Proposta de Projeto

Cinto de Ecolocalização para Cegos

Adriano Silva de Moraes Faculdade do Gama Universidade de Brasília - UnB Gama-DF, Brasil

I. JUSTIFICATIVA

Do total da população brasileira, 23,9% (45,6 milhões de pessoas) declararam ter algum tipo de deficiência. Entre as deficiências declaradas, a mais comum foi a visual, atingindo 3,5% da população brasileira. Entre os deficientes visuais 528.624 pessoas são incapazes de enxergar (cegos), de acordo com os dados do IBGE de 2010. Visando incluir da melhor maneira os deficientes visuais e resolver problemas que os portadores de deficiência visual enfrentam, como a mobilidade reduzida e a dependência de algum auxílio como cães guias, bengalas, parentes, amigos e etc.

II. OBJETIVOS

A dupla propõe a criação de um cinto eletrônico, composto por sensores ultrassônicos e vibradores, que ofereçam ao usuário a capacidade de se orientar no ambiente sem os incômodos gerados pelas ferramentas atuais.

III. BENEFÍCIOS

Os usuários devem tirar os mesmos proveitos que as ferramentas atuais, ou seja, saber com antecedência a distância dos obstáculos, evitando assim acidentes de locomoção, dar mais liberdade ao usuário para se locomover, oferecer ao usuário a capacidade de se locomover em público com mais autoconfiança, mas com o diferencial de utilizar um equipamento sutil e sem incovenientes para tal.

IV. HARDWARE

Lista de materiais:

- MSP-EXP430G2553LP
- Quatro sensores de distância ultrassônicos (HC-SR04)
- Quatro vibracall's (Modelo F1030300112)
- Resistores 4.7 KΩ
- Protoboard
- Jumpers
- Cinta elástica

Hachid Habib Cury Faculdade do Gama Universidade de Brasília - UnB Gama-DF, Brasil

A cinta elastica será a base para os quatro sensores, microcontrolador e para os demais dispositivos eletrônicos, conterá toda a circuitaria.

Os sensores ficarão distribuidos da seguinte maneira, 1 sensor apontado para cima de modo que identifique objetos a 50 cm do rosto do usuário, 1 sensor virado para baixo para que identifique obstáculos a 50 cm dos pés do mesmo e 2 sensores virados para frente, para que além de mostrar ao usuário obstaculos a 1 metro a sua frente, destingue em que

lado se encontram, possibilitando assim ao utilizador da cinta de ecolocalização saber aonde está a obstrução e a que distância se encontra do mesmo. Para isso, serão distribuidos vibracall's ao longo da cinta que funcionarão da seguinte forma, os vibracall da esquerda e da direita mostraram objetos que estão na esquerda e a direita do usuário e sua proximidade por vibração (objetos mais pertos vibraram mais que objetos mais longes), o sensor de cima vibrará com força total quando identificar algo perto do rosto do utilitário e o sensor de baixo terá dois modos de vibração, vibrará ininterruptamente para degraus, meu fios e etc, e multiplas vibrações para buracos.

V. SOFTWARE

O código em anexo foi encontrado no canal Misael Saenz que utiliza o software Energia para ler a distância em centimetros. Funcionando da seguinte maneira, o Trigger do sensor é colocado em alto durante 10 microsegundos, definimos uma variavel que retornará o tempo em microsegundos em que o Echo ficou em alto. A distância em centimetros é determinada com as seguintes fomulas

aux = (tiempo * 34) / 2;cm = (aux / 100) * (0.10);

Após isso, o Código plota a distância em cm com um certo delay para a o usuário posso ver.

VI. REVISÃO BIBLIOGRÁFICA

- [1] Davies, J., MSP430 Microcontroller Basics, Elsevier, 2008.
- [2] BRASIL, IBGE. Pesquisa sobre quantidade de cegos no Brasil, Censo Demográfico, 2010. Disponivel em: <www.ibge.gov.br>.

Acesso em: 30/04/2018.

VII. ANEXOS

```
#define echoPin 3
#define trigPin 2
long mm, cm, aux, tiempo;
```

void setup()

Serial.begin(9600);

pinMode(trigPin, OUTPUT); //configuramos pin como salida

pinMode(echoPin, INPUT); //configuramos pin como entrada

}

void loop()

{
citalWrite(triaPin_I_OW): //

digitalWrite(trigPin, LOW); //ponemos un cero a la salida de 2 micro segundos delayMicroseconds(2);

digitalWrite(trigPin, HIGH); //ponemos un uno a la salida de 10 micro segundos

delayMicroseconds(10); //este pulso lo necesita el sensor de acuerdo a la hoja de datos

digitalWrite(trigPin, LOW); //ponemos en cero la salida para terminar el pulso

tiempo = pulseIn(echoPin, HIGH); //mide un pulso a partir de que detecta el eco, el eco comienza en uno y se hace cero, entrega el valor en microsegundos

> //calculamos la distancia aux = (tiempo * 34) / 2; cm = (aux / 100) * (0.10); Serial.print(cm); Serial.print(" cm"); Serial.println(); delay(100);

}