PIM2401-CAN

Version 1.0

Intelligent Servo Drive for DC, Brushless DC and AC Motors

Intelligent Servo Drive

Technical Reference

Preliminary

© Technosoft 2007

TECHNOSOFT

PIM2401-CAN Technical Reference

P091.035.PIM2401.UM.0507

Technosoft S.A.

Buchaux 38 CH-2022 Bevaix, NE Switzerland

Tel.: +41 (0) 32 732 5500 Fax: +41 (0) 32 732 5504

e-mail: contact@technosoftmotion.com http://www.technosoftmotion.com/

Read This First

About This Manual

This book is a technical reference manual for the **PIM2401** intelligent servo drives. It describes the **PIM2401** operation and provides basic information needed by the user to program the **PIM2401** in the Technosoft Motion Language (**TML**) environment.

Notational Conventions

This document uses the following conventions:

- The Technosoft Motion Language will be referred to as TML
- TML variables, parameters or instructions are shown in special italic typeface. Here is a sample:

SETIO#4 IN; UPD:

Information about Cautions

This book may contain cautions.

CAUTION! This is an example of a caution statement.

A caution statement describes a situation that could potentially cause harm to you, or to the PIM2401 intelligent servo drive unit

Related Documentation from Technosoft

- MotionChip™ II TML Programming (part no. P091.055.MCII.TML.UM.xxxx) describes in detail TML basic concepts, motion programming, functional description of TML instructions for high level or low level motion programming, communication channels and protocols. Also give a detailed description of each TML instruction including syntax, binary code and examples.
- **MotionChip II Configuration Setup** (part no. P091.055.MCII.STP.UM.xxxx) describes the MotionChip II operation and how to setup its registers and parameters starting from the user application data. This is a technical reference manual for all the MotionChip II registers, parameters and variables.

Help of the EasyMotion Studio software platform – describes how to use the EasyMotion Studio – the complete development platform for PIM2401 which support all new features added to revision H of firmware. It includes: motion system setup & tuning wizard, motion sequence programming wizard, testing and debugging tools like: data logging, watch, control panels, on-line viewers of TML registers, parameters and variables, etc.

Help of the IPM Motion Studio software platform – describes how to use the IPM Motion Studio – the complete development platform for PIM2401. It includes: motion system setup & tuning wizard, motion sequence programming wizard, testing and debugging tools like: data logging, watch, control panels, on-line viewers of TML registries, parameters and variables, etc.

If you Need Assistance ...

If you want to	Contact Technosoft at
Visit Technosoft online	World Wide Web: http://www.technosoftmotion.com/
Receive general information or assistance (see Note)	World Wide Web: http://www.technosoftmotion.com/ Email: contact@technosoftmotion.com/
Ask questions about product operation or report suspected problems (see Note)	Fax: (41) 32 732 55 04 Email: hotline@technosoftmotion.com
Make suggestions about, or report errors in documentation (see Note)	Mail: Technosoft SA Buchaux 38 CH-2022 Bevaix, NE Switzerland

Note: You need to register your PIM2401 system, in order to get free assistance and support. Use the License No. on your Registration Card for IPM Motion Studio.

IV

Contents

1.	Key Features	1
2.	Supported Motor-Sensor Configurations	2
3.	Drive Drawings	4
4.	Connectors and Connection Diagrams	5
	4.1. Connectors pinout	5
	4.1.1.J1 Connector pinout	5
	4.1.2.J2 Connector pinout	6
	4.2. 24V Digital I/O connection	7
	4.3. 5V Digital I/O connection	8
	4.4. Analog inputs connection	9
	4.5. Brushless Motor connection	10
	4.6. 2-phase Step Motor connection	11
	4.7. 3-phase Step Motor connection	13
	4.8. DC Motor connection	14
	4.9. Single-ended encoder connection	15
	4.10. Differential encoder connection	16
	4.11. Hall connection	17
	4.12. Linear Hall connection	18
	4.13. Linear Hall Auto-Setup connection	19
	4.14. Supply connection	20
	4.15. Serial RS-232 connection	21
	4.16. CAN connection	22
	4.17. Special connection (Non-Autorun)	24
	4.18. Master - Slave encoder connection	25
5.	Electrical Specifications	26
6.	PIM2401 Dimensions	29
7.	Scaling factors	30
	7.1. Supply / DC-bus Voltage Measurement Scaling	30

	7.2.	Motor Currents Scaling	30
	7.3.	Motor Speed Scaling	31
	7.4.	Motor Position Scaling	31
8.	Avail	able Memory Areas	32

1. Key Features

- CAN-Bus 2.0B, up to 1 Mbit/s
- Single-ended, differential and/or open-collector encoder interface
- Single-ended, open collector Hall sensor interface
- Linear Hall sensor interface
- 7 dedicated digital input-output lines (5V and 24V compatible):
 - 5 digital input lines
 - o 2 digital output lines
- RS-232 serial interface (up to 115200 bps)
- 1.5K × 16 internal SRAM memory
- 8K × 16 E²ROM to store TML programs and data
- Power supplies:
 - Motor supply: 6-27 V; 1A; 3.6 A PEAK
 - Logic supply: 5 V;
- Minimal motor inductance: 0 μH (the drive has on-board inductance of 150 μH on each phase)
- Operating ambient temperature: 0-40°C
- Hardware Protections:
 - o Short-circuit on motor phases
 - o All I/Os are ESD protected

2. Supported Motor-Sensor Configurations

PIM2401 supports the following configurations:

• Brushless motor

(with encoder on motor, or on load)

3-phase Step motor – Open loop

Brushed DC motor

Brushed DC motor with tacho and encoder

Brushed DC motor with tacho

Brushed DC motor with encoder

3. Drive Drawings

Figure 3.1. PIM2401 v1.0 drawing

4. Connectors and Connection Diagrams

CAUTION! BEFORE THE CONNECTING / DISCONNECTING ANY OF THE SIGNALS PLEASE TURN OFF ALL POWER SUPPLIES. ELSE SEVER DAMAGE MAY OCCUR.

4.1. Connectors pinout

4.1.1. J1 Connector pinout

Pin	Pin name	TML name	Type	Function/Alternate function/ Comments		
1	+V _{MOT}	-	I	 Positive terminal of the motor supply: 12 to 48V_{DC} 		
2	GND	-	-	Ground		
3	+5V _{IN}	-	I	5V logic supply input		
4	Ref	AD5	I	 Unipolar 0 V+5 V analog input. May be used as analog position, speed or torque reference. 		
5	Pulse	IN#38 / PULSE	I	 5V or 24V compatible digital input Can be used as PULSE input in Pulse & Direction motion mode Can be used as second encoder A signal, for single-ended encoder 		
6	Dir	IN#37 / DIR	I	5V or 24V compatible digital input Can be used as DIRECTION input in Pulse & Direction motion mode Can be used as second encoder B signal, for single-ended encoder		
7	Enable	IN#16 / ENABLE	I	5V or 24V compatible digital input Enable. Connect to high to disable PWM outputs		
8	LSP	IN#2 / LSP	I	5V or 24V compatible digital input Positive limit switch		
9	LSN	IN#24 / LSN	I	5V or 24V compatible digital input Negative limit switch		
10	/ Error	OUT#13	0	5V or 24V compatible digital output Error		
11	/ Ready	OUT#25	0	5V or 24V compatible digital outputReady		
12	CAN_H	-	I/O	Can-Bus positive line (positive during dominant bit)		
13	CAN_L	-	I/O	CAN-Bus negative line (negative during dominant bit)		
14	GND	-	-	Ground		
15	232Tx	-	0	RS-232 Data Transmission		
16	232Rx	-	1	RS-232 Data Reception		

4.1.2. J2 Connector pinout

Pin	Pin name	TML name	Туре	Type Function/Alternate function/ Comments		
				Phase A for brushless motors		
1	A / A+	-	0	Phase A+ for step motors		
				Motor+ for DC brush motors		
				Phase B for brushless motors		
2	B / A-	-	0	Phase A- for step motors		
				Motor- for DC brush motors		
3	C / B+		0	Phase C for brushless motors		
3	C7 B+	-	O	Phase B+ for step motors		
4	B-	-	-	Phase B- for step motors		
5	GND	-	-	Ground		
				Hall 1 signal for digital Hall sensor		
6	Hall 1	-	I	Not-autorun. Connect all 3 Hall signals to GND in order to disable the Autorun		
				Hall 2 signal for digital Hall sensor		
7	Hall 2	-	I	Not-autorun. Connect all 3 Hall signals to GND in order to disable the Autorun		
				Hall 3 signal for digital Hall sensor		
8	Hall 3	-	I	 Not-autorun. Connect all 3 Hall signals to GND in order to disable the Autorun 		
9	Enc A+			Single-ended encoder A signal		
9	EIIC A+	-	ı	Differential encoder positive A input		
10	Enc B+			Single-ended encoder B signal		
10	LIIC BT	-	!	Differential encoder positive B input		
11	Enc Z+	_		Single-ended encoder Z signal		
	LIIC ZT		'	Differential encoder positive Z input		
12	A- / LH1	_		Differential encoder negative A signal		
'-	A 7 2111		'	Linear Hall 1 signal		
13	B- / LH2	_	l 1	Differential encoder negative B signal		
	_ , <u> </u>			Linear Hall 2 signal		
14	Z- / LH3	_		Differential encoder negative Z signal		
	_ ,			Linear Hall 3 signal		
15	Tacho	AD2	I	Unipolar 0 V+5 V analog input. May be used as analog position or speed feedback (from a tachometer)		
16	+5 V _{OUT}	-	0	5V logic supply (from J1 / pin3)		

IBL2401 v1.0 24V I/O Connection J1 +V_{DC} (24V Supply) -0 +V_{DC} Pulse 5 LSP Inputs 8 **GND** 2 MotionChip ™ 9 Rmin= 560R Rmin= 560R Error 10 LOAD Outputs 11 +3.3V

4.2. 24V Digital I/O connection

Figure 4.1. 24V Digital I/O connection

Note1: In order to use 24V outputs, an external resistor needs to be connected to a supply of $+V_{DC}$

Note2: The minimum value of external resistors must be 560 Ω .

4.3. 5V Digital I/O connection

Figure 4.2. 5V Digital I/O connection

4.4. Analog inputs connection

Figure 4.3. Analog inputs connection

Note 1: Default input range for analog inputs is 0÷5 V. For a +/-10 V range, please contact Technosoft.

4.5. Brushless Motor connection

Figure 4.4. Brushless Motor connection

CAUTION! Before connecting the motor, be sure you have the right application programmed to E2ROM, else you can damage the motor and drive.

At power-on, the TML application is automatically executed. See Section 4.15. Special connection on how to disable this feature.

4.6. 2-phase Step Motor connection

Figure 4.5. Step Motor connection

CAUTION! Before connecting the motor, be sure you have the right application programmed to E2ROM, else you can damage the motor and drive.

At power-on, the TML application is automatically executed. See Section 4.17. Special connection on how to disable this feature.

Figure 4.6. Step Motor connection

CAUTION! Before connecting the motor, be sure you have the right application programmed to E2ROM, else you can damage the motor and drive.

At power-on, the TML application is automatically executed. See Section 4.17. Special connection on how to disable this feature.

4.7. 3-phase Step Motor connection

Figure 4.7. 3-phase Step Motor connection

CAUTION! Before connecting the motor, be sure you have the right application programmed to E2ROM, else you can damage the motor and drive.

At power-on, the TML application is automatically executed. See Section 4.17. Special connection on how to disable this feature.

4.8. DC Motor connection

Figure 4.8. DC Motor connection

CAUTION! Before connecting the motor, be sure you have the right application programmed to E2ROM, else you can damage the motor and drive.

At power-on, the TML application is automatically executed. See Section 4.15. Special connection on how to disable this feature.

4.9. Single-ended encoder connection

Figure 4.9. Single-ended encoder connection

4.10. Differential encoder connection

Figure 4.10. Differential encoder connection

Note 1: $120-\Omega$ (0.25-W) terminators are required for long encoder cables, or noisy environments.

4.11. Hall connection

Figure 4.11. Hall connection

4.12. Linear Hall connection

Figure 4.12. Linear Hall connection

Linear Hall Auto-Setup IBL2401 v1.0 connection 9 +5V J2 +3.3V ♀ 1K Hall1 6 1K **GND** Motion Chip™ 5 3 x 10K A- / LH1 12 B- / LH2 13 C-/LH3 14 +5V +**5V**out 16 3 x 20K 3 x 22nF +3.3V MOTOR

4.13. Linear Hall Auto-Setup connection

Figure 4.13. Linear Hall Auto-Setup connection

Hardware Auto-setup procedure

- 1. Create an application based on **PIM2401 \ Brushless Motor Linear Hall** template and set Motor parameters.
- 2. Set the 'No. Lines/rev' to value 512 * pole_pairs in the **Motor** dialog.
- 3. Select **Build | Rebuild all command menu and Application | Download program** command menu for the current application.
- 4. Power off and connect the **Hall 1** input to **GND** for Auto-setup.
- 5. Power on and wait for Auto-setup to finish.
- 6. Power off and disconnect the **Hall 1** input.
- 7. Power on and program your application.

Software Auto-setup procedure

1. Run the **Detect Hall Configuration** test from the **Motor** dialog and wait for Auto-setup to finish. *Remark:* All Tests from the **Motor** and **Drive** dialogs don't work if **Hall 1** is configured for hardware Auto-Setup.

4.14. Supply connection

Figure 4.14. Supply connection

4.15. Serial RS-232 connection

Figure 4.15 Serial RS-232 connection

4.16. CAN connection

Figure 4.16. CAN connection

Note1: The CAN network requires a 120-Ohm terminator. This is not included on the board. See Figure 4.17.

Note2: CAN signals are not insulated from other PIM2401 circuits.

Figure 4.17. Multiple-Axis CAN network

23

Note1: The AxisID must be set by software, using instruction AXISID number.

4.17. Special connection (Non-Autorun)

Figure 4.18. Connection for Non-Autorun

This connection can be used to automatically stop the execution of your application located in E2ROM memory. You need this connection when your application in the E2ROM is corrupted and the RS232 communication is lost.

4.18. Master - Slave encoder connection

Figure 4.19. Master – Slave encoder connection using second encoder input

5. Electrical Specifications

Electrical characteristics:

All parameters were measured under the following conditions (unless otherwise specified): $T_{amb} = 25^{\circ}C, \text{ power supply } (V_{DC}) = 24V_{DC}; \\ \text{Supplies start-up / shutdown sequence: } \underline{-any-}; \\ \text{Load current 1 A}_{RMS}.$

5V Logic Supply Input

	Measured between $+5V_{IN}$ and GND.	Min.	Тур.	Max.	Units
Supply voltage	Nominal values	4.75	5	5.25	V_{DC}
Supply voltage	Absolute maximum values, continuous †	-0.5		7	V_{DC}
Supply current	It depends by sensor consumption			500	mA

Supply Input

	Measured between +V _{DC} and GND.	Min.	Тур.	Max.	Units
	Nominal values	6	24	27	V_{DC}
Supply voltage	Absolute maximum values, continuous	-0.5		30	V_{DC}
	Normal operation		100	250	mA
Supply current	Idle		0.5	1	mA
	Operating	-3.7	±1	+3.7	Α

Motor Outputs

•	All voltages referenced to GND.	Min.	Тур.	Max.	Units
Motor output current	Continuous operation, $+V_{DC} = 24 \text{ V}$, $F_{PWM} = 20 \text{ kHz}$	-1		+1	A _{RMS}
Motor output current, peak	Thermal limited to <= 0.5 s	-3.63		+3.63	Α
H/W short-circuit protection threshold			4.8		Α
H/W short-circuit protection delay			22		μS
On-state voltage drop	Output current = ±1 A	-900	±250	+300	mV
Off-state leakage current		-1	±0.1	+1	mA
On-board phase inductance			150		μН
Motor inductance		0			μН
Total electrical time constant	F _{PWM} = 40 kHz, including on-board inductance	TBD			μS

Digital Inputs

	All voltages referenced to GND.	Min.	Тур.	Max.	Units	l
Input voltage	Logic "LOW"	-0.5	0	0.8	V	l

I	1: - #1 11 01 17	_	5.04	00	1
	Logic "HIGH"	2	5÷24	28	
	Absolute maximum, surge (duration ≤ 1S)	-25		+30	
Input current	Logic 'HIGH'; Internal 4.7 K Ω pull-up to +5V	0	0	0	mA
input current	Logic "LOW"	0.8	1	1.3	IIIA
Input frequency		0		250	KHz
Minimum pulse width		5			μS

Digital Outputs

	All voltages referenced to GND.	Min.	Тур.	Max.	Units	
	Logic "LOW"	-0.5	0	0.2		
Output voltage	Logic "HIGH"; Output current = 0	2.4	4.4	+V _{DC}	v	
ou.pat voltago	Absolute maximum, duration < 1 ms	-1		+V _{DC} + 0.5		
Output current	Logic "HIGH"; Load connected to GND			10		
Output current	Logic "LOW"			50	mA	
ESD Protection	Human Body Model (100 pF, 1.5 kΩ)			±25	KV	

Encoder Inputs

		Min.	Тур.	Max.	Units
Standards compliance		Differential / TTL / CMOS / open-collector			OS/
Low level input current	Internal 470 Ω pull-ups to +5 V_{DC}		10	12	mA
Input threshold voltage	In single-ended mode (TTL / CMOS / / open-collector)	1.8	1.9	2	V
Input hysteresis		0.1	0.2	0.5	V

Analog Inputs (Ref, Tacho)

	Referenced to GND	Min.	Тур.	Max.	Units
Voltage range		0		+5	V
Input impedance			16		ΚΩ
Resolution			10		bits
Differential linearity	Guaranteed 10-bit no-missing-codes			0.09	% FS ¹
Offset error				±0.3	% FS ¹
Gain error				±5	% FS ¹
Bandwidth (-3 dB)			250		Hz

Linear Hall Inputs (LH1, LH2, LH3)

	Referenced to GND	Min.	Тур.	Max.	Units
Voltage range	Maximum range	0		+5	V
Voltage range	Operating range	Programmable			
Input current		-0.5		+0.5	mA
Bandwidth (-3 dB)			1		KHz

Hall Inputs (digital)

		All voltages referenced to GND.	Min.	Тур.	Max.	Units
Input voltage		Logic "LOW"	-0.5 0 0.8		0.8	
	Input veltage	Logic "HIGH"	2	5	5.5] ,,
	input voltage	Absolute maximum, surge † (duration ≤ 1ms)	-8 +8		+8	V

RS-232

		Min.	Тур.	Max.	Units
Standards compliance		TIA/EIA-232-C			
Bit rate	Depending on software settings	9600		115200	Baud
ESD Protection	Human Body Model (100 pF, 1.5 kΩ)			±15	KV
Input voltage	RX232 input	-25	-	+25	V
Output short-circuit withstand	TX232 output to GND	Guaranteed			

CAN-Bus

	All voltages referenced to GND	Min.	Тур.	Max.	Units
Standards compliance		CAN-Bus 2.0B error active ISO 11898-2		ctive;	
Recommended transmission line impedance	Measured at 1MHz	90	120	150	Ω
Bit rate	Depending on software settings	125K		1M	Baud
Number of network nodes	Depending on software settings			64	-
ESD Protection	Human Body Model			±15	KV

Supply Output

	Min.	Тур.	Max.	Units
+5V _{OUT} Voltage	4.75	5	5.25	V
+5V _{OUT} available current			150	mA

Others

		Min.	Тур.	Max.	Units
Operating temperature		0		40	°C
Dimensions	Length x Width x Height		58 x 44 x 16		mm
Weight			TBD		Kg
Storage temperature	Not powered	-40	85	°C	
Humidity	Non-condensing	0	90	%RH	

^{1 &}quot;FS" stands for "Full Scale"

[†] Stresses beyond values listed under "absolute maximum ratings" may cause permanent damage to the device. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

T.B.D. = To be determined

6. PIM2401 Dimensions

Figure 6.1. PIM2401 dimensions

7. Scaling factors

7.1. Supply / DC-bus Voltage Measurement Scaling

PIM2401 include a supply / DC-bus voltage feedback. In the TML environment, the A/D converted value of the supply / DC-bus voltage feedback can be read as TML variable *AD4*.

The scaling factor for the DC-bus voltage measurement is:

DC-bus [V] =
$$\frac{V_{mm}[V]}{65472[bits]} \times AD4 [bits]$$

where:

 V_{mm} is the maximum measurable DC-bus voltage; this value is 30.8V 65472 is the AD4 value for DC-bus voltage = V_{mm}

Remark: The AD4 value is the result of a 10-bit A/D conversion, left-shifted by 6. The 6 LSB of AD6 are always 0. If the A/D conversion result varies by 1 LSB, this translates into a variation of the AD4 value by $2^6 = 64$.

7.2. Motor Currents Scaling

PIM2401 measure motor currents through shunts placed in the lower legs of the inverter. Only currents measured on phases A and B are connected to 2 A/D inputs with a current gain factor of 0.1V/A. The shunt on phase C is only used to sense a short-circuit. In applications with 3-phase AC motors, TML variables *IA* and *IB* provide the motor currents in phases A and B. In applications with DC or brushless DC motors, the TML variable *IQ* gives the motor current. The scaling factor for the motor currents is:

Motor current [A] =
$$\frac{1.65[V]}{32704[bits] \times 0.455[V/A]} \times \text{TML current [bits]}, \text{ or}$$
 Motor current [A] =
$$\frac{3.63[A]}{32704[bits]} \times \text{TML current [bits]}$$

Remark: The A/D conversion result has a 10-bit resolution and is used left-shifted by 6. The 6 LSB of TML currents are always 0. If the A/D conversion result varies by 1 LSB, this translates into a variation of the TML current value by $2^6 = 64$.

7.3. Motor Speed Scaling

The TML variable ASPD gives the motor speed. The scaling factor depends on the speed sensor.

When the motor has a position sensor like an encoder, the speed can be estimated as position increment per speed-loop sampling period (set by default to 1 ms). In this case, the scaling factor is

Motor speed [rpm] =
$$\frac{60}{4 \times N \text{ [lines]} \times T[s]} \times ASPD \text{ [bits]}$$

where N is the number of encoder lines

T is the speed-loop sampling period [in seconds]

4 is the multiplication ratio of the position resolution done in the encoder interface

Example: If T = 1ms, and N = 500 lines, motor speed [rpm] = $30 \times ASPD$ [bits]

If the speed feedback is provided by a tachometer connected to the PIM2401 analog input **FEEDBACK**, the scaling factor is (for unipolar operation, i.e. 0...+ max.speed):

$$\text{Motor speed [rpm] = } \frac{3.3[V]}{1024[bits] \times 0.66[V/V] \times K_{T}[V/rpm]} \times ASPD \text{ [bits]}$$

where K_T is the tachometer constant

0.66 [V/V] is the PIM2401 feedback gain factor

Remark: In speed control motion modes, the speed reference should be provided in the same units as ASPD, i.e. based on the same scaling as for the speed measurement.

7.4. Motor Position Scaling

The TML variable APOS gives the motor position. When encoder feedback is used, APOS is measured in encoder counts (1 encoder count = 1 bit). The scaling factor is:

Motor position [revolutions] =
$$\frac{1}{4 \times N \text{ [lines]}} \times APOS \text{ [bits]}$$

where N is the number of encoder lines

4 is the multiplication ratio of the position resolution done in the encoder interface.

8. Available Memory Areas

The drive has 2 types of memory: a $1.5K\times16$ SRAM (internal) memory and an $8K\times16$ serial E^2ROM (external) memory.

The SRAM memory is mapped both in the program space (from 8270h to 87FFh) and in the data space (from A70h to FFFh). The data memory can be used for real-time data acquisition and to temporarily save variables during a TML program execution. The program space can be used to download and execute TML programs. It is the user's choice to decide how to split the 1.5-K SRAM into data and program memory.

The E^2ROM is seen as $8K\times16$ program memory mapped in the address range 4000h to 5FBEh. It offers the possibility to keep TML programs in a Non-volatile memory. Read and write accesses to the E^2ROM locations, as well as TML programs downloading and execution, are done from the user's point of view similarly to those in the SRAM program memory. The E^2ROM SPI serial access is completely transparent to the user.

Figure 8.1. PIM2401 Memory Map

This page is empty

