

Distributed Algorithms

Mutual Exclusion

Univ.-Prof. Dr.-Ing. habil. Gero Mühl

Architecture of Application Systems
Faculty for Computer Science and Electrical Engineering
University of Rostock

Overview

- > Problem of mutual exclusion
- > Algorithm with central coordinator
- > Broadcast-based algorithms
- > Quorum-based algorithms
- > Token-based algorithms
- Comparison of algorithms

Mutual Exclusion

- Is about coordinating the exclusive access on resources such as files, printers, or data structures
- With exclusive access, only 1 process shall get access to the resource at the same time
- Sometimes instead of only one, at most n processes with n > 1 are allowed to access at the same time
- > Assumption: If a process has the right to access, it voluntarily releases this right after finite time

Default for the lecture

Requirements

- Safety: Something bad that is irreparable shall never happen
 - Here: At no point in time more than one process should have the right to access the resource
- Liveness: Something good that should happen eventually happens
 - Here: If at least one process wants to access the resource, a process gets the right to access it after finite time
- Algorithms must fulfill both safety and liveness as often a trivial solution is possible for only one of the two

Requirements

- > Fairness is often required additionally besides safety and liveness
- > Starvation freeness
 - If a process continually wants to access the resource, access is eventually granted to this process
- > Stronger fairness
 - > The order in which access is granted to the processes takes the order in which access was requested into account

Solutions for Centralized Systems

- > Examples for mechanisms used to achieve mutual exclusion in centralized systems
 - > Busy Waiting
 - > Semaphores
 - > Monitors
- > Those mechanisms base on the fact that processes can atomically test and set a memory cell
- Not given in distributed systems!
- How can mutual exclusion be realized in distributed systems?

Algorithm with Central Coordinator

Centralized Solution for Distributed Systems

- > A process is assigned as coordinator of a resource
- > Coordinator
 - is informed about all requests / releases
 - > grants accesses
- > Algorithm easy to implement
- 3 messages per access (with blocking operations)
- > Disadvantages
 - > Single Point of Failure
 - > Asymmetric load distribution

Broadcast-Based Algorithms

Broadcast Algorithm (Lamport, 1978)

- > Assumptions
 - > Reliable FIFO communication channels
 - > Messages have unique logical time stamps
- > Basic Idea
 - Each process manages a message queue that is ordered according to the messages' time stamps
 - > Broadcast is used to send all requests and releases to all processes
- A process is only allowed to access the resource if
 - 1. its own request is the first request in its own queue
 - 2. it already received from each other process a message with a larger time stamp (e.g., a request confirmation)

Broadcast Algorithm

- > Issue access request
 - Insert request into own queue
 - > Send it to all other processes
- > Send release after access
 - > Remove request from own queue
 - Send release to all other processes
- > Received access request
 - Insert request into own queue
 - > Send request confirmation to requesting process
- > Received release
 - > Remove request from own queue

actions
executed
by process
requesting
access

actions executed by other processes

Broadcast Algorithm

If time stamps are equal, process-ID is used as tiebreaker

Blue Message: Request

Gray Message: Confirmation

Brown Message: Release

Orange time interval: access

Broadcast Algorithm

- Earliest request is globally unique, after all processes have received a message with a larger time stamp
- > Message complexity
 - > Sending of request to (n-1) processes
 - > (n-1) processes send their confirmation
 - > Sending of release to (n-1) processes
 - \Rightarrow 3 (n-1) messages per access altogether

Improvement by Ricart and Agrawala, 1981

- > Basic idea is to avoid explicit release messages through delayed confirmation \rightarrow 2 (n-1) messages per access
- No FIFO channels necessary
- Send request with sequence number that is by 1 larger than all previously received request to all other n − 1 processes
- > Access after n-1 confirmations have been received
- > When a request arrives
 - > Send confirmation immediately, if not applied or sender has "older rights" (recognizable by sequence number)
 - > If sequence numbers are identical, node ID ensures uniqueness
 - > Otherwise, confirmation is sent only after the own access has granted

Improvement by Ricart and Agrawala, 1981

With the same time stamp process-ID as tiebreaker

Blue Message:

Brown Message:

Gray Message:

Request

Immediate Confirmation

Delayed Confirmation

Orange time interval: access

x Confirmation is delayed

Optimization of Roucairol and Carvalho

- With the algorithm of Ricart and Agrawala a process P_i can access the resource if it has received a confirmation from all other processes
- > Optimization: P_i can "reuse" the confirmation received from P_j , until it sends a confirmation to P_j (in response to a new request from P_i)
- > This reduces the number of messages from 2(n-1) to the range of 0 up to 2(n-1) messages per access
- Optimization is especially useful if a process wants to access the resource several times in a short time interval
- Also if only a small fraction of the processes want access, a substantial amount of messages is saved
- > Worst-case message complexity is still the same

Better Algorithms?

- Is a solution possible requiring less messages per access that distributes the load equally?
- > Is there a solution not involving *all* processes in *each* coordination that distributes the load equally?

Quorum-Based Algorithms

Quorum-Based Algorithms

- > With these algorithms, a process only has to ask a certain subset of the other processes instead of all to gain access
- > This usually process-specific subset of the processes R_i is called quorum (or granting set) of the respective process P_i
- The granting sets must be constructed in a way such that mutual exclusion is ensured
- > They should be constructed such that
 - 1. number of messages is minimized and
 - 2. load is balanced among the processes
- Note: Quorum-based algorithms can also be used for other applications such as achieving consistent replication

Quorum-Based Algorithms

- > To guarantee safety, each pair of granting sets must have at least one process in common, i.e., $\forall i, j : i \neq j \Rightarrow R_i \cap R_i \neq \emptyset$
- > This ensures that if one process gets confirmations from all processes in its granting set, no other process can
- Additionally, the following properties are desirable for a truly distributed algorithm
 - > The size of all granting sets should be the same, i.e., $\forall i$: $|R_i| = K$
 - Each process should be a member of the same number of granting sets, i.e., ∀i: |{R_i | P_i ∈ R_i}| = D
 - > Each granting set R_i should include the process P_i , i.e., $P_i \in R_i$

Mesh Algorithm (Maekawa, 1985)

- > n processes are arranged in a quadratic mesh with edge length √n
- > A process P_i must ask all processes in the same line *and* in the same column of the mesh to gain access
- For all pairs of processes P_i and P_j, their R_i and R_j have at least two processes in common
- > Granting sets have the size $(2\sqrt{n}) 1$
- > Each process is a member of $(2\sqrt{n}) 1$ granting sets

Mesh Algorithm (Maekawa, 1985)

- Message complexity without competing access requests
 - > Send request to $(2\sqrt{n}) 1$ processes (REQUEST)
 - > $(2\sqrt{n}) 1$ processes send confirmation (CONFIRM)
 - > Send release to $(2\sqrt{n}) 1$ processes (RELEASE)
 - $> 3[(2\sqrt{n}) 1] = O(\sqrt{n})$ messages per access altogether
- > Problem: With competing requests deadlocks may occur
 - Avoidable through the introduction of two additional message types (INQUIRE, RELINQUISH)
 - > Requests are totally ordered with logical time stamps and an older request enforces its higher priority
 - > Increases the number of messages per access on $5[(2\sqrt{n}) 1]$ in the worst-case

Basic Idea of Deadlock Avoidance

- > All processes are either in the unlocked or in the locked state
- > A process *P_i* that wants access to the resource
 - sends a REQUEST message to all processes in R_i
 - accesses the resource if it has received a CONFIRM message from all members of R_i
 - sends a RELEASE message to all processes in R_i, when it has finished the access
- > A process P_j that is (i) in the unlocked state and (ii) receives a REQUEST message from P_i , sends a CONFIRM message to P_i and enters the locked state
- A process P_j that is (i) in the locked state and (ii) receives a RELEASE message, enters the unlocked state

Basic Idea of Deadlock Avoidance

- > Assume P_j is in the locked state and it receives a REQUEST message from a process P_i that precedes the request from process P_k because of which P_i has entered the locked state
- > In this case, P_i sends an INQUIRY message to P_k
- > Otherwise, the request of P_i is queued
- > P_k answers to an INQUIRY with a RELINQUISH message if it has not yet received a CONFIRM message from all processes in R_k
- > Otherwise, P_k answers with a RELEASE message after it has finished accessing the resource
- > If P_j receives a RELINQUISH message from P_k , it queues the request of P_k and sends a CONFIRM message to P_i
- > If P_j receives a RELEASE message from P_k , it sends a CONFIRM message to P_i , because the request of P_k has already been served
- > A request that has been queued is served when it is its turn

Triangular Arrangement of Processes

- In a quadratic mesh, two different granting sets have at least two processes in common, although a single common process would be sufficient
- > Solution: Triangular arrangement
- > Granting sets have a size of about $\sqrt{2}\sqrt{n}$
- Problem: The confirmation of some processes is needed more often than that of other processes!
 - > Process 15 only occurs in one granting set
 - > Process 1 occurs in 9 granting sets
- Solution for load balancing?

Same column and row one further above than the upper column

Solution for Load Balancing

- > The solution is to use two different schemes
 - Schema 1: Same column and row one further above than upper column (up and left)
 - Schema 2: Same row and column one further right than the row furthest right (right and down)
- > Characteristics
 - Each granting set intersects with each granting set of the same scheme
 - Each granting set of the one scheme intersects with each granting set of the other scheme
 - > All processes occur altogether in both schemes equally often in a granting set
- Thus, an alternating (or also random) usage of both schemes can achieve load balancing

Minimal Arrangement

- Let K be the size of the granting set
- A minimal arrangement exists if there is a prime number p and a natural number m with $(K-1) = p^m$
- > The arrangement, then, has n = K(K 1) + 1 processes

$$> K - 1 = 1 = 1^1$$

$$n=3$$

n = 3 (here, we assume 1 as prime)

For, e.g., K = 7 or

K = 10 there is no

minimal arrangement.

$$> K - 1 = 2 = 2^1$$

$$n = 7$$

$$> K - 1 = 3 = 3^1$$
 $n = 1$

$$n = 13$$

$$> K-1=4=2^2$$

$$> K - 1 = 4 = 2^2$$

$$n = 21$$

$$> K - 1 = 5 = 5^1$$

$$n = 43$$

$$> K - 1 = 7 = 7^1$$

$$> K - 1 = 8 = 2^3$$

$$n = 57$$

$$> K - 1 = 8 = 2^3$$

$$n = 73$$

For the size of the granting set holds

$$K = \frac{1}{2} (1 + \sqrt{(4n - 3)}) = \lceil \sqrt{n} \rceil$$

Exemplary Minimal Arrangements

$$> K = 2$$

$$> B_1 = \{1, 2\}$$

$$> B_3 = \{1, 3\}$$

$$> B_2 = \{2, 3\}$$

$$> K = 3$$

$$> B_1 = \{1, 2, 3\}$$

$$> B_4 = \{1, 4, 5\}$$

$$> B_6 = \{1, 6, 7\}$$

$$> B_2 = \{2, 4, 6\}$$

$$> B_5 = \{2, 5, 7\}$$

$$> B_7 = \{3, 4, 7\}$$

$$> B_3 = \{3, 5, 6\}$$

$$> K = 4$$

$$> B_1 = \{1, 2, 3, 4\}$$

$$> B_5 = \{1, 5, 6, 7\}$$

$$> B_8 = \{1, 8, 9, 10\}$$

$$> B_{11} = \{1, 11, 12, 13\}$$

$$> B_2 = \{2, 5, 8, 11\}$$

$$> B_6 = \{2, 6, 9, 12\}$$

$$> B_7 = \{2, 7, 10, 13\}$$

$$> B_{10} = \{3, 5, 10, 12\}$$

$$> B_3 = \{3, 6, 8, 13\}$$

$$> B_9 = \{3, 7, 9, 11\}$$

$$> B_{13} = \{4, 5, 9, 13\}$$

$$> B_{\Delta} = \{4, 6, 10, 11\}$$

$$> B_{12} = \{4, 7, 8, 12\}$$

Majority-Based Approaches

- > Simple majority-based approach
 - A process can access the resource if it receives confirmations from at least |n / 2| + 1 processes including itself
- > Weighted majority-based approach
 - Each process P_i has a weight w_i
 - > A process can access the resource if it receives confirmations with an overall weight that is greater than $\sum w_i / 2$
 - > Again, the own weight is included

Token-Based Algorithms

Simple Token Ring Solution (Le Lann, 1977)

- > Processes are arranged in a (logical) ring
- Access is controlled by circulating token
- > Applicant waits for access until token reaches the process
- Accessing process relays the token with the release
- Processes without access intention relay the token directly
- Possible to use separate tokens for coordinating accesses to individual resources

Simple Token Ring-Solution

- > Advantages
 - > Simple, correct, fair algorithm
 - No deadlocks
 - No starvation
- > Disadvantages
 - Token is always on the way, under certain circumstances uselessly
 - > Thus, the message number per request is not limited
 - > Long waiting time with large number of processes

Token-Based Solution (Suzuki & Kasami, 1985)

- > A requesting process sends a request with its sequence number to *all* other processes
 - In a ring, this happens sequentially through a ring circulation
 - In another topology (complete mesh, tree etc.), through broadcast
- > Each process P_i stores in a list R_i the highest currently received sequence number from each process
- > Token stores
 - > in a queue Q, the processes waiting for the token
 - in a list L, for each process the sequence number of the latest fulfilled request
- > A process P_i can determine which requests have not yet been served, when receiving the token, by comparing of R_i with L

Token-Based Solution

- > If a process *P_i* receives the token, it
 - > Accesses (if it wants to)
 - > Sets *L* [*i*] := *R_i* [*i*]
 - > Attaches each process P_j (order in increasing sequence numbers) not part of Q to the end of Q for which $R_i[j] > L[j]$
 - > Deletes itself from Q
 - > If Q is not empty afterwards, the process sends the token
 - > to the next process (ring),
 - > to the first process in Q (complete meshing) or
 - > to the next process in direction of the first process in Q (different topology)
 - Otherwise, it only sends the token on, if it receives a request from a process P_j whose sequence number is larger than L [j]

Solution with a Ring

request.

- 1. A request does not need to be relayed if it meets the *resting* token.
- 2. The algorithm can be simplified to a great extent if there are no overtakes.
- 3. Maximal 2*n*-1 messages per access are needed in the physical topology

All depicted states after 3.

Solution with Complete Mesh

Exactly 0 or *n* messages are needed in the physical topology.

Q	L	R_1
5	1, 1 2, 0 3, 0 4, 0 5, 0 6, 0 7, 0 8, 0	1, 1 2, 0 3, 0 4, 0 5, 1 6, 0 7, 0 8, 0

All depicted states after 1.

Lift Algorithm (Raymond, 1989)

- Uses a spanning tree to selectively forward the request into the direction towards the token (instead of sending it to all processes or to a specific subset)
- The edges of the spanning tree are directed; they always point towards to current position of the token
- The token wanders against the arrow direction and thereby turns around the direction of each edge passed
- A process that wants the token, sends a request over its outgoing edge
- If a process has received a request, it once sends a request into the direction of the token

- Each process remembers the processes from which it has received a request
- > If a process receives the token
 - it relays it into one of the requesting directions
 - if there are more requests from other directions, it sends a request after the token
- > To ensure fairness, a process must not serve a requesting direction arbitrarily often

- The algorithm preserves the following invariant: from ach process, a directed path leads to the token
- > In a *k*-ary balanced tree the maximal path length between arbitrary processes is $O(log_k n)$
- Accordingly, only at most O(log_k n) messages are needed per access
- > Starting state
 - Winner of an election gets the token and creates a spanning tree with edges directed towards it
 - > Both can be achieved simultaneously by using the echo algorithm

Comparison of the Algorithms

Message Complexity per Access

Procedure	Message Complexity on Logical Topology
Token Ring	1 ∞
Simple Broadcast	3 (n – 1)
Improved Broadcast	2 (n – 1)
Improved Token Ring	0 2 <i>n</i> – 1
Mesh Arrangement	<i>O</i> (√ <i>n</i>)
Lift Algorithm on k-ary Tree	$O(log_k n)$
Central Manager	3

Exemplary Exam Questions

- 1. What are the safety and liveness conditions for the problem of mutual exclusion?
- Describe the broadcast-based algorithms of Lamport as well as of Ricart and Agrawala!
- Explain the process grid algorithm of Maekawa!
- 4. Is there any better than the square arrangement?
- 5. How can load balancing be achieved in a triangular arrangement?
- 6. Is the triangular arrangement optimal?
- Explain the Lift Algorithm!
- 8. What is the message complexity of the discussed algorithms?

Literature

- 1. L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed Environment. Communications of the ACM, 21:558--564, July 1978.
- 2. G. Ricart and A. K. Agrawala. An Optimal Algorithm for Mutual Exclusion in Computer Networks. Communications of the ACM, 24(1):9--17, 1981.
- 3. M. Maekawa. A √N Algorithm for Mutual Exclusion in Decentralized Systems. ACM Transactions on Computer Systems, 3(2):145--159, 1985.
- 4. K. Raymond. A Tree-Based Algorithm for Distributed Mutual Exclusion. ACM Transactions on Computer Systems, 7(1):61--77, 1989.
- W. S. Luk and T. T. Wong. Two New Quorum Based Algorithms for Distributed Mutual Exclusion. In Proceedings of the 17th International Conference on Distributed Computing Systems (ICDCS '97), pages 100--107, 1997. IEEE Computer Society.

Literature

- 6. I. Suzuki and T. Kasami. A distributed mutual exclusion algorithm. ACM Transactions on Computer Systems, 3(4):344--349, 1985.
- A. S. Tanenbaum and M. van Steen. Distributed Systems: Principles and Paradigms. Prentice Hall, 2002. Chapter 5, pages 262--270
- 8. N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996. Chapter 10
- G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts and Design. Addison-Wesley, 3rd edition, 2001. Chapter 11.2, pages 423--431

Thank you for your kind attention!

Univ.-Prof. Dr.-Ing. habil. Gero Mühl

gero.muehl@uni-rostock.de
http://wwwava.informatik.uni-rostock.de

