1. INTRODUÇÃO

Para se fazer a recomendação de filme em base do qual for escolhido, foi utilizado o dataset MovieLens 100k, em que contém avaliações de usuários sobre diversos títulos cinematográficos. O sistema foi implementado no Python utilizando a similaridade do cosseno como métrica principal para identificar a semelhança entre filmes. A recomendação é baseada em uma abordagem híbrida, combinando dois métodos: a semelhança de avaliações (filtragem colaborativa) e a semelhança entre os títulos dos filmes (filtragem baseada em conteúdo). O algoritmo calcula a similaridade entre pares de filmes e, a partir de um filme selecionado, retorna aqueles considerados mais semelhantes, com base nas preferências de usuários e nas características textuais dos títulos. Essa abordagem visa melhorar a precisão das recomendações, aproveitando diferentes aspectos dos dados disponíveis no MovieLens.

2. OBJETIVO

O principal objetivo deste algoritmo é desenvolver um sistema de recomendação de filmes capaz de sugerir títulos similares a partir de um filme de referência, utilizando técnicas de similaridade do cosseno. A proposta é combinar informações provenientes das avaliações dos usuários (indicando padrões de preferência) com elementos textuais dos títulos dos filmes, resultando em uma abordagem híbrida que potencializa a qualidade das recomendações. Com isso, busca-se oferecer ao usuário sugestões mais relevantes e personalizadas, mesmo quando há pouca informação explícita sobre suas preferências individuais

3. DATASET UTILIZADO

O presente trabalho utiliza o dataset MovieLens 100k, disponível no Kaggle e fornecido pelo GroupLens Research. Trata-se de um conjunto amplamente utilizado em estudos de sistemas de recomendação, contendo 100.000 avaliações explícitas realizadas por 943 usuários em 1.682 filmes, com notas variando de 1 a 5. As informações de avaliação estão no arquivo "u.data", estruturado com os campos "user_id", "item_id", "rating" e "timestamp". Já os dados dos filmes são obtidos do arquivo "u.item", contendo "movie_id" e "movie_title". O dataset é ideal para testes de algoritmos de recomendação por seu tamanho reduzido, padronização e amplo reconhecimento acadêmico.

4. ONDE ESTÁ SENDO APLICADO

O código foi desenvolvido utilizando a linguagem Python no ambiente de desenvolvimento Spyder, que faz parte do pacote Anaconda. Esse ambiente foi escolhido por sua praticidade na escrita e execução de scripts científicos, além de oferecer ferramentas integradas para visualização de dados e depuração de código.

Para o funcionamento do algoritmo, foi necessária a instalação da biblioteca scikitlearn (sklearn), utilizada para o cálculo da similaridade do cosseno e para o uso do vetorizador TF-IDF. Essa instalação foi realizada diretamente pelo Anaconda Navigator, facilitando a gestão dos pacotes e garantindo a compatibilidade com o ambiente.

5. COMO FUNCIONA O ALGORITMO

O funcionamento do algoritmo pode ser dividido em 6 etapas principais:

5.1. **Carregamento dos Dados**:

são carregados dois arquivos do dataset MovieLens — um com as avaliações dos usuários e outro com os títulos dos filmes.

5.2. **Similaridade pelas Avaliações**:

é construída uma matriz de usuários versus filmes, preenchida com as avaliações. A similaridade do cosseno é calculada entre os filmes com base nas notas dadas pelos usuários.

5.3. **Similaridade pelos Títulos**:

os títulos dos filmes são transformados em vetores numéricos usando a técnica "TF-IDF". A similaridade do cosseno é então calculada entre esses vetores.

5.4. **Combinação das Similaridades**:

as duas matrizes de similaridade (avaliações e títulos) são combinadas por meio de um fator de ponderação (alpha), permitindo ajustar a influência de cada fonte de informação.

5.5. **Função de Recomendação**:

é definida uma função que, dado um filme, retorna os filmes mais semelhantes a ele com base na matriz de similaridade combinada.

5.6. **Exemplo de Uso**:

o sistema solicita ao usuário o ID de um filme (também pode ser visualizada pela planilha do excell postada no github) e, com base nisso, imprime os cinco filmes mais similares, exibindo também os graus de similaridade correspondentes.

6. RESULTADOS

Rodando o algoritmo na prática no Anaconda Navigator para utilizar o Spyder, foram realizados testes utilizando três filmes distintos do conjunto de dados como ponto de partida. Adiante, apresentam-se os resultados obtidos para cada exemplo, considerando a combinação das similaridades por avaliações e títulos com peso de 0.2 para os títulos:

Exemplo 1 – Filme ID 1 (Toy Story (1995))

Filmes recomendados mais semelhantes:

- Star Wars (1977) similaridade: **0.59**
- Return of the Jedi (1983) **0.56**
- Independence Day (ID4) (1996) **0.55**
- The Rock (1996) **0.53**
- Twelve Monkeys (1995) **0.51**

Exemplo 2 - Filme ID 50 (Star Wars (1977))

Filmes recomendados mais semelhantes:

- Return of the Jedi (1983) **0.71**
- Raiders of the Lost Ark (1981) **0.61**
- Empire Strikes Back, The (1980) **0.60**
- Toy Story (1995) **0.59**
- Star Trek: First Contact (1996) 0.59

Exemplo 3 – Filme ID 100 (Fargo (1996))

Filmes recomendados mais semelhantes:

• Twelve Monkeys (1995) — **0.55**

- Star Wars (1977) **0.55**
- The Godfather (1972) **0.52**
- Jerry Maguire (1996) **0.52**
- Pulp Fiction (1994) **0.51**

Esses resultados estão retornando filmes que possuem alta similaridade tanto em termos de preferência dos usuários quanto de características textuais. A coerência dos filmes recomendados — frequentemente populares ou de gêneros semelhantes ao filme de referência — evidencia que a abordagem híbrida implementada é eficaz na geração de sugestões relevantes.