INTRODUCTION

Stephen Cristiano Johns Hopkins University

DISCUSSION

Introduction

Introduction

BIOLOGY

Central Dogma

Single nucleotide polymorphisms

Copy number variation

BIOLOGY

PLATFORM

Affymetrix

CNV estimation

METHODS

Data

Model

Bayesian Mixture Model

DISCUSSION

Other models

Software

Future considerations

CENTRAL DOGMA OF MOLECULAR BIOLOGY

SINGLE NUCLEOTIDE POLYMORPHISM

SNPs

- ► Single Nucleotide Polymorphism are DNA sequence variations that differs at a single base among members of a population.
- ► Two common alleles at most SNPs (>1%)
- ► More rare can not be interrogated by high-throughput platforms. What is rare depends on the population.

AFFYMETRIX SNP CHIP TERMINOLOGY

Affymetrix SNP chip terminology

Genomic DNA:

TACATAGCCATCGGTANGTACTCAATGATGATA

PM probe for Allele A:

ATCGGTAGCCATTCATGAGTTACTA

PM probe for Allele B:

ATCGGTAGCCATCCATGAGTTACTA

Genotyping: answering the question about the two copies of the chromosome on which the SNP is located:

Is a person AA, AG or GG at this Single Nucleotide Polymorphism?

COPY NUMBER VARIATION

A loss or gain of chromosomal DNA copy number spanning hundreds to thousands of basepairs, or even entire chromosomes (aneuploidy)

- ► Structural variation that often arises from abnormal recombination events.
- ▶ Defined as 1 kilobase or larger.
- Gain and loss of copy number indicated increase risk to common diseases such as schizophrenia and driving processes of clonal selection in tumors
- ► Preferentially occur in repetitive regions of the genome.
- ► Accounts for as much as 12% of the human genome.

NORMAL RECOMBINATION DURING MEIOSIS

Nature Reviews | Genetics

PJ Hastings, 2009: Mechanisms of change in gene copy number

GERMLINE VS SOMATIC CNV

- ▶ DNA is collected from blood or tissue.
- ▶ The isolated DNA is typically amplified by PCR.
- Copy number changes during meiosis are present in all cells in an individual.
- ► In diseases such as cancer, recombination can occur during mitosis resulting in cells with different DNA copy numbers.
- ► Implication: for germline diseases, we expect the DNA copy number to be an integer. For cancer, noninteger DNA copy number is plausible due to heterogeneity of the cells within a tissue.

High throughput genotyping arrays can only detect low-copy repeats (0-5 copies).

Forms of DNA variation that we can not detect:

- ► Short or highly repetitive sequences such as LINEs and SINEs
- ▶ insertions
- ▶ inversions
- ▶ translocations

AFFYMETRIX PLATFORM

AFFYMETRIX PLATFORM

- Quickly scan for presence of particular genes in a biological sample.
- ► Each gene represented by a unique set of probe pairs (roughly 12-12 probe pairs per probe set)
- ► Each spot on array represents a single probe millions of copies.
- Probes fixed to array.
- ► A tissue sample is prepared so its mRNA has fluorescent tags.
- mRNA samples hybridize to probes.

OTHER PLATFORMS

- ► Other genotyping arrays (Illumina etc).
- Comparative genomic hybridization (CGH).
- ► Next generation sequencing: still very challenging for surveying copy number.

CNV ESTIMATION

INTRODUCTION

There are multiple modes of CNV estimation:

- ► By sample: segmentation of noisy marker-level estimates of copy number in individual genomes to infer the latent copy number.
- ▶ By locus: marker-level estimates directly in association models followed by smoothing the test statistics.
- ► Hybrid approach.

DATA

- ▶ 8,598 participants of European ancestry who participated in the Atherosclerosis Risk in Communities (ARIC) Study
- ► Genomic data: log R ratios and B allele frequencies measured from Affymetrix 6.0 arrays

LOW LEVEL SUMMARIES FOR 2 SAMPLES

METHOD

- ► A 6 state hidden Markov model was fit genome-wide to each subject.
- ► Approximately 500 regions were identified for which deletions or duplications are common in greater than 1% of subjects.
- ► GenomicRanges used to find copy number polymorphic loci from the HMM calls.
- ► A Bayesian finite Gaussian mixture model fit to the average log R ratios improves copy number estimates.

DEFINING REGIONS

- ► HMM gives non-perfectly overlapping sample specific regions.
- GenomicRanges used to to find copy number polymorphic loci from HMM calls.
- ► Regions can be complex.

DEFINING REGIONS

EMPIRICAL ESTIMATES

INTRODUCTION

- ► Mean and variances differ between loci.
- ► Expected value for diploid component is 0.
- ► When many deletions or duplications present, the diploid mean is biased away from 0.

DISCUSSION

- ► The average log R ratios follow a mixture of Gaussian distributions.
- ▶ A finite dimensional Gaussian mixture model assumes data $\mathbf{y} = (y_1, \dots, y_n) \in \mathbf{R}^n$ are a sample from a probability density function of the form

$$f(\mathbf{y}|K,\theta,\sigma^2,p) = \sum_{k=1}^{K} p_k \phi_k(\mathbf{y}|\theta_k,\sigma_k^2)$$

Where K represents the number of components, $\phi(\cdot | \theta, \sigma^2)$ is a Gaussian distribution with mean θ and variance σ^2 and $\sum_{k=1}^{K} p_k = 1$.

- \blacktriangleright Sample from a constrained full conditional on the θ 's ensure identifiability and help convergence.
- ► Run chains of 5000 with a burn-in of 1000 for the 415 regions for each of $K = 1 \dots 5$ and choose constraints to ensure the means have a separation of 0.2.
- ► The Bayesian Information Criterion (BIC) was used to assess which of the five models arising from the choices of K best fit the data.

Log-transformed intensities for the A and B allele for a SNP inside one locus on chromosome 4.

- ▶ BIC often overestimates the number of components.
- When skew is present in one of the components, a model with an additional component to capture the skew will be preferred.
- ► A mixture model of skewed normal distributions may be more robust.

▶ A finite dimensional skew-normal mixture model assumes data $\mathbf{y} = (y_1, \dots, y_n) \in \mathbf{R}^n$ are a sample from a from a probability density function of the form

$$f(\mathbf{y}|K,\theta,\sigma^2,\alpha,p) = \sum_{k=1}^{K} p_k f_{SN_k}(\mathbf{y}|\theta_k,\sigma_k^2,\alpha_k)$$

Where α a skewness parameter.

► Full conditionals are available for the proper parameter transformations and Gibbs sampling is still feasible. (Frühwirth-Schnatter, 2010)

ASSIGNMENT

INTRODUCTION

Need way to assign individuals to copy number classes.

- ► "Bayesian hierarchical mixture modeling to assign copy number from a targeted CNV array"
- ► For robustness, uses a mixture of t-distributions.
- ► Introduces a hierarchical structure over the mean and variance across samples from different data collections.
- ► Uses merging algorithm to combine neighboring components with significant overlap.
- ► Implemented in R package cnvCall.

CNVCALL

unmerged

CNVCALL

- ► R package CNPbayes available on github.
- ► MCMC methods implemented using Rcpp for rapid computations.
- ► Currently being prepared for submission to Bioconductor.

WHAT NEXT

INTRODUCTION

- ► Develop regression model for associating copy number classification with disease phenotype.
- ► Batch effects may be present. Consider adding a hierarchical structure to the parameters.
- ► Compare with other methods.

BIOLOGY

DISCUSSION

THANKS

- ► Rob Scharpf
- ► Gary Rosner
- ► Leonardo and Jean-Philippe