TW364 Assignment 1 : Solutions

Unathi Skosana

08 August 2018

Solutions

(a)

For even reflection case

$$f(x) = x^2 \qquad -\pi \le x \le \pi$$

For odd reflection case

$$f(x) = \begin{cases} x^2 & 0 \le x \le \pi \\ -x^2 & -\pi \le x < 0 \end{cases}$$

For identify shift case

$$f(x) = \begin{cases} x^2 & 0 \le x \le \pi \\ (x+\pi)^2 & -\pi \le x < 0 \end{cases}$$

(b)

Even Reflection Case:

a0 =
$$\frac{2}{\pi}$$
 Integrate [x^2, {x, 0, π }]
 $\frac{2\pi^2}{3}$
an = $\frac{2}{\pi}$ Refine [$\frac{2}{\pi}$ Integrate [x^2 * Cos[n * x], {x, 0, π }], Element[n, Integers]]
 $\frac{8(-1)^n}{n^2\pi}$

Odd Reflection Case:

bn = Refine
$$\left[\frac{2}{\pi}$$
 Integrate $\left[x^2 * Sin[n * x], \{x, 0, \pi\}\right]$, Element $\left[x^2 * Sin[n * x], \{x, 0, \pi\}\right]$, $\left[\frac{2\left(-2+(-1)^n\left(2-n^2\pi^2\right)\right)}{n^3\pi}\right]$

Identity Shift Case:

a0 =
$$\frac{1}{\pi}$$
 Integrate [x^2, {x, 0, π }] + $\frac{1}{\pi}$ Integrate [(x+ π)^2, {x, - π , 0}]
 $\frac{2\pi^2}{3}$

an = Simplify [$\frac{1}{\pi}$ Refine [Integrate [x^2 * Cos[n * x], {x, 0, π }] + Integrate [(x+ π)^2 * Cos[n * x], {x, - π , 0}], Element [n, Integers]]]
 $\frac{2(1+(-1)^n)}{n^2}$

bn = Simplify [$\frac{1}{\pi}$ Refine [Integrate [x^2 * Sin[n * x], {x, 0, π }] + Integrate [(x+ π)^2 * Sin[n * x], {x, - π , 0}], Element [n, Integers]]]
 $\frac{(1+(-1)^n)\pi}{n^2}$

(c)

Figure 1: $S_{10}(x)$ for different extensions of x^2 on the interval $x \in [-\pi, \pi]$

Figure 2: $S_{20}(x)$ for different extensions of x^2 on the interval $x \in [-\pi, \pi]$

Figure 3: $S_{100}(x)$ for different extensions of x^2 on the interval $x \in [-\pi, \pi]$

(d)

Figure 4: Even periodic extension of x^2 on the interval $x \in [-100, 100]$ for N = 200

We observe no Gibbs oscillations for this particular periodic extension because the even periodic extensions of x^2 on the real line do suffer from any jump discontinuities.

Figure 5: Odd periodic extension of x^2 on the interval $x \in [-10, 10]$ for N = 200

The size of the overshoot should be approximately 8.95% of the size of the jump, the size of the jump in this case being $2\pi*2.$ Thus

overshoot =
$$\frac{8.95}{100}(2\pi^2) \approx 1.77$$

Figure 6: Zoom in on the peak at $x_0 = 0$

The picture above shows hat the value of the partial sums around the discontinuity at x=0 goes to 11.54, which approximately $1.77+2*\pi^2$

Figure 7: Identity shift periodic extension of x^2 on the interval $x \in [-10, 10]$ for N = 200

The size of the jump in this case is π^2 , thus

$$overshoot = \frac{8.95}{100}(\pi^2) \approx 0.89$$

Figure 8: Zoom in on the peak at $x_0 = 0$

The picture above shows hat the value of the partial sums around the discontinuity at x=0 goes to 10.057, which approximately $0.89+\pi^2$. In the limit to infinity the overshoot should exactly match the theoretical value.