

FUNCION DE ACTIVACION

Una red neuronal contiene una cantidad determinada de neuronas que generan una salida a una entrada dada. En cada neurona tenemos lo siguiente: una operación lineal (multiplicación de matrices) y una función de activación.

Cada una de las capas de nuestra red utilizará una función de activación para reconstruir o predecir algún valor. Se utilizan funciones de activación para evitar el comportamiento lineal y que el modelo pueda adaptarse para trabajar con la mayor cantidad de datos posibles.

A continuación, se mencionan las funciones de activación más utilizadas. Cada una tiene una aplicación diferente y deberá ser escogida de acuerdo con el problema que la red neuronal esté intentando resolver.

SIGMOID

Esta función también conocida como función logística, está en un rango de valores de salida está entre cero y uno por lo que la salida es interpretada como una probabilidad.

RELU

Está función es la más utilizada debido a que permite el aprendizaje muy rápido en las redes neuronales.

SOFTMAX

Transforma las salidas a una representación en forma de probabilidades, de tal manera que el sumatorio de todas las probabilidades de las salidas de 1, tiene buen desempeño en las últimas capas.

TANGENTE HIPERBOLICA

Función continua similar a la Sigmoide con salida en escala de [-1, +1].

UTILIZANDOLAS EN TENSORFLOW

```
mi_red= Sequential([
   Dense(10, activation= 'relu'),
   Dense(3, activation= 'relu'),
   Dense(10, activation= 'softmax')
])
```

En TensorFlow v2.0 cuando diseñamos el módelo de nuestra red neuronal, ya sea convolucional o tradicional, tendremos que decidir la función de activación que será utilizada en cada capa. Recordemos que el uso de las diferentes funciones dependerá del problema que estemos tratando de resolver.