1

Digital design through Icoboard Lattice FPGA

Hemanth Kumar Desineedi and G V V Sharma*

CONTENTS

1	Software Setup		1
2	Example Codes 2.1 Blink LED 2.2 Decade Counter		2 2 2
	1 SOFTWARE SETUP 1) Boot the Raspberry PI from the SD card. 2) Open a console window and expand the root filesystem by typing the command below sudo raspi-config		

select the "Expand Filesystem" and reboot the Raspberry PI.

 Open a console window and execute the following commands for installing wiringPi, Ico-Prog, IcoStorm tools, Arachne-pnr and Yosys.

```
cd $HOME
git clone git://git.drogon.net/
wiringPi
cd wiringPi && ./build

cd $HOME
sudo apt-get install subversion
svn co http://svn.clifford.at/
handicraft/2015/icoprog
cd icoprog && make install

sudo apt-get install build-
essential clang bison flex
libreadline-dev
sudo apt-get install gawk tcl-
dev libffi-dev git mercurial
graphviz
```

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

```
sudo apt-get install xdot pkg-
  config python python3
  libftdi -dev
cd $HOME
git clone https://github.com/
  cliffordwolf/icestorm.git
  icestorm
cd icestorm && make && sudo
  make install
cd $HOME
git clone https://github.com/
  cseed/arachne-pnr.git
  arachne-pnr
cd arachne-pnr && make && sudo
  make install
cd $HOME
git clone https://github.com/
  cliffordwolf/yosys.git yosys
cd yosys && make && sudo make
  install
```

4) Open a text editor and type the following code. Save it as Makefile.

2 Example Codes

2.1 Blink LED

1) In the same directory, open a text editor and type the following verilog code and save it as Blink LED.v

```
module Blink_LED(input wire clk
, output reg A);
reg [26:0] delay;

always @(posedge clk) begin
delay = delay+1;
if (delay==27'
b101111101011110000100000000
)
begin
delay = <=27'b0;
A<=(!A);
end
end
endmodule
```

- 2) In addition to the verilog file, we need to indicate to which FPGA pin we want to connect the A output.
- 3) This mapping is done in the file .pcf (pcf = Physical Constraint file).
- 4) Open a text editor and type the following and save it as Blink_LED.pcf

```
set_io clk R9
set_io A B7
```

- 5) Now connect B7 pin of icoboard to positive end of LED.
- 6) Connect GND pin of icoboard to negative end of LED.

- 7) Now open the Makefile. Replace V_FNAME with Blink_LED, and PCF_File with Blink LED.
- 8) Now open terminal and go to the Directory where all files are saved and type the following command.

make

9) Now the LED, which is connected to icoboard starts blinking.

2.2 Decade Counter

1) Open a text editor and type the following verilog code and save it as decade counter.v

```
module decade counter(
    input
            wire clk,
    output reg a, // a, b, c, d
        , e, f, g are the final
        outputs.
    output reg b,
    output reg c,
    output reg d,
    output reg e,
    output reg f,
    output reg g
);
reg A;
reg B;
reg C;
reg D;
reg W;
reg X;
reg Y;
reg Z;
reg [26:0] delay; // for delay of
    1 second
initial begin
   W < = 0;
   X < = 0:
   Y < = 0;
   Z <= 0;
end
always @(posedge clk) begin
a = (!D\&!C\&!B\&A) | (!D\&C\&!B\&!A);
b = (!D\&C\&!B\&A) | (!D\&C\&B\&!A);
```

```
c = (!D\&!C\&B\&!A);
d = (!D\&!C\&!B\&A) | (!D\&C\&!B\&!A) | (!D
   &C&B&A);
e = (!D\&!C\&!B\&A) | (!D\&!C\&B\&A) | (!D\&
   C&!B&!A) | (!D&C&!B&A) | (!D&C&B
   &A) | (D&!C&!B&A);
f = (!D\&!C\&!B\&A) | (!D\&!C\&B\&!A) | (!D
   &!C&B&A) | (!D&C&B&A);
g = (!D\&!C\&!B\&!A) | (!D\&!C\&!B\&A) | (!
   D&C&B&A);
D < = (W&X&Y&!Z) | (!W&!X&!Y&Z);
C <= (Y \& !X) | (Y \& !W) | (!Y \& X \& W);
B < = (!W&X) | (!Z\&!X\&W);
A \le !W;
delay = delay + 1;
if(delay == 27)
    b10111111010111110000100000000\\
    ) begin
delay = 27'b0;
W < =A;
X \le B:
Y <= C:
Z \leq D;
end
end
endmodule
```

2) Open a text editor and type the following and save it as decade_counter.pcf

```
set_io clk R9
set_io a A5
set_io b A2
set_io c C3
set_io d B4
set_io e B7
set_io f B6
set_io g B3
```

- 3) Now connect icoboard to sevensegment display according to TABLE.2.0
- 4) Copy the Makefile into the same directory and replace V FNAME with decade counter, and

Pin	Segment
A5	a
A2	b
C3	С
B4	d
B7	e
В6	f
В3	g
Vcc	COM

TABLE 2.0: Pin Connections

PCF_File with decade_counter.

5) Now open terminal and go to the Directory where all files are saved and type the following command.

make

6) Now the decade counter is observed.