2023 Differential Geometry- TD4

. On considère l'hélice circulaire, d'équation paramétrique

$$t \mapsto (a\cos t, a\sin t, bt)$$

dans un repère orthonormé. Montrer que la surface engendrée par l'ensemble des droites qui rencontrent l'hélice et rencontrent orthogonalement l'axe Oz (hélicoïde droit) est une sous-variété de IR^3 .

- 9. Soit M_1 une sous-variété de \mathbb{R}^n de dimension p_1 et M_2 une sous-variété de \mathbb{R}^m de dimension p_2 . Montrer que $M_1 \times M_2 = \{a = (a_1, a_2), a_1 \in \mathbb{R}^n, a_2 \in \mathbb{R}^m\}$ est une sous-variété de \mathbb{R}^{n+m} dont on précisera la dimension
- 3. Montrer que l'image de la courbe $t \to (t^2, t^3)$ n'est pas une sous-variété.

 \mathcal{L} . Soit M sous-variété de \mathbb{R}^n de dimension $\leq n-2$. Montrer que $\mathbb{R}^n \setminus M$ est connexe.

5. Montrer que l'ensemble

$$C = \{(x, y, z) \in \mathbb{R}^3, 4xy + 2xz + 4y - z = xy + 2x - z = 0\}$$

est un sous-variété de \mathbb{R}^3 dont on précisera la dimension et l'espace tangent en (0,0,0).

6. Un angle n'est pas une sous-variété

- 1– Montrer que l'ensemble $A=\{(x,y)\in\mathbb{R}^2\mid x=0 \text{ et }y\geqslant 0, \text{ ou }x\geqslant 0 \text{ et }y=0\}$ n'est pas une sous-variété \mathbb{C}^∞ de \mathbb{R}^2 . On pourra raisonner par l'absurde, et obtenir une contradiction en utilisant le théorème des fonctions implicites.
- 2– Donner cependant un exemple d'application C^{∞} injective de \mathbb{R} dans \mathbb{R}^2 d'image A.
- 7. L'intersection de la sphère unité $x^2 + y^2 + z^2 = 1$ et du cylindre d'équation $x^2 + y^2 x = 0$ est-elle une sous-variété?

- *22. Position d'une hypersurface par rapport à un plan tangent On désigne par (x^0, \cdot, x^n) les coordonnées dans \mathbb{R}^{n+1} . Soit S une sous-variété de codimension 1, contenant 0, et ayant l'hyperplan $x^0 = 0$ pour plan tangent à l'origine.
 - a) Montrer que S peut être définie au voisinage de 0 par le graphe d'une fonction $(x^1, \dots, x^n) \mapsto f(x^1, \dots, x^n)$ dont 0 est point critique.
 - b) On suppose que la forme quadratique Q définie par

$$(x^1, \dots x^n) \mapsto \sum_{i,j=1}^n (\partial_{ij}^2 f(0)) x^i x^j$$

est non dégénérée. Montrer que si Q est définie positive (resp. définie négative) f admet un minimum (resp. maximum) local strict en 0.

c) On suppose maintenant que Q est de signature p, n-p, avec 0 . Montrer, en utilisant l'exercice <math>T, que tout voisinage de 0 contient à la fois des points de S situés au-dessus et des points situés au-dessous de T_0S . Montrer qu'il existe un ouvert U contenant 0 tel que $U \cap S \cap T_0S \setminus \{0\}$ soit une sous-variété de dimension n-1 de T_0S . Que se passe-t-il si on rajoute 0? (On pourra commencer par le cas n=2.)

Movse Lemma in TDI