Cấu trúc dữ liệu và giải thuật

PGS. TS. Phạm Tuấn Minh

Trường Công nghệ Thông tin, Đại học Phenikaa minh.phamtuan@phenikaa-uni.edu.vn https://sites.google.com/site/phamtuanminh/

Chương 2: Mảng và danh sách liên kết

- □ Cấu trúc lưu trữ mảng
 - Mảng một chiều
 - Mảng nhiều chiều
 - Khai báo mảng, khởi tạo thao tác trên mảng nhiều chiều
 - Mảng nhiều chiều là tham số của hàm
 - · Sử dụng mảng một chiều trong mảng hai chiều
 - · Toán tử Sizeof
- Danh sách liên kết
- Ngăn xếp
- Hàng đợi

Khai báo mảng nhiều chiều

- ☐ Ví dụ mảng 2 chiều: int x[3][5]; // mảng 3 phần tử của các mảng 5 phần tử
- □ Ví dụ mảng 3 chiều char x[3][4][5]; // mảng 3 phần tử của các mảng 4 phần tử của các mảng 5 phần tử

Khởi tạo mảng nhiều chiều

☐ Khởi tạo mảng nhiều chiều:

```
int x[2][2] = { {1, 2}, // hàng thứ nhất \{6, 7\} }; // hàng thứ hai hoặc int x[2][2] = {1, 2, 6, 7};
```

■ Khởi tạo một phần

```
int exam[3][3] = {{1, 2}, {4}, {5,7}};
int exam[3][3] = {1, 2, 4, 5,7};
//tương đương
int exam[3][3] = {{1, 2, 4}, {5,7}};
```

1-5

Khởi tạo mảng nhiều chiều

□ Có thể bỏ qua **chiều ngoài cùng** vì trình biên diện có thể nhận biết, ví dụ

```
int arr[ ][3][2] = { \{ \{1,1\}, \{0,0\}, \{1,1\} \}, \{0,0\}, \{1,2\}, \{0,1\} \} \};
```

tạo ra mảng có chiều là [2][3][2]

Khai báo sau là không hợp lệ

```
int wrong_arr[][] = {1,2,3,4};
```

Thao tác trên mảng nhiều chiều - Dùng chỉ số mảng

Thao tác trên mảng nhiều chiều

- Dùng chỉ số mảng

```
/* compute sum of each column */
for (column = 0; column < 3; column++) {
    sum = 0;
    for (row = 0; row < 3; row++)
        sum += array[row][column];
    printf("The sum of elements in column %d is %d\n", column+1, sum);
}
return 0;
}</pre>
```

Output

The sum of elements in row 1 is 30

The sum of elements in row 2 is 60

The sum of elements in row 3 is 120

The sum of elements in column 1 is 35

The sum of elements in column 2 is 70

The sum of elements in column 3 is 105

Chương 2: Mảng và danh sách liên kết

- Cấu trúc lưu trữ mảng
 - Mảng một chiều
 - Mảng nhiều chiều
 - Khai báo mảng, khởi tạo thao tác trên mảng nhiều chiều
 - · Mảng nhiều chiều là tham số của hàm
 - Sử dụng mảng một chiều trong mảng hai chiều
 - Toán tử Sizeof
- Danh sách liên kết
- Ngăn xếp
- Hàng đợi

1-9

Mảng nhiều chiều là tham số của hàm

Định nghĩa của hàm có mảng 2 chiều là tham số như sau:

```
void fn(int ar2[2][4])
{
     ...
}
```

```
void fn(int ar2[ ][4])
{
...
}
```

Trong định nghĩa trên, chiều thứ nhất có thể bỏ qua vì trình biên dịch cần thông tin của mọi chiều trừ chiều thứ nhất của mảng

Tại sao chiều thứ nhất có thể bỏ qua Ví dụ, lệnh gán ar2[1][3] = 100; yêu cầu trình biên dịch địa chỉ của ar2[1][3] và ghi giá trị 100 vào địa chỉ Để tính địa chỉ, thông tin về chiều phải chuyển cho trình biên dịch. ☐ Giả sử định nghĩa ar2 như sau Bô nhớ int ar2[D1][D2]; Địa chỉ của ar2[1][3] được tính như sau baseAddress a2[0][0] baseAddress + row * D2 + column a2[0][1] ==> baseAddress + 1 * 4 + 3 a2[0][2] ==> baseAddress + 7 a2[0][3] a2[1][0] a2[1][2] a2[1][3]

Truyền mảng 2 chiều là tham số hàm

```
#include <stdio.h>
int sum_rows(int ar[][3]);
                                      Output
int sum_columns(int ar[][3]);
int main()
                                      The sum of all elements in rows is 210
                                      The sum of all elements in columns is 210
   int array[3][3]= {
                     {5, 10, 15},
                     {10, 20, 30},
                     {20, 40, 60}
                 };
   int total row, total column;
   total_row = sum_rows(array); // sum of all rows
   total_column = sum_columns(array); // all columns
   printf("The sum of all elements in rows is %d\n", total_row);
   printf("The sum of all elements in columns is %d\n", total_column);
   return 0;
```

Truyền mảng 2 chiều là tham số hàm

```
int sum_rows(int ar[][3])
   int row, column;
   int sum=0;
   for (row = 0; row < 3; row++){
                                                         Bỏ qua khai báo
       for (column = 0; column < 3; column++)
                                                         chiều thứ nhất
           sum += ar[row][column];
   return sum;
int sum_columns(int ar[ ][3])
   int row, column;
   int sum=0;
   for (column = 0; column < 3; column++){
       for (row = 0; row < 3; row++)
           sum += ar[row][column];
   return sum;
```

Chương 2: Mảng và danh sách liên kết

- Cấu trúc lưu trữ mảng
 - Mảng một chiều
 - Mảng nhiều chiều
 - · Khai báo mảng, khởi tạo thao tác trên mảng nhiều chiều
 - Mảng nhiều chiều là tham số của hàm
 - Sử dụng mảng một chiều trong mảng hai chiều
 - Toán tử Sizeof
- Danh sách liên kết
- Ngăn xếp
- Hàng đợi

1-15

Sử dụng mảng 1 chiều trong mảng 2 chiều

```
#include <stdio.h>
void display1(int *ptr, int size);
void display2(int ar[], int size);
int main()
                                                      Output:
                                                      Display1 result: 0 1 2 3
    int array[2][4] = \{0, 1, 2, 3, 4, 5, 6, 7\};
                                                      Display2 result: 0 5 10 15
                                                      Display1 result: 4 5 6 7
                                                      Display2 result: 20 25 30 35
    for (i=0; i<2; i++) { /* as 2-D Array */
        display1(array[i], 4);
                                                      Display1 result: 0 1 2 3 4 5 6 7
        display2(array[i], 4);
                                                      Display2 result: 0 5 10 15 20 25 30 35
   }
    display1(array, 8); /* as 1-D array */
    display2(array, 8); /* as 1-D array */
    return 0;
```

Sử dụng mảng 1 chiều trong mảng 2 chiều void display1(int *ptr, int size) int j; printf("Display1 result: "); for (j=0; j<size; j++) Bộ nhớ printf("%d ", *ptr++); putchar('\n'); array[0] array[1] } Mảng void display2(int ar[], int size) i=0 3 4 int k; printf("Display2 result: "); i=1 for (k=0; k<size; k++) printf("%d ", 5*ar[k]); putchar('\n'); }

Chương 2: Mảng và danh sách liên kết

- □ Cấu trúc lưu trữ mảng
 - Mảng một chiều
 - Mảng nhiều chiều
 - Khai báo mảng, khởi tạo thao tác trên mảng nhiều chiều
 - Mảng nhiều chiều là tham số của hàm
 - · Sử dụng mảng một chiều trong mảng hai chiều
 - Toán tử Sizeof
- Danh sách liên kết
- Ngăn xếp
- Hàng đợi

Toán tử Sizeof

□ sizeof() là toán tử trả về **kích thước** (theo byte) của toán hạng. Cú pháp

```
sizeof(operand)
hoặc
```

sizeof operand

- operand có thể là
 - int, float,... tên kiểu dữ liệu phức tạp, tên biến, tên mảng

1-19

Toán tử sizeof

```
#include <stdio.h>
                                                                Output:
int sum(int a[], int);
                                                                Array size is 6
                                                                                    (i.e. 24/4=6)
int main(){
                                                                Size of a = 8
    int ar[6] = \{1,2,3,4,5,6\};
    int total;
    printf("Array size is %d\n", sizeof(ar)/sizeof(ar[0]));
    total = sum (ar, 6);
    return 0;
int sum ( int a[], int n) {
    int i, total=0;
    printf("Size of a = %d\n", sizeof(a));
                                                                sizeof cho biến con
                                                                trỏ (i.e., a) cho kết
    for ( i=0; i<n; i++)
                                                                quả là kích thước của
        total += a[i];
                                                                con trỏ
    return total;
```

Tóm tắt: Mảng 2 chiều Cột 1 Cột 2 Cột 0 Cột 3 Cột 4 Hàng 0 x[0][0] x[0][1] x[0][2] x[0][3] x[0][4] Vị trí bộ nhớ liên tục Hàng 1 x[1][0] x[1][1] x[1][2] x[1][3] x[1][4] Hàng 2 x[2][0] x[2][1] x[2][2] x[2][3] x[2][4] // Printing array elements // Print array elements Dùng chỉ số Dùng con trỏ #include <stdio.h> #include <stdio.h> như mảng 1 int main () { #define SIZE 9 chiều int ar[3][3]= { int main () { {5, 10, 15}, int ar[3][3]= { {10, 20, 30}, {5, 10, 15}, {20, 40, 60} {10, 20, 30}, {20, 40, 60} int i, j; }; /* using index - nested loop*/ int i, *ptr; printf("\n"); ptr = ar; for (i=0; i<3; i++) /* using pointer - looping */ for (j=0; j<3; j++) for (i=0; i<SIZE; i++) printf("%d ", ar[i][j]); printf("%d ", *ptr++); printf("\n"); printf("\n"); return 0; return 0;

Chương 2: Mảng và danh sách liên kết

- □ Cấu trúc lưu trữ mảng
 - Mảng một chiều
 - Mảng nhiều chiều
 - Khai báo mảng, khởi tạo thao tác trên mảng nhiều chiều
 - Mảng nhiều chiều là tham số của hàm
 - · Sử dụng mảng một chiều trong mảng hai chiều
 - · Toán tử Sizeof
- Danh sách liên kết
- Ngăn xếp
- Hàng đợi

Cấu trúc dữ liệu và giải thuật

□ Nội dung bài giảng được biên soạn bởi PGS. TS. Phạm Tuấn Minh.