### Цель работы

Рассмотреть модель конкуренции двух фирм. Построить графики изменения оборотных средств.

## Теоретическая справка

### 1. Модель одной фирмы

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют. Обозначим:

N

- число потребителей производимого продукта.

S

– доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения.

M

- оборотные средства предприятия.

 $\tau$ 

- длительность производственного цикла.

p

- рыночная цена товара.

 $\tilde{p}$ 

- себестоимость продукта, то есть переменные издержки на производство единицы продукции.

δ

– доля оборотных средств, идущая на покрытие переменных издержек.

κ

- постоянные издержки, которые не зависят от количества выпускаемой продукции.

- функция спроса, зависящая от отношения дохода S к цене р. Она равна количеству продукта, потребляемого одним потребителем в единицу времени.

Функцию спроса товаров долговременного использования часто представляют в простейшей форме:

$$Q = q - k \frac{P}{S} = q(1 - \frac{p}{p_{cr}}) \tag{1}$$

где q - максимальная потребность одного человека в продукте в единицу времени.

Эта функция падает с ростом цены и при

$$p = p_{cr}$$

(критическая стоимость продукта)потребители отказываются от приобретения товара. Величина

$$p_{cr} = Sq/k$$

Параметр k – мера эластичности функции спроса по цене. Таким образом, функция спроса в форме (1) является пороговой, то есть

$$Q(S/p)=0, p\geq p_{cr}$$

и обладает свойствами насыщения.

Уравнения динамики оборотных средств можно записать в виде

$$\frac{\partial M}{\partial t} = -\frac{M\delta}{\tau} + NQp - \kappa = -\frac{M\delta}{\tau} + NQ(1 - \frac{p}{p_{cr}})p - \kappa \tag{2}$$

Уравнение для рыночной цены р представим в виде

$$\frac{\partial p}{\partial t} = \gamma \left(-\frac{M\delta}{\tau \tilde{p}} + NQ(1 - \frac{p}{p_{cr}})\right) \tag{3}$$

Первый член соответствует количеству поставляемого на рынок товара (то есть, предложению), а второй член – спросу.

Параметр

 $\gamma$ 

зависит от скорости оборота товаров на рынке. Как правило, время торгового оборота существенно меньше времени производственного цикла

 $\tau$ 

При заданном М уравнение (3) описывает быстрое стремление цены к равновесному значению цены, которое устойчиво.

В этом случае уравнение (3) можно заменить алгебраическим соотношением

$$-\frac{M\delta}{\tau\tilde{p}} + NQ(1 - \frac{p}{p_{cr}}) = 0 \tag{4}$$

Из (4) следует, что равновесное значение цены р равно

$$p=p_{cr}(1-rac{M\delta}{ au ilde{p}Nq})$$
 (5)

Уравнение (2) с учетом (5) приобретает вид

$$\frac{\partial M}{\partial t} = M \frac{\delta}{\tau} (\frac{p_{cr}}{\tilde{p}} - 1) - M^2 (\frac{\delta}{\tau \delta p})^2 \frac{p_{cr}}{Nq} - \kappa$$
 (6)

Уравнение (6) имеет два стационарных решения, соответствующих условию:

$$\frac{\partial M}{\partial t} = 0$$

$$\tilde{M}_{1,2} = \frac{1}{2}a \pm \sqrt{\frac{a^2}{4} - b}$$
(7)

где

$$a = Nq(1 - \frac{\tilde{p}}{p_{cr}})\tilde{p}\frac{\tau}{\delta}, b = \kappa Nq\frac{(\tau\tilde{p})^2}{p_{cr}\delta^2}$$
 (8)

Из (7) следует, что при больших постоянных издержках, в случае

$$a^2 < 4b$$
,

стационарных состояний нет. Это означает, что в этих условиях фирма не может функционировать стабильно, то есть, терпит банкротство. Однако, как правило, постоянные затраты малы по сравнению с переменными

$$b \ll a^2$$

и играют роль, только в случае, когда оборотные средства малы. При

стационарные значения М равны

$$ilde{M}_{+} = Nqrac{ au}{\delta}(1-rac{ ilde{p}}{p_{cr}}) ilde{p}, ilde{M}_{-} = \kappa ilde{p}rac{ au}{\delta(p_{cr}- ilde{p})} ag{9}$$

Первое состояние

$$ilde{M}_+$$

устойчиво и соответствует стабильному функционированию предприятия. Второе состояние

$$ilde{M}$$

неустойчиво, так что при

$$M< ilde{M}$$

оборотные средства падают

$$\partial M/\partial t < 0$$

то есть, фирма идет к банкротству.

По смыслу

$$\tilde{M}_{-}$$

соответствует начальному капиталу, необходимому для входа в рынок.

В обсуждаемой модели параметр

Это значит, что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно удлинению производственного цикла. Поэтому мы в дальнейшем положим:

$$\delta = 1$$

а параметр

 $\tau$ 

будем считать временем цикла, с учётом сказанного.

#### 2. Конкуренция двух фирм

#### 2.1. Случай 1

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Последнее означает, что у потребителей в этой нише нет априорных предпочтений, и они приобретут тот или иной товар, не обращая внимания на знак фирмы. В этом случае, на рынке устанавливается единая цена, которая определяется балансом суммарного предложения и спроса. Иными словами, в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким либо иным способом).

Уравнения динамики оборотных средств запишем по аналогии с (2) в виде

$$rac{\partial M_1}{\partial t} = -rac{M_1}{ au_1} + N_1 q (1 - rac{p}{p_{cr}}) p - \kappa_1; rac{\partial M_2}{\partial t} = -rac{M_2}{ au_2} + N_2 q (1 - rac{p}{p_{cr}}) p - \kappa_2 \quad (10)$$

где использованы те же обозначения, а индексы 1 и 2 относятся к первой и второй фирме, соответственно. Величины

$$N_1, N_2$$

- числа потребителей, приобретших товар первой и второй фирмы.

Учтем, что товарный баланс устанавливается быстро, то есть, произведенный каждой фирмой товар не накапливается, а реализуется по цене р. Тогда

$$\frac{M_1}{\tau_1 \tilde{p}_1} = N_1 q (1 - \frac{p}{p_{cr}}); \frac{M_2}{\tau_2 \tilde{p}_2} = N_2 q (1 - \frac{p}{p_{cr}})$$
(11)

где

$$ilde{p}_1, ilde{p}_2$$

- себестоимости товаров в первой и второй фирме.

С учетом (10) представим (11) в виде

$$\frac{\partial M_1}{\partial t} = -\frac{M_1}{\tau_1} (1 - \frac{p}{\tilde{p}_1}) - \kappa_1; \frac{\partial M_2}{\partial t} = -\frac{M_2}{\tau_2} (1 - \frac{p}{\tilde{p}_2}) - \kappa_2 \tag{12}$$

Уравнение для цены, по аналогии с (3),

$$\frac{\partial p}{\partial t} = -\gamma \left(\frac{M_1}{\tau_1 \tilde{p}_1} + \frac{M_2}{\tau_2 \tilde{p}_2} - Nq\left(1 - \frac{p}{p_{cr}}\right)\right) \tag{13}$$

Считая, как и выше, что ценовое равновесие устанавливается быстро, получим:

$$p = p_{cr} \left(1 - \frac{1}{Nq} \left(\frac{M_1}{\tau_1 \tilde{p}_1} + \frac{M_2}{\tau_2 \tilde{p}_2}\right)\right) \tag{14}$$

Подставив (14) в (12) имеем:

$$\frac{\partial M_1}{\partial t} = c_1 M_1 - b M_1 M_2 - a_1 M_1^2 - \kappa_1; \frac{\partial M_2}{\partial t} = c_2 M_2 - b M_1 M_2 - a_2 M_2^2 - \kappa_2 \quad (15)$$

где

$$a_1 = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 N q}, a_2 = \frac{p_{cr}}{\tau_2^2 \tilde{p}_2^2 N q}, b = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 \tau_2^2 \tilde{p}_2^2 N q}, c_1 = \frac{p_{cr} - \tilde{p}_1}{\tau_1 \tilde{p}_1}, c_2 = \frac{p_{cr} - \tilde{p}_2}{\tau_2 \tilde{p}_2} \quad (16)$$

Исследуем систему (15) в случае, когда постоянные издержки ( $\kappa$ 1,  $\kappa$ 2) пренебрежимо малы. И введем нормировку

$$t = c_1 \theta$$

Получим следующую систему:

$$\frac{\partial M_1}{\partial \theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2; \frac{\partial M_2}{\partial \theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2$$
 (17)

Чтобы решить систему (17) необходимо знать начальные условия.

#### 2.2. Случай 2

Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед

$$M_1M_2$$

будет отличаться.

Получим следующую модель:

$$\frac{\partial M_1}{\partial \theta} = M_1 - (\frac{b}{c_1} + 0,002)M_1M_2 - \frac{a_1}{c_1}M_1^2; \frac{\partial M_2}{\partial \theta} = \frac{c_2}{c_1}M_2 - \frac{b}{c_1}M_1M_2 - \frac{a_2}{c_1}M_2^2$$
 (18)

### Ход работы

#### 1. Постановка задачи

Вариант 45.

Случай 1. Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{\partial M_1}{\partial \theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2; \frac{\partial M_2}{\partial \theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2$$

где

$$a_1 = rac{p_{cr}}{ au_1^2 ilde{p}_1^2 N q}, a_2 = rac{p_{cr}}{ au_2^2 ilde{p}_2^2 N q}, b = rac{p_{cr}}{ au_1^2 ilde{p}_1^2 au_2^2 ilde{p}_2^2 N q}, c_1 = rac{p_{cr} - ilde{p}_1}{ au_1 ilde{p}_1}, c_2 = rac{p_{cr} - ilde{p}_2}{ au_2 ilde{p}_2}$$

Также введена нормировка

$$t = c_1 \theta$$

Случай 2. Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед

$$M_1M_2$$

будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$rac{\partial M_1}{\partial heta} = M_1 - rac{b}{c_1} M_1 M_2 - rac{a_1}{c_1} M_1^2; rac{\partial M_2}{\partial heta} = rac{c_2}{c_1} M_2 - (rac{b}{c_1} + 0.00026) M_1 M_2 - rac{a_2}{c_1} M_2^2$$

Для обоих случаев рассмотрим задачу со следующими начальными условиями и параметрами:

$$M_0^1 = 2.6, M_0^2 = 6.2, p_{cr} = 40, N = 43, q = 1, au_1 = 20, au_2 = 14, ilde{p}_1 = 10.7, ilde{p}_2 = 19.1$$

Замечание: Значения

$$p_{cr}, \tilde{p}_{1,2}, N$$

указаны в тысячах единиц, а значения

$$M_{1,2}$$

указаны в млн. единиц.

#### Обозначения:

N

- число потребителей производимого продукта

au

- длительность производственного цикла

p

- рыночная цена товара

 $\tilde{p}$ 

- себестоимость продукта, то есть переменные издержки на производство единицы продукции

q

- максимальная потребность одного человека в продукте в единицу времени

$$\theta = \frac{t}{c_1}$$

- безразмерное время
- 1.Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1.
- 2.Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2.

#### 2. Решение для случая 1

```
model sl1
constant Real N=43;//число потребителей производимого продукта
constant Real q=1;//максимальная потребность одного человека в продукте в единицу
времени
constant Real p_cr=40;//критическая стоимость продукта
constant Real p1=10.7;//себестоимость продукта (переменные издержки на
производство единицы продукции) фирмы 1
constant Real p2=19.1;//себестоимость продукта (переменные издержки на
производство единицы продукции) фирмы 2
constant Real tau1=20;//длительность производственного цикла фирмы 1
constant Real tau2=14;//длительность производственного цикла фирмы 2
constant Real al=p_cr/(tau1*tau1*p1*p1*N*q);
constant Real a2=p_cr/(tau2*tau2*p2*p2*N*q);
constant Real b=p_cr/(tau1*tau1*tau2*tau2*p1*p1*p2*p2*N*q);
constant Real c1=(p_cr-p1)/(tau1*p1);
constant Real c2=(p_cr-p2)/(tau2*p2);
Real M1;//оборотные средства предприятия фирмы 1
Real M2;//оборотные средства предприятия фирмы 2
initial equation
м1=2.6;//начальное условие м1
М2=6.2;//начальное условие М2
equation
der(M1)=M1-(b/c1)*M1*M2-(a1/c1)*M1*M1;
der(M2)=(c2/c1)*M2-(b/c1)*M1*M2-(a2/c1)*M2*M2;
end sl1;
```

Для случая 1 получили следующий график (рис.1):



По графику видно, что рост оборотных средств предприятий идет независимо друг от друга. Каждая фирма достигает свое максимальное значение объема продаж и остается на рынке с этим значением, то есть каждая фирма захватывает свою часть рынка потребителей, которая не изменяется.

#### 3. Решение для случая 2

```
model sl2
constant Real N=43;//число потребителей производимого продукта
constant Real q=1;//максимальная потребность одного человека в продукте в единицу
времени
constant Real p_cr=40;//критическая стоимость продукта
constant Real p1=10.7;//себестоимость продукта (переменные издержки на
производство единицы продукции) фирмы 1
constant Real p2=19.1;//себестоимость продукта (переменные издержки на
производство единицы продукции) фирмы 2
constant Real tau1=20;//длительность производственного цикла фирмы 1
constant Real tau2=14;//длительность производственного цикла фирмы 2
constant Real a1=p_cr/(tau1*tau1*p1*p1*N*q);
constant Real a2=p_cr/(tau2*tau2*p2*p2*N*q);
constant Real b=p_cr/(tau1*tau1*tau2*tau2*p1*p1*p2*p2*N*q);
constant Real c1=(p_cr-p1)/(tau1*p1);
constant Real c2=(p_cr-p2)/(tau2*p2);
Real M1;//оборотные средства предприятия фирмы 1
Real м2;//оборотные средства предприятия фирмы 2
initial equation
М1=2.6;//начальное условие М1
м2=6.2;//начальное условие м2
equation
der(M1)=M1-(b/c1)*M1*M2-(a1/c1)*M1*M1;
der(M2)=(c2/c1)*M2-((b/c1)+0.00026)*M1*M2-(a2/c1)*M2*M2;
end s12;
```

Для случая 2 получили следующий график (рис.2):



рис.2

По графику видно, что фирма M2, несмотря на начальный рост, достигнув своего максимального объема продаж, начитает нести убытки и, в итоге, терпит банкротство. Динамика роста объемов оборотных средств фирмы M1 остается без изменения: достигнув максимального значения, остается на этом уровне.

# Вывод

В ходе выполнения лабораторной работы я рассмотрела модель конкуренции двух фирм. Построила графики изменения оборотных средств и проанализировала их.

# Список литературы

Кулябов Д. С. Лабораторная работа №8: <a href="https://esystem.rudn.ru/mod/resource/view.php?id=831">https://esystem.rudn.ru/mod/resource/view.php?id=831</a> <a href="https://esystem.rudn.ru/mod/resource/view.php?id=831">057</a>