## **SUMMARY**

The task is to develop an image classification model trained on the given celebrity image dataset. The model aims to classify any input image into one of five classes - Lionel Messi, Roger Federer, Maria Sharapova, Serena Williams, and Virat Kohli.

The model architecture used is Convolutional Neural Network (CNN) with a sequential model involving two convolutional layers.

## **Training process**

Load each image using OpenCV, convert it to RGB color space, resize it to (128, 128), and finally, transform it into a NumPy array.

The dataset is split into training and testing sets in the ratio of 75% and 25%

The model summary is as follows:

| Layer (type)                                                                                              | Output | Shape         | Param # |  |  |  |
|-----------------------------------------------------------------------------------------------------------|--------|---------------|---------|--|--|--|
| conv2d (Conv2D)                                                                                           | (None, | 126, 126, 32) | 896     |  |  |  |
| <pre>max_pooling2d (MaxPooling2 D)</pre>                                                                  | (None, | 63, 63, 32)   | 0       |  |  |  |
| conv2d_1 (Conv2D)                                                                                         | (None, | 61, 61, 64)   | 18496   |  |  |  |
| <pre>max_pooling2d_1 (MaxPoolin g2D)</pre>                                                                | (None, | 30, 30, 64)   | 0       |  |  |  |
| dropout (Dropout)                                                                                         | (None, | 30, 30, 64)   | 0       |  |  |  |
| flatten (Flatten)                                                                                         | (None, | 57600)        | 0       |  |  |  |
| dense (Dense)                                                                                             | (None, | 64)           | 3686464 |  |  |  |
| dense_1 (Dense)                                                                                           | (None, | 5)            | 325     |  |  |  |
| Total params: 3706181 (14.14 MB) Trainable params: 3706181 (14.14 MB) Non-trainable params: 0 (0.00 Byte) |        |               |         |  |  |  |

The Adam optimizer is employed along with the Sparse Categorical Cross-Entropy loss function.

The model is trained on the given data for 10 epochs with batches of size 32, and 10% of the training data is reserved for validation. The resultant model has an accuracy of 76%. The classification report obtained is as follows:

| classification |           | mana11 | f1-score | o, occp |  |  |  |
|----------------|-----------|--------|----------|---------|--|--|--|
|                | precision | recall | TI-Score | support |  |  |  |
| 0              | 0.73      | 0.89   | 0.80     | 9       |  |  |  |
| 1              | 0.64      | 1.00   | 0.78     | 9       |  |  |  |
| 2              | 1.00      | 0.86   | 0.92     | 7       |  |  |  |
| 3              | 0.75      | 0.43   | 0.55     | 7       |  |  |  |
| 4              | 0.86      | 0.60   | 0.71     | 10      |  |  |  |
| accuracy       |           |        | 0.76     | 42      |  |  |  |
| macro avg      | 0.80      | 0.75   | 0.75     | 42      |  |  |  |
| weighted avg   | 0.79      | 0.76   | 0.75     | 42      |  |  |  |
|                |           |        |          |         |  |  |  |

The accuracy plot as follows:



The loss plot as follows:

