## Math 120

PSet 8

Oct 31 2024

# Contents

| Chapter 1 |      |        | Page 2 |  |
|-----------|------|--------|--------|--|
|           | 11 1 | Set. 8 | 2      |  |

### Chapter 1

#### 1.1 PSet 8

#### Question '

Let  $\vec{F}(x,y) = \langle y^2 \cos x, x^2 + 2y \sin x \rangle$ , and let C be the triangle from (0,0) to (2,6) to (2,0) to (0,0). Use Green's Theorem to evaluate  $\oint_C \vec{F} \cdot d\vec{r}$ . (Check the orientation of the curve before applying the theorem.)

#### Question 2

Let  $P(x,y) = -x^2y^3$  and  $Q(x,y) = xy^2$ , and let C be the circle  $x^2 + y^2 = 4$ , oriented counterclockwise.

- (a) Compute  $\oint_C \vec{F} \cdot d\vec{r}$  directly, by parameterizing C and finding the line integral.
- (b) Compute  $\oint_C \vec{F} \cdot d\vec{r}$  using Green's Theorem.

#### Question 3

Use Green's Theorem to find the area enclosed by the parametric curve  $\vec{r}(t) = \langle \sin t, \sin 2t \rangle$ ,  $0 \leq t \leq \pi$ .

#### Question 4

Consider the vector field  $\vec{F} = -\frac{y}{x^2 + y^2}\hat{i} + \frac{x}{x^2 + y^2}\hat{j}$ .

- (a) Show that  $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$  at every point in the domain of  $\vec{F}$ .
- (b) Let C be the short arc of the circle  $x^2 + y^2 = 2$  from (1,1) to (-1,1). Evaluate  $\int_C \vec{F} \cdot d\vec{r}$  directly, by parameterizing the curve and computing  $\int_a^b \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) \, dt$ .
- (c) Integrate  $P(x,y) = -\frac{y}{x^2+y^2}$  with respect to x, and check that the partial derivative of the result with respect to y is  $Q(x,y) = \frac{x}{x^2+y^2}$ . You have now found a function f such that  $\nabla f = \vec{F}$ .

What is the domain of this function f? Is it the same as the domain of  $\vec{F}$ ?

- (d) Use your answer to part (c) and the Fundamental Theorem of Line Integrals to check your answer to part (b).
- (e) Now let C be the circle of radius R centered at the origin, oriented counterclockwise. Compute  $\oint_C \vec{F} \cdot d\vec{r}$ . Explain why your answer doesn't contradict the statement that the integral of a conservative vector field around any closed curve must be zero. Hint: Look carefully at the domain of the potential function f you found in part (b).

#### Question 5

Again consider the vector field  $\vec{F} = -\frac{y}{x^2+y^2}\hat{i} + \frac{x}{x^2+y^2}\hat{j}$ . Let  $C_1$  be any closed curve going counterclockwise around the origin, such as the orange curve below. Let  $C_2$  be a circle, centered around the origin, with radius less than the shortest distance between  $C_1$  and the origin. (This condition guarantees that the two curves don't intersect.) Let D be the region between the two curves.

- (a) Explain why Green's Theorem applies on the region D.
- (b) The boundary of D is the union of the two curves  $C_1$  and  $-C_2$ , where by  $-C_2$  we mean the inside circle oriented clockwise. Since  $\int_{-C_2} \vec{F} \cdot d\vec{r} = -\int_{C_2} \vec{F} \cdot d\vec{r}$ , Green's Theorem implies that

$$\int_{C_1} \vec{F} \cdot d\vec{r} - \int_{C_2} \vec{F} \cdot d\vec{r} = \iint_D (Q_x - P_y) dA.$$

Use the results of Problem # 4 above to determine the value of  $\int_{C_1} \vec{F} \cdot d\vec{r}$ .

#### Question 6

Let  $\vec{F} = \langle 2y - x^2, 4x + ye^{\cos y} \rangle$ , and let C be the curve  $y = x^2 - 9, -3 \le x \le 3$ , oriented from left to right.

- (a) Parameterize the curve C, and write the vector line integral  $\int_C \vec{F} \cdot d\vec{r} = \int_a^b \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt$ . Do not try to compute this integral directly!
- (b) Let  $C^*$  be the line segment along the x-axis from (3,0) to (-3,0). Compute  $\int_{C^*} \vec{F} \cdot d\vec{r}$ .
- (c) Let D be the region bounded by the parabola  $y = x^2 9$  and the x-axis. Compute  $\iint_D (Q_x P_y) dA$ .
- (d) Use your answers to (b) and (c) to compute  $\int_C \vec{F} \cdot d\vec{r}$ .