S1 Figure: Enrichment Analysis Result from SmCCNet

(a)

(b)

Figure 1: Enrichment analysis ontology results based on the joint set of gene/protein for TCGA breast cancer data and COPDGene data for SmCCNet subnetwork. The top pathways that are associated with the final network of SmCCNet based on Metascape. a: Top ontology pathways for TCGA breast cancer data with respect to tumor purity; b: Top ontology pathways for COPDGene data with respect to FEV1.

S2 Figure: Enrichment Results with Validated Target Genes of MiRNAs

Figure 2: Enrichment analysis ontology results based on the validated target genes of miRNAs for TCGA breast cancer data for SGTCCA-Net subnetwork. Top ontology pathways based on validated miRNA-target genes for TCGA breast cancer data with respect to tumor purity.

S3 Figure: Enrichment Analysis Result from SGTCCA-Net for FEV₁ Percent Predicted

Figure 3: Enrichment Analysis Results of SGTCCA-Net for FEV_1 Percent Predicted: This figure focused on pathways enriched in the joint gene/protein set derived from the COPDGene data, specifically within the SGTCCA-Net subnetwork associated with FEV_1 Percent Predicted. The identified pathways provide insights into the molecular mechanisms linked to pulmonary function as measured by FEV_1 Percent Predicted.

S1 Appendix: Higher-order Covariance Tensor for Both Odd and Even Number of Views

Let $z_1, z_2, ..., z_k \in \mathbb{R}^{n \times 1}$ be k vectors that are centered and scaled, then the higher-order covariance between these vectors can be defined as:

$$\rho(z_1, z_2, ..., z_k) = \begin{cases} \left| \frac{1}{n} (z_1 z_2 ... z_k)^T \mathbf{1} \right|, & \text{if } k = 2m, m \in \mathbb{N} \\ \frac{1}{n \cdot k} \sum_{j=1}^k \left| (z_1 ... | z_j | ... z_k)^T \mathbf{1} \right|, & \text{if } k = 2m + 1, m \in \mathbb{N}, \end{cases}$$

$$(1)$$

where $z_1z_2...z_k$ is the element-wise multiplication between k vectors. The reason for calculating the higher-order correlation in different ways for odds and even number of views is that the higher-order correlation calculation for the odd number of views suffers from effect cancellation. For instance, suppose that there are 3 identical and centered vectors with the element (-2,-1,0,1,2); the original calculation (for an even number of views) gives a higher-order covariance of 0, while they should be perfectly correlated. To resolve this issue, for k = 2m + 1 number of views, each time we take the absolute value of one vector and maintain directionality for the rest of 2m vectors to calculate a higher-order correlation, then take the average of all of them. Our empirical findings have shown that this approach is robust in all scenarios.

Eq 1 calculates the higher-order correlation between vectors, but if the higher-order correlation between matrices (e.g. each matrix is an omics dataset) needs to be calculated, we can avoid processing multiple loops to calculate the higher-order correlation for all combinations of features through a different equation. Suppose there are k data in total, denoted by $X_p \in \mathbb{R}^{N \times d_p}, p = 1, 2, ..., k$, which are centered with mean 0. for each view, there are N observations and d_p features, then the covariance tensor $C_{1,2,...,k} \in \mathbb{R}^{d_1 \times d_2 \times ... \times d_k}$ for k views can be denoted by:

$$C_{1,2,\dots,k} = \begin{cases} \left| \frac{1}{N} \sum_{j=1}^{N} x_{1j} \circ x_{2j} \circ \dots \circ x_{kj} \right|, & \text{if } k = 2m, m \in \mathbb{N} \\ \frac{1}{k} \sum_{i=1}^{k} C_{1,2,\dots,|j|,\dots,k}, & \text{if } k = 2m+1, m \in \mathbb{N}, \end{cases}$$

$$(2)$$

where

$$C_{1,2,\dots,|j|,\dots,k} = \frac{1}{N} |\sum_{i=1}^{N} x_{1i} \circ x_{2i} \circ \dots \circ |x_{ji}| \circ \dots \circ x_{ki}|,$$
(3)

and \circ denotes the outer product. It can be shown that each entry of $C_{1,2,...,k}$, denoted by $C_{1,2,...,k}(j_1,j_2,...,j_k)$, can also be calculated using Eq. (1), and because of this equivalency, we can avoid processing multiple loops to calculate the higher-order correlation for all combinations of features. The theorem and proof are given below:

Theorem 1. If a covariance tensor $C_{1,2,...,k}$ between $X_1, X_2, ..., X_k$ is calculated by Eq 2, then each entry of $C_{1,2,...,k}$, denoted by $C_{1,2,...,k}(j_1, j_2, ..., j_k)$, is equivalent to:

$$\rho(x_1(j_1), x_2(j_2), ..., x_k(j_k)) = \begin{cases} \frac{1}{N} |(x_1(j_1)x_2(j_2)...x_k(j_k))^T \mathbf{1}|, & \text{if } k = 2m, m \in \mathbb{N} \\ \frac{1}{N \cdot k} \sum_{i=1}^k |(x_1(j_1)...|x_i(j_i)|...x_k(j_k))^T \mathbf{1}|, & \text{if } k = 2m + 1, m \in \mathbb{N}, \end{cases}$$

$$(4)$$

where $x_j(j_j) \in \mathbb{R}^{N \times 1}$ is the j_j th feature of X_j .

Proof. If k = 2m is an even number, then

$$C_{1,2,\dots,k} = \frac{1}{N} \left| \sum_{i=1}^{N} x_{1i} \circ x_{2i} \circ \dots \circ x_{ki} \right|$$
$$= \frac{1}{N} \left| \sum_{i=1}^{N} x_{1i} \times_{i} X_{1}^{T} \times_{i} X_{2}^{T} \times \dots \times_{i} X_{k}^{T} \right|, \tag{5}$$

where $\Sigma \in \mathbb{R}^{d_1 \times d_2 \times ... \times d_k}$ is the all-one tensor, and thus each entry of $|C_{1,2,...,k}|$ equals:

$$C_{1,2,...,k}(j_1, j_2, ..., j_k) = \frac{1}{N} |\sum_{i=1}^{N} x_{1i}(j_1) x_{2i}(j_2) ... x_{ki}(j_k)|$$

$$= \frac{1}{N} |(x_1(j_1) x_2(j_2) ... x_k(j_k))^T \mathbf{1}|.$$
(6)

If k = 2m + 1 is an odd number, then

$$C_{1,2,...,k} = \frac{1}{k} \sum_{j=1}^{k} |C_{1,2,...,|j|,...k}|$$

$$= \frac{1}{N \cdot k} \sum_{j=1}^{k} |\sum_{i=1}^{N} x_{1i} \circ x_{2i} \circ ... \circ |x_{ji}| \circ ... \circ x_{ki}|$$

$$= \frac{1}{N \cdot k} |\Sigma \times_{1} X_{1}^{T} \times_{2} X_{2}^{T} \times ... \times_{i} |X_{j}^{T}| \times ... \times X_{k}^{T}|,$$
(8)

and thus each entry of $C_{1,2,\dots,k}$ equals to:

$$C_{1,2,...,k}(j_1, j_2, ..., j_k) = \frac{1}{N \cdot k} \sum_{j=1}^{k} |\sum_{i=1}^{N} x_{1i}(j_1) x_{2i}(j_2) ... x_{ji}(j_i) ... x_{ki}(j_k)|$$

$$= \frac{1}{N \cdot k} \sum_{j=1}^{k} |(x_1(j_1) ... |x_j(j_i)| ... x_k(j_k))^T \mathbf{1}|.$$
(9)

S2 Appendix: Proof of Theorem 1

Theorem 2. Let $C_{S_m(j)}$ be the non-negative covariance tensor of view $(m_1,...,m_m) \in S_m(j)$ such that $C_{S_m(j)} \in \mathbb{R}^{d_{m_1} \times d_{m_2} \times ... \times d_{m_m}}$, If the optimization goal is formulated as follows:

$$\arg \max_{h_1,h_2,...,h_k} a_{k,1} \rho_k(1)^2 + \sum_{j=1}^{\binom{k}{k-1}} a_{k-1,j} \rho_{k-1}(j)^2 + ...$$

$$+ \sum_{j=1}^{\binom{k}{3}} a_{3,j} \rho_3(j)^2 + \sum_{j=1}^{\binom{k}{2}} a_{2,j} \rho_2(j)^2$$
s.t. $h_j^T h_j = 1, j = 1, 2, ..., k,$ (10)

where $\rho_m(j) = C_{S_m(j)} \times_1 h_{m_1} \times ... \times_m h_{m_m}$ for all m = 1, 2, ..., k, then the optimization problem above is equivalent to the following:

$$\arg \min_{h_1,h_2,...,h_k} a_{k,1} || C_{S_k(1)} - \hat{C}_{S_k(1)} ||_F^2$$

$$+ \sum_{j=1}^{\binom{k}{k-1}} a_{k-1,j} || C_{S_{k-1}(j)} - \hat{C}_{S_{k-1}(j)} ||_F^2$$

$$+ ... + \sum_{j=1}^{\binom{k}{3}} a_{3,j} || C_{S_3(j)} - \hat{C}_{S_3(j)} ||_F^2$$

$$+ \sum_{j=1}^{\binom{k}{2}} a_{2,j} || C_{S_2(j)} - \hat{C}_{S_2(j)} ||_F^2$$
s.t. $h_i^T h_i = 1, j = 1, 2, ..., k,$ (11)

where $\hat{C}_{S_m(j)} = \rho_m(j)h_{m_1} \circ h_{m_2} \circ ... \circ h_{m_m}$ is the rank-1 approximation of $C_{S_m(j)}$.

Proof. Based on the formulation above, the augmented Lagrangian of the optimization is given by:

$$f = a_{k,1} || C_{S_k(1)} - \hat{C}_{S_k(1)} ||_F^2$$

$$+ \sum_{j=1}^{\binom{k}{k-1}} a_{k-1,j} || C_{S_{k-1}(j)} - \hat{C}_{S_{k-1}(j)} ||_F^2$$

$$+ \dots + \sum_{j=1}^{\binom{k}{3}} a_{3,j} || C_{S_3(j)} - \hat{C}_{S_3(j)} ||_F^2$$

$$+ \sum_{j=1}^{\binom{k}{2}} a_{2,j} || C_{S_2(j)} - \hat{C}_{S_2(j)} ||_F^2 + \sum_{j=1}^k \alpha_j ((||h_j||_2^2 - 1))$$
s.t. $h_j^T h_j = 1, j = 1, 2, ..., k$ (12)

Taking the derivative of f with respect to $\rho_m(j)$, m = 1, 2, ..., k and $j = 1, 2, ..., {k \choose m}$, and denote i_{m_s} the feature index of the m_s -th view (s = 1, 2, ..., m), yields the following:

$$\sum_{i_{m_1},...,i_{m_s}} C_{S_m(j)}(i_{m_1},...,i_{m_m}) \prod_{m_s \in S_m(j)} h_{m_s}(i_{m_s})$$

$$- \rho_m(j) \sum_{i_{m_1},...,i_{m_s}} \prod_{m_s \in S_m(j)} h_{m_s}(i_{m_s})^2$$

$$= 0$$
(13)

Taking the derivative of f with respect to α_s , s = 1, 2, ..., k yields:

$$\sum_{i} h_s(i_s)^2 = 1 \tag{14}$$

then combine the above two equations, we have:

$$\rho_m(j) = \sum_{i_{m_1}, \dots, i_{m_m}} C_{S_m(j)}(i_{m_1}, \dots, i_{m_m}) \prod_{m_s \in S_m(j)} h_{m_s}(i_{m_s})$$

$$= C_{S_m(j)} \times_1 h_{m_1} \times_2 h_{m_2} \times \dots \times h_{m_m} \tag{15}$$

With the above result, we can finally derive the following:

$$a_{k,1}||C_{S_{k}(1)} - \hat{C}_{S_{k}(1)}||_{F}^{2} + \sum_{j=1}^{\binom{k}{k-1}} a_{k-1,j}||C_{S_{k-1}(j)} - \hat{C}_{S_{k-1}(j)}||_{F}^{2}$$

$$+ \dots + \sum_{j=1}^{\binom{k}{3}} a_{3,j}||C_{S_{3}(j)} - \hat{C}_{S_{3}(j)}||_{F}^{2} + \sum_{j=1}^{\binom{k}{2}} a_{2,j}||C_{S_{2}(j)} - \hat{C}_{S_{2}(j)}||_{F}^{2}$$

$$= a_{k,1}(||C_{S_{k}(1)}||_{F}^{2} - 2 < C_{S_{k}(1)}, \hat{C}_{S_{k}(1)} > + ||\hat{C}_{S_{k}(1)}||_{F}^{2})$$

$$+ \sum_{j=1}^{\binom{k}{k-1}} a_{k-1,j}(||C_{S_{k-1}(j)}||_{F}^{2} - 2 < C_{S_{k-1}(j)}, \hat{C}_{S_{k-1}(j)} >$$

$$+ ||\hat{C}_{S_{k-1}(j)}||_{F}^{2}) + \dots$$

$$+ \sum_{j=1}^{\binom{k}{3}} a_{3,j}(||C_{S_{3}(j)}||_{F}^{2} - 2 < C_{S_{3}(j)}, \hat{C}_{S_{3}(j)} > + ||\hat{C}_{S_{3}(j)}||_{F}^{2})$$

$$+ \sum_{j=1}^{\binom{k}{2}} a_{2,j}(||C_{S_{2}(j)}||_{F}^{2} - 2 < C_{S_{2}(j)}, \hat{C}_{S_{2}(j)} > + ||\hat{C}_{S_{2}(j)}||_{F}^{2}), \tag{16}$$

where $< C_{S_m(j)}, \hat{C}_{S_m(j)} >$ is the inner product between two tensors, and $< C_{S_m(j)}, \hat{C}_{S_m(j)} >$ is evaluated as:

$$\langle C_{S_{m}(j)}, \hat{C}_{S_{m}(j)} \rangle = \sum_{i_{m_{1}}, \dots, i_{m_{m}}} C_{S_{m}(j)}(i_{m_{1}}, \dots, i_{m_{m}}) \hat{C}_{S_{m}(j)}(i_{m_{1}}, \dots, i_{m_{m}})$$

$$= \sum_{i_{m_{1}}, \dots, i_{m_{m}}} C_{S_{m}(j)}(i_{m_{1}}, \dots, i_{m_{m}}) \rho_{m}(j) h_{m_{1}}(i_{m_{1}}) \cdot \dots \cdot h_{m_{m}}(i_{m_{m}})$$

$$= \rho_{m}(j) \sum_{i_{m_{1}}, \dots, i_{m_{m}}} C_{S_{m}(j)}(i_{m_{1}}, \dots, i_{m_{m}}) h_{m_{1}}(i_{m_{1}}) \cdot \dots \cdot h_{m_{m}}(i_{m_{m}})$$

$$= \rho_{m}(j)^{2}$$

$$(17)$$

Since h_j , j = 1, 2, ..., k all have the unit norm, combining the equation above with equation 16 we obtain:

$$\begin{aligned} a_{k,1}||C_{S_{k}(1)} - \hat{C}_{S_{k}(1)}||_{F}^{2} + \sum_{j=1}^{\binom{k-1}{a}} a_{k-1,j}||C_{S_{k-1}(j)} - \hat{C}_{S_{k-1}(j)}||_{F}^{2} \\ + \dots + \sum_{j=1}^{\binom{k}{3}} a_{3,j}||C_{S_{3}(j)} - \hat{C}_{S_{3}(j)}||_{F}^{2} + \sum_{j=1}^{\binom{k}{2}} a_{2,j}||C_{S_{2}(j)} - \hat{C}_{S_{2}(j)}||_{F}^{2} \\ = a_{k,1}(||C_{S_{k}(1)}||_{F}^{2} - 2\rho_{k}(1)^{2} + \rho_{k}(1)^{2}) \\ + \sum_{j=1}^{\binom{k}{3}} a_{k-1,j}(||C_{S_{k-1}(j)}||_{F}^{2} - 2\rho_{k-1}(j)^{2} + \rho_{k-1}(j)^{2}) \\ + \dots + \sum_{j=1}^{\binom{k}{3}} a_{3,j}(||C_{S_{3}(j)}||_{F}^{2} - 2\rho_{3}(j)^{2} + \rho_{3}(j)^{2}) \\ + \sum_{j=1}^{\binom{k}{2}} a_{2,j}(||C_{S_{2}(j)}||_{F}^{2} - 2\rho_{2}(j)^{2} + \rho_{2}(j)^{2}) \\ = (a_{k,1}||C_{S_{k}(1)}||_{F}^{2} + \sum_{j=1}^{\binom{k}{k-1}} a_{k-1,j}||C_{S_{k-1}(j)}||_{F}^{2} + \dots \\ + \sum_{j=1}^{\binom{k}{3}} a_{3,j}||C_{S_{3}(j)}||_{F}^{2} + \sum_{j=1}^{\binom{k}{2}} a_{2,j}||C_{S_{2}(j)}||_{F}^{2}) \\ - [\rho_{k}(1)^{2} + \sum_{j=1}^{\binom{k}{k-1}} a_{k-1,j}\rho_{k-1}(j)^{2} + \dots + \sum_{j=1}^{\binom{k}{3}} a_{3,j}\rho_{3}(j)^{2} \\ + \sum_{j=1}^{\binom{k}{3}} a_{2,j}\rho_{2}(j)^{2}] \\ = \text{constant} - [\rho_{k}(1)^{2} + \sum_{j=1}^{\binom{k}{2}} a_{2,j}\rho_{2}(j)^{2}] \end{aligned}$$

$$(18)$$

Therefore, to minimize equation 11, we need to maximize equation 10, and thus the equivalency holds.

Ш

S3 Appendix: Sparse Generalized Tensor Canonical Correlation Analysis (SGTCCA)

Algorithm 1: Sparse Generalized Tensor Canonical Correlation Analysis

Input:Multi-omics data $X_j \in \mathbb{R}^{N_j \times d_j}$ (j = 1, 2, ..., k), number of sub-samples s, proportion of common features p_c , proportion of distinct features p_d , number of correlation component l;

Initialize: i = 1;

Iterate the following step until i = s;

- (1) Calculate covariance tensors/matrices of interest $C_1, ..., C_l$;
- (2) Calculate covariance density vectors $c_j \in \mathbb{R}^{d_j \times 1}, j = 1, 2, ..., k$ for each molecular profile;
- (3) Rank features based on covariance density, and select the top $d_j \cdot p_c$ features from jth view based on density vectors, denoted by $S_{j,c}$;
- (4) Randomly select $d_j \cdot p_d$ additional features from jth view based on probability vectors $p_j(j=1,2,...,k)$, denoted by $S_{j,d}$, let $S_j=S_{j,c}\cup S_{j,d}$;
- (5) Implement GTCCA (Algorithm 2 in the main text) in subsampled data $X_j^{(S_j)}$, extract sparse canonical weight matrices $h_j^(i) \in \mathbb{R}^{d_j \times 1}$ (features that are not subsampled received 0 canonical weight);
- (6) i = i + 1;

Concatenate the canonical weights from each sub-sample to the canonical weight matrix $H_j \in \mathbb{R}^{d_j \times s}, j = 1, 2, ..., k$;

Output: Canonical weight matrices $H_j \in \mathbb{R}^{d_j \times s}, j = 1, 2, ..., k$.

S4 Appendix: Biased Subsampling Covariance Density

In step (2) of Algorithm 1, the covariance density is defined as follows:

Definition 1. Let $C_{1,2,...,k} \in \mathbb{R}^{d_1 \times d_2 \times ... \times d_k}$ be a tensor with k mode (in covariance tensor, it is equivalent to k views), then the tensor density with respect to mode j, denoted by $c_j \in \mathbb{R}^{d_j \times 1}$ is defined as:

$$c_j = \sum_{i_1, \dots, i_{j-1}, i_{j+1}, \dots, i_k} C_{1,2,\dots,k}(i_1, \dots, i_{j-1}, \cdot, i_{j+1}, \dots, i_k).$$

$$(19)$$

In general, it means that we sum over all other modes except for the mode j. The definition above only works for one single tensor when multiple tensors (with shared dimension) are considered, the subsampling density vectors from each tensor need to be aggregated, which is given by the following definition:

Definition 2. Suppose $c_j^{(i)}$, j = 1, 2, ..., k, i = 1, 2, ..., l (l is the total number of correlation structures) are the density vector for mode j with respect to the ith tensor/matrix, then the overall subsampling density vector for the jth mode is given by:

$$c_j = \sum_{i=1}^l \frac{(c_j^{(i)})^2}{||c_j^{(i)}|^2||_2^2},\tag{20}$$

where $||\cdot||_2$ is defined as the L2 norm of the vector. This formulation ensures that each tensor/matrix contributes equally to the subsampling density vector, and taking the square instead of direct summation further shrinks the density value for features with low covariance density.

As shown in Definition 1, the calculation of the covariance density involves $C_{1,2,...,k}$, which is the full covariance tensor. In practice, this is computationally infeasible. Therefore, we use the unbiased subsampling technique to approximate the covariance density instead, and its definition is as follow:

Definition 3. Let $c_{j,i}^{(sub)} \in \mathbb{R}^{d_j \times 1}, i = 1, 2, ..., s$ be the covariance density vector for the ith subsample with only a random subset of features' covariance density value being calculated. To approximate the density vector of the jth mode, we take the mean of all subsampled density vectors $c_{j,i}^{(sub)}$ as follows:

$$c_j = \frac{1}{s} \sum_{i=1}^{s} c_{j,i}^{(sub)}, \tag{21}$$

where s is the total number of subsampled density vectors, and the mean is calculated by summing all the vectors element-wise and dividing by the number of nonzero entries.

S5 Appendix: Network Analysis and Network Pruning Algorithm

Algorithm 2: Network Construction and Pruning Algorithm

Input: Canonical weight matrices $H_j \in \mathbb{R}^{d_j \times s}, j = 1, 2, ..., k$, Pearson's correlation matrix $\Sigma \in \mathbb{R}^{(\sum_{j=1}^k d_j) \times (\sum_{j=1}^k d_j)}$, correlation threshold $\rho_{threshold}$;

Initialize: i = 1;

- (1) Normalize and concatenate H_j for all j=1,2,...,k, and obtain $H \in \mathbb{R}^{(\sum_{j=1}^k d_j) \times s}$
- (2) Iterate over the following steps until i = s
 - (i) Calculate the adjacency matrix M = [H(i), H(i)], where $[\cdot; \cdot, \cdot]$ is the outer product of the matrix, H(i) is the *i*th column of H, and $M \in \mathbb{R}^{(\sum_{j=1}^k d_j) \times (\sum_{j=1}^k d_j)}$;
 - (ii) Prune M with PageRank algorithm and NetSHy summarization score and obtain sub-networks $M_{(sub)} \in \mathbb{R}^{(\sum_{j=1}^k d_j^{(sub)}) \times (\sum_{j=1}^k d_j^{(sub)})}$;
 - (iii) Filtering edges from $M_{(sub)}$ with correlation matrix Σ and threshold $\rho_{threshold}$;
 - (iv) i = i + 1;

Output: Final subnetwork $M_{(sub)}$.

The network pruning algorithm in Step 2 (ii) of the Algorithm 2 is given as follows:

- Calculate the PageRank score for all molecular features in the global network and rank them according to the PageRank score.
- Start from minimally possible network size m_1 , iterate the following steps until reaching the maximally possible network size m_2 (defined by users):
 - Add one more molecular feature into the network based on node ranking, then calculate the NetSHy/PCA summarization score (PC1 - PC3) for this updated network.
 - Calculate the correlation between this network summarization score and phenotype for all possible network sizes $i \in [m_1, m_2]$, and only use the PC with the highest (determined by absolute value) w.r.t. phenotype, define this correlation as $\rho_{(i,pheno)}$, where i stands for the current network size.
- Identify network size m_* ($m_* \in [m_1, m_2]$) with $\rho_{(m_*, pheno)}$ being the maximally possible summarization score correlation w.r.t. phenotype (determined by absolute value).
- Treat m_* as the new baseline network size, let $\rho_{(m_*,i)}$ be the correlation of summarization score between network with size m_* and network with size i. Define x to be the network size $(x \in [m_*, m_2])$, such that $x = \max\{i | (i \in [m_*, m_2]) \& (|\rho_{(m_*,i)}| > 0.8)\}.$
- Between the size of the network of m and x, the optimal size of the network m_{opt} is defined as the maximum size of the network such that $|\rho_{m_{(opt,pheno)}}| \ge 0.9 \cdot |\rho_{(m,pheno)}|$.

S6 Appendix: Additional Detail of Simulation Study Setup

In the simulation study, suppose X_1, X_2, X_3 are 3 omics data and Y is the phenotype data, then the equation for data generation is as follows:

$$X_{1} = l_{1} \cdot b_{1,1}^{T} + l_{2} \cdot b_{2,1}^{T} + l_{3} \cdot b_{3,1}^{T} + l_{5} \cdot b_{5,1}^{T}$$

$$+ l_{8} \cdot b_{8,1}^{T} + l_{9} \cdot b_{9,1}^{T} + l_{10} \cdot b_{10,1}^{T} + \alpha \cdot E_{1}$$

$$X_{2} = l_{1} \cdot b_{1,2}^{T} + l_{2} \cdot b_{2,2}^{T} + l_{4} \cdot b_{4,2}^{T} + l_{6} \cdot b_{6,2}^{T}$$

$$+ l_{8} \cdot b_{8,2}^{T} + l_{9} \cdot b_{9,2}^{T} + l_{11} \cdot b_{11,2}^{T} + \alpha \cdot E_{2}$$

$$X_{3} = l_{1} \cdot b_{1,2}^{T} + l_{3} \cdot b_{3,3}^{T} + l_{4} \cdot b_{4,3}^{T} + l_{7} \cdot b_{7,3}^{T}$$

$$+ l_{8} \cdot b_{8,3}^{T} + l_{10} \cdot b_{10,3}^{T} + l_{11} \cdot b_{11,3}^{T} + \alpha \cdot E_{3}$$

$$Y = \frac{1}{7} \sum_{i=1}^{7} \sigma_{i} l_{i} + \beta \cdot E_{4}$$

$$(22)$$

Where α and β represent the strength of the noise, $\sigma_i = 0, 1$ are the indicators determined by the simulation case (for example, in case 1, $\sigma_i = 1$ for all i = 1, 2, ..., 7). In summary, the simulated datasets have 3 types of blocks: (1) signal blocks representing all phenotype-specific correlation structures, which are given by latent factors $l_1, ..., l_7$; (2) non-phenotype-specific blocks representing all non-phenotype-specific correlation structures, which are given by latent factors $l_8, ..., l_{11}$; (3) background noise without any correlation structure, which is given by randomly permuted multi-omics data E_1, E_2, E_3 , and E_4 . Then the data-generating process is given as follows:

- Simulate 11 latent factors $l_1, l_2, ..., l_{11} \in \mathbb{R}^{N \times 1}$ following multivariate normal distribution MVN(0, Σ), where Σ is the identity matrix 11 × 11, and each latent factor represents a particular correlation structure.
- Simulate blockwise weight vectors $b_{i,j} \in \mathbb{R}^{1 \times 1000}, i = 1, 2, ..., 11; j = 1, 2, 3$ with nonzero entries corresponding to signal features, and zero entries corresponding to noise features. Nonzero entries from $b_{i,j}$ are calculated as $(2x-1) \cdot y$, where x (directionality) follows Bernoulli distribution with probability 0.5, and y (magnitude) follows a uniform distribution with the bound of (0.4, 0.6).
- Simulate random noise $E_j \in \mathbb{R}^{N \times d_j}$, j = 1, 2, 3, 4 with each entry following the standard normal distribution.
- Simulate data based on the data generation formula in Eq 22.

We imposed weaker noise on the omics data and stronger noise on the simulated phenotype data to test the noise tolerance of each method. In addition, there are 3 omics data settings we're evaluating (different from the simulation case for correlation structure): (1) Latent factors are simulated with multivariate normal distribution, (2) Latent factors are simulated with highly right-skewed distribution based on Fleishman power transformation, (3) Latent factors are simulated with multivariate normal distribution, but stronger noise is enforced to the omics data.

We compare the performance of our novel pipeline to other multi-omics network analysis methods that produce an adjacency matrix with 20 replications: (1) SGTCCA-Net with only the higher order 4-way correlation structure;(2) Best SmCCNet outcome by various combinations of scaling factors and sparsity levels, (3) Best DIABLO outcome with different levels of sparsity and scaling factors. All these methods have adjacency matrices available for performance evaluation. The performance is evaluated at the node level, and a node is predicted positive if its maximal connection to other nodes in the adjacency matrix passes a certain threshold, which is consistent with SmCCNet evaluation, and the AUC score can be calculated through checking prediction result with a series of the threshold value. By "best" for SmCCNet and DIABLO, we mean running SmCCNet and DIABLO with different combinations of parameters, evaluating the model performance, and only keeping the best-performing AUC score.

S1 Table: Simulation Setup Table

Omics Data Scenarios	Case	Sample Size	Signal Latent Factors	Noise Level
Normal Latent Factors: $\operatorname{MVN}(0, \Sigma)$	Case 1	100 & 200	$l_1 - l_7$	$\alpha = \beta = 0.2$
	Case 2	100 & 200	l_1	$\alpha = \beta = 0.2$
	Case 3	100 & 200	$l_2 - l_7$	$\alpha = \beta = 0.2$
Highly Right-skewed Latent	Case 1	100 & 200	$l_1 - l_7$	$\alpha = \beta = 0.2$
Factors: Skewness $= 2$,	Case 2	100 & 200	l_1	$\alpha = \beta = 0.2$
Kirtosis = 5	Case 3	100 & 200	$l_2 - l_7$	$\alpha = \beta = 0.2$
Noisy Omics Data: $MVN(0, \Sigma)$	Case 1	100 & 200	$l_1 - l_7$	$\alpha = 0.5, \beta = 0.2$
	Case 2	100 & 200	l_1	$\alpha = 0.5, \beta = 0.2$
	Case 3	100 & 200	$l_2 - l_7$	$\alpha = 0.5, \beta = 0.2$

Table 1: Summary table of all the simulation scenarios. Starting with 3 omics data simulation settings: (1) normal latent factors, (2) highly right-skewed latent factors, and (3) noisy omics data. Each of these settings has 3 cases: case 1 with all phenotype-specific correlation structures; case 2 with only 4-way phenotype-specific correlation structure; and (3) case 3 with 3-way and pairwise phenotype-specific correlation structure. All these cases will be evaluated based on sample sizes of 100 and 200. Σ represents a diagonal matrix with diagonal values to be 1.

S2 Table: Top Network Higher-order Correlation for TCGA Breast Cancer Network

Type	Gene	miRNA	Protein	Higher-order Correlation
4-way correlation	CLEC4C	hsa-mir-3133	KDR	3.938
4-way correlation	TIMD4	hsa-mir-3133	KDR	3.823
4-way correlation	SPIB	hsa-mir-3133	KDR	3.718
4-way correlation	LAG3	hsa-mir-3133	KDR	3.479
4-way correlation	HLA-F	hsa-mir-3133	KDR	3.472
4-way correlation	IL32	hsa-mir-3133	KDR	3.426
4-way correlation	PATL2	hsa-mir-3133	KDR	3.422
4-way correlation	AIM2	hsa-mir-3133	KDR	3.361
4-way correlation	BEND4	hsa-mir-3133	KDR	3.345
4-way correlation	PSMB9	hsa-mir-3133	KDR	3.268
gene-mirna-phenotype	TMC8	hsa-mir-142	-	1.240
gene-mirna-phenotype	CD48	hsa-mir-142	-	1.196
gene-mirna-phenotype	TMC8	hsa-mir-150	-	1.194
gene-mirna-phenotype	IKZF1	hsa-mir-142	-	1.192
gene-mirna-phenotype	SELL	hsa-mir-142	-	1.188
gene-mirna-phenotype	CCR7	hsa-mir-142	-	1.187
gene-mirna-phenotype	IRF8	hsa-mir-142	-	1.185
gene-mirna-phenotype	TMC8	hsa-mir-146a	-	1.183
gene-mirna-phenotype	ARHGAP9	hsa-mir-142	-	1.183
gene-mirna-phenotype	CD3E	hsa-mir-150	-	1.182
gene-protein-phenotype	TMC8	-	PCNA	1.172
gene-protein-phenotype	ARHGAP9	-	PCNA	1.141
gene-protein-phenotype	CD48	-	PCNA	1.120
gene-protein-phenotype	TBC1D10C	-	PCNA	1.116
gene-protein-phenotype	LAT	-	PCNA	1.110
gene-protein-phenotype	RASGRP2	-	PCNA	1.107
gene-protein-phenotype	TMIGD2	-	PCNA	1.105
gene-protein-phenotype	MAP4K1	-	PCNA	1.104
gene-protein-phenotype	IRF8	-	PCNA	1.103
gene-protein-phenotype	IKZF1	-	PCNA	1.102
mirna-protein-phenotype	-	hsa-mir-3133	KDR	1.298
mirna-protein-phenotype	-	hsa-mir-142	PCNA	1.045
mirna-protein-phenotype	-	hsa-mir-146a	PCNA	0.967
mirna-protein-phenotype	-	hsa-mir-150	PCNA	0.964
mirna-protein-phenotype	-	hsa-mir-155	PCNA	0.925
mirna-protein-phenotype	-	hsa-mir-3692	PCNA	0.853
mirna-protein-phenotype	-	hsa-mir-142	CCNB1	0.835
mirna-protein-phenotype	-	hsa-mir-146a	CCNB1	0.827
mirna-protein-phenotype	-	hsa-mir-155	CCNB1	0.819
mirna-protein-phenotype	-	hsa-mir-150	CCNB1	0.801

Table 2: Top 10 network higher-order correlation of TCGA breast cancer data of different correlation structures.

S3 Table: Top Network Higher-order Correlation for COPDGene Network

Type	Gene Protein		Metabolite	Higher-order Correlation	
4-way correlation	MTCO1P12	Tyrosine-protein kinase Yes	Tyrosine-protein kinase Yes C-glycosyltryptophan		
4-way correlation	MTCO1P12	Tyrosine-protein kinase Yes N-acetylneuraminate		1.151	
4-way correlation	HMGB1P5	Tyrosine-protein kinase Yes	ine-protein kinase Yes N-acetylneuraminate		
4-way correlation	HMGB1P5	Tyrosine-protein kinase Yes	C-glycosyltryptophan	0.922	
4-way correlation	MTCO1P12	Tyrosine-protein kinase Yes	glycodeoxycholate	0.913	
4-way correlation	RPL7P9	Tyrosine-protein kinase Yes	C-glycosyltryptophan	0.878	
4-way correlation	RPL7P9	Tyrosine-protein kinase Yes	N-acetylneuraminate	0.872	
4-way correlation	MTCO1P12	Tyrosine-protein kinase Yes	5-acetylamino-6-amino-3-methyluracil	0.867	
4-way correlation	MTCO1P12	Tyrosine-protein kinase Yes	N-acetyl-1-methylhistidine*	0.818	
4-way correlation	HK3	Plasma serine protease inhibitor	1-stearoyl-2-oleoyl-GPI $(18:0/18:1)^*$	0.762	
gene-protein-phenotype	S100A9	Matrix metalloproteinase-9	-	0.302	
gene-protein-phenotype	GCA	Matrix metalloproteinase-9	-	0.301	
gene-protein-phenotype	GLT1D1	Matrix metalloproteinase-9	-	0.297	
gene-protein-phenotype	MGAM2	Matrix metalloproteinase-9	-	0.296	
gene-protein-phenotype	BCL6	Matrix metalloproteinase-9	-	0.296	
gene-protein-phenotype	CSF3R	Matrix metalloproteinase-9	-	0.296	
gene-protein-phenotype	SLC11A1	Matrix metalloproteinase-9	-	0.293	
gene-protein-phenotype	LIN7A	Matrix metalloproteinase-9	-	0.290	
gene-protein-phenotype	ALOX5	Matrix metalloproteinase-9	-	0.290	
gene-protein-phenotype	SULT1B1	Matrix metalloproteinase-9			
gene-metabolite-phenotype	TTTY15	-	1-stearoyl-2-linoleoyl-GPI (18:0/18:2)	0.226	
gene-metabolite-phenotype	MGAM2	-	1-stearoyl-2-oleoyl-GPI (18:0/18:1)*	0.211	
gene-metabolite-phenotype	HK3	-	1-stearoyl-2-oleoyl-GPI (18:0/18:1)*	0.208	
gene-metabolite-phenotype	MGAM2	-	1-(1-enyl-stearoyl)-GPE (P-18:0)*	0.204	
gene-metabolite-phenotype	CMTM2	-	X - 12544	0.196	
gene-metabolite-phenotype	TTTY15	-	1-stearoyl-2-docosahexaenoyl-GPE (18:0/22:6)*	0.196	
gene-metabolite-phenotype	PRKY	-	1-stearoyl-2-linoleoyl-GPI (18:0/18:2)	0.193	
gene-metabolite-phenotype	CR1	-	1-stearoyl-2-oleoyl-GPI (18:0/18:1)*	0.191	
gene-metabolite-phenotype	S100A9	-	1-stearoyl-2-oleoyl-GPI (18:0/18:1)*	0.189	
gene-metabolite-phenotype	NCF4	-	X - 12544	0.185	
protein-metabolite-phenotype	=	Tyrosine-protein kinase Yes	C-glycosyltryptophan	0.289	
protein-metabolite-phenotype	-	Neutrophil gelatinase-associated lipocalin	C-glycosyltryptophan	0.287	
protein-metabolite-phenotype	-	Tyrosine-protein kinase Yes	N-acetylneuraminate	0.283	
protein-metabolite-phenotype	_	Fibrinogen gamma chain	iminodiacetate (IDA)	0.268	
protein-metabolite-phenotype	=	D-dimer	iminodiacetate (IDA)	0.254	
protein-metabolite-phenotype	-	Neutrophil gelatinase-associated lipocalin	N-acetylneuraminate	0.251	
protein-metabolite-phenotype	-	MMP-8	6-hydroxyindole sulfate	0.238	
protein-metabolite-phenotype	-	MMP-8	iminodiacetate (IDA)	0.237	
protein-metabolite-phenotype	_	Neutrophil gelatinase-associated lipocalin	5-acetylamino-6-amino-3-methyluracil	0.235	
protein-metabolite-phenotype	_	Peptide YY	5-hydroxyhexanoate	0.233	

Table 3: Top 10 network higher-order correlation of COPDGene data of different correlation structures.

S4 Table: Top Metabolite Enrichment Pathways

Pathway Names	Source	Enriched	Background (All)	P-value
Phospholipid Biosynthesis	SMPDB	4	10 (27)	0.001
Glycerophospholipid metabolism	KEGG	3	8 (55)	0.007
Glycerophospholipid biosynthesis	Reactome	3	12 (94)	0.024
Phospholipid metabolism	Reactome	3	12 (104)	0.024
27-Hydroxylase Deficiency	SMPDB	3	14 (64)	0.037
Congenital Bile Acid Synthesis Defect Type III	SMPDB	3	14 (64)	0.037
Bile Acid Biosynthesis	SMPDB	3	14 (64)	0.037
Congenital Bile Acid Synthesis Defect Type II	SMPDB	3	14 (64)	0.037
Cerebrotendinous Xanthomatosis (CTX)	SMPDB	3	14 (64)	0.037
Zellweger Syndrome	SMPDB	3	14 (64)	0.037

 $\begin{tabular}{l} Table 4: Top 10 pathways of metabolite enrichment analysis result from IMPaLa for SGTCCA-Net subnetwork. \end{tabular}$

S5 Table: Overlap Molecular Features between FEV1 and FEV1 Percent Predicted Network

Name	Type	Correlation (FEV1)	P-value (FEV1)	Correlation (FEV1 PP)	P-value (FEV1 PP)
C-reactive protein	Protein	-0.190	< 0.001	-0.257	< 0.001
ENSG00000111052	Gene	-0.167	< 0.001	-0.220	< 0.001
Complement C5	Protein	-0.152	0.001	-0.200	< 0.001
5-hydroxyhexanoate	Metabolite	-0.170	< 0.001	-0.190	< 0.001
mannose	Metabolite	-0.115	0.013	-0.183	< 0.001
ENSG00000101916	Gene	-0.149	0.001	-0.175	< 0.001
ENSG00000160883	Gene	-0.177	< 0.001	-0.174	< 0.001
Complement C5b-C6 complex	Protein	-0.138	0.003	-0.173	< 0.001
ENSG00000115271	Gene	-0.133	0.004	-0.169	< 0.001
ENSG00000163220	Gene	-0.138	0.003	-0.166	< 0.001
ENSG00000173597	Gene	-0.143	0.002	-0.156	< 0.001
Matrix metalloproteinase-9	Protein	-0.149	0.001	-0.154	< 0.001
1-linoleoyl-GPC (18:2)	Metabolite	0.126	0.007	0.160	< 0.001
1-(1-enyl-stearoyl)-GPE (P-18:0)*	Metabolite	0.151	0.001	0.174	< 0.001
Plasma serine protease inhibitor	Protein	0.180	< 0.001	0.219	< 0.001
Kallistatin	Protein	0.158	< 0.001	0.223	< 0.001

Table 5: Molecular features overlap between FEV1 and FEV1 percent predicted network generated from SGTCCA-Net (where absolute correlation with phenotype >0.15).