Álgebra 1 - Turma D $-2^{\circ}/2017$

$2^{\underline{a}}$ Lista de Exercícios – Relações de equivalência

Prof. José Antônio O. Freitas

Exercício 1: Quais das relações abaixo são relações de equivalência sobre $E = \{a, b, c\}$?

- a) $R_1 = \{(a, a), (a, b), (b, a), (b, b), (c, c)\};$
- b) $R_2 = \{(a, a), (a, b), (b, a), (b, b), (b, c)\};$
- c) $R_3 = \{(a, a), (b, b), (b, c), (c, b), (a, c), (c, a)\};$
- d) $R_4 = E \times E$;
- e) $R_5 = \emptyset$.

Exercício 2: Seja $m \in \mathbb{Z}$, m > 1. Defina $R \subseteq \mathbb{Z} \times \mathbb{Z}$ como

$$R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x - y = km, \text{ para algum } k \in \mathbb{Z}\}.$$

Mostre que R é uma relação de equivalência sobre \mathbb{Z} .

Exercício 3: Determinar todas as relações de equivalência R sobre A e os respectivos conjuntos quocientes A/R para:

- a) $A = \{a\};$
- b) $A = \{a, b\};$
- c) $A = \{a, b, c\};$
- d) $A = \{a, b, c, d\}.$

Exercício 4: Quais das seguintes sentenças definem uma relação de equivalência em N?

- a) aRb se, e só se, existe $k \in \mathbb{N}$ tal que a b = 3k.
- b) $a \mid b$.
- c) $a \leq b$.
- d) x + y = 10.

Exercício 5: Seja $A = \mathbb{N} \times \mathbb{N}^*$. Considere a seguinte relação sobre A:

$$(a,b)R(c,d) \Leftrightarrow a+b=c+d.$$

Mostre que R é uma relação de equivalência sobre A.

Exercício 6: Seja $A = \mathbb{R}$ e considere o conjunto definido por

$$(a,b)R(c,d) \Leftrightarrow 2a-b=2c-d.$$

Mostre que R é uma relação de equivalência sobre \mathbb{R} .

Exercício 7: Para pontos $(a,b), (c,d) \in \mathbb{R}^2$ defina (a,b)S(c,d) quando $a^2+b^2=c^2+d^2$.

- a) Prove que S é uma relação de equivalência em \mathbb{R}^2 .
- b) Liste todos os elementos no conjunto $\{(x,y) \in \mathbb{R} \mid (x,y)S(0,0)\}.$
- c) Liste cinco elementos distintos no conjunto $\{(x,y) \in \mathbb{R} \mid (x,y)S(1,0)\}.$

Exercício 8: Sejam $E = \{-3, -2, -1, 0, 1, 2, 3\}$ e $R = \{(x, y) \in E \times E \mid x + |x| = y + |y|\}$. Mostrar que R é uma relação de equivalência e descrever E/R.

Exercício 9: Seja $A = \mathbb{Z} \times \mathbb{Z}^*$, onde $\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$. Para $(a, b), (c, d) \in A$, considere a seguinte relação

$$(a,b)R(c,d)$$
 quando $ad = bc$.

- a) Mostre que R é uma relação de equivalência sobre A.
- b) Descreva a classe de equivalência $\overline{(0,1)}, \overline{(1,1)}, \overline{(1,2)}, \overline{(2,1)}, \overline{(2,2)}, \overline{(2,3)}.$

Exercício 10: Considere a seguinte relação sobre \mathbb{C} :

$$(x+yi)R(r+si)$$
 quando $x^2 + y^2 = r^2 + s^2$.

- a) Mostre que R é relação de equivalência.
- b) Descreva a classe de equivalência de 1 + i.

Exercício 11: Seja R uma relação sobre $\mathbb Q$ definida da seguinte forma:

$$xRy$$
 quando $x - y \in \mathbb{Z}$.

- a) Prove que R é uma relação de equivalência sobre $\mathbb Q.$
- b) Descreva a classe $\bar{1}$.
- c) Descreva a classe $\overline{1/2}$.

Exercício 12: A divisibilidade (ou seja, a relação definida por xRy se, e só se, $x \mid y$) é uma relação de equivalência sobre \mathbb{Z} ?

Exercício 13: Seja R a seguinte relação sobre \mathbb{Z}^* :

$$xRy$$
 quando $x \mid y \in y \mid x$.

Mostre que R é uma relação de equivalência sobre \mathbb{Z}^* e descreva o conjunto quociente \mathbb{Z}^*/R .

Exercício 14: Seja $R = \{(x,y) \in \mathbb{R}^2 \mid x-y \in \mathbb{Q}\}$. Provar que R é uma relação de equivalência e descrever as classes representadas por 1/2 e $\sqrt{2}$.