<u> 2 בדידה 2 – תרגיל</u>

(א(1

2 ולכן הראינו כי מf(-x) = f(x) = x חיובי אז חיובי אל, נראה סתירה על ידי דוגמה יהיה ווער חיובי אז חיובי אז ווער סתירה על ידי דוגמה יהיה מקורות שונים הגענו לאותו התמונה.

על - כן, מכיוון $\{0\}$ הראנו כי עבור כל $y\in\mathbb{Z}$ יהי $y\in\mathbb{Z}$ יהי לפשהו ולכל $x\in\mathbb{N}\cup\{0\}$ ולכן הראנו כי עבור כל איבר

ב $\{0\}$ (התמונה) יש איבר במקור.

ב)

x=y ונוכיח כי $f\left(x\right)=f\left(y\right)$ ונוכיח כי קיים זוג מקורות שמוביל לאותו התמונה

. מכיוון שזה שורש אי זוגי התוצאה שתתקבל ממנו היא יחידה. $x^3 = y^3 \stackrel{3}{\mapsto} \sqrt[3]{x^3} = \sqrt[3]{y^3} \to x = y$

 $f\left(\sqrt[3]{x}
ight)=y$ יהי $y\in\mathbb{R}$ כלשהו ולכל $x\in\mathbb{R}$ יהי

(T

 $X\equiv Y$ ונוכיח כי $f\left(X\right)\equiv f\left(Y\right)$ אותו תמונה שמוביל לאותו מקורות שמוביל מקורות שמוביל חח"ע

$$\underbrace{A \setminus X}_{f(X)} \equiv \underbrace{A \setminus Y}_{f(Y)} \xrightarrow{*} X \equiv Y$$

 $X,Y\in P\left(A
ight) {
ightarrow}\, X,Y\subseteq A$ מקור הפונקציה הוא $P\left(A
ight)$ ומזה נובע כי *

$$P(A) = \begin{cases} \{0\}, \{1\}, \{2\}, \{3\}, \{4\}, \\ \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}, \\ \{1,2,3\}, \{1,3,4\}, \{2,3,4\}, \{1,2,4\}, \\ \{1,2,3\}, \{1,2,4\}, \{1,2,4\}, \\ \{1,2,3\}, \{1,2,4\}, \{1,2,4\}, \\ \{1,2,3\}, \{1,2,4\}, \{1,2,4\}, \\ \{1,2,3\}, \{1,2,4\}, \{1,2,4\}, \\ \{1,2,3\}, \{1,2,4\}, \{1,2,4\}, \\ \{1,2,3\}, \{1,2,4\}, \{1,2,4\}, \\ \{1,2,3\}, \{1,2,4\}, \{1,2,4\}, \\ \{1,2,3\}, \{1,2,4\}, \{1,2,4\}, \\ \{1,2,3\}, \{1,2,4\}, \{1,2,4\}, \\ \{1,2,3\}, \{1,2,4\}, \{1,2,4\}, \\ \{1,2,3\}, \{1,2,4\}, \{1,2,4\}, \\ \{1,2,$$

ניתן לראות בתור דוגמה להמחשה כי לא ייתכן שניקח קבוצה שונה ונקבל $A/\ group$ דומה מכיוון שכל קבוצה בקבוצת החזקה היא זרה.

$$Y=f\left(A\setminus X
ight)$$
 יהיה $Y\in P\left(A
ight)$ על $-$ כן, מכיוון ש $X\in P\left(A
ight)$ כלשהו, ולכל

$$Y \equiv f\left(A \setminus X\right) \equiv A \setminus \left(A \setminus X\right) \equiv A \cap \overline{A \cap \overline{X}} \equiv \underbrace{A \cap \overline{A}}_{\varnothing} \cup X \equiv X$$
 – הוכחה

 $f\left(A
ight) = f\left(B
ight) = B$ <mark>חח"ע – לא</mark>, נראה סתירה ע"י דוגמא

על <mark>– כן</mark>, ניקח איבר $X \in P(B)$ ונמצא לו מקור, כל איבר הוא המקור של עצמו ולכן

$$X \in P(B)$$
 ו $B \subset A$ מכיוון ש $f(X) = X \cap B = X$

(א)

נניח כי f imes g חח"ע ונוכיח כי f,g חח"ע (\longleftarrow)

$$f(a) = f(b) \rightarrow a = b$$
 - מכיוון ש

$$g(a) = g(b) \rightarrow a = b$$
 - מכיוון ש

כעת ניקח איברים שרירותיים a_1, a_2, b_1, b_2 ונראה כי אם

$$f \times g(a_1,b_1) = f \times g(a_2,b_2) \rightarrow (a_1,b_1) = (a_2,b_2)$$

$$f \times g(a_1,b_1) = (f(a_1),g(b_1))$$
 לכן

$$f \times g\left(a_2, b_2\right) = \left(f\left(a_2\right), g\left(b_2\right)\right)$$
 וגם

$$ig(f\left(a_1
ight),g\left(b_1
ight)ig)=ig(f\left(a_2
ight),g\left(b_2
ight)ig)$$
 ולכן גם $f imes g\left(a_1,b_1
ight)=f imes g\left(a_2,b_2
ight)$ הנחנו כי

$$g\left(b_{1}\right)=g\left(b_{2}\right)$$
 הן חח"ע אזי $a_{1}=a_{2}$ מכיוון ש $a_{2}=a_{2}$ הן חח"ע אזי $a_{1}=a_{2}$ מכיוון ש

$$(a_1,b_1) = (a_2,b_2)$$
 והוכחנו כי

נניח כי f imes g חח"ע ונוכיח כי f imes g

יע אזי $f \times g$ ומכיוון ש a_1, a_2, b_1, b_2 חח"ע אזי

$$f \times g(a_1, b_1) = f \times g(a_2, b_2) \rightarrow (a_1, b_1) = (a_2, b_2)$$

$$f \times g(a_2, b_2) = (f(a_2), g(b_2))$$
 ו $f \times g(a_1, b_1) = (f(a_1), g(b_1))$ קטנוסף

$$\left(a_{\!\scriptscriptstyle 1},b_{\!\scriptscriptstyle 1}\right)\!=\!\left(a_{\!\scriptscriptstyle 2},b_{\!\scriptscriptstyle 2}\right)$$
 נניח כי $f imes g\left(a_{\!\scriptscriptstyle 1},b_{\!\scriptscriptstyle 1}\right)\!=f imes g\left(a_{\!\scriptscriptstyle 2},b_{\!\scriptscriptstyle 2}\right)$ נניח כי

מסיבה זאת אנו יודעים כי $f\left(a_{1}\right)=f\left(a_{2}\right),g\left(b_{1}\right)=g\left(b_{2}\right)$ נותר להראות כי $a_{1}=a_{2},b_{1}=b_{2}$ נותר להראות כי $f\times g\left(a_{2},b_{2}\right)=\left(f\left(a_{2}\right),g\left(b_{2}\right)\right)$ ו $f\times g\left(a_{1},b_{1}\right)=\left(f\left(a_{1}\right),g\left(b_{1}\right)\right)$ ש $f\times g\left(a_{1},b_{1}\right)=f\left(a_{2}\right),g\left(b_{1}\right)=g\left(b_{2}\right)$ אזי $f\times g\left(a_{1},b_{1}\right)=f\times g\left(a_{2},b_{2}\right)$ ולכן כאשר $f\times g\left(a_{1},b_{1}\right)=f\times g\left(a_{2},b_{2}\right)$

$$a_1 = a_2, b_1 = b_2$$
 אנו רואים כי גם $f\left(a_1\right) = f\left(a_2\right), g\left(b_1\right) = g\left(b_2\right)$

על $f \times g$ נניח כי f,g על ונוכיח כי (\leftarrow)

על מנת להוכיח זאת צריך להראות כי לכל $(c,d) \in C \times D$ קיים מקור ב $(c,d) \in C \times D$ כך ש $f \times g(a,b) = (c,d)$

a ונקרא לו A קיים מקור ב $c \in C$ על ולכן עבור f על וודעים כי

b ונקרא לו מקור בB קיים מקור ב $d \in D$ על ולכן עבור

$$f \times g\left(a,b\right) = \left(f\left(a\right),g\left(b\right)\right) = \left(c,d\right)$$
 יהיה ולכן המקור עבור והיה והיה ולכן המקור עבור והיה והיה

על ונויח כי $f \times g$ על ונוכיח כי $f \times g$ על (\rightarrow)

על מנת להוכיח זאת צריך להראות כי לכל $c\in C$ ו $c\in C$ קיים מקור ב $a\in A$ ו זאת צריך להראות כי לכל $a,b)\in A\times B$ קיים מקור ב $a\in A$ על ולכן עבור עבור $a,b\in A\times B$ קיים מקור ב

בנוסף אנו יודעים כי $f imes g\left(a,b
ight) = \left(f\left(a
ight),f\left(b
ight)
ight) = \left(c,d
ight)$ והנה מצאנו

a עבור $c \in C$ המקור הוא

b עבור $d \in D$ המקור הוא

(3

ננסה להרכיב/לבנות פונקציה מתאימה – מספר האיברים ב A_i שווה למספר האיברים ב B_i מכיוון שקיימת ביניהן פונקציה חח"ע ועל.

 $g: \{A_i\}_{i \in I} o \{B_i\}_{i \in I}$ כעת ננסה להרכיב פונקציה g שתהיה מ

-i כל איבר באחד מקבוצות החלוקה יסומן כך a_{ij},b_{ij} מסמן את הקבוצת חלוקה אליה שייך האיבר כל איבר באחד מסמן את המספר של האיבר בקבוצה (נזכיר כי ב2 קבוצות חלוקה של B ו B אם אותו מספר איברים).

 $g\left(a_{ij}\right) = b_{ij}$ כעת הפונקציה תהיה

נשאר להראות כי הפונקציה על וחח"ע

 $a_{i_1j_1}=a_{i_2j_2}$ ונוכיח כי קיים זוג מקורות שמוביל לאותו התמונה $g\left(a_{i_1j_1}
ight)=g\left(a_{i_2j_2}
ight)$ ונוכיח כי קיים זוג מקורות שמוביל לאותו

i אל פי ההרכבה של הפונקציה שלנו האיבר שלנו הוא בקבוצת על פי ההרכבה של $g\left(a_{i_1j_1}\right) = g\left(a_{i_2j_2}\right) = b_{ij}$

 $a_{i_ij_i}=a_{i_2j_2}$ חח"ע קיים רק a_{ij} יחיד שיהיה המקור שלה ולכן בהכרח $f:A_i o B_i$ ולכן מכיוון ש

 $a_{ij} \in A$ על מנת להוכיח שהפונקציה שלנו על אנו צריכים להראות כי לכל $b_{ij} \in B$ קיים מקור ב

מכיוון שעל פי הפונקציה שלנו $f:A_i o B_i$ נמצא בקבוצה החלוקה i ולכן מכיוון ש $f:A_i o B_i$ על אזי קיים . $b_{ij}\in B$ ולכן מצאנו מקור ל $a_{ij}\in A_i\subseteq A$

(4)א

$$f^{-1}:Y o X$$
 ולכן $f:X o Y$ ניקח איבר $y\in B$ ונראה כי $y\in f\left[f^{-1}\left[B
ight]
ight]$ ונראה לפי האיבר שלקחנו קיים x כך ש

y הוא במקורות של B וגם המקור של y ובנוסף הפונקציה היא חד חד ערכית ולא לא קיים מקור ל x הוא מx והוכחנו.

$$\{a,b\}$$
 נבחר את $X=Y$ כך שהם מכילים 2 איברים $B=\{a,b\}$ ניקח את

$$f^{-1}igl[Bigr] = f^{-1}igl[\{a,b\}igr] = \{a.b\}$$
 ולכן ולכן $f\left(a
ight) = a$ כך $f\left(b
ight) = a$

$$\{a\}\subset\{a,b\}$$
 אכן $f\left(\underbrace{f^{-1}igl[B]}_{\{a,b\}}
ight)=\{a\}$ ואכן $f\left(f^{-1}igl[B]
ight)\subseteq B$ ידוע כי

(ג

$$y \in f\left[f^{-1}\left[B\right]\right]$$
 נניח כי f על ו $y \in B$ ונוכיח כי f

 $fig[\{x\}ig]\subseteq fig[f^{-1}ig[Big]ig]$ ולכן $\exists x\in X\mid fig(x)=y$ סכיוון ש f על אנו יודעים כי $fig[\{x\}ig]\subseteq fig(f^{-1}ig[Big]ig)$ ולכן בשילוב 2 הדברים שהראנו יוצא כי $fig[\{x\}ig]=\{y\}\leftarrow fig(x)=y$ ולכן יוצא מזה כי $y\in fig[f^{-1}ig[Big]ig]$

הוכחנו אותו דבר בסעיף א. (
ightarrow)

א))

כך $f^{-1}igl[Cigl]=D\subseteq X$ ולכן $C\equiv B_1\cap B_2$ ולכן הבא – יהיו האיברים $f^{-1}igl[B_1\cap B_2igr]$ נפתח את הביטוי הבא $d\in D\mid f(d)\in B_1\cap B_2$ שכל איבר ב

$$d_2\in D_2\mid f\left(d_2\right)\in B_2$$
 וכך גם $d_1\in D_1\mid f\left(d_1\right)\in B_1$ - פתח את הביטוי הבא $f^{-1}ig[B_1ig]\cap f^{-1}ig[B_2ig]$ כעת החיתוך ביניהן יהיה $d\in D\mid f\left(d\right)\in B_1\cap B_2$ אם אותה ההגדרה.

ב)

-<mark>לא נכון</mark>, נראה סתירה ע"י דוגמה פרטית

$$A_{1} = \{1,2,3\} A_{2} = \{1,2,4\}$$

$$B_{1} = \{6,7,8\} B_{2} = \{6,7,8\} = \{6,7,8$$

(ג

$$x\in \overline{f^{-1}igl[B_1igr]}$$
 נניח כי $x\in f^{-1}igl[\overline{B_1}igr]$ ונוכיח כי

$$x \in f^{-1}\left[\overline{B_1}\right] \longleftrightarrow f(x) \in \overline{B_1} \underset{f(x) \notin B_1}{\longleftrightarrow} x \notin f^{-1}\left[B_1\right] \overset{\notin \to \in}{\longleftrightarrow} x \in \overline{f^{-1}\left[B_1\right]}$$

(6

נניח כי g חח"ע ונוכיח כי f על (\leftarrow)

 $a\in A$ על מנת להוכיח ש f על צריך להראות כי לכל $b\in B$ קיים מקור ב f על מנת להוכיח ש זאת ע"י דרך השלילה נניח כי קיים $f\in B$ כך שאין לו מקור, ולכן נקבל כי f

$$g(\{b\}) = f^{-1}[\{b\}] = \emptyset$$

אך אנו גם יודעים כי $\varnothing = \{b\} = g(\varnothing) = g$ אבל g היא חח"ע ולכן יוצא כי $g(\varnothing) = f^{-1}[\varnothing] = \varnothing$ וזה לא נכון בסתירה.

נניח כי f על ונוכיח כי g חח"ע (\rightarrow)

 $g\left(X_{_1}
ight)$ ש $g\left(X_{_2}
ight)$ אר מנת להוכיח ש מח"ע צריך להראות כי צריך להראות אות פי

. מכיוון ש f על אזי $f\left(f^{^{-1}}\big[X_1\big]\right) = X_1 \\ f\left(f^{^{-1}}\big[X_2\big]\right) = X_2$ מכיוון ש f

נניח כי $f^{-1}ig[X_1ig]=f^{-1}ig[X_2ig]$ ולכו $g\left(X_1
ight)=g\left(X_2
ight)$ לפי מה שרשמנו מעלה ניתן להסיק כי

ובכך סיימנו את ההוכחה. $X_1 = X_2$