Subject: Lowest possible orbits for ATA tracking of satellites.

From: Ron Maddalena <rmaddale@citlink.net>

Date: 3/7/2021, 00:37

To: "Seymour, Andrew" <asiemion@seti.org>, "DeBoer, David Robert" <ddeboer@berkeley.edu>, "Antonio, Franklin" <franklin@franklinantonio.org>, "Pollak, Alexander" <apollak@seti.org>, "Schoultz, Sarah" <sschoultz4@gmail.com>, "Farah, Wael" <wfarah@seti.org>, "Diamond, Bill" <bdiamond@seti.org>

Thought this would be interesting since we've been talking about GPS tracking and what satellites the ATA can track across the sky...

Recently, I wrote a program for a GBT project that gives the minimum distances for a satellite before it's angular velocity exceeds the slew rate of the telescope. I resurrected it and gave it the ATA's values for maximum slew rates of 1d/sec in Elev and 3d/sec in Az. The algorithm could, but doesn't, take into consideration the height of the observatory above sea level, the oblateness of the Earth, and refraction.

D (top panel) is the distance between the telescope and the satellite, R (bottom two panels) is the distance from the center of the Earth (left axis) and distance above the ground (right axis). Bottom right panel is a blow-up of bottom left panel. Anything flying above the curves can be tracked by the ATA.

If your curious, below \sim 70d, the distance limit is set by the maximum elevation slew rate. Above 70d, the distance limit is set by the maximum azimuth slew rate (i.e., above \sim 70d, 3d/sec*cos(elev) becomes < 1d/sec).

Deriving the algorithm was pretty fun and rewarding as it requires combining in a unique way concepts we all learned, most in High School. So, I won't deny others the pleasure of working it out for themselves. One clue: you have to use a tool that was first employed by the Babylonians.