天津理工大学考试试卷

2018~2019 学年第一学期 《数理统计》期末考试试卷

课程代码: 1563163 试卷编号: __1-A__ 命题日期: 2018 年 11 月 15 日

答题时限: 120 分钟 考试形式: _ 闭卷_

得分统计表

大题号 总分	_	=	Ξ	四

一、填空题 (每题 4 分, 共 20 分)

得分

- 1. 设 x_1, x_2, x_3, x_4 是服从正态总体 N(0,1) 的样本, 则统计量 $Y = \frac{x_1 x_2}{\sqrt{x_3^2 + x_4^2}}$ 服从的分布为
- 3. 请描述统计推断中的"充分性原则": _________.
- 4. 设样本 $x_1, ..., x_n$ 取自两点分布 b(1, p), 现要求 p 的 1α 大样本置信区间, 利用中心极限 定理, 可取枢轴量为 $u = ______$.
- 5. 设 x_1, \ldots, x_n 是来自密度为 $p(x;\theta)$, $\theta \in \Theta$ 的样本,对检验问题 $H_0: \theta \in \Theta_0$ vs $H_0: \theta \in \Theta \setminus \Theta_0$,似然比检验所使用的检验统计量为 ________.

	、选择题 (每题 4 分, ‡	失20分)		
í	导分			
1.	设样本 x_1, \ldots, x_n 取自	总体 x ,则偏差平 π	方和 $\sum_{i=1}^{n} (x_i - \bar{x})^2$ 的自由	度是()
	A. $n-1$	B. <i>n</i>	C. $n+1$	D. 1
2.	设随机变量 $X \sim t(n)$,	$n > 1, \ \diamondsuit Y = X^2$,则()	
	A. $Y \sim \chi^2(n)$	B. $Y \sim \chi^2(n -$	1) C. $Y \sim F(n, 1)$	D. $Y \sim F(1, n)$
3.	设总体方差为 $Var(X)$	$=\sigma^2$,则样本标准	$\not\equiv S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - X_i)^2}$	$(-\bar{X})^2$ 是 σ 的(
	A. 无偏估计		B. 有效估计	
	C. 相合估计		D. 以上都不对	
4.	在一次假设检验中,下	列说法正确的是()	
	A. 既可能犯第一类	、 错误,也可能犯第	二类错误.	
	B. 如果备择假设是	是正确的,但拒绝了	备择假设,则犯了第一	类错误.
	C. 增大样本容量,	则犯两类错误的概	率都不变.	
	D. 如果原假设是锦	; 误的,但接受了原	假设,则犯了第二类错i	淏.
5.	在假设检验中,如果所	计算的 p 值越小,	说明()	

试卷编号: <u>1-A</u>

A. 原假设越真实;

C. 否定原假设证据越不充分; D. 否定原假设证据越充分.

B. 备择假设越不真实;

三、计算题 (每题 10 分, 共 40 分)

得分	
----	--

1. 设样本 x_1, \ldots, x_n 取自均匀分布 $U(\theta, \theta+1)$, 求 θ 的矩估计和最大似然估计.

2.	设-	一页书上的错别字~	个数 X	服从泊松分布	$p(\lambda)$, λ 有两	可能取值	1.5 和 1.8,	先验分布为
----	----	-----------	--------	--------	-----------------------------	------	------------	-------

$$P(\lambda = 1.5) = 0.45, \quad P(\lambda = 1.8) = 0.55,$$

现检查了一页, 发现 3 个错别字, 试求 λ 的后验分布.

3. 假定某种元件的寿命为指数分布, 现取 5 个元件投入试验, 观测到如下失效时间 (小时):

395 4094 119 11572 6133,

经计算, 样本均值 $\bar{x}=4462.6$. 能否认为该元件的平价寿命不小于 6000 小时? (取 $\alpha=0.05$, $\chi^2_{0.05}(10)=3.94$)

4. 研究某种传统中药对疟疾的治疗效果,获得了如下数据:

	痊愈数	未痊愈数	合计
对照组	114	36	150
中药组	132	18	150
	246	54	300

试问该中药对治疗疟疾是否有显著效果? (取显著水平 $\alpha=0.05$)

四、证明题 (每题 10 分, 共 20 分)

得分

- 1. 设 x_1, \ldots, x_n 是取自总体 $N(\mu, 1)$ 的简单随机样本,
 - 1). 设 T 是 $g(\mu) = \mu^2$ 的任一无偏估计, 证明 $\mathbf{Var}(T)$ 的 C-R 下界为 $4\mu^2/n$;
 - 2). 求 μ^2 的 UMVUE, 并证明此 UMVUE 达不到 C-R 下界, 即它不是有效估计. (注: 设 $Z\sim N(\mu,\sigma^2)$, 则有 $\mathbb{E}(Z^4)=3\sigma^2(\mu^2+\sigma^2)$.)

试卷编号: <u>1-A</u>

