

Objectif:

Caractérisation et optimisation d'un capteur actif « Piézoélectrique »

Plan:

- I. Origine du phénomène
- II. Caractérisation et modélisation du capteur de vibration:
- Modelisation par un circuit électrique.
- Resolution analytique et numérique à l'aide de python.
- Traçage de diagramme de bode;
- III. Etude d'optimisation et de conditionnement

Contribution:

- I. Prise de contact avec des laboratoires de recherche en Tunisie et en France.
- Implementation d'un code python pour la resolution d'une equation différentielle d'ordre 2 par la methode d'Euler Explicite.
- Implementation d'un code python pour la function range kutta pour la resolution d'une equation de second ordre.
- 1. Utilisation du logiciel Ni multisim pour construire des circuit électrique et tracer les courbes.

I. Origine du phénomène

Un élément piézoélectrique est tout élément capable de se polariser électriquement sous une contrainte mécanique ou qui se déformer lorsqu'il est soumis à un champ électrique.

Pour un dipôle magnétique :

Pour un dipôle électrique:

La polarisation s'exprime sous la forme

$$\overrightarrow{P} = \frac{\sum_{i} \overrightarrow{P_{i}}}{V}$$
 telleque V et $\overrightarrow{P_{i}}$ sont des grandeurs extensives

Le milieu piézoélectrique est en interaction avec des facteurs externes.

I. Etude et caractérisation d'un capteur de vibration

- Modélisation par un circuit électrique:
- En tant que générateur d'énergie le capteur piézoélectrique peut être modéliser (modéle électrique) par Une source de courant continue en parallel avec un condensateur.
- 2. En tant que résonateur II peut être modéliser par un circuit RLC forcer par un excitateur .

$$\begin{cases} m\ddot{x} + r\dot{x} + Kx = K_{1}Ve^{-j\omega t} \\ q_{2} = K_{2} \\ \frac{m\ddot{q}_{2}}{K_{1}K_{2}} + \frac{r\dot{q}_{2}}{K_{2}K_{1}} + \frac{Kq_{2}}{K_{2}K_{1}} \\ q_{1} = CVe^{-j\omega t} \end{cases}$$

Avec $K_1 = caractére$ de l'effet piézoelectrique Et C= capacité du condensateur former par les deux faces planes du disque

Etude dynamique d'un resonnateur

Déformation radial du capteur

Déformation longitudinal du capteur

Modélisation physique : Hypothèse de travail:

- 1. Approximation linéaire.
- 2. Excitation sinusoïdale.
- 3. Milieu élastique.

Prise de l'article:

La transduction Piézoélectrique

De STÉPHANE DURAND ET HERVÉ LISSEK

Modele

Résolution numérique avec Python: Méthode d'Euler explicite Méthode de Range Kutta d'ordre 4

Méthode analytique régime forcé Simulation électrique a l'aide du logiciel NI(international instrument multisim

1-Methode analytique : $m\ddot{x} + r\dot{x} = kx = k_1 e^{-j\omega t + \alpha}$ Après avoir remplacer x par $x_0 e^{j\omega t + \alpha}$

On aura : $e^{j\omega t + \alpha} (\text{mw}^2 x_0 - \text{jw} x_0 + \text{k} x_0) = k_1 \text{v}$

Milieu

$$H(jw) = \frac{x_0}{vk_1} = \frac{e^{-j\alpha}}{mw^2 - jw + k}$$

$$|H(jw)| = \frac{1}{\sqrt{(k + mw^2)^2 + w^2}}$$

$$Arg(H(jw)) = arg(e^{-j\alpha}) - arg(\frac{-w}{w^2m + k})$$

Diagramme de bode:

Fonction de transfert d'ordre 2

On remplace -jw par p et 1/k par K'

$$\frac{k'}{1+pk'+p^2m^2k'}$$
 = H(jw) on aura la pulsation propre Wn= m $\sqrt{k'}$

Z= coefficient d'amortissment et K' = gain statique

H(jw) = k'/(1 -
$$\frac{W^2}{Wn^2}$$
 + $\frac{W}{Wn}$ j2z)

Wr = Wn
$$\sqrt{1-2z^2}$$
 avec Wr pulsation de résonance

Pour z > ou = 1 On remarque qu'il a deux pulsations de cassure donc deux pulsations différentes 1-pulsation propre 2-pulsation de résonnance

Pour z<1

$$Q = \frac{|H(jWr)|}{|H(jW0)|} = \frac{1}{2z\sqrt{1-z^2}}$$

Prise de mon cours de science industrielle : Analyse fréquentielle des systèmes asservis.

2-Resolution numérique avec python

Implémentation du code 1-Methode d'Euler explicite:

Oscillateur non amortie Système instable.

Pour un temps maximal 10 fois plus important le système demeure instable.

2. Methode de range kutta d'ordre 4 implémentation du code

Le système est bien amortie Il tend en régime permanent vers une valeur nulle donc c'est un système bien stable

A l'aide du logiciel national instrument multisim

Le capteur piézoélectrique est un résonateur qui peut être modéliser pas un circuit RLC forcé en parallèle avec une capacité.

Optimisation et conditionnement d'un matériaux piézoélectrique

Technique d'optimisation non linéaire (sur un modèle électrique):

On peut modéliser le diapositif d'optimisation par une bobine d'inversion en série avec un interrupteur afin d'avoir un temps de réponse rapide.

en alternative le schéma équivalent est:

L'équation est :

$$\frac{d^{2}V_{p}}{dt^{2}} + \frac{1}{\tau}\frac{dV_{p}}{dt} + \frac{1}{\omega_{p}^{2}}V_{p} = 0 \quad O\dot{u}$$

$$\begin{cases} \tau = \frac{2L}{r} \\ \omega_{p} = \frac{2\pi}{T_{p}} = \frac{1}{\sqrt{LC_{p}}} \end{cases}$$

En tenant compte des conditions initiale et de l'inversion qui se fait en une période on a Finalement :

$$\frac{dV}{dt} + \frac{V}{RC_p} = \frac{\alpha}{\beta C_p} F$$

Cette équation admet deux solutions :

• Solution libre:
$$\frac{dV}{dt} + \frac{V}{RC_p} = 0 \Rightarrow V_I(t) = V_{mI}e^{\frac{-(t-t_I)}{RC_p}}$$

Solution forcée :
$$\frac{dV}{dt} + \frac{V}{RC_p} = \frac{\alpha}{\beta C_p} F \Rightarrow V_2(t) = V_{m2} e^{j(\omega_0(t-t_1)+\varphi)}$$

Discussion

