Управление ДПТ с помощью ШИМ

Наиболее простой метод регулирования скорости вращения двигателя постоянного тока основан на использовании широтно-импульсной модуляции (ШИМ или РWМ). Суть этого метода заключается в том, что напряжение питания подается на двигатель в виде импульсов. При этом частота следования импульсов остается постоянной, а их длительность может меняться.

ШИМ сигнал характеризуется таким параметром как коэффициент заполнения или Duty cycle. Это величина обратная скважности и равна отношению длительности импульса к его периоду.

$$D = (t/T) * 100\%$$

На рисунках ниже изображены ШИМ сигналы с различными коэффициентами заполнения.

При таком методе управления скорость вращения двигателя будет пропорциональна коэффициенту заполнения ШИМ сигнала.

Простая схема управления двигателем постоянного тока

Простейшая схема управления двигателем постоянного тока состоит из полевого транзистора, на затвор которого подается ШИМ сигнал. Транзистор в данной схеме выполняет роль электронного ключа, коммутирующего один из выводов двигателя на землю. Транзистор открывается на момент длительности импульса.

Как будет вести себя двигатель в таком включении? Если частота ШИМ сигнала будет низкой (единицы Гц), то двигатель будет поворачиваться рывками. Это будет особенно заметно при маленьком коэффициенте заполнения ШИМ сигнала.

При частоте в сотни Гц мотор будет вращаться непрерывно и его скорость вращения будет изменяться пропорционально коэффициенту заполнения. Грубо говоря, двигатель будет "воспринимать" среднее значение подводимой к нему энергии.

Возможность определения угловой скорости щеточного ДПТ

Определение угловой скорости ДПТ с щёточным аппаратом возможно осуществлять анализируя шум в цепи питания ДПТ. То есть по шуму коммутации щёток. Для этого можно использовать структурную схему, представленную на рисунке 6.1.1.

Коммутационные помехи накладываются на выходное напряжение источника питания ДПТ (рис. 6.1.2 и 6.1.3). Причём, коммутационные шумы для ДПТ с графитовыми щётками и бронзовыми щётками будут различными.

Для выделения этого шума последовательно с ДПТ устанавливают шунт. Однако, трудность заключается в том, что форма шума зависит от конструктивных особенностей коммутатора ДПТ. Так как амплитуда, частота, форма, скважность коммутационного шума будут значительно зависеть от скорости и момента двигателя, очевидно необходимо подстраиваться под эти изменения при извлечении из шума полезной информации.

Рисунок 6.1.1 – Структурная схема эстиматора

Рисунок 6.1.2 – Коммутационный шум ДПТ с бронзовыми щётками (снизу) и выделенные фильтрами импульсы (сверху)

Управление адаптивным ФНЧ можно привязать к скважности формируемых ШИМ-импульсов, которая, в свою очередь, прямо связана со скоростью и моментом двигателя.

