

Ensembl Compara Perl API

Matthieu Muffato

API workshop - EBI

Nov 2012

Outline of the course

- Introduction about Compara
 - Resources
 - API
- Base objects
 - Genes, peptides, RNAs
 - Multiple / pairwise alignments
- Data objects
 - Families
 - Gene trees
 - Homologies

Outline of the course

- Introduction about Compara
 - Resources
 - API

- Base objects
 - Genes, peptides, RNAs
 - Multiple / pairwise alignments
- Data objects
 - Families
 - Gene trees
 - Homologies

What is Ensembl Compara?

A single database which contains precalculated comparative genomics data and which is linked to all the Ensembl Species databases.

Access via perl API and mysql

A production system for generating that database (not in this presentation)

The genomes in Ensembl

Help & Useful documentation

- perIdoc Viewer for inline API documentation
 - shell> perldoc Bio::EnsEMBL::Compara::GenomeDB
 - shell> perldoc Bio::EnsEMBL::Compara::DBSQL::MemberAdaptor
- Online documents (website)
 - http://www.ensembl.org/info/docs/Doxygen/compara-api/index.html
 - http://www.ensembl.org/info/docs/api/compara/index.html
- CVS
 - ensembl-compara/docs/protein_schema.png
 - ensembl-compara/docs/genomic_schema.png
- ensembl-dev mailing list:
 - dev@ensembl.org
 - helpdesk@ensembl.org

Compara data

Genome level (this afternoon)

Whole genome alignments (pairwise and multiple)

Syntenic regions (based on pair-wise align.)

Gene level (now!)

Families (clusters of proteins + multiple align.)

Gene trees (proteins, non-coding RNAs)

Gene orthology / paralogy predictions

Who is in Ensembl Compara?

Kathryn Beal

Javier Hererro

Stephen Fitzgerald

Leo Gordon

Miguel Pignatelli

The Compara Perl API

- Written in Object-Oriented Perl
- Used to retrieve data from and store data into the Ensemble Compara database
- Links species together for Ensembl website
- Generalized to extend to non-Ensembl genomic data (Uniprot)
- Follows same 'Data Object' & 'Object Adaptor' DBAdaptor design as the other Ensembl APIs

Compara template script

```
use strict;
use Bio::EnsEMBL::Registry;
my $req = "Bio::EnsEMBL::Registry";
# Auto-configure the registry
$req->load registry from db(
     -host => "ensembldb.ensembl.org",
     -user => "anonymous"
);
# Get the adaptor object for the data type you want
my $xx adaptor = $reg->get adaptor("Multi", "compara", "XX");
# Fetch the data objects using the adaptor
my $all interesting xx = $xx adaptor->fetch all by YY();
print "All XX objects from E!Compara :\n";
foreach my $this xx (@$all_interesting_xx) {
    # Do some stuff with the data object_
  print "\t", $this xx->stable id, "\n";
```


Compara object model overview

Outline of the course

- Introduction about Compara
 - Resources
 - API
- Base objects
 - Genes, peptides, RNAs
 - Multiple / pairwise alignments

- Data objects
 - Families
 - Gene trees
 - Homologies

Member object / MemberAdaptor

Represents a gene, a transcript, or a protein

```
$member_adaptor->fetch_by_source_stable_id(...)
$member_adaptor->fetch_all_by_source_taxon(...)
```

 Come from Ensembl and Uniprot. The "source" or "source_name" field can be one of:

ENSEMBLGENE, ENSEMBLPEP, ENSEMBLTRANS, Uniprot/SPTREMBL, Uniprot/SWISSPROT

Attributes	Methods
Stable ID	<pre>\$member->stable_id()</pre>
Coordinates	<pre>\$member->chr_name() \$member->chr_start()</pre>
Sequence	<pre>\$member->sequence()</pre>
Function	<pre>\$member->description()</pre>

Links involving Member objects

Exercises - Member

 Print the sequence of the Member corresponding to SwissProt protein O93279

Find the Member(s) for the human ncRNA gene(s) FAM41C

 Find and print the sequence of all the peptide Members corresponding to the human protein-coding gene(s) FRAS1

AlignedMemberSet object

- Base object that represents a set of members aligned together, e.g. a multiple alignment of peptides / ncRNAs
- "Applied" in gene trees, families, and homologies
- No specific adaptor

Attributes	Methods
List of members	<pre>\$aln->get_all_Members()</pre>
Alignment (BioPerl object)	<pre>\$aln->get_SimpleAlign()</pre>
Description (if available)	\$aln->description()
Stable ID (if available)	<pre>\$aln->stable_id()</pre>

HOWTO: print a BioPerl alignment

Compara objects return alignments as BioPerl instances

```
$aln->get SimpleAlign()
```

 BioPerl provides an AlignIO object to format the actual output in various formats (fasta, clustalw, phylip ...)

```
use Bio::AlignIO;

# Get the alignIO object from BioPerl
my $alignIO = Bio::AlignIO->newFh(-format => "fasta");

# Print the alignment
print $alignIO $aln;
```


Outline of the course

- Introduction about Compara
 - Resources
 - API
- Base objects
 - Genes, peptides, RNAs
 - Multiple / pairwise alignments
- Data objects
 - Families
 - Gene trees
 - Homologies

Families

Families are clusters of similar peptides

Example on the web: ENSFM00500000271501 in Zebrafish

ZEBRAFISH genes in this family

Ensembl genes containing proteins in family ENSFM00500000271501

Gene ID and Location	Gene Name	Description(if known)
ENSDARG00000041086 Chromosome 7: 75.50m	CABZ01071177.1	Uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:F1QUF1]
ENSDARG00000024771 Chromosome 18: 4.64m	slc24a5	solute carrier family 24, member 5 [Source: ZFIN; Acc: ZDB-GENE-031210-1]

Family object / FamilyAdaptor

Represents a group of similar peptide members

```
$family adaptor->fetch all by Member(...)
$family adaptor->fetch by stable id(...)
```

Alternative transcripts can belong to different families!

(almost) the same methods as in AlignedMemberSet

Attributes	Methods
Alignment	<pre>\$family->get_SimpleAlign()</pre>
Biological function	<pre>\$family->description() \$family->description_score()</pre>
Gene content	<pre>\$family->get_all_Members()</pre>

Exercises - Families

 Get the multiple alignment corresponding to the family with the stable id ENSFM00250000006121

• Get the families predicted for the human gene ENSG00000139618. What do you notice?

GeneTree example on the website

Protein-Tree pipeline overview

All *e!* genes – canonical prot.

BLAST

hcluster_sg

MCoffee: MSA

TreeBeST: (+ reconciliation)

Ortholog/Paralog inference

Vilella et al., Genome Res. 2009

ncRNA-Tree pipeline overview

All e! ncRNA genes

Grouped in Family Models - RFAM

Infernal alignment + RaxML trees

PRANK alignment + NJ/ML trees

TreeBeST (tree reconciliation)

Ortholog/Paralog inference

Pignatelli et al., in preparation

GeneTree object / GeneTreeAdaptor

Represents a set of members, in a phylogenetic tree

```
$genetree_adaptor->fetch_by_stable_id(...)
$genetree adaptor->fetch default for Member(...)
```

fetch_all* methods require some more arguments:

```
-clusterset_id => 'default'
-tree_type => 'tree'
-member_type => 'protein' or 'ncrna'
```

Attributes	Methods
Alignment	<pre>\$tree->get_SimpleAlign()</pre>
Stable ID	<pre>\$tree->stable_id()</pre>
Tree export	<pre>\$tree->newick_format('simple') \$tree->nhx_format('full') \$tree->print_tree()</pre>

Gene Tree Node object

The actual tree structure is a hierarchy of *GeneTreeNode* objects

GeneTree

Gene Tree Node object

The actual tree structure is a hierarchy of *GeneTreeNode* objects

Additional information is stored with "tags"

```
$node->get_all_tags()
$node->get_tagvalue('node_type') or 'taxon_name', 'bootstrap'
```


Exercises – Protein and ncRNA trees

 Print the protein tree with the stable id ENSGT00390000003602

 Print all the members of the tree containing the human ncRNA gene ENSG00000238344

 Count the number of duplication event in the tree of the zebrafish protein-coding gene ENSDARG00000003399

Consists in tagging the pairs of genes of all the trees with a relation type, depending on the tree topology.

Homology object / HomologyAdaptor

Represents a relationship between two members

```
$homology adaptor->fetch all by Member(...)
$homology adaptor->fetch all by MethodLinkSpeciesSet(..)
$homology adaptor->fetch all by Member paired species(..)
```

One-to-many relationships are split: 🗥

- "H ortholog to M1" and "H ortholog to M2" are different objects

Attributes	Methods
Alignment	<pre>\$homology->get_SimpleAlign()</pre>
Natural selection	<pre>\$homology->dn() / \$homology->ds()</pre>
Gene content	<pre>\$homology->get_all_GeneMembers()</pre>
Homology characteristics	<pre>\$homology->description() \$homology->taxonomy_level()</pre>
Node in the gene tree	<pre>\$homology->node_id()</pre>

Exercises - Homologies

 Get all the homologues for the human gene ENSG00000229314

 Count the number of "one2one" homologues between human and mouse

 Find the human orthologues of ENSMUSG00000004843 and ENSMUSG00000025746. For each homology, display the alignment and the dn value. Comment on the divergence

