Properties of logarithms:

- (1) For any real number x, $\log_b b^x = x$.
- (2) For any real number x > 0, $b^{\log_b x} = x$
- (3) For any real numbers x > 0 and n, $\log_b x^n = n \log_b x$.
- (4) For any real numbers x > 0 and y > 0, $\log_b(xy) = \log_b x + \log_b y$.
- (5) For any real numbers x > 0 and y > 0, $\log_b \left(\frac{x}{y}\right) = \log_b x \log_b y$.
- Useful in Ch.7 (Logarithmic differentiation)

(6) For any real numbers
$$x > 0$$
, $a > 1$ and $b > 1$, $\log_b x = \frac{\log_a x}{\log_a b}$.

In general,

- 1. $\log_b(x+y) \neq \log_b x + \log_b y$.
- $2. \qquad (\log_b x)^2 \neq \log_b(x^2).$
- 3. $\frac{\log_b x}{\log_b y} \neq \frac{x}{y}$, $\frac{\log_b x}{\log_b y} \neq \log_b \left(\frac{x}{y}\right)$

Simplify each of the following:

- (a) $\log_3\left(\frac{1}{81}\right)$
- (b) $2\log_{10} 5 + \log_{10} 4 5^{\log_5 3} + \log_2 16$

Solution

(a)
$$\log_3\left(\frac{1}{81}\right) = \log_3\left(\frac{1}{3^4}\right) = \log_3(3^{-4}) = -4 \underbrace{\log_3 3}_{=1} = -4$$

(b)
$$2\log_{10} 5 + \log_{10} 4 - 5^{\log_5 3} + \log_2 16 = \log_{10} (5^2 \times 4) - 3 + \log_2 (2^4)$$

$$= \log_{10} (100) - 3 + 4$$

$$= \log_{10} (10^2) + 1$$

$$= 2 + 1$$

$$= 3$$

If $2^x = 3^y = 12^z$, show that xy = z(x + 2y).

Solution

Let
$$2^x = 3^y = 12^z = k$$
.

Taking In on both sides, we have

$$\begin{cases} \ln(2^{x}) = \ln k \\ \ln(3^{y}) = \ln k \end{cases} \Rightarrow \begin{cases} x \ln 2 = \ln k \\ y \ln 3 = \ln k \end{cases} \Rightarrow \begin{cases} \ln 2 = \frac{\ln k}{x} \\ \ln 3 = \frac{\ln k}{y} \\ \ln(12^{z}) = \ln k \end{cases} \end{cases}$$

$$Z \ln 12 = \ln k$$

$$L \ln 12 = \frac{\ln k}{z}$$

:
$$\ln 12 = \ln(3 \times 2^2) = \ln 3 + 2 \ln 2$$

$$\frac{\ln k}{z} = \frac{\ln k}{y} + \frac{2 \ln k}{x}$$

$$\Rightarrow xy = xz + 2yz$$
$$= z(x+2y)$$

Natural logarithm

Logarithmic function with base e is called **natural logarithmic function**, denoted by $f(x) = \log_e x$ or $f(x) = \ln x$.

$$y = \ln x \iff x = e^y$$

Exponential function is the inverse function of logarithmic function, that is, the inverse function of $f(x) = \ln x$ is $f^{-1}(x) = e^x$.

Thus, $Dom(f) = Ran(f^{-1}) = (0, \infty)$ and $Ran(f) = Dom(f^{-1}) = \mathbb{R}$.

The graphs of $y = \ln x$ and $y = e^x$ are shown below.

Note that:

- (i) The graph of $y = \ln x$ is the reflection of the graph of $y = e^x$ about the line y = x.
- (ii) Both $y = \ln x$ and $y = e^x$ are strictly increasing functions.
- (iii) $\ln 1 = 0$ (i.e. the graph of $y = \ln x$ crosses the x-axis at x = 1.)
- (iv) $\ln x < 0$ for 0 < x < 1
- (v) $\ln x > 0$ for x > 1
- (vi) The value of $\ln x$ approaches to $-\infty$ as x tends to 0 from the right. That is,

$$\lim_{x \to 0^+} \ln x = -\infty \quad \bigcirc$$

The value of $\ln x$ approaches to ∞ as x gets larger and larger. That is,

$$\lim_{x \to \infty} \ln x = \infty \quad ②$$

For each of the following functions, find its largest possible domain and largest possible range, and then sketch its graph.

(a)
$$f(x) = 2 + \ln \frac{1}{x}$$

(b)
$$g(x) = 4 + \log \frac{x+1}{1000}$$

Solution

(a) $f(x) = 2 + \ln \frac{1}{x}$ is well-defined when $\frac{1}{x} > 0$ and $x \neq 0$, i.e. when x > 0. $\therefore Dom(f) = (0, \infty)$.

The function can be written as

$$f(x) = 2 + \ln \frac{1}{x} = 2 + \ln(x^{-1}) = 2 + (-1)\ln x = 2 - \ln x.$$

For any $x \in Dom(f) = (0, \infty)$, $\ln x$ can be any real number and thus $2 - \ln x$ can be any real number.

$$\therefore Ran(f) = \mathbb{R}.$$

$$\ln x$$
 reflect $\rightarrow -\ln x$ shifted 2 about units upward x -axis

Chapter 5

Semester A, 2020-21
$$\log x = 10$$
 MA1200 Calculus and Basic Linear Algebra I

(b) $g(x) = 4 + \log \frac{x+1}{1000}$ is well-defined when $\frac{x+1}{1000} > 0$, i.e. $x > -1$.

 $\therefore Dom(g) = (-1, \infty)$.

The function can be written as

$$g(x) = 4 + \log \frac{x+1}{1000} = 4 + \log(x+1) - \log 1000 = 4 + \log(x+1) - \log 10^3$$
$$= 4 + \log(x+1) - 3 = 1 + \log(x+1)$$

For any $x \in Dom(g) = (-1, \infty)$, $\log(x+1)$ can be any real number and thus $g(x) = 1 + \log(x + 1)$ can be any real number. $\therefore Ran(f) = \mathbb{R}$.

Sketches

For each of the following functions, find its inverse function.

(a)
$$f(x) = e^{x+1} - 5$$

(b)
$$g(x) = 3 + 2e^{-x}$$

(c)
$$h(x) = 1 - 3\left(\frac{1}{2}\right)^x$$

(d)
$$f(x) = 2 + \ln \frac{1}{x}$$

(d)
$$f(x) = 2 + \ln \frac{1}{x}$$
 (e) $g(x) = 4 + \log \frac{x+1}{1000}$

Solution

(a) Let
$$y = e^{x+1} - 5$$
.

Then
$$e^{x+1} = y + 5 \implies \underbrace{\ln(e^{x+1})}_{=x+1} = \ln(y+5) \implies x = \ln(y+5) - 1$$

$$f^{-1}(x) = \ln(x+5) - 1$$

(b) Let
$$y = 3 + 2e^{-x}$$
.

Then
$$e^{-x} = \frac{y-3}{2} \Rightarrow -x = \ln\left(\frac{y-3}{2}\right) \Rightarrow x = -\ln\left(\frac{y-3}{2}\right) = \ln\left(\frac{2}{y-3}\right)$$

$$\therefore g^{-1}(x) = \ln\left(\frac{2}{x-3}\right)$$

(c) Let
$$y = 1 - 3\left(\frac{1}{2}\right)^x = 1 - 3(2)^{-x}$$

$$\Rightarrow 2^{-x} = \frac{1 - y}{3} \Rightarrow -x = \log_2\left(\frac{1 - y}{3}\right) \Rightarrow x = -\log_2\left(\frac{1 - y}{3}\right) = \log_2\left(\frac{3}{1 - y}\right)$$

$$\therefore h^{-1}(x) = \log_2\left(\frac{3}{1 - x}\right)$$

(d) Let
$$y = 2 + \ln \frac{1}{x}$$
.

Then $\ln \frac{1}{x} = y - 2 \implies \frac{1}{x} = e^{y-2} \implies x = \frac{1}{e^{y-2}} \stackrel{\checkmark}{=} e^{2-y}$
 $\therefore f^{-1}(x) = e^{2-x}$

(e) Let
$$y = 4 + \log \frac{x+1}{1000}$$
. $= 1 + \log(x+1)$ (from Ex. 6 (b))
 $\Rightarrow \log(x+1) = y-1$
 $\Rightarrow x+1 = \log^{y-1}$
 $\Rightarrow x = \log^{y-1} - 1$
 $\therefore g^{-1}(x) = \log^{x-1} - 1$

Determine the largest possible domain and largest possible range of the function $f(x) = \ln\left(\frac{x+2}{x-1}\right)$.

Solution

The function $f(x) = \ln\left(\frac{x+2}{x-1}\right)$ is well-defined when $\frac{x+2}{x-1} > 0$ and $x-1 \neq 0$.

	x < -2	x = -2	-2 < x < 1	x=1	x > 1
Sign of $x + 2$		0	+		+
Sign of $x-1$	_	_	_		+
Sign of $\frac{x+2}{x-1}$	+	0	_		+

The largest possible domain of f(x) is $Dom(f) = (-\infty, -2) \cup (1, \infty)$.

Let
$$y = \ln\left(\frac{x+2}{x-1}\right)$$
. Then $e^y = \frac{x+2}{x-1} \Rightarrow e^y(x-1) = x+2 \Rightarrow x(e^y-1) = e^y+2$
 $\Rightarrow x = \frac{e^y+2}{e^y-1}$.

In the last expression, y can be any real number except when $e^y = 1$, i.e. $y = \ln 1 = 0$. Ran(f-1) = Dom(f)

 \therefore The largest possible range of f(x) is $Ran(f) = \mathbb{R} \setminus \{0\}$.

Solve each of the following equations for x.

- (a) $2^x = 16$ (b) $3^{x-1} = 81$ (c) $3^x = 17$ (d) $3 \cdot 5^{2x-1} + 2 = 17$

Solution

(a)
$$2^x = 16 = 2^4 \implies x = 4$$

(b)
$$3^{x-1} = 81 = 3^4 \implies x - 1 = 4 \implies x = 5$$

(c)
$$3^x = 17$$

Take natural logarithm on both sides:

$$\ln 3^x = \ln 17 \implies x \ln 3 = \ln 17 \implies x = \frac{\ln 17}{\ln 3} \approx 2.5789$$

(d)
$$3 \cdot 5^{2x-1} + 2 = 17 \Rightarrow 3 \cdot 5^{2x-1} = 15 \Rightarrow 5^{2x-1} = 5 \Rightarrow 2x - 1 = 1 \Rightarrow x = 1$$

Solve each of the following equations for x.

(a)
$$\ln(x^3) = 2 \ln 5$$

(b)
$$5^{2x-1} = 12 \cdot 3^x$$

(c)
$$\log_2(x+5) + \log_2(x-2) = 3$$
 (d) $e^x - 8e^{-x} = 7$

(d)
$$e^x - 8e^{-x} = 7$$

Solution

(a) $\ln(x^3) = 2 \ln 5$

Taking natural exponential on both sides, we get

$$e^{\ln(x^3)} = e^{2\ln 5} \implies x^3 = e^{\ln(5^2)} \implies x^3 = 5^2 \implies x = 5^{\frac{2}{3}}$$

(b)
$$5^{2x-1} = 12 \cdot 3^x$$

Taking natural logarithm on both sides, we get

$$\ln(5^{2x-1}) = \ln(12 \cdot 3^x) \quad \Rightarrow \quad (2x-1)\ln 5 = \ln 12 + \underbrace{\ln 3^x}_{=x \ln 3}$$

$$\Rightarrow \quad x(2\ln 5 - \ln 3) = \ln 12 + \ln 5$$

$$\Rightarrow \quad x = \underbrace{\ln 12 + \ln 5}_{2\ln 5 - \ln 3}$$

(c)
$$\log_2(x+5) + \log_2(x-2) = 3 \Rightarrow \log_2[(x+5)(x-2)] = 3$$

Taking exponential with base 2 on both sides, we get

$$2^{\log_2[(x+5)(x-2)]} = 2^3$$

$$\Rightarrow (x+5)(x-2) = 8$$

$$\Rightarrow x^2 + 3x - 10 = 8$$

$$\Rightarrow x^2 + 3x - 18 = 0$$

$$\Rightarrow (x-3)(x+6) = 0$$

$$\Rightarrow x-3 = 0 \quad \text{or} \quad x+6 = 0$$

$$\Rightarrow x = 3 \quad \text{or} \quad x = -6 \text{ (rejected since } \log_2(x+5) \text{ and } \log_2(x-2)$$

$$\text{are not defined when } x = -6)$$

$$\therefore$$
 $x = 3$

(d) $e^x - 8e^{-x} = 7$ Note: We cannot take In on both sides, because $ln(e^x - 8e^{-x})$ cannot be simplified.

Multiply both sides by ex:

$$\ln(a-b) \neq \ln a - \ln b$$

$$e^{2x} - 8 = 7e^x \Rightarrow$$

$$e^{2x} - 8 = 7e^{x}$$
 \Rightarrow $e^{2x} - 7e^{x} - 8 = 0$ \leftarrow quadratic equation in e^{x}

$$\Rightarrow (e^x - 8)(e^x + 1) = 0$$

$$\Rightarrow$$
 $e^x = 8$ or $e^x = -1$ (rejected since $e^x > 0$)

$$8 d = x \Leftrightarrow$$

Hyperbolic functions

For any real value x, the **hyperbolic sine** function ($\sinh x$) and the **hyperbolic cosine** function ($\cosh x$) are defined as

$$sinh x = \frac{1}{2}(e^x - e^{-x})$$
 and $sinh x = \frac{1}{2}(e^x + e^{-x})$, respectively

Note that $\sinh x \neq \sin(hx)$, $\cosh x \neq \cos(hx)$.

Remark:

Recall that cosine and sine are called **circular functions** because, for any $t \in \mathbb{R}$, the point $(\cos t, \sin t)$ lies on the circle with equation $x^2 + y^2 = 1$. Similarly, hyperbolic cosine and hyperbolic sine are called **hyperbolic functions** because, for any $t \in \mathbb{R}$, the point $(\cosh t, \sinh t)$ lies on the hyperbola with equation $x^2 - y^2 = 1$ (see Example 11(a)).

$$\cosh^2 t - \sinh^2 t = 1$$

 $\cos^2 t + \sin^2 t = 1$

Prove the following:

- (a) $\cosh^2 x \sinh^2 x = 1$
- (b) $\cosh^2 x + \sinh^2 x = \cosh(2x)$

Solution

(a)
$$\cosh^2 x - \sinh^2 x = \left[\frac{1}{2}(e^x + e^{-x})\right]^2 - \left[\frac{1}{2}(e^x - e^{-x})\right]^2$$

$$= \left[\frac{1}{4}\left(e^{2x} + 2\underbrace{e^x \cdot e^{-x}}_{=1} + e^{-2x}\right)\right] - \left[\frac{1}{4}\left(e^{2x} - 2\underbrace{e^x \cdot e^{-x}}_{=1} + e^{-2x}\right)\right]$$

$$= \frac{4}{4}$$

$$= 1$$

 $\therefore \cosh^2 x - \sinh^2 x = 1.$

(b)
$$\cosh^2 x + \sinh^2 x = \left[\frac{1}{2}(e^x + e^{-x})\right]^2 + \left[\frac{1}{2}(e^x - e^{-x})\right]^2$$

$$= \left[\frac{1}{4}\left(e^{2x} + 2\underbrace{e^x \cdot e^{-x}}_{=1} + e^{-2x}\right)\right] + \left[\frac{1}{4}\left(e^{2x} - 2\underbrace{e^x \cdot e^{-x}}_{=1} + e^{-2x}\right)\right]$$

$$= \frac{1}{2}(e^{2x} + e^{-2x})$$

$$= \cosh(2x)$$

 $\therefore \cosh^2 x + \sinh^2 x = \cosh(2x)$

Other identities

- \triangleright $\cosh(x + y) = \cosh x \cosh y + \sinh x \sinh y$
- \Rightarrow $\sinh(x + y) = \sinh x \cosh y + \cosh x \sinh y$
- $\cosh(2x) = \cosh^2 x + \sinh^2 x = 1 + 2\sinh^2 x = 2\cosh^2 x 1$
- $ightharpoonup \sinh(2x) = 2\sinh x \cosh x$

Exercise: Prove each of the above identities by using the definitions of $\sinh x$ and $\cosh x$.

For each of the hyperbolic functions $\sinh x$ and $\cosh x$, determine whether it is an even function, odd function, or neither of them.

Solution

Let $f_1(x) = \sinh x$, then

$$f_1(-x) = \sinh(-x) = \frac{1}{2} (e^{-x} - e^{-(-x)}) = -\frac{1}{2} (e^x - e^{-x}) = -\sinh x = -f_1(x).$$

 $f_1(x) = \sinh x$ is an **odd** function.

Let $f_2(x) = \cosh x$, then

$$f_2(-x) = \cosh(-x) = \frac{1}{2} (e^{-x} + e^{-(-x)}) = \cosh x = f_2(x).$$

 $f_2(x) = \cosh x$ is an **even** function.

Graphs of hyperbolic sine and hyperbolic cosine functions

$$y = \sinh x = \frac{1}{2}(e^x - e^{-x})$$

Domain = \mathbb{R}

Range = \mathbb{R}

Odd function

$$\sinh(-x) = -\sinh x$$

$$y = \cosh x = \frac{1}{2}(e^x + e^{-x})$$

Domain = \mathbb{R}

Range = $[1, \infty)$

Even function

$$\cosh(-x) = \cosh x$$

Solve each of the following equations for x.

(a)
$$\cosh 3x = 2$$

$$\cosh 3x = 2 \qquad \qquad \text{(b)} \quad 4 \sinh x = 3 \cosh x$$

(c) $\cosh 2x = 3 \sinh x$

Solution

(a)
$$\cosh 3x = 2$$
 $\Rightarrow \frac{1}{2}(e^{3x} + e^{-3x}) = 2$
 $\Rightarrow e^{3x} + e^{-3x} = 4$
 $\Rightarrow e^{6x} + 1 = 4e^{3x}$
 $\Rightarrow e^{6x} - 4e^{3x} + 1 = 0$

Let $y = e^{3x}$. Then we have $y^2 - 4y + 1 = 0$. By the quadratic equation formula,

$$y = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(1)}}{2(1)} = \frac{4 \pm \sqrt{12}}{2} = \frac{4 \pm 2\sqrt{3}}{2} = 2 \pm \sqrt{3}$$

$$e^{3x} = 2 + \sqrt{3}$$
 or $e^{3x} = 2 - \sqrt{3}$

$$\Rightarrow$$
 $3x = \ln(2 + \sqrt{3})$ or $3x = \ln(2 - \sqrt{3})$

$$\Rightarrow x = \frac{1}{3}\ln(2+\sqrt{3}) \quad \text{or} \quad x = \frac{1}{3}\ln(2-\sqrt{3})$$

(b)
$$4 \sinh x = 3 \cosh x$$

$$\Rightarrow \frac{\sinh x}{\cosh x} = \frac{3}{4}$$

$$\Rightarrow \frac{\frac{1}{2}(e^x - e^{-x})}{\frac{1}{2}(e^x + e^{-x})} = \frac{3}{4}$$

$$\Rightarrow 4(e^x - e^{-x}) = 3(e^x + e^{-x})$$

$$\Rightarrow e^{x} - 7e^{-x} = 0$$

$$\Rightarrow e^{2x} - 7 = 0$$

$$\Rightarrow e^{2x} = 7$$

$$\Rightarrow 2x = \ln 7$$

$$\Rightarrow x = \frac{1}{2} \ln 7$$

(c) $\cosh 2x = 3 \sinh x$

$$\Rightarrow$$
 $\cosh^2 x + \sinh^2 x = 3 \sinh x$

$$\Rightarrow \cosh^2 x + \sinh^2 x = 3 \sinh x \qquad \because \cosh^2 x + \sinh^2 x = \cosh(2x) \quad (Ex.11 (b))$$

$$\Rightarrow$$
 (1+sinh²x) + sinh²x = 3 sinhx

$$\Rightarrow (1 + \sinh^2 x) + \sinh^2 x = 3 \sinh x \qquad \because \cosh^2 x - \sinh^2 x = 1 \qquad (Ex. 11(a))$$

$$\Rightarrow$$
 2 sinh²x - 3 sinhx + 1 = 0

$$\Rightarrow (2 \sinh x - 1)(\sinh x - 1) = 0$$

$$\Rightarrow$$
 sinh $x = \frac{1}{2}$ or sinh $x = 1$

$$\Rightarrow$$
 $\frac{1}{2}(e^{x}-e^{-x})=\frac{1}{2}$ or $\frac{1}{2}(e^{x}-e^{-x})=1$

$$\Rightarrow$$
 $e^{x} - e^{-x} = 1$ or $e^{x} - e^{-x} = 2$

$$\Rightarrow$$
 $(e^{x})^{2} - e^{x} - 1 = 0$ or $(e^{x})^{2} - 2e^{x} - 1 = 0$

$$\Rightarrow e^{x} = \frac{1 \pm \sqrt{(-1)^{2} - 4(1)(-1)}}{2(1)} \quad \text{or} \quad e^{x} = \frac{2 \pm \sqrt{(-2)^{2} - 4(1)(-1)}}{2(1)}$$
$$= \frac{1 \pm \sqrt{5}}{2} = 1 \pm \sqrt{2}$$

 $e^{x} \neq \frac{1-15}{2} < 0$ (rejected) & $e^{x} \neq 1-12 < 0$ (rejected), since $e^{x} > 0$ for all $x \in \mathbb{R}$.

$$e^{x} = \frac{1+\sqrt{5}}{2}$$
 or $1+\sqrt{2}$

Other hyperbolic functions (for your reference)

The hyperbolic tangent $(\tanh x)$, hyperbolic secant $(\operatorname{sech} x)$, hyperbolic cosecant $(\operatorname{csch} x)$, and hyperbolic cotangent $(\coth x)$ functions are defined as follows:

$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$\operatorname{csch} x = \frac{1}{\sinh x} = \frac{2}{e^x - e^{-x}}$$

$$\operatorname{sech} x = \frac{1}{\cosh x} = \frac{2}{e^x + e^{-x}}$$

$$\coth x = \frac{1}{\tanh x} = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$