Metoda Backtracking

Exemple

- Permutări, combinări, aranjamente
- Colorarea hărților
- Toate subșirurile crescătoare de lungime maximă
- Partiţiile unui număr n
- Labirint

Reprezentarea soluţiei

Condiţii interne (finale)

• Condiții de continuare (!!pentru x_k)

Reprezentarea soluţiei

```
\mathbf{x} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\}, \text{ unde}
\mathbf{x}_k \in \{1, 2, ..., n\} \quad (\mathbf{p}_k = 1, \mathbf{u}_k = n).
```

Condiţii interne (finale)

Reprezentarea soluţiei

```
\mathbf{x} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\}, \text{ unde}
\mathbf{x}_k \in \{1, 2, ..., n\} \quad (\mathbf{p}_k = 1, \mathbf{u}_k = n).
```

Condiţii interne (finale)

```
\mathbf{x}_{i} \neq \mathbf{x}_{j} pentru orice i \neq j.
```

Reprezentarea soluţiei

```
\mathbf{x} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\}, \text{ unde}
\mathbf{x}_k \in \{1, 2, ..., n\} \quad (\mathbf{p}_k = 1, \mathbf{u}_k = n).
```

Condiţii interne (finale)

```
\mathbf{x}_{i} \neq \mathbf{x}_{j} pentru orice i \neq j.
```

```
\mathbf{x}_{i} \neq \mathbf{x}_{k} pentru orice i \in \{1, 2, ..., k-1\}
```

Permutări, n=3

```
1 2
1 2 1
1 2 2
1 2 3
1 2 3 soluție
1 3
1 3 1
1 3 2
1 3 2 soluție
1 3 3
```

Se consideră o hartă cu n ţări.

Se cere colorarea ei folosind cel mult 4 culori, astfel încât oricare două țări vecine să fie colorate diferit

Reprezentarea soluţiei

Condiţii interne (finale)

Reprezentarea soluţiei

```
\mathbf{x} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\}, unde \mathbf{x}_k = \text{culoarea cu care este colorată ţara } \mathbf{k} \mathbf{x}_k \in \{1, 2, 3, 4\} (\mathbf{p}_k = 1, \mathbf{u}_k = 4).
```

Condiţii interne (finale)

Reprezentarea soluţiei

```
\mathbf{x} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\}, unde \mathbf{x}_k = \text{culoarea cu care este colorată ţara } \mathbf{k} \mathbf{x}_k \in \{1, 2, 3, 4\} (\mathbf{p}_k = 1, \mathbf{u}_k = 4).
```

Condiţii interne (finale)

```
x<sub>i</sub> ≠ x<sub>j</sub> pentru orice două țări vecine i și j.
```

Reprezentarea soluţiei

```
\mathbf{x} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\}, unde \mathbf{x}_k = \text{culoarea cu care este colorată ţara } \mathbf{k} \mathbf{x}_k \in \{1, 2, 3, 4\} (\mathbf{p}_k = 1, \mathbf{u}_k = 4).
```

Condiţii interne (finale)

x_i ≠ x_j pentru orice două țări **vecine** i și j.

```
\mathbf{x}_{i} \neq \mathbf{x}_{k} pentru orice ţară i \in \{1, 2, ..., k-1\} vecină cu ţara k
```

```
boolean cont(int k) {
    for (int i=1; i < k; i++)
        if(a[i][k]==1 \&\& x[i]==x[k])
                 return false;
    return true;
void backrec(int k) {
    if(k==n+1)
        retsol(x);
    else
        for(int i=1;i<=4;i++){
                 x[k]=i; //atribuie
                 if (cont(k)) //avanseaza
                     backrec(k+1);
```

```
void back() {
       int k=1;
       x=new int[n+1];
       for (int i=1; i <=n; i++) x[i]=0;
       while (k>0) {
              if (k==n+1) {retsol(x); k--;} //revenire dupa sol
```

```
void back() {
       int k=1;
      x=new int[n+1];
       for (int i=1; i <=n; i++) x[i]=0;
      while (k>0) {
             if (k==n+1) {retsol(x); k--;} //revenire dupa sol
             else{
                  if(x[k]<4){
                                          //atribuie
                      x[k]++;
                      if (cont(k)) k++; //si avanseaza
```

```
void back() {
      int k=1;
      x=new int[n+1];
      for (int i=1; i <=n; i++) x[i]=0;
      while (k>0) {
             if (k==n+1) {retsol(x); k--;} //revenire dupa sol
             else{
                 if(x[k]<4){
                                         //atribuie
                      x[k]++;
                      if (cont(k)) k++; //si avanseaza
                 else{ x[k]=0; k--; } //revenire
```


Fie vectorul $a=(a_1,...,a_n)$. Să se determine toate subșirurile crescătoare de lungime maximă.

Fie vectorul $a=(a_1,...,a_n)$. Să se determine toate subșirurile crescătoare de lungime maximă.

Subproblemă:

lung[i] = lungimea maximă a unui subşir crescător ce
începe pe poziția i

Soluţie problemă:

```
lmax = max\{lung[i] | i = 1,2,...,n\}
```

- Un subşir crescător de lungime maximă începe cu
 o poziție i cu lung[i] = lmax
- Următorul element după a este un a cu proprietățile

- Un subşir crescător de lungime maximă începe cu
 o poziție i cu lung[i] = lmax
- Următorul element după a_i este un a_j cu proprietățile
 - i<j
 - $a_j > a_i$
 - lung[j] = lung[i]-1 (v.PD numărarea subșirurilor)
 - = acei a_j posibili succesori ai lui i, pentru care se realizează egalitate în relaţia de recurenţă (în PD se reţine în succ[i] un singur astfel de j)

a: $\begin{bmatrix} 8 & 1 & 7 & 4 & 6 & 5 & 11 \\ & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 1 & 2 & 4 & 2 & 3 & 2 & 2 & 1 \end{bmatrix}$

a: 8 1 7 4 6 5 11 lung: 2 3 4 5 6 7 lung: 2 4 2 3 2 2 1

a: 8 1 7 4 6 5 11 lung: 2 3 4 5 6 7 lung: 2 4 2 3 2 2 1

a: $\begin{bmatrix} 8 & 1 & 7 & 4 & 6 & 5 & 11 \\ & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 1 & 2 & 3 & 2 & 2 & 1 \end{bmatrix}$

1, 4, 6, 11

Reprezentarea soluţiei

Condiţii interne (finale)

Reprezentarea soluţiei

$$\mathbf{x} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_{lmax}\}, \text{ unde}$$

 $\mathbf{x}_k \in \{1, ..., n\} \text{ poziție din vectorul a}$

Condiţii interne (finale)

$$ax_1 < ax_2 < \ldots < ax_{1max}$$

Reprezentarea soluţiei

$$\mathbf{x} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_{lmax}\}, \text{ unde}$$

 $\mathbf{x}_k \in \{1, ..., n\} \text{ poziție din vectorul a}$

Condiţii interne (finale)

$$ax_1 < ax_2 < \ldots < ax_{1max}$$

```
lung[a[x_1]] = lmax

x_{k-1} < x_k, ax_{k-1} < ax_k, lung[x_k]=lung[x_{k-1}]-1
```

```
if (k==lmax+1) { //retsol();
      for (int i=1;i<=lmax;i++)</pre>
              System.out.print(a[x[i]]+" ");
      System.out.println();
}
else
      for (int j=x[k-1]+1; j <=n; j++) {
            x[k] = \dot{j};
            for(int i=1;i<=n;i++)
                   if (lung[i]==lmax) {
                          x[1]=i;
                          scrie(2);
```

void scrie(int k) {

```
if (k==lmax+1) { //retsol();
      for (int i=1; i<=lmax; i++)
              System.out.print(a[x[i]]+" ");
      System.out.println();
}
else
      for (int j=x[k-1]+1; j <=n; j++) {
            x[k] = \dot{j};
             if ((a[x[k-1]] < a[x[k]]) &&
                  (lung[x[k-1]]==1+lung[x[k]]))
                       scrie(k+1);
            for(int i=1;i<=n;i++)</pre>
                   if (lung[i]==lmax) {
                          x[1]=i;
                          scrie(2);
```

void scrie(int k) {

Metoda Backtracking - Partiţii

Reprezentarea soluţiei

```
\mathbf{x} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k\}, \text{ unde}
\mathbf{x}_i \in \{1, ..., n\}
```

Condiţii interne (finale)

Metoda Backtracking - Partiţii

Reprezentarea soluţiei

```
\mathbf{x} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k\}, \text{ unde}
\mathbf{x}_i \in \{1, ..., n\}
```

Condiţii interne (finale)

```
x_1 + x_2 + ... + x_k = n
Pentru unicitate: x_1 \le x_2 \le ... \le x_k
```

Metoda Backtracking - Partiţii

Reprezentarea soluţiei

$$\mathbf{x} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k\}, \text{ unde}$$

 $\mathbf{x}_i \in \{1, ..., n\}$

Condiţii interne (finale)

$$\mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_k = \mathbf{n}$$

Pentru unicitate: $\mathbf{x}_1 \le \mathbf{x}_2 \le \dots \le \mathbf{x}_k$

$$\mathbf{x}_{k-1} \leq \mathbf{x}_k \longrightarrow \mathbf{x}_k \in \{\mathbf{x}_{k-1}, ..., n\} = \mathbf{X}_k$$

 $\mathbf{x}_1 + \mathbf{x}_2 + ... + \mathbf{x}_k \leq n$

```
void backrec(int k) {
   if(s==n) {//este solutie
      retsol(x,k-1);
      return;
   }
```

```
void backrec(int k) {
      if(s==n){//este solutie
            retsol(x, k-1);
            return;
      for (int i=x[k-1];i<=n;i++) {
           x[k]=i;
           if(s+x[k]<=n){//cont
                 s+=x[k];
                 backrec(k+1);
                 s=x[k];
           else
                 return;
```

```
void retsol(int[] x, int k) {
       for (int i=1;i<=k;i++)
           System.out.print(x[i]+" ");
       System.out.println();
 void backrec() {
       x=new int[n+1];
       x[0]=1; //prima valoare pentru x[1]
       s=0;
       backrec(1);
```

Implementare – varianta nerecursivă

```
void back() {
  int k=1, s=0; int x[]=new int[n+1];
  x[1]=0;
  while (k>=1) {
     if(x[k] < n) {
       x[k]++; s++;
       if (s<=n) {//cont - verif. conditiilor de cont
```

```
void back() {
  int k=1, s=0; int x[]=new int[n+1];
  x[1]=0;
  while (k>=1) {
     if(x[k]<n)
       x[k]++; s++;
       if (s<=n) {//cont - verif. conditiilor de cont
          if (s==n) {//dc este sol
               retsol(x, k);
               s=s-x[k]; k--;//revenire dupa sol
```

```
void back() {
  int k=1, s=0; int x[]=new int[n+1];
  x[1]=0;
  while (k>=1) {
     if(x[k] < n)
       x[k]++; s++;
       if (s<=n) {//cont - verif. conditiilor de cont
          if (s==n) {//dc este sol
               retsol(x, k);
               s=s-x[k]; k--;//revenire dupa sol
          else{ k++; x[k]=x[k-1]-1; s+=x[k]; //avansare
```

```
void back() {
  int k=1, s=0; int x[]=new int[n+1];
  x[1]=0;
  while (k>=1) {
     if(x[k] < n)
       x[k]++; s++;
       if (s<=n) {//cont - verif. conditiilor de cont
          if (s==n) {//dc este sol
               retsol(x, k);
              s=s-x[k]; k--;//revenire dupa sol
          else{ k++; x[k]=x[k-1]-1; s+=x[k]; //avansare
       else{ s=s-x[k]; k--; //revenire
```

Metoda Backtracking - Partiţii

DE EVITAT recalcularea lui s la fiecare pas ca fiind s = x[1] + ... + x[k]

- Labirint. Se consideră un caroiaj (matrice) A cu m linii și n coloane. Pozițiile pot fi:
 - libere: $a_{ij}=0$;
 - ocupate: $a_{ij}=1$.

Se mai dă o poziție (i_0,j_0) . Se caută **toate** drumurile care ies în afara matricei, trecând numai prin poziții libere (fără a trece de două ori prin aceeași poziție).

Variante:

- drumul maxim
- drumul minim

 Observaţie: este important să demarcăm celulele când facem pasul înapoi

Bordăm matricea cu 2 pentru a nu studia separat ieşirea din matrice. Reprezentarea soluţiei

$$\mathbf{x} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k\}, \text{ unde}$$

 $\mathbf{x}_i = \text{a i-a celulă din drum}$

Condiţii interne (finale)

Condiţii de continuare

Reprezentarea soluţiei

```
\mathbf{x} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k\}, \text{ unde}
\mathbf{x}_i = \text{a i-a celulă din drum}
```

Condiţii interne (finale)

```
\mathbf{x}_{k} = celulă din afara matricei (marcată cu 2) 
{\mathbf{x}_{1}, \mathbf{x}_{2},..., \mathbf{x}_{k-1}} - celule libere (marcată cu 0)
```

Condiţii de continuare

x, celulă liberă prin care nu am mai trecut

- dacă poziția este liberă și putem continua, setăm a_{ij}=-1 (a fost atinsă), continuăm
- repunem a_{ij}=0 la întoarcere (din recursivitate)

- dacă poziția este liberă și putem continua, setăm a_{ij}=-1 (a fost atinsă), continuăm
- repunem a_{ij}=0 la întoarcere (din recursivitate)
- ▶ Matricea deplasărilor depl cu două linii și ndepl coloane :

$$\begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}$$

```
void back(i, j) {
  for (t = 1; t <= ndepl; t++) {
    ii = i + depl[1][t]
    jj = j + depl[2][t];</pre>
```

```
void back(i, j) {
   for (t = 1; t \le ndepl; t++) {
     ii = i + depl[1][t]
     jj = j + depl[2][t];
     if (a[ii][jj] == 1)
     else
        if (a[ii][jj] == 2)
           retsol(x, k);
        else
           if (a[ii][jj] == 0){
```

```
void back(i, j){
   for (t = 1; t \le ndepl; t++) {
     ii = i + depl[1][t]
     jj = j + depl[2][t];
      if (a[ii][jj] == 1)
     else
        if (a[ii][jj] == 2)
           retsol(x, k);
        else
           if (a[ii][jj] == 0) {
               k = k+1; //creste
               x_k \leftarrow (ii, jj);
               a[i][j] = -1; //marcam
               back(ii, jj);
```

```
void back(i, j) {
   for (t = 1; t \le ndepl; t++) {
     ii = i + depl[1][t]
     jj = j + depl[2][t];
     if (a[ii][jj] == 1)
     else
        if (a[ii][jj] == 2)
           retsol(x,k);
       else
           if (a[ii][jj] == 0) {
               k = k+1; //creste
               x_k \leftarrow (ii, jj);
               a[i][j] = -1; //marcam
               back(ii, jj);
               a[i][j] = 0; //demarcam
               k = k-1; //scade
```

Apel:

$$x_1 \leftarrow (i0, j0);$$
 $k = 1;$
 $back(i0, j0)$

Cuvinte. Se consideră un caroiaj (matrice) A cu m linii şi n coloane cu litere şi un cuvânt c.

Să se determine dacă c se poate regăsi în matrice pornind dintr-o celulă și deplasându-ne în oricare din celulele vecine pe orizontală, verticală sau diagonală fără a trece de două ori prin aceeași celulă - **TEMĂ**

c = test

S	S	е	S	∍t	t	a
b	a	S	е	\mathbf{e}_{\uparrow}	е	t
b	t	е	е	t	е	e
a	a	a	е	С	е	е

S	S	е	S	t	t	a
b	a	S	е	е	е	t
b	t 🗸	е	`e ←	t	е	е
a	a	a	е	С	e	е

Cuvinte

Indicaţii:

- similar cu Labirint
- punct de start poate fi orice celulă care conţine prima literă din c
- printre condiții de continuare: litera la care am ajuns în matrice la pasul k trebuie să fie a k-a literă din c