

Loss Landscape Characterization of Neural Networks without Over-Parametrziation

Niccoló Ajroldi² Antonio Orvieto^{2,3,4} Aurelien Lucchi¹

¹University of Basel ²Max Planck Institute for Intelligent Systems ³ELLIS Institute Tübingen ⁴Tübingen Al Center

Problem Formulation

Limitations of Existing Conditions

Figure 1:Training of 3 layer LSTM model that shows Aiming condition does not always hold since the angle $\angle(\nabla f(x^k), x^k - x^K)$ can be negative. The right figure demonstrates that the possible constant μ in PL condition should be small.

- Necessity of Over-parameterization. The theoretical justification of conditions such as Aiming [2] and PL [3] require a significant amount of overparameterization.
- Necessity of Invexity. The conditions imply that any stationary point is a global minimum (i.e., exclusion of saddle points and local minima).
- Lack of Theory. Several works have studied the empirical properties of the loss landscape of neural networks but fall short of providing theoretical explanations for this observed phenomenon.
- Lack of Empirical Evidence. Several theoretical works prove results on the loss landscape without supporting their claims using experimental validation on deep learning benchmarks.

Main Contributions

- We introduce the α - β -condition and theoretically demonstrate its applicability to a wide range of complex functions, notably those that include local saddle points and local minima.
- We empirically validate that the α - β -condition is a meaningful assumption that captures a wide range of practical functions, including matrix factorization and neural networks (ResNet, LSTM, GNN, Transformer, and other architectures).
- We analyze the theoretical convergence of several optimizers under α - β -condition, including vanilla SGD, SPS_{max}, and NGN.
- We provide empirical and theoretical counter-examples where the weakest assumptions, such as the PL and Aiming conditions, do not hold, but the α - β -condition does.

Table 1:Summary of existing assumptions on the optimization problem and their limitations. Here $\mathcal S$ denotes the set of minimizers of f and $f_i^* := \operatorname{argmin}_x f_i(x)$.

Condition	Definition	Comments
QCvx [1]	$\langle \nabla f(x), x - x^* \rangle \geq \theta(f(x) - f(x^*))$ for some fixed $x^* \in \mathcal{S}$	- excludes saddle points
Aiming [2]	$\langle \nabla f(x), x - \text{Proj}(x, \mathcal{S}) \rangle \ge \theta f(x)$	 excludes saddle points in theory requires over-parameterization [2] does not always hold in practice [Fig. 1 a-b]
PL [3]	$\ \nabla f(x)\ ^2 \ge 2\mu (f(x) - f^*)$	- excludes saddle points - in theory requires over-parameterization [4] - does not always hold in practice [Fig. 1 c-d]
α - β -condition [This work]	$\langle \nabla f_i(x), x - \operatorname{Proj}(x, \mathcal{S}) \rangle \ge \alpha(f_i(x) - f_i(\operatorname{Proj}(x, \mathcal{S}))) - \beta(f_i(x) - f_i^*)$	- might have saddles and local minima [Fig. 1 (b-c)] - in practice does not require over-parameterization [2 layer NN ex.]

The Proposed Condition and Examples

Figure 2:Loss landscape of f that satisfy α - β -condition. These examples demonstrate that the problem (1) that satisfies α - β -condition might have an unbounded set of minimizers \mathcal{S} (left), a saddle point (center), and local minima (right) in contrast to the PL and Aiming conditions.

Definition of α - β -condition

Let $\mathcal{X} \subseteq \mathbb{R}^d$ be a set and consider a function $f \colon \mathcal{X} \to \mathbb{R}$ as defined in (1). Then f satisfies the α - β -condition with positive parameters α and β such that $\alpha > \beta$ if for any $x \in \mathcal{X}$ there exists $x_p \in \text{Proj}(x, \mathcal{S})$ such that for all $i \in [n]$

$$\langle \nabla f_i(x), x - x_p \rangle \ge \alpha(f_i(x) - f_i(x_p)) - \beta(f_i(x) - f_i^*).$$

Matrix Factorization. Let f, f_{ij} be such that

$$f(W,S) = \frac{1}{2nm} ||X - W^{\top}S||_{F}^{2} = \frac{1}{2nm} \sum_{i,j} (X_{ij} - w_{i}^{\top}s_{j})^{2},$$

$$f_{ij}(W,S) = \frac{1}{2} (X_{ij} - w_{i}^{\top}s_{j})^{2},$$

where $X \in \mathbb{R}^{n \times m}, W = (w_i)_{i=1}^n \in \mathbb{R}^{k \times n}, S = (s_j)_{j=1}^m \in \mathbb{R}^{k \times m}$, and $rank(X) = r \ge k$. We assume that X is generated using matrices W^* and S^* with non-zero additive noise that minimize empirical loss, namely, $X=(W^*)^\top S^* + (\varepsilon_{ij})_{i\in[n],j\in[m]}$ where $W^*,S^*=$ $\operatorname{argmin}_{W,S} f(W,S)$. Let \mathcal{X} be any bounded set that contains \mathcal{S} . Then α - β -condition is satisfied with $\alpha = \beta + 1$ and some $\beta > 0$.

Two Layer Neural Network. Consider training a two-layer neural network with a logistic loss

$$f(W, v) = \frac{1}{n} \sum_{i=1}^{n} f_i(W, v), \quad f_i(W, v) = \phi(y_i \cdot v^{\top} \sigma(W x_i))$$

for a classification problem where $\phi(t) := \log(1 + \exp(-t))$, $W \in \mathbb{R}^{k \times d}, v \in \mathbb{R}^k, \sigma$ is a ReLU function applied coordinate-wise, $y_i \in \{-1, +1\}$ is a label and $x_i \in \mathbb{R}^d$ is a feature vector. Let $\mathcal X$ be any bounded set that contains S. Then the α - β -condition holds in \mathcal{X} for some $\alpha \geq 1$ and $\beta = \alpha - 1$.

Convergence under α - β -condition

Theorem. Assume that each f_i is L-smooth and the interpolation error $\sigma_{\text{int}}^2 := \mathbb{E}[f^* - f_i^*]$ is bounded. Then the iterates of SGD with stepsize $\gamma \leq \frac{\alpha - \beta}{2L}$ satisfy

$$\min_{0 \le k < K} \mathbb{E}[f(x^k) - f^*] \le \frac{\mathbb{E}[\operatorname{dist}(x^0, \mathcal{S})^2]}{K} \frac{1}{\gamma(\alpha - \beta)} + \frac{2L\gamma}{\alpha - \beta} \sigma_{\operatorname{int}}^2 + \frac{2\beta}{\alpha - \beta} \sigma_{\operatorname{int}}^2.$$

Empirical Verification

Figure 3:Training of ResNet models on CIFAR100 dataset. Here $T(x_k) =$ $\langle \nabla f_{i_k}(x^k), x^k - x^K \rangle - \alpha (f_{i_k}(x^k) - f_{i_k}(x^K)) - \beta f_{i_k}(x^k)$ assuming that $f_i^* = 0$. Minimum is taken across all runs and iterations for a given pair of (α, β) .

ResNet34

Figure 4: α - β -condition in the training of some large models from AlgoPerf. Here $T(x_k) = \langle \nabla f_{i_k}(x^k), x^k - x^K \rangle - \alpha (f_{i_k}(x^k) - f_{i_k}(x^K)) - \beta f_{i_k}(x^k)$ assuming that $f_i^* = 0$. Minimum is taken across all runs and iterations for a given pair of (α, β) .

References

[1] Hardt et al., Gradient descent learns linear dynamical systems. JMLR, 2018.

[2] Liu et al., Aiming towards the minimizers: fast convergence of SGD for overparametrized problems. NeurIPS, 2023.

[3] Polyak. Gradient methods for the minimisation of functionals. USSR Comp. Math. and Math. Phys., 1963.

[4] Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in overparameterized non-linear systems and neural networks. Appl. and Comp. Harm. Analysis, 2022.