# Assignment 5

#### Pranav Kasela 846965

### Solution of the problem

The objective of the assignment is to maximize the reward in following condition:



Figure 1: Representation of the problem

The initial polict  $\pi_0$  is:

- $0 \rightarrow 2$
- $2 \rightarrow 5$
- $1 \rightarrow 4$

The state function of the nodes 3, 4, 5, 6, which remains costant will be not be calculated or written.

The state function for the initial policy is:

$$V^{\pi_0}(0)=\max\{0+\gamma\cdot 0,0+\gamma\cdot 2\}=2$$

$$V^{\pi_0}(1) = \max\{0 + \gamma \cdot 4, 0 + \gamma \cdot 0\} = 4$$

$$V^{\pi_0}(2) = \max\{0 + \gamma \cdot 2, 0 + \gamma \cdot 3\} = 3$$

where the first argument indicates the path to the left and the second argument indicates the path to the right.  $\gamma$ , the discount factor, has been decided to be = 1.



Figure 2: Inital Policy  $\pi_0$  Representation

## Policy $\pi_1$

The new policy  $\pi_1$  now is:

- $0 \rightarrow 2$
- $2 \rightarrow 6$
- $1 \rightarrow 3$



Figure 3: Policy  $\pi_1$  Representation

The state function in  $\pi_1$  is:

$$V^{\pi_1}(0) = \max\{0 + \gamma \cdot 4, 0 + \gamma \cdot 3\} = 4$$
  
$$V^{\pi_1}(1) = \max\{0 + \gamma \cdot 4, 0 + \gamma \cdot 0\} = 4$$

$$V^{\pi_1}(2)=\max\{0+\gamma\cdot 2,0+\gamma\cdot 3\}=3$$

#### Policy $\pi_2$

The new policy derived from the state function is  $\pi_2$ :

- $0 \rightarrow 1$
- $2 \rightarrow 6$
- $1 \rightarrow 3$

Actually this is the best path, but to confirm the convergence the next step is needed.

It can be verified immediatly that the state function does not change and that  $\pi_3 = \pi_2$ , which is the condition for the convergence.



Figure 4: Policy  $\pi_2 = \pi_3$  Representation



Figure 5: Final Solution Representation