1 Exploratory Random Walk

Definition 1 (Bipartite Graph Instance). Let $RBG(V, W, \mathbf{p})$ be a random bipartite graph, we call an instance of $RBG(V, W, \mathbf{p})$ for a given realization of the family $\xi = \{\xi_{v,w}\}_{v \in V, w \in W}$, a bipartite instance graph $BIG(V, W, \xi)$.

Definition 2 (Remainder Graphs). Let $BIG(V, W, \xi)$ be a bipartite instance graph, and let $I \subset W$. The remainder graph

$$BIG|_{I} = BIG(V|_{I}, W \setminus I, \xi|_{I})$$

is the bipartite instance graph on:

- W \ I
- $V|_{I} = V \setminus \left(\bigcup_{i \in I} \left\{ v \in V : \xi_{v,i} = 1 \right\} \right)$
- $\xi|_I = \begin{cases} \xi_{u,v} & \text{if } i \in W \setminus I, u \in V|_I \\ 0 & \text{otherwise} \end{cases}$

As is canon in the theory of random graphs[vdH17, Gri10, AS08], we will now define a procedure for revealing the connected component to which a given node belongs.

Our process will explore the bipartite graph whose projection yields the dual random intersection graph. We define the procedure recursively using the remainder graphs defined above.

Definition 3 (Graph Exploration Process). At step t = 0, $BIG_0 = BIG(V, W, \xi)$ and:

- j_0 : is the node whose connected component we want to explore;
- U_0 : is the set of unexplored items, i.e. $W \setminus \{j_0\}$;
- $V(j_0)$: is the set of users who picked j_0 , i.e. $V(j_0) = \{v \in V : \xi_{v,j_0} = 1\}$;
- \mathcal{N}_0 : is the set of items, not including j_0 , that the above users picked, i.e. $\mathcal{N}_0 = \bigcup_{u \in V(j_0)} \{j \in U_0 \colon \xi_{u,j} = 1\};$
- P_0 : is an empty FIFO queue of sets, to which we push \mathcal{N}_0 ;
- R_0 : is the set of removed nodes, i.e. $R_0 = \{j_0\}$;
- A_0 : is the empty set of active nodes.

At step t + 1, $BIG_{t+1} = BIG_t|_{\{j_t\}}$:

- we update the set of actives
- we pick j_{t+1} from the set of actives A_{t+1}

$$A_{t+1} = \{1$$

References

- [AS08] N. Alon and J. Spencer. The Probabilistic Method. Wiley, 2008.
- $[{\rm Gri10}]$ G. Grimmett. Probability on Graphs. Cambridge University Press, 2010.
- [vdH17] R. v. d. Hofstad. Random Graphs and Complex Networks, Volume One. Cambridge University Press, 2017.