p.1

基礎コンピュータ工学 第5章 機械語プログラミング (パート5:フラグと条件分岐)

https://github.com/tctsigemura/TecTextBook

本スライドの入手:

基礎コンピュータ工学第5章 機械語プログラ

フラグ(1)

フラグ (C, S, Z) は計算結果の特徴を表す. フラグ変化ありの命令を実行する度に値が変化する. (教科書の本文,命令表を再度確認する.)

- Z (Zero) フラグ
 - Zero は「ゼロ」の意味。
 - 計算の結果がゼロにならなかった。

計算の結果がゼロになった。

基礎コンピュータ工学第5章 機械語プログラミ

フラグ(2)

- S (Sign) フラグ
 - Sign はプラス・マイナスの「符号」の意味
 - 計算の結果を符号付き2進数と解釈すると正の値になった.

• 計算の結果を符号付き2進数と解釈すると負の値になった.

- Sフラグは符号付き2進数と考えたときの「負」の意味
- 計算結果の最上位ビットと同じ値になる。→ゼロは「正」とみなす。

基礎コンピュータ工学第5章 機械語プログラミ

フラグ(3)

- C (Carry) フラグ
 - Caryy は「桁を繰り上げる」の意味
 - 足し算(ADD)で桁上げが起きる。
 - 足し算で最上位桁からの桁上げがない場合

• 足し算で最上位桁からの桁上げがあった場合(オーバーフロー)

基礎コンピュータ工学第5章 機械語プログラミ

フラグ(4)

- C (Carry) フラグ (Borrow の意味を代用)
 - Borrow は「桁を借りる」の意味
 - 引き算 (SUB) で桁借りが起こる
 - 引き算で最上位桁で桁借りがない場合

• 引き算で最上位桁で桁借りがあった場合(負にオーバーフロー)

$$\begin{array}{c|c} & 0000 \ 0000_2 \\ - & 0000 \ 0001_2 \\ \hline \text{C} \ \boxed{1} & 1111 \ 1111_2 \end{array} \rightarrow \begin{array}{c} & 0_{10} \\ - & 1_{10} \\ \hline & 255_{10} \end{array} \, ,$$

● Cフラグは、符号なし2進数と考えたときのオーバーフローの意味

基礎コンピュータ工学第5章 機械語プログラミ

ジャンプ命令(7種類)

無条件ジャンプ命令: プログラムの流れを指定のアドレスに飛ばす.

• JMP (Jump) 命令:いつもジャンプする.

条件ジャンプ命令: ある条件のときだけジャンプする.

- JZ (Jump on Zero) 命令:Z = 1 ならジャンプ
- JC (Jump on Carry) 命令:C = 1 ならジャンプ
- JM (Jump on Minus) 命令:S = 1 ならジャンプ
- JNZ(Jump on Not Zero)命令:Z=0 ならジャンプ
- JNC (Jump on Not Carry) 命令:C = 0 ならジャンプ
- JNM (Jump on Not Minus) 命令:S=0 ならジャンプ

基礎コンピュータ工学第5章 機械語プログラミ

JZ (Jump on Zero) 命令

Zフラグが1なら(計算結果が0なら)ジャンプする.

フラグ:変化しない.

 $=-\pm 2$ JZ EA (if(Z=1) PC \leftarrow EA)

命令フォーマット: 2バイトの長さを持つ.

第1バイト 第2バイト 0P GR XR 第2バイト 1010₂ 01₂ XR aaaa aaaa

フローチャート: ある程度, 自由にアレンジしてよい.

基礎コンピュータ工学第5章 機械語プログラミ

JZ 命令の使用例

ループを3回、繰り返すプログラム

機械語	ラベル	ニーモニック	
10 09		LD	GO,THREE
40 OA	LOOP	SUB	GO, ONE
A4 08		JZ	STOP
A0 02		JMP	LOOP
FF	STOP	HALT	
03	THREE	DC	3
01	ONE	DC	1
	10 09 40 0A A4 08 A0 02 FF 03	10 09 40 0A LOOP A4 08 A0 02 FF STOP 03 THREE	10 09 LD SUB A4 08 JZ A0 02 JMP FF STOP HALT O3 THREE DC

演習(1):ステップモードで実行をトレースしてみる。

基礎コンピュータ工学第5章 機械語プログラミ

JC (Jump on Carry) 命令

Cフラグが1なら(オーバーフローなら)ジャンプする.

フラグ: 変化しない.

 $=-\pm 29$: JC EA (if(C=1) PC \leftarrow EA)

命令フォーマット: 2バイトの長さを持つ.

 第1バイト
 第2バイト

 OP GR XR
 第2バイト

 10102 102 XR
 aaaa aaaa

フローチャート: ある程度, 自由にアレンジしてよい.

基礎コンピュータ工学第5章 機械語プログラミ

JM (Jump on Minus) 命令

Sフラグが1なら(負なら)ジャンプする.

フラグ:変化しない.

 $=-\pm 290$: JM EA (if(S=1) PC \leftarrow EA)

命令フォーマット: 2バイトの長さを持つ.

第1バイト | OP | GR XR | 第2バイト | 1010₂ | 11₂ XR | acaa acaa

フローチャート: ある程度, 自由にアレンジしてよい.

基礎コンピュータ工学第5章 機械語プログラミ

10/1

条件判断1

計算結果により処理をするかしないか変化する例

基礎コンピュータ工学第5章 機械語プログラミ

条件判断2

計算結果によりどちらかの処理をする例

基礎コンピュータ工学第5章 機械語プログラミ

12/1

条件判断の例

絶対値を求めるプログラム (例題 5-1)

番地	機械語	ラベル	ニーモニック	
00	10 10	START	LD	GO,N
02	40 OF		SUB	GO,ZERO
04	AC 08		JM	L1
06	AO OC		JMP	L2
08	10 OF	L1	LD	GO,ZERO
OA	40 10		SUB	GO,N
OC.	20 11	L2	ST	GO,M
0E	FF		HALT	
OF	00	ZERO	DC	0
10	FF	N	DC	-1
11	00	M	DS	1

● 演習(2):ステップモードで実行をトレースしてみる.

基礎コンピュータ工学第5章 機械語プログラミ

13 / 14

まとめ

学んだこと

- フラグ (Carry, Zero, Sign)
- ◆ 条件ジャンプ命令(JZ, JC, JM)
- 条件判断

演習(宿題)

- 飽和演算:計算結果が最大値または最小値を超えそうになった時, 計算結果を最大値または最小値に留める演算方式
- TeC の符号なし 2 進数を用いて表現できる最大値は 255 である.
- 足し算結果が255を超える (オーバーフローする) かもしれない.
- オーバーフローが発生したら計算結果を255に訂正するようにする.
- 以上のような足し算プログラムを作る.

基礎コンピュータ工学第5章 機械語プログラミ