$0.1 \quad 09.09.2019$

0.1.1 Ещё больше определений

Опр

1.
$$A = \lim_{\substack{x \to +\infty \\ y \to +\infty}} f(x,y)$$
, если $orall \mathcal{E} > 0 \; \exists M > 0 : x > M \; y > M \Rightarrow |f(x,y) - A| < \mathcal{E}$

2.
$$A = \lim_{\substack{x \to +\infty \ y \to +\infty}} f(x,y)$$
, если $\forall \mathcal{E} > 0 \; \exists M > 0 : |x| > M \; |y| > M \Rightarrow |f(x,y) - A| < \mathcal{E}$

3.
$$A=\lim_{P\to\infty}f(P)\ P\in\mathbb{R}^2,$$
 если $orall \mathcal{E}>0\ \exists M>0:
ho(0,P)>M\Rightarrow |f(x,y)-A|<\mathcal{E}$

Замечание

Демидович по первым двум определениям

Опр

Для конечного предела:
$$A=\lim_{x\to a} f(x,y),$$
 если $\forall \mathcal{E}>0 \quad \exists M>0 \quad \delta>0: y>M \quad |x-a|<\delta\Rightarrow |f(x,y)-A|<\mathcal{E}$

0.1.2 Ещё больше примеров

Пример

$$\lim_{\substack{x \to +\infty \\ y \to +\infty}} \left(\frac{xy}{x^2 + y^2}\right)^{x^2}$$

Решение

Заметим, что
$$\frac{xy}{x^2+y^2} \leqslant \frac{1}{2} \Rightarrow 2xy \leqslant x^2+y^2 \Rightarrow 0 \leqslant (x-y)^2$$
 для х $\neq y$ Значит дробь стремится к 0

Пример

$$\overline{\lim_{\substack{x \to 0 \\ y \to 0}} (\frac{xy}{x^2 + y^2})^{x^2}}$$

Решение

При
$$x = y$$
 предел $\frac{1}{2}$
При $x = y^2$ предел 0

Пример

Решение

Первый не имеет предела $(x=y,\,x=\sqrt{y}).$ Второй $\frac{\sqrt{3}}{2}.$ Третий 0

$$\frac{ \displaystyle \frac{ \displaystyle \text{Пример}}{\displaystyle \lim_{\substack{x \to +\infty \\ y \to +\infty}}} \underline{sin(y-x^2)}{y-x^2}$$

Решение

$$z = y - x^2, z \to 0 \Rightarrow x, y \to 0$$
$$|z| \leqslant |x| + |y| \leqslant 2\sqrt{x^2 + y^2}$$

$$\frac{\mathbf{\Pi}\mathbf{pимеp}}{f} = \frac{1-\sqrt[3]{sin^4x+cos^4y}}{\sqrt{x^2+y^2}},$$
 найти $\lim_{\substack{x\to 0\\y\to 0}} f$

Решение

$$\overline{1-\sqrt[3]{t}}_{t\to 1}\frac{1-t}{3} \text{ (т.к. } 1-\sqrt[3]{t}=\frac{1-t}{1+\sqrt[5]{t}+\sqrt[3]{t^2}})$$
 Значит $\lim_{\substack{x\to 0\\y\to 0}}f=\lim_{\substack{x\to 0\\y\to 0}}\frac{1}{3}\frac{1-(sin^4x+cos^4y)}{\sqrt{x^2+y^2}}=\lim_{\substack{x\to 0\\y\to 0}}\frac{2sin^2y-sin^4y-sin^4x}{3\sqrt{x^2+y^2}}$ Заменим по Тейлору:
$$=\lim_{\substack{x\to 0\\y\to 0}}\frac{2y^2+\overline{o}(y^3)-x^4+\overline{o}(x^6)}{3\sqrt{x^2+y^2}}$$
 Попробуем оценить по модулю $|\frac{2y^2-x^4}{\sqrt{x^2+y^2}}|$, заметим что $y^2\leqslant x^2+y^2$, $x^4\leqslant 2(x^2+y^2)\leqslant x^2+y^2$ (для $x^2+y^2<1$), чтобы избавиться от \overline{o} оценим так: $\overline{o}+y^2\leqslant 2(x^2+y^2)$, $\overline{o}+x^4\leqslant 2(x^2+y^2)\leqslant x^2+y^2$ Тогда $|\frac{2y^2-x^4}{\sqrt{x^2+y^2}}|\leqslant 2\frac{3(x^2+y^2)}{\sqrt{x^2+y^2}}\leqslant 6\sqrt{x^2+y^2}\to 0$