What is claimed is:

5

10

15

20

The state of the s

- 1. A method of controlling the spread of a material deposited on a semiconductor device component, comprising: providing said semiconductor device component; depositing said material on said semiconductor device component; and inverting said semiconductor device component until said material obtains a desired stable shape and boundary definition of said deposited material.
- 2. A method of controlling definition of surface features of a material deposited on a semiconductor device component, comprising: providing said semiconductor device component; depositing said material on said semiconductor device component; and inverting said semiconductor device component until said material obtains a desired stable shape and boundary definition of said deposited material.
- 3. A method of controlling the angle of repose of a material deposited on a semiconductor device component, comprising: providing said semiconductor device component; depositing said material on said semiconductor device component; and inverting said semiconductor device component until said material obtains a desired stable angle of repose of said deposited material.
- 4. A method of forming an adhesive patch, comprising:

 providing a semiconductor substrate;

 depositing an adhesive material on said semiconductor substrate; and
 inverting said semiconductor substrate until said adhesive material obtains a desired
 stable shape and boundary definition of said deposited adhesive material.

25

5

- 5. The method of claim 4, wherein depositing said adhesive material, includes:
 placing a template, having at least one aperture, on said semiconductor substrate; depositing said adhesive material into said template aperture; and removing said template.
- 6. The method of claim 4, wherein said semiconductor substrate includes a flip-chip used in an lead-on-chip attachment configuration.
- 7. A semiconductor substrate having at least one adhesive patch formed by:

 providing a semiconductor substrate;
 depositing an adhesive material on said semiconductor substrate; and inverting said semiconductor substrate until said adhesive material obtains a desired stable shape and boundary definition of said deposited adhesive material.
 - 8. The semiconductor substrate of claim 7, wherein depositing said adhesive material, includes: placing a template, having at least one aperture, on said semiconductor substrate; depositing said adhesive material into said template aperture; and removing said template.
 - 9. A method of forming a conductive bump, comprising: providing a semiconductor substrate having at least one bond pad; forming a conductive bump on said semiconductor substrate bond pad with a conductive material; and inverting said semiconductor substrate until said conductive material obtains a desired stable shape and boundary definition of said deposited conductive material.

5

- 11. The method of claim 9, wherein said semiconductor substrate includes a printed circuit board.
- 10 12. The method of claim 9, wherein said semiconductor substrate includes a flip-chip.
 - 13. A printed circuit board having at least one conductive bump formed by: providing said printed circuit board with at least one bond pad;
 - forming a conductive bump on said printed circuit board bond pad with a conductive material; and
 - inverting said printed circuit board until said conductive material obtains a desired stable shape and boundary definition of said deposited conductive material.
- 20
 14. The method of claim 13, wherein forming said printed circuit board includes:

 placing a template, having at least one aperture, on said printed circuit board; depositing a conductive material into said template aperture; and removing said template.

5

10

15

20

15. A flip-ch	p having at least one conductive bump formed by:
providing said flip-chip	with at least one bond pad;
forming a conductive bu	imp on said flip-chip bond pad with a conductive material; and
inverting said flip-chip	intil said conductive material obtains a desired stable shape
and boundary de	finition of said deposited conductive material.

- 16. The method of claim 15, wherein forming said conductive bump includes:
 placing a template, having at least one aperture, on said flip-chip;
 depositing a conductive material into said template aperture; and
 removing said template.
- 17. A method of forming an encapsulant on a semiconductor device, comprising:

 providing a semiconductor substrate having a semiconductor device attached thereto; depositing an encapsulant material on said semiconductor device and on a portion of said semiconductor substrate; and inverting said semiconductor substrate until said encapsulant material obtains a desired stable shape and boundary definition of said deposited encapsulant material.
- 18. The method of claim 17, wherein said portion of said semiconductor substrate includes an area about a periphery of said semiconductor device.

	19. The method of claim 17, wherein depositing said encapsulant material
	includes:
	placing a template, having at least one aperture, on said semiconductor substrate
	wherein said aperture exposes said semiconductor device and said portion of
5	said semiconductor substrate;
	depositing said encapsulant material into said template aperture; and
	removing said template.
	20. A method of forming an adhesive coated lead frame, comprising:
10	providing a lead frame having at least one lead finger;
	depositing an adhesive material on a portion of an attachment surface of said lead
	finger; and
	inverting said lead frame until said adhesive material obtains a desired stable shape
	and boundary definition of said deposited adhesive material.
15	
	21. An adhesive coated lead frame formed by:
÷	providing a lead frame having at least one lead finger;
	depositing an adhesive material on a portion of an attachment surface of said lead
	finger; and
20	inverting said lead frame until said adhesive material obtains a desired stable shape
	and boundary definition of said deposited adhesive material.
	22. A method of forming a conductive trace, comprising:
	providing a semiconductor substrate;
25	forming a conductive trace on said semiconductor substrate with a conductive
	material; and
	inverting said semiconductor substrate until said conductive trace obtains a desired
	stable shape and boundary definition of said deposited conductive trace.

THE THE COME COME BETT OF THE PERSON OF THE

placing a template, having at least one aperture with a desired shape of said conductive trace, on said semiconductor substrate; depositing said conductive material into said template aperture; and removing said template.

24. The method of claim 22, wherein said semiconductor substrate includes a printed circuit board.