Lineare Algebra II (LA) Übungsblatt 12

Erik Achilles, Alexandra Dittmar, Artur Szeczinowski Juli 2025

Aufgabe 1

a)

Beweis. Für alle $v, w, z \in \mathbb{R}^3$ gilt:

$$v \times (w \times z) = v \times \begin{pmatrix} w_2 z_3 - w_3 z_2 \\ w_3 z_1 - w_1 z_3 \\ w_1 z_2 - w_2 z_1 \end{pmatrix}$$

$$= \begin{pmatrix} v_2(w_1 z_2 - w_2 z_1) - v_3(w_3 z_1 - w_1 z_3) \\ v_3(w_2 z_3 - w_3 z_2) - v_1(w_1 z_2 - w_2 z_1) \\ v_1(w_3 z_1 - w_1 z_3) - v_2(w_2 z_3 - w_3 z_2) \end{pmatrix}$$

$$= \begin{pmatrix} v_2 w_1 z_2 - v_2 w_2 z_1 - v_3 w_3 z_1 + v_3 w_1 z_3 \\ v_3 w_2 z_3 - v_3 w_3 z_2 - v_1 w_1 z_2 + v_1 w_2 z_1 \\ v_1 w_3 z_1 - v_1 w_1 z_3 - v_2 w_2 z_3 + v_2 w_3 z_2 \end{pmatrix}$$

$$= \begin{pmatrix} w_1(v_2 z_2 + v_3 z_3) - z_1(v_2 w_2 + v_3 w_3) \\ w_2(v_3 z_3 + v_1 z_1) - z_2(v_3 w_3 + v_1 w_1) \\ w_3(v_1 z_1 + v_2 z_2) - z_3(v_1 w_1 + v_2 w_2) \end{pmatrix}$$

$$= \begin{pmatrix} w_1(v_2 z_2 + v_3 z_3 + v_1 z_1 - v_1 z_1) - z_1(v_2 w_2 + v_3 w_3 + v_1 w_1 - v_1 w_1) \\ w_2(v_3 z_3 + v_1 z_1 + v_2 z_2 - v_2 z_2) - z_2(v_3 w_3 + v_1 w_1 + v_2 w_2 - v_2 w_2) \\ w_3(v_1 z_1 + v_2 z_2 + v_3 z_3 - v_3 z_3) - z_3(v_1 w_1 + v_2 w_2 + v_3 w_3 + v_1 w_1) - z_1 v_1 w_1) \\ (w_2(v_3 z_3 + v_1 z_1 + v_2 z_2) - w_2 v_2 z_2) - (z_2(v_3 w_3 + v_1 w_1 + v_2 w_2) - z_2 v_2 w_2) \\ (w_3(v_1 z_1 + v_2 z_2 + v_3 z_3) - w_3 v_3 z_3) - (z_3(v_1 w_1 + v_2 w_2 + v_3 w_3) - z_3 v_3 w_3) \end{pmatrix}$$

$$= \begin{pmatrix} w_1(v_2 z_2 + v_3 z_3 + v_1 z_1) - z_1(v_2 w_2 + v_3 w_3 + v_1 w_1 + v_2 w_2 + v_3 w_3) - z_3 v_3 w_3 \end{pmatrix}$$

$$= \begin{pmatrix} w_1(v_2 z_2 + v_3 z_3 + v_1 z_1) - z_1(v_2 w_2 + v_3 w_3 + v_1 w_1 + v_2 w_2 + v_3 w_3) - z_3 v_3 w_3 \end{pmatrix}$$

$$= \begin{pmatrix} w_1(v_2 z_2 + v_3 z_3 + v_1 z_1) - z_1(v_2 w_2 + v_3 w_3 + v_1 w_1 + v_2 w_2 + v_3 w_3) - z_3 v_3 w_3 \end{pmatrix}$$

$$= \begin{pmatrix} w_1(v_2 z_2 + v_3 z_3 + v_1 z_1) - z_1(v_2 w_2 + v_3 w_3 + v_1 w_1 + v_2 w_2 + v_3 w_3) - z_3 v_3 w_3 \end{pmatrix}$$

$$= \begin{pmatrix} w_1(v_2 z_2 + v_3 z_3 + v_1 z_1) - z_1(v_2 w_2 + v_3 w_3 + v_1 w_1 + v_2 w_2 + v_3 w_3) - z_3 v_3 w_3 \end{pmatrix}$$

$$= \begin{pmatrix} w_1(v_2 z_2 + v_3 z_3 + v_1 z_1) - z_1(v_2 w_2 + v_3 w_3 + v_1 w_1 + v_2 w_2 + v_3 w_3) - z_3 v_3 w_3 \end{pmatrix}$$

$$= \begin{pmatrix} w_1(v_2 z_2 + v_3 z_3 + v_1 z_1) - z_1(v_2 w_2 + v_3 w_3 + v_1 w_1 + v_2 w_2 + v_3 w_3) - z_3 v_3 w_3 \end{pmatrix}$$

$$= \begin{pmatrix} w_1(v_2 z_2 + v_3 z_3 + v_1 z_1) - z_1(v_2 w_2 + v_3 w_3 + v_1 w_1 + v_2 w_2 + v_3 w_3 - v_3 w_3 + v_1 w_1 + v_2 w_2 + v_3 w_3 \end{pmatrix}$$

$$= \begin{pmatrix} w_1(v_2 z_3 + v_1 z_1 + v_2 z_2 - v_2 z_2 + v_2 z_2 + v_3 z_3 - v_3 v_1$$

b)

Sei $\xi := (1,1,1) \in \mathbb{R}^3$. Die Abbildung $\beta : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}, \beta(v,w) := \langle v \times (\xi \times w), \xi \rangle$ ist eine symmetrische Bilinearform.

Beweis. Die Abbildung ist eine Verkettung von bil
inearen Abbildung (Kreuzprodukt, Skalarprodukt) und ist daher ebenfalls bil
inear. Wir zeigen nun Symmetrie. Dazu nutzen wir a) und die Symmetrie des Skalarprodukts:

$$\beta(v,w) = \langle v \times (\xi \times w), \xi \rangle \stackrel{a)}{=} \langle \langle v, w \rangle \xi - \langle v, \xi \rangle w, \xi \rangle = \langle v, w \rangle \langle \xi, \xi \rangle - \langle v, \xi \rangle \langle w, \xi \rangle$$
$$= \langle w, v \rangle \langle \xi, \xi \rangle - \langle w, \xi \rangle \langle v, \xi \rangle = \langle \langle w, v \rangle \xi - \langle w, \xi \rangle v, \xi \rangle \stackrel{a)}{=} \langle w \times (\xi \times v), \xi \rangle = \beta(w, v).$$

Aufgabe 2

Zu $M \in \text{Mat}(n, K)$ definieren wir $M^{\pm} := \frac{1}{2}(M \pm M^t) \in \text{Mat}(n, K)$.

a)

Es gilt $M^{\pm} \in \operatorname{Mat}^{\pm}(n, K)$.

Beweis. Fall I Gelte $M^{\pm} = \frac{1}{2}(M + M^t)$. Dann ist

$$(M^\pm)^t = (\frac{1}{2}(M+M^t))^t = \frac{1}{2}(M+M^t)^t = \frac{1}{2}(M^t+M) = \frac{1}{2}(M+M^t) = \frac{1}{2}(M+M^t) = M^\pm.$$

Fall II Gelte $M^{\pm} = \frac{1}{2}(M - M^t)$. Analog folgt $(M^{\pm})^t = M^{\pm}$. Also ist $M^{\pm} \in \{A \in \operatorname{Mat}(n, K) | A^t = \pm A\} = \operatorname{Mat}^{\pm}(n, K)$.

Es gilt $Mat(n, K) = Mat^{+}(n, K) \oplus Mat^{-}(n, K)$.

Beweis. Da $\operatorname{Mat}^+(n,K), \operatorname{Mat}^-(n,K) \subset \operatorname{Mat}(n,K), \text{ ist } \operatorname{Mat}(n,K) \supseteq \operatorname{Mat}^+(n,K) \oplus \operatorname{Mat}^-(n,K).$ Wir zeigen " \subseteq ".

Sei $M \in \operatorname{Mat}(n, K)$ beliebig, dann gilt für passende $A \in \operatorname{Mat}^+(n, K), B \in \operatorname{Mat}^-(n, K)$: M = A + B, denn für alle $i, j \leq n \in \mathbb{N}$ ist

$$M_{ij} = A_{ij} + B_{ij}$$

$$\wedge \qquad M_{ji} = A_{ji} + B_{ji} = A_{ij} - B_{ij}.$$

Dieser Ausdruck lässt sich als LGS schreiben:

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} A_{ij} \\ B_{ij} \end{pmatrix} = \begin{pmatrix} M_{ij} \\ M_{ji} \end{pmatrix}.$$

Da $\det \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = -2 \neq 0$ hat das LGS für alle i, j nur eine Lösung, d.h. A und B sind eindeutig bestimmt. Somit gilt $\operatorname{Mat}(n, K) \subseteq \operatorname{Mat}^+(n, K) \oplus \operatorname{Mat}^-(n, K)$.