

6

Normalisasi 1NF

Arif Basofi, S.Kom Information Technology, PENS - ITS

Objectives

Tujuan:

- 1. Memahami pentingnya normalisasi.
- 2. Memahami normalisasi bentuk pertama (1NF).
- 3. Memahami aturan pembuatan normalisasi 1NF.

PENTINGNYA NORMALISASI

- Suatu rancangan database disebut <u>buruk</u> jika :
 - Data yang sama tersimpan di beberapa tempat (file atau record)
 - Ketidakmampuan untuk menghasilkan informasi tertentu
 - Terjadi kehilangan informasi
 - Terjadi adanya redudansi (pengulangan) atau duplikasi data sehingga memboroskan ruang penyimpanan dan menyulitkan saat proses updating data
 - Timbul adanya NULL VALUE.

PENTINGNYA NORMALISASI

- Kehilangan informasi bisa terjadi bila pada waktu merancang database (melakukan proses <u>dekomposisi yang keliru</u>).
- Tujuan **normalisasi** adalah menyempurnakan struktur table dengan:
 - mengeliminasi adanya duplikasi informasi,
 - memudahkan pengubahan struktur tabel,
 - memperkecil pengaruh perubahan struktur database,
 - dll.
- Bentuk normalisasi yang sering digunakan adalah 1st NF, 2nd NF, 3rd NF, dan BCNF.
- 2NF adalah lebih baik dari 1NF; 3NF adalah lebih baik dari 2NF.
- Untuk kepentingan rancangan database bisnis, **3NF** adalah bentuk terbaik dalam proses normalisasi (sudah mencukupi).
- Normalisasi dengan level paling tinggi tidak selalu diharapkan.
- Jadi normalisasi dilakukan, sepanjang dirasa sudah cukup normal (dgn mengikuti pra-syarat normalisasi diatas)

FUNCTIONAL DEPENDENCY (FD)

- Untuk melakukan normalisasi, harus bisa menentukan terlebih dahulu <u>Functional Dependency (FD)</u> atau <u>Ketergantungan</u> <u>Fungsional</u>, khususnya dalam melakukan dekomposisi rancangan database.
- Functional Dependency (FD) dapat disimbolkan dengan:
 A → B: artinya B memiliki ketergantungan dengan A
- Berarti A secara fungsional <u>menentukan</u> B atau B secara fungsional <u>tergantung</u> pada A.
 - Dengan kondisi: jika dan hanya jika untuk setiap rows data pada tabel T, maka jk ada 2 rows di tabel T dengan nilai pd A yang sama, maka nilai pd B pasti juga sama.
- Jadi, diberikan 2 rows, yaitu: row r1 dan row r2 dalam tabel T, dimana A → B, sehingga jika r1(A) = r2(A), maka r1(B)=r2(B)

FUNCTIONAL DEPENDENCY (FD)

Contoh:

	Mata_Kuliah	NRP	Nama	Nilai
row 1	Aplikasi Web	7405040100	Deni Astikapuri	Α
row 2	Aplikasi Web	7405040101	Uun Widiatmoko	Α
row 3	Basis Data 1	7405040100	Deni Astikapuri	В
row 4	Basis Data 1	7405040102	Wasis Waskito Adi	В
row 5	Basis Data 1	7405040103	lmam Bukhori	Α
row 6	Basis Data 2	7405040104	Aswina Rahayu Kumiati	Α
row 8	Administrasi Basis Data	7405040101	Uun Widiatmoko	AB

Functional Dependency:

- Fd1: NRP → Nama (nama bergantung pada NRP)
- Fd2: Mata_Kuliah, NRP → Nilai (nilai bergantung pd MK & NRP)

Non Functional Dependency:

- Mata_Kuliah → NRP
- NRP → Nilai

NORMALISASI 1NF

1st Normal Form (1NF)

- Merubah dari bentuk tabel tidak normal (unnormalized table) menjadi bentuk normal pertama (1NF).
- Suatu relation R disebut 1st NF jika dan hanya jika semua attribute value-nya simple/atomic (tidak boleh ada attribute yang composit & multivalue)
- Tujuan 1NF adalah:
 - Membuang adanya pengulangan (Redudansi) data,
 - Menghindari adanya pencatatan Null Value, dan
 - Menjaga setiap entry data dr relasi (perpotongan bariskolom) memiliki maksimal satu nilai tunggal.
- Beberapa table dapat mengandung partial depedency

NORMALISASI 1NF

Contoh-1:

1. Apakah bentuk relasi table Department sudah memenuhi normal 1 (1NF)? Jika belum normalisasikan.

DEPARTMENT						
<u>DNO</u>	DNAME	DMGRSSN	DLOCATIONS			

2. Apakah bentuk relasi table Emp_Proj sudah memenuhi normal 1 (1NF)? Jika belum normalisasikan.

EMP_PROJ					
<u>SSN</u>	ENAME	PNO	HOURS		

Contoh-1 (1)

NORMALISASI 1NF

- Sebuah bentuk relasi table Department dengan asumsi tiap department dapat memiliki sejumlah lokasi. (gambar (a) Department)
- Bentuk relasi table Department pd gambar tsb <u>bukan merupakan bentuk</u> normal <u>1NF</u>, karena <u>DLOCATIONS</u> bukan atribut atomic, sehingga pada kasus ini <u>DLOCATIONS</u> tidak benar-benar <u>Functional Dependent</u> (<u>FD</u>) pada <u>Primary Key DNUMBER</u>. DNUMBER → DLOCATIONS
- Atribut/kolom **DLOCATIONS**, dapat mengandung nilai lebih dari satu sehingga termasuk **multivalue** seperti ilustrasi gambar (a) Department.

DEPARTMENT

DNUMBER	DNAME	DMGRSSN	DLOCATIONS
5	Research	333445555	Bellaire, Sugarland, Houston
4	Administrati on	987654321	Stafford
1	Headquarte rs	888665555	Houston

DEPARTMENT

DNUMBER	<u>DNUMBER</u> DNAME		<u>DLOCATIONS</u>
5	Research	333445555	Bellaire
5	Research	333445555	Sugarland
5	Research	333445555	Houston
4	Administration	987654321	Stafford
1	Headquarters	888665555	Houston

(a) Department

(b) Department © 2005 PENS-ITS

Contoh-1 (1)

NORMALISASI 1NF

Terdapat 3 cara untuk mendapatkan bentuk normal 1 (**1NF**) dari skema relasi **DEPARTMENT**, yaitu:

1. Hapus atribut **DLOCATIONS** lalu pisahkan sehingga membentuk table baru **Dept_Locations**, atributnya terdiri atas **Primary Key** dari table **Department** dan atribut itu sendiri **DLOCATIONS**. Kedua atribut tersebut {**DNO,DLOCATIONS**} digabung membentuk **Primary Key**.

Contoh-1 (1)

NORMALISASI 1NF

- 2. Sama seperti cara 1, dengan pengembangan atribut key yang masih dalam 1 relasi (PK kombinasi {DNO,DLOCATIONS}), akan tetapi solusi ini kurang menguntungkan karena menyebabkan terjadinya **redudancy** dengan penulisan DNAME & DMGRSSN berulang-ulang (seperti pada gambar (b)).
- 3. Dengan mencari nilai max atribut DLOCATIONS, misal terdapat 3 lokasi dalam 1 department, sehingga strukturnya dirubah menjadi DLOCATION1, DLOCATION2, DLOCATION3, maka dapat menyebabkan terjadinya adalah **NULL VALUE** pada salah satu atribut/kolom DLOCATION-n.

Dari ketiga teknik diatas, yang lebih memenuhi adalah teknik yang **pertama**.

Contoh-1 (2)

NORMALISASI 1NF

Contoh-2

NORMALISASI 1NF

A. Unnormalized table (tabel tidak normal)

Suatu tabel dikatakan unnormalized jika:

a) Mempunyai <u>penggandaan field yang sejenis</u> Contoh:

Tabel dibawah adalah tabel siswa mengambil mata kuliah (MK)

SISWA

NRP	Nama	MK1	MK2	мкз
-----	------	-----	-----	-----

Tabel siswa diatas mempunyai 3 field yang sejenis, yaitu MK1, MK2 dan MK3. Sehingga tabel diatas adalah termasuk <u>unnormalized</u>.

Jika kita isikan nilai datanya, maka akan terjadi kemungkinan <u>null</u>

<u>value</u>, atau data mata kuliah yang diambil bisa lebih dari satu atau multivalue.

Contoh-2

NORMALISASI 1NF

b) Elemen datanya memungkinkan untuk **null value** (tidak berisi) Contoh:

Tabel yang mencatat No. SIM yang dimiliki siswa SISWA SIM

NIS	Nama	No SIM
1	Budi	12345
2	Amin	
3	Irfan	67890
4	Bayu	

Tampak dalam tabel diatas bahwa elemen data dari no SIM si-Amin dan si-Bayu adalah **null** atau tidak berisi nilai. Sehingga tabel di atas adalah termasuk **unnormalized**.

Contoh-2

NORMALISASI 1NF

B. NORMAL I (1NF)

• Suatu tabel dikatakan berada pada bentuk **normal I** jika ia tidak berada pada bentuk **unnormalized** table. Unnormalized table SISWA disebabkan karena adanya <u>multivalue</u> column yaitu **MK**, sehingga dilakukan proses **normalisasi I** (**1NF**).

Contoh:

Kalau tabel pada contoh (a) diatas kita normalisasi 1, dengan melakukan decompose menjadi 2 table yaitu :

Contoh-2

NORMALISASI 1NF

Kalau pada contoh (b) diatas kita normalisasi I, maka hasilnya akan didapatkan seperti ini :

Contoh-3

NORMALISASI 1NF

Contoh 1NF:

• Suatu format tabel yang dikenal sehari-hari :

Nama	Alamat	Nama_Anak	Pendidikan_Anak
Amir	Keputih 21	Ali	TK
		Budi	SD
		Cici	SMP

• Bentuk UnNormalize : (redudancy pada alamat)

Nama	Alamat	Nama_Anak	Pendidikan_Anak
Amir	Keputih 21	Ali	TK
Amir	Keputih 21	Budi	SD
Amir	Keputih 21	Cici	SMP

• Bentuk Normal 1NF & 2NF:

Contoh-3

NORMALISASI 1NF

Contoh Lain 1NF:

• Suatu format tabel yang dikenal sehari-hari :

<u>NIP</u>	Nama_Karwayan	Nama_Departemen	Gaji	<u>Kurs us</u>	Tgl_Seles ai
25210021	Ali Topan	Geologi Komputasi	2.000.000	AutoCAD Map	8-Oct-2002
				Potoshop	9-Oct-2002
25210022	James Bond	Pengeboran	1.250.000	3D MAX	9-Oct-2002
25210023	Cici Faramida	Geofisika Eksplorasi	1.500.000	3D MAX	9-Oct-2002
				Arc∀iew	10-Dec-2002
25210024	Siti Nurhaliza	Sistem Informasi	2.500.000	Oracle	21-Sep-2002
				SQL Server	21-Sep-2003

• Bentuk UnNormalize (redudancy):

<u>NIP</u>	Nama_Karyawan	Nama_Departemen	Gaji	<u>Kursus</u>	Tgl_Seles ai
25210021	Ali Topan	Geologi Komputasi	2.000.000	AutoCAD Map	8-Oct-2002
25210021	Ali Topan	Geologi Komputasi	2.000.001	Potoshop	9-Oct-2002
25210022	James Bond	Pengeboran	1.250.000	3D MAX	9-Oct-2002
25210023	Cici Faramida	Geofisika Eksplorasi	1.500.000	3D MAX	9-Oct-2002
25210023	Cici Faramida	Geofisika Eksplorasi	1.500.001	Arc∀iew	10-Dec-2002
25210024	Siti Nurhaliza	Sistem Informasi	2.500.000	Oracle	21-Sep-2002
25210024	Siti Nurhaliza	Sistem Informasi	2.500.001	SQL Server	21-Sep-2003