SRVI INSTITUTE OF SCIENCE & TECHNOLOGY (Deemed to be University u/3 of UCA ACA, 1956)

SRM Institute of Science and Technology Kattankulathur

DEPARTMENT OF MATHEMATICS

18MAB102T Advanced Calculus and Complex Analysis

UNIT -II Vector Calculus

1	Sl.No.	Tutorial Sheet -1 Part – A	Answers
1	Find and a for	Part – A	
1	Find and a for		_
	Find grad φ for the following functions. (i) $\varphi=3x^2y-y^3z^2$ at the point (1,-2,1) (ii) $\varphi=\log(x^2+y^2+z^2)$ at the point (1,2,1)		(i) -12i-9j+16k (ii) (1/3)(i+2j+k)
2	Find the directional derivative of the following functions (i) $\phi = x^2yz + 4xz^2$ at the point (1,-2,-1) in the direction 2i-j-2k (ii) $\phi = x^2 - 2y^2 + 4z^2$ at the point (1,1,-1) in the direction 2i-j-k		(i)37/3 (ii) 16/√6
3	Find a unit nor (i) x ³ +y ³ +3xyz= (ii) xy ² z ³ =1 at the	mal vector to the following surfaces 3 at the point (1,2,-1) ne point (1,1,1)	(i)(1/√126)(-3i+9j+6k) (ii)(1/√14)(i+2j+3k)
4	Find the maxin (i)φ=x³yz at the (ii)φ=xyz² at the	num directional derivative of the following functions point (1,4,1) e point (1,0,3)	(i)√161 (ii)9
5		fon from (3,1,-2) is the directional derivative of ϕ = $x^2y^2z^4$ maximum? agnitude of this maximum.	(96)(i+3j-3k) 96√19
6	(i) $x^2+y^2+z^2=9$ a	between the following surfaces $x^2+y^2-z=3$ at the point (2,-1,2) x+2y-z=2 at the point (1,1,1)	(i) $\cos^{-1}(8/3\sqrt{21})$ (ii) $\pi/3$
7	(i) $\overrightarrow{\text{div }}\vec{r} = 3$ (ii) $\text{curl }\vec{r} = 0$ (iii) $\text{grad}(\mathbf{r}^n) = \mathbf{n}$		
	Show that the	$\frac{Part-B}{\text{vector field F=}(x^2-yz)i+(y^2-xz)j+(z^2-xy)k \text{ is irrotational. Find a scalar }\phi}$	I
8	such that F= gr	ad φ	$\varphi = (1/3)(x^3 + y^3 + z^3) - xyz + 0$
9		ants a,b and c so that $F=(x+2y+az)i+(bx-3y-z)j+(4x+cy+2z)k$ may be so, find the scalar potential?	a=4, b=2, c=-1 $\phi=(x^2/2-3y^2/2+z^2)+2xy+4zx-yz+6$
10	Show that F=(y	² -z ² +3yz-2x)i+(3xz+2xy)j+(3xy-2xz+2z)k is irrotational and solenoidal.	