第5回 指数タワーを作る

2を指数に連ねてみると...

$$2^{2} = 4$$

$$2^{2^{2}} = 16$$

$$2^{2^{2^{2}}} = 65536$$

 $2^{2^{2^{2^{-2}}}}=20035299304068464649790723515602557504478254755697514192650169737089410$ 5 أَمْ يَعْمُ الْعَامُ الْعَلَمُ الْعِلْمُ الْعِلْمُ الْعِلْمُ الْعَلَمُ الْعِلْمُ الْعِلْمُ الْعِلْمُ الْعِلْمُ الْعِلْمُ الْعِلْمُ الْعِلْمُ الْعَلَمُ الْعَلَمُ الْعِلْمُ الْعِلْمُ الْعِلْمُ الْعِلْمُ الْعَلَمُ الْعِلْمُ لِلْعُلِمُ الْعِلْمُ ال

という具合に天文学も驚くくらいの速度で大きくなっていく.2の代わりにより大きい数 a を連ねても,2の場合以上の速さで指数タワーは発散するはずだ.一方,1 より小さい正の数 a であればいくら連ねても常に1より小さいので,指数タワーが無限大に発散することはない.それでは,

a が 1 より大きければ a^{a^a} は常には発散するだろうか?

答えは意外にも No である. 実際、 $a=\sqrt{2}$ とすると.

$$\sqrt{2}^{\sqrt{2}} < \sqrt{2}^2 = 2$$

$$\therefore \sqrt{2}^{\sqrt{2}^{\sqrt{2}}} < \sqrt{2}^2 = 2$$

$$\therefore \sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}}}} < \sqrt{2}^2 = 2$$

$$\vdots$$

という具合で、いくら連ねても2を超えることはない.

さらに、連ねる $\sqrt{2}$ を追加するたびに、式の値は大きくなっているので、指数タワーはある値に収束するはずである.

その極限値を

$$\sqrt{2}^{\sqrt{2}^{\sqrt{2}}}$$
 :
$$= x \quad$$
とおくと, $\sqrt{2}^x = x$

が成立する. x=2,4 はこの方程式を満たすことと, $y=\sqrt{2}^x$ と y=x のグラフの凸性より, $\sqrt{2}^x=x$ の解は多くて 2 個であることから, 適当な x はこれ以外にないと言い切れる.

さらに、 $x \le 2$ より、x = 2 と決まる. 以上から

$$\sqrt{2}^{\sqrt{2}^{\sqrt{2}}} \cdot \cdot = 2$$

以上から,
$$a=\sqrt{2}$$
 と $a=2$ の間に,指数タワー a^{a^a} .

が収束から発散に切り替わるようた境目の値が存在するはずだ!と予想できる. 次回,この値を求めにいこう.

第6回 指数タワーが発散するのはいつか?

第 5 回で作った指数タワー a^{a^a} が ∞ に発散するような a の範囲を求めよう. ここでは a>0 に限って考えるとする.

さて,そもそも
$$a^{a^a}$$
 とは何か,というと,漸化式

$$x_1 = a, \quad x_{n+1} = a^{x_n}$$

で定められる数列の極限 x_n の極限に他ならない;

$$a^{a^a}$$
 = $\lim_{x \to \infty} x_n$

数列の極限を議論する道具として「蜘蛛の巣図」を導入する.

蜘蛛の巣図の導入

一般に、漸化式 $x_{n+1}=f(x_n)$ が定める x_{n+1} と x_n の項の関係は次のようになっている.

これを繰り返していくことで、視覚的に x_n の変化の様子を追うことができる.この図を蜘蛛の巣図と呼ぶことがある. 運がよければ、極限値 $\lim_{n\to\infty}x_n$ すら求めることも可能;

本題に入る前に、簡単な数列に対する蜘蛛の巣図をいくつか見ておこう.

蜘蛛の巣図の例1

例えば, 漸化式

$$x_1 = 1$$
, $x_{n+1} = \frac{1}{3}x_n + 2$

で定義される数列 $\{x_n\}$ に対しては, $f(x) = \frac{1}{3}x + 2$ として蜘蛛の巣図を書くと;

となり、 $\lim_{n\to\infty}x_n=3$ がわかる.これは、漸化式を解いて、 $x_n=-2\cdot\left(\frac{1}{3}\right)^{n-1}+3\xrightarrow{n\to\infty}3$ としたものと一致する.

蜘蛛の巣図の例2

今度は,分数形の漸化式

$$x_1 = 1$$
, $x_{n+1} = \frac{x_n}{x_n + 3}$

で定義される数列 $\{x_n\}$ に対しても同様にして, $f(x)=\frac{x}{x+3}$ として蜘蛛の巣図を書くと;

となり、 $\lim_{n\to\infty}x_n=0$ がわかる.これも、漸化式を解いて、 $x_n=\frac{2}{3^n-1}\xrightarrow{n\to\infty}0$ としたものと一致している.

しかし、蜘蛛の巣図が活躍するのは、漸化式が解けない数列の極限を求める場合である.

蜘蛛の巣図の例3

解けない漸化式

$$x_1 = 1, \quad x_{n+1} = \sqrt{x_n + 1} + 1$$

で定められた数列 $\{x_n\}$ についても, $f(x) = \sqrt{x+1} + 1$ として蜘蛛の巣図を書くと;

となり、 $\lim_{n\to\infty}x_n=3$ がわかる.この漸化式は解くことができないので、 「一般項がもとまらないまま、極限を求めることができた」ことの意義は大きい.

そろそろ、蜘蛛の巣図に慣れてきただろうか?それでは、本題に戻ろう.

本題

いま, a^{a^a} は,次の漸化式で定められる数列の極限 x_n の極限であった;

$$x_1=a, \quad x_{n+1}=a^{x_n}$$
 によって定められる数列 $\{x_n\}$ に対して, $a^{a^{a^{\cdot}}}=\lim_{x\to\infty}x_n$

そこで、 $f(x) = a^x$ として蜘蛛の巣図を書いてみると;

となり、 $2^{2^{2^{-\cdot}}}=\infty$ と $\sqrt{2}^{\sqrt{2^{\sqrt{2}}}}=2$ がわかった.これは第 5 回での計算結果に一致している. 今求めたいのは,収束と発散が起こる狭間の a の値である. すなわち,

$$a=?$$
 の場合

$$a=\sqrt{2}$$
 の場合

$y = a^x$ のグラフが直線 y = x に接するときの a の値を求めたい!!

 $y=a^x$ を微分すると $y'=a^x\log a,\ y=x$ を微分すると y'=1,

よって,接する条件は $\left\{ egin{aligned} & a^t = t \cdots 1 \\ & a^t \log a = 1 \cdots 2 \end{array}
ight.$ を満たす t が存在することである.

①, ② $\$ b, $t \log a = 1$ $\therefore \log a^t = 1$ $\therefore a^t = e$

これを②に代入して、 $e \log a = 1$: $\log a = \frac{1}{e}$: $a = e^{\frac{1}{e}}$

この計算から、指数タワーの発散は、 $a=e^{\frac{1}{e}}$ を境目にして決まることがわかった;

ちなみに, $0 < a \le e^{\frac{1}{e}}$ であればいつでも収束するだろうか?答えは意外にも No である;

ここまできたら,**振動する** a **の範囲,収束する** a **の範囲も明確にしたい!**と思うのは,私だけではないはずだ!

しかし、今期の読切ジャーナルはひとまずここまで、最後までお付き合いありがとうございました。どうでしたか?少しでも面白いと感じる部分があれば、書いた甲斐があります。また感想を聞かせてくださいね. 大橋