

SAP-3 Processor Core Specification Sheet

Abderahman Mohamed Khalil	V23010331
Ahmed Kamal	V23010450
Mohaned Tarek	V23010449
Mohamed Gamal	V23010636

Delivered to Dr. Islam Yehia

Contents

Processor Overview	3
Specifications	3
Programming model	4
Hardware details	
Memory	ε
ALU	6
Register File	7
Clock Controller	
Output Controller	7
Controller and instruction register	8
Peripheral interface	8
Instruction set architecture (ISA)	
Instructions details	
Timing Diagram	14
Area Analysis	14
Testing Plan	15
Testing Each Module	15
Testing the main instructions required	15
Programming Examples	15
Addition code	15
Stack Testing Code	16

Processor Overview

Specifications

- **❖** 8-bit Simple Processor with SAP-3 Core
 - ♣ Runs at **700 MHz** as a maximum frequency
 - **♣** Includes **basic arithmetic and logical** operations
 - **4** Supports **conditional and unconditional branching** instruction
 - **♣** Supports **extended word size** operations (16-bit)
- **❖ I/O**
 - ♣ It has I/Os to be connected to 16-bit address bus and 8-bit data bus
- ***** Low power
 - Has low standby power consumption due to clock gating that cuts the clock after the execution end of the program
- ***** Memory
 - **♣** Has **64kb RAM** memory
 - ♣ Follows **Von Neumann** architecture (instruction and data in the same memory)

Programming model

The processor core has 8 registers with 8-bit width and 2 registers with 16-bits word width. The 8-bit registers are: B,C,D,E,H,L,W and Z. In extended instructions, each pair can be treated as one register to form 4 registers with 16-bit word size. H,L has special task when direct addressing mode is used which is storing the address mentioned in the instruction during a direct addressing mode. The PC (Program Counter) register is used to store the location of the next instruction. In basic designs, the PC is found outside the register file as an independent module, in our design, it is included in the register file to reduce control complexity and reduce control lines. The SP (Stack Pointer) register is used to store the last data location that is pushed to the stack memory.

Figure 1 Programming model of the designed processor

Hardware details

The design of the processor follows Von Neumann architecture. As a result, all sub blocks of the processor communicate through single 16-bit bus transferring both address and data as shown in figure 2. The controlling lines forms 35-bit word size controlled by the processor controller.

Figure 2 Processor Core Overall Block Diagram

Memory

<u>I/O:</u>

- input clk
- input rst
- input mar_we
- input ram_we
- input bus
- output out

<u>ALU</u>

<u>I/O:</u>

- input clk
- input rst
- input a_store
- input a_restore
- input a_we
- **input** tmp_we
- input flags_we
- input cs
- input op
- input bus
- output flags
- output out

Register File

<u>I/O:</u>

- input clk
- input rst
- input rd_sel
- input wr_sel
- input ext
- input we
- input data_in
- output data out

Clock Controller

<u>I/O:</u>

- input clk in
- input hlt
- output clk_out

Output Controller

<u>I/O:</u>

- input clk
- input rst
- input reg_we
- input reg_sel
- input bus
- **output** out_address_bus
- output out_data_bus

Controller and instruction register

<u>I/O:</u>

- input clk,
- input rst
- input opcode
- input flags
- output reg ctrl_word

Peripheral interface

The processor can be connected to other peripheral to extend its functions or to communicate to outside world through the output controller. The output controller depends on the concept of address based i/o which means there will be address bus and data bus, and the peripheral with the address putted in the bus will be able to receive the data in the data bus. The address width is 16-bit word which means that 65535 peripherals can be connected to the processor.

Instruction set architecture (ISA)

The ISA of the processor follows exactly the ISA of 8085

Flags abbreviation:

S: Sign Flag

Z: Zero Flag

P: Parity Flag

C: Carry Flag

Instructions details

	- 4	_		uction.					
Instruction	Opcode	Bytes	Flags	Clock	Function	Addressing			
			affected	cycles		mode			
Arithmetic instructions									
		In	crement an	d decre	ement instructions				
INR A	3C	1	SZP-	4	A = A + 1	Register			
INR B	04	1	SZP-	6	B = B + 1	Register			
INR C	0C	1	SZP-	6	C = C + 1	Register			
INR D	14	1	SZP-	6	D = D + 1	Register			
INR E	1C	1	SZP-	6	E = E + 1	Register			
INR H	24	1	SZP-	6	H = H + 1	Register			
INR L	2C	1	SZP-	6	L = L + 1	Register			
INR M	34	1	SZP-	7	[HL] = [HL] + 1	Direct			
DCR A	3D	1	SZP-	4	A = A - 1	Register			
DCR B	05	1	SZP-	6	B = B - 1	Register			
DCR C	0D	1	SZP-	6	C = C - 1	Register			
DCR D	15	1	SZP-	6	D = D - 1	Register			
DCR E	1D	1	SZP-	6	E = E - 1	Register			
DCR H	25	1	SZP-	6	H = H - 1	Register			
DCR L	2D	1	SZP-	6	L = L - 1	Register			
DCR M	35	1	SZP-	7	[HL] = [HL] - 1	Direct			
INX B	03	1		4	BC = BC + 1	Register			
INX D	13	1		4	DE = DE + 1	Register			
INX H	23	1		4	HL = HL + 1	Register			
INX SP	33	1		4	SP = SP + 1	Register			
DCX B	0B	1		4	BC = BC - 1	Register			
DCX D	1B	1		4	DE = DE - 1	Register			
DCX H	2B	1		4	HL = HL - 1	Register			
DCX SP	3B	1		4	SP = SP - 1	Register			
DAD B	09	1	C	12	HL = HL + BC	Register			
DAD D	19	1	C	12	HL = HL + DE	Register			
DAD H	29	1	C	12	HL = HL + HL	Register			
DAD SP	39	1	C	12	HL = HL + SP	Register			
				Addit	ion				
ADD A	87	1	SZPC	4	A = A + A	Register			
ADD B	80	1	SZPC	5	A = A + B	Register			
ADD C	81	1	SZPC	5	A = A + C	Register			
ADD D	82	1	SZPC	5	A = A + D	Register			
ADD E	83	1	SZPC	5	A = A + E	Register			
ADD H	84	1	SZPC	5	A = A + H	Register			
ADD L	85	1	SZPC	5	A = A + L	Register			
ADD M	86	1	SZPC	6	A = A + [HL]	Direct			
ADI byte	C6	2	SZPC	6	$A = A + \underline{byte}$	Immediate			
ADC A	8F	1	SZPC	4	A = A + A + FlagC	Register			

ADC B	88	1	SZPC	5	A = A + B + FlagC	Register
ADC C	89	1	SZPC	5	A = A + C + FlagC	Register
ADC D	8A	1	SZPC	5	A = A + D + FlagC	Register
ADC E	8B	1	SZPC	5	A = A + E + FlagC	Register
ADC H	8C	1	SZPC	5	A = A + H + FlagC	Register
ADC L	8D	1	SZPC	5	A = A + L + FlagC	Register
ADC M	8E	1	SZPC	6	A = A + [HL] + FlagC	Direct
ACI byte	CE	2	SZPC	6	A = A + byte + FlagC	Immediate
,	L	I.		Subtrac		1
SUB A	97	1	SZPC	4	A = A - A	Register
SUB B	90	1	SZPC	5	A = A - B	Register
SUB C	91	1	SZPC	5	A = A - C	Register
SUB D	92	1	SZPC	5	A = A - D	Register
SUB E	93	1	SZPC	5	A = A - E	Register
SUB H	94	1	SZPC	5	A = A - H	Register
SUB L	95	1	SZPC	5	A = A - L	Register
SUB M	96	1	SZPC	6	A = A - [HL]	Direct
SUI byte	D6	2	SZPC	6	A = A - byte	Immediate
SBB A	9F	1	SZPC	4	A = A - A - FlagC	Register
SBB B	98	1	SZPC	5	A = A - B - FlagC	Register
SBB C	99	1	SZPC	5	A = A - C - FlagC	Register
SBB D	9A	1	SZPC	5	A = A - D - FlagC	Register
SBB E	9B	1	SZPC	5	A = A - E - FlagC $A = A - E - FlagC$	Register
SBB H	9C	1	SZPC	5	A = A - H - FlagC $A = A - H - FlagC$	Register
SBB L	9D	1	SZPC	5	A = A - L - FlagC	Register
SBB M	9D 9E	1	SZPC	6	A = A - [HL] - FlagC	Direct
					- 1	
SBI byte	SBI byte DE 2 SZPC 6 A = A - <u>byte</u> - FlagC Logical operation instructions		Immediate			
			Logical c			
			T =====	AN.		
ANAA	A7	1	SZPC	4	A = A and A	Register
ANA B	A0	1	SZPC	5	A = A and B	Register
ANA C	A1	1	SZPC	5	A = A and C	Register
ANA D	A2	1	SZPC	5	A = A and D	Register
ANA E	A3	1	SZPC	5	A = A and E	Register
ANA H	A4	1	SZPC	5	A = A and H	Register
ANA L	A5	1	SZPC	5	A = A and L	Register
ANA M	A6	1	SZPC	6	A = A and $[HL]$	Direct
ANI byte	E6	2	SZPC	6	$A = A$ and \underline{byte}	Immediate
				OF		
ORA A	В7	1	SZPC	4	A = A or A	Register
ORA B	В0	1	SZPC	5	A = A or B	Register
ORA C	B1	1	SZPC	5	A = A or C	Register
ORA D	B2	1	SZPC	5	A = A or D	Register
ORA E	В3	1	SZPC	5	A = A or E	Register
ORA H	B4	1	SZPC	5	A = A or H	Register
				5		

ORA M	В6	1	SZPC	6	A = A or [HL]	Direct			
ORI byte	F6	2	SZPC	6	$A = A \text{ or } \underline{byte}$	Immediate			
	XOR								
XRA A	AF	1	SZPC	4	A = A xor A	Register			
XRA B	A8	1	SZPC	5	A = A xor B	Register			
XRA C	A9	1	SZPC	5	A = A xor C	Register			
XRA D	AA	1	SZPC	5	A = A xor D	Register			
XRA E	AB	1	SZPC	5	A = A xor E	Register			
XRA H	AC	1	SZPC	5	A = A xor H	Register			
XRA L	AD	1	SZPC	5	A = A xor L	Register			
XRA M	AE	1	SZPC	6	A = A xor [HL]	Direct			
XRI byte	EE	2	SZPC	6	A = A xor byte	Immediate			
					Rotate				
RLC	07	1	C	4	Shift A left, $FlagC = A[7]$	Register			
RAL	17	1	C	4	Shift A left, shift FlagC into A[0]	Register			
RAR	1F	1	C	4	Shift A right, shift FlagC into A[7]	Register			
RRC	0F	1	C	4	Shift A right, FlagC = $A[0]$	Register			
RRC	01	1			nstructions	Register			
		I -	Con		rry Flag	T			
CMA	2F	1		4	A = ~A	Register			
STC	37	1	C	4	FlagC = 1	-			
CMC									
				Comp					
CMP A	BF	1	SZPC	4	FlagZ = 1 if A == A	Register			
CMP B	B8	1	SZPC	5	FlagZ = 1 if A == B	Register			
CMP C	В9	1	SZPC	5	FlagZ = 1 if A == C	Register			
CMP D	BA	1	SZPC	5	$FlagZ = 1 \text{ if } A \Longrightarrow D$	Register			
CMP E	BB	1	SZPC	5	FlagZ = 1 if A == E	Register			
CMP H	BC	1	SZPC	5	FlagZ = 1 if A == H	Register			
CMP L	BD	1	SZPC	5	FlagZ = 1 if A == L	Register			
CMP M	BE	1	SZPC	6	FlagZ = 1 if A == [HL]	Direct			
CPI byte	FE	2		6	$FlagZ = 1 \text{ if } A == \underline{byte}$	Immediate			
			Data Mo	vemen	t instructions				
			Load & Ex	xtended	l Load & Store				
LDA addr	3A	3		11	Load A with [addr]	Direct			
LXI B, dble	01	3		10	Load BC with <i>dble</i>	Immediate			
LXI D, dble	11	3		10	Load DE with dble	Immediate			
LXI H, dble	21	3		10	Load HL with dble	Immediate			
LXI SP, dble	31	3		10	Load SP with dble	Immediate			
STA addr	32	3		11	Store A at [addr]	Direct			
LHLD addr	2A	3		14	Load HL with [addr]	Direct			
SHLD addr	22	3		14	Store HL at [addr]	Direct			
STILD addi	44	<u> </u>		Mov		Direct			
MOVAA	70	1				Danista			
MOV A, A	7F	1		4	A = A	Register			
MOV A, B	78	1		4	A = B	Register			
MOV A, C	79			4	A = C	Register			

MOV A, D 7A 1 4 MOV A, E 7B 1 4 MOV A, H 7C 1 4	A = D $A = E$	Register
	A = E	ъ .
MOV A, H 7C 1 4		Register
	A = H	Register
MOV A, L 7D 1 4	A = L	Register
MOV A, M 7E 1 5	A = [HL]	Register
MOV B, A 47 1 4	B = A	Register
MOV B, B 40 1 4	B = B	Register
MOV B, C 41 1 4	B = C	Register
MOV B, D 42 1 4	B = D	Register
MOV B, E 43 1 4	B = E	Register
MOV B, H 44 1 4	B = H	Register
MOV B, L 45 1 4	B = L	Register
MOV B, M 46 1 5	B = [HL]	Register
MOV C, A 4F 1 4	C = A	Register
MOV C, B 48 1 4	C = B	Register
MOV C, C 49 1 4	C = C	Register
MOV C, C 49 1 4	C = D	Register
MOV C, E 4B 1 4	C = E	Register
MOV C, H 4C 1 4	C = H	Register
MOV C, II 4C I 4D 1 4	$\frac{C = II}{C = L}$	Register
MOV C, M 4E 1 5	C = [HL]	Register
MOV C, NI 4L 1 4	D = A	Register
MOV D, A 57 1 4 MOV D, B 50 1 4	D = B	Register
MOV D. C. 51 1	D = C	Register
MOV D, C 31 1 4 MOV D, D 52 1 4	D = D	
MOV D. E. 52 1	D = E	Register
MOV D II 54 1	D = H	Register
		Register
	D = [T	Register
	D = [HL]	Register
MOV E, A 5F 1 4	E = A	Register
MOV E, B 58 1 4	E = B	Register
MOV E, C 59 1 4	E = C	Register
MOV E, D 5A 1 4	E = D	Register
MOV E, E 5B 1 4	E = E	Register
MOV E, H 5C 1 4	E = H	Register
MOV E, L 5D 1 4	$E = \Gamma$	Register
MOV E, M 5E 1 5	E = [HL]	Register
MOV H, A 67 1 4	H = A	Register
MOV H, B 60 1 4	H = B	Register
MOV H, C 61 1 4	H = C	Register
MOV H, D 62 1 4	H = D	Register
MOV H, E 63 1 4	H = E	Register
MOV H, H 64 1 4	H = H	Register
MOV H, L 65 1 4	H = L	Register
MOV H, M 66 1 5	H = [HL]	Register
MOV L, A 6F 1 4	L = A	Register
MOV L, B 68 1 4	L = B	Register

MOV L, C	69	1		4	L = C	Register				
MOV L, D	6A	1		4	L = D	Register				
MOV L, E	6B	1		4	L = E	Register				
MOV L, H	6C	1		4	L = H	Register				
MOV L, L	6D	1		4	L = L	Register				
MOV L, M	6E	1		5	L = [HL]	Register				
MOV M, A	77	1		5	[HL] = A	Direct				
MOV M, B	70	1		5	[HL] = B	Direct				
MOV M, C	71	1		5	[HL] = C	Direct				
MOV M, D	72	1		5	[HL] = D	Direct				
MOV M, E	73	1		5	[HL] = E	Direct				
MOV M, H	74	1		5	[HL] = H	Direct				
MOV M, L	75	1		5	[HL] = L	Direct				
,			Mo	ove imi	nediate					
MVI A, byte	3E	2		6	$A = \underline{byte}$	Immediate				
MVI B, byte	06	2		6	$B = \underline{byte}$	Immediate				
MVI C, byte	0E	2		6	$C = \underline{byte}$	Immediate				
MVI D, byte	16	2		6	$D = \underline{byte}$	Immediate				
MVI E, byte	1E	2		6	$E = \underline{byte}$	Immediate				
MVI H, byte	26	2		6	$H = \underline{byte}$	Immediate				
MVI L, byte	2E	2		6	$L = \underline{byte}$	Immediate				
MVI M, byte	36	2		8	$[HL] = \underline{byte}$	Immediate				
			Sta	ck inst	ructions					
				PUS						
PUSH B	C5	1		9	Push value in BC onto the stack	-				
PUSH D	D5	1		9	Push value in DE onto the stack	-				
PUSH H	E5	1		9	Push value in HL onto the stack	-				
PUSH PSW	F5	1		9	Push value in AF onto the stack	-				
POP										
POP B	C1	1		9	Pop value on stack into BC	-				
POP D	D1	1		9	Pop value on stack into DE	-				
POP H	E1	1		9	Pop value on stack into HL	-				
POP PSW	F1	1		9	Pop value on stack into AF	-				
			Rout	ines ins	structions					
			1000	CAL						
CALL addr	CD	3		16	Call function at <i>addr</i>	Direct				
				Retu	<u> </u>	1				
RET	С9	1		4	Return from function	-				
				Jum	ıp .					
JMP addr	C3	3		4	Jump to <u>addr</u>	Direct				
JP addr	F2	3		4/9	Jump to \underline{addr} if FlagS == 0	Direct				
JM addr	FA	3		4/9	Jump to <u>addr</u> if FlagS == 1	Direct				
JNZ addr	C2	3		4/9	Jump to \underline{addr} if $FlagZ == 0$	Direct				
JZ addr	CA	3		4/9	Jump to \underline{addr} if $FlagZ == 1$	Direct				
JPO addr	E2	3		4/9	Jump to <u>addr</u> if FlagP == 0	Direct				
JPE addr	EA	3		4/9	Jump to <u>addr</u> if FlagP == 1	Direct				
	· · · · · · · · · · · · · · · · · · ·									

JNC addr	D2	3	4/9		Jump to \underline{addr} if FlagC $= 0$	Direct		
JC addr	DA	3		4/9	 			
Control instruction								
NOP	00	1	4 Do nothing		-			
HLT	76	1		4 Halt execution		-		
OUT <u>addr</u>	D3	3	10 Outputs A to <i>addr</i> peripheral		-			

Timing Diagram

Figure 3 Fetching cycle

Area Analysis

```
Input Design Statistics
   Number of LUTs
                                            1159
   Number of DFFs
                                            161
   Number of DFFs packed to IO
                                            0
   Number of Carrys
                                            92
   Number of RAMs
   Number of ROMs
                                            0
   Number of IOs
                                            8
   Number of GBIOs
                                            2
   Number of GBs
                                            1
   Number of WarmBoot
                                            0
   Number of PLLs
```

Figure 4 Area analysis of the processor

Testing Plan

To test our processor, three main tests were conducted to make sure it works properly:

Testing Each Module

Each module is tested through simulation in order to make sure that its hardware is functioning properly, and the error is not from the hardware.

Testing the main instructions required

Main instruction required from the proposal is tested that it functions properly such as arithmetic, logic, stack and branching operations. The rest is tested through programs.

Programming Examples

To make sure that all the processor works in harmony, 2 simple programs (Addition program and stack testing program) were written to test some of the rest of the instructions.

Addition code

MVI A. 08

MVI B, 04

ADD B

OUT 02

HLT

Figure 5 addition program results

Stack Testing Code

INX B

INX B

INX B

PUSH B

POP D

MOV A, E

OUT 20

4 →	Msgs										
- → /processor_core_tb/i	32'h00000bb8	(0000000000									(0000000
/processor_core_tb	1'h1										
<pre>/processor_core_tb</pre>	1'h0	سسيرا	سسس	سسس	سسسا	سسس	سسسا	سسس	سسس	سسس	الملايا
+-/> /processor_core_tb	16'h0020	0000							(002	0	
-/-/ /processor_core_tb	8'h03	00								(03	