Universidade Federal de Santa Catarina Centro Tecnológico Depto de Informática e Estatística

INE5403-Fundamentos de Matemática Discreta para a Computação Prof. Daniel S. Freitas

7 - Estruturas Algébricas

- 7.1) Operações Binárias
- 7.2) Semigrupos
- 7.3) Produtos e Quocientes de Semigrupos

7.4) Grupos

7.5) Produtos e Quocientes de Grupos

LISTA DE EXERCÍCIOS

- 1. (Kolman5-seção 9.4-exs.1-11) Em cada exercício abaixo, determine se o conjunto com a operação binária mostrada é um grupo. Se for um grupo, determine se é Abeliano e especifique a identidade e a inversa de um elemento genérico.
 - (1) \mathbb{Z} , aonde * é a multiplicação comum.
 - \bullet (3) $\mathbb Q,$ o conjunto de todos os números racionais, sob a operação de adição.
 - (5) \mathbb{R} , sob a operação de multiplicação.
 - (7) \mathbb{Z}^+ , sob a operação de adição.
 - (9) O conjunto dos inteiros ímpares sob a operação de multiplicação.
 - (11) Se S é conjunto não-vazio, o conjunto P(S), aonde $A * B = A \oplus B$.
- 2. (Kolman5-seção 9.4-ex.21) Seja G um grupo finito com identidade e, e seja a um elemento arbitrário de G. Prove que existe um inteiro não-negativo n tal que $a^n = e$.
- 3. (Kolman5-seção 9.4-ex.23) Seja G o grupo dos inteiros sob a operação de adição, e seja $H = \{3k | k \in \mathbb{Z}\}$. Determine se H é um subgrupo de G.
- 4. (Kolman5-seção 9.4-ex.25) Seja G um grupo e seja $H=\{x|x\in G \text{ e } xy=yx,\ \forall y\in G\}$. Prove que H é um subgrupo de G.
- 5. (Kolman5-seção 9.4-ex.33) Seja G um grupo. Mostre que a função $f: G \to G$ definida por $f(a) = a^{-1}$ é um isomorfismo se e somente se G é Abeliano (comutativo).
- 6. (Kolman5-seção 9.4-ex.35) Seja G um grupo e seja a um elemento fixo de G. Mostre que a função $f_a: G \to G$ definida por $f_a(x) = axa^{-1}$, para $x \in G$, é um isomorfismo.