Pesquisa Operacional / Programação Matemática

Otimização discreta Branch-and-bound

Como resolver PIMs?

- Antes: todas as variáveis reais.
 - □ Simplex

Agora:

$$z = \max \mathbf{c}^{\mathsf{T}} \mathbf{x} + \mathbf{d}^{\mathsf{T}} \mathbf{y}$$
$$\mathbf{A} \mathbf{x} + \mathbf{D} \mathbf{y} \le \mathbf{b}$$
$$\mathbf{x} \in R_{+}^{n}, \mathbf{y} \in Z_{+}^{p}$$

M

problema:

$$z = \max 5x_1 - x_2$$

$$7x_1 - 5x_2 \le 13$$

$$3x_1 + 2x_2 \le 17$$

$$x \in Z_+^2$$

Alysson M. Costa – ICMC/USP

Apesar de não representar perfeitamente o problema original, a relaxação terá um papel fundamental nos métodos.

(P)
$$z = \max \left\{ \mathbf{c}^{\mathsf{T}} \mathbf{x} : \mathbf{A} \mathbf{x} \le \mathbf{b}, \mathbf{x} \in \mathbb{Z}_{+}^{n} \right\}$$

(PL)
$$\overline{z} = \max \left\{ \mathbf{c}^{\mathsf{T}} \mathbf{x} : \mathbf{A} \mathbf{x} \le \mathbf{b}, \mathbf{x} \in \mathbb{R}_{+}^{n} \right\}$$

Lembrete: $\overline{z} \ge z$. (caso de maximização)

Definições:

Definição 3.1 Um subconjunto de R^n descrito por restrições lineares $P = \{\mathbf{x} \in R^n : \mathbf{A}\mathbf{x} \le \mathbf{b}\}$ é um poliedro.

Definição 3.2 Um poliedro $P \subset R^{n+p}$ é uma formulação para um conjunto $X \subset Z^n \times R^p$ se e somente se $X = P \cap (Z^n \times R^p)$.

Figura 3.30 Duas formulações distintas para um problema de programação inteira.

Qual a "melhor" formulação?

Figura 3.31 Envoltória convexa do conjunto X.

- por que melhor?
- O que acontece se resolvermos o problema linear, neste caso ?

■ Problema:

□ É difícil obter a envoltória convexa.

Enumeração

- idéia "inocente" inicial: listar todos os pontos possíveis.
- Contra exemplo clássico:
 Caixeiro viajante: n! soluções possíveis.

Enumeração implícita

- Idéia: investigar apenas soluções *promissoras*.
- Como encontrar soluções promissoras? Como saber onde investigar?

Exemplo

$$z = \max 5x_1 - x_2$$

$$7x_1 - 5x_2 \le 13$$

$$3x_1 + 2x_2 \le 17$$

$$x \in Z_+^2$$

$$\overline{z} = 16\frac{11}{29},$$

Na solução do problema original:

ou
$$x_1 \le 3$$
 ou $x_1 \ge 4$

Vamos dividir para conquistar!

- \blacksquare A solução ótima está ou em P¹ ou em P². Investigamos (a priori) os dois.
- Nomenclatura:
 - \square a variável \mathbf{x}_1 foi "ramificada"
 - \square os nós P^1 e P^2 são nós filhos de P.

■ Nova situação:

P² é vazio. Vamos investigar P¹

$$\overline{z}^1 = 13\frac{2}{5}$$

Continuação

■ Repetimos o procedimento para P¹

$$\overline{\mathbf{x}}_1 = \left(3, 1\frac{3}{5}\right)$$

Ŋė.

Final da árvore

Resumo

- Tentamos resolver um problema inteiro-misto como um problema linear.
- Se conseguimos uma solução inteira, ela é a solução ótima.
- Caso contrário:
 - □ Ramificamos e resolvemos os nós filhos. (Observe que não há perda de qualidade pois na ramificação, nenhuma solução inteira é perdida).

No pior caso

teríamos que ramificar até as folhas da árvore...

. . .

. . .

Resumo

- Para tentar evitar a resolução de todos os nós (o que seria enumeração explícita), fazemos os seguintes testes:
 - □ infactibilidade;
 - \Box qualidade;
 - □ otimalidade;

■ Infactibilidade:

Não há solução para o problema relaxado, logo não há solução para o problema misto.

(consequentemente, não há o que explorar naquele nó, que pode ser cortado).

Qualidade

A melhor solução naquele nó tem, no máximo, valor \underline{z} . Mas uma outra solução z inteira de melhor valor, já foi encontrada anteriormente.

(Consequentemente, não vale a pena explorar aquele nó e ele pode ser cortado)

Otimalidade

A solução do PL no nó é factível para o problema original.

(Consequentemente, não há o que ramificar e a exploração daquele nó pode ser encerrada)

Algoritmo de B&B (max)

Passo 0 (Inicialização). Faça $\overline{z} = \infty$, $z^* = -\infty$, $\mathbf{x}^* = \emptyset$, $L = \{P\}$.

Passo 1 (Seleção de nó). Selecione o nó ativo i, associado ao problema P^i , da lista de nós ativos. Se a lista estiver vazia, vá para o Passo 6.

Passo 2 (Teste de eliminação 1). Se a região factível de PL^i for vazia, vá para o Passo 1.

Passo 3 (Teste de eliminação 2). Se o valor \overline{z}^i da solução ótima de PL^i é tal que $\overline{z}^i \leq z^*$, vá para o Passo 1.

Passo 4 (Teste de eliminação 3). Se a solução ótima $\overline{\mathbf{x}}_i$ de PL^i é inteira com valor \overline{z}^i , e se $\overline{z}^i > z^*$, atualize \mathbf{x}^* e z^* . Elimine nós ativos i da lista L, tais que $\overline{z}^i \leq z^*$, e volte para o Passo 1.

 $Passo\ 5$ (Ramificação). Selecione uma variável da solução ótima $\overline{\mathbf{x}}_i$ de PL^i com valor não inteiro e divida P^i em dois problemas. Adicione estes problemas à lista L e vá para o $Passo\ 1$.

Passo 6 (Fim). Se $z^* = -\infty$, não existe solução factível; caso contrário, a solução incumbente \mathbf{x}^* é uma solução ótima.

Outro exemplo¹

Maximize
$$8x_1 + 11x_2 + 6x_3 + 4x_4$$

subject to $5x_1 + 7x_2 + 4x_3 + 3x_4 \le 14$
 $x_j \in \{0,1\} \ j = 1, \dots 4.$

$$egin{aligned} \mathbf{Fractional} \ z = 22 \ & oldsymbol{x_3} = 0.5 \end{aligned}$$

Exemplo

Cplex http://www.ilog.com/products/cplex/

modelHeskia1.lp = 4 trabalhadores, 28 tarefas

modelTonge80.lp =
19 trabalhadores, 75 tarefas