Problem Sheet 4 FYS3110

Sebastian G. Winther-Larsen

September 21, 2016

The hamiltonian of particle with mass m in a one-dimensional oscillator potetial having a characteristic frequency ω is

$$\hat{H} = \frac{1}{2m}\hat{p}^2 + \frac{1}{2}m\omega^2\hat{X}^2 \tag{1}$$

The ladder operators for the harmonic oscillator potential are

$$\hat{a} = \frac{1}{\sqrt{2\hbar m\omega}} (m\omega \hat{X} + i\hat{P}) \qquad \text{(lowering operator)}$$
 (2)

$$\hat{a}^{\dagger} = \frac{1}{\sqrt{2\hbar m\omega}} (m\omega \hat{X} - i\hat{P})$$
 (raising operator) (3)

Problem 4.1

a)

I want to find an expression for \hat{X} in terms of \hat{a}_{nm} and \hat{a}_{nm}^{\dagger} . This can be done by first rewriting equation 2

$$\hat{a} = \frac{1}{\sqrt{2\hbar m\omega}} (m\omega \hat{X} + i\hat{P}) = \sqrt{\frac{m\omega}{2\hbar}} \hat{X} + \frac{i}{\sqrt{2\hbar m\omega}} \hat{P}$$

$$\rightarrow \hat{X} = \sqrt{\frac{2\hbar}{m\omega}} \hat{a} - \sqrt{\frac{2\hbar}{m\omega}} \frac{i}{\sqrt{2\hbar m\omega}} \hat{P},$$

and then equation 3

$$\hat{a}^{\dagger} = \frac{1}{\sqrt{2\hbar m\omega}} (m\omega \hat{X} - i\hat{P}) = \sqrt{\frac{2\hbar}{m\omega}} \hat{X} + \frac{i}{2\hbar m\omega} \hat{P}$$
$$\rightarrow \hat{P} = \frac{2\hbar m\omega}{i} \sqrt{\frac{m\omega}{2\hbar}} \hat{X} - \frac{2\hbar m\omega}{i} \hat{a}^{\dagger}.$$

Now putting the latter equation into the former yields

$$\begin{split} \hat{X} &= \sqrt{\frac{2\hbar}{m\omega}} \hat{a} - \sqrt{\frac{2\hbar}{m\omega}} \frac{i}{2\hbar m\omega} \left(\frac{2\hbar m\omega}{i} \sqrt{\frac{m\omega}{2\hbar}} \hat{X} - \frac{2\hbar m\omega}{i} \hat{a} \right) \\ &= \sqrt{\frac{2\hbar}{m\omega}} \hat{a} + \sqrt{\frac{2\hbar}{m\omega}} \hat{a}^{\dagger} - \sqrt{\frac{2\hbar}{m\omega}} \sqrt{\frac{m\omega}{2\hbar}} \hat{x}, \end{split}$$

which simplifies to

$$\hat{X} = \sqrt{\frac{\hbar}{2m\omega}} (\hat{a} + \hat{a}^{\dagger}) \tag{4}$$

It will be necessary to know what $[\hat{a}, \hat{H}]$ is. This is easiest to compute if one knows how \hat{a} and \hat{a}^{\dagger} is related to \hat{H} . By looking at the expressions for \hat{a} and \hat{a}^{\dagger} one is tempted to compute the following

$$\hat{a}\hat{a}^{\dagger} = \frac{m\omega}{2\hbar}\hat{X}^2 + \frac{1}{2m\omega\hbar}\hat{P}^2 + \frac{i}{2\hbar}[\hat{X},\hat{P}],$$

where $[X,P]=i\hbar$, which follows from $\hat{X}\to x$ and $\hat{P}\to i\hbar(d/dx)$, but is independent of basis. So we see that

$$\hat{H} = (\hat{a}\hat{a}^{\dagger} + \frac{1}{2})\hbar\omega. \tag{5}$$

Then we have that

$$[\hat{a}, \hat{H}] = [\hat{a}, \hat{a}^{\dagger} \hat{a} + 1/2] = [\hat{a}, \hat{a}^{\dagger} \hat{a}] = \hat{a},$$
 (6)

if we measure the eigenvalues in units of $\hbar\omega$. Similarly, $[\hat{a^{\dagger}}, \hat{H}] = -\hat{a}^{\dagger}$.

The utility of \hat{a} and \hat{a}^{\dagger} stems from the fact that given an eigenstate of \hat{H} , they generate others. Consider

$$\hat{H}a|E\rangle = (\hat{a}\hat{H} - [\hat{a}, \hat{H}])|E\rangle = (\hat{a}\hat{H} - \hat{a})|E\rangle =$$
(7)

where ε is the energy measured in units of $\hbar\omega$.

Now my idea is to find matrix elements for a_{nm} and a_{nm}^{\dagger} , plug these into equation 4 to get the matrix elements of X_{nm} .