Министерство на образованието и науката Съюз на математиците в България

Пролетно математическо състезание "проф. Дочо Дочев"

Русе, 30 март 2024 г.

Задача 12.1. Редицата $(a_n)_{n\in\mathbb{N}}$ е такава, че

$$a_1=1$$
 и $a_{n+1}=rac{9a_n+4}{a_n+6}$ за всяко $n\in\mathbb{N}.$

Кои членове на редицата са цели числа?

Задача 12.2. Точките D и E съответно върху страната AC на $\triangle ABC$ и отсечката BD са такива, че $\angle DAE = \angle AED = \angle ABC$. Да се докаже, че BE = 2CD тогава и само тогава, когато $\angle ACB = 90^\circ$.

Задача 12.3. Едно цяло число ще наричаме *студентско*, ако има вида a^{33} , където a е цяло число. С b(n), където n е естествено число, ще означаваме най-малкия възможен брой студентски числа, чийто сбор е n. Например $b(2^{33}-1)=2$. Крайно или безкрайно е множеството на естествените числа n, за които:

a)
$$b(n) = 12$$
 6) $b(n) = 12^{12^{12}}$?

Задача 12.4. Нека $d \geq 3$ е естествено число. Пълно d-мерно сдвояване наричаме разбиване на множеството от двоични вектори с дължина d на 2^{d-1} непресичащи се двойки, като векторите във всяка двойка се различават в точно една позиция. За зададено пълно d-мерно сдвояване \mathcal{M} и естествено число $k \geq 2$, алтерниращ цикъл с дължина 2k наричаме циклична подредба на 2k различни двоични вектора, такива че всяка двойка съседни вектори се различават в точно една позиция и точно половината от тези двойки принадлежат на \mathcal{M} . Да се докаже, че за всяко пълно d-мерно сдвояване съществува алтерниращ цикъл с дължина най-много 2d-2.