

Departamento de **Matemáticas**

LEJuan Ramôn Jimenez Casablanca

Nombre:		
Curso:	3º ESO A	Control de Polinomios
Fecha:	13 de Noviembre de 2015	1º Trimestre

1.- Define: (1 Punto)

- a) Grado de un monomio.
- b) Semejanza de Monomios.
- c) Grado de un polinomio.
- 2. Completa la siguiente tabla: (1 punto)

Monomio	Grado	Parte literal	Coeficiente
-3x ²			
-m			
-4			
13a ⁴ b ⁷			
8xyz ²			

3. - En los siguientes Polinomios, indica el grado:

(1 punto)

Polinomio	Grado
$8x^3+5x^4-3x+1$	
$2+3x-9x^5+5x^3$	
$3x-3x^2-2+9x^3$	
Y+7y ² -4yzt	

4. - Calcula el valor numérico para x=2; x=-1 y x=0 del polinomio $2x^3-x^2+2x-3$

(a) 2p(x)-3q(x)+r(x)=

(1 punto)

5. - Dados los polinomios
$$\begin{cases} p(x) = x^3 - 4x^2 - 4x + 5 \\ q(x) = -5x^3 - 2x^2 + 3x \\ r(x) = 2x - 6 \end{cases} \text{ calcular:} \begin{cases} a) 2p(x) - 3q(x) - 3p(x) - 3p(x)$$

$$\begin{cases} b) \ r(x) - 3p(x) = \\ c) \ 4 \cdot p(x) \cdot r(x) = \\ d) \ p(x) \cdot q(x) \cdot r(x) = \end{cases}$$

6. - Simplifica las siguientes expresiones:

(1 punto)

a)
$$x^2$$
-(2x+3)-(x^2 +2x)

b)
$$5-3(x^2+1)+x(x+2)$$

c)
$$x^2-3x+2-(x-x^2)+3x$$

d)
$$x^2-x+2x^2-4+3x$$

a)
$$(x^2-3x+1)\cdot(x+2)$$

b)
$$(2x^3-3x^2+2)\cdot(2x-1)$$

c)
$$(x^2+x-2)\cdot(x^2+1)$$

8. - Desarrolla las siguientes identidades notables: (1 punto)

$$a)\left(2m-\frac{n}{2}\right)^2$$

$$a)\left(2m-\frac{n}{2}\right)^{2} \qquad b)\left(3x-\sqrt{3}\right)\left(3x+\sqrt{3}\right) \qquad c)\left(3x+\sqrt{5}\right)^{2}$$

$$c)(3x+\sqrt{5})^2$$

9. – Halla el polinomio S(x) que sumado a $P(x)=4x^3-3x^2+2x$ da como resultado: (1 punto)

a)
$$Q(x)=2x^3-3x^2-x+2$$

b)
$$R(x)=3x^3-3x^2+1$$

Departamento de Matemáticas LEJuan Ramón Jimenez Casablanca

Nombre:		
Curso:	3º ESO A	Control de Algebra
Fecha:	27 de Noviembre de 2014	<u>1º Trimestre</u>

${f 1.-}$ Llamando X a un número cualquiera, escribe en lenguaje algebraico: (2 puntos)

Enunciado	Exp. Algebraica
El triple de un número.	
La mitad de un número menos su anterior.	
La suma de dos números consecutivos.	
El doble de un número menos cuatro unidades.	
La suma de la mitad de un número más sus dos terceras partes.	
El cuadrado de la diferencia del doble de un número menos su mitad.	
La mitad del resultado de restarle cuatro unidades a X.	
El cuadrado del cociente de la diferencia de 7 menos el doble de un número, dividido entre el triple de ese número.	

2. – Completa la tabla: (1 punto)

Monomio	Grado	Parte literal	Coeficiente
-3x ⁴			
-2xm			
-4			
13a ⁴ b ⁶ c ²			
xtyz²			

3. - Completa la tabla:

(1 punto)

Polinomio	Grado	¿Completo?	Términos que faltan	Término independiente
$8x^5 + 5x^2 - 3x + 1$				
$2+3x-6x^2+5x^3$				
$3x-5x^2-2+9x^4$				
$2y + 7y^2 - 4zy^2 + 3$				

4. – Calcula el valor numérico para x=-2; y x=1 del polinomio
$$3x^4-2x^3-4x^2+2x-3$$
 (1 punto)

5. - Dados los polinomios
$$\begin{cases} p(x) = x^3 - 4x^2 - 4x + 5 \\ q(x) = -5x^3 - 2x^2 + 3x \\ r(x) = 2x - 6 \end{cases}$$
 calcular:
$$\begin{cases} b) \ r(x) - 3p(x) = \\ c) \ 4 \cdot p(x) \cdot r(x) = \\ d) \ p(x) \cdot q(x) \cdot r(x) = \end{cases}$$

- 6. Fíjate en la figura y expresa algebraicamente: (1 punto)
 - a) El área del triángulo Azul.
 - b) El área del trapecio amarillo.
 - c) La longitud de l.
 - d) Calcula la longitud de l, si x=5 cm.

(a) 2p(x)-3q(x)+r(x)=

7. - Realiza las siguientes divisiones de polinomios: (1 punto)

$$4x^{5} - 3x^{3} + 5x^{2} - 7$$
 $2x^{2} - 3x + 5$ $2x^{5} - 16x^{4} + 20x^{3} - 11x^{2} + 3x + 2$ $2x^{2} - 3x + 2$

8. - Desarrolla las siguientes identidades notables: (1 punto)

a)
$$\left(2m-\frac{n}{2}\right)^2$$
 b) $\left(3x^2-2\right)\cdot\left(3x^2+3\right)$ c) $\left(3x^3+2x\right)^2$

Bonus. - Transforma en producto las siguientes expresiones: (1 punto)

a)
$$4x^2 + 8x + 4 =$$

b)
$$x^2 - 16x + 16 =$$

c)
$$4x^2 - 49 =$$

Departamento de **Matemáticas**

Nombre:			
Curso:	3º ESO B	Control de Polinomios	
Fecha:	14 de Noviembre de 2014	<u>1º Trimestre</u>	

1.- Define: (1 Punto)

- a) Grado de un polinomio.
- b) Semejanza de Monomios.
- c) Valor numérico de un polinomio.
- 2. Completa la siguiente tabla: (1 punto)

Monomio	Grado	Parte literal	Coeficiente
$-3x^2$			
-m			
-4			
13a ⁴ b ⁷			
8xyz ²			

3. – En los siguientes Polinomios, indica el grado:

(0,5 puntos)

Polinomio	Grado
$8x^3+5x^4-3x+1$	
$2+3x-9x^5+5x^3$	
$3x-3x^2-2+9x^3$	
Y+7y ² -4yzt	

4. - Calcula el valor numérico para x=2; x=-1 y x=0 del polinomio $2x^3-x^2+2x-3$

(1 punto)

5. - Dados los polinomios
$$\begin{cases} p(x) = x^3 - 4x^2 - 4x + 5 \\ q(x) = -5x^3 - 2x^2 + 3x \\ r(x) = 2x - 6 \end{cases}$$
 calcular:
$$\begin{cases} a) \ 2p(x) - 3q(x) + 6 \\ b) \ r(x) - 3p(x) = 6 \\ c) \ 4 \cdot p(x) \cdot r(x) = 6 \\ d) \ p(x) \cdot q(x) \cdot r(x) = 6 \end{cases}$$

a)
$$2p(x) - 3q(x) + r(x) =$$

b) $r(x) - 3p(x) =$

c)
$$4 \cdot p(x) \cdot r(x) =$$

(d)
$$p(x)\cdot q(x)\cdot r(x) =$$

- 6. Doblando un alambre de 40 cm formamos un rectángulo. Halla la expresión algebraica que define el área del rectángulo y calcula su valor para x=4. (1 punto)
- 7. Realiza las siguientes divisiones de polinomios: (2 puntos)

$$4x^5 - 3x^3 + 5x^2 - 7$$
 $2x^2 - 3x + 5$

$$4x^{5} - 3x^{3} + 5x^{2} - 7 \ \underline{|2x^{2} - 3x + 5|} \qquad \qquad 8x^{5} - 16x^{4} + 20x^{3} - 11x^{2} + 3x + 2 \ \underline{|2x^{2} - 3x + 2|}$$

- **8.** En una división de polinomios, el cociente es C(x)=3x-5, el divisor es $D(x)=3x^2+2x$ y el dividendo es $P(x)=9x^3-9x^2-10x-4$. Halla el resto R(x). (0,75 puntos)
- 9. Desarrolla las siguientes identidades notables: (0,75 puntos)

$$a)\left(2m-\frac{n}{2}\right)^{2}$$

a)
$$\left(2m - \frac{n}{2}\right)^2$$
 b) $\left(3x - \sqrt{3}\right) \left(3x + \sqrt{3}\right)$ c) $\left(3x + \sqrt{5}\right)^2$

$$c)(3x+\sqrt{5})^2$$