Sprawozdanie z Laboratorium 2 - Pomiar czasu dynamicznej alokacji pamięci w tablicy dynamicznej.

Kamil Kuczaj

29 marca 2016

1 Wstęp

Podanym zadaniem był pomiar czasu znajdywania losowego elementu listy typustring. Należało wykonać pomiary zapisu: 10^1 , 10^3 , 10^5 , 10^6 oraz 10^9 elementow używając różnych metod zmiany rozmiaru pamięci dynamicznej tablicy. W swoim sprawozdaniu porównałem trzy metody:

- Zwiększanie rozmiaru tablicy o 1 element
- Dwukrotne zwiększanie rozmiaru
- Trzykrotne zwiększanie rozmiaru

Każdy pomiar został powtórzony 50 razy a wyniki zapisane do plików z rozszerzeniem .csv i umieszczone w folderze wyniki.

W sprawozdaniu podążałem za podręcznikiem $Google\ C++\ Guide$, aby mój kod był czytelny oraz podążał za światowym standardem. Sama konstrukcja programu jest modułowa oraz zaimplementowano w nich interfejs.

2 Specyfikacja komputera

Wersja kompilatora $g++$	4.8.4
System	Ubuntu 14.04.4
Procesor	Intel Core i5 2510M 2.3 GHz
Pamięć RAM	8 GB DDR3 1600 MHz
Rozmiar zmiennej int	4 bajty

3 Pomiary oraz ich interpretacja

Wykonałem pomiary dla zapisu podanych powyżej ilości elementów wykorzystując i porównując dwie metody. Jedna opierała się na alokacji zwiększając rozmiar tablicy dynamicznej dwukrotnie a druga na zwiększaniu trzykrotnym. Zostały porównane z wynikami metody, która polegała na zwiększaniu rozmiaru tablicy o jeden element.

Ilość zajętej pamięci RAM przed pomiarami wynosiła około 1,6 GB.

Ilość elementów	10	10^{3}	10^{5}	
Średnie czasy $[\mu s]$	0,12	1606,52	14424750	
Średnie czasy [s]	0,00000012	0,00160652	14,42475	

Tablica 1: Średnie pomiary czasu zapisu przy zwiększaniu rozmiaru tablicy dynamicznej o jeden element. Brak dalszych pomiarów wynika z tego, iż trwały one bardzo długo. Posiadając już te jestem w stanie dowieść, że jest to metoda bardzo nieefektywna.

Ilość elementów	10	10^{3}	10^{5}	10^{6}	10^{9}
Średnie czasy $[\mu s]$	0,06	13,34	1345,3	10834,8	10035074,2
Średnie czasy [s]	0,00000006	0,00001334	0,0013453	0,0108348	10,0350742

Tablica 2: Średnie pomiary czasu zapisu przy dwukrotnym zwiększaniu rozmiaru tablicy dynamicznej.

Ilość elementów	10	10^{3}	10^{5}	10^{6}	10^{9}
Średnie czasy [μs]	0,14	10,48	1170,72	7839,26	7814924,6
Średnie czasy [s]	0,00000014	0,00001048	0,00117072	0,00783926	7,8149246

Tablica 3: Średnie pomiary czasu zapisu przy trzykrotnym zwiększaniu rozmiaru tablicy dynamicznej.

Dane prognoza zostały otrzymane poprzez ustalenie, że wraz ze wzrostem ilości danych proporcjonalne wzrośnie czas ich alokacji - liniowość. Jak widać przy alokacji 10 elementów, spodziewalibyśmy się krótszego czasy alokacji miliona elementów.

Natomiast czas alokacji w momencie tysiąca lub stu tysięcy wskazuje, że alokacja pamięci dla dziesięciu zmiennych całkowitych będzie trwać dłużej niż rzeczywisty czas.

Zobrazowanie tego konceptu zostało zilustrowane przy użyciu programu $LibreOffice\ Calc$ i jest widoczne na następnej stronie.

Rysunek 1: Zobrazowanie wyników pomiaru dla metody dwukrotnego zwiększania rozmiaru tablicy. Najlepiej dopasowuje się tutaj regresja liniowa.

4 Wnioski

Wyraźnie widać wyższość metody alokacji podwójnej nad metodą zwiększania jej rozmiaru o jeden element. Jednak trzykrotne zwiększanie rozmiaru tablicy pokazuje wyższość, to potrzeba na ten sposób więcej surowców (pamięci fizycznej). Dwukrotne zwiększanie rozmiaru tablicy w zupełności wystarcza. Kilkukrotne zwiększanie rozmiaru tablicy powoduje, że algorytm ten zyskuje złożoność obliczeniową rzędu n w notacji dużego Θ . Natomiast rozszerzanie rozmiaru tablicy metodą dodawania n-elementów powoduje, że złożoność obliczeniowa wzrasta do n^2 w notacji dużego Θ .