

PROJECT SPECIFICATION

Pneumonia Detection from Chest X-Rays

Exploratory Data Analysis

CRITERIA	MEETS SPECIFICATIONS
The student can create visualizations of the metadata that inform model training	 Students create distributions of diseases and comorbidities in their dataset Students create distributions of basic demographics of the patients who make up their datasets (such as age, gender, patient position,etc.) Students can use the above distributions to draw conclusions about how they will need to set up their model training
The student can visualize relevant properties of pixel-level data	 Students use python's imshow to visualize medical images during EDA Students create distributions of intensity values of the pixel-level data within images and compare them both within and across diagnoses Students use both of these methods of inspecting images to draw meaningful conclusions about what their model will train on

Model Building & Training

CRITERIA	MEETS SPECIFICATIONS
The student creates an	 Students create a set of training data and a set of validation data that each have the appropriate

appropriate ናሜቨ ፣ ፣ ፣ ፣ ፣ split of the data	proportions of positive and negative cases for their MEIFTE किर्विट पिडे हे श्वेस्ट भारतीय किर्माणिक and validation)
The student implements appropriate data augmentation to their training data	 Student implements a class such as ImageDataGenerator from Keras to augment their training data only Student should not augment testing/validation data Student uses types of augmentation that are appropriate for medical imaging. There are no required types of augmentation Students should normalize the imaging data so the model weights do not go to infinity.
The student evaluates the performance of their model using the appropriate statistics	 Student monitors the training progress of their model using log loss Student changes training parameters to avoid overfitting and compares performances of different training paradigms. Student trains enough epochs until the loss is "stable" After training, student uses precision, recall, and F1 score to actually evaluate the utility of their model. Find a threshold to classify if an image is pneumonia or not. Students should show precision-recall curve and a curve of F1-score vs. threshold
The student can integrate their model with realworld medical imaging data	 Student can check DICOM header for image position, image type and body part on ALL .dcm files to check validity for their model using the pydicom python package. Student can read imaging data in from a .dcm file, preprocess the image and feed it into their model using the pydicom python package.

FDA Description and Validation Plan

CRITERIA	MEETS SPECIFICATIONS		
The student can describe the intended population and the clinical impact of their model	 Student should provide an intended use statement Student should point to data from their EDA to describe who their algorithm is indicated for and what the clinical setting is in which their algorithm would be used Student should describe limitations of their algorithm and how false positives or false negatives might affect a patient 		
The student can describe how their model was designed and trained	 Students provide a flowchart or architecture diagram of their model Students should describe the DICOM checks they use before sending an image through their algorithm Students should describe the preprocessing steps they use. Students should describe the architecture of the classifier Students should describe augmentation and its parameters used Students describe the parameters used for training Students should show the behavior of training and validating loss Students should describe the performance statistics and threshold used in final validation 		
The student can describe the dataset used to train the algorithm and how the	 Students should provide information for the training set Students should provide information for the validating set Students should describe how the ground truth of the NIH dataset is created, the benefit and limitations. 		

MEETS SPECIFICATIONS

The student describes how they would create a FDA Validation set, ground truth, and what performance metric they would hold their algorithm to for FDA validation of their model.

- Students should describe the ideal dataset that they would receive from a clinical partner for their FDA Validation Dataset
- Students should describe how they would **ideally** create ground truth for this FDA Validation Dataset
- Students should describe the performance metric and the metic value that they would hold their algorithm to, supported by literature

Suggestions to Make Your Project Stand Out!

- Create some of your own custom image augmentation (such as different image filtering techniques) rather than solely using those predefined by Keras' ImageDataGenerator.
- Try creating two 'nested' models to specifically predict pneumonia. One that
 predicts pneumonia and/or infiltrates at the top level, and then a second model
 that specifically predicts pneumonia from the positive cases returned by the first
 model.
- Have your model output a class activation map in addition to a single binary prediction of pneumonia. This map will help a clinician to understand what the model is detecting as probable pneumonia in each image.

