内容回顾

- ❖ 计算模指数ae mod m: 分治法
 - → 二进制分拆e为d_{n-1}d_{n-2}...d₁d₀
 - → 分治计算a^{Di} **mod** m, D_i = d_i * 2ⁱ
 - →归并
- ❖ 测试n是否为素数: 基于Eratosthenes筛选法
 - → 确定待筛选集合{2, 3,..., n^{1/2}}
 - → 筛选{2, 3,..., n^{1/2}}中所有素数
 - → 判断{2, 3,..., n^{1/2}}中的素数是否整除n

提示: modExp

```
• • •
 1 int modExp(int a, int e, int m) {
 2 r = 1;
 3 while e is NOT 0
 4 if e % 2 = 1
 r = r * a mod m;
 6 end if
 7 a = a * a mod m;
 8 = e \Rightarrow 1;
 9 end while
10
   return r;
11 }
```

提示: Eratosthenes

- ❖ 确定待筛选集合set[0,...,m], m = a¹/2-1
 - → 如果i在set中,则set[i] = 1,否则set[i] = 0
- **❖** Eratosthenes筛选

```
1 for i from 2 to sqrt(a)
2  j = i * i;
3  while j ≤ m
4   set[j] = 0;
5   j = j + i;
6  end while
7 end for
```

❖ 筛选后元素关于n的整除性判断

数论基础实验-素性检测

基于Eratosthenes筛选法的素性测试方法

Miller-Rabin素性测试方法

素数的两个性质

- ❖ 任意素数n都可表示为n = 2^kq + 1, k >= 0, q为奇数
 - → 特殊情况: n = 2时, 2 = 20 * 1 + 1
- ◆ n是素数, a是小于n的正整数, 则a² mod n = 1当且仅当
 a mod n = 1或a mod n = n 1
 - ➡ 充分性: a² **mod** n = (a **mod** n)(a **mod** n) **mod** n = 1
 - ➡ 必要性: a² **mod** n = 1, 则a²-1 **mod** n = 0

即(a+1)(a-1) mod n = 0

由于**n为素数**, 因此a+1 **mod** n = 0或a-1 **mod** n = 0

即a **mod** n = n-1或a **mod** n = 1

Miller-Rabin算法原理

- ❖ n = 2^kq + 1 (k > 0, q为奇数) 是大于2的素数, a是大于1 且小于n-1的整数, 如下两个条件之一成立:
 - → aq mod n = 1 序列中所有项均为1
 - 序列中存在一项为**n-1,**→ 存在j (j >= 1且j <= k), 满足a^{2j-1}q **mod** n = n-1 使之后所有项均为**1**
- ★ 费马小定理: aⁿ⁻¹ **mod** n = a^{2^kq} **mod** n = 1
- ★ 序列: aq mod n, a^{2q} mod n,..., a^{2k-1q} mod n, a^{2kq} mod n
 - * 后一项恰为前一项的平方: a^{2iq} mod n = [(a^{2i-1q} mod n)²] mod n

得证

Miller-Rabin素性测试算法

Miller-Rabin(n)

- → 确定整数k和q, 满足n = 2kq + 1
- ➡ 随机选择整数a, 满足a > 1且a < n-1
- → 如果aq mod n = 1, 返回"不确定"(可能是素数)
- → 如果存在a^{2j-1}q mod n = n-1 (j = 1, 2,..., k), 返回"不确定"
- ➡ 返回"合数"
- ❖ 通过Miller-Rabin素性测试的数不一定是素数; 无法通过Miller-Rabin素性测试的数一定不是素数(必要条件)

Miller-Rabin素性测试示例 I

判断29是否是素数

- ❖ 确定k和q: 29 = 2² * 7 + 1, 因此, k = 2, q = 7
- ❖ 随机选择a: a = 2
 - → 序列: 2⁷ mod n, 2^{2*7} mod n, 2^{4*7} mod n
 - → 判定l: aq mod n = 12, 既不等于n-1, 又不等于1
 - → 判定II: 序列第二项a^{2q} mod n = 28 = n-1, 返回"不确定"

Miller-Rabin素性测试示例 II

判断221是否是素数

- ❖ 确定k和q: 221 = 2² * 55 + 1, 因此, k = 2, q = 55
- ❖ 随机选择a: a = 5
 - → 判定I: aq mod n = 555 mod 221 = 112, 既不等于n-1, 又不等于1
 - → 判定II: 5^{2q} mod n = (5⁵⁵)² mod 221 = 168, 返回"合数"

问题: 随机选择a = 21?

 $21^{55} \mod 221 = 200$

(21⁵⁵)² mod 221 = 220, "不确定?"

非确定性测试

如果n不是素数,选择不同的a,测试结果不完全相同(多次测试)

数论基础实验-乘法逆元

乘法逆元

- * 定义: 对于整数a和m, 如果存在整数b, 满足a * b mod m = 1, 则称b为a关于模m的乘法逆元, 记为a⁻¹
- ❖ 乘法逆元目标: 已知a和m, 求解a-1
- ❖ 用途: 现代密码学加解密常涉及求解乘法逆元

乘法逆元存在的条件

- ❖ a存在关于模m的乘法逆元的充要条件是a和m的最大公约数为1(或a和m互素),记为gcd(a, m) = 1
 - ★ a与m互素,则存在整数k₁, k₂,满足k_{1*a} + k_{2*m} = 1
 - * 等式两边同取**mod** m: k₁*a = 1 **mod** m, 即k₁是a关于模m的 乘法逆元

乘法逆元存在条件示例

分析6和5关于模8的乘法逆元

 \rightarrow gcd(6, 8) = 2, gcd(5, 8) = 1

Z ₈	0	1	2	3	4	5	6	7
乘以6	0	6	4	2	0	6	4	2
乘以5	0	5	2	7	4	1	6	3

6不存在关于模 8的乘法逆元

5关于模8的乘法逆元为5(本身):

问题: 如何求解乘法逆元

$$k_1^*a + k_2^*m = 1$$
, 求解 k_1

欧几里德算法原理

- ❖ 最大公约数: gcd(a, m)是a和m的因子, 并且a和m的任意因子都是gcd(a, m)的因子
- ❖ 欧几里德算法: 辗转相除, 求最大公约数

```
a = q_{1}*m + r_{1}, r_{1} >= 0且r_{1} < m 如果r_{1} = 0, gcd(a, m) = m; 否则, gcd(a, m) = gcd(m, r_{1}) m = q_{2}*r_{1} + r_{2}, r_{2} >= 0且r_{2} < r_{1}, 意味着gcd(m, r_{1}) = gcd(r_{1}, r_{2}) ......辗转相除 r_{n-1} = q_{n+1}*r_{n} + 0, 那么gcd(a, m) = gcd(m, r_{1}) = gcd(r_{1}, r_{2}) =...= r_{n}
```

欧几里德算法示例I

求7与96的最大公约数

→ 假设r₋₁ = 7, r₀ = 96

i	ri	qi	公式
-1	7	0	7 = 0 * 96 + 7
0	96	13	96 = 13 * 7 + 5
1	7	1	7 = 1 * 5 + 2
2	5	2	5 = 2 * 2 + 1
3	2	2	2 = 2 * 1
4	1		

r₄ = 1, 因此gcd(7, 96) = 1

欧几里德算法示例II

求270与96的最大公约数

→ 假设r₋₁ = 270, r₀ = 96

i	ri	qi	公式
-1	270	2	270 = 2 * 96 + 78
0	96	1	96 = 1 * 78 + 18
1	78	4	78 = 4 * 18 + 6
2	18	3	18 = 3 * 6

gcd(270, 96) = 6

扩展欧几里德算法

❖ 在欧几里德算法的基础上, 计算辗转相除的系数

欧几里得算法辗转相除

计算系数k₁, k₂, k₁为a关于模m 的乘法逆元

$$r_{i-1} + (-q_{i+1})*r_i = r_{i+1}$$

欧几里德扩展算法示例I

求7关于模96的逆元: 假设 $r_{-1} = 7$, $r_0 = 96$

i	ri	qi	公式		
-1	7	0	7 = 0 * 96 + 7		1 *7 + 0 *96 = 7
0	96	13	96 = 13 * 7 + 5	1*96 + (-13)*7 = 5	(-13) *7 + 1 *96 = 5
1	7	1	7 = 1 * 5 + 2	7 + (-1)*5 = 2	(14) *7 + (-1) *96 = 2
2	5	2	5 = 2 * 2 + 1	5 + (-2)*2 = 1	(-41) *7 + 3 *96 = 1
3	2	2	2 = 2 * 1		
4	1				

 $k_1 = -41, k_2 = 3$

可选: 将k1变换为Z96中的元素55

欧几里德扩展算法示例II

求270关于模96的乘法逆元: 假设r-1 = 7, r₀ = 96

i	ri	qi	公式			
-1	270	0	270 = 2 * 96 + 78		1*270 + (-2	2) *96 = 78
0	96	1	96 = 1 * 78 + 18	1*96 + (-1)*78 = 18	(-1) *270 +	3 *96 = 18
1	78	4	78 = 4 * 18 + 6	78 + (-4)*18 = 6	5 *270 + (- 1	14) *96 = 6
2	18	3	18 = 3 * 6	18 + (-3)*6 = 0		

由于gcd(270, 96)!= 1, 不存在乘法逆元

$$k_1 = 5, k_2 = -14$$

扩展阅读

- Prime Numbers, Factorization and Euler Function
- ❖ <u>Primality Testing: Non-deterministic Algorithms</u> (费马小定理、Miller-Rabin测试、Solovay-Strassen测试)
 - → 利用素数的一般性质实施的必要性测试
- * 欧几里德算法的三种实现思路
- ❖ 欧几里德算法的应用: 一道ACM试题; 解答

课堂实验

```
bool millerRabin(int a)
// a: 输入测试数
// 如果a是合数,返回0;否则返回1
```

```
1 int euclid(int a, int m)
2 // a: 输入正整数; m: 输入模数(m>a)
3 // 返回a关于m的乘法逆元
```