Понижение размерности и отбор признаков

Данил Лыков

ΝΤΦΜ ΕΦΠΦ

Москва, 2018

План

- Линейная алгебра
 - Вектора
 - Базис
 - Преобразование, собственные вектора
- Principal Component Ananlysis
 - Постановка задачи
 - Реализация
- Отбор признаков
- Метрики, кросс-валидация

$$(\alpha + \beta)a = \alpha a + \beta a$$

$$\alpha(a+b) = \alpha a + \alpha b$$

$$(\alpha + \beta)a = \alpha a + \beta a$$

■
$$a + b = b + a$$

$$\alpha(\beta a) = (\alpha \beta) a$$

$$a + (b + c) = (b + a) + c$$

$$(\alpha + \beta)a = \alpha a + \beta a$$

■
$$a + b = b + a$$

$$\alpha(\beta a) = (\alpha \beta)a$$

$$a + (b + c) = (b + a) + c$$

•
$$o + a = a$$

$$a + \overline{a} = 0$$

$$a=1a$$

Например

$$\alpha(\beta a) \neq (\alpha \beta) a$$

Базис

Множество $E = \{e_i\}$ для которого: любой элемент представим в виде суммы элементов из множества E с коэфициентами. Дают ноль только с нулевыми коэффициентами

$$a = \sum_{n=1}^{d} \alpha_n e_n$$

Количество базисных векторов – размерность пространства

Типы по Гиппократу-Галену	Черты темперамента	ICD-10 диагнозы	ICD-10 коды †
Холерик	Импульсивность, агрессия	Импульсивное расстройство личности	F60.30
Флегматик	Социально отстраненный, погруженный в себя	Шизоидное расстройство личности	F60.1
Меланхолик	Грустный, боязливый, подавленный, слабый	Тревожное расстройство личности	F60.6
Сангвиник	Подвижный, социальный, уверенный в себе	Гипомания	F30.0

• MBTI, OCEAN

Скалярное произведение

Любая функция $f:V^2\mapsto \mathbb{R}\;(f(a,b)=lpha)$ для которой:

Скалярное произведение

Любая функция
$$f:V^2\mapsto \mathbb{R}\;(f(a,b)=lpha)$$
 для которой: $f(lpha a+eta b,c)=lpha f(a,c)+eta(b,c)$ $f(a,b)=\overline{f(b,a)}$ $f(a,a)\equiv\langle a,a\rangle\geq 0$ $a+b=\sum e\langle e,a\rangle+\sum e\langle e,b\rangle=\sum e\langle e,a+b\rangle$

Principal Component Ananlysis

Хотим выбарть другой базис, меньшей размерности, dim(X) = D, dim(X') = d Можно выбрать $\{e_i\}_{i=1}^d$ произвольно, затем оптимизировать

Проекции: $p_i=e_iX$ $(x_j$ – столбцы, p_i – строчки)

Цель — найти такие вектора, проекции X на которые ближе всего исходным данным Хорошо когда расстояние до вектора меньше — больше проекция.

РСА, Реализация

При условии что выборка центрирована, дисперсия: $p_i p_i^T = \langle e_i X, e_i X \rangle = e_i X X^T e_i^T = \lambda_i$ Требование: $\langle e_i, e_i \rangle = 1, E^T E = I$ $e_i X X^T e_i^T = \lambda_i$ Перепишем в немного другом виде $X X^T e_i^T = \lambda_i e_i^T$ $X X^T -$ матрица ковариаций

РСА, Реализация

 $XX^{T}e_{i}^{T}=\lambda_{i}e_{i}^{T}$ Каждой матрице соответствует какое-то преобразование пространства (визуализация)

Собственные вектора $Wa = \lambda a$ (визуализация)

РСА, Реализация

Как найти? $X = UDV^T$ Singular Value Decomposition U, V — поворот или отражение D — все элементы кроме диагональных — нули

РСА, Реализация

Как найти?

 $X = UDV^T$ Singular Value Decomposition

U, V – поворот или отражение

D – все элементы кроме диагональных – нули

U – собственные вектора X^TX

V – собственные вектора XX^T

 $D = extit{diag}(\sqrt{\lambda}_1, \sqrt{\lambda}_2, ..)$ — диагональная матрица

из корней собственных значений

РСА, Визуализация

РСА, Визуализация

Kernel PCA

$$\langle \phi(a), \phi(b) \rangle = K(a, b)$$

Рис. 8: Иллюстрация ядрового метода главных компонент.

Лыков Данил, МФТИ Москва, 2018 стр. 16 из 19

kernel pca

$$k(a,b) = e^{-||a-b||^2}$$

Отбор признаков

- Обучаемся на подмножестве, выбираем лучший скор
- Жадный перебор
- ADD-DEL
- Из данных самой модели

Кросс-валидация

Делим на k частей (фолдов).

Тренируем на k-1 и оцениваем качество модели на одном из них.

