PATENT ABSTRACTS OF JAPAN

(11)Publication number :

2000-199054

(43)Date of publication of application: 18.07.2000

(51)Int.Cl.

C23C 14/34 C22C 21/00

(21)Application number: 10-374003 (22)Date of filing:

28.12.1998

(71)Applicant : KOBE STEEL LTD

20.09.2002

(72)Inventor: ONISHI TAKASHI

NISHI SEIJI

(54) ALLIMINUM ALLOY SPUTTERING TARGET MATERIAL

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an aluminum alloy sputtering target material free from the generation of splashes at the time of sputtering, suitable as the one for forming an electrode film having low electric resistivity suitable for an electrode of a lig. crystal display or the like, furthermore small in the secular change of the compsn, at the time of sputtering, and in which the variation in the planar compsn. of the electrode thin film to be formed is suppressed. SOLUTION: In an aluminum alloy sputtering target composed of aluminum matrix phases and intermetallic compd. phases of aluminum and alloy elements, on the crystal grain boundaries between the aluminum matrix phases, the boundaries between the intermetallic compd. phases and the boundaries between the aluminum matrix phases and intermetallic compd. phases, oxide layers of ≥0.1 micron layer thickness are not present, the average crystal grain size of the aluminum matrix phases is controlled to ≤5 micron, and the average crystal grain size of the intermetallic compd. phases is controlled to ≤3 micron.

LEGAL STATUS

Date of request for examination

[Date of sending the examiner's decision of rejection]

Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-199054 (P2000-199054A)

(43)公開日 平成12年7月18日(2000.7.18)

(51) Int.Cl.7	識別記号	F I		テーマコード(参考)
C 2 3 C 14/34		C 2 3 C 14/34	A	4K029
C 2 2 C 21/00		C 2 2 C 21/00	А	

審査請求 未請求 請求項の数5 OL (全 11 頁)

(21)出願番号	特顯平10-374003	(71)出顧人 000001199
		株式会社神戸製鋼所
(22) 出願日	平成10年12月28日(1998.12.28)	兵庫県神戸市中央区脇浜町1丁目3番18号
		(72)発明者 大西 隆
		神戸市西区高塚台1丁目5番5号 株式会
		社神戸製鋼所神戸総合技術研究所内
		(72) 発明者 西 鉱治
		神戸市西区高塚台1丁目5番5号 株式会
		社神戸製鋼所神戸総合技術研究所内
		(74)代理人 100067828
		弁理士 小谷 悦司 (外1名)
		Fターム(参考) 4K029 BA03 BA23 CA05 DC02 DC04

(54) 【発明の名称】 アルミニウム合金スパッタリングターゲット材料

(57) (要約)

【繋制】 スパッタリングに際してスプラッシュの発生が超とらず、また液晶ディスプレイなどの電板に好遊な低気抵抗率の電極機形成用として好道で、さらたスパッタリングに際して地域の影響を化が少なく、成験した電極関の面内地域があったがあったがあった。 本権関係の面内地域があったがあったがあった。 「第次手段】 アルミニウムマトリックス相と、アルミーストル会の一点があった。

(解決手段) アルミニウムマトリックス相と、アルミ ニウムと合金元素の金属順化合物相とからなるアルミニ ウム合金スパッタリング材料において、アルミニウムマ トリックス相回士の結晶粒界、当該金属間化合物相の 境界、及びアルミニウムマトリックス相と当該金属間 化合物相の境界に腐厚がの、1ミクロン以上の酸化物層 を存在させず、当該アルミニウムマトリックス相の平均 結晶粒径をちミクロン以下とし、当該金属間化合物相の 平均結品粒径を3ミクロン以下とする。

【請求項1】 アルミニウムマトリックス相と、アルミ ニウムと合金元素の金属間化合物相とからなるアルミニ ウム合金スパッタリング材料において、

1

アルミニウムマトリュクス相同士の結晶粒界)当該金属 間化合物相間士の境界。及びアルミニウムマトリックス 相と当該金属間化合物相の境界に層厚が0.1ミクロン 以上の酸化物層が存在せず、

当該アルミニウムマトリックス相の平均結晶粒径が5 ミ クロン以下であり、

当該金属間化合物相の平均結晶粒径が3ミクロン以下で あることを特徴とするアルミニウム合金スパッタリング ターゲット材料。

【請求項2】 当該合金元素が、Y, Nd, Ta, T i. Zr. Cr. Mn. W. Mo. Fe. Co. Ni. Cu, Ag, Si. Geからなる群から選ばれた少なく とも1種の元素であることを特徴とする請求項1記載の アルミニウム合金スパッタリングターゲット材料。 【請求項3】 アルミニウムマトリックス相中に粒径

0.01ミクロン以上の当該金属間化合物相が、10 0,000個/mm'以上の密度で分布していることを 特徴とする請求項1又は2記載のアルミニウム合金スパ ッタリングターゲット材料。

【請求項4】 酸素含有量が1.000ppm以下であ ることを特徴とする請求項1乃至3のいずれかに記載の アルミニウム合金スパッタリングターゲット材料。 【請求項5】 / 窒素含有量が500ppm以下であると とを特徴とする請求項1乃至4のいずれかに記載のアル ミニウム合金スパッタリングターゲット材料。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、アルミニウム (以 下「Al」と記すことがある) 合金スパッタリングター ゲット材料に関し、より詳細には液晶ディスプレイ用電 極膜形成用、中でも薄膜トランジスターを有するアクテ ィブマトリックス型液晶ディスプレイの電極に好適な電 極腱形成用のA 1合金スパッタリングターゲット材料に 関するものである。

[0002]

言う。)は、従来のブラウン管に比べて薄型化、軽量 化、低消費電力化が図れ、しかも高い解像度の画像が得 られるため、近年その用途が拡大しつつある。最近で は、さらに画像品質を高めるために、スイッチング素子 として薄膜トランジスター(以下、「TFT」と言う) をLCD内部に組み込んだ構造のLCDが提案され広く 使用されている。ことでTFTとは、ガラス等の絶縁基 板上に形成された半導体薄膜に、薄膜状金属からなる電 極を接続してなる能動素子を言う。また本明細書におい び薄膜上の配線を含むものとする。

【0003】上記LCDに使用される電極に要求される 特性は種々あるが、近年要望の高いLCDの大型化、高 精細化の障害となる信号の遅延を防止するために、低比 抵抗が最も重要な特性になりつつある。

【0004】LCD用電極は、まずスパッタリング法に より厚さがサブミクロン程度の一様な薄膜を形成し、そ の後リソグラフィー等によって微細な電極バターンに形 成される。かかるスパッタリング法では、目的とする電 10 極組成に従ってスパッタリングターゲットが適宜選択さ れる。このスパッタリングターゲットは、スパッタリン グにより電極薄膜を形成するための原料となるものであ り、通常は円盤状又は平板状の板材である。スパッタリ ングの際しては、スパッタリングターゲットを負極に、 薄膜を形成すべき基板を正極として、AFなどのスパッ タガスを導入した真空槽内に双方を対向させて配置す る。両極間に直流電圧を印加してグロー放電を起こさせ る。スパッタガスはとの放電によりイオン化され、イオ ン粒子は電荷により加速されてターゲットのスパッタ面 20 に照射される。このイオン粒子がスパッタ面に衝突する ときの運動エネルギーの交換により、スパッタリングタ ーゲットを構成する原子が空間に放出されて、スパッタ 面に対向して配置された基板上に堆積して一様な薄膜が 形成される。

【0005】かかるLCD用電極形成のためのスパッタ リングターゲット材料としては、これまではTa、T i、Cr、Mo等の高融点金属が使用されてきた。しか しながら、近年のLCDの大型化、高精細化に伴い、電 極回路の配線幅は10ミクロン以下と微細化されつつあ 30 り、また配線膜厚も数千A以下と微細化されつつある。 一方、Ta、Ti、Cr、Mo等の従来使用されていた 高融点金属は、薄膜状態での電気抵抗率が大きいため、 大型、高精細なLCDの電極材料には向いていない。し たがって、上記高融点金属に代わる低電気抵抗率のLC D用電極材料の開発が望まれていた。

[0006]かかる低電気抵抗率のLCD用電極材料と しては、Au、Cu及びAlが挙げられる。しかしなが ら、Auは、シート状電極膜形成後に所定形状にパター ニングするためのエッチング特性が悪くしかも高価であ 【従来の技術】液晶ディスプレイ(以下、「LCD」と 40 る。またCuは、膜の密着性及び耐食性に問題があり、 いずれも実用に適さない。

> 【0007】一方、A1では上記問題は発生せず、また Siとの良好なオーミックコンタクトの形成可能で、フ *トレジストとの選択比が高く微細加工が容易で 半道 体デバイス (即ち、Siウェハー上に素子を形成する半 導体装置) の集積回路の電極材料として豊富な使用実績 があるといった利点を有し、加えて安価で高純度の材料 が入手可能という利点をも有する。

【0008】 しかしながら、A 1 又はA 1 合金からたる て電極とは、TFTの一部として使用される電極自体及 50 スパッタリングターゲット材料を用いてスパッタリング 法によりLCD用電極を基板上に形成する場合、ターゲ ットから飛散する粒子がクラスター化して基板上の薄膜 に直接付着したり、あるいはスパッタリング装置の成績 チャンバー内部の壁や部品に付着・堆積した後に剥離し て基板上の薄膜に付着するパーティクル現象や、スパッ タリングターゲット材料の溶滴が飛散し、基板上の離膜 に付着するスプラッシュ現象が起とるという問題があ る。中でも、スプラッシュの発生は基板上の遊聴及びそ の上に形成される電極の性能に重大な支障をもたらすの で、大きな問題となっている。また、かかるスプラッシ 10 aの発生は、上記の如きLCD用電極形成の場合だけで なく、半導体デバイスの集積回路、光磁気記録媒体の反 射層等をAl又はAl合金スパッタリングターゲット材 料を用いてスパッタリングにより形成する場合にも起と り問題となっており、その解消が望まれているところで ある。

【0009】 このスパッタリング時のパーティクル及び スプラッシュ発生の問題に対しては、例えば特闘平8~ 13141号公報では、アルミニウム合金からなるター スパッタリングターゲットが提案されている。また特開 平9-25564号公報では、ターゲットのスパッタ面 に現れる平均粒径10ミクロン以上の介在物の存在量が 40個/cm¹未満で、ターゲット中の酸素含有量が1 5ppm未満であるアルミニウム合金スパッタリングタ ーゲットが提案されている。

(00101

【発明が解決しようとする課題】しかしながら スパッ タリングターゲット材料に内在する介在物の量を極力低 シュの抑制は未だ不十分であった。

【0011】本発明は、このような状況に鑑みてなされ たものであって、スパッタリングに際してスプラッシュ の発生が起こらないA 1 合金スパッタリングターゲット 材料の提供をその目的とする。

【0012】また本発明の目的は、液晶ディスプレイの 電極に好適な低電気抵抗率の電極膜形成用のAI合金ス バッタリングターゲット材料を提供することにある。

【0013】さらに本発明の目的は、スパッタリングに 内組成ばらつきを抑えたA 1 合金スパッタリングターゲ ット材料を提供するととにある。

[0014]

【課題を解決するための手段】本発明によれば、アルミ ニウムマトリックス相と、アルミニウムと合金元素の会 属間化合物相とからなるアルミニウム合金スパッタリン グ材料において、アルミニウムマトリックス相同士の結 晶粒界、当該金属間化合物相同士の境界、及びアルミニ ウムマトリックス相と当該金属間化合物相の境界に層厚

4 ミニウムマトリックス相の平均結晶粒径が5ミクロン以 下であり、当該金属間化合物相の平均結晶粒径が3ミク ロン以下であることを特徴とするアルミニウム合金スパ ッタリングターゲット材料が提供される。

【0015】 C C で当該合金元素は、Y, Nd, Ta, Ti, Zr, Cr, Mn, W, Mo, Fe, Co, N i, Cu, Ag, Si, Geからなる群から選ばれた少 なくとも1種の元素であることがこのましい。

【0016】またアルミニウムマトリックス相中に粒径 0.01ミクロン以上の当該金属間化合物相が100. 000個/mm, 以上の密度で分布していることが望ま

【0017】また当該スパッタリングターゲット材料中 の酸素含有量は1,000ppm以下、容素含有量は5 00ppm以下であることが好ましい。 [0018]

[発明の実施の形態] 本発明は、本発明者等が種々の成 分及び組織を有するAI合金スパッタリングターゲット 材料を作成し、これらスパッタリングターゲット材料の ゲット材料中に残存する酸化物量を3ppm以下にした 20 スパッタリング時の状況を調査した結果に基づきなされ たものであり、その大きな特徴の一つは、アルミニウム マトリックス相の結晶粒界、当該金属間化合物相同士の 境界、及びアルミニウムマトリックス相と当該金属間化 合物相の境界に層厚が0.1ミクロン以上の酸化物層が 存在しない点にある。

【0019】すなわち本発明者等は、A1合金スパッタ リングターゲット表面においてスパッタリング時に冷却 を阻害された箇所で溶融層が生じ、これが電磁気力によ って液滴として飛ばされることによりスプラッシュが起 減するような上記対策では、パーティクル及びスプラッ 30 こることを見いだし、さらに詳細に調査した結果、この 冷却を阻害する因子は、主にスパッタリングターゲット 中に内在する介在物(酸化物又は金属間化合物等の非金 属性介在物)層であり、なかでも熱伝導率の低い酸化物 層が冷却を阻害していること、さらに酸化物層の層厚が 冷却阻害に与える影響が大きいことを見いだしたのであ

【0020】図1に、酸化物層の層厚とスプラッシュ発 生数の関係を示す。図1は縦軸を10ミクロン以上のス ブラッシュ数、横軸を酸化物層の層厘とした図であり 際して組成の経時変化が少なく、成膜した電極薄膜の面 40 かかる図によれば、酸化物の層厚が厚くなると共に10 ミクロン以上のスプラッシュ数は増大し、他方当該層厚 が0. 1ミクロン未満になると当該スプラッシュはまっ たく発生していないととがわかる。なお、本発明におけ る酸化物層の層厚は、透過電子顕微鏡 (TEM) による A1合金スパッタリングターゲット断面の7、500倍 拡大写真から測定した値をいう。

【0021】 ここで、アルミニウムマトリックス相の結 **品粒界、金属間化合物相同士の境界、アルミニウムマト** リックス相と金属間化合物相の境界は、図8のA1合金 が0. 1ミクロン以上の酸化物層が存在せず、当該アル 50 スパッタリングターゲット材料組織のTEM写真で示す それぞれの部分を意味する。

[0022] A | 合金スパッタリングターゲット材料中 の酸化物層の層厚を制御するには、粉末冶金法において は、原料粉末製作後から焼結開始までの粉末保存時の雰 囲気(酸素分圧)を制御するか、または焼結過程での雰 **囲気(酸素分圧)を制御すればよい。**

【0023】本発明のもう一つの大きな特徴は、アルミ ニウムマトリックス相の平均結晶粒径が5 ミクロン以 下、より好ましくは3ミクロン以下である点にある。す なわち、一般に結晶体の構成元素・組成が同じでも、結 10 等の検討結果から、当該平均結晶粒径とスプラッシュ数 晶方位によってスパッタリングの収率が異なる。とのた め、多結晶体であるアルミニウムマトリックス相におい て、当該マトリックス相中の各結晶粒の方位はランダム であることから、各結晶粒間でスパッタリング時のエロ ージョン速度が異なり各結晶粒間で段差が発生する。か かる結晶粒間の段差は、結晶の粒径が大きいほど起とり やすい

【0024】ところで、A1やA1合金を使用したスパ ッタリングでは一般に直流マグネトロンスパッタリング バッタリングターゲット材料の裏面にマグネットを配置 し、スパッタリングターゲット表面に漏れ磁界を発生さ せることにより、プラズマをスパッタリングターゲット 表面に集中させて(ターゲット表面近傍のプラズマ密度 を高める)、スパッタリング効率を高めたものである。 中でもスパッタリングターゲット材料の使用効率の改善 を図るために、スパッタリング中にマグネットを移動あ るいは揺動させて磁力分布を常に変化させる改良方式が 一般に使用されている。かかる改良方式において、スパ ッタリングを瞬時で捉えれば、裏面にマグネットが存在 30 するスパッタリングターゲット材料表面にのみプラズマ が集中し局部的エロージョンが進行する。とのとき、ス バッタリングターゲット材料を構成する原子はターゲッ ト材料表面の局所から空間に放出され、対向する基板上 に堆積する他、当該局所の周囲のスパッタリングターゲ ット材料表面に付着する場合がある。そしてスパッタリ ングターゲット材料裏面のマグネットが移動して付着部 分の裏面に到達したとき、当該付着物は再度スパッタリ ングされる。とのとき、当該付着物はスパッタリングタ 行われないので、加熱によって液滴となって飛散しスプ ラッシュとなる。

【0025】かかる付着は、上記結晶粒間の段差にも起 因して結晶粒径の大きい場合に起こりやすく、その結果 結晶粒径の大きい場合にスプラッシュが起こりやすい。 そとで、Al合金の結晶粒径とスプラッシュ発生の関係 を詳細に調査した。図3は横軸をA1マトリックス相の 平均結晶粒径、縦軸を10ミクロン以上のスプラッシュ 数とした図であり、この図から該平均結晶粒径が5ミク

難く、3ミクロン以下ではまったくスプラッシュは発生 していないことがわかる。

【0026】A1マトリックス相の平均結晶粒径を5ミ クロン以下で所望の粒径に制御するには、各手法によっ てAI合金ビレットを製造後、熱間鍛造を行い、その鍛 造時間(鍛造回数)を制御すればよい。

【0027】また本発明の他の大きな特徴は、金属間化 合物相の平均結晶粒径が3ミクロン以下、より好ましく は2ミクロン以下である点にある。図2に示す本発明者 は比例関係にあることがわかった。図2は横軸を金属間 化合物の平均結晶粒径、縦軸を10ミクロン以上のスプ ラッシュ数とした図であり、当該平均結晶粒径が大きく なるにしたがいスプラッシュ数が増加し、逆に当該平均 結晶粒径が3ミクロン以下になるとスプラッシュはまっ たく発生していないことわかる。

【0028】金属間化合物相の平均結晶粒径を3ミクロ ン以下で所望の粒径に制御するには、溶解・鍛造法(ス プレーフォーミング法、大気溶解法、真空溶解法を含 方式が広く用いられる。当該スパッタリング方式は、ス 20 む)でA1合金ピレットを作製し、鍛造時の冷却速度を 制御すればよい。

> 【0029】本発明で使用する合金元素としては特に制 限はないが、基板上に形成したA1電極膜の低電気抵抗 化を一層図るには、Y. Nd. Ta. Ti. Zr. C r, Mn, W, Mo, Fe, Co, Ni, Cu, Ag, Si, Geからなる群から選ばれた少なくとも1種の元 素であることが好ましい。当該元素の含有量は、0.1 ~5.0at%の範囲が好ましい。

> 【0030】また金属間化合物相は、アルミニウムマト リックス相中に粒径0.01ミクロン以上のものが10 0,000個/mm¹以上の密度で分布していることが 望ましい。該金属間化合物相が100,000個/mm * の密度よりも少なく存在すると、スパッタリングター ゲット材料自体の組成が不均一となる結果、基板等に形 成した薄膜組成も不均一となりLCDの性能に悪影響を 及ぼすことがある。

【0031】さらに当該スパッタリングターゲット材料 中の酸素含有量は1,000ppm以下であることが望 ましく、より好ましくは500ppm以下である。含有 ーゲット材料に熱的に接合されておらず、十分な冷却が 40 酸素濃度が高いと、当該スパッタリングターゲット材料 中で当該酸素は粒状酸化物(アルミナ)としてAlマト リックス相中に多くが折出し、当該折出物に起因してス プラッシュが起こる可能性が高くなる。また含有酸素濃 度が高いスパッタリングターゲット材料を用いて基板上 に形成したA1合金の電極膜は、当該含有酸素により電 気抵抗率が高くなり、また電極膜の耐食性を低下させる おそれがあるからである。

【0032】他方当該スパッタリングターゲット材料中 の窒素含有量は500ppm以下であることが望まし ロン以下では該スプラッシュは2個未満と極めて起こり 50 く、より好ましくは250ppm以下である。窒素含有

量が500ppm以下が好ましいのは、スパッタリング ターゲット材料を用いて形成されるAI合金薄膜の電気 抵抗率増加を抑制できるからである。例えばスプレーフ ォーミング法でA1合金スパッタリングターゲット材料 を製造する場合、ガスアトマイズ工程でアトマイズガス として窒素ガスを使用すると、得られたAI合金スパッ タリングターゲット材料中の窒素含有量は多くなり、か かるスパッタリングターゲット材料を用いてスパッタリ ングにより形成したA1合金薄膜は含有窒素濃度が高 い。とのため当該薄膜の電気抵抗率が高くなるおそれが 10 いて計測する方法により行った。なお、基板には直径4 ある..

【0033】本発明のスパッタリングターゲット材料 は、その製造方法に限定はなく、例えばスプレーフォー ミング法、大気溶解法、真空溶解法、粉末冶金法等を挙 げることができる。この中でも、窒素含有量を少なくす る点や酸化物層の形成を防止できる点、Alマトリック ス相及び金属間化合物相の微細化が図れる点などからス ブレーフォーミング法が好ましい。ことでスプレーフォ ーミング法とは、スパッタリングターゲット材料の組成 物を溶湯して、窒素ガスを用いてアトマイズし、半溶融 20 シュ数は急激に増加する。これに対して、酸化物層が 状態でビュレット化した後、鍛造、ホットプレス、HI P等により所望の形態に成形することをいう。 [0034]

【実施例】以下、本発明の内容を実施例を用いて詳細に 説明する。

【0035】実施例1

大気溶解法、真空溶解法、スプレーフォミング法の3種 類の溶解法により、AI2、0at%Nd合金を溶解し 鋳塊を作製した。大気溶解法では、前記合金を大気雰囲 at%Nd合金鋳塊を得た。真空溶解法では、前記合金 を真空下で誘導溶解し、水冷銅鋳型内に鋳造し、A1 2. 0 a t % N d 合金鋳塊を得た。スプレーフォミング 法では、前記合金の溶湯をガスアトマイズし鋳型内に堆 積させ、Al2、Oat%Nd合金鋳塊を得た。このと きスプレーフォミング法におけるガスアトマイズ工程の アトマイズ用ガスとして窒素ガスを用いた。

[0036]上記綉塊を鍛造、圧延した後、機械加工に て直径4インチのA12、0at%Nd合金スパッタリ ングターゲット材料を、各溶解法にて複数ずつ作製し た。これらスパッタリングターゲット材料におけるアル ミニウムマトリックス相の平均結晶粒径は、大気溶解法 で5、6ミクロン、真空溶解法で5、4ミクロン、スプ レーフォミング法で1.2ミクロンで、金属間化合物相 の平均結晶粒径は、大気溶解法で15、9ミクロン、真 空溶解法で8. 4ミクロン、スプレーフォミング法で 2、5ミクロンであった。このようにして作製された複 数のA12.0at%Nd合金スパッタリングターゲッ ト材料について、酸化物層の層厚を測定し、スパッタリ ング時のスプラッシュ発生の程度を観察測定した。

o 【0037】酸化物層の層厚測定は、上記スパッタリン グターゲット材料表面を光学顕微鏡及び走査型電子顕微 鏡(SEM)で観察することにより行った。

【0038】スプラッシュ発生の観察測定は、到達真空 度: 1×10-*Torr、放電パワー10W/cm2 極間距離:40mmの条件下で1時間のDCマグネトロ ンスパッタリングを行い基板上にAI2、0at%Nd 合金薄膜を形成した後、この薄膜表面に存在する直径1 0 ミクロン以上のスプラッシュの個数を光学顕微鏡を用 インチガラス基板を用い基板温度は室温とした。計測対 象を直径10ミクロン以上のスプラッシュとしたのは、 直径10ミクロン以上のスプラッシュは薄膜性能に重大 な支障をもたらし問題となるからである。

【0039】上記観察測定の結果を、縦軸に直径10ミ クロン以上のスプラッシュ個数をとり、横軸に酸化物層 の層厚をとった図1に示す。図1から、酸化物層が厚く なる程、スプラッシュ個数も増加することがわかる。特 に酸化物層が0.2ミクロンより厚くなると、スプラッ 1ミクロン以下の厚さではスプラッシュ数は格段に 少なくなり、特に酸化物層が0.03ミクロン以下では スプラッシュ数はゼロとなり、スプラッシュ発生が完全 抑制されていることがわかる。

【0040】実施例2

実施例1に示した大気溶解法、真空溶解法、スプレーフ * ミング法に粉末冶金法を加えた4種類の溶解法によっ て、実施例1と同様の方法でA 1 2. 0 a t %N d 合金 を溶解し鋳塊を作製した。粉末冶金法では、100メッ 気下で誘導溶解し、水冷銅鋳型内に鋳造し、A12、O 30 シュの純AI粉末と純Nd粉末とをV型混合機で混合し た後、HIP法により550℃に焼結して、AI2、0 at%Nd合金鋳塊を作製した。

【0041】大気溶解法、真空溶解法で作製した鋳塊 は、圧延した後、機械加工して直径4インチ形状のA1 2. 0 a t %N d 合金スパッタリングターゲット材料と した。他方スプレーフォミング法、粉末冶金法で作製し た鋳塊は、鍛造、圧延した後、機械加工して直径4イン チ形状のAI2、Oat%Nd合金スパッタリングター ゲット材料とした。

40 【0042】とのようにして作製した各種A12.0a t%Nd合金スパッタリングターゲット材料の合金組織 を観察した。また表1に示す条件下でスパッタリングを 行い、その際のスプラッシュ発生の程度を観察測定し た。合金組織の観察は、上記スパッタリングターゲット 材料から顕微鏡試料を採取し、該試料の一部をミクロト 一ムを用いてカッティングし、電解研磨、イオンミリン グにより厚さ1000オングストロームに加工した後、 透過電子顕微鏡(TEM)で観察した。また該試料の― 部は研磨した後、その集合組織をSEMで観察した。上 50 記合金組織及びスプラッシュ発生程度の調査結果を表2

10

* [0044] [表2]

に示す。 [0043] (表1)

方式	DCマグネトロン(デポダウン) 1×10 ⁻⁶ Torr		
到達真空度			
Arガス圧	1×10 ^{-a} Torr		
放電電力密度	10W/cm² 40mm		
極間距離			
ターゲット直径	4インチ		
基板直径	4インチ		
基材材質	パリウム研珪酸ガラス		

10

試料番号	製法	酸化物層の層 厚 (μm)	AITトリックス相の平 均結晶粒径 (μm)	金属間化合物相の平 均結晶粒径 (μm)	生候数
1	大気溶解法	0	5. 6	15. 9	(個/100cm²) 110
2	真空溶解法	0	5. 4	8. 4	23
3	スプレーフォーミング法	0	1. 2	2. 5	0
4	粉末冶金法	0. 3	10. 2	2. 0	4

[0045]4種類の溶解法で作製したA12.0at %Nd合金組織について、Alマトリックスの平均粒径 20 はスプレーフォミング法で作製した合金組織が1.2ミ クロンと最も小さく微細で、大気溶解法と真空溶解法で 作製した合金組織では、5.6、5.4ミクロンとほぼ 等しい値であった。また粉末冶金法で作製した合金組織 では、10.2ミクロンと最も大きい値であった。

[0046]また金属間化合物相の平均結晶粒径につい ては、スプレーフォミング法で作製した合金では2.5 ミクロンと最も小さく、大気溶解法と真空溶解法で作製 した合金ではそれそれ15.9、8.4ミクロンであっ た。粉末冶金法で作製した合金では金属間化合物相は形 30 えて隣厚0.3ミクロンの酸化物層が存在することによ 成されないが、図10に示すように、A1単結晶粒3の 周囲に厚さ0.3ミクロンの酸化物層4の形成が認めら れた。

[0047] 前記4種類の製法で作製したA12.0a t%Nd合金スパッタリングターゲット材料のスプラッ シュ発生数は大気溶解法が最も多く、真空溶解法、粉末 冶金法の順で少なくなり、スプレーフォミング法で作製 したスパッタリングターゲット材料ではスプラッシュの 発生は認められなかった。ここで、スプレーフォミング 法で作製したスパッタリングターゲット材料組織のTE 40 M写真を図8に示す。図8から、A1マトリックス相1 と金属間化合物相2の存在が認められるが、合金組織全 体にわたって、酸化物層の存在は認められない。次に、 粉末冶金法で作製したスパッタリングターゲット材料組 織のSEM写真を図9に示す。図9では、A1マトリッ クス相1中に、結晶粒径が5~30ミクロンの金属間化 合物相2が分散している状態が認められる。とのA1マ トリックス相1は純A1粉末粒子の焼結体で構成されて おり、当該粉末粒子は平均結晶粒径が10.2ミクロン

粒子の拡大TEM写真で、AI粉末粒子内にAI単結晶 粒3が認められ、金属間化合物相の存在は認められない が、当該粉末粒子の周囲に酸化物層4が形成されている ことがわかる。

【0048】スプレーフォーミング法で作成したスパッ タリングターゲット材料と粉末冶金法で作成したそれと は、表2に示すようにスプラッシュ発生数に差がある。 すなわちスプラッシュ発生数が、前者の材料ではゼロで あるのに対し、後者の材料では4個/100cm2発生 している。かかる差は、後者の材料では、AIマトリッ クス相の平均結晶粒径が10.2ミクロンと大きく、加 るものと考えられる。

[0049] 実施例3

真空溶解法とスプレーフォミング法の2種類の溶解法に より、A12.0at%Ta合金を溶解し複数の鋳塊を 作製した。真空溶解法では、前記合金を真空中で溶解 し、鋳型に鋳造する際に裕湯をアルミナ性フィルターに 通過させ、溶湯中に含まれる酸化物(アルミナ)を除去 した。前記鋳塊は鍛造後300°Cにて圧延し、圧化率を 10~90%の範囲で変化させることにより、合金中の 金属間化合物(Ta)の粒径を種々変化させたビレツト を作製した。該ビレツトを機械加工して、直径4インチ 形状のA12、0at%Ta合金スパッタリングターゲ ット材料を得た。このA12.0at%Ta合金スパッ タリングターゲット材料の表面をパフ研磨にて鏡面仕上 げした後、5%NaOH水溶液で1分間エッチングし、 光学顕微鏡でミクロ組織を観察し、当該スパッタリング ターゲット中に内在する金属間化合物(Al, Ta)の 平均結晶粒径を測定した。このときスパッタリングター ゲット材料中に酸化物層は存在せず、Alマトリックス の多結晶組織をとっている。図10は1個の純A1粉末 50 相の平均結晶粒径は、真空溶解法で5.4ミクロン、ス

ブレーフォミング法で1.7ミクロンであった。また実 施例1と同様にしてスパッタリングの際のスプラッシュ の発生個数の調査した。との調査結果に基づき、金属間 化合物相の平均結晶粒径と10ミクロン以上のスプラッ シュ個数との関係を求めた。結果を図2に示す。図2か ら、金属間化合物相の平均粒径が増加すると、スプラッ シュ個数は増加し、金属間化合物相の平均結晶粒径が小 さくなると、スプラッシュ個数は少なくなる。特に金属 間化合物相の平均結晶粒径が3ミクロン以下の場合はス プラッシュ個数はゼロとなり、スプラッシュ発生を完全 10 抑制できることがわかる。

11

【0050】実施例4

真空溶解法とスプレーフォミング法の2種類の溶解法に より、A12. Oat%Ta合金を溶解し複数の鋳塊を 作製した。真空溶解法では、前記合金を真空中で溶解 し、鋳型に鋳造する際に溶湯をアルミナ性フィルターに 通過させ、溶湯中に含まれる酸化物 (アルミナ)を除去 した。前記鋳塊は鍛造後300°Cで圧下率50%で圧延 した後、室温から600°Cの範囲で異なる温度で3時間 リックス相の平均結晶粒径を種々変化させたビレットを 作製した。該ビレツトを機械加工して直径4インチ形状 のA12.0al%Ta合金スパックリングターゲット 材料を得た。このときスパッタリングターゲット材料中 に酸化物層は存在せず、金属間化合物相の平均結晶特得 は、真空溶解法で15、9ミクロン、スプレーフォミン グ法で2.5ミクロンであった。このA12.0at% Ta合金スパッタリングターゲット材料のA1マトリッ ク相の平均結晶粒径及びスパッタリング時のスプラッシ ュの発生個数を実施例3と間様にして測定・観察した。 この測定結果に基づき、金属間化合物相の平均結晶粉径 と10ミクロン以上のスプラッシュ発生個数との関係を 求めた。結果を図3に示す。図3から、A1マトリック ス相の平均結晶粒径が大きくなると、スプラッシュ個数 は増加し、Alマトリックス相の平均結晶粒径が小さく なると、スプラッシュ個数は少なくなり、特にAIマト リックス相の平均粒径が3ミクロン以下の場合にはスプ ラッシュ個数はゼロとなり、スプラッシュ発生を完全抑 制できるととがわかる。

【0051】実施例5

真空溶解法、スプレーフォミング法および粉末冶金法の 3種類の溶解法により、実施例1と同様にしてA12. 0 a t%Nd合金鋳塊を作製した。該鋳塊は鍛造、圧延 した後、機械加工に直径4インチ形状のA12.0at %N d 合金スパッタリングターゲット材料を得た。該タ ーゲット材料の合金組織を実施例3と同様にして調査し たところ、スパッタリングターゲット材料中に酸化物層 は存在せず、Alマトリックス相の平均結晶粒径は、真 空溶解法で5、4ミクロン、スプレーフォミング法で

属間化合物相の平均結晶粒径は、真空溶解法で8.4ミ クロン、スプレーフォミング法で2.5ミクロン 粉末 冶金法で2、0ミクロンであった。またAIマトリック ス相中に存在する0、01ミクロン以上の金属間化合物 相の単位面積当たりの個数を測定した。結果を表3に示

[0052] 【表3】

ターケット番号	製法	金属間化合物の制 出密度(個/mm²)	
1	真空溶解法	91, 827	
2	スプレーフォーミング法	128, 767	
3	粉末冶金法	198	

【0053】真空溶解法およびスプレーフォーミング法 によるスパッタリングターゲット材料では、金属間化合 物相の単位面積当たりの個数は91.827個と12 8.767個といずれも10.000個を招えていた が、粉末冶金法によるバッタリングターゲット材料で 保持して、前記鋳塊の合金組織を再結晶させ、A 1 マト 20 は、その個数は198個と前2つの製法に比べはるかに 少ない個数であった。

> 【0054】次に、表4に示すスパッタリング条件下で スパッタリング成膜を行い、その際の薄膜組成の経時変 化を調べた。ととで、薄膜組成の経時変化は、連続放電 させながら、10時間毎に薄鱏を3.000A成贖し (成膜に要する時間は約120秒)、該成膜試料の電気 抵抗率を4探針法で測定して、スパッリング時間と成庫 試料 (遺障試料) の組成変動を調べた。 [0055]

30 【表4】

方式	DCマグネトロン(デポダウン)		
到建真空度	1 × 10 ⁻⁶ Torr 1 × 10 ⁻⁹ Torr 10W/cm ² 40mm		
Arガス圧			
放電電力密度			
接關距離			
ターゲット直径	4インチ		
基板直径	4インチ		
基材材質	パリウム硬柱酸ガラス		

【0056】該スパッタリングターゲット材料を用いて 成膜した薄膜電気抵抗率の経時変化測定結果を図4に示 す。各スパッタリングターゲット材料で成膜した薄膜試 料の電気抵抗率は、スパッタリングの時間経過に伴って 変化し、真空溶解法によるターゲット1では、スパッタ リングの時間経過に伴って電気抵抗率は徐々に増加する 傾向が認められる。電気抵抗率のとの増加は、A 1 2. Oat%Nd合金薄膜の組成変動によるものであり 旦 体的にはNd含有量が増加することによるものである。 これに対して、スプレーフォーミング法によるターゲッ ト2では、スパッタリングの時間経過によらず、電気抵 1. 2ミクロン、粉末冶金法で10、2ミクロンで、金 50 抗率はほぼ一定であった。また、粉末冶金法によるター

ゲット3では、スパッタリングの時間経過に伴って、電 気抵抗率はランダムに変動した。電気抵抗率のこの変動 は、ターゲット材料の組成ばらつきが大きいことを意味 している。この点についてさらに調査を行った。図5 は、直径50mmのガラス基板の平面図で、ガラス基板 上に形成された薄膜の電気抵抗を図上の測定位置1~5 で測定し、各スパッタリングターゲット材料を用いて成米 * 膜した薄膜試料の電気抵抗率の面内ばらつきを測定し た。結果を表5に示す。ととで、電気抵抗率は、スパッ タリング開始から10時間経過後の成膜した薄膜試料に 対して行った。 [0057]

【表51

ターケット番号	シート抵抗(Ω)				
	(1)	(2)	(3)	(4)	(5)
1	0.45	0. 48	0.43	0. 46	0. 47
2	0. 44	0.44	0. 44	0. 43	0. 44
3	0.48	0.49	0.44	0. 41	0. 45

【0058】スプレーフォーミング法によるターゲット 2では測定位置間でシート抵抗に差はほとんどなく、真 空溶解法によるターゲット1では、最大でも0.05Q のシート抵抗差しかないのに対して、粉末冶金法による ターゲット3では測定位置間で最大0.08Q(約20 %)のシート抵抗差が認められた。

[0059] 実施例6

真空溶解法、スプレーフォミング法および粉末冶金法の 3種類の溶解法により、実施例1と同様にしてA13. Oat%Ti合金鋳塊を作製した。該鋳塊は鍛造、圧延 した後、機械加工で直径4インチ形状のA13.0at %Ti合金スパッタリングターゲット材料を得た。これ らスパッタリングターゲット材料の合金中の酸素含有量 を分析したところ、真空溶解法、スプレーフォミング法 および粉末冶金法のそれぞれの溶解法により作製したス パッタリングターゲット材料の酸素含有量は、それぞれ 120ppm、420ppm、1130ppmと、粉末 30 ることにより起こる。この場合、薄膜表面でのレーザ光 冶金法で作製したスパッタリングターゲット材料の酵素 含有量が著しく高い値であった。ととで、酸素含有量の 分析は、スパッタリングターゲット材料からガス分析用 試料を採取し、これをガス分析することにより行った。 【0060】また実施例5と同様にしてスパッタリング 成膜を行い、形成した薄膜試料についてスパッタリング 放電電力密度を変化させて電気抵抗率を測定した。図6 は、縦軸を薄膜電気抵抗率、横軸をスパッタリング放電 電力密度とした図であり、かかる図から、真空溶解法と ット材料とは、薄膜電気抵抗率に差異は認められない が、粉末冶金法で作製したスパッタリングターゲット材 料では、薄膜電気抵抗率が著しく高い値を示した。な お、スパッタリング放電電力密度を増加させると薄膜電 気抵抗率が低下する傾向は本件発明とは関係ない。 【0061】実施例7

実施例6で作製したスパッタリングターゲット材料を用 いて、表4に示すスパッタリング条件下で、厚さ1.2 7mmの透明ボリカーボネート樹脂基板上に厚さ400

10ミクロンとなるようにスピンコートにより塗布し保 護順を形成し試料とした。この試料に対して、波長78 0 n mのレーザー光による反射率を透明ポリカーボネー ト樹脂基板側から測定した。その結果、真空溶解法、ス プレーフォミング法および粉末冶金法によるスパッタリ ングターゲット材料の反射率はそれぞれ、86.9%、

20 87.2%、87.3%であった。次に、前記試料に対 して、環境加速試験としてのPCT (Pressure Cooker Test:温度105℃, 圧力1. 2 a t m、湿度100% RH)を行い、試料薄膜の耐食性を評価した。その結 果、PCT100時間後の反射率はそれぞれ、85.0 %、85.1%、71.0%となり、粉末冶金法による スパッタリングターゲット材料を使用した場合、薄膜の 反射率は着しく低下し、耐食性が劣ることがわかった。 【0062】反射率の低下は、薄膜の腐食により薄膜表 面粗度が増加する、あるいは薄膜が酸化して透過膜とな の乱反射増、レーザー光の透過により反射率が低下する のである。

[0063] 実施例8

実施例1,2と同様にして、真空溶解法、スプレーフォ ミング法および粉末冶金法の3種類の溶解法により、A 12. 0 a t%Nd合金, A 10. 3 a t%T i 合金, Al2.0at%Ta合金鋳塊を作製した。該鋳塊は鍛 造、圧延した後、機械加工にて直径4インチ形状のスパ ッタリングターゲット材料とした。 これらスパッタリン スプレーフォミング法で作製したスパッタリングターゲ 40 グターゲット材料の窒素含有量を分折した。また表4 に 示すスパッタリング条件下でスパッタリング成膜を行 い、形成した薄膜試料の電気抵抗率を測定した。こと で、窒素含有量の分析は、上記スパッタリングターゲッ ト材料からガス分析用試料を採取して、この試料のガス 分析することにより行った。また、電気抵抗器の測定は 4探針法により行った。 【0064】スパッタリングターゲット材料の窒素含有

量と形成した薄膜試料の電気抵抗率との関係を図7に示 す。図7より、スパッタリングターゲット材料中の窒素 Aの薄膜を形成した。該薄膜上に、アクリル樹脂を厚さ 50 含有量と薄膜試料の電気抵抗率には良い相関が認めら

れ、監察会有量が多いほど耐腐電気抵抗率は増加する。 窓業会有量が薄膜電気抵抗率の増加(率) に及ばす影響 はA1合金軽化よって異なるが、不純物としての空業は 特に電気抵抗率を増加させることから、その含有率を5 00pp 即以下、好ましくは250pp 即以下に抑える のがよいことがわかる。

[0065]

(発明の効果) 本条明に係わる人 1 合金スパッタリング ターケット材料によれば、スパッタリンに際してスプ ラッシュが起じれくく、港航ディスプレイの電極(巻 10 膜上の配線及び電極目体)に軒追な電極線を形成するこ とができる。また、低電気抵抗率の点で、液晶ディスプ レイの電極(原便上の配線及び電極目体)に昇途な電極 膜を形成することができる。さらに、スパッタリングに 器して進成の経等変化が少なく、形成された電極関節の 組成ばちつきを利えることができる。

【図面の簡単な説明】 【図1】実施例1に係わるスパッタリングターゲット材

料において、酸化物層の層厚と10ミクロン以上のスプ ラッシュ数との関係を示す図である。

【図2】実施例3に係わるスパッタリングターゲット材料についての金属間化合物の平均粒径と10ミクロン以上のスプラッシュ数との関係を示す図である。

【図3】実施例4に係わるスパッタリングターゲット材料についてのAIマトリックス相の平均結晶粒径と10 ミクロン以上のスプラッシュ数との関係を示す図であ *

* A.

. 【図4】実施例5 に係わるスパッタリングターゲット材料についてのスパッタリング経過時間と薄膜電気抵抗率との関係を示す図である。

16

【図5】実施例5に係わるスパッタリングターゲット材料についての薄膜電気抵抗等測定位置を示す図である。 【図6】実施例6に係わる酸素含有重が異なるスパッタ リングターゲット材料についてのスパッタリング放電電力密度と薄糠電気抵抗業との関係を示す図である。

【図7】実施例8 に係わるスパッタリングターゲット材料についての窒素含有量と薄膜電気抵抗率との関係を示す図である。

【図8】スプレーフォーミング法で作製したスパッタリングターゲット材料組織のTEM写真(倍率:×7,500)である。

【図9】粉末治金法で作製したスパッタリングターゲット材料組織のSEM写真(借率:×100)である。 【図10】物末治金法で作製したスパッタリングターゲット材料の純A1粉末粒子の拡大TEM写真(倍率:×207,500)である。

【符号の説明】

- 1 AIマトリックス相
- 2 金属間化合物相
- 3 A 1 単結晶粒 4 酸化物層

[図1]

[図2]

[図8]

[図10]

[図9]

