Table of Contents

0	Introduction						
	0.1	Models in the IERS Conventions					
		0.1.2 Criteria for choosing models					
	0.2	Differences between this document and IERS Technical Note 32					
	0.3	Conventions Center					
1	General definitions and numerical standards						
	1.1	Permanent tide					
	1.2	Numerical standards					
2	Con	ventional celestial reference system and frame 2					
	2.1	The ICRS					
		2.1.1 Equator					
		2.1.2 Origin of right ascension					
	2.2	The ICRF					
		2.2.1 Optical realization of the ICRF					
		2.2.2 Availability of the frame					
3	Con	nventional dynamical realization of the ICRS 25					
4	Tei	rrestrial reference systems and frames 3					
	4.1	Concepts and terminology					
		4.1.1 Basic concepts					
		4.1.2 TRF in space geodesy					
		4.1.3 Crust-based TRF					
		4.1.4 The International Terrestrial Reference System					
		4.1.5 Realizations of the ITRS					
	4.2	ITRF products					
		4.2.1 The IERS network					
		4.2.2 History of ITRF products					
		4.2.3 ITRF2005					
		4.2.4 ITRF2008, the current reference realization of the ITRS					
		4.2.5 ITRF as a realization of the ITRS					
		4.2.6 Transformation parameters between ITRF solutions					
	4.3	Access to the ITRS					
5	Тио	nsformation between the ITRS and the GCRS 4					
J	5.1	Introduction					
	5.2	The framework of IAU 2000/2006 resolutions					
	J	5.2.1 IAU 2000 resolutions					
		5.2.2 IAU 2006 resolutions					
	5.3	Implementation of IAU 2000 and IAU 2006 resolutions					
	0.0	5.3.1 The IAU 2000/2006 space-time reference systems					
		5.3.2 Schematic representation of the motion of the Celestial Intermediate Pole (CIP) 4					
		5.3.3 The IAU 2000/2006 realization of the Celestial Intermediate Pole (CIP) 4					
		5.3.4 Procedures for terrestrial-to-celestial transformation consistent with IAU 2000/2006 resolutions					
	5.4	Coordinate transformation consistent with the IAU 2000/2006 resolutions 4					
		5.4.1 Expression for the transformation matrix for polar motion					
		5.4.2 Expression for the CIO based transformation matrix for Earth rotation 4					

		5.4.3	Expression for the equinox based transformation matrix for Earth rotation	48
		5.4.4	Expression for the transformation matrix for the celestial motion of the CIP $$.	48
		5.4.5	Expression for the equinox-based transformation matrix for precession-nutation	49
	5.5	Param	eters to be used in the transformation	49
		5.5.1	Motion of the Celestial Intermediate Pole in the ITRS	49
		5.5.2	Position of the Terrestrial Intermediate Origin in the ITRS	51
		5.5.3	Earth Rotation Angle	52
		5.5.4	Forced motion of the Celestial Intermediate Pole in the GCRS	54
		5.5.5	Free Core Nutation	57
		5.5.6	Position of the Celestial Intermediate Origin in the GCRS	59
		5.5.7	ERA based expressions for Greenwich Sidereal Time	59
	5.6	Descri	ption of the IAU 2000/2006 precession-nutation model	61
		5.6.1	The IAU 2000A and IAU 2000B nutation model	61
		5.6.2	Description of the IAU 2006 precession	63
		5.6.3	IAU 2006 adjustments to the IAU 2000A nutation	64
		5.6.4	Precession developments compatible with the IAU 2000/2006 model $\ \ldots \ \ldots$	64
		5.6.5	Summary of different ways of implementing IAU $2006/2000A$ precession-nutation	65
	5.7	The fu	indamental arguments of nutation theory	66
		5.7.1	The multipliers of the fundamental arguments of nutation theory	66
		5.7.2	Development of the arguments of lunisolar nutation	66
		5.7.3	Development of the arguments for the planetary nutation	67
	5.8	Progra	de and retrograde nutation amplitudes	68
	5.9	Algori	thms for transformations between ITRS and GCRS	69
	5.10	Notes	on the new procedure to transform from ICRS to ITRS	71
6	C	potent	2-1	79
n)I)()I.@III		
•		_		
•	6.1	Conve	ntional model based on the EGM2008 model	79
		Conve	ntional model based on the EGM2008 model	79 81
	6.1	Conver Effect 6.2.1	ntional model based on the EGM2008 model	79 81 81
	6.1 6.2	Conver Effect 6.2.1 6.2.2	ntional model based on the EGM2008 model	79 81 81 88
	6.1	Converted to the Effect 6.2.1 6.2.2 Effect	ntional model based on the EGM2008 model	79 81 81 88 89
	6.1 6.2	Conver Effect 6.2.1 6.2.2 Effect 6.3.1	ntional model based on the EGM2008 model of solid Earth tides Conventional model for the solid Earth tides Treatment of the permanent tide of the ocean tides Background on ocean tide models	79 81 81 88 89 90
	6.1 6.2 6.3	Converted Effect 6.2.1 6.2.2 Effect 6.3.1 6.3.2	ntional model based on the EGM2008 model of solid Earth tides Conventional model for the solid Earth tides Treatment of the permanent tide of the ocean tides Background on ocean tide models Ocean tide models	79 81 81 88 89 90
	6.1 6.2 6.3	Conver Effect 6.2.1 6.2.2 Effect 6.3.1 6.3.2 Solid I	ntional model based on the EGM2008 model of solid Earth tides Conventional model for the solid Earth tides Treatment of the permanent tide of the ocean tides Background on ocean tide models Ocean tide models Earth pole tide	79 81 81 88 89 90 91 93
	6.1 6.2 6.3 6.4 6.5	Conver Effect 6.2.1 6.2.2 Effect 6.3.1 6.3.2 Solid I Ocean	ntional model based on the EGM2008 model of solid Earth tides Conventional model for the solid Earth tides Treatment of the permanent tide of the ocean tides Background on ocean tide models Ocean tide models Earth pole tide pole tide	79 81 81 88 89 90 91 93 94
	6.1 6.2 6.3	Conver Effect 6.2.1 6.2.2 Effect 6.3.1 6.3.2 Solid I Ocean	ntional model based on the EGM2008 model of solid Earth tides Conventional model for the solid Earth tides Treatment of the permanent tide of the ocean tides Background on ocean tide models Ocean tide models Earth pole tide	79 81 81 88 89 90 91 93
7	6.1 6.2 6.3 6.4 6.5 6.6	Conver Effect 6.2.1 6.2.2 Effect 6.3.1 6.3.2 Solid I Ocean Conver	ntional model based on the EGM2008 model of solid Earth tides Conventional model for the solid Earth tides Treatment of the permanent tide of the ocean tides Background on ocean tide models Ocean tide models Earth pole tide pole tide	79 81 81 88 89 90 91 93 94
	6.1 6.2 6.3 6.4 6.5 6.6	Conver Effect 6.2.1 6.2.2 Effect 6.3.1 6.3.2 Solid I Ocean Conver	ntional model based on the EGM2008 model of solid Earth tides Conventional model for the solid Earth tides Treatment of the permanent tide of the ocean tides Background on ocean tide models Ocean tide models Earth pole tide pole tide rsion of tidal amplitudes defined according to different conventions	79 81 81 88 89 90 91 93 94
	6.1 6.2 6.3 6.4 6.5 6.6 Dis j	Conver Effect 6.2.1 6.2.2 Effect 6.3.1 6.3.2 Solid I Ocean Conver	ntional model based on the EGM2008 model of solid Earth tides Conventional model for the solid Earth tides Treatment of the permanent tide of the ocean tides Background on ocean tide models Ocean tide models Earth pole tide pole tide rsion of tidal amplitudes defined according to different conventions ent of reference points	79 81 81 88 89 90 91 93 94 96
	6.1 6.2 6.3 6.4 6.5 6.6 Dis j	Converted Conver	ntional model based on the EGM2008 model of solid Earth tides Conventional model for the solid Earth tides Treatment of the permanent tide of the ocean tides Background on ocean tide models Ocean tide models Earth pole tide pole tide rsion of tidal amplitudes defined according to different conventions ent of reference points s for conventional displacement of reference markers on the crust Effects of the solid Earth tides	79 81 81 88 89 90 91 93 94 96
	6.1 6.2 6.3 6.4 6.5 6.6 Dis j	Converted Effect 6.2.1 6.2.2 Effect 6.3.1 6.3.2 Solid I Ocean Converted Models 7.1.1	ntional model based on the EGM2008 model of solid Earth tides Conventional model for the solid Earth tides Treatment of the permanent tide of the ocean tides Background on ocean tide models Ocean tide models Earth pole tide pole tide rsion of tidal amplitudes defined according to different conventions ent of reference points s for conventional displacement of reference markers on the crust Effects of the solid Earth tides Local site displacement due to ocean loading	79 81 81 88 89 90 91 93 94 96
	6.1 6.2 6.3 6.4 6.5 6.6 Dis j	Converted Effect 6.2.1 6.2.2 Effect 6.3.1 6.3.2 Solid I Ocean Converted Models 7.1.1 7.1.2	ntional model based on the EGM2008 model of solid Earth tides Conventional model for the solid Earth tides Treatment of the permanent tide of the ocean tides Background on ocean tide models Ocean tide models Earth pole tide rsion of tidal amplitudes defined according to different conventions ent of reference points s for conventional displacement of reference markers on the crust Effects of the solid Earth tides Local site displacement due to ocean loading S ₁ -S ₂ atmospheric pressure loading	79 81 81 88 89 90 91 93 94 96 99 99
	6.1 6.2 6.3 6.4 6.5 6.6 Dis j	Converted Effect 6.2.1 6.2.2 Effect 6.3.1 6.3.2 Solid I Ocean Converted Models 7.1.1 7.1.2 7.1.3	ntional model based on the EGM2008 model of solid Earth tides Conventional model for the solid Earth tides Treatment of the permanent tide of the ocean tides Background on ocean tide models Ocean tide models Earth pole tide pole tide rsion of tidal amplitudes defined according to different conventions ent of reference points s for conventional displacement of reference markers on the crust Effects of the solid Earth tides Local site displacement due to ocean loading S ₁ -S ₂ atmospheric pressure loading Rotational deformation due to polar motion	79 81 81 88 89 90 91 93 94 96 99 108 112
	6.1 6.2 6.3 6.4 6.5 6.6 Dis j	Converted Effect 6.2.1 6.2.2 Effect 6.3.1 6.3.2 Solid I Ocean Converted Models 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5	ntional model based on the EGM2008 model of solid Earth tides Conventional model for the solid Earth tides Treatment of the permanent tide of the ocean tides Background on ocean tide models Ocean tide models Earth pole tide pole tide rsion of tidal amplitudes defined according to different conventions ent of reference points s for conventional displacement of reference markers on the crust Effects of the solid Earth tides Local site displacement due to ocean loading S ₁ -S ₂ atmospheric pressure loading Rotational deformation due to polar motion Ocean pole tide loading	79 81 81 88 89 90 91 93 94 96 99 108 112 114
	6.1 6.2 6.3 6.4 6.5 6.6 Dis j 7.1	Converted Effect 6.2.1 6.2.2 Effect 6.3.1 6.3.2 Solid I Ocean Converted Models 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 Models	ntional model based on the EGM2008 model of solid Earth tides Conventional model for the solid Earth tides Treatment of the permanent tide of the ocean tides Background on ocean tide models Ocean tide models Earth pole tide pole tide rsion of tidal amplitudes defined according to different conventions ent of reference points s for conventional displacement of reference markers on the crust Effects of the solid Earth tides Local site displacement due to ocean loading S1-S2 atmospheric pressure loading Rotational deformation due to polar motion Ocean pole tide loading s for other non-conventional displacement of reference markers on the crust	79 81 81 88 89 90 91 93 94 96 99 108 112 114 116
	6.1 6.2 6.3 6.4 6.5 6.6 Dis j 7.1	Converted Effect 6.2.1 6.2.2 Effect 6.3.1 6.3.2 Solid I Ocean Converted Models 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 Models	ntional model based on the EGM2008 model of solid Earth tides Conventional model for the solid Earth tides Treatment of the permanent tide of the ocean tides Background on ocean tide models Ocean tide models Carth pole tide pole tide rsion of tidal amplitudes defined according to different conventions ent of reference points s for conventional displacement of reference markers on the crust Effects of the solid Earth tides Local site displacement due to ocean loading S1-S2 atmospheric pressure loading Rotational deformation due to polar motion Ocean pole tide loading s for other non-conventional displacement of reference markers on the crust s for the displacement of reference points of instruments	79 81 81 88 89 90 91 93 94 96 99 108 112 114 116 118
	6.1 6.2 6.3 6.4 6.5 6.6 Dis j 7.1	Converted Effect 6.2.1 6.2.2 Effect 6.3.1 6.3.2 Solid I Ocean Converted Models 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 Models Models Models Models	ntional model based on the EGM2008 model of solid Earth tides Conventional model for the solid Earth tides Treatment of the permanent tide of the ocean tides Background on ocean tide models Ocean tide models Ocean tide models Earth pole tide pole tide rsion of tidal amplitudes defined according to different conventions ent of reference points s for conventional displacement of reference markers on the crust Effects of the solid Earth tides Local site displacement due to ocean loading S1-S2 atmospheric pressure loading Rotational deformation due to polar motion Ocean pole tide loading s for other non-conventional displacement of reference markers on the crust s for the displacement of reference points of instruments Models common to several techniques	79 81 81 81 88 89 90 91 93 94 96 99 108 112 114 116 118

8	Tidal variations in the Earth's rotation					
	8.1	Effect of the tidal deformation (zonal tides) on Earth's rotation	123			
	8.2	Diurnal and semi-diurnal variations due to ocean tides	124			
	8.3	.3 Tidal variations in polar motion & polar motion excitation due to long period ocean tides 12-				
9	Models for atmospheric propagation delays					
	9.1 Tropospheric model for optical techniques					
		9.1.1 Zenith delay models				
		9.1.2 Mapping function				
		9.1.3 Future developments	134			
	9.2	Tropospheric model for radio techniques	135			
	9.3	Sources for meteorological data	136			
	9.4	Ionospheric model for radio techniques				
		9.4.1 $$ Ionospheric delay dependence on radio signals including higher order terms $$				
		9.4.2 Correcting the ionospheric effects on code and phase	142			
10		eral relativistic models for space-time coordinates and equations of motion	151			
		Time coordinates	151			
		Transformation between proper time and coordinate time in the vicinity of the Earth .	153			
		Equations of motion for an artificial Earth satellite	155			
	10.4	Equations of motion in the barycentric frame	156			
11	General relativistic models for propagation					
	11.1	VLBI time delay				
		11.1.1 Historical background				
		11.1.2 Specifications and domain of application	159			
		11.1.3 The analysis of VLBI measurements: definitions and interpretation of results .	160			
	11.0	11.1.4 The VLBI delay model	160			
	11.2	Ranging techniques	164			
A	IAU	NFA WG Recommendations	166			
В		Resolutions Adopted at the XXVIth General Assembly (2006)	168			
	B.1	IAU 2006 Resolution B1 on Adoption of the P03 Precession Theory & Definition of the				
		Ecliptic	168			
		IAU 2006 Resolution B2 on Supplement to IAU 2000 Resolutions on reference systems	168			
	В.3	IAU 2006 Resolution B3 on the Re-definition of Barycentric Dynamical Time, TDB $$.	170			
\mathbf{C}	IUG	GG Resolution 2 Adopted at the XXIVth General Assembly (2007)	171			
D	IAU Resolutions Adopted at the XXVIIth General Assembly (2009)					
	D.1	IAU 2009 Resolution B2 on IAU 2009 astronomical constants	172			
	D.2	IAU 2009 Resolution B3 on Second Realization of International Celestial Reference Fram	e172			
$\mathbf{G}\mathbf{l}$	ossaı	ry	174			