Week 09 (19.10.28-11.1) SE102, Fall 2019 DGIST

Divergence theorem

- ∇ (nabla) operator
 - How to define divergence?
 - What are the properties of ∇ operators?

Divergence theorem

- What is a divergence of a vector field?
- What is a diverence theorem?
- What is a meaning of diverence of a vector field?

Homework

- Reading assignment
 - Chapter $\S 3.4 \S 4.3$.
- Writing assignment (due **Nov. 2nd, 11:59pm**) Let $\mathbf{F}(x,y,z) = (P(x,y,z), Q(x,y,z), R(x,y,z))$, $\mathbf{G} = (U(x,y,z), V(x,y,z), W(x,y,z))$ are vector fields on \mathbf{R}^3 .
 - 1. Write the following formula explicitly in terms of *P*, *Q*, *R*, *U*, *V*, *W*.
 - (a) $\nabla \cdot (F+G)$
 - (b) $\nabla \times (F+G)$
 - (c) $\nabla \cdot (F \times G)$
 - (d) $\nabla \times (F \cdot G)$
 - 2. Let $f: \mathbb{R}^3 \to \mathbb{R}$ be a differentiable function. Prove the following identity.
 - (a) $\nabla \cdot (f\mathbf{F}) = f\nabla \cdot \mathbf{F} + \nabla f \times \mathbf{F}$
 - (b) $\nabla \times (f\mathbf{F}) = f\nabla \times \mathbf{F} + \nabla f \times \mathbf{F}$
 - 3. Explain the meaning of the following statement.
 - (a) A surface is closed.
 - (b) A surface is oriented.
 - 4. Explain the divergence theorem explicitly. (No need to prove.)