

Evolutionary and Structural Analysis of Pathogen Proteins.

Final year UG project 2024-25 2024-10-16 (Week 4)

Any changes needed?

Organism	Host	Gene/Protein	PHI accession	Student
Escherichia coli	Homo sapiens	espY	PHI:8647	LB
Shigella flexneri	Homo sapiens	іраЈ	PHI:9253	LT
Candida albicans	Mus musculus	sap6	PHI:10193	IM
Pseudomonas				
aeruginosa	Homo sapiens	tplE	PHI:6646	AE
Vibrio vulnificus	Mus musculus	vvhA	PHI:6877	JT

http://www.phi-base.org/

Workflow

Research protein / disease / organism in literature

Interactions, function, important residues/motifs, etc.

(Weeks ≈1-5)

Visualise with **PyMOL**

Download

AlphaFold/PDB

structures (try

simplefold?)

homologues

2. All bacteria

Identify

1. Source

species

(compare AlphaFold with PDB?)

Align sequences Conserved and variable sites?

Phylogenetic trees

HGT? Positive selection?

Interpret in context of known function/species distribution

Other database searches

Known interactors?

(what experiments could you propose to test your interpretation?)

(Weeks ≈6-11)

Your questions/comments

(What would you like to talk about?)

Thesis Introductions

Examples

- Lsr2 (Ailsa)
- SpA (Yann)

- Note:
 - Use of figures
 - Density of references
 - Overall depth of description

Sequence Alignment

Pairwise sequence alignment

- We have two words we want to align:
 - COELACANTH
 - PELICAN
- We have a scoring scheme:
 - Matching identical letters scores +1
 - If we have different letters aligned, that scores -1
 - Inserting a gap in the alignment scores -1
- All sequence alignment is a mathematical operation: the maximization of an alignment score

Initialise a matrix

		C	0	E	L	A	C	Α	N	T	Н
	0	÷↑	4.2	أش	4 ♠	4ن	هٔ	↓ 7	₹-8	هٔ	- 10
P	↑ -1										
E	∱ -2										
L	↑ -3										
١	† -4										
C	↑ -5										
A	↑ -6										
N	↑ -7										

Start filling the matrix

A full matrix

COELACANTH

-PELICAN-

Where was the biology in that?

Honest question. Where do you think it was?

Pairwise sequence alignment

- We have two words we want to align:
 - COELACANTH
 - PELICAN
- We have a scoring scheme:
 - Matching identical letters scores +1
 - If we have different letters aligned, that scores -1
 - Inserting a gap in the alignment scores -1
- All sequence alignment is a mathematical operation: the maximization of an alignment score

This was all the biology:
What score do we give the same/
similar symbols in the alignment?
Represents evolutionary pressure
on the sequence

BLOSUM62: a common default scoring scheme for protein sequences

Next Week's Group Meetings

Tuesday 20th October 13:30 HW324

Thursday 23rd October 10:30 HW324

Topics to Discuss at Next Meeting

- Tell me about your protein
 - What scientific questions do you think you could address in your research? (This could be inspired by something you've read in a paper describing your protein or something more general)
- Phylogenetic Trees?
- What would you like to cover?

Useful Links

GalaxyEU: https://usegalaxy.eu/

Sequence alignment (e.g. MAFFT), phylogenetics (e.g. RaxML), positive selection (e.g. codeML)

iTOL: https://itol.embl.de/

Visualisation/annotation of phylogenetic trees

PyMOL: https://pymol.org/2/ and/or ChimeraX: https://www.cgl.ucsf.edu/chimerax/

Protein structure visualisation/annotation

Jalview: http://www.jalview.org/

- Visualisation of multiple sequence alignments

PHI-base: http://www.phi-base.org/

- Proteins involved in host-pathogen interactions, with linked evidence

EMBL AlphaFold: https://www.alphafold.ebi.ac.uk/

- AlphaFold predictions for proteins from model organisms

UniProt: https://www.uniprot.org/

Protein sequence (including homologous sequences) and functional information with evidence

RCSB/PDB: https://www.rcsb.org/

- Repository of record for protein structures

SIPBS CompBiol Sites

- BM432 Project Pages
 - https://sipbs-compbiol.github.io/bm432-project/
- An incomplete little book of bioinformatics
 - https://sipbs-compbiol.github.io/little-bioinformatics-book/

Project Management Tools

You may want tools to...

- Manage your time
 - E.g. Pomodoro technique (e.g. BeFocused, <u>Pomofocus</u>, <u>Forest</u>)
- Schedule work
 - Reminders (macOS, MS Office)
 - Calendar (macOS, MS Office), with email alerts
 - Trello, Asana, etc.
- Manage your project data and information effectively
 - How to name files
 - Project management guidelines (BM432, 2022-23 session; me and Dr Feeney)
 - How to keep a lab notebook
 - Keeping a computational biology lab notebook: https://doi.org/10.1371/journal.pcbi.1004385
 - Organising a lab book