eDNAnalyzer MANUAL

eDNAnalyzer is a user-friendly and open-access computational tool, developed to process and filter taxonomic assignment data from metabarcoding studies, particularly derived from environmental DNA (eDNA) and invertebrate-derived DNA (iDNA) approaches.

How to cite eDNAnalyzer? Olimpio, L.W.G.F.; Gestich, C.C.; Saranholi, B.H.; Galetti Jr, P.M.; Freitas, P.D. 2025. eDNAnalyzer: a user-friendly computational tool for post-processing taxonomic assignment data derived from eDNA and iDNA metabarcoding (doi:).

How to access the eDNAnalyzer? You can find the eDNAnalyzer tool by accessing the GitHub repository at https://github.com/Leo-9821/eDNAnalyzer. The executable file (.exe) is available for Windows®, while the Python source code (.py files) can be used to run the program on Linux® or macOS®, in this case download the "main.py" and "metabar.py" files and "img" folder to the same directory in your computer, and make sure to install the pandas, Pillow, and openpyxl libraries.

How does eDNAnalyzer work? The software provides two main functions: "Threshold application" and "Results consolidation", each requiring a specific input file. Examples of input and output files are available in the repository https://github.com/Leo-9821/eDNAnalyzer/tree/master/example files.

An overview of the <u>general operation</u> of the program, showing its interfaces, is provided at the end of this manual, along with more detailed initial instructions for performing the two main functions of eDNAnalyzer: "<u>threshold application</u>" and "results consolidation".

Choosing the option Threshold Application

This option processes data from prior taxonomic assignments by calculating the total number of reads per OTU/ASV per sequencing sample, filtering out OTUs/ASVs according to an adopted threshold value (default \geq 0.05%), and generating outputs following selected filters.

Process Overview:

- 1. Calculate the total number of reads per OTU/ASV per sequencing sample, based on previous taxonomic assignments provided (<u>input file</u>).
- 2. Filter OTUs/ASVs according to an adopted cutoff value (default: ≥ 0.05%).
- Generate files (<u>output files</u>) containing the total number of reads per OTU/ASV, the OTUs/ASVs that did not pass by the threshold value and the OTUs/ASVs that passed.

Input File: a file in .xlsx or .csv format, (e.g., example_input.xlsx available at https://github.com/Leo-

9821/eDNAnalyzer/blob/master/example_files/eng/xlsx/1_threshold_application/input/input_example.xlsx), containing the taxonomic assignment data, must be provided with the following required columns:

- sequencing sample (identification of sequencing samples)
- area_sampler (indicating the collection area and DNA sampler e.g., water sample, soil sample, invertebrate used as sampler, etc. - and ensure that both areas and samplers are unambiguously identified to avoid errors during separation. Use an underscore to separate the area from the sampler: area sampler)
- point (indicating the collection point)
- n reads (number of reads per OTU/ASV)
- taxon (taxon determined from taxonomic assignment)

Extra columns containing additional information can also be included in the table, as shown in Table 1.

Table 1: Summary table of an input file showing the general information to perform the threshold application step.

sequencing_sample	barcode	tag	area_sampler	point	aliquot	otu/asv	n_reads	%_id	taxon
P08	12SrRNA	TA	P1_MQ	1	1	1	233	100	Nycticorax nycticorax
P08	12SrRNA	TB	P2_MC	2	1	1	50	99,26	Bos taurus
P08	12SrRNA	TB	P2_MC	2	1	2	41	99,25	Canis lupus
P08	12SrRNA	TB	P2_MC	2	1	4	3	100	Sus scrofa
P08	12SrRNA	TC	P2_MC	2	1	2	20	99,26	Canis lupus familiaris
P08	12SrRNA	TC	P2_MC	2	1	3	38	100	Canis lupus familiaris
P08	12SrRNA	TC	P2_MC	2	1	4	524	100	Canis lupus familiaris
P08	12SrRNA	TC	P2_MC	2	1	6	7	100	Canis lupus
P08	12SrRNA	TC	P2_MC	2	1	7	2	99,26	Equus caballus
P08	12SrRNA	TC	P2_MC	2	1	8	4	100	Leopardus pardalis
P08	12SrRNA	TC	P2_MC	2	1	9	2	100	Puma concolor
P08	12SrRNA	TF	P2_MC	2	1	1	6	100	plant junction region
P08	12SrRNA	TG	P2_MC	2	1	1	17	99,29	Canis lupus
P08	12SrRNA	TH	P3_MC	3	1	1	109	100	Bos taurus
P08	12SrRNA	TH	P3_MC	3	1	2	52	100	Canis lupus familiaris
P08	12SrRNA	TH	P3_MC	3	1	3	9	100	Pecari tajacu
P08	12SrRNA	TH	P3_MC	3	1	4	1859	100	Rhea americana
P08	12SrRNA	TH	P3_MC	3	1	5	7	100	Didelphis albiventris
P08	12SrRNA	TH	P3_MC	3	1	6	4	98,56	Gallus gallus
P08	12SrRNA	TH	P3_MC	3	1	7	6	97,81	Gymnogyps californianus
P08	12SrRNA	TH	P3_MC	3	1	9	4	100	Streptopelia decaocto
P08	12SrRNA	TI	P3_MQ	3	1	1	14	100	Bos taurus
P08	12SrRNA	TI	P3_MQ	3	1	2	127	100	Equus caballus
P08	12SrRNA	TI	P3_MQ	3	1	3	28	100	Sus scrofa
P08	12SrRNA	TI	P3_MQ	3	1	4	27	100	Tamandua tetradactyla
P08	12SrRNA	TI	P3_MQ	3	1	5	8	100	Hydrochoerus hydrochaeris
P08	12SrRNA	TI	P3_MQ	3	1	6	25	100	Bubulcus ibis
P08	12SrRNA	TI	P3_MQ	3	1	7	1013	100	Gallus gallus
P08	12SrRNA	TI	P3_MQ	3	1	8	4	100	Gallus gallus
P08	12SrRNA	TI	P3_MQ	3	1	9	2	100	Nycticorax nycticorax
P08	12SrRNA	TK	P3_MC	3	1	1	33	100	Zaedyus pichiy
P08	12SrRNA	TK	P3_MC	3	1	2	26	97,04	Euphractus sexcinctus
P08	12SrRNA	TL	P3_MC	3	1	1	1111	100	Canis aureus
P08	12SrRNA	TL	P3_MC	3	1	2	481	100	Zaedyus pichiy

Output Files: All tables can be saved in .xlsx and .csv format. See an example of a file provided in this step in Table 2.

Table 2: Summary table of an output file showing the data processed after running the threshold application step.

sequencing_sample	barcode	tag	area_sampler	point	aliquot	otu/asv	n_reads	%_id	taxon	final_taxon_curated
P08	12SrRNA	TA	P1_MQ	1	1	1	233	100	Nycticorax nycticorax	
P08	12SrRNA	TB	P2_MC	2	1	1	50	99,26	Bos taurus	
P08	12SrRNA	TB	P2_MC	2	1	2	41	99,25	Canis lupus	
P08	12SrRNA	TC	P2_MC	2	1	2	20	99,26	Canis lupus familiaris	
P08	12SrRNA	TC	P2_MC	2	1	3	38	100	Canis lupus familiaris	
P08	12SrRNA	TC	P2_MC	2	1	4	524	100	Canis lupus familiaris	
P08	12SrRNA	TC	P2_MC	2	1	6	7	100	Canis lupus	
P08	12SrRNA	TG	P2_MC	2	1	1	17	99,29	Canis lupus	
P08	12SrRNA	TH	P3_MC	3	1	1	109	100	Bos taurus	
P08	12SrRNA	TH	P3_MC	3	1	2	52	100	Canis lupus familiaris	
P08	12SrRNA	TH	P3_MC	3	1	3	9	100	Pecari tajacu	
P08	12SrRNA	TH	P3_MC	3	1	4	1859	100	Rhea americana	
P08	12SrRNA	TH	P3_MC	3	1	5	7	100	Didelphis albiventris	
P08	12SrRNA	TI	P3_MQ	3	1	1	14	100	Bos taurus	
P08	12SrRNA	TI	P3_MQ	3	1	2	127	100	Equus caballus	
P08	12SrRNA	TI	P3_MQ	3	1	3	28	100	Sus scrofa	
P08	12SrRNA	TI	P3_MQ	3	1	4	27	100	Tamandua tetradactyla	
P08	12SrRNA	TI	P3_MQ	3	1	5	8	100	Hydrochoerus hydrochaeris	
P08	12SrRNA	TI	P3_MQ	3	1	6	25	100	Bubulcus ibis	
P08	12SrRNA	TI	P3 MQ	3	1	7	1013	100	Gallus gallus	
P08	12SrRNA	TK	P3_MC	3	1	1	33	100	Zaedyus pichiy	
P08	12SrRNA	TK	P3_MC	3	1	2	26	97,04	Euphractus sexcinctus	
P08	12SrRNA	TL	P3_MC	3	1	1	1111	100	Canis aureus	
P08	12SrRNA	TL	P3 MC	3	1	2	481	100	Zaedyus pichiy	

Choosing the option Results Consolidation

This process will provide tables with the results, lists of species with their number of detections and reads. The tables can be generated by separating the lists by sampler, area, or both.

Process Overview:

- Edit the table containing the OTUs/ASVs of interest by completing the final_taxon_curated column with the selected taxonomic assignment after manual curation. This step aims to review and refine taxonomic identification to correct possible inconsistencies in assignment; for this, data on species distribution and field observations must be incorporated for better accuracy.
- 2. Input the curated table (<u>input file</u>) into eDNAnalyzer, and the program will process the data and then return the information of interest according to the filters selected by the user (e.g.; sampler, area, or sampler and area).
- 3. Generate files with consolidated results (<u>output files</u>) in .xlsx and .csv formats. When necessary, .csv files in a .zip file will be provided.

Input File: The input file (Table 3) for the "results consolidation" step is a table (in .xlsx or .csv format) containing the final taxon data from the previous threshold application step and the curated taxon list.

Table 3. Summary table of an input file showing the general information to perform the consolidation step.

sequencing_sample	barcode	tag	area_sampler	point	aliquot	otu/asv	n_reads	%_id	taxon	final_taxon_curated
P08	12SrRNA	TA	P1_MQ	1	1	1	233	100	Nycticorax nycticorax	Nycticorax nycticorax
P08	12SrRNA	TB	P2_MC	2	1	1	50	99,26	Bos taurus	Bos taurus
P08	12SrRNA	TB	P2_MC	2	1	2	41	99,25	Canis lupus	Canis lupus familiaris
P08	12SrRNA	TC	P2_MC	2	1	2	20	99,26	Canis lupus familiaris	Canis lupus familiaris
P08	12SrRNA	TC	P2_MC	2	1	3	38	100	Canis lupus familiaris	Canis lupus familiaris
P08	12SrRNA	TC	P2_MC	2	1	4	524	100	Canis lupus familiaris	Canis lupus familiaris
P08	12SrRNA	TG	P2_MC	2	1	1	17	99,29	Canis lupus	Canis lupus familiaris
P08	12SrRNA	TH	P3_MC	3	1	1	109	100	Bos taurus	Bos taurus
P08	12SrRNA	TH	P3_MC	3	1	2	52	100	Canis lupus familiaris	Canis lupus familiaris
P08	12SrRNA	TH	P3_MC	3	1	4	1859	100	Rhea americana	Rhea americana
P08	12SrRNA	TI	P3_MQ	3	1	1	14	100	Bos taurus	Bos taurus
P08	12SrRNA	TI	P3_MQ	3	1	2	127	100	Equus caballus	Equus caballus
P08	12SrRNA	TI	P3_MQ	3	1	3	28	100	Sus scrofa	Sus scrofa
P08	12SrRNA	TI	P3_MQ	3	1	4	27	100	Tamandua tetradactyla	Tamandua tetradactyla
P08	12SrRNA	TI	P3_MQ	3	1	6	25	100	Bubulcus ibis	Bubulcus ibis
P08	12SrRNA	TI	P3_MQ	3	1	7	1013	100	Gallus gallus	Gallus gallus
P08	12SrRNA	TK	P3_MC	3	1	1	33	100	Zaedyus pichiy	Euphractus sexcinctus
P08	12SrRNA	TK	P3_MC	3	1	2	26	97,04	Euphractus sexcinctus	Euphractus sexcinctus
P08	12SrRNA	TL	P3_MC	3	1	1	1111	100	Canis aureus	Canis lupus familiaris
P08	12SrRNA	TL	P3_MC	3	1	2	481	100	Zaedyus pichiy	Euphractus sexcinctus

Output File: all tables can be saved in .xlsx and .csv formats. See an example of a file provided in this step in Figure 1.

Figure 1. Summary table of an output file showing the consolidated results after running the consolidation step. Note that the taxon list is presented according to the filter selected in different guides of the datasheet.

	Α	В	С	D
1		Taxon	Reads	Detections in P6
2	0	Tapirus terrestris	4195	1
3	1	Canis lupus familiaris	1269	1
4	2	Pitheciidae	736	1
5	3	Coendou insidiosus	451	1
6	4	Callicebus nigrifrons	313	1
7	5	Bos taurus	212	1
8	6	Lycalopex vettulus	202	1
9	7	Rattus rattus	177	1
10	8	Puma concolor	164	1
11	9	Callithrix penicillata	118	1
12	10	Columba livia	113	1
13	11	Gallus gallus	98	1
14	12	Sus scrofa	94	1
15	13	Cingulata	88	1
16	14	Thraupis sayaca	65	1
17	15	Pecari tajacu	65	1
18	16	Callithrix sp.	63	1
19	17	Euphractus sexcinctus	48	1
20	18	Cairina moschata	39	1
21	19	Hydrochaeris hydrochaeris	38	1
22	20	Canidae	36	1
23	21	Dasypus novemcinctus	32	1
24	22	Chrysocyon brachyurus	19	1
25	23	Nymphicus hollandicus	18	1
26				
4	▶ P2	P4 P7 P6 P3 P8 (+)		

General Operation of the eDNAnalyzer Program

After accessing the program at https://github.com/Leo-9821/eDNAnalyzer, follow the steps by clicking on the options available.

Step 1: Select the language

Step 2: Read the manual and then choose one of the two processing options

Step 3: Choose the option "Threshold application"

Step 4: Load a file containing the taxonomic assignment data

Step 5: Check the provided folder directory to ensure that the file was loaded correctly.

Step 6: Insert a threshold value in percentage or keep empty to use the default (0.05%) and run the Threshold application step.

Step 7: After running the threshold application, three output files will be generated, each containing, respectively: (i) the calculated threshold value per sequencing sample, (ii) the OTUs/ASVs with number of reads below the adopted threshold value, and (iii) the OTUs/ASVs with number of reads equal to or greater than the adopted threshold. Save at least this last file in .xlsx or .csv formats, to use it for manual curation and then as an input file for data filtering in the results consolidation step.

Step 8: Choose the option "Results consolidation".

Step 9: Load a file containing a curated table after running the threshold application step

Step 10: Check the provided folder directory to ensure that the file was Loaded correctly.

Step 11: Select the options to filter the data by sampler and/or area

Step 12: If you selected the "sampler" option, type the sampler IDs, separating them from each other, by pressing the key "enter" from your keyboard. If you did not select the "Sampler" option in the previous step, leave this field blank.

Step 13: Save the tables generated with the data selected according to the chosen filters. To compress all the generated tables in .csv format into a single .zip file, select the ZIP option. Thus, you will save the consolidated results with the final list of taxa, and information about the number of reads that each taxon presented and the number of times it was detected.

