

BUNDESREPUBLIN

Patentschrift [®] DE 43 07 593 C 1 **DEUTSCHLAND**

(51) Int. Cl.5: D 07 B 1/06 // B21F 21/00,A01K 91/00,A63B 51/00

DEUTSCHES PATENTAMT Aktenzeichen:

P 43 07 593.2-22

Anmeldetag:

10. 3.93

Offenlegungstag:

Veröffentlichungstag der Patenterteilung:

4. 8.94

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber:

Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80636 München, DE

(74) Vertreter:

Pfenning, J., Dipl.-Ing., 10707 Berlin; Meinig, K., Dipl.-Phys., 80336 München; Butenschön, A., Dipl.-Ing. Dr.-Ing., Pat.-Anwälte; Bergmann, J., Dipl.-Ing., Pat.- u. Rechtsanw., 10707 Berlin; Nöth, H., Dipl.-Phys., 80336 München; Hengelhaupt, J., Dipl.-Ing., 01097 Dresden; Kraus, H., Dipl.-Phys.; Reitzle, H., Dipl.-Chem. Dr.rer.nat., Pat.-Anwälte, 80336 München

(72) Erfinder:

Willy, Armin, Dipl.-Ing., 7000 Stuttgart, DE; Vögele, Gerald, Dipl.-Ing., 7032 Sindelfingen, DE; Weisener, Thomas, Dipl.-Ing., 7257 Ditzingen, DE

(56) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

> DE 33 22 598 A1 JP 04-1 21 135 JP 02-41 426

(54) Fadenstrukturkörper

Der hier beschriebene Fadenstrukturkörper enthält wenigstens eine Metallegierung mit Formgedächtnis (SMA), wie beispielsweise Nickel-Titan-Legierungsdraht, wobei eine Mehrzahl einzelner relativ dünner Fadenstrukturen aus SMA-Material zu einem Summenstrukturkörper zusammengefaßt und so miteinander verbunden ist, daß die bei ihren formändernden Phasenübergängen auftretenden Verformungskräfte sich bei gegenseitiger Abstützung aufaddieren. Hierfür kann die Fadenstruktur miteinander verdrallt, nach Art eines Seiles verflochten oder anderweitig zu einer Einheit zusammengefaßt sein.

Beschreibu

Die Erfindung bezieht sich auf Fadenstrukturkörper, enthaltend wenigstens eine Metallegierung mit Formgedächtnis (SMA), insbesondere einen Nickel-Titan-Le-

gierungsdraht

Die auch im deutschen Sprachgebrauch unter Shape-Memory-Alloy bekannten und mit den Großbuchstaben SMA abgekürzten Formgedächtnis-Metallegierungen, finden seit ihrer Einfühlung in die Technik zu Beginn der 10 60iger Jahre einen stark wachsenden und breiter werdenden Markt. Als Halbzeug sind solche Metallegierungen insbesondere in Drahtform mit unterschiedlichsten Querschnitten und Durchmessern in mannigfaltiger Anwendung. SMA-Legierungen, von denen als bekannte- 15 ste hier die Nickeltitanlegierung erwähnt sei, haben neue Einsatzmöglichkeiten insbesondere in der Medizintechnik erschlossen und finden beispielsweise auch bei der Fertigung von Rohrverbindern und Werkzeugen ein neues Einsatzfeld bis hin zu Brillenfassungen in der opti- 20 schen Industrie.

Die JP 4-121 135 beschreibt eine Angelschnur aus SMA-Draht, deren "Formgedächtnis" so gewählt ist, daß sie nur im Wasser flexible Eigenschaften zeigt, während sie in der Luft einen steifen Draht bildet, so daß nach 25 Auswurf der Angelschnur diese bis zum Eintauchpunkt in das Gewässer für den Angelvorgang unbeweglich bleibt. Als Bespannungsdraht für einen Tennisschläger wird SMA-Draht in der JP 2-41 426 beschrieben und es ist auch bekannt, SMA-Drähte im Abstand und parallel 30 zueinanderliegend in eine oder mehrere Schichten einer Epoxidharzplatte einzubetten oder die Einzeldrahtstruktur des Materials wie auch flächenförmige Gebilde mit einer elastischen Oberflächenschicht zu umhüllen.

Die Formgedächtniseigenschaften von SMA Kon- 35 Formel: struktionswerkstoffen zeigen sich als dreidimensionale Effekte bei Wärmezufuhr oder Abfuhr, wobei sich die einzelnen Legierungen durch definiert vorgegebene bzw. vorgebbare Temperaturfenster kennzeichnen. Es gibt SMA-Werkstoffe mit reversiblen Verformungsme- 40 chanismen und solche, deren Phasenübergang von einem Formzustand in den anderen nur in einer Richtung effektiv ist. Die bekannten Legierungsgruppen zeigen, daß die jeweils absoluten Größen der Verformungseffekte, d. h. die damit verbundenden stabilen Arbeitswer- 45 te, wie sie sich aus dem mit der Verformung verbundenen Biege- oder Torsionsmoment ergeben, bei dem nur in einer Richtung möglichen Phasenübergang meist doppelt so groß sind, wie bei Legierungen mit reversiblem Phasenübergang. Bei der vorstehend beispielswei- 50 se genannten Nickeltitanlegierung handelt es sich um ein SMA-Material mit besonders großen Stellkräften beim Phasenübergang. Als Koeffizient für die Stellkraft wird hier ε_{max} mit 8% für den Einwegeffekt und ε_{max} 4% für den Zweiwegeffekt, also die reversible Phasen- 55 veränderung angegeben.

Um eine vollständige Effektausbildung auch bei gro-Ber Wiederholbarkeit der Formübergänge gewährleisten zu können, kann jedoch bei der NiTi-Legierungsgruppe nur mit $\varepsilon = 3\%$ und $\varepsilon = 5\%$ als sog. stabile 60

Arbeitswerte gerechnet werden.

Da der mit der Formänderung beim Phasenübergang zu erreichende Biegeradius beispielsweise eines Drahtes dessen Durchmesser direkt proportional, dem Wert ε jedoch umgekehrt proportional ist, beschränkt eine 65 geringe Effektgröße den möglichen Biegeradius. Ein gewünschter geringer Biegeradius ist somit zwangsläufig verbunden mit nur schwach erreichbaren Verformungs-

rt wünschenswert starke kräften, während um erwünscht großen Biegera-Verformungskräfte zu dien führen.

Da durch die vorstehend genannte Eigenschaft die Einsatzmöglichkeit der hier interessierenden Konstruktionswerkstoffe eingeschränkt wird, liegt der Erfindung die Aufgabe zugrunde, Fadenstrukturkörper der gattungsgemäßen Art dahingehend zu verbessern, daß bei einem maximal möglichen Arbeitsvermögen, d. h. Torsions- bzw. Biegemoment dennoch die erreichbaren Biegeradien bzw. Torsionswinkel erheblich verringert

Die Lösung dieser Aufgabe wird durch die im kennzeichnenden Teil des Anspruchs 1 angegebenen Merkmale erfindungsgemäß erreicht.

Vorteilhafte Weiterbildungen und Ausgestaltungen dieser Aufgabenlösung sind in den Unteransprüchen an-

gegeben.

Dadurch, daß für einen gegebenen Anwendungsfall erforderliche Verformungskräfte nicht mehr durch die Dicke des SMA-Materials bei einer gegebenen Legierungsgruppe definiert werden müssen, sondern vielmehr anstelle der Platten- oder Einzeldrahtstärke der Summendurchmesser einer Vielzahl von zusammengefaßten dunnen Fäden tritt, läßt sich bei gleichbleibenden Verformungskräften der Biegeradius minimieren, was entsprechend auch für das Torsionsmoment eines Drahtes oder dgl. gilt, da für die Drahtdicke nunmehr nur der Wert der Dicke des Einzeldrahtes des Summenstrukturkörpers tritt.

Für das Biegemoment Mb ist beispielsweise bekannt, daß es das Produkt aus der Nutzspannung des SMA-Materials on und dem Widerstandsmoment W bei kreisförmigem Drahtquerschnitt ist. Es ergibt sich also die

 $M_b = \sigma_N \cdot N$ mit $W = \pi \cdot d^3/32$ und $\sigma_{\rm N}=100~{\rm N/mm^2}$

Der Durchmesser d des SMA-Drahtes bestimmt jedoch nicht nur das aufbringbare Biegemoment, sondern geht wie vorstehend erwähnt, in den erreichbaren Biegeradius R nach der Formel ein:

 $R = d/2 \cdot \epsilon$

Die erfindungsgemäße Lösung bietet somit bei kleinem d entsprechend kleine Biegeradien, da der Durchmesser d für jeden einzelnen Faden des zusammengefaßten gesamten Fadenstrukturkörpers gilt. Damit können mit der vorliegenden Erfindung gegenläufige Effekte bei regelmäßigen und auch unregelmäßigen Fadenstrukturen aus SMA-Material erreicht werden, wobei die dünnen Drähte systematisch miteinander verbunden, vernetzt, verwirkt, verschweißt, vergossen oder anderweitig verbunden werden, so daß sich die mit den Phasenübergängen ergebenden Kraftaufbringungen gegenseitig abstützen.

Es können Fäden bzw. dünne Drähte unterschiedlicher SMA-Metallegierungsgruppen aber auch unterschiedlichster Durchmesser und Querschnitte in ein und demselben Fadenstrukturkörper Anwendung finden, wobei es auch denkbar ist, solche Strukturkörper aus Gemischen von Einzelfäden und Stapelfasern aufzubauen. Die Einzelfäden müssen hierbei oder können zumindest teilweise nicht ausschließlich aus SMA-Material bestehen, sondern beispielsweise auch aus den Faden-

strukturkörper zu einer in gralen Einheit zusammenfassenden biegsamen Kunststoffäden und dgl. mehr.

Weiter ist es möglich, aus flächenförmigen Faserstrukturkörpern Gebilde zu formen, die im Querschnitt als Hohlkörper ausgebildet sind, oder in slächiger Formgebung beliebige dreidimensionale Strukturen aufweisen. Mit dünnen, miteinander verflochtenen oder nach Art eines Seiles verdrallten SMA-Drähten bestehende Endlosgebilde zeichnen sich durch besonders kleine Biegeradien vorteilhaft aus. Auch ist es vorteilhaft, sowohl seilförmige als auch flächige Fadenstrukturkörper der erfindungsgemäßen Art durch geeignete nachgiebige Oberflächenbeschichtungen vor nachteiligen chemischen und/oder physikalischen äußeren Einflüssen zu nicht nur gleichermaßen für SMA-Stäbe wie SMA-Platten, sondern auch für teppichartige Geflechte oder Gewirke aus SMA-Fasern und schließlich auch für Wirrfaservliese aus diesem Material oder Materialgemischen.

Wesentlich für derartige Faserstrukturaufbauten ist, 20 daß die Verbindung der einzelnen Fasern, dünnen Drähte oder dgl miteinander derart erfolgt, daß bei ihren formändernden Phasenübergängen die auftretenden Verformungskräfte sich gegenseitig abstützend aufaddieren, wobei die Summe der Kraftwirkungen nicht unbedingt der Summe der Einzelkräfte entsprechen muß oder kann.

In vorteilhafter Weise werden mit den erfindungsgemäß ausgebildeten Fadenstrukturkörpern hohe Biegemomente und große Torsionsmomente bei gleichzeitig geringen Biegeradien bzw. Drehwinkeln erreicht. Die Herstellung solcher Fadenstrukturkörper beispielsweise in Seilform aber auch als Wirrfaservlies oder dgl. mehr ist einfach und erfordert keinen höheren Aufwand, als er im Stand der Technik bei der beispielsweise ge- 35 nannten Seilherstellung, Faservliesausbildung und dgl. mehr üblich ist. Vorteilhaft ist hierbei der Rückgriff auf solche bewährten konventionellen Herstellungstechniken. Da die vorgebbaren Verformungskräfte nicht hin bis zu ihren maximal erreichbaren Werten ausgenutzt 40 zelfäden unumgänglich. werden müssen, sondern hier auf durchschnittliche ε-Werte eingestellt werden können, erhöht sich in vorteilhafter Weise auch die Lebensdauer solcher SMA-Fadenstrukturgebilde.

Soll beispielsweise ein Biegemoment von 1 Nm er- 45 reicht werden, so ergibt sich wegen der Beziehung Mb = σ_N · W ein minimal erforderlicher Durchmesser für die Faser von 4,67 mm mit dem wiederum ein minimaler Biegeradius bei einer Vorgabe von $\varepsilon = 4\%$ von 58,4 mm erreicht werden kann. Wird hingegen ein Seilgeslecht, 50 das aus vier Drähten besteht, wovon zwei einen Durchmesser von 0,3 mm und zwei einen Durchmesser von 3,65 mm aufweisen, eingesetzt, so kann bei einem sich ergebenden Gesamtdurchmesser von 7,3 mm das vorstehend genannte Biegemoment von 1 Nm erreicht wer- 55 den, bei einer Verringerung des Biegeradius auf 45.6 mm.

Die Erfindung soll nachfolgend noch kurz anhand der beiliegenden Zeichnungen näher erläutert werden, die nur beispielsweise Ausführungsformen in schematischer 60 Wiedergabe darstellen. Es bedeutet:

Fig. 1 den Querschnitt durch ein mit einer Schutzhülle versehenes Seil aus 4 Einzeldrähten;

Fig. 2 die Draufsicht auf einen Ausschnitt eines Rohrgeflechts als Fadenstrukturkörper mit Schutzhülle und

Fig. 3 eine Darstellung gemäß Fig. 2, wobei hier der Rohrkörper aus einem Faservlies ausgeformt ist.

Die Querschnittdarstellung von Fig. 1 bezieht sich auf

das vorstehend angegebene Rechenbeispiel unter Verwendung von 4 dünnen Drähten, wobei jeweils 2 unterschiedliche Durchmesser aufweisen. Die 4 Drähte sind nach Art eines Seiles miteinander verdrallt bzw. verflochten, wobei der dünnere Draht 1a im Ausführungsbeispiel einen Durchmesser von 1,3 mm aufweist, während die beiden dickeren Drähte 1b den Durchmesser 3,65 mm besitzen. Das aus den 4 Einzeldrähten 1a und 1b bestehende Seil ist mit einer Schutzhülle 2 aus einem 10 nachgiebigen Kunststoffschlauch überzogen. Neben oder anstelle der form- und/oder kraftschlüssigen Verdrillung oder anderweitigen Verkettung der Einzeldrähte 1a, 1b untereinander, können diese im Abstand zueinander miteinander verschweißt sein oder bei ausschließschützen. Die vorstehend genannten Vorteile gelten 15 lich miteinander verdrillten Einzeldrähten wenigstens an ihren jeweiligen Anfangs- und Endpunkten miteinander vergossen sein.

Das in Fig. 2 gezeigte vernetzte SMA-Geflecht, welches zu einem Rohrkörper zusammengefaßt ist, kann für sich selbst tragend ausgebildet sein, oder aber wie dargestellt, mit einem nachgiebigen Schlauchmaterial umhüllt sein, oder wie nicht dargestellt, auf ein tragendes Schlauchmaterial aufgebracht sein. Schließlich zeigt das Ausführungsbeispiel gemäß Fig. 3 noch einen rohrförmigen Hohlkörper, bei dem der eigentliche Fadenstrukturkörper durch ein Wirrfaservlies gebildet ist, wobei auch hier die SMA-Wolle 4 entlang der äußeren Umfangsfläche des Rohrkörpers mit einer Schutzhülle 2 überzogen ist. Die ungeordnete Faserstruktur der SMA-Wolle ist in eine aushärtende elastische Schicht eingebettet, damit die beim Phasenübergang auftretenden Verformungskräfte sich gegenseitig abstützend verstärkt werden. Denkbar ist jedoch auch eine punktuelle Verschweißung der Legierungsfasern, wenn diese nur so getroffen wird, daß damit der vorstehend genannte Zweck erreicht werden kann. Für die Übertragung der Einzelbiegemomente der Einzelfäden zu dem gewünschten Summeneffekt ist die erforderliche Verkettung, Verschweißung oder sonstige Verbindung der Ein-

Patentansprüche

- 1. Fadenstrukturkörper, enthaltend wenigstens eine Metallegierung mit Formgedächtnis (SMA), insbesondere einen Nickel-Titan-Legierungsdraht, dadurch gekennzeichnet, daß eine Mehrzahl einzelner relativ dünner Fadenstrukturen aus SMA-Material zu einem Summenstrukturkörper zusammengefaßt und so miteinander kraftschlüssig verbunden sind, daß die bei ihrem formändernden Phasenübergang auftretenden Verformungskräfte sich bei gegenseitiger Abstützung aufaddieren.
- 2. Fadenstrukturkörper nach Anspruch 1, dadurch gekennzeichnet, daß die Fadenstruktur aus miteinander verdrallten dünnen Drähten besteht.
- 3. Fadenstrukturkörper nach Anspruch 1, dadurch gekennzeichnet, daß die Fadenstruktur aus miteinander nach Art eines Seiles verflochtenen Fasern bzw. Dränten besteht.
- 4. Fadenstrukturkörper nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß die zu einer Einheit zusammengefaßte geordnete Struktur aus Fäden mit unterschiedlichen Durchmessern und/oder Längen gebildet ist.
- 5. Fadenstrukturkörper nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Fadenstruktur zu einem im Querschnitt beliebigen

Hohlkörper zusammengefügrist 6. Fadenstrukturkörper nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Fadenstruktur zu einem flächigen Körper zusammengefügt ist.

7. Fadenstrukturkörper nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Fäden, Fasern und/oder dunnen Drähte miteinander verflochten sind.

8. Fadenstrukturkörper nach mindestens einem der 10 Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Fäden, Fasern und/oder dünnen Drähte miteinander verwebt sind.

9. Fadenstrukturkörper nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die 15 Fäden, Fasern und/oder dünnen Drähte gegenseitig wenigstens teilverschweißt sind.

10. Fadenstrukturkörper nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Fäden, Fasern und/oder Drähte in Ver- 20 bundmaterial eingebettet sind.

11. Fadenstrukturkörper nach Anspruch 1 und 10, dadurch gekennzeichnet, daß die Fasern und/oder Drähte ein Wirrfaservlies bilden.

12. Fadenstrukturkörper nach Anspruch 1, dadurch 25 gekennzeichnet, daß der Fadenstrukturkörper von einer Schutzhülle umgeben ist.

13. Fadenstrukturkörper nach Anspruch 1, dadurch gekennzeichnet, daß das die Fasern einbettende Verbundmaterial ein aushärtbares Elastomer ist. 14. Fadenstrukturkörper nach Anspruch 1, dadurch gekennzeichnet, daß der Fadenstrukturkörper aus unterschiedlichen Legierungen bzw. SMA-Materialien zusammengefügt ist.

Hierzu 1 Seite(n) Zeichnungen

40

35

45

50

55

60

4307593C1 1.>

- Leerseite -

DE 43 07 593 C1 D 07 B 1/06 ngstag: 4. August 1994

FIG. 1

FIG. 2

FIG. 3