

PRAYAS 2.0 FOR IIT - JEE 2023

COORDINATE GEOMETRY

HYPERBOLA

LEC - 01

TODAY's GOAL

Properties / Highlights of Ellipse
HYPERBOLA

Equation of Standard Hyperbola
Basic Terminology
OP-OP

LAST CLASS

Four Important Terms:

$$T_{i}^{2} = SS_{i}$$
 $T_{i} = 0$

Diameter & Conjugate Diameter:

$$y^{2} = \frac{-b^{2}}{a^{2}m} \times \text{slopes}(m_{1} + m_{2})$$

$$+ m_{1}m_{2} = -\frac{b^{2}}{a^{2}}$$

formed by Tangents at P. B. Re S.

Pw

Let $E_1: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, a > b. Let E_2 be another ellipse such that it touches the end points of major axis of E_1 and the foci of E_2 are the end points of minor of E_1 . If E_1 and E_2 have same eccentricities, then its value is

$$\frac{-1+\sqrt{8}}{2}$$

$$\frac{-1+\sqrt{3}}{2}$$

$$\frac{-1+\sqrt{6}}{2}$$

[JEE Mains-2021]

$$e_2^2 = 1 - \frac{A^2}{B^2}$$
$e_2^2 = 1 - \frac{A^2}{B^2}$
(\frac{\partial}{2}\ell_2^2)

e2 = 3-15,

$$e_{2}^{2} = 1 - \frac{\alpha^{2}}{6^{2}} \left(e_{2}^{2}\right)$$

$$e_2^2 + \frac{a^2}{b^2}e_2^2 = 1$$

$$e_2^2\left(1+\frac{a^2}{b^2}\right)=1$$

$$e_2^2 \left(\frac{1 + \frac{1}{1 - e_2^2}}{1 - e_2^2} \right) = 1$$

$$e_1^2 = e_2^2 = 1 - \frac{b^2}{a^2} = 1 - e_2^2$$

$$\propto (2-\alpha) = 1-\alpha$$

$$x = e_2^2 = 3 \pm \sqrt{5}$$

Q. If a tangent of slope $\frac{1}{3}$ of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b) is normal to the circle $x^2 + y^2 + 2x + 2y + 1 = 0$

(-1,-1)

 $\frac{1}{4}$ maximum value of ab is $\frac{2}{3}$

$$B$$
 $a \in \left(\sqrt{\frac{2}{5}}, 2\right)$

$$C \quad a \in \left(\frac{2}{3}, 2\right) \quad e^2 = 1 - \left(\frac{4}{9}a^2 - \frac{1}{9}\right)$$

maximum value of ab is 1 $\frac{1}{2} = \frac{10}{4} = \frac{4}{4}$

$$\frac{1}{3} = \frac{1}{3} \times \frac{1}{3} = \frac{1}{3} = \frac{1}{3} \times \frac{1}{3} = \frac{1}{3} = \frac{1}{3} \times \frac{1}$$

$$\frac{a_9}{9}$$
, $\frac{b}{\sqrt{a_9}}$ $\frac{a_9}{\sqrt{a_9}}$ $\frac{a_9}{\sqrt{a_9}}$

 $\left(a-\sqrt{\frac{2}{5}}\right)\left(a+\sqrt{\frac{2}{3}}\right)>0$

$$\frac{10}{9} - 1 < \frac{4}{9}a^{2}$$
 $\frac{1}{8} < \frac{4}{8}a^{2}$
 $\frac{1}{9} < \frac{4}{9}a^{2}$
 $\frac{1}{9} < \frac{4}{9}a^{2}$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

a, b = +ve.

If two concentric ellipses be such that the foci of one be on the other and if $\frac{\sqrt{3}}{2}$ and $\frac{1}{\sqrt{2}}$ be their eccentricities. Then angle between their axes is

$$\frac{2}{3}$$

$$B \cos^{-1}\frac{2}{3\sqrt{3}}$$

$$\frac{1}{\sqrt{6}} \cos^{-1} \frac{1}{\sqrt{6}}$$

$$\cos^{-1}\frac{\sqrt{2}}{3}$$

Mm = 22

May = 20

$$f_{S_1} + f_{S_2} = 2a$$

$f_{S_1} + f_{S_2} = 2p$ $\Rightarrow a = p$

CHALLENGER

PROPERTIES OF ELLIPSE

Pw

1-1: Locus of foot of perpendicular drawn from foci on any tangent is Auxiliary Circle.

2: Product of lengths of perpendiculars from foci on Tangent is always constant & equals to (semi-minor axis)²

P-3: Portion of tangent intercepted between point of contact and directrix subtend 90° at corresponding focus.

P-4: Chord of contact corresponding to any point on directrix always passes through corresponding focus.

Note: If focus is Pole then Directrix is Polar.

Image of focus in any tangent lies on line joining point of contact & other

$$(-ae,0)$$
 (ae^2cono)

$$S_1G$$
 ac ac conv

Cent

$$= \frac{\rho \varsigma_2}{\rho \varsigma_1} = e(9 + a \cos \theta)$$

$$0.2 = a^{2}$$

(a) $(x = ae^{2}\cos\theta)$

(b) $(x = ae^{2}\cos\theta)$

REFLECTION PROPERTY:

Any ray passing through one focus, after reflection from Ellipse passes from another focus.

P-6: Circle with focal distance as diameter touches auxiliary circle.

P-7: If the normal at any point P on the ellipse with centre C meet the major and minor axes in G & g respectively, and if CF be perpendicular upon this normal, then

$$PF \cdot PG = b^2$$

(iii)
$$PG \cdot Pg = SP \cdot S'P$$

(ii)
$$PF \cdot Pg = a^2$$

(iv)
$$CG \cdot CT = CS^2$$

$$\# p_{5} = p_{5}(c_{5}o + c_{5}o)$$

(where T is the point where Tangent at P cuts major axis)

Circle with
$$(46 \text{ as dia})$$

$$x(x-ae^2\cos\theta) + y^2 = 0$$

$$x^2 + y^2 - (ae^2\cos\theta) + x = 0$$

$$a^{2}c^{2}b(1-e^{2})+b^{2}c^{2}b$$
 $a^{2}c^{2}b(1-e^{2})+b^{2}c^{2}b$
 $a^{2}c^{2}b+b^{2}c^{2}b$
 $a^{2}c^{2}b+b^{2}c^{2}b$

P-7: If the normal at any point P on the ellipse with centre C meet the major and minor axes in G & g respectively, and if CF be perpendicular upon this normal, then

(i)
$$PF \cdot PG = b^2$$

(iii)
$$PG \cdot Pg = SP \cdot S'P$$

$$\forall \text{iff} \quad PF \cdot Pg = a^2$$

(iv)
$$CG \cdot CT = CS^2$$

(where T is the point where Tangent at P cuts major axis)

P-7: If the normal at any point P on the ellipse with centre C meet the major and minor axes in G & g respectively, and if CF be perpendicular upon this normal, then

(i)
$$PF \cdot PG = b^2$$

(ii)
$$PF \cdot Pg = a^2$$

(iii)
$$PG \cdot Pg = SP \cdot S'P$$

(iv)
$$CG \cdot CT = CS^2$$

(where T is the point where Tangent at P cuts major axis)

P-8: If tangent at point P meets axes of standard ellipse at T & t and CY is perpendicular on it from centre then:

(i) (Tt) (PY) =
$$a^2 - b^2$$

Least value of (Tt) = (a + b)

(iii) Maximum distance of normal from centre = (a - b)

already done (aceso, b sind) august (0,0)° # Tt = a2seco + b2coseco > Normal # PY = CF = (a= 62)

P-09:

Area of ellipse = Kab

= K (Semi-Hajer) (Semi-Hinor)

Note:

If any general circle intersect standard ellipse at 4 points

(say: $A(\theta_1)$, $B(\theta_2)$, $C(\theta_3)$ & $D(\theta_4)$)

then
$$\theta_1 + \theta_2 + \theta_3 + \theta_4 = 2n\pi$$

An ellipse is with major axis = 2a, minor axis = 2b is sliding between coordinate axes, then find locus of centre & focii of ellipse

BASICS OF HYPERBOLA

P

Definition: For Hyperbola | e > 1

For second degree Equation: $ax^2 + by^2 + 2hxy + 2gx + 2fy + c = 0$

Condition:

STANDARD HYPERBOLA

Focus on X-axis & Directrix parallel to Y-axis.

$$PS = e PM$$
 $PS^2 = e^2 PM^2$
 $(x-ae)^2 + y^2 = e^2 (x-a)^2$
 $x^2 + a^2e^2 - 2aex = e^2x^2 + a^2 - 2aex$
 $x^2 - e^2x^2 + y^2 = a^2 - a^2e^2$
 $(1-e^2)x^2 + y^2 = a^2(1-e^2)$

Very Important BAAT:

Ellipse

Hyperbola

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

"Many results" of ellipse can be converted into results for Hyperbola by replacing b² by (-b²)

Symm. w.r.to

$$\frac{4}{0^2} = \frac{1}{6^2} = 1$$

* P.O.I with x-axis

$$\frac{\pi^2}{\alpha^2} = 1$$

$$\pi = + \alpha$$

$$\frac{\chi^2}{h} = 1 \Rightarrow \chi^2 = 1$$

> P

 $\frac{\pi}{a^2} = \frac{1}{b^2} = 1$

intersects re-axis but not y-axis

 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$

> intersect y-axis but not x-axis

Bada chota
HBX

TE HYPERBOLA

nansverle

Conjugate Axis axis AA = da

T.A. = 2a

Foci: 8, & S2 = (+00,0)

Directrices: $x = \pm \frac{\alpha}{\rho}$

Vertices: A & A = (±0,0)

Axes / Principle Axes:

Centre: P.O.I. of T.A. & C.A (C=(0,0))

Focal Length: 35, = dae

CA = 2 b.

ECCENTRICITY & LATUS RECTUM

$$b^2 = a^2(e^2-1)$$
$b^2 = e^2-1$
$1 + b^2 = e^2$

$$e^2 = 1 + \left(\frac{2b}{2a}\right)^2$$

$$e^2 = 1 + \left(\frac{C \cdot A}{T \cdot A}\right)^2$$

$$\# dR = 26^2$$

$$d.R = \frac{(C \cdot A \cdot)}{(T \cdot A \cdot)}$$

olistance by s & co directrix = ae-a

Ex. Find 'e' & draw diagram of following:

(i)
$$\frac{x^2}{9} - \frac{y^2}{4} \equiv 1$$

(ii)
$$\frac{x^2}{4} - \frac{y^2}{9} = 1$$

(iiii)
$$\frac{x^2}{9} - \frac{y^2}{4} = -1$$

 $3 - \frac{x^2}{9} + \frac{y^2}{4} = 1$

(iv)
$$\frac{x^2}{4} - \frac{y^2}{9} = -1$$

$$(-2,0)$$
 $(0,3)$ $(2,0)$ $(0,3)$ $(2,0)$

$$dR = \frac{(4)^2}{6} = \frac{16}{6} = \frac{8}{3}$$
 $\# C^2 = \frac{13}{9} \Rightarrow C = \frac{13}{3}$

$$TA = 4$$
, $CA = 6$

$$\# e^2 = 1 + \left(\frac{6}{4}\right)^2 = 1 + \left(\frac{3}{2}\right)^2 = 1 + \frac{9}{4} = \frac{13}{4} = \frac{13}$$

$$TA = 6$$
, $CA = 4$ $e^2 = 1 + \frac{4}{9} = \frac{13}{9} = \frac{13}{3}$ e^2

ANOTHER HYPERBOLA

$$\frac{x^2}{a^2} \cdot \frac{y^2}{b^2} = -1$$

$$-\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$$

$$e^{2} = 1 + \left(\frac{2a}{2b}\right)^{2}$$
 $e^{2} = 1 + a^{2}$
 b^{2}

$$\# dR = \frac{2a^2}{b}$$

Director
$$\Rightarrow (7 = \pm \frac{b}{e})$$

HYPERBOLA & CONJUGATE HYPERBOLA

Hyperbola

Conjugate Hyperbola

Directrices:

Foci:

 $(\pm ae, 0)$

 $(0, \pm be)$

Vertices:

 $(\pm a, 0)$

$$(0,\pm b)$$

$$T.A. = 2a, C.A = 2b$$
 $T.A. = 2b, C.A = 2a$

Centre:

(0, 0)

(0,0)

Focal Length:

2ae

2be

HB

Eccentricity:

Latus Rectum: LR =

$$LR = \frac{2b^2}{a}$$

$$LR = \frac{2a^2}{b}$$

HB & CHB share axes) (asymptotis)

Important Results: (HB & CHB)

Result-01: The foci of a hyperbola and its conjugate are concyclic and form the vertices of square.

Result-02: If e₁ & e₂ are eccentricities of hyperbola and its conjugate then:

$$e_{1}^{2} = \frac{a^{2} + b^{2}}{a^{2}} = 1$$

$$e_{1}^{2} = \frac{a^{2} + b^{2}}{a^{2}} = 1$$

$$e_{1}^{2} = \frac{a^{2} + b^{2}}{a^{2} + b^{2}} = \frac{1}{a^{2} + b^{2}}$$

$$e_{2}^{2} = \frac{a^{2} + b^{2}}{a^{2} + b^{2}} = \frac{1}{a^{2} + b^{2}}$$

FOCAL DIRECTRIX PROPERTY

SECOND DEFINITION OF HB

Locus of point which moves such that difference of its distances from two fixed points is constant.

foci of HB

denoth of Transverse axis

If HB:
$$\frac{x^2}{b^2} - \frac{y^2}{a^2} = 1$$
 passes three foci of E: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ then find 'e' of both.

x-oxis intersed

$$e_{2} = 1 + \frac{b}{a^{2}}$$

$$= 1 + (\sqrt{2})$$

$$= \frac{1}{2} + \frac{2}{2}$$

$$= \frac{3}{2} + \sqrt{2}$$

Ex. If E: $\frac{x^2}{16} + \frac{y^2}{b^2} = 1 & \frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$ are confocal then find $b^2 = ?$

Same fou

Find e of conic whose parametric equation

$$x = \frac{e^{t} + e^{-t}}{2} & y = \frac{e^{t} - e^{-t}}{3}, t \in \mathbb{R}.$$

TODAY'S HOMEWORK

ELLIPSE

Exercise - II (ALMCQ) - COMPLETE

THANKYOU

to all future IIT ians

PRAYAS 2.0 FOR IIT - JEE 2023

COORDINATE GEOMETRY

HYPERBOLA

LEC - 02

TODAY'S GOAL

Auxiliary Circle & Parametric Point
Position of Point w.r.to HB
Line & Hyperbola
Equation of Tangent & Normal

LAST CLASS

$$\int_{0}^{2} \frac{\chi^{2}}{a^{2}} = 1$$

$$S(\pm ae, 0)$$

$$e = 1 + \frac{b^2}{a^2} dR = \frac{2b^2}{a}$$

$$dR = 2a^2$$

An ellipse is with major axis = 2a, minor axis = 2b is sliding between coordinate axes, then find locus of centre & focii of ellipse

$$\frac{(x-h)^{2}+(y-k)^{2}-(\sqrt{a^{2}+b^{2}})^{2}}{8ass(0,0)}$$

$$\frac{h^{2}+k^{2}-a^{2}+b^{2}}{x^{2}+y^{2}-a^{2}+b^{2}}$$

$$\# k_1 k_2 = b^2$$

 $\# k_1 k_2 = b^2$

$$\left(\frac{b^2-h_1}{h_1}\right)^{\frac{1}{2}}+\left(\frac{b^2}{K_1}-K_1\right)^{\frac{2}{2}}=4\alpha^2\left(\frac{1-b^2}{\alpha^2}\right)$$

Ex. If
$$E : \frac{x^2}{16} + \frac{y^2}{b^2} = 1 & \frac{x^2}{144} = \frac{y^2}{81} = \frac{1}{25}$$
 are confocal then find $b^2 = ?$

4=6

$$\# e^2 = 1 - \frac{b^2}{16}$$

$$\frac{\chi^2}{\sqrt{\frac{194}{95}}} = \frac{1}{25}$$

$$\#e = \frac{5}{4} \iff e = \frac{15}{12}$$

Ex.

Find the equation of the hyperbola whose eccentricity is $\sqrt{2}$ and the distance between the foci is 16, taking transverse and conjugate axes of the hyperbola as x and y-axes respectively.

Ex.

Find e of conic whose parametric equation

$$x = \frac{e^t + e^{-t}}{2} & y = \frac{e^t - e^{-t}}{3}, t \in \mathbb{R}.$$

$$dx = e^t + \frac{1}{e^t}$$

$$4x^2 = \left(\frac{2t}{e^2t}\right)t$$

Let H: $\frac{1}{a^2} = \frac{1}{b^2} = 1$ where a > b > 0, be a hyperbola in the xy-plane whose conjugate axis LM subtends an angle of 60° at one of its vertices N. Let the area of the triangle LMN be $4\sqrt{3}$.

[JEE (Adv.)-2018 (Paper-1)]

List-I

The length of the conjugate axis of H is

The eccentricity of H is

The distance between the foci of H is

The length of the latus rectum of H is

List-II

$$\frac{4}{\sqrt{3}}$$

$$\frac{2}{\sqrt{3}}$$

$$\frac{1}{100} \frac{1}{100} \frac{1}{100} = 1$$

$$\frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} = 1$$

$$\frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} = 1$$

$$\frac{1}{100} \frac{1}{100} = 1$$

$$an(Almn) = 4.13$$

1 (2b) $a = 4.13$

2 (2b) $a = 4.13$

$$ab = 4\sqrt{3}$$
 $\sqrt{3}$
 $\sqrt{3}$

-8/3

Good Ques

Q.

If second degree equations
$$(x-1)^2 + (y-2)^2 = \alpha(2x + y - 1)^2$$
 and

$$\sqrt{(x-1)^2+(y-2)^2}-\sqrt{(x-x_1)^2+(y-y_1)^2}=k^2$$
 represent

same conic then find (x_1, y_1) , $\alpha \& k$.

$$(x-1)^2 + (y-2)^2 = 5\alpha (2x+y-1)^2$$

(ae 9) (1.2)

$$\|PS_1 - PS_2\| = k^2$$

$$S_{1}(1,2)$$
 $S_{2}(x_{1},y_{1})$

$$a(\frac{1}{2}) = \frac{3}{\sqrt{5}} \longrightarrow a(\frac{15-1}{\sqrt{3}\sqrt{5}}) = \frac{3}{\sqrt{5}} = \frac{3}{\sqrt{5}} = \frac{3}{\sqrt{5}}$$

$$\# Q = \frac{3.13}{14}$$

$$\# Q = \sqrt{15}$$

$$dx+y-1=0$$

(x1, y1)

fund romed ling

one

SHIFTED HYPERBOLA

Find everything for Hyperbola: $9x^2 - 16y^2 - 72x + 96y - 144 = 0$

$$\Rightarrow a=4$$
 $b=3$
 $\Rightarrow ac=5$

EQUILATERAL / RECTANGULAR HYPERBOLA

If length of conjugate axis and transverse axis equal then hyperbola is called as Rectangular/Equilateral hyperbola.

If
$$a=b$$
 $\Rightarrow \frac{x^2-\sqrt{2}}{a^2-\sqrt{2}}=1$

$$a=b$$

$$x^2-\sqrt{2}=a^2$$

$$e^2=1+\frac{a^2}{a^2}\Rightarrow e^2=a$$

$$y=a^2$$

POSITION OF POINT W.R.TO HYPERBOLA

$$S_1 = \begin{pmatrix} x_1^2 & y_2^2 \\ 0^2 & b^2 \end{pmatrix} \rightarrow \text{inside} \Rightarrow \text{tree}$$

$$S_1 = \frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} + \frac{y_1^2}{a^2} + \frac{y_1^2}{b^2} + \frac{y_1^2}{b^2} + \frac{y_1^2}{a^2} + \frac{y_1^2}{b^2} + \frac{y_1^2}{a^2} + \frac{y_1^2}{b^2} + \frac{y_1^2}{a^2} + \frac{y_1^2}{b^2} + \frac{y_1^$$

AUXILIARY CIRCLE & PARAMETRIC POINT

Auxiliary Circle: Circle with transverse axis as diameter.

Note:

Hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$$

Parametric Point

LINE & HYPERBOLA

Line:
$$y = mx + C$$

Hyperbola
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Hyperbola:
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$$

$$C = \pm \sqrt{a^2 m^2 - b^2}$$

$$C=\pm\sqrt{b^2-a^2m^2}$$

dine:
$$y = mx + C$$
 $m = \frac{b}{a}$
 $m \in (-\infty, \frac{b}{a}) \cup (\frac{b}{a}, \infty)$
 $m \in (-\infty, \frac{b}{a}) \cup (\frac{b}{a}, \infty)$

$$\# a^2m^2 + b^2 \ge 0$$

$$\# a^2m^2 > b^2 \ge 0$$

$$\# a^2m^2 > b^2 \ge 0$$

$$\# a^2 > 0$$

$$\#$$

EQUATION OF TANGENT

1. SLOPE FORM: when slope of Tangent is given

Hyperbola

Tangent with slope 'm'

$$** \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

$$y = \max \pm \sqrt{a^2 m^2 - b^2}$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$$

$$y = mx \pm \sqrt{b^2 - a^2 m^2}$$

$$\frac{(x-\alpha)^2}{a^2} - \frac{(y-\beta)^2}{b^2} = 1$$

$$y - \beta = m(x - \alpha) \pm \sqrt{a^2 m^2 - b^2}$$

Cartesian Form:

$$5x_1 = 0.500$$

 $4 = 6 + 0.00$

Parametric Form:

$$\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1$$

$$\frac{x\sec\theta - y\tan\theta}{a} = 1$$

Tangent at P(x1, y1) on

$$\frac{\alpha^2}{\alpha^2} + \frac{\beta^2}{\beta^2} = 1$$

Tim my form

Passes the point

m meur

DIRECTOR CIRCLE

Locus of the point of intersection of perpendicular tangents.

Equation of Director Circle: 2+x= 2-5-

Important Note:

1. If (a < b)
$$\Rightarrow$$
 No real D.C (No 1 taugent exist)

2. If (a = b) = 22+y2=0 => Print circle (centre of HB)

Rectangular HB

3. If (a > b) => D.C. exist

4. For other HB: $\frac{\chi}{Q^2} + \frac{y^2}{b^2} = -1 \Rightarrow D(\Rightarrow \chi^2 + y^2 = b^2 - a^2)$

nadius = /Semi / / Semi

Piv

If 2x - y + 1 = 0 is a tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{16} = 1$, Then which of the following cannot be sides of a right angled triangle?

[JEE (Adv.)-2017 (Paper-1)]

Tangent are drawn to the hyperbola $\frac{1}{9} - \frac{1}{4} = 1$, parallel to the straight line 2x - y = 1. The point of contact of the tangents on the hyperbola are

$$\boxed{\frac{9}{2\sqrt{2}},\frac{1}{\sqrt{2}}}$$

$$\boxed{\mathbf{B}}\left(-\frac{9}{2\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$$

$$\boxed{C} \left(3\sqrt{3}, -2\sqrt{2}\right)$$

$$D = \left(-3\sqrt{3}, 2\sqrt{2}\right)$$

$$[IIT-JEE-2012 (Paper-1)]$$

$$\frac{29}{4} = 2x + \frac{9(2)^{2}}{4}$$

$$\frac{4}{2\sqrt{2}} = 2x + 4\sqrt{2}$$

$$\frac{2}{2\sqrt{2}} = 2x + 4\sqrt{2}$$

$$\frac{2\sqrt{2}}{2\sqrt{2}} = 1$$

EQUATION OF NORMAL

Normal

$$\frac{a^2x}{x_1} + \frac{b^2y}{y_1} = a^2 + b^2$$

 $=a^2+b^2$ (valid for both)

2. Parametric Form: when point given in parametric form

$$\frac{ax}{sec\theta} + \frac{by}{tan\theta} = a^2 + b^2$$

$$\frac{ax}{\tan\theta} + \frac{by}{\sec\theta} = a^2 + b^2$$

3. Slope Form: when slope of Normal is given

$$y = mx \pm \frac{(a^2 + b^2)m}{\sqrt{a^2 - b^2m^2}}$$

If line lx + my - n = 0 is normal to

ex +my =n

345 = am

$$\frac{a^2}{l^2} - \frac{b^2}{m^2} = \frac{(a^2 + b^2)^2}{n^2}$$

line lx + my - n = 0 is normal to
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 then show that

HHPP

$$\frac{2}{\eta} = \frac{\alpha}{(\alpha^2 + b^2)} \sec \alpha$$

$$\frac{m}{m} = \left(a^2 + b^2\right) + \tan\theta$$

Seco =
$$\frac{an}{2(a^2+b^2)}$$
tano = $\frac{nb}{m(a^2+b^2)}$

$$# \frac{ax}{seco} + \frac{by}{tano} = a^2 + b^2$$

$$\left(\frac{1}{n}\right)^{2} + \left(\frac{m}{n}\right)^{2} = 1$$

Pi

Let P(6, 3) be a point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. If the normal at the point P intersects the x-axis at (9, 0), then the eccentricity of the hyperbola is

9,0)

$$\frac{3}{2}$$

$$D/\sqrt{3}$$

$$P(6,3) \equiv (3,0)$$

[IIT-JEE-2011 (Paper-2)]

$$\frac{a^2x}{x_1} + \frac{b^2y}{y_1} = a + b^2$$

$$\frac{a^2x}{6} + \frac{b^2y}{3} = a^2 + b^2$$

$$\frac{a^{2}(9)}{62} = a^{2} + b^{2}$$
 $3a^{2} - a^{2} = b^{2}$

a point in the first quadrant that lies on hyperbola

Suppose the tangent to the hyperbola at P passes through the point (1, 0) and suppose the normal to the hyperbola at P cuts off equal intercepts on the coordinates axes. Let A denote the area of the triangle formed by the tangent at P, the normal at P and the xaxis. If e denotes the eccentricity of the hyperbola, then which of the following is/are TRUE?

$$C = a^4$$

$$B/\sqrt{2} < e < 2$$

$$D = b^4$$

[JEE (Adv.)-2020 (Paper-2)]

$$e^{2} = 1 + \frac{b^{2}}{a^{2}} = 1 + \frac{a^{2} - 1}{a^{2}} = 1 + 1 - \frac{1}{a^{2}}$$

$$e^{2} = \frac{1}{a^{2}} + \frac{a^{2} - 1}{a^{2}} = \frac{1}{a^{2}} + \frac{1}{a^{2}} = \frac{1}{a^{2}} + \frac{1}{a^{2}} = \frac{1}$$

$$\langle e^2 \langle 2 \rangle = \langle e^2 \rangle \Rightarrow 2 \langle e^2 \rangle \Rightarrow 1$$

Q. Tangents are drawn to the hyperbola $x^2 - y^2 = a^2$ enclosing at an angle of 45°. Show that the locus of their point of intersection is

 $(x^2 + y^2)^2 + 4a^2(x^2 - y^2) = 4a^4$

H.W

Consider a branch of the hyperbola $x^2 - 2y^2 - 2\sqrt{2x} - 4\sqrt{2y}$ with vertex at the point A. Let B be one of the end points of its rectum. If C is the focus of the hyperbola nearest to the point A. Then the area of the triangle ABC is

$$1-\sqrt{\frac{2}{3}}$$

$$\frac{3}{2}-1$$

$$\boxed{\frac{3}{2}+1}$$

[IIT-JEE-2006 (Paper-2)]

Ht.W

[IIT-JEE-2011 (Paper-1)]

The equation of the hyperbola $\frac{x^2}{2} - \frac{y}{z}$

$$\frac{x^2}{3}-\frac{y^2}{2}=1$$

H.W

A focus of the hyperbola is (2, 0)

The eccentricity of the hyperbola is $\frac{3}{3}$

The equation of the hyperbola is $x^2 - 3y^2 = 3$

Q.

Show that condition for two concentric ellipse $a_1x^2 + b_1y^2 = 1$ & $a_2x^2 + b_2y^2 = 1$ to intersect ORTHOGONALLY is $\frac{1}{a_1} - \frac{1}{a_2} = \frac{1}{b_1} - \frac{1}{b_2}$

Ellipse

TODAY'S HOMEWORK

MODULE

HYPERBOLA

- # Exercise I (TWQ) Ques: 1 to 18
 - # Exercise II (LP) Ques: 1 to 10
- # Exercise III (ALMCQ) Ques: 1,2,3

THANKYOU

to all future IIT ians

PRAYAS 2.0 FOR IIT - JEE 2023

COORDINATE GEOMETRY

HYPERBOLA

LEC - 03

TODAY'S GOAL

Chord & Focal Chord
Four Important Terms
Asymptotes & its Properties
OP-QP

LAST CLASS

Equation of Tangent:

$$y = mx \pm \sqrt{a^2m^2 - b^2}$$

$$\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1. \qquad \frac{x \sec \theta}{a} - \frac{y \tan \theta}{b}$$

b^2 a b

Equation of Normal:

$$\frac{a^2x}{x_1} + \frac{b^2y}{y_1} = a^2 + b^2$$

Equation of Director Circle:

$$2^{2} + y^{2} = a^{2} - b^{2}$$
 for $\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$

Tangents are drawn to the hyperbola $x^2 - y^2 = a^2$ enclosing at an angle of 45°. Show that the locus of their point of intersection is $(x^2 + y^2)^2 + 4a^2(x^2 - y^2) = 4a^4$.

$$P(k,k) m + Tougest : y = mx + \sqrt{a^{2}m^{2} - a^{2}}$$

$$P(k,k) m + k^{2} + a^{2} + a^{$$

Q. Consider a branch of the hyperbola $x^2 - 2y^2 - 2\sqrt{2}x - 4\sqrt{2}y - 6 =$

with vertex at the point A. Let B be one of the end points of its rectum. If C is the focus of the hyperbola nearest to the point A. Then the area of the triangle ABC is

The equation of the hyperbola $\frac{x^2}{3} - \frac{y^2}{2} = 1$

A focus of the hyperbola is (2, 0)

The eccentricity of the hyperbola is $\frac{3}{3}$

The equation of the hyperbola is $x^2 - 3y^2 = 3$

Q. Show that condition for two concentric ellipse $a_1x^2 + b_1y^2 = 1$ &

$$a_2x^2 + b_2y^2 = 1$$
 to intersect ORTHOGONALLY is $\frac{1}{a_1} - \frac{1}{a_2} = \frac{1}{b_1} - \frac{1}{b_2}$

$$\# \frac{a_1 a_2}{b_1 b_2} \left(\frac{b_1 - b_2}{a_1 - a_2} \right) = 1$$

$$\frac{b_1 - b_2}{b_1 b_2} = \frac{a_1 - a_2}{a_1 a_2}$$

HHPP

CHORD & FOCAL CHORD

$$\frac{x}{a}\cos\left(\frac{\alpha-\beta}{2}\right) - \frac{y}{b}\sin\left(\frac{\alpha+\beta}{2}\right) = \cos\left(\frac{\alpha+\beta}{2}\right)$$

$$\tan\frac{\alpha}{2}\tan\frac{\beta}{2} = \frac{1-e}{1+e}$$

Similarly for another focal chord AB

tan—tan

$$\tan\frac{\alpha}{2}\tan\frac{\beta}{2}\tan\frac{r}{2}\tan\frac{s}{2}=1$$

9(B)

 $P(\propto)$

1. Chord of Contact: # T, = 0

2. Chord with given midpoint:

3. Pair of Tangents:

4. Pole & Polar:

Pera =)
$$T_1 = 0$$

Reapporal

$$\# Qx^2 + bx + c = 0$$

Root

OK.

$$O = O$$

$$\frac{a}{\sqrt{2}} + \frac{b}{2} + C = 0$$

$$a + bx + cx^2 = 0$$

$$cx^2 + bx + \alpha = 0$$

$$cond^m = \alpha = 0$$

$$\# ax^2 + bx + c = 0$$

$$cx^2 + bx + a = 0$$

HB;
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

TA

$$y = \frac{b}{a}x$$

Solve
$$\frac{x^2}{a^2} - \frac{(mx+c)^2}{b^2} = 1$$

$$6x^2 - a^2m^2x^2 - a^2c^2 - 2cma^2x - a^2b^2 = 0$$

$$y = \frac{-b}{a}x$$

$$(b^2 - a^2 m^2) x^2 - (a^2 c^2 + a^2 b^2) = 0$$

dine
$$y = mx + c \Rightarrow Asymp \Rightarrow y = (\pm \frac{b}{a})x$$

$$\frac{b}{a^2} = m^2$$

$$m = \pm \frac{b}{a}$$

PROPERTIES OF ASYMPTOTES

Property-01: Hyperbola & Conjugate Hyperbola have same pair of asymptotes.

Property-02: Equation of Hyperbola, Conjugate Hyperbola & pair of Asymptotes only differs in constant part.

Property-03: Asymptotes passes through centre of HB and T.A. & C.A. are angle bisectors of angle between asymptotes. # 8-03

Property-04: If angle between asymptotes is 'a' then

eccentricity (e) =
$$\sec\left(\frac{\alpha}{2}\right)$$

$$e^{2} = 1 + \frac{b^{2}}{a^{2}} = 1 + \tan \frac{\alpha}{2}$$

$$e^{2} = 5e(\frac{\alpha}{2})$$

$$e^{2} = 5e(\frac{\alpha}{2})$$

Property-05:

- Portion of tangent intercepted between pair of asymptotes is bisected at point of contact. (or midpoint of Q + R & P)
- (ii) Area of triangle formed by any tangent & pair of asymptotes is always constant & is equals to 'ab' (v. area (AOBR) = ab)

$$ax(AOQR) = \frac{1}{2} \begin{cases} a(s+t) & b(s+t) \\ a(s-t) & -b(s-t) \end{cases}$$

Property-06: From any point on Hyperbola product of lengths of perpendicular drawn on asymptotes is always constant

and is equals to $\left(\frac{a^2b^2}{a^2+b^2}\right) = |a|b|$

NOTE:

P.O.S.L

Find centre, pair of asymptotes, equation of conjugate Ex. hyperbola for HB $x^2 - 4y^2 - 3xy - 5x + 10y = 0$

Oblique

Oblique

$$\frac{1}{4} = \frac{3}{4} = \frac{3}{4} = 0$$

$\frac{1}{4} = \frac{3}{4} = \frac{3$

Ex.

Find equation & eccentricity of hyperbola whose equation of asymptotes are x + y = 3 & x - 4y = 2 and passes through (5, 0).

H.W

Ex. Find everything for hyperbola : xy - 3y - 2x = 0.

HW

TODAY'S HOMEWORK

MODULE

HYPERBOLA

Exercise - I (TWQ) - Ques: 1 to 18

Exercise - II (LP) - Ques: 1 to 10

Exercise - III (ALMCQ) - Ques: 1,2,3

THANKYOU

to all future IIT ians

PRAYAS 2.0 FOR IIT - JEE 2023

COORDINATE GEOMETRY

HYPERBOLA

LEC - 04

TODAY'S GOAL

Rectangular Hyperbola # Properties / Highlights of Hyperbola # OP-QP

LAST CLASS

Asymptotes:

Tangent at
$$\infty$$
 \Rightarrow $y = \pm \frac{b}{a}x$

Properties of Asymptotes:

ABS byw asy

$$\# P_{12} = a^{2}b^{2}$$

$$a^{2}+b^{2}$$

Property-07:

The asymptotes of a hyperbola are the diagonals of he rectangle formed by the lines drawn through the extremities of each axis parallel to the other axis.

Or y = b x

Remarks:

The point of intersection of tangents at 'θ' and 'φ' on the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 is

$$\mathbb{R}\left(\frac{a\cos\left(\frac{\theta-\phi}{2}\right)}{\cos\left(\frac{\theta+\phi}{2}\right)}, \frac{b\sin\left(\frac{\theta+\phi}{2}\right)}{\cos\left(\frac{\theta+\phi}{2}\right)}\right)$$

Find equation & eccentricity of hyperbola whose equation of asymptotes are x + y = 3 & x - 4y = 2 and passes through (5, 0).

Pair of asymptotes:
$$(x+y-3)(x-4y-2) = 0$$

$$(x+y-3)(x-4y-2) = 0$$

$$x^2 + xy - 3x - 4xy - 4y^2 + 12y - 2x - 2y + 6 = 0$$

$$x^2 - 4y^2 - 3xy - 5x + 10y + 6 = 0$$

$$eq^{(x)} of HB = x^2 - 4y^2 - 3xy - 5x + 10y + 10y = 0$$

$$eq^{(x)} of HB = x^2 - 4y^2 - 3xy - 5x + 10y + 10y = 0$$

$$eq^{(x)} of HB = x^2 - 4y^2 - 3xy - 5x + 10y + 10y = 0$$

$$eq^{(x)} of HB = x^2 - 4y^2 - 3xy - 5x + 10y + 10y = 0$$

$$a = 1$$
 $b = -4$
 $\begin{cases} \Rightarrow \left(-\frac{3}{2}\right)^2 - (1)(-4) \\ 4 = -\frac{3}{4} \end{cases}$
 $\begin{cases} q + 4 = \frac{3}{4} \\ 4 \end{cases}$

Ex. Find everything for hyperbola
$$xy - 3y - 2x = 0$$
.

$$AHB \rightarrow P.0A \rightarrow A=0 \rightarrow 3$$

$$\frac{3y-3x-3y-3x+3=0}{}$$

6= 12

a = b

RHB

$$TA \Rightarrow y - 2 = x - 3$$

$$TA \Rightarrow y = 2$$

$$y = 2$$

$$y = 2$$

$$\# dR = \frac{ab^2}{a} = &a$$

$$dR = \frac{a\sqrt{12}}{a}$$

RECTANGULAR HYPERBOLA

The Hyperbola whose:

or

whose eccentricity (e) =
$$\sqrt{2}$$

or

whose asymptotes are perpendicular,

or

whose director circle is a point Circle

or

whose 'e' is equal to eccentricity of CHB

or

whose equation is
$$xx^2 - y^2 = a^2$$

A

STANDARD RECTANGULAR HYPERBOLA

For which asymptotes are co-ordinate axes.

ALL TOGETHER

a = semi T. A. or semi C.A.

C2 = given const in SRHB

$$\#xy=c^2$$

Relation b/w c & a $a = \sqrt{2}c$

$$a = \sqrt{2}c$$

Foci:
$$S_1(a,a) \equiv (\sqrt{2c},\sqrt{2c}) + S_2(-\sqrt{2c},\sqrt{2c}) \equiv (-a,-a)$$

$$\left(\frac{\sqrt{2}}{4},\frac{\sqrt{2}}{6}\right) = \left(c,c\right)$$

"S, (2c, 2c) = (9,9) Vertices:
$$\left(\frac{1}{\sqrt{2}},\frac{9}{\sqrt{2}}\right) = (c,c) + \left(-\frac{9}{\sqrt{2}},\frac{9}{\sqrt{2}}\right) = (-c,-c)$$

$$\frac{a}{c} = \frac{a}{\sqrt{2}} = c$$

$$# OA = Q = \sqrt{\chi^2 + \chi^2} \Rightarrow Q = \sqrt{2}\chi$$

$$xy = c^2$$

$$\alpha y = -c^2$$

Rout =
$$\left(ct, -\frac{c}{t} \right)$$

TANGENT & NORMAL

Tangent

(i) At
$$P(x_1,y_1)$$
:

(ii) Parametric Form:

Normal:

(i) At
$$P(x_1, y_1)$$
:

$$y-y_1=m_N\left(x-x_1\right)$$
 $\Rightarrow y-y_1=\frac{x_1}{y_1}\left(x-x_1\right)$

$$m_{\perp} = -\frac{t_{3}}{2} < 0$$

(ii) Parametric Form:

$$P(x_1,y_1) = (\alpha, \frac{c}{t})$$

$$y - \frac{c}{t} = \frac{ct}{(x-ct)} = y - \frac{c}{t} = t^{2}(x-ct)$$

Shifted Standard RHB:

SRHB:

Centre (
$$\alpha$$
, β)

 $\alpha \rightarrow \alpha - \alpha$
 $\gamma \rightarrow \gamma - \beta$

 $(\alpha-\kappa)(\gamma-\beta)=c^2$

Show that the orthocenter of the triangle formed by 3 points lying on a rectangular Hyperbola always lies on the same Rectangular Hyperbola.

$$xy = c^2 is \frac{x}{x_1 + x_2} + \frac{y}{y_1 + y_2} = 1$$

eq. of AB with m.p. M.

Q.

A variable tangent to $x^2 = 4ay$ intersects $xy = c^2$ in P and Q. Find the locus of mid-point of PQ.

Show that the mid points of focal chords of a hyperbola $\frac{x}{a^2} - \frac{y}{b^2} = 1$ lies on another similar hyperbola.

having same eccentricity

44 W

Any tangent to rectangular hyperbola $x^2 - y^2 = 9$ intersects parabola $y^2 = 8x$ at A & B. If point of intersection of tangents at A & B lies on an ellipse whose eccentricity is _____.

W

A common tangent T to the curves $C_1: \frac{x^2}{4} + \frac{y^2}{9} = 1$ and

 $C_2 = \frac{x^2}{42} - \frac{y^2}{143} = 1$ does not pass through the fourth quadrant. If T touches C_1 at (x_1, y_1) and C_2 at (x_2, y_2) , then $|2x_1 + x_2|$ is equal to

[JEE Mains-2022]

Diameter:

equip =
$$\frac{b^2}{a^2m}$$

PROPERTIES OF HB

P-1: Locus of foot of perpendicular drawn from foci on any tangent is Auxiliary Circle.

P-2: Product of lengths of perpendiculars from foci on Tangent is always constant & equals to (semi-conjugate axis)²

P-3: Portion of tangent intercepted between point of contact and directrix subtend 90° at corresponding focus.

P-4: Tangent and Normal at any point P bisects the angle between focal distances ($PS_1 \& PS_2$).

REFLECTION PROPERTY: Any ray passing through one focus, after reflection from Hyperbola it passes from another focus.

If Ellipse & Hyperbola are confocal (having same foci) then they are Orthogonal (angle between tangents at point of intersection is 90°)

Conversely if Ellipse & Hyperbola are Orthogonal they are Confocal.

Equation of ellipse is $x^2 + 2y^2 = 2$

B The foci of ellipse are (±1,0)

C × Equation of ellipse is
$$x^2 + 2y^2 = 4$$

D \times The foci of ellipse are $(\pm\sqrt{2},0)$

$$foa = (\pm ae, 0)$$

$$= (\pm L(2, 0))$$

$$= (\pm L, 0)$$

If x = 9 is the chord of contact of the hyperbola $x^2 - y^2 = 9$, then the equation of the corresponding pair of tangents is

$$9x^2 - 8y^2 + 18x - 9 = 0$$

$$9x^2 - 8y^2 - 18x + 9 = 0$$

$$9x^2 - 8y^2 - 18x - 9 = 0$$

$$9x^2 - 8y^2 + 18x + 9 = 0$$

$$(x(1)-y(0)-9)=(x-y^2-9)(1-0-9)$$

$$(x-9)=-8x^2+8y^2+72$$

Method I F fund A & B

Tangent at A & B

lair!

Comp

P(1,0

If the circle $x^2 + y^2 = a^2$ intersects the hyperbola $xy = c^2$ in four points $P(x_1, y_1)$, $Q(x_2, y_2)$, $R(x_3, y_3)$, $S(x_4, y_4)$, then

$$A x_1 + x_2 + x_3 + x_4 = 0$$

$$B = y_1 + y_2 + y_3 + y_4 = 0$$

$$C = x_1 x_2 x_3 x_4 = c^4$$

$$y_1y_2y_3y_4 = c^4$$

$$\alpha^2 + y^2 = \alpha^2$$

$\alpha^2 + (\frac{c^2}{x})^2 = \alpha^2$

$\alpha^2 + (\frac{c^2}{x})^2 = \alpha^2$
 $\alpha^2 + c^4 = \alpha^2 x^2$
 $\alpha^4 + c^4 = \alpha^2 x^2 + 0x + c^4 = 0$

Sum of Roots = 0

 x_4

$$(ct)^2 + (\frac{c}{+})^2 + ag(ct) + af(\frac{c}{+}) + d = 0$$

 $(ct)^2 + (\frac{c}{+})^2 + ag(ct) + af(ct) + d = 0$
 $(ct)^2 + (\frac{c}{+})^2 + ag(ct) + af(ct) + dt^2 = 0$

a=10, b=8

= 164

100

= 1 with foci at S and S₁, where S Consider the hyperbola lies on the positive x-axis. Let P be a point on the hyperbola, in the first quadrant. Let $\angle SPS_1 = \alpha$, with $\alpha < \frac{\pi}{2}$. The straight line passing through the points S and having the same slope as that of the tangent at P to the hyperbola, intersects the straight line S_1P at P_1 .

= \(\frac{164}{164}\) Let \(\delta\) be the distance of P from the straight line SP_1 , and $\beta = S_1P_2$.

Then the greatest integer less than or equal to sin is

EE (Adv.)-2022]

The number of points of intersection of |z - (4 + 3i)| = 2 and $|z| + |z - 4| = 6, z \in C$ is:

[JEE Mains-2022]

41.00

TODAY'S HOMEWORK

MODULE

HYPERBOLA

Exercise - IV (PYQ) - COMPLETE

HE-END OF
COORDINATE GEOMETRY.

THANKYOU

to all future I I Tians