空气与气体动力学

张科

回顾:

 $Ma_{1n} = Ma_1 sin\beta$

 $Ma_{2n} = Ma_2\sin(\beta - \delta)$ 的正激波。

定量计算,定性分析;

- 2.激波相交与反射;
- 3.激波-膨胀波应用。

 $\delta - \beta - Ma$ 关系图

十二. 准一维可压管内流(空9)

喷管、扩压器、风洞

1. 准一维流:

一维流

准一维流:A(x)变化小,忽略y,z变化

(a) One-dimensional flow

(b) Quasi-one-dimensional flow

2. 准一维流控制方程:

连续方程: $\rho_1 u_1 A_1 = \rho_2 u_2 A_2$ ①

动量方程:

$$p_1 A_1 - p_2 A_2 + \int_{A_1}^{A_2} p dA = \rho_2 u_2^2 A_2 - \rho_1 u_1^2 A_1$$

$$p_1 A_1 + \rho_1 u_1^2 A_1 + \int_{A_1}^{A_2} p dA = p_2 A_2 + \rho_2 u_2^2 A_2$$

能量方程: $h_1 + \frac{u_1^2}{2} = h_2 + \frac{u_2^2}{2} = h_0$ ③

状态方程: $P = \rho RT$ $h = C_p T$

 $\rho_1 u_1 A_1 = \rho_2 u_2 A_2$

 $p_1 A_1 + \rho_1 u_1^2 A_1 + \int_{A_1}^{A_2} p dA = p_2 A_2 + \rho_2 u_2^2 A_2$

$$h_1 + \frac{u_1^2}{2} = h_2 + \frac{u_2^2}{2} = h_0$$

微分方程:连续: $\rho uA = C$

$$d(\rho uA) = 0 \tag{}$$

动量: $pA + \rho u^2 A + pdA = (p + dp)(A + dA) + (\rho + d\rho)(u + du)^2 (A + dA)$

$$Adp = -\rho u A du$$
 \rightarrow $dp = -\rho u du$ ② 欧拉方程!准一维动量方程

能量:
$$h + \frac{u^2}{2} = C \rightarrow dh + udu = 0$$
 ③

2. 准一维流控制方程:

$$d(\rho uA) = 0 \qquad \qquad \Rightarrow \qquad \frac{d\rho}{\rho} + \frac{du}{u} + \frac{dA}{A} = 0$$

$$dp = -\rho u du \qquad \Rightarrow \qquad \frac{dp}{\rho} = -u du$$

$$dh + u du = 0 \qquad \qquad 3$$

$$\frac{dp}{d\rho} \frac{d\rho}{\rho} = a^2 \frac{d\rho}{\rho} = -u du$$

$$\frac{d\rho}{\partial \rho} \rho \qquad \rho$$

$$\Rightarrow \qquad \frac{d\rho}{\rho} = -Ma^2 \frac{du}{u} \qquad \boxed{5}$$

$$4 + 5 \rightarrow -Ma^2 \frac{du}{u} + \frac{du}{u} + \frac{dA}{A} = 0$$

$$\frac{dA}{A} = (Ma^2 - 1)\frac{du}{u}$$

面积速度关系式!

2. 准一维流控制方程: $\frac{dA}{A} = (Ma^2 - 1)\frac{du}{u}$

0 < Ma < 1时, dA > 0 du < 0,A u

Ma > 1时, dA > 0 du > 0,A **1** u **1**

马赫数	加速	减速扩压
Ma<1(亚声速)	- THE THE STATE OF	
	渐缩喷管	渐扩扩压管
Ma>1(超声速)		Level -
	渐扩喷管	渐缩扩压管

2. 准一维流控制方程: $\frac{dA}{A} = (Ma^2 - 1)\frac{du}{u}$

$$\frac{dA}{A} = (Ma^2 - 1)\frac{du}{u}$$

静止气体等熵加速至Ma > 1:

超声速喷管(拉瓦尔喷管) $Maf p \downarrow$

s气体等熵减速至Ma < 1:

12.2喷管(9.3) (nozzle):减压、增速;喷气式飞机、火箭发动机等重要部件!

1. 控制方程: $\rho uA = C$

$$\frac{A}{A^*} = \frac{\rho^* u^*}{\rho u} = \frac{\rho^*}{\rho_0} \frac{\rho_0}{\rho^*} \frac{a^*}{u}$$

等熵:
$$\frac{\rho^*}{\rho_0} = \left(\frac{2}{\gamma+1}\right)^{\frac{1}{\gamma-1}} \quad \frac{\rho_0}{\rho} = \left(1 + \frac{\gamma-1}{2}Ma^2\right)^{\frac{1}{\gamma-1}}$$

$$\left(\frac{u}{a^*}\right)^2 = Ma^{*2} = \frac{(\gamma+1)Ma^2}{2+(\gamma-1)Ma^2}$$

$$\rightarrow \left(\frac{A}{A^*}\right)^2 = \left(\frac{\rho^*}{\rho_0}\right)^2 \left(\frac{\rho_0}{\rho^*}\right)^2 \frac{1}{Ma^{*2}} = \frac{1}{Ma^2} \left[\frac{2}{\gamma+1} \left(1 + \frac{\gamma-1}{2} Ma^2\right)\right]^{\frac{\gamma+1}{\gamma-1}}$$

面积-马赫数关系式! 附表A

- $ightharpoonup Ma = f\left(\frac{A}{A^*}\right), \ A \geq A^*$ $A < A^*$? ? 无等熵流动解!
- ➤ 给定 $\frac{A}{A^*}$, (Ma>1, Ma<1)两解。 $\frac{A}{A^*}=2$ →Ma=0.31或Ma=2.2

2. 等熵参数变化:

$$\frac{A}{A^*} \rightarrow Ma \rightarrow p, \rho, T$$

等熵流动, $\frac{A}{A^*}$ 决定流动参数!

3. 实际流动: $p_e < p_0$ 产生流动

 $p_{e3} < pe < p_0$ 亚声速等熵流动,

 $\frac{A}{A^*}$, p_e 决定流动参数!

 $p_e > p_{e3}$ 喉部<mark>非</mark>临界参数!

 $u_t = a^*$ 时, p_e ↓收缩段流动不变, $\dot{m} = \rho^* a^* A_t$ 不再变, \rightarrow 流动"壅塞"

3. 实际流动:

 p_e ↓ \dot{m} **1**, 直至 p_e pe_3 , $u_t = a^*$, \dot{m} 不变

 $p_e < p_{e3}$ 收缩段不变, 扩张段出现Ma > 1!

3. 实际流动:

 $p_e < p_{e3}$ 收缩段不变, 扩张段出现Ma > 1! 管内出现正激波!

 p_e ↓正激波后移!

 $p_e = p_{e5}$ 正激波到出口。

3. 实际流动:

 $> p_{e6} < pe < p_{e5}$ 出口处有斜激波!

 p_{e6}

 $p_B > p_{e6}$ 喷管内过膨胀!

 p_B \ 激波\

 $p_e < p_{e6}$ 出口处有膨胀波!

已知 $A(x) \rightarrow Ma(x)!$

 $p_B < p_{e6}$ 喷管内欠膨胀!

实际喷管设计稍有误差,内部易出现斜激波,三维可压了

例: $p_0=1$ atm, $T_0=288$ K, $\frac{A_e}{A^*}=2$, 等熵流动。 求 p^* , T^* , Ma_e , pe, T_e 。

① $Ma_e > 1$; ② $Ma_e < 1$,但 $Ma_t = 1$; ③ $p_e = 0.973 atm$,求 Ma_t , Ma_e 。

解:① $Ma_e > 1$:

$$\frac{A_e}{A^*} = 2$$
,附表A

$$\rightarrow Ma_e = 0.3, Ma_e = 2.2$$

附表A: $Ma_e = 2.2$ \rightarrow

$$\frac{p_0}{p_e} = 10.69, \frac{T_0}{T_e} = 1.968$$

$$\rightarrow p_e = 0.0935 atm, T_e = 145 K$$

$$\frac{p^*}{p_0} = 0.528, \frac{T^*}{T_0} = 0.833 \rightarrow p^* = 0.528 atm, T^* = 240 K$$

例: $p_0=1$ atm, $T_0=288$ K, $\frac{A_e}{A^*}=2$, 等熵流动。 求 Ma^* , p^* , T^* , Ma_e , pe, T_{e°

① $Ma_e > 1$; ② $Ma_e < 1$,但 $Ma_t = 1$; ③ $p_e = 0.973 atm$,求 Ma_t , Ma_e 。

解:②
$$Ma_e < 1$$
 , $Ma_t = 1$:

$$\frac{A_e}{A^*} = 2$$
,附表A

$$\rightarrow Ma_e = 0.3, Ma_e = 2.2$$

附表A: $Ma_e = 0.3$ →

$$\frac{p_e}{p_0} = 0.9395, \frac{T_e}{T_0} = 0.9823$$

$$\rightarrow p_e = 0.9395 atm, T_e = 282.9 K$$

$$p = 0.528atm, T = 240K$$

例: $p_0=1atm, T_0=288K$, $\frac{A_e}{A^*}=2$,等熵流动。 求 Ma^*,p^*,T^*,Ma_e , pe,T_e 。

① $Ma_e > 1$; ② $Ma_e < 1$,但 $Ma_t = 1$; ③ $p_e = 0.973 atm$,求 Ma_t , Ma_e 。

解:③
$$p_e = 0.973 atm > pe_{3} = 0.9395 atm^{M}$$

附表A:
$$\frac{p_e}{p_0} = 0.973 \rightarrow Ma_e = 0.2$$

$$\frac{A_e}{A^*} = 2.964$$
 $\frac{A_e}{A^*} = 2$???

$$\frac{A_e}{A_t} = 2 \qquad \frac{A_t}{A^*} \rightarrow Ma_t$$

$$\frac{A_t}{A^*} = \frac{A_t}{A_e} \frac{A_e}{A^*} = \frac{1}{2} \times 2.964 = 1.482$$

附表A: $\rightarrow Ma_e = 0.44$

作业:

复习笔记!

空气动力学书9.1, 9.7, 9.8