

주요 연구 발표

시스템 이상징후 탐지를 위한 모니터링 및 로그 기반 이상징후 탐지 기술 소개

권영우

wkwon@knu.ac.kr

http://sslab.knu.ac.kr

주요 연구 내용

- 테스트베드 구축 및 활용 지원
- 이상징후 탐지 연구
 - 산학협력연구
 - 로그 기반 이상징후 탐지 연구
- 테스트베드 대상 PySTAAR 적용 연구 (센터내 공동연구)

테스트베드- 지진조기경보체계

- 개발기간: 2018년 ~현재
- 개발언어: C/C++ (센서), Java (수집서버), Python (백엔드)
- 규모
 - 센서 수: 8,000
 - 백엔드 서버 수: 5대
 - 컨테이너 수: 상시 45개, On-demand 35개
 - 지진 감지 및 경보 관련 45개
 - 지진 데이터 사후 분석용 35개
 - 코드: 248개의 파이썬 파일, 16,316 LoC
 - 센서와 수집서버는 SKT 및 외주 개발
 - 백엔드는 학부~대학원생 위주의 개발

admin 님, 왕영합니다. LogOut 전국 센서 현황 과거 지진 사례 대시보드 센서 현황 관리 EMS 관리 대시보드

CrowdQuake 모니터링 및 로그 수집

- 시스템 모니터링
 - 기기 자원 사용량 추적 (CPU, Memory, Disk, Network I/O) 및 CPU 온도 확인
 - 서버 내 실행중인 작업자(Container)에 대한 자원 사용량 추적

Resource Usages

CrowdQuake 모니터링 및 로그 수집

- 메트릭 기반 이상징후 탐지
 - 서버/컨테이너 종료, 재실행 등에 대한 알림 기능

• 자원 사용에 대한 이상징후 발생 시 알림 기능

CrowdQuake 모니터링 및 로그 수집

- 로그 수집 대상 및 종류
 - 대상: CrowdQuake 백엔드 시스템
 - 종류
 - 응용프로그램 로그, 도커 컨테이너 로그, 프레임워크 (Kafka) 및 인프라 (DB, HDFS) 로그, OS 로그 등

시스템 이상징후 탐지 (산학협력 연구) WINITECH

❖ 말레이시아 홍수 모니터링 시스템을 운영하며 자동화 운영 지원 시스템의 필요성 체감 컨테이너에서 발생하는 로그를 실시간으로 분석하기 어려움 스파이크성 트래픽의 Auto-scaling 대응력이 부족함

그림-Flood and Facility Monitoring System화면

그림 - 홍수 모니터링 시스템 모니터링 도구

- ❖ 세 가지 기능을 조합하여 컨테이너 오케스트레이션 환경을 지원 하는 시스템 제안
 - 1. 로그 분석을 통한 이상감지: 정적 프롬프트 + 실시간 로그 → sLLM(로컬) → 재실행/스케일아웃/유지 판단
 - 2. 매트릭 예측을 통한 이상감지: 실시간 매트릭 \rightarrow 학습된 Informer 모델(로컬) \rightarrow 스케일아웃 여부 판단
 - 3. 적정 리소스 산정 기법: 재실행 및 스케일 아웃시 필요한 컨테이너 적정 리소스 제공

그림 - 제안 시스템 아키텍처

- ❖ 세 가지 기능을 조합하여 컨테이너 오케스트레이션 환경을 지원 하는 시스템 제안
 - 1. 로그 분석을 통한 이상감지: 정적 프롬프트 + 실시간 로그 → sLLM(로컬) → 재실행/스케일아웃/유지 판단
 - 2. 매트릭 예측을 통한 이상감지: 실시간 매트릭 → 학습된 Informer 모델(로컬) → 스케일아웃 여부 판단
 - 3. 적정 리소스 산정 기법: 재실행 및 스케일 아웃시 필요한 컨테이너 적정 리소스 제공

그림 - Cloud-Native 환경을 위한 AI 기반 이상상황 대응 및 자원 예측 운영 지원 시스템 흐름 과 동작 구조

- ❖ 운영 환경에서 수집한 로그 데이터를 기반으로 실험 데이터 셋 구축
- ❖ sLLM(Gemma 3) 모델을 이용하여 프롬프팅 기법을 통해 Pod 재시작 / Scale-out / 유지 판단

- ❖ Informer 모델 기반 매트릭 예측으로 이상 판단
- ❖ 사후 대응: Kubernetes HPA, VPA < 사전 예방: 예측 기반 Scale- out
- ❖ "Informer: Beyond Efficient Transformer for Long Sequence Time- Series Forecasting (AAAI'21 Best Paper)" 의 하이퍼 파 라메터 수정 및 다변량 입력 다변량 출력 구조 → 다변량 입력 단변량 출력(Scale-out 필요 여부) 변경

그림 - 리소스 예측 절차

그림 - Informer 기반 매트릭 예측 흐름

- ❖ Flood and Facility Monitoring System (Malaysia, 2025) 운영환경에서 검증
- ❖ K6 시뮬레이터를 이용하여 5분 동안 단일 컨테이너에 초당 400건의 Http Request 부하 유발
- ❖ HPA 기준 scale-out 동작 속도 1분 45초 절감, 통신 실패율 6% 감소 → 안정성 증가, Cold Start 문제 해결

그림 - 검증 시스템(Flood and Facility Monitoring System) 화면

Kubernetes 기본 HPA Scale-out 결과 통신 실패율 : **6%**

이상 예측을 통한 사전대응 후 안정성 향상 통신 실패율: **0%**

로그 기반 이상징후 탐지 (기존, ~ 2024)

• 개요

• 로그 데이터의 그래프화

Figure 2: The example of raw log parsing and graph construction.

로그 기반 이상징후 탐지 (기존, ~ 2024)

Message	Level	EventID	Event Template
org, apache, hadoop, hdfs, server, namenode, NameNode: registered UNIX signal handlers for [TERM, HUP, INT]	Info	-1	
org.apache.hadoop.hdfs.server.namenode.NameNode: createNameNode []	Info	51	INFO org.apache.hadoop.hdfs.server.namenode.NameNode; createNameNode .*
org. apache. hadoop. hdfs. server. namenode. FSNamesystem: Only one namespace edits storage directory (dfs. namenode. edits. dir) configured. Beware of data loss due to lack of redundant storage	Wam	503	org. apache. hadoop. hdfs. server. namenode. FSNamesystem: Only one namespace edits storage directory \(dfs.namenode. edits. dir\) configured. Beware of data loss due to lack of redundant storage directories!
org.apache.hadoop.metrics2.impl.MetricsSystemImpl: NameNode metrics system started	Info	22	org.apache.hadoop.metrics2.impl.MetricsSystemImpl: .* metrics system started
org.apache.hadoop.metrics2.impl.MetricsSystemImpl: Scheduled Metric snapshot period at 10 second(s).	Info	512	$org. apache. hadoop. metrics 2. impl. Metrics System Impl: Scheduled Metric snapshot period at. *second \(s\).$
org.apache.hadoop.hdfs.server.namenode.NameNode: Clients should use master:9000 to access this namenode/service.	Info	30,	org.apache.hadoop.hdfs.server.namenode.NameNode: Clients should use master* to access this namenode/service.
org.apache.hadoop.hdfs.server.datanode.fsdataset.impl.FsDatasetImpl: dfsUsed file missing in /data/tmp/dfs/data/current/BP-1344050560-172.20.1.34-1708985604616/current, will proceed with	Wam		org.apache.hadoop.hdfs.server.datanode.fsdataset.impl.FsDatasetImpl: dfsUsed file missing in .* will proceed with Du for space computation calculation,
org.apache.hadoop.hdfs.server.datanode.fsdataset.impl.FsDatasetimpl: dfsUsed file missing in /data/tmp/dfs/data/current/BP-1344050560-172.20.1.34-1708985604616/current, will proceed with	Warn		org.apache.hadoop.hdfs.server.datanode.fsdataset.impl.FsDatasetimpl: dfsUsed file missing in .* will proceed with Du for space computation calculation,
org.apache.hadoop.hdfs.DFSUtil: Filter initializers set: org.apache.hadoop.http.lib.StaticUserWebFilter.org.apache.hadoop.hdfs.web.AuthFilterInitializer	Info	27	org, apache, hadoop, hdfs, DFSUtil: Filter initializers set: org, apache, hadoop, http. lib. StaticUserWebFilter, org, apache, hadoop, hdfs, web. AuthFilterInitializer
org.apache.hadoop.hdfs.server.datanode.DirectoryScanner: dfs.datanode.directoryscan.throttle.limit.ms.per.sec.set to value above 1000 ms/sec. Assuming	Info	46	org.apache.hadoop.hdfs.server.datanode.DirectoryScanner: dfs.datanode.directoryscan.throttle.limit.ms.per.sec set to value above .* ms/sec. Assuming default value of
org.eclipse.jetty.util.log: Logging initialized @899ms to org.eclipse.jetty.util.log.Slf4jLog	Info	19	org.eclipse.jetty.util.log: Logging initialized .* to org.eclipse.jetty.util.log.Slf4jLog
org.apache.hadoop.hdfs.server.datanode.DirectoryScanner: Periodic Directory Tree Verification scan starting in 1166521ms with interval of 21600000ms and throttle limit of -1ms/s	Info	33	org.apache.hadoop.hdfs.server.datanode.DirectoryScanner: Periodic Directory Tree Verification scan starting in .* with interval of .* and throttle limit of .*
org. apache. hadoop. hdfs. server. datanode. Directory Scanner: dfs. datanode. directory scan. throttle. limit.ms. per. sec set to value above 1000 ms/sec. Assuming	Wam	401	org.apache.hadoop.hdfs.server.datanode.DirectoryScanner: dfs.datanode.directoryscan.throttle.limit.ms.per.sec.set to value above .* ms/sec. Assuming default value of
org.apache.hadoop.http.HttpServer2: Added global filter 'safety' (class=org.apache.hadoop.http.HttpServer2\$QuotingInputFilter)	Info	26	org.apache.hadoop.http.HttpServer2: .* global filter 'safety' \((class=.*\)
org.apache.hadoop.http.HttpServer2: Added filter static_user_filter (class≃org.apache.hadoop.http.lib.StaticUserWebFilter\$StaticUserFilter) to context hdfs	Info	71	org.apache.hadoop.http.HttpServer2: .* filter .* \(class=.*\) to context .*
org.apache.hadoop.http.HttpServer2: Added filter static_user_filter (class=org.apache.hadoop.http.lib.StaticUserWebFilterSStaticUserFilter) to context logs	Info	92	org.apache.hadoop.http.HttpServer2: .* filter .* \(class=.*\) to context logs
org.apache.hadoop.http.HttpServer2: Added filter static_user_filter (class=org.apache.hadoop.http.lib.StaticUserWebFilter\$StaticUserFilter) to context static	Info	71	org.apache.hadoop.http.HttpServer2: .* filter .* \(class=.*\) to context .*
org.apache.hadoop.http.HttpServer2: Added filter AuthFilter (class=org.apache.hadoop.hdfs.web.AuthFilter) to context hdfs	Info	71	org.apache.hadoop.http.HttpServer2: .* filter .* \(class=.*\) to context .*
org.apache.hadoop.http.HttpServer2: Added filter AuthFilter	Info	92	org.apache.hadoop.http.HttpServer2: .* filter .* \(class=.*\) to context logs

71 org.apache.hadoop.http.HttpServer2: .* filter .* \(class=.*\) to context .*

Few-shot Prompt

Prompt: "Here are a few examples of how to classify log sequences. Based on these examples, classify the new log provided.

Examples:

- 1) Log Sequence: {Example log 1} --> Anomaly Type: {Class
- 2) Log Sequence: {Example log 2} --> Anomaly Type: {Class

Input & Output:

Log Sequence: [New log data] --> Anomaly Type: Class 3

Log Sample (Related source code):

[ERROR] 2023-10-10 08:13:25: Virtual machine memory allocation failed for VM ID=6afd89eh: Insufficient memory. Attempting to restart VM ID=6afd89eh.

(class=org.apache.hadoop.hdfs.web.AuthFilter) to context logs org.apache.hadoop.http.HttpServer2: Added filter AuthFilter

• Visualize how errors or important events occur over time

Fixed- length Windows

- For ML models
- Consistent size
- Ignore semantic flow

Fixed- length Windows

- For ML models
- Consistent size
- Ignore semantic flow

count 5223.000000
mean 499.976259
std 1.715780
min 376.000000
25% 500.000000
50% 500.000000
75% 500.000000
max 500.000000

Template Shift Segments

- When template changes mark logical steps
- Highlight state changes
- May miss long-range dependencies

Template Shift Segments

- When template changes mark logical steps
- Highlight state changes
- May miss long-range dependencies

count 1.543917e+06 mean 1,691397e+00 std min 25% 50% 75% 1.006000e+03

Time Gap Thresholds

- When sessions are temporally bursty
- Captures real execution flows and transitions
- Risk of skewed session sizes


```
SessionGroup_TimeGap
2718 544188
2634 340599
5217 162887
2623 161371
2612 143298
...

10 1
8 1
6 1
4 1
2 1
Name: count, Length: 6019, dtype: int64
```


Time Gap Thresholds

- When sessions are temporally bursty
- Captures real execution flows and transitions
- Risk of skewed session sizes

- Hybrid (Time + Max Events)
 - Default for production logs
 - Balanced node/edge density across graphs
 - May split actual sessions

- Hybrid (Time + Max Events)
 - Default for production logs
 - Balanced node/edge density across graphs
 - May split actual sessions

count 6453.000000
nean 404.676275
std 1288.688473
nin 1.000000
15% 1.000000
15% 2.000000
15% 2.000000
16X 5000.0000000

- Semantic Anchors (e.g. RPC, login)
 - If known session starters exist
 - Logically pure sessions
 - Needs domain specific templates

- Semantic Anchors (e.g. RPC, login)
 - If known session starters exist
 - Logically pure sessions
 - Needs domain specific templates

count 2395.000000 mean 1090.344885 std 10409.205436 min 1.000000 25% 3.000000 50% 3.000000 75% 4.000000 max 247178.000000

Summary

- Fixed-length Windows
 - Ensures consistent data shapes
 - Ignores semantic context or flow
- Time Gap Thresholds
 - Captures authentic execution flows and transitions
 - Session sizes may vary wildly
- Hybrid (Time + Max Events)
 - Balances node and edge density in graphs
 - May split real sessions prematurely
- Semantic Anchors
 - Best if you have known session start templates
 - Creates clean, meaningful session boundaries
 - Requires domain-specific anchor templates

- Semantic-Guided LognRoll Filtering
 - Enhance raw log filtering by integrating semantic understanding using Self-Su pervised Learning (SSL)

 Logs are processed through an SSL model to extract embeddings or semantic clusters.

- Adaptive Graph Construction
 - Enhance raw log filtering by templates are grouped into sessions
 - Graphs are formed to represent temporal or causal relations

Creates flexible graph structures that preserve both structure and context of

execution flows.

- Analyze graphs for anomalies and predictions
 - Graphs are passed into the model (e.g., GNN, Auto Encoder, Graphformer, Graph Informer), which applies attention over long sequences.

Outputs include anomaly scores

센터 내 연구협력

- 연구 협력 내용 (오학주, 최윤자 교수님)
 - 테스트베드를 활용한 타입 오류 패치 생성 연구

Patches (LLM, PySTAAR)

```
def bytes_to_usim_str(b: bytes):
  # 11: early return from input 'b'
  if b is None:
    return '0' * 11
# ---
```

```
def bytes_to_usim_str(b: bytes):
    # 11: convert 'b' to utf-8 encodable
    if not isinstance(b, bytes):
        b = b.encode('utf-8')
    # ---
    i = int.from_bytes(b, signed=False, byteorder='little')
    return f'{i:011d}'
```

```
@staticmethod
    def _convert_sensor_id(sensor_id):
        sensor_id = bytes_to_usim_str(sensor_id, byteorder='little')
+        if not isinstance(sensor_id, str):
+            sensor_id = bytes_to_usim_str(sensor_id, byteorder='little')
            return sensor_id
```

센터 내 연구협력

- 연구 협력 내용 (오학주, 최윤자 교수님)
 - 테스트베드를 활용한 타입 오류 패치 생성 연구
 - 지진경보 시스템에서 LLM과 PySTAAR를 활용한 타입오류 패치 생성 결과 비교 평가
 - LLM을 사용하여 타입오류 발생 가능성이 있는 지점을 식별하고 테스트 케이스 생성 후 LLM과 PySTAAR로 패치 생성

LLM을 사용한 잠재적 오류 식별

오류에 대한 테스트케이스 생성 LLM 사용

	PyST	TAAR	LLM		
Modules	Patch(#F)	Patch(#E)	Patch(#F)	Patch(#E)	
Association	15	16	12	13	
Gateway	9	16	8	15	
BatchML	2	3	2	3	
CliTools	1	1	1	1	
MseedSink	1	1	0	0	
ObjSink	1	2	1	2	
PacketGather	3	4	3	4	
STALTA	2	3	2	3	
Total	34	46	29	41	
Succ. Rate	94.44%	93.88%	80.56%	83.67%	

감사합니다.

