Machine Learning

Dimensionality Reduction

Motivation I: Data Compression

This can help our algorithm to run faster!

Data Compression

Data Compression

project the data onto this line, then we can represent the data using 1 number, therefore reduce the dimension.

Reduce data from 2D to 1D

$$x^{(1)} \in \mathbb{R}^2 \longrightarrow z^{(1)} \in \mathbb{R}$$

$$x^{(2)} \in \mathbb{R}^1 \longrightarrow z^{(2)} \in \mathbb{R}$$

$$x^{(m)} \in \mathbb{R}^2 \longrightarrow z^{(m)} \in \mathbb{R}$$

$$z_1 \longrightarrow \text{new feature}$$

Data Compression

In a typical setting, we may have 10000 dimensions

Reduce data from 3D to 2D

Machine Learning

Dimensionality Reduction

Motivation II:

Data Visualization

Fact about some countries in the world

Country

China

India

Russia

Singapore

USA

→ Canada

Human

Develop-

0.908

0.687

0.547

0.755

0.866

0.91

...

XE Bro

X4

Life

ment Index|expectancy|percentage)|

80.7

73

64.7

65.5

80

78.3

Xs

Poverty

Index

(Gini as

32.6

46.9

36.8

39.9

42.5

40.8

XL

Mean

household

income

(thousands

of US\$)

67.293

10.22

0.735

0.72

67.1

84.3

• • •

...

...

...

...

...

...

Andrew Ng

Data Visualization			
×,	X2	v .	
•	Per capita		

GDP

(thousands

of intl. \$)

39.17

7.54

3.41

19.84

56.69

46.86

GDP

(trillions of

US\$)

1.577

5.878

1.632

1.48

0.223

14.527

[resources from en.wikipedia.org]

Data Visualization

with a new pair of features, here we only visualize data with 2 D

		K	S, Elk
Country	z_1	z_2	
Canada	1.6	1.2	
China	1.7	0.3	Reduce data
India	1.6	0.2	from SOD
Russia	1.4	0.5	to 5D
Singapore	0.5	1.7	
USA	2	1.5	
•••	•••	•••	

Machine Learning

Dimensionality Reduction

Principal Component

Analysis problem

formulation

By far, the most popular and commonly used unsupervised learning algorithm

Principal Component Analysis (PCA) problem formulation

Reduce from 2-dimension to 1-dimension: Find a direction (a vector $u^{(1)} \in \mathbb{R}^n$) onto which to project the data so as to minimize the projection error. Reduce from n-dimension to k-dimension: Find k vectors $u^{(1)}, u^{(2)}, \dots, u^{(k)}$ onto which to project the data, so as to minimize the projection error.

PCA is not linear regression

PCA is not linear regression

Machine Learning

Dimensionality Reduction

Principal Component Analysis algorithm

Data preprocessing

Training set: $x^{(1)}, x^{(2)}, \dots, x^{(m)} \leftarrow$

Preprocessing (feature scaling/mean normalization):

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$
 Replace each $x_j^{(i)}$ with $x_j - \mu_j$.

If different features on different scales (e.g., $x_1 =$ size of house, $x_2 =$ number of bedrooms), scale features to have comparable range of values.

feature scaling

some measures of the feature j

e.g. Max value

Principal Component Analysis (PCA) algorithm

Principal Component Analysis (PCA) algorithm

Reduce data from n-dimensions to k-dimensions

Compute "covariance matrix":

Principal Component Analysis (PCA) algorithm

From [U,S,V] = svd(Sigma), we get:

Principal Component Analysis (PCA) algorithm summary

After mean normalization (ensure every feature has zero mean) and optionally feature scaling:

find the z representation

Sigma =
$$\frac{1}{m} \sum_{i=1}^{m} (x^{(i)})(x^{(i)})^{T}$$

$$\Rightarrow [U,S,V] = \text{svd}(\text{Sigma});$$

$$\Rightarrow \text{Ureduce} = U(:,1:k);$$

$$\Rightarrow z = \text{Ureduce}' *x; \text{ we grab the 1st k columns}$$

Machine Learning

Dimensionality Reduction

Reconstruction from compressed representation

This section shows how do we go back from 100 dimensional data to 1000 dimensional data!

Reconstruction from compressed representation

Machine Learning

Dimensionality Reduction

Choosing the number of principal components

number of principal components to retain

Choosing k (number of principal components)

Average squared projection error: \(\frac{1}{\times} \) \(\frac{1}{\times} \) \(\frac{1}{\times} \) \(\frac{1}{\times} \) \(\frac{1}{\times} \)

Total variation in the data: 👆 😤 🛚 🖈

Typically, $\frac{\text{choose } k}{\text{to be smallest value}}$ so that

$$\frac{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{approx}^{(i)}\|^2}{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2} \leq \underbrace{0.01}_{\text{0.10}} \underbrace{196}_{\text{0.10}}$$

→ "99% of variance is retained"

Choosing k (number of principal components)

Check if

$$\frac{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{approx}^{(i)}\|^2}{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2} \le 0.01?$$

Equi val ent!

Choosing k (number of principal components)

 \rightarrow [U,S,V] = svd(Sigma)

Pick smallest value of k for which

$$\frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{m} S_{ii}} \ge 0.99$$

k=100

(99% of variance retained)

Summary!

Machine Learning

Dimensionality Reduction

Advice for applying PCA

Supervised learning speedup very large feature $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$ **Extract inputs:** Unlabeled dataset: $x^{(1)}, x^{(2)}, \dots, x^{(m)} \in \mathbb{R}^{10000}$ New training set: $(z^{(1)}, y^{(1)}), (z^{(2)}, y^{(2)}), \dots, (z^{(m)}, y^{(m)})$ Note: Mapping $x^{(i)} \rightarrow z^{(i)}$ should be defined by running PCA only on the training set. This mapping can be applied as well to the examples $x_{cv}^{(i)}$ and $x_{test}^{(i)}$ in the cross validation and testapping to cross

One common use of PCA

Sets

Application of PCA

- Compression
 - Reduce memory/disk needed to store data

Bad use of PCA: To prevent overfitting

 \rightarrow Use $\underline{z^{(i)}}$ instead of $\underline{x^{(i)}}$ to reduce the number of features to k < n.

Thus, fewer features, less likely to overfit.

Bod!

This might work OK, but isn't a good way to address overfitting. Use regularization instead.

$$\Rightarrow \min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \left[\frac{\lambda}{2m} \sum_{j=1}^{n} \theta_j^2 \right]$$

PCA is sometimes used where it shouldn't be

Design of ML system:

- \rightarrow Get training set $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$
- \rightarrow Run PCA to reduce $x^{(i)}$ in dimension to get $z^{(i)} \leftarrow$
- o Train logistic regression on $\{(z_t^{(i)}, y^{(1)}), \dots, (z_{t-1}^{(n)}, y^{(m)})\}$ -> Test on test set: Map $x_{test}^{(i)}$ to $z_{test}^{(i)}$. Run $h_{\theta}(z)$ on
- o Test on test set: Map $x_{test}^{(i)}$ to $z_{test}^{(i)}$. Run $h_{\theta}(z)$ on $\{(z_{test}^{(1)},y_{test}^{(1)}),\ldots,(z_{test}^{(m)},y_{test}^{(m)})\}$
- → How about doing the whole thing without using PCA?
- Before implementing PCA, first try running whatever you want to do with the original/raw data $x^{(i)}$. Only if that doesn't do what you want, then implement PCA and consider using $z^{(i)}$.