L07 COVID-19 Outbreak Investigations¹

Michael Höhle¹

¹Department of Mathematics, Stockholm University, Sweden

** m hoehle

STA427 FS2021

Statistical Methods in Infectious Disease Epidemiology Epidemiology, Biostatistics and Prevention Institute University of Zurich, Switzerland

Outline

- Outbreak Investigations
 - Secondary attack rate
- 2 Example: COVID-19 Carnival cluster, Germany, Feb-Mar 2020
- Transmission Graphs
 - Interval Censoring
 - Multiple trees
- Discussion

Outline

- Outbreak InvestigationsSecondary attack rate
- 2 Example: COVID-19 Carnival cluster, Germany, Feb-Mar 2020
- Transmission Graphs
- Discussion

Outbreak Investigations

Outbreak Investigation

- In this course we have looked a lot at the use of statistical methods for modelling population level time series, i.e. surveillance data
- However, many infectious disease outbreaks are (or start as) as small localized clusters, which can be investigated by field investigations.
- Aims of such an outbreak investigation²:
 - Control or prevention (knowledge of agent, course of the outbreak, mode of transmission, source)
 - Research opportunity (mode of transmission, incubation period, clinical spectrum, ...)
 - Public, political, or legal concerns
 - Training

²Taken from https://www.cdc.gov/csels/dsepd/ss1978/lesson6/section1.html

Secondary attack rate

• The *secondary attack rate* is an alternative morbidity measure to, e.g. incidence, and is defined as³

$$\mathrm{SAR} = \frac{\text{Number of new cases among contacts}}{\text{Total number of contacts}}$$

- Classical methods for calculating point estimate and CIs for a proportion can be used.
- By calculating the SAR in two groups one can even compute relative risks by classical 2x2 methods.

³ https://www.cdc.gov/csels/dsepd/ss1978/lesson3/section2.html

Outline

- Outbreak Investigations
- 2 Example: COVID-19 Carnival cluster, Germany, Feb-Mar 2020
- Transmission Graphs
- 4 Discussion

COVID-19 Carnival cluster (1)

- Early COVID-19 outbreak investigation by Bender et al. (2021) in order to determine SAR as well as incubation period, serial interval and generation time.
- Important insight: There seems to be little transmission from completely asymptomatic cases
- SAR for household contacts of lab confirmed cases:

No. contacts infected ⁴	Total no. contacts	SAR
0	4	0%
4	28	14.3%
4	32	12.5%
	No. contacts infected ⁴ 0 4	No. contacts infected ⁴⁺ Total no. contacts 0 4 4 28 4 32

⁴either tested positive or experienced respiratory symptoms

⁵ phase not specified or both

COVID-19 Carnival cluster (2)

 Getting an OR estimate with CI for the SAR of asymptomatic vs. symptomatic is difficult, due to the zero in the 2x2 table

```
## infected n
                   cs_source
            0 4 asymptomatic
            4 28 symptomatic
m_glm <- glm( cbind(infected, n-infected) ~ 1 + cs_source, data=carnival, family=binomial )
confint(m_glm)
## Waiting for profiling to be done ...
                           2.5 % 97.5 %
## (Intercept)
                               NA 4097.869
## cs_sourcesymptomatic -3292.433
```

• Problem with zero can be addressed by exact logistic regression as implemented in the elrm package (Zamar et al. 2007):

```
m <- elrm::elrm( infected/n ~ cs_source, interest=~cs_source, dataset=carnival, r=2, iter=1.5e4, burnIn=5e3)
c(hat=as.numeric(exp(m$coeffs)), exp(m$coeffs.ci)) %>% unlist
          hat
                              upper
## 0.78298817 0.07570849
                                Inf
```

 OR estimate and CL is close to the RR estimate stated in Bender et al. (2021)

COVID-19 Carnival cluster (3)

Score interval (Nam 1995):

Bayes interval with

$$\pi_i | x_i, n_i \sim \text{Be}(0.5 + x_i, 0.5 + (n_i - x_i))$$

posterior for each proportion i=1,2 and $\theta=\pi_2/\pi_1$ by sampling followed by an equitailed credibility region for θ :

```
PropCIs::rrci.bayes(4, 28, 0, 4, a=1/2, b=1/2, c=1/2, d=1/2, conf.level=0.95) ## [1] 0.24668 1283.83737
```

COVID-19 Carnival cluster (4)

Same for other contacts of lab confirmed cases

Clinical symptoms source	No. contacts infected of	Total no. contacts	SAR
Asymptomatic cases	0	22	0%
Symptomatic ⁷	3	25	12.0%
Symptomatic, presymptomatic phase only	15	72	20.8%
Symptomatic, symptomatic phase only	2	29	6.9%
Total	20	148	13.5%

• ORs vs. asymptomatic from exact logistic regression:

Clinical symptoms source	hat	lower	upper
hat	3.64	0.38	∞
lower	7.65	1.18	∞
upper	1.73	0.12	∞

⁶either tested positive or experienced respiratory symptoms

⁷phase not specified or both

Outline

- Outbreak Investigations
- Transmission Graphs
 - Interval Censoring
 - Multiple trees

Transmission Graph(s)

Graph Notation (1)

Transmission Graphs 0000000000

- We describe the outbreak for the *n* individuals by the transmission tree T = (V, E). By $v \in V$ with |V| = n denote the nodes of the directed graph and E denotes the set of directed edges.
- For a node ν let $pa(\nu)$ and $ch(\nu)$ denote the set of parents and children, respectively. Since T is a tree $|\operatorname{pa}(v)| = 1$ for any v except for root nodes, which are nodes with $pa(v) = \emptyset$.
- Assuming the outbreak is observed until its end, the average number of secondary cases a primary cases generates is

$$\frac{1}{|V|} \sum_{v \in V} |\operatorname{ch}(v)|$$

Graph Notation (2)

Transmission Graphs 0000000000

• Let dso(v) denote the day of symptom onset of $v \in V$ and let p_v denote v's parent in T. The empirical distribution of the serial interval time is formed by the values $dso(v) - dso(p_v)$, for all v nodes in the set of nodes with known source, i.e.

$$V_p = \{ v \in V : |\operatorname{pa}(v)| = 1 \}.$$

- Let e(v) be the time of exposure of $v \in V$. The empirical generation time distribution is formed by the values $t(v) - e(p_v)$, for all nodes $v \in V_p$.
- The empirical incubation period distribution is given by the values dso(v) - e(v) for all $v \in V$.

Interval Censoring (1)

- As noted by Reich et al. (2009) the exact timing of exposition or symptom onset are not always given \rightarrow doubly interval censored data
- If instead the time of exposure and the onset of symptoms are only known to fall within a finite interval, then a typical observation for an infector-infectee pair consist of

$$X(v) = (e(v)_L, e(v)_R, \operatorname{dso}(v)_L, \operatorname{dso}(v)_R).$$

• Illustration:

Interval Censoring (2)

- We follow the approach by Reich et al. (2009).
- Let the incubation period T be a non-negative continuous random variable with PDF $f_{\theta}(t)$ and let $h_{\lambda}(e)$ be the PDF of the infecting exposure time E, (in calendar time) and let g(s) to be the PDF of the DSO (in calendar time).
- Assume E to be independent of the incubation period T.
- We have that

$$g(s|e) = f_{\theta}(s-e|e) = f_{\theta}(s-e).$$

• The joint PDF of E and the dso is given by

$$p(e,s) = p(e)p(s|e) = h_{\lambda}(e)g(s|e) = h_{\lambda}(e)f_{\theta}(s-e).$$

Interval Censoring (3)

• The likelihood for a single doubly interval-censored observation is therefore

$$L(\theta,\lambda;X) = \int_{E_L}^{E_R} \int_{\mathrm{dso}_L}^{\mathrm{dso}_R} h_{\lambda}(e) f_{\theta}(s{-}e) ds \ de.$$

- Typically, a parametric accelerated failure time model is used to model the incubation period, e.g., a Log-Normal distribution.
- An implementation of this approach exists in the R package coarseDataTools (Reich et al. 2019)
- Can extend the modelling of interval censored data with covariates such as age or sex (Werber et al. 2013)

Interval Censoring (4)

```
# Simple dataset with 3 individuals
# type: 0 = doubly interval censored, 1=single interval censored, 2=exact
dat \leftarrow data.frame(EL = c(1,2,3), ER=c(2,3,3), SL=c(10,4,9), SR=c(12,7,9), type=c(0,0,2))
# Fit log-normal distribution to the data
coarseDataTools::dic.fit(dat=dat, dist="L")
## Computing Asymptotic Confidence Intervals
## Coarse Data Model Parameter and Quantile Estimates:
##
             est CIlow CIhigh StdErr
## meanlog 1.761 0.648 2.874 0.259
## sdlog 0.417 -0.542 1.376 0.223
## p5
          2.929 -3.258 9.116 1.438
## p50 5.818 -0.657 12.293 1.505
## p95 11.557 -8.425 31.538 4.644
## p99
        15.358 -19.570 50.285 8.118
##
## -2*Log Likelihood = 10.8
## Note: dispersion parameter is exp(sdlog). In this case it is 1.517 (95% CI 0.063-2.971).
```

Multiple trees (1)

Transmission Graphs 00000000000

- As seen from the transmission tree, it is not always 100% clear who infected who. Instead, up to 3 potential sources could be specified for each case.
- Let $|\operatorname{pa}(v)| \geq 1$, $v \in V_p$, denote the set of possible sources in the graph representing transmissions.
- A transmission tree T can again be obtained by selecting one distinct parent node v_p for each node v with $|\operatorname{pa}(v)| > 1$.
- Let \mathcal{T} denote the set of possible transmission trees, i.e.

$$|\mathcal{T}| = \prod_{v \in V_n} |\operatorname{pa}(v)|.$$

Multiple trees (2)

- Simple way to average estimation of incubation period, serial interval and generation time over all possible trees:
 - Non-parametric case: for each $T \in \mathcal{T}$ compute the empirical distribution based on the *n* cases and compute quantiles, mean, etc. based on the set of $n \times |\mathcal{T}|$ values
 - Parametric case: for each $T \in \mathcal{T}$ draw k samples from the respective estimated parametric distribution and compute quantiles, mean, etc. based on the set of $k \times |\mathcal{T}|$ values
- Note: The above averaging approach weighs each $T \in \mathcal{T}$ equally. In principle some trees are more plausible than others \rightarrow Likelihood or Bayesian framework for data augmentation

Results

Transmission Graphs 00000000000

- Results from Bender et al. (2021) for serial interval (non-parametric), generation time (parametric) and incubation period (parametric)
- A pre-processing step was applied to symptomatic cases filtering out possible sources if they did not meet within 2 days before DSO or 10 days after DSO.
- Results averaged over the 144 possible transmission trees:

	Quantiles							
Time	1%	5%	25%	50%	75%	95%	99%	Mean
Serial interval (d)	-2.0	-1.0	1.0	3.0	6.0	15.0	22.0	4.5
Generation time (d)	0.1	0.3	1.7	3.6	6.6	13.1	21.6	4.9
Incubation period (d)	0.3	8.0	2.5	4.3	6.5	10.6	14.3	4.8

 Note: The serial interval is rather short an can actually be negative. Shows why COVID-19 is hard to control.

Outline

- Outbreak Investigations
- 2 Example: COVID-19 Carnival cluster, Germany, Feb-Mar 2020
- Transmission Graphs
- 4 Discussion

Discussion

- Outbreak investigations are an important tool in the epidemiological toolbox, requires shoe-and-leather epidemiology
- Proper statistical methods as well as software toolboxes, e.g. in the form of R-packages, are needed more than ever! (Höhle 2017)
- For an overview of COVID-19 outbreak investigations in Germany see, e.g., Alpers et al. (2021) (in German)
- Other important COVID-19 investigations are, e.g., Russell et al. (2020), Yamagishi et al. (2020) and Murphy et al. (2020).

Literature I

- Bender, Jennifer, Michael Brandl, Michael Höhle, Udo Buchholz, and Nadine Zeitlmann. 2021. "Analysis of Asymptomatic and Presymptomatic Transmission in SARS-CoV-2 Outbreak, Germany, 2020". 27 (4).
- Höhle, M. 2017. "A Statistician's Perspective on Digital Epidemiology". Life Sciences, Society and Policy 13 (17). doi:10.1186/s40504-017-0063-9.
- Murphy, Nicola, et al. 2020. "A large national outbreak of COVID-19 linked to air travel, Ireland, summer 2020". Eurosurveillance 25 (42).

Literature II

- Reich, Nicholas G, Justin Lessler, and Andrew S Azman. 2019.

 coarseDataTools: A collection of functions to help with analysis of coarsely ob R package version 0.6-5.
 - https://cran.r-project.org/package=coarseDataTools.
- Reich, Nicholas G, Justin Lessler, Derek A T Cummings, and Ron Brookmeyer. 2009. "Estimating incubation period distributions with coarse data." Stat Med 28, no. 22 (): 2769–2784.
- Russell, Timothy W, et al. 2020. "Estimating the infection and case fatality ratio for coronavirus disease (COVID-19) using age-adjusted data from the outbreak on the Diamond Princess cruise ship, February 2020". Eurosurveillance 25 (12).

Literature III

Werber, D., et al. 2013. "Associations of Age and Sex on Clinical Outcome and Incubation Period of Shiga toxin-producing Escherichia coli O104:H4 Infections, 2011". American Journal of Epidemiology 178 (6): 984-992.

Yamagishi, Takuya, Hajime Kamiya, Kensaku Kakimoto, Motoi Suzuki, and Takaji Wakita. 2020. "Descriptive study of COVID-19 outbreak among passengers and crew on Diamond Princess cruise ship, Yokohama Port, Japan, 20 January to 9 February 2020". Eurosurveillance 25 (23).

Zamar, David, Brad McNeney, and Jinko Graham. 2007. "elrm: Software Implementing Exact-like Inference for Logistic Regression Models". Journal of Statistical Software 21 (3). http://www.jstatsoft.org/.