

Curso Aprendizaje estadístico y computacional

Syllabus

Equipo Docente

Jonathan Acosta

Doctor en Matemática. Profesor asistente del departamento de estadísticas de la facultad de matemáticas de la Pontificia Universidad Católica de Chile.

Sus líneas de investigación e interés son el modelamiento de Datos Dependientes, la estadística Computacional y extracción de conocimiento desde bases de datos no estructuradas y la modelación Estadística para Aplicaciones Multidisciplinarias.

Descripción del curso

En este curso los estudiantes aprenderán los conceptos elementales de machine learning y varias metodologías de aprendizaje supervisado y no supervisado. El estudiante deberá ser capaz de identificar los métodos más apropiados, aplicarlos y compararlos en diferentes contextos, en particular, para grandes volúmenes de datos. Además, las evaluaciones serán basadas en problemas reales donde se requieren técnicas que permitan entender los patrones observados.

Resultados de aprendizaje

- 1. Explicar los conceptos claves del aprendizaje estadístico moderno.
- 2. Aplicar diferentes técnicas de machine learning a problemas de regresión, clasificación y agrupación.
- 3. Comparar los métodos más apropiados basados en la problemática.
- Interpretar los resultados del mejor método a partir de diferentes contextos de aplicación.

Estrategias metodológicas

Dentro de los recursos de aprendizaje se encuentran:

- Videoclases.
- Cátedra en sesiones sincrónicas.
- Aprendizaje basado en problemas.
- Estudio de casos.
- Tutoriales y trabajo personal de lectura.

Estructura del curso

Modulo 1: Introducción a Machine Learning

- Tipos de aprendizaje y etapas del modelamiento en machine learning.
- Modelos de regresión.

Módulo 2: Aprendizaje Supervisado: Medidas de Evaluación de Modelos

- Métricas de Rendimiento.
- Métodos No parametricos para Regresión y Clasificación.

Módulo 3: Aprendizaje Supervisado: Extensión de Técnicas

- Árboles de Decisión y Bosques Aleatorios.
- Clasificador Bayesiano Ingenuo y Máquinas de vectores de Soporte.

Módulo 4: Aprendizaje no supervisado

- Técnicas de agrupamiento.
- Técnicas de reducción de la dimensionalidad.

El curso tiene como requisitos de aprobación las siguientes instancias evaluativas:

Actividad	Evaluación
Evaluaciones Sumativas	69%
Participación en Foros	10%
Trabajo final	21%

Información General

Duración: 90 horas cronológicas.

Lugar de realización: Coursera.

 Valor: El curso es gratuito, pero hay un cobro definido por Coursera si se quiere optar a una certificación.

Política de entregas de evaluaciones calificadas fuera de plazo

En caso de entregar una evaluación calificada, sea esta Tarea o Cuestionario, fuera del plazo informado (fecha límite), se aplicará un descuento progresivo a la nota máxima por entrega tardía. El plazo para entregar evaluaciones o tareas fuera de plazo será de 7 días desde la fecha límite. Luego de los 7 días de plazo adicional, el alumno obtendrá una nota de 0% en dicha evaluación.

Si por razones de fuerza mayor, el alumno/a no pudiera rendir la prueba dentro del plazo regular o excepcional, deberá enviar una solicitud al correo de Soporte de su programa, adjuntando respaldos para que su requerimiento sea evaluado por la Unidad Académica (UA). La resolución de esta solicitud quedará a criterio de la UA.

Bibliografía

Mínima

- Bishop, C.M. (2006) Pattern Recognition and Machine Learning, Springer.
- Hastie, T., Tibshirani, R., & Friedman, J. (2017) The Elements of Statistical Learning:
 Data Mining, Inference, and Prediction, Springer.
- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021) An Introduction to Statistical Learning: With Applications in R, Springer.
- Mello, R.F. & Ponti, M.A. (2018) Machine Learning: A Practical Approach on the Statistical Learning Theory, Springer.
- Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018) Foundations of Machine Learning, The MIT Press.
- Murphy, K.P. (2012) Machine Learning: A Probabilistic Perspective, The MIT Press.
- Shalev-Shwartz, S. (2014) Understanding Machine Learning: From Theory to Algorithms, Cambridge University Press.

Complementaria

- Bruce, P., Bruce, A., & Gedeck, P. (2020) Practical Statistics for Data Scientists: 50+
 Essential Concepts Using R and Python, O'Reilly Media, Inc.
- Spiegelhalter, D. (2019) The Art of Statistics: How to Learn from Data, Basic Books.
- VanderPlas, J. (2016) Python Data Science Handbook: Essential Tools for Working with Data, O'Reilly Media, Inc.
- Wickham, H. & Grolemund, G. (2016) R for Data Science: Import, Tidy, Transform,
 Visualize, and Model Data, O'Reilly Media, Inc.