ConMap: Optimizing Multicast Energy in Delayconstrained Mobile Wireless Networks

Introduction

Background Motivations

Main Results

Approximation Hardness ConMap Optimization Framework Simulations

ConMap: Optimizing Multicast Energy in Delay-constrained Mobile Wireless Networks

Xinzhe Fu, Zhiying Xu, Qianyang Peng, Jie You, Luoyi Fu and Xinbing Wang

September 16, 2016

Outline

- 1 Introduction
 - Background
 - Motivations
- 2 Main Results
 - Approximation Hardness
 - ConMap Optimization Framework
 - Simulations

- Background Motivations

Hardness

Outline

ConMap: Optimizing Multicast Energy in Delayconstrained Mobile Wireless Networks

Introduction

Background Motivations

Main Results

Approximation
Hardness
ConMap
Optimization
Framework
Simulations

- 1 Introduction
 - Background
 - Motivations
 - 2 Main Results
 - Approximation Hardness
 - ConMap Optimization Framework
 - Simulations

Background

ConMap: Optimizing Multicast Energy in Delayconstrained Mobile Wireless Networks

Introduction

Background Motivations

Main Results

Approximation
Hardness
ConMap
Optimization
Framework
Simulations

- The project started in September, 2015.
- We first submitted the paper to ACM MobiHoc 2016.
- The joint optimization of transmitting and receiving energy was inspired by discussion with Prof. Ness B. Shroff.

Motivations and Contributions

ConMap:
Optimizing
Multicast
Energy in
Delayconstrained
Mobile
Wireless
Networks

Introduction Background Motivations

Main Results
Approximation
Hardness
ConMap
Optimization

Simulations

Motivations

- (i) Energy saving is becoming more and more crucial.
- (ii) Multicast is an efficient traffic pattern.
- (iii) Previous works on multicast energy optimization only considered transmitting energy and are limited to static or wired networks.

Motivations and Contributions

ConMap: Optimizing Multicast Energy in Delayconstrained Mobile Wireless Networks

Introduction
Background
Motivations

Main Results
Approximation
Hardness
ConMap
Optimization
Framework
Simulations

Motivations

- (i) Energy saving is becoming more and more crucial.
- (ii) Multicast is an efficient traffic pattern.
- (iii) Previous works on multicast energy optimization only considered transmitting energy and are limited to static or wired networks.

Contributions

- Investigate the complexity of minimum energy multicast in mobile wireless networks.
- (ii) Propose a general optimization framework that jointly optimizes transmitting and receiving energy.

Challenges

ConMap: Optimizing Multicast Energy in Delayconstrained Mobile Wireless Networks

Introductio

Background Motivations

Main Results

Hardness
ConMap
Optimization
Framework
Simulations

- Dynamic topology of the networks.
- "Wireless Broadcast Advantage"
- Heterogeneity between transmitting and receiving energy.

Outline

ConMap: Optimizing Multicast Energy in Delayconstrained Mobile Wireless Networks

Introduction

Background Motivations

Main Results

Approximatio
Hardness
ConMap
Optimization
Framework
Simulations

- 1 Introduction
 - Background
 - Motivations
- 2 Main Results
 - Approximation Hardness
 - ConMap Optimization Framework
 - Simulations

Approximation Hardness

ConMap: Optimizing Multicast Energy in Delayconstrained Mobile Wireless Networks

Introduction

Background Motivations

Motivations

Main Results

Approximation
Hardness
ConMap
Optimization
Framework
Simulations

- Started with the formulated combinatorial optimization problem.
 - (i) Transmission schemes in mobile wireless networks.
 - (ii) The energy consumption of transmission schemes.

Approximation Hardness

ConMap: Optimizing Multicast Energy in Delayconstrained Mobile Wireless Networks

Introduction Background

Motivations

Main Results

Approximation
Hardness

Hardness ConMap Optimizatio Framework Simulations

- Started with the formulated combinatorial optimization problem.
 - (i) Transmission schemes in mobile wireless networks.
 - (ii) The energy consumption of transmission schemes.
- Proved that it cannot be approximated better than a logarithmic factor.
 - (i) The proof is done by polynomial time reduction from acyclic directed Steiner tree problem.
 - (ii) The reduction is approximation preserving.

The Optimization Framework – ConMap

ConMap: Optimizing Multicast Energy in Delayconstrained Mobile Wireless Networks

Introduction

Background Motivations

Main Results
Approximation

Hardness ConMap Optimization Framework Simulations Central idea: Using graph gadgets to capture energy consumption.

Simulations

ConMap:
Optimizing
Multicast
Energy in
Delayconstrained
Mobile
Wireless
Networks

Introduction

Background Motivations

Main Results

Approximation
Hardness
ConMap
Optimization
Framework
Simulations

We carried out simulations on Roma taxi dataset and Brightkite social network dataset.

ConMap:
Optimizing
Multicast
Energy in
Delayconstrained
Mobile
Wireless
Networks

Introduction

Background Motivations

Main Results

Approximation Hardness ConMap Optimization Framework

Simulations

Thank You!