Introduction to Multivariate Regression & Program Evaluation HED 612

Lecture 10

Where are we going....

- ▶ This Lecture
 - Intro to multivariate regression
 - Intro to interpreting published multivariate regression results
 - Reading for next lecture:
 - Cabrera, N. L., Milem, J. F., Jaquette, O., & Marx, R. (2014). Missing the (student achievement) forest for all the (political) trees: Empiricism and the Mexican American Studies controversy in Tucson. American Educational Research Journal, 51(6), 1084-1118.
 - Powers, J. M. (2004). High-Stakes Accountability and Equity: Using Evidence From California's Public Schools Accountability Act to Address the Issues in Williams v. State of California. American Educational Research Journal. 41(4), 763–795.
 - ► Homework #10 posted!
- Next Lecture
 - Other OLS assumptions
 - ► Graphing multivariate regression results
 - Creating publication quality tables
- Next Next Lecture
 - Introduction to non-linear relationships between X and Y
 - Mini lesson on what each section of manuscrupt should accomplish!

Introduction to Multivariate Regression

Population Regression Model

- Same as in "simple" (univariate) regression!
- $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots \beta_k X_{ki} + u_i$
- Where.
 - $ightharpoonup Y_i = \text{observation i of dependent variable}$
 - $X_{1i} = \text{observation i of the first regressor, } X_1$
 - $X_{2i} = \text{observation i of the second regressor, } X_2$
 - $X_{ki} = \text{observation i of the Kth regressor, } X_k$
 - β_1 = population average effect of Y for one-unit increase in X_1
 - $\beta_2 =$ population average effect of Y for one-unit increase in X_2

 - β_k = population average effect of Y for one-unit increase in X_k
 - β_0 = average value of Y when the value of all independent variables $(X_1, X_2...X_k)$ are equal to zero
 - $\mathbf{v}_i = \mathbf{u}_i = \mathbf{u}_i$ other variables that affect the valve of Y_i but are not included in the model

Things we do in multiple regression

- 1. Estimation
- ▶ Choose estimates for $\beta_0, \beta_1, \beta_2, ...\beta_k$ by selecting those that minimuze the sum of squared errors (i.e., make the best prediction of Y), yielding an OLS line
 - $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_{1i} + \hat{\beta}_2 X_{2i} + ... \hat{\beta}_k X_{ki}$
- 2. Measures of model fit (e.g., \mathbb{R}^2 , SER)
- ▶ But formulas change slightly to account for degrees of freedom!
- ▶ Once you introduce multiple independent variables, use adjusted R-squared
- Adjusted R-squared
 - Adjusted for the number of predictors in the model
 - Every independent variable we add to the model will increase our "normal" R-squared; but doesn't necessarily mean it's a better fit!
 - Adjusted R squared increases only if new variable improves the model more than would be expected by chance!
- 3. Prediction
- Once you estimate OLS regression line, we can calculate predicted values for observations with particular values of all independent variables
 - $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_{1i} + \hat{\beta}_2 X_{2i} + ... \hat{\beta}_k X_{ki}$
- 4. Hypothesis testing and confidence intervals about β_1
- \blacktriangleright Same as before but forumals for $\hat{\beta}_1$ and $SE(\hat{\beta}_1)$ change slightly, but R calculates this for us!

Conditional Independence Assumption

- Assume students choose to participate in MAS
- $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i$
- ▶ Where: Y=graduation, X1=0/1 MAS, X2= previous academic achievement, X3= SES
- Conditional independence assumption:
 - Once we include control variables, there are no omitted variables, Z, that satisfy both of these two conditions:
 - (1) Z affects value of Y and
 - (2) Z has a relationship with X
- If the conditional independent assumption is true:
 - Once we include relevant control variables, there are no omitted variables that affect Y
 and have a relationship with X
 - MAIN POINT: if we satisfy the conditional independence assumption through control variables, then multiple regression is just as good as randomized assignment experiment!

Multiavariate regression in Program Evaluation vs Social Science

- $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i$
- ▶ Program evaluation research or "econometrics"
 - We are only interested in estimating β_1 [the causal effect of X1 on Y]
 - The only reason we include other variables in the model besides X1 is to eliminate omitted variable bias
 - Therefore, we include all control variables that satisfy both conditions of omitted variable bias
 - once we include control variables, and no other variables satisfy both conditions, then we satisfy the conditional independence assumption and we can estimate a causal effect!
- ► Traditional social science statistics [most of my research!]
 - Purpose of multiple regression is to add new variable to your model (e.g., X_3) to see the effect of X_2 on Y
 - Can lead to sloppy research if you're not careful!
 - ▶ We "throw" everything and the kitchen sink into a model and see what's interesting!

Multivariate regression in R

- Research question: What is the effect of student teacher ratio on student reading test scores?
- Simple regression
 - $Y_i = \beta_0 + \beta_1 X_{1i} + u_i$
 - lacktriangle Where: Y= reading test scores and X_1 = student teacher ratio
 - Interpretation of $\hat{\beta}_1$: The average effect of a one-unit increase in X_1 is associated with a $\hat{\beta}_1$ change in Y
- Multivariate regression
 - $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$
 - ▶ Where: Y= student test scores, X_1 = student teacher ratio, X_2 = % ELL
 - Interpretation of \hat{eta}_1 : The average effect of a one-unit increase in X_1 is associated with a \hat{eta}_1 change in Y, holding the value of X_2 constant

What does "holding constant" mean?

- RQ: What is the effect of student teacher ratio on reading test scores?
 - $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$
 - Where: Y= student test scores, X_1 = student teacher ratio, X_2 = % ELL
- Setup:
 - We think student test scores go down if there's a greater percentage of ELL students in the classroom
 - First condition of omitted variable bias (Z affects Y)
 - We think there is a negative relationship between percentage of ELL students in the classroom and student-teacher ratio
 - Second condition of omitted variable bias (Z has a relationship with X)
- Problem:
 - ▶ We think student teacher ratio and percentage of ELL move together
 - We want to know the relationship between reading scores and student teacher ratio when "percent ELL" is not allowed to move!
- \blacktriangleright "Holding the value of X_2 constant"
 - Means to estimate the relationship betwen X_1 and Y when we don't allow the value of X_2 to vary
 - Said differenly: We analyze the relationship between student teacher ration (X_1) and reading test scores (Y) for applicants that have the same value of percent ELL (X_2) [calculus: partial derivatives!]

What does "holding constant" mean? Another example....

- ▶ RQ: What is the relationship between years of education(X1) on income(Y), after controlling for years of work experience (X2)?
- ▶ General interpretation of $\hat{\beta}_1$:
 - The average effect of a one-unit increase in X1 is a $\hat{\beta}_1$ unit increase in Y, holding the value of X2 constant
- lnterpretation of $\hat{\beta}_1$, applied to example
 - ▶ The effect of having one additional year of education (X1) on income (Y), when we don't allow value of "years of experience" (X2) to change
 - Maybe people w/ more education have fewer years of experience
- Said differently: analyze the effect of increasing years of education on income for people who have same years of experience

Interpreting $\hat{\beta}_1$ for continuous X

- RQ: What is the effect of student teacher ratio (X1) on average district reading test scores (X2)?
 - $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i$
 - Where:
 - Y= reading test scores
 - $X_1=$ average district student teacher ratio, $X_2=0/1$ majority ELL district, $X_3=$ avg district income (\$000s)
 - IMPORTANT NOTE: All independent variables should be at the same "level"; here it is district!
- lacktriangle General interpretation of \hat{eta}_1 for continuous ${\sf X}$
 - ▶ The avaerage effect of a one unit increase in X_1 is a $\hat{\beta}_1$ unit change in Y, holding the values of X_2 and X_3 constant
 - \blacktriangleright OR The avaerage effect of a one unit increase in X_1 is a $\hat{\beta}_1$ unit change in Y, after controlling for X_2 and X_3
 - ▶ The avaerage effect of a one unit increase in X_1 is a $\hat{\beta}_1$ unit change in Y, holding the values of covariates constant
- Run regression in R!
- $\hat{Y}_i = \hat{\beta_0} + \hat{\beta_1} X_{1i} + \hat{\beta_2} X_{2i} + \hat{\beta_3} X_{3i}$
- $\hat{Y}_i = 646.2 0.8X_{1i} 23.5X_{2i} + 1.7X_{3i}$
- Specific example interpretation [run regression in R]
 - The average effect of a one-unit increase in average district student teacher ratio (i.e., one additional student per teacher) is a 0.8 point decrease in average district reading score, holding the values of majority ELL and district average income constant

Interpreting $\hat{\beta}_1$ for categorical X

- RQ: What is the effect of student teacher ratio (X1) on average district reading test scores (X2)?
 - $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i$
 - ▶ Where:
 - Y= reading test scores
 - $\blacktriangleright X_1=0/1$ majority ELL, $X_2=$ avg district student teacher ratio $X_3=$ avg district income (\$000s)
 - lacktriangle Stylistic Note: Your main independent variable of interest should always be X_1
- ▶ General interpretation of $\hat{\beta}_1$ for categorical X
 - ▶ Being [non-reference group] as opposed to [reference group] is associated with a $\hat{\beta_1}$ unit change in Y, holding the values of X_2 and X_3 constant
- Run regression in R [same coef values as previous model but in diff order]
 - $\hat{Y}_i = \hat{\beta_0} + \hat{\beta_1} X_{1i} + \hat{\beta_2} X_{2i} + \hat{\beta_3} X_{3i}$
 - $\hat{Y}_i = 646.2 23.5X_{1i} 0.8X_{2i} + 1.7X_{3i}$
- Specific interpretation
 - Reference group is the zero value of my dummy ELL var= non-ELL majority district; Non-Reference group is the one value of my dummy ELL var = majority ELL district
 - Being a majority ELL district as opposed to a non-majority ELL district is associated with a 23 point decrease in average district reading scores, holding values of average student-teacher ratio and district average income constant

Prediction still works the same way!

- RQ: What is the effect of student teacher ratio (X1) on average district reading test scores (X2)?
 - $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i$
 - Where:
 Y= reading test scores
 - $X_1 = 0/1$ majority ELL, $X_2 = 0$ avg district student teacher ratio $X_3 = 0$ avg district income
- ▶ Run regression in R [same coef values as previous model but in diff order]
 - $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_{1i} + \hat{\beta}_2 X_{2i} + \hat{\beta}_3 X_{3i}$
 - $\hat{Y}_i = 646.2 23.5X_{1i} 0.8X_{2i} + 1.7X_{3i}$
- What's the predicted average reading score for a district that is a non-ELL majority district, has a student teacher ratio of 25, and average district income of \$22,000?
 - $Y|X_1 = 0, X_2 = 25, X_3 = 22 = 646.2 (23.5 * 0) (0.8 * 25) + (1.7 * 22)$
 - $Y|X_1=0, X_2=25, X_3=22)=646.2$ (0) (20) + (37.4)
 - $(Y|X_1 = 0, X_2 = 25, X_3 = 22) = 663.6$

How to read regression results in academic journals

- Cabrera et al (2014)
 - ▶ RQ: What is the effect of participating in MAS on high school graduation?
 - Use program evaluation framework; but their model is a logistic regression because their Y=0/1 graduated and X=0/1 MAS participation
- Powers (2004)
 - RQ: what is relationship between school resource variables and school-level academic performance index (API)
 - Don't frame article as "program evaluation" but it is! Y= School's academic performance index score X vars= school resource variables
- Regression results are pretty standardized across all fields and journals!
 - Regression tables usually show the coefficient and standard error (usually in parantheses) for each independent variable
 - Columns are individual models!
 - Usually you start with a simple regression model that only includes your main independent variable of interest: "model 1"
 - Then you add controls: sometimes done in groupings
 - Sometimes models in seperate columns also indicate various samples!