## In the Specification:

Please enter the Sequence Listing filed herewith.

Applicant presents replacement paragraphs below indicating the changes with insertions indicated by underlining and deletions indicated by strikeouts and/or double bracketing.

Please add the following section as the first section of the specification following the title.

## **Related Applications**

This application is a national stage filing under 35 U.S.C. § 371 of PCT International application PCT/GB03/00030, filed January 7, 2003, which was published under PCT Article 21(2) in English.

On page 1, please add the following heading after the newly inserted Related Applications Section:

## Field of the Invention

On page 1, line 7, please add the following heading:

Background of the Invention

On page 1, line 23, please insert the heading:

Summary of the Invention

On page 1, line 32, please insert the heading:

Description of the Preferred Embodiments

Please amend the paragraph that begins on page 5, line 1, as follows:

Oligonucleotides for use as NASBA P1 primers have the general structure "X<sub>1</sub>-SEQ", wherein "X<sub>1</sub>" represents a nucleotide sequence comprising a promoter and "SEQ" represents the HPV-specific sequence, as given in Table 1. The inclusion of a promoter sequence is essential in NASBA P1 primers but is not necessary in PCR primers, as discussed below. In a preferred embodiment, X<sub>1</sub> may be a sequence comprising a bacteriophage promoter, preferably the T7 promoter. In the most preferred embodiment, X<sub>1</sub> represents the sequence AATTCTAATACGACTCACTATAGGGAGAAGG (SEQ ID NO:385).

Please amend the paragraph that begins on page 8, line 16, as follows:

The first type of oligonucleotides are primer 1 oligonucleotides (also referred to herein as NASBA P1 primers), which are oligonucleotides of generally approximately 50 bases in length, containing an average of about 20 bases at the 3' end that are complementary to a region of the target mRNA. Oligonucleotides suitable for use as NASBA P1 primers are denoted "NASBA P1/PCR" in Table 1. The 5' ends of the P1 primer oligonucleotides (represented herein in general terms as X<sub>1</sub>) comprise a promoter sequence that is recognized by a specific RNA polymerase. Bacteriophage promoters, for example the T7, T3 and SP6 promoters, are preferred for use in the oligonucleotides of the invention, since they provide advantages of high level transcription which is dependent only on binding of the appropriate RNA polymerase. In a preferred embodiment, the 5' terminal sequence of the P1 primer oligonucleotides may comprise the sequence AATTCTAATACGACTCACTATAGGG (SEQ ID NO:386) or the sequence AATTCTAATACGACTCACTATAGGGAGAAGG (SEQ ID NO:385). These sequences contains a T7 promoter, including the transcription initiation site for T7 RNA polymerase.

Please amend the paragraph that begins on page 10, line 2, as follows:

Oligonucleotides intended for use as NASBA P2 primers may, in a particular but non-limiting embodiment, further comprise a sequence of nucleotides at the 5' end which is unrelated to the target mRNA but which is capable of hybridising to a generic detection probe. The detection probe will preferably be labelled, for example with a fluorescent, luminescent or enzymatic label. In one embodiment the detection probe is labelled with a label that permits detection using ECL<sup>TM</sup> technology, although it will be appreciated that the invention is in no way limited to this particular method of detection. In a preferred embodiment the 5' end of the primer 2 oligonucleotides may comprise the sequence GATGCAAGGTCGCATATGAG (SEQ ID NO:387). This sequence is capable of hybridising to a generic ECL<sup>TM</sup> probe commercially available from Organon Teknika having the following structure:

Ru(bpy)<sub>3</sub><sup>2+</sup>-GAT GCA AGG TCG CAT ATG AG-3' (SEQ ID NO:387)

Please amend the paragraph that begins on page 14, line 21, as follows:

Many examples of suitable pairs of quencher/fluorescer moieties which may be used in accordance with the invention are known in the art (see WO 95/13399, Tyagi and Kramer, ibid). A broad range of fluorophores in many different colours made be used, including for example 5-(2'-aminoethyl)aminonaphthalene-1-sulphonic acid (EDANS), fluorescein, FAM and Texas Red (see Tyagi, Bratu and Kramer, 1998, Nature Biotechnology, 16, 49-53. The use of probes labelled with different coloured fluorophores enables "multiplex" detection of two or more different probes in a single reaction vessel. A preferred quencher is 4-(4'-dimethylaminophenylazo)benzoic acid (DABCYL), a non-fluorescent chromophore, which serves as a 'universal' quencher for a wide range of fluorophores. The fluorescer and quencher moieties may be covalently attached to the probe in either orientation, either with the fluorescer at or near the 5' end and the quencher at or near the 3' end or vice versa. Protocols for the synthesis of molecular beacon probes are known in the art. A detailed protocol for synthesis is provided in a paper entitled "Molecular Beacons: Hybridization Probes for Detection of Nucleic Acids in Homogenous Solutions" by Sanjay Tyagi et al., Department of Molecular Genetics,

Public Health Research Institute, 455 First Avenue, New York, NY 10016, USA, which is available online via the PHRI website (at www.phri.nyu.edu or www.molecular-beacons.org).

Please amend the paragraph that begins on page 17, line 9, as follows:

The NASBA P2 primers (p2)in Table 2 include the sequence
GATGCAAGGTCGCATATGAG (SEQ ID NO:387) at the 5' end; the NASBA P1 primers (p1)
in Table 2 include the sequence AATTCTAATACGACTCACTATAGGGAGAAGG (SEQ ID
NO:385) at the 5' end. Oligonucleotides suitable for use as probes are identified by "po". The
P2 primers generally contain HPV sequences from the postive strand, whereas the p1 primers
generally contain HPV sequences from the negative strand. nt-refers to nucleotide position in
the relevant HPV genomic sequence.

Please amend Table 2, beginning on page 17, to add a column containing sequence identifiers (SEQ ID NOs) for the primer sequences, as follows:

| Primer          | Sequence                                                  | SEQ ID    | HPV  | nt  |
|-----------------|-----------------------------------------------------------|-----------|------|-----|
| name            |                                                           | <u>NO</u> | Туре |     |
| HAe6701p2       | GATGCAAGGTCGCATATGAGCCACAGGAGCGACCC<br>AGAAAGTTA          | 134       | 16   | 116 |
| HAe6701p1       | AATTCTAATACGACTCACTATAGGGAGAAGGACGG<br>TTTGTTGTATTGCTGTTC | 135       | 16   | 368 |
| HAe6702p2       | GATGCAAGGTCGCATATGAGCCACAGGAGCGACCC<br>AGAAA              | 136       | 16   | 116 |
| HAe6702p1       | AATTCTAATACGACTCACTATAGGGAGAAGGGGTT<br>TGTTGTATTGCTGTTC   | 137       | 16   | 368 |
| HAe6702Ap1      | AATTCTAATACGACTCACTATAGGGAGAAGGTCA<br>CGTCGCAGTAACTGT     | 138       | 16   | 208 |
| HAe6702Bp1      | AATTCTAATACGACTCACTATAGGGAGAAGGTTG<br>CTTGCAGTACACACA     | 139       | 16   | 191 |
| HAe6702Cp1      | AATTCTAATACGACTCACTATAGGGAGAAGGTGC<br>AGTACACATTCTA       | 140       | 16   | 186 |
| HAe6702Dp1      | AATTCTAATACGACTCACTATAGGGAGAAGGGCA<br>GTACACACATTCTAA     | 141       | 16   | 185 |
| H16e6702Ap<br>2 | GATGCAAGGTCGCATATGAGACAGTTATGCACAGA<br>GCT                | 142       | 16   | 142 |
| H16e6702Bp<br>2 | GATGCAAGGTCGCATATGAGATATTAGAATGTGTG<br>TAC                | 143       | 16   | 182 |

| H16e6702Cp<br>2 | GATGCAAGGTCGCATATGAGTTAGAATGTGTGTAC TGC                             | 144        | 16 | 185 |
|-----------------|---------------------------------------------------------------------|------------|----|-----|
| H16e6702Dp<br>2 | GATGCAAGGTCGCATATGAGGAATGTGTGTACTGC<br>AAG                          | 145        | 16 | 188 |
| H16e6702Ap<br>o | ACAGTTATGCACAGAGCT                                                  | 146        | 16 | 142 |
| H16e6702Bp      | ATATTAGAATGTGTGTAC                                                  | 147        | 16 | 182 |
| H16e6702Cp<br>o | TTAGAATGTGTGCTCC                                                    | 148        | 16 | 185 |
| H16e6702Dp<br>o | GAATGTGTACTGCAAG                                                    | 149        | 16 | 188 |
| HAe6701po       | CTTTGCTTTTCGGGATTTATGC                                              | 150        | 16 | 235 |
| HAe6702po       | TATGACTTTGCTTTTCGGGA                                                | 151        | 16 | 230 |
| HAe6702mb1      | $X_2$ -cgcatgTATGACTTTGCTTTTCGGGAcatgcg $-X_3$                      | 152        | 16 | 230 |
| HAe6702mb2      | X <sub>2</sub> -ccagctTATGACTTTGCTTTTCGGGAagctgg<br>-X <sub>3</sub> | 153        | 16 | 230 |
| HAe6702mb3      | $X_2$ -cacgcTATGACTTTGCTTTTCGGGAgcgtg $-X_3$                        | 154        | 16 | 230 |
| H16e6702mb      | X <sub>2</sub> -cgatcgTATGACTTTGCTTTTCGGGAcgatcg<br>-X <sub>3</sub> | 155        | 16 | 230 |
| HAe6703p2       | GATGCAAGGTCGCATATGAGCAGAGGAGGAGGATG<br>AAATAGTA                     | 156        | 16 | 656 |
| HAe6703p1       | AATTCTAATACGACTCACTATAGGGAGAAGGGCAC<br>AACCGAAGCGTAGAGTCACAC        | 157        | 16 | 741 |
| HAe6703po       | TGGACAAGCAGAACCGGACAGAGC                                            | 158        | 16 | 687 |
| HAe6704p2       | GATGCAAGGTCGCATATGAGCAGAGGAGGATG<br>AAATAGA                         | 159        | 16 | 656 |
| HAe6704p1       | AATTCTAATACGACTCACTATAGGGAGAAGGGCAC AACCGAAGCGTAGAGTCA              | 160        | 16 | 741 |
| HAe6704po       | AGCAGAACCGGACAGAGCCCATTA                                            | 161        | 16 | 693 |
| H18e6701p2      | GATGCAAGGTCGCATATGAGACGATGAAATAGATG<br>GAGTT                        | 162        | 18 | 702 |
| H18e6701p1      | AATTCTAATACGACTCACTATAGGGAGAAGGCACG<br>GACACAAAGGACAG               | 163        | 18 | 869 |
| H18e6701po      | AGCCGAACCACACGTCACA                                                 | 164        | 18 | 748 |
| H18e6702p2      | GATGCAAGGTCGCATATGAGGAAAACGATGAAATA<br>GATGGAG                      | 165        | 18 | 698 |
| H18e6702p1      | AATTCTAATACGACTCACTATAGGGAGAAGGACAC<br>CACGGACACAAAGGACAG           | 166        | 18 | 869 |
| H18e6702po      | GAACCACAACGTCACACAATG                                               | <u>167</u> | 18 | 752 |
| H18e6702mb<br>1 | $X_2$ - cgcatgGAACCACAACGTCACACAATGcatgcg $-X_3$                    | 168        | 18 | 752 |
| H18e6702mb<br>2 | X <sub>2</sub> - ccgtcgGAACCACAACGTCACACAATGcgacgg -X <sub>3</sub>  | 169        | 18 | 752 |
| H18e6702mb      | X <sub>2</sub> -                                                    | 170        | 18 | 752 |
| 3               | cggaccGAACCACAACGTCACACAATGggtccg                                   |            |    |     |

|            | -X <sub>3</sub>                                                            |     |    |     |
|------------|----------------------------------------------------------------------------|-----|----|-----|
| H18e6702mb | X <sub>2</sub> -                                                           | 171 | 18 | 752 |
| 4          | cgatcgGAACCACAACGTCACACAATGcgatcg                                          |     |    |     |
|            | -X <sub>3</sub>                                                            | 170 |    |     |
| H18e6703p2 | GATGCAAGGTCGCATATGAGTTCCGGTTGACCTTC<br>TATGT                               | 172 | 18 | 651 |
| H18e6703p1 | AATTCTAATACGACTCACTATAGGGAGAAGGGGTC<br>GTCTGCTGAGCTTTCT                    | 173 | 18 | 817 |
| H18e6704p2 | GATGCAAGGTCGCATATGAGGCAAGACATAGAAAT<br>AACCTG                              | 174 | 18 | 179 |
| H18e6704p1 | AATTCTAATACGACTCACTATAGGGAGAAGGACCC<br>AGTGTTAGTTAGTT                      | 175 | 18 | 379 |
| H18e6704po | TGCAAGACAGTATTGGAACT                                                       | 176 | 18 | 207 |
| H31e6701p2 | GATGCAAGGTCGCATATGAGGGAAATACCCTACGA<br>TGAAC                               | 177 | 31 | 164 |
| H31e6701p1 | AATTCTAATACGACTCACTATAGGGAGAAGGGGAC<br>ACAACGGTCTTTGACA                    | 178 | 31 | 423 |
| H31e6701po | ATAGGGACGACACACACGGAG                                                      | 179 | 31 | 268 |
| H31e6702p2 | GATGCAAGGTCGCATATGAGGGAAATACCCTACGA                                        | 180 | 31 | 164 |
|            | TGAACTA                                                                    |     |    |     |
| H31e6702p1 | AATTCTAATACGACTCACTATAGGGAGAAGGCTGG<br>ACACAACGGTCTTTGACA                  | 181 | 31 | 423 |
| H31e6702po | TAGGGACGACACCACAGGA                                                        | 182 | 31 | 269 |
| H31e6703p2 | GATGCAAGGTCGCATATGAGACTGACCTCCACTGT<br>TATGA                               | 183 | 31 | 617 |
| H31e6703p1 | AATTCTAATACGACTCACTATAGGGAGAAGGTATC<br>TACTTGTGTGCTCTGT                    | 184 | 31 | 766 |
| H31e6703po | GACAAGCAGAACCGGACACATC                                                     | 185 | 31 | 687 |
| H31e6704p2 | GATGCAAGGTCGCATATGAGTGACCTCCACTGTTA<br>TGAGCAATT                           | 186 | 31 | 619 |
| H31e6704p1 | AATTCTAATACGACTCACTATAGGGAGAAGGTGCG<br>AATATCTACTTGTGTGCTCT GT             | 187 | 31 | 766 |
| H31e6704po | GGACAAGCAGAACCGGACACATCCAA                                                 | 188 | 31 | 686 |
| H31e6704mb | X <sub>2</sub> -ccgaaggGACAAGCAGAACCGGACACATCC                             | 189 | 31 | 686 |
| 1          | AAccttcgg -X <sub>3</sub>                                                  |     |    |     |
| H31e6704mb | X <sub>2</sub> -ccgtcgGGACAAGCAGAACCGGACACATCCA<br>Acgacgg -X <sub>3</sub> | 190 | 31 | 686 |
| H31e6704mb | X <sub>2</sub> - cacgtcgGGACAAGCAGAACCGGACACATCCAA cgacgtg -X <sub>3</sub> | 191 | 31 | 686 |
| H31e6704mb | X <sub>2</sub> -cgcagcGACAAGCAGAACCGGACACATCCAA<br>gctgcg -X <sub>3</sub>  | 192 | 31 | 686 |
| H31e6704mb | 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                    | 102 | 21 | 600 |
| 5          | X <sub>2</sub> -cgatcgGGACAAGCAGAACCGGACACATCCAA<br>cgatcg -X <sub>3</sub> | 193 | 31 | 686 |
| H31e6705p2 | GATGCAAGGTCGCATATGAGACTGACCTCCACTGT<br>TAT                                 | 194 | 31 | 617 |
| H31e6705p1 | AATTCTAATACGACTCACTATAGGGAGAAGGCACG<br>ATTCCAAATGAGCCCAT                   | 195 | 31 | 809 |
| H33e6701p2 | GATGCAAGGTCGCATATGAGTATCCTGAACCAACT<br>GACCTAT                             | 196 | 33 | 618 |
| H33e6701p1 | AATTCTAATACGACTCACTATAGGGAGAAGGTTGA                                        | 197 | 33 | 763 |

|                 | CACATAAACGAACTG                                           |     |    |     |
|-----------------|-----------------------------------------------------------|-----|----|-----|
| H33e6701po      | CAGATGGACAAGCACAACC                                       | 198 | 33 | 694 |
| H33e6703p2      | GATGCAAGGTCGCATATGAGTCCTGAACCAACTGA<br>CCTAT              | 199 | 33 | 620 |
| H33e6703p1      | AATTCTAATACGACTCACTATAGGGAGAAGGCCCA<br>TAAGTAGTTGCTGTAT   | 200 | 33 | 807 |
| H33e6703po      | GGACAAGCACCAGCCACAGC                                      | 201 | 33 | 699 |
| H33e6703mb      | X2-ccaagcGGACAAGCACAACCAGCCACAGCgct                       | 202 | 33 | 699 |
| 1               | tgg -X <sub>3</sub>                                       |     |    |     |
| H33e6703mb      | X2-ccaagcgGACAAGCACAACCAGCCACAGC                          | 203 | 33 | 699 |
| 2               | cgcttgg -X <sub>3</sub>                                   |     |    |     |
| H33e6703mb      | X2-cccagcGGACAAGCACAACCAGCCACAGCgct                       | 204 | 33 | 699 |
| 3               | ggg -X <sub>3</sub>                                       |     |    |     |
| H33e6703mb<br>4 | X₂-ccaaagcGGACAAGCACCAGCCACAGCg<br>ctttgg -X₃             | 205 | 33 | 699 |
| H33e6703mb<br>5 | X <sub>2</sub> - cctgcGGACAAGCACAACCAGCCACAGCgcagg        | 206 | 33 | 699 |
|                 | -X <sub>3</sub>                                           |     |    |     |
| H33e6703mb      | X <sub>2</sub> -cgatcgGGACAAGCACAACCAGCCACAGCcga          | 207 | 33 | 699 |
|                 | tcg -X <sub>3</sub>                                       | 1   |    |     |
| H33e6702p2      | GATGCAAGGTCGCATATGAGGACCTTTGTGTCCTC<br>AAGAA              | 208 | 33 | 431 |
| H33e6702p1      | AATTCTAATACGACTCACTATAGGGAGAAGGAGGT<br>CAGTTGGTTCAGGATA   | 209 | 33 | 618 |
| H33e6702po      | AGAAACTGCACTGTGACGTGT                                     | 210 | 33 | 543 |
| H35e6701p2      | GATGCAAGGTCGCATATGAGATTACAGCGGAGTGA<br>GGTAT              | 211 | 35 | 217 |
| H35e6701p1      | AATTCTAATACGACTCACTATAGGGAGAAGGGTCT<br>TTGCTTTTCAACTGGA   | 212 | 35 | 442 |
| H35e5601po      | ATAGAGAAGGCCAGCCATAT.                                     | 213 | 35 | 270 |
| H35e6702p2      | GATGCAAGGTCGCATATGAGTCAGAGGAGGAGGAA<br>GATACTA            | 214 | 35 | 655 |
| H35e6702p1      | AATTCTAATACGACTCACTATAGGGAGAAGGGATT<br>ATGCTCTCTGTGAACA   | 215 | 35 | 844 |
| H35e6703p2      | GATGCAAGGTCGCATATGAGCCCGAGGCAACTGAC<br>CTATA              | 216 | 35 | 610 |
| H35e6703p1      | AATTCTAATACGACTCACTATAGGGAGAAGGGTCA<br>ATGTGTGTGCTCTGTA   | 217 | 35 | 770 |
| H35e6702po      | GACAAGCAAAACCAGACACCTCCAA                                 | 218 | 35 | 692 |
| H35e6703po      | GACAAGCAAAACCAGACACC                                      | 219 | 35 | 692 |
| H52e6701p2      | GATGCAAGGTCGCATATGAGTTGTGTGAGGTGCTG<br>GAAGAAT            | 220 | 52 | 144 |
| H52e6701p1      | AATTCTAATACGACTCACTATAGGGAGAAGGCCCT<br>CTCTTCTAATGTTT     | 221 | 52 | 358 |
| H52e6701po      | GTGCCTACGCTTTTTATCTA                                      | 222 | 52 | 296 |
| H52e6702p2      | GATGCAAGGTCGCATATGAGGTGCCTACGCTTTTT<br>ATCTA              | 223 | 52 | 296 |
| H52e6702p1      | AATTCTAATACGACTCACTATAGGGAGAAGGGGGG<br>TCTCCAACACTCTGAACA | 224 | 52 | 507 |
| H52e6702po      | TGCAAACAAGCGATTTCA                                        | 225 | 52 | 461 |
| H58e6701p2      | GATGCAAGGTCGCATATGAGTCAGGCGTTGGAGAC                       | 226 | 58 | 157 |

| -          | ATC                                                        | T   |                | <del></del> |
|------------|------------------------------------------------------------|-----|----------------|-------------|
| H58e6701p1 | AATTCTAATACGACTCACTATAGGGAGAAGGAGCA<br>ATCGTAAGCACACT      | 227 | 58             | 301         |
| H58e6702p2 | GATGCAAGGTCGCATATGAGTCTGTGCATGAAATC GAA                    | 228 | 58             | 173         |
| H58e6702p1 | AATTCTAATACGACTCACTATAGGGAGAAGGAGCA<br>CACTTTACATACTG      | 229 | 58             | 291         |
| H58e6701po | TGAAATGCGTTGAATGCA                                         | 230 | 58             | 192         |
| H58e6702po | TTGCAGCGATCTGAGGTATATG                                     | 231 | 58             | 218         |
| HBe6701p2  | GATGCAAGGTCGCATATGAGTACACTGCTGGACAA<br>CAT                 | 232 | B(11)          | 514         |
| HBe6701p1  | AATTCTAATACGACTCACTATAGGGAGAAGGTCAT<br>CTTCTGAGCTGTCT      | 233 | B(11)          | 619         |
| HBe6702p2  | GATGCAAGGTCGCATATGAGTACACTGCTGGACAA<br>CATGCA              | 234 | B(11)          | 514         |
| HBe6702p1  | AATTCTAATACGACTCACTATAGGGAGAAGGGTCA<br>CATCCACAGCAACAGGTCA | 235 | B(11)          | 693         |
| HBe6701po  | GTAGGGTTACATTGCTATGA                                       | 236 | B(11)          | 590         |
| HBe6702po  | GTAGGGTTACATTGCTATGAGC                                     | 237 | B(11)          | 590         |
| HBe6703p2  | GATGCAAGGTCGCATATGAGTGACCTGTTGCTGTG<br>GATGTGA             | 238 | B(11)          | 693         |
| HBe6703p1  | AATTCTAATACGACTCACTATAGGGAGAAGGTACC<br>TGAATCGTCCGCCAT     | 239 | B(11)          | 832         |
| HBe6703po  | ATWGTGTGTCCCATCTGC                                         | 240 | B(11)          | 794         |
| HCe6701p2  | GATGCAAGGTCGCATATGAGCATGCCATAAATGTA TAGA                   | 241 | C(18<br>39 45) | 295         |
| HCe6701p1  | AATTCTAATACGACTCACTATAGGGAGAAGGCACC<br>GCAGGCACCTTATTAA    | 242 | C(18<br>39 45  | 408         |
| HCe6701po  | AGAATTAGAGAATTAAGA                                         | 243 | C(18<br>39 45  | 324         |
| H39e6701p2 | GATGCAAGGTCGCATATGAGGCAGACGACCACTAC<br>AGCAAA              | 244 | 39             | 210         |
| H39e6701p1 | AATTCTAATACGACTCACTATAGGGAGAAGGACAC<br>CGAGTCCGAGTAATA     | 245 | 39             | 344         |
| H39e6701po | ATAGGGACGGGAACCACT                                         | 246 | 39             | 273         |
| H39e6702p2 | GATGCAAGGTCGCATATGAGTATTACTCGGACTCG<br>GTGT                | 247 | 39             | 344         |
| H39e6702p1 | AATTCTAATACGACTCACTATAGGGAGAAGGCTTG<br>GGTTTCTCTTCGTGTTA   | 248 | 39             | 558         |
| H39e6702po | GGACCACAAAACGGGAGGAC                                       | 249 | 39             | 531         |
| H39e6703p2 | GATGCAAGGTCGCATATGAGGAAATAGATGAACCC<br>GACCA               | 250 | 39             | 703         |
| H39e6703p1 | AATTCTAATACGACTCACTATAGGGAGAAGGGCAC<br>ACCACGGACACAAA      | 251 | 39             | 886         |
| H39e6703po | TAGCCAGACGGGATGAACCACAGC                                   | 252 | 39             | 749         |
| H45e6701p2 | GATGCAAGGTCGCATATGAGAACCATTGAACCCAG<br>CAGAAA              | 253 | 45             | 430         |
| H45e6701p1 | AATTCTAATACGACTCACTATAGGGAGAAGGTCTT<br>TCTTGCCGTGCCTGGTCA  | 254 | 45             | 527         |
| H45e6702p2 | GATGCAAGGTCGCATATGAGGAAACCATTGAACCC<br>AGCAGAAAA           | 255 | 45             | 428         |

| H45e6702p1      | AATTCTAATACGACTCACTATAGGGAGAAGGTTGC TATACTTGTGTTTCCCTACG    | 256        | 45 | 558 |
|-----------------|-------------------------------------------------------------|------------|----|-----|
| H45e6701po      | GTACCGAGGGCAGTGTAATA                                        | 257        | 45 | 500 |
| H45e6702po      | GGACAAACGAAGATTTCACA                                        | 258        | 45 | 467 |
| H45e6703p2      | GATGCAAGGTCGCATATGAGGTTGACCTGTTGTGT<br>TACCAGCAAT           | 259        | 45 | 656 |
| H45e6703p1      | AATTCTAATACGACTCACTATAGGGAGAAGGCACC<br>ACGGACACACAAAGGACAAG | 260        | 45 | 868 |
| H45e6704p2      | GATGCAAGGTCGCATATGAGCTGTTGACCTGTTGT<br>GTTACGA              | 261        | 45 | 654 |
| H45e6704p1      | AATTCTAATACGACTCACTATAGGGAGAAGGCCAC<br>GGACACAAAGGACAAG     | 262        | 45 | 868 |
| H45e6705p2      | GATGCAAGGTCGCATATGAGGTTGACCTGTTGTGT<br>TACGA                | 263        | 45 | 656 |
| H45e6705p1      | AATTCTAATACGACTCACTATAGGGAGAAGGACGG<br>ACACAAAAGGACAAG      | 264        | 45 | 868 |
| H45e6703po      | GAGTCAGAGGAGGAAAACGATG                                      | 265        | 45 | 686 |
| H45e6704po      | AGGAAAACGATGAAGCAGATGGAGT                                   | 266        | 45 | 696 |
| H45e6705po      | ACAACTACCAGCCCGACGAGCCGAA                                   | 267        | 45 | 730 |
| H51e6701p2      | GATGCAAGGTCGCATATGAGGGAGGAGGATGAAGT<br>AGATA                | 268        | 51 | 658 |
| H51e6701p1      | AATTCTAATACGACTCACTATAGGGAGAAGGGCCC<br>ATTAACATCTGCTGTA     | 269        | 51 | 807 |
| H51e6702p2      | GATGCAAGGTCGCATATGAGAGAGGAGGAGGATGA<br>AGTAGATA             | 270        | 51 | 655 |
| H51e6702p1      | AATTCTAATACGACTCACTATAGGGAGAAGGACGG<br>GCAAACCAGGCTTAGT     | 271        | 51 | 829 |
| H51e6701po      | GCAGGTGTTCAAGTGTAGTA                                        | 272        | 51 | 747 |
| H51e6702po      | TGGCAGTGGAAAGCAGTGGAGACA                                    | 273        | 51 | 771 |
| H56e6701p2      | GATGCAAGGTCGCATATGAGTTGGGGTGCTGGAGA<br>CAAACATCT            | 274        | 56 | 519 |
| H56e6701p1      | AATTCTAATACGACTCACTATAGGGAGAAGGTTCA<br>TCCTCATCCTCATCCTCTGA | 275        | 56 | 665 |
| H56e6702p2      | GATGCAAGGTCGCATATGAGTGGGGTGCTGGAGAC<br>AAACATC              | 276        | 56 | 520 |
| H56e6702p1      | AATTCTAATACGACTCACTATAGGGAGAAGGCATC<br>CTCATCCTCATCCTCTGA   | 277        | 56 | 665 |
| H56e6703p2      | GATGCAAGGTCGCATATGAGTTGGGGTGCTGGAGA<br>CAAACAT              | 278        | 56 | 519 |
| H56e6703p1      | AATTCTAATACGACTCACTATAGGGAGAAGGCCAC<br>AAACTTACACTCACAACA   | 279        | 56 | 764 |
| H56e6701po      | AAAGTACCAACGCTGCAAGACGT                                     | 280        | 56 | 581 |
| H56e6702po      | AGAACTAACACCTCAAACAGAAAT                                    | <u>281</u> | 56 | 610 |
| H56e6703po      | AGTACCAACGCTGCAAGACGTT                                      | 282        | 56 | 583 |
| H56e6703po<br>1 | TTGGACAGCTCAGAGGATGAGG                                      | 283        | 56 | 656 |
| H56e6704p2      | GATGCAAGGTCGCATATGAGGATTTTCCTTATGCA<br>GTGTG                | 284        | 56 | 279 |
| H56e6704p1      | AATTCTAATACGACTCACTATAGGGAGAAGGGACA<br>TCTGTAGCACCTTATT     | 285        | 56 | 410 |
| H56e6704po      | GACTATTCAGTGTATGGAGC                                        | 286        | 56 | 348 |

| HPVAPO1A    | CAACTGAYCTMYACTGTTATGA                           | 287        | A (16                                 |
|-------------|--------------------------------------------------|------------|---------------------------------------|
|             |                                                  |            | 31 35)                                |
| HPVApo1Amb  | X <sub>2</sub> -                                 | 288        | A (16                                 |
| 1           | cgcatgCAACTGAYCTMYACTGTTATGAcatgcg               | 4          | 31 35)                                |
|             | -X <sub>3</sub>                                  |            | 7.126                                 |
| HPVApolAmb  | X <sub>2</sub> -ccgtcgCAACTGAYCTMYACTGTTATGAcga  | 289        | A (16                                 |
|             | cgg -X <sub>3</sub>                              | 000        | 31 35)                                |
| HPVApolAmb  | X <sub>2</sub> -ccacccCAACTGAYCTMYACTGTTATGAgg   | <u>290</u> | A (16                                 |
|             | gtgg -X <sub>3</sub>                             |            | 31 35)                                |
| HPVApo1Amb  | X <sub>2</sub> -cgatcgCAACTGAYCTMYACTGTTATGAcga  | <u>291</u> | A (16                                 |
| 4           | tcg -X <sub>3</sub>                              | 000        | 31 35)                                |
| HPVAPO4A    | GAAMCAACTGACCTAYWCTGCTAT                         | 292        | A (33<br>52 58)                       |
| UDVIN DO AD |                                                  | <u> </u>   | · · · · · · · · · · · · · · · · · · · |
| HPVAPO4Amb  | X <sub>2</sub> -ccaagcGAAMCAACTGACCTAYWCTGCTATgc | 293        | A (33                                 |
| 1           | ttgg -X <sub>3</sub>                             |            | 52 58)                                |
| HPVAPO4Amb  | X <sub>2</sub> -ccaagccGAAMCAACTGACCTAYWCTGCTAT  | 294        | A (33                                 |
| 2           | ggcttgg -X <sub>3</sub>                          | <u></u>    | 52 58)                                |
| HPVAPO4Amb  | X2-ccaagcgGAAMCAACTGACCTAYWCTGCTA                | 295        | A (33                                 |
| 3           | Tcgcttgg -X₃                                     |            | 52 58)                                |
| HPVAPO4Amb  | X <sub>2</sub> -ccagcgGAAMCAACTGACCTAYWCTGCTATcg | 296        | A (33                                 |
| 4           | ctgg -X <sub>3</sub>                             |            | 52 58)                                |
| HPVAPO4Amb  | X2-cgatcgGAAMCAACTGACCTAYWCTGCTATcg              | 297        | A (33                                 |
| 5           | atcg -X <sub>3</sub>                             |            | 52 58)                                |
| HPVCPO4     | AAGACATTATTCAGACTC                               | 298        | C (18                                 |
|             |                                                  |            | 45 39)                                |
| HPVCPO4Amb  | X <sub>2</sub> -ccaagcAAGACATTATTCAGACTCgcttgg   | 299        | C (18                                 |
| 1           | -X <sub>3</sub>                                  | l —        | 45 39)                                |
| HPVCPO4Amb  | X <sub>2</sub> -cgcatgAAGACATTATTCAGACTCcatgcg   | 300        | C (18                                 |
| 2           | -X <sub>3</sub>                                  |            | 45 39)                                |
| HPVCPO4Amb  | X <sub>2</sub> -cccagcAAGACATTATTCAGACTCgctggg   | 301        | C (18                                 |
| 3           | -X <sub>3</sub>                                  |            | 45 39)                                |
| HPVCPO4Amb  | X <sub>2</sub> -cgatcgAAGACATTATTCAGACTCcgatcg   | 302        | C (18                                 |
| 4           | -X <sub>3</sub>                                  |            | 45 39)                                |

Please amend Table 3, beginning on page 22, to add a column containing sequence identifiers (SEQ ID NOs) for the primer sequences, as follows:

| Primer name  | Sequence                  | SEQ ID | HPV  | nt  |
|--------------|---------------------------|--------|------|-----|
|              |                           | NO     | type |     |
| HAe6701PCR2  | CCACAGGAGCGACCCAGAAAGTTA  | 303    | 16   | 116 |
| HAe6701PCR1  | ACGGTTTGTTGTATTGCTGTTC    | 304    | 16   | 368 |
| HAe6702PCR2  | CCACAGGAGCGACCCAGAAA      | 305    | 16   | 116 |
| HAe6702PCR1  | GGTTTGTTGTATTGCTGTTC      | 306    | 16   | 368 |
| HAe6703PCR2  | CAGAGGAGGATGAAATAGTA      | 307    | 16   | 656 |
| HAe6703PCR1  | GCACAACCGAAGCGTAGAGTCACAC | 308    | 16   | 741 |
| HAe6704PCR2  | CAGAGGAGGAGGATGAAATAGA    | 309    | 16   | 656 |
| HAe6704PCR1  | GCACAACCGAAGCGTAGAGTCA    | 310    | 16   | 741 |
| H18e6701PCR2 | ACGATGAAATAGATGGAGTT      | 311    | 18   | 702 |

|              | <del></del>                 |            |       |     |
|--------------|-----------------------------|------------|-------|-----|
| H18e6701PCR1 | CACGGACACAAAGGACAG          | 312        | 18    | 869 |
| H18e6702PCR2 | GAAAACGATGAAATAGATGGAG      | 313        | 18    | 698 |
| H18e6702PCR1 | ACACCACGGACACAAAGGACAG      | 314        | 18    | 869 |
| H18e6703PCR2 | TTCCGGTTGACCTTCTATGT        | 315        | 18    | 651 |
| H18e6703PCR1 | GGTCGTCTGAGCTTTCT           | 316        | 18    | 817 |
| H18e6704PCR2 | GCAAGACATAGAAATAACCTG       | 317        | 18    | 179 |
| H18e6704PCR1 | ACCCAGTGTTAGTTAGTT          | 318        | 18    | 379 |
| H31e6701PCR2 | GGAAATACCCTACGATGAAC        | 319        | 31    | 164 |
| H31e6701PCR1 | GGACACAACGGTCTTTGACA        | 320        | 31    | 423 |
| H31e6702PCR2 | GGAAATACCCTACGATGAACTA      | 321        | 31    | 164 |
| H31e6702PCR1 | CTGGACACAACGGTCTTTGACA      | 322        | 31    | 423 |
| H31e6703PCR2 | ACTGACCTCCACTGTTATGA        | 323        | 31    | 617 |
| H31e6703PCR1 | TATCTACTTGTGTGCTCTGT        | 324        | 31    | 766 |
| H31e6704PCR2 | TGACCTCCACTGTTATGAGCAATT    | 325        | 31    | 619 |
| H31e6704PCR1 | TGCGAATATCTACTTGTGTGCTCT GT | 326        | 31    | 766 |
| H31e6705PCR2 | ACTGACCTCCACTGTTAT          | 327        | 31    | 617 |
| H31e6705PCR1 | CACGATTCCAAATGAGCCCAT       | 328        | 31    | 809 |
| H33e6701PCR2 | TATCCTGAACCAACTGACCTAT      | 329        | 33    | 618 |
| H33e6701PCR1 | TTGACACATAAACGAACTG         | 330        | 33    | 763 |
| H33e6703PCR2 | TCCTGAACCAACTGACCTAT        | 331        | 33    | 620 |
| H33e6703PCR1 | CCCATAAGTAGTTGCTGTAT        | 332        | 33    | 807 |
| H33e6702PCR2 | GACCTTTGTGTCCTCAAGAA        | 333        | 33    | 431 |
| H33e6702PCR1 | AGGTCAGTTGGTTCAGGATA        | 334        | 33    | 618 |
| H35e6701PCR2 | ATTACAGCGGAGTGAGGTAT        | 335        | 35    | 217 |
| H35e6701PCR1 | GTCTTTGCTTTTCAACTGGA        | 336        | 35    | 442 |
| H35e6702PCR2 | TCAGAGGAGGAGGATACTA         | 337        | 35    | 655 |
| H35e6702PCR1 | GATTATGCTCTCTGTGAACA        | 338        | 35    | 844 |
| H35e6703PCR2 | CCCGAGGCAACTGACCTATA        | 339        | 35    | 610 |
| H35e6703PCR1 | GTCAATGTGTGTGCTCTGTA        | 340        | 35    | 770 |
| H52e6701PCR2 | TTGTGTGAGGTGCTGGAAGAAT      | 341        | 52    | 144 |
| H52e6701PCR1 | CCCTCTCTAATGTTT             | 342        | 52    | 358 |
| H52e6702PCR2 | GTGCCTACGCTTTTTATCTA        | 343        | 52    | 296 |
| H52e6702PCR1 | GGGGTCTCCAACACTCTGAACA      | 344        | 52    | 507 |
| H58e6701PCR2 | TCAGGCGTTGGAGACATC          | 345        | 58    | 157 |
| H58e6701PCR1 | AGCAATCGTAAGCACACT          | 346        | 58    | 301 |
| H58e6702PCR2 | TCTGTGCATGAAATCGAA          | 347        | 58    | 173 |
| H58e6702PCR1 | AGCACACTTTACATACTG          | 348        | 58    | 291 |
| HBe6701PCR2  | TACACTGCTGGACAACAT          | 349        | B(11) | 514 |
| HBe6701PCR1  | TCATCTTCTGAGCTGTCT          | 350        | B(11) | 619 |
| HBe6702PCR2  | TACACTGCTGGACAACATGCA       | 351        | B(11) | 514 |
| HBe6702PCR1  | GTCACATCCACAGCAACAGGTCA     | 352        | B(11) | 693 |
| HBe6703PCR2  | TGACCTGTTGCTGTGGATGTGA      | 353        | B(11) | 693 |
| HBe6703PCR1  | TACCTGAATCGTCCGCCAT         | 354        | B(11) | 832 |
| HCe6701PCR2  | CATGCCATAAATGTATAGA         | 355        | C (18 | 295 |
|              |                             | <u> </u>   | 39 45 |     |
| HCe6701PCR1  | CACCGCAGGCACCTTATTAA        | 356        | C (18 | 408 |
|              |                             |            | 39 45 |     |
| H39e6701PCR2 | GCAGACGACCACTACAGCAAA       | 357        | 39    | 210 |
| H39e6701PCR1 | ACACCGAGTCCGAGTAATA         | <u>358</u> | 39    | 344 |

| H39e6702PCR2 | TATTACTCGGACTCGGTGT       | 359 | 39 | 344 |
|--------------|---------------------------|-----|----|-----|
| H39e6702PCR1 | CTTGGGTTTCTCTTCGTGTTA     | 360 | 39 | 558 |
| H39e6703PCR2 | GAAATAGATGAACCCGACCA      | 361 | 39 | 703 |
| H39e6703PCR1 | GCACACCACGGACACAAA        | 362 | 39 | 886 |
| H45e6701PCR2 | AACCATTGAACCCAGCAGAAA     | 363 | 45 | 430 |
| H45e6701PCR1 | TCTTTCTTGCCGTGCCTGGTCA    | 364 | 45 | 527 |
| H45e6702PCR2 | GAAACCATTGAACCCAGCAGAAAA  | 365 | 45 | 428 |
| H45e6702PCR1 | TTGCTATACTTGTGTTTCCCTACG  | 366 | 45 | 558 |
| H45e6703PCR2 | GTTGACCTGTTGTGTTACCAGCAAT | 367 | 45 | 656 |
| H45e6703PCR1 | CACCACGGACACACAAAGGACAAG  | 368 | 45 | 868 |
| H45e6704PCR2 | CTGTTGACCTGTTGTGTTACGA    | 369 | 45 | 654 |
| H45e6704PCR1 | CCACGGACACAAAGGACAAG      | 370 | 45 | 868 |
| H45e6705PCR2 | GTTGACCTGTTGTGTTACGA      | 371 | 45 | 656 |
| H45e6705PCR1 | ACGGACACAAAGGACAAG        | 372 | 45 | 868 |
| H51e6701PCR2 | GGAGGAGGATGAAGTAGATA      | 373 | 51 | 658 |
| H51e6701PCR1 | GCCCATTAACATCTGCTGTA      | 374 | 51 | 807 |
| H51e6702PCR2 | AGAGGAGGATGAAGTAGATA      | 375 | 51 | 655 |
| H51e6702PCR1 | ACGGGCAAACCAGGCTTAGT      | 376 | 51 | 829 |
| H56e6701PCR2 | TTGGGGTGCTGGAGACAACATCT   | 377 | 56 | 519 |
| H56e6701PCR1 | TTCATCCTCATCCTCTGA        | 378 | 56 | 665 |
| H56e6702PCR2 | TGGGGTGCTGGAGACAACATC     | 379 | 56 | 520 |
| H56e6702PCR1 | CATCCTCATCCTCATC          | 380 | 56 | 665 |
| H56e6703PCR2 | TTGGGGTGCTGGAGACAACAT     | 381 | 56 | 519 |
| H56e6703PCR1 | CCACAAACTTACACTCACAACA    | 382 | 56 | 764 |
| H56e6704PCR2 | GATTTTCCTTATGCAGTGTG      | 383 | 56 | 279 |
| H56e6704PCR1 | GACATCTGTAGCACCTTATT      | 384 | 56 | 410 |