Лабораторна робота № 3

Перевірка статистичних гіпотез: гіпотеза однорідності (критерій пустих блоків), гіпотеза незалежності (критерії Спірмена та Кендалла) та гіпотеза випадковості (критерій, що ґрунтується на кількості інверсій)

Всі розрахунки проводяться при рівні значимості $\gamma = 0.05$.

Завдання 1. Перевірка гіпотези однорідності: критерій пустих блоків.

Генеруємо дві незалежні вибірки:

$$\overline{X} = (X_1, ..., X_n) \sim F_{\xi}(u) = 1 - e^{-u}, \ u \ge 0;$$

$$\overline{Y} = (Y_1, ..., Y_m) \sim F_n(u) = 1 - e^{-1.2u}, \ u \ge 0.$$

За допомогою критерію пустих блоків перевірити гіпотезу однорідності при наступних значеннях параметрів:

a)
$$n = 500$$
, $m = 1000$; b) $n = 5000$, $m = 10000$; c) $n = 50000$, $m = 100000$.

Завдання 2. Перевірка гіпотези незалежності.

Генеруємо вибірку $(\overline{X}, \overline{Y}) = \{(X_1, Y_1), ..., (X_n, Y_n)\}$ за наступним правилом:

- $\{X_i\}$ це реалізації рівномірно розподіленої на [0,1] випадкової величини ξ ; в якості $\{Y_i\}$ розглянути два варіанти:
- а) $Y_i = \xi_i \cdot \eta_i$, де $\{\eta_i\}$ рівномірно розподілені на проміжку [-1,1] , тобто $(X_i,Y_i) = (\xi_i,\xi_i\cdot\eta_i)\,;$
- b) $Y_i = \xi_i + \eta_i$, де $\{\eta_i\}$ рівномірно розподілені на проміжку [-1,1] , тобто $(X_i,Y_i)=(\xi_i,\xi_i+\eta_i)$;

А. Критерій Спірмена.

Перевірити гіпотезу незалежності за допомогою критерія Спірмена при наступних значеннях параметра n: a) n = 500; b) n = 5000; c) n = 50000.

В. Критерій Кендалла.

Перевірити гіпотезу незалежності за допомогою критерія Кендалла при наступних значеннях параметра n: a) n = 500; b) n = 5000; c) n = 50000.

Завдання 3. Перевірка гіпотези випадковості.

Припустимо, що вибірка $\overline{X} = (X_1, ..., X_n)$ утворюється за наступним правилом: $X_i = \left(\xi_1 + ... + \xi_i\right)/i, \quad i = 1,...,n \;, \; \text{де} \; \left\{\xi_i\right\} \; - \; \text{це послідовність незалежних рівномірно}$ розподілених на [-1,1] випадкових величин.

Перевірити гіпотезу випадковості за допомогою критерію, що ґрунтується на обчисленні кількості інверсій при наступних значеннях параметра n:

а) n = 500; b) n = 5000; c) n = 50000.