DAI Expert settings

Transformers

Transformer recipes = feature engineering

Feature engineering in DAI

User imports training data and selects target column. H2O Driverless AI Experiment starts.

Demo: Expert settings

- 1. Numeric (int, real, binary)
- 2. Time series
- 3. Categorical (string)
- 4. Text (string)
- 5. Time (date, time)

- 1. Numeric (int, real, binary)
- 2. Time series
- 3. Categorical (string)
- 4. Text (string)
- 5. Time (date, time)

- Original
- Interactions
- ClusterDist
- NumCatTE
- NumToCatTE
- ClusterTE
- NumToCatWoE
- NumToCatWoEMonotonic
- TruncSVDNum

- 1. Numeric (int, real, binary)
- 2. Time series
- 3. Categorical (string)
- 4. Text (string)
- 5. Time (date, time)

- Original
- Interactions
- ClusterDist
- NumCatTE
- NumToCatTE
- ClusterTE
- NumToCatWoE
- NumToCatWoEMonotonic
- TruncSVDNum

Interactions

у	x1	x2	х3	f(2,3)
[0,100]	<str></str>	<int></int>	<int></int>	<int></int>
[0,100]	<str></str>	<int></int>	<int></int>	<int></int>
[0,100]	<str></str>	<int></int>	<int></int>	<int></int>
[0,100]	<str></str>	<int></int>	<int></int>	<int></int>

Name of variable f(2,3): Interaction_x2#subtract#x3

- 1. Numeric (int, real, binary)
- 2. Time series
- 3. Categorical (string)
- 4. Text (string)
- 5. Time (date, time)

- Original
- Interactions
- ClusterDist
- NumCatTE
- NumToCatTE
- ClusterTE
- NumToCatWoE
- NumToCatWoEMonotonic
- TruncSVDNum

ClusterDist

f: 2,3 distance from cluster n (total k clusters, k-Means)

У	x1	x2	х3
[0,100]	<str></str>	<int></int>	<int></int>
[0,100]	<str></str>	<int></int>	<int></int>
[0,100]	<str></str>	<int></int>	<int></int>
[0,100]	<str></str>	<int></int>	<int></int>

у	x1	x2	х3	f(2,3)
[0,100]	<str></str>	<int></int>	<int></int>	<int></int>
[0,100]	<str></str>	<int></int>	<int></int>	<int></int>
[0,100]	<str></str>	<int></int>	<int></int>	<int></int>
[0,100]	<str></str>	<int></int>	<int></int>	<int></int>

Name of variable
$$f(2,3)$$
: ClusterDist_k_x2_x3_n \uparrow

- 1. Numeric (int, real, binary)
- 2. Time series
- 3. Categorical (string)
- 4. Text (string)
- 5. Time (date, time)

- Original
- Interactions
- ClusterDist
- NumCatTE
- NumToCatTE
- ClusterTE
- NumToCatWoE
- NumToCatWoEMonotonic
- TruncSVDNum

NumCatTE

Categorical variable **x1** holds m categories

У	x1	x2	х3
[0,100]	<str></str>	<int></int>	<int></int>
[0,100]	<str></str>	<int></int>	<int></int>

У	x1	x2	х3	f(1,y)
[0,100]				
[0,100]	<str></str>	<int></int>	<int></int>	(0,100)

Training dataset

f: Mean of out-of-sample target for category n of variable x1

Validation dataset (k-folds)

Name of variable f(1,y): CV_TE_x1

Target Encoder Transformers in a nutshell

Encoder name	Variables in training dataset	Response in validation dataset	Name of output variable
NumCatTE	are identified as categorical	is averaged for each category	CV_TE_ <str></str>
NumToCatTE	are binned to become categorical	is averaged for each category	CV_TE_ <num></num>
ClusterTE	are clustered	is averaged for each cluster	CV_TE_ <num>_<num></num></num>

- 1. Numeric (int, real, binary)
- 2. Time series
- 3. Categorical (string)
- 4. Text (string)
- 5. Time (date, time)

- Original
- Interactions
- ClusterDist
- NumCatTE
- NumToCatTE
- ClusterTE
- NumToCatWoE
- NumToCatWoEMonotonic
- TruncSVDNum

Weight of Evidence (WoE) in a nutshell

High cardinality categorical variables mapped to binary outcomes

Category	Number of observations	Distribution of outcome Y	Distribution of outcome N	WoE
А	$Y_A + N_A$	$D_A^Y = Y_A/Y$	$D_A^N = N_A/N$	$ln(D_A^Y/D_A^N)$
В	$Y_B + N_B$	$D_B^Y = Y_B/Y$	$D_{B}^{N} = N_{B}/N$	In(D _B YD _B N)
С	$Y_C + N_C$	$D_C^Y = Y_C/Y$	$D_C^N = N_C/N$	In(D _C ^Y /D _C)
D	$Y_D + N_D$	$D_D^Y = Y_D/Y$	$D_D^N = N_D/N$	$ln(D_D^Y/D_D^N)$
All	Y + N	Υ	N	

Example:

Categories: Education level bins

Outcomes: Good Ioan status (Y), Defaulted (N)

NumToCatWoE

f: (1) binning(x) -> categorical_x

(2) WoE(categorical_x)

у	x1	x2	х3
[0,100]	<str></str>	<int></int>	<int></int>
[0,100]	<str></str>	<int></int>	<int></int>
[0,100]	<str></str>	<int></int>	<int></int>
[0,100]	<str></str>	<int></int>	<int></int>

у	x1	x2	х3	f(3)
[0,100]	<str></str>	<int></int>	<int></int>	<int></int>
[0,100]	<str></str>	<int></int>	<int></int>	<int></int>
[0,100]	<str></str>	<int></int>	<int></int>	<int></int>
[0,100]	<str></str>	<int></int>	<int></int>	<int></int>

- 1. Numeric (int, real, binary)
- 2. Time series
- 3. Categorical (string)
- 4. Text (string)
- 5. Time (date, time)

- Original
- Interactions
- ClusterDist
- NumCatTE
- NumToCatTE
- ClusterTE
- NumToCatWoE
- NumToCatWoEMonotonic
- TruncSVDNum

TruncSVDNum

$$A = U \cdot \Sigma \cdot V^T$$

 Σ (=singular values): diagonal matrix with ordered values

- f: (1) calculate U, Σ, V^T from original data (A)
 - (2) Truncate Σ to the top k singular values ($\Sigma_{\rm k}$)
 - (3) Use Σ_k and V_k^T to calculate new matrix B

у	x1	x2	х3	х4
[0,100]	<str></str>	<int></int>	<int></int>	<int></int>
[0,100]	<str></str>	<int></int>	<int></int>	<int></int>
[0,100]	<str></str>	<int></int>	<int></int>	<int></int>
[0,100]	<str></str>	<int></int>	<int></int>	<int></int>

У	x1	x'1	x'2
[0,100]	<str></str>	<int></int>	<int></int>
[0,100]	<str></str>	<int></int>	<int></int>
[0,100]	<str></str>	<int></int>	<int></int>
[0,100]	<str></str>	<int></int>	<int></int>

R

DAI, custom recipes

```
"""Adds together 3 or more numeric features"""
    from h2oaicore.transformer_utils import CustomTransformer
     import datatable as dt
    import numpy as np
 5
    class SumTransformer(CustomTransformer):
 8
 9
         _regression = True
10
         _binary = True
11
         _multiclass = True
12
         _numeric_output = True
13
         _is_reproducible = True
14
         _included_model_classes = None # List[str]
        _excluded_model_classes = None # List[str]
15
16
17
         @staticmethod
18
         def is_enabled():
19
             return True
20
         @staticmethod
21
22
         def do_acceptance_test():
23
             return True
24
25
        @staticmethod
        def get_default_properties():
26
             return dict(col_type="numeric", min_cols=3, max_cols="all", relative_importance=1)
27
28
         def fit_transform(self, X: dt.Frame, y: np.array = None):
29
30
             return self.transform(X)
31
        def transform(self, X: dt.Frame):
32
             return X[:, dt.sum([dt.f[x] for x in range(X.ncols)])]
33
```

Demo: Custom recipes