Experiment 2: Kinetics of acid catalysed hydrolysis of ethyl acetate

Reagents and solutions used: ethyl acetate, 0.5 N HCl, 0.2 N NaOH, phenolphthalein indicator, ice cubes

Apparatus: 50 mL burette, 5 mL pipette, 10 mL pipette, conical flasks, wash bottle, 250 mL reaction bottle

Tabulation and calculations:

S.	Time	Volume	$(V_{\infty}-V_{\bullet})$	$log(V_{-}-V_{-})$	$K = \frac{2.303}{t} \log \frac{(V_{\infty} - V_{0})}{(V_{\infty} - V_{t})}$
No.		of 0.2 N		2 (2	$K = \frac{1}{t} \log \frac{1}{(V_{\infty} - V_t)}$
		NaOH			
	min	mL	mL		min ⁻¹
1	0	27.3			A Casolota ta
- f 1 +	200	* 1 9 1	24.3	1.386	0
2	10	27.8	23.8	1. 377	0.00208
3	20	28.3	23.3	1.367	0.00210
4	30	28.5	23.1	1.364	0.00168
5	40	29.1	22.5	1.352	0.00 192
6	50	29.5	22.91	1.344	0.00189
7	∞	51.6	_		

Plot the graph between time and $log (V_{\infty} - V_t)$

Time min	$\log (V_{\infty} - V_{t})$
0	1.386
10	1.377
20	1.367
30	1-364
40	1.352
50	1. 344

Calculations

1.
$$K_{10} = \frac{2.303}{10} \log \left(\frac{24.3}{23.8} \right) = 0.00208$$

$$\frac{1. K_{20}}{\frac{1}{20}} = \frac{1.303}{\frac{109}{200}} = 0.0020$$

$$\frac{3. \text{ K}_{30}}{30} = \frac{2.303}{30} \log \left(\frac{24.3}{23.1} \right) = 0.00168$$

4.
$$k_{40} = \frac{2.303}{40} \log \left(\frac{24.3}{22.5} \right) = 0.00192$$

5.
$$K_{50} = \frac{2.303}{50} \log \left(\frac{24.3}{22.1} \right) = 0.00189$$

Result:

The rate constant for the hydrolysis of an ester from

- 1. Calculated value = 0.00193
- 2. Graphical value = 0.00193
- 3. Molecularity of the reaction = 2 (Simo lewlar reaction)
- 4. Order of the reaction = first order (pseudo first order)

Average K = 0.00208 + 0.00210 + 0.00168 + 0.00197 + 0.00189

5

15

Graphical value of K = 2.303.x slope

