Lecture 15 - Introduction to Parallelism

DSE 512

Drew Schmidt 2022-03-22

From Last Time

- Homework 2 is graded
- Homework 3 posted tonight some time
- Let's talk about that...

Where We've Been

Module 1: Basic Cloud and HPC

- Lecture 1 Introduction
- Lecture 2 Overview of HPC and the Cloud
- Lecture 3 Introduction to Remote Computing
- Lecture 4 Introduction to Containers
- Lecture 5 Introduction to ISAAC
- Lecture 6 MPI and Singularity

Where We've Been

Module 2: Performance Optimization

- Lecture 7 Introduction to Performance Optimization
- Lecture 8 High Level Language Optimizations
- Lecture 9 Computational Linear Algebra Part 1
- Lecture 10 Computational Linear Algebra Part 1
- Lecture 11 GPGPU (The Easy Parts) Part 1
- Lecture 12 GPGPU (The Easy Parts) Part 2
- Lecture 13 Utilizing Compiled Code
- Lecture 14 I/O

Where We're Headed

Module 3: Parallelism

- Introduction to Parallelism
- Forks and Threads
- MPI
- MapReduce

Intro to Parallelism

Parallelism

- We've seen some before!
- Treated mostly as a "black box"
- We'll get more familiar with implementing parallel algorithms

Hardware

Hardware

What Is Parallelism?

Parallelism is about independence.

Serial Programming

Parallel Programming

Make Lunch: Serial

Make Lunch: Parallel

Kinds of Parallelism

- Task parallelism
 - Very important to data analysis pipelines
 - o Example: fitting multiple models, choosing the best one
- Data parallelism
 - Less common pattern in data science
 - Example: "Big data"

Task Parallelism

Data Parallelism

Scalability

Strong Scaling

Weak Scaling

Scalability?

- "scale up"
- "scale out"
- What do these mysterious phrases mean?

Forks and Threads

- Primary interfaces
 - Python's multiprocessing package
 - o R's parallel package
- *Many* other interfaces

Forks and Threads

- Kernel-level parallelism mechanisms
- Fork
 - Fork is an inexpensive process clone mechanism
 - Only supported on Linux and MacOS
 - Data is copy on modify!
 - Example: have you ever used R/Python paralellism before?
- Threads
 - Sub-component of a process
 - Only *directly* accessible via C/C++ (pthreads, OpenMP, ...)
 - Data is managed by you!
 - Example: OpenBLAS uses threading

MPI

- Message Passing Interface
- Distributed programming standard
- Implementations
 - o OpenMPI
 - MPICH
 - \circ MPT
 - Spectrum

HLL Hello World

Python R

print('Hello World') print("Hello World")

mpi4py Hello World

```
from mpi4py import MPI
comm = MPI.COMM WORLD
rank = comm.Get_rank()
size = comm.Get_size()
comm_localrank = MPI.Comm.Split_type(comm, MPI.COMM_TYPE_SHARED, 0)
rank_local = comm_localrank.Get_rank()
size_local = comm_localrank.Get_size()
for p in range(0, size):
    if p == rank:
        print("Hello from rank ", end="")
        print(str(rank) + "/" + str(size) + " global ", end="")
        print(str(rank_local) + "/" + str(size_local) + " local")
    comm.Barrier()
mpi4py.MPI.Finalize()
```

pbdR Hello World

```
suppressMessages(library(pbdMPI))

rank = comm.rank()
size = comm.size()
rank_local = comm.localrank()

hostname = system("uname -n", intern=TRUE)
hostnames = allgather(hostname) |> unlist |> table
size_local = hostnames[hostname] |> unname

msg = paste0("Hello from rank ", rank, "/", size, " global ", rank_local, " local\n")
comm.cat(msg, all.rank=TRUE, quiet=TRUE)
```

MPI

- Not fork or thread-based --- network-based
- Can use forks or threads within an MPI process (careful with fork...)
- For performance, *you're almost always* better off not mixing MPI + threads
- MPI + GPU on the other hand...

We will have *a lot* to say about MPI...

MapReduce

- The MapReduce algorithm
- Not just map() + reduce()!
- Implementations
 - Hadoop
 - Spark
 - MPI?!
- Good for ETL; *atrocious* for analytics

Wrapup

- There are many mechanisms for parallel computing.
- We will focus mostly on fork and MPI.
- What does scalability really mean? Was he lying about that weak scalability thing?

Questions?