- In [1]: import numpy as np
 import pandas as pd
 from matplotlib import pyplot as plt
 from sklearn.ensemble import RandomForestClassifier
 from sklearn.model_selection import train_test_split
 %matplotlib inline
 a=pd.read_csv('classifiaction test2.csv')
 a.head()
- Out[1]: label column_0 column_1 column_2 column_3 column_4 column_5 column_6 column_7 column_8 ... column_774 0 0 0 0 ... 1 2 0 0 0 0 0 0 0 ... 7 0 0 0 0 3 0 0 0 0 0

0 ...

5 rows × 785 columns

- In [2]: b=a.iloc[2,1:].values
 b=b.reshape(28,28).astype('uint8')
 plt.imshow(b)
- Out[2]: <matplotlib.image.AxesImage at 0x254d82b2f08>

- In [3]: df_x=a.iloc[:,1:]
 df_y=a.iloc[:,0]
 x_train, x_test, y_train, y_test=train_test_split(df_x,df_y,test_size=0.2,random_state=4)
 y_train.head()
- Out[3]: 3 7 1 2 4 7 2 0 Name: label, dtype: int64
- In [4]: rf=RandomForestClassifier(n_estimators=100)
 rf.fit(x_train,y_train)
- In [5]: pred = rf.predict(x_test)
 pred
- Out[5]: array([0], dtype=int64)
- In [7]: s=y_test.values
 count=0
 for i in range(len(pred)):
 if pred[i]==s[i]:
 count=count+1
 count
- Out[7]: 1
- In []: