L'algue tueuse

TD n°3

Modélisation mathématique

Q4

Sibylle Roux

Juliette Arazo Tanguy Thomas Nicolas Le Gallo

17 octobre 2017

Table des matières

1	\mathbf{Etu}	de du modèle logistique avec effet Allee et immigration	
	1.1	Etude numérique	
		1.1.1 Modèle avec variation de I	
		1.1.2 Modèle avec variation de K	
		1.1.3 Modèle avec variation de A	
		1.1.4 Modèle avec variation de la population initiale	
	1.2	Etude mathématique	
	1.3	Bilan	
2	Etu	de du modèle logistique avec prédation	
	2.1	Etude numérique	
		2.1.1 Modèle logistique	
		2.1.2 Modèle logistique	
		2.1.3 Modèle logistique	
		2.1.4 Modèle logistique	
	2.2	Etude mathématique	
	2.3	Bilan	
A	Etude du modèle logistique avec effet Allee et immigration-		
	Scripts Scilab		
	A.1	Modèle avec variation de I	
		A.1.1 Vitesse d'accroissement	
		A.1.2 Discretisation	
	A.2	Modèle avec variation de K	
		A.2.1 Vitesse d'accroissement	
		A.2.2 Discretisation	
	A.3	Modèle avec variation de A	
		A.3.1 Vitesse d'accroissement	
		A.3.2 Discretisation	
	A.4	Modèle avec variation de la population initiale	
В	Etu	de du modèle logistique avec prédation - Scripts Scilab 1	
	B.1	Modèle logistique	
		B.1.1 Vitesse d'accroissement	
		B.1.2 Discretisation	
	B.2	Modèle logistique	
	B.3	Modèle logistique	
		Modèle logistique	

1 Etude du modèle logistique avec effet Allee et immigration

1.1 Etude numérique

1.1.1 Modèle avec variation de I

Courbe de la vitesse d'accroissement

Paramètres de modélisation : $K=2\,;\,r=0.5\,;\,A=0.5\,;\,I$ varie de 0 à 1 avec un pas de 0.1

Discrétisation du modèle

Paramètres de modélisation : $a=0.6\,;\,K=2\,;\,r=0.5\,;\,A=0.5\,;\,I$ varie de 0 à 1 avec un pas de 0.1

1.1.2 Modèle avec variation de K

Courbe de la vitesse d'accroissement

Paramètres de modélisation : $r=1\;;\;A=0.8\;;\;I=0.05\;;\;K$ varie de 1.5 à 2.5 avec un pas de 0.1

Discrétisation du modèle

Paramètres de modélisation : $a=0.7\,;\;r=1\,;\;A=0.8\,;\;I=0.05\,;\;K$ varie de 1.5 à 2.5 avec un pas de 0.1

1.1.3 Modèle avec variation de A

Courbe de la vitesse d'accroissement

Paramètres de modélisation : $I=0.1\,;\,K=2\,;\,r=1\,;\,A$ varie de 0.5 à 1.5 avec un pas de 0.1

Discrétisation du modèle

Paramètres de modélisation : $a=0.7\,;\,I=0.1\,;\,K=2\,;\,r=1\,;\,A$ varie de 0.5 à 1.5 avec un pas de 0.1

${\bf 1.1.4}\quad {\bf Mod\`{e}le~avec~variation~de~la~population~initiale}$

Discretisation du modèle

Paramètres de modélisation : $A=0.5\,;\,I=0.1\,;\,K=2\,;\,r=0.25\,;\,a$ varie de 0.5 à 1.5 avec un pas de 0.1

- 1.2 Etude mathématique
- 1.3 Bilan

2 Etude du modèle logistique avec prédation			
2.1 Etude numérique 2.1.1 Modèle logistique			
Vitesse d'accroissement			
Paramètres de modélisation :			
Discretisation			
Paramètres de modélisation :			
2.1.2 Modèle logistique			
Paramètres de modélisation :			
2.1.3 Modèle logistique			
Paramètres de modélisation :			
2.1.4 Modèle logistique			

 ${\bf 2.2}\quad {\bf Etude\ math\'ematique}$

Paramètres de modélisation :

2.3 Bilan

A Etude du modèle logistique avec effet Allee et immigration- Scripts Scilab

A.1 Modèle avec variation de I

A.1.1 Vitesse d'accroissement

```
clear
clf
r = 0.5; A = 0.5; K = 2; // variables du modèles
Ivect=0:0.1:1; // variable qui varie
x = linspace(0, 2.2, 301); // vecteur contenant les valeurs de la vitesse d'accroissement
function f = allee_imig(x) // fonction qui calcule la vitesse d'accroissement
    f = r * x .* (x / A - 1) .* (1 - x / K) + I // opérations vectorielles. x est un vecteu:
endfunction
for i=1:11; // Bouclae qui va dessiner les différentes courbes
    I=Ivect(i); // vecteur contenant les différentes valeurs de I
   plot2d(x, allee_imig(x), style = i) // Tracé de la vitesse d'accroissement
end
// Définition des paramètres d'affichages
a.x_location = "origin";
a.grid=[5,5];
A.1.2 Discretisation
clear
clf
Ivect=0:0.1:1; // variable qui varie
r = 0.5; A = 0.5; K = 2; h = 0.05; a = 0.6; // variables du modèles + pas de temps
ndate = 0:h:20; // vecteur des instants où on calcule la solution
function f = allee_img(x) // fonction qui calcule la vitesse d'accroissement
    f = r * x .* (x / A - 1) .* (1 - x / K) + I // opérations vectorielles. x est un vecteur
endfunction
x(1)=a; // Initialisation de la population initiale
for i=1:11; // Boucle qui va dessiner les différentes courbes
    I=Ivect(i); // vecteur contenant les différentes valeurs de I
   for n = 1:length(ndate) - 1 // Boucle qui calcule la courbe de la population
```

```
x(n+1) = x(n) + h * allee_img(x(n)); // Calcul de la population
   plot2d(ndate, x, style = i) // Tracé de la discretisation
end
// Définition des paramètres d'affichages
a=gca();
a.x_location = "origin";
a.grid=[5,5];
      Modèle avec variation de K
A.2
A.2.1
     Vitesse d'accroissement
```

```
clear
clf
r = 1; A = 0.8; I=0.05; // variables du modèles
Kvect=1.5:0.1:2.5; // variable qui varie
x = linspace(0, 2.2, 301); // vecteur contenant les valeurs de la vitesse d'accroissement
function f = allee_imig(x) // fonction qui calcule la vitesse d'accroissement
    f = r * x .* (x / A - 1) .* (1 - x / K) + I // opérations vectorielles. x est un vecteu:
endfunction
for i=1:11; // Boucle qui va dessiner les différentes courbes
    K=Kvect(i); // vecteur contenant les différentes valeurs de K
    plot2d(x, allee_imig(x), style = i) // Tracé de la vitesse d'accroissement
end
// Définition des paramètres d'affichages
a=gca();
a.x_location = "origin";
a.grid=[5,5];
A.2.2 Discretisation
clear
clf
Kvect=1.5:0.1:2.5; // variable qui varie
r = 1; A = 0.8; I = 0.05; h = 0.05; a = 0.7; // variables du modèles + pas de temps
```

ndate = 0:h:20; // vecteur des instants où on calcule la solution

function f = allee_img(x) // fonction qui calcule la vitesse d'accroissement

f = r * x .* (x / A - 1) .* (1 - x / K) + I // opérations vectorielles. x est un vecteur

```
endfunction
x(1)=a; // Initialisation de la population initiale
for i=1:11; // Boucle qui va dessiner les différentes courbes
    K=Kvect(i); // vecteur contenant les différentes valeurs de K
   for n = 1:length(ndate) - 1 // Boucle qui calcule la courbe de la population
        x(n+1) = x(n) + h * allee_img(x(n)); // Calcul de la population
   plot2d(ndate, x, style = i) // Tracé de la discretisation
end
// Définition des paramètres d'affichages
a=gca();
a.x_location = "origin";
a.grid=[5,5];
      Modèle avec variation de A
A.3.1 Vitesse d'accroissement
clear
clf
r = 1 ; K = 2 ; I=0.1 ; // variables du modèles
Avect=0.5:0.1:1.5; // variable qui varie
x = linspace(0, 2.2, 301); // vecteur contenant les valeurs de la vitesse d'accroissement
function f = allee_imig(x) // fonction qui calcule la vitesse d'accroissement
    f = r * x .* (x / A - 1) .* (1 - x / K) + I // opérations vectorielles. x est un vecteu:
endfunction
for i=1:11; // Boucle qui va dessiner les différentes courbes
   A=Avect(i); // vecteur contenant les différentes valeurs de A
   plot2d(x, allee_imig(x), style = i) // Tracé de la vitesse d'accroissement
end
// Définition des paramètres d'affichages
a=gca();
```

A.3.2 Discretisation

a.grid=[5,5];

a.x_location = "origin";

clear
clf

```
Avect=0.5:0.1:1.5; // variable qui varie
r = 1; K = 2; I = 0.1; h = 0.05; a = 0.7; // variables du modèles + pas de temps
ndate = 0:h:20; // vecteur des instants où on calcule la solution
function f = allee_img(x) // fonction qui calcule la vitesse d'accroissement
    f = r * x .* (x / A - 1) .* (1 - x / K) + I // opérations vectorielles. x est un vecteur
endfunction
x(1)=a; // Initialisation de la population initiale
for i=1:11; // Boucle qui va dessiner les différentes courbes
    A=Avect(i); // vecteur contenant les différentes valeurs de A
   for n = 1:length(ndate) - 1 // Boucle qui calcule la courbe de la population
        x(n+1) = x(n) + h * allee_img(x(n)); // Calcul de la population
   plot2d(ndate, x, style = i) // Tracé de la discretisation
end
// Définition des paramètres d'affichages
a=gca();
a.x_location = "origin";
a.grid=[5,5];
      Modèle avec variation de la population initiale
clear
clf
avect=0.5:0.1:1.5; // variable qui varie
r = 0.25 ; K = 2 ; I=0.1 ; A = 0.5 ; h = 0.05 ; // variables du modèles + pas de temps
ndate = 0:h:20; // vecteur des instants où on calcule la solution
function f = allee_img(x) // fonction qui calcule la vitesse d'accroissement
   f = r * x .* (x / A - 1) .* (1 - x / K) + I // opérations vectorielles. x est un vecteur
endfunction
for i=1:11; // Boucle qui va dessiner les différentes courbes
    x(1)=avect(i); // vecteur contenant les différentes valeurs de a
    for n = 1:length(ndate) - 1 // Boucle qui calcule la courbe de la population
        x(n+1) = x(n) + h * allee_img(x(n)); // Calcul de la population
    plot2d(ndate, x, style = i) // Tracé de la discretisation
end
// Définition des paramètres d'affichages
```

```
a=gca();
a.x_location = "origin";
a.grid=[5,5];
```

- B Etude du modèle logistique avec prédation -Scripts Scilab
- B.1 Modèle logistique
- **B.1.1** Vitesse d'accroissement
- **B.1.2** Discretisation
- B.2 Modèle logistique
- B.3 Modèle logistique
- B.4 Modèle logistique