Bayesian Knowledge Tracing at Scale with hmmsclbl toolkit

Michael Yudelson, Ph.D., Carnegie Learning, Inc.

Student Modeling Applications, Recent Developments & Toolkits (SMART) at EDM 2015

hmmsclbl - HMM Scalable

- Toolkit for building Bayesian Knowledge Tracing (BKT) models of Big Datasets
 - And BKT is a Hidden Markov Model (HMM)
- How big is a Big Dataset?
 - 2010 Carnegie Learning Cognitive tutor data
 92.5 million records, 74 000 students
- How well did hmmsclbl do?
 - Mac Mini late 2012, 16Gb of RAM
 - EM model finished in under 5 minutes (parallel mode)
- Tested on educational data

Agenda

- Bayesian Knowledge Tracing
- Getting Started with hmmsclbl
- The Tinkering Points
- Advanced Topics

Bayesian Knowledge Tracing Definition

Bayesian Knowledge Tracing Model ⊆ Hidden Markov Model ⊆ Bayes Net ⊆ Graphical Model

When modeling skill acquisition

- One binary latent (unobserved) variable is represents mastery (skill is known | unknown)
- One observed binary variable represents student performance (skill is applied correctly) incorrectly)

Data

Time-series data: correctness of skill application

Bayesian Knowledge Tracing Representation

Unrolled view of BKT

Priors – Π

Known	Unknown
pL_0	1- pL ₀

Transitions – A

from Known from Unknown

to Known	to Unknown
1-pF	pF
pT	1-pT

Emissions – B

	Correct	Incorrect
Known	1-pS	pS
Unknown	рG	1-pG

Parameters

- Values ∈ [0,1]
- Rows sum to 1
- Forgetting (pF) = 0
- 4 parameters
 - Rows sum to 1, every last value can be omitted
 - Forgetting is 0, no
 5th parameter

Bayesian Knowledge Tracing Updating masteries, predicting

Parameters

Outputs

Helpers

рG

Matrix Version

2. Correct

a. Predict
$$C=L^T \times B$$

c. Compute Le Le=
$$(L.\times Be)./(L^T\times Be)$$

3. Incorrect

4. Unknown

d. Update L
$$L=A^T\times L$$

5. Unknown/guess

Simplified Computation

$$pL=pL_0$$

$$pC=pL\cdot (1-pS)+(1-pL)\cdot pG$$

$$p(L|e=correct)=pL\cdot (1-pS)/[pL\cdot (1-pS)+(1-pL)\cdot pG]$$

 $pL=p(L|e)\cdot (1-pF)+(1-p(L|e))\cdot pT$

$$p(L|e=incorrect)=pL \cdot pS / [pL \cdot pS + (1-pL) \cdot (1-pG)]$$

$$pL=pL\cdot (1-pF)+(1-pL)\cdot pT$$

Legend

$$X[,i] - i^{th}$$
 column of X

Bayesian Knowledge Tracing. Special Note on Predicting

- Updating L (pL) when the observation is known
 - In the tutor, the observation (correct/incorrect) is available for the update
 - When comparing models making the observation available puts BKT at an unfair advantage
 - Especially, when comparing to AFM and PFA
 - Rule 4 from previous slide is too harsh
 - Matrix B (emissions) is ignored
 - Accuracy takes a considerable hit
 - Rule 5 is a compromise
 - Accuracy is better than under Rule 4 (but worse than under Rules 2&3)

Agenda

- Bayesian Knowledge Tracing
- Getting Started with hmmsclbl
- The Tinkering Points
- Advanced Topics

Getting started with hmmsclbl Obtaining and compiling code

Get the source code from IEDMS GitHub repository

\$> git clone https://github.com/IEDMS/standard-bkt
OR download and unzip

Compile

\$> cd standard-bkt

\$> make all

Operating system notes

Linux - gcc with Open MP should be there by default

Mac OS X – refer to hpc.sourceforge.net

Windows - install cygwin with awk, make, wc, time, unzip commands

If you are on the Virtual Box Ubuntu 14.04 Machine we distributed

User/password – usmartedm15/usmartedm15

Files are in ~/Documents/USMARTEDM15/hmmsclbl

Getting started with hmmsclbl Getting the data

KDD Cup 2010 on hosted by LearnLab's DataShop [pslcdatashop.web.cmu.edu/KDDCup] Largest freely available dataset of learner data donated by Carnegie Learning, Inc.

Create at account

Download Bridge to Algebra challenge set bridge_to_algebra_2008_2009.zip (461Mb)

~20 000 000 rows, ~6 000 students

Data is placed in subfolder d, models will be in subfolder m, prediction files in subfolder p, code is in the root that contains these subfolders

Getting started with hmmsclbl Prepping the data

Instead of unzipping a 5.3Gb training file, run:

```
$> time unzip -q -c d/bridge_to_algebra_2008_2009.zip
bridge_to_algebra_2008_2009_train.txt | awk "-F\t"
'BEGIN{OFS="\t"} {if(NR==1)next; skill=$20; gsub("~~",
"~", skill); skill=(skill=="")?".":($3"__"skill); print 2-
$14,$2,$3"__"$4,skill;}' > d/b89_train.txt
```

Reduces rich data to tab-delimited SSSS: success, student, step, skill(s). Multiple skills are ~-delimited. No skill label is denoted by . (dot).

Resulting text file is 2.9Gb.

Note: skills are prefixed with unit and section name. Identical skill labels could mean different things in different sections.

Getting started with hmmsclbl Running the tool

Let's start from EM solver

```
$> ./trainhmm -s 1.1 -d ~ -m 1 -p 1 d/b89_train.txt m/b89 modelEM.txt p/b89 predictEM.txt
```

Here, -s 1.1 is an EM solver, $-d \sim is$ setting skill delimiter, -m 1 asks for fit metrics, and -p 1 requires predictions to be written into a file

It takes a little under 2.5 minutes, fitting alone 1 minute

```
trained model LL=6903034.9861273 (4490671.7596719), AIC=13820821.972255, BIC=13930074.307203, RMSE=0.318739 (0.352797), Acc=0.870607 (0.830841) timing: overall 139.576931 sec, read 42.205482 sec, fit 60.997095 sec, predict 36.144902 sec
```

Here, LL – sum of negative log-likelihoods, AIC and BIT are Akaike and Bayesian Information Criterions, RMSE - root mean squared error, Acc – accuracy.

In braces are the RMSE and Accuracy for the rows without skill labels. Otherwise the metric is given for all rows, even if skill label was omitted.

Getting started with hmmsclbl Switching solvers

Now let's try a Stochastic Gradient Descent solver

\$> ./trainhmm -s 1.2 -d ~ -m 1 -p 1 d/b89_train.txt m/b89_modelGD.txt p/ b89 predictGD.txt

It takes a little longer

trained model LL=7230246.8188073 (4817883.5923708), AIC=14475245.637615, BIC=14584497.972563, RMSE=0.328491 (0.368380), Acc=0.863745 (0.818622) timing: overall 169.495414 sec, read 44.967394 sec, fit 100.809863 sec, predict 23.490269 sec

The overall accuracy is a little worse 0.863745 (vs. 0.870607), just as the overall RMSE – 0.328491 (vs. 0.318739).

- How much is a little and what does it mean
 - Individualized BKT (Yudelson et al., AIED 2013)
 - Increment in the number of rows we are predicting correctly (~50K)
 - When the improvement happens: earlier attempts more valuable
 - Small Improvement for the Model Accuracy Big Difference for the Students (Yudelson & Ritter, AIED 2015)
 - Small difference in accuracy could mean tangible changes in how students work
 - Larger pLearn → faster mastery → fewer problems and less time

Getting started with hmmsclbl Process reports

First output: there are 2 observations, 6043 students, 1844 skills, and 61848 unique steps

```
input read, nO=2, nG=6043, nK=1844, nI=61848
```

As fitting progresses, results for every skill are given

```
      skill
      0, seq
      4027, dat
      32217, iter#
      1 p(0|param)=
      18360.7093550 >>
      18343.6728364, conv=1

      skill
      1, seq
      3889, dat
      62244, iter#
      7 p(0|param)=
      21660.7485382 >>
      16798.8022745, conv=1

      skill
      2, seq
      4386, dat
      98701, iter#
      6 p(0|param)=
      33991.2924686 >>
      27522.3817164, conv=1

      skill
      3, seq
      3888, dat
      62923, iter#
      6 p(0|param)=
      23075.1928335 >>
      19305.2954508, conv=1
```

To fit skill #1

- We use 3889 student sequences of data comprised of 62244 data points
- It takes 7 iterations to finally converge
- The sum of negative log-likelihoods decreases from 21660.7485382 to 16798.8022745
- Average likelihood of a student-skill sequence goes up 0.0038114422 → 0.01330562239 (3.5 times)

Getting started with hmmsclbl Comparing to baseline

Accuracies/RMSE of the Majority Class prediction (here, always predicting "correct")

```
$> awk -F"\t" '{N++; C+=$1==1; SSE+= (1-$1)*(1-$1); }END{print C/N"\t"sqrt(SSE/N);}' d/
b89_train.txt
```

Accuracy=0.861663 and **RMSE=0.371936**. Majority class accuracy is slightly worse than BKT models we've seen. The majority class RMSE is tangibly worse.

Note! BKT, traditionally, uses first attempt at a problem step. Further work until student gets right is omitted.

MC Accuracy ≈86% doesn't mean data is severely skewed or the CL Cognitive Tutor tutor is simple or the students are incredibly smart 20 012 498 first attempts, 17 244 034 are correct = 86.1663% correct 26 798 736 all attempts, 17 244 034 are correct = 64.3464% correct Contextual slip and guess BKT (Baker et al., 2010) uses all data.

Getting started with hmmsclbl Tweaking tolerance criterions

Default stopping criterion is the change in parameter values of 0.01. Here, we lower tolerance -e = 0.001 and increase the maximum number of iterations -i = 400 (from the default 200)

```
\ ./trainhmm -s 1.2 -e 0.001 -i 400 -d ~ -m 1 -p 1 d/b89_train.txt m/b89 modelGDe3i4.txt p/b89 predictGDe3i4.txt
```

It takes a lot longer to build and the change in fit is small (compare to 0.863745 accuracy).

```
trained model LL=7045687.2615030 (4633324.0351113), AIC=14106126.523006, BIC=14215378.857954, RMSE=0.322916 (0.359497), Acc=0.868310 (0.826750) timing: overall 2115.538318 sec, read 44.908378 sec, fit 2041.510535 sec, predict 28.882947 sec
```

In addition, 4 skills actually failed to converge after 400 iterations.

The stopping criterion can be defined in terms of mean negative log-likelihood change per data point by using the following parameter signature $-e \ 0.001$, 1

```
\ ./trainhmm -s 1.2 -e 0.001,1 -d ~ -m 1 -p 1 d/b89_train.txt m/b89_modelGDe21.txt p/b89 predictGDe21.txt
```

Fitting results achieved show small improvement in accuracy (compare to 0.863745.

```
trained model LL=7184702.3227653 (4772339.0963109), AIC=14384156.645531, BIC=14493408.980479, RMSE=0.327298 (0.366485), Acc=0.864662 (0.820255) timing: overall 185.898219 sec, read 2.105894 sec, fit 159.845276 sec, predict 23.690081 sec
```

Getting started with hmmsclbl Let forgetting happen

Default initial parameter values are: $pL_0=0.5$, 1-pF=1, pT=0.4, 1-pS=0.8, pG=0.2. To set defaults, one can specify a comma separated list via -0.0.5, 1.0, 0.4, 0.8, 0.2

Let's set a starting version of forgetting to 0.001

\$> ./trainhmm -s 1.2 -d ~ -m 1 -p 1
-0 0.5,0.999,0.4,0.8,0.2 d/b89_train.txt
m/b89_modelGDpf0.01.txt
p/b89 predictGDpf0.01.txt

	to Known	to Unknown
from Known	1-pF	pF
from Unknown	рT	1-pT

	Correct	Incorrect
Known	1-pS	pS
Unknown	pG	1-pG

 $1-pL_0$

Small decrement in accuracy (rf. to 0.863745)

trained model LL=7747431.9193728 (5335068.6927902), AIC=15509615.838746, BIC=15618868.173694, RMSE=0.340602 (0.387471), Acc=0.861669 (0.814925) timing: overall 101.492081 sec, read 44.915405 sec, fit

30.866999 sec, predict 25.471139 sec

Getting started with hmmsclbl Speeding up reading the data file

```
Previous run – almost 1/3 of time is reading the input file
```

```
timing: overall 117.920293 sec, read 45.535030 sec, fit 35.287492 sec, predict 36.842098 sec
```

There is a helper utility to convert text file to binary file

```
$> ./inputconvert -s t -t b -d ~ d/b89_train.txt d/
b89 train.bin
```

Where, -s t means the source is text, -t b - the target is binary.

overall time running is 42.524978 seconds

If we rerun previous task, where -b 1 means binary input and specify a new .bin file

```
$> ./trainhmm -s 1.2 -d ~ -m 1 -p 1
-0 0.5,0.999,0.4,0.8,0.2 -b 1 d/b89_train.bin
m/b89_modelGDpf0.01.txt
p/b89_predictGDpf0.01.txt
```

The reading time is much better

```
timing: overall 57.193008 sec, read 1.146349 sec, fit 31.356436 sec, predict 24.474850 sec
```

Why didn't we see drastic improvements?

- We are using same set of starting parameters
 - Harder and easier skills start in the same place
 - Parameter space has multiple local optima
 - + Seeding pL₀ and pT using AFM *pre-classify* skills (e.g., via modified liblinear in the IEDMS GitHub)
- We are not taking context into consideration
 - Learning and forgetting could be different
 - Same day, next week, after Thanksgiving break
 - + Multiplexing Transition (A) and Emission (B) matrices
- Presence of noise in the data

Tomorrow, Saturday, June 27, Room 1: Salón de Actos. 10:30-11:50

M. Falakmasir, M. Yudelson, S. Ritter and K. Koedinger

Spectral Bayesian Knowledge Tracing. (short)

How different model parameters are?

Agenda

- Bayesian Knowledge Tracing
- Getting Started with hmmsclbl
- The Tinkering Points
- Advanced Topics

The Tinkering Points Set Starting Parameters and Limits

- Starting parameters -0
 - List all but the last in every row
 - Default is -0 0.5,1,0.4,0.8,0.2

	Known	Unknown
	pL_0	1- pL ₀
·		
	to Known	to Unknown
from Known	1-pF	pF
from Unknown	рT	1-pT
•		
	Correct	Incorrect
Known	1.nS	nS

Unknown

- Set parameter limits
 - List all values in every row
 - Default upper -u 1,1,1,0,1,1,1,0.3,0.3,1_{from Kn}
 - Slip and Guess are capped at 0.3
 - Forget is capped at 0
 - Default lower -1 0,0,1,0,0,0,0,0,0,0
 - 1-Forget is no less than 1

1-pG

1 .	to Known	to Unknown
from Known	1-pF	pF
from Unknown	рT	1-pT

	Correct	Incorrect
Known	1-pS	pS
Unknown	pG	1-pG

The Tinkering Points Controlling the Process. Solvers -s

- Baum-Welch (EM) -s 1.1 classical algorithm
- Stochastic Gradient Descent -s 1.2
 - Scales gradients so that the maximum step of 1 does not take any of them over 1 or below 0 (finds n to divide all parameters by 10ⁿ)
 - Halves the step until either Wolfe Conditions are met (a step is far enough but not too far) or 20 attempts. If only first WC is met, us that (Nocedal & Wright, 1999).
 - Re-align parameters so that rows sum to 1 (project onto simplex)
 - Attempts to make large leaps in parameter space (Wolfe Conditions counter-balance that)
- Conjugate Gradient Descent -s 1.3.[1-4]
 - Make first step as in Stochastic Gradient Descent
 - Computes step direction on subsequent next step using formulas

Fletcher-Reeves -s 1.3.1
Polak-Ribière -s 1.3.2
Hestenes-Stiefel -s 1.3.3
Dai-Yuan -s 1.3.4

- Makes large leaps in parameter space
- Gradient Descent using Lagrangian multipliers -s 1.4
 - Uses gradients in a manner that does not need realignment of parameters (Levinson et al., 1983)
 - Smooth[er] parameter changes, just like EM
- Temporarily excluded Barzilai-Borwein and exponentiated Gradient updates

The Tinkering Points Controlling the Process. Iterating and Stopping

- Iterating -i 200
- Stopping
 - Mean parameter change (per parameter) -e 0.01
 - Decreasing the tolerance increases fitting time, but
 - Not necessarily improves the fit drastically
 - Mean negative log-likelihood (per sequence) -e = 0.01, 1
 - On CLCT data, results in a slight improvement of the fit due to more iterations required to converge
- There is a precaution built in against parameter oscillation
 - Parameter values are stored for 2 iterations
 - If parameters at time t are close to parameters at time t-2 the fitting stops

The Tinkering Points Controlling the Process. Regularization

- Regularization is often used to fight with over-fitting
- E.g., in Regularized Logistic Regression penalize parameters for deviating from zero
 - Objective function for parameter x (neg. log-likelihood) $f(x_i)$
 - Objective function with penalty $f(x_i) + \lambda (\sum x_i)^{1/2}$
 - Gradient of a single parameter $x g(x_i)$
 - Gradient of a single parameter with L2 penalty $g(x_i) + \frac{1}{2}\lambda |x_i|$
 - Use center c other than $0 g(x_i) + \frac{1}{2}\lambda |x_i c|$
- Specify penalty
 - All for being away from 0.5: -c 1.0, 0.5, 0.5, 0.5 λ =1, centroids for π, A and B are 0.5.
 - Gravitate priors and transitions to 0.5 and emissions to 0
 -c 1.0, 0.5, 0.5, 0.0

```
$> ./trainhmm -s 1.2 -d ~ -m 1 -p 1 -b 1 -c 1.0,0.5,0.5,0.0 d/b89_train.bin m/b89_modelGDreg.txt p/b89_predictGDreg.txt trained model LL=7220628.1340159 (4808264.9075270), AIC=14456008.268032, BIC=14565260.602980, RMSE=0.327139 (0.366232), Acc=0.864803 (0.820505) timing: overall 215.000000 seconds, read 1.441625, fit 190.277211, predict 23.271876
```

Ran longer than no-regularized Gradient Descent. Small improvement in RMSE and Accuracy: 0.32**7139** vs. 0.32**8491** and 0.86**4803** vs. 0.86**3745** respectively (additional 21 173 correct predictions)

Agenda

- Bayesian Knowledge Tracing
- Getting Started with hmmsclbl
- The Tinkering Points
- Advanced Topics

Advanced Topics Prediction

- Updating probability distribution of states (PDS)
 - In tutor, observation (correctness) is always known
 - When assessing the model, revealing observation is not fair (e.g., AFM and PFA always fly blind)
- Controlling how update of the PDS is done
 - -U **r**, **t** for known observation reveal them for PDS update, for unknown observation, use transition matrix only (Tutor)
 - -U g, g for known and unknown observations guess most probable observation from PDO (Model Assessment)
- Probability distribution of observations (PDO) are always computed before the update and without peeking

Advanced Topics Cross-Validation. Primer

Cross-validation

- Divide data into n pieces (folds)
- Hide $1/n^{th}$ of the data, train on the rest
- Predict the hidden data
- Pick next fold, repeat
- Combine n prediction folds, compute accuracy metric(s)

Stratification

- By student $1/n^{th}$ of the students (whole student-skill sequences)
- By-item $1/n^{th}$ of the items (student-skill sequences are patched)
- Un-stratified $1/n^{th}$ of the rows (student-skill sequences are patched)

Implementation

- By-student stratification simple
- By-item/un-stratified save $1/n^{th}$ of observations, and mark them as unknown

Advanced Topics Cross-Validation. Practice

• 5-fold student-stratified (default) cross-validation (rf. EM Acc.=0.870607)

```
./trainhmm -s 1.1 -d ~ -p 1 -b 1 -v 5 d/b89_train.bin m/b89_modelEMv.txt p/b89_predictEMv.txt ... 5-fold cross-validation: LL=6932561.9857819, AIC=13879875.971564, BIC=13989128.306512, RMSE=0.319513 (0.354041), Acc=0.870297 (0.830288) timing: overall 206.000000 seconds, read 1.271167, fit 186.711080, predict 17.153612
```

 10-fold item-stratified cross-validation when predicting incorrect observation, and save the folds into a file

```
./trainhmm -s 1.1 -d ~ -p 1 -b 1 -P 1 -v 10,i,2,folds.txt,o d/b89_train.bin m/b89_modelEMv2.txt p/b89_predictEMv2.txt
...

10-fold cross-validation: LL=19324495.2940466, AIC=38663742.588093,
BIC=38772994.923041, RMSE=0.321796 (0.357636), Acc=0.871027 (0.831588)
timing: overall 638.000000 seconds, read 1.312280, fit 618.701899,
predict 17.522869
```

Saved folding can later be reused by using the following parameter

```
-v 10, i, 2, folds. txt, i
```

Advanced Topics Parallel Execution

- Parallel code uses Open MP
 - Individual skills are fit in N (for me N=8) recycled parallel threads
 - Prediction is done in parallel on partitioned data
- Checked-in code is in sequential state
 - Sequential code is easier to debug
 - Convert to parallel state by running ./seq2par.sh
 - Convert back to sequential state ./par2seq.sh
- To enable parallel execution use -P 1 switch

```
./trainhmm -s 1.1 -d ~ -p 1 -b 1 -P 1 -m 1 d/b89_train.bin m/b89_modelEM.txt p/b89_predictEM.txt ...
timing: overall 33.484420 sec, read 1.232642 sec, fit 14.389842 sec, predict 17.632139 sec
Compare to sequential execution
```

timing: overall 139.576931 sec, read 42.205482 sec, fit 60.997095 sec, predict 36.144902 sec

Advanced Topics

What if there are just too many skills/students?

- Skill/student internal index variables
 - 4 byte signed integer
 - 2,147,483,647 (2 billion)
 - Default skill/student map is non-sparse
- 2010 Big Dataset unfiltered
 - 56000 students * 3700 skills →
 56000*3700*2*4≅1.54Gb of memory for PSD alone
- hmmsclbl with BOOST library's sparse 2D map
 - Compact representation
 - Currently not in public code

What I Didn't Tell You

Talk to Me If You Are Interested

- Individualized BKT (Yudelson et al., AIED 2013)
 - Parameters have a per-skill and per-student (individual) components
 - Fit using block coordinate descent (fit skills, fit students, repeat)
 - Improved model accuracy
 - More focused investigation is necessary w.r.t. interpreting parameter
- Multiplexing (under experimental investigation)
 - Using different parameters for different contexts of skill application
 - Different pLearn, pSlip, & pGuess based on response time, time since last skill was used (forgetting), etc.
- Spectral BKT (the noise fighter)

Tomorrow, Saturday, June 27, Room 1: Salón de Actos. 10:30-11:50

M. Falakmasir, M. Yudelson, S. Ritter and K. Koedinger

Spectral Bayesian Knowledge Tracing. (short)

What I'd Like to add to hmmsclbl

Talk to Me If You Are Interested

- Multiple groupings of sequences
 - Student, Class, School hierarchical effects
- Conjunctive BKT
 - Address multiple skill coding or other [item context]
 factors (in the same spirit as José and Yun did in FAST)
- Continuous observations
 - Math is already worked out
- Speed improvements
 - Optimized computation of forward-backward variables
 - NVIDIA Compute Unified Device Architecture (CUDA)
 - On this laptop: 384 GPU cores vs. 8 CPU cores

Thank You!

Project Page http://bit.ly/hmmsclbl

Acknowledgements

- All of you (for coming)
- Yun Huang (for helping me present)
- Geoffrey J. Gordon & Kenneth R. Koedinger (post-doctoral mentorship)
- Steve Ritter (for keeping the project going as part of Big Data Optimization of Carnegie Learning Cognitive Tutor)
- Mohamad Falakmasir & Young-Jin Lee (attention to detail and asking hard questions)