Tutorial Problem for coming week

- 1. The input X(t) is a W.S.S, and its power spectrum is SXX(w), and the output Y(t)=X(t)+X(t-T). Find the power spectrum of Y(t)
- 2. The input X(t) is a W.S.S, and its power spectrum is SXX(w), and the output Y(t)=aX(t)+Y(t-T). Find the power spectrum of Y(t)
- 3. The random process $X(t)=A\cos(\Omega t+\Theta)$, where A is a real constant, Ω is an random variable with density $f\Omega(w)$, and $f\Omega(w)=f\Omega(-w)$, Θ is an random variable independent of Ω and uniform in the interval $(0,2\pi)$. Find the power spectrum of X(t).
- 4. Amplitude modulation is defined as multiplying the message signal $m(t)=M\cos(\Omega t)$ with the carrier as $c(t)=\cos(wt)$ i.e. modulated signal $x(t)=M\cos(\Omega)\cos(wt)$, Here $w>>\Omega$. Observed modulated signal y(t)=x(t)+w(t), where w(t) is WGN evaluate the PSD of y(t)
- 5. Let the speech signal is $s[n] = a^n u[n]$. and v[n] is a random signal whose autocorrelation is $Rvv[\tau] = \delta[\tau]$.
 - (a) Find $Pvv(\omega)$.
 - (b) Suppose that y[n] = s[n] + v[n] Find PDS of y[n].
 - (c) You want to create a filter h[n] so that z[n] = h[n] * y[n], in order to minimize E (z[n] s[n])². Find H(ω).