The 3rd Universal Cup Stage 11: Sumiyosi, October 5-6, 2024

Problem I. Left Equals Right

Time limit: 2 seconds

Memory limit: 1024 megabytes

Find the number of permutations (P_1, \ldots, P_N) of $(1, \ldots, N)$ that satisfy the following condition, modulo 998244353.

• There exists an integer i $(1 \le i < N)$ such that $A_{P_1} + \cdots + A_{P_i} = A_{P_{i+1}} + \cdots + A_{P_N}$.

Constraints

- $2 \le N \le 100$
- $1 \le A_i \le 100$

Input

The input is given in the following format from standard input:

N

$$A_1 A_2 \ldots A_N$$

Output

Output the answer.

Examples

standard input	standard output
3	4
4 9 5	
2	2
100 100	
8	11520
3 2 6 3 1 2 4 5	

Note

For the first sample case:

There are 3!(=6) permutations of (1,2,3), of which 4 satisfy the condition:

- (1,3,2)
- (2,1,3)
- (2,3,1)
- (3,1,2)

For example, for (1,3,2), choosing i=2, we have $A_1+A_3=A_2=9$, which satisfies the condition.