

# Vidyavardhini's College of Engineering and Technology Department of Artificial Intelligence & Data Science

| Experiment No. 3                      |
|---------------------------------------|
| To realize half adder and full adder. |
| Name: : Jay Patil                     |
| Roll Number:41                        |
| Date of Performance:                  |
| Date of Submission:                   |

Aim - To realize half adder and full adder.

### **Objective** -

- 1) The objective of this experiment is to understand the function of Half-adder, Full-adder, Half-subtractor and Full-subtractor.
- 2) Understand how to implement Adder and Subtractor using logic gates.

## **Components required -**

- 1. IC's 7486(X-OR), 7432(OR), 7408(AND), 7404 (NOT)
- 2. Bread Board
- 3. Connecting wires.

Theory -

Half adder is a combinational logic circuit with two inputs and two outputs. The half adder circuit is designed to add two single bit binary numbers A and B. It is the basic building block for addition of two single bit numbers. This circuit has two outputs CARRY and SUM.

$$Sum = A \oplus B$$

$$Carry = A B$$

Full adder is a combinational logic circuit with three inputs and two outputs. Full adder is developed to overcome the drawback of HALF ADDER circuit. It can add two one bit umbers A and B. The full adder has three inputs A, B, and CARRY in, the circuit has two outputs CARRY out and SUM.

$$Sum = (A \oplus B) \oplus Cin$$

$$Carry = AB + Cin (A \oplus B)$$

Subtracting a single-bit binary value B from another A (i.e. A -B) produces a difference bit D and a borrow out bit B-out. This operation is called half subtraction and the circuit to realize it is called a half subtractor. The Boolean functions describing the half-Subtractor are

$$Sum = A \oplus B$$

$$Carry = A' B$$

Subtracting two single-bit binary values, B, Cin from a single-bit value A produces a difference bit D and a borrow out Br bit. This is called full subtraction. The Boolean functions describing the full-subtractor are

Difference = 
$$(A \oplus B) \oplus Cin$$

$$Borrow = A'B + A'(Cin) + B(Cin)$$

### Circuit Diagram and Truth Table -

#### Half-adder



| A | В | SUM | CARRY |
|---|---|-----|-------|
| 0 | 0 | 0   | 0     |
| 0 | 1 | 1   | 0     |
| 1 | 0 | 1   | 0     |
| 1 | 1 | 0   | 1     |



| A | В | C | SUM | CARRY |
|---|---|---|-----|-------|
| 0 | 0 | 0 | 0   | 0     |
| 0 | 0 | 1 | 1   | 0     |
| 0 | 1 | 0 | 1   | 0     |
| 0 | 1 | 1 | 0   | 1     |
| 1 | 0 | 0 | 1   | 0     |
| 1 | 0 | 1 | 0   | 1     |
| 1 | 1 | 0 | 0   | 1     |
| 1 | 1 | 1 | 1   | 1     |

### Procedure -

- 1. Verify the gates.
- 2. Make the connections as per the circuit diagram.
- 3. Switch on VCC and apply various combinations of input according to truth table.
- 4. Note down the output readings for half/full adder and half/full subtractor, Sum/difference and the carry/borrow bit for different combinations of inputs verify their truth tables.

### **Output:**



Conclusion So, from the above discussion, we can conclude that a half adder and full adder both performs the addition of the applied input bits. But half adder is used in a

| lower degree of addition operations while full adder is used for a somewhat higher degree of addition operations. |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                                                                                                                   |  |  |  |  |  |  |  |  |
|                                                                                                                   |  |  |  |  |  |  |  |  |
|                                                                                                                   |  |  |  |  |  |  |  |  |
|                                                                                                                   |  |  |  |  |  |  |  |  |
|                                                                                                                   |  |  |  |  |  |  |  |  |
|                                                                                                                   |  |  |  |  |  |  |  |  |
|                                                                                                                   |  |  |  |  |  |  |  |  |
|                                                                                                                   |  |  |  |  |  |  |  |  |
|                                                                                                                   |  |  |  |  |  |  |  |  |
|                                                                                                                   |  |  |  |  |  |  |  |  |
|                                                                                                                   |  |  |  |  |  |  |  |  |
|                                                                                                                   |  |  |  |  |  |  |  |  |
|                                                                                                                   |  |  |  |  |  |  |  |  |
|                                                                                                                   |  |  |  |  |  |  |  |  |
|                                                                                                                   |  |  |  |  |  |  |  |  |
|                                                                                                                   |  |  |  |  |  |  |  |  |