Chapter 12 - Light

Definitions

Phrase	Definition	
Reflection	Rebounding of light at surface	
Incident ray	Light ray that hits reflecting surface	
Reflected ray	Light ray that bounces off reflecting surface	
Point of incidence	Point which incident ray hits reflecting surface	
Normal	Perpendicular to reflecting surface at point of incidence	
Angle of incidence (i)	Angle between incident ray & normal	
Angle of reflection (r)	Angle between reflected ray & normal	
Refraction	Bending of light when passes from one optical medium to another	
Refracted ray	Light ray that enters medium and undergo change of direction	
Angle of refraction (r)	Angle between refracted ray & normal	
Critical angle	Angle of incidence in optically denser medium where angle of refraction in optically less dense medium is 90° (along boundary)	
Total internal reflection	Complete reflection of light ray inside optically denser medium at boundary with optically less dense medium	
Principal axis	Horizontal line passing through optical centre of lens	
Optical centre (C)	Midpoint between lens surfaces on principal axis	
Focal point / principal focus (F)	Point which all parallel rays converge after refraction (2 focal points: 1 on each side of lens)	
Focal plane	Plane passes through focal point, perpendicular to principal axis	
Focal length (f)	Distance between optical centre & focal point	

12.1 Reflection of Light

See objects: only if light from object enters eye

Object	Observation	Examples
1. Luminous	Give out own light	Lamp, fire
2. Non-luminous	Reflect light from light source into eyes	Wall picture

Light rays: represented with straight lines with arrows

→ arrow: direction the light travels

A **light beam** = a bundle of light rays

- 1. Bundle of parallel rays (distant object)
- 2. Bundle of convergent rays
- 3. Bundle of divergent rays (nearby object)

Laws of reflection

Law of reflection	Explanation
First	Lie on same plane 1. incident ray 2. reflected ray 3. normal at point of incidence
Second	angle of incidence = angle of reflection $(i = r)$

Types of reflection

- 1. Regular reflection
- 2. Irregular reflection

All surfaces reflect light

	Regular reflection	Diffuse (irregular) reflection
Surface	Smooth	Rough
Law of reflection (2 nd) for each individual ray	True	
Reflection of parallel rays	Same direction (even surface)	Different direction (uneven surface)
Angle of incidence & reflection of all rays	Same	Different
Normal at all points of incidence	Parallel	Not parallel

Characteristics of plane mirror image

Characteristics of plane mirror image:

- 1. Laterally inverted
- 2. Upright
- 3. **Virtual** (not formed by real rays, not formed on a screen)
- 4. **Same size** as object
- 5. Object distance = image distance ($\mathbf{u} = \mathbf{v}$)

Ray diagrams for plane mirrors

Application of mirrors

Application of mirrors Application	Explanation	Figure
1. Vision testing	 Carried out in small room Mirror: make letters on eye chart appear further away Distance = u + v 	image of eye chart 3.5 m 3.5 m 2.5 m
2. Blind corner mirror	Curved mirror 1) Corner of shops (shoplifter) 2) See around blind corners (driver)	(b) (c) (d)
3. Instrument scale	Mirror below pointer (avoid parallax error) → pointer aligned with mirror image	reflection of the pointer
4. Periscope	 2 plane mirrors: inclined at 45° Look over obstacles (wall) 	
5. Teleprompter	 Mounted on camera Newsreader: read news & maintain eye contact 	Camera Lens Image reflected up and out Monitor
6. Other uses	Optical instruments 1) Telescope 2) Overhead projector 3) CD player	

12.2 Refraction of Light

Refraction: bending of light ray as it travels across boundary of two optical media

- Light travels at different speeds from one medium into another
- Light ray bends

Optical medium	Bending
less dense → denser	bend towards normal
denser → less dense	bend away from normal

Laws of refraction

Law of refraction	Explanation	
First	Lie on same plane 1. incident ray 2. refracted ray 3. normal	
Second	Snell's law: $\frac{\sin i}{\sin r} = k$ where k is a constant	

Principle of reversibility

- Light ray: travel along same path if direction reversed
- Reflection & refraction

Refractive index and speed of light

Refractive index (n)

Formulae	Key	The higher the refractive index,
$n=\frac{c}{v}$	c = speed of light in vacuum (air) v = speed of light in medium	The slower light travels in medium
$n = \frac{\sin i}{\sin r}$	i = angle of incidence in vacuum (air) r = angle of refraction in medium	The smaller the angle of refraction r (more bent towards normal)
$n = \frac{d_r}{d_a}$	d_r = real depth d_a = apparent depth	

Refractive indices of some optical media

Medium	Refractive index
Air	≈ 1.00
Water	1.33
Glass	1.50
Diamond	2.40
Perspex	2.40

Daily phenomena & application of refraction

Phenomena	Explanation	Figure
1. Bent objects	Reflected light from immersed part refracts (water → air)	EYE Alastication
2. Misperception of depth	Appear shallower	P A B Air Q Real depth Apparent depth O N'

12.3 Total Internal Refraction

Critical angle

Conditions for total internal refraction:

- 1. light ray in optically denser medium strikes boundary with optically less dense medium
- 2. **angle of incidence > critical angle** (optically denser medium) -i > r

Formula:

$$\sin c = \frac{1}{n}$$

c = critical angle of optically denser medium

n = refractive index

Proof: by Principle of Reversibility, visualise same light ray travel from air to glass (reverse direction)

$$n = \frac{\sin r}{\sin i} = \frac{\sin 90^{\circ}}{\sin c} = \frac{1}{\sin c}$$

Application of total internal refraction Glass prism

- → better light reflector
 - 1. × silvered surface (can wear off)
 - 2. × produce multiple reflections
 - 3. Light \times absorbed by surface

Application	Explanation	
1. Binoculars	 Reduce size of binoculars Rectify inverted image produced by lenses → upright image 	
2. Periscopes	Give clearer images (upright)	
3. Single Lens Reflex (SLR) camera	Use pentaprism (five-sided prism) 1) Turn light ray round inside camera 2) See actual picture through camera lens	

Binoculars

Periscopes

SLR camera

Optical fibre

- Appearance
 - 1. long, thin
 - 2. flexible
 - 3. made of glass / plastic
- Transmit light over long distance → transmit data

Part	Refractive index
Core	High
Coated material	Low

Industry	Explanation			
	Comparison with copper wires			
	Advantage	Explanation		
	1) Higher carrying capacity	Carry more information over long distance		
1. Telecommunication	2) Less signal degradation	Signal experiences less signal loss		
	3) Light weight	Lighter		
	4) Lower cost	 Cheaper to manufacture × suffer electromagnetic interference (× conduct electricity) 		
2. Medical	High flexibilityEndoscopes: see inside hollow organs			

12.4 Refraction by Thin Lenses

Lens: piece of glass with curved surface

Converging		Diverging	
Lenses	Figure	Lenses	Figure
1. Biconvex		1. Biconcave	
2. Plano-convex		2. Plano-concave	
3. Convex-convex (meniscus)		3. Concave-concave (meniscus)	

Path of light through a lens

Process of refraction

- Surface of lens is curved
- Parallel light rays hitting different parts of its surface have different angles

• Individual rays refract by different angles

Angle of refraction	Position	
Largest	outermost part of lens	
No	middle of lens	

Converging lens: converge to a point

Lens	Shape	Light rays
Converging lens	Thicker in the centre	Converge to a point
Diverging lens	Thinner in the centre	Diverge from a point

Thin converging lens

12.5 Ray Diagrams for Thin Converging Lenses Rules for light rays

Pass through optical centre	Parallel to principal axis	Pass through focal point
× bend (undeviated)	Refracted – pass focal point	Refracted – parallel to principal axis

<u>Position of image by thin converging lens</u> Drawing ray diagram

Step	Explanation	
1. Set up ray diagram	 Principal axis: horizontal line Converging lens: double headed arrow, perpendicular to horizontal line Optical centre: intersection of 2 lines Focal point: label on principal axis 	
2. Place object on left of lens	Object: vertical arrow on the left, label it	
3. Trace rays, locate image	 Draw 2 rays from tip of object Pass through optical centre Parallel to principal axis Real image: intersection point of rays Virtual image: if rays diverge, extend backwards Draw arrow, label it 	

Different distances

Object distance (u)	Ray diagram	Type of image		Image distance (v)	Side of lens	Usages		
$u = \infty$	parallel rays from a distant object v F image			diminished	v = f		Object lens of telescope	
<i>u</i> > 2 <i>f</i>	object F 2F image	real	inverted		f < v < 2f	opposite	Camera Eye	
u = 2f	object F 2F image				same size	v = 2f		Photocopier making same-sized copy
f < u < 2f	object F 2F				<i>v</i> > 2 <i>f</i>		Projector Photograph enlarger	
u = f	image at infinity object F u parallel rays			magnified	$v = \infty$		Eyepiece lens of a telescope	
<i>u</i> < <i>f</i>	object F	virtual	upright		<i>v</i> > <i>u</i>	same	Magnifying glass	

Application of converging lenses

Application	Object distance	Explanation	
1. Magnifying glass	<i>u</i> < <i>f</i>	 Lens: positioned at distance > f Get magnified image 	
2. Liquid Crystal Display (LCD) projector	f < u < 2f	 Light from halogen lamp: reflected by concave mirror onto condenser lenses Light gathered through refraction by condenser lenses, directed through LCD panel to projection lens → panel: upside down & between f, 2f Light: refracted by projection lens Adjust lens forwards and backwards to obtain sharp image on screen Light reaches screen → image: real, upright, magnified 	
3. Film camera	Distant object: $d = f$ Nearer object: $d > f$	Vary lens-to-film distance d	

Lens

Visual correction

Film camera

Visual Problem		Correction
1. Long- sightedness (hyperopia)	 Eyeball: shorter than normal Eye: × focus a clear image of close object on retina 	 Converging lenses Converge light rays before entering eyes Converged rays focused on retina → sharp image
2. Short- sightedness (myopia)	 Eyeball: longer than normal Eye: can focus on near objects parallel light rays (distant object) focused in front of retina → blurred image 	 Concave lenses Diverge rays (distant objects) before entering eye Diverged rays focused on retina → sharp image

Long-sightedness

Light focused behind the retina

Corrected with convex lens

Short-sightedness

Light focused in front of retina

Corrected with concave lens