# An introduction to probabilistic programming with PyMC3

Sean Meling Murray and Solveig Masvie

10. februar 2020

#### Table of contents

Introduction

Bayesian statistics

**Markov Chains** 

inmeta 2/18

#### Road map

- Theory
  - ► The basics of Bayesianism
  - ► Markov chain Monte Carlo methods (MCMC)
- Practice
  - ► Probabilistic programming with PyMC3

inmeta 3/18

## What is Bayesian data analysis?

"A Bayesian is one who, vaguely expecting a horse, and catching a glimpse of a donkey, strongly believes he has seen a mule."

inmeta 4/18

#### What is Bayesian data analysis?

- Richard McElreath: "Bayesian inference is just counting."
- Count all the ways observed data could have arisen according to assumptions
- Assumptions that can arise in more ways are more consistent with the data, and therefore more plausible



inmeta 5/18

## The Frequentist vs. Bayesian debacle

- Frequentist statistics
  - ► Probability defined as the limiting frequency at which events occur
  - ▶ Uncertainty arises from sampling variation
- Bayesian statistics
  - ► Frequency and probability are different things
  - Uncertainty arises from our ignorance of the true state of the world





inmeta

## **Bayesian Analysis**

The prior distribution combined with likelihood distribution (observed data) equals posterior distribution

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$$
 (1)

$$\mathscr{P} \propto \mathscr{L}\Pi$$
 (2)



inmeta 7/18

# Bayesian Analysis

How do we find the posterior when the prior and likelihood distribution are complicated



inmeta 8/18

#### Monte Carlo simulations

- Monte Carlo (MC) simulations are just a way to approximate numerical results using repeated random sampling
- Main idea:
  - ► Generate *N* samples  $x_1, ..., x_N$  from p(x), approximate *f* using the empirical distribution of  $\{f(x_n)\}_{n=1}^N$
  - $\triangleright \mathbb{E}[f] = \int f(x)p(x) dx \approx \frac{1}{N} \sum_{n=1}^{N} f(x_n) = \hat{f}$
- MC estimates converge thanks to Law of Large Numbers (LLN)
  - $\blacktriangleright (\hat{f} f) \to \mathcal{N}\left(0, \frac{\sigma^2}{N}\right) \text{ as } N \to \infty$

inmeta 9/18

## Practical example

• Calculate difficult integrals, such as the area of the Batman sign



inmeta

10/18

# Monte Carlo Simulations - Example

- Repeatedly sample  $(u_1, u_2) \sim \text{Uniform}(-\frac{1}{2}, \frac{1}{2})$
- Calculate area A of Batman sign as  $A = \text{area of rectangle} \times \frac{\text{green dots}}{\text{all dots}}$



inmeta

#### Markov Chain

- Sequences of events that have a probabilistic relation to one another
- Markov chains are memoryless. All we need to calculate the next event are available in the current state

inmeta 12/18

#### **Bayesian MCMC**

#### Steps in MCMC

- ▶ Define function for  $\mathcal{L}$ ,  $\Pi$  and thus  $\mathcal{P}$
- ightharpoonup Define initial guess for  $\theta$  (based on the prior)
- ightharpoonup Try a jump in  $\theta$
- ► Accept/reject based on chosen method/sampler (Metropolis)
- Keep jumping
- ► After doing many steps remove burn-in steps

inmeta <sub>13/18</sub>

#### Sampler

#### Metropolis rule

- ▶ If  $\mathscr{P}_{new} > \mathscr{P}_i$  accept the jump so  $\theta_{i+1} = \theta_i$
- ▶ If  $\mathscr{P}_{new} < \mathscr{P}_i$  accept the jump with probability  $\frac{\mathscr{P}_{new}}{\mathscr{P}_i}$

inmeta 14/18

## Jump in $\theta$

How to make a jump in  $\theta$ 

$$\theta_{new} = \theta_i + \mathcal{N}(0, \Delta\theta) \tag{3}$$

We call  $\Delta\theta$  for the jump scale. Normally this must be tuned manually for every dimension. A rule of thumb is that we want a jump scale that gives a reasonable acceptance rate.

inmeta <sub>15/18</sub>

# A slide with a theorem and a proof.

Theorem (Integral)

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Bevis.

Here's the proof.

#### A slide with blocks

#### title of the bloc

bloc text

title of the bloc

bloc text

inmeta 17/18

#### A slide using pause

• Represent Abelian groups on the computer

inmeta 18/18

#### A slide using pause

- Represent Abelian groups on the computer
- Compute on Abelian groups

inmeta 18/18

#### A slide using pause

- Represent Abelian groups on the computer
- Compute on Abelian groups
- Solve equations, factor group homomorphisms

inmeta 18/18