WHAT IS CLAIMED IS:

1	A method of ablating cardiac tissue, comprising the steps of:	
2	providing an ablating device having an ablating element and a suction well, the	
3	suction well surrounding the ablating element, the suction well being coupled to a	
4	suction line which is coupled to a vacuum source;	
5	positioning the ablating device against the patient's epicardium;	
6	adhering the ablating device to the epicardium with the suction well; and	
7	ablating tissue with the ablating element after the adhering step.	
1	2. The method of claim 1, wherein:	
2	the ablating step is carried out to form a transmural lesion without penetrating	
3	the epicardium.	
1	3. The trethod of claim 1, wherein:	
2	the providing step is carried out with the device having means for determining	
3	when the suction well is adequately adhered to the epicardium.	
1	4. The method of claim 1, wherein:	
2	the providing step is carried out with the device having a temperature sensor	
3	positioned to measure the temperature of the tissue during the ablating step.	
1	5. The method of claim 4, wherein:	
2	the providing step is carried out with the temperature sensor being positioned	
3	between adjacent ablating elements.	
1	6. The method of claim 1, wherein:	
2	the providing step is carried out with the suction well having an inner lip and	
3	an outer lip, the inner lip forming a closed wall around the ablating element, the	
4	device also having a fluid inlet and a fluid outlet for passing fluid into and out of a	
5	fluid chamber defined between the inner lip, the ablating element and the tissue.	

1	7. The method of claim 6, further comprising the step of:
2	delivering a conductive fluid to the fluid inlet.
1	8. The method of claim 7, wherein:
2	the delivering step is carried out with the conductive fluid being hypertonic
3	saline.
1	9. The method of claim 6, further comprising the step of:
2	delivering the fluid at a temperature of no more than 40°C.
1	10. The method of claim 9, wherein:
2	the delivering step is carried out with an average flow rate of fluid across each
3	of a plurality of the ablating elements of at least 0.25 cc/sec.
1	11. The method of claim 10, wherein:
2	the delivering step is carried out with the average flow rate of fluid across each
3	of the plurality of ablating elements is at least 0.50 cc/sec.
1	12. The method of claim 1, wherein:
2	the providing step is carried out with the ablating element having a width of
3	0.2-0.5 inch and a length of 5-12 inches.
1	13. The method of claim 1, wherein:
2	the positioning step is carried out with the ablating element being positioned
3	0.5-3 mm from the tissue.
1	14. The method of claim 1, wherein:
2	the providing step is carried out with the device having a plurality of cells,
3	each cell having a suction well and at least one ablating element.
1	15. The method of claim 14, wherein:
2.	the providing step is carried out with the device having 5-30 cells.

1	16. The method of claim 15, wherein:	
2	the providing step is carried out with the device having 10-25 cells.	
1	17. The method of claim 14, wherein:	
2	the providing step is carried out with the device having means for determining	
3	whether each of the dells is adequately adhered to the tissue.	
1	18. The method of claim 1, wherein:	
2	the providing step is carried out with the device having a locking mechanism;	
3	the method further comprising the steps of wrapping the device around the pulmonary	
4	veins and forming a closed loop by locking one part of the device to another part of	
5	the device with the locking mechanism.	
1	19. A device for ablating tissue comprising:	
2	a body having a plurality of cells, at least one suction well for adhering the	
3	cells to tissue to be ablated; and	
4	at least one ablating element contained within the suction well.	
	\mathcal{U}	
1	20. The device of claim 19, wherein:	
2	the body has a plurality of suction wells and a suction lumen coupled to the	
3	plurality of suction wells.	
1	21. The device of claim 19, wherein:	
2	the body has 10-25 cells.	
1	22. The device of claim 19, further comprising:	
2	a fluid inlet positioned to deliver fluid within the suction well; and	
3	a fluid outlet which receives fluid from the fluid inlet.	
1	23. The device of claim 22, wherein:	
2	the ablating element has a long axis and a short axis; and	
3	the fluid inlet and fluid outlet are positioned on opposite sides of the ablating	
4	element along the short axis.	

1	24. The device of claim 13, wherein:			
2	the fluid in et is coupled to a source of conductive fluid.			
	25 The decision of alabamaian			
1	25. The device of claim 9, wherein:			
2	the ablating element is an RF electrode.			
,	26. The device of claim 18, wherein:			
1	26. The device of claim 18, wherein: the RF electrode has a length of 2-25 mm and a width of 1-6 mm.			
2	the Kr electione has a length of 2-23 min and a width of 1-0 min.			
1	27. A device for ablating cardiac tissue, comprising:			
2	a body;			
3	an ablating element coupled to the body;			
4	a sensor positioned to measure a parameter at tissue ablated by the ablating			
5	element; and			
6	a control system coupled to the sensor and the ablating element, the control			
7	system receiving parameter measurements from the sensor, the control system being			
8	operably coupled to the ablating element and delivering energy to the ablating element			
9	in response to the parameter measurements to create a lesion in the tissue.			
1	28. The device of claim 27, wherein:			
2	the sensor is a temperature sensor; and			
3	the control system receives temperature change measurements over a period of			
4	time.			
1	29. The device of claim 28, wherein:			
2	the control system delivers energy to the ablating element until the temperature			
3	sensor measures a temperature below a threshold temperature.			
1	30. The device of claim 28, wherein:			
2	the control system delivers energy to the ablating element for a selected period			
3	of time while maintaining the temperature of a near surface of the tissue between 0-			
4	80°C.			

•	1.	
1	31. The device of claim 28, further comprising:	
2	a plurality of ablating elements; and	
3	a plurality of temperature sensors, wherein at least two temperature sensors	
4	correspond to eagh ablating element; and	
5	the control system receives the temperature change measurements from the at	
6	least two temperature sensors for each ablating element.	
1	32. The device of claim 31, wherein:	
2	each of the plurality of temperature sensors corresponds to one of the ablating	
3	elements; and	
4	the control system delivers energy to at least one of the ablating elements for	
which the corresponding temperature sensor measures a lowest temperature.		
1	33. The device of claim 27, wherein:	
2	the body has a locking mechanism for locking one part of the body to another	
3	part of the body to form a closed loop.	
1	34. A method of delivering energy to ablate tissue, comprising the steps of:	
2	providing a device having an ablating element;	
3	positioning the device at a tissue site, the tissue site having a near surface and	
4	a far surface;	
5	measuring a temperature change at the tissue site over a period of time;	
6	analyzing the temperature change to provide a tissue characterization; and	
7	ablating the tissue in response to the tissue characterization.	
1	35. The method of claim 34, wherein:	
2	the analyzing and ablating steps are controlled by a control system;	
3	the positioning step is carried out with the tissue site having a near surface and	
4	a far surface; and	
5	the ablating step being carried out by maintaining the near surface temperature	
6	at a temperature of 0-80°C during the ablating step.	

1	36. The method of claim 34, wherein:			
2	the providing step is carried out with the device having an ablating element;			
3	and			
4	the method also including the step of changing the temperature of the tissue			
5	with the ablating element; and			
6	the ablating step is carried out with the ablating element.			
1	37. The method of claim 34, wherein:			
2	the positioning step is carried out with the device being in contact with the			
3	epicardium.			
1	38. The method of claim 34, wherein:			
2	the ablating step is carried out using the results of the measuring step to			
3	approximate when the far surface achieves a target temperature.			
1	39. The method of claim 34, wherein:			
2	the ablating step is carried out with input of at least one variable from a list of			
3	variables consisting of presence of fat, amount of fat, flow rate of blood, tissue			
4	thickness and temperature of blood.			
1	40. The method of claim 34, wherein:			
2	the ablating step is carried out with a plurality of ablating elements, wherein			
3	no more than 50% of the ablating elements are activated at one time.			
1	41. The method of claim 34, wherein:			
2	the providing step is carried out with the device having a plurality of suction			
3	wells, at least one of the ablating elements being positioned in each of the suction			
4	wells.			
1	42. A device for ablating tissue, comprising:			
2	an elongate book having an end, the elongate body having at least one ablating			
3	element; and			

4	a plurality of suction wells in the body, the suction wells being positioned		
5	along the length of the body.		
	·		
1	43. The device of claim 42, wherein:		
2	the elongate body has a plurality of ablating elements.		
1	44. The device of claim 43, wherein:		
2	the suction wells are coupled to a suction lumen.		
•	45. The device of claim 47, further comprising:		
1			
2	a second suction lumen coupled to another plurality of suction wells.		
1	46. The device of claim 46, wherein:		
2	the suction lymer is formed by a tube attached to the body.		
1	47. The device of claim 42, wherein:		
2	the suction well surrounds the ablating element.		
1	48. The device of claim 44, wherein:		
2	the suction well is formed by an inner lip and an outer lip;		
3	the device further comprising a fluid inlet and a fluid outlet, the fluid inlet and outlet		
4	being configured to pass a fluid into and out of a space bounded by the inner lip.		
1	49. The device of claim 46, wherein:		
2	the fluid outlet is coupled to a suction lumen which is also coupled to at least		
3	one of the suction wells.		
1	50. A method of creating a continuous ablation lesion in heart tissue,		
2	comprising the steps of:		
3	providing a first ablating section and a second ablating section, the first and		
4	second ablating sections each having an end and an ablating element;		
5	positioning the first and second ablating sections in contact with the		
6	epicardium;		

7	wrapping the first and second ablating sections around at least one vessel;		
8	interlocking the first and second sections to form a closed loop around the at		
9	least one vessel.		
1	51. A method of creating a continuous lesion in tissue, comprising the		
2	steps of:		
3	providing an ablating device having an ablating element;		
4	positioning the ablating device in contact with the epicardium;		
5	ablating tissue to create a first lesion;		
6	moving the ablating device to a location adjacent the first lesion;		
7	ablating tissue with the ablating element to create a second lesion which is		
8	continuous with the first lesion.		
1	52. A method of creating a lesion from an epicardial location, comprising		
2	the steps of:		
3	providing a first device and a second device slidably coupled to the first		
4	device, at least one of the first and second devices having an ablating element;		
5	introducing the first and second devices into the pericardial space;		
6	ablating tissue to form a first lesion with the ablating element;		
7	moving at least one of the first and second devices relative to the other; and		
8	forming a second lesion after the moving step.		
1	53. A method of ablating cardiac tissue, comprising the steps of:		
2	providing an ablating device having an ablating element and a suction well, the		
3	suction well being coupled to a suction line which is coupled to a vacuum source, the		
4	ablating device also having means for determining when the suction well is adhered to		
5	the epicardium;		
6	positioning the ablating device against the patient's epicardium;		
7	adhering the ablating device to the epicardium with the suction well; and		
8	ablating tissue with the ablating element after the adhering step.		
1	54. The method of claim 53, wherein:		

2	the providing step is carried out with the determining means being a sensor		
3	selected from the group of sensors consisting of a flow rate sensor, a pressure sensor		
4	and an electric circuit.		
i	55. A device for ablating epicardial tissue, comprising:		
2	a body;		
3	an ablating element mounted to the body;		
4	a suction well on the body for adhering the body to the epicardium; and		
5	means for determining when the suction well is adhered to the epicardium;		
1	56. The method of claim 55, wherein:		
2	the determining means is a sensor selected from the group of sensors		
3	consisting of a flow rate sensor, a pressure sensor and an electric circuit.		
1	57. A method of ablating cardiac tissue, comprising:		
2	providing an ablating device having an ablating element, a fluid inlet, and a		
3	fluid outlet;		
4	positioning the ablating element in contact with a patient's epicardium;		
5	flowing fluid through the fluid inlet and fluid outlet to cool tissue laterally		
6	spaced from the ablating element; and		
7	ablating tissue with the ablating element.		
1	58. The method of claim 57, wherein:		
2	the providing step is carried out with the ablating device having a vacuum		
3	lumen, the fluid outlet being coupled to the fluid outlet; and		
4	the method further comprising the step of withdrawing fluid through the fl		
5	outlet with the vacuum lumen.		
1	59. The method of claim 57, wherein:		
2	the providing step is carried out with the fluid also flowing along a backside		
3	the ablating element.		

1	60. T	The method of claim 57, wherein:
2	the prov	iding step is carried out with the ablating device having at least one
3	suction well; an	d
4	the meth	od further including the step of adhering the ablating device to the
5	epicardium with	the suction well.
1	61. T	The method of claim 61, wherein:
2	the flow	ing step is carried out with the fluid cooling an area on the epicardium
3	adjacent to the a	blating element.
1	62. A	A device for ablating tissue, comprising:
2	a body h	aving a plurality of cells, each cell having an ablating element; and
3	a numbe	r of binges positioned between the cells.
1	63. T	The device of claim 62, wherein:
2	the body	is formed of a material and the hinges are formed by integrally
3	formed portions	of the material.
1	64. T	The device of claim 62, wherein:
2	the body	has at least 5-30 cells.
1	65. Т	The device of claim 62, wherein:
2	the body	has at least one suction well and a suction lumen coupled to the
3	suction well.	
1	66. T	The device of claim 65, wherein:
2	the body	has 5-30 suction wells, a number of the suction wells being coupled
3	to the suction lu	men.
1	67. T	The device of claim 66, wherein:
2	the body	has two suction lumens extending around the device, the plurality of
3	suction wells be	ing coupled to at least one of the two suction lumens.

1	68. The device of claim 66, wherein:		
2	the body has a fluid inlet and a fluid outlet, the fluid inlet and fluid outlet.		
1	69. The device of claim 68, wherein:		
2	each of the cells has a fluid inlet and a fluid outlet.		
1	70. The device of claim 68, wherein:		
2	the fluid inlet and fluid outlet are positioned to deliver fluid across a backside		
3	of the ablating element.		
1	71. The device of claim 68, wherein:		
2	the fluid inlet and fluid outlet are positioned to deliver fluid across a frontside		
3	of the ablating element and in contact with the tissue being ablated.		
1	72. The device of claim 62, further comprising:		
2	a fluid conduit which receives a coolant, the fluid conduit directing the fluid to		
3	a position on the tissue adjacent to the ablating element.		
1	73. The device of claim 72, wherein:		
2	the fluid conduit directs the fluid to at least two lateral sides of the ablating element.		
1	74. The device of claim 62, wherein:		
2	the body is made of an elastomeric material.		