Basic Logic Gates

COMBINATIONAL GATES

Name	Symbol	Function	Truth Table	
AND	<u>А</u> х	X = A • B or X = AB	A B X 0 0 0 0 1 0 1 0 0 1 1 1	
OR	А X	X = A + B	A B X 0 0 0 1 1 1 1 1 1	
NOT	AX	X = A'	A X 0 1 1 0	
Buffer	x	X = A	A X 0 0 1 1	
NAND	А х	X = (AB)'	A B X 0 0 1 0 1 1 1 1 0	
NOR	А	X = (A + B)'	A B X 0 0 1 0 1 0 1 1 0	
XOR Exclusive OR	А X	X = A ⊕ B or X = A'B + AB'	A B X 0 0 0 0 1 1 0 1 1 1 0	
XNOR Exclusive NOR or Equivalence		X = (A ⊕ B)' or X = A'B'+ AB	A B X 0 0 1 0 1 0 1 0 0 1 1 1	

Intrduction to Computer Architecture and Organization

Rules of Boolean Algebra

1.
$$A + 0 = A$$

2.
$$A + 1 = 1$$

5.
$$A + A = A$$

6.
$$A + \overline{A} = 1$$

10.
$$A + AB = A$$

11.
$$A + \overline{A}B = A + B$$

12.
$$(A + B)(A + C) = A + BC$$

3.
$$A \cdot 0 = 0$$

4.
$$A \cdot 1 = A$$

7.
$$A \cdot A = A$$

8.
$$A \cdot \overline{A} = 0$$

9.
$$\overline{\overline{A}} = A$$

DeMorgan's Theorems

$$\overline{X+Y} = \overline{X}\overline{Y}$$

$$\overline{XY} = \overline{X} + \overline{Y}$$

Intrduction to Computer Architecture and Organization

Simplify using boolean Algebra

$$=B+AC$$

Combinational Circuit

MET CS 2024

Combinational Circuits

- Full Adder
- Decoder
- Multiplexer

Digital Logic and Computer Architecture

MET CS 2024

 $M=0 \rightarrow F=x+y$

 $M=1 \rightarrow F = x - y$

Revision

Carry Propagate Adder (CPA)
Adding Two 4-Bits Numbers

Adding Two 4-Dits Number

Carry Propagate Adder (CPA) Adding Two 8-Bits Numbers

Decoders

Decoders

Inputs			Outputs							
\mathbf{A}_2	A ₁	\mathbf{A}_{0}	D ₇	D_6	D ₅	D_4	D ₃	D_2	D ₁	Do
О	О	0	О	О	0	0	О	0	0	1)
O	O	1	О	O	O	О	О	0	1	0
O	1	O	О	O	O	O	0	1	0	O
O	1	1	О	O	O	0	1	0	O	O
1	O	O	О	O	0	1	0	O	O	O
1	O	1	О	0	1	0	O	O	O	O
1	1	O	0	1	0	O	O	O	O	O
1	1	1	1	0	O	O	О	O	O	O

Decoders

DEC 2x4

Combinational Logic Implementation using Decoder & OR Gates

Multiplexers

A Single Bit 4-to-1 Line Multiplexer

D Flip flop

Function Table

D	Q(t+1)	Output Follows
0	0	Follows Input
1	1	IIIpat

Equations

$$Q(t+1) = D$$

T Flip flop

$$Q(t+1) = T \oplus Q(t)$$

JK Flip flop

Function Table

J	K	Q(t+1)	
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	$\overline{Q}(t)$	<u>Toggle</u>

$$Q(t+1) = J\overline{Q}(t)+\overline{K}Q(t)$$

Design of Sequential Circuit

Example:

Design a 3 bit Counter (Using "T" FF) which counts in binary form as follows; 000, 001, 010, ... 111, 000, 001, ...

2- State diagram:

Solution

4- State Table:

5- K-Map for FFs inputs and circuit Outputs

5- K-Map for FFs inputs and circuit Outputs

6- Circuit diagram:

