Préparation à l'examen 1 : 8THE105 - Ensembles, relations et fonctions

- 1) Parmi les énoncés suivants, identifier les propositions (4 pts).
 - a) Patrice est un acronyme de Picrate.
- b) y = 2x + 1

c) Ouf

- d) $\forall q \in \mathbb{R}, \exists (a,b) \in \mathbb{Z} \times \mathbb{Z}^*, q = \frac{a}{b}.$
- 2) Soit les propositions suivantes (15 pts) :

s: « Dante a une voiture sport ».

c: « Dante est célibataire ».

h: « Dante mange des hot-dogs ».

Écrire à l'aide les connecteurs logiques « et », « ou », « non » et « si... alors... », les phrases suivantes :

- a) Pas de hot-dogs pour Dante, ni de voiture de sport.
- b) Dante a une voiture sport ou est célibataire mais pas les deux.
- c) Avec une voiture de sport, Dante ne serait pas célibataire.

Écrire en langage courant les propositions suivantes :

- d) $\neg (c \land h)$
- e) $(s \lor c) \rightarrow \neg h$
- 3) Expliquer, par un exemple, la différence entre les énoncés $\forall x \exists y P(x, y)$ et $\exists y \forall x P(x, y)$ (5 pts).
- 4) Soit (15 pts)

E(x, y): « x étudie le soir y »

S(y) : « y est un soir de la semaine »

G(x) : « x est un garçon ».

Écrire à l'aide des connecteurs logiques (« et », « ou », « non ») et des quantificateurs (« pour tout » et « il existe ») les phrases suivantes :

- a) Il y a des filles qui étudient le soir.
- b) Chaque soir, au moins un élève étudie.
- c) Choisir la phrase en langage courant qui exprime le mieux la proposition $\forall x \exists y, G(x) \land E(x,y) \land S(y)$
 - i) Les garçons étudient les soirs de semaine, pas la fin de semaine.
 - ii) Ce groupe est composé uniquement de garçons qui étudient au moins un soir de semaine.
 - iii)Les garçons étudient tous les soirs de la semaine.
 - iv)Si les garçons étudient alors c'est un soir de la semaine.
 - v) Les garçons étudient tous le même soir de la semaine.
- d) Choisir la phrase en langage courant qui exprime le mieux la proposition

$$\forall x \forall y, (\neg G(x) \land E(x, y)) \rightarrow S(y)$$

- i) Les filles étudient tous les soirs de la semaine.
- ii) Toutes les filles étudient tous les soirs seulement la semaine.
- iii)Les personnes qui étudient le soir sont toutes des filles.
- iv) Les filles étudient seulement les soirs de la semaine.
- v) Ce groupe de fille étudient seulement les soirs de semaine.

Écrire dans le langage courant la proposition suivante :

e)
$$\exists y \exists x (G(x) \land S(y) \land E(x, y))$$

5) Construire les tables de vérité des propositions suivantes (10 pts).

a)
$$(p \land \neg q) \rightarrow (r \lor p)$$

b)
$$(p \oplus q) \rightarrow (p \leftrightarrow r)$$

6) Construire une proposition ayant la table de vérité suivante (3 pts).

p	q	r	Proposition
V	V	V	V
V	V	F	F
V	F	V	F
V	F	F	V
F	V	V	F
F	V	F	F
F	F	V	V
F	F	F	V

7) Démontrer en utilisant les équivalences logiques, que les propositions suivantes sont équivalentes en nommant les propriétés utilisées (11 pts):

a)
$$\neg ((p \land \neg q) \lor (\neg p \land q))$$
 et $(p \lor \neg q) \land (\neg p \lor q)$

b)
$$((p \rightarrow q) \lor \neg (\neg p \land r)) \land (p \land \neg q)$$
 et $\neg (p \rightarrow q)$

8) Identifier le type de contrevérité ou la règle d'inférence utilisée dans les raisonnements suivants (8 pts):

- a) Soit la proposition « les bleuets éliminent le cholestérol ».
 - i. « Yogi est un ours qui ne fait pas de cholestérol, donc il mange des bleuets. »
 - ii. « Yogi ne mange pas de bleuets, donc il fait du cholestérol. »
- b) Une serveuse offre à Walter « thé ou café » au restaurant. Il répond « oui mais pas du thé ». La serveuse lui emporte un café.
- c) Il y a une infinité de nombre premier.

Preuve:

Soit $x_1, x_2, ..., x_n$ la suite des nombres premiers (x_k est premier). On peut construire $S = \{x_i | i \in \mathbb{N}, x_i \text{ un nombre premier}\}$, un ensemble qui contient les nombres premiers. Comme \mathbb{N} est compte une infinité d'élément, il y a un nombre infini de de nombres premiers.

9) Faux ou faux. Justifier votre réponse (8 pts).

a)
$$\forall x \in \mathbb{R}, (x^2 > x)$$

b) Pour tout nombre naturel n > 1, $n^2 + n - 1$ est un nombre premier.

10) 6 preuves.

Informations supplémentaires :

$p \wedge V \equiv p$ $p \vee F \equiv p$	Identité			
$p \land F \equiv F$ $p \lor V \equiv V$	Domination			
$\begin{array}{c} p \wedge p \equiv p \\ p \vee p \equiv p \end{array}$	Idempotence			
$\neg(\neg p)$	Double négation			
$p \land q \equiv q \land p$ $p \lor q \equiv q \lor p$	Commutativité	Règle d'inférence	Contingence	Nom
$(p \land q) \land r \equiv p \land (q \land r)$ $(p \lor q) \lor r \equiv p \lor (q \lor r)$	associativité	$q \downarrow g$ $p \rightarrow q$	$(q \land (p \rightarrow q)) \rightarrow p$	Affirmer la conclusion
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$ $p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$	Distributivité	∴ ¬p ¬p		
$\neg(p \land q) \equiv \neg p \lor \neg q$ $\neg(p \lor q) \equiv \neg p \land \neg q$	De Morgan	$\frac{p \to q}{\therefore \neg q}$	$(\neg p \land (p \rightarrow q)) \rightarrow \neg q$	Ignorer l'hypothèse
$p \land (p \lor q) \equiv p$ $p \lor (p \land q) \equiv q$	Absorbotion	$p \rightarrow q$		
$p \land \neg p \equiv F$ $p \lor \neg p \equiv V$	Simplification	$\frac{q \to p}{\therefore p}$	$((p \to q) \land (q \to p)) \to p$	Raisonnement circu- laire

Règle d'inférence	Tautologie	Nom
$\frac{p}{\stackrel{p\to q}{\cdot} q}$	$(p \land (p \rightarrow q)) \rightarrow q$	Modus Ponens Règle de détachement
$ \begin{array}{c} \neg q \\ \underline{p \to q} \\ \therefore \neg p \end{array} $	$(\neg q \land (p \to q)) \to \neg p$	Modus Tollens Contraposée
$p \to q$ $\frac{q \to r}{\therefore p \to r}$	$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$	Syllogisme par hypo- thèse Règle de la chaîne
$ \begin{array}{c} p \lor q \\ \hline \neg p \\ \hline \therefore q \end{array} $	$((p \lor q) \land \neg p) \to q$	Syllogisme disjonctif ou Élimination
$\frac{p}{\therefore \ p \lor q}$	$p \to (p \lor q)$	Addition
$\frac{p \wedge q}{\therefore p}$	$(p \wedge q) \rightarrow p$	Simplification
$\begin{array}{c} p \\ \underline{q} \\ \therefore \ p \wedge q \end{array}$	$(p \land q) \to p \land q$	Conjonction
$\begin{array}{c} p \vee q \\ \hline \neg p \vee r \\ \hline \therefore \ q \vee r \end{array}$	$(p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r)$	Résolution

Réponses (non vérifiée) :

1)

- a) Oui (vrai)
- b) Non (variables sans quantificateurs)
- c) Non (
- d) Oui (faux)

2)

- a) $\neg h \lor \neg s$
- b) $(\neg s \land c) \lor (s \land \neg c)$ $(s \lor c) \land \neg (s \land c)$
- c) $s \rightarrow \neg c$
- d) Dante n'est pas un célibataire qui mange des hotdogs.
- e) Dante ne mange pas de hot-dogs, parce qu'il est célibataire ou mange des hot-dogs.
- 3) Si P(x, y) : x est la propriété de y

 $\forall x \exists y \, P(x,y)$: Tout objet a un propriétaire.

 $\exists y \forall x P(x, y)$: Un objet est à tout le monde.

4)

- a) $\exists x \exists y \mid \neg G(x) \land E(x, y)$
- b) $\forall y \exists x \mid E(x, y)$
- c) ii) Ce groupe est composé uniquement de garçons qui étudient au moins un soir de semaine.
- d) iv) Les filles étudient seulement les soirs de semaine.
- e) Il y a un soir ou un gars étudie un soir de semaine.

5)

a)

p	q	r	p et non q	S	r ou p
VRAI	VRAI	VRAI	FAUX	VRAI	VRAI
VRAI	VRAI	FAUX	FAUX	VRAI	VRAI
VRAI	FAUX	VRAI	VRAI	VRAI	VRAI
VRAI	FAUX	FAUX	VRAI	VRAI	VRAI
FAUX	VRAI	VRAI	FAUX	VRAI	VRAI
FAUX	VRAI	FAUX	FAUX	VRAI	FAUX
FAUX	FAUX	VRAI	FAUX	VRAI	VRAI
FAUX	FAUX	FAUX	FAUX	VRAI	FAUX

b)

p	q	r	p ou-x r	S	p ssi r
VRAI	VRAI	VRAI	FAUX	VRAI	VRAI
VRAI	VRAI	FAUX	FAUX	VRAI	FAUX
VRAI	FAUX	VRAI	VRAI	VRAI	VRAI
VRAI	FAUX	FAUX	VRAI	FAUX	FAUX
FAUX	VRAI	VRAI	VRAI	FAUX	FAUX
FAUX	VRAI	FAUX	VRAI	VRAI	VRAI
FAUX	FAUX	VRAI	FAUX	VRAI	FAUX
FAUX	FAUX	FAUX	FAUX	VRAI	VRAI

6)
$$(p \wedge q \wedge r) \vee (p \wedge \neg q \wedge \neg r) \vee (\neg p \wedge \neg q \wedge r) \vee (\neg p \wedge \neg q \wedge \neg r)$$

7)

a)
$$\neg ((p \land \neg q) \lor (\neg p \land q)) \qquad \text{(De Morgan)} \\ \neg (p \land \neg q) \land \neg (\neg p \land q) \qquad \text{(De Morgan)} \\ (\neg p \lor \neg (\neg q)) \land (\neg (\neg p) \lor \neg q) \qquad \text{(Double négation)} \\ (\neg p \lor q) \land (p \lor \neg q) \qquad \text{(Commutativité)} \\ (p \lor \neg q) \land (\neg p \lor q) \qquad \text{(}$$

 $((p \rightarrow q) \lor \neg (\neg p \land r)) \land (p \land \neg q)$ (De Morgan) $((p \to q) \lor \neg (\neg p) \lor \neg r) \land (p \land \neg q)$ (Double négation) $((p \rightarrow q) \lor p \lor \neg r) \land (p \land \neg q)$ (Identité de \rightarrow) $(\neg p \lor q \lor p \lor \neg r) \land (p \land \neg q)$ (Commutativité) $(\neg p \lor p \lor q \lor \neg r) \land (p \land \neg q)$ (Simplification) $(V \lor q \lor \neg r) \land (p \land \neg q)$ (Domination) $(V \vee \neg r) \wedge (p \wedge \neg q)$ (Domination) $V \wedge (p \wedge \neg q)$ (Identité) (De Morgan) $p \land \neg q$ $\neg(\neg p \lor \neg(\neg q))$ (Double négation)

(Identité de \rightarrow)

(Double négation)

8)

 $\neg(\neg p \lor q)$

 $\neg (p \rightarrow q)$

 $\neg(\neg(\neg p)\rightarrow q)$

- a) i) Affirmer la conclusionii) Nier l'hypothèse
- b) Syllogisme disjonctif
- c) Raisonnement circulaire

9)

- a) Faux, prenons x = 0 , $x \in \mathbb{R}$ et $x^2 \le x$.
- b) Faux, prenons n = 7, $7^2 + 7 1 = 55 = 5 \cdot 11$, non composé.