Amélioration de la réactivité des réseaux pair à pair pour les MMOGs

Xavier Joudiou, Encadré par: S.Legtchenko & S.Monnet

Université Paris VI, Master SAR

8 Septembre 2010

- Introduction
- État de l'art
 - Solipsis
 - Les traces
 - BlueBanana
- 3 Les améliorations
- 4 Le cache pour les zones denses
 - Explications du cache pour les zones denses
 - Résultats pour le cache
 - Conclusion sur le cache des zones denses
- 5 L'amélioration du préchargement des données
 - Explications sur l'amélioration du préchargement des données
 - Résultats pour l'amélioration du préchargement des données
 - Conclusion sur l'amélioration du préchargement des données
- **6** Conclusion

Présentation des points importants à la compréhension du sujet :

- Architecture pair à pair Vs Client-Serveur
- Définition de l'overlay

Architecture pair à pair Vs Client/Serveur

Architecture client-serveur

Architecture pair-à-pair

- Problème du passage à l'échelle de l'architecture Client/Serveur.
- Solutions p2p existantes pas assez réactives pour assurer une latence suffisante.

Définition de l'overlay

- Un overlay est un réseau informatique formant un graphe où les liens sont déterminés avec un critère logique.
- Réseau physique \neq Réseau virtuel

- Solipsis
- Étude des traces des joueurs de MMOG
- Blue Banana

Solipsis:

- propose un monde virtuel entièrement décentralisé et scalable.
- met en place un overlay avec une forte malléabilité applicative.
 - Un réseau est malléable si sa topologie est dynamiquement déterminé par l'application reposant sur ce réseau.
 - La topologie s'adapte à l'application, si deux avatars se rapprochent dans le monde virtuel, les nœuds dans le réseau logique doivent devenir progressivement voisins.

Connaissance locale :

Une entité doit être connectée avec tous ses plus proches voisins, elle peut connaître des entités en dehors de son environnement virtuel local. Toute entité située à l'intérieur de l'environnement d'une entité doit faire parti des voisins de cette entité.

• Connectivité globale :

Toute entité virtuelle doit se trouver à l'intérieur de l'enveloppe convexe contenant l'ensemble de ses voisins logiques.

Des études des traces des joueurs de MMOG, ont permis de faire plusieurs observations sur l'environnement virtuel :

- Présence de zones denses
- Mouvements erratiques dans les zones denses
- Mouvements rectilignes et rapides entre les zones denses

Blue Banana introduit trois états, pour un avatar :

- **H**(alted) : l'avatar est immobile.
- T(ravelling): l'avatar se déplace rapidement sur la carte et il a une trajectoire droite.
- **E**(xploring): l'avatar est en train d'explorer une zone, sa trajectoire est confuse et sa vitesse est lente.

Mise en place d'un mécanisme d'anticipation des mouvements des avatars.

- Si état T, il cherche des nœuds sur sa trajectoire.
- Evaluation du nœud, propagation de la requête.
- Réponse au nœud qui a demandé le préchargement.

• Le cache pour les zones denses

- Le cache pour les zones denses
- Le préchargement amélioré des données

- Le cache pour les zones denses
- Le préchargement amélioré des données

D'autres solutions ont été étudiées, mais sans être implémentées.

- Mouvements de groupe
- Connaissance des routes entre les zones denses

Différentes métriques utilisées pour analyser les résultats :

- Nombre de messages à un instant
- Cohérence de la topologie
 Nombre de nœuds dans la zone de connaissance mais pas dans l'ensemble des voisins

En fonction du degré de mobilité.

Le cache pour les zones denses

- Explications du cache pour les zones denses
- Les résultats
- Conclusion sur le cache

- Chaque nœud de l'environnement a un cache.
- Il est utilisé seulement par les nœuds en état **E**(xploring).
- Deux types de cache mis en place (retour simple et retour multiple).

Trois types de recherche dans le cache :

N	Critère de sélection	Avantages	Inconvénients
1	Comparaison distances	Simplicité	Distance ≠ utile, aide pas enveloppe
2	Aide enveloppe	+ Enveloppe OK	- bon règles Solipsis
3	Zone de connaissance	Simplicité	aide pas enveloppe

La version 3 a été conservé pour les tests finaux.

du cache redeviennent ses voisins (en bleu)

Différents mécanismes pour le cache :

- Mise à jour des données du cache
- Contact un nœud du cache s'il est là depuis longtemps
- Aide les nœuds voisins lors de recherche de nœud

Paramètre	Valeur
Taille du cache	25
Limite de distance	1500
Limite de temps	1500
Contact Nœud	Faux
Mise à jour du cache	Faux
Aide aux voisins	Vrai

•0

Nombre de messages

Solution	Nombre de messages
Cache simple	5% de msg en moins
Cache multiple	5% de msg en moins

Moins de messages le cache s'utilise immédiatement sans message.

Cohérence de la topologie

Solution	Cohérence topologie
Cache simple	Équivalente
Cache multiple	3% de gains

Gain sur la cohérence de la topologie si retour multiple.

La mise en place du cache permet :

- d'économiser des messages.
- d'améliorer la cohérence de la topologie.

Amélioration possible en testant toutes les combinaisons de paramètres (mise à jour, contact d'un nœud, taille du cache, etc).

L'amélioration du préchargement des données

- Explications sur le préchargement amélioré
- Les résultats
- Conclusion sur le préchargement

Situation : Le préchargement de Blue Banana prend tous les nœuds, à bonne distance, dans le cône.

Problème: Des nœuds inutiles sont préchargés.

Solution: Choisir plus finement les nœuds qui vont être sélectionnés.

Comment : Regarder la direction des nœuds et leur vitesse.

Préchargement si :

- l'angle du nœud est proche du nœud courant
- Somme des normes des vecteurs ≥ Norme du vecteur de prefetch $+/-\Delta$
- l'angle du nœud est inverse par mais sa norme est inférieure à celle du nœud courant

•0

Nombre de messages

Solution	Nombre de messages
Normal	8% de msg en plus
Amélioré	4% de msg en plus

 Gain en terme de messages car préchargement plus efficace, et donc moins de recherche de voisins.

0

Cohérence de la topologie

So	lution	Cohérence topologie
No	ormal	15% de gains
An	nélioré	16% de gains

 Léger gain sur la cohérence de la topologie car élimination du préchargement de certains nœuds inutiles.

Notre amélioration du préchargement permet :

- d'économiser des messages par rapport au préchargement normal.
- d'améliorer légèrement la cohérence de la topologie.

Possibles améliorations du préchargement en regardant d'autres paramètres, comme la distance avec les nœuds.

- Les solutions ont permis d'améliorer la réactivité des réseaux pair à pair pour les MMOGs.
- Meilleur cohérence de la topologie et moins de message que dans Blue Banana.
- Perspectives :
 - Meilleure utilisation des mécanismes du cache
 - Amélioration du préchagement
 - Mouvements de groupe
 - Route entre les zones denses.

Merci.

Questions?