M8 - Table of Contents

M8 - 5.3 - Triangular Prism/Cylinder SA

Duotang/Notes/Homework M8 - Table of Contents M8 - Methods M8 - Remember M8 - Divide by Zero	M8 - 6.1 - Simplifying Expanding Fractions M8 - 6.2 - Multiplying/Dividing Fractions M8 - 6.3 - Mixed Numbers M8 - 6.1 - Adding/Subtracting Fractions M8 - 6.1 - Cross Simplification
M8 - Cross Multiplication M8 - Eq Frac vs Algerbra vs Cross Mult M8 - 2.0 - Equivalent Fractions M8 - 2.0 - Equivalent Triangles M8 - 3.0 - Pythagoras' Theorem M8 - 4.0 - Dec Frac % Review M8 - 4.0 - Dec Frac % Tables M8 - 7.0 - Surface Area/Volume M8 - 5.0 - Breaking Up Lines M8 - 6.0 - Fractions	M8 - 7.1 - Quadrilateral Volume M8 - 7.1 - Cylinder/Triangular Prism Volume
M8 - 6.0 - Fractions Theory M8 - 7.0 - Surface Area/Volume M8 - 8.0 - BEDMAS M8 - 8.0 - $+ - \times \div \#^2 \sqrt{\square}$ M8 - 9.0 - Graphing Review M8 - 10.0 - Solving Linear Equations	M8 - 8.1 - Number Line (+-) M8 - 8.2 - Same Plus/Different Minus M8 - 8.3 - Multiplication/Division (+-) M8 - 8.4 - BEDMAS
M8 - 3.1 - Estimating Square Roots M8 - 3.1 - Square Roots M8 - 3.1 - Cube Roots M8 - 3.2 - Pythagoras Theorem	M8 - 9.1 - Plotting Points M8 - 9.1 - Graphing TOV
M8 - 4.1 - Dec Frac % Conversions M8 - 4.2 - % of a Number	M8 - 10.1 - Add/Subtract Both Sides M8 - 10.2/3/4 - Mult/Divide Both Sides M8 - 10.5 - LCD M8 - 10.6 - Distribution M8 - 10.7 - Combine Like Terms M8 - 10.8 - Expressions
M8 - 5.1 - Net Surface Area M8 - 5.2 - Cube/Rectangular Prism SA	M8 - 10.9 - Word Problems

M8 - Methods

BEDMAS

Integers (side by side and $\times \& \div$) Same Plus: Two signs side by side that are the SAME equal a POSITIVE number.

$$+(+4) = -(-4)$$

 $+4 = +4$

Different Minus: Two signs side by side that are DIFFERENT equal a NEGATIVE number.

$$+(-4) = -(+4)$$

 $-4 = -4$

Adding Subtracting: Number-line

Equivalent/Fractions

Do to top/Do to bottom Multiply tops/bottoms Flip and Multiply LCD

Scale

Multiply/divide by the scale factor $Scale\ Factor\ = rac{Larger\ \#}{Smaller\ \#}$

Percentages, Fractions, Decimals:

$$\frac{Part}{Total} = Decimal$$

$$Part = Decimal \times Total$$

$$Decimal \times 100 = \%$$
 (decimal two to right)
 $\% \div 100 = Decimal$ (decimal two to left)

$$0.1 = \frac{1}{10} \qquad 0.\overline{3} = \frac{3}{9}$$

$$0.23 = \frac{23}{100} \qquad 0.\overline{45} = \frac{45}{99}$$

$$0.045 = \frac{45}{1000}$$

1%

Equations:

Golden Rule: Do to the Left/Do to the Right

Adding Subtracting both sides Multiplying Dividing both side

Like Terms

Square Root both sides

Expressions/Equations 1 Variable

Multiply by the LCD, Do to one Do to all.

Subtract the smaller coefficient of *x* from both

sides or add the more negative.

$$\frac{x}{2} = \frac{1}{2}$$

$$\frac{x}{2} = \frac{1}{2}$$

$$\frac{x}{2} = \frac{1}{2}$$

$$x = 1$$

$$\frac{x}{4} = \frac{1}{4} + \frac{2}{4}$$

$$\begin{array}{c}
a = b \\
b = a
\end{array}$$

$$\frac{a}{b} = \frac{c}{d}$$

$$\frac{b}{a} = \frac{d}{c}$$

Substitution:

$$a = 2$$

 $3a = ?$
 $3(2) = 6$

Put 2 in for "a" with brackets

Distribution:

$$2(x + 4) = 2x + 8$$

Geometry:

Pythagorean Relationship

$$a^2 + b^2 = c^2$$

Perimeter, Area, Volume
Net Surface Area: Lay Shape Flat
Formulas

Square Roots

$$\sqrt{4} = \sqrt{2 \times 2} = 2$$

Estimating Squares/Square Roots

Probability

Probability
$$Probability = \frac{number\ of\ favorable\ outcomes}{total\ outcomes}$$

Methods:

Table

Tree: Multiply Branches=Cells

Add Leaves/Cells

M8 - Remember

Integers $* -2 - 2 \neq 4$

Same Plus	Different Minus
$+ \times + = +$	$+ \times - = -$
$- \times - = +$	$- \times + = -$
+ ÷ + = +	$+ \div - = -$
$-\div-=+$	$-\div+=-$
is	What is 20% of 50.
\overline{of}	$.20 \times 50 = 10$

15% fewer doesn't mean 0.15p it means (1 - 0.15)p or 0.85p

Fractions

Every Number is Over "1."
$$-\frac{2}{3} = \frac{-2}{3} = \frac{2}{-3} \neq \frac{-2}{-3} \qquad \frac{-2}{-3} = \frac{2}{3}$$

$$\frac{x}{2} = \frac{1x}{2} = \frac{1}{2}x = \frac{1}{2} \times x$$
 $\frac{1}{2x} \neq \frac{1}{2}x$

$$\frac{1}{3} + \frac{1}{5} \neq \frac{1}{3+5} \qquad \frac{3}{2+1} \neq \frac{3}{2} + \frac{3}{1}$$
$$\frac{1+2}{3+2} \neq \frac{1}{3} + 1$$

Equations

$$\begin{array}{r}
 x + x = 2x \\
 x \times x = x^2
 \end{array}$$

$$\begin{array}{r}
 -x = -1x \\
 3 = 3^1
 \end{aligned}$$

$$\begin{array}{r}
 1 \times x = 1x = x = x^1 \\
 2 \times x = 2(x) = 2x = x^2
 \end{aligned}$$

$$\begin{array}{r}
 2 \times x = 2(x) = 5x = x^2
 \end{array}$$

$$\begin{array}{r}
 2 \times x = 5x = 5x^0
 \end{array}$$

Factor trees:

Regardless of how you make the factor tree, you will always end up with the same prime factors

Pythagoras:

"c" is always the hypotenuse, the longest side Bigger square — Smaller square = Other smaller square.

Square Roots (Radicals)

$$3 \times 3 = 9$$
 $\sqrt{9} = 3$ $5 \times 5 = 25$ $\sqrt{25} = 5$

Can't square root a negative

$$\sqrt{-9}$$
 = undefined

The area of a square with side lengths 3 is 9. The square root of 9 is 3.

Geometry

Adjacent sides of net areas are the same length The width of rectangle in the cylinders net area is the circumference of the circle

$$V = (area\ of\ base) \times height$$

Exponent:

Do not multiply the base by the exponent!

Probability:

$$And = multiply$$

 $Or = add$

Common Mistakes

$$\frac{a}{b+c} \neq \frac{a}{b} + \frac{a}{c}$$

$$\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$$

Algebra

$$a + 1 = a + 1$$
 Can't add or subtract unlike terms.
Can only add or subtract like terms.

Linear Equations

Table of Values TOV x - intercept: y = 0, $put \ 0 \ in \ for \ y \ and \ solve$. (x, 0) y - intercept: x = 0, $put \ 0 \ in \ for \ x \ and \ solve$. (0, y)

Two signs side by side

Multiplication And Division of Positive and Negative Numbers

$$4 - (-5) = 4 + 5 = 9$$

$$-4 \times -5 = +20$$

Same Plus
Different Minus

Adding And Subtraction

Number Line

^{*}Base must be identical to Top

M8 - Div Zero/Negative

$$\frac{8}{2} = 4$$

$$2 \times 4 = 8$$

How many times does two go into eight? Two times what is eight?

$$\frac{0}{8} = 0$$

$$8 \times 0 = 0$$

$$\frac{0}{\#} = 0 \qquad \qquad \frac{0}{x} = 0$$

How many times does eight go into zero? Eight times what is zero? Zero divided anything is zero.

$$\frac{8}{0} =$$
 $\times 0 = 8$

$$\frac{8}{0} \neq 0 \qquad 0 \times 0 \neq 8$$

How many times to zero go into eight? 8÷0 is not equal to zero because 0×0 is not equal to 8. What times zero equals eight?

$$\frac{8}{0} = und$$
 $\frac{x}{0} = und$

$$\frac{x}{0} = \text{und}$$

Any number divided by zero is <u>undefined</u> because we don't have the definition for the answer!

$$-x = 5$$

$$+x + x$$

$$0 = 5 + x$$

$$-5 - 5$$

Add x to both sides

-x = 5 $\begin{array}{ccc}
-1x &= 5 \\
-1x & 5
\end{array}$ OR

Negative x is equal to negative 1.

$$\begin{array}{ccc}
-5 & -5 \\
-5 & = x
\end{array}$$

$$-5 = x$$

 $x = -5$

Subtract five from both sid

Divide both sides by -1

M8 - Cross Multiplication

Cross - Multiply

Instead of multiplying both sides by three just bringing the three up across and multiplying.

$$\frac{d}{t} = v$$

d = vt

$$\frac{d}{v} = t$$

$$\frac{6}{3} = 2$$

Switch 2 and 3

M8 - 2.0 - Equivalent Fractions Review

Expanding Ratios/Fractions

$$\begin{array}{c}
\times 2 \\
1 \\
\overline{2} = \overline{4} \\
\times 2
\end{array}$$

Multiply top by 2, must multiply bottom by 2

Multiply in one direction, must divide in other

$$\times 2 \left(\begin{array}{c} 1:2\\2:4 \end{array}\right) \times 2$$

Multiply left by 2, multiply right by 2

Simplifying Ratios/Fractions

$$\frac{\div 5}{5}$$

$$\frac{5}{20} = \frac{1}{4}$$

$$\div 5$$

Divide top by 5, must divide bottom by 5

$$\div$$
 5 $(5:20)$ \div 5

Divide left by 5, divide right by 5

Equivalent Fractions

$$\frac{\times 2.4}{\frac{3}{5}} = \frac{x}{12}$$

 $\times 2.4$

Multiply bottom by 2.4, must multiply top by 2.4

$$\frac{12}{5} = 2.4$$

$$\begin{array}{c}
\times 2.4 \\
3 \\
\hline
5 \\
\end{array}
= \frac{7.2}{12}$$

x = 7.2

Multiply bottom by 2.4, must multiply top by 2.4

If you multiply one direction, divide in the other direction

M8 - 2.0 - Triangles Equivalent Fractions Review

$$\frac{x}{12} = \frac{3}{6}$$

$$12 \times \frac{x}{12} = \frac{3}{6} \times 12$$

$$x = \frac{36}{6}$$

$$x = 6$$

$$\frac{x}{12} = \frac{3}{6} \qquad \frac{x}{a} = \frac{c}{b}$$

M8 - 3.0 - Pythagoras' Theorem Review

Pythagoras' Theorem: $a^2 + b^2 = c^2$

Remember: "c" is always the Hypotenuse: the longest side

9 squares + 16 squares = 25 squares $\sqrt{25} = 5$

Solve for "c".

$$a^{2} + b^{2} = c^{2}$$

$$3^{2} + 4^{2} = c^{2}$$

$$9 + 16 = c^{2}$$

$$25 = c^{2}$$

$$\sqrt{25} = \sqrt{c^{2}}$$

$$5 = c$$

Solve for "a" or "b".

$$a^{2} + b^{2} = c^{2}$$

$$6^{2} + b^{2} = 10^{2}$$

$$36 + b^{2} = 100$$

$$-36 - 36$$

$$b^{2} = 64$$

$$\sqrt{b^{2}} = \sqrt{64}$$

$$b = 8$$
OR

Remember:

The Area of the two small squares adds to the area of the large square.

$$c = \sqrt{a^2 + b^2}$$

Remember:

Bigger square minus smaller square equals other smaller square.

$$c^{2}-a^{2} = b^{2}$$

$$10^{2} - 6^{2} = b^{2}$$

$$100 - 36 = b^{2}$$

$$64 = b^{2}$$

$$\sqrt{64} = \sqrt{b^{2}}$$

$$b = 8$$

$$b = \sqrt{c^2 - a^2}$$

M8 - 4.0 - Decimals/Fractions/Percentages Review

3742.347 = 3000 + 700 + 40 + 2 + 0.3 + 0.04 + 0.007

Decimals

$0.1 = \frac{1}{10}$	$0.2 = \frac{2}{10}$	$\frac{Tenths}{10}$
$0.23 = \frac{23}{100}$	$0.48 = \frac{48}{100}$	$\frac{Hundredths}{100}$
$0.457 = \frac{457}{1000}$	$0.068 = \frac{68}{1000}$	Thousandths
1000	1000	1000

Repeating decimals

$0.\overline{3}=\frac{3}{9}$	$0.\overline{6}=\frac{6}{9}$	$\frac{Tenths}{9}$
$0.\overline{45} = \frac{45}{99}$	$0.\overline{03} = \frac{3}{99}$	Hundredths 99
$0.\overline{231} = \frac{231}{999}$	$0.\overline{202} = \frac{202}{999}$	Thousandths 999

Percentages

$$\frac{\times 100}{\longrightarrow}$$
 Move decimal 2 places to the right.
$$1.00 = 100.\%$$
 Move decimal 2 places to the left.
$$\longleftrightarrow$$

$$\div 100$$

$$0.42 = 42\%$$
 $0.50 = 50\%$ $\% = decimal \times 100$ $2.24 = 224\%$ $0.065 = 6.5\%$ $decimal = \frac{\%}{100}$

A percentage is the top of a fraction over 100.

 $\frac{is}{of}$ bottom top.

M8 - 4.0 - Fractions Decimals % Table

Fractions	Decimals	%
1 10	.1	100%
3 10	0.3	30%
7 10	0.7	70%
9 10	0.9	90%

Fractions	Decimals	%
$\frac{1}{2} = \frac{5}{10}$	0.50	50%
$\frac{1}{3} = \frac{3}{9}$	0.3	33.3%
$\frac{1}{4} = \frac{25}{100}$	0.25	25%
$\frac{1}{5} = \frac{2}{10}$	0.20	20%
$\frac{1}{6}$	0.16	16.6%
1 7	0.14	14.29%
1 8	0.13	12.5%

Fractions	Decimals	%
$\frac{2}{3} = \frac{6}{9}$	0.6	66.6%
$\frac{2}{5} = \frac{4}{10}$	0.40	40%
$\frac{2}{7}$	0.29	28.57%

Fractions	Decimals	%
$\frac{3}{4} = \frac{75}{100}$	0.75	75%
$\frac{3}{5} = \frac{6}{10}$	0.60	60%
3 7	0.43	42.86%
$\frac{3}{8}$	0.38	37.5%

Fractions	Decimals	%
$\frac{4}{5} = \frac{8}{10}$	0.80	80%
$\frac{4}{7}$	0.57	57.14%

Fractions	Decimals	%
<u>5</u>	0.83	83.3%
5 7	0.71	71.43%
5 8	0.63	62.5%

Fractions	Decimals	%
$\frac{6}{7}$	0.86	85.71%

Fractions	Decimals	%
7 8	0.88	87.5%

Fractions	Decimals	%
$\frac{1}{9}$.1	11.1%
$\frac{1}{9}$ $\frac{2}{9}$	0.2	22.2%
4 9	0.4	44.4%
<u>5</u>	0.5	55.5%
7 9	0.7	77.7%
8 9	0.8	88.8%

Fractions	Decimals	%
22 7	3.14	31.42%

M8 - 5.0/7.0 - SA/V of Cube/Rect/Cylinder/Triangular Prism Review

<u>Shape</u>	Surface Area	<u>Volume</u>
<u>Cube</u>	$SA = s^2 \times 6$	$V = Area_{base} \times height$ $V = lwh$
Rectangular Prism h	SA = 2(lw + lh + wh)	$V = Area_{base} \times height$ $V = lwh$
<u>Cylinder</u>	$SA=2\pi r^2+2\pi rh$ The circumference of the circle in a cylinder is the width of the rectangle.	$V = Area_{base} \times height$ $V = \pi r^2 h$
Triangular Prism S h H	Lay flat and add up all areas	$V = Area_{base} \times height$ $V = \frac{bh}{2} \times H$

M8 - 5.0 - Breaking up a Line Notes

10	
8	
	2

8 + 2 = 10

Find x.

$$x + 3 = 6$$

$$-3 - 3$$

$$x = 3$$

M8 - 6.0 - Fraction Operations Review

Simplification

$$\frac{2}{4} =$$

$$\frac{2 \div 2}{4 \div 2} = \frac{1}{2}$$

Divide the top and bottom

Multiplying Fractions

$$\frac{1}{2} \times \frac{1}{3} = \frac{1 \times 1}{2 \times 3} = \frac{1}{6}$$

Multiply tops Multiply bottoms

Dividing Fractions

$$\frac{1}{4} \div \frac{2}{3} = \frac{1}{4} \times \frac{3}{2} = \frac{3}{8}$$

Flip second fraction and multiply

Adding Fractions

$$\frac{2}{3} + \frac{1}{4} = \frac{2 \times 4}{3 \times 4} + \frac{1 \times 3}{4 \times 3} = \frac{8}{12} + \frac{3}{12} = \frac{11}{12}$$

LCD = 12Multiply top and bottom of first fraction by 4Multiply top and bottom of second fraction by 3Add numerators

Subtracting Fractions

$$\frac{1}{3} - \frac{1}{6} = \frac{1 \times 2}{3 \times 2} - \frac{1}{6} = \frac{2}{6} - \frac{1}{6} = \frac{1}{6}$$

LCD = 6
Multiply top and bottom of first fraction by 2
Subtract numerators

Mixed numbers to Improper Fractions

$$2\frac{3}{5} = \frac{bottom \times left + top}{bottom}$$
$$= \frac{5 \times 2 + 3}{5} = \frac{13}{5}$$

Multiply the bottom by the left and add the top (this number goes in the numerator of the improper fraction)

Improper Fractions to Mixed numbers

$$\frac{13}{4} = 3\frac{1}{4}$$

Bottom goes into top 3 times (this number goes in front of the fraction)

Remainder goes in the numerator

M8 - 6.0 - Fractions Algebra Theory

$$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$$

$$a \times \frac{b}{c} = \frac{ab}{c}$$

$$\frac{a}{b} \times c = \frac{ac}{b}$$

$$\frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{d}\right)} = \frac{a}{b} \div \frac{c}{d} = \frac{ad}{bc} \qquad \frac{a}{b} \div \frac{c}{d} = \frac{ad}{bc}$$

$$\frac{a}{\left(\frac{b}{c}\right)} = \\ a \div \frac{b}{c} = \\ a \times \frac{c}{b} = \frac{ac}{b} \qquad a \times \frac{c}{b} = \frac{ac}{b}$$

$$\frac{\left(\frac{a}{b}\right)}{c} = \frac{a}{b} \div c = \frac{a}{b} \div c = \frac{a}{b} \times \frac{1}{c} = \frac{a}{bc}$$

$$\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b}$$

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + cb}{bd}$$

M8 - 5.0/7.0 - SA/V of Cube/Rect/Cylinder/Triangular Prism Review

<u>Shape</u>	Surface Area	<u>Volume</u>
<u>Cube</u>	$SA = s^2 \times 6$	$V = Area_{base} \times height$ $V = lwh$
Rectangular Prism h	SA = 2(lw + lh + wh)	$V = Area_{base} \times height$ $V = lwh$
<u>Cylinder</u>	$SA=2\pi r^2+2\pi rh$ The circumference of the circle in a cylinder is the width of the rectangle.	$V = Area_{base} \times height$ $V = \pi r^2 h$
Triangular Prism S h H	Lay flat and add up all areas	$V = Area_{base} \times height$ $V = \frac{bh}{2} \times H$

BEDIMAS

 $M8-8.0-Relationships \times \div \pm = \neq \sqrt{2}$

Graphing linear relations

Table of values method:

x	y
0	
1	
2	
3	
4	

y = mx + b		
x	y	
-2		
-1		
0		
1		
2		

Intercept method:

$$ax + by = c ax + by + c = 0$$

x	y
0	
	0

Finding y-intercept (0, y): Set x = 0, Solve for y

Finding x-intercept (x, 0): Set y = 0, Solve for x

Independent variable

Dependent variable

7	,
X	y 🖊
-4	
-2	
0	
2	
4	

y depends on x.

<i>y</i> =	$=\frac{3}{2}x$	+	1
------------	-----------------	---	---

Make the increments of x, away from 0, in the table of values, the denominator of x in the equation.

OPPOSITE BOTH SIDES

Notes

M8 - 10.0 - Solving Linear Equations Review

1.
$$a + 1 = 2$$

 $a + 1 = 2$
 $a + 1 = 2$
 -1 Subtract 1 from both sides
 $a + 1 = 2$
 -1 Subtract 1 from both sides
 $a + 1 = 2$
 -1 -1 $+1 - 1 = 0$. Cross it off.

$$a = 1$$

2.
$$a - 1 = 2$$

$$a - 1 = 2$$

+1 + 1

Add 1 to both sides

$$a - 1 = 2 + 1 + 1$$

-1 + 1 = 0. Cross it off.

$$a = 3$$

3.
$$2a = 4$$

$$\frac{2a}{2} = \frac{4}{2}$$

Divide both sides by the number in front of the letter.

$$\frac{2a}{2} = \frac{4}{2}$$

 $\frac{2}{2}$ = 1. Cross it off.

$$a = 2$$

4.
$$\frac{a}{2} = 3$$

$$2 \times \frac{a}{2} = 3 \times 2$$

 $2 \times \frac{a}{2} = 3 \times 2$ Multiply both sides by the number below the letter.

$$\frac{2}{2} \times \frac{a}{2} = 3 \times 2$$
 $\frac{2}{2} = 1$. Cross it off.

$$a = 6$$

$$5. \qquad \frac{2}{a} = 1$$

$$a \times \frac{2}{a} = 1 \times a$$

Multiply both sides by a.

$$\alpha \times \frac{2}{\alpha} = \frac{1 \times a}{a} = 1$$
. Cross it off.

$$2 = a$$

6.
$$x^2 = 25$$

$$\sqrt{x^2} = \sqrt{25}$$

Square root both sides.

$$x = 5$$

M8 - 10.0 - Solving Linear Equations Review

1.
$$a + 1 = 2$$

$$a + 1 = 2$$

Subtract 1 from both sides

$$a + 1 = 2$$

-1 - 1

+1 - 1 = 0. Cross it off.

$$a = 1$$

$$a + 1 = 2 - 1$$

Cross it off, bring to the other side, and change the sign from positive to negative.

2.
$$a - 1 = 2$$

$$a - 1 = 2$$

$$+1 + 1$$

Add 1 to both sides

$$a - 1 = 2$$

-1 + 1 = 0. Cross it off.

$$a = 3$$

2. a - 1 = 2

$$a-\sqrt{1=2+1}$$

a = 3

Cross it off, bring to the other side, and change the sign from negative to positive.

3. 2a = 4

$$\frac{2a}{2} = \frac{4}{2}$$

number in front of the letter.

$$\frac{2a}{2} = \frac{4}{2}$$

a = 2

Divide both sides by the

$$\frac{2}{2}$$
 = 1. Cross it off.

3. 2a = 4

$$2a = \frac{4}{2}$$

a = 2

Cross it off and place it BELOW the other side.

$$r = 2$$

4.
$$\frac{a}{2} = 3$$

$$2 \times \frac{a}{2} = 3 \times$$

 $2 \times \frac{a}{2} = 3 \times 2$ Multiply both sides by the number below the letter.

$$\frac{2}{2} \times \frac{a}{2} = 3 \times 2$$
 $\frac{2}{2} = 1$. Cross it off.

$$\frac{a}{2} = 3$$

$$\frac{a}{2} = 3 \times 2$$

Cross it off and times by 3.

$$a = 6$$

$$5. \qquad \frac{2}{a} = 1$$

$$a \times \frac{2}{a} = 1 \times a$$

 $a \times \frac{2}{a} = 1 \times a$ Multiply both sides by a.

$$\propto \frac{2}{a} = \frac{1 \times a}{a} = 1$$
. Cross it off.

$$2 = a$$

$$\frac{2}{a} = 1$$

$$\frac{2}{\alpha} = 1 \times a$$

Cross it off and times

$$2 = a$$

Notice: method #1 and method #2 produce identical answers.

6.
$$x^2 = 25$$

$$\sqrt{x^2} = \sqrt{25}$$
$$x = 5$$

Square root both sides.

$$\begin{array}{ccc}
 x + 4 &= 2x \\
 -x & -x
 \end{array}$$

Subtract x from both sides

M8 - 10.0 - Golden Rule Scale Picture Notes

The Golden Rule: Whatever you do to the right side of the equal sign, do to the left side.

What plus 1 = 4?

$$\begin{aligned}
 x + 1 &= 4 \\
 -1 &= 1 \\
 x &= 3
 \end{aligned}$$

x = 3

Take off one from both sides

$$\frac{2x}{2} = \frac{8}{2}$$
$$x = 4$$

Divide both sides by two

Or Add/Subtract Fractions with LCD. Or Cross Multiplication/Algebra

M8 - 10.0 - Multiply By LCD Review

$$\frac{x}{2} + \frac{1}{4} = \frac{3}{4}$$

$$\left(\frac{x}{2} + \frac{1}{4} = \frac{3}{4}\right) \times 4$$

$$\frac{4x}{2} + \frac{4}{4} = \frac{12}{4}$$

$$2x + 1 = 3$$

$$-1 - 1$$

$$2x = 2$$

$$\frac{2x}{2} = \frac{2}{2}$$

$$x = 1$$

Multiply by the LCD=4

$$\frac{x}{2} + \frac{1}{4} = \frac{3}{4}$$

$$\frac{2 \times x}{2 \times 2} + \frac{1}{4} = \frac{3}{4}$$

$$\frac{2x}{4} + \frac{1}{4} = \frac{3}{4}$$

$$\frac{\left(\frac{2x}{4} + \frac{1}{4} = \frac{3}{4}\right) \times LCL}{2x + 1 = 3}$$

$$-1 - 1$$

$$2x = 2$$

$$\frac{2x}{2} = \frac{2}{2}$$

$$x = 1$$

Get an LCD then Multiply by the LCD

All three are the same question! Which solution do you like the best?

$$\frac{x}{2} + \frac{1}{4} = \frac{3}{4}$$

$$2x + 1 = 3$$

$$2x = 2$$

$$x = 1$$

Instead of actually multiplying by the LCD we are going to multiply and simplify at the same time.

$$\frac{x}{2} + \frac{1}{4} = \frac{1}{2}$$

$$\left(\frac{x}{2} + \frac{1}{4} = \frac{1}{2}\right) \times LCD$$

$$\frac{4x}{2} + \frac{4}{4} = \frac{4}{2}$$

$$2x + 1 = 2$$

$$2x = 1$$

$$x = \frac{1}{2}$$

$$LCD = 4$$

$$\begin{pmatrix} \frac{x}{2} + \frac{1}{4} = \frac{1}{2} \end{pmatrix} \times LCD$$

$$2x + 1 = 2$$

$$2x = 1$$

$$x = \frac{1}{2}$$

Instead of actually multiplying by the LCD we are going to multiply and simplify at the same time.

M8 - 10.0 - Equations Theory Notes

What's the goal?

To get the letter by itself. (On top with a 1 in front)

Is it by itself?

Yes or no.

Remember: Generally, working with equations, we do BEDMAS backwards, starting with S. This is only a general rule, sometimes it doesn't hold true.

What is attached to it on its side of the equal sign? What operation is being applied?

How do we cross it/them off?

What is the opposite operation?

Do the opposite to both sides.

Cross it off.

Repeat

$$x + 2 = 5$$

$$x + 2 = 5$$
 $-2 - 2$

Subtract 2 from both sides.

$$x + 2 = 5$$

-2 -2 Plus 2 minus 2 equals 0, cross it off.

$$x = 3$$

$$3x - 3 = 6$$

$$3x - 3 = 6$$

Add 3 to both sides.

$$3x = 9$$

$$\frac{3x}{3} = \frac{9}{3}$$

Divide both sides by 3

$$x = 3$$

What's the goal?

To get the letter by itself. (On top with a 1 in front)

M8 - 10.0 - Equiv Fracts - Algebra - X-Mult Review

Equivalent Fractions

Algebra

$$\frac{x}{2} = 4$$

$$\frac{x}{2} = 4 \times 2$$

$$x = 8$$

$$\frac{x}{2} = 4 \times 2$$

$$x = 8$$

Cross Multiplication

$$\frac{x}{2} = \frac{4}{1}$$

$$1x = 4 \times 2$$

$$x = 8$$

M8 - 10.0 - Substitution/Check Answer Notes

$$a = 2$$
, what does $3a$ equal? $3a = ?$

$$3a = ?$$

$$3(2) = 6$$

Just put 2 in for a.

$$a = -2$$
, what does 4a equal? $4a = ?$

$$4a = ?$$
 $4(-2) = -8$

Just put -2 in for a.

Substitution is also used to check your answer.

$$x + 2 = 5$$

$$-2 - 2$$

$$x = 3$$

Left-hand-side equals right-hand-side, correct.

Substitute a point into an equation to see if the point is on the line

$$y = x + 2
4 = 2 + 2
4 = 4$$

$$(x, y)$$

$$(2,2)$$