Réponses

Les problèmes consistent souvent en la démonstration d'un résultat donné ; la liste cidessous fournit environ la moitié des réponses restantes, avec deux chiffres significatifs.

- 1.5 (b) $4\pi a^3$.
- 2.7

2.7 (a) 85 W; (b) idem.
3.1
$$\mathbf{E} = -\left[O/(2^{5/2}\pi\epsilon_0 a^2)\right]\hat{\mathbf{x}}$$
. $\vec{E} = \frac{1}{4\pi\epsilon_0}\frac{O}{8\sqrt{2}a^2}\left(-1/2\sqrt{2}-1\right)$

- 3.6 89 m/s.
- 3.9 (b) 440 mm.
- 3.11 (b) 3.3×10^{-3} N; (d) 6 µs.
- **3.14** (a) (i) 10^{19} atomes/m², (ii) 1,6 C/m², (iii) 1.8 × 10^{11} V/m; (b) 240 diamètres atomiques, soit 0,07 µm.
- 3.17 (a) $Q\lambda/(2\pi\epsilon_0 r)$.
- 4.2 (a) B, E, D sont au même potentiel; F, C, H sont à un autre potentiel.
- (a) 1.5×10^{20} N; (b) 1.5×10^{20} J; (c) 4.1×10^{13} \$; (d) 5000 ans. 4.3
- **4.13** $E_p s I s / (A \sigma)$.
- **4.16** 1,9 N.
- 5.3 $(4/3)\pi R^3 \sigma_0 \hat{\mathbf{z}}$.

5.7
$$\frac{Q}{4\pi\varepsilon_0 r}$$
, $\frac{Qs\cos\theta}{4\pi\varepsilon_0 r^2}$, $\frac{Qs^2}{4\pi\varepsilon_0 r^3}$ $\left(\frac{3\cos^2\theta}{2} - \frac{1}{2}\right)$.

- $\rho a^3/(4\pi\epsilon_0 r), 0, 0.$ 5.9
- **5.11** 0, $\left[a^4Q/(16\pi\varepsilon_0 r^5)\right] \left[35(l^4+m^4+n^4)-21\right]$.
- (a) $0.15Q^2/(\pi\epsilon_0 R)$; (b) $3GM^2/(5R')$; (c) 1.2×10^{29} J; (d) 0.17 m; (e) 1.0×10^{20} V. 6.2

- **6.10** (a) $W_1/W_2 = C_2/C_1$; (b) $W_1/W_2 = C_1/C_2$.
- **6.13** (b) 56 pF/m.
- **6.20** (a) 150 kV; (b) 4×10^{-4} atm; (c) 4 kg/m^2 .
- 7.1 (a) 5.7×10^{-37} C.m; (b) 5.9×10^{-19} m.
- **7.12** (a) $[2\pi\varepsilon_r\varepsilon_0/\ln(R_2/R_1)]V$.
- 8.2 $\frac{(\varepsilon_{r2}\sigma_{co1} \varepsilon_{r1}\sigma_{co2})\varepsilon_0}{s_1\sigma_{co2} + s_2\sigma_{co1}}V.$
- **8.4** 4000.
- **8.9** (b) $10 \,\mathrm{m}^3$, $10 \,\mathrm{t}$.
- **8.14** 25 μm.
- **8.18** 2,5 atm.
- 9.2 (a) $-2QD/[4\pi(D^2+r^2)^{3/2}]$.
- **9.10** 25×25 cellules, 400 itérations.

Problème 9.10 Équipotentielles (tous les 0,25 V) et lignes de E.

- **10.6** (a) $\rho_0(a^2 + b^2)(a+b)/(12\varepsilon_0 r^2)$.
- **11.2** Pour *O'*, les signaux ont été émis simultanément. Pour *O*, *B* a émis son signal en premier.
- 11.3 (a) $\tan \alpha = \gamma \tan \alpha'$; (b) $\pi/2$.
- **12.4** $2.6 \times 10^{-27} \text{ kg}$; $2.27 \times 10^8 \text{ m/s}$.
- **12.6** (a) $7, 1 \times 10^{-26}$ kg; (b) 38 mm; (c) 10^{-5} s; $1, 28 \times 10^{-10}$ s.
- 12.7 (a) Négatif. La lumière est plus rouge. (b) Pour le Soleil, -2, 1×10^{-6} . Pour la Terre, -7, 0×10^{-10} . (c) -2, 1×10^{-6} . (d) 5, 2×10^{7} fois la densité de l'eau. (e) $\Delta \nu / \nu = 6$, 9×10^{-6} , ce qui correspond à environ trois fois le déplacement vers

le rouge. (f) Quand le proton s'éloigne, l'augmentation de son énergie potentielle compense exactement la diminution de son énergie cinétique.

13.3 (a)
$$2.3 \times 10^{-22}$$
 N; (b) $7,7 \times 10^{-23}$ N.

14.2

$$\frac{\mu_0 I}{2\pi} \left(\frac{1}{D-x} + \frac{1}{D+x} \right).$$

14.5 (a) erv/2; (b) 9.3×10^{-24} A.m².

14.9

$$\mu_0 N I a^2 \left\{ \frac{1}{2 \left[(z + a/2)^2 + a^2 \right]^{3/2}} + \frac{1}{2 \left[(z - a/2)^2 + a^2 \right]^{3/2}} \right\}$$

15.2 (a) 330 μ A; (b) 4, 2 × 10⁻² T.

15.4 (a) $\mu_0 \alpha / 2$.

15.8 $L \ln ... / (R_2 - R_1)$.

16.1 2.

16.4 $\theta = \pi/4$.

16.11 B, B/μ_0 .

17.1 (a) 3×10^{13} m; (b) 7,3 jours.

17.2 (b) $2, 2 \times 10^{18} \, \widehat{\mathbf{y}} \, \text{m/s}^2$.

17.5 1,2; 2,7.

17.7 (c) $1,4 \times 10^{-4}$ V.

17.10 (b) Pour H_1^+ , 0,077 T; pour H_2^+ , 0,11 T; pour H_3^+ , 0,13 T.

17.13 (a) $8,7 \times 10^8$ A/m²; (b) très chaud; (c) vers l'Est.

17.17 (a) $AV\omega/R - A^2\omega^2/R$.

18.3 (a) La charge s'écoule de manière à compenser le champ $\mathbf{v} \times \mathbf{B}$; (b) 31 A; (c) 1.5×10^{-2} N; (d) pour un diamètre de 10 m, I=30 μ A, $P\simeq 1$ μ W, $F\simeq 2\times 10^{-10}$ N.

18.4 (a) 1,2 mV; (b) 0.

18.11 $P_{\text{max}} = \pi \sigma \omega^2 B_{\text{eff}}^2 s a^4 / 8$.

18.13 (a) $B_0\omega^2\cos(2\omega t - \phi)$; (b) 2kHz.

19.2 3, $4 \times 10^{-7}R$ H.

19.5 (b) L'inductance mutuelle varie comme le cosinus de l'angle de rotation; (c) non.

19.7 (a)
$$R' = \frac{2\pi a}{\sigma b}$$
, $L' = \mu_0 \pi^2$; (b) $\left(\frac{4+x^2}{4+4x^2}\right)^{1/2}$, $x = \omega \mu_0 \sigma ab$.

19.8 $L = R_b R_d C$, $R = R_b R_d / R_c$.

20.2 (a) 4,4 J/m³; (b) 4,0 × 10^5 J/m³.