Аргумент от точности определения среднего вертикального оффсета

26 сентября 2019 г.

Целью данного теста является проверка возможности определения вертикального разделения замкнутых орбит пучков на уровне 10^{-12} м, если:

- в ускорителе длины 150 м равномерно распределены 25 ВРМ;
- точность измерения вертикальной координаты пучка BPM'ом $\sigma_{SQUID} = 10^{-12} \text{ м};$
- амплитуда бетатронных колебаний в вертикальной плоскости $a_{\beta} = 10^{-6} \text{ м}.$

Были сгенерированы две серии данных:

$$\begin{cases} y_1^n(s) &= a_{\beta} \sin(f_1 \cdot s + \phi_1) + \Delta_1 + \epsilon_1^n, \\ y_2^n(s) &= a_{\beta} \sin(f_2 \cdot s + \phi_2) + \Delta_2 + \epsilon_2^n; \\ \epsilon_1^n, \epsilon_2^n &\sim N(0, \sigma_{SQUID}), \\ s &\in \{j \cdot \frac{150}{24} | j \in 25\}. \end{cases}$$
(1)

с параметрами из Таблицы 1. n – номер теста ($n \in 100$).

Замечание 1. $\forall n \in 100$ данные отличаются только $\epsilon_1^n, \epsilon_2^n$; все остальные параметры оставались неизменными. Это значит, что на каждом триале пучок приходит на каждый BPM в одной и той же точке, а вариация вертикальной координаты на данном BPM связана только с ошибкой измерения (σ_{SOUID}).

Tаким образом, $\sigma[\hat{\Delta}]$ есть статистическая погрешность определения сдвига замкнутой орбиты.

Таблица 1: Параметры симуляции

Параметр	Значение
f_1	30.000
f_2	30.074
ϕ_1	0
ϕ_2	$\pi/16$ 10^{-12}
Δ_1	10^{-12}
Δ_2	10^{-12}

Данные (1) были фитированы функцией

$$f(x) = a \cdot \sin(f \cdot x + \phi) + \Delta; \tag{2}$$

оценивались все 4 параметра: $\hat{a}^n, \hat{f}^n, \hat{\phi}^n, \hat{\Delta}^n$.

Рис. 1: Гистограммы распределений оценок $\hat{\Delta}^n$ в случае, когда варьируются только ошибки $\epsilon_1^n, \epsilon_2^n.$