Introduction

Voici un petit exercice que je me suis posé pour utiliser Pandas et MatPlotLib pour examiner un dataset. J'ai décidé d'utiliser un des datasets accessibles au public de Google - j'ai choisi celui des Objectifs de Développement Durable des Nations Unies avec l'idée d'essayer d'extraire une perspective intéressante.

Il s'est avéré que c'était une bonne formation pour l'exploration des données, principalement en utilisant Pandas, et l'expérience a renforcé le message omniprésent que la plupart du boulot de data science consiste en l'exploration, le nettoyage et la structuration des données avant le début de l'analyse.

Résultats

L'objectif de cet exercice était principalement de s'entraîner à utiliser des techniques, mais il y avait quand même un sens. La question globale que j'ai fini par examiner était "Est-ce qu'il existe une corrélation entre la puissance économique d'un pays et la réussite de son système d'éducation?". Pour avoir une réponse (très approximative) j'ai comparé compétence de lecture et compétence de mathématiques (selon les définitions des Nations Unies) avec PIB par habitant. Voilà les résultats...

Donc la réponse à la question "Est-ce qu'il existe une corrélation entre la puissance économique d'un pays et la réussite de son système d'éducation?" a l'air d'être "Oui". En regardant les coefficients de corrélation de rang Spearman, on a tendance à voir une corrélation "forte" selon ce document (i.e., entre 0.60 - 0.79).

Pourtant, bien que les pays plus riches aient tendance à avoir les meilleurs résultats, il y a plusieurs exceptions, et peut-être plus intéressant encore, il y a beaucoup de pays pauvres avec de bons résultats.

Les résultats par région sont affichés ci-dessous. Pas beaucoup plus à constater sauf peut-être la performance forte de l'Asie en Maths pendant les premières années de l'éducation malgré un PIB par habitant relativement bas. (Les coefficients de Spearman ne sont pas fiables à cause des données insuffisantes.)

Voici maintenant la partie plus intéressante (au moins pour moi) - le reste de ce notebook montre comment produire ces diagrammes...

Le Dataset sur BigQuery

Accéder le dataset

Pour accéder aux datasets publics de BigQuery il faut d'abord un compte de Google Cloud Console et ensuite il faut créer un nouveau projet (les détails ici). Ensuite on peut chercher le dataset en utilisant Explorer.

Examiner le dataset

J'ai décidé de travailler avec un dataset assez petit parce que, en utilisant BigQuery:

- Pour les requêtes il y a une limite de 1TB par mois sans payer
- On peut télécharger des fichiers csv des résultats d'une requête avec une limite de 10MB par fichier / requête. (On peut stocker les fichiers plus grands dans Google Cloud Storage mais je voulais travailler directement sur mon ordi.)

Structure et taille

Pour commençer, le schéma du tableau nous renseigne sur les types et les contenus des colonnes (l'image çidessous montre un extrait du schéma - cliquer pour agrandir)

Field name	Туре	Mode	Policy tags ?	Description
goal	INTEGER	NULLABLE		High-level goal for sustainable development
target	STRING	NULLABLE		Each goal has multiple targets. Specific data points that, when achieved, indicate substantial progress toward a goal
indicator	STRING	NULLABLE		Quantifiable metric used to determine progress towards reaching a target. Each target has between 1 and 3 indicators
seriescode	STRING	NULLABLE		Abbreviated string of characters for each specific indicator
seriesdescription	STRING	NULLABLE		Full text description of indicator
geoareacode	INTEGER	NULLABLE		Numeric code of GeoArea
geoareaname	STRING	NULLABLE		Full text of GeoArea. Includes countries, regions, and continents
timeperiod	STRING	NULLABLE		Time period for which the value is relevant
value	STRING	NULLABLE		Numeric value of GeoArea
time_detail	STRING	NULLABLE		Time period in which the data was collected to calculate value
source	STRING	NULLABLE		Original source of data
footnote	STRING	NULLABLE		Specific details regarding data for individual observation
nature	STRING	NULLABLE		
age	STRING	NULLABLE		

On peut également visualiser les contenus du tableau pour voir les genres de données qu'on a.

On peut voir immédiatement que les colonnes d'objectif, de cible, d'indicateur et de valuer sont les colonnes essentielles qui correspondent à la structure affichée sur la page d'accueil de UN SDG. Par exemple, en prenant la première ligne du tableau, on peut voir comment elle correspond à l'objectif 8, la cible 8.5, et l'indicateur 8.5.1 comme indiqué çi-dessous (copié de la sous-section Targets and Indicators de la Goal 8 page (disponible en anglais seulement)).

En faisant défiler vers la droite on peut voir qu'il y a plusieurs colonnes où il est possible qu'elles contiennent beaucoup de valeurs null . À étudier...

SCH	SCHEMA DETAILS		_S	PREVIEW									
natur	e age	bounds	cities	education_level	freq	hazard_type	ihr_capacity	level_status	location	migratory_status	mode_of_transportation	name_of_international_institution	name_of_non_communicable_disease
С	null	null	null	null	null	null	null	null	null	null	null	null	null
С	null	null	null	null	null	null	null	null	null	null	null	null	null
С	null	null	null	null	null	null	null	null	null	null	null	null	null
С	null	null	null	null	null	null	null	null	null	null	null	null	null
С	null	null	null	null	null	null	null	null	null	null	null	null	null
С	null	null	null	null	null	null	null	null	null	null	null	null	null
С	null	null	null	null	null	null	null	null	null	null	null	null	null
С	null	null	null	null	null	null	null	null	null	null	null	null	null
С	null	null	null	null	null	null	null	null	null	null	null	null	null
С	null	null	null	null	null	null	null	null	null	null	null	null	null
С	null	null	null	null	null	null	null	null	null	null	null	null	null

Et en dessous de la fenêtre de visualisation on peut voir que le tableau contient un peu plus de 1 million lignes.

1 million de lignes n'est pas énorme. Sélectionner le tableau entier paraît possible en utilisant SELECT * FROM bigquery-public-data.un_sdg.indicators car BigQuery affiche combien du quota de requête sera utilisé, et cette fois-çi c'est assez petit. Mais malheureusement, quand on execute la requête et ensuite on télécharge les résultats le fichier est limité à environ 12,000 des 1 million lignes pour respecter la limite de 10MB. Donc ça ne marche pas.

Bon - peut-étre qu'il vaut mieux choisir un seul objectif et extraire ces données. C'est le moment d'utiliser un peu de SQL pour examiner ce qu'on a, et aussi pour comprendre ce qui est accessible pratiquement sans manger le quota de requête et sans excéder la limite de taille de fichier à télécharger. La requête çi-dessous me donne le nombre de lignes par objectif:

```
SELECT goal, COUNT(*) AS num_rows
FROM bigquery-public-data.un_sdg.indicators
GROUP BY goal
ORDER BY goal
```

On peut examiner le fichier csv téléchargé des résultats en utilisant pandas. Un moyen pour réduire la quantité des données c'est de focaliser sur une sous-catégorie des objectifs, donc affichons les volumes des données par objectif.

```
In [1]: import numpy as np
import pandas as pd

In [2]: rows_per_goal = pd.read_csv('data/count-rows-per-goal.csv')
    total_rows = rows_per_goal['num_rows'].sum()
    print(f"Total rows : {total_rows:,}")
    rows_per_goal.style.format("{:,}")
```

Total rows : 1,050,781

Out[2]:		goal	num_rows
	0	1	62,742
	1	2	38,659
	2	3	134,617
	3	4	41,533
	4	5	21,703
	5	6	36,062
	6	7	19,670
	7	8	270,140
	8	9	34,880
	9	10	19,241
	10	11	10,557
	11	12	225,302
	12	13	2,740
	13	14	12,614
	14	15	66,540
	15	16	18,719
	16	17	35,062

Regardons les valeurs null aussi. Si on ne va choisir qu'un seul objectif ou peut-être deux, peut-être que quelques colonnes ne sont pas pertinentes pour certains objectifs. Par conséquent on pourra les exclure. Pour compter toutes les valeurs null des colonnes je me servirai d'une requête de la forme ci-dessous:

```
SELECT goal, COUNT(goal) AS num_rows,
SUM(CASE WHEN col1_name IS NULL THEN 1 ELSE 0 END) as col1_name,
SUM(CASE WHEN col2_name IS NULL THEN 1 ELSE 0 END) as col2_name
FROM bigquery-public-data.un_sdg.indicators
GROUP BY goal
ORDER BY goal
```

Donc on a besoin d'une liste des titres des colonnes pour qu'on puisse les inclure dans la requête. Bien sûr on pourrait copier coller du schéma BigQuery et ensuite utiliser Excel pour concaténer, mais pour moi c'est de la tricherie - l'idée c'est de s'entraîner avec Python! À la place on peut utiliser SQL pour extraire les titres des colonnes et ensuite utiliser Pandas / Python pour créer la requête. Voici la requête pour les titres des colonnes:

```
SELECT COLUMN_NAME
FROM `bigquery-public-data`.un_sdg.INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME = 'indicators'
ORDER BY ORDINAL_POSITION
```

...qui nous donne le résultat ci-dessous (en enlevant la colonne goal):

```
In [3]: column_names = pd.read_csv('data/un-sdg-column-names.csv')
    column_names_list = column_names['COLUMN_NAME'].tolist()
    del column_names_list[0]
    print(column_names_list)

    ['target', 'indicator', 'seriescode', 'seriesdescription', 'geoareacode', 'geoareaname',
    'timeperiod', 'value', 'time_detail', 'source', 'footnote', 'nature', 'age', 'bounds',
    'cities', 'education_level', 'freq', 'hazard_type', 'ihr_capacity', 'level_status',
    'location', 'migratory_status', 'mode_of_transportation',
    'name_of_international_institution', 'name_of_non_communicable_disease', 'sex',
    'tariff_regime_status', 'type_of_mobile_technology', 'type_of_occupation', 'type_of_product',
    'type_of_skill', 'type_of_speed', 'units']
```

Maintenant on peut créer une chaîne à partir de la liste pour la requête.

```
In [4]: sql_col_expressions = list(map(lambda col_name : 'SUM(CASE WHEN ' + col_name + ' IS NULL THEN
1 ELSE 0 END) AS ' + col_name, column_names_list))
sql_col_str = ', '.join(sql_col_expressions)

# Display a truncated extract of the string
print(sql_col_str[0:400] + "...")
```

SUM(CASE WHEN target IS NULL THEN 1 ELSE 0 END) AS target, SUM(CASE WHEN indicator IS NULL THEN 1 ELSE 0 END) AS indicator, SUM(CASE WHEN seriescode IS NULL THEN 1 ELSE 0 END) AS seriescode, SUM(CASE WHEN seriesdescription IS NULL THEN 1 ELSE 0 END) AS seriesdescription, SUM(CASE WHEN geoareacode IS NULL THEN 1 ELSE 0 END) AS geoareacode, SUM(CASE WHEN geoareaname IS NULL THEN 1 ELSE 0 END) AS geo...

Voici le résultat de la requête.

Out[5]:		goal	num_ro\	target	indicat	seriesc	seriesc	geoare	geoare	timepe	value	time_d	source	footnot	nature	age
-	0	1	62742	0	0	0	0	0	0	0	0	9353	0	10606	0	54372
	1	2	38659	0	0	0	0	0	0	0	0	0	0	5212	0	34958
	2	3	134617	0	0	0	0	0	0	0	0	2668	0	114972	0	85929
	3	4	41533	0	0	0	0	0	0	0	0	36695	0	39627	0	41397
	4	5	21703	0	0	0	0	0	0	0	0	2076	0	4740	0	15136
	5	6	36062	0	0	0	0	0	0	0	0	0	0	31874	0	36062
	6	7	19670	0	0	0	0	0	0	0	0	1080	0	19670	0	1967(
	7	8	270140	0	0	0	0	0	0	0	0	10413	0	238315	0	244885
	8	9	34880	0	0	0	0	0	0	0	0	1	0	14860	0	3488(
	9	10	19241	0	0	0	0	0	0	0	0	750	0	14429	0	19241
	10	11	10557	0	0	0	0	0	0	0	0	0	0	732	0	10557
	11	12	225302	0	0	0	0	0	0	0	0	0	0	225302	0	225302
	12	13	2740	0	0	0	0	0	0	0	0	0	0	0	0	274(
	13	14	12614	0	0	0	0	0	0	0	0	0	21	11787	0	12614
	14	15	66540	0	0	0	0	0	0	0	0	0	0	56337	0	6654(
	15	16	18719	0	0	0	0	0	0	0	0	0	0	14984	0	18073
	16	17	35062	0	0	0	0	0	0	0	0	3060	0	17624	0	35062
																•

On aura besoin de convertir ces chiffres en pourcentage pour les rendre utiles, mais avant ça ajoutons la liste des objectifs UN SDG pour qu'on sache de quoi ils parlent. J'ai copié la liste de Wikipedia et je l'ai collée dans un fichier texte.

```
In [6]: with open("data/un-sdg-goals-list.txt", "r") as f:
    goals_list = f.read().splitlines()
print(goals_list)
```

['No Poverty', 'Zero Hunger', 'Good Health and Well-being', 'Quality Education', 'Gender Equality', 'Clean Water and Sanitation', 'Affordable and Clean Energy', 'Decent Work and Economic Growth', 'Industry, Innovation and Infrastructure', 'Reduced Inequality', 'Sustainable Cities and Communities', 'Responsible Consumption and Production', 'Climate Action', 'Life Below Water', 'Life On Land', 'Peace', 'Justice', 'Strong Institutions', 'Partnerships for the Goals']

Maintenant on peut convertir en pourcentage et ajouter les objectifs. Le tableau montre les pourcentage des valeurs null, et avec un peu de mise en forme, on peut voir facilement où il y a des trous et par conséquent des colonnes à exclure. (Plus le vert est foncé moins il y a des valeurs null.)

```
# Define a dataframe to apply 'nowrap' class to all cells in the goal_title column
classes = pd.DataFrame(
    [['nowrap']],
    index=nulls_per_goal_percentages.index,
    columns=['goal title']
)
idx = pd.IndexSlice
display(
   nulls_per_goal_percentages.style
   # Set the background gradient - Dark green for 0 nulls, light green for 100% nulls.
    .background_gradient(cmap='Greens_r', vmin=0, vmax=1, subset=idx[:, idx['target':]])
    # Hide the zeros and format other numbers as percentages.
   .format(lambda v: "" if v==0 else f"{v:.1%}", subset=idx[:, idx['target':]])
   # Apply the classes to the table cells.
   .set_td_classes(classes)
   .set_table_styles([
        # Add internal styles to nowrap class to prevent goal titles wrapping.
        {'selector': '.nowrap', 'props': 'min-width: 100px;'},
        # Add styles so we can have narrow columns but show the column title in full on hover.
        {'selector': '.col_heading', 'props': 'max-width: 30px; overflow: hidden'},
        {'selector': '.col_heading:hover', 'props': '; overflow: visible'},
        {'selector': '.col_heading:hover~.col_heading', 'props': '; visibility: hidden'},
   ], overwrite=False)
)
```

pal	goal_title	target indicat seriesc seriesc geoare geoare timepe value	time_d so	ource footnot	nature	age	bounds
1	No Poverty		14.9%	16.9%		86.7%	100.0%
2	Zero Hunger			13.5%		90.4%	90.4%
3	Good Health and Well-being		2.0%	85.4%		63.8%	82.9%
4	Quality Education		88.4%	95.4%		99.7%	100.0%
5	Gender Equality		9.6%	21.8%		69.7%	100.0%
6	Clean Water and Sanitation			88.4%		100.0%	100.0%
7	Affordable and Clean Energy		5.5%	100.0%		100.0%	100.0%
8	Decent Work and Economic Growth		3.9%	88.2%		90.7%	100.0%
9	Industry, Innovation and Infrastructure		0.0%	42.6%		100.0%	100.0%
10	Reduced Inequality		3.9%	75.0%		100.0%	100.0%
11	Sustainable Cities and Communities			6.9%		100.0%	100.0%
12	Responsible Consumption and Production			100.0%		100.0%	100.0%
13	Climate Action					100.0%	100.0%
14	Life Below Water		0	93.4%		100.0%	7.4%
15	Life On Land			84.7%		100.0%	27.6%
16	Peace			80.0%		96.5%	100.0%
17	Justice		8.7%	50.3%		100.0%	100.0%
4							>

On dirait que plusieurs colonnes ne sont pertinentes que pour certains objectifs. On devrait probablement approfondir dans les indicateurs pour comprendre ce que les données représentent et pour identifier les colonnes qui sont pertinentes.

Total number of indicators : 374

	goal	goal_title	target	indicator	seriescode	series description	num_rows	geoareacode	geoareanar
0	1	No Poverty	1.1	1.1.1	SI_POV_DAY1	Proportion of population below international poverty line (%)	1345	0	
1	1	No Poverty	1.1	1.1.1	SI_POV_EMP1	Employed population below international poverty line, by sex and age (%)	8370	0	
2	1	No Poverty	1.2	1.2.1	SI_POV_NAHC	Proportion of population living below the national poverty line (%)	732	0	
3	1	No Poverty	1.3	1.3.1	SI_COV_BENFTS	Proportion of population covered by at least one social protection benefit (%)	105	0	
4	1	No Poverty	1.3	1.3.1	SI_COV_CHLD	Proportion of children/households receiving child/family cash benefit (%)	94	0	

5 rows × 36 columns

Une longue liste - 374 indicateurs! (On peut tous les voir en supprimant .head() de la dernière ligne de la cellule ci-dessus. Je fais ceci partout dans le notebook pour qu'une version pdf ne soit pas énorme...)

Un examen rapide et j'ai décidé qu'il pourrait être intéressant d'interroger *No Poverty, Quality Education* et *Decent Work and Economic Growth* pour voir s'il y avait des corrélations.

	goal	goal_title	seriescode	seriesdescription
0	1	No Poverty	SI_POV_DAY1	Proportion of population below international poverty line (%)
1	1	No Poverty	SI_POV_EMP1	Employed population below international poverty line, by sex and age (%)
2	1	No Poverty	SI_POV_NAHC	Proportion of population living below the national poverty line (%)
3	1	No Poverty	SI_COV_BENFTS	Proportion of population covered by at least one social protection benefit (%)
4	1	No Poverty	SI_COV_CHLD	Proportion of children/households receiving child/family cash benefit (%)

En examinant les descriptions, au début j'ai choisi 7 indicateurs que j'ai estimé intéressants - avec l'idée de voir s'il y avait une corrélation entre les étudiants qui réussissent et la puissance économique.

	goal	goal_title	target	indicator	seriescode	seriesdescription	num_rows
0	1	No Poverty	1.1	1.1.1	SI_POV_DAY1	Proportion of population below international poverty line (%)	1345
115	4	Quality Education	4.1	4.1.1	SE_MAT_PROF	Minimum proficiency in mathematics, by education level and sex (%)	2172
116	4	Quality Education	4.1	4.1.1	SE_REA_PROF	Minimum proficiency in reading, by education level and sex (%)	1698
119	4	Quality Education	4.3	4.3.1	SE_ADT_EDUCTRN	Participation rate in formal and non- formal education and training, by sex (%)	273
138	4	Quality Education	4.6	4.6.1	SE_ADT_FUNS	Proportion of population achieving at least a fixed level of proficiency in functional skills, by sex, age and type of skill (%)	68
147	4	Quality Education	4.c	4.c.1	SE_TRA_GRDL	Proportion of teachers who have received at least the minimum organized teacher training (e.g. pedagogical training) pre-service or in- service required for teaching at the relevant level in a given country, by education level (%)	12207
205	8	Decent Work and Economic Growth	8.1	8.1.1	NY_GDP_PCAP	Annual growth rate of real GDP per capita (%)	4210
218	8	Decent Work and Economic Growth	8.5	8.5.2	SL_TLF_UEM	Unemployment rate, by sex and age (%)	16508

Extraire les données

Enfin! On peut extraire les données. Exécuter la requête dans la forme ci-dessous, en sélectionnant seulement les colonnes et les codes des séries pertinentes, ont produit un fichier de moins de 10MB.

```
SELECT seriescode, geoareacode, geoareaname, timeperiod, value, time_detail,
```

```
nature, age, education_level, sex, type_of_skill, units
FROM bigquery-public-data.un_sdg.indicators
WHERE

    seriescode IN (
        'SI_POV_DAY1',
        'SE_MAT_PROF',
        'SE_REA_PROF',
        'SE_ADT_EDUCTRN',
        'SE_ADT_FUNS',
        'SE_TRA_GRDL',
        'NY_GDP_PCAP',
        'SL_TLF_UEM'
)
```

Voici les premières lignes des données.

```
In [11]: all_data = pd.read_csv('data/un-sdg-goals-selected-codes-results.csv')
    all_data.head()
```

Out[11]:		seriescode	geoareacode	geoareaname	timeperiod	value	time_detail	nature	age	education_level
	0	SE_ADT_FUNS	250	France	2012	90.83946	NaN	С	16- 65	NaN
	1	SE_ADT_FUNS	616	Poland	2012	96.05922	NaN	С	16- 65	NaN
	2	SE_ADT_FUNS	418	Lao People's Democratic Republic	2012	73.78760	NaN	С	15- 65	NaN
	3	SE_ADT_FUNS	40	Austria	2012	96.53522	NaN	С	16- 65	NaN
	4	SE_ADT_FUNS	152	Chile	2015	79.63343	NaN	С	16- 65	NaN
4										•

Manipuler les données en utilisant Pandas

Examiner les données

J'ai choisi d'examiner d'abord SE_MAT_PROF et SE_REA_PROF: Minimum proficiency in mathematics, by education level and sex (%) et Minimum proficiency in reading, by education level and sex (%). En utilisant describe() on dirait que les colonnes d'intérêt (outre geoareacode, geoarename, value and timeperiod) sont education_level et sex, puisque time_detail, age et type_of_skill ne contiennent que des valeurs null, et nature et units n'ont qu'une valeur.

```
In [12]: chart_series_codes = ['SE_MAT_PROF', 'SE_REA_PROF']

for chart_series_code in chart_series_codes:
    print(f"Describing series : {chart_series_code}")
    display(all_data[all_data['seriescode'] == chart_series_code].describe(include='all'))

Describing series : SE_MAT_PROF
```

	seriescode	geoareacode	geoareaname	timeperiod	value	time_detail	nature	age	educa
count	2172	2172.000000	2172	2172.000000	2172.000000	0.0	2172	0	
unique	1	NaN	131	NaN	NaN	NaN	1	0	
top	SE_MAT_PROF	NaN	China, Hong Kong Special Administrative Region	NaN	NaN	NaN	С	NaN	
freq	2172	NaN	36	NaN	NaN	NaN	2172	NaN	
mean	NaN	444.128453	NaN	2008.790055	69.058890	NaN	NaN	NaN	
std	NaN	242.341232	NaN	4.604399	23.171540	NaN	NaN	NaN	
min	NaN	8.000000	NaN	2000.000000	5.610000	NaN	NaN	NaN	
25%	NaN	246.000000	NaN	2006.000000	52.047895	NaN	NaN	NaN	
50%	NaN	428.000000	NaN	2009.000000	76.598550	NaN	NaN	NaN	
75%	NaN	643.000000	NaN	2012.000000	87.901095	NaN	NaN	NaN	
max	NaN	894.000000	NaN	2015.000000	99.870000	NaN	NaN	NaN	
Describ	oing series :	SE_REA_PROF	:						
	seriescode	geoareacode	geoareaname	timeperiod	value	time_detail	nature	age	educa
count	1698	1698.000000	1698	1698.000000	1698.000000	0.0	1698	0	
unique	1	NaN	121	NaN	NaN	NaN	1	0	
top	SE_REA_PROF	NaN	Colombia	NaN	NaN	NaN	С	NaN	
freq	1698	NaN	27	NaN	NaN	NaN	1698	NaN	
mean	NaN	437.830389	NaN	2008.109541	73.414752	NaN	NaN	NaN	
std	NaN	240.655446	NaN	4.823925	20.409998	NaN	NaN	NaN	
min	NaN	8.000000	NaN	2000.000000	7.680000	NaN	NaN	NaN	
25%	NaN	233.000000	NaN	2006.000000	61.157138	NaN	NaN	NaN	
50%	NaN	428.000000	NaN	2009.000000	79.002285	NaN	NaN	NaN	
75%	NaN	642.000000	NaN	2012.000000	88.909627	NaN	NaN	NaN	
max									

On peut utiliser un tableau croisé dynamique pour vérifier qu'on a bien identifié toutes les dimensions par lesquelles on peut grouper value :

education_level GRAD23

timeperiod	2001	2003	2006	2007	2011	2013	2014	2015	2000	200:
umeperioa	200 I	2003	2000	2007	2011	2013	2014	2015	2000	2003

seriescode	geoareaname	sex			
		BOTHSEX			1.0
	Albania	FEMALE			1.0
		MALE			1.0
		BOTHSEX	1.0		
CE MAT DDOE	Algeria	FEMALE	1.0		
SE_MAT_PROF		MALE	1.0		
		BOTHSEX		1.0	1.0
	Argentina	FEMALE		1.0	1.0
		MALE		1.0	1.0
	Armenia	BOTHSEX			
					1

On peut vérifier visuellement que toutes les valeurs dans le tableau soient ou 1.0 ou vide, mais il vaut mieux vérifier par programme. On ne devrait avoir aucune ligne dans le tableau croisé dynamique si on n'extrait que les lignes qui contiennent les valeurs qui ne sont pas égales à 1.0 et NaN.

On dirait que, où qu'il y ait des données, il y a des données pour BOTHSEX , FEMALE et MALE . On peut vérifier cela en enlevant le regroupement de sex . D'abord une vérification visuelle...

education_level 2001 2003 2006 2007 2011 2013 2014 2015 2000 2003 2006 2007 timeperiod seriescode geoareaname **Albania** 3.0 3.0 3.0 **Algeria Argentina** 3.0 3.0 3.0 3.0 3.0 Armenia **Australia** 3.0 3.0 3.0 3.0 3.0 3.0 3.0 SE_MAT_PROF 3.0 **Austria** 3.0 3.0 Azerbaijan 3.0 **Bahrain** 3.0 3.0 3.0 3.0 3.0 3.0 **Belgium** 3.0 Benin 3.0

GRAD23

Que 3.0 ou vide. Et la vérification par programme le confirme.

```
print("Displaying any rows where values are not 3.0 or Nan")
In [16]:
         display(se_prof_pivot_table[se_prof_pivot_table.isin([3.0, np.nan]).all(axis=1) == False])
          Displaying any rows where values are not 3.0 or Nan
                                                                        GRAD23
                                                                                            LOWSEC
                     education_level
                        timeperiod
                                  2001 2003 2006 2007 2011 2013 2014 2015 2000 2003 ... 2015 2000
          seriescode
                      geoareaname
```

0 rows × 25 columns

Puisque les données sont dispersées partout temporellement on aura besoin de décider comment gérer ça. En outre, selon le tableau ci-dessous c'est clair que plusieurs pays n'ont pas des données pour certains niveaux d'éducation, et quelques pays où les données n'existent pas du tout pour une compétence éducative (e.g. Belize -SE_MAT_PROF).

```
with pd.option_context('display.max_columns', None, 'display.max_rows', None):
In [17]:
              display(
                  se prof data.pivot table(
                      'value',
                      index=['geoareaname'],
                      columns=['seriescode','education_level'],
                      aggfunc='count',
                      fill_value = ""
                  ).head(10)
              )
```

seriescode		SE_IV	IAT_PROF		SE_REA_PROF		
education_level	GRAD23	LOWSEC	PRIMAR	GRAD23	LOWSEC	PRIMAR	
geoareaname							
Albania		12.0			12.0		
Algeria	3.0	6.0			3.0		
Argentina	3.0	15.0	6.0	6.0	15.0	6.0	
Armenia		9.0	9.0				
Australia	12.0	18.0		3.0	18.0		
Austria		18.0	6.0		18.0	6.0	
Azerbaijan		6.0	3.0		6.0	3.0	
Bahrain	6.0	12.0					
Belgium		18.0			18.0		
Belize				3.0			

Finalement, on devrait comprendre comment les niveaux d'éducation sont définis. Les descriptions complètes pour tous les indicateurs se trouvent ici sur le site des Nations Unies et là on trouve cette définition de l'indicateur 4.1.1:

Proportion d'enfants et de jeunes a) en 2e ou 3e année de cycle primaire ; b) en fin de cycle primaire ; c) en fin de premier cycle du secondaire qui maîtrisent au moins les normes d'aptitudes minimales en i) lecture et ii) mathématiques, par sexe

Donc créons des étiquettes plus lisibles dont on se servira plus tard à la place des codes des niveaux d'éducation:

```
In [18]: edu_level_labels = {
    'GRAD23' : 'Grade 2/3',
    'PRIMAR' : 'End of primary',
    'LOWSEC' : 'End of lower secondary'
}
```

Selectionner les données

D'abord j'ai décidé de simplifier en n'incluant que les données pour les deux sexes combinés. Ça veut dire qu'on perd la dimension sex mais on sait qu'on ne perd pas de la couverture par rapport aux autres dimensions grâce à l'analyse ci-dessus qui montre que, où qu'on ait des données, on a les données pour toutes les catégories de sex . Donc sélectionnons seulement les données de BOTHSEX et supprimons les colonnes non pertinentes de time_detail , age , type_of_skill , nature et units .

	<pre>fill_value = "")</pre>						
Out[19]:	seriescode		SE_M	IAT_PROF		SE_R	EA_PROF
	education_level	GRAD23	LOWSEC	PRIMAR	GRAD23	LOWSEC	PRIMAR
	geoareaname						
	Albania		4.0			4.0	
	Algeria	1.0	2.0			1.0	
	Argentina	1.0	5.0	2.0	2.0	5.0	2.0
	Armenia		3.0	3.0			
	Australia	4.0	6.0		1.0	6.0	

	Venezuela (Bolivarian Republic of)		1.0			1.0	
	Viet Nam		2.0			2.0	
	Yemen	3.0					
	Zambia			2.0			2.0
	Zimbabwe			1.0			1.0

 $132 \text{ rows} \times 6 \text{ columns}$

Maintenant il faut décider comment gérer les données temporelles. On sait que les données sont dispersées un peu au hasard temporellement comme montré ci-dessous.

```
In [20]:
         total_countries = len(se_prof_chart_data['geoareacode'].unique())
         data_time_coverage = (
             se_prof_chart_data.pivot_table(
                 'value',
                 index=['timeperiod'],
                 columns=['seriescode', 'education_level'],
                 aggfunc='count',
                 margins=True,
                 margins_name='Total'
             )
             .style
             .set_caption(f'Number of countries (out of {total_countries}) with data for given year
         and education level')
             .set_table_styles([
                      'selector': 'caption',
                      'props': [('font-weight', 'bold'), ('font-size', '16px'), ('color', 'black')]
                 },
                      'selector': 'th',
                      'props': [('text-align', 'left')]
                 },
             ])
             .format("{:.0f}", na_rep="")
         data_time_coverage
```

Out[20]: Number of countries (out of 132) with data for given year and education level

seriescode	SE_MAT_F	PROF		SE_REA_P	ROF		Total
education_level	GRAD23	LOWSEC	PRIMAR	GRAD23	LOWSEC	PRIMAR	
timeperiod							
2000		42	15		43	2	102
2001				25		22	47
2003	17	67	8		41	2	135
2006		56	19	27	55	47	204
2007	25	45	29				99
2009		72			72		144
2011	36	42	15	36		12	141
2012		62			62		124
2013	15		15	15		15	60
2014	10		10	10		10	40
2015	35	79	10		70		194
Total	138	465	121	113	343	110	1290

Vu le but d'essayer de comparer avec un indicateur économique, idéalement on voudrait des données complètes pour une année particulière, à la fois pour la compétence éducative et pour l'indicateur économique. On sait déjà qu'on n'a pas les données complètes pour la compétence éducative; mais qu'en est-il pour l'indicateur économique?

Initialement j'ai eu l'intention d'utiliser *Annual growth rate of real GDP per capita (%)* en tant qu'indicateur économique, mais quand j'ai examiné les données j'ai vu qu'elles varient considérablement d'une année à l'autre pour plusieurs pays (sans surprise). J'ai voulu quelque chose qui représenterait mieux la puissance économique d'un pays dans le temps (i.e., PIB par habitant), mais je n'ai rien trouvé de bien adapté dans le dataset de UN SDG. Donc j'ai dû chercher ailleurs...

Récupérer des données de PIB par habitant

J'ai trouvé des données PIB par habitant (également des Nation Unies) à National Accounts - Analysis of Main Aggregates (AMA). L'important était de vérifier que ces données utilisaient le même système de codification pour les pays pour que ce soit facile de les fusionner avec nos données existantes - et oui les deux datasets utilisent le système M49.

Voyons ce qu'on a obtenu...

```
In [21]: gdp_per_capita_raw_data = (
    pd.read_csv('data/un-gdp-per-capita-2000-2015.csv')

# Remove Unit column as it's US$ throughout
    .drop('Unit', axis=1)

# Rename the column for easier referencing
```

```
.rename({'GDP, Per Capita GDP - US Dollars' : 'GDP per capita'}, axis=1)

gdp_per_capita_raw_data.pivot_table(
    'GDP per capita',
    index=['Country/Area'],
    columns=['Year'],
    aggfunc='sum',
    fill_value = ""
)
```

Out[21]:	Year	2000	2001	2002	2003

Country/Area					
Afghanistan	160.82972700182722	166.54198056776517	183.24702843070884	199.69882776561923	217.92174427
Africa	810.8811716574647	776.1216123868226	779.3997701125529	904.2519946405133	1073.0086237
Albania	1114.514373610592	1254.7153329890555	1393.3478351464644	1783.6492741179677	2311.5233524
Algeria	1761.0489984569401	1750.5272737364571	1783.6765490570183	2103.382140931998	2610.182685
Americas	15975.197996901728	16108.949756545497	16072.081954675621	16700.722509128387	17877.261397
Western Europe	24219.62127445152	24342.83003104896	26105.249897930327	31623.622994493973	35806.3559
World	5491.033875998066	5392.494201722851	5534.590780143235	6133.366223652267	6819.8508163
Yemen	624.0747832656903	627.3139871514516	664.0258848351101	714.0105620442428	799.210563
Zambia	345.6844982573868	382.93846650227215	382.24157911549463	435.46074766810983	538.5942809
Zimbabwe	733.9588613435855	726.2036336390886	687.2401495195448	646.4996163483507	616.9989551

244 rows × 16 columns

Tout paraît comme on espérerait - vérifions les types des données:

```
gdp_per_capita_raw_data.info()
In [22]:
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 3904 entries, 0 to 3903
         Data columns (total 3 columns):
          # Column
                           Non-Null Count Dtype
             ----
                            -----
          0
            Country/Area 3904 non-null object
          1 Year
                           3904 non-null int64
          2 GDP per capita 3904 non-null object
         dtypes: int64(1), object(2)
         memory usage: 91.6+ KB
```

C'est étrange que le PIB par habitant soit de type object et pas float . Essayons de le convertir...

```
In [23]: gdp_per_capita_raw_data['GDP per capita'] = pd.to_numeric(gdp_per_capita_raw_data['GDP per capita'])
```

```
ValueError
                                                       Traceback (most recent call last)
           File ~\miniconda3\envs\datascience\lib\site-packages\pandas\ libs\lib.pyx:2315, in
          pandas. libs.lib.maybe convert numeric()
          ValueError: Unable to parse string "..."
          During handling of the above exception, another exception occurred:
          ValueError
                                                       Traceback (most recent call last)
          Input In [23], in <cell line: 1>()
           ----> 1 gdp per capita raw data['GDP per capita'] =
           pd.to_numeric(gdp_per_capita_raw_data['GDP per capita'])
          File ~\miniconda3\envs\datascience\lib\site-packages\pandas\core\tools\numeric.py:184, in
           to_numeric(arg, errors, downcast)
               182 coerce_numeric = errors not in ("ignore", "raise")
               183 try:
                      values, = lib.maybe convert numeric(
           --> 184
                           values, set(), coerce_numeric=coerce_numeric
               185
               186
               187 except (ValueError, TypeError):
                       if errors == "raise":
               188
          File ~\miniconda3\envs\datascience\lib\site-packages\pandas\_libs\lib.pyx:2357, in
          pandas._libs.lib.maybe_convert_numeric()
          ValueError: Unable to parse string "..." at position 912
 Le message d'erreur nous dit ce qui se passe - il y a au moins une valeur qui est une chaîne .... Voyons où ca se
 produit...
          gdp_per_capita_raw_data[gdp_per_capita_raw_data['GDP per capita'] == '...'].pivot_table(
In [24]:
              'GDP per capita',
              index=['Country/Area'],
              columns=['Year'],
              aggfunc='count
              fill_value = ""
                   Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 20
Out[24]:
           Country/Area
               Curaçao
                          1.0
                                1.0
                                     1.0
                                            1.0
                                                 1.0
                Former
            Netherlands
                                                                                     1.0
                                                                                           1.0
                                                                                                 1.0
                                                                                                       1.0
                Antilles
                Former
                                                                         1.0
                                                                               1.0
                                                                                     1.0
                                                                                           1.0
                                                                                                 1.0
                                                                                                       1.0
                 Sudan
           Sint Maarten
                                1.0
                          1.0
                                     1.0
                                            1.0
                                                 1.0
            (Dutch part)
            South Sudan
                          1.0
                                1.0
                                     1.0
                                            1.0
                                                 1.0
                                                       1.0
                                                             1.0
                                                                   1.0
                 Sudan
                          1.0
                                1.0
                                      1.0
                                            1.0
                                                 1.0
                                                       1.0
                                                             1.0
                                                                   1.0
```

La chaîne est assez rare - vérifions si on utilise ces pays...

```
In [25]: se_prof_chart_data['geoareaname'].unique()
Out[25]: array(['Albania', 'Denmark', 'Finland', 'Kazakhstan', 'Norway', 'Poland',
                  'Saudi Arabia', 'Uruguay', 'Austria', 'Colombia', 'Comoros',
                  'France', 'Ghana', 'Japan', 'Portugal', 'Bulgaria',
'Iran (Islamic Republic of)', 'Algeria', 'Armenia', 'Australia',
                  'Chad', 'China, Hong Kong Special Administrative Region',
                  'Tunisia', 'United Arab Emirates', 'Azerbaijan', 'Chile',
                  'New Zealand', 'Thailand', 'Brazil', 'Lebanon', 'Luxembourg',
                  'Republic of Moldova', 'Slovakia', 'Slovenia',
                  'United Kingdom of Great Britain and Northern Ireland',
                  'Burkina Faso', 'Hungary', 'Malaysia', 'Russian Federation',
                  'Estonia', 'Georgia', 'Kenya', 'Belgium',
                  'China, Macao Special Administrative Region', 'Czechia',
                  'Guatemala', 'Mauritius', 'Netherlands', 'Iceland', 'Indonesia',
                  'Switzerland', 'Croatia', 'Lithuania', 'Germany', 'Panama',
                  'Canada', 'Jordan', 'Mexico', 'Bahrain', 'Egypt', 'Malta', 'Spain', 'Sweden', 'Peru', 'Singapore', 'Botswana',
                  'The former Yugoslav Republic of Macedonia', 'Zimbabwe', 'Morocco',
                  'Dominican Republic', 'Uganda', 'Israel', 'Liechtenstein',
                  'Malawi', 'Serbia', 'El Salvador', 'Trinidad and Tobago', 'Kuwait',
                  'Ecuador', 'Togo', 'Latvia', 'Montenegro', 'China', 'Gabon',
                  'Argentina', 'Nicaragua', 'Romania', 'Italy', 'Philippines',
                  'Turkey', 'Viet Nam', 'Qatar', 'Yemen', 'Benin', 'Ireland',
                  'South Africa', 'State of Palestine',
                  'United Republic of Tanzania', 'Paraguay',
                  'United States of America', 'Burundi', 'Cuba', 'Cyprus', 'Senegal',
                  'Kyrgyzstan', 'Mongolia', 'Syrian Arab Republic', 'Niger'
                  'Costa Rica', 'Lesotho', 'Congo', 'Cameroon', 'Republic of Korea',
                  'Honduras', 'Greece', 'Oman', 'Namibia', "Côte d'Ivoire",
                  'Puerto Rico', 'Mozambique', 'Belize',
                  'Democratic Republic of the Congo', 'Seychelles',
                  'Bosnia and Herzegovina', 'Mauritania', 'Zambia', 'Eswatini',
                  'Ukraine', 'Venezuela (Bolivarian Republic of)', 'Madagascar',
                  'India', 'Mali'], dtype=object)
```

Aucun des pays sans données de PIB par habitant sont présents dans notre liste de pays qui ont des données de compétence éducative, donc supprimons les valeurs non valides:

```
In [26]: # Convert to numeric
    gdp_per_capita_raw_data.loc[:, 'GDP per capita'] = pd.to_numeric(gdp_per_capita_raw_data['GDP
    per capita'], errors='coerce')
    len(gdp_per_capita_raw_data)

Out[26]: 3904

In [27]: gdp_per_capita_cleaned_data = gdp_per_capita_raw_data.dropna()
    len(gdp_per_capita_cleaned_data)

Out[27]: 3864
```

Maintenant on devrait vérifier que les pays dans les deux datasets correspondent. J'avais présumé que les noms de pays seraient identiques dans les deux datasets puisque les deux utilisent le système M49, donc j'ai utilisé le nom de pays comme clé pour fusionner. Je m'attendais à ce que tous les pays dans le dataset de compétence éducative soient présents dans le dataset PIB par habitant, mais pas l'inverse puisque évidemment on n'a pas les données de compétence éducative pour tous les pays.

Par conséquent, en fusionnant les deux listes des noms de pays en se servant de jointure externe je m'attendais à ce qu'on n'ait que les valeurs null dans la colonne de compétence éducative, mais en fait non...

	Proficiency country	GDP country
16	Iran (Islamic Republic of)	NaN
21	China, Hong Kong Special Administrative Region	NaN
66	The former Yugoslav Republic of Macedonia	NaN
82	China	NaN
97	United Republic of Tanzania	NaN
99	United States of America	NaN
126	Eswatini	NaN
132	NaN	Afghanistan
133	NaN	Africa
134	NaN	Americas

7 pays dans le dataset de compétence éducative ne pourraient pas être assortis avec les pays de PIB. En cherchant dans la liste entière des pays avec les données de PIB j'ai trouvé les pays correspondants avec des noms légerement différents, donc corrigeons ça maintenant. Avec du recul, la leçon était d'utiliser les codes M49, et pas les noms de pays - ma supposition que les noms seraient également cohérents étaient fausse!)

```
In [29]: country_fixes = {
    'China (mainland)' : 'China',
    'China, Hong Kong SAR' : 'China, Hong Kong Special Administrative Region',
    'Iran, Islamic Republic of' : 'Iran (Islamic Republic of)',
    'United States' : 'United States of America',
    'Kingdom of Eswatini' : 'Eswatini',
    'United Republic of Tanzania: Mainland' : 'United Republic of Tanzania',
    'Republic of North Macedonia' : 'The former Yugoslav Republic of Macedonia'
}
In [30]: for old, new in country_fixes.items():
```

Choisir l'année

On a quasiment un dataset complet pour toutes les années pour PIB par habitant. Puisque ce n'est pas le cas pour les données de compétence éducative, il faut choisir comment traiter les années. Les options sont:

- 1. **Utiliser une moyenne des valeurs pour la période de l'année minimum jusqu'à l'année maximum** pas satisfaisant parce que des changements de comment une éducation est fournie pendant la période pourraient fausser les résultats.
- 2. **Choisir une année et n'utiliser que les données de cette année** pas satisfaisant non plus parce qu'on supprime beaucoup de données qui pourraient être utiles.
- 3. Choisir une année et utiliser les données de cette année quand elles sont disponibles, et quand elles ne le sont pas, remplacer avec les données de l'année la plus proche qui a des données un hybride de 1 et 2.

Option 3 parait la meilleure, donc il ne s'agit que de choisir l'année. Je voulais l'analyse la plus récente possible, donc j'ai choisi 2015 car sa couverture n'a pas l'air d'être pire que les autres années.

In [31]: data_time_coverage

Out[31]: Number of countries (out of 132) with data for given year and education level

seriescode	SE_MAT_F	PROF		SE_REA_P	ROF		Total
education_level	GRAD23	LOWSEC	PRIMAR	GRAD23	LOWSEC	PRIMAR	
timeperiod							
2000		42	15		43	2	102
2001				25		22	47
2003	17	67	8		41	2	135
2006		56	19	27	55	47	204
2007	25	45	29				99
2009		72			72		144
2011	36	42	15	36		12	141
2012		62			62		124
2013	15		15	15		15	60
2014	10		10	10		10	40
2015	35	79	10		70		194
Total	138	465	121	113	343	110	1290

Idéalement on se servirait toujours de la même année pour les deux datasets. Donc si les données de 2015 nous manquent pour Algeria par exemple, mais on peut remplacer avec les données de 2014, alors on devrait utiliser les données de 2014 de PIB par habitant aussi. Donc faisons ça.

D'abord on selectionne l'année qu'on veut...

In [32]: selected_year = 2015

On va itérer par chaque compétence éducative, chaque niveau d'éducation et chaque pays pour ensuite selectionner les données avec l'année la plus proche de 2015. Pour faire ça on aura besoin d'une liste de pays

groupées par seriescode et education_level, donc créons cette liste maintenant.

```
In [33]: unique_country_edu_level = (
    se_prof_chart_data.groupby(['seriescode', 'education_level', 'geoareaname'],
    as_index=False)
    .agg({'timeperiod' : 'count'})
)
unique_country_edu_level.head()
```

Out[33]: seriescode education_level geoareaname timeperiod 0 SE_MAT_PROF GRAD23 Algeria 1 Argentina 1 SE_MAT_PROF GRAD23 1 2 SE_MAT_PROF GRAD23 Australia 4 3 SE_MAT_PROF GRAD23 Bahrain 2 4 SE_MAT_PROF GRAD23 Benin 1

Maintenant itérons, et pour chaque combinaison de seriescode, education_level et geoareaname, on:

- Trouvera l'indice de la ligne dans les données de compétence educative avec l'année la plus proche de 2015, et on l'ajoutera à une liste
- Trouvera l'indice de la ligne dans les données de GDP avec l'année correspondante, et on l'ajoutera à une set pour qu'on n'ait pas de doublons

Ensuite on utilisera ces indices pour créer deux dataframes, un pour compétence éducative et un pour PIB, où chacun ne contient que les données qui correspondent à l'année selectionnée (soit 2015 soit l'année la plus proche).

```
In [34]:
         selected_indices_prof_data = []
         selected_indices_gdp_data = set()
         edu_levels = ['GRAD23', 'PRIMAR', 'LOWSEC']
         for series_code in chart_series_codes:
             series_data = se_prof_chart_data[se_prof_chart_data['seriescode'] == series_code]
             for edu_level in edu_levels:
                 # Select all the countries for this series code and education level
                 countries = (
                      unique_country_edu_level[
                          (unique_country_edu_level['seriescode'] == series_code) &
                          (unique_country_edu_level['education_level'] == edu_level)
                      1
                      .loc[:, 'geoareaname']
                 # Iterate through extracting data for all years for each country in turn
                 for country in countries:
                      country_data = series_data[
                          (series_data['geoareaname'] == country) &
                          (series_data['education_level'] == edu_level)
                      1
                     # Select index of row if selected year exists...
                     if selected_year in country_data['timeperiod'].values:
                         best_match_year = selected_year
```

```
# ...otherwise we search for the closest year and use the index for that row
            else:
                closest_year = country_data['timeperiod'].values[0]
                smallest gap = abs(closest year - selected year)
                for year in country_data['timeperiod'].values:
                    if abs(year - selected_year) < smallest_gap:</pre>
                        smallest_gap = abs(year - selected_year)
                        closest_year = year
                best_match_year = closest_year
            # Add the index of the selected row for educational proficiency data
            selected_indices_prof_data.extend(
                series data
                    (series_data['geoareaname'] == country) &
                    (series_data['education_level'] == edu_level) &
                    (series_data['timeperiod'] == best_match_year)
                ].index.to_list()
            )
            # Get the correct row for gdp data
            gdp_row = gdp_per_capita_cleaned_data[
                (gdp_per_capita_cleaned_data['Country/Area'] == country) &
                (gdp_per_capita_cleaned_data['Year'] == best_match_year)
            # This should never happen, but just in case, throw an error if the data is
missing
            if len(gdp_row) == 0:
                raise ValueError(f"No GDP per capita data for {country} in
{best match year}")
            selected_indices_gdp_data.add(gdp_row.index[0])
# Select only the GDP data with the selected indices
gdp_per_capita_selected_year =
gdp_per_capita_cleaned_data.loc[list(selected_indices_gdp_data)]
with pd.option_context('display.max_rows', None):
    display(gdp_per_capita_selected_year.head())
# Select only the educational data with the selected indices
se_prof_chart_data = se_prof_chart_data.loc[selected_indices_prof_data]
with pd.option_context('display.max_columns', None, 'display.max_rows', None):
   display(se_prof_chart_data.head())
```

	Country/Area	Year	GDP per capita
2054	Malawi	2006	308.163186
2055	Malawi	2007	332.259176
2571	Norway	2011	100697.293522
3083	Singapore	2011	53072.918866
2575	Norway	2015	74194.945777

	seriescode	geoareacode	geoareaname	timeperiod	value	education_level	sex
676	SE_MAT_PROF	12	Algeria	2007	40.93487	GRAD23	BOTHSEX
4644	SE_MAT_PROF	32	Argentina	2013	72.24475	GRAD23	BOTHSEX
4953	SE_MAT_PROF	36	Australia	2015	90.56623	GRAD23	BOTHSEX
4727	SE_MAT_PROF	48	Bahrain	2015	72.47670	GRAD23	BOTHSEX
910	SE_MAT_PROF	204	Benin	2014	33.58194	GRAD23	BOTHSEX

Maintenant tout ce qui nous reste à faire c'est de fusionner les deux tableaux en utilisant l'année et le pays, et ensuite on peut commencer à tracer! Mais avant de faire cela, j'ai décidé que ce serait intéressant de pouvoir voir les données par région / continent ainsi que par pays...

Ajouter des informations de région

J'ai téléchargé la liste entière des données M49 (qui inclut les regroupements régionaux des pays) ici. Voilà un extrait des données...

```
In [35]: region_info = pd.read_csv('data/unsd-m49-geoareacodes.csv', sep=";")
    region_info.head()
```

Out[35]:

	Global Code	Global Name	Region Code	Region Name	Sub- region Code	Sub- region Name	Intermediate Region Code	Intermediate Regior Name	Country or Area	M49 Code	ISO- alpha2 Code	alţ (
(1	World	2.0	Africa	15.0	Northern Africa	NaN	NaN	l Algeria	12	DZ	
•	I 1	World	2.0	Africa	15.0	Northern Africa	NaN	NaN	l Egypt	818	EG	
2	2 1	World	2.0	Africa	15.0	Northern Africa	NaN	NaN	l Libya	434	LY	
3	3 1	World	2.0	Africa	15.0	Northern Africa	NaN	NaN	l Morocco	504	MA	
4	i 1	World	2.0	Africa	15.0	Northern Africa	NaN	NaN	l Sudan	729	SD	
												•

Chaque pays est lié à une Région et à une Sous-région.

```
In [36]: region_mapping = region_info.loc[:, ['Region Name', 'Sub-region Name', 'M49 Code']]
region_mapping.groupby(['Region Name', 'Sub-region Name']).agg('count')
```

Out[36]: M49 Code

Region Name	Sub-region Name	
Africa	Northern Africa	7
	Sub-Saharan Africa	53
Americas	Latin America and the Caribbean	52
	Northern America	5
Asia	Central Asia	5
	Eastern Asia	7
	South-eastern Asia	11
	Southern Asia	9
	Western Asia	18
Europe	Eastern Europe	10
	Northern Europe	17
	Southern Europe	16
	Western Europe	9
Oceania	Australia and New Zealand	6
	Melanesia	5
	Micronesia	8
	Polynesia	10

Divisons Americas en ses sous-groupes classiques de Nord et "Sud" (i.e., Latin America and the Caribbean)

```
In [37]: for americas_region in ['Latin America and the Caribbean', 'Northern America']:
    region_mapping.loc[
        region_mapping['Sub-region Name'] == americas_region,
        'Region Name'
    ] = americas_region
    region_mapping.groupby(['Region Name', 'Sub-region Name']).agg('count')
```

Out[37]: M49 Code

Name	Sub-region Name	Region Name
Africa 7	Northern Afric	Africa
Africa 53	Sub-Saharan Afric	
al Asia 5	Central Asi	Asia
n Asia 7	Eastern Asi	
n Asia 11	South-eastern Asi	
n Asia 9	Southern Asi	
n Asia 18	Western Asi	
urope 10	Eastern Europ	Europe
urope 17	Northern Europ	
urope 16	Southern Europe	
urope 9	Western Europ	
bbean 52	Latin America and the Caribbean	Latin America and the Caribbean
merica 5	Northern America	Northern America
ealand 6	Australia and New Zealand	Oceania
anesia 5	Melanesi	
onesia 8	Micronesia	
ynesia 10	Polynesi	

Et maintenant on peut supprimer la colonne de sous-régions, et fusionner avec nos données de compétence éducative.

```
In [38]: region_mapping.drop('Sub-region Name', axis=1, inplace=True)

se_prof_chart_data = se_prof_chart_data.merge(
    region_mapping,
    how = 'left',
    left_on = 'geoareacode',
    right_on = 'M49 Code'
)
se_prof_chart_data.head(10)
```

Out[38]:		seriescode	geoareacode	geoareaname	timeperiod	value	education_level	sex	Region Name	M4 Cod
	0	SE_MAT_PROF	12	Algeria	2007	40.93487	GRAD23	BOTHSEX	Africa	1
	1	SE_MAT_PROF	32	Argentina	2013	72.24475	GRAD23	BOTHSEX	Latin America and the Caribbean	3
	2	SE_MAT_PROF	36	Australia	2015	90.56623	GRAD23	BOTHSEX	Oceania	3
	3	SE_MAT_PROF	48	Bahrain	2015	72.47670	GRAD23	BOTHSEX	Asia	4
	4	SE_MAT_PROF	204	Benin	2014	33.58194	GRAD23	BOTHSEX	Africa	20
	5	SE_MAT_PROF	72	Botswana	2011	60.65287	GRAD23	BOTHSEX	Africa	7
	6	SE_MAT_PROF	76	Brazil	2013	70.23770	GRAD23	BOTHSEX	Latin America and the Caribbean	7
	7	SE_MAT_PROF	854	Burkina Faso	2014	59.23316	GRAD23	BOTHSEX	Africa	85
	8	SE_MAT_PROF	108	Burundi	2014	96.66259	GRAD23	BOTHSEX	Africa	10
	9	SE_MAT_PROF	120	Cameroon	2014	55.34140	GRAD23	BOTHSEX	Africa	12
4										

Créer des données adaptées au traçage

On fusionne les données de compétence éducative avec les données de PIB par habitant.

```
In [39]:
         prof_vs_gdp_data = (
             se_prof_chart_data.rename(
                 {'geoareaname' : 'Country', 'timeperiod' : 'Year'},
                 axis=1
             .set_index(['Country', 'Year'])
                 gdp_per_capita_cleaned_data.rename(
                     {'Country/Area' : 'Country'},
                     axis=1
                 ).set_index(['Country', 'Year']),
                 how='outer',
                 left_index=True,
                 right_index=True
              .drop('sex', axis=1)
              .dropna(subset='seriescode')
         display(prof_vs_gdp_data)
```

		seriescode	geoareacode	value	education_level	Region Name	M49 Code	GDP per capita
Country	Year							
Albania	2015	SE_MAT_PROF	8.0	46.71703	LOWSEC	Europe	8.0	3939.413126
	2015	SE_REA_PROF	8.0	49.72273	LOWSEC	Europe	8.0	3939.413126
Algeria	2007	SE_MAT_PROF	12.0	40.93487	GRAD23	Africa	12.0	3950.513625
	2015	SE_MAT_PROF	12.0	19.04324	LOWSEC	Africa	12.0	4177.884976
	2015	SE_REA_PROF	12.0	21.03063	LOWSEC	Africa	12.0	4177.884976
•••	•••							
Yemen	2011	SE_MAT_PROF	887.0	9.39027	GRAD23	Asia	887.0	1305.418200
Zambia	2006	SE_REA_PROF	894.0	55.91099	PRIMAR	Africa	894.0	1047.926445
	2007	SE_MAT_PROF	894.0	32.67655	PRIMAR	Africa	894.0	1124.284733
Zimbabwe	2006	SE_REA_PROF	716.0	81.49745	PRIMAR	Africa	716.0	579.898236
	2007	SE_MAT_PROF	716.0	73.45482	PRIMAR	Africa	716.0	567.749599

432 rows × 7 columns

Traçage

Pour le premier diagramme, prenons chaque niveau d'éducation et traçons Compétence éducative contre PIB par habitant. On montrera les deux séries de compétence éducative (Maths et Reading) séparemment dans le même diagramme, en utilisant des couleurs différentes. J'ai décidé que je voulais aussi montrer la proximité de chaque point de donnée à l'année 2015, et pour ça j'ai utilisé la taille et la transparence des points.

D'abord un peu de préparation...

```
# Set human friendly labels.
In [42]:
         series_labels = {
              'SE_REA_PROF' : 'Reading',
              'SE_MAT_PROF' : 'Maths',
         }
         Alpha (transparency) ranges from 0 to 1. We want marker size value to be proportional to
         alpha so
         we fix a scaling value that will give a sensible size for the markers when we plot them.
         marker_alpha_scaling = 100
         # Get the earliest and latest years of all data to use as bounds for alpha and marker size.
         years = prof_vs_gdp_data.index.get_level_values(1)
         min_year = years.min()
         max_year = years.max()
         111
         Define two functions we will use to convert a year to a colour of the required transparency.
         The first is used to generate the alpha value for a year. We want to convert to the range
         0.3 to 0.9: 0.3 so that the lowest year is still reasonably visible, and 0.9 so that 2015
         (the highest year) is not entirely opaque and we can see other colour dots through it if a
         dot overlaps.
         The second function combines a single rgb colour with an array of alpha values to create an
         array of rgba values.
         def convert_year_to_alpha(year, min, max):
             Converts an array of year values to an array of corresponding alpha values.
             A year equal to the maximum value returns an alpha of 0.9 (almost opaque),
             while a year equal to the minimum value returns an alpha of 0.3. Year values
             inbetween min and max return alpha values mapped linearly between 0.3 and 0.9.
                     Parameters:
                             year (numpy.ndarray of dtype int64): Array of year values
                             min (int): Earliest year
                             max (int): Latest year
                     Returns:
                              (numpy.ndarray of dtype float64): Array of alpha values
             return 0.3 + 0.6 * (year - min) / (max - min)
         def rgb_to_rgba(rgb, a):
             Combines a single rgb value with an array of alpha values to generate an
             array of rgba values.
                     Parameters:
                              rgb (list): List of normalised rgb values e.g. [128/255, 0, 1]
                              a (numpy.ndarray of dtype float64): Array of alpha values
                     Returns:
                              (numpy.ndarray of dtype float64): Array of rgba values
             rgb = np.array([rgb]*len(a))
             return np.append(np.array(rgb), a.reshape(len(a),1),axis=1)
         # Set up years for a legend - we choose the earliest, latest and halfway inbetween.
```

```
legend_years = np.array([max_year, round((max_year + min_year) / 2), min_year])
legend_alphas = convert_year_to_alpha(legend_years, min_year, max_year)

# Import and define a function in preparation for calculating Spearman rank coefficienets and p values.
from scipy.stats import spearmanr
from math import ceil

def spearmanr_pval(x,y):
    return spearmanr(x,y)[1]
```

Et maintenant on peut produire des tracés.

```
# Create 3 plots in a column.
In [43]:
         fig, axs = plt.subplots(3, 1, figsize=(16, 20))
         plt_num = 0
         # Define our colours
         series_colors = {
              'SE_REA_PROF' : [230 / 255, 126 / 255, 34 / 255], # Orange
              'SE_MAT_PROF' : [36 / 255, 113 / 255, 163 / 255], # Blue
         }
         # Define series markers as circles and thin diamonds.
         series_markers = {'SE_REA_PROF' : 'o', 'SE_MAT_PROF' : 'd'}
         for edu_level in edu_levels:
             spearman_labels = ['Spearman coefficients']
             axs[plt_num].set_xlabel('GDP per capita', fontsize=14)
             axs[plt_num].set_ylabel('% of pupils achieving proficiency', fontsize=14)
             axs[plt_num].tick_params(axis='both', labelsize=14)
             for series_code in chart_series_codes:
                 chart_data = prof_vs_gdp_data.loc[
                      (prof_vs_gdp_data['seriescode'] == series_code) &
                      (prof_vs_gdp_data['education_level'] == edu_level)
                 ]
                 alphas = convert_year_to_alpha(
                     chart_data.index.get_level_values(1).to_numpy(),
                     min year,
                     max_year
                 axs[plt_num].scatter(
                      chart_data['GDP per capita'],
                      chart_data['value'],
                     edgecolors = 'w',
                     c = rgb_to_rgba(series_colors[series_code], alphas),
                     s = alphas * marker_alpha_scaling,
                     marker = series_markers[series_code]
                 )
                 # Add blank series that will define the legend
                 for i in range(len(legend_years)):
                      rgba = series colors[series code].copy()
                      rgba.append(legend_alphas[i])
                     axs[plt_num].scatter(
                          [],[],
                          edgecolors = 'w',
```

```
c = [rgba],
                s = legend_alphas[i] * marker_alpha_scaling,
                marker = series_markers[series_code],
                label = f"{str(legend_years[i])} {series_labels[series_code]}"
            )
       # Calculate Spearman coefficient and p value
        spearman = chart_data.loc[:, ['GDP per capita', 'value']].corr('spearman').at['GDP
per capita', 'value']
       if not np.isnan(spearman):
            pval = chart_data.loc[:, ['GDP per capita',
'value']].corr(spearmanr_pval).at['GDP per capita', 'value']
            spearman_labels.append(f"{series_labels[series_code]} {spearman:.2f}, p=
{pval:.2e}")
   axs[plt_num].set_title(
        edu_level_labels[edu_level],
        fontdict = {'fontsize' : 16, 'fontweight' : 'bold'}
   )
   axs[plt_num].legend(loc='lower right', frameon=True, facecolor='whitesmoke',
framealpha=1, fontsize=14)
   axs[plt_num].text(
        0.5, 0.2,
        "\n".join(spearman_labels),
       transform=axs[plt_num].transAxes,
       fontsize=14,
       bbox={
            'facecolor' : 'white',
            'pad' : 10
       }
   )
   plt_num += 1
fig.set_facecolor('lightblue')
plt.subplots_adjust(hspace=0.3, top=0.94)
fig.suptitle('Educational proficiency vs GDP per capita', fontsize=18, fontweight='bold')
plt.show()
# Uncomment for a copy to display in results
# fig.savefig(fname='images/result1.png', bbox_inches='tight')
```


On peut afficher la répartition temporelle des données:

```
chart_data['seriesname'] = chart_data['seriescode'].map(series_labels)
       axs = chart_data.hist(
            column='Year',
            by='seriesname',
            sharex=True,
            sharey=True,
            figsize=(16, 5),
            layout=(1, 2),
            bins=15,
       for i in range(len(axs)):
            plt.suptitle(edu_level_labels[edu_level], fontsize=14)
            axs[i].xaxis.set_major_locator(plt.MultipleLocator(1))
                                               Grade 2/3
                     Maths
                                                                            Reading
30
25
20
15
10
```


Maintenant montrons aussi par région, cette fois-ci en divisant en "reading" et "maths", et sans indiquer l'année par taille et transparence.

```
In [45]: region_markers = ["o", "^", "d", "v", "s", "X"]
         # Create a 3 row by 2 col layout of plots
         fig, axs = plt.subplots(3, 2, figsize=(16, 20), sharey=True)
         plt col = 0
         for series_code in chart_series_codes:
             plt row = 0
             for edu_level in edu_levels:
                 marker_index = 0
                 axs[plt_row, plt_col].set_xlabel('GDP per capita', fontsize=14)
                 axs[plt_row, plt_col].set_ylabel('% of pupils achieving proficiency', fontsize=14)
                 axs[plt_row, plt_col].tick_params(axis='both', labelsize=14)
                 for region in prof_vs_gdp_data['Region Name'].unique():
                      chart_data = prof_vs_gdp_data.loc[
                          (prof_vs_gdp_data['seriescode'] == series_code) &
                          (prof_vs_gdp_data['education_level'] == edu_level) &
                          (prof_vs_gdp_data['Region Name'] == region)
                      1
                     label = region
                      spearman = chart_data.loc[:, ['GDP per capita',
          'value']].corr('spearman').at['GDP per capita', 'value']
                      if not np.isnan(spearman):
                          pval = chart_data.loc[:, ['GDP per capita',
          'value']].corr(spearmanr_pval).at['GDP per capita', 'value']
                          label = f"{region} {spearman:.2f}, p={pval:.2e}"
                      axs[plt_row, plt_col].scatter(
                          chart_data['GDP per capita'],
                          chart_data['value'],
                          marker = region_markers[marker_index],
                          label = label
                      )
                     marker_index += 1
                 axs[plt_row, plt_col].set_title(
                     f"{series_labels[series_code]} - {edu_level_labels[edu_level]}",
                     fontdict = {'fontsize' : 14, 'fontweight' : 'bold'}
                 plt_row += 1
             plt col += 1
         # Convert all legend labels into a dictionary so as to remove duplicates
         handles, labels = plt.gca().get_legend_handles_labels()
         by label = dict(zip(labels, handles))
         fig.legend(
             by_label.values(),
             by_label.keys(),
             loc='lower center',
             bbox to anchor=(0.5, 0.03),
             bbox transform=fig.transFigure,
             ncol=ceil(len(labels) / 2),
             frameon=True, facecolor='whitesmoke', framealpha=1, fontsize=14,
             title="Region and Spearman co-efficient",
             title_fontsize=16
         )
```

```
fig.set_facecolor('lightblue')
fig.suptitle('Educational proficiency vs GDP per capita by region', fontsize=18,
fontweight='bold')
plt.subplots_adjust(hspace=0.3, top=0.94)
plt.show()

# Uncomment for a copy to display in results
# fig.savefig(fname='images/result2.png', bbox_inches='tight')
```

