Chapter 1

1.1 Basics of Stochastic Processes

We will refer X_t to be real or \mathbb{R}^d -valued continuous-time stochastic processes defined on a probability space (Ω, \mathcal{F}, P) . For every fixed $\omega \in \Omega$, $t \mapsto X_t(\omega)$ is called a trajectory or sample path of the process.

For a real-valued stochastic process, let $- \le t_1 < \cdots < t_n$ be fixed. Then we know

$$P_{t_1,\dots,t_n} = P \circ (X_{t_1},\dots,X_{t_n})^{-1}$$

is a probablity distribution on \mathbb{R}^n , which is called the finite-dimensional marginal distribution of the process.

Theorem 1.1

(Kolmogorov's extension theorem) Consider a family of probablity measures

$$\{P_{t_1, \dots, t_n}, t_1 < \dots < t_n, n \ge 1, t_i \ge 0\}$$

such that

a. P_{t_1,\dots,t_n} is a probability on \mathbb{R}^n .

b. For $\{t_{k_1} < \cdots < t_{k_m}\} \subset \{t_1 < t_2 < \cdots < t_n\}, P_{t_{k_1}, \cdots, t_{k_m}} \text{ is required to be a marginal of } P_{t_1, \cdots, t_n}, \text{ then there exists a real-valued stochastic process } X_t \text{ owning finite-dimensional marginal distributions of } \{P_{t_1, \cdots, P_{t_n}}\}.$

Definition 1.1

A real-valued process X_t is a second-order process iff $EX_t^2 < \infty, t \ge 0$, define

$$m_X(t) = EX_t, \Gamma_X(s,t) = cov(X_s, X_t)$$

Definition 1.2

A real-valued process X_t is said to be Gaussian if its finite-dimensional marginal distributions are multidimensional Gaussian laws.

Proposition 1.1

A Gaussian process is determined by m_X and Γ_X , conversely, for any $m: \mathbb{R}_+ \to \mathbb{R}$ and a symmetric $\Gamma: \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}$ which is nonnegative definite, there always exists a Gaussian process with mean m and covariance function Γ by Kolmogorov's extension theorem.

Definition 1.3

We call two processes X, Y are equivalent if for all $t \ge 0$, $X_t = Y_t$ a.s. And we call they indistinguishable if $X_t(\omega) = Y_t(\omega)$ for all $t \ge 0$ and for all ω in some set with probability 1.

Proposition 1.2

 ${\it Two \ equivalent \ processes \ with \ right-continuous \ trajectories \ are \ indistinguishable.}$

Proof Let $X_q = Y_q$ on Ω_q for $q \in \mathbb{Q}$ and let $\Omega' = \bigcap_{q \in \mathbb{Q}} \Omega_q$ and we know Ω' has the probability 1. And it is easy to check that $X_t = Y_t$ on Ω' for all t.

Theorem 1.2

(Kolmogorov's continuity theorem) Suppose that $X = X_t, t \in [0, T]$ satisfies

$$E(|X_t - X_s|^{\beta}) \le K|t - s|^{1+\alpha}$$

for all $s,t \in [0,T]$ and for some constants $\beta, \alpha, K > 0$. Then there exists a version \tilde{X} of X such that, if $\gamma < \alpha/\beta$,

then

$$|\tilde{X}_t| - \tilde{X}_s \le G_{\gamma}|t - s|^{\gamma}$$

for all $s,t \in [0,T]$, where G_{γ} is a random variable. The trajectories of \tilde{X} are Holder continuous of γ for any $\gamma < \alpha/\beta$.

Definition 1.4

 \mathcal{F}_t is an increasing family of sub- σ -field of \mathcal{F} . A process X_t is \mathcal{F}_t -adapted if X_t is \mathcal{F}_t -measurable for all $t \geq 0$.

Definition 1.5

An adapted process $X_t, t \geq 0$ is a Markov process w.r.t. a filtration \mathcal{F}_t if for any $s \geq 0, t > 0$ and any measurable and bounded function $f : \mathbb{R} \to \mathbb{R}$,

$$E(f(X_{s+t})|\mathcal{F}_s) = E(f(X_{s+t})|X_s) \ a.s.$$

Proposition 1.3

A \mathcal{F}_t -Markov process X_t is also a \mathcal{F}_t^X -Markov process where

$$\mathcal{F}_t^X = \sigma\{X_u, 0 \le u \le t\}$$

Proof Notice

$$E(f(X_{s+t}|\mathcal{F}_{s}^{X})) = E(E(f(X_{s+t}|\mathcal{F}_{s}))|\mathcal{F}_{s}^{X}) = E(E(f(X_{s+t}|X_{s}))|\mathcal{F}_{s}^{X}) = E(f(X_{s+t}|X_{s}))$$

since $\sigma(X_s) \subset F_s^X \subset F_t$.

Definition 1.6

Assume a filtration \mathcal{F}_t on (Ω, \mathcal{F}, P) satisfies that for any $P(A) = 0, A \in \mathcal{F}, A \in \mathcal{F}_0$ and it is right-continuous, i.e.

$$\mathcal{F}_t = \cap_{n \ge 1} \mathcal{F}_{t+n^{-1}}$$

Then consider a r.v. $T: \Omega \to [0, \infty]$ is a stopping time w.r.t. to the filtration if

$$\{T \le t \in \mathcal{F}_t\}$$

for any $t \geq 0$.

Proposition 1.4

a. T is a stopping time iff $\{T < t\} \in \mathcal{F}_t$ for all $t \ge 0$.

b. $S \vee T$ and $S \wedge T$ are stopping times.

c. Givene a stopping time T,

$$\mathcal{F}_T = \{A, A \cap \{T \le t\} \in \mathcal{F}_t, \forall t \ge 0\}$$

is a σ -algebra.

d. If $S \leq T$, then $\mathcal{F}_S \subset \mathcal{F}_T$.

e. Let $X_t, t \geq 0$ be a continuous and adapted process. The hitting time of a set $A \subset \mathbb{R}$ is defined by

$$T_A = \inf\{t \ge 0, X_t \in A\}$$

and whether A is open or closed, T_A is a stopping time.

f. Let X_t be an adapted stochastic process with right-continuous paths and let $T < \infty$ be a stopping time. Then the random variable

$$X_T(\omega) = X_{T(\omega)(\omega)}$$

is \mathcal{F}_T -measurable.

Definition 1.7

An adapted process $M=M_t, t \geq 0$ is called a martingale w.r.t. a filtration $\mathcal{F}_t, t \geq 0$ if

- a. for all $t \geq 0$, $E(|M_t|) < \infty$
- b. for each $s \leq t$, $E(M_t | \mathcal{F}_s) = M_s$

Proposition 1.5

- a. For any integrable random varibale X, $E(X|\mathcal{F}_t)$ is a martingale.
- b. If M_t is a submartingale then $t \to E(M_t)$ is nondecreasing.
- c. If M_t is a martingale and φ is a convex function such that $E|\phi(M_t)| < \infty$ for all $t \geq 0$ then $\phi(M_t)$ is a submartingale.

$$E(\phi(M_t)|\mathcal{F}_s) \ge aE(X_t|\mathcal{F}_s) + b$$

for any such a, b and hence

$$E(\phi(M_t)|\mathcal{F}_s) \ge \phi(M_t)$$

Definition 1.8

An adapted process $M_t, t \geq 0$ is called a local martingale if there exists a sequence of stopping times $\tau_n \uparrow \infty$ such that, for any $n \geq 1$ $M_{t \wedge \tau_n}$ is a martingale.

Theorem 1.3

Let $M_t, t \ge 0$ be a continuous local martingale such that $M_0 = 0$. Let $\pi = \{0 = t_0 < t_1 < \dots < T_n = t\}$ be a partition of [0, t]. Then we have

$$\sum_{j=0}^{n-1} (M_{t_{j+1}} - M_{t_j})^2 \to \langle M \rangle_t, |\pi| \to 0$$

in probability, where $\langle M \rangle_t, t \geq 0$ is called the quadratics variation of the local martingale. Moreover, if $M_t, t \geq 0$ is a martingale then the convergence holds in $L^1(\Omega)$.

Theorem 1.4

The quadratic variation is the unique continuous and increasing process satisfying $\langle M \rangle_0 = 0$ and

$$M_t^2 - \langle M \rangle_t$$

is a local martingale.

1.2 Brownian Motion

Definition 1.9

A real-valued stochastic process $B = (B_t)_{t\geq 0}$ defined on a probability space $(\Omega, \mathcal{F}; P)$ is called a Brownian motion if it satisfies the following conditions:

- a. Almost surely $B_0 = 0$.
- b. For all $0 \le t_1 < \cdots t_n$ the increments $B_{t_n} B_{t_{n-1}}, \cdots, B_{t_2} B_{t_1}$ are independent random variables.
- c. If $0 \le s < t$, the increment $B_t B_s$ is a Gaussian random variable with mean zero and variance t s.
- d. With probability one, the map $t \to B_t$ is continuous.
- A d-dimensional Brownian motion is defined as an \mathbb{R}^d -valued stochastic process $B=(B_t)_{t\geq 0}$, $B_t=(B_t^1,\cdots,B_t^d)$, where B^1,\cdots,B^d are d independent Brownian motions.

Properties (a),(b),(c) are equivalent to that B is a Gaussian process,i.e. for any finite set of indices t_1, \dots, t_n , $(B_{t_1}, \dots, B_{t_n})$ is a multivariate Gaussian random variable, equivalently, any linear combination of B_{t_i} is normal distributed r.v., with mean zero and covariance function

$$\Gamma(s,t) = \min(s,t)$$

Proof

Suppose (a),(b),(c) holds, then we know $(B_{t_1}, \cdots, B_{t_n})$ is normal for any finite indices and then

$$m(t) = E(B_t) = 0$$

$$\Gamma(s,t) = E(B_s B_t) = E(B_{\min(s,t)}^2) = \min(s,t)$$

Conversly, we know $E(B_0^2) = 0$ and hence $B_0 = 0$ a.s., then we know $E(B_s^2) = s$ and for any 0 < s < t,

$$E(B_s(B_t - B_s)) = 0$$

and it is easy to check (c), and (b) is deduced by computing the covariance of the increments, notice that two r.v.s are independent iff $\phi_{(X_1,X_2,\cdots,X_n)}=\phi_{X_1}\phi_{X_2}\cdots\phi_{X_n}$ which implies that normal r.v.s are independent iff they have zero covariances.

Theorem 1.5

(Kolmogorov's continuity theorem) Suppose that $X = (X_t)_{t \in [0,T]}$ satisfies

$$E(|X_t - X_s|^{\beta}) \le K|t - s|^{1 + \alpha}$$

for all $s, t \in [0, T]$ and some constant $\beta, \alpha, K > 0$. Then there exists a version \tilde{X} of X such that if

$$\gamma < \alpha/\beta$$

then

$$|\tilde{X}_t - \tilde{X}_s| \le G_\gamma |t - s|^\gamma$$

for all $s, t \in [0, T]$ where G_{γ} is a random variable. The trajectories of \tilde{X} are Holder continuous of order γ for any $\gamma < \alpha/\beta$.

Proposition 1.7

There exists a version of B with Holder-continuous trajectories of order γ for any $\gamma < (k-1)/2k$ on any interval [0,T].

Proof

Since we know $B_t - B_s$ has the normal distribution $\mathcal{N}(0, t - s)$ and then we know

$$E((B_t - B_s)^{2k}) = \frac{1}{\sqrt{2\pi(t-s)}} \int_{-\infty}^{\infty} x^{2k} \exp^{-\frac{x^2}{2(t-s)}} dx = (2k-1)!!(t-s)^k = \frac{(2k)!}{2^k k!} (t-s)^k$$

and by the theorem 1.1, the proposition holds.

Proposition 1.8

Brownian motion are basic properties:

- a. For any a > 0, the process $(a^{-1/2}B_{at})_{t \geq 0}$ is a Brownian motion.
- b. For any h > 0, the process $(B_{t+h} B_h)_{t \ge 0}$ is a Brownian motion.
- c. The process $(-B_t)_{t\geq 0}$ is a Brownian motion.
- d. Almost surely $\lim_{t\to\infty} B_t/t = 0$ and the process $X_t = tB_{1/t}$ for t > 0, $X_t = 0$ for t = 0 is a Brownian motion.

Proof

a. Consider $0 \le t_1 < t_2 < \cdots < t_n$ and we may calculate the covariance matrix for

$$a^{-1/2}B_{at_n} - a^{-1/2}B_{at_{n-1}}, \cdots, a^{-1/2}B_{at_2} - a^{1/2}B_{at_1}$$

by

$$E[(a^{-1/2}B_{at_{j}} - a^{-1/2}B_{at_{j-1}})(a^{-1/2}B_{at_{k}} - a^{-1/2}B_{at_{k-1}})]$$

$$= a^{-1}(at_{j} \wedge at_{k}) - a^{-1}(at_{j} \wedge at_{k-1}) - a^{-1}(at_{j-1} \wedge at_{k}) + a^{-1}(at_{j-1} \wedge at_{k-1})$$

$$= \begin{cases} t_{j} - t_{j-1} - t_{j-1} + t_{j-1} = t_{j} - t_{j-1} & \text{if } j = k \\ t_{j} - t_{j} - t_{j-1} + t_{j-1} = 0 & \text{if } j < k \\ 0 & \text{if } j > k \end{cases}$$

and hence $(a^{-1/2}B_{at})_{t\geq 0}$ satisfies the property (b) in definition 1.1, a,d are obvious and c is easy to be checked.

- b. Obvious.
- c. Obvious.
- d. Notice B is Holder continuous. Now we only need to check that

$$E(tB_{1/t}sB_{1/s}) = ts(1/t \wedge 1/s) = (t \wedge s)$$

and the rest is easy to be checked.

Theorem 1.6

(The law of the iterated logarithm)

$$\limsup_{t \to s^+} \frac{|B_t - B_s|}{\sqrt{2|t - s| \ln \ln |t - s|}} = 1, \quad a.s.$$

Proposition 1.9

Fix a time interval [0,t] and consider the following subvision π of this interval:

$$0 = t_0 < t_1 < \dots < t_n = t$$

The norm of the subdivision π is defined as $|\pi| = \max_{0 \le j \le n-1} (t_{j+1} - t_j)$. Then

$$\lim_{|\pi| \to 0} \sum_{i=0}^{n-1} (B_{t_{j+1}} - B_{t_j})^2 = t$$

in $L^2(\Omega)$.

Proof

Consider let $\xi_j = (B_{t_{j+1}} - B_{t_j})^2 - (t_{j+1} - t_j)$ and we know ξ_j are independent with mean 0 and hence

$$E\left(\sum_{j=0}^{n-1} (B_{t_{j+1}} - B_{t_j})^2 - t\right)^2 = \sum_{j=0}^{n-1} E\xi_j^2 = \sum_{j=0}^{n-1} (3(t_{j+1} - t_j)^2 - 2(t_{j+1} - t_j)^2 + (t_{j+1} - t_j)^2)$$

$$= 2\sum_{j=0}^{n-1} (t_{j+1} - t_j)^2 \le 2t|\pi| \to 0$$

Proposition 1.10

The total variation of Brownian morion on an interval [0,t] defined by

$$V = \sup_{\pi} \sum_{i=1}^{n-1} [B_{t_{j+1} - B_{t_j}}]$$

where π is any partition of [0, t], is infinite with probability 1.

Proof

Here we know

$$\sum_{j=0}^{n-1} (B_{t_{j+1}} - B_{t_j})^2 \le V \sup_j |B_{t_{j+1}} - B_{t_j}|$$

and hence if $V < \infty$, then

$$\lim_{|\pi| \to 0} \sum_{j=0}^{n-1} (B_{t_{j+1}} - B_{t_j})^2 = 0$$

which means $P(V < \infty) = 0$.

Definition 1.10

(Wiener integral) Let \mathcal{E}_0 be the set pf step functions in \mathbb{R}_+ , i.e.

$$\phi(t) = \sum_{j=0}^{n-1} a_j \chi_{t_j, t_{j+1}}(t)$$

where $n \ge 1$ is an integer, $a_i \in \mathbb{R}$ and $0 = t_0 < \cdot < t_n$. And we may define Wiener integral of a step function by

$$\int_0^\infty \phi dB_t = \sum_{i=0}^{n-1} a_i (B_{t_{i+1}} - B_{t_i})$$

Proposition 1.11

The Wiener integral is a linear isometry from $\epsilon_0 \subset L^2(\mathbb{R}^+)$ to $L^2(\Omega)$.

Proof Notice

$$E[(\int_0^\infty \phi dB_t)^2] = \sum_{i=0}^\infty a_i^2 (t_{i+1} - t_i) = ||\phi||_2$$

Definition 1.11

We have already know Wiener integral is a linear isometry from a dense subspace from $L^2(\mathbb{R}_+)$ to $L^2(\Omega)$, and hence we may call the extension of the linear isometry to be the Wiener integral and for any $\phi \in L^2(\mathbb{R}_+)$, denote

$$\int_0^\infty \phi dB_t$$

to be its image of the isometry.

Definition 1.12

Let D be a Borel subset of \mathbb{R}^m , a white noise on D is a centered Gaussian family of random variables

$$\{W_A, A \subset \mathcal{B}(\mathbb{R}^m), A \subset D, m(A) < \infty\}$$

such that

$$E(W_A W_B) = m(A \cap B)$$

Proposition 1.12

 $\chi_A \to W_A$ is a linear isometry from $L^2(D) \to L^2(\Omega)$.

Definition 1.13

Similarly, we may define the integral r.s.t. W of $\phi \in {}^2(D)$ denoted by

$$\phi \mapsto \int_D \phi W(dx)$$

by extending the linear isometry.

Definition 1.14

Consider a Browian motion B defined on a probability space (Ω, \mathcal{F}, P) . For any time $t \geq 0$, define \mathcal{F}_t the σ -algebra by $B_s, 0 \leq s \leq t$ and the null events in \mathcal{F}_s , we call \mathcal{F}_t the natural filtration of Browiabn motion on the probability space (Ω, \mathcal{F}, P) .

Lemma 1.1

Suppose X and Y

\Diamond

Theorem 1.7

For any measurable and bounded (or nonnegative) function $f: \mathbb{R} \to \mathbb{R}$, $s \ge 0$ and $t \ge 0$, we have

$$E(f(B_{s+t})|\mathcal{F}_s) = (P_t f)(B_s)$$

where

$$(P_t f)(x) = \int_{\mathbb{R}} f(y) p_t(x - y) dy$$

where

$$p_t = \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}}$$

 \Diamond

Check Durrett Theorem 7.2.1.

Proposition 1.13

The familty of operators P_t satisfies the semigroup property $P_t \circ P_s = P_{t+s}$ and $P_0 = Id$.

Proof

$$P_t \circ P_s(f)(x) = \int_{\mathbb{R}} P_s f(y) p_t(x - y) dy$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} f(z) p_s(y - z) p_t(x - y) dz dy$$

$$= \int_{\mathbb{R}} f(z) \int_{\mathbb{R}} \frac{1}{2\pi\sqrt{st}} e^{-\left(\frac{(y - z)^2}{2s} + \frac{(x - y)^2}{2t}\right)} dy dz$$

$$= \int_{\mathbb{R}} f(z) \int_{\mathbb{R}} \frac{1}{2\pi\sqrt{st}} e^{-\left(\frac{(\sqrt{s + t}y - (2tz + 2sx)/\sqrt{s + t})^2 - (tz + sx)^2/(s + t) + tz^2 + sx^2}{2st}\right)} dy dz$$

and the rest is easy to be checked.

Theorem 1.8

The processes B_t , $(B_t^2 - t)$ and $e^{aB_t - a^2t/2}$, $a \in \mathbb{R}$ are \mathcal{F}_t martingales.

Proof B_t is obviously a \mathcal{F}_t martingale. Notice

$$E[(B_t^2 - t)|\mathcal{F}_s] = E[(B_t - B_s)^2 + B_s^2 + 2B_s(B_t - B_s) - t|\mathcal{F}_t] = t - s + B_s^2 - t = B_s^2 - s$$

and

$$E(e^{aB_t - a^2t/2} | \mathcal{F}_s) = e^{-a^2t/2} E(e^{a(B_t - B_s)} e^{aB_s} | \mathcal{F}_s) = e^{aB_s} E(e^{a(B_t - B_s) - a^2t/2} = e^{aB_s - a^2s/2} e^{aB_s - a^2t/2})$$

Definition 1.15

The Brownian hitting time is defined by

$$\tau_a = \inf\{t \ge 0, B_t = a\}$$

Fix a > 0. Then, for all $\alpha > 0$

$$E(e^{-\alpha \tau_a}) = e^{-\sqrt{2\alpha}a}$$

1.3 Stochastic Integrals

Definition 1.16

We say that a stochastic process u_t is progressively measurable if, for any $t \ge 0$ the restriction of u to $\Omega \times [0,t]$ is $\mathcal{F}_t \times B([0,t])$ -measurable.

Definition 1.17

Let P be the σ -field of sets $A \subset \Omega \times \mathbb{R}^+$ such that χ_A is progressivelyy measurable. We denote by $L^2(P)$ the Hilbert space $L^2(\Omega \times \mathbb{R}^+, P, P \times m)$ equipped the norm

$$||u||^2 = E(\int_0^\infty u_s^2 ds) = \int_0^\infty Eu_s^2 ds$$

bu Fubini's theorem.

Definition 1.18

A process $u = u_t$ is called a simple process if it is of the form

$$u_t = \sum_{j=0}^{n-1} \phi_j \chi_{(t_j, t_{j+1}]}(t)$$

where $0 \le t_0 < t_1 < \dots < t_n$ and the ϕ_j are \mathcal{F}_{t_j} -measurable random variables such that $E\phi_j^2 < \infty$ and denote the space of simple processes as \mathcal{E} .

We define the stochastic integral of a process $u \in \mathcal{E}$ of u_t as

$$I(u) = \int_0^\infty u_t dB_t = \sum_{j=0}^{n-1} \phi_j (B_{t_{j+1}} - B_{t_j})$$

Here it is easy to see that $\phi_j \chi_{(t_j,t_{j+1}]}(t)$ is progressively measurable.

Proposition 1.15

Here are some properties of stochatic integrals.

a. For any $a, b \in \mathbb{R}$ and simple process $u, v \in \mathcal{E}$, we know

$$\int_0^\infty (au_t + bv_t)dB_t = a\int_0^\infty u_t dB_t + b\int_0^\infty v_t dB_t$$

b. For any $u \in \mathcal{E}$, we have

$$E(\int_0^\infty u_t dB_t) = 0$$

c. For any $u \in \mathcal{E}$, we know

$$E\left(\left(\int_0^\infty u_t dB_t\right)^2\right) = E\left(\int_0^\infty u_t^2 dt\right)$$

Proof (a) is trivial. (b) can be shown by the independence of ϕ_i and $B_{t_{i+1}} - B_{t_i}$. (c) Can be shown by

$$E\left(\left(\int_0^\infty u_t dB_t\right)^2\right) = E\left(\left(\sum_{j=0}^{n-1} \phi_j (B_{t_{j+1}} - B_{t_j})\right)^2\right) = \sum_{j=0}^{n-1} E\phi_j^2(t_{j+1} - t_j)$$

The space \mathcal{E} of simple processes is dense in $L^2(P)$.

Proof For $u \in L^2(P)$, we define

$$u_t^{(n)} = n \int_{(t-1/n)\wedge 0}^t u_s ds$$

we know $u_t^{(n)}$ is continuous as $\mathbb{R} \to L^2(\Omega)$ and hence we also know

$$\lim_{n \to \infty} E\left(\int_0^\infty |u_t - u_t^{(n)}|^2 dt\right) = 0$$

since $\lim_{n\to\infty}u_t^{(n)}=u_t$ a.s. by Lebesgue differential, then we may know the limit above holds by the DCT since

$$\int_0^\infty |u_t^{(n)}(\omega)|^2 dt = \int_0^\infty n^2 |\int_{t-1/n}^t u_s(\omega) ds|^2 dt \le ||u_t||_2^2$$

where $f(s,t)=u_s\chi_{(t-1/n,t]}$ by the Minkowski's inequality of integrals.

For $u \in L^2(P)$ continuous in $L^2(\Omega)$, we define

$$u_t^{(n,N)} = \sum_{j=0}^{(n,N)} u_{t_j} \chi_{(t_j,t_{j+1}]}(t)$$

where $t_j = jN/n$. The continuity in $L^2(\Omega)$ implies that

$$E\left(\int_{0}^{\int} |u_{t} - u_{t}^{n,N}|^{2} dt\right) \leq E\left(\int_{N}^{\infty} u_{t}^{2} dt\right) + N \sup_{|t-s| \leq N/n, t, s \leq N} E(|u_{t} - u_{s}|^{2})$$

and we let $N \to \infty$ and $n \to \infty$ we may get the conclusion.

Proposition 1.17

The stochastic integral can be extended to a linear isometry.

Proposition 1.18

Here are some properties, for any $u, v \in L^2(P)$, we know

$$E(I(u)) = 0, \quad E(I(u)I(v)) = E(\int_0^\infty u_s v_s ds)$$

and for any T we set

$$\int_0^T u_s dB_s = \int_0^\infty u_s \chi_{[0,T]}(s) dB_s$$

which is the indefinite integral of u with respect to B, where requiring $u \in L^2_T(P)$.

Definition 1.19

Define $L^2_{\infty}(P)$ the set of progressively processes such that

$$E\Big(\int_0^t u_s^2 ds\Big) < \infty$$

for each t>0, for any process $u\in L^2_\infty(P)$, we can define the indefinite integral process

$$\int_0^t u_s dB_s$$

Proposition 1.19

Here are some properties of indefinite integral process.

a. For any $a \le b \le c$, we have

$$\int_{a}^{b} u_{s} dB_{s} + \int_{b}^{c} u_{s} dB_{s} = \int_{a}^{c} u_{s} dB_{s}$$

b. If a < b and F is a bounded and \mathcal{F}_a -measurable random variable then

$$\int_{a}^{b} F u_{s} dB_{s} = F \int_{a}^{b} u_{s} dB_{s}$$

c. Let $u \in L^2\infty(P)$, then the indefinite stochastic integral

$$M_t = \int_0^t u_s dB_s, t \ge 0$$

is a square integrable martingale w.r.t. the filtration \mathcal{F}_t and admits a continuous version.

Proof (a) is trivial. For (b), we only need to consider $u_t^{(n)}$ simple and converging to u_t in $L^2(P)$, and we have

$$\int_{a}^{b} F u_{s}^{(n)} dB_{s} = F \sum_{s} \phi_{t_{j}} (B_{t_{j+1} - B_{t_{j}}}) = F \int_{a}^{b} u_{s}^{(n)} dB_{s}$$

and we are done since F is bounded.

(c) For a simple process

$$u_t = \sum_{j=0}^{n-1} \phi_j \chi_{(t_j, t_{j+1}]}(t)$$

then we know

$$E\left(\int_{0}^{t} u_{v} dB_{v} \middle| \mathcal{F}_{s}\right) = \sum_{j=0}^{n-1} E(\phi_{j}(B_{t_{j+1}\wedge t} - B_{t_{j}\wedge t}) \middle| \mathcal{F}_{s})$$

$$= \sum_{j=0}^{n-1} E(E\left(\phi_{j}(B_{t_{j+1}\wedge t} - B_{t_{j}\wedge t} \middle| \mathcal{F}_{t_{j}\wedge s}\right)) \middle| \mathcal{F}_{s})$$

$$= \int_{0}^{s} u_{v} dB_{v}$$

and hence we know M_t is an \mathcal{F}_t -martingale if u is simple. For T > 0, let $u^{(n)}$ converges to u in $L^2_T(P)$, then we know $t \in [0, T]$, we have

$$\int_0^t u_s^{(n)} dB_s \to \int_0^t u_s dB_s$$

in $L^2(\Omega)$ and we know the convergence of the conditional expectiations by $E(Z(X - E(X\mathcal{F}))) = 0$ for any $Z \in L^2(\mathcal{F})$ and hence $\int_0^t u_s dB_s$ is a martingale.

To show that the indefinite integral has a continuous version. Let $u \in L^2$ and fix T > 0. Consider a sequence of simple processed $u^{(n)}$ which converges to u in $L^2_T(P)$, by the continuity of the paths of Brownian motion, we know

$$M_t^{(n)} = \int_0^t u_s^{(n)} dB_s$$

has continuous trajectories. Then since $M^{(n)}$ is a martingale, so we know

$$P\left(\sup_{0 \le t \le T} |M_t^{(n)} - M_t^{(m)}| > \lambda\right) \le \frac{1}{\lambda^2} E\left(|M_t^{(n)} - M_t^{(m)}|^2\right)$$
$$= \frac{1}{\lambda^2} E\left(\int_0^T |u_t^{(n)} - u_t^{(m)}|\right) \to 0$$

as $n, m \to \infty$ and we may choose n_k such that

$$P\Big(\sup_{0 \le t \le T} |M_t^{(n_{k+1}) - M_t^{(n_k)}}| > 2^{-k}\Big) \le 2^{-k}$$

and we may know that for any $\omega \in \Omega$, there is $k_1(\omega)$ such that

$$\sup_{0 \le t \le T} |M_t^{(n_{k+1})}(\omega) - M_t^{(n_k)}(\omega)| \le 2^{-k}$$

has probability of 1 and then we know $M_t^{(n_k)}(\omega)$ is uniformly convergent to a continuous function $J_t(\omega)$ a.s. and then we know $J_t(\omega) = \int_0^t u_s dB_s$ a.s. Then we may choose different t and construct a continuous version of $\int_0^t u_s dB_s$ inductively.

*

Proposition 1.20

For any $T, \lambda > 0$ and $u \in L^2_{\infty}(P)$, we know

$$P\left(\sup_{t\in[0,T]}|M_t|>\lambda\right)\leq \frac{1}{\lambda^2}E\left(\int_0^T u_t^2dt\right)$$

and

$$E\Big(\sup_{t\in[0,T]}|M_t|^2\leq 4E(\int_0^Tu_t^2dt)\Big)$$

by Doob's inequality and L^p maxmium inequalities.

Proposition 1.21

Let $u \in L^2_{\infty}(P)$. Consider a subdivision of the interval [0,t]

$$\pi = \{0 = t_0 < t_1 < \dots < t_n = t\}$$

then as $|\pi| \to 0$, we have

$$S_{\pi}^{2}(u) = \sum_{j=0}^{n-1} \left(\int_{t_{j}}^{t_{j+1}} u_{s} dB_{s} \right)^{2} \to \int_{0}^{t} u_{s}^{2} ds$$

in $L^1(\Omega)$.

1.4 Derivative and Divergence Operators

Definition 1.20

For this chapter, we will consider the probability space (Ω, \mathcal{F}, P) such that $\Omega = \mathbb{R}^n$, $\mathcal{F} = B(\mathbb{R}^n)$ to be the Borel σ -field of \mathbb{R}^n and P to be the standard Gaussian probability with density

$$p(x) = (2\pi)^{-n/2} e^{-|x|^2/2}$$

and we define the derivative operator for differentiable function $F: \mathbb{R}^n \to \mathbb{R}$ as

$$\nabla F = \left(\frac{\partial F}{\partial x_1}, \cdots, \frac{\partial F}{\partial x_n}\right)$$

and the divergence opertor for differentiable vector-valued functions $u: \mathbb{R}^n \to \mathbb{R}^n$ as

$$\delta(u) = \sum_{i=1}^{n} \left(u_i x_i - \frac{\partial u_i}{\partial x_i} \right) = \langle u, x \rangle - divu$$

Proposition 1.22

The operator δ is the adjoint of ∇ that is

$$E(\langle u, \nabla F \rangle) = E(F\delta(u))$$

for $F: \mathbb{R}^n \to \mathbb{R}$ and $u: \mathbb{R}^n \to \mathbb{R}^n$ continuously differentiable functions satisfying integral by parts.

Proof Since $\partial p/\partial x_i = -x_i p$ and we have

$$\int \langle \nabla F, u \rangle p dx = \sum_{i=1}^{n} \int \frac{\partial F}{\partial x_i} u_i p dx$$

$$= \sum_{i=1}^{n} \left(-\int F \frac{\partial u_i}{\partial x_i} p dx + \int F u_i x_i p dx \right)$$

$$= \int F \delta(u) p dx$$

Definition 1.21

Consider the Hilbert space $h \in H = L^2(\mathbb{R}^+)$ and the Wiener integral

$$B(h) = \int_0^\infty h(t)dB_t$$

and S the set of smooth and cylindrical random variables of the form

$$F = f(B(h_1), \cdots, B(h_n))$$

where $f \in C_p^{\infty}(\mathbb{R}^n)$ and $h_i \in H$.

Definition 1.22

For $F \in S$, we define the Malliavin derivative DF to be the H-valued random variable defined by

$$D_t F = \sum_{i=1}^n \frac{\partial f}{\partial x_i} (B(h_1), \cdots, B(h_n)) h_i(t)$$

which is well-defined and a linear but unbounded operator from S into $L^2(\Omega; H)$.

Let S_H to be the element $u = (u_t)$ with the form

$$u_t = \sum_{j=1}^n F_j h_j(t)$$

with $F_j \in S$ and $h_j \in H$. And the divergence of an element u in S_H will be given by

$$\delta(u) = \sum_{j=1}^{n} F_j B(h_j) - \sum_{j=1}^{n} \langle DF_j, h_j \rangle_H$$

Proposition 1.23

For $F \in S$ and $u \in S_H$, then

$$E(F\delta(u)) = E(\langle DF, u \rangle_H)$$

Proof Consider h_i, h_j orthonormal and then we may know that $B(h_i)$ are i.i.d., then for $F = f(B(h_1), \dots, B(h_n))$ and

$$u = \sum_{j=1}^{n} g_j(B(h_1), \cdots, B(h_n))h_j$$

and

$$E(\langle DF, u \rangle_H) = \int \sum_{j=1}^n E(D_t F g_j(B(h_1), \dots, B(h_n)) h_j(t))$$

$$= \sum_{i,j=1}^n \int E\left(\frac{\partial f}{\partial x_i}(B(h_1), \dots, B(h_n)) g_j(B(h_1), \dots, B(h_n)) h_i(t) h_j(t)\right)$$

$$= \sum_{i=1}^n E\left(\frac{\partial f}{\partial x_i}(B(h_1), \dots, B(h_n)) g_j(B(h_1), \dots, B(h_n))\right)$$

$$= \sum_{j=1}^n E\left(F g_j(B(h_1), \dots, B(h_n)) B(h_j) - F\frac{\partial g_j}{\partial x_j}(B(h_1), \dots, B(h_n))\right)$$

$$= E(F\delta(u))$$

since

$$\langle DF_j, h_j \rangle = \frac{\partial g_j}{\partial x_j} (B(h_1), \cdots, B(h_n))$$

Suppose that $u, v \in S_H, F \in S$ and $h \in H$. Then for a complete orthonormal system in H denoted as e_i , we have

$$E(\delta(u)\delta(v)) = E(\langle u, v \rangle_H) + E(\sum_{i,j=1}^{\infty} D_{e_i} \langle u, e_j \rangle_H D_{e_j} \langle v, e_i \rangle_H)$$
$$D_h(\delta(u)) = \delta(D_h(u)) + \langle h, u \rangle_H$$
$$\delta(Fu) = F\delta(u) - \langle DF, u \rangle_H$$

Proof We know

$$D_{h}(\delta(u)) = D_{h}\left(\sum_{j=1}^{n} F_{j}B(h_{j}) - \sum_{j=1}^{n} \langle DF_{j}, h_{j} \rangle_{H}\right)$$

$$= \sum_{j=1}^{n} D_{h}F_{j}B(h_{j}) + \sum_{j=1}^{n} F_{j}\langle h, h_{j} \rangle_{H} - \sum_{j=1}^{n} D_{h}\left\langle\sum_{i=1}^{n} \frac{\partial F_{j}}{\partial x_{i}}(B(h_{1}), \cdots, B(h_{n}))h_{i}, h_{j}\right\rangle_{H}$$

$$= \sum_{j=1}^{n} F_{j}\langle h, h_{j} \rangle_{H} + \sum_{j=1}^{n} \left(D_{h}F_{j}B(h_{j}) - \langle D_{h}(DF_{j}), h_{j} \rangle_{H}\right)$$

$$= \langle u, h \rangle_{H} + \delta(D_{h}u)$$

by Fubini's Theorem.

Then

$$E(\delta(u)\delta(v)) = E\left(\langle v, D(\delta(u))\rangle_H\right)$$

$$= \sum_{n\geq 1} \left(\langle v, e_i\rangle_H D_{e_i}(\delta(u))\right)$$

$$= E(\langle u, v\rangle)_H + \sum_{i=1}^{\infty} E(\langle v, e_i\rangle_H \delta(D_{e_i}u))$$

$$= E(\langle u, v\rangle)_H + \sum_{i=1}^{\infty} E(\langle D\langle v, e_i\rangle_H, D_{e_i}u\rangle_H)$$