# **Business Presentation**

**Personal Loan Campaign Case Study** 

# **Background & Context**

- AllLife Bank is a US bank that has a growing customer base.
- The majority of the Bank customers are liability customers (depositors) with varying sizes of deposits.
- The **number of** customers who are also **borrowers** (**asset customers**) is **quite small**, and the bank is interested in expanding this base rapidly to bring in more loan business and in the process, earn more through the interest on loans.
- A campaign that the bank ran last year for liability customers showed a healthy conversion rate of over 9% success. This has encouraged the retail marketing department to devise campaigns with better target marketing to increase the success ratio.
- The Bank management wants to explore ways of converting its liability customers to personal loan customers (while retaining them as depositors).

## **Objective**

- Explore and visualize data
- Build a model

#### Model should be able to

- o To predict whether a liability customer will buy a personal loan or not.
- Which variables are most significant.
- Which segment of customers should be targeted more.
- Draw Conclusions and Business Recommendations

### **Data Overview**

- Data contains 5000 (rows) customer data with 14 (columns) characteristics.
- There are no null values or duplicates in dataset.
- The ID column is of no significance and will be removed for analysis.
- The ZIP Code will be mapped to respective counties for analysis.
- Age, Experience, Income, Mortgage, CCAvg will be binned and mapped to new range columns respectively.
- There are negative values in Experience column which we will be imputing for analysis.

| Variable           | Description                                                                             |
|--------------------|-----------------------------------------------------------------------------------------|
| ID                 | Customer ID                                                                             |
| Age                | Customer's age in completed years                                                       |
| Experience         | #years of professional experience                                                       |
| Income             | Annual income of the customer (in thousand dollars)                                     |
| ZIP Code           | Home Address ZIP code                                                                   |
| Family             | the Family size of the customer                                                         |
| CCAvg              | Average spending on credit cards per month (in thousand dollars)                        |
| Education          | Education Level. 1: Undergrad; 2: Graduate; 3: Advanced/Professional                    |
| Mortgage           | Value of house mortgage if any. (in thousand dollars)                                   |
| Personal_Loan      | Did this customer accept the personal loan offered in the last campaign?                |
| Securities_Account | Does the customer have securities account with the bank?                                |
| CD_Account         | Does the customer have a certificate of deposit (CD) account with the bank?             |
| Online             | Do customers use internet banking facilities?                                           |
| CreditCard         | Does the customer use a credit card issued by any other Bank (excluding All life Bank)? |

- Age and Experience almost have non skewed distribution.
- CCAvg is heavily right skewed indicating outliers that needs to be capped and treated. Around 81% of the customers average spending is less than 3k a month.
- Income is right skewed indicating outliers. Around 75% of the customers have an Income below 100K and remaining 25% has greater than 100K
- Nearly 80% of the customers do not have any Mortgage.Because of 80% zero value, the mean of the distribution is skewed to 60K.



- Age and Experience are strongly correlated and we can drop one of these columns during modelling.
- CCAvg and Income is also 0.6 correlated.
- Personal Loan and Income have a correlation of 0.5.



- 0.75

#### Education Level vs Personal Loan



 Customers with Advanced/Professional Education are the most(13.65%) who has got a Personal Loan very closely followed by Graduates category(12.97%)

#### Family Size vs Personal Loan



 Customer family size of 3 are the most to buy the personal loan closely followed by family of 4 members

Income vs Personal Loan



Most of customers who has bought a personal loan have an Income greater than 100k.



• Los Angeles, Santa Clara, Orange and Alameda County has high number of Customers as well as high income customers.

# **Assumptions - Logistic Regression**

#### 1. Multicollinearity:

- Age and Experience were strongly correlated and removing them helped bringing down the VIF scores
- ZIPCode\_County also had multicollinearity issues and dropping that helped the model performance
- 2. The **outliers** in the numeric variables Income , CCAvg , Mortgage were treated using capping method before modelling.
- 3. Dependent variable is Personal Loan and is in Binary form 0 and 1 satisfying the assumption
- **4.** Logistic regression requires the **observations** to be **independent of each other** and we have confirmed that there is no data dependency. Unique data no duplicates.
- **5. Larger Sample size** of 3500 train data vs 1500 test data was sufficient to build our model.

### **Model Performance Summary - Logistic Regression**

|   | Model                                              | Train_Accuracy | Test_Accuracy | Train<br>Recall | Test<br>Recall | Train<br>Precision | Test<br>Precision | Train F1 | Test F1  |
|---|----------------------------------------------------|----------------|---------------|-----------------|----------------|--------------------|-------------------|----------|----------|
| 0 | Logistic Regression<br>Model - Statsmodels         | 0.969143       | 0.960         | 0.740181        | 0.657718       | 0.917603           | 0.915888          | 0.819398 | 0.765625 |
| 1 | Logistic Regression -<br>Optimal threshold = 0 .09 | 0.918000       | 0.920         | 0.897281        | 0.859060       | 0.540000           | 0.563877          | 0.674234 | 0.680851 |
| 2 | Logistic Regression -<br>Optimal threshold = 0 .35 | 0.962857       | 0.958         | 0.794562        | 0.724832       | 0.809231           | 0.830769          | 0.801829 | 0.774194 |

- Our data has imbalanced class distribution and hence F1 score will be the right metric to use for Logistic Regression.
- We have been able to build a predictive model that can be used by the bank to find the customers who will buy a Personal Loan with an F1\_score of 0.80 on the training set and 0.77 on test set (Logistic Regression - Precision-Recall Optimal threshold = 0.35 - with significant predictors).
- We tried to do Model Improvement using ROC-AUC threshold(0.09) and Precision-Recall curve threshold methods and Precision-Recall threshold of 0.35 gave the highest F1 score.

## Model Performance Summary - Logistic Regression

odds

Dependent variable = Personal\_Loan

| const                           | 4.717156e-07 |
|---------------------------------|--------------|
| Income                          | 1.068642e+00 |
| CCAvg                           | 1.682016e+00 |
| Family_3                        | 1.519469e+01 |
| Family_4                        | 5.705258e+00 |
| Education_Graduate              | 6.732155e+01 |
| Education_Advanced/Professional | 8.733981e+01 |
| Securities_Account_1            | 3.641269e-01 |
| CD Account 1                    | 3 916144e+01 |

Online\_1

CreditCard 1

5.557446e-01

3.792363e-01

The coefficients of the logistic regression model are in terms of log(odd), to find the odds we have to take the exponential of the coefficients.

#### Therefore, odds = exp(b)

Income, Family size of 3 and 4, CCAvg, Education level of Graduates and Advanced/Professional(2&3),CD account Securities account,Online and CreditCard are the important predictor variables for this model.

#### **Co-efficient Interpretation:**

- \*Income: Holding all other features constant a 1 unit change in Income will increase the odds of a customer buying a Personal Loan by 1.06 times.
- \* **CCAvg:** Holding all other features constant a 1 unit change in the CCAvg will increase the odds of a customer buying a Personal Loan by 1.68 times
- \* **Securities\_Account\_1:** Holding all other features constant a 1 unit change in the Securities\_Account\_1 will decrease the odds of a customer buying a Personal Loan by 0.36 times .
- \* Similarly negative(decrease) and positive(increase) co-efficients for other variables can be interpreted.

### **Model Performance Summary - Decision Tree**

|   | Model                                    | Train_Recall | Test_Recall |
|---|------------------------------------------|--------------|-------------|
| 0 | Initial decision tree model              | 1.00         | 0.85        |
| 1 | Decision tree with hyperparameter tuning | 0.87         | 0.73        |
| 2 | Decision tree with post-pruning          | 0.98         | 0.97        |

- In our case of predicting Personal Loan Buyers ,not being able to identify a potential customer is the biggest loss Business can face.
- Recall is the right metric to check the performance of the model.
- We tried hyperparameter tuning technique as well but the recall scores did not improve on the test data.
- Using the Decision tree Classifier with post-pruning technique with cc\_alpha of 0.0067, we
  got the highest recall results and we were able to predict the False Negatives at 0.2% and
  False positives at 6% which gives us a very good reliable model with low error rates.

#### Logistic Regression vs Decision Tree Classifier- Confusion \* True Positives: **Matrix Comparison**

| Model Name               | True Positives | True Negatives | False Positives | False Negatives |
|--------------------------|----------------|----------------|-----------------|-----------------|
| Logistic Regression      | 7.20%          | 88.60%         | 1.47%           | 2.73%           |
| Decision Tree Classifier | 9.73%          | 84.07%         | 6%              | 0.20%           |

- As False Negatives are opportunity cost, it is more expensive in our case than False positives which can be better planned and handled.
- Hence Decision Tree Classifier gives the best results with low False negative rates and highest recall on test data.

Reality: A customer buys a loan.

Model predicted: The liability customer will get converted to a loan

customer buying a loan.

Outcome: The model is good.

#### \* True Negatives:

Reality: A customer did NOT buy a loan.

Model predicted: The liability customer will NOT get converted to loan

customer.

Outcome: The business is unaffected.

#### \* False Positives:

Reality: A customer did NOT buy a loan.

Model predicted: The customer will get converted to a loan customer buying a loan.

Outcome: The team which is targeting the potential customers will be wasting their resources on the people/customers which will not be a very big loss compared to losing a customer who will buy a loan.

#### \* False Negatives:

Reality: A customer buys a loan.

Model predicted: The customer will NOT buy a loan.

Outcome: The potential customer is missed by the sales/marketing team, the team could have offered the potential customer some discount or loyalty card to make the customer come again to purchase. (Customer retention will get affected.)

### **Feature Importance - Decision Tree**

The model indicates that the most significant predictors of Potential Loan buyers are

- 1. **Income** greater than 92.5K dollars
- 2. **Family Size of 4 and 3** members
- Education level of 2 and 3 Graduates and Advanced/Professionals
- Average Credit card usage greater than
   2.9k a month



#### **Conclusion**

- Decision Tree Classifier with post pruning technique gave us the best model compared to Logistic regression with the highest recall score of 98% on train and 97% on test data and the least error of 0.2% False negatives and 6% False positives.
- Income being the top most feature to look at, every 1 unit increase will increase the odds
  of customer buying a Personal loan by 1.06 times.
- Income, Family size 3 & 4, Education level 2 & 3(Graduates and Advanced Professionals), Credit card usage greater than 2.9k are the key variables that has strong relationship with the dependent variable for the next campaign.
- The bivariate results of EDA clearly matched with the the Decision Tree predicted important variables and their parameters.

#### Recommendations

- If a customer's Income is greater than 92.5k and his Education level is
   Advanced/Professional/Graduate(level 3 or level 2) then there is a very high chance that the
   customer is going to buy a loan from the bank.
- It is observed that the **family size of 4 and 3 members** has the likelihood of buying a loan. Those customers can be targeted by the marketing team as potential customers.
- The **Average Credit card usage of a customer is greater than 2900 USD** a month, those customers can also be targeted for loan.
- Employ the predictive model to predict potential customers (customers who can buy the product), and market Offers and deals on a real-time basis only to those customers.
- It is observed that **60% of the customers have online account**. Hence making attractive advertisements online with competitive offers/deals can attract more customers to buy the loan.
- 22% of Customers are from Los Angeles County that has the maximum number of customers. San Diego(11.4%) and Santa Clara(11.3%) is in second place for the count of customers. These have higher Income group customers as well, if we could device good marketing strategies, we can get a lot of conversions here too.