HOMEWORK 2

Econ 501: Macroeconomic Analysis and Policy

Spring 2016

1.

a) The Euler equation is $\frac{\beta \alpha A k_{t+1}^{\alpha-1}}{c_{t+1}} = \frac{1}{c_t}$

b)
$$k^* = (\beta \alpha A)^{\frac{1}{1-\alpha}}$$
, $y^* = Ak^{\alpha} = A(\beta \alpha A)^{\frac{\alpha}{1-\alpha}}$, $c^* = y^* - k^* = A(\beta \alpha A)^{\frac{\alpha}{1-\alpha}} - (\beta \alpha A)^{\frac{1}{1-\alpha}}$

c) The steady state savings rate $s^* = \frac{y^* - c^*}{y^*} = \frac{(\beta \alpha A)^{\frac{1}{1-\alpha}}}{A(\beta \alpha A)^{\frac{\alpha}{1-\alpha}}}$

d) When α =1, the Euler equation becomes $\left(\frac{c_{t+1}}{c_t}\right) = \beta \alpha A$ In general, the growth rate of a variable x_t is (x_{t+1}/x_t) -1 (by definition) or $\log(x_{t+1}/x_t)$ (a convenient approximation), so the growth rate of consumption is: $\beta \alpha A - 1$ or $\log(\beta \alpha A)$

2.

a) Because of the production technology, there is a maximum possible level of capital, $k_{\max}=A^{\frac{1}{1-\alpha}}$. Since capital cannot be bigger than that number, consumption cannot be bigger than Ak_{\max} . Since $c_t < A^{\frac{1}{1-\alpha}}$, it must be that

$$\sum \beta^t c_t < \sum \beta^t A^{\frac{1}{1-\alpha}} < \frac{A^{\frac{1}{1-\alpha}}}{1-\beta}$$

In other words, any feasible consumption stream provides finite utility.

b) Let k^* be the usual steady state capital stock i.e. $f'(k^*)=1/\beta$. Suppose you are deciding whether to consume a particular unit of output or save it for tomorrow. Today, it will give you 1 unit of utility. Tomorrow it will give you $\beta f'(k_{t+1})$ units of utility. If $\beta f'(k_{t+1})>1$, you will save 100% of output. In that case, $k_{t+1}=f(k_t)$, so saving 100% output is optimal if and

only if $\beta f'(f(k_t))>1$ or equivalently, $f'(k_t)< k^*$. Similarly, if $\beta f'(k_{t+1})<1$, you will consume 100% of your output. If this policy is pursued, then we would have $k_{t+1}=0$ and $\beta f'(0)=\infty>1$. So, consuming 100% of optimal can never be optimal. If $\beta f'(k_{t+1})=1$ or equivalently, if $k_{t+1}=K^*$, you will be indifferent between saving and consuming. Any consumption allocation will be optimal.

This means the capital stock will follow the law of motion

$$k_{t+1} = Min\{f(k_t), k^*\} = Min\{k_t^{\alpha}, (\alpha \beta A)^{\frac{1}{1-\alpha}}\}$$

In other words, the planner will choose zero consumption until the steady state capital level is reached. If the planner can reach steady state starting at period s, then $c_{s-1}=f(k_{s-1})-k^*$ and $c_t=f(k^*)-k^*=c^*$ for all t greater than equal to s.

These 2 problems help you see how the shape of the utility function u(.) affects the behavior of the model. I meantioned in class that log utility is a special case $(\theta=1)$ of CRRA utility, and so is linear utility $(\theta=0)$. The parameter θ measures a person's preference for smoothing consumption over time. The characteristics of the steady state are unrelated to θ . However, the speed at which the steady state is reached is closely related to θ . When θ is low (linear case), consumers will tolerate low early consumption to get to the steady state quickly. When θ is higher, consumer will not tolerate low early consumtion, and will reach the steady state more slowly.

c) As I said before, the consumer will choose to save if $\beta f'(k)>1$ and spend if $\beta f'(k)<1$. When $\alpha=1$, the consumer will choose to save if $\beta A>1$ and spend if $\beta A<1$.

If $\beta A<1$, there is a solution to the planner's problem-consume everything right away ($c_0=ak_0$).

If $\beta A>1$, there is no solution to the planner's problem.

You don't have to prove this but if you wanted to, here is how to do it. Suppose that there is a solution $\{c_t\}$ which gives utility level U. We can

prove that such a solution does not exist by finding a feasible allocation that improves on it. A proposed solution will have the characteristic that there exists some time T such that $c_T>0$. I propose a new solution $\{\hat{c}_i\}$

$$\hat{c}_{t} = \begin{cases} c_{t} \forall t \notin \{T, T+1\} \\ c_{T-1}, t = T \\ c_{T+1} + A, t = T+1 \end{cases}$$

The utility from this proposed solution is $\hat{U} = U + \beta^{T+1}A - \beta^T$. Since $\beta A > 1$, $\hat{U} > U$. Therefore, U could not have been a solution.