Affine pavings of partial flag varieties

Xiaoxiang Zhou

Advisor: Prof. Dr. Catharina Stroppel Second Advisor: Dr. Jens Niklas Eberhardt

Universität Bonn

March 7, 2023

- Setting and Statement
- 2 Case study
- 3 Auslander–Reiten theory
- 4 Sketch of proof

- Setting and Statement
- 2 Case study
- 3 Auslander-Reiten theory
- 4 Sketch of proof

Affine paving

Setting

 $K = \mathbb{C}$, X: algebraic variety over K.

Definition

An **affine paving** of X is a filtration

$$0 = X_0 \subset X_1 \subset \cdots \subset X_d = X$$

with X_i closed and $X_{i+1} \setminus X_i \cong \mathbb{A}^k_{\kappa}$.

 $\mathbb{P}^1 \setminus \{0, \infty\}$ has no affine paving

Quiver and quiver representation

Quiver is a graph. It has some vertices & arrows. In this talk, all the quivers are finite and connected.

We focus on the Dynkin quiver.

That means, the graph of the Dynkin diagrams in the ADE series.

Partial flag variety

Definition

Fix a quiver Q and $M \in \operatorname{rep}(Q)$,

$$\operatorname{Flag}_d(M) \colon = \{ F \colon 0 \subseteq N_1 \subseteq \dots \subseteq N_d \subseteq M \}$$

$$\operatorname{Flag}_{\underline{\mathbf{f}}}(M) \colon = \{ F \colon 0 \subseteq N_1 \subseteq \dots \subseteq N_d \subseteq M \mid \underline{\dim} M_i = \underline{\mathbf{f}}_i \}$$

Example

$$Q = \bullet, \ M = \mathbb{C}^n, \ \underline{\mathbf{f}} := \binom{n}{1}$$

$$\operatorname{Flag}_d(\mathbb{C}^n) = \{F \colon 0 \subseteq N_1 \subseteq \dots \subseteq N_d \subseteq \mathbb{C}^n\}$$

$$\operatorname{Flag}_1(\mathbb{C}^n) = \{F \colon 0 \subseteq N_1 \subseteq \mathbb{C}^n\} = \sqcup_{k=0}^n \operatorname{Gr}(n,k)$$

$$\operatorname{Flag}_{\underline{\mathbf{f}}}(\mathbb{C}^n) = \text{ complete flags of } \mathbb{C}^n$$

$$\operatorname{Flag}_{(k)}(\mathbb{C}^n) = \operatorname{Gr}(n,k)$$

Statement

Setting and Statement 000000

Theorem

For a Dynkin quiver Q and $M \in \operatorname{rep}(Q)$,

 $\operatorname{Flag}_d(M)$ has an affine paving.

Setting and Statement

Case study ●○○

- 2 Case study
- Auslander-Reiten theory
- 4 Sketch of proof

Task 1.
$$Q = \bullet$$
, $M = \mathbb{C}^n$

In this case,

$$\operatorname{GL}_n(\mathbb{C}) \odot \mathbb{C}^n$$
 \longrightarrow $\operatorname{GL}_n(\mathbb{C}) \odot \operatorname{Flag}_d(\mathbb{C}^n)$ \longrightarrow $B \odot \operatorname{Flag}_d(\mathbb{C}^n)$

 $\operatorname{Flag}_d(\mathbb{C}^n)$ has an affine paving given by Schubert cells (i.e., B-orbits).

Note

When $Q = \bullet \longrightarrow \bullet$, $\operatorname{Flag}_{\mathbf{f}}(M)$ have no natural group actions.

Idea of affine pavings

Find a nice short exact sequence

$$0 \longrightarrow X \xrightarrow{\iota} M \xrightarrow{\pi} S \longrightarrow 0$$

which induces a nice morphism

$$\Psi: \operatorname{Flag}_d(M) \longrightarrow \operatorname{Flag}_d(X) \times \operatorname{Flag}_d(S)$$
$$F \longmapsto \left(\iota^{-1}(F), \pi(F)\right)$$

We construct the affine paving of $\operatorname{Flag}_d(M)$ from the affine paving of $\operatorname{Flag}_d(X)$ and $\operatorname{Flag}_d(S)$. Then, we use mathematical induction.

- 1 Setting and Statement
- 2 Case study
- 3 Auslander–Reiten theory
- 4 Sketch of proof

Another example: D_4

$$\begin{array}{c}
4 \\
\downarrow \\
1 \rightarrow 2 \leftarrow 3
\end{array}$$

 $^{1}_{000}$

100

For other examples, see here.

- Setting and Statement
- 2 Case study
- Auslander-Reiten theory
- 4 Sketch of proof