Decision tree

Entropy

Entropy(s) =
$$\sum_{i=1}^{c} - p_i \log_2^{p_i}$$

Gain

$$Gain(S, A) = Entropy(S) - \sum_{v \in values} \frac{|S_v|}{|s|}$$
Entropy (S_v)

	Age	income	student	credit_rating	buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_age	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

بر اساس جدول زیر و بر مبنای معیار آنتروپی بهترین ویژگی برای قرار گرفتن در ریشه درخت تصمیم کدام است؟

	a1	a2	class
1	Low	F	FALSE
2	low	M	TRUE
3	medium	F	FALSE
4	medium	M	TRUE
5	high	F	TRUE
6	high	M	TRUE

	a1	a2	class
1	Low	F	FALSE
2	low	M	TRUE
3	medium	F	FALSE
4	medium	M	TRUE
5	high	F	TRUE
6	high	M	TRUE

feature	a1	a2
. 5 5, 6 5, 1		
gain	0.25	0.78

درخت تصمیم مثال به صورت زیر است؟

Decision Tree is a greedy algorithm

A	В	C	Y
F	F	F	F
T	F	T	T
T	T	F	T
T	T	T	F

ID3 (Examples, Target_Attribute, Attributes)

Create a root node for the tree

If all examples are positive, return the single-node tree Root, with label = +

If all examples are negative, return the single-node tree Root, with label = -

If number of predicting attributes is empty then

return Root, with label = most common value of the target attribute in the examples

else

A = The Attribute that best classifies examples.

Testing attribute for Root = A.

for each possible value, v_i , of A

Add a new tree branch below Root, corresponding to the test $A = v_i$.

Let Examples (v_i) be the subset of examples that have the value for A

if $Examples(v_i)$ is empty then

below this new branch add a leaf node with label = most common target value in the examples else below this new branch add subtree ID3 (Examples(v_i), Target_Attribute, Attributes - {A})

return Root

Gini

شاخص یا ضریب جینی بصورت کلی نابرابری را در میان مقادیر مختلف یک متغیر اندازه گیری می کند. هرچه این شاخص بالاتر باشد، داده ها پراکنده تر هستند.

Highly Impuree

High Gini Index

Medium Impure

Medium Gini Index

Pure

Low Gini Index (even=0)

Gini mathematical formula

The computation of the Gini index is as follows:

$$Gini(t) = 1 - \sum_{i=1}^{c} p_i^2$$

Where c is number of classes

Gini(credit Note) = 1	$-p_{Good}^2 - p_{Bad}^2$
Gini(credit Note) = 1	$-\left(\frac{4}{7}\right)^2 - \left(\frac{3}{7}\right)^2 = 0.49$

Savings	Assets	Salary (\$1000)	Credit Note
High	High	20	Good
Low	High	25	Bad
High	Low	30	Good
Low	Low	35	Bad
Low	High	40	Good
Low	Low	50	Bad
High	Low	90	Good

Gini index for each feature

(weighted average value of the Gini index)

Gini index (A) =
$$\sum_{i=1}^{c} \frac{n_i}{n} Gini(i)$$

Where A is an attrinbute

Savings	Assets	Salary (\$1000) Credit Note
High	High	20 Good
Low	High	25 Bad
High	Low	30 Good
Low	Low	35 Bad
Low	High	40 Good
Low	Low	50 Bad
High	Low	90 Good

Savings	Assets
High	High
Low	High
High	Low
Low	Low
Low	High
Low	Low
High	Low

Salary (\$1000)	Credit Note
20	Good
25	Bad
30	Good
35	Bad
40	Good
50	Bad
90	Good

weighted average Gini Index=

3/7 * 0.44+ 4/7 * 0.5

0,476

Savings	Assets	Salary (\$1000)	Credit Note
High	High	20	Good
Low	High	25	Bad
High	Low	30	Good
Low	Low	35	Bad
Low	High	40	Good
Low	Low	50	Bad
High	Low	90	Good

weighted average Gini Index=

6/7 * 1 + 1/7 * 0 0,429

feature	Saving	Assets	Salary
Gini index	0.241	0.467	0.429

The lowest is the value of the Gini Index, the better is the feature selected to split the node. Thus leading to more pure subsets for the branches.

So, we select saving to split the node

Gini vs Entropy

Entropy(s) =
$$\sum_{i=1}^{c} - p_i \log_2^{p_i}$$

$$Gini(t) = 1 - \sum_{i=1}^{c} p_i^2$$

