

# PLL (Phase Locked Loop)

- Diagrama en bloques
- Detector de fase
- VCO
- Transferencia
- Filtros
- Aplicaciones



## Diagrama en bloques

La función de un PLL es la de "enganchar" la frecuencia del VCO a la frecuencia de la señal de entrada





La función del comparador de fase es la de entregar una tensión proporcional a la diferencia de fase entre la señal del VCO y la señal de entrada





### Implementación 1: Multiplicador





### Implementación 1: Multiplicador

$$V_0 = \frac{BA}{2}Cos(\phi)$$



$$K_{\phi} = \frac{dV_{o}}{d\phi} = -\frac{BA}{2}Sen(\phi)$$

$$\left|K_{\phi=\frac{\pi}{2}} = \frac{dV_o}{d\phi}\right|_{\frac{\pi}{2}} = -\frac{BA}{2}$$

Lazo enganchado en cuadratura

La ganancia del detector es máxima en pi/2



### Implementación 2: XOR





### Implementación 3: Edge Detector (Phase Frequency Detector)





### Implementación 4: Edge Detector + Charge Pump





#### **Análisis del PFD + Charge Pump**

Suponiendo que Vi y V0 son de igual frecuencia y que el flanco de Vo aparece un tiempo  $\tau$  después del flanco de Vi tenemos dos posibilidades:

 $\tau=0$  En este caso ambas señales están sincronizadas en frecuencia y en fase y por lo tanto no existe salida en el detector.

au>0 La salida estara cargando al capacitor durante un tiempo au por cada periodo de la senial Vi. Si el periodo de la senial Vi es Ti entonces el valor medio de la salida del Charge and Pump sera:

$$\overline{Vout} = 2\pi \frac{\tau}{T_i} K_{\phi}$$

La constante  $2\pi$  se introduce para convertir retardo temporal en un retardo de fase. Notese que el retardo de fase deberá ser a lo sumo Ti. Cuando la fase es  $+2\pi$  la corriente suministrada sera  $K_{\phi}$  mientras que cuando es  $-2\pi$  la corriente absorbida sera  $-K_{\phi}$  por lotanto la ganancia del detector sera :

$$Kd = \frac{K_{\phi}}{2\pi} \quad mA/rad$$



### VCO

La función del VCO es generar una frecuencia proporcional a la tensión de entrada.





### **PLL: Transferencia**

### **Transferencia**





## **PLL: Transferencia**





### **PLL: Transferencia**





## **PLL**

### Rangos de captura y enganche





### PLL

#### **Transferencias**

$$\phi_{vco}(s) = \frac{G(s)}{1 + G(s)} \phi_i(s)$$
  $G(s) = \frac{K_v F(s)}{s} \leftarrow \frac{\text{Low}}{s}$ 

Como 
$$\lim_{t\to\infty} h(t) = \lim_{s\to 0} sH(s)$$
 Teorema del valor final

$$\lim_{s\to 0} (s \,\phi_{vco}(s)) = \lim_{s\to 0} s \left[ \frac{G(s)}{1+G(s)} \phi_i(s) \right] = \phi_i(s)$$

$$\phi_{vco}(t) \approx \phi_i(t)\big|_{t\to\infty}$$

Tracking !!!



### **PLL**

#### **Transferencias**





### PLL: Filtros

#### Filtros de primer orden

$$F(s) = \frac{\omega_1}{s + \omega_1} = \frac{1}{1 + \frac{s}{\omega_1}}$$

$$\therefore \frac{V_o(s)}{\omega_i} = \frac{K_D F(s)}{s + K_v F(s)} = \frac{K_D}{s \left(1 + \frac{s}{\omega_1}\right) + K_v} = \frac{1}{K_o} \left(\frac{\omega_1 K_v}{s^2 + \omega_1 s + \omega_1 \cdot K_v}\right)$$

$$\frac{V_o(j\omega)}{\omega_i} = \frac{1}{K_o} \left( \frac{\omega_n^2}{s^2 + \zeta \omega_n s + \omega_n^2} \right) \qquad \omega_n = \sqrt{K_v \omega_1} \qquad \zeta = \frac{1}{2} \sqrt{\frac{\omega_1}{K_v}}$$

$$\zeta = 0.707$$
  $\omega_1 = 2K_v$ .  $\omega_{-3dB} = \omega_n = \sqrt{2}K_v$ 

$$p_1, p_2 = -\frac{\omega_1}{2} \pm \frac{1}{2} \sqrt{\omega_1^2 - 4\omega_1 \cdot K_v} = -\frac{\omega_1}{2} \left( 1 \pm \sqrt{1 - \frac{4K_v}{\omega_1}} \right)$$



## **PLL: Filtros**

### Filtros de primer orden









## **PLL: Filtros**

### Filtros de primer orden Activo



$$\frac{V_o}{V_i} = -\frac{sR_2C + 1}{sR_1C}.$$



### Síntesis de frecuencias





### PLL CD4046BC





### PLL CD4046BC

### Phase Comparator State Diagrams





FIGURE 2.



### PLL CD4046BC

### **Typical Waveforms**



FIGURE 3. Typical Waveform Employing Phase Comparator I in Locked Condition

PHASE COMPARATOR II

PHASE COMPARATOR I



FIGURE 4. Typical Waveform Employing Phase Comparator II in Locked Condition



### PLL CD4046BC

### **Typical Waveforms**



FIGURE 3. Typical Waveform Employing Phase Comparator I in Locked Condition

PHASE COMPARATOR II

PHASE COMPARATOR I



FIGURE 4. Typical Waveform Employing Phase Comparator II in Locked Condition