Definition of Big θ :

```
If f(n) = O(g(n)) and f(n) = \Omega(g(n)), then f(n) = \theta(g(n)).
```

f(n) = O(g(n)), if there are positive constants c and n_0 such that $f(n) \le c * g(n)$ for all $n \ge n_0$.

 $f(n) = \Omega(g(n))$, if there are positive constants c and n_0 such that $f(n) \ge c * g(n)$ for all $n \ge n_0$.

```
11. n^2 + n/2 + 1 = \theta(n^3)
```

False, no constants can be chosen since $g(n^3) \ge f * g(n^2)$ for all c.

```
f(n^2) = O(g(n^3)) because for c = 2, n_0 = 2, g(n^3) \ge f * g(n^2) for all n \ge n_0. f(n^2) != \Omega(g(n^3)) because for any c, g(n^3) \ge f * g(n^2) for all n \ge n_0. Eg if c = 5, for all n \ge n_0 = 5, g(n^3) \ge f * g(n^2).
```

12. False, because no constants can be chosen since $g(log64) \ge f(1)$ for all c.

$$g = O(f)$$
 but $f != O(g)$ as $log 64 = 6 > 1$.
Likewise, $g != \Omega(f)$ but $f = \Omega(g)$ because $1 < 6$.

13. False. Because no constants can be chosen since $f(nlogn) \ge g(logn)$ for all c.

```
f(nlogn) = Omega(g) but g != Omega(f) because for any n, nlogn >= logn. Likewise, f(nlogn) != O(g) but g = O(f).
```

- 14. False. Because no constants can be chosen since $2^n >= n$ for all c
- 15. True since $n^5/n^2 = n^3$. Let c be 5 and n_0 be 5. Then $5(n^5/n^2)$ always n^3 . Likewise, $5(n^3)$ always (n^5/n^2) . Therefore 15 is true.