

Introduzione

Cosa faremo?

Questo laboratorio ci mostrerà come agisce un exploit di tipo SQL Injection con lo scopo di sottrarre dati sensibili chiviati in un database di un Jeb Server.

Cos'è l'SQL Injection?

Un attacco SQL Injection è una vulnerabilità di sicurezza delle applicazioni web . Si esegue iniettando una query malevola allo scopo di manipolare ed alterare il comportamento di un database, consentendo l'accesso non autorizzato a dati o funzionalità di una applicazione.

Con quale strumento?

Come strumento sarà utilizzato Kibana, una applicazione utile alla visualizzazione di dati allo scopo di esplorare, analizzare e rappresentare graficamente grandi quantità di dati raccolti ed indicizzati da Elasticsearch, un motore di ricerca distribuito.

Modifica dell'intervallo di tempo

Per questo laboratorio verrà utilizzata la Macchina Virtuale Security Onion. Per prima cosa si userà il comando: sudo so-status

Con tale comando sarà possibile controllare lo stato dei servizi . Se l'output non restituisce messaggi di errore, sarà possibiòe procedere con l'analisi con Kibana

```
analyst@SecOnion:~$ sudo so-status
[sudo] password for analyst:

Status: securityonion
    sguil server
    pcap agent (sguil)
    snort agent-1 (sguil)
    barnyard2-1 (spooler, unified2 format)

Status: Elastic stack
    so-elasticsearch
    so-logstash
    so-kibana
    so-freqserver

analyst@SecOnion:~$
```


Il passaggio successivo sarà quello di aprire Kibana, utilizzando le stesse credenziali della Macchina Virtuale.

Essendo a conoscenza delle date approssimative in cui l'attacco è avvenuto (Giugno 2020), si andrà ad impostare l'intervallo di tempo corretto in maniera tale da rilevare l'attacco interessato.

Filtraggio del traffico HTTP

Trattandosi un attacco rivolto alle Web App sarà utile impostare un filtro HTTP che ci mostri dati importanti quali:

- Indirizzo IP di origine;
- Indirizzo IP di destinazione;
- Porta di destinazione;

Time -	source_ip	destination_ip	destination_port	resp_fuids	uid
June 12th 2020, 21:30:09.445	209.165.200.227	209.165.200.235	.80	FEVWs63HqvCqt h3LH1	CuKeR52 aPJRN7Pf qDd
June 12th 2020, 21:23:27.954	209.165.200.227	209.165.200.235	80	FCbbST2feBG6a AYVBh	CbSK6C1 mlm2iUV KkC1
June 12th 2020, 21:23:27.881	209.165.200.227	209.165.200.235	80	FwkDT14TjaA2Yd NQ14	Cb5K6C1 mlm2IUV KkC1
June 12th 2020, 21:23:17.789	209.165.200.227	209.165.200.235	80	PW003T1TT34U WLKr63	Cb5K6C1 mlm2IUV KkC1
June 12th 2020, 21:23:17.768	209.165.200.227	209.165.200.235	80	F37eK1464vM8lh	CbSK6C1

Registri di log HTTP

TAnalizzando i file di log HTTP, si selezionerà il primo della lista. Lì troveremo altri preziosi dati quali:

message

- Timestamp;
- Tipo di evento;
- Messaggio contenente la query SQL.

Accedendo alla voce _id, sarà possibile accedere al collegamento che permetterà una analisi dettagliata dell'evento.

Sarà aperta una pagina capME!, che fornirà informazioni particolari riguardo le query inviate dalla sorgente (in blu) e la risposta da parte del Web Server (in rosso).

La Query SQL

Nella parte dedicata al Log Entry sarà possibile individuare, osservando la parte dedicata alla uri, una chara richiesta SQL, facilmente riconoscibile in quanto presenti i temini union e select, tipici di tale linguaggio.

Clò che sarà possibile analizzare in questa query sarà la presenza di informazioni quali:

- Username;
- CCID;
- Numero di Conto Corrente;
- CCV;
- Data di scadenza.

Facile dedurre che si sta cercando di recuperare dati sensibili riguardanti una carta di credito.

Hdae/Index.php?page=user-info.php*,"version

Dati ricavati con la Query

Come si può notare dall'output, sono numerose le informazioni che sono state trovate grazie alla query. Tra queste:

- Nome utente;
- Password;
- Firma.

```
DST: <b>Username =</b>4444111122223333<br>
DST-17
DST: <br/>
<br/>
h>Password=<br/>
ib>745<br/>
<br/>
br>
DST: 22
DST: <b>Signature=</b>2012-03-01<br>
     <b>Username=7746536337776330<br>
DST 17
DST: <br/>h>Password=</br/>/b>722<br/>br>
DST
DST: 22
DST: <b>Signature=</b>2015-04-01<br>
DST
DST: <b>Username=</b>8242325748474749<br>
DST
DST: 17
DST: <b>Password=</b>461<br>
DST
DST: 22
DST: <b>Signature=<b>2016-03-01<br>
DST
DST: 24
DST: <br/>
<br/>
dsemame=</b>7725653200487633<br/>
<br/>
bra
DST
DST: 17
DST: <br/>h>Password=</br/>/b>230<br/>kbr>
```

Analisi del traffico DNS

Essendo a conoscenza del fatto che un amministratore di rete ha notato delle query DNS eccezionalmente lunghe e con sottodomini insoliti, si andrà a selezionare il filtro DNS.

Ciò che sarà possibile rilevare saranno alcune query DNS.

L'elenco delle query ci rivelerà un dominio sospetto: example.com.

Ricerca su example.com

Effettuando una ulteriore ricerca sul dominio example.com, sarà possibile individuare 4 interazioni che includono i seguenti indirizzi IP:

- Sorgente 192.168.0.11
- Destinatario 209.165.200.235

Analisi dei dati ricavati

Successivamente si andrà ad esportare i dati per un'analisi dettagliata delle query sospette.

```
Query, Count
"434f4e464944454e5449414c20444f43554d454e540a444f204e4f542053.ns.example.com", 1
"484152450a5468697320646f63756d656e7420636f6e7461696e7320696e.ns.example.com", 1
"666f726d6174696f6e2061626f757420746865206c617374207365637572.ns.example.com", 1
"697479206272656163682e0a.ns.example.com", 1
```

Tale file verrà convertito in file .txt per poi eseguirlo tramite il comando cat.

```
analyst@SecOnion:~/Downloads$ xxd -r -p "DNS - Queries.csv" > secret.txt
analyst@SecOnion:-/Downloads$ cat secret.txt
CONFIDENTIAL DOCUMENT
DO NOT SHARE
This document contains information about the last security breach.
analyst@SecOnion:~/Downloads$
```

Conclusioni

L'attacco SQL Injection ha evidenziato l'importanza della sanitizzazione degli input nelle applicazioni web per prevenire vulnerabilità. Gli strumenti come Kibana e Security Onion hanno dimostrato l'efficacia nell'analisi e rilevamento delle minacce, confermando la necessità di monitorare costantemente il traffico di rete per prevenire esfiltrazioni di dati.

Grazie