$I = I_R = I_L$ $V = V_R + V_L$ $R : V = v_R + v_L$ $L : V = v_R + v_L$ $L : V = v_R + v_L$

 $Z = \sqrt{R^2 + \chi_2^2}$ $\theta = \tan^2\left(\frac{\chi_c}{R}\right)$

Pinst = VI Pj = RI2 Padin = VI cos of R/2

Introduction - Datasheet | L'oscilloscope | Circuit R | Circuit R-L

TPLaime - v3.16.0 (083)

Technique de mesure - Circuit RL - La BlueBox

Ce TP a pour but de vous faire utiliser les principaux appareils de mesure utilisés dans l'électrotechnique : Voltmètre, Ampèremètre, Ohmmètre, Oscilloscope, ...

L'étude porte sur une résistance, et sur un dipôle composé d'une résistance et d'une inductance placés en série, permettant d'introduire les phénomènes de base rencontrés dans les enroulements des machines.

A Savoir
Une case blanche doit être remplie par vous
Une case jaune est le résultat d'un calcul
Table N°: 13
Une case verte est la copie d'une case remplie ou calculée précédemment

		Self	
Module	Résistance [Ω]	Inductance [H]	Résistance $[\Omega]$
RL01	470	0.95	10
RL02	470	1.3	12
RL03	470	1.6	13
RL04	470	1.8	15
RL05	820	1	10
RL06	820	1.2	12
RL07	820	1.5	13
RL08	820	1.9	15
RL09	560	1	11
RL10	560	1.3	13
RL11	560	1.6	15
RL12	560	2	17
RL13	680	1.1	10
RL14	680	1.3	12
RL15	680	1.6	14
RL16	680	1.9	16
RL17	270	2.15	3.8
RL18	390	1.5	3.1
RL19	470	0.76	2.4
RL20	330	0.67	2

Introduction - Detashed | Treculiocope | Ceruit R | Circuit R-1 |
Franctionneamt do base de l'occiliocope | Meuves à l'esciliocope | Couplege &C/DC |
Signal SING de 2 Re et de 2 'ppp (eass offset) Afficher deux fois le sème signal du générateur de fonctions (MAIN OUT SE Ohn) sur les census 1 et 2 () name et roses de l'occiliocope | d'altée d'un T' (un les troves dans la legate huma) et de 2 chiles DEC (ear le rateller à chiles) |
Namipuler les boutons ein d'afficher le deux signaux à l'étéen, les répaire deux chaque moitie d'erren. Afficher un monhre utile de périodes et adapter l'explication d'ordinair la selleurs dynamque base que les signaux de superposent.

Comparer l'effet des boutons "offset" de l'occiliocope et du générateur de signaux |

Commentaire-Explication |

Offset des longue du signal. Offset de l'occiliocope ou virtue!

Conventaire-Explication |

Offset de l'occiliocope ou virtue!

P4:rms(C1)

1.3725 V

P1:freq(C1)

2.04082 Hz

Measure value

> DC1M 1.00 V/div

status

P2:max(C1)

1.970 V

P3:period(C1)

490.00 ms

P6:---

P7:---

Timebase

P8:---

0 ms Trigger C1 DC

P5:---

