Continuous	O.	ptimization:	Assi	gnment	1

Due on April 30, 2014

Honglu Ma Hiroyasu Akada Mathivathana Ayyappan

Exercise 1

(a)

Claim: $\lim_{k\to\infty} x^{(k)} = \frac{1}{30}$

Proof:

Let $\epsilon > 0$ be given. Choose $N = \max\{\frac{1}{90\epsilon}, 8\}$. Assume n > N. We have

$$n > N \Rightarrow n > 9 > \sqrt[3]{600} \Rightarrow n^3 > 600 \Rightarrow 5n^3 > 3000 \Rightarrow 10n^3 - 5n^3 > 3000 \Rightarrow 3000 + 5n^3 < 10n^3$$

and obviously

$$900n^4 > 150n^3 + 900n^4$$

To check the validity of the limit we need to show $|x^{(n)} - x^{\star}| < \epsilon$ where $x^{\star} = \frac{1}{30}$.

$$\left| \frac{n^4 - 100}{5n^3 + 30k^4} - \frac{1}{30} \right| = \left| \frac{30n^4 - 3000 - 5n^3 - 30k^4}{150n^3 + 900n^4} \right|$$

$$= \left| \frac{-3000 - 5n^3}{150n^3 + 900n^4} \right|$$

$$= \frac{3000 + 5n^3}{150n^3 + 900n^4}$$

$$< \frac{10n^3}{900n^4} = \frac{1}{90n}$$
 (by the inequalities above)
$$< \frac{1}{90N}$$

$$< \frac{1}{900} = \epsilon$$

(b)

We have the following accumulation points:

$$x^{(8n+1)} = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix}, \quad x^{(8n+2)} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad x^{(8n+3)} = \begin{pmatrix} -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix}, \quad x^{(8n+4)} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$
$$x^{(8n+5)} = \begin{pmatrix} -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{pmatrix}, \quad x^{(8n+6)} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \quad x^{(8n+7)} = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{pmatrix}, \quad x^{(8n)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad n \in \mathbb{N}$$

We can prove by showing that $x^{(k)}$ is not a cauchy sequence thus does not converges (Proposition A.5, Lecture Script) i.e. $\exists \epsilon > 0$ such that $\forall N \in \mathbb{N}, \exists n, m > N$ such that $\|x^{(n)} - x^{(m)}\| \ge \epsilon$.

Proof:

Let $\epsilon = 1$, for all $N \in \mathbb{N}$, choose n = 8N and m = 8N + 4. We have

$$\left\| x^{(8N)} - x^{(8N+4)} \right\| = \left\| \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \begin{pmatrix} -1 \\ 0 \end{pmatrix} \right\| = 2 \ge 1 = \epsilon$$

Exercise 2

(a)

The interior of a set C is defined as the union of all open sets contained in C. The closure of a set C is the set C together with all of its limit points.

- (i) Let $C = \mathbb{R}$. We have $\operatorname{int}(C) = \mathbb{R}$ and $\operatorname{cl}(C) = \mathbb{R}$. It is obvious that $\operatorname{int}(\operatorname{cl}(C)) = \operatorname{int}(C) = \mathbb{R}$.
- (ii) Let $C = \mathbb{Q}$. We have $\operatorname{int}(C) = \emptyset$ and $\operatorname{cl}(C) = \mathbb{R}$. This is because every open interval in \mathbb{R} contains irrational numbers. Thus $\operatorname{int}(\operatorname{cl}(C)) = \operatorname{int}(\mathbb{R}) = \mathbb{R} \neq \operatorname{int}(C) = \emptyset$.

(b)

Consider function $f(x) = \sqrt{||x||_1}$, $x \in \mathbb{R}^2$ has sublevel sets $\{x \in \mathbb{R}^2 \mid f(x) \leq \alpha\}$. The function can also be written as $f(x) = \sqrt{|x_1| + |x_2|}$, $x = (x_1, x_2)$.

Pick two elements x, y from the sublevel set of α such that $f(x) \le \alpha$ and $f(y) \le \alpha$. We have

$$f(x) = \sqrt{|x_1| + |x_2|} \le \alpha \Rightarrow |x_1| + |x_2| \le \alpha^2$$
 and similarly $|y_1| + |y_2| \le \alpha^2$

Now take a point $z := \lambda x + (1 - \lambda)y$, $\lambda \in [0, 1]$. Also $z_1 = \lambda x_1 + (1 - \lambda)y_1$, $z_2 = \lambda x_2 + (1 - \lambda)y_2$

$$|z_1| + |z_2| = |\lambda x_1 + (1 - \lambda)y_1| + |\lambda x_2 + (1 - \lambda)y_2|$$

$$\leq \lambda |x_1| + (1 - \lambda)|y_1| + \lambda |x_2| + (1 - \lambda)|y_2|$$

$$\leq \lambda (|x_1| + |x_2|) + (1 - \lambda)(|y_1| + |y_2|)$$

$$\leq \lambda \alpha^2 + (1 - \lambda)\alpha^2 = \alpha^2$$

thus $\{x \in \mathbb{R}^2 \mid f(x) \leq \alpha\}$ is a convex set.

Now we need to show that f is not convex. Let x = (0,0), y = (1,0) and $\lambda = \frac{1}{2}$. We have f(x) = 0, f(y) = 1 and

$$f(\lambda x + (1 - \lambda)y) = \sqrt{\frac{1}{2}} > \lambda f(x) + (1 - \frac{1}{2})f(y) = \frac{1}{2}$$

Check here for visualization of the sublevel sets.

(c)

Let v_{N_A} be v's projection onto the null space and $\lambda \in \mathbb{R}^m$. We know that v can be decomposite into

$$v = A^{\top} \lambda + v_{N_A} \Rightarrow Av = A(A^{\top} \lambda + v_{N_A})$$
$$\Rightarrow Av = AA^{\top} \lambda + 0$$
$$\Rightarrow Av = AA^{\top} \lambda$$
$$\Rightarrow (AA^{\top})^{-1} Av = \lambda$$

Replace λ in the original equation we get

$$v = A^{\top} (AA^{\top})^{-1} A v + v_{N_A} \Rightarrow v - A^{\top} (AA^{\top})^{-1} A v = v_{N_A}$$

 $\Rightarrow (I - A^{\top} (AA^{\top})^{-1} A) v = v_{N_A}$

(d)

(i) Take $v \in \{x \in E \mid f(x) \ge c\}$ we have

$$f(v) \ge c > c - \frac{1}{k}$$
 for all $k > 1$

This shows that $v \in \{x \in E \mid f(x) > c - \frac{1}{k}\}$ for all k > 1.

(ii) Take $v \in \{x \in E \mid f(x) > c\}$. Let $f(v) = c + \frac{1}{k}$. We can always pick a k' such that $k' \ge k$ so that $f(v) = c + \frac{1}{k} \ge c + \frac{1}{k'}$. This shows that $\exists k' > 1$ such that $v \in \{x \in E \mid f(x) \ge c + \frac{1}{k'}\}$.

Exercise 3

(i)

Proof: Assume that $\exists A_1, A_2 : \mathbb{R}^n \to \mathbb{R}^n$ such that

$$\lim_{h \to 0} \frac{||f(x+h) - f(x) - A_1 h||}{||h||} = 0 \lim_{h \to 0} \frac{||f(x+h) - f(x) - A_2 h||}{||h||} = 0$$

Subtracting the two equations:

$$\lim_{h \to 0} \frac{||f(x+h) - f(x) - A_1 h||}{||h||} - \lim_{h \to 0} \frac{||f(x+h) - f(x) - A_2 h||}{||h||} = 0$$

$$\Rightarrow \lim_{h \to 0} \frac{||f(x+h) - f(x) - A_1 h - f(x+h) + f(x) + A_2 h||}{||h||} = 0$$

$$\Rightarrow \lim_{h \to 0} \frac{||A_2 h - A_1 h||}{||h||} = 0$$

$$\Rightarrow \lim_{h \to 0} \frac{||(A_2 - A_1)h||}{||h||} = 0$$

$$\Rightarrow \lim_{\alpha \to 0} \frac{||(A_2 - A_1)\alpha u||}{||\alpha u||} = 0$$

$$\Rightarrow \lim_{\alpha \to 0} \frac{\alpha^2 ||(A_2 - A_1)u||}{\alpha^2 ||u||} = 0$$

$$\Rightarrow \lim_{\alpha \to 0} \frac{||(A_2 - A_1)u||}{||u||} = 0$$

$$\Rightarrow \lim_{\alpha \to 0} \frac{||(A_2 - A_1)u||}{||u||} = 0$$

$$\Rightarrow \frac{||(A_2 - A_1)u||}{||u||} = 0$$

$$\Rightarrow ||(A_2 - A_1)u|| = 0$$

$$\Rightarrow A_2 = A_1$$
linear transformation is unique

(ii)

(iii)

$$A = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

Exercise 4

(a)

The function can be rewritten as

$$f(u) = \frac{1}{2}||u - c||^2 + \frac{\mu}{2}||Au||^2$$

where $u \in \mathbb{R}^n$, $A \in \mathbb{R}^{N \times N}$ and each element at row i < N and column j is defined as

$$A_{ij} := \begin{cases} -1 & \text{if } i = j \\ 1 & \text{if } i = j+1 \\ 0 & \text{otherwise} \end{cases}$$

and its last row is defined as $A_{Nj} := 0$

(b)

For each entry of $\nabla f(u)$ we have

$$\frac{\partial f}{\partial u_i} = \begin{cases} u_i - c_i + \mu(u_i - u_{i+1}) & \text{if } i = 1\\ u_i - c_i + \mu(-u_{i-1} + 2u_i - u_{i+1}) & \text{if } 1 < i < n\\ u_i - c_i + \mu(-u_{i-1} + u_i) & \text{if } i = n \end{cases}$$

(c)

$$\nabla f(u) = u - c + \mu A^{\top} A u$$

which can be verified since each element of $A^{\top}A$ can be expressed as

$$(A^{\top}A)_{1j} = \begin{cases} 1 & \text{if } j = 1\\ -1 & \text{if } j = 2\\ 0 & \text{otherwise} \end{cases}$$

$$(A^{\top}A)_{ij} = \begin{cases} -1 & \text{if } j = i - 1\\ 2 & \text{if } j = i\\ -1 & \text{if } j = i + 1\\ 0 & \text{otherwise} \end{cases}, 2 \le i \le N - 2$$

$$(A^{\top}A)_{Nj} = \begin{cases} -1 & \text{if } j = N - 1\\ 1 & \text{if } j = N\\ 0 & \text{otherwise} \end{cases}$$

(d)

$$\nabla f(u) = 0 \Rightarrow u - c + \mu A^{\top} A u = 0$$
$$\Rightarrow (\mu A^{\top} A + I) u = c$$

 $\mu A^{\top}A + I$ is symmetric. if $\det(\mu A^{\top}A + I) \neq 0$ then $\mu A^{\top}A + I$ is invertible and we can write

$$u = (\mu A^{\top} A + I)^{-} 1c$$

(e)

Argue that if $\mu A^{\top}A + I$ is invertible then the solution is unique.