

ITU-ML5G-PS-015: Network failure detection and root cause analysis in 5GC by NFV-based test environment

Team Kaien 2021-12-01

Team member:

阿部 海燕 Kaien ABE abe@people.kobe-u.ac.jp

白石 善明 Yoshiaki SHIRAISHI zenmei@port.kobe-u.ac.jp

Content

- Background
- > Survey of Data Profile
- Feature Extraction Method
- Data clustering using unsupervised ML model
- > Task #1 Abnormal detection model
- Task #2 Augmentation model
- > Task #3 Failure cause analysis by SHAP value
- > Future work

| Project Introduction

E2E 5G operational architecture empowered by AI, including Define/Design & Deploy operations functionalities

AI-Empowered E2E 5G Operation

| Target

<u>Urban model</u> <u>middle model</u> <u>Rural model</u>

Confidential Proprietary Copyright © 2019 KDDI Corporation All Rights Reserved

Data processing environment

計算機・ライブラ 環境

Computer configuration			
CPU/クロック周波数 Intel(R) Core(TM) i7-9750H/2.60GHz			
メモリー (Memory) 32GB			
OS Ubuntu 18.04			

Library			
Anacond3 (Environment)	Python3.8		
json (process original json data)	csv (output data format)		
Panadas (feature extraction)	sqlite (database for data post-processing		
XGBoost (normal model)	XGBoost (increment model)		

Original data is 77GB json file, it takes several days for feature extraction.

Provided data: json files (77GB)	a Urban(都市)	c Rural(田舎)	b Middle(中間)
Train	98,533	98,533	12,360
Test	24,647	24,647	24,647
Failure label	2480(train)+620(test)	2480(train)+620(test)	310(train)+620(test)

Extract features by python code

(One data is split to 3 data according to nodes number for more precise label)

Table data	of features	s (101)
------------	-------------	---------

Train: (101 features) [nodes: amf, ausf, udm, respectively]	295,599 (=98,533×3) (×101 特徴量)	295,599 (=98,533×3) (×101 特徴量)	37,080 (=12,360×3) (×101 特徴量)
Test: (101 features) [nodes: amf, ausf, udm, respectively]	73,886 (≒24,647×3) (×101 特徴量)	73,889 (≒24,647×3) (×101 特徴量)	73,941 (=24,647×3) (×101 特徴量)
Abnormal data (from failure label)	4,645	4,011	1,212
Abnormal /Total (%)	13%	10%	10%

Data investigation

Nodes	Failure		
amf	○ 障害発生		
ausf	○ 障害発生		
udm	○ 障害発生		
gnb	× 障害なし		
smf	× 障害なし		
upf	× 障害なし		
nrf	× 障害なし		
dn	× 障害なし		

8 types nodes are included in the dataset. but failures are happened in 3 types nodes according to Failure label. <u>In order to reduce calculation cost this time</u>, only these 3 types nodes are processed. In real scenario, all of nodes should be considered to process.

| Failure label information

Data processing (1) データ分割のアイデアとメリット

In the provided dataset, failures happened in three nodes (total nodes=8) so that we only processing 3 nodes information for decreasing data processing work.

障害発生したノートを特定できる & 過学習を抑制できる

Data processing (2)-how to select features

特徴量の選抜基準

Nodes	障害	抽出項目数
amf	障害発生	204 (a,c) 154 (b)
ausf	障害発生	175(a,c,b)
udm	障害発生	177(a,c,b)
gnb	障害なし	
smf	障害なし	
upf	障害なし	
nrf	障害なし	
dn	障害なし	

■ Delete category info.

{interface_type:softwareloopback,tunnel,healthy,unknown interface_name, interface_if_index, Interface_if_name platform-fru-rp, phys-address, Healthy, critical, unknow,up, down, Null···

■ Remain digital info.

{memory-states-, per-core-states-, interface-parameter…}

■ Common features among all of nodes

datetime	failure_type	ifname	network	node
20210209154552	interface-up	ens4	NULL	udma1
20210205234627	bridge-delif	NULL	nw-cpa1	ausfa1
20210205085657	interface-down	ens5	NULL	amfa1
20210209044653	memory-stress-stop	NULL	NULL	ausfa1
20210205122320	vcpu-overload-stop	NULL	NULL	amfa1
20210205141413	vcpu-overload-stop	NULL	NULL	amfa1
20210209115810	normal	NULL	NULL	NULL
20210205235154	vcpu-overload-stop	NULL	NULL	ausfa1
20210206041959	bridge-delif	NULL	nw-cpa1	ausfa1
20210205022336	interface-down	ens5	NULL	amfa1
20210205125623	interface-loss-start	ens5	NULL	amfa1
20210210014614	memory-stress-stop	NULL	NULL	amfa1
20210205205932	interface-loss-start	ens4	NULL	udma1
20210209055829	bridge-delif	NULL	nw-cpa1	amfa1
20210206020246	bridge-delif	NULL	nw-cpa1	udma1
20210205143538	interface-loss-stop	ens5	NULL	amfa1
20210205221325	memory-stress-stop	NULL	NULL	udma1
20210209225842	interface-loss-stop	ens4	NULL	udma1

This selection method is not perfect and presice. More deeply data observation to select more precise and informative features is needed.

Data processing (3)- how to label data

ラベルの付け方

Form the failure information (failure start-time, failure type, node, if name), we traced the train&test data, then found the following info. strongly related to failures, so that we label the training and test data according these info. There might be other info also related failures. Further more data investigation should be carried out.

Info & Features 特徴量	Abnormal 障害あり(label=1)	Normal 障害なし(label=0)
Memory_status: (148)(4512) software-oper_cisco-platform-software_control- processes_control-process_memory-stats_memory-status	'Critical' 'Warning'	'Healthy'
Minute_status_condition: 16 software-oper_cisco-platform-software_control- processes_control-process_load-avg-minutes_load-avg- minute_status_condition	'Critical'	'Healthy'
Operation_status: 1(203)2(4996) interfaces_interfaces-state_interface_oper-status	'down' (start at, proc) (interface_down)	ʻup'
memory-stats_used-percent: software-oper_cisco-platform-software_control- processes_control-process_memory-stats_used-percent	>90% (memory_stress_stop)	<=90
software-oper_cisco-platform-software_control- processes_control-process_memory-stats_free-percent	<65 (memory_stress_stop)	>=65
software-oper_cisco-platform-software_control- processes_control-process_memory-stats_free-number	<250000 (memory_stress_stop)	>=250000
software-oper_cisco-platform-software_control- processes_control-process_per-core-stats_per-core-stat_idle	0 (<0.5) (Bridge_delif)	>0.5
software-oper_cisco-platform-software_control- processes_control-process_per-core-stats_per-core-stat_nice	0 (<0.5) (vcpu_overload_stop)	>0.5

label

Verify by some features

Feature Profile 1 (features name)

Feature Profile (2)(values)

Data clustering by unsupervised model (UMAP manifold learning technique for dimension reduction)

In urban environment, the failure type could be more than rural and middle environment.

Machine Learning by Xgboost 2-class model

Task-1 課程#1

Training by a (urban): (Normal: 292,306; Abnormal: 3,293) Test by c (rural): (Normal: 73,082; Abnormal: 807)

	Precision	Recall	F-1
Xgboost	100%	100%	100%

Confusion	73,082	0(FP)
Matrix	0	807(TP)

Training by c (rural): (Normal:292,395; Abnormal: 3,204) Test by a (urban): (Normal: 72,534; Abnormal: 1,352)

	Precision	Recall	F-1
Xgboost	100%	100%	100%

Confusion	72,534	0(FP)
Matrix	0	1,352(TP)

Increment Learning by XGB Increment model

Task-2 課程#2

- ◆ Trained model by a (urban) (Normal: 292,306; Abnormal: 3,293) + Training by b (middle)(Nomal:36,668; Abnormal: 412)
- Test by b (middle): (Normal: 73,129; Abnormal: 812)

	Precision	Recall	F-1
Xgboost	100%	83%	91%

Confusion	73,129	0(FP)
Matrix	135	677(TP)

Increment Learning by XGB Increment model

Task 2 課程#2

- lacktriangle Trained model by C (urban) (Normal: 292,395; Abnormal: 3,204) + Training by b (middle)(Nomal: 36,668; Abnormal: 412)
- Test by b (middle): (Normal: 73,129; Abnormal: 812)

	Precision	Recall	F-1
Xgboost	87%	100%	93%

Confusion Matrix	73,005	124(FP)
	0	812(TP)

SHAP for Feature analysis

(SHapley Additive exPlanations)

Machine learning based on tree models is comprehensive. When tree based models are applied in applications, we expect models can be interpretable, which means we can understand how the model uses input features to make predictions. ShapTreeExplainer bridges theory to practice based on classic game theoretic Shapley values. It makes possible to evaluate features impact when network failure happened.

By calculate the train or test data's SHAP values, we can know how the features influence the predictions results. So when the failure is detected, we can infer the most important failure reasons by SHAP value rank.

Improvement proposal

改善点など

- **◆** Data clustering or mapping is helpful to confirm the feature's effectiveness
- ◆ More deep analysis: how different information (CPU load info, traffic info, fiveg session info) is related failure by training AI models respectively.
- ♦ How to choose features should be investigated more deeply.
- **◆** Comparing neural network models with tree models for more flexible deployment.