CNN for Analyzing UAV Sound

01 Introduction

- Subject
- Goal

02 Process

- Data Preprocessing
- CNN
- Learning Model
- Training & Testing

03 Result

- Prediction & Realization
- 04 Conclusion

INDEX

Introduction

01 Introduction Main Subject

Analysis and utilization of drone sounds

01 Introduction Our Goal

Distinguish unloaded drone and loaded drone

Process

Get samples

Normalization

Pre-emphasis Filter

$$y[n] = x[n] - \alpha x[n-1]$$

$$y[0] = x[0] - \alpha$$

Pre-emphasis Filter

Spectrogram using STFT(Short Time Fourier Transform)

MFCC (Mel-Frequency Cepstral Coefficient)

CNN (Convolutional Neural Network)

- Deep learning
- Use to recognize images

02 Process CNN

Language

02 Process

```
mfccs = mfcc(y=emphasized_signal, sr=fs, S=None, n_mfcc=n_mfcc)
mfccs = sklearn.preprocessing.scale(mfccs, axis=1)

# print(S_norm.shape)
# data_set.append(S_norm.reshape(-1))
test_set = np.vstack((test_set, mfccs.reshape(-1)))
```

PreProcessing (MFCC)

```
b3 = tf.Variable(tf.random_normal([100]))
L3 = tf.matmul(L2_flat, W3) + b3
L3 = tf.nn.relu(L3)
L3 = tf.nn.dropout(L3, keep_prob=keep_prob)
```

Tensorflow(CNN)

O2 Process Learning Model

1_ Convolutional	window size: 2x4x1 number of filter : 32	
1_Relu	activation function	
1_ MaxPool	kernel size : [1,2,4,1] stride : [1,2,4,1]	
2_ Convolutional	window size: 2x9x32 number of filter : 64	
2_Relu	activation function	
2_ MaxPool	kernel size : [1,1,2,1] stride : [1,1,2,1]	

3_ Fully Connected Neural	input size: 24192
Network	output size : 100
3_Relu	activation function
3_DropOut	keeping rate: 70%
4_ Fully Connected Neural	input size : 100
Network	output size : 3

The layer of CNN

O2 Process Training & Testing

Result

03 Result Prediction & Realization

result real data	noise	unloaded	loaded
noise	46766	60	174
unloaded	0	5000	0
loaded	3	0	3997

Accuracy: 99.5%

negative error: 0.005%

Conclusion

In conclusion

- UAV sound can be distinguished through data preprocessing with existing CNN model
- confirmed that the derivation of negative errors can be solved by weighting

- [1] Seung Jin Shin, 2016, "Possibility of logistics delivery through drone (drone) and overseas case," Monthly KOTI Magazine on Transport, pp. 45~53.
- [2] Dong-Hyun Lee, 2017, "Convolutional Neural Network-based Real-Time Drone Detection Algorithm," The Journal of Korea Robotics Society, Vol. 12, No. 4, pp. 425~431.
- [3] Kee-Woong Lee, Kyoung-Min Song, Jung-Hwan Song, Chul-Ho Jung, Woo-kyung Lee, Myeong-Jin Lee and Yong-Kyu Song, 2017, "Implementation of Radar Drone Detection Based on ISAR Technique," The Journal of Korean Institute of Electromagnetic Engineering and Science, Vol. 28, No. 2, pp. 159~162.

Resource

- [4] Lin Shi, Yujing He and KyungHi Chang, 2016, "Acoustic-based Classification for Drone Identification using Hidden Markov Model with MFCC Technique," Proceedings of Symposium of the Korean Institute of communications and Information Sciences, , pp. 204~205.
- [5] SangGi Hong, GaYoung Kim, HeonGyeom Kim, SangHee Lee, DongHyun Lim, Austin Snair, Lucy Gotwals and Jone C. Gallagher, 2017, "Practically Classifying Unmanned Aerial Vehicles Sound using Convolutional Neural Networks," Proceedings of the Korean Information Science Society, pp. 1856~1858.

Thank you