

Sistem Komunikasi 1

Bab 2

Transformasi Fourier

Analog Vs. Digital (1)

Advantages of Digital Communication

As the signals are digitized, there are many advantages of digital communication over analog communication, such as:

- The effect of distortion, noise, and interference is much less in digital signals as they are less affected.
- Digital circuits are more reliable.
- Digital circuits are easy to design and cheaper than analog circuits.
- The hardware implementation in digital circuits, is more flexible than analog.

Analog Vs. Digital (2)

- The occurrence of cross-talk is very rare in digital communication.
- The signal is un-altered as the pulse needs a high disturbance to alter its properties, which is very difficult.
- Signal processing functions such as encryption and compression are employed in digital circuits to maintain the secrecy of the information.
- The probability of error occurrence is reduced by employing error detecting and error correcting codes.
- Spread spectrum technique is used to avoid signal jamming.

Analog Vs. Digital (3)

- Combining digital signals using Time Division Multiplexing (TDM) is easier than combining analog signals using Frequency Division Multiplexing (FDM).
- The configuring process of digital signals is easier than analog signals.
- Digital signals can be saved and retrieved more conveniently than analog signals.
- Many of the digital circuits have almost common encoding techniques and hence similar devices can be used for a number of purposes.
- The capacity of the channel is effectively utilized by digital signals.

Formula Transformasi Fourier

$$S(f) = \int_{-\infty}^{+\infty} s(t) \cdot e^{-j2\pi ft} dt$$

- *S*(*f*) dinamakan Transformasi Fourier dari s(t)
- Jika Transformasi Fourier S(f) suatu sinyal diketahui maka kita dapat menghitung persamaan sinyal dalam domain waktu s(t) dengan formula Inverse Transformasi Fourier

$$s(t) = \int_{-\infty}^{+\infty} S(f) \cdot e^{j2\pi ft} df$$

Beberapa Transformasi penting

• Transformasi Fourier impulse (sinyal delta dirac):

Beberapa Transformasi penting

• Transformasi Fourier dari fungsi pulsa:

Sifat-sifat Transformasi Fourier (yang sering Udipakai di siskom)

a. Time Scaling

b. Time shifting

Bila $s(t) \leftrightarrow S(f)$ maka $s(t-t_o) \leftrightarrow S(f).e^{-j2\pi fto}$

c. Frequency shifting

Bila $s(t) \leftrightarrow S(f)$ maka $S(f-f_o) \leftrightarrow s(t).e^{-j2\pi f_o t}$

• Contoh:
$$s(t) = A Cos 2\pi f_c t = \frac{A}{2} (e^{j2\pi f_c t} + e^{-j2\pi f_c t})$$

$$S(f) = \frac{A}{2} \delta(f + f_c) + \frac{A}{2} \delta(f - f_c)$$

d. Transformasi Fourier Sinyal Periodik

Bila $x(t) \leftrightarrow X(f)$ (untuk sinyal tidak periodik)

Maka untuk

$$x_p(t) = \sum_{n=-\infty}^{+\infty} x(t - nT_0)$$

(\rightarrow x(t) periodik dengan periode T_o) Transformasi fourier dari x_p(t)

$$X_{p}(f) = \frac{1}{T_{0}} \sum_{m=-\infty}^{+\infty} X\left(\frac{m \cdot f}{T_{o}}\right) \cdot \delta\left(f - \frac{m}{T_{0}}\right)$$

e. Integrasi pada kawasan waktu:

Bila $s(t) \leftrightarrow S(f)$, kemudian menghasilkan S(0)=0,

maka :

$$\int_{-\infty}^{t} s(t) dt \Leftrightarrow \frac{1}{j2\pi f} . S(f)$$

f. Diferensiasi pada kawasan waktu:

Bila $s(t) \leftrightarrow S(f)$, jika pada kawasan waktu dilakukan diferensiasi sekali, *maka*:

$$\frac{d}{dt}s(t) \Leftrightarrow j2\pi f.S(f)$$

g. Konvolusi pada kawasan waktu:

Bila $s_1(t) \leftrightarrow S_1(f)$ dan $s_2(t) \leftrightarrow S_2(f)$, maka:

$$\int_{-\infty}^{\infty} s_1(\tau).s_2(t-\tau)d\tau \Leftrightarrow S_1(f).S_2(f)$$

h. Perkalian pada kawasan waktu:

Bila $s_1(t) \leftrightarrow S_1(f)$ dan $s_2(t) \leftrightarrow S_2(f)$, maka:

$$s_1(t).s_2(t) \Leftrightarrow \int_{-\infty}^{\infty} S_1(\lambda).S_2(f-\lambda)d\lambda$$

Transmisi Sinyal melalui Sistem Linier

Respon Time:

Time Domain

 $h(t) \equiv respon impuls$

$$y(t) = h(\underbrace{\lambda}) x(t-\lambda) d\lambda$$

$$= x(\underbrace{\lambda}) h(t-\lambda) d\lambda$$

$$= x(t) \otimes h(t)$$

$$= h(t) \otimes x(t)$$

Perhitungan Konvolusi:

Representasi Grafis; contoh

Contoh Perhitungan Konvolusi dgn representasi Grafis:

Perhitungan

Karena N > M:

untuk $0 \le t \le M : y(t) = ABt$

untuk $M \le t \le N$:

untuk $t \ge N$:

Sehingga:

Kasus Khusus:

Konvolusi dengan fungsi δ (t - to)

• x (t)
$$\otimes$$
 δ (t - to) = x (t - λ) $\int_{-\infty}^{\infty} (\lambda - to) d\lambda = x (t - to)$

• $x(t) \otimes A \delta(t - to) = A x(t - to)$

Transmisi Sinyal Melalui Sistem Linier

• Deterministic signals:

$$Y(f) = X(f)H(f)$$

• Random signals:

$$G_Y(f) = G_X(f)|H(f)|^2$$

- Y(f) = Sinyal output dalam domain frekuensi
- X(f) = Sinyal input dalam domain frekuensi
- H(f) = Respons frekuensi sistem linier
- $G_Y(f) = PSD$ (Power Spectral Density) sinyal output
- $G_X(f) = PSD$ (Power Spectral Density) sinyal input

Sistem Lowpass vs Bandpass

Input
$$x(t) \longrightarrow h(t) \longrightarrow y(t) \longrightarrow Y(f)$$
 Output Linear system

Jika h (t) riil
$$\Rightarrow$$
 H (f) kompleks \rightarrow | H (f) | merupakan fungsi genap \rightarrow θ (f) merupakan fungsi ganjil

Sistem "lowpass"

Sistem "bandpass"

· Kondisi "distortionless transmission"

$$y(t) = K.X(t - to)$$

H (f) = K e
$$-j2\pi fto$$

Untuk sistem "bandpass"

• Distorsi Linier dan Prinsip Ekualisasi Kanal

Latihan Soal

1. Perhatian gambar sinyal **x(t)** diawah ini :

- a. Tentukan **X(f)** yang merupakan transformasi fourier dari sinyal tersebut!
- b. Jika sinyal z(t) = x(t).y(t)dimana $y(t) = Cos(4\pi t/T)$, tentukan Z(f)!
- c. Gambarkan z(t) dan Z(f)

Latihan Soal

2. Suatu sinyal memasuki sistem yang diwakili oleh LPF berikut ini :

Tentukan $S_A(f)$, $S_B(f)$, $S_B(t)$!

Latihan Soal

3. Diketahui sinyal dalam domain frekuensi sebagai

- a. Untuk fc > fm, Gambarkan Z(f) = X(f)*Y(f)!
- b. Tentukan persamaan z(t), gambar diagram proses yang terjadi!