Algebra per Informatica

Foglio di esercizi 10

Esercizio 1. Sia $A = \{2, 4, 8, 10, 14, 16\}$ e si consideri la seguente associazione

a * b = resto della divisione di ab per 18.

Stabilire se * è un'operazione binaria sull'insieme A.

Esercizio 2. Si consideri l'insieme $A = \{a, b, c\}$ dotato della seguente operazione:

$$a*a = a, a*b = b, a*c = c,$$

 $b*a = b, b*b = b, b*c = c,$
 $c*a = c, c*b = b, c*c = a.$

Si verifichi che * è un'operazione non associativa e non commutativa, ma dotata di un elemento neutro. Si determini tale elemento.

Esercizio 3. Per ciascuna delle seguenti operazioni binarie sull'insieme A indicato, stabilire se è associativa, commutativa, se esiste un elemento neutro e in tal caso se ogni elemento di A ha inverso.

- 1. $A = \mathbb{Q}, x * y = x y;$
- 2. $A = \mathbb{Z}, x * y = \max\{x, y\};$
- 3. $A = \mathbb{R}^2 \setminus \{(0,0)\}, (a,b) * (c,d) = (ac bd, ad + bc);$
- 4. $A = \mathbb{N}, x * y = x + y + xy;$
- 5. $A = \mathbb{Z}, x * y = x^2 + y^2;$
- 6. $A = \mathbb{R}^2 \setminus \{(0,0)\}, (a,b) * (c,d) = (ac,bd);$
- 7. $A = \mathbb{R}, x * y = x(x + y);$
- 8. $A = \mathcal{P}(\mathbb{N}), X * Y = X \cap Y;$
- 9. $A = \mathcal{P}(\mathbb{N}), X * Y = X \cup Y \setminus X \cap Y = \{x \in X \cup Y \mid x \notin X \cap Y\}.$

Esercizio 4. Sia A un insieme di s elementi. Quante sono le operazioni binarie su A?

Esercizio 5. Si determini quali delle seguenti operazioni su \mathbb{R} sono associative e quali commutative:

$$x * y = \min\{x, y\};$$
 $x * y = \frac{x + y}{|xy| + 1};$ $x * y = e^{x + y}.$

Esercizio 6. Si consideri l'insieme $\mathbb{Z}^{\mathbb{Z}} = \{f : \mathbb{Z} \to \mathbb{Z}\}$ con la seguente operazione:

$$f * g = h$$
, dove h è definita da $h(n) = f(n) + g(n) \ \forall n \in \mathbb{Z}$.

- 1. Si dimostri che $(\mathbb{Z}^{\mathbb{Z}}, *)$ è un monoide commutativo.
- 2. Qual è l'elemento neutro?
- 3. Quali elementi di $\mathbb{Z}^{\mathbb{Z}}$ hanno inverso? $(\mathbb{Z}^{\mathbb{Z}}, *)$ è un gruppo?

Esercizio 7. Si consideri l'insieme $\mathbb{Z}^{\mathbb{Z}} = \{f : \mathbb{Z} \to \mathbb{Z}\}$ con la seguente operazione:

$$f * g = h$$
, dove h è definita da $h(n) = f(n) \cdot g(n) \ \forall n \in \mathbb{Z}$.

- 1. Si dimostri che $(\mathbb{Z}^{\mathbb{Z}}, *)$ è un monoide commutativo.
- 2. Qual è l'elemento neutro?
- 3. Quali elementi di $\mathbb{Z}^{\mathbb{Z}}$ hanno inverso? $(\mathbb{Z}^{\mathbb{Z}}, *)$ è un gruppo?

Esercizio 8. Sia G un gruppo. Provare che $(aba^{-1})^n = ab^na^{-1} \ \forall \ a,b \in G, \ \forall \ n \in \mathbb{Z}.$

Esercizio 9. Per ciascuno dei seguenti monoidi si determini, se esiste, l'inverso dell'elemento x assegnato:

- 1. $(\mathbb{N}, +, 0), x = 2;$
- 2. $(\mathbb{Z}, +, 0), x = 2;$
- 3. $(\mathbb{Z}, \cdot, 1), x = 2;$
- 4. $(\mathbb{Z}_{15}, +, \overline{0}), x = \overline{2};$
- 5. $(\mathbb{Z}_{15}, \cdot, \overline{1}), x = \overline{2};$
- 6. $(\mathbb{Z}_6, \cdot, \overline{1}), x = \overline{2};$
- 7. $(\mathbb{Z}^{\mathbb{Z}}, \circ, \mathrm{Id}_{\mathbb{Z}}), x : \mathbb{Z} \to \mathbb{Z}$ tale che $x(n) = 2 \ \forall n \in \mathbb{Z};$
- 8. $(\mathbb{Z}^{\mathbb{Z}}, \circ, \operatorname{Id}_{\mathbb{Z}}), x : \mathbb{Z} \to \mathbb{Z}$ tale che $x(n) = n + 2 \ \forall n \in \mathbb{Z};$
- 9. $(\mathbb{Z}^{\mathbb{Z}}, \circ, \mathrm{Id}_{\mathbb{Z}}), x : \mathbb{Z} \to \mathbb{Z}$ tale che $x(n) = 2n \ \forall n \in \mathbb{Z};$