AUTOENCODERS

SIA - TP5 - 2022

TABLA DE CONTENIDOS

1. INTRODUCCIÓN Introducción al problema y sus soluciones.

2. LINEAR AUTOENCODER
Ejercicio 1
Consideraciones
Conclusiones

- 3. Ejercicio 2
 Consideraciones
 Conclusiones
- VARIATIONAL AUTOENCODER
 Ejercicio 3
 Consideraciones
 Conclusiones

INTRODUCCIÓN

- Un autoencoder es una arquitectura de redes neuronales no supervisadas que sirve para varios propósitos y son la base de algunos modelos de redes neuronales generativas.
- Se implementaron los siguientes tipos de autoencoders:
 - Linear Autoencoder
 - Denoising Autoencoder
 - > Variational Autoencoder
- Gráficos utilizando Plotly.

LINEAR AUTOENCODER

EJERCICIO 1.a

- Implementar un Autoencoder teniendo como conjunto de entrada las letras de 7x5:
 - Plantear una arquitectura que permita representar los datos de entrada en dos dimensiones en la capa latente.
 - > Realizar un gráfico de las representaciones de la capa latente.
 - Mostrar cómo la red genera una nueva letra que no pertenece al conjunto de entrenamiento.

ESTRUCTURA

APRENDIZAJE CONJUNTO ENTERO

25-15-10 - 150 ITERACIONES MÉTODO DE POWELL

APRENDIZAJE CONJUNTO ENTERO

ESPACIO LATENTE

APRENDIZAJE CONJUNTO ENTERO

GENERACIÓN DE NUEVAS LETRAS

25-15-10 - 50 ITERACIONES

ESPACIO LATENTE

APRENDIZAJE SUBCONJUNTO GENERACIÓN DE NUEVAS LETRAS

CAPAS INTERMEDIAS

ORIGINAL

20

25 - 15

25 - 15 - 10

CONCLUSIONES

- Cuando más grande es el conjunto de entrenamiento, mayor es el error que presenta la salida.
- Analizando la capa latente se puede observar que letras similares tienen codificaciones similares (PCA - características)
- A medida que se desplazan las coordenadas por la capa latente, se van obteniendo letras parecidas a las circundantes.
- Dependiendo de la cantidad de capas, varía la resolución de la respuesta.
- No existe un número de capas ni neuronas por capa adecuado. Se realizaron diferentes pruebas para poder obtener un buen resultado.

DENOISING AUTOENCODER

EJERCICIO

- Implementar una variante de "Denoising Autoencoder" sobre los valores de entrada anteriores:
 - > Plantear una arquitectura de red conveniente para esta tarea.
 - Distorsionar las entradas en diferentes niveles.
 - > Estudiar la capacidad del Autoencoder de eliminar el ruido.

ESTRUCTURA

CAPAS INTERMEDIAS - 25 ITERACIONES

ORIGINAL

NOISE

25

25-15

25-15-10

NEURONAS CAPA LATENTE

ORIGINAL

NOISE

10

RUIDO 0.2 - 25 - 15 - 10

ORIGINAL

NOISE

OUTPUT

RUIDO 0.5 - 25 - 15 - 10

ORIGINAL

NOISE

OUTPUT

ORIGINAL - RUIDO ENTRENADO - RUIDO ALTERNO - 5 MUESTRAS

SUBCONJUNTO

ORIGINAL

RUIDO ENTRENADO

RUIDO ALTERNO

ORIGINAL - RUIDO ENTRENADO - RUIDO ALTERNO - 20 MUESTRAS

SUBCONJUNTO

ORIGINAL

RUIDO ENTRENADO

RUIDO ALTERNO

CONCLUSIONES

- El DAE es capaz de asociar el valor ruidoso al valor original.
- A mayor cantidad de capas, se asocian mejor las letras ruidosas.
- A mayor cantidad de neuronas en la capa latente, se asocian mejor las letras ruidosas.
- A mayor cantidad de variaciones de ruido para cada letra a la hora de entrenar mejor se asocian letras con nuevos ruidos y las originales.
- A mayor ruido, más le cuesta asociar las entradas a la red .

VARIATIONAL AUTOENCODER

EJERCICIO

- Elegir un conjunto de datos e intentar utilizar el Autoencoder para generar una nueva muestra que pertenezca al conjunto de datos que se presentaron al autoencoder:
 - Modificar el autoencoder planteando un esquema para poder solucionar el problema de la representación en el espacio latente
- Librerías utilizadas :
 - Keras
 - > scipy

AUTOENCODER VARIACIONAL

- Un autoencoder variacional provee una forma probabilística de describir una observación en el espacio latente.
- En vez de construir un autoencoder que emita una solo valor para describir cada atributo del estado latente, el autoencoder variacional describe una distribución probabilística para cada atributo del estado latente.
- Utilizando un VAE para codificar los patrones en el espacio latente, nos podemos mover dentro de un vector de representación para generar nuevas muestras a la salida del decodificador.

MNIST CAPAS [256] - 50 EPOCAS

MNIST CAPA LATENTE

FASHION MNIST CAPAS [256] - 50 EPOCAS

DESCRIPTION

T-shirt/top

Trouser

Pullover

Dress

Coat

Sandal

Shirt

Sneaker

Bag

Ankle boot

FASHION MNIST CAPA LATENTE

LABEL	DESCRIPTION
O	T-shirt/top
1	Trouser
2	Pullover
3	Dress
4	Coat
5	Sandal
6	Shirt
7	Sneaker
8	Bag
9	Ankle boot

CONCLUSIONES

- Se puede observar que el VAE es capaz de generar nuevas muestras a partir de un conjunto de entrada con datos variados.
- Desplazándose en la capa latente se generan nuevas muestras que son combinaciones de otras:
 - Shirt Dress Trouser (0 3 1)
 - Digito 1 Digito 9 Digito 7

MUCHAS GRACIAS

