Iskanje regulatornih DNK zaporedij

Izdelajte preprosto aplikacijo za iskanje regulatornih DNK zaporedij. Aplikacija naj omogoča naslednje:

- Branje tekstovne datoteke z zapisom DNK (<u>DNK1</u>)
- Vnos parametrov iskanja (parametre *n*, *l* in *t*)
- Iskanje regulatornih DNK zaporedij
 - o Požrešna metoda
 - o Razveji in omeji
- Meritve (primerjava hitrosti med obema algoritmoma)

Požrešna metoda:

Vhodni parametri algoritma:

- DNK
- *n*; velikost *n*-merov
- *t*; število *n*-merov
- *l*; velikost *l*-merov

Zaradi velike časovne zahtevnosti algoritma, omejite vhodne parametre:

- $2 \le l \le 10$
- $l \le n \le 100$
- 2 ≤ *t* ≤ 5

Primer:

 $DNK = CGGGGCTATGCAACTGGGTCGTCACATTCCCCTTTCGATATTTGAGGGTGCC \dots$

$$n = 40$$
$$t = 7$$

l = 8

DNK razrežemo na kose *t n*-merov:

$$\begin{split} NM_1 &= CGGGGCTATGCAACTGGGTCGTCACATTCCCCTTTCGATA \\ NM_2 &= TTTGAGGGTGCCCAATAAATGCAACTCCAAAGCGGACAAA \\ NM_3 &= GGATGCAACTGATGCCGTTTGACGACCTAAATCAACGGCC \\ NM_4 &= AAGGATGCAACTCCAGGAGCGCCTTTGCTGGTTCTACCTG \\ NM_5 &= AATTTTCTAAAAAAGATTATAATGTCGGTCCATGCAACTTC \\ NM_6 &= CTGCTGTACAACTGAGATCATGCTGCATGCAACTTTCAAC \\ NM_7 &= TACATGATCTTTTGATGCAACTTGGATGAGGGAATGATGC \\ \end{split}$$

V vsakem n-meru NM_i ; $1 \leq i \leq t$, izberemo l-mer, ki se začenja na odmiku s_j ; $1 \leq s_j \leq n-l+1$. Polje $S_k = \binom{k}{s_1}, \binom{k}{s_2}, \ldots, \binom{k}{s_t}$; $1 \leq k \leq (n-l+1)^t$, določa eno izmed možnih poravnav l-merov, ki jo zapišemo v pripadajočo matriko poravnave. Za matriko poravnave določimo profil $P(S_k)$, iz le tega pa konsenz. Konsenz ovrednotimo s funkcijo vsote maksimalnih vrednosti v matriki profila $P(S_k)$:

$$Score(S_k) = \sum_{j=1}^{l} \max_{1 \le i \le 4} (P_{i,j}(S_k)),$$

kjer je $P_{i,j}(S_k)$ element v i vrstici in j stolpcu profila $P(S_k)$. Konsenz ovrednotimo za vsako poravnavo. Rezultat je poravnava $S_m = \binom{k}{1}, k s_1, \ldots, k s_t$, tako da velja:

$$Score(S_m) = \max_{1 \le k \le (n-l+1)^t} (Score(S_k))$$

l nukleotidov CGGGGCTATCCAGCTGGGTCACATTC... ... A G G G T G C C C A A T A A G G G C A A C T C C G C G G A GGATGGATCCGATGCCGTTTGACG... G C A A C C C C A G G A G C G C C T T T ... GGTCCTT G G G C GCCA TTTCAAC А Т TACATGA TTTGATGGCACTTGGATGAGGGAATG... profil konsenz A T G C

Razveji in omeji:

Drugi pristop temelji na Hammingovi razdalji. Hammingovo razdaljo dH(u,v) med dvema nizoma u in v enake dolžine (l-mer) je število, ki nam pove na kolkih pozicijah se niza u in v razlikujeta. Primer izračuna Hammingove razdalje:

Ideja algoritma je, da obravnavamo vsak l-mer kot možen konsenz KZ_j ; $1 \le j \le 4^l$, kjer je 4^l možnih konsenzov (generiramo vse možne rešitve dolžine l).

Vsakemu n-meru poiščemo l-mer z najkrajšo Hammingovo razdaljo dH do KZ_j .

$$dH_i(KZ_j) = \min_{1 \le k \le (n-l+1)} \left(dH(KZ_j, k_{s_i}) \right), 1 \le i \le t$$

Pripadajoč položaj minimuma označimo z $s_i(KZ_j)$. Po obhodu vseh n-merov imamo za dani konsenz KZ_j matriko poravnave $S\left(KZ_j\right) = \left(s_1(KZ_j), \dots, \ s_t(KZ_j)\right)$.

Skupno razdaljo dH za poravnavo $S\left(KZ_{j}\right)$ do izbranega konsenza KZ_{j} izračunamo z naslednjo enačbo

$$dH(KZ_j) = \sum_{i=1}^t dH_i(KZ_j)$$

Sedaj še poiščemo najmanjšo skupno razdaljo dH po vseh možnih konsenzih KZ_i z enačbo:

$$dH(DNK) = \min_{1 \le i \le 4^l} \left(dH(KZ_i) \right)$$

Združimo vse skupaj dobimo:

$$dH(DNK) = \min_{1 \le j \le 4^l} \left(\sum_{i=1}^t \min_{1 \le k \le (n-l+1)} \left(dH(KZ_j, k_{i}) \right) \right)$$

Razveji in omeji:

- ullet Listi drevesa ustrezajo l-merom (možnim konsenzom), notranja vozlišča pa predponam vozlišč v poddrevesih.
- V kolikor je skupna Hammingova razdalja v kakšnem notranjem vozlišču višja (ali enaka) od trenutno najboljšega rezultata v katerem od že obiskanih listov, nam ni treba preiskovati poddrevesa

REŠITVE				
I	n	t	Požrešna metoda	Razveji in omeji
3	10	2	CAA (5)	AGC (1)
5	15	2	CAAAT (10)	CAAAT (0)
7	20	2	CAAATGA (12)	CAAATGA (2)
3	10	3	CAA (8)	CAA (1)
5	15	3	CAAAT (13)	AAATG (2)
7	15	3	CAAATGA (16)	AGATGTC (5)
7	20	3	CAAATGC (18)	CAAATGC (3)
3	10	4	CAA (10)	CAA (2)
5	15	4	CAAAT(17)	AAATG (3)
7	15	4	CAAATGC (22)	CAAATGC (6)
7	20	4	TTCCAAG (23)	TTCCAAG (5)
3	10	5	CAA (12)	CAA (3)
5	15	5	CAAAT (20)	AAATG (5)

Fukcionalnost:	Točke:
Branje DNK, Rešitev (poravnava, profil, konsenz, ovrednotenje konsenza), Meritve	1
Požrešna metoda	3
Razveji in omeji	6
Skupaj	10