对偶单纯形法

一、对偶单纯形法的思路

在单纯形表中,b列对应于原问题的一个基可行解,而检验数行则对应其对偶问题的一个基解。在前面我们进行单纯形表的迭代中,始终保持原问题为基可行解(即b列大于等于零),而对偶问题为非可行解(即检验数行含有正值),一旦检验数行由非可行解变为基可行解,则原问题和对偶问题同时达到最优解。

根据对偶问题的对称性,单纯形表的迭代过程也可以反过来进行,即保持对偶问题始终是基可行解(即保持 $\sigma = C - C_B B^{-1} A \leq 0$) 而使原问题从非可行解逐步迭代到基可行解,从而使原问题和对偶问题同时得到最优解。这种单纯形表的应用方法称为对偶单纯形法。

	c_{j}		3	4	0	0	0	
C_B	X_{B}	b	\boldsymbol{x}_1	x_2	x_3	x_4	x_5	θ_{i}
0	x_3	8 .	1	2	1	0	0	4
0	X_4	16	4	0	0	1	0	_
0	x_5	12	0	4	0	0	1	3-
		0	3	4	0	0	0	
0	X_3	2	1	0	1	0	-1/2	2-
0	X_4	16	4	0	0	1	0	4
4	\boldsymbol{x}_2	3	0	1	0	0	1/4	
		12	3	0	0	0	-1	
3	x_1	2	1	0	1	0	-1/2	
0	X_4	8	0	0	-4	1	2	4 –
0 4	x_4 x_2	8 3	0 0	0 1	-4 0	1 0	2 1/4	4 - 12
		3	0	1	0	0	1/4	
4	<i>x</i> ₂	3 18	0	1	0 -3	0	1/4 1/2	
3	x_2	3 18 4	0 0 1	0 0	0 -3 0	0 0 1/4	1/4 1/2 0	

二、使用对偶单纯形法的条件及优势

使用对偶单纯形法的条件

- 1、单纯形表中的b列至少要有一个负的分量;
- 2、单纯形表中检验数行的全部元素不大于零。

使用对偶单纯形法的优势

- 1、避免使用人工变量;
- 2、原问题初始解不一定是基可行解;
- 2、对于变量少于约束的问题,可以转化成对偶问题,用对偶单纯形法;
- 3、灵敏度分析中,有时要用对偶单纯形法。

$$\max z = 4y_1 + 3y_2$$

$$\begin{cases} y_1 + 2y_2 \le 2 \\ y_1 - y_2 \le 3 \\ 2y_1 + 3y_2 \le 5 \end{cases}$$

$$\begin{cases} y_1 + y_2 \le 2 \\ 3y_1 + y_2 \le 3 \\ y_1, y_2 \ge 0 \end{cases}$$

$$\min \omega = 2x_1 + 3x_2 + 5x_3 + 2x_4 + 3x_5$$

$$\begin{cases} x_1 + x_2 + 2x_3 + x_4 + 3x_5 \ge 4 \\ 2x_1 - x_2 + 3x_3 + x_4 + x_5 \ge 3 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

三、对偶单纯形法步骤

1、列出初始单纯形表,检验b列

非负, 且检验数行≤0, 则优;

有负数,且检验数行≤0,进行入第二步。

2、确定换出变量

$$\min_{i} \left\{ (B^{-1}b)_{i} \middle| (B^{-1}b)_{i} < 0 \right\} = (B^{-1}b)_{i}$$

x, 换出, 即绝对值大的先换出

3、确定换入变量

检查I 行的系数 a_{ii} (j=1, 2, ..., n), 若所有 $a_{ii} \ge 0$ 则无可行解,

否则,对
$$a_{lj} < 0$$
 计算
$$\theta = \min_{j} \left\{ \frac{c_{j} - z_{j}}{a_{lj}} \middle| a_{lj} < 0 \right\} = \frac{c_{k} - z_{k}}{a_{lk}}$$

按 θ 规则确定的变量能保证 $c_i - z_i \le 0$

$$c_i - z_i \le 0$$

4、以 a_{lk} 为主元素,按单纯形法在表中进行迭代,直到最优。

$$\min \omega = 2x_1 + 3x_2 + 4x_3$$

$$\begin{cases} x_1 + 2x_2 + x_3 \ge 3 \\ 2x_1 - x_2 + 3x_3 \ge 4 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

$$\max z = -2x_1 - 3x_2 - 4x_3 + 0x_4 + 0x_5$$

$$\begin{cases}
-x_1 - 2x_2 - x_3 + x_4 & = -3 \\
-2x_1 + x_2 - 3x_3 & + x_5 = -4 \\
x_1, x_2, x_3, x_4, x_5 \ge 0
\end{cases}$$

_								
_	c_{j}			-2	-3	-4	0	0
	C_B	X_{B}	b	\boldsymbol{x}_1	\boldsymbol{x}_2	x_3	x_4	x_5
_	0	X_4	-3	-1	-2	-1	1	0
+	0	x_5	-4	[-2]	1	-3	0	1
				-2	-3	-4	0	0
4	- 0	x_4	-1	0	[-5/2]	1/2	1	-1/2
_	-2	x_1	2	1	-1/2	3/2	0	-1/2
_				0	-4	-1	0	-1
	-3	x_2	2/5	0	1	-1/5	-2/5	1/5
	-2	x_1	11/5	1	0	7/5	-1/5	-2/5
_	_			0	0	-9/5	-8/5	-1/5

$$\theta = \min_{j} \left\{ \frac{c_{j} - z_{j}}{a_{lj}} \middle| a_{lj} < 0 \right\} = \frac{c_{k} - z_{k}}{a_{lk}}$$

$$\min \left\{ \frac{-2}{-2}, -, \frac{-4}{-3} \right\} = 1$$

$$\min\left\{\frac{-4}{-\frac{5}{2}}, -, \frac{-1}{-\frac{1}{2}}\right\} = \frac{8}{5}$$

 $X^* = (11/5, 2/5, 0)^T$

 $Y^* = (\frac{8}{5}, \frac{1}{5})$ $\omega^* = \frac{28}{5}$

四、单纯形法与对偶单纯形法的比较

单纯形法	对偶单纯形法
原问题为基可行解 $(B^{-1}b \ge 0)$,	对偶问题为基可行解 $(\sigma_j \leq 0)$,
但存在 $(\sigma_j > 0)$	但存在 $(B^{-1}b < 0)$
进基 $\max_{j} \left\{ \sigma_{j} \middle \sigma_{j} > 0 \right\} = \sigma_{k}$, x_{k} 进基	出基 $\min_{i} \{b_i b_i < 0\} = b_l$, x_l 出基
出基 $\min_{i} \left\{ \frac{(B^{-1}b)_{i}}{a_{ik}} a_{ik} > 0 \right\} = \frac{(B^{-1}b)_{k}}{a_{lk}}$	进基 $\min_{j} \left\{ \frac{\sigma_{j}}{a_{lj}} \middle a_{lj} < 0 \right\} = \frac{\sigma_{k}}{a_{lk}}$
迭代	迭代

五、线性规划问题用单纯形表的求解步骤

保持检验数行大于等于0

$$\theta = \min_{j} \left\{ \frac{c_{j} - z_{j}}{-a_{lj}} \middle| a_{lj} < 0 \right\} = \frac{c_{k} - z_{k}}{-a_{lk}}$$