Problem 1. The following psuedo-code is an implementation of the idea: (E is adjacency list)

```
1: procedure ToplogicalSort(V, E)
 2:
        S := \emptyset
        Q := \emptyset
 3:
        r := array(0, 0, \cdots 0) (length |V|)
 4:
        for e = (v_i, v_i) \in E do
 5:
            r[j] = r[j] + 1
 6:
        end for
 7:
        for i from 1 to |V| do
 8:
            if r[i] \neq 0 then
 9:
                Q.enqueue(v_i)
10:
            end if
11:
        end for
12:
13:
        while Q \neq \emptyset do
            v = Q.dequeue(); S.append(v)
14:
            V = V \setminus \{v\}
15:
            for v_i where (v, v_i) \in E do
16:
                r[i] = r[i] - 1; E \setminus \{(v, v_i)\}
17:
                if r[i] = 0 then
18:
                    Q.enqueue(v_i)
19:
20:
                end if
21:
            end for
        end while
22:
        return S
23:
24: end procedure
```

The time complexity of this algorithm is O(E) (5 to 7) + O(V) (8 to 12) + O(V + E) (13 to 22) = O(V + E). Also, if G has a cycle, $Q = \emptyset$ before $V = \emptyset$. (i.e there are not possible to choose in-degree 0 vertex)

Problem 2. For convinence, view L_1 and L_2 as a function: $L_1: X_1 \to Y_1, L_2: X_2 \to Y_2$. Also, let $R: X_1 \to X_2$ is a reduction.

- (a) True. Let D(x) is a polynominal algorithm that solves $L_2(x)$. Then, D(R(x)) is a solution of $L_1(x)$ for every $x \in X_1$.
- (b) Open problem. There are no public known facts that whether there exist a problem L such at $L \notin P \land L \notin NP$ -complete.
- (c) False. If $L_2 \notin NP$, $L_2 \notin NP complete$.
- (d) False. If SAT $\in P$, NP = P so co-NP = NP = P. Refer to the problem 3.
- (e) False. Suppose a problem $L: X \to \{T, F\}$, which L(x) = F for every $x \in X$. Obviously, $L \in P \subseteq NP$, but that doesn't give anything meaningful about NP.
- (f) False. If an NP-complete problem can be solved in linear time, NP-complete = NP = P, but all P problems cannot be solved in linear time.

Sungwon Cho CS300 : Homework 6 Due 2016-06-13

Problem 3. The proof is following:

- (1) Assume that P = NP, and choose an arbitrary problem $L \in co-NP$.
- (2) Then, $\bar{L} \in NP$, so there exists a polynominal algorithm A that solves \bar{L} .
- (3) Since $\lambda x. \neg A(x)$ is a polynominal algorithm that solves $L, L \in P$.
- (4) By (1) and (3), $co-NP \subset P$. Since it is obvious that $P \subset co-NP$, co-NP = P.
- (5) By (1) and (4), co-NP = NP. Taking contrapositive gives $NP \neq co-NP \rightarrow P \neq NP$.

Problem 4. View L as a language that defined in X.

- (1) Let $L <_p \bar{L}$, and R is a poly reduction function.
- (2) Then, $\forall x \in X, x \in L \leftrightarrow R(x) \in \bar{L}$.
- (3) $\forall x \in X, x \in \bar{L} \leftrightarrow x \notin L \leftrightarrow R(x) \notin \bar{L} \leftrightarrow R(x) \in L$
- (4) Therefore, R is a poly reduction function from \bar{L} to L, $\bar{L} <_p L$.
- (5) The converse can be easily proven by substituting $L = \bar{L}'$ and $\bar{L} = L'$.