title: "actividad 5, Blanquita" author: "Francisco Castorena, A00827756" date: "2023-08-23" output: pdf_document

```
knitr::opts_chunk$set(echo = TRUE)
```

Problema 1. Enlatados

```
X = c(11.0, 11.6, 10.9, 12.0, 11.5, 12.0, 11.2, 10.5, 12.2, 11.8, 12.1, 11.6, 11.7, 11.6, 11.2, 12.0, 11.4, 10.8, 11.8, 10.9, 11.4)
```

Por estudios anteriores se saber que población del peso de las latas se distribuye normalmente. Si a los dueños no les conviene que el peso sea menor, pero tampoco mayor a 11.7, prueba la afirmación de que el verdadero peso de las latas es de 11.7 con un nivel de confianza de 0.98 haciendo uso de los datos obtenidos en la muestra.

Paso 1. Definir hipótesis

\$H_0: \mu = 11.7\$ \$H_1: \mu \neq 11.7\$

Estadístico: \$\bar{x}\$

Distribución del estadístico: t de Student

 $\mu_{\bar{x}}=11.7\$, $\sigma_{\bar{x}}=\frac{s}{\sqrt{n}}\$

Paso 2. Regla de decisión

Nivel de confianza = 0.98 \$\alpha = 0.02\$

```
alfa = 0.02
n = length(X)
t0 = qt(alfa/2,n-1) # Valor frontera
cat("t0 = ", t0)
```

t*: es el número de desviaciones estándar al que \$\bar{x}\$ está lejos de \$\mu\$

\$H_0\$ se rechaza si: /t|>2.53

• valor p < 0.02

Paso 3. Análisis del resultado

Tenemos que calcular:

- t* (que tan lejos está \$\bar{x}\$ de \$\mu\$)
- Valor p (la probabilidad de que \$\bar{x}\$ esté en las colas de la distribución)

Cálculo de t

```
miu = 11.7
s = sd(X)
sm = s/sqrt(n)
m = mean(X)
te = (m-miu)/sm
cat("t* = ", te)
```

Calculo de valor p*

```
pvalue = 2*pt(te,n+1)
cat("Valor p.= ", pvalue)
```

Paso 4. Conclusiones

- Como valor p(0.05173) es mayor que 0.02, entonces no R\$H_0\$
- Como |t*| (2.07) es menor que 2.53, entonces no R\$H_0\$

En el contexto del problema esto significa que el verdadero peso de las latas es de 11.7 con un nivel de confianza de 0.98

Más facil:

```
t.test(X,alternative = c("two.sided"),mu = 11.7, conf.level=.98)
```

Problema 2.

Fowle Marketing Research, Inc., basa los cargos a un cliente bajo el supuesto de que las encuestas telefónicas (para recopilación de datos) pueden completarse en un tiempo medio de 15 minutos o menos. Si el tiempo es mayor a 15 minutos entonces se cobra una tarifa adicional. Compañías que contratan estos servicios piensan que el tiempo promedio es mayor a lo que especifica Fowle Marketing Research Inc. así que realizan su propio estudio en una muestra aleatoria de llamadas telefónicas y encuentran los siguientes datos: Tiempo: 17, 11, 12, 23, 20, 23, 15, 16, 23, 22, 18, 23, 25, 14, 12, 12, 20, 18, 12, 19, 11, 11, 20, 21, 11, 18, 14, 13, 13, 19, 16, 10, 22, 18, 23

Por experiencias anteriores, se sabe que σ=4 minutos. Usando un nivel de significación de 0.07, ¿está justificada la tarifa adicional? Muestra tu procedimiento siguiendo los 4 pasos de solución Grafica la regla de decisión y el valor del estadístico de prueba. Concluye en el contexto del problema

```
X = c(17, 11, 12, 23, 20, 23, 15, 16, 23, 22, 18, 23, 25, 14, 12, 12, 20, 18, 12, 19, 11, 11, 20, 21, 11, 18, 14, 13, 13, 19, 16, 16

t.test(X,alternative = c("greater"),mu = 15, conf.level=.93)
```

Paso 1. Definir hipótesis

\$H_0: \mu = 15\$ \$H_1: \mu > 15\$

Estadístico: \$\bar{x}\$

Distribución del estadístico: t de Student

 $\mu_{x}=15\, \simeq_{x}=15\, \$

Paso 2. Regla de decisión

Nivel de confianza = 0.93 \$\alpha = 0.07\$

```
alfa = 0.07
n = length(X)
t0 = qt(alfa,n-1) # Valor frontera
cat("t0 = ", t0)
```

t*: es el número de desviaciones estándar al que $\$ está lejos de $\$ u\\$

\$H_0\$ se rechaza si: /t|>1.51

• valor p < 0.07

Paso 3. Análisis del resultado

Tenemos que calcular:

- t* (que tan lejos está \$\bar{x}\$ de \$\mu\$)
- Valor p (la probabilidad de que \$\bar{x}\$ esté en las colas de la distribución)

Cálculo de t

```
miu = 15
s = 4
sm = s/sqrt(n)
m = mean(X)
te = sm/sqrt(n)
cat("t* = ", te)
```

Cálculo de valor p*

```
pvalue = 2*pt(te,n+1)
cat("Valor p.= ", pvalue)
```

Paso 4. Conclusiones

- Como valor p(1.09) es mayor que 0.07, entonces no R\$H_0\$
 Como |t*| (0.1142857) es menor que 2.53, entonces no R\$H_0\$

En el contexto del problema esto significa que est+a justificada la tarifa adicional.