Use and abuse of robust PCA

Alexey Pomerantsev & Oxana Rodionova

Semenov Institute of Chemical Physics, Moscow

Contaminated data

$$R_{\gamma} = (1 - \gamma)R + \gamma D$$

Classical methods for contaminated data

Classical and robust statistics

Classical	Robust
$\overline{x} = \frac{1}{I} \sum_{i=1}^{I} x_i$	$\widetilde{x} = \text{median}(\mathbf{x})$
$s^{2} = \frac{1}{I - 1} \sum_{i=1}^{I} (x_{i} - \overline{x})^{2}$	$s_{\text{MAD}} = 1.4826 \text{median} (\mathbf{x} - \widetilde{x})$

Extremes and Outliers

$$\begin{pmatrix} x \\ y \end{pmatrix} \propto N(\mathbf{0}, \mathbf{I})$$

$$x^2 + y^2 \propto \chi^2(2)$$

α is Extreme significance

$$x^2 + y^2 \le \chi^{-2} (2 | 1 - \alpha)$$

$\boldsymbol{\beta}$ is Outlier significance

$$x^2 + y^2 \le \chi^{-2} \left(2 \mid (1 - \beta)^{1/I} \right)$$

Problem

Regular data

Classical Methods

Robust Methods

Robust Methods

Robust Methods

Robust Methods

Robust Methods

Contaminated data

Contaminated data

Principal Component Analysis

PCA robustification

- (1) Data pre-processing;
- (2) Decomposition;
- (3) Calculation of thresholds.

$$h_i = \mathbf{t}_i^{\mathrm{t}} (\mathbf{T}^{\mathrm{t}} \mathbf{T})^{-1} \mathbf{t}_i = \sum_{a=1}^A \frac{t_{ia}^2}{\lambda_a}$$

Data Driven SIMCA

$$u = \begin{cases} h \\ v \end{cases} \qquad (u_1, \dots, u_I) \propto (u_0/N) \chi^2(N) \implies \begin{cases} u_0 = ? \\ N = ? \end{cases}$$

Tolerance Areas

$$z = N_h \frac{h}{h_0} + N_v \frac{v}{v_0}$$
$$z \propto \chi^2 (N_h + N_v)$$

α is Extreme significance

$$z \le \chi^{-2} (N_h + N_v \mid 1 - \alpha)$$

β is Outlier significance

$$z \le \chi^{-2} (N_h + N_v | (1 - \beta)^{1/I})$$

Classical Data Driven (CDD) SIMCA

Classical Method of Moments

Given

$$(u_1,...,u_I) \propto (u_0/N) \chi^2(N)$$

Then

$$\hat{u}_0 = \overline{u}, \qquad \hat{N} = \operatorname{int} \frac{2\hat{u}_0^2}{s_u^2}$$

Where

$$\overline{u} = \frac{1}{I} \sum_{i=1}^{I} u_i , \quad s_u^2 = \frac{1}{I-1} \sum_{i=1}^{I} (u_i - \overline{u})^2$$

Robust Data Driven (RDD) SIMCA

Robust Method of Moments

Given

$$(u_1,...,u_I) \propto (u_0/N) \chi^2(N)$$

Then

$$\widetilde{u}_{0} \Leftarrow \begin{cases} M = \frac{u_{0}}{N} \chi^{-2}(0.5, N) \\ R = \frac{u_{0}}{N} \left[\chi^{-2}(0.75, N) - \chi^{-2}(0.25, N) \right] \end{cases}$$

Where

M=median(**u**) R=interquartile(**u**)
$$u_{(1)} \leq u_{(2)} \leq \dots \leq u_{(I-1)} \leq u_{(I)}$$

$$u_{(2)} \leq \dots \leq u_{(I-1)} \leq u_{(I)}$$

28.06.12

Dual Data Driven (3D) SIMCA

Given

$$X=T^{t}P+E$$

$$\mathbf{h} = (h_1,, h_I)$$
 $\mathbf{v} = (v_1,, v_I)$

$$\mathbf{v} = (v_1, ..., v_I)$$

Then

CDD SIMCA

RDD SIMCA

$$\left(\hat{h}_0 \ \hat{N}_h\right) \ \left(\hat{v}_0 \ \hat{N}_v\right)$$

$$\begin{pmatrix} \hat{h}_0 \ \hat{N}_h \end{pmatrix} \quad \begin{pmatrix} \hat{v}_0 \ \hat{N}_v \end{pmatrix} \qquad \begin{pmatrix} \widetilde{h}_0 \ \widetilde{N}_h \end{pmatrix} \quad \begin{pmatrix} \widetilde{v}_0 \ \widetilde{N}_v \end{pmatrix}$$

$$(\widetilde{N}_h \approx \hat{N}_h) \& (\widetilde{N}_v \approx \hat{N}_v)$$

Yes **CDD SIMCA**

No RDD SIMCA

TOMCAT ToolBox

http://chemometria.us.edu.pl/RobustToolbox/

Robust pre-processing

robust centering & scaling

Robust PCA

robust PCs, robust singular values

Robust classification rules

z-transformed robust OD and SD

$$RD_{i} = \frac{\left| \sqrt{SD_{i}} - \text{median}(\sqrt{SD}) \right|}{Q_{n}(\sqrt{SD})}$$

$$ROD_{i} = \frac{\left| \sqrt{OD_{i}} - median(\sqrt{\mathbf{OD}}) \right|}{Q_{n}(\sqrt{\mathbf{OD}})}$$

M. Daszykowski, S. Serneels, K. Kaczmarek, P. Van Espen,

C. Croux, B. Walczak, *ChemoLab* **85** (2007) 269-277

Case study I. Simulated regular data

$$\mathbf{x} = \mathbf{\delta} + \mathbf{\epsilon}$$

$$\delta \propto N(0,V)$$

$$\delta \propto N(\mathbf{0}, \mathbf{V})$$
 $\epsilon \propto N(\mathbf{0}, \sigma^2 \mathbf{I})$

The numbers of variables, J=3

The numbers of objects, *I*=100

The number of principal components, A=2

The δ properties are:

$$E(\delta) = 0$$
, $v_{11} = v_{22} = v_{33} = 0.28$, rank(\mathbf{V}) = 2.

The ε component properties are:

$$E(ε) = 0$$
, $σ=0.05$

SIMCA plots

extreme area (α =0.05)

outlier area (β =0.05)

CDD SIMCA

TOMCAT

Totally in 10 regular data sets

Case study II. Simulated data with outliers

$$\mathbf{x} = \mathbf{\delta} + \mathbf{\epsilon}$$

$$\delta \propto N(0,V)$$

$$\delta \propto N(\mathbf{0}, \mathbf{V})$$
 $\epsilon \propto N(\mathbf{0}, \sigma^2 \mathbf{I})$

The numbers of variables, J=3

The numbers of objects, *I*=100

The number of principal components, A=2

The δ properties are:

$$E(\delta) = 0$$
, $v_{11} = v_{22} = v_{33} = 0.28$, rank(\mathbf{V}) = 2.

The ε component properties are:

$$E(\varepsilon) = \mathbf{0}$$
, $\sigma = 0.05$ (first 97 objects)

$$E(\varepsilon) = \mathbf{0}$$
, $\sigma = 0.2$ (last 3 objects)

SIMCA plots

28.06.12 CAC-2012 20

REFERENCE & RDD-SIMCA

Totally in 10 data sets with outliers

Expected

Case study II. Real world data with 2 groups

Substance in the closed PE bags,

82 drums measured by NIR.

Totally: 246 spectra

Group G1: 196 objects

Group G2: 50 objects

ACA 642 (2009) 222-227

Expected/observed number of extremes

Expected number of extremes $N=\alpha I$

Clean subset G1

Contaminated dataset G1+G2

Results of separation

Subset G1 revealed

Subset G2 revealed

Conclusion 1

Each tool has its purpose: classical methods are for regular data, whereas robust methods should be used for contaminated data. Do not expect that there exists a common tool that yields reasonable results in both cases.

Conclusion 2

Extreme objects play an important role in data analysis. These objects should not be confused with outliers. The number of extremes should be compared to the expected number, coupled with the significance level α .

Conclusion 3

The proposed Dual Data Driven PCA/SIMCA approach looks like a fine competitor to the pure classical and to the strictly robust methods. This technique has demonstrated a proper performance in the analysis of both regular and contaminated data sets.

28.06.12 CAC-2012 28

