WHAT IS CLAIMED IS:

1	1. A method of generating an output symbol, wherein the output symbol is selected
2	from an output alphabet and the output symbol is such that an input file, comprising an
3	ordered plurality of input symbols each selected from an input alphabet, is recoverable
4	from a set of such output symbols, the method comprising the steps of:
5	obtaining a key I for the output symbol, wherein the key is selected from a key
6	alphabet and the number of possible keys in the key alphabet is much larger than
7	the number of input symbols in the input file;
8	calculating, according to a predetermined function of I, a list AL(I) for the output
9	symbol, wherein AL(I) is an indication of W(I) associated input symbols
10	associated with the output symbol, and wherein weights W are positive integers
11	that vary between at least two values and are greater than one for at least one
12	value of I; and
13	generating an output symbol value B(I) from a predetermined function of the
14	associated input symbols indicated by AL(I).
1	2. The method of claim 1, wherein the step of obtaining key I comprises a step of
2	calculating key I according to a random function or pseudorandom function.
1	3. The method of claim 1, wherein the step of calculating comprises a step of
2	calculating W(I) according to a random function or pseudorandom function of I.
1	4. The method of claim 1, wherein the step of calculating comprises a step of
2	calculating AL(I) according to a random function or pseudorandom function of I.
1	5. The method of claim 1, wherein the step of calculating comprises the steps of:
2	calculating, according to a predetermined function of I and a probability distribution,

a weight W(I), wherein the probability distribution is over at least two positive integers, at least one of which is greater than one; calculating a list entry for list AL(I); and repeating the step of calculating a list entry for list AL(I) until W(I) list entries are calculated.

1	6. The method of claim 5, wherein the step of calculating W(I) comprises a step of
2	determining W(I) such that W approximates a predetermined distribution over the key
3	alphabet.

- 7. The method of claim 6, wherein the predetermined distribution is a uniform distribution.
- 1 8. The method of claim 6, wherein the predetermined distribution is a bell curve distribution.
- 9. The method of claim 6, wherein the predetermined distribution is such that W=1 has a probability of 1/K, where K is the number of input symbols in the input file, and W=i has a probability of 1/i(i-1) for i=2,...K.
- 1 10. The method of claim 1, wherein the predetermined function of the associated 2 input symbols indicated by AL(I) is an exclusive OR (XOR) of the input symbols 3 indicated by AL(I).
- 1 11. The method of claim 1, wherein the input alphabet and the output alphabet are the same alphabet.
- 1 12. The method of claim 1, wherein the input alphabet comprises 2^{Mi} symbols and each input symbol encodes Mi bits and wherein the output alphabet comprises 2^{Mo} symbols and each output symbol encodes Mo bits.
- 1 13. The method of claim 1, wherein each subsequent key I is one greater than the preceding key.
- 1 14. A method of encoding a plurality of output symbols, each according to claim 1, 2 the method further comprising steps of:
- generating key I for each of the output symbols to be generated; and
 outputting each of the generated output symbols as an output sequence to be
 transmitted through a data erasure channel.
- 1 15. The method of claim 14, wherein each key I is selected independently of other selected keys.

1	16. A method of transmitting data from a source to a destination over a packet
2	communication channel, comprising the steps of:
3	a) arranging the data to be transmitted as an ordered set of input symbols, each
4	selected from an input alphabet and having a position in the data;
5	b) generating a plurality of output symbols, each selected from an output alphabet,
6	wherein each output symbol of the plurality of output symbols is generated by the
7	steps of:
8	1) selecting, from a key alphabet, a key I for the output symbol being generated;
9	2) determining a weight, W(I), as a function of I, wherein weights W are positive
0	integers that vary between at least two values and over the key alphabet and
11	are greater than one for at least some keys in the key alphabet;
12	3) selecting W(I) of the input symbols according to a function of I, thus forming
13	a list AL(I) of W(I) input symbols associated with the output symbol; and
14	4) calculating a value B(I) of the output symbol from a predetermined value
15	function of the associated W(I) input symbols;
16	c) packetizing at least one of the plurality of output symbols into each of a plurality
17	of packets;
18	d) transmitting the plurality of packets over the packet communication channel;
19	e) receiving at least some of the plurality of packets at the destination; and
20	f) decoding the data from the plurality of received packets.
1	17. The method of claim 16, wherein the step of decoding the data comprises the
2	steps of:
3	1) processing each received output symbol by the steps of:
4	a) determining the key I for the output symbol;
5	b) determining the weight W(I) for the output symbol; and
6	c) determining the W(I) associated input symbols for he output symbol;
7	2) determining if enough information is received to decode any input symbols; and
8	3) decoding input symbols that can be decoded from the information received.
1	18. The method of claim 17, wherein the step of determining the key I comprises a
2	step of at least partially determining the key I from data supplied in packets received over
3	the nacket communication channel

1	19. The method of claim 16, wherein the step of decoding the data comprises the
2	step of:
3	1) processing each received output symbol by the steps of:
4	a) determining the weight W(I) for the output symbol;
5	b) determining the W(I) associated input symbols for the output symbol; and
6	c) storing the value B(I) of the output symbol in an output symbol table along
7	with the weight W(I) and the positions of the W(I) associates for the output
8	symbol;
9	2) receiving additional output symbols and processing them according to step 1) and
10	its substeps;
11	3) for each output symbol, OS1, having a weight of one and not being denoted as a
12	used up output symbol, performing the steps of:
13	a) calculating an input symbol for an input symbol position corresponding to
14	OS1;
15	b) identifying connected output symbols in the output symbol table, wherein a
16	connected output symbol is an output symbol that is a function of the input
17	symbol processed in step 3)a);
18	c) recalculating the connected output symbols to be independent of the input
19	symbol processed in step 3)a);
20	d) decrementing by one the weights of the output symbols recalculated in step
21	3)c); and
22	e) denoting OS1 as a used up output symbol; and
23	4) repeating steps 1) through 3) above until the ordered set of input symbols is
24	recovered at the destination.
1	20. The method of claim 19, wherein the step of denoting is a step of assigning a
2	weight of zero to the used up output symbol.
1	21. The method of claim 19, wherein the step of denoting comprises a step of
2	removing the used up output symbol from the output symbol table.
1	22. The method of claim 16, wherein the step of packetizing is a step of packetizing
2	a plurality of output symbols into each packet, the method further comprising a step of

- 3 using an output symbol's position within a packet as a part of the key for the output
- 4 symbol.
- 1 23. The method of claim 17, wherein the step of decoding comprises the steps of:
- 2 sorting received output symbols by weight; and
- 3 processing output symbols by weight, with lower weight symbols being processed
- 4 before higher weight symbols.
- 1 24. The method of claim 1, wherein the step of calculating AL(I) comprises the steps
- 2 of:
- 3 identifying the number K of input symbols in the input file, at least approximately
- 4 and a weight W(I);
- determining the smallest prime number P greater than or equal to K;
- if P is greater than K, at least logically padding the input file with P-K padding input
- 7 symbols;
- generating a first integer X such that $1 \le X < P$ and a second integer Y such that
- $9 0 \le Y < P;$
- setting the J-th entry in AL(I) to $((Y + (J-1) \cdot X) \mod P)$ for each J from 1 to W(I).
 - 1 25. The method of claim 24, wherein the step of setting the J-th entry in AL(I) for
 - 2 each J comprises the steps of:
- setting the first entry V[J=0] in an array V to Y;
- setting the J-th entry V[J] in the array V to (V[J-1] + X) mod P) for each J from 1 to
- 5 W(I) minus one; and
- 6 using the array V as the list AL(I).
- 1 26. The method of claim 6, wherein the predetermined distribution is such that,
- 2 given tunable parameters R1 and R2 and K being the number of input symbols in the
- 3 input file, weight W=1 has a probability proportional to R1/K, weights in a low-weight
- 4 class ranging from weight W=2 to weight W=K/R2 1 have a probability proportional to
- 5 $1/(W(W-1)(1-W \cdot R2/K))$ and weights in a high-weight class ranging from weight
- 6 W=K/R2 to weight W=K have a selected probability distribution.