

FIG. 3

FIG. 2A

FIG. 2B

FIG. 2C

FIG. 6A

l able 1- Kan	ge Selection	represented	lable 1- Range Selection represented as Mantissa and Divider	ivider	
Range Selection Bits	Range °C	(1/Range °C) /256	Binary Representation (1/Range °C)/256	Mantissa	Divider used fo Shift
0000	2	128/256	.10000000	10000000	0
0001	2.5	102.4/256	.01100110	01100110	0
0010	3.33	76.8/256	.01001101	01001101	0
0011	4	64/256	.01000000	10000000	~
0100	2	51.2/256	.00110011	01100110	_
0101	29.9	38.4/256	.00100110	01001101	1
0110	8	32/256	.00100000	10000000	2
0111	10	25.6/256	.00011001	01100110	2
1000	13.33	19.2/256	.00010011	01001101	2
1001	16	16/256	.0001000	10000000	3
1010	20	12.8/256	.00001100	01100110	3
1011	26.67	9.6/256	.00001001	01001101	3
1100	32	8/256	.00001000	10000000	4
1101	40	6.4/256	.00000110	01100110	4
1110	53.33	4.8/256	.000000100	01001101	4
1111	80	3.2/256	.00000011	01100110	5

Table 1: Computing LSbits for DeltaTemp[1:0] = CurrentTemp

	dura in the facility of the same of	J
Current Temp	Zone Limit	DeltaTemp[1:0]
POS.xx	POS.00	X
POS.xx	NEG.00	X
NEG.00	NEG.00	00
NEG.01	NEG.00	11
NEG.10	NEG.00	10
NEG.11	NEG.00	01
NEG.xx	POS.00	Can't Happen

don't care; the decimal point followed by 2 numbers represents the 2 LSbits of the Note: POS = Positive number; NEG = Negative number; .xx => Current Temp [1:0] = value. They are binary numbers.

The autofan algorithm only computes DeltaTemp when the Current Temp is greater than or equal to the Zone Limit. Note:

All cases, except those in the shaded rows, the two LSbits of the Current Temp become the two LSbits of DeltaTemp. Note:

FIG. 6B