DANMARKS TEKNISKE UNIVERSITET

Side 1 af 3 sider

Skriftlig 2-timers prøve, 23. august 2015

Kursus: Matematik 2 01035

Tilladte hjælpemidler: Alle af DTU tilladte.

Vægtning af opgaverne: Opgave 1: 30%, Opgave 2: 30%, Opgave 3: 40%.

Vægtningen er kun vejledende. Sættet bedømmes som en helhed. For at opnå fuldt point i opgaverne 2 og 3 kræves at mellemregninger medtages i rimeligt omfang. Alle svar i opgaverne 2 og 3 skal begrundes, eventuelt med en henvisning til lærebogen.

NB. Opgave 1 er en multiple-choice opgave og svaret på hvert spørgsmål angives ved afkrydsning på det vedlagte løsningsark, der afleveres som en del af besvarelsen. Udregninger hørende til opgave 1 skal ikke afleveres og vil ikke kunne indgå i bedømmelsen. Ved svaret "ved ikke" gives 0 %, ved korrekt svar gives +5%, og ved et forkert svar gives -2,5%.

Opgave 1

- (i) Summen af $\sum_{n=0}^{\infty} \frac{1}{2^n} x^n$ er lig med:
 - a) $\frac{2}{2-x}$ for |x| < 1.
 - b) $\frac{2}{2-x}$ for |x| < 2.
 - c) $\frac{1/2}{1-x}$ for |x| < 2.
 - d) ved ikke.
- (ii) Den uendelige række $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ er:
 - a) Divergent.
 - b) Absolut konvergent.
 - c) Betinget konvergent.
 - d) ved ikke.
- (iii) Bestem konvergensradius ρ for potensrækken $\sum_{n=1}^\infty \frac{1}{n+1} x^{3n}$. Svaret er:
 - a) $\rho = \sqrt{3}$.
 - b) $\rho = 3$.
 - c) $\rho = 1$.
 - d) ved ikke.

Opgaven fortsætter - Vend!

- (iv) Det karakteristiske polynomium for differentialligningen y'''(t) + 2y''(t) + 5y'(t) = 0 er $P(\lambda) = (\lambda + 1 2i)(\lambda + 1 + 2i)\lambda$. Den fuldstændige reelle løsning er:
 - a) $y(t) = c_1 + c_2 e^{-t} \cos(2t) + c_3 e^{-t} \sin(2t)$, $c_1, c_2, c_3 \in \mathbb{R}$
 - b) $y(t) = c_1 + c_2 e^t \cos(2t) + c_3 e^t \sin(2t)$, $c_1, c_2, c_3 \in \mathbb{R}$.
 - c) $y(t) = c_1 t + c_2 e^{-t} \cos(2t) + c_3 e^{-t} \sin(2t)$, $c_1, c_2, c_3 \in \mathbb{R}$
 - d) ved ikke.
- (v) Betragt rækken

$$\sum_{n=1}^{\infty} \frac{1}{n^3} (\cos(nt) - 2\sin(nt)) \tag{1}$$

med variable led afhængige af $t \in \mathbb{R}$. En konvergent majorantrække er:

- a) $\sum_{n=1}^{\infty} \frac{1}{n^3}$.
- b) $\sum_{n=1}^{\infty} \frac{-1}{n^3}$.
- c) $\sum_{n=1}^{\infty} \frac{3}{n^3}$.
- d) ved ikke.
- (vi) Differentialligningen 3xy'' + y = 0, hvor y = y(x), har en løsning på potensrækkeform

$$y(x) = \sum_{n=0}^{\infty} c_n x^n . (2)$$

Rekursionsformlen for c_n , for n = 0, 1, 2, ... er:

- a) $c_0 = 0$ og $c_{n+1} = -\frac{c_n}{3n(n+1)}$, for n = 1, 2, ...
- b) $c_0 = 0$ og $c_{n+1} = \frac{c_n}{3n(n+1)}$, for n = 1, 2, ...
- c) $c_{n+1} = -\frac{c_n}{3(n+1)}$, for n = 0, 1, 2, ...
- d) ved ikke.

Opgave 2

Vi betragter den inhomogene differentialligning givet ved

$$\frac{d^3y}{dt^3} + 3\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 2y = u(t) , \qquad (3)$$

hvor y er en funktion af tiden $t \in \mathbb{R}$. Det oplyses at to af rødderne i det karakteristiske polynomium er $\lambda = -1$ og $\lambda = -1 - i$.

- (i) Hvilken værdi har den sidste rod?
- (ii) Bestem overføringsfunktionen for den inhomogene differentialligning med $u(t) = e^{st}$.
- (iii) Find den stationære løsning til den inhomogene differentialligning med $u(t) = \cos(3t)$.

Opgave 3

Fourierrækken for en 2π -periodisk funktion f er givet ved

$$f \sim 2 + \sum_{n=1}^{\infty} \frac{1}{n(n+3)} \cos(nx)$$
, (4)

hvor $x \in \mathbb{R}$.

- (i) Identificér Fourierkoefficienterne a_n , $n = 0, 1, 2, \ldots$ og b_n , $n = 1, 2, 3, \ldots$, i den givne Fourierrække.
- (ii) Vis, at sumfunktionen s for Fourierrækken er kontinuert.
- (iii) For $N \ge 1$ er den N'te afsnitssum for Fourierrækken (4)

$$S_N(x) = 2 + \sum_{n=1}^{N} \frac{1}{n(n+3)} \cos(nx)$$
.

Bestem N således at S_N approksimerer sumfunktionen s med en fejl mindre end eller lig med $\varepsilon = 0.01$.

(iv) Vis, at effekten af f er større end 129/32.

Opgavesættet slut.