SUITES DE NOMBRES REELS C 4 : Etude asymptotique des suites.

On ne dispose jusqu'à présent que d'un seul outil permettant de comparer deux suites réelles : celui fourni par les inégalités.

Dans ce chapitre, il s'agit d'introduire d'autres relations de comparaison : la négligeabilité, la dominance et l'équivalence. Elle permettent de mieux comprendre le comportement de (u_n) lorsque n devient grand : on parle alors d'étude asymptotique de la suite.

1 Suite négligeable devant une autre/dominée par une autre

1.1 Suite négligeable

Définition 1. La suite (a_n) est **négligeable** devant (b_n) ou (b_n) est **prépondérante** devant (a_n) et on écrit $a_n = o(b_n)$, s'il existe une suite (ϵ_n) qui converge vers 0 telle que $a_n = \epsilon_n b_n$ à partir d'un certain rang. On lit " (a_n) est un petit o de (b_n) ".

Remarque

- 1. L'écriture $w_n = v_n + o(u_n)$ signifie que $w_n v_n = o(u_n)$.
- 2. On place le $o(u_n)$ en dernière position : on évitera d'écrire $w_n = o(u_n) + v_n$.

Pour montrer qu'une suite est négligeable devant une autre, on utilise très souvent le résultat suivant : soient (u_n) et (v_n) deux suites telles qu'à partir d'un certain rang $v_n \neq 0$ alors :

$$u_n = o(v_n) \Leftrightarrow \frac{u_n}{v_n} \to 0.$$

! $a_n = o(u_n)$ et $b_n = o(u_n)$ ne signifie pas que les suites (a_n) et (b_n) sont égales.

Il faut bien comprendre qu'on désigne par le même symbole $o(u_n)$ n'importe quelle suite négligeable devant (u_n) .

1.2 Suite dominée

Définition 2. La suite (a_n) est **dominée** par (b_n) ou (b_n) **domine** (a_n) et on écrit $a_n = \mathcal{O}(b_n)$, s'il existe une suite bornée (M_n) , telle que l'on ait l'égalité $a_n = M_n b_n$ à partir d'un certain rang; autrement dit si $\exists M > 0, \exists n_0, \forall n \geqslant n_0, |a_n| \leqslant M|b_n|$. On lit " (a_n) est un grand O de (b_n) ".

Remarque

- 1. Les notations \mathcal{O} (grand O) et o (petit o) sont appelées notations de Landau (la lettre O est l'initiale de l'expression "ordre de grandeur").
- 2. Tout comme $o(u_n)$ désigne une suite quelconque négligeable devant (u_n) , $\mathcal{O}(u_n)$ désigne une suite quelconque dominée par (u_n) .

Pour montrer qu'une suite est dominée par une autre, on utilise très souvent le résultat suivant : soient (u_n) et (v_n) deux suites telles qu'**à partir d'un certain rang** $v_n \neq 0$ alors :

$$u_n = \mathcal{O}(v_n) \Leftrightarrow \left(\frac{u_n}{v_n}\right)$$
 suite bornée.

Cas particuliers.

- o(1) désigne une suite qui tend vers $0: a_n = o(1) \iff \lim_n a_n = 0$.
- Plus généralement, $a_n = l + o(1) \iff \lim_n a_n = l$.
- $\mathcal{O}(1)$ désigne une suite bornée : $a_n = \mathcal{O}(1) \iff \exists M > 0, \forall n, |a_n| \leqslant M$.

1.3 Propriétés

Propriétés.

- 1. $a_n = o(b_n) \Longrightarrow a_n = \mathcal{O}(b_n)$.
- 2. $a_n = o(b_n), b_n = \mathcal{O}(c_n) \Longrightarrow a_n = o(c_n).$
- 3. Si $a_n = o(u_n)$ et $b_n = o(u_n)$, alors $a_n + b_n = o(u_n)$.
- 4. Si $a_n = o(u_n)$ et $b_n = \mathcal{O}(v_n)$, alors $a_n b_n = o(u_n v_n)$.
- 5. Si $a_n = \mathcal{O}(u_n)$ et $b_n = \mathcal{O}(u_n)$, alors $a_n + b_n = \mathcal{O}(u_n)$.
- 6. Si $a_n = \mathcal{O}(u_n)$ et $b_n = \mathcal{O}(v_n)$, alors $a_n b_n = \mathcal{O}(u_n v_n)$.

La notion de négligeabilité permet notamment de comparer deux suites (u_n) et (v_n) qui convergent toutes les deux vers 0 ou qui tendent toutes les deux vers un infini. Dans ce cas, la recherche de la limite de $\frac{u_n}{v_n}$ aboutit a priori à une forme indéterminée $\frac{0}{0}$ ou $\frac{\infty}{\infty}$. La connaissance des relations de négligeabilité suivantes permettra de lever un certain nombre de ces formes indéterminées.

Théorème 1. Soient a, b, α et β des nombres réels.

- $Si \alpha < \beta$, alors $n^{\alpha} = o(n^{\beta})$.
- Si 0 < a < b, alors $a^n = o(b^n)$.
- $Si \alpha > 0$, alors $(\ln n)^{\beta} = o(n^{\alpha})$.
- Si a > 1, alors $n^{\alpha} = o(a^n)$. En particulier $n^{\alpha} = o(e^n)$.
- On $a a^n = o(n!)$.

2 Suites équivalentes

2.1 Définition et premières propriétés.

Définition 3. Les suites (a_n) et (b_n) sont équivalentes (au voisinage de $+\infty$), et on écrit $a_n \sim b_n$, s'il existe une suite (ϵ_n) telle que :

1. $\lim_{n} \epsilon_n = 0$

2.

2. $a_n = b_n(1 + \epsilon_n)$ à partir d'un certain rang.

L'équivalence de suites définit une relation d'équivalence (relation réflexive, symétrique et transitive).

! $a_n \sim 0$ signifie que la suite (a_n) est nulle à partir d'un certain rang. L'écriture $a_n \sim +\infty$ n'a aucun sens!

Pour montrer qu'une suite est négligeable devant une autre, on utilise souvent les résultats suivant :

1.
$$u_n \sim v_n \Leftrightarrow u_n - v_n = o(u_n) \Leftrightarrow u_n - v_n = o(v_n)$$
.

soient (u_n) et (v_n) deux suites telles qu'à partir d'un certain rang $v_n \neq 0$ alors :

 $u_n \sim v_n \Leftrightarrow \frac{u_n}{v_n} \to 1$.

Equivalence et limite

On note ici encore $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}$.

Proposition 2. Soient (u_n) et (v_n) deux suites réelles.

- Si $u_n \sim v_n$ et si l'une des deux suites admet une limite dans $\overline{\mathbb{R}}$ alors l'autre suite admet la même limite,
- réciproque partielle : si les deux suites convergent vers une même limite finie non nulle $l \in \mathbb{R}^*$, alors $u_n \sim v_n$.

! La réciproque est fausse lorsque $l \in \{0, +\infty, -\infty\}$.

Equivalence et négligeabilité

Proposition 3. Soient (u_n) , (v_n) et (w_n) trois suites réelles.

- $Si u_n = o(v_n) alors u_n + v_n \sim v_n$.

- Si
$$u_n = o(v_n)$$
 et $v_n \sim w_n$ alors $u_n = o(w_n)$.

- Si
$$u_n = o(v_n)$$
 et $u_n \sim w_n$ alors $w_n = o(v_n)$.

Equivalence et opérations algébriques

Proposition 4. Soient (u_n) , (v_n) , (w_n) et (t_n) quatres suites réelles.

On suppose que $u_n \sim v_n$ et $w_n \sim t_n$. Alors:

$$- u_n w_n \sim v_n t_n,$$

— si à partir d'un certain rang
$$w_n \neq 0$$
 et $t_n \neq 0$, alors $\frac{1}{w_n} \sim \frac{1}{t_n}$ et $\frac{u_n}{w_n} \sim \frac{v_n}{t_n}$.

! L'équivalence n'est pas compatible avec l'addition et la soustraction.

Equivalence et composition

! En règle générale, on ne peut pas composer des équivalents : si $u_n \sim v_n$ et si f est une fonction quelconque, on n'aura pas a priori $f(u_n) \sim f(v_n)$.

Il existe néanmoins quelques exceptions:

Proposition 5. Supposons $u_n \sim v_n$ alors:

$$-|u_n|\sim |v_n|,$$

$$\begin{aligned} & - |u_n| \sim |v_n|, \\ & - pour \ tout \ k \in \mathbb{N}, \ u_n^k \sim v_n^k, \end{aligned}$$

— si à partir d'un certain rang
$$u_n > 0$$
 et $v_n > 0$ alors pour tout $\alpha \in \mathbb{R}$, $u_n^{\alpha} \sim v_n^{\alpha}$.

! Dans la proposition précédente, k et α sont des constantes indépendantes de n.

2.2Equivalents usuels

Proposition 6. Si $a_q \neq 0$ alors $a_0 + a_1 n + a_2 n^2 + ... + a_q n^q \sim a_q n^q$.

Théorème 7. Supposons $u_n \to 0$ alors :

$$\bullet \sin u_n \sim u_n \quad \bullet 1 - \cos u_n \sim \frac{u_n^2}{2} \quad \bullet \ln(1 + u_n) \sim u_n$$

$$\bullet \tan u_n \sim u_n \quad \bullet e^{u_n} - 1 \sim u_n \quad \bullet \forall \alpha \in \mathbb{R}, (1 + u_n)^{\alpha} - 1 \sim \alpha u_n$$

 \bullet Si (v_n) est une suite réels strictement positifs convergeant vers 1, alors

$$\ln(v_n) \sim v_n - 1$$
 et $v_n^{\alpha} - 1 \sim \alpha(v_n - 1)$.

2.3 Méthodes pour déterminer des équivalents

En général, on ne peut pas composer une relation d'équivalence :

$$f(u_n) \sim v_n \not\Rightarrow g(f(u_n)) \sim g(v_n)$$
.

Supposons qu'on cherche à déterminer un équivalent de $(g \circ f)(u_n)$ à l'aide des équivalents usuels. On commencera par utiliser l'équivalent usuel associé à la fonction q, puis celui associé à la fonction f .