Attaque par canal auxiliaire sur la signature ECDSA et réduction de réseau

Capgrand Paul - Chauveau Paul - Duzes Florian

Master Cryptologie et Sécurité Informatique

université BORDEAUX

April 15, 2025

Introduction

1999 : Howgrave-Graham et Smart [HS01]

"Lattice Attacks on Digital Signature Schemes"

2001 : Publication dans le journal Designs, Codes and Cryptography

Introduction

Outils développés en SageMath:

- 1. Un générateur de paramètres DSA
- 2. Un générateur de signatures et de traces pour tous les protocoles étudiés
- 3. Les fonctions de l'attaque de notre référence
- 4. Un programme pour filtrer et agréger les résultats avant de les tracer avec *numpy*, *pandas*, *matplotlib* et *seaborn*

Sommaire

- 1. Préambule
 - 1.1 Réseaux Euclidiens
 - 1.2 Signature DSA
 - 1.3 Signature ECDSA
- 2. Traces & Préparation
- 3. Attaque
 - 3.1 Mise en équations
 - 3.2 Construction de réseau
- 4. Résultats
 - 4.1 DSA 1024 160
 - 4.2 ECDSA P-256
- 5. Conclusion
- 6. Ouverture
- 7. Annexe

Préambule

Capgrand - Chauveau - Duzes 5 / 42

Réseaux Euclidiens

Un réseau L est un sous-groupe discret de \mathbb{R}^n .

Cette structure peut être décrite par une base \mathcal{B} de d vecteurs indépendants $\{b_1, \dots b_d\}$. En posant A la matrice dont les lignes sont les d vecteurs de \mathcal{B} , on peut écrire :

$$L = \{ \mathbf{x}A : \mathbf{x} \in \mathbb{Z}^n \}$$

Closest Vector Problem

- Pour un vecteur \mathbf{t} de \mathbb{R}^n , trouver le vecteur de L le plus proche.
- NP-Difficile

Réduction de base

Exemple de réduction de réseaux [Pel24]

Capgrand - Chauveau - Duzes 8 / 42

Algorithme de réduction de réseau

Comparaison du facteur d'approximation et le temps de calcul entre LLL, BKZ et Sieving [Pel24]

Capgrand - Chauveau - Duzes 9 / 42

Approximation du CVP

Babaï:

$$\gamma = 2\left(\frac{2}{\sqrt{3}}\right)^d$$

avec d le rang du réseau.

Algorithme du plan proche de Babai :

- 1. une base $\mathcal{B} \in \mathbb{Z}^{d \times n}$
- 2. un vecteur cible $t \in \mathbb{Z}^n$

Une réduction de réseau avant de projeter itérativement t sur chaque vecteur de base réduit successif. La projection arrondie est ensuite soustraite de t pour obtenir un nouveau vecteur plus proche du point du réseau.

Digital Signature Algorithm

La sécurité de la signature DSA, repose sur le problème du logarithme discret dans le groupe $(Z/p\mathbb{Z})^{\times}$ avec p premier et suffisamment grand.

Paramètres publics:

- 1. p_{1024} et q_{160} , deux nombres premiers et tel que q|(p-1), [NIS94]
- 2. g un générateur de $(Z/p\mathbb{Z})^{\times}$

Clé secrète : $x \leftarrow \mathbb{Z}/q\mathbb{Z}$

Clé publique : $h = g^x$

Protocole de signature

f une fonction de hachage : SHA-1

Soit $m \in \mathbb{Z}/q\mathbb{Z}$, $y \stackrel{\$}{\leftarrow} \mathbb{Z}/q\mathbb{Z}$

$$b \equiv (m + xf(g^{y}))y^{-1} \pmod{q}$$

$$(g^{y}, b)$$
(1)

Pour vérifier la signature :

$$g^m \times h^{f(g^y)} = (g^y)^b$$

Interêt des courbes elliptiques

Table: Taille de clés pour une sécurité équivalente entre la signature DSA et la signature avec les courbes elliptiques (EC). Issu de [HMV04], p.19

	Security level (bits)					
	80	112	128	192	256	
DSA paramètre <i>p</i> EC paramètre <i>n</i>	1024 160	2048 224	3072 256		15360 512	

Elliptic Curve DSA

E une courbe elliptique d'ordre n un nombre premier, soit P un point de E et f notre fonction de hachage.

Clé secrète $x \leftarrow \mathbb{Z}/n\mathbb{Z}$

Clé publique Q = xP

$$r \stackrel{\$}{\leftarrow} \mathbb{Z}/n\mathbb{Z}, rP = (x_R, y_R)$$

La signature est alors donnée par $\sigma = (\sigma_1, \sigma_2) = (x_R \mod n, s)$, où :

$$s \equiv r^{-1}(x(x_R \mod n) + f(m)) \pmod{n}. \tag{2}$$

Signature ECDSA - vérification

Vérification de (σ_1, σ_2) :

1.
$$u_1 \equiv f(m)\sigma_2^{-1} \pmod{n}$$

$$2. \ u_2 \equiv \sigma_1 \sigma_2^{-1} \pmod{n}$$

$$(x_1, y_1) = u_1 P + u_2 Q$$

$$\sigma_1 \equiv x_1$$

(3)

Traces & Préparation

Illustration d'une trace

Appelons x la valeur dont on veut récupérer les bits d'informations, admettons par exemple que x s'écrit ainsi :

$$x = 10101101010111110001111010011110$$

L'information inconnue de x, en rouge sur les schémas ci-dessous, peut être organisée de différentes manières. La plus simple étant le cas contigu où juste un bloc de bits est manquant :

Illustration d'une trace - cas non contigu

Mais nous prenons aussi en compte le cas où l'information manquante est séparée en plusieurs blocs :

Attaque

Capgrand - Chauveau - Duzes 19 / 42

Signatures et équations

Attaque par canal auxiliaire => bits d'information sur les clés éphémères y_i Objectif : retrouver entièrement une clé éphémère et d'en déduire la clé privée x On récupère h signatures => h équations pour $1 \le i \le h$:

$$m_i - b_i y_i + x f\left(g^{y_i}\right) \equiv 0 \pmod{q} \tag{4}$$

On peut ensuite réarranger nos équations, avec A et B entiers, sous cette forme $y_i + xA_i + B_i \equiv 0 \pmod{q}$. Pivot de Gauss pour exprimer x en fonction de y_h :

$$y_i + y_h \times A_i' + B_i' \equiv 0 \pmod{q} \tag{5}$$

Simplification des équations

$$y_i = \alpha_i' + 2^{\lambda_i} z_i + 2^{\mu_i} \alpha_i'' \tag{6}$$

y_i :

On connaît les α'_i , α''_i , λ_i et μ_i . Nos inconnues sont les z_i et on définit X_i leurs bornes supérieures :

$$0 \le z_i < X_i = 2^{\mu_i - \lambda_i}$$

On simplifie une dernière fois nos équations pour obtenir :

$$z_i + s_i z_h + t_i = 0 \pmod{q} \tag{7}$$

Réseau et CVP

$$A = \left(egin{array}{ccccc} -1 & s_1 & s_2 & \dots & s_n \ 0 & q & 0 & \cdots & 0 \ 0 & 0 & q & & 0 \ dots & & \ddots & dots \ 0 & \cdots & \cdots & \cdots & q \end{array}
ight) \in M_{(n+1),(n+1)}(\mathbb{Z})$$

Réseau $L = \{ \mathbf{x} A : \mathbf{x} \in \mathbb{Z}^{n+1} \}$ issu de A. Un vecteur \mathbf{v} de L s'exprime ainsi :

$$\mathbf{v} = (-x_0, x_0s_1 + x_1q, \dots, x_0s_n + x_nq) \in \mathbb{Z}^{n+1}$$

$$z_i \equiv -z_h s_i - t_i \pmod{q}$$

$$z_i \equiv -z_h s_i - t_i \pmod{q}$$

En prenant :

$$\mathbf{t}=(0,t_1,t_2,\ldots,t_n)\in\mathbb{Z}^{n+1}$$

On sait qu'il existe :

$$\mathbf{v} - \mathbf{t} = (z_h, z_1, \ldots, z_n) \in \mathbb{Z}^{n+1}$$

$$\|\mathbf{v} - \mathbf{t}\|^2 \le \sum_{i=0}^n X_i^2$$

 y_i :

Non-contigu

$$y_i = z_i' + \sum_{j=1}^d z_{i,j} 2^{\lambda_{i,j}}$$

Notre système d'équation devient :

$$z_{i,1} + \sum_{j=2}^{d} s_{i,j} z_{i,j} + \sum_{j=1}^{d} r_{i,j} z_{0,j} + t_i \equiv 0 \pmod{q}$$

$$A = \begin{pmatrix} -I_{d(n+1)-n} & R^t \\ \hline & S \\ \hline & 0 & -qI_n \end{pmatrix} \times D$$

Où $R = (r_{i,j})$ et S correspond à la matrice

$$S = \begin{pmatrix} \mathbf{s}_1 & 0 \\ & \ddots & \\ 0 & \mathbf{s}_n \end{pmatrix} \in M_{n(d-1),n}(\mathbb{Z})$$

avec \mathbf{s}_i le vecteur colonne $(s_{i,j})_{j=2}^d$.

Résultats

Capgrand - Chauveau - Duzes 26 / 42

Comparaison avec l'article

Table: Comparaison de résultats entre [HS01] et notre implémentation, réalisé sur bergman

Epsilon	Bits connus	Nombre d'équations $^1 \mid Temps$ (secondes)				
		Nous	Eux	Nous	Eux	
0.25	40	4	4	0.00428	0.0360	
0.1	16	10	11	0.00956	0.4428	
0.05	8	24	30	0.05998	8.6970	
0.03125	5	80	/	7163.72	échec	

¹Le nombre d'équations présenté est le minimum requis pour que l'attaque fonctionne.

Comparaison avec l'article - cas non contigu

Table: Comparaison de résultats entre [HS01] et notre implémentation, réalisé sur lautrec

Epsilon	d	Nombre d'équations		Temps (secondes)	
		Nous Eux		Nous	Eux
0.5	4	2	2	0.0067	0.304
	8	2	2	0.032	1.135
	16	3 (6%)	/	0.899	échec
0.25	2	4 4		0.050	0.393
	4	4 (95%)	4	0.024	1.785
	8	5 (3%)		0.452	échec
0.1	2	12 (88%)	12	0.087	6.256
	4	/	/	échec	échec

Considérations matérielles

Table: configurations des machines utilisées

Machine	modèle CPU	RAM (GO)
bergman	Intel i9-13900	64
lautrec	Intel Xeon E-2236	32
jolicoeur	AMD Opteron 6276	124
wylde	Intel Xeon W-1250P	48
moore	Intel Xeon W-1250P	48
plomet	Intel Xeon W-1290	64

Configuration plausible pour l'ordinateur des chercheurs en 1999 :

- Intel Pentium II 32 bits, cadencé entre 233 et 450 MHz
- DDR RAM 256 Megaoctets

Remarque

Table: Extrait de résultat sur DSA historique, non contigu sur lautrec, contigu sur plomet

	Epsilon	Nombre d'équations	Temps (secondes)	Réussite
Non Contigu (d=16)	0.4	6	142.297	False
Contigu	0.03125	80	7163.72	True

DSA 1024 160 - 8 bits / epsilon=0.05

Probabilité de succès de l'attaque en fonction du nombre de signatures sur jolicoeur

31 / 42

ECDSA P-256 - 10 bits / epsilon=0.04

Probabilité de succès de l'attaque en fonction du nombre de signatures sur jolicoeur

ECDSA P-256 - comparaison LLL / BKZ-NTL

Comparaison du temps de calcul en fonction de la valeur d'epsilon sur jolicoeur

Conclusion

Préambule Traces & Prépara

taque

Références

[HMV04]	Darrel Hankerson,	Alfred Menezes,	and Scott	Vanstone.	Guide to Elliptic	c Curve	Cryptography.	Springer,
	2004.							

- [HS01] N.A. Howgrave-Graham and N.P. Smart. "Lattice Attacks on Digital Signature Schemes". In: Designs Codes and Cryptography (2001).
- [KEF] Paul Kirchner, Thomas Espitau, and Pierre-Alain Fouque. "Towards Faster Polynomial-Time Lattice Reduction". In: Advances in Cryptology – CRYPTO 2021.
- [NIS94] NIST. FIPS 186: Digital Signature Standard (DSS). 1994.
- [Pel24] Alice Pellet-mary. "Part II: algorithmic problems and algorithms". In: Cryptologie Post-Quantique. 2024.
- [RH23] Keegan Ryan and Nadia Heninger. Fast Practical Lattice Reduction through Iterated Compression. Cryptology ePrint Archive, Paper 2023/237. 2023.
- [SSG24] Maria Sabani, Ilias Savvas, and Georgia Garani. "Learning with Errors: A Lattice-Based Keystone of Post-Quantum Cryptography". In: Signals 5 (Apr. 2024), pp. 216–243.
- [Xu+23] Luyao Xu et al. "Improved Attacks on (EC)DSA with Nonce Leakage by Lattice Sieving with Predicate". In: IACR Transactions on Cryptographic Hardware and Embedded Systems 2023.2 (2023), pp. 568–586.

Ouverture

Records

[Xu+23] => algorithmes de réduction de réseau et des techniques de criblage avec prédicat. Records en termes de temps d'exécution et de nombre d'échantillons.

Table: Comparaison avec les précédents records des attaques par réseau sur (EC)DSA. Chaque colonne correspond à la taille des courbes et chaque ligne correspond au nombre de bits de fuite de clé éphémère par signature.

	4-bit	3-bit	2-bit	1-bit
112-bit	-	-	-	[Xu+23]
160-bit	-	[2002]	[2013],[2021],[2022]	/
256-bit	[2019],[2020]	[2021],[2022]	[Xu+23]	/
384-bit	[2021],[2022]	[Xu+23]	/	/

w-NAF

Table: Tableau de Conversion entre Différentes Formes NAF

Décimal	Binaire	1-NAF	2-NAF	3-NAF
9	1001	1001	1001	1000(-7)
11	1011	10(-1)0(-1)	1003	1000(-5)
29	11101	100(-1)01	10000(-3)	10000(-3)
42	101010	101010	300(-3)0	100050
85	1010101	1010101	100300(-3)	50005
170	10101010	10101010	100300(-3)0	500050

Algorithme de réduction

Table: Tableau de comparaison des tailles de réseau après application de Flatter, LLL et une étude antérieure

Dimension	Nombre de bits	fpLLL (s)	[KEF]	[RH23]
128	100000	3831	400	69
256	10000	2764	200	83
384	10000	10855	780	246

Algorithme de réduction

Comparaison de performances entre LLL et L4

Annexe

roduction Préambule

Implémentation

```
def hide contiguous(v,epsilon, q) :
    if not 0 < epsilon <= 1 :</pre>
        raise ValueError(" - epsilon doit être entre 0 et 1.")
    v = int(v)
    total = len(bin(q)[2:])
    nb_bits = floor(total*epsilon) # nb de bit de y connus
    unknow = total - nb_bits
                                      # nh de hits inconnus
    # séparation en deux blocs initiaux ou finaux
    __lambda = floor(random() * nb_bits)
    mu = unknow + lambda
    #application de masque
    a = v & ((1 << lambda) - 1)
    b = (y >> __lambda) & ((1 << (mu - __lambda)) - 1)
    c = v >> mu
    return a,b,c,_lambda,mu
```