Basic Notions — Spectral Sequences

Pedro Núñez

University of Freiburg

10th December 2020

"You could have invented spectral sequences"¹

Notation gets ugly very soon

▶ Only finite dimensional vector spaces over ℚ for simplicity.

- ▶ Only finite dimensional vector spaces over ℚ for simplicity.
- ▶ (Cochain) complexes denoted with capital letters C and not C•.

- ▶ Only finite dimensional vector spaces over ℚ for simplicity.
- ightharpoonup (Cochain) complexes denoted with capital letters C and not C^{\bullet} .
- ▶ Cohomology again denoted just H(C) and not $H^{\bullet}(C)$.

- ▶ Only finite dimensional vector spaces over ℚ for simplicity.
- ightharpoonup (Cochain) complexes denoted with capital letters C and not C^{\bullet} .
- ▶ Cohomology again denoted just H(C) and not $H^{\bullet}(C)$.
- ► Cohomology is regarded as a copmlex with 0 differentials

$$H(C) = \bigoplus_{i \in \mathbb{Z}} H^i(C)[-i] := \left(\cdots H^{-1}(C) \xrightarrow{0} H^0(C) \xrightarrow{0} H^1(C) \cdots\right).$$

- Only finite dimensional vector spaces over Q for simplicity.
- ightharpoonup (Cochain) complexes denoted with capital letters C and not C^{\bullet} .
- ▶ Cohomology again denoted just H(C) and not $H^{\bullet}(C)$.
- ► Cohomology is regarded as a copmlex with 0 differentials

$$H(C) = \bigoplus_{i \in \mathbb{Z}} H^i(C)[-i] := \left(\cdots H^{-1}(C) \xrightarrow{0} H^0(C) \xrightarrow{0} H^1(C) \cdots \right).$$

▶ If it is clear to which *C* we refer, denote *H*(*C*) simply by *H*.

- Only finite dimensional vector spaces over Q for simplicity.
- ightharpoonup (Cochain) complexes denoted with capital letters C and not C^{\bullet} .
- ▶ Cohomology again denoted just H(C) and not $H^{\bullet}(C)$.
- ► Cohomology is regarded as a copmlex with 0 differentials

$$H(C) = \bigoplus_{i \in \mathbb{Z}} H^{i}(C)[-i] := \left(\cdots H^{-1}(C) \xrightarrow{0} H^{0}(C) \xrightarrow{0} H^{1}(C) \cdots\right).$$

- ▶ If it is clear to which *C* we refer, denote *H*(*C*) simply by *H*.
- (Decreasing) filtrations are always finite for simplicity:

$$F^{\bullet}A: \quad 0 = F^nA \subseteq \ldots \subseteq F^0A = A.$$

- Only finite dimensional vector spaces over Q for simplicity.
- ightharpoonup (Cochain) complexes denoted with capital letters C and not C^{\bullet} .
- ▶ Cohomology again denoted just H(C) and not $H^{\bullet}(C)$.
- Cohomology is regarded as a copmlex with 0 differentials

$$H(C) = \bigoplus_{i \in \mathbb{Z}} H^{i}(C)[-i] := \left(\cdots H^{-1}(C) \xrightarrow{0} H^{0}(C) \xrightarrow{0} H^{1}(C) \cdots\right).$$

- If it is clear to which C we refer, denote H(C) simply by H.
- (Decreasing) filtrations are always finite for simplicity:

$$F^{\bullet}A: \quad 0 = F^nA \subseteq \ldots \subseteq F^0A = A.$$

▶ The graded object associated to a filtration F•A is denoted

$$\operatorname{gr} A = \bigoplus_{p \in \mathbb{N}} \operatorname{gr}^p A := \bigoplus_{p \in \mathbb{N}} (F^p A / F^{p+1} A).$$

GOAL: compute cohomology with the help of a filtration

Filtration induced in cohomology

A filtration on the complex $F^{\bullet}C$ induces a filtration in cohomology

$$F^pH := \operatorname{im}(H(F^pC) \to H(C)) \subseteq H(C) = H,$$

where $H(F^pC) \to H(C)$ is induced by the inclusion map $F^pC \hookrightarrow C$.

▶ Some $c \in C^0 \setminus F^1C^0$ may end up in F^1C^1 under d^0 .

- ▶ Some $c \in C^0 \setminus F^1C^0$ may end up in F^1C^1 under d^0 .
- ▶ The $\operatorname{gr}^p C$'s will not be able to detect this.

- Some $c \in C^0 \setminus F^1C^0$ may end up in F^1C^1 under d^0 .
- ▶ The $\operatorname{gr}^p C$'s will not be able to detect this.
- ▶ Don't panic: spectral sequences will account for that.

BABY EXAMPLE: filtration induced in cohomology

We first look at the map induced by $F^1C \hookrightarrow C$ in cohomology:

$$H(F^{1}C) = \ker \left(d^{0}|_{F^{1}C}\right) \left[0\right] \oplus \left(\frac{F^{1}C^{1}}{\operatorname{im}\left(d^{0}|_{F^{1}C}\right)}\right) \left[-1\right]$$

$$\downarrow \qquad \qquad \downarrow$$

$$H(C) = \ker \left(d^{0}\right) \left[0\right] \oplus \left(\frac{C^{1}}{\operatorname{im}\left(d^{0}\right)}\right) \left[-1\right]$$

BABY EXAMPLE: filtration induced in cohomology

We first look at the map induced by $F^1C \hookrightarrow C$ in cohomology:

$$\begin{array}{ll} H(F^1C) & = & \ker\left(d^0|_{F^1C}\right)\left[0\right] \oplus \left(\frac{F^1C^1}{\operatorname{im}\left(d^0|_{F^1C}\right)}\right)\left[-1\right] \\ & \downarrow & & \downarrow \\ H(C) & = & \ker(d^0)\left[0\right] \oplus \left(\frac{C^1}{\operatorname{im}(d^0)}\right)\left[-1\right] \end{array}$$

The filtration on cohomology was given by its image, hence

$$F^{1}H = \ker \left(d^{0}|_{F^{1}C}\right)[0] \oplus \left(\frac{F^{1}C^{1} + \operatorname{im}(d^{0})}{\operatorname{im}(d^{0})}\right)[-1]$$

BABY EXAMPLE: graded cohomology pieces

Recall that $\operatorname{gr}^0 H := F^0 H / F^1 H = H / F^1 H$, hence (after \cong -theorem)

$$\operatorname{gr}^{0} H = \left(\frac{\ker(d^{0})}{\ker(d^{0}|_{F^{1}C})}\right) [0] \oplus \left(\frac{C^{1}}{F^{1}C^{1} + \operatorname{im}(d^{0})}\right) [-1]$$

BABY EXAMPLE: graded cohomology pieces

Recall that $\operatorname{gr}^0 H := F^0 H / F^1 H = H / F^1 H$, hence (after \cong -theorem)

$$\operatorname{gr}^0 H = \left(\frac{\ker(d^0)}{\ker(d^0|_{F^1C})}\right) [0] \oplus \left(\frac{C^1}{F^1C^1 + \operatorname{im}(d^0)}\right) [-1]$$

Similarly, $gr^1 H = F^1 H / 0 = F^1 H$, thus

$$\operatorname{gr}^{1} H = \ker \left(d^{0}|_{F^{1}C} \right) [0] \oplus \left(\frac{F^{1}C^{1} + \operatorname{im}(d^{0})}{\operatorname{im}(d^{0})} \right) [-1]$$

Baby Example: define $E_0^{p,q} := (\operatorname{gr}^p C)^{p+q}$ and visualize in \mathbb{Z}^2

Baby Example: define $E_0^{p,q}:=(\operatorname{gr}^pC)^{p+q}$ and visualize in \mathbb{Z}^2

► Since $F^1C \subseteq C$ is a subcomplex, $d^0: C^0 \to C^1$ induces the differential $d_0^{0,0}$.

Baby Example: define $E_0^{p,q}:=(\operatorname{gr}^pC)^{p+q}$ and visualize in \mathbb{Z}^2

- ► Since $F^1C \subseteq C$ is a subcomplex, $d^0: C^0 \to C^1$ induces the differential $d_0^{0,0}$.
- For the same reason, $d^0|_{F^1C}$ has image in F^1C^1 , so it induces the differential $d_0^{1,-1}$.

Baby Example: define $E_0^{p,q}:=(\operatorname{gr}^pC)^{p+q}$ and visualize in \mathbb{Z}^2

- ► Since $F^1C \subseteq C$ is a subcomplex, $d^0: C^0 \to C^1$ induces the differential $d_0^{0,0}$.
- For the same reason, $d^0|_{F^1C}$ has image in F^1C^1 , so it induces the differential $d_0^{1,-1}$.
- ▶ In general, since $F^{p+1}C \subseteq F^pC$ is a subcomplex, the original differentials induce the vertical differentials.

Baby Example: compute cohomology of the columns $\operatorname{gr}^p C$

From the p = 0 column in the " E_0 -page" we compute

$$H(\operatorname{gr}^0 C) = \left(\frac{\ker(d^0) + (d^0)^{-1}(F^1C^1)}{F^1C^0}\right) [0] \oplus \left(\frac{C^1}{F^1C^1 + \operatorname{im}(d^0)}\right) [-1]$$

Baby Example: compute cohomology of the columns $\operatorname{gr}^p C$

From the p = 0 column in the " E_0 -page" we compute

$$H(\operatorname{gr}^0 C) = \left(\frac{\ker(d^0) + (d^0)^{-1}(F^1C^1)}{F^1C^0}\right) [0] \oplus \left(\frac{C^1}{F^1C^1 + \operatorname{im}(d^0)}\right) [-1]$$

And from the p = 1 column in the " E_0 -page" we compute

$$H(\operatorname{gr}^{1} C) = \ker (d^{0}|_{F^{1}C}) [0] \oplus \left(\frac{F^{1}C^{1}}{\operatorname{im}(d^{0}|_{F^{1}C})}\right) [-1]$$

BABY EXAMPLE: 1^{st} approximation to the $gr^0 H$ part

We compare $gr^0 H$ (left column) to $H(gr^0 C)$ (right column):

BABY Example: 1^{st} approximation to the $gr^0 H$ part

We compare $gr^0 H$ (left column) to $H(gr^0 C)$ (right column):

$$\left(\frac{\ker(d^{0})}{\ker(d^{0}|_{F^{1}C^{0}}}\right) \begin{bmatrix} 0 \end{bmatrix} \qquad \left(\frac{\ker(d^{0}) + (d^{0})^{-1}(F^{1}C^{1})}{F^{1}C^{0}}\right) \begin{bmatrix} 0 \end{bmatrix} \\
\oplus \\
\left(\frac{C^{1}}{F^{1}C^{1} + \operatorname{im}(d^{0})}\right) \begin{bmatrix} -1 \end{bmatrix} \qquad \left(\frac{C^{1}}{F^{1}C^{1} + \operatorname{im}(d^{0})}\right) \begin{bmatrix} -1 \end{bmatrix}$$

► $H^1(\operatorname{gr}^0 C)$ does compute $\operatorname{gr}^0 H^1$ (bottom row),

Baby Example: 1^{st} approximation to the $gr^0 H$ part

We compare $gr^0 H$ (left column) to $H(gr^0 C)$ (right column):

- ▶ $H^1(\operatorname{gr}^0 C)$ does compute $\operatorname{gr}^0 H^1$ (bottom row),
- ▶ but $H^0(\operatorname{gr}^0 C)$ is not isomorphic to $\operatorname{gr}^0 H^0$ (top row).

Baby Example: 1^{st} approximation to the $gr^1 H$ part

We compare now $\operatorname{gr}^1 H$ (left column) to $H(\operatorname{gr}^1 C)$ (right column):

$$\ker \left(d^{0}|_{F^{1}C}\right) \begin{bmatrix} 0 \end{bmatrix} \qquad \ker \left(d^{0}|_{F^{1}C}\right) \begin{bmatrix} 0 \end{bmatrix}$$

$$\oplus \qquad \qquad \oplus$$

$$\left(\frac{F^{1}C^{1} + \operatorname{im}(d^{0})}{\operatorname{im}(d^{0})}\right) \begin{bmatrix} -1 \end{bmatrix} \qquad \left(\frac{F^{1}C^{1}}{\operatorname{im}\left(d^{0}|_{F^{1}C}\right)}\right) \begin{bmatrix} -1 \end{bmatrix}$$

BABY Example: 1^{st} approximation to the $gr^1 H$ part

We compare now $\operatorname{gr}^1 H$ (left column) to $H(\operatorname{gr}^1 C)$ (right column):

$$\ker \left(d^{0}|_{F^{1}C}\right) \begin{bmatrix} 0 \end{bmatrix} \qquad \ker \left(d^{0}|_{F^{1}C}\right) \begin{bmatrix} 0 \end{bmatrix}$$

$$\oplus \qquad \qquad \oplus$$

$$\left(\frac{F^{1}C^{1} + \operatorname{im}(d^{0})}{\operatorname{im}(d^{0})}\right) \begin{bmatrix} -1 \end{bmatrix} \qquad \left(\frac{F^{1}C^{1}}{\operatorname{im}\left(d^{0}|_{F^{1}C}\right)}\right) \begin{bmatrix} -1 \end{bmatrix}$$

▶ In this case $H^0(\operatorname{gr}^1 C)$ does compute $\operatorname{gr}^1 H^0$ (top row),

BABY Example: 1^{st} approximation to the $gr^1 H$ part

We compare now $\operatorname{gr}^1 H$ (left column) to $H(\operatorname{gr}^1 C)$ (right column):

$$\ker \left(d^{0}|_{F^{1}C}\right) \begin{bmatrix} 0 \end{bmatrix} \qquad \ker \left(d^{0}|_{F^{1}C}\right) \begin{bmatrix} 0 \end{bmatrix}$$

$$\oplus \qquad \qquad \oplus$$

$$\left(\frac{F^{1}C^{1} + \operatorname{im}(d^{0})}{\operatorname{im}(d^{0})}\right) \begin{bmatrix} -1 \end{bmatrix} \qquad \left(\frac{F^{1}C^{1}}{\operatorname{im}(d^{0}|_{F^{1}C})}\right) \begin{bmatrix} -1 \end{bmatrix}$$

- ▶ In this case $H^0(\operatorname{gr}^1 C)$ does compute $\operatorname{gr}^1 H^0$ (top row),
- ▶ but $H^1(\operatorname{gr}^1 C)$ is not isomorphic to $\operatorname{gr}^1 H^1$ (bottom row).

Baby Example: define $E_1^{p,q}:=H^{p+q}(\operatorname{gr}^pC)$ and plot in \mathbb{Z}^2

Baby Example: define $E_1^{p,q}:=H^{p+q}(\operatorname{gr}^pC)$ and plot in \mathbb{Z}^2

▶ The original differential d^0 induces the differential $d_1^{0,0}$.

Baby Example: define $E_1^{p,q}:=H^{p+q}(\operatorname{gr}^pC)$ and plot in \mathbb{Z}^2

- ▶ The original differential d^0 induces the differential $d_1^{0,0}$.
- ► More generally, if we had started from a longer complex, the original differentials would induce the horizontal differentials.

BABY EXAMPLE: turn the page by taking cohomology again

The "*E*₂-page" reads:

BABY EXAMPLE: turn the page by taking cohomology again

The "*E*₂-page" reads:

▶ If we had started from a longer complex, the original differentials would induce arrows of type (2, -1).

Baby Example: 2^{nd} approximation to the $gr^0 H$ part

We compare then $\operatorname{gr}^0 H$ (left column) to $E_2^{0,\bullet}$ (right column):

$$\begin{pmatrix} \frac{\ker(d^0)}{\ker(d^0|_{F^1C})} \end{pmatrix} \begin{bmatrix} 0 \end{bmatrix} \qquad \qquad \begin{pmatrix} \frac{\ker(d^0) + F^1C^0}{F^1C^0} \end{pmatrix} \begin{bmatrix} 0 \end{bmatrix}$$

$$\oplus \qquad \qquad \qquad \oplus$$

$$\begin{pmatrix} \frac{C^1}{F^1C^1 + \operatorname{im}(d^0)} \end{pmatrix} \begin{bmatrix} -1 \end{bmatrix} \qquad \qquad \begin{pmatrix} \frac{C^1}{F^1C^1 + \operatorname{im}(d^0)} \end{pmatrix} \begin{bmatrix} -1 \end{bmatrix}$$

BABY EXAMPLE: 2^{nd} approximation to the $gr^0 H$ part

We compare then $\operatorname{gr}^0 H$ (left column) to $E_2^{0,\bullet}$ (right column):

$$\begin{pmatrix} \frac{\ker(d^0)}{\ker(d^0|_{F^1C})} \end{pmatrix} \begin{bmatrix} 0 \end{bmatrix} \qquad \qquad \begin{pmatrix} \frac{\ker(d^0) + F^1C^0}{F^1C^0} \end{pmatrix} \begin{bmatrix} 0 \end{bmatrix}$$

$$\oplus \qquad \qquad \qquad \oplus$$

$$\begin{pmatrix} \frac{C^1}{F^1C^1 + \operatorname{im}(d^0)} \end{pmatrix} \begin{bmatrix} -1 \end{bmatrix} \qquad \qquad \begin{pmatrix} \frac{C^1}{F^1C^1 + \operatorname{im}(d^0)} \end{pmatrix} \begin{bmatrix} -1 \end{bmatrix}$$

After applying an \cong -theorem we see that the two agree!

Baby Example: 2^{nd} approximation to the gr^1H part

We compare now gr¹ H (left column) to $E_2^{1,\bullet-1}$ (right column):

$$\ker \left(d^{0}|_{F^{1}C}\right) \begin{bmatrix} 0 \end{bmatrix} \qquad \ker \left(d^{0}|_{F^{1}C}\right) \begin{bmatrix} 0 \end{bmatrix}$$

$$\oplus \qquad \qquad \oplus$$

$$\left(\frac{F^{1}C^{1} + \operatorname{im}(d^{0})}{\operatorname{im}(d^{0})}\right) \begin{bmatrix} -1 \end{bmatrix} \qquad \left(\frac{F^{1}C^{1}}{\operatorname{im}(d^{0}) \cap F^{1}C^{1}}\right) \begin{bmatrix} -1 \end{bmatrix}$$

BABY EXAMPLE: 2^{nd} approximation to the $gr^1 H$ part

We compare now $\operatorname{gr}^1 H$ (left column) to $E_2^{1, \bullet -1}$ (right column):

$$\ker \left(d^{0}|_{F^{1}C}\right) \begin{bmatrix} 0 \end{bmatrix} \qquad \ker \left(d^{0}|_{F^{1}C}\right) \begin{bmatrix} 0 \end{bmatrix}$$

$$\oplus \qquad \qquad \oplus$$

$$\left(\frac{F^{1}C^{1} + \operatorname{im}(d^{0})}{\operatorname{im}(d^{0})}\right) \begin{bmatrix} -1 \end{bmatrix} \qquad \left(\frac{F^{1}C^{1}}{\operatorname{im}(d^{0}) \cap F^{1}C^{1}}\right) \begin{bmatrix} -1 \end{bmatrix}$$

After applying an ≅-theorem we see that the two sides agree again!

Baby Example: reading off the result from the " E_2 -page"

• $\operatorname{gr}^0 H \cong E_2^{0,0}[0] \oplus E_2^{0,1}[-1];$

Baby Example: reading off the result from the " E_2 -page"

- $ightharpoonup \operatorname{gr}^0 H \cong E_2^{0,0}[0] \oplus E_2^{0,1}[-1];$
- $ightharpoonup \operatorname{gr}^1 H \cong E_2^{1,-1}[0] \oplus E_2^{1,0}[-1].$

BABY EXAMPLE: reading off the result from the " E_2 -page"

$$\begin{array}{l} \blacktriangleright \ \, \mathrm{gr^0} \, H \cong E_2^{0,0}[0] \oplus E_2^{0,1}[-1]; \\ \blacktriangleright \ \, \mathrm{gr^1} \, H \cong E_2^{1,-1}[0] \oplus E_2^{1,0}[-1]. \end{array} \quad \begin{cases} H^0 \cong \mathrm{gr^0} \, H^0 \oplus \mathrm{gr^1} \, H^0 \cong E_2^{0,0} \oplus E_2^{1,-1} \\ H^1 \cong \mathrm{gr^1} \, H^0 \oplus \mathrm{gr^1} \, H^1 \cong E_2^{0,1} \oplus E_2^{1,0} \end{cases}$$

BABY EXAMPLE: reading off the result from the " E_2 -page"

$$\begin{array}{l} \blacktriangleright \ \, \mathrm{gr^0} \, H \cong E_2^{0,0}[0] \oplus E_2^{0,1}[-1]; \\ \blacktriangleright \ \, \mathrm{gr^1} \, H \cong E_2^{1,-1}[0] \oplus E_2^{1,0}[-1]. \end{array} \quad \begin{cases} H^0 \cong \mathrm{gr^0} \, H^0 \oplus \mathrm{gr^1} \, H^0 \cong E_2^{0,0} \oplus E_2^{1,-1} \\ H^1 \cong \mathrm{gr^1} \, H^0 \oplus \mathrm{gr^1} \, H^1 \cong E_2^{0,1} \oplus E_2^{1,0} \end{cases}$$

$$p + q = 1$$

$$p + q = 0$$

$$\frac{C^{1}}{F^{1}C^{1} + \operatorname{im}(d^{0})}$$

$$\frac{\ker(d^{0})}{\ker(d^{0}|_{F^{1}C})}$$

$$\frac{F^{1}C^{1} + \operatorname{im}(d^{0})}{\operatorname{im}(d^{0})}$$

$$0$$

$$\operatorname{ker}(d^{0}|_{F^{1}C})$$

$$H^{1}$$

A spectral sequence in an abelian category \mathcal{A} is given by a system $(E_r, d_r)_{r \in \mathbb{N}}$ such that for all $r \in \mathbb{N}$ we have:

A *spectral sequence* in an abelian category \mathcal{A} is given by a system $(E_r, d_r)_{r \in \mathbb{N}}$ such that for all $r \in \mathbb{N}$ we have:

 $ightharpoonup E_r$ is an object of \mathcal{A} ;

A spectral sequence in an abelian category \mathcal{A} is given by a system $(E_r, d_r)_{r \in \mathbb{N}}$ such that for all $r \in \mathbb{N}$ we have:

- $ightharpoonup E_r$ is an object of \mathcal{A} ;
- ▶ $d_r: E_r \to E_r$ is a morphism such that $d_r \circ d_r = 0$;

A spectral sequence in an abelian category \mathcal{A} is given by a system $(E_r, d_r)_{r \in \mathbb{N}}$ such that for all $r \in \mathbb{N}$ we have:

- $ightharpoonup E_r$ is an object of \mathcal{A} ;
- ▶ $d_r: E_r \to E_r$ is a morphism such that $d_r \circ d_r = 0$;
- ▶ and $E_{r+1} = \ker(d_r)/\operatorname{im}(d_r)$.

Let $F^{\bullet}C$ be a filtered complex in an abelian category \mathcal{A} .

EXISTENCE [Sta, Tag 012M]

Let $F^{\bullet}C$ be a filtered complex in an abelian category \mathcal{A} . Then there is a spectral sequence $(E_r, d_r)_{r \in \mathbb{N}}$ of bigraded objects in \mathcal{A} such that d_r has bidegree (r, -r+1).

Let $F^{\bullet}C$ be a filtered complex in an abelian category \mathcal{A} . Then there is a spectral sequence $(E_r, d_r)_{r \in \mathbb{N}}$ of bigraded objects in \mathcal{A} such that d_r has bidegree (r, -r+1). More explicitly, the " E_0 -page" is given by

- $E_0^{p,q} = \operatorname{gr}^p C^{p+q},$

Let $F^{\bullet}C$ be a filtered complex in an abelian category \mathcal{A} . Then there is a spectral sequence $(E_r, d_r)_{r \in \mathbb{N}}$ of bigraded objects in \mathcal{A} such that d_r has bidegree (r, -r+1). More explicitly, the " E_0 -page" is given by

- $\blacktriangleright \ E_0^{p,q}=\operatorname{gr}^p C^{p+q},$
- $\qquad \qquad d_0^{p,q} = \operatorname{gr}^p(d^{p+q}) \colon E_0^{p,q} \to E_0^{p,q+1};$

and the " E_r -page" is given by

- $ightharpoonup E_r^{p,q} = Z_r^{p,q}/B_r^{p,q}$, where
- $Z_r^{p,q} = (F^pC^{p+q} \cap d^{-1}(F^{p+r}C^{p+q+1}) + F^{p+1}C^{p+q})/F^{p+1}C^{p+q},$ and
- $B_r^{p\cdot q} = (F^pC^{p+q}\cap d(F^{p-r+1}C^{p+q-1}) + F^{p+1}C^{p+q})/F^{p+1}C^{p+q};$
- $d_r^{p,q} \colon E_r^{p,q} \to E_r^{p+r,q-r+1} \text{ induced by } d^{p+q} \colon F^p C^{p+q} \to F^{p+r} C^{p+r+q-r+1}.$

Let $F^{\bullet}C$ be a filtered complex in an abelian category \mathcal{A} . Then there is a spectral sequence $(E_r, d_r)_{r \in \mathbb{N}}$ of bigraded objects in \mathcal{A} such that d_r has bidegree (r, -r+1). More explicitly, the " E_0 -page" is given by

- $E_0^{p,q} = \operatorname{gr}^p C^{p+q},$
- $\qquad \qquad b \quad d_0^{p,q} = \operatorname{gr}^p(d^{p+q}) \colon E_0^{p,q} \to E_0^{p,q+1};$

and the " E_r -page" is given by

- $E_r^{p,q} = Z_r^{p,q}/B_r^{p,q}$, where
- $Z_r^{p,q} = (F^p C^{p+q} \cap d^{-1}(F^{p+r} C^{p+q+1}) + F^{p+1} C^{p+q})/F^{p+1} C^{p+q},$ and
- $B_r^{p,q} = (F^pC^{p+q} \cap d(F^{p-r+1}C^{p+q-1}) + F^{p+1}C^{p+q})/F^{p+1}C^{p+q};$
- $d_r^{p,q}: E_r^{p,q} \to E_r^{p+r,q-r+1} \text{ induced by } d^{p+q}: F^p C^{p+q} \to F^{p+r} C^{p+r+q-r+1}.$

If the filtration induced on each C^n was finite, then letting $r \to \infty$ we would obtain the *limit* E_{∞} of the spectral sequence, given by

$$E_{\infty}^{p,q} = (F^p C^{p+q} \cap \ker(d)) / (F^p C^{p+q} \cap \operatorname{im}(d)).$$

► Remember the falling rocks?

- Remember the falling rocks?
- ▶ These were elements in our complex that fell down a number of levels when we applied the differential *d*.

- Remember the falling rocks?
- These were elements in our complex that fell down a number of levels when we applied the differential *d*.

$$Z_r^{p,q} = (F^p C^{p+q} \cap d^{-1}(F^{p+r} C^{p+q+1}) + F^{p+1} C^{p+q})/F^{p+1} C^{p+q}$$
 says:

- Remember the falling rocks?
- These were elements in our complex that fell down a number of levels when we applied the differential *d*.

$$Z_r^{p,q} = (F^p C^{p+q} \cap d^{-1}(F^{p+r} C^{p+q+1}) + F^{p+1} C^{p+q})/F^{p+1} C^{p+q}$$
 says:

"Elements in F^pC^{p+q} which will fall down at least r levels and we don't care what happens in $F^{p+1}C^{p+q}$."

- Remember the falling rocks?
- These were elements in our complex that fell down a number of levels when we applied the differential *d*.

$$Z_r^{p,q} = (F^p C^{p+q} \cap d^{-1}(F^{p+r} C^{p+q+1}) + F^{p+1} C^{p+q})/F^{p+1} C^{p+q}$$
 says:

"Elements in F^pC^{p+q} which will fall down at least r levels and we don't care what happens in $F^{p+1}C^{p+q}$."

And
$$B_r^{p,q} = (F^p C^{p+q} \cap d(F^{p-r+1} C^{p+q-1}) + F^{p+1} C^{p+q})/F^{p+1} C^{p+q}$$
 says:

- Remember the falling rocks?
- These were elements in our complex that fell down a number of levels when we applied the differential *d*.

$$Z_r^{p,q} = (F^pC^{p+q} \cap d^{-1}(F^{p+r}C^{p+q+1}) + F^{p+1}C^{p+q})/F^{p+1}C^{p+q} \text{ says:}$$

"Elements in F^pC^{p+q} which will fall down at least r levels and we don't care what happens in $F^{p+1}C^{p+q}$."

And
$$B_r^{p,q} = (F^p C^{p+q} \cap d(F^{p-r+1} C^{p+q-1}) + F^{p+1} C^{p+q})/F^{p+1} C^{p+q}$$
 says:

"Elements in F^pC^{p+q} which came falling down at most r-1 levels and we don't care about the ones in $F^{p+1}C^{p+q}$."

Let $F^{\bullet}C$ be a filtered complex in an abelian category \mathcal{A} and assume that the filtration induced on each C^n is finite. Then:

Let $F^{\bullet}C$ be a filtered complex in an abelian category \mathcal{A} and assume that the filtration induced on each C^n is finite. Then:

▶ The induced filtration $F^{\bullet}H$ is finite.

Let $F^{\bullet}C$ be a filtered complex in an abelian category \mathcal{A} and assume that the filtration induced on each C^n is finite. Then:

- ► The induced filtration F•H is finite.
- ▶ For each $p, q \in \mathbb{Z}$ there exists $r_0 \in \mathbb{N}$ such that

$$E_{\infty}^{p,q} = E_r^{p,q}$$
 for all $r \geqslant r_0$.

Let $F^{\bullet}C$ be a filtered complex in an abelian category \mathcal{A} and assume that the filtration induced on each C^n is finite. Then:

- The induced filtration F•H is finite.
- ▶ For each $p, q \in \mathbb{Z}$ there exists $r_0 \in \mathbb{N}$ such that

$$E_{\infty}^{p,q} = E_r^{p,q}$$
 for all $r \geqslant r_0$.

► The spectral sequence *converges* to $F^{\bullet}H$, i.e.

$$E_{\infty}^{p,q} \cong \operatorname{gr}^p H^{p+q}$$
 for all $p, q \in \mathbb{Z}$.

Let $F^{\bullet}C$ be a filtered complex in an abelian category \mathcal{A} and assume that the filtration induced on each C^n is finite. Then:

- ► The induced filtration F•H is finite.
- ▶ For each p, $q \in \mathbb{Z}$ there exists $r_0 \in \mathbb{N}$ such that

$$E_{\infty}^{p,q} = E_r^{p,q}$$
 for all $r \geqslant r_0$.

▶ The spectral sequence *converges* to $F^{\bullet}H$, i.e.

$$E_{\infty}^{p,q} \cong \operatorname{gr}^p H^{p+q}$$
 for all $p, q \in \mathbb{Z}$.

In particular, modulo extension problems (e.g. if we are working with vector spaces), we can recover \boldsymbol{H} as

$$H^n(C) \cong \bigoplus_{p \in \mathbb{Z}} E_{\infty}^{p,n-p}$$
 for all $n \in \mathbb{Z}$.

Cellular homology and singular homology of a CW complex agree [McC01, Theorem 4.13].

- Cellular homology and singular homology of a CW complex agree [McC01, Theorem 4.13].
- ► "Cheap Hodge decomposition" [Voi02, Remark 8.29].

- Cellular homology and singular homology of a CW complex agree [McC01, Theorem 4.13].
- ► "Cheap Hodge decomposition" [Voi02, Remark 8.29].
- Two different ways to compute the cohomology of the total complex of a double complex.

- Cellular homology and singular homology of a CW complex agree [McC01, Theorem 4.13].
- ► "Cheap Hodge decomposition" [Voi02, Remark 8.29].
- Two different ways to compute the cohomology of the total complex of a double complex.

To avoid getting too much into specific topics, we will focus on the third application. We will do this again with an example.

SNAKE LEMMA: statement

Consider a commutative diagram

in which both rows are exact.

SNAKE LEMMA: statement

Consider a commutative diagram

in which both rows are exact. Then there is an exact sequence

 $0 \to \ker a \to \ker b \to \ker c \to \operatorname{coker} a \to \operatorname{coker} b \to \operatorname{coker} b \to 0$.

SNAKE LEMMA: double complex and its total complex

We relabel the diagram to see it as a double complex

$$0 \longrightarrow C^{0,1} \xrightarrow{d_h^{0,1}} C^{1,1} \xrightarrow{d_h^{1,1}} C^{2,1} \longrightarrow 0$$

$$\downarrow d_v^{0,0} \uparrow \qquad d_v^{1,0} \uparrow \qquad d_v^{2,0} \uparrow \qquad 0$$

$$\downarrow d_v^{0,0} \uparrow \qquad d_h^{0,0} \downarrow C^{1,0} \xrightarrow{d_h^{1,0}} C^{2,0} \longrightarrow 0$$

SNAKE LEMMA: double complex and its total complex

We relabel the diagram to see it as a double complex

$$0 \longrightarrow C^{0,1} \xrightarrow{d_h^{0,1}} C^{1,1} \xrightarrow{d_h^{1,1}} C^{2,1} \longrightarrow 0$$

$$\downarrow d_v^{0,0} \uparrow \qquad \downarrow d_v^{1,0} \uparrow \qquad \downarrow d_v^{2,0} \uparrow \qquad \downarrow d_v^{2,0} \uparrow \qquad \downarrow d_v^{2,0} \uparrow \qquad \downarrow d_v^{2,0} \downarrow d_v^{2$$

whose total complex *sC* is then

$$\cdots \rightarrow 0 \rightarrow C^{0,0} \rightarrow C^{0,1} \oplus C^{1,0} \rightarrow C^{1,1} \oplus C^{2,0} \rightarrow C^{2,1} \rightarrow 0 \rightarrow \cdots$$

SNAKE LEMMA: double complex and its total complex

We relabel the diagram to see it as a double complex

$$0 \longrightarrow C^{0,1} \xrightarrow{d_h^{0,1}} C^{1,1} \xrightarrow{d_h^{1,1}} C^{2,1} \longrightarrow 0$$

$$\downarrow d_v^{0,0} \uparrow \qquad \downarrow d_v^{1,0} \uparrow \qquad \downarrow d_v^{2,0} \uparrow \qquad \downarrow d_v^{2,0} \uparrow \qquad \downarrow d_v^{2,0} \uparrow \qquad \downarrow d_v^{2,0} \downarrow d_v^{2$$

whose total complex *sC* is then

$$\cdots \to 0 \to C^{0,0} \to C^{0,1} \oplus C^{1,0} \to C^{1,1} \oplus C^{2,0} \to C^{2,1} \to 0 \to \cdots$$

with differentials

$$d^n_{sC} := \begin{pmatrix} d^{n-1,1}_h & (-1)^n d^{n,0}_v \\ 0 & d^{n,0}_h \end{pmatrix}.$$

The first filtration $F_I^{\bullet}sC$ is defined by

$$F_I^p s C^n := \bigoplus_{i+j=n, i \geqslant p} C^{i,j}.$$

The first filtration $F_I^{\bullet}sC$ is defined by

$$F_I^p s C^n := \bigoplus_{i+j=n, i \geqslant p} C^{i,j}.$$

Therefore $\operatorname{gr}_I^p sC = C^{p,\bullet}$ with the differential as before up to a sign.

The first filtration F_I^{\bullet} sC is defined by

$$F_I^p s C^n := \bigoplus_{i+j=n, i \geqslant p} C^{i,j}.$$

Therefore $\operatorname{gr}_I^p sC = C^{p,\bullet}$ with the differential as before up to a sign. Associated to this filtration we get the spectral sequence

$$E_1^{p,q}=H^q(C^{p,\bullet})\Rightarrow H^{p+q}(sC).$$

The first filtration F_I^{\bullet} sC is defined by

$$F_I^p s C^n := \bigoplus_{i+j=n, i \geqslant p} C^{i,j}.$$

Therefore $\operatorname{gr}_I^p sC = C^{p,\bullet}$ with the differential as before up to a sign. Associated to this filtration we get the spectral sequence

$$E_1^{p,q} = H^q(C^{p,\bullet}) \Rightarrow H^{p+q}(sC).$$

Right now we cannot immediately say much more, but we will come back to this soon.

The second filtration $F_{II}^{\bullet}sC$ is defined by

$$F_{II}^{p} s C^{n} := \bigoplus_{i+j=n, j \geqslant p} C^{i,j}.$$

The second filtration $F_{II}^{\bullet}sC$ is defined by

$$F_{II}^{p} s C^{n} := \bigoplus_{i+j=n, j \geqslant p} C^{i,j}.$$

Therefore $\operatorname{gr}_{II}^{p} sC = C^{\bullet,p}$ with the differential as before.

The second filtration $F_{II}^{\bullet}sC$ is defined by

$$F_{II}^p s C^n := \bigoplus_{i+j=n, j \geqslant p} C^{i,j}.$$

Therefore $\operatorname{gr}_{II}^p sC = C^{\bullet,p}$ with the differential as before. In this case we get the spectral sequence

$$E_1^{p,q}=H^q(C^{\bullet,p})\Rightarrow H^{p+q}(sC).$$

The second filtration $F_{II}^{\bullet}sC$ is defined by

$$F_{II}^p s C^n := \bigoplus_{i+j=n, j \geqslant p} C^{i,j}.$$

Therefore $\operatorname{gr}_{II}^p sC = C^{\bullet,p}$ with the differential as before. In this case we get the spectral sequence

$$E_1^{p,q}=H^q(C^{\bullet,p})\Rightarrow H^{p+q}(sC).$$

Since the rows $C^{\bullet,p}$ were exact, $E_1^{p,q} = 0$ for all $p, q \in \mathbb{Z}$.

The second filtration $F_{II}^{\bullet}sC$ is defined by

$$F_{II}^p s C^n := \bigoplus_{i+j=n, j \geqslant p} C^{i,j}.$$

Therefore $\operatorname{gr}_{II}^p sC = C^{\bullet,p}$ with the differential as before. In this case we get the spectral sequence

$$E_1^{p,q}=H^q(C^{\bullet,p})\Rightarrow H^{p+q}(sC).$$

Since the rows $C^{\bullet,p}$ were exact, $E_1^{p,q}=0$ for all $p,q\in\mathbb{Z}$. Therefore H(sC) must be zero.

SNAKE LEMMA: back to the first spectral sequence

Using what we deduced from the second spectral sequence, we have now

$$E_1^{p,q}=H^q(C^{p,\bullet})\Rightarrow 0.$$

SNAKE LEMMA: back to the first spectral sequence

Using what we deduced from the second spectral sequence, we have now

$$E_1^{p,q} = H^q(C^{p,\bullet}) \Longrightarrow 0.$$

Let's draw the " E_1 -page":

SNAKE LEMMA: back to the first spectral sequence

Using what we deduced from the second spectral sequence, we have now

$$E_1^{p,q}=H^q(C^{p,\bullet})\Longrightarrow 0.$$

Let's draw the " E_1 -page":

To show that the top and bottom rows are right and left exact respectively, we would like to have 0's at the corresponding E_2 spots.

The "*E*₂-page" contains only one non-trivial differential:

The "*E*₂-page" contains only one non-trivial differential:

▶ Since $E_r^{p,q} \Rightarrow 0$, all limit objects must be zero.

The "*E*₂-page" contains only one non-trivial differential:

- ▶ Since $E_r^{p,q} \Rightarrow 0$, all limit objects must be zero.
- So the top and bottom row in the previous page were right and left exact respectively, as we wanted.

The "*E*₂-page" contains only one non-trivial differential:

- Since $E_r^{p,q} \Rightarrow 0$, all limit objects must be zero.
- So the top and bottom row in the previous page were right and left exact respectively, as we wanted.
- ► $E_3 = E_{\infty} = 0$, so $E_2^{0,1} \to E_2^{2,0}$ is an isomorphism and we can glue

$$\ker(d_v^{1,0}) \to \ker(d_v^{2,0}) \twoheadrightarrow E_2^{2,0} \cong E_2^{0,1} \hookrightarrow \operatorname{coker}(d_v^{0,0}) \to \operatorname{coker}(d_v^{1,0}).$$

Thanks for your attention! Here are the references:

Timothy Y. Chow.

You could have invented spectral sequences.

Notices Amer. Math. Soc., 53(1):15-19, 2006.

John McCleary.

A user's guide to spectral sequences, volume 58 of Cambridge Studies in Advanced Mathematics.

Cambridge University Press, Cambridge, second edition, 2001.

The Stacks project authors.

The stacks project.

https://stacks.math.columbia.edu.

Claire Voisin.

Hodge theory and complex algebraic geometry. I, volume 76 of Cambridge Studies in Advanced Mathematics.

Cambridge University Press, Cambridge, 2002.

Translated from the French original by Leila Schneps.

