Feuille de TP n°2 – Méthodes de Monte Carlo

On pourra (notamment) consulter sur le thème les ouvrages suivants : [BC07] et [Par07].

1 Prix d'options de vente et d'achat

En finance (voir par exemple [BEK04]), on est intéressé par les quantités suivantes :

$$C = \mathbb{E}\bigg[\Big(e^{\beta G} - K\Big)_+\bigg] \quad \text{et} \quad P = \mathbb{E}\bigg[\Big(K - e^{\beta G}\Big)_+\bigg],$$

où K et β sont des constantes positives, $(\cdot)_+$ désigne la partie positive et G est une variable aléatoire de loi $\mathcal{N}(0,1)$. Ces quantités s'exprime à l'aide de la fonction de répartition F de la loi $\mathcal{N}(0,1)$:

$$C = e^{\beta^2/2} F\left(\beta - \frac{\ln(K)}{\beta}\right) - KF\left(-\frac{\ln(K)}{\beta}\right) \tag{1}$$

$$P = KF\left(\frac{\ln(K)}{\beta}\right) - e^{\beta^2/2}F\left(\frac{\ln(K)}{\beta} - \beta\right). \tag{2}$$

On peut de plus établir la relation suivante (dite de parité Put-Call) :

$$C - P = \mathbb{E}\left(e^{\beta G} - K\right) = e^{\beta^2/2} - K.$$
 (3)

On se place dans le cas particulier suivant : $K = \beta = 1$.

- 1. Donner des valeurs (quasi-)exactes de P et C à l'aide des relations (1) et (2).
- 2. Proposer une méthode probabiliste pour déterminer P et C. Dans lequel des deux cas la méthode est-elle la plus efficace? De combien?
- 3. Utiliser la relation de parité (3) pour améliorer les estimations de l'autre.

2 Le problème de Dirichlet sur la sphère

Soit B la boule unité dans \mathbb{R}^d et S son bord (la sphère unité) et σ la mesure uniforme (normalisée) sur S. On se donne une fonction b continue sur S et on cherche à déterminer la fonction ϕ définie par :

$$\phi(x) = \int_{S} b(y)P(x,y) \,\sigma(dy) \quad \text{où} \quad P(x,y) = \frac{1 - |x|^2}{|y - x|^d}. \tag{4}$$

On suppose dans un premier temps que d=2.

1. Montrer que la fonction ϕ peut s'écrire sous la forme

$$\forall x \in B, \quad \phi(x) = \frac{1}{2\pi} \int_0^{2\pi} b(e^{i\theta}) P(x, e^{i\theta}) d\theta.$$

Comment illustrer par la simulation que, pour tout $x \in B$, $P(\cdot, e^{i\theta})d\theta/2\pi$ est bien une mesure de probabilité sur $[0, 2\pi]$?

2. On se donne b de la forme $b(e^{i\theta}) = \cos(\theta)$. Estimer ϕ aux points [-1:.2:1]. On donnera un intervalle de confiance pour chaque estimation.

Si l'on considère le problème de Dirichlet sur la sphère unité de \mathbb{R}^d , le problème devient numériquement plus compliqué (Pourquoi?). La méthode de Monte-Carlo reste elle très simple à utiliser grâce au résultat suivant.

Proposition 1. Soit X un vecteur gaussien de loi $\mathcal{N}(0, I_d)$ à valeurs dans \mathbb{R}^d . Alors la variable aléatoire Y = X/|X| suit la loi uniforme sur la boule unité.

Proposer une méthode de Monte-Carlo pour résoudre le problème de Dirichlet dans la boule unité de \mathbb{R}^4 avec la fonction $b(x) = x_1 + x_2^2 + x_3^3 + x_4^4$.

3 Ruine du joueur

On s'intéresse à la marche aléatoire $(S_l)_{l>0}$ sur \mathbb{Z} définie par

$$S_l = \begin{cases} 0 & \text{si } l = 0\\ S_{l-1} + X_l & \text{si } l \ge 1, \end{cases}$$

où les v.a. $(X_l)_{l\geq 1}$ sont i.i.d. de loi $\mathbb{P}(X_1=1)=p=1-\mathbb{P}(X_1=-1)$. On notera q=1-p et $\rho=q/p$.

- 1. Écrire une fonction qui prend en entrées $l \in \mathbb{N}$ et $p \in]0,1[$, génère et trace une trajectoire de longueur l de la marche $(S_l)_{l>0}$ issue de 0.
- 2. Soit $n \in \mathbb{N}^*$. On considère maintenant la marche issue de k avec $0 \le k \le n$ arrêtée quand elle atteint 0 ou n. On note T le temps d'atteinte de l'ensemble $\{0, n\}$. Retrouver par la simulation les résultats théoriques suivants :
 - (a) Temps moyen d'absorption:

$$\mathbb{E}(T) = \begin{cases} k(n-k) & \text{si } p = 1/2, \\ \frac{n}{p-q} \frac{1-\rho^k}{1-\rho^n} - \frac{k}{p-q} & \text{si } p \neq q. \end{cases}$$

(b) Lieu de sortie:

$$\mathbb{P}(S_T = 0) \begin{cases} (n-k)/n & \text{si } p = 1/2\\ \frac{\rho^k - \rho^n}{1 - \rho^n} & \text{si } p \neq q. \end{cases}$$

3. Donner des intervalles de confiance pour chaque estimation.

On pourra se reporter à [Fel68] pour l'étude complète du problème de la ruine du joueur.

Références

[BC07] B. Bercu et D. Chafaï – Modélisation stochastique et simulation, Dunod, 2007.

[BEK04] M. Benaïm et N. El Karoui – Promenade aléatoire, Ellipses, 2004.

[Fel68] W. Feller – An introduction to probability theory and its applications, Wiley, 1968.

[Par07] E. Pardoux – Processus de Markov et applications, Dunod, 2007.