計量経済 1: 宿題 8

村澤 康友

提出期限: 2024年7月2日

注意:すべての質問に解答しなければ提出とは認めない. 授業の HP の解答例を正確に再現すること(乱数は除く). グループで取り組んでよいが,個別に提出すること. 解答例をコピペしたり,他人の名前で提出した場合は,提出点を 0 点とし,再提出も認めない. すべての結果をワードに貼り付けて印刷し(A4 縦・両面印刷可・手書き不可),2 枚以上の場合は向きを揃えて問題番号順に重ね,左上隅をホッチキスで留めること.

- 1. (教科書 p. 209, 実証分析問題 8-A) データセット「8_income.dta」を gretl に読み込み, 以下の分析 を行いなさい.
 - (a) 教科書 p. 198 の「年収(対数値)」を「修学年数」で説明する単回帰モデルの推定結果を再現しなさい。
 - (b) 教科書 p. 198 の「本人の修学年数」を「父親の修学年数」で説明する単回帰モデルの推定結果を再現しなさい.
 - (c) gretlで2SLSを実行する手順は以下の通り.
 - i. メニューから「モデル」→「操作変数法」→「2 段階最小二乗法」を選択.
 - ii.「従属変数」を選択.
 - iii.「説明変数(回帰変数)」を選択.
 - iv.「操作変数」を選択.
 - v.「OK」をクリック.

「父親の修学年数」を IV として,教科書 p. 199 の IV 法(2SLS)による「教育の収益率」の推定 結果を再現しなさい.

- (d)「生まれ月」を IV として, 教科書 p. 204 の IV 法(2SLS) による「教育の収益率」の推定結果を再現しなさい.
- 2. (教科書 p. 209, 実証分析問題 8-B) 前問と同じデータを用いて,以下の分析を行いなさい.
 - (a) 教科書 p. 207 の 2SLS によるミンサー方程式の推定結果を再現しなさい.
 - (b) 前問の分析に「母親の修学年数」を IV に加えて 2SLS でミンサー方程式を推定しなさい.
 - (c) さらに「生まれ月」を IV に加えて 2SLS でミンサー方程式を推定しなさい.

解答例

1. (a) 単回帰

モデル 1: 最小二乗法 (OLS), 観測: 1–734 従属変数: lincome

		係数		Std. I	Error	t-ratio	p 値	
c	onst	5.38769)	0.0870	176	61.91	0.000	0
У	educ	0.05539	006	0.0060	9099	9.094	0.000	0
Mean dep	endent	t var	6.17	70857	S.D. o	dependent	t var	0.356020
Sum squa	red res	sid	83.4	47680	S.E. o	of regressi	on	0.337697
R^2			0.10	01508	Adjus	sted R^2		0.100280
F(1,732)			82.6	59835	P-val	ue(F)		$8.86e{-}19$

Schwarz criterion

(b) 2SLS の第 1 段階

Log-likelihood

モデル 2: 最小二乗法 (OLS), 観測: 1–734 従属変数: yeduc

Akaike criterion

Hannan-Quinn

491.3296

494.8770

-243.6648

500.5267

	係数	Std. Erro	or t -ratio	р值	
const	10.5220	0.350154	30.05	0.0000)
payeduc	0.295540	0.028025	6 10.55	0.0000)
Mean dependent	var 14.15	8896 S.D	. dependent	t var 2	2.047800
Sum squared resid	d 2668	.439 S.E	. of regressi	on 1	1.909295
R^2	0.131	1883 Ad	justed R^2	(0.130697
F(1,732)	111.2	2046 P-v	ralue(F)	2	2.66e-24
Log-likelihood	-1515	.202 Aka	aike criterio	n 3	3034.405
Schwarz criterion	3043	.602 Ha	nnan-Quinn	1 3	3037.952

(c) IV:父親の修学年数

モデル 1: 二段階最小二乗法 (2SLS), 観測: 1-734

従属変数: lincome

内生変数 (instrumented): yeduc

操作変数: const payeduc

	係数	標準誤差	t-ratio	p値
const	5.75290	0.240370	23.93	0.0000
yeduc	0.0295608	0.0169771	1.741	0.0821

Mean dependent var	6.170857	S.D. dependent var	0.356020
Sum squared resid	85.52760	回帰の標準誤差	0.341820
R^2	0.101508	Adjusted \mathbb{R}^2	0.100280
F(1,732)	3.031835	P-value (F)	0.082066
Log-likelihood	-5192.300	Akaike criterion	10388.60
Schwarz criterion	10397.80	Hannan-Quinn	10392.15

ハウスマン (Hausman) 検定 –

帰無仮説: OLS 推定値は一致性を持つ

漸近的検定統計量: $\chi^2(1)=2.74972$ なお、p 値 (p-value) = 0.0972716

弱操作変数 (weak instrument) の検定 –

First-stage F(1,732) = 111.205

(d) IV: 生まれ月

モデル 2: 二段階最小二乗法 (2SLS), 観測: 1-734

従属変数: lincome

内生変数 (instrumented): yeduc

操作変数: const mbirth

	係数	標準誤差	t-ratio	p 値
const	1.95875	4.27795	0.4579	0.6472
yeduc	0.297908	0.302560	0.9846	0.3251

Mean dependent var	6.170857	S.D. dependent var	0.356020
Sum squared resid	264.2623	回帰の標準誤差	0.600844
R^2	0.101508	Adjusted \mathbb{R}^2	0.100280
F(1,732)	0.969481	P-value (F)	0.325135
Log-likelihood	-5244.083	Akaike criterion	10492.17
Schwarz criterion	10501.36	Hannan-Quinn	10495.71

ハウスマン (Hausman) 検定 –

帰無仮説: OLS 推定値は一致性を持つ 漸近的検定統計量: $\chi^2(1)=2.04778$ なお、p 値 (p-value) = 0.152429

弱操作変数 (weak instrument) の検定 – First-stage F(1,732) = 0.940351

2. (a) IV: 就業可能年数, 就業可能年数の2乗, 父親の修学年数, 兄弟姉妹数

モデル 1: 二段階最小二乗法 (2SLS), 観測: 1-734

従属変数: lincome

内生変数 (instrumented): yeduc

操作変数: const exper exper2 payeduc sibs

	係数	Ţ.	標	準誤差	t-ratio	p 値	
const	4.5241	4	0.32	8680	13.76	0.0000	
yeduc	0.0699	093	0.02	17875	3.209	0.0014	
exper	0.0609	592	0.01	60773	3.792	0.0002	
exper2	-0.0010	4174	0.00	0610360	-1.707	0.0883	
Mean depend	ent var	6.170	857	S.D. dep	endent va	r 0.3560)20
Sum squared	resid	70.30	899	回帰の標	準誤差	0.3103	344
R^2		0.246	920	Adjusted	R^2	0.2438	325
F(3,730)		23.08	824	P-value(F)	2.75e-	-14

ハウスマン (Hausman) 検定 –

帰無仮説: OLS 推定値は一致性を持つ

漸近的検定統計量: $\chi^2(1) = 0.477582$

なお、p値 (p-value) = 0.48952

Sargan の過剰識別検定 –

帰無仮説: 全ての操作変数は有効 (valid) である

検定統計量: LM = 0.403198

なお、p値 (p-value) = $P(\chi^2(1) > 0.403198) = 0.525442$

弱操作変数 (weak instrument) の検定 –

First-stage F(2,729) = 32.8310

(b) IV: 就業可能年数,就業可能年数の2乗,父親の修学年数,兄弟姉妹数,母親の修学年数 モデル2:二段階最小二乗法(2SLS),観測:1-734

従属変数: lincome

内生変数 (instrumented): yeduc

操作変数: const exper exper2 payeduc sibs moyeduc

	係数	ζ	標	準誤差	t-ratio	p 値	
const	4.5434	.5	0.32	0583	14.17	0.0000	
yeduc	0.0685	564	0.02	11846	3.236	0.0013	
exper	0.0612	705	0.01	60450	3.819	0.0001	
exper2	-0.0010	6162	0.00	0606077	-1.752	0.0803	
Mean depend	lent var	6.170	857	S.D. dep	endent va	r 0.356020	
Sum squared	resid	70.40	867	回帰の標	準誤差	0.310564	
\mathbb{R}^2		0.246	519	Adjusted	R^2	0.243423	
F(3,730)		23.11	941	P-value(F)	$2.64e{-14}$	

ハウスマン (Hausman) 検定 –

帰無仮説: OLS 推定値は一致性を持つ 漸近的検定統計量: $\chi^2(1)=0.609293$ なお、p 値 (p-value) = 0.435054

Sargan の過剰識別検定 –

帰無仮説: 全ての操作変数は有効 (valid) である

検定統計量: LM = 0.471859

なお、p値 (p-value) = $P(\chi^2(2) > 0.471859) = 0.789836$

弱操作変数 (weak instrument) の検定 –

First-stage F(3,728) = 23.2762

(c) IV: 就業可能年数,就業可能年数の2乗,父親の修学年数,兄弟姉妹数,母親の修学年数,生まれ月

モデル 3: 二段階最小二乗法 (2SLS), 観測: 1–734

従属変数: lincome

内生変数 (instrumented): yeduc

操作変数: const exper exper2 payeduc sibs moyeduc mbirth

	係数		標	準誤差	t-ratio	p 値
const	4.5123	0	0.31	9307	14.13	0.0000
yeduc	0.0707	394	0.02	10926	3.354	0.0008
exper	0.0607	683	0.01	60224	3.793	0.0002
exper2	-0.0010	2955	0.00	0604888	-1.702	0.0892
Mean depende	ent var	6.170	857	S.D. dep	endent va	r 0.356020
Sum squared	resid	70.25	229	回帰の標	準誤差	0.310219
R^2		0.247	140	Adjusted	R^2	0.244046
F(3,730)		23.42	145	P-value(F)	1.76e-14

ハウスマン (Hausman) 検定 –

帰無仮説: OLS 推定値は一致性を持つ 漸近的検定統計量: $\chi^2(1)=0.454561$ なお、p 値 (p-value) = 0.500177

Sargan の過剰識別検定 –

帰無仮説: 全ての操作変数は有効 (valid) である

検定統計量: LM = 2.12962

なお、p値 (p-value) = $P(\chi^2(3) > 2.12962) = 0.545943$

弱操作変数 (weak instrument) の検定 –

First-stage F(4,727) = 17.5575