

Learning Intents behind Interactions with Knowledge Graph for Recommendation

WWW 2021

Xiang Wang, Tinglin Huang, Dingxian Wang, Yancheng Yuan, Zhengguang Liu, Xiangnan He, Tat-Seng Chua

> 汇报人: 林欣 2023年9月1日

|| | 提纲

1	研究背景	
2	研究方法	
3	实验结果	
4	总结&思考	

研究背景: 个性化推荐

想象一下:

今天你很无聊,想要看部电影放松一下,但是当你打开视频软件时,面对数不胜数的电影,你很容易感到手足无措,不知道该看什么。

个性化推荐系统

可以根据你的历史观影记录分析你的电影偏好,从庞大的电影库中找到几部符合你兴趣的电影供你选择。

研究背景: 个性化推荐

- 在信息过载时代,从大量信息中找到自己感兴趣的信息十分困难
- 个性化推荐系统将用户和信息联系起来,在无明确需求的情况下快速发现自己感兴趣的信息
- 在电子商务、社交网络以及多种内容分享平台上广泛应用

研究背景: 个性化推荐

• 推荐问题定义

输入: 用户与物品交互的历史数据(比如:点击、访问、购买等)

输出:用户与给定物品交互的概率大小

研究背景: 基于知识图谱的推荐系统

- · 额外的输入:知识图谱 (KG)
 - 存在丰富的语义信息和实体关系
 - 有助于揭示物品之间的联系,并可以用来解释用户的偏好。

知识图谱

研究背景: 基于知识图谱的推荐系统

• 现有工作大致可以分成四类

基于表征

- 关注一阶连通性,利用KG Embedding技术获取实体表示, 并作为先验知识补充到推荐模型
- 忽略了高阶连通性,无法捕获长距离关系依赖

基于路径

- 挖掘用户和物品之间的路径来捕获长距离连通
- 推荐准确性与路径质量密切相关,然而现有两种路径挖掘方 法都存在局限(暴力搜索耗时耗力、meta-path迁移性差)

基于策略

- 设计强化学习智能体来学习寻找路径的策略,基于强化学习的策略网络可看作高效且便宜的暴力搜索
- 回报稀疏、动作空间巨大使得网络很难训练和收敛

基于GNN

- 基于信息聚合技术, 迭代地聚 合邻居信息从而表示多跳节点
- 在建模用户意图和感知关系路径上仍存在局限性

KTUP (WWW 2018)

RippleNet (CIKM 2018)

KGPolicy (WWW 2020)

NIRec (KDD 2020)

基于GNN工作的局限1:用户意图

现有工作将用户和物品之间的关系建模成单一关系,而忽略了用户往往在考虑物品时是出于多种意图,容易混淆对用户行为的建模。

User Intents

p₁: [r₁, r₂]

p₂: [r₃, r₂]

p₃: [r₂, r₄]

KG Relations r_1 : director

 r_2 : star r_3 : partner

 r_4 : film series

以电影为例

- 意图 p_1 表示了由 r_1 <mark>导演</mark>和 r_2 <u>主演</u>两种关系 所主导,因此观看了电影 i_1 和 i_5
- 意图 p_2 表示了由 r_3 <u>搭档</u> 和 r_2 <u>丰演</u> 两种关系 所主导,因此观看了电影 i_2 和 i_5
- 同样是观看电影i5,可能有2种不同意图

推荐系统的基本逻辑: 相似用户会在物品交互上具有相似的偏好

现有基于GNN的工作:用户行为相似性(容易受到模糊意图的混淆)

对用户意图进行细粒度建模

当前工作想法:基于用户意图的行为相似性

基于GNN工作的局限2: 关系路径

现有工作在GNN聚合信息时,基于邻居节点收集信息,而没有分辨这是来自哪一条路径的信息,难以保存长关系依赖和基于路径的序列。

现有基于GNN的工作:基于节点来聚合信息(难以捕捉关系路径)

基于路径聚合

当前工作想法:将关系路径看作信息通道进行聚合

研究框架

Knowledge Graph-based Intent Network(KGIN)

研究方法

用户意图建模

关系路径感知的聚合

KGIN: 用户意图建模 (1)

- · 第1步:表征 "用户意图"
- KG关系能够显式地表达用户意图,引入注意力机制给每个意图分配
 - 一个KG关系分布,实现对用户意图的表征 e_p

将 (u,i)重新组织成(u,p,i)将互动数据重新组织成意向图(IG) 所有用户共享的意图表征

$$\mathbf{e}_p = \sum_{r \in \mathcal{R}} \alpha(r, p) \mathbf{e}_r,$$

在KG关系编码上的注意力组合

$$\alpha(r,p) = \frac{\exp(w_{rp})}{\sum_{r' \in \mathcal{R}} \exp(w_{r'p})},$$

量化关系r 对意图p的重要性

KGIN: 用户意图建模 (2)

- 第2步:用户意图的独立建模
- 思路:不同意图应包含不同信息,相互有所区别
 - -> 在意图表征中加入独立性正则化

互信息

$$\mathcal{L}_{\text{IND}} = \sum_{p \in \mathcal{P}} -\log \frac{\exp \left(s(\mathbf{e}_p, \mathbf{e}_p)/\tau\right)}{\sum_{p' \in \mathcal{P}} \exp \left(s(\mathbf{e}_p, \mathbf{e}_{p'})/\tau\right)},$$

最小化任意两个不同意图之间的信息量

• 距离相关性

$$\mathcal{L}_{\text{IND}} = \sum_{p,p' \in \mathcal{P}, \ p \neq p'} dCor(\mathbf{e}_p, \mathbf{e}_{p'}),$$

最小化任意两个不同意图之间的联系

KGIN: 关系路径感知聚合(1)

- 第1步: 意向图 (IG) 上的聚合
- 思路:具有相似意图的用户在物品交互上具有相似的偏好。
 - -> 基于user-intent-item三元组(u, p, i) 实现感知意图的信息聚合

Aggregation Layer over Intent Graph (IG)

将意图p与历史物品i对应的表示按元素相乘 \odot

$$\mathbf{e}_{u}^{(1)} = \frac{1}{|\mathcal{N}_{u}|} \sum_{(p,i)\in\mathcal{N}_{u}} \beta(u,p) \mathbf{e}_{p} \odot \mathbf{e}_{i}^{(0)}$$

$$\boxed{\beta(u,p)} = \frac{\exp(\mathbf{e}_p^{\top}\mathbf{e}_u^{(0)})}{\sum_{p' \in \mathcal{P}} \exp(\mathbf{e}_{p'}^{\top}\mathbf{e}_u^{(0)})},$$

区别不同意图p, 生成用户特定的意图表示 $\beta(u,p)$

- (1) 不同意图p在用户决策过程中贡献应是不同的
- (2) 由意图来引导信息聚合,而不是衰减因子或正则项

KGIN: 关系路径感知聚合 (2)

- · 第2步:知识图谱 (KG) 上的聚合
- 思路: KG实体在不同关系上下文中具有不同的语义信息。
 - -> 基于item-relation-entity 三元组(i, r, v) 实现感知关系的信息聚合

将相关的连接实体都作为一种属性,从而衡量实体之间的内容相似性。(举例子)

将关系r与连接实体v 对应的表示按元素相乘 ⊙

$$\mathbf{e}_{i}^{(1)} = \frac{1}{|\mathcal{N}_{i}|} \sum_{(r,v) \in \mathcal{N}_{i}} \mathbf{e}_{r} \odot \mathbf{e}_{v}^{(0)},$$

将实体之间的关系作为投影因子, 捕捉同一实体 不同关系的不同语义联系。

Aggregation Layer over Knowledge Graph (KG)

KGIN: 关系路径感知聚合 (2)

· 第3步: 捕获关系路径

Final User (or Item) Representation

- 第1层表示 $\mathbf{e}_i^{(1)} = \frac{1}{|\mathcal{N}_i|} \sum_{(r,v) \in \mathcal{N}_i} \mathbf{e}_r \odot \mathbf{e}_v^{(0)},$
- 第l 层表示 $\mathbf{e}_{i}^{(l)} = \sum_{s \in \mathcal{N}_{i}^{l}} \mathbf{e}_{r_{1}}^{l} \odot \mathbf{e}_{r_{2}}^{l} \odot \cdots \odot \mathbf{e}_{r_{l}}^{l} \odot \mathbf{e}_{s_{l}}^{(0)}$
 - 反映了关系中的交互
 - 保存了路径中的语义内容

$$s = i \xrightarrow{r_1} S_1 \xrightarrow{r_2} \dots S_{l-1} \xrightarrow{r_1} S_l$$

- 最终表示 $\mathbf{e}_i^* = \mathbf{e}_i^{(0)} + \cdots + \mathbf{e}_i^{(L)}$.
- 用户-物品交互概率 $\hat{y}_{ui} = \mathbf{e}_u^* \mathbf{e}_i^*$.

研究框架

Knowledge Graph-based Intent Network(KGIN)

BPR损失:保证访问过物品的得分要高于没访问的物品

$$\mathcal{L}_{BPR} = \sum_{(u,i,j)\in O} -\ln \sigma(\hat{y}_{ui} - \hat{y}_{uj}),$$

$$O = \{(u,i,j) | u,i) \in O^+, (u,j) \in O^- \}$$

最小化最终损失函数

$$\mathcal{L}_{\text{KGIN}} = \mathcal{L}_{\text{BPR}} + \lambda_1 \mathcal{L}_{\text{IND}} + \lambda_2 \|\Theta\|_2^2,$$

实验分析

数据设置 实验结果 实验分析

研究问题

- RQ1: 与目前知识驱动的sota推荐模型相比,KGIN表现如何?
- RQ2: 模型的设计对于推进KGIN关系建模上有何影响? (e.g., 用户意图的个数、独立性, 关系路径的深度)
- RQ3: KGIN能否提供关于用户意图的一些见解?并给出直观的可解释结果?

实验设置

- 数据集: Amazon-Book, Last-FM, Alibaba-iFashion (开源)
- 评估指标: recall@k, ndcg@k (k=20)

Table 1: Statistics of the datasets.

		Amazon-Book	Last-FM	Alibaba-iFashion
User-Item Interaction	#Users	70,679	23,566	114,737
	#Items	24,915	48,123	30,040
	#Interactions	847,733	3,034,796	1,781,093
Knowledge Graph	#Entities	88,572	58,266	59,156
	#Relations	39	9	51
	#Triplets	2,557,746	464,567	279,155

实验结果 (RQ1)

- KGIN考虑了隐含的用户意图,更好地建模了user-item互动关系
- KGIN通过感知关系路径,保存了路径中的完整语义,从KG中获取 了更多信息
- KGIN在IG和KG上应用不同聚合方式,更好地将联合信号和物品知识到嵌入到用户和物品表征中

Table 2: Overall performance comparison.

	-	Amazon-Book Last-FM				Alibaba-iFashion	
	基线模型						
	基线快空	recall	ndcg	recall	ndcg	recall	ndcg
经典CF模型	MF	0.1300	0.0678	0.0724	0.0617	0.1095	0.0670
基于表征的模型	CKE	0.1342	0.0698	0.0732	0.0630	0.1103	0.0676
基于GNN的模型	KGAT	0.1487	0.0799	0.0873	0.0744	0.1030	0.0627
	KGNN-LS	0.1362	0.0560	0.0880	0.0642	0.1039	0.0557
	CKAN	0.1442	0.0698	0.0812	0.0660	0.0970	0.0509
	R-GCN	0.1220	0.0646	0.0743	0.0631	0.0860	0.0515
	KGIN-3	0.1687*	0.0915*	0.0978*	0.0848*	0.1147*	0.0716*
相对提升	%Imp.	13.44%	14.51%	11.13%	13.97%	3.98%	5.91%

实验分析(RQ2)

- 引入意图建模和关系语义建模能够提升模型性能
- 多数情况下,增加关系路径的聚合层数可以提升预测结果
- 多数情况下,增加意图个数(即探索多样的意图)有助于提高性能。由于独立性建模鼓励意图之间的不相关性,当意图的个数太多,可能会导致粒度过细,丢失有效信息。

Table 3: Impact of presence of user intents and KG relations.

	Amazon-Book		Last	-FM	Alibaba-iFashion	
	recall	ndcg	recall	ndcg	recall	ndcg
w/o I&R	0.1518	0.0816	0.0802	0.0669	0.0862	0.0530
w/o I	0.1627	0.0870	0.0942	0.0819	0.1103	0.0678

Table 4: Impact of the number of layers L.

	Amazon-Book		Last	-FM	Alibaba-iFashion		
2	recall	ndcg	recall	ndcg	recall	ndcg	
KGIN-1	0.1455	0.0766	0.0831	0.0707	0.1045	0.0638	
KGIN-2	0.1652	0.0892	0.0920	0.0791	0.1162	0.0723	
KGIN-3	0.1687	0.0915	0.0978	0.0848	0.1147	0.0716	

Table 5: Impact of independence modeling.

	Amazon-Book		Last-FM		Alibaba-iFashioi	
_	w/ Ind	w/o Ind	w/ Ind	w/o Ind	w/ Ind	w/o Ind
distance correlation	0.0389	0.3490	0.0365	0.4944	0.0112	0.3121
0.170 0.168 0.165 0.163 1		-0.091 -0.090 D D C -0.089	0.099 0.098 0.097	number of (b) Last		0.085 Dpu

Figure 4: Impact of intent number ($|\mathcal{P}|$). Best viewed in color.

实验分析 (RQ3)

KGIN的可解释性:可以提供实例级别的解释

Amazon-Book

Last-FM

	Top 2 KG Relations in Each Intent	Score
p_1	r ₁₇ (featured_artist) r ₁₅ (versions)	0.4945 0.3569
p_2	r ₁₅ (versions) r ₆ (song)	0.4694 0.0881
p_3	r ₁₅ (versions) r ₁₇ (featured_artist)	0.4472 0.1497
p_4	r ₁₂ (engineer) r ₁₅ (versions)	0.1888 0.1564

总结&思考 4

论文优点

个人思考

总结&思考

■ 优点 (Take-home Messages)

- 从意图粒度来揭露用户-物品的关系,同时基于KG关系来建模意图, 推动结果可解释
- » 从多跳路径中整合关系信息,提出了关系路径感知的信息聚合方式

■ 个人思考

- > 关注为什么要这么设计?怎么想到要这么设计的?
- 用户意图建模:够好了吗?
- 作者的未来工作:整合因果概念来辨别意图是否与用户行为具有因果关系