VHDL: Funciones de conversión

Microarquitecturas y Softcores

ieee.numeric_std:

Es un paquete de la librería estándar de la IEEE

ieee.std_logic_arith, ieee.std_logic_unsigned/signed:

Paquetes de Synopsys. Eran usados casi por defecto por ser una de las empresas cuyo software es uno de los más usados

Nunca utilizar los siguientes paquetes en el mismo proyecto:

- ieee.numeric_std.all
- ieee.std_logic_arith.all, ieee.std_logic_unsigned,
 ieee.std_logic_unsigned

ieee.numeric_std:

- No tiene definidas las operaciones matemáticas para std_logic, std_logic_vector
- Tiene definidas las operaciones matemáticas para los tipos signed, unsigned e integer

ieee.std_logic_arith, ieee.std_logic_unsigned/signed:

 Tiene definidas las operaciones matemáticas para los tipos std_logic, std_logic_vector e integer

Diagrama de conversiones y casteos

Funciones de conversión: Ejemplo 1

```
-- Declaración de librerías (incluir numeric_std)
entity contador is
  port (
     clk, rst, ld: in std_logic;
     initial value: in std logic vector(3 downto 0);
     count: out std logic vector(3 downto 0)
end contador:
architecture beh of contador is
begin
  count proc: process(clk, rst)
     variable count i: integer range 0 to 16;
  begin
     if (rst='1') then
       count i := 0;
     elsif (rising_edge(clk)) then
       if (Id = '1') then
          count_i := to_integer(unsigned(initial_value));
       else
          count i := count i + 1;
          if count i = 16 then
             count i := 0;
          end if:
        end if:
     end if:
     count <= std_logic_vector(to_unsigned(count_i,4));</pre>
  end process count proc;
end architecture;
```

Funciones de conversión: Ejemplo 2

```
-- Declaración de librerías (incluir numeric_std)
entity contador is
  port (
     clk, rst, ld: in std_logic;
     initial_value: in std_logic_vector(3 downto 0);
     count: out std_logic_vector(3 downto 0)
end contador:
architecture beh of contador is
begin
  count_proc: process(clk, reset)
     variable count_i: unsigned(3 downto 0);
  begin
     if (rst='1') then
        count i <= (others => '0');
     elsif (rising_edge(clk)) then
        if (Id = '1') then
          count_i := unsigned(initial_value);
        else
          count_i <= count_i + 1;</pre>
        end if;
     end if:
     count <= std_logic_vector(count_i);</pre>
  end process count_proc;
end architecture;
```

