2018年00P上机实验(3)

(Ver. 0.68 2020/04/03 wangxp@fudan.edu.cn)

一、实验目标

- 1) 熟悉 C++随机数的生成方法[1], 熟悉利用蒙特卡洛方法[2]计算 Pi 值, 并熟悉利用 随机数生成模拟数据的方法;
- 2) 初步了解程序执行时间的决定因素;
- 3) 比较 vector 和 list 的性能;熟悉容器的操作,包括容器的遍历、插入、删除、排序;熟悉基本的算法函数 sort。

二、实验内容

2.1 第1部分: 随机数及应用

实验过程:

1) 按照 PPT 上的介绍,编写程序计算 Pi 的值。

输入代表包含点数的数字 N,按照 PPT 上的方法计算 Pi 值, 并通过加入 stopwatch 记录程序的执行时间。对每个 N 值程序运行 5 次,其中 N 值为 10^4 , 10^5 , 10^6 , 10^7 , 10^8 , 10^9 ,在下表中记录运行的时间(单位秒,结果保留 1 位小数)。最后预测 N 值为 10^{40} 时程序的运行时间。

N取值	10 ⁴	10 ⁵	10^6	10 ⁷	10 ⁸	10°
第1次						
第2次						
第3次						
第4次						
第 5 次						
平均						
预测		当 N=10 ⁴⁰ ,预计 Pi 可以精确到位,执行时间为			执行时间为	
机器	配置	CPU:	内存:	操作系统	:	

特别提示:①浮点计算是非常耗时的操作,求平方根操作更是如此。要使计算时间最短,需要优化程序—在保证正确的前提下,有效降低计算复杂度;②随机数的生成需要做随机化操作(见PPT第77-78页,没有介绍,需要自学),否则表格中Pi值估计对同样的N值都是一样的;③特别注意 int型的数据表示范围,以及double/real类型的数据精度范围。

2.1-1 提交要求: 填写表格,并提交源代码 E1_1.cpp。

*2)选择一种你熟悉的脚本语言(例如 Python, Perl, PHP,等),按照 1)中的要求重复实验,填写下表,并于上面的结果进行比较(不同的脚本语言统计执行时间不一样,请自行查阅网络资料)。

N取值	10 ⁴	10 ⁵	10 ⁶	10 ⁷	10 ⁸	10°	
第1次							
第2次							
第3次							
第4次							
第 5 次							
平均							
预测		当 N=10 ⁴⁰ ,预计 Pi 可以精确到位,			执行时间为	秒。	

机器配置 CPU: 内存: 操作系统:

2.1-2 提交要求: 填写表格, 并提交源代码 E1 2.py/p1 等

2.2 第2部分: 学生成绩分析。

实验过程:

1) 生成一个姓名文件。

姓名文件的要求:姓名总共20000个,而且满足:①名字选择:从wordlist.txt(wordlist来自[3],做了适当的处理,共有约10W单词)选取;②具体规则如下:去掉所有字符数个数少于10个的单词;去掉所有字符个数多余12个的单词;余下的单词按照字典序排序,选择前20000个;③把程序的输出定向到20knames.txt文件。

2.2-1 提交要求: 提交源代码 E2 1.cpp 及相关文件。

2) 生成学生成绩列表。

要求学生有20000名(来自1)中的输出结果),每个学生的成绩如下(黑体行不在其中):

#name 期中 期末 平时成绩 (6次)

abandonedly 85 84 70 89 75 81 94 94

每个学生成绩占一行。其中: ①名字的选择: 从 20knames. txt 读取,通过输入重定向的方式完成;②期中的成绩均匀分布在[60,90],期末的成绩均匀分布在[50,85],平时成绩均匀分布在[70,95];③把程序的输出通过重定向的方式写入文件 20kscores. txt。

2. 2-2 提交要求: 提交源代码 E2_2. cpp 及相关文件。

3) 读入上述生成的 20kscores. txt 文件,按照如下方式计算每个学生的成绩 总成绩=0.4*期中+0.4*期末+0.2*平时成绩的中值

并把学生按照总成绩从高到低排列,按照如下格式通过 cout 输出每个学生的成绩(黑体行不在其中,且总成绩保留 1 位小数)。

#name 总成绩 期中 期末 平时成绩 (6次)

meticulous 87.6 89 83 94 94 91 80 94 94

在上述处理中,分别使用 vector 和 list,并对从输入、计算、输出的全过程通过 stopwatch 统计时间;同样的统计应该至少进行 5 次并计算平均值作为最后比较的标准。统计的时间数据通过 clog 输出。

2.2-3 提交要求: 提交源代码 E2_3. cpp 及相关文件,并提交结论: 使用 vector 还是 list 更佳。

2.3 思考题

按照上述要求完成各部分的程序。如果 E221. exe、E222. exe 和 E223. exe 分别代表 2.2 中 1)、2) 和 3) 生成的执行程序,把这些程序放在同一目录下,并把 wordlist. txt 也放在该目录下,在控制台下运行下面的命令并观察输出结果

E221 < wordlist.txt | E222 | E223

上面的 | 称为管道,会把左侧程序的输出变成右侧程序的输入,上面的命令构成了一个 线性的输入->处理->处理->···->输出的链条。

参考资料

- [1] C++随机数。https://blog.csdn.net/luotuo44/article/details/33690179
- [2] 模特卡罗方法。http://www.ruanyifeng.com/blog/2015/07/monte-carlo-method.html
- [3] 英文单词表。http://www-01.sil.org/linguistics/wordlists/english/

2020年 00P 上机实验(3)

提交检查表

2.1 提交要求

2. 1-1 提交要求: 填写表格,并提交源代码 E1_1. cpp。

N取值	10 ⁴	10 ⁵	10 ⁶	10 ⁷	10 ⁸	10°
第1次	1. 0*10 ⁻³	5. 0 *10⁻³	5. 2*10 ⁻²	5. 2 *10 ⁻¹	5. 4	53. 9
第2次	1. 0*10 ⁻³	7. 0 *10⁻³	6. 1 *10⁻²	6. 0 *10 ⁻¹	5. 4	54.0
第3次	1. 0*10 ⁻³	6. 0 *10⁻³	6. 7*10 ⁻²	5. 3 *10 ⁻¹	5. 4	53.8
第4次	1. 0*10 ⁻³	7. 0 *10⁻³	5. 0*10 ⁻²	5. 3 *10 ⁻¹	5. 3	54. 5
第5次	1. 0*10 ⁻³	5. 0 *10⁻³	5. 4*10 ⁻²	5. 2*10 ⁻¹	5. 3	53.7
平均	1. 0*10 ⁻³	6. 0 *10⁻³	5. 68*10 ⁻²	5. 4* 10 ⁻¹	5. 36	53.98
预	预测 当 $N=10^{40}$,预计 Pi 可以精确到 8 位,执行时间 $_{2}$ 5. $4*10^{40}$ 6 以 $_{3}$ 6 以 $_{4}$ 7 以 $_{5}$ 7 以 $_{5}$ 8 以 $_{5}$ 9			. 4*10 ³² _秒。		
机器配置				64位)		

2.1-2 提交要求: 填写表格,并提交源代码 E2_2.py/p1 等

N取值	10 ⁴	10 ⁵	10 ⁶	10 ⁷	10 ⁸	10°
第1次	5. 6*10 ⁻³	7. 1 *10⁻²	6. 4 *10 ⁻¹	6. 4	61. 3	621.6
第2次	5. 5*10 ⁻³	7. 7*10 ⁻²	6. 5 *10 ⁻¹	6. 2	61.0	620.4
第3次	5. 7*10 ⁻³	5. 6*10 ⁻²	6. 4 *10 ⁻¹	6.0	60.8	622.0
第4次	5. 3*10 ⁻³	7. 6 *10⁻²	6. 4 *10 ⁻¹	6. 3	61. 2	622.4
第 5 次	5. 3 *10⁻³	6. 0 *10⁻²	6. 4 *10 ⁻¹	6. 4	61.4	621.8
平均	5. 48 *10⁻³	6. 8 *10⁻²	6. 42 *10⁻¹	6. 26	61. 14	621, 64
预测 当 N=10 ⁴⁰ , 预计 Pi 可以精确到 <u>15</u> 位, 执行时间为_6. 2:			6.2*10 ³³ _秒。			
机器	配置	CPU: i5	内存: 8GB	操作系	统: win10	(64位)

2.2 提交要求

- 2. 2-1 提交要求: 提交源代码 E2_1. cpp 及相关文件。
- 2. 2-2 提交要求: 提交源代码 E2_2. cpp 及相关文件。
- 2.2-3 提交要求: 提交源代码 E2_3. cpp 及相关文件,并提交结论: 使用 vector 还是 list 更佳。(vector 更佳,因为用到的操作主要是顺序访问和索引,没有使用插入和删除等操作)