Lecture2: Circuit theory

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

A simple problem

- Solve the problem.
 - What is the current?

It is an easy problem.

Elements

- Resistors, capacitors, etc
 - They can have multiple terminals.
 - A resistor has two terminals.
 - A diode has two terminals.
 - A MOSFET has three (or four) terminals.

Convention for current

Terminal current

Conventionally, an in-coming current is regarded as positive.

Nodes

- A point to which multiple terminals are tied.
 - (Usually, a dot is used to represent a node.)
 - There is a special node, GND.

How to describe a circuit

- Of course, we can draw a circuit schematic. What else?
- A netlist for this circuit looks like:

Format for two-terminal devices

elementlabel node1 node2 value

RC filter

A netlist for this circuit looks like:

```
c1 in out 5e-12
r1 out 0 2e6
vin in 0 1.5
```


Circuit analysis (1)

- The basic principle of circuit analysis is...
 - Kirchhoff's current law (KCL)!
 - At any node in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node.

Circuit analysis (2) - Optional

- Why do we have the KCL?
 - According to the Maxwell equations,

$$\nabla \cdot \mathbf{J}_{tot} = 0$$

 Here, the total current density is a sum of the particle current density and the displacement current density:

$$\mathbf{J}_{tot} = \mathbf{J}_{particle} + \frac{\partial}{\partial t} \mathbf{D}$$

- By integrating J_{tot} over a certain surface, we can calculate the current through that surface.
- Integration over a certain volume, V, yields

$$\int_{V} (\nabla \cdot \mathbf{J}_{tot}) d\mathbf{r} = \oint_{S} \mathbf{J}_{tot} \cdot d\mathbf{a} = \sum_{i} I_{i} = 0$$

- Here, S is the surface of V and I_i is a branch current.

Circuit analysis (3)

- Our simple problem
 - Following equations are identified.

$$I_{va} + I_{r1} = 0$$

KCL

$$V(out) - 0.0 = 1.0$$

Voltage source

$$I_{r1} = \frac{V(out)}{1000}$$

Resistor

Circuit analysis (4)

- Our real-world example
 - Write a netlist.
 - Calculate the node voltage of out.

Homework#1

- Due: 09:00, March 11
 - Submit your Homework answer sheet (hardcopy) directly to Mr.
 Suhyeong Cha, our TA.
 - His office: EECS building C-411
- Draw a circuit schematic of the following netlist.

```
v1 batt 0 1.5
rchar batt anode 1e6
cchar anode 0 1e-9
rpcss anode cathode 21
rload cathode 0 50
```