Дата: 13.04.2023

Клас: 8-Б

Тема:Розв'язування рівнянь, що зводяться до квадратних методом заміни змінної.

За допомогою рівнянь і теорем, ми багато розв'яжемо проблем

Мета:

• сформувати поняття біквадратного рівняння, сформувати вміння розв'язувати рівняння, що зводяться до квадратних за допомогою заміни змінної; організовувати цілеспрямовану діяльність учнів; вчити дітей приймати правильні рішення; розвивати внутрішню мотивацію учнів теми, що вивчається; виховувати прагнення до досягнення результатів у роботі

Пригадаємо

- ✓ 3 якими математичними об'єктами ми працюємо на протязі останнього часу?
- √ Яке рівняння називають квадратними?
- ✓ Сформулювати формулу розв'язків квадратного рівняння $ax^2 + bx + c = 0$.
- ✓ Скільки розв'язків має квадратне рівняння Від чого це залежить?
- ✓ Сформулюйте теорему Вієта.

Виберіть серед наведених рівнянь квадратні

1.
$$2x^2 - x - 1 = 0$$
,

2.
$$x^4$$
- $11x^2$ + $18 = 0$,

3.
$$3x^2-24=0$$
,

4.
$$(x^2-1)^2+(x^2-1)-12=0$$
,

5.
$$5x^2 - \theta$$
, $5x = \theta$,

6.
$$x^2$$
- x - $12 = 0$,

7.
$$(x^2 + x + 1)^2 - 3x - 3 - 3x^2 = 0$$

БІКВАДРАТНІ РІВНЯННЯ

Означення:

Рівняння виду $ax^4 + 6x^2 + c = 0$, де х — змінна, а, в, с — числа, причому а $\neq 0$, називають біквадратними

Алгоритм розв'язування рівнянь, методом заміни змінної

- 1. Виділити однакові вирази.
- 2. Виконати заміну виразу новою змінною.
- 3. Розв'язати отримане квадратне рівняння.
- 4. Повернутися до попередньої змінної.
- 5. Розв'язати рівняння, визначене підстановкою.
- 6. Знайти розв'язки рівняння.
- 7. Записати відповідь.

Розв'язування біквадратного рівняння

$$x^4$$
- $11x^2$ + $18 = 0$, $(x^2)^2$ - $11x^2$ + $18 = 0$, Hexaй $x^2 = m$, тоді $x^4 = m^2$, $m > 0$ Отримаємо рівняння $m^2 - 11m + 18 = 0$, за теоремою Вієта $m_1 = 9$; $m_2 = 2$ повертаємось до заміни $x^2 = 0$ і $x^2 = 0$

$$x^{2} = 9$$
 i $x^{2} = 2$
 $x_{1} = 3$; $x_{2} = -3$; $x_{3} = -\sqrt{2}$; $x_{4} = \sqrt{2}$;
 $x_{5} = -\sqrt{2}$; $x_{7} = -\sqrt{2}$; $x_{7} = -\sqrt{2}$; $x_{8} = -\sqrt{2}$; $x_{8} = -\sqrt{2}$; $x_{9} = -\sqrt{2}$; $x_{1} = -\sqrt{2}$; $x_{2} = -\sqrt{2}$; $x_{3} = -\sqrt{2}$; $x_{4} = -\sqrt{2}$;

Запам'ятайте!

Якщо новою змінною позначають парний степінь заданої змінної, то нова змінна не може набувати від'ємних значень.

$$(x^2-1)^2+(x^2-1)-12=0$$

Нехай
$$(x^2-1)=m$$
, тоді $(x^2-1)^2=m^2$

Отримаємо рівняння

$$m^2 + m - 12 = 0$$

$$II = 1 + 4 \cdot 12 = 49$$

За теоремою Вієта

$$m_1 = 3$$
, $m_2 = -4$

Повертаємось до заміни

1)
$$x^2 - 1 = 3$$

$$x_1 = \sqrt{4}$$
; $x_2 = -\sqrt{4}$

$$x_1 = 2$$
; $x_2 = -2$

2)
$$x^2 - 1 = -4$$
,

$$x^2 = -4 + 1; \quad x^2 = -3$$

Розв'язків не має

$$(x^2 + x + 1)^2 - 3x - 3 - 3x^2 = 0$$

$$(x^2+x+1)^2$$
 - $3(x+1+x^2)=0$,
Нехай $(x^2+x+1)=m$, тоді $(x^2+x+1)^2=m^2$
Отримаємо рівняння

$$m^{2} - 3m = 0,$$

 $m (m-3) = 0,$
 $m = 0, a 6 0 m = 3,$
 $m = 0, a 6 0 m = 3,$

1)
$$x^2 + x + 1 = 0$$
, 2) $x^2 + x + 1 = 3$, $x^2 + x - 2 = 0$
 $\mathcal{A} = 1^2 - 4 \cdot 1 \cdot 1 = -3$; $\mathcal{A} = 9$, за теоремою Вієта
Розв'язків не має $x_1 = 2$; $x_2 = -1$

Відповідь: $x_1 = 2$; $x_2 = -1$

Розв'яжіть рівняння

$$2x^4-9x^2+4=0$$

$$2(x^2)^2-9x^2+4=0.$$

Нехай $x^2=t$, тоді $x^4=t^2$.

$$2t^2-9t+4=0$$
, $t>0$

$$D = 81 - 4 \cdot 4 \cdot 2 = 81 - 32 = 49$$

$$t_1 = \frac{(9+7)}{4} = 4;$$
 $t_2 = \frac{(9-7)}{4} = \frac{1}{2}.$

Якщо t=4, тоді x^2 =4. Якщо t= $\frac{1}{2}$, тоді x^2 = $\frac{1}{2}$

$$\begin{bmatrix} x_1 = 2 \\ x_2 = -2 \end{bmatrix} \qquad \begin{bmatrix} x_3 = \frac{1}{\sqrt{2}} \\ x_4 = -\frac{1}{\sqrt{2}} \end{bmatrix}$$

Відповідь:
$$x = \left\{ -\frac{1}{\sqrt{2}}; -2; \frac{1}{\sqrt{2}}; 2 \right\}$$

$$(2x+1)^4-10(2x+1)^2+9=0$$

Нехай
$$(2x+1)^2$$
=t, тоді $(2x+1)^4$ =t² t^2 -10t +9=0, t>0

За теоремою Вієта
$$t1 = 9$$
; $t2 = 1$

1)
$$(2x+1)^2=9$$

$$4x^2+4x+1=9$$

$$x^2+x-2=0$$

$$x_1 = -2$$
; $x_2 = 1$

$$t1 = 9$$
; $t2 = 1$

$$(2x+1)^2=1$$

$$4x^2+4x+1=1$$

$$4x^2 + 4x = 0$$

$$4x(x+1) = 0$$

$$4x = 0$$

$$x = 0$$

$$x+1 = 0$$

$$x_{4} = -1$$

Відповідь:
$$x_1 = -2$$
, $x_2 = 1$, $x_3 = 0$, $x_4 = -1$

Домашнє завдання

- Працювати параграф 25 п. 3,4
- Виконати №954

954. Знайдіть корені біквадратного рівняння:

1)
$$x^4 - 17x^2 + 16 = 0$$
;

3)
$$x^4 + 2x^2 - 15 = 0$$
;

5)
$$x^4 + 10x^2 + 9 = 0$$
;

2)
$$x^4 - 6x^2 + 8 = 0$$
;

4)
$$3x^4 - 2x^2 - 8 = 0$$
;

6)
$$25x^4 - 10x^2 + 1 = 0$$
.