

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1. (currently amended): A process of manufacturing an optical waveguide for optically connecting a plurality of optical devices, comprising the steps of:

disposing a resin composition between two or more optical devices, the resin composition comprising a resin and a 1,4-dihydropyridine derivative,

forming an optical path through the resin composition between the optical devices by light having a wavelength capable of inducing a structural change in the 1,4-dihydropyridine derivative, and

removing the 1,4-dihydropyridine derivative from the resulting resin composition after formation of the optical path.

2. (original): The process according to claim 1, wherein the resin comprises at least one member selected from the group consisting of polyamic acid, polyimide and polyamide-imide.

3. (original): The process according to claim 1, wherein the resin composition contains 0.1 to 30 parts by weight of the 1,4-dihydropyridine derivative per 100 parts by weight of the resin.

4. (original): The process according to claim 3, wherein the resin composition contains 1 to 5 parts by weight of the 1,4-dihydropyridine derivative per 100 parts by weight of the resin.

5. (original): The process according to claim 1, wherein the 1,4-dihydropyridine derivative comprises a compound represented by formula (I):

wherein Ar represents an aromatic group having a nitro group at the ortho position with respect to the bond to the 1,4-dihydropyridine ring; R₁ represents -H, -CH₃, -(CH₂)_nCH₃, -CF₃, -(CF₂)_nCF₃, -C₆H₅, -(CH₂)_nC₆H₅, -CH₂CH=CH₂, -OH, -OCH₃, -O(CH₂)_nCH₃, -OCF₃, -O(CF₂)_nCF₃, -OC₆H₅, -O(CH₂)_nC₆H₅, -COOH, -COOCH₃, -COO(CH₂)_nCH₃, -COCH₃, -CO(CH₂)_nCH₃, -(CH₂)_nOH, -(CH₂)_nCOOH, -NO_x, -F, -Cl, -Br or -I; R₂ and R₃, which may be the same or different, each represent -H, -CH₃, -(CH₂)_nCH₃, -CF₃, -(CF₂)_nCF₃, -OH, -OCH₃, -O(CH₂)_nCH₃, -OCF₃, -O(CF₂)_nCF₃, -COOCH₃, -COO(CH₂)_nCH₃, -COCH₃, -CO(CH₂)_nCH₃, -(CH₂)_nOH, -(CH₂)_nCOOH, -NO_x, -F, -Cl, -Br or -I; R₄ and R₅, which may be the same or different, each represent -H, -CN, -COOR_z, -COR_z or -CONHR_z; n represents an integer of 1 to 4; and R_z represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.

6. (original): The process according to claim 5, wherein R₁ is -H, -CH₃ or -(CH₂)_nCH₃, R₂ and R₃ each independently represent -H, -CH₃ or -(CH₂)_nCH₃, R₄ and R₅ each independently represent -COOR_z or -COR_z, wherein R_z is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms and n is an integer of 1 to 4.

7. (original): The process according to claim 5, wherein the 1,4-dihydropyridine derivative comprises at least one compound selected from the group consisting of 1-ethyl-3,5-dimethoxycarbonyl-4-(2-nitrophenyl)-1,4-dihydropyridine, 1-methyl-3,5-dimethoxycarbonyl-4-(2-nitrophenyl)-1,4-dihydropyridine, 1-propyl-3,5-dimethoxycarbonyl-4-(2-nitrophenyl)-1,4-dihydropyridine, 1-propyl-3,5-diethoxycarbonyl-4-(2-nitrophenyl)-1,4-dihydropyridine, 2,6-dimethyl-3,5-dimethoxycarbonyl-4-(2-nitrophenyl)-1,4-dihydropyridine, 2,6-dimethyl-3,5-diacetyl-4-(2-nitrophenyl)-1,4-dihydropyridine, and 1-ethyl-2,6-dimethyl-3,5-diacetyl-4-(2-nitrophenyl)-1,4-dihydropyridine.

8. (original): The process according to claim 7, wherein the 1,4-dihydropyridine derivative comprises 1-ethyl-3,5-dimethoxycarbonyl-4-(2-nitrophenyl)-1,4-dihydropyridine.

9. (original): The process according to claim 7, wherein the 1,4-dihydropyridine derivative comprises at least one of 2,6-dimethyl-3,5-diacetyl-4-(2-nitrophenyl)-1,4-dihydropyridine and 1-ethyl-2,6-dimethyl-3,5-diacetyl-4-(2-nitrophenyl)-1,4-dihydropyridine.

10. (canceled).

11. (previously presented): The process according to claim 2, wherein the resin is fluorinated.

12. (previously presented): A connection structure of optical devices comprising:
two or more optical devices; and

at least one optical waveguide optically connecting the optical devices, the optical waveguide being formed by a process according to any one of claims 1-9 and 11.