Информатика. Комбинаторика. Задание №8.

Сначала разберём правила умножения и сложения. Небольшая теоретическая справка:

Правило сложения.

Возьмём два множества со следующими элементами: $A = \{a_1, a_2, ..., a_n\}$ и $B = \{b_1, b_2, ..., b_m\}$. Тогда количество способов выбрать элемент из первого множества — n, из второго — m. То есть выбрать один элемент из множеств A и B: m+n.

Пример: Перед нами стоят две коробки. В первой коробке находятся 10 шариков, во второй — 13 шариков. Требуется найти количество способов выбрать один шарифк из двух коробок.

Количество способов выбрать шарик из первой коробки — 10, из второй — 13. Чтобы найти количество способов из двух коробок достать только один шарик, нам требуется сложить количество шариков в первой коробке и во второй: 10 + 13 = 23 (данные действия не зависят друг от друга, не имеет значения, в какой последовательности мы выбираем шарик)).

Правило умножения.

Возьмём два множества со следующими элементами: $A = \{a_1, a_2, ..., a_n\}$ и $B = \{b_1, b_2, ..., b_m\}$. Тогда количество способов выбрать элемент из первого множества - n, из второго - m. Чтобы выбрать ровно один элемент из первого множества A, а затем ровно один элемент из второго множества B, нужно умножить количество элементов из первого множества на количество элементов из второго: $n \cdot m$. То есть мы получим следующие пары:

```
a_1b_1, a_1b_2, a_1b_3, ..., a_1b_m;

a_2b_1, a_2b_2, a_2b_3, ..., a_2b_m;

a_3b_1, a_3b_2, a_3b_3, ..., a_3b_m;

...

a_nb_1, a_nb_2, a_nb_3, ..., a_nb_m;
```

Пример: Перед нами стоят две коробки. В первой коробке находятся 3 шарика: зелёный, синий, красный, во второй - 4 шарика: жёлтый, чёрный, серый, белый. Требуется найти количество способов выбрать последовательно шарик из первой

коробки, а затем из второй (у нас должно быть в результате два разноцветных шарика).

Решение: Количество способов выбрать шарик из первой коробки - 3, из второй - 4. Чтобы найти количество способов выбрать ровно один шарик из первой коробки, а затем ровно один шарик из второй коробки, нужно умножить количество шариков из первой коробки на количество шариков из второй коробки: $3 \cdot 4 = 12$. Мы можем это проверить, выписав все возможные комбинации:

Зелёный и Жёлтый

Зелёный и Чёрный

Зелёный и Серый

Зелёный и Белый

Синий и Жёлтый

Синий и Чёрный

Синий и Серый

Синий и Белый

Красный и Жёлтый

Красный и Чёрный

Красный и Серый

Красный и Белый

То есть на каждый шарик из первой коробки найдутся 4 шарика из второй коробки.

Данные складываются при независимых событиях, умножаются при зависимых событиях. Но что такое зависимые и независимые события? Посмотрим на примерах:

Задание №1: Полина нашла несколько программ по обмену в Германию, Австрию и Швейцарию. Затем увидела предложения ещё в Китай и Японию. Но Полина может поехать только один раз на программу по обмену. Сколько способов выбрать страну для поездки?

Ответ: 5

Решение: Полина сначала выбирала из трёх стран, затем ей добавили ещё две страны. Но так как Полина имеет возможность поехать только один раз, то она выбирает одну страну из пяти.

Задание №2: Полина нашла несколько программ по обмену в Германию, Австрию и Швейцарию. Затем увидела предложения ещё в Китай и Японию. Полина пла-

нирует поехать на две программы по обмену по очереди. Сколько способов выбрать страны для поездки?

Ответ: 20

Решение: Полина сначала выбирала из трёх стран, затем ей добавили ещё две страны. Так как Полина имеет возможность поехать два раза, то она выбирает сначала одну страну из пяти, а затем ещё одну страну из оставшихся четырех. Эти события являются зависимыми, так как второй выбор страны зависит от первого, ниже представлены все возможные комбинации в данной задаче:

 Γ ермания $\rightarrow A$ встрия

 Γ ермания o Швейцария

 Γ ермания $\rightarrow Kumaŭ$

 Γ ермания \to Япония

 $Aвстрия o \Gamma$ ермания

Aвстрия o Швейцария

Aвстрия o Kumaŭ

Aвстрия o Япония

Швейцария $o extit{Германия}$

Швейцария \rightarrow Aвстрия

Швейцария \to Китай

Швейцария o Япония

 $Kuma \ddot{u} \to \Gamma ep$ мания

 $Kumaй \to Aвстрия$

 $\mathit{Kumaŭ} \to \mathit{Швейцария}$

 $Kuma \c i
ightarrow {\it Япония}$

Япония \rightarrow Германия

 $Япония \rightarrow Австрия$

Япония \rightarrow Швейцария

Япония o Kumaŭ

Как мы видим, получилось 20 вариантов.

Количество размещений.

Для начала познакомимся со следующим обозначением:

Факториал числа N – произведение чисел от 1 до $N(1 \cdot 2 \cdot ... \cdot N)$.

Факториал обозначается знаком <<!>>. 0! = 1 (Всегда!!!)

Пример: Предположим, что перед нами коробка с п различными шариками (ни один шарик не повторяет цвет другого). Нам из этой коробки нужно последовательно выбрать k шариков. Сколькими способами это можно сделать?

Решение:

Количество способов выбрать первый шарик: n;

Количество способов выбрать второй шарик: $n \cdot (n-1)$ (так как на каждый выбранный первый шарик найдётся второй шарик)

Количество способов выбрать третий шарик: $n \cdot (n-1) \cdot (n-2)$ (так как на каждый выбранный первый и второй шарики найдётся третий шарик)

. . .

Количество способов выбрать
$$k$$
 шарик: $n \cdot (n-1) \cdot (n-2) \cdot ... \cdot (n-(k-1))$

Но формула получается тогда слишком длинной. Стоит её привести к лаконичному виду. Приведём её к n! (но, чтобы умножить на что-нибудь ненужное, надо разделить на что-нибудь ненужное). Получаем:

$$\frac{n \cdot (n-1) \cdot (n-2) \cdot (n-3) \cdot \dots \cdot (n-k+1) \cdot (n-k) \cdot (n-k-1) \cdot \dots \cdot 2 \cdot 1}{(n-k) \cdot (n-k-1) \cdot \dots \cdot 2 \cdot 1} = \frac{n!}{(n-k)!}$$

Полученная формула называется: количество размещений из n элементов по k элементов. И обозначается следующим образом:

$$A_n^k = \binom{n}{k}$$

Почему размещений? Потому что мы пытаемся разместить n элементов на k мест. Количество сочетаний.

Пример: Предположим, что перед нами коробка с п одинаковыми шариками. Нам из этой коробки нужно выбрать k шариков. Сколькими способами можно это сделать?

Решение:

Hа первый взгляд здесь можно было бы воспользоваться формулой количества размещений из n элементов по k элементов. Но отличие данной задачи от преды-

дущей в том, что нам даны одинаковые шарики, следовательно, нам не важен порядок выбора k шариков (они в любом случае все одинаковые). Значит, нам нужно количество размещений разделить на количество перестановок на k мест:

$$\frac{A_n^k}{k!}$$

Полученная формула называется: количество сочетаний из n элементов по k элементов. И обозначается следующим образом:

$$C_n^k = \binom{n}{k}$$

Несколько полезных формул:

1)

$$C_n^k = C_n^{n-k}$$

Доказательство:

$$\frac{n!}{k! \cdot (n-k)!} = \frac{n!}{(n-k)! \cdot (n-(n-k))!}$$

$$\frac{n!}{k! \cdot (n-k)!} = \frac{n!}{(n-k)! \cdot k!}$$

$$C_n^k = C_{n-1}^k + C_{n-1}^{k-1}$$

Доказательство:

$$\frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot (n-1)!}{k! \cdot (n-k)!} = \frac{(k+(n-k)) \cdot (n-1)!}{k! \cdot (n-k)!} = \frac{(n-k) \cdot (n-1)! + k \cdot (n-1)!}{k! \cdot (n-k)!} = \frac{(n-k) \cdot (n-1)!}{k! \cdot (n-k)!} + \frac{k \cdot (n-1)!}{k! \cdot (n-k)!} = \frac{(n-k) \cdot (n-1)!}{k! \cdot (n-k)!} + \frac{k \cdot (n-1)!}{k! \cdot (n-k)!} = \frac{(n-k) \cdot (n-1)!}{k! \cdot (n-k-1)! \cdot (n-k)} + \frac{k \cdot (n-1)!}{k \cdot (k-1)! \cdot (n-k)!} = \frac{(n-k) \cdot (n-k)!}{k! \cdot ($$

$$\frac{(n-1)!}{k! \cdot (n-k-1)!} + \frac{(n-1)!}{(k-1)! \cdot ((n-1) - (k-1))!}$$
3)
$$C_n^0 = C_n^n = 1$$

Доказательство:

$$C_{n}^{0} = \frac{n!}{0! \cdot n!} = \frac{n!}{n!} = 1$$

$$C_{n}^{n} = \frac{n!}{n! \cdot 0!} = \frac{n!}{n!} = 1$$

$$C_{n}^{0} + C_{n}^{1} + C_{n}^{2} + \dots + C_{n}^{n} = 2^{n}$$

Доказательство:

Для доказательства нам потребуется следующая формула:

$$(a+b)^n = \underbrace{(a+b)\cdot(a+b)\cdot(a+b)\cdot(a+b)\cdot\dots\cdot(a+b)}_n =$$

$$=C_n^0 \cdot a^n \cdot b^0 + C_n^1 \cdot a^{n-1} \cdot b^1 + C_n^2 \cdot a^{n-2} \cdot b^2 + C_n^3 \cdot a^{n-3} \cdot b^3 + \ldots + C_n^{n-1} \cdot a^1 \cdot b^{n-1} + C_n^n \cdot a^0 \cdot b^n = 0$$

$$= \sum_{k=0}^{n} C_n^k \cdot a^{n-k} \cdot b^k$$

Теперь представим 2^n как $(1+1)^n$ и разложим по формуле: $(1+1)^n =$

$$= C_n^0 \cdot 1^n \cdot 1^0 + C_n^1 \cdot 1^{n-1} \cdot 1^1 + C_n^2 \cdot 1^{n-2} \cdot 1^2 + \dots + C_n^{n-1} \cdot 1^1 \cdot 1^{n-1} + C_n^n \cdot 1^0 \cdot 1^n =$$

$$= C_n^0 + C_n^1 + C_n^2 + \dots + C_n^n$$

Задача 1

У Полины на один день назначены дополнительные занятия по трём предметам: математике, информатике и физике. Полина выбирает, как ей поставить все три занятия друг за другом так, чтобы всё успеть (конечно, Полина должна посетить все занятия!). Сколько способов есть у Полины составить себе расписание из трёх предметов?

Ответ.

6

Задача 2

Алиса перешла в 11 класс, она точно будет сдавать профильную математику и русский язык, а вот с третьим предметом девушка ещё не определилась. Алиса выбирает одну из следующих учебных дисциплин: Физика, Химия, История, Обществознание, Информатика и информационно-коммуникационные технологии (ИКТ), Биология, География, Английский язык, Немецкий язык, Французский язык, Китайский язык, Испанский язык, Литература. Сколько способов у Алисы выбрать третий предмет для сдачи экзамена?

Ответ.

13

Задача 3

Сколько способов составить пятизначное число в пятеричной системе счисления? (Каждая цифра может встретиться только один раз).

Ответ.

96

Задача 4

Надежда хочет прилететь в Воронеж из Нью-Йорка. Самолёты летают в Воронеж только с пересадкой в Москве или Санкт-Петербурге. Из Нью-Йорка в Москву есть 5 рейсов на нужную дату, а из Нью-Йорка в Санкт-Петербург — 6 рейсов. Также из Москвы в Воронеж — 10 рейсов, из Санкт-Петербурга в Воронеж — 11 рейсов. Сколько всего у Надежды способов добраться из Нью-Йорка в Воронеж?

Ответ.

116

Задача 5

Полина проводит химические опыты. Перед ней 6 разных пробирок в штативе для пробирок, а также даны кислоты и щёлочи. Кислоты: H_2SO_4 , HNO_3 , HCl. Щёлочи: NaOH, KOH, LiOH. Так как Полина находится в общей лаборатории, все кислоты и щёлочи даны в больших тарах. Сколькими способами Полина может заполнить свои пробирки кислотами и щелочами?

Смешивать реактивы нельзя, во всех пробирках должны быть разные химические соединения

Ответ.

720

Задача 6

Полина проводит химические опыты. Перед ней 6 разных пробирок в штативе для пробирок, а также даны кислоты и щёлочи. Кислоты: H_2SO_4 , HNO_3 , HCl. Щёлочи: NaOH, KOH, LiOH. Так как Полина находится в общей лаборатории, все кислоты и щёлочи даны в больших тарах. Сколькими способами Полина может заполнить свои пробирки кислотами и щелочами, учитывая, что рядом с кислотой не стоит кислота, а рядом с щёлочью не стоит щёлочь?

Смешивать реактивы нельзя, во всех пробирках должны быть разные химические соединения

Ответ.

72

Задача 7

Полина проводит химические опыты. Перед ней 6 разных пробирок в штативе для пробирок, а также даны кислоты и щёлочи. Кислоты: H_2SO_4 , HNO_3 , HCl, $HClO_4$. Щёлочи: NaOH, KOH, LiOH. Так как Полина находится в общей лаборатории, все кислоты и щёлочи даны в больших тарах. Сколькими способами Полина может заполнить свои пробирки кислотами и щелочами, учитывая, что в первой пробирке

может находиться только кислота, и рядом с кислотой не стоит кислота, а рядом с щёлочью не стоит щёлочь?

Смешивать реактивы нельзя, во всех пробирках должны быть разные химические соединения

Ответ.

144

Задача 8

Ксения составляет 5-буквенные слова, в которых есть только буквы P, Ы, Б, А, причём буква Б используется в каждом слове ровно 1 раз. Каждая из других допустимых букв может встречаться в слове любое количество раз или не встречаться совсем. Словом считается любая допустимая последовательность букв, не обязательно осмысленная. Сколько существует таких слов, которые может написать Ксения?

Ответ.

405

Задача 9

Лиза составляет 5-буквенные слова, в которых есть только буквы М, О, С, К, В, А причём буква О может использоваться в каждом слове не более трёх раз. Каждая из других допустимых букв может встречаться в слове любое количество раз или не встречаться совсем. Словом считается любая допустимая последовательность букв, не обязательно осмысленная. Сколько существует таких слов, которые может написать Лиза?

Ответ.

7750

Задача 10

Настя угадывает кодовое слово, которое ей загадала подруга. В качестве кодовых слов используют 6-буквенные слова, в которых есть только буквы М, А, Р, Т, Ы, Ш, К, И, причём известно, что на двух первых позициях встречаются только буквы А и Ы, а на двух последних — только буквы Ш, К, И. Сколько различных кодовых слов могла составить подруга для Насти?

Ответ.

2304

Задача 11

Аркадий составляет 6-буквенные коды из букв А, Р, К, Д, И, Й. Каждую букву нужно использовать ровно 1 раз, при этом код не может начинаться с буквы Й и не может содержать сочетания АИ. Сколько различных кодов может составить Аркадий?

Ответ.

504

Задача 12

Григорий составляет 5-буквенные слова из следующих букв: Г, Р, И, Ф, О, Я, Й. При этом он придерживается некоторых правил: никакие две согласные не могут стоять рядом, никакие две гласные не могут стоять рядом, слово не должно начинаться с буквы Й. Сколько слов сможет составить Григорий? Словом считается любая последовательность букв.

Ответ.

864