268 Introduction to Automata Theory, Formal Languages and Computation

Fig.5.38(a)–(c)

- 3. The initial state of $M\prime$ is the same as the final state of M ($M\prime$ is the reverse direction of M)
- 4. The fi nal state of $M\prime$ is the same as the initial state of M ($M\prime$ is the reverse direction of M)

Let a string w belong to L, i.e., w ε M. So, there is a path from q_0 to F with path value w. By reversing the edges, we get a path from F to q_0 (beginning and final state of M') in M'. The path value is the reverse of w, i.e., w^T . So, $w^T \varepsilon M'$.

So, the reverse of the string w is regular.

Example:

Let $L = ab(a+b)^*$.

The FA M accepting L is as shown in Fig. 5.39(a). The reverse of the FA $M\prime$ accepting Lc is shown in Fig. 5.39(b).

Fig.5.39(a)-(b)

M' accepts $(a+b)^*ba$ which is reverse of L.

Theorem 5.5:If L is regular and L is a subset of Σ^* , prove that Σ^*-L is also a regular set.

As L is regular, there must be an FA, $M=(Q,\Sigma,\delta,q_0,F)$, accepting L.Let us construct another DFA

 $M\prime=(Q,\Sigma,\delta,q_0,F\prime)$ where $F\prime=$ Q–F. So, the two DFA differ only in their final states. A final state of M

is a non-final state of $M\prime$ and vice versa.

Let us take a string w which is accepted by $M\prime$. So, $\delta(q_0,w)\varepsilon F\prime$, i.e., $\delta(q_0,w)\varepsilon(Q-F)$.