Vector Spaces

Michael Brodskiy

Professor: Lynn Knight

March 3, 2021

• \mathbb{R}^2 , \mathbb{R}^3 , ..., \mathbb{R}^n are all vector spaces with certain properties.

- Properties of Vector Spaces, where \mathbf{V} is a set on which vector addition and scalar multiplication are defined, and $\overrightarrow{\mathbf{u}}$, $\overrightarrow{\mathbf{v}}$, and $\overrightarrow{\mathbf{w}} \in \mathbf{V}$ and c and d are scalars, then \mathbf{V} is a vector space if:
 - 1. $\overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{v}} \in \mathbf{V}$
 - 2. $\overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{v}} + \overrightarrow{\mathbf{u}}$
 - 3. $\overrightarrow{\mathbf{u}} + (\overrightarrow{\mathbf{v}} + \overrightarrow{\mathbf{w}}) = (\overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{v}}) + \overrightarrow{\mathbf{w}}$
 - 4. V has a zero vector for every $\overrightarrow{\mathbf{u}}$ such that $\overrightarrow{\mathbf{u}} + \mathbf{0} = \overrightarrow{\mathbf{u}}$
 - 5. For every $\overrightarrow{\mathbf{u}}$ in \mathbf{V} there is a vector such that $\overrightarrow{\mathbf{u}} + (-\overrightarrow{\mathbf{u}} = 0)$
 - 6. $c\overrightarrow{\mathbf{u}} \in \mathbf{V}$
 - 7. $c(\overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{v}}) = c\overrightarrow{\mathbf{u}} + c\overrightarrow{\mathbf{v}}$
 - 8. $(c+d)\overrightarrow{\mathbf{u}} = c\overrightarrow{\mathbf{u}} + d\overrightarrow{\mathbf{u}}$
 - 9. $c(d\overrightarrow{\mathbf{u}}) = (cd)\overrightarrow{\mathbf{u}}$
 - 10. $1(\overrightarrow{\mathbf{u}}) = \overrightarrow{\mathbf{u}}$
- ullet Polynomials of Degree n
 - 1. $P_1(x) = \{ax + b | a, b \in \mathbb{R}\}$ Like in \mathbb{R}^2
 - 2. $P_2(x) = \{ax^2 + bx + c | a, b, c \in \mathbb{R}\}$ Like in \mathbb{R}^3
 - 3. $P_n(x) = \{a_0 + a_1x + a_2x^2 + \dots + a_nx^n | a_i \in \mathbb{R}\}$ Like in \mathbb{R}^n
 - 4. $P_0(x) = \{a | a \in \mathbb{R}\}$ Like in \mathbb{R}^1

- Standard Vector Spaces
 - 1. \mathbb{R} = set of all real numbers
 - 2. \mathbb{R}^2 = set of all ordered pairs
 - 3. \mathbb{R}^3 = set of all ordered triples
 - 4. $\mathbb{R}^n = \text{set of all } n\text{-tuples}$
 - 5. $C(-\infty, \infty)$ = set of all continuous functions defined on the real number line
 - 6. C[a,b]= set of all continuous functions defined on a closed interval [a,b], where $a\neq b$
 - 7. P = set of all polynomials
 - 8. $P_n = \text{set of all polynomials of degree} \leq n$ (together with the zero polynomial)
 - 9. $M_{m,n} = \text{set of all } m \times n \text{ matrices}$
 - 10. $M_{n,n} = \text{set of all } n \times n \text{ matrices}$
- Let $\overrightarrow{\mathbf{v}}$ be any element of a vector space \mathbf{V} , and let c be any scalar. Then the properties below are true.
 - 1. $0\overrightarrow{\mathbf{v}} = \mathbf{0}$
 - 2. c**0** = **0**
 - 3. If $c\overrightarrow{\mathbf{v}} = 0$, then c = 0 or $\overrightarrow{\mathbf{v}} = 0$
 - 4. $(-1)\overrightarrow{\mathbf{v}} = -\overrightarrow{\mathbf{v}}$