There are Orders-of-Magnitude Power Advantages in Complementing the Transistor With a Milli-Volt Switch

MTO Symposium San Jose, CA, March 7, 2007

maintaining the data needed, and of including suggestions for reducing	nection of minimation is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 07 MAR 2007		2. REPORT TYPE N/A	3. DATES COVERED -		RED	
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER				
There are Orders-	nplementing	5b. GRANT NUMBER				
the Transistor With a Milli-Volt Switch				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) UCLA EE Dept.				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited				
	otes ems Technology Syn original document	-	·	on March 5	-7, 2007.	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER OF PAGES	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	- ABSTRACT UU	of Pages 11	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188 Read the current going through a resistor, in the presence of noise:

$$(\Delta i)^2 = 2q i \times \Delta f$$
.....Shot Noise
 $(\Delta i)^2 = \frac{4kT}{R} \times \Delta f$Johnson Noise

Required voltage $V = iR \gg 2kT/q \sim 50mVolts$

Signal – to – Noise Ratio =
$$\frac{i}{\sqrt{2q \ i\Delta f}} = \sqrt{\frac{i}{2q \ \Delta f}}$$

 $i > 2q \times \Delta f$

Required power iV > 2q
$$\Delta f \times \frac{2kT}{q} = 4kT \times \Delta f$$

With a safety margin:

Energy Consumed ~ 40 kT per bit processed

What will be the energy cost, per bit processed?

- 1. Logic energy cost $\sim 40kT$ per bit processed
- 2. Storage energy cost $\sim 40kT$ per bit processed
- 3. Communications currently >100,000kT per bit processed

.

There are many type of memory possible:

- 1. Flash
- 2. SRAM
- 3. Dram
- 4. Magnetic Spin
- 5. Nano-Electro-Chemical Cells
- 6. Nano-Electro-Mechanical NEMS
- 7. Moletronic
- 8. Chalcogenide glass (phase change)
- 9. Carbon Nanotubes

•

Similarly there are many ways to do logic.

But there are not many ways to communicate:

- 1. Microwaves (electrical)
- 2. Optical

What is the energy cost for electrical communication?

$$V_{noise}^{2} = 4kT R \Delta f$$

$$\frac{V_{noise}^{2}}{R} = 4kT \Delta f$$

$$\frac{\text{Signal}}{\text{Energy}} \ge \frac{\text{Noise Power}}{\text{per bit}} = 4kT \text{ per bit}$$

All information processing costs $\sim 40kT$ per bit.

(for good Signal-to-Noise Ratio)

Great!

So what's the problem?

The transistor will have to be replaced by a 1milli-Volt switch:

The natural voltage range for wired communication is rather low:

$$V_{\text{noise}}^2 = 4kT R \Delta f$$

$$V_{\text{noise}}^2 = 4kTR \frac{1}{RC}$$

$$V_{\text{noise}}^2 = 4kT \times \frac{1}{C}$$

$$V_{\text{noise}}^2 = \frac{4kT}{q} \times \frac{q}{C}$$

$$V_{noise} = \sqrt{\underbrace{4kT/q}_{100\text{mVolts}} \times \underbrace{q/C}_{10\mu\text{Volts}}}$$

$$V \approx 1 \text{ mVolt}$$

The wire wants 1000 electrons at 1mVolt each.

(to fulfill the signal-to-noise requirement >1eV of energy)

The natural voltage range for a thermally activated switch like transistors is >>kT/q, eg. ~ 40kT/q or about ~1Volt

Voltage Matching Crisis at the nano-scale!

If you ignore it the penalty will be $(1\text{Volt}/1\text{mVolt})^2 = 10^6$

The thermally activated device wants at least one electron at ~1Volt.

A low-voltage technology, or an impedance matching device, needs to be invented/discovered at the Nano-scale:

transistor amplifier with steeper sub-threshold slope

photo-diode

Cryo-Electronics kT/q~q/C

An amplifying transistor as a voltage matching device:

The optical absorption coefficient, $\alpha(h\nu)$, of Si at 300K, in the vicinity of the band edge.

Tom Tiedje, Eli Yablonovitch, George D. Cody, and Bonnie G. Brooks IEEE Trans. On Elec. Dev., VOL. ED-31, NO. 5, p. 711 (MAY 1984)

The Urbach edge grows as: $\alpha(hv) \sim \exp\{(hv-E_g)/E_o\},$

where the E_o parameter is a type of sub-threshold slope.

 $E_o \sim 10 \text{meV}$ for Silicon

It's good, but it should be better. We need to search for materials with steeper band-edges!

Nano-Mechanical Switch:

 $I \sim exp(-3qV_G/kT)$

for 3 charges on the MEM's tip

Recommendations:

- 1. Medium and long-range internal communication is beset by a Voltage Matching problem, leading to severe energy inefficiency.
- 2. The transistor will have to be replaced by a 1milli-Volt switch:
- 3. Metallic or semi-metallic switches are likely to be more radiation hard.
- 4. Band edge steepness is poorly known, and should be investigated for a number of semiconductors and semi-metals.
- 5. How will the world change if the energy/bit-function drops by six orders of magnitude?