Optimisation convexe - Méthodes itératives

Descentes de gradient

Bashar Dudin

May 6, 2019

EPITA

Contraintes d'égalités | Cadre

On s'intéresse aux problèmes d'optimisation (P) de la forme

minimiser
$$f(x)$$

sujet à

$$Ax = b$$

où $f: \mathbb{R}^n \to \mathbb{R}$ est convexe \mathcal{C}^2 et $A \in \mathcal{M}_{p,n}(R)$.

Contraintes d'égalités | Cadre

On s'intéresse aux problèmes d'optimisation (P) de la forme

minimiser
$$f(x)$$

sujet à $Ax = h$

où $f: \mathbb{R}^n \to \mathbb{R}$ est convexe \mathscr{C}^2 et $A \in \mathscr{M}_{p,n}(R)$.

Hyp

- On suppose dans la suite que $rg(A) < n^a$; chose qu'on peut en particulier garantir quand p < n.
- On suppose que notre point de départ est admissible ^b.

^aQuel est le sens de cette hypothèse?

 $[^]b$ Qu'est-ce que cela implique?

Contraintes d'égalités | Cadre

On s'intéresse aux problèmes d'optimisation (P) de la forme

minimiser
$$f(x)$$

sujet à $Ax = b$

où $f: \mathbb{R}^n \to \mathbb{R}$ est convexe \mathscr{C}^2 et $A \in \mathscr{M}_{p,n}(R)$.

Hyp

- On suppose dans la suite que $rg(A) < n^a$; chose qu'on peut en particulier garantir quand p < n. Dans ce cas la condition de Slater est satisfaite.
- On suppose que notre point de départ est admissible ^b.

^aQuel est le sens de cette hypothèse?

^bQu'est-ce que cela implique?

Une méthode de second ordre

Soit f une fonction objectif convexe et x un point du domaine de f. Le DL de f au second ordre en x s'écrit

$$f(x + v) = f(x) + \nabla f(x)^{T} v + \frac{1}{2} v^{T} \nabla^{2} f(x) v + ||v||^{2} \varepsilon(v)$$

Une méthode de second ordre

Soit f une fonction objectif convexe et x un point du domaine de f. Le DL de f au second ordre en x s'écrit

$$f(x + v) = f(x) + \nabla f(x)^{T} v + \frac{1}{2} v^{T} \nabla^{2} f(x) v + ||v||^{2} \varepsilon(v)$$

On choisit d'approcher f(x + v) par l'expression de second ordre

$$f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v$$

C'est une fonction convexe en v qu'on sait minimiser. On obtient ici un minimisant donné par

$$\Delta x_N = -\left(\nabla f(x)\right)^{-1} \nabla f(x).$$

Algorithme de Newton

Algorithm 1 Méthode de Newton

Input: f: a function, x_0 : an initial point in the domain of f, ε : tolerance.

Output: x^* : an optimal solution of (*P*) if bounded from below

- 1: **function** Newton_Method(f, x_0 , ε)
- $2: x \leftarrow x_0$
- 3: $\Delta x_N \leftarrow -(\nabla^2 f(x))^{-1} \nabla f(x)$
- 4: $\lambda^2(x) = -\nabla f(x)^T \Delta x_N$
- 5: **while** $\frac{\lambda^2(x)}{2} > \varepsilon$ **do**
- 6: $\Delta x_N \leftarrow -(\nabla^2 f(x))^{-1} \nabla f(x)$
- 7: $\lambda^2(x) = -\nabla f(x)^T \Delta x_N$
- 8: compute step t > 0 of descent
- 9: $x \leftarrow x + t\Delta x_N$
- 10: end while
- 11: return x
- 12: end function