13

14

15

16

17

18

19

20

21

22

23

27

28

29

a return transmitter connected to the first and second summing resistor and operative to receive the DC return current and a return video data stream, further operative to transmit the return video data stream;

a return data pair connected to the return transmitter, operative to relay the return serial video data stream from the transmitter; and

a return receiver connected to the return data pair and operative to receive the return video serial data stream, the return receiver further connected to the transmitter.

- 2. The bi-directional high speed video data transmission system of claim 1, wherein: the data pair comprises a first and second data line; the return data pair comprises a first and second return data line;
- the transmitter transmits the first video data stream by switching a DC-balanced current between the first and second data line, thus creating a first and second AC current on the first and second data line;
- 24 the first and second summing resistor convert the current transmitted across the 25 data pair to a DC return current by merging the first AC current with the second AC 26 current; and
 - the return transmitter transmits the return video data stream by switching the DC return current between the first and second return data line, thus creating a first and second AC return current on the first and second return data line.
- 30 3. The bi-directional high speed video data transmission system of claim 2, further
- 31 comprising a filter connected between the first and second summing resistor and the
- 32 return transmitter.
- The bi-directional high speed video data transmission system of claim 3, wherein 33 4. 34 the filter eliminates line noise present in the DC return current.

HP 10018377 11

- 2 the filter is an LC filter.
- 3 6. The bi-directional high speed video data transmission system of claim 2, further
- 4 comprising:
- 5 a first clock signal having a regularly repeating digital clock pulse;
- 6 the transmitter operative to regulate the switching of the DC-balanced current
- between the first and second data line according to the digital state of the clock pulse; and
- 8 the return transmitter operative to regulate the switching of the DC return current
- 9 between the first and second return data line according to the digital state of the clock
- 10 pulse.
- 11 7. The bi-directional high speed video data transmission system of claim 2, further
- 12 comprising:
- a first clock signal having a first period;
- the transmitter further operative to regulate the switching of the DC-balanced
- current between the first and second data line according to the digital state of the first
- 16 clock pulse;
- a second clock signal having a second period of different duration than the first
- 18 period;
- 19 the return transmitter further operative to regulate the switching of the DC return
- 20 current between the first and second return data line according to the digital state of the
- 21 clock pulse.
- 22 8. The bi-directional high speed video data transmission system of claim 6, wherein:
- 23 the transmitter regulates the switching of the DC-balanced current between the
- 24 first and second data line by switching the DC-balanced current at a time corresponding
- 25 to a first edge of the clock pulse; and
- 26 the return transmitter regulates the switching of the DC return current between the
- 27 first and second data line by switching the DC return current at a time corresponding to a
- second edge of the clock pulse.
- 29 9. A video camera incorporating the bi-directional high speed video data
- transmission system of claim 2.
- 31 10. A computer video system incorporating the bi-directional high speed video data
- transmission system of claim 2.
- 33 11. The bi-directional high speed video data transmission system of claim 2, further
- 34 comprising a first and second return summing resistor connected between the return data

HP 10018377 12

1	pair and the transmitter, the first and second return summing resistor operative to merge		
2	the AC current transmitted across the first return data line with the AC current transmitted		
3	across the second data line into a DC current.		
4	12. The bi-directional high speed video data transmission system of claim 11,		
5	wherein:		
6	the transmitter, return receiver, and first and second return summing resistor		
7	comprise a first transceiver;		
8	the return transmitter, receiver, and first and second summing resistor comprise a		
9	second transceiver; and		
10	the circuitry of the first and second transceivers are identical.		
11	13. A unidirectional high speed video data transmission system, comprising:		
12	a first transition minimized differential signaling transmitter operative to transmit		
13	a first video data stream by alternating a DC current between a first and second data line;		
14	a data pair comprised of the first and second data line and having a first and		
15	second end, the data pair connected to the first transition-minimized differential signaling		
16	transmitter at the first end, the data pair further connected to a first transition-minimized		
17	differential signaling receiver at the second end, the data pair operative to relay the first		
18	video data stream from the first transmitter to the first receiver;		
19	the first transition-minimized differential signaling receiver operative to receive		
20	and output the first video data stream;		
21	a first summing resistor connected to the first data line;		
22	a second summing resistor connected to the second data line;		
23	the first and second summing resistors comprising a first summing pair operative		
24	to merge the alternating current across the first and second data lines to form a DC return		
25	current;		
26	a second transition minimized differential signaling transmitter operative to		
27	transmit a second video data stream by alternating a second DC current between a third		
28	and fourth data line;		
29	a second data pair comprised of the third and fourth data line and having a first		
30	and second end, the second data pair connected to the second transition-minimized		
31	differential signaling transmitter at the first end, the second data pair further connected to		
32	a second transition-minimized differential signaling receiver at the second end, the second		
33	data pair operative to relay the second video data stream from the second transmitter to		
34	the second receiver;		

HP 10018377 13

1	the second transition-minimized differential signaling receiver operative to receive			
2	and output the second video data stream;			
3	a third summing resistor connected to the third data line;			
4	a fourth summing resistor connected to the fourth data line;			
5	the third and fourth summing resistors comprising a second summing pair			
6	operative to merge the alternating current across the third and fourth data lines to form a			
7	DC final current;			
8	wherein the DC return current and the second DC current are the same; and			
9	wherein the third data line functions as a DC return channel.			
10	14. The unidirectional high speed video data transmission system of claim 13, further			
11	comprising:			
12	a clock signal having a regularly repeating digital clock pulse;			
13	the first transition-minimized differential signaling transmitter operative to			
14	regulate the switching of the DC current between the first and second data line according			
15	to the digital state of the clock pulse; and			
16	the second transition-minimized differential signaling transmitter operative to			
17	regulate the switching of the DC return current between the first and second return data			
18	line according to the digital state of the clock pulse.			
19	15. The unidirectional high speed video data transmission system of claim 14,			
20	wherein:			
21	the first transition-minimized differential signaling transmitter regulates the			
22	switching of the DC current between the first and second data line by switching the DC			
23	current at a time corresponding to a first edge of the clock pulse; and			
24	the second transition-minimized differential signaling transmitter regulates the			
25	switching of the DC return current between the first and second data line by switching the			
26	DC return current at a time corresponding to a second edge of the clock pulse.			
27	16. The unidirectional high speed video data transmission system of claim 15, further			
28	comprising a filter located between the first and second summing pairs, the filter			
29	operative to minimize line noise in the video data transmission system.			
30	17. A method for enabling bi-directional high speed video data transmission,			
31	comprising the steps of:			
32	receiving a parallel video data signal;			
33	receiving a DC input current;			
34	encoding the parallel video data signal as a serial video data signal;			

HP 10018377 14

30

1		transmitting the serial video data signal across a first and second data line by		
2	altern	ately transferring the DC input current between a first data line and a second data		
3	line to	yield a first and second current, the first and second currents alternating between		
4	zero a	and a fixed value, the first and second currents one hundred eighty degrees out of		
5	phase	with one another;		
6		receiving the serial video data signal;		
7		decoding the serial video data signal into the parallel video data signal;		
8		summing the first and second currents into a DC return current;		
9		receiving a return parallel video data signal;		
0		encoding the return parallel video data signal as a return serial video data signal;		
1		transmitting the return serial video data signal across a first and second return		
12	data line by alternating the DC return current across the first and second return data lines			
3	to yield a first and second return current, the first and second return currents alternating			
4	between zero and a fixed value, the first and second return currents one hundred eighty			
5	degrees out of phase with one another;			
6		receiving the return serial video data signal; and		
7		decoding the return serial video data signal into the return parallel video data		
8	signal			
9	18.	The method of claim 17, further comprising the step of, in response to summing		
20	the fir	st and second currents into a DC return current, filtering line noise from the DC		
21	return current.			
22	19.	The method of claim 17, further comprising the steps of:		
23		summing the first and second return currents into a DC loop current; and		
24		using the DC loop current as the DC input current.		
2.5	20.	The method of claim 17, further comprising the steps of:		
26		receiving a clock signal having a rising edge and falling edge;		
27		in response to receiving the rising edge of the clock signal, alternating the DC		
28	input current across the first and second data lines; and			
9		in response to receiving the falling edge of the clock signal, alternating the DC		

HP 10018377 15

return current across the first and second return data lines.