

Introduction to Deep Learning

Sequential Models Recurrent Neural Network (RNN)

Introduction

x1 height weight ... sugar bp ECG

x2 height weight sugar bp ECG

Sequence Learning Problems

Sequence Learning Problems

Sequence of words

1 hot encoding used to convert input to number

Awesome being an adjective has helped in identifying movie as noun Some words like bank- may be used as noun or verb. So the context matters

Sequence Learning Problems- Predict the polarity of the sentence

The no: of input and output may not be same. Here the input is a sequence of words and output is single which classifies the sentence polarity- positive or negative.

Other sequence learning problems

Classify the sequence of yoga posters as one Yoga exercise name -Input is a sequence of frames, and output is a single Yoga exercise name. challenges- Variable no of frames based on speed of action

Speech

Speech Processing- another sequence learning problem. Take audio signals as input and classify each of them as phonemes

Video

Yoga Video classification: Each frame in the video correspond to a pose and we want to classify each of the frames into one pose resulting in a sequence of poses

What can be a solution?

- Ensure that y_t is dependent on previous inputs also
- Ensure that the function can deal with variable number of inputs
- each time step is the same

$$egin{aligned} h_i &= \sigma(W_1x_i + b_1) \ y_i &= O(W_2h_i + b_2) \ i &= timestep \end{aligned}$$

$$egin{aligned} s_i &= \sigma(Ux_i+b) \ y_i &= O(Vs_i+c) \end{aligned}$$

Parameter Sharing

$$y_t = \hat{f}(x_1, x_2, ..., x_t)$$

This solution also does not satisfy all 3 criterias

$$s_i = \sigma(Ux_i + b)$$

$$y_i = O(Vs_i + c)$$

- Ensure that y_t is dependent on previous inputs also
- Ensure that the function can deal with variable number of inputs
- Ensure that the function executed at each time step is the same

$$egin{aligned} y_1 &= f(x_1) \ y_2 &= f(x_1, x_2) \end{aligned}$$

$$y_3 = f(x_1, x_2, x_3)$$

Still this solution does not satisfy all the 3 criterias

$$y_n = f(x_1, x_2, x_3, ..., x_n)$$

A solution – Recurrent Neural Networks (RNN)

RNN satisfies all the 3 criterias

$$egin{aligned} s_i &= \sigma(Ux_i + Ws_{i-1} + b) \ y_i &= O(Vs_i + c) \end{aligned} \qquad egin{aligned} y_i &= \hat{f}(x_i, s_{i-1}, W, U, V, b, c) \end{aligned}$$

RNN – Types of problems

$$y_i = \hat{f}(x_i, s_{i-1}, W, U, V, b, c)$$

- How do you represent words and characters as numbers ? (data and tasks)
- What is an appropriate loss function? (loss)
- How do you train the model? (learning algorithm)

Sequence	Classification	(sentiment	classification,	video classificati	on)
----------	----------------	------------	-----------------	--------------------	-----

Sequence Labelling	(part of speech tagging, named entity recognition)
--------------------	--

Sequence Generation	(machine translation,	transliteration)
---------------------	-----------------------	------------------

No of inputs	No of Outputs	Appln
n	1	Classification
n	n	Parts of Speech tagging
n	m	Machine translation

Data and Task

<sos> start of sequence- to indicate that sentences is starting

<eos> end of sequence- to indicate that sentences is ending. Sometimes sentence end with.,?! Or nothing. Hence we give this

<pad> artificial word to make sure all sentences of equal length

x_0	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9
<sos></sos>	The	first	half	was	very	boring	2/2	<eos></eos>	<pad></pad>
<sos></sos>	Great	performance	by	all	the	lead	actors		<eos></eos>
<sos></sos>	The	bacground	music	was	awesome		<eos></eos>	<pad></pad>	<pad></pad>
<sos></sos>	The	movie	was	a	waste	of	time		<eos></eos>

у	
0	
1	
1	
0	

- lower case all words
- compute the total number of unique words across all sentences (say, L --> 24 in the above case)
- Assign a unique id to each word (between 1 to L)
- Represent each word using a L dimensional binary vector with only the bit corresponding to the word id set to 1

word	id
<sos></sos>	1
<eos></eos>	2
<pad></pad>	3
the	4
first	5
half	6
time	24

1-hot vector representation

Sequence classification problem (eg: sentiment analysis-Polarity)

 $[0,0,0,\mathbf{1},0,0,0,0,0,0]$

Sequence Labelling problem (eg: parts of speech tagging)

Loss function for sequence classification problem

$$y = [1,0]$$

$$\hat{y} = [0.7, 0.3]$$

Only one output at the end Possible output classes [1,0] Y[i]=0 for one hence -log yc

Loss function for sequence labelling problem

Every time step has an output Sum up for each time step (T)for each data samples (m) and average

Training Algorithm – Back propagation

Initialise w, b

Iterate over data:

 $compute \ \hat{y}$

compute $\mathscr{L}(w,b)$

$$w_{11} = w_{11} - \eta \Delta w_{11}$$

$$u_{12} = u_{12} - \eta \Delta u_{12}$$

••••

$$v_{13} = v_{13} - \eta \Delta v_{13}$$

till satisfied

Earlier: w, b

 $Now: w_{11}, w_{12}, ..., u_{11}, u_{12}, ..., v_{11}, v_{12}$

Earlier: L(w,b)

Now: L(W,U,V)

Learning Algorithm (Derivative of loss function w.r.t w)

$$\begin{split} \frac{\partial \mathcal{L}_4(\theta)}{\partial W} &= \frac{\partial \mathcal{L}_4(\theta)}{\partial s_4} \frac{\partial s_4}{\partial W} \\ \frac{\partial s_4}{\partial W} &= \frac{\partial s_4}{\partial W} + \frac{\partial s_4}{\partial s_3} \frac{\partial s_3}{\partial W} + \frac{\partial s_4}{\partial s_3} \frac{\partial s_3}{\partial s_2} \frac{\partial s_2}{\partial W} + \frac{\partial s_4}{\partial s_3} \frac{\partial s_3}{\partial s_2} \frac{\partial s_2}{\partial S_1} \frac{\partial s_1}{\partial W} \\ \frac{\partial s_4}{\partial W} &= \frac{\partial s_4}{\partial s_4} \frac{\partial s_4}{\partial W} + \frac{\partial s_4}{\partial s_3} \frac{\partial s_3}{\partial W} + \frac{\partial s_4}{\partial s_2} \frac{\partial s_2}{\partial W} + \frac{\partial s_4}{\partial s_1} \frac{\partial s_1}{\partial W} \\ \frac{\partial s_4}{\partial W} &= \sum_{i=1}^4 \frac{\partial s_4}{\partial s_i} \frac{\partial s_k}{\partial W} \end{split}$$

Similarly derivative w.r.t V and U

Evaluation- Sequence classification

$$Accuracy = \frac{No:of\ correctly\ classified}{Total\ samples}$$

Predicted y cap	Ground Truth y	Correct/incorrect
1(P)	1(P)	correct
0(N)	0(N)	incorrect
1(P)	0(N)	incorrect
O(N)	0(N)	correct
1(P)	1(P)	correct
O(N)	1(P)	incorrect

Evaluation Sequence labelling

Overall accuracy /Accuracy per class

Confusion Matrix

	Pronoun	verb	article	adjective	noun
Pronoun	3	2	3	5	6
verb	2	7			
article			3		
adjective				2	
noun					1

Overall	Accuracy
Overall	Accuracy

Accuracy Per Class

Confusion Matrix

Namah Shiyaya

Courtesy: Video lectures of Dr.Mitesh Kapra

