Lab 3: Flame Tests — Emission & Electron Transitions

Name:		Partner(s):			
Date:	Period:				

Purpose:

Observe emission colors of metal ions and relate to electron transitions and quantized energy.

Standards: HS-PS1-1, HS-PS1-2, HS-PS1-3, HS-PS1-8

Materials & Equipment:

- Bunsen burner; striker; nichrome loop or wooden splints
- 0.5 M solutions: NaCl, KCl, CaCl₂, CuCl₂; unknown(s)
- Beakers for rinsing; distilled water; watch glass; safety gear

Procedure:

- 1. Light burner and adjust to a steady blue flame.
- 2. Clean loop: heat to red; rinse; repeat until no color appears in flame.
- 3. Dip loop into a salt solution; place in hottest part of flame; record color precisely.
- 4. Rinse and repeat for each known; then test unknown(s) and identify.
- 5. Record intensity/persistence; note possible contamination and how you mitigated it.

Data & Observations:

Use precise descriptors (e.g., lilac, apple-green, brick-red).

Compound	Observed Flame Color	Intensity/Persistence	Notes
NaCl			
KCl			
CaCl ₂			
CuCl ₂			
Unknown			

Analysis Questions:

- 1. Explain why discrete flame colors appear for different ions in terms of electron transitions and photon energy.
- 2. Two groups observed different hues for the same ion. Identify two plausible causes and how to reduce them.
- 3. How could you distinguish a mixture of Na⁺ and K⁺ using flame tests and/or simple filters?

Conclusion (CER):

- 1. **Claim**: Identify the unknown(s) based on your flame test evidence.
- 2. **Evidence**: Cite specific observed colors and intensities compared to known references.
- 3. **Reasoning**: Explain how electron transitions and quantized energy lead to characteristic colors.
- 4. Error/Improvement: Discuss contamination or technique issues and how you reduced them.

Lab 3: Flame Tests — Emission & Electron Transitions — Rubric

Weights: Only **Analysis & Explanations** (×2) and **Conclusion** (×2) are doubled.

Criterion	1	2	3	4	5
Preparation & Safety	Unprepared; unsafe actions; repeated reminders.	Partially prepared; inconsistent safety; several reminders.	Prepared; follows all rules; few reminders.	Proactive safety; models correct technique to peers.	Exemplary; anticipates and mitigates risks; mentors others.
Data & Observations	Minimal or vague color notes; missing samples.	Basic color words only; limited detail or qualifiers.	Complete colors with adequate detail for ID.	Detailed colors with intensity/persistence; comparative notes.	Exceptional precision; clear rationales for identifications; contamination tracked.
Analysis & Explanations (×2)	Incorrect/irrelevant; lacks link to transitions.	Partial link to transitions; generic reasoning.	Correct link to quantized transitions with support.	Strong reasoning; error analysis and mitigation included.	Insightful; connects spectra to energy differences; discusses limitations.
Conclusion (×2)	No/weak claim; unsupported.	Vague claim; limited evidence.	Clear claim with some observational support.	Well-supported claim; multiple precise observations cited.	Compelling claim; integrates observations with theory convincingly.
Clarity & Mechanics	Disorganized; frequent grammar/format issues impede understanding.	Partly organized; several errors; hard to follow at times.	Generally clear; minor errors; readable structure.	Well organized; concise; almost no errors; visuals/tables support text.	Polished, professional scientific writing; precise vocabulary; flawless formatting.