Лабораторная работа № 12.

<u>Определение массы тела методом гидростатического</u> взвешивания.

Цель:

- рассчитать значение жесткости пружины.
- вычислить массу тела.

Оборудование: динамометр без шкалы; стаканчик от калориметра с водой; тело неизвестной массы; линейка инструментальная.

Содержание и метод работы

Трудность работы заключается в том, что для определения жесткости пружины нет грузов известной массы. Эту трудность можно преодолеть, если измерить удлинение x_1 пружины при подвешивании к ней груза неизвестной массы m в воздухе, а затем измерить удлинение x_2 этой же пружины при погружении груза в воду.

Уравнение равновесия груза, подвешенного на пружине в воздухе $mg = kx_1(1)$

Уравнение равновесия груза, подвешенного на пружине вводе

$$mq - F_A = kx_2 , (2)$$

где k – жесткость пружины;

 F_A — архимедова сила, действующая на погруженное тело

$$F_A = \rho_0 V g \tag{3}$$

 ho_0 – плотность воды ,

V- объём тела.

Измерив объём тела с помощью линейки, можно из выражений (1), (2) и (3) выразить жёсткость пружины:

$$k = \frac{\rho_0 V q}{x_1 - x_2} \tag{4}$$

$$m = \frac{kx_1}{q} = \frac{\rho_0 V x_1}{x_1 - x_2} \tag{5}$$

Порядок выполнения работы

- 1. На динамометре без шкалы проведите линию, фиксирующую положение конца незагруженной пружины.
- 2. Подвесив к динамометру груз неизвестной массы, проведите линию, фиксирующую положение конца нагруженной пружины. Измерьте линейкой удлинение пружины x_1 .
- 3. Опустите подвешенный на динамометре груз в воду и измерьте линейкой новое удлинение пружины x_2 .
- 4. При помощи линейки определите объём V груза.
- 5. Рассчитайте значение жесткости пружиныk
- 6. Рассчитайте массу груза m и плотность $\rho_{\text{груза}}$.
- 7. Оцените погрешности. Сделайте доверительные интервалы для жесткости, массы и плотности.