7.3 - Substituição Trigonométrica

Substituição Trigonométrica consiste de eliminar radicais usando alguma relação trigonométrica. Por exemplo, do teorema fundamental da trigonometria, temos que,

$$\cos^2 x + \sin^2 x = 1 \quad \Rightarrow \quad \cos^2 x = 1 - \sin^2 x$$

Numa integral como $\int \sqrt{1-x^2} dx$, a ideia é fazer $x = \operatorname{sen} \theta$, de modo que

$$\sqrt{1-x^2} = \sqrt{1-\sin^2\theta} = \sqrt{\cos^2\theta} = |\cos\theta|$$

Mas, note que, o domínio para essa função é $1-x^2 \geq 0 \Rightarrow x^2 \leq 1$ $\Rightarrow -1 \leq x \leq 1$. Assim, ao se fazer a substituição $x = \operatorname{sen} \theta$, é necessário definir um domínio para θ que seja capaz de produzir todos os valores de 'x'. Como $-1 \leq \operatorname{sen} \theta \leq 1$, para $-\frac{\pi}{2} < \theta \leq \frac{\pi}{2}$, este domínio é suficiente.

Além disso, para
$$-\frac{\pi}{2} < \theta \le \frac{\pi}{2}$$
, temos que $\cos x \ge 0$. Logo, $\sqrt{\cos^2 \theta} = |\cos \theta| = \cos \theta$. E como $\frac{dx}{d\theta} = \frac{d}{d\theta} \sin \theta = \cos \theta$

$$\Rightarrow dx = \cos\theta \, d\theta$$

Assim, a integral fica

$$\int \sqrt{1 - x^2} \, dx = \int \cos \theta \cdot \cos \theta \, d\theta = \int \cos^2 \theta \, d\theta$$
$$= \frac{1}{2} \int 1 + \cos 2\theta \, d\theta = \frac{1}{2} (\theta + \frac{1}{2} \cdot \sin 2\theta) + c$$

Agora, como a integral é indefinida, é necessário retornar para x. Mas, para isso, $x = \sin \theta$ deve ser injetiva. O que de fato ocorre para $-\frac{\pi}{2} < \theta \leq \frac{\pi}{2}$. Assim, associando o triâmgulo retângulo

$$sen \theta = \frac{x}{1} \qquad a^2 + x^2 = 1^2 \quad \Rightarrow \quad a = \sqrt{1 - x^2}$$

$$cos \theta = \frac{a}{1} = \sqrt{1 - x^2} \qquad e \qquad \theta = sen^{-1} x$$

$$\int \sqrt{1 - x^2} \, dx = \frac{1}{2} (\theta + \frac{1}{2} \cdot \sin 2\theta) + c = \frac{1}{2} (\theta + \sin \theta \cdot \cos \theta) + c$$
$$= \frac{1}{2} (\sin^{-1} x + x \cdot \sqrt{1 - x^2}) + c$$

Tabela de Substituições Trigonométricas

Expressão	Substituição	Identidade
$\sqrt{a^2-x^2}$	$x = a \sin \theta, -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$	$1 - \sin^2\theta = \cos^2\theta$
$\sqrt{a^2+x^2}$	$x = a \operatorname{tg} \theta, -\frac{\pi}{2} < \theta < \frac{\pi}{2}$	$1 + tg^2\theta = \sec^2\theta$
$- \left \sqrt{x^2 - a^2} \right $	$x = a \sec \theta, 0 \le \theta < \frac{\pi}{2} \text{ ou } \pi \le \theta < \frac{3\pi}{2}$	$\sec^2\theta - 1 = tg^2\theta$

[✓] No livro está errado!

EXEMPLO 1 Calcule
$$\int \frac{\sqrt{9-x^2}}{x^2} dx$$
.

Seja
$$x = 3$$
 sen θ , onde $-\pi/2 \le \theta \le \pi/2$. Então $dx = 3 \cos \theta \ d\theta$ e

$$\sqrt{9 - x^2} = \sqrt{9 - 9 \operatorname{sen}^2 \theta} = \sqrt{9 \cos^2 \theta} = 3 |\cos \theta| = 3 \cos \theta$$

$$-\int \frac{\sqrt{9-x^2}}{x^2} dx = \int \frac{3\cos\theta}{9\sin^2\theta} 3\cos\theta d\theta$$

$$\int \frac{\cos^2\theta}{\sin^2\theta} d\theta = \int \cot^2\theta d\theta$$

$$= \int \left(\csc^2 \theta - 1 \right) d\theta$$

$$= -\cot\theta \, \theta - \theta + C$$

Para retornar para x, se $x = 3 \cdot \sin \theta$ \Rightarrow $\sin \theta = \frac{x}{3}$ $e = \theta = \sin^{-1}(x/3)$

$$a^{2} + x^{2} = 3^{2} \Rightarrow a = \sqrt{9 - x^{2}}$$

$$a = \sqrt{9 - x^{2}}$$

$$\cot \theta = \frac{\text{Cateto adjacente}}{\text{Cateto oposto}} = \frac{\sqrt{9 - x^{2}}}{x}$$

Assim,
$$\int \frac{\sqrt{9-x^2}}{x^2} dx = -\frac{\sqrt{9-x^2}}{x} - \operatorname{sen}^{-1}\left(\frac{x}{3}\right) + C$$

EXEMPLO3 Encontre
$$\int \frac{1}{x^2 \sqrt{x^2 + 4}} dx$$
.

Se
$$x = 2 \operatorname{tg} \theta$$
, $-\pi/2 < \theta < \pi/2$. Então $dx = 2 \sec^2 \theta \, d\theta \, e$

$$\sqrt{x^2 + 4} = \sqrt{4(\operatorname{tg}^2 \theta + 1)} = \sqrt{4 \sec^2 \theta} = 2 |\sec \theta| = 2 \sec \theta$$

$$\int \frac{dx}{x^2 \sqrt{x^2 + 4}} = \int \frac{2 \sec^2 \theta \ d\theta}{4 \operatorname{tg}^2 \theta \cdot 2 \sec \theta} = \frac{1}{4} \int \frac{\sec \theta}{\operatorname{tg}^2 \theta} \ d\theta$$

Para calcularmos essa integral trigonométrica, colocamos tudo em termos de sen θ e cos θ :

$$\frac{\sec \theta}{\mathsf{tg}^2 \theta} = \frac{1}{\cos \theta} \cdot \frac{\cos^2 \theta}{\mathsf{sen}^2 \theta} = \frac{\cos \theta}{\mathsf{sen}^2 \theta}$$

Portanto, fazendo a substituição $u = \text{sen } \theta$, temos

$$\int \frac{dx}{x^2 \sqrt{x^2 + 4}} = \frac{1}{4} \int \frac{\cos \theta}{\sin^2 \theta} d\theta = \frac{1}{4} \int \frac{du}{u^2}$$
$$= \frac{1}{4} \left(-\frac{1}{u} \right) + C = -\frac{1}{4 \sin \theta} + C$$

Para
$$x = 2 \cdot \lg \theta \implies \lg \theta = \frac{x}{2}$$

$$a^2 = x^2 + 2^2 \quad \Rightarrow \quad a = \sqrt{x^2 + 4}$$

$$\sin \theta = \frac{x}{\sqrt{x^2 + 4}}$$

Assim,
$$\int \frac{dx}{x^2 \sqrt{x^2 + 4}} = -\frac{\sqrt{x^2 + 4}}{4x} + C$$

EXEMPLO 4 Encontre
$$\int \frac{x}{\sqrt{x^2 + 4}} dx$$
.

Nem sempre é útil utilizar substituição trigonométrica, mesmo que possível. Em alguns casos, como este, uma simples substituição já resolve. Mas o contrário também ocorre, claro. As vezes é possível uma substituição simples, mas uma substituição trigonomética pode resultar em menos trabalho, como no exemplo a seguir.

EXEMPLO 6 Encontre
$$\int_0^{3\sqrt{3}/2} \frac{x^3}{(4x^2+9)^{3/2}} dx$$
.

 $x = \frac{3}{2} \operatorname{tg} \theta$, que resulta em $dx = \frac{3}{2} \operatorname{sec}^2 \theta d\theta$ e

$$\sqrt{4x^2 + 9} = \sqrt{9 \operatorname{tg}^2 \theta + 9} = 3 \sec \theta$$

Quando x = 0, tg $\theta = 0$, assim $\theta = 0$; quando $x = 3\sqrt{3}/2$, tg $\theta = \sqrt{3}$, logo $\theta = \pi/3$. Portanto,

$$\int_0^{3\sqrt{3}/2} \frac{x^3}{(4x^2+9)^{3/2}} dx = \int_0^{\pi/3} \frac{\left(\frac{3}{2} \cdot \lg \theta\right)^3}{\left(3 \cdot \sec \theta\right)^3} \cdot \left(\frac{3}{2} \cdot \sec^2 \theta\right) d\theta$$

$$= \frac{3}{16} \int_0^{\pi/3} \frac{\text{tg}^3 \theta}{\sec \theta} \, d\theta = \frac{3}{16} \int_0^{\pi/3} \frac{\sin^3 \theta}{\cos^2 \theta} \, d\theta$$

$$= \frac{3}{16} \int_0^{\pi/3} \frac{1 - \cos^2 \theta}{\cos^2 \theta} \operatorname{sen} \theta \ d\theta$$

Agora substituímos $u = \cos \theta$, de modo que $du = -\sin \theta \ d\theta$. Quando $\theta = 0$, u = 1; quando $\theta = \pi/3$, $u = \frac{1}{2}$. Portanto,

$$\int_0^{3\sqrt{3}/2} \frac{x^3}{(4x^2+9)^{3/2}} dx = -\frac{3}{16} \int_1^{1/2} \frac{1-u^2}{u^{\frac{3}{4}}} du$$

$$= \frac{3}{16} \int_1^{1/2} (1-u^{-2}) du = \frac{3}{16} \left[u + \frac{1}{u} \right]_1^{1/2}$$

$$= \frac{3}{16} \left[\left(\frac{1}{2} + 2 \right) - (1+1) \right] = \frac{3}{32}$$

EXEMPLO 7 Calcule
$$\int \frac{x}{\sqrt{3-2x-x^2}} dx$$
.

Completando quadrado no numerador

$$3 - 2x - x^2 = 3 - [x^2 + 2x] = 3 - [(x+1)^2 - 1] = 4 - (x+1)^2$$

Logo, fazemos a seguinte substituição trigionométrica $x + 1 = 2 \cdot \operatorname{sen} \theta$.

Assim,

$$\sqrt{3-2x-x^2} = \sqrt{4-(x+1)^2} = \sqrt{4-(2\cdot\sin\theta)^2} = 2\cdot\cos\theta,$$

$$e \quad x = 2 \cdot \sin \theta - 1 \quad \Rightarrow \quad dx = 2 \cdot \cos \theta \, d\theta.$$

Logo,

$$\int \frac{x}{\sqrt{3 - 2x - x^2}} dx = \int \frac{2 \sin \theta - 1}{2 \cos \theta} 2 \cos \theta d\theta$$

$$= \int (2 \sin \theta - 1) d\theta$$

$$= -2 \cos \theta - \theta + C$$

Para
$$x + 1 = 2 \cdot \sin \theta$$
 \Rightarrow $\sin \theta = \frac{x+1}{2}$ e $\theta = \sin^{-1} \left(\frac{x+1}{2}\right)$

$$a^{2} + (x+1)^{2} = 2^{2}$$

$$\Rightarrow a = \sqrt{4 - (x+1)^{2}} = \sqrt{3 - 2x - x^{2}}$$

$$\cos\theta = \frac{a}{2} = \frac{\sqrt{3 - 2x - x^2}}{2}$$

Assim,

$$\int \frac{x}{\sqrt{3 - 2x - x^2}} dx = -2\cos\theta - \theta + C$$

$$= -\sqrt{3 - 2x - x^2} - \sec^{-1}\left(\frac{x + 1}{2}\right) + C$$