MATH-1564-K1,K2,K3 Linear Algebra with Abstract Vector Spaces

Homework 4

1. In each of the following you are given a statement, which may be true or false. Determine whether the statement is correct and show how you reached this conclusion.

(a)
$$\begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix} \in \operatorname{span}\left\{ \begin{pmatrix} 2 & 0 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ 3 & 0 \end{pmatrix}, \begin{pmatrix} -2 & 1 \\ 2 & -1 \end{pmatrix} \right\}$$

(b)
$$2 + 3x + 2x^2 - x^3 \in \text{span}\{1 - x^3, 2 + x + x^2, 3 - x\}$$

$$(c) \ \operatorname{span}\{\left(\begin{array}{cc} 5 & -2 \\ -5 & -3 \end{array}\right), \left(\begin{array}{cc} 1 & 1 \\ 4 & -1 \end{array}\right)\} \subseteq \operatorname{span}\{\left(\begin{array}{cc} 2 & 0 \\ 1 & -1 \end{array}\right), \left(\begin{array}{cc} -1 & 1 \\ 3 & 0 \end{array}\right), \left(\begin{array}{cc} -2 & 1 \\ 2 & -1 \end{array}\right)\}$$

(d)
$$\operatorname{span}\left\{ \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix} \right\} = \operatorname{span}\left\{ \begin{pmatrix} 3\\2\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\-1 \end{pmatrix} \right\}$$

(e)
$$\left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \end{pmatrix} \right\}$$
 spans \mathbb{R}^2 .

(f)
$$\left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}$$
 spans \mathbb{R}^2 .

(g)
$$\{1-x+x^2, x-x^2+x^3, 1+x^2-x^3, x^3\}$$
 spans $\mathbb{R}_3[x]$.

2. In each of the following you are given a vector space (you do not need to prove that this is indeed a vector space). Find a spanning set for each of these vector spaces.

(a)
$$\left\{ \begin{pmatrix} a+b+c \\ a-2b \\ 3a-2c \\ 4c-b \end{pmatrix} : a,b,c \in \mathbb{R} \right\}$$

(b)
$$\{A \in M_2(\mathbb{R}) : A \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}$$

(c)
$$\{p(x) \in \mathbb{R}_3[x] : p'(1) = 0\}$$

(d)
$$\{p(x) \in \mathbb{R}_n[x] : p(1) = p(-1)\}$$

3. In each of the following you are given a set, determine whether it is linearly independent or linearly dependent, show how you reach your conclusion.

(a)
$$\left\{ \begin{pmatrix} 2 & 0 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} -2 & 1 \\ 2 & -1 \end{pmatrix} \right\}$$

(b)
$$\left\{ \begin{pmatrix} 3\\2\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\-1 \end{pmatrix} \right\}$$

(c)
$$\{1-x^3, 2+x+x^2, 3-x, 1+x+x^2+x^3\}$$

- (d) $\{f(x) = \sin^2 x, g(x) = \cos^2(x), h(x) = 1\}$ (Note that h(x) is the constant function which is equal to 1 for every x).
- 4. Let V be a vector space and w_1, w_2, w_3 in V be such that $\{w_1, w_2, w_3\}$ is linearly independent. Prove or disprove the following claims.
 - (a) The set $\{w_1 + w_2 + w_3, w_2 + w_3, w_3\}$ is linearly independent.

- (b) The set $\{w_1 + 2w_2 + w_3, w_2 + w_3, w_1 + w_2\}$ is linearly independent.
- 5. Let V be a vector space and let $S \subset V$ and $T \subset V$ be two finite subsets of V. Prove or disprove the following claims.
 - (a) If $S \subset T$ and S is linearly independent then T is linearly independent.
 - (b) If $S \subset T$ and T is linearly independent then S is linearly independent.
 - (c) If S and T are linearly independent then $S \cap T$ is either empty or linearly independent (Remark: sometimes people consider an empty set to be linearly independent).
 - (d) If S and T are linearly independent then $S \cup T$ is linearly independent.
 - (e) If $W = \operatorname{span} S$ and $U = \operatorname{span} T$ then $W + U = \operatorname{span} (S \cup T)$.
- 6. The following claims are either **true or false**. Determine which case is it for each claim and prove your answer.
 - (a) Let V be a vector space which satisfies $\dim V=3$. Then there exist, a subspace W of V and a subspace U of W (that is, $U \subset W \subset V$) such that $\dim U=1$ and $\dim W=2$.
 - (b) Let V be a vector space which satisfies $\dim V = 3$ and let W be a **non-trivial** subspace of V and U be a **non-trivial** subspace of W (that is, $U \subset W \subset V$) then $\dim U = 1$ and $\dim W = 2$.
 - (c) Let V be a vector space which satisfies $\dim V=3$ and let $v_1, v_2, v_3 \in V$ be such that $\{v_1, v_2\}$ are linearly independent, $\{v_2, v_3\}$ are linearly independent, and $\{v_3, v_1\}$ are linearly independent. Then $\{v_1, v_2, v_3\}$ is a basis for V.
 - (d) Let V be a vector space and $v_1, ..., v_n \in V$ then: $\{v_1, ..., v_n\}$ is linearly independent iff $\dim(\operatorname{span}\{v_1, ..., v_n\}) = n$.
 - (e) Let V be a vector space and let $V_1, V_2, V_3 \subset V$ be such that $V_1 + V_2 = V_1 + V_3$ and $\dim V_2 = \dim V_3$ then $V_2 = V_3$. (The sum of two subspaces was defined in previous HW's).