Macroeconomía Internacional

Francisco Roldán IMF

October 2021

The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management.

Problema de fluctuación de ingresos

Cupones con decaimiento exponencial

- Emito b en t
- Pago κ en t+1 y sobrevive (1ho)b para el futuro
- $\,\cdot\,$ Pago $\kappa(1ho)$ en t+2 y sobrevive $(1ho)^2 b$ para el futuro
- ٠ ...
- Pago $\kappa (1ho)^{s-1}$ en t+s

Total de pagos prometidos

$$q^* = \sum_{s=1}^{\infty} \frac{1}{(1+r)^s} \kappa (1-\rho)^{s-1} = \sum_{s=0}^{\infty} \frac{1}{(1+r)^{s+1}} \kappa (1-\rho)^{s-1}$$

Cupones con decaimiento exponencial

- Emito b en t
- Pago κ en t+1 y sobrevive (1ho)b para el futuro
- $\,\cdot\,$ Pago $\kappa(1ho)$ en t+2 y sobrevive $(1ho)^2 b$ para el futuro
- ٠ ...
- \cdot Pago $\kappa (\mathsf{1}ho)^{\mathsf{s}-\mathsf{1}}$ en t+s

Total de pagos prometidos

$$q^{\star} = \sum_{s=1}^{\infty} \frac{1}{(1+r)^{s}} \kappa (1-\rho)^{s-1} = \sum_{s=0}^{\infty} \frac{1}{(1+r)^{s+1}} \kappa (1-\rho)^{s}$$

Cupones con decaimiento exponencial

- Emito b en t
- · Pago κ en t+1 y sobrevive (1ho)b para el futuro
- Pago $\kappa(1ho)$ en t+2 y sobrevive $(1ho)^2 b$ para el futuro
- ٠ ...
- $\overline{\cdot}\ \ \mathsf{Pago}\,\kappa(1ho)^{\mathsf{s}-1}\,\mathsf{en}\,t+\mathsf{s}$

Total de pagos prometidos

$$q^{\star} = \sum_{s=1}^{\infty} \frac{1}{(1+r)^{s}} \kappa (1-\rho)^{s-1} = \sum_{s=0}^{\infty} \frac{1}{(1+r)^{s+1}} \kappa (1-\rho)^{s} = \frac{\kappa}{1+r} \sum_{s=0}^{\infty} \left(\frac{1-\rho}{1+r}\right)^{s}$$

Cupones con decaimiento exponencial

- Emito b en t
- Pago κ en t+1 y sobrevive (1ho)b para el futuro
- $\,\cdot\,$ Pago $\kappa(1ho)$ en t+2 y sobrevive $(1ho)^2 b$ para el futuro
- ٠ ...
- \cdot Pago $\kappa (\mathsf{1}ho)^{\mathsf{s}-\mathsf{1}}$ en t+s

Total de pagos prometidos

$$q^{\star} = \sum_{s=1}^{\infty} \frac{1}{(1+r)^{s}} \kappa (1-\rho)^{s-1} = \sum_{s=0}^{\infty} \frac{1}{(1+r)^{s+1}} \kappa (1-\rho)^{s} = \frac{\kappa}{1+r} \sum_{s=0}^{\infty} \left(\frac{1-\rho}{1+r}\right)^{s}$$
$$= \frac{\kappa}{1+r} \frac{1}{1-\frac{1-\rho}{1+r}}$$

Cupones con decaimiento exponencial

- Emito b en t
- Pago κ en t+1 y sobrevive (1ho)b para el futuro
- \cdot Pago $\kappa(1ho)$ en t+2 y sobrevive $(1ho)^2 b$ para el futuro
- ٠ ...
- Pago $\kappa (1ho)^{s-1}$ en t+s

Total de pagos prometidos

$$q^{\star} = \sum_{s=1}^{\infty} \frac{1}{(1+r)^{s}} \kappa (1-\rho)^{s-1} = \sum_{s=0}^{\infty} \frac{1}{(1+r)^{s+1}} \kappa (1-\rho)^{s} = \frac{\kappa}{1+r} \sum_{s=0}^{\infty} \left(\frac{1-\rho}{1+r}\right)^{s}$$
$$= \frac{\kappa}{1+r} \frac{1}{1-\frac{1-\rho}{1+r}} = \kappa \frac{1}{1+r-(1-\rho)}$$

Cupones con decaimiento exponencial

- Emito b en t
- Pago κ en t+1 y sobrevive (1ho)b para el futuro
- $\,\cdot\,$ Pago $\kappa(1ho)$ en t+2 y sobrevive $(1ho)^2 b$ para el futuro
- ٠ ...
- \cdot Pago $\kappa (\mathsf{1}ho)^{\mathsf{s}-\mathsf{1}}$ en t+s

Total de pagos prometidos

$$q^{\star} = \sum_{s=1}^{\infty} \frac{1}{(1+r)^{s}} \kappa (1-\rho)^{s-1} = \sum_{s=0}^{\infty} \frac{1}{(1+r)^{s+1}} \kappa (1-\rho)^{s} = \frac{\kappa}{1+r} \sum_{s=0}^{\infty} \left(\frac{1-\rho}{1+r}\right)^{s}$$
$$= \frac{\kappa}{1+r} \frac{1}{1-\frac{1-\rho}{1+r}} = \kappa \frac{1}{1+r-(1-\rho)} = \frac{\kappa}{r+\rho}$$

Cupones con decaimiento exponencial

- Emito b en t
- Pago κ en t+1 y sobrevive $(1-\rho)b$ para el futuro
- Pago $\kappa(1ho)$ en t+2 y sobrevive $(1ho)^2 b$ para el futuro
- ٠ ...
- \cdot Pago $\kappa (\mathbf{1}ho)^{s-1}$ en t+s

Total de pagos prometidos

$$q^{\star} = \sum_{s=1}^{\infty} \frac{1}{(1+r)^{s}} \kappa (1-\rho)^{s-1} = \sum_{s=0}^{\infty} \frac{1}{(1+r)^{s+1}} \kappa (1-\rho)^{s} = \frac{\kappa}{1+r} \sum_{s=0}^{\infty} \left(\frac{1-\rho}{1+r}\right)^{s}$$
$$= \frac{\kappa}{1+r} \frac{1}{1-\frac{1-\rho}{1+r}} = \kappa \frac{1}{1+r-(1-\rho)} = \frac{\kappa}{r+\rho}$$

Cupones con decaimiento exponencial

- Emito b en t
- Pago κ en t+1 y sobrevive (1ho)b para el futuro
- \cdot Pago $\kappa(1ho)$ en t+2 y sobrevive $(1ho)^2 b$ para el futuro
- ٠ ...
- \cdot Pago $\kappa (\mathsf{1}ho)^{\mathsf{s}-\mathsf{1}}$ en t+s

Total de pagos prometidos

$$q^{\star} = \sum_{s=1}^{\infty} \frac{1}{(1+r)^{s}} \kappa (1-\rho)^{s-1} = \sum_{s=0}^{\infty} \frac{1}{(1+r)^{s+1}} \kappa (1-\rho)^{s} = \frac{\kappa}{1+r} \sum_{s=0}^{\infty} \left(\frac{1-\rho}{1+r}\right)^{s}$$

$$= \frac{\kappa}{1+r} \frac{1}{1-\frac{1-\rho}{1+r}} = \kappa \frac{1}{1+r-(1-\rho)} = \frac{\kappa}{r+\rho}$$

Recursivamente

- Hoy compro la deuda a precio q^*
- · Mañana cobro cupón κ , revendo la deuda que queda $(1-\rho)$ a precio q^* .

$$egin{aligned} oldsymbol{q^{\star}} &= rac{1}{1+r} \left(\kappa + (1-
ho) oldsymbol{q^{\star}}
ight) \ oldsymbol{q^{\star}} &= rac{\kappa}{r+
ho} \end{aligned}$$

Deuda emitida en t-s sustituye perfectamente $(1-\rho)^s$ deuda emitida en t

Recursivamente

- Hoy compro la deuda a precio q^*
- Mañana cobro cupón κ , revendo la deuda que queda $(1-\rho)$ a precio q^* .

$$q^* = rac{1}{1+r} \left(\kappa + (1-
ho)q^*
ight)$$
 $q^*(1+r-(1-
ho)) = \kappa$
 $q^* = rac{\kappa}{r+
ho}$

Deuda emitida en t-s sustituye perfectamente $(1-\rho)^s$ deuda emitida en t

Recursivamente

- Hoy compro la deuda a precio q^*
- · Mañana cobro cupón κ , revendo la deuda que queda $(1-\rho)$ a precio q^* .

$$egin{aligned} q^\star &= rac{1}{1+r} \left(\kappa + (1-
ho) q^\star
ight) \ q^\star (1+r-(1-
ho)) &= \kappa \ q^\star &= rac{\kappa}{r+
ho} \end{aligned}$$

Deuda emitida en t-s sustituye perfectamente $(1-\rho)^s$ deuda emitida en t

Recursivamente

- · Hoy compro la deuda a precio q^*
- · Mañana cobro cupón κ , revendo la deuda que queda $(1-\rho)$ a precio q^* .

$$egin{aligned} q^\star &= rac{1}{1+r} \left(\kappa + (1-
ho) q^\star
ight) \ q^\star (1+r-(1-
ho)) &= \kappa \ q^\star &= rac{\kappa}{r+
ho} \end{aligned}$$

Deuda emitida en t-s sustituye perfectamente $(1-\rho)^s$ deuda emitida en t

Haircuts parciales

Default significa

- Suspensión del pago de cupones κ
- Fracción \hbar de la deuda es destruida
- (sí o sí requiere deuda de largo plazo)
- (se puede hacer con deuda de corto también...)

Default: problema del deudor

$$\mathcal{V}(b,y) = \mathcal{P}(b,y)v^{D}((1-\hbar)b,y) + (1-\mathcal{P}(b,y))v^{R}(b,y)$$
 $v^{R}(b,y) = \max_{c,b'} u(c) + \beta \mathbb{E}\left[\mathcal{V}(b',y')|y
ight]$
 $\text{sujeto a } c + \kappa b = y + q(b',y)\left(b' - (1-\rho)b\right)$
 $v^{D}(b,y) = u(y(1-\Delta)) + \beta \mathbb{E}\left[\theta \mathcal{V}(b,y') + (1-\theta)v^{D}(b,y')|y
ight]$

Default: problema del deudor

$$\mathcal{V}(b,y) = \mathcal{P}(b,y) v^{D}((1-\hbar)b,y) + (1-\mathcal{P}(b,y)) v^{R}(b,y)$$
 $v^{R}(b,y) = \max_{c,b'} u(c) + \beta \mathbb{E} \left[\mathcal{V}(b',y') | y
ight]$ sujeto a $c + \kappa b = y + q(b',y) \left(b' - (1-\rho)b
ight)$ $v^{D}(b,y) = u(y(1-\Delta)) + \beta \mathbb{E} \left[\theta \mathcal{V}(b,y') + (1-\theta) v^{D}(b,y') | y
ight]$

Default: problema del deudor

$$egin{aligned} \mathcal{V}(b,y) &= \mathcal{P}(b,y) \mathbf{v}^{\mathsf{D}}((1-\hbar)b,y) + (1-\mathcal{P}(b,y)) \, \mathbf{v}^{\mathsf{R}}(b,y) \\ & \mathbf{v}^{\mathsf{R}}(b,y) = \max_{c,b'} u(c) + \beta \mathbb{E} \left[\mathcal{V}(b',y') | \mathbf{y}
ight] \\ & \mathrm{sujeto} \, \mathrm{a} \, c + \kappa b = \mathbf{y} + q(b',y) \, (b' - (1-
ho)b) \end{aligned}$$
 $\mathbf{v}^{\mathsf{D}}(b,y) = u(\mathbf{y}(1-\Delta)) + \beta \mathbb{E} \left[\theta \mathcal{V}(b,y') + (1-\theta) \mathbf{v}^{\mathsf{D}}(b,y') | \mathbf{y}
ight]$

Default: problema del acreedor

Precio de la deuda

- · Si mañana no hay default cobro
 - $\cdot \kappa$ del cupón
 - · $(1-\rho)q'$ de la deuda no depreciada

$$\cdot q' = q(b'', y')$$

· Si hay default me quedo con $(1-\hbar)$ bonos defaulteados

$$R(b,y) = \kappa + (1-\rho)q(b,y)$$

$$q(b',y) = \frac{1}{1+r} \mathbb{E} \left[(1 - \mathbb{1}_D(b',y'))R(b'',y') + \mathbb{1}_D(b',y')(1-\hbar)q_D(b',y') \right]$$

$$q_D(b',y) = \frac{1}{1+r} \mathbb{E} \left[\theta(1 - \mathbb{1}_D(b',y'))R(b'',y') + (1-\theta+\theta\mathbb{1}_D(b',y')(1-\hbar))q_D(b',y') \right]$$

Default: problema del acreedor

Precio de la deuda

- · Si mañana no hay default cobro
 - $\cdot \kappa$ del cupón
 - · $(1 \rho)q'$ de la deuda no depreciada

$$q' = q(b'', y')$$

· Si hay default me quedo con $(1-\hbar)$ bonos defaulteados

$$\begin{split} R(b,y) &= \kappa + (1-\rho)q(b,y) \\ q(b',y) &= \frac{1}{1+r} \mathbb{E}\left[(1-\mathbb{1}_D(b',y'))R(b'',y') + \mathbb{1}_D(b',y')(1-\hbar)q_D(b',y') \right] \\ q_D(b',y) &= \frac{1}{1+r} \mathbb{E}\left[\theta(1-\mathbb{1}_D(b',y'))R(b'',y') + (1-\theta+\theta\mathbb{1}_D(b',y')(1-\hbar))q_D(b',y') \right] \end{split}$$

Estrategias de resolución

- · Estilo equilibrio general
 - Dadas funciones q(b', y), $q_D(b', y)$, iterar sobre la función de valor
 - Actualizar q, q_D usando las políticas de default
 - · Iterar
- · Estilo teoría de juegos
 - · Inicializar *v*, *q* en un período *T* lejano
 - \cdot Encontrar q consistentes con la política implícita en v (una vez!)
 - Actualizar v dado q
 - · Iterar 'hacia el pasado' hasta convergencia
 - \dots Equilibrio recursivo (perfecto de Markov) con estrategias indexadas por (b,y,d)

Simulador

def_simul.jl