Submodular Functions are Noise Stable

Mahdi Cheraghchi CMU

Adam Klivans UT Austin Pravesh Kothari UT Austin Homin K. Lee UT Austin

Overview

- Submodular Functions Are Noise Stable
- Application 1: Agnostic Learning
- Application 2: Differential Privacy

A function $f: 2^{[n]} \rightarrow R$ is *submodular* if $\forall S, T \subseteq [n]$:

$$f(S \cup T) + f(S \cap T) \leq f(S) + f(T)$$

Equivalently, $\forall S \subseteq T \subseteq \{n\}, i \in \{n\} \setminus T$:

$$f(T \cup \{i\}) - f(T) \leq f(S \cup \{i\}) - f(S)$$

$$f(T \cup \{i\}) - f(T) \le f(S \cup \{i\}) - f(S)$$

$$f(T \cup \{i\}) - f(T) \le f(S \cup \{i\}) - f(S)$$

$$f(T \cup \{i\}) - f(T) \leq f(S \cup \{i\}) - f(S)$$

$$f(T \cup \{i\}) - f(T) \leq f(S \cup \{i\}) - f(S)$$

$$f(T \cup \{i\}) - f(T) \leq f(S \cup \{i\}) - f(S)$$

$$f(T \cup \{i\}) - f(T) \leq f(S \cup \{i\}) - f(S)$$

- Submodular functions are used to model:
 - bundle pricing,
 - bidders' valuations in combinatorial auctions,
 - welfare maximation.
- Submodular funcs can be used to train SVMs.
- Rank functions of matroids are submodular:
 - cut functions of graphs
 - dimension of a vector space

 $f: 2^{[n]} \rightarrow R$

 \overline{D} , a product distribution over $2^{[n]}$ (uniform)

 $f: 2^{[n]} \rightarrow R$

 \overline{D} , a product distribution over $2^{[n]}$ (uniform)

 X_{ρ} noisy version of X (each i resampled with prob. 1- ρ)

 $f: 2^{[n]} \rightarrow R$

 \overline{D} , a product distribution over $2^{[n]}$ (uniform)

 X_{ρ} noisy version of X

(each *i* resampled with prob. 1- ρ)

 $T_{\rho}f(X) = \mathbb{E}[f(X_{\rho})]$ (noise operator)

$$f: 2^{[n]} \rightarrow R$$

D, a product distribution over $2^{[n]}$ (uniform)

$$X_{
ho}$$
 noisy version of X

(each *i* resampled with prob. 1- ρ)

$$T_{\rho}f(X) = \mathrm{E}[f(X_{\rho})]$$
 (noise operator)

$$S_{\rho}(f) = E\{f \cdot T_{\rho}f\}$$

$$E[X_{\rho}]$$

$$T_{\rho}f(X) = \mathbb{E}[f(X_{\rho})]$$

$$S_{\rho}(f) = \mathbb{E}[f \cdot T_{\rho}f]$$

Constant Functions:

$$f = c$$

$$T_{\rho}f(X) = c$$

$$S_{\rho}(f) = c^{2}$$

$$T_{\rho}f(X) = \mathrm{E}\{f(X_{\rho})\}$$
$$S_{\rho}(f) = \mathrm{E}\{f \cdot T_{\rho}f\}$$

Dictator Functions:

$$X_i = 1$$
 if $i \in X$, -1 o.w.

$$f = X_i$$

$$T_{\rho}f(X) = \rho \cdot f(X)$$

$$S_{\rho}(f) = \rho \cdot E\{f^2\} = \rho$$

$$T_{\rho}f(X) = \mathrm{E}\{f(X_{\rho})\}$$
$$S_{\rho}(f) = \mathrm{E}\{f \cdot T_{\rho}f\}$$

Submodular Functions:

$$T_{\rho}f(X) \geq \rho \cdot f(X)$$

$$S_{\rho}(f) \geq \rho \cdot E[f^2]$$

$$f(X) = f(+-+-+-+-)$$

$$f(X) = f(+-+-+-+-)$$

$$X_{[j]} = {\pi(1), ..., \pi(j)}$$
 $X_{[0]} = \emptyset, X_{[n]} = [n]$

$$f(X) = f(+-+-+-+-)$$

$$X_{[j]} = {\pi(1), ..., \pi(j)}$$
 $X_{[0]} = \emptyset, X_{[n]} = [n]$

$$T_{\rho}f(X) = E[f(X_{\rho})]$$

$$= f(X_{[0]}) + E \sum f(X_{\rho} \cap X_{[j]}) - f(X_{\rho} \cap X_{[j-1]})$$

$$f(X) = f(+-+-+-+-)$$

$$X_{[j]} = {\pi(1), ..., \pi(j)}$$
 $X_{[0]} = \emptyset, X_{[n]} = [n]$

$$T_{\rho}f(X) = E\{f(X_{\rho})\}\$$

$$= f(X_{[0]}) + E\left[\Sigma f(X_{\rho} \cap X_{[j]}) - f(X_{\rho} \cap X_{[j-1]})\right]$$

$$\pi(1) \ \pi(2) \quad \cdots \quad \pi(s)$$

$$T_{\rho}f(X) = f(X_{[0]}) + E \sum f(X_{\rho} \cap X_{[j]}) - f(X_{\rho} \cap X_{[j-1]})$$

 $\pi(1) \pi(2) \cdots \pi(s)$

$$T_{\rho}f(X) = f(X_{[0]}) + E \sum f(X_{\rho} \cap X_{[j]}) - f(X_{\rho} \cap X_{[j-1]})$$

$$f(S) - f(S \cap T) \ge f(S \cup T) - f(T)$$

$$\pi(1) \pi(2) \cdots \pi(s)$$

$$T_{\rho}f(X) = f(X_{[0]}) + E \sum f(X_{\rho} \cap X_{[j]}) - f(X_{\rho} \cap X_{[j-1]})$$

$$f(S) - f(S \cap T) \ge f(S \cup T) - f(T)$$

$$S = X_{\rho} \cap X_{[j]}$$
 $T = X_{[j-1]}$

$$\pi(1) \pi(2) \cdots \pi(s)$$

$$T_{\rho}f(X) = f(X_{[0]}) + E \sum f(X_{\rho} \cap X_{[j]}) - f(X_{\rho} \cap X_{[j-1]})$$

$$f(S) - f(S \cap T) \ge f(S \cup T) - f(T)$$

$$S = X_{\rho} \cap X_{[j]} \qquad T = X_{[j-1]}$$

$$S \cap T = X_{\rho} \cap X_{[j-1]}$$

$$\pi(1) \pi(2) \cdots \pi(s)$$

$$T_{\rho}f(X) = f(X_{[0]}) + E \sum_{j} f(X_{\rho} \cap X_{[j]}) - f(X_{\rho} \cap X_{[j-1]})$$

$$|f(S)-f(S\cap T)| \ge f(S\cup T)-f(T)$$

$$S = X_{\rho} \cap X_{[j]}$$

$$S \cap T = X_{\rho} \cap X_{[j-1]}$$

$$T=X_{[j-1]}$$

$$T_{\rho f}(X) = f(X_{[0]}) + E \sum f(X_{\rho} \cap X_{[j]}) - f(X_{\rho} \cap X_{[j-1]})$$

$$\text{submodularity}$$

$$f(S) - f(S \cap T) \ge f(S \cup T) - f(T)$$

$$S = X_{\rho} \cap X_{[j]} \qquad T = X_{[j-1]}$$

$$S \cap T = X_{\rho} \cap X_{[j-1]} \qquad S \cup T = (X_{\rho} \cap \{\pi(j)\}) \cup X_{[j-1]}$$

$$S = X_{\rho} \cap X_{[j-1]} \qquad S \cup T = (X_{\rho} \cap \{\pi(j)\}) \cup X_{[j-1]}$$

$$S = X_{\rho} \cap X_{[j-1]} \qquad S \cup T = (X_{\rho} \cap \{\pi(j)\}) \cup X_{[j-1]}$$

$$S = X_{\rho} \cap X_{[j-1]} \qquad S \cup T = (X_{\rho} \cap \{\pi(j)\}) \cup X_{[j-1]}$$

$$S = X_{\rho} \cap X_{[j-1]} \qquad S \cup T = (X_{\rho} \cap \{\pi(j)\}) \cup X_{[j-1]}$$

$$T_{\rho}f(X) \ge E \sum f(S \cup T) - f(T)$$

$$= \sum (f(X_{[j]}) - f(X_{[j-1]})) ((1 + \rho X_{\pi(j)})/2)$$

$$\ge \sum (\rho/2)(X_{\pi(j)} - X_{\pi(j+1)}) f(X_{[j]})$$

$$= \rho f(X)$$

 $\pi(1) \pi(2) \cdots \pi(s)$

$$T_{\rho}f(X) \ge \mathbb{E} \sum f(S \cup T) - f(T)$$

$$= \sum (f(X_{[j]}) - f(X_{[j-1]})) ((1 + \rho X_{\pi(j)})/2)$$

$$\ge \sum (\rho/2)(X_{\pi(j)} - X_{\pi(j+1)}) f(X_{[j]})$$

$$= \rho f(X)$$

 $\pi(1) \ \pi(2) \ \cdot \ \cdot \ \cdot \ \pi(s)$

$$T_{\rho}f(X) \ge E \sum f(S \cup T) - f(T)$$

$$= \sum (f(X_{[j]}) - f(X_{[j-1]})) ((1 + \rho X_{\pi(j)})/2)$$

$$\ge \sum (\rho/2)(X_{\pi(j)} - X_{\pi(j+1)}) f(X_{[j]})$$

$$= \rho f(X)$$

 $\pi(1) \ \pi(2) \quad \cdot \quad \cdot \quad \cdot \quad \pi(s)$

$$T_{\rho}f(X) \ge E \sum f(S \cup T) - f(T)$$

$$= \sum (f(X_{[j]}) - f(X_{[j-1]})) ((1 + \rho X_{\pi(j)})/2)$$

$$\ge \sum (\rho/2)(X_{\pi(j)} - X_{\pi(j+1)}) f(X_{[j]})$$

$$= \rho f(X)$$

 $\pi(1) \ \pi(2) \quad \cdot \quad \cdot \quad \cdot \quad \pi(s)$

$$T_{\rho}f(X) \ge E \sum f(S \cup T) - f(T)$$

$$= \sum (f(X_{[j]}) - f(X_{[j-1]})) ((1+\rho X_{\pi(j)})/2)$$

$$\ge \sum (\rho/2)(X_{\pi(j)} - X_{\pi(j+1)})f(X_{[j]})$$

$$= \rho f(X)$$

$$\pi(1) \pi(2) \cdot \cdot \cdot \cdot \pi(s)$$

Submodular Functions Are Noise Stable

Let $f: 2^{[n]} \to R^+$ be a submodular function. Then for all $\rho \in \{0,1\}$:

$$S_{\rho}(f) \geq \rho \cdot E[f^2]$$

[MadimanTetali-10, Vondrák-09]

Application 1

Submodular functions are agnostically learnable using statistical queries.

Agnostic Learning

- C a class of concepts, $c: 2^{[n]} \rightarrow R$
- D a (product) distribution over $2^{[n]}$
- $f 2^{[n]} \rightarrow R$: an arbitrary target function

opt
$$\min_{c \in C} E_D[|c(x) - f(x)|]$$

An <u>agnostic learner</u> is given access to f and w.h.p. outputs h s.t.

$$E_D[|b(x) - f(x)|] \le opt + \varepsilon$$

Levels of Access

		Query	Answer	
Strong	VQf	\boldsymbol{x}	f(x)	query access
	EX_f	n/a	$x \sim D, f(x)$	random examples
Weak	SQ_f	s, τ	$E_D[s(x,f(x))] \pm \tau$	s: an efficiciently computable statistic

Proof

1. Submodular functions are noise stable.

Proof

- 1. Submodular functions are noise stable.
- 2. Noise stable functions are well-approximated by low-degree multilinear polynomials. [KOS-02]

Proof

- 1. Submodular functions are noise stable.
- 2. Noise stable functions are well-approximated by low-degree multilinear polynomials. [KOS-02]
- 3. The [KKMS-05] algorithm agnostically learns low-degree multilinear polynomials using statistical queries.

Our Result

There is an SQ algorithm that can agnostically learn the class of non-negative submodular functions with bounded l2-norm in time poly($n^{O(1/\epsilon^2)}$).

	Caveat	Noise	Access	Approx.
BalcanHarvey 2011	monotone non-negative Lipschitz min-val <i>m</i> .	None	EX	Mult. $\log(1/\varepsilon)/m$ w.p. $1-\varepsilon$

	Caveat	Noise	Access	Approx.
BalcanHarvey 2011	monotone non-negative Lipschitz min-val <i>m</i> .	None	EX	Mult. $\log(1/\varepsilon)/m$ w.p. $1-\varepsilon$
GHRU 2011	non-negative bounded range	Small	VQ	Add. ε w.p. 1- δ

	Caveat	Noise	Access	Approx.
BalcanHarvey 2011	monotone non-negative Lipschitz min-val <i>m</i> .	None	EX	Mult. $\log(1/\varepsilon)/m$ w.p. $1-\varepsilon$
GHRU 2011	non-negative bounded range	Small	VQ	Add. ε w.p. $1-\delta$
This Work	non-negative bounded <i>l</i> 2 norm	Adversarial	SQ	<i>l</i> 1-error ε

	Caveat	Noise	Access	Approx.
BalcanHarvey 2011	monotone non-negative Lipschitz min-val <i>m</i> .	None	EX	Mult. $\log(1/\varepsilon)/m$ w.p. $1-\varepsilon$
GHRU 2011	non-negative bounded range	Small	VQ	Add. ε w.p. $1-\delta$
This Work	non-negative bounded <i>l</i> 2 norm	Adversarial	SQ	<i>l</i> 1-error ε
BalcanHarvey 2011	monotone non-negative <u>any</u> D	None	EX	Mult. $O(\sqrt{n})$ w.p. $1-\varepsilon$

Application 2: Privacy

There is an ε -differentially private algorithm that (α,β) -releases the class of all Boolean conjunctions of width w in time $w^{O(\log 1/\alpha)}$.

There is an ε -differentially private algorithm that (α, β) releases the class of all halfspaces in d dimensions in time $d^{O(1/\alpha 4)}$.

Thanks!

And remember...

- 1. Submodular functions are as noise stable as dictator functions.
- 2. Noise stability is more important than Lipschitzness over product distributions.