Esercizi di Algebra Lineare, corso A

Enrico Berni

30/01/2025

Provate a svolgere i seguenti esercizi in maniera autonoma, eventualmente confrontandovi con dei compagni. Le soluzioni saranno discusse durante il tutorato di giovedì 30 gennaio.

1. Sia $\mathfrak{M}(m, n, \mathbb{R})$ lo spazio delle matrici quadrate di taglia $m \times n$ a coefficienti reali. Sia φ l'applicazione

$$\varphi: \mathfrak{M}(m, n, \mathbb{R}) \to \mathfrak{M}(m, n, \mathbb{R}), \quad \varphi(A, B) = \operatorname{tr}(A^t B).$$

- (a) Mostrare che φ è un prodotto scalare definito positivo.
- (b) Nel caso m=n, determinare l'ortogonale del sottospazio $S(n,\mathbb{R})$ delle matrici simmetriche.
- 2. Sia V uno spazio vettoriale di dimensione finita su un campo \mathbb{K} . Sia φ un prodotto scalare su V, e sia v_0 un vettore tale che $\varphi(v_0, v_0) = 0$. Mostrare che $\{v_0\}$ si estende a una base ortogonale di V se e solo se $\operatorname{span}(v_0)^{\perp} = V$.
- 3. Sia φ il prodotto scalare su \mathbb{R}^5 rappresentato nella base canonica dalla matrice

$$\mathfrak{M}_{\mathcal{C}}(\varphi) = \begin{bmatrix} 2 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & -1 & 0 \\ 1 & 0 & 1 & 0 & -1 \end{bmatrix}.$$

- (a) Trovare una base di $Rad(\varphi)$.
- (b) Calcolare la segnatura di φ , $\sigma(\varphi)$.
- (c) Determinare un sottospazio totalmente isotropo di dimensione massima.

- 4. Determinare una matrice $A\in\mathfrak{M}(3,\mathbb{R})$ che rappresenti nella base canonica un prodotto scalare φ su \mathbb{R}^3 tale che
 - $\sigma(\varphi) = (2, 1, 0);$
 - $\sigma(\varphi_{|W}) = (1, 1, 0)$, dove $W = \{(x, y, z) \in \mathbb{R}^3 | x + y + z = 0\}$;
 - Il vettore e_1 sia isotropo per φ .
- 5. Usando soltanto gli assiomi di determinante, e il comportamento dello stesso rispetto all'algoritmo di Gauss, calcolare il determinante di

$$A = \begin{bmatrix} 5 & 1 & 1 & 2 & 1 \\ 1 & 4 & 1 & 1 & 1 \\ 1 & 3 & 3 & 1 & 1 \\ 1 & 1 & 1 & 6 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}.$$