Exercice10

Comme L1 et L2 sont des langage réguliers et le complément d'un langage régulier est régulier donc $\overline{L3}$ est régulier. Les langages réguliers sont fermés par intersection. Comme on a $L=L1\cap L2\cap \overline{L3}$ donc L est un langage régulier.

Exercice11

1.
$$FG(L) = \{ w \in X^* \text{ tq } \exists u \in X^* \text{ wu} \in L \}$$

-
$$Reg(L) \rightarrow Reg(FG(L))$$

L est régulier donc il existe A tq L(A)=L avec A(X,S,S₀,F,II) un automate d'état finie réduit qui accepte L

pour démontrer que FG(L) est régulier on doit trouver l'automate A' qui l'accepte soit l'automate A' qui reconnaît FG(L) A' (X,S,S_0,F',II) avec F'=S'.

 $w' \in L \ donc \ on \ a \ S_0 \not\models^{w'}_A S_f \ avec \ S_f \in F \ soit \ w' = wu \ donc \ on \ a \ S_0 \not\models^{w_u}_A S_f \ \rightarrow \ S_0 \not\models^{w}_A S_i \not\models^{u}_A S_f$ on pour A et A' les mêmes S_0 , S et II donc on a $S_0 \not\models^{w}_A S_i \ \rightarrow S_0 \not\models^{w}_{A'} S_i \ S_i \ \text{\'etat final } \ donc \ w \in FG(A)$ L(A') = FG(L(A)) = FG(L), L est régulier alors FG(L) est aussi.

-
$$Reg(FG(L)) \rightarrow Reg(L)$$

2.
$$FD(L)=\{w \in X^* \text{ tq } \exists u \in X^* uw \in L\}$$

-
$$Reg(L) \rightarrow Reg(FD(L))$$

L est régulier donc il existe A tq L(A)=L avec A(X,S,S₀,F,II) un automate d'état finie réduit qui accepte L

pour démontrer que FD(L) est régulier on doit trouver l'automate A' qui l'accepte soit l'automate A' qui reconnaît FG(L) A' (X,S,S'_0,F,II) avec $S'_0=S$.

 $w' \in L$ donc on a $S_0
ightharpoonup w'_A S_f$ avec $S_f \in F$ soit w' = uw donc on a $S_0
ightharpoonup u^w_A S_f
ightharpoonup S_0
ightharpoonup w'_A S_f
ightharpoonup S_0
ightharpoonup u^w_A S_f
ightharpoonup u^w_A S_f$

-
$$Reg(FD(L)) \rightarrow Reg(L)$$

 $w \in FD(L) \to S'_k \not\models^{w_{A'}}S'_f \ S'_k \in S_0' \ avec \ comme \ II= II' \ et \ S=S', \ S'_k \not\models^{w_{A'}}S'_f \to S_k \not\models^{w_{A}}S_f \ ...(1)$ A est réduit \leftrightarrow tous les états sont accessibles et coaccessibles donc S_k est accessible $\to \exists \ u \in X^* \ tq \ S_k \not\models^{u_A}S_f \ S_k \in S_0$ $(1) \to S_0 \not\models^{u_A}S_k \not\models^{w_A}S_f \ uw \in L(A) \to uw \in L$

3.
$$FGP(L)=\{w \in X^* \text{ tq } \exists u \in X^+ wu \in L\}$$

on a deux cas:

- le premier $A(X,S,S_0,F,II)$ avec $(S_f,x,S_i) = \emptyset$ càd aucun arcs sortant depuis l'état final. l'automate A' qui reconnaît FGP(L) $A'(X,S,S_0,F',II)$ avec F'=S-F.
- le deuxième $A(X,S,S_0,F,II)$ avec $(S_f,x,S_i) \neq \emptyset$ càd des arcs sortant depuis l'état final. l'automate A' qui reconnaît FGP(L) $A'(X,S,S_0,F',II)$ avec F'=S.

4. $FDP(L)=\{w \in X^* \text{ tq } \exists u \in X^+uw \in L\}$

on a deux cas:

- le premier $A(X,S,S_0,F,II)$ avec $(S_i,x,S_0) = \emptyset$ càd aucun arcs entrant vers l'état initial. l'automate A' qui reconnaît FDP(L) $A'(X,S,S'_0,F,II)$ avec $S'_0=S-S_0$.
- le deuxième $A(X,S,S_0,F,II)$ avec $(S_i,x,S_0) \neq \emptyset$ càd des arcs entrant vers l'état initial. l'automate A' qui reconnaît FDP(L) $A'(X,S,S_0,F,II)$ avec $S'_0=S$

```
5. L//u = \{w \in X^* / uw \in L\}
```

L est régulier donc il existe A tq L(A)=L avec $A(X,S,S_0,F,II)$ un automate d'état finie réduit qui accepte L. pour démontrer que L//u est régulier on doit trouver l'automate A' qui l'accepte soit l'automate A' qui reconnaît L//u $A'(X,S,S'_0,F,II)$.

 $w' \in L$ donc on a $S_0
ightharpoonup w'_A S_f$ avec $S_f \in F$ soit w' = uw donc on a $S_0
ightharpoonup w'_A S_k
ightharpoonup S_i
ightharpoonup w'_A S_f
ightharpoonup S_i
ightharpoonup w'_A S_i
ightharpoonu$

Exercice12

on peut voir que $0.1 [((1.0)* \cup 111)* \cup 0.]* 1 \equiv 0.1 (1.0 \cup 111 \cup 0.)* 1$

 $\varepsilon \cup (0 \cup 11) [((1 \ 0)^* \cup 111)^* \cup 0]^{*1} //1 = 1[((1 \ 0)^* \cup 111)^* \cup 0]^{*1}$

1^{ère} méthode

On parcourt l'automate et on change l'état initial

```
 2^{\text{ème}} \text{ méthode} \\ 0.1 \left[ ((1\ 0)^* \cup \ 111\ )^* \cup \ 0\ ]^* \ 1\ //01 = \left[ ((1\ 0)^* \cup \ 111\ )^* \cup \ 0\ ]^* \ 1\ \right] \\ \left[ ((1\ 0)^* \cup \ 111\ )^* \cup \ 0\ ]^* \ 1\ //01 = \left[ ((1\ 0)^* \cup \ 111\ )^* \cup \ 0\ ]^* \ 1\ \right] \\ \left[ ((1\ 0)^* \cup \ 111\ )^* \cup \ 0\ ]^* \ 1\ //11 = \left[ ((1\ 0)^* \cup \ 111\ )^* \cup \ 0\ ]^* \ 1\ \right] \\ \left[ ((1\ 0)^* \cup \ 111\ )^* \cup \ 0\ ]^* \ 1\ //11 = 0(1\ 0)^* \left[ ((1\ 0)^* \cup \ 111\ )^* \cup \ 0\ ]^* \ 1\ \cup \ 111\ )^* \cup \ 0\ ]^* \ 1\ \cup \ 111\ )^* \cup \ 0\ ]^* \ 1\ \\ \varepsilon \cup (0\ \cup \ 11) \left[ ((1\ 0)^* \cup \ 111\ )^* \cup \ 0\ ]^* \ 1\ \right] \\
```


Exercice13

	a	b
S0	{S0,S1}	S0
{S0,S1}	{S0,S1,S2}	{S0,S1,S2}
{S0,S1,S2}	{S0,S1,S2}	{S0,S1,S2}

Le complément

 $G\!\!<\!\!X,\!V,\!P\!\!>\ P\!\!:\!\!\{S\to bS\,/\,a\}$

Exercice15

1.

A2 a a a B0 B1 b

2.

	a	b
{A0,B0}	{A1,B0}	{A0,B1}
{A1,B0}	{A0,B0}	{A1,B1}
{A0,B1}	{A1,B1}	{A0,B0}
{A1,B1}	{A0,B1}	{A1,B0}

3. A est automate à états finis qui reconnaisse le langage L1n L2 donc L1n L2 est régulier ou encore en utilisant la fermeture, l'intersection de deux langages réguliers est un langage régulier comme on a L1 et L2 régulier donc L1n L2 est régulier.