Review: Geometric Realization of Vectors in \mathbb{R}^n

Recall that vectors in \mathbb{R}^n can be thought of as "arrows."

Exercise: Graph the vectors u, v, and u - v where:

$$u = \begin{bmatrix} -1 \\ 5 \end{bmatrix} \quad v = \begin{bmatrix} 3 \\ 2 \end{bmatrix}.$$

Review: Geometric Realization of Vectors in \mathbb{R}^n

Recall that vectors in \mathbb{R}^n can be thought of as "arrows."

Exercise: Graph the vectors u, v, and u - v where:

$$u = \begin{bmatrix} -1 \\ 5 \end{bmatrix}$$
 $v = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$.

SIn:

When considering an "arrow" in \mathbb{R}^n there are two interesting questions:

When considering an "arrow" in \mathbb{R}^n there are two interesting questions:

1. How long is it?

When considering an "arrow" in \mathbb{R}^n there are two interesting questions:

- 1. How long is it?
- 2. What direction is it pointing?

When considering an "arrow" in \mathbb{R}^n there are two interesting questions:

- 1. How long is it?
- 2. What direction is it pointing?

It turns out that there is a *single* computation which can help us to answer both questions!

When considering an "arrow" in \mathbb{R}^n there are two interesting questions:

- 1. How long is it?
- 2. What direction is it pointing?

It turns out that there is a *single* computation which can help us to answer both questions!

But we will tackle one-at-a-time.

Consider the generic vector

$$u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

The "length" of u should be the distance from O to the head of u. Pythagoras gives:

length of
$$u = \sqrt{(u_1)^2 + (u_2)^2}$$
.

Consider the generic vector

$$u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

Consider the generic vector

$$u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

The "length" of u should be the distance from O to the head of u.

Consider the generic vector

$$u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

The "length" of u should be the distance from O to the head of u. Pythagoras gives:

length of
$$u = \sqrt{(u_1)^2 + (u_2)^2}$$
.

Definition

Let $u = [u_i] \in \mathbb{R}^n$. The (standard) **length** (or **magnitude** or **norm**) of u is

$$||u||=\sqrt{\sum_{i=1}^n u_i^2}.$$

Definition

Let $u = [u_i] \in \mathbb{R}^n$. The (standard) **length** (or **magnitude** or **norm**) of u is

$$||u||=\sqrt{\sum_{i=1}^n u_i^2}.$$

Exercise: Compute the lengths of $u=\begin{bmatrix} -1\\5 \end{bmatrix}$, $v=\begin{bmatrix} 3\\2 \end{bmatrix}$ and u-v.

Definition

Let $u = [u_i] \in \mathbb{R}^n$. The (standard) **length** (or **magnitude** or **norm**) of u is

$$||u||=\sqrt{\sum_{i=1}^n u_i^2}.$$

Exercise: Compute the lengths of $u = \begin{bmatrix} -1 \\ 5 \end{bmatrix}$, $v = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and u - v. Solutions:

$$||u|| = \sqrt{(-1)^2 + 5^2} = \sqrt{26},$$

Definition

Let $u = [u_i] \in \mathbb{R}^n$. The (standard) **length** (or **magnitude** or **norm**) of u is

$$||u||=\sqrt{\sum_{i=1}^n u_i^2}.$$

Exercise: Compute the lengths of $u = \begin{bmatrix} -1 \\ 5 \end{bmatrix}$, $v = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and u - v. Solutions:

$$||u|| = \sqrt{(-1)^2 + 5^2} = \sqrt{26}, \quad ||v|| = \sqrt{13}, \quad ||u - v|| = \sqrt{25}.$$

Distance Between Vectors

Let's return to our vectors u, v, and u - v:

Distance Between Vectors

Let's return to our vectors u, v, and u - v:

Definition

The **distance** between the vectors u and v in \mathbb{R}^n is

$$d(u,v) := \|u-v\|.$$

Note: Distance measurements are CRUCIAL to answer questions like "How good is our approximation?"

Return to our generic vector in \mathbb{R}^2 :

Return to our generic vector in \mathbb{R}^2 :

Computing Θ is straightforward:

$$\tan(\theta) = \frac{u_2}{u_1}$$

Return to our generic vector in \mathbb{R}^2 :

Computing Θ is straightforward:

$$\tan(\theta) = \frac{u_2}{u_1}$$
 or $\cos \theta = \frac{u_1}{\sqrt{(u_1)^2 + (u_2)^2}} = \frac{u_1}{\|u\|}$.

Return to our generic vector in \mathbb{R}^2 :

Computing Θ is straightforward:

$$\tan(\theta) = \frac{u_2}{u_1}$$
 or $\cos \theta = \frac{u_1}{\sqrt{(u_1)^2 + (u_2)^2}} = \frac{u_1}{\|u\|}.$

Note: the norm of u in the denominator.

Return to our generic vector in \mathbb{R}^2 :

Computing Θ is straightforward:

$$\tan(\theta) = \frac{u_2}{u_1}$$
 or $\cos \theta = \frac{u_1}{\sqrt{(u_1)^2 + (u_2)^2}} = \frac{u_1}{\|u\|}$.

Note: the norm of u in the denominator. Somehow the angle is related to sizes.

Angle Between Two Vectors

A slightly longer computation:

Angle Between Two Vectors

A slightly longer computation:

Apply the "law of cosines":

$$||u-v||^2 = ||u||^2 + ||v||^2 - 2||u|| ||v|| \cos(\theta).$$

Angle Between Two Vectors

A slightly longer computation:

Apply the "law of cosines":

$$||u - v||^2 = ||u||^2 + ||v||^2 - 2||u|||v||\cos(\theta).$$

After some expansion and algebra you can show

$$\cos(\theta) = \frac{u_1v_1 + u_2v_2}{\|u\|\|v\|}.$$

► Length:

$$||u||^2 = (u_1)^2 + (u_2)^2$$

► Length:

$$||u||^2 = (u_1)^2 + (u_2)^2 = u_1u_1 + u_2u_2.$$

Length:

$$||u||^2 = (u_1)^2 + (u_2)^2 = u_1u_1 + u_2u_2.$$

► Angle:

$$\cos(\theta) = \frac{u_1 v_1 + u_2 v_2}{\|u\| \|v\|}.$$

► Length:

$$||u||^2 = (u_1)^2 + (u_2)^2 = u_1u_1 + u_2u_2.$$

► Angle:

$$\cos(\theta) = \frac{u_1 v_1 + u_2 v_2}{\|u\| \|v\|}.$$

Multiplying matrices together:

$$(AB)_{ij} = A_{i1}B_{1j} + A_{i2}B_{2j} + \cdots + A_{in}B_{nj}.$$

► Length:

$$||u||^2 = (u_1)^2 + (u_2)^2 = u_1u_1 + u_2u_2.$$

► Angle:

$$\cos(\theta) = \frac{u_1 v_1 + u_2 v_2}{\|u\| \|v\|}.$$

Multiplying matrices together:

$$(AB)_{ij} = A_{i1}B_{1j} + A_{i2}B_{2j} + \cdots + A_{in}B_{nj}.$$

Multiplying individual vector coordinates and then summing comes up in many contexts.

Definition

Let u and v be vectors in \mathbb{R}^n . The **dot product** or **standard inner product** of u and v is

$$u \cdot v := \sum_{i=1}^{n} u_i v_i$$

Definition

Let u and v be vectors in \mathbb{R}^n . The **dot product** or **standard inner product** of u and v is

$$u \cdot v := \sum_{i=1}^{n} u_i v_i$$

Using this, we have some new expressions:

Definition

Let u and v be vectors in \mathbb{R}^n . The **dot product** or **standard inner product** of u and v is

$$u \cdot v := \sum_{i=1}^{n} u_i v_i$$

Using this, we have some new expressions:

▶ Length: $||u|| = \sqrt{u \cdot u}$.

Definition

Let u and v be vectors in \mathbb{R}^n . The **dot product** or **standard inner product** of u and v is

$$u \cdot v := \sum_{i=1}^{n} u_i v_i$$

Using this, we have some new expressions:

- ▶ Length: $||u|| = \sqrt{u \cdot u}$.
- Angle: $cos(\theta) = \frac{u \cdot v}{\|u\| \|v\|}$.

Definition

Let u and v be vectors in \mathbb{R}^n . The **dot product** or **standard inner product** of u and v is

$$u \cdot v := \sum_{i=1}^{n} u_i v_i$$

Using this, we have some new expressions:

- ▶ Length: $||u|| = \sqrt{u \cdot u}$.
- Angle: $cos(\theta) = \frac{u \cdot v}{\|u\| \|v\|}$.

We can also say that the element in the (i,j)-th position in the product matrix AB is the dot product of the i-th row of A and the j-th column of B.

Theorem

Theorem

1.
$$u \cdot u \geq 0$$
.

Theorem

- 1. $u \cdot u \geq 0$.
- 2. $u \cdot u = 0 \Leftrightarrow u = 0$.

Theorem

- 1. $u \cdot u \geq 0$.
- 2. $u \cdot u = 0 \Leftrightarrow u = 0$.
- 3. Commutativity: $u \cdot v = v \cdot u$

Theorem

- 1. $u \cdot u \geq 0$.
- 2. $u \cdot u = 0 \Leftrightarrow u = 0$.
- 3. Commutativity: $u \cdot v = v \cdot u$
- 4. Distributivity: $u \cdot (v + w) = u \cdot v + u \cdot w$.

Theorem

- 1. $u \cdot u \geq 0$.
- 2. $u \cdot u = 0 \Leftrightarrow u = 0$.
- 3. Commutativity: $u \cdot v = v \cdot u$
- 4. Distributivity: $u \cdot (v + w) = u \cdot v + u \cdot w$.
- 5. Scalar associativity: $c(u \cdot v) = (cu) \cdot v$.

Theorem

- 1. $u \cdot u \geq 0$.
- 2. $u \cdot u = 0 \Leftrightarrow u = 0$.
- 3. Commutativity: $u \cdot v = v \cdot u$
- 4. Distributivity: $u \cdot (v + w) = u \cdot v + u \cdot w$.
- 5. Scalar associativity: $c(u \cdot v) = (cu) \cdot v$.
- 6. Orthogonality property: $u \perp v \Leftrightarrow u \cdot v = 0$.

Simple Application: unit vectors

Definition

A **unit** vector is a vector with the property that ||u|| = 1.

Simple Application: unit vectors

Definition

A **unit** vector is a vector with the property that ||u|| = 1.

Exercises:

- 1. Show that $u = \begin{bmatrix} 3/5 \\ 4/5 \end{bmatrix}$ is a unit vector.
- 2. Show that u above and the vector $\begin{bmatrix} 6 \\ 8 \end{bmatrix}$ are parallel. (What is the angle between them?)
- 3. Find a unit vector in the same direction as $v = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$. (What value can you use to *scale v*?)