Linear regression II

2024-09-05

```
stopifnot(
  require(tidyverse),
  require(patchwork),
  require(httr),
  require(glue),
  require(broom)
)
old_theme <- theme_set(theme_minimal())</pre>
```

- M1 MIDS/MFA
- Université Paris Cité
- Année 2024-2025
- Course Homepage

- Moodle
- Objectives

Linear fit using ordinary least squares (OLS)

- Perform linear regression of SAL_ACTUEL with respect to SAL_EMBAUCHE. Store the result in an object denoted by lm_1
- Inspect the numerical summary of lm_1
- Use Environment panel (Rstudio), to explore the structure of lm_1. Try to understand the signification of each element.

File Banque.csv already exists at ../DATA/Banque.csv!

```
bank <- readr::read_table(fpath,</pre>
    col_types = cols(
        SEXE = col_factor(levels = c("0", "1")),
        CATEGORIE = col_integer(),
        NB_ETUDES = col_integer(),
        SATIS_EMPLOI = col_factor(levels = c("non", "oui")),
        SATIS_CHEF = col_factor(levels = c("non", "oui")),
        SATIS_SALAIRE = col_factor(levels = c("non", "oui")),
        SATIS COLLEGUES = col factor(levels = c("non", "oui")),
        SATIS_CE = col_factor(levels = c("non", "oui"))
  )
)
lm_1 <- lm(formula = SAL_ACTUEL ~ SAL_EMBAUCHE, data=bank)</pre>
lm2str_frm <- . %>%
 formula() %>%
 deparse()
frm_1 <- lm2str_frm(lm_1)</pre>
summary(lm_1)
lm(formula = SAL_ACTUEL ~ SAL_EMBAUCHE, data = bank)
Residuals:
   Min 1Q Median 3Q
                               Max
-35424 -4031 -1154 2584 49293
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.928e+03 8.887e+02 2.17 0.0305 *
SAL_EMBAUCHE 1.909e+00 4.741e-02 40.28
                                            <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 8115 on 472 degrees of freedom
Multiple R-squared: 0.7746, Adjusted R-squared: 0.7741
F-statistic: 1622 on 1 and 472 DF, p-value: < 2.2e-16
cor(lm_1$fitted.values, bank$SAL_ACTUEL)^2
[1] 0.7746068
var(lm_1$fitted.values)/var(bank$SAL_ACTUEL)
[1] 0.7746068
  • Make the model summary a dataframe/tibble using broom::tidy()
```

```
lm_1 %>%
  tidy() %>%
  knitr::kable(digit=2, caption = frm_1)
```

(1) tidy() is a generic function that can be applied to very different classes of objects

Table 1: SAL_ACTUEL ~ SAL_EMBAUCHE

term est	imate sta.	error statistic	p.value
(Intercept) 19	028.21 88	88.68 2.17	0.00
SAL EMBAUCHE	1.91	0.05 40.28	

• Make model diagnostic information a dataframe/tibble using broom::glance()

```
lm_1 %>%
  glance() %>%
  knitr::kable(digit=2, caption = frm_1)
(1)
```

1) glance is also a generic function

Table 2: SAL_ACTUEL ~ SAL_EMBAUCHE

r.squareda	dj.r.squa	r ei gma	statistic p	.value	edf	logLik	AIC	BIC	deviance	df.residu	ahobs
0.77	0.77	8115.3	61622.12	0	1	-	9882.5	589895.	0731085446	686 472	474
						4938.29)				

• Preparing for diagnostic plots using broom::augment()

- (1) lm_1 is list with many named components
- 2 The output of augment is a dataframe built from informations gathered in lm_1 and in bank

PhantomJS not found. You can install it with webshot::install_phantomjs(). If it is instal

Show	10 v ent	ries					Search:	
	SEXE	AGE	CATEGORIE	NB_ETUDES ♦	EXPERIENCE	ANCIENNETE	SAL_EMBAUCHE	SAL_ACTUEL ♦
1	1	64	1	8	275	70	10200	15750
2	1	55	1	8	43	74	10200	15900
3	1	56	1	8	0	92	9750	16200
4	1	60	1	12	0	82	10200	16200
5	1	62	1	12	180	68	10200	16200
6	1	61	1	12	163	66	10200	16350
7	1	62	1	12	288	84	10200	16500
8	1	63	1	8	412	88	9750	16650
9	1	59	1	8	76	76	10200	16800
10	1	61	1	12	124	97	9000	16950
Show	ing 1 to 10 o	of 474 entrie	es		Previous	1 2 3	4 5 4	8 Next

The output of augment may be described as adding 6 columns to dataframe bank. The six columns are built using items from lm_1. Can you explain their meaning and why they are relevant to diagnosing?

```
lm_1_aug %>%
  select(starts_with(".")) %>%
  head() %>%
  knitr::kable(digits=2, caption = frm_1)
```

Table 3: SAL ACTUEL ~ SAL EMBAUCHE

.fitted	.resid	.hat	.sigma	.cooksd	.std.resid
21404.59	-5654.59	0	8119.77	0	-0.70
21404.59	-5504.59	0	8119.99	0	-0.68
20545.34	-4345.34	0	8121.49	0	-0.54
21404.59	-5204.59	0	8120.41	0	-0.64
21404.59	-5204.59	0	8120.41	0	-0.64
21404.59	-5054.59	0	8120.61	0	-0.62

Let base R produce diagnostic plots

```
plot(lm_1, which = 1:6)
```

We will reproduce (and discuss) four of the six diagnostic plots provided by the plot method from base R (1,2,3,5).

• Reproduce first diagnostic plot with ggplot using the aumented version of lm_1 (augment(lm_1)).

- Comment Diagnostic Plot 1.
- Compute the correlation coefficient between residuals and fitted values.
- Make your graphic pipeline a reusable function.

```
make_p_diag_1 <- function(lm.){
  augment(lm.) %>%
  ggplot() +
  aes(x=.fitted, y=.resid)+
  geom_point(alpha=.5, size=.5) +
```

- What are standardized residuals?
- Build the third diagnostic plot (square root of absolute values of standardized residuals versus fitted values) using ggplot.
- Why should we look at the square root of standardized residuals?

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0. i Please use `linewidth` instead.

Make your graphic pipeline a reusable function.

- What is leverage?
- Build the fifth diagnostic plot (standardized residuals versus leverage) using ggplot.

```
p_5_lm_1 <- lm_1_aug %>%
  ggplot() +
  aes(x=.hat, y=((.std.resid))) +
  geom_point(size=.5, alpha=.5) +
  xlab("Leverage") +
  ylab("Standardized residuals") +
  ggtitle("Bank dataset",
           subtitle = frm_1)
# plot(lm.1, which = 5)
make_p_diag_5 <- function(lm.){</pre>
  augment(lm.) %>%
  ggplot() +
  aes(x=.hat, y=((.std.resid))) +
  geom_point(size=.5, alpha=.5) +
  xlab("Leverage") +
  ylab("Standardized residuals") +
  labs(title = "Standardized residulas versus Leverages")
}
```

In the second diagnostic plot (the residuals qqplot), we build a quantile-quantile plot by plotting function $F_n^{\leftarrow} \circ \Phi$ where Φ is the ECDF of the standard Gaussian distribution while F_n^{\leftarrow} .

Build the second diagnostic plot using ggplot

color="black") +

labs(title="Residuals qqplot")

}

```
p_2_lm_1 <- lm_1_aug %>%
  ggplot() +
  aes(sample=.resid) +
  geom_qq(size=.5, alpha=.5) +
  stat_qq_line(linetype="dotted",
              size=.5,
              color="black") +
  ggtitle("Bank dataset",
          subtitle = frm_1) +
  labs(caption="Residuals qqplot") +
  xlab("Theoretical quantiles") +
  ylab("Empirical quantiles of residuals")
# plot(lm 1, which = 2)
make_p_diag_2 <- function(lm.){</pre>
  augment(lm.) %>%
  ggplot() +
  aes(sample=.resid) +
  geom_qq(size=.5, alpha=.5) +
  stat_qq_line(linetype="dotted",
              size=.5,
```

Use package patchwork:... to collect your four diagnostic plots

Plot actual values against fitted values for SAL_ACTUEL

```
p_1_bis_lm_1 <- lm_1_aug %>%
    ggplot() +
```

Bank dataset

Play it again with AGE and SAL_ACTUEL

Redo the above described steps and call the model lm_2 .

```
lm_2 <- lm(SAL_ACTUEL ~ AGE, data=bank)</pre>
lm_2 %>%
 tidy()
# A tibble: 2 x 5
  term
              estimate std.error statistic p.value
                           <dbl>
  <chr>
                  <dbl>
                                     <dbl>
                                                <dbl>
                                       16.4 2.30e-48
1 (Intercept)
                42272.
                           2571.
                                      -3.20 1.45e- 3
2 AGE
                 -211.
                             65.8
lyt <- patchwork::plot_layout(ncol=2, nrow=2)</pre>
make_p_diag_1(lm_2) +
make_p_diag_2(lm_2) +
```

```
make_p_diag_3(lm_2) +
make_p_diag_5(lm_2)
```


• ggplot programming: write a function with arguments df, varx and vary where varx and vary are two strings denoting numerical columns in df, that outputs a ggplot object made of a scatterplot of columns vary and vary, a linear regression of vary against varx. The ggplot plot object should be annotated with the linear correlation coefficient of vary and varx and equipped with a title.

Bank dataset

Inspect rows with high Cook's distance

```
lm_1_aug %>%
  filter(.cooksd> 2*mean(.cooksd)) %>%
  select(-starts_with(".")) %>%
  DT::datatable()
```

Show	10 v en	tries			Search:			
	SEXE ♦	AGE ♦	CATEGORIE	NB_ETUDES	EXPERIENCE	ANCIENNETE	SAL_EMBAUCHE	SAL_ACTUEL
1	0	44	1	16	149	82	27750	34620
2	0	32	5	19	27	64	33000	47550
3	0	48	5	16	264	77	32490	50000
4	0	39	5	18	149	78	36240	51450
5	0	40	5	19	125	65	34980	55000
6	0	43	5	19	26	80	36750	61875
7	0	42	5	16	150	86	47490	66000
8	0	50	7	16	258	83	52500	66750
9	0	43	7	20	134	85	42480	69250
10	0	28	4	16	19	65	21750	70000
Show	ring 1 to 10 o	of 31 entrie	s			Previou	ıs 1 2 3	4 Next

Discuss the relevance of Simple Linear Regression for analyzing the connection between SAL_ACTUEL and AGE

Compute the Pearson correlation coefficient for every pair of quantitative variable? Draw corresponding scatterplots.

```
bank %>%
# select(-id) %>%
select(where(is.numeric)) %>%
corrr::correlate() %>%
corrr::shave() %>%
corrr::rplot()
```

Correlation computed with

- * Method: 'pearson'
- * Missing treated using: 'pairwise.complete.obs'

Predictive linear regression of SAL_ACTUEL as a function of age AGE

To perform linear fitting, we choose 450 points amongst the 474 sample points: the 24 remaining points are used to assess the merits of the linear fit.

Randomly select 450 rows in the banque dataframe.

Function sample from base R is convenient. You may also enjoy slice_sample() from dplyr. Denote by trainset the vector of selected indices. Bind the vector of left behind indices to variable testset. Functions match, setdiff or operator %in% may be useful.

```
old_seed <- set.seed(42)

trainset_size <- 450

trainset <- sample(seq(nrow(bank)) , trainset_size)

testset <- setdiff(seq(nrow(bank)) , trainset)

trainset <- as.integer(trainset)
testset <- as.integer(testset)</pre>
```

☐ Linear fit of SAL_ACTUEL with respect to AGE, on the training set. Call the result lm_3. ☐ How do you feel about such a linear fit? (Use diagnostic plots)

```
lm_3 <- lm(SAL_ACTUEL ~ AGE, data=bank[trainset,] )
#
lm_3_aug <- lm_3 %>%
augment(data=bank[trainset,] )
```

```
lm_3 %>%
  augment(data=bank[trainset,]) %>%
  ggplot() +
  aes(x=AGE, y=SAL_ACTUEL) +
  geom_point(alpha=.5, size=.5) +
```

Bank dataset

Red: test set, Blue: high Cook's distance

Inspecting points with high Cook's distance

```
lm_3_aug %>%
  filter(.cooksd> 2*mean(.cooksd)) %>%
  select(-starts_with(".")) %>%
  DT::datatable()
```

Show	10 v en	itries				Search:		
	SEXE ♦	AGE ♦	$\mathbf{CATEGORIE} \; \boldsymbol{\Downarrow} \;$	$NB_ETUDES \ \diamondsuit$	EXPERIENCE $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	ANCIENNETE $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	SAL_EMBAUCHE ϕ	SAL_ACTUEL \$
1	0	50	7	19	199	96	79980	135000
2	0	30	2	15	34	82	15750	80000
3	1	62	1	12	180	68	10200	16200
4	0	30	4	16	12	79	21750	83750
5	0	29	1	18	30	79	31980	66875
6	0	34	5	19	68	91	35010	97000
7	0	43	7	20	134	85	42480	69250
8	0	30	4	19	29	78	32010	68125
9	0	35	6	19	13	65	42510	75000
10	0	34	4	17	8	89	27510	68750

Showing 1 to 10 of 44 entries

```
make_p_diag_1(lm_3) +
make_p_diag_2(lm_3) +
make_p_diag_3(lm_3) +
make_p_diag_5(lm_3)
```


Figure 1: SAL_ACTUEL ~ AGE on training set

□ Use lm_3 to predict the values of SAL_ACTUEL as an affine function of AGE on the testing set testset (broom::augment() with optional argument newdata may be useful). Compare the data frame with the one obtained from augment(lm_3).

```
lm_3_aug_test <- augment(lm_3, newdata = bank[testset,])</pre>
```

- ☐ Compare training error and testing error
- ☐ Analyse residuals (prediction errors) on the testing set. Compare with training set

```
(make_p_diag_1(lm_3) %+% lm_3_aug_test) +
(make_p_diag_2(lm_3) %+% lm_3_aug_test)
```


Expectations under Gaussian Linear Modelling Assumptions

```
(Y) = (\mathbb{Z}) \times \beta + \sigma(\epsilon)
```

```
old_seed <- set.seed(5783)
# lm_1 %>%
# tidy()
#lm_1 %>% summary
lm2design <- . %$%  # exposing pipe from magrittr</pre>
 select(.$model, -ncol(.$model)) %>%
 mutate(ctt = 1) %>%
 select(ctt, everything()) %>%
 as.matrix() # design matrix
sigma_hat <- sqrt(sum(lm_1$residuals^2)/lm_1$df.residual)</pre>
sal_actuel_fake <- lm2design(lm_1) %*% lm_1$coefficients +</pre>
  sigma_hat * rnorm(nrow(lm_1$model))
lm_1_fake <- bind_cols(bank,</pre>
                       SAL_ACTUEL_FAKE= sal_actuel_fake) %>%
  lm(formula=SAL_ACTUEL_FAKE ~ SAL_EMBAUCHE, data=.)
summary(lm_1_fake)
Call:
lm(formula = SAL_ACTUEL_FAKE ~ SAL_EMBAUCHE, data = .)
Residuals:
   Min
          1Q Median 3Q
                               Max
-60551 -10758 -1974 7942 101530
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 6722.120 1930.957 3.481 0.000545 ***
SAL_EMBAUCHE
                3.606 0.103 35.003 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 17630 on 472 degrees of freedom
Multiple R-squared: 0.7219, Adjusted R-squared: 0.7213
F-statistic: 1225 on 1 and 472 DF, p-value: < 2.2e-16
make_p_diag_1(lm_1_fake) +
make_p_diag_2(lm_1_fake) +
make_p_diag_3(lm_1_fake) +
make_p_diag_5(lm_1_fake)
```

