CS 180 Discussion 1A/1E

Week 3

Haoxin Zheng 10/20/2023

Comments

• Bullet points are recommended in your HW answers

Time complexity justifications

"Edges": undirected? Directed?

• "Graph": How it is constructed? Array or linked list?

Graph

- Definitions:
 - G = (V, E). V:nodes(vertices), E:edges
 - n = |V|, number of nodes
 - m = |E|, number of edges

Graph

- Definitions:
 - Path: A path is a sequence of nodes connected by edges

- Connect: Node u and v are connected <=> ∃ a path between u and v
- Connected Graph: All nodes are connected with each other
- Cycle: A sequence of nodes $v_1,v_2\dots v_k$ $(k>2),v_1=v_k$. No repeat edges, not repeat nodes except $v_1\&v_k$

Bipartite Graph

- Definition of Bipartite graph G:
 - G is a Bipartite graph if it is a set of vertices that can be decomposed into two disjoint sets, such that no two vertices within the same set connected by an edge

- Lemma:
 - A graph is bipartite graph <u>if & only if</u> there is no odd cycle in the graph
 - Odd cycle: A cycle with odd number of vertices

Bipartite Graph

- Check if the graph is bipartite:
 - Run BFS. Then check whether there exists an edge within the same level.
 - Why:
 - If there is no edge between nodes inside each level, then we can have
 - $V_1 = All \ nodes \ in \ odd \ levels$,
 - $V_2 = All \ nodes \ in \ even \ levels$.
 - If there exists edge between nodes inside each level, then the graph exists at least one odd cycle, cannot be a bipartite graph.

Directed Graph

- Directed Graph: Edge has direction.
 - $(A, B) \in E \neq (B, A) \in E$
- Strongly Connected (SC) graph:
 - $\forall u, v \in V$, we can find a path to v start from u

- How to check if a graph is SC graph?
 - Arbitrarily pick a node S from G.
 - Run DFS/BFS from S on G -> reachable nodes R
 - Run DFS/BFS from S on G(edge direction reversed)-> reachable nodes Q
 - If V==Q==R:
 - We can know $\forall u \in V \to S$, and $S \to \forall v \in V$
 - Then we can know $\forall u, v \in V : u \rightarrow v$
 - By definition, the G is a SC graph

Directed Acyclic Graph (DAG) & Topological order

- Directed Acyclic Graph: a directed graph with no cycle.
- Suppose we have a set of tasks labeled {1, 2, . . . , n} that need to be performed, and there are dependencies among them. For certain pairs i and j, that i must be performed before j.

- Similar to directed edges, $v_i \rightarrow v_j$
- Given a set of tasks with dependencies, it would be natural to seek a valid order in which the tasks could be performed, so that all dependencies are respected

Topological order

- Specifically, for a directed graph G, we say that a **topological ordering** of G is an ordering of its nodes as $v_1, v_2, ... v_n$ such that for every edge (v_i, v_j) we have i < j.
- In other words, all edges point "forward" in the ordering.

• A topological ordering on tasks provides an order in which they can be safely performed. When we come to the task v_j , all the tasks that are required to precede it have already been done.

Topological order

(3.18) If G has a topological ordering, then G is a DAG.

(3.20) If G is a DAG, then G has a topological ordering.

The inductive proof contains the following algorithm to compute a topological ordering of *G*.

To compute a topological ordering of G:

Find a node v with no incoming edges and order it first

Delete v from GRecursively compute a topological ordering of $G-\{v\}$ and append this order after v

Topological order

(3.18) If G has a topological ordering, then G is a DAG.

Proof. Suppose, by way of contradiction, that G has a topological ordering v_1, v_2, \ldots, v_n , and also has a cycle C. Let v_i be the lowest-indexed node on C, and let v_j be the node on C just before v_i —thus (v_j, v_i) is an edge. But by our choice of i, we have j > i, which contradicts the assumption that v_1, v_2, \ldots, v_n was a topological ordering. \blacksquare

(3.20) If G is a DAG, then G has a topological ordering.

The inductive proof contains the following algorithm to compute a topological ordering of *G*.

To compute a topological ordering of G:

Find a node v with no incoming edges and order it first

Delete v from GRecursively compute a topological ordering of $G-\{v\}$ and append this order after v

- Precompute indegree[v] $\forall v \in V$
- $Q = \{v \text{ with indegree}[v] == 0\}$
- For i=1, 2, ... n:
 - u = Q.pop()
 - make u next in T-order
 - \forall *v such that* (*u*, *v*) ∈ *E*:
 - Indegree[v] --
 - If indegree[v] ==0:
 - Q.push(v)
- Time complexity: O(|E|+|V|)

1. Consider the directed acyclic graph *G* in Figure 3.10. How many topological orderings does it have?

Figure 3.10 How many topological orderings does this graph have?

Exercise

• Given a DAG G. k is the maximum number of edges among all paths. Design an algorithm to Partition the vertices into k+1 groups s.t. For each vertex in the same group, there are no edges

Exercise

Given a DAG G. k is the maximum number of edges among all paths.
 Design an algorithm to Partition the vertices into k+1 groups s.t. For each vertex in the same group, there are no edges

Algorithm:

- 0) Pre-compute indegree and outdegree of all nodes.
- 1) Find all nodes with indegree=0 and put them in group 0
- 2) Remove selected nodes and their outdegree edges.
- 3) For all remained nodes connected by the nodes removed in the previous step, decrease outdegree by 1 for each edge pointed out by the nodes removed.
- 4) Back to step 0), with group index $1, 2 \dots k + 1$ until all nodes have been removed

• O(|E|+|V|)

210. Course Schedule II

There are a total of numCourses courses you have to take, labeled from 0 to numCourses - 1. You are given an array prerequisites where prerequisites[i] = $[a_i, b_i]$ indicates that you **must** take course b_i first if you want to take course a_i .

• For example, the pair [0, 1], indicates that to take course 0 you have to first take course 1.

Return the ordering of courses you should take to finish all courses. If there are many valid answers, return **any** of them. If it is impossible to finish all courses, return **an empty array**.

Example 1:

Input: numCourses = 2, prerequisites = [[1,0]]

Output: [0,1]

Explanation: There are a total of 2 courses to take. To take course 1 you should have

finished course 0. So the correct course order is [0,1].

Example 2:

Input: numCourses = 4, prerequisites = [[1,0],[2,0],[3,1],[3,2]]

Output: [0,2,1,3]

Explanation: There are a total of 4 courses to take. To take course 3 you should have finished both courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0.

So one correct course order is [0,1,2,3]. Another correct ordering is [0,2,1,3].

Example 3:

Input: numCourses = 1, prerequisites = []

Output: [0]

```
G
class Solution:
   def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]:
       # Create a prerequisite dict. (containing courses (nodes) that need to be taken (visited)
       # before we can visit the key.
       preq = {i:set() for i in range(numCourses)}
       # Create a graph for adjacency and traversing.
       graph = collections.defaultdict(set)
       for i,j in prerequisites:
           # Preqs store requirments as their given.
           preq[i].add(j)
           # Graph stores nodes and neighbors.
           graph[j].add(i)
       q = collections.deque([])
       # We need to find a starting location, aka courses that have no prereqs.
       for k, v in preq.items():
            if len(v) == 0:
               q.append(k)
       # Keep track of which courses have been taken.
       taken = []
       while q:
           course = q.popleft()
           taken.append(course)
           # If we have visited the numCourses we're done.
            if len(taken) == numCourses:
               return taken
           # For neighboring courses.
           for cor in graph[course]:
               # If the course we've just taken was a prereq for the next course, remove it from its prereqs
               preq[cor].remove(course)
               # If we've taken all of the pregs for the new course, we'll visit it.
               if not preq[cor]:
                   q.append(cor)
       # If we didn't hit numCourses in our search we know we can't take all of the courses.
       return []
```

https://leetcode.com/problems/courseschedule-ii/solutions/762346/python-bfs-beats-98-with-detailed-explanation-and-comments/