CPE/EE 323 Introduction to Embedded Computer Systems Homework I

1(25)	2(25)	3(25)	4 (25)	Total

Problem #1 (25 points) Address Space, Memory

Consider a hypothetical 24-bit processor called HYP24 with all registers, including PC and SP, being 24 bits long. The smallest addressable unit in memory is an 8-bit byte.

A. (4 points) What is the size of HYP24's address space in bytes and KB? How many address lines does HYP24 require?

Address space:	Bytes	Address space	e: KB (K	iloBytes).	
Address bus lines:					
B. (6 points) Assume th	nat first quarter o	of the address spac	e is dedicated for HYP2	24's RAM memory and the	upper half of
the address space is re-	served for HYP24	1's Flash memory. (Give address ranges for	r the RAM and Flash memo	ories. Fill in the
table below. What is th	ne size of the RAM	√ √ memory and the	Flash memory?		
		,	,		
			Start byte address	End byte address	
	RAM memo	ory			
	Flash mem	ory			
RAM memory size [Byt	es/KB]:				
Flash memory size [byt	:es/KB]:				

The MSP430F20x is a microcontroller with 64 KB of address space divided between code memory (flash), RAM memory, and input/output peripherals. It has 1,024 Bytes of RAM memory starting at the address 0x0200, and 256 Bytes of address space reserved for special purpose registers and 8-bit input/output peripherals (starting at the address 0x0000) followed by 256 Bytes reserved for 16-bit input/output peripherals. The flash memory of 8 KB resides at the top of address space (highest addresses in the address space).

C. (8 points) Determine the address map by filling in the following table.

Address	Address	Sections in
	[hexadecimal]	address space
Last Flash address		Flash Memory
First Flash address		
Last RAM address		RAM Memory
First RAM address		
Last I/O address (16-bit per.)		I/O address space
First I/O address (16-bit per.)		
Last I/O address (8-bit per.)		I/O address space
First I/O address (8-bit per.)		

D. (7 points) What is the program stack (what is it, where is it located, and how we deal with it)? What is the maximum stack size in the MSP430Fx described above? What should be the initial value of SP?

Problem #2 (25 points) MSP430 Addressing Modes, Instruction Encoding

Consider the following instructions given in the table below. For each instruction determine its length (in words), the instruction words (in hexadecimal), source operand addressing mode, and the content of register R7 after execution of each instruction. Fill in the empty cells in the table. The initial content of memory is given below. Initial value of registers R5, R6, and R7 is as follows: R5=0xF002, R6=0xF00A, R7=0xFF88. Assume the starting conditions are the same for each question (i.e., always start from initial conditions in memory) and given register values. The format of the first word of double-operand instructions is shown below. (Note: Op-code for MOV is 0100).

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Ор	-code			S-F	Reg		Ad	B/W		As		D-R	leg	

	Instr. Address	Instruction	Instr. Length [words]	Instruction Word(s) [hex]	Source Operand Addressing Mode	R7=? [HEX]
(i)	0x1116	MOV R5, R7	1	0x4507	Register	0xF002
(ii)	0x1116	MOV.B R5, R7	1	0x4547	Register	0x0002
(a)	0x1116	MOV 6(R5), R7				
(b)	0x1116	MOV.B 3(R5), R7				
(c)	0x1116	MOV.B -1(R6), R7				
(d)	0x1116	MOV EDE, R7				
(e)	0x1116	MOV.B TONI, R7				
(f)	0x1116	MOV &EDE, R7				
(g)	0x1116	MOV.B @R6, R7				
(h)	0x1116	MOV @R6+, R7				
(i)	0x1116	MOV #41, R7				
(j)	0x1116	MOV.B #27, R7				

Label	Address [hex]	Memory[15:0] [hex]
	0xF000	0x0504
	0xF002	0xFFEE
TONI	0xF004	0xCC06
	0xF006	0x3304
	0xF008	0xF014
	0xF00A	0x2244
EDE	0xF00C	0xABBA
	0xF00E	0xEFDD

Problem #3 (25 points) MSP430 Instructions, Addressing Modes

Consider the following instructions given in the table below. For each instruction determine addressing modes of the source and destination operands, source and destination addresses, and the result of the operation. Fill in the empty cells in the table. The initial content of memory is given in the table. The initial value of registers R2, R5, and R6 is as follows: SR=R2=0x0000 (V=0, N=0, Z=0, C=0), R5=0x0403, R6=0xC006. Assume the starting conditions are the same for each question (i.e., always start from initial conditions in memory) and given register values.

Label	Address [hex]	Memory[15:0]
		[hex]
	0x0400	0xFEEE
	0x0402	0xA000
EDE	0x0404	0xA4BC
Label	Address [hex]	Memory[15:0]
		[hex]
	0xC000	0x0504
	0xC002	OxFEEE
TONI	0xC004	0xA8FA
	0xC006	0x33F4
	0xC008	0xF014
DEN	0xC00A	0x2244
	0xC00C	0xCDDA

		rw-0					
	Instruction	Instr. Size in Words	Source Operand Addressing Mode	Destination Operand Addressing Mode	Source Address	Dest. Address	Result (content of a memory location or a destination register; and new value of flags (C,V,Z, and N).
(a)	ADD.B &TONI, R6						
(b)	SUBC TONI, -3(R5)						
(c)	RRC.B @R5+						
(d)	AND.W #0xAA55, EDE						

Notes of setting flags: All instructions set N and Z flags as usual. Specific details for C and V are as follows: RRC (V=0, C is loaded with the shifted out bit).

Problem #4 (25 points) MSP430 Instructions

Consider the following instructions given in the table below. For each instruction determine changes in registers after its execution. Fill in the empty cells in the table. Initial value of registers R2, R5, and R7 is as follows: R2=0x0007 (Status register), R6=0xBB66, R7=0x40A9. Assume the starting conditions are the same for each instruction in the table (i.e., always start from the initial conditions in registers). Note: Format of the register R2 is shown below. For a detailed description of the instructions use the 5xx family user guide.

Instruct	ion	R7=0x????	٧	N	Z	С
ADD.B	R6, R7	0x000F	0	0	0	1
ADD	R6, R7					
ADDC	R6, R7					
SUB.B	R6, R7					
SUBC	R6, R7					
CMP.B	R6, R7					
CMP	R6, R7					
BIT	R6, R7					
BIC	R6, R7					
BIS	R6, R7					
AND	R6, R7					
XOR.B	R6, R7					
SWPB	R7					
RRC.B	R7					
RRC	R7					
RRA.B	R7					
RRA	R7					