Communicating with Data – Perception and Color

Dr. Ab Mosca (they/them)

Notes on HW01

- Remember to note who you collaborated with or explicitly state that you collaborated with no one (per the syllabus)
- Consider working (and submitting) in groups! Lots of people did the exact same visualizations, and it's more fun to create an analyze when you have brainstorming buddies

Plan for Today

- What is perception?
 - How does it work?
 - Pre-attentive processing
 - Perceptual problems
 - Estimating magnitude
- Color 101
 - How we see color
 - What this means for visualization
 - More perceptual problems
- Takeaways

Note: I'm going to flash a bunch of slides quickly today. If that doesn't work for you, you are welcome to step out, close your eyes, etc.. (none of us will be offended and I will fill you in on anything crucial you missed!)

What is perception?

Visual perception (def.)

Do you see movement?

Do you see movement?

Visual perception

Some things are processed slowly

Others are incredibly fast

Visual perception

Visual perception

Fast = "pre-attentive processing"

- Things that happen in <200ms of visual stimulation
- Performed in parallel across the entire visual field
- Example...

Perception:
Preattentive
Processing

What did you see?

Perception: Preattentive Processing

Pre-attentive processing

"An understanding of what is processed preattentively is probably the **most important** contribution that visual science can make to data visualization" (Ware, 2004, p. 19)

Pre-attentive processing facilitates:

- Target detection (presence or absence)
- Boundary detection / grouping
- Region tracking
- Counting and estimation

Pre-attentive processing facilitates:

- Target detection (presence or absence)
- Boundary detection / grouping
- Region tracking
- Counting and estimation
- On the next slide I want you to count how many zeros you see as fast as you can. Raise your hand (do not shout the number) when you have the answer.

Attentive counting

How many zeros are there?

Attentive counting

We'll do the same on the next slide for threes.

Pre-attentive counting

3330209905959595772564675050678904567 **3**

How many threes are there?

Pre-attentive processing for visualization

Question 1: how do we (vis designers) use pre-attentive processing to our advantage?

Question 2: what do we need to watch out for?

Pre-attentive processing for visualization

There's only one instance of something on each of the next slides. What is it?

Pre-attentive processing: color (hue)

Pre-attentive processing: shape (curvature)

Pre-attentive processing: shape + color?

Discussion: what's going on here?

Answer: this is called "conjunction"

- If you search for red things, you get a bunch of red circles (as well as the red triangle).
- Similarly, if you search for search for **triangles**, you get a bunch of blue **triangles** (as well as the **red triangle**).
- Either way, you have to search through them all one by one!

Pre-attentive processing for visualization

- Whatever draws our eyes draws our attention
- This can be useful
- It can also be problematic:

Ex. flicker can cause change blindness

Pre-attentive processing for visualization: The downsides

Can you see it now?

Pre-attentive processing for visualization:
The downsides

Sometimes gestalt & pre-attention compete

Pre-attentive processing for visualization:
The downsides

Pre-attentive processing for visualization: The downsides

Okay, what about **attentive** processing?

Attentive processing

Magnitude estimation

Question: How much **bigger** is the lower bar?

Attentive processing

Answer: 2X

Magnitude estimation

Question: How much bigger is the right square?

Attentive processing

Answer: 4X

Attentive processing

Magnitude estimation

Question: How much **bigger** is the left cube?

Answer: 27X

"Apparent" magnitude

Attentive processing

Mapping to visual dimensions

Color 101

Kinds of light

How we see color

How we see color

What do you notice here?

Color phenomena

Caveat 1: color is perceived in context

Color phenomena

Which small square is darker green?

Caveat 2: difference is relative

Color phenomena

Caveat 2a: so are brightness and contrast

Caveat 3: mental models > perception

Color phenomena

• Using a poor color scheme can also cause issues with your visualization

Color palettes

Color Problems

Fun fact: "colorblindness"

1 out of every 8 people has just 2 types of color receptors (rather than 3)

What happens when you print?

Need color scheme that converts well to grey scale

- <u>colorbrewer.org</u> provides a whole bunch of palettes that can help us avoid these issues
- This makes life a lot easier for us!

Colorbrewer palettes

When should we use each type of color palette?

Takeaways: Perception

- Visualization is about more than just aesthetics
- There are compelling **cognitive reasons** why some visualization techniques are helpful and others aren't
- The choices we make about **visual mappings** can have a significant effect on performance

Mid Semester Assessment

- Please watch this (90s) video: https://smith.zoom.us/rec/share/VMw2HG9S7iKXiB9iIPUSP_55brD_6y0hor5aB2IJ2G-5GK9EmTIpt8TT2-CRrovRF.swJJ83M3CzpcJCEK?startTime=1675788468000
- Please fille out this survey:
 <u>https://smithcollege.qualtrics.com/jfe/form/SV_1YzLF4QVTz</u>

 <u>JLRKS</u>

Mini-lab: perceptual tricks

- Find a partner and open Tableau
- Open a dataset of your choosing
- Build two visualizations on this dataset
 - One that tells the "real" story in the data (as you understand it)
 - One that uses color, size, or other cues in an intentionally misleading way

- What did you try?
- What did you learn about the data?
- Can you imagine a scenario that might incline someone to choose your "bad" visualization instead of a better one?

Discussion