Теория фигур планет и гравиметрия 2018

Домашнее задание № 4

Крайний срок сдачи: 7 апреля 2018 г.

1. Вычислить

 $\Delta \left(\frac{\partial^3 1/r}{\partial x \partial y^2} \right), \tag{1 6.}$

 $(1 \, 6.)$

где

$$r^2 = (x - a)^2 + (y - b)^2 + (z - c)^2$$
.

2. Уравне
ие Лапласа в сферических координатах $(r,\,\vartheta,\,\lambda)$ имеет следующий вид

$$\Delta f = \frac{1}{r} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \vartheta} \frac{\partial}{\partial \vartheta} \left(\sin \vartheta \frac{\partial f}{\partial \vartheta} \right) + \frac{1}{r^2 \sin^2 \vartheta} \frac{\partial^2 f}{\partial \lambda^2} = 0.$$

Докажите, что функция

$$f(r, \vartheta, \lambda) = \frac{1}{r^4} \sin^2 \vartheta \cos \vartheta \cos 2\lambda$$

является гармонической для всех $r \neq 0$.

- 3. Найти минимальную продолжительность суток, при которой сила тяжести будет равна нулю. (1 б.) Землю считать вращающимся шаром.
- 4. Космические агентства стремятся располагать космодромы ближе к экватору. Вычислить, как изменится вес ракеты массой 10 тонн при её запуске с различных космодромов по сравнению с экватором. Землю считать вращающимся шаром. Данные взять из таблицы.

Название	Широта φ°
Мыс Канаверал (США)	28
Байконур (Россия)	46
Восточный (Россия)	52
Плесецк (Россия)	63

5. Расстояние между очень близкими уровенными поверхностями потенциала W силы g в точках A и B равны H_1 и H_2 . Определить силу q в точке B, считая известной силу g_A в точке A.