Part IA — Digital Electronics

Lectures by xxx Latex by Z.Yan

Michaelmas 2016

Contents

1	Combinational Logic
	1.1 Boolean Algebra
	1.2 Logic Minimisation
2	Sequential Logic
	2.1 Memory Elements
	2.2 Synchronous State Machines

1 Combinational Logic

1.1 Boolean Algebra

$$a+b=b+a \qquad \text{communication}$$

$$(a+b)+c=a+(b+c) \qquad \text{association}$$

$$(a.b).c=a.(b.c)$$

$$a.(b+c+...)=(a.b)+(a.c)+... \qquad \text{Distribution}$$

$$a+(b.c....)=(a+b).(a+c)....$$

$$a+(a.c)=a \qquad \text{Absorption}$$

$$a.(a+c)=a \qquad \text{DeMorgan's theorem}$$

$$\overline{a+b}=\overline{a}.\overline{b} \qquad \text{DeMorgan's theorem}$$

1.2 Logic Minimisation

3 important Techniques:

- Algebraic manipulation
- Karnaugh (K) mapping (a visual approach)
- Tabular approaches e.g. Quine-McCluskey Method

Definition (Disjunctive normal form (DNF)). A boolean function expressed as the disjunction (ORing) of its minterms.

Definition (Sum of product form (SOP)). A boolean function expressed as the ORing of ANDED variables. (not necessarily minterms)

Definition (Conjunctive normal form (CNF)). A boolean function expressed as the conjunction (ANDing) of its maxterms.

Definition (Sum of product form (SOP)). A boolean function expressed as the ANDing of ORED variables. (not necessarily maxterms)

Definition (Maxterms). The disjunction of all the variables either in complement or uncomplemented form.

Definition (Minterms). The conjunction of all the variables either in complement or uncomplemented form.

Definition (Cover). A term is said to cover a minterm if that minterm is part of that term

Definition (Prime implicant). A term that cannot be further combined

Definition (Essential implicant). A implicant that covers a minterm that no other prime implicant covers

Definition (Covering set). A minimum set of prime implicants required to cover all minterms Q-M method techniques:

_

2 Sequential Logic

2.1 Memory Elements

Definition (Combinational logic). The output depends only on the condition of the latest inputs.

Definition (Sequential logic). The output depends not only on the latest inputs, but also on the condition of earlier inputs. They contain memory elements.

- A memory stores data usually one bit per element.
- A snapshot of the memory is called the state.
- A one bit memory is often called a bistable. i.e. It has 2 stable internal states.
- Flip-Flops and latches are particular implementations of bistable.

Definition (RS Latch). An RS Latch is a memory element with 2 inputs: Reset(R) and Set(S) and 2 outputs Q and \bar{Q} .

	· I	-0
SR	$Q'ar{Q}'$	comment
00	$Qar{Q}$	hold
01	01	reset
10	10	set
11	00	illegal

Definition (State transition table). An alternative way of viewing its operation.

It can also be expressed in the form of state diagram.

current state input next state

Definition (State Diagram). It shows the input conditions required to transition between states.

Definition (Asynchronous operation). The output changes occur directly in the response to changes in the inputs.

Definition (Synchronous operation). The output of a sequential circuit is constrained to change only ay a time specified by a global enabling signal. This signal is generally known as the system clock.

The functions of clocks:

- It is a square wave signal at a particular frequency.
- It imposes order on the state changes.
- Allows lots of states to appear to update simultaneously.

Definition (Transparent D Latch). Its output state is only permitted to change when a valid enable signal (which can be the system clock) is present.

D EN	$Q'ar{Q}'$	comment
x0	QQ'	RS hold
01	01	RS reset
11	10	RS set

The complement function ensures that R and S can never be 1 at the same time.

Definition (Master-Slave D Flip-Flop). The outputs changes only on the either rising (positive going) or falling edges (negative going) of the clock (i.e. enable) signal.

Definition (J-K Flip-Flop). Differ from the D Flip-flop by the illegal state replaced by a toggle state.

JK	$Qar{Q}'$	comment
00	$Qar{Q}$	hold
01	01	reset
10	10	set
11	$\bar{Q}Q$	toggle

Definition (T Flip-Flop). This is essentially a J-K Flip-Flop with its J and K inputs connected together and renamed as the T input.

T	$Qar{Q}'$	comment
0	$Qar{Q}$	hold
1	$\bar{Q}Q$	toggle

Definition (Setup time). Is the minimum duration that the date must remain stable on the FF input before the clock edge.

Definition (Hold time). Is the minimum duration that the data must remain stable one the FF input after the clock edge.

Definition (Propagation delay). Is the time between the clock edge changes and the output changes.

Definition (Counter).

- A clocked sequential circuit that goes through a predetermined sequence of states.
- A commonly used counter is an n-bit binary counter. This has n FFs and 2^n states which are passed through in the order $0, 1, 2...2^n 1, 0, 1...$
- Uses include:
 - Counting
 - Producing delays of a particular duration
 - o Sequencers for control logic in a processor
 - o Divide by m counter (a divider), as used in a digital watch.

Definition (Ripple counter).

- Can be made by cascading together negative edge triggered T-type FFs operating in toggle mode, i.e. T=1
- It is not clocked using the same clock. This is not a synchronous design.
- Output do not change at the same time, i.e. Synchronously. So hard to know when output is actually valid.
- Propagation delay builds up from stage to stage, limiting maximum clock speed before miscounting occurs.
- The counter output signals double the repetition period of the previous one. (known as dividers)
- To count not a power of 2:
 - Use FFs having a Reset/Clear input
 - Use an AND gate to detect the count of 10 and use its output to reset the FFs.

Definition (modified state transition table). This table has additional columns that define the required FF inputs. (excitations as it is known)

current state | input | next state | FF inputs

Definition (Characteristic table). FF inputs | next state

Definition (Excitation table). Current state next state | FF inputs

Note. This is vitally important in considering the do not care state when using the J-K FFs to build the sequential logic

Definition (Synchronous counter).

Write down the state transition table

- Determine the FF excitation (easy for D-Types)
- Determine the combinational logic necessary to generate the required FF excitation from the current states.

Warning. Remember to take into account any unused counts since these can be used as do not care states when determining the combinational logic circuits.

Definition (Shift register).

- A shift register can be implemented using a chain of D-type FFs
- Has series input D_{in} and parallel output Q_0, Q_1 and Q_2
- Data moves on position to the right on the application of each clock edge
- preset and clear inputs on the FFs can be utilised to provide a parallel date input feature.
- Date can then be clocked out through Q_2 in a serial fashion, i.e. We now have a parallel in, serial out arrangement
- Serial in, parallel out shift register arrangement can be used as the basis for a serial data link

Definition (Serial data link). — One data bit at a time is sent across the serial data link

Less wires are required than for a parallel data link

2.2 Synchronous State Machines

Definition (Finite state machine (FSM)). A deterministic machine (circuit) that produces outputs which depend on its internal state and external inputs

Definition (States). The set of internal memorised values, shown as circles on the state diagram

Definition (Inputs). External stimuli, labelled as arcs on the state diagram

Definition (outputs). Results from the FSM

Definition (Moore machines). Outputs from Moore machines come directly from clocked FFs so:

- They have guaranteed timing characteristics
- They are glitch free

Definition (Mealy machine). Outputs from Mealy machine depends upon the timing of the inputs

Note. Any Mealy machine can be converted to a Moore machine and vice versa, though their timing properties will be different.

Definition (Self start). The FSM can eventually enter a known state from any of the unused states.

- If not, add additional logic to do this i.e. include unused states in the state transition table along with a valid next state
- Alternatively use asynchronous Clear and Preset FF inputs to set a known (used) sate at power up

 $\begin{tabular}{ll} \textbf{Definition} (State assignment). \textbf{Sequential state assignment} & Simply assign the states in an increasing natural binary count using minimum FFs $\log_2 m$ \\ \end{tabular}$

slide state assignment By inspection we can see that we can use any of the FF outputs as the wanted output.

Shift register assignment The FFs are connected together to form a shift register. In addition, the output from the final shift register in the chain is connected to the input of the first FF: consequently the data continuously cycles through the register

Definition (One hot state encoding). This is a shift register design style where only one FF at a time holds a 1

- Have 1 FF per state
- Result in simple fast state machines
- Outputs are generated by ORing together appropriate FF outputs

Note. The one hot is easier to design but it results in more hardware compared with the sequential state assignment design

Definition (Redundant state). Sometimes when designing state machine it is possible that unnecessary states may be introduced.

Warning (Elimination algorithm by table). This is a non-completed algorithm. It is possible to do some further simplification even after the algorithm finished!

Definition (Generic array logic (GAL)). They are similar in concept to PALs, but have the option to make use of a D-types FF in the OR plane (one following each OR gate). In addition, the outputs from the D-types are also made available to the AND plane (in addition to the usual inputs)

- Consequently it becomes to possible to build programmable sequential logic circuits

Definition (Field Programmable gate array (FPGA)).

- FPGA are the latest type of programmable logic
- Are a sea of programmable wiring and function blocks controlled by bits downloaded from memory
- Function units contain a 4-input 1-output look-up table with an optional D-FF in the output