信息学院本科生 2010-2011 学年第二学期 数据结构期末考试试卷 (A卷)

专	业:_	£	年级:	_学号:	
姓名:_			龙绩:	_	
得	分		题(每小题2分,共 描述问题规模的非负		设的时间复杂度是
		x = 2; while ($x < n/2$) x = 2*x;)		
	Α. ($O(\log_2 n)$	B. O(n)	C. $O(n \log_2 n)$	D. $O(n^2)$
2.	元素	a, b, c, d, e 依次i	进入初始为空的栈中,	所有元素进栈且只适	进入一次。栈空时,
	在所	有可能的出栈序	列中,以元素 d 开头	的序列个数是	0
	Α	3	B. 4	C. 5	D. 6
3.	若元	素 a,b,c,d,e,f 依	次进栈,允许进栈、	退栈操作交替进行。	但不允许连续三次
	进行	退栈工作,则不	可能得到的出栈序列	是。	
	Α. σ	dcebfa	B. cbdaef	C. abcdef	D. afedcb
4.	己知	循环队列存储在	三一维数组 A[0n-1] 日	中,且队列非空时 from	nt 和 rear 分别指向
	队头	元素和队尾元素	:。若初始时队列为空	,且要求第1个进入	队列的元素存储在
	A[0]	处,则初始时 fro	ont 和 rear 的值分别是	Ē。	
	Α. (0, 0	B. 0, n-1	C. n-1, 0	D. n-1, n-1
5.	若一	棵完全二叉树有	768 个结点,则该二	叉树中叶结点的个数	是。
	A. 7	257	B. 258	C. 384	D. 385
6.	在右	图所示的平衡二	工叉树(AVL 树)中护	插入关键字 48	(24)
	后得	到一棵新平衡二	工叉树,在新平衡二叉	树中,关键字	\sim
	37 J	所在结点的左、	右子结点中保存的	关键字分别是 (13) (3)
		o		_	~~>
	Α.	13, 48	B. 24, 48		(37) (90)

C. 24, 53 D. 24, 90

7.	若-	一棵二叉树的前序	遍历	序列和后序遍历	序列	分别为 1, 2, 3, 4	和 4, 3, 2, 1, 则	该		
	二叉树的中序遍历序列不会是。									
	A.	1, 2, 3, 4	В.	2, 3, 4, 1	C.	3, 2, 4, 1	D. 4, 3, 2, 1			
8.	对	于下列关键字序	列,	不可能构成某二	二叉	排序树中一条查	查找路径的序列	是		
		o								
	A.	95, 22, 91, 24, 94,	71		В.	92, 20, 91, 34, 88	8, 35			
	C.	21, 89, 77, 29, 36,	38		D.	12, 25, 71, 68, 33	3, 34			
9.	下列关于图的叙述中,正确的是。									
	I.	回路是简单路径								
	II.	II. 存储稀疏图,用邻接矩阵比邻接表更省空间								
	III.	若有向图中存在	拓扑	序列,则该图不	存在	回路				
	A.	仅II	B.	仅I、II	C.	仅III	D. 仅I、III			
10.	无	向图 G = (V, E)中 ⁻	含 7	个顶点,顶点间的	的边	是随机设置的,是	为保证图 G 在任	何		
	情况	兄下都是连通的,	则需	要的最少边数是		o				
	A.	6	B.	15	C.	16	D. 21			
11.	为	提高散列(Hash)	表的	的查找效率,可以	以采耳	取的正确措施是_	0			
	I.	增大装填(载)	因子							
	II.	设计冲突(碰撞) 少	的散列函数						
	III.	处理冲突(碰撞) 时	避免产生聚集(堆积	() 现象				
	A.	仅I	В.	仅II	C.	仅I、II	D. 仅II、III			
12.	采	用 Hash 技术,下	面操	作中性能不佳的	是_	о				
	A.	搜索给定关键字。)							
	B. 按关键字升序排列输出所有元素。									
	C. 删除给定关键字的元素。									
	D. 输出关键字升序排列位于第 k 位的元素。									
13.	为	实现快速排序算法	去,彳	寺排序序列宜采戶	目的で	存储方式是	o			
	A.	顺序存储	В.	散列存储	C.	链式存储	D. 索引存储			
14.	己	知序列 25, 13, 10,	12,	9 是大根堆,在原	亨列	尾部插入新元素	18,将其再调整	为		
	大村	根堆,调整过程中	元素	之间进行的比较						
	Α.		В.			4	D. 5			
15	<u>44</u>	一组数据(2.12	. 16	5. 88. 5. 10) i	井行お	非序, 若前三絀‡	排序结果加下			

第一趟: 2, 12, 16, 5, 10, 88

第二趟: 2, 12, 5, 10, 16, 88

第三趟: 2, 5, 10, 12, 16, 88

则采用的排序方法可能是____。

- A: 起泡排序 B: 希尔排序 C: 归并排序 D: 基数排序

得 分

二、(本题 10 分) 在任意一棵非空二叉排序树 T1 中,删除某结点后又将 其插入,则所得二叉排序树 T2 与原二叉排序树 T1 相比,会有几种情况? 试证明你的结论。

得 分

三、(本题8分)用一维数组存放的一棵二叉树如下图所示:

A	В		C				D

画出该二叉树,并分别写出先序、中序及后序遍历该二叉树时访问结点的顺序。

四、(本题 12 分) 有以下 10 个关键字: 28, 72, 97, 63, 4, 53, 84, 32, 61, 52, 使用归并排序方法将所给关键字排成升序序列,给出排序过程。

五、(本题 10 分)设一个哈希表的地址区间为 0-16, 哈希函数为 H(K)=K mod 17。采用线性探测法处理冲突,请将关键字序列 19, 14, 23, 01, 68, 20, 84, 27, 55, 11, 10, 79, 12 依次存储到哈希表中,画出结果,并计算平均查找长度。

六、(本题 15 分)对右面的带权图,回答下列问题。

- 1)给出每个顶点的度。
- 2) 画出图的邻接矩阵。
- 3) 使用 Prim 算法求图的最小生成树。

七、(本题 15 分)一个长度为 L (L \geqslant 1)的升序序列 S,处在第 $\lceil L/2 \rceil$ 个位置的数称为 S 的中位数。例如,若序列 S₁=(11, 13, 15, 17, 19),则 S₁的中位数是 15。两个序列的中位数是含它们所有元素的升序序列的中位数。例如,若 S₂=(2, 4, 6, 8, 20),则 S₁和 S₂的中位数是 11。现有两个等长升序序列 A 和 B,试设计一个在时间和空间两方面都尽可能高效的算法,找出两个序列 A 和 B 的中位数。