Sintetizzatore di Frequenza

William Perri 4427140

20/06/2020

Insegnamento di LABORATORIO DI ELETTRONICA A.A. 2019/20

Indice

1	Introduzione	3
2	Descrizione del Progetto	4
3	Realizzazione	12
4	Risultati	13
5	Conclusioni	14
6	Riferimenti	15

1 Introduzione

Lo scopo del progetto consiste nel realizzare un sintetizzatore di frequenza basato su PLL (Phase Locked Loop). Un PLL è composto da un rivelatore di fase, un filtro passa-basso ed un VCO (Voltage Controlled Oscillator).

Il progetto verrà dapprima simulato mediante software di simulazione ed in seguito realizzato in parte su breadboard ed in parte su una FPGA (Field Programmable Gate Array) Cyclone II, programmata mediante il software Quartus II sulla base del progetto realizzato su Digital Electronic Deeds.

2 Descrizione del Progetto

Come già detto nel capitolo precedente, il nostro sintetizzatore si baserà su un PLL il cui schema a blocchi è il seguente:

Figura 1: Schema a Blocchi PLL

Figura 2: Il Phase Detector lega la differenza di fase degli ingressi alla tensione d'uscita.

Figura 3: Risposta ad un gradino in frequenza

Analizzando la Figura 3, possiamo capire che se la tensione in uscita dal VCO è nulla (o al valore di riferimento), esso oscillerà ad una frequenza ω_0 , per modificare questa frequenza c'è necessità di cambiare la tensione di controllo V_{CONT} in uscita dal LPF, la differenza di fase tra V_{IN} e V_{OUT} permette a V_{PD} di generare un ΔV per modificare la frequenza del VCO. Il LPF deve "pulire" la tensione di controllo dai piccoli picchi che la tensione V_{PD} avrebbe. Nell'istante t_0 la frequenza del segnale d'ingresso cambia, il periodo della Vin diminuisce, l'impulso VPD si allarga portando ad aumentare V_{CONT} , all'istante t_a , a causa delle dinamiche dell'anello, la tensione V_{CONT} continua a salire, facendo aumentare conseguentemente la frequenza di oscillazione del VCO, fino a quando non si stabilizzerà a ω_1 all'istante t_2 .

Andando ad esplicitare il LPF come un filtro del primo ordine, otteniamo quanto segue in Figura 4

Figura 4:

Abbiamo la proporzionalità data dal PD, un polo dato dal LPF ed infine l'integratore che rappresenta il VCO. Possiamo calcolare le funzioni di trasferimento, sia ad anello aperto, sia ad anello chiuso ottenendo:

$$H_0(s) = K_{PD} \frac{1}{1 + \frac{s}{\omega_{LPF}}} \frac{K_{VCO}}{s} \ \mathbf{e} \ H(s) = \frac{K_{PD} K_{VCO}}{\frac{s^2}{\omega_{LPF}}} + s + K_{PD} K_{VCO}$$

Quanto detto fin'ora però presenta un problema: abbiamo

 $\omega_{LPF} << \omega_{IN} - \omega_{OUT}$, pertanto la differenza non riesce a passare nel LPF e il circuito non riesce ad agganciarsi. Per il nostro progetto quindi avremmo bisogno di un rivelatore che non tenga conto solo della fase ma anche delal frequenza: PFD (Phase-Frequency Detector, Figura 5).

Se il fronte di salita del segnale A arriva prima del fronte del segnale B, il segnale d'uscita Q_A va a 1 fino a quando non arriva il fronte di B,

Figura 5: Schema di un PFD

quindi la larghezza dell'impulso di Q_A è proporzionale alla differenza di fase tra i due segnali. Al contrario ovviamente se B fosse in anticipo rispetto ad A, accadrebbe la medesima cosa però sul segnale Q_B . Questo dispositivo è stato implementato come si può vedere in Figura 6.

Figura 6: Realizzazione di un PFD

A questo punto andiamo a realizzare un pompa di carico da aggiungere in cascata al PFD

Figura 7: Rappresentazione simbolica della Charge Pump

Se Q_A è a 1, chiude lo switch S_1 , facendo caricare il condensatore C_1 , facendo aumentare la frequenza del VCO. L'uscita Q_B invece fa scaricare lievemente il condensatore, in quanto gli impulsi di Q_B sono molto più stretti di quelli di Q_A , il condensatore C_1 sostituisce anche il LPF, generando però un problema, la nuova funzione di trasferimento è quella in Figura 8

Questa presenta due poli immaginari nell'origine, rendendo così il sistema instabile. A questo punto per ovviare a questo problema si deve per forza di cose aggiungere uno zero in zero alla funzione di trasferimento, aggiungendo un resistore prima del condensatore. Il fattore di smorzamento diventa ¿0, il margine di fase che in pre-

Figura 8: Funzione di Trasferimento

cedenza era nullo, ora anch'esso è aumentato. Questo non è l'unico aspetto positivo di questa realizzazione, perché anche all'aumentare del guadagno, abbiamo che il margine di fase aumenta ulteriormente di conseguenza (Figura 9), migliorando la stabilità.

Figura 9: Il margine di fase aumenta

A questo punto possiamo inserire un divisore di frequenza.

Figura 10: PLL con pompa di carico e divisore per M

Per completare il nostro progetto bisognerà dimensionare I_P,R_1,C_1 , il K_VCO sarà noto in quanto parametro di costruzione. Con l'inserimento del divisore per e portando la nuova H(S) nella forma "canonica" abbiamo $\zeta = \frac{R_1}{2} \sqrt{\frac{I_PK_{VCO}C_1}{2\pi M}}$ e $\omega_n = \sqrt{\frac{I_PK_{VCO}C_1}{2\pi M}}$

Per il nostro progetto dovremo tenere conto delle richieste che sono: $f_{OUT} = 1 MHz$

 $f_{REF} = 10kHz$

 $M = 100(80 \div 150)$.

Il VCO che utilizzeremo sarò il 74LS624.

Il divisore per M, realizzato sull'FPGA, presenterà uno dip switch, da 8 interruttori, per selezionare il numero M. Il DIP switch verrà collegato a due array di resistenze, quando uno singolo switch sarà

Figura 11: Pinout del VCO

Figura 12: Schema a blocchi dei dispositivi da realizzare.

ON, l'ingresso sulla FPGA verrà visto come basso, perché collegato a massa(attraverso le due resistenze), mentre se lo switch è su OFF, l'ingresso della FPGA vede il valore logico alto (3.3V)

3 Realizzazione

Viene descritto come si è realizzato il sistema finale (tramite simulatore o come realizzazione pratica)

4 Risultati

Sono raccolti di risultati più significativi, intesi come prestazioni del circuito finale, in modo sufficiente per poterlo caratterizzare adeguatamente

5 Conclusioni

Si riassumono i punti salienti del progetto svolto

6 Riferimenti

Contiene sia la bibliografia (libri, articoli, manuali) sia i siti web eventualmente impiegati durante il progetto