ECON 0150 | Economic Data Analysis The economist's data analysis pipeline.

Part 4.3 | Regression Assumptions, Multiple Sample Tests

General Linear Model

... a flexible approach to run many statistical tests.

The Linear Model: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$

- β_0 is the intercept (value of \bar{y} when x = 0)
- β_1 is the slope (change in y per unit change in x)
- ε_i is the error term (random noise around the model)

OLS Estimation: Minimizes $\sum_{i=1}^{n} \varepsilon_i^2$

One-Sample T-Test

A one-sample t-test is a horizontal line model.

$$Temperature = \beta_0 + \varepsilon$$

- > the intercept β_0 is the estimated mean temperature
- > the p-value is the probability of seeing β_0 if the null is true

Relationships Between Variables

A test of relationships is a slope model.

WaitTime = $\beta_0 + \beta_1$ MinutesAfterOpening + ϵ

- > the intercept parameter β_0 is the estimated temperature at 0 on the horizontal
- > the slope parameter β_1 is the estimated change in y for a 1 unit change in x
- > the p-value is the probability of seeing parameter (β_0 or β_1) if the null is true

New Setting: Two Samples Is temperature lower with more green space?

Temperature = $\beta_0 + \beta_1 \cdot HighGreen + \varepsilon$

- > how would we interpret β_0 here?
- > the average temperature at x = 0, which is Low Green Space locations

New Setting: Two Samples Is temperature lower with more green space?

 $Temperature = \beta_0 + \beta_1 \cdot HighGreen + \varepsilon$

- > how would we interpret β_1 here?
- > one unit increase in x, which puts us in High Green Space

New Setting: Two Samples

Is temperature lower with more green space?

 $Temperature = \beta_0 + \beta_1 \cdot HighGreen + \varepsilon$

- $> \beta_0$ is the mean temperature in low green space cities (22.03°C)
- $> \beta_1$ is the temperature difference in high green space cities (-3.02°C)

> the t-test on β_1 tests if this difference is significant

Example: Neighborhood Income and Pollution Do low-income neighborhoods face higher pollution levels?

Step 1: Summarize the data

Step 2: Build a model

 $Pollution = \beta_0 + \beta_1 \cdot LowIncome + \varepsilon$

Example: Neighborhood Income and Pollution Do low-income neighborhoods face higher pollution levels?

Step 3: Estimate the model

- $\beta_0 = Mean pollution in high-income areas (24.8)$
- $\beta_1 = Additional pollution in low-income areas (+15.0)$

Example: Neighborhood Income and Pollution Do low-income neighborhoods face higher pollution levels?

Step 4: Interpret and communicate the findings

> A significant positive β_1 suggests environmental quality differences between neighborhoods

OLS Assumptions
Our test results are only valid when the model assumptions are valid.

- 1. **Linearity**: The relationship between X and Y is linear
- 2. Independence: Observations are independent from each other
- 3. **Homoskedasticity**: Equal error variance across all values of X
- 4. Normality: Errors are normally distributed

Model Diagnostics: Why Check Assumptions? Assumption violations affect our inferences

If assumptions are violated:

- Coefficient estimates may be biased
- Standard errors may be wrong
- p-values may be misleading
- *Predictions may be unreliable*

Checking for Linearity The error term should be unrelated to the fitted value.

> which one of these figures shows linearity?

- > the left one is what we want to see
- > residual plots should show that the model is equally wrong everywhere

Checking for Homoskedasticity Residuals should be spread out the same everywhere.

> which one of these figures shows homoskedasticity?

- > the left figure shows constant variability (homoskedasticity)
- > the right one has increasing variability (heteroskedasticity)
- > residual plots should show that the model is equally wrong everywhere

Checking for Normality Residuals should be normally distributed

- > left shows a nice bell shape (roughly normally distributed)
- > right shows a skewed distribution (not normally distributed)
- > by the CLT we can still use regression without this if the sample is large

Extending to Multiple Regression Adding control variables to isolate relationships

 $Pollution = \beta_0 + \beta_1 \cdot Income + \beta_2 \cdot Density + \varepsilon$

Extending to Multiple Regression Adding control variables to isolate relationships

- $\beta_0 = Baseline pollution level (70.0)$
- β_1 = Effect of income on pollution, holding density constant (-0.0003)
- β_2 = Effect of density on pollution, holding income constant (+0.001)

Key Takeaways

Regression provides a unified framework for statistical testing

One-Sample T-Test: Continuous outcome variable (y) with only an intercept

$$y = \beta_0 + \varepsilon$$

Relationships: Continuous outcome variable (y) with a continuous predictor (x)

$$y = \beta_0 + \beta_1 x + \varepsilon$$

Two-Sample T-Test: Continuous outcome variable (y) with a dummy (Group)

$$y = \beta_0 + \beta_1 \cdot Group + \varepsilon$$

Multiple Regression: Adding control variables to isolate relationships

> all use the same OLS framework and interpretation of coefficients and p-values