

BIG DATA ANALYTICS

A Social Network Approach

Andry Alamsyah

Social Computing and Big Data Research Group Fakultas Ekonomi dan Bisnis

Andry Alamsyah Fakultas Ekonomi dan Bisnis Universitas Telkom

Research Field:

Social Network, Complex Network / Network Science, Social Computing, Data Analytics, Data Mining, Big Data, Graph Theory, Content Business, Data Business, ICT Business

andry.alamsyah@gmail.com
andrya.staff.telkomuniversity.ac.id
telkomuniversity.academia.edu/andryalamsyah
researchgate.net/profile/Andry_Alamsyah
linkedin.com/andry.alamsyah
twitter.com/andrybrew

WHO AM 1?

LARGE SCALE DATA

LARGE SCALE DATA

LARGE SCALE DATA

STORY / PHENOMENON

- BIG DATA leads to Social Computing (Quantification of Individual / Social Behaviour)
- Social Network Data / Conversation are widely available
- Social Network voices represent public voice become 'Big' concern (references)
- The Need of Real-Time Analytic (OLAP)
- The Need of Powerful Metric for Social Network / Big Data

STORY / PHENOMENON

- There are many aspect of Big Data research, but too little resource, too little talent
- Same business objective, but increase effectiveness on top of current services
- Problem with Legacy Methodology approach using Questionnaire/ Interviews/Surveys (ok with small scale data, expensive and took longer time for large scale data, accuracy issues)

INDUSTRY EFFORTS

75

METHODS COMPARISON IN SOCIAL SCIENCE

LEGACY	DATA ANALYTICS	
Confirmative	Explorative (Predictive)	
Small Data Set	Larga Data Set	
Small Number of Variable	Large Number of Variable	
Deductive (no predictions)	Inductive	
Numeric Data	Numeric and Non-Numeric Data	
Clean Data	Data Cleaning	

source: Data Mining and Statistics: Whats the Connections? (Jerome Friedman)

BIG DATA STATE OF THE ART

Computation Related

Processing / Computation	Storage	Analytics Tools
 Hadoop Nvidia CUDA Twitter Storm Bulk Synchronous Parallel Processing GraphLab Disk-Based Graph Processing 	neo4JTitanHDFS	MLPACKMahout

Methodology / Analytics Related modelling, descriptions, predictions, optimisation and simulation

BIG DATA ANALYTICS CONSTRUCTOR

Social Network

networks tie-strength key players cohesion

Data Mining

Classification & Regression

Sentiment Analysis

keyword spotting
lexical affinity
statistical methods
concept-level technique

RESEARCH ROADMAP

GOAL: descriptions, predictions, optimisation and simulation area: marketing, communications, knowledge management, operations, finance, etc

SOCIAL NETWORK MODEL

Can we study their interactions as a network?

Communication

Anne: Jim, tell the Murrays they're invited

Jim: Mary, you and your dad should come for dinner!

Jim: Mr. Murray, you should both come for dinner

Anne: Mary, did Jim tell you about the dinner? You must come.

Mary: Dad, we are invited for dinner tonight

John: (to Anne) Ok, we're going, it's settled!

SOCIAL NETWORK MODEL

Edges List

Vertex	Vertex	
1	2	
1	3	
2	3	
2	4	
4	3	

Adjacency Matrix become symmetric

Vertex	1	2	3	4
1	1	1	1	0
2	1	-	1	1
3	1	1	-	0
4	0	1	0	-

TIE STRENGTH

Weight could be

- Frequency of interactions in period of observation
- Number of items exchanged in period
- Individual perceptions of strength of relationship
- Cost of communications or exchange, e.g. distance

Vertex	Vertex	Weight
1	2	30
1	3	5
2	3	22
2	4	2
4	3	27

Adjacency Matrix (weight)

Vertex	1	2	3	4
1	6	30	5	0
2	30	-	22	2
3	5	22	-	37
4	0	2	37	-

NETWORK MODEL EXAMPLE

Different Network, Same Graph

METRIK CENTRALITY

degree centrality

closeness centrality

shortest path

eigenvector centrality

betweenness centrality

set of key players

METRIK CENTRALITY

betweenness centrality

banyaknya **jalur terpendek** antar pasangan semua titik di jaringan, yang melewati satu titik yang diukur

closeness centrality

jarak titik yang diukur terhadap semua titik yang ada dalam jaringan

