CHAPITRE 12

TD

II Exercice 2

Table des matières

I Exercice 1	1
II Exercice 2	1
III Exercice 4	2
IV Exercice 6	2
V Exercice 21	2
1 Préliminaires	3
VI Exercice 18	3
Première partie Exercice 1	
On pose $E=\{f_1,f_2,f_3,f_4\}$. — On sait que \circ est associatif. — \circ admet un élément neutre $id_{\mathbb{R}_*}$ ($\forall f\in E,id_{\mathbb{R}_*}\circ f=f\circ id_{\mathbb{R}_*}=f$) $id_{\mathbb{R}_*}(x)=x$ donc $id_{\mathbb{R}_*}\in E$. — Montrons que $\forall f\in E,\exists g\in Ef\circ g=f_1$. — $f_1\circ f_1=f_1$ — $f_2\circ f_2=f_1$ — $f_3\circ f_3=f_1$ — $f_4\circ f_4=f_1$ — Montrons que $\forall (f,g)\in E^2,f\circ g\in E$ — $\forall f\in E,f_1\circ f=f\in E$ — $\forall f\in E,f_1\circ f=f\in E$ — $f_3\circ f_2=f_4\in E$ — $f_3\circ f_4=f_2\in E$ — $f_4\circ f_3=f_2\in E$ — $f_4\circ f_3\in E$ Donc, $\forall (f,g)\in E^2,f\circ g\in E$ Donc, (E,\circ) est un groupe) et

Deuxième partie

Exercice 2

1. (a) On suppose G abélien donc \cdot est une loi commutative.

$$(ab)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1}$$

et

$$(ab)^2 = abab = aabb = a^2b^2$$

- (b) On suppose que $\forall (a,b) \in G^2, (ab)^{-1} = a^{-1}b^{-1}$ donc, $b^{-1}a^{-1} = a^{-1}b^{-1}$ donc \cdot est commutative donc G est abélien.
- (c) On suppose $\forall (a,b) \in G^2, (ab)^2 = a^2b^2$ donc abab = aabb donc ba = ab donc \cdot est commutative donc G est abélien
- 2. On suppose que $\forall x \in G, x^2 = e$.

$$\forall (a,b) \in G^2$$

$$(ab)^2 = a^2 \cdot b^2$$

$$\parallel \qquad \parallel \qquad \parallel$$

$$e = e \cdot e$$

Troisième partie

Exercice 4

1. $E = \{z \in \mathbb{C} \mid |z| = 2\}$

L'élément neutre de \times est $1\not\in E$ donc E n'est pas un groupe.

- 2. $0 \in E$. Or, 0 n'a pas d'inverse donc E n'est pas un groupe
- 3. Avec, a=b=0, on a $(g:x\mapsto 0)\in E$ car elle n'a pas d'inverse. Soit f:ax+b avec $a,b\in\mathbb{R}$ et $x\in\mathbb{R},$ $(g\times f)(x)=g(ax+b)=0(ax+b)=0$. Donc, $\nexists f\in E, g\times f=id_{\mathbb{R}}$

Quatrième partie

Exercice 6

- $\mathbb{Z}=\langle 1 \rangle$ d'après le cours c'est le plus petit sous-groupe de $(\mathbb{R},+)$ qui contient 1.
- $2\mathbb{Z} = \langle 2 \rangle$ pour la même raison

Cinquième partie

Exercice 21

1 Préliminaires

- 1. Soit $(x, y, z) \in G^3$ -f(x) = f(x) donc $x \diamond x$ - Si $x \diamond y$, f(x) = f(y) donc f(y) = f(x) donc $y \diamond x$ - On suppose $x \diamond y$ et $y \diamond z$ donc f(x) = f(y) et f(y) = f(z) donc f(x) = f(z), et donc $x \diamond z$ 2.

Sixième partie

Exercice 18

Montrons que

- (\mathbb{R}, \otimes) est un monoïde commutatif
- $\forall x \in \mathbb{R} \setminus \{0_{\mathbb{R}}\}, \exists y \in \mathbb{R}, x \otimes y = 1_{\mathbb{R}}$
- $--1_{\mathbb{R}}\neq 0_{\mathbb{R}}$

Trouvons $1_{\mathbb{R}}$ et $0_{\mathbb{R}}$:

Soit $a \in \mathbb{R}$

$$0_{\mathbb{R}} \oplus a = a \iff 0_{\mathbb{R}} + a - 1 = a$$
$$\iff 0_{\mathbb{R}} = 1$$

$$1_{\mathbb{R}} \otimes a = a \iff 1_{\mathbb{R}} + a - 1_{\mathbb{R}}a = a$$
$$\iff 1_{\mathbb{R}}(1 - a) = 0$$
$$\iff a = 1 \text{ ou } 1_{\mathbb{R}} = 0$$

Or, $1_{\mathbb{R}} \otimes a = a$ est vrai pour toutes valeures de a donc $1_{\mathbb{R}} = 0$

$$1_{\mathbb{R}} \neq 0_{\mathbb{R}}$$

Soient $(x, y, z) \in \mathbb{R}^3$. Montrons que $(x \oplus y) \oplus z = x \oplus (y \oplus z)$

$$\begin{array}{rcl} (x \oplus y) \oplus z & = & x \oplus (y \oplus z) \\ \Longleftrightarrow & (x+y-1) \oplus z & = & x \oplus (y+z-1) \\ \Longleftrightarrow & (x+y-1)+z-1 & = & x+(y+z-1)-1 \\ \Longleftrightarrow & x+y+z-2 & = & x+y+z-2 \end{array}$$

Donc, \oplus est associative.

Montrons que $x\oplus y=y\oplus x$ i.e. x+y-1=y+x-1 Donc \oplus est commutative. On sait que $0_{\mathbb{R}}=1\in\mathbb{R}$

VI Exercice 18

Soit $x \in \mathbb{R}$. Trouvons $y \in \mathbb{R}$ tel que $x \oplus y = 0_{\mathbb{R}} = 1$

$$x \oplus y = 1 \iff x + y - 1 = 1$$
$$\iff y = 2 - x \in \mathbb{R}$$

Donc (\mathbb{R}, \oplus) est un groupe abélien