Business Intelligence Capstone Project

Matthew Chapman

The Problem

- Company:
 - Well-established retail food company
 - Serves 100ks of registered customers
 - Sells Products from 5 major categories
 - 3 sales Channels
- Forecasts show profit growth is not promising
- Want to improve performance of marketing activities
 - Emphasis on marketing campaigns
- Low marketing budget

The Solution

- Accurately predict if customer will accept current campaign offer
- -Logistic Regression Model
 - Increase accepted offers, minimize marketing costs
- Data:
 - Customer Traits
 - Customer History

The Process

Data Collection

Download Data

Import Data

Cleaning/Manipulation

- Convert Categorical Variables to Binary Variables (Dummy Variables)
- Convert Date Variables to Numeric
- Create Summary Variables (Total Revenue, Total Accepted Offers)
- Delete Data with:
 - Null Values
 - Outliers

Analysis

Model Building

- Define Variables
- Split Data
- Train Data
- Evaluate Model Metrics

Accuracy: 0.8775510204081632

Precision: 0.7368421052631579

Recall: 0.22222222222222

Specificity: 0.9867724867724867

F1: 0.34146341463414637

AUC_ROC: 0.6044973544973545

Recall

- We want Recall (True +/All +) to be as high as possible:
 - Don't want to miss out on potential customers
- SMOTE (Synthetic Minority Over-sampling Technique)
- Decision Threshold Adjustments

Recall

Accuracy: 0.4331

Precision: 0.1974

Recall: 0.9683

F1 score: 0.3280

Specificity: 0.3439

AUC-ROC: 0.6561

Recommendations

- Use the model with the highest recall
- Maintain nearly the same # of accepted offers
- Save 30% on marketing expenses

