

Cálculo Numérico

Trabalho Final de Cálculo IV

Gabriel Luiz Espindola Pedro
Arthur Cadore Matuella Barcella

Sumário

1	Introdu	ução)																		3
2	Embas	same	ento t	eórico)																3
	2.1 M	létod	do da k	oisseco	ção															 į	3
	2.2 M	létod	do da p	osição	o falsa	ι														 ı	3
				Newtor																	
				secante																	
3	Aplica																				5
	3.1 A	prese	entaçã	ăo da f	unção																5
	3.2 Aplicando os métodos																			 į	5
				do da																	
		2.2	Méto	do da	posic	ão fa	ılsa	ι.													6
	3.	2.3	Méto	do da	secar	nte .														 i	7
	3.	2.4	Méto	do de	Newto	on-R	apl	hso	on											 i	7
4	Consid	derac	ções	finais																	8

1 Introdução

Este trabalho tem o objetivo de explicar e aplicar métodos numéricos para obtenção de zeros de funções reais a uma função escolhida a fim de definir quais são as particularidades de cada método aplicado, suas vantagens e desvantagens e considerações existentes para aquele método.

2 Embasamento teórico

Métodos numéricos numéricos para obtenção de zeros de funções reais são algoritmos aplicados a funções com o objetivo de obter-se o valor de entrada da função que retorne o valor 0, ou seja o ponto em que ocorre o cruzamento do eixo x. Existem quatro principais métodos que podemos aplicar para atingir este objetivo que serão descritos e exemplificados a seguir.

2.1 Método da bissecção

O método da bissecção consiste em escolher dois pontos de uma função onde sabe-se que entre eles há um zero desta função e que esta função é contínua neste intervalo, e cortar esta distância ao meio até que atinja-se um ponto aproximado que respeite a precisão requerida, ou seja $(b-a) < \epsilon$. Passo a passo do algoritmo:

- 1. Define-se os valores iniciais: pontos a, b e precisão ϵ
- 2. Se (b a) $< \epsilon$, então escolha qualquer valor dentro do intervalo como solução e encerra o algoritmo
- 3. k = 1
- 4. M = f(a)
- 5. $X = \frac{a+b}{2}$
- 6. Se Mf(x) > 0, faça a = x. Vá para o passo 8.
- 7. b = x
- 8. Se $(b-a) < \epsilon$, então escolha como resposta qualquer valor x dentro do atual intervalo.
- 9. k = k + 1. Volte para o passo 5.

2.2 Método da posição falsa

O método da posição falsa consiste em realizar uma média aritmética ponderada entre os pontos escolhidos como pontos iniciais, utilizando como peso os respectivos valores da função naquele ponto.

$$X = \frac{a|f(b)| + b|f(a)|}{|f(b)| + |f(a)|} \tag{1}$$

Graficamente podemos dizer que o ponto x é a intersecção entre de uma reta que passe pelos pontos aplicados.

Passo a passo do algoritmo:

1. Define-se os dados iniciais: a, b, ϵ_1 e ϵ_2

- 2. Se (b-a) $< \epsilon_1$, então escolha como respostsa qualquer valor pertencente aquele intervalo e finaliza-se o algoritmo, caso $|f(a)| < \epsilon_2$ ou $|f(b)| < \epsilon_2$ escolha a oub como responta e finaliza-se o algoritmo.
- 3. k = 1
- 4. M = f(a)
- 5. $X = \frac{af(b) bf(a)}{f(b) f(a)}$
- 6. Se $|f(x)| < \epsilon_2$ escolha x como resposta e finaliza-se o algoritmo
- 7. Se Mf(x) > 0, faça a = x. Vá para o passo 9.
- 8. b = x
- 9. Se $(b-a) < \epsilon_1$, então escolha qualquer valor daquele intervalo como resposta e finaliza-se o algoritmo.
- 10. k = k + 1. Volte para o passo 5.

2.3 Método de Newton-Raphson

Pensado para a aceleração da convergência para o zero da função o método de Newton-Raphson utiliza da derivada da função para isto. Para aplicarmos precisamos que tanto a função escolhida no intervalo definido quanto suas derivadas de primeira e segunda ordem sejam contínuas.

O algoritmo que realiza este método é:

- 1. Defini-se os dados iniciais: a aproximação inicial x_0 e as precisões $\epsilon_1 e \epsilon_2$
- 2. Se $|f(x_0)|$ faça x_0 ser o resultado e finalize o algoritmo.
- 3. k = 1
- 4. $x_1 = x_0 \frac{f(x_0)}{f'(x_0)}$
- 5. Se $|f(x_1)| < \epsilon_1$ ou ainda se $|f(x_1)| < \epsilon_2$ torne x_1 como resultado e finalize o algoritmo.
- 6. $x_0 = x_1$
- 7. k = k + 1. Volte ao passo 4.

2.4 Método da secante

O método da secante veio com o objetivo de eliminar a necessidade do cálculo da derivada da função que o método de Newton-Raphson necessita. O que o método da secante faz é substituir a derivada da função por:

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$
 (2)

Onde x_k e x_{k-1} são aproximações para a raiz.

O algoritmo que realiza este processo é:

- 1. Define-se os dados inicias: aproximação inicial x_0 e precisões ϵ_1 e ϵ_2
- 2. Se $|f(x_0)| < \epsilon_1$ torne x_0 o valor da resposta e finalize o algoritmo.
- 3. Se $|f(x_1)| < \epsilon_1$ ou se $|x_1 x_0| < \epsilon_2$ torne x_1 a resposta e finalize o algoritmo.

4. k = 1

5.
$$x_2 = x_1 - \frac{f(x_1)}{f(x_1) - f(x_0)} (x_1 - x_0)$$

6. Se $|f(x_2)| < \epsilon_1$ ou se $|x_2 - x_1| < \epsilon_2$ torne x_2 o resultado e finalize o algorimto

7.
$$x_0 = x_1 e x_1 = x_2$$

8. k = k + 1. Volte ao passo 5.

3 Aplicação

3.1 Apresentação da função

Figura 1: Função $f(x) = 4\cos(x) - e^{2x}$ simulada no Geogebra

Como visto na figura acima, simulado pelo aplicativo de simulação matemática gráfica, percebemos que a função escolhida apresenta um comportamento aparentemente periódico, semelhante a um cosseno, quando x < 0 e apresenta uma queda brusca em x > 0, como uma exponencial negativa. Ao analisarmos este gráfico percebemos que temos vários zeros para esta função, sendo eles a maioria antes de x = 0 e apenas um após x = 0. Para aplicarmos algum método escolhido devemos nos atentar a intervalos que possuam pelo menos um zero desta função, como por exemplo o intervalo 0 < x < 1.

3.2 Aplicando os métodos

Utilizamos para construção e aplicação dos métodos apresentados a ferramenta Google Sheets, onde construímos para cada método uma planilha que popula as informações até chegarmos a um ponto de convergência onde podemos analisar e comparar com o gráfico gerado pelo Geogebra

3.2.1 Método da bissecção

Ao aplicarmos o método da bissecção utilizando o Google Sheets nos deparamos com uma limitação inerente à ferramenta, após um certo ponto chegamos em um estágio onde não havia-se mudanças, a pequena variação era desconsiderada pela ferramenta e mesmo assim persistia-se gerando cálculos.

		unção	Precisão:		x0	0					
Itaraaãa		x) - e^2x	1,00E-15		X1	Precisão Atende a soluçã					
teração			f(a)	X	f(x)	1,00E-15	NÃO				
1 .	0			0,5	7,92E-01	1,00E-15					
2	0,5	1	A é igual a X	0,75	-1,55E+00	1,00E-15	NÃO				
3	0,5	0,75	B é igual a X	0,625	-2,46E-01		NÃO ~				
4	0,5	0,625	B é igual a X	0,5625	3,03E-01	1,00E-15	NÃO				
5	0,5625	0,625	A é igual a X	0,59375	3,65E-02	1,00E-15	NÃO				
6	0,59375	0,625	A é igual a X	0,609375	-1,03E-01	1,00E-15	NÃO				
7	0,59375	0,609375	B é igual a X	0,6015625	-3,27E-02	1,00E-15	NÃO				
8	0,59375	0,6015625	B é igual a X	0,59765625	2,04E-03	1,00E-15	NÃO				
9	0,59765625	0,6015625	A é igual a X	0,599609375	-1,53E-02	1,00E-15	NÃO				
10	0,59765625	0,599609375	B é igual a X	0,5986328125	-6,62E-03	1,00E-15	NÃO				
11	0,59765625	0,5986328125	B é igual a X	0,5981445313	-2,29E-03	1,00E-15	NÃO				
12	0,59765625	0,5981445313	B é igual a X	0,5979003906	-1,27E-04	1,00E-15	NÃO				
13	0,59765625	0,5979003906	B é igual a X	0,5977783203	9,55E-04	1,00E-15	NÃO				
14	0,5977783203	0,5979003906	A é igual a X	0,5978393555	4,14E-04	1,00E-15	NÃO				
15	0,5978393555	0,5979003906	A é igual a X	0,597869873	1,44E-04	1,00E-15	NÃO				
16	0,597869873	0,5979003906	A é igual a X	0,5978851318	8,29E-06	1,00E-15	NÃO				
17	A 5070051310	0.5070001000	Y e leuni à A	0.5079077617	.E 93E.0E	1 00F-15	NÃO				
17	0,5978851318	0,5979003906	A é igual a X	0,5978927612	-5,93E-05	1,00E-15	NÃO				
18	0,5978851318	0,5978927612	B é igual a X	0,5978889465	-2,55E-05	1,00E-15	NÃO				
19	0,5978851318	0,5978889465	B é igual a X	0,5978870392	-8,62E-06	1,00E-15	NÃO				
20	0,5978851318	0,5978870392	B é igual a X	0,5978860855	-1,64E-07	1,00E-15	NÃO				
21	0,5978851318	0,5978860855	B é igual a X	0,5978856087	4,06E-06	1,00E-15	NÃO				
22	0,5978856087	0,5978860855	A é igual a X	0,5978858471	1,95E-06	1,00E-15	NÃO				
23	0,5978858471	0,5978860855	A é igual a X	0,5978859663	8,93E-07	1,00E-15	NÃO				
24	0,5978859663	0,5978860855	A é igual a X	0,5978860259	3,65E-07	1,00E-15	NÃO				
25	0,5978860259	0,5978860855	A é igual a X	0,5978860557	1,00E-07	1,00E-15	NÃO				
26	0,5978860557	0,5978860855	A é igual a X	0,5978860706	-3,17E-08	1,00E-15	NÃO				
27	0.5978860557	0.5978860706	B é igual a X	0.5978860632	3.44E-08	1,00E-15	NÃO				
28	0.5978860632	0.5978860706	A é igual a X	0.5978860669	1.36E-09	1,00E-15	NÃO				
29	0.5978860669	0,5978860706	A é igual a X	0,5978860687	-1,51E-08	1,00E-15	NÃO				
30	0,5978860669	0,5978860687	Béigual a X	0,5978860678	-6.89E-09	1,00E-15	NÃO				
31	0,5978860669	0.5978860678	Béigual a X	0,5978860673	-2,76E-09	1,00E-15	NÃO				
32	0,5978860669	0,5978860673		0,5978860673	-2,76E-09 -6,99E-10	1,00E-15	NÃO				
			B é igual a X			1,00E-15					
33	0,5978860669	0,5978860671	B é igual a X	0,597886067	3,33E-10	1,00E-15	NÃO				
34	0,597886067	0,5978860671	A é igual a X	0,5978860671	-1,83E-10		NÃO				
35	0,597886067	0,5978860671	B é igual a X	0,597886067	7,46E-11	1,00E-15	NÃO				
36	0,597886067	0.5978860671	A é igual a X	0.597886067	-5,44E-11	1,00E-15	NÃO				
37	0,597886067	0,597886067	Béigual a X	0,597886067	1,01E-11	1,00E-15	NÃO				
38	0,597886067	0,597886067	A é igual a X	0,597886067	-2,21E-11	1,00E-15	NÃO				
39	0,597886067	0,597886067		0,597886067	-2,21E-11 -6,01E-12	1,00E-15	NÃO				
			B é igual a X			1,00E-15					
40	0,597886067	0,597886067	B é igual a X	0,597886067	2,05E-12		NÃO				
41	0,597886067	0,597886067	A é igual a X	0,597886067	-1,98E-12	1,00E-15	NÃO				
42	0,597886067	0,597886067	B é igual a X	0,597886067	3,69E-14	1,00E-15	NÃO				

3.2.2 Método da posição falsa

Ao aplicarmos este método notamos que houve uma necessidade razoável de iterações para poder atingirmos nosso objetivo, diferentemente do método da bissecção, conseguimos chegar a um valor sem que a ferramenta escolhida fosse incapacitante. Levamos 32 iterações para chegarmos no resultado.

	Função		Precisão1:	Precisão2:		x0	0					
	4cos(x) - e^2	x	1E-15	1,00E-15		x1	1					
Iteração	eração a b			И	x	f(x)	Precisão	Atende a solução?				
1	1 0 1		3,00	E+00	0,3646154389	1,66E+00	1,00E-15	NÃO				
2	0,3646154389	1	1,66	E+00	0,5179948128	6,57E-01	1,00E-15	NÃO				
3	0,5179948128	1	6,57E-01		0,5718334645	2,25E-01	1,00E-15	NÃO				
4	0,5718334645	1	2,25	E-01	0,5895298629	7,35E-02	1,00E-15	NÃO				
5	0,5895298629	1	7,35	E-02	0,5952202493	2,36E-02	1,00E-15	NÃO				
6	0,5952202493	1	2,36	E-02	0,5970370754	7,52E-03	1,00E-15	NÃO				
7	0,5970370754	1	7,52	E-03	0,5976158345	2,39E-03	1,00E-15	NÃO				
8	0,5976158345	1	2,35	E-03	0,5978000676	7,62E-04	1,00E-15	NÃO				
9	0,5978000676	1	7,62	E-04	0,5978586999	2,43E-04	1,00E-15	NÃO				
10	0,5978586999	1	2,43	E-04	0,5978773583	7,72E-05	1,00E-15	NÃO				
11	0,5978773583	1	7,72	E-05	0,5978832958	2,46E-05	1,00E-15	NÃO				
12	0,5978832958	1	2,46	E-05	0,5978851852	7,82E-06	1,00E-15	NÃO				
13	0.5978851852	1		E-06	0,5978857864	2.49E-06	1,00E-15	NÃO				
14	0.5978857864	1		E-06	0.5978859777	7.92E-07	1,00E-15	NÃO				
15	0.5978859777	1	7,92E-07		0,5978860386	2,52E-07	1.00E-15	NÃO				
16	0,5978860386	1		E-07	0.597886058	8.02E-08	1,00E-15	NÃO				
47	0,507000050			E 00	0.5070000040	0,522.00	1.00F-15	NÃO				

Figura 2: Gráfico de convergência para o método da posição falsa aplicada a função

3.2.3 Método da secante

O método da secante demonstrou um avanço muito grande em relação aos métodos aplicados anteriormente, em apenas 8 iterações fomos capazes de atingir chegar num valor com a precisão estabelecida

Figura 3: Gráfico de convergência para o método da secante aplicada a função

3.2.4 Método de Newton-Raphson

Este método foi o método com a convergência mais rápida dentre os quais aplicamos, em apenas 4 iterações conseguimos atingir o objetivo. Vale ressaltar que ele depende do cálculo da derivada da

função o que eleva um pouco o custo computacional.

Figura 4: Gráfico de convergência para o método de Newton-Raphson aplicada a função

4 Considerações finais

Com o desenvolver deste projeto, pudemos analisar estes diferentes métodos para obtenção de zeros de funções, validamos que métodos muito simples como o método da bissecção apesar de ser de fácil compreensão, computacionalmente, pode não ser a melhor escolha para a maioria dos casos, assim como apesar de métodos sofisticados que possuem rápida convergência para o resultado pode não ser a melhor opção para casos onde a função varia constantemente, pois existe a necessidade do cálculo de derivadas da função avaliada. Aprendemos que a escolha do método é situacional, variando de acordo com as informações que possuímos e com a forma da função que estamos lidando.