CS3236 AY22/23 SEM 2 github/jovyntls

00. INTRODUCTION

data compression

- · types of compression
 - · lossless compression can recover the contents
 - · lossy compression lose some quality cannot convert back to the higher-quality version
- · examples
 - sparse binary string storing positions of 1s
 - equal number of 0/1s $L \ge \log_2 \binom{64}{22} \approx 60.7$
 - · english text using relative frequency
 - morse code is NOT binary (contains spaces)
- · info theory uses probabilistic models (letter frequency, sequence probabilities)
- · 2 distinct approaches to compression:
 - · variable length map more probable sequences to shorter binary strings
 - · fixed length map most probable sequences to strings of a given length
 - insufficient strings for low-probability sequences
 - tradeoff between length/failure probability

information theory concepts

- speed: $\frac{k}{n}$ (mapping k bits to n bits)
- reliability: $\mathbb{P}[error] = \mathbb{P}[estimated \, msg \neq true \, msg]$
- source coding theorem → the fundamental compression limit is given by a source-dependent quantity known as the (Shannon) entropy H. The (average) storage length can be arbitrarily close to H, but can never be any lower than H.
- H is a property of the probability distribution
- channel coding theorem → there exists a channel-dependent quantity called the (Shannon) capacity C such that arbitrarily small error probability can be achieved only for rates < C
 - can achieve $\mathbb{P}[error] < \epsilon \iff \text{rate} < C$

data communication example

- · a "transmitter" sends a sequence of 0s and 1s
- a "receiver" sends a sequence with some corruptions

channel transition diagram

• each bit is flipped independently with probability $\delta\in(0,\frac{1}{2})$

- uncoded communication $\mathbb{P}[correct] = (1 \delta)^N$
- repetition code transmit "000" for "0", "111" for "1"
- $\mathbb{P}[correct] = [(1-\delta)^3 + 3\delta(1-\delta)^2]^N$
- · more reliable but 3x slower!

Hamming code

· able to correct one bit flip

• maps binary string of length 4 to binary string of length 7

• fill in $b_1b_2b_3b_4$ and assign $c_1c_2c_3$ such that the sum of bits in each circle is even

- $\mathbb{P}[correct] > \mathbb{P}[< 1 \text{bit flips}] = (1 \delta)^7 + 7\delta(1 \delta)^6$
- with $\delta=1$: Shannon capacity $C\approx 0.531$

01. INFORMATION MEASURES

information of an event

- entropy → measure of "uncertainty" or "information" in a random variable
- given event A with some $\mathbb{P}[A] = p$, how much "information" learned by being told A occurred?
 - only $\mathbb{P}[A]$ matters
- if A occurs with probability p, then $Information(A) = \psi(p)$ for some function $\psi(\cdot)$

axioms for $\psi(\cdot)$

$$\psi(p) = \log_b \frac{1}{p}$$
 (for some base $b > 0$)

we gain $\log_2 \frac{1}{n}$ "bits" of info if a probability-p event occurs.

- only $\psi(p) = \log_b \frac{1}{p}$ satisfies all axioms we focus on b=2
- - · information measured in bits
- all choices of b are equivalent up to scaling by a universal constant
 - e.g. # of nats = $\log_e 2 \times$ # of bits
- 1. $\psi(p) > 0$ (non-negativity)
- 2. $\psi(1) = 0$ (zero for definite events)
- 3. if p < p', then $\psi(p) > \psi(p')$ (monotonicity)
 - the less likely an event is, the more information was learnt by the fact that it occurred
- 4. $\psi(p)$ in continuous in p (continuity)
 - · small change in probability: no drastic change in info
- 5. $\psi(p_1p_2) = \psi(p_1) + \psi(p_2)$
 - (additivity under independence) if A and B are independent events with probabilities p_1 and p_2 , then $\mathbb{P}[A \cap B] = p_1 p_2$, and the information learnt from both A and B occurring is the sum of the two individual amounts of information (because they are independent)
- $\psi(\mathbb{P}[A_1 \cap A_2]) = \psi(\mathbb{P}[A_1]) + \psi(\mathbb{P}[A_2])$

information of a random variable - entropy

- let X be a discrete r.v. with pmf P_X
- if we observe X=x then we have learnt $\log_2 \frac{1}{P_Y(x)}$ bits

(Shannon) entropy

is the average *information/uncertainty* in X wrt P_X :

$$H(X) = \mathbb{E}_{X \sim P_X} \left[\log_2 \frac{1}{P_X(X)} \right]$$
$$= \sum_x P_X(x) \log_2 \frac{1}{P_X(x)}$$

binary entropy function →

$$H_2(p) = p \log_2 \frac{1}{p} + (1-p) \log_2 \frac{1}{1-p}$$

• binary source: $X \sim Bernoulli(p), p \in (0,1)$ $\Rightarrow H(X) = H_2(p)$

• uniform source: X is uniform on a finite set \mathcal{X}

•
$$P_X(x) = \frac{1}{|\mathcal{X}|}$$

 $\Rightarrow H(X) = \mathbb{E}\left[\log_2 \frac{1}{1/|\mathcal{X}|}\right] = \log_2 |\mathcal{X}|$

- - · entropy depends only on the probability values

axiomatic view (Shannon)

X is a d.r.v. taking N values with $\mathbf{p} = (p_1, \dots, p_N)$. We consider a general information measure of the form

$$\Phi(\mathbf{p}) = \Phi(p_1, \dots, p_N)$$

only $\Phi(X) = constant \times H(X)$ satisfies all axioms.

- 1. $\Psi(\mathbf{p})$ is continuous on p (continuity)
- 2. if $p_i = \frac{1}{N}$, then $\Psi(\mathbf{p})$ is increasing in N (uniform case)
 - uniformity over a larger set of outcomes always means more uncertainty
- 3. (successive decisions) $\Psi(p_1,\ldots,p_N)=$ $\Psi(p_1+p_2,p_3,\ldots,p_N)+(p_1+p_2)\Psi(\frac{p_1}{p_1+p_2},\frac{p_2}{p_1+p_2})$

• **joint entropy** of two random variables $(X,Y) \rightarrow$

$$\begin{split} H(X,Y) &= \mathbb{E}_{(X,Y) \sim P_{XY}} \left[\log_2 \frac{1}{P_{XY}(X,Y)} \right] \\ &= \sum_{x,y} P_{XY}(x,y) \log_2 \frac{1}{P_{XY}(x,y)} \end{split}$$

• conditional entropy of Y given $X \rightarrow$

$$\begin{split} H(Y|X) &= \mathbb{E}_{(X,Y) \sim P_{XY}} \left[\log_2 \frac{1}{P_{Y|X}(Y|X)} \right] \\ &= \sum_{x,y} P_{XY}(x,y) \log_2 \frac{1}{P_{Y|X}(y|x)} \\ &= \sum_{x,y} P_{X}(x) H(Y|X=x) \end{split}$$

 on average, knowing X reduces uncertainty about Y $(H(Y|X) \le H(Y))$, but seeing a *specific* outcome of X may increase uncertainty about Y(H(Y|X=i) > H(Y)) for some values of i)

properties of entropy

- 1. H(X) > 0 (non-negativity)
 - $H(X) = 0 \iff X$ if deterministic
 - *Proof.* information $\log_2 \frac{1}{p} \ge 0$ for $p \in [0,1]$, so entropy is the average of a non-negative quantity, and itself is non-negative
- 2. $H(X) \leq \log_2 |\mathcal{X}|$ (upper bound) if X takes values on a finite alphabet \mathcal{X}
 - $H(X) = \log_2 |\mathcal{X}| \iff X \sim Uniform(\mathcal{X})$ • implies $H(X|Y) < \log_2 |\mathcal{X}|$
- 3. H(X,Y) = H(X) + H(Y|X) (chain rule)
 - or H(X,Y) = H(Y) + H(X|Y)

· general chain rule:

• overall information in (X,Y) is the information in X

$$H(X_1, ..., X_n) = \sum_{i=1}^n H(X_i|X_1, ..., X_{i-1})$$

plus the remaining information in Y after observing X.

- 4. $H(X|Y) \le H(X)$ (conditioning reduces entropy)
 - $H(X|Y) = H(X) \iff X$ and Y are independent
- additional information Y can't increase uncertainty on average but can have H(X|Y=y) > H(X)
- 5. $H(X_1,\ldots,X_n) \leq \sum_{i=1}^n H(X_i)$ (sub-additivity)
 - equality $\iff X \text{ and } Y$ are independent

KL Divergence

for two pmfs P and Q on a finite alphabet \mathcal{X} , the Kullback-Leibler (KL) divergence or relative entropy is

$$D(P||Q) = \sum_{x} P(x) \log_2 \frac{P(x)}{Q(x)}$$
$$= \mathbb{E}_{X \sim P} \left[\log_2 \frac{P(X)}{Q(X)} \right]$$

- $D(P||Q) \neq D(Q||P)$
- D(P||Q) > 0
 - Proof. $-D(P||Q) = -\sum_{x} P(x) \log_2 \frac{P(x)}{O(x)}$ $\leq \sum_{x} P(x)(\frac{Q(x)}{P(x)} - 1) = \sum_{x} Q(x) - \sum_{x} P(x) = 0$ (using property that $x - 1 > \ln x$)
- $D(P||Q) = 0 \iff P = Q$
 - *Proof.* same as above, using $\ln a = a 1 \iff a = 1$ (then $\frac{P(x)}{Q(x)} = 1$)

02. SYMBOL-WISE SOURCE CODING

X is a d.r.v. with pmf P_X over an alphabet \mathcal{X} (set of symbols). symbol-wise source coding maps each $x \in \mathcal{X}$ to some binary sequence C(x) of length $\ell(x)$.

average length of a code $C(\cdot)$,

$$L(C) = \sum_{x \in \mathcal{X}} P_X(x) \ell(x)$$

decodability conditions

- nonsingular property $\to C(x) \neq C(x') \iff x \neq x'$
- a code $C(\cdot)$ is **uniquely decodable** \rightarrow no 2 sequences (of equal or differing lengths) of symbols in ${\mathcal X}$ are coded to the same concatenated binary sequence.
- x_1, \ldots, x_n can be always uniquely identified from the string $C(x_1) \dots C(x_n)$
- $C(\cdot)$ is **prefix-free** \rightarrow no codeword is a prefix of another aka instantaneous code

Kraft's Inequality and Entropy Bound

Kraft's inequality

$$\text{if } C(\cdot) \text{ is } \textit{prefix-free}, \text{then } \quad \sum_{x \in \mathcal{X}} 2^{-\ell(x)} \leq 1$$

- · Proof. represent the codewords by a binary tree. If there is a codeword at some point in the tree, there are no codewords further down the tree. probability of branching to a codeword $=2^{-\ell(x)}$ and sum of probabilities cannot exceed 1
- existence property \rightarrow if a set of integers $\{\ell(x)\}_{x\in\mathcal{X}}$ satisfies $\sum_{x \in \mathcal{X}} 2^{-\ell(x)} \leq 1$, then it is possible to construct a *prefix-free* code that maps each $x \in \mathcal{X}$ to a codeword of length $\ell(x)$.

entropy bound

 $\begin{array}{c} \textbf{entropy bound} \\ \textbf{expected length, } L(C) \geq H(X) \\ \textbf{with equality} \iff P_X(x) = 2^{-\ell(x)} \end{array}$

- entropy gives a fundamental compression limit
 - average length is at least equal to entropy
 - if all probabilities are negative powers of 2, we can match the entropy bound (optimal code)
- *Proof.* manipulate to get $L(C)-H(X)\geq D(P_X||Q)\geq 0$