31. Итерационни методи за решаване на нелинейни уравнения.

Голяма част от методите за приближено пресмятане на корените на уравнения са итерационни. При тях се тръгва от някакво начално приближение x_0 . На всяка стъпка се извършва определена числена процедура (итерация), чрез която на базата на вече намерените приближения се намира следващото. Така се получава една редица $x_1, x_2, ..., x_n$, която клони към корена ξ на уравнението f(x) = 0. При достатъчно големи n числото x_n е приближение на корена ξ със зададена точност ε . Ще разгледаме един клас от итерационни методи, които се базират на така наречения метод на свиващите изображения.

Нека f(x) е функция, определена в [a,b]. Изследваме уравнението f(x)=0. Ще го запишем в еквивалентен вид: $x=\varphi(x)$, за да ни е по-удобно. Ако ξ е корен на уравнението f(x)=0, то е корен и на $\xi=\varphi(\xi)$. Избираме точка x_0 от [a,b] и построяваме редицата $x_0,x_1,x_2,...,x_n$, ... по правилото $x_{n+1}=\varphi(x_n), n=0,1,...$

При определени предположения за функцията φ , редицата $\{x_n\}_{n=0}^{\infty}$ е сходяща и клони към точка ξ , в която $\xi = \varphi(\xi)$. Това би означавало, че ξ е корен на уравнението $x = \varphi(x)$, тоест и на f(x) = 0. Така че трябва да определим кои са условията за φ , при които това ще стане.

Първо трябва да можем да построим редицата $\{x_n\}_{n=0}^{\infty}$. За целта всяка следваща точка трябва да принадлежи на дефиниционната област [a,b] на φ . Ще докажем следващата лема:

<u>Лема:</u> Ако φ е изображение на [a,b] в себе си, то при произволно начално приближение x_0 от [a,b], всички останали точки от редицата $\{x_n\}_{n=0}^{\infty}$ принадлежат също на [a,b].

Доказателство: Нека изберем произволно начално приближение x_0 от [a,b], то $x_1=\varphi(x_0)$ ще принадлежи също на [a,b]. Оттук $x_2=\varphi(x_1)\in [a,b]$ и т.н.

Тогава достатъчно условие, за да можем да построим редицата $\{x_n\}_{n=0}^{\infty}$ е да е изпълнено следното условие:

<u>Условие 1:</u> $\varphi(x)$ ∈ [a,b] за всяко x ∈ [a,b].

Тъй като търсим корена на уравнението $x = \varphi(x)$, то ние търсим точка ξ от [a,b], за която на $\xi = f(\xi)$. Точката ξ е неподвижна точка при изображението φ . Следващото условие гарантира поне една неподвижна точка:

1

Наистина, непрекъсната нека функция, удовлетворява която условието. Ако $a = \varphi(a)$. TO неподвижна точка. Аналогично, $b = \varphi(b)$, то b е неподвижна точка. Да допуснем, че $a \neq \varphi(a)$ и $b \neq \varphi(b)$. Тъй като φ е изображение на [a,b] в себе си, $\varphi(a) \in [a,b],$ $\varphi(b) \in [a,b]$ TO

следователно $a-\varphi(a)<0$ и $b-\varphi(b)>0$ (виж чертежа, за да разбереш защо). Разглеждаме функцията $r(x)=x-\varphi(x)$. Тя е непрекъсната в [a,b] и r(a)<0, r(b)>0. Следователно съществува точка ξ от [a,b] такава, че $r(\xi)=0$, тоест $\xi=\varphi(\xi)$. Така доказахме следната лема:

<u>Лема:</u> Ако φ е непрекъснато изображение на интервала [a,b] в себе си, то φ има неподвижна точка в [a,b].

Остава да видим какви условия върху φ ще гарантират **сходимост на** редицата $\{x_n\}_{n=0}^{\infty}$ към неподвижната точка ξ .

<u>Дефиниция:</u> Казваме, че изображението φ : $[a,b] \to \mathbb{R}$ е **Липшицово** с константа q > 0, ако $\forall x, y \in [a,b]$ е изпълнено $|\varphi(x) - \varphi(y)| \le q|x - y|$. <u>Дефиниция:</u> Липшицово изображение с константа q < 1 наричаме φ свиващо изображение.

<u>Теорема:</u> Нека φ е непрекъснато изображение на [a,b] в себе си, което удовлетворява условието на Липшиц с константа q < 1. Тогава:

- А) Изображението φ притежава единствена неподвижна точка ξ в [a,b];
- Б) При всяко начално приближение $x_0 \in [a,b]$ редицата $\{x_n\}_{n=0}^{\infty}$, зададена с $x_{n+1}=\varphi(x_n)$, n=0,1,... е сходяща и има граница ξ . При това е изпълнено

$$|x_n - \xi| \le q^n(b - a).$$

Доказателство: По лемата към условие 2 ф има поне една неподвижна точка.

Да допуснем, че те са две: ξ_1, ξ_2 и $\xi_1 \neq \xi_2$ ($\xi_1, \xi_2 \in [a,b]$). Тогава:

$$0 < |\xi_1 - \xi_2| = |\varphi(\xi_1) - \varphi(\xi_2)| \le q|\xi_1 - \xi_2|$$

Откъдето би трябвало да получим, че q=1, но по условие q<1 и достигаме до противоречие, което се дължи на допускането, че може да има повече от една неподвижна точка.

$$\begin{aligned} |x_n - \xi| &= |\varphi(x_{n-1}) - \varphi(\xi)| \le q|x_{n-1} - \xi| = q|\varphi(x_{n-2}) - \varphi(\xi)| \\ &\le q^2|x_{n-2} - \xi| \le \cdots \le q^n|x_0 - \xi| \end{aligned}$$

Тъй като
$$x_0 \in [a,b]$$
 и $\xi \in [a,b]$, то $|x_0 - \xi| < b-a$. Така получаваме: $|x_n - \xi| \le q^n(b-a)$

От тази теорема следва достатъчното условие едно изображение да е свиващо, изразено в лемата:

<u>Лема:</u> Ако φ е непрекъснато изображение на [a,b] в [a,b] и φ притежава производна в (a,b), като $|\varphi'(x)| \leq q < 1$, тогава φ е свиващо изображение.

Доказателство: От теоремата за крайните нараствания следва, че

$$\varphi(x) - \varphi(y) = \varphi'(\xi)(x - y)$$

За някое ξ между x и y. Тогава

$$|\varphi(x) - \varphi(y)| = |\varphi'(\xi)||x - y| \le q|x - y|$$

Тоест ф е свиващо изображение.

<u>Следствие:</u> Нека ξ е корен на уравнението $x = \varphi(x)$. Да предположим, че φ има непрекъсната производна в околност $\mathfrak U$ на ξ и $|\varphi'(\xi)| < 1$. Тогава при достатъчно добро начално приближение x_0 итерационнитят процес, породен от φ , е сходящ. Нещо повече, съществува константа C > 0 и 0 < q < 1 такива, че

$$|x_n - \xi| \le Cq^n$$

за всяко п.

Доказателство: Тъй като $\varphi'(t)$ е непрекъсната функция в $\mathfrak U$ и $|\varphi'(\xi)| < 1$, то съществува околност $\mathfrak U_1 = (\xi - \varepsilon; \ \xi + \varepsilon)$ с $\varepsilon > 0$ и число 0 < q < 1 такива, че

$$|\varphi'(t)| \le q$$
 за всяко $t \in \mathfrak{U}_1$.

Тогава ако $x_0 \in \mathfrak{U}_1$, то

 $|x_1 - \xi| = |\varphi(x_0) - \varphi(\xi)| = |\varphi'(\theta)| |x_0 - \xi| \le q |x_0 - \xi| \le q \varepsilon < \varepsilon$ където $\theta \in \mathfrak{U}_1$. Тоест $x_1 \in \mathfrak{U}_1$ и оттам $x_n \in \mathfrak{U}_1$ за всяко п. Следователно φ е свиващо изображение на интервала \mathfrak{U}_1 в себе си с константа q < 1. От теоремата следва, че за всяко $x_0 \in \mathfrak{U}_1$:

$$|x_n - \xi| \le C. q^n, \forall n \in \mathbb{N}, C = \xi + \varepsilon - \xi + \varepsilon = 2\varepsilon > 0$$

От всичко дотук можем да заключим, че $\{x_n\}_{n=0}^{\infty}$ клони към корена ξ със скоростта на геометрична прогресия с частно q, 0 < q < 1.

<u>Дефиниция:</u> Казваме, че итерационният процес $x_{n+1} = \varphi(x_n)$ има ред на сходимост p > 1, ако при достатьчно добро начално приближение x_0 съществуват константи C > 0, 0 < q < 1, такива че

$$|x_n - \xi| \le C.q^{p^n}$$
, $\forall n \in \mathbb{N} \ (\xi \ e \ неподвижна точка на φ).$

<u>Теорема:</u> Нека ф притежава непрекъснати производни до ред р (включително) в околност на неподвижната точка за ф ξ. Нека

$$\varphi'(\xi) = \varphi''(\xi) = \dots = \varphi^{(p-1)}(\xi) = 0, \varphi^{(p)} \neq 0$$

Тогава итерационният процес, зададен от φ, има ред на сходимост р. <u>Доказателство:</u> По формулата на Тейлор получаваме

$$\varphi(x) = \varphi(\xi) + \frac{\varphi'(\xi)}{1!} (x - \xi) + \dots + \frac{\varphi^{(p-1)}(\xi)}{(p-1)!} (x - \xi)^{p-1} + \frac{\varphi^{(p)}(\xi + \theta(x - \xi))}{p!} (x - \xi)^p$$

Където $|\theta| < 1$.

Тъй като ξ е неподвижна точка, то $\varphi(\xi)=\xi$. От условието имаме и че $\varphi^{(j)}(\xi)=0$ за j=1,...,p-1. Следователно:

$$\varphi(x) - \xi = \frac{\varphi^{(p)}(\xi + \theta(x - \xi))}{p!}(x - \xi)^p$$

Следователно $|\varphi(x) - \xi| \le M|x - \xi|^p$ при всяко x от достатьчно малка околност $\mathfrak U$ на ξ , където M е горната граница на $\frac{|\varphi^{(p)}(x)|}{p!}$. Щом като това е вярно за всяко x от въпросния интервал, то е вярно и за $x = x_n$:

$$\begin{split} |x_{n+1} - \xi| &= |\varphi(x_n) - \varphi(\xi)| \leq M|x_n - \xi|^p = M|\varphi(x_{n-1}) - \varphi(\xi)|^p \\ &\leq M\{M|x_{n-1} - \xi|^p\}^p = M^{p+1}|x_{n-1} - \xi|^{p^2} \\ &\leq M^{1+p+p^2}|x_{n-2} - \xi|^{p^3} \leq \dots \leq M^{1+p+\dots+p^n}|x_0 - \xi|^{p^{n+1}} \\ &= M^{\frac{p^{n+1}-1}{p-1}}|x_0 - \xi|^{p^{n+1}} = M^{\frac{1}{1-p}} \Big(M^{\frac{1}{p-1}}|x_0 - \xi|\Big)^{p^{n+1}} \end{split}$$

Когато x_0 е достатъчно близко до $\xi, M^{\frac{1}{p-1}}|x_0-\xi| < q < 1$ и следователно $|x_{n+1}-\xi| \leq cq^{p^{n+1}}$ за всяко n,

където сме положили $c = M^{\frac{1}{1-p}}$.

Метод на хордите

Нека [a;b] е даден краен интервал и f(x) е два пъти диференцируема в него функция, която удовлетворява условията:

- f(a).f(b) < 0
- $f'(x)f''(x) \neq 0, \forall x \in [a; b]$

От първото условие следва съществуването на точка $\xi \in (a; b)$ такава, че $f(\xi) = 0$. От второто условие следва, че f'(x) и f''(x) не се анулират в [a; b], тоест имат постоянен знак в този интервал. От тук следва, че f(x) е строго монотонна функция, при това или е вдлъбната, или е изпъкнала. От където следва, че съществува единствена точка ξ , за която $f(\xi) = 0$.

Принципът за получаване на приближенията $x_0, x_1, ...$ е следния: за a и b пресмятаме f.f''. Тъй като f'' има постоянен знак в целия интервал, а f(a) и f(b) имат различни знаци, то точно за една от стойностите a и b ще е

изпълнено условието $f.f^{\prime\prime}>0$. Този край на интервала се използва за постоянен край на всички хорди. За стойността на x_0 взимаме другия край

на интервала.

Ha графиката e получаване начина на на приближение началното след това на всяко следващо приближение в случая, когато f' > 0, f'' > 0.тези условия, следва че f(b).f''(b) > 0.Тоест ще изберем $x_0 = a$.

Сега трябва да намерим представяне на x_{n+1} чрез x_n .

За определеност ще смятаме, че $f^{\prime\prime}(x)>0$ (както е на графиката). Тъй като l_{n+1} свързва точките $(x_n, f(x_n))$ и (b, f(b)), то правата има уравнение

$$l_{n+1} = f(x_n) \frac{x-b}{x_n - b} + f(b) \frac{x-x_n}{b-x_n}$$

$$= f(x_n) \frac{x-b-x_n+x_n}{x_n - b} + f(b) \frac{x-x_n}{b-x_n}$$

$$= f(x_n) \frac{x_n - b}{x_n - b} + f(x_n) \frac{x-x_n}{x_n - b} + f(b) \frac{x-x_n}{b-x_n}$$

$$= f(x_n) + \frac{f(b) - f(x_n)}{b-x_n} (x-x_n) = f(x_n) + f[x_n, b](x-x_n)$$

Приближението
$$x_{n+1}$$
 е решение на уравнението $l_{n+1}=0$. Следователно $x_{n+1}=x_n-\frac{f(x_n)}{f[x_n,b]}=x_n-\frac{f(x_n)}{f(b)-f(x_n)}(b-x_n)$

Това е и формулата за намиране на последователните приближения на корена ξ по метода на хордите.

Трябва да докажем, че наистина x_n клони към ξ при $n \to \infty$. Ще използваме, че в случая функцията f е изпъкнала. От нея може да се види, че редицата $x_0, x_1, ...$ е монотонна и ограничена редица и следователно е и сходяща. Нека α е нейната граница. Тогава, правейки граничен преход във формулата за метода на хордите

$$x_{n+1} = x_n - \frac{f(x_n)}{f(b) - f(x_n)}(b - x_n)$$

получаваме следното

$$\alpha = \alpha - \frac{f(\alpha)}{f(b) - f(\alpha)}(b - \alpha)$$

откъдето

$$f(\alpha) = 0$$

Следователно $\alpha = \xi$, тъй като функцията е монотонна и следователно има само един корен. Тогава сходимостта към ξ е доказана.

От формулата се вижда, че методът на хордите е итерационен процес, породен от функцията

$$\varphi(x) = x - \frac{f(x)}{f(b) - f(x)}(b - x)$$

Очевидно уравнението $\varphi(x) = x$ е еквивалентно на f(x) = 0. Нека намерим $\varphi'(\xi)$:

$$\varphi'(x) = 1 - f'(x) \frac{(b - x)}{f(b) - f(x)} - f(x) \left(\frac{(b - x)}{f(b) - f(x)}\right)'$$

Тогава тъй като $f(\xi) = 0$, получаваме

$$\varphi'(\xi) = 1 - f'(\xi) \frac{(b - \xi)}{f(b) - \underbrace{f(\xi)}_{2}} = \frac{f(b) - f'(\xi)(b - \xi)}{f(b)}$$

Ще представим f(b) по два начина чрез фомуата на Тейлор:

$$f(b) = f(\xi) + f'(\xi)(b - \xi) + \frac{f''(\theta_1)}{2}(b - \xi)^2$$

И

$$f(b) = f(\xi) + f'(\theta_2)(b - \xi)$$

където θ_1 и θ_2 са някакви точки от (a, b).

Заместваме двете представяния в израза за производната на ϕ в точката ξ съответно в числителя и знаменателя и получаваме следното:

$$\varphi'(\xi) = \frac{f(\xi) + f'(\xi)(b - \xi) + \frac{f''(\theta_1)}{2}(b - \xi)^2 - f'(\xi)(b - \xi)}{f(\xi) + f'(\theta_2)(b - \xi)}$$

$$= \frac{2f(\xi) + f''(\theta_1)(b - \xi)^2}{2(f(\xi) + f'(\theta_2)(b - \xi))}$$

Но тъй като ξ е корен на f, то $f(\xi) = 0$. Заместваме в горното и получаваме:

$$\varphi'(\xi) = \frac{f''(\theta_1)(b-\xi)}{2f'(\theta_2)}$$

Нека

$$M=\max_{t\in[a,b]}|f''(t)|$$
, $m=\min_{t\in[a,b]}|f'(t)|$
От условието, че $f'(t)
eq 0$, следва че и $m
eq 0$. Тогава

$$|\varphi'(\xi)| \le \frac{M}{2m} |b - \xi|$$

Очевидно $|\phi'(\xi)|$ може да стане по-малко от произволно предварително избрано q < 1, стига $|b - \xi|$ да е достатъчно малко, тоест стига интервалът [a,b] да е достатъчно малък. Тоест ако сме отделили корена ξ в достатъчно малък интервал [a,b], то

$$|\varphi'(\xi)| < q < 1$$

Оттук итерационният процес породен от ϕ , тоест методът на хордите) е сходящ със скорост на геометричната прогресия

$$|x_n - \xi| \le const. q^n$$

Методът на секущите

Нека отново [a;b] е даден краен интервал и f(x) е два пъти диференцируема в него функция, която удовлетворява условията:

- f(a).f(b) < 0
- $f'(x)f''(x) \neq 0, \forall x \in [a; b]$

При методът на секущите приближението x_{n+1} се получава въз основа на двете приближения x_n и x_{n-1} . Избираме $x_0 = a$ или $x_0 = b$, за което е изпълнено условието $f(x_0)f''(x_0) > 0$ (нека за илюстрацията $x_0 = b$). След това избираме точка x_1 , която да е между x_0 и корена ξ . Начинът, по който избираме x_1 е следния: избираме случайно число c от интервала [a;b] и проверяваме дали $f(x_0)f(c) > 0$. Ако е вярно, значи че x_0 и c са с един и същи знак, което означава, че са от една и съща страна на ξ . Тоест в този случай c изпълнява условията ни и го избираме за x_1 . В противен случай харесаното от нас по произволен начин число и избраното първоначално приближение са от двете различни страни на корена и не можем да го изберем за x_1 . Но поне можем да намалим интервала [a;b] като му отрежем частта между c и края на интервала, различен от x_0 .

След като вече сме определили началните две приближения, построяваме всеко следващо приближение по следния начин: построяваме секущата l_n през точките $(x_n, f(x_n))$ и $(x_{n-1}, f(x_{n-1}))$ и взимаме пресечната й точка с абцисата за x_{n+1} .

Сега трябва да намерим изразяване на x_{n+1} чрез x_n и x_{n-1} . $l_n(x) = f(x_n) + f[x_{n-1}, x_n](x - x_n)$ Следователно x_{n+1} се определя от уравнението

$$f(x_n) + f[x_{n-1}, x_n](x - x_n) = 0$$

$$\Rightarrow x_{n+1} = x_n - \frac{f(x_n)}{f[x_{n-1}, x_n]} = x_n - \frac{f(x_n)}{f(x_{n-1}) - f(x_n)} (x_{n-1} - x_n)$$

Ако началните приближения x_0 и x_1 удовлетворяват условието $|x_0-\xi|\leq Cq^{r^0}, \quad |x_1-\xi|\leq Cq^{r^1}, \quad \text{където} \quad 0< q<1, \quad C \quad \text{е} \quad \text{константата}$ такава, че $\frac{M}{2m}C<1, \quad M=\max_{t\in[a,b]}|f''(t)|, \quad m=\min_{t\in[a,b]}|f'(t)|$ и $r=\frac{1+\sqrt{5}}{2}$ (ред на сходимост на метода на секущите). Тогава

$$|x_n - \xi| \le Cq^{r^n}$$
 за всяко n .

Метод на Нютон (метод на допирателните)

Нека отново [a;b] е даден краен интервал и f(x) е два пъти диференцируема в него функция, която удовлетворява условията:

- f(a).f(b) < 0
- $f'(x)f''(x) \neq 0, \forall x \in [a; b]$

Избираме $x_0 = a$ или $x_0 = b$, за което е изпълнено условието $f(x_0)f''(x_0) > 0$ (нека за илюстрацията $x_0 = b$). Следващото приближение x_1 намираме като пресечна точка на оста x с допирателната d_0 към графиката на функцията y = f(x) в точката x_0 . Така x_{n+1} е нулата на допирателната d_n към f в точката x_n .

$$d_n(x) = f(x_n) + f'(x_n)(x - x_n)$$

Следователно x_{n+1} е решение на уравнението

$$f(x_n) + f'(x_n)(x - x_n) = 0$$

$$\Rightarrow x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Това е формулата на Нютон за приближено пресмятане на корена

на уравнението f(x) = 0.

Получаваме итерационен процес породен от $\varphi(x) = x - \frac{f(x)}{f'(x)}$. Също така $\varphi(x) = x \Leftrightarrow f(x) = 0$ т.е. са еквивалентни. Освен това $\varphi'(x) = 1 - \frac{f'(x).f'(x)-f(x).f''(x)}{(f'(x))^2} \Rightarrow \varphi'(\xi) = 1 - \frac{f'(\xi).f'(\xi)-f(\xi).f''(\xi)}{(f'(\xi))^2} = 1 - \frac{(f'(\xi))^2-0}{(f'(\xi))^2} = 0$ използвахме, че $f(\xi) = 0$. От друга страна имаме:

$$\varphi''(x) = 0 - \left(\frac{f'(x)f'(x) - f(x)f''(x)}{(f'(x))^{2}}\right)' =$$

$$= -0 + \frac{(f(x).f''(x))'(f'(x))^{2} - f(x)f''(x)2f'(x)f''(x)}{(2f'(x)f''(x))^{2}} =$$

$$= \frac{(f(x).f''(x))'(f'(x))^{2}}{(2f'(x)f''(x))^{2}} - f(x)\frac{f''(x)2f'(x)f''(x)}{(2f'(x)f''(x))^{2}} =$$

$$= \frac{f'(x).f''(x) + f(x)f'''(x)}{(2f''(x))^{2}} - f(x)\frac{f''(x)2f'(x)f''(x)}{(2f'(x)f''(x))^{2}} =$$

$$= \frac{f'(x)}{2f''(x)} + f(x)\frac{f'''(x)}{(2f''(x))^{2}} - f(x)\frac{f''(x)2f'(x)f''(x)}{(2f'(x)f''(x))^{2}}$$

Окончателно получаваме: $\varphi''(\xi) = \frac{f'(\xi)}{2f''(\xi)}$, което в общия случай е различно от нула. Т.е. φ е два пъти диференцируема и само първата и производна е 0. От теоремата получаваме, че итерационния процес породен от φ е сходящ с ред на сходимост 2 при всяко достатъчно добро първоначално приближение. С други думи съществуват константи C и $q \in (0;1)$ такива, че

$$|x_n - \xi| \le Cq^{2^n}$$