Theoretische Informatik: Blatt 7

Abgabe bis 13. November 2015 Assistent: Sacha Krug, CHN D42

Linus Fessler, Markus Hauptner, Philipp Schimmelfennig

Aufgabe 19

Sei A eine k-Band-TM. Wir konstruieren nun nach und nach eine 1-Band-TM B. Die Vorgehensweise ist analog zum Beweis von Lemma~4.2

- 1. Zu jedem Band i von A bis auf das Eingabeband fügen wir ein zweites Band i' direkt darunter ein. Dieses soll nur die Symbole $\{c, ..., \uparrow\}$ beinhalten und \uparrow soll nur einmal auf diesem Band vorkommen. Der Pfeil indiziert die Position des Kopfes, der in A auf Band i zeigt. Die Anzahl an Arbeitsbändern verdoppelt sich.
- 2. Jetzt fassen wir sämtliche Arbeitsbänder i und i', $i \in \{1, 2, ..., k\}$ zu einem Band zusammen. Der j-te Eintrag auf den Arbeitsband von B muss also die Infos über dem j-ten Eintrag sämtlicher Arbeitsbänder i und i' beinhalten. Das Eingabeband von A lassen wir unangetastet. Dadurch vergrößert sich unser Arbeitsalphabet.

$$\Gamma_B = \underbrace{\Sigma_A \cup \{ \emptyset, \$ \}}_{(1)} \underbrace{\cup}_{(2)} \left(\underbrace{\{ \Sigma_A \cup \{ \emptyset, \bot \} \}}_{(3)} \times \underbrace{\{ \bot, \uparrow \}}_{(4)} \right)^k$$

- (1) Alle Zeichen, die im Eingabealphabet stehen können.
- (2) wir lesen entweder ein Zeichen auf dem Eingabeband oder auf dem Arbeitsband.
- (3) Zeichen auf dem i-ten Arbeitsband von A.
- (4) Zeichen auf dem i'-ten Arbeitsband (siehe oben).
- 3. (a) B liest einmal den Inhalt des Eingabebandes von links nach rechts, bis alle k Kopfpositionen von A gefunden wurden und speichert dabei in ihrem Zustand die k Symbole, die sie bei den k Köpfen von A gelesen hat. (Das sind die Symbole, die auf der Spur über '↑' stehen.) Die Anzahl Zustände in B ist also grösser als die in A.
 - (b) Jetzt kennt B das ganze Argument (B hat den zu A passenden Zustand.) der Transitfuntionen von A und kann entsprechend die Köpfe bewegen (= Symbole auf der 2i-ten Spur ersetzen). Diese Änderung kann B in einem Lauf von rechts nach links ausführen.

 $\operatorname{Space}_B(n)$ ist so groß, wie die Längste Konfigutation von allen Berechnungsschritten von B auf allen Wörtern über Σ der Länge n auf dem Arbeitsband. Das Arbeitsband hat nach der genannten Konstruktion die beschriebene Länge des Maximums der beschriebenen Längen aller k Arbeitsbänder von A, für alle n. Daher folgt $\operatorname{Space}_B(n) \leq \operatorname{Space}_A(n)$, für alle n.

In jedem Simulationsschritt muss das Arbeitsband ein Mal von links nach rechts und wieder zurück gelesen werden. \Rightarrow Für den *i*-ten Schritt sind Space_B(C_i) Schritte notwendig.

 $\operatorname{Time}_{B}(n)$ im Verhältnis zu $\operatorname{Time}_{A}(n)$:

$$\operatorname{Time}_{B}(n) \leq \operatorname{Time}_{A}(n) \cdot \operatorname{Space}_{B}(n) \leq \operatorname{Time}_{A}(n) \cdot \operatorname{Space}_{A}(n)$$

Aufgabe 20

(a)
$$e(n) = 2^n$$

Wir konstruieren eine 2-Band Turingmaschine M, wobei $Band\ \theta$ das Eingabeband und $B\ddot{a}nder\ 1-2$ die Arbeitsbänder sind. M bekommt als Eingabe das Wort 0^n auf $Band\ \theta$. Zu Beginn schreibt M eine 0 auf $Band\ 1$. Solange der Lesekopf des Eingabebandes nicht \$ liest:

- 1. Gehe auf Band 1 nach links bis ¢.
- 2. Gehe auf Band 2 nach links bis ¢
- 3. Lies Zeichen auf Band 1. Schreibe für jede gelesene 0 auf Band 1 00 auf Band 2. Für ein _ schreibe ein _.
- 4. Gehe auf beiden Bändern nach links und kopiere Inhalt von Band 2 auf Band 1 einschließlich bis Zeichen ...
- 5. Rücke mit Lesekopf nach rechts.

Das Ergebnis steht dann auf $Band\ 2$ bis zum ersten $_$.

Auf diese Art generieren wir 2^n Nullen. Für n Nullen der Eingabe lesen wir pro Schritt 2^i Nullen. Das Schreiben geschieht jeweils in $\mathcal{O}(1)$.

$$\sum_{i=1}^{n} 2^{i} = 2^{n+1} - 2 \in \mathcal{O}(2^{n})$$

Folglich ist e(n) zeitkonstruierbar.

(b) $f(n) = fib_n$

Wir konstruieren eine 3-Band Turingmaschine M, wobei $Band\ \theta$ das Eingabeband und $B\ddot{a}nder\ 1-3$ die Arbeitsbänder sind. M bekommt als Eingabe das Wort $w=0^n$ auf $Band\ \theta$. Wir unterscheiden drei Eingaben w.

Fall 1: $w = \lambda$. In diesem Fall ist n = 0. M schreibt $0^{fib_0} = \lambda$ auf

Fall 2: w = 0.

In diesem Fall ist n = 1. M schreibt $0^{fib_1} = 0$ auf Band 1 und hält.

- Fall 3: $|w| = n, n \ge 2$. Der Lesekopf auf $Band\ 0$ liegt auf der zweiten 0 und M liest auf $Band\ 0$ von links nach rechts. Für die erste gelesene 0 schreibt M eine 0 auf $Band\ 2$. Für jede weitere gelesene 0 führt M Schritte 1.–3. aus, bis \$ gelesen wird. Dann ist auf $Band\ 1$ das Ergebnis 0^{fib_n} (und auf $Band\ 2$ $0^{fib_{n-1}}$ und auf $Band\ 3$ $0^{fib_{n-2}}$).
 - 1. M überschreibt Band 3 mit dem Inhalt von Band 2 ($fib_{i-2} \leftarrow fib_{i-1}$).
 - 2. M überschreibt Band 2 mit dem Inhalt von Band 1 ($fib_{i-1} \leftarrow fib_i$).
 - 3. M schreibt den Inhalt von B and β in B and β (konkateniert also die Nullen auf B and β mit den Nullen von B and β) ($fib_i \leftarrow fib_{i-1} + fib_{i-2}$).

In den Fällen 1 und 2 ist die Laufzeit konstant, also ist $f(n) \in \mathcal{O}(1)$. Im Fall 3 schreiben wir bei der i-ten Ausführung, $i \leq n-2$ (weil wir auf der zweiten 0 starten), fib_{i-2} Nullen auf Band 3, fib_{i-1} Nullen auf Band 2 und fib_{i-2} Nullen auf Band 1, also pro Schritt $2fib_{i-2} + fib_{i-1} \leq 3fib_{i-1}$ Nullen. Insgesamt ergibt das also

$$3\sum_{i=2}^{n} fib_{i-1} = 3\sum_{i=1}^{n-1} fib_{i}$$
 (Indexverschiebung)

$$= 3\sum_{i=0}^{n-1} fib_{i}$$
 ($fib_{0} = 0$)

$$= 3(fib_{n+1} - 1).$$
 ($\sum_{i=0}^{n} fib_{i} = fib_{n+2} - 1$)

$$= 3(fib_{n} + fib_{n-1} - 1)$$
 (Definition fib_{n})

$$\leq 3(2fib_{n} - 1)$$

 $3(2fib_n-1)=6fib_n-2\in\mathcal{O}(fib_n)$. Damit ist f(n) zeitkonstruierbar.

Aufgabe 21

Wir wissen: $f: \mathbb{N} \to \mathbb{N}, \ g: \mathbb{N} \to \mathbb{N}$ und f und g sind beide platzkonstruierbar.

 \Rightarrow Es gibt 1-Band-Turingmaschinen F und G, so dass $\begin{array}{c} \operatorname{Space}_F(n_1) \leq f(n_1) \\ \operatorname{Space}_G(n_2) \leq g(n_2) \end{array} \quad \forall n_1, n_2 \in \mathbb{N}$

und für jede Eingabe 0^{n_1} generiert F das Wort $0^{f(n_1)}$ auf ihrem Arbeitsband und hält in Zustand q_{accept} .

Wir konstruieren eine 5-Band-Turingmaschine H. H bekommt als Inpt 0^n auf sein Eingabeband. H kopiert die Eingabe auf $Band\ 2$ und auf $Band\ 4$ und simuliert F, dann G. Dabei sind $Band\ 2$, 3 das Eingabeund Arbeitsband von F und $Band\ 4$, 5 Eingabe- und Arbeitsband von G.

Auf $Band\ 3$ steht nun $0^{f(n)}$ und auf $Band\ 5$ steht $0^{g(n)}$. H geht nach an den Anfang von $Band\ 3$ und geht für jede gelesene 0 eins nach rechts und hängt den gesamten Inhalt von $Band\ 5$ an $Band\ 1$ an. Hat H alle 0en auf $Band\ 3$ gelesen steht auf $Band\ 1$ nun $0^{f(n)\cdot g(n)}$. H akzeptiert.

Die längte Konfiguration über alle Bänder und Schritte hat H am Ende, wenn das Ergebnis steht. Damit ist

$$\operatorname{Space}_{H} = f(n) \cdot g(n) =: h(n) \quad \forall n \in \mathbb{N} \quad (nach \ Def. \ 6.2)$$

und H hält immer in q_{accept} .

Nach Lemma 6.1 gibt es eine äquivalente 1-Band-Turingmaschine H' mit $\operatorname{Space}_{H'} \leq \operatorname{Space}_{H} \leq h(n)$. Folglich ist h(n) platzkonstruierbar.