Содержание

1	Hac	тройка СLion
2		оия чисел
	2.1 2.2	КТО
	2.3	Алгоритм Берлекэмпа — Месси
	2.4 2.5	Линейное решето
•	-	•
3	Грас 3.1	ры
	3.2	Эйлеров цикл
	3.3 3.4	Компоненты рёберной двусвязности
	3.5	Взвешенное паросочетание
	3.6 3.7	Дерево доминаторов
	3.8	Алгоритм Чу-Лью
4	Crëi	отки 7
-	4.1	ХОR свёртка
	4.2	FFT & co
	4.4	FFT B double'ax
5	Стр	уктуры данных
,	5.1	Дерево Фенвика
	5.2 5.3	Дерево отрезков в точке
	5.4	Массовое дерево отрезков 10 Битовый бор 1
	5.5	Ordered set
	5.6 5.7	Динамический битсет 15 Convex hull trick 15
	5.8	Центроиды
	5.9 5.10	Дерево Ли Чао 12 Min-Kinetic Segment Tree 13
	5.11	Декартово дерево
		5.11.1 Декартово дерево по явному ключу. Multiset 13
6		оковые алгоритмы
	6.1 6.2	Префикс-функция
	6.3	Алгоритм Манакера
	$6.4 \\ 6.5$	Суфмассив 15 Алгоритм Ахо Корасик 15
	6.6	Дерево палиндромов
7	Пот	оки 16
-	7.1	Алгоритм Диница
	7.2	Mincost k-flow
8		оритм Гаусса 18
	8.1 8.2	Решение $Av = b$
	0.2	basic $Av = 0$
9		Базис $Av = 0$
		ильтоновы путь и цикл 19
	Гам : 9.1 9.2	ильтоновы путь и цикл Link-cut tree
	9.1	ильтоновы путь и цикл Link-cut tree
10	9.1 9.2	ильтоновы путь и цикл 19 Link-cut tree 19 Undirected case 19 Directed case 20
10	9.1 9.2 9.3 • Feor 10.1	ильтоновы путь и цикл 19 Link-cut tree
10	9.1 9.2 9.3 Feor 10.1 10.2 10.3	ильтоновы путь и цикл19Link-cut tree15Undirected case19Directed case20иа21Примитивы2Выпуклая оболочка2Точка внутри многоугольника2
10	9.1 9.2 9.3 Feor 10.1 10.2 10.3 10.4	ильтоновы путь и цикл19Link-cut tree19Undirected case19Directed case20иа21Примитивы2Выпуклая оболочка2Точка внутри многоугольника2Касательные2
10	9.1 9.2 9.3 Feor 10.1 10.2 10.3 10.4 10.5	ильтоновы путь и цикл 19 Link-cut tree 19 Undirected case 15 Directed case 20 ма 21 Примитивы 2 Выпуклая оболочка 2 Точка внутри многоугольника 2 Касательные 2 Пересечение многоугольника и полуплоскости 2
10	9.1 9.2 9.3 Feor 10.1 10.2 10.3 10.4 10.5 10.6	ильтоновы путь и цикл Link-cut tree
10	9.1 9.2 9.3 Feor 10.1 10.2 10.3 10.4 10.5 10.6	ильтоновы путь и цикл 19 Link-cut tree 19 Undirected case 19 Directed case 20 иа 21 Примитивы 2 Выпуклая оболочка 2 Точка внутри многоугольника 2 Касательные 2 Пересечение многоугольника и полуплоскости 2 События для прямой 2
	9.1 9.2 9.3 Feor 10.1 10.2 10.3 10.4 10.5 10.6 10.7	ильтоновы путь и цикл 19 Link-cut tree 19 Undirected case 15 Directed case 20 ма 21 Примитивы 2 Выпуклая оболочка 2 Точка внутри многоугольника 2 Касательные 2 Пересечение многоугольника и полуплоскости 2 События для прямой 2 Кривая Гильберта для алгоритма Мо 2 Симплекс 2 ные дроби 2
	9.1 9.2 9.3 Feor 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 Uen	ильтоновы путь и цикл 19 Link-cut tree 19 Undirected case 19 Directed case 20 иа 21 Примитивы 2 Выпуклая оболочка 2 Точка внутри многоугольника 2 Касательные 2 Пересечение многоугольника и полуплоскости 2 События для прямой 26 Кривая Гильберта для алгоритма Мо 25 Симплекс 25
11	9.1 9.2 9.3 Feor 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 Hen 11.1 11.2	ильтоновы путь и цикл 19 Link-cut tree 19 Undirected case 19 Directed case 20 ма 21 Примитивы 2 Выпуклая оболочка 2 Точка внутри многоугольника 2 Касательные 2 Пересечение многоугольника и полуплоскости 2 События для прямой 2 Кривая Гильберта для алгоритма Мо 2 Симплекс 2 ные дроби 2 Поиск нижней огибающей, сумма и минимум по модулю 2 Простая рекурсия 2
11	9.1 9.2 9.3 Feor 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 Hen 11.1 11.2	ильтоновы путь и цикл 19 Link-cut tree 19 Undirected case 15 Directed case 20 ма 21 Примитивы 2 Выпуклая оболочка 2 Точка внутри многоугольника 2 Касательные 2 Пересечение многоугольника и полуплоскости 2 События для прямой 2 Кривая Гильберта для алгоритма Мо 25 Симплекс 25 ные дроби 2 Поиск нижней огибающей, сумма и минимум по модулю 2 Простая рекурсия 2 ное 24
11	9.1 9.2 9.3 Feor 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 Hen 11.1 11.2	ильтоновы путь и цикл 19 Link-cut tree 19 Undirected case 19 Directed case 20 ма 21 Примитивы 2 Выпуклая оболочка 2 Точка внутри многоугольника 2 Касательные 2 Пересечение многоугольника и полуплоскости 2 События для прямой 25 Кривая Гильберта для алгоритма Мо 25 Симплекс 25 ные дроби 25 Поиск нижней огибающей, сумма и минимум по модулю 25 Простая рекурсия 26 компараторы 26 Компараторы 26 Трюки от Сергея Копелиовича 24
11	9.1 9.2 9.3 Feor 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 Hen 11.1 11.2	ильтоновы путь и цикл Link-cut tree
11	9.1 9.2 9.3 Feom 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 Hen 11.1 11.2 Pass 12.1 12.2	ильтоновы путь и цикл Link-cut tree
11	9.1 9.2 9.3 Feom 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 Hen 11.1 11.2 Pass 12.1 12.2	ильтоновы путь и цикл 19 Link-cut tree 19 Undirected case 15 Directed case 20 ма 21 Примитивы 2 Выпуклая оболочка 2 Точка внутри многоугольника 2 Касательные 2 Пересечение многоугольника и полуплоскости 2 События для прямой 2 Кривая Гильберта для алгоритма Мо 2 Симплекс 2 ные дроби 2 Поиск нижней огибающей, сумма и минимум по модулю 2 Простая рекурсия 2 ное 2 Компараторы 2 Трюки от Сергея Копелиовича 2 12.2.1 Быстрый ввод 2 12.2.2 Быстрый аллокатор 2 Редукция Барретта 2 Флаги компияции 2
11	9.1 9.2 9.3 Feor 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 Hen 11.1 12.2 12.3 12.4 12.5	ильтоновы путь и цикл Link-cut tree

1 Настройка CLion

- 1. B файле CMakeLists.txt дописать строчку add_compile_definitions(LOCAL). Нажать появившуюся опцию в правом верхнем углу enable auto-reload.
- 2. Вбить шаблон в main.cpp:

```
#ifdef LOCAL
#define _GLIBCXX_DEBUG
#endif
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define app push_back
#define all(x) x.begin(), x.end()
#ifdef LOCAL
VA_ARGS__)
#define debugv(v) do { cout << #v << ": "; for (</pre>
    auto x : v) cout << x << ' '; cout << endl;</pre>
    } while(0)
#else
#define debug(...)
#define debugv(v)
#endif
int32 t main() {
 cin.tie(0);ios_base::sync_with_stdio(0);
int n = 2; vector<int> a(n, n);
  debug(n); debugv(a);
//59124c
```

Скомпилировать, чтобы проверить отсутствие опечаток.

3. Запустить терминал (crtl + alt + T)

```
$ cd workspace/CLionProjects
$ for c in {A..Z}; do cp main.cpp $c.cpp && echo
    "add_executable($c $c.cpp)" >> CMakeLists.
    txt; done
```

Далее отключаем подсветку и форматирование в настройках (ctrl+alt+S)

- ullet Editor o Code Style o Formatter o Do not format прописать
- Editor o Inspections o C/C++ o static analysis tools o CLangTidy отключить

Тёмная тема отключается в Appearance & Behavior \rightarrow Appearance. Чтобы добавить санитайзеры, надо дописать в CMakeLists.txt set(CMAKE_CXX_FLAGS "-fsanitize=address -fsanitize=undefined")

2 Теория чисел

2.1 KTO

```
int gcd(int a, int b, int &x, int &y) {
   if (b==0) { x = 1; y = 0; return a; }
   int d = gcd(b,a%b,y,x);
   y-=a/b*x;
   return d;
}
int inv(int r, int m) {
   int x, y;
   gcd(r,m,x,y);
   return (x+m)%m;
}
int crt(int r, int n, int c, int m) { return r + ((c - r) % m + m) * inv(n, m) % m * n; }
//8ed8ed
```

2.2 Алгоритм Миллера — Рабина

```
int128 one=1;
int po(int a,int b,int p)
{
  int res=1;
  while(b) {if(b & 1) {res=(res*one*a)%p;--b;} else
    {a=(a*one*a)%p;b>>=1;}} return res;
bool chprime(int n) //miller-rabin
  if(n==2) return true;
  if(n<=1 || n%2==0) return false;</pre>
  int h=n-1; int d=0; while (h%2==0) {h/=2; ++d;} for (int a: {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,
     371)
    if(a==n) return true;
    int u=po(a,h,n);bool ok=0;
    if(u%n==1) continue;
    for(int c=0;c<d;++c)</pre>
       if((u+1)%n==0) {ok=1;break;}
      u=(u*one*u)%n;
    if(!ok) return false;
  return true;
//86b2ed
```

2.3 Алгоритм Берлекэмпа — Месси

https://mzhang2021.github.io/cp-blog/berlekamp-massey/

```
template<tvpename T>
vector<T> berlekampMassey(const vector<T> &s) {
  int n = s.size(), l = 0, m = 1;
vector<T> b(n), c(n);
T ld = b[0] = c[0] = 1;
  for (int i=0; i<n; i++, m++) {</pre>
     T d = s[i];
     for (int j=1; j<=1; j++)
d += c[j] * s[i-j];
     if (d == 0) continue;
     vector<T> temp = c;
     T coef = d / ld;
     for (int j=m; j<n; j++) c[j] -= coef * b[j-m];
if (2 * 1 <= i) {</pre>
       1 = i + 1 - 1;
       b = temp;
       1d = d:
       m = 0;
     }
  c.resize(l + 1);
  c.erase(c.begin());
  for (T &x : c)
x = -x;
  return c;
//ff47ae
```

2.4 Линейное решето

```
const int C = 1e7+7;
vi pr, lp(C);
for (int i = 2; i < C; ++i) {
   if (lp[i] == 0) {
      lp[i] = i;
      pr.app(i);
   }
   for (int j = 0; j < (int)pr.size() && pr[j] <= lp[
      i] && pr[j] * i < C; ++j) {
      lp[pr[j] * i] = pr[j];
   }
}
//36b3d1</pre>
```

2.5 Алгоритм Шенкса

```
#define T int
int mod;
int gcd(int a, int b, int &x, int &y) {
  if (b==0) { x = 1; y = 0; return a; }
  int d = gcd(b,a%b,y,x);
  y==a/b*x;
  return d;
}
```

```
int inv(int r, int m) {
  int x, y;
  gcd(r,m,x,y);
  return (x+m)%m;
T inv(T a)
{
  return inv(a, mod);
T mul(T a, T b)
  return (a*b)%mod;
vector<int> rasl(int x)
  vector<int> v;
  if(x==1) {return v;}
  for(int i=2;i*i<=x;++i)</pre>
    if(x\%i==0)
      v=rasl(x/i); v.app(i); return v;
  v.app(x);return v;
T po(T a, int b) ///b>=1
  if(b==1) {return a;}
  if(b%2==0)
   T u=po(a,b/2);
    return mul(u,u);
  else
    T u=po(a,b-1);
    return mul(a,u);
T getper(T a, T one, int per, vector<int> v)
  for(int p:v)
    if(po(a,per/p)==one)
      per/=p;
  return per;
vector<pair<int, int> > shanks(T a, vector<T> b, T one,
    int per) ///a^per=1 and b[i]^per=1 /// all right
numbers in output are equal
  if(b.empty()) {return {};}
  int n=b.size();
  vector<int> vp=rasl(per);
  int pera=getper(a, one, per, vp); per=pera;
  vp=rasl(pera);
  vector<int> have(n,0);
  int cur2=per;T cura=a;T invcura=inv(a);
  int curad=1;
  vector<pair<T, int> > v;
  vector<bool> ok(n,true);
  vector<T> poinvzx;
  for(int p:vp)
    T ca=po(cura,cur2/p);
    if(ca==one) {continue;}
    T invca=po(invcura, cur2/p);
    int step=sqrt(b.size()*p)+2;
    int wee=p/step+2;
    v.clear();poinvzx.clear();
    T zx=one; T invzx=one; T buba=one;
    vector<T> zhe;
    T lu=one:
    for(int i=0;i<step;++i)</pre>
      v.app({zx,i}); zhe.app(lu);
      zx=mul(zx,ca);invzx=mul(invzx,invca);buba=mul(
    buba, cura); lu=mul(lu, invcura);
    poinvzx.app(one);
    for(int j=0;j<wee;++j)</pre>
      poinvzx.app(mul(poinvzx.back(),buba));
```

```
sort(all(v));
    for(int i=0;i<n;++i)</pre>
      if(!ok[i]) {continue;}
      T uu=po(b[i],cur2/p);
      bool okkk=false;
      for(int j=0;j<wee;++j)</pre>
      {
        auto it=lower_bound(all(v), make_pair(uu, OLL)
        if(it!=v.end() && (*it).first==uu)
        {
          okkk=true;
          have[i]-=(curad*step*j);
          have[i]+=(curad*(*it).second);
          have[i]%=pera;if(have[i]<0) {have[i]+=pera</pre>
    ; }
          b[i]=mul(b[i],poinvzx[j]);b[i]=mul(b[i],
    zhe[(*it).second]);
          assert(po(b[i],cur2/p)==one);
          break;
        uu=mul(uu,zx);
      if(!okkk) {ok[i]=false;}
    cur2/=p; cura=po(cura,p); invcura=po(invcura,p);
    curad*=p;
  vector<pair<int,int> > res;
  for(int i=0;i<n;++i)</pre>
    if(ok[i] && b[i]==one)
    {
      res.app({(have[i]%pera+pera)%pera,pera});
    else
      res.app({-1,pera});
    }
  }
  return res;
int shanks2(int x,int y,int mod1) ///only for T=long
     long, 0^0 = 1 by default
  mod=mod1;
  vector<int> v=rasl(mod);sort(all(v));
  int per=1; for(int i=0;i<v.size();++i) {if(i==0 ||</pre>
    v[i]!=v[i-1]) {per*=(v[i]-1);} else {per*=v[i
    1;}}
  if(y==1 || mod==1) {return 0;}
  int C=61;
  for(int i=1;i<C;++i)</pre>
    if(po(x,i)==y) {return i;}
  if(y==0) {return (-1);}
  T h=po(x,C);
  int lc1=gcd(h, mod); int lc2=gcd(y, mod);
  if(lc1!=lc2) {return (-1);}
  mod/=lc2;T h1=h/lc2;T y1=y/lc2;
  vector<pair<int, int> > s=shanks(x%mod, {mul(y1, inv(
    h1))},1,per);
  if(s[0].first!=(-1))
  {
    return s[0].first+C;
  }
 else
    return (-1);
  }
//a75596
```

3 Графы

$oldsymbol{3.1}$ $oldsymbol{\mathcal{SCC}}$ и $oldsymbol{2\text{-}}oldsymbol{\mathcal{SAT}}$

```
Алгоритм ищет сильносвязные компоненты в графе g, если есть путь i \to j, то scc[i] \le scc[j] vector<int> find_scc(vector<vector<int>> g) { int n = g.size(); vector<vector<int>> r(n); for (int i = 0; i < n; ++i) { for (int j : g[i]) r[j].push\_back(i); }
```

```
vector<int> used(n), tout(n);
   int time = 0;
  auto dfs = [&](auto dfs, int cur) -> void {
     used[cur] = 1;
     for (int nxt : g[cur]) {
       if (!used[nxt]) dfs(dfs, nxt);
     tout[cur] = time++;
  for (int i = 0; i < n; ++i) if (!used[i]) dfs(dfs,</pre>
      i);
  vector<int> ind(n);
  iota(all(ind), 0);
  sort(all(ind), [&](int i, int j){return tout[i] >
  tout[j];});
vector<int> scc(n, -1);
  auto go = [&](auto go, int cur, int color) -> void
     scc[cur] = color;
     for (int nxt : r[cur]) {
  if (scc[nxt] == -1) go(go, nxt, color);
     }
  };
   int color = 0;
  for (int i : ind) {
     if (scc[i] == -1) go(go, i, color++);
  return scc;
//4fd51f
Чтобы решать 2-\mathcal{SAT}, надо создать граф на 2n вершинах, рёбра i\Rightarrow j
и (j\oplus 1)\Rightarrow (i\oplus 1) должны быть добавлены одновременно. После этого если \sec[2\ *\ i]=\sec[2\ *\ i+1], то решения нет; если \sec[2\ *\ i+1]
\star i + 0] < scc[2 \star i + 1], то присутствует импликация \lnot i \Rightarrow
```

3.2 Эйлеров цикл

i. нало назначить i = t.rue.

```
vector<int> euler(vector<vector<pair<int, int>>> g,
    int m, int src) { // g[cur][i] = pair{nxt, idx}
  int n = g.size();
  vector<int> used(m), it(n), cycle;
  auto dfs = [&](auto dfs, int cur) -> void {
    while (true) {
      while (it[cur] < g[cur].size() && used[g[cur][</pre>
    it[cur]].second]) it[cur]++;
      if (it[cur] == g[cur].size()) return;
      auto [nxt, idx] = g[cur][it[cur]];
used[idx] = true;
      dfs(dfs, nxt);
      cycle.push_back(idx); // or {cur, nxt}
    }
  };
  dfs(dfs, src);
  reverse(cycle.begin(), cycle.end());
if (cycle.size() != m) return {}; // check that
    all edges are present in the cycle, fail
    otherwise
  return cycle;
//f6b9d4
```

3.3 Компоненты рёберной двусвязности

```
//n - number of vertices, m - number of edges,
    parallel edges -- ???, color of any edge is the
    color of its lower end
vector <vector <int> > dfstree(n);
vector <int> used(n), cut(n), h(n), up(n);
auto findCutPoints = [&] (auto self, int u) -> void
    used[u] = 1
    up[u] = h[u];
    for (int v : g[u])
         if (!used[v]) {
             dfstree[u].push_back(v);
             h[v] = h[u] + 1;
             self(self, v);
             up[u] = min(up[u], up[v]);
             if (up[v] >= h[u]) {
                  cut[v] = 1;
         else {
             up[u] = min(up[u], h[v]);
    }
```

```
findCutPoints(findCutPoints, 0);
vector <vector <int> > tree(n + m);
vector<int> color(n);color[0]=0;int ptr=n;
auto build = [&] (auto self, int u) -> void {
     for (int v : dfstree[u]) {
          if (cut[v]) {
               color[v]=ptr;++ptr;
               self(self, v);
          else {
               color[v]=color[u];
               self(self, v);
     }
};
build(build, 0);
for(int i=0;i<n;++i) {</pre>
     set<int> to;
     for(int j:g[i]) {
   int x=i, y=j;
   if(h[x]<h[y]) swap(x, y);</pre>
          to.insert(color[x]);
     for(int j:to) {
          tree[i].app(j);tree[j].app(i);
//2ebfbb
```

3.4 DCP offline

```
struct Dsu {
  int n;
  vector<pair<int &, int>> s;
  vector<int> p, sz;
  // other info
  Dsu(int n) : n(n), p(n), sz(n, 1)
    iota(all(p), 0);
  int get(int u) {
    while (u != p[u]) u = p[u];
    return u;
  bool merge(int u, int v) {
    u = get(u), v = get(v);
if (u == v) return false;
    if (sz[v] < sz[u]) swap(u, v);
s.app({p[u], p[u]});</pre>
    s.app({sz[v], sz[v]});
// app other info like s.app({comp, comp});
p[u] = v;
    sz[v] += sz[u];
    return true;
  void rollback(int sz) {
    while (s.size() != sz) {
  s.back().first = s.back().second;
       s.pop_back();
struct DcpOffline {
  vector<vector<pair<int, int>>> d;
  void addEdgeOnSegment(int 1, int r, int a, int b)
    for (1 += n, r += n; 1 < r; 1 /= 2, r /= 2) {
       if (1 & 1) d[1++].app({a, b});
       if (r & 1) d[--r].app({a, b});
  template<typename T>
  void dfs(Dsu &dsu, T act) {
    dfs(1, 0, n, dsu, act);
  template<typename T>
  void dfs(int v, int l, int r, Dsu &dsu, T act) {
    int sz = dsu.s.size();
    for (auto [u, v]: d[v]) {
       dsu.merge(u, v);
```

```
Page 4 of 25
    if (1 + 1 == r) {
      act(1, dsu);
    } else {
      int m = (1 + r) / 2;
dfs(v * 2, 1, m, dsu, act);
dfs(v * 2 + 1, m, r, dsu, act);
    dsu.rollback(sz);
  DcpOffline(int maxt) : n(2 \ll _lg(maxt + 1)), d(2
     * n) {}
//3c4e2d
3.5 Взвешенное паросочетание
https://judge.yosupo.jp/submission/201334
\#define\ d(x)\ (lab[x.u] + lab[x.v] - 2 * e[x.u][x.v].
   w)
const int N = 403*2;
const int inf = 1e18;
struct Q{ int u, v, w; } e[N][N];
vector<int> p[N];
d(e[sl[v]][v])) sl[v] = u; }
void ss(int v) {
  sl[v] = 0;
  for (int u = 1; u <= n; ++u) if (e[u][v].w > 0 &&
    st[u] != v && !s[st[u]]) upd(u, v);
void ins(int u){ if (u \le n) q[++t] = u; else for (
    int v : p[u]) ins(v); }
void ch(int u, int w) \{ st[u] = w; if (u > n) for (
    int v : p[u]) ch(v, w); }
int gr(int u, int v)
  if ((v = find(all(p[u]), v) - p[u].begin()) & 1) {
    reverse(1 + all(p[u]));
    return (int)p[u].size() - v;
  return v;
void stm(int u, int v) {
  lk[u] = e[u][v].v;
  if (u <= n) return; Q w = e[u][v];</pre>
  int x = b[u][w.u], y = gr(u,x);
for (int i = 0; i < y; ++i) stm(p[u][i], p[u][i</pre>
    ^1]);
  stm(x, v); rotate(p[u].begin(), y+all(p[u]));
void aug(int u, int v) {
  int w = st[lk[u]];stm(u, v);if (!w) return;
stm(w, st[f[w]]);
  aug(st[f[w]], w);
int lca(int u, int v) {
  for (id++; u|v; swap(u, v)) {
       (!u) continue;if(ed[u] == id) return u;
    ed[u] = id; if (u = st[lk[u]]) u = st[f[u]]; //
    =, not ==
  return 0;
//cf1d55
```

void add(int u, int a, int v) {

lab[x] = s[x] = st[x] = 0;

fill(b[x]+1, b[x]+n+1, 0);

op(u); reverse(1+all(p[x]));op(v);

lk[x] = lk[a];

p[x].push_back(a);

x] = e[v][u];

p[x].clear();

int x = n + 1; while $(x \le m \&\& st[x]) ++x$; if (x > m) ++m;

#define op(q) for (int i = q, j = 0; i != a; i=st[f[j]]) p[x].push_back(i), p[x].push_back(j=st[lk[i
]]), ins(j) // also not ==

ch(x, x); for (int i = 1; i <= m; ++i) e[x][i].w = e[i][x].w = 0;

for (int u : p[x]) {
 for (int v = 1; v <= m; ++v) if (!e[x][v].w || d</pre>

(e[u][v]) < d(e[x][v])) e[x][v] = e[u][v], e[v][

for (int v = 1; $v \le n$; ++v) if (b[u][v]) b[x][v

```
ss(x);
void ex(int u) {
  for (int x : p[u]) ch(x, x);
  int a = b[u][e[u][f[u]], u], r = gr(u, a);
for (int i = 0; i < r; i += 2) {
     int x = p[u][i], y = p[u][i + 1];
f[x] = e[y][x].u; s[x] = 1; s[y] = 0; s1[x] = 0;
      ss(y); ins(y);
  s[a] = 1; f[a] = f[u];
for (int i = r + 1; i < p[u].size(); ++i) s[p[u][i</pre>
     ]] = -1, ss(p[u][i]);
  st[u] = 0;
bool on(const Q &e) {
  int u = st[e.u], v = st[e.v], a;
if (s[v] == -1) {
  u), 1; else add(u, a, v);
  return 0;
//3f0f1d
bool bfs() {
  fill(s+1, s+m+1, -1); fill(sl+1, sl+m+1, 0); // s
     is filled with -1
   h = 1, t = 0; for (int i = 1; i \le m; ++i) if (st[
     i] == i \&\& !lk[i]) f[i] = s[i] = 0, ins(i);
   if (h > t) return 0;
  while (1) {
     while (h <= t)
        int u = q[h++];
        if (s[st[u]] != 1) {
      for (int v = 1; v <= n; ++v) if (e[u][v].w >
0 && st[u] != st[v]) {
             if (d(e[u][v])) upd(u, st[v]); else if (on
      (e[u][v])) return 1;
        }
     }
     int x = inf;
     for (int i = n+1; i <= m; ++i) if (st[i] == i &&
    s[i] == 1) x = min(x, lab[i]/2);
for (int i = 1; i <= m; ++i) if (st[i] == i &&
    s1[i] && s[i] != 1) x = min(x, d(e[s1[i]][i])>>s
     [i]+1);
     for (int i = 1; i \le n; ++i) if (\sim s[st[i]]) if ((lab[i] += (s[st[i]] * 2 - 1) * x) <=0) return
     for (int i = n + 1; i \le m; ++i) if (st[i] == i && ~s[st[i]]) lab[i] += (2 - 4 * s[st[i]]) * x;
     h = 1, t = 0;
for (int i = 1; i <= m; ++i) if (st[i] == i &&
     sl[i] \&\& st[sl[i]] != i \&\& !d(e[sl[i]][i]) \&\& on
     (e[sl[i]][i])) return 1;
     for (int i = n+1; i <= m; ++i) if (st[i] == i &&</pre>
      s[i] == 1 && !lab[i]) ex(i);
}
pair<int, vector<array<int, 2>>> run(int N, vector<</pre>
     array<int, 3>> edges) {
   for (auto &[u, v, w] : edges) ++u, ++v;
  fill(ed+1, ed+m+1, 0);
fill(lk+1, lk+m+1, 0);
   n = m = N;
   id = 0;
  iota(st + 1, st + n + 1, 1);
  int wm = 0, weight = 0;
for (int i = 1; i <= n; ++i) for (int j = 1; j <=</pre>
         ++j) e[i][j] = {i,j,0};
   for (auto [u, v, w] : edges) wm = max(wm, e[v][u].
     w = e[u][v].w = max(e[u][v].w, w));
  for (int i = 1; i <= n; ++i) p[i].clear();
for (int i = 1; i <= n; ++i) for (int j = 1; j <=
     n; ++j) b[i][j] = i==j?i:0;
  fill_n(lab+1, n, wm); while (bfs());
vector<array<int, 2>> matching;
for (int i = 1; i <= n; ++i) if (i < lk[i]) weight</pre>
        = e[i][lk[i]].w, matching.push_back({i - 1, lk
     [i] - 1);
  return {weight, matching};
```

} //be682f

3.6 Дерево доминаторов

```
struct DominatorTree{
  struct DSU{
    struct Vert{
      int p;
      pair<int, int> val;
    vector<Vert> t;
    vector<int> ord;
    DSU(vector<int> &ord): ord(ord) { t.resize(ord.
    size()); for (int i = 0; i < ord.size(); i++) t[
    i].p = i; }
    int get(int v){
      if (t[v].p == v) return v;
int new_p = get(t[v].p);
      if (ord[t[v].val.first] > ord[t[t[v].p].val.
    first]) t[v].val = t[t[v].p].val;
      t[v].p = new_p;
      return t[v].p;
    void merge(int a, int b){
      a = get(a); b = get(b);
      if (a != b) {
        t[b].p = a;
    void setVal(int v, pair<int, int> val){
     t[v].val = val;
    auto getVal(int v){
      get(v);
      return t[v].val;
 } :
 vector<vector<int> > g, gr, lg;
  vector<int> idom, sdom, was, tin;
  int timer;
  void dfs(int v){
   tin[v] = timer++;
was[v] = 1;
    for (int to : g[v]) if (!was[to]) dfs(to);
  vector<vector<int> > req;
  DominatorTree(int n, vector<pair<int, int> > &
    edges, int root){
    g.resize(n); gr.resize(n); lg.resize(n);
    idom.resize(n, -1); sdom.resize(n);
    was.resize(n, 0), tin.resize(n);
    req.resize(n);
    for (auto &&e : edges){
      g[e.first].push_back(e.second);
      gr[e.second].push_back(e.first);
    timer = 0; dfs(root);
    vector<int> ord;
for (int i = 0; i < n; i++) ord.push_back(i);</pre>
    sort(ord.begin(), ord.end(), [this](int w1, int
    w2){ return tin[w1] > tin[w2]; });
    DSU dsu(tin);
    for (int v : ord){
      sdom[v] = v;
      for (int to : gr[v]){
  if (v == to) continue;
        int val = tin[to] < tin[v] ? to : dsu.getVal</pre>
    (to).first;
        if (tin[val] < tin[sdom[v]]) sdom[v] = val;</pre>
      req[sdom[v]].push_back(v);
      for (auto &&r : req[v]){
        auto val = dsu.getVal(r);
        if (tin[val.first] < tin[sdom[r]]){</pre>
          lg[val.second].push_back(r);
```

```
} else {
           idom[r] = sdom[r];
       dsu.setVal(v, make_pair(sdom[v], v));
      for (int to : g[v]){
   if (tin[to] > tin[v] && dsu.t[to].p == to){
           dsu.merge(v, to);
      }
    for (int i = 0; i < n; i++) was[i] = 0;</pre>
     for (int i = 0; i < n; i++) if (!was[i] && idom[</pre>
    i] != -1) {
       vector<int> st;
      st.push_back(i);
was[i] = 1;
       while(st.size()){
         int v = st.back(); st.pop_back();
         idom[v] = idom[i];
for (int to : lg[v]) if (!was[to]) was[to] =
      1, st.push_back(to);
    }
  }
};
vector <pair <int, int> > e;
DominatorTree d(n,e,0);
auto par = d.idom;
//839464
```

3.7 Венгерский алгоритм решения задачи о назначениях

```
//choose one element in each row to minimize sum of
     the chosen elements, n <= m, INF>max(abs(a[i][j
     1))
const int INF = 1e18;
vector<int> hungarian(int n, int m, vector<vector<
   int>> a, int &cost) { //1-indexed!, a.size()=n
     +1, a[i].size()=m+1
  int j0 = 0;
     vector<int> minv(m+1, INF);
     vector<char> used(m+1, false);
     do {
       used[j0] = true;
int i0 = p[j0], delta = INF, j1;
for (int j=1; j<=m; ++j)
  if (!used[j]) {
            int cur = a[i0][j]-u[i0]-v[j];
if (cur < minv[j])</pre>
            minv[j] = cur, way[j] = j0;
if (minv[j] < delta)
              delta = minv[j], j1 = j;
       for (int j=0; j<=m; ++j)</pre>
          if (used[j])
            u[p[j]] += delta, v[j] -= delta;
          else
           minv[j] -= delta;
       j0 = j1;
     } while (p[j0] != 0);
     do {
       int j1 = way[j0];
       p[j0] = p[j1];
j0 = j1;
     } while (j0);
  vector<int> ans(n+1);
  for (int j=1; j<=m; ++j) {
  if (p[j]!=0) {</pre>
       ans[p[j]] = j;
  cost = -v[0];
  return ans;
//6d564b
```

3.8 Алгоритм Чу-Лью

В ориентированном взвешенном графе ищет остовное дерево минимального веса (такое дерево, что все вершины достижимы из нуля, входящая степень любой ненулевой вершины равна 1, в нуль не входит ни одного ребра). Если recover = true, то восстанавливает ответ

Предполагается, что все вершины достижимы из нуля.

```
using edge = array<int, 4>; // {from, to, w, i}
template<typename T, typename C>
using pq = priority_queue<T, vector<T>, C>;
auto cmp = [&](int i, int j) { return ed[i][2] >
    ed[j][2]; };
  vector r(n, pq<int, decltype(cmp)>(cmp));
for (auto [u, v, w, i] : ed) r[v].push(i);
  vector<int> mod(n), p(n), color(n), take;
  iota(all(p), 0);
auto get = [&](int u) {
    while (u != p[u]) u = p[u] = p[p[u]];
  auto unite = [&](int x, int y) {
    x = get(x), y = get(y);
if (x == y) return;
        (r[x].size() > r[y].size()) swap(x, y);
    p[x] = y;
    while (r[x].size()) {
      auto e = r[x].top();
      r[x].pop();
      ed[e][2] += mod[x] - mod[y];
      r[y].push(e);
    }
  };
  vector<vector<pair<int, int>>> g(n);
  int ans = 0;
  color[0] = 2;
  auto go = [&](int cur) {
    vector<pair<int, int>> stack;
    int time = 0;
    while (color[cur] < 2) {</pre>
      color[cur] = 1;
      edge e;
      do {
   e = ed[r[cur].top()];
      r[cur].pop();
} while (get(e[0]) == cur);
      e[2] += mod[cur];
ans += e[2];
      mod[cur] -= e[2];
      stack.push_back({cur, e[3]});
       int a = get(e[0]);
       if (color[a] == 1) {
        while (true) {
  auto [nxt, i] = stack.back();
           stack.pop_back();
g[ed[i][0]].push_back({time++, i});
           unite(nxt, cur);
if (nxt == a) break;
        }
      cur = get(e[0]);
    for (auto [x, i] : stack) {
      color[x] = 2;
      pq<pair<int, int>, greater<>> dijkstra;
for (auto [x, i] : stack) {
         dijkstra.emplace(x, i);
       while (!dijkstra.empty()) {
         auto [t, i] = dijkstra.top();
         dijkstra.pop();
         if (color[ed[i][1]] == 3) {
           continue;
         color[ed[i][1]] = 3;
         take.push_back(i);
         for (auto [t2, i2] : g[ed[i][1]]) {
           dijkstra.emplace(t2, i2);
      }
    }
  for (int i = 1; i < n; ++i) go(get(i));
```

```
return {ans, take};
}
//f245b7
```

4 Свёртки

4.1 XOR свёртка

```
vector<int> bxor(vector<int> a, vector<int> b)
  assert(p%2==1); int inv2=(p+1)/2;
  int n=0; while((1<<n)<a.size()) ++n;</pre>
  a.resize(1<<n);b.resize(1<<n);
  for(int i=0;i<n;++i) for(int mask=0;mask<(1<<n);++
  mask) if(!(mask & (1<<i))) {int u=a[mask],v=a[</pre>
    mask+(1<<i)];a[mask+(1<<i)]=(u+v)%p;a[mask]=(u-v)
    )%p;}
  for(int i=0; i< n; ++i) for(int mask=0; mask<(1<< n); ++
    mask) if(!(mask & (1<<i))) {int u=b[mask], v=b[</pre>
    mask+(1<<i)]; b[mask+(1<<i)]=(u+v)%p; b[mask]=(u-v)
    )%p;}
  vector<int> c(1<<n,0);</pre>
  ]*b[mask];c[mask]%=p;}
for(int i=0;i<n;++i) for(int mask=0;mask<(1<<n);++
    mask) if(!(mask & (1<<i))) {int u=c[mask], v=c[</pre>
    mask+(1<<i)]; c[mask+(1<<i)]=((v-u)*inv2)*p; c[
    mask] = ((u+v)*inv2)%p;}
  return c;
//20cc50
```

4.2 FFT & co

```
typedef long long 11;
const int p=998244353;
int po(int a, int b) {if(b==0) return 1; if(b==1)
     return a; if(b%2==0) {int u=po(a,b/2);return (u *1LL*u)%p;} else {int u=po(a,b-1);return (a*1LL*
     u)%p;}}
int inv(int x) {return po(x,p-2);}
template<int M, int K, int G> struct Fft {
    // 1, 1/4, 1/8, 3/8, 1/16, 5/16, 3/16, 7/16, ...
    int g[1 << (K - 1)];
    Fft() : g() { //if tl constexpr...
     // static_assert(K >= 2, "Fft: K >= 2 must hold
");
     g[0] = 1;
     g[1 << (K - 2)] = G;

for (int 1 = 1 << (K - 2); 1 >= 2; 1 >>= 1) {

  g[1 >> 1] = (g[1] * 1LL* g[1]) % M;
     assert((g[1]*1LL * g[1]) % M == M - 1);
     for (int l = 2; l <= 1 << (K - 2); l <<= 1) {
    for (int i = 1; i < 1; ++i) {
        g[l + i] = (g[l] * 1LL * g[i]) % M;
    }
        }
     }
   void fft(vector<int> &x) const {
     const int n = x.size();
     assert(n <= 1 << K);
     for (int h = __builtin_ctz(n); h--; ) {
  const int l = (1 << h);</pre>
         for (int i = 0; i < n >> (h+1); ++i) {
       for (int j = i \ll (h+1); j < (((i \ll 1) + 1) \ll h); ++j) {
              const int t = (g[i] * 1LL* x[j | 1]) % M;
              x[j \mid 1] = x[j]
                  (x[j|1] < 0) x[j | 1] += M;
              x[j]+=t;
              if (x[j] >= M) x[j] -= M;
           }
        }
     for (int i = 0, j = 0; i < n; ++i) {
  if (i < j) std::swap(x[i], x[j]);</pre>
         for (int l = n; (l >>= 1) && !((j ^= l) & l);
     ) {}
   vector<int> convolution(vector<int> a, vector<int>
      if(a.empty() || b.empty()) return {};
```

```
for(int& x:a) \{x\%=p; if(x>=p) x-=p; if(x<0) x+=p\}
    ;} for(int& x:b) {x}=p; if(x>=p) x-=p; if(x<0) x
    +=p;}
    const int na = a.size(), nb = b.size();
    int n, invN = 1;
        (n = 1; n < na + nb - 1; n <<= 1) invN = ((
    invN & 1) ? (invN + M) : invN) >> 1;
    vector<int> x(n, 0), y(n, 0);
std::copy(a.begin(), a.end(), x.begin());
std::copy(b.begin(), b.end(), y.begin());
    fft(x);
    fft(y);
    for (int i = 0; i < n; ++i) x[i] = (((
    static_cast<long long>(x[i]) * y[i]) % M) * invN
    std::reverse(x.begin() + 1, x.end());
    fft(x);
    x.resize(na + nb - 1);
    return x;
 }
Fft<998244353,23,31> muls;
//a1b591
vector<int> form(vector<int> v,int n)
  while(v.size()<n) v.push_back(0);</pre>
  while(v.size()>n) v.pop_back();
  return v;
vector<int> operator *(vector<int> v1, vector<int> v2
 return muls.convolution(v1, v2);
vector<int> operator +(vector<int> v1, vector<int> v2
{
  while(v2.size()<v1.size()) v2.push_back(0); while(</pre>
  v1.size()<v2.size()) v1.push_back(0);
for(int i=0;i<v1.size();++i) {v1[i]+=v2[i];if(v1[i
    ]>=p) v1[i]-=p; else if(v1[i]<0) v1[i]+=p;}</pre>
  return v1;
vector<int> operator -(vector<int> v1, vector<int> v2
    )
 int sz=max(v1.size(),v2.size()); while(v1.size() < sz
) v1.push_back(0); while(v2.size() < sz) v2.</pre>
    push_back(0);
  for(int i=0;i<sz;++i) {v1[i]-=v2[i];if(v1[i]<0) v1</pre>
    [i]+=p; else if(v1[i]>=p) v1[i]-=p;} return v1;
vector<int> trmi(vector<int> v)
  for(int i=1;i<v.size();i+=2) {if(v[i]>0) v[i]=p-v[
    i]; else v[i]=(-v[i]);}
  return v;
vector<int> deriv(vector<int> v)
  if(v.empty()) return{};
  vector<int> ans(v.size()-1);
  for(int i=1;i<v.size();++i) ans[i-1]=(v[i]*1LL*i)%</pre>
  return ans;
vector<int> integ(vector<int> v)
  vector<int> ans(v.size()+1);ans[0]=0;
  for(int i=1;i<v.size();++i) ans[i-1]=(v[i]*1LL*i)%</pre>
    p;
  return ans;
vector<int> mul(vector<vector<int> > v)
  if(v.size()==1) return v[0];
  vector<vector<int> > v1, v2; for(int i=0;i<v.size()</pre>
    /2;++i) v1.push_back(v[i]); for(int i=v.size()
    /2;i<v.size();++i) v2.push_back(v[i]);
  return muls.convolution(mul(v1), mul(v2));
vector<int> inv1(vector<int> v,int n)
  assert(v[0]!=0);
  int sz=1; v=form(v,n); vector<int> a={inv(v[0])};
  while(sz<n)</pre>
```

```
vector<int> vsz;for(int i=0;i<min(n,2*sz);++i)
vsz.push_back(v[i]);
vector<int> b=((vector<int>) {1})-muls.
convolution(a,vsz);
for(int i=0;i<sz;++i) assert(b[i]==0);
b.erase(b.begin(),b.begin()+sz);
vector<int> c=muls.convolution(b,a);
for(int i=0;i<sz;++i) a.push_back(c[i]);
sz*=2;
}
return form(a,n);
}
//12aa4e</pre>
```

4.3 Быстрое FFT

- Solution based on https://codeforces.com/blog/entry/117947
- Iterative and in-place version.
- · Uses signed montgomery
- Optimized to minimize memory usage

```
const int MOD = 998244353;
const long long MOD2 = (long long) MOD * MOD;
const int root = 3;
const int alim = 64; // Bound for using O(n^2)
    polynomial mult
int modpow(int b, int e) {
  int ans = 1;
      (; e; b = (long long) b * b % MOD, e /= 2)
    if (e & 1) ans = (long long) ans * b % MOD;
  return ans;
const int MODinv = 2 - MOD; // pow(-MOD, -1, 2**32)
inline int m_reduce(long long x) {
  int m = x * MODinv;
  return (x>>32) - (((long long) m * MOD) >> 32);
const int r2 = modpow(2, 64);
inline int m_transform(int x) {
  return m_reduce((long long)x * r2);
inline int m_add(int x, int y) {
  int z = x + y;
  return z < 0 ? z + MOD : z - MOD;</pre>
inline int m_sub(int x, int y) {
  int z = x - y;
return z < 0 ? z + MOD : z - MOD;
inline int m_mult(int x, int y) {
  return m_reduce((long long) x * y);
vector < int > rt = {1};
vector<int> transformed_rt;
vector<int> transformed_rt2;
template<int a>
void transform(vector<int> &P) {
  int m = P.size();
  int n = m / a;
  int size = rt.size();
while (2 * size < n) {</pre>
    rt.resize(n / 2);
     int r = modpow(root, MOD / (4 * size));
    for (int i = 0; i < size; ++i)</pre>
       rt[i + size] = (long long) r * rt[i] % MOD;
    size *= 2;
  }
  // For montgomery
  for (int i = transformed_rt.size(); i < rt.size();</pre>
     transformed_rt.resize(rt.size());
     transformed_rt[i] = m_transform(rt[i]);
    transformed_rt2.resize(rt.size());
transformed_rt2[i] = (unsigned int) MODinv *
     transformed_rt[i];
```

```
int k = n;
while (k >= 4) k /= 4;
if (k == 2) {
  int step = n * a;
  int half_step = step / 2;
for (int j1 = 0; j1 < half_step; ++j1) {
  int j2 = j1 + half_step;</pre>
     int diff = m_sub(P[j1], P[j2]);
     P[j1] = m_add(P[j1], P[j2]);
    P[j2] = diff;
  k = n/2;
} else {
}
for (; k > 1; k /= 4) {
  for (int i = 0; i < n/k; ++i) {
   int step = k * a;</pre>
     int half_step = step / 2;
     int quarter_step = half_step / 2;
     int R20 = transformed rt2[2 * i];
     int RR0 = transformed_rt[2 * i];
     int R21 = transformed_rt2[2 * i + 1];
     int RR1 = transformed_rt[2 * i + 1];
    int R2 = transformed_rt2[i];
int RR = transformed_rt[i];
     int j1 = i * step;
    int j2 = j1 + quarter_step;
int j3 = j2 + quarter_step;
     int j4 = j3 + quarter_step;
     for (int j = 0; j < quarter_step; ++j, ++j1,</pre>
  ++j2, ++j3, ++j4) {
       int z0;
       {
          int z = P[j3];
         int m = (unsigned int) R2 * z;
z0 = ((long long) z * RR - (long long) m *
   MOD) >> 32;
       int z1;
          int z = P[j4];
          int m = (unsigned int) R2 * z;
         z1 = ((long long) z * RR - (long long) m *
   MOD) >> 32;
       int sum0 = m_add(P[j1], z0);
       int diff0 = m_sub(P[j1], z0);
       int sum1 = P[\bar{j}2] + z1;
       int diff1 = P[j2] - z1;
       // [sum0, sum1, diff0, diff1]
       int zz0;
       {
          int z = sum1;
          int m = (unsigned int) R20 * z;
          zz0 = ((long long) z * RR0 - (long long) m
   * MOD) >> 32;
       }
       int zz1;
       {
          int z = diff1;
          int m = (unsigned int) R21 * z;
          zz1 = ((long long) z * RR1 - (long long) m
    * MOD) >> 32;
       }
               = m_add(sum0, zz0);
       P[j1]
       P[j2] = m_sub(sum0, zz0);
P[j3] = m_add(diff0, zz1);
P[j4] = m_sub(diff0, zz1);
    }
  }
}
for (int i = 0; i < m; ++i)</pre>
```

```
if (P[i] < 0) P[i] += MOD;
template<int a>
void inverse_transform(vector<int> &P) {
  int m = P.size();
  int n = m / a;
  int n_inv = m_transform(modpow(n, MOD - 2));
  vector<int> rev(n);
  for (int i = 1; i < n; ++i) {
  rev[i] = rev[i / 2] / 2 + (i & 1) * n / 2;
  // P = [p * n_inv for p in P]
for (int i = 0; i < m; ++i)
  P[i] = m_mult(n_inv, P[i]);</pre>
  // P = [P[a * rev[i // a] + (i % a)] for i in
     range(m)]
  for (int i = 1; i < n; ++i)
if (i < rev[i])</pre>
      swap_ranges(P.begin() + a * i, P.begin() + a *
i + a, P.begin() + a * rev[i]);
  // P = [P[-a * (i // a) + (i % a)] for i in range(
    m)]
  transform<a>(P);
  // P = [P[a * rev[i // a] + (i % a)] for i in
    range(m)]
  for (int i = 1; i < n; ++i)
  if (i < rev[i])</pre>
      swap_ranges(P.begin() + a * i, P.begin() + a *
i + a, P.begin() + a * rev[i]);
template<int a>
void fast_polymult_mod(vector<int> &P, vector<int> &
     Q) {
  int m = P.size();
  int n = m / a;
  transform<a>(P);
  transform<a>(Q);
  vector<int> &PQ = P;
  for (int i = 0; i < n; ++i) {
  vector<unsigned long long> res(2 * a);
     for (int j = 0; j < a; ++j) {
   if (j >= 10 && j % 9 == 8)
   for (int k = j; k < j + a - 10; ++k)
      res[k] -= (res[k] >> 63) * 9 * MOD2;
        for (int k = 0; k < a; ++k)
          res[j + k] += (long long) P[i * a + j] * Q[i
      * a + kl;
     int c = rt[i/2];
     if (i & 1) c = MOD - c;
       r (int j = 0; j < a; ++j)
PQ[i * a + j] = (res[j] + c * (res[j + a] %
     MOD)) % MOD;
  inverse transform<a>(PQ);
template <size_t... N>
void work(std::index_sequence<N...>, int x, std::
     vector<int>& a, std::vector<int>& b) {
   static void (*ptrs[])(std::vector<int>&, std::
     vector<int>&) = {&fast_polymult_mod<N+1>...};
  ptrs[x - 1](a, b);
void fast_polymult(vector<int> &P, vector<int> &Q) {
  int m1 = P.size();
int m2 = Q.size();
  int res_len = m1 + m2 - 1;
  int b = 1:
  while ((alim << b) < res_len) ++b;
int a = ((res_len - 1) >> b) + 1;
  int m = a \ll \overline{b};
```

```
P.resize(m);
Q.resize(m);

// Call fast_polymult_mod<a>(P, Q);
work(std::make_index_sequence<alim>{}, a, P, Q);
P.resize(res_len);
}
//239b3e
```

4.4 FFT B double'ax

```
using cd = complex<double>;
const double PI = acos(-1);
void fft(vector<cd> & a, bool invert) {
  int n = a.size();
  for (int i = 1, j = 0; i < n; i++) {
  int bit = n >> 1;
    for (; j & bit; bit >>= 1)
j ^= bit;
    i ^= bit;
    if (i < j)
       swap(a[i], a[j]);
  for (int len = 2; len <= n; len <<= 1) {
  double ang = 2 * PI / len * (invert ? -1 : 1);</pre>
    cd wlen(cos(ang), sin(ang));
for (int i = 0; i < n; i += len) {</pre>
       cd w(1);
       for (int j = 0; j < len / 2; j++)
         cd u = a[i+j], v = a[i+j+len/2] * w;
a[i+j] = u + v;
         a[i+j+len/2] = u - v;
         w *= wlen;
       }
    }
  }
  if (invert) {
    for (cd & x : a)
      x /= n;
vector<int> multiply(vector<int> const& a, vector<</pre>
    int> const& b) {
  vector<cd> fa(a.begin(), a.end()), fb(b.begin(), b
  int n = 1;
  while (n < a.size() + b.size())</pre>
    n <<= 1;
  fa.resize(n);
  fb.resize(n);
  fft(fa, false);
  fft(fb, false);
  for (int i = 0; i < n; i++)
    fa[i] *= fb[i];
  fft(fa, true);
  vector<int> result(n);
  for (int i = 0; i < n; i++)
    result[i] = round(fa[i].real());
  while(!result.empty() && !result.back()) result.
    pop_back();
  return result;
,
//35d9d0
```

5 Структуры данных

5.1 Дерево Фенвика

```
int fe[maxn];
void pl(int pos,int val) {while(pos<maxn) {fe[pos]+=
    val;pos|=(pos+1);}}
int get(int pos) {int ans=0;while(pos>=0) {ans+=fe[
    pos];pos&=(pos+1);--pos;} return ans;} /// [0,
    pos] - vkluchitelno!!!
int get(int l,int r) {return get(r-1)-get(l-1);} ///
    sum of [1,r)
//2991a1
```

5.2 Дерево отрезков в точке

```
template<typename T, typename U>
struct SegmentTree {
  int h, n;
  T neutral;
  U unite;
  vector<T> data;
  template<typename I>
  SegmentTree(int sz, T neutral, U unite, I init) :
     \begin{array}{lll} h(\_\lg(sz) + 1), & n(1 << h), & neutral(neutral), \\ unite(unite), & data(2 * n) & \{ \\ for & (int i = 0; i < sz; ++i) & data[i + n] = init( \\ \end{array}
     for (int i = n - 1; i > 0; --i) data[i] = unite(
data[2 * i], data[2 * i + 1]);
  SegmentTree(int sz, T neutral, U unite) : h(_left sz) + 1), n(1 << h), neutral(neutral), unite(</pre>
     unite), data(2 * n, neutral) {}
  void set(int i, T x) {
  data[i += n] = x;
  for (i /= 2; i > 0; i /= 2) data[i] = unite(data
     [2 * i], data[2 * i + 1]);
  T get(int 1, int r) {
     T leftRes = neutral, rightRes = neutral;
     for (1 += n, r += n; 1 < r; 1 /= 2, r /= 2) {
   if (1 & 1) leftRes = unite(leftRes, data[1++])</pre>
       if (r & 1) rightRes = unite(data[--r],
     rightRes);
     return unite(leftRes, rightRes);
  int left(int i) {
     int lvl = _lg(i);
return (i & ((1 << lvl) - 1)) * (1 << (h - lvl))
  int right(int i) {
     int lvl = __lg(i);
return ((i & ((1 << lvl) - 1)) + 1) * (1 << (h -</pre>
                     _lg(i);
      lv1));
  }
  // l \in [0; n) && ok(get(1, 1), 1);
// returns last r: ok(get(1, r), r)
  template<typename C>
int lastTrue(int 1, C ok) {
     T cur = neutral;
     1 += n;
     do {
        1 >>= __builtin_ctz(l);
T with1 = unite(cur, data[1]);
        if (ok(with1, right(1))) {
          cur = with1;
           ++1;
        } else {
           while (1 < n) {
             T with2 = unite(cur, data[2 * 1]);
             if (ok(with2, right(2 * 1))) {
                cur = with2;
1 = 2 * 1 + 1;
             } else {
  1 = 2 * 1;
             }
          return 1 - n;
     } while (1 & (1 - 1));
     return n;
  // r \in [0; n) && ok(get(r, r), r);
  // returns first 1: ok(get(1, r), 1)
  template<typename C>
  int firstTrue(int r, C ok) {
     T cur = neutral;
     r += n;
     while (r \& (r - 1)) \{
        r >>= _builtin_ctz(r);
T with1 = unite(data[--r], cur);
        if (ok(with1, left(r))) {
          cur = with1;
```

```
} else {
    while (r < n) {
        T with2 = unite(data[2 * r + 1], cur);
        if (ok(with2, left(2 * r + 1))) {
            cur = with2;
            r = 2 * r;
        } else {
            r = 2 * r + 1;
        }
        return r - n + 1;
    }
} return 0;
}</pre>
```

5.3 Массовое дерево отрезков

```
template<typename T, typename M, typename Ud,
    typename Um, typename A>
struct MassSegmentTree {
    int h, n;
    T zd;
    M zm;
    vector<T> data;
    vector<M> mod;
    Ud ud; // T (T, T)
    Um um; // M (M, M); A a; // T (T, M, int); last argument is the
    length of current segment (could be used for
    range += and sum counting, for instance)
    template<typename I>
    MassSegmentTree(int sz, T zd, M zm, Ud ud, Um um , A a, I init) : h(\underline{\hspace{0.1cm}} lg(sz) + 1), n(1 << h), zm(
    zm), zd(zd), data(2 * n, zd), mod(n, zm), ud(ud)
    , um(um), a(a) {
         for (int i = 0; i < sz; ++i) data[i + n] =</pre>
    init(i);
    for (int i = n - 1; i > 0; --i) data[i] = ud (data[2 * i], data[2 * i + 1]);
    , a(a) {}
    void push(int i) {
        if (mod[i] == zm) return;
apply(2 * i, mod[i]);
apply(2 * i + 1, mod[i]);
         mod[i] = zm;
    // is used only for apply
int length(int i) { return 1 << (h - __lg(i)); }</pre>
    // used only for descent
    int left(int i) {
   int lvl = __l
                       _lg(i);
         return (i & ((1 << lvl) - 1)) * (1 << (h -
    lv1));
    // used only for descent
    int right(int i)
         return left(i) + length(i);
    template<typename S>
    void apply(int i, S x) {
         data[i] = a(data[i], x, length(i));
         if (i < n) mod[i] = um(mod[i], x);
    void update(int i) {
         if (mod[i] != zm) return;
         data[i] = ud(data[2 * i], data[2 * i + 1]);
    template<typename S>
    void update(int 1, int r, S x) { // [1; r)
         1 += n, r += n;
for (int shift = h; shift > 0; --shift) {
             push(1 >> shift);
push((r - 1) >> shift);
```

```
for (int lf = 1, rg = r; lf < rg; lf /= 2,</pre>
    rg /= 2) {
               if (lf & 1) apply(lf++, x);
               if (rg & 1) apply(--rg, x);
          for (int shift = 1; shift <= h; ++shift) {</pre>
               update(1 >> shift);
update((r - 1) >> shift);
    }
    T get(int 1, int r) { // [1; r)
    1 += n, r += n;
          for (int shift = h; shift > 0; --shift) {
              push(1 >> shift);
push((r - 1) >> shift);
         T leftRes = zd, rightRes = zd;
for (; 1 < r; 1 /= 2, r /= 2) {
    if (1 & 1) leftRes = ud(leftRes, data[1</pre>
    ++1);
               if (r & 1) rightRes = ud(data[--r],
    rightRes);
          return ud(leftRes, rightRes);
    }
    // l \in [0; n) && ok(get(l, l), l); 
// returns last r: ok(get(l, r), r)
     template<typename C>
    int lastTrue(int 1, C ok) {
          1 += n;
          for (int shift = h; shift > 0; --shift) push
     (1 >> shift);
         T cur = zd;
          do {
               l >>= __builtin_ctz(l);
T with = ud(cur, data[l]);
               if (ok(with, right(l))) {
                    cur = with;
                    ++1;
               } else {
                    while (1 < n) {
                         push(1);
                         factor |
1 = 2 * 1;
with = ud(cur, data[1]);
if (ok(with, left(1 + 1))) {
                              cur = with;
                              ++1;
                    return 1 - n;
          } while (1 & (1 - 1));
          return n;
    }
     // r \in [0; n) && ok(get(r, r), r);
     // returns first 1: ok(get(1, r), 1)
     template<typename C>
     int firstTrue(int r, C ok) {
          r += n;
         for (int shift = h; shift > 0; --shift) push
     ((r - 1) \gg shift);
          auto cur = zd;
          while (r & (r - 1)) {
              r >>= _builtin_ctz(r);
T with = ud(data[--r], cur);
if (ok(with, left(r))) {
                    cur = with;
               } else {
                    while (r < n) {
                         push(r);
                         r = 2 * r;
                         with = ud(data[r + 1], cur);
                         if (ok(with, left(r + 1))) {
                              cur = with;
                           else {
                              ++r;
                    return r - n + 1;
               }
          return 0;
    }
//fc0cde
```

5.4 Битовый бор

```
template<unsigned int sz,typename T=int>
struct binarytrie{
  using Bit=typename conditional<sz<=32,unsigned int
   ,unsigned long long>::type;
  struct node{
    T cnt;
    array<int,2>nxt;
    node():cnt(0),nxt(\{-1,-1\})\{\}
  };
  vector<node>v;
  binarytrie(){v.emplace_back();}
  void insert(Bit x){add(x,1);}
  void erase(Bit x){add(x,-1);}
  void add(Bit x,T k)
    assert(0 \le x \& (x >> sz) == 0);
    int p=0;
    v[p].cnt+=k;
    for(int i=sz;i--;)
    {
      int j=x>>i&1;
      if(v[p].nxt[j]==-1)
      {
        v[p].nxt[j]=v.size();
        v.emplace_back();
      p=v[p].nxt[j];
      v[p].cnt+=k;
  T count(Bit x,Bit xor_val=0)const//[0,x)
    assert(0 <= xor_val && (xor_val >> sz) == 0);
    if(x<0)return 0;</pre>
    else if(x>>sz)return v[0].cnt;
    T ret=0;
    int p=0;
    for(int i=sz;i--;)
      int j=x>>i&1,k=xor_val>>i&1;
if(j==0)p=v[p].nxt[k];
      else
      {
        if(v[p].nxt[k]>=0)ret+=v[v[p].nxt[k]].cnt;
        p=v[p].nxt[!k];
      if(p==-1)break;
    return ret;
  Bit max(Bit xor_val=0)const
    assert(0<=xor_val&&(xor_val>>sz)==0);
    int p=0;
    Bit ret=0;
    if(v[p].cnt==0)return ret;
    for(int i=sz;i--;)
      ret<<=1;
      int k=xor_val>>i&1;
      if(v[p].nxt[!k] \ge 0\&v[v[p].nxt[!k]].cnt > 0)
        p=v[p].nxt[!k];
        ret|=1;
      else p=v[p].nxt[k];
    return ret;
 Bit min(Bit xor_val=0)const
    assert(0<=xor_val&&(xor_val>>sz)==0);
    int p=0;
    Bit ret=0;
    for(int i=sz;i--;)
      ret<<=1;
      int k=xor_val>>i&1;
      if(v[p].nxt[k] >= 0 & v[v[p].nxt[k]].cnt > 0)p=v[p]
    l.nxt[k];
      else
        p=v[p].nxt[!k];
        ret|=1;
    return ret;
```

```
Bit find_by_order(T ord,Bit xor_val=0)const
    assert(0<=xor_val&&(xor_val>>sz)==0);
    assert(0<=ord&&ord<v[0].cnt);
    int p=0;
    Bit ret=0;
    for(int i=sz;i--;)
      ret<<=1;
      int k=xor_val>>i&1;
      if(v[p].nxt[k]>=0)
      {
        if(ord>=v[v[p].nxt[k]].cnt)
        {
          ord-=v[v[p].nxt[k]].cnt;
          p=v[p].nxt[!k];
          ret|=1;
        else p=v[p].nxt[k];
      }
      else
      {
        p=v[p].nxt[!k];
        ret | =1;
      }
    }
    return ret;
  T order_of_key(Bit x,Bit xor_val=0)const{return
    count(x,xor_val);}
binarytrie<32>bt;
//0b3855
```

5.5 Ordered set

5.6 Динамический битсет

```
#include <tr2/dynamic_bitset>
using namespace tr2;
using bs=dynamic_bitset<>;
//26f8b6
```

5.7 Convex hull trick

```
int div_up(int a, int b) { return a/b+((a^b)>0&&a%b)
    ; } // divide a by b rounded up
const int LQ = ..., RQ = ...; //leftmost query,
    rightmost query
int in(ii L, int x) {
  return L.x * x + L.y;
}
struct Hull {
vector <pair <int, int> > lines;
vector <int> borders;
void push(ii L) {
  while (lines.size() && in(L,borders.back()) < in(</pre>
    lines.back(),borders.back())) {
    lines.pop_back();
    borders.pop_back();
  if (lines.empty()) {
    lines = \{L\};
    borders = {LQ};
  else if (lines.back().x > L.x) {
    int x = div_up(L.y - lines.back().y, lines.back
    ().x - L.x);
    if (x <= RQ)
      lines.app(L);
      borders.app(x);
  }
Hull (){}
Hull (vector <ii> a) {
```

```
auto comp = [&] (ii u, ii v) {
    return u.x > v.x || (u.x == v.x && u.y < v.y);
};
sort(all(a), comp);
for (auto L : a) {
    push(L);
}
int get(int x) {
    int pos = upper_bound(all(borders), x) - borders.
        begin();
    assert(pos>0);
    pos--;
    return in(lines[pos],x);
};
//04555a
```

5.8 Центроиды

```
vector<int> sz(n), lvl(n, -1);
auto dfs = [&](auto dfs, int cur, int prev) -> int {
  if (lvl[cur] != -1) return 0;
  sz[cur] = 1;
  for (auto [nxt, w] : g[cur]) {
    if (nxt != prev) sz[cur] += dfs(dfs, nxt, cur);
  return sz[curl;
};
auto find = [&](auto find, int cur, int prev, int
  tot) -> int {
int bch = -1, bsz = 0;
  for (auto [nxt, w] : g[cur]) {
  if (nxt == prev || lvl[nxt] != -1) continue;
}
     if (sz[nxt] > bsz) {
      bch = nxt:
       bsz = sz[nxt];
    }
  if (bsz + bsz <= tot) return cur;</pre>
  return find(find, bch, cur, tot);
dfs(dfs, 0, 0);
auto c = find(find, 0, 0, sz[0]);
vector<pair<int, int>> stack{{c, 0}};
while (!stack.empty()) {
  auto [centroid, 1] = stack.back();
  stack.pop_back();
  lvl[centroid] = 1;
for (auto [nxt, w] : g[centroid]) {
  if (lvl[nxt] != -1) continue;
     dfs(dfs, nxt, centroid);
     int new_centroid = find(find, nxt, centroid, sz[
     stack.push_back({new_centroid, lvl[centroid] +
     1});
  }
//0e1e52
```

5.9 Дерево Ли Чао

```
struct Line{
  int a, b;
  Line(){}
  Line (int a, int b) : a(a), b(b) {} int get(int x) { return a + b * x;}
struct Lichao {
  int n;
  vector <int> x;
  vector <Line> t;
  Lichao(){}
  Lichao (int n, vector\langle int \rangle x) : n(n), t(n << 2,
     Line(inf, 0)), x(x) {}
  void put(int v, int l, int r, Line L) {
         (1 + 1 == r) {
       if (L.get(x[1]) < t[v].get(x[1])) {</pre>
         t[v] = L;
       return;
     int m = (1 + r) / 2;
if (L.get(x[m]) < t[v].get(x[m])) {</pre>
       swap(L, t[v]);
```

```
if (L.b > t[v].b) {
  put(2 * v + 1, 1, m, L);
    else {
      put(2 * v + 2, m, r, L);
 int get(int v, int 1, int r, int i) {
  if (1 + 1 == r) {
      return t[v].get(x[1]);
    int m = (1 + r) / 2;
    int ans = t[v].get(x[i]);
    if (i < m) {</pre>
      ans = min(ans, get(2 * v + 1, 1, m, i));
    } else {
      ans = min(ans, get(2 * v + 2, m, r, i));}
    return ans;
 void put(Line L) {
   put(0, 0, n, L);
 int get(int i) {
   return get(0, 0, n, i);
 }
//99f5fa
```

5.10 Min-Kinetic Segment Tree

```
I guess the source is <a href="https://koosaga.com/307">https://koosaga.com/307</a>
```

```
using lint = long long;
const lint inf = 4e18;
const int MAXT = 4100000;
using pi = array<lint, 2>;
struct line {
  lint A, B;
  int idx;
  lint eval(lint x) { return A * x + B; }
  // returns the x-intercept of intersection "
    strictly" larger than T
  lint cross_after(line &x, lint T) {
    if (x.A == A) {
  return inf;
    lint up = x.B - B;
    lint dn = A - x.A;
    if (dn < 0) {
  dn *= -1;
      up *= -1;
    lint incep = (up \le 0 ? -((-up) / dn) : (up + dn)
    - 1) / dn);
if (incep > T)
      return incep;
    return inf;
  }
};
struct kst { // min kinetic segment tree
  line tree[MAXT];
  lint melt[MAXT], T;
  pi lazy[MAXT];
  int n;
  bool cmp(line &a, line &b) {
    lint l = a.eval(T), r = b.eval(T);
    if (1 != r)
       return 1 > r;
    return a.A > b.A;
  void pull(int p) {
    tree[p] = cmp(tree[2 * p], tree[2 * p + 1]) ?
tree[2 * p + 1] : tree[2 * p];
melt[p] = min({melt[2 * p], melt[2 * p + 1],
    tree[2 * p].cross_after(tree[2 * p + 1], 0)});
  void init(int s, int e, int p, vector<line> &1) {
    if (s == e) {
      tree[p] = 1[s];
      melt[p] = inf;
```

```
lazy[p] = {0, 0};
     lazy[p] = \{0, 0\};
    int m = (s + e) / 2;
init(s, m, 2 * p, 1);
init(m + 1, e, 2 * p + 1, 1);
    pull(p);
 void lazydown(int p) {
  for (int i = 2 * p; i < 2 * p + 2; i++) {
    lazy[i][0] += lazy[p][0];</pre>
       lazy[i][1] += lazy[p][1];
       tree[i].B += lazy[p][0] * tree[i].A + lazy[p
     1[1];
      melt[i] -= lazy[p][0];
     lazy[p][0] = lazy[p][1] = 0;
  void propagate(int p) {
  if (melt[p] > 0)
       return:
     lazydown(p);
    propagate(2 * p);
    propagate(2 * p + 1);
    pull(p);
  lint query(int s, int e, int ps, int pe, int p =
     if (e < ps || pe < s)
       return inf;
     if (s <= ps && pe <= e)</pre>
      return tree[p].eval(0);
     int pm = (ps + pe) / 2;
     lazydown(p);
     return min(query(s, e, ps, pm, 2 * p), query(s,
     e, pm + 1, pe, 2 * p + 1));
  void heaten(int s, int e, int ps, int pe, int p,
     lint v) {
     if (e < ps || pe < s)</pre>
       return;
     if (s <= ps && pe <= e) {</pre>
       lazy[p][0] += v;
tree[p].B += v * tree[p].A;
       melt[p] -= v;
       propagate(p);
       return;
     lazydown(p);
    int pm = (ps + pe) / 2;
heaten(s, e, ps, pm, 2 * p, v);
heaten(s, e, pm + 1, pe, 2 * p + 1, v);
    pull(p);
  void add(int s, int e, int ps, int pe, int p, lint
      v) {
     if (e < ps || pe < s)
       return;
     if (s <= ps && pe <= e) {
       lazy[p][1] += v;
       tree[p].B += v;
       return:
     lazydown(p);
    int pm = (ps + pe) / 2;
add(s, e, ps, pm, 2 * p, v);
add(s, e, pm + 1, pe, 2 * p + 1, v);
    pull(p);
  void init(vector<line> &1, lint _T) {
    n = 1.size();
           T;
    init(0, n - 1, 1, 1);
  }
//66f9a9
```

5.11 Декартово дерево

5.11.1 Декартово дерево по явному ключу. Multiset

```
mt19937 rng(0);
using ptr = int32_t;
struct vertex {
    ptr 1f = 0, rg = 0;
int32_t heap = rng(), rnd = rng(), sz = 1;
     int val, sum = 0;
    vertex(int x = 0) : val(x), sum(x) {}
};
vector <vertex> mem;
ptr new_vertex(int x) {
    mem.app(vertex(x));
    return (int)mem.size()-1;
ptr update(ptr v) {
    mem[v].sz = mem[mem[v].lf].sz + 1 + mem[mem[v].
    rql.sz;
    mem[v].sum = mem[mem[v].lf].sum + mem[v].val +
    mem[mem[v].rg].sum;
    return v;
ptr merge(ptr 1, ptr r) {
    if (!1 || !r) return 1 ^ r;
    if (mem[1].heap > mem[r].heap) {
        mem[1].rg = merge(mem[1].rg, r);
}
         return update(1);
    } else {
         mem[r].lf = merge(1, mem[r].lf);
         return update(r);
}
pair<ptr, ptr> splitkey(ptr v, int x, int32_t rnd) {
    if (!v) return {v, v};
    auto [lf, rg] = splitkey(mem[v].rg, x, rnd);
mem[v].rg = lf;
         return {update(v), rg};
    } else {
         auto [lf, rg] = splitkey(mem[v].lf, x, rnd);
mem[v].lf = rg;
         return {lf, update(v)};
}
void insert(ptr &a, ptr b) {
    if (!a) {
         a = b;
         return;
     if (mem[a].heap > mem[b].heap) {
         if (pair{mem[a].val, mem[a].rnd) < pair{mem[</pre>
    b].val, mem[b].rnd}) {
              insert(mem[a].rg, b);
         } else {
              insert(mem[a].lf, b);
         update(a);
    } else {
         auto [lf, rg] = splitkey(a, mem[b].val, mem[
    bl.rnd);
         mem[b].lf = lf;
         mem[b].rg = rg;
         a = update(b);
}
void join(ptr &a, ptr b) {
   auto dfs = [&](auto dfs, ptr b) -> void {
         if (!b) return;
ptr lf = mem[b].lf;
         ptr rg = mem[b].rg;
mem[b].lf = mem[b].rg = 0;
         insert(a, update(b));
dfs(dfs, lf);
         dfs(dfs, rg);
    dfs(dfs, b);
pair <ptr, ptr> splitsz(ptr v, int k) {
    if (!v) return {v, v};
```

```
if (k <= mem[mem[v].lf].sz) {
    auto [1, r] = splitsz(mem[v].lf, k);
    mem[v].lf = r;
    return {1, update(v)};
} else {
    auto [1, r] = splitsz(mem[v].rg, k - mem[mem
[v].lf].sz - 1);
    mem[v].rg = 1;
    return {update(v), r};
}
}
int32_t main() {
    mem = {vertex()};
    mem[0].sz = 0;
}
//54a637</pre>
```

6 Строковые алгоритмы

6.1 Префикс-функция

```
vector<int> prefix_function(string s) {
  int n = s.size();
  vector<int> p(n);
  for (int i = 1; i < n; ++i) {
    p[i] = p[i - 1];
    while (p[i] && s[p[i]] != s[i]) p[i] = p[p[i] -
    1];
    p[i] += s[i] == s[p[i]];
  }
  return p;
}
//91103c</pre>
```

6.2 Z-функция

6.3 Алгоритм Манакера

```
vector<int> manacher(const string &s, int even) {
  int 1 = 0, r = 0, n = s.size();
  vector<int> man(n, 0);
for (int i = 1; i < n; i++) {</pre>
    int j = i - even;
if (j <= r) {
   man[i] = min(r - j, man[l + r - j]);</pre>
    while (j + man[i] + 1 < n \&\& i - man[i] > 0 \&\& s
    [j + man[i] + 1] == s[i - man[i] - 1]) {
       man[i]++;
    if (j + man[i] > r) {
       l = i - man[i];
       r = j + man[i];
  return man;
// abacaba : odd : (0 1 0 3 0 1 0); even : (0 0 0 0
// abbaa : odd : (0 0 0 0 0); even : (0 0 2 0 1)
bool pal(int from, int len) {
   if (len == 0) {
         return true;
     int m = len/2;
    if (len & 1) {
         return odd[from + m] >= m;
```

```
else {
    return even[from + m] >= m;
}
//8a64d6
```

6.4 Суфмассив

```
Переработанный китайский суффмассив
```

```
const int inf = 1e9;
struct rmq {
  int n;
  vector<int> a;
  void build(const vector<int> &x) {
     assert(x.size() == n);
for (int i = 0; i < n; ++i) a[n + i] = x[i];
for (int i = n - 1; i > 0; --i) a[i] = min(a[2 *
      i], a[2 * i + 1]);
  rmq(int n) : n(n), a(2 * n, inf) {}
   void put(int i, int x) {
     a[i + n] = min(a[i + n], x);

for (i = (i + n) / 2; i > 0; i /= 2) {

a[i] = min(a[i * 2], a[i * 2 + 1]);
   int getMin(int 1, int r) { //[1;r)
     assert(1 < r);
     int res = inf;
     for (1 += n, r += n; 1 < r; 1 /= 2, r /= 2) {
        if (1 & 1) res = min(res, a[1++]);
        if (r & 1) res = min(res, a[--r]);
     return res;
  }
};
template <typename T>
vector <int> SA(const T &a) {
  int m = *max_element(all(a)) + 1, n = a.size();
vector <int> sa(n), nsa(n), pre(max(n, m)), x(a.
  begin(), a.end()), y(n);
for (int e : x) pre[e]++;
for (int i = 1; i < m; ++i) pre[i] += pre[i - 1];
for (int i = 0; i < n; ++i) sa[--pre[x[i]]]=i;</pre>
   int dif = 1;
  y[sa.front()]=0;
for (int i = 1; i < n; ++i) {
   dif += x[sa[i]]!=x[sa[i-1]];
   y[sa[i]] = dif - 1;</pre>
  x = y;
for (int h = 1; dif < n; h *= 2) {
     fill(all(pre), 0);
     for (int e : x) pre[e]++;
for (int i = 1; i < dif; ++i) pre[i] += pre[i -</pre>
     1];
     for (int t = n; t--; ) {
        int i = sa[t];
        if (i>=h)
          nsa[--pre[x[i-h]]]=i-h;
        else if (i + 1 != h) {
          nsa[--pre[x[i-h+n+1]]]=i-h+n+1;
     }
     nsa[--pre[x[n - h]]]=n-h;
     sa = nsa;
     auto getr = [&] (int i) {
        if (i + h < n) {
          return x[i + h];
        else {
           return x[i + h - n - 1];
        }
     dif = 1;
     y[sa.front()]=0;
      for (int i = 1; i < n; ++i) {
        if (x[sa[i]]!=x[sa[i-1]] || sa[i-1]+h==n) {
           dif++;
        else
          dif += getr(sa[i]) != getr(sa[i-1]);
        y[sa[i]]=dif-1;
     x = y;
  return sa;
```

```
template <typename T>
struct suar {
   vector <int> sa, lcp, pos; rmq t;
suar (const T &a) : t((int)a.size() - 1) {
      sa = SA(a);
      int n = (int)a.size(), k = 0;
      lcp.resize(n - 1);
      pos.resize(n);
      for (int i = 0; i < n; ++i) pos[sa[i]] = i;
for (int i = 0; i < n; ++i) {
        if (pos[i]+1<n) {</pre>
           int j = sa[pos[i]+1];
while (i+k<n&&j+k<n&&a[i+k]==a[j+k])k++;</pre>
           lcp[pos[i]]=k;
        if (k) {
           k--;
        }
      t.build(lcp);
  int getLcp(int i, int j) {
  i = pos[i]; j = pos[j];
  if (j < i) {
    swap(i, j);
}</pre>
      if (i == j) {
        return inf;
      else {
        return t.getMin(i, j);
  }
//6327c9
```

6.5 Алгоритм Ахо — Корасик

```
const int alpha = 26;
const char a = 'a';
struct node{
    int next[alpha] = {}, link[alpha] = {};
    int suf = 0;
    int visited = 0, ans = 0;
int bad = 0; // any term is reachable by suf
    links
    vector<int> term;
    node() {
        fill(next, next + alpha, -1);
};
vector<node> mem;
int get_next_or_create(int nd, char c) {
    if (mem[nd].next[c - a] == -1) { mem[nd].next[c
    - a] = mem.size(); mem.emplace_back(); }
    return mem[nd].next[c - a];
void build(vector<string> t) {
    mem.reserve(1e6 + 100); mem.clear();
    mem.emplace_back();
    // Oth element is nullptr, 1st is the root
    for (int j = 0; j < t.size(); ++j) {</pre>
         int cur = 0;
        for (char c : t[j]) cur = get_next_or_create
    (cur, c);
        mem[cur].term.push_back(j);
    vector<int> bfs_order;
    queue<int> bfs;
         node &root = mem[0];
        root.suf = 0;
        for (char c = a; c < a + alpha; ++c) {
    root.link[c - a] = (root.next[c - a] ==</pre>
    -1 ? 0 : root.next[c - a]);
        bfs.push(0);
    while (!bfs.empty()) {
         int cur_idx = bfs.front();
        bfs.pop();
```

```
node &cur = mem[cur_idx];
    cur.bad = cur.term.size() > 0 || mem[cur.suf]
].bad;

bfs_order.push_back(cur_idx);
    for (char c = a; c < a + alpha; ++c) {
        int nxt_idx = cur.next[c - a];
        if (nxt_idx == -1) continue;
        node &nxt = mem[nxt_idx];
        nxt.suf = (cur_idx ? mem[cur.suf].link[c - a] : 0);
        for (char c = a; c < a + alpha; ++c) {
            nxt.link[c - a] = (nxt.next[c - a] = -1 ? mem[nxt.suf].link[c - a] : nxt.next[c - a]);
        }
        bfs.push(nxt_idx);
    }
}
// do something
}
//bel6ed</pre>
```

6.6 Дерево палиндромов

```
const int alpha = 26;
const char a = 'a';
struct palindromic{
  int n;
  vector<int> p, suf{0, 0}, len{-1, 0};
//d[u] is a difference of lengths of u and suf[u],
      go is jump by chain constant d
  vector<array<int, alpha>> to{{}, {}};
  int sz = 2;
  palindromic(const string &s) : n(s.size()), p(n +
     1, 0) {
     suf.reserve(n);
     len.reserve(n);
     for (int i = 0; i < n; ++i) {
       auto check = [&] (int 1) {
  return i > 1 && s[i] == s[i - 1 - 1];
       };
       int par = p[i];
       while (!check(len[par])) {
  par = suf[par];
       if (to[par][s[i]-a] == 0) {
          p[i+1]=to[par][s[i]-a]=sz++;
          to.emplace_back();
          len.emplace_back(len[par]+2);
if (par == 0) {
            suf.emplace_back(1);
          else {
            do {
            par = suf[par];
} while (!check(len[par]));
            suf.emplace_back(to[par][s[i]-a]);
       else {
         p[i+1]=to[par][s[i]-a];
    }
  int partition() {
    vector <int> d(sz), up(sz, 1); //d[1] = 0 sic
for (int i = 2; i < sz; ++i) {
  d[i] = len[i] - len[suf[i]];</pre>
       if (d[i] == d[suf[i]]) {
          up[i] = up[suf[i]];
       else {
          up[i] = suf[i];
       }
     vector \langle int \rangle dp(n + 1, n), last(sz);
     dp[0] = 0;
     for (int i = 1; i <= n; ++i) {</pre>
       int u = p[i];
while (u != 1) {
          if (suf[u] == up[u]) {
  last[u] = dp[i - len[u]];
            last[u] = min(last[suf[u]], dp[i - len[up[
     u]] - d[u]]);
          dp[i] = min(dp[i], last[u] + 1);
          u = up[u];
```

```
}
  return dp.back();
}
};
//acac02
```

7 Потоки

7.1 Алгоритм Диница

```
#define pb push_back
struct Dinic{
struct edge{
  int to, flow, cap;
const static int N = 555; //count of vertices
vector<edge> e;
vector<int> g[N + 7];
int dp[N + 7];
int ptr[N + 7];
void clear(){
  for (int i = 0; i < N + 7; i++) g[i].clear();</pre>
  e.clear();
void addEdge(int a, int b, int cap){
  g[a].pb(e.size());
  e.pb({b, 0, cap});
  g[b].pb(e.size());
  e.pb({a, 0, 0});
int minFlow, start, finish;
bool bfs() {
  for (int i = 0; i < N; i++) dp[i] = -1;</pre>
  dp[start] = 0;
  vector<int> st;
  int uk = 0;
  st.pb(start);
  while(uk < st.size()){</pre>
    int v = st[uk++];
for (int to : g[v]) {
      auto ed = e[to];
if (ed.cap - ed.flow >= minFlow && dp[ed.to]
    == -1) {
        dp[ed.to] = dp[v] + 1;
         st.pb(ed.to);
    }
  return dp[finish] != -1;
int dfs(int v, int flow){
  if (v == finish) return flow;
  for (; ptr[v] < g[v].size(); ptr[v]++){</pre>
    int to = g[v][ptr[v]];
edge ed = e[to];
                   ed.flow >= minFlow && dp[ed.to] ==
    if (ed.cap -
    dp[v] + 1){
       int add = dfs(ed.to, min(flow, ed.cap - ed.
    flow));
       if (add) {
         e[to].flow += add;
         e[to ^1].flow -= add;
         return add;
    }
  return 0;
int dinic(int start, int finish){
  Dinic::start = start;
  Dinic::finish = finish;
  int flow = 0;
  for (minFlow = (1 << 30); minFlow; minFlow >>= 1){
    while(bfs()){
       for (int i = 0; i < N; i++) ptr[i] = 0;</pre>
       while(int now = dfs(start, (int)2e9 + 7)) flow
  }
```

```
return flow;
}
dinic;
//15c079
```

7.2 Mincost k-flow

```
struct edge {
  int next, capacity, cost, flow = 0;
  edge() = default;
  edge(int next, int capacity, int cost) : next(next
    ), capacity(capacity), cost(cost) {}
  int rem() const { return capacity - flow; }
  int operator+=(int f) { return flow += f; }
  int operator-=(int f) { return flow -= f; }
};
auto addEdge = [&](auto from, auto next, auto
    capacity, int cost)
  g[from].push_back(e.size());
  e.emplace_back(next, capacity, cost);
  g[next].push_back(e.size());
  e.emplace_back(from, 0, -cost);
^{\prime\prime} in case of undirected graph use this:
addEdge(u, v, capacity, cost);
addEdge(v, u, capacity, cost);
vector<ll> phi(n, 0);
auto fordBellman = [&](int s, int t) {
  phi.assign(n, 0);
for (int iter = 0; iter < n; ++iter) {
    bool changed = false;
    for (int u = 0; u < n; ++u) {
      for (auto index : g[u]) {
        auto edge = e[index];
        if (edge.rem() > 0 && phi[edge.next] > phi[u
    1 + edge.cost) {
          phi[edge.next] = phi[u] + edge.cost;
          changed = true;
        }
      }
    if (!changed) break;
 }
}:
fordBellman(s, t);
// now shortest path using dijkstra with potentials
vector<ll> dist;
vector<int> from;
vector<bool> cnt;
auto dijkstra = [&](int s, int t) {
  dist.assign(n, 1e18);
  from.assign(n, -1);
  cnt.assign(n, false);
  dist[s] = 0;
  set <pair <int, int> > se;
se.insert({0, s});
  while ((int)(se.size())) {
    int cur = se.begin()->y;
    se.erase(se.begin());
    cnt[cur] = true;
for (int index : g[cur]) {
      auto &edge = e[index];
      if (edge.rem() == 0) continue;
      ll weight = edge.cost + phi[cur] - phi[edge.
      if (dist[edge.next] > dist[cur] + weight) {
        se.erase({dist[edge.next], edge.next});
        dist[edge.next] = dist[cur] + weight;
        se.insert({dist[edge.next], edge.next});
        from[edge.next] = cur;
    }
  if (dist[t] == (11) 1e18) return -1LL;
  11 cost = 0;
  for (int p = t; p != s; p = from[p]) {
    for (auto index : g[from[p]]) {
      auto &edge = e[index];
      ll weight = edge.cost + phi[from[p]] - phi[
    edge.next];
      if (edge.rem() > 0 && edge.next == p && dist[
    edge.next] == dist[from[p]] + weight) {
        edge += 1;
```

```
e[index ^ 1] -= 1;
         cost += edge.cost;
    }
  for (int i = 0; i < n; ++i) {</pre>
   phi[i] += dist[i];
  return cost;
11 cost = 0;
for (int flow = 0; flow < k; ++flow) {</pre>
  ll a = dijkstra(s, t);
  if (a == -1) {
    cout << "-1\n";
    return;
  cost += a;
// now recover answer
auto findPath = [&](int s, int t) {
  vector<int> ans;
  int cur = s;
  while (cur != t) {
  for (auto index : g[cur]) {
       auto &edge = e[index];
       if (edge.flow <= 0) continue;</pre>
       edge -= 1;
e[index ^ 1] += 1;
       ans.push_back(index / 4);
// index / 4 because each edge has 4 copies
    cur = edge.next;
       break;
    }
  }
  return ans;
for (int flow = 0; flow < k; ++flow) {</pre>
  auto p = findPath(s, t);
cout << p.size() << ' ';</pre>
  for (int x : p) cout << x + 1 << ' ';
cout << '\n';</pre>
//94b9cb
template <typename T, typename C>
class mcmf {
  public:
  static constexpr T eps = (T) 1e-9;
  struct edge {
    int from;
    int to:
    T c;
    T f:
    C cost;
  };
  vector< vector<int> > g;
  vector<edge> edges;
  vector<C> d;
  vector<int> q;
vector<bool> in_queue;
  vector<int> pe;
  int n;
  int st, fin;
  T flow;
  C cost;
  mcmf(int _n, int _st, int _fin) : n(_n), st(_st),
    fin(_fin) {
    assert(0 \le st \&\& st < n \&\& 0 \le fin \&\& fin < n
    && st != fin);
    g.resize(n);
    d.resize(n);
    in queue.resize(n);
    pe.resize(n);
    flow = 0;
    cost = 0;
  void clear_flow() {
    for (const edge &e : edges) {
      e.f = 0;
    flow = 0;
```

```
void add(int from, int to, T forward_cap, T
backward_cap, C cost) {
  assert(0 <= from && from < n && 0 <= to && to <</pre>
     n);
     g[from].push_back((int) edges.size());
     edges.push_back({from, to, forward_cap, 0, cost
     g[to].push_back((int) edges.size());
edges.push_back({to, from, backward_cap, 0, -
     cost});
  bool expath() {
     fill(d.begin(), d.end(), numeric_limits<C>::max
     ());
     q.clear();
     q.push back(st);
     d[st] = 0;
     in_queue[st] = true;
     int beg = 0;
     bool found = false;
     while (beg < (int) q.size()) {
  int i = q[beg++];
  if (i == fin) {</pre>
          found = true;
       in_queue[i] = false;
       for (int id : g[i]) {
  const edge &e = edges[id];
  if (e.c - e.f > eps && d[i] + e.cost < d[e.</pre>
     to]) {
            d[e.to] = d[i] + e.cost;
pe[e.to] = id;
            if (!in_queue[e.to]) {
               q.push_back(e.to);
               in_queue[e.to] = true;
            }
         }
       }
     if (found) {
       T push = numeric_limits<T>::max();
       int v = fin;
       while (v != st) {
          const edge &e = edges[pe[v]];
          push = min(push, e.c - e.f);
          v = e.from;
       v = fin;
       while (v != st) {
          edge &e = edges[pe[v]];
          e.f += push;
          edge &back = edges[pe[v] ^ 1];
          back.f -= push;
          v = e.from;
       flow += push;
       cost += push * d[fin];
     return found;
  pair<T, C> max_flow_min_cost() {
     while (expath()) {
     return make_pair(flow, cost);
  }
};
//b7bbb2
```

Алгоритм Гаусса 8

Решение Av = b8.1

```
optional<vector<int> > gauss(vector<vector<int> > A,
    vector<int> b) ///returns v such that Av=b
{
    int n=A.size();assert(b.size()==n);int m=A[0].
    size();
    for(int &x:b) {x%=p;x+=p;x%=p;}
    for(int i=0;i<n;++i) {for(int &x:A[i]) {x%=p;x+=</pre>
    p;x%=p;}}
    int bi=0;
    for(int i=0;i<n;++i)</pre>
    {
        if(bi==m) break;
        for(int j=i;j<n;++j)</pre>
```

```
if(A[j][bi])
                   if(j!=i) {swap(A[i],A[j]);swap(b[i],
    b[j]);}
                  break;
         if(A[i][bi])
              int o=inv(A[i][bi]);
              for(int j=i+1; j<n; ++j)</pre>
                   int we=(A[j][bi]*o)%p;
                  b[j] = we*b[i]; b[j] = p; if(b[j] < 0) b[j]
    ]+=p;
                   for(int k=bi;k<m;++k)</pre>
                       A[j][k]=we*A[i][k];A[j][k]%=p;
    if(A[j][k]<0) A[j][k]+=p;</pre>
         }
         else
         {
              ++bi:--i:continue:
         }
    vector<int> v(m);
for(int i=n-1;i>=0;--i)
         int bi=0;
         while(bi<m && !A[i][bi]) {++bi;}</pre>
         if(bi==m)
         {
              if(b[i]) {return nullopt;}
              else {continue;}
         int cur=b[i]:
         for(int j=bi+1;j<m;++j)</pre>
              cur-=A[i][j]*v[j];cur%=p;
         v[bi]=cur*inv(A[i][bi]);v[bi]%=p;if(v[bi]<0)
     v[bi]+=p;
    return v;
//bcc622
8.2 Базис Av = 0
vector<vector<int> > gaussbasis(vector<vector<int> >
     A, int m) //returns basis of Av=0
    int n=A.size();if(n) assert(m==A[0].size());
for(int i=0;i<n;++i) {for(int &x:A[i]) {x%=p;x+=</pre>
    p;x%=p;}}
    int bi=0;
    for(int i=0;i<n;++i)</pre>
         if(bi==m) break;
```

```
for(int j=i;j<n;++j)</pre>
    {
         if(A[j][bi])
              if(j!=i) {swap(A[i],A[j]);}
    if(A[i][bi])
         int o=inv(A[i][bi]);
         for(int j=i+1; j<n; ++j)</pre>
              int we=(A[j][bi]*o)%p;
              for(int k=bi; k<m; ++k)</pre>
                  A[j][k]-=we*A[i][k];A[j][k]%=p;
if(A[j][k]<0) A[j][k]+=p;</pre>
    else
    {
         ++bi; --i; continue;
}
```

```
vector<int> indices(m);iota(all(indices),0);
    for(int i=n-1;i>=0;--i)
        int bi=0;
        while(bi<m && !A[i][bi]) {++bi;}</pre>
        if(bi<m)
        {
             indices.erase(find(all(indices),bi));
        }
    vector<vector<int> > v(indices.size(), vector<int</pre>
    >(m,0));
    for(int i=0;i<indices.size();++i)</pre>
        v[i][indices[i]]=1;
    for(int i=n-1;i>=0;--i)
    {
        int bi=0;
        while(bi<m && !A[i][bi]) {++bi;}</pre>
        if(bi==m) continue
        for(int k=0;k<indices.size();++k) {</pre>
        int cur=0;
        for(int j=bi+1;j<m;++j)</pre>
             cur-=A[i][j]*v[k][j];cur%=p;
        v[k][bi]=cur*inv(A[i][bi]);v[k][bi]%=p;if(v[
    k][bi]<0) v[k][bi]+=p;
    return v;
}
//ef40f3
```

9 Гамильтоновы путь и цикл

https://codeforces.com/blog/entry/90513, https://codeforces.com/blog/entry/90743.

9.1 Link-cut tree

```
namespace LCT {
  vector<vi> ch;
  vi fa, rev;
  void init(int n) {
    ch.resize(n + 1);
fa.resize(n + 1);
    rev.resize(n + 1);
for (int i = 0; i <= n; i++)
      ch[i].resize(2)
      ch[i][0] = ch[i][1] = fa[i] = rev[i] = 0;
  bool isr(int a)
    return !(ch[fa[a]][0] == a || ch[fa[a]][1] == a)
  void pushdown(int a)
    if(rev[a])
      rev[ch[a][0]] ^= 1, rev[ch[a][1]] ^= 1;
      swap(ch[a][0], ch[a][1]);
      rev[a] = 0;
  void push(int a)
    if(!isr(a)) push(fa[a]);
    pushdown(a);
  void rotate(int a)
  {
    int f = fa[a], gf = fa[f];
int tp = ch[f][1] == a;
    int son = ch[a][tp ^ 1];
    if(!isr(f))
      ch[gf][ch[gf][1] == f] = a;
    fa[a] = gf;
    ch[f][tp] = son;
    if(son) fa[son] = f;
    ch[a][tp ^ 1] = f, fa[f] = a;
  void splay(int a)
```

```
push(a);
    while(!isr(a))
      int f = fa[a], gf = fa[f];
      if(isr(f)) rotate(a);
      {
        int t1 = ch[gf][1] == f, t2 = ch[f][1] == a;
if(t1 == t2) rotate(f), rotate(a);
        else rotate(a), rotate(a);
    }
  }
  void access(int a)
    int pr = a;
    splay(a);
ch[a][1] = 0;
    while(1)
      if(!fa[a]) break;
      int u = fa[a];
      splav(u);
      ch[u][1] = a;
      a = u;
    splay(pr);
  void makeroot(int a)
    access(a);
    rev[a] ^= 1;
  void link(int a, int b)
    makeroot(a);
    fa[a] = b;
  void cut(int a, int b)
    makeroot(a);
    access(b);
    fa[a] = 0, ch[b][0] = 0;
  int fdr(int a)
    access(a);
    while(1)
      pushdown(a);
      if (ch[a][0]) a = ch[a][0];
      else {
        splay(a);
        return a;
 }
//647cca
```

9.2 Undirected case

```
#include <bits/stdc++.h>
using namespace std;
namespace hamil {
  template <typename T> bool chkmax(T &x,T y){return
     x<y?x=y,true:false;}
  template <typename T> bool chkmin(T &x,T y){return
     x>y?x=y,true:false;}
  #define vi vector<int>
  #define pb push_back
  #define mp make_pair
  #define pi pair<int, int>
  #define fi first
  #define se second
  #define ll long long
  using namespace LCT;
  vector<vi> used;
  unordered_set<int> caneg;
  void cut(int a, int b) {
    LCT::cut(a, b);
    for (int s = 0; s < 2; s++) {
  for (int i = 0; i < used[a].size(); i++)
    if (used[a][i] == b) {</pre>
           used[a].erase(used[a].begin() + i);
           break;
      if (used[a].size() == 1) caneg.insert(a);
```

```
swap(a, b);
  }
void link(int a, int b) {
  LCT::link(a, b);
for (int s = 0; s < 2; s++) {
    used[a].pb(b);
    if (used[a].size() == 2) caneg.erase(a);
    swap(a, b);
vi work(int n, vector<pi> eg, ll mx_ch = -1) {
  // mx ch : max number of adding/replacing
  default is (n + 100) * (n + 50)
  // n : number of vertices. 1-indexed.
  // eg: vector<pair<int, int> > storing all the
  edges.
  // return a vector<int> consists of all indices of vertices on the path. return empty list if
  failed to find one.
  LCT::init(n);
if (mx_ch == -1) mx_ch = 111 * (n + 100) * (n +
  50); //default
  used.resize(n + 1);
  caneg.clear();
  for (int i = 1; i <= n; i++) used[i].clear();</pre>
  vector<vi> edges(n + 1);
  for (auto v : eg)
  edges[v.fi].pb(v.se),
    edges[v.se].pb(v.fi);
  for (int i = 1; i <= n; i++)</pre>
    caneg.insert(i);
  mt19937 x(chrono::steady_clock::now().
  time_since_epoch().count());
  int tot = \overline{0};
  while (mx_ch >= 0) {
// cout << tot << ' ' << mx_ch << endl;</pre>
    vector<pi> eg;
    for (auto v : caneg)
  for (auto s : edges[v])
         eg.pb(mp(v, s));
    shuffle(eg.begin(), eg.end(), x);
     if (eg.size() == 0) break;
    for (auto v : eg) {
       mx_ch--;
       int a = v.fi, b = v.se;
       if (used[a].size() < used[b].size()) swap(a,</pre>
       if (used[b].size() >= 2) continue;
       if (x() & 1) continue;
if (LCT::fdr(a) == LCT::fdr(b)) continue;
       if (used[a].size() < 2 && used[b].size() <</pre>
  2)
       if (used[a].size() == 2)
         int p = used[a][x() % 2];
         cut(a, p);
       link(a, b);
    if (tot == n - 1) {
       vi cur;
       for (int i = 1; i <= n; i++)</pre>
         if (used[i].size() <= 1) {
  int pl = i, ls = 0;
  while (pl) {</pre>
              cur.pb(pl);
int flag = 0;
for (auto v : used[pl])
                if (v != ls) {
                   ls = pl;
pl = v;
                   flag = 1;
                   break:
              if (!flag) break;
           break:
      return cur;
    }
  ,
//failed to find a path
  return vi();
```

```
}
}
//c35638
```

9.3 Directed case

```
namespace hamil {
  template <typename T> bool chkmax(T &x,T y){return
      x<y?x=y,true:false;}</pre>
  template <typename T> bool chkmin(T &x,T y){return
      x>y?x=y,true:false;}
  #define vi vector<int>
  #define pb push_back
  #define mp make_pair
  #define pi pair<int, int>
#define fi first
  #define se second
  #define 11 long long
  using namespace LCT;
  vi out, in;
  vi work(int n, vector<pi> eg, ll mx_ch = -1) {
     // mx_ch : max number of adding/replacing
default is (n + 100) * (n + 50)
// n : number of vertices. 1-indexed.
     // eg: vector<pair<int, int> > storing all the
     edges.
     // return a vector<int> consists of all indices
     of vertices on the path. return empty list if
     failed to find one.
     out.resize(n + 1), in.resize(n + 1);
     LCT::init(n);
     for (int i = 0; i <= n; i++) in[i] = out[i] = 0; if (mx_ch == -1) mx_ch = 111 * (n + 100) * (n +
     50); /\overline{/}default
     vector\langle vi \rangle from(n + 1), to(n + 1);
     for (auto v : eg)
       from[v.fi].pb(v.se),
       to[v.se].pb(v.fi);
     unordered_set<int> canin, canout;
for (int i = 1; i <= n; i++)</pre>
       canin.insert(i),
       canout.insert(i);
     mt19937 x(chrono::steady_clock::now().
     time_since_epoch().count());
     int \overline{t}ot = \overline{0};
     while (mx_ch >= 0) {
// cout << tot << ' ' << mx_ch << endl;
  vector<pi> eg;
       for (auto v : canout)
  for (auto s : from[v])
    if (in[s] == 0) {
              assert(canin.count(s));
              continue;
            else eg.pb(mp(v, s));
       for (auto v : canin)
  for (auto s : to[v])
            eg.pb(mp(s, v));
       shuffle(eg.begin(), eg.end(), x);
if (eg.size() == 0) break;
       for (auto v : eg) {
         mx_ch--;
          if (in[v.se] && out[v.fi]) continue;
          if (LCT::fdr(v.fi) == LCT::fdr(v.se))
     continue;
          if (in[v.se] || out[v.fi])
            if (x() & 1) continue;
          if (!in[v.se] && !out[v.fi])
            tot++;
          if (in[v.se]) {
            LCT::cut(in[v.se], v.se);
            canin.insert(v.se);
            canout.insert(in[v.se]);
            out[in[v.se]] = 0;
            in[v.se] = 0;
          if (out[v.fi]) {
            LCT::cut(v.fi, out[v.fi]);
            canin.insert(out[v.fi]);
            canout.insert(v.fi);
            in[out[v.fi]] = 0;
            out[v.fi] = 0;
          LCT::link(v.fi, v.se);
          canin.erase(v.se);
          canout.erase(v.fi);
          in[v.se] = v.fi;
          out[v.fi] = v.se;
```

```
if (tot == n - 1) {
    vi cur;
    for (int i = 1; i <= n; i++)
        if (!in[i]) {
        int pl = i;
        while (pl) {
            cur.pb(pl),
            pl = out[pl];
        }
        break;
    }
    return cur;
    }
} //failed to find a path
    return vi();
}
//43ae60</pre>
```

10 Геома

10.1 Примитивы

```
struct Point {
  int x, y;
  Point(){}
  Point (int x_, int y_) {
  x = x_; y = y_;
  Point operator + (Point p) {
    return Point(x+p.x,y+p.y);
  Point operator - (Point p) {
     return Point(x - p.x, y - p.y);
  int operator * (Point p) {
    return x * p.y - y * p.x;
  int operator % (Point p) {
  return x * p.x + y * p.y;
  bool operator < (Point v) {</pre>
    return (*this) * v > 0;
  bool operator > (Point v) {
    return v < (*this);</pre>
  bool operator <= (Point v) {
  return (*this) * v >= 0;
  }
bool line(Point a, Point b, Point c) {
  return (b - a) * (c - b)==0;
bool ord(Point a, Point p, Point b) {
  return (p - a)%(p - b)<0;
int hp(Point a) {
  if (a.y == 0) return a.x >= 0;
  return a.y > 0;
bool comp(Point a, Point b) {
  if (hp(a) != hp(b)) return hp(a) < hp(b);
return a.x * b.y - a.y * b.x > 0;
//a48b68
```

10.2 Выпуклая оболочка

```
using pt = pair<int, int>;
#define x first
#define y second

int cross(pt p, pt q) { return p.x * q.y - p.y * q.x
    ; }
pt operator-(pt a, pt b) { return {a.x - b.x, a.y -
    b.y}; }

vector<point> convex(vector<point> a) {
    sort(all(a));
    a.erase(unique(all(a)), a.end());
    vector<point> h;
    for (int t = 0; t < 2; ++t) {
        int sz = h.size() - t;
    }
}</pre>
```

10.3 Точка внутри многоугольника

```
auto inT = [&] (Point a, Point b, Point c, Point p)
  a = a-p; b = b-p; c = c-p;
int ab = a * b, bc = b * c, ca = c * a;
  return abs(ab)+abs(bc)+abs(ca) == abs(ab+bc+ca);
};
auto inP = [&] (Point p) {
//a must be in counterclockwise order!
//assuming no three points of a are collinear
  if (n == 1) return p == a[0];
if (n == 2) return (p-a[0]) * (a[1]-a[0]) == 0 &&
     (p-a[0]) % (p-a[1]) \le 0;
  int 1 = 1, r = n - 1;
while (1 < r - 1) {
  int m = (1 + r) / 2;</pre>
     if ((a[m] - a[0]) < (p - a[0])) {
       1 = m;
    } else {
       r = m;
  return inT(a[1], a[0], a[r], p);
//9e04bc
```

10.4 Касательные

```
auto max = [&] (auto cmp) {
  int k = 0;
  for (int lg = 18; lg >= 0; --lg) {
    int i = k + (1 \ll lg), j = k - (1 \ll lg);
    i = (i % n + n) % n;

j = (j % n + n) % n;
    array<int, 3> ind{i, j, k};
    sort(all(ind), cmp);
    k = ind[2];
  return k;
auto uppert = [&](Point p) { //last vertex in
    counterclockwise order about p
  auto cmp = [&] (int i, int j) {return (a[i] - p) <
   (a[j] - p); };</pre>
  return max(cmp);
auto lowert = [&](Point p) { //first vertex in
    counterclockwise order about p
  auto cmp = [&] (int i, int j) {return (a[i] - p) >
   (a[j] - p); };
  return max(cmp);
}:
auto uppertinf = [&](Point p) { //upper tangent line
     parallel to vector p
  swap(p.x, p.y);
  p.x = -p.x;
 auto cmp = [&] (int i, int j) { return a[i] % p <
   a[j] % p; };
return max(cmp);</pre>
auto lowertinf = [&](Point p) { //lower tangent line
     parallel to vector p
  swap(p.x, p.y);
  p.x = -p.x;
  auto cmp = [&] (int i, int j) { return a[i] % p >
   a[j] % p; };
  return max(cmp);
//90f89d
```

10.5 Пересечение многоугольника и полуплоскости

```
template<typename Check>
vector<point> intersect(vector<point> h, Check value
    ) {
  int n = h.size();
  vector<int> pos(n);
for (int i = 0; i < n; ++i)</pre>
    pos[i] = value(h[i]) >= 0;
  if (count(all(pos), 0) == 0) return h;
if (count(all(pos), 1) == 0) return {};
auto intersect = [&](point p, point q) {
     auto s = value(p);
     auto t = value(q);
     assert(s < 0 && t >= 0);
    return q + (p - q) * (t / (t - s));
  };
  int t01 = -1, t10 = -1;
  for (int i = 0; i < n; ++i) {
    h.push back(h[i]);
    pos.push_back(pos[i]);
if (pos[i] == 0 && pos[i + 1] == 1) t01 = i;
if (pos[i] == 1 && pos[i + 1] == 0) t10 = i;
  if (t10 < t01) t10 += n;
//for (int i = t01 + 1; i <= t10; ++i) assert(pos[i]
     == 1);
//for (int i = t10 + 1; i <= t01 + n; ++i) assert( pos[i] == 0);
  vector<point> res{intersect(h[t01], h[t01 + 1])};
for (int i = t01 + 1; i <= t10; ++i) {</pre>
     res.push_back(h[i]);
  res.push_back(intersect(h[t10 + 1], h[t10]));
  return res;
// Usage example:
void solve() {
     vector<point> p, q;
     // ... q must be in counterclockwise order; q[0]
      == q[m]
     for (int i = 0; i < m; ++i) {
         p = intersect(p, [&](point pt) { return
     cross(q[i + 1] - q[i], pt - q[i]); ));
//bd15f0
```

10.6 События для прямой

```
int cross(point p, point q) { return p.x * q.y - q.x
      * p.y; }
point operator-(point p, point q) { return {p.x - q.
x, p.y - q.y}; }
int sgn(int x) { return x < 0 ? -1 : (x > 0); }
double dist(point p) { return sqrt(p.x * p.x + p.y *
     p.y); }
const __int128 one = 1;
double solve(vector<point> a, point p, point q) {
  int n = a.size();
  a.push_back(a[0]);
  point pq = q - p;
vector<array<int, 3>> ev;
  for (int i = 0; i < n; ++i) {</pre>
    point u = a[i], v = a[i + 1];
     int s = sgn(cross(u - p, pq)), t = sgn(cross(v -
     p, pq));
    if (s == t) continue;
    int top = cross(u - p, v - u), bot = cross(pq, v)
      - u);
    ev.push_back({sgn(bot) * top, abs(bot), t - s});
  sort(all(ev), [](auto e, auto f) {
  return e[0] * one * f[1] < f[0] * one * e[1];</pre>
  for (int i = 0; i + 1 < ev.size(); ++i) {</pre>
    if (bal + ev[i][2] < 0 || bal + ev[i][2] > 2) {
   assert(ev[i][0] * ev[i+1][1] == ev[i+1][0] *
    ev[i][1]);
      swap(ev[i], ev[i + 1]);
    bal += ev[i][2];
  // example usage: now calculating length of
    longest segment inside
  bal = 0;
```

```
double from = 0, ans = 0;
for (auto [t, b, w] : ev) {
   double x = t * 1.0 / b;
   if (bal == 0) from = x;
   bal += w;
   assert(0 <= bal && bal <= 2);
   if (bal == 0) ans = max(ans, x - from);
   }
  return ans * dist(pq);
}
//fe0649</pre>
```

10.7 Кривая Гильберта для алгоритма Мо

```
const int logn = 30; // any number, such that maxn
is greater than coordinates. 20 is ok.
const int maxn = 1 << logn;</pre>
int hilbertorder(int x, int y) { // returns long
     long
     int d = 0; // long long
for (int s = 1 << (logn - 1); s; s >>= 1)
           bool rx = x & s, ry = y & s;
d = (4 * d) | ((3 * rx) ^ ry);
           <u>if</u> (!ry) {
                 if (rx) {
                       x = maxn - x;

y = maxn - y;
                 swap(x, y);
           }
     return d:
// Usage example:
vector<int> sort_indices(int q, vector<pair<int, int</pre>
     >> &qs) {
vector<int> ind(q), ord(q);
     iota(all(ind), 0);
for (int i = 0; i < q; ++i) ord[i] =</pre>
     hilbertorder(qs[i].first, qs[i].second);
sort(all(ind), [&](int i, int j) { return ord[i]
       < ord[j]; });
     return ind;
//134578
```

10.8 Симплекс

```
#define int long long
using namespace std;
typedef double ld;
const ld EPS = 1e-9;
struct LPSolver {
  int m, n;
vector <int> B, N;
  vector <vector <ld> > D;
  LPSolver(const vector <vector <ld> > &A, const
     vector <ld> &b, const vector <ld> &c)
     m(b.size()), n(c.size()), N(n + 1), B(m), D(m +
     2, vector <ld>(n + 2)) {
for (int i = 0; i < m; i++) for (int j = 0; j <
     n; j++) D[i][j] = A[i][j];
         (int i = 0; i < m; i++) { B[i] = n + i; D[i]}
     [n] = -1; D[i][n + 1] = b[i];
    for (int j = 0; j < n; j++) { N[j] = j; D[m][j]
= -c[j]; }</pre>
    N[n] = -1; D[m + 1][n] = 1;
  void pivot(int r, int s) {
  double inv = 1.0 / D[r][s];
     for (int i = 0; i < m + 2; i++) if (i != r)
for (int j = 0; j < n + 2; j++) if (j != s)
D[i][j] -= D[r][j] * D[i][s] * inv;
for (int j = 0; j < n + 2; j++) if (j != s) D[r
     ][j] *= inv;
     for (int i = 0; i < m + 2; i++) if (i != r) D[i
     ][s] *= -inv;
     D[r][s] = inv;
     swap(B[r], N[s]);
  bool simplex(int phase) {
```

```
int x = phase == 1 ? m + 1 : m;
    while (true) {
       int s = -1;
       for (int j = 0; j <= n; j++) {
  if (phase == 2 && N[j] == -1) continue;
  if (s == -1 || D[x][j] < D[x][s] || D[x][j]</pre>
    == D[x][s] && N[j] < N[s]) s = j;
       if (D[x][s] > -EPS) return true;
       int r = -1;
       for (int i = 0; i < m; i++) {</pre>
         if (D[i][s] < EPS) continue;</pre>
         if (r == -1 || D[i][n + 1] / D[i][s] < D[r][
    n + 1] / D[r][s] ||
           (D[i][n + 1] / D[i][s]) == (D[r][n + 1] /
    D[r][s]) && B[i] < B[r]) r = i;
       if (r == -1) return false;
       pivot(r, s);
  ld solve(vector <ld> &x) {
    int r = 0;
for (int i = 1; i < m; i++) if (D[i][n + 1] < D[</pre>
    r][n + 1]) r = i;
    if(D[r][n + 1] < -EPS) {
       pivot(r, n);
       if (!simplex(1) || D[m + 1][n + 1] < -EPS)
    return -numeric_limits<ld>::infinity();
for (int i = 0; i < m; i++) if (B[i] == -1) {
         int s = -1;
         for (int j = 0; j <= n; j++)
if (s == -1 || D[i][j] < D[i][s] || D[i][j
    ] == D[i][s] && N[j] < N[s]) s = j;
        pivot(i, s);
    if (!simplex(2)) return numeric_limits<ld>::
    infinity();
    x = vector < ld > (n);
    for (int i = 0; i < m; i++) if (B[i] < n) x[B[i]] = D[i][n + 1];
    return D[m][n + 1];
 }
//
        maximize
                       c^T x
//
        subject to
                       Ax \le b
//
                       x >= 0
vector <vector <ld> > A(m, vector <ld> (n))
vector <ld> b(m), c(n)
LPSolver solver(A, b, c);
vector <ld> x;
ld value = solver.solve(x);
// OUTPUT: value of the optimal solution (infinity
    if unbounded above, -infinity if infeasible)
//31e155
```

11 Цепные дроби

https://cp-algorithms.com/algebra/continued-fractions.html

11.1 Поиск нижней огибающей, сумма и минимум по модулю

```
int floor(int a, int b) {
  return a / b - ((a ^ b) < 0 && a % b);
}
vector<int> decompose(int p, int q) {
  vector<int> f;
  while (q!= 0) {
    f.push_back(floor(p, q));
    p -= q * f.back();
    swap(p, q);
  }
  return f;
}
using matrix = array<int, 4>;
matrix operator*(matrix a, matrix b) {
  matrix of (0,0,0);
  for (int i = 0; i < 2; ++i) {
    for (int j = 0; j < 2; ++j) {
</pre>
```

```
for (int k = 0; k < 2; ++k) {
c[2 * i + k] += a[2 * i + j] * b[2 * j + k];
      }
   return c;
#define x first
#define y second
// computes lower convex hull for 0 \le x \le N, 0 \le
      y \le (ax + b) / c
vector<pair<int, int>> lower_convex_hull(int a, int
   b, int c, int n) {
matrix m = {1, 0, 0, 1};
auto f = decompose(a, c);
  auto r = decompose(a, c);
vector<pair<int, int>> conv{{1, 0}, {0, 1}};
for (int x : f) {
    m = m * matrix{x, 1, 1, 0};
    conv.emplace_back(m[2], m[0]);
    if (m[2] > n) break; // there should be one (if any) with .x > n
}
   auto diff = [&](int x, int y) {
  return c * y - a * x;
   int x = 0, y = b / c;
vector<pair<int, int>> res{{x, y}};
   int i;
   for (i = 2; i + 1 < conv.size(); i += 2) {</pre>
      while (diff(x + conv[i + 1].x, y + conv[i + 1].y)
      ) <= b) {
   int t = 1 + (diff(x + conv[i - 1].x, y + conv[i - 1].y) - b - 1) / abs(diff(conv[i].x, conv[i</pre>
      ].y));
          auto [dx, dy] = tuple{conv[i - 1].x + t * conv
      [i].x, conv[i - 1].y + t * conv[i].y);
int k = (n - x) / dx;
if (k == 0) break;
if (diff(dx, dy)) k = min(k, (b - diff(x, y))
      / diff(dx, dy));
x += k * dx, y += k * dy;
         res.push_back({x, y});
   if (i >= conv.size()) i -= 2;
   for (; i > 0; i -= 2) {
   auto [dx1, dy1] = conv[i];
      if (x + dx1 > n) continue;
      x += dx1, y += dy1;
if (i + 1 < conv.size())
         auto [dx2, dy2] = conv[i + 1];
        int k = (n - x) / dx2;

x += k * dx2;

y += k * dy2;
      res.emplace_back(x, y);
      int k = (n - x) / dx1;
if (k == 0) continue;
      x += k * dx1;
y += k * dy1;
      res.emplace_back(x, y);
   return res;
// number of (x, y) under pq line such that p.x <= x < q.x && 0 < y
int area(auto p, auto q) {
  int integers = gcd(q.x - p.x, q.y - p.y);
  return ((p.y + q.y - 1) * (q.x - p.x + 1) +
  integers + 1) / 2 - q.y;
// sum of (ax + b) / c for 0 <= x < n
int get_area(int a, int b, int c, int n) { // SUM (
    ax + b) / c for 0 <= x <= n</pre>
   auto ch = lower_convex_hull(a, b, c, n + 1);
   int sum = 0;
   for (int i = 0; i + 1 < ch.size(); ++i) {</pre>
      sum += area(ch[i], ch[i + 1]);
   return sum;
// min of (ax + b) % c for 0 <= x <= n
int get_min(int a, int b, int c, int n) {</pre>
```

auto ch = lower_convex_hull(a, b, c, n);

```
// in fact, here we need only the last point of
   the first half of the algo (that is going up)
int mn = c;
for (auto [x, y] : ch) mn = min(mn, (a * x + b) %
   c);
return mn;
}
//87941e
```

11.2 Простая рекурсия

```
Число точек (x,y):0\leqslant x< n,0< y\leqslant (kx+b)/d. To ect \sum_{x=0}^{n-1}\lfloor\frac{kx+b}{d}\rfloor. int cnt (int n, int k, int b, int d) { if (k=0) return (b/d) * n; if (k>=d) | b>=d { return (k/d) * n * (n-1) / 2 + (b/d) * n + cnt(n,k % d, b % d, d); } return cnt((k*n+b) / d, d, (k*n+b) % d, k); } //11a6a0
```

12 Разное

12.1 Компараторы

```
bool cmp1(int x, int y) { return x > y; }

struct cmp2{
    bool operator()(int x, int y) const { return x > y; }
};

int32_t main() {
    set<int, decltype(cmp1)*> s1({1, 2, 3}, cmp1);
    for (int x : s1) cout << x << ' '; cout << '\n';
    set<int, cmp2> s2({4, 5, 6});
    for (int x : s2) cout << x << ' '; cout << '\n';
    auto cmp3 = [&](int x, int y) { return x > y; };
    set<int, decltype(cmp3)> s3({7, 8, 9}, cmp3); //
    second cmp3 could be omitted if cmp3 = [](...)
    { ... }
    for (int x : s3) cout << x << ' '; cout << '\n';
    vector<int> v{3, 2, 1};
    cout << lower_bound(all(v), 2, cmp1) - v.begin();
    ;
    cout << lower_bound(all(v), 2, cmp2()) - v.begin();
    ;
}//adea08</pre>
```

12.2 Трюки от Сергея Копелиовича

12.2.1 Быстрый ввод

https://acm.math.spbu.ru/~sk1/algo/input-output

```
const int buf_size = 4096;
int getChar() {
    static char buf[buf_size];
    static int len = 0, pos = 0;
    if (pos == len)
        pos = 0, len = fread(buf, 1, buf_size, stdin);
    if (pos == len)
        return -1;
    return buf[pos++];
}
int readChar() {
    while (1) {
        int c = getChar();
        if (c > 32) return c;
    }
}
int readInt() {
    int s = 1, c = readChar(), x = 0;
```

```
if (c == '-')
    s = -1, c = getChar();
  while (isdigit(c))
   x = x * 10 + c - '0', c = getChar();
  return s * x;
//dc0a77
double read_double() {
    string s;
    cin >> s;
    double sgn = 1, p10 = 0, num = 0;
    for (char c : s) {
   if (c == '-') {
             sgn = -1;
        } else if (c == '.') {
            p10 = 1;
        } else {
            p10 *= 10;
             num = (num * 10 + c - '0');
    if (p10 < 0.5) p10 = 1;
    return sgn * num / p10;
//b77b67
```

https://acm.math.spbu.ru/~sk1/algo/memory.cpp.html

12.2.2 Быстрый аллокатор

```
const int MAX_MEM = 1e8;
int mpos = 0;
char mem[MAX_MEM];
inline void * operator new (size_t n) {
  assert((mpos += n) <= MAX_MEM);
  return (void *)(mem + mpos - n);
}
void operator delete (void *) noexcept { }
void operator delete (void *, size_t) noexcept { }
//8726b1</pre>
```

12.3 Редукция Барретта

```
using u64 = unsigned long;
using u128 = __uint128_t;
struct barrett{
  u64 p, m;
  barrett() {}
  barrett(u64 p) : p(p), m(-1ULL / p) {}
  int reduce(u64 x) {
    u64 q = (u128(m) * x) >> 64, r = x - q * p;
    return r - p * (r >= p);
  }
} ba;

// Usage example:
void solve() {
  int p = ...;
  ba = barrett(p);
  int x = ..., y = ...;
  int prod = ba.reduce(x * y);
}
//a8b4c7
```

12.4 Флаги компияции

```
-DLOCAL -Wall -Wextra -pedantic -Wshadow -Wformat=2 -Wfloat-equal -Wconversion -Wlogical-op -Wshift-overflow=2 -Wduplicated-cond -Wcast-qual -Wcast-align -D_GLIBCXX_DEBUG -D_GLIBCXX_DEBUG_PEDANTIC -D_FORTIFY_SOURCE=2 -fsanitize=address -fsanitize=undefined -fno-sanitize-recover -fstack-protector -std=c++2a
```

12.4.1 Сеточка в vim

https://codeforces.com/blog/entry/122540

```
i|<esc>25A |<esc>
o+<esc>25A---+<esc>
Vky35Pdd
```

12.5 Что сделать на пробном туре

- Послать клар
- Распечатать что-то
- Получить ML (stack & heap)
- Максимальный размер отправляемого файла?
- Убедиться, что чекер регистронезависимый (yes/YES)
- Позапускать Флойда Варшалла
- Посмотреть, насколько быстр быстрый ввод
- Перебить что-то, проверить хеш
- Проверить санитайзеры

12.6 Хеш файла без комментариев

Хеш файла, игнорирующий переводы строк и комментарии: