Linear-Quadratic Control

Jenny Hong Nicholas Moehle Stephen Boyd

ENGR108 Stanford University

November 28, 2021

Outline

Linear dynamical system

Control

Variations

Examples

Linear quadratic regulator

Linear dynamical system

$$x_{t+1} = Ax_t + Bu_t, \quad t = 1, 2, \dots$$

- ightharpoonup n-vector x_t is *state* at time t
- ightharpoonup m-vector u_t is input at time t
- ightharpoonup n imes n matrix A is dynamics matrix
- ightharpoonup n imes m matrix B is input matrix
- **>** sequence x_1, x_2, \ldots is called *state trajectory*

Simulation

- ightharpoonup given x_1 , u_1 , u_2 , ... find x_2 , x_3 , ...
- ightharpoonup can be done by recursion: for t = 1, 2, ...,

$$x_{t+1} = Ax_t + Bu_t$$

Vehicle example

consider a vehicle moving in a plane:

- ightharpoonup sample position and velocity at times $\tau=0,h,2h,\ldots$
- lacktriangle 2-vectors p_t and v_t are position and velocity at time ht
- ightharpoonup 2-vector u_t gives applied force on the vehicle time ht
- ightharpoonup friction force is $-\eta v_t$
- vehicle has mass m
- \blacktriangleright for small h,

$$m\frac{v_{t+1}-v_t}{h} \approx -\eta v_t + u_t, \qquad \frac{p_{t+1}-p_t}{h} \approx v_t$$

we use approximate state update

$$v_{t+1} = (1 - h\eta/m)v_t + (h/m)u_t, p_{t+1} = p_t + hv_t$$

- ightharpoonup vehicle state is 4-vector $x_t = (p_t, v_t)$
- dynamics recursion is

$$x_{t+1} = Ax_t + Bu_t,$$

where

$$A = \begin{bmatrix} 1 & 0 & h & 0 \\ 0 & 1 & 0 & h \\ 0 & 0 & 1 - h\eta/m & 0 \\ 0 & 0 & 0 & 1 - h\eta/m \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ h/m & 0 \\ 0 & h/m \end{bmatrix}$$

Outline

Linear dynamical system

Control

Variations

Examples

Linear quadratic regulator

Control

- $ightharpoonup x_1$ is given
- ightharpoonup choose u_1, u_2, \dots, u_{T-1} to achieve some goals, e.g.,
 - terminal state should have some fixed value: $x_T = x^{\text{des}}$
 - $u_1, u_2, \ldots, u_{T-1}$ should be small, say measured as

$$||u_1||^2 + \cdots + ||u_{T-1}||^2$$

(sometimes called 'energy')

many control problems are linearly constrained least-squares problems

Minimum-energy state transfer

- ightharpoonup given initial state x_1 and desired final state x^{des}
- ightharpoonup choose u_1, \ldots, u_{T-1} to minimize 'energy'

minimize
$$\begin{aligned} &\|u_1\|^2+\cdots+\|u_{T-1}\|^2\\ &\text{subject to} &&x_{t+1}=Ax_t+Bu_t,\quad t=1,\ldots,T-1\\ &&x_T=x^{\text{des}} \end{aligned}$$

variables are $x_2, \ldots, x_T, u_1, \ldots, u_{T-1}$

ightharpoonup roughly speaking: find minimum energy inputs that steer the state to given target state over T periods

State transfer example

vehicle model with $T=100,\ x_1=(10,10,10,-5),\ x^{\mathrm{des}}=0$

Control 10

Control 11

Outline

Linear dynamical system

Control

Variations

Examples

Linear quadratic regulator

Output tracking

- $ightharpoonup y_t = Cx_t$ is output (e.g., position)
- \triangleright y_t should follow a desired trajectory, i.e., sum square tracking error

$$||y_2 - y_2^{\text{des}}||^2 + \dots + ||y_T - y_T^{\text{des}}||^2$$

should be small

the output tracking problem is

variables are $x_2, \ldots, x_T, u_1, \ldots, u_{T-1}, y_2, \ldots, y_T$

ightharpoonup parameter ho > 0 trades off control 'energy' and tracking error

Output tracking example

vehicle model with $T=100,\; \rho=0.1,\; x_1=0,\; y_t=p_t$ (position tracking)

Waypoints

- using output, can specify waypoints
- lacktriangle specify output (position) $w^{(k)}$ at time t_k at K total places

minimize
$$\|u_1\|^2 + \dots + \|u_{T-1}\|^2$$

subject to $x_{t+1} = Ax_t + Bu_t, \quad t = 1, \dots, T-1$
 $Cx_{t_k} = w^{(k)}, \quad k = 1, \dots, K$

variables are $x_2, \ldots, x_T, u_1, \ldots, u_{T-1}$

Waypoints example

- vehicle model
- $T = 100, x_1 = (10, 10, 20, 0), x^{\text{des}} = 0$
- $ightharpoonup K = 4, \ t_1 = 10, \ t_2 = 30, \ t_3 = 40, \ t_4 = 80$

Waypoints example

Outline

Linear dynamical system

Control

Variations

Examples

Linear quadratic regulator

Rendezvous

we control two vehicles with dynamics

$$x_{t+1} = Ax_t + Bu_t, \quad z_{t+1} = Az_t + Bv_t$$

- ightharpoonup final relative state constraint $x_T = z_T$
- formulate as state transfer problem:

$$\begin{array}{ll} \text{minimize} & \sum_{t=1}^{T-1} (\|u_t\|^2 + \|v_t\|^2) \\ \text{subject to} & x_{t+1} = Ax_t + Bu_t, \quad t = 1, \dots, T-1, \\ & z_{t+1} = Az_t + Bv_t, \quad t = 1, \dots, T-1, \\ & x_T = z_T \end{array}$$

variables are $x_2, ..., x_T, u_1, ..., u_{T-1}, z_2, ..., z_T, v_1, ..., v_{T-1}$

Rendezvous example

Formation

- generalize rendezvous example to several vehicles
- ▶ final position for each vehicle defined relative to others (e.g., relative to a 'leader')

leader has a final velocity constraint

Formation example

Outline

Linear dynamical system

Control

Variations

Examples

Linear quadratic regulator

Linear quadratic regulator

minimize energy while driving state to the origin:

$$\begin{array}{ll} \text{minimize} & \sum_{t=2}^{T} \|x_t\|^2 + \rho \sum_{t=1}^{T-1} \|u_t\|^2 \\ \text{subject to} & x_{t+1} = Ax_t + Bu_t, \quad t = 1, \dots, T-1 \end{array}$$

variables are $x_2, \ldots, x_T, u_1, \ldots, u_{T-1}$

- $ightharpoonup \sum_{t=2}^{T} \|x_t\|^2$ is (sum square) regulation
- ightharpoonup x = 0 is some desired (equilibrium, target) state
- lacktriangle parameter ho>0 trades off regulation versus control 'energy'

▶ LQR problem is a linearly constrained least-squares problem:

minimize
$$||Fz||^2$$

subject to $Gz = d$

- ightharpoonup variable z is $(x_2, \ldots, x_T, u_1, \ldots, u_{T-1})$
- ▶ F, G depend on A, B, ρ ; d depends (linearly) on x_1
- ightharpoonup solution is $\hat{z} = Hd$ for some H
- **•** optimal first input \hat{u}_1 is a linear function of x_1 , *i.e.*,

$$\hat{u}_1 = Kx_1$$

for some $m \times n$ matrix K (called LQR gain matrix)

- ▶ finding *K* involves taking correct 'slice' of inverse KKT matrix
- ightharpoonup entries of K depend on horizon T, and converge as T grows large

State feedback control

- ightharpoonup find K for LQR problem (with large T)
- \triangleright for each t,
 - measure state x_t
 - implement control $u_t = Kx_t$
- with $u_t = Kx_t$ is called state feedback control policy
- combine with ('open-loop dynamics') $x_{t+1} = Ax_t + Bu_t$ to get closed-loop dynamics

$$x_{t+1} = (A + BK)x_t$$

we can simulate open- and closed-loop dynamics to compare

Example: longitudinal flight control

variables are (small) deviations from operating point or trim conditions;

state is $x_t = (w_t, v_t, \theta_t, q_t)$:

- $ightharpoonup w_t$: velocity of aircraft along body axis
- $lackbox{v}_t$: velocity of aircraft perpendicular to body axis (down is positive)
- $ightharpoonup heta_t$: angle between body axis and horizontal (up is positive)
- $q_t = \dot{\theta}_t$: angular velocity of aircraft (pitch rate)

input is $u_t = (e_t, f_t)$:

- $ightharpoonup e_t$: elevator angle $(e_t > 0 \text{ is down})$
- $ightharpoonup f_t$: thrust

Linearized dynamics

for 747, level flight, 40000 ft, 774 ft/sec, dynamics are $x_{t+1} = Ax_t + Bu_t$, where

$$A = \begin{bmatrix} .99 & .03 & -.02 & -.32 \\ .01 & .47 & 4.7 & .00 \\ .02 & -.06 & .40 & -.00 \\ .01 & -.04 & .72 & .99 \end{bmatrix}, \qquad B = \begin{bmatrix} 0.01 & 0.99 \\ -3.44 & 1.66 \\ -0.83 & 0.44 \\ -0.47 & 0.25 \end{bmatrix}$$

- units: ft, sec, crad (= 0.01rad $\approx 0.57^{\circ}$)
- discretization is 1 sec

LQR gain

gain matrix K converged for $T\approx 30\,$

LQR for 747 model

▶ LQR gain matrix (for T=100, $\rho=100$) is:

$$K = \begin{bmatrix} -.038 & .021 & .319 & -.270 \\ -.061 & -.004 & -.120 & .007 \end{bmatrix}$$

• e.g., $K_{14} = -.27$ is gain from pitch rate $((x_t)_4)$ to elevator angle $((u_t)_1)$

747 simulation

 $u_t = 0$ ('open loop')

747 simulation

