_x^d = f(P_x)(P_y)(T)(A)$	_	
	where I is the income of people, P_y is the price of a related good, and A is the advertising level of the good.	_	
		_	
		_	
		_	
	17:39:33 19		
ı]	
	Example #1:	-	
		_	
		_	
	N=3	_	
	$\ln Q_x^d = 10 - 1.2 \times \ln P_x + 1.7 \times \ln P_I + 3 \times \ln I + 2 \times \ln A$	_	
		_	
	17:39:33 20	_	