

SOCHIP S3 Datasheet

Video Encoding Processor

Revision 1.0

Sept.14,2017

Declaration

THIS DOCUMENTATION IS THE ORIGINAL WORK AND COPYRIGHTED PROPERTY OF SOCHIP TECHNOLOGY LIMITED. ("SOCHIP"). REPRODUCTION IN WHOLE OR IN PART MUST OBTAIN THE WRITTEN APPROVAL OF SOCHIP AND GIVE CLEAR ACKNOWLEDGEMENT TO THE COPYRIGHT OWNER.

THE INFORMATION FURNISHED BY SOCHIP IS BELIEVED TO BE ACCURATE AND RELIABLE. SOCHIP RESERVES THE RIGHT TO MAKE CHANGES IN CIRCUIT DESIGN AND/OR SPECIFICATIONS AT ANY TIME WITHOUT NOTICE. SOCHIP DOES NOT ASSUME ANY RESPONSIBILITY AND LIABILITY FOR ITS USE. NOR FOR ANY INFRINGEMENTS OF PATENTS OR OTHER RIGHTS OF THE THIRD PARTIES WHICH MAY RESULT FROM ITS USE. NO LICENSE IS GRANTED BY IMPLICATION OR OTHERWISE UNDER ANY PATENT OR PATENT RIGHTS OF SOCHIP. THIS DOCUMENTATION NEITHER STATES NOR IMPLIES WARRANTY OF ANY KIND, INCLUDING FITNESS FOR ANY PARTICULAR APPLICATION.

THIRD PARTY LICENCES MAY BE REQUIRED TO IMPLEMENT THE SOLUTION/PRODUCT. CUSTOMERS SHALL BE SOLELY RESPONSIBLE TO OBTAIN ALL APPROPRIATELY REQUIRED THIRD PARTY LICENCES. SOCHIP SHALL NOT BE LIABLE FOR ANY LICENCE FEE OR ROYALTY DUE IN RESPECT OF ANY REQUIRED THIRD PARTY LICENCE. SOCHIP SHALL HAVE NO WARRANTY, INDEMNITY OR OTHER OBLIGATIONS WITH RESPECT TO MATTERS COVERED UNDER ANY REQUIRED THIRD PARTY LICENCE.

Revision History

Revision	Date	Description
1.0	Sept.14,2017	Initial release version

Table of Contents

Declaration	າ		2
Revision Hi	story		3
Table of Co	ntents		4
Chapter 1	About This	Documentation	19
1.1.	Documenta	tion Overview	19
1.2.	Acronyms a	nd Abbreviations	19
Chapter 2	Overview		23
2.1.	Processor F	eatures	24
2	1.1. CPU	Architecture	24
2	1.2. Mer	nory Subsystem	24
	2.1.2.1.	Boot ROM	24
	2.1.2.2.	SDRAM	24
	2.1.2.3.	SD/MMC Interface	24
2	1.3. Syst	em Peripheral	24
	2.1.3.1.	Timer	24
	2.1.3.2.	High Speed Timer	25
	2.1.3.3.	GIC	
	2.1.3.4.	DMA	25
	2.1.3.5.	CCU	25
	2.1.3.6.	PWM	25
	2.1.3.7.	RTC	25
	2.1.3.8.	LRADC	26
	2.1.3.9.	Security Engine	26
2	1.4. Disp	lay Subsystem	26
	2.1.4.1.	DE2.0	26
	2.1.4.2.	Display Output	26
2	1.5. Vide	o Engine	26
	2.1.5.1.	Video Decoding	26
	2.1.5.2.	Video Encoding	27
2	1.6. Ima	ge Subsystem	27
	2.1.6.1.	Image Input	27
	2.1.6.2.	ISP	27
2	1.7. Aud	io Subsystem	28
	2.1.7.1.	Audio Codec	28
	2.1.7.2.	12S/PCM	28
2	1.8. Exte	rnal Peripherals	28
	2.1.8.1.	USB	28
	2.1.8.2.	Ethernet	29
	2.1.8.3.	UART	29
	2.1.8.4.	SPI	29
	2.1.8.5.	TWI	29
2	1.9. Pack	age	29
2.2.	System Bloo	k Diagram	30
Chapter 3	Pin Descript	ion	31
3.1.		eristics	
3.2.	GPIO Multiplexing Functions		
3.3.		/Signal Description	
Chapter 4	System		43

4.1.	Memory M	apping	44
4.2.	Boot Syster	n	45
4.3.	CCU		46
4	.3.1. Ove	rview	46
4		ctionalities Description	
		System Bus	
	4.3.2.2.	Bus Clock Tree	48
4	l.3.3. Typi	ical Applications	48
4	•	ister List	
4	l.3.5. Reg	ister Description	
	4.3.5.1.	PLL_CPU Control Register (Default Value: 0x00001000)	
	4.3.5.2.	PLL_Audio Control Register (Default Value: 0x00035514)	
	4.3.5.3.	PLL_VIDEO Control Register (Default Value: 0x03006207)	
	4.3.5.4.	PLL_VE Control Register (Default Value: 0x03006207)	
	4.3.5.5.	PLL_DDR0 Control Register (Default Value: 0x00001000)	
	4.3.5.6.	PLL_PERIPHO Control Register (Default Value: 0x00041811)	
	4.3.5.7.	PLL_ISP Control Register (Default Value: 0x03006207)	
	4.3.5.8.	PLL_PERIPH1 Control Register (Default Value: 0x00041811)	
	4.3.5.9.	PLL_DDR1 Control Register (Default Value: 0x00001800)	
	4.3.5.10.	CPU/AXI Configuration Register (Default Value: 0x00010000)	
	4.3.5.11.	,	
	4.3.5.12.	APB2 Configuration Register (Default Value: 0x01000000)	59
	4.3.5.13.	AHB2 Configuration Register (Default Value: 0x00000000)	60
	4.3.5.14.	Bus Clock Gating Register0 (Default Value: 0x00000000)	60
	4.3.5.15.		
	4.3.5.16.		61
	4.3.5.17.		
	4.3.5.18.	,	
	4.3.5.19.	9 (
	4.3.5.20.	,	
	4.3.5.21.	,	
	4.3.5.22.	CE Clock Register (Default Value: 0x00000000)	65
	4.3.5.23.	,	
	4.3.5.24.	, , ,	
	4.3.5.25.	0	
	4.3.5.26.	DRAM Configuration Register (Default Value: 0x00000001)	67
	4.3.5.27.	PLL_DDR1 Configuration Register (Default Value: 0x00000030)	67
	4.3.5.28.	· · · · · · · · · · · · · · · · · · ·	
	4.3.5.29.	· · · · · · · · · · · · · · · · · · ·	
	4.3.5.30.	,	
	4.3.5.31.	,	
	4.3.5.32.	,	
	4.3.5.33.	· · · · · · · · · · · · · · · · · · ·	
	4.3.5.34.	· · · · · · · · · · · · · · · · · · ·	
	4.3.5.35.	5 6 1	
	4.3.5.36.	g ,	
	4.3.5.37.	,	
	4.3.5.38.	_ ,	
	4.3.5.39.	· · · · · · · · · · · · · · · · · · ·	
	4.3.5.40.	,	
	4.3.5.41.	= ,	
	4.3.5.42.	_ ,	
	4.3.5.43.	_ ,	
	4.3.5.44.	_ ,	
	4.3.5.45.	PLL_DDR0 Bias Register (Default Value: 0x81104000)	74

	4.3.5.46.	PLL_PERIPHO Bias Register (Default Value: 0x10100010)	/4
	4.3.5.47.		
	4.3.5.48.	PLL_PERIPH1 Bias Register (Default Value: 0x10100010)	75
	4.3.5.49.		
	4.3.5.50.		
	4.3.5.51.	PLL DDR0 Tuning Register (Default Value: 0x14880000)	76
	4.3.5.52.	PLL_CPU Pattern Control Register (Default Value: 0x00000000)	77
	4.3.5.53.		
	4.3.5.54.		
	4.3.5.55.	PLL_VE Pattern Control Register (Default Value: 0x00000000)	78
	4.3.5.56.	-	
	4.3.5.57.		
	4.3.5.58.		
	4.3.5.59.		
	4.3.5.60.	_ ,	
	4.3.5.61.	-	
	4.3.5.62.		
	4.3.5.63.		
	4.3.5.64.		
	4.3.5.65.	,	
	4.3.5.66.	,	
	4.3.5.67.	,	
		gramming Guidelines	
		PLL	
	4.3.6.2.		
	4.3.6.3.		
		Gating and reset	
4.4.		ntrol	
	•	rview	
		em Control Register List	
	•	em Control Register Description	
	•	Version Register	
		EMAC-EPHY Clock Register (Default Value: 0x00058000)	
4.5.			
		rview	
		ck Diagram	
		er Register List	
		er Register Description	
	4.5.4.1.	Timer IRQ Enable Register (Default Value: 0x00000000)	
	4.5.4.2.	Timer IRQ Status Register (Default Value: 0x00000000)	
	4.5.4.3.	Timer 0 Control Register (Default Value: 0x00000004)	
	4.5.4.4.	Timer 0 Interval Value Register	
	4.5.4.5.	Timer 0 Current Value Register	
	4.5.4.6.	Timer 1 Control Register (Default Value: 0x00000004)	
	4.5.4.7.	Timer 1 Interval Value Register	
	4.5.4.8.	Timer 1 Current Value Register	
	4.5.4.9.	Timer 2 Control Register	
	4.5.4.10.		
	4.5.4.11.		
	4.5.4.12.		
	4.5.4.13.		
	4.5.4.14.		
	4.5.4.15.		
	4.5.4.16.	,	
	4.5.4.17.		
		1-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	

	4.5.4.18.	Watchdog Control Register (Default Value: 0x0000000)	
	4.5.4.19.	Watchdog Configuration Register (Default Value: 0x00000001)	96
	4.5.4.20.	Watchdog Mode Register (Default Value: 0x0000000)	96
	4.5.4.21.	64-bit Counter Control Register (Default Value: 0x00000000)	97
	4.5.4.22.	64-bit Counter Low Register (Default Value: 0x0000000)	97
	4.5.4.23.	64-bit Counter High Register (Default Value: 0x00000000)	97
4.6.	High-speed	Timer	98
	4.6.1. Ove	view	98
	4.6.2. Ope	ration Principle	98
	4.6.2.1.	HSTimer clock gating and software reset	98
	4.6.2.2.	HSTimer reload bit	98
	4.6.3. HST	mer Register List	98
	4.6.4. HST	mer Register Description	99
	4.6.4.1.	HS Timer IRQ Enable Register (Default Value: 0x00000000)	99
	4.6.4.2.	HS Timer IRQ Status Register (Default Value: 0x00000000)	99
	4.6.4.3.	HS Timer0 Control Register (Default Value: 0x00000000)	
	4.6.4.4.	HS Timer0 Interval Value Lo Register	100
	4.6.4.5.	HS Timer0 Interval Value Hi Register	100
	4.6.4.6.	HS Timer0 Current Value Lo Register	100
	4.6.4.7.	HS Timer0 Current Value Hi Register	
	4.6.4.8.	HS Timer1 Control Register (Default Value: 0x00000000)	
	4.6.4.9.	HS Timer1 Interval Value Lo Register	
	4.6.4.10.		
	4.6.4.11.		
	4.6.4.12.	-	
		ramming Guidelines	
4.7.	-		
		view	
		tionalities Description	
		И Register List	
		M Register Description	
		PWM Control Register(Default Value: 0x0000000)	
		PWM Channel 0 Period Register	
		PWM Channel 1 Period Register	
4.8.			
		rview	
		tionalities Description	
	4.8.2.1.	Block Diagram	
	4.8.2.2.	DRQ Type and Corresponding Relation	
	4.8.2.3.	DMA Descriptor	
		A Register List	
		A Register Description	
	4.8.4.1.	DMA IRQ Enable Register0 (Default Value: 0x0000000)	
	4.8.4.2.	DMA IRQ Pending Status Register (Default Value: 0x00000000)	
	4.8.4.3.	DMA Auto Gating Register (Default Value: 0x00000000)	
	4.8.4.4.	DMA Status Register (Default Value: 0x00000000)	
	4.8.4.5.	DMA Channel Enable Register (Default Value: 0x00000000)	
	4.8.4.6.	DMA Channel Pause Register (Default Value: 0x00000000)	
	4.8.4.7.	DMA Channel Descriptor Address Register(Default Value: 0x00000000)	
	4.8.4.8.	DMA Channel Configuration Register (Default Value: 0x00000000)	
	4.8.4.9.	DMA Channel Current Source Address Register (Default Value: 0x00000000)	
	4.8.4.10.	DMA Channel Current Destination Address Register (Default Value: 0x00000000)	
	4.8.4.11.	DMA Channel Byte Counter Left Register (Default Value: 0x00000000)	
	4.8.4.12.		
4.9.		Divin Charmet Parameter Register (Berdalt Value, 0x0000000)	
	•		

4.9.1.		rupt Source	
4.10. Cry	ypto En	gine	121
4.10.1.	Over	view	121
4.10.2.	Bloc	k Diagram	121
4.10.3.	Cryp	to Engine Register List	122
4.10.4.	Cryp	to Engine Register Description	122
4.1	L0.4.1.	Control Register(Default Value: 0x00000000)	122
4.1	10.4.2.	Key [n] Register (Default Value: 0x00000000)	124
4.1	10.4.3.	IV[n] Register(Default Value: 0x00000000)	124
4.1	LO.4.4.	Count [n] Register (Default Value: 0x00000000)	124
4.1	10.4.5.	FIFO Control/ Status Register (Default Value: 0x60000F0F)	124
4.1	10.4.6.	Interrupt Control/ Status Register (Default Value: 0x00000000)	125
4.1	LO.4.7.	Message Digest[n] Register (Default Value: 0x00000000)	125
4.1	10.4.8.	CTS Length Register (Default Value: 0x00000000)	126
4.1	10.4.9.	RXFIFO Register (Default Value: 0x00000000)	126
4.1	10.4.10	. TXFIFO Register (Default Value: 0x00000000)	126
4.10.5.	Cryp	to Engine Clock Requirement	126
4.10.6.	Cryp	to Engine Programming Guide	126
4.11. Se	curity I	D	128
4.11.1.	Over	view	128
4.12. LR	ADC		129
4.12.1.	Over	view	129
4.12.2.	Cloc	k Source	129
4.12.3.	Opei	ration Principle	129
4.12.4.	LRAD	DC Register List	130
4.12.5.	LRAD	OC Register Description	130
4.1	12.5.1.	LRADC Control Register (Default Value: 0x01000168)	130
4.1	12.5.2.	LRADC Interrupt Control Register (Default Value: 0x00000000)	131
4.1	12.5.3.	LRADC Interrupt Status Register (Default Value: 0x00000000)	132
4.1	12.5.4.	LRADC Data0 Register (Default Value: 0x00000000)	133
4.1	12.5.5.	LRADC Data1 Register (Default Value: 0x00000000)	134
4.13. RT	C		135
4.13.1.	Over	view	135
4.13.2.	RTC	Register List	135
4.13.3.	RTC	Register Description	136
4.1	13.3.1.	LOSC Control Register (Default Value: 0x00004000)	
4.1	13.3.2.	LOSC Auto Swith Status Register (Default Value: 0x00000000)	
4.1	13.3.3.	RTC YY-MM-DD Register (Default Value: 0x00000000)	
4.1	13.3.4.	RTC HH-MM-SS Register (Default Value: 0x00000000)	
4.1	13.3.5.	Alarm 0 Counter Register (Default Value: 0x00000000)	
4.1	13.3.6.	Alarm 0 Current Value Register (Default Value: 0x00000000)	
4.1	13.3.7.	Alarm 0 Enable Register (Default Value: 0x00000000)	
4.1	13.3.8.	Alarm 0 IRQ Enable Register (Default Value: 0x00000000)	
4.1	13.3.9.	Alarm 0 IRQ Status Register (Default Value: 0x00000000)	
4.1	13.3.10	,	
4.1	13.3.11	. Alarm 1 Enable Register (Default Value: 0x00000000)	139
4.1	13.3.12	,	
4.1	13.3.13	,	
4.1	13.3.14	,	
4.1	13.3.15	, , ,	
4.1	13.3.16	,	
4.1	13.3.17	,	
4.1	13.3.18	. IC Characteristic Register (Default Value: 0x00000000)	142
4.14. Au	idio Co	dec	143
4.14.1.	Over	view	143

4.14			and Signal Description	143
	4.14		Analog I/O Pins	
	4.14	.2.2.	Filter/Reference	144
			Power/Ground	
4.14	.3.	Data F	Path Diagram	144
4.14			Codec Register List	
4.14	.5.		Codec Register Description	
	4.14		0x000 DAC Digital Part Control Register(Default Value: 0x00000000)	
	4.14		0x004 DAC FIFO Control Register(Default Value: 0x00000F00)	
	4.14		0x008 DAC FIFO Status Register(Default Value: 0x00800088)	
	4.14		0x010 ADC FIFO Control Register(Default Value: 0x00000F00)	
	4.14		0x014 ADC FIFO Status Register(Default Value: 0x00000000)	
	4.14		0x018 ADC RX DATA Register(Default Value: 0x00000000)	
	4.14		0x020 DAC TX DATA Register(Default Value: 0x00000000)	
	4.14		0x040 DAC TX Counter Register(Default Value: 0x00000000)	
	4.14		0x044 ADC RX Counter Register(Default Value: 0x00000000)	
		.5.10.	0x048 DAC Debug Register(Default Value: 0x00000000)	
		.5.11.	0x04C ADC Debug Register(Default Value: 0x00000000)	
	4.14	.5.12.	0x050 HMIC Control Register(Default Value: 0x00000000)	
		.5.13.	0x054 HMIC Data Register(Default Value: 0x00000000)	
		.5.14.	0x060 DAC DAP Control Register(Default Value: 0x00000000)	
	4.14	.5.15.	0x070 ADC DAP Control Register(Default Value: 0x00000000)	
	4.14	.5.16.	0x074 ADC DAP Left Control Register(Default Value: 0x001F1800)	
	4.14	.5.17.	0x078 ADC DAP Right Control Register(Default Value: 0x001F7000)	
	4.14	.5.18.	0x07CADC DAP Parameter Register(Default Value: 0x2C2C2828)	
	4.14	.5.19.	0x080 ADC DAP Left Average Coef Register(Default Value: 0x00051EB8)	
	4.14	.5.20.	0x084 ADC DAP Left Decay & Attack Time Register(Default Value: 0x0000001F)	
	4.14	.5.21.	0x088 ADC DAP Right Average Coef Register(Default Value: 0x00051EB8)	160
	4.14	.5.22.	0x08C ADC DAP Right Decay & Attack Time Register(Default Value: 0x0000001F)	160
	4.14	.5.23.	0x090 ADC DAP HPF Coef Register(Default Value: 0x00FFFAC1)	161
	4.14	.5.24.	0x094 ADC DAP Left Input Signal Low Average Coef Register(Default Value: 0x00051EB8).	161
	4.14	.5.25.	0x098 ADC DAP Right Input Signal Low Average Coef Register(Default Value: 0x000511	•
	4.14	.5.26.	0x09C ADC DAP Optimum Register(Default Value: 0x00000000)	
	4.14	.5.27.	0x100 DAC DRC High HPF Coef Register(Default Value: 0x000000FF)	
	4.14	.5.28.	0x104 DAC DRC Low HPF Coef Register(Default Value: 0x0000FAC1)	162
	4.14	.5.29.	0x108 DAC DRC Control Register(Default Value: 0x00000080)	
	4.14	.5.30.	0x10C DAC DRC Left Peak Filter High Attack Time Coef Register(Default Value: 0x000000)OB)
	4.14	.5.31.	0x110 DAC DRC Left Peak Filter Low Attack Time Coef Register(Default Value: 0x00007 163	7BF)
	4.14	.5.32.	0x114 DAC DRC Right Peak Filter High Attack Time Coef Register(Default Value: 0x000000)OB)
	4.14	.5.33.	0x118 DAC DRC Peak Filter Low Attack Time Coef Register(Default Value: 0x000077BF)	164
	4.14	.5.34.	0x11C DAC DRC Left Peak Filter High Release Time Coef Register(Default Value: 0x00000 164	OFF)
	4.14	.5.35.	0x120 DAC DRC Left Peak Filter Low Release Time Coef Register(Default Value: 0x0000E 164	1F8)
	4.14	.5.36.	0x124 DAC DRC Right Peak filter High Release Time Coef Register(Default Value: 0x00000 164	OFF)
	4.14	.5.37.	0x128 DAC DRC Right Peak filter Low Release Time Coef Register(Default Value: 0x0000E 164	1F8)
	4.14	.5.38.	0x12C DAC DRC Left RMS Filter High Coef Register(Default Value: 0x00000001)	165
		.5.39.	0x130 DAC DRC Left RMS Filter Low Coef Register(Default Value: 0x00002BAF)	
		.5.40.		

4.14.5.41.	0x138 DAC DRC Right RMS Filter Low Coef Register(Default Value: 0x00002BAF)165
4.14.5.42.	0x13C DAC DRC Compressor Theshold High Setting Register(Default Value: 0x000006A4).165
4.14.5.43.	0x140 DAC DRC Compressor Slope High Setting Register(Default Value: 0x0000D3C0)165
4.14.5.44.	0x144 DAC DRC Compressor Slope High Setting Register(Default Value: 0x00000080)166
4.14.5.45.	0x148 DAC DRC Compressor Slope Low Setting Register(Default Value: 0x00000000)166
4.14.5.46.	0x14C DAC DRC Compressor High Output at Compressor Threshold Register(Default Value:
0x0000F95	B)166
4.14.5.47.	0x150 DAC DRC Compressor Low Output at Compressor Threshold Register(Default Value:
0x00002C3	F)166
4.14.5.48.	0x154 DAC DRC Limiter Theshold High Setting Register(Default Value: 0x000001A9)166
4.14.5.49.	0x158 DAC DRC Limiter Theshold Low Setting Register(Default Value: 0x000034F0)166
4.14.5.50.	0x15C DAC DRC Limiter Slope High Setting Register(Default Value: 0x00000005)167
4.14.5.51.	0x160 DAC DRC Limiter Slope Low Setting Register(Default Value: 0x1EB8)167
4.14.5.52.	0x164 DAC DRC Limiter High Output at Limiter Threshold(Default Value: 0x0000FBD8)167
4.14.5.53.	0x168 DAC DRC Limiter Low Output at Limiter Threshold(Default Value: 0x0000FBA7)167
4.14.5.54.	0x16C DAC DRC Expander Theshold High Setting Register(Default Value: 0x00000BA0)167
4.14.5.55.	0x170 DAC DRC Expander Theshold Low Setting Register(Default Value: 0x00007291)167
4.14.5.56.	0x174 DAC DRC Expander Slope High Setting Register(Default Value: 0x00000500)168
4.14.5.57.	0x178 DAC DRC Expander Slope Low Setting Register(Default Value: 0x00000000)168
4.14.5.58.	0x17C DAC DRC Expander High Output at Expander Threshold(Default Value: 0xF45F)168
4.14.5.59.	0x180 DAC DRC Expander Low Output at Expander Threshold(Default Value: 0x00008D6E)
112 1131331	168
4.14.5.60.	0x184 DAC DRC Linear Slope High Setting Register(Default Value: 0x00000100)168
4.14.5.61.	0x188 DAC DRC Linear Slope Low Setting Register(Default Value: 0x00000000)169
4.14.5.62.	0x18C DAC DRC Smooth filter Gain High Attack Time Coef Register(Default Value:
	2)169
4.14.5.63.	0x190 DAC DRC Smooth filter Gain Low Attack Time Coef Register(Default Value:
	0)
4.14.5.64.	0x194 DAC DRC Smooth filter Gain High Release Time Coef Register(Default Value:
	0)169
4.14.5.65.	0x198 DAC DRC Smooth filter Gain Low Release Time Coef Register(Default Value:
	4)169
4.14.5.66.	0x19C DAC DRC MAX Gain High Setting Register(Default Value: 0x0000FE56)169
4.14.5.67.	0x1A0 DAC DRC MAX Gain Low Setting Register (Default Value: 0x00000 E30)170
4.14.5.68.	0x1A4 DAC DRC MIN Gain High Setting Register(Default Value: 0x0000 F95B)170
4.14.5.69.	0x1A4 DAC DRC MIN Gain Figit Setting Register(Default Value: 0x0000_F93B)170
	0x1AC DAC DRC Expander Smooth Time High Coef Register(Default Value: 0x00000205r)
4.14.5.70.	
4.14.5.71.	0x1B0 DAC DRC Expander Smooth Time Low Coef Register(Default Value: 0x0000640C)170
4.14.5.72.	0x1B8 DAC DRC HPF Gain High Coef Register(Default Value: 0x00000100)
4.14.5.73.	0x1BC DAC DRC HPF Gain Low Coef Register(Default Value: 0x00000000)
4.14.5.74.	0x200 ADC DRC High HPF Coef Register(Default Value: 0x000000FF)
4.14.5.75.	0x204 ADC DRC Low HPF Coef Register(Default Value: 0x0000FAC1)
4.14.5.76.	0x208 ADC DRC Control Register(Default Value: 0x00000080)
4.14.5.77.	0x20C ADC DRC Left Peak Filter High Attack Time Coef Register(Default Value: 0x0000000B)
	172
4.14.5.78.	0x210 ADC DRC Left Peak Filter Low Attack Time Coef Register(Default Value: 0x000077BF)
	172
4.14.5.79.	0x214 ADC DRC Right Peak Filter High Attack Time Coef Register(Default Value: 0x0000000B)
	172
4.14.5.80.	0x218 ADC DRC Peak Filter Low Attack Time Coef Register(Default Value: 0x000077BF)173
4.14.5.81.	0x21C ADC DRC Left Peak Filter High Release Time Coef Register(Default Value: 0x000000FF)
	173
4.14.5.82.	0x220 ADC DRC Left Peak Filter Low Release Time Coef Register(Default Value: 0x0000E1F8)
	173
4.14.5.83.	0x224 ADC DRC Right Peak filter High Release Time Coef Register(Default Value: 0x000000FF)

	1/3
4.14.5.84.	0x228 ADC DRC Right Peak filter Low Release Time Coef Register(Default Value: 0x0000E1F8) 173
4.14.5.85.	0x22C ADC DRC Left RMS Filter High Coef Register(Default Value: 0x00000001)173
4.14.5.86.	0x230 ADC DRC Left RMS Filter Low Coef Register(Default Value: 0x00002BAF)174
4.14.5.87.	0x234 ADC DRC Right RMS Filter High Coef Register(Default Value: 0x00000001)174
4.14.5.88.	0x238 ADC DRC Right RMS Filter Low Coef Register(Default Value: 0x00002BAF)174
4.14.5.89.	0x23C ADC DRC Compressor Theshold High Setting Register(Default Value: 0x000006A4).174
4.14.5.90.	0x240 ADC DRC Compressor Slope High Setting Register(Default Value: 0x0000D3C0)174
4.14.5.91.	0x244 ADC DRC Compressor Slope High Setting Register(Default Value: 0x00000080)174
4.14.5.92.	0x248 ADC DRC Compressor Slope Low Setting Register(Default Value: 0x00000000)175
4.14.5.93.	0x24C ADC DRC Compressor High Output at Compressor Threshold Register(Default Value:
	s)
4.14.5.94.	0x250 ADC DRC Compressor Low Output at Compressor Threshold Register(Default Value:
	i)175
4.14.5.95.	0x254 ADC DRC Limiter Theshold High Setting Register(Default Value: 0x000001A9)175
4.14.5.96.	0x258 ADC DRC Limiter Theshold Low Setting Register(Default Value: 0x000034F0)
4.14.5.97.	0x25C ADC DRC Limiter Slope High Setting Register(Default Value: 0x00000005)175
4.14.5.98.	0x260 ADC DRC Limiter Slope Low Setting Register(Default Value: 0x1EB8)
4.14.5.99.	0x264 ADC DRC Limiter High Output at Limiter Threshold(Default Value: 0x0000FBD8)176
4.14.5.100.	0x268 ADC DRC Limiter Low Output at Limiter Threshold(Default Value: 0x0000FBA7)176
4.14.5.101.	0x26C ADC DRC Expander Theshold High Setting Register(Default Value: 0x00000BA)176
4.14.5.101.	0x270 ADC DRC Expander Theshold Low Setting Register(Default Value: 0x00000DA)176
4.14.5.103.	0x274 ADC DRC Expander Slope High Setting Register(Default Value: 0x00000500)
4.14.5.104.	0x274 ADC DRC Expander Slope Low Setting Register(Default Value: 0x00000000)177
4.14.5.105.	0x27C ADC DRC Expander High Output at Expander Threshold(Default Value: 0xF45F)177
4.14.5.106.	0x280 ADC DRC Expander Low Output at Expander Threshold(Default Value: 0x00008D6E)
4.14.3.100.	177
4.14.5.107.	0x284 ADC DRC Linear Slope High Setting Register(Default Value: 0x00000100)177
4.14.5.108.	0x288 ADC DRC Linear Slope Low Setting Register(Default Value: 0x00000000)177
4.14.5.109.	0x28C ADC DRC Smooth filter Gain High Attack Time Coef Register(Default Value:
0x00000002	2) 177
4.14.5.110.	0x290 ADC DRC Smooth filter Gain Low Attack Time Coef Register(Default Value:
0x00005600) 178
4.14.5.111.	0x294 ADC DRC Smooth filter Gain High Release Time Coef Register(Default Value:
0x00000000	0) 178
4.14.5.112.	0x298 ADC DRC Smooth filter Gain Low Release Time Coef Register(Default Value:
0x00000F04	1) 178
4.14.5.113.	0x29C ADC DRC MAX Gain High Setting Register(Default Value: 0x0000FE56)178
4.14.5.114.	0x2A0 ADC DRC MAX Gain Low Setting Register(Default Value: 0x0000CB0F)178
4.14.5.115.	0x2A4 ADC DRC MIN Gain High Setting Register(Default Value: 0x0000F95B)178
4.14.5.116.	0x2A8 ADC DRC MIN Gain Low Setting Register(Default Value: 0x00002C3F)179
4.14.5.117.	0x2AC ADC DAP Expander Smooth Time High Coef Register(Default Value: 0x00000000) 179
4.14.5.118.	0x2B0 ADC DRC Expander Smooth Time Low Coef Register (Default Value: 0x0000640C) 179
4.14.5.119.	0x2B8 ADC DRC HPF Gain High(Default Value: 0x00000100)179
4.14.5.120.	0x2BC ADC DRC HPF Gain Low(Default Value: 0x00000000)179
4.14.5.121.	AC Parameter Configuration Register(Default Value: 0x10000000)179
4.14.5.122.	0x00 Headphone Volume Control(Default Value: 0x00)180
4.14.5.123.	0x01 Left Output Mixer Source Select Control Register(Default Value: 0x00)180
4.14.5.124.	0x02 Right Output Mixer Source Select Control Register(Default Value: 0x00)181
4.14.5.125.	0x03 DAC Analog Enable and PA Source Control Register(Default Value: 0x00)181
4.14.5.126.	0x05 Linein Gain Control Register(Default Value: 0x33)
4.14.5.127.	0x06 MIC1 And MIC2 Gain Control Register(Default Value: 0x33)182
4.14.5.128.	0x07 PA Enable and HP Control Register(Default Value: 0x14)182
4.14.5.129.	0x09 Lineout Volume Control Register(Default Value: 0x40)

4.14.5.130	 0x0A MIC2 Boost and Lineout Enable Control Register(Default Value: 0x40) 	183
4.14.5.131		
4.14.5.132	2. 0x0C Left ADC Mixer Mute Control(Default Value: 0x00)	184
4.14.5.133	·	
4.14.5.134	, , , , , , , , , , , , , , , , , , , ,	
4.14.5.135	5	
4.14.5.136	5. 0x10 OPDRV/OPCOM/OPADC Control(Default Value: 0x55)	185
4.14.5.137	7. 0x11 OPMIC、OPVR and OPADC Control(Default Value: 0x55)	185
4.14.5.138	3. 0x12 ZERO CROSS Control(Default Value: 0x42)	186
4.14.5.139		
4.14.5.140	0. 0x14 Bias & DA16 Calibration Control Register(Default Value: 0x00)	187
4.14.5.141		
4.14.5.142	2. 0x17 Bias Calibration Data(Default Value: 0x20)	187
4.14.5.143	3. 0x18 Bias Register Setting Data(Default Value: 0x20)	187
4.15. Port Contr	oller	188
4.15.1. Port (Controller Register List	188
4.15.2. Port (Controller Register Description	188
4.15.2.1.	PB Configure Register 0 (Default Value: 0x77777777)	
4.15.2.2.	PB Configure Register 1 (Default Value: 0x00777777)	
4.15.2.3.	PB Configure Register 2 (Default Value: 0x00000000)	
4.15.2.4.	PB Configure Register 3 (Default Value: 0x00000000)	
4.15.2.5.	PB Data Register (Default Value: 0x00000000)	
4.15.2.6.	PB Multi-Driving Register 0 (Default Value: 0x05555555)	
4.15.2.7.	PB Multi-Driving Register 1 (Default Value: 0x00000000)	
4.15.2.8.	PB PULL Register 0 (Default Value: 0x00000000)	
4.15.2.9.	PB PULL Register 1 (Default Value: 0x00000000)	
4.15.2.10.		
4.15.2.11.		
4.15.2.12.		
4.15.2.13.		
4.15.2.14.		
4.15.2.15.		
4.15.2.16.		
4.15.2.17.		
4.15.2.18.	,	
4.15.2.19.	,	
4.15.2.20.		
4.15.2.21.		
4.15.2.22.		
4.15.2.23.		
4.15.2.24.		
4.15.2.25.		
4.15.2.26.		
4.15.2.27.		
4.15.2.28.		
4.15.2.29.		
4.15.2.30.		
4.15.2.31.		
4.15.2.31.		
4.15.2.33.	,	
4.15.2.34.	,	
4.15.2.35.	,	
4.15.2.36.	• •	
4.15.2.37.	PF Configure Register 0 (Default Value: 0x07373733)	
4.15.2.38.	,	
atasheet(Revision 1.0)	Copyright©2017 Sochip technology limited. All Rights Reserved	Page 12

4.15.2.39.	. Pr Configure Register 2(Derault Value, 0x0000000)	204
4.15.2.40.	. PF Configure Register 3(Default Value: 0x00000000)	204
4.15.2.41.	PF Data Register (Default Value: 0x0000000)	204
4.15.2.42.	PF Multi-Driving Register 0 (Default Value: 0x00001555)	204
4.15.2.43.	PF Multi-Driving Register 1 (Default Value: 0x00000000)	204
4.15.2.44.	PF PULL Register 0 (Default Value: 0x00000000)	205
4.15.2.45.	PF PULL Register 1 (Default Value: 0x00000000)	205
4.15.2.46.	. PG Configure Register 0 (Default Value: 0x77777777)	205
4.15.2.47.	PG Configure Register 1 (Default Value: 0x00777777)	206
4.15.2.48.	PG Configure Register 2 (Default Value: 0x0000000)	207
4.15.2.49.	. PG Configure Register 3 (Default Value: 0x00000000)	207
4.15.2.50.	. PG Data Register (Default Value: 0x0000000)	207
4.15.2.51.	. PG Multi-Driving Register 0 (Default Value: 0x05555555)	207
4.15.2.52.	PG Multi-Driving Register 1 (Default Value: 0x00000000)	208
4.15.2.53.	. PG PULL Register 0 (Default Value: 0x00000000)	208
4.15.2.54.	· · · · · · · · · · · · · · · · · · ·	
4.15.2.55.	, , , , , , , , , , , , , , , , , , , ,	
4.15.2.56.	, , ,	
4.15.2.57.	, , , , , , , , , , , , , , , , , , , ,	
4.15.2.58.	, , , , , , , , , , , , , , , , , , , ,	
4.15.2.59.	,	
4.15.2.60.	, , ,	
4.15.2.61.	,	
4.15.2.62.		
4.15.2.63.	, , ,	
4.15.2.64.	, , ,	
4.15.2.65.	, ,	
4.15.2.66.	•	
4.15.2.67.	,	
	PG External Interrupt Debounce Register (Default Value: 0x00000000)	
•		
	view	
	VICW	
•	view	
	k Diagram	
	AMC Controller Timing Diagram	
	MMC Controller Special Requirement	
	SD/MMC Pin List	
	nal DMA Controller Description	
	IDMAC Descriptor Structure	
	DESO Definition	
5.2.5.3.	DES1 Definition	216
5.2.5.4.	DES2 Definition	216
5.2.5.5.	DES3 Definition	216
5.2.6. SD/N	ЛМС Register List	216
5.2.7. SD/N	AMC Register Description	217
	SD Global Control Register(Default Value: 0x00000100)	
5.2.7.2.	SD Clock Control Register(Default Value: 0x00000000)	218
	SD Timeout Register (Default Value: 0xFFFFFF40)	
	SD Bus Width Register (Default Value: 0x00000000)	
	SD Block Size Register (Default Value: 0x00000200)	
	SD Block Count Register (Default Value: 0x00000200)	
	SD Command Register (Default Value: 0x00000000)	
5.2.7.8.	SD Command Argument Register (Default Value: 0x00000000)	221

5.2.7.9.	SD Response o Register (Derault Value, 0x0000000)	∠∠⊥
5.2.7.10.	SD Response 1 Register (Default Value: 0x00000000)	221
5.2.7.11.	SD Response 2 Register (Default Value: 0x00000000)	221
5.2.7.12.	SD Response 3 Register (Default Value: 0x00000000)	222
5.2.7.13.		
5.2.7.14.		
5.2.7.15.		
5.2.7.16.		
5.2.7.17.		
5.2.7.18.		
5.2.7.19.	,	
5.2.7.20.		
5.2.7.21.		
5.2.7.22.		
5.2.7.23.		
5.2.7.24.	•	
5.2.7.25.		
5.2.7.26.	•	
5.2.7.27.		
5.2.7.28.		
5.2.7.29.		
5.2.7.30.		
5.2.7.31.		
5.2.7.32.		
5.2.7.33.		
5.2.7.34.	,	
5.2.7.35.		
5.2.7.36.		
5.2.7.37.		
	SD FIFO Register (Default Value: 0x00000000)	
	35 TH O Register (Belduit Value: 0x0000000)	
	rview	
	ctionalities Description	
	Block Diagram	
	CSI FIFO Distribution	
6.1.2.3.	Pin Mapping	
6.1.2.4.	Timing	
6.1.2.5.	Bit Definition	
	Register list	
	Register Description	
6.1.4.1.	CSI Enable Register (Default Value: 0x00000000)	
6.1.4.2.	CSI Interface Configuration Register (Default Value: 0x00000000)	
6.1.4.3.	CSI Capture Register (Default Value: 0x00000000)	
6.1.4.4.	CSI Synchronization Counter Register (Default Value: 0x00000000)	
6.1.4.5.	CSI FIFO Threshold Register (Default Value: 0x040f0400)	
	CSI BT656 Header Configuration Register (Default Value: 0x03020100)	
6.1.4.6.		
6.1.4.7.	CSI Pattern Generation Address Register (Default Value: 0x00000000)	
6.1.4.8.	CSI Version Register (Default Value: 0x00000000)	
6.1.4.9.	CSI Version Register (Default Value: 0x00000000)	
6.1.4.10.	_	
6.1.4.11.		
6.1.4.12.		
6.1.4.13.	_ ,	
6.1.4.14.	CSI Channel_0 FIFO 2 output buffer-A address Register (Default Value: 0x00000000)	246

6.1.4.15.	CSI Channel_0 status Register (Default Value: 0x00000000)	246
6.1.4.16.	CSI Channel_0 interrupt enable Register (Default Value: 0x00000000)	247
6.1.4.17.	CSI Channel_0 interrupt status Register (Default Value: 0x00000000)	247
6.1.4.18.	CSI Channel_0 filed1 vertical size Register (Default Value: 0x01E00000)	248
6.1.4.19.	CSI Channel_0 horizontal size Register (Default Value: 0x05000000)	248
6.1.4.20.	CSI Channel_0 vertical size Register (Default Value: 0x01E00000)	248
6.1.4.21.	CSI Channel_0 buffer length Register (Default Value: 0x01400280)	249
6.1.4.22.	CSI Channel_0 flip size Register (Default Value: 0x01E00280)	
6.1.4.23.	CSI Channel_0 frame clock counter Register (Default Value: 0x00000000)	
6.1.4.24.	CSI Channel_0 accumulated and internal clock counter Register (Default Val	
	249	
6.1.4.25.	CSI Channel_0 FIFO Statistic Register (Default Value: 0x00000000)	
6.1.4.26.	CSI Channel_0 PCLK Statistic Register (Default Value: 0x00007FFF)	
6.1.4.27.	CCI Control Register (Default Value: 0x00000000)	
6.1.4.28.	CCI Transmission Configuration Register (Default Value: 0x10000000)	
6.1.4.29.	CCI Packet Format Register (Default Value: 0x00110001)	
6.1.4.30.	CCI Bus Control Register (Default Value: 0x00002500)	
6.1.4.31.	,	
6.1.4.32.	CCI Line Counter Trigger Control Register (Default Value: 0x00000000)	253
6.1.4.33.	CCI FIFO Acess Register (Default Value: 0x00000000)	253
6.2. MIPI CSI2		254
6.2.1. Over	view	254
Chapter 7 Display		255
7.1. DE 2.0		256
7.1.1. Over	view	256
7.2. TCON		256
7.2.1. Over	view	256
7.2.2. Block	k Diagram	256
7.2.3. Fund	ctionalities Description	257
7.2.3.1.	Panel Interface	257
7.2.3.2.	RGB gamma correction	260
7.2.3.3.	CEU module	260
7.2.3.4.	CMAP module	261
7.2.4. TCO	N Module Register List	261
7.2.5. TCO	N Module Register Description	262
7.2.5.1.	TCON_GCTL_REG (Default Value: 0x00000000)	262
7.2.5.2.	TCON_GINTO_REG (Default Value: 0x00000000)	263
7.2.5.3.	TCON_GINT1_REG (Default Value: 0x00000000)	263
7.2.5.4.	TCON0_TRM_CTL_REG (Default Value: 0x00000000)	264
	TCONO FRM SEED REG (Default Value: 0x00000000)	
7.2.5.6.	TCONO_FRM_TAB_REG (Default Value: 0x00000000)	264
7.2.5.7.	TCONO CTL REG (Default Value: 0x00000000)	265
7.2.5.8.	TCONO_DCLK_REG (Default Value: 0x00000000)	265
	TCON0_BASICO_REG (Default Value: 0x00000000)	
7.2.5.10.	TCONO BASIC1 REG (Default Value: 0x00000000)	
7.2.5.11.	TCONO BASIC2 REG (Default Value: 0x00000000)	
7.2.5.12.	TCONO BASIC3 REG (Default Value: 0x00000000)	
7.2.5.13.	TCONO_HV_IF_REG (Default Value: 0x00000000)	
7.2.5.14.	TCONO_CPU_IF_REG (Default Value: 0x00000000)	
7.2.5.15.	TCONO CPU WR REG (Default Value: 0x00000000)	
7.2.5.16.	TCONO CPU RDO REG (Default Value: 0x00000000)	
7.2.5.17.	TCONO_CPU_RD1_REG (Default Value: 0x00000000)	
7.2.5.17.	TCONO_LVDS_IF_REG (Default Value: 0x00000000)	
7.2.5.18.	TCONO_IO_POL_REG (Default Value: 0x00000000)	
7.2.5.20.	TCONO_IO_TRI_REG (Default Value: 0x00FFFFFFF)	
7.2.3.20.	- 55.15_15_11125 (Belduit Value: Oxol 111111)	

	7.2.5.21.	TCON_ECC_FIFO_REG (Default Value: 0x00000000)	271
	7.2.5.22.	TCON_DEBUG_REG (Default Value: 0x00000000)	271
	7.2.5.23.	TCON_CEU_CTL_REG (Default Value: 0x00000000)	272
	7.2.5.24.	TCON_CEU_COEF_MUL_REG (Default Value: 0x00000000)	272
	7.2.5.25.	TCON_CEU_COEF_ADD_REG (Default Value: 0x00000000)	272
	7.2.5.26.	TCON_CEU_COEF_RANG_REG (Default Value: 0x00000000)	273
	7.2.5.27.	TCON0_CPU_TRI0_REG (Default Value: 0x00000000)	273
	7.2.5.28.	TCON0_CPU_TRI1_REG (Default Value: 0x00000000)	273
	7.2.5.29.	TCON0_CPU_TRI2_REG (Default Value: 0x00200000)	273
	7.2.5.30.	TCON0_CPU_TRI3_REG (Default Value: 0x00000000)	274
	7.2.5.31.	,	
	7.2.5.32.	TCON_CMAP_ODD0_REG (Default Value: 0x00000000)	274
	7.2.5.33.	,	
	7.2.5.34.		
	7.2.5.35.	`	
	7.2.5.36.	,	
	7.2.5.37.	TCON0_LVDS_ANA0_REG (Default Value: 0x00000000)	276
Chapter 8	Interfaces		277
8.1.	TWI		278
	8.1.1. Ove	rview	278
	8.1.2. Tim	ing Diagram	278
	8.1.3. TW	l Controller Special Requirement	279
	8.1.3.1.	TWI Pin List	279
	8.1.3.2.	TWI Controller Operation	279
	8.1.4. TW	I Controller Register List	279
	8.1.5. TW	I Controller Register Description	
	8.1.5.1.	TWI Slave Address Register(Default Value: 0x00000000)	
	8.1.5.2.	TWI Extend Address Register(Default Value: 0x00000000)	
	8.1.5.3.	TWI Data Register(Default Value: 0x00000000)	
	8.1.5.4.	TWI Control Register(Default Value: 0x00000000)	
	8.1.5.5.	TWI Status Register(Default Value: 0x000000F8)	
	8.1.5.6.	TWI Clock Register(Default Value: 0x00000000)	
	8.1.5.7.	TWI Soft Reset Register(Default Value: 0x00000000)	
	8.1.5.8.	TWI Enhance Feature Register(Default Value: 0x00000000)	
		TWI Line Control Register(Default Value: 0x0000003A)	
	8.1.5.10.	TWI DVFS Control Register(Default Value: 0x00000000)	284
8.2.			
		rview	
		Timing Diagram	
	8.2.3. SPI	Special Requirement	
	8.2.3.1.	SPI Pin List	
	8.2.3.2.	SPI Module Clock Source and Frequency	
		Register List	
		Register Description	
	8.2.5.1.	SPI Global Control Register(Default Value: 0x00000080)	
	8.2.5.2.	SPI Transfer Control Register(Default Value: 0x00000087)	
	8.2.5.3.	SPI Interrupt Control Register(Default Value: 0x00000000)	
	8.2.5.4.	SPI Interrupt Status Register(Default Value: 0x00000022)	
	8.2.5.5.	SPI FIFO Control Register(Default Value: 0x00400001)	
	8.2.5.6.	SPI FIFO Status Register(Default Value: 0x00000000)	
	8.2.5.7.	SPI Wait Clock Register(Default Value: 0x0000_0000)	
	8.2.5.8.	SPI Clock Control Register(Default Value: 0x00000002)	
	8.2.5.9.	SPI Master Burst Counter Register(Default Value: 0x00000000)	
	8.2.5.10.	e i	
	8.2.5.11.	SPI Master Burst Control Counter Register(Default Value: 0x00000000)	295

	8.2.5.	12. SPI TX Data Register(Default Value: 0x00000000)	296
	8.2.5.	13. SPI RX Data Register(Default Value: 0x00000000)	296
8.3.	. UART		297
	8.3.1.	Overview	297
		JART Timing Diagram	
		JART Pin List	
		JART Register List	
	8.3.5. U	JART Register Description	
	8.3.5.		
	8.3.5.	2. UART Transmit Holding Register(Default Value: 0x00000000)	
	8.3.5.	g ,	
	8.3.5.	4. UART Divisor Latch High Register(Default Value: 0x00000000)	300
	8.3.5.	, ,	
	8.3.5.	6. UART Interrupt Identity Register(Default Value: 0x00000000)	301
	8.3.5.	J ,	
	8.3.5.	,	
	8.3.5.	,	
	8.3.5.	10. UART Line Status Register(Default Value: 0x00000060)	305
	8.3.5.	11. UART Modem Status Register(Default Value: 0x00000000)	307
	8.3.5.	12. UART Scratch Register(Default Value: 0x00000000)	308
	8.3.5.	13. UART Status Register(Default Value: 0x00000006)	308
	8.3.5.	14. UART Transmit FIFO Level Register(Default Value: 0x00000000)	309
	8.3.5.	15. UART Receive FIFO Level Register(Default Value: 0x00000000)	309
	8.3.5.	16. UART Halt TX Register(Default Value: 0x00000000)	309
8.4.	. USB		311
	8.4.1. l	JSB OTG Controller	311
	8.4.1.	1. USB OTG Block Diagram	312
	8.4.1.	2. USB OTG Register List	312
	8.4.1.	3. USB OTG_EHCI Register Description	313
	8.4.1.	4. USB OTG_OHCI Register Description	325
		5. USB_HCI Interface Control and PHY Interface Description	
8.5.	. I2S/PCN	1	343
	8.5.1.	Overview	343
	8.5.2.	Signal Description	343
		1. I2S/PCM Pin List	
	8.5.2.	2. I2S/PCM Clock Source and Frequency	343
	8.5.3. F	-unctionalities Description	343
	8.5.3.	1. Typical Applications	343
	8.5.3.	2. Functional Block Diagram	344
	8.5.4. T	Fiming Diagram	344
	8.5.5.	Operation Modes	346
	8.5.5.	1. System setup and I2S/PCM initialization	346
	8.5.5.	2. The channel setup and DMA setup	346
	8.5.5.	3. Enable and disable the I2S/PCM	347
	8.5.6. I	2S/PCM Interface Register List	347
	8.5.7. I	2S/PCM Interface Register Description	347
	8.5.7.	1. I2S/PCM Control Register(Default Value: 0x00060000)	347
	8.5.7.	2. I2S/PCM Format Register0 (Default Value: 0x00000033)	348
	8.5.7.	3. I2S/PCM Format Register1 (Default Value: 0x00000030)	350
	8.5.7.	4. I2S/PCM Interrupt Status Register(Default Value: 0x00000010)	350
	8.5.7.		
	8.5.7.	6. I2S/PCM FIFO Control Register (Default Value: 0x000400F0)	351
	8.5.7.		
	8.5.7.		
	8.5.7.	9. I2S/PCM TX FIFO Register(Default Value: 0x00000000)	354

LCD Co	ontrol Signal	and Data Port Mapping	384
-	-	n	
	•		
9.5.		ind Power off Sequence	
9.4.		lectrical Characteristics	
9.3.		al Characteristics	
9.2.		nded Operating Conditions	
9.1.		1aximum Ratings	
Chapter 9		haracteristics	
	8.6.5.2.	Receive Descriptor	
	8.6.5.1.		
8		AC RX/TX Descriptor	
	8.6.4.27.		
	8.6.4.26.	3 ,	
	8.6.4.25.	, , ,	
	8.6.4.24.		
	8.6.4.23.	6.000 (- 0.000 0.000 0.000)	
	8.6.4.22.	,	
	8.6.4.21.	,	
	8.6.4.20.	,	
	8.6.4.19.	,	
	8.6.4.18.	5 (
	8.6.4.17.	,	
	8.6.4.16.	J (
	8.6.4.15.	,	
	8.6.4.14.	g ,	
	8.6.4.13.		
	8.6.4.12.		
	8.6.4.11.	, , ,	
	8.6.4.10.	,	
	8.6.4.9.	Receive Control 0 Register(Default Value: 0x00000000)	
	8.6.4.8.	,	
	8.6.4.7.	Transmit Flow Control Register(Default Value: 0x00000000)	
	8.6.4.6.	Transmit Control 1 Register(Default Value: 0x00000000)	
	8.6.4.5.	Transmit Control 0 Register(Default Value: 0x00000000)	
	8.6.4.4.	Interrupt Enable Register(Default Value: 0x00000000)	
	8.6.4.3.	Interrupt Status Register(Default Value: 0x00000000)	
	8.6.4.2.	Basic Control 1 Register(Default Value: 0x08000000)	362
	8.6.4.1.	Basic Control 0 Register(Default Value: 0x00000000)	361
8		AC Core Register Description	
8		AC Core Register List	
8		ck Diagram	
8	.6.1. Ove	rview	360
8.6.			
		I2S/PCM RX Channel Mapping Register (Default Value: 0x00000000)	
	8.5.7.16.		
	8.5.7.15.		
	8.5.7.14.		
	8.5.7.12. 8.5.7.13.		
	8.5.7.11. 8.5.7.12.		
	8.5.7.10. 8.5.7.11.		
	95710	I2S/PCM Clock Divide Register(Default Value: 0x00000000)	25/

Chapter 1 About This Documentation

1.1. Documentation Overview

This documentation provides an overall description of the Sochip S3 application processor, which will provide instructions to programmers from several sections, including pin description, system, memory, image, display and interface and electrical characteristics.

1.2. Acronyms and Abbreviations

The table below contains acronyms and abbreviations used in this document.

Α		
AES	Advanced Encryption Standard	A specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) in 2001
AGC	Automatic Gain Control	An adaptive system found in electronic devices that automatically controls the gain of a signal: the average output signal level is fed back to adjust the gain to an appropriate level for a range of input signal levels
АНВ	AMBA High-speed Bus	A bus protocol introduced in Advanced Microcontroller Bus Architecture version 2 published by ARM Ltd company
АРВ	Advanced Peripheral Bus	APB is designed for low bandwidth control accesses, which has an address and data phase similar to AHB, but a much reduced, low complexity signal list (for example no bursts)
AVS	Audio Video Standard	A compression standard for digital audio and video
С		
CRC	Cyclic Redundancy Check	A type of hash function used to produce a checksum in order to detect errors in data storage or transmission
CSI	CMOS Sensor Interface	The hardware block that interfaces with different image sensor interfaces and provides a standard output that can be used for subsequent image processing

D		
DES	Data Encryption Standard	A previously predominant algorithm for the encryption of electronic data
DLL	Delay-Locked Loop	A digital circuit similar to a phase-locked loop (PLL), with the main difference being the absence of an internal voltage-controlled oscillator, replaced by a delay line
DRC	Dynamic Range Compression	It reduces the volume of loud sounds or amplifies quiet sounds by narrowing or "compressing" an audio signal's dynamic range.
DVFS	Dynamic Voltage and Frequency Scaling	Dynamic voltage scaling is a power management technique where the voltage used in a component is increased or decreased, depending on circumstances. Dynamic frequency scaling is a technique whereby the frequency of a microprocessor can be automatically adjusted on the fly so that the power consumption or heat generated by the chip can be reduced. These two are often used together to save power in mobile devices.
Е		
EHCI	Enhanced Host Controller Interface	The register-level interface for a Host Controller for the USB Revision 2.0.
еММС	Embedded Multi-Media Card	An architecture consisting of an embedded storage solution with MMC interface, flash memory and controller, all in a small BGA package.
F		
FBGA	Fine Ball Grid Array	FBGA is based on BGA technology, but comes with thinner contacts and is mainly used in SoC design
G		
GIC	Generic Interrupt Controller	A centralized resource for supporting and managing interrupts in a system that includes at least one processor
I		
125	Inter IC Sound	An electrical serial bus interface standard used for connecting digital audio devices together
L		

LSB	Least Significant Bit	The bit position in a binary integer giving the units value, that is, determining whether the number is even or odd. It is sometimes referred to as the right-most bit, due to the convention in positional notation of writing less significant digits further to the right.			
LRADC	Analog to Digital Converter	Used for KEY Application			
М		1			
MAC	Media Access Control	A sublayer of the data link layer, which provides addressing and channel access control mechanisms that make it possible for several terminals or network nodes to communicate within a multiple access network that incorporates a shared medium, e.g. Ethernet.			
MII	Media Independent Interface	An interface originally designed to connect a fast Ethernet MAC-block to a PHY chip, which now has been extended to support reduced signals and increased speeds.			
MIPI	Mobile Industry Processor Interface	MIPI alliance is an open membership organization that includes leading companies in the mobile industry that share the objective of defining and promoting open specifications for interfaces inside mobile terminals.			
MSB	Most Significant Bit	The bit position in a binary number having the greatest value, which is sometimes referred to as the left-most bit due to the convention in positional notation of writing more significant digits further to the left			
N					
NTSC	National Television System Committee	An analog television system that is used in most of North America, and many other countries			
0					
ОНСІ	Open Host Controller Interface	A register-level interface that enables a host controller for USB to communicate with a host controller driver in software			
Р					
PAL	Phase Alternating Line	An analogue television color encoding system used in broadcast television systems in many countries			
PCM	Pulse Code Modulation	A method used to digitally represent sampled analog signals			

PID	Packet Identifier	Each table or elementary stream in a transport stream is identified by a 13-bit packet ID (PID). A demultiplexer extracts elementary streams from the transport stream in part by looking for packets identified by the same PID.		
S				
SPI Synchronous Peripheral Interface A synchronous serial data link standard that ope full duplex mode. Devices communicate in mass mode where the master device initiates the data in the standard that ope full duplex mode.				
Т				
TWI	Two Wire Interface	A two-wire, bidirectional serial bus that provides simple, efficient method of data exchange, minimizing the interconnection between devices.		
U				
USB OTG	Universal Serial Bus On The Go	A Dual Role Device controller, which supports both USB Host and USB Device functions.		
UART	Universal Asynchronous Receiver/ Transmitter	A serial communication interface, which translates data between parallel and serial forms. UARTs are commonly used in conjunction with communication standards.		

Chapter 2 Overview

The S3 processor represents Sochip's latest achievement in video encoding processors, which integrates a single ARM CortexTM-A7 CPU that operates at speed up to 1.2GHz with supporting numerous peripherals.

H.264 encoder by 1080p@60fps enables the S3 to capture superior shots in motion with the fine details. To enrich camera feature and enhance image quality, S3 equips an 8M HawkViewTM ISP with advanced features like spatial de-noise, chrominance de-noise, zone-based AE/AF/AWB statistics, black level correction, lens shading correction, color correction and anti-flick detection statistics. Audio subsystem includes audio codec with dedicated hardware, and supports I2S/PCM interface for connecting to an external audio codec.

The S3 processor includes one built-in DDR3, and external memory interfaces to SPI NAND/Nor flash and SD/MMC.

Designed to be a connected solution, the S3 supports WiFi or 3G/4G connectivity to enable to be controlled wirelessly from a smartphone or other remote device. Time lapse photography is also supported by the S3 processor. To reduce total system cost and enhance overall functionality, the S3 has a broad range of hardware peripherals such as UART, SPI, USB HS/FS OTG, TWI, EMAC etc.

Applications:

- Action Camera
- CDR

2.1. Processor Features

2.1.1. CPU Architecture

- ARM CortexTM-A7 MPCoreTM Processor
- Thumb-2 Technology
- Support NEON Advanced SIMD(single instruction multiple data)instruction for acceleration of media and signal processing functions
- Support Large Physical Address Extensions(LPAE)
- VFPv4 Floating Point Unit
- 32KB L1 Instruction cache and 32KB L1 Data cache
- 128KB L2 cache

2.1.2. Memory Subsystem

2.1.2.1. Boot ROM

- On-chip memory
- Size:32KB
- Support system boot from the following devices:
 - SPI Nor flash
 - SPI Nand flash
 - SD/TF card
 - eMMC flash
- Support system code download through USB OTG

2.1.2.2. SDRAM

One built-in DDR3 memory

2.1.2.3. SD/MMC Interface

- Up to three SD/MMC controllers
- 1/4/8-bit SD,SDIO,MMC mode
- Complies with eMMC standard specification V4.41, SD physical layer specification V2.0, SDIO card specification V2.0
- Support hardware CRC generation and error detection
- Support block size from 1 to 65535 bytes

2.1.3. System Peripheral

2.1.3.1. Timer

- Three on-chip timers with interrupt-based operation
- One watchdog to generate reset signal or interrupts

- 33 bits Audio/Video Sync(AVS) Counter
- 24MHz or Internal OSC clock input

2.1.3.2. High Speed Timer

- Up to two high speed timers
- Counters up to 56 bits
- Clock source is synchronized with AHB1 clock, much more accurate than other timers

2.1.3.3. GIC

• Support 16 SGIs(Software Generated Interrupt), 16 PPIs(Private Peripheral Interrupt) and 125 SPIs(Shared Peripheral Interrupts)

2.1.3.4. DMA

- Up to 8-channel DMA
- Flexible data width of 8/16/32 bits
- Support linear and IO address modes
- Support data transfer types with memory-to-memory, memory-to-peripheral, peripheral-to-memory

2.1.3.5. CCU

- 9 PLLs
- One on-chip RC oscillator
- One 24MHz oscillator
- One 32.768KHz external oscillator
- Clock management: clock gating ,clock enabling to the device modules, clock reset, clock generation, clock division

2.1.3.6. PWM

- Up to two PWM channels
- Support outputting two kinds of waveform: continuous waveform and pulse waveform
- 0% to 100% adjustable duty cycle
- Up to 24MHz output frequency

2.1.3.7. RTC

- Time,calendar
- Counters second, minutes, hours, day, week, month and year with leap year generator
- Alarm:general alarm and weekly alarm
- One 32KHz fanout

2.1.3.8. LRADC

- 6-bit resolution
- Up to two channels
- Support hold key and continuous key
- Support single key, normal key and continuous key

2.1.3.9. Security Engine

- Crypto engine
 - Support AES 128/192/256-bit with ECB,CBC,CTS,CTR mode
 - Support DES/TDES with ECB,CBC,CTR mode
 - Support SHA1 and MD5
 - 160-bit hardware PRNG with 175-bit seed
- 256-bits EFUSE

2.1.4. Display Subsystem

2.1.4.1. DE2.0

- Output size up to 1024x1024
- Support three alpha blending channel for main display
- Support four overlay layers in each channel, and has a independent scale
- Support potter-duff compatible blending operation
- Support input format YUV422/YUV420/YUV411/ARGB8888/XRGB8888/RGB888/ARGB4444/ARGB1555/RGB565

2.1.4.2. Display Output

- Support LVDS interface with single link, up to 1024x768@60fps
- Support RGB interface with DE/SYNC mode, up to 1024x768@60fps
- Support serial RGB/dummy RGB/CCIR656 interface, up to 800x480@60fps
- Support i80 interface with 18/16/9/8 bit, support TE, up to 800x480@60fps
- Support pixel format: RGB888, RGB666 and RGB565
- Dither function from RGB666/RGB565 to RGB888
- Gamma correction with R/G/B channel independence

2.1.5. Video Engine

2.1.5.1. Video Decoding

- Support video decoder for H.264 and JPEG/MJPEG
- Support H.264 BP/MP/HP up to 1080p@60fps
- Support H.264 output formats :NV21,NV12,YU12,YV12
- Support JPEG/MJPEG up to 1080p@30fps

2.1.5.2. Video Encoding

- Support H.264 video encoding up to 1080p@60fps, 720p@120fps
- JPEG baseline: picture size up to 8192x8192
- Support input picture size up to 4800x4800
- Support input formats: YU12/YV12/NV12/NV21/YUYV/YVYU/UYVY/VYUY
- Support Alpha blending
- Support thumb generation
- Support 4x2 scaling ratio: from 1/16 to 64 arbitrary non-integer ratio
- Support rotated input

2.1.6. Image Subsystem

2.1.6.1. Image Input

- Support 8/10/12-bit CMOS sensor parallel interface
- Support 8-bit CCIR656 protocol for NTSC and PAL
- Support ITU-R BT 1120 protocol for HD-CIF system
- Support 16bit interface with separate syncs
- Support MIPI-CSI2 interface compliant with MIPI-DPHY v1.0 and MIPI-CSI2 v1.0
- Support MIPI-CSI2 1/2/3/4 data lanes configuration
- Support Format:
 - YUV422-8/10 bit
 - YUV420-8/10bit(for MIPI-CSI2 only)
 - RAW-8/10/12bit
 - RGB888/RGB565(for MIPI-CSI2 only)
- Performance:
 - Still capture resolution up to 5M with parallel interface
 - Video capture resolution up to 1080p@30fps with parallel interface
 - Still capture resolution up to 8M with MIPI-CSI2 interface
 - Video capture resolution up to 1080p@60fps with MIPI-CSI2 interface
 - MIPI-DPHY maximum data rate up to 1Gbps per lane

2.1.6.2. ISP

- Support input formats:8/10-bit RAW RGB,8-bit YCbCr
- Support output formats: YCbCr420 semi-planar, YCrCb420 semi-planar, YCbCr422 semi-planar, YCbCr422 semi-planar, YUV420 planar, YUV422 planar
- Support image mirror flip and rotation
- Support two output channels
- Speed up to 8MPixels@24fps
- Defect pixel correction
- Super lens shading correction
- Anisotropic non-linear Bayer interpolation with false color suppression
- Programmable color correction
- Advanced contrast enhance and sharping
- Advanced saturation adjust
- Advanced spatial(2D) de-noise filter
- Advanced chrominance noise reduction
- Zone-based AE/AF/AWB statistics

- Anti-flick detection statistics
- Histogram statistics

2.1.7. Audio Subsystem

2.1.7.1. Audio Codec

- Two audio digital-to-analog(DAC) channels
- Two audio analog-to-digital(ADC) channels
 - 92dB SNR@A-weight
 - Supports ADC Sample Rates from 8KHz to 48KHz
- Support analog/digital volume control
- Two low-noise analog microphone bias outputs
- Analog low-power loop from microphone to headphone outputs
- Support Dynamic Range Controller adjusting the DAC playback output(DRC)
- Four audio inputs:
 - Three differential microphone inputs
 - Stereo Linein input
- Two audio outputs:
 - Stereo Headphone output
 - Differential Lineout output
- Support Automatic Gain Control(AGC) and Dynamic Range Control(DRC) adjusting the ADC recording input

2.1.7.2. I2S/PCM

- Compliant with standard Inter-IC sound(I2S) bus specification
- Compliant with left-justified, right-justified, PCM mode, and TDM(Time Division Multiplexing) format
- Full-duplex synchronous work mode
- Master and slave mode configured
- Adjustable audio sample resolution from 8-bit to 32-bit
- Sample rate from 8KHz to 192KHz
- Support 8-bit u-law and 8-bit A-law companded sample

2.1.8. External Peripherals

2.1.8.1. USB

- One USB 2.0 OTG controller with PHY
- Complies with USB2.0 Specification
- Support High-Speed(HS,480Mbps),Full-Speed(FS,12Mbps),and Low-Speed(LS,1.5Mbps) in host mode
- Complies with Enhanced Host Controller Interface (EHCI) Specification, Version 1.0, and the Open Host Controller Interface(OHCI) Specification, Version 1.0a for host mode
- Up to 8 User-Configurable Endpoints in device mode
- Support point-to-point and point-to-multipoint transfer in both host and peripheral mode

2.1.8.2. Ethernet

- Integrated an internal 10/100M PHY
- Support RGMII/MII/RMII interface
- Support 10/100/1000Mbps data transfer rate
- Support full-duplex and half-duplex operation
- Support linked-list descriptor list structure
- Programmable frame length to support Standard or Jumbo Ethernet frames with sizes up to 16 KB
- Support a variety of flexible address filtering modes

2.1.8.3. UART

- Up to three UART controllers
- 64-Bytes Transmit and receive data FIFOs for all UART
- Compliant with industry-standard 16550 UARTs
- Support Infrared Data Association(IrDA) 1.0 SIR

2.1.8.4. SPI

- Full-duplex synchronous serial interface
- Master/Slave configurable
- Mode0~3 are supported for both transmit and receive operations
- Support single and dual read mode
- Two 64-Bytes FIFO for SPI-TX and SPI-RX operation
- DMA-based or interrupt-based operation
- SPI_Clock(SPI_CLK) are configurable

2.1.8.5. TWI

- Up to two Two Wire Interface(TWI)controllers
- Support Standard mode(up to 100 Kbit/s) and Fast mode(up to 400 Kbit/s)
- Master/slave configurable
- Allows 10-bit addressing transactions

2.1.9. Package

FBGA 234 balls, 0.65mm ball pitch, 11mm x 11mm

2.2. System Block Diagram

Figure 2-1 shows the block diagram of the S3.

Figure 2-1. S3 Block Diagram

Chapter 3 Pin Description

3.1. Pin Characteristics

Table 3-1 lists the characteristics of S3 pins from seven aspects: BALL#, Pin Name, Default Function, Type, Reset State, Default Pull Up/Down, and Buffer Strength.

Table 3-1. Pin Characteristics

Ball#	Pin Name	Default Function	Туре	Reset State	Default Pull Up/Down	Buffer Strength (mA)
GPIO B	<u> </u>	•		•	-	1
В3	PB0	GPIO	I/O	Z	NO PULL	20
B4	PB1	GPIO	I/O	Z	NO PULL	20
В8	PB2	GPIO	I/O	Z	NO PULL	20
C4	PB3	GPIO	I/O	Z	NO PULL	20
C8	PB4	GPIO	I/O	Z	NO PULL	20
C7	PB5	GPIO	I/O	Z	NO PULL	20
A7	PB6	GPIO	I/O	Z	NO PULL	20
В7	PB7	GPIO	I/O	Z	NO PULL	20
В6	PB8	GPIO	I/O	Z	NO PULL	20
C6	PB9	GPIO	I/O	Z	NO PULL	20
A5	PB10	GPIO	I/O	Z	NO PULL	20
C5	PB11	GPIO	I/O	Z	NO PULL	20
B5	PB12	GPIO	I/O	Z	NO PULL	20
A2	PB13	GPIO	I/O	Z	NO PULL	20
GPIO C		•	<u> </u>			
A3	PC0	GPIO	I/O	Z	NO PULL	20
B2	PC1	GPIO	I/O	Z	NO PULL	20
B1	PC2	GPIO	I/O	Z	NO PULL	20
C2	PC3	GPIO	I/O	Z	Pull-Up	20
F3	PC4	GPIO	I/O	Z	Pull-Up	20
F4	PC5	GPIO	I/O	Z	NO PULL	20
C1	PC6	GPIO	I/O	Z	Pull-Up	20
C3	PC7	GPIO	I/O	Z	Pull-Up	20
D3	PC8	GPIO	I/O	Z	NO PULL	20
D2	PC9	GPIO	I/O	Z	NO PULL	20
D1	PC10	GPIO	I/O	Z	NO PULL	20
GPIO D	•	•	<u>'</u>	•	·	•
K15	PD0	GPIO	I/O	Z	NO PULL	20

Ball#	Pin Name	Default Function	Туре	Reset State	Default Pull Up/Down	Buffer Strength (mA)
C11	PD1	GPIO	I/O	Z	NO PULL	20
J14	PD2	GPIO	1/0	Z	NO PULL	20
J15	PD3	GPIO	1/0	Z	NO PULL	20
B16	PD4	GPIO	1/0	Z	NO PULL	20
C16	PD5	GPIO	1/0	Z	NO PULL	20
B9	PD6	GPIO	1/0	Z	NO PULL	20
A9	PD7	GPIO	1/0	Z	NO PULL	20
C15	PD8	GPIO	1/0	Z	NO PULL	20
L15	PD9	GPIO	1/0	Z	NO PULL	20
A15	PD10	GPIO	1/0	Z	NO PULL	20
B15	PD11	GPIO	1/0	Z	NO PULL	20
B14	PD12	GPIO	1/0	Z	NO PULL	20
A14	PD13	GPIO	1/0	Z	NO PULL	20
B13	PD14	GPIO	1/0	Z	NO PULL	20
A13	PD15	GPIO	1/0	Z	NO PULL	20
B12	PD16	GPIO	1/0	Z	NO PULL	20
C12	PD17	GPIO	1/0	Z	NO PULL	20
A11	PD18	GPIO	1/0	Z	NO PULL	20
B11	PD19	GPIO	1/0	Z	NO PULL	20
C10	PD20	GPIO	1/0	Z	NO PULL	20
B10	PD21	GPIO	1/0	Z	NO PULL	20
L11,L12	VCC-PD	POWER	Р	-	-	-
GPIO E						
F14	PE0	GPIO	1/0	Z	NO PULL	20
G13	PE1	GPIO	I/O	Z	NO PULL	20
C14	PE2	GPIO	1/0	Z	NO PULL	20
F15	PE3	GPIO	I/O	Z	NO PULL	20
F12	PE4	GPIO	1/0	Z	NO PULL	20
C13	PE5	GPIO	1/0	Z	NO PULL	20
E12	PE6	GPIO	I/O	Z	NO PULL	20
G15	PE7	GPIO	1/0	Z	NO PULL	20
H13	PE8	GPIO	I/O	Z	NO PULL	20
E13	PE9	GPIO	I/O	Z	NO PULL	20
J13	PE10	GPIO	I/O	Z	NO PULL	20
H14	PE11	GPIO	I/O	Z	NO PULL	20
G14	PE12	GPIO	I/O	Z	NO PULL	20
L13	PE13	GPIO	I/O	Z	NO PULL	20
L16	PE14	GPIO	1/0	Z	NO PULL	20
K13	PE15	GPIO	1/0	Z	NO PULL	20
D15	PE16	GPIO	1/0	Z	NO PULL	20
D14	PE17	GPIO	1/0	Z	NO PULL	20

Ball#	Pin Name	Default Function	Туре	Reset State	Default Pull Up/Down	Buffer Strength (mA)
E15	PE18	GPIO	I/O	Z	NO PULL	20
E16	PE19	GPIO	I/O	Z	NO PULL	20
H15	PE20	GPIO	I/O	Z	NO PULL	20
G16	PE21	GPIO	I/O	Z	NO PULL	20
J16	PE22	GPIO	I/O	Z	NO PULL	20
L14	PE23	GPIO	I/O	Z	NO PULL	20
K14	PE24	GPIO	I/O	Z	NO PULL	20
M11,M12	VCC-PE	POWER	Р	-	-	-
GPIO F		1				-1
R1	PF0	GPIO	I/O	JTAG_MS	NO PULL	20
P1	PF1	GPIO	I/O	JTAG_DI	NO PULL	20
P2	PF2	GPIO	I/O	Z	NO PULL	20
N2	PF3	GPIO	I/O	JTAG_DO	NO PULL	20
N3	PF4	GPIO	I/O	Z	NO PULL	20
M2	PF5	GPIO	I/O	JTAG_CK	NO PULL	20
M1	PF6	GPIO	I/O	Z	NO PULL	20
GPIO G	1	1		.		-1
P16	PG0	GPIO	I/O	Z	NO PULL	20
N15	PG1	GPIO	I/O	Z	NO PULL	20
P15	PG2	GPIO	I/O	Z	NO PULL	20
N16	PG3	GPIO	I/O	Z	NO PULL	20
R15	PG4	GPIO	I/O	Z	NO PULL	20
R16	PG5	GPIO	I/O	Z	NO PULL	20
M15	PG6	GPIO	I/O	Z	NO PULL	20
M14	PG7	GPIO	I/O	Z	NO PULL	20
N14	PG8	GPIO	I/O	Z	NO PULL	20
R14	PG9	GPIO	I/O	Z	NO PULL	20
T14	PG10	GPIO	I/O	Z	NO PULL	20
P14	PG11	GPIO	I/O	Z	NO PULL	20
T15	PG12	GPIO	I/O	Z	NO PULL	20
M13	PG13	GPIO	I/O	Z	NO PULL	20
System Control	•					•
R13	JTAG_SEL	-	I	-	Pull-Up	-
R7	NMI	-	I	OD	NO PULL	-
P7	RESET	-	I	-	NO PULL	-
R4	X24MIN	-	Α	-	-	-
P4	X24MOUT	-	Α	-	-	-
LRADC	•	,	<u>'</u>	•		•
Т8	LRADC0	-	А	-	-	-
R8	LRADC1	-	Α	-	-	-
MIPI_CSI	1	1	•	·	•	•

Ball#	Pin Name	Default Function	Туре	Reset State	Default Pull Up/Down	Buffer Strength (mA)
J1	MCSI-CKN	-	А	-	-	-
J2	MCSI-CKP	-	А	-	-	-
G2	MCSI-D0N	-	А	-	-	-
G3	MCSI-D0P	-	А	-	-	-
H1	MCSI-D1N	-	Α	-	-	-
H2	MCSI-D1P	-	А	-	-	-
K1	MCSI-D2N	-	А	-	-	-
K2	MCSI-D2P	-	Α	-	-	-
L2	MCSI-D3N	-	А	-	-	-
L3	MCSI-D3P	-	А	-	-	-
M4	VCC-MCSI	-	А	-	-	-
USB						
R2	USB-DM	-	А	-	-	-
T2	USB-DP	-	А	-	-	-
N7	VCC-USB	-	Р	-	-	-
AUDIO_CODEC						
P8	AGND	-	G	-	-	-
M7	AVCC	-	Р	-	-	-
N9	HBIAS	-	Α	-	-	-
N12	НРСОМ	-	Α	-	-	-
N11	НРСОМГВ	-	Α	-	-	-
P13	HPOUTL	-	0	-	-	-
N13	HPOUTR	-	0	-	-	-
M9	НРVССВР	-	Α	-	-	-
P12	HPVCCIN	-	Р	-	-	-
R12	LINEINL	-	Α	-	-	-
T12	LINEINR	-	Α	-	-	-
R6	LINEOUTL	-	Α	-	-	-
Т6	LINEOUTR	-	Α	-	-	-
P10	MBIAS	-	Α	-	-	-
R10	MICIN1N	-	Α	-	-	-
T10	MICIN1P	-	Α	-	-	-
P11	MICIN2N	-	Α	-	-	-
R11	MICIN2P	-	Α	-	-	-
R9	MICIN3N	-	A	-	-	-
P9	MICIN3P	-	Α	-	-	-
N10	VRA2	-	Α	-	-	-
ЕРНҮ						
K5	EPHY_LINK_LED	-	Α	-	-	-
P6	EPHY_RTX	-	Α	-	-	-
F1	EPHY_RXN	-	Α	-	-	-

Ball#	Pin Name	Default Function	Туре	Reset State	Default Pull Up/Down	Buffer Strength (mA)						
F2	EPHY_RXP	-	А	-	-	-						
L5	EPHY_SPD_LED	-	А	-	-	-						
E2	EPHY_TXN	-	А	-	-	-						
E3	EPHY_TXP	-	А	-	-	-						
M5	EPHY_VCC	-	Р	-	-	-						
N5	EPHY_VDD	-	Р	-	-	-						
RTC&PLL												
T5	RTC-VIO	-	Р	-	-	-						
Т3	X32KIN	-	А	-	-	-						
R3	X32KOUT	-	А	-	-	-						
P3	X32KFOUT	-	А	-	-	-						
N6	VCC-RTC	-	Р	-	-	-						
L6	VCC-PLL	-	Р	-	-	-						
DRAM	1		1	•	1	1						
H6	DVREF	-	Р	-	-	-						
J5	DZQ	-	Al	-	-	-						
F6,F7,F8,G8,H8,J8	VCC-DRAM	-	Р	-	-	-						
Power												
H11,P5	VCC-IO	-	Р	-	-	-						
M6	VDD-EFUSE	-	Р	-	-	-						
G12,H12,J11,J12, K11	VDD-CPU	-	Р	-	-	-						
K8,K9,L8,M8	VDD-SYS	-	Р	-	-	-						
A1,A16,C9,D10, D11,D12,D4,D5,D6, D7,D8,D9,E10,E11, E14,E4,E5,E6,E7,E8, E9,F10,F11,F9,G10, G11,G4,G5,G6,G7, G9,H10,H3,H4,H5, H7,H9,J10,J3,J4,J6, J7,J9,K10,K12,K3, K4,K6,K7,L10,L4,L7, L9,M10,N4,N8,R5, T1,T16	GND	-	G	-	-	-						

Note:

- 1) **Default Function** defines the default function of each pin, especially for pins with multiplexing functions;
- 2) **Type** defines the signal direction: I (Input), O (Output), I/O(Input / Output), OD(Open-Drain), A (Analog), AI(Analog Input), AO(Analog Output), A I/O(Analog Input / Output), P (Power), G (Ground);
- 3) Reset State defines the state of the terminal at reset: Z for high-impedance;
- 4) **Default Pull Up/Down** defines the presence of an internal pull up or pull down resister. Unless otherwise specified, the pin is default to be floating, and can be configured as pull up or pull down;
- 5) **Buffer Strength** defines drive strength of the associated output buffer.

3.2. **GPIO Multiplexing Functions**

The following table provides a description of the S3 GPIO multiplexing functions.

Table 3-2. Multiplexing Functions

Pin Name	Default Function	IO Type	Default IO State	Default Pull-up/ down	Function 2	Function3	Function 4	Function 5	Function 6
PB0	GPIO	I/O	DIS	Z	UART2_TX	-	-	-	PB_EINTO
PB1		I/O	DIS	Z	UART2_RX	-	-	-	PB_EINT1
PB2		I/O	DIS	Z	UART2_RTS	-	-	-	PB_EINT2
PB3		I/O	DIS	Z	UART2_CTS	-	-	-	PB_EINT3
PB4		I/O	DIS	Z	PWM0	-	-	-	PB_EINT4
PB5		I/O	DIS	Z	PWM1	-	-	-	PB_EINT5
PB6		I/O	DIS	Z	TWI0_SCK	-	-	-	PB_EINT6
PB7		I/O	DIS	Z	TWI0_SDA	-	-	-	PB_EINT7
PB8		I/O	DIS	Z	TWI1_SCK	UARTO_TX	-	-	PB_EINT8
PB9		I/O	DIS	Z	TWI1_SDA	UARTO_RX	-	-	PB_EINT9
PB10		I/O	DIS	Z	JTAG_MS	-	-	-	PB_EINT10
PB11		I/O	DIS	Z	JTAG_CK	-	-	-	PB_EINT11
PB12		I/O	DIS	Z	JTAG_DO	-	-	-	PB_EINT12
PB13	1/0	I/O	DIS	Z	JTAG_DI	-	-	-	PB_EINT13
PC0	GPIO	I/O	DIS	Z	SDC2_CLK	SPI0_MISO	-	-	-
PC1		1/0	DIS	Z	SDC2_CMD	SPIO_CLK	-	-	-
PC2		1/0	DIS	Z	SDC2_RST	SPIO_CS	-	-	-
PC3		I/O	DIS	Z	SDC2_D0	SPI0_MOSI	-	-	-
PC4		1/0	DIS	Z	SDC2_D1	-	-	-	-
PC5		1/0	DIS	Z	SDC2_D2	-	-	-	-
PC6		I/O	DIS	Z	SDC2_D3	-	-	-	-
PC7		1/0	DIS	Z	SDC2_D4	-	-	-	-
PC8		I/O	DIS	Z	SDC2_D5	-	-	-	-
PC9		I/O	DIS	Z	SDC2_D6	-	-	-	-
PC10		I/O	DIS	Z	SDC2_D7	-	-	-	-
PD0	GPIO	I/O	DIS	Z	LCD_D2	-	RGMII_RXD3/ MII_RXD3 / RMII_NULL	-	1
PD1		1/0	DIS	Z	LCD_D3	-	RGMII_RXD2/ MII_RXD2/ RMII_NULL	-	-
PD2		1/0	DIS	Z	LCD_D4	-	RGMII_RXD1/ MII_RXD1/ RMII_RXD1	-	-
PD3		1/0	DIS	Z	LCD_D5	-	RGMII_RXD0/ MII_RXD0/ RMII_RXD0	-	-
PD4		1/0	DIS	Z	LCD_D6	-	RGMII_RXCK/ MII_RXCK/ RMII_NULL	-	-
PD5		1/0	DIS	Z	LCD_D7	-	RGMII_RXCTL/ MII_RXDV/	-	-

Pin Name	Default Function	IO Type	Default IO State	Default Pull-up/ down	Function 2	Function3	Function 4	Function 5	Function 6
							RMII_CRS_DV		
PD6		1/0	DIS	Z	LCD_D10	-	RGMII_NULL/ MII_RXERR/ RMII_RXER	-	-
PD7		I/O	DIS	Z	LCD_D11	-	RGMII_TXD3/ MII_TXD3/ RMII_NULL	-	-
PD8		1/0	DIS	Z	LCD_D12	-	RGMII_TXD2/ MII_TXD2/ RMII_NULL	-	-
PD9		1/0	DIS	Z	LCD_D13	-	RGMII_TXD1/ MII_TXD1/ RMII_TXD1	-	-
PD10		I/O	DIS	Z	LCD_D14	-	RGMII_TXD0/ MII_TXD0/ RMII_TXD0	-	-
PD11		1/0	DIS	Z	LCD_D15	-	RGMII_NULL/ MII_CRS/ RMII_NULL	-	-
PD12		1/0	DIS	Z	LCD_D18	LVDS_VP0	RGMII_TXCK/ MII_TXCK/ RMII_TXCK	-	-
PD13		1/0	DIS	Z	LCD_D19	LVDS_VN0	RGMII_TXCTL/ MII_TXEN/ RMII_TXEN	-	-
PD14		1/0	DIS	Z	LCD_D20	LVDS_VP1	RGMII_NULL/ MII_TXERR/ RMII_NULL	-	-
PD15		1/0	DIS	Z	LCD_D21	LVDS_VN1	RGMII_CLKIN/ MII_COL/ RMII_NULL	-	-
PD16		1/0	DIS	Z	LCD_D22	LVDS_VP2	MDC	-	-
PD17		1/0	DIS	Z	LCD_D23	LVDS_VN2	MDIO	-	-
PD18		1/0	DIS	Z	LCD_CLK	LVDS_VPC	-	-	-
PD19		1/0	DIS	Z	LCD_DE	LVDS_VNC	-	-	-
PD20		1/0	DIS	Z	LCD_HSYNC	LVDS_VP3	-	-	-
PD21		1/0	DIS	Z	LCD_VSYNC	LVDS_VN3	-	-	-
PE0		1/0	DIS	Z	CSI_PCLK	LCD_CLK	-	-	-
PE1		1/0	DIS	Z	CSI_MCLK	LCD_DE	-	-	-
PE2		I/O	DIS	Z	CSI_HSYNC	LCD_HSYNC	-	-	-
PE3		1/0	DIS	Z	CSI_VSYNC	LCD_VSYNC	-	-	-
PE4		1/0	DIS	Z	CSI_D0	LCD_D2	-	-	-
PE5		I/O	DIS	Z	CSI_D1	LCD_D3	-	-	-
PE6	GPIO	I/O	DIS	Z	CSI_D2	LCD_D4	-	-	-
PE7		I/O	DIS	Z	CSI_D3	LCD_D5	-	-	-
PE8		1/0	DIS	z	CSI_D4	LCD_D6	-	-	-
PE9		1/0	DIS	Z	CSI_D5	LCD_D7	-	-	-
PE10		I/O	DIS	Z	CSI_D6	LCD_D10	-	-	-
PE11		I/O	DIS	Z	CSI_D7	LCD_D11	-	-	-
PE12		I/O	DIS	Z	CSI_D8	LCD_D12	-	-	-

Pin Name	Default Function	IO Type	Default IO State	Default Pull-up/ down	Function 2	Function3	Function 4	Function 5	Function 6
PE13		I/O	DIS	Z	CSI_D9	LCD_D13	-	-	-
PE14		I/O	DIS	Z	CSI_D10	LCD_D14	-	-	-
PE15		I/O	DIS	Z	CSI_D11	LCD_D15	-	-	-
PE16		1/0	DIS	Z	CSI_D12	LCD_D18	-	-	-
PE17		I/O	DIS	Z	CSI_D13	LCD_D19	-	-	-
PE18		I/O	DIS	Z	CSI_D14	LCD_D20	-	-	-
PE19		I/O	DIS	Z	CSI_D15	LCD_D21	-	-	-
PE20		1/0	DIS	Z	CSI_FIELD	CSI_MIPI_M CLK	-	-	-
PE21		I/O	DIS	Z	CSI_SCK	TWI1_SCK	UART1_TX	-	-
PE22		I/O	DIS	Z	CSI_SDA	TWI1_SDA	UART1_RX	-	-
PE23		I/O	DIS	Z	-	LCD_D22	UART1_RTS	-	-
PE24		I/O	DIS	Z	-	LCD_D23	UART1_CTS	-	-
PF0		1/0	JTAG_M S	Z	SDC0_D1	JTAG_MS	-	-	-
PF1		I/O	JTAG_DI	Z	SDC0_D0	JTAG_DI	-	-	-
PF2		I/O	DIS	Z	SDC0_CLK	UARTO_TX	-	-	-
PF3	GPIO	1/0	JTAG_D O	Z	SDC0_CMD	JTAG_DO	-	-	-
PF4		I/O	DIS	Z	SDC0_D3	UARTO_RX	-	-	-
PF5		1/0	JTAG_C K	Z	SDC0_D2	JTAG_CK	-	-	-
PF6		I/O	DIS	Z			-	-	-
PG0		1/0	DIS	Z	SDC1_CLK	-	-	-	PG_EINT0
PG1		I/O	DIS	Z	SDC1_CMD	-	-	-	PG_EINT1
PG2		I/O	DIS	Z	SDC1_D0	-	-	-	PG_EINT2
PG3		I/O	DIS	Z	SDC1_D1	-	-	-	PG_EINT3
PG4		I/O	DIS	Z	SDC1_D2	-	-	-	PG_EINT4
PG5		I/O	DIS	Z	SDC1_D3	-	-	-	PG_EINT5
PG6	GPIO	I/O	DIS	Z	UART1_TX	-	-	-	PG_EINT6
PG7	J GFIO	I/O	DIS	Z	UART1_RX	-	-	-	PG_EINT7
PG8		I/O	DIS	Z	UART1_RTS	-	-	-	PG_EINT8
PG9		I/O	DIS	Z	UART1_CTS	-	-	-	PG_EINT9
PG10		I/O	DIS	Z	PCM_SYNC	-	-	-	PG_EINT10
PG11]	I/O	DIS	Z	PCM_BCLK	-	-	-	PG_EINT11
PG12]	I/O	DIS	Z	PCM_DOUT	-	-	-	PG_EINT12
PG13		I/O	DIS	Z	PCM_DIN	-	-	-	PG_EINT13

3.3. Detailed Pin/Signal Description

The following table shows the detailed function description of every pin/signal based on the different interface.

Table 3-3. Detailed Pin Description

Pin/Signal Name	Description	Туре
DRAM		
DZQ	DRAM ZQ Calibration	Al
DVREF	DRAM Reference Voltage Input	Р
VCC-DRAM	DRAM Power Supply	Р
System Control		
NMI	Non-Maskable Interrupt	I
RESET	RESET Signal	I
JTAG_SEL	JTAG Mode Select	I
X24MIN	Clock Input of 24MHz Crystal	Al
X24MOUT	Clock Output of 24MHz Crystal	AO
RTC&PLL		
RTC-VIO	Internal LDO Output Bypass	Р
X32KIN	Clock Input of 32768Hz Crystal	Al
X32KOUT	Clock Output of 32768Hz Crystal	AO
X32KFOUT	Clock Output of LOSC	OD
VCC-RTC	RTC Power Supply	Р
VCC-PLL	PLL Power Supply	Р
USB		
USB-DM	USB Data Signal Negative	A I/O
USB-DP	USB Data Signal Positive	A I/O
VCC-USB	USB Power Supply	Р
LRADC		-
LRADC0	ADC Input for Key0	Al
LRADC1	ADC Input for Key1	Al
AUDIO CODEC		
LINEINL	LINE-IN Left Channel Input	Al
LINEINR	LINE-IN Right Channel Input	Al
LINEOUTL	LINE-OUT Left Channel Output	AO
LINEOUTR	LINE-OUT Right Channel Output	AO
HBIAS	Master Analog Headphone Bias Voltage Output	AO
НРСОМ	Headphone Common Reference Output	AO
HPCOMFB	Headphone Common Reference Feedback Input	Al
HPOUTL	Headphone Output Left Channel	AO
HPOUTR	Headphone Output Right Channel	AO
HPVCCBP	Headphone VCC Bypass	AO
HPVCCIN	Headphone VCC Input	Р
MBIAS	Master Analog Microphone Bias Voltage Output	AO

Pin/Signal Name	Description	Туре
MICIN1N	Microphone Negative Input 1	Al
MICIN1P	Microphone Positive Input 1	Al
MICIN2N	Microphone Negative Input2	Al
MICIN2P	Microphone Positive Input 2	Al
MICIN3N	Microphone Negative Input 3	Al
MICIN3P	Microphone Positive Input 3	Al
VRA2	Reference Voltage	AO
AVCC	Power Supply for Analog Part	Р
ЕРНҮ		
EPHY_RXP	Transceiver Positive Output/Input	A I/O
EPHY_RXN	Transceiver Negative Output/Input	A I/O
EPHY_TXP	Transceiver Positive Output/Input	A I/O
EPHY_TXN	Transceiver Negative Output/Input	A I/O
EPHY_RTX	EPHY External Resistance to Ground	Al
EPHY_LINK_LED	EPHY LINK Up/Down Indicator LED	0
EPHY_SPD_LED	EPHY 10M/100M Indicator LED	0
EPHY_VDD	Analog Low Power Supply for EPHY	Р
EPHY_VCC	Analog High Power Supply for EPHY	Р
SD /MMC		
SDC0_CMD	Command Signal for SD/TF Card	1/0
SDC0_CLK	Clock for SD/TF Card	0
SDC0_D[3:0]	Data Input and Output for SD/TF Card	I/O
SDC1_CMD	Command Signal for SDIO WIFI	1/0
SDC1_CLK	Clock for SDIO WIFI	0
SDC1_D[3:0]	Data Input and Output for SDIO WIFI	1/0
SDC2_CMD	Command Signal for SD/eMMC	1/0
SDC2_CLK	Clock for SD/eMMC	0
SDC2_D[7:0]	Data Input and Output for SD/eMMC	1/0
SDC2_RST	Reset Signal for SD/eMMC	0
I2S/PCM		·
PCM_SYNC	I2S/PCM Sample Rate Clock/Sync	1/0
PCM_BCLK	I2S/PCM Sample Rate Clock	1/0
PCM_DOUT	I2S/PCM Serial Data Output	0
PCM_DIN	I2S/PCM Serial Data Input	1
Interrupt		
PB_EINT[21:0]	GPIO B Interrupt	I
PG_EINT[13:0]	GPIO G Interrupt	I
PWM	·	
PWM0	Pulse Width Modulation Output Channel0	0
PWM1	Pulse Width Modulation Output Channel1	0
LCD	<u>'</u>	<u>'</u>
LCD_D[23:0]	LCD Data Output	0

Pin/Signal Name	Description	Туре
LCD_CLK	LCD Clock Signal	0
LCD_DE	LCD Data Enable	0
LCD_HSYNC	LCD Horizontal SYNC	0
LCD_VSYNC	LCD Vertical SYNC	0
LVDS		
LVDS_VP[3:0]	LVDS Data Positive Signal Output	AO
LVDS_VN[3:0]	LVDS Data Negative Signal Output	AO
LVDS_VPC	LVDS Clock Positive Signal Output	AO
LVDS_VNC	LVDS Clock Negative Signal Output	AO
CSI		
CSI_PCLK	CSI Pixel Clock	ı
CSI_MCLK	CSI Master Clock	0
CSI_HSYNC	CSI Horizontal SYNC	1
CSI_VSYNC	CSI Vertical SYNC	I
CSI_D[15:0]	CSI Data Input	I
CSI_SCK	CSI Command Serial Clock Signal	1/0
CSI_SDA	CSI Command Serial Data Signal	1/0
CSI_FIELD	CSI Field Signal	1/0
MIPI_CSI		
MCSI-CKN	MIPI CSI Negative Differential Clock Line	Al
MCSI-CKP	MIPI CSI Positive Differential Clock Line	Al
MCSI-D0N	MIPI CSI Negative Differential Data Line0	Al
MCSI-D0P	MIPI CSI Positive Differential Data Line0	Al
MCSI-D1N	MIPI CSI Negative Differential Data Line1	Al
MCSI-D1P	MIPI CSI Positive Differential Data Line1	Al
MCSI-D2N	MIPI CSI Negative Differential Data Line2	Al
MCSI-D2P	MIPI CSI Positive Differential Data Line2	Al
MCSI-D3N	MIPI CSI Negative Differential Data Line3	AI
MCSI-D3P	MIPI CSI Positive Differential Data Line3	Al
VCC-MCSI	MIPI CSI Power Supply	Р
EMAC		
RGMII_RXD3/MII_RXD3/RMII_NULL	RGMII/MII Receive Data	1
RGMII_RXD2/MII_RXD2/RMII_NULL	RGMII/MII Receive Data	I
RGMII_RXD1/MII_RXD1/RMII_RXD1	RGMII/MII /RMII Receive Data	I
RGMII_RXD0/MII_RXD0/RMII_RXD0	RGMII/MII /RMII Receive Data	I
RGMII_RXCK/MII_RXCK/RMII_NULL	RGMII/MII Receive Clock	I
RGMII_RXCTL/MII_RXDV/RMII_CRS_DV	RGMII Receive Control/MII Receive Enable/RMII Carrier Sense-Receive Data Valid	I
RGMII_NULL/MII_RXERR/RMII_RXER	MII/RMII Receive Error	1
RGMII_TXD3/MII_TXD3/RMII_NULL	RGMII/MII Transmit Data	0
RGMII_TXD2/MII_TXD2/ RMII_NULL	RGMII/MII Transmit Data	0
RGMII_TXD1/MII_TXD1/ RMII_TXD1	RGMII/MII /RMII Transmit Data	0

Pin/Signal Name	Description	Туре
RGMII_TXD0/MII_TXD0/ RMII_TXD0	RGMII/MII /RMII Transmit Data	0
RGMII_NULL/MII_CRS/RMII_NULL	MII Carrier Sense	I
RGMII_TXCK/MII_TXCK/RMII_TXCK	RGMII/MII /RMII Transmit Clock: Output Pin for RGMII, Input Pin for MII/RMII	1/0
RGMII_TXCTL/MII_TXEN/RMII_TXEN	RGMII Transmit Control/MII Transmit Enable/RMII Transmit Enable: Output Pin for RGMII/RMII, Input Pin for MII	1/0
RGMII_NULL/MII_TXERR/RMII_NULL	MII Transmit Error	0
RGMII_CLKIN/MII_COL/RMII_NULL	RGMII Transmit Clock from External/MII Collision Detect	1
MDC	RGMII/MII /RMII Management Data Clock	0
MDIO	RGMII/MII /RMII Management Data Input/Output	1/0
SPI		
SPIO_CS	SPI Chip Select signal, Low Active	1/0
SPIO_CLK	SPI Clock Signal	1/0
SPI0_MOSI	SPI Master Data Out, Slave Data In	1/0
SPIO_MISO	SPI Master Data In, Slave Data Out	1/0
UART		
UARTO_TX	UARTO Data Transmit	0
UARTO_RX	UARTO Data Receive	I
UART1_TX	UART1 Data Transmit	0
UART1_RX	UART1 Data Receive	I
UART1_CTS	UART1 Data Clear To Send	1
UART1_RTS	UART1 Data Request To Send	0
UART2_TX	UART2 Data Transmit	0
UART2_RX	UART2 Data Receive	1
UART2_CTS	UART2 Data Clear To Send	1
UART2_RTS	UART2 Data Request To Send	0
TWI		
TWI0_SCK	TWI0 Serial Clock Signal	1/0
TWI0_SDA	TWI0 Serial Data Signal	I/O
TWI1_SCK	TWI1 Serial Clock Signal	I/O
TWI1_SDA	TWI1 Serial Data Signal	I/O
JTAG		
JTAG_MS	JTAG Mode Select	I
JTAG_CK	JTAG Clock Signal	I
JTAG_DO	JTAG Data Output	0
JTAG_DI	JTAG Data Input	1

Chapter 4 System

This section describes the S3 system part from the following aspects:

- Boot System
- CCU
- System Control
- Timer
- High-speed Timer
- PWM
- DMA
- GIC
- Crypto Engine
- Security ID
- LRADC
- RTC
- Audio Codec
- Port Controller

4.1. Memory Mapping

Module	Address	Size (byte)
SRAM A1	0x0000 00000x0000 3FFF	16K
SRAM C	0x0000 40000x0000 EFFF	44K
DE	0x0100 00000x011F FFFF	2M
System Control	0x01C0 00000x01C0 0FFF	4K
DMA	0x01C0 20000x01C0 2FFF	4K
TCON	0x01C0 C0000x01C0 CFFF	4K
VE	0x01C0 E0000x01C0 EFFF	4K
SD/MMC 0	0x01C0 F0000x01C0 FFFF	4K
SD/MMC 1	0x01C1 00000x01C1 0FFF	4K
SD/MMC 2	0x01C1 10000x01C1 1FFF	4K
SID	0x01C1 40000x01C1 43FF	1K
Crypto Engine	0x01C1 50000x01C1 5FFF	4K
USB OTG_Device	0x01C1 90000x01C1 9FFF	4K
USB OTG_EHCIO/OHCIO	0x01C1 A0000x01C1 AFFF	4K
CCU	0x01C2 00000x01C2 03FF	1K
PIO	0x01C2 08000x01C2 0BFF	1K
TIMER	0x01C2 0C000x01C2 0FFF	1K
PWM	0x01C2 14000x01C2 17FF	1K
I2S/PCM	0x01C2 20000x01C2 23FF	1K
LRADC	0x01C2 28000x01C2 2BFF	1K
AC	0x01C2 2C000x01C2 33FF	2K
UART 0	0x01C2 80000x01C2 83FF	1K
UART 1	0x01C2 84000x01C2 87FF	1K
UART 2	0x01C2 88000x01C2 8BFF	1K
TWI 0	0x01C2 AC000x01C2 AFFF	1K
TWI 1	0x01C2 B0000x01C2 B3FF	1K
EMAC	0x01C3 00000x01C3 FFFF	64K
HSTMR	0x01C6 00000x01C6 0FFF	4K
DRAMCOM	0x01C6 20000x01C6 2FFF	4K
DRAMCTL0	0x01C6 30000x01C6 3FFF	4K
DRAMPHY0	0x01C6 50000x01C6 5FFF	4K
SPI	0x01C6 80000x01C6 8FFF	4K
SCU Space	0x01C80000	
	GIC_DIST: 0x01C80000 + 0x1000	
	GIC_CPUIF:0x01C80000 + 0x2000	
CSI	0x01CB 00000x01CF FFFF	320K
RTC	0x01c2 04000x01C2 07FF	1K
CoreSight Debug	0x3F50 00000x3F51 FFFF	128K
TSGEN RO	0x3F50 60000x3F50 6FFF	4K
TSGEN CTRL	0x3F50 70000x3F50 7FFF	4K
DRAM	0x4000 00000xBFFF FFFF	2G
BROM	0xFFFF 0000—0xFFFF 7FFF	32K

4.2. Boot System

The boot system can boot from SPI NOR Flash, SPI NAND Flash, SD Card and USB for different application. There is one 32KB ROM In the system . The SPIO, SDCO, SDC2 controller are used for booting system.

Figure 4-1. Boot System Sequence Diagram

4.3. CCU

4.3.1. Overview

The CCU controls the PLLs configuration and most of the clock generation, division, distribution, synchronization and gating. CCU input signals include the external clock for the reference frequency (24MHz). The outputs from CCU are mostly clocks to other blocks in the system.

The CCU includes the following features:

- 9 PLLs, independent PLL for CPU
- Bus Source and Divisions
- Clock Output Control
- PLLs Bias Control
- PLLs Tunning Control
- PLLs Pattern Control
- Configuring Modules Clock
- Bus Clock Gating
- Bus Software Reset

4.3.2. Functionalities Description

4.3.2.1. System Bus

Figure 4-2. System Bus Tree

4.3.2.2. Bus Clock Tree

Figure 4-3. Bus Clock Tree

4.3.3. Typical Applications

Clock output of PLL_CPU is used only for CPU, and the frequency factor can be dynamically modified for DVFS; Clock output of PLL_AUDIO can be used for I2S/PCM, AC DIGITAL etc, and dynamic frequency scaling is not supported; Clock output of PLL_PERIPHO can be used for MBUS/AHB1/APB1/APB2 and MMCO/MMC1/MMC2//CE/SPI/DE etc, and dynamic frequency scaling is not supported;

Clock output of PLL_PERIPH1 can be used for MMC0/MMC1/MMC2/SPI etc, and dynamic frequency scaling is not supported;

Clock output of PLL_VIDEO can be used for DE/TCON/CSI, and dynamic frequency scaling is not supported;

Clock output of PLL_VE can be used for CSI/VE, and dynamic frequency scaling is not supported;

Clock output of PLL DDRO can be used for MBUS and DRAM, and dynamic frequency scaling is not supported;

Clock output of PLL DDR1 can be used for DRAM, and dynamic frequency scaling is supported;

4.3.4. Register List

Module Name	Base Address
CCU	0x01C20000

Register Name	Offset	Description
PLL_CPU_CTRL_REG	0x0000	PLL_CPU Control Register
PLL_AUDIO_CTRL_REG	0x0008	PLL_AUDIO Control Register
PLL_VIDEO_CTRL_REG	0x0010	PLL_VIDEO Control Register
PLL VE CTRL REG	0x0018	PLL VE Control Register
PLL_DDR0_CTRL_REG	0x0020	PLL_DDR0 Control Register
PLL_PERIPHO_CTRL_REG	0x0028	PLL PERIPHO Control Register
PLL ISP CTRL REG	0x002C	PLL_ISP Control Register
PLL PERIPH1 CTRL REG	0x0044	PLL_PERIPH1 Control Register
PLL_DDR1_CTRL_REG	0x004C	PLL_DDR1 Control Register
CPU_AXI_CFG_REG	0x0050	CPU/AXI Configuration Register
AHB_APB0_CFG_REG	0x0054	AHB/APB0 Configuration Register
APB1 _CFG_REG	0x0058	APB1 Configuration Register
AHB2 CFG REG	0x005C	AHB2 Configuration Register
BUS_CLK_GATING_REG0	0x0060	Bus Clock Gating Register 0
BUS_CLK_GATING_REG1	0x0064	Bus Clock Gating Register 1
BUS_CLK_GATING_REG2	0x0068	Bus Clock Gating Register 2
BUS_CLK_GATING_REG3	0x006C	Bus Clock Gating Register 3
BUS_CLK_GATING_REG4	0x0070	Bus Clock Gating Register4
SDMMC0_CLK_REG	0x0088	SDMMC0 Clock Register
SDMMC1_CLK_REG	0x008C	SDMMC1 Clock Register
SDMMC2_CLK_REG	0x0090	SDMMC2 Clock Register
CE_CLK_REG	0x009C	CE Clock Register
SPI_CLK_REG	0x00A0	SPI Clock Register
I2S/PCM_CLK_REG	0x00B0	I2S/PCM Clock Register
USBPHY_CFG_REG	0x00CC	USBPHY Configuration Register
DRAM_CFG_REG	0x00F4	DRAM Configuration Register
PLL_DDR1_CFG_REG	0x00F8	PLL_DDR Configuration Register
MBUS_RST_REG	0x00FC	MBUS Reset Register
DRAM_CLK_GATING_REG	0x0100	DRAM Clock Gating Register
DE_CLK_REG	0x0104	DE Clock Register
TCON_CLK_REG	0x0118	TCON Clock Register
CSI_MISC_CLK_REG	0x0130	CSI_MISC Clock Register
CSI_CLK_REG	0x0134	CSI Clock Register
VE_CLK_REG	0x013C	VE Clock Register
AC_DIG_CLK_REG	0x0140	AC Digital Clock Register
AVS_CLK_REG	0x0144	AVS Clock Register
MBUS_CLK_REG	0x015C	MBUS Clock Register
MIPI_CSI_REG	0x016C	MIPI_CSI Register
PLL_STABLE_TIME_REG0	0x0200	PLL Stable Time Register0
PLL_STABLE_TIME_REG1	0x0204	PLL Stable Time Register1
PLL_CPU_BIAS_REG	0x0220	PLL_CPU Bias Register
PLL_AUDIO_BIAS_REG	0x0224	PLL_AUDIO Bias Register
PLL_VIDEO_BIAS_REG	0x0228	PLL_VIDEO Bias Register
PLL_VE_BIAS_REG	0x022C	PLL_VE Bias Register
PLL_DDRO_BIAS_REG	0x0230	PLL_DDRO Bias Register
PLL_PERIPHO_BIAS_REG	0x0234	PLL_PERIPHO Bias Register
PLL_ISP_BIAS_REG	0x0238	PLL_ISP Bias Register

PLL_PERIPH1_BIAS_REG	0x0244	PLL_PERIPH1 Bias Register
PLL_DDR1_BIAS_REG	0x024C	PLL_DDR1 Bias Register
PLL_CPU_TUN_REG	0x0250	PLL_CPU Tuning Register
PLL_DDR0_TUN_REG	0x0260	PLL_DDR0 Tuning Register
PLL_CPU_PAT_CTRL_REG	0x0280	PLL_CPU Pattern Control Register
PLL_AUDIO_PAT_CTRL_REG	0x0284	PLL_AUDIO Pattern Control Register
PLL_VIDEO_PAT_CTRL_REG	0x0288	PLL_VIDEO Pattern Control Register
PLL_VE_PAT_CTRL_REG	0x028C	PLL_VE Pattern Control Register
PLL_DDR0_PAT_CTRL_REG	0x0290	PLL_DDR0 Pattern Control Register
PLL_ISP_PAT_CTRL_REG	0x0298	PLL_ISP Pattern Control Register
PLL_PERIPH1_PAT_CTRL_REG	0x02A4	PLL_PERIPH1 Pattern Control Register
PLL_DDR1_PAT_CTRL_REG0	0x02AC	PLL_DDR1 Pattern Control Register0
PLL_DDR1_PAT_CTRL_REG1	0x02B0	PLL_DDR1 Pattern Control Register1
BUS_SOFT_RST_REG0	0x02C0	Bus Software Reset Register 0
BUS_SOFT_RST_REG1	0x02C4	Bus Software Reset Register 1
BUS_SOFT_RST_REG2	0x02C8	Bus Software Reset Register 2
BUS_SOFT_RST_REG3	0x02D0	Bus Software Reset Register 3
BUS_SOFT_RST_REG4	0x02D8	Bus Software Reset Register 4
PS_CTRL_REG	0x0300	PS Control Register
PS_CNT_REG	0x0304	PS Counter Register

4.3.5. Register Description

4.3.5.1. PLL_CPU Control Register (Default Value: 0x00001000)

Offset: 0x0000			Register Name: PLL_CPU_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	PLL_ENABLE.
			0: Disable
			1: Enable
			The PLL Output= (24MHz*N*K)/(M*P).
			The PLL output is for the CPUX Clock.
			Note: The PLL output clock must be in the range of 200MHz~2.6GHz.
			Its default is 408MHz.
30:29	/	/	
28	R	0x0	LOCK
			0: Unlocked
			1: Locked (It indicates that the PLL has been stable.)
27:25	/	/	
24	R/W	0x0	CPUX_SDM_EN.
			0: Disable
			1: Enable
23:18	/	/	
17:16	R/W	0x0	PLL_OUT_EXT_DIVP
			PLL Output external divider P
			00: /1
			01: /2
			10: /4
			11:/

			Note:The P factor only use in the condition that PLL output less than 288 MHz.
15:13	/	/	/
12:8	R/W	0x10	PLL_FACTOR_N
			PLL Factor N.
			Factor=0, N=1
			Factor=1, N=2
			Factor=2, N=3
			Factor=31, N=32
7:6	/	/	/
5:4	R/W	0x0	PLL_FACTOR_K.
			PLL Factor K.(K=Factor + 1)
			The range is from 1 to 4.
3:2	/	/	/
1:0	R/W	0x0	PLL_FACTOR_M.
			PLL Factor M. (M=Factor + 1)
			The range is from 1 to 4.

4.3.5.2. PLL_Audio Control Register (Default Value: 0x00035514)

Offset: 0	x0008		Register Name: PLL_AUDIO_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	PLL_ENABLE.
			0: Disable
			1: Enable.
			The PLL is for Audio.
			$PLL _AUDIO = (24MHz*N)/(M*P)$
			PLL_AUDIO(8X)= (24MHz*N*2)/M
			PLL_AUDIO(4X)=PLL_AUDIO(8X)/2
			PLL_AUDIO(2X)=PLL_AUDIO(4X)/2
			The PLL output clock must be in the range of 20MHz~200MHz.
			Its default is 24.571MHz.
30:29	/	/	1
28	R	0x0	LOCK.
			0: Unlocked
			1: Locked (It indicates that the PLL has been stable.)
27:25	/	/	
24	R/W	0x0	PLL_SDM_EN.
			0: Disable
			1: Enable
			In this case, the PLL_FACTOR_N only low 4 bits are valid (N: The range is
22.20	,	,	from 1 to 16).
23:20	7	/	/ DIL DOCTON D
19:16	R/W	0x3	PLL_POSTDIV_P.
			Post-div factor (P= Factor+1) The space is from 1 to 16
1 [1	1	The range is from 1 to 16.
15 14:8	R/W	0x55	/ DIL FACTOR N
14.0	K/VV	UXSS	PLL_FACTOR_N. PLL Factor N.
			Factor=0, N=1
			· ·
			Factor=1, N=2

			 Factor=127, N=128
7:5	/	/	/
4:0	R/W	0x14	PLL_PREDIV_M.
			PLL Pre-div Factor(M = Factor+1).
			The range is from 1 to 32.

4.3.5.3. PLL_VIDEO Control Register (Default Value: 0x03006207)

Offset: 0	x0010		Register Name: PLL_VIDEO_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	PLL_ENABLE.
			0: Disable
			1: Enable
			In the integer mode, the PLL Output = (24MHz*N)/M.
			In the fractional mode, the PLL Output is select by bit 25.
			Note: In the Clock Control Module, PLL(1X) Output=PLL while PLL(2X)
			Output=PLL * 2.
			The PLL output clock must be in the range of 30MHz~600MHz.
			Its default is 297MHz.
30	R/W	0x0	PLL_MODE.
			0: Manual Mode
			1: Auto Mode (Controlled by DE)
29	/	/	/
28	R	0x0	LOCK.
			0: Unlocked
			1: Locked (It indicates that the PLL has been stable.)
27:26	/	/	/
25	R/W	0x1	FRAC_CLK_OUT.
			PLL clock output when PLL_MODE_SEL=0(PLL_PREDIV_M factor must be set
			to 0); No meaning when PLL_MODE_SEL =1.
			0: PLL Output=270MHz
			1: PLL Output =297MHz
24	R/W	0x1	PLL_MODE_SEL.
			0: Fractional Mode
			1: Integer Mode
			Note: When in Fractional mode, the Per Divider M should be set to 0.
23:21	/	/	1
20	R/W	0x0	
			1: Enable
		/	
14:8	R/W	0x62	PLL_FACTOR_N.
			PLL Factor N.
			Factor=2, N=3
			 Factor=127, N=128
7:4	/	/	/
	R/W	0x7	PLL PREDIV M.
3.0	',''		
19:15 14:8 7:4 3:0	R/W / R/W / R/W	0x0 / 0x62 / 0x7	Factor=0, N=1 Factor=1, N=2 Factor=2, N=3

I The range is from 1 to 16	
The range is from 1 to 16.	

4.3.5.4. PLL_VE Control Register (Default Value: 0x03006207)

Offset: 0	x0018		Register Name: PLL_VE_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	PLL_ENABLE.
			0: Disable
			1: Enable
			In the integer mode, The PLL Output = (24MHz*N)/M.
			In the fractional mode, the PLL Output is select by bit 25.
			Note: The PLL output clock must be in the range of 30MHz~600MHz.
			Its default is 297MHz.
30:29	/	/	/
28	R	0x0	LOCK
			0: Unlocked
			1: Locked (It indicates that the PLL has been stable.)
27:26	/	/	/
25	R/W	0x1	FRAC_CLK_OUT.
			PLL clock output when PLL_MODE_SEL=0(PLL_PREDIV_M factor must be set
			to 0); No meaning when PLL_MODE_SEL =1.
			0: PLL Output=270MHz
			1: PLL Output =297MHz
24	R/W	0x1	PLL_MODE_SEL.
			0: Fractional Mode
			1: Integer Mode
			Note: When in Fractional mode, the Per Divider M should be set to 0.
23:21	/	/	/
20	R/W	0x0	PLL_SDM_EN.
			0: Disable
			1: Enable
19:15	/	/	/
14:8	R/W	0x62	PLL_FACTOR_N.
			PLL Factor N.
			Factor=0, N=1
			Factor=1, N=2
			Factor=2, N=3
			Factor=31, N=32
			Factor=127, N=128
7:4	/	/	/
3:0	R/W	0x7	PLL_PREDIV_M.
			PLL Pre Divider (M = Factor+1).
			The range is from 1 to 16.

4.3.5.5. PLL_DDR0 Control Register (Default Value: 0x00001000)

Offset: 0x0020			Register Name: PLL_DDR0_CTRL_REG
Bit	Bit R/W Default/Hex		Description
31	R/W	0x0	PLL_ENABLE.

			0: Disable
			1: Enable
			Set bit20 to validate the PLL after this bit is set to 1.
			The PLL Output = (24MHz*N*K)/M.
			Note: the PLL output clock must be in the range of 200MHz~2.6GHz.
			Its default is 408MHz.
20.20	1	,	its default is 408Minz.
30:29	/	/	1004
28	R	0x0	LOCK
			0: Unlocked
	1,	,	1: Locked (It indicates that the PLL has been stable.)
27:25	/	/	
24	R/W	0x0	PLL_SDM_EN.
			0: Disable
			1: Enable
23:21	/	1	/
20	R/W	0x0	PLL_DDR_CFG_UPDATE.
			PLL_DDR Configuration Update.
			When PLL_DDR has been changed, this bit should be set to 1 to validate the
			PLL, otherwise the change would be invalid. And this bit would be cleared
			automatically after the PLL change is valid.
			0: No effect
			1: Validating the PLL_DDR
19:13	/	/	/
12:8	R/W	0x10	PLL_FACTOR_N.
			PLL Factor N.
			Factor=0, N=1
			Factor=1, N=2
			Factor=2, N=3
			Factor=31, N=32
7:6	1	/	1
5:4	R/W	0x0	PLL_FACTOR_K.
	', ''		PLL Factor K.(K=Factor + 1)
			The range is from 1 to 4.
3:2	1	/	/
1:0	R/W	0x0	PLL FACTOR M.
1.0	'', ''	0,0	PLL Factor M.(M = Factor + 1)
			The range is from 1 to 4.
			The range is norm 1 to 7.

4.3.5.6. PLL_PERIPHO Control Register (Default Value: 0x00041811)

Offset:	0x0028		Register Name: PLL_PERIPHO_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	PLL_ENABLE.
			0: Disable
			1: Enable
			The PLL Output = 24MHz*N*K/2.
			Note: The PLL Output should be fixed to 600MHz, it is not recommended to
			vary this value arbitrarily.
			In the Clock Control Module, PLL(2X) output= PLL*2 = 24MHz*N*K.
			The PLL output clock must be in the range of 200MHz~1.8GHz.
			Its default is 600MHz.

30:29	/	/	/
28	R	0x0	LOCK.
			0: Unlocked
			1: Locked (It indicates that the PLL has been stable.)
27:26	/	/	/
25	R/W	0x0	PLL_BYPASS_EN.
	'		PLL Output Bypass Enable.
			0: Disable
			1: Enable
			If the bypass is enabled, the PLL output is 24MHz.
24	R/W	0x0	PLL CLK OUT EN.
			PLL clock output enable.
			0: Disable
			1: Enable
23:19	/	/	/
18	R/W	0x1	PLL_24M_OUT_EN.
			PLL 24MHz Output Enable.
			0: Disable
			1: Enable
			When 25MHz crystal used, this PLL can output 24MHz.
17:16	R/W	0x0	PLL_24M_POST_DIV.
			PLL 24M Output Clock Post Divider (When 25MHz crystal used).
			1/2/3/4.
15:13	/	/	/
12:8	R/W	0x18	PLL_FACTOR_N.
			PLL Factor N.
			Factor=0, N=1
			Factor=1, N=2
			Factor=2, N=3
			Factor=31, N=32
7:6	/	/	/
5:4	R/W	0x1	PLL_FACTOR_K.
			PLL Factor K.(K=Factor + 1)
			The range is from 1 to 4.
3:2	/	/	/
1:0	R/W	0x1	PLL_FACTOR_M.
			PLL Factor M (M = Factor + 1) is only valid in plltest debug.
			The PLL_PERIPH back door clock output =24MHz*N*K/M.
			The range is from 1 to 4.

4.3.5.7. PLL_ISP Control Register (Default Value: 0x03006207)

Offset: 0	0x002C		Register Name: PLL_ISP_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	PLL_ENABLE.
			0: Disable
			1: Enable
			In the integer mode, the PLL Output = (24MHz*N)/M.
			In the fractional mode, the PLL Output is select by bit 25.
			Note: In the Clock Control Module, PLL(1X) Output=PLL while PLL(2X)
			Output=PLL * 2.

			The PLL output clock must be in the range of 30MHz~600MHz.
			Its default is 297MHz.
30	R/W	0x0	PLL_MODE.
			0: Manual Mode
			1: Auto Mode (Controlled by DE)
29	/	/	/
28	R	0x0	LOCK.
			0: Unlocked
			1: Locked (It indicates that the PLL has been stable.)
27:26	/	/	/
25	R/W	0x1	FRAC_CLK_OUT.
			PLL clock output when PLL_MODE_SEL=0(PLL_PREDIV_M factor must be set
			to 0); No meaning when PLL_MODE_SEL =1.
			0: PLL Output=270MHz
			1: PLL Output =297MHz
24	R/W	0x1	PLL_MODE_SEL.
			0: Fractional Mode
			1: Integer Mode
			Note: When in Fractional mode, the Per Divider M should be set to 0.
23:21	/	/	/
20	R/W	0x0	PLL_SDM_EN.
			0: Disable
			1: Enable
19:15	/	/	/
14:8	R/W	0x62	PLL_FACTOR_N.
			PLL Factor N.
			Factor=0, N=1
			Factor=1, N=2
			Factor=2, N=3
			Factor=127,N=128
7:4	1	/	/
3:0	R/W	0x7	PLL_PREDIV_M.
			PLL Pre-div Factor(M = Factor+1).
			The range is from 1 to 16.

4.3.5.8. PLL_PERIPH1 Control Register (Default Value: 0x00041811)

Offset: 0	x0044		Register Name: PLL_PERIPH1_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	PLL_ENABLE. 0: Disable 1: Enable The PLL Output = 24MHz*N*K/2. Note: The PLL Output should be fixed to 600MHz, it is not recommended to vary this value arbitrarily. In the Clock Control Module, PLL(2X) output= PLL*2 = 24MHz*N*K. The PLL output clock must be in the range of 200MHz~1.8GHz. Its default is 600MHz.
30:29	/	/	
28	R	0x0	LOCK. 0: Unlocked

			1: Locked (It indicates that the PLL has been stable.)
27:26	/	/	/
25	R/W	0x0	PLL_BYPASS_EN.
			PLL Output Bypass Enable.
			0: Disable
			1: Enable
			If the bypass is enabled, the PLL output is 24MHz.
24	R/W	0x0	PLL_CLK_OUT_EN.
			PLL clock output enable(Just for the SATA Phy)
			0: Disable
			1: Enable
23:21	/	1	/
20	R/W	0x0	PLL_SDM_EN.
			0: Disable
			1: Enable
19	/	1	/
18	R/W	0x1	PLL_24M_OUT_EN.
			PLL 24MHz Output Enable.
			0: Disable
			1: Enable
			When 25MHz crystal used, this PLL can output 24MHz.
17:16	R/W	0x0	PLL_24M_POST_DIV.
			PLL 24M Output Clock Post Divider (When 25MHz crystal used).
			1/2/3/4.
15:13	/	/	/
12:8	R/W	0x18	PLL_FACTOR_N.
			PLL Factor N.
			Factor=0, N=1
			Factor=1, N=2
			Factor=2, N=3
	+,	,	Factor=31, N=32
7:6	/	/	
5:4	R/W	0x1	PLL_FACTOR_K.
			PLL Factor K.(K=Factor + 1)
	1	<u> </u>	The range is from 1 to 4.
3:2	/	/	/
1:0	R/W	0x1	PLL_FACTOR_M.
			PLL Factor M (M = Factor + 1) is only valid in plltest debug.
			The PLL_PERIPH back door clock output =24MHz*N*K/M.
			The range is from 1 to 4.

4.3.5.9. PLL_DDR1 Control Register (Default Value: 0x00001800)

Offset:	0x004C		Register Name: PLL_DDR1_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	PLL_ENABLE.
			0: Disable
			1: Enable.
			The PLL Output = 24MHz*N/M.
			Its default is 600 MHz.
30	R/W	0x0	SDRPLL_UPD.

			600000 6 6 6 6 6
			SDRPLL Configuration Update.
			Note: When PLL_DDR1 has changed, this bit should be set to 1 to validate
			the PLL, otherwise the change is invalid. It will be auto cleared after the PLL
			is valid.
			0: No effect
			1: To validate the PLL_DDR1.
29	/	/	/
28	R	0x0	LOCK
			0:Unlocked
			1: Locked (It indicates that the PLL has been stable.)
27:25	/	/	/
24	R/W	0x0	PLL_SDM_EN.
			0: Disable
			1: Enable.
23:16	/	/	
15:8	R/W	0x18	PLL_FACTOR_N.
			PLL Factor N. (N = Factor + 1)
			The range is from 0 to 127.
			Note: Bit 15 can not be accessed.
7:2	/	/	/
1:0	R/W	0x0	PLL_FACTOR_M.
			PLL Factor M.(M = Factor + 1)
			The range is from 1 to 4.

4.3.5.10. CPU/AXI Configuration Register (Default Value: 0x00010000)

Offset: 0x	(0050		Register Name: CPU_AXI_CFG_REG
Bit	R/W	Default/Hex	Description
31:18	/	/	/
17:16	R/W	0x1	CPU_CLK_SRC_SEL.
			CPU Clock Source Select.
			CPU Clock = Clock Source
			00: LOSC
			01: OSC24M
			1X: PLL_CPU
			If the clock source is changed, at most to wait for 8 present running clock
			cycles.
15:10	/	/	/
9:8	R/W	0x0	CPU_APB_CLK_DIV.
			00: /1
			01: /2
			1x: /4
			Note: System APB clock source is CPU clock source.
7:2	/	/	/
1:0	R/W	0x0	AXI_CLK_DIV_RATIO.
			AXI Clock Divide Ratio.
			AXI Clock source is CPU clock source.
			00: /1
			01: /2
			10: /3
			11: /4

4.3.5.11. AHB1/APB1 Configuration Register (Default Value: 0x00001010)

Offset: 0	Offset: 0x0054		Register Name: AHB1_APB1_CFG_REG
Bit	R/W	Default/Hex	Description
31:14	/	/	/
13:12	R/W	0x1	AHB1_CLK_SRC_SEL.
			00: LOSC
			01: OSC24M
			10: AXI
			11: PLL_PERIPHO/ AHB1_PRE_DIV
11:10	/	/	
9:8	R/W	0x0	APB1_CLK_RATIO.
			APB1 Clock Divide Ratio. APB1 clock source is AHB1 clock.
			00: /2
			01: /2
			10: /4
			11: /8
7:6	R/W	0x0	AHB1_PRE_DIV
			AHB1 Clock Pre Divide Ratio
			00: /1
			01: /2
			10: /3
			11: /4
5:4	R/W	0x1	AHB1_CLK_DIV_RATIO.
			AHB1 Clock Divide Ratio.
			00: /1
			01: /2
			10: /4
2.0	,		11: /8
3:0	/	/	

4.3.5.12. APB2 Configuration Register (Default Value: 0x01000000)

Offset: 0x0058			Register Name: APB2_CFG_REG
Bit	R/W	Default/Hex	Description
31:26	/	/	/
25:24	R/W	0x1	APB2_CLK_SRC_SEL.
			APB2 Clock Source Select
			00: LOSC
			01: OSC24M
			1X: PLL_PERIPHO
			This clock is used for some special module apbclk(UART, TWI). Because
			these modules need special clock rate even if the apb1clk changed.
23:18	/	/	
17:16	R/W	0x0	CLK_RAT_N
			Clock Pre Divide Ratio (n)
			The select clock source is pre-divided by 2^n. The divider is 1/2/4/8.
15:5	/	/	
4:0	R/W	0x0	CLK_RAT_M.
			Clock Divide Ratio (m)
			The Pre Divide clock is divided by (m+1). The divider M is from 1 to 32.

4.3.5.13. AHB2 Configuration Register (Default Value: 0x00000000)

Offset: 0)x005C		Register Name: AHB2_CFG_REG
Bit	R/W	Default/Hex	Description
31:2	/	/	/
1:0	R/W	0x0	AHB2_CLK_CFG.
			00: AHB1 Clock
			01: PLL_PERIPH0 / 2
			1X: /
			EMAC ,USB OTG_EHCI/OHCIO and USBOTG_DeviceO default clock source is
			AHB2 Clock.

4.3.5.14. Bus Clock Gating Register0 (Default Value: 0x00000000)

Offset: 0x0060			Register Name: BUS_CLK_GATING_REG0
Bit	R/W	Default/Hex	Description
31:30	/	/	/
29	R/W	0x0	USBOHCI_GATING.
			Gating Clock for USB OHCI
			0: Mask
			1: Pass
28:27	/	/	/
26	R/W	0x0	USBEHCI_GATING.
			Gating Clock For USB EHCI
			0: Mask
			1: Pass
25	/	/	/
24	R/W	0x0	USB OTG_Device_GATING.
			Gating Clock For USB OTG_Device
			0: Mask
			1: Pass
23:21	/	/	/
20	R/W	0x0	SPI_GATING.
			Gating Clock For SPI
			0: Mask
			1: Pass
19	R/W	0x0	HSTMR_GATING.
			Gating Clock For High Speed Timer
			0: Mask
			1: Pass
18	/	/	/
17	R/W	0x0	EMAC_GATING.
			Gating Clock For EMAC
			0: Mask
			1: Pass
16:15	/	/	/
14	R/W	0x0	DRAM_GATING.
			Gating Clock For DRAM
			0: Mask
			1: Pass
13:11	/	/	1
10	R/W	0x0	MMC2_GATING.

			Gating Clock For MMC2
			0: Mask
			1: Pass
9	R/W	0x0	MMC1_GATING.
			Gating Clock For MMC1
			0: Mask
			1: Pass
8	R/W	0x0	MMC0_GATING.
			Gating Clock For MMC0
			0: Mask
			1: Pass
7	/	/	/
6	R/W	0x0	DMA_GATING.
			Gating Clock For DMA
			0: Mask
			1: Pass
5	R/W	0x0	CE_GATING.
			Gating Clock For CE.
			0: Mask
			1: Pass
4:0	/	/	/

4.3.5.15. Bus Clock Gating Register1 (Default Value: 0x00000000)

Offset: 0	x0064		Register Name: BUS_CLK_GATING_REG1
Bit	R/W	Default/Hex	Description
31:13	/	/	/
12	R/W	0x0	DE_GATING.
			0: Mask
			1: Pass.
11:9	/	/	
8	R/W	0x0	CSI_GATING.
			Gating Clock For CSI
			0: Mask
			1: Pass
7:5	/	/	
4	R/W	0x0	TCON_GATING.
			Gating Clock For TCON
			0: Mask
			1: Pass
3:1	/	/	
0	R/W	0x0	VE_GATING.
			Gating Clock For VE
			0: Mask
			1: Pass

4.3.5.16. Bus Clock Gating Register2 (Default Value: 0x00000000)

Offset: 0x0	0068		Register Name: BUS_CLK_GATING_REG2
Bit	Bit R/W Default/Hex		Description
31:13	/	/	1

12	R/W	0x0	I2S/PCM_GATING.
			Gating Clock For I2S/PCM
			0: Mask
			1: Pass
11:6	/	/	/
5	R/W	0x0	PIO_GATING.
			Gating Clock For PIO
			0: Mask
			1: Pass
4:1	/	/	/
0	R/W	0x0	AC_DIG_GATING.
			Gating Clock For AC Digital
			0: Mask
			1: Pass

4.3.5.17. Bus Clock Gating Register3 (Default Value: 0x00000000)

Offset: 0x	(006C		Register Name: BUS_CLK_GATING_REG3
Bit	R/W	Default/Hex	Description
31:19	/	/	/
18	R/W	0x0	UART2_GATING.
			Gating Clock For UART2
			0: Mask
			1: Pass
17	R/W	0x0	UART1_GATING.
			Gating Clock For UART1
			0: Mask
			1: Pass
16	R/W	0x0	UARTO_GATING.
			Gating Clock For UARTO
			0: Mask
			1: Pass
15:2	/	/	
1	R/W	0x0	TWI1_GATING.
			Gating Clock For TWI1
			0: Mask
			1: Pass
0	R/W	0x0	TWI0_GATING.
			Gating Clock For TWI0
			0: Mask
			1: Pass

4.3.5.18. Bus Clock Gating Register4 (Default Value: 0x00000000)

Offset: 0x0070			Register Name: BUS_CLK_GATING_REG4
Bit	R/W	Default/Hex	Description
31:8	/	/	/
7	R/W	0x0	DBGSYS_GATING.
			Gating Clock For DBGSYS
			0: Mask
			1: Pass

6:1	/	/	/
0	R/W	0x0	EPHY_GATING.
			Gating Clock For EPHY
			0: Mask
			1: Pass

4.3.5.19. SDMMC0 Clock Register (Default Value: 0x00000000)

Offset: 0	x0088		Register Name: SDMMCO_CLK_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SCLK_GATING.
			Gating Special Clock(Max Clock = 200MHz)
			0: Clock is OFF
			1: Clock is ON.
			SCLK = Clock Source/Divider N/Divider M.
30:26	/	/	/
25:24	R/W	0x0	CLK_SRC_SEL.
			Clock Source Select
			00: OSC24M
			01: PLL_PERIPHO
			10: PLL_PERIPH1
			11:/
23	/	/	/
22:20	R/W	0x0	SAMPLE_CLK_PHASE_CTR.
			Sample Clock Phase Control.
			The sample clock phase delay is based on the number of source clock that is
			from 0 to 7.
19:18	/	/	
17:16	R/W	0x0	CLK_DIV_RATIO_N.
			Clock Pre Divide Ratio (n)
			00: /1
			01: /2
			10: /4
			11: /8.
15:11	/	/	/
10:8	R/W	0x0	OUTPUT_CLK_PHASE_CTR.
			Output Clock Phase Control.
			The output clock phase delay is based on the number of source clock that is
			from 0 to 7.
7:4	/	/	/
3:0	R/W	0x0	CLK_DIV_RATIO_M.
			Clock Divide Ratio (m)
			The pre-divided clock is divided by (m+1). The divider M is from 1 to 16.

4.3.5.20. SDMMC1 Clock Register (Default Value: 0x00000000)

Offset: 0	x008C		Register Name: SDMMC1_CLK_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SCLK_GATING.
			Gating Special Clock(Max Clock = 200MHz)
			0: Clock is OFF

			1: Clock is ON.
30:26	/	/	/
25:24	R/W	0x0	CLK_SRC_SEL.
			Clock Source Select
			00: OSC24M
			01: PLL_PERIPHO
			10: PLL_PERIPH1
			11: /
23	/	/	
22:20	R/W	0x0	SAMPLE_CLK_PHASE_CTR.
			Sample Clock Phase Control.
			The sample clock phase delay is based on the number of source clock that is
			from 0 to 7.
19:18	/	/	/
17:16	R/W	0x0	CLK_DIV_RATIO_N.
			Clock Pre-Divide Ratio (n)
			00: /1
			01: /2
			10: /4
			11: /8.
15:11	/	/	1
10:8	R/W	0x0	OUTPUT_CLK_PHASE_CTR.
			Output Clock Phase Control.
			The output clock phase delay is based on the number of source clock that is
			from 0 to 7.
7:4	/	/	/
3:0	R/W	0x0	CLK_DIV_RATIO_M.
			Clock Divide Ratio (m)
			The pre-divided clock is divided by (m+1). The divider M is from 1 to 16.

4.3.5.21. SDMMC2 Clock Register (Default Value: 0x00000000)

Offset: 0x	0090		Register Name: SDMMC2_CLK_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SCLK_GATING.
			Gating Special Clock(Max Clock = 200MHz)
			0: Clock is OFF
			1: Clock is ON.
			If SDMMC2 is in old mode, SCLK = Clock Source/Divider N/Divider M.
			If SDMMC2 is in new mode, SCLK= Clock Source/Divider N/Divider M/2.
30	R/W	0x0	MMC2_MODE_SELECT.
			0: Old Mode
			1: New Mode.
29:26	/	/	
25:24	R/W	0x0	CLK_SRC_SEL.
			Clock Source Select
			00: OSC24M
			01: PLL_PERIPHO
			10: PLL_PERIPH1
			11: /
23	/	/	
22:20	R/W	0x0	CLK_PHASE_CTR.

			Sample Clock Phase Control.
			The sample clock phase delay is based on the number of source clock that is
			from 0 to 7.
19:18	/	/	/
17:16	R/W	0x0	CLK_DIV_RATIO_N.
			Clock Pre Divide Ratio (n)
			00: /1
			01: /2
			10: /4
			11: /8.
15:11	/	/	/
10:8	R/W	0x0	OUTPUT_CLK_PHASE_CTR.
			Output Clock Phase Control.
			The output clock phase delay is based on the number of source clock that is
			from 0 to 7.
7:4	/	/	/
3:0	R/W	0x0	CLK_DIV_RATIO_M.
			Clock Divide Ratio (m)
			The pre-divided clock is divided by (m+1). The divider M is from 1 to 16.

4.3.5.22. CE Clock Register (Default Value: 0x00000000)

Offset: 0:	x009C		Register Name: CE_CLK_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SCLK_GATING.
			Gating Special Clock(Max Clock = 200MHz)
			0: Clock is OFF
			1: Clock is ON.
			SCLK = Clock Source/Divider N/Divider M.
30:26	/	/	/
25:24	R/W	0x0	CLK_SRC_SEL.
			Clock Source Select
			00: OSC24M
			01: PLL_PERIPH0
			10: /
			11:/
23:18	/	/	/
17:16	R/W	0x0	CLK_DIV_RATIO_N.
			Clock Pre Divide Ratio (n)
			00: /1
			01: /2
			10: /4
			11: /8.
15:4	/	/	/
3:0	R/W	0x0	CLK_DIV_RATIO_M.
			Clock divide ratio (m)
			The pre-divided clock is divided by (m+1). The divider M is from 1 to 16.

4.3.5.23. SPI Clock Register (Default Value: 0x00000000)

Offset: 0x00A0	Register Name: SPI_CLK_REG
----------------	----------------------------

Bit	R/W	Default/Hex	Description
31	R/W	0x0	SCLK_GATING.
			Gating Special Clock(Max Clock = 200MHz)
			0: Clock is OFF
			1: Clock is ON.
			SCLK = Clock Source/Divider N/Divider M.
30:26	/	/	
25:24	R/W	0x0	CLK_SRC_SEL.
			Clock Source Select
			00: OSC24M
			01: PLL_PERIPH0
			10: PLL_PERIPH1
			11: /
23:18	/	/	
17:16	R/W	0x0	CLK_DIV_RATIO_N.
			Clock Pre Divide Ratio (n)
			00: /1
			01: /2
			10: /4
			11: /8.
15:4	/	/	
3:0	R/W	0x0	CLK_DIV_RATIO_M.
			Clock Divide Ratio (m)
			The pre-divided clock is divided by (m+1). The divider M is from 1 to 16.

4.3.5.24. I2S/PCM Clock Register (Default Value: 0x00000000)

Offset: 0x	к00B0		Register Name: I2S/PCM_CLK_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SCLK_GATING. Gating Special Clock(Max Clock = 200MHz) 0: Clock is OFF 1: Clock is ON. SCLK-Clock Source BLL AUDIO (Divider M.)
30:18	/	/	SCLK= Clock Source PLL_AUDIO/Divider M.
17:16	R/W	0x0	CLK_SRC_SEL. 00: PLL_AUDIO (8X) 01: PLL_AUDIO(8X)/2 10: PLL_AUDIO(8X)/4 11: PLL_AUDIO
15:0	/	/	/

4.3.5.25. USBPHY Configuration Register (Default Value: 0x00000000)

Offset: 0	x00CC		Register Name: USBPHY_CFG_REG
Bit	R/W	Default/Hex	Description
31:17	/	/	/
16	R/W	0x0	SCLK_GATING_OHCIO.
			Gating Special Clock For OHCIO
			0: Clock is OFF
			1: Clock is ON

15:9	/	/	/
8	R/W	0x0	SCLK_GATING_USBPHYO.
			Gating Special Clock For USB PHYO
			0: Clock is OFF
			1: Clock is ON
7:1	/	/	/
0	R/W	0x0	USBPHY0_RST.
			USB PHY0 Reset Control
			0: Assert
			1: De-assert

4.3.5.26. DRAM Configuration Register (Default Value: 0x00000001)

Offset: 0	x00F4		Register Name: DRAM_CFG_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	DRAM_CTR_RST.
			DRAM Controller Reset For AHB Clock Domain.
			0: Assert
			1: De-assert.
30:22	/	/	
21:20	R/W	0x0	CLK_SRC_SEL.
			00: PLL_DDR0
			01: PLL_DDR1
			10: PLL_PERIPHO (2X)
			11: /
19:17	/	/	
16	R/W	0x0	SDRCLK_UPD.
			SDRCLK Configuration Update.
			0:Invalid
			1:Valid.
			Note: Set this bit will validate Configuration 0 . It will be auto cleared after
			the Configuration 0 is valid.
			The DRAMCLK Source is from PLL_DDR.
15:4	/	/	
3:0	R/W	0x1	DRAM_DIV_M.
			DRAMCLK Divider of Configuration.
			The clock is divided by (m+1). The divider M should be from 2 to 16.

4.3.5.27. PLL_DDR1 Configuration Register (Default Value: 0x00000030)

Offset: 0	Offset: 0x00F8		Register Name: PLL_DDR_CFG_REG
Bit	R/W	Default/Hex	Description
31:13	/	/	
12	R/W	0x0	PLL_DDR1_MODE.
			0: Normal Mode
			1: Continuously Frequency Scale
11:7	/	/	/
6:4	R/W	0x3	PLL_DDR1_PHASE_COMPENSATE.
			The value of bit[6:4] is based on 24M clock, then the default PLL_DDR phase
			compensate is (3/24000000) s.
3:0	R/W	0x0	PLL_DDR1_STEP.

0000: 0.004MHz/us (576/2^17)
0001: 0.008MHz/us (576/2^16)
0010: 0.016MHz/us (576/2^15)
0011: 0.032MHz/us (576/2^14)
0100: 0.064MHz/us (576/2^13)
0101: 0.128MHz/us (576/2^12)
0110: 0.256MHz/us (576/2^11)
0111: 0.512MHz/us (576/2^10)
1000: 1.024MHz/us (576/2^9)
1001: 2.048MHz/us (576/2^8)
Others: 0.004MHz/us (576/2^17)

4.3.5.28. MBUS Reset Register (Default Value: 0x80000000)

Offset:	Offset: 0x00FC		Register Name: MBUS_RST_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x1	MBUS_RESET.
			0: Reset Mbus Domain
			1: Assert Mbus Domain.
30:0	/	/	/

4.3.5.29. DRAM Clock Gating Register (Default Value: 0x00000000)

Offset: 0x	0100		Register Name: DRAM_CLK_GATING_REG
Bit	R/W	Default/Hex	Description
31:19	/	/	/
18	R/W	0x0	USB_OHCI_DCLK_GATING.
			Gating DRAM Clock For USB OHCI
			0: Mask
			1: Pass
17	R/W	0x0	USB_EHCI_DCLK_GATING.
			Gating DRAM Clock For USB EHCI
			0: Mask
			1: Pass
16:2	/	/	
1	R/W	0x0	CSI_DCLK_GATING.
			Gating DRAM Clock For CSI
			0: Mask
			1: Pass
0	R/W	0x0	VE_DCLK_GATING.
			Gating DRAM Clock For VE
			0: Mask
			1: Pass

4.3.5.30. DE Clock Gating Register (Default Value: 0x00000000)

Offset: 0x0)104		Register Name: DE_CLK_REG
Bit	Bit R/W Default/Hex		Description
31	R/W	0x0	SCLK_GATING.

			Gating Special Clock
			0: Clock is OFF
			1: Clock is ON
			This special clock = Clock Source/Divider M.
30:27	/	/	/
26:24	R/W	0x0	CLK_SRC_SEL.
			Clock Source Select
			000: PLL_VIDEO
			010: PLL_PERIPHO
			Others: /
23:4	/	/	/
3:0	R/W	0x0	CLK_DIV_RATIO_M.
			Clock Divide Ratio (m)
			The pre-divided clock is divided by (m+1). The divider is from 1 to 16.

4.3.5.31. TCON Clock Register (Default Value: 0x00000000)

Offset: 0x	0118		Register Name: TCON_CLK_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SCLK_GATING.
			Gating Special Clock
			0: Clock is OFF
			1: Clock is ON
			This special clock = Clock Source/Divider M.
30:27	/	/	
26:24	R/W	0x0	CLK_SRC_SEL.
			Clock Source Select
			000: PLL_VIDEO
			001: PLL_PERIPH0
			Others: /
23:4	/	/	
3:0	R/W	0x0	CLK_DIV_RATIO_M.
			Clock Divide Ratio (m)
			The pre-divided clock is divided by (m+1). The divider is from 1 to 16.

4.3.5.32. CSIO Clock Register (Default Value: 0x00000000)

Offset: 0x	0130		Register Name: CSIO_CLK_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	CSI_MISC_SCLK_GATING.
			Gating Special Clock
			0: Clock is OFF
			1: Clock is ON
			SCLK = OSC24M.
30:16	/	/	/
15	R/W	0x0	CSIO_MCLK_GATING.
			Gating Master Clock
			0: Clock is OFF
			1: Clock is ON
			SCLK =CSI0 Master Clock Source/ CSI0_MCLK_DIV_M.
14:11	/	/	

10:8	R/W	0x0	CSIO_MCLK_SRC_SEL.
			CSIO Master Clock Source Select
			000: OSC24M
			001: PLL_VIDEO
			010: PLL_PERIPH1
			011: PLL_PERIPH0
			Others: /
7:5	/	/	/
4:0	R/W	0x0	CSIO_MCLK_DIV_M.
			CSIO Master Clock Divide Ratio (m)
			The pre-divided clock is divided by (m+1). The divider is from 1 to 32.

4.3.5.33. CSI1 Clock Register (Default Value: 0x00000000)

Offset: 0x0134			Register Name: CSI1_CLK_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	CSI_TOP_SCLK_GATING.
			Gating Special Clock
			0: Clock is OFF
			1: Clock is ON
			SCLK = Special Clock Source/CSI_SCLK_DIV_M.
30:27	/	/	/
26:24	R/W	0x0	SCLK_SRC_SEL.
			Special Clock Source Select
			000: PLL_VIDEO
			001: PLL_ISP
			Others: /
23:20	/	/	/
19:16	R/W	0x0	CSI_SCLK_DIV_M.
			CSI Clock Divide Ratio (m)
			The pre-divided clock is divided by (m+1). The divider is from 1 to 16.
15	R/W	0x0	CSI1_MCLK_GATING.
			Gating Master Clock
			0: Clock is OFF
			1: Clock is ON
			SCLK =CSI1 Master Clock Source/ CSI1_MCLK_DIV_M.
14:11	/	/	/
10:8	R/W	0x0	CSI1_MCLK_SRC_SEL.
			CSI1 Master Clock Source Select
			000: OSC24M
			001: PLL_VIDEO
			010: PLL_PERIPH1
			011: PLL_PERIPHO
			Others: /
7:5	/	/	
4:0	R/W	0x0	CSI1_MCLK_DIV_M.
			CSI1 Master Clock Divide Ratio (m)
			The pre-divided clock is divided by (m+1). The divider is from 1 to 32.

4.3.5.34. VE Clock Register (Default Value: 0x00000000)

Offset: 0x013C			Register Name: VE_CLK_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	VE_SCLK_GATING.
			Gating Special Clock
			0: Clock is OFF
			1: Clock is ON.
			SCLK = PLL_VE /Divider N.
30:19	/	/	<i>]</i> .
18:16	R/W	0x0	CLK_DIV_RATIO_N.
			Clock Pre Divide Ratio (N)
			The select clock source is pre-divided by n+1. The divider N is from 1 to 8.
15:0	/	/	

4.3.5.35. AC Digital Clock Register (Default Value: 0x00000000)

Offset:	0x0140		Register Name: AC_DIG_CLK_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SCLK_1X_GATING.
			Gating Special Clock
			0: Clock is OFF
			1: Clock is ON
			SCLK = PLL_AUDIO Output.
30:0	/	/	/

4.3.5.36. AVS Clock Register (Default Value: 0x00000000)

Offset: 0x	0144		Register Name: AVS_CLK_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SCLK_GATING.
			Gating Special Clock
			0: Clock is OFF
			1: Clock is ON.
			SCLK= OSC24M.
30:0	/	/	

4.3.5.37. MBUS Clock Register (Default Value: 0x00000000)

Offset: 0	x015C		Register Name: MBUS_CLK_REG
Bit	R/W	Default/Hex	Description
			MBUS_SCLK_GATING.
			Gating Clock for MBUS
			0: Clock is OFF
			1: Clock is ON.
31	R/W	0x0	MBUS_CLOCK = Clock Source/Divider M
30:26	/	/	
25:24	R/W	0x0	MBUS_SCLK_SRC

			Clock Source Select
			00: OSC24M
			01: PLL_PERIPHO(2X)
			10: PLL_DDR0
			11: /.
23:3	/	/	/
			MBUS_SCLK_RATIO_M
			Clock Divide Ratio (m)
			The pre-divided clock is divided by (m+1). The divider M is from 1 to 8.
			The divide ratio must be changed smoothly.
2:0	R/W	0x0	Note: If the clock has been changed ,it must wait for at least 16 cycles.

4.3.5.38. MIPI_CSI Register (Default Value: 0x00000000)

Offset: 0x016C			Register Name: MIPI_CSI_REG
Bit	R/W	Default/Hex	Description
			MIPICSI2_DPHY_CLK_GATING.
			Gating Clock For CSI_DPHY
			0: Clock is OFF
			1: Clock is ON
31	R/W	0x0	SCLK= Clock Source/Divider M
30:26	/	/	
			CLK_SRC_SEL.
			Clock Source Select
			00: PLL_VIDEO
			01: PLL_PERIPH0
			10: PLL_ISP
25:24	R/W	0x0	11: /
23:3	/	/	
3:0	R/W	0x0	CLK_DIV_RATIO_M.
			Clock divide ratio (m)
			The pre-divided clock is divided by (m+1). The divider is from 1 to 16.

4.3.5.39. PLL Stable Time Register0 (Default Value: 0x000000FF)

Offset: 0x0200			Register Name: PLL_STABLE_TIME_REG0
Bit	t R/W Default/Hex		Description
31:16	/	/	/
15:0	R/W	0x00FF	PLL_LOCK_TIME PLL Lock Time (Unit: us). Note: When any PLL (except PLL_CPU) is enabled or changed, the corresponding PLL lock bit will be set after the PLL STABLE Time.

4.3.5.40. PLL Stable Time Register1 (Default Value: 0x000000FF)

Offset: 0x0)204		Register Name: PLL_STABLE_TIME_REG1
Bit	R/W	Default/Hex	Description
31:16	/	/	/
15:0	R/W	0x00FF	PLL_CPU_LOCK_TIME

PLL_CPU Lock Time (Unit: us).
Note: When PLL_CPU is enabled or changed, the PLL_CPU lock bit will be set
after the PLL_CPU STABLE Time.

4.3.5.41. PLL_CPUX Bias Register (Default Value: 0x08100200)

Offset: 0x0220			Register Name: PLL_CPUX_BIAS_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	VCO_RST.
			VCO reset in.
30:29	/	/	/
28	R/W	0x0	EXG_MODE.
			Exchange Mode.
			Note: CPU PLL source will select PLL_PERIPHO instead of PLL_CPU
27:24	R/W	0x8	PLL_VCO_BIAS_CTRL.
			PLL VCO Bias Control[3:0].
23:21	/	/	
20:16	R/W	0x10	PLL_BIAS_CUR_CTRL.
			PLL Bias Current Control[4:0].
15:11	/	/	
10:8	R/W	0x2	PLL_LOCK_CTRL.
			PLL Lock Time Control[2:0].
7:4	/	/	
3:0	R/W	0x0	PLL_DAMP_FACT_CTRL.
			PLL Damping Factor Control[3:0].

4.3.5.42. PLL_AUDIO Bias Register (Default Value: 0x10100000)

Offset: 0x0224			Register Name: PLL_AUDIO_BIAS_REG
Bit	R/W	Default/Hex	Description
31:29	/	/	
28:24	R/W	0x10	PLL_VCO_BIAS.
			PLL VCO Bias Current[4:0].
23:21	/	/	
20:16	R/W	0x10	PLL_BIAS_CUR.
			PLL Bias Current[4:0].
15:0	/	/	

4.3.5.43. PLL_VIDEO Bias Register (Default Value: 0x10100000)

Offset: 0x	Offset: 0x0228		Register Name: PLL_VIDEO_BIAS_REG
Bit	R/W	Default/Hex	Description
31:29	/	/	
28:24	R/W	0x10	PLL_VCO_BIAS_CTRL.
			PLL VCO Bias Control[4:0].
23:21	/	/	
20:16	R/W	0x10	PLL_BIAS_CTRL.
			PLL Bias Control[4:0].

15:3	/	/	/
2:0	R/W	0x0	PLL_DAMP_FACTOR_CTRL.
			PLL Damping Factor Control[2:0].

4.3.5.44. PLL_VE Bias Register (Default Value: 0x10100000)

Offset: 0	Offset: 0x022C		Register Name: PLL_VE_BIAS_REG
Bit	R/W	Default/Hex	Description
31:29	/	/	
28:24	R/W	0x10	PLL_VCO_BIAS_CTRL.
			PLL VCO Bias Control[4:0].
23:21	/	/	
20:16	R/W	0x10	PLL_BIAS_CTRL.
			PLL Bias Control[4:0].
15:3	/	/	
2:0	R/W	0x0	PLL_DAMP_FACTOR_CTRL.
			PLL Damping Factor Control[2:0].

4.3.5.45. PLL_DDR0 Bias Register (Default Value: 0x81104000)

Offset: 0x0230			Register Name: PLL_DDR0_BIAS_REG
Bit	R/W	Default/Hex	Description
31:28	R/W	0x8	PLL_VCO_BIAS.
			PLL VCO Bias[3:0].
27:26	/	/	/.
25	R/W	0x0	PLL_VCO_GAIN_CTRL_EN.
			PLL VCO Gain Control Enable.
			0: Disable
			1: Enable.
24	R/W	0x1	PLL_BANDW_CTRL.
			PLL Band Width Control.
			0: Narrow
			1: Wide.
23:21	/	/	
20:16	R/W	0x10	PLL_BIAS_CUR_CTRL.
			PLL Bias Current Control.
15	/	/	
14:12	R/W	0x4	PLL_VCO_GAIN_CTRL.
			PLL VCO Gain Control Bit[2:0].
11:4	/	/	/
3:0	R/W	0x0	PLL_DAMP_FACTOR_CTRL.
			PLL Damping Factor Control[3:0].

4.3.5.46. PLL_PERIPHO Bias Register (Default Value: 0x10100010)

Offset: 0x0234			Register Name: PLL_PERIPHO_BIAS_REG
Bit	Bit R/W Default/Hex		Description
31:29	/	/	1

28:24	R/W	0x10	PLL_VCO_BIAS.
			PLL VCO Bias[4:0].
23:21	/	/	/
20:16	R/W	0x10	PLL_BIAS_CUR_CTRL.
			PLL Bias Current Control.
15:5	/	/	1
4	R/W	0x1	PLL_BANDW_CTRL.
			PLL Band Width Control.
			0: Narrow
			1: Wide
3:2	/	/	1
1:0	R/W	0x0	PLL_DAMP_FACTOR_CTRL.
			PLL Damping Factor Control[1:0].

4.3.5.47. PLL_ISP Bias Register (Default Value: 0x10100000)

Offset: 0:	Offset: 0x0238		Register Name: PLL_ISP_BIAS_REG
Bit	R/W	Default/Hex	Description
31:29	/	/	
28:24	R/W	0x10	PLL_VCO_BIAS_CTRL.
			PLL VCO Bias Control[4:0].
23:21	/	/	
20:16	R/W	0x10	PLL_BIAS_CTRL.
			PLL Bias Control[4:0].
15:3	/	/	
2:0	R/W	0x0	PLL_DAMP_FACTOR_CTRL.
			PLL Damping Factor Control[2:0].

4.3.5.48. PLL_PERIPH1 Bias Register (Default Value: 0x10100010)

Offset: 0x0244			Register Name: PLL_PERIPH1_BIAS_REG
Bit	R/W	Default/Hex	Description
31:29	/	/	
28:24	R/W	0x10	PLL_VCO_BIAS.
			PLL VCO Bias[4:0].
23:21	/	/	
20:16	R/W	0x10	PLL_BIAS_CUR_CTRL.
			PLL Bias Current Control.
15:5	/	/	
4	R/W	0x1	PLL_BANDW_CTRL.
			PLL Band Width Control.
			0: Narrow
			1: Wide
3:2	/	/	
1:0	R/W	0x0	PLL_DAMP_FACTOR_CTRL.
			PLL Damping Factor Control[1:0].

4.3.5.49. PLL_DDR1 Bias Register (Default Value: 0x10010000)

Offset: 0x024C			Register Name: PLL_DDR1_BIAS_REG
Bit	R/W	Default/Hex	Description
31:29	/	/	/
28:24	R/W	0x10	PLL_VCO_BIAS_CTRL.
			PLL VCO Bias Control[4:0].
23:21	/	/	/
20:16	R/W	0x01	PLL_BIAS_CUR_CTRL.
			PLL Bias Current Control[4:0].
15:0	/	/	/

4.3.5.50. PLL_CPU Tuning Register (Default Value: 0x0A101000)

Offset: 0	x0250		Register Name: PLL_CPU_TUN_REG
Bit	R/W	Default/Hex	Description
31:28	/	/	/
27	R/W	0x1	PLL_BAND_WID_CTRL.
			PLL Band Width Control.
			0: Narrow
			1: Wide
26	R/W	0x0	VCO_GAIN_CTRL_EN.
			VCO Gain Control Enable.
			0: Disable
			1: Enable
25:23	R/W	0x4	VCO_GAIN_CTRL.
			VCO Gain Control Bits[2:0].
22:16	R/W	0x10	PLL_INIT_FREQ_CTRL.
			PLL Initial Frequency Control[6:0].
15	R/W	0x0	C_OD.
			C-Reg-Od For Verify.
14:8	R/W	0x10	C_B_IN.
			C-B-In[6:0] For Verify.
7	R/W	0x0	C_OD1.
			C-Reg-Od1 For Verify.
6:0	R	0x0	C_B_OUT.
			C-B-Out[6:0] For Verify.

4.3.5.51. PLL_DDR0 Tuning Register (Default Value: 0x14880000)

Offset: 0	x0260		Register Name: PLL_DDR0_TUN_REG
Bit	R/W	Default/Hex	Description
31:29	/	/	/
28	R/W	0x1	VREG1_OUT_EN.
			Vreg1 Out Enable.
			0: Disable
			1: Enable
27	/	/	
26:24	R/W	0x4	PLL_LTIME_CTRL.
			PLL Lock Time Control[2:0].

23	R/W	0x1	VCO_RST.
			VCO Reset In.
22:16	R/W	0x08	PLL_INIT_FREQ_CTRL.
			PLL Initial Frequency Control[6:0].
15	R/W	0x0	OD1.
			Reg-Od1 For Verify.
14:8	R/W	0x0	B_IN.
			B-In[6:0] For Verify.
7	R/W	0x0	OD.
			Reg-Od For Verify.
6:0	R	0x0	B_OUT.
			B-Out[6:0] For Verify.

4.3.5.52. PLL_CPU Pattern Control Register (Default Value: 0x00000000)

Offset: 0x0280			Register Name: PLL_CPU_PAT_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SIG_DELT_PAT_EN.
			Sigma-delta Pattern Enable.
30:29	R/W	0x0	SPR_FREQ_MODE.
			Spread Frequency Mode.
			00: DC=0
			01: DC=1
			1X: Triangular
28:20	R/W	0x0	WAVE_STEP.
			Wave Step.
19	/	/	
18:17	R/W	0x0	FREQ.
			Frequency.
			00: 31.5KHz
			01: 32KHz
			10: 32.5KHz
			11: 33KHz
16:0	R/W	0x0	WAVE_BOT.
			Wave Bottom.

4.3.5.53. PLL_AUDIO Pattern Control Register(Default Value: 0x00000000)

Offset: 0	x0284		Register Name: PLL_AUDIO_PAT_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SIG_DELT_PAT_EN.
			Sigma-delta Pattern Enable.
30:29	R/W	0x0	SPR_FREQ_MODE.
			Spread Frequency Mode.
			00: DC=0
			01: DC=1
			1X: Triangular
28:20	R/W	0x0	WAVE_STEP.
			Wave Step.
19	/	/	

18:17	R/W	0x0	FREQ.
			Frequency.
			00: 31.5KHz
			01: 32KHz
			10: 32.5KHz
			11: 33KHz
16:0	R/W	0x0	WAVE_BOT.
			Wave Bottom.

4.3.5.54. PLL_VIDEO Pattern Control Register (Default Value: 0x00000000)

Offset: 0x0288			Register Name: PLL_VIDEO_PAT_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SIG_DELT_PAT_EN.
			Sigma-delta Pattern Enable.
30:29	R/W	0x0	SPR_FREQ_MODE.
			Spread Frequency Mode.
			00: DC=0
			01: DC=1
			1X: Triangular
28:20	R/W	0x0	WAVE_STEP.
			Wave Step.
19	/	/	/
18:17	R/W	0x0	FREQ.
			Frequency.
			00: 31.5KHz
			01: 32KHz
			10: 32.5KHz
			11: 33KHz
16:0	R/W	0x0	WAVE_BOT.
			Wave Bottom.

4.3.5.55. PLL_VE Pattern Control Register (Default Value: 0x00000000)

Offset: 0x	k028C		Register Name: PLL_VE_PAT_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SIG_DELT_PAT_EN.
			Sigma-delta Pattern Enable.
30:29	R/W	0x0	SPR_FREQ_MODE.
			Spread Frequency Mode.
			00: DC=0
			01: DC=1
			1X: Triangular
28:20	R/W	0x0	WAVE_STEP.
			Wave Step.
19	/	/	
18:17	R/W	0x0	FREQ.
			Frequency.
			00: 31.5KHz
			01: 32KHz
			10: 32.5KHz

			11: 33KHz
16:0	R/W	0x0	WAVE_BOT.
			Wave Bottom.

4.3.5.56. PLL_DDR0 Pattern Control Register (Default Value: 0x00000000)

Offset: 0	x0290		Register Name: PLL_DDR0_PAT_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SIG_DELT_PAT_EN.
			Sigma-delta Pattern Enable.
30:29	R/W	0x0	SPR_FREQ_MODE.
			Spread Frequency Mode.
			00: DC=0
			01: DC=1
			1X: Triangular
28:20	R/W	0x0	WAVE_STEP.
			Wave step.
19	/	/	
18:17	R/W	0x0	FREQ.
			Frequency.
			00: 31.5KHz
			01: 32KHz
			10: 32.5KHz
			11: 33KHz
16:0	R/W	0x0	WAVE_BOT.
			Wave Bottom.

4.3.5.57. PLL_ISP Pattern Control Register (Default Value: 0x00000000)

Offset: 0x0298			Register Name: PLL_ISP_PAT_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SIG_DELT_PAT_EN.
			Sigma-delta Pattern Enable.
30:29	R/W	0x0	SPR_FREQ_MODE.
			Spread Frequency Mode.
			00: DC=0
			01: DC=1
			1X: Triangular
28:20	R/W	0x0	WAVE_STEP.
			Wave step.
19	/	/	
18:17	R/W	0x0	FREQ.
			Frequency.
			00: 31.5KHz
			01: 32KHz
			10: 32.5KHz
			11: 33KHz
16:0	R/W	0x0	WAVE_BOT.
			Wave Bottom.

4.3.5.58. PLL_PERIPH1 Pattern Control Register (Default Value: 0x00000000)

Offset: 0:	x02A4		Register Name: PLL_PERIPH1_PAT_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SIG_DELT_PAT_EN.
			Sigma-Delta Pattern Enable.
30:29	R/W	0x0	SPR_FREQ_MODE.
			Spread Frequency Mode.
			00: DC=0
			01: DC=1
			1X: Triangular
28:20	R/W	0x0	WAVE_STEP.
			Wave Step.
19	/	/	
18:17	R/W	0x0	FREQ.
			Frequency.
			00: 31.5KHz
			01: 32KHz
			10: 32.5KHz
			11: 33KHz
16:0	R/W	0x0	WAVE_BOT.
			Wave Bottom.

4.3.5.59. PLL_DDR1 Pattern Control Register (Default Value: 0x00000000)

Offset: 0x02AC			Register Name: PLL_DDR1_PAT_CTRL_REG0
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SIG_DELT_PAT_EN.
			Sigma-Delta Pattern Enable.
30:29	R/W	0x0	SPR_FREQ_MODE.
			Spread Frequency Mode.
			00: DC=0
			01: DC=1
			1X: Triangular
28:20	R/W	0x0	WAVE_STEP.
			Wave Step.
19	/	/	
18:17	R/W	0x0	FREQ.
			Frequency.
			00: 31.5KHz
			01: 32KHz
			10: 32.5KHz
			11: 33KHz
16:0	R/W	0x0	WAVE_BOT.
			Wave Bottom.

4.3.5.60. PLL_DDR1 Pattern Control Register1 (Default Value: 0x00000000)

Offset: 0x02B0			Register Name: PLL_DDR1_PAT_CTRL_REG1
Bit	R/W	Default/Hex	Description

30:25	/	/	/
24	R/W	0x0	DITHER_EN.
23:21	/	/	1
20	R/W	0x0	FRAC_EN.
19:17	/	/	1
16:0	R/W	0x0	FRAC_IN.

4.3.5.61. Bus Software Reset Register 0 (Default Value: 0x00000000)

Offset: 0	x02C0		Register Name: BUS_SOFT_RST_REG0
Bit	R/W	Default/Hex	Description
31:30	/	/	/
29	R/W	0x0	USBOHCI_RST.
			USB OHCI Reset Control
			0: Assert
			1: De-assert
27:28	/	/	
26	R/W	0x0	USBEHCI_RST.
			USB EHCI Reset Control
			0: Assert
			1: De-assert
25	/	/	
24	R/W	0x0	USB OTG_Device _RST.
			USB OTG_Device Reset Control
			0: Assert
			1: De-assert
23:21	/	/	
20	R/W	0x0	SPI_RST.
			SPI Reset.
			0: Assert
			1: De-assert
19	R/W	0x0	HSTMR_RST.
			HSTMR Reset.
			0: Assert
			1: De-assert
18	/	/	
17	R/W	0x0	EMAC_RST.
			EMAC Reset.
			0: Assert
			1: De-assert
16:15	/	/	
14	R/W	0x0	SDRAM_RST.
			SDRAM AHB Reset.
			0: Assert
			1: De-assert
13:11	/	1	/
10	R/W	0x0	SD2_RST.
			SD/MMC2 Reset.
			0: Assert
			1: De-assert
9	R/W	0x0	SD1_RST.
			SD/MMC1 Reset.

			0: Assert
			1: De-assert
8	R/W	0x0	SDO_RST.
			SD/MMC0 Reset.
			0: Assert
			1: De-assert
7	/	/	/
6	R/W	0x0	DMA_RST.
			DMA Reset.
			0: Assert
			1: De-assert
5	R/W	0x0	CE_RST.
			CE Reset.
			0: Assert
			1: De-assert
4:0	/	/	

4.3.5.62. Bus Software Reset Register 1 (Default Value: 0x00000000)

Offset: 0	x02C4		Register Name: BUS_SOFT_RST_REG1
Bit	R/W	Default/Hex	Description
31	R/W	0x0	DBGSYS_RST.
			DBGSYS Reset
			0: Assert
			1: De-assert
30:13	/	/	/
12	R/W	0x0	DE_RST.
			DE Reset.
			0: Assert
			1: De-assert
11:9	/	/	1
8	R/W	0x0	CSI_RST.
			CSI Reset.
			0: Assert
			1: De-assert
7:5	/	/	
4	R/W	0x0	TCON_RST.
			TCON Reset.
			0: Assert
			1: De-assert
3:1	/	/	
0	R/W	0x0	VE_RST.
			VE Reset.
			0: Assert
			1: De-assert

4.3.5.63. Bus Software Reset Register 2 (Default Value: 0x00000000)

Offset: 0x02C8			Register Name: BUS_SOFT_RST_REG2
Bit	R/W	Default/Hex	Description
31:3	/	/	1

2	R/W	0x0	EPHY_RST.
			EPHY Reset.
			0: Assert
			1: De-assert
1	/	/	1
0	R/W	0x0	LVDS_RST.
			LVDS Reset.
			0: Assert
			1: De-assert

4.3.5.64. Bus Software Reset Register 3 (Default Value: 0x00000000)

Offset: 0	x02D0		Register Name: BUS_SOFT_RST_REG3
Bit	R/W	Default/Hex	Description
31:13	/	/	/
12	R/W	0x0	I2S/PCM_RST.
			I2S/PCM Reset.
			0: Assert
			1: De-assert.
11:1	/	/	/
0	R/W	0x0	AC_DIG_RST.
			AC Digital Reset.
			0: Assert
			1: De-assert

4.3.5.65. Bus Software Reset Register 4 (Default Value: 0x00000000)

Offset: 0x02D8			Register Name: BUS_SOFT_RST_REG4	
Bit	R/W	Default/Hex	Description	
31:19	/	/	/	
18	R/W	0x0	UART2_RST.	
			UART2 Reset.	
			0: Assert	
			1: De-assert	
17	R/W	0x0	UART1_RST.	
			UART1 Reset.	
			0: Assert	
			1: De-assert	
16	R/W	0x0	UARTO_RST.	
			UARTO Reset.	
			0: Assert	
			1: De-assert	
15:2	/	/	/	
1	R/W	0x0	TWI1_RST.	
			TWI1 Reset.	
			0: Assert	
			1: De-assert	
0	R/W	0x0	TWIO_RST.	
			TWI0 Reset.	
			0: Assert	
			1: De-assert	

4.3.5.66. PS Control Register (Default Value: 0x00000000)

Offset: (0x0300		Register Name: PS_CTRL_REG
Bit	R/W	Default/Hex	Description
31:8	/	/	/
7	R/W	0x0	DET_FIN.
			Detect Finish.
			0: Unfinished
			1: Finished
			Set 1 to this bit will clear it.
6	R/W	0x0	DLY_SEL.
			Delay Select
			0: 1 Cycle
			1: 2 Cycles
5:4	R/W	0x0	OSC_SEL
			OSC Select.
			00: IDLE
			01: SVT
			10: LVT
			11: ULVT
3:1	R/W	0x0	TIME_DET.
			Time detect.
			000: 0.5/4 us
			001: 0.5/2 us
			010: 0.5/1 us
			011: 0.5*2us
			111:0.5*2^5us
0	R/W	0x0	MOD_EN.
			Module enable.
			0: Disable
			1: Enable

4.3.5.67. PS Counter Register (Default Value: 0x00000000)

Offset: 0x0304			Register Name: PS_CNT_REG
Bit	R/W	Default/Hex	Description
31:16	/	/	1
15:0	R/W	0x0	PS_CNT.
			PS Counter.

4.3.6. Programming Guidelines

4.3.6.1. PLL

- 1) In practical application, other PLLs doesn't support dynamic frequency scaling except for PLL_CPU and PLL_DDR1;
- 2) After the PLL_DDR0 frequency changes, the 20-bit of PLL_DDR0 Control Register should be written 1 to make it valid:
- 3) After the PLL_DDR1 frequency changes, the 30-bit of PLL_DDR1 Control Register should be written 1 to make it valid.

4.3.6.2. BUS

- 1) When setting the BUS clock, you should set the division factor first, and after the division factor becomes valid, switch the clock source. The clock source will be switched after at least three clock cycles;
- 2) The BUS clock should not be dynamically changed in most applications.

4.3.6.3. Clock Switch

Make sure that the clock source output is valid before the clock source switch, and then set a proper divide ratio; after the division factor becomes valid, switch the clock source.

4.3.6.4. Gating and reset

Make sure that the reset signal has been released before the release of module clock gating;

4.4. System Control

4.4.1. Overview

Area	Size(Bytes)
SRAM A1	16K
SRAM C	44K
CPU I-Cache	32K
CPU D-Cache	32K
CPU L2 Cache	128K
Total	252K

4.4.2. System Control Register List

Module Name	Base Address
System Control	0x01C00000

Register Name	Offset	Description
VER_REG	0x24	Version Register
EMAC_CLK_REG	0x30	EMAC -EPHYClock Register

4.4.3. System Control Register Description

4.4.3.1. Version Register

Offset:0x24	1		Register Name: VER_REG
Bit	R/W	Default/Hex	Description
31:9	/	/	/
8	R	х	UBOOT_SEL_PAD_STA
			U_boot Select Pin Status
			0: U_Boot
			1: Normal Boot
7:0	R	0x0	VER_BITS
			This read-only bit field always reads back the mask revision level of the
			chip.

4.4.3.2. EMAC-EPHY Clock Register (Default Value: 0x00058000)

Offset:0x3	et:0x30		Register Name: EMAC_EPHY_CLK_REG
Bit	R/W	Default/Hex	Description
31:28	R/W	0x0	BPS_EFFUSE
27	R/W	0x0	XMII_SEL
			0: Internal SMI and MII
			1: External SMI and MII
26:25	R/W	0x0	EPHY_MODE
			Operation Mode Selection
			00 : Normal Mode

			01 : Sim Mode
			10 : AFE Test Mode
			11:/
24:20	R/W	0x0	PHY_ADDR
•	.,	1	PHY Address
19	R/W	0x0	BIST_CLK_EN
13	1,7,00	l oxo	0 : BIST clk disable
			1 : BIST clk enable
18	R/W	0x1	CLK_SEL
10	11,700	OXI	0:25MHz
			1:24MHz
17	R/W	0x0	LED_POL
17	11/ VV	0.00	0: High active
			1 : Low active
16	R/W	0x1	SHUTDOWN
10	11/ VV	OXI	0 : Power up
			1 : Shutdown
15	R/W	0x1	PHY_SELECT.
13	11/ VV	OXI	0 : External PHY
			1 : Internal PHY
14	1	/	/ / / / / / / / / / / / / / / / / / /
13	R/W	0x0	RMII_EN
13	IN/ VV	UXU	0 : Disable RMII Module
			1 : Enable RMII Module
			When this bit assert, MII or RGMII interface is disabled (This means bit13 is
12:10	R/W	0x0	prior to bit2) ETXDC
12.10	IN/ VV	UXU	
9:5	R/W	0x0	Configure EMAC Transmit Clock Delay Chain. ERXDC
9.5	K/ VV	UXU	
4	R/W	0x0	Configure EMAC Receive Clock Delay Chain. ERXIE
4	K/ VV	UXU	Enable EMAC Receive Clock Invertor.
			0: Disable
			1: Enable
2	R/W	0.0	
3	K/ VV	0x0	ETXIE Enable EMAC Transmit Clock Invertor.
			0: Disable
			1: Enable
2	D/M	0.40	
2	R/W	0x0	EPIT ENAC BHY Interface Type
			EMAC PHY Interface Type 0: MII
1.0	D //W	0.0	1: RGMII
1:0	R/W	0x0	ETCS ENAC Transmit Clack Source
			EMAC Transmit Clock Source
			00: Transmit clock source for MII
			01: External transmit clock source for GMII and RGMII
			10: Internal transmit clock source for GMII and RGMII
			11: Reserved

4.5. Timer

4.5.1. Overview

Timer 0/1/2 can take their inputs from Internal OSC or OSC24M. They provide the operating system's scheduler interrupt. It is designed to offer maximum accuracy and efficient management, even for systems with long or short response time. They provide 24-bit programmable overflow counter and work in auto-reload mode or no-reload mode. When the current value in *Current Value Register* is counting down to zero, the timer will generate interrupt if set interrupt enable bit.

The watchdog is used to resume the controller operation when it had been disturbed by malfunctions such as noise and system errors. It features a down counter that allows a watchdog period of up to 16 seconds (512000 cycles). It can generate a general reset or interrupt request.

AVS counter is used to synchronize video and audio in the player.

4.5.2. Block Diagram

Figure 4-4. Timer Block Diagram

4.5.3. Timer Register List

Module Name	Base Address
TIMER	0x01C20C00

Register Name	Offset	Description
TMR_IRQ_EN_REG	0x0	Timer IRQ Enable Register
TMR_IRQ_STA_REG	0x4	Timer Status Register
TMRO_CTRL_REG	0x10	Timer 0 Control Register

TMR0_INTV_VALUE_REG	0x14	Timer 0 Interval Value Register
TMR0_CUR_VALUE_REG	0x18	Timer 0 Current Value Register
TMR1_CTRL_REG	0x20	Timer 1 Control Register
TMR1_INTV_VALUE_REG	0x24	Timer 1 Interval Value Register
TMR1_CUR_VALUE_REG	0x28	Timer 1 Current Value Register
TMR2_CTRL_REG	0x30	Timer 2 Control Register
TMR2_INTV_VALUE_REG	0x34	Timer 2 Interval Value Register
TMR2_CUR_VALUE_REG	0x38	Timer 2 Current Value Register
AVS_CNT_CTL_REG	0x80	AVS Control Register
AVS_CNT0_REG	0x84	AVS Counter 0 Register
AVS_CNT1_REG	0x88	AVS Counter 1 Register
AVS_CNT_DIV_REG	0x8C	AVS Divisor Register
WDOG_IRQ_EN_REG	0xA0	Watchdog IRQ Enable Register
WDOG_IRQ_STA_REG	0xA4	Watchdog Status Register
WDOG_CTRL_REG	0xB0	Watchdog Control Register
WDOG_CFG_REG	0xB4	Watchdog Configuration Register
WDOG_MODE_REG	0xB8	Watchdog Mode Register
CNT64_TEST_REG	0xD0	64-bit Counter Test Mode Register
CNT64_CTRL_REG	0xD4	64-bit Counter Control Register
CNT64_LOW_REG	0xD8	64-bit Counter Low Register
CNT64_HIGH_REG	0xDC	64-bit Counter High Register

4.5.4. Timer Register Description

4.5.4.1. Timer IRQ Enable Register (Default Value: 0x00000000)

Offset:0x0			Register Name: TMR_IRQ_EN_REG
Bit	R/W	Default/Hex	Description
31:3	/	/	/
2	R/W	0x0	TMR2_IRQ_EN.
			Timer 2 Interrupt Enable.
			0: No effect;
			1: Timer 2 Interval Value reached interrupt enable.
1	R/W	0x0	TMR1_IRQ_EN.
			Timer 1 Interrupt Enable.
			0: No effect;
			1: Timer 1 Interval Value reached interrupt enable.
0	R/W	0x0	TMRO_IRQ_EN.
			Timer 0 Interrupt Enable.
			0: No effect;
			1: Timer 0 Interval Value reached interrupt enable.

4.5.4.2. Timer IRQ Status Register (Default Value: 0x00000000)

Offset:0x04			Register Name: TMR_IRQ_STA_REG
Bit	R/W Default/Hex		Description
31:3	/	/	/

2	R/W	0x0	TMR2_IRQ_PEND.
			Timer 2 IRQ Pending. Set 1 to the bit will clear it.
			0: No effect;
			1: Pending, timer 2 interval value is reached.
1	R/W	0x0	TMR1_IRQ_PEND.
			Timer 1 IRQ Pending. Set 1 to the bit will clear it.
			0: No effect;
			1: Pending, timer 1 interval value is reached.
0	R/W	0x0	TMRO_IRQ_PEND.
			Timer 0 IRQ Pending. Set 1 to the bit will clear it.
			0: No effect;
			1: Pending, timer 0 interval value is reached.

4.5.4.3. Timer 0 Control Register (Default Value: 0x00000004)

Bit R/W Default/Hex Description 31:8 / / / 7 R/W 0x0 TMR0_MODE. Timer 0 mode. 0: Continuous mode. When interval value reached, the timer will not disable automatically. 1: Single mode. When interval value reached, the timer will disable automatically. 6:4 R/W 0x0 TMR0_CLK_PRES. Select the pre-scale of timer 0 clock source. 000: /1 001: /8 100: /4 011: /8 100: /16 101: /32 110: /64 111: /128 3:2 R/W 0x1 TMR0_CLK_SRC. Timer 0 Clock Source. 00: Internal OSC / 512 01: OSC24M. 10: / 11: / Internal OSC / N is about 32KHz. 1 R/W 0x0 TMR0_RELOAD. Timer 0 Reload. 0: No effect 1: Reload timer 0 Interval value. After the bit is set, it can not be written again before it's cleared automatically. 0 R/W 0x0 TMR0_EN. Timer 0 Enable. 0: Stop/Pause 1: Start.	Offset:0	x10		Register Name: TMR0_CTRL_REG
Timer 0 mode. 0: Continuous mode. When interval value reached, the timer will not disable automatically. 1: Single mode. When interval value reached, the timer will disable automatically. R/W Ox0 TMR0_CLK_PRES. Select the pre-scale of timer 0 clock source. 000: /1 001: /2 010: /4 011: /8 100: /16 100: /3 110: /64 111: /128 3:2 R/W Ox1 TMR0_CLK_SRC. Timer 0 Clock Source. 00: Internal OSC / 512 01: OSC24M. 10: / 11: // Internal OSC / N is about 32KHz. Timer 0 Reload. 0: No effect 1: Reload timer 0 Interval value. After the bit is set, it can not be written again before it's cleared automatically. R/W Ox0 TMR0_EN. Timer 0 Enable. 0: Stop/Pause 1: Start.	Bit	R/W	Default/Hex	Description
Timer 0 mode. 0: Continuous mode. When interval value reached, the timer will not disable automatically. 1: Single mode. When interval value reached, the timer will disable automatically. 6:4 R/W 0x0 TMRO_CLK_PRES. Select the pre-scale of timer 0 clock source. 000: /1 001: /2 010: /4 011: /8 100: /16 101: /32 110: /64 111: /128 3:2 R/W 0x1 TMRO_CLK_SRC. Timer 0 Clock Source. 00: Internal OSC / 512 01: OSC24M. 10: / 11: / 11: / Internal OSC / N is about 32KHz. 1 R/W 0x0 TMRO_RELOAD. Timer 0 Reload. 0: No effect 1: Reload timer 0 Interval value. After the bit is set, it can not be written again before it's cleared automatically. 0 R/W 0x0 TMRO_EN. Timer 0 Enable. 0: Stop/Pause 1: Start.	31:8	/	/	/
0: Continuous mode. When interval value reached, the timer will not disable automatically. 6:4 R/W 0x0 TMRO_CLK_PRES. Select the pre-scale of timer 0 clock source. 000: /1 001: /2 010: /4 011: /8 100: /16 101: /32 110: /64 111: /128 3:2 R/W 0x1 TMRO_CLK_SRC. Timer 0 Clock Source. 00: Internal OSC / 512 01: OSC24M. 10: / 11: / Internal OSC / N is about 32KHz. 1 R/W 0x0 TMRO_RELOAD. Timer 0 Reload. 0: No effect 1: Reload timer 0 Interval value. After the bit is set, it can not be written again before it's cleared automatically. 0 R/W 0x0 TMRO_EN. Timer 0 Enable. 0: Stop/Pause 1: Start.	7	R/W	0x0	TMR0_MODE.
disable automatically. 1: Single mode. When interval value reached, the timer will disable automatically. TMRO_CLK_PRES. Select the pre-scale of timer 0 clock source. 000: /1 001: /2 010: /4 011: /8 100: /16 101: /32 110: /64 111: /128 3:2 R/W Ox1 TMRO_CLK_SRC. Timer 0 Clock Source. 00: Internal OSC / 512 01: OSC24M. 10: / 11: / Internal OSC / N is about 32KHz. 1 R/W Ox0 TMRO_RELOAD. Timer 0 Reload. 0: No effect 1: Reload timer 0 Interval value. After the bit is set, it can not be written again before it's cleared automatically. 0 R/W Ox0 TMRO_EN. Timer 0 Enable. 0: Stop/Pause 1: Start.				Timer 0 mode.
1: Single mode. When interval value reached, the timer will disable automatically. 6:4 R/W 0x0 TMR0_CLK_PRES. Select the pre-scale of timer 0 clock source. 000: /1 001: /2 010: /4 011: /8 100: /16 101: /32 110: /64 111: /128 3:2 R/W 0x1 TMR0_CLK_SRC. Timer 0 Clock Source. 00: Internal OSC / 512 01: OSC24M. 10: / 11: / Internal OSC / N is about 32KHz. 1 R/W 0x0 TMR0_RELOAD. Timer 0 Reload. 0: No effect 1: Reload timer 0 Interval value. After the bit is set, it can not be written again before it's cleared automatically. 0 R/W 0x0 TMR0_EN. Timer 0 Enable. 0: Stop/Pause 1: Start.				0: Continuous mode. When interval value reached, the timer will not
6:4 R/W R/W Ox0 TMR0_CLK_PRES. Select the pre-scale of timer 0 clock source. 000: /1 001: /2 010: /4 011: /8 100: /16 101: /32 110: /64 111: /128 3:2 R/W Ox1 TMR0_CLK_SRC. Timer 0 Clock Source. 00: Internal OSC / 512 01: OSC24M. 10: / 11: / Internal OSC / N is about 32KHz. TMR0_CLK_SCC. Timer 0 Reload. 0: No effect 1: Reload timer 0 Interval value. After the bit is set, it can not be written again before it's cleared automatically. R/W Ox0 TMR0_EN. Timer 0 Enable. 0: Stop/Pause 1: Start.				disable automatically.
6:4 R/W				1: Single mode. When interval value reached, the timer will disable
Select the pre-scale of timer 0 clock source. 000: /1 001: /2 010: /4 011: /8 100: /16 101: /32 110: /64 111: /128 3:2 R/W 0x1 TMR0_CLK_SRC. Timer 0 Clock Source. 00: Internal OSC / 512 01: OSC24M. 10: / 11: / Internal OSC / N is about 32KHz. 1 R/W 0x0 TMR0_RELOAD. Timer 0 Reload. 0: No effect 1: Reload timer 0 Interval value. After the bit is set, it can not be written again before it's cleared automatically. 0 R/W 0x0 TMR0_EN. Timer 0 Enable. 0: Stop/Pause 1: Start.				automatically.
000: /1 001: /2 010: /4 011: /8 100: /16 101: /32 110: /64 111: /128 111: /128 13:2 R/W 0x1 TMRO_CLK_SRC. Timer 0 Clock Source.	6:4	R/W	0x0	TMRO_CLK_PRES.
001: /2 010: /4 011: /8 100: /16 101: /32 110: /64 111: /128 1				Select the pre-scale of timer 0 clock source.
010: /4 011: /8 100: /16 101: /32 110: /64 111: /128 3:2				000: /1
011: /8 100: /16 101: /32 110: /64 111: /128 3:2 R/W Ox1 TMRO_CLK_SRC. Timer 0 Clock Source. 00: Internal OSC / 512 01: OSC24M. 10: / 11: / Internal OSC / N is about 32KHz. 1 R/W Ox0 TMRO_RELOAD. Timer 0 Reload. 0: No effect 1: Reload timer 0 Interval value. After the bit is set, it can not be written again before it's cleared automatically. 0 R/W Ox0 TMRO_EN. Timer 0 Enable. 0: Stop/Pause 1: Start.				001: /2
100: /16 101: /32 110: /64 111: /128 3:2				010: /4
101: /32 110: /64 111: /128 3:2 R/W				011: /8
110: /64 111: /128 3:2 R/W Ox1 TMRO_CLK_SRC. Timer 0 Clock Source. 00: Internal OSC / 512 01: OSC24M. 10: / 11: / Internal OSC / N is about 32KHz. 1 R/W Ox0 TMRO_RELOAD. Timer 0 Reload. 0: No effect 1: Reload timer 0 Interval value. After the bit is set, it can not be written again before it's cleared automatically. 0 R/W Ox0 TMRO_EN. Timer 0 Enable. 0: Stop/Pause 1: Start.				100: /16
3:2 R/W 0x1 TMR0_CLK_SRC. Timer 0 Clock Source. 00: Internal OSC / 512 01: OSC24M. 10: / 11: / Internal OSC / N is about 32KHz. 1 R/W 0x0 TMR0_RELOAD. Timer 0 Reload. 0: No effect 1: Reload timer 0 Interval value. After the bit is set, it can not be written again before it's cleared automatically. 0 R/W 0x0 TMR0_EN. Timer 0 Enable. 0: Stop/Pause 1: Start.				101: /32
3:2 R/W Ox1 TMR0_CLK_SRC. Timer 0 Clock Source. 00: Internal OSC / 512 01: OSC24M. 10: / 11: / Internal OSC / N is about 32KHz. 1 R/W Ox0 TMR0_RELOAD. Timer 0 Reload. 0: No effect 1: Reload timer 0 Interval value. After the bit is set, it can not be written again before it's cleared automatically. 0 R/W Ox0 TMR0_EN. Timer 0 Enable. 0: Stop/Pause 1: Start.				110: /64
Timer 0 Clock Source. 00: Internal OSC / 512 01: OSC24M. 10: / 11: / Internal OSC / N is about 32KHz. 1 R/W 0x0 TMR0_RELOAD. Timer 0 Reload. 0: No effect 1: Reload timer 0 Interval value. After the bit is set, it can not be written again before it's cleared automatically. 0 R/W 0x0 TMR0_EN. Timer 0 Enable. 0: Stop/Pause 1: Start.				111: /128
00: Internal OSC / 512 01: OSC24M. 10: / 11: / Internal OSC / N is about 32KHz. 1 R/W OxO TMRO_RELOAD. Timer 0 Reload. 0: No effect 1: Reload timer 0 Interval value. After the bit is set, it can not be written again before it's cleared automatically. 0 R/W OxO TMRO_EN. Timer 0 Enable. 0: Stop/Pause 1: Start.	3:2	R/W	0x1	
01: OSC24M. 10: / 11: / Internal OSC / N is about 32KHz. 1 R/W OxO TMRO_RELOAD. Timer 0 Reload. 0: No effect 1: Reload timer 0 Interval value. After the bit is set, it can not be written again before it's cleared automatically. 0 R/W OxO TMRO_EN. Timer 0 Enable. 0: Stop/Pause 1: Start.				Timer 0 Clock Source.
10: / 11: / Internal OSC / N is about 32KHz. 1 R/W 0x0 TMR0_RELOAD. Timer 0 Reload. 0: No effect 1: Reload timer 0 Interval value. After the bit is set, it can not be written again before it's cleared automatically. 0 R/W 0x0 TMR0_EN. Timer 0 Enable. 0: Stop/Pause 1: Start.				·
11: / Internal OSC / N is about 32KHz. 1 R/W 0x0 TMR0_RELOAD. Timer 0 Reload. 0: No effect 1: Reload timer 0 Interval value. After the bit is set, it can not be written again before it's cleared automatically. 0 R/W 0x0 TMR0_EN. Timer 0 Enable. 0: Stop/Pause 1: Start.				
Internal OSC / N is about 32KHz. 1 R/W OxO TMRO_RELOAD. Timer 0 Reload. 0: No effect 1: Reload timer 0 Interval value. After the bit is set, it can not be written again before it's cleared automatically. 0 R/W OxO TMRO_EN. Timer 0 Enable. 0: Stop/Pause 1: Start.				
1 R/W 0x0 TMR0_RELOAD. Timer 0 Reload. 0: No effect 1: Reload timer 0 Interval value. After the bit is set, it can not be written again before it's cleared automatically. 0 R/W 0x0 TMR0_EN. Timer 0 Enable. 0: Stop/Pause 1: Start.				11:/
Timer 0 Reload. 0: No effect 1: Reload timer 0 Interval value. After the bit is set, it can not be written again before it's cleared automatically. O R/W OxO TMRO_EN. Timer 0 Enable. 0: Stop/Pause 1: Start.				
0: No effect 1: Reload timer 0 Interval value. After the bit is set, it can not be written again before it's cleared automatically. O R/W OxO TMRO_EN. Timer 0 Enable. 0: Stop/Pause 1: Start.	1	R/W	0x0	
1: Reload timer 0 Interval value. After the bit is set, it can not be written again before it's cleared automatically. O R/W OxO TMRO_EN. Timer 0 Enable. O: Stop/Pause 1: Start.				
After the bit is set, it can not be written again before it's cleared automatically. O R/W OxO TMRO_EN. Timer O Enable. O: Stop/Pause 1: Start.				
0 R/W 0x0 TMR0_EN. Timer 0 Enable. 0: Stop/Pause 1: Start.				
0 R/W 0x0 TMR0_EN. Timer 0 Enable. 0: Stop/Pause 1: Start.				
Timer 0 Enable. 0: Stop/Pause 1: Start.				
0: Stop/Pause 1: Start.	0	R/W	0x0	_
1: Start.				
				When the timer is started, it will reload the interval value to internal
register, and the current counter will count from interval value to 0. If the				register, and the current counter will count from interval value to 0. If the

current counter does not reach the zero, the timer enable bit is set to "0", the current value counter will pause. At least wait for 2 cycles, the start bit can be set to 1.In timer pause state; the interval value register can be modified. If the timer is started again, and the Software hope the current
value register to down-count from the new interval value, the reload bit and the enable bit should be set to 1 at the same time.

4.5.4.4. Timer 0 Interval Value Register

Offset:0	Offset:0x14		Register Name: TMR0_INTV_VALUE_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	TMR0_INTV_VALUE.
			Timer 0 Interval Value.
			Note: The value setting should consider the system clock and the timer
			clock source.

4.5.4.5. Timer 0 Current Value Register

Offset:0x18			Register Name: TMR0_CUR_VALUE_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	TMRO_CUR_VALUE.
			Timer 0 Current Value.
			Note: It is a 32-bit down-counter (from interval value to 0).

4.5.4.6. Timer 1 Control Register (Default Value: 0x00000004)

Offset:0	x20		Register Name: TMR1_CTRL_REG
Bit	R/W	Default/Hex	Description
31:8	/	/	/
7	R/W	0x0	TMR1_MODE.
			Timer 1 mode.
			0: Continuous mode. When interval value reached, the timer will not disable
			automatically.
			1: Single mode. When interval value reached, the timer will disable
			automatically.
6:4	R/W	0x0	TMR1_CLK_PRES.
			Select the pre-scale of timer 1 clock source.
			000: /1
			001: /2
			010: /4
			011: /8
			100: /16
			101: /32
			110: /64
			111: /128
3:2	R/W	0x1	TMR1_CLK_SRC.
			00: Internal OSC / 512
			01: OSC24M.
			10: /

			11: /.
			Internal OSC / N is about 32KHz.
1	R/W	0x0	TMR1_RELOAD.
			Timer 1 Reload.
			0: No effect
			1: Reload timer 1 Interval value.
			After the bit is set, it can not be written again before it's cleared
			automatically.
0	R/W	0x0	TMR1_EN.
			Timer 1 Enable.
			0: Stop/Pause
			1: Start.
			If the timer is started, it will reload the interval value to internal register, and
			the current counter will count from interval value to 0.
			If the current counter does not reach the zero, the timer enable bit is set to
			"0", the current value counter will pause. At least wait for 2 cycles, the start
			bit can be set to 1.
			In timer pause state, the interval value register can be modified. If the timer
			is started again, and the Software hope the current value register to
			down-count from the new interval value, the reload bit and the enable bit
			should be set to 1 at the same time.

4.5.4.7. Timer 1 Interval Value Register

Offset:0x	24		Register Name: TMR1_INTV_VALUE_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	TMR1_INTV_VALUE.
			Timer 1 Interval Value.
			Note: The value setting should consider the system clock and the timer clock
			source.

4.5.4.8. Timer 1 Current Value Register

Offset:0x28			Register Name: TMR1_CUR_VALUE_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	TMR1_CUR_VALUE.
			Timer 1 Current Value.
			It is a 32-bit down-counter (from interval value to 0).

4.5.4.9. Timer 2 Control Register

Offset:0x3	0		Register Name: TMR2_CTRL_REG
Bit	R/W	Default/Hex	Description
31:8	/	/	
7	R/W	0x0	TMR2_MODE.
			Timer 2 mode.
			0: Continuous mode. When interval value reached, the timer will not disable
			automatically.
			1: Single mode. When interval value reached, the timer will disable

			automatically.
6:4	R/W	0x0	TMR2_CLK_PRES.
			Select the pre-scale of timer 2 clock source.
			000: /1
			001: /2
			010: /4
			011: /8
			100: /16
			101: /32
			110: /64
			111: /128
3:2	R/W	0x1	TMR2_CLK_SRC.
			00: Internal OSC / 512
			01: OSC24M.
			10: /
			11: /.
1	R/W	0x0	TMR2_RELOAD.
			Timer 2 Reload.
			0: No effect, 1: Reload timer 2 Interval value.
			After the bit is set, it can not be written again before it's cleared
			automatically.
0	R/W	0x0	TMR2_EN.
			Timer 2 Enable.
			0: Stop/Pause, 1: Start.
			If the timer is started, it will reload the interval value to internal register, and
			the current counter will count from interval value to 0.
			If the current counter does not reach the zero, the timer enable bit is set to
			"0", the current value counter will pause. At least wait for 2 cycles, the start
			bit can be set to 1.
			In timer pause state, the interval value register can be modified. If the timer
			is started again, and the Software hope the current value register to
			down-count from the new interval value, the reload bit and the enable bit
			should be set to 1 at the same time.

4.5.4.10. Timer 2 Interval Value Register

Offset:0	x34		Register Name: TMR2_INTV_VALUE_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	TMR2_INTV_VALUE.
			Timer 2 Interval Value.
			Note: The value setting should consider the system clock and the timer clock
			source.

4.5.4.11. Timer 2 Current Value Register

Offset:0x38			Register Name: TMR2_CUR_VALUE_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	TMR2_CUR_VALUE.
			Timer 2 Current Value.
			Note: Timer 2 current value is a 32-bit down-counter (from interval value to
			0).

4.5.4.12. AVS Counter Control Register (Default Value: 0x00000000)

Offset:0	x80		Register Name: AVS_CNT_CTL_REG
Bit	R/W	Default/Hex	Description
31:10	/	/	/
9	R/W	0x0	AVS_CNT1_PS.
			Audio/Video Sync Counter 1 Pause Control
			0: Not pause
			1: Pause Counter 1.
8	R/W	0x0	AVS_CNTO_PS.
			Audio/Video Sync Counter 0 Pause Control
			0: Not pause
			1: Pause Counter 0.
7:2	/	/	
1	R/W	0x0	AVS_CNT1_EN.
			Audio/Video Sync Counter 1 Enable/ Disable. The counter source is OSC24M.
			0: Disable
			1: Enable.
0	R/W	0x0	AVS_CNTO_EN.
			Audio/Video Sync Counter 1 Enable/ Disable. The counter source is OSC24M.
			0: Disable
			1: Enable.

4.5.4.13. AVS Counter 0 Register (Default Value: 0x00000000)

Offset:0	Offset:0x84		Register Name: AVS_CNTO_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	AVS_CNTO. Counter 0 for Audio/ Video Sync Application The high 32 bits of the internal 33-bits counter register. The initial value of the internal 33-bits counter register can be set by software. The LSB bit of the 33-bits counter register should be zero when the initial value is updated. It will count from the initial value. The initial value can be updated at any time. It can also be paused by setting AVS_CNTO_PS to '1'. When it is paused, the counter won't increase.

4.5.4.14. AVS Counter 1 Register (Default Value: 0x00000000)

Offset:0x88			Register Name: AVS_CNT1_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	AVS_CNT1. Counter 1 for Audio/ Video Sync Application The high 32 bits of the internal 33-bits counter register. The initial value of the internal 33-bits counter register can be set by software. The LSB bit of the 33-bits counter register should be zero when the initial value is updated. It will count from the initial value. The initial value can be updated at any time. It can also be paused by setting AVS_CNT1_PS to '1'. When it is paused,

	the counter won't increase.	
--	-----------------------------	--

4.5.4.15. AVS Counter Divisor Register (Default Value: 0x05DB05DB)

Offset:0x8C			Register Name: AVS_CNT_DIV_REG
Bit	R/W	Default/Hex	Description
31:28	/	/	/
27:16	R/W	0x5DB	AVS_CNT1_D. Divisor N for AVS Counter 1 AVS CN1 CLK=24MHz/Divisor_N1. Divisor N1 = Bit [27:16] + 1. The number N is from 1 to 0x7ff. The zero value is reserved. The internal 33-bits counter engine will maintain another 12-bits counter. The 12-bits counter is used for counting the cycle number of one 24Mhz clock. When the 12-bits counter reaches (>= N) the divisor value, the internal 33-bits counter register will increase 1 and the 12-bits counter will reset to zero and restart again. Note: It can be configured by software at any time.
15:12	/	/	1
11:0	R/W	0x5DB	AVS_CNT0_D. Divisor N for AVS Counter 0 AVS CN0 CLK=24MHz/Divisor_N0. Divisor N0 = Bit [11:0] + 1 The number N is from 1 to 0x7ff. The zero value is reserved. The internal 33-bits counter engine will maintain another 12-bits counter. The 12-bits counter is used for counting the cycle number of one 24Mhz clock. When the 12-bits counter reaches (>= N) the divisor value, the internal 33-bits counter register will increase 1 and the 12-bits counter will reset to zero and restart again. Note: It can be configured by software at any time.

4.5.4.16. Watchdog IRQ Enable Register (Default Value: 0x00000000)

Offset:0:	xA0		Register Name: WDOG_IRQ_EN_REG
Bit	R/W	Default/Hex	Description
31:1	/	/	/
0	R/W	0x0	WDOG_IRQ_EN.
			Watchdog Interrupt Enable.
			0: No effect
			1: Watchdog0 interrupt enable.

4.5.4.17. Watchdog Status Register (Default Value: 0x00000000)

Offset:0xA4			Register Name: WDOG_IRQ_STA_REG
Bit	R/W	Default/Hex	Description
31:1	/	/	/
0	R/W	0x0	WDOG_IRQ_PEND.
			Watchdog IRQ Pending. Set 1 to the bit will clear it.

Ī		0: No effect,
		1: Pending, watchdog0 interval value is reached.

4.5.4.18. Watchdog Control Register (Default Value: 0x00000000)

Offset:0xB0			Register Name: WDOG_CTRL_REG
Bit	R/W	Default/Hex	Description
31:13	/	/	/
12:1	R/W	0x0	WDOG_KEY_FIELD.
			Watchdog Key Field.
			Should be written at value 0xA57. Writing any other value in this field aborts
			the write operation.
0	R/W	0x0	WDOG_RSTART.
			Watchdog Restart.
			0: No effect,
			1: Restart watchdog.

4.5.4.19. Watchdog Configuration Register (Default Value: 0x00000001)

Offset:0	Offset:0xB4		Register Name: WDOG_CFG_REG
Bit	R/W	Default/Hex	Description
31:2	/	/	
1:0	R/W	0x1	WDOG_CONFIG.
			Watchdog generates a reset signal
			00: /
			01: To whole system
			10: Only interrupt
			11:/

4.5.4.20. Watchdog Mode Register (Default Value: 0x00000000)

Offset:0x	(B8		Register Name: WDOG_MODE_REG
Bit	R/W	Default/Hex	Description
31:8	/	/	/
7:4	R/W	0x0	WDOG_INTV_VALUE.
			Watchdog Interval Value
			Watchdog clock source is OSC24M / 750. If the clock source is turned off,
			Watchdog will not work.
			0000: 16000 cycles (0.5s)
			0001: 32000 cycles (1s)
			0010: 64000 cycles (2s)
			0011: 96000 cycles (3s)
			0100: 128000 cycles (4s)
			0101: 160000 cycles (5s)
			0110: 192000 cycles (6s)
			0111: 256000 cycles (8s)
			1000: 320000 cycles (10s)
			1001: 384000 cycles (12s)
			1010: 448000 cycles (14s)

			1011: 512000 cycles (16s)
			others: /
3:1	/	/	
0	R/W	0x0	WDOG_EN.
			Watchdog Enable.
			0: No effect;
			1: Enable watchdog.

4.5.4.21. 64-bit Counter Control Register (Default Value: 0x00000000)

Offset:0	Offset:0xD0		Register Name: CNT64_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	CNT64_TEST_EN.
			64-bit Counter Test Mode Enable.
			0: Normal Mode,
			1: Test Mode.
			In the Test Mode, this Counter Low/Hi registers will count simultaneously.
30:3	/	/	/.
2	R/W	0x0	CNT64_CLK_SRC_SEL.
			64-bit Counter Clock Source Select.
			0: OSC24M
			1: /
1	R/W	0x0	CNT64_RL_EN.
			64-bit Counter Read Latch Enable.
			0: no effect, 1: to latch the 64-bit Counter to the Low/Hi registers and it will
			change to zero after the registers are latched.
0	R/W	0x0	CNT64_CLR_EN.
			64-bit Counter Clear Enable.
			0: no effect, 1: to clear the 64-bit Counter Low/Hi registers and it will change
			to zero after the registers are cleared.
			Note: It is not recommended to clear this counter arbitrarily.

4.5.4.22. 64-bit Counter Low Register (Default Value: 0x00000000)

Offset:0xD4			Register Name: CNT64_LOW_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	CNT64_LO. 64-bit Counter [31:0].

4.5.4.23. 64-bit Counter High Register (Default Value: 0x00000000)

Offset:0xD8			Register Name: CNT64_HIGH_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	CNT64_HI. 64-bit Counter [63:32].

4.6. High-speed Timer

4.6.1. Overview

High Speed Timer Clock Source is fixed to AHBCLK, which is much higher than OSC24M. Compared with other timers, High Speed Timer clock source is synchronized with AHB clock, and when the relevant bit in the Control Register is set 1, timer goes into the test mode, which is used to System Simulation. When the current value in both LO and HI Current Value Register are counting down to zero, the timer will generate interrupt if set interrupt enable bit.

The High Speed Timer includes the following features:

- 56-bit counter
- Clock source is synchronized with AHB clock, which means calculating much more accurate than other timers

4.6.2. Operation Principle

4.6.2.1. HSTimer clock gating and software reset

By default the HSTimer clock gating is mask. When it is necessary to use HSTimer, its clock gating should be open in **BUS Clock Gating Register0** and then de-assert the software reset in **BUS Software Reset Register0** on CCU module. If it is no need to use HSTimer, both the gating bit and software reset bit should be set 0.

4.6.2.2. HSTimer reload bit

Differing from the reload of Timer, when interval value is reloaded into current value register, the reload bit would not turn to 0 automatically until you clear it. If software hopes the current value register to down-count from the new interval value in pause status, the reload bit and the enable bit should be written 1 at the same time.

4.6.3. HSTimer Register List

Module Name	Base Address
High Speed Timer	0x01C60000

Register Name	Offset	Description
HS_TMR_IRQ_EN_REG	0x00	HS Timer IRQ Enable Register
HS_TMR_IRQ_STAS_REG	0x04	HS Timer Status Register
HS_TMR0_CTRL_REG	0x10	HS Timer0 Control Register
HS_TMR0_INTV_LO_REG	0x14	HS Timer0 Interval Value Low Register
HS_TMR0_INTV_HI_REG	0x18	HS Timer0 Interval Value High Register
HS_TMR0_CURNT_LO_REG	0x1C	HS Timer0 Current Value Low Register
HS_TMR0_CURNT_HI_REG	0x20	HS Timer0 Current Value High Register
HS_TMR1_CTRL_REG	0x30	HS Timer1 Control Register
HS_TMR1_INTV_LO_REG	0x34	HS Timer1 Interval Value Low Register
HS_TMR1_INTV_HI_REG	0x38	HS Timer1 Interval Value High Register
HS_TMR1_CURNT_LO_REG	0x3C	HS Timer1 Current Value Low Register

	HS TMR1 CURNT HI REG	0x40	HS Timer1 Current Value High Register
--	----------------------	------	---------------------------------------

4.6.4. HSTimer Register Description

4.6.4.1. HS Timer IRQ Enable Register (Default Value: 0x00000000)

Offset:0x0			Register Name: HS_TMR_IRQ_EN_REG
Bit	R/W	Default/Hex	Description
31:2	/	/	/
1	R/W	0x0	HS_TMR1_INT_EN.
			High Speed Timer1 Interrupt Enable.
			0: No effect;
			1: High Speed Timer1 Interval Value reached interrupt enable.
0	R/W	0x0	HS_TMRO_INT_EN.
			High Speed TimerO Interrupt Enable.
			0: No effect;
			1: High Speed Timer0 Interval Value reached interrupt enable.

4.6.4.2. HS Timer IRQ Status Register (Default Value: 0x00000000)

Offset:0x4	Offset:0x4		Register Name: HS_TMR_IRQ_STAS_REG
Bit	R/W	Default/Hex	Description
31:2	/	/	/
1	R/W	0x0	HS_TMR1_IRQ_PEND.
			High Speed Timer1 IRQ Pending. Set 1 to the bit will clear it.
			0: No effect;
			1: Pending, High speed timer interval value is reached.
0	R/W	0x0	HS_TMRO_IRQ_PEND.
			High Speed Timer0 IRQ Pending. Set 1 to the bit will clear it.
			0: No effect;
			1: Pending, High speed timer interval value is reached.

4.6.4.3. HS Timer0 Control Register (Default Value: 0x00000000)

Offset:0x:	10		Register Name: HS_TMR0_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	HS_TMR0_TEST. High speed timer0 test mode. In test mode, the low register should be set to 0x1, the high register will down counter. The counter needs to be reloaded. 0: normal mode; 1: test mode.
30:8	/	/	
7	R/W	0x0	HS_TMR0_MODE. High Speed Timer0 mode. 0: Continuous mode. When interval value reached, the timer will not disable automatically. 1: Single mode. When interval value reached, the timer will disable automatically.

6:4	R/W	0x0	HS_TMRO_CLK
			Select the pre-scale of the high speed timer0 clock sources.
			000: /1
			001: /2
			010: /4
			011: /8
			100: /16
			101: /
			110: /
			111:/
3:2	/	/	/
1	R/W	0x0	HS_TMR0_RELOAD.
			High Speed Timer0 Reload.
			0: No effect, 1: Reload High Speed Timer0 Interval Value.
0	R/W	0x0	HS_TMRO_EN.
			High Speed Timer0 Enable.
			0: Stop/Pause, 1: Start.
			If the timer is started, it will reload the interval value to internal register, and the current counter will count from interval value to 0.
			If the current counter does not reach the zero, the timer enable bit is set to
			"0", the current value counter will pause. At least wait for 2 cycles, the start
			bit can be set to 1.
			In timer pause state, the interval value register can be modified. If the timer
			is started again, and the Software hope the current value register to
			down-count from the new interval value, the reload bit and the enable bit
			should be set to 1 at the same time.

4.6.4.4. HS Timer0 Interval Value Lo Register

Offset:0x14			Register Name: HS_TMR0_INTV_LO_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	х	HS_TMRO_INTV_VALUE_LO.
			High Speed Timer Interval Value [31:0].

4.6.4.5. HS Timer0 Interval Value Hi Register

Offset:0x18			Register Name: HS_TMR0_INTV_HI_REG
Bit	R/W	Default/Hex	Description
31:24	/	/	1
23:0	R/W	х	HS_TMRO_INTV_VALUE_HI.
			High Speed Timer0 Interval Value [55:32].

Note: The interval value register is a 56-bit register. When read or write the interval value, the Lo register should be read or write first. And the Hi register should be written after the Lo register.

4.6.4.6. HS Timer0 Current Value Lo Register

Offset:0x1C			Register Name: HS_TMR0_CURNT_LO_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	х	HS_TMR0_CUR_VALUE_LO.

		High Speed Timer0 Current Value [31:0].
--	--	---

4.6.4.7. HS Timer0 Current Value Hi Register

Offset:0x20			Register Name: HS_TMR0_CURNT_HI_REG
Bit R/W Default/Hex		Default/Hex	Description
31:24	/	/	/
23:0	R/W	х	HS_TMRO_CUR_VALUE_HI.
			High Speed Timer0 Current Value [55:32].

Note 1:HSTimer0 current value is a 56-bit down-counter (from interval value to 0).

Note2:The current value register is a 56-bit register. When read or write the current value, the Lo register should be read or write first.

4.6.4.8. HS Timer1 Control Register (Default Value: 0x00000000)

Offset:0x30			Register Name: HS_TMR1_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	HS_TMR1_TEST.
			High speed timer1 test mode. In test mode, the low register should be set to
			0x1, the high register will down counter. The counter needs to be reloaded.
			0: normal mode;
			1: test mode.
30:8	/	/	/
7	R/W	0x0	HS_TMR1_MODE.
			High Speed Timer1 mode.
			0: Continuous mode. When interval value reached, the timer will not disable automatically.
			1: Single mode. When interval value reached, the timer will disable
			automatically.
6:4	R/W	0x0	HS_TMR1_CLK
			Select the pre-scale of the high speed timer1 clock sources.
			000: /1
			001: /2
			010: /4
			011: /8
			100: /16
			101: /
			110: /
			111:/
3:2	/	/	
1	R/W	0x0	HS_TMR1_RELOAD.
			High Speed Timer1 Reload.
			0: No effect, 1: Reload High Speed Timer1 Interval Value.
0	R/W	0x0	HS_TMR1_EN.
			High Speed Timer1 Enable.
			0: Stop/Pause, 1: Start.
			If the timer is started, it will reload the interval value to internal register, and
			the current counter will count from interval value to 0.
			If the current counter does not reach the zero, the timer enable bit is set to
			"0", the current value counter will pause. At least wait for 2 cycles, the start
			bit can be set to 1.

	In timer pause state, the interval value register can be modified. If the timer
	is started again, and the Software hope the current value register to
	down-count from the new interval value, the reload bit and the enable bit
	should be set to 1 at the same time.

4.6.4.9. HS Timer1 Interval Value Lo Register

Offset:0x34			Register Name: HS_TMR1_INTV_LO_REG
Bit R/W Default/Hex		Default/Hex	Description
31:0	31:0 R/W x		HS_TMR0_INTV_VALUE_LO.
			High Speed Timer Interval Value [31:0].

4.6.4.10. HS Timer1 Interval Value Hi Register

Offset:0x38			Register Name: HS_TMR1_INTV_HI_REG
Bit R/W Default/Hex		Default/Hex	Description
31:24	/	/	/
23:0	R/W	х	HS_TMR1_INTV_VALUE_HI.
			High Speed Timer1 Interval Value [55:32].

Note: The interval value register is a 56-bit register. When read or write the interval value, the Lo register should be read or write first. And the Hi register should be written after the Lo register.

4.6.4.11. HS Timer1 Current Value Lo Register

Offset:0x3C			Register Name: HS_TMR1_CURNT_LO_REG
Bit R/W Default/Hex		Default/Hex	Description
31:0 R/W x		х	HS_TMR1_CUR_VALUE_LO.
			High Speed Timer1 Current Value [31:0].

4.6.4.12. HS Timer1 Current Value Hi Register

Offset:0x40			Register Name: HS_TMR1_CURNT_HI_REG
Bit R/W Default/Hex		Default/Hex	Description
31:24 / /		/	/
23:0 R/W x		х	HS_TMR1_CUR_VALUE_HI.
			High Speed Timer1 Current Value [55:32].

Note1: HS timer1 current value is a 56-bit down-counter (from interval value to 0).

Note2: The current value register is a 56-bit register. When read or write the current value, the Lo register should be read or write first.

4.6.5. Programming Guidelines

Take making a 1us delay using HSTimer for an instance as follow, AHB1CLK will be configurated as 100MHz and n_mode, Single mode and 2 pre-scale will be selected in this instance.

4.7. PWM

4.7.1. Overview

The output of the PWM is a toggling signal whose frequency and duty cycle can be modulated by its programmable registers. Each channel has a dedicated internal 16-bit up counter. If the counter reaches the value stored in the channel period register, it resets. At the beginning of a count period cycle, the PWMOUT is set to active state and count from 0x0000. The PWM divider divides the clock(24MHz) by 1~4096 according to the pre-scalar bits in the PWM control register.

In PWM cycle mode, the output will be a square waveform, the frequency is set to the period register. In PWM pulse mode, the output will be a positive pulse or a negative pulse.

4.7.2. Functionalities Description

Figure 4-5. PWM Block Diagram

When PWM is enabling, the PWM can output two signals, which are reversed on two pins. And when PWM is disabling, the PWM can control the status of two pins. The PWM divider divides the clock (24MHz) by 1-64 according to the pre-scalar bits in the PWM control register. The PWM output Frequency can be divided by 65536 at most. In PWM cycle mode, the output will be a square waveform; the frequency is set to the period register. In PWM pulse mode, the output will be a positive pulse or a negative pulse.

4.7.3. PWM Register List

Module Name	Base Address
PWM	0x01C21400

Register Name	Offset	Description
PWM_CH_CTRL	0x00	PWM Control Register
PWM_CH0_PERIOD	0x04	PWM Channel 0 Period Register
PWM_CH1_PERIOD	0x08	PWM Channel 1 Period Register

4.7.4. PWM Register Description

4.7.4.1. PWM Control Register(Default Value: 0x00000000)

Offset:0x0			Register Name: PWM_CTRL_REG
Bit	R/W	Default/Hex	Description
31:30	/	/	/.
29	RO	0x0	PWM1_RDY.
			PWM1 period register ready.
			0: PWM1 period register is ready to write,
			1: PWM1 period register is busy.
28	RO	0x0	PWM0_RDY.
			PWM0 period register ready.
			0: PWM0 period register is ready to write,
			1: PWM0 period register is busy.
27:25	/	/	/
24	R/W	0x0	PWM1_BYPASS.
			PWM CH1 bypass enable.
			If the bit is set to 1, PWM1's output is OSC24MHz.
			0: disable
			1: enable
23	R/W	0x0	PWM_CH1_PULSE_OUT_START.
	•		PWM Channel 1 pulse output start.
			0: no effect,
			1: output 1 pulse.
			The pulse width should be according to the period 1 register[15:0], and the
			pulse state should be according to the active state.
			After the pulse is finished, the bit will be cleared automatically.
22	R/W	0x0	PWM CH1 MODE.
			PWM Channel 1 mode.
			0: cycle mode,
			1: pulse mode.
21	R/W	0x0	PWM_CH1_CLK_GATING
			Gating the Special Clock for PWM1(0: mask, 1: pass).
20	R/W	0x0	PWM_CH1_ACT_STATE.
			PWM Channel 1 Active State.
			0: Low Level,
			1: High Level.
19	R/W	0x0	PWM_CH1_EN.
			PWM Channel 1 Enable.
			0: Disable,
			1: Enable.
18:15	R/W	0x0	PWM_CH1_PRESCAL.
			PWM Channel 1 Prescalar.
			These bits should be setting before the PWM Channel 1 clock gate on.
			0000: /120
			0001: /180
			0010: /240
			0011: /360
			0100: /480
			0101: /
			0110: /
			0111: /

			1000: /12k		
			1001: /24k		
			1010: /36k		
			1011: /48k		
			1100: /72k		
			1101: /		
			1110: /		
			1111: /1		
14:10	/	/	/		
9	R/W	0x0	PWM0_BYPASS.		
			PWM CH0 bypass enable.		
			If the bit is set to 1, PWM0's output is OSC24MHz.		
			0: disable,		
			1: enable.		
8	R/W	0x0	PWM_CH0_PUL_START.		
	', ''		PWM Channel 0 pulse output start.		
			0: no effect,		
			1: output 1 pulse.		
			The pulse width should be according to the period 0 register[15:0], and the		
			pulse state should be according to the active state.		
			After the pulse is finished, the bit will be cleared automatically.		
7	R/W	0x0	·		
/	K/VV	UXU	PWM_CHANNELO_MODE.		
			0: cycle mode,		
	2 /14/		1: pulse mode.		
6	R/W	0x0	SCLK_CH0_GATING.		
			Gating the Special Clock for PWM0(0: mask, 1: pass).		
5	R/W	0x0	PWM_CH0_ACT_STA.		
			PWM Channel 0 Active State.		
			0: Low Level,		
			1: High Level.		
4	R/W	0x0	PWM_CH0_EN.		
			PWM Channel 0 Enable.		
			0: Disable,		
			1: Enable.		
3:0	R/W	0x0	PWM_CH0_PRESCAL.		
			PWM Channel 0 Prescalar.		
			These bits should be setting before the PWM Channel 0 clock gate on.		
			0000: /120		
			0001: /180		
			0010: /240		
			0011: /360		
			0100: /480		
			0101: /		
			0110: /		
			0111: /		
			1000: /12k		
			1001: /24k		
			1010: /36k		
			1011: /48k		
			1011: /48k 1100: /72k		
			1101: /		
			1110: /		
			1111: /1		

4.7.4.2. PWM Channel 0 Period Register

Offset:0x4			Register Name: PWM_CH0_PERIOD		
Bit	R/W	Default/Hex	Description		
31:16	R/W	х	PWM_CH0_ENTIRE_CYS		
			Number of the entire cycles in the PWM clock.		
			0 = 1 cycle		
			1 = 2 cycles		
			N = N+1 cycles		
			If the register need to be modified dynamically, the PCLK should be faster		
			than the PWM CLK (PWM CLK = 24MHz/pre-scale).		
15:0	R/W	х	PWM_CHO_ENTIRE_ACT_CYS		
			Number of the active cycles in the PWM clock.		
			0 = 0 cycle		
			1 = 1 cycles		
			N = N cycles		

Note: The active cycles should be no larger than the period cycles.

4.7.4.3. PWM Channel 1 Period Register

Offset:0x8			Register Name: PWM_CH1_PERIOD
Bit	R/W	Default/Hex	Description
31:16	R/W	х	PWM_CH1_ENTIRE_CYS Number of the entire cycles in the PWM clock. 0 = 1 cycle 1 = 2 cycles N = N+1 cycles If the register need to be modified dynamically, the PCLK should be faster than the PWM CLK (PWM CLK = 24MHz/pre-scale).
15:0	R/W	х	PWM_CH1_ENTIRE_ACT_CYS Number of the active cycles in the PWM clock. 0 = 0 cycle 1 = 1 cycles N = N cycles

Note: The active cycles should be no larger than the period cycles.

4.8. DMA

4.8.1. Overview

There are 8 DMA channels in the chip. Each DMA channel can generate interrupts. According to different pending status, the referenced DMA channel generates corresponding interrupt. And, the configuration information of every DMA channel are storing in the DDR or SRAM. When start a DMA transferring, the **DMA Channel Descriptor Address Register** contains the address information in the DDR or SRAM, where has the relevance configuration information of the DMA transferring.

4.8.2. Functionalities Description

4.8.2.1. Block Diagram

Figure 4-6. DMA Block Diagram

4.8.2.2. DRQ Type and Corresponding Relation

Table 4-1. DMA DRQ Table

Source I	DRQ Type	Destination DRQ Type		
Port NO.	Module Name	Port NO.	Module Name	
Port 0	SRAM	Port 0	SRAM	

Port 1	SDRAM	Port 1	SDRAM
Port 2		Port 2	
Port 3	I2S/PCM_RX	Port 3	I2S/PCM_TX
Port 4		Port 4	
Port 5		Port 5	
Port 6	UARTO_RX	Port 6	UARTO_TX
Port 7	UART1_RX	Port 7	UART1_TX
Port 8	UART2_RX	Port 8	UART2_TX
Port 9	/	Port 9	/
Port 10	/	Port 10	/
Port 11	/	Port 11	/
Port 12	/	Port 12	/
Port 13	/	Port 13	/
Port 14	/	Port 14	/
Port 15	CODEC	Port 15	CODEC
Port 16	CE_RX	Port 16	CE_TX
Port 17	USB OTG_Device_EP1	Port 17	USB OTG_Device_EP1
Port 18	USB OTG_Device_EP2	Port 18	USB OTG_Device_EP2
Port 19	USB OTG_Device_EP3	Port 19	USB OTG_Device_EP3
Port20	USB OTG_Device_EP4	Port 20	USB OTG_Device_EP4
Port 21	/	Port 21	/
Port 22	/	Port 22	/
Port 23	SPI_RX	Port 23	SPI_TX
Port 24		Port 24	
Port 25		Port 25	
Port 26		Port 26	
Port 27		Port 27	
Port 28		Port 28	
Port 29		Port 29	
Port 30		Port 30	

4.8.2.3. DMA Descriptor

In this section, the DMA descriptor registers will be introduced in detail.

When starting a DMA transmission, the module data are transferred as packages, which have the link data information. And, by reading the DMA Status Register, the status of a DMA channel could be known. Reading back the descriptor address register, the value is the link data in the transferring package. If only the value is equal to 0xfffff800, then it can be regarded as NULL, which means the package is the last package in this DMA transmission. Otherwise, the value means the start address of the next package. And, the Descriptor Address Register can be changed during a package transferring.

When transferring the half of a package, the relevant pending bit will be set up automatically, and if the corresponding interrupt is enabled, DMA generates an interrupt to the system. The similar thing would occur when transferring a package completely. Meanwhile, if DMA have transferred the last package in the data, the relevant pending bit would be set up, and generates an interrupt if the corresponding interrupt is enabled. The flow-process diagram is showed in Block Diagram section.

During a DMA transmission, the configuration could be obtained via the Configuration Register. And, behind the address of the config register in DDR or SRAM, there are some registers including other information of a DMA transmission. The structure chart is showed in Block Diagram section. Also, other information of a transferring data can be obtained by reading the Current Source Address Register, Current Destination Address Register and Byte Counter Left Register. The

configuration must be word-aligning.

The transferring data would be paused when setting up the relevant Pause Register, if coming up emergency. And the pausing data could be presumable when set 0 to the same bit in Pause Register.

4.8.3. DMA Register List

Module Name	Base Address
DMA	0x01C02000

Register Name	Offset	Description
DMA_IRQ_EN_REG	0x00	DMA IRQ Enable Register
DMA_IRQ_PEND_REG	0x10	DMA IRQ Pending Register
DMA_AUTO_GATE_REG	0x20	DMA Auto Gating Register
DMA_STA_REG	0x30	DMA Status Register
DMA_EN_REG	0x100+N*0x40	DMA Channel Enable Register (N=0~7)
DMA_PAU_REG	0x100+N*0x40+0x4	DMA Channel Pause Register(N=0~7)
DMA_DESC_ADDR_REG	0x100+N*0x40+0x8	DMA Channel Start Address Register(N=0~7)
DMA_CFG_REG	0x100+N*0x40+0xC	DMA Channel Configuration Register(N=0~7)
DMA_CUR_SRC_REG	0x100+N*0x40+0x10	DMA Channel Current Source Register(N=0~7)
DMA_CUR_DEST_REG	0x100+N*0x40+0x14	DMA Channel Current Destination Register(N=0~7)
DMA_BCNT_LEFT_REG	0x100+N*0x40+0x18	DMA Channel Byte Counter Left Register(N=0~7)
DMA_PARA_REG	0x100+N*0x40+0x1C	DMA Channel Parameter Register(N=0~7)

4.8.4. DMA Register Description

4.8.4.1. DMA IRQ Enable Register0 (Default Value: 0x00000000)

Offset:	0x0000		Register Name: DMA_IRQ_EN_REG0
Bit	R/W	Default/Hex	Description
31	/	/	/
30	R/W	0x0	DMA7_QUEUE_IRQ_EN
			DMA 7 Queue End Transfer Interrupt Enable.
			0: Disable, 1: Enable.
29	R/W	0x0	DMA7_PKG_IRQ_EN
			DMA 7 Package End Transfer Interrupt Enable.
			0: Disable, 1: Enable.
28	R/W	0x0	DMA7_HLAF_IRQ_EN
			DMA 7 Half Package Transfer Interrupt Enable.
			0: Disable, 1: Enable.
27	/	/	
26	R/W	0x0	DMA6_QUEUE_IRQ_EN
			DMA 6 Queue End Transfer Interrupt Enable.
			0: Disable, 1: Enable.
25	R/W	0x0	DMA6_PKG_IRQ_EN
			DMA 6 Package End Transfer Interrupt Enable.
			0: Disable, 1: Enable.
24	R/W	0x0	DMA6_HLAF_IRQ_EN
			DMA 6 Half Package Transfer Interrupt Enable.
			0: Disable, 1: Enable.
23	/	/	

22	R/W	0x0	DMA5_QUEUE_IRQ_EN
	1,7,11	o no	DMA 5 Queue End Transfer Interrupt Enable.
			0: Disable, 1: Enable.
21	R/W	0x0	DMA5 PKG IRQ EN
21	10,00	OXO	DMA 5 Package End Transfer Interrupt Enable.
			0: Disable, 1: Enable.
20	R/W	0x0	DMA5_HLAF_IRQ_EN
20	17, 44	0.00	DMA 5 Half package Transfer Interrupt Enable.
			0: Disable, 1: Enable.
19	/	/	/
18	R/W	0x0	DMA4_QUEUE_IRQ_EN
10	10,00	OXO	DMA 4 Queue End Transfer Interrupt Enable.
			0: Disable, 1: Enable.
17	R/W	0x0	DMA4_PKG_IRQ_EN
17	17, 44	0.00	DMA 4 Package End Transfer Interrupt Enable.
			0: Disable, 1: Enable.
16	R/W	0x0	DMA4_HLAF_IRQ_EN
10	10,00	OXO	DMA 4 Half Package Transfer Interrupt Enable.
			0: Disable, 1: Enable.
15	/	/	/
14	R/W	0x0	DMA3_QUEUE_IRQ_EN
14	17, 44	0.00	DMA 3 Queue End Transfer Interrupt Enable.
			0: Disable, 1: Enable.
13	R/W	0x0	DMA3_PKG_IRQ_EN
13	10,00	OAO	DMA 3 Package End Transfer Interrupt Enable.
			0: Disable, 1: Enable.
12	R/W	0x0	DMA3_HLAF_IRQ_EN
12	10,00	OXO	DMA 3 Half Package Transfer Interrupt Enable.
			0: Disable, 1: Enable.
11	/	/	/
10	R/W	0x0	DMA2_QUEUE_IRQ_EN
10	1,7,00	OXO .	DMA 2 Queue End Transfer Interrupt Enable.
			0: Disable, 1: Enable.
9	R/W	0x0	DMA2 PKG IRQ EN
	1,711	0,10	DMA 2 Package End Transfer Interrupt Enable.
			0: Disable, 1: Enable.
8	R/W	0x0	DMA2_HLAF_IRQ_EN
	1,711		DMA 2 Half Package Transfer Interrupt Enable.
			0: Disable, 1: Enable.
7	/	/	1
6	R/W	0x0	DMA1_QUEUE_IRQ_EN
	,		DMA 1 Queue End Transfer Interrupt Enable.
			0: Disable, 1: Enable.
5	R/W	0x0	DMA1 PKG IRQ EN
	,		DMA 1 Package End Transfer Interrupt Enable.
			0: Disable, 1: Enable.
4	R/W	0x0	DMA1_HLAF_IRQ_EN
			DMA 1 Half Package Transfer Interrupt Enable.
			0: Disable, 1: Enable.
3	/	/	/
2	R/W	0x0	DMA0_QUEUE_IRQ_EN
	,		DMA 0 Queue End Transfer Interrupt Enable.
			0: Disable, 1: Enable.
1	R/W	0x0	DMA0_PKG_IRQ_EN

			DMA 0 Package End Transfer Interrupt Enable. 0: Disable, 1: Enable.
0	R/W	0x0	DMA0_HLAF_IRQ_EN
			DMA 0 Half Package Transfer Interrupt Enable. 0: Disable, 1: Enable

4.8.4.2. DMA IRQ Pending Status Register (Default Value: 0x00000000)

Offset:0	0x10		Register Name: DMA_IRQ_PEND_REG
Bit	R/W	Default/Hex	Description
31	/	/	/
30	R/W	0x0	DMA7_QUEUE_IRQ_PEND.
			DMA 7 Queue End Transfer Interrupt Pending. Set 1 to the bit will clear it.
			0: No effect, 1: Pending.
29	R/W	0x0	DMA7_PKG_IRQ_PEND
	-		DMA 7 Package End Transfer Interrupt Pending. Set 1 to the bit will clear it.
			0: No effect, 1: Pending.
28	R/W	0x0	DMA7_HLAF_IRQ_PEND.
	-		DMA 7 Half Package Transfer Interrupt Pending. Set 1 to the bit will clear it.
			0: No effect, 1: Pending.
27	/	/	/
26	R/W	0x0	DMA6_QUEUE_IRQ_PEND.
			DMA 6 Queue End Transfer Interrupt Pending. Set 1 to the bit will clear it.
			0: No effect, 1: Pending.
25	R/W	0x0	DMA6 PKG IRQ PEND
			DMA 6 Package End Transfer Interrupt Pending. Set 1 to the bit will clear it.
			0: No effect, 1: Pending.
24	R/W	0x0	DMA6_HLAF_IRQ_PEND.
			DMA 6 Half Package Transfer Interrupt Pending. Set 1 to the bit will clear it.
			0: No effect, 1: Pending.
23	/	/	/
22	R/W	0x0	DMA5_QUEUE_IRQ_PEND.
			DMA 5 Queue End Transfer Interrupt Pending. Set 1 to the bit will clear it.
			0: No effect, 1: Pending.
21	R/W	0x0	DMA5_PKG_IRQ_ PEND
			DMA 5 Package End Transfer Interrupt Pending. Set 1 to the bit will clear it.
			0: No effect, 1: Pending.
20	R/W	0x0	DMA5_HLAF_IRQ_PEND.
			DMA 5 Half Package Transfer Interrupt Pending. Set 1 to the bit will clear it.
			0: No effect, 1: Pending.
19	/	/	/
18	R/W	0x0	DMA4_QUEUE_IRQ_PEND.
			DMA 4 Queue End Transfer Interrupt Pending. Set 1 to the bit will clear it.
			0: No effect, 1: Pending.
17	R/W	0x0	DMA4_PKG_IRQ_ PEND
			DMA 4 Package End Transfer Interrupt Pending. Set 1 to the bit will clear it.
			0: No effect, 1: Pending.
16	R/W	0x0	DMA4_HLAF_IRQ_PEND.
			DMA 4 Half Package Transfer Interrupt Pending. Set 1 to the bit will clear it.
			0: No effect, 1: Pending.
15	/	/	/
14	R/W	0x0	DMA3_QUEUE_IRQ_PEND.

			DMA 3 Queue End Transfer Interrupt Pending. Set 1 to the bit will clear it.
			0: No effect, 1: Pending.
13	R/W	0x0	DMA3_PKG_IRQ_ PEND
			DMA 3 Package End Transfer Interrupt Pending. Set 1 to the bit will clear it.
			0: No effect, 1: Pending.
12	R/W	0x0	DMA3_HLAF_IRQ_PEND.
			DMA 3 Half Package Transfer Interrupt Pending. Set 1 to the bit will clear it.
			0: No effect, 1: Pending.
11	/	/	/
10	R/W	0x0	DMA2_QUEUE_IRQ_PEND.
			DMA 2 Queue End Transfer Interrupt Pending. Set 1 to the bit will clear it.
			0: No effect, 1: Pending.
9	R/W	0x0	DMA2_PKG_IRQ_ PEND
			DMA 2 Package End Transfer Interrupt Pending. Set 1 to the bit will clear it.
			0: No effect, 1: Pending.
8	R/W	0x0	DMA2_HLAF_IRQ_PEND.
			DMA 2 Half Package Transfer Interrupt Pending. Set 1 to the bit will clear it.
			0: No effect, 1: Pending.
7	/	/	/
6	R/W	0x0	DMA1_QUEUE_IRQ_PEND.
			DMA 1 Queue End Transfer Interrupt Pending. Set 1 to the bit will clear it.
			0: No effect, 1: Pending.
5	R/W	0x0	DMA1_PKG_IRQ_ PEND
			DMA 1 Package End Transfer Interrupt Pending. Set 1 to the bit will clear it.
			0: No effect, 1: Pending.
4	R/W	0x0	DMA1_HLAF_IRQ_PEND.
			DMA 1 Half Package Transfer Interrupt Pending. Set 1 to the bit will clear it.
			0: No effect, 1: Pending.
3	/	/	1
2	R/W	0x0	DMA0_QUEUE_IRQ_PEND.
			DMA 0 Queue End Transfer Interrupt Pending. Set 1 to the bit will clear it.
			0: No effect, 1: Pending.
1	R/W	0x0	DMA0_PKG_IRQ_ PEND
			DMA 0 Package End Transfer Interrupt Pending. Set 1 to the bit will clear it.
			0: No effect, 1: Pending.
0	R/W	0x0	DMA0_HLAF_IRQ_PEND.
			DMA 0 Half Package Transfer Interrupt Pending. Set 1 to the bit will clear it.
			0: No effect, 1: Pending.

4.8.4.3. DMA Auto Gating Register (Default Value: 0x00000000)

Offset:0x20			Register Name: DMA_AUTO_GATE_REG
Bit	R/W	Default/Hex	Description
31:3	/	/	/
2	R/W	0x0	DMA_MCLK_CIRCUIT.
			DMA MCLK interface circuit auto gating bit.
			0: Auto gating enable
			1: Auto gating disable.
1	R/W	0x0	DMA_COMMON_CIRCUIT.
			DMA common circuit auto gating bit.
			0: Auto gating enable
			1: Auto gating disable.

0	R/W	0x0	DMA_CHAN_CIRCUIT.
			DMA channel circuit auto gating bit.
			0: Auto gating enable
			1: Auto gating disable.

Note: When initializing DMA Controller,bit-2 should be set up.

4.8.4.4. DMA Status Register (Default Value: 0x00000000)

Offset:0	x30		Register Name: DMA_STA_REG
Bit	R/W	Default/Hex	Description
31:8	/	/	/
7	RO	0x0	DMA7_STATUS
			DMA Channel 7 Status.
			0: Idle
			1: Busy
6	RO	0x0	DMA6_STATUS
			DMA Channel 6 Status.
			0: Idle
			1: Busy
5	RO	0x0	DMA5_STATUS
			DMA Channel 5 Status.
			0: Idle
			1: Busy
4	RO	0x0	DMA4_STATUS
			DMA Channel 4 Status.
			0: Idle
			1: Busy.
3	RO	0x0	DMA3_STATUS
			DMA Channel 3 Status.
			0: Idle
			1: Busy.
2	RO	0x0	DMA2_STATUS
			DMA Channel 2 Status.
			0: Idle,
			1: Busy.
1	RO	0x0	DMA1_STATUS
			DMA Channel 1 Status.
			0: Idle,
			1: Busy.
0	RO	0x0	DMA0_STATUS
			DMA Channel 0 Status.
			0: Idle,
			1: Busy.

4.8.4.5. DMA Channel Enable Register (Default Value: 0x00000000)

Offset: 0x1	Offset: 0x100+N*0x40+0x0(N=0~7)		Register Name: DMA_EN_REG
Bit	R/W	Default/Hex	Description
31:1	/	/	/
0	R/W	0x0	DMA_EN.
			DMA Channel Enable

	0: Disable
	1: Enable.

Note:It's not recommended to disable dma while dma is transmitting.If it is necessary to do that,dma has to be paused first and then disabled.

4.8.4.6. DMA Channel Pause Register (Default Value: 0x00000000)

Offset: 0x100+N*0x40+0x4(N=0~7)		40+0x4(N=0~7)	Register Name: DMA_PAU_REG	
Bit	R/W	Default/Hex	Description	
31:1	/	/	/	
0	R/W	0x0	DMA_PAUSE.	
			Pausing DMA Channel Transfer Data.	
			0: Resume Transferring,	
			1: Pause Transferring.	

4.8.4.7. DMA Channel Descriptor Address Register(Default Value: 0x00000000)

Offset: 0x1	Offset: 0x100+N*0x40+0x8(N=0~7)		Register Name: DMA_DESC_ADDR_REG	
Bit	R/W	Default/Hex	Description	
31:0	R/W	0x0	DMA_DESC_ADDR	
			DMA Channel Descriptor Address.	

4.8.4.8. DMA Channel Configuration Register (Default Value: 0x00000000)

Offset: 0x	Offset: 0x100+N*0x40+0xC(N=0~7)		Register Name: DMA_CFG_REG	
Bit	R/W	Default/Hex	Description	
31:27	/	/	/	
26:25	RO	0x0	DMA_DEST_DATA_WIDTH.	
			DMA Destination Data Width.	
			00: 8-bit	
			01: 16-bit	
			10: 32-bit	
			11:/	
24:23	RO	0x0	DMA_DEST_BST_LEN.	
			DMA Destination Burst Length.	
			00: 1	
			01: /	
			10: 8	
			11:/	
22:21	RO	0x0	DMA_ADDR_MODE.	
			DMA Destination Address Mode	
			0x0: Linear Mode	
			0x1: IO Mode	
			0x2: /	
			0x3: /	
20:16	RO	0x0	DMA_DEST_DRQ_TYPE.	
			DMA Destination DRQ Type	
			The details in DRQ Type and Port Corresponding Relation.	
15:11	/	/	/	
10:9	RO	0x0	DMA_SRC_DATA_WIDTH.	

		1		
			DMA Source Data Width.	
			00: 8-bit	
			01: 16-bit	
			10: 32-bit	
			11: /	
8:7	RO	0x0	DMA_SRC_BST_LEN.	
			DMA Source Burst Length.	
			00: 1	
			01: /	
			10: 8	
			11: /	
6:5	RO	0x0	DMA_SRC_ADDR_MODE.	
			DMA Source Address Mode	
			0x0: Linear Mode	
			0x1: IO Mode	
			0x2: /	
			0x3: /	
4:0	RO	0x0	DMA_SRC_DRQ_TYPE.	
			DMA Source DRQ Type	
			The details in DRQ Type and Port Corresponding Relation.	

Note1: If the DRQ type is dram, then, the corresponding burst length will be fixed, and the options will be invalid.

Note2: The address of the DMA Channel Configuration Register must be word-aligned.

Note3: If the DRQ type is SRAM, then, the source address or destination address must be word-aligned.

4.8.4.9. DMA Channel Current Source Address Register (Default Value: 0x00000000)

Offset: 0x2	Offset: 0x100+N*0x40+0x10(N=0~7)		Register Name: DMA_CUR_SRC_REG
Bit	R/W	Default/Hex	Description
31:0	RO	0x0	DMA_CUR_SRC. DMA Channel Current Source Address, read only.

Note: The address of the DMA Channel Current Source Address Register must be word-aligned.

4.8.4.10. DMA Channel Current Destination Address Register (Default Value: 0x00000000)

Offset: 0x100+N*0x40+0x14(N=0~7)		+0x14(N=0~7)	Register Name: DMA_CUR_DEST_REG	
Bit	R/W	Default/Hex	Description	
31:0	RO	0	DMA_CUR_DEST.	
			DMA Channel Current Destination Address, read only.	

Note: The address of the DMA Channel Current Destination Address Register must be word-aligned.

4.8.4.11. DMA Channel Byte Counter Left Register (Default Value: 0x00000000)

Offset: 0x100+N*0x40+0x18(N=0~11)		+0x18(N=0~11)	Register Name: DMA_BCNT_LEFT_REG	
Bit	R/W	Default/Hex	Description	
31:25	/	/	/	
24:0	RO	0x0	DMA_BCNT_LEFT.	
			DMA Channel Byte Counter Left, read only.	

Note: The address of the DMA Channel Byte Counter Left Register must be word-aligned.

4.8.4.12. DMA Channel Parameter Register (Default Value: 0x00000000)

Offset: 0x100+N*0x40+0x1C(N=0~7)		40+0x1C(N=0~7)	Register Name: DMA_PARA_REG	
Bit	R/W	Default/Hex	Description	
31:16	/	/		
15:8	RO	0x0	DATA_BLK_SIZE.	
			Data Block Size N.	
7:0	RO	0x0	WAIT_CYC.	
			Wait Clock Cycles n.	

Note1: The number of data block size usually depends on the capacity of the device's FIFO in the practical application.

Note2: The data block size must be multiple of **burst*width** (byte). For example: if burst is 4 and the width is 32-bit, so the data block size must be m*16(byte), i.e. N = m*16.

Note3: When DMA controller has completed transferring **N** bytes data, and waiting **n** clock cycles to check the DRQ signal.

Note4: This register is only effective to devices, and the Data Block Size **N** should be **0** if it is less than **32**.

4.9. GIC

For details about GIC, please refer to the *GIC PL400 technical reference manual* and *ARM GIC Architecture Specification V2.0.*

4.9.1. Interrupt Source

Interrupt number	Vector	Interrupt Source	Description
0	0x0000	SGI 0	SGI 0 interrupt
1	0x0004	SGI 1	SGI 1 interrupt
2	0x0008	SGI 2	SGI 2 interrupt
3	0x000C	SGI 3	SGI 3 interrupt
4	0x0010	SGI 4	SGI 4 interrupt
5	0x0014	SGI 5	SGI 5 interrupt
6	0x0018	SGI 6	SGI 6 interrupt
7	0x001C	SGI 7	SGI 7 interrupt
8	0x0020	SGI 8	SGI 8 interrupt
9	0x0024	SGI 9	SGI 9 interrupt
10	0x0028	SGI 10	SGI 10 interrupt
11	0x002C	SGI 11	SGI 11 interrupt
12	0x0030	SGI 12	SGI 12 interrupt
13	0x0034	SGI 13	SGI 13 interrupt
14	0x0038	SGI 14	SGI 14 interrupt
15	0x003C	SGI 15	SGI 15 interrupt
16	0x0040	PPI 0	PPI 0 interrupt
17	0x0044	PPI 1	PPI 1 interrupt
18	0x0048	PPI 2	PPI 2 interrupt
19	0x004C	PPI 3	PPI 3 interrupt
20	0x0050	PPI 4	PPI 4 interrupt
21	0x0054	PPI 5	PPI 5 interrupt
22	0x0058	PPI 6	PPI 6 interrupt
23	0x005C	PPI 7	PPI 7 interrupt
24	0x0060	PPI 8	PPI 8 interrupt
25	0x0064	PPI 9	PPI 9 interrupt
26	0x0068	PPI 10	PPI 10 interrupt
27	0x006C	PPI 11	PPI 11 interrupt
28	0x0070	PPI 12	PPI 12 interrupt
29	0x0074	PPI 13	PPI 13 interrupt
30	0x0078	PPI 14	PPI 14 interrupt
31	0x007C	PPI 15	PPI 15 interrupt
32	0x0080	UART 0	UART 0 interrupt
33	0x0084	UART 1	UART 1 interrupt
34	0x0088	UART 2	UART 2 interrupt
35	0x008C		
36	0x0090		
37	0x0094		
38	0x0098	TWI 0	TWI 0 interrupt
39	0x009C	TWI 1	TWI 1 interrupt
40	0x00A0		
41	0x00A4		
42	0x00A8		

42	00040		
43	0x00AC		
44	0x00B0	120 / DOM	125 / DCM 4 in Language
45	0x00B4	I2S/PCM	I2S/PCM interrupt
46	0x00B8	DD FINIT	DD 51017:
47	0x00BC	PB_EINT	PB_EINT interrupt
48	0x00C0	DO SINIT	DO SINIT: 1
49	0x00C4	PG_EINT	PG_EINT interrupt
50	0x00C8	Timer 0	Timer 0 interrupt
51	0x00CC	Timer 1	Timer 1 interrupt
52	0x00D0	Timer 2	Timer 2 interrupt
53	0x00D4		
54	0x00D8		
55	0x00DC		
56	0x00E0		
57	0x00E4	Watchdog	Watchdog interrupt
58	0x00E8		
59	0x00EC		
60	0x00F0		
61	0x00F4	Audio Codec	Audio Codec interrupt
62	0x00F8	LRADC	LRADC interrupt
63	0x00FC		
64	0x100	External NMI	External Non-Mask Interrupt
65	0x104		
66	0x108		
67	0x010C		
68	0x0110		
69	0x0114		
70	0x0118		
71	0x011C		
72	0x0120	Alarm 0	Alarm 0 interrupt
73	0x0124	Alarm 1	Alarm 1 interrupt
74	0x0128		
75	0x012C		
76	0x0130		
77	0x0134		
78	0x0138		
79	0x013C		
80	0x0140		
81	0x0144		
82	0x0148	DMA	DMA channel interrupt
83	0x014C	HS Timer0	HS Timer0 interrupt
84	0x0150	HS Timer1	HS Timer1 interrupt
85	0x0154		
86	0x0158		
87	0x015C		
88	0x0160		
89	0x0164		
90	0x0168	VE	VE interrupt
91	0x016C		·
92	0x0170	SD/MMC 0	SD/MMC Host Controller 0 interrupt
93	0x0174	SD/MMC 1	SD/MMC Host Controller 1 interrupt
94	0x0178	SD/MMC 2	SD/MMC Host Controller 2 interrupt
95	0x017C	·	
		1	ı

	1		
96	0x0180		
97	0x0184	SPI	SPI interrupt
98	0x0188		
99	0x018C		
100	0x0190		
101	0x0194		
102	0x0198		
103	0x019C	USB OTG_Device	USB OTG_Device interrupt
104	0x01A0	USB OTG_EHCI	USB OTG_EHCI I interrupt
105	0x01A4	USB OTG_OHCI	USB OTG_OHCI interrupt
106	0x01A8		
107	0x01AC		
108	0x01B0		
109	0x01B4		
110	0x01B8		
111	0x01BC		
112	0x01C0	CE	CE interrupt
113	0x01C4		
114	0x01C8	EMAC	EMAC interrupt
115	0x01CC	CSIO	CSIO interrupt
116	0x01D0	CSI1	CSI1 interrupt
117	0x01D4	CSI_CCI	CSI_CCI interrupt
118	0x01D8	TCON	TCON Controller interrupt
119	0x01DC		·
120	0x01E0		
121	0x01E4		
122	0x01E8	MIPI CSI	MIPI CSI interrupt
123	0x01EC		
124	0x01F0		
125	0x01F4		
126	0x01F8		
127	0x01FC	DE	DE interrupt
128	0x0200		
129	0x0204		
130	0x0208		
131	0x020C		
132	0x0210		
133	0x0214		
134	0x0218		
135	0x021C		
136	0x0210		
137	0x0224		
138	0x0224		
139	0x0228		
140	0x022C	CTI0	CTIO interrupt
141	0x0230	CTI1	CTI1 interrupt
142	0x0234 0x0238	CTI2	CTI2 interrupt
143	0x023C	CTI3	CTI2 interrupt CTI3 interrupt
144	0x023C	COMMTX0	COMMTX0 interrupt
145	0x0240 0x0244	COMMTX1	COMMTX0 Interrupt COMMTX1 interrupt
146	0x0244 0x0248	COMMTX2	COMMTX1 Interrupt COMMTX2 interrupt
146	0x0248 0x024C	COMMTX3	COMMTX2 Interrupt COMMTX3 interrupt
			·
148	0x0250	COMMRX0	COMMRX0 interrupt

159	0x0254	COMMRX1	COMMRX1 interrupt
150	0x0258	COMMRX2	COMMRX2 interrupt
151	0x025C	COMMRX3	COMMRX3 interrupt
152	0x0260	PMU0	PMU0 interrupt
153	0x0264	PMU1	PMU1 interrupt
154	0x0268	PMU2	PMU2 interrupt
155	0x026C	PMU3	PMU3 interrupt
156	0x0270	AXI_ERROR	AXI_ERROR interrupt

4.10. Crypto Engine

4.10.1. Overview

The Crypto Engine (CE) is one encrypt/ decrypt function accelerator. It is suitable for a variety of applications. It can support encryption/decryption and calculate the hash value. Besides, both CPU mode and DMA method are supported for different applications.

It includes the following features:

- Support AES, DES, 3DES, SHA-1, MD5
- 160-bits hardware PRNG with 175-bits seed
- Support ECB, CBC, CTR, CTS modes for AES
- Support ECB, CBC,CTR modes for DES/3DES
- 128-bits, 192-bits and 256-bits key size for AES
- Support 32-words RX FIFO and 32-words TX FIFO for high speed application
- Support CPU mode and DMA mode

4.10.2. Block Diagram

Figure 4-7. CE Block Diagram

4.10.3. Crypto Engine Register List

Module Name	Base Address
CE	0x01C15000

Register Name	Offset	Description
CE_CTL	0x00	Control Register
CE_KEYO	0x04	Input Key 0/ PRNG Seed 0
CE_KEY1	0x08	Input Key 1/ PRNG Seed 1
CE _KEY7	0x20	Input Key 7
CE_IV0	0x24	Initialization Vector 0
CE_IV1	0x28	Initialization Vector 1
CE_IV2	0x2C	Initialization Vector 2
CE_IV3	0x30	Initialization Vector 3
CE_CNT0	0x34	Preload Counter 0
CE_CNT1	0x38	Preload Counter 1
CE _CNT2	0x3C	Preload Counter 2
CE_CNT3	0x40	Preload Counter 3
CE _FCSR	0x44	FIFO Control/ Status Register
CE _ICSR	0x48	Interrupt Control/ Status Register
CE _MD0	0x4C	SHA1/MD5 Message Digest 0/PRNG Data0
CE _MD1	0x50	SHA1/MD5 Message Digest 1/PRNG Data1
CE _MD2	0x54	SHA1/MD5 Message Digest 2/PRNG Data2
CE _MD3	0x58	SHA1/MD5 Message Digest 3/PRNG Data3
CE _MD4	0x5C	SHA1/MD5 Message Digest 4/PRNG Data4
CE _CTS_LEN	0x60	AES-CTS ciphertext length
CE _RXFIFO	0x200	RX FIFO input port
CE _TXFIFO	0x204	TX FIFO output port

4.10.4. Crypto Engine Register Description

4.10.4.1. Control Register(Default Value: 0x00000000)

Offset: 0x00	Offset: 0x00		Register Name: CE_CTL
Bit	R/W	Default/Hex	Description
31:28	/	/	/
27:24	R/W	0	SKEY_SELECT AES/DES/3DES key select 0: Select input CE_KEYx (Normal Mode) 1: / 2: /

		1	3-10: Select internal Key n (n from 0 to 7)
			Others: Reserved
18:16	R	х	DIE_ID Dia Pandina ID
			Die Bonding ID
			PRNG_MODE
15	R/W	0	PRNG generator mode
			0: One-shot mode
			1: Continue mode
			IV_MODE
			IV Steady of SHA-1/MD5 constants
14	R/W	0	0: Constants
	'		1: Arbitrary IV
			Notes: It is only used for SHA-1/MD5 engine. If the number of IV word is
			beyond of 4, Counter 0 register is used for IV4.
			CE_OP_MODE
			CE Operation Mode
13:12	R/W	0	00: Electronic Code Book (ECB) mode
13.12	1,7,00		01: Cipher Block Chaining (CBC) mode
			10:Counter (CTR) mode
			11: AES Ciphertext Stealing (CTS) mode
11:10	/	/	
			AES_KEY_SIZE
			Key Size for AES
9:8	R/W	0	00: 128-bits
3.6	IX/ VV	0	01: 192-bits
			10: 256-bits
			11: Reserved
			CE_OP_DIR
7	R/W		CE Operation Direction
,	K/VV	0	0: Encryption
			1: Decryption
			CE_METHOD
			CE Method
			000: AES
			001: DES
6:4	R/W	0	010: Triple DES (3DES)
			011: SHA-1
			100: MD5
			101: PRNG
			Others: Reserved
3	/	/	/
			SHA1_MD5_END_BIT
			SHA-1/MD5 Data End bit
			Write '1' to tell SHA-1/MD5 engine that the text data is end. If there is some
2	R/W	0	data in FIFO, the engine would fetch these data and process them. After
	'		finishing message digest, this bit is clear to '0' by hardware and message
			digest can be read out from digest registers.
			Notes: It is only used for SHA-1/MD5 engine.
			PRNG_START
			PRNG start bit
1	R/W	0	In PRNG one-shot mode, write '1' to start PRNG. After generating one group
			random data (5 words), this bit is clear to '0' by hardware.
			CE_ENABLE
0	R/W	0	CE_ENABLE CE Enable
i			

A disable on this bit overrides any other block and flushes all FIFOs.
0: Disable
1: Enable

4.10.4.2. Key [n] Register (Default Value: 0x00000000)

Offset: 0x04+4*n			Register Name: CE_KEY[n]
Bit	R/W	Default/Hex	Description
31:0	R/W	0	CE_KEY Key[n] Input Value (n= 0~7)/ PRNG Seed[n] (n= 0~5)

4.10.4.3. IV[n] Register(Default Value: 0x00000000)

Offset: 0x24+4*n			Register Name: CE_IV[n]
Bit	R/W	Default/Hex	Description
31:0	R/W	0	CE_IV_VALUE Initialization Vector (IV[n]) Input Value (n= 0~3)

4.10.4.4. Count [n] Register (Default Value: 0x00000000)

Offset: 0x34+4*n			Register Name: CE_CNT[n]
Bit	R/W	Default/Hex	Description
31:0	R/W	0	CE_CNT_VALUE Counter Input Value (n= 0~3)

4.10.4.5. FIFO Control/ Status Register (Default Value: 0x60000F0F)

Offset: 0x44			Register Name: CE_FCSR
Bit	R/W	Default/Hex	Description
31	/	/	/
30	R	0x1	RXFIFO_STATUS RX FIFO Empty 0: No room for new word in RX FIFO 1: More than one room for new word in RX FIFO (>= 1 word)
29:24	R	0x20	RXFIFO_EMP_CNT RX FIFO Empty Space Word Counter
23	/	/	/
22	R	0	TXFIFO_STATUS TX FIFO Data Available Flag 0: No available data in TX FIFO 1: More than one data in TX FIFO (>= 1 word)
21:16	R	0	TXFIFO_AVA_CNT TX FIFO Available Word Counter
15:13	/	/	/
12:8	R/W	0xF	RXFIFO_INT_TRIG_LEVEL RX FIFO Empty Trigger Level Interrupt and DMA request trigger level for RXFIFO normal condition

			Trigger Level = RXTL + 1
			Notes: RX FIFO is used for input the data.
7:5	/	/	/
			TXFIFO_INT_TRIG_LEVEL TX FIFO Trigger Level
4:0	R/W	0xF	Interrupt and DMA request trigger level for TXFIFO normal condition Trigger Level = TXTL + 1
			Notes: TX FIFO is used for output the result data.

4.10.4.6. Interrupt Control/ Status Register (Default Value: 0x00000000)

Offset: 0	Offset: 0x48		Register Name: CE_ICSR
Bit	R/W	Default/Hex	Description
31:11	/	/	/
			RXFIFO_EMP_PENDING_BIT
			RX FIFO Empty Pending bit
10	R/W	0	0: No pending
			1: RX FIFO Empty pending
			Notes: Write '1' to clear or automatic clear if interrupt condition fails.
9	/	/	
			TXFIFO_AVA_PENDING_BIT
			TX FIFO Data Available Pending bit
8	R/W	0	0: No TX FIFO pending
			1: TX FIFO pending
			Notes: Write '1' to clear or automatic clear if interrupt condition fails.
7:5	/	/	
			DRA_ENABLE
4	R/W	0	DRQ Enable
7	11,7 VV		0: Disable DRQ (CPU polling mode)
			1: Enable DRQ (DMA mode)
3	/	/	
			RXFIFO_EMP_INT_ENABLE
			RX FIFO Empty Interrupt Enable
			0: Disable
2	R/W	0	1: Enable
			Notes: If it is set to '1', when the number of empty room is great or equal
			(>=) the preset threshold, the interrupt is trigger and the correspond flag is
			set.
1	/	/	1
			TXFIFO_AVA_INT_ENABLE
0		R/W 0	TX FIFO Data Available Interrupt Enable
	R/W		0: Disable
-			1: Enable
			Notes: If it is set to '1', when available data number is great or equal (>=) the
			preset threshold, the interrupt is trigger and the correspond flag is set.

4.10.4.7. Message Digest[n] Register (Default Value: 0x00000000)

Offset: 0x4C+4*n			Register Name: CE_MD[n]
Bit	R/W	Default/Hex	Description

31:0	R	0	CE_MID_DATA SHA1/ MD5 Message digest MD[n] for SHA1/MD5 (n= 0~4)

4.10.4.8. CTS Length Register (Default Value: 0x00000000)

Bit R/W Default/Hex Description 31:0 R/W 0 AES-CTS ciphertext length in byte unit	Offset: 0x60			Register Name: CE_CTS_LEN
131'0 R/W 10 1 '	Bit	R/W	Default/Hex	Description
I he value of 'O' means no data.	31:0	R/W	0	AES-CTS ciphertext length in byte unit The value of '0' means no data.

4.10.4.9. RXFIFO Register (Default Value: 0x00000000)

Offset: 0x200			Register Name: CE_RX
Bit	R/W	Default/Hex	Description
31:0	W	0	CE_RX_FIFO 32-bits RX FIFO for Input

4.10.4.10. TXFIFO Register (Default Value: 0x00000000)

Offset: 0x204			Register Name: CE_TX
Bit	R/W	Default/Hex	Description
31:0	W	0	CE_RX_FIFO 32-bits TX FIFO for Output

4.10.5. Crypto Engine Clock Requirement

Clock Name	Description	Requirement
ahb_clk	AHB bus clock	>=24MHz
CE_clk	Crypto Engine serial clock	<= 150MHz

4.10.6. Crypto Engine Programming Guide

- (1) AES CTS can only support oneshot mode that all sources are writing in the RXFIFO as a package.AES CTS can not support continue sub-package mode that the sources could divide into some packages to calculate.
- (2) For SHA1, It should be noted the sequence of the initial hash value.

SHA1 is the big-endian algorithm, within each word, the most significant bit is stored in the left-most bit position. For example, the initial hash value of SHA1 in Fips180-2, H⁽⁰⁾ shall consist of the following five 32-bit words, in hex:

 $H_0^{(0)} = 67452301$ $H_1^{(0)} = efcdab89$

 $H_2^{(0)} = 98$ badcfe

 $H_3^{(0)} = 10325476$

 $H_4^{(0)} = c3d2e1f0$

The default access mode of ARM is litter-endian. So for the SHA1 of the Sochip, the initial hash value, writing in the $CE_IV[0]$, $CE_IV[1]$, $CE_IV[2]$, $CE_IV[3]$, $CE_CNT[0]$, in hex:

 $CE\ IV[0] = 01234567$

CE_IV[1] = 89abcdef

CE IV[2] = fedcba98

CE_IV[3] = 76543210 CE_CNT[0] = f0e1d2c3

4.11. Security ID

4.11.1. Overview

There is one on chip EFUSE, with size up to 128bits for security chip ID, the other 128bits is reserved. The work clock of Security ID is 6MHz.

4.12. LRADC

4.12.1. Overview

The LRADC is 6-bit resolution ADC for key application. The LRADC can work up to 250Hz conversion rate.

The LRADC includes the following features:

- Supports APB 32-bits bus width
- Support interrupt
- Support Hold Key and General Key
- Support Single Key and Continue Key mode
- 6-bits resolution
- Voltage input range between 0V to 2.0V
- Sample rate up to 250Hz

4.12.2. Clock Source

Figure 4-8. LRADC Clock Source

4.12.3. Operation Principle

The LRADC converted data can accessed by interrupt and polling method. If software can't access the last converted data instantly, the new converted data would update the old one at new sampling data.

Figure 4-9. LRADC Data Converted Diagram

When ADC_IN Signal change from 3.0V to less than 2.0V (Level A), the comparator24 send first interrupt to control logic; When ADC_IN Signal change from 2.0V to less than certain level (Program can set), the comparator25 give second interrupt. If the control Logic get the first interrupt, In a certain time range (program can set), doesn't get second interrupt, it will send hold key interrupt to the host; If the control Logic get the first interrupt, In a certain time range (program can set), get second interrupt, it will send key down interrupt to the host; If the control logic only get the second interrupt, doesn't get the first interrupt, it will send already hold interrupt to the host.

The LRADC have three mode, Normal Mode. Single Mode and Continue Mode. Normal mode is that the LRADC will report the result data of each convert all the time when the key is down. Single Mode is that the LRADC will only report the first convert result data when the key is down. Continue Mode is that the LRADC will report one of 8*(N+1) (N is program can set) sample convert result data when key is down.

The LRADC is support four sample rate such as 250Hz \(125Hz \) 62.5Hz and 32.25Hz, you can configure the value of LRADC_SAMPLE_RATE to select the fit sample rate.

4.12.4. LRADC Register List

Module Name	Base Address
LRADC	0x01C22800

Register Name	Offset	Description
LRADC_CTRL	0x00	LRADC Control Register
LRADC_INTC	0x04	LRADC Interrupt Control Register
LRADC_INTS	0x08	LRADC Interrupt Status Register
LRADC_DATA0	0x0C	LRADC Data0 Register
LRADC_DATA1	0x10	LRADC Data1 Register

4.12.5. LRADC Register Description

4.12.5.1. LRADC Control Register (Default Value: 0x01000168)

Offset: 0:	к00		Register Name: LRADC_CTRL_REG
Bit	R/W	Default/Hex	Description
31: 24	R/W	0x1	FIRST_CONVERT_DLY
			ADC First Convert Delay setting, ADC conversion is delayed by n samples
23:22	R/W	0x0	ADC_CHAN_SELECT
			ADC channel select
			00: ADC0 channel
			01: ADC1 channel
			1x: ADC0&ADC1 channel
21:20	/	/	
19:16	R/W	0x0	CONTINUE_TIME_SELECT
			Continue Mode time select, one of 8*(N+1) sample as a valuable sample
			data
15:14	/	/	/
13:12	R/W	0x0	KEY_MODE_SELECT
			Key Mode Select
			00: Normal Mode
			01: Single Mode
			10: Continue Mode
11:8	R/W	0x1	LEVELA_B_CNT

			Level A to Level B time threshold select, judge ADC convert value in level A
			to level B in n+1 samples
7	R/W	0x0	LRADC_HOLD_KEY_EN
			LRADC Hold Key Enable
			0: Disable
			1: Enable
6	R/W	0x1	LRADC_HOLD_EN
			LRADC Sample hold Enable
			0: Disable
			1: Enable
5:4	R/W	0x2	LEVELB_VOL
			Level B Corresponding Data Value Setting (the real voltage value)
			00: 0x3C (~1.9V)
			01: 0x39 (~1.8V)
			10: 0x36 (~1.7V)
			11: 0x33 (~1.6V)
3: 2	R/W	0x2	LRADC_SAMPLE_RATE
			LRADC Sample Rate
			00: 250 Hz
			01: 125 Hz
			10: 62.5 Hz
			11: 32.25 Hz
1	/	/	1
0	R/W	0x0	LRADC_EN
			LRADC enable
			0: Disable
			1: Enable

4.12.5.2. LRADC Interrupt Control Register (Default Value: 0x00000000)

Offset: 0:	Offset: 0x04		Register Name: LRADC_INTC_REG
Bit	R/W Default/Hex		Description
31:13	/	/	
12	R/W	0x0	ADC1_KEYUP_IRQ_EN
			ADC 1 Key Up IRQ Enable
			0: Disable
			1: Enable
11	R/W	0x0	ADC1_ALRDY_HOLD_IRQ_EN
			ADC 1 Already Hold Key IRQ Enable
			0: Disable
			1: Enable
10	R/W	0x0	ADC 1 Hold Key IRQ Enable
			0: Disable
			1: Enable
9	R/W	0x0	ADC1_KEYIRQ_EN
			ADC 1 Key IRQ Enable
			0: Disable
			1: Enable
8	R/W	0x0	ADC1_DATA_IRQ_EN
			ADC 1 DATA IRQ Enable
			0: Disable
			1: Enable

7:5	/	/	/
4	R/W	0x0	ADCO_KEYUP_IRQ_EN
			ADC0 Key Up IRQ Enable
			0: Disable
			1: Enable
3	R/W	0x0	ADCO_ALRDY_HOLD_IRQ_EN
			ADCO Already Hold IRQ Enable
			0: Disable
			1: Enable
2	R/W	0x0	ADCO_HOLD_IRQ_EN
			ADCO Hold Key IRQ Enable
			0: Disable
			1: Enable
1	R/W	0x0	ADC0_KEYDOWN_EN
			ADC0 Key Down Enable
			0: Disable
			1: Enable
0	R/W	0x0	ADCO_DATA_IRQ_EN
			ADCO Data IRQ Enable
			0: Disable
			1: Enable

4.12.5.3. LRADC Interrupt Status Register (Default Value: 0x00000000)

Offset: 0x08			Register Name:LRADC_INTS_REG
Bit	R/W	Default/Hex	Description
31:13	/	/	
12	R/W	0x0	ADC1_KEYUP_PENDING
			ADC 1 Key up Pending Bit
			When general key pull up, it the corresponding interrupt is enabled.
			0: No IRQ
			1: IRQ Pending
			Notes: Writing 1 to the bit will clear it and its corresponding interrupt if the
			interrupt is enable
11	R/W	0x0	ADC1_ALRDY_HOLD_PENDING
			ADC 1 Already Hold Pending Bit
			When hold key pull down and pull the general key down, if the
			corresponding interrupt is enabled.
			0: No IRQ
			1: IRQ Pending
			Notes: Writing 1 to the bit will clear it and its corresponding interrupt if the
			interrupt is enable
10	R/W	0x0	ADC1_HOLDKEY_PENDING
			ADC 1 Hold Key Pending Bit
			When Hold key pull down, the status bit is set and the interrupt line is set if
			the corresponding interrupt is enabled.
			0: NO IRQ
			1: IRQ Pending
			Notes: Writing 1 to the bit will clear it and its corresponding interrupt if the
_			interrupt is enable.
9	R/W	0x0	ADC1_KEYDOWN_IRQ_PENDING
			ADC 1 Key Down IRQ Pending Bit
			When General key pull down, the status bit is set and the interrupt line is

			set if the corresponding interrupt is enabled.
			0: No IRQ
			1: IRQ Pending
			Notes: Writing 1 to the bit will clear it and its corresponding interrupt if the
			interrupt is enable.
8	R/W	0x0	
0	K/ VV	UXU	ADC1_DATA_IRQ_PENDING
			ADC 1 Data IRQ Pending Bit
			0: No IRQ
			1: IRQ Pending
			Notes: Writing 1 to the bit will clear it and its corresponding interrupt if the
	,	,	interrupt is enable.
7:5	/	/	
4	R/W	0x0	ADCO_KEYUP_PENDING
			ADCO Key up Pending Bit
			When general key pull up, it the corresponding interrupt is enabled.
			0: No IRQ
			1: IRQ Pending
			Notes: Writing 1 to the bit will clear it and its corresponding interrupt if the
			interrupt is enable
3	R/W	0x0	ADCO_ALRDY_HOLD_PENDING
			ADCO Already Hold Pending Bit
			When hold key pull down and pull the general key down, if the
			corresponding interrupt is enabled.
			0: No IRQ
			1: IRQ Pending
			Notes: Writing 1 to the bit will clear it and its corresponding interrupt if the
			interrupt is enable
2	R/W	0x0	ADCO_HOLDKEY_PENDING
			ADCO Hold Key Pending Bit
			When Hold key pull down, the status bit is set and the interrupt line is set if
			the corresponding interrupt is enabled.
			0: NO IRQ
			1: IRQ Pending
			Notes: Writing 1 to the bit will clear it and its corresponding interrupt if the
			interrupt is enable.
1	R/W	0x0	ADCO_KEYDOWN_PENDING
			ADCO Key Down IRQ Pending Bit
			When General key pull down, the status bit is set and the interrupt line is
			set if the corresponding interrupt is enabled.
			0: No IRQ
			1: IRQ Pending
			Notes: Writing 1 to the bit will clear it and its corresponding interrupt if the
			interrupt is enable.
0	R/W	0x0	ADCO_DATA_PENDING
	-		ADCO Data IRQ Pending Bit
			0: No IRQ
			1: IRQ Pending
			Notes: Writing 1 to the bit will clear it and its corresponding interrupt if the
			interrupt is enable.
	1	1	i transfer to the second secon

4.12.5.4. LRADC Data0 Register (Default Value: 0x00000000)

Offset: 0x0C	Register Name: LRADC_DATAO_REG

Bit	R/W	Default/Hex	Description
31:6	/	/	
5:0	R	0x0	LRADC_DATA0
			LRADC Data0

4.12.5.5. LRADC Data1 Register (Default Value: 0x00000000)

Offset: 0x10			Register Name: LRADC_DATA1_REG
Bit R/W Default/Hex		Default/Hex	Description
31:6	/	/	/
5:0	R	0x0	LRADC_DATA1
			LRADC Data1

4.13. RTC

4.13.1. Overview

The real time clock (RTC) is for calendar usage. It is built around a 30-bit counter and used to count elapsed time in YY-MM-DD and HH-MM-SS. The unit can be operated by the backup battery while the system power is off. It has a built-in leap year generator and a independent power pin (RTC_VIO).

The alarm generates an alarm signal at a specified time in the power-off mode or normal operation mode. In normal operation mode, both the alarm interrupt and the power management wakeup are activated. In power-off mode, the power management wakeup signal is activated. In this section, there are two kinds of alarm. Alarm 0 is a general alarm, its counter is based on second. Alarm 1 is a weekly alarm, its counter is based on the real time.

The 32768Hz oscillator is used only to provide a low power, accurate reference for the RTC.

General Purpose Register can be flag register, and it will save the value all the time when the VDD RTC is not power off.

4.13.2. RTC Register List

Module Name	Base Address
RTC	0x01c20400

Register Name	Offset	Description
LOSC_CTRL_REG	0x0	Low Oscillator Control Register
LOSC_AUTO_SWT_STA_REG	0x4	LOSC Auto Switch Status Register
RTC_YY_MM_DD_REG	0x10	RTC Year-Month-Day Register
RTC_HH_MM_SS_REG	0x14	RTC Hour-Minute-Second Register
ALARMO_COUNTER_REG	0x20	Alarm 0 Counter Register
ALARMO_CUR_VLU_REG	0x24	Alarm 0 Counter Current Value Register
ALARMO_ENABLE_REG	0x28	Alarm 0 Enable Register
ALARMO_IRQ_EN	0x2C	Alarm 0 IRQ Enable Register
ALARMO_IRQ_STA_REG	0x30	Alarm 0 IRQ Status Register
ALARM1_WK_HH_MM-SS	0x40	Alarm 1 Week HMS Register
ALARM1_ENABLE_REG	0x44	Alarm 1 Enable Register
ALARM1_IRQ_EN	0x48	Alarm 1 IRQ Enable Register
ALARM1_IRQ_STA_REG	0x4C	Alarm 1 IRQ Status Register
ALARM_CONFIG_REG	0x50	Alarm Config Register
LOSC_OUT_GATING_REG	0x60	LOSC output gating register
GP_DATA_REG	0x100 + N*0x4	General Purpose Register (N=0~7)
VDD_RTC_REG	0x190	VDD RTC Regulate Register
IC_CHARA_REG	0x1F0	IC Characteristic Register

4.13.3. RTC Register Description

4.13.3.1. LOSC Control Register (Default Value: 0x00004000)

Offset: 0x00			Register Name: LOSC_CTRL_REG
Bit	R/W	Default/Hex	Description
31:16	W	0x0	KEY_FIELD.
			Key Field. This field should be filled with 0x16AA, and then the bit 0 can be
			written with the new value.
15	/	/	
14	R/W	0x1	LOSC_AUTO_SWT_EN.
			LOSC auto switch enable.
			0: Disable, 1: Enable.
13:10	/	/	/
9	R/W	0x0	ALM_DDHHMMSS_ACCE.
			ALARM DD-HH-MM-SS access.
			After writing the ALARM DD-HH-MM-SS register, this bit is set and it will be
			cleared until the real writing operation is finished.
8	R/W	0x0	RTC_HHMMSS_ACCE.
			RTC HH-MM-SS access.
			After writing the RTC HH-MM-SS register, this bit is set and it will be cleared
			until the real writing operation is finished.
			After writing the RTC YY-MM-DD register, the YY-MM-DD register will be
			refreshed for at most one second.
7	R/W	0x0	RTC_YYMMDD_ACCE.
			RTC YY-MM-DD access.
			After writing the RTC YY-MM-DD register, this bit is set and it will be cleared
			until the real writing operation is finished.
			After writing the RTC YY-MM-DD register, the YY-MM-DD register will be
			refreshed for at most one second.
6:4	/	/	
3:2	R/W	0x0	EXT_LOSC_GSM.
			External 32768Hz Crystal GSM.
			00 low
			01
			10
			11 high
1	/	/	
0	R/W	0x0	LOSC_SRC_SEL.
			LOSC Clock source Select. 'N' is the value of Internal OSC Clock Prescalar
			register.
			0: Internal 32KHz, 1: External 32.768KHz OSC.
			Note: Internal 32KHz is divided from OSC24MHz.

 $\textbf{\textit{Note1}}{:} \ \, \text{Any bit of [9:7] is set, the RTC HH-MM-SS, YY-MM-DD and ALARM DD-HH-MM-SS register can't be written .}$

4.13.3.2. LOSC Auto Swith Status Register (Default Value: 0x00000000)

Offset: 0x04			Register Name: LOSC_AUTO_SWT_STA_REG
Bit	Bit R/W Default/Hex		Description
31:2	/	/	1

1	R/W	0x0	LOSC_AUTO_SWT_PEND.
			LOSC auto switch pending.
			0: No effect
			1: Auto switches pending
			Set 1 to this bit will clear it.
0	RO	0x0	LOSC_SRC_SEL_STA.
			Checking LOSC Clock Source Status. 'N' is the value of Internal OSC Clock
			Prescalar register.
			0: Internal 32KHz
			1: External 32.768KHz OSC

4.13.3.3. RTC YY-MM-DD Register (Default Value: 0x00000000)

Offset: 0x10			Register Name: RTC_YY_MM_DD_REG
Bit	R/W	Default/Hex	Description
31:23	/	/	
22	R/W	0x0	LEAP.
			Leap Year.
			0: not, 1: Leap year.
			This bit can not set by hardware. It should be set or clear by software.
21:16	R/W	x	YEAR.
			Year.
			Range from 0~63.
15:12	/	/	
11:8	R/W	х	MONTH.
			Month.
			Range from 1~12.
7:5	/	/	
4:0	R/W	х	DAY.
			Day.
			Range from 1~31.

Note1: If the written value is not from 1 to 31 in Day Area, it turns into 31 automatically. Month Area and Year Area are similar to Day Area.

Note2: The number of days in different month may be different.

4.13.3.4. RTC HH-MM-SS Register (Default Value: 0x00000000)

Offset: 0x	(14		Register Name: RTC_ HH_MM_SS _REG
Bit	R/W	Default/Hex	Description
31:29	R/W	0x0	WK_NO.
			Week number.
			000: Monday
			001: Tuesday
			010: Wednesday
			011: Thursday
			100: Friday
			101: Saturday
			110: Sunday
			111: /
28:21	/	/	
20:16	R/W	х	HOUR.

			Range from 0~23
15:14	/	/	/
13:8	R/W	Х	MINUTE.
			Range from 0~59
7:6	/	/	
5:0	R/W	х	SECOND.
			Range from 0~59

Note: If the written value is not from 0 to 59 in Second Area, it turns into 59 automatically. Minute Area and Hour Area are similar to Second Area.

4.13.3.5. Alarm 0 Counter Register (Default Value: 0x00000000)

Offset: 0x20			Register Name: ALARMO_COUNTER_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	ALARMO_COUNTER.
			Alarm 0 Counter is based on Second.

Note: If the second is set to 0, it will be 1 second in fact.

4.13.3.6. Alarm 0 Current Value Register (Default Value: 0x00000000)

Offset: 0:	x24		Register Name: ALARMO_CUR_VLU_REG
Bit	R/W	Default/Hex	Description
31:0	RO	х	ALARMO_CUR_VLU.
			Check Alarm 0 Counter Current Values.

Note: If the second is set to 0, it will be 1 second in fact.

4.13.3.7. Alarm 0 Enable Register (Default Value: 0x00000000)

Offset: 0x2	28		Register Name: ALARMO_ENABLE_REG
Bit	R/W	Default/Hex	Description
31:1	/	/	/
0	R/W	0x0	ALM_0_EN Alarm 0 Enable. If this bit is set to "1", the Alarm 0 Counter register's valid bits will down count to zero, and the alarm pending bit will be set to "1". 0: Disable 1: Enable

4.13.3.8. Alarm 0 IRQ Enable Register (Default Value: 0x00000000)

Offset: 0x2C			Register Name: ALARMO_IRQ_EN_REG
Bit	R/W	Default/Hex	Description
31:1	/	/	/
0	R/W	0x0	ALARMO_IRQ_EN.

Alarm 0 IRQ Enable.
0: Disable
1: Enable

4.13.3.9. Alarm 0 IRQ Status Register (Default Value: 0x00000000)

Offset: 0x	30		Register Name: ALARMO_IRQ_STA_REG
Bit	R/W	Default/Hex	Description
31:1	/	/	/
0	R/W	0x0	ALARMO_IRQ_PEND.
			Alarm 0 IRQ Pending bit.
			0: No effect
			1: Pending, alarm 0 counter value is reached
			If alarm 0 irq enable is set to 1, the pending bit will be sent to the interrupt
			controller.

4.13.3.10. Alarm 1 Week HH-MM-SS Register (Default Value: 0x00000000)

Offset: 0	x40		Register Name: ALARMO_WK_HH_MM-SS
Bit	R/W	Default/Hex	Description
31:21	/	/	/
20:16	R/W	х	HOUR.
			Range from 0~23.
15:14	/	/	
13:8	R/W	х	MINUTE.
			Range from 0~59.
7:6	/	/	
5:0	R/W	х	SECOND.
			Range from 0~59.

Note: If the written value is not from 0 to 59 in Second Area, it turns into 59 automatically. Minute Area and Hour Area are similar to Second Area.

4.13.3.11. Alarm 1 Enable Register (Default Value: 0x00000000)

Offset: 0	x44		Register Name: ALARM1_EN_REG
Bit	R/W	Default/Hex	Description
31:7	/	/	
6	R/W	0x0	WK6_ALM1_EN.
			Week 6 (Sunday) Alarm 1 Enable.
			0: Disable
			1: Enable
			If this bit is set to "1", only when the Alarm 1 Week HH-MM-SS register valid
			bits is equal to RTC HH-MM-SS register and the register RTC HH-MM-SS bit
			[31:29] is 6, the week 6 alarm irq pending bit will be set to "1".
5	R/W	0x0	WK5_ALM1_EN.
			Week 5 (Saturday) Alarm 1 Enable.
			0: Disable
			1: Enable

			If this bit is set to "1", only when the Alarm 1 Week HH-MM-SS register valid bits is equal to RTC HH-MM-SS register and the register RTC HH-MM-SS bit [31:29] is 5, the week 5 alarm irq pending bit will be set to "1".
4	R/W	0x0	WK4_ALM1_EN. Week 4 (Friday) Alarm 1 Enable. 0: Disable 1: Enable
			If this bit is set to "1", only when the Alarm 1 Week HH-MM-SS register valid bits is equal to RTC HH-MM-SS register and the register RTC HH-MM-SS bit [31:29] is 4, the week 4 alarm irq pending bit will be set to "1".
3	R/W	0x0	WK3_ALM1_EN. Week 3 (Thursday) Alarm 1 Enable. 0: Disable 1: Enable If this bit is set to "1", only when the Alarm 1 Week HH-MM-SS register valid
			bits is equal to RTC HH-MM-SS register and the register RTC HH-MM-SS bit [31:29] is 3, the week 3 alarm irq pending bit will be set to "1".
2	R/W	0x0	WK2_ALM1_EN. Week 2 (Wednesday) Alarm 1 Enable. 0: Disable 1: Enable If this bit is set to "1", only when the Alarm 1 Week HH-MM-SS register valid bits is equal to RTC HH-MM-SS register and the register RTC HH-MM-SS bit [31:29] is 2, the week 2 alarm irq pending bit will be set to "1".
1	R/W	0x0	WK1_ALM1_EN. Week 1 (Tuesday) Alarm 1 Enable. 0: Disable 1: Enable If this bit is set to "1", only when the Alarm 1 Week HH-MM-SS register valid bits is equal to RTC HH-MM-SS register and the register RTC HH-MM-SS bit [31:29] is 1, the week 1 alarm irq pending bit will be set to "1".
0	R/W	0x0	WK0_ALM1_EN. Week 0 (Monday) Alarm 1 Enable. 0: Disable 1: Enable If this bit is set to "1", only when the Alarm 1 Week HH-MM-SS register valid bits is equal to RTC HH-MM-SS register and the register RTC HH-MM-SS bit [31:29] is 0, the week 0 alarm irq pending bit will be set to "1".

4.13.3.12. Alarm 1 IRQ Enable Register (Default Value: 0x00000000)

Offset: 0	Offset: 0x48		Register Name: ALARM1_IRQ_EN_REG
Bit	R/W	Default/Hex	Description
31:1	/	/	
0	R/W	0x0	ALARM1_IRQ_EN.
			Alarm 1 IRQ Enable.
			0: Disable
			1: Enable

4.13.3.13. Alarm 1 IRQ Status Register (Default Value: 0x00000000)

Offset: 0)x4C		Register Name: ALARM1_IRQ_STA_REG
Bit	R/W	Default/Hex	Description
31:1	/	/	1
0	R/W	0x0	ALARM1_WEEK_IRQ_PEND.
			Alarm 1 Week (0/1/2/3/4/5/6) IRQ Pending.
			0: No effect
			1: Pending, week counter value is reached
			If alarm 1 week irq enable is set to 1, the pending bit will be sent to the
			interrupt controller.

4.13.3.14. Alarm Config Register (Default Value: 0x00000000)

Offset: 0x50			Register Name: ALARM_CONFIG_REG	
Bit	R/W	Default/Hex	Description	
31:1	/	/	/	
0	R/W	0x0	ALARM_WAKEUP.	
			Configuration of alarm wake up output.	
			0: Disable alarm wake up output	
			1: Enable alarm wake up output	

4.13.3.15. LOSC Output Gating Register (Default Value: 0x00000000)

Offset: 0x60			Register Name: LOSC_OUT_GATING_REG	
Bit	R/W	Default/Hex	Description	
31:1	/	/	1	
0	R/W	0x0	LOSC_OUT_GATING.	
			Configuration of LOSC output, and no LOSC output by default.	
			0: Enable LOSC output gating	
			1: Disable LOSC output gating	

4.13.3.16. LOSC Output Gating Register (Default Value: 0x00000000)

Offset: 0x100+N*0x4(N=0~7)		N=0~7)	Register Name: GP_DATA_REGn
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	GP_DATA.
			Data [31:0].

Note: General purpose register 0~7 value can be stored if the VDD_RTC is larger than 1.0v

4.13.3.17. VDD RTC Regulation Register (Default Value: 0x00000004)

Offset: 0x190			Register Name: VDD_RTC_REG
Bit	R/W	Default/Hex	Description
31:3	/	/	/

2:0	R/W	0x100	VDD_RTC_REGU.
			These bits are useful for regulating the RTC_VIO from 0.7v to 1.4v, and the
			regulation step is 0.1v.
			000: 0.7v
			001: 0.8v
			010: 0.9v
			011: 1.0v
			100: 1.1v
			101: 1.2v
			110: 1.3v
			111: 1.4v

4.13.3.18. IC Characteristic Register (Default Value: 0x00000000)

Offset: 0x1F0			Register Name: IC_CHARA_REG	
Bit	R/W	Default/Hex	Description	
31:16	R/W	0x0	IC_CHARA.	
			Key Field.	
			Should be written at value 0x16AA. Writing any other value in this field	
			aborts the write operation.	
15:0	R/W	0x0	ID_DATA.	
			Return 0x16AA only if the KEY_FIELD is set as 0x16AA when read those bits,	
			otherwise return 0x0.	

4.14. Audio Codec

4.14.1. Overview

The embedded Audio Codec is a high-quality stereo audio codec designed for embed device. It provides a stereo DAC for playback, and a stereo ADC for recording.

The feature of Audio Codec:

- Two audio digital-to-analog(DAC) channels
- Two audio analog-to-digital(ADC) channels
 - 92dB SNR@A-weight
 - Supports ADC Sample Rates from 8KHz to 48KHz
- Support analog/ digital volume control
- Two low-noise analog microphone bias outputs
- Analog low-power loop from microphone to headphone outputs
- Support Dynamic Range Controller adjusting the DAC playback output(DRC)
- Four audio inputs:
 - Three differential microphone inputs
 - Stereo Linein input
- Two audio outputs:
 - Stereo Headphone output
 - Differential Lineout output
- Support Automatic Gain Control(AGC) and Dynamic Range Control(DRC) adjusting the ADC recording input
- Interrupt and DMA Support

4.14.2. Power and Signal Description

4.14.2.1. Analog I/O Pins

Signal Name	Туре	Description	
MIC1P	1	First microphone positive input	
MIC1N	1	First microphone negative input	
MIC2P	1	Second microphone positive input	
MIC2N	1	Second microphone negative input	
MIC3P	1	Third microphone positive input	
MIC3N	1	Third microphone negative input	
HPOUTL	0	Headphone left output	
HPOUTR	0	Headphone right output	
HPCOM	0	HPCOM output	
HPCOMFB	1	HPCOM feedback input	
LINEINL	1	Linein left input	
LINEINR	1	Linein right input	
LINEOUTP	0	Lineout positive output	
LINEOUTN	0	Lineout negative output	

4.14.2.2. Filter/Reference

MBIAS	0	Bias voltage output for main microphone	
HBIAS	0	Bias voltage output for headphone microphone	
VRA2	0	internal reference voltage	
HPVCCBP	0	HPVCC bypass	

4.14.2.3. Power/Ground

AVCC	Р	Analog power	
HPVCCIN	Р	Headphone amplifier power	
AGND	G	Analog ground	

4.14.3. Data Path Diagram

Figure 4-10. Analog Data Path Diagram

4.14.4. Audio Codec Register List

Module Name	Base Address
AC	0x01C22C00

Register Name	Offset	Description
AC_DAC_DPC	0x000	DAC Digital Part Control Register

10 010 51500	10.004	DAG 5150 G ID
AC_DAC_FIFOC	0x004	DAC FIFO Control Register
AC_DAC_FIFOS	0x008	DAC FIFO Status Register
AC_ADC_FIFOC	0x010	ADC FIFO Control Register
AC_ADC_FIFOS	0x014	ADC FIFO Status Register
AC_ADC_RXDATA	0x018	ADC RX Data Register
AC_DAC_TXDATA	0x020	DAC TX Data Register
AC_DAC_CNT	0x040	DAC TX FIFO Counter Register
AC_ADC_CNT	0x044	ADC RX FIFO Counter Register
AC_DAC_DG	0x048	DAC Debug Register
AC_ADC_DG	0x04C	ADC Debug Register
AC_DAC_DAP_CTR	0x060	DAC DAP Control Register
AC_ADC_DAP_CTR	0x070	ADC DAP Control Register
AC_ADC_DAP_LCTR	0x074	ADC DAP Left Control Register
AC_ADC_DAP_RCTR	0x078	ADC DAP Right Control Register
AC_ADC_DAP_PARA	0x07C	ADC DAP Parameter Register
AC_ADC_DAP_LAC	0x080	ADC DAP Left Average Coef Register
AC_ADC_DAP_LDAT	0x084	ADC DAP Left Decay and Attack Time Register
AC_ADC_DAP_RAC	0x088	ADC DAP Right Average Coef Register
AC_ADC_DAP_RDAT	0x08C	ADC DAP Right Decay and Attack Time Register
ADC_DAP_HPFC	0x090	ADC DAP HPF Coef Register
ADC_DAP_LINAC	0x094	ADC DAP Left Input Signal Low Average Coef Register
ADC_DAP_RINAC	0x098	ADC DAP Right Input Signal Low Average Coef Register
ADC_DAP_ORT	0x09C	ADC DAP Optimum Register
AC_DAC_DRC_HHPFC	0x100	DAC DRC High HPF Coef Register
AC_DAC_DRC_LHPFC	0x104	DAC DRC Low HPF Coef Register
AC_DAC_DRC_CTRL	0x108	DAC DRC Control Register
AC_DAC_DRC_LPFHAT	0x10C	DAC DRC Left Peak Filter High Attack Time Coef Register
AC_DAC_DRC_LPFLAT	0x110	DAC DRC Left Peak Filter Low Attack Time Coef Register
AC_DAC_DRC_RPFHAT	0x114	DAC DRC Right Peak Filter High Attack Time Coef Register
AC_DAC_DRC_RPFLAT	0x118	DAC DRC Peak Filter Low Attack Time Coef Register
AC_DAC_DRC_LPFHRT	0x11C	DAC DRC Left Peak Filter High Release Time Coef Register
AC DAC DRC LPFLRT	0x120	DAC DRC Left Peak Filter Low Release Time Coef Register
AC_DAC_DRC_RPFHRT	0x124	DAC DRC Right Peak filter High Release Time Coef Register
AC DAC DRC RPFLRT	0x128	DAC DRC Right Peak filter Low Release Time Coef Register
AC DAC DRC LRMSHAT	0x12C	DAC DRC Left RMS Filter High Coef Register
AC DAC DRC LRMSLAT	0x130	DAC DRC Left RMS Filter Low Coef Register
AC DAC DRC RRMSHAT	0x134	DAC DRC Right RMS Filter High Coef Register
AC DAC DRC RRMSLAT	0x138	DAC DRC Right RMS Filter Low Coef Register
AC_DAC_DRC_HCT	0x13C	DAC DRC Compressor Theshold High Setting Register
AC_DAC_DRC_LCT	0x140	DAC DRC Compressor Slope High Setting Register
AC_DAC_DRC_HKC	0x144	DAC DRC Compressor Slope High Setting Register
AC_DAC_DRC_LKC	0x148	DAC DRC Compressor Slope Low Setting Register
	3	DAC DRC Compressor High Output at Compressor
AC_DAC_DRC_HOPC	0x14C	Threshold Register
		DAC DRC Compressor Low Output at Compressor
AC_DAC_DRC_LOPC	0x150	Threshold Register
AC_DAC_DRC_HLT	0x154	DAC DRC Limiter Theshold High Setting Register
AC_DAC_DRC_LLT	0x158	DAC DRC Limiter Theshold Low Setting Register

AC_DAC_DRC_HKI	0x15C	DAC DRC Limiter Slope High Setting Register
AC_DAC_DRC_LKI	0x160	DAC DRC Limiter Slope Low Setting Register
AC_DAC_DRC_HOPL	0x164	DAC DRC Limiter High Output at Limiter Threshold
AC_DAC_DRC_LOPL	0x168	DAC DRC Limiter Low Output at Limiter Threshold
AC_DAC_DRC_HET	0x16C	DAC DRC Expander Theshold High Setting Register
AC_DAC_DRC_LET	0x170	DAC DRC Expander Theshold Low Setting Register
AC_DAC_DRC_HKE	0x174	DAC DRC Expander Slope High Setting Register
AC DAC DRC LKE	0x178	DAC DRC Expander Slope Low Setting Register
AC DAC DRC HOPE	0x17C	DAC DRC Expander High Output at Expander Threshold
AC_DAC_DRC_LOPE	0x180	DAC DRC Expander Low Output at Expander Threshold
AC DAC DRC HKN	0x184	DAC DRC Linear Slope High Setting Register
AC DAC DRC LKN	0x188	DAC DRC Linear Slope Low Setting Register
		DAC DRC Smooth filter Gain High Attack Time Coef
AC_DAC_DRC_SFHAT	0x18C	Register
		DAC DRC Smooth filter Gain Low Attack Time Coef
AC_DAC_DRC_SFLAT	0x190	Register
		DAC DRC Smooth filter Gain High Release Time Coef
AC_DAC_DRC_SFHRT	0x194	Register
AC DAC DDC SELDT	0.400	DAC DRC Smooth filter Gain Low Release Time Coef
AC_DAC_DRC_SFLRT	0x198	Register DAG DDG MAY Gain High Setting Pagister
AC_DAC_DRC_MXGHS	0x19C	DAC DRC MAX Gain High Setting Register
AC_DAC_DRC_MXGLS	0x1A0	DAC DRC MAX Gain Low Setting Register
AC_DAC_DRC_MNGHS	0x1A4	DAC DRC MIN Gain High Setting Register
AC_DAC_DRC_MNGLS	0x1A8	DAC DRC MIN Gain Low Setting Register
AC_DAC_DRC_EPSHC	0x1AC	DAC DRC Expander Smooth Time High Coef Register
AC_DAC_DRC_EPSLC	0x1B0	DAC DRC Expander Smooth Time Low Coef Register
AC_DAC_DRC_HPFHGAIN	0x 1B8	DAC DRC HPF Gain High
AC_DAC_DRC_HPFLGAIN	0x1BC	DAC DRC HPF Gain Low
AC_ADC_DRC_HHPFC	0x200	ADC DRC High HPF Coef Register
AC_ADC_DRC_LHPFC	0x204	ADC DRC Low HPF Coef Register
AC_ADC_DRC_CTRL	0x208	ADC DRC Control Register
AC_ADC_DRC_LPFHAT	0x20C	ADC DRC Left Peak Filter High Attack Time Coef Register
AC_ADC_DRC_LPFLAT	0x210	ADC DRC Left Peak Filter Low Attack Time Coef Register
AC_ADC_DRC_RPFHAT	0x214	ADC DRC Right Peak Filter High Attack Time Coef Register
AC_ADC_DRC_RPFLAT	0x218	ADC DRC Peak Filter Low Attack Time Coef Register
AC_ADC_DRC_LPFHRT	0x21C	ADC DRC Left Peak Filter High Release Time Coef Register
AC_ADC_DRC_LPFLRT	0x220	ADC DRC Left Peak Filter Low Release Time Coef Register
AC_ADC_DRC_RPFHRT	0x224	ADC DRC Right Peak filter High Release Time Coef Register
AC_ADC_DRC_RPFLRT	0x228	ADC DRC Right Peak filter Low Release Time Coef Register
AC_ADC_DRC_LRMSHAT	0x22C	ADC DRC Left RMS Filter High Coef Register
AC_ADC_DRC_LRMSLAT	0x230	ADC DRC Left RMS Filter Low Coef Register
AC_ADC_DRC_RRMSHAT	0x234	ADC DRC Right RMS Filter High Coef Register
AC_ADC_DRC_RRMSLAT	0x238	ADC DRC Right RMS Filter Low Coef Register
AC_ADC_DRC_HCT	0x23C	ADC DRC Compressor Theshold High Setting Register
AC_ADC_DRC_LCT	0x240	ADC DRC Compressor Slope High Setting Register
AC_ADC_DRC_HKC	0x244	ADC DRC Compressor Slope High Setting Register
AC_ADC_DRC_LKC	0x248	ADC DRC Compressor Slope Low Setting Register
		ADC DRC Compressor High Output at Compressor
AC_ADC_DRC_HOPC	0x24C	Threshold Register
_	•	

		ADC DRC Compressor Low Output at Compressor
AC_ADC_DRC_LOPC	0x250	Threshold Register
AC_ADC_DRC_HLT	0x254	ADC DRC Limiter Theshold High Setting Register
AC_ADC_DRC_LLT	0x258	ADC DRC Limiter Theshold Low Setting Register
AC_ADC_DRC_HKI	0x25C	ADC DRC Limiter Slope High Setting Register
AC_ADC_DRC_LKI	0x260	ADC DRC Limiter Slope Low Setting Register
AC_ADC_DRC_HOPL	0x264	ADC DRC Limiter High Output at Limiter Threshold
AC_ADC_DRC_LOPL	0x268	ADC DRC Limiter Low Output at Limiter Threshold
AC_ADC_DRC_HET	0x26C	ADC DRC Expander Theshold High Setting Register
AC_ADC_DRC_LET	0x270	ADC DRC Expander Theshold Low Setting Register
AC_ADC_DRC_HKE	0x274	ADC DRC Expander Slope High Setting Register
AC_ADC_DRC_LKE	0x278	ADC DRC Expander Slope Low Setting Register
AC_ADC_DRC_HOPE	0x27C	ADC DRC Expander High Output at Expander Threshold
AC_ADC_DRC_LOPE	0x280	ADC DRC Expander Low Output at Expander Threshold
AC_ADC_DRC_HKN	0x284	ADC DRC Linear Slope High Setting Register
AC_ADC_DRC_LKN	0x288	ADC DRC Linear Slope Low Setting Register
		ADC DRC Smooth filter Gain High Attack Time Coef
AC_ADC_DRC_SFHAT	0x28C	Register
		ADC DRC Smooth filter Gain Low Attack Time Coef
AC_ADC_DRC_SFLAT	0x290	Register
AC_ADC_DRC_SFHRT	0x294	ADC DRC Smooth filter Gain High Release Time Coef Register
AC_ADC_DRC_SFRRI	0x294	ADC DRC Smooth filter Gain Low Release Time Coef
AC_ADC_DRC_SFLRT	0x298	Register Register
AC_ADC_DRC_MXGHS	0x29C	ADC DRC MAX Gain High Setting Register
AC_ADC_DRC_MXGLS	0x2A0	ADC DRC MAX Gain Low Setting Register
AC_ADC_DRC_MNGLS	0x2A4	ADC DRC MIN Gain High Setting Register
AC ADC DRC MXGLS	0x2A8	ADC DRC MIN Gain Low Setting Register
AC_ADC_DRC_EPSHC	0x2AC	ADC DRC Expander Smooth Time High Coef Register
AC_ADC_DRC_EPSLC	0x2B0	ADC DRC Expander Smooth Time Low Coef Register
AC_ADC_DRC_HPFHGAIN	0x 2B8	ADC DRC HPF Gain High
AC_ADC_DRC_HPFLGAIN	0x2BC	ADC DRC HPF Gain Low
AC_PR_CFG	0x400	AC Parameter Configuration Register
Analog Domain Register	·	
AC_PAG_HPV	0x00	PA clock gating and Headphone Volume Control
AC_LOMIXSC	0x01	Left Output Mixer Source Select Control Register
AC_ROMIXSC	0x02	Right Output Mixer Source Select Control Register
DAC_PA_SRC	0x03	DAC Analog Enable and PA Source Control Register
MIC_GCTR	0x06	MIC1 And MIC2 Gain Control Register
HP_CTRL	0x07	HP Control
MIC2_LINE_CTRL	0x0A	MIC2 Boost LINE-OUT Enable and Source select
BIAS_MIC_CTRL	0x0B	BIAS 、MIC2 Source and MIC1 boost
LADC_MIX_MUTE	0x0C	Left ADC Mixer Mute Control
RADC_MIX_MUTE	0x0D	Right ADC Mixer Mute Control
PA_ANTI_POP_CTRL	0x0E	PA Anti-pop time Control
AC_ADC_CTRL	0x0F	ADC Analog Control Register
OPADC_CTRL	0x10	OPDRV/OPCOM 、 OPADC Control
OPMIC_CTRL	0x11	OPMIC、OPVR and OPADC Control
ZERO_CROSS_CTRL	0x12	Zero Cross Control
	•	•

ADC_FUN_CTRL	0x13	ADC Function Control
CALIBRATION_CTRL	0x14	Bias & DA16 Calibration Control Register
DA16CALI_DATA	0x15	DA16 Calibration Data
BIAS16CALI_DATA	0x17	Bias Calibration Data
BIAS16CALI_SET	0x18	Bias Register Setting Data

4.14.5. Audio Codec Register Description

4.14.5.1. 0x000 DAC Digital Part Control Register(Default Value: 0x00000000)

Offset: 0x000			Register Name: AC_DAC_DPC
Bit	R/W	Default/Hex	Description
31	R/W	0x0	EN_DAC
			DAC Digital Part Enable
			0 : Disable
			1 : Enable
30:29	/	/	
28:25	R/W	0x0	MODQU
			Internal DAC Quantization Levels
			Levels=[7*(21+MODQU[3:0])]/128
			Default levels=7*21/128=1.15
24:19	/	/	
18	R/W	0x0	HPF_EN
			High Pass Filter Enable
			0: Disable
			1: Enable
17:12	R/W	0x0	DVOL
			Digital volume control: DVC, ATT=DVC[5:0]*(-1.16Db)
			64 steps, -1.16dB/step
11:0	/	/	

4.14.5.2. 0x004 DAC FIFO Control Register(Default Value: 0x00000F00)

Offset: 0x	004		Register Name: AC_DAC_FIFOC
Bit	R/W	Default/Hex	Description
31:29	R/W	0x0	DAC_FS
			Sample Rate of DAC
			000: 48KHz
			010: 24KHz
			100: 12KHz
			110: 192KHz
			001: 32KHz
			011: 16KHz
			101: 8KHz
			111: 96KHz
			44.1KHz/22.05KHz/11.025KHz can be supported by Audio PLL Configure Bit
28	R/W	0x0	FIR_VER
			FIR Version
			0: 64-Tap FIR; 1: 32-Tap FIR
27	/	/	

20	D /\A/	0.0	CENID LACAT
26	R/W	0x0	SEND_LASAT
			Audio sample select when TX FIFO underrun
			0: Sending Jest audio semale
25.24	D ///	0.0	1: Sending last audio sample
25:24	R/W	0x0	FIFO_MODE
			For 24-bits transmitted audio sample:
			00/10: FIFO_I[23:0] = {TXDATA[31:8]}
			01/11: Reserved
			For 16-bits transmitted audio sample:
			00/10: FIFO_I[23:0] = {TXDATA[31:16], 8'b0}
22	1	,	01/11: FIFO_I[23:0] = {TXDATA[15:0], 8'b0}
23	7	/	/ DAG DDG GLD GNT
22:21	R/W	0x0	DAC_DRQ_CLR_CNT
			When TX FIFO available room is less than or equal N, DRQ request will be
			de-asserted. N is defined here:
			00: IRQ/DRQ De-Asserted When WLEVEL > TXTL
			01: 4
			10: 8
20.45	,	,	11: 16
20:15	/	/	/
14:8	R/W	0xF	TX_TRIG_LEVEL
			TX FIFO Empty Trigger Level (TXTL[12:0])
			Interrupt and DMA request trigger level for TX FIFO normal condition.
			IRQ/DRQ is generated when WLEVEL ≤ TXTL
			Notes:
			1. WLEVEL represents the number of valid samples in the TX FIFO
_	2 // /		2. Only TXTL[6:0] valid when TXMODE = 0
7	R/W	0x0	ADDA_LOOP_EN
			ADDA Loop Enable
			0: Disable 1: Enable
	D /\A/	00	
6	R/W	0x0	DAC_MONO_EN DAC Mono Enable
			0: Stereo, 64 Levels FIFO 1: Mono, 128 Levels FIFO
5	D /\A/	0,40	When Enabled, L & R Channel Send Same Data
5	R/W	0x0	TX_SAMPLE_BITS Transmitting Audio Sample Possilution
			Transmitting Audio Sample Resolution 0: 16 bits
			1: 24 bits
4	R/W	0x0	DAC_DRQ_EN
4	IN/ VV	UXU	DAC_DRQ_EN DAC FIFO Empty DRQ Enable
			0: Disable
			1: Enable
3	R/W	0x0	
5	15/ VV	UXU	DAC_IRQ_EN DAC FIFO Empty IRQ Enable
			0: Disable
			1: Enable
2	D /\A/	0.0	
	R/W	0x0	FIFO_UNDERRUN_IRQ_EN
			DAC FIFO Underrun IRQ Enable
			0: Disable
1	D //A/	0.0	1: Enable
1	R/W	0x0	FIFO_OVERRUN_IRQ_EN
			DAC FIFO Overrun IRQ Enable

			0: Disable
			1: Enable
0	R/W	0x0	FIFO_FLUSH
			DAC FIFO Flush
			Write '1' To Flush TX FIFO, Self Clear to '0'

4.14.5.3. 0x008 DAC FIFO Status Register(Default Value: 0x00800088)

Offset: 0x	(008		Register Name: AC_DAC_FIFOS
Bit	R/W	Default/Hex	Description
31:24	/	/	/
23	R	0x1	TX_EMPTY
			TX FIFO Empty
			0: No room for new sample in TX FIFO
			1: More than one room for new sample in TX FIFO (>= 1 word)
22:8	R	0x80	TXE_CNT
			TX FIFO Empty Space Word Counter
7:4	/	/	1
3	R/W	0x1	TXE_INT
			TX FIFO Empty Pending Interrupt
			0: No Pending IRQ
			1: FIFO Empty Pending Interrupt
			Write '1' to clear this interrupt or automatic clear if interrupt condition fails
2	R/W	0x0	TXU_INT
			TX FIFO Under run Pending Interrupt
			0: No Pending Interrupt
			1: FIFO Underrun Pending Interrupt
			Write '1' to clear this interrupt
1	R/W	0x0	TXO_INT
			TX FIFO Overrun Pending Interrupt
			0: No Pending Interrupt
			1: FIFO Overrun Pending Interrupt
			Write '1' to clear this interrupt
0	/	/	/

4.14.5.4. 0x010 ADC FIFO Control Register(Default Value: 0x00000F00)

Offset: 0x0)10		Register Name: AC_ADC_FIFOC
Bit	R/W	Default/Hex	Description
31:29	R/W	0x0	ADFS
			Sample Rate of ADC
			000: 48KHz
			010: 24KHz
			100: 12KHz
			110: Reserved
			001: 32KHz
			011: 16KHz
			101: 8KHz
			111: Reserved
			44.1KHz/22.05KHz/11.025KHz can be supported by Audio PLL Configure Bit
28	R/W	0x0	EN_AD

			ADC Digital Days Frankla
			ADC Digital Part Enable
			0: Disable
27.25	,	,	1: Enable
27:25	7	/	/ DV FIFO MODE
24	R/W	0x0	RX_FIFO_MODE
			RX FIFO Output Mode (Mode 0, 1)
			0: Expanding '0' at LSB of TX FIFO register
			1: Expanding received sample sign bit at MSB of TX FIFO register
			For 24-bit received audio sample:
			Mode 0: RXDATA[31:0] = {FIFO_0[23:0], 8'h0}
			Mode 1: Reserved For 16-bit received audio sample:
			·
			Mode 0: RXDATA[31:0] = {FIFO_O[23:8], 16'h0} Mode 1: RXDATA[31:0] = {16{FIFO_O[23]}, FIFO_O[23:8]}
23:19	,	,	Mode 1. KADAIA[51.0] = {10{FIFO_O[25]}, FIFO_O[25.8]}
	/ D/\/	/	ADCEDT
18:17	R/W	0x0	ADC FIFO Delay Time for Myiting Data after FNLAD
			ADC FIFO Delay Time for Writing Data after EN_AD 00:5ms
			01:10ms
			10:20ms
			11:30ms
16	R/W	0x0	ADCDFEN
10	11,700	OXO	ADC FIFO Delay Function for Writing Data after EN_AD
			0: Disable
			1: Enable
15:13	/	/	/
12:8	R/W	0xF	RX_FIFO_TRG_LEVEL
	,		RX FIFO Trigger Level (RXTL[4:0])
			Interrupt and DMA request trigger level for RX FIFO normal condition
			IRQ/DRQ Generated when WLEVEL > RXTL[4:0]
			Notes:
			WLEVEL represents the number of valid samples in the RX FIFO
7	R/W	0x0	ADC_MONO_EN
			ADC Mono Enable
			0: Stereo, 16 levels FIFO
			1: mono, 32 levels FIFO
			When set to '1', Only left channel samples are recorded
6	R/W	0x0	RX_SAMPLE_BITS
			Receiving Audio Sample Resolution
			0: 16 bits
			1: 24 bits
5	/	/	/
4	R/W	0x0	ADC_DRQ_EN
			ADC FIFO Data Available DRQ Enable
			0: Disable
			1: Enable
3	R/W	0x0	ADC_IRQ_EN
			ADC FIFO Data Available IRQ Enable
			0: Disable
	,	 	1: Enable
2	/	/	
1	R/W	0x0	ADC_OVERRUN_IRQ_EN
			ADC FIFO Over Run IRQ Enable
I	- 1		0: Disable

			1: Enable
0	R/W	0x0	ADC_FIFO_FLUSH
			ADC FIFO Flush
			Write '1' to flush TX FIFO, self clear to '0'

4.14.5.5. 0x014 ADC FIFO Status Register(Default Value: 0x00000000)

Offset: 0x014			Register Name: AC_ADC_FIFOS
Bit	R/W	Default/Hex	Description
31:24	/	/	/
23	R	0x0	RXA
			RX FIFO Available
			0: No available data in RX FIFO
			1: More than one sample in RX FIFO (>= 1 word)
22:14	/	/	/
13:8	R	0x0	RXA_CNT
			RX FIFO Available Sample Word Counter
7:4	/	/	
3	R/W	0x0	RXA_INT
			RX FIFO Data Available Pending Interrupt
			0: No Pending IRQ
			1: Data Available Pending IRQ
			Write '1' to clear this interrupt or automatic clear if interrupt condition fails
2	/	/	/
1	R/W	0x0	RXO_INT
			RX FIFO Overrun Pending Interrupt
			0: No Pending IRQ
			1: FIFO Overrun Pending IRQ
			Write '1' to clear this interrupt
0	/	/	

4.14.5.6. 0x018 ADC RX DATA Register(Default Value: 0x00000000)

Offset: 0x018			Register Name: AC_ADC_RXDATA
Bit	R/W	Default/Hex	Description
31:0	R	0x0	RX_DATA
			RX Sample
			Host can get one sample by reading this register. The left channel sample data
			is first and then the right channel sample.

4.14.5.7. 0x020 DAC TX DATA Register(Default Value: 0x00000000)

Offset: 0x020			Register Name: AC_DAC_TXDATA
Bit	R/W	Default/Hex	Description
31:0	W	0x0	TX_DATA Transmitting left, right channel sample data should be written this register one by one. The left channel sample data is first and then the right channel sample

4.14.5.8. 0x040 DAC TX Counter Register(Default Value: 0x00000000)

Offset: 0x040			Register Name: AC_DAC_CNT
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	TX_CNT
			TX Sample Counter
			The audio sample number of sending into TXFIFO. When one sample is put
			into TXFIFO by DMA or by host IO, the TX sample counter register increases by
			one. The TX sample counter register can be set to any initial valve at any time.
			After been updated by the initial value, the counter register should count on
			base of this initial value
			Notes: It is used for Audio/ Video Synchronization

4.14.5.9. 0x044 ADC RX Counter Register(Default Value: 0x00000000)

Offset: 0	Offset: 0x044		Register Name: AC_ADC_CNT
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	RX_CNT
			RX Sample Counter
			The audio sample number of writing into RXFIFO. When one sample is written
			by Digital Audio Engine, the RX sample counter register increases by one. The
			RX sample counter register can be set to any initial valve at any time. After
			been updated by the initial value, the counter register should count on base of
			this initial value
			Notes: It is used for Audio/ Video Synchronization

4.14.5.10. 0x048 DAC Debug Register(Default Value: 0x00000000)

Offset: 0	Offset: 0x048		Register Name: AC_DAC_DG
Bit	R/W	Default/Hex	Description
31:12	/	/	
11	R/W	0x0	DAC_MODU_SELECT
			DAC Modulator Debug
			0: DAC Modulator Normal Mode
			1: DAC Modulator Debug Mode
10:9	R/W	0x0	DAC_PATTERN_SELECT.
			DAC Pattern Select
			00: Normal (Audio Sample from TX FIFO)
			01: -6 dB Sin wave
			10: -60 dB Sin wave
			11: silent wave
8	R/W	0x0	CODEC_CLK_SELECT
			CODEC Clock Source Select
			0: CODEC Clock from PLL
			1: CODEC Clock from OSC (For Debug)
7	/	/	1
6	R/W	0x0	DA_SWP
			DAC output channel swap enable
			0:Disable
			1:Enable

5:0	/	/	
0.0	,	,	<i> </i>

4.14.5.11. 0x04C ADC Debug Register(Default Value: 0x00000000)

Offset: 0x	Offset: 0x4C		Register Name: AC_ADC_DG
Bit	R/W	Default/Hex	Description
31:25	/	/	/
24	R/W	0x0	AD_SWP
			ADC Output Channel Swap Enable (for digital filter)
			0: Disable
			1: Enable
23:0	/	/	

4.14.5.12. 0x050 HMIC Control Register(Default Value: 0x00000000)

Offset: 0x50			Register Name: HMIC_CTRL	
Bit	R/W	Default/Hex	Description	
31:28	R/W	0x0	HMIC_M	
			Debounce when key down or key up	
27:24	R/W	0x0	HMIC_N	
			Debounce when earphone plug in or pull out	
23	R/W	0x0	HMIC_DATA_IRQ_MODE	
			Hmic Data Irq Mode Select	
			0: Hmic data irq once after key down	
			1: Hmic data irq from key down, until key up	
22:21	R/W	0x0	HMIC_TH1_HYSTERESIS	
			Hmic Hysteresis Threshold1	
			00: no Hysteresis	
			01: Pull Out when Data <= (Hmic_th2-1)	
			10: Pull Out when Data <= (Hmic_th2-2)	
			11: Pull Out when Data <= (Hmic_th2-3)	
20	R/W	0x0	HMIC_PULLOUT_IRQ	
			Hmic Earphone Pull out Irq Enable	
			00: disable, 11: enable	
19	R/W	0x0	HMIC_PLUGIN_IRQ	
			Hmic Earphone Plug in Irq Enable	
			00: disable 11: enable	
18	R/W	0x0	HMIC_KEYUP_IRQ	
			Hmic Key Up Irq Enable	
			00: disable 11: enable	
17	R/W	0x0	HMIC_KEYDOWN_IRQ	
			Hmic Key Down Irq Enable	
			00: disable 11: enable	
16	R/W	0x0	HMIC_DATA_IRQ_EN	
			Hmic Data Irq Enable	
			00: disable 11: enable	
15:14	R/W	0x0	HMIC_SAMPLE_SELECT	
			Down Sample Setting Select	
			00: Down by 1, 128Hz	
			01: Down by 2, 64Hz	
			10: Down by 4, 32Hz	
	+/Davisian 1		Commission to Commission to the property of the Commission of the	Dana 154

			11: Down by 8, 16Hz
	- /	1	
13	R/W	0x0	HMIC_TH2_HYSTERESIS
			Hmic Hysteresis Threshold2
			0: no Hysteresis
			1: Key Up when Data <= (Hmic_th2-1)
12:8	R/W	0x0	HMIC_TH2
			Hmic_th2 for detecting Key down or Key up.
7:6	R/W	0x0	HMIC_SF
			Hmic Smooth Filter setting
			00: by pass
			01: (x1+x2)/2
			10: (x1+x2+x3+x4)/4
			11: (x1+x2+x3+x4+ x5+x6+x7+x8)/8
5	R/W	0x0	KEYUP_CLEAR
			Key Up Irq Pending bit auto clear when Key Down Irq
			0: don't clear 1: auto clear
4:0	R/W	0x0	HMIC_TH1
			Hmic_th1[4:0], detecting eraphone plug in or pull out.

4.14.5.13. 0x054 HMIC Data Register(Default Value: 0x00000000)

Offset: 0	x54		Register Name: HMIC_DATA
Bit	Read/Write	Default	Description
31:21	/	/	/
20	R/W	0x0	HMIC_PULLOUT_PENDING
			Hmic Earphone Pull out Irq pending bit, write 1 to clear
			0: No Pending Interrupt
			1: Pull out Irq Pending Interrupt
19	R/W	0x0	HMIC_PLUGIN_PENDING
			Hmic Earphone Plug in Irq pending bit, write 1 to clear
			0: No Pending Interrupt
			1: Plug in Irq Pending Interrupt
18	R/W	0x0	HMIC_KEYUP_PENDING
			Hmic Key Up Irq pending bit, write 1 to clear
			0: No Pending Interrupt
			1: Key up Irq Pending Interrupt
17	R/W	0x0	HMIC_KEYDOWN_PENDING
			Hmic Key Down Irq pending bit, write 1 to clear
			0: No Pending Interrupt
			1: Key down Irq Pending Interrupt
16	R/W	0x0	HMIC_DATA_PENDING
			Hmic Data Irq pending bit, write 1 to clear
			0: No Pending Interrupt
			1: Data Irq Pending Interrupt
15:5	/	/	
4:0	R	0x0	HMIC_DATA
			HMIC ADC Data

4.14.5.14. 0x060 DAC DAP Control Register(Default Value: 0x00000000)

Offset: 0x	060		Register Name: AC_DAC_DAP_CTR
Bit	R/W	Default/Hex	Description
31	R/W	0x0	DDAP_EN
			DAP for dac Enable
			0: bypass
			1 : enable
30:16	/	/	
15	R/W	0x0	DDAP_DRC_EN
			DRC enable control
			0:disable
			1:enable
14	R/W	0x0	DDAP_HPF_EN
			HPF enable control
			0:disable
			1:enable
13:0	/	/	

4.14.5.15. 0x070 ADC DAP Control Register(Default Value: 0x00000000)

Offset: 0x070			Register Name: AC_ADC_DAP_CTR
Bit	R/W	Default/Hex	Description
31	R/W	0x0	ADAP_EN
			DAP for ADC enable
			0 : bypass
			1: enable
30	R/W	0x0	ADAP_START.
			DAP for ADC start up
			0 : disable
			1: start up
29:27	/	/	
26	R/W	0x0	ENADC_DRC
			DRC for ADC enable
			0 : bypass
			1 : enable
25	R/W	0x0	ADC_DRC_EN
			ADC DRC function enable
			0 : disable
			1 : enable
24	R/W	0x0	ADC_DRC_HPF_EN
			ADC DRC HPF function enable
			0 : disable
			1 : enable
23:22			
21	R	0x0	ADAP_LSATU_FLAG.
			Left channel AGC saturation flag
			0 : no saturation
			1: saturation
20	R	0x0	ADAP_LNOI_FLAG.
			Left channel AGC noise-threshold flag
19:12	R	0x0	ADAP_LCHAN_GAIN

			Left channel Gain applied by AGC
			(7.1format 2s component(-20dB – 40dB), 0.5dB/ step)
			0x50 : 40dB
			0x4F : 39.5dB
			0x00 : 00dB
			0xFF:-0.5dB
11:10	/	/	
9	R	0x0	ADAP_RSATU_FLAG.
			Right AGC saturation flag
			0 : no saturation
			1: saturation
8	R	0x0	ADAP_RNOI_FLAG.
			Right channel AGC noise-threshold flag
7:0	R	0x0	ADAP_LCHAN_GAIN.
			Right Channel Gain applied by AGC (7.1format 2s component)(0.5dB step)
			0x50 : 40dB
			0x4F: 39.5dB
			0x00 : 00dB
			0xFF:-0.5dB

4.14.5.16. 0x074 ADC DAP Left Control Register(Default Value: 0x001F1800)

Offset: 0x074			Register Name: AC_ADC_DAP_LCTR
Bit	R/W	Default/Hex	Description
31:24	/	/	/
23:16	R/W	0x1F	ADAP_LNOI_SET.
			Left channel noise threshold setting
		(-86dB)	0x00 : -24dB
			0x01:-26dB
			0x02 : -28dB
			0x1D: -82dB
			0x1E: -84dB
			0x1F: -86dB
15	/	/	1
14	R/W	0x1	AAGC_LCHAN_EN.
			Left AGC function enable
			0:disable
			1: enable
13	R/W	0x1	ADAP_LHPF_EN.
			Left HPF enable
			0: disable
			1: enable
12	R/W	0x1	ADAP_LNOI_DET.
			Left Noise detect enable
			0: disable
			1: enable
11:10	/	/	/
9:8	R/W	0x0	ADAP_LCHAN_HYS.
			Left Hysteresis setting

			00:1dB
			01:2dB
			10:4dB
			11 : disable
7:4	R/W	0x0	ADAP_LNOI_DEB.
			Left Noise debounce time
			0000:0/fs
			0001:4/fs
			0010:8/fs
			1111 :16*4096/fs
			T=2(N+1)/fs ,except N=0
3:0	R/W	0x0	ADAP_LSIG_DEB.
			Left Signal debounce time
			0000:0/fs
			0001:4/fs
			0010:8/fs
			1111 :16*4096/fs
			T=2(N+1)/fs ,except N=0

4.14.5.17. 0x078 ADC DAP Right Control Register(Default Value: 0x001F7000)

Offset: 0	k078		Register Name: AC_ADC_DAP_RCTR	
Bit	R/W	Default/Hex	Description	
31:21	/	/	/	
20:16	R/W	0x1F	ADAP_RNOI_SET.	
		(-86dB)	Right channel noise threshold setting	
			0x00 : -24dB	
			0x01:-26dB	
			0x02 : -28dB	
			0x1D: -82dB	
			0x1E: -84dB	
			0x1F: -86dB	
15	/	/	/	
14	R/W	0x1	AAGC_RCHAN_EN.	
			Right AGC enable	
			0:disable	
			1:enable	
13	R/W	0x1	ADAP_RHPF_EN.	
			Right HPF enable	
			0: disable	
			1: enable	
12	R/W	0x1	ADAP_RNOI_DET.	
			Right Noise detect enable	
			0: disable	
			1:enable	
11:10	/	/	1	
9:8	R/W	0x0	ADAP_RCHAN_HYS.	
			Right Hysteresis setting	
			00:1dB	
			01:2dB	
	ant/Davisian 1	- 1	appright@2017 Sochin technology limited All Dights Decomed	Dogo 150

		I	
			10:4dB
			11 : disable;
7:4	R/W	0x0	ADAP_RNOI_DEB.
			Right Noise debounce time
			0000:0/fs
			0001:4/fs
			0010:8/fs
			1111: 16*4096/fs
			T=2(N+1)/fs ,except N=0
3:0	R/W	0x0	ADAP_RSIG_DEB.
			Right Signal debounce time
			0000:0/fs
			0001:4/fs
			0010:8/fs
			1111: 16*4096/fs
			T=2(N+1)/fs ,except N=0

4.14.5.18. 0x07CADC DAP Parameter Register(Default Value: 0x2C2C2828)

Offset: 0x07C			Register Name: AC_ADC_DAP_PARA
Bit	R/W	Default/Hex	Description
31:30	/	/	
29:24	R/W	0x2C	ADAP_LTARG_SET.
			Left channel target level setting (-1dB30dB). (6.0format 2s component)
23:22	/	/	
21:16	R/W	0x2C	ADAP_RTARG_SET.
			Right channel target level setting (-1dB30dB). (6.0format 2s component)
15:8	R/W	0x28	ADAP_LGAIN_MAX.
			Left channel max gain setting (0-40dB). (7.1format 2s component)
7:0	R/W	0x28	ADAP_RGAIN_MAX.
			Right channel max gain setting (0-40dB). (7.1format 2s component)

4.14.5.19. 0x080 ADC DAP Left Average Coef Register(Default Value: 0x00051EB8)

Offset: 0x080			Register Name: AC_ADC_DAP_LAC
Bit	R/W	Default/Hex	Description
31:27	/	/	1
26:0	R/W	0x0051EB8	ADAP_LAC.
			Average level coefficient setting(3.24format 2s component)

4.14.5.20. 0x084 ADC DAP Left Decay & Attack Time Register(Default Value: 0x0000001F)

Offset: 0x084			Register Name: AC_ADC_DAP_LDAT
Bit	R/W	Default/Hex	Description
31	/	/	/
30:16	R/W	0x0000	ADAP_LATT_SET Left attack time coefficient setting 0000 : 1x32/fs

			0001 : 2x32/fs
			7FFF : 215 x32/fs T=(n+1)*32*fs When the gain decreases, the actual gain will decrease 0.5dB at every attack
		,	time.
15	/	/	1
14:0	R/W	0x001F	ADAP_LDEC_SET
			Left decay time coefficient setting
		(32x32fs)	0000 : 1x32/fs
		, ,	0001 : 2x32/fs
			7FFF : 215 x32/fs
			T=(n+1)*32/fs
			When the gain increases, the actual gain will increase 0.5dB at every decay
			time.

4.14.5.21. 0x088 ADC DAP Right Average Coef Register(Default Value: 0x00051EB8)

Offset: 0x088			Register Name: AC_ADC_DAP_RAC
Bit	R/W	Default/Hex	Description
31:27	/	/	/
26:0	R/W	0x0051EB8	ADAP_RAC.
			Average level coefficient setting(3.24fomat)

4.14.5.22. 0x08C ADC DAP Right Decay & Attack Time Register(Default Value: 0x0000001F)

Offset: 0x8	3C		Register Name: AC_ADC_DAP_RDAT
Bit	R/W	Default/Hex	Description
31	/	/	
30:16	R/W	0x0000	ADAP_RATT_SET. Right attack time coefficient setting 0000 : 1x32/fs 0001 : 2x32/fs 7FFF : 215 x32/fs T=(n+1)*32/fs When the gain decreases, the actual gain will decrease 0.5dB at every attack time.
15	/	/	/
14:0	R/W	0x001F	ADAP_RDEC_SET Right decay time coefficient setting 0000 : 1x32/fs 0001 : 2x32/fs 7FFF : 215x32/fs T=(n+1)*32/fs When the gain increases, the actual gain will increase 0.5dB at every decay time.

4.14.5.23. 0x090 ADC DAP HPF Coef Register(Default Value: 0x00FFFAC1)

Offset: 0x090			Register Name: AC_ADC_DAP_HPFC
Bit	R/W	Default/Hex	Description
31:27	/	/	1
26:0	R/W	0x0FFFAC1	ADAP_HPFC.
			HPF coefficient setting (3.24fomat)

4.14.5.24. 0x094 ADC DAP Left Input Signal Low Average Coef Register(Default Value: 0x00051EB8)

Offset: 0x094			Register Name: AC_ADC_DAP_LINAC
Bit	R/W	Default/Hex	Description
31:27	/	/	/
26:0	R/W	0x0051EB8	ADAP_LINAC Left input signal average filter coefficient to check noise or not (the coefficientis 3.24 format 2s complement) always the same as the left output signal average filter's

4.14.5.25. 0x098 ADC DAP Right Input Signal Low Average Coef Register(Default Value: 0x00051EB8)

Offset: 0x	098		Register Name: AC_ADC_DAP_RNAC
Bit	R/W	Default/Hex	Description
31:27	/	/	
26:0	R/W	0x0051EB8	ADAP_RINAC
			Right input signal average filter coefficient to check noise or not (the coefficientis 3.24 format 2s complement) always the same as the left output signal average filter's

4.14.5.26. 0x09C ADC DAP Optimum Register(Default Value: 0x00000000)

Offset: 0x09C			Register Name: AC_ADC_DAP_OPT
Bit	R/W	Default/Hex	Description
31:11	/	/	/
10	R/W	0x0	Left energy default value setting(include the input and output)
			0 : min
			1 : max
9 :8	R/W	0x0	Left channel gain hystersis setting.
			The different between target level and the signal level must larger than the
			hystersis when the gain change.
			00 : 0.4375db
			01:0.9375db
			10:1.9375db
			11:3db
7:3	/	/	
5	R/W	0x0	The input signal average filter coefficient setting
			0 : is the reg94/reg98
			1 : is the reg80/reg88;
4	R/W	0x0	AGC output when the channel in noise state

			0 : output is zero
			1 : output is the input data
3	/	/	1
2	R/W	0x0	Right energy default value setting(include the input and output)
			0 : min
			1 : max
1:0	R/W	0x0	Right channel gain hysteresis setting.
			The different between target level and the signal level must larger than the
			hysteresis when the gain change.
			00 : 0.4375db
			01 : 0.9375db
			10 : 1.9375db
			11:3db

4.14.5.27. 0x100 DAC DRC High HPF Coef Register(Default Value: 0x000000FF)

Offset: 0x100			Register Name: AC_DAC_DRC_HHPFC
Bit	R/W	Default/Hex	Description
15:11	/	/	/
10:0	R/W	0xFF	HPF coefficient setting and the data is 3.24 format.

4.14.5.28. 0x104 DAC DRC Low HPF Coef Register(Default Value: 0x0000FAC1)

Offset: 0x104			Register Name: AC_DAC_DRC_LHPFC
Bit	R/W	Default/Hex	Description
15:0	R/W	0xFAC1	HPF coefficient setting and the data is 3.24 format.

4.14.5.29. 0x108 DAC DRC Control Register(Default Value: 0x00000080)

Offset: 0x108			Register Name: AC_DAC_DRC_CTRL
Bit	R/W	Default/Hex	Description
15	R	0	DRC delay buffer data output state when drc delay function is enble and the
			drc funciton disable. After disable drc function and this bit go to 0, the user
			should write the drc delay function bit to 0;
			0 : not complete
			1: is complete
14:10	/	/	/
13:8	R/W	0	Signal delay time setting
			6'h00 : (8x1)fs
			6'h01 : (8x2)fs
			6'h02 : (8x3)fs
			6'h2e : (8*47)fs
			6'h2f : (8*48)fs
			6'h30 6'h3f : (8*48)fs
			Delay time = 8*(n+1)fs, n<6'h30;
			When the delay function is disable, the signal delay time is unused.
7	R/W	0x1	The delay buffer use or not when the drc disable and the drc buffer data
			output completely

			0 : don't use the buffer
			1 : use the buffer
6	R/W	0x0	DRC gain max limit enable
			0 : disable
			1 : enable
			DRC gain min limit enable. when this fuction enable, it will overwrite the noise
5	R/W	0x0	detect funciton.
3	IN/ VV	UXU	0 : disable
			1 : enable
			Control the drc to detect noise when ET enable
4	R/W	0x0	0 : disable
			1 : enable
			Signal function Select
			0 : RMS filter
			1 : Peak filter
			When Signal function Select Peak filter, the RMS parameter is unused.
3	R/W	0x0	(AC_DRC_LRMSHAT / AC_DRC_LRMSLAT / AC_DRC_LRMSHAT /
3	11,700	0.00	AC_DRC_LRMSLAT)
			When Signal function Select RMS filter, the Peak filter parameter is
			unused.(AC_DRC_LPFHAT / AC_DRC_LPFLAT / AC_DRC_RPFHAT /
			AC_DRC_RPFLAT / AC_DRC_LPFHRT / AC_DRC_LPFLRT / AC_DRC_RPFHRT /
			AC_DRC_RPFLRT)
			Delay function enable
2	R/W	0x0	0 : disable
2	11,7 VV	0.00	1 : enable
			When the Delay function enable is disable, the Signal delay time is unused.
			DRC LT enable
1	R/W	0x0	0 : disable
1	11/ VV	0.00	1 : enable
			When the DRC LT is disable the LT, KI and OPL parameter is unused.
			DRC ET enable
0	R/W	0x0	0 : disable
0	11/ 44	0,0	1 : enable
			When the DRC ET is disable the ET, Ke and OPE parameter is unused.

4.14.5.30. 0x10C DAC DRC Left Peak Filter High Attack Time Coef Register(Default Value: 0x0000000B)

Offset: 0x10C			Register Name: AC_DAC_DRC_LPFHAT
Bit	R/W	Default/Hex	Description
15:11	/	/	/
10:0	R/W	0x000B	The left peak filter attack time parameter setting, which determine by the equation that AT = $1-\exp(-2.2Ts/ta)$. The format is 3.24. (1ms)

4.14.5.31. 0x110 DAC DRC Left Peak Filter Low Attack Time Coef Register(Default Value: 0x000077BF)

Offset: 0x110			Register Name: AC_DAC_DRC_LPFLAT
Bit	R/W	Default/Hex	Description
15:0 R	R/W	0x77BF	The left peak filter attack time parameter setting, which determine by the
	11,700		equation that AT = $1-\exp(-2.2Ts/ta)$. The format is 3.24. (1ms)

4.14.5.32. 0x114 DAC DRC Right Peak Filter High Attack Time Coef Register(Default Value: 0x0000000B)

Offset: 0x114			Register Name: AC_DAC_DRC_RPFHAT
Bit	R/W	Default/Hex	Description
15:11	/	/	1
10:0	R/W	0x000B	The left peak filter attack time parameter setting, which determine by the equation that AT = $1-\exp(-2.2Ts/ta)$. The format is 3.24. (1ms)

4.14.5.33. 0x118 DAC DRC Peak Filter Low Attack Time Coef Register(Default Value: 0x000077BF)

Offset: 0x118			Register Name: AC_DAC_DRC_RPFLAT
Bit	R/W	Default/Hex	Description
15:0	R/W	0x77BF	The left peak filter attack time parameter setting, which determine by the equation that AT = $1-\exp(-2.2Ts/ta)$. The format is 3.24. (1ms)

4.14.5.34. 0x11C DAC DRC Left Peak Filter High Release Time Coef Register(Default Value: 0x000000FF)

Offset: 0x11C			Register Name: AC_DAC_DRC_LPFHRT
Bit	R/W	Default/Hex	Description
15:11	/	/	/
10:0	R/W	0x00FF	The left peak filter release time parameter setting, which determine by the equation that RT = exp(-2.2Ts/tr). The format is 3.24. (100ms)

4.14.5.35. 0x120 DAC DRC Left Peak Filter Low Release Time Coef Register(Default Value: 0x0000E1F8)

Offset: 0x120			Register Name: AC_DAC_DRC_LPFLRT
Bit	R/W	Default/Hex	Description
15:0	R/W	0xE1F8	The left peak filter release time parameter setting, which determine by the equation that RT = exp(-2.2Ts/tr). The format is 3.24. (100ms)

4.14.5.36. 0x124 DAC DRC Right Peak filter High Release Time Coef Register(Default Value: 0x000000FF)

Offset: 0x124			Register Name: AC_DAC_DRC_RPFHRT
Bit	R/W	Default/Hex	Description
15:11	/	/	1
10:0	R/W	0x00FF	The left peak filter attack time parameter setting, which determine by the equation that RT = exp(-2.2Ts/tr). The format is 3.24. (100ms)

4.14.5.37. 0x128 DAC DRC Right Peak filter Low Release Time Coef Register(Default Value: 0x0000E1F8)

Offset: 0x128			Register Name: AC_DAC_DRC_RPFLRT
Bit	R/W	Default/Hex	Description
15:0	R/W	0xE1F8	The left peak filter release time parameter setting, which determine by the equation that $AT = \exp(-2.2Ts/tr)$. The format is 3.24. (100ms)

4.14.5.38. 0x12C DAC DRC Left RMS Filter High Coef Register(Default Value: 0x00000001)

Offset: 0x12C			Register Name: AC_DAC_DRC_LRMSHAT
Bit	R/W	Default/Hex	Description
15:11	/	/	1
10:0	R/W	0x0001	The left RMS filter average time parameter setting, which determine by the equation that AT = $1-\exp(-2.2Ts/tav)$. The format is 3.24. (10ms)

4.14.5.39. 0x130 DAC DRC Left RMS Filter Low Coef Register(Default Value: 0x00002BAF)

Offset: 0x130			Register Name: AC_DAC_DRC_LRMSLAT
Bit	R/W	Default/Hex	Description
15:0	R/W	0x2BAF	The left RMS filter average time parameter setting, which determine by the equation that AT = $1-\exp(-2.2Ts/tav)$. The format is 3.24. (10ms)

4.14.5.40. 0x134 DAC DRC Right RMS Filter High Coef Register(Default Value: 0x00000001)

Offset: 0x134			Register Name: AC_DAC_DRC_RRMSHAT
Bit	R/W	Default/Hex	Description
15:11	/	/	/
10:0	R/W	0x0001	The right RMS filter average time parameter setting, which determine by the equation that AT = $1-\exp(-2.2Ts/tav)$. The format is 3.24. (10ms)

4.14.5.41. 0x138 DAC DRC Right RMS Filter Low Coef Register(Default Value: 0x00002BAF)

Offset: 0x138			Register Name: AC_DAC_DRC_RRMSLAT
Bit	R/W	Default/Hex	Description
15:0	R/W	0x2BAF	The right RMS filter average time parameter setting, which determine by the equation that AT = $1-\exp(-2.2Ts/tav)$. The format is 3.24. (10ms)

4.14.5.42. 0x13C DAC DRC Compressor Theshold High Setting Register(Default Value: 0x000006A4)

Offset: 0x13C			Register Name: AC_DAC_DRC_HCT
Bit	R/W	Default/Hex	Description
15:0	R/W	0x06A4	The compressor threshold setting, which set by the equation that CTin = -CT/6.0206. The format is 8.24 (-40dB)

4.14.5.43. 0x140 DAC DRC Compressor Slope High Setting Register(Default Value: 0x0000D3C0)

Offset: 0x140			Register Name: AC_DAC_DRC_LCT
Bit	R/W	Default/Hex	Description
15:0	R/W	0xD3C0	The compressor threshold setting, which set by the equation that CTin = -CT/6.0206. The format is 8.24 (-40dB)

4.14.5.44. 0x144 DAC DRC Compressor Slope High Setting Register(Default Value: 0x00000080)

Offset: 0x144			Register Name: AC_DAC_DRC_HKC
Bit	R/W	Default/Hex	Description
15:13	/	/	/
13:0	R/W	0x0080	The slope of the compressor which determine by the equation that $Kc = 1/R$, there, R is the ratio of the compressor, which always is interger. The format is 8.24. (2:1)

4.14.5.45. 0x148 DAC DRC Compressor Slope Low Setting Register(Default Value: 0x00000000)

Offset: 0x148			Register Name: AC_DAC_DRC_LKC
Bit	R/W	Default/Hex	Description
15:0	R/W	0x0000	The slope of the compressor which determine by the equation that $Kc = 1/R$, there, R is the ratio of the compressor, which always is interger. The format is 8.24. (2:1)

4.14.5.46. 0x14C DAC DRC Compressor High Output at Compressor Threshold Register(Default Value: 0x0000F95B)

Offset: 0x14C			Register Name: AC_DAC_DRC_HOPC
Bit	R/W	Default/Hex	Description
15:0	R/W	0xF95B	The output of the compressor which determine by the equation -OPC/6.0206 The format is 8.24 (-40dB)

4.14.5.47. 0x150 DAC DRC Compressor Low Output at Compressor Threshold Register(Default Value: 0x00002C3F)

Offset: 0x150			Register Name: AC_DAC_DRC_LOPC
Bit	R/W	Default/Hex	Description
15:0	R/W	0x2C3F	The output of the compressor which determine by the equation OPC/6.0206 The format is 8.24 (-40dB)

4.14.5.48. 0x154 DAC DRC Limiter Theshold High Setting Register(Default Value: 0x000001A9)

Offset: 0x154			Register Name: AC_DAC_DRC_HLT
Bit	R/W	Default/Hex	Description
15:0	R/W	0x01A9	The limiter threshold setting, which set by the equation that LTin = -LT/6.0206,
15.0	N/ VV	UXUIA9	The format is 8.24. (-10dB)

4.14.5.49. 0x158 DAC DRC Limiter Theshold Low Setting Register(Default Value: 0x000034F0)

Offset: 0x158			Register Name: AC_DAC_DRC_LLT
Bit	Bit R/W Default/Hex		Description
15:0	R/W	0x34F0	The limiter threshold setting, which set by the equation that LTin = -LT/6.0206,

	The format is 8.24. (-10dB)

4.14.5.50. 0x15C DAC DRC Limiter Slope High Setting Register(Default Value: 0x00000005)

Offset: 0x15	SC .		Register Name: AC_DAC_DRC_HKI
Bit	R/W	Default/Hex	Description
15:11	/	/	
13:0	R/W	0x0005	The slope of the limiter which determine by the equation that KI = 1/R, there, R is the ratio of the limiter, which always is interger. The format is 8.24. (50:1)

4.14.5.51. 0x160 DAC DRC Limiter Slope Low Setting Register(Default Value: 0x1EB8)

Offset: 0x160			Register Name: AC_DAC_DRC_LKI
Bit	R/W	Default/Hex	Description
15:0	R/W	0x1EB8	The slope of the limiter which determine by the equation that KI = 1/R, there, R is the ratio of the limiter, which always is interger. The format is 8.24. (50:1)

4.14.5.52. 0x164 DAC DRC Limiter High Output at Limiter Threshold(Default Value: 0x0000FBD8)

Offset: 0x164			Register Name: AC_DAC_DRC_HOPL
Bit	R/W	Default/Hex	Description
15:0	R/W	0xFBD8	The output of the limiter which determine by equation OPT/6.0206. The format is 8.24 (-25dB)

4.14.5.53. 0x168 DAC DRC Limiter Low Output at Limiter Threshold(Default Value: 0x0000FBA7)

Offset: 0x168			Register Name: AC_DAC_DRC_LOPL
Bit	R/W	Default/Hex	Description
15:0	R/W	0xFBA7	The output of the limiter which determine by equation OPT/6.0206. The format is 8.24 (-25dB)

4.14.5.54. 0x16C DAC DRC Expander Theshold High Setting Register(Default Value: 0x00000BA0)

Offset: 0x16C			Register Name: AC_DAC_DRC_HET
Bit	R/W	Default/Hex	Description
15:0	R/W	0x0BA0	The expander threshold setting, which set by the equation that ETin = -ET/6.0206, The format is 8.24. (-70dB)

4.14.5.55. 0x170 DAC DRC Expander Theshold Low Setting Register(Default Value: 0x00007291)

Offset: 0x170			Register Name: AC_DAC_DRC_LET	
Bit	R/W	Default/Hex	Description	
15:0	R/W	0x7291	The expander threshold setting, which set by the equation that ETin =	

	FT/C 030C	The femoret: 0.24 /	70 do	
	-E1/6.0206,	The format is 8.24. (-70dB))

4.14.5.56. 0x174 DAC DRC Expander Slope High Setting Register(Default Value: 0x00000500)

Offset: 0x174			Register Name: AC_DAC_DRC_HKE
Bit	R/W	Default/Hex	Description
15:14	/	/	/
13:0	R/W	0x0500	The slope of the expander which determine by the equation that $Ke = 1/R$, there, R is the ratio of the expander, which always is interger and the ke must larger than 50. The format is 8.24. (1:5)

4.14.5.57. 0x178 DAC DRC Expander Slope Low Setting Register(Default Value: 0x00000000)

Offset: 0x178			Register Name: AC_DAC_DRC_LKE
Bit	R/W	Default/Hex	Description
15:0	R/W	0x0000	The slope of the expander which determine by the equation that $Ke = 1/R$, there, R is the ratio of the expander, which always is interger and the ke must larger than 50. The format is 8.24. (1:5)

4.14.5.58. 0x17C DAC DRC Expander High Output at Expander Threshold(Default Value: 0xF45F)

Offset: 0x17C			Register Name: AC_DAC_DRC_HOPE
Bit	R/W	Default/Hex	Description
15:0	R/W	0xF45F	The output of the expander which determine by equation OPE/6.0206. The format is 8.24 (-70dB)

4.14.5.59. 0x180 DAC DRC Expander Low Output at Expander Threshold(Default Value: 0x00008D6E)

Offset: 0x180			Register Name: AC_DAC_DRC_LOPE
Bit	R/W	Default/Hex	Description
15:0	R/W	0x8D6E	The output of the expander which determine by equation OPE/6.0206. The format is 8.24 (-70dB)

4.14.5.60. 0x184 DAC DRC Linear Slope High Setting Register(Default Value: 0x00000100)

Offset: 0x184			Register Name: AC_DAC_DRC_HKN
Bit	R/W	Default/Hex	Description
15:14	/	/	1
12.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0100	The slope of the linear which determine by the equation that $Kn = 1/R$, there,
13:0 R/W	R/W	0x0100	R is the ratio of the linear, which always is interger . The format is 8.24. (1:1)

4.14.5.61. 0x188 DAC DRC Linear Slope Low Setting Register(Default Value: 0x00000000)

Offset: 0x188			Register Name: AC_DAC_DRC_LKN
Bit	R/W	Default/Hex	Description
15:0	L5:0 R/W 0x	0x0000	The slope of the linear which determine by the equation that Kn = 1/R, there,
15.0 N/ VV	N/ VV		R is the ratio of the linear, which always is interger . The format is 8.24. (1:1)

4.14.5.62. 0x18C DAC DRC Smooth filter Gain High Attack Time Coef Register(Default Value: 0x00000002)

Offset: 0x18C			Register Name: AC_DAC_DRC_SFHAT
Bit	R/W	Default/Hex	Description
15:11	/	/	/
10:0	R/W	0x0002	The smooth filter attack time parameter setting, which determine by the equation that $AT = 1-\exp(-2.2Ts/tr)$. The format is 3.24. (5ms)

4.14.5.63. 0x190 DAC DRC Smooth filter Gain Low Attack Time Coef Register(Default Value: 0x00005600)

Offset: 0x190			Register Name: AC_DAC_DRC_SFLAT
Bit	R/W	Default/Hex	Description
15:0	R/W	0x5600	The smooth filter attack time parameter setting, which determine by the equation that $AT = 1-\exp(-2.2Ts/tr)$. The format is 3.24. (5ms)

4.14.5.64. 0x194 DAC DRC Smooth filter Gain High Release Time Coef Register(Default Value: 0x00000000)

Offset: 0x194			Register Name: AC_DAC_DRC_SFHRT
Bit	R/W	Default/Hex	Description
15:11	/	/	1
10:0	R/W	0x0000	The gain smooth filter release time parameter setting, which determine by the equation that $RT = 1-\exp(-2.2Ts/tr)$. The format is 3.24. (200ms)

4.14.5.65. 0x198 DAC DRC Smooth filter Gain Low Release Time Coef Register(Default Value: 0x00000F04)

Offset: 0x198			Register Name: AC_DAC_DRC_SFLRT
Bit	R/W	Default/Hex	Description
15:0	R/W	0x0F04	The gain smooth filter release time parameter setting, which determine by the equation that $RT = 1-\exp(-2.2Ts/tr)$. The format is 3.24. (200ms)

4.14.5.66. 0x19C DAC DRC MAX Gain High Setting Register(Default Value: 0x0000FE56)

Offset: 0x19C			Register Name: AC_DAC_DRC_MXGHS
Bit	R/W	Default/Hex	Description
15:0	R/W	0xFE56	The max gain setting which determine by equation MXG/6.0206. The format is 8.24 and must -20dB <mxg< (-10db)<="" 30db="" td=""></mxg<>

4.14.5.67. 0x1A0 DAC DRC MAX Gain Low Setting Register(Default Value: 0x0000CB0F)

Offset: 0x1A0			Register Name: AC_DAC_DRC_MXGLS
Bit	R/W	Default/Hex	Description
15:0	R/W	0xCB0F	The max gain setting which determine by equation MXG/6.0206. The format is
15.0	N/ VV	UXCBUF	8.24 and must -20dB <mxg (-10db)<="" 30db="" <="" td=""></mxg>

4.14.5.68. 0x1A4 DAC DRC MIN Gain High Setting Register(Default Value: 0x0000_F95B)

Offset: 0x1A4			Register Name: AC_DAC_DRC_MNGHS	
Bit	R/W	Default/Hex	Description	
15:0	R/W	0xF95B	The min gain setting which determine by equation MXG/6.0206. The format is 8.24 and must -60dB \leq MNG \leq -30dB (-40dB)	

4.14.5.69. 0x1A8 DAC DRC MIN Gain Low Setting Register(Default Value: 0x00002C3F)

Offset: 0x1A8			Register Name: AC_DAC_DRC_MNGLS
Bit	R/W	Default/Hex	Description
15:0	R/W	0x2C3F	The min gain setting which determine by equation MNG/6.0206. The format is 8.24 and must -60dB \leq MNG \leq -30dB (-40dB)

4.14.5.70. 0x1AC DAC DRC Expander Smooth Time High Coef Register(Default Value: 0x00000000)

Offset: 0x1AC			Register Name: AC_DAC_DRC_EPSHC
Bit	R/W	Default/Hex	Description
11:0	R/W	0x0000	The gain smooth filter release and attack time parameter setting in expander region, which determine by the equation that $RT = 1-exp(-2.2Ts/tr)$. The format is 3.24. (30ms)

4.14.5.71. 0x1B0 DAC DRC Expander Smooth Time Low Coef Register(Default Value: 0x0000640C)

Offset: 0x1B0			Register Name: AC_DAC_DRC_EPSLC
Bit	R/W	Default/Hex	Description
15:0	R/W	0x640C	The gain smooth filter release and attack time parameter setting in expander region, which determine by the equation that RT = 1-exp(-2.2Ts/tr). The format is 3.24. (30ms)

4.14.5.72. 0x1B8 DAC DRC HPF Gain High Coef Register(Default Value: 0x00000100)

Offset: 0x1B8			Register Name: AC_DAC_DRC_HPFHGAIN
Bit	R/W Default/Hex		Description
15:11	/	/	
10:0	R/W	0x100	The gain of the hpf coefficient setting which format is 3.24.(gain = 1)

4.14.5.73. 0x1BC DAC DRC HPF Gain Low Coef Register(Default Value: 0x00000000)

Offset: 0x1BC			Register Name: AC_DAC_DRC_HPFLGAIN
Bit	Bit R/W Default/Hex		Description
15:0	R/W	0x0000	The gain of the hpf coefficient setting which format is 3.24.(gain = 1)

4.14.5.74. 0x200 ADC DRC High HPF Coef Register(Default Value: 0x000000FF)

Offset: 0x200			Register Name: AC_ADC_DRC_HHPFC
Bit	Bit R/W Default/Hex		Description
15:11	/	/	/
10:0	R/W	0xFF	HPF coefficient setting and the data is 3.24 format.

4.14.5.75. 0x204 ADC DRC Low HPF Coef Register(Default Value: 0x0000FAC1)

Offset: 0x204			Register Name: AC_ADC_DRC_LHPFC
Bit R/W Default/Hex		Default/Hex	Description
15:0	R/W	0xFAC1	HPF coefficient setting and the data is 3.24 format.

4.14.5.76. 0x208 ADC DRC Control Register(Default Value: 0x00000080)

Offset: 0	x208		Register Name: AC_ADC_DRC_CTRL
Bit	R/W	Default/Hex	Description
15	R	0	DRC delay buffer data output state when drc delay function is enble and the drc function disable. After disable drc function and this bit go to 0, the user should write the drc delay function bit to 0; 0: not complete 1: is complete
14:10	/	/	/
13:8	R/W	0	Signal delay time setting 6'h00: (8x1)fs 6'h01: (8x2)fs 6'h02: (8x3)fs 6'h2e: (8*47)fs 6'h2f: (8*48)fs 6'h30 6'h3f: (8*48)fs Delay time = 8*(n+1)fs, n<6'h30; When the delay function is disable, the signal delay time is unused.
7	R/W	0x1	The delay buffer use or not when the drc disable and the drc buffer data output completely 0: don't use the buffer 1: use the buffer
6	R/W	0x0	DRC gain max limit enable 0 : disable 1 : enable
5	R/W	0x0	DRC gain min limit enable. when this fuction enable, it will overwrite the noise detect funciton. 0: disable

			1 : enable
			Control the drc to detect noise when ET enable
4	R/W	0x0	0 : disable
			1 : enable
			Signal function Select
			0 : RMS filter
			1 : Peak filter
			When Signal function Select Peak filter, the RMS parameter is unused.
			(AC_DRC_LRMSHAT / AC_DRC_LRMSLAT / AC_DRC_LRMSHAT /
3	R/W	0x0	AC_DRC_LRMSLAT)
			When Signal function Select RMS filter, the Peak filter parameter is
			unused.(AC_DRC_LPFHAT / AC_DRC_LPFLAT / AC_DRC_RPFHAT /
			AC_DRC_RPFLAT / AC_DRC_LPFHRT / AC_DRC_LPFLRT / AC_DRC_RPFHRT /
			AC_DRC_RPFLRT)
			Delay function enable
2	R/W	0x0	0 : disable
2	IX/ VV	UXU	1 : enable
			When the Delay function enable is disable, the Signal delay time is unused.
			DRC LT enable
1	R/W	0x0	0 : disable
1	117 00	0.00	1 : enable
			When the DRC LT is disable the LT, KI and OPL parameter is unused.
			DRC ET enable
0	R/W	0x0	0 : disable
	11/ VV	/w dxo	1 : enable
			When the DRC ET is disable the ET, Ke and OPE parameter is unused.

4.14.5.77. 0x20C ADC DRC Left Peak Filter High Attack Time Coef Register(Default Value: 0x0000000B)

Offset: 0x20C			Register Name: AC_ADC_DRC_LPFHAT
Bit	R/W	Default/Hex	Description
15:11	/	/	1
10:0	R/W	0x000B	The left peak filter attack time parameter setting, which determine by the equation that AT = 1-exp(-2.2Ts/ta). The format is 3.24. (1ms)

4.14.5.78. 0x210 ADC DRC Left Peak Filter Low Attack Time Coef Register(Default Value: 0x000077BF)

Offset: 0x210			Register Name: AC_ADC_DRC_LPFLAT
Bit	R/W	Default/Hex	Description
15:0	R/W	0x77BF	The left peak filter attack time parameter setting, which determine by the equation that AT = 1-exp(-2.2Ts/ta). The format is 3.24. (1ms)

4.14.5.79. 0x214 ADC DRC Right Peak Filter High Attack Time Coef Register(Default Value: 0x0000000B)

Offset: 0x214			Register Name: AC_ADC_DRC_RPFHAT
Bit	R/W	Default/Hex	Description
15:11	/	/	/
10:0	R/W	0x000B	The left peak filter attack time parameter setting, which determine by the

equation that AT = 1-exp(-2.2Ts/ta). The format is 3.24.	(1ms)
--	-------

4.14.5.80. 0x218 ADC DRC Peak Filter Low Attack Time Coef Register(Default Value: 0x000077BF)

Offset: 0x218			Register Name: AC_ADC_DRC_RPFLAT
Bit	R/W	Default/Hex	Description
15:0	R/W	0x77BF	The left peak filter attack time parameter setting, which determine by the equation that AT = $1-\exp(-2.2Ts/ta)$. The format is 3.24. (1ms)

4.14.5.81. 0x21C ADC DRC Left Peak Filter High Release Time Coef Register(Default Value: 0x000000FF)

Offset: 0x21C			Register Name: AC_ADC_DRC_LPFHRT
Bit	R/W	Default/Hex	Description
15:11	/	/	/
10:0	R/W	0x00FF	The left peak filter release time parameter setting, which determine by the equation that $RT = \exp(-2.2Ts/tr)$. The format is 3.24. (100ms)

4.14.5.82. 0x220 ADC DRC Left Peak Filter Low Release Time Coef Register(Default Value: 0x0000E1F8)

Offset: 0x220			Register Name: AC_ADC_DRC_LPFLRT
Bit	R/W	Default/Hex	Description
15:0	R/W	0xE1F8	The left peak filter release time parameter setting, which determine by the equation that $RT = \exp(-2.2Ts/tr)$. The format is 3.24. (100ms)

4.14.5.83. 0x224 ADC DRC Right Peak filter High Release Time Coef Register(Default Value: 0x000000FF)

Offset: 0x224			Register Name: AC_ADC_DRC_RPFHRT
Bit	R/W	Default/Hex	Description
15:11	/	/	/
10:0	R/W	0x00FF	The left peak filter attack time parameter setting, which determine by the equation that RT = exp(-2.2Ts/tr). The format is 3.24. (100ms)

4.14.5.84. 0x228 ADC DRC Right Peak filter Low Release Time Coef Register(Default Value: 0x0000E1F8)

Offset: 0x2	28		Register Name: AC_ADC_DRC_RPFLRT
Bit	R/W	Default/Hex	Description
15:0	R/W	0xE1F8	The left peak filter release time parameter setting, which determine by the equation that AT = exp(-2.2Ts/tr). The format is 3.24. (100ms)

4.14.5.85. 0x22C ADC DRC Left RMS Filter High Coef Register(Default Value: 0x00000001)

Offset: 0x22C			Register Name: AC_ADC_DRC_LRMSHAT
Bit	R/W	Default/Hex	Description
15:11	/	/	/
10:0	R/W	0x0001	The left RMS filter average time parameter setting, which determine by the

	equation that $AT = 1-exp(-2.2Ts/tav)$. The format is 3.24.	(10ms)
--	--	--------

4.14.5.86. 0x230 ADC DRC Left RMS Filter Low Coef Register(Default Value: 0x00002BAF)

Offset: 0x230			Register Name: AC_ADC_DRC_LRMSLAT
Bit	R/W	Default/Hex	Description
15:0	R/W	0x2BAF	The left RMS filter average time parameter setting, which determine by the
			equation that AT = 1-exp(-2.2Ts/tav). The format is 3.24. (10ms)

4.14.5.87. 0x234 ADC DRC Right RMS Filter High Coef Register(Default Value: 0x00000001)

Offset: 0x234			Register Name: AC_ADC_DRC_RRMSHAT
Bit	R/W	Default/Hex	Description
15:11	/	/	1
10:0	R/W	0x0001	The right RMS filter average time parameter setting, which determine by the equation that AT = $1-\exp(-2.2Ts/tav)$. The format is 3.24. (10ms)

4.14.5.88. 0x238 ADC DRC Right RMS Filter Low Coef Register(Default Value: 0x00002BAF)

Offset: 0x238			Register Name: AC_ADC_DRC_RRMSLAT
Bit	R/W	Default/Hex	Description
15.0	R/W	R/W 0x2BAF The right RMS filter	The right RMS filter average time parameter setting, which determine by the
15:0	N/ VV	UXZBAF	equation that AT = 1-exp(-2.2Ts/tav). The format is 3.24. (10ms)

4.14.5.89. 0x23C ADC DRC Compressor Theshold High Setting Register(Default Value: 0x000006A4)

Offset: 0x23C			Register Name: AC_ADC_DRC_HCT
Bit	R/W	Default/Hex	Description
15:0	R/W	0x06A4	The compressor threshold setting, which set by the equation that CTin = -CT/6.0206. The format is 8.24 (-40dB)

4.14.5.90. 0x240 ADC DRC Compressor Slope High Setting Register(Default Value: 0x0000D3C0)

Offset: 0x240			Register Name: AC_ADC_DRC_LCT
Bit	R/W	Default/Hex	Description
15:0	R/W	0xD3C0	The compressor threshold setting, which set by the equation that CT in = $-\text{CT/}6.0206$. The format is 8.24 (-40dB)

4.14.5.91. 0x244 ADC DRC Compressor Slope High Setting Register(Default Value: 0x00000080)

Offset: 0x244			Register Name: AC_ADC_DRC_HKC
Bit	R/W	Default/Hex	Description
15:13	/	/	/
13:0	R/W	0x0080	The slope of the compressor which determine by the equation that $Kc = 1/R$,

there, R is the ratio of the compressor, which always is interger. The format is
8.24. (2:1)

4.14.5.92. 0x248 ADC DRC Compressor Slope Low Setting Register(Default Value: 0x00000000)

Offset: 0x24	18		Register Name: AC_ADC_DRC_LKC
Bit	R/W	Default/Hex	Description
15:0	R/W	0x0000	The slope of the compressor which determine by the equation that $Kc = 1/R$, there, R is the ratio of the compressor, which always is interger. The format is 8.24. (2:1)

4.14.5.93. 0x24C ADC DRC Compressor High Output at Compressor Threshold Register(Default Value: 0x0000F95B)

Offset: 0x24C			Register Name: AC_ADC_DRC_HOPC
Bit	R/W	Default/Hex	Description
15:0	R/W	0xF95B	The output of the compressor which determine by the equation -OPC/6.0206 The format is 8.24 (-40dB)

4.14.5.94. 0x250 ADC DRC Compressor Low Output at Compressor Threshold Register(Default Value: 0x00002C3F)

Offset: 0x25	Offset: 0x250		Register Name: AC_ADC_DRC_LOPC
Bit	R/W	Default/Hex	Description
15:0	R/W	0x2C3F	The output of the compressor which determine by the equation OPC/6.0206 The format is 8.24 (-40dB)

4.14.5.95. 0x254 ADC DRC Limiter Theshold High Setting Register(Default Value: 0x000001A9)

Offset: 0x254			Register Name: AC_ADC_DRC_HLT
Bit	R/W	Default/Hex	Description
15:0	R/W	0x01A9	The limiter threshold setting, which set by the equation that $LTin = -LT/6.0206$, The format is 8.24. (-10dB)

4.14.5.96. 0x258 ADC DRC Limiter Theshold Low Setting Register(Default Value: 0x000034F0)

Offset: 0x258			Register Name: AC_ADC_DRC_LLT
Bit	R/W	Default/Hex	Description
15:0	R/W	0x34F0	The limiter threshold setting, which set by the equation that LTin = -LT/6.0206,
	.,,	07.0	The format is 8.24. (-10dB)

4.14.5.97. 0x25C ADC DRC Limiter Slope High Setting Register(Default Value: 0x00000005)

Offset: 0x25C			Register Name: AC_ADC_DRC_HKI
Bit	Bit R/W Default/Hex		Description
15:11	/	/	/

13:0	R/W	0x0005	The slope of the limiter which determine by the equation that KI = 1/R, there,
13.0	I KY VV	0x0003	R is the ratio of the limiter, which always is interger. The format is 8.24. (50:1)

4.14.5.98. 0x260 ADC DRC Limiter Slope Low Setting Register(Default Value: 0x1EB8)

Offset: 0x260			Register Name: AC_ADC_DRC_LKI
Bit	R/W	Default/Hex	Description
15:0	R/W	0x1EB8	The slope of the limiter which determine by the equation that $KI = 1/R$, there, R is the ratio of the limiter, which always is interger. The format is 8.24. (50:1)

4.14.5.99. 0x264 ADC DRC Limiter High Output at Limiter Threshold(Default Value: 0x0000FBD8)

Offset: 0x264			Register Name: AC_ADC_DRC_HOPL
Bit	R/W	Default/Hex	Description
15:0	R/W	0xFBD8	The output of the limiter which determine by equation OPT/6.0206. The format is 8.24 (-25dB)

4.14.5.100. 0x268 ADC DRC Limiter Low Output at Limiter Threshold(Default Value: 0x0000FBA7)

Offset: 0x268			Register Name: AC_ADC_DRC_LOPL
Bit	R/W	Default/Hex	Description
15:0	R/W	0xFBA7	The output of the limiter which determine by equation OPT/6.0206. The format is 8.24 (-25dB)

4.14.5.101. 0x26C ADC DRC Expander Theshold High Setting Register(Default Value: 0x00000BA0)

Offset: 0x26C			Register Name: AC_ADC_DRC_HET
Bit	R/W	Default/Hex	Description
15:0	R/W	0x0BA0	The expander threshold setting, which set by the equation that ETin = -ET/6.0206, The format is 8.24. (-70dB)

4.14.5.102. 0x270 ADC DRC Expander Theshold Low Setting Register(Default Value: 0x00007291)

Offset: 0x270			Register Name: AC_ADC_DRC_LET
Bit	R/W	Default/Hex	Description
15:0	R/W	0x7291	The expander threshold setting, which set by the equation that ETin = -ET/6.0206, The format is 8.24. (-70dB)

4.14.5.103. 0x274 ADC DRC Expander Slope High Setting Register(Default Value: 0x00000500)

Offset: 0x274			Register Name: AC_ADC_DRC_HKE
Bit R/W Default/Hex		Default/Hex	Description
15:14	/	/	/

			The slope of the expander which determine by the equation that $Ke = 1/R$,
13:0	R/W	0x0500	there, R is the ratio of the expander, which always is interger and the ke must
			larger than 50. The format is 8.24. (1:5)

4.14.5.104. 0x278 ADC DRC Expander Slope Low Setting Register(Default Value: 0x00000000)

Offset: 0x278			Register Name: AC_ADC_DRC_LKE
Bit	R/W	Default/Hex	Description
15:0	R/W	0x0000	The slope of the expander which determine by the equation that $Ke = 1/R$, there, R is the ratio of the expander, which always is interger and the ke must larger than 50. The format is 8.24. (1:5)

4.14.5.105. 0x27C ADC DRC Expander High Output at Expander Threshold(Default Value: 0xF45F)

Offset: 0x27C			Register Name: AC_ADC_DRC_HOPE
Bit	R/W	Default/Hex	Description
15:0	R/W	0xF45F	The output of the expander which determine by equation OPE/6.0206. The format is 8.24 (-70dB)

4.14.5.106. 0x280 ADC DRC Expander Low Output at Expander Threshold(Default Value: 0x00008D6E)

Offset: 0x280			Register Name: AC_ADC_DRC_LOPE
Bit	R/W	Default/Hex	Description
15:0	R/W	0x8D6E	The output of the expander which determine by equation OPE/6.0206. The format is 8.24 (-70dB)

4.14.5.107. 0x284 ADC DRC Linear Slope High Setting Register(Default Value: 0x00000100)

Offset: 0x284			Register Name: AC_ADC_DRC_HKN
Bit	R/W	Default/Hex	Description
15:14	/	/	/
13:0	R/W	0x0100	The slope of the linear which determine by the equation that $Kn = 1/R$, there, R is the ratio of the linear, which always is interger. The format is 8.24. (1:1)

4.14.5.108. 0x288 ADC DRC Linear Slope Low Setting Register(Default Value: 0x00000000)

Offset: 0x288			Register Name: AC_ADC_DRC_LKN
Bit	R/W	Default/Hex	Description
15:0	R/W	0x0000	The slope of the linear which determine by the equation that $Kn = 1/R$, there,
			R is the ratio of the linear, which always is interger. The format is 8.24. (1:1)

4.14.5.109. 0x28C ADC DRC Smooth filter Gain High Attack Time Coef Register(Default Value: 0x00000002)

Offset: 0x28C	Register Name: AC_ADC_DRC_SFHAT
---------------	---------------------------------

Bit	R/W	Default/Hex	Description
15:11	/	/	/
10:0	R/W	0x0002	The smooth filter attack time parameter setting, which determine by the equation that AT = 1-exp(-2.2Ts/tr). The format is 3.24. (5ms)

4.14.5.110. 0x290 ADC DRC Smooth filter Gain Low Attack Time Coef Register(Default Value: 0x00005600)

Offset: 0x2	90		Register Name: AC_ADC_DRC_SFLAT
Bit	R/W	Default/Hex	Description
15:0	R/W	0x5600	The smooth filter attack time parameter setting, which determine by the equation that AT = 1-exp(-2.2Ts/tr). The format is 3.24. (5ms)

4.14.5.111. 0x294 ADC DRC Smooth filter Gain High Release Time Coef Register(Default Value: 0x00000000)

Offset: 0x294			Register Name: AC_ADC_DRC_SFHRT
Bit	R/W	Default/Hex	Description
15:11	/	/	/
10:0	R/W	0x0000	The gain smooth filter release time parameter setting, which determine by the equation that RT = 1-exp(-2.2Ts/tr). The format is 3.24. (200ms)

4.14.5.112. 0x298 ADC DRC Smooth filter Gain Low Release Time Coef Register(Default Value: 0x00000F04)

Offset: 0x298			Register Name: AC_ADC_DRC_SFLRT
Bit	R/W	Default/Hex	Description
15.0 D/V	R/W	0,0504	The gain smooth filter release time parameter setting, which determine by
15:0	K/VV	0x0F04	the equation that RT = 1-exp(-2.2Ts/tr). The format is 3.24. (200ms)

4.14.5.113. 0x29C ADC DRC MAX Gain High Setting Register(Default Value: 0x0000FE56)

Offset: 0x2	9C		Register Name: AC_ADC_DRC_MXGHS
Bit	R/W	Default/Hex	Description
15:0	R/W	0xFE56	The max gain setting which determine by equation MXG/6.0206. The format is 8.24 and must -20dB <mxg< (-10db)<="" 30db="" td=""></mxg<>

4.14.5.114. 0x2A0 ADC DRC MAX Gain Low Setting Register(Default Value: 0x0000CB0F)

Offset: 0x2A0			Register Name: AC_ADC_DRC_MXGLS
Bit	R/W	Default/Hex	Description
15:0	R/W	0xCB0F	The max gain setting which determine by equation MXG/6.0206. The format is 8.24 and must -20dB <mxg (-10db)<="" 30db="" <="" td=""></mxg>

4.14.5.115. 0x2A4 ADC DRC MIN Gain High Setting Register(Default Value: 0x0000F95B)

Offset: 0x2A4			Register Name: AC_ADC_DRC_MNGHS
Bit	R/W	Default/Hex	Description

15:0	R/W	0xF95B	The min gain setting which determine by equation MXG/6.0206. The format
15.0	N/ VV	UXF33B	is 8.24 and must -60dB ≤MNG ≤ -30dB (-40dB)

4.14.5.116. 0x2A8 ADC DRC MIN Gain Low Setting Register(Default Value: 0x00002C3F)

Offset: 0x2	A8		Register Name: AC_ADC_DRC_MNGLS
Bit	R/W	Default/Hex	Description
15:0	R/W	0x2C3F	The min gain setting which determine by equation MNG/6.0206. The format is 8.24 and must -60dB \leq MNG \leq -30dB (-40dB)

4.14.5.117. 0x2AC ADC DAP Expander Smooth Time High Coef Register(Default Value: 0x00000000)

Offset: 0x2AC			Register Name: AC_ADC_DRC_EPSHC
Bit	R/W	Default/Hex	Description
11:0	R/W	0x0000	The gain smooth filter release and attack time parameter setting in expander region, which determine by the equation that RT = 1-exp(-2.2Ts/tr). The format is 3.24. (30ms)

4.14.5.118. 0x2B0 ADC DRC Expander Smooth Time Low Coef Register (Default Value: 0x0000640C)

Offset: 0x2	.B0		Register Name: AC_ADC_DRC_EPSLC
Bit	R/W	Default/Hex	Description
15:0	R/W	0x640C	The gain smooth filter release and attack time parameter setting in expander region, which determine by the equation that RT = 1-exp(-2.2Ts/tr). The format is 3.24. (30ms)

4.14.5.119. 0x2B8 ADC DRC HPF Gain High(Default Value: 0x00000100)

Offset: 0x2B8			Register Name: AC_ADC_DRC_HPFHGAIN
Bit	R/W	Default/Hex	Description
15:11	/	/	
10:0	R/W	0x100	The gain of the hpf coefficient setting which format is 3.24.(gain = 1)

4.14.5.120. 0x2BC ADC DRC HPF Gain Low(Default Value: 0x00000000)

Offset: 0x2BC			Register Name: AC_ADC_DRC_HPFLGAIN
Bit	R/W	Default/Hex	Description
15:0	R/W	0x0000	The gain of the hpf coefficient setting which format is 3.24.(gain = 1)

4.14.5.121. AC Parameter Configuration Register(Default Value: 0x10000000)

Address: 0x400			Register Name: AC_PR_CFG
Bit	R/W	Default/Hex	Description
31:29	/	/	/

28	R/W	0x1	AC_PR_RST
			AC_PR Reset
			0: Assert
			1: De-assert
27:25	/	/	/
24	R/W	0x0	AC_PR_RW
			AC_PR Read Or Write
			0: read
			1: write
23:21	/	/	1
20:16	R/W	0x0	AC_PR_ADDR
			AC_PR Address [4:0]
15:8	R/W	0x0	ADDA_PR_WDAT
			ADDA_PR Write Data [7:0]
7:0	R/W	0x0	ADDA_PR_RDAT
			ADDA_PR Read Data [7:0]

Note: The address of this Register is 0x01c23000, using this register to configure the AC_PR register.

Reset: Reset signal; ADDR[4:0]: AC_PR Address; W/R: Write/Read Enable;

WDAT[7:0]: Write Data; RDAT[7:0]: Read Data.

4.14.5.122. 0x00 Headphone Volume Control(Default Value: 0x00)

Offset:0x00)		Register Name: AC_PAG_HPV
Bit	R/W	Default/Hex	Description
7	/	/	
6	/	/	
5:0	R/W	0x0	HPVOL
			Headphone Volume Control, (HPVOL): Total 64 level, from 0dB to -62dB,
			1dB/step, mute when 000000

4.14.5.123. 0x01 Left Output Mixer Source Select Control Register(Default Value: 0x00)

Offset:0x01			Register Name: AC_LOMIXSC
Bit	R/W	Default/Hex	Description
7	/	/	/
6:0	R/W	0x0	LMIXMUTE

Left Output Mixer Mute Control
0-Mute, 1-Not Mute
Bit 6: MIC1 Boost Stage
Bit 5: MIC2 Boost Stage
Bit 4: /
Bit 3: /
Bit 2: LINEINL
Bit 1: Left Channel DAC
Bit 0: Right Channel DAC

4.14.5.124. 0x02 Right Output Mixer Source Select Control Register(Default Value: 0x00)

Offset:0:	Offset:0x02		Register Name: AC_ROMIXSC
Bit	R/W	Default/Hex	Description
7	/	/	
6:0	R/W	0x0	RMIXMUTE
			Right Output Mixer Mute Control
			0-Mute, 1-Not Mute
			Bit 6: MIC1 Boost Stage
			Bit 5: MIC2 Boost Stage
			Bit 4: /
			Bit 3: /
			Bit 2: LINEINR
			Bit 1: Right Channel DAC
			Bit 0: Left Channel DAC

4.14.5.125. 0x03 DAC Analog Enable and PA Source Control Register(Default Value: 0x00)

Offset:0x03			Register Name: DAC_PA_SRC
Bit	R/W	Default/Hex	Description
7	R/W	0x0	DACAREN
			Internal Analog Right channel DAC Enable
			0:Disable; 1:Enable
6	R/W	0x0	DACALEN
			Internal Analog Left channel DAC Enable
			0:Disable; 1:Enable
5	R/W	0x0	RMIXEN
			Right Analog Output Mixer Enable
			0:Disable; 1:Enable
4	R/W	0x0	LMIXEN
			Left Analog Output Mixer Enable
			0:Disable; 1:Enable
			RHPPAMUTE
3	R/W	0x0	All input source to Right Headphone PA mute, including Right Output mixer
3	N/ VV	UXU	and Internal Right channel DAC:
			0:Mute, 1: Not mute
			LHPPAMUTE
2	R/W	0x0	All input source to Left Headphone PA mute, including Left Output mixer
	n/ vv		and Internal Left channel DAC:
			0:Mute, 1: Not mute
1	R/W	0x0	RHPIS

			Right Headphone Power Amplifier (PA) Input Source Select 0: Right channel DAC 1: Right Analog Mixer
0	R/W	0x0	LHPIS Left Headphone Power Amplifier (PA) Input Source Select 0: Left channel DAC 1: Left Analog Mixer

4.14.5.126. 0x05 Linein Gain Control Register(Default Value: 0x33)

Offset:0x05			Register Name: LINEIN_GCTR
Bit	R/W	Default/Hex	Description
7	/	/	/
6:4	R/W	0x3	LINEING, (volln) LINEINL/R to L/R output mixer Gain Control From -4.5dB to 6dB, 1.5dB/step, default is 0dB
3	/	/	/
2:0	R/W	0x3	/

4.14.5.127. 0x06 MIC1 And MIC2 Gain Control Register(Default Value: 0x33)

Offset:0x	Offset:0x06		Register Name: MIC_GCTR	
Bit	R/W	Default/Hex	Description	
7	/	/	/	
6:4	R/W	0x3	MIC1_GAIN	
			MIC1 BOOST stage to L or R output mixer Gain Control	
			From -4.5dB to 6dB, 1.5dB/step, default is 0dB	
3	/	/	1	
2:0	R/W	0x3	MIC2G, (volm2)	
			MIC2 BOOST stage to L or R output mixer Gain Control	
			From -4.5dB to 6dB, 1.5dB/step, default is 0dB	

4.14.5.128. 0x07 PA Enable and HP Control Register(Default Value: 0x14)

Offset:0x0	Offset:0x07		Register Name: HP_CTRL
Bit	R/W	Default/Hex	Description
7	R/W	0x0	HPPAEN
			Right & Left Headphone Power Amplifier Enable
			0-disable
			1-enable
6:5	R/W	0x0	HPCOM_FC, HPCOM function control
			00: HPCOM off & output is floating
			01: HPL inverting output
			10: HPR inverting output
			11: Direct driver for HPL & HPR
			HPCOM output protection enable when it is set as Direct driver for HPL/R,
4	R/W	0x1	(COMPTEN)
4	IN/ VV		0: protection disable
			1: protection enable

			COS_SLOPE_CTRL
3:2	R/W	0x1	COS slope time Control for Anti-pop
			00:131ms; 01: 262ms; 10: 393ms; 11:524ms
			LTRNMUTE, (hprisinvhpl)
1	R/W	0x0	Left HPOUT Negative To Right HPOUT Mute
			0: Mute, 1: Not mute
			RTLNMUTE, (hplisinvhpr)
0	R/W	0x0	Right HPOUT Negative To Left HPOUT Mute
			0: Mute, 1: Not mute

4.14.5.129. 0x09 Lineout Volume Control Register(Default Value: 0x40)

Offset:0x09			Register Name: LINEOUT_VOLC
Bit	R/W	Default/Hex	Description
7:3	R/W	0x0	LINEOUTVOL Line-out Volume Control, Total 31 level, from OdB to -48dB, 1.5dB/step,
			mute when 00000 & 00001
2:0	R/W	0x4	1

4.14.5.130. 0x0A MIC2 Boost and Lineout Enable Control Register(Default Value: 0x40)

Offset:0	Offset:0x0A		Register Name: MIC2_LINEOUT_CTRL
Bit	R/W	Default/Hex	Description
7	R/W	0x0	MIC2AMPEN
			MIC2 Boost AMP Enable
			0-Disable; 1-Enable
6:4	R/W	0x4	MIC2BOOST
			MIC2 Boost AMP Gain Control
			0dB when 000, 24dB to 42dB when 001 to 111, 3dB/step, default is 33dB
3	R/W	0x0	Line-out Left Enable
			0-disable
			1-enable
2	R/W	0x0	Line-out Right Enable
			0-disable
			1-enable
1	R/W	0x0	Left line-out source select
			0-left output mixer
			1-left output mixer + right output mixer
0	R/W	0x0	Right line-out source select
			0-right output mixer
			1-left line-out, for differential output

4.14.5.131. 0x0B BIAS and MIC1 boost(Default Value: 0x04)

Offset:0x0B			Register Name: BIAS_MIC_CTRL
Bit	R/W	Default/Hex	Description
7	R/W	0x0	HMICBIASEN
			Headset Microphone Bias enable
			0: disable, 1: enable

6	R/W	0x0	MMICBIASEN
			Master Microphone Bias enable
			0: disable, 1: enable
5	R/W	0x0	HMICADCEN
			Headset MIC Bias Current sensor & ADC enable
			0: Current sensor & ADC disabled
			1: Current sensor & ADC enabled
4	R/W	0x1	MIC2 Source select
			0: MICIN3 1: MICIN2
3	R/W	0	MIC1AMPEN
			MIC1 Boost AMP Enable
			0-Disable; 1-Enable
2:0	R/W	0x4	MIC1BOOST
			MIC1 Boost AMP Gain Control
			0dB when 000, 24dB to 42dB when 001 to 111, 3dB/step, default is 33dB

4.14.5.132. 0x0C Left ADC Mixer Mute Control(Default Value: 0x00)

Offset:0x0C			Register Name: LADC_MIX_MUTE
Bit	R/W	Default/Hex	Description
7	/	/	/
			LADCMIXMUTE
			Left ADC Mixer Mute Control:
		0x0	0: Mute; 1:On
	R/W		Bit 6: MIC1 Boost stage
6:0			Bit 5: MIC2 Boost stage
0.0			Bit 4: /
			Bit 3: /
			Bit 2: LINEINL
			Bit 1: Left output mixer
			Bit 0: Right output mixer

4.14.5.133. 0x0D Right ADC Mixer Mute Control(Default Value: 0x00)

Offset:0	Offset:0x0D		Register Name: RADC_MIX_MUTE
Bit	R/W	Default/Hex	Description
7	/	/	
			RADCMIXMUTE
			Right ADC Mixer Mute Control:
			0: Mute; 1:On
			Bit 6: MIC1 Boost stage
6:0	R/W	0x0	Bit 5: MIC2 Boost stage
0.0	IX/ VV	UXU	Bit 4: /
			Bit 3: /
			Bit 2: LINEINR
			Bit 1: Right output mixer
			Bit 0: Left output mixer

4.14.5.134. 0x0E PA Anti-pop time Control(Default Value: 0x04)

Offset:0x0	E		Register Name: PA_ANTI_POP_CTRL
Bit	R/W	Default/Hex	Description
7:3	R/W	0x0	/
2:0	R/W	0x4	PA_ANTI_POP_CTRL, (slopelengthsel) PA Anti-pop time Control 000: 131ms; 001: 262ms; 010: 393ms; 011: 524ms; 100: 655ms; 101: 786ms; 110: 786ms; 111: 1048ms;

4.14.5.135. 0x0F ADC Analog Control Register(Default Value: 0x03)

Offset:0x0F			Register Name: AC_ADC_CTRL
Bit	R/W	Default/Hex	Description
7	R/W	0x0	ADCREN
			ADC Right Channel Enable
			0-Disable; 1-Enable
6	R/W	0x0	ADCLEN
			ADC Left Channel Enable
			0-Disable; 1-Enable
5:3	R/W	0x0	
2:0	R/W	0x3	ADCG
			ADC Input Gain Control
			From -4.5dB to 6dB, 1.5dB/step default is 0dB

4.14.5.136. 0x10 OPDRV/OPCOM/OPADC Control(Default Value: 0x55)

Offset:0x10			Register Name: OPADC_CTRL
Bit	R/W	Default/Hex	Description
7.6	D ///	01	OPDRV_OPCOM_CUR.
7:6	R/W	0x1	OPDRV/OPCOM output stage current setting
F. 4	D ///	0x1	OPADC1_BIAS_CUR.
5:4	R/W		OPADC1 Bias Current Select
3:2	D //A/	0x1	OPADC2_BIAS_CUR.
3:2	R/W		OPADC2 Bias Current Select
1:0	D //A/	0x1	OPAAF_BIAS_CUR.
	R/W		OPAAF in ADC Bias Current Select

4.14.5.137. 0x11 OPMIC、OPVR and OPADC Control(Default Value: 0x55)

Offset:0x11			Register Name: OPMIC_CTRL
Bit	R/W	Default/Hex	Description
7.6	D /\A/	01	OPMIC_BIAS_CUR
7:6	7:6 R/W	0x1	OPMIC Bias Current Control
	R/W	0x1	OPVR_BIAS_CUR.
			OPVR Bias Current Control
5:4			Especially, bit 5 can also control HPCOMFB:
			=0, HPCOMFB pin can be used to PA when R07_[6:5] is not 11;
			=1, HPCOMFB pin always can not be used to PA

3:2	R/W	0x1	OPDAC_BIAS_CUR. OPDAC Bias Current Control
1:0	R/W	0x1	OPMIX_BIAS_CUR. OPMIX/OPLPF/OPDRV/OPCOM Bias Current Control

4.14.5.138. 0x12 ZERO CROSS Control(Default Value: 0x42)

Offset:0x12			Register Name: ZERO_CROSS_CTRL
Bit	R/W	Default/Hex	Description
7	R/W	0x0	function enable for master volume change at zero cross over
,	IX/ VV	UXU	0: disable; 1: enable
6	R/W	0x1	Timeout control for master volume change at zero cross over
O	N/ VV	OXI	0: 32ms; 1: 64ms
			PTDBS
			HPCOM protect de-bounce time setting
5:4	R/W	0x0	00: 2-3ms; 01: 4-6ms; 10: 8-12ms; 11: 16-24ms
			at the same time, bit 17 is used to control the AVCCPORFLAG, write 1 to this
			bit, flag will be clear, and the calibration is done again
			PA_SLOPE_SELECT
	D /\A/	0.40	PA slope select cosine or ramp
3	R/W	0x0	0: select cosine
			1: select ramp
			USB_BIAS_CUR.
2:0	R/W	0x2	USB bias current tuning
			From 23uA to 30uA, Default is 25uA

4.14.5.139. 0x13 ADC Function Control(Default Value: 0xD6)

Offset:0x13			Register Name: ADC_FUN_CTRL
Bit	R/W	Default/Hex	Description
7	D (M)	01	MMIC BIAS chopper enable
7	R/W	0x1	0: disable; 1:enable
6.5	D (\A)	0.72	MMIC BIAS chopper clock select
6:5	R/W	0x2	00: 250KHz; 01: 500KHz; 10: 1MHz; 11: 2MHz
			DITHER
4	R/W	0x1	ADC dither on/off control
			0: dither off; 1: dither on
			DITHER_CLK_SELECT
			ADC dither clock select
3:2	R/W	0x1	00: ADC FS * (8/9), about 43KHz when FS=48KHz
5.2	IV VV	UXI	01: ADC FS * (16/15), about 51KHz when FS=48KHz
			10: ADC FS * (4/3), about 64KHz when FS=48KHz
			11: ADC FS * (16/9), about 85KHz when FS=48KHz
			BIHE_CTRL, BIHE control
1:0	R/W	0x2	00: no BIHE
			01: BIHE=7.5 HOSC
			10: BIHE=11.5 HOSC
			11: BIHE=15.5 HOSC

4.14.5.140. 0x14 Bias & DA16 Calibration Control Register(Default Value: 0x00)

Offset:0x14			Register Name: CALIBRATION_CTRL
bit	R/W	Default/Hex	Description
			PA_SPEED_SELECT
7	R/W	0x0	PA setup speed control (for testing)
			0: slow; 1: fast
			CURRENT_TEST_SELECT
6	R/W	0x0	Internal current sink test enable (from LINEIN pin)
			0:Normal; 1: For Debug
5	R/W	0x0	
4	R/W	0x0	BIAS and DA16 calibration clock select
4	N/ VV	UXU	0: 1KHz; 1: 500Hz
3	R/W	0x0	BIAS calibration mode select
3	117 VV	0.00	0: average; 1: single
			BIAS and DA16 calibration control
2	R/W	0x0	Write 1 to this bit, the calibration will be doing again. Then this bit will be
			reset to zero automatically
			BIASCALIVERIFY
1	R/W	0x0	Bias Calibration Verify
			0: Calibration; 1: Register setting
			DA16CALIVERIFY
0	R/W	0x0	DA16 Calibration Verify
			0: Calibration; 1: Register setting

4.14.5.141. 0x15 DA16 Calibration Data(Default Value: 0x80)

Offset:0x15			Register Name: DA16CALI_DATA
Bit	R/W	Default/Hex	Description
7:0	R	0x80	DA16CALI DA16 Calibration Data

4.14.5.142. 0x17 Bias Calibration Data(Default Value: 0x20)

Offset:0x17			Register Name: DA16CALI_DATA
Bit	R/W	Default/Hex	Description
7:6	/	/	/
5:0	R	0x20	BIASCALI Bias Calibration Data, 6bit

4.14.5.143. 0x18 Bias Register Setting Data(Default Value: 0x20)

Offset:0x18			Register Name: DA16CALI_SET
Bit	R/W	Default/Hex	Description
7:6	/	/	
5:0	R/W	0.20	BIASVERIFY
5.0 K/ VV		0x20	Bias Register Setting Data, 6bit

4.15. Port Controller

The chip has 6 ports for multi-functional input/output pins. They are shown below:

- Port B(PB): 14 input/output port
- Port C(PC): 4 input/output port
- Port D(PD): 22 input/output port
- Port E(PE): 25 input/output port
- Port F(PF): 7 input/output port
- Port G(PG): 14 input/output port

For various system configurations, these ports can be easily configured by software. All these ports can be configured as GPIO if multiplexed functions are not used. The total 2 group external PIO interrupt sources are supported and interrupt mode can be configured by software.

4.15.1. Port Controller Register List

Module Name	Base Address
PIO	0x01C20800

Register Name	Offset	Description
Pn_CFG0	n*0x24+0x00	Port n Configure Register 0 (n from 1 to 6)
Pn_CFG1	n*0x24+0x04	Port n Configure Register 1 (n from 1 to 6)
Pn_CFG2	n*0x24+0x08	Port n Configure Register 2 (n from 1 to 6)
Pn_CFG3	n*0x24+0x0C	Port n Configure Register 3 (n from 1 to 6)
Pn_DAT	n*0x24+0x10	Port n Data Register (n from 1 to 6)
Pn_DRV0	n*0x24+0x14	Port n Multi-Driving Register 0 (n from 1 to 6)
Pn_DRV1	n*0x24+0x18	Port n Multi-Driving Register 1 (n from 1 to 6)
Pn_PUL0	n*0x24+0x1C	Port n Pull Register 0 (n from 1 to 6)
Pn_PUL1	n*0x24+0x20	Port n Pull Register 1 (n from 1 to 6)
Pn_INT_CFG0	0x200+n*0x20+0x00	PIO Interrrupt Configure Register 0
Pn _INT_CFG1	0x200+n*0x20+0x04	PIO Interrrupt Configure Register 1
Pn_INT_CFG2	0x200+n*0x20+0x08	PIO Interrrupt Configure Register 2
Pn_INT_CFG3	0x200+n*0x20+0x0C	PIO Interrrupt Configure Register 3
Pn_INT_CTL	0x200+n*0x20+0x10	PIO Interrupt Control Register
Pn _INT_STA	0x200+n*0x20+0x14	PIO Interrupt Status Register
Pn_INT_DEB	0x200+n*0x20+0x18	PIO Interrupt Debounce Register

4.15.2. Port Controller Register Description

4.15.2.1. PB Configure Register 0 (Default Value: 0x77777777)

Offset: 0x24			Register Name: PB_CFG0_REG	
Bit	R/W	Default/Hex	Description	
31	/	/	/	
			PB7_SELECT	
30:28	R/W	0x7	000: Input	001: Output

			010: TWI0 SDA	011: Reserved	
			100: Reserved	101: Reserved	
			110: PB EINT7	111: IO Disable	
27	/	/	/		
	,		PB6_SELECT		
			000: Input	001: Output	
			010: TWI0_SCK	011: Reserved	
			100: Reserved	101: Reserved	
26:24	R/W	0x7	110: PB EINT6	111: IO Disable	
23	/	/	/ / / / / / / / / / / / / / / / / / /	111. IO DISABle	
23	/	/	/ DDE_CELECT		
			PB5_SELECT	204 2 4	
			000: Input	001: Output	
			010: PWM1	011: Reserved	
			100: Reserved	101: Reserved	
22:20	R/W	0x7	110: PB_EINT5	111: IO Disable	
19	/	/	/		
			PB4_SELECT		
			000: Input	001: Output	
			010: PWM0	011: Reserved	
			100: Reserved	101: Reserved	
18:16	R/W	0x7	110: PB_EINT4	111: IO Disable	
15	/	/	/		
			PB3_SELECT		
			000: Input	001: Output	
			010: UART2_CTS	011: Reserved	
			100: Reserved	101: Reserved	
14:12	R/W	0x7	110: PB EINT3	111: IO Disable	
11	1	/			
		,	PB2_SELECT		
			000: Input	001: Output	
			010: UART2_RTS	011: Reserved	
			100: Reserved	101: Reserved	
10:8	R/W	0x7	110: PB_EINT2	111: IO Disable	
7	/	/	/	111.10 0130010	
,	/	/	PB1_SELECT		
			000: Input	001: Output	
			010: UART2_RX	011: Reserved	
			100: Reserved	101: Reserved	
6:4	R/W	0x7	110: PB EINT1	111: IO Disable	
3	/ N/ VV	UX /	110. PD_EINI1	TII. IO DISABIE	
3	/	/	/ DD0_C51.5CT		
			PB0_SELECT	004 : 0 : 1 : 1	
			000: Input	001: Output	
			010: UART2_TX	011: Reserved	
			100: Reserved	101: Reserved	
2:0	R/W	0x7	110: PB_EINT0	111: IO Disable	

4.15.2.2. PB Configure Register 1 (Default Value: 0x00777777)

Offset: 0x28			Register Name: PB_CFG1_REG
Bit	R/W	Default/Hex	Description
31:23	/	/	/
22:20	R/W	0x7	PB13_SELECT

			000: Input	001: Output	
			010: JTAG DI	011: Reserved	
			100: Reserved	101: Reserved	
			110: PB EINT13	111: IO Disable	
19	/	/	/		
			PB12_SELECT		
			000: Input	001: Output	
			010: JTAG DO	011: Reserved	
			100: Reserved	101: Reserved	
18:16	R/W	0x7	110: PB EINT12	111: IO Disable	
15	/	/	_		
			PB11_SELECT		
			000: Input	001: Output	
			010: JTAG_CK	011: Reserved	
			100: Reserved	101: Reserved	
14:12	R/W	0x7	110: PB EINT11	111: IO Disable	
11	/	/			
			PB10_SELECT		
			000: Input	001: Output	
			010: JTAG_MS	011: Reserved	
			100: Reserved	101: Reserved	
10:8	R/W	0x7	110: PB_EINT10	111: IO Disable	
7	/	/			
			PB9_SELECT		
			000: Input	001: Output	
			010: TWI1_SDA	011: UARTO_RX	
			100: Reserved	101: Reserved	
6:4	R/W	0x7	110: PB_EINT9	111: IO Disable	
3	/	/	/		
			PB8_SELECT		
			000: Input	001: Output	
			010: TWI1_SCK	011: UARTO_TX	
			100: Reserved	101: Reserved	
2:0	R/W	0x7	110: PB_EINT8	111: IO Disable	

4.15.2.3. PB Configure Register 2 (Default Value: 0x00000000)

Offset: 0x2C			Register Name: PB_CFG2 _REG
Bit	R/W	Default/Hex	Description
31:0	/	/	

4.15.2.4. PB Configure Register 3 (Default Value: 0x00000000)

Offset: 0x30			Register Name: PB_CFG3_REG
Bit	R/W	Default/Hex	Description
31:0	/	/	

4.15.2.5. PB Data Register (Default Value: 0x00000000)

Offset: 0	x34		Register Name: PB_DATA_REG
Bit	R/W	Default/Hex	Description
31:14	/	/	1
			PB_DAT
			If the port is configured as input, the corresponding bit is the pin state. If
			the port is configured as output, the pin state is the same as the
			corresponding bit. The read bit value is the value setup by software. If the
13:0	R/W	0x0	port is configured as functional pin, the undefined value will be read.

4.15.2.6. PB Multi-Driving Register 0 (Default Value: 0x05555555)

Offset: 0x38			Register Name: PB_DRV0_REG
Bit	R/W	Default/Hex	Description
31:28	/	/	1
			PB_DRV
			PB[n] Multi-Driving Select (n = 0~13)
[2i+1:2i]			00: Level 0 01: Level 1
(i=0~13)	R/W	0x1	10: Level 2 11: Level 3

4.15.2.7. PB Multi-Driving Register 1 (Default Value: 0x00000000)

Offset: 0x3C			Register Name: PB_DRV1_REG
Bit	R/W	Default/Hex	Description
31:0	/	/	/

4.15.2.8. PB PULL Register 0 (Default Value: 0x00000000)

Offset: 0x40		Register Name: PB_PULLO_R	REG	
Bit	R/W	Default/Hex	Description	
31:28	/	/	/	
			PB_PULL	
			PB[n] Pull-up/down Select (n = 0~13)	
[2i+1:2i]			00: Pull-up/down disable	01: Pull-up
(i=0~13)	R/W	0x0	10: Pull-down	11: Reserved

4.15.2.9. PB PULL Register 1 (Default Value: 0x00000000)

Offset: 0x44			Register Name: PB_PULL1_REG
Bit	R/W	Default/Hex	Description
31:0	/	/	

4.15.2.10. PC Configure Register 0 (Default Value: 0x77777777)

Offset: 0x48			Register Name: PC_CFG0	REG	
Bit	R/W	Default/Hex	Description		
31	/	/	/		
			PC7_SELECT		
			000: Reserved	001: Reserved	
			010: SDC2_D4	011: Reserved	
			100: Reserved	101: Reserved	
30:28	R/W	0x7	110: Reserved	111: IO Disable	
27	1	/	/		
		-	PC6 SELECT		
			000: Input	001: Output	
			010: SDC2_D3	011: Reserved	
			100: Reserved	101: Reserved	
26:24	R/W	0x7	110: Reserved	111: IO Disable	
23	/	/	/		
			PC5_SELECT		
			000: Input	001: Output	
			010: SDC2_D2	011: Reserved	
			100: Reserved	101: Reserved	
22:20	R/W	0x7	110: Reserved	111: IO Disable	
19	/	/	/		
			PC4_SELECT		
			000: Input	001: Output	
			010: SDC2_D1	011: Reserved	
			100: Reserved	101: Reserved	
18:16	R/W	0x7	110: Reserved	111: IO Disable	
15	/	/	/		
			PC3_SELECT		
			000: Input	001: Output	
			010: SDC2_D0	011: SPI0_MOSI	
			100: Reserved	101: Reserved	
14:12	R/W	0x7	110: Reserved	111: IO Disable	
11	/	/	/		
			PC2_SELECT		
			000: Input	001: Output	
			010: SDC2_RST	011: SPI0_CS	
			100: Reserved	101: Reserved	
10:8	R/W	0x7	110: Reserved	111: IO Disable	
7	/	/	/		
			PC1_SELECT		
			000: Input	001: Output	
			010: SDC2_CMD	011: SPI0_CLK	
			100: Reserved	101: Reserved	
6:4	R/W	0x7	110: Reserved	111: IO Disable	
3	/	/	/		
			PC0_SELECT		
			000: Input	001: Output	
			010: SDC2_CLK	011: SPI0_MISO	
			100: Reserved	101: Reserved	
2:0	R/W	0x7	110: Reserved	111: IO Disable	

4.15.2.11. PC Configure Register 1 (Default Value: 0x00000777)

Offset: 0	x4C		Register Name: PC_CFG1_REG	
Bit	R/W	Default/Hex	Description	
31:11	/	/	/	
			PC10_SELECT	
			000: Reserved	001: Reserved
			010: SDC2_D7	011: Reserved
			100: Reserved	101: Reserved
10:8	R/W	0x7	110: Reserved	111: IO Disable
7	/	/	/	
			PC9_SELECT	
			000: Reserved	001: Reserved
			010: SDC2_D6	011: Reserved
			100: Reserved	101: Reserved
6:4	R/W	0x7	110: Reserved	111: IO Disable
3	/	/	/	
			PC8_SELECT	
			000: Reserved	001: Reserved
			010: SDC2_D5	011: Reserved
			100: Reserved	101: Reserved
2:0	R/W	0x7	110: Reserved	111: IO Disable

4.15.2.12. PC Configure Register 2 (Default Value: 0x00000000)

Offset: 0x5	Offset: 0x50		Register Name: PC_CFG2_REG
Bit R/W Default/Hex		Default/Hex	Description
31:0	/	/	/

4.15.2.13. PC Configure Register 3 (Default Value: 0x00000000)

Offset: 0x54			Register Name: PC_CFG3_REG
Bit	R/W	Default/Hex	Description
31:0	/	/	/

4.15.2.14. PC Data Register (Default Value: 0x00000000)

Offset: 0x58			Register Name: PC_DATA_REG	
Bit	R/W	Default/Hex	Description	
31:11	/	/	/	
			PC_DAT	
			If the port is configured as input, the corresponding bit is the pin state. If the port is configured as output, the pin state is the same as the corresponding bit. The read bit value is the value setup by software. If the	
10:0	R/W	0x0	port is configured as functional pin, the undefined value will be read.	

4.15.2.15. PC Multi-Driving Register 0 (Default Value: 0x00155555)

Offset: 0x5C		Register Name: PC_DRV0_RE	G	
Bit	R/W	Default/Hex	Description	
31:22	/	/	/	
			PC_DRV	
			$PC[n]$ Multi-Driving SELECT (n = $0^{\sim}10$)	
[2i+1:2i]			00: Level 0	01: Level 1
(i=0~10)	R/W	0x1	10: Level 2	11: Level 3

4.15.2.16. PC Multi-Driving Register 1 (Default Value: 0x00000000)

Offset: 0	Offset: 0x60		Register Name: PC_DRV1_REG
Bit	R/W	Default/Hex	Description
31:0	/	/	/

4.15.2.17. PC PULL Register 0 (Default Value: 0x00000000)

Offset: 0x64		Register Name: PC_PULLO_R	EG	
Bit	R/W	Default/Hex	Description	
31:22	/	/	/	
			PC_PULL	
			PC[n] Pull-up/down Select (n = 0~10)	
[2i+1:2i]			00: Pull-up/down disable	01: Pull-up
(i=0~10)	R/W	0x0	10: Pull-down	11: Reserved

4.15.2.18. PC PULL Register 1 (Default Value: 0x00000000)

Offset: 0x68			Register Name: PC_PULL1_REG
Bit	R/W	Default/Hex	Description
31:0	/	/	1

4.15.2.19. PD Configure Register 0 (Default Value: 0x77777777)

Offset: 0x	Offset: 0x6C		Register Name: PD_CFG0	_REG	
Bit	R/W	Default/Hex	Description		
31	/	/	/		
			PD7_SELECT		
			000:Input	001:Output	
			010: LCD_D11	011:Reserved	
			100: RGMII_TXD3/MII_TXI	D3/RMII_NULL	101:Reserved
30:28	R/W	0x7	110:Reserved	111:IO Disable	
27	/	/	Reserved		
			PD6_SELECT		
			000:Input	001:Output	
26:24	R/W	0x7	010: LCD_D10	011:Reserved	

			100: RGMII_NULL/MII_RXERR/RMII_RXER	101:Reserved
			110:Reserved 111:IO Disable	
23	/	/	/	
			PD5_SELECT	
			000:Input 001:Output	
			010: LCD_D7 011:Reserved	
			100: RGMII_RXCTL/MII_RXDV/RMII_NULL	101:Reserved
22:20	R/W	0x7	110:Reserved 111:IO Disable	
19	/	/	/	
			PD4_SELECT	
			000:Input 001:Output	
			010: LCD_D6 011:Reserved	
			100: RGMII_RXCK/MII_RXCK/RMII_NULL	101:Reserved
18:16	R/W	0x7	110:Reserved 111:IO Disable	
15	/	/	/	
			PD3_SELECT	
			000:Input 001:Output	
			010: LCD_D5 011:Reserved	
			100: RGMII_RXD0/MII_RXD0/RMII_RXD0	101:Reserved
14:12	R/W	0x7	110:Reserved 111:IO Disable	
11	/	/	/	
			PD2_SELECT	
			000:Input 001:Output	
			010: LCD_D4 011:Reserved	
			100: RGMII_RXD1/MII_RXD1/RMII_RXD1	101:Reserved
10:8	R/W	0x7	110:Reserved 111:IO Disable	
7	/	/	/	
			PD1_SELECT	
			000:Input 001:Output	
			010: LCD_D3 011:Reserved	
			100: RGMII_RXD2/MII_RXD2/RMII_NULL	101:Reserved
6:4	R/W	0x7	110:Reserved 111:IO Disable	
3	/	/	/	
			PD0_SELECT	
			000:Input 001:Output	
			010: LCD_D2 011:Reserved	
			100: RGMII_RXD3/ MII_RXD3/ RMII_NULL	101:Reserved
2:0	R/W	0x7	110:Reserved 111:IO Disable	

4.15.2.20. PD Configure Register 1 (Default Value: 0x77777777)

Offset: 0	Offset: 0x70		Register Name: PD_	CFG1_REG	
Bit	R/W	Default/Hex	Description		
31	/	/	/		
			PD15_SELECT		
			000:Input	001:Output	
			010: LCD_D21	011: LVDS_VN1	
			100: RGMII_CLKIN/	MII_COL/RMII_NULL	101:Reserved
30:28	R/W	0x7	110:Reserved	111:IO Disable	
27	/	/	/		
			PD14_SELECT		
26:24	R/W	0x7	000:Input	001:Output	

			010: LCD_D20	
			100: RGMII_NULL/MII_TXERR/RMII_NULL	101:Reserved
			110:Reserved 111:IO Disable	
23	/	/	/	
			PD13_SELECT	
			000:Input 001:Output	
			010: LCD_D19	
			100: RGMII_TXCTL/MII_TXEN/RMII_TXEN	101:Reserved
22:20	R/W	0x7	110:Reserved 111:IO Disable	
19	/	/	/	
			PD12_SELECT	
			000:Input 001:Output	
			010: LCD_D18	
			100: RGMII_TXCK/MII_TXCK/RMII_TXCK	101:Reserved
18:16	R/W	0x7	110:Reserved 111:IO Disable	
15	/	/	/	
			PD11_SELECT	
			000:Input 001:Output	
			010: LCD_D15 011:Reserved	
			100: RGMII_NULL/MII_CRS_DV/RMII_CRS_DV	101:Reserved
14:12	R/W	0x7	110:Reserved 111:IO Disable	
11	/	/	/	
			PD10_SELECT	
			000:Input 001:Output	
			010: LCD_D14 011:Reserved	
			100: RGMII_TXD0/MII_TXD0/RMII_TXD0	101:Reserved
10:8	R/W	0x7	110:Reserved 111:IO Disable	
7	/	/	1	
			PD9_SELECT	
			000:Input 001:Output	
			010: LCD_D13 011:Reserved	
			100: RGMII_TXD1/MII_TXD1/RMII_TXD1	101:Reserved
6:4	R/W	0x7	110:Reserved 111:IO Disable	
3	/	/	/	
			PD8_SELECT	
			000:Input 001:Output	
			010: LCD_D12 011:Reserved	
			100: RGMII_TXD2/MII_TXD2/RMII_NULL	101:Reserved
2:0	R/W	0x7	110:Reserved 111:IO Disable	

4.15.2.21. PD Configure Register 2 (Default Value: 0x00777777)

Offset: 0x	Offset: 0x74		Register Name: PD_CFG2_REG		
Bit	R/W	Default/Hex	Description		
31:23	/	/	/		
			PD21_SELECT		
			000: Input	001: Output	
			010: LCD_VSYNC	011: LVDS_VN3	
			100: Reserved	101: Reserved	
22:20	R/W	0x7	110: Reserved	111: IO Disable	
19	/	/	Reserved		
18:16	R/W	0x7	PD20_SELECT		

			000: Input	001: Output	
			010: LCD_HSYNC	011: LVDS_VP3	
			100: Reserved	101: Reserved	
			110: Reserved	111: IO Disable	
15	/	/	/		
			PD19_SELECT		
			000: Input	001: Output	
			010: LCD_DE	011: LVDS_VNC	
			100: Reserved	101: Reserved	
14:12	R/W	0x7	110: Reserved	111: IO Disable	
11	/	/	/		
			PD18_SELECT		
			000: Input	001: Output	
			010: LCD_CLK	011: LVDS_VPC	
			100: Reserved	101: Reserved	
10:8	R/W	0x7	110: Reserved	111: IO Disable	
7	/	/	/		
			PD17_SELECT		
			000: Input	001: Output	
			010: LCD_D23	011: LVDS_VN2	
			100: MDIO	101: Reserved	
6:4	R/W	0x7	110: Reserved	111: IO Disable	
3	/	/	/		
			PD16_SELECT		
			000: Input	001: Output	
			010: LCD_D22	011: LVDS_VP2	
			100: MDC	101: Reserved	
2:0	R/W	0x7	110: Reserved	111: IO Disable	

4.15.2.22. PD Configure Register 3 (Default Value: 0x00000000)

Offset: 0x7	Offset: 0x78		Register Name: PD_CFG3_REG
Bit	R/W	Default/Hex	Description
31:0	/	/	/

4.15.2.23. PD Data Register (Default Value: 0x00000000)

Offset: 0x7C Register Name: PD_DATA_REG		Register Name: PD_DATA_REG		
Bit	R/W	Default/Hex	Description	
31:22	/	/	/	
			PD_DAT If the port is configured as input, the corresponding bit is the pin state. If the port is configured as output, the pin state is the same as the corresponding bit. The read bit value is the value setup by software. If the	
21:0	R/W	0x0	port is configured as functional pin, the undefined value will be read.	

4.15.2.24. PD Multi-Driving Register 0 (Default Value: 0x55555555)

Offset: 0x80	Register Name: PD_DRV0_REG

Bit	R/W	Default/Hex	Description	Description	
			PD_DRV		
			PD[n] Multi-Driving SELECT (n = 0~15)		
[2i+1:2i]			00: Level 0	01: Level 1	
(i=0~15)	R/W	0x1	10: Level 2	11: Level 3	

4.15.2.25. PD Multi-Driving Register 1 (Default Value: 0x00000555)

Offset: 0x8	Offset: 0x84		Register Name: PD_	_DRV1_REG	
Bit	R/W	Default/Hex	Description	Description	
31:12	/	/	/	/	
			PD_DRV		
			PD[n] Multi-Driving	PD[n] Multi-Driving Select (n = 16~21)	
[2i+1:2i]			00: Level 0	01: Level 1	
(i=0~5)	R/W	0x1	10: Level 2	11: Level 3	

4.15.2.26. PD PULL Register 0 (Default Value: 0x00000000)

Offset: 0x8	Offset: 0x88		Register Name: PD_PULLO_REG	
Bit	R/W	Default/Hex	Description	
			PD_PULL	
			PD[n] Pull-up/down Select (n = 0~15)	
[2i+1:2i]			00: Pull-up/down disable	01: Pull-up
(i=0~15)	R/W	0x0	10: Pull-down	11: Reserved

4.15.2.27. PD PULL Register 1 (Default Value: 0x00000000)

Offset: 0x8	ffset: 0x8C Regist		Register Name: PD_PULL1_F	REG
Bit	R/W	Default/Hex	Description	
31:12	/	/	Reserved	
			PD_PULL	
			PD[n] Pull-up/down Select (n = 16~21)	
[2i+1:2i]			00: Pull-up/down disable	01: Pull-up
(i=0~5)	R/W	0x0	10: Pull-down	11: Reserved

4.15.2.28. PE Configure Register 0 (Default Value: 0x77777777)

Offset: 0x90			Register Name: PE_CFG0_REG	
Bit	R/W	Default/Hex	Description	
31	/	/	/	
			PE7_SELECT	
			000: Input	001: Output
			010: CSI_D3	011: LCD_D5
			100: Reserved	101: Reserved
30:28	R/W	0x7	110: Reserved	111: IO Disable
27	/	/	/	
26:24	R/W	0x7	PE6_SELECT	

			000: Input	001: Output	
			010: CSI_D2	011: LCD_D4	
			100: Reserved	101: Reserved	
			110: Reserved	111: IO Disable	
23	/	/	/		
			PE5_SELECT		
			000: Input	001: Output	
			010: CSI D1	011: LCD_D3	
			100: Reserved	101: Reserved	
22:20	R/W	0x7	110: Reserved	111: IO Disable	
19	/	/	/		
			PE4_SELECT		
			000: Input	001: Output	
			010: CSI_D0	011: LCD_D2	
			100: Reserved	101: Reserved	
18:16	R/W	0x7	110: Reserved	111: IO Disable	
15	/	/	/		
			PE3_SELECT		
			000: Input	001: Output	
			010: CSI_VSYNC	011: LCD_VSYNC	
			100: Reserved	101: Reserved	
14:12	R/W	0x7	110: Reserved	111: IO Disable	
11	/	/	/		
			PE2_SELECT		
			000: Input	001: Output	
			010: CSI_HSYNC	011: LCD_HSYNC	
			100: Reserved	101: Reserved	
10:8	R/W	0x7	110: Reserved	111: IO Disable	
7	/	/	/		
			PE1_SELECT		
			000: Input	001: Output	
			010: CSI_MCLK	011: LCD_DE	
			100: Reserved	101: Reserved	
6:4	R/W	0x7	110: Reserved	111: IO Disable	
3	/	/	/		
			PEO_SELECT		
			000: Input	001: Output	
			010: CSI_PCLK	011: LCD_CLK	
			100: Reserved	101: Reserved	
2:0	R/W	0x7	110: Reserved	111: IO Disable	

4.15.2.29. PE Configure Register 1 (Default Value: 0x77777777)

Offset: 0x	Offset: 0x94		Register Name: PE_CFG1 _REG	G
Bit	R/W	Default/Hex	Description	
31	/	/	/	
			PE15_SELECT	
			000: Input	001: Output
			010: CSI_D11	011: LCD_D15
			100: Reserved	101: Reserved
30:28	R/W	0x7	110: Reserved	111: IO Disable
27	/	/	/	

·

4.15.2.30. PE Configure Register 2 (Default Value: 0x77777777)

Offset: 0x98			Register Name: PE_CFG2_REG	
Bit	R/W	Default/Hex	Description	
31	/	/	/	
			PE23_SELECT	
			000: Input	001: Output
			010: Reserved	011: LCD_D22
			100: UART1_RTS	101: Reserved
30:28	R/W	0x7	110: Reserved	111: IO Disable

27	/	/	/		
			PE22_SELECT		
			000: Input	001: Output	
			010: CSI_SDA	011: TWI1_SDA	
			100: UART1_RX	101: Reserved	
26:24	R/W	0x7	110: Reserved	111: IO Disable	
23	/	/	/		
			PE21_SELECT		
			000: Input	001: Output	
			010: CSI_SCK	011: TWI1_SCK	
			100: UART1_TX	101: Reserved	
22:20	R/W	0x7	110: Reserved	111: IO Disable	
19	/	/	/		
			PE20_SELECT		
			000: Input	001: Output	
			010: CSI_FIELD	011: CSI_MIPI_MCLK	
			100: Reserved	101: Reserved	
18:16	R/W	0x7	110: Reserved	111: IO Disable	
15	/	/	/		
			PE19_SELECT		
			000: Input	001: Output	
			010: CSI_D15	011: LCD_D21	
			100: Reserved	101: Reserved	
14:12	R/W	0x7	110: Reserved	111: IO Disable	
11	/	/	/		
			PE18_SELECT		
			000: Input	001: Output	
			010: CSI_D14	011: LCD_D20	
			100: Reserved	101: Reserved	
10:8	R/W	0x7	110: Reserved	111: IO Disable	
7	/	/	/		
			PE17_SELECT		
			000: Input	001: Output	
			010: CSI_D13	011: LCD_D19	
			100: Reserved	101: Reserved	
6:4	R/W	0x7	110: Reserved	111: IO Disable	
3	/	/	/		
			PE16_SELECT		
			000: Input	001: Output	
			010: CSI_D12	011: LCD_D18	
			100: Reserved	101: Reserved	
2:0	R/W	0x7	110: Reserved	111: IO Disable	

4.15.2.31. PE Configure Register 3 (Default Value: 0x00000007)

Offset: 0	Offset: 0x9C		Register Name: PE_CFG3	_REG	
Bit	R/W	Default/Hex	Description		
31:3	/	/	/		
			PE24_SELECT		
			000: Input 001: Output		
			010: Reserved	011: LCD_D23	
2:0	R/W	0x7	100: UART1_CTS	101: Reserved	

110: Reserved	111: IO Disable	

4.15.2.32. PE Data Register (Default Value: 0x00000000)

Offset: 0xA0			Register Name: PE_DATA_REG	
Bit	R/W	Default/Hex	Description	
31:25	/	/	/	
			PE_DAT	
			If the port is configured as input, the corresponding bit is the pin state. If	
			the port is configured as output, the pin state is the same as the	
			corresponding bit. The read bit value is the value setup by software. If the	
24:0	R/W	0x0	port is configured as functional pin, the undefined value will be read.	

4.15.2.33. PE Multi-Driving Register 0 (Default Value: 0x55555555)

Offset: 0xA4		Register Name: PE_DRV0_F	REG	
Bit	R/W	Default/Hex	Description	
			PE_DRV	
			PE[n] Multi-Driving SELECT (n = 0~15)	
[2i+1:2i]			00: Level 0	01: Level 1
(i=0~15)	R/W	0x1	10: Level 2	11: Level 3

4.15.2.34. PE Multi-Driving Register 1 (Default Value: 0x00015555)

Offset: 0xA8		Register Name: PE_	Register Name: PE_DRV1_REG		
Bit	R/W	Default/Hex	Description		
31:18	/	/	/		
			PE_DRV		
			PE[n] Multi-Driving Select (n = 16~24)		
[2i+1:2i]			00: Level 0	01: Level 1	
(i=0~8)	R/W	0x1	10: Level 2	11: Level 3	

4.15.2.35. PE PULL Register 0 (Default Value: 0x00000000)

Offset: 0xAC		Register Name: PE_PULLO_REG		
Bit	R/W	Default/Hex	Description	
			PE_PULL	
			PE[n] Pull-up/down Select (n = 0~15)	
[2i+1:2i]			00: Pull-up/down disable	01: Pull-up
(i=0~15)	R/W	0x0	10: Pull-down	11: Reserved

4.15.2.36. PE PULL Register 1 (Default Value: 0x00000000)

Offset: 0xE	Offset: 0xB0		Register Name: PE_PULL1_REG
Bit	R/W	Default/Hex	Description

31:18	/	/	/	
			PE_PULL	
			PE[n] Pull-up/down Select (r	n = 16~24)
[2i+1:2i]			00: Pull-up/down disable	01: Pull-up
(i=0~8)	R/W	0x0	10: Pull-down	11: Reserved

4.15.2.37. PF Configure Register 0 (Default Value: 0x07373733)

ed
ed
ble
K
ed
ble
_RX
ed
ble
00
ed
ble
_TX
ed
ble
OI .
ed
ble
NS
ed
ble

4.15.2.38. PF Configure Register 1 (Default Value: 0x00000000)

Offset: 0xE	Offset: 0xB8		Register Name: PF_CFG1_REG
Bit	R/W	Default/Hex	Description
31:0	/	/	/

4.15.2.39. PF Configure Register 2(Default Value: 0x00000000)

Offset: 0xE	Offset: 0xBC		Register Name: PF_CFG2_REG
Bit	R/W	Default/Hex	Description
31:0	/	/	

4.15.2.40. PF Configure Register 3(Default Value: 0x00000000)

Offset: 0x0	Offset: 0xC0		Register Name: PF_CFG3_REG
Bit	R/W	Default/Hex	Description
31:0	/	/	/

4.15.2.41. PF Data Register (Default Value: 0x00000000)

Offset: 0xC4			Register Name: PF_DATA_REG
Bit	R/W	Default/Hex	Description
31:7	/	/	
			PF_DAT If the port is configured as input, the corresponding bit is the pin state. If the port is configured as output, the pin state is the same as the corresponding bit. The read bit value is the value setup by software. If the
6:0	R/W	0x0	port is configured as functional pin, the undefined value will be read.

4.15.2.42. PF Multi-Driving Register 0 (Default Value: 0x00001555)

Offset: 0xC8		Register Name: PF_DRV0_RI	EG	
Bit	R/W	Default/Hex	Description	
31:14	/	/	/	
			PF_DRV	
			PF[n] Multi-Driving SELECT ($n = 0^{6}$
[2i+1:2i]			00: Level 0	01: Level 1
(i=0~6)	R/W	0x1	10: Level 2	11: Level 3

4.15.2.43. PF Multi-Driving Register 1 (Default Value: 0x00000000)

Conset. Oxcc Register Name. Pr_DRV1_REG	Offset: 0xCC	Register Name: PF_DRV1_REG
---	--------------	----------------------------

Bit	R/W	Default/Hex	Description
31:0	/	/	

4.15.2.44. PF PULL Register 0 (Default Value: 0x00000000)

Offset: 0xD0		Register Name: PF_PULL0_I	REG	
Bit	R/W	Default/Hex	Description	
31:14	/	/	/	
			PF_PULL PF[n] Pull-up/down Select (n = 0~6)
[2i+1:2i]			00: Pull-up/down disable	01: Pull-up
(i=0~6)	R/W	0x5140	10: Pull-down	11: Reserved

4.15.2.45. PF PULL Register 1 (Default Value: 0x00000000)

Offset: 0xE	Offset: 0xD4		Register Name: PF_PULL1_REG
Bit	R/W	Default/Hex	Description
31:0	/	/	/

4.15.2.46. PG Configure Register 0 (Default Value: 0x77777777)

Offset: 0x	Offset: 0xD8		Register Name: PG_CFG0	_REG	
Bit	R/W	Default/Hex	Description		
31	/	/	/		
			PG7_SELECT		
			000: Input	001: Output	
			010: UART1_RX	011: Reserved	
			100: Reserved	101: Reserved	
30:28	R/W	0x7	110: PG_EINT7	111: IO Disable	
27	/	/	/		
			PG6_SELECT		
			000: Input	001: Output	
			010: UART1_TX	011: Reserved	
			100: Reserved	101: Reserved	
26:24	R/W	0x7	110:PG_EINT6	111: IO Disable	
23	/	/	/		
			PG5_SELECT		
			000: Input	001: Output	
			010: SDC1_D3	011: Reserved	
			100: Reserved	101: Reserved	
22:20	R/W	0x7	110: PG_EINT5	111: IO Disable	
19	/	/	/		
			PG4_SELECT		
			000: Input	001: Output	
			010: SDC1_D2	011: Reserved	
			100: Reserved	101: Reserved	
18:16	R/W	0x7	110: PG_EINT4	111: IO Disable	
15	/	/	/		
14:12	R/W	0x7	PG3_SELECT		

			000: Input	001: Output	
			010: SDC1_D1	011: Reserved	
			100: Reserved	101: Reserved	
			110: PG_EINT3	111: IO Disable	
11	/	/	/		
			PG2_SELECT		
			000: Input	001: Output	
			010: SDC1_D0	011: Reserved	
			100: Reserved	101: Reserved	
10:8	R/W	0x7	110: PG_EINT2	111: IO Disable	
7	/	/	/		
			PG1_SELECT		
			000: Input	001: Output	
			010: SDC1_CMD	011: Reserved	
			100: Reserved	101: Reserved	
6:4	R/W	0x7	110: PG_EINT1	111: IO Disable	
3	/	/	/		
			PG0_SELECT		
			000: Input	001: Output	
			010: SDC1_CLK	011: Reserved	
			100: Reserved	101: Reserved	
2:0	R/W	0x7	110: PG_EINT0	111: IO Disable	

4.15.2.47. PG Configure Register 1 (Default Value: 0x00777777)

Offset: 0xDC			Register Name: PG_CFG1_REG	
Bit	R/W	Default/Hex	Description	
31:23	/	/	/	
			PG13_SELECT	
			000: Input	001: Output
			010: PCM_DIN	011: Reserved
			100: Reserved	101: Reserved
22:20	R/W	0x7	110: PG_EINT13	111: IO Disable
19	/	/	/	
			PG12_SELECT	
			000: Input	001: Output
			010: PCM_DOUT	011: Reserved
			100: Reserved	101: Reserved
18:16	R/W	0x7	110: PG_EINT12	111: IO Disable
15	/	/	/	
			PG11_SELECT	
			000: Input	001: Output
			010: PCM_BCLK	011: Reserved
			100: Reserved	101: Reserved
14:12	R/W	0x7	110: PG_EINT11	111: IO Disable
11	/	/	/	
			PG10_SELECT	
			000: Input	001: Output
			010: PCM_SYNC	011: Reserved
			100: Reserved	101: Reserved
10:8	R/W	0x7	110: PG_EINT10	111: IO Disable
7	/	/	/	

			PG9_SELECT		
			000: Input	001: Output	
			010: UART1_CTS	011: Reserved	
			100: Reserved	101: Reserved	
6:4	R/W	0x7	110: PG_EINT9	111: IO Disable	
3	/	/	/		
			PG8_SELECT		
			000: Input	001: Output	
			010: UART1_RTS	011: Reserved	
			100: Reserved	101: Reserved	
2:0	R/W	0x7	110: PG_EINT8	111: IO Disable	

4.15.2.48. PG Configure Register 2 (Default Value: 0x00000000)

Offset: 0xE	Offset: 0xE0		Register Name: PG_CFG2_REG
Bit	R/W	Default/Hex	Description
31:0	/	/	/

4.15.2.49. PG Configure Register 3 (Default Value: 0x00000000)

Offset: 0xE	Offset: 0xE4		Register Name: PG_CFG3_REG
Bit	R/W	Default/Hex	Description
31:0	/	/	/

4.15.2.50. PG Data Register (Default Value: 0x00000000)

Offset: 0xl	E8		Register Name: PG_DATA_REG
Bit	R/W	Default/Hex	Description
31:14	/	/	/
			PG_DAT If the port is configured as input, the corresponding bit is the pin state. If the port is configured as output, the pin state is the same as the corresponding bit. The read bit value is the value setup by software. If the
13:0	R/W	0x0	port is configured as functional pin, the undefined value will be read.

4.15.2.51. PG Multi-Driving Register 0 (Default Value: 0x05555555)

Offset: 0xl	C		Register Name: PG_ DRV0_RI	EG
Bit	R/W	Default/Hex	Description	
31:28	/	/		
			PG_DRV	
			PG[n] Multi-Driving SELECT (r	n = 0~13)
[2i+1:2i]			00: Level 0	01: Level 1
(i=0~13)	R/W	0x1	10: Level 2	11: Level 3

4.15.2.52. PG Multi-Driving Register 1 (Default Value: 0x00000000)

Offset: 0xF	Offset: 0xF0		Register Name: PG_DRV1_REG
Bit	R/W	Default/Hex	Description
31:0	/	/	/

4.15.2.53. PG PULL Register 0 (Default Value: 0x00000000)

Offset: 0xF	- 4		Register Name: PG_PULLO_REG	
Bit	R/W	Default/Hex	Description	
31:28	/	/	/	
			PG_PULL PG[n] Pull-up/down Select (n = 0~13)
[2i+1:2i]			00: Pull-up/down disable	01: Pull-up
(i=0~13)	R/W	0x0	10: Pull-down	11: Reserved

4.15.2.54. PG PULL Register 1 (Default Value: 0x00000000)

Offset: 0xF	Offset: 0xF8		Register Name: PG_PULL1_REG
Bit	R/W	Default/Hex	Description
31:0	/	/	1

4.15.2.55. PB External Interrupt Configure Register 0 (Default Value: 0x00000000)

Offset: 0x2	Offset: 0x220		Register Name: PB_EINT_CFG0_REG	
Bit	R/W	Default/Hex	ault/Hex Description	
			EINT_CFG	
			External INTn Mode (n = 0~7)	
			0x0: Positive Edge	
			0x1: Negative Edge	
			0x2: High Level	
			0x3: Low Level	
[4i+3:4i]			0x4: Double Edge (Positive/ Negative)	
(i=0~7)	R/W	0	Others: Reserved	

4.15.2.56. PB External Interrupt Configure Register 1 (Default Value: 0x00000000)

Offset: 0x224			Register Name: PB_EINT_CFG1_REG
Bit	R/W	Default/Hex	Description
31:24	/	/	1
			EINT_CFG
			External INTn Mode (n = 8~13)
			0x0: Positive Edge
			0x1: Negative Edge
[4i+3:4i]			0x2: High Level
(i=0~5)	R/W	0	0x3: Low Level

0x4: Double Edge (Positive/ Negative)
Others: Reserved

4.15.2.57. PB External Interrupt Configure Register 2 (Default Value: 0x00000000)

Offset: 0x228			Register Name: PB_EINT_CFG2_REG
Bit	Bit R/W Default/Hex		Description
31:0	/	/	/

4.15.2.58. PB External Interrupt Configure Register 3 (Default Value: 0x00000000)

Offset: 0x22C			Register Name: PB_EINT_CFG3_REG
Bit R/W Default/Hex		Default/Hex	Description
31:0	/	/	

4.15.2.59. PB External Interrupt Control Register (Default Value: 0x00000000)

Offset: 0x230			Register Name: PB_EINT_CTL_REG
Bit	R/W	Default/Hex	Description
31:14	/	/	/
			EINT_CTL
			External INTn Enable (n = 0~13)
[n]			0: Disable
(n=0~13)	R/W	0	1: Enable

4.15.2.60. PB External Interrupt Status Register (Default Value: 0x00000000)

Offset: 0x234			Register Name: PB_EINT_STATUS_REG
Bit	R/W	Default/Hex	Description
31:14	/	/	1
			EINT_STATUS
			External INTn Pending Bit (n = 0~13)
			0: No IRQ pending
[n]			1: IRQ pending
(n=0~13)	R/W	0	Write '1' to clear it.

4.15.2.61. PB External Interrupt Debounce Register (Default Value: 0x00000000)

Offset: 0x238			Register Name: PB_EINT_DEB_REG
Bit	R/W	Default/Hex	Description
31:7	/	/	/
			DEB_CLK_PRE_SCALE
			Debounce Clock Pre-scale n
6:4	R/W	0	The selected clock source is prescaled by 2 ⁿ .
3:1	/	/	

Г				
				PIO_INT_CLK_SELECT
				PIO Interrupt Clock Select
				0: LOSC 32Khz
	0	R/W	0	1: HOSC 24Mhz

4.15.2.62. PG External Interrupt Configure Register 0 (Default Value: 0x00000000)

Offset: 0x2	240		Register Name: PG_EINT_CFG0_REG
Bit	R/W	Default/Hex	Description
			EINT_CFG
			External INTn Mode (n = 0~7)
			0x0: Positive Edge
			0x1: Negative Edge
			0x2: High Level
			0x3: Low Level
[4i+3:4i]			0x4: Double Edge (Positive/ Negative)
(i=0~7)	R/W	0	Others: Reserved

4.15.2.63. PG External Interrupt Configure Register 1 (Default Value: 0x00000000)

Offset: 0x2	Offset: 0x244		Register Name: PG_EINT_CFG1_REG
Bit	R/W	Default/Hex	Description
31:24	/	/	/
			EINT_CFG
			External INTn Mode (n = 8~13)
			0x0: Positive Edge
			0x1: Negative Edge
			0x2: High Level
			0x3: Low Level
[4i+3:4i]			0x4: Double Edge (Positive/ Negative)
(i=0~5)	R/W	0	Others: Reserved

4.15.2.64. PG External Interrupt Configure Register 2 (Default Value: 0x00000000)

Offset: 0x248			Register Name: PG_EINT_CFG2_REG
Bit	Bit R/W Default/Hex		Description
31:0	/	/	

4.15.2.65. PG External Interrupt Configure Register 3 (Default Value: 0x00000000)

Offset: 0x24C			Register Name: PG_EINT_CFG3_REG
Bit R/W Default/Hex		Default/Hex	Description
31:0	/	/	

4.15.2.66. PG External Interrupt Control Register (Default Value: 0x00000000)

Offset: 0x	250		Register Name: PG_EINT _CTL_REG
Bit	R/W	Default/Hex	Description
31:14	/	/	/
			EINT_CTL
			External INTn Enable (n = 0~13)
[n]			0: Disable
(n=0~13)	R/W	0	1: Enable

4.15.2.67. PG External Interrupt Status Register (Default Value: 0x00000000)

Offset: 0x254			Register Name: PG_EINT_STATUS_REG
Bit	R/W	Default/Hex	Description
31:14	/	/	/
			EINT_STATUS
			External INTn Pending Bit (n = 0~13)
			0: No IRQ pending
[n]			1: IRQ pending
(n=0~13)	R/W	0	Write '1' to clear it.

4.15.2.68. PG External Interrupt Debounce Register (Default Value: 0x00000000)

Offset: 0	0x258		Register Name: PG_EINT_DEB_REG
Bit	R/W	Default/Hex	Description
31:7	/	/	
			DEB_CLK_PRE_SCALE
			Debounce Clock Pre-scale n
6:4	R/W	0	The selected clock source is prescaled by 2^n.
3:1	/	/	
			PIO_INT_CLK_SELECT
			PIO Interrupt Clock Select
			0: LOSC 32Khz
0	R/W	0	1: HOSC 24Mhz

Chapter 5 Memory

This section describes the S3 external memory from two aspects:

- SDRAM
- SD/MMC

5.1. SDRAM

5.1.1. Overview

One built-in DDR3 memory is in the S3 processor.

5.2. SD/MMC

5.2.1. Overview

The SD/MMC controller can be configured either as a Secure Digital Multimedia Card controller, which simultaneously supports Secure Digital memory (SD Memory), Secure Digital I/O (SDIO), Multimedia Cards (MMC), eMMC Card.

The SD/MMC controller includes the following features:

- Supports Secure Digital memory protocol commands (up to SD2.0)
- Supports Secure Digital I/O protocol commands
- Supports Multimedia Card protocol commands (up to eMMC4.41)
- Supports eMMC boot operation and alternative boot operation
- Supports Command Completion signal and interrupt to host processor and Command Completion Signal disable feature
- Supports one SD (Verson1.0 to 2.0) or MMC (Verson3.3 to eMMC4.41)
- Supports hardware CRC generation and error detection
- Supports programmable baud rate
- Supports host pull-up control
- Supports SDIO interrupts in 1-bit and 4-bit modes
- Supports SDIO suspend and resume operation
- Supports SDIO read wait
- Supports block size of 1 to 65535 bytes
- Supports descriptor-based internal DMA controller
- Internal 128 bytes FIFO for data transfer

5.2.2. Block Diagram

Figure 5-1. SD/MMC Controller Block Diagram

5.2.3. SD/MMC Controller Timing Diagram

Please refer to relative specifications:

- Physical Layer Specification Ver2.00
- SDIO Specification Ver2.00
- Multimedia Cards (MMC version 4.2)

• JEDEC Standard – JESD84-44, Embedded Multimedia Card (e•MMC) Product Standard

5.2.4. SD/MMC Controller Special Requirement

5.2.4.1. SD/MMC Pin List

Port Name	Width	Direction	Description
SDC_CLK	1	OUT	Clock output
SDC_CMD	1	IN/OUT	Command line
SDC_DATA	1/4/8	IN/OUT	Data line

Figure 5-2. SD/MMC Pin Diagram

5.2.5. Internal DMA Controller Description

SD/MMC controller has an internal DMA controller (IDMAC) to transfer data between host memory and SDMMC port. With a descriptor, IDMAC can efficiently move data from source to destination by automatically loading next DMA transfer arguments, which need less CPU intervention. Before transfer data in IDMAC, host driver should construct a descriptor list, configure arguments of every DMA transfer, then launch the descriptor and start the DMA. IDMAC has an interrupt controller, when enabled, it can interrupt the HOST CPU in situations such as data transmission completed or some errors happened.

5.2.5.1. IDMAC Descriptor Structure

The IDMAC uses a descriptor with a chain structure, and each descriptor points to a unique buffer and the next descriptor.

Figure 5-3. SD/MMC IDMAC Descriptor and Buffer

This figure illustrates the internal formats of a descriptor. The descriptor addresses must be aligned to the bus width used for 32-bit buses. Each descriptor contains 16 bytes of control and status information.

Figure 5-4. Internal Formats of A Descriptor

DESO is a notation used to denote the [31:0] bits, DES1 to denote [63:32] bits, DES2 to denote [95:64] bits, and DES3 to denote [127:96] bits in a descriptor.

5.2.5.2. DESO Definition

Bits	Name	Descriptor
		DES_OWN_FLAG
		When set, this bit indicates that the descriptor is owned by the IDMAC.
		When this bit is reset, it indicates that the descriptor is owned by the
31	HOLD	host. This bit is cleared when transfer is over.
		ERR_FLAG
30	ERROR	When some error happened in transfer, this bit will be set.
29:5	/	/
		CHAIM_MOD
		When set, this bit indicates that the second address in descriptor is the
4	Chain Flag	next descriptor address. Must be set 1.
		FIRST_FLAG
		When set, this bit indicates that this descriptor contains the first buffer
3	First DES Flag	of data. Must be set to 1 in first DES.
2	Last DES Flag	LAST_FLAG

		When set, this bit indicates that the buffers pointed to by this
		descriptor are the last data buffer
		CUR_TXRX_OVER_INT_DIS
		When set, this bit will prevent the setting of the TX/RX interrupt bit of
		the IDMAC status register for data that ends in the buffer pointed to by
1	Disable Interrupt on completion	this descriptor
0	/	

5.2.5.3. DES1 Definition

Bits	Name	Descriptor
31:13	/	/
		BUFF_SIZE
		These bits indicate the data buffer byte size, which must be a multiple
		of 4 bytes. If this filed is 0, the DMA ignores this buffer and proceeds to
15:0	Buffer size	the next descriptor.

5.2.5.4. DES2 Definition

Bits	Name	Descriptor
		BUFF_ADDR
		These bits indicate the physical address of data buffer. The IDMAC
31:0	Buffer address pointer	ignores DES2[1:0], corresponding to the bus width of 32.

5.2.5.5. DES3 Definition

Bits	Name	Descriptor
		NEXT_DESP_ADDR
		These bits indicate the pointer to the physical memory where the next
31:0	Next descriptor address	descriptor is present.

5.2.6. SD/MMC Register List

Module Name	Base Address	
SD/MMC0	0x01C0F000	
SD/MMC1	0x01C10000	
SD/MMC2	0x01C11000	

Register Name	Offset	Description	
SD_GCTL	0x00	Control register	
SD_CKCR	0x04	Clock Control register	
SD_TMOR	0x08	Time out register	
SD_BWDR	0x0C	Bus Width register	
SD_BKSR	0x10	Block size register	
SD_BYCR	0x14	Byte count register	
SD_CMDR	0x18	Command register	
SD_CAGR	0x1c	Command argument register	_

SD RESPO	0x20	Response 0 register
SD RESP1	0x24	Response 1 register
SD_RESP2	0x28	Response 2 register
SD_RESP3	0x2C	Response 3 register
SD_IMKR	0x30	Interrupt mask register
SD_MISR	0x34	Masked interrupt status register
SD_RISR	0x38	Raw interrupt status register
SD_STAR	0x3C	Status register
SD_FWLR	0x40	FIFO Water Level register
SD_FUNS	0x44	FIFO Function Select register
SD_A12A	0x58	Auto command 12 argument
SD_NTSR	0x5c	SD NewTiming Set Register
SD_SDBG	0x60	SD NewTiming Set Debug Register
SD_HWRST	0x78	Hardware Reset Register
SD_DMAC	0x80	BUS Mode Control
SD_DLBA	0x84	Descriptor List Base Address
SD_IDST	0x88	DMAC Status
SD_IDIE	0x8c	DMAC Interrupt Enable
SD_THLDC	0x100	Card Threshold Control register
SD_DSBD	0x10c	eMMC4.41 DDR Start Bit Detection Control
SD_RES_CRC	0x110	CRC status from card/eMMC in write operation
SD_DATA7_CRC	0x114	CRC Data7 from card/eMMC
SD_DATA6_CRC	0x118	CRC Data7 from card/eMMC
SD_DATA5_CRC	0x11c	CRC Data7 from card/eMMC
SD_DATA4_CRC	0x120	CRC Data7 from card/eMMC
SD_DATA3_CRC	0x124	CRC Data7 from card/eMMC
SD_DATA2_CRC	0x128	CRC Data7 from card/eMMC
SD_DATA1_CRC	0x12c	CRC Data7 from card/eMMC
SD_DATAO_CRC	0x130	CRC Data7 from card/eMMC
SD_CRC_STA	0x134	Response CRC from card/eMMC
SD_FIFO	0x200	Read/Write FIFO

5.2.7. SD/MMC Register Description

5.2.7.1. SD Global Control Register(Default Value: 0x00000100)

Offset: 0x	Offset: 0x0000		Register Name: SD_CTRL
Bit	R/W	Default/Hex	Description
31	R/W	0	FIFO_AC_MOD FIFO Access Mode 1-AHB bus 0-DMA bus
30:11	/	/	/
10	R/W	0	DDR_MOD_SEL DDR Mode Select 0 – SDR mode 1 – DDR mode
9	/	/	reserved
8	R/W	1	CD_DBC_ENB Card Detect (Data[3] status) De-bounce Enable 0 - disable de-bounce

			1 – enable de-bounce
7:6	/	/	/
			DMA_ENB
5	R/W	0	DMA Global Enable
3	N/ VV	U	0 – Disable DMA to transfer data, using AHB bus
			1 – Enable DMA to transfer data
			INT_ENB
4	R/W	0	Global Interrupt Enable
4	N/ VV	U	0 – Disable interrupts
			1 – Enable interrupts
3	/	/	/
2	R/W	0	DMA_RST
2	11,7 00	0	DMA Reset
			FIFO_RST
			FIFO Reset
1	R/W	/W 0	0 – No change
			1 – Reset FIFO
			This bit is auto-cleared after completion of reset operation.
			SOFT_RST
		V 0	Software Reset
0	R/W		0 – No change
			1 – Reset SD/MMC controller
			This bit is auto-cleared after completion of reset operation.

5.2.7.2. SD Clock Control Register(Default Value: 0x00000000)

Offset: 0x0004			Register Name: SD_CLKDIV
Bit	R/W	Default/Hex	Description
			MASK_DATA0
31	R/W	0	0 - Do not mask data0 when updata clock ;
31	IN/ VV	0	1 - Mask data0 when updata clock;
			Default value : 0;
30:18	/	/	/
			CCLK_CTRL
17	R/W	0	Card Clock Output Control
17	IN/ VV	U	0 – Card clock always on
			1 – Turn off card clock when FSM in IDLE state
			CCLK_ENB
16	B /\\/	R/W 0	Card Clock Enable
10	11,7 VV		0 – Card Clock off
			1 – Card Clock on
15:8	/	/	/
			CCLK_DIV
7:0	R/W	0	Card clock divider
			n – Source clock is divided by 2*n.(n=0~255)

5.2.7.3. SD Timeout Register (Default Value: 0xFFFFFF40)

Offset: 0x0008			Register Name: SD_TMOUT
Bit	R/W	Default/Hex	Description
31:8	R/W	0xffffff	DTO_LMT

			Data Timeout Limit
7:0 R/W	0x40	RTO_LMT	
7.0	IN/ VV	0.40	Response Timeout Limit

5.2.7.4. SD Bus Width Register (Default Value: 0x00000000)

Offset: 0x	Offset: 0x000c		Register Name: SD_CTYPE
Bit	R/W	Default/Hex	Description
31:2	/	/	/
1:0	R/W	0	CARD_WID Card width 2'b00 – 1-bit width 2'b01 – 4-bit width 2'b1x – 8-bit width

5.2.7.5. SD Block Size Register (Default Value: 0x00000200)

Offset: 0x0010			Register Name: SD_BLKSIZ
Bit	R/W	Default/Hex	Description
31:16	/	/	1
15:0	R/W	0x200	BLK_SZ
15.0	117 VV	0,200	Block size

5.2.7.6. SD Block Count Register (Default Value: 0x00000200)

Offset: 0x0014			Register Name: SD_BYTCNT
Bit	R/W	Default/Hex	Description
31:0 R/W		0x200	BYTE_CNT
	D /\A/		Byte counter
	K/ W		Number of bytes to be transferred; should be integer multiple of Block Size
			for block transfers.

5.2.7.7. SD Command Register (Default Value: 0x00000000)

Offset: 0x0018			Register Name: SD_CMD
Bit	R/W	Default/Hex	Description
31	R/W	0	CMD_LOAD Start Command. This bit is auto cleared when current command is sent. If there is no any response error happened, a command complete interrupt bit (CMD_OVER) will be set in interrupt register. You should not write any other command before this bit is cleared, or a command busy interrupt bit (CMD_BUSY) will
			be set in interrupt register.
30	/	/	/
29	R/W	0	Use Hold Register 0 - CMD and DATA sent to card bypassing HOLD Register 1 - CMD and DATA sent to card through the HOLD Register

			VOL_SW
			Voltage Switch
28	R/W	0	
			0 – normal command 1 – Voltage switch command, set for CMD11 only
			·
27			BOOT_ABT
27	R/W	0	Boot Abort
			Setting this bit will terminate the boot operation.
			EXP_BOOT_ACK
26	R/W	0	Expect Boot Acknowledge.
	1,411		When Software sets this bit along in mandatory boot operation, controller
			expects a boot acknowledge start pattern of 0-1-0 from the selected card.
			BOOT_MOD
			Boot Mode
25:24	R/W	0	2'b00 – normal command
25.24	17,00		2'b01 - Mandatory Boot operation
			2'b10 - Alternate Boot operation
			2'b11 - reserved
23	/	/	
22	/	/	
			PRG_CLK
			Change Clock
21	R/W	0	0 – Normal command
			1 – Change Card Clock; when this bit is set, controller will change clock
			domain and clock output. No command will be sent.
20:16	/	/	1
			SEND_INIT_SEQ
			Send Initialization
15	R/W	0	0 – normal command sending
			1 – Send initialization sequence before sending this command.
			STOP_ABT_CMD
			Stop Abort Command
14	R/W	0	0 – normal command sending
	1,411		1 – send Stop or abort command to stop current data transfer in
			progress.(CMD12, CMD52 for writing "I/O Abort" in SDIO CCCR)
			WAIT PRE OVER
			Wait Data Transfer Over
13	R/W	0	0 – Send command at once, do not care of data transferring
			1 – Wait for data transfer completion before sending current command
			STOP_CMD_FLAG
			Send Stop CMD Automatically (CMD12)
12	R/W	0	0 – Do not send stop command at end of data transfer
			1 – Send stop command automatically at end of data transfer
			·
			TRANS_MODE Transfer Mode
11	R/W	0	0 – Block data transfer command
		+	1 – Stream data transfer command
			TRANS_DIR
10	R/W	0	Transfer Direction
			0 – Read operation
			1 – Write operation
			DATA_TRANS
9	R/W	0	Data Transfer
-	, **		0 – without data transfer
			1 – with data transfer

			CHK_RESP_CRC
8	R/W		Check Response CRC
0	K/VV	0	0 – Do not check response CRC
			1 – Check response CRC
			LONG_RESP
7	R/W	0	Response Type
'	IN/ VV	0	0 –Short Response (48 bits)
			1 –Long Response (136 bits)
		0	RESP_RCV
6	R/W		Response Receive
0	IN/ VV		0 – Command without Response
			1 – Command with Response
		x/W 0	CMD_IDX
5:0	R/W		CMD Index
			Command index value

5.2.7.8. SD Command Argument Register (Default Value: 0x00000000)

Offset: 0x001c			Register Name: SD_CMDARG
Bit	R/W	Default/Hex	Description
31:0	R/W	0	CMD_ARG
	_		Command argument

5.2.7.9. SD Response 0 Register (Default Value: 0x00000000)

Offset: 0x0020			Register Name: SD_RESP0
Bit	R/W	Default/Hex	Description
31:0	R	0	CMD_RESP0 response 0 Bit[31:0] of response

5.2.7.10. SD Response 1 Register (Default Value: 0x00000000)

Offset: 0x0024			Register Name: SD_RESP1
Bit	R/W	Default/Hex	Description
31:0	R	0	CMD_RESP1 response 1 Bit[63:31] of response

5.2.7.11. SD Response 2 Register (Default Value: 0x00000000)

Offset: 0x0028			Register Name: SD_RESP2
Bit	R/W	Default/Hex	Description
			CMD_RESP2
31:0	R	0	response 2
			Bit[95:64] of response

5.2.7.12. SD Response 3 Register (Default Value: 0x00000000)

Offset: 0x002C			Register Name: SD_RESP3
Bit	R/W	Default/Hex	Description
			CMD_RESP3
31:0	R	0	response 3
			Bit[127:96] of response

5.2.7.13. SD Interrupt Mask Register (Default Value: 0x00000000)

Offset: 0x	Offset: 0x0030		Register Name: SD_INTMASK
Bit	R/W	Default/Hex	Description
			INT_MASK
			0 – interrupt masked
			1 – interrupt enabled
			Bit field defined as following:
			bit 31– card removed
			bit 30 – card inserted
			bit 17~29 - reserved
			bit 16 – SDIO interrupt
			bit 15 – Data End-bit error
			bit 14 – Auto Stop Command done
			bit 13 – Data Start Error
31:0	R/W	0	bit 12 – Command Busy and illegal write
			bit 11 – FIFO under run/overflow
			bit 10 – Data starvation timeout /V1.8 Switch Done
			bit 9 – Data timeout/Boot data start
			bit 8 – Response timeout/Boot ACK received
			bit 7 – Data CRC error
			bit 6 – Response CRC error
			bit 5 – Data Receive Request
			bit 4 –Data Transmit Request
			bit 3 – Data Transfer Complete
			bit 2 – Command Complete
			bit 1 – Response Error (no response or response CRC error)
			bit 0 – Reserved

5.2.7.14. SD Masked Interrupt Status Register (Default Value: 0x00000000)

Offset: 0x0	Offset: 0x0034		Register Name: SD_MINTSTS
Bit	R/W	Default/Hex	Description
			MSKD_ISTA
			Interrupt status. Enabled only if corresponding bit in mask register is set.
31:0	R	0	Bit field defined as following: bit 31 – card removed bit 30 – card inserted bit 17~29 - reserved bit 16 – SDIO interrupt

bit 15 – Data End-bit error
bit 14 – Auto command done
bit 13 – Data Start Error
bit 12 – Command Busy and illegal write
bit 11 – FIFO under run/overflow
bit 10 – Data starvation timeout (HTO)/V1.8 Switch Done
bit 9 – Data timeout/Boot data start
bit 8 – Response timeout/Boot ACK received
bit 7 – Data CRC error
bit 6 – Response CRC error
bit 5 – Data Receive Request
bit 4 –Data Transmit Request
bit 3 – Data Transfer Complete
bit 2 – Command Complete
bit 1 – Response Error (no response or response CRC error)
bit 0 – Reserved

5.2.7.15. SD Raw Interrupt Status Register (Default Value: 0x00000000)

Offset: 0x0038			Register Name: SD_RINTSTS
Bit	R/W	Default/Hex	Description
			RAW_ISTA
			Raw Interrupt Status.
			This is write-1-to-clear bits.
			Bit field defined as following:
			bit 31 – card removed
			bit 30 – card inserted
			bit 17~29 - reserved
			bit 16 – SDIO interrupt
			bit 15 – Data End-bit error
			bit 14 – Auto command done
			bit 13 – Data Start Error
31:0	R/W	0	bit 12 – Command Busy and illegal write
			bit 11 – FIFO under run/overflow
			bit 10 – Data starvation timeout (HTO)/V1.8 Switch Done
			bit 9 – Data timeout/Boot data start
			bit 8 – Response timeout/Boot ACK received
			bit 7 – Data CRC error
			bit 6 – Response CRC error
			bit 5 – Data Receive Request
			bit 4 –Data Transmit Request
			bit 3 – Data Transfer Complete
			bit 2 – Command Complete
			bit 1 – Response Error (no response or response CRC error)
			bit 0 – Reserved

5.2.7.16. SD Status Register (Default Value: 0x00000006)

Offset: 0x003C			Register Name: SD_STATUS
Bit	R/W	Default/Hex	Description

			DMA_REQ
31	R	0	
31	K	U	dma_req
20.22	1	,	DMA request signal state
30:22	/	/	/ FIEO FIEO
24.47			FIFO_LEVEL
21:17	R	0	FIFO Level
			Number of filled locations in FIFO
		_	RESP_IDX
16:11	R	0	Response Index
			Index of previous response, including any auto-stop sent by controller
			FSM_BUSY
10	R	0	Data FSM Busy
			Data transmit or receive state-machine is busy
			CARD_BUSY
_		_	Card data busy
9	R	0	Inverted version of DATA[0]
			0 – card data not busy
			1 – card data busy
			CARD_PRESENT
_			Data[3] status
8	R	0	level of DATA[3]; checks whether card is present
			0 – card not present
			1 – card present
			FSM_STA
			Command FSM states:
			0 – Idle
			1 – Send init sequence
			2 – Tx cmd start bit
			3 – Tx cmd tx bit
			4 – Tx cmd index + arg
			5 – Tx cmd crc7
7:4	R	0	6 – Tx cmd end bit
			7 – Rx resp start bit
			8 – Rx resp IRQ response
			9 – Rx resp tx bit
			10 – Rx resp cmd idx
			11 – Rx resp data
			12 – Rx resp crc7
			13 – Rx resp end bit
			14 – Cmd path wait NCC
			15 – Wait; CMD-to-response turnaround
			FIFO_FULL
3	R	0	FIFO full 1 – FIFO full
			0 – FIFO not full
			FIFO_EMPTY
2	R	1	FIFO Empty
			1 - FIFO Empty
			0 - FIFO not Empty
			FIFO_TX_LEVEL
1	R	1	FIFO TX Water Level flag
			0 – FIFO didn't reach transmit trigger level
0	<u> </u>		1 - FIFO reached transmit trigger level
0	R	0	FIFO_RX_LEVEL

	FIFO TX Water Level flag
	0 – FIFO didn't reach receive trigger level
	1 - FIFO reached receive trigger level

5.2.7.17. SD FIFO Water Level Register (Default Value: 0x000F0000)

Offset: 0x0	040		Register Name: SD_FIFOTH
Bit	R/W	Default/Hex	Description
31	/	/	/
30:28	R/W	0	BSIZE_OF_TRANS Burst size of multiple transaction 000 – 1 transfers 001 – 4 010 – 8 011 – 16 100 – 32 101 – 64 110 – 128 111 – 256 Should be programmed same as DMA controller multiple transaction size. The units for transfers are the DWORD. A single transfer would be signaled based on this value. Value should be sub-multiple of (RX_TL + 1) and (FIFO_DEPTH - TX_TL) Recommended: MSize = 8, TX_TL = 16, RX_TL = 15
27:21	R	0	/
20:16	R/W	0xF	RX_TL Rx Trigger Level 0x0~0x1e - RX Trigger Level is 0~30 0x1f - reserved FIFO threshold when FIFO request host to receive data from FIFO. When FIFO data level is greater than this value, DMA is request is raised if DMA enabled, or RX interrupt bit is set if interrupt enabled. At the end of packet, if the last transfer is less than this level, the value is ignored and relative request will be raised as usual. Recommended: 15 (means greater than 15)
15:5	R	0	
4:0	R/W	0	TX_TL TX Trigger Level 0x1~0xf – TX Trigger Level is 1~31 0x0 – no trigger FIFO threshold when FIFO requests host to transmit data to FIFO. When FIFO data level is less than or equal to this value, DMA TX request is raised if DMA enabled, or TX request interrupt bit is set if interrupt enabled. At the end of packet, if the last transfer is less than this level, the value is ignored and relative request will be raised as usual. Recommended: 16 (means less than or equal to 16)

5.2.7.18. SD Function Select Register (Default Value: 0x00000000)

Offset: 0x0044	Register Name: SD_CTRL
----------------	------------------------

Bit	R/W	Default/Hex	Description
			CEATA_EN
			CEATA Support ON/OFF
31:16	R/W	0	Oxceaa – CEATA support on. All hidden CEATA relative bits are accessible
31.10	IN VV	U	normally and these 16 bits return value of 0x1 when be read.
			Other value – CEATA support off. All hidden CEATA relative bits cannot be
			access and these 16 bits return value of 0 when be read.
15:3	/	/	/
			ABT_RDATA
			Abort Read Data
			0 – Ignored
2	R/W	0	1 –After suspend command is issued during read-transfer, software polls
-	1,7,44		card to find when suspend happened. Once suspend occurs, software sets
			bit to reset data state-machine, which is waiting for next block of data.
			Used in SDIO card suspends sequence.
			This bit is auto-cleared once controller reset to idle state.
			READ_WAIT
1	R/W	0	Read Wait
-	11,7 00		0 – Clear SDIO read wait
			1 – Assert SDIO read wait
			HOST_SEND_MMC_IRQRESQ
			Host Send MMC IRQ Response
			0 – Ignored
0	R/W	0	1 – Send auto IRQ response
	'		When host is waiting MMC card interrupt response, setting this bit will
			make controller cancel wait state and return to idle state, at which time,
			controller will receive IRQ response sent by itself.
			This bit is auto-cleared after response is sent.

5.2.7.19. SD Auto Command 12 Register (Default Value: 0x0000ffff)

Offset: 0x0058			Register Name: SD_A12A
Bit	R/W	Default/Hex	Description
31:16	/	/	/
0:15	R/W	Oxffff	SD_A12A. SD_A12A set the argument of command 12 automatically send by controller

5.2.7.20. SD NewTiming Set Register (Default Value: 0x00000001,only used in SDC2)

Offset: 0x00	Offset: 0x005C		Register Name: SD_NTSR_REG
Bit	R/W	Default/Hex	Description
			MODE_SELEC
31	R/W	0	0 - Old mode of Sample/Output Timing ;
31	IN/ VV	U	1 - New mode of Sample/Output Timing;
			Default value : 0;
		SAMPLE_TIMING_PHASE(RX) 00 - Sample timing phase offset 90。; 01 - Sample timing phase offset 180。; 10 - Sample timing phase offset 270。; 11 - Ignore; Default value: 00;	SAMPLE_TIMING_PHASE(RX)
			00 - Sample timing phase offset 90。;
30:6	D /\A/		01 - Sample timing phase offset 180。;
30.0	I I VV		10 - Sample timing phase offset 270。;
			11 - Ignore;
			Default value : 00;

3:2	/	/	/
			OUTPUT_TIMING_PHASE(TX)
			00 - Output timing phase offset 90。;
1:0	R/W	0x01	01 - Output timing phase offset 180。;
1.0	I N/ W OXO1	UXU1	10 - Output timing phase offset 270。;
			11 - Ignore;
			Default value : 01;

5.2.7.21. SD Hardware Reset Register (Default Value: 0x00000001)

Offset: 0x0078			Register Name: SD_HWRST
Bit	R/W	Default/Hex	Description
31:1	/	/	/
0	R/W	1	HW_RESET. 1 – Active mode 0 – Reset These bits cause the cards to enter pre-idle state, which requires them to be re-initialized.

5.2.7.22. SD DMAC Control Register (Default Value: 0x00000000)

Offset: 0x0080			Register Name: SD_BUS_MODE
Bit	R/W	Default/Hex	Description
			DES_LOAD_CTRL
31	w	0	When DMAC fetches a descriptor, if the valid bit of a descriptor is not set,
31	VV	U	DMAC FSM will go to the suspend state. Setting this bit will make DMAC
			re-fetch descriptor again and do the transfer normally.
30:11	/	/	
			PRG_BURST_LEN
			Programmable Burst Length.
			These bits indicate the maximum number of beats to be performed in one
			IDMAC transaction. The IDMAC will always attempt to burst as specified in
			PBL each time it starts a Burst transfer on the host bus. The permissible
			values are 1, 4, 8, 16, 32, 64, 128 and 256. This value is the mirror of MSIZE
		of FIFOTH register. In order to change this value, wr	of FIFOTH register. In order to change this value, write the required value to
			FIFOTH register. This is an encode value as follows.
10:8	R	0	000 – 1 transfers
10.0	'		001 – 4 transfers
			010 – 8 transfers
			011 – 16 transfers
			100 – 32 transfers
			101 – 64 transfers
			110 – 128 transfers
			111 – 256 transfers
			Transfer unit is either 16, 32, or 64 bits, based on HDATA_WIDTH. PBL is a
			read-only value.
_	- 6		IDMAC_ENB
7	R/W	0	IDMAC Enable.
			When set, the IDMAC is enabled. DE is read/write.
6:2	R/W	0	DES_SKIP_LEN
			Descriptor Skip Length.

			Specifies the number of Word to skip between two unchained descriptors.
			This is applicable only for dual buffer structure.
			Default value is set to 4 DWORD.
			FIX_BUST_CTRL
			Fixed Burst.
1	R/W	0	Controls whether the AHB Master interface performs fixed burst transfers or
1	K/ VV		not. When set, the AHB will use only SINGLE, INCR4, INCR8 during start of
			normal burst transfers. When reset, the AHB will use SINGLE and INCR burst
			transfer operations.
		0	IDMAC_RST
	R/W		DMA Reset.
0	IN/ VV		When set, the DMA Controller resets all its internal registers. SWR is
			read/write. It is automatically cleared after 1 clock cycle.

5.2.7.23. SD Descriptor List Base Address Register (Default Value: 0x00000000)

Offset: 0x0084			Register Name: SD_DLBA
Bit	R/W	Default/Hex	Description
			DES_BASE_ADDR
			Start of Descriptor List.
31:0	R/W	0	Contains the base address of the First Descriptor. The LSB bits [1:0] are
			ignored and taken as all-zero by the IDMAC internally. Hence these LSB bits
			are read-only.

5.2.7.24. SD DMAC Status Register (Default Value: 0x0000_0000)

Offset: 0x	Offset: 0x0088		Register Name: SD_DSR
Bit	R/W	Default/Hex	Description
31:17	/	/	1
			DMAC_FSM_STA
			DMAC FSM present state.
			0 – DMA_IDLE
			1 – DMA_SUSPEND
			2 – DESC_RD
16:13	R	0	3 – DESC_CHK
10.13	11		4 – DMA_RD_REQ_WAIT
			5 – DMA_WR_REQ_WAIT
			6 – DMA_RD
			7 – DMA_WR
			8 – DESC_CLOSE
			This bit is read-only.
			DMAC_ERR_STA
			Error Bits.
			Indicates the type of error that caused a Bus Error. Valid only with Fatal Bus
12:10	R	0	Error bit (IDSTS[2]) set. This field does not generate an interrupt.
			3'b001 – Host Abort received during transmission
			3'b010 – Host Abort received during reception
			Others: Reserved EB is read-only.
			ABN_INT_SUM
9	R/W	0	Abnormal Interrupt Summary.
			Logical OR of the following:

			IDSTS[2] – Fatal Bus Interrupt
			IDSTS[4] – DU bit Interrupt
			IDSTS[5] – Card Error Summary Interrupt
			Only unmasked bits affect this bit.
			This is a sticky bit and must be cleared each time a corresponding bit that
			causes AIS to be set is cleared. Writing a 1 clears this bit.
			NOR_INT_SUM
			Normal Interrupt Summary.
			Logical OR of the following:
0	D ()A(R/W 0 IDSTS[0] – Trans	IDSTS[0] – Transmit Interrupt
8	K/VV	0	IDSTS[1] – Receive Interrupt
			Only unmasked bits affect this bit.
			This is a sticky bit and must be cleared each time a corresponding bit that
			causes NIS to be set is cleared. Writing a 1 clears this bit.
7:6	/	/	1/
		•	ERR_FLAG_SUM
			Card Error Summary.
			Indicates the status of the transaction to/from the card; also present in
			RINTSTS. Indicates the logical OR of the following bits:
			EBE – End Bit Error
			RTO – Response Timeout/Boot Ack Timeout
5	R/W	0	RCRC – Response CRC
			SBE – Start Bit Error
			DRTO – Data Read Timeout/BDS timeout
			DCRC – Data CRC for Receive
			RE – Response Error
			Writing 1 clears this bit.
			DES_UNAVL_INT
			Descriptor Unavailable Interrupt.
4	R/W	0	This bit is set when the descriptor is unavailable due to OWN bit = 0
			(DESO[31] =0). Writing a 1 clears this bit.
3	1	/	/ Vertiling a 1 cicals this bit.
,	/	'	FATAL REPRINT
			FATAL_BERR_INT Fatal Bus Error Interrupt.
2	R/W	0	Indicates that a Bus Error occurred (IDSTS[12:10]). When this bit is set, the
			,
			DMA disables all its bus accesses. Writing a 1 clears this bit.
			RX_INT
1	R/W	0	Receive Interrupt.
			Indicates the completion of data reception for a descriptor. Writing a 1
			clears this bit.
			TX_INT
0	R/W	0	Transmit Interrupt.
	'		Indicates that data transmission is finished for a descriptor. Writing a '1'
			clears this bit.

5.2.7.25. SD DMAC Interrupt Enable Register (Default Value: 0x00000000)

Offset: 0x008C			Register Name: SD_IDIE_REG
Bit	R/W	Default/Hex	Description
31:10	/	/	/
			ABN_INT_ENB
9	R/W	0	Abnormal Interrupt Summary Enable.
			When set, an abnormal interrupt is enabled. This bit enables the following

			bits: IDINTEN[2] – Fatal Bus Error Interrupt IDINTEN[4] – DU Interrupt IDINTEN[5] – Card Error Summary Interrupt NOR_INT_ENB
8	R/W	0	Normal Interrupt Summary Enable. When set, a normal interrupt is enabled. When reset, a normal interrupt is disabled. This bit enables the following bits: IDINTEN[0] – Transmit Interrupt IDINTEN[1] – Receive Interrupt
7:6	/	/	/
5	R/W	0	ERR_SUM_INT_ENB Card Error summary Interrupt Enable. When set, it enables the Card Interrupt summary.
4	R/W	0	DES_UNAVL_INT_ENB Descriptor Unavailable Interrupt. When set along with Abnormal Interrupt Summary Enable, the DU interrupt is enabled.
3	/	/	/
2	R/W	0	FERR_INT_ENB Fatal Bus Error Enable. When set with Abnormal Interrupt Summary Enable, the Fatal Bus Error Interrupt is enabled. When reset, Fatal Bus Error Enable Interrupt is disabled.
1	R/W	0	RX_INT_ENB Receive Interrupt Enable. When set with Normal Interrupt Summary Enable, Receive Interrupt is enabled. When reset, Receive Interrupt is disabled.
0	R/W	0	TX_INT_ENB Transmit Interrupt Enable. When set with Normal Interrupt Summary Enable, Transmit Interrupt is enabled. When reset, Transmit Interrupt is disabled.

5.2.7.26. Card Threshold Control Register (Default Value: 0x00000000)

Offset: 0x	:0100		Register Name: SD_THLD_REG
Bit	R/W	Default/Hex	Description
31:28	/	/	
27:16	R/W	0	CARD_RD_THLD
27.10	K/VV	0	Card Read Threshold Size
15:1	/	/	
		R/W 0	CARD_RD_THLD_ENB
			Card Read Threshold Enable
	D /\A/		0 – Card Read Threshold Disable
0	K/VV		1 - Card Read Threshold Enable
			Host controller initiates Read Transfer only if CARD_RD_THLD amount of
			space is available in receive FIFO

5.2.7.27. eMMC4.41 DDR Start Bit Detection Control Register (Default Value: 0x00000000)

Offset: 0x010C Register Name: EMMC_DDR_SBIT_DET_REG
--

Bit	R/W	Default/Hex	Description
31:1	/	/	/
			HALF_START_BIT
0	R/W	W 0	Control for start bit detection mechanism inside mstorage based on duration of start bit. For eMMC 4.41, start bit can be: 0 - Full cycle 1 - Less than one full cycle
			Set HALF_START_BIT=1 for eMMC 4.41 and above; set to 0 for SD applications.

5.2.7.28. SD Response CRC Register (Default Value: 0x00000000)

Offset: 0x0110			Register Name: RESP_CRC_REG
Bit	R/W	Default/Hex	Description
31:7	/	/	1
			RESP_CRC
6:0	R	0	Response CRC
			Response CRC from card/eMMC.

5.2.7.29. SD Data7 CRC Register (Default Value: 0x00000000)

Offset: 0x0114			Register Name: DATA7_CRC_REG
Bit	R/W	Default/Hex	Description
			DATA7_CRC
			Data[7] CRC
31:0	R	0	CRC in data[7] from card/eMMC.In DDR mode, the higher 16 bits indicate the
			CRC of even data, and the lower 16bits indicate the CRC of odd data. In SDR
			mode, the higher of 16 bits indicate the CRC of all data.

5.2.7.30. SD Data6 CRC Register (Default Value: 0x00000000)

Offset: 0x0118			Register Name: DATA6_CRC_REG
Bit	R/W	Default/Hex	Description
			DATA6_CRC
			Data[6] CRC
31:0	R	0	CRC in data[6] from card/eMMC.In DDR mode, the higher 16 bits indicate the
			CRC of even data, and the lower 16bits indicate the CRC of odd data. In SDR
			mode, the higher of 16 bits indicate the CRC of all data.

5.2.7.31. SD Data5 CRC Register (Default Value: 0x00000000)

Offset: 0x011c			Register Name: DATA5_CRC_REG
Bit	R/W	Default/Hex	Description
31:0	R	0	DATA5_CRC Data[5] CRC CRC in data[5] from card/eMMC.In DDR mode, the higher 16 bits indicate the

CRC of even data, and the lower 16bits indicate the CRC of odd data. In SDR
mode, the higher of 16 bits indicate the CRC of all data.

5.2.7.32. SD Data4 CRC Register (Default Value: 0x00000000)

Offset: 0x0120			Register Name: DATA4_CRC_REG
Bit	R/W	Default/Hex	Description
			DATA4_CRC
			Data[4] CRC
31:0	R	0	CRC in data[4] from card/eMMC.In DDR mode, the higher 16 bits indicate the
			CRC of even data, and the lower 16bits indicate the CRC of odd data. In SDR
			mode, the higher of 16 bits indicate the CRC of all data.

5.2.7.33. SD Data3 CRC Register (Default Value: 0x00000000)

Offset: 0x0124			Register Name: DATA3_CRC_REG
Bit	R/W	Default/Hex	Description
			DATA3_CRC
			Data[3] CRC
31:0	R	0	CRC in data[3] from card/eMMC.In DDR mode, the higher 16 bits indicate the
			CRC of even data, and the lower 16bits indicate the CRC of odd data. In SDR
			mode, the higher of 16 bits indicate the CRC of all data.

5.2.7.34. SD Data2 CRC Register (Default Value: 0x00000000)

Offset: 0x0128 Reg			Register Name: DATA2_CRC_REG
Bit	R/W	Default/Hex	Description
			DATA2_CRC
			Data[2] CRC
31:0	R	0	CRC in data[2] from card/eMMC.In DDR mode, the higher 16 bits indicate the
			CRC of even data, and the lower 16bits indicate the CRC of odd data. In SDR
			mode, the higher of 16 bits indicate the CRC of all data.

5.2.7.35. SD Data1 CRC Register (Default Value: 0x00000000)

Offset: 0x	Offset: 0x012c		Register Name: DATA1_CRC_REG		
Bit	R/W	Default/Hex	Description		
			DATA1_CRC		
			Data[1] CRC		
31:0	R	0	CRC in data[1] from card/eMMC.In DDR mode, the higher 16 bits indicate the		
			CRC of even data, and the lower 16bits indicate the CRC of odd data. In SDR		
			mode, the higher of 16 bits indicate the CRC of all data.		

5.2.7.36. SD Data0 CRC Register (Default Value: 0x00000000)

Offset: 0x0130	Register Name: DATA0_CRC_REG
----------------	------------------------------

Bit	R/W	Default/Hex	Description
			DATAO_CRC
			Data[0] CRC
31:0	R	0	CRC in data[0] from card/eMMC.In DDR mode, the higher 16 bits indicate the
			CRC of even data, and the lower 16bits indicate the CRC of odd data. In SDR
			mode, the higher of 16 bits indicate the CRC of all data.

5.2.7.37. SD CRC Status Register (Default Value: 0x00000000)

Offset: 0x0	134		Register Name:CRC_STA_REG
Bit	R/W	Default/Hex	Description
31:3	/	/	/
			CRC_STA
			CRC Status
2:0	R	0	CRC status from card/eMMC in write operation
			Positive CRC status token:3'b010
			Negative CRC status token:3'b101

5.2.7.38. SD FIFO Register (Default Value: 0x00000000)

Offset: 0x0200			Register Name: SD_FIFO_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0	TX/RX_FIFO Data FIFO

Chapter 6 Image

This section describes the image of S3:

- CS
- MIPI CSI2

6.1. CSI

6.1.1. Overview

The CSI includes the following features:

CSI

- Support 8/10/12-bit yuv422 CMOS sensor interface
- Support 8-bit BT656 interface, support CCIR656 protocol for NTSC and PAL
- Support ITU-R BT1120 protocol for HD-CIF system
- Support 16bit interface with separate syncs
- Support parralel interface still capture resolution up to 5M, video capture resolution up to 1080p@30fps
- Support MIPI interface still capture resolution up to 8M, video capture resolution up to 1080p@60fps
- Support PIP(picture in picture)

CCI

- Compatible with i2c transmission in 7 bit slave ID + 1 bit R/W
- Automatic transmission
- 0/8/16/32-bit register address supported
- 8/16/32-bit data supported
- 64bytes-FIFO input CCI data supported
- Synchronized with CSI signal and delay trigger supported
- Repeated transmission with sync signal supported

6.1.2. Functionalities Description

6.1.2.1. Block Diagram

Figure 6-1. CSI Block Diagram

Figure 6-2. CCI Block Diagram

6.1.2.2. CSI FIFO Distribution

Interface	YUYV422 Interleaved/RAW	BT656 /BT1120	MIPI Interface
		Interface	

Input	YUV422		Raw	YUV422		YUV422/YUV420		Raw
format								
Output	Planar	UV	Raw/RGB	Planar	UV	Planar	UV	Pass-Through
format		combine						
		d/ MB	/PRGB		combined/		combine d/	/Padding
					MB			
							MB	
CH0_FIFO0	Y pixel	Y pixel	All pixels	Υ	Υ	Υ	Υ	All pixels data
	data	data	data					
CH0_FIFO1	Cb (U)	Cb (U) Cr	-	Cb (U)	CbCr	Cb (U)	CbCr	-
	pixel	(V)						
	data				(UV)		(UV)	
		pixel						
		data						
CH0_FIFO2	Cr (V)	-	-	Cr (V)	-	Cr (V)	-	-
	pixel							
	data							

6.1.2.3. Pin Mapping

				1
pin	8bit	10bit	12bit	16bit
Р0	-	-	D0	Y0
P1	-	-	D1	Y1
P2	-	D0	D2	Y2
Р3	-	D1	D3	Y3
P4	D0	D2	D4	Y4
P5	D1	D3	D5	Y5
P6	D2	D4	D6	Y6
P7	D3	D5	D7	Y7
P8	D4	D6	D8	CO
P9	D5	D7	D9	C1
P10	D6	D8	D10	C2
P11	D7	D9	D11	C3
P12	-	-	-	C4
P13	-	-	-	C5
P14	-	-	-	C6
P15	-	-	-	C7

6.1.2.4. Timing

Figure 6-3. 8/10/12-bit CMOS Sensor Interface Timing (clock rising edge sample.vsync valid = positive,hsycn valid = positive)

Figure 6-4. 16-bit YCbCr4:2:2 with separate syncs Timing (clock rising edge sample.vsync valid = positive,hsycn valid = positive)

Figure 6-5. 16-bit YCbCr4:2:2 with embedded syncs(BT1120) Timing

Figure 6-6. 8-bit YCbCr4:2:2 with embedded syncs(BT656) Timing

6.1.2.5. Bit Definition

CCIR656 Header Data Bit Definition:

Data Bit	First Word(0xFF)	Second Word(0x00)	Third Word(0x00)	Fourth Word
CS D[9] (MSB)	1	0	0	1
CS D[8]	1	0	0	F
CS D[7]	1	0	0	V
CS D[6]	1	0	0	Н
CS D[5]	1	0	0	P3
CS D[4]	1	0	0	P2
CS D[3]	1	0	0	P1
CS D[2]	1	0	0	P0
CS D[1]	х	х	х	х
CS D[0]	х	Х	Х	Х

Note:

For compatibility with 8-bit interface, CS D[1] and CS D[0] are not defined.

Decode	F	V	Н	Р3	P2	P1	P0
Field 1 start of active video (SAV)	0	0	0	0	0	0	0
Field 1 end of active video (EAV)	0	0	1	1	1	0	1
Field 1 SAV (digital blanking)	0	1	0	1	0	1	1
Field 1 EAV (digital blanking)	0	1	1	0	1	1	0
Field 2 SAV	1	0	0	0	1	1	1
Field 2 EAV	1	0	1	1	0	1	0
Field 2 SAV (digital blanking)	1	1	0	1	1	0	0
Field 2 EAV (digital blanking)	1	1	1	0	0	0	1

Multi-Channel:

Condition 656FVH Value				ue	SAV-EAV Code								
Field	\/ +ima a	11 +:	F	V		First	Casand	Consul Third		Fourth			
Field	V-time	H-time	Г	V	Н	FIRST	Second	Third	Ch1	Ch2	Ch3	Ch4	
EVEN	BLANK	EAV	1	1	1	0xFF	0x00	0x00	0xF0	0xF1	0xF2	0xF3	
EVEN	BLANK	SAV	1	1	0	0xFF	0x00	0x00	0xE0	0xE1	0xE2	0xE3	
EVEN	BLANK	EAV	1	0	1	0xFF	0x00	0x00	0xD0	0xD1	0xD2	0xD3	
EVEN	BLANK	SAV	1	0	0	0xFF	0x00	0x00	0xC0	0xC1	0xC2	0xC3	
ODD	BLANK	EAV	0	1	1	0xFF	0x00	0x00	0xB0	0xB1	0xB2	0xB3	
ODD	BLANK	SAV	0	1	0	0xFF	0x00	0x00	0xA0	0xA1	0xA2	0xA3	
ODD	ACTIVE	EAV	0	0	1	0xFF	0x00	0x00	0x90	0x91	0x92	0x93	
ODD	ACTIVE	SAV	0	0	0	0xFF	0x00	0x00	0x80	0x81	0x82	0x83	

6.1.3. CSI Register list

Module Name	Base Address
-------------	--------------

CSI0	0x01CB0000
CSI1	0x01CB4000

Register Name	Offset	Register name
CSI_EN_REG	0x0000	CSI Enable register
CSI_IF_CFG_REG	0x0004	CSI Interface Configuration Register
CSI_CAP_REG	0x0008	CSI Capture Register
CSI_SYNC_CNT_REG	0x000C	CSI Synchronization Counter Register
CSI_FIFO_THRS_REG	0x0010	CSI FIFO Threshold Register
CSI_BT656_HEAD_CFG_REG	0x0014	CSI BT656 Header Configuration Register
CSI_PTN_LEN_REG	0x0030	CSI Pattern Generation Length register
CSI_PTN_ADDR_REG	0x0034	CSI Pattern Generation Address register
CSI_VER_REG	0x003C	CSI Version Register
CSI_CO_CFG_REG	0x0044	CSI Channel_0 configuration register
CSI_CO_SCALE_REG	0x004C	CSI Channel_0 scale register
CSI_CO_FO_BUFA_REG	0x0050	CSI Channel_0 FIFO 0 output buffer-A address register
CSI_CO_F1_BUFA_REG	0x0058	CSI Channel_0 FIFO 1 output buffer-A address register
CSI_CO_F2_BUFA_REG	0x0060	CSI Channel_0 FIFO 2 output buffer-A address register
CSI_CO_CAP_STA_REG	0x006C	CSI Channel_0 status register
CSI_CO_INT_EN_REG	0x0070	CSI Channel_0 interrupt enable register
CSI_CO_INT_STA_REG	0x0074	CSI Channel_0 interrupt status register
CSI_CO_FLD1_VSIZE_REG	0x0078	CSI Channel_0 filed1 vertical size register
CSI_CO_HSIZE_REG	0x0080	CSI Channel_0 horizontal size register
CSI_CO_VSIZE_REG	0x0084	CSI Channel_0 vertical size register
CSI_CO_BUF_LEN_REG	0x0088	CSI Channel_0 line buffer length register
CSI_CO_FLIP_SIZE_REG	0x008C	CSI Channel_0 flip size register
CSI_CO_FRM_CLK_CNT_REG	0x0090	CSI Channel_0 frame clock counter register
CSI_CO_ACC_ITNL_CLK_CNT_REG	0x0094	CSI Channel_0 accumulated and internal clock counter register
CSI_CO_FIFO_STAT_REG	0x0098	CSI Channel_0 FIFO Statistic Register
CSI_CO_PCLK_STAT_REG	0x009C	CSI Channel_0 PCLK Statistic Register
CCI_CTRL	0x3000	CCI control register
CCI_CFG	0x3004	CCI transmission config register
CCI_FMT	0x3008	CCI packet format register
CCI_BUS_CTRL	0x300C	CCI bus control register
CCI_INT_CTRL	0x3014	CCI interrupt control register
CCI_LC_TRIG	0x3018	CCI line counter trigger register
CCI_FIFO_ACC	0x3100	CCI FIFO access register

6.1.4. CSI Register Description

6.1.4.1. CSI Enable Register (Default Value: 0x00000000)

Offset: 0x0000	Register Name: CSIO_EN_REG

Bit	R/W	Default/Hex	Description
31	/	/	/
30	R/W	0x0	VER_EN
			CSI Version Register Read Enable:
			0: Disable
			1: Enable
29:24	/	/	/
23:16	R/W	0x0	PTN_CYCLE
			Pattern generating cycle counter.
			The pattern in dram will be generated in cycles of PTN_CYCLE+1.
15:9	/	/	
8	R/W	0x0	SRAM_PWDN
			0: SRAM in normal
			1: SRAM in power down
7:5	/	/	/
4	R/W	0x0	PTN_START
			CSI Pattern Generating Start
			0: Finish
			other: Start
			Software write this bit to "1" to start pattern generating from DRAM. When
			finished, the hardware will clear this bit to "0" automatically. Generating
			cycles depends on PTN_CYCLE.
3	R/W	0x0	CLK_CNT_SPL
			Sampling time for clk counter per frame
			0: Sampling clock counter every frame done
			1: Sampling clock counter every vsync
2	R/W	0x0	CLK_CNT_EN
			clk count per frame enable
1	R/W	0x0	PTN_GEN_EN
			Pattern Generation Enable
0	R/W	0x0	CSI_EN
			Enable
			0: Reset and disable the CSI module
			1: Enable the CSI module

6.1.4.2. CSI Interface Configuration Register (Default Value: 0x00000000)

Offset: 0	Offset: 0x0004		Register Name: CSIO_IF_CFG_REG
Bit	R/W	Default/Hex	Description
31:28	/	/	
27:24	R/W	0x1	FIELD_DT_PCLK_SHIFT
			Only for vsync detected field mode, the odd field permitted pclk shift = 4*
			FIELD_DT_PCLK_SHIFT
23:22	/	/	/
21	R/W	0x0	SRC_TYPE
			Source type
			0: Progressed
			1: Interlaced
20	R/W	0x0	FPS_DS
			Fps down sample
			0: no down sample
			1: 1/2 fps, only receives the first frame every 2 frames

40	5.044		rici D
19	R/W	0x0	FIELD
			For YUV HV timing, Field polarity
			0: negative(field=0 indicate odd, field=1 indicate even)
			1: positive(field=1 indicate odd, field=0 indicate even)
			For BT656 timing, Field sequence
			0: Normal sequence (field 0 first)
			1: Inverse sequence (field 1 first)
18	R/W	0x1	VREF_POL
			Vref polarity
			0: negative
			1: positive
			This register is not apply to CCIR656 interface.
17	R/W	0x0	HERF_POL
			Href polarity
			0: negative
			1: positive
			This register is not apply to CCIR656 interface.
16	R/W	0x1	CLK_POL
			Data clock type
			0: active in rising edge
			1: active in falling edge
15:14	R/W	0x0	Field_DT_MODE (only valid when CSI_IF is YUV and source type is
			interlaced)
			00:by both field and vsync
			01:by field
			10:by vsync
			11:reserved
13	1	/	/
12:11	R/W	0x0	SEQ_8PLUS2
12.11	'', ''	- OXO	When select IF_DATA_WIDTH to be 8+2bit, odd/even pixel byte at
			CSI-D[11:4] will be rearranged to D[11:2]+2'b0 at the actual csi data bus
			according to these sequences:
			00: 6'bx+D[9:8], D[7:0]
			00: 6'bx+D[9:8], D[7:0] 01: D[9:2], 6'bx+D[1:0]
			00: 6'bx+D[9:8], D[7:0] 01: D[9:2], 6'bx+D[1:0] 10: D[7:0], D[9:8]+6'bx
10.8	P /W	0.0	00: 6'bx+D[9:8], D[7:0] 01: D[9:2], 6'bx+D[1:0] 10: D[7:0], D[9:8]+6'bx 11: D[7:0], 6'bx+D[9:8]
10:8	R/W	0x0	00: 6'bx+D[9:8], D[7:0] 01: D[9:2], 6'bx+D[1:0] 10: D[7:0], D[9:8]+6'bx 11: D[7:0], 6'bx+D[9:8] IF_DATA_WIDTH
10:8	R/W	0x0	00: 6'bx+D[9:8], D[7:0] 01: D[9:2], 6'bx+D[1:0] 10: D[7:0], D[9:8]+6'bx 11: D[7:0], 6'bx+D[9:8] IF_DATA_WIDTH 000: 8 bit data bus
10:8	R/W	0x0	00: 6'bx+D[9:8], D[7:0] 01: D[9:2], 6'bx+D[1:0] 10: D[7:0], D[9:8]+6'bx 11: D[7:0], 6'bx+D[9:8] IF_DATA_WIDTH 000: 8 bit data bus 001: 10 bit data bus
10:8	R/W	0x0	00: 6'bx+D[9:8], D[7:0] 01: D[9:2], 6'bx+D[1:0] 10: D[7:0], D[9:8]+6'bx 11: D[7:0], 6'bx+D[9:8] IF_DATA_WIDTH 000: 8 bit data bus 001: 10 bit data bus 010: 12 bit data bus
10:8	R/W	0x0	00: 6'bx+D[9:8], D[7:0] 01: D[9:2], 6'bx+D[1:0] 10: D[7:0], D[9:8]+6'bx 11: D[7:0], 6'bx+D[9:8] IF_DATA_WIDTH 000: 8 bit data bus 001: 10 bit data bus 010: 12 bit data bus 011: 8+2bit data bus
10:8	R/W	0x0	00: 6'bx+D[9:8], D[7:0] 01: D[9:2], 6'bx+D[1:0] 10: D[7:0], D[9:8]+6'bx 11: D[7:0], 6'bx+D[9:8] IF_DATA_WIDTH 000: 8 bit data bus 001: 10 bit data bus 010: 12 bit data bus 011: 8+2bit data bus 100:2x8bit data bus
			00: 6'bx+D[9:8], D[7:0] 01: D[9:2], 6'bx+D[1:0] 10: D[7:0], D[9:8]+6'bx 11: D[7:0], 6'bx+D[9:8] IF_DATA_WIDTH 000: 8 bit data bus 001: 10 bit data bus 010: 12 bit data bus 011: 8+2bit data bus 100:2x8bit data bus Other:reserved
10:8	R/W	0x0 0x0	00: 6'bx+D[9:8], D[7:0] 01: D[9:2], 6'bx+D[1:0] 10: D[7:0], D[9:8]+6'bx 11: D[7:0], 6'bx+D[9:8] IF_DATA_WIDTH 000: 8 bit data bus 001: 10 bit data bus 010: 12 bit data bus 011: 8+2bit data bus 100:2x8bit data bus Other:reserved MIPI_IF
			00: 6'bx+D[9:8], D[7:0] 01: D[9:2], 6'bx+D[1:0] 10: D[7:0], D[9:8]+6'bx 11: D[7:0], 6'bx+D[9:8] IF_DATA_WIDTH 000: 8 bit data bus 001: 10 bit data bus 010: 12 bit data bus 011: 8+2bit data bus 100:2x8bit data bus Other:reserved MIPI_IF MIPI Interface Enable:
			00: 6'bx+D[9:8], D[7:0] 01: D[9:2], 6'bx+D[1:0] 10: D[7:0], D[9:8]+6'bx 11: D[7:0], 6'bx+D[9:8] IF_DATA_WIDTH 000: 8 bit data bus 001: 10 bit data bus 010: 12 bit data bus 011: 8+2bit data bus 100:2x8bit data bus Other:reserved MIPI_IF MIPI Interface Enable: 0: CSI
7			00: 6'bx+D[9:8], D[7:0] 01: D[9:2], 6'bx+D[1:0] 10: D[7:0], D[9:8]+6'bx 11: D[7:0], 6'bx+D[9:8] IF_DATA_WIDTH 000: 8 bit data bus 001: 10 bit data bus 010: 12 bit data bus 011: 8+2bit data bus 100:2x8bit data bus Other:reserved MIPI_IF MIPI Interface Enable:
7 6:5	R/W	0x0	00: 6'bx+D[9:8], D[7:0] 01: D[9:2], 6'bx+D[1:0] 10: D[7:0], D[9:8]+6'bx 11: D[7:0], 6'bx+D[9:8] IF_DATA_WIDTH 000: 8 bit data bus 001: 10 bit data bus 010: 12 bit data bus 011: 8+2bit data bus 100:2x8bit data bus Other:reserved MIPI_IF MIPI Interface Enable: 0: CSI 1: MIPI /
7			00: 6'bx+D[9:8], D[7:0] 01: D[9:2], 6'bx+D[1:0] 10: D[7:0], D[9:8]+6'bx 11: D[7:0], 6'bx+D[9:8] IF_DATA_WIDTH 000: 8 bit data bus 001: 10 bit data bus 010: 12 bit data bus 011: 8+2bit data bus 100:2x8bit data bus Other:reserved MIPI_IF MIPI Interface Enable: 0: CSI 1: MIPI / CSI_IF
7 6:5	R/W	0x0	00: 6'bx+D[9:8], D[7:0] 01: D[9:2], 6'bx+D[1:0] 10: D[7:0], D[9:8]+6'bx 11: D[7:0], 6'bx+D[9:8] IF_DATA_WIDTH 000: 8 bit data bus 001: 10 bit data bus 010: 12 bit data bus 011: 8+2bit data bus 100:2x8bit data bus Other:reserved MIPI_IF MIPI Interface Enable: 0: CSI 1: MIPI / CSI_IF YUV:
7 6:5	R/W	0x0	00: 6'bx+D[9:8], D[7:0] 01: D[9:2], 6'bx+D[1:0] 10: D[7:0], D[9:8]+6'bx 11: D[7:0], 6'bx+D[9:8] IF_DATA_WIDTH 000: 8 bit data bus 001: 10 bit data bus 010: 12 bit data bus 011: 8+2bit data bus 100:2x8bit data bus 0ther:reserved MIPI_IF MIPI Interface Enable: 0: CSI 1: MIPI / CSI_IF YUV: 00000: YUYV422 Interleaved or RAW (All data in one data bus)
7 6:5	R/W	0x0	00: 6'bx+D[9:8], D[7:0] 01: D[9:2], 6'bx+D[1:0] 10: D[7:0], D[9:8]+6'bx 11: D[7:0], 6'bx+D[9:8] IF_DATA_WIDTH 000: 8 bit data bus 001: 10 bit data bus 010: 12 bit data bus 011: 8+2bit data bus 100:2x8bit data bus Other:reserved MIPI_IF MIPI Interface Enable: 0: CSI 1: MIPI / CSI_IF YUV:
7	R/W	0x0	00: 6'bx+D[9:8], D[7:0] 01: D[9:2], 6'bx+D[1:0] 10: D[7:0], D[9:8]+6'bx 11: D[7:0], 6'bx+D[9:8] IF_DATA_WIDTH 000: 8 bit data bus 001: 10 bit data bus 010: 12 bit data bus 011: 8+2bit data bus 100:2x8bit data bus 0ther:reserved MIPI_IF MIPI Interface Enable: 0: CSI 1: MIPI / CSI_IF YUV: 00000: YUYV422 Interleaved or RAW (All data in one data bus)

00100: YUYV422 Interleaved or RAW (All data in one data bus)
00101:YUV422 UV Combined (16 bit inrerface with embedded
syncs,BT1120)
Others: Reserved

6.1.4.3. CSI Capture Register (Default Value: 0x00000000)

Offset: (Offset: 0x0008		Register Name: CSIO_CAP_REG
Bit	R/W	Default/Hex	Description
31:6	/	/	/
5:2	R/W	0x0	CH0_CAP_MASK
			Vsync number masked before capture.
1	R/W	0x0	CH0_VCAP_ON
			Video capture control: Capture the video image data stream on channel 0.
			0: Disable video capture
			If video capture is in progress, the CSI stops capturing image data at the end
			of the current frame, and all of the current frame data is wrote to output
			FIFO.
			1: Enable video capture
			The CSI starts capturing image data at the start of the next frame.
0	R/W	0x0	CH0_SCAP_ON
			Still capture control: Capture a single still image frame on channel 0.
			0: Disable still capture.
			1: Enable still capture
			The CSI module starts capturing image data at the start of the next frame.
			The CSI module captures only one frame of image data. This bit is self
			clearing and always reads as a 0.

6.1.4.4. CSI Synchronization Counter Register (Default Value: 0x00000000)

Offset: 0x000C			Register Name: CSIO_SYNC_CNT_REG
Bit	R/W	Default/Hex	Description
31:24	/	/	/
23:0	R	0x0	SYNC_CNT
			The counter value between vsync of CSIO channel 0 and vsync of CSI1
			channel 0, using 24MHz.

6.1.4.5. CSI FIFO Threshold Register (Default Value: 0x040f0400)

Offset: 0x0010			Register Name: CSIO_FIFO_THRS_REG
Bit	R/W	Default/Hex	Description
31:29	/	/	1
28:26	R/W	0x1	FIFO_NEARLY_FULL_TH
			The threshold of FIFO being nearly full. Indicates that the ISP should stop writing. Only valid when ISP is enabled. 0~7:
			The smaller the value, the flag of FIFO being nearly full is easier to reach.
25:24	R/W	0x0	PTN_GEN_CLK_DIV
			Packet generator clock divider

23:16	R/W	0x0f	PTN_GEN_DLY
			Clocks delayed before pattern generating start.
15:12	/	/	/
11:00	R/W	0x400	FIFO_THRS
			When CSIO FIFO occupied memory exceed the threshold, dram frequency
			can not change.

6.1.4.6. CSI BT656 Header Configuration Register (Default Value: 0x03020100)

Offset: 0	x0014		Register Name: CSIO_ BT656_HEAD_CFG_REG
Bit	R/W	Default/Hex	Description
31:28	/	/	/
27:24	R/W	0x3	CH3_ID
			The low 4bit of BT656 header for channel 3
			Only valid in BT656 multi-channel mode
23:20	/	/	/
19:16	R/W	0x2	CH2_ID
			The low 4bit of BT656 header for channel 2
			Only valid in BT656 multi-channel mode
15:12	/	/	/
11:08	R/W	0x1	CH1_ID
			The low 4bit of BT656 header for channel 1
			Only valid in BT656 multi-channel mode
07:04	/	/	/
03:00	R/W	0x0	CH0_ID
			The low 4bit of BT656 header for channel 0
			Only valid in BT656 multi-channel mode

6.1.4.7. CSI Pattern Generation Length Register (Default Value: 0x00000000)

Offset: 0x0	030		Register Name: CSIO_PTN_LEN_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	PTN_LEN
			The pattern length in byte when generating pattern.

6.1.4.8. CSI Pattern Generation Address Register (Default Value: 0x00000000)

Offset: 0x	0034		Register Name: CSIO_PTN_ADDR_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	PTN_ADDR
			The pattern DRAM address when generating pattern.

6.1.4.9. CSI Version Register(Default Value: 0x00000000)

Offset: 0x003C			Register Name: CSIO_VER_REG
Bit	Bit R/W Default/Hex		Description
31:0	R	/	VER

Version of hardware circuit. Only can be read when version register read
enable is on.

6.1.4.10. CSI Channel_0 configuration Register (Default Value: 0x00300200)

Offset: 0x0044			Register Name: CSIO_CO_CFG_REG
Bit	R/W	Default/Hex	Description
31:24	R/W	0x0	PAD_VAL
			Padding value when OUTPUT_FMT is prgb888
			0x00~0xff
23:20	R/W	0x3	INPUT_FMT
			Input data format
			0000: RAW stream
			0001: reserved
			0010: reserved
			0011: YUV422
			0100: YUV420
			Others: reserved
19:16	R/W	0x0	OUTPUT_FMT
			Output data format
			When the input format is set RAW stream
			0000: field-raw-8
			0001: field-raw-10
			0010: field-raw-12
			0011: reserved
			0100: field-rgb565
			0101: field-rgb888
			0110: field-prgb888
			1000: frame-raw-8
			1001: frame-raw-10
			1010: frame-raw-12
			1011: reserved
			1100: frame-rgb565
			1101: frame-rgb888
			1110: frame-prgb888
			When the input format is set YUV422
			0000: field planar YCbCr 422
			0001: field planar YCbCr 420
			0010: frame planar YCbCr 420
			0011: frame planar YCbCr 422
			0100: field planar YCbCr 422 UV combined
			0101: field planar YCbCr 420 UV combined
			0110: frame planar YCbCr 420 UV combined
			0111: frame planar YCbCr 422 UV combined
			1000: field MB YCbCr 422
			1001: field MB YCbCr 420
			1010: frame MB YCbCr 420
			1011: frame MB YCbCr 422
			1100: field planar YCbCr 422 10bit UV combined
			1101: field planar YCbCr 420 10bit UV combined
			1110: Reserved
			1111: Reserved

When the input format is set YUV420 0000: Reserved 0001: field planar YCbCr 420 0010: frame planar YCbCr 420 0011: frame planar YCbCr 420 0011: frame planar YCbCr 420 0010: Reserved 0101: field planar YCbCr 420 UV combined 0110: frame planar YCbCr 420 UV combined 0110: frame planar YCbCr 420 UV combined 0111: Reserved 1000: Reserved 1001: field MB YCbCr 420 1010: frame MB YCbCr 420 1010: frame MB YCbCr 420 1010: frame planar YCbCr 420 1010: Reserved 1100: Reserved 1100: Reserved 1101: Reserved 1101: Reserved 1101: field planar YCbCr 420 10bit UV combined 1110: Reserved 1111: Reser				
				When the input format is set YUV420
0001: field planar YCbCr 420				
0010- frame planar YCbCr 420				
0011: Reserved 0100: Reserved 0100: Reserved 0101: field planar YCbCr 420 UV combined 0110: field planar YCbCr 420 UV combined 0110: Reserved 1001: field MB YCbCr 420 1000: Reserved 1001: field MB YCbCr 420 1001: field MB YCbCr 420 1001: Reserved 1100: Reserved 1100: Reserved 1101: Reserved 1101: Reserved 1101: Reserved 1101: Reserved 1111: R				
0100: Reserved 0101: field planar YCbCr 420 UV combined 0110: frame planar YCbCr 420 UV combined 0110: frame planar YCbCr 420 UV combined 1000: Reserved 1000: Reserved 1000: Reserved 1001: field MB YCbCr 420 1011: Reserved 1101: Reserved 1100: Reserved 1101: Reserved 1101: Reserved 1101: Reserved 1111: Reserved 1				·
0101: field planar YCbCr 420 UV combined 0110: frame planar YCbCr 420 UV combined 0111: Reserved 1000: Reserved 1001: field MB YCbCr 420 1001: field MB YCbCr 420 1001: field MB YCbCr 420 1001: Reserved 1101: Reserved 1101: Reserved 1101: Reserved 1101: Reserved 1101: Reserved 1101: Reserved 1111: R				
0110: frame planar YCbCr 420 UV combined 0111: Reserved 1001: field MB YCbCr 420 1010: frame MB YCbCr 420 1010: frame MB YCbCr 420 1010: Reserved 1100: Reserved 1111: Reserved 111: Reserved 1111: Reserved 111: R				
0111: Reserved 1000: Reserved 1000: Reserved 1000: field MB YCbCr 420 1010: field MB YCbCr 420 1011: Reserved 1100: Reserved 1100: Reserved 1100: Reserved 1101: Field planar YCbCr 420 10bit UV combined 1110: Reserved 1111: Reserved 111				·
1001: field MB YCbCr 420 1010: frame MB YCbCr 420 1010: frame MB YCbCr 420 1011: Reserved 1100: Reserved 1101: field planar YCbCr 420 10bit UV combined 1110: Reserved 1111: Reserved 111: Reserved 11: Reserved 111: Reserved 111: Reserved 111: Reserved 11:				•
1010: frame MB YCbCr 420 1011: Reserved 1100: Reserved 1100: Reserved 1101: field planar YCbCr 420 10bit UV combined 1110: Reserved 1111: Reserve				1000: Reserved
1011: Reserved 1100: Reserved 1100: Reserved 1100: field planar YCbCr 420 10bit UV combined 1110: Reserved 1111: Reserved 111: Reserved 11: Reserved 111:				1001: field MB YCbCr 420
1100: Reserved 1101: Rield planar YCbCr 420 10bit UV combined 11101: Reserved 1111: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved 1111: Reserved				1010: frame MB YCbCr 420
1101: field planar YCbCr 420 10bit UV combined 1110: Reserved 1111: Reserved 111: Reserved 1111: R				1011: Reserved
1110: Reserved 1111: Reserved 111: Reserved 11				1100: Reserved
1111: Reserved Others: reserved				1101: field planar YCbCr 420 10bit UV combined
Others: reserved 15:14				1110: Reserved
15:14 / / / / 13 R/W 0x0 VFLIP_EN Vertical flip enable When enabled, the received data will be arranged in vertical flip. 0:Disable 1:Enable 1:Enable Horizontal flip enable When enabled, the received data will be arranged in horizontal flip. 0:Disable 1:Enable 1:To: capturing with field 1. 0: capturing with field 2. 10: capturing with field 2. 10: capturing with field 2. 11: reserved 11: reserved 11: reserved 12: INPUT_SEQ 13: Input data sequence, only valid for YUV422 and YUV420 input format. 14: All data interleaved in one channel: 00: YUYV 01: YYYU 10: UYYY 11: VYUY Y and UV in separated channel: x0: UV x1: VU 7:00: 7 / / 7: 7 / 7: 7 / 7: 7 / / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / / 7: 7 /				1111: Reserved
15:14 / / / / 13 R/W 0x0 VFLIP_EN Vertical flip enable When enabled, the received data will be arranged in vertical flip. 0:Disable 1:Enable 1:Enable Horizontal flip enable When enabled, the received data will be arranged in horizontal flip. 0:Disable 1:Enable 1:To: capturing with field 1. 0: capturing with field 2. 10: capturing with field 2. 10: capturing with field 2. 11: reserved 11: reserved 11: reserved 12: INPUT_SEQ 13: Input data sequence, only valid for YUV422 and YUV420 input format. 14: All data interleaved in one channel: 00: YUYV 01: YYYU 10: UYYY 11: VYUY Y and UV in separated channel: x0: UV x1: VU 7:00: 7 / / 7: 7 / 7: 7 / 7: 7 / / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / 7: 7 / / / 7: 7 /				
13 R/W 0x0 VFLIP_EN Vertical flip enable When enabled, the received data will be arranged in vertical flip. 0:Disable 1:Enable 12 R/W 0x0 HFLIP_EN Horizontal flip enable When enabled, the received data will be arranged in horizontal flip. 0:Disable 1:Enable 11:10 R/W 0x0 FIELD_SEL Field selection. 00: capturing with field 1. 01: capturing with field 2. 10: capturing with field 2. 10: capturing with field 2. 10: capturing with either field. 11: reserved Input data sequence, only valid for YUV422 and YUV420 input format. All data interleaved in one channel: 00: YUYV 01: YVYV 10: UYVY 11: VYUY Y and UV in separated channel: x0: UV x1: VYUY Y and UV in separated channel: x0: UV x1: VYUY X X Y Y X X Y Y X X				Others: reserved
Vertical flip enable When enabled, the received data will be arranged in vertical flip. 0:Disable 1:Enable 12 R/W OxO HFLIP_EN Horizontal flip enable When enabled, the received data will be arranged in horizontal flip. 0:Disable 1:Enable 11:10 R/W OxO FIELD_SEL Field selection. 00: capturing with field 1. 01: capturing with field 2. 10: capturing with either field. 11: reserved 09:08 R/W Ox2 INPUT_SEQ Input data sequence, only valid for YUV422 and YUV420 input format. All data interleaved in one channel: 00: YUYV 01: YVYU 10: UVYY 11: VYUY Y and UV in separated channel: x0: UV x1: VU 07:02 / / / 01:00 R/W OxO MIN_SDR_WR_SIZE Minimum size of SDRAM block write 0: 256 bytes (if hflip is enable, always select 256 bytes) 1: 512 bytes 2: 1k bytes		/	/	
When enabled, the received data will be arranged in vertical flip. 0:Disable 1:Enable 12 R/W OxO HFLIP_EN Horizontal flip enable When enabled, the received data will be arranged in horizontal flip. 0:Disable 1:Enable 11:10 R/W OxO FIELD_SEL Field selection. 00: capturing with field 1. 01: capturing with either field. 11: reserved 09:08 R/W Ox2 INPUT_SEQ Input data sequence, only valid for YUV422 and YUV420 input format. All data interleaved in one channel: 00: YUYV 01: YYYU 10: UYVY 11: YVUY Y and UV in separated channel: x0: UV x1: VU 07:02 / / / 01:00 R/W OxO MIN_SDR_WR_SIZE Minimum size of SDRAM block write 0: 256 bytes (if hflip is enable, always select 256 bytes) 1: 512 bytes 2: 1k bytes	13	R/W	0x0	=
0:Disable 1:Enable 12 R/W 0x0 HFLIP_EN Horizontal flip enable When enabled, the received data will be arranged in horizontal flip. 0:Disable 1:Enable 11:10 R/W 0x0 FIELD_SEL Field selection. 00: capturing with field 1. 01: capturing with field 2. 10: capturing with either field. 11: reserved 09:08 R/W 0x2 INPUT_SEQ Input data sequence, only valid for YUV422 and YUV420 input format. All data interleaved in one channel: 00: YUYV 01: YVYV 11: VYUY Y and UV in separated channel: x0: UV x1: VU 07:02 / / / 01:00 R/W 0x0 MIN_SDR_WR_SIZE Minimum size of SDRAM block write 0: 256 bytes (if hflip is enable, always select 256 bytes) 1: 512 bytes 2: 1k bytes				·
1:Enable 12 R/W 0x0 HFLIP_EN Horizontal flip enable When enabled, the received data will be arranged in horizontal flip. 0:Disable 1:Enable 11:10 R/W 0x0 FIELD_SEL Field selection. 00: capturing with field 1. 01: capturing with field 2. 10: capturing with field 2. 10: capturing with either field. 11: reserved 11:10 R/W 0x2 INPUT_SEQ Input data sequence, only valid for YUV422 and YUV420 input format. All data interleaved in one channel: 00: YUYV 01: YVYU 10: UVYY 11: VYUY Y and UV in separated channel: x0: UV x1: VU 07:02 / / / 01:00 R/W 0x0 MIN_SDR_WR_SIZE Minimum size of SDRAM block write 0: 256 bytes (if hflip is enable, always select 256 bytes) 1: 512 bytes 2: 1k bytes				
12 R/W 0x0 HFLIP_EN Horizontal flip enable When enabled, the received data will be arranged in horizontal flip. 0:Disable 1:Enable 11:10 R/W 0x0 FIELD_SEL Field selection. 00: capturing with field 1. 01: capturing with field 2. 10: capturing with either field. 11: reserved 09:08 R/W 0x2 INPUT_SEQ Input data sequence, only valid for YUV422 and YUV420 input format. All data interleaved in one channel: 00: YUYV 01: YVYU 10: UYVY 11: VYUY Y and UV in separated channel: x0: UV x1: VU 07:02 / / / 01:00 R/W 0x0 MIN_SDR_WR_SIZE Minimum size of SDRAM block write 0: 256 bytes (if hflip is enable, always select 256 bytes) 1: 512 bytes 2: 1k bytes				
Horizontal flip enable When enabled, the received data will be arranged in horizontal flip. 0:Disable 1:Enable 11:10 R/W Ox0 FIELD_SEL Field selection. 00: capturing with field 1. 01: capturing with field 2. 10: capturing with either field. 11: reserved Input_SEQ Input data sequence, only valid for YUV422 and YUV420 input format. All data interleaved in one channel: 00: YUYV 01: YVYU 10: UYVY 11: VYUY Y and UV in separated channel: x0: UV x1: VU O7:02 / / / O1:00 R/W Ox0 MIN_SDR_WR_SIZE Minimum size of SDRAM block write 0: 256 bytes (if hflip is enable, always select 256 bytes) 1: 512 bytes 2: 1k bytes				
When enabled, the received data will be arranged in horizontal flip. 0:Disable 1:Enable 11:10 R/W Ox0 FIELD_SEL Field selection. 00: capturing with field 1. 01: capturing with field 2. 10: capturing with either field. 11: reserved INPUT_SEQ Input data sequence, only valid for YUV422 and YUV420 input format. All data interleaved in one channel: 00: YUYV 01: YVYU 10: UYVY 11: VYUY Y and UV in separated channel: x0: UV x1: VU O7:02 / / / 01:00 R/W Ox0 MIN_SDR_WR_SIZE Minimum size of SDRAM block write 0: 256 bytes (if hflip is enable, always select 256 bytes) 1: 512 bytes 2: 1k bytes	12	R/W	0x0	
0:Disable 1:Enable 11:10 R/W 0x0 FIELD_SEL Field selection. 00: capturing with field 1. 01: capturing with either field. 11: reserved 09:08 R/W 0x2 INPUT_SEQ Input data sequence, only valid for YUV422 and YUV420 input format. All data interleaved in one channel: 00: YUYV 01: YVYU 10: UYVY 11: VYUY Y and UV in separated channel: x0: UV x1: VU 07:02 / / / 01:00 R/W 0x0 MIN_SDR_WR_SIZE Minimum size of SDRAM block write 0: 256 bytes (if hflip is enable, always select 256 bytes) 1: 512 bytes 2: 1k bytes				·
1:Enable				
11:10 R/W 0x0 FIELD_SEL Field selection. 00: capturing with field 1. 01: capturing with field 2. 10: capturing with either field. 11: reserved INPUT_SEQ Input data sequence, only valid for YUV422 and YUV420 input format. All data interleaved in one channel: 00: YUYV 01: YVYU 10: UYVY 11: VYUY Y and UV in separated channel: x0: UV x1: VU 07:02 / / / 01:00 R/W 0x0 MIN_SDR_WR_SIZE Minimum size of SDRAM block write 0: 256 bytes (if hflip is enable, always select 256 bytes) 1: 512 bytes 2: 1k bytes				
Field selection. 00: capturing with field 1. 01: capturing with field 2. 10: capturing with either field. 11: reserved 09:08 R/W 0x2 INPUT_SEQ Input data sequence, only valid for YUV422 and YUV420 input format. All data interleaved in one channel: 00: YUYV 01: YVYU 10: UYVY 11: VYUY Y and UV in separated channel: x0: UV x1: VU 07:02 / / / 01:00 R/W 0x0 MIN_SDR_WR_SIZE Minimum size of SDRAM block write 0: 256 bytes (if hflip is enable, always select 256 bytes) 1: 512 bytes 2: 1k bytes	11 10	5 /14/	0.0	
00: capturing with field 1. 01: capturing with field 2. 10: capturing with either field. 11: reserved 09:08 R/W 0x2 INPUT_SEQ Input data sequence, only valid for YUV422 and YUV420 input format. All data interleaved in one channel: 00: YUYV 01: YVYU 10: UYVY 11: VYUY Y and UV in separated channel: x0: UV x1: VU 07:02 / / / 01:00 R/W 0x0 MIN_SDR_WR_SIZE Minimum size of SDRAM block write 0: 256 bytes (if hflip is enable, always select 256 bytes) 1: 512 bytes 2: 1k bytes	11:10	R/W	UXU	
09:08 R/W 0x2 INPUT_SEQ Input data sequence, only valid for YUV422 and YUV420 input format. All data interleaved in one channel: 00: YUYY 01: YVYU 10: UYVY 11: VYUY Y and UV in separated channel: x0: UV x1: VU 07:02 / / / 01:00 R/W 0x0 MIN_SDR_WR_SIZE Minimum size of SDRAM block write 0: 256 bytes (if hflip is enable, always select 256 bytes) 1: 512 bytes 2: 1k bytes				
10: capturing with either field. 11: reserved 09:08 R/W 0x2 INPUT_SEQ Input data sequence, only valid for YUV422 and YUV420 input format. All data interleaved in one channel: 00: YUYV 01: YVYU 10: UYVY 11: VYUY Y and UV in separated channel: x0: UV x1: VU 07:02 / / / 01:00 R/W 0x0 MIN_SDR_WR_SIZE Minimum size of SDRAM block write 0: 256 bytes (if hflip is enable, always select 256 bytes) 1: 512 bytes 2: 1k bytes				
11: reserved 09:08 R/W 0x2 INPUT_SEQ Input data sequence, only valid for YUV422 and YUV420 input format. All data interleaved in one channel: 00: YUYV 01: YVYU 10: UYVY 11: VYUY Y and UV in separated channel: x0: UV x1: VU 07:02 / / / 01:00 R/W 0x0 MIN_SDR_WR_SIZE Minimum size of SDRAM block write 0: 256 bytes (if hflip is enable, always select 256 bytes) 1: 512 bytes 2: 1k bytes				, -
09:08 R/W 0x2 INPUT_SEQ Input data sequence, only valid for YUV422 and YUV420 input format. All data interleaved in one channel: 00: YUYV 01: YVYU 10: UYVY 11: VYUY Y and UV in separated channel: x0: UV x1: VU 07:02 / 01:00 R/W 0x0 MIN_SDR_WR_SIZE Minimum size of SDRAM block write 0: 256 bytes (if hflip is enable, always select 256 bytes) 1: 512 bytes 2: 1k bytes				·
Input data sequence, only valid for YUV422 and YUV420 input format. All data interleaved in one channel: 00: YUYV 01: YVYU 10: UYVY 11: VYUY Y and UV in separated channel: x0: UV x1: VU 07:02 / / / MIN_SDR_WR_SIZE Minimum size of SDRAM block write 0: 256 bytes (if hflip is enable, always select 256 bytes) 1: 512 bytes 2: 1k bytes	00.00	D /\A/	0v2	
All data interleaved in one channel: 00: YUYV 01: YVYU 10: UYVY 11: VYUY Y and UV in separated channel: x0: UV x1: VU 07:02 / / / MIN_SDR_WR_SIZE Minimum size of SDRAM block write 0: 256 bytes (if hflip is enable, always select 256 bytes) 1: 512 bytes 2: 1k bytes	05.00	IN/ VV	UXZ	
00: YUYV 01: YVYU 10: UYVY 11: VYUY Y and UV in separated channel: x0: UV x1: VU 07:02 / / / 01:00 R/W 0x0 MIN_SDR_WR_SIZE Minimum size of SDRAM block write 0: 256 bytes (if hflip is enable, always select 256 bytes) 1: 512 bytes 2: 1k bytes				·
01: YVYU 10: UYVY 11: VYUY Y and UV in separated channel: x0: UV x1: VU 07:02 / / / 01:00 R/W 0x0 MIN_SDR_WR_SIZE Minimum size of SDRAM block write 0: 256 bytes (if hflip is enable, always select 256 bytes) 1: 512 bytes 2: 1k bytes				
10: UYVY 11: VYUY Y and UV in separated channel: x0: UV x1: VU 07:02 / / / 01:00 R/W 0x0 MIN_SDR_WR_SIZE Minimum size of SDRAM block write 0: 256 bytes (if hflip is enable, always select 256 bytes) 1: 512 bytes 2: 1k bytes				
11: VYUY Y and UV in separated channel: x0: UV x1: VU 07:02 / / / 01:00 R/W 0x0 MIN_SDR_WR_SIZE Minimum size of SDRAM block write 0: 256 bytes (if hflip is enable, always select 256 bytes) 1: 512 bytes 2: 1k bytes				
Y and UV in separated channel: x0: UV x1: VU 07:02 / / / 01:00 R/W 0x0 MIN_SDR_WR_SIZE Minimum size of SDRAM block write 0: 256 bytes (if hflip is enable, always select 256 bytes) 1: 512 bytes 2: 1k bytes				
x0: UV x1: VU 07:02 / / / 01:00 R/W 0x0 MIN_SDR_WR_SIZE Minimum size of SDRAM block write 0: 256 bytes (if hflip is enable, always select 256 bytes) 1: 512 bytes 2: 1k bytes				
x1: VU				
07:02 / / / 01:00 R/W 0x0 MIN_SDR_WR_SIZE Minimum size of SDRAM block write 0: 256 bytes (if hflip is enable, always select 256 bytes) 1: 512 bytes 2: 1k bytes				
01:00 R/W 0x0 MIN_SDR_WR_SIZE Minimum size of SDRAM block write 0: 256 bytes (if hflip is enable, always select 256 bytes) 1: 512 bytes 2: 1k bytes	07:02	/	/	/
Minimum size of SDRAM block write 0: 256 bytes (if hflip is enable, always select 256 bytes) 1: 512 bytes 2: 1k bytes	-	R/W	0x0	MIN SDR WR SIZE
0: 256 bytes (if hflip is enable, always select 256 bytes) 1: 512 bytes 2: 1k bytes				
1: 512 bytes 2: 1k bytes				
2: 1k bytes				
				· ·
3: 2k bytes				3: 2k bytes

6.1.4.11. CSI Channel_0 scale Register (Default Value: 0x00000000)

Offset: 0x004C			Register Name: CSIO_CO_SCALE_REG
Bit	R/W	Default/Hex	Description
31:01	/	/	/
00	R/W	0x0	QUART_EN
			When this bit is set to 1, input image will be decimated to quarter size. All
			input format are supported.

6.1.4.12. CSI Channel_0 FIFO 0 output buffer-A address Register (Default Value: 0x00000000)

Offset: 0x0	050		Register Name: CSIO_CO_FO_BUFA_REG
Bit	R/W	Default/Hex	Description
31:00	R/W	0x0	COFO_BUFA FIFO 0 output buffer-A address

6.1.4.13. CSI Channel_0 FIFO 1 output buffer-A address Register (Default Value: 0x00000000)

Offset: 0x0058			Register Name: CSIO_CO_F1_BUFA_REG
Bit	R/W	Default/Hex	Description
31:00	R/W	0x0	COF1_BUFA
			FIFO 1 output buffer-A address

6.1.4.14. CSI Channel_0 FIFO 2 output buffer-A address Register (Default Value: 0x00000000)

Offset: 0x0060			Register Name: CSIO_CO_F2_BUFA_REG
Bit	R/W	Default/Hex	Description
31:00	R/W	0x0	COF2_BUFA
			FIFO 2 output buffer-A address

6.1.4.15. CSI Channel_0 status Register (Default Value: 0x00000000)

Offset: 0	x006C		Register Name: CSIO_CO_CAP_STA_REG
Bit	R/W	Default/Hex	Description
31:03	/	/	
02	R	0x0	FIELD_STA
			The status of the received field
			0: Field 0
			1: Field 1
01	R	0x0	VCAP_STA
			Video capture in progress
			Indicates the CSI is capturing video image data (multiple frames). The bit is
			set at the start of the first frame after enabling video capture. When
			software disables video capture, it clears itself after the last pixel of the
			current frame is captured.

00	R	0x0	SCAP_STA
			Still capture in progress
			Indicates the CSI is capturing still image data (single frame). The bit is set at
			the start of the first frame after enabling still frame capture. It clears itself
			after the last pixel of the first frame is captured.
			For CCIR656 interface, if the output format is frame planar YCbCr 420 mode,
			the frame end means the field2 end, the other frame end means filed end.

6.1.4.16. CSI Channel_0 interrupt enable Register (Default Value: 0x00000000)

Offset: 0	x0070		Register Name: CSIO_CO_INT_EN_REG
Bit	R/W	Default/Hex	Description
31:08	/	/	/
07	R/W	0x0	VS_INT_EN
			vsync flag
			The bit is set when vsync come. And at this time load the buffer address for
			the coming frame. So after this irq come, change the buffer address could
			only effect next frame
06	R/W	0x0	HB_OF_INT_EN
			Hblank FIFO overflow
			The bit is set when 3 FIFOs still overflow after the hblank.
05	R/W	0x0	MUL_ERR_INT_EN
			Multi-channel writing error
			Indicates error has been detected for writing data to a wrong channel.
04	R/W	0x0	FIFO2_OF_INT_EN
			FIFO 2 overflow
			The bit is set when the FIFO 2 become overflow.
03	R/W	0x0	FIFO1_OF_INT_EN
			FIFO 1 overflow
			The bit is set when the FIFO 1 become overflow.
02	R/W	0x0	FIFOO_OF_INT_EN
			FIFO 0 overflow
			The bit is set when the FIFO 0 become overflow.
01	R/W	0x0	FD_INT_EN
			Frame done
			Indicates the CSI has finished capturing an image frame. Applies to video
			capture mode. The bit is set after each completed frame capturing data is
			writed to buffer as long as video capture remains enabled.
00	R/W	0x0	CD_INT_EN
			Capture done
			Indicates the CSI has completed capturing the image data.
			For still capture, the bit is set when one frame data has been wrote to
			buffer.
			For video capture, the bit is set when the last frame has been wrote to
			buffer after video capture has been disabled.
			For CCIR656 interface, if the output format is frame planar YCbCr 420 mode,
			the frame end means the field2 end, the other frame end means field end.

6.1.4.17. CSI Channel_0 interrupt status Register (Default Value: 0x00000000)

Offset: 0x0074	Register Name: CSIO_CO_INT_STA_REG

Bit	R/W	Default/Hex	Description
31:08	/	/	/
07	R/W	0x0	VS_PD
			vsync flag
06	R/W	0x0	HB_OF_PD
			Hblank FIFO overflow
05	R/W	0x0	MUL_ERR_PD
			Multi-channel writing error
04	R/W	0x0	FIFO2_OF_PD
			FIFO 2 overflow
03	R/W	0x0	FIFO1_OF_PD
			FIFO 1 overflow
02	R/W	0x0	FIFO0_OF_PD
			FIFO 0 overflow
01	R/W	0x0	FD_PD
			Frame done
00	R/W	0x0	CD_PD
			Capture done

6.1.4.18. CSI Channel_0 filed1 vertical size Register (Default Value: 0x01E00000)

Offset: 0	x0078		Register Name: CSIO_CO_FLD1_VSIZE_REG
Bit	R/W	Default/Hex	Description
31:29	/	/	
28:16	R/W	0x1E0	VER_LEN Valid line number of filed1,only valid when CSI_IF is YUV and source type is
15:13	/	/	interlaced. /
12:00	R/W	0x0	VER_START Vertical line start of filed1. data is valid from this line,only valid when CSI_IF is YUV and source type is interlaced.

6.1.4.19. CSI Channel_0 horizontal size Register (Default Value: 0x05000000)

Offset: 0x	0800		Register Name: CSIO_CO_INT_STA_REG
Bit	R/W	Default/Hex	Description
31:29	/	/	/
28:16	R/W	0x500	HOR_LEN
			Horizontal pixel unit length. Valid pixel of a line.
15:13	/	/	/
12:00	R/W	0x0	HOR_START
			Horizontal pixel unit start. Pixel is valid from this pixel.

6.1.4.20. CSI Channel_0 vertical size Register (Default Value: 0x01E00000)

Offset: 0x0084			Register Name: CSIO_CO_VSIZE_REG
Bit	Bit R/W Default/Hex		Description
31:29	/	/	

28:16	R/W	0x1E0	VER_LEN
			Vertical line length. Valid line number of a frame. Stand for line number of
			field0 when CSI_IF is YUV and source type is interlaced.
15:13	/	/	
12:00	R/W	0x0	VER_START
			Vertical line start. data is valid from this line. Stand for start line of field0
			when CSI_IF is YUV and source type is interlaced.

6.1.4.21. CSI Channel_0 buffer length Register (Default Value: 0x01400280)

Offset: 0x	8800		Register Name: CSIO_CO_BUF_LEN_REG
Bit	R/W	Default/Hex	Description
31:30	/	/	
29:16	R/W	0x140	BUF_LEN_C
			Buffer length of chroma C in a line. Unit is byte.
15:14	/	/	
13:00	R/W	0x280	BUF_LEN
			Buffer length of luminance Y in a line. Unit is byte.

6.1.4.22. CSI Channel_0 flip size Register (Default Value: 0x01E00280)

Offset: 0x0	008C		Register Name: CSIO_CO_FLIP_SIZE_REG
Bit	R/W	Default/Hex	Description
31:29	/	/	/
28:16	R/W	0x1E0	VER_LEN
			Vertical line number when in vflip mode.
15:13	/	/	
12:00	R/W	0x280	VALID_LEN
			Valid components of a line when in flip mode.

6.1.4.23. CSI Channel_0 frame clock counter Register (Default Value: 0x00000000)

Offset: 0x0090			Register Name: CSIO_CO_FRM_CLK_CNT_REG
Bit	R/W	Default/Hex	Description
31:24	/	/	/
23:00	R	0x0	FRM_CLK_CNT
			Counter value between every frame. For instant hardware frame rate statics.
			The internal counter is added by one every 24MHz clock cycle. When frame
			done or vsync comes, the internal counter value is sampled to
			FRM_CLK_CNT, and cleared to 0.

6.1.4.24. CSI Channel_0 accumulated and internal clock counter Register (Default Value: 0x00000000)

Offset: 0x0	0094		Register Name: CSIO_CO_ACC_ITNL_CLK_CNT_REG
Bit	Bit R/W Default/Hex		Description
31:24	R	0x0	ACC_CLK_CNT

			The accumulated value of FRM_CLK_CNT for software frame rate statics. Every interrupt of frame done, the software check this accumulated value and clear it to 0. If the ACC_CLK_CNT is larger than 1, the software has lost frame. When frame done or vsync comes, ACC_CLK_CNT = ACC_CLK_CNT + 1, and cleared to 0 when writing 0 to this register.
23:00	R	0x0	ITNL_CLK_CNT The instant value of internal frame clock counter. When frame done interrupt comes, the software can query this counter for judging whether it is the time for updating the double buffer address registers.

6.1.4.25. CSI Channel_0 FIFO Statistic Register (Default Value: 0x00000000)

Offset: 0x0098			Register Name: CSIO_CO_FIFO_STAT_REG
Bit	R/W	Default/Hex	Description
31:12	/	/	
11:00	R	0x0	FIFO_FRM_MAX
			Indicates the maximum depth of FIFO being occupied for whole frame.
			Update at every vsync or framedone.

6.1.4.26. CSI Channel_0 PCLK Statistic Register (Default Value: 0x00007FFF)

Offset: 0x009C			Register Name: CSIO_CO_PCLK_STAT_REG
Bit	R/W	Default/Hex	Description
31	/	/	/
30:16	R	0x0	PCLK_CNT_LINE_MAX
			Indicates maximum pixel clock counter value for each line.
			Update at every vsync or framedone.
15	/	/	
14:00	R	0x7fff	PCLK_CNT_LINE_MIN
			Indicates minimum pixel clock counter value for each line.
			Update at every vsync or framedone.

6.1.4.27. CCI Control Register (Default Value: 0x00000000)

Offset: 0x3000			Register Name: CCI_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SINGLE_TRAN
			0: Transmission idle
			1: Start single transmission
			Automatically cleared to '0' when finished. Abort current transmission
			immediately if changing from '1' to '0'. If slave not respond for the expected
			status over the time defined by TIMEOUT, current transmission will stop.
			PACKET_CNT will return the sequence number when transmission fail. All
			format setting and data will be loaded from registers and FIFO when
			transmission start.
30	R/W	0x0	REPEAT_TRAN
			0: transmission idle

29	R/W	0x0 0x0	1: repeated transmission When this bit is set to 1, transmission repeats when trigger signal (such as VSYNC/ VCAP done) repeats. If changing this bit from '1' to '0' during transmission, the current transmission will be guaranteed then stop. RESTART_MODE 0: RESTART 1: STOP+START Define the CCI action after sending register address. READ_TRAN_MODE 0: send slave_id+W 1: do not send slave_id+W
			Setting this bit to 1 if reading from a slave which register width is equal to
27:24	R	0x0	TRAN_RESULT 000: OK 001: FAIL Other: Reserved
23:16	R		CCI_STA 0x00: bus error 0x08: START condition transmitted 0x10: Repeated START condition transmitted 0x18: Address + Write bit transmitted, ACK received 0x20: Address + Write bit transmitted, ACK not received 0x28: Data byte transmitted in master mode, ACK received 0x30: Data byte transmitted in master mode, ACK not received 0x38: Arbitration lost in address or data byte 0x40: Address + Read bit transmitted, ACK received 0x48: Address + Read bit transmitted, ACK not received 0x50: Data byte received in master mode, ACK received 0x58: Data byte received in master mode, ACK not received 0x01: Timeout when sending 9th SCL clk Other: Reserved
15:2	/	/	/
1	R/W	0x0	SOFT_RESET 0: normal 1: reset
0	R/W	0x0	CCI_EN 0: Module disable 1: Module enable

6.1.4.28. CCI Transmission Configuration Register (Default Value: 0x10000000)

Offset: 0x3004			Register Name: CCI_CFG_REG
Bit	R/W	Default/Hex	Description
31:24	R/W	0x10	TIMEOUT_N
			When sending the 9th clock, assert fail signal when slave device did not
			response after N*FSCL cycles. And software must do a reset to CCI module
			and send a stop condition to slave.
23:16	R/W	0x00	INTERVAL
			Define the interval between each packet in 40*FSCL cycles. 0~255
15	R/W	0x0	PACKET_MODE
			Select where to load slave id / data width

			T .
			0: Compact mode
			1: Complete mode
			In compact mode, slave id/register width / data width will be loaded from
			CCI_FMT register, only address and data read from memory.
			In complete mode, they will be loaded from packet memory.
14:7	/	/	/
6:4	R/W	0x0	TRIG_MODE
			Transmit mode:
			000: Immediately, no trigger
			001: Reserved
			010: CSIO int trigger
			011: CSI1 int trigger
3:0	R/W	0x0	CSI_TRIG
			CSI Int trig signal select:
			0000: First HREF start
			0001: Last HREF done
			0010: Line counter trigger
			other: Reserved

6.1.4.29. CCI Packet Format Register (Default Value: 0x00110001)

Offset: 0x3008			Register Name: CCI_FMT_REG
Bit	R/W	Default/Hex	Description
31:25	R/W	0x0	SLV_ID
			7bit address
24	R/W	0x0	CMD
			0: write
			1: read
23:20	R/W	0x1	ADDR_BYTE
			How many bytes be sent as address
			0~15
19:16	R/W	0x1	DATA_BYTE
			How many bytes be sent/received as data
			1~15
			Normally use ADDR_DATA with 0_2, 1_1, 1_2, 2_1, 2_2 access mode. If
			DATA bytes is 0, transmission will not start. In complete mode, the
			ADDR_BYTE and DATA_BYTE is defined in a byte's high/low 4bit.
15:0	R/W	0x1	PACKET_CNT
			FIFO data be transmitted as PACKET_CNT packets in current format.
			Total bytes not exceed 32bytes.

6.1.4.30. CCI Bus Control Register (Default Value: 0x00002500)

Offset: 0x300C			Register Name: CCI_BUS_REG
Bit	R/W	Default/Hex	Description
31:16	R/W	0x0	DLY_CYC
			0~65535 FSCL cycles between each transmission
15	R/W	0x0	DLY_TRIG
			0: disable
			1: execute transmission after internal counter delay when triggered
14:12	R/W	0x2	CLK_N

			CCI bus sampling clock F0=24MHz/2^CLK_N
11:8	R/W	0x5	CLK_M
			CCI output SCL frequency is FSCL=F1/10=(F0/(CLK_M+1))/10
7	R	/	SCL_STA
			SCL current status
6	R	/	SDA_STA
			SDA current status
5	R/W	0x0	SCL_PEN
			SCL PAD enable
4	R/W	0x0	SDA_PEN
			SDA PAD enable
3	R/W	0x0	SCL_MOV
			SCL manual output value
2	R/W	0x0	SDA_MOV
			SDA manual output value
1	R/W	0x0	SCL_MOE
			SCL manual output en
0	R/W	0x0	SDA_MOE
			SDA manual output en

6.1.4.31. CCI Interrupt Control Register (Default Value: 0x00000000)

Offset: 0	Offset: 0x3014		Register Name: CCI_INT_CTRL_REG
Bit	R/W	Default/Hex	Description
31:18	/	/	1
17	R/W	0x0	S_TRAN_ERR_INT_EN
16	R/W	0x0	S_TRAN_COM_INT_EN
15:2	/	/	1
1	R/W	0x0	S_TRAN_ERR_PD
0	R/W	0x0	S_TRAN_COM_PD

6.1.4.32. CCI Line Counter Trigger Control Register (Default Value: 0x00000000)

Offset: 0x3018			Register Name: CCI_LC_REG
Bit	R/W	Default/Hex	Description
31:13	/	/	1
12:0	R/W	0x0	LN_CNT
			0~8191: line counter send trigger when 1st~8192th line is received.

6.1.4.33. CCI FIFO Acess Register (Default Value: 0x00000000)

Offset: 0x3100~0x313f		f	Register Name: CCI_FIFO_ACC_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	DATA_FIFO From 0x100 to 0x13f, CCI data fifo is 64bytes, used in fifo input mode. CCI transmission read/write data from/to fifo in byte.

6.2. MIPI CSI2

6.2.1. Overview

The MIPI CSI2 includes the following feature:

- MIPI CSI-2 Receiver as a slave without CCI (Camera Control Interface)
- Unidirectional Clock and Data Lane
- Standard CSI-2 protocol with ECC and CRC
- Supports format: YUV422-8bit/10bit,YUV420-8bit/10bit,RAW-8,RAW-10, RAW-12,RGB888,RGB565
- D-PHY with HS-RX, LP-TX, LP-RX
- 1,2,3,4 Data Lanes Configuration and up to 1Gbps per Lane in HS Transmission
- Maximum to 720p@30fps or 1080p@15fps with one data Lane in one channel
- Maximum to 1080p@30fps or 5M@15fps with two data Lanes in one channel
- Maximum to 1080p@60fps or 8M@24fps with four data Lanes in one channel
- Maximum to 4 data type interleaving in one channel

Chapter 7 Display

This chapter describes the S3 display system from two aspects:

- DE2.0
- TCON

The following figure shows the block diagram of display system:

Figure 7-1. Display System Block Diagram

7.1. DE 2.0

7.1.1. Overview

- Output size up to 1024x1024
- Support three alpha blending channel for main display
- Support four overlay layers in each channel, and has a independent scale
- Support potter-duff compatible blending operation
- Support input format YUV422/YUV420/YUV411/ARGB8888/XRGB8888/ARGB4444/ARGB1555/RGB 565

7.2. TCON

7.2.1. Overview

- Support LVDS interface with single link, up to 1024x768@60fps
- Support RGB interface with DE/SYNC mode, up to 1024x768@60fps
- Support serial RGB/dummy RGB/CCIR656 interface, up to 800x480@60fps
- Support i80 interface with 18/16/9/8 bit, support TE, up to 800x480@60fps
- Support pixel format: RGB888, RGB666 and RGB565
- Dither function from RGB666/RGB565 to RGB888
- Gamma correction with R/G/B channel independence
- 4 interrupts for programmer LCD output

7.2.2. Block Diagram

Figure 7-2. TCON Block Diagram

7.2.3. Functionalities Description

7.2.3.1. Panel Interface

HV_I/F(Sync+DE mode)

HV I/F is also known as Sync + DE mode, which is widely used in TFT LCD module for PMP/MP4 applications. Its signals are define as:

Main Signal	I/O type	Definition And Description	
Vsync	0	Vertical sync, indicates one new frame	
Hsync	0	Horizontal sync, indicate one new scan line	
DCLK	0	Dot clock, pixel data are sync by this clock	
LDE	0	LCD data enable	
LD[230]	0	18Bit RGB/YUV output from input FIFO for panel	

HV control signals are active low.

Figure 7-3. Panel Interface Odd/Even Field Vertial Timing

Figure 7-4. Panel Interface Even Field Vertial Timing

Figure 7-5. Parallel Mode Horizontal Timing

Figure 7-6. Serial Mode Horizontal Timing

CCIR output SAV/EAV sync signal

When in HV serial YUV output mode, it's timing is CCIR656/601 compatible. SAV add right before active area every line; EAV add right after active area every line.

It logic are:

F = "0" for Field 1 F = "1" for Field 2

V = "1" during vertical blanking

H = "0" at SAV H = "1" at EAV

P3–P0 = protection bits

P3 = V ⊕ H

 $P2 = F \oplus H$

 $P1 = F \oplus V$

 $P0 = F \oplus V \oplus F$

Where \oplus represents the exclusive-OR function

The 4 byte SAV/EAV sequences are:

8-bit Data	10-bit Data
------------	-------------

	D9 (MSB)	D8	D7	D6	D5	D4	D3	D2	D1	D0
	1	1	1	1	1	1	1	1	1	1
preamble	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
Status word	1	F	V	Н	Р3	P2	P1	P0	0	0

CPU_I/F

CPU I/F LCD panel is most common interface for small size, low resolution LCD panels. CPU control signals are active low.

Main Signal	I/O type	Definition And Description
CS	0	Chip select, active low
WR	0	Write strobe, active low
RD	0	Read strobe, active low
A1	0	Address bit, controlled by "LCD_CPUI/F" BIT26/25
D[230]	1/0	Digital RGB output signal

The following figure relationship between basic timing and CPU timing. WR is 180 degree delay of DCLK; CS is active when pixel data are valid; RD is always set to 1; A1 are set by "Lcd_CPUI/F".

When CPU I/F is in IDLE state, it can generate WR/RD timing by setting "Lcd_CPUI/F". CS strobe is one DCLK width, WR/RD strobe is half DCLK width.

LVDS_IF

Figure 7-9. NS Mode Timing

7.2.3.2. RGB gamma correction

Function: This module correct the RGB input data of DEO.

A 256*8*3 Byte register file is used to store the gamma table. The following is the layout:

Offset	Value				
0x400, 0x401, 0x402	{ B0[7:0], G0[7:0], R0[7:0] }				
0x404,	{ B1[7:0], G1[7:0], R1[7:0] }				
0x4FC	{ B255[7:0], G255[7:0], R255[7:0] }				

7.2.3.3. CEU module

Function: This module enhance color data from DEO .

R' = Rr*R + Rg*G + Rb*B + Rc G' = Gr*R + Gg*G + Gb*B + GcB' = Br*R + Bg*G + Bb*B + Bc

Note:

Rr, Rg, Rb, ,Gr, Gg, Gb, Br, Bg, Bb s13(-16,16)

Rc, Gc, Bc s19 (-16384, 16384)

R, G, B u8 [0-255]

R' have the range of [Rmin ,Rmax] G' have the range of [Rmin ,Rmax] B' have the range of [Rmin ,Rmax]

7.2.3.4. CMAP module

Function: This module map color data from DE0

Every 4 input pixels as an unit. an unit is divided into 12 bytes. Output byte can select one of those 12 bytes. Note that even line and odd line can be different, and output can be 12 bytes(4 pixels) or reduce to 6 bytes(2 pixels).

Input

r0(2)	r1(6)	r2(a)	r3(d)
g0(1)	g1(5)	g2(9)	g3(c)
b0(0)	b1(4)	b2(8)	b3(b)

Output

D23:16	odd0			
D15:08	odd0	odd1	odd2	odd3
D07:00	odd0			

In mode: 4 pixels

Out mode: 4 pixels/2 pixels

eve0	eve1	eve2	eve3
------	------	------	------

7.2.4. TCON Module Register List

Module Name	Base Address
TCON	0x01C0C000

Register Name	Offset	Description
TCON_GCTL_REG	0x000	TCON global control register
TCON_GINTO_REG	0x004	TCON global interrupt register0
TCON_GINT1_REG	0x008	TCON global interrupt register1
TCON0_FRM_CTL_REG	0x010	TCON FRM control register
TCON0_FRM_SEED_REG	0x014+N*0x04	TCON FRM seed register (N=0,1,2,3,4,5)
TCON0_FRM_TAB_REG	0x02C+N*0x04	TCON FRM table register (N=0,1,2,3)
TCON0_CTL_REG	0x040	TCON0 control register
TCON0_DCLK_REG	0x044	TCON0 data clock register
TCON0_BASIC0_REG	0x048	TCON0 basic timing register0
TCON0_BASIC1_REG	0x04C	TCON0 basic timing register1
TCON0_BASIC2_REG	0x050	TCON0 basic timing register2
TCON0_BASIC3_REG	0x054	TCON0 basic timing register3
TCON0_HV_IF_REG	0x058	TCON0 hv panel interface register
TCON0_CPU_IF_REG	0x060	TCON0 cpu panel interface register

TCON0_CPU_WR_REG	0x064	TCON0 cpu panel write data register
TCON0_CPU_RD0_REG	0x068	TCON0 cpu panel read data register0
TCON0_CPU_RD1_REG	0x06C	TCON0 cpu panel read data register1
TCON0_LVDS_IF_REG	0x084	TCON0 lvds panel interface register
TCON0_IO_POL_REG	0x088	TCON0 IO polarity register
TCON0_IO_TRI_REG	0x08C	TCON0 IO control register
TCON_ECC_FIFO_REG	0x0F8	TCON ECC FIFO register
TCON_DEBUG_REG	0x0FC	TCON debug register
TCON_CEU_CTL_REG	0x100	TCON CEU control register
TCON_CEU_COEF_MUL_REG	0x110+N*0x04	TCON CEU coefficient register0 (N=0,1,2,4,5,6,8,9,10)
TCON_CEU_COEF_ADD_REG	0x11C+N*0x10	TCON CEU coefficient register1 (N=0,1,2)
TCON_CEU_COEF_RANG_REG	0x140+N*0x04	TCON CEU coefficient register2 (N=0,1,2)
TCON0_CPU_TRI0_REG	0x160	TCON0 cpu panel trigger register0
TCON0_CPU_TRI1_REG	0x164	TCON0 cpu panel trigger register1
TCON0_CPU_TRI2_REG	0x168	TCON0 cpu panel trigger register2
TCON0_CPU_TRI3_REG	0x16C	TCON0 cpu panel trigger register3
TCON_CMAP_CTL_REG	0x180	TCON color map control register
TCON_CMAP_ODDO_REG	0x190	TCON color map odd line register0
TCON_CMAP_ODD1_REG	0x194	TCON color map odd line register1
TCON_CMAP_EVENO_REG	0x198	TCON color map even line register0
TCON_CMAP_EVEN1_REG	0x19C	TCON color map even line register1
TCON_SAFE_PERIOD_REG	0x1F0	TCON safe period register
TCON0_LVDS_ANA0_REG	0x220	TCON LVDS analog register0
TCON0_GAMMA_TABLE_REG	0x400-0x7FF	
TCON_TRI_FIFO_BIST_REG	0xFF8	
TCON_ECC_FIFO_BIST_REG	0xFFC	

7.2.5. TCON Module Register Description

7.2.5.1. TCON_GCTL_REG (Default Value: 0x00000000)

Offset: (0x0000		Register Name: TCON_GCTL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0	TCON_En
			0: disable
			1: enable
			When it's disabled, the module will be reset to idle state.
30	R/W	0	TCON_Gamma_En
			0: disable
			1: enable
29:0	1	/	

7.2.5.2. TCON_GINTO_REG (Default Value: 0x00000000)

Offset: 0x0004			Register Name: TCON_GINTO_REG
Bit	R/W	Default/Hex	Description
31	R/W	0	TCON0_Vb_Int_En
			0: disable
			1: enable
30	/	/	
29	R/W	0	TCON0_Line_Int_En
			0: disable
			1: enable
28	/	/	/1: enable
27	R/W	0	TCON0_Tri_Finish_Int_En
			0: disable
			1: enable
26:	R/W	0	TCON0_Tri_Counter_Int_En
			0: disable
			1: enable
25:16	/	/	
15	R/W	0	TCON0_Vb_Int_Flag
			Asserted during vertical no-display period every frame.
			Write 0 to clear it.
14	/	/	
13	R/W	0	TCON0_Line_Int_Flag
			trigger when SYO match the current TCONO scan line
			Write 0 to clear it.
12	/	/	
11	R/W	0	TCON0_Tri_Finish_Int_Flag
			trigger when cpu trigger mode finish
			Write 0 to clear it.
10	R/W	0	TCON0_Tri_Counter_Int_Flag
			trigger when tri counter reache this value
			Write 0 to clear it.
9	R/W	0	TCON0_Tri_Underflow_Flag
			only used in dsi video mode, tri when sync by dsi but not finish
			Write 0 to clear it.
8:0	/	/	

7.2.5.3. TCON_GINT1_REG (Default Value: 0x00000000)

Offset: 0	Offset: 0x0008		Register Name: TCON_GINT1_REG	
Bit	R/W	Default/Hex	Description	
31:28	/	/	/	
27:16	R/W	0	TCON0_Line_Int_Num	
			Scan line for TCON0 line trigger(including inactive lines)	
			Setting it for the specified line for trigger0.	
			Note: SY0 is writable only when LINE_TRG0 disable.	
15:0	/	/	/	

7.2.5.4. TCON0_TRM_CTL_REG (Default Value: 0x00000000)

Offset:	0x010		Register Name: TCON0_FRM_CTL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0	TCON0_Frm_En
			0:disable
			1:enable
30:7	/	/	/
6	R/W	0	TCON0_Frm_Mode_R
			0: 6bit frm output
			1: 5bit frm output
5	R/W	0	TCON0_Frm_Mode_G
			0: 6bit frm output
			1: 5bit frm output
4	R/W	0	TCON0_Frm_Mode_B
			0: 6bit frm output
			1: 5bit frm output
3:2	/	/	
1:0	R/W	0	TCON0_Frm_Test
			00: FRM
			01: half 5/6bit, half FRM
			10: half 8bit, half FRM
			11: half 8bit, half 5/6bit

7.2.5.5. TCON0_FRM_SEED_REG (Default Value: 0x00000000)

Offset: 0x014+N*0x04		1	Register Name: TCON0_FRM_SEED_REG
(N=0,1,2,3	(N=0,1,2,3,4,5)		
Bit	R/W	Default/Hex	Description
31:25	/	/	/
24:0	R/W	0	Seed_Value
			N=0: Pixel_Seed_R
			N=1: Pixel_Seed_G
			N=2: Pixel_Seed_B
			N=3: Line_Seed_R
			N=4: Line_Seed_G
			N=5: Line_Seed_B
			Note: avoid set it to 0

7.2.5.6. TCON0_FRM_TAB_REG (Default Value: 0x00000000)

Offset: 0x02C+N*0x04			Register Name: TCON0_FRM_TAB_REG
(N=0,1,2,3)			
Bit	R/W	Default/Hex	Description
31:0	R/W	0	Frm_Table_Value

7.2.5.7. TCON0_CTL_REG (Default Value: 0x00000000)

Offset: 0	x040		Register Name: TCON0_CTL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0	TCON0_En
			0: disable
			1: enable
			Note: It executes at the beginning of the first blank line of TCON0 timing.
30:29	/	/	
28	R/W	0	TCON0_Work_Mode
			0: normal
			1: dynamic freq
27:26	/	/	
25:24	R/W	0	TCON0_IF
			00: HV(Sync+DE)
			01: 8080 I/F
			1x:reserved
23	R/W	0	TCON0_RB_Swap
			0: default
			1: swap RED and BLUE data at FIFO1
22	/	/	
21	R/W	0	TCON0_FIFO1_Rst
			Write 1 and then 0 at this bit will reset FIFO 1
			Note: 1 holding time must more than 1 DCLK
20	/	/	1
19:9	/	/	
8:4	R/W	0	TCON0_Start_Delay
			STA delay
			NOTE: valid only when TCON0_EN == 1
3	/	/	/
2:0	R/W	0	TCON0_SRC_SEL:
			000: DE0
			001: reserved
			010: reserved
			011: reserved
			100: Test Data all 0
			101: Test Data all 1
			11x: reserved

7.2.5.8. TCON0_DCLK_REG (Default Value: 0x00000000)

Offset: 0x	Offset: 0x044		Register Name: TCON0_DCLK_REG
Bit	R/W	Default/Hex	Description
31:28	R/W	0	TCON0_Dclk_En
			LCLK_EN[3:0] :TCON0 clock enable
			4'h0, 'h4,4'h6,4'ha7:dclk_en=0;dclk1_en=0;dclk2_en=0;dclkm2_en=0;
			4'h1: dclk_en = 1; dclk1_en = 0; dclk2_en = 0; dclkm2_en = 0;
			4'h2: dclk_en = 1; dclk1_en = 0; dclk2_en = 0; dclkm2_en = 1;
			4'h3: dclk_en = 1; dclk1_en = 1; dclk2_en = 0; dclkm2_en = 0;
			4'h5: dclk_en = 1; dclk1_en = 0; dclk2_en = 1; dclkm2_en = 0;
			4'h8,4'h9,4'ha,4'hb,4'hc,4'hd,4'he,4'hf:
			dclk_en = 1;

			dclk1_en = 1; dclk2_en = 1;
27:7	1	1	dclkm2_en = 1;
	/	1	/
6:0	R/W	0	TCON0_Dclk_Div
			Tdclk = Tsclk * DCLKDIV
			Note:
			1.if dclk1&dclk2 used, DCLKDIV >=6
			2.if dclk only, DCLKDIV >=1

7.2.5.9. TCON0_BASIC0_REG (Default Value: 0x00000000)

Offset: 0	(048		Register Name: TCON0_BASIC0_REG
Bit	R/W	Default/Hex	Description
31:28	/	/	/
27:16	R/W	0	TCON0_X
			Panel width is X+1
15:12	/	/	/
11:0	R/W	0	TCON0_Y
			Panel height is Y+1

7.2.5.10. TCON0_BASIC1_REG (Default Value: 0x00000000)

Offset: 0x	04C		Register Name: TCON0_BASIC1_REG
Bit	R/W	Default/Hex	Description
31	/	/	/
30:29	/	/	/
28:16	R/W	0	HT
			Thcycle = (HT+1) * Tdclk
			Computation
			1) parallel:HT = X + BLANK
			Limitation:
			1) parallel :HT >= (HBP +1) + (X+1) +2
			2) serial 1: HT >= (HBP +1) + (X+1) *3+2
			3) serial 2: HT >= (HBP +1) + (X+1) *3/2+2
15:12	/	/	/
11:0	R/W	0	НВР
			horizontal back porch (in dclk)
			Thbp = (HBP +1) * Tdclk

7.2.5.11. TCON0_BASIC2_REG (Default Value: 0x00000000)

Offset: 0	x050		Register Name: TCON0_BASIC2_REG
Bit	R/W	Default/Hex	Description
31:29	/	/	/
28:16	R/W	0	VT
			TVT = (VT)/2 * Thsync
			Note: $VT/2 >= (VBP+1) + (Y+1) +2$
15:12	/	/	/

11:0	R/W	0	VBP
			Tvbp = (VBP +1) * Thsync

7.2.5.12. TCON0_BASIC3_REG (Default Value: 0x00000000)

Offset: 0	x054		Register Name: TCON0_BASIC3_REG
Bit	R/W	Default/Hex	Description
31:26	/	/	/
25:16	R/W	0	HSPW
			Thspw = (HSPW+1) * Tdclk
			Note: HT> (HSPW+1)
15:10	/	/	/
9:0	R/W	0	VSPW
			Tvspw = (VSPW+1) * Thsync
			Note: VT/2 > (VSPW+1)

7.2.5.13. TCON0_HV_IF_REG (Default Value: 0x00000000)

Offset: 0x058			Register Name: TCON0_HV_IF_REG
Bit	R/W	Default/Hex	Description
31:28	R/W	0	HV_Mode
			0000: 24bit/1cycle parallel mode
			1000: 8bit/3cycle RGB serial mode(RGB888)
			1010: 8bit/4cycle Dummy RGB(DRGB)
			1011: 8bit/4cycle RGB Dummy(RGBD)
			1100: 8bit/2cycle YUV serial mode(CCIR656)
27:26	R/W	0	RGB888_SM0
			serial RGB888 mode Output sequence at odd lines of the panel (line 1, 3, 5,
			7)
			00: R→G→B
			01: B→R→G
			10: G→B→R
			11: R→G→B
25:24	R/W	0	RGB888_SM1
			serial RGB888 mode Output sequence at even lines of the panel (line 2, 4, 6,
			8)
			00: R→G→B
			01: B→R→G
			10: G→B→R
			11: R→G→B
23:22	R/W	0	YUV_SM
			serial YUV mode Output sequence 2-pixel-pair of every scan line
			00: YUYV
			01: YVYU
			10: UYVY
24.22	5 /14/		11: VYUY
21:20	R/W	0	YUV EAV/SAV F line delay
			0:F toggle right after active video line
			1:delay 2 line(CCIR PAL)
			2:delay 3 line(CCIR NTSC)
			3:reserved

1 19⋅0	/	/	/
15.0	/	/	

7.2.5.14. TCON0_CPU_IF_REG (Default Value: 0x00000000)

te to panel.
·
g, pixels data keep being
- ' -
ect.
flag is '0'.

0: trigger mode disable	
1: trigger mode enable	

7.2.5.15. TCON0_CPU_WR_REG (Default Value: 0x00000000)

Offset: 0x0)64		Register Name: TCON0_CPU_WR_REG
Bit	R/W	Default/Hex	Description
31:24	/	/	/
23:0	W	0	Data_Wr
			data write on 8080 bus, launch a write operation on 8080 bus

7.2.5.16. TCON0_CPU_RD0_REG (Default Value: 0x00000000)

Offset: 0x0)68		Register Name: TCON0_CPU_RD0_REG
Bit	R/W	Default/Hex	Description
31:24	/	/	/
23:0	R	/	Data_Rd0
			data read on 8080 bus, launch a new read operation on 8080 bus

7.2.5.17. TCON0_CPU_RD1_REG (Default Value: 0x00000000)

Offset: 0x6	5C		Register Name: TCON0_CPU_RD1_REG
Bit	R/W	Default/Hex	Description
31:24	/	/	1
23:0	R	/	Data_Rd1
			data read on 8080 bus, without a new read operation on 8080 bus

7.2.5.18. TCON0_LVDS_IF_REG (Default Value: 0x00000000)

Offset:	Offset: 0x084		Register Name: TCON0_LVDS_IF_REG
Bit	R/W	Default/Hex	Description
31	R/W	0	TCON0_LVDS_En
			0: disable
			1: enable
30	/	/	
29	R/W	0	TCON0_LVDS_Even_Odd_Dir
			0: normal
			1: reverse
28	R/W	0	TCON0_LVDS_Dir
			1: normal
			2: reverse
			NOTE: LVDS direction
27	R/W	0	TCON0_LVDS_Mode
			0: NS mode
			1: JEIDA mode
26	R/W	0	TCON0_LVDS_BitWidth
			0: 24bit

			1: 18bit
25	R/W	0	TCON0_LVDS_DeBug_En
			0: disable
			1: enable
24	R/W	0	TCON0_LVDS_DeBug_Mode
			0: mode0 RANDOM DATA
			1: mode1 output CLK period=7/2 LVDS CLK period
23	R/W	0	TCON0_LVDS_Correct_Mode
			0: mode0
			1: mode1
22:21	/	/	/
20	R/W	0	TCON0_LVDS_Clk_Sel
			0: MIPI PLL
			1: TCON0 CLK
19:5	/	/	
4	R/W	0	TCON0_LVDS_CLK_Polarity
			0: reverse
			1: normal
3:0	R/W	0	TCON0_LVDS_Data_Polarity
i			0: reverse
			1: normal

7.2.5.19. TCON0_IO_POL_REG (Default Value: 0x00000000)

Offset: 0	x88		Register Name: TCON0_IO_POL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0	IO_Output_Sel
			0: normal output
			1: register output
			when set as '1', d[23:0], io0, io1,io3 sync to dclk
30:28	R/W	0	DCLK_Sel
			000: used DCLK0(normal phase offset)
			001: used DCLK1(1/3 phase offset)
			010: used DCLK2(2/3 phase offset)
			101: DCLK0/2 phase 0
			100: DCLK0/2 phase 90
			reserved
27	R/W	0	IO3_Inv
			0: not invert
			1: invert
26	R/W	0	IO2_Inv
			0: not invert
			1: invert
25	R/W	0	IO1_Inv
			0: not invert
			1: invert
24	R/W	0	IOO_Inv
			0: not invert
			1: invert
23:0	R/W	0	Data_Inv
			TCON0 output port D[23:0] polarity control, with independent bit control:
			Os: normal polarity

_		
I		1s, invert the specify output
		1s: invert the specify output

7.2.5.20. TCON0_IO_TRI_REG (Default Value: 0x0FFFFFFF)

Offset: 0)x08C		Register Name: TCON0_IO_TRI_REG
Bit	R/W	Default/Hex	Description
31:29	/	/	/
28	/	/	RGB_Endian
			0: normal
			1: bits_invert
27	R/W	1	IO3_Output_Tri_En
			1: disable
			0: enable
26	R/W	1	IO2_Output_Tri_En
			1: disable
			0: enable
25	R/W	1	IO1_Output_Tri_En
			1: disable
			0: enable
24	R/W	1	IOO_Output_Tri_En
			1: disable
			0: enable
23:0	R/W	0xFFFFFF	Data_Output_Tri_En
			TCON0 output port D[23:0] output enable, with independent bit control:
			1s: disable
			Os: enable

7.2.5.21. TCON_ECC_FIFO_REG (Default Value: 0x00000000)

Offset: 0x	0F8		Register Name: TCON_ECC_FIFO_REG
Bit	R/W	Default/Hex	Description
31	R/W	/	ECC_FIFO_BIST_EN
			0: disable
			1: enable
30	R/W	/	ECC_FIFO_ERR_FLAG
29:24	/	/	
23:16	R/W	/	ECC_FIFO_ERR_BITS
15:9	/	/	
8	R/W	0	ECC_FIFO_BLANK_EN
			0: disable ecc function in blanking
			1: enable ecc function in blanking
			ECC function is tent to trigged in blanking area at hv mode, set '0' when in
			hv mode
7:0	R/W	/	ECC_FIFO_SETTING
			Note: bit3 0 enable, 1 disable

7.2.5.22. TCON_DEBUG_REG (Default Value: 0x00000000)

Offset: 0x0FC	Register Name: TCON_DEBUG_REG
---------------	-------------------------------

Bit	R/W	Default/Hex	Description
31	R/W	/	TCON0_FIFO_Under_Flow
30	/	/	/
29	R	/	TCON0_Field_Polarity
			0: second field
			1: first field
28	/	/	/
27:16	R	/	TCON0_Current_Line
15:14	/	/	/
13	R/W	0	ECC_FIFO_Bypass
			0: used
			1: bypass
12:0	/	/	

7.2.5.23. TCON_CEU_CTL_REG (Default Value: 0x00000000)

Offset: 0	Offset: 0x100		Register Name: TCON_CEU_CTL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0	CEU_en
			0: bypass
			1: enable
30:0	/	/	

7.2.5.24. TCON_CEU_COEF_MUL_REG (Default Value: 0x00000000)

Offset: 0x110+N*0x04			Register Name: TCON_CEU_COEF_MUL_REG
(N=0,1,2,4,5,6,8,9,10)			
Bit	R/W	Default/Hex	Description
31:13	/	/	1
12:0	R/W	0	CEU_Coef_Mul_Value
			signed 13bit value, range of (-16,16)
			N=0: Rr
			N=1: Rg
			N=2: Rb
			N=4: Gr
			N=5: Gg
			N=6: Gb
			N=8: Br
			N=9: Bg
			N=10: Bb

7.2.5.25. TCON_CEU_COEF_ADD_REG (Default Value: 0x00000000)

Offset: 0x11C+N*0x10 (N=0,1,2))	Register Name: TCON_CEU_COEF_ADD_REG
Bit	R/W	Default/Hex	Description
31:19	/	/	/
18:0	R/W	0	CEU_Coef_Add_Value signed 19bit value, range of (-16384, 16384)

N=0: Rc
N=1: Gc
N=2: Bc

7.2.5.26. TCON_CEU_COEF_RANG_REG (Default Value: 0x00000000)

Offset: 0x140+N*0x04			Register Name: TCON_CEU_COEF_RANG_REG
(N=0,1,2)			
Bit	R/W	Default/Hex	Description
31:24	/	/	/
23:16	R/W	0	CEU_Coef _Range_Min
			unsigned 8bit value, range of [0,255]
15:8	/	/	/
7:0	R/W	0	CEU Coef _Range_Max
			unsigned 8bit value, range of [0,255]

7.2.5.27. TCON0_CPU_TRI0_REG (Default Value: 0x00000000)

Offset: 0x160			Register Name: TCON0_CPU_TRI0_REG
Bit	R/W	Default/Hex	Description
31:28	/	/	/
27:16	R/W	0	Block_Space
			should be set >20*pixel_cycle
15:12	/	/	/
11:0	R/W	0	Block_Size

7.2.5.28. TCON0_CPU_TRI1_REG (Default Value: 0x00000000)

Offset: 0x164			Register Name: TCON0_CPU_TRI1_REG
Bit	R/W	Default/Hex	Description
31:16	R	0	Block_Current_Num
15:0	R/W	0	Block_Num

7.2.5.29. TCON0_CPU_TRI2_REG (Default Value: 0x00200000)

Offset: 0x168			Register Name: TCON0_CPU_TRI2_REG
Bit	R/W	Default/Hex	Description
31:16	R/W	0x20	Start_Delay
			Tdly = (Start_Delay +1) * be_clk*8
15	R/W	0	Trans_Start_Mode
			0: ecc_fifo+tri_fifo
			1: tri_fifo
14:13	R/W	0	Sync_Mode
			0x: auto
			10:0
			11:1
12:0	R/W	0	Trans_Start_Set

7.2.5.30. TCON0_CPU_TRI3_REG (Default Value: 0x00000000)

Offset: 0	Offset: 0x16C		Register Name: TCON0_CPU_TRI3_REG
Bit	R/W	Default/Hex	Description
31:30	/	/	/
29:28	R/W	0	Tri_Int_Mode
			00: disable
			01: counter mode
			10: te rising mode
			11: te falling mode
			when set as 01, Tri_Counter_Int occur in cycle of
			(Count_N+1)×(Count_M+1)×4 dclk.
			when set as 10 or 11, io0 is map as TE input.
27:24	/	/	
23:8	R/W	0	Counter_N
7:0	R/W	0	Counter_M

7.2.5.31. TCON_CMAP_CTL_REG (Default Value: 0x00000000)

Offset:	0x180		Register Name: TCON_CMAP_CTL_REG	
Bit	R/W	Default/Hex	Description	
31	R/W	0	Color_Map_En	
			0: bypass	
			1: enable	
			This module only work when X is divided by 4	
30:1	/	/	/	
0	R/W	0	Out_Format	
			0: 4 pixel output mode: Out0 -> Out1 -> Out2 -> Out3	
			1: 2 pixel output mode: Out0 -> Out1	

7.2.5.32. TCON_CMAP_ODD0_REG (Default Value: 0x00000000)

Offset: 0	Offset: 0x190		Register Name: TCON_CMAP_ODD0_REG
Bit	R/W	Default/Hex	Description
31:16	R/W	0	Out_Odd1
15:0	R/W	0	Out_Odd0
			bit15-12: Reservd
			bit11-08: Out_Odd0[23:16]
			bit07-04: Out_Odd0[15:8]
			bit03-00: Out_Odd0[7:0]
			0x0: in_b0
			0x1: in_g0
			0x2: in_r0
			0x3: reservd
			0x4: in_b1
			0x5: in_g1
			0x6: in_r1
			0x7: reservd

0x8: in_b2
0x9: in_g2
0xa: in_r2
0xb: reservd
0xc: in_b3
0xd: in_g3
0xe: in_r3
0xf: reservd

7.2.5.33. TCON_CMAP_ODD1_REG (Default Value: 0x00000000)

Offset: 0x194			Register Name: TCON_CMAP_ODD1_REG
Bit	R/W	Default/Hex	Description
31:16	R/W	0	Out_Odd3
15:0	R/W	0	Out_Odd2

7.2.5.34. TCON_CMAP_EVENO_REG (Default Value: 0x00000000)

Offset: 0x198			Register Name: TCON_CMAP_EVENO_REG
Bit	R/W	Default/Hex	Description
31:16	R/W	0	Out_Even1
15:0	R/W	0	Out_Even0

7.2.5.35. TCON_CMAP_EVEN1_REG (Default Value: 0x00000000)

Offset: 0x19C			Register Name: TCON_CMAP_EVEN1_REG
Bit	R/W	Default/Hex	Description
31:16	R/W	0	Out_Even3
15:0	R/W	0	Out_Even2

7.2.5.36. TCON_SAFE_PERIOD_REG (Default Value: 0x00000000)

Offset: 0x1F0			Register Name: TCON_SAFE_PERIOD_REG
Bit	R/W	Default/Hex	Description
31:29	/	/	
28:16	R/W	0	Safe_Period_FIFO_Num
15:2	/	/	
1:0	R/W	0	Safe_Period_Mode
			0: unsafe
			1: safe
			2: safe at ecc_fifo_curr_num > safe_period_fifo_num
			3: safe at 2 and safe at sync active

7.2.5.37. TCON0_LVDS_ANA0_REG (Default Value: 0x00000000)

Offset: 0	x220		Register Name: TCON_LVDS_ANAO_REG
Bit	R/W	Default/Hex	Description
31	R/W	0	lvds0_en_mb
			enable the bias circuit of the LVDS_Ana module
30	R/W	0	lvds0_en_ldo
29:25	/	/	1
24	R/W	0	lvds0_en_drvc enable all circuits working when transmitting the data in channel clock of LVDS_tx0
23:20	R/W	0	lvds0_en_drv enable all circuits working when transmitting the data in channel<3:0> of LVDS_tx0
19	/	/	
18:17	R/W	0	lvds0_reg_c adjust current flowing through Rload of Rx to change the differential signals amplitude 0:250mV 1:300mV 2:350mV 3:400mV
16	R/W	0	lvds0_reg_denc choose data output or PLL test clock output in LVDS_tx
15:12	R/W	0	lvds0_reg_den choose data output or PLL test clock output in LVDS_tx
11:10	/	/	1
9:8	R/W	0	lvds0_reg_v adjust common mode voltage of the differential signals in five channels single signal high level: 0:1.1V 1:1.19V 2:1.3V 3:1.43V
7:6	/	/	/
5:4	R/W	0	lvds0_reg_pd fine adjust the slew rate of output data
3:2	/	/	/
1	R/W	0	lvds0_reg_pwslv adjust voltage amplitude of low power in LVDS_Ana
0	R/W	0	lvds0_reg_pwsmb adjust voltage amplitude of mbias voltage reference in LVDS_Ana

Chapter 8 Interfaces

This chapter describes the S3 interfaces, including:

- TWI
- SPI
- UART
- USB
- I2S/PCM
- EMAC

8.1. TWI

8.1.1. Overview

This TWI controller is designed to be used as an interface between CPU host and the serial TWI bus. It can support all the standard TWI transfer, including slave and master. The communication to the TWI bus is carried out on a byte-wise basis using interrupt or polled handshaking. This TWI controller can be operated in standard mode (100K bps) or fast-mode, supporting data rate up to 400K bps. Multiple masters and 10-bit addressing mode are supported for this specified application. General call addressing is also supported in slave mode.

The TWI Controller includes the following features:

- Software-programmable for slave or master
- Support Repeated START signal
- Multi-master systems supported
- Allow 10-bit addressing with TWI bus
- Performs arbitration and clock synchronization
- Own address and general call address detection
- Interrupt on address detection
- Support speeds up to 400Kbits/s ('fast mode')
- Allow operation from a wide range of input clock frequency

8.1.2. Timing Diagram

Data transferred are always in a unit of 8-bit (byte), followed by an acknowledge bit. The number of bytes that can be transmitted per transfer is unrestricted. Data is transferred in serial with the MSB first. Between each byte of data transfer, a receiver device will hold the clock line SCL low to force the transmitter into a wait state while waiting the response from microprocessor.

Data transfer with acknowledge is obligatory. The clock line is driven by the master all the time, including the acknowledge-related clock cycle, except for the SCL holding between each bytes. After sending each byte, the transmitter releases the SDA line to allow the receiver to pull down the SDA line and send an acknowledge signal (or leave it high to send a "not acknowledge") to the transmitter.

When a slave receiver doesn't acknowledge the slave address (unable to receive because of no resource available), the data line must be left high by the slave so that the master can then generate a STOP condition to abort the transfer. Slave receiver can also indicate not to want to send more data during a transfer by leave the acknowledge signal high. And the master should generate the STOP condition to abort the transfer.

Below diagram provides an illustration the relation of SDA signal line and SCL signal line on the TWI serial bus.

Figure 8-1 . TWI Timing Diagram

8.1.3. TWI Controller Special Requirement

8.1.3.1. TWI Pin List

Port Name	Direction	Description
TWI_SCL	IN/OUT	TWI Clock line
TWI_SDA	IN/OUT	TWI Serial Data line

8.1.3.2. TWI Controller Operation

There are four operation modes on the TWI bus which dictates the communications method. They are Master Transmit, Master Receive, Slave Transmit and Slave Receive. In general, CPU host controls TWI by writing commands and data to its registers. The TWI interrupts the CPU host for the attention each time a byte transfer is done or a START/STOP conditions is detected. The CPU host can also poll the status register for current status if the interrupt mechanism is not disabled by the CPU host.

When the CPU host wants to start a bus transfer, it initiates a bus START to enter the master mode by setting IM_STA bit in the 2WIRE_CNTR register to high (before it must be low). The TWI will assert INT line and INT_FLAG to indicate a completion for the START condition and each consequent byte transfer. At each interrupt, the micro-processor needs to check the 2WIRE_STAT register for current status. A transfer has to be concluded with STOP condition by setting M_STP bit high.

In Slave Mode, the TWI also constantly samples the bus and look for its own slave address during addressing cycles. Once a match is found, it is addressed and interrupt the CPU host with the corresponding status. Upon request, the CPU host should read the status, read/write 2WIRE_DATA data register, and set the 2WIRE_CNTR control register. After each byte transfer, a slave device always halt the operation of remote master by holding the next low pulse on SCL line until the microprocessor responds to the status of previous byte transfer or START condition.

8.1.4. TWI Controller Register List

Module Name	Base Address	
TWI0	0x01C2AC00	
TWI1	0x01C2B000	

Register Name	Offset	Description
TWI_ADDR	0x0000	TWI Slave address
TWI_XADDR	0x0004	TWI Extended slave address
TWI_DATA	0x0008	TWI Data byte
TWI_CNTR	0x000C	TWI Control register
TWI_STAT	0x0010	TWI Status register
TWI_CCR	0x0014	TWI Clock control register
TWI_SRST	0x0018	TWI Software reset
TWI_EFR	0x001C	TWI Enhance Feature register
TWI_LCR	0x0020	TWI Line Control register

8.1.5. TWI Controller Register Description

8.1.5.1. TWI Slave Address Register(Default Value: 0x00000000)

Offset: 0x	x00		Register Name: TWI_ADDR
Bit	R/W	Default/Hex	Description
31:8	/	/	
7:1	R/W	0	SLA Slave address T-bit addressing SLA6, SLA5, SLA4, SLA3, SLA2, SLA1, SLA0 10-bit addressing 1, 1, 1, 1, 0, SLAX[9:8]
0	R/W	0	GCE General call address enable 0: Disable 1: Enable

Notes:

For 7-bit addressing:

SLA6 – SLA0 is the 7-bit address of the TWI when in slave mode. When the TWI receives this address after a START condition, it will generate an interrupt and enter slave mode. (SLA6 corresponds to the first bit received from the TWI bus.) If GCE is set to '1', the TWI will also recognize the general call address (00h).

For 10-bit addressing:

When the address received starts with 11110b, the TWI recognizes this as the first part of a 10-bit address and if the next two bits match ADDR[2:1] (i.e. SLAX9 and SLAX8 of the device's extended address), it sends an ACK. (The device does not generate an interrupt at this point.) If the next byte of the address matches the XADDR register (SLAX7 – SLAX0), the TWI generates an interrupt and goes into slave mode.

8.1.5.2. TWI Extend Address Register(Default Value: 0x00000000)

Offset: 0x04			Register Name: TWI_XADDR
Bit	R/W	Default/Hex	Description
31:8	/	/	/
			SLAX
7:0	R/W	0	Extend Slave Address SLAX[7:0]

8.1.5.3. TWI Data Register(Default Value: 0x00000000)

Offset: 0x08			Register Name: TWI_DATA
Bit	R/W	Default/Hex	Description
31:8	/	/	/
7:0	R/W	0	TWI_DATA Data byte for transmitting or received

8.1.5.4. TWI Control Register(Default Value: 0x00000000)

Offset: 0)x0C		Register Name: TWI_CNTR
Bit	R/W	Default/Hex	Description
31:8	/	/	/
	,	•	INT_EN
			Interrupt Enable
_	5.444		1'b0: The interrupt line always low
7	R/W	0	1'b1: The interrupt line will go high when INT_FLAG is set.
			BUS_EN
			TWI Bus Enable
			1'b0: The TWI bus inputs ISDA/ISCL are ignored and the TWI Controller will
			not respond to any address on the bus
			1'b1: The TWI will respond to calls to its slave address – and to the general
6	R/W	0	call address if the GCE bit in the ADDR register is set.
U	IN/ VV	U	Notes: In master operation mode, this bit should be set to '1'
			M_STA
			Master Mode Start
			When M_STA is set to '1', TWI Controller enters master mode and will
			transmit a START condition on the bus when the bus is free. If the M_STA bit
			is set to '1' when the TWI Controller is already in master mode and one or
			more bytes have been transmitted, then a repeated START condition will be
			sent. If the M_STA bit is set to '1' when the TWI is being accessed in slave
			mode, the TWI will complete the data transfer in slave mode then enter master mode when the bus has been released.
5	R/W	0	The M_STA bit is cleared automatically after a START condition has been sent: writing a '0' to this bit has no effect.
			M_STP
			Master Mode Stop
			If M_STP is set to '1' in master mode, a STOP condition is transmitted on the
			TWI bus. If the M_STP bit is set to '1' in slave mode, the TWI will behave as
			if a STOP condition has been received, but no STOP condition will be
			transmitted on the TWI bus. If both M_STA and M_STP bits are set, the TWI
			will first transmit the STOP condition (if in master mode) then transmit the
	5 /14/		START condition.
4	R/W	0	The M_STP bit is cleared automatically: writing a '0' to this bit has no effect.
			INT_FLAG
			Interrupt Flag
			INT_FLAG is automatically set to '1' when any of 28 (out of the possible 29)
			states is entered (see 'STAT Register' below). The only state that does not set
			INT_FLAG is state F8h. If the INT_EN bit is set, the interrupt line goes high
			when IFLG is set to '1'. If the TWI is operating in slave mode, data transfer is
			suspended when INT_FLAG is set and the low period of the TWI bus clock
3	R/W	0	line (SCL) is stretched until '1' is written to INT_FLAG. The TWI clock line is
			then released and the interrupt line goes low.
			A_ACK
			Assert Acknowledge When A ACK is set to '1' an Acknowledge (low level on SDA) will be sent
			When A_ACK is set to '1', an Acknowledge (low level on SDA) will be sent
			during the acknowledge clock pulse on the TWI bus if: 1. Either the whole of a matching 7-bit slave address or the first or the
			second byte of a matching 10-bit slave address has been received.
			2. The general call address has been received and the GCE bit in the ADDR
			register is set to '1'.
2	R/W	0	3. A data byte has been received in master or slave mode.
			3.7. data byte has been received in master of slave mode.

			When A_ACK is '0', a Not Acknowledge (high level on SDA) will be sent when a data byte is received in master or slave mode. If A_ACK is cleared to '0' in slave transmitter mode, the byte in the DATA register is assumed to be the 'last byte'. After this byte has been transmitted, the TWI will enter state C8h then return to the idle state (status code F8h) when INT_FLAG is cleared. The TWI will not respond as a slave unless A ACK is set.
1:0	R/W	0	/

8.1.5.5. TWI Status Register(Default Value: 0x000000F8)

Offset: 0x10			Register Name: TWI_STAT
Bit	R/W	Default/Hex	Description
31:8	/	/	1
			STA
			Status Information Byte
			Code Status
			0x00: Bus error
			0x08: START condition transmitted
			0x10: Repeated START condition transmitted
			0x18: Address + Write bit transmitted, ACK received
			0x20: Address + Write bit transmitted, ACK not received
			0x28: Data byte transmitted in master mode, ACK received
			0x30: Data byte transmitted in master mode, ACK not received
			0x38: Arbitration lost in address or data byte
			0x40: Address + Read bit transmitted, ACK received
			0x48: Address + Read bit transmitted, ACK not received
			0x50: Data byte received in master mode, ACK transmitted
			0x58: Data byte received in master mode, not ACK transmitted
			0x60: Slave address + Write bit received, ACK transmitted
			0x68: Arbitration lost in address as master, slave address + Write bit
			received, ACK transmitted
			0x70: General Call address received, ACK transmitted
			0x78: Arbitration lost in address as master, General Call address received,
			ACK transmitted
			0x80: Data byte received after slave address received, ACK transmitted
			0x88: Data byte received after slave address received, not ACK transmitted
			0x90: Data byte received after General Call received, ACK transmitted
			0x98: Data byte received after General Call received, not ACK transmitted
			0xA0: STOP or repeated START condition received in slave mode
			0xA8: Slave address + Read bit received, ACK transmitted
			0xB0: Arbitration lost in address as master, slave address + Read bit received,
			ACK transmitted
			0xB8: Data byte transmitted in slave mode, ACK received
			0xC0: Data byte transmitted in slave mode, ACK not received
			0xC8: Last byte transmitted in slave mode, ACK received
			0xD0: Second Address byte + Write bit transmitted, ACK received
			0xD8: Second Address byte + Write bit transmitted, ACK not received
7.0	D	0,450	0xF8: No relevant status information, INT_FLAG=0
7:0	R	0xF8	Others: Reserved

8.1.5.6. TWI Clock Register(Default Value: 0x00000000)

Offset: 0x1	4		Register Name: TWI_CCR
Bit	R/W	Default/Hex	Description
31:7	/	/	/
6:3	R/W	0	CLK_M
			CLK_N
			The TWI bus is sampled by the TWI at the frequency defined by F0:
			Fsamp = F 0 = Fin / 2^CLK_N
			The TWI OSCL output frequency, in master mode, is F1 / 10:
			F1 = F0 / (CLK_M + 1)
			Foscl = F1 / 10 = Fin / (2^CLK_N * (CLK_M + 1)*10)
			For Example:
			Fin = 48Mhz (APB clock input)
			For 400kHz full speed 2Wire, CLK_N = 2, CLK_M=2
			F0 = 48M/2^2=12Mhz, F1= F0/(10*(2+1)) = 0.4Mhz
3.0	D /\A/	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	For 100Khz standard speed 2Wire, CLK_N=2, CLK_M=11
2:0	R/W	0	F0=48M/2^2=12Mhz, F1=F0/(10*(11+1)) = 0.1Mhz

8.1.5.7. TWI Soft Reset Register(Default Value: 0x00000000)

Offset: 0x1	8		Register Name: TWI_SRST
Bit	R/W	Default/Hex	Description
31:1	/	/	/
			SOFT_RST
			Soft Reset
	R/W		Write '1' to this bit to reset the TWI and clear to '0' when completing Soft
0	K/ W	0	Reset operation.

8.1.5.8. TWI Enhance Feature Register(Default Value: 0x00000000)

Offset: 0x1C			Register Name: TWI_EFR	
Bit	R/W	Default/Hex	Description	
31:2	/	/	/	
			DBN	
			Data Byte number follow Read Command Control	
			0— No Data Byte to be written after read command	
			1— Only 1 byte data to be written after read command	
			2— 2 bytes data can be written after read command	
0:1	R/W	0	3— 3 bytes data can be written after read command	

8.1.5.9. TWI Line Control Register(Default Value: 0x0000003A)

Offset: 0x20			Register Name: TWI_LCR
Bit R/W Default/Hex		Default/Hex	Description
31:6	/	/	1
5	R	1	SCL_STATE

			Company about a CTMU CCI
			Current state of TWI_SCL
			0 - low
			1 - high
			SDA_STATE
			Current state of TWI_SDA
			0 - low
4	R	1	1 - high
			SCL_CTL
			TWI_SCL line state control bit
			When line control mode is enabled (bit[2] set), value of this bit decide the
			output level of TWI_SCL
			0 – output low level
3	R/W	1	1 – output high level
			SCL_CTL_EN
			TWI_SCL line state control enable
			When this bit is set, the state of TWI_SCL is control by the value of bit[3].
			0-disable TWI_SCL line control mode
2	R/W	0	1-enable TWI_SCL line control mode
			SDA_CTL
			TWI_SDA line state control bit
			When line control mode is enabled (bit[0] set), value of this bit decide the
			output level of TWI_SDA
			0 – output low level
1	R/W	1	1 – output high level
			SDA_CTL_EN
			TWI_SDA line state control enable
			When this bit is set, the state of TWI_SDA is control by the value of bit[1].
			0-disable TWI_SDA line control mode
0	R/W	0	1-enable TWI_SDA line control mode

8.1.5.10. TWI DVFS Control Register(Default Value: 0x00000000)

Offset: 0)x24		Register Name: TWI_DVFSCR
Bit	R/W	Default/Hex	Description
31:3	/	/	/
			MS_PRIORITY
			CPU and DVFS BUSY set priority select
1	D ///	V 0	0: CPU has higher priority
2	R/W		1: DVFS has higher priority
1	D ()A/	///	CPU_BUSY_SET
1	R/W	0	CPU Busy set
0	D (\A)		DVFC_BUSY_SET
0	R/W	0	DVFS Busy set

Notes: This register is only implemented in TWIO.

8.2. SPI

8.2.1. Overview

The SPI is the Serial Peripheral Interface which allows rapid data communication with fewer software interrupts. It can interface with up to four slave external devices or one single external master. The SPI module contains one 64x8 receiver buffer (RXFIFO) and one 64x8 transmit buffer (TXFIFO). It can work at two modes: Master mode and Slave mode.

The SPI includes the following features:

- Full-duplex synchronous serial interface
- Master/Slave configurable
- Programmable clock granularity
- Up to four chip selects to support multiple peripherals
- 8-bit wide by 64-entry FIFO for both transmit and receive date
- Polarity and phase of the Chip Select (SPI_SS) are configurable

8.2.2. SPI Timing Diagram

The serial peripheral interface master uses the SPI_SCLK signal to transfer data in and out of the shift register. Data is clocked using any one of four programmable clock phase and polarity combinations.

During Phase 0, Polarity 0 and Phase 1, Polarity 1 operations, output data changes on the falling clock edge and input data is shifted in on the rising edge.

During Phase 1, Polarity 0 and Phase 0, Polarity 1 operations, output data changes on the rising edges of the clock and is shifted in on falling edges.

The POL defines the signal polarity when SPI_SCLK is in idle state. The SPI_SCLK is high level when POL is '1' and it is low level when POL is '0'. The PHA decides whether the leading edge of SPI_SCLK is used for setup or sample data. The leading edge is used for setup data when PHA is '1' and for sample data when PHA is '0'. The four kinds of modes are listed below:

SPI Mode POL PHA **Leading Edge Trailing Edge** 0 0 0 Rising, Sample Falling, Setup 0 1 1 Rising, Setup Falling, Sample 2 0 Rising, Setup 1 Falling, Sample 3 1 1 Failing, Setup Rising, Sample

Table 8-1. Four mode of SPI

Phase 0

Figure 8-2 . SPI Phase 0 Timing Diagram

Phase 1

Figure 8-3. SPI Phase 1 Timing Diagram

8.2.3. SPI Special Requirement

8.2.3.1. SPI Pin List

The direction of SPI pin is different in two work modes: Master Mode and Slave Mode.

Table 8-2. SPI Pin Description

Port Name	Width	Direction(M)	Direction(S)	Description
SPI_SCLK	1	OUT	IN	SPI Clock
SPI_MOSI	1	OUT	IN	SPI Master Output Slave Input Data Signal
SPI_MISO	1	IN	OUT	SPI Master Input Slave Output Data Signal
SPI_SS[3:0]	4	OUT	IN	SPI Chip Select Signal

8.2.3.2. SPI Module Clock Source and Frequency

The SPI Controller get three different clocks, users can select one of them to make SPI Clock Source. The SPI_SCLK can in the range from 3KHz to 100 MHz. The following table describes the clock sources for SPI Controller. Users can see *Clock Controller Uint(CCU)* in chapter 4 for clock setting, consiguration and gating information.

Table 8-3. SPI Clock Sources

Clock Name	Description
OSC24M	24MHz Crystal
PLL_PERIPHO	Peripheral Clock,default value is 600MHz
PLL_PERIPH1	Peripheral Clock,default value is 600MHz

8.2.4. SPI Register List

Module Name	Base Address
SPI	0x01C68000

Register Name	Offset	Description
SPI_GCR	0x04	SPI Global Control Register
SPI_TCR	0x08	SPI Transfer Control register
/	0x0c	reserved
SPI_IER	0x10	SPI Interrupt Control register
SPI_ISR	0x14	SPI Interrupt Status register
SPI_FCR	0x18	SPI FIFO Control register
SPI_FSR	0x1C	SPI FIFO Status register
SPI_WCR	0x20	SPI Wait Clock Counter register
SPI_CCR	0x24	SPI Clock Rate Control register
/	0x28	reserved
/	0x2c	reserved
SPI_MBC	0x30	SPI Burst Counter register
SPI_MTC	0x34	SPI Transmit Counter Register
SPI_BCC	0x38	SPI Burst Control register
SPI_TXD	0x200	SPI TX Data register
SPI_RXD	0x300	SPI RX Data register

8.2.5. SPI Register Description

8.2.5.1. SPI Global Control Register(Default Value: 0x00000080)

Offset: 0x04			Register Name: SPI_CTL
Bit	R/W	Default/Hex	Description
31	R/W	0	SRST Soft reset Write '1' to this bit will clear the SPI controller, and auto clear to '0' when reset operation completes Write '0' has no effect.
30:8	/	/	
7	R/W	1	TP_EN

			Transmit Pause Enable
			In master mode, it is used to control transmit state machine to stop smart
			burst sending when RX FIFO is full.
			1 – stop transmit data when RXFIFO full
			0 – normal operation, ignore RXFIFO status
			Note: Can't be written when XCH=1
6:2	/	/	/
			MODE
			SPI Function Mode Select
			0: Slave Mode
			1: Master Mode
1	R/W	0	Note: Can't be written when XCH=1
			EN
			SPI Module Enable Control
			0: Disable
0	R/W	0	1: Enable

8.2.5.2. SPI Transfer Control Register(Default Value: 0x00000087)

Offset: 0x08			Register Name: SPI_ INTCTL		
Bit	R/W	Default/Hex	Description		
31	R/W	0x0	XCH Exchange Burst In master mode it is used to start SPI burst 0: Idle 1: Initiates exchange. Write "1" to this bit will start the SPI burst, and will auto clear after finishing the bursts transfer specified by BC. Write "1" to SRST will also clear this bit. Write '0' to this bit has no effect. Note: Can't be written when XCH=1.		
30:14	/	/			
13	R/W	0x0	SDM Master Sample Data Mode 0 - Delay Sample Mode 1 - Normal Sample Mode In Normal Sample Mode, SPI master samples the data at the correct edge for each SPI mode; In Delay Sample Mode, SPI master samples data at the edge that is half cycle delayed by the correct edge defined in respective SPI mode.		
12	R/W	0x0	FBS First Transmit Bit Select 0: MSB first 1: LSB first Note: Can't be written when XCH=1.		
11	R/W	0x0	SDC Master Sample Data Control Set this bit to '1' to make the internal read sample point with a delay of half cycle of SPI_CLK. It is used in high speed read operation to reduce the error caused by the time delay of SPI_CLK propagating between master and slave. 0: normal operation, do not delay internal read sample point 1: delay internal read sample point Note: Can't be written when XCH=1.		

			DDCM
			RPSM
			Rapids mode select
10	R/W	0x0	Select Rapids mode for high speed write.
10	11,7 44	OXO	0: normal write mode
			1: rapids write mode
			Note: Can't be written when XCH=1.
			DDB
			Dummy Burst Type
9	R/W	0x0	0: The bit value of dummy SPI burst is zero
			1: The bit value of dummy SPI burst is one
			Note: Can't be written when XCH=1.
			DHB
			Discard Hash Burst
			In master mode it controls whether discarding unused SPI bursts
8	R/W	0x0	0: Receiving all SPI bursts in BC period
O	IX/ VV	OXO	1: Discard unused SPI bursts, only fetching the SPI bursts during dummy
			burst period. The bursts number is specified by TC.
			Note: Can't be written when XCH=1.
			SS_LEVEL
			When control SS signal manually (SPI_CTRL_REG.SS_CTRL==1), set this bit to
7	R/W	0x1	'1' or '0' to control the level of SS signal.
	1,711		0: set SS to low
			1: set SS to high
			Note: Can't be written when XCH=1.
			SS_OWNER
			SS Output Owner Select
			Usually, controller sends SS signal automatically with data together. When
_	R/W	0.40	this bit is set to 1, software must manually write SPI_CTL_REG.SS_LEVEL to 1
6	K/VV	0x0	or 0 to control the level of SS signal.
			0: SPI controller
			1: Software
			Note: Can't be written when XCH=1.
			SS_SEL
			SPI Chip Select
			Select one of four external SPI Master/Slave Devices
			00: SPI SSO will be asserted
5:4	R/W	0x0	01: SPI_SS1 will be asserted
			10: SPI SS2 will be asserted
			11: SPI_SS3 will be asserted
			Note: Can't be written when XCH=1.
			SSCTL SSCTL
			In master mode, this bit selects the output wave form for the SPI_SSx signal.
			•
3	R/W	0x0	Only valid when SS_OWNER = 0.
			0: SPI_SSx remains asserted between SPI bursts
			1: Negate SPI_SSx between SPI bursts
			Note: Can't be written when XCH=1.
			SPOL
			SPI Chip Select Signal Polarity Control
2	R/W	0x1	0: Active high polarity (0 = Idle)
			1: Active low polarity (1 = Idle)
			Note: Can't be written when XCH=1.
			CPOL
1	R/W	0x1	SPI Clock Polarity Control
	i	1	0: Active high polarity (0 = Idle)

			1: Active low polarity (1 = Idle)
			Note: Can't be written when XCH=1.
			СРНА
			SPI Clock/Data Phase Control
0	R/W	0x1	0: Phase 0 (Leading edge for sample data)
			1: Phase 1 (Leading edge for setup data)
			Note: Can't be written when XCH=1.

8.2.5.3. SPI Interrupt Control Register(Default Value: 0x00000000)

Offset: 0x10			Register Name: SPI_IER
Bit	R/W	Default/Hex	Description
31:14	R	0x0	Reserved.
13	R/W	0x0	SS_INT_EN SSI Interrupt Enable Chip Select Signal (SSx) from valid state to invalid state 0: Disable 1: Enable
12	R/W	0x0	TC_INT_EN Transfer Completed Interrupt Enable 0: Disable 1: Enable
11	R/W	0x0	TF_UDR_INT_EN TXFIFO under run Interrupt Enable 0: Disable 1: Enable
10	R/W	0x0	TF_OVF_INT_EN TX FIFO Overflow Interrupt Enable 0: Disable 1: Enable
9	R/W	0x0	RF_UDR_INT_EN RXFIFO under run Interrupt Enable 0: Disable 1: Enable
8	R/W	0x0	RF_OVF_INT_EN RX FIFO Overflow Interrupt Enable 0: Disable 1: Enable
7	R	0x0	Reserved.
6	R/W	0x0	TF_FUL_INT_EN TX FIFO Full Interrupt Enable 0: Disable 1: Enable
5	R/W	0x0	TX_EMP_INT_EN TX FIFO Empty Interrupt Enable 0: Disable 1: Enable
4	R/W	0x0	TX_ERQ_INT_EN TX FIFO Empty Request Interrupt Enable 0: Disable 1: Enable
3	R	0x0	Reserved

2	R/W	0x0	RF_FUL_INT_EN RX FIFO Full Interrupt Enable 0: Disable 1: Enable
1	R/W	0x0	RX_EMP_INT_EN RX FIFO Empty Interrupt Enable 0: Disable 1: Enable
0	R/W	0x0	RF_RDY_INT_EN RX FIFO Ready Request Interrupt Enable 0: Disable 1: Enable

8.2.5.4. SPI Interrupt Status Register(Default Value: 0x00000022)

Offset: 0x14			Register Name: SPI_INT_STA
Bit	R/W	Default/Hex	Description
31:14	/	0x0	
			SSI SS Invalid Interrupt When SSI is 1, it indicates that SS has changed from valid state to invalid
13	R/W	0	state. Writing 1 to this bit clears it.
			TC Transfer Completed In master mode, it indicates that all bursts specified by BC has been exchanged. In other condition, When set, this bit indicates that all the data in TXFIFO has been loaded in the Shift register, and the Shift register has shifted out all the bits. Writing 1 to this bit clears it. O: Busy
12	R/W	0	1: Transfer Completed
11	R/W	0	TF_UDF TXFIFO Underrun This bit is set when if the TXFIFO is underrun. Writing 1 to this bit clears it. 0: TXFIFO is not underrun 1: TXFIFO is underrun
10	R/W	0	TF_OVF TXFIFO Overflow This bit is set when if the TXFIFO is overflow. Writing 1 to this bit clears it. 0: TXFIFO is not overflow 1: TXFIFO is overflowed
			RX_UDF RXFIFO Underrun When set, this bit indicates that RXFIFO has underrun. Writing 1 to this bit
9	R/W	0	clears it. RX_OVF RXFIFO Overflow When set, this bit indicates that RXFIFO has overflowed. Writing 1 to this bit clears it. 0: RXFIFO is available.
8	R/W	0	1: RXFIFO has overflowed.
7	/	/	/
6	R/W	0	TX_FULL TXFIFO Full

			This bit is set when if the TXFIFO is full . Writing 1 to this bit clears it.
			0: TXFIFO is not Full
			1: TXFIFO is Full
			TX_EMP
			TXFIFO Empty
			This bit is set if the TXFIFO is empty. Writing 1 to this bit clears it.
			0: TXFIFO contains one or more words.
5	R/W	1	1: TXFIFO is empty
			TX_READY
			TXFIFO Ready
			0: TX_WL > TX_TRIG_LEVEL
			1: TX_WL <= TX_TRIG_LEVEL
			This bit is set any time if TX_WL <= TX_TRIG_LEVEL. Writing "1" to this bit
4	R/W	0	clears it. Where TX_WL is the water level of RXFIFO
3	/	/	reserved
			RX_FULL
			RXFIFO Full
			This bit is set when the RXFIFO is full . Writing 1 to this bit clears it.
			0: Not Full
2	R/W	0	1: Full
			RX_EMP
			RXFIFO Empty
			This bit is set when the RXFIFO is empty. Writing 1 to this bit clears it.
			0: Not empty
1	R/W	1	1: empty
			RX_RDY
			RXFIFO Ready
			0: RX_WL < RX_TRIG_LEVEL
			1: RX_WL >= RX_TRIG_LEVEL
			This bit is set any time if RX_WL >= RX_TRIG_LEVEL. Writing "1" to this bit
0	R/W	0	clears it. Where RX_WL is the water level of RXFIFO.

8.2.5.5. SPI FIFO Control Register(Default Value: 0x00400001)

Offset: 0x18			Register Name: SPI_FCR
Bit	R/W	Default/Hex	Description
			TX_FIFO_RST
			TX FIFO Reset
			Write '1' to this bit will reset the control portion of the TX FIFO and auto
31	R/W	0	clear to '0' when completing reset operation, write to '0' has no effect.
			TF_TEST_ENB
			TX Test Mode Enable
			0: disable
			1: enable
			Note: In normal mode, TX FIFO can only be read by SPI controller, write '1'
			to this bit will switch TX FIFO read and write function to AHB bus. This bit is
			used to test the TX FIFO, don't set in normal operation and don't set
			RF_TEST and TF_TEST at the same time.
30	R/W	0	
29:26	/	/	/
25	/	/	/
24	D /\A/	/W 0x0	TF_ DRQ_EN
24	11,7 VV		TX FIFO DMA Request Enable

			0: Disable
			1: Enable
22.16	R/W	0x40	TX_TRIG_LEVEL
23:16	K/ VV	UX4U	TX FIFO Empty Request Trigger Level
			RF_RST
			RXFIFO Reset
15	R/W	0x0	Write '1' to this bit will reset the control portion of the receiver FIFO, and
			auto clear to '0' when completing reset operation, write '0' to this bit has no
			effect.
			RF_TEST
			RX Test Mode Enable
			0: Disable
14	R/W	0x0	1: Enable
14	117 VV	OXO	Note: In normal mode, RX FIFO can only be written by SPI controller, write
			'1' to this bit will switch RX FIFO read and write function to AHB bus. This bit
			is used to test the RX FIFO, don't set in normal operation and don't set
			RF_TEST and TF_TEST at the same time.
13:10	R	0x0	Reserved
			RX_DMA_MODE
9	R/\/	R/W 0x0	SPI RX DMA Mode Control
	117 **		0: Normal DMA mode
			1: Dedicate DMA mode
		0x0	RF_ DRQ_EN
8	R/W		RX FIFO DMA Request Enable
	11,700		0: Disable
			1: Enable
7:0	R/W	0x1	RX_TRIG_LEVEL
7.0	K/ VV		RX FIFO Ready Request Trigger Level

8.2.5.6. SPI FIFO Status Register(Default Value: 0x00000000)

Offset: 0x1C			Register Name: SPI_FSR
Bit	R/W	Default/Hex	Description
31	R	0x0	TB_WR
31	I.	UXU	TX FIFO Write Buffer Write Enable
			TB_CNT
30:28	R	0x0	TX FIFO Write Buffer Counter
			These bits indicate the number of words in TX FIFO Write Buffer
27:24	R	0x0	Reserved
			TF_CNT
			TX FIFO Counter
			These bits indicate the number of words in TX FIFO
23:16	R	0x0	0: 0 byte in TX FIFO
			1: 1 byte in TX FIFO
			64: 64 bytes in TX FIFO
15	R	0x0	RB_WR
	1	0.00	RX FIFO Read Buffer Write Enable
			RB_CNT
14:12	R	0x0	RX FIFO Read Buffer Counter
			These bits indicate the number of words in RX FIFO Read Buffer
11:8	R	0x0	Reserved

7:0	R	0x0	RF_CNT RX FIFO Counter These bits indicate the number of words in RX FIFO 0: 0 byte in RX FIFO 1: 1 byte in RX FIFO
			1: 1 byte in RX FIFO 64:64 bytes in RX FIFO

8.2.5.7. SPI Wait Clock Register(Default Value: 0x0000_0000)

Offset: 0x20			Register Name: SPI_WAIT
Bit	R/W	Default/Hex	Description
31:20	/	/	/
19:16	R/W	0x0	SWC Dual mode direction switch wait clock counter (for master mode only). 0: No wait states inserted n: n SPI_SCLK wait states inserted Note: These bits control the number of wait states to be inserted before start dual data transfer in dual SPI mode. The SPI module counts SPI_SCLK by SWC for delaying next word data transfer. Note: Can't be written when XCH=1.
15:0	R/W	0	WCC Wait Clock Counter (In Master mode) These bits control the number of wait states to be inserted in data transfers. The SPI module counts SPI_SCLK by WCC for delaying next word data transfer. 0: No wait states inserted N: N SPI_SCLK wait states inserted

8.2.5.8. SPI Clock Control Register(Default Value: 0x00000002)

Offset: 0x	<24		Register Name: SPI_CCTL
Bit	R/W	Default/Hex	Description
31:13	/	/	/
			DRS
			Divide Rate Select (Master Mode Only)
			0: Select Clock Divide Rate 1
12	R/W	0	1: Select Clock Divide Rate 2
			CDR1
			Clock Divide Rate 1 (Master Mode Only)
			The SPI_SCLK is determined according to the following equation: SPI_CLK =
11:8	R/W	0	Source_CLK / 2^n.
			CDR2
			Clock Divide Rate 2 (Master Mode Only)
			The SPI_SCLK is determined according to the following equation: SPI_CLK =
7:0	R/W	0x2	Source_CLK / (2*(n + 1)).

8.2.5.9. SPI Master Burst Counter Register(Default Value: 0x00000000)

Offset: 0x30			Register Name: SPI_BC	
Bit R/W Default/Hex		Default/Hex	Description	
31:24	/	/	/	
			MBC	
			Master Burst Counter	
			In master mode, this field specifies the total burst number.	
			0: 0 burst	
			1: 1 burst	
23:0	R/W	0	N: N bursts	

8.2.5.10. SPI Master Transmit Counter Register(Default Value: 0x00000000)

Offset: 0x34			Register Name: SPI_TC	
Bit	R/W	Default/Hex	Description	
31:24	/	/	/	
23:0	R/W	0	MWTC Master Write Transmit Counter In master mode, this field specifies the burst number that should be sent to TXFIFO before automatically sending dummy burst. For saving bus bandwidth, the dummy burst (all zero bits or all one bits) is sent by SPI Controller automatically. 0: 0 burst 1: 1 burst N: N bursts	

8.2.5.11. SPI Master Burst Control Counter Register(Default Value: 0x00000000)

Offset: 0x38			Register Name: SPI_BCC	
Bit	R/W	Default/Hex	Description	
31:29	R	0x0	Reserved	
			DRM	
			Master Dual Mode RX Enable	
28	R/W	0x0	0: RX use single-bit mode	
			1: RX use dual mode	
			Note: Can't be written when XCH=1.	
		0x0	DBC	
	R/W		Master Dummy Burst Counter	
			In master mode, this field specifies the burst number that should be sent	
			before receive in dual SPI mode. The data is don't care by the device.	
27:24			0: 0 burst	
			1: 1 burst	
			N: N bursts	
			Note: Can't be written when XCH=1.	
22.0	D /\\/	R/W 0x0	STC	
23:0	K/W		Master Single Mode Transmit Counter	

	In master mode, this field specifies the burst number that should be sent in single mode before automatically sending dummy burst. This is the first transmit counter in all bursts. 0: 0 burst 1: 1 burst
	N: N bursts Note: Can't be written when XCH=1.

8.2.5.12. SPI TX Data Register(Default Value: 0x00000000)

Offset: 0x200			Register Name: SPI_TXD
Bit	R/W	Default/Hex	Description
			TDATA
			Transmit Data
31:0	W/R	0x0	This register can be accessed in byte, half-word or word unit by AHB. In byte accessing method, if there are rooms in RXFIFO, one burst data is written to RXFIFO and the depth is increased by 1. In half-word accessing method, two SPI burst data are written and the TXFIFO depth is increase by 2. In word accessing method, four SPI burst data are written and the TXFIFO depth is increased by 4. Note: This address is writing-only if TF_TEST is '0', and if TF_TEST is set to '1', this address is readable and writable to test the TX FIFO through the AHB
			bus.

8.2.5.13. SPI RX Data Register(Default Value: 0x00000000)

Offset: 0x300			Register Name: SPI_RXD
Bit	R/W	Default/Hex	Description
			RDATA
			Receive Data
31:0	R	0	This register can be accessed in byte, half-word or word unit by AHB. In byte accessing method, if there are data in RXFIFO, the top word is returned and the RXFIFO depth is decreased by 1. In half-word accessing method, two SPI bursts are returned and the RXFIFO depth is decrease by 2. In word accessing method, the four SPI bursts are returned and the RXFIFO depth is decreased by 4. Note: This address is read-only if RF_TEST is '0', and if RF_TEST is set to '1',
			this address is readable and writable to test the RX FIFO through the AHB bus.

8.3. UART

8.3.1. Overview

The UART is used for serial communication with a peripheral, modem (data carrier equipment, DCE) or data set. Data is written from a master (CPU) over the APB bus to the UART and it is converted to serial form and transmitted to the destination device. Serial data is also received by the UART and stored for the master (CPU) to read back.

The UART contains registers to control the character length, baud rate, parity generation/checking, and interrupt generation. Although there is only one interrupt output signal from the UART, there are several prioritized interrupt types that can be responsible for its assertion. Each of the interrupt types can be separately enabled/disabled with the control registers.

The UART has 16450 and 16550 modes of operation, which are compatible with a range of standard software drivers. In 16550 mode, transmit and receive operations are both buffered by FIFOs. In 16450 mode, these FIFOs are disabled.

The UART supports data lengths from five to eight bits, an optional parity bit and 1, 1 ½ or 2 stop bits, and is fully programmable by an AMBA APB CPU interface. A 16-bit programmable baud rate generator and an 8-bit scratch register are included, together with separate transmit and receive FIFOs. Eight modem control lines and a diagnostic loop-back mode are provided.

Interrupts can be generated for a range of TX Buffer/FIFO, RX Buffer/FIFO, Modem Status and Line Status conditions.

The UART includes the following features:

- Compatible with industry-standard 16550 UARTs
- 64-Bytes Transmit and receive data FIFOs
- DMA controller interface
- Software/ Hardware Flow Control
- Programmable Transmit Holding Register Empty interrupt
- Interrupt support for FIFOs, Status Change
- Support IrDA 1.0 SIR

8.3.2. UART Timing Diagram

Figure 8-4. UART Serial Data Format

Figure 8-5. Serial IrDA Data Format

8.3.3. UART Pin List

Port Name	Direction	Description
UARTO_TX	OUT	UART Serial Bit output
UARTO_RX	IN	UART Serial Bit input
UART1_TX	OUT	UART Serial Bit output
UART1_RX	IN	UART Serial Bit input
UART1_RTS	OUT	UART Request To Send
		This active low output signal informs Modem that the UART is ready to send data
UART1_CTS	IN	UART Clear To End
		This active low signal is an input showing when Modem is ready to accept data
UART2_TX	OUT	UART Serial Bit output
UART2_RX	IN	UART Serial Bit input
UART2_RTS	OUT	UART Request To Send
		This active low output signal informs Modem that the UART is ready to send data
UART2_CTS	IN	UART Clear To End
		This active low signal is an input showing when Modem is ready to accept data

8.3.4. UART Register List

There are 3 UART controllers. All UART controllers can be configured as Serial IrDA.

Module Name	Base Address
UARTO	0x01C28000
UART1	0x01C28400
UART2	0x01C28800

Register Name	Offset	Description
UART_RBR	0x00	UART Receive Buffer Register
UART_THR	0x00	UART Transmit Holding Register
UART_DLL	0x00	UART Divisor Latch Low Register
UART_DLH	0x04	UART Divisor Latch High Register
UART_IER	0x04	UART Interrupt Enable Register
UART_IIR	0x08	UART Interrupt Identity Register
UART_FCR	0x08	UART FIFO Control Register
UART_LCR	0x0C	UART Line Control Register
UART_MCR	0x10	UART Modem Control Register

UART_LSR	0x14	UART Line Status Register
UART_MSR	0x18	UART Modem Status Register
UART_SCH	0x1C	UART Scratch Register
UART_USR	0x7C	UART Status Register
UART_TFL	0x80	UART Transmit FIFO Level
UART_RFL	0x84	UART_RFL
UART_HALT	0xA4	UART Halt TX Register

8.3.5. UART Register Description

8.3.5.1. UART Receiver Buffer Register(Default Value: 0x00000000)

Offset: 0x0000			Register Name: UART_RBR
Bit	R/W	Default/Hex	Description
31:8	/	/	/
			RBR Receiver Buffer Register Data byte received on the serial input port . The data in this register is valid
			only if the Data Ready (DR) bit in the Line Status Register (LCR) is set. If in FIFO mode and FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO is preserved, but any incoming data are lost and an
7:0	R	0	overrun error occurs.

8.3.5.2. UART Transmit Holding Register(Default Value: 0x00000000)

Offset: 0	Offset: 0x0000		Register Name: UART_THR	
Bit	R/W	Default/Hex	Description	
31:8	/	/	/	
			THR	
			Transmit Holding Register	
			Data to be transmitted on the serial output port . Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If in FIFO mode and FIFOs are enabled (FCR[0] = 1) and THRE is set, 16 number of characters of data may be written to the THR before the FIFO is full. Any attempt to write data when the FIFO is full results in the write data	
7:0	W	0	being lost.	

8.3.5.3. UART Divisor Latch Low Register(Default Value: 0x00000000)

Offset: 0x0000			Register Name: UART_DLL
Bit	R/W	R/W Default/Hex Description	
31:8	/	/	/
			DLL
			Divisor Latch Low
			Lower 8 bits of a 16-bit, read/write, Divisor Latch register that contains the
7:0	R/W	0	baud rate divisor for the UART. This register may only be accessed when the

DLAB bit (LCR[7]) is set and the UART is not busy (USR[0] is zero). The output baud rate is equal to the serial clock (sclk) frequency divided by sixteen times the value of the baud rate divisor, as follows: baud rate =
(serial clock freq) / (16 * divisor). Note that with the Divisor Latch Registers (DLL and DLH) set to zero, the baud clock is disabled and no serial communications occur. Also, once the DLL is set, at least 8 clock cycles of the slowest UART clock should be allowed to pass before transmitting or receiving data.

8.3.5.4. UART Divisor Latch High Register(Default Value: 0x00000000)

Offset: 0x0004			Register Name: UART_DLH
Bit	R/W	Default/Hex	Description
31:8	/	/	/
			DLH Divisor Latch High Upper 8 bits of a 16-bit, read/write, Divisor Latch register that contains the baud rate divisor for the UART. This register may only be accessed when the DLAB bit (LCR[7]) is set and the UART is not busy (USR[0] is zero). The output baud rate is equal to the serial clock (sclk) frequency divided by sixteen times the value of the baud rate divisor, as follows: baud rate = (serial clock freq) / (16 * divisor).
7:0	R/W	0	Note that with the Divisor Latch Registers (DLL and DLH) set to zero, the baud clock is disabled and no serial communications occur. Also, once the DLH is set, at least 8 clock cycles of the slowest UART clock should be allowed to pass before transmitting or receiving data.

8.3.5.5. UART Interrupt Enable Register(Default Value: 0x00000000)

Offset: 0x0004			Register Name: UART_IER
Bit	R/W	Default/Hex	Description
31:8	/	/	/
			PTIME
			Programmable THRE Interrupt Mode Enable
			This is used to enable/disable the generation of THRE Interrupt.
			0: Disable
7	R/W		1: Enable
6:4	/	/	/
			EDSSI
			Enable Modem Status Interrupt
			This is used to enable/disable the generation of Modem Status Interrupt.
			This is the fourth highest priority interrupt.
			0: Disable
3	R/W	0	1: Enable
			ELSI
			Enable Receiver Line Status Interrupt
			This is used to enable/disable the generation of Receiver Line Status
			Interrupt. This is the highest priority interrupt.
			0: Disable
2	R/W	0	1: Enable
1	R/W	0	ETBEI

			Enable Transmit Holding Register Empty Interrupt This is used to enable/disable the generation of Transmitter Holding Register Empty Interrupt. This is the third highest priority interrupt. 0: Disable 1: Enable
0	R/W	0	ERBFI Enable Received Data Available Interrupt This is used to enable/disable the generation of Received Data Available Interrupt and the Character Timeout Interrupt (if in FIFO mode and FIFOs enabled). These are the second highest priority interrupts. 0: Disable 1: Enable

8.3.5.6. UART Interrupt Identity Register(Default Value: 0x00000000)

Offset: 0x0008			Register Name: UART_IIR
Bit	R/W	Default/Hex	Description
31:8	/	/	
			FEFLAG
			FIFOs Enable Flag
			This is used to indicate whether the FIFOs are enabled or disabled.
			00: Disable
7:6	R	0	11: Enable
5:4	/	/	
			IID
			Interrupt ID
			This indicates the highest priority pending interrupt which can be one of the
			following types:
			0000: modem status
			0001: no interrupt pending
			0010: THR empty
			0100: received data available
			0110: receiver line status
			0111: busy detect
			1100: character timeout
			Bit 3 indicates an interrupt can only occur when the FIFOs are enabled and
3:0	R	0x1	used to distinguish a Character Timeout condition interrupt.

Interru	Priority	Interrupt Type	Interrupt Source	Interrupt Reset
pt ID	Level			
0001	_	None	None	-
0110	Highest	Receiver line	Overrun/parity/ framing errors	Reading the line status register
		status	or break interrupt	
0100	Second	Received data	Receiver data available	Reading the receiver buffer register
		available	(non-FIFO mode or FIFOs	(non-FIFO mode or FIFOs disabled) or the
			disabled) or RCVR FIFO trigger	FIFO drops below the trigger level (FIFO
			level reached (FIFO mode and	mode and FIFOs enabled)
			FIFOs enabled)	
1100	Second	Character	No characters in or out of the	Reading the receiver buffer register
		timeout	RCVR FIFO during the last 4	
		indication	character times and there is at	

			lanat dahawantan in it duwina	
			least 1character in it during	
			This time	
0010	Third	Transmit	Transmitter holding register	Reading the IIR register (if source of
		holding register	empty (Program THRE Mode	interrupt); or, writing into THR (FIFOs or
		empty	disabled) or XMIT FIFO at or	THRE Mode not selected or disabled) or
			below threshold (Program	XMIT FIFO above threshold (FIFOs and
			THRE Mode enabled)	THRE Mode selected and enabled).
0000	Fourth	Modem status	Clear to send or data set ready	Reading the Modem status Register
			or ring indicator or data carrier	
			detect. Note that if auto flow	
			control mode is enabled, a	
			change in CTS (that is, DCTS	
			set) does not cause an	
			interrupt.	
0111	Fifth	Busy detect	UART_16550_COMPATIBLE =	Reading the UART status register
		indication	NO and master has tried to	
			write to the Line Control	
			Register while the UART is busy	
			(USR[0] is set to one).	

8.3.5.7. UART FIFO Control Register(Default Value: 0x00000000)

Bit R/W 31:8 /	Default/Hex	Description
21.0		Description
31.0	/	/
		RT
		RCVR Trigger
		This is used to select the trigger level in the receiver FIFO at which the
		Received Data Available Interrupt is generated. In auto flow control mode it
		is used to determine when the rts_n signal is de-asserted. It also determines
		when the dma_rx_req_n signal is asserted in certain modes of operation.
		00: 1 character in the FIFO
		01: FIFO ¼ full
17.6		10: FIFO ½ full
7:6 W	0	11: FIFO-2 less than full
		TFT TV Forests Triagger
		TX Empty Trigger Writes have no effect when THRE MODE USER - Disabled. This is used to
		Writes have no effect when THRE_MODE_USER = Disabled. This is used to select the empty threshold level at which the THRE Interrupts are generated
		when the mode is active. It also determines when the dma tx req n signal
		is asserted when in certain modes of operation.
		00: FIFO empty
		01: 2 characters in the FIFO
		10: FIFO ¼ full
5:4 W	0	11: FIFO ½ full
		DMAM
		DMA Mode
		0: Mode 0
3 W	0	1: Mode 1
		XFIFOR
		XMIT FIFO Reset
		This resets the control portion of the transmit FIFO and treats the FIFO as
2 W	0	empty. This also de-asserts the DMA TX request.

			It is 'self-clearing'. It is not necessary to clear this bit.	
			RFIFOR	
			RCVR FIFO Reset	
			This resets the control portion of the receive FIFO and treats the FIFO as	
			empty. This also de-asserts the DMA RX request.	
1	W	0	It is 'self-clearing'. It is not necessary to clear this bit.	
			FIFOE	
			Enable FIFOs	
			This enables/disables the transmit (XMIT) and receive (RCVR) FIFOs.	
			Whenever the value of this bit is changed both the XMIT and RCVR	
0	W	0	controller portion of FIFOs is reset.	

8.3.5.8. UART Line Control Register(Default Value: 0x00000000)

Offset: 0x000C			Register Name: UART_LCR
Bit	R/W	Default/Hex	Description
31:8	/	/	
			DLAB
			Divisor Latch Access Bit
			It is writeable only when UART is not busy (USR[0] is zero) and always
			readable. This bit is used to enable reading and writing of the Divisor Latch
			register (DLL and DLH) to set the baud rate of the UART. This bit must be
			cleared after initial baud rate setup in order to access other registers.
			0: Select RX Buffer Register (RBR) / TX Holding Register(THR) and Interrupt
			Enable Register (IER)
7	R/W	0	1: Select Divisor Latch LS Register (DLL) and Divisor Latch MS Register (DLM)
			BC
			Break Control Bit
			This is used to cause a break condition to be transmitted to the receiving
			device. If set to one the serial output is forced to the spacing (logic 0) state.
			When not in Loopback Mode, as determined by MCR[4], the sout line is
			forced low until the Break bit is cleared. If SIR_MODE = Enabled and active
			(MCR[6] set to one) the sir_out_n line is continuously pulsed. When in Loopback Mode, the break condition is internally looped back to the
6	R/W	0	receiver and the sir_out_n line is forced low.
U	11/ 11/		EPS
			Even Parity Select
			It is writeable only when UART is not busy (USR[0] is zero) and always
			writable readable. This is used to select between even and odd parity, when
			parity is enabled (PEN set to one). Setting the LCR[5] is to reverse the LCR[4].
			00: Odd Parity
			01: Even Parity
5:4	R/W	0	1X: Reverse LCR[4]
			PEN
			Parity Enable
			It is writeable only when UART is not busy (USR[0] is zero) and always
			readable. This bit is used to enable and disable parity generation and
			detection in transmitted and received serial character respectively.
			0: parity disabled
3	R/W	0	1: parity enabled
			STOP
			Number of stop bits
2	R/W	0	It is writeable only when UART is not busy (USR[0] is zero) and always

			readable. This is used to select the number of stop bits per character that
			the peripheral transmits and receives. If set to zero, one stop bit is
			transmitted in the serial data. If set to one and the data bits are set to 5
			(LCR[1:0] set to zero) one and a half stop bits is transmitted. Otherwise, two
			stop bits are transmitted. Note that regardless of the number of stop bits
			selected, the receiver checks only the first stop bit.
			0: 1 stop bit
			1: 1.5 stop bits when DLS (LCR[1:0]) is zero, else 2 stop bit
			DLS
			Data Length Select
			It is writeable only when UART is not busy (USR[0] is zero) and always
			readable. This is used to select the number of data bits per character that
			the peripheral transmits and receives. The number of bit that may be
			selected areas follows:
			00: 5 bits
			01: 6 bits
			10: 7 bits
1:0	R/W	0	11: 8 bits

8.3.5.9. UART Modem Control Register(Default Value: 0x00000000)

Offset: 0x0010			Register Name: UART_MCR
Bit	R/W	Default/Hex	Description
31:7	/	/	/
			SIRE
			SIR Mode Enable
			0:IrDA SIR Mode disabled
6	R/W	0	1:IrDA SIR Mode enabled
			AFCE
			Auto Flow Control Enable
			When FIFOs are enabled and the Auto Flow Control Enable (AFCE) bit is set,
			Auto Flow Control features are enabled.
			0: Auto Flow Control Mode disabled
5	R/W	0	1: Auto Flow Control Mode enabled
			LOOP
			Loop Back Mode
			0: Normal Mode
			1: Loop Back Mode
			This is used to put the UART into a diagnostic mode for test purposes. If
			operating in UART mode (SIR_MODE != Enabled or not active, MCR[6] set to
			zero), data on the sout line is held high, while serial data output is looped
			back to the sin line, internally. In this mode all the interrupts are fully
			functional. Also, in loopback mode, the modem control inputs (dsr_n, cts_n,
			ri_n, dcd_n) are disconnected and the modem control outputs (dtr_n, rts_n,
			out1_n, out2_n) are looped back to the inputs, internally. If operating in
			infrared mode (SIR_MODE == Enabled AND active, MCR[6] set to one), data
			on the sir_out_n line is held low, while serial data output is inverted and
4	R/W	0	looped back to the sir_in line.
3:2	/	/	/
			RTS
			Request to Send
			This is used to directly control the Request to Send (rts_n) output. The
1	R/W	0	Request To Send (rts_n) output is used to inform the modem or data set that

			the UART is ready to exchange data. When Auto RTS Flow Control is not enabled (MCR[5] set to zero), the rts_n signal is set low by programming MCR[1] (RTS) to a high.In Auto Flow Control, AFCE_MODE == Enabled and active (MCR[5] set to one) and FIFOs enable (FCR[0] set to one), the rts_n output is controlled in the same way, but is also gated with the receiver FIFO threshold trigger (rts_n is inactive high when above the threshold). The rts_n signal is de-asserted when MCR[1] is set low. 0: rts_n de-asserted (logic 1) 1: rts_n asserted (logic 0) Note that in Loopback mode (MCR[4] set to one), the rts_n output is held inactive high while the value of this location is internally looped back to an input.
0	R/W	0	DTR Data Terminal Ready This is used to directly control the Data Terminal Ready (dtr_n) output. The value written to this location is inverted and driven out on dtr_n. 0: dtr_n de-asserted (logic 1) 1: dtr_n asserted (logic 0) The Data Terminal Ready output is used to inform the modem or data set that the UART is ready to establish communications. Note that in Loopback mode (MCR[4] set to one), the dtr_n output is held inactive high while the value of this location is internally looped back to an input.

8.3.5.10. UART Line Status Register(Default Value: 0x00000060)

Offset: 0x0014			Register Name: UART_LSR
Bit	R/W	Default/Hex	Description
31:8	/	/	
			FIFOERR
			RX Data Error in FIFO
			When FIFOs are disabled, this bit is always 0. When FIFOs are enabled, this
			bit is set to 1 when there is at least one PE, FE, or BI in the RX FIFO. It is
			cleared by a read from the LSR register provided there are no subsequent
7	R	0	errors in the FIFO.
			TEMT
			Transmitter Empty
			If the FIFOs are disabled, this bit is set to "1" whenever the TX Holding
			Register and the TX Shift Register are empty. If the FIFOs are enabled, this
			bit is set whenever the TX FIFO and the TX Shift Register are empty. In both
6	R	1	cases, this bit is cleared when a byte is written to the TX data channel.
			THRE
			TX Holding Register Empty
			If the FIFOs are disabled, this bit is set to "1" whenever the TX Holding
			Register is empty and ready to accept new data and it is cleared when the
			CPU writes to the TX Holding Register.
			If the FIFOs are enabled, this bit is set to "1" whenever the TX FIFO is empty
			and it is cleared when at least one byte is written
5	R	1	to the TX FIFO.
			BI
			Break Interrupt
			This is used to indicate the detection of a break sequence on the serial input
4	R	0	data.

			It is not subanasar the carial innut air is hald in a last a 101 state for last are
			It is set whenever the serial input, sin, is held in a logic '0' state for longer
			than the sum of start time + data bits + parity + stop bits.
			In the FIFO mode, the character associated with the break condition is
			carried through the FIFO and is revealed when the character is at the top of
			the FIFO. Reading the LSR clears the BI bit. In the non-FIFO mode, the BI
			indication occurs immediately and persists until the LSR is read.
			FE
			Framing Error
			This is used to indicate the occurrence of a framing error in the receiver. A
			framing error occurs when the receiver does not detect a valid STOP bit in
			the received data.
			In the FIFO mode, since the framing error is associated with a character
			received, it is revealed when the character with the framing error is at the
			top of the FIFO. When a framing error occurs, the UART tries to
			resynchronize. It does this by assuming that the error was due to the start
			bit of the next character and then continues receiving the other bit i.e. data,
			and/or parity and stop. It should be noted that the Framing Error (FE) bit
			(LSR[3]) is set if a break interrupt has
			occurred, as indicated by Break Interrupt (BI) bit (LSR[4]).
			0: no framing error
			1:framing error
3	R	0	Reading the LSR clears the FE bit.
			PE
			Parity Error
			This is used to indicate the occurrence of a parity error in the receiver if the
			Parity Enable (PEN) bit (LCR[3]) is set. In the FIFO mode, since the parity
			error is associated with a character received, it is revealed when the
			character with the parity error arrives at the top of the FIFO. It should be
			noted that the Parity Error (PE) bit (LSR[2]) is set if a break interrupt has
			occurred, as indicated by Break Interrupt (BI) bit (LSR[4]).
			0: no parity error
			1: parity error
2	R	0	Reading the LSR clears the PE bit.
			OE
			Overrun Error
			This occurs if a new data character was received before the previous data
			was read. In the non-FIFO mode, the OE bit is set when a new character
			arrives in the receiver before the previous character was read from the RBR.
			When this happens, the data in the RBR is overwritten. In the FIFO mode, an
			overrun error occurs when the FIFO is full and a new character arrives at the
			receiver. The data in the FIFO is retained and the data in the receive shift
			register is lost.
			0: no overrun error
			1: overrun error
1	R	0	Reading the LSR clears the OE bit.
_	11		DR
			Data Ready
			This is used to indicate that the receiver contains at least one character in
			the RBR or the receiver FIFO.
			0: no data ready
			1: data ready
			This bit is cleared when the RBR is read in non-FIFO mode, or when the
0	R	0	receiver FIFO is empty, in FIFO mode.

8.3.5.11. UART Modem Status Register(Default Value: 0x00000000)

Offset: 0	Offset: 0x0018		Register Name: UART_MSR
Bit	R/W	Default/Hex	Description Description
31:8	/	/	/
31.0	1	/	DCD
			Line State of Data Carrier Detect
			This is used to indicate the current state of the modem control line dcd_n.
			This bit is the complement of dcd_n. When the Data Carrier Detect input
			(dcd_n) is asserted it is an indication that the carrier has been detected by
			the modem or data set.
			0: dcd_n input is de-asserted (logic 1)
7	R	0	1: dcd_n input is asserted (logic 1)
/	IN .	0	RI
			Line State of Ring Indicator This is used to indicate the current state of the modern control line ring. This
			This is used to indicate the current state of the modem control line ri_n. This
			bit is the complement of ri_n. When the Ring Indicator input (ri_n) is
			asserted it is an indication that a telephone ringing signal has been received by the modem or data set.
			, and the second
6	R	0	0: ri_n input is de-asserted (logic 1) 1: ri_n input is asserted (logic 0)
O	N N	0	DSR
			Line State of Data Set Ready
			This is used to indicate the current state of the modem control line dsr_n.
			This is dised to indicate the current state of the modern control line dsi_n. This bit is the complement of dsr_n. When the Data Set Ready input (dsr_n)
			is asserted it is an indication that the modem or data set is ready to establish
			communications with UART.
			0: dsr_n input is de-asserted (logic 1) 1: dsr_n input is asserted (logic 0)
5	R	0	In Loopback Mode (MCR[4] set to one), DSR is the same as MCR[0] (DTR).
J	- K	0	CTS
			Line State of Clear To Send
			This is used to indicate the current state of the modem control line cts n.
			This bit is the complement of cts_n. When the Clear to Send input (cts_n) is
			asserted it is an indication that the modem or data set is ready to exchange
			data with UART.
			0: cts_n input is de-asserted (logic 1)
			1: cts_n input is asserted (logic 0)
4	R	0	In Loopback Mode (MCR[4] = 1), CTS is the same as MCR[1] (RTS).
7	- 1		DDCD
			Delta Data Carrier Detect
			This is used to indicate that the modem control line dcd_n has changed
			since the last time the MSR was read.
			0: no change on dcd_n since last read of MSR
			1: change on dcd_n since last read of MSR
			Reading the MSR clears the DDCD bit.
			Note: Ff the DDCD bit is not set and the dcd_n signal is asserted (low) and a
			reset occurs (software or otherwise), then the DDCD bit is set when the
3	R	0	reset is removed if the dcd_n signal remains asserted.
			TERI
			Trailing Edge Ring Indicator
			This is used to indicate that a change on the input ri_n (from an active-low
			to an inactive-high state) has occurred since the last time the MSR was read.
2	R	0	0: no change on ri_n since last read of MSR
	11	10	O. NO CHANGE ON TI_II SINCE IASE FEAR OF WISH

			d alconomic de la constant de la CACO
			1: change on ri_n since last read of MSR
			Reading the MSR clears the TERI bit.
			DDSR
			Delta Data Set Ready
			This is used to indicate that the modem control line dsr_n has changed since
			the last time the MSR was read.
			0: no change on dsr_n since last read of MSR
			1: change on dsr_n since last read of MSR
			Reading the MSR clears the DDSR bit. In Loopback Mode (MCR[4] = 1), DDSR
			reflects changes on MCR[0] (DTR).
			Note: If the DDSR bit is not set and the dsr_n signal is asserted (low) and a
			reset occurs (software or otherwise), then the DDSR bit is set when the
1	R	0	reset is removed if the dsr_n signal remains asserted.
			DCTS
			Delta Clear to Send
			This is used to indicate that the modem control line cts_n has changed since
			the last time the MSR was read.
			0: no change on ctsdsr_n since last read of MSR
			1: change on ctsdsr_n since last read of MSR
			Reading the MSR clears the DCTS bit. In Loopback Mode (MCR[4] = 1), DCTS
			reflects changes on MCR[1] (RTS).
			Note: If the DCTS bit is not set and the cts_n signal is asserted (low) and a
			reset occurs (software or otherwise), then the DCTS bit is set when the reset
0	R	0	isremoved if the cts_n signal remains asserted.

8.3.5.12. UART Scratch Register(Default Value: 0x00000000)

Offset: 0x001C			Register Name: UART_SCH
Bit	R/W	Default/Hex	Description
31:8	/	/	/
			SCRATCH_REG
			Scratch Register
			This register is for programmers to use as a temporary storage space. It has
7:0	R/W	0	no defined purpose in the UART.

8.3.5.13. UART Status Register(Default Value: 0x00000006)

Offset: 0x007C			Register Name: UART_USR
Bit	R/W	Default/Hex	Description
31:5	/	/	/
			RFF
			Receive FIFO Full
			This is used to indicate that the receive FIFO is completely full.
			0: Receive FIFO not full
			1: Receive FIFO Full
4	R	0	This bit is cleared when the RX FIFO is no longer full.
			RFNE
			Receive FIFO Not Empty
			This is used to indicate that the receive FIFO contains one or more entries.
			0: Receive FIFO is empty
3	R	0	1: Receive FIFO is not empty

			This bit is cleared when the RX FIFO is empty.
			TFE
			Transmit FIFO Empty
			This is used to indicate that the transmit FIFO is completely empty.
			0: Transmit FIFO is not empty
			1: Transmit FIFO is empty
2	R	1	This bit is cleared when the TX FIFO is no longer empty.
			TFNF
			Transmit FIFO Not Full
			This is used to indicate that the transmit FIFO in not full.
			0: Transmit FIFO is full
			1: Transmit FIFO is not full
1	R	1	This bit is cleared when the TX FIFO is full.
			BUSY
			UART Busy Bit
			0: Idle or inactive
0	R	0	1: Busy

8.3.5.14. UART Transmit FIFO Level Register(Default Value: 0x00000000)

Offset: 0x0080			Register Name: UART_TFL
Bit	R/W	Default/Hex	Description
31:7	/	/	/
			TFL
			Transmit FIFO Level
6:0	R	0	This is indicates the number of data entries in the transmit FIFO.

8.3.5.15. UART Receive FIFO Level Register(Default Value: 0x00000000)

Offset: 0x0084			Register Name: UART_RFL
Bit	R/W	Default/Hex	Description
31:7	/	/	1
			RFL
			Receive FIFO Level
6:0	R	0	This is indicates the number of data entries in the receive FIFO.

8.3.5.16. UART Halt TX Register(Default Value: 0x00000000)

Offset: 0	x00A4		Register Name: UART_HALT
Bit	R/W	Default/Hex	Description
31:6	/	/	/
			SIR_RX_INVERT
			SIR Receiver Pulse Polarity Invert
			0:Not invert receiver signal
5	R/W	0	1:Invert receiver signal
			SIR_TX_INVERT
			SIR Transmit Pulse Polarity Invert
			0:Not invert transmit pulse
4	R/W	0	1:Invert transmit pulse

3	/	/	/
			CHANGE_UPDATE
			After the user using HALT[1] to change the baudrate or LCR configuration,
			write 1 to update the configuration and waiting this bit self clear to 0 to
			finish update process. Write 0 to this bit has no effect.
2	R/W	0	1: Update trigger, Self clear to 0 when finish update.
			CHCFG_AT_BUSY
			This is an enable bit for the user to change LCR register configuration
			(except for the DLAB bit) and baudrate register (DLH and DLL) when the
			UART is busy (USB[0] is 1).
1	R/W	0	1: Enable change when busy
			HALT_TX
			Halt TX
			This register is use to halt transmissions for testing, so that the transmit FIFO
			can be filled by the master when FIFOs are implemented and enabled.
			0 : Halt TX disabled
			1 : Halt TX enabled
			Note: If FIFOs are not enabled, the setting of the halt TX register has no
0	R/W	0	effect on operation.

8.4. USB

8.4.1. USB OTG Controller

The USB OTG controller is a Dual-Role Device ,which can also be configured as a Host-only or Device-only controller, fully compliant with the USB 2.0 Specification. It can support high-speed (HS, 480-Mbps), full-speed (FS, 12-Mbps), and low-speed (LS, 1.5-Mbps) transfers in Host mode. It can support high-speed (HS, 480-Mbps), and full-speed (FS, 12-Mbps) in Device mode. Standard USB transceiver can be used through its UTMI+PHY Level3 interface. The UTMI+PHY interface is bidirectional with 8-bit data bus. For saving CPU bandwidth, USB-OTG DMA interface can support external DMA controller to take care of the data transfer between the memory and USB-OTG FIFO. The USB-OTG core also supports USB power saving functions.

The USB2.0 OTG controller has following features:

- Support Device or Host operation at a time
- Supports High-Speed (HS, 480-Mbps), Full-Speed (FS, 12-Mbps), and Low-Speed (LS, 1.5-Mbps) in host mode
- Complies with Enhanced Host Controller Interface (EHCI) Specification, Version 1.0, and the Open Host Controller Interface (OHCI) Specification, Version 1.0a for host mode
- Support High-Speed (HS, 480-Mbps), Full-Speed (FS, 12-Mbps) in device mode
- Supports the UTMI+ Level 3 interface. The 8-bit bidirectional data buses are used
- Supports bi-directional endpoint0 for Control transfer in device mode
- Supports up to 8 User-Configurable Endpoints for Bulk , Isochronousl and Interrupt bi-directional transfers (Endpoint1, Endpoint2, Endpoint3, Endpoint4, Endpoint5) in device mode
- Supports up to 4032BytesFIFO for EPs (Excluding EP0) in device mode
- Supports High-Bandwidth Isochronous & Interrupt transfers in device mode
- Automated splitting/combining of packets for Bulk transfers in device mode
- · Supports point-to-point and point-to-multipoint transfer in both Host and Peripheral mode
- Includes automatic ping capabilities
- · Soft connect/disconnect function
- Performs all transaction scheduling in hardware
- Power Optimization and Power Management capabilities
- Includes interface to an external Normal DMA controller for every EPs

8.4.1.1. USB OTG Block Diagram

Figure 8-6. USB OTG Controller Block Diagram

8.4.1.2. USB OTG Register List

Module Name	Base Address
USB_HCI0	0x01C1A000

Register Name	Offset	Description				
	EHCI Capability Register					
E_CAPLENGTH	0x000	EHCI Capability register Length Register				
E_HCIVERSION	0x002	EHCI Host Interface Version Number Register				
E_HCSPARAMS	0x004	EHCI Host Control Structural Parameter Register				
E_HCCPARAMS	0x008	EHCI Host Control Capability Parameter Register				
E_HCSPPORTROUTE	0x00c	EHCI Companion Port Route Description				
	EHCI Operational Register					
E_USBCMD	0x010	EHCI USB Command Register				
E_USBSTS	0x014	EHCI USB Status Register				
E_USBINTR	0x018	EHCI USB Interrupt Enable Register				
E_FRINDEX	0x01c	EHCI USB Frame Index Register				
E_CTRLDSSEGMENT	0x020	EHCI 4G Segment Selector Register				
E_PERIODICLISTBASE	0x024	EHCI Frame List Base Address Register				
E_ASYNCLISTADDR	0x028	EHCI Next Asynchronous List Address Register				
E_CONFIGFLAG	0x050	EHCI Configured Flag Register				

E PORTSC	0x054	EHCI Port Status/Control Register				
OHCI Control and Status Partition Register						
O_HcRevision	0x400	OHCI Revision Register				
O_HcControl	0x404	OHCI Control Register				
O_HcCommandStatus	0x408	OHCI Command Status Register				
O_HcInterruptStatus	0x40c	OHCI Interrupt Status Register				
O_HcInterruptEnable	0x410	OHCI Interrupt Enable Register				
O_HcInterruptDisable	0x414	OHCI Interrupt Disable Register				
	OHCI Memory Po	inter Partition Register				
O_HcHCCA	0x418	OHCI HCCA Base				
O_HcPeriodCurrentED	0x41c	OHCI Period Current ED Base				
O_HcControlHeadED	0x420	OHCI Control Head ED Base				
O_HcControlCurrentED	0x424	OHCI Control Current ED Base				
O_HcBulkHeadED	0x428	OHCI Bulk Head ED Base				
O_HcBulkCurrentED	0x42c	OHCI Bulk Current ED Base				
O_HcDoneHead	0x430	OHCI Done Head Base				
	OHCI Frame Cou	nter Partition Register				
O_HcFmInterval	0x434	OHCI Frame Interval Register				
O_HcFmRemaining	0x438	OHCI Frame Remaining Register				
O_HcFmNumber	0x43c	OHCI Frame Number Register				
O_HcPerioddicStart	0x440	OHCI Periodic Start Register				
O_HcLSThreshold	0x444	OHCI LS Threshold Register				
	OHCI Root Hub Partition Register					
O_HcRhDescriptorA	0x448	OHCI Root Hub Descriptor Register A				
O_HcRhDesriptorB	0x44c	OHCI Root Hub Descriptor Register B				
O_HcRhStatus	0x450	OHCI Root Hub Status Register				
O_HcRhPortStatus	0x454	OHCI Root Hub Port Status Register				

8.4.1.3. USB OTG_EHCI Register Description

8.4.1.3.1. EHCI Identification Register(Default Value: Implementation Dependent)

Offset: 0x0000			Register Name: CAPLENGTH
Bit	R/W	Default/Hex	Description
			CAPLENGTH
			The value in these bits indicates an offset to add to register base to find the
7:0	R	0x10	beginning of the Operational Register Space.

8.4.1.3.2. EHCI Host Interface Version Number Register(Default Value: 0x0100)

Offset: 0x	k0002		Register Name: HCIVERSION
Bit	R/W	Default/Hex	Description
			HCIVERSION
			This is a 16-bits register containing a BCD encoding of the EHCI revision
			number supported by this host controller. The most significant byte of this
			register represents a major revision and the least significant byte is the
15:0	R	0x0100	minor revision.

8.4.1.3.3. EHCI Host Control Structural Parameter Register(Default Value: Implementation Dependent)

Offset: 0x0004			Register Name: HCSPARAMS
Bit	R/W	Default/Hex	Description
			Reserved.
31:24	/	0	These bits are reserved and should be set to zero.
			Debug Port Number
			This register identifies which of the host controller ports is the debug port.
			The value is the port number (one based) of the debug port.
23:20	R	0	This field will always be '0'.
			Reserved.
19:16	/	0	These bits are reserved and should be set to zero.
			Number of Companion Controller (N_CC)
			This field indicates the number of companion controllers associated with
			this USB2.0 host controller. A zero in this field indicates there are no
			companion host controllers. And a value larger than zero in this field
			indicates there are companion USB1.1 host controller(s).
15:12	R	0	This field will always be '0'.
			Number of Port per Companion Controller(N_PCC)
			This field indicates the number of ports supported per companion host
			controller host controller. It is used to indicate the port routing configuration
11.0			to system software.
11:8	R	0	This field will always fix with '0'.
			Port Routing Rules This field indicates the mathed used by this implementation for beyond.
			This field indicates the method used by this implementation for how all ports are mapped to companion controllers. The value of this field has the
			following interpretation:
			Value Meaning
			The first N_PCC ports are routed to the lowest numbered
			function companion host controller, the next N_PCC port
			are routed to the next lowest function companion controller, and so on.
			The port routing is explicitly enumerated by the first
			1 N_PORTS elements of the HCSP-PORTTOUTE array.
7	R	0	This field will always be '0'.
			Reserved.
6:4	/	0	These bits are reserved and should be set to zero.
			N_PORTS
			This field specifies the number of physical downstream ports implemented
			on this host controller. The value of this field determines how many port
			registers are addressable in the Operational Register Space. Valid values are
2.0			in the range of 0x1 to 0x0f.
3:0	R	1	This field is always 1.

8.4.1.3.4. EHCI Host Control Capability Parameter Register(Default Value: Implementation Dependent)

Offset: 0x0008			Register Name: HCCPARAMS
Bit	R/W	Default/Hex	Description
			Reserved
31:16	/	0	These bits are reserved and should be set to zero.
15:18	R	0	EHCI Extended Capabilities Pointer (EECP)

			T
			This optional field indicates the existence of a capabilities list. A value of 00b indicates no extended capabilities are implemented. A non-zero value in this register indicates the offset in PCI configuration space of the first EHCI extended capabiliby. The pointer value must be 40h or greater if implemented to maintain to consistency of the PCI header defined for this calss of device. The value of this field is always '00b'.
			Isochronous Scheduling Threshold
			This field indicates, relative to the current position of the executing host
			controller, where software can reliably update the isochronous schedule.
			When bit[7] is zero, the value of the least significant 3 bits indicates the
			number of micro-frames a host controller can hold a set of isochronous data
			structures(one or more) before flushing the state. When bit[7] is a one, then
			host software assumes the host controller may cache an isochronous data
7:4	R		structure for an entire frame.
			Reserved
3	R	0	These bits are reserved and should be set to zero.
			Asynchronous Schedule Park Capability
			If this bit is set to a one, then the host controller supports the park feature
			for high-speed queue heads in the Asynchronous Schedule. The feature can
			be disabled or enabled and set to a specific level by using the Asynchronous
			Schedule Park Mode Enable and Asynchronous Schedule Park Mode Count
2	R		fields in the USBCMD register.
			Programmable Frame List Flag
			If this bit is set to a zero, then system software must use a frame list length
			of 1024 elements with this host controller. The USBCMD register
			Frame List Size field is a read-only register and should be set to zero.
			If set to 1,then system software can specify and use the frame list in the
			USBCMD register Frame List Size field to cofigure the host controller.
			The frame list must always aligned on a 4K page boundary. This requirement
1	R		ensures that the frame list is always physically contiguous.
			Reserved
			These bits are reserved for future use and should return a value of zero
0	R	0	when read.

8.4.1.3.5. EHCI Companion Port Route Description (Default Value: UNDEFINED)

Offset: 0	0x000C		Register Name: HCSP-PORTROUTE
Bit	R/W	Default/Hex	Description
			HCSP-PORTROUTE
			This optional field is valid only if Port Routing Rules field in HCSPARAMS
			register is set to a one.
			This field is used to allow a host controller implementation to explicitly
			describe to which companion host controller each implemented port is
			mapped. This field is a 15-element nibble array (each 4 bit is one array
			element). Each array location corresponds one-to-one with a physical port
			provided by the host controller (e.g. PORTROUTE [0] corresponds to the first
			PORTSC port, PORTROUTE [1] to the second PORTSC port, etc.). The value of
			each element indicates to which of the companion host controllers this port
			is routed. Only the first N_PORTS elements have valid information. A value
			of zero indicates that the port is routed to the lowest numbered function
			companion host controller. A value of one indicates that the port is routed
31:0	R		to the next lowest numbered function companion host controller, and so on.

8.4.1.3.6. EHCI USB Command Register (Default Value: 0x00080000(0x00080B00 if Asynchronous Schedule Park Capability is a one))

Offset: 0x0010			Register Name: USBCMD	
Bit	R/W Default/Hex		Description	
	,	•	Reserved	
31:24	/	0	These bits are reserved and should be set to zero.	
			Interrupt Threshold Control	
			The value in this field is used by system software to select the maximum	
			rate at which the host controller will issue interrupts. The only valid values	
			are defined below:	
			Value Minimum Interrupt Interval	
			0x00 Reserved	
			0x01 1 micro-frame	
			0x02 2 micro-frame	
			0x04 4 micro-frame	
			0x08 8 micro-frame(default, equates to 1 ms)	
			0x10 16 micro-frame(2ms)	
			0x20 32 micro-frame(4ms)	
			0x40 64 micro-frame(8ms)	
			Any other value in this register yields undefined results.	
			The default value in this field is 0x08.	
	- 6		Software modifications to this bit while HC Halted bit is equal to zero results	
23:16	R/W	0x08	in undefined behavior.	
15.12			Reserved	
15:12	/	0	These bits are reserved and should be set to zero. Asynchronous Schedule Park Mode Enable(OPTIONAL)	
			If the Asynchronous Park Capability bit in the HCCPARAMS register is a one,	
			then this bit defaults to a 1 and is R/W. Otherwise the bit must be a zero and	
			is Read Only. Software uses this bit to enable or disable Park mode. When	
	R/W or		this bit is one, Park mode is enabled. When this bit is zero, Park mode is	
11	R	0	disabled.	
			Reserved	
10	/	0	These bits are reserved and should be set to zero.	
			Asynchronous Schedule Park Mode Count(OPTIONAL)	
			Asynchronous Park Capability bit in the HCCPARAMS register is a one,	
			Then this field defaults to 0x3 and is W/R. Otherwise it defaults to zero and	
			is R. It contains a count of the number of successive transactions the host	
			controller is allowed to execute from a high-speed queue head on the Asynchronous schedule before continuing traversal of the Asynchronous	
			schedule.	
	R/W or		Valid value are 0x1 to 0x3. Software must not write a zero to this bit when	
9:8	R	0	Park Mode Enable is a one as it will result in undefined behavior.	
			Light Host Controller Reset(OPTIONAL)	
			This control bit is not required.	
			If implemented, it allows the driver to reset the EHCI controller without	
			affecting the state of the ports or relationship to the companion host	
			controllers. For example, the PORSTC registers should not be reset to their	
			default values and the CF bit setting should not go to zero (retaining port	
_	5.4		ownership relationships).	
7	R/W	0	A host software read of this bit as zero indicates the Light Host Controller	

			Reset has completed and it si safe for software to re-initialize the host
			controller. A host software read of this bit as a one indicates the Light Host
			Interrupt on Async Advance Doorbell
			This bit is used as a doorbell by software to tell the host controller to issue
			an interrupt the next time it advances asynchronous schedule. Soft-
			Ware must write a 1 to this bit to ring the doorbell.
			When the host controller has evicted all appropriate cached schedule state,
			it sets the Interrupt on Async Advance status bit in the USBSTS. if the
			Interrupt on Async Advance Enable bit in the USBINTR register is a one then
			the host controller will assert an interrupt at the next interrupt threshold.
			The host controller sets this bit to a zero after it has set the Interrupt on
			Async Advance status bit in the USBSTS register to a one.
	5/11/		Software should not write a one to this bit when the asynchronous schedule
6	R/W	0	is disabled. Doing so will yield undefined results.
			Asynchronous Schedule Enable
			This bit controls whether the host controller skips processing the Asynchronous Schedule. Values mean:
			Bit Value Meaning
			0 Do not process the Asynchronous Schedule.
			Use the ASYNLISTADDR register to access the
5	R/W	0	1 Asynchronous Schedule. The default value of this field is '0b'.
	IN/ VV		Periodic Schedule Enable
			This bit controls whether the host controller skips processing the Periodic
			Schedule. Values mean:
			Bit Value Meaning
			0 Do not process the Periodic Schedule.
			Use the PERIODICLISTBASE register to access the
			1 Periodic Schedule.
4	R/W	0	The default value of this field is '0b'.
	1,7,11		Frame List Size
			This field is R/W only if Programmable Frame List Flag in the HCCPARAMS
			registers is set to a one. This field specifies the size of the
			Frame list. The size the frame list controls which bits in the Frame Index
			Register should be used for the Frame List Current index. Values mean:
			Bits Meaning
			00b 1024 elements (4096 bytes) Default value
			01b 512 elements(2048byts)
			10b 256 elements(1024bytes)For resource-constrained condition
	R/W or		11b reserved
3:2	R/W OI	0	The default value is '00b'.
			Host Controller Reset
			This control bit is used by software to reset the host controller. The effects of
			this on Root Hub registers are similar to a Chip Hardware Reset.
			When software writes a one to this bit, the Host Controller resets its internal
			pipelines, timers, counters, state machines, etc. to their initial value. Any
			transaction currently in progress on USB is immediately terminated. A USB
			reset is not driven on downstream ports.
			All operational registers, including port registers and port state machines are
			set to their initial values. Port ownership reverts to the companion host
1	D /\A/		controller(s). Software must reinitialize the host controller as described in
1	R/W	0	Section 4.1 of the CHEI Specification in order to return the host controller to

Run/Stop When set to a 1, the Host Controller proceeds with execution of the schedule. When set to 0, the Host Controller completes the current and an actively pipelined transactions on the USB and then halts. The Host Controller must halt within 16 micro-frames after software clears this bit. The HC Halted bit indicates when the Host Controller has finished its pending pipelined transactions and has entered the stopped state. Software must not write a one to this field unless the Host Controller is in the Halt State.				an operational state. This bit is set to zero by the Host Controller when the reset process is complete. Software cannot terminate the reset process early by writing a zero to this register. Software should not set this bit to a one when the HC Halted bit in the USBSTS register is a zero. Attempting to reset an actively running host controller will result in undefined behavior.
0 R/W 0 The default value is 0x0.	0	R/W	0	When set to a 1, the Host Controller proceeds with execution of the schedule. When set to 0, the Host Controller completes the current and any actively pipelined transactions on the USB and then halts. The Host Controller must halt within 16 micro-frames after software clears this bit. The HC Halted bit indicates when the Host Controller has finished its pending pipelined transactions and has entered the stopped state. Software must not write a one to this field unless the Host Controller is in the Halt State.

8.4.1.3.7. EHCI USB Status Register (Default Value: 0x00001000)

Offset: 0x0014			Register Name: USBSTS	
Bit	R/W	Default/Hex	Description	
			Reserved	
31:16	/	0	These bits are reserved and should be set to zero.	
			Asynchronous Schedule Status	
			The bit reports the current real status of Asynchronous Schedule. If this bit is	
			a zero then the status of the Asynchronous Schedule is disabled. If this bit is	
			a one then the status of the Asynchronous Schedule is enabled. The Host	
			Controller is not required to immediately disable or enable the	
			Asynchronous Schedule when software transitions the Asynchronous	
			Schedule Enable bit in the USBCMD register. When this bit and the	
			Asynchronous Schedule Enable bit are the same value, the Asynchronous	
15	R	0	Schedule is either enabled (1) or disabled (0).	
			Periodic Schedule Status	
			The bit reports the current real status of the Periodic Schedule. If this bit is	
			zero then the status of the Periodic Schedule is disabled. If this bit is a one	
			then the status of the Periodic Schedule is enabled. The Host Controller is	
			not required to immediately disable or enable the Periodic Schedule when	
			software transitions the Periodic Schedule Enable bit in the USBCMD	
			register. When this bit and the Periodic Schedule Enable bit are the same	
14	R	0	value, the Periodic Schedule is either enabled (1) or disabled (0).	
			Reclamation	
			This is a read-only status bit, which is used to detect an empty asynchronous	
13	R	0	schedule.	
			HC Halted	
			This bit is a zero whenever the Run/Stop bit is a one. The Host Controller	
			Sets this bit to one after it has stopped executing as a result of the Run/Stop	
			bit being set to 0, either by software or by the Host Controller Hardware	
12		1	(e.g. internal error).	
12	R	1	The default value is '1'.	
11.0	,		Reserved	
11:6	/ D/446	0	These bits are reserved and should be set to zero.	
5	R/WC	0	Interrupt on Async Advance	

			System software can force the host controller to issue an interrupt the next
			time the host controller advances the asynchronous schedule by writing a
			one to the Interrupt on Async Advance Doorbell bit in the USBCMD register. This status bit indicates the assertion of that interrupt source.
			Host System Error
			The Host Controller set this bit to 1 when a serious error occurs during a
			host system access involving the Host Controller module. When this error
			occurs, the Host Controller clears the Run/Stop bit in the Command register
4	R/WC	0	to prevent further execution of the scheduled TDs.
4	N/ VVC		Frame List Rollover
			The Host Controller sets this bit to a one when the Frame List Index rolls
			over from its maximum value to zero. The exact value at which the rollover
			occurs depends on the frame list size. For example, if the frame list size is
			1024, the Frame Index Register rolls over every time FRINDEX [13] toggles.
			Similarly, if the size is 512, the Host Controller sets this bit to a one every
3	R/WC	0	time FRINDEX [12] toggles.
	1,7,770		Port Change Detect
			The Host Controller sets this bit to a one when any port for which the Port
			Owner bit is set to zero has a change bit transition from a zero to a one or a
			Force Port Resume bit transition from a zero to a one as a result of a J-K
			transition detected on a suspended port. This bit will also be set as a result
			of the Connect Status Chang being set to a one after system software has
			relinquished ownership of a connected port by writing a one to a port's Port
2	R/WC	0	Owner bit.
	,		USB Error Interrupt(USBERRINT)
			The Host Controller sets this bit to 1 when completion of USB transaction
			results in an error condition(e.g. error counter underflow). If the TD on
			which the error interrupt occurred also had its IOC bit set, both.
1	R/WC	0	This bit and USBINT bit are set.
			USB Interrupt(USBINT)
			The Host Controller sets this bit to a one on the completion of a USB
			transaction, which results in the retirement of a Transfer Descriptor that had
			its IOC bit set.
			The Host Controller also sets this bit to 1 when a short packet is detected
			(actual number of bytes received was less than the expected number of
0	R/WC	0	bytes)

8.4.1.3.8. EHCI USB Interrupt Enable Register (Default Value: 0x00000000)

Offset: 0x0018			Register Name: USBINTR	
Bit	R/W	Default/Hex	Description	
			Reserved	
31:6	/	0	These bits are reserved and should be zero.	
			Interrupt on Async Advance Enable	
			When this bit is 1, and the Interrupt on Async Advance bit in the USBSTS	
			register is 1, the host controller will issue an interrupt at the next interrupt	
			threshold. The interrupt is acknowledged by software clearing the Interrupt	
5	R/W	0	on Async Advance bit.	
			Host System Error Enable	
			When this bit is 1, and the Host System Error Status bit in the USBSTS	
			register is 1, the host controller will issue an interrupt. The interrupt is	
4	R/W	0	acknowledged by software clearing the Host System Error bit.	
3	R/W	0	Frame List Rollover Enable	

			When this bit is 1, and the Frame List Rollover bit in the USBSTS register is 1,
			the host controller will issue an interrupt. The interrupt is acknowledged by
			software clearing the Frame List Rollover bit.
			Port Change Interrupt Enable
			When this bit is 1, and the Port Chang Detect bit in the USBSTS register is 1,
			the host controller will issue an interrupt. The interrupt is acknowledged by
2	R/W	0	software clearing the Port Chang Detect bit.
			USB Error Interrupt Enable
			When this bit is 1, and the USBERRINT bit in the USBSTS register is 1,the
			host controller will issue an interrupt at the next interrupt threshold.
1	R/W	0	The interrupt is acknowledged by software clearing the USBERRINT bit.
			USB Interrupt Enable
			When this bit is 1, and the USBINT bit in the USBSTS register is 1,the host
			controller will issue an interrupt at the next interrupt threshold.
0	R/W	0	The interrupt is acknowledged by software clearing the USBINT bit

8.4.1.3.9. EHCI Frame Index Register (Default Value: 0x00000000)

Offset: 0x001C		Register Name: FRINDEX	Register Name: FRINDEX			
Bit	R/W	Default/Hex	Description			
			Reserved			
31:14	/	0	These bits are reserved and sl	nould be zero.		
			Frame Index			
			The value in this register incre	ement at the end of each tir	ne frame	
			(e.g. micro-frame).Bits[N:3] a	re used for the Frame List c	urrent index. It	
			Means that each location of the frame list is accessed 8 times(frames or			
			Micro-frames) before moving to the next index. The following illustrates			
			Values of N based on the value of the Frame List Size field in the USBCN			
			register.			
			USBCMD[Frame List Size]	Number Elements	N	
			00b	1024	12	
			01b 512		11	
			10b 256		10	
13:0	R/W	0	11b	Reserved		

Note: This register must be written as a DWord. Byte writes produce undefined results.

8.4.1.3.10. EHCI Periodic Frame List Base Address Register (Default Value: Undefined)

Offset: 0	x0024		Register Name: PERIODICLISTBASE	
Bit	R/W	Default/Hex	Description	
			Base Address	
			These bits correspond to memory address signals [31:12], respectively.	
			This register contains the beginning address of the Periodic Frame List in the system memory.	
			System software loads this register prior to starting the schedule execution by the Host Controller. The memory structure referenced by this physical memory pointer is assumed to be 4-K byte aligned. The contents of this	
			register are combined with the Frame Index Register (FRINDEX) to enable	
31:12	R/W		the Host Controller to step through the Periodic Frame List in sequence.	
			Reserved	
11:0	/		Must be written as 0x0 during runtime, the values of these bits are	

_		
		undefined.

Note: Writes must be Dword Writes.

8.4.1.3.11. EHCI Current Asynchronous List Address Register (Default Value: Undefined)

Offset: 0	x0028		Register Name: ASYNCLISTADDR	
Bit	R/W	Default/Hex	Description	
			Link Pointer (LP)	
			This field contains the address of the next asynchronous queue head to be executed.	
31:5 R/W			These bits correspond to memory address signals [31:5], respectively.	
			Reserved	
			These bits are reserved and their value has no effect on operation.	
			Bits in this field cannot be modified by system software and will always	
4:0	/	/	return a zero when read.	

Note: Write must be DWord Writes.

8.4.1.3.12. EHCI Configure Flag Register (Default Value: 0x00000000)

Offset: 0	x0050		Register Name: CONFIGFLAG			
Bit	R/W	Default/Hex	Descript	Description		
			Reserve	Reserved		
31:1	/	0	These bi	ts are reserved and should be set to zero.		
			Configure Flag(CF) Host software sets this bit as the last action in its process of configuring the Host Controller. This bit controls the default port-routing control logic as follow: Value Meaning			
			 Port routing control logic default-routs each port to an implementation dependent classic host controller. Port routing control logic default-routs all ports to this host controller. 			
0	R/W	0	The defa	ault value of this field is '0'.		

Note: This register is not use in the normal implementation.

8.4.1.3.13. EHCI Port Status and Control Register (Default Value: 0x00002000(w/PPC set to one);0x00003000

(w/PPC set to a zero))

Offset: 0x0054			Register Name: PORTSC	
Bit	R/W	Default/Hex	Description	
			Reserved	
			These bits are reserved for future use and should return a value of zero	
31:22	/	0	when read.	
			Wake on Disconnect Enable(WKDSCNNT_E)	
			Writing this bit to a one enables the port to be sensitive to device	
21	R/W	0	disconnects as wake-up events.	

This field is zero if Port Power is zero. The default value in this field is '0'. Wake on Connect Enable(WCKNIT_E) Writing this bit to a one enable the port to be sensitive to device connects as wake-up events. This field is zero if Port Power is zero. The default value in this field is '0'. Port Test Control The value in this field specifies the test mode of the port. The encoding of the test mode bits are as follow: Bits Ext Mode 0000b Test Mode 0000b Test S_STATE 0011b Test SEO_NAK 0100b Test S_STATE 0011b Test SEO_NAK 0100b Test SEO_NAK 0101b Test SEO_NAK 0101b Test SEO_NAK 0101b Test SEO_NAK 0101b Test SEO_NAK 0100b Test Packet 0111b Test SEO_NAK 0100b Test SEO_NAK				This field is some if Doub Double is some				
Warke on Connect Enable(WKCNNT_E) Writing this bit to a one enable the port to be sensitive to device connects as wake-up events. This field is zero if Port Power is zero. The default value in this field is '0'. Port Test Control The value in this field specifies the test mode of the port. The encoding of the test mode bits are as follow: Bits								
Writing this bit to a one enable the port to be sensitive to device connects as wake-up events. This field is zero if Port Power is zero. The default value in this field is '0'. Port Text Control The value in this field specifies the test mode of the port. The encoding of the test mode bits are as follow: Bits Test Mode								
as wake-up events. This field is zero if Port Power is zero. The default value in this field is '0'. Port Test Control The value in this field specifies the test mode of the port. The encoding of the test mode bits are as follow: Bits Test Mode 0000b The port is NOT operating in a test mode. 0001b Test J_STATE 0010b Test SEO_NAK 0100b Test SEO_NAK 0100b Test SEO_NAK 0100b Test PORCE_ENABLE 0110b - Reserved 1111b 19:16 R/W 0 The default value in this field is '0000b'. Reserved These bits are reserved for future use and should return a value of zero when read. Port Owner This bit unconditionally goes to a 0b when the Configured bit in the CONFIGE/EAG register makes a 0b to 1b transition. This bit unconditionally goes to 1b whenever the Configured bit is zero. Systems oftware uses this field to release ownership of the port to selected host controller (in the event that the attached device is not a high-speed device.) Software writes a one to this bit when the attached device is not a high-speed device. A one in this bit means that a companion host controller owns and controls the port. Pefault Value = 1b. Reserved These bits are reserved for future use and should return a value of zero when read. Line Status These bits are reserved for future use and should return a value of zero when read. Line Status These bits are reserved for future use and should return a value of zero when read. Line Status These bits are reserved for future use and should return a value of zero when read. Line Status These bits are reserved for future use and should return a value of zero when read. Line Status These bits are reserved for future use and should return a value of zero when read. Line Status These bits are reserved for future use and should return a value of zero when read. Line Status These bits are reserved for future use and should return a value of zero when read. Line Status These bits are reserved for future use and should return a value of zero when read. Line Status These bits are used for detection of low-speed de								
This field is zero if Port Power is zero. The default value in this field is "O". Port Test Control The value in this field specifies the test mode of the port. The encoding of the test mode bits are as follow: Bits Test Mode 0000b The port is NOT operating in a test mode. 0001b Test J_STATE 0010b Test SEO_NAK 0100b Test SEO_NAK 0100b Test FORCE_ENABLE 0110b - Reserved 1111b 19:16 R/W 0 The default value in this field is "0000b". Reserved These bits are reserved for future use and should return a value of zero when read. Port Owner This bit unconditionally goes to a 0b when the Configured bit in the CONFIGFLAG register makes a 0b to 1b transition. This bit unconditionally goes to 1b whenever the Configured bit is zero. System software uses this field to release ownership of the port to selected host controller (in the event that he attached device is not a high-speed device). Software writes a one to this bit when the attached device is not a high-speed device. A one in this bit means that a companion host controller owns and controls the port. 13 R/W 1 Default Value = 1b. Reserved These bits are reserved for future use and should return a value of zero when read. Line Status These bits reflect the current logical levels of the D+ (bit11) and D-(bit10) signal lines. These bits are used for detection of low-speed USB devices prior to port reset and enable sequence. This read only field is valid only when the port enable bit is zero and the current connect status bit is set to a one. The encoding of the bits are: Bit[11:10] USB State Interpretation Obb SEO Not Low-speed device, perform EHCI reset. 10b J-state Not Low-speed device, perform EHCI reset. 11b Undefined Not Low-speed device, perform EHCI reset.						able the port to be sensitive to device connects		
20 R/W 0 The default value in this field is '0'. Port Test Control The value in this field specifies the test mode of the port. The encoding of the test mode bits are as follow: Bits Test Mode 0000b The port is NOT operating in a test mode. 0001b Test J_STATE 0010b Test K_STATE 0010b Test SE0_NAK 0100b Test SE0_NAK 0100b Test Facket 0110b Test FORCE_ENABLE 0110b - Reserved 11111b 19:16 R/W 0 The default value in this field is '0000b'. Reserved These bits are reserved for future use and should return a value of zero when read. Port Owner This bit unconditionally goes to a 0b when the Configured bit in the CONFIGELAG register makes a 0b to 1b transition. This bit unconditionally goes to 1b whenever the Configured bit is zero. System software uses this field to release ownership of the port to selected host controller (in the event that the attached device is not a high-speed device). Software writes a one to this bit when the attached device is not a high-speed device. A one in this bit means that a companion host controller owns and controls the port. Perserved These bits are reserved for future use and should return a value of zero when read. Line Status These bits are reserved for future use and should return a value of zero when read. Line Status These bits are reserved for future use and should return a value of zero when read. Line Status These bits reflect the current logical levels of the D+ (bit11) and D-(bit10) signal lines. These bits are used for detection of low-speed USB devices prior to port reset and enable sequence. This read only field is valid only when the port enable bit is zero and the current connect status bit is set to a one. The encoding of the bits are: Bit[1:10] USB State Interpretation Obb SE0 Not Low-speed device, perform EHCI reset. Oth K-state Low-speed device, perform EHCI reset. Oth Wenter Set and enable sequence. This read only field is valid only when the port enable bit is zero and the current connect status bit is set to a one. The encoding of the bits are: In the Un						ion io zono		
Port Test Control The value in this field specifies the test mode of the port. The encoding of the test mode bits are as follow: Bits	20	D /\A/						
The value in this field specifies the test mode of the port. The encoding of the test mode bits are as follow: Bits Test Mode	20	K/W	U			ia is U.		
the test mode bits are as follow: Bits Test Mode 0000b The port is NOT operating in a test mode. 0001b Test J_STATE 0010b Test J_STATE 0011b Test SEO_NAK 0100b Test FORCE_ENABLE 0110b -								
Bits Test Mode 0000b The port is NOT operating in a test mode. 0001b Test J_STATE 0011b Test SEO_NAK 0100b Test SEO_NAK 0100b Test SEO_NAK 0100b Test Packet 0101b Test FORCE_ENABLE 0110b - Reserved 1111b - Reserved These bits are reserved for future use and should return a value of zero when read. Port Owner This bit unconditionally goes to a 0b when the Configured bit in the CONFIGFLAG register makes a 0b to 1b transition. This bit unconditionally goes to 1b whenever the Configured bit is zero. System software uses this field to release ownership of the port to selected host controller (in the event that the attached device is not a high-speed device). Software writes a one to this bit when the attached device is not a high-speed device. A one in this bit means that a companion host controller owns and controls the port. Poefault Value = 1b. Reserved These bits are reserved for future use and should return a value of zero when read. Line Status These bits are reserved for future use and should return a value of zero when read. Line Status These bits are used for detection of low-speed USB devices prior to port reset and enable sequence. This read only field is vidently when the port enable bit is zero and the current connect status bit is set to a one. The encoding of the bits are: Bit[11:10] USB State Interpretation Robert Ro					·			
0000b The port is NOT operating in a test mode. 0001b Test J_STATE 0010b Test J_STATE 0011b Test SE0_NAK 01100b Test Packet 0101b Test Packet 0110b Test Packet 0110b Test FORCE_ENABLE 0110b Test Packet 0110b Test FORCE_ENABLE 0110b Test be believed The seer of								
19:16 R/W 0 The default value in this field is '0000b'.								
0010b Test K_STATE 0011b Test SE0_NAK 0100b Test Packet 0101b Test FORCE_ENABLE 0110b				00000	0000b The port is NOT operating in a test mode.			
0011b Test SEO_NAK				0001b	Test J_STATE			
19:16 R/W 0 The default value in this field is '0000b'.				0010b	Test K_STATE			
19:16 R/W 0 The default value in this field is '0000b'.				0011b	Test SEO_NAK			
19:16 R/W 0 The default value in this field is '0000b'. Reserved These bits are reserved for future use and should return a value of zero when read. Port Owner This bit unconditionally goes to a 0b when the Configured bit in the CONFIGFLAG register makes a 0b to 1b transition. This bit unconditionally goes to 1b whenever the Configured bit is zero. System software uses this field to release ownership of the port to selected host controller (in the event that the attached device is not a high-speed device.) Software writes a one to this bit when the attached device is not a high-speed device. A one in this bit means that a companion host controller owns and controls the port. Default Value = 1b. Reserved These bits are reserved for future use and should return a value of zero when read. Line Status These bits reflect the current logical levels of the D+ (bit11) and D-(bit10) signal lines. These bits are used for detection of low-speed USB devices prior to port enable bit is zero and the current connect status bit is set to a one. The encoding of the bits are: Bit[11:10] USB State Interpretation Oob SEO Not Low-speed device, perform EHCI reset. 10b J-state Not Low-speed device, perform EHCI reset. Olb K-state Low-speed device, release ownership of port. 11b Undefined Not Low-speed device, perform EHCI				0100b	Test Packet			
19:16 R/W 0 The default value in this field is '0000b'. Reserved These bits are reserved for future use and should return a value of zero when read. Port Owner This bit unconditionally goes to a 0b when the Configured bit in the CONFIGFLAG register makes a 0b to 1b transition. This bit unconditionally goes to 1b whenever the Configured bit is zero. System software uses this field to release ownership of the port to selected host controller (in the event that the attached device is not a high-speed device.) Software writes a one to this bit when the attached device is not a high-speed device. A one in this bit means that a companion host controller owns and controls the port. Default Value = 1b. Reserved These bits are reserved for future use and should return a value of zero when read. Line Status These bits reflect the current logical levels of the D+ (bit11) and D-(bit10) signal lines. These bits are used for detection of low-speed USB devices prior to port enable bit is zero and the current connect status bit is set to a one. The encoding of the bits are: Bit[11:10] USB State Interpretation Oob SEO Not Low-speed device, perform EHCI reset. 10b J-state Not Low-speed device, perform EHCI reset. Olb K-state Low-speed device, release ownership of port. 11b Undefined Not Low-speed device, perform EHCI				0101h	Test FORCE FNA	RIF		
19:16 R/W 0 The default value in this field is '0000b'. Reserved These bits are reserved for future use and should return a value of zero when read. Port Owner This bit unconditionally goes to a 0b when the Configured bit in the CONFIGFLAG register makes a 0b to 1b transition. This bit unconditionally goes to 1b whenever the Configured bit is zero. System software uses this field to release ownership of the port to selected host controller (in the event that the attached device is not a high-speed device. A one in this bit means that a companion host controller owns and controls the port. 13 R/W 1 Default Value = 1b. Reserved These bits are reserved for future use and should return a value of zero when read. Line Status These bits reflect the current logical levels of the D+ (bit11) and D-(bit10) signal lines. These bits are used for detection of low-speed USB devices prior to port reset and enable sequence. This read only field is valid only when the port enable bit is zero and the current connect status bit is set to a one. The encoding of the bits are: Bit[11:10] USB State Interpretation Oob SEO Not Low-speed device, perform EHCI reset. 10b J-state Not Low-speed device, perform EHCI reset. O1b K-state Low-speed device, release ownership of port. 11b Undefined Not Low-speed device, perform EHCI				1	iest i once_eiv	NOLL		
19:16 R/W 0 The default value in this field is '0000b'. Reserved These bits are reserved for future use and should return a value of zero when read. Port Owner This bit unconditionally goes to a 0b when the Configured bit in the CONFIGFLAG register makes a 0b to 1b transition. This bit unconditionally goes to 1b whenever the Configured bit is zero. System software uses this field to release ownership of the port to selected host controller (in the event that the attached device is not a high-speed device). Software writes a one to this bit when the attached device is not a high-speed device. A one in this bit means that a companion host controller owns and controls the port. 13 R/W 1 Default Value = 1b. Reserved These bits are reserved for future use and should return a value of zero when read. Line Status These bits are used for detection of low-speed USB devices prior to port reset and enable sequence. This read only field is valid only when the port enable bit is zero and the current connect status bit is set to a one. The encoding of the bits are: Bit[11:10] USB State Interpretation Oob SEO Not Low-speed device, perform EHCI reset. 10b J-state Not Low-speed device, perform EHCI reset. 10b J-state Not Low-speed device, perform EHCI reset. 10b Undefined Not Low-speed device, perform EHCI					Reserved			
19:16 R/W 0 The default value in this field is '0000b'. Reserved These bits are reserved for future use and should return a value of zero when read. Port Owner This bit unconditionally goes to a 0b when the Configured bit in the CONFIGFLAG register makes a 0b to 1b transition. This bit unconditionally goes to 1b whenever the Configured bit is zero. System software uses this field to release ownership of the port to selected host controller (in the event that the attached device is not a high-speed device). Software writes a one to this bit when the attached device is not a high-speed device. A one in this bit means that a companion host controller owns and controls the port. 13 R/W 1 Default Value = 1b. Reserved These bits are reserved for future use and should return a value of zero when read. Line Status These bits reflect the current logical levels of the D+ (bit11) and D-(bit10) signal lines. These bits are used for detection of low-speed USB devices prior to port reset and enable sequence. This read only field is valid only when the port enable bit is zero and the current connect status bit is set to a one. The encoding of the bits are: Bit[11:10] USB State Interpretation Oob SEO Not Low-speed device, perform EHCI reset. 10b J-state Not Low-speed device, perform EHCI reset. 10b Ushefined Not Low-speed device, perform EHCI port.					iteser vea			
Reserved These bits are reserved for future use and should return a value of zero when read. Port Owner This bit unconditionally goes to a 0b when the Configured bit in the CONFIGFLAG register makes a 0b to 1b transition. This bit unconditionally goes to 1b whenever the Configured bit is zero. System software uses this field to release ownership of the port to selected host controller (in the event that the attached device is not a high-speed device). Software writes a one to this bit when the attached device is not a high-speed device. A one in this bit means that a companion host controller owns and controls the port. 13 R/W 1 Default Value = 1b. Reserved These bits are reserved for future use and should return a value of zero when read. Line Status These bits reflect the current logical levels of the D+ (bit11) and D-(bit10) signal lines. These bits are used for detection of low-speed USB devices prior to port reset and enable sequence. This read only field is valid only when the port enable bit is zero and the current connect status bit is set to a one. The encoding of the bits are: Bit[11:10] USB State Interpretation Oob SEO Not Low-speed device, perform EHCI reset. 10b J-state Not Low-speed device, perform EHCI reset. 10b K-state Low-speed device, release ownership of port. 11b Undefined Not Low-speed device, perform EHCI	19·16	R/W	0					
These bits are reserved for future use and should return a value of zero when read. Port Owner This bit unconditionally goes to a 0b when the Configured bit in the CONFIGFLAG register makes a 0b to 1b transition. This bit unconditionally goes to 1b whenever the Configured bit is zero. System software uses this field to release ownership of the port to selected host controller (in the event that the attached device is not a high-speed device). Software writes a one to this bit when the attached device is not a high-speed device. A one in this bit means that a companion host controller owns and controls the port. Default Value = 1b. Reserved These bits are reserved for future use and should return a value of zero when read. Line Status These bits reflect the current logical levels of the D+ (bit11) and D-(bit10) signal lines. These bits are used for detection of low-speed USB devices prior to port reset and enable sequence. This read only field is valid only when the port enable bit is zero and the current connect status bit is set to a one. The encoding of the bits are: Bit[11:10] USB State Interpretation Obb SEO Not Low-speed device, perform EHCI reset. 10b J-state Not Low-speed device, perform EHCI reset. 10b K-state Low-speed device, release ownership of port. 11b Undefined Not Low-speed device, perform EHCI	13.10	11,717						
15:14 R/W 0 when read. Port Owner This bit unconditionally goes to a 0b when the Configured bit in the CONFIGFLAG register makes a 0b to 1b transition. This bit unconditionally goes to 1b whenever the Configured bit is zero. System software uses this field to release ownership of the port to selected host controller (in the event that the attached device is not a high-speed device). Software writes a one to this bit when the attached device is not a high-speed device. A one in this bit means that a companion host controller owns and controls the port. Default Value = 1b. Reserved These bits are reserved for future use and should return a value of zero when read. Line Status These bits reflect the current logical levels of the D+ (bit11) and D-(bit10) signal lines. These bits are used for detection of low-speed USB devices prior to port reset and enable sequence. This read only field is valid only when the port enable bit is zero and the current connect status bit is set to a one. The encoding of the bits are: Bit[11:10] USB State Interpretation Oob SEO Not Low-speed device, perform EHCI reset. 10b J-state Not Low-speed device, perform EHCI reset. O1b K-state Low-speed device, release ownership of port. 11b Undefined Not Low-speed device, perform EHCI								
Port Owner This bit unconditionally goes to a 0b when the Configured bit in the CONFIGFLAG register makes a 0b to 1b transition. This bit unconditionally goes to 1b whenever the Configured bit is zero. System software uses this field to release ownership of the port to selected host controller (in the event that the attached device is not a high-speed device).Software writes a one to this bit when the attached device is not a high-speed device. A one in this bit means that a companion host controller owns and controls the port. Default Value = 1b. Reserved These bits are reserved for future use and should return a value of zero when read. Line Status These bits reflect the current logical levels of the D+ (bit11) and D-(bit10) signal lines. These bits are used for detection of low-speed USB devices prior to port reset and enable sequence. This read only field is valid only when the port enable bit is zero and the current connect status bit is set to a one. The encoding of the bits are: Bit[11:10] USB State Interpretation Oob SEO Not Low-speed device, perform EHCI reset. 10b J-state Not Low-speed device, perform EHCI reset. 10b K-state Low-speed device, release ownership of port. 11b Undefined Not Low-speed device, perform EHCI	15:14	R/W	0					
This bit unconditionally goes to a 0b when the Configured bit in the CONFIGFLAG register makes a 0b to 1b transition. This bit unconditionally goes to 1b whenever the Configured bit is zero. System software uses this field to release ownership of the port to selected host controller (in the event that the attached device is not a high-speed device). Software writes a one to this bit when the attached device is not a high-speed device. A one in this bit means that a companion host controller owns and controls the port. Default Value = 1b. Reserved These bits are reserved for future use and should return a value of zero when read. Line Status These bits reflect the current logical levels of the D+ (bit11) and D-(bit10) signal lines. These bits are used for detection of low-speed USB devices prior to port reset and enable sequence. This read only field is valid only when the port enable bit is zero and the current connect status bit is set to a one. The encoding of the bits are: Bit[11:10] USB State Interpretation OOD SEO Not Low-speed device, perform EHCI reset. 10b J-state Not Low-speed device, perform EHCI reset. 10b K-state Low-speed device, release ownership of port. 11b Undefined Not Low-speed device, perform EHCI		1411						
CONFIGFLAG register makes a 0b to 1b transition. This bit unconditionally goes to 1b whenever the Configured bit is zero. System software uses this field to release ownership of the port to selected host controller (in the event that the attached device is not a high-speed device). Software writes a one to this bit when the attached device is not a high-speed device. A one in this bit means that a companion host controller owns and controls the port. Default Value = 1b. Reserved These bits are reserved for future use and should return a value of zero when read. Line Status These bits reflect the current logical levels of the D+ (bit11) and D-(bit10) signal lines. These bits are used for detection of low-speed USB devices prior to port reset and enable sequence. This read only field is valid only when the port enable bit is zero and the current connect status bit is set to a one. The encoding of the bits are: Bit[11:10] USB State Interpretation OOD SEO Not Low-speed device, perform EHCI reset. 10b J-state Not Low-speed device, perform EHCI reset. 10b K-state Low-speed device, release ownership of port. 11b Undefined Not Low-speed device, perform EHCI								
goes to 1b whenever the Configured bit is zero. System software uses this field to release ownership of the port to selected host controller (in the event that the attached device is not a high-speed device). Software writes a one to this bit when the attached device is not a high-speed device. A one in this bit means that a companion host controller owns and controls the port. 13 R/W 1 Default Value = 1b. Reserved These bits are reserved for future use and should return a value of zero when read. Line Status These bits reflect the current logical levels of the D+ (bit11) and D-(bit10) signal lines. These bits are used for detection of low-speed USB devices prior to port reset and enable sequence. This read only field is valid only when the port enable bit is zero and the current connect status bit is set to a one. The encoding of the bits are: Bit[11:10] USB State Interpretation Oob SEO Not Low-speed device, perform EHCI reset. 10b J-state Not Low-speed device, perform EHCI reset. O1b K-state Low-speed device, release ownership of port. 11b Undefined Not Low-speed device, perform EHCI								
System software uses this field to release ownership of the port to selected host controller (in the event that the attached device is not a high-speed device). Software writes a one to this bit when the attached device is not a high-speed device. A one in this bit means that a companion host controller owns and controls the port. 13 R/W 1 Default Value = 1b. Reserved These bits are reserved for future use and should return a value of zero when read. Line Status These bits reflect the current logical levels of the D+ (bit11) and D-(bit10) signal lines. These bits are used for detection of low-speed USB devices prior to port reset and enable sequence. This read only field is valid only when the port enable bit is zero and the current connect status bit is set to a one. The encoding of the bits are: Bit[11:10] USB State Interpretation Oob SEO Not Low-speed device, perform EHCI reset. 10b J-state Not Low-speed device, perform EHCI reset. 10b K-state Low-speed device, release ownership of port. 11b Undefined Not Low-speed device, perform EHCI				·				
host controller (in the event that the attached device is not a high-speed device). Software writes a one to this bit when the attached device is not a high-speed device. A one in this bit means that a companion host controller owns and controls the port. 13 R/W 1 Default Value = 1b. Reserved These bits are reserved for future use and should return a value of zero when read. Line Status These bits reflect the current logical levels of the D+ (bit11) and D-(bit10) signal lines. These bits are used for detection of low-speed USB devices prior to port reset and enable sequence. This read only field is valid only when the port enable bit is zero and the current connect status bit is set to a one. The encoding of the bits are: Bit[11:10] USB State Interpretation				System software uses this field to release ownership of the port to selected				
high-speed device. A one in this bit means that a companion host controller owns and controls the port. Default Value = 1b. Reserved These bits are reserved for future use and should return a value of zero when read. Line Status These bits reflect the current logical levels of the D+ (bit11) and D-(bit10) signal lines. These bits are used for detection of low-speed USB devices prior to port reset and enable sequence. This read only field is valid only when the port enable bit is zero and the current connect status bit is set to a one. The encoding of the bits are: Bit[11:10] USB State Interpretation OOb SEO Not Low-speed device, perform EHCI reset. 10b J-state Not Low-speed device, perform EHCI reset. 11b Undefined Not Low-speed device, perform EHCI				host controller (in the event that the attached device is not a high-speed				
owns and controls the port. Default Value = 1b. Reserved These bits are reserved for future use and should return a value of zero when read. Line Status These bits reflect the current logical levels of the D+ (bit11) and D-(bit10) signal lines. These bits are used for detection of low-speed USB devices prior to port reset and enable sequence. This read only field is valid only when the port enable bit is zero and the current connect status bit is set to a one. The encoding of the bits are: Bit[11:10] USB State Interpretation Obb SEO Not Low-speed device, perform EHCI reset. 10b J-state Not Low-speed device, perform EHCI reset. 11b Undefined Not Low-speed device, perform EHCI								
13 R/W 1 Default Value = 1b. Reserved These bits are reserved for future use and should return a value of zero when read. Line Status These bits reflect the current logical levels of the D+ (bit11) and D-(bit10) signal lines. These bits are used for detection of low-speed USB devices prior to port reset and enable sequence. This read only field is valid only when the port enable bit is zero and the current connect status bit is set to a one. The encoding of the bits are: Bit[11:10] USB State Interpretation Oob SEO Not Low-speed device, perform EHCI reset. 10b J-state Not Low-speed device, perform EHCI reset. O1b K-state Low-speed device, release ownership of port. 11b Undefined Not Low-speed device, perform EHCI				·				
Reserved These bits are reserved for future use and should return a value of zero when read. Line Status These bits reflect the current logical levels of the D+ (bit11) and D-(bit10) signal lines. These bits are used for detection of low-speed USB devices prior to port reset and enable sequence. This read only field is valid only when the port enable bit is zero and the current connect status bit is set to a one. The encoding of the bits are: Bit[11:10] USB State Interpretation								
These bits are reserved for future use and should return a value of zero when read. Line Status These bits reflect the current logical levels of the D+ (bit11) and D-(bit10) signal lines. These bits are used for detection of low-speed USB devices prior to port reset and enable sequence. This read only field is valid only when the port enable bit is zero and the current connect status bit is set to a one. The encoding of the bits are: Bit[11:10] USB State Interpretation	13	R/W	1	Default Val	ue = 1b.			
12				Reserved				
Line Status These bits reflect the current logical levels of the D+ (bit11) and D-(bit10) signal lines. These bits are used for detection of low-speed USB devices prior to port reset and enable sequence. This read only field is valid only when the port enable bit is zero and the current connect status bit is set to a one. The encoding of the bits are: Bit[11:10]				These bits	are reserved for	future use and should return a value of zero		
These bits reflect the current logical levels of the D+ (bit11) and D-(bit10) signal lines. These bits are used for detection of low-speed USB devices prior to port reset and enable sequence. This read only field is valid only when the port enable bit is zero and the current connect status bit is set to a one. The encoding of the bits are: Bit[11:10] USB State Interpretation	12	/	0	when read	·			
signal lines. These bits are used for detection of low-speed USB devices prior to port reset and enable sequence. This read only field is valid only when the port enable bit is zero and the current connect status bit is set to a one. The encoding of the bits are: Bit[11:10] USB State Interpretation				Line Status				
to port reset and enable sequence. This read only field is valid only when the port enable bit is zero and the current connect status bit is set to a one. The encoding of the bits are: Bit[11:10] USB State Interpretation				These bits	reflect the curre	nt logical levels of the D+ (bit11) and D-(bit10)		
the port enable bit is zero and the current connect status bit is set to a one. The encoding of the bits are: Bit[11:10] USB State Interpretation O0b SEO Not Low-speed device, perform EHCI reset. 10b J-state Not Low-speed device, perform EHCI reset. O1b K-state Low-speed device, release ownership of port. 11b Undefined Not Low-speed device, perform EHCI				_		·		
The encoding of the bits are: Bit[11:10] USB State Interpretation Ob SEO Not Low-speed device, perform EHCI reset. 10b J-state Not Low-speed device, perform EHCI reset. O1b K-state Low-speed device, release ownership of port. 11b Undefined Not Low-speed device, perform EHCI				, , ,				
Bit[11:10] USB State Interpretation Ob SEO Not Low-speed device, perform EHCI reset. 10b J-state Not Low-speed device, perform EHCI reset. O1b K-state Low-speed device, release ownership of port. 11b Undefined Not Low-speed device, perform EHCI				the port enable bit is zero and the current connect status bit is set to a one.				
00b SEO Not Low-speed device, perform EHCI reset. 10b J-state Not Low-speed device, perform EHCI reset. 01b K-state Low-speed device, release ownership of port. 11b Undefined Not Low-speed device, perform EHCI								
reset. 10b J-state Not Low-speed device, perform EHCI reset. 01b K-state Low-speed device, release ownership of port. 11b Undefined Not Low-speed device, perform EHCI				Bit[11:10]	USB State	Interpretation		
reset. 10b J-state Not Low-speed device, perform EHCI reset. 01b K-state Low-speed device, release ownership of port. 11b Undefined Not Low-speed device, perform EHCI				00b	SE0	Not Low-speed device, perform EHCI		
reset. 01b K-state Low-speed device, release ownership of port. 11b Undefined Not Low-speed device, perform EHCI						·		
reset. 01b K-state Low-speed device, release ownership of port. 11b Undefined Not Low-speed device, perform EHCI				10b	J-state			
port. 11b Undefined Not Low-speed device, perform EHCI								
11b Undefined Not Low-speed device, perform EHCI				01b	K-state	Low-speed device, release ownership of		
						port.		
11:10 R 0 reset.				11b	Undefined	Not Low-speed device, perform EHCI		
	11:10	R	0			reset.		

			This value of this field is undefine	ned if Port Power is zero.	
			Reserved		
			This bit is reserved for future us	se, and should return a value of zero when	
9	/	0	read.		
			Port Reset		
			1=Port is in Reset. 0=Port is not		
				this bit (from a zero), the bus reset sequence	
			as defined in the USB Specification Revision 2.0 is started. Software writes a		
				bus reset sequence. Software must keep	
				ensure the reset sequence, as specified in	
				2.0, completes. Notes: when software writes rite a zero to the Port Enable bit.	
				s a zero to this bit there may be a delay	
				a zero. The bit status will not read as a zero	
			_	ted. If the port is in high-speed mode after	
			reset is complete, the host cont	roller will automatically enable this port (e.g.	
). A host controller must terminate the reset	
			-	rt within 2 milliseconds of software	
				to a zero. For example: if the port detects	
			_	-speed during reset, then the host controller	
			to a zero.	ed state with 2ms of software writing this bit	
				S register should be a zero before software	
				st controller may hold Port Reset asserted to	
			a one when the HC Halted bit is	•	
8	R/W	0	This field is zero if Port Power is zero.		
			Suspend		
			Port Enabled Bit and Suspend bit of this register define the port states as		
			follows:	Port State	
			Bits[Port Enables, Suspend]	Disable	
			0x		
			10	Enable	
			11	Suspend	
			When in suspend state, downstream propagation of data is blocked on this port, except for port reset. The blocking occurs at the end of the current		
			transaction, if a transaction was in progress when this bit was written to 1.		
			In the suspend state, the port is sensitive to resume detection. Not that the		
			bit status does not change until the port is suspend and that there may be a		
			delay in suspending a port if the	ere is a transaction currently in progress on	
			the USB.		
			_	ored by the host controller. The host	
			controller will unconditionally set this bit to a zero when: 1 Software sets the Force Port Resume bit to a zero(from a one).		
			2 Software sets the Port Rese		
			•	one when the port is not enabled(i.e. Port	
			enabled bit is a zero), the result	·	
			This field is zero if Port Power is zero.		
7	R/W	0	The default value in this field is	' 0'.	
			Force Port Resume		
			1 = Resume detected/driven on port. 0 = No resume (K-state) detected/		
			driven on port. Default value = 0. This functionality defined for manipulating this bit depends on the value of		
			the Suspend bit. For example, if the port is not suspend and software		
6	R/W	0	transitions this bit to a one, then the effects on the bus are undefined.		
	1.7 **	~	Landidad this sit to a one, the	checks on the bus are anachilea.	

			Software sets this bit to a 1 drive resume signaling. The Host Controller sets
			this bit to a 1 if a J-to-K transition is detected while the port is in the
			Suspend state. When this bit transitions to a one because a J-to-K transition
			is detected, the Port Change Detect bit in the USBSTS register is also set to a
			one. If software sets this bit to a one, the host controller must not set the
			Port Change Detect bit.
			Note that when the EHCI controller owns the port, the resume sequence
			follows the defined sequence documented in the USB Specification Revision
			2.0. The resume signaling (Full-speed 'K') is driven on the port as long as this
			remains a one. Software must appropriately time the Resume and set this
			bit to a zero when the appropriate amount of time has elapsed. Writing a
			zero (from one) causes the port to return high-speed mode (forcing the bus
			below the port into a high-speed idle). This bit will remain a one until the
			port has switched to high-speed idle. The host controller must complete this
			transition within 2 milliseconds of software setting this bit to a zero.
			This field is zero if Port Power is zero.
			Over-current Change
			Default = 0. This bit gets set to a one when there is a change to Over-current
5	R/WC	0	Active. Software clears this bit by writing a one to this bit position.
			Over-current Active
			0 = This port does not have an over-current condition. 1 = This port currently
			has an over-current condition. This bit will automatically transition from a
			one to a zero when the over current condition is removed.
4	R	0	The default value of this bit is '0'.
			Port Enable/Disable Change
			Default = 0. 1 = Port enabled/disabled status has changed. 0 = No change.
			For the root hub, this bit gets set to a one only when a port is disabled due
			to the appropriate conditions existing at the EOF2 point (See Chapter 11 of
			the USB Specification for the definition of a Port Error). Software clears this
			bit by writing a 1 to it.
3	R/WC	0	This field is zero if Port Power is zero.
			Port Enabled/Disabled
			1=Enable, 0=Disable. Ports can only be enabled by the host controller as a
			part of the reset and enable. Software cannot enable a port by writing a one
			to this field. The host controller will only set this bit to a one when the reset
			sequence determines that the attached device is a high-speed device.
			Ports can be disabled by either a fault condition(disconnect event or other
			fault condition) or by host software. Note that the bit status does not
			change until the port state actually changes. There may be a delay in
			disabling or enabling a port due to other host controller and bus events.
			When the port is disabled, downstream propagation of data is blocked on
			this port except for reset.
			The default value of this field is '0'.
2	R/W	0	This field is zero if Port Power is zero.
2	IN/ VV	U	
			Connect Status Change 1-Change in Current Connect Status, O-No change, Default-0
			1=Change in Current Connect Status, 0=No change, Default=0.
			Indicates a change has occurred in the port's Current Connect Status. The
			host controller sets this bit for all changes to the port device connect status,
			even if system software has not cleared an existing connect status change.
			For example, the insertion status changes twice before system software has
			cleared the changed condition, hub hardware will be "setting" an
	D // // C		already-set bit. Software sets this bit to 0 by writing a 1 to it.
1	R/WC	0	This field is zero if Port Power is zero.
			Current Connect Status
0	R	0	Device is present on port when the value of this field is a one, and no device

is present on port when the value of this field is a zero. This value reflects
the current state of the port, and may not correspond directly to the event
that caused the Connect Status Change(Bit 1) to be set.
This field is zero if Port Power zero.

Note: This register is only reset by hardware or in response to a host controller reset.

8.4.1.4. USB OTG_OHCI Register Description

8.4.1.4.1. HcRevision Register(Default Value: 0x00000010)

Offset: 0:	Offset: 0x400			Register Name: HcRevision
	Read/Write			
Bit	HCD	НС	Default/HEX	Description
31:8	/	/	0x00	Reserved
				Revision This read-only field contains the BCD representation of the version of the HCI specification that is implemented by this HC. For example, a value of 0x11 corresponds to version 1.1. All of the HC implementations that are
7:0	R	R	0x10	compliant with this specification will have a value of 0x10.

8.4.1.4.2. HcControl Register(Default Value: 0x00000000)

Offset: 0x404				Register Name: HcRevision
	Read/\	Write		
Bit	HCD	НС	Default/HEX	Description
31:11	/	/	0x00	Reserved
10	R/W	R	0x0	RemoteWakeupEnable This bit is used by HCD to enable or disable the remote wakeup feature upon the detection of upstream resume signaling. When this bit is set and the ResumeDetected bit in HcInterruptStatus is set, a remote wakeup is signaled to the host system. Setting this bit has no impact on the generation of hardware interrupt.
9	R/W	R/W	0×0	RemoteWakeupConnected This bit indicates whether HC supports remote wakeup signaling. If remote wakeup is supported and used by the system, it is the responsibility of system firmware to set this bit during POST. HC clear the bit upon a hardware reset but does not alter it upon a software reset. Remote wakeup signaling of the host system is host-bus-specific and is not described in this specification.
8	R/W	R	0x0	InterruptRouting This bit determines the routing of interrupts generated by events registered in HcInterruptStatus. If clear, all interrupt are routed to the normal host bus interrupt mechanism. If set interrupts are routed to the System Management Interrupt. HCD clears this bit upon a hardware reset, but it does not alter this bit upon a software reset. HCD uses this bit as a tag to indicate the ownership of HC.
7:6	R/W	R/W	0x0	HostControllerFunctionalState for USB

				00b	USBReset
				01b	USBResume
				10b	USBOperational
				11b	USBSuspend
				A trans	sition to USBOperational from another state causes SOF generation
					in 1 ms later. HCD may determine whether HC has begun sending
					y reading the StartoFrame field of
					erruptStatus.
					eld may be changed by HC only when in the USBSUSPEND state. HC nove from the USBSUSPEND state to the USBRESUME state after
				_	ing the resume signaling from a downstream port.
					ters USBSUSPEND after a software reset, whereas it enters
				USBRE	SET after a hardware reset. The latter also resets the Root
					nd asserts subsequent reset signaling to downstream ports.
					stEnable
					t is set to enable the processing of the Bulk list in the next . If cleared by HCD, processing of the Bulk list does not occur after
					ext SOF. HC checks this bit whenever it determines to process the list.
					disabled, HCD may modify the list. If HcBulkCurrentED is pointing to
				an ED	to be removed, HCD must advance the pointer by updating
5	R/W	R	0x0		«CurrentED before re-enabling processing of the list.
					olListEnable
					It is set to enable the processing of the Control list in the next Frame. red by HCD, processing of the Control list does not occur after the
					OF. HC must check this bit whenever it determines to process the list.
					disabled, HCD may modify the list. If HcControlCurrentED is pointing
				to an E	ED to be removed, HCD must advance the pointer by updating
4	R/W	R	0x0	_	trolCurrentED before re-enabling processing of the list.
					onousEnable
					t is used by HCD to enable/disable processing of isochronous EDs. processing the periodic list in a Frame, HC checks the status of this
					en it finds an Isochronous ED (F=1). If set (enabled), HC continues
					ssing the EDs. If cleared (disabled), HC halts processing of the periodic
				•	hich now contains only isochronous EDs) and begins processing the
				1	Control lists.
2	R/W	R	0x0	_	g this bit is guaranteed to take effect in the next Frame (not the
3	N/ VV	IV.	UAU	_	it Frame). licListEnable
					t is set to enable the processing of periodic list in the next Frame. If
					d by HCD, processing of the periodic list does not occur after the next
2	R/W	R	0x0	_	C must check this bit before it starts processing the list.
					olBulkServiceRatio
				-	pecifies the service ratio between Control and Bulk EDs. Before ssing any of the nonperiodic lists, HC must compare the ratio
					ed with its internal count on how many nonempty Control EDs have
				-	processed, in determining whether to continue serving another
				Contro	ol ED or switching to Bulk EDs. The internal count will be retained
					crossing the frame boundary. In case of reset, HCD is responsible for
					ing this value.
				CBSR	No. of Control EDs Over Bulk EDs Served
				0	1:1
				1	2:1
1:0	R/W	R	0x0	2	3:1

3	4:1	
The defau	lt value is 0x0.	

8.4.1.4.3. HcCommandStatus Register(Default Value: 0x00000000)

Offset: 0x408				Register Name: HcCommandStatus
	Read/Write			
Bit	HCD	НС	Default/HEX	Description
31:18	/	/	0x0	Reserved
17:16 15:4	R /	R/W	0x0 0x0	SchedulingOverrunCount These bits are incremented on each scheduling overrun error. It is initialized to 00b and wraps around at 11b. This will be incremented when a scheduling overrun is detected even if SchedulingOverrun in HcInterruptStatus has already been set. This is used by HCD to monitor any persistent scheduling problem. Reserved
	1	1		OwershipChangeRequest
3	R/W	R/W	0x0	This bit is set by an OS HCD to request a change of control of the HC. When set HC will set the OwnershipChange field in HcInterruptStatus. After the changeover, this bit is cleared and remains so until the next request from OS HCD.
				BulkListFilled This bit is used to indicate whether there are any TDs on the Bulk list. It is set by HCD whenever it adds a TD to an ED in the Bulk list. When HC begins to process the head of the Bulk list, it checks BLF. As long as BulkListFilled is 0, HC will not start processing the Bulk list. If BulkListFilled is 1, HC will start processing the Bulk list and will set BF to 0. If HC finds a TD on the list, then HC will set BulkListFilled to 1 causing the Bulk list processing to continue. If no TD is found on the Bulk list, and if HCD does not set BulkListFilled, then BulkListFilled will still be 0 when HC
2	R/W	R/W	0x0	completes processing the Bulk list and Bulk list processing will stop.
1	R/W	R/W	0x0	ControlListFilled This bit is used to indicate whether there are any TDs on the Control list. It is set by HCD whenever it adds a TD to an ED in the Control list. When HC begins to process the head of the Control list, it checks CLF. As long as ControlListFilled is 0, HC will not start processing the Control list. If CF is 1, HC will start processing the Control list and will set ControlListFilled to 0. If HC finds a TD on the list, then HC will set ControlListFilled to 1 causing the Control list processing to continue. If no TD is found on the Control list, and if the HCD does not set ControlListFilled, then ControlListFilled will still be 0 when HC completes processing the Control list and Control list processing will stop.
0	R/W	R/E	0x0	HostControllerReset This bit is by HCD to initiate a software reset of HC. Regardless of the functional state of HC, it moves to the USBSuspend state in which most of the operational registers are reset except those stated otherwise; e.g, the InteruptRouting field of HcControl, and no Host bus accesses are allowed. This bit is cleared by HC upon the completion of the reset operation. The reset operation must be completed within 10 ms. This bit, when set, should not cause a reset to the Root Hub and no subsequent reset signaling should be asserted to its downstream ports.

8.4.1.4.4. HcInterruptStatus Register(Default Value: 0x00000000)

Offset: (Offset: 0x40c			Register Name: HcInterruptStatus
	Read/\	Write		
Bit	HCD	НС	Default/HEX	Description
31:7	/	/	0x0	Reserved
	,			RootHubStatusChange
				This bit is set when the content of HcRhStatus or the content of any of
6	R/W	R/W	0x0 0x1?	HcRhPortStatus[NumberofDownstreamPort] has changed.
				FrameNumberOverflow
		_		This bit is set when the MSb of HcFmNumber (bit 15) changes value, from 0
5	R/W	R/W	0x0	to 1 or from 1 to 0, and after HccaFrameNumber has been updated.
				UnrecoverableError
				This bit is set when HC detects a system error not related to USB. HC should
	D /\A/	D/M	00	not proceed with any processing nor signaling before the system error has been corrected. HCD clears this bit after HC has been reset.
4	R/W	R/W	0x0	ResumeDetected ResumeDetected
				This bit is set when HC detects that a device on the USB is asserting resume
				signaling. It is the transition from no resume signaling to resume signaling
				causing this bit to be set. This bit is not set when HCD sets the USBRseume
3	R/W	R/W	0x0	state.
				StartofFrame
				This bit is set by HC at each start of frame and after the update of
2	R/W	R/W	0x0	HccaFrameNumber. HC also generates a SOF token at the same time.
				WritebackDoneHead
				This bit is set immediately after HC has written HcDoneHead to
				HccaDoneHead. Further updates of the HccaDoneHead will not occur until
		_		this bit has been cleared. HCD should only clear this bit after it has saved
1	R/W	R/W	0x0	the content of HccaDoneHead.
				SchedulingOverrun
				This bit is set when the USB schedule for the current Frame overruns and
				after the update of HccaFrameNumber. A scheduling overrun will also cause the SchedulingOverrunCount of HcCommandStatus to be
0	R/W	R/W	0x0	Incremented.
U	r/ vv	r/ vv	UXU	moremented.

8.4.1.4.5. HcInterruptEnable Register(Default Value: 0x00000000)

Offset:	Offset: 0x410			Register Name: HcInterruptEnable Register		
	Read/Write					
Bit	HCD	НС	Default	Description		
31	R/W	R	0x0	MasterInterruptEnable A '0' writtern to this field is ignored by HC. A '1' written to this field enables interrupt generation due to events specified in the other bits of this register. This is used by HCD as Master Interrupt Enable.		
30:7	/	/	0x0	Reserved		
6	R/W	R	0x0	RootHubStatusChange Interrupt Enable 0		

				FrameNumberOverflow Interrupt Enable
				0 Ignore;
				1 Enable interrupt generation due to Frame Number Over Flow;
5	R/W	R	0x0	
				UnrecoverableError Interrupt Enable
				0 Ignore;
4	R/W	R	0x0	1 Enable interrupt generation due to Unrecoverable Error;
				ResumeDetected Interrupt Enable
				0 Ignore;
3	R/W	R	0x0	1 Enable interrupt generation due to Resume Detected;
				StartofFrame Interrupt Enable
				0 Ignore;
2	R/W	R	0x0	1 Enable interrupt generation due to Start of Flame;
				WritebackDoneHead Interrupt Enable
				0 Ignore;
1	R/W	R	0x0	1 Enable interrupt generation due to Write back Done Head;
				SchedulingOverrun Interrupt Enable
				0 Ignore;
0	R/W	R	0x0	1 Enable interrupt generation due to Scheduling Overrun;

8.4.1.4.6. HcInterruptDisable Register(Default Value: 0x00000000)

Offset:	Offset: 0x414			Register Name: HcInterruptDisable Register
	Read/	Write		
Bit	HCD	НС	Default/HEX	Description
				MasterInterruptEnable A written '0' to this field is ignored by HC. A '1' written to this field disables
				interrupt generation due events specified in the other bits of this register.
31	R/W	R	0x0	This field is set after a hardware or software reset.
30:7	/	/	0x00	Reserved
				RootHubStatusChange Interrupt Disable
				0 Ignore;
6	R/W	R	0x0	Disable interrupt generation due to Root Hub Status Change;
				FrameNumberOverflow Interrupt Disable
				0 Ignore;
5	R/W	R	0x0	Disable interrupt generation due to Frame Number Over Flow;
				UnrecoverableError Interrupt Disable
				0 Ignore;
4	R/W	R	0x0	Disable interrupt generation due to Unrecoverable Error;
				ResumeDetected Interrupt Disable
				0 Ignore;
3	R/W	R	0x0	Disable interrupt generation due to Resume Detected;
				StartofFrame Interrupt Disable
				0 Ignore;
2	R/W	R	0x0	Disable interrupt generation due to Start of Flame;
1	R/W	R	0x0	WritebackDoneHead Interrupt Disable

				0	Ignore;	
				1	Disable interrupt generation due to Write back Done Head;	
				Sched	ulingOverrun Interrupt Disable	
				0	Ignore;	
0	R/w	R	0x0	1	Disable interrupt generation due to Scheduling Overrun;	

8.4.1.4.7. HcHCCA Register(Default Value: 0x00000000)

Offset: 0	Offset: 0x418			Register Name: HcHCCA
	Read/\	Write		
Bit	HCD	НС	Default/HEX	Description
				HCCA[31:8]
				This is the base address of the Host Controller Communication Area. This
				area is used to hold the control structures and the Interrupt table that are
31:8	R/W	R	0x0	accessed by both the Host Controller and the Host Controller Driver.
				HCCA[7:0]
				The alignment restriction in HcHCCA register is evaluated by examining the
				number of zeros in the lower order bits. The minimum alignment is 256
7:0	R	R	0x0	bytes, therefore, bits 0 through 7 must always return 0 when read.

8.4.1.4.8. HcPeriodCurrentED Register(Default Value: 0x00000000)

Offset: 0x	к 41 с			Register Name: HcPeriodCurrentED(PCED)
	Read/Write			
Bit	HCD	нс	Default/HEX	Description
31:4	R	R/W	0x0	PCED[31:4] This is used by HC to point to the head of one of the Periodec list which will be processed in the current Frame. The content of this register is updated by HC after a periodic ED has been processed. HCD may read the content in determining which ED is currently being processed at the time of reading.
3:0	R	R	0x0	PCED[3:0] Because the general TD length is 16 bytes, the memory structure for the TD must be aligned to a 16-byte boundary. So the lower bits in the PCED, through bit 0 to bit 3 must be zero in this field.

8.4.1.4.9. HcControlHeadED Register(Default Value: 0x00000000)

Offset: 0x	420			Register Name: HcControlHeadED[CHED]
	Read/Write			
Bit	HCD	НС	Default/HEX	Description
				EHCD[31:4] The HcControlHeadED register contains the physical address of the first Endpoint Descriptor of the Control list. HC traverse the Control list starting with the HcControlHeadED pointer. The content is loaded from
31:4	R/W	R	0x0	HCCA during the initialization of HC.

				EHCD[3:0]
				Because the general TD length is 16 bytes, the memory structure for the
				TD must be aligned to a 16-byte boundary. So the lower bits in the PCED,
3:0	R	R	0x0	through bit 0 to bit 3 must be zero in this field.

8.4.1.4.10. HcControlCurrentED Register(Default Value: 0x00000000)

Offset: 0x	424			Register Name: HcControlCurrentED[CCED]
	Read/V	Vrite		
Bit	HCD	нс	Default/Hex	Description
				CCED[31:4]
				The pointer is advanced to the next ED after serving the present one. HC will continue processing the list from where it left off in the last Frame. When it reaches the end of the Control list, HC checks the ControlListFilled of in HcCommandStatus. If set, it copies the content of HcControlHeadED to HcControlCurrentED and clears the bit. If not set, it does nothing. HCD is allowed to modify this register only when the ControlListEnable of HcControl is cleared. When set, HCD only reads the instantaneous value of this register. Initially, this is set to zero to indicate the end of the
31:4	R/W	R/W	0x0	Control list.
				CCED[3:0]
				Because the general TD length is 16 bytes, the memory structure for the
				TD must be aligned to a 16-byte boundary. So the lower bits in the PCED,
3:0	R	R	0x0	through bit 0 to bit 3 must be zero in this field.

8.4.1.4.11. HcBulkHeadED Register(Default Value: 0x00000000)

Offset: 0	x428			Register Name: HcBulkHeadED[BHED]
	Read/\	Vrite		
Bit	HCD	нс	Default/HEX	Description
				BHED[31:4]
				The HcBulkHeadED register contains the physical address of the first
				Endpoint Descriptor of the Bulk list. HC traverses the Bulk list starting with
				the HcBulkHeadED pointer. The content is loaded from HCCA during the
31:4	R/W	R	0x0	initialization of HC.
				BHED[3:0]
				Because the general TD length is 16 bytes, the memory structure for the
				TD must be aligned to a 16-byte boundary. So the lower bits in the PCED,
3:0	R	R	0x0	through bit 0 to bit 3 must be zero in this field.

8.4.1.4.12. HcBulkCurrentED Register(Default Value: 0x00000000)

Offset: 0x	42c			Register Name: HcBulkCurrentED [BCED]
	Read/Write			
Bit	HCD	НС	Default/HEX	Description
31:4	R/W	R/W	0x0	BulkCurrentED[31:4]

				This is advanced to the next ED after the HC has served the present one. HC continues processing the list from where it left off in the last Frame. When it reaches the end of the Bulk list, HC checks the ControlListFilled of HcControl. If set, it copies the content of HcBulkHeadED to HcBulkCurrentED and clears the bit. If it is not set, it does nothing. HCD is only allowed to modify this register when the BulkListEnable of HcControl is cleared. When set, the HCD only reads the instantaneous value of this register. This is initially set to zero to indicate the end of the Bulk list.
				BulkCurrentED [3:0] Because the general TD length is 16 bytes, the memory structure for the
3:0	R	R	0x0	TD must be aligned to a 16-byte boundary. So the lower bits in the PCED, through bit 0 to bit 3 must be zero in this field.

8.4.1.4.13. HcDoneHead Register(Default Value: 0x00000000)

Offset: 0	k430			Register Name: HcDoneHead
	Read/\	Write		
Bit	HCD	нс	Default/Hex	Description
				HcDoneHead[31:4]
				When a TD is completed, HC writes the content of HcDoneHead to the
				NextTD field of the TD. HC then overwrites the content of HcDoneHead
				with the address of this TD. This is set to zero whenever HC writes the
				content of this register to HCCA. It also sets the WritebackDoneHead of
31:4	R	R/W	0x0	HcInterruptStatus.
				HcDoneHead[3:0]
				Because the general TD length is 16 bytes, the memory structure for the
				TD must be aligned to a 16-byte boundary. So the lower bits in the PCED,
3:0	R	R	0x0	through bit 0 to bit 3 must be zero in this field.

8.4.1.4.14. HcFmInterval Register(Default Value: 0x00002EDF)

Offset: 0	x434			Register Name: HcFmInterval Register
	Read/\	Read/Write		
Bit	HCD	нс	Default/Hex	Description
31	R/W	R	0x0	FrameIntervalToggler HCD toggles this bit whenever it loads a new value to FrameInterval.
30:16	R/W	R	0x0	FSLargestDataPacket This field specifies a value which is loaded into the Largest Data Packet Counter at the beginning of each frame. The counter value represents the largest amount of data in bits which can be sent or received by the HC in a single transaction at any given time without causing scheduling overrun. The field value is calculated by the HCD.
15:14	/	/	0x0	Reserved
13.0	D/M		0.20df	FrameInterval This specifies the interval between two consecutive SOFs in bit times. The nominal value is set to be 11,999. HCD should store the current value of this field before resetting HC. By setting the HostControllerReset field of HcCommandStatus as this will cause the HC to reset this field to its
13:0	R/W	R	0x2edf	nominal value. HCD may choose to restore the stored value upon the

				completion of the Reset sequence.
--	--	--	--	-----------------------------------

8.4.1.4.15. HcFmRemaining Register(Default Value: 0x00000000)

Offset: 0	x438			Register Name: HcFmRemaining
	Read/\	V rite		
Bit	HCD	нс	Default/Hex	Description
31 30:14	R /	R/W	0x0 0x0	FrameRemaining Toggle This bit is loaded from the FrameIntervalToggle field of HcFmInterval whenever FrameRemaining reaches 0. This bit is used by HCD for the synchronization between FrameInterval and FrameRemaining. Reserved
13:0	R	RW	0x0	FramRemaining This counter is decremented at each bit time. When it reaches zero, it is reset by loading the FrameInterval value specified in HcFmInterval at the next bit time boundary. When entering the USBOPERATIONAL state, HC re-loads the content with the FrameInterval of HcFmInterval and uses the updated value from the next SOF.

8.4.1.4.16. HcFmNumber Register(Default Value: 0x00000000)

Offset: 0:	x43c			Register Name: HcFmNumber
	Read/Write			
Bit	HCD	НС	Default/Hex	Description
31:16				Reserved
				FrameNumber This is incremented when HcFmRemaining is re-loaded. It will be rolled over to 0x0 after 0x0ffff. When entering the USBOPERATIONAL state, this will be incremented automatically. The content will be written to HCCA after HC has incremented the FrameNumber at each frame boundary and sent a SOF but before HC reads the first ED in that Frame. After writing to
15:0	R	R/W	0x0	HCCA, HC will set the StartofFrame in HcInterruptStatus.

8.4.1.4.17. HcPeriodicStart Register(Default Value: 0x00000000)

Offset: 0	Offset: 0x440			Register Name: HcPeriodicStatus
	Read/\	Vrite		
Bit	HCD	НС	Default/Hex	Description
31:14				Reserved
				PeriodicStart After a hardware reset, this field is cleared. This is then set by HCD during the HC initialization. The value is calculated roughly as 10% off from HcFmInterval. A typical value will be 0x2A3F (0x3e67??). When HcFmRemaining reaches the value specified, processing of the periodic lists will have priority over Control/Bulk processing. HC will therefore start
13:0	R/W	R	0x0	processing the Interrupt list after completing the current Control or Bulk

		transaction that is in progress.

8.4.1.4.18. HcLSThreshold Register(Default Value: 0x00000628)

Offset: 0x	Offset: 0x444			Register Name: HcLSThreshold
	Read/\	Vrite		
Bit	HCD	НС	Default/Hex	Description
31:12				Reserved
				LSThreshold This field contains a value which is compared to the FrameRemaining field prior to initiating a Low Speed transaction. The transaction is started only if FrameRemaining ³ this field. The value is calculated by
11:0	R/W	R	0x0628	HCD with the consideration of transmission and setup overhead.

8.4.1.4.19. HcRhDescriptorA Register(Default Value: 0x02001201)

Offset: 0	Offset: 0x448			Register Name: HcRhDescriptorA
	Read/	Write		
Bit	HCD	НС	Default/Hex	Description
31:24	R/W	R	0x2	PowerOnToPowerGoodTime[POTPGT] This byte specifies the duration HCD has to wait before accessing a powered-on port of the Root Hub. It is implementation-specific. The unit of time is 2 ms. The duration is calculated as POTPGT * 2ms.
23:13				Reserved
12	R/W	R	1	NoOverCurrentProtection This bit describes how the overcurrent status for the Root Hub ports are reported. When this bit is cleared, the OverCurrentProtectionMode field specifies global or per-port reporting. O Over-current status is reported collectively for all downstream ports. 1 No overcurrent protection supported.
11	R/W	R	0	OverCurrentProtectionMode This bit describes how the overcurrent status for the Root Hub ports are reported. At reset, these fields should reflect the same mode as PowerSwitchingMode. This field is valid only if the NoOverCurrentProtection field is cleared. O Over-current status is reported collectively for all downstream ports. 1 Over-current status is reported on per-port basis.
10	R	R	0x0	Device Type This bit specifies that the Root Hub is not a compound device. The Root Hub is not permitted to be a compound device. This field should always read/write 0.
9	R/W	R	1	PowerSwitchingMode This bit is used to specify how the power switching of the Root Hub ports is controlled. It is implementation-specific. This field is only valid if the NoPowerSwitching field is cleared.

				0 All ports are powered at the same time.
				1 Each port is powered individually. This mode allows port power to be controlled by either the global switch or per-port switching. If the PortPowerControlMask bit is set, the port responds only to port power commands (Set/ClearPortPower). If the port mask is cleared, then the port is controlled only by the global power switch (Set/ClearGlobalPower).
				NoPowerSwithcing
				These bits are used to specify whether power switching is supported or ports are always powered. It is implementation-specific. When this bit is cleared, the PowerSwitchingMode specifies global or per-port switching. O Ports are power switched.
				Ports are always powered on when the HC is powered on.
8	R/W	R	0	
				NumberDownstreamPorts
				These bits specify the number of downstream ports supported by the
				Root Hub. It is implementation-specific. The minimum number of ports is
7:0	R	R	0x01	1. The maximum number of ports supported.

8.4.1.4.20. HcRhDescriptorB Register(Default Value: 0x00000000)

Offset: 0x	(44с			Register	Name: HcRhDescriptorB Register
	Read/\	Vrite			
Bit	HCD	НС	Default/Hex	Descript	tion
				PortPow Each bit when Po only affe cleared, (Set/Cle	verControlMask indicates if a port is affected by a global power control command owerSwitchingMode is set. When set, the port's power state is ected by per-port power control (Set/ClearPortPower). When the port is controlled by the global power switch arGlobalPower). If the device is configured to global switching PowerSwitchingMode = 0), this field is not valid. Reserved Ganged-power mask on Port #1. Ganged-power mask on Port #2.
31:16	R/W	R	0x0	Bit15	Ganged-power mask on Port #15.
	,			Each bit	emovable is dedicated to a port of the Root Hub. When cleared, the d device is removable. When set, the attached device is not
15:0	R/W	R	0x0	Bit2 Bit15	Device attached to Port #2. Device attached to Port #15.

8.4.1.4.21. HcRhStatus Register(Default Value: 0x00000000)

Offset: 0	0x450			Register Name: HcRhStatus Register
	Read/	Write		
Bit	HCD	НС	Default/Hex	Description
				(write)ClearRemoteWakeupEnable
31	W	R	0	Write a '1' clears DeviceRemoteWakeupEnable. Write a '0' has no effect.
30:18	/	/	0x0	Reserved
				OverCurrentIndicatorChang
				This bit is set by hardware when a change has occurred to the
47	D (14)			OverCurrentIndicator field of this register. The HCD clears this bit by
17	R/W	R	0	writing a '1'.Writing a '0' has no effect.
				(read)LocalPowerStartusChange The Root Hub does not support the local power status features, thus, this
				bit is always read as '0'.
				(write)SetGlobalPower
				In global power mode (PowerSwitchingMode=0), This bit is written to '1'
				to turn on power to all ports (clear PortPowerStatus). In per-port power
				mode, it sets PortPowerStatus only on ports whose
16	R/W	R	0x0	PortPowerControlMask bit is not set. Writing a '0' has no effect.
				(read)DeviceRemoteWakeupEnable
				This bit enables a ConnectStatusChange bit as a resume event, causing a
				USBSUSPEND to USBRESUME state transition and setting the
				ResumeDetected interrupt.
				ConnectStatusChange is not a remote wakeup event. ConnectStatusChange is a remote wakeup event.
				1 ConnectistatusChange is a remote wakeup event.
				/writa)CatDamata)MakaunEnahla
				(write)SetRemoteWakeupEnable Writing a '1' sets DeviceRemoveWakeupEnable. Writing a '0' has no
15	R/W	R	0x0	effect.
14:2	1., 11		0.10	Reserved
				OverCurrentIndicator
				This bit reports overcurrent conditions when the global reporting is
				implemented. When set, an overcurrent condition exists. When cleared,
				all power operations are normal.
1	R	R/W	0x0	If per-port overcurrent protection is implemented this bit is always '0'
				(Read)LocalPowerStatus
				When read, this bit returns the LocalPowerStatus of the Root Hub. The Root Hub does not support the local power status feature; thus, this bit is
				always read as '0'.
				(Write)ClearGlobalPower
				When write, this bit is operated as the ClearGlobalPower. In global power
				mode (PowerSwitchingMode=0), This bit is written to '1' to turn off
				power to all ports (clear PortPowerStatus). In per-port power mode, it
				clears PortPowerStatus only on ports whose PortPowerControlMask bit is
0	R/W	R	0x0	not set. Writing a '0' has no effect.

8.4.1.4.22. HcRhPortStatus Register(Default Value: 0x00000100)

Officati Ov4E4	Dogistar Namo: HeBhDortStatus
Offset: 0x454	Register Name: HcRhPortStatus

	Read/\	Write		
Bit	HCD	НС	Default/Hex	Description
31:21	/	/	0x0	Reserved
31.21	/	7	OAO .	PortResetStatusChange This bit is set at the end of the 10-ms port reset signal. The HCD writes a '1' to clear this bit. Writing a '0' has no effect. O port reset is not complete
20	R/W	R/W	0x0	1 port reset is complete
10	5.04	DAM		PortOverCurrentIndicatorChange This bit is valid only if overcurrent conditions are reported on a per-port basis. This bit is set when Root Hub changes the PortOverCurrentIndicator bit. The HCD writes a '1' to clear this bit. Writing a '0' has no effect. O no change in PortOverCurrentIndicator 1 PortOverCurrentIndicator has changed
19	R/W	R/W	0x0	
18	R/W	R/W	0x0	PortSuspendStatusChange This bit is set when the full resume sequence has been completed. This sequence includes the 20-s resume pulse, LS EOP, and 3-ms resychronization delay. The HCD writes a '1' to clear this bit. Writing a '0' has no effect. This bit is also cleared when ResetStatusChange is set. O resume is not completed 1 resume completed
17	R/W	R/W	0x0	PortEnableStatusChange This bit is set when hardware events cause the PortEnableStatus bit to be cleared. Changes from HCD writes do not set this bit. The HCD writes a '1' to clear this bit. Writing a '0' has no effect. O no change in PortEnableStatus 1 change in PortEnableStatus
				ConnectStatusChange This bit is set whenever a connect or disconnect event occurs. The HCD writes a '1' to clear this bit. Writing a '0' has no effect. If CurrentConnectStatus is cleared when a SetPortReset,SetPortEnable, or SetPortSuspend write occurs, this bit is set to force the driver to re-evaluate the connection status since these writes should not occur if the port is disconnected. O no change in PortEnableStatus 1 change in PortEnableStatus Note: If the DeviceRemovable[NDP] bit is set, this bit is set only
16	R/W	R/W	0x0	after a Root Hub reset to inform the system that the device is attached.
15:10	/	/	0x0	Reserved
9	R/W	R/W	_	(read)LowSpeedDeviceAttached This bit indicates the speed of the device attached to this port. When set, a Low Speed device is attached to this port. When clear, a Full Speed device is attached to this port. This field is valid only when the CurrentConnectStatus is set. 0 full speed device attached 1 low speed device attached (write)ClearPortPower

				The HCD clears the PortPowerStatus bit by writing a '1' to this bit. Writing
				a '0' has no effect.
				(read)PortPowerStatus
				This bit reflects the port's power status, regardless of the type of power
				switching implemented. This bit is cleared if an overcurrent condition is
				detected. HCD sets this bit by writing SetPortPower or SetGlobalPower.
				HCD clears this bit by writing ClearPortPower or ClearGlobalPower. Which
				power control switches are enabled is determined by
				PowerSwitchingMode and PortPortControlMask[NumberDownstreamPort]. In global switching
				mode(PowerSwitchingMode=0), only Set/ClearGlobalPower controls
				this bit. In per-port power switching (PowerSwitchingMode=1), if the
				PortPowerControlMask[NDP] bit for the port is set, only
				Set/ClearPortPower commands are enabled. If the mask is not set, only
				Set/ClearGlobalPower commands are enabled. When port power is
				disabled, CurrentConnectStatus, PortEnableStatus, PortSuspendStatus,
				and PortResetStatus should be reset.
				0 port power is off
				1 port power is on
				(write)SetPortPower
				The HCD writes a '1' to set the PortPowerStatus bit. Writing a '0' has no
				effect.
8	R/W	R/W	0x1	Note: This bit is always reads '1b' if power switching is not supported.
7:5	/	/	0x0	Reserved
				(read)PortResetStatus
				When this bit is set by a write to SetPortReset, port reset signaling is
				asserted. When reset is completed, this bit is cleared when PortResetStatusChange is set. This bit cannot be set if
				CurrentConnectStatus is cleared.
				0 port reset signal is not active
				1 port reset signal is active
				(write)SetPortReset
				The HCD sets the port reset signaling by writing a '1' to this bit. Writing a
				'0' has no effect. If CurrentConnectStatus is cleared, this write does not
	5 /14	5 /14		set PortResetStatus, but instead sets ConnectStatusChange. This informs
4	R/W	R/W	0x0	the driver that it attempted to reset a disconnected port.
				(read)PortOverCurrentIndicator This bit is only valid when the Poot Hub is configured in such a way that
				This bit is only valid when the Root Hub is configured in such a way that overcurrent conditions are reported on a per-port basis. If per-port
				overcurrent reporting is not supported, this bit is set to 0. If cleared, all
				power operations are normal for this port. If set, an overcurrent condition
				exists on this port. This bit always reflects the overcurrent input signal.
				0 no overcurrent condition.
				1 overcurrent condition detected.
				(write)ClearSuspendStatus
	D (\A)	D (\A)	0.0	The HCD writes a '1' to initiate a resume. Writing a '0' has no effect. A
3	R/W	R/W	0x0	resume is initiated only if PortSuspendStatus is set. (read)PortSuspendStatus
				This bit indicates the port is suspended or in the resume sequence. It is
2	R/W	R/W	0x0	set by a SetSuspendState write and cleared when
. –	1, • •	1, ••	J	The first and the first and dedica tries

				PortSuspendStatusChange is set at the end of the resume interval. This bit cannot be set if CurrentConnectStatus is cleared. This bit is also cleared when PortResetStatusChange is set at the end of the port reset or when the HC is placed in the USBRESUME state. If an upstream resume is in progress, it should propagate to the HC. 0
				(read)PortEnableStatus This bit indicates whether the port is enabled or disabled. The Root Hub may clear this bit when an overcurrent condition, disconnect event, switched-off power, or operational bus error such as babble is detected. This change also causes PortEnabledStatusChange to be set. HCD sets this bit by writing SetPortEnable and clears it by writing ClearPortEnable. This bit cannot be set when CurrentConnectStatus is cleared. This bit is also set, if not already, at the completion of a port reset when ResetStatusChange is set or port suspend when SuspendStatusChange is set. O port is disabled 1 port is enabled
1	R/W	R/W	0x0	(write)SetPortEnable The HCD sets PortEnableStatus by writing a '1'. Writing a '0' has no effect. If CurrentConnectStatus is cleared, this write does not set PortEnableStatus, but instead sets ConnectStatusChange. This informs the driver that it attempted to enable a disconnected Port.
				(read)CurrentConnectStatus This bit reflects the current state of the downstream port. O No device connected 1 Device connected (write)ClearPortEnable The HCD writes a '1' to clear the PortEnableStatus bit. Writing '0' has no effect. The CurrentConnectStatus is not affected by any write. Note: This bit is always read '1' when the attached device is
0	R/W	R/W	0x0	nonremovalble (Dvice Removeable [Number Downstream Port]).

8.4.1.5. USB_HCI Interface Control and PHY Interface Description

8.4.1.5.1. HCI Interface Control Register(Default Value: 0x10000000)

Offset: 0x800			Register Name: HCI_ICR
Bit	R/W	Default/Hex	Description
31:29	/	/	Reserved.
28	R	1	DMA Transfer Status Enable
			0: Disable

			1: Enable		
27:26	/	/	Reserved.		
25	R/W	0	OHCI count select 1: Simulation mode, the counters will be much shorter then real time 0: Normal mode, the counters will count full time		
24	R/W	0	Simulation mode 1: Set PHY in a non-driving mode so the EHCI can detect device connection, this is used only for simulation 0: No effect		
23:21	/	/	/		
20	R/W	0	EHCI HS force Set 1 to this field force the ehci enter the high speed mode during bus reset. This field only valid when the bit 1 is set.		
19:18	/	/	/		
17	R/W	0	HSIC Connect detect 1 in this field enable the hsic phy to detect device connect pulse on the bus.		
16	R/W	0	HSIC Connect Interrupt Enable Enable the HSIC connect interrupt.		
15:13	/	/	/		
12	R/W	0	PP2VBUS 1: ULPI wrapper interface will automatically set or clear DrvVbus register in ULPI PHY according to the port power status form the root hub 0: ULPI wrapper will ignore the difference between power status of root hub and ULPI PHY		
11	R/W	0	AHB Master interface INCR16 enable 1: Use INCR16 when appropriate 0: do not use INCR16,use other enabled INCRX or unspecified length burst INCR		
10	R/W	0	AHB Master interface INCR8 enable 1: Use INCR8 when appropriate 0: do not use INCR8,use other enabled INCRX or unspecified length burst INCR		
9	R/W	0	AHB Master interface burst type INCR4 enable 1: Use INCR4 when appropriate 0: do not use INCR4,use other enabled INCRX or unspecified length burst INCR		
8	R/W	0	AHB Master interface INCRX align enable 1: start INCRx burst only on burst x-align address 0: Start burst on any double word boundary Note: This bit must enable if any bit of 11:9 is enabled		
7:2	/	/	Reserved		
1	R/W	0	HSIC Phy Select 0:Select the UTMI Phy for the EHCI		
0	R/W	0	1:Select the HSIC Phy for the EHCI ULPI bypass enable。 1: Enable UTMI interface, disable ULPI interface 0: Enable ULPI interface, disable UTMI interface		

8.4.1.5.2. HSIC status Register(Default Value: 0x00000000)

Offset: 0x804	Register Name: HSIC STATUS
0113et. 0x004	Register Name. Haic_31A103

Bit	R/W	Default/Hex	Description
31:17	/	/	
16	R/W	0	HSIC Connect Status 1 in this field indicates a device connect pulse being detected on the bus. This field only valid when the EHCI HS force bit and the HSIC Phy Select bit is set. When the HSIC Connect Interrupt Enable is set, 1 in this bit will generate an interrupt to the system. This register is valid on HCI1.
15:0	/	/	/

8.4.1.5.3. HSIC UTMI PHY TUNE Register(Default Value: 0x023438E4)

Offset: 0x818			Register Name: UTMI_TUNE
Bit	R/W	Default/Hex	Description
31:26	/	/	/
25:23	R/W	0x04	COMPDISTUNE
22:20	R/W	0x03	SQRXTUNE
19	R/W	0x0	TXPREEMPPULSETUNE
18:16	R/W	0x04	OTGTUNE
15:12	R/W	0x03	TXFSLSTUNE
11:8	R/W	0x08	TXVREFTUNE
7:6	R/W	0x03	TXHSXVTUNE
5:4	R/W	0x02	TXRISETUNE
3:2	R/W	0x01	TXRESTUNE
1:0	R/W	0x0	TXPREEMPAMPTUNE

8.4.1.5.4. HSIC PHY CFG(Default Value: 0x00000000)

Offset: 0x820			Register Name: HSIC_CFG
Bit	R/W	Default/Hex	Description
31:24	/	/	/
23	R/W	0x0	SIDDQ
22:16	R/W	0x0	REF CLK
15	R/W	0x0	BIST EN
14	R/W	0x0	LOOP BACK
13	R/W	0x0	T OUT SEL
12	R/W	0x0	T CLK
11:8	R/W	0x0	T ADDR
7:0	R/W	0x0	T DATA

8.4.1.5.5. HSIC PHY STATUS(Default Value: 0x00000000)

Offset: 0	0x824		Register Name: HSIC_STATUS	
Bit	R/W	Default/Hex	Description	
31:6	/	/	/	
			BIST Error	
			0: HSIC BIST Pass	
5	R/W	0x0	1: HSIC BIST Fail	
			Bist Done	
			0: HSIC BIST is in progress	
4	R/W	0x0	1: HSIC BIST is done	
			T DATA OUT	
3:0	R/W	0x0	HSIC Test Data Out	

8.5. I2S/PCM

8.5.1. Overview

The I2S/PCM Controller has been designed to transfer streaming audio-data between the system memory and the codec chip. The controller supports standard I2S format, Left-justified mode format, Right-justified mode format and PCM mode format and TDM mode format.

The I2S/PCM controller includes the following features:

- Compliant with standard Philips Inter-IC sound (I2S) bus specification
- · Compliant with Left-justified, Right-justified, PCM mode, and TDM (Time Division Multiplexing) format
- Support different sample period width in each interface when using LRCK and LRCKR at the same time
- Support full-duplex synchronous work mode
- Support Master/Slave mode
- Support adjustable interface voltage
- Support clock up to 100MHz
- Support adjustable audio sample resolution from 8-bit to 32-bit
- Support up to 8 slots which has adjustable width from 8-bit to 32-bit
- Support sample rate from 8KHz to 192KHz
- Support 8-bit u-law and 8-bit A-law companded sample
- One 128 depth x 32-bit width FIFO for data transmit, one 64 depth x 32-bit width FIFO for data receive
- Support programmable PCM frame width: 1 BCLK width (short frame) and 2 BCLKs width (long frame)
- Programmable FIFO thresholds
- Interrupt and DMA Support
- Support loopback mode for test

8.5.2. Signal Description

8.5.2.1. I2S/PCM Pin List

Signal Name	Direction(M)	Description
PCM_DIN	1	I2S/PCM Serial Data Input
PCM_DOUT	0	I2S/PCM Serial Data Output
PCM_BCLK	1/0	I2S/PCM Sample Rate Clock
PCM_SYNC	1/0	I2S/PCM Sample Rate Clock/Sync

8.5.2.2. I2S/PCM Clock Source and Frequency

	Description	
Audio_PLL	24.576Mhz or 22.5792Mhz generated by AUDIO-PLL to produce 48KHz or 44.1KHz serial frequency	

8.5.3. Functionalities Description

8.5.3.1. Typical Applications

The TDM is the extended of I2S and PCM which provides a serial bus interface for stereo and multichannel audio data. This interface is most commonly used by consumer audio market, including compact disc, digital audio tape, digital

sound processors, and digital TV-sound.

8.5.3.2. Functional Block Diagram

The I2S/PCM Interface block diagram is shown below:

Figure 8-7. I2S/PCM Interface System Block Diagram

8.5.4. Timing Diagram

Figure 8-8. Timing Diagram for I2S/TDM-I2S Mode

Figure 8-9. Timing Diagram for Left-justified/TDM-Left Mode

Figure 8-10. Timing Diagram for Right-justified/TDM-Right Mode

Figure 8-11.Timing Diagram for PCM/TDM-PCM Mode

8.5.5. Operation Modes

The software operation of the I2S/PCM is divided into five steps: system setup, I2S/PCM initialization, the channel setup, DMA setup and Enable/Disable module. These five steps are described in detail in the following sections.

8.5.5.1. System setup and I2S/PCM initialization

The first step in the system setup is properly programming the GPIO. Because the I2S/PCM port is a multiplex pin. You can find the function in the pin multiplex specification. The clock source for the I2S/PCM should be followed. At first you must reset the audio PLL though the PLL_ENABLE bit of PLL_AUDIO_CTRL_REG in the CCU. The second step, you must setup the frequence of the audio pll in the PLL_AUDIO_CTRL_REG. The configuration of audio pll can be found in chapter 3. After that, you must open the I2S/PCM gating though the I2S/PCM_CLK_REG when you checkout that the LOCK bit of PLL_AUDIO_CTRL_REG become 1. At last, you must reset the I2S/PCM through the Bus Software Reset Register3's bit[12] and open the I2S/PCM bus gating in the Bus Clock Gating Register2's bit[12].

After the system setup, the register of I2S/PCM can be setup. At first, you should initialization the I2S/PCM. You should closed the globe enable bit(DA_CTL[0]), TX enable bit(DA_CTL[2]) and RX enable bit(DA_CTL[1]) by write 0 to it. After that, you must clear the TX/RX FIFO by write 0 to register DA_FCTL[25:24]. At last, you can clear the TX/RX FIFO counter by write 0 to DA_TXCNT/DA_RXCNT.

8.5.5.2. The channel setup and DMA setup

Before the usage and control of I2S/PCM, you must configure the I2C. The configuration of I2C will not describe in this chapter. But you can only configure I2S/PCM of master and slave though the I2C. In the following, you can setup the I2S/PCM of mater and slave. The configuration can be referred to the the protocol of I2S/PCM. Then, you can set the

translation mode, the sample precision, the wide of slot, the frame mode and the trigger level. The register set can be found in the spec.

The I2S/PCM support three methods to transfer the data. The most common way is DMA, the set of DMA can be found in the DMA spec. In this module, you just to enable the DRQ.

8.5.5.3. Enable and disable the I2S/PCM

To enable the function, you can enable TX/RX by write the DA_CTL[2:1]. After that, you must enable I2S/PCM by write the Globe Enable bit to 1 in the DA_CTL. The disable process is write the Globe Enable to 0.

8.5.6. I2S/PCM Interface Register List

Module Name	Base Address
I2S/PCM	0x01C22000

Register Name	Offset	Description
I2S/PCM_CTL	0x00	I2S/PCM Control Register
I2S/PCM_FMT0	0x04	I2S/PCM Format Register 0
I2S/PCM_FMT1	0x08	I2S/PCM Format Register 1
I2S/PCM_ISTA	0x0C	I2S/PCM Interrupt Status Register
I2S/PCM_RXFIFO	0x10	I2S/PCM RX FIFO Register
I2S/PCM_FCTL	0x14	I2S/PCM FIFO Control Register
I2S/PCM_FSTA	0x18	I2S/PCM FIFO Status Register
I2S/PCM_INT	0x1C	I2S/PCM DMA & Interrupt Control Register
I2S/PCM_TXFIFO	0x20	I2S/PCM TX FIFO Register
I2S/PCM_CLKD	0x24	I2S/PCM Clock Divide Register
I2S/PCM_TXCNT	0x28	I2S/PCM TX Sample Counter Register
I2S/PCM_RXCNT	0x2C	I2S/PCM RX Sample Counter Register
I2S/PCM_CHCFG	0x30	I2S/PCM Channel Configuration register
I2S/PCM_TX0CHCFG	0x34	I2S/PCM TX0 Channel Configuration register
I2S/PCM_TX1CHSEL	0x38	I2S/PCM TX1 Channel Select Register
I2S/PCM_TX2CHSEL	0x3C	I2S/PCM TX2 Channel Select Register
I2S/PCM_TX3CHSEL	0x40	I2S/PCM TX3 Channel Select Register
I2S/PCM_TX0CHMAP	0x44	I2S/PCM TX0 Channel Mapping Register
I2S/PCM_TX0CHMAP	0x48	I2S/PCM TX1 Channel Mapping Register
I2S/PCM_TX0CHMAP	0x4C	I2S/PCM TX2 Channel Mapping Register
I2S/PCM_TX0CHMAP	0x50	I2S/PCM TX3 Channel Mapping Register
I2S/PCM_RXCHSEL	0x54	I2S/PCM RX Channel Select register
I2S/PCM_RXCHMAP	0x58	I2S/PCM RX Channel Mapping Register

8.5.7. I2S/PCM Interface Register Description

8.5.7.1. I2S/PCM Control Register(Default Value: 0x00060000)

Offset: 0x00			Register Name: I2S/PCM_CTL
Bit	R/W	Default/Hex	Description

31:19	/	/	/
			BCLK_OUT
			0: input
18	R/W	1	1: output
			LRCK_OUT
			0: input
17	R/W	1	1: output
			LRCKR_OUT
			0: input
16	R/W	0	1: output
15:12	/	/	/
11	R/W	0	/
10	R/W	0	/
9	R/W	0	/
			SDO0_EN
			0: Disable, Hi-Z state
8	R/W	0	1: Enable
7	/	/	/
			OUT Mute
	- 6		0: normal transfer
6	R/W	0	1: force DOUT to output 0
			MODE_SEL Mode Selection
			0: PCM mode (offset 0: DSP_B; offset 1: DSP_A)
			1: Left mode (offset 0: LJ mode; offset 1: I2S mode)
			2: Right-Justified mode
5:4	R/W	0	3: Reserved
			LOOP
			Loop back test
			0: Normal mode
2	D /\A/		1: Loop back test
3	R/W	0	When set '1', connecting the SDO0 with the SDI TXEN
			Transmitter Block Enable
			0: Disable
2	R/W	0	1: Enable
			RXEN
			Receiver Block Enable
	5.6		0: Disable
1	R/W	0	1: Enable
			GEN Globe Enable
			A disable on this bit overrides any other block or channel enables.
			0: Disable
0	R/W	0	1: Enable

8.5.7.2. I2S/PCM Format Register0 (Default Value: 0x00000033)

Offset: 0x04			Register Name: I2S/PCM_FMT0
Bit	R/W	Default/Hex	Description

l	1	1	SDI_SYNC_SEL
			0: SDI use LRCK
31	R/W	0	1: SDI use LRCKR
	1,4,11		LRCK_WIDTH
			(only apply in PCM mode) LRCK width
			0: LRCK = 1 BCLK width (short frame)
30	R/W	0	1: LRCK = 2 BCLK width (long frame)
	.,,		LRCKR_PERIOD
			It is used to program the number of BCLKs per channel of sample frame.
			This value is interpreted as follow:
			PCM mode: Number of BCLKs within (Left + Right) channel width
			I2S / Left-Justified / Right-Justified mode: Number of BCLKs within each
			individual channel width (Left or Right)
			N+1
			For example:
			n = 7: 8 BCLK width
29:20	R/W	0	n = 1023: 1024 BCLKs width
			LRCK_POLARITY/LRCKR_POLARITY
			When apply in I2S / Left-Justified / Right-Justified mode:
			0: Left channel when LRCK is low
			1: Left channel when LRCK is high
			When apply in PCM mode:
10	D /\A/		0: PCM LRCK/LRCKR asserted at the negative edge
19	R/W	0	1: PCM LRCK/LRCKR asserted at the positive edge
18	/	/	/ LDGV DEDICE
			LRCK_PERIOD
			It is used to program the number of BCLKs per channel of sample frame. This value is interpreted as follow:
			PCM mode: Number of BCLKs within (Left + Right) channel width
			12S / Left-Justified / Right-Justified mode: Number of BCLKs within each
			individual channel width (Left or Right)
			N+1
			For example:
			n = 7: 8 BCLK width
17:8	R/W	0	n = 1023: 1024 BCLKs width
			BCLK_POLARITY
			0: normal mode, negative edge drive and positive edge sample
7	R/W	0	1: invert mode, positive edge drive and negative edge sample
			SR
			Sample Resolution
			0: Reserved
			1: 8-bit
			2: 12-bit 3: 16-bit
			4: 20-bit
			5: 24-bit
			6: 28-bit
6:4	R/W	3	7: 32-bit
		-	EDGE_TRANSFER
			0: SDO drive data and SDI sample data at the different BCLK edge
			1: SDO drive data and SDI sample data at the same BCLK edge
3	R/W	0	BCLK_POLARITY = 0, use negative edge

			BCLK_POLARITY = 1, use positive edge
			SW
			Slot Width Select
			0: Reserved
			1: 8-bit
			2: 12-bit
			3: 16-bit
			4: 20-bit
			5: 24-bit
			6: 28-bit
2:0	R/W	0x3	7: 32-bit

8.5.7.3. I2S/PCM Format Register1 (Default Value: 0x00000030)

Offset: 0x	08		Register Name: I2S/PCM_FMT1
Bit	R/W	Default/Hex	Description
31:8	/	/	
	•		RX MLS
			MSB / LSB First Select
			0: MSB First
7	R/W	0	1: LSB First
			TX MLS
			MSB / LSB First Select
			0: MSB First
6	R/W	0	1: LSB First
			SEXT
			Sign Extend in slot [sample resolution < slot width]
			0: Zeros or audio gain padding at LSB position
			1: Sign extension at MSB position
			2: Reserved
5:4	R/W	3	3: Transfer 0 after each sample in each slot
			RX_PDM
			PCM Data Mode
			0: Linear PCM
			1: reserved
			2: 8-bits u-law
3:2	R/W	0	3: 8-bits A-law
			TX_PDM
			PCM Data Mode
			0: Linear PCM
			1: reserved
			2: 8-bits u-law
1:0	R/W	0	3: 8-bits A-law

8.5.7.4. I2S/PCM Interrupt Status Register(Default Value: 0x00000010)

Offset: 0x0C			Register Name: I2S/PCM_ISTA
Bit	R/W Default/Hex		Description
31:7	/	/	/

TXU_INT TX FIFO Under run Pending Interrupt 0: No Pending Interrupt 1: FIFO Under run Pending Interrupt 6 R/W 0 Write 1 to clear this interrupt TXO_INT TX FIFO Overrun Pending Interrupt 0: No Pending Interrupt 1: FIFO Overrun Pending Interrupt 5 R/W 0 Write '1' to clear this interrupt TXE_INT TX FIFO Empty Pending Interrupt 0: No Pending IRQ 1: FIFO Empty Pending Interrupt when data in TX FIFO are less the	an TX
0: No Pending Interrupt 1: FIFO Under run Pending Interrupt 6 R/W 0 Write 1 to clear this interrupt TXO_INT TX FIFO Overrun Pending Interrupt 0: No Pending Interrupt 1: FIFO Overrun Pending Interrupt 5 R/W 0 Write '1' to clear this interrupt TXE_INT TX FIFO Empty Pending Interrupt 0: No Pending IRQ 1: FIFO Empty Pending Interrupt when data in TX FIFO are less the	an TX
1: FIFO Under run Pending Interrupt Write 1 to clear this interrupt TXO_INT TX FIFO Overrun Pending Interrupt 0: No Pending Interrupt 1: FIFO Overrun Pending Interrupt 5 R/W 0 Write '1' to clear this interrupt TXE_INT TX FIFO Empty Pending Interrupt 0: No Pending IRQ 1: FIFO Empty Pending Interrupt when data in TX FIFO are less the	an TX
6 R/W 0 Write 1 to clear this interrupt TXO_INT TX FIFO Overrun Pending Interrupt 0: No Pending Interrupt 1: FIFO Overrun Pending Interrupt 5 R/W 0 Write '1' to clear this interrupt TXE_INT TX FIFO Empty Pending Interrupt 0: No Pending IRQ 1: FIFO Empty Pending Interrupt when data in TX FIFO are less th	an TX
TXO_INT TX FIFO Overrun Pending Interrupt 0: No Pending Interrupt 1: FIFO Overrun Pending Interrupt 5 R/W 0 Write '1' to clear this interrupt TXE_INT TX FIFO Empty Pending Interrupt 0: No Pending IRQ 1: FIFO Empty Pending Interrupt when data in TX FIFO are less th	an TX
TX FIFO Overrun Pending Interrupt 0: No Pending Interrupt 1: FIFO Overrun Pending Interrupt 5 R/W 0 Write '1' to clear this interrupt TXE_INT TX FIFO Empty Pending Interrupt 0: No Pending IRQ 1: FIFO Empty Pending Interrupt when data in TX FIFO are less th	
0: No Pending Interrupt 1: FIFO Overrun Pending Interrupt 5 R/W 0 Write '1' to clear this interrupt TXE_INT TX FIFO Empty Pending Interrupt 0: No Pending IRQ 1: FIFO Empty Pending Interrupt when data in TX FIFO are less th	an TX
1: FIFO Overrun Pending Interrupt Write '1' to clear this interrupt TXE_INT TX FIFO Empty Pending Interrupt 0: No Pending IRQ 1: FIFO Empty Pending Interrupt when data in TX FIFO are less the	an TX
5 R/W 0 Write '1' to clear this interrupt TXE_INT TX FIFO Empty Pending Interrupt 0: No Pending IRQ 1: FIFO Empty Pending Interrupt when data in TX FIFO are less th	an TX
TXE_INT TX FIFO Empty Pending Interrupt 0: No Pending IRQ 1: FIFO Empty Pending Interrupt when data in TX FIFO are less th	an TX
TX FIFO Empty Pending Interrupt 0: No Pending IRQ 1: FIFO Empty Pending Interrupt when data in TX FIFO are less th	an TX
0: No Pending IRQ 1: FIFO Empty Pending Interrupt when data in TX FIFO are less th	an TX
1: FIFO Empty Pending Interrupt when data in TX FIFO are less th	an TX
	an IX
	-
trigger level	
Write '1' to clear this interrupt or automatic clear if interrupt con	noitic
4 R/W 1 fails.	
3 / /	
RXU_INT	
RX FIFO Under run Pending Interrupt	
0: No Pending Interrupt	
1:FIFO Under run Pending Interrupt	
2 R/W 0 Write 1 to clear this interrupt	
RXO_INT	
RX FIFO Overrun Pending Interrupt	
0: No Pending IRQ	
1: FIFO Overrun Pending IRQ	
1 R/W 0 Write '1' to clear this interrupt	
RXA_INT	
RX FIFO Data Available Pending Interrupt	
0: No Pending IRQ	
1: Data Available Pending IRQ when data in RX FIFO are more th	an RX
trigger level	
Write '1' to clear this interrupt or automatic clear if interrupt con	dition
0 R/W 0 fails.	

8.5.7.5. I2S/PCM RX FIFO Register(Default Value: 0x00000000)

Offset: 0x10			Register Name: I2S/PCM_RXFIFO
Bit	R/W	Default/Hex	Description
			RX_DATA
			RX Sample
			Host can get one sample by reading this register. The left channel sample
31:0	R	0	data is first and then the right channel sample.

8.5.7.6. I2S/PCM FIFO Control Register (Default Value: 0x000400F0)

Offset: 0x14			Register Name: I2S/PCM_FCTL
Bit	R/W	Default/Hex	Description

31:26	/	/	/
			FTX
25	R/W	0	Write '1' to flush TX FIFO, self clear to '0'.
			FRX
24	R/W	0	Write '1' to flush RX FIFO, self clear to '0'.
23:19	/	/	/
			TXTL
			TX FIFO Empty Trigger Level
			Interrupt and DMA request trigger level for TXFIFO normal condition
18:12	R/W	0x40	Trigger Level = TXTL
11:10	/	/	/
			RXTL
			RX FIFO Trigger Level
			Interrupt and DMA request trigger level for RXFIFO normal condition
9:4	R/W	0xF	Trigger Level = RXTL + 1
3	/	/	/
			TXIM
			TX FIFO Input Mode (Mode 0, 1)
			0: Valid data at the MSB of TXFIFO register
			1: Valid data at the LSB of TXFIFO register
			Example for 20-bits transmitted audio sample:
			Mode 0: FIFO_I[31:0] = {APB_WDATA[31:12], 12'h0}
2	R/W	0	Mode 1: FIFO_I[31:0] = {APB_WDATA[19:0], 12'h0}
			RXOM
			RX FIFO Output Mode (Mode 0, 1, 2, 3)
			00: Expanding '0' at LSB of DA_RXFIFO register.
			01: Expanding received sample sign bit at MSB of DA_RXFIFO register.
			10: Truncating received samples at high half-word of DA_RXFIFO register
			and low half-word of DA_RXFIFO register is filled by '0'.
			11: Truncating received samples at low half-word of DA_RXFIFO register
			and high half-word of DA_RXFIFO register is expanded by its sign bit.
			Example for 20-bits received audio sample:
			Mode 0: APB_RDATA[31:0] = {FIFO_O[31:12], 12'h0}
			Mode 1: APB_RDATA [31:0] = {12{FIFO_O[31]}, FIFO_O[31:12]}
			Mode 2: APB_RDATA [31:0] = {FIFO_O[31:16], 16'h0}
1:0	R/W	0	Mode 3: APB_RDATA [31:0] = {16{FIFO_O[31], FIFO_O[31:16]}

8.5.7.7. I2S/PCM FIFO Status Register (Default Value: 0x10800000)

Offset: 0x18			Register Name: I2S/PCM_FSTA
Bit	R/W	Default/Hex	Description
31:29	/	/	/
			TXE
			TX FIFO Empty
			0: No room for new sample in TX FIFO
28	R	1	1: More than one room for new sample in TX FIFO (>= 1 word)
27:24	/	/	/
			TXE_CNT
23:16	R	0x80	TX FIFO Empty Space Word Counter
15:9	/	/	/

			RXA
			RX FIFO Available
			0: No available data in RX FIFO
8	R	0	1: More than one sample in RX FIFO (>= 1 word)
7	/	/	/
			RXA_CNT
6:0	R	0	RX FIFO Available Sample Word Counter

8.5.7.8. I2S/PCM DMA & Interrupt Control Register(Default Value: 0x00000000)

Offset: 0	k1C		Register Name: I2S/PCM_INT
Bit	R/W	Default/Hex	Description
31:8	/	/	/
			TX_DRQ
			TX FIFO Empty DRQ Enable
			0: Disable
7	R/W	0	1: Enable
			TXUI_EN
			TX FIFO Under run Interrupt Enable
			0: Disable
6	R/W	0	1: Enable
			TXOI_EN
			TX FIFO Overrun Interrupt Enable
			0: Disable
			1: Enable
			When set to '1', an interrupt happens when writing new audio data if TX
5	R/W	0	FIFO is full.
			TXEI_EN
			TX FIFO Empty Interrupt Enable
			0: Disable
4	R/W	0	1: Enable
			RX_DRQ
			RX FIFO Data Available DRQ Enable
			0: Disable
			1: Enable
			When set to '1', RXFIFO DMA Request line is asserted if Data is available in
3	R/W	0	RX FIFO.
			RXUI_EN
			RX FIFO Under run Interrupt Enable
	_ ,		0: Disable
2	R/W	0	1: Enable
			RXOI_EN
			RX FIFO Overrun Interrupt Enable
	_ ,		0: Disable
1	R/W	0	1: Enable
			RXAI_EN
			RX FIFO Data Available Interrupt Enable
			0: Disable
0	R/W	0	1: Enable

8.5.7.9. I2S/PCM TX FIFO Register(Default Value: 0x00000000)

Offset: 0x20			Register Name: I2S/PCM_TXFIFO
Bit	R/W Default/Hex		Description
			TX_DATA
			TX Sample
			Transmitting left, right channel sample data should be written this register
			one by one. The left channel sample data is first and then the right channel
31:0	W	0	sample.

8.5.7.10. I2S/PCM Clock Divide Register(Default Value: 0x00000000)

Offset: (0x24	_ _	Register Name: I2S/PCM_CLKD
Bit	R/W	Default/Hex	Description
31:9	/	/	/
			MCLKO_EN
			0: Disable MCLK Output
			1: Enable MCLK Output
			Notes: Whether in Slave or Master mode, when this bit is set to 1, MCLK
8	R/W	0	should be output.
			BCLKDIV
			BCLK Divide Ratio from PLL2
			0: reserved
			1: Divide by 1
			2: Divide by 2
			3: Divide by 4
			4: Divide by 6
			5: Divide by 8
			6: Divide by 12
			7: Divide by 16
			8: Divide by 24
			9: Divide by 32
			10: Divide by 48
			11: Divide by 64
			12: Divide by 96
			13: Divide by 128
			14: Divide by 176
7:4	R/W	0	15: Divide by 192
			MCLKDIV
			MCLK Divide Ratio from PLL2 Output
			0: reserved
			1: Divide by 1
			2: Divide by 2
			3: Divide by 4
			4: Divide by 6
			5: Divide by 8
			6: Divide by 12
			7: Divide by 16
			8: Divide by 24
			9: Divide by 32
3:0	R/W	0	10: Divide by 48

1	1 1		ī
		11: Divide by 64	
		12: Divide by 96	
		13: Divide by 128	
		14: Divide by 176	
		15: Divide by 192	

8.5.7.11. I2S/PCM TX Counter Register(Default Value: 0x00000000)

Offset: 0x28			Register Name: I2S/PCM_TXCNT
Bit	R/W Default/Hex		Description
			TX_CNT
			TX Sample Counter
			The audio sample number of sending into TXFIFO. When one sample is put
			into TXFIFO by DMA or by host IO, the TX sample counter register increases
			by one. The TX sample counter register can be set to any initial valve at any
			time. After been updated by the initial value, the counter register should
31:0	R/W	0	count on base of this initial value.

8.5.7.12. I2S/PCM RX Counter Register(Default Value: 0x00000000)

Offset: 0x2C			Register Name: I2S/PCM_RXCNT
Bit	R/W	Default/Hex	Description
			RX_CNT RX Sample Counter
			The audio sample number of writing into RXFIFO. When one sample is written by Digital Audio Engine, the RX sample counter register increases by one. The RX sample counter register can be set to any initial valve at any time. After been updated by the initial value, the counter register should
31:0	R/W	0	count on base of this initial value.

8.5.7.13. I2S/PCM Channel Configuration Register(Default Value: 0x00000000)

Offset: 0	0x30		Register Name: I2S/PCM_CHCFG
Bit	R/W	Default/Hex	Description
31:10	/	/	
9	R/W	0	TX_SLOT_HIZ 0: normal mode for the last half cycle of BCLK in the slot 1: turn to hi-z state for the last half cycle of BCLK in the slot
8	R/W	0	TXn_STATE 0: transfer level 0 when not transferring slot 1: turn to hi-z state when not transferring slot
7	/	/	/
			RX_SLOT_NUM RX Channel/Slot Number which between CPU/DMA and FIFO 0: 1 channel or slot
6:4	R/W	0	7: 8 channels or slots

3	/	/	/
			TX_SLOT_NUM TX Channel/Slot Number which between CPU/DMA and FIFO 0: 1 channel or slot
2:0	R/W	0	7: 8 channels or slots

8.5.7.14. I2S/PCM TXn Channel Select Register(Default Value: 0x00000000)

Offset: 0:	x34 + n*4 (n	= 0, 1, 2, 3)	Register Name: I2S/PCM_TXnCHSEL
Bit	R/W	Default/Hex	Description
31:14	/	/	/
13:12	R/W	0	TXn_OFFSET TXn offset tune, TXn data offset to LRCK 0: no offset n: data is offset by n BCLKs to LRCK
11:4	R/W	0	TXn_CHEN TXn Channel (slot) enable, bit[11:4] refer to slot [7:0]. When one or more slot(s) is(are) disabled, the affected slot(s) is(are) set to disable state 0: disable 1: enable
3	/	/	/
			TXn_CHSEL TXn Channel (slot) number Select for each output 0: 1 channel / slot
2:0	R/W	0	7: 8 channels / slots

8.5.7.15. I2S/PCM TXn Channel Mapping Register(Default Value: 0x00000000)

Offset: 0x44 + n*4 (n = 0, 1, 2, 3)			Register Name: I2S/PCM_TXnCHMAP
Bit	R/W	Default/Hex	Description
31	/	/	/
30:28	R/W	0	TXn_CH7_MAP TXn Channel7 Mapping 0: 1st sample 7: 8th sample
27	/	/	/
26:24	R/W	0	TXn_CH6_MAP TXn Channel6 Mapping 0: 1st sample 7: 8th sample
23	/	/	/
22:20	R/W	0	TXn_CH5_MAP TXn Channel5 Mapping 0: 1st sample

		1	1
	,	+,	7: 8th sample
19	/	/	
18:16	R/W	0	TXn_CH4_MAP
			TXn Channel4 Mapping
			0: 1st sample
			7: 8th sample
15	/	/	/
14:12	R/W	0	TXn_CH3_MAP
			TXn Channel3 Mapping
			0: 1st sample
			7: 8th sample
11	/	/	/
10:8	R/W	0	TXn_CH2_MAP
			TXn Channel2 Mapping
			0: 1st sample
			7: 8th sample
7	/	/	/
6:4	R/W	0	TXn_CH1_MAP
			TXn Channel1 Mapping
			0: 1st sample
			7: 8th sample
3	/	/	/
2:0	R/W	0	TXn_CH0_MAP
			TXn Channel0 Mapping
			0: 1st sample
			7: 8th sample

8.5.7.16. I2S/PCM RX Channel Select register(Default Value: 0x00000000)

Offset: 0x54			Register Name: I2S/PCM_RXCHSEL
Bit	R/W	Default/Hex	Description
31:14	/	/	/
13:12	R/W	0	RX_OFFSET RX offset tune, RX data offset to LRCK 0: no offset n: data is offset by n BCLKs to LRCK
11:3	/	/	
20	D () 4		RX_CHSEL RX Channel (slot) number Select for input 0: 1 channel / slot
2:0	R/W	0	7: 8 channels / slots

8.5.7.17. I2S/PCM RX Channel Mapping Register (Default Value: 0x00000000)

Offset: 0	x58		Register Name: I2S/PCM_RXCHMAP
Bit	R/W	Default/Hex	Description
31	/	/	/
30:28	R/W	0	RX_CH7_MAP RX Channel7 Mapping 0: 1st sample 7: 8th sample
27	/	/	/
26:24	R/W	0	RX_CH6_MAP RX Channel6 Mapping 0: 1st sample 7: 8th sample
23	/	/	/
22:20	R/W	0	RX_CH5_MAP RX Channel5 Mapping 0: 1st sample 7: 8th sample
19	/	/	/
18:16	R/W	0	RX_CH4_MAP RX Channel4 Mapping 0: 1st sample 7: 8th sample
15	/	/	/
14:12	R/W	0	RX_CH3_MAP RX Channel3 Mapping 0: 1st sample 7: 8th sample
11	/	/	/
10:8	R/W	0	RX_CH2_MAP RX Channel2 Mapping 0: 1st sample 7: 8th sample
7	/	/	/
6:4	R/W	0	RX_CH1_MAP TX Channel1 Mapping 0: 1st sample 7: 8th sample
3	/	/	/
2:0	R/W	0	RX_CH0_MAP RX Channel0 Mapping 0: 1st sample

7: 8th sample

8.6. EMAC

8.6.1. Overview

The Ethernet MAC(EMAC) controller enables a host to transmit and receive data over Ethernet in compliance with the IEEE 802.3-2002 standard. It supports 10M/100M/1000M external PHY with MII/RGMII interface in both full and half duplex mode. The internal DMA is designed for packet-oriented data transfers based on a linked list of descriptors. 4K Byte TXFIFO and 16K Byte RXFIFO are provided to keep continuous transmission and reception. Flow Control, CRC Pad & Stripping, and address filtering are also supported in this module.

The EMAC controller includes the following features:

- Supports 10/100/1000Mbps data transfer rates
- Supports MII/RGMII PHY interface
- Supports both full-duplex and half-duplex operation
- Programmable frame length to support Standard or Jumbo Ethernet frames with sizes up to 16 KB
- Supports a variety of flexible address filtering modes
- Separate 32-bit status returned for transmission and reception packets
- Optimization for packet-oriented DMA transfers with frame delimiters
- Linked-list (chained) descriptor chaining
- Descriptor architecture, allowing large blocks of data transfer with minimum CPU intervention; each descriptor can transfer up to 4 KB of data
- Comprehensive status reporting for normal operation and transfers with errors
- 4KB TXFIFO for transmission packets and 16KB RXFIFO for reception packets
- Programmable interrupt options for different operational conditions

8.6.2. Block Diagram

The EMAC controller system block diagram is shown below:

Figure 7-12. EMAC Block Diagram

8.6.3. EMAC Core Register List

Module Name	Base Address
EMAC	0x01C30000

Register Name	Offset	Description
BASIC_CTL_0	0x00	Basic Control O Register
BASIC_CTL_1	0x04	Basic Control 1 Register
INT_STA	0x08	Interrupt Status Register
INT_EN	0x0C	Interrupt Enable Register
TX_CTL_0	0x10	Transmit Control 0 Register
TX_CTL_1	0x14	Transmit Control 1 Register
TX_FLOW_CTL	0x1C	Transmit Flow Control Register
TX_DMA_DESC_LIST	0x20	Transmit Descriptor List Address Register
RX_CTL_0	0x24	Receive Control O Register
RX_CTL_1	0x28	Receive Control 1 Register
RX_DMA_DESC_LIST	0x34	Receive Descriptor List Address Register
RX_FRM_FLT	0x38	Receive Frame Filter Register
RX_HASH_0	0x40	Hash Table 0 Register
RX_HASH_1	0x44	Hash Table 1 Register
MII_CMD	0x48	Management Interface Command Register
MII_DATA	0x4C	Management Interface Data Register
ADDR_HIGH_0	0x50	MAC Address High Register 0
ADDR_LOW_0	0x54	MAC Address High Register 0
ADDR_HIGH_x	0x50+8*x	MAC Address High Register x(x:1~7)
ADDR_LOW_x	0x54+8*x	MAC Address Low Register x(x:1~7)
TX_DMA_STA	0xB0	Transmit DMA Status Register
TX_CUR_DESC	0xB4	Current Transmit Descriptor Register
TX_CUR_BUF	0xB8	Current Transmit Buffer Address Register
RX_DMA_STA	0xC0	Receive DMA Status Register
RX_CUR_DESC	0xC4	Current Receive Descriptor Register
RX_CUR_BUF	0xC8	Current Receive Buffer Address Register
RGMII_STA	0xD0	RGMII Status Register

8.6.4. EMAC Core Register Description

8.6.4.1. Basic Control 0 Register(Default Value: 0x00000000)

Offset: 0x	00		Register Name: BASIC_CTL_0
Bit	R/W	Default/Hex	Description
31:4	/	/	/
			SPEED
			00: 1000Mbps
			11: 100Mbps
			10: 10Mbps
3:2	R/W	0	01: Reserved
			LOOPBACK
			0: Disable;
1	R/W	0	1: Enable;
0	R/W	0	DUPLEX

		0: Half-duplex
		1: Full-duplex

8.6.4.2. Basic Control 1 Register(Default Value: 0x08000000)

Offset: 0x0)4		Register Name: BASIC_CTL_1
Bit	R/W	Default/Hex	Description
31:30	/	/	/
			BURST_LEN
29:24	R/W	8	The burst length of RX and TX DMA transfer.
23:2	/	/	
			RX_TX_PRI
			0: RX DMA and TX DMA have same priority
1	R/W	0	1: RX DMA has priority over TX DMA
			SOFT_RST
			When this bit is set, soft reset all registers and logic. All clock inputs must be
			valid before soft rest. This bit is cleared internally when the reset operation
0	R/W	0	is completed fully. Before write any register, this bit should read a 0.

8.6.4.3. Interrupt Status Register(Default Value: 0x00000000)

Offset: 0:	x08		Register Name: INT_STA
Bit	R/W	Default/Hex	Description
31:17	/	/	/
	-		RGMII_LINK_STA_INT
16	R	0	When this bit is asserted, the link status of RGMII interface is changed.
15:14	/	/	/
			RX_EARLY_INT
			When this bit asserted, the RX DMA had filled the first data buffer of the
13	R	0	receive frame.
			RX_OVERFLOW_INT
12	R	0	When this bit is asserted, the RX FIFO had an overflow error.
			RX_TIMEOUT_INT
			When this bit asserted, the length of receive frame is greater than 2048
11	R	0	bytes(10240 when JUMBO_FRM_EN is set)
			RX_DMA_STOPPED_INT
10	R	0	When this bit asserted, the RX DMA FSM is stopped.
			RX_BUF_UA _INT
			When this asserted, the RX DMA can't acquire next RX descriptor and RX
			DMA FSM is suspended. The ownership of next RX descriptor should be
			changed to RX DMA. The RX DMA FSM will resume when write to
9	R	0	DMA_RX_START bit or next receive frame is coming.
			RX_INT
			When this bit is asserted, a frame reception is completed. The RX DMA FSM
8	R	0	remains in the running state.
7:6	/	1	
			TX_EARLY_INT
5	R	0	When this bit asserted , the frame is transmitted to FIFO totally.

			TX_UNDERFLOW_INT
4	R	0	When this bit is asserted, the TX FIFO had an underflow error.
			TX_TIMEOUT_INT
3	R	0	When this bit is asserted, the transmitter had been excessively active.
			TX_BUF_UA_INT
			When this asserted, the TX DMA can not acquire next TX descriptor and TX
			DMA FSM is suspended. The ownership of next TX descriptor should be
			changed to TX DMA. The TX DMA FSM will resume when write to
2	R	0	DMA_TX_START bit.
			TX_DMA_STOPPED_INT
1	R	0	When this bit is asserted, the TX DMA FSM is stopped.
			TX INT
0	R	О	When this bit is asserted, a frame transmission is completed.

8.6.4.4. Interrupt Enable Register(Default Value: 0x00000000)

Offset: 0x	«ОС		Register Name: INT_EN
Bit	R/W	Default/Hex	Description
31:14	/	/	/
			RX_EARLY_INT_EN
			0: Disable early receive interrupt enable
13	R/W	0	1: Enable early receive interrupt enable
			RX_OVERFLOW_INT_EN
			0: Disable overflow interrupt
12	R/W	0	1: Enable overflow interrupt
			RX_TIMEOUT_INT_EN
			0: Disable receive timeout interrupt
11	R/W	0	1: Enable receive timeout interrupt
			RX_DMA_STOPPED_INT_EN
	_		0: Disable receive DMA FSM stopped interrupt
10	R/W	0	1: Enable receive DMA FSM stopped interrupt
			RX_BUF_UA_INT_EN
	_		0: Disable receive buffer unavailable interrupt
9	R/W	0	1: Enable receive buffer unavailable interrupt
			RX_INT_EN
	5 / 5 / 5		0: Disable receive interrupt
8	R/W	0	1: Enable receive interrupt
7:6			
			TX_EARLY_INT_EN
			0: Disable early transmit interrupt
5	R/W	0	1: Enable early transmit interrupt
			TX_UNDERFLOW_INT_EN
	_		0: Disable underflow interrupt
4	R/W	0	1: Enable underflow interrupt
			TX_TIMEOUT_INT_EN
	5 //		0: Disable transmit timeout interrupt
3	R/W	0	1: Enable transmit timeout interrupt
			TX_BUF_UA_INT_EN
	D // A/		0: Disable transmit buffer available interrupt
2	R/W	0	1: Enable transmit buffer available interrupt
1	R/W	0	TX_DMA_STOPPED_INT_EN

			0: Disable transmit DMA FSM stopped interrupt 1: Enable transmit DMA FSM stopped interrupt
			TX_INT_EN 0: Disable transmit interrupt
0	R/W	0	1: Enable transmit interrupt

8.6.4.5. Transmit Control 0 Register(Default Value: 0x00000000)

Offset: 0x1	0		Register Name: TX_CTL_0
Bit	R/W	Default/Hex	Description
			TX_EN
			Enable transmitter.
			0: Disable transmitter after current transmission
31	R/W	0	1: Enable
			TX_FRM_LEN_CTL
			0: Allow to transmit frames no more than 2,048 bytes (10,240 if
			JUMBO_FRM_EN is set) and cut off any bytes after that
30	R/W	0	1:Allow to transmit frames of up to 16,384 bytes
29:0	/	/	/

8.6.4.6. Transmit Control 1 Register(Default Value: 0x00000000)

Offset: 0	x14		Register Name: TX_CTL_1
Bit	R/W	Default/Hex	Description
			TX_DMA_START
			When set this bit, the TX DMA FSM will go no to work. It is cleared internally
31	R/W	0	and always read a 0.
			TX_DMA_EN
			0: Stop TX DMA after the completion of current frame transmission.
30	R/W	0	1: Start and run TX DMA.
29:11	/	/	/
			TX_TH
			The threshold value of TX DMA FIFO. When TX_MD is 0, transmission starts
			when the size of frame in TX DMA FIFO is greater than the threshold. In
			addition, full frames with a length less than the threshold are transferred
			automatically.
			000: 64
			001: 128
			010: 192
			011: 256
10:8	R/W	0	Others: Reserved
7:2	/	/	/
			TX_MD
			0: Transmission starts after the number of data in TX DAM FIFO is greater
			than TX_TH
1	R/W	0	1: Transmission starts after a full frame located in TX DMA FIFO
			FLUSH_TX_FIFO
			The functionality that flush the data in the TX FIFO.
0	R/W	0	0: Enable

1: Disable

8.6.4.7. Transmit Flow Control Register(Default Value: 0x00000000)

Offset: 0:	x1C		Register Name: TX_FLOW_CTL
Bit	R/W	Default/Hex	Description
31	R/W	0	TX_FLOW_CTL_STA This bit indicates a pause frame transmission is in progress. When the configuration of flow control is ready, set this bit to transmit a pause frame in full-duplex mode or activate the backpressure function. After completion of transmission, this bit will be cleared automatically. Before write register TX_FLOW_CTRL, this bit must be read as 0.
30:22	/	/	
21:20	R/W	0	TX_PAUSE_FRM_SLOT The threshold of the pause timer at which the input flow control signal is checked for automatic retransmission of pause frame. The threshold values should be always less than the PAUSE_TIME
19:4	R/W	0	PAUSE_TIME The pause time field in the transmitted control frame.
3:2	/	/	/
1	R/W	0	ZQP_FRM_EN When set, enable the functionality to generate Zero-Quanta Pause control frame.
	200		TX_FLOW_CTL_EN When set, enable flow control operation to transmit pause frames in full-duplex mode, or enable the back-pressure operation in half-duplex mode. 0: Disable
0	R/W	0	1: Enable

8.6.4.8. Transmit DMA Descriptor List Address Register(Default Value: 0x00000000)

Offset: 0x20)		Register Name: TX_DMA_LIST
Bit	R/W Default/Hex		Description
			TX_DESC_LIST
31:0	R/W	0	The base address of transmit descriptor list. It must be 32-bit aligned.

8.6.4.9. Receive Control 0 Register(Default Value: 0x00000000)

Offset: 0x24			Register Name: RX_CTL_0
Bit	R/W Default/Hex		Description
			RX_EN
			Enable receiver
			0: Disable receiver after current reception
31	R/W	0	1: Enable
			RX_FRM_LEN_CTL
30	R/W	0	0: Allow to receive frames less than or equal to 2,048 bytes (10,240 if

			JUMBO_FRM_EN is set) and cuts off any bytes received after that
			1: Allow to receive frames of up to 16,384 bytes
			JUMBO_FRM_EN
			When set, allows Jumbo frames of 9,018 bytes without reporting a giant
29	R/W	0	frame error in the receive frame status.
			STRIP_FCS
			When set, strip the Pad/FCS field on received frames only when the length's
28	R/W	0	field value is less than or equal to 1,500 bytes.
			CHECK_CRC
27	R/W	0	When set, calculate CRC and check the IPv4 Header Checksum.
26:18	/	/	/
			RX_PAUSE_FRM_MD
			0: Only detect multicast pause frame specified in the 802.3x standard.
			1: In addition to detect multicast pause frame specified in the 802.3x
			standard, also detect unicast pause frame with address specified in MAC
17	R/W	0	Address O High Register and MAC address O Low Register.
			RX_FLOW_CTL_EN
			When set, enable the functionality that decode the received pause frame
16	R/W	0	and disable its transmitter for a specified time by pause frame.
15:0	/	/	

8.6.4.10. Receive Control 1 Register(Default Value: 0x00000000)

Offset: 0	x28		Register Name: RX_CTL_1
Bit	R/W	Default/Hex	Description
			RX_DMA_START
			When set, the RX DMA will go no to work. It is cleared internally and always
31	R/W	0	read a 0.
			RX_DMA_EN
			0: Stop RX DMA after finish receiving current frame
30	R/W	0	1: Start and run RX DMA
29:25	/	/	
			RX_FIFO_FLOW_CTL
			0: Disable RX flow control
			1: Enable RX flow control based on RX_FLOW_CTL_TH_DEACT and
24	R/W	0	RX_FLOW_CTL_TH_ACT
			RX_FLOW_CTL_TH_DEACT
			The threshold for deactivating flow control in both half-duplex mode and
			full-duplex mode
			00: Full minus 1 KB
			01: Full minus 2 KB
			10: Full minus 3 KB
23:22	R/W	0	11: Full minus 4 KB
			RX_FLOW_CTL_TH_ACT
			The threshold for activating flow control in both half-duplex mode and
			full-duplex mode.
			00: Full minus 1 KB
			01: Full minus 2 KB
			10: Full minus 3 KB
21:20	R/W	0	11: Full minus 4 KB
19:6	/	/	

			RX_TH The threshold value of RX DMA FIFO. When RX_MD is 0, RX DMA starts to transfer data when the size of received frame in RX DMA FIFO is greater than the threshold. In addition, full frames with a length less than the threshold are transferred automatically. 00: 64 01: 32
			10: 96
5:4	R/W	0	11: 128
			RX_ERR_FRM
			0: RX DMA drops frames with error
3	R/W	0	1: RX DMA forwards frames with error
			RX_RUNT_FRM
			When set, forward undersized frames with no error and length less than
2	R/W	0	64bytes
			RX_MD
			0: RX DMA reads data from RX DMA FIFO to host memory after the number
			of data in RX DAM FIFO is greater than RX_TH
			1: RX DMA reads data from RX DMA FIFO to host memory after a complete
1	R/W	0	frame has been written to RX DMA FIFO
			FLUSH_RX_FRM
			The functionality that flush the frames when receive descriptors/buffers is
			unavailable
			0: Enable
0	R/W	0	1: Disable

8.6.4.11. Receive DMA Descriptor List Address Register(Default Value: 0x00000000)

Offset: 0x34			Register Name: RX_DMA_LIST
Bit	R/W Default/Hex		Description
			RX_DESC_LIST
31:0	R/W	0	The base address of receive descriptor list. It must be 32-bit aligned.

8.6.4.12. Receive Frame Filter Register(Default Value: 0x00000000)

Offset: 0x38			Register Name: RX_FRM_FLT
Bit	R/W	Default/Hex	Description
			DIS_ADDR_FILTER
			0: Enable address filter
31	R/W	0	1: Disable address filter
30:18	/	/	
			DIS_BROADCAST
			0: Receive all broadcast frames
17	R/W	0	1: Drop all broadcast frames
			RX_ALL_MULTICAST
			0: Filter multicast frame according to HASH_MULTICAST
16	R/W	0	1: Receive all multicast frames
15:14	/	/	
13:12	R/W	0	CTL_FRM_FILTER

			00, 01: Drop all control frames
			10: Receive all control frames
			11: Receive all control frames when pass the address filter
11:10	/	/	/
			HASH_MULTICAST
			0: Filter multicast frames by comparing the DA field with the values in DA
			MAC address registers
9	R/W	0	1: Filter multicast frames according to the hash table
			HASH_UNICAST
			0: Filter unicast frames by comparing the DA field with the values in DA MAC
			address registers
8	R/W	0	1: Filter unicast frames according to the hash table
7	/	/	/
			SA_FILTER_EN
			0: Receive frames and update the result of SA filter
			1: Update the result of SA filter. In addition, if the SA field of received frame
6	R/W	0	does not match the values in SA MAC address registers, drop this frame.
			SA_INV_FILTER
			0: When the SA field of current frame matches the values in SA MAC address
			registers, it passes the SA filter
			1: When the SA filed of current frame does not match the values in SA MAC
5	R/W	0	address registers,, it passes the SA filter
			DA_INV_FILTER
			0: Normal filtering of frames is performed
	- 6		1: Filter both unicast and multicast frames by comparing DA field in inverse
4	R/W	0	filtering mode
3:2	/	/	
			FLT_MD
			0: If the HASH_MULTICAST or HASH_UNICAST is set, the frame is passed only
			when it matches the Hash filter
	5 /14/		1: Receive the frame when it pass the address register filter or the hash
1	R/W	0	filter(set by HASH_MULTICAST or HASH_UNICAST)
			RX_ALL
			0: Receive the frames that pass the SA/DA address filter
	D ///		1: Receive all frames and update the result of address filter(pass or fail) in
0	R/W	0	the receive status word

8.6.4.13. Receive Hash Table 0 Register(Default Value: 0x00000000)

Offset: 0x40			Register Name: RX_HASH_0
Bit	R/W Default/Hex		Description
			HASH_TAB_0
31:0	R/W	0	The upper 32 bits of Hash table for receive frame filter.

8.6.4.14. Receive Hash Table 1 Register(Default Value: 0x00000000)

Offset: 0x44			Register Name: RX_HASH_1
Bit	R/W Default/Hex		Description
			HASH_TAB_1
31:0	R/W	0	The lower 32 bits of Hash table for receive frame filter.

8.6.4.15. MII Command Register(Default Value: 0x00000000)

Offset: 0	x48		Register Name: MII_CMD
Bit	R/W	Default/Hex	Description
31:23	1	/	
			MDC_DIV_RATIO_M MDC clock divide ration(m). The source of MDC clock is AHB clock. 000: 16 001: 32 010: 64 011: 128
22:20	R/W	0	Others: Reserved
19:17	/	/	/
16:12	R/W	0	PHY_ADDR Select a PHY device from 32 possible candidates.
11:9	1	/	
8:4	R/W	0	PHY_REG_ADDR Select register in the selected PHY device
3:2	1	/	
1	R/W	0	MII_WR 0: Read register in selected PHY and return data in EMAC_GMII_DATA 1: Write register in selected PHY using data in EMAC_GMII_DATA
0	R/W	0	MII_BUSY This bit indicates that a read or write operation is in progress. When prepared the data and register address for a write operation or the register address for a read operation, set this bit and start to access register in PHY. When this bit is cleared automatically, the read or write operation is over and the data in EMAC_GMII_DATA is valid for a read operation.

8.6.4.16. MII Data Register(Default Value: 0x00000000)

Offset: 0x4C			Register Name: MII_DATA
Bit	R/W	Default/Hex	Description
31:16	/	/	/
			MII_DATA
15:0	R/W	0	The 16-bit data to be written to or read from the register in the selected PHY.

8.6.4.17. MAC Address 0 High Register(Default Value: 0x0000FFFF)

Offset: 0x50			Register Name: ADDRO_HIGH
Bit	R/W	Default/Hex	Description
31:16	/	/	/
			MAC_ADDR_0_HIGH
15:0	R/W	0xFFFF	The upper 16bits of the 1 st MAC address.

8.6.4.18. MAC Address 0 Low Register(Default Value: 0xFFFFFFFF)

Offset: 0x54			Register Name: ADDR0_LOW
Bit	Bit R/W Default/Hex		Description
			MAC_ADDR_0_LOW
31:0	R/W	0xFFFFFFF	The lower 32bits of 1 st MAC address.

8.6.4.19. MAC Address x High Register(Default Value: 0x0000FFFF)

Offset: 0x5	50+8*x (x=1~7))	Register Name: ADDRx_HIGH
Bit	R/W	Default/Hex	Description
			MAC_ADDR_CTL 0: MAC address x(x: 1~7) is not valid, and it will be ignored by the address filter
31	R/W	0	1: MAC address x(x: 1~7) is valid
			MAC_ADDR_TYPE 1: MAC address x(x:1~7) used to compare with the source address of the received frame
30	R/W	0.	0: MAC address $x(x:1^{\sim}7)$ used to compare with the destination address of the received frame
29:24	R/W	0	MAC_ADDR_BYTE_CTL MAC address byte control mask. The lower bit of mask controls the lower byte of in MAC address x(x:1~7). When the bit of mask is 1, do not compare the corresponding byte.
23:16	/	/	/
15:0	R/W	0xFFFF	MAC_ADDR_x_HIGH The upper 16bits of the MAC address x(x:1~7).

8.6.4.20. MAC Address x Low Register(Default Value: 0xFFFFFFFF)

Offset: 0x54+8*x (x=1~7)			Register Name: ADDRx_LOW
Bit	R/W Default/Hex		Description
			MAC_ADDR_x_LOW
31:0	R/W	0xFFFFFFF	The lower 32bits of MAC address x(x:1~7).

8.6.4.21. Transmit DMA Status Register(Default Value: 0x00000000)

Offset: 0xB0			Register Name: TX_DMA_STA
Bit	R/W	Default/Hex	Description
31:3	/	/	/
			TX_DMA_STA
			The state of Transmit DMA FSM.
			000: STOP: When reset or disable TX DMA;
			001: RUN_FETCH_DESC: Fetching TX DMA descriptor;
			010: RUN_WAIT_STA: Waiting for the status of TX frame;
			011: RUN_TRANS_DATA: Passing frame from host memory to TX DMA FIFO;
			111: RUN_CLOSE_DESC: Closing TX descriptor.
2:0	R	0	110: SUSPEND: TX descriptor unavailable or TX DMA FIFO underflow;

100, 101: Reserved;	
---------------------	--

8.6.4.22. Transmit DMA Current Descriptor Register(Default Value: 0x00000000)

Offset: 0xB4			Register Name: TX_DMA_CUR_DESC
Bit	it R/W Default/Hex		Description
31:0	R	0	The address of current transmit descriptor.

8.6.4.23. Transmit DMA Current Buffer Address Register(Default Value: 0x00000000)

Offset: 0xB8			Register Name: TX_DMA_CUR_BUF
Bit	Bit R/W Default/Hex		Description
31:0	R	0	The address of current transmit DMA buffer

8.6.4.24. Receive DMA Status Register(Default Value: 0x00000000)

Offset: 0x0	Offset: 0xC0		Register Name: RX_DMA_STA
Bit	R/W	Default/Hex	Description
31:3	/	1	1
			RX_DMA_STA
			The state of RX DMA FSM.
			000: STOP: When reset or disable RX DMA;.
			001: RUN_FETCH_DESC: Fetching RX DMA descriptor;
			011: RUN_WAIT_FRM: Waiting for frame.
			100: SUSPEND: RX descriptor unavailable;
			101: RUN_CLOSE_DESC: Closing RX descriptor.
			111: RUN_TRANS_DATA: Passing frame from host memory to RX DMA FIFO;
2:0	R	0	010, 110: Reserved.

8.6.4.25. Receive DMA Current Descriptor Register(Default Value: 0x00000000)

Offset: 0xC4			Register Name: RX_DMA_CUR_DESC
Bit	R/W Default/Hex		Description
31:0	R	0	The address of current receive descriptor

8.6.4.26. Receive DMA Current Buffer Address Register(Default Value: 0x00000000)

Offset: 0xC8			Register Name: RX_DMA_CUR_BUF
Bit	Bit R/W Default/Hex		Description
31:0	R	0	The address of current receive DMA buffer

8.6.4.27. RGMII Status Register(Default Value: 0x00000000)

Offset: 0xD0			Register Name: RGMII_STA
Bit	R/W	Default/Hex	Description
31:4	/	/	/
			RGMII_LINK
			The link status of RGMII interface
			0: down
3	R	0	1: up
			RGMII_LINK_SPD
			The link speed of RGMII interface
			00: 2.5 MHz
			01: 25 MHz
2:1	R	0	10: 125 MHz
			RGMII_LINK_MD
			The link Mode of RGMII interface
			0: Half-Duplex
0	R	0	1: Full-Duplex

8.6.5. EMAC RX/TX Descriptor

The EMAC' internal DMA transfers data between host memory and internal RX/TX FIFO with a linked list of descriptors. Each descriptor is consisted of four words, and contains some necessary information to transfer TX and RX frames. The descriptor list structure is shown in figure 8-12. The address of each descriptor must be 32-bit aligned.

Figure 8-12. EMAC RX/TX Descriptor List

8.6.5.1. Transmit Descriptor

1st Word of Transmit Descriptor

Bits	Description
31	TX_DESC_CTL
	When set, current descriptor can be used by DMA. This bit is cleared by DMA when the whole frame is transmitted or all data in current descriptor's buffer are transmitted.
30:17	Reserved
16	TX_HEADER_ERR

	When set the short set of the set
	When set, the checksum of transmitted frame's header is wrong.
15	Reserved
14	TX_LENGHT_ERR
	When set, the length of transmitted frame is wrong.
13	Reserved
12	TX_PAYLOAD_ERR
	When set, the checksum of transmitted frame's payload is wrong.
11	Reserved
10	TX_CRS_ERR
	When set, carrier is lost during transmission.
9	TX_COL_ERR_0
	When set, the frame is aborted because of collision after contention period.
8	TX_COL_ERR_1
	When set, the frame is aborted because of too many collisions.
7	Reserved.
6:3	TX_COL_CNT
	The number of collisions before transmission.
2	TX_DEFER_ERR
	When set, the frame is aborted because of too much deferral.
1	TX_UNDERFLOW_ERR
	When set, the frame is aborted because of TX FIFO underflow error.
0	TX_DEFER
	When set in Half-Duplex mode, the EMAC defers the frame transmission.

2nd Word of Transmit Descriptor

Bits	Description
31	TX_INT_CTL
	When set and the current frame have been transmitted, the TX_INT in Interrupt Status Register will be set.
30	LAST_DESC
	When set, current descriptor is the last one for current frame.
29	FIR_DESC
	When set, current descriptor is the first one for current frame.
28:27	CHECKSUM_CTL
	These bits control to insert checksums in transmit frame.
26	CRC_CTL
	When set, CRC field is not transmitted.
25:11	Reserved
10:0	BUF_SIZE
	The size of buffer specified by current descriptor.

3rd Word of Transmit Descriptor

Bits	Description
31:0	BUF_ADDR
	The address of buffer specified by current descriptor.

4th Word of Transmit Descriptor

Bits	Description
31:0	NEXT_DESC_ADDR
	The address of next descriptor. It must be 32-bit aligned.

8.6.5.2. Receive Descriptor

1st Word of Receive Descriptor

Bits	Description
31	RX_DESC_CTL
	When set, current descriptor can be used by DMA. This bit is cleared by DMA when complete frame is received or
	current descriptor's buffer is full.
30	RX_DAF_FAIL
	When set, current frame don't pass DA filter.
29:16	RX_FRM_LEN
	When LAST_DESC is not set and no error bit is set, this field is the length of received data for current frame.
	When LAST_DESC is set, RX_OVERFLOW_ERR and RX_NO_ENOUGH_BUF_ERR are not set, this field is the length of
	receive frame.
15	Reserved
14	RX_NO_ENOUGH_BUF_ERR
	When set, current frame is clipped because of no enough buffer.
13	RX_SAF_FAIL
	When set, current fame don't pass SA filter.
12	Reserved.
11	RX_OVERFLOW_ERR
	When set, a buffer overflow error occurred and current frame is wrong.
10	Reserved
9	FIR_DESC
	When set, current descriptor is the first descriptor for current frame.
8	LAST_DESC
	When set, current descriptor is the last descriptor for current frame.
7	RX_HEADER_ERR
	When set, the checksum of frame's header is wrong.
6	RX_COL_ERR
	When set, there is a late collision during reception in half-duplex mode.
5	Reserved.
4	RX_LENGTH_ERR
	When set, the length of current frame is wrong.
3	RX_PHY_ERR
	When set, the receive error signal from PHY is asserted during reception.
2	Reserved.
1	RX_CRC_ERR
	When set, the CRC filed of received frame is wrong.
0	RX_PAYLOAD_ERR
	When set, the checksum or length of received frame's payload is wrong.

2nd Word of Receive Descriptor

Bits	Description
31	RX_INT_CTL
	When set and a frame have been received, the RX_INT will not be set.
30:11	Reserved
10:0	BUF_SIZE
	The size of buffer specified by current descriptor.

3rd Word of Receive Descriptor

Bits	Description
31:0	BUF_ADDR
	The address of buffer specified by current descriptor.

4th Word of Receive Descriptor

Bits	Description
31:0	NEXT_DESC_ADDR
	The address of next descriptor. This field must be 32-bit aligned.

Chapter 9 Electrical Characteristics

9.1. Absolute Maximum Ratings

Table 9-1 specifies the absolute maximum ratings over the operating junction temperature range of commercial and extended temperature devices.

CAUTION

- Absolute Maximum Ratings are those values beyond which damage to the device may occur.
- Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this standard may damage to the device.

Table 9-1. Absolute Maximum Ratings				
Symbol	Parameter	Min	Max	Unit
luo	In/Out Current for Input and Output	-40	40	mA

Symbol	Parameter	Min	Max	Unit
I _{1/0}	In/Out Current for Input and Output	-40	40	mA
AVCC	Power Supply for Analog Part	-0.3	3.6	V
EPHY_VCC	Power Supply for EPHY High Voltage	-0.3	3.63	V
EPHY_VDD	Power Supply for EPHY Low Voltage	-0.3	1.4	V
HPVCCIN	Power Supply for Headphone	-0.3	3.63	V
VCC-IO	Power Supply for Port B,C,F,G	-0.3	3.63	V
VCC-PD	Power Supply for Port D	-0.3	3.63	V
VCC-PE	Power Supply for Port E	-0.3	3.63	V
VCC-PLL	Power Supply for System PLL	-0.3	3.63	V
VCC-MCSI	Power Supply for MIPI CSI	-0.3	3.63	V
VCC-RTC	Power Supply for RTC	-0.3	3.63	V
VCC-USB	Power Supply for USB	-0.3	3.63	V
VDD-EFUSE	Power Supply for EFUSE	-0.3	2.75	V
VCC-DRAM	Power Supply for DRAM(DDR3)	-0.3	1.98	V
VDD-CPU	Power Supply for CPU	-0.3	1.4	V
VDD-SYS	Power Supply for System	-0.3	1.4	V
T _{STG}	Storage Temperature	-40	125	°C

9.2. Recommended Operating Conditions

All S3 modules are used under the operating conditions contained in Table 9-2.

Table 9-2. Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Unit
Та	Ambient Operating Temperature	-20	-	+70	°C
AVCC	Power Supply for Analog Part	2.94	3.0	3.06	V
EPHY_VCC	Power Supply for EPHY High Voltage	3.0	3.3	3.6	V
EPHY_VDD	Power Supply for EPHY Low Voltage	1.0	1.1	1.2	V
HPVCCIN	Power Supply for Headphone	3.1	3.3	3.5	V
VCC-IO	Power Supply for Port B,C,F,G	2.97	3.3	3.63	V
VCC-PD	Power Supply for Port D 2.5V Voltage 3.3V Voltage	2.25 2.97	2.5 3.3	2.75 3.63	V
VCC-PE	Power Supply for Port E 1.8V Voltage 2.8V Voltage 3.3V Voltage	1.62 2.52 2.97	1.8 2.8 3.3	1.98 3.08 3.63	V
VCC-PLL	Power Supply for System PLL	2.9	3.3	3.6	V
VCC-MCSI	Power Supply for MIPI CSI	2.97	3.3	3.63	V
VCC-RTC	Power Supply for RTC	2.97	3.3	3.63	V
VCC-USB	Power Supply for USB	3.07	3.3	3.63	V
VDD-EFUSE	Power Supply for EFUSE	2.25	2.5	2.75	V
VCC-DRAM	Power Supply for DRAM(DDR3)	1.425	1.5	1.575	V
VDD-CPU	Power Supply for CPU	1.04	-	1.3	V
VDD-SYS	Power Supply for System	0.99	1.1	1.21	V

9.3. DC Electrical Characteristics

Table 9-3 summarizes the DC electrical characteristics of S3.

Table 9-3. DC Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
VIH	High-Level Input Voltage	0.7 * VCC-IO	-	VCC-IO + 0.3	V
VIL	Low-Level Input Voltage	-0.3	-	0.3 * VCC-IO	V
RPU	Input Pull-Up Resistance	50	100	150	ΚΩ
RPD	Input Pull-Down Resistance	50	100	150	ΚΩ
IIH	High-Level Input Current	-	-	10	uA
IIL	Low-Level Input Current	-	-	10	uA
VOH	High-Level Output Voltage	VCC-IO -0.2	-	VCC-IO	V
VOL	Low-Level Output Voltage	0	-	0.2	V
IOZ	Tri-State Output Leakage Current	-10	-	10	uA
CIN	Input Capacitance	-	-	5	pF
COUT	Output Capacitance	-	-	5	pF

9.4. Oscillator Electrical Characteristics

The S3 contains two external input clocks:X24MIN and X32KIN, two output clocks:X24MOUT and X32KOUT.

The 24MHz frequency is used to generate the main source clock for PLL and the main digital blocks , the clock is provided through X24MIN.Table 9-4 lists the 24MHz crystal specifications.

Table 9-4. 24MHz Oscillator Characteristics

Symbol	Parameter	Min	Тур	Max	Unit			
1/(t _{CPMAIN})	Crystal Oscillator Frequency Range	-	24.000	-	MHz			
t _{st}	Startup Time	_	_	_	ms			
	Frequency Tolerance at 25 °C	-50	-	+50	ppm			
	Oscillation Mode	Fundamental						
	Maximum change over temperature range	-50	-	+50	ppm			
P _{ON}	Drive level	-	-	300	uW			
C_L	Equivalent Load capacitance	12	18	22	pF			
R_S	Series Resistance(ESR)	-	25	-	Ω			
	Duty Cycle	30	50	70	%			
C _M	Motional capacitance	_	-	-	pF			
C _{SHUT}	Shunt capacitance	5	6.5	7.5	pF			
R _{BIAS}	Internal bias resistor	0.4	0.5	0.6	ΜΩ			

The 32768Hz frequency is used for low frequency operation. It supplies the wake-up domain for operation in lowest power mode. The clock is provided through X32KIN.Table 9-5 lists the 32768Hz crystal specifications.

Table 9-5. 32768Hz Oscillator Characteristics

Symbol	Parameter	Min	Тур	Max	Unit			
1/(t _{CPMAIN})	Crystal Oscillator Frequency Range	_	32768	_	Hz			
t _{ST}	Startup Time	-	-		ms			
-	Frequency Tolerance at 25 °C	-40	-40 - +40					
	Oscillation Mode	Fundamer	Fundamental					
	Maximum Change Over Temperature Range	-50	_	+50	ppm			
P _{ON}	Drive Level	-	-	50	uW			
C _L	Equivalent Load Capacitance	-	-	-	pF			
R_S	Series Resistance(ESR)	-	-	-	Ω			
	Duty Cycle	30	50	70	%			
C _M	Motional Capacitance	_	-	_	pF			
C _{SHUT}	Shunt Capacitance	_	_	_	pF			
R _{BIAS}	Internal Bias Resistor	_	_	_	МΩ			

9.5. Power on and Power off Sequence

The external voltage regulator and other power-on devices must provide the processor with a specific sequence of power and resets to ensure proper operations. Following figure 9-1 and 9-2 provides the timing requirements for the S3 power.

Figure 9-1. Power On Sequence

Figure 9-2. Power Down Sequence

Appendix

Pin Map

The following pin map shows the views of the 234-pin FBGA package of the S3 processor.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
Α	GND	PB13	PC0		PB10		PB6		PD7		PD18		PD15	PD13	PD10	GND	Α
В	PC2	PC1	PB0	PB1	PB12	PB8	PB7	PB2	PD6	PD21	PD19	PD16	PD14	PD12	PD11	PD4	В
С	PC6	PC3	PC7	PB3	PB11	PB9	PB5	PB4	GND	PD20	PD1	PD17	PE5	PE2	PD8	PD5	С
D	PC10	PC9	PC8	GND	GND	GND	GND	GND	GND	GND	GND	GND		PE17	PE16		D
E		EPHY_TX N	EPHY_TX	GND	GND	GND	GND	GND	GND	GND	GND	PE6	PE9	GND	PE18	PE19	E
F	EPHY_R XN	EPHY_R XP	PC4	PC5	ZQ	VCC- DRAM	VCC- DRAM	VCC- DRAM	GND	GND	GND	PE4		PEO	PE3		F
G		MCSI- DON	MCSI- DOP	GND	GND	GND	GND	VCC- DRAM	GND	GND	GND	VDD- CPU	PE1	PE12	PE7	PE21	G
Н	MCSI- D1N	MCSI- D1P	GND	GND	GND	DVREF	GND	VCC- DRAM	GND	GND	VCC-IO	VDD- CPU	PE8	PE11	PE20		н
J	MCSI- CKN	MCSI- CKP	GND	GND	DZQ	GND	GND	VCC- DRAM	GND	GND	VDD- CPU	VDD- CPU	PE10	PD2	PD3	PE22	J
K	MCSI- D2N	MCSI- D2P	GND	GND	EPHY_LI NK_LED	GND	GND	VDD-SYS	VDD-SYS	GND	VDD- CPU	GND	PE15	PE24	PD0		K
L		MCSI- D3N	MCSI- D3P	GND	EPHY_SP D_LED	VCC-PLL	GND	VDD-SYS	GND	GND	VCC-PD	VCC-PD	PE13	PE23	PD9	PE14	L
М	PF6	PF5		VCC- MCSI	EPHY_V CC	VDD- EFUSE	AVCC	VDD-SYS	HPVCCB P	GND	VCC-PE	VCC-PE	PG13	PG7	PG6		М
N		PF3	PF4	GND	EPHY_V DD	VCC-RTC	VCC-USB	GND	HBIAS	VRA2	HPCOM FB	нрсом	HPOUTR	PG8	PG1	PG3	N
Р	PF1	PF2	X32KFO UT	X24MO UT	VCC-IO	EPHY_R TX	RESET	AGND	MICIN3P	MBIAS	MICIN2 N	HPVCCI N	HPOUTL	PG11	PG2	PG0	Р
R	PFO	USB-DM	X32KOU T	X24MIN	GND	LINEOUT L	NMI	LRADC1	MICIN3	MICIN1	MICIN2P	LINEINL	JTAG_SE L	PG9	PG4	PG5	R
Т	GND	USB-DP	X32KIN		RTC-VIO	LINEOUT R		LRADC0		MICIN1P		LINEINR		PG10	PG12	GND	т
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	

Package Dimension

The following diagram shows the package dimension of the S3 processor.

LCD Control Signal and Data Port Mapping

			CPU cmd	CPU 18bit					PU Sbit						CPU 8bit			CF 9k		LVDS			
I/O	ParallelRGB Serial RGB CCIR 656						256K	256K 65K							256K			65K		25	6K	Single link	
		1 st	2 nd	3 rd				1 st	2 nd	3 rd	1 st	2 nd	1 st	2 nd		1 st	2 nd	3 rd	1 st	2 nd	1 st	2 nd	
100	IOO VSYNC												(CS									D3N
101			HSYNC										F	RD									D3P
102			DCLK			WR														CKP			
103			DE					T		1	1	•	F	RS					1	1			CKN
D23	R7					D23	R5	R5	B5	G5	R5		R5	B5	R4							<u> </u>	D2N
D22	R6					D22	R4	R4	В4	G4	R4		R4	B4	R3							<u> </u>	D2P
D21	R5					D21	R3	R3	В3	G3	R3		R3	В3	R2							<u> </u>	D1N
D20	R4					D20	R2	R2	В2	G2	R2		R2	B2	R1							<u> </u>	D1P
D19	R3					D19	R1	R1	B1	G1	R1		R1	B1	R0							<u> </u>	DON
D18	R2					D18	R0	R0	В0	G0	R0		R0	В0	G5							<u> </u>	D0P
D17	R1																						
D16	R0																						
D15	G7					D15	G5								G4								
D14	G6					D14	G4								G3								
D13	G5					D13	G3																
D12	G4	D17	D27	D37	D7	D12	G2	G5	R5	B5	G5	B5	G5		G2	R5	G5	B5	R4	G2	R5	G2	
D11	G3	D16	D26	D36	D6	D11	G1	G4	R4	В4	G4	B4	G4		G1	R4	G4	В4	R3	G1	R4	G1	
D10	G2	D15	D25	D35	D5	D10	G0	G3	R3	В3	G3	В3	G3		G0	R3	G3	В3	R2	G0	R3	G0	
D9	G1																						
D8	G0																						
D7	В7	D14	D24	D34	D4	D7	B5	G2	R2	В2	G2	В2	G2		B4	R2	G2	В2	R1	B4	R2	B5	
D6	В6	D13	D23	D33	D3	D6	B4	G1	R1	B1	G1	B1	G1		В3	R1	G1	B1	R0	В3	R1	В4	
D5	B5	D12	D22	D32	D2	D5	В3	G0	R0	В0	G0	В0	G0		B2	R0	G0	В0	G5	B2	R0	В3	
D4	B4	D11	D21	D31	D1	D4	B2								B1				G4	B1	G5	B2	
D3	В3	D10	D20	D30	D0	D3	B1								В0				G3	В0	G4	B1	
D2	B2					D2	В0														G3	В0	
D1	B1																						
D0	В0																						