2019-05-08 Final Exam Review

Wednesday, May 8, 2019 2:53 PM

CS 212 Practice Final

Name:

The Rules (if this were a real exam)

- Closed book.
- Closed note.
- Closed neighbor. Merely <u>Looking</u> at the work of others is cheating and carries all of the normal consequences.
- Calculators are allowed.
- Neatness counts. If I can't read it, you won't get credit.
- Use of a calculator is allowed, anything else electronic is not.
- Be sure to show your work.

Identities

$$\begin{array}{lll} y = \log_a x & \Longleftrightarrow a^y = x \ (a, x > 0, a \neq 1) \\ & \log_a 1 = 0 \\ & \log_a a = 1 \\ & \log_a (mn) = \log_a m + \log_a n \\ & \log_a \frac{m}{n} = \log_a m - \log_a n \\ & \log_a m = n \cdot \log_a m \\ & \log_a m = \frac{\log_b m}{\log_b a} \\ & \log_a m = \frac{\log_b m}{\log_b a} \\ & \sum_{i=1}^n i^2 = \frac{2n^3 + 3n^2 + n}{6} = \frac{n(2n+1)(n+1)}{6}. \\ & \sum_{i=1}^n n = n \log_n n \\ & \sum_{i=1}^n n = n \log_n n \\ & \sum_{i=1}^n a^i = \frac{1}{1-a} \text{ for } 0 < a < 1. \\ & \sum_{i=0}^n a^i = \frac{a^{n+1}-1}{a-1} \text{ for } a \neq 1. \\ & \sum_{i=1}^n \frac{1}{2^i} = 1 - \frac{1}{2^n}, \\ & \log_a m = \frac{\log_b m}{\log_b a} \\ & \sum_{i=0}^n 2^i = 2^{n+1} - 1. \\ & \log_a b = \frac{a}{\log_b a} \\ & \sum_{i=0}^n 2^i = 2^{\log_n n + 1} - 1 = 2n - 1. \\ & \log_a x = \frac{\ln a}{\ln x} \end{array}$$

Note

The final exam is cumulative. The questions on this handout only include new topics since the last exam. For a complete representation of what will be on the final exam, consult both handouts.

1. [2] Use the master method to solve the following recurrence:

$$T(n) = 2T\left(\frac{n}{3}\right) + n$$

$$Co_3^2$$

$$2\left(\frac{N}{3}\right) \leq Cf(N)$$

$$2/2$$

$$2/2$$

2. [2] Use the master method to solve the following recurrence:

$$T(n) = 4T\left(\frac{n}{2}\right) + n^2$$

3. [2] Use the master method to solve the following recurrence:

$$T(n) = 2T\left(\frac{n}{2}\right) + 1$$

$$\int_{0}^{1} y_{2}^{2} = \int_{0}^{1} \frac{(a \times 1)}{a}$$

4. [2] Use the master method to solve the following recurrence:

$$T(n) = 4T\left(\frac{n}{2}\right) + n^2$$

5. [3] Use the Levenshtein algorithm to compute the distance matrix for the strings "PENCIL" and "PAPER"

		P	E	N	С	I	L
	0	1	2	3	4	5	6
P	1	0	1	2	3	4	5
Α	2	1	1 .	2	3	4	5

	٧	\ _	4	5	4	ح	U
P	1	0	1	2	3	4	5
Α	2	1	1 _	2	3	4	5
P	3	2	2	2	3	4	5
E	4	3	2	3	3 —2	4	5
R	5	4	3	3	4	4	ي 5

P	E	N	С	I	L
=	~	~	~	+	~
P	A	P	E		R

6. [3] Use the Needleman-Wunch algorithm (Gap = -2, Match = 1, Mismatch = -1) to compute the distance matrix for the strings "PENCIL" and "PAPER". Draw arrows as a shorthand to represent the direction matrix.

		P	E	N	С	I	L
	0	-2	-4	-6	-8	-10	-12
Р	-2	1	-1	-3 🛹	-5 ڃ	-7 ~	-9 ←
Α	-4	-1 7	0	-2 جار	-4 <	-6 Le	-8 √€
P	-6		-2 1				
E	-8		-2 🤨				
R	-10	-7 T	-4 介	-3~	-4 ^{\(\)}	-35	- <u>5</u> / S

Р	E	N	С	I	L
Р	Α	Р	E	R	_

http://experiments.mostafa.io/public/needleman-wunsch/

Programming Problems

This exam will have one or more programming problems. Here is an example below:

7. [5] A child is running up a staircase with N steps and can hop either 1, 2, or 3 steps at a time. Write a function to determine the number of possible ways that the child can run up the stairs.

```
NumStairs(n):
    if n == 1:
        return 1
    if n == 2:
        return 2
    if n == 3:
        return 4
    return NumStairs(n - 1) + numStairs(n - 2) + numStairs(n - 3)
```

What data structure would be used to house our mem? HT<int, int>

Recursion tree for when N = 5

greety Arish on conquer 5

Algorithm Proposal

You will be given a scenario and must propose an algorithm that could be applied to the problem. For example,

8. You are developing a multiplayer matchmaking client for your team-based shooter.

Stable roommates (all same type of player)

Algorithm Identification

Lastly, you must be able to identify each algorithm as greedy, dynamic, or divide and conquer.

E.g. Dijkstra's Algorithm -> greedy
 Rod cutting -> dynamic
 Merge sort -> divide and conquer