Greedy Algorithms

CSE 101: Design and Analysis of Algorithms
Lecture 9

CSE 101: Design and analysis of algorithms

- Greedy algorithms
 - Reading: Kleinberg and Tardos, sections 4.1, 4.2,
 and 4.3
- Homework 4 is due Oct 30, 11:59 PM

Event scheduling

Event scheduling

- Your goal is to schedule the most events possible that day such that no two events overlap
- Exponential is too slow. Let's try some greedy strategies:
 - Shortest duration
 - Earliest start time
 - Fewest conflicts (take away most conflicts)
 - Earliest end time

Shortest duration

Shortest duration

Earliest start time

Earliest start time

Fewest conflicts

Counterexample for fewest conflicts

Counterexample for fewest conflicts

Earliest end time

Event scheduling

- Your goal is to schedule the most events possible that day such that no two events overlap
- Exponential is too slow. Let's try some greedy strategies:
 - Shortest duration
 - Earliest start time
 - Fewest conflicts
 - Earliest end time (we cannot find a counterexample!)

Problem specification

- Design an algorithm that uses the greedy choice of picking the next available event with the earliest end time
 - Instance: n events E_1 , ..., E_n each with a start time s and end time f_i , E_i = (s_i, f_i)
 - Solution format: list of events
 - Constraints: events cannot overlap
 - Objective: maximize the number of events

Event scheduling implementation

```
Initialize a queue S

Sort the intervals by end time

Put the first event E_1 in S

Set F = f_1 F is finish time of last event put in S

For i = 2 \dots n:

If s_i \geq F: Else, s_i < F, E_i conflicts with last event put in S enqueue(E_i, S)

F = f_i

Return S
```

Proving optimization algorithms correct

- Remember what we need to show
 - Let I be any instance of our problem, GS the greedy algorithm's solution, and OS any other solution
 - If minimization: Cost (OS) ≥ Cost(GS)
 - If maximization: Value(GS) ≥ Value (OS)

Proving optimality

- What does it mean that the greedy algorithm solves an optimization problem?
- I: problem instance
- GS: greedy solution to I
- OS: other solution to I
- For the greedy solution to be optimal, this means that $Value(OS) \le Value(GS)$ for maximization (or $Cost(GS) \le Cost(OS)$ for minimization)
- We need to show
 - For every instance I, let GS be the greedy algorithm's solution to I. Let OS be any other solution for I. Then,

 $Value(OS) \le Value(GS)$ (or $Cost(GS) \le Cost(OS)$ for minimization)

 Tricky part: OS is arbitrary solution, not one that makes sense. We do not know much about it.

Techniques to prove optimality

- We will look at a number of general methods to prove optimality
 - Greedy modify the solution (also referred to as greedy exchange): most general
 - Greedy stays ahead: more intuitive
 - Greedy achieves the bound: also comes up in approximation, linear programming, network flow
- Which one to use is up to you, but modify the solution applies almost universally. Others can be easier, but only work in special cases.

Greedy modify the solution

- General structure of modify the solution
 - 1. Let g be the first greedy choice the algorithm makes
 - 2. Let OS be a solution achieved by not choosing g
 - 3. Show how to transform OS into some solution OS that chooses g, and that is at least as good as OS
 - Must show that OS' is a valid solution and that OS' is better than or equal to OS
 - 4. Use 1-3 in an inductive argument
 - Must show that OS' is a valid solution and that OS' is better than or equal to OS
 - Base Case: the greedy strategy works for an instance of size 1
 - Assume the greedy strategy works for all instances of size < n
 - Let OS be any solution for instance I, |I| = n. Then, there is another solution OS' such that $|OS| \le |OS'|$ and OS' includes the first greedy choice g $|OS| \le |OS'| = |\{g\} \cup OS(I')| \le |\{g\} \cup GS(I')| = |GS(I)|$

Earliest end time, greedy modify the solution

Correctness:

- Let $E = \{E_1, \dots E_n\}$ be the set of all events with the start time s_i and finish time f_i of E_i
- Greedy modify the solution: Say E_1 is the event with the earliest finish time (E_1 is the first greedy choice)
- Let OS be a legal schedule that does not include E_1
- Claim: there is a schedule OS' that does include E_1 such that $|OS'| \ge |OS|$
- Proof: (greedy modify the solution)
- Let the events in OS be $J_1, ..., J_k$, ordered by start and finish times $(J_1 \neq E_1)$
- Define OS' from OS

$$E_1(f) \le J_1(f)$$

Earliest end time, greedy modify the solution

- What we have to start
- OS

 J_1 First greedy decision

Earlier finish time than J_1

Our to do list

Define OS'

- *OS*' must have no overlaps
- OS' must include E_1
- $|OS'| \ge |OS|$

Define OS'

OS

 J_1 J_2

First greedy decision

E

 $OS' = OS \cup \{E_1\}$ – {events in OS that conflict with E_1 }

OS' is valid (there are no conflicts, by design) What to show: $|OS'| \ge |OS|$

Define OS'

OS

1

 I_2

 I_{ν}

First greedy decision

E.

$$E_1(f) \le J_1(f)$$

 $OS' = OS \cup \{E_1\} - \{J_1\}$, if J_1 intersects with E_1 $OS' = OS \cup E_1$, otherwise

OS' has no overlaps

- $OS' = OS \cup \{E_1\} \{J_1\}$, if J_1 intersects with E_1
- $OS' = OS \cup E_1$, otherwise

$$E_1(f) \le J_1(f)$$

Only new place for overlaps: E_1 with J_2 , so we need to show $E_1(f) \le J_2(s)$

OS' has no overlaps

- $OS' = OS \cup \{E_1\} \{J_1\}$, if J_1 intersects with E_1
- $OS' = OS \cup E_1$, otherwise

$$E_1(f) \le J_1(f)$$

Only new place for overlaps: E_1 with J_2 , so we need to show $E_1(f) \le J_2(s)$

$$E_1(f) \le J_1(f) \le J_2(s)$$

OS' is at least as good as OS

- $OS' = OS \cup \{E_1\} \{J_1\}$, if J_1 intersects with E_1
- $OS' = OS \cup E_1$, otherwise

Either of the above |OS'| = |OS| + 1 - 1 = |OS|, or |OS'| = |OS| + 1 > |OS|

$$|OS'| \ge |OS|$$

Induction

- There is an optimal solution that always picks the greedy choice
 - Proof by strong induction on n, the number of events
 - Base case: n=0 or n=1. The greedy (actually, any) choice works.
 - Inductive hypothesis (strong)
 - Assume that the greedy algorithm is optimal for any k events for $0 \le k \le n-1$ (i.e., if |I| < n, then for any solution OS(I), $|OS(I)| \le |GS(I)|$)
 - Goal: greedy is optimal for any n events

Induction

- Inductive Step: Let OS be any solution of the set of events $I = \{E_1, ..., E_n\}$. Then, there exists a solution OS' such that $|OS| \le |OS'|$ and OS' includes the first greedy choice E_1 .
- Let I' be the set of events that do not conflict with E_1
- Then, $OS' = \{E_1\} \cup S(I')$, where S(I') is some solution of I'
- Since |I'| < n, by the inductive hypothesis, $|S(I')| \le |GS(I')|$
- And, by definition, $GS(I) = \{E_1\} \cup GS(I')$
- Conclusion

$$|OS| \le |OS'| = |\{E_1\} \cup S(I')| \le |\{E_1\} \cup GS(I')| = |GS(I)|$$

The greedy solution GS is optimal for every set of events

Induction

- Inductive Step: Let OS be any solution of the set of events $I = \{E_1, ..., E_n\}$. Then, there exists a solution OS' such that $|OS| \le |OS'|$ and OS' includes the first greedy choice E_1 .
- Let I' be the set of events that do not conflict with E_1
- Then, $QS' = \{E_1\} \cup S(I')$, where S(I') is some solution of I'
- Since |I'| < n, by the inductive hypothesis, $|S(I')| \le |GS(I')|$
- And, by definition, $GS(I) = \{E_1\} \cup GS(I')$
- Conclusion $|OS| \le |OS'| = |\{E_1\} \cup S(I')| \le |\{E_1\} \cup GS(I')| = |GS(I)|$
 - The greedy solution GS is optimal for every set of events

General greedy modify the solution template

 Lemma: Let g be the first greedy decision. Let OS be any legal solution that does not pick g. Then, there is a solution OS' that does pick g and OS' is at least as good as OS.

General greedy modify the solution template, proof of lemma

- Lemma: Let g be the first greedy decision. Let OS be any legal solution that does not pick g. Then, there is a solution OS' that does pick g and OS' is at least as good as OS.
 - 1. State what we know: Definition of g. OS meets constraints.
 - 2. Define OS' from OS, g This requires creativity
 - 3. Prove that OS' meets constraints (use 1, 2)
 - 4. Compare value/cost of OS' to OS (use 2, sometimes 1)

General greedy modify the solution template, induction

- Lemma: Let g be the first greedy decision. Let OS be any legal solution that does not pick g. Then, there is a solution OS' that does pick g and OS' is at least as good as OS.
- Prove by strong induction on instance size that GS is optimal
- Induction step
 - 1. Let g be first greedy decision. Let I' be "rest of problem given g"
 - 2. GS = g + GS(I')
 - 3. OS is any legal solution
 - 4. OS' is defined from OS by the modify the solution argument (if OS does not include g)
 - 5. OS' = g + some solution on I'
 - 6. Induction: GS(I') at least as good as some solution on I'
 - 7. GS is at least as good as OS', which is at least as good as OS

Event scheduling implementation

```
Initialize a queue S

Sort the intervals by end time

Put the first event E_1 in S

Set F = f_1

For i = 2 \dots n:

If s_i \ge F:

enqueue(E_i, S)

F = f_i

Return S
```

Another method: greedy achieves the bound

Greedy achieves the bound

- This is a proof technique that does not work in all cases
- The way it works is to argue that when the greedy solution reaches its peak cost, it reveals a bound
- Then, show this bound is also a lower bound on the cost of any other solution
- So we are showing: Cost(GS) ≤ Bound ≤ Cost (OS)
- Allows the two inequalities to be separated

Event scheduling with multiple rooms

- Suppose you have a conference to plan with n events and you have an unlimited supply of rooms. How can you assign events to rooms in such a way as to minimize the number of rooms?
- Greedy choice:

Event scheduling with multiple rooms

- Suppose you have a conference to plan with n events and you have an unlimited supply of rooms. How can you assign events to rooms in such a way as to minimize the number of rooms?
- Greedy choice:
 - Run previous algorithm and put results in room 1
 - Repeat on remainder and put results in room 2
 - Repeat until all events have a room

Counterexample

Event scheduling with multiple rooms

- Suppose you have a conference to plan with n events and you have an unlimited supply of rooms. How can you assign events to rooms in such a way as to minimize the number of rooms?
- Greedy choice:
 - Number the rooms from 1 to n
 - Sort the events by earliest start time
 - Put the first event in room 1
 - For events 2, ..., n, put each event in the smallest numbered room that is available

When does GS reach peak cost?

Why did we have to use four rooms? What happened at the time we reached "peak cost"?

Defining the lower bound

- Let t be a certain time during the conference
- Let B(t) be the set of all events E such that $t \in E$
- Let R be the number of rooms you need for a valid schedule
- Then, $R \ge |B(t)|$ for all t
- Proof
 - For any time t, let E_{i_1} , ..., $E_{i_{|B(t)|}}$ be all the events in B(t)
 - Then, since they all are happening at time t, they all have to be in different rooms, so $R \ge |B(t)|$
- Let $L = \max_{t} |B(t)|$. Then, L is the lower bound on the number of rooms needed.

Greedy achieves the bound

- Let k be the number of rooms picked by the greedy algorithm. Then, at some point t, $|B(t)| \ge k$ (i.e., there are at least k events happening at time t).
- Proof
 - Let t be the starting time of the first event to be scheduled in room k
 - Then, by the greedy choice, room k was the least number room available at that time
 - This means at time t there was an event happening in room 1, room 2,
 ..., room k-1. And, an additional event happening in room k
 - Therefore, $|B(t)| \ge k$ at some point t

Conclusion: greedy is optimal

- The greedy algorithm uses the minimum number of rooms
 - Let GS be the greedy solution, k = Cost(GS) the number of rooms used in the greedy solution
 - Let k be the number of rooms the greedy algorithm uses and let R be any valid schedule of rooms. There exists a t such that at all time, k events are happening simultaneously. So R uses at least k rooms. So, R uses at least as many rooms as the greedy solution. Therefore, the greedy solution is optimal.

Conclusion: greedy is optimal

- Let GS be the greedy solution, k = Cost(GS) the number of rooms used in the greedy solution
- Let OS be any other schedule, R= Cost(OS) the number of rooms used in OS
- By the bounding lemma, $R \ge L = \max_{t} |B(t)|$
- By the achieves the bound lemma, $k = |B(t)| \le L$ for some t
- Putting the two together, Cost(GS) =k ≤ R= Cost(OS)
- Thus, the greedy solution is optimal

Next lecture

- Greedy algorithms
 - Reading: Kleinberg and Tardos, sections 4.1, 4.2,
 and 4.3