Devoir à la maison $n^o 21$

Problème 1 —

Dans tout le problème, n désigne un entier naturel non nul.

On considère une urne U_n contenant n boules numérotées de 1 à n.

On tire une boule au hasard dans U_n . On note k le numéro de cette boule.

Si k est égal à 1, on arrête les tirages.

Si k est supérieur ou égal à 2, on enlève de l'urne U_n les boules numérotées de k à n (il reste donc les boules numérotées de 1 à k-1), et on effectue à nouveau un tirage dans l'urne.

On répète ces tirages jusqu'à l'obtention de la boule numéro 1.

On note X_n la variable aléatoire égale au nombre de tirages nécessaires pour l'obtention de la boule numéro 1. On note Y_n la variable aléatoire égale a la somme des numéros des boules tirées.

On note $E(X_n)$ et $V(X_n)$ (respectivement $E(Y_n)$ et $V(Y_n)$) l'espérance et la variance de X_n (respectivement Y_n).

Partie I – Étude de la variable aléatoire X_n

On note I_n la variable aléatoire égale au numéro de la première boule tirée dans l'urne U_n .

- 1. a. Quelle est la loi de I_n ?
 - b. Quelle est la loi de X_n conditionnée par l'événement $I_n=1$.
 - c. On suppose $n \ge 2$. Expliquer pourquoi pour tout $j \in \mathbb{N}^*$ et tout $k \in [2, n]$

$$P(X_n = i | I_n = k) = P(X_{k-1} = i - 1)$$

- **2. a.** Quelle est la loi de X_1 ?
 - b. Quel est l'événement $X_2 = 1$? Donner la loi de X_2 , son espérance et sa variance.
 - c. Déterminer la loi de X_3 , son espérance et sa variance.
- 3. a. Expliquer pourquoi X_n prend ses valeurs dans [1, n]
 - **b.** Déterminer $P(X_n = 1)$ et $P(X_n = n)$.
 - c. On suppose $n \ge 2$. Montrer que pour tout entier $j \ge 2$,

$$P(X_n = j) = \frac{1}{n} \sum_{k=1}^{n-1} P(X_k = j - 1)$$

d. On suppose $n \ge 2$. Calculer pour tout entier $j \ge 1$

$$nP(X_n = i) - (n-1)P(X_{n-1} = i)$$

En déduire que pour tout entier $j \ge 1$

$$P(X_n = j) = \frac{n-1}{n}P(X_{n-1} = j) + \frac{1}{n}P(X_{n-1} = j-1)$$

4. a. On suppose $n \ge 2$. Montrer que

$$E(X_n) = E(X_{n-1}) + \frac{1}{n}$$

- b. En déduire $E(X_n)$ puis donner un équivalent simple de $E(X_n)$ lorsque n tend vers $+\infty$. On pourra utiliser une comparaison à une intégrale.
- 5. a. On suppose $n \ge 2$. Calculer $E(X_n^2)$ en fonction de $E(X_{n-1}^2)$ et $E(X_{n-1})$.
 - b. En déduire une expression de $V(X_n)$ sous forme de somme.
 - c. Donner un équivalent simple de $V(X_n)$ lorsque n tend vers $+\infty$.
- 6. Soit $(T_i)_{i\geqslant 1}$ une suite de variables aléatoires indépendantes telles que pour tout $i\in\mathbb{N}^*$, T_i suit une loi de Bernoulli de paramètre $\frac{1}{i}$. On pose

$$S_n = \sum_{i=1}^n T_i$$

- a. Vérifier que X_1 et T_1 ont la même loi.
- **b.** On suppose $n \ge 2$. Montrer que pour tout entier $j \ge 1$

$$P(S_n = j) = \frac{1}{n}P(S_{n-1} = j - 1) + \frac{n-1}{n}P(S_{n-1} = j)$$

En déduire que X_n et S_n ont même loi.

- c. Retrouver ainsi $E(X_n)$ et $V(X_n)$.
- 7. On définit le polynôme $P_n \in \mathbb{R}[X]$ par

$$P_n = \sum_{k=1}^n P(X_n = k) X^k$$

- a. Déterminer P_1 et P_2 .
- **b.** On suppose $n \ge 2$. A l'aide de la question **I.3.d**, montrer que

$$P_n = \frac{n-1+X}{n} P_{n-1}$$

- c. En déduire P_n .
- $\mathbf{d.} \ \mathrm{D\acute{e}terminer} \ P(X_n=n-1).$
- e. Calculer $P'_n(1)$ et retrouver $E(X_n)$.

Partie II – Étude de la variable aléatoire Y_n

- 1. Donner la loi de Y_1 .
- 2. Quelles sont les valeurs prises par Y_2 ? Déterminer la loi de Y_2 .
- 3. a. On suppose $n \ge 2$. Expliquer pourquoi pour tout entier $j \ge 1$ et tout entier $k \ge 2$

$$P(Y_n=j|I_n=k)=P(Y_{k-1}=j-k)$$

b. On suppose $n \ge 2$. Déduire de la question précédente que pour tout entier $j \ge 1$

$$P(Y_n = j) = \frac{n-1}{n} P(Y_{n-1} = j) + \frac{1}{n} P(Y_{n-1} = j - n)$$

c. Montrer que $E(Y_n) = E(Y_{n-1}) + 1$ lorsque $n \ge 2$. Que vaut $E(Y_n)$ pour tout entier $n \ge 1$?

Partie III -

On considère l'urne U_n contenant n boules numérotées de 1 à n. A partir de l'urne U_n , on effectue la suite de tirages décrite dans l'en-tête du problème. Pour $i \in [\![1,n]\!]$, on définit la variable aléatoire $Z_i^{(n)}$ égale à 1 si, au cours de l'un quelconque des tirages, on a obtenu la boule numéro i, égale à 0 sinon.

- 1. Quelle est la loi de $Z_n^{(n)}$? Que dire de la variable $Z_1^{(n)}$?
- **2.** a. On suppose $n \ge 2$. Montrer que pour tout $i \in [1, n-1]$

$$P(Z_i^{(n)} = 1) = \frac{1}{n} + \frac{1}{n} \sum_{k=i+1}^{n} P(Z_i^{(k-1)} = 1)$$

- **b.** Montrer par récurrence que pour tout $n \in \mathbb{N}^*$ et tout $i \in [1, n]$, $Z_i^{(n)}$ suit la loi de Bernoulli de paramètre $\frac{1}{i}$.
- c. Que vaut $\sum_{i=1}^{n} Z_{i}^{(n)}$? Retrouver ainsi $E(X_{n})$.
- **d.** Retrouver $E(Y_n)$.