Importance of Computation In Physics

Jadavpur University

Contents

1	Nonlinear Algebric Equation		
	1.1 Introduction	Ę	
	1.2 The Bisection Method	Ę	
	1.3 Some examples on Bisection Method	7	
2	Ordinary Differential Equation	g	
3	Partial Differential Equation	11	
4		13	
5		15	
6		17	
7		19	
8		21	
9		23	

4 CONTENTS

Nonlinear Algebric Equation

1.1 Introduction

An expression is a number, a variable, or a combination of numbers and variables and operation symbols. An equation is made up of two expressions connected by an equal sign. For example, 3x - 2 is an expression. Also 5 + x is an expression. But an equation means that two different expressions are connected to each other by an equal to sign in between. For example, 3x - 2 = 5 + x is an equation.

Based on the degree and variable in the equations, they are classified as linear and nonlinear equations.

An equation in which the maximum degree of a term is one is called a linear equation. A linear equation forms a straight line on the graph.

An equation in which the maximum degree of a term is 2 or more than two is called a nonlinear equation. A nonlinear equation forms a curve on the graph.

In this chapter we will discuss about how to solve Nonlinear Equations in Computer.

1.2 The Bisection Method

In this section we consider a popular way of finding root named **Bisection Method**. This process suggest the way of finding a **root**, or a solution, of an equation of the form f(x) = 0, for a given function f.

Let, f is a continuous function defined on the interval [a, b], with f (a) and f(b) of opposite sign. A number p exists in (a, b) with f(p) = 0.

Let, $a_1 = a$ and $b_1 = b$, and p_1 be the midpoint of [a, b] then,

$$p_1 = \frac{a_1 + b_1}{2}$$

If $f(p_1) = 0$, then Root or $p = p_1$, and we are done. If $f(p_1) \neq 0$, then $f(p_1)$ is positive or negetive,

- If $f(p_1)$ and $f(a_1)$ have the same sign, then $p \in (p_1, b_1)$. Then set $a_1 = p_1$ and b_1 keep same.
- If $f(p_1)$ and $f(a_1)$ have the opposite sign, then $p \in (a_1, p_1)$. Then set $b_1 = p_1$ and a_1 keep same.

Then reapply the process to the new interval $[a_1, b_1]$.

Lets write the code in FORTRAN...

```
subroutine nonlnr_eqn(n,interval,a1,b1,p1,root)
integer ::n
real ::a1, b1, p1, root
1 b1 =a1 + interval ! interval value depends on problem
               ! Variable to get relief from Infinte Loop
  if ((f(a1) * f(b1)) > 0.0) then
     a1 = b1
     goto 1
  else
     p1 = ((a1 + b1) / 2)
     n = n + 1
     if(n == 100)then
        write(*,*)"Infinite loop..."
     if(abs(f(p1)) < 0.001)then
        root = p1 ! This is the Solution
        goto 3
     else
        if(f(p1) < 0)then
          a1 = p1
          goto 2
        else
          b1 = p1
          goto 2
        endif
     endif
  endif
3 continue
end subroutine
```

Here "f" is a function, like,

```
real function f(x)
implicit none
real::x
f = (x**2 - 2) ! Expression of function
end function
```

In this way we can find any nonlinear equations roots by changing the expression of function only.

1.3 Some examples on Bisection Method

PROBLEM 01: Find the value of $\sqrt{2}$

```
Let, x = \sqrt{2} then we can write, x^2 = 2 and x^2 - 2 = 0.
```

This is a nonlinear equation in the form of f(x) = 0. So we can find the value of x by putting the left hand side expression in the function of the code. The value of x is the value of $\sqrt{2}$.

Lets set $a_1 = 0$ and interval value is 0.1

Main program -

```
program main
implicit none
real :: a1,b1,p1,n,interval
real :: f
real :: root
   interval = 0.1
   a1 = 0
call nonlnr_eqn(n,interval,a1,b1,p1,root)
write(*,*)'Root=',root
end program main
```

Function -

```
real function f(x)
implicit none
real::x
f = (x**2 - 2) ! Expression of function
end function
```

Subroutine of Bisection Method -

```
subroutine nonlnr_eqn(n,interval,a1,b1,p1,root)
integer ::n
real ::a1, b1, p1, root
1 b1 =a1 + interval ! interval value depends on problem
               ! Variable to get relief from Infinte Loop
  if ((f(a1) * f(b1)) > 0.0) then
     a1 = b1
     goto 1
  else
     p1 = ((a1 + b1) / 2)
     n = n + 1
     if(n == 100)then
        write(*,*)"Infinite loop..."
     endif
     if(abs(f(p1)) < 0.001)then
        root = p1 ! This is the Solution
        goto 3
     else
        if(f(p1) < 0)then
          a1 = p1
          goto 2
        else
          b1 = p1
           goto 2
        endif
     endif
  endif
3 continue
end subroutine
```

From here we get the value of $\sqrt{2}$ is = 1.41448975

Being Numarical Solution, the roots are aproximate, it depends on many things like value of interval, considerable decimal digits of root, etc. Dependency on interval value shown in a table.

No.	Interval	Value of $\sqrt{2}$
1.	0.1	1.41448975
2 .	0.2	1.41452622
3 .	0.3	1.41417384
4.	0.4	1.41437984
5.	0.5	1.41407776
6.	0.6	1.41439664
7.	0.7	1.41422737
8.	0.8	1.41405022
9.	0.9	1.41434956
10 .	1.0	1.41415787

<u>PROBLEM 02</u>: Show that $f(x) = x^3 + 4x^2 - 10$ has a root in [1,2], and use the Bisection method to determine an approximation to the root that is accurate to at least within 10^{-4} .

PROBLEM 03: Find the value of x where, tan(x) = x.

PROBLEM 04:

Ordinary Differential Equation

Partial Differential Equation

14 CHAPTER 4.

CHAPTER 5.

18 CHAPTER 6.

20 CHAPTER 7.

CHAPTER 8.