제11장 물질의 원자론

The Atomic Nature of Matter

강의 개요

- ◆ 원자가설
- ◆ 원자의 특성
- ◆ 원자의 모습
- ◆ 원자의 구조
- ♦ 원소
- ◆ 원소의 주기율표
- ◆ 원자의 상대적 크기
- ◆ 동위원소
- ◆ 화합물과 혼합물
- ◆ 분자
- ◆ 반물질
- ◆ 암흑물질

원자

◆ "모든 물질은 원자로 이루어져 있으며, 이들은 영원히 운동을 계속하는 작은 입자로서 거리가 어느 정도 이상 떨어져 있을 때에는 서로 잡아당기고, 외부의 힘에 의해 압축되어 거리가 가까워지면 서로 밀어낸다."

―리처드 파인만(Richard Feynman)

원자가설

- → 물질에 대한 생각
 - 기원전 5세기, 그리스
 - ▶ 더 이상 쪼개지지 않는 가장 작은 돌, 즉 "원자"가 존재할 것으로
 - 아리스토텔레스 (BC 4C)
 - ▶ 모든 물질은 내 개의 기본 원소인 흙, 공기, 불, 물로 구성되어 있다.
 - 존 돌턴(John Dalton, 1800년대 초반)
 - 모든 물질이 원자로 구성된다는 가정 하에 화학반응을 성공 적으로 설명

원자가설

- ◆ 브라운 운동
 - 로버트 브라운 1827, 스코틀랜드 식물학자
 - 물 위에 퍼져있는 꽃가루를 현미경으로 관찰할 때 꽃가루 들이 끊임없이 떠다니는 현상 발견
 - → '브라운 운동'
 - 아인슈타인
 - 1905년에 브라운 운동을 명쾌히 설명
 - 눈에 보이는 입자나 알갱이들의 무질서한 운동은 눈에 보이지 않는 주변 입자들과의 충돌로 생겨남.
 - ▶ 원자가 존재한다는 증거

원자의 특성

- ◆ 원자의 특성:
 - 원자는 매우 작다
 - 원자가 사과의 크기라면 사과는 지구 크기
 - 원자의 수는 엄청나다
 - ▶ 1g의 물에 10²³개의 원자가 있음
 - 원자는 끊임없이 움직인다
 - 대기 속의 원자나 분자들은 음속의 십여 배 속력
 - 원자는 영원하다
 - 다양한 형태로 재활용

원자의 특성 확인문제

다음 원자에 대한 설명 중 올바르지 않은 것은?

- A. 원자는 가시광선의 파장보다 더 작다.
- B. 태양계의 대부분이 빈 공간인 것과 같이, 원자는 대부분이 빈 공간으로 되어 있다.
- C. 원자는 끊임없이 움직인다.
- D. 원자는 식물과 임신 기간의 인간에게서 만들어진다.
- E. 모두 옳다.

원자의 특성 확인문제

다음 원자에 대한 설명 중 올바르지 않은 것은?

- A. 원자는 가시광선의 파장보다 더 작다.
- B. 태양계의 대부분이 빈 공간인 것과 같이, 원자는 대부분이 빈 공간으로 되어 있다.
- C. 원자는 끊임없이 움직인다.
- D. 원자는 식물과 임신 기간의 인간에게서 만들어진다.
- E. 모두 옳다.

- ◆ 원자 보기
 - 원자는 너무 작아서 가시광선으로 볼 수 없음
 - 1970년에 개별 토륨 원자의 사슬 사진을 찍음
 - 주사현미경의 전자빔으로 얻음
 - ▶ 앨버트 크류 (시카고 대학의 엔리코 페르미 연구소)

- ◆ 원자 보기 (계속)
 - 1980년대 중반, 주사터널링현미경 개발
 - 구리 결정 표면 위에 전자들이 만든 "목장울타리" 같은 원형 고리안에 48개의 철 원자들이 들어있음

- ◆ 초기 원자 모형 태양계와 비슷
 - 대부분의 원자 공간은 비어 있음
 - 중심에 극히 작지만 대부분의 질량들이 모여있는 원자핵이 존재
 - 궤도비행하는 전자들의 "껍질"이 핵을 둘러싸고 있음
 - 원자핵은 양의 전하, 전자는 음의 전하를 지님
 - 핵의 전하량이 커지면 전자를 더 가까이 끌어당기므로 껍질의 크기 가 줄어듦

수소: 1껍질에 1개의 전자

헬륨: 1껍질에 2개의 전자

리튬: 2껍질에 3개의 전자 알루미늄: 3껍질에 13개의 전자

원자의 구조

- ◆ 원자의 구조
 - 원자핵
 - 거의 모든 질량이 집중
 - 핵자
 - 원자핵의 기본 구성요소
 - ▶ 모두 똑같다
 - 전기적으로 중성이면 → 중성자
 - 양으로 대전되면 → 양성자 ✓ 양전하는 양전하를 밀어내고 음전하를 끌어당김
 - 쿼크 핵자를 구성하는 기본 입자

원소

- ♦ 원자
 - 물질을 만드는 개별 입자
- ◆ 원소 물질
 - 한 종류의 원자로 구성된 물질

원소

- ◆ 원소 물질 (계속)
 - 원소와 원자는 가끔 같은 뜻으로도 사용
 - 오늘날 약 115개의 원소가 알려져 있음
 - ▶ 약 90개는 자연에 존재
 - 나머지 원소들은 고에너지 가속기나 핵반응로에서 만들어 지고, 불안정함
 - 우주에서 수소가 가장 가볍고 가장 풍부한 원소

원소

- ◆ 생명체를 구성하는 주요 다섯 원소:
 - 산소
 - 탄소
 - 수소
 - 질소
 - 칼슘

원소의 주기율표

- ◆ 원자번호: 원자핵 속의 양성자 수
 - 예: 수소(1), 헬륨(2), ..., 우라늄(95), ...
- ◆ 주기율표 (멘델레예프가 창안)
 - 원자번호 순서대로 원소들을 배열한 도표
 - ▶ 화학자의 이정표
 - 왼쪽에서 오른쪽으로 갈 때
 - 앞의 원자보다 양성자와 전자가 하나씩 늘어남
 - 맨 오른쪽에 있는 원소는 맨 바깥 껍질이 가득 채워져 있음
 - → 불활성 또는 비활성 기체

원소 주기율표

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1	H Hydrogen 1.0079					7			족									He Helium 4.003
		3	4				금속							5	6	7	8	9	10
	2	Li	Be	반금속										В	С	N	0	F	Ne
	-	Lithium 6.941	Beryllium 9.012											Boron 10.811	Carbon 12.011	Nitrogen 14,007	0xygen 15.999	Fluorine 18.998	Neon 20.180
		11 12 비금속												14	15	16	17	18	
	3	Na	Mg											AI	Si	P	S	CI	Ar
		Sodium 22.990	Magnesium 24.305											Aluminum 26.982	Silicon 28.086	Phosphorus 30.974	Sulfur 32.066	Chlorine 35.453	Argon 39.948
		19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	,	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	7	Potassium 39.098	Calcium 40.078	Scadium 44.956	Titanium 47.88	Vanadium 50.942	Chromium 51.996	Manganese 54.938	Iron 55.845	Cobalt 58.933	Nickel 58.69	Copper 63.546	Zinc 65.39	Gallium 69.723	Germanium 72.61	Arsenic 74.922	Selenium 78.96	Bromine 79.904	Krypton 83.8
K ₊		37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	5	Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
		Rubidium 85.468	Strontium 87.62	Yttrium 88.906	Zirconium 91.224	Niobium 92.906	Molybdenum 95.94	Technetium (98)	Ruthenium 101.07	Rhodium 102.906	Palladium 106.42	Silver 107.868	Cadmium 112.411	Indium 114.82	Tin 118.71	Antimony 121.76	Tellurium 127.60	lodine 126.905	Xenon 131.29
		55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	6	Cs	Ba	La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
		Cesium 132.905	Barium 137.327	Lanthanum 138.906	Hafnium 178.49	Tantalum 180.948	Tungsten 183.84	Rhenium 186.207	Osmium 190.23	Iridium 192.22	Platinum 195.08	Gold 196.967	Mercury 200.59	Thallium 204.383	Lead 207.2	Bismuth 208.980	Polonium (209)	Astatine (210)	Radon (222)
		87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
	7	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo
		Francium (223)	Radium 226.025	Actinium 227.028	Rutherfordium (261)	Dubnium (262)	Seaborgium (266)	Bohrium (264)	Hassium (269)	Meitnerium (268)	Darmstadtium (271)	Roentgenium (272)	Copernicum (285)		Flerovium 289		Livermorium 293		
	_				11 10														

란탄족

악틴족

I	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	Cerium 140.115	Praseodymium 140.908	Neodymium 144.24	Promethium (145)	Samarium 150.36	Europium 151.964	Gadolinium 157.25	Terbium 158.925	Dyspsrosium 162.5	Holmium 164.93	68 Erbium 167.26	Thulium 168.934	Ytterbium 173.04	Lutetium 174.967
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
1	Thorium 232.038	Protactinium 231.036	Uranium 238.029	Neptunium 237.05	Plutonium (244)	Americium (243)	Curium (247)	Berkelium (247)	Californium (251)	Einsteinium (252)	Fermium (257)	Mendelevium (258)	Nobelium (259)	Lawrencium (262)

원소의 주기율표 확인문제

Ne-20의 원자핵에서 양성자 2개와 중성자 2개를 없애면 어떤 핵이되는가?

- A. Mg-22
- **B.** Mg-20
- C. O-18
- D. O-16

원소의 주기율표 확인문제

Ne-20의 원자핵에서 양성자 2개와 중성자 2개를 없애면 어떤 핵이되는가?

- A. Mg-22
- B. Mg-20
- C. O-18
- D. O-16

원자의 상대적 크기

- ◆ 바깥 전자 껍질 지름:
 - 핵의 전하량에 의해 결정됨
 - 주기율표의 왼쪽에서 오른쪽으로 가면서 원자의 크기가 작아짐
- ◆ 핵전하가 증가하면 전자는 바깥쪽 궤도에 추가되고, 전기력에 의해 안쪽 궤도는 줄어듦
 - 따라서 무거운 원자의 지름은 가벼운 원자의 지름보다 그리 크지 않다.
 - 예: 헬륨보다 33배 무거운 제논 원자의 지름은 헬륨의 4배에 지나지 않음

원자의 상대적 크기

족 2 3 8 10 11 12 13 14 15 16 17 18 5 1 . Н He 2 Be В C F N 0 Ne Si Mg P S CI ΑI Na Ar 4 K Ca Sc Ti V Cr Mn Fe Co Ni Zn Ga Ge Se Kr Cu As Br 5 Sr Zr Tc Sn Sb Xe Rb Y Nb Mo Ru Rh Pd Ag CdTe ln

원자의 상대적 크기

원자의 상대적 크기 확인문제

원자의 크기를 결정하는 기본힘은 무엇인가?

답: 전기력

이온과 동위원소

- ♦ 이온은 대전된 원자
 - 양이온 핵의 양전하가 음전하(전자)보다 많은 경우
 - 음이온 핵의 양전하보다 음전하가 많은 경우

◆ 동위원소:

- 같은 원소의 원자지만 중성자의 수가 다른 원자
- 같은 수의 전자를 가지므로 화학적으로 동일

동위원소

→ 중성원자의 경우 핵의 양성자 수와 주위의 전자 수가 정확히 같다.

◆ 동위원소:

- 같은 원소의 원자이지만 중성자의 수가 다른 원자
- 화학적으로 동일 (같은 수의 전자를 갖기 때문)
- 질량수로 구분
 - 질량수: 핵 속의 양성자와 중성자 수의 합 (즉, 핵자의 수)
 - ▶ 예:
 - 철(26개의 양성자, 30개의 중성자)의 질량수는 56 → 철-56
 - 철(26개의 양성자, 29개의 중성자)의 질량수는 55 → 철-55

동위원소

원소의 표기: (A: 원소기호, n: 원자번호, m: 질량수)

동위원소

- ◆ 원자질량
 - 원자의 전체질량:
 - ▶ 모든 구성요소(양성자, 중성자, 전자)들 질량의 총합
 - 원자질량단위(amu)
 - ▶ 1 amu = 탄소-12(또는) 원자질량의 1/12
 - 주기율표의 원자질량
 - 지상에 존재하는 동위원소들의 존재비에 따라 모든 동위원소들의 질량을 평균한 값

원소의 원자번호는 무엇과 일치하는가?

- A. 원자핵의 양성자 수
- B. 중성원자의 전자 수
- C. 위둘다
- D. 이 중에는 정답 없음

원소의 원자번호는 무엇과 일치하는가?

- A. 원자핵의 양성자 수
- B. 중성원자의 전자 수
- C. 위둘다
- D. 이 중에는 정답 없음

원자번호가 44이고 질량수가 100인 원자의 핵에 있는 중성자의 개수는?

A. 44

B. 56

C. 100

D. 알 수 없음

원자번호가 44이고 질량수가 100인 원자의 핵에 있는 중성자의 개수는?

- A. 44
- **B.** 56
- **C.** 100
- D. 알 수 없음

화합물과 혼합물

- ◆ 화합물: 서로 다른 원자들이 결합된 물질
 - 자신의 구성 원소와 전혀 다른 특성을 가짐
 - 화학적 방법으로만 구성 원소로 분리할 수 있음
 - 예: 소금 (소듐[나트륨]과 염소의 화합물)

- ◆ 혼합물: 화학적으로 결합하지 않고 서로 섞여있는 물질
 - 예: 공기 (대부분은 질소와 산소, 약간의 아르곤, 이산화탄소 등)

화합물과 혼합물

분자

- ◆ 분자
 - 2개 이상의 원자들이 결합된 것 또는 독립적 입자로 행동하는 원소 자체
 - 예:
 - ► NH₃ (암모니아)
 - ▶ 3개의 수소 원자와 1개의 질소 원자

분자

♦ 화학반응:

- 원자가 재배열하여 분자를 형성하는 과정
- 예:
 - ▶ 분자를 분리하려면 에너지가 필요
 - 광합성하는 동안, 나무는 태양에너지를 이용하여 대기 중의 이산화 탄소(CO₂)를 분리하여 산소(O₂)와 탄소를 만듦 → 탄소와 물을 결 합하여 탄수화물 생성
 - 원자가 결합하여 에너지를 방출
 - 산소 원자가 철 원자와 느리게 결합하면서 에너지를 방출하는 현상
 이 녹스는 것임

반물질

◆ 물질:

• 양전하를 띤 원자핵과 음전하를 띤 전자로 이루어진 원자로 구성

◆ 반물질:

- 음전하를 띤 원자핵과 양전하를 띤 전자, 즉 양전자로 이루어진 원자로 구 성
- ◆ 물질과 반물질은 접촉하는 순간 완전히 에너지로 전환됨

• 따라서, 물질과 반물질이 동시에 존재할 수 없음

반물질

- ♦ 양전자
 - 전자와 질량과 전하량은 같으나 전하의 부호가 반대, 즉 양전하를 띰
- ◆ 반양성자
 - 양성자와 질량과 전하량은 같으나 음전하를 띰

암흑물질

◆ 암흑물질

- 은하계의 별을 강력한 중력으로 끌어당기지만 눈에 보이지 않고 그 실체도 모르는 물질
- 우주에 있는 물질의 23%를 차지
- ◆ 암흑에너지
 - 척력(반중력)으로 작용해 우주를 가속 팽창시킴
 - 우주 구성 물질의 73%에 해당
- ◆ 암흑물질과 암흑에너지의 정체를 밝히는 것이 오늘날 주요 과 제임

"본 강의 동영상 및 자료는 대한민국 저작권법을 준수합니다. 본 강의 동영상 및 자료는 상명대학교 재학생들의 수업목적으로 제작·배포되는 것이므로, 수업목적으로 내려받은 강의 동영상 및 자료는 수업목적 이외에 다른 용도로 사용할 수 없으며, 다른 장소 및 타인에게 복제, 전송하여 공유할 수 없습니다. 이를 위반해서 발생하는 모든 법적 책임은 행위주체인 본인에게 있습니다."