Experimento 03 - Ondas Estacionárias

Giovani Garuffi RA: 155559João Baraldi RA: 158044Lauro Cruz RA: 156175Lucas Schanner RA: 156412Pedro Stringhini RA: 156983

28 de setembro de 2014

- 1 Resumo
- 2 Objetivos
- 3 Procedimento Experimental e Coleta de Dados
- 3.1 Materiais utilizados
- 3.2 Procedimento
- 3.3 Dados Obtidos

4 Análise dos Resultados e Discussões

4.1 Linearização

A equação

$$L = \frac{1}{2f} \sqrt{\frac{mg}{\mu}} n$$

Pode ser reescrita como

$$L = (\frac{1}{2f} \sqrt{\frac{g}{\mu}}) \cdot n\sqrt{m}$$

Vemos então que deve existir uma uma relação linear entre L e $n\sqrt{m}$ em que o coeficiente angular é $a=\frac{1}{2f}\sqrt{\frac{g}{\mu}}$ e o coeficiente linear é b=0, que pode ser verificada utilizando-se a tabela abaixo:

Tabela 1: Valores de m, \sqrt{m} e $n\sqrt{m}$ relacionados aos comprimentos do fio L

L(m)	n	m(Kg)	$\sqrt{m} \ (\sqrt{Kg})$	$n\sqrt{m} \ (\sqrt{Kg})$
0.875 ± 0.001	2	0.2586 ± 0.0001	0.5085 ± 0.0001	1.0171 ± 0.0002
0.905 ± 0.001	4	0.0718 ± 0.0001	0.2680 ± 0.0002	1.0718 ± 0.0007
0.973 ± 0.001	5	0.0498 ± 0.0001	0.2232 ± 0.0002	1.116 ± 0.001
0.985 ± 0.001	3	0.1975 ± 0.0001	0.4444 ± 0.0001	1.3332 ± 0.0003
1.065 ± 0.001	4	0.1042 ± 0.0001	0.3228 ± 0.0002	1.2912 ± 0.0006
1.155 ± 0.001	5	0.0718 ± 0.0001	0.2680 ± 0.0002	1.3400 ± 0.0009
1.168 ± 0.001	6	0.0498 ± 0.0001	0.2232 ± 0.0002	1.340 ± 0.001
1.193 ± 0.001	3	0.2322 ± 0.0001	0.4819 ± 0.0001	1.4456 ± 0.0003
1.255 ± 0.001	3	0.2586 ± 0.0001	0.5085 ± 0.0001	1.5256 ± 0.0003
1.300 ± 0.001	7	0.0498 ± 0.0001	0.2232 ± 0.0002	1.562 ± 0.002
1.310 ± 0.001	4	0.1975 ± 0.0001	0.4444 ± 0.0001	1.7776 ± 0.0004
1.340 ± 0.001	5	0.1042 ± 0.0001	0.3228 ± 0.0002	1.6140 ± 0.0008
1.365 ± 0.001	6	0.0718 ± 0.0001	0.2680 ± 0.0002	1.608 ± 0.001

4.2 Regressão linear

Fazendo-se a regressão linear $n\sqrt{m}$ por L obtem-se os coeficientes:

$$a = 1.3985 \pm 0.0007 \frac{m}{\sqrt{Kg}}$$

$$b = -0.196 \pm 0.001m$$

Sendo a o coeficiente angular e b o coeficiente linear. Nota-se que segundo a linearização da equação original, o coeficiente linear deveria ser nulo, o que não condiz com a regressão linear dos dados experimentais. Isso se deve a erros aleatórios e erros durante as medições. A sobreposição da reta obtida sobre os pontos da tabela pode ser vista no gráfico abaixo:

Figura 1: Gráfico da regressão linear de $n\sqrt{m}$ por L, sobreposta aos pontos obtidos experimentalmente.

4.3 Densidade linear do fio

A densidade linear do fio é a relação entre o comprimento (L) do fio e sua massa (M_f) , representado por $\mu = \frac{M_f}{L}$.

A representação física do coeficiente linear (a) é:

$$a = \frac{1}{2f} \sqrt{\frac{g}{\mu}}$$

Isolando μ obtemos:

$$\mu = \frac{g}{4a^2f^2}$$

Considerando o valor da aceleração da gravidade

$$g = 9.8 \frac{m}{s^2}$$

O valor da densidade linear é:

$$\mu=0.0000259\frac{Kg}{m}$$

O erro de μ é dado por:

$$\Delta \mu = \frac{g}{2f^2 a^3} \Delta a$$

E fazendo-se as devidas substituições chega-se ao valor de:

$$\Delta \mu = 0.0000003 \frac{Kg}{m}$$

5 Conclusões

Referências