## Elettrotecnica (LT Ing. Informatica) - Prova scritta del 20/07/2017 - A

| NOME | COGNOME | MATRICOLA | ORALE SUBITO |
|------|---------|-----------|--------------|
|      |         |           |              |

In riferimento ad entrambi gli esercizi, si considerino le seguenti due costanti:

 $k_N pari$  al numero di lettere del proprio nome;  $k_C pari$  al numero di lettere del proprio cognome.



Dato il circuito in figura, determinare la potenza assorbita dai resistori e la potenza erogata dai generatori ideali  $V_g$  e  $I_g$ . Verificate poi il bilancio energetico.

DATI 
$$V_g = k_N [V], I_g = k_C [A], R_1 = 3 [\Omega], R_2 = 5 [\Omega], R_3 = 4 [\Omega], R_4 = 2 [\Omega], R_5 = 1 [\Omega]$$



Nel circuito in figura l'interruttore è stato aperto per molto tempo. All'istante t=0, l'interruttore viene chiuso. Determinare  $\mathbf{i}_{L}(t)$  per t > 0, sapendo che all'istante t=0 in cui viene connesso l'induttore L la corrente  $\mathbf{i}_{L}(t)$  vale  $\mathbf{i}_{L}(t=0) = 5$  [A], Rappresentarne poi su un grafico l'andamento temporale.

DATI  

$$V_g = \mathbf{k}_C [V], I_g = 2 [A], R_1 = 2[\Omega], R_2 = 4[\Omega],$$
  
 $R_3 = 5 [\Omega], R_4 = \mathbf{k}_N [\Omega], L = 40 [\mu H]$ 

Esercizio n° 3 (12 punti)  $R_4$   $V_g$   $R_2$   $R_1$   $R_1$   $R_2$ 

Il circuito in figura si trova in regime permanente sinusoidale.

Determinare: (1) la potenza complessa e la potenza istantanea del bipolo R4-L racchiuso nel rettangolo tratteggiato erappresentare l'andamento temporale della potenza istantanea; (2) la tensione  $v_{C-R1}(t)$  ai capi del bipolo C-R1

DATI:

V<sub>g</sub>= 5 $cos(t-36.87^{\circ})$  [V], I<sub>g</sub>=  $k_C cos(ωt)$ -  $k_N sen(ωt)$  [A], R<sub>1</sub> = 1 [Ω], R<sub>2</sub> = 2 [Ω], R<sub>3</sub> = 2 [Ω], R<sub>4</sub> = 1 [Ω], C =0.00125[F], L= 10 [mH], ω=200 [rad/s]

## Elettrotecnica (LT Ing. Informatica) - Prova scritta del 20/07/2017 - B

| NOME | COGNOME | MATRICOLA | ORALE SUBITO |
|------|---------|-----------|--------------|
|      |         |           |              |

In riferimento ad entrambi gli esercizi, si considerino le seguenti due costanti:

 $k_N pari$  al numero di lettere del proprio nome;  $k_C pari$  al numero di lettere del proprio cognome.

# Esercizio nº 1 (9 punti)



Dato il circuito in figura, determinare la potenza assorbita dai resistori e la potenza erogata dai generatori ideali  $V_g$  e  $I_g$ . Verificate poi il bilancio energetico.

#### **DATI**

$$V_g = k_N [V], I_g = k_C [A], R_1 = 1 [\Omega],$$
  
 $R_2 = 2 [\Omega], R_3 = 4 [\Omega], R_4 = 5 [\Omega], R_5 = 3 [\Omega]$ 

# Esercizio n° 2 (9 punti)



Nel circuito in figura l'interruttore è stato aperto per molto tempo. All'istante t=0, l'interruttore viene chiuso. Determinare  $i_L(t)$  per t > 0, sapendo che all'istante t=0 in cui viene connesso l'induttore L la corrente  $i_L(t)$  vale  $i_L(t=0^-) = 10$  [A], Rappresentarne poi su un grafico l'andamento temporale.

#### DATI

$$V_g = k_N [V], I_g = 2 [A], R_1 = 2[\Omega], R_2 = 4[\Omega],$$
  
 $R_3 = 5 [\Omega], R_4 = k_C [\Omega], L = 50 [\mu H]$ 

# Esercizio n° 3 (12 punti)



Il circuito in figura si trova in regime permanente sinusoidale.

Determinare: (1) la potenza complessa e la potenza istantanea del bipolo C-R1 racchiuso nel rettangolo tratteggiato e rappresentare l'andamento temporale della potenza istantanea; (2) la tensione  $v_{R4-L}(t)$  ai capi del bipolo R4-L DATI:

V<sub>g</sub>= 5cos(t + 36.87°) [V], I<sub>g</sub>=  $k_N \cos(\omega t) + k_C \sin(\omega t)$  [A], R<sub>1</sub> = 1 [Ω], R<sub>2</sub> = 2 [Ω], R<sub>3</sub> = 2 [Ω], R<sub>4</sub> = 1 [Ω],C =0.00125[F], L= 10 [mH],  $\omega$ =400 [rad/s]