OPTIMIZACIÓN I Ingeniería Civil Industrial, 1
er Semestre 2021 $\mathbf{PEP}~\mathbf{1}$

Profesor: Luis Rojo-González Fecha: 24 de mayo, 2021

Ayudante: Franco Pardo

Pregunta 1 (100 puntos)

En el segundo cuatrimestre de 2020, la empresa *Digital Equipment Corporation* (DEC) introdujo una nueva familia de computadores (CPU) y estaciones de trabajo: GP-1, GP-2 y GP-3, el cual es un sistema de computadores nivel usuario con diferentes memorias, capacidad de almacenamiento, y capacidad de expansión. Mientras que WS-1 y WS-2, corresponden a sus modelos de estaciones de trabajo. En la Tabla 1, se muestran los datos correspondientes a cada modelo. A modo de ejemplo, se tiene que GP-1 usa cuatro placas de memoria de 256K, y tres de cada 10 unidades son producidas con una unidad de disco (lector CD).

Modelo	Precio (M\$)	# unidad de disco	# placas de 256K
GP-1	60	0.3	4
GP-2	40	1.7	2
GP-3	30	0	2
WS-1	30	1.4	2
WS-2	15	0	1

Table 1: Elementos de cada uno de los cinco sistemas de DEC.

El envío de esta nueva familia de productos comenzará en el tercer cuatrimestre e irá incrementando lentamente durante el cuarto cuatrimestre. No obstante, las siguientes dificultades han sido anticipadas:

- 1. El proveedor de CPUs puede proveer a lo más 7000 unidades, debido a problema de depuración.
- 2. El suministro de unidades de disco es incierto y se estima que la producción variará entre 3000 y 7000 unidades.
- 3. El suministro de placas de memoria de 256K también es limitada y se encontrará entre 8000 y 16000 unidades.

Desde el punto de vista de la demanda, el departamento de marketing ha proyectado una demanda de 1800 por GP-1, 300 por GP-3, 3800 para la familia GP y 3200 para la familia WS. Además, se sabe que en inventario se encuentran unidades existentes de 500 GP-2, 500 WS-1 y 400 WS-2. De esta manera, es claro ver que el equipo de producción debe enfrentar un problema complejo, como el margen, el ingreso y la satisfacción al cliente.

(100 puntos) Modele el problema de tal manera de conocer el plan de producción considerando que el plan de reemplazo de placas de memoria no se considera.

Solución Este problema puede ser formulado como sigue. Considere una variable x_i , con $i = 1, \dots, 5$, que representa a los modelos o productos a vender. Así

$$\max \quad 60x_1 + 40x_2 + 30x_3 + 30x_4 + 15x_5 \quad \text{(Ingreso total)} \tag{1}$$

sujeto a:	$x_1 + x_2 + x_3 + x_4 + x_5 \le 7$	(Disponibilidad CPU)	(2)
	$8 \le 4x_1 + 2x_2 + 2x_3 + 2x_4 + x_5 \le 16$	(Disponibilidad 256K)	(3)
	$3 \le 0.3x_1 + 1.7x_2 + 1.4x_4 \le 7$	(Unidad de disco)	(4)
	$x_1 \le 1.8$	(Demanda máxima por GP-1)	(5)
	$x_3 \le 0.3$	(Demanda máxima por GP-3)	(6)
	$x_1 + x_2 + x_3 \le 3.8$	(Demanda máxima por GP)	(7)
	$x_4 + x_5 \le 3.2$	(Demanda máxima por WS)	(8)
	$x_2 \ge 0.5$	(Demanda mínima por GP-2)	(9)
	$x_4 \ge 0.5$	(Demanda mínima por WS-1)	(10)
	$x_5 \ge 0.4$	(Demanda mínima por WS-2)	(11)
	$x_1, x_2, x_3, x_4, x_5 \ge 0$		(12)

Notar que podrían ser variables enteras, aunque dadas las unidades perfectamente se puede flexibilizar (no es lo estríctamente correcto).

Pregunta 2 (100 puntos)

Considera el siguiente problema:

$$min \quad 3x_1 + 7x_2 + 10x_3 \tag{13}$$

$$s.a. \quad x_1 + 3x_2 + 5x_3 \ge 7 \tag{14}$$

$$x_j \in \{0, 1\} \qquad j = 1, \dots, 3 \tag{15}$$

- 1. (50 puntos) Obtenga la expresión de la función dual lagrangiana y encuentre el valor óptimo de las variables duales (14).
- 2. (30 puntos) A partir del valor óptimo de las variables duales calcule, si es posible, la solución óptima del primal.
- 3. (20 puntos) Implemente el problema anterior en Solver de Excel y encuentre el óptimo (utilizando las variables binarias). ¿Cuál es la diferencia entre la solución encontrada usando dualidad y el valor óptimo obtenido? (Hint: Entregue la diferencia (numérica) entre ambos valores.)

Solución

1. (50 puntos) La función lagrangiana está dada por

$$L(x,u) = (3-u)x_1 + (7-3u)x_2 + (10-5u)x_3 + 7u$$
(16)

$$L(u) = \min\{L(x, u) | x_1, x_2, x_3 \in \{0, 1\}\}$$
(17)

por lo que se tiene la siguiente configuración:

	x_1^*	x_2^*	x_3^*	L(u)
$0 \le u \le 2$	0	0	0	7u
$2 \le u \le 7/3$	0	0	1	2u + 10
$7/3 \le u \le 3$	0	1	1	17 - u
$3 \leq u$	1	1	1	20 - 2u

entonces se tiene que $u^* = 7/3$ y, por lo tanto, $L(u^*) = 44/3$.

- 2. (30 puntos) Las opciones son $x_A^* = (0,0,1)^T$ y $x_B^* = (0,1,1)^T$. Notar que x_A^* es infactible primal $(0+0+5 \not\geq 7)$, mientras que la segunda sí lo es, pero viola la condición de holgura complementaria $(0+3+5 \neq 7)$. Por lo cual no se puede obtener la solución óptima primal a través del problema dual.
- 3. (20 puntos) A pesar de que no se pueda obtener esta solución utilizando el problema dual, esta sí es la solución óptima encontrada a través del método simplex, por ejemplo. De esta manera, la solución óptima primal es 17 en donde el gap de dualidad es 17 44/3 = 7/3.

Pregunta 3 (100 puntos)

Considere el siguiente problema

$$\max \qquad x_1 + 3x_2 \tag{18}$$

s.a:
$$x_1 + 4x_2 \le 100$$
 (19)

$$x_1 + 2x_2 \le 60 \tag{20}$$

$$x_1 + x_2 \le 50 \tag{21}$$

$$x_1, x_2 \ge 0 \tag{22}$$

- 1. (40 puntos) Realice un análisis de sensibilidad para el vector de recursos (lado derecho).
- 2. (30 puntos) Realice un análsis de sensibilidad para el vector de costos (funcion objetivo).
- 3. (30 puntos) Suponga que se quiere fabricar un nuevo ítem con costo de producción unitario de una unidad y con utilización de recursos de acuerdo al vector $(5,3,2)^T$. Analice la factibilidad y optimalidad de esto. (**Hint:** Es decir, estudie si el problema sigue siendo optimal.)

Solución

1. (40 puntos) Al estandarizar el problema se tiene

$$\min -x_1 - 3x_2$$
 (23)

s.a:
$$x_1 + 4x_2 + h_1 = 100$$
 (24)

$$x_1 + 2x_2 + h_2 = 60 (25)$$

$$x_1 + x_2 + h_3 = 50 (26)$$

$$x_1, x_2, h_1, h_2, h_3 \ge 0 \tag{27}$$

donde la solución corresponde a la base dada por el vector $x_B = (x_1, x_2, h_3)^T$ y $x_R = (h_1, h_2)^T$

$$B = \begin{pmatrix} 1 & 4 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 1 \end{pmatrix} \longrightarrow B^{-1} = \begin{pmatrix} -1 & 2 & 0 \\ 1/2 & -1/2 & 0 \\ 1/2 & -3/2 & 1 \end{pmatrix}$$

por lo cual al realizar el análisis de sensibilidad correspondiente se tiene lo siguiente

$$B^{-1}b = \begin{pmatrix} -1 & 2 & 0\\ 1/2 & -1/2 & 0\\ 1/2 & -3/2 & 1 \end{pmatrix} \begin{pmatrix} b_1\\ b_2\\ b_3 \end{pmatrix}$$

en donde se deben analizar caso a caso bajo un esquema seteris paribus. Entonces,

(a) Sea el vector de recursos $b = (b_1, 60, 50)^T$, así se tiene que

$$\begin{pmatrix} -b_1 + 120 \\ b_1/2 - 30 \\ b_1/2 - 40 \end{pmatrix} \ge \overrightarrow{0}$$

que resultan en el intervalo $80 \le b_1 \le 120$.

(b) Sea el vector de recursos $b = (100, b_2, 50)^T$, así se tiene que

$$\begin{pmatrix} -100 + 2b_2 \\ 50 - b_2/2 \\ 50 - 3b_2/2 + 500 \end{pmatrix} \ge \overrightarrow{0}$$

que resultan en el intervalo $50 \le b_2 \le 200/3$.

(c) Sea el vector de recursos $b = (100, 60, b_3)^T$, así se tiene que

$$\begin{pmatrix} 20\\20\\-40+b_3 \end{pmatrix} \ge \overrightarrow{0}$$

que resultan en el intervalo $b_3 \ge 40$.

- 2. (30 puntos) Recordar que la condición de optimalidad está dada por $\bar{c}_R = c_R c_B B^{-1} R \ge 0$, entonces bajo el mismo esquema
 - (a) Sea el vector de costos $c_B = (-c_1, -3, 0)$, entonces

$$\overline{c}_R = \begin{pmatrix} 0 & 0 \end{pmatrix} - \begin{pmatrix} -c_1 & -3 & 0 \end{pmatrix} \begin{pmatrix} -1 & 2 & 0 \\ 1/2 & -1/2 & 0 \\ 1/2 & -3/2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$

por lo que $-c_1 + 3/2 \ge 0$ y $2c_1 + 3/2 \ge 0$, entonces se debe cumplir que $3/4 \le c_1 \le 3/2$.

(b) Sea el vector de costos $c_B = (-1, -c_2, 0)$, entonces

$$\overline{c}_R = \begin{pmatrix} 0 & 0 \end{pmatrix} - \begin{pmatrix} -1 & -c_2 & 0 \end{pmatrix} \begin{pmatrix} -1 & 2 & 0 \\ 1/2 & -1/2 & 0 \\ 1/2 & -3/2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$

por lo que $-1 + c_2/2 \ge 0$ y $2 - c_2/2 \ge 0$, entonces se debe cumplir que $2 \le c_2 \le 4$.

3. (30 puntos) Considerando el nuevo elemento representado por la variable x_3 , el nuevo problema estará dado por

$$\min -x_1 - 3x_2 - x_3 \tag{28}$$

s.a:
$$x_1 + 4x_2 + 5x_3 + h_1 = 100$$
 (29)

$$x_1 + 2x_2 + 3x_2 + h_2 = 60 (30)$$

$$x_1 + x_2 + 2x_2 + h_3 = 50 (31)$$

$$x_1, x_2, h_1, h_2, h_3 \ge 0 \tag{32}$$

considerando que $x_3^* = 0$ y el vector de costos $c_R = (c_3, h_3, h_4) = (-1, 0, 0)$, se tiene que

$$\overline{c}_R = \begin{pmatrix} -1 & 0 & 0 \end{pmatrix} - \begin{pmatrix} -1 & -3 & 0 \end{pmatrix} \begin{pmatrix} -1 & 2 & 0 \\ 1/2 & -1/2 & 0 \\ 1/2 & -3/2 & 1 \end{pmatrix} \begin{pmatrix} 5 & 1 & 0 \\ 3 & 0 & 1 \\ 2 & 0 & 0 \end{pmatrix}$$

lo que genera el vector $(3,1/2,1/2) \ge \overrightarrow{0}$, por lo cual la base sigue siendo óptima.