WEEK 2 ASSIGNMENT

- 1. How do you declare and use a variable in a shell script.
 - A. var=5; echo \$var
 - B. int var = 5; print(var)
 - C. set var 5; display var
 - D. variable: 5; output \$variable

Answer: var=5; echo \$var

- 2. How do you check if a file exists using an if condition in a shell script.
 - A. [-d file1]
 - B. [-f file1]
 - C. [-e file1]
 - D. [-x file1]

Answer: [-f file1]

- 3. What is the primary function of the Process Scheduler in the Linux kernel.
 - A. To allocate memory to processes
 - B. To manage CPU time allocation for processes
 - C. To monitor network packets
 - D. To synchronize file operations

Answer: To manage CPU time allocation for processes

- 4. Which of the following is NOT a key element of the Network Sub-System in Linux.
 - A. Socket API
 - B. Inode Table
 - C. Network Protocol Layers
 - D. Packet Processing

Answer: Inode Table

- 5. What is the default signal sent by the kill command in Linux.
 - A. SIGKILL (9)
 - B. SIGTERM (15)
 - c. SIGSTOP (19)
 - D. SIGCONT (18)

Answer: SIGTERM (15)

- 6. The performance of supercomputers is typically measured in.
 - A. FLOPS (Floating-Point Operations Per Second)
 - B. GHz (Gigahertz)
 - C. IOps (Input/Output Operations Per Second)
 - D. GBps (Gigabytes per Second)

Answer: FLOPS (Floating-Point Operations Per Second)

- 7. What benchmark is used to measure the performance of a supercomputer
 - A. SPECint
 - B. Linpack
 - C. Geekbench
 - D. Cinebench

Answer: Linpack

- 8. What is the primary goal of parallel computing.
 - A. To execute tasks sequentially
 - B. To increase the complexity of the algorithm
 - C. To minimize hardware usage
 - D. To reduce computation time by executing tasks simultaneously

Answer: To reduce computation time by executing tasks simultaneously

- 9. Which of the following attributes of a parallel algorithm directly impacts its ability to efficiently utilize additional processors as the system size increases.
 - A. Scalability
 - B. Concurrency
 - C. Data locality
 - D. Modularity

Answer: Scalability

- 10. Which of the following categories in Flynn's Taxonomy represents a system where one instruction operates on a single data stream.
 - A. MISD
 - B. SIMD
 - C. MIMD
 - D. SISD

Answer: SISD

11. Which memory type in HPC systems acts as a buffer between the CPU and RAM to speed up processing.

- A. Flash memory
- B. Registers
- C. Hard disk
- D. Cache memory

Answer: Cache memory

- 12. Which hardware component is responsible for copying information from main memory to cache memory automatically.
 - A. DMA controller
 - B. CPU
 - C. Memory management unit (MMU)
 - D. Cache controller

Answer: Cache controller

- 13. Which of the following best highlights the primary advantage of NUMA over UMA in large-scale multiprocessor systems, especially concerning memory access efficiency and system scalability.
 - A. NUMA minimizes memory access contention by ensuring each processor has faster access to its local memory and reduces bandwidth bottlenecks across processors
 - B. NUMA architecture is simpler to implement because it requires fewer memory management techniques and results in less software overhead
 - C. UMA systems benefit from uniform memory access latency, ensuring predictable performance regardless of the number of processors, which is particularly beneficial for real-time systems
 - D. UMA architectures scale better with increasing processor count by maintaining uniform memory access, resulting in less complexity in managing memory locality

Answer: NUMA minimizes memory access contention by ensuring each processor has faster access to its local memory and reduces bandwidth bottlenecks across processors

- 14. Which of the following situations can still lead to race conditions, even when a mutex is used.
- A. A thread releases the mutex before completing the critical section
- B. The critical section is too small to cause race conditions
- C. Multiple mutex locks are used in a consistent order across threads
- D. Threads use a recursive mutex that supports multiple locks by the same thread

Answer: A thread releases the mutex before completing the critical section

15. In parallel programming, what happens if a thread fails to reach a barrier in a multi-threaded program

- A. The program will terminate all other threads immediately
- B. Threads that have reached the barrier will remain blocked indefinitely
- C. The barrier will adjust automatically to the number of threads that reach it
- D. All threads will proceed regardless of synchronization

Answer: Threads that have reached the barrier will remain blocked indefinitely