Information and Coding Theory

Mahdi Cheraghchi Friday 18 Nov 2016

m.cheraghchi@imperial.ac.uk

Minimum distance and parity checks

- Minimum distance d(C) is equal to $d(C) = 1 + \max\{t: \text{ every } t \text{ columns of } H \text{ are linearly independent}\}$ = $\min\{t: \text{ there are } t \text{ linearly dependent columns of } H\}$
- Why? If d(C) = d + 1, then
 - Every d columns of H must be linearly independent. Otherwise, there would be a non-zero vector \vec{c} of weight at most d such that $H \cdot \vec{c} = 0$. This means \vec{c} would be a non-zero codeword of weight less than d(C), a contradiction.
 - There is a non-zero codeword \vec{c} of Hamming weight d+1. Since $H \cdot \vec{c} = 0$, this defines a linear dependence between d+1 of the columns of H.

Example

- What is the best (that is, largest) binary linear code of length n that can detect any one-bit error? $(d(C) \ge 2)$
- Every 2-1=1 column of *H* must be linearly independent.
- => Every column of **H** must be nonzero.
- H with smallest number of rows (to make C largest) is
 - H = (1, 1, ..., 1).
 - Dimension k = n-1, d(C) = 2 => [n, n-1, 2] code.
 - Parity code of length n.

Example

- What is the best (that is, largest) binary linear code of length n that can correct any one-bit error? $(d(C) \ge 3)$
- Every 3-1=2 columns of *H* must be linearly independent.
- => Every column of **H** must be nonzero, AND no two columns equal.
- Suppose $n = 2^r 1$.
- *H* with smallest number of rows (to make *C* largest) is such that the columns enumerate all non-zero *r*-bit strings.

• Example for
$$\mathbf{n}$$
=7: $H = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$. The code is [7,4,3].

• This is called the *Hamming code*. In general it's $[2^r - 1, 2^r - r - 1, 3]$.

Error correction of Hamming codes

• Suppose
$$H = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$
.

- Let $\vec{c} = x \cdot G$ be the sent codeword.
- Recipient receives $\vec{y} = \vec{c} + \vec{e}$ where \vec{e} is the *error vector*.
- The decoder first calculates $\vec{s} = H \cdot \vec{y} = H \cdot (\vec{c} + \vec{e}) = H \cdot \vec{c} + H \cdot \vec{e} = H \cdot \vec{e}$.
- If there has been no errors, $\vec{e} = \vec{0}$ and $\vec{s} = \vec{0}$, so the received word is correct.
- Else, $\vec{e} = (0,0,...,1,...,0)$ where the 1 is at, say, the ith position. The goal is to find i.
- In this case, \vec{s} is the *i*th column of \vec{H} , which is actually the *binary expansion* of the integer i. \odot

Syndrome decoding

- What we saw is an example of syndrome decoding.
- For any linear code with parity check matrix \pmb{H} , the $\pmb{syndrome}$ of a received word \vec{y} is the (n-k)-dimensional vector $\vec{s} = H \cdot \vec{y}$.
- If $\vec{y} = \vec{c} + \vec{e}$ for some codeword \vec{c} and error vector \vec{e} , it it **always** possible to uniquely identify \vec{e} (and therefore, \vec{c} , and the correct sent message) as long as the Hamming weight of \vec{e} is at most $\lfloor \frac{d(C)-1}{2} \rfloor$.
- Why? Suppose there are two distinct solutions \vec{e} and e^{i} , each of weight at most $\lfloor \frac{d(C)-1}{2} \rfloor$, such that $H \cdot \vec{e} = H \cdot \overrightarrow{e'} = \vec{0}$. Then, $H \cdot (\vec{e} \overrightarrow{e'}) = \vec{0}$. But $(\vec{e} \overrightarrow{e'})$ is a non-zero vector of Hamming weight less than d(C), a contradiction.

Orthogonality of G and H

- Any choice of G and H must be orthogonal: $GH^{\top} = \vec{0}$ (that is, the inner product of every row of G and every rows of H must be zero).
 - [Exercise: Check this for the formula of **H** from systematic **G**.]
- Why? Every row of *G* is a codeword, so it must satisfy the system of linear equations defined by *H* ⊕
- In linear-algebraic terms, rows of **H** span the orthogonal space of the code (orthogonal space of a linear space is the set of vectors that are orthogonal to *every vector* in the linear space).
- This orthogonal space is called the *dual code* (shown as \mathcal{C}^{\perp}).
- Dual of \mathcal{C}^{\perp} is \mathcal{C} .

The dual code

- If \mathcal{C} is determined by a generator matrix G and parity check matrix H, then \mathcal{C}^{\perp} is determined by generator matrix H and parity check matrix G (that is, the role of G and H interchanged).
- The dual code is of length n and dimension r = n-k.
- Dual of an MDS code must be an MDS code.
 - If C is MDS, every $k \times k$ submatrix of G must have rank k (that is, every k columns of G must be linearly independent).
 - Therefore, the minimum distance of \mathcal{C}^{\perp} must be at least (in fact exactly) k+1=n-r+1.
 - Therefore, C^{\perp} is MDS.

The dual code: example

• Parity code of length 5:
$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$
, $H = (1\ 1\ 1\ 1\ 1)$.
• Dual will have: $G = (1\ 1\ 1\ 1\ 1)$ and $H = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$.

- => Dual of the parity code is the repetition code!
- Parity code: [5, 4, 2], Repetition code: [5, 1, 5] (both MDS).