DM 8:

Étude du cours pendant les vacances de la Toussaint

Pendant les vacances, je vous demande de faire une lecture détaillée d'une petite portion du cours : il s'agit du chapitre "Applications et dénombrement", de la page 8 à la page 16 (incluse). Au fur et à mesure de votre lecture, veuillez répondre aux questions qui suivent et les rédiger proprement sous le format d'un "devoir maison". C'est à remettre numériquement avant vendredi 5 novembre à 23h45.

Injectivité et surjectivité

- 1°) On dit que f est injective si et seulement si $\forall x, y \in E$, $[f(x) = f(y) \Longrightarrow x = y]$. Démontrer que f est injective si et seulement si tout élément de F possède au plus un antécédent.
- **2°)** Lorsque f est une application d'un intervalle I de \mathbb{R} dans \mathbb{R} , interprétez graphiquement l'injectivité de f.
- 3°) Soit f une application d'un ensemble ordonné (E, \leq_E) dans un ensemble ordonné (F, \leq_E) . Si \leq_E est total et si f est strictement monotone, montrer que f est injective.
- **4°)** Montrer que l'application $(x,y) \mapsto (x+y,x-y)$ est une bijection de \mathbb{R}^2 dans lui-même et préciser sa bijection réciproque.
- 5°) Soit f une application de E dans F. On définit sur E la relation binaire R par : $xRy \iff f(x) = f(y)$. Montrer que R est une relation d'équivalence puis que montrer en détail que l'application $\overline{f}: E/R \longrightarrow f(E) = f(x)$ est une bijection.
- **6°)** Soit f une application de E dans F et g une application de F dans G. Si $g \circ f$ est injective, montrer que f est injective. Si $g \circ f$ est surjective, montrer que g est surjectif.
- 7°) Soit f une application de E dans F. Lorsque f est surjective, montrer que, pour toute partie B de F, $f(f^{-1}(B)) = B$. Lorsque f est injective, montrer que, pour toute partie A de E, $f^{-1}(f(A)) = A$.

Lois internes

- 8°) Si A est un ensemble, montrer que $(\mathcal{P}(A), \cup)$ est un monoïde commutatif dont l'élément neutre est \emptyset . Qu'en est-il de $(\mathcal{P}(A), \cap)$?
- 9°) Si A est un ensemble, dont les éléments sont appelés des lettres, on note A^* l'ensemble des mots écrits avec l'alphabet A. Montrer que A^* possède une structure de monoïde que l'on précisera.
- 10°) Soit (E, \times) un monoïde et $x \in E$. Lorsque x est inversible à gauche et à droite, montrer qu'il existe un unique $y \in E$ tel que $xy = yx = 1_E$.
- 11°) Soit (E, \times) un monoïde et $x, y \in E$. Si x et y sont inversibles dans E, montrer que xy est aussi inversible.
- 12°) Montrer que (\mathbb{Q}^*, \times) est un groupe commutatif mais que (\mathbb{Z}^*, \times) n'est pas un groupe.

Cardinal d'un ensemble

- 13°) Soit E un ensemble. S'il existe $n \in \mathbb{N}$ tel que \mathbb{N}_n est en bijection avec E, montrer que n est unique. On dit alors que n est le cardinal de E. Il est noté $\operatorname{card}(E)$ ou bien #E, ou encore |E|. En cas d'inexistence d'un tel entier n, on dit que E est infini.
- 14°) Soit A un ensemble de cardinal $n \in \mathbb{N}$ et soit B un ensemble quelconque. Montrer que B est fini de cardinal n si et seulement si il existe une bijection de A sur B.
- 15°) Soit A un ensemble fini de cardinal $n \in \mathbb{N}$. Soit B une partie de A. Montrer que B est un ensemble fini et que $|B| \leq |A|$, avec égalité si et seulement si B = A.
- **16**°) Soit $(x_n)_{n\in\mathbb{N}}$ une suite de réels et $l\in\mathbb{R}$. Montrer que x_n ne tend pas vers l si et seulement si il existe $\varepsilon>0$ tel que $\{n\in\mathbb{N}/|x_n-l|>\varepsilon\}$ est infini.