Single Source Shortest Paths Book: Cormen; Chapter: 24

• DAG Shortest Paths: Section: 24.2

• Dijsktra: Section: 24.3

• Bellman-Ford: Section: 24.1

Shortest Paths: Notations

Weight of a path $p = \langle v_0, v_1, ..., v_k \rangle$ is the sum of the weights of its constituent edges:

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

 \triangleright Shortest-path weight from u to v:

$$\delta(u,v) = \begin{cases} \min\{w(p) : u \xrightarrow{p} v\} & \text{if there is a path from } u \text{ to } v, \\ \infty & \text{otherwise.} \end{cases}$$

A shortest path from vertex u to v is any path p with weight:

$$w(p) = \delta(u, v)$$

> BFS is a shortest path algorithm that works on unweighted graphs.

Negative Weight

- Negative-weight edges
- Negative-weight cycles

• Algorithms allow negative-weight edges, but disallow (or detect) negative-weight cycles.

Optimal substructure of a shortest path

- Sub-paths of shortest paths are shortest paths
 - Given a weighted, directed graph G = (V, E; w), let $p = \langle v_1, v_2, ..., v_k \rangle$ be a shortest path from vertex v_1 to vertex v_k and, for any i and j such that $1 \le i \le j \le k$, let $p_{ij} = \langle v_i, v_{i+1}, ..., v_j \rangle$ be the subpath of p from vertex v_i to vertex v_j . Then, p_{ij} is a shortest path from v_i to v_j .
 - Why?
 - **Page 645**

Optimal substructure of a shortest path Proof

Single-Source Shortest Paths Problem

• Input: A weighted directed graph G=(V, E, w), and a source vertex s.

• Output: Shortest-path weight from *s* to each vertex *v* in *V*, and a shortest path from *s* to each vertex *v* in *V* if *v* is reachable from *s*.

Example (Page-656): DAG Shortest Paths (1)

Example (Page-656): DAG Shortest Paths (2)

Example (Page-656): DAG Shortest Paths (3)

Example (Page-656): DAG Shortest Paths (4)

Example (Page-656): DAG Shortest Paths (5)

Example (Page-656): DAG Shortest Paths (6)

Example (Page-656): DAG Shortest Paths (7)

Example (Page-656): DAG Shortest Paths (8)

Selected Node	r	S	t	X	y	Z
Initialize	∞/Nil	0 / Nil	∞ / Nil	∞/Nil	∞/Nil	∞ / Nil
r	∞ / Nil	0 / Nil				
S	∞ / Nil	0 / Nil				
t	∞ / Nil	0 / Nil				
X	∞ / Nil	0 / Nil				
У	∞ / Nil	0 / Nil				
Z	∞/Nil	0 / Nil	2 / s	6/s	5 / x	3/y

Example (Page-656): DAG Shortest Paths (9)

Source Node	r	S	t	X	y	Z
S	∞ / Nil	0 / Nil	2 / s	6 / s	5 / x	3/ y

Source Node	Destination Node	Paths	Cost
	r	×	∞
G	t	$s \rightarrow t$	2
S	X	$s \rightarrow x$	6
	у	$s \rightarrow x \rightarrow y$	5
	Z	$s \rightarrow x \rightarrow y \rightarrow z$	3

Algorithm (Page - 655): DAG Shortest Paths

```
DAG-SHORTEST-PATHS (G, w, s)

1 topologically sort the vertices of G

2 INITIALIZE-SINGLE-SOURCE (G, s)

3 for each vertex u, taken in topologically sorted order

4 do for each vertex v \in Adj[u]

5 do RELAX (u, v, w)
```

Initial Estimate (Page - 648)

```
INITIALIZE-SINGLE-SOURCE(G, s)

1 for each vertex v \in V[G]

2 do d[v] \leftarrow \infty

3 \pi[v] \leftarrow \text{NIL}

4 d[s] \leftarrow 0
```

Edge Relaxation (Page - 649)

```
RELAX(u, v, w)

1 if d[v] > d[u] + w(u, v)

2 then d[v] \leftarrow d[u] + w(u, v)

3 \pi[v] \leftarrow u
```

Example (Page-659): Dijkstra (1)

Example (Page-659): Dijkstra (2)

Example (Page-659): Dijkstra (3)

Example (Page-659): Dijkstra (4)

Example (Page-659): Dijkstra (5)

Example (Page-659): Dijkstra (6)

Example (Page-659): Dijkstra (7)

Example (Page-659): Dijkstra (8)

Selected Node	S	a	b	c	d
Initialize	0 / Nil	∞ / Nil	∞/Nil	∞/Nil	∞ / Nil
S	0 / Nil				
a	0 / Nil				
b	0 / Nil				
С	0 / Nil				
d	0 / Nil	8/c	9 / a	5 / s	7/ c

Example (Page-659): Dijkstra (9)

Source Node	a	b	c	d
S	8 / c	9 / a	5 / s	7/ c

Source Node	Destination Node	Paths	Cost
	a	$s \rightarrow a$	
	ь	$s \rightarrow b$	
S	С	$s \rightarrow c$	
	d	$s \rightarrow d$	

Algorithm (Page-658): Dijkstra

```
DIJKSTRA(G, w, s)
    INITIALIZE-SINGLE-SOURCE (G, s)
2 S \leftarrow \emptyset
Q \leftarrow V[G]
    while Q \neq \emptyset
          do u \leftarrow \text{EXTRACT-MIN}(Q)
              S \leftarrow S \cup \{u\}
              for each vertex v \in Adj[u]
                   do RELAX(u, v, w)
```

Example (Page-652): Bellman-Ford (1)

Example (Page-652): Bellman-Ford (2)

Example (Page-652): Bellman-Ford (3)

Example (Page-652): Bellman-Ford (4)

Example (Page-652): Bellman-Ford (6)

Example (Page-652): Bellman-Ford (7)

Pass Number	S	a	b	c	d
Initialize	0 / Nil	∞ / Nil	∞ / Nil	∞ / Nil	∞/Nil
1	0 / Nil				
2	0 / Nil				
3	0 / Nil				
4	0 / Nil	2 / b	4 / c	7 / s	-2/ a
5	0 / Nil	2/b	4 / c	7 / s	-2/ a

Example (Page-652): Bellman-Ford (8)

Source Node	a	b	c	d
S	2 / b	4 / c	7 / s	-2/ a

Source Node	Destination Node	Paths	Cost
	a	$s \rightarrow a$	
	ь	$s \rightarrow b$	
S	С	$s \rightarrow c$	
	d	$s \rightarrow d$	

Algorithm (Page-651): Bellman-Ford

```
BELLMAN-FORD(G, w, s)
   INITIALIZE-SINGLE-SOURCE (G, s)
   for i \leftarrow 1 to |V[G]| - 1
        do for each edge (u, v) \in E[G]
               do RELAX(u, v, w)
   for each edge (u, v) \in E[G]
        do if d[v] > d[u] + w(u, v)
            then return FALSE
   return TRUE
```

Thank You

Stay Safe