

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 6th Semester Examination, 2022

CEMADSE06T-CHEMISTRY (DSE3/4)

POLYMER CHEMISTRY

Time Allotted: 2 Hours Full Marks: 40

The figures in the margin indicate full marks.

Candidates should answer in their own words and adhere to the word limit as practicable.

All symbols are of usual significance.

Answer any three questions taking one from each group

GROUP-A

(Unit 1, 2 and 3)

- 1. (a) What is meant by constitutional repeating unit (CRU) of a polymer? Demonstrate, how it differs from repeating unit using polyethylene as an example.
 (b) What is functionality factor? Assuming a value of 0.999 for p (extent of reaction), what would be the DP of a polyester prepared from equimolar quantities of diffunctional reactants in the presence of 1.5 mol% of acetic acid? Let the mol% diffunctional reactants both be 98.5.
 [Given, DP = 2/(2-pf_{avg})]
 - (c) Differentiate between suspension polymerization and emulsion polymerization.
 (d) Show that for cationic polymerization rate of propagation is proportional to the
 - (d) Show that for cationic polymerization rate of propagation is proportional to the square of monomer concentration (if the termination occurs via simple dissociation of the macro carbocation gegenion complex).
- 2. (a) Explain, why nylon 6,6 has a higher melting temperature than nylon 6,10. What is meant by cohesive energy density of a polymer?
 - (b) Derive Carothers' expression relating average functionality, extent of reaction and degree of polymerization for polycondensation reaction carried out for a time period t.
 - (c) What is the role of inhibitor in free radical polymerization? The following are data for the polymerization of styrene in benzene at 60° C with benzoyl peroxide as the initiator. [M] = 3.34×10^{3} mol/m³, [I] = 4.0 mol/m³, $k_p^2/k_t = 0.95 \times 10^{-6}$ m³/mol-s. If the spontaneous decomposition rate of benzoyl peroxide is 3.2×10^{-6} s⁻¹, calculate the initial rate of polymerization.
 - (d) Show that for a self catalyzed polyesterification reaction of a glycol and a dicarboxylic acid (assume equimolar presence of two components) plot of $1/(1-p)^2$ vs time is a straight line. [p is the extent of reaction].

GROUP-B

(Unit 4, 5, 6 and 7)

- 3. (a) Outline the factors on which the degree of crystallinity of a polymer depends.
 - (b) Explain, why atactic polystyrene is amorphous while the isotactic variety is semi crystalline.
 - (c) Schematically represent how specific volume changes at glass transition temperature (T_g). Briefly describe, how the volume changes inside a polymer when the glass transition temperature is crossed.
 - (d) What do you mean by polydispersity index (PDI)? How PDI is significant in polymer study?
 - (e) The following data were obtained in the determination of average weight of a 4 polymer,

Molecular weight	Weight (g)
80,000	1.0
50,000	3.0
30,000	5.0
10,000	6.0

Calculate, (i) Number average molecular weight M_n (ii) Weight average molecular weight M_w and (iii) Polydispersity index.

- (f) What is polymorphism? Name a polymer which exhibits polymorphism.
- 4. (a) Discuss in brief, the theory underlying the determination of viscosity average molar mass of a sample of polymer by measurement of viscosity.
 - (b) Discuss why polymers crystallize in a chain folded fashion rather than the 3 thermodynamically preferred extended chain form.
 - (c) Osmotic pressure measurement of a polymer solutions at 27°C yielded a plot of π/C vs C, which on extrapolation to zero concentration gave an intercept with ordinate equal to 3.47×10^{-4} litre atmosphere/g. What is the molecular weight of the polymer?
 - (d) (i) What is the major difference between glassy state and molten state of a polymer?
 - 2 (ii) Why is glass transition temperature, T_G referred as a second order transition?
 - (e) Explain, why insertion of rigid bulky groups, like aromatic rings in linear aliphatic polymer chains significantly enhance their physical properties.

GROUP-C

(Unit 8 and 9)

- 5. (a) Using Flory-Huggins theory for polymer solution, deduce an expression for the entropy of mixing.
 - (b) Write short note on (any *two*):
 - (i) Polyacrylamide, (ii) Novalac resin, (iii) Poly (vinyl acetate)
 - (c) Describe the synthesis of polyaniline.

6207 2

2

2 2

2

2

2

3

3

1

2

3+3

5

CBCS/B.Sc./Hons./6th Sem./CEMADSE06T/2022

conducting.

- 6. (a) What do you mean by Hildebrand solubility parameter (δ)? Under what condition (with reference to δ) solubility becomes an entropy effect?
 (b) How the Flory-Huggins parameter (χ₁₂) is related to Hildebrand solubility parameters δ₁ and δ₂?
 (c) How can you prepare polyurethanes commercially? Explain, why the melting point of polyurethane is much less than that of the corresponding polyamide.
 (d) What are polycarbonates? How can you prepare a polycarbonate using bisphenol-A and diphenylcarbonate?
 (e) What do you mean by synthetic metal? Mention two conditions for a polymer to be
 - **N.B.:** Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

____×___

6207