

ARM®-based 32-bit Cortex®-M4F MCU+FPU with 256 to 1024 KB Flash, sLib, USB, 17 timers, 3 ADCs, 20 communication interfaces

Feature

■ Core: ARM® 32-bit Cortex®-M4F CPU with FPU

- 240 MHz maximum frequency, with a memory protection unit (MPU)
- Single-cycle multiplication and hardware division
- Floating point unit (FPU)
- DSP instructions

Memories

- 256 to 1024 KBytes of Flash instruction/data memory
- sLib: configurable part of main Flash set as a libruary area with code excutable but secured, non-readable
- SPIM interface: Extra interfacing up to 16 MBytes of the external SPI Flash (as instruction/data memory)
- Up to 96+128 KBytes of SRAM
- External memory controller (XMC) with 2
 Chip Select. Supports multiplexed
 NOR/PSRAM and NAND memories
- LCD parallel interface, 8080/6800 modes

■ Clock, reset, and supply management

- 2.6 to 3.6 V application supply and I/Os
- POR, PDR, and programmable voltage detector (PVD)
- 4 to 25 MHz crystal oscillator
- Internal 48 MHz factory-trimmed RC (accuracy 1 % at T_A = 25 °C, 2.5 % at T_A = -40 to +105 °C), with automaitc clock calibration (ACC)
- Internal 40 kHz RC oscillator
- 32 kHz oscillator with calibration

■ Low power

- Sleep, Stop, and Standby modes
- V_{BAT} supply for RTC and forty-two 16-bit backup registers

3 x 12-bit, 0.5 μs A/D converters (up to 16 channels)

- Conversion range: 0 to 3.6V
- Triple sample-and-hold capability
- Temperature sensor

■ 2 x 12-bit D/A converters

■ DMA: 14-channel DMA controller

 Supported peripherals: timers, ADCs, DACs, SDIOs, I²Ss, SPIs, I²Cs, and USARTs

Debug mode

- Serial wire debug (SWD) and JTAG interfaces
- Cortex®-M4F Embedded Trace Macrocell (ETMTM)

■ Up to 80 fast I/O

- 37/51/80 multi-functional bi-directional I/Os, all mappable on 16 external interrupt vectors and almost all 5 V-tolerant
- All fast I/Os, control registers accessable with f_{AHB} speed

■ Up to 17 timers

- Up to 8 x 16-bit timers + 2 x 32-bit timers, each with 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input
- Up to 2 x 16-bit motor control PWM advanced timers with dead-time generator and emergency stop
- 2 x watchdog timers (Independent and Window)
- SysTick timer: a 24-bit downcounter
- 2 x 16-bit basic timers to drive the DAC

■ Up to 20 communication interfaces

- Up to 3 x I²C interfaces (SMBus/PMBus)
- Up to 8 x USARTs (ISO7816 interface, LIN, IrDA capability, modem control)
- Up to 4 x SPIs (50 Mbit/s), all with I²S interface multiplexed, I²S2/I²S3 support full-duplex
- Up to 2 x CAN interface (2.0B Active)
- USB 2.0 full speed interface supporting crystal-less
- Up to 2 x SDIO interfaces

■ CRC calculation unit, 96-bit unique ID (UID)

Packages

- LQFP100 14 x 14 mm
- LQFP64 10 x 10 mm
- LQFP48 7 x 7 mm
- QFN48 6 x 6 mm

Table 1. Device summary

rabio ii borioo dammai y							
Internal Flash	Part number						
1024 KBytes	AT32F403ACGT7, AT32F403ACGU7, AT32F403ARGT7, AT32F403AVGT7						
512 KBytes	AT32F403ACET7, AT32F403ACEU7, AT32F403ARET7, AT32F403AVET7						
256 KBytes	AT32F403ACCT7, AT32F403ACCU7, AT32F403ARCT7, AT32F403AVCT7						

Contents

1	Intro	ductio	n	9
2	Desc	cription	າ	10
	2.1	Device	e overview	11
	2.2	Overvi	ew	12
		2.2.1	ARM® Cortex®-M4F with FPU core and DSP instruction set	12
		2.2.2	Memory protection unit (MPU)	14
		2.2.3	Flash memory	14
		2.2.4	Cyclic redundancy check (CRC) calculation unit	14
		2.2.5	Embedded SRAM	14
		2.2.6	External memory controller (XMC)	14
		2.2.7	LCD parallel interface	15
		2.2.8	Nested vectored interrupt controller (NVIC)	15
		2.2.9	External interrupt/event controller (EXTI)	15
		2.2.10	Clocks and startup	15
		2.2.11	Boot modes	17
		2.2.12	Power supply schemes	17
		2.2.13	Power supply supervisor	17
		2.2.14	Voltage regulator	18
		2.2.15	Low-power modes	18
		2.2.16	Direct Memory Access Controller (DMA)	18
		2.2.17	Real-time clock (RTC) and backup registers	19
		2.2.18	Timers and watchdogs	19
		2.2.19	Inter-integrated-circuit interface (I ² C)	21
		2.2.20	Universal synchronous/asynchronous receiver transmitters (USART)	21
		2.2.21	Serial peripheral interface (SPI)	22
		2.2.22	Inter-integrated sound interface (I ² S)	22
		2.2.23	Secure digital input/output interface (SDIO)	22
		2.2.24	Controller area network (CAN)	23
		2.2.25	Universal serial bus (USB)	23
		2.2.26	General-purpose inputs/outputs (GPIO)	23
		2.2.27	Remap capability	23
		2.2.28	Analog to digital converter (ADC)	23

	2.2.29	Digital-to-analog converter (DAC)	24
	2.2.30	Temperature sensor	24
	2.2.31	Serial wire JTAG debug port (SWJ-DP)	24
	2.2.32	Embedded Trace Macrocell (ETM TM)	24
Pind	outs an	d pin descriptions	25
Men	nory m	apping	35
Elec	ctrical o	characteristics	36
5.1	Param	neter conditions	36
	5.1.1	Minimum and maximum values	36
	5.1.2	Typical values	36
	5.1.3	Typical curves	
	5.1.4	Loading capacitor	36
	5.1.5	Pin input voltage	36
	5.1.6	Power supply scheme	37
	5.1.7	Current consumption measurement	37
5.2	Absolu	ute maximum ratings	38
5.3	Opera	iting conditions	39
	5.3.1	General operating conditions	39
	5.3.2	Operating conditions at power-up / power-down	39
	5.3.3	Embedded reset and power control block characteristics	40
	5.3.4	Embedded reference voltage	41
	5.3.5	Supply current characteristics	41
	5.3.6	External clock source characteristics	50
	5.3.7	Internal clock source characteristics	54
	5.3.8	Wakeup time from low-power mode	55
	5.3.9	PLL characteristics	56
	5.3.10	Memory characteristics	56
	5.3.11	XMC characteristics	57
	5.3.12	EMC characteristics	66
		Absolute maximum ratings (electrical sensitivity)	
	5.3.14	I/O port characteristics	68
	5.3.15	NRST pin characteristics	71

		5.3.16 TMR timer characteristics	71
		5.3.17 Communications interfaces	72
		5.3.18 12-bit ADC characteristics	80
		5.3.19 DAC electrical specifications	84
		5.3.20 Temperature sensor characteristics	85
6	Pac	kage information	86
	6.1	LQFP100 package information	86
	6.2	LQFP64 package information	88
	6.3	LQFP48 package information	90
	6.4	QFN48 package information	92
	6.5	Thermal characteristics	94
7	Part	numbering	95
R	Rev	ision history	96

List of Tables

Table 1. Device summary	1
Table 2. AT32F403A features and peripheral counts	11
Table 3. The Bootloader supporting part numbers and pin configurations	17
Table 4. Timer feature comparison	19
Table 5. USART/UART feature comparison	22
Table 6. AT32F403A series pin definitions	28
Table 7. XMC pin definition	33
Table 8. Voltage characteristics	38
Table 9. Current characteristics	38
Table 10. Thermal characteristics	38
Table 11. General operating conditions	39
Table 12. Operating conditions at power-up / power-down	39
Table 13. Embedded reset and power control block characteristics	40
Table 14. Embedded internal reference voltage	41
Table 15. Typical current consumption in Run mode	42
Table 16. Typical current consumption in Sleep mode	43
Table 17. Maximum current consumption in Run mode	44
Table 18. Maximum current consumption in Sleep mode	45
Table 19. Typical and maximum current consumptions in Stop and Standby modes	45
Table 20. Typical and maximum current consumptions on V _{BAT}	47
Table 21. Peripheral current consumption	48
Table 22. High-speed external user clock characteristics	50
Table 23. Low-speed external user clock characteristics	51
Table 24. HSE 4-25 MHz oscillator characteristics	52
Table 25. LSE oscillator characteristics (f _{LSE} = 32.768 kHz)	53
Table 26. HSI oscillator characteristics	54
Table 27. LSI oscillator characteristics	54
Table 28. Low-power mode wakeup timings	55
Table 29. PLL characteristics	56
Table 30. Internal Flash memory characteristics	56
Table 31. Internal Flash memory endurance and data retention	56
Table 32. Asynchronous multiplexed PSRAM/NOR read timings	58
Table 33. Asynchronous multiplexed PSRAM/NOR write timings	59
Table 34. Synchronous multiplexed NOR/PSRAM read timings	61

Table 35.	Synchronous multiplexed PSRAM write timings	62
Table 36.	Switching characteristics for NAND Flash read and write cycles	65
Table 37.	EMS characteristics	66
Table 38.	ESD absolute maximum ratings	67
Table 39.	Electrical sensitivities	67
Table 40.	I/O static characteristics	68
Table 41.	Output voltage characteristics.	69
Table 42.	Input AC characteristics	70
Table 43.	NRST pin characteristics	71
Table 44.	TMRx characteristics	71
Table 45.	I ² C characteristics	72
Table 46.	SCL frequency (f _{PCLK1} = 36 MHz, V _{DD} = 3.3 V)	73
Table 47.	SPI characteristics	74
Table 48.	I ² S characteristics	76
Table 49.	SD / MMC characteristics	78
Table 50.	USB startup time	79
Table 51.	USB DC electrical characteristics	79
Table 52.	USB full-speed electrical characteristics	79
Table 53.	ADC characteristics	80
Table 54.	R _{AIN} max for f _{ADC} = 14 MHz	81
Table 55.	R _{AIN} max for f _{ADC} = 28 MHz	81
Table 56.	ADC accuracy (V_{DDA} = 3.0 to 3.6 V, V_{REF+} = V_{DDA} , T_A = 25 °C)	82
Table 57.	ADC accuracy (V_{DDA} = 2.6 to 3.6 V, T_A = -40 to +105 °C)	82
Table 58.	DAC characteristics	84
Table 59.	Temperature sensor characteristics	85
Table 60.	LQFP100 – 14 x 14 mm 100 pin low-profile quad flat package mechanical data	87
Table 61.	LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data	89
Table 62.	LQFP48 – 7 x 7 mm 48 pin low-profile quad flat package mechanical data	91
Table 63.	QFN48 – 6 x 6 mm 48 pin fine-pitch quad flat package mechanical data	93
Table 64.	Package thermal characteristics	94
Table 65.	AT32F403A ordering information scheme	95
Toble CC	Decument revision history	06

List of figures

Figure 1. AT32F403A block diagram	13
Figure 2. Clock tree	16
Figure 3. AT32F403A LQFP100 pinout	25
Figure 4. AT32F403A LQFP64 pinout	26
Figure 5. AT32F403A LQFP48 pinout	27
Figure 6. AT32F403A QFN48 pinout	27
Figure 7. Memory map	35
Figure 8. Pin loading conditions	36
Figure 9. Pin input voltage	36
Figure 10. Power supply scheme	37
Figure 11. Current consumption measurement scheme	37
Figure 12. Power on reset/power down reset waveform	40
Figure 13. Typical current consumption in Stop mode vs. temperature at different V_{DD}	46
Figure 14. Typical current consumption in Standby mode vs. temperature at different V_{DD}	46
Figure 15. Typical current consumption on V_{BAT} with LSE and RTC on vs. temperature at	
different V _{BAT}	47
Figure 16. High-speed external clock source AC timing diagram	50
Figure 17. Low-speed external clock source AC timing diagram	51
Figure 18. Typical application with an 8 MHz crystal	52
Figure 19. Typical application with a 32.768 kHz crystal	53
Figure 20. HSI oscillator frequency accuracy vs. temperature	54
Figure 21. Asynchronous multiplexed PSRAM/NOR read waveforms	57
Figure 22. Asynchronous multiplexed PSRAM/NOR write waveforms	58
Figure 23. Synchronous multiplexed PSRAM/NOR read timings	60
Figure 24. Synchronous multiplexed PSRAM write timings	61
Figure 25. NAND controller waveforms for read access	63
Figure 26. NAND controller waveforms for write access	64
Figure 27. NAND controller waveforms for common memory read access	64
Figure 28. NAND controller waveforms for common memory write access	64
Figure 29. Recommended NRST pin protection	71
Figure 30. I ² C bus AC waveforms and measurement circuit	
Figure 31. SPI timing diagram - slave mode and CPHA = 0	
Figure 32. SPI timing diagram - slave mode and CPHA = 1	

Figure 33. SPI timing diagram - master mode	75
Figure 34. I ² S slave timing diagram (Philips protocol)	77
Figure 35. I ² S master timing diagram (Philips protocol)	77
Figure 36. SDIO high-speed mode	78
Figure 37. SD default mode	78
Figure 38. USB timings: definition of data signal rise and fall time	79
Figure 39. ADC accuracy characteristics	82
Figure 40. Typical connection diagram using the ADC	83
Figure 41. Power supply and reference decoupling (V _{REF+} not connected to V _{DDA})	83
Figure 42. Power supply and reference decoupling (V _{REF+} connected to V _{DDA})	83
Figure 43. V _{SENSE} vs. temperature	85
Figure 44. LQFP100 – 14 x 14 mm 100 pin low-profile quad flat package outline	86
Figure 45. LQFP100 – 14 x 14 mm marking example (package top view)	87
Figure 46. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline	88
Figure 47. LQFP64 – 10 x 10 mm marking example (package top view)	89
Figure 48. LQFP48 – 7 x 7 mm 48 pin low-profile quad flat package outline	90
Figure 49. LQFP48 – 7 x 7 mm marking example (package top view)	91
Figure 50. QFN48 – 6 x 6 mm 48 pin fine-pitch quad flat package outline	92
Figure 51. QFN48 – 6 x 6 mm marking example (package top view)	93

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the AT32F403A microcontrollers.

The AT32F403A datasheet should be read in conjunction with the AT32F403A reference manual.

For information on programming, erasing, and protection of the internal Flash memory please also refer to the <u>AT32F403A reference manual</u>.

For information on the Cortex®-M4 core please refer to the Cortex®-M4 Technical Reference Manual, available from the www.arm.com website at the following address:

http://infocenter.arm.com

2 Description

The AT32F403A incorporates the high-performance ARM® Cortex®-M4F 32-bit RISC core operating at 240 MHz. The Cortex®-M4F core features a Floating point unit (FPU) single precision which supports all ARM single-precision data processing instructions and data type. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security.

The AT32F403A incorporates high-speed embedded memories (up to 1024 KBytes of Flash memory, 96+128 KBytes of SRAM), the extensive external SPI Flash (up to 16 Mbytes addressing capability), and enhanced I/Os and peripherals connected to two APB buses. Any block of the embedded Flash memory can be protected by the sLib, functioning as a security area with code-excutable only.

The AT32F403A offers three 12-bit ADC, two 12-bit DAC, eight general-purpose 16-bit timers plus two general-purpose 32-bit timers, and up to two PWM timers for motor control, as well as standard and advanced communication interfaces, up to three I²Cs, four SPIs (all multiplexed as I²Ss), two SDIOs, eight USARTs, an USB, and two CANs.

The AT32F403A operates in the -40 to +105 °C temperature range, from a 2.6 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power application.

2.1 Device overview

The AT32F403A offers devices in four different package types: from 48 pins to 100 pins.

Depending on the different packages, the pin-to-pin is completely compatible among devices, and also the software and functionality. Only different sets of peripherals are included. The description below gives an overview of the complete range of peripherals proposed in different devices.

Table 2. AT32F403A features and peripheral counts

Part Number		AT32	F403A	xxU7	AT32F403AxxT7									
	rart Number	СС	CE	CG	СС	CE	CG	RC	RE	RG	VC	VE	VG	
CI	PU frequency (MHz)	240												
h ⁽¹⁾	ZW (KBytes) ⁽²⁾	256	256	256	256	256	256	256	256	256	256	256	256	
Flash ⁽¹⁾	NZW (KBytes) ⁽²⁾	0	256	768	0	256	768	0	256	768	0	256	768	
nt.	Total (KBytes)	256	512	1024	256	512	1024	256	512	1024	256	512	1024	
	SRAM (KBytes) ⁽²⁾						96 +	128		ı				
	Advanced-control		2			2			2			2		
	32-bit general-purpose		2			2			2			2		
	16-bit general-purpose		8			8			8			8		
Timers	Basic		2			2			2			2		
Ξ	SysTick		1			1			1			1		
	IWDG		1			1			1		1			
	WWDG		1			1			1			1		
	RTC		1		1			1			1			
	I ² C	3			3			3			3			
tion	SPI/I ² S	4/4 (2 full-duplex)			4/4 (2 full-duplex)			4/4 (2 full-duplex)			4/4 (2 full-duplex)			
nica	SPI/I ² S USART+UART SDIO USB Device		3+4 ⁽³⁾			3+4 ⁽³⁾			4+4			4+4		
nwu	SDIO		1 ⁽⁴⁾		1 ⁽⁴⁾			2			2			
Sor	USB Device		1		1			1			1			
	CAN		2			2			2		2			
	12-bit ADC						3	3						
Analog	numbers/channels		10			10			16			16		
Ang	12-bit DAC				1		2	2			1			
	numbers/channels		2			2			2			2		
	GPIOs		37			37			51		80			
	XMC		-			-			1 ⁽⁵⁾		1			
	SPIM ⁽⁶⁾	1 ch / up to 16 MB												
Ор	erating temperatures						-40 to +				Т			
	Packages	6	QFN48 x 6 mr	n	LQFP48 7 x 7 mm			LQFP64 10 x 10 mm			LQFP100 14 x 14 mm			

⁽¹⁾ ZW = zero wait-state, up to SYSCLK 240 MHz

2020.8.7 11 Ver 1.03

NZW = non-zero wait-state

⁽²⁾ The internal Flash and SRAM sizes are configurable with user's option bytes. Take the AT32F403AVGT7 as an example, on which the Flash/SRAM can be configured into two options below:

⁻ ZW: 256 KBytes, NZW: 768 KBytes, SRAM: 96 KBytes;

⁻ ZW: 128 KBytes, NZW: 896 KBytes, SRAM: 224 KBytes.

⁽³⁾ For LQFP48 and QFN48 packages, UART8 is not available and USART6 is used as UART for no CK pin.

⁽⁴⁾ For LQFP48 and QFN48 packages, only SDIO2 exists and supports maximum 4-bit (D0~D3) mode.

⁽⁵⁾ For LQFP64 package, XMC only supports the LCD panel with 8-bit mode.

⁽⁶⁾ SPIM = External SPI Flash memory extension (for both program execution and data storage) with encryption capability.

2.2 Overview

2.2.1 ARM® Cortex®-M4F with FPU core and DSP instruction set

The ARM Cortex®-M4F with FPU processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The ARM Cortex®-M4F with FPU 32-bit RISC processor features exceptional code efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution. Its single precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation.

With its embedded ARM core, the AT32F403A is compatible with all ARM tools and software.

Figure 1 shows the general block diagram of the AT32F403A.

Note: Cortex[®]-M4F with FPU is binary compatible with Cortex[®]-M3.

Figure 1. AT32F403A block diagram

(1) Operating temperatures: -40 to +105 °C. Junction temperature reaches 125 °C.

2.2.2 Memory protection unit (MPU)

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

2.2.3 Flash memory

Up to 1024 KBytes of embedded Flash is available for storing programs and data. User can configure any part of the embedded Flash memory protected by the sLib, functioning as a security area with code-excutable only but non-readable. sLib is a mechanism that protects the intelligence of solution venders and facilitates the second-level development by customers.

The AT32F403A provides extra interface called SPIM (SPI memory), which interfaces the external SPI Flash memory storing programs and data. With maximum 16 MBytes addressing capability, SPIM can be used as an extensive Flash memory Bank 3. SPIM additionally exists encryption to protect contents inside, enabling through the option bytes and determining the encryption area through a control register.

2.2.4 Cyclic redundancy check (CRC) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link time and stored at a given memory location.

2.2.5 Embedded SRAM

Up to 224 KBytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states.

2.2.6 External memory controller (XMC)

The XMC is embedded in the AT32F403A. It has two Chip Select outputs supporting the following modes: multiplexed PSRAM/NOR and 16/8-bit NAND memory.

Function overview:

- Write FIFO
- Code execution from external memory of the multiplexed PSRAM/NOR

2.2.7 LCD parallel interface

The XMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-effective graphic applications using LCD modules with embedded controllers or high-performance solutions using external controllers with dedicated acceleration.

2.2.8 Nested vectored interrupt controller (NVIC)

The AT32F403A embed a nested vectored interrupt controller able to manage 16 priority levels and handle up to 75 maskable interrupt channels plus the 16 interrupt lines of the Cortex®-M4 with FPU.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

2.2.9 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 19 edge detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 80 GPIOs can be connected to the 16 external interrupt lines.

2.2.10 Clocks and startup

System clock selection is performed on startup, however the internal RC 48 MHz oscillator (HSI) through a divided-by-6 divider (8 MHz) is selected as default CPU clock on reset. An external 4 to 25 MHz clock (HSE) can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator).

Several prescalers allow the configuration of the AHB and the APB (APB1 and APB2) frequency. The maximum frequency of the AHB domain is 240 MHz. The maximum allowed frequency of the APB domains are 120 MHz. See *Figure 2* for details on the clock tree.

The AT32F403A embedde an automatic clock calibration (ACC) block, which calibrates the internal RC 48 MHz oscillator. This assures the most precise accuracy of the HSI in the full ragne of the operating temperatures.

Figure 2. Clock tree

(1) When using USB function and its clock source is from PLL, CPU frequency must be 48 MHz, 72 MHz, 96 MHz, 120 MHz, 144 MHz, or 192 MHz; when its clock source is direct from HSI 48 MHz, CPU frequency can be any frequency from 48 MHz to 192 MHz.

2020.8.7 16 Ver 1.03

2.2.11 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from user Flash. For the AT32F403AxG, user has an option to boot from any of two
 memory banks. By default, boot from Flash memory bank 1 is selected. User can choose to
 boot from Flash memory bank 2 by setting a bit in the option bytes.
- Boot from system memory
- Boot from embedded SRAM

The bootloader is stored in system memory. It is used to reprogram the Flash memory through USART1, USART2, or USB. If configuring SPIM_IO0/1 pins on USB pins, the Flash memory Bank 3 cannot be reprogrammed through USB. *Table 3* provides the supporting interfaces of the Bootloader to different AT32F403A part numbers and pin configurations.

Interface	Part number	Pin
LICADTA	All part numbers	PA9: USART1_TX
USART1	All part numbers	PA10: USART1_RX
	AT32F403AVGT7	PD5: USART2_TX (remapped)
USART2	A132F403AVG17	PD6: USART2_RX (remapped)
USARIZ	Port numbers except AT32E403AVCT7	PA2: USART2_TX
	Part numbers except AT32F403AVGT7	PA3: USART2_RX
USB	All part numbers	PA11: USB_DM
	All part numbers	PA12: USB_DP

Table 3. The Bootloader supporting part numbers and pin configurations

2.2.12 Power supply schemes

- $V_{DD} = 2.6 \sim 3.6 \text{ V}$: external power supply for I/Os and the internal regulator provided externally through V_{DD} pins.
- $V_{DDA} = 2.6 \sim 3.6 \text{ V}$: external analog power supplies for ADC and DAC. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS} , respectively.
- $V_{BAT} = 1.8 \sim 3.6 \text{ V}$: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

For more detail on how to connect power pins, refer to Figure 10.

2.2.13 Power supply supervisor

The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2.6 V. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$, without the need for an external reset circuit.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD} drops below the V_{PVD} threshold and/or when V_{DD} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. Refer to *Table 13* for the characteristic values of $V_{POR/PDR}$ and V_{PVD} .

2.2.14 Voltage regulator

The regulator has three operation modes: main (MR), low-power (LPR), and power down.

- Main mode (MR) is used in the nominal regulation mode (Run) and in the Stop mode
- Low-power mode (LPR) can be used in the Stop mode
- Power down mode is used in Standby mode: the regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption of the regulator (but the contents of the registers and SRAM are lost)

This regulator is always enabled after reset. It is disabled in Standby mode.

2.2.15 Low-power modes

The AT32F403A supports three low-power modes to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop mode

Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator is put in normal mode.

The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm, or the USB wakeup.

• Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry. The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode.

2.2.16 Direct Memory Access Controller (DMA)

The flexible 14-channel general-purpose DMAs (7 channels for DMA1 and 7 channels for DMA2) are able to manage memory-to-memory, peripheral-to-memory, and memory-to-peripheral transfers. The two DMA controllers support circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: SPI, I²C, USART, general-purpose, basic, and advanced-control timers TMRx, DAC, I²S, SDIO, and ADC.

2.2.17 Real-time clock (RTC) and backup registers

The RTC and the backup registers are supplied with V_{DD} . The backup registers are forty-two 16-bit registers used to store 84 bytes of user application data. They are not reset by a system or power reset, and they are not reset when the device wakes up from the Standby mode.

The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator, or the high-speed external clock divided by 128. The internal low-speed RC has a typical frequency of 40 kHz. The RTC can be calibrated using a divied-by-64 output of TAMPER pin to compensate for any natural quartz deviation. The RTC features a 32-bit programmable counter for long term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

2.2.18 Timers and watchdogs

The AT32F403A devices include up to 2 advanced-control timers, up to 10 general-purpose timers, 2 basic timers, 2 watchdog timers, and a SysTick timer.

The table below compares the features of the advanced-control, general-purpose, and basic timers.

Counter Prescaler **DMA** request Capture/compare Complementary Timer Counter type resolution factor generation channels outputs Any integer Up, down, TMR1, TMR8 16-bit Yes between 1 Yes 4 up/down and 65536 Any integer Up, down, TMR2, TMR5 32-bit between 1 Yes 4 No up/down and 65536 Any integer Up, down, TMR3, TMR4 16-bit between 1 Yes 4 No up/down and 65536 Any integer 2 TMR9, TMR12 16-bit Up between 1 No No and 65536 Any integer TMR10, TMR11, 16-bit Up between 1 No 1 No TMR13, TMR14 and 65536 Any integer TMR6, TMR7 16-bit Up between 1 Yes 0 No and 65536

Table 4. Timer feature comparison

Advanced-control timers (TMR1 and TMR8)

The two advanced-control timers (TMR1 and TMR8) can each be seen a three-phase PWM multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as a complete general-purpose timer. The 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes)
- One-pulse mode output

If configured as a standard 16-bit timer, it has the same features as the TMRx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).

In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switch driven by these outputs.

Many features are shared with those of the general-purpose TMR timers which have the same architecture. The advanced-control timer can therefore work together with the TMR timers via the link feature for synchronization or event chaining.

General-purpose timers (TMRx)

There are 10 synchronizable general-purpose timers embedded in the AT32F403A.

• TMR2, TMR3, TMR4, and TMR5

The AT32F403A has 4 full- featured general-purpose timers: TMR2, TMR3, TMR4, and TMR5. The TMR2 and TMR5 timers are based on a 32-bit auto-reload up/down counter and a 16-bit prescaler. The TMR3 and TMR4 timers are based on a 16- bit auto-reload up/down counter and a 16-bit prescaler. They all feature four independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs.

The TMR2, TMR3, TMR4, and TMR5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers via the link feature for synchronization or event chaining. In debug mode, their counter can be frozen. Any of these general-purpose timers can be used to generate PWM outputs.

The TMR2, TMR3, TMR4, and TMR5 are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

• TMR9 and TMR12

TMR9 and TMR12 are based on a 16-bit auto-reload upcounter, a 16-bit prescaler, and two independent channels for input capture/output compare, PWM, or one-pulse mode output. They can be synchronized with the TMR2, TMR3, TMR4, and TMR5 full-featured general-purpose timers. They can also be used as simple time bases.

TMR10, TMR11, TMR13, and TMR14

These timers are based on a 16-bit auto-reload upcounter, a 16-bit prescaler, and one independent channels for input capture/output compare, PWM, or one-pulse mode output.

They can be synchronized with the TMR2, TMR3, TMR4, and TMR5 full-featured general-purpose timers. They can also be used as simple time bases.

Basic timers (TMR6 and TMR7)

These two timers are mainly used for DAC trigger generation. They can also be used as a generic 16-bit time base.

Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

Window watchdog (WWDG)

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source

2.2.19 Inter-integrated-circuit interface (I²C)

Up to 3 I²C bus interfaces can operate in multi-master and slave modes. They can support standard and fast modes.

They support 7/10-bit addressing mode and 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is included.

They can be served by DMA and they support SMBus 2.0/PMBus.

2.2.20 Universal synchronous/asynchronous receiver transmitters (USART)

The AT32F403A embeds 4 universal synchronous/asynchronous receiver transmitters (USART1, USART2, USART3, and USART6) and 4 universal asynchronous receiver transmitters (UART4, UART5, UART7, and UART8).

These eight interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode, and have LIN Master/Slave capability.

These eight interfaces are able to communicate at speeds of up to 7.5 Mbit/s.

USART1, USART2, and USART3 provide hardware management of the CTS and RTS signals. USART1, USART2, USART3, and USART6 also provide Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller.

USART2 USART3 **USART/UART** name USART1 **UART4 UART5 USART6 UART7 UART8** Hardware flow control for modem Yes Yes Yes Continuous communication using DMA Yes Multiprocessor communication Synchronous mode Yes Yes Yes Yes Smartcard mode Yes Yes Yes Yes Single-wire half-duplex communication Yes Yes Yes Yes Yes Yes Yes Yes IrDA SIR ENDEC blook Yes Yes Yes Yes Yes Yes Yes Yes LIN mode Yes Yes Yes Yes Yes Yes Yes Yes

Table 5. USART/UART feature comparison

2.2.21 Serial peripheral interface (SPI)

Up to four SPIs are able to communicate up to 50 Mbits/s in slave and master modes in full-duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC/SDHC modes.

All SPIs can be served by the DMA controller.

2.2.22 Inter-integrated sound interface (I²S)

Four standard I²S interfaces (multiplexed with SPI) are available, that can be operated in master or slave mode in half-duplex mode and I2S2 and I2S3 also in full duplex mode. These interfaces can be configured to operate with 16/32 bit resolution, as input or output channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When any of the I²S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

2.2.23 Secure digital input/output interface (SDIO)

Two SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different data bus modes: 1-bit (default), 4-bit and 8-bit. The interface allows data transfer at up to 48 MHz in 8-bit mode, and is compliant with SD Memory Card Specifications Version 2.0.

The SDIO Card Specification Version 2.0 is also supported with two different data bus modes: 1-bit (default) and 4-bit.

The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous.

In addition to SD/SDIO/MMC/eMMC, this interface is also fully compliant with the CE-ATA digital protocol Rev1.1.

2020.8.7 22 Ver 1.03

2.2.24 Controller area network (CAN)

Two CANs are compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.

2.2.25 Universal serial bus (USB)

AT32F403A embeds a USB device peripheral compatible with the USB full-speed 12 Mbit/s. The USB interface implements a full-speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock is generated from the internal main PLL or direct from the 48 MHz HSI.

2.2.26 General-purpose inputs/outputs (GPIO)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down), or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current-capable.

The I/Os alternate function configuration can be locked, if needed, in order to avoid spurious writing to the I/Os registers by following a specific sequence.

2.2.27 Remap capability

This feature allows the use of a maximum number of peripherals in a given application. Indeed, alternate functions are available not only on the default pins but also on other specific pins onto which they are remappable. This has the advantage of making board design and port usage much more flexible.

For details refer to *Table 6*; it shows the list of remappable alternate functions and the pins onto which they can be remapped. See the AT32F403A reference manual for software considerations.

2.2.28 Analog to digital converter (ADC)

Three 12-bit analog-to-digital converters are embedded into AT32F403A devices and they share up to 16 external channels, performing conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hole
- Single shunt

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the general-purpose timers (TMRx) and the advanced-control timers (TMR1 and TMR8) can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers.

2.2.29 Digital-to-analog converter (DAC)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.

This dual digital Interface supports the following features:

- Two DAC converters: one for each output channel
- 8-bit or 12-bit monotonic output
- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave generation
- Triangular-wave generation
- Dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- External triggers for conversion
- Input voltage reference V_{REF+}

Eight DAC trigger inputs are used in the AT32F403A. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.

2.2.30 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 2.6 V \leq V_{DDA} \leq 3.6 V. The temperature sensor is internally connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value.

2.2.31 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

2.2.32 Embedded Trace Macrocell (ETM™)

The ARM® Embedded Trace Macrocell (ETMTM) provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the AT32F403A through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools.

3 Pinouts and pin descriptions

Figure 3. AT32F403A LQFP100 pinout

Figure 4. AT32F403A LQFP64 pinout

2020.8.7 26 Ver 1.03

Figure 5. AT32F403A LQFP48 pinout

Figure 6. AT32F403A QFN48 pinout

2020.8.7 27 Ver 1.03

The table below is the pin definition of the AT32F403A. "-" presents there is no such pinout on the related package. The multi-functions list follows priority from high to low. In principle, the analog signals have higher priority than the digital signals, and the digital output signals have higher priority than the digital input signals.

Table 6. AT32F403A series pin definitions

Pin	num	ber				Tuble 0.7	AI 32F403A series pin definitions Alternate fun	
LQFP48 / QFN48	LQFP64	LQFP100	Pin name	Type ⁽¹⁾	IO level ⁽²⁾	Main function ⁽³⁾	Default	Remap
-	1	1	PE2	I/O	FT	PE2	SPI4_SCK ⁽⁷⁾ / I2S4_CK ⁽⁷⁾ / XMC_A23 / TRACECK	-
-	1	2	PE3	I/O	FT	PE3	XMC_A19 / TRACED0	-
-	1	3	PE4	I/O	FT	PE4	SPI4_NSS ⁽⁷⁾ / I2S4_WS ⁽⁷⁾ / XMC_A20 / TRACED1	-
-	1	4	PE5	I/O	FT	PE5	SPI4_MISO ⁽⁷⁾ / XMC_A21 / TRACED2	TMR9_CH1
-	1	5	PE6	I/O	FT	PE6	SPI4_MOSI ⁽⁷⁾ / I2S4_SD ⁽⁷⁾ / XMC_A22 / TRACED3	TMR9_CH2
1	1	6	V _{BAT}	S	-	V_{BAT}	-	-
2	2	7	TAMPER-RTC / PC13 ⁽⁵⁾	I/O	TC	PC13 ⁽⁶⁾	TAMPER-RTC	-
3	3	8	OSC32_IN / PC14 ⁽⁵⁾	I/O	TC	PC14 ⁽⁶⁾	OSC32_IN	-
4	4	9	OSC32_OUT / PC15 ⁽⁵⁾	I/O	TC	PC15 ⁽⁶⁾	OSC32_OUT	-
-	1	10	Vss_5	S	-	Vss_5	-	-
-	1	11	V _{DD_5}	S	-	V _{DD_5}	-	-
-	1	12	OSC_IN	I	-	OSC_IN	-	-
-	-	13	OSC_OUT	0	-	OSC_OUT	-	-
5	5	-	OSC_IN / PD0 ⁽⁸⁾	I/O	TC	OSC_IN	-	PD0 ⁽⁸⁾
6	6	-	OSC_OUT / PD1 ⁽⁸⁾	I/O	TC	OSC_OUT	-	PD1 ⁽⁸⁾
7	7	14	NRST	I/O	-	NRST	-	-
-	8	15	PC0	I/O	FTa	PC0	ADC123_IN10 / SDIO2_D0 ⁽⁷⁾	-
-	9	16	PC1	I/O	FTa	PC1	ADC123_IN11 / SDIO2_D1 ⁽⁷⁾	-
-	10	17	PC2	I/O	FTa	PC2	ADC123_IN12 / SDIO2_D2 ⁽⁷⁾	UART8_TX / XMC_NWE
-	11	18	PC3	I/O	FTa	PC3	ADC123_IN13 / SDIO2_D3 ⁽⁷⁾ / XMC_A0	UART8_RX
8	12	19	Vssa	S	-	Vssa	-	-
-	-	20	V _{REF} -	S	-	V _{REF} -	-	-
-	-	21	V _{REF+}	S	-	V _{REF+}	-	-
9	13	22	V_{DDA}	S	-	V_{DDA}	-	-
10	14	23	PA0- WKUP	I/O	TC	PA0	ADC123_IN0 / WKUP / USART2_CTS ⁽⁷⁾ / TMR2_CH1 ⁽⁷⁾ / TMR2_ETR ⁽⁷⁾ / TMR5_CH1 / TMR8_ETR	UART4_TX

Pin	num	ber			<u> </u>		Alternate functions ⁽⁴⁾					
LQFP48/ QFN48	LQFP64	LQFP100	Pin name	Type ⁽¹⁾	IO level ⁽²⁾	Main function ⁽³⁾	Default	Remap				
11	15	24	PA1	I/O	FTa	PA1	ADC123_IN1 / USART2_RTS ⁽⁷⁾ / TMR2_CH2 ⁽⁷⁾ / TMR5_CH2	UART4_RX				
12	16	25	PA2	I/O	FTa	PA2	ADC123_IN2 / USART2_TX ⁽⁷⁾ / TMR2_CH3 ⁽⁷⁾ / TMR5_CH3 / TMR9_CH1 ⁽⁷⁾	SDIO2_CK / XMC_D4				
13	17	26	PA3	I/O	FTa	PA3	ADC123_IN3 / USART2_RX ⁽⁷⁾ / TMR2_CH4 ⁽⁷⁾ / TMR5_CH4 / TMR9_CH2 ⁽⁷⁾	I2S2_MCK / SDIO2_CMD / XMC_D5				
-	18	27	Vss_4	S	-	Vss_4	-	-				
-	19	28	V_{DD_4}	S	-	V_{DD_4}	-	-				
14	20	29	PA4	I/O	FTa	PA4	DAC_OUT1 / ADC12_IN4 / USART2_CK ⁽⁷⁾ / SPI1_NSS ⁽⁷⁾ / I2S1_WS ⁽⁷⁾ / SDIO2_D4	USART6_TX / SPI3_NSS / I2S3_WS / SDIO2_D0 / XMC_D6				
15	21	30	PA5	I/O	FTa	PA5	DAC_OUT2 / ADC12_IN5 / SPI1_SCK ⁽⁷⁾ / I2S1_CK ⁽⁷⁾ / SDIO2_D5	USART6_RX / SDIO2_D1 / XMC_D7				
16	22	31	PA6	I/O	FTa	PA6	ADC12_IN6 / SPI1_MISO ⁽⁷⁾ / SDIO2_D6 / TMR3_CH1 ⁽⁷⁾ / TMR8_BKIN / TMR13_CH1	I2S2_MCK / SDIO2_D2 / TMR1_BKIN				
17	23	32	PA7	I/O	FTa	PA7	ADC12_IN7 / SPI1_MOSI ⁽⁷⁾ / I2S1_SD ⁽⁷⁾ / SDIO2_D7 / TMR3_CH2 ⁽⁷⁾ / TMR8_CH1N / TMR14_CH1	SDIO2_D3 / TMR1_CH1N				
-	24	33	PC4	I/O	FTa	PC4	ADC12_IN14 / SDIO2_CK ⁽⁷⁾ / XMC_NE4	-				
-	25	34	PC5	I/O	FTa	PC5	ADC12_IN15 / SDIO2_CMD ⁽⁷⁾	XMC_NOE				
18	26	35	PB0	I/O	FTa	PB0	ADC12_IN8 / I2S1_MCK ⁽⁷⁾ / TMR3_CH3 ⁽⁷⁾ / TMR8_CH2N	TMR1_CH2N				
19	27	36	PB1	I/O	FTa	PB1	ADC12_IN9 / SPIM_SCK / TMR3_CH4 ⁽⁷⁾ / TMR8_CH3N	TMR1_CH3N				
20	28	37	PB2	I/O	FT	PB2 / BOOT1	-	-				
-	-	38	PE7	I/O	FT	PE7	UART7_RX ⁽⁷⁾ / XMC_D4 ⁽⁷⁾	TMR1_ETR				
-	-	39	PE8	I/O	FT	PE8	UART7_TX ⁽⁷⁾ / XMC_D5 ⁽⁷⁾	TMR1_CH1N				
-	-	40	PE9	I/O	FT	PE9	XMC_D6 ⁽⁷⁾	TMR1_CH1				
-	-	41	PE10	I/O	FT	PE10	XMC_D7 ⁽⁷⁾	TMR1_CH2N				
-	-	42	PE11	I/O	FT	PE11	XMC_D8	SPI4_SCK / I2S4_CK / TMR1_CH2				
-	-	43	PE12	I/O	FT	PE12	XMC_D9	SPI4_NSS / I2S4_WS / TMR1_CH3N				
-		44	PE13	I/O	FT	PE13	XMC_D10	SPI4_MISO / TMR1_CH3				
_	-	45	PE14	I/O	FT	PE14	XMC_D11	SPI4_MOSI / I2S4_SD / TMR1_CH4				
		46	PE15	I/O	FT	PE15	XMC_D12	TMR1_BKIN				
21	29	47	PB10	I/O	FT	PB10	USART3_TX ⁽⁷⁾ / I2C2_SCL	I2S3_MCK / SPIM_IO0 / TMR2_CH3				
22	30	48	PB11	I/O	FT	PB11	USART3_RX ⁽⁷⁾ / I2C2_SDA	SPIM_IO1 / TMR2_CH4				

Pin	Pin number				(2)		Alternate functions ⁽⁴⁾		
LQFP48 / QFN48	LQFP64	LQFP100	Pin name	Type ⁽¹⁾	IO level ⁽²⁾	Main function ⁽³⁾	Default	Remap	
23	31	49	V_{SS_1}	S	-	Vss_1	-	-	
24	32	50	V_{DD_1}	S	-	V _{DD_1}	-	-	
25	33	51	PB12	I/O	FT	PB12	USART3_CK ⁽⁷⁾ / CAN2_RX ⁽⁷⁾ / I2C2_SMBA / SPI2_NSS / I2S2_WS / TMR1_BKIN ⁽⁷⁾	XMC_D13	
26	34	52	PB13	I/O	FT	PB13	USART3_CTS ⁽⁷⁾ / CAN2_TX ⁽⁷⁾ / SPI2_SCK / I2S2_CK / TMR1_CH1N ⁽⁷⁾	-	
27	35	53	PB14	I/O	FT	PB14	USART3_RTS ⁽⁷⁾ / SPI2_MISO / I2S2ext_SD / TMR1_CH2N ⁽⁷⁾ / TMR12_CH1	XMC_D0	
28	36	54	PB15	I/O	FT	PB15	SPI2_MOSI / I2S2_SD / TMR1_CH3N ⁽⁷⁾ / TMR12_CH2	-	
-	-	55	PD8	I/O	FT	PD8	XMC_D13 ⁽⁷⁾	USART3_TX	
-		56	PD9	I/O	FT	PD9	XMC_D14	USART3_RX	
-	-	57	PD10	I/O	FT	PD10	XMC_D15	USART3_CK	
-	-	58	PD11	I/O	FT	PD11	XMC_A16	USART3_CTS	
-	-	59	PD12	I/O	FT	PD12	XMC_A17	USART3_RTS / TMR4_CH1	
-	-	60	PD13	I/O	FT	PD13	XMC_A18	TMR4_CH2	
-	1	61	PD14	I/O	FT	PD14	XMC_D0 ⁽⁷⁾	TMR4_CH3	
-	-	62	PD15	I/O	FT	PD15	XMC_D1 ⁽⁷⁾	TMR4_CH4	
-	37	63	PC6	I/O	FT	PC6	USART6_TX ⁽⁷⁾ / I2S2_MCK ⁽⁷⁾ / SDIO1_D6 / TMR8_CH1	XMC_D1 / TMR3_CH1	
-	38	64	PC7	I/O	FT	PC7	USART6_RX ⁽⁷⁾ / I2S3_MCK ⁽⁷⁾ / SDIO1_D7 / TMR8_CH2	TMR3_CH2	
-	39	65	PC8	I/O	FT	PC8	USART6_CK / I2S4_MCK ⁽⁷⁾ / SDIO1_D0 / TMR8_CH3	TMR3_CH3	
-	40	66	PC9	I/O	FT	PC9	I2C3_SDA ⁽⁷⁾ / SDIO1_D1 / TMR8_CH4	TMR3_CH4	
29	41	67	PA8	I/O	FT	PA8	CLKOUT / USART1_CK / I2C3_SCL / USB_SOF / SPIM_NSS / TMR1_CH1 ⁽⁷⁾	-	
30	42	68	PA9	I/O	FT	PA9	USART1_TX ⁽⁷⁾ / I2C3_SMBA / TMR1_CH2 ⁽⁷⁾	-	
31	43	69	PA10	I/O	FT	PA10	USART1_RX ⁽⁷⁾ / TMR1_CH3 ⁽⁷⁾	I2S4_MCK	
32	44	70	PA11	I/O	TC	PA11	USB_DM / USART1_CTS / CAN1_RX ⁽⁷⁾ / SPIM_IO0 ⁽⁷⁾ / TMR1_CH4 ⁽⁷⁾	-	
33	45	71	PA12	I/O	TC	PA12	USB_DP / USART1_RTS / CAN1_TX ⁽⁷⁾ / SPIM_IO1 ⁽⁷⁾ / TMR1_ETR ⁽⁷⁾	-	
34	46	72	PA13	I/O	FT	JTMS- SWDIO	-	PA13	
-	-	73		•			Not connected		
35	47	74	V _{SS_2}	S	-	V _{SS_2}	-	-	
36	48	75	V_{DD_2}	S	-	V _{DD_2}	-	-	
				4					

Pin	Pin number				(2)		Alternate functions ⁽⁴⁾		
LQFP48 / QFN48	LQFP64	LQFP100	Pin name	Type ⁽¹⁾	IO level ⁽²⁾	Main function ⁽³⁾	Default	Remap	
37	49	76	PA14	I/O	FT	JTCK- SWCLK	-	PA14	
38	50	77	PA15	I/O	FT	JTDI	SPI3_NSS ⁽⁷⁾ / I2S3_WS ⁽⁷⁾	PA15 / SPI1_NSS / I2S1_WS / TMR2_CH1 / TMR2_ETR	
	51	78	PC10	I/O	FT	PC10	UART4_TX ⁽⁷⁾ / SDIO1_D2	USART3_TX / SPI3_SCK / I2S3_CK	
1	52	79	PC11	1/0	FT	PC11	UART4_RX ⁽⁷⁾ / SDIO1_D3	USART3_RX / SPI3_MISO / I2S3ext_SD / XMC_D2	
,	53	80	PC12	I/O	FT	PC12	UART5_TX ⁽⁷⁾ / SDIO1_CK	USART3_CK / SPI3_MOSI / I2S3_SD / XMC_D3	
-	-	81	PD0	I/O	FT	PD0	XMC_D2 ⁽⁷⁾	CAN1_RX	
-	-	82	PD1	I/O	FT	PD1	XMC_D3 ⁽⁷⁾	CAN1_TX	
-	54	83	PD2	I/O	FT	PD2	UART5_RX ⁽⁷⁾ / SDIO1_CMD / TMR3_ETR	XMC_NWE	
-	1	84	PD3	I/O	FT	PD3	XMC_CLK	USART2_CTS	
-	1	85	PD4	I/O	FT	PD4	XMC_NOE ⁽⁷⁾	USART2_RTS	
-	-	86	PD5	I/O	FT	PD5	XMC_NWE ⁽⁷⁾	USART2_TX	
-	-	87	PD6	I/O	FT	PD6	XMC_NWAIT	USART2_RX	
-	-	88	PD7	I/O	FT	PD7	XMC_NE1 / XMC_NCE2	USART2_CK	
39	55	89	PB3	I/O	FT	JTDO	SPI3_SCK ⁽⁷⁾ / I2S3_CK ⁽⁷⁾	PB3 / UART7_RX / SPI1_SCK / I2S1_CK / TRACESWO / TMR2_CH2	
40	56	90	PB4	I/O	FT	NJTRST	SPI3_MISO ⁽⁷⁾ / I2S3ext_SD ⁽⁷⁾	PB4 / SPI1_MISO / I2C3_SDA / UART7_TX / TMR3_CH1	
41	57	91	PB5	I/O	FT	PB5	SPI3_MOSI ⁽⁷⁾ / I2S3_SD ⁽⁷⁾ / I2C1_SMBA ⁽⁷⁾	SPI1_MOSI / I2S1_SD / CAN2_RX / TMR3_CH2	
42	58	92	PB6	I/O	FT	PB6	I2C1_SCL ⁽⁷⁾ / SPIM_IO3 / TMR4_CH1 ⁽⁷⁾	USART1_TX / I2S1_MCK / SPI4_NSS / I2S4_WS / CAN2_TX	
43	59	93	PB7	I/O	FT	PB7	I2C1_SDA ⁽⁷⁾ / XMC_NADV / SPIM_IO2 / TMR4_CH2 ⁽⁷⁾	USART1_RX / SPI4_SCK / I2S4_CK	
44	60	94	воото	ı	-	воото	-	-	
45	61	95	PB8	I/O	FT	PB8	SDIO1_D4 / TMR4_CH3 ⁽⁷⁾ / TMR10_CH1	UART5_RX / SPI4_MISO / I2C1_SCL / CAN1_RX	
46	62	96	PB9	I/O	FT	PB9	SDIO1_D5 / TMR4_CH4 ⁽⁷⁾ / TMR11_CH1	UART5_TX / SPI4_MOSI / I2S4_SD / I2C1_SDA / CAN1_TX	
-	-	97	PE0	I/O	FT	PE0	UART8_RX ⁽⁷⁾ / XMC_NBL0 / TMR4_ETR	-	
-	-	98	PE1	I/O	FT	PE1	UART8_TX ⁽⁷⁾ / XMC_NBL1	-	
47	63	99	V _{SS_3}	S	-	Vss_3	-	-	
48	64	100	V _{DD_3}	S	-	V _{DD_3}	-	-	
-/49	-	-	EPAD	S	-	Vss	-	-	
		1		1		1		i .	

- (1) I = input, O = output, S = supply.
- (2) TC = standard 3.3 V I/O, FT = general 5 V-tolerant I/O, FTa = 5 V-tolerant I/O with analog functionalities. FTa pin is 5 V-tolerant when configured as input floating, input pull-up, or input pull-down mode. However, it cannot be 5 V-tolerant when configured as analog mode. Meanwhile, its input level should not higher than V_{DD} + 0.3 V.
- (3) Function availability depends on the chosen device.
- (4) If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).
- (5) PC13, PC14, and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: the normal sourcing/sinking strength should be used with a maximum load of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED).
- (6) Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the Battery backup domain and BKP register description sections in the AT32F403A reference manual.
- (7) This alternate function can be remapped by software to some other port pins (if available on the used package). For more details, refer to the Alternate function I/O and debug configuration section in the AT32F403A reference manual.
- (8) For the LQFP64, LQFP48, and QFN48 packages, the pins number 5 and 6 are configured as OSC_IN/OSC_OUT after reset, the functionality of PD0 and PD1 can be remapped by software on these pins. However, for the LQFP100 package, PD0 and PD1 are available by default, so there is no need for remapping. For more details, refer to Alternate function I/O and debug configuration section in the AT32F403A reference manual.

2020.8.7 32 Ver 1.03

Table 7. XMC pin definition

Pins	Multiplexed NOR/PSRAM	LCD	NAND	LQFP64
PE2	A23	A23	-	-
PE3	A19	A19	-	-
PE4	A20	A20	-	-
PE5	A21	A21	-	-
PE6	A22	A22	-	-
PC2	NWE	NWE	NWE	Yes
PC3	-	A0	-	Yes
PA2	DA4	D4	D4	Yes
PA3	DA5	D5	D5	Yes
PA4	DA6	D6	D6	Yes
PA5	DA7	D7	D7	Yes
PC4	NE4	NE4	-	Yes
PC5	NOE	NOE	NOE	Yes
PE7	DA4	D4	D4	-
PE8	DA5	D5	D5	-
PE9	DA6	D6	D6	-
PE10	DA7	D7	D7	-
PE11	DA8	D8	D8	-
PE12	DA9	D9	D9	-
PE13	DA10	D10	D10	-
PE14	DA11	D11	D11	-
PE15	DA12	D12	D12	-
PB12	DA13	D13	D13	Yes
PB14	DA0	D0	D0	Yes
PD8	DA13	D13	D13	-
PD9	DA14	D14	D14	-
PD10	DA15	D15	D15	-
PD11	A16	A16	CLE	-
PD12	A17	A17	ALE	-
PD13	A18	A18	-	-
PD14	DA0	D0	D0	-
PD15	DA1	D1	D1	-
PC6	DA1	D1	D1	Yes
PC11	DA2	D2	D2	Yes
PC12	DA3	D3	D3	Yes
PD0	DA2	D2	D2	-
PD1	DA3	D3	D3	-

Pins	Multiplexed NOR/PSRAM	LCD	NAND	LQFP64
PD2	NWE	NWE	NWE	Yes
PD3	CLK	-	-	-
PD4	NOE	NOE	NOE	-
PD5	NWE	NWE	NWE	-
PD6	NWAIT	-	NWAIT	-
PD7	NE1	NE1	NCE2	-
PB7	NADV	-	-	Yes
PE0	NBL0	-	-	-
PE1	NBL1	-	-	-

4 Memory mapping

Figure 7. Memory map

Electrical characteristics 5

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to Vss.

Minimum and maximum values 5.1.1

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production with an ambient temperature at $T_A = 25 \, ^{\circ}\text{C}$ and $T_A = T_A$ max.

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production.

5.1.2 Typical values

Unless otherwise specified, typical data are based on T_A = 25 °C, V_{DD} = 3.3 V. They are given only as design guidelines and are not tested.

5.1.3 **Typical curves**

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

Loading capacitor 5.1.4

The loading conditions used for pin parameter measurement are shown in Figure 8.

Figure 8. Pin loading conditions

Pin input voltage 5.1.5

The input voltage measurement on a pin of the device is described in Figure 9.

Figure 9. Pin input voltage

5.1.6 Power supply scheme

1.8-3.6v

Power switch

Backup circuitry
(OSG3ZK,RTC,Wake-up logic
Backup registers)

Regulator

Voc. 1/2/--/5

Volume

Figure 10. Power supply scheme

Caution: In this figure, the 4.7µF capacitor must be connected to V_{DD3}.

5.1.7 Current consumption measurement

Figure 11. Current consumption measurement scheme

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 8*, *Table 9*, and *Table 10* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 8. Voltage characteristics

Symbol	Ratings	Min	Max	Unit
V _{DD} -V _{SS}	External main supply voltage (including V_{DDA} and $V_{\text{DD}})^{(1)}$	-0.3	4.0	
	Input voltage on FT I/O			
	Input voltage on FTa I/O (set as input floating,	set as input floating, V _{SS} -0.3		V
V_{IN}	input pull-up, or input pull-down mode)			
	Input voltage on TC I/O	V _{SS} -0.3	4.0	
	Input voltage on FTa I/O (set as analog mode)	V _{SS} -0.3	4.0	
$ \Delta V_{DDx} $	Variations between different V _{DD} power pins	-	50	mV
V _{SSx} -V _{SS}	Variations between all the different ground pins (2)	-	50	IIIV

⁽¹⁾ All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

Table 9. Current characteristics

Symbol	Ratings	Max	Unit
I_{VDD}	Total current into V _{DD} /V _{DDA} power lines (source) ⁽¹⁾	150	
I _{VSS}	Total current out of Vss ground lines (sink) ⁽¹⁾	150	mA
	Output current sunk by any I/O and control pin	25	IIIA
I _{IO}	Output current source by any I/Os and control pin	-25	

⁽¹⁾ All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

Table 10. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-60 ~ +150	°C
TJ	Maximum junction temperature	125	

⁽²⁾ VREF- included.

5.3 Operating conditions

5.3.1 General operating conditions

Table 11. General operating conditions

Symbol	Parameter	Col	nditions	Min	Max	Unit
		Bank 3 not used	3.1 V ≤ V _{DD} ≤ 3.6 V	0	240	
fHCLK	Internal AUD clock frequency	Bank 3 not used	2.6 V ≤ V _{DD} < 3.1 V	0	180	MHz
THCLK	Internal AHB clock frequency	Bank 3 used	$3.1 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$	0	180	IVITZ
		Bank 3 used	2.6 V ≤ V _{DD} < 3.1 V	0	160	
fpclk1	Internal APB1 clock frequency		-	0	120	MHz
fpclk2	Internal APB2 clock frequency		-	0	120	MHz
VDD	Standard operating voltage	-		2.6	3.6	V
$V_{DDA}^{(1)}$	Analog operating voltage	Must be the same	e potential as V _{DD} ⁽¹⁾	2.6	3.6	V
VBAT	Backup operating voltage		-	1.8	3.6	V
		LQFP100		-	326	
D-	Dower dissipation, T. 105 °C	LQFP64		-	309	mW
P _D	Power dissipation: T _A = 105 °C	LQFP48		-	290	THVV
		QFN48		-	662	
T _A	Ambient temperature		-	-40	105	°C

⁽¹⁾ It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and operation.

5.3.2 Operating conditions at power-up / power-down

The parameters given in the table below are derived from tests performed under the ambient temperature condition summarized in *Table 11*.

Table 12. Operating conditions at power-up / power-down

Symbol	Parameter	Conditions	Min	Max	Unit
4	V _{DD} rise time rate		0	∞(1)	ms/V
t _{VDD}	V _{DD} fall time rate	-	20	∞	μs/V

⁽¹⁾ If V_{DD} rising time rate is slower than 120 ms/V, the code should access the backup registers after V_{DD} higher than V_{POR} + 0.1V.

2020.8.7 39 Ver 1.03

5.3.3 Embedded reset and power control block characteristics

The parameters given in the table below are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 11*.

Table 13. Embedded reset and power control block characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		$PLS[2:0] = 001 \text{ (rising edge)}^{(1)}$	2.19	2.28	2.37	V
		PLS[2:0] = 001 (falling edge) ⁽¹⁾	2.09	2.18	2.27	V
		PLS[2:0] = 010 (rising edge)	2.28	2.38	2.48	V
		PLS[2:0] = 010 (falling edge)	2.18	2.28	2.38	V
		PLS[2:0] = 011 (rising edge)	2.38	2.48	2.58	V
		PLS[2:0] = 011 (falling edge)	2.28	2.38	2.48	V
\/	Programmable voltage detector	PLS[2:0] = 100 (rising edge)	2.47	2.58	2.69	V
VPVD	level selection	PLS[2:0] = 100 (falling edge)	2.37	2.48	2.59	V
		PLS[2:0] = 101 (rising edge)	2.57	2.68	2.79	V
		PLS[2:0] = 101 (falling edge)	2.47	2.58	2.69	V
		PLS[2:0] = 110 (rising edge)	2.66	2.78	2.9	٧
		PLS[2:0] = 110 (falling edge)	2.56	2.68	2.8	V
		PLS[2:0] = 111 (rising edge)	2.76	2.88	3	V
		PLS[2:0] = 111 (falling edge)	2.66	2.78	2.9	V
V _{PVDhyst} (2)	PVD hysteresis	-	-	100	-	mV
	Power on/power down	Falling edge	1.85 ⁽³⁾	2.02	2.2	V
Vpor/pdr	reset threshold	Rising edge	2.03	2.18	2.35	V
V _{PDRhyst} ⁽²⁾	PDR hysteresis	-	-	160	-	mV
	Reset temporization: CPU starts					
Trsttempo ⁽²⁾	execution after V _{DD} keeps	-	-	13	-	ms
	higher than VPOR for TRSTTEMPO					

- (1) PLS[2:0] = 001 may be not available for its voltage detector level may be lower than VPOR/PDR.
- (2) Guaranteed by design, not tested in production.
- (3) The product behavior is guaranteed by design down to the minimum VPOR/PDR value.

Figure 12. Power on reset/power down reset waveform

5.3.4 Embedded reference voltage

The parameters given in the table below are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 11*.

Table 14. Embedded internal reference voltage

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT}	Internal reference voltage	-	1.16	1.20	1.24	V
Ts_vrefint ⁽¹⁾	ADC sampling time when reading the internal reference voltage	-	-	5.1	17.1 ⁽²⁾	μs
T _{Coeff} (2)	Temperature coefficient	-	-	-	120	ppm/°C

⁽¹⁾ Shortest sampling time can be determined in the application by multiple iterations.

5.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, and executed binary code.

The current consumption is measured as described in *Figure 11*.

Typical current consumption

The MCU is placed under the following conditions:

- All I/O pins are in analog mode
- All peripherals are disabled except when explicitly mentioned
- Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling
- When the peripherals are enabled:
 - fpclk1 = fhclk/2, fpclk2 = fhclk/2, fadcclk = fpclk2/4 if fhclk > 120 MHz
 - fpclk1 = fhclk, fpclk2 = fhclk, fadcclk = fpclk2/4 if fhclk ≤ 120 MHz
- Ambient temperature and V_{DD} supply voltage conditions summarized in *Table 11*.

2020.8.7 41 Ver 1.03

⁽²⁾ Guaranteed by design, not tested in production.

Table 15. Typical current consumption in Run mode

		Table 10. Typical carren		Ту	p ⁽¹⁾		
Symbol		Conditions	f _{HCLK}	All peripherals enabled	All peripherals disabled	Unit	
			240 MHz	93.8	41.0		
		200 MHz 78.9 3	34.6				
			144 MHz	57.8	25.7		
			120 MHz	59.1	23.3		
			108 MHz	53.5	21.3		
	Supply current in Run mode		72 MHz	37.1	15.4		
			48 MHz	25.7	11.1		
		E () (2)	36 MHz	19.9	8.99	Λ	
		External clock ⁽²⁾	24 MHz	14.2	6.86	mA	
			16 MHz	10.3	5.44		
			8 MHz	6.01	3.58		
				4 MHz	4.16	2.95	
			2 MHz	3.23	2.63		
			1 MHz	2.77	2.47		
			500 kHz	2.55	2.39		
	Supply current		125 kHz	2.37	2.34		
IDD	in Run mode		240 MHz	93.8	41.0		
			200 MHz	78.9	34.6		
			144 MHz	57.8	25.6		
			120 MHz	59.0	23.2		
			108 MHz	53.4	21.2		
			72 MHz	37.1	15.4		
			48 MHz	25.6	11.1		
		Running on high speed	36 MHz	19.8	8.91	Λ	
		internal RC (HSI)	24 MHz	14.1	6.78	mA	
			16 MHz	10.2	5.36		
			8 MHz	5.92	3.49		
			4 MHz	4.07	2.86		
			2 MHz	3.14	2.54		
			1 MHz	2.69	2.39		
			500 kHz	2.46	2.31		
			125 kHz	2.29	2.25		

 ⁽¹⁾ Typical values are measured at T_A = 25 °C, V_{DD} = 3.3 V.
 (2) External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.

Table 16. Typical current consumption in Sleep mode

		Jane 101 Typical Callent		Ту	p ⁽¹⁾	
Symbol	Symbol Parameter	Conditions	f _{HCLK}	All peripherals enabled	All peripherals disabled	Unit
			240 MHz	78.3	12.5	
			200 MHz	65.9	10.8	
			144 MHz	48.3	8.52	
			120 MHz	50.2	8.07	
			108 MHz	45.5	7.54	
			72 MHz	31.8	6.29	
			48 MHz	22.1	5.07	
		- (2)	36 MHz	17.2	4.45	Λ
		External clock ⁽²⁾	24 MHz	12.4	3.83	mA
			16 MHz	9.12	3.42	
			8 MHz	5.42	2.57	
			4 MHz	3.87	2.45	
			2 MHz	3.09	2.39	
			1 MHz	2.71	2.36	
			500 kHz	2.52	2.34	
	Supply current		125 kHz	2.37	2.33	
I _{DD}	in Sleep mode		240 MHz	78.3	12.4	
			200 MHz	65.9	10.8	
			144 MHz	48.3	8.44	
			120 MHz	50.2	7.99	
			108 MHz	45.5	7.45	
			72 MHz	31.7	6.20	
			48 MHz	22.0	4.97	
		Running on high speed	36 MHz	17.2	4.35	Λ
		internal RC (HSI)	24 MHz	12.3	3.74	mA
			16 MHz	9.04	3.33	
			8 MHz	5.33	2.48	
			4 MHz	3.78	2.36	
			2 MHz	3.01	2.30	
			1 MHz	2.62	2.27	
			500 kHz	2.43	2.25	
			125 kHz	2.28	2.24	

⁽¹⁾ Typical values are measured at T_A = 25 °C, V_{DD} = 3.3 V.
(2) External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.

Maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in analog mode
- All peripherals are disabled except when explicitly mentioned
- Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling
- When the peripherals are enabled:
 - $f_{PCLK1} = f_{HCLK}/2$, $f_{PCLK2} = f_{HCLK}/2$ if $f_{HCLK} > 120$ MHz
 - f_{PCLK1} = f_{HCLK}, f_{PCLK2} = f_{HCLK} if f_{HCLK} ≤ 120 MHz

The parameters given in *Table 17* and *Table 18* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 11*.

Table 17. Maximum current consumption in Run mode

0		Conditions		Ma	ax ⁽¹⁾	11.14	
Symbol	Parameter	r arameter Conditions	f _{HCLK}	T _A = 85 °C	T _A = 105 °C	Unit	
			240 MHz	108.5	119.6		
			200 MHz	93.3	104.2		
			144 MHz	71.6	82.2		
			120 MHz	73.2	83.7		
		E (1 (2) II	108 MHz	67.5	77.9		
		External clock ⁽²⁾ , all peripherals enabled	72 MHz	50.4	60.6	mA	
		periprierais eriabled	48 MHz	38.4	48.5		
				36 MHz	32.4	42.3	
			24 MHz	26.3	36.2		
			16 MHz	22.3	32.0		
	Supply current in		8 MHz	17.8	27.5		
I_{DD}	Run mode		240 MHz	53.4	63.5		
			200 MHz	46.9	57.0		
			144 MHz	37.8	47.7		
			120 MHz	35.4	45.3		
		(2)	108 MHz	33.3	43.2		
		External clock ⁽²⁾ , all peripherals disabled	72 MHz	27.3	37.1	mA	
		periprierais disabled	48 MHz	22.9	32.6		
			36 MHz	20.7	30.4		
			24 MHz	18.5	28.2		
			16 MHz	17.0	26.7		
			8 MHz	15.2	24.8		

⁽¹⁾ Guaranteed by characterization results, not tested in production.

2020.8.7 44 Ver 1.03

⁽²⁾ External clock is 8 MHz and PLL is on when fhclk > 8 MHz.

Table 18. Maximum current consumption in Sleep mode

0 1 1		0		Ма	x ⁽¹⁾	11.74
Symbol	Symbol Parameter	Parameter Conditions f _{HCLK}	f _{HCLK}	T _A = 85 °C	T _A = 105 °C	Unit
			240 MHz	92.8	103.2	
			200 MHz	80.0	90.4	
			144 MHz	61.9	72.1	
			120 MHz	64.1	74.3	
		E () (2) II	108 MHz	59.2	69.3	
		External clock ⁽²⁾ , all peripherals enabled	72 MHz	44.8	54.7	mA
		periprierais eriableu	48 MHz	34.6	44.4	
		rrent in	36 MHz	29.5	39.2	
			24 MHz	24.4	34.0	
			16 MHz	20.9	30.5	
	Supply current in		8 MHz	17.0	26.5	
I_{DD}	Sleep mode		240 MHz	23.9	33.5	
			200 MHz	22.3	31.8	
			144 MHz	20.0	29.4	
			120 MHz	19.6	29.0	
		E () (2) II	108 MHz	19.0	28.4	
		External clock ⁽²⁾ , all	72 MHz	17.7	27.1	mA
		peripherals disabled	48 MHz	16.4	25.8	
			36 MHz	15.8	25.2	
			24 MHz	15.2	24.6	
			16 MHz	14.8	24.2	
			8 MHz	13.9	23.3	

⁽¹⁾ Guaranteed by characterization results, not tested in production.

Table 19. Typical and maximum current consumptions in Stop and Standby modes

				p ⁽¹⁾	Ma	x ⁽²⁾	
Symbol	Parameter	Conditions	V _{DD} /V _{BAT} = 2.6 V	V _{DD} /V _{BAT} = 3.3 V	T _A = 85 °C	T _A = 105 °C	Unit
			= 2.6 V	= 3.3 V	65 C	105 C	
		Regulator in run mode, low-speed					
		and high-speed internal RC	1.35	1.36	13.6	23.7	
		oscillators and high-speed oscillator	1.55	1.00	10.0	20.7	
	Supply current	OFF (no independent watchdog)					∞ Λ
	in Stop mode	Regulator in low-power mode, low-					mA
IDD		speed and high-speed internal RC	4 22	1.34	12.1	22.8	
		oscillators and high-speed oscillator	1.33	1.34	13.1	22.8	
		OFF (no independent watchdog)					
	Supply current	Low-speed oscillator and RTC OFF	3.93	5.72	10.4	14.9	
	in Standby	Low and a scillator and DTC ON	4.55	6.40	44 E	16 F	μΑ
	mode	Low-speed oscillator and RTC ON	4.55	6.48	11.5	16.5	

2020.8.7 Ver 1.03 45

⁽²⁾ External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.

 ⁽¹⁾ Typical values are measured at T_A = 25 °C.
 (2) Guaranteed by characterization results, not tested in production.

Figure 13. Typical current consumption in Stop mode vs. temperature at different VDD

Figure 14. Typical current consumption in Standby mode vs. temperature at different V_{DD}

Table 20. Typical and maximum current consumptions on V_{BAT}

				Typ ⁽¹⁾		Ма	X ⁽²⁾	
Symbol	Parameter	Conditions	V _{BAT} = 2.0 V	V _{BAT} = 2.6 V	V _{BAT} = 3.3 V	T _A = 85 °C	T _A = 105 °C	Unit
I _{DD_VBAT}	Supply current of backup domain	Low-speed oscillator and RTC ON, V _{DD} < V _{PDR}	0.47	0.59	0.77	1.34	2.04	μΑ

⁽¹⁾ Typical values are measured at T_A = 25 °C.

Figure 15. Typical current consumption on V_{BAT} with LSE and RTC on vs. temperature at different V_{BAT}

2020.8.7 47 Ver 1.03

⁽²⁾ Guaranteed by characterization results, not tested in production.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 21*. The MCU is placed under the following conditions:

- All I/O pins are in analog mode
- All peripherals are disabled except when explicitly mentioned
- The given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
- Ambient temperature and V_{DD} supply voltage conditions summarized in *Table 11*.

Table 21. Peripheral current consumption

Perip	pheral	Тур	Unit
	DMA1	9.34	
	DMA2	9.39	-
	GPIOA	1.41	
	GPIOB	1.41	1
	GPIOC	1.47	
AHB (up to 240 MHz)	GPIOD	1.43	
	GPIOE	1.44	
	XMC	26.89	
	CRC	1.53	
	SDIO1	19.62	
	SDIO2	20.40	
	TMR2	9.11	
	TMR3	6.52]
	TMR4	6.54	μΑ/MHz
	TMR5	8.82]
	TMR6	0.77	
	TMR7	0.75	
	TMR12	3.89	
ADD4 (up to 120 MU=)	TMR13	2.45	
APB1 (up to 120 MHz)	TMR14	2.48	
	SPI2/I ² S2	5.19	
	SPI3/I ² S3	4.95]
	SPI4/I ² S4	2.62	
	USART2	2.60	
	USART3	2.57	
	UART4	2.60	
	UART5	2.63	

Periph	eral	Тур	Unit
	I ² C1	2.47	
	I ² C2	2.54	
	USB	6.40	
	CAN1	3.77	
APB1 (up to 120 MHz)	CAN2	3.77	
	DAC	2.30	
	WWDG	0.34	
	PWR	0.34	
	BKP	68.36	
	AFIO	2.32	
	SPI1/I ² S1	2.82	
	USART1	2.53	
	USART6	2.64	
	UART7	2.80	
	UART8	2.85	
	I ² C3	2.48	
ADD2 (up to 120 MHz)	TMR1	8.99	0 /0.41.1
APB2 (up to 120 MHz)	TMR8	8.72	μΑ/MHz
	TMR9	3.78	
	TMR10	2.62	
	TMR11	2.56	
	ADC1	5.17	
	ADC2	5.24	
	ADC3	5.18	
	ACC	0.95	

5.3.6 External clock source characteristics

High-speed external user clock generated from an external source

The characteristics given in the table below result from tests performed using a high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table* 11.

Unit **Symbol Conditions** Min Max **Parameter** Тур MHz User external clock source frequency(1) 8 25 fHSE_ext 1 OSC_IN input pin high level voltage $0.7 V_{\text{DD}}$ Vdd VHSEH ٧ VHSEL OSC_IN input pin low level voltage Vss $0.3V_{DD}$ tw(HSE) OSC_IN high or low time(1) 5 tw(HSE) ns $t_{r(HSE)}$ OSC IN rise or fall time(1) 20 $t_{\text{f(HSE)}}$ OSC_IN input capacitance(1) 5 Cin(HSE) pF $DuCy(\mathsf{HSE})$ Duty cycle 45 55 % OSC_IN Input leakage current $V_{SS} \leq V_{IN} \leq V_{DD}$ ±1 μΑ

Table 22. High-speed external user clock characteristics

⁽¹⁾ Guaranteed by design, not tested in production.

Figure 16. High-speed external clock source AC timing diagram

2020.8.7 50 Ver 1.03

Low-speed external user clock generated from an external source

The characteristics given in the table below result from tests performed using a low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table* 11.

Table 23. Low-speed external user clock characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fLSE_ext	User External clock source frequency ⁽¹⁾		-	32.768	1000	kHz
VLSEH	OSC32_IN input pin high level voltage		$0.7V_{DD}$	-	VDD	V
VLSEL	OSC32_IN input pin low level voltage		Vss		0.3V _{DD}	V
tw(LSE)	OSC32_IN high or low time ⁽¹⁾	-	450	-	-	
tr(LSE)	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	ns
Cin(LSE)	OSC32_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy(LSE)	Duty cycle	-	30	-	70	%
IL	OSC32_IN input leakage current	Vss ≤ Vin ≤ Vdd	-	-	±1	μA

⁽¹⁾ Guaranteed by design, not tested in production.

Figure 17. Low-speed external clock source AC timing diagram

2020.8.7 51 Ver 1.03

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 25 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in the table below. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fosc_in	Oscillator frequency	-	4	8	25	MHz
t _{SU(HSE)} (3)	Startup time	V _{DD} is stabilized	-	2	-	ms

Table 24. HSE 4-25 MHz oscillator characteristics(1)(2)

- (1) Resonator characteristics given by the crystal/ceramic resonator manufacturer.
- (2) Guaranteed by characterization results, not tested in production.
- (3) t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} 和 C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator. C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

CL1

S MHZ

reso nator

OSC_IN

RF

Controlled gain

OSC_OUT

FHSE

OSC_OUT

Figure 18. Typical application with an 8 MHz crystal

2020.8.7 52 Ver 1.03

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in the table below. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Table 25. LSE oscillator characteristics (f_{LSE} = 32.768 kHz)⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
tsu(LSE)	Startup time	V _{DD} is stabilized	-	150	-	ms

⁽¹⁾ Guaranteed by characterization results, not tested in production.

For C_{L1} and C_{L2} , it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator. C_{L1} and C_{L2} , are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} .

Load capacitance C_L has the following formula: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$ where C_{stray} is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.

Resonator with Integrated capacitors

CL1

OSC32_IN

Bias
Controlled gain

OSC32_OUT

OSC32_OUT

Figure 19. Typical application with a 32.768 kHz crystal

2020.8.7 53 Ver 1.03

Internal clock source characteristics

The parameters given in the table below are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 11*.

High-speed internal (HSI) RC oscillator

Table 26. HSI oscillator characteristics(1)

Symbol	Parameter	Co	nditions	Min	Тур	Max	Unit
fнsı	Frequency		-	-	48	-	MHz
DuCy ₍ HSI)	Duty cycle	User-trimmed with the		45	-	55	%
		User-trimmed		-	-	1 ⁽²⁾	%
	A 1 0	ACC-trimmed		-	-	0.25(2)	
ACCHSI	Accuracy of the HSI oscillator		T _A = -40 ~ 105 °C	-2.5		2	
	OSCIIIAIOI	Factory-	T _A = -40 ~ 85 °C	-2.5	-	2	%
		calibrated ⁽³⁾	T _A = 0 ~ 70 °C	-1.5	-	1.5	%
			T _A = 25 °C	-1	-	1	
tsu(HSI) ⁽³⁾	HSI oscillator startup time		-	-	-	10	μs
IDD(HSI) ⁽³⁾	HSI oscillator power consumption		-	-	240	290	μА

- (1) V_{DD} = 3.3 V, T_A = -40~105 °C, unless otherwise specified.
- (2) Guaranteed by design, not tested in production.
- (3) Guaranteed by characterization results, not tested in production.

Figure 20. HSI oscillator frequency accuracy vs. temperature 2.0%

Low-speed internal (LSI) RC oscillator

Table 27. LSI oscillator characteristics(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fLSI ⁽²⁾	Frequency	-	30	40	60	kHz

⁽¹⁾ VDD = 3.3 V, TA = -40 to 105 °C, unless otherwise specified.

2020.8.7 Ver 1.03

⁽²⁾ Guaranteed by characterization results, not tested in production.

5.3.8 Wakeup time from low-power mode

The wakeup times given in the table below is measured on a wakeup phase with the HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:

- Stop or Standby mode: the clock source is the HSI RC oscillator
- Sleep mode: the clock source is the clock that was set before entering Sleep mode

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 11*.

Table 28. Low-power mode wakeup timings

Symbol	Parameter	Тур	Unit
twusleep ⁽¹⁾	Wakeup from Sleep mode	3.3	μs
. (1)	Wakeup from Stop mode (regulator in run mode)	280	
twustop ⁽¹⁾	Wakeup from Stop mode (regulator in low-power mode)	320	μs
twustdby ⁽¹⁾	Wakeup from Standby mode	8	ms

⁽¹⁾ The wakeup times are measured from the wakeup event to the point in which the user application code reads the first instruction.

2020.8.7 55 Ver 1.03

5.3.9 PLL characteristics

The parameters given in the table below are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 11*.

Table 29. PLL characteristics

Symbol	Parameter	Min	Тур	Max ⁽¹⁾	Unit
four	PLL input clock (2)	2	8	16	MHz
fpll_in	PLL input clock duty cycle	40	-	60	%
fpll_out	PLL multiplier output clock	16	-	240	MHz
tLOCK	PLL lock time	-	-	200	μs
Jitter	Cycle-to-cycle jitter	-	-	300	ps

⁽¹⁾ Guaranteed by characterization results, not tested in production.

5.3.10 Memory characteristics

The characteristics in *Table 30* are given at $T_A = 25$ °C and $V_{DD} = 3.3$ V.

Table 30. Internal Flash memory characteristics

			Тур						Unit
Symbol	Parameter	Conditions	f _{HCLK}					Unit	
			240	200	144	72	48	8	MHz
T_{PROG}	Programming time	-	50				μs		
terase	Page (2 KB) erase time	-	50					ms	
		AT32F403AxC			0	.8			
t _{ME}	Mass erase time	AT32F403AxE	1.4						S
		AT32F403AxG			1.4 (ead	ch Bank)			
		Programming	35.5	29.9	22.5	13.4	9.9	3.7	
I_{DD}	Supply current	mode	33.3	29.9	22.3	13.4	9.9	3.1	mA
		Erase mode	57.4	49.2	38.8	25.4	20.6	11.4	

Table 31. Internal Flash memory endurance and data retention

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max	Unit
Nend	Endurance	T _A = -40 ~ 105 °C	100	-	-	kcycles
tret	Data retention	T _A = 105 °C	10	-	-	years

⁽¹⁾ Guaranteed by design, not tested in production.

2020.8.7 56 Ver 1.03

⁽²⁾ Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by fPLL_OUT.

5.3.11 XMC characteristics

Asynchronous waveforms and timings

Figure 21 through Figure 22 represent asynchronous waveforms and Table 32 through Table 33 provide the corresponding timings. The results shown in these tables are obtained with the following XMC configuration:

- AddressSetupTime = 0
- AddressHoldTime = 1
- DataSetupTime = 1

Figure 21. Asynchronous multiplexed PSRAM/NOR read waveforms

2020.8.7 57 Ver 1.03

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	XMC_NE low time	7t _{HCLK} - 2	7t _{HCLK} + 2	ns
t _{v(NOE_NE)}	XMC_NEx low to XMC_NOE low	3t _{HCLK} - 0.5	3t _{HCLK} + 1.5	ns
t _{w(NOE)}	XMC_NOE low time	4t _{HCLK} - 1	4t _{HCLK} + 2	ns
t _{h(NE_NOE)}	XMC_NOE high to XMC_NE high hold time	-1	-	ns
t _{v(A_NE)}	XMC_NEx low to XMC_A valid	-	0	ns
t _{v(NADV_NE)}	XMC_NEx low to XMC_NADV low	3	5	ns
t _{w(NADV)}	XMC_NADV low time	t _{HCLK} - 1.5	t _{HCLK} + 1.5	ns
t _{h(AD_NADV)}	XMC_AD (address) valid hold time after XMC_NADV	t _{HCLK} + 3	-	ns
	high			
t _{h(A_NOE)}	Address hold time after XMC_NOE high	t _{HCLK} + 3	-	ns
t _{h(BL_NOE)}	XMC_BL hold time after XMC_NOE high	0	-	ns
t _{v(BL_NE)}	XMC_NEx low to XMC_BL valid	-	0	ns
t _{su(Data_NE)}	Data to XMC_NEx high setup time	2t _{HCLK} + 24	-	ns
t _{su(Data_NOE)}	Data to XMC_NOE high setup time	2t _{HCLK} + 25	-	ns
t _{h(Data_NE)}	Data hold time after XMC_NEx high	0	-	ns
t _{h(Data_NOE)}	Data hold time after XMC_NOE high	0	-	ns

⁽¹⁾ C_L = 15 pF

Figure 22. Asynchronous multiplexed PSRAM/NOR write waveforms

⁽²⁾ Guaranteed by characterization results, not tested in production.

Table 33. Asynchronous multiplexed PSRAM/NOR write timings(1)(2)

Symbol	Parameter	Min	Max	Unit
tw(NE)	XMC_NE low time	5t _{HCLK} - 1	5t _{HCLK} + 2	ns
tv(NWE_NE)	XMC_NEx low to XMC_NWE low	2t _{HCLK}	2t _{HCLK} + 1	ns
tw(NWE)	XMC_NWE low time	2thclk - 1	2t _{HCLK} + 2	ns
th(NE_NWE)	XMC_NWE high to XMC_NE high hold time	thclk - 1	-	ns
tv(A_NE)	XMC_NEx low to XMC_A valid	-	7	ns
tv(NADV_NE)	XMC_NEx low to XMC_NADV low	3	5	ns
tw(NADV)	XMC_NADV low time	thclk - 1	t _{HCLK} + 1	ns
th(AD_NADV)	XMC_AD (address) valid hold time after	tнськ - 3	-	ns
	XMC_NADV high			
th(A_NWE)	Address hold time after XMC_NWE high	4t _{HCLK} + 2.5	-	ns
tv(BL_NE)	XMC_NEx low to XMC_BL valid	-	1.6	ns
th(BL_NWE)	XMC_BL hold time after XMC_NWE high	tнськ - 1.5	-	ns
tv(Data_NADV)	XMC_NADV high to Data valid	-	t _{HCLK} + 1.5	ns
th(Data_NWE)	Data hold time after XMC_NWE high	t _{HCLK} - 5	-	ns

⁽¹⁾ C_L = 15 pF
(2) Guaranteed by characterization results, not tested in production.

Synchronous waveforms and timings

Figure 23 through *Figure 24* represent synchronous waveforms and *Table 34* through *Table 35* provide the corresponding timings. The results shown in these tables are obtained with the following XMC configuration:

- BurstAccessMode = XMC_BurstAccessMode_Enable;
- MemoryType = XMC_MemoryType_CRAM;
- WriteBurst = XMC_WriteBurst_Enable;
- CLKPrescale = 1; (Note: CLKPrescale is CLKPSC bit in XMC_BK1TMGx register. Refer to the AT32F403A reference manual.)
- DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM (Note: DataLatency is DATLAT bit in XMC_BK1TMGx register. Refer to the AT32F403A reference manual.)

Figure 23. Synchronous multiplexed PSRAM/NOR read timings

2020.8.7 60 Ver 1.03

Table 34. Synchronous multiplexed PSRAM/NOR read timings(1)(2)

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	XMC_CLK period	20	-	ns
t _{d(CLKL-NexL)}	XMC_CLK low to XMC_NEx low (x = 02)	-	1.5	ns
t _{d(CLKH-NexH)}	XMC_CLK low to XMC_NEx high (x = 02)	t _{HCLK} + 2	-	ns
t _{d(CLKL-NADVL)}	XMC_CLK low to XMC_NADV low	-	4	ns
t _{d(CLKL-NADVH)}	XMC_CLK low to XMC_NADV high	5	-	ns
t _{d(CLKL-AV)}	XMC_CLK low to XMC_Ax valid (x = 1625)	-	0	ns
t _{d(CLKH-AIV)}	XMC_CLK low to XMC_Ax invalid (x = 1625)	t _{HCLK} + 2	-	ns
t _{d(CLKL-NOEL)}	XMC_CLK low to XMC_NOE low		t _{HCLK} + 1	ns
t _{d(CLKH-NOEH)}	XMC_CLK low to XMC_NOE high	t _{HCLK} + 0.5	-	ns
t _{d(CLKL-ADV)}	XMC_CLK low to XMC_AD[15:0] valid	-	12	ns
t _{d(CLKL-ADIV)}	XMC_CLK low to XMC_AD[15:0] invalid	0	-	ns
t _{su(ADV-CLKH)}	XMC_A/D[15:0] valid data before XMC_CLK high	6	-	ns
t _{h(CLKH-ADV)}	XMC_A/D[15:0] valid data after XMC_CLK high	t _{HCLK} - 10	-	ns
t _{su(NWAITV-CLKH)}	XMC_NWAIT valid before XMC_CLK high	8	-	ns
t _{h(CLKH-NWAITV)}	XMC_NWAIT valid after XMC_CLK high	6	-	ns

⁽¹⁾ $C_L = 15 pF$

Figure 24. Synchronous multiplexed PSRAM write timings

2020.8.7 61 Ver 1.03

⁽²⁾ Guaranteed by characterization results, not tested in production.

Table 35. Synchronous multiplexed PSRAM write timings(1)(2)

Symbol	Parameter	Min	Max	Unit
tw(CLK)	XMC_CLK period	20	-	ns
td(CLKL-NexL)	XMC_CLK low to XMC_Nex low (x = 02)	-	2	ns
td(CLKH-NexH)	XMC_CLK low to XMC_NEx high (x = 02)	thclk + 2	-	ns
td(CLKL-NADVL)	XMC_CLK low to XMC_NADV low	-	4	ns
td(CLKL-NADVH)	XMC_CLK low to XMC_NADV high	5	-	ns
td(CLKL-AV)	XMC_CLK low to XMC_Ax valid (x = 1625)	-	0	ns
td(CLKH-AIV)	XMC_CLK low to XMC_Ax invalid (x = 1625)	thck + 2	-	ns
td(CLKL-NWEL)	XMC_CLK low to XMC_NWE low	-	1	ns
td(CLKH-NWEH)	XMC_CLK low to XMC_NWE high	thclk + 1	-	ns
td(CLKL-ADV)	XMC_CLK low to XMC_AD[15:0] valid	-	12	ns
td(CLKL-ADIV)	XMC_CLK low to XMC_AD[15:0] invalid	3	-	ns
td(CLKL-Data)	XMC_A/D[15:0] valid after XMC_CLK low	-	6	ns
tsu(NWAITV-CLKH)	XMC_CLK low to XMC_NBL high	7	-	ns
th(CLKH-NWAITV)	XMC_NWAIT valid before XMC_CLK high	2	-	ns
td(CLKL-NBLH)	XMC_NWAIT valid after XMC_CLK high	1	-	ns

 ⁽¹⁾ C_L = 15 pF
 (2) Guaranteed by characterization results, not tested in production.

NAND controller waveforms and timings

Figure 25 through *Figure 28* represent synchronous waveforms and *Table 36* provides the corresponding timings. The results shown in this table are obtained with the following XMC configuration:

- COM.XMC_SetupTime = 0x01; (Note: STP in XMC_BKxTMGMEM, x = 2...4)
- COM.XMC_WaitSetupTime = 0x03; (Note: OP in XMC_BKxTMGMEM, x = 2...4)
- COM.XMC_HoldSetupTime = 0x02; (Note: HLD in XMC_BKxTMGMEM, x = 2...4)
- COM.XMC_HiZSetupTime = 0x01; (Note: WRSTP in XMC_BKxTMGMEM, x = 2...4)
- ATT.XMC_SetupTime = 0x01; (Note: STP in XMC_BKxTMGATT, x = 2...4)
- ATT.XMC WaitSetupTime = 0x03; (Note: OP in XMC BKxTMGATT, x = 2...4)
- ATT.XMC HoldSetupTime = 0x02; (Note: HLD in XMC BKxTMGATT, x = 2...4)
- ATT.XMC_HiZSetupTime = 0x01; (Note: WRSTP in XMC_BKxTMGATT, x = 2...4)
- Bank = XMC_Bank_NAND;
- MemoryDataWidth = XMC_MemoryDataWidth_16b; (Note: Memory data width = 16 bits)
- ECC = XMC_ECC_Enable; (Note: enable ECC calculation)
- ECCPageSize = XMC_ECCPageSize_512Bytes; (Note: ECC page size = 512 Bytes)
- DLYCRSetupTime = 0; (Note: DLYCR in XMC_BKxCTRL)
- DLYARSetupTime = 0; (Note: DLYAR in XMC_BKxCTRL)

ALE(XMC_A17)
CLE(XMC_A16)

XMC_NWE

t d(ALE-NOE)

Th(NOE-ALE)

XMC_D[15:0]

Figure 25. NAND controller waveforms for read access

2020.8.7 63 Ver 1.03

Figure 26. NAND controller waveforms for write access

Figure 27. NAND controller waveforms for common memory read access

Figure 28, NAND controller waveforms for common memory write access

2020.8.7 64 Ver 1.03

Table 36. Switching characteristics for NAND Flash read and write cycles⁽¹⁾

Symbol	Parameter	Min	Max	Unit
td(D-NWE) ⁽²⁾	XMC_D[15:0] valid before XMC_NWE high	6T _{HCLK} + 12	-	ns
tw(NOE)(2)	XMC_NWE low width	4T _{HCLK} - 1.5	4T _{HCLK} + 1.5	ns
tsu(D-NOE)(2)	XMC_D[15:0] valid data before XMC_NOE high	25	-	ns
th(NOE-D) ⁽²⁾	XMC_D[15:0] valid data after XMC_NOE high	14	-	ns
tw(NWE)(2)	XMC_NWE low width	4T _{HCLK} - 1	4T _{HCLK} + 2.5	ns
tv(NWE-D) ⁽²⁾	XMC_NWE low to XMC_D[15:0] valid	-	0	ns
th(NWE-D) ⁽²⁾	XMC_NWE high to XMC_D[15:0] invalid	10T _{HCLK} + 4	-	ns
td(ALE-NWE)(3)	XMC_ALE valid before XMC_NWE low	-	3T _{HCLK} + 1.5	ns
th(NWE-ALE)(3)	XMC_NWE high to XMC_ALE invalid	3T _{HCLK} + 4.5	-	ns
td(ALE-NOE)(3)	XMC_ALE valid before XMC_NOE low	-	3T _{HCLK} + 2	ns
th(NOE-ALE)(3)	XMC_NWE high to XMC_ALE invalid	3T _{HCLK} + 4.5	-	ns

⁽¹⁾ $C_L = 15 pF$

⁽²⁾ Guaranteed by characterization results, not tested in production.(3) Guaranteed by design, not tested in production.

5.3.12 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

Table 37. EMS characteristics

Symb	Parameter	Conditions	Level/Class
	Fast transient voltage burst limits to be	V _{DD} = 3.3 V, LQFP100, T _A = +25 °C, f _{HCLK}	
Vегтв	applied through 100 pF on V _{DD} and V _{SS}	= 240 MHz, conforms to IEC 61000-4-4 V _{DD} = 3.3 V, LQFP100, T _A = +25 °C, f _{HCLK}	4A (4kV)
	pins to induce a functional disturbance	= 72 MHz, conforms to IEC 61000-4-4	

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

2020.8.7 66 Ver 1.03

5.3.13 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JS-001-2017/JS-002-2014 standard.

Table 38. ESD absolute maximum ratings

;	Symbol	Parameter	Conditions	Class	Max ⁽¹⁾	Unit
\	/ESD(HBM)	Electrostatic discharge voltage	T _A = +25 °C, conforming to	3A	5000	
	LE2D(HRM)	(human body model)	JS-001-2017	34	5000	\ \
,	/500/00M	Electrostatic discharge voltage	$T_A = +25$ °C, conforming to	=	1000	V
Ľ	VESD(CDM)	(charge device model)	JS-002-2014	111	1000	

⁽¹⁾ Guaranteed by characterization results, not tested in production.

Static latch-up

Two complementary static tests are required on 6 parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD78E IC latch-up standard.

Table 39. Electrical sensitivities

Symbol	Parameter	Conditions	Level/Class
LU	Static latch-up class	$T_A = +105$ °C, conforming to	II level A (200 mA)
	терия (предоставления)	EIA/JESD78E	,

5.3.14 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the conditions summarized in *Table 11*. All I/Os are CMOS and TTL compliant.

Table 40. I/O static characteristics

Symb	Parameter	Conditions	Min	Тур	Max	Unit
VIL	I/O input low level voltage	-	-0.3	-	0.28 * V _{DD} + 0.1	V
	TC I/O input high level voltage	-			V _{DD} + 0.3	
	FTa I/O input high level voltage	Analog mode		1	VDD + 0.3	
Vih	FT I/O input high level voltage	-	0.31 * V _{DD} +			V
VIII	FTa I/O input high level voltage	Input floating, input pull-up, or input pull-down mode	0.8	-	5.5	V
Vhvs	TC I/O Schmitt trigger voltage hysteresis ⁽¹⁾		200	-	-	mV
v nys	FT and FTa I/O Schmitt trigger voltage hysteresis ⁽¹⁾	-	5% Vdd	ı	-	ı
1	lancit lankaga ayunast(2)	Vss ≤ V _{IN} ≤ V _{DD} TC I/Os	-	-	±1	
likg	Input leakage current ⁽²⁾	Vss ≤ V _{IN} ≤ 5.5V FT and FTa I/O	-	-	±1	μΑ
Rpu	Weak pull-up equivalent resistor	VIN = Vss	60	70	100	kΩ
Rpd	Weak pull-down equivalent resistor ⁽³⁾	VIN = VDD	60	70	100	kΩ
Сю	I/O pin capacitance	-	-	9	-	pF

⁽¹⁾ Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results.

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters.

⁽²⁾ Leakage could be higher than max if negative current is injected on adjacent pins.

⁽³⁾ The pull-down resistor of BOOT0 exists permanently.

Output driving current

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 5.2*:

- The sum of the currents sourced by all I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating I_{VDD} (see *Table 9*).
- The sum of the currents sunk by all I/Os on V_{SS}, plus the maximum Run consumption of the MCU sunk on V_{SS}, cannot exceed the absolute maximum rating I_{VSS} (see *Table 9*).

Output voltage levels

Unless otherwise specified, the parameters given in the table below are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 11*. All I/Os are CMOS and TTL compliant.

Table 41. Output voltage characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
Maximum	sourcing/sinking stregth				
Vol	Output low level voltage	CMOS standard L 15 mA	-	0.4	V
Vон	Output high level voltage	CMOS standard, I _{IO} = 15 mA	V _{DD} -0.4	-	7 v
Vol	Output low level voltage	TTI standard I 6 m A	-	0.4	V
Vон	Output high level voltage	TTL standard, I _{IO} = 6 mA	2.4	-	7 V
VoL ⁽¹⁾	Output low level voltage	Δ Δ.	-	1.3	V
V _{OH} ⁽¹⁾	Output high level voltage	l _{IO} = 45 mA	V _{DD} -1.3	-	7 V
Large sou	rcing/sinking stregth		<u>.</u>		•
Vol	Output low level voltage	01400 -4	-	0.4	
Vон	Output high level voltage	CMOS standard, I _{IO} = 6 mA	V _{DD} -0.4	-	V
V _{OL}	Output low level voltage	TT: 4 - 1 - 1 - 0 - A	-	0.4	.,,
V _{OH}	Output high level voltage	TTL standard, I _{IO} = 3 mA	2.4	-	V
V _{OL} ⁽¹⁾	Output low level voltage	L 00 A	-	1.3	
V _{OH} ⁽¹⁾	Output high level voltage	I _{IO} = 20 mA	V _{DD} -1.3	-	V
Normal so	urcing/sinking stregth		<u>.</u>		
V _{OL}	Output low level voltage	01400 -4	-	0.4	
V _{OH}	Output high level voltage	CMOS standard, I _{IO} = 4 mA	V _{DD} -0.4	-	V
Vol	Output low level voltage	TTI standard I OssA	-	0.4	
Vон	Output high level voltage	TTL standard, I _{IO} = 2 mA	2.4	-	V
VoL ⁽¹⁾	Output low level voltage	40 4	-	1.3	
V _{OH} ⁽¹⁾	Output high level voltage	I _{IO} = 10 mA	V _{DD} -1.3	-	V

⁽¹⁾ Guaranteed by characterization results.

Input AC characteristics

The definition and values of input AC characteristics are given as follows.

Unless otherwise specified, the parameters given below are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 11*.

Table 42. Input AC characteristics

Symbol	Parameter	Min	Max	Unit
textipw	Pulse width of external signals detected by the EXTI controller	10	-	ns

5.3.15 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see the table below).

Unless otherwise specified, the parameters given in the table below are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 11*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST input low level voltage	-	-0.5	-	0.8	V
V _{IH(NRST)} ⁽¹⁾	NRST input high level voltage	-	2	-	V _{DD} + 0.3	
Vhys(NRST)	NRST Schmitt trigger voltage hysteresis	-	-	500	-	mV
Rpu	Weak pull-up equivalent resistor	VIN = Vss	30	40	50	kΩ
V _{F(NRST)} ⁽¹⁾	NRST input filtered pulse	-	-	24	33.3	μs
V _{NF(NRST)} ⁽¹⁾	NRST input not filtered pulse	-	66.7	46	-	μs

Table 43. NRST pin characteristics

External (1) reset circuit

NRST

NRST

NRST

PU

Filter

Internal Reset

Figure 29. Recommended NRST pin protection

- (1) The reset network protects the device against parasitic resets.
- (2) The user must ensure that the level on the NRST pin can go below the V_{IL} (NRST) max level specified in *Table* 43. Otherwise the reset will not be taken into account by the device.

5.3.16 TMR timer characteristics

The parameters given in the table below are guaranteed by design.

Refer to 5.3.14 I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Max	Unit
tres(TMR)	Timer resolution time	-	1	-	tmrxclk
		f _{TMRxCLK} = 240 MHz	4.17	-	ns
fехт	Timer external clock frequency on	-	0	fTMRxCLK/2	MHz
	CH1 to CH4			50	MHz

Table 44. TMRx⁽¹⁾ characteristics

⁽¹⁾ Guaranteed by design.

⁽¹⁾ TMRx is used as a general term to refer to the TMR1 to TMR14.

0.6

1.3

μs

μs

pF

400

5.3.17 Communications interfaces

I²C interface characteristics

The AT32F403A I^2C interface meets the requirements of the standard I^2C communication protocol with the following restrictions: the I/O pins SDA and SCL mapped to are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in the table below. Refer also to *5.3.14 I/O port characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

Fast mode I²C⁽¹⁾⁽²⁾ Standard mode I²C(1)(2) Unit **Symbol Parameter** Min Max Min Max SCL clock low time 4.7 1.3 tw(SCLL) μs 0.6 $t_{w(SCLH)}$ SCL clock high time 4.0 SDA setup time 250 100 tsu(SDA) th(SDA) SDA data hold time 3450(3) 900(3) $t_{r(SDA)}$ SDA and SCL rise time 1000 300 ns tr(SCL) tf(SDA) SDA and SCL fall time 300 300 tf(SCL) Start condition hold time 4.0 0.6 th(STA) μs Repeated Start condition setup time 4.7 0.6 tsu(STA)

Table 45. I²C characteristics

Stop condition setup time

Stop to Start condition time (bus free)

Capacitive load for each bus line

tsu(STO)

tw(STO:STA)

 C_b

4.0

4.7

400

2020.8.7 72 Ver 1.03

⁽¹⁾ Guaranteed by design, not tested in production.

⁽²⁾ f_{PCLK1} must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to achieve the fast mode I²C frequencies.

⁽³⁾ The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region on the falling edge of SCL.

Figure 30. I²C bus AC waveforms and measurement circuit⁽¹⁾

(1) Measurement points are done at CMOS levels: $0.3V_{DD}$ and $\overline{0.7V_{DD}}$.

Table 46. SCL frequency ($f_{PCLK1} = 36 \text{ MHz}$, $V_{DD} = 3.3 \text{ V}$)⁽¹⁾⁽²⁾

£ (1/11-)	I2C_CLKCTRL value
f _{SCL} (kHz)	$R_P = 4.7 \text{ k}\Omega$
400	0x801E
300	0x8028
200	0x803C
100	0x00B4
50	0x0168
20	0x0384

(1) $R_P = External pull-up resistance, <math>f_{SCL} = I^2C$ speed.

(2) For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application.

2020.8.7 73 Ver 1.03

SPI-I²S characteristics

Unless otherwise specified, the parameters given in *Table 47* for SPI or in *Table 48* for I^2S are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 11*.

Refer to 5.3.14 I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I²S).

Table 47. SPI characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
fsck		V _{DD} = 3.3 V, T _A = 25 °C	-	50	
$(1/t_{c(SCK)})^{(1)}$	SPI clock frequency ⁽²⁾⁽³⁾	V _{DD} = 3.3 V, T _A = 105 °C	-	36	MHz
(1/tc(SCK))**		V _{DD} = 2.6 V, T _A = 105 °C	-	30	
tr(SCK)	SPI clock rise and fall time Capacitive load: C = 30 pF		-	8	ns
t _{su(NSS)} ⁽¹⁾	NSS setup time	Slave mode	4t _{PCLK}	-	ns
th(NSS) ⁽¹⁾	NSS hold time	Slave mode	2t _{PCLK}	-	ns
tw(SCKH)(1)	SCK high and low time	Master mode, f _{PCLK} = 100 MHz,	15	25	20
$t_{\text{w}(\text{SCKL})}{}^{(1)}$		prescaler = 4			ns
t _{su(MI)} ⁽¹⁾	5	Master mode	5	-	
t _{su(SI)} (1)	Data input setup time	Slave mode	5	-	ns
t _{h(MI)} ⁽¹⁾	Data in and a store time	Master mode	5	-	
th(SI) ⁽¹⁾	Data input setup time	Slave mode	4	-	ns
ta(SO)(1)(4)	Data output access time	Slave mode, f _{PCLK} = 20 MHz	0	3t _{PCLK}	ns
t _{dis(SO)} (1)(5)	Data output disable time	Slave mode	2	10	ns
$t_{v(SO)}^{(1)}$	Data output valid time	Slave mode (after enable edge)	-	25	ns
$t_{v(MO)}^{(1)}$	Data output valid time	Master mode (after enable edge)	-	5	ns
t _{h(SO)} (1)	Data autaut hald time	Slave mode (after enable edge)	15	-	20
t _{h(MO)} ⁽¹⁾	- Data output hold time	Master mode (after enable edge)	2	-	ns

⁽¹⁾ Guaranteed by characterization results, not tested in production.

2020.8.7 74 Ver 1.03

⁽²⁾ The maximum SPI clock frequency should not exceed fpclk/2.

⁽³⁾ The maximum SPI clock frequency is highly related with devices and the PCB layout. For more details about the complete solution, please contact your local Artery sales representative.

⁽⁴⁾ Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

⁽⁵⁾ Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.

NSS input tc(SCK) <u>t</u>h(NS<u>S)</u> (NSS) CPHA=0 SCK input CPOL=0 tw(SCKH) CPHA=0 tw SCKL) CPOL=1 tr(SCK)_{tdis}(SO) ta(SO) tv(SO) th(SO) tf(SCK) MISO M S B O UT BI T6 OUT LSB OUT OUTP UT tsu(SI) → MOSI M S B IN BI T1 IN LS B IN I NP UT th(SI) —

Figure 31. SPI timing diagram - slave mode and CPHA = 0

Figure 32. SPI timing diagram - slave mode and CPHA = $1^{(1)}$

(1) Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

High NSS in put t c(SCK) CPHA=0 Output CPOL=0 CPHA=0 CPOL=1 CPHA=1 Output CPOL=0 CPHA=1 CPOL=1 w(SCKH) tr(SCK) t su(MI) t w(SCKL) t_{f(SCK)} MISO MS BIN BI T6 IN LSB IN INPUT t_{h(M)} MOSI M SB OUT BIT1 OUT L SB OUT OUT PUT t h(MO) t_{v(MO)}

Figure 33. SPI timing diagram - master mode⁽¹⁾

(1) Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

AT32F403A Series Datasheet

Table 48. I²S characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
fск 1/t _{c(СК)}	I ² S clock frequency	Master mode (data: 16 bits, audio frequency = 48 kHz)	1.522	1.525	MHz
Trtc(CK)		Slave mode	0	6.5	
tr(CK)	I ² S clock rise and fall time	Capacitive load: C = 50 pF	-	8	
t _{v(WS)} ⁽¹⁾	WS valid time	Master mode	3	-	
t _{h(WS)} (1)	WS hold time WS setup time	Master mode	2	-	
tsu(WS) ⁽¹⁾		Slave mode	4	-	
t _{h(WS)} ⁽¹⁾	WS hold time	Slave mode	0	-	
tw(CKH) ⁽¹⁾	01/11/1	Master f _{PCLK} = 16 MHz,	312.5	-	
tw(CKL) ⁽¹⁾	CK high and low time	audio frequency = 48 kHz	345	-	
tsu(SD_MR) ⁽¹⁾	Data in and a store time	Master receiver	6.5	-	ns
tsu(SD_SR) ⁽¹⁾	Data input setup time	Slave receiver	1.5	-	
th(SD_MR)(1)(2)	Data in a state and time a	Master receiver	0	-	
th(SD_SR)(1)(2)	Data input hold time	Slave receiver	0.5	-	
$t_{v(SD_ST)}^{(1)(2)}$	Data output valid time	Slave transmitter (after enable edge)	-	18	
th(SD_ST) ⁽¹⁾	Data output hold time	Slave transmitter (after enable edge)	11	-	
$t_{v(SD_MT)}^{(1)(2)}$	Data output valid time	Master transmitter (after enable edge)	-	3	
th(SD_MT) ⁽¹⁾	Data output hold time	Master transmitter (after enable edge)	0	-	

Guaranteed by design and/or characterization results.
 Depends on fpclk. For example, if fpclk=8 MHz, then Tpclk = 1/fpclk = 125 ns.

Figure 34. I²S slave timing diagram (Philips protocol)⁽¹⁾

- (1) Measurement points are done at CMOS levels: 0.3V_{DD} and 0.7V_{DD}.
- (2) LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 35. I²S master timing diagram (Philips protocol)⁽¹⁾

- (1) Measurement points are done at CMOS levels: 0.3V_{DD} and 0.7V_{DD}.
- (2) LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

2020.8.7 77 Ver 1.03

SD/SDIO MMC card host interface (SDIO) characteristics

Unless otherwise specified, the parameters given in the table below are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 11*.

Refer to 5.3.14 I/O port characteristics for more details on the input/output alternate function characteristics (D[7:0], CMD, CK).

Figure 36. SDIO high-speed mode

Figure 37. SD default mode

Table 49. SD / MMC characteristics

Symbol	Parameter	Conditions	Min	Max	Unit		
f PP	Clock frequency in data transfer mode	C _L ≤ 30 pF	0	48	MHz		
tw(ckl)	Clock low time, f _{PP} = 16 MHz	C _L ≤ 30 pF	32	-			
tw(ckH)	Clock high time, f _{PP} = 16 MHz	C _L ≤ 30 pF	30	-]		
tr	Clock rise time	C _L ≤ 30 pF	-	4	ns		
tf	Clock fall time	C _L ≤ 30 pF	-	5			
CMD, D inp	uts (referenced to CK)	•					
tısu	Input setup time	C _L ≤ 30 pF	2	-			
tıн	Input hold time	C _L ≤ 30 pF	0	-	ns		
CMD, D out	puts (referenced to CK) in MMC and SD H	S mode					
tov	Output valid time	C _L ≤ 30 pF	-	6	20		
tон	Output hold time	C _L ≤ 30 pF	0	-	ns		
CMD, D out	CMD, D outputs (referenced to CK) in SD default mode ⁽¹⁾						
tovd	Output valid default time	C _L ≤ 30 pF	-	7	20		
tohd	Output hold default time	C _L ≤ 30 pF	0.5	-	ns		

⁽¹⁾ Refer to SDIO_CLKCTRL, the SDIO clock control register to control the CK output.

2020.8.7 78 Ver 1.03

USB characteristics

Table 50. USB startup time

Symbol	Parameter	Max	Unit
t _{STARTUP} (1)	USB transceiver startup time	1	μs

⁽¹⁾ Guaranteed by design, not tested in production.

Table 51. USB DC electrical characteristics

Symbol		Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
	V_{DD}	USB operating voltage	-	3.0(2)		3.6	V
	V _{DI} (3)	Differential input sensitivity	I (USB_DP, USB_DM)	0.2		-	
Input levels	V _{CM} (3)	Differential common mode range	Includes V _{DI} range	0.8		2.5	V
	V _{SE} (3)	Single ended receiver threshold	-	1.3		2.0	
Output	V _{OL}	Static output level low	R_L of 1.24 $k\Omega$ to 3.6 $V^{(4)}$	-		0.3	V
levels	V _{OH}	Static output level high	R_L of 15 k Ω to $V_{SS}^{(4)}$	2.8		3.6	V
R _P	U	USB_DP internal pull-up	VIN = VSS	0.97	1.24	1.58	kΩ

- (1) All the voltages are measured from the local ground potential.
- (2) The AT32F403A USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7 to 3.0 V V_{DD} voltage range.
- (3) Guaranteed by characterization results, not tested in production.
- (4) R_L is the load connected on the USB drivers.

Figure 38. USB timings: definition of data signal rise and fall time

Table 52. USB full-speed electrical characteristics

Symbol	Parameter	Conditions	Min ⁽¹⁾	Max ⁽¹⁾	Unit
t _r	Rise time (2)	C _L ≤ 50 pF	4	20	ns
t _f	Fall Time (2)	C _L ≤ 50 pF	4	20	ns
t rfm	Rise/ fall time matching	t _r /t _f	90	110	%
Vcrs	Output signal crossover voltage	-	1.3	2.0	V

⁽¹⁾ Guaranteed by design, not tested in production.

CAN (controller area network) interface

Refer to 5.3.14 I/O port characteristics for more details on the input/output alternate function characteristics (CANx_TX and CANx_RX).

⁽²⁾ Measured from 10% to 90% of the data signal. For more detailed information, please refer to USB Specification - Chapter 7 (version 2.0).

5.3.18 12-bit ADC characteristics

Unless otherwise specified, the parameters given in the table below are preliminary values derived from tests performed under ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 11*.

Note: It is recommended to perform a calibration after each power-up.

Table 53. ADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Power supply	-	2.6	-	3.6	V
VREF+	Positive reference voltage ⁽³⁾	-	2.0	-	Vdda	V
Idda	Current on the V _{DDA} input pin	-	-	380(1)	445	μA
Ivref	Current on the V _{REF+} input pin ⁽³⁾	-	-	200(1)	220	μA
fadc	ADC clock frequency	-	0.6	-	28	MHz
fs ⁽²⁾	Sampling rate	-	0.05	-	2	MHz
f _{TRIG} (2)	Estamal triangulation	f _{ADC} = 28 MHz	-	-	1.65	MHz
ITRIG(2)	External trigger frequency	-	-	-	17	1/fadc
Vain	Conversion voltage range ⁽³⁾	-	0 (Vssa or Vreftied to ground))	-	VREF+	V
R _{AIN} ⁽²⁾	External input impedance	-	See Table 54 and Table 55 for details			Ω
C _{ADC} ⁽²⁾	Internal sample and hold capacitor	-	-	10	-	pF
. (2)	O-libration time	f _{ADC} = 28 MHz	c = 28 MHz 6.61		•	μs
t _{CAL} ⁽²⁾	Calibration time	-	185			1/fadc
t _{lat} (2)	Injection trigger conversion	f _{ADC} = 28 MHz	-	-	107	ns
llat ^{v=/}	latency	-	-	-	3 ⁽⁴⁾	1/fadc
t _{latr} (2)	Regular trigger conversion	f _{ADC} = 28 MHz	-	-	71.4	μs
llatr(=/	latency	-	-	-	2(4)	1/fadc
ts ⁽²⁾	Compling time	f _{ADC} = 28 MHz	0.053	-	8.55	μs
ls'-	Sampling time	-	1.5	-	239.5	1/fadc
tstab(2)	Power-up time	-		42		1/fadc
	Total conversion time (including	f _{ADC} = 28 MHz	0.5	-	9	μs
t _{CONV} (2)	Total conversion time (including sampling time)	14 to 252 (ts for sampling + 12.5 for successive approximation)			1/fadc	

⁽¹⁾ Guaranteed by characterization results, not tested in production.

⁽²⁾ Guaranteed by design, not tested in production.

⁽³⁾ V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA}, depending on the package. Refer to *Chapter 3 Pinouts and pin descriptions* for further details.

⁽⁴⁾ For external triggers, a delay of 1/f_{PCLK2} must be added to the latency specified in *Table* 53.

Table 54 and *Table 55* are used to determine the maximum external impedance allowed for an error below 1/4 of LSB.

Table 54. R_{AIN} max for $f_{ADC} = 14 \text{ MHz}^{(1)}$

T _S (Cycle)	t _S (μ s)	R _{AIN} max (kΩ)
1.5	0.11	0.25
7.5	0.54	1.3
13.5	0.96	2.5
28.5	2.04	5.0
41.5	2.96	8.0
55.5	3.96	10.5
71.5	5.11	13.5
239.5	17.11	40

⁽¹⁾ Guaranteed by design.

Table 55. R_{AIN} max for $f_{ADC} = 28 \text{ MHz}^{(1)}$

T _S (Cycle)	ts (µs)	R _{AIN} max (kΩ)
1.5	0.05	0.1
7.5	0.27	0.6
13.5	0.48	1.2
28.5	1.02	2.5
41.5	1.48	4.0
55.5	1.98	5.2
71.5	2.55	7.0
239.5	8.55	20

⁽¹⁾ Guaranteed by design.

	Table College						
Symbol	Parameter	Test Conditions	Тур	Max ⁽³⁾	Unit		
ET	Total unadjusted error	f _{PCLK2} = 56 MHz,	±1.5	±2.5			
EO	Offset error	$f_{ADC} = 28 \text{ MHz}, \text{ Rain} < 10 \text{ k}\Omega,$	+0.5	±1.5			
EG	Gain error	V _{DDA} = 3.0 to 3.6 V, T _A = 25 °C	+1	+2/-0.5	LSB		
ED	Differential linearity error	Measurements made after ADC calibration	±0.6	±0.9			
EL	Integral linearity error	VREF+ = VDDA	±0.8	±1.5			

Table 56. ADC accuracy ($V_{DDA} = 3.0 \text{ to } 3.6 \text{ V}, V_{REF+} = V_{DDA}, T_A = 25 ^{\circ}\text{C}$)(1)(2)

- (1) ADC DC accuracy values are measured after internal calibration.
- (2) ADC Accuracy vs. Negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
- (3) Guaranteed by characterization results, not tested in production.

Table 57. ADC accuracy $(V_{DDA} = 2.6 \text{ to } 3.6 \text{ V}, T_A = -40 \text{ to } +105 \text{ °C})^{(1)(2)}$

Symbol	Parameter	Test Conditions	Тур	Max ⁽³⁾	Unit
ET	Total unadjusted error	fpclk2 = 56 MHz,	±2	±4	
EO	Offset error	$f_{ADC} = 28 \text{ MHz}, R_{AIN} < 10 \text{ k}\Omega,$	+0.5	±2	
EG	Gain error	V _{DDA} = 2.6 to 3.6 V	+1	+2.5/-1.5	LSB
ED	Differential linearity error	Measurements made after ADC calibration	±0.6	±1.2	
EL	Integral linearity error	Modela official office and ABC called allors	±1	±2	

- (1) ADC DC accuracy values are measured after internal calibration.
- (2) ADC Accuracy vs. Negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
- (3) Guaranteed by characterization results, not tested in production.

Figure 39. ADC accuracy characteristics

- (1) Example of an actual transfer curve.
- (2) Ideal transfer curve.
- (3) End point correlation line.
- (4) ET = Maximum deviation between the actual and the ideal transfer curves.
 - EO = Deviation between the first actual transition and the first ideal one.
 - EG = Deviation between the last ideal transition and the last actual one.
 - ED = Maximum deviation between actual steps and the ideal one.
 - EL = Maximum deviation between any actual transition and the end point correlation line.

2020.8.7 82 Ver 1.03

R_{AIN}(1) ADCx_INx V_T O.6V Sample and hold ADC coverter RADC 12-bit coverter Cover

Figure 40. Typical connection diagram using the ADC

- (1) Refer to Table 53 for the values of RAIN and CADC.
- (2) C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 41* or *Figure 42*.depending on whether V_{REF+} is connected to V_{DDA} or not. The 100 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

If HSE is enabled while ADC uses any input channel of ADC3_IN4~8 or ADC123_IN10~13, following PCB layout guide line below benefits to isolate the high frequency interference from HSE emitting to ADC input signals nearby.

- Use different PCB layers to route ADC_IN signal apart from HSE path
- Do not route ADC_IN signals and HSE path parallel

Figure 41. Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})

(1) V_{REF+} and V_{REF-} inputs are available only on 100-pin package.

Figure 42. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

(1) V_{REF+} and V_{REF-} inputs are available only on 100-pin package

2020.8.7 83 Ver 1.03

5.3.19 DAC electrical specifications

Table 58. DAC characteristics

Symbol	Parameter	Min	Тур	Max	Unit	Comments	
Vdda	Analog supply voltage	2.6	-	3.6	V	-	
V _{REF+} (3)	Reference supply voltage	2.0		3.6	V	VREF+ must always be	
V REF+(*)	Reference supply voltage	2.0	-			below V _{DDA}	
Vssa	Ground	0	-	0	V	-	
RLOAD ⁽¹⁾	Resistive load with buffer ON	5	-	-	kΩ	-	
Ro ⁽²⁾	Impedance output with buffer	- 13.2		16	kΩ	_	
T(O)	OFF		10.2	10	11.52		
C _{LOAD} ⁽¹⁾	Capacitive load	-	-	50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON)	
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer ON	0.15	-	-	V	It gives the maximum	
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer ON	-	-	V _{REF+} - 0.2	V	output DAC_OUT excursion of the DAC	
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer OFF	-	0.5	3.5	mV	It gives the maximum output DAC_OUT	
DAC_OUT	Higher DAC_OUT voltage with buffer VREF+-		V	excursion of the DAC			
max ⁽¹⁾	OFF		_	1.5 mV	v	execution of the Brite	
I _{VREF} (3)	DAC DC current consumption in		480	625	μA	With no load, worst case	
·VICLI	quiescent mode (Standby mode)		100	020	μ, ,	at V _{REF+} = 3.6 V	
Idda	DAC DC current consumption in		330	340	μA	With no load, worst case	
	quiescent mode (Standby mode)				'	at V _{REF+} = 3.6 V	
DNL ⁽²⁾	Differential non linearity (difference		±0.4	±0.8	LSB	Give for the DAC in 12-bit	
	between two consecutive code-1LSB)						
	Integral non linearity (difference between						
INL ⁽²⁾	measured value and a line drawn between DAC_OUT min and DAC_OUT		±0.8	±1.5	LSB	Give for the DAC in 12-bit	
	max) Offset error (difference between		15	30	mV		
Offset ⁽²⁾	measured value at Code (0x800) and the		10	30	111 V	Given for the DAC in 12-bit	
Onoot	ideal value = V _{REF+} /2)	-	20	35	LSB	at V _{REF+} = 3.6 V	
Gain error ⁽²⁾	Gain error	-	0.1	0.25	%	Give for the DAC in 12-bit	
	Settling time (full scale: for a 10-bit input						
	code transition between the lowest and					C _{LOAD} ≤ 50 pF, R _{LOAD} ≥ 5	
t SETTLING	the highest input codes when DAC_OUT		1	4	μs	kΩ	
	reaches final value ±1 LSB						
	Max frequency for a correct DAC_OUT					0 450 5 5	
Update rate	change when small variation in the input	-	-	1	MS/s	CLOAD ≤ 50 pF, RLOAD ≥ 5	
2 - 2010 1010	code (from code i to i+1 LSB)					kΩ	

Symbol	Parameter	Min	Тур	Max	Unit	Comments
twakeup	Wakeup time from off state (setting the ENx bit in the DAC Control register)	-	1.2	4	μs	$C_{LOAD} \le 50$ pF, $R_{LOAD} \ge 5$ $k\Omega$ input code between lowest and highest possible ones
PSRR+ ⁽¹⁾	Power supply rejection ratio (to V _{DDA}) (static DC measurement	-	-	-45	dB	No RLOAD, CLOAD ≤ 50 pF

- (1) Guaranteed by design, not tested in production.
- (2) Guaranteed by characterization results, not tested in production.
- (3) V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA}, depending on the package. Refer to *Chapter 3 Pinouts and pin descriptions* for further details.

5.3.20 Temperature sensor characteristics

Table 59. Temperature sensor characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±2	±4	۰C
Avg_Slope(1(2))	Average slope	-4.11	-4.26	-4.41	mV/ºC
V ₂₅ ⁽¹⁾⁽²⁾	Voltage at 25 °C	1.19	1.28	1.37	V
tstart ⁽³⁾	Startup time	-	-	100	μs
Ts_temp ⁽³⁾⁽⁴⁾	ADC sampling time when reading the temperature	-	8.6	17.1	μs

- (1) Guaranteed by characterization results, not tested in production.
- (2) The temperature sensor output voltage changes linearly with temperature. The offset of this line varies from chip to chip due to process variation (up to 50 °C from one chip to another). The internal temperature sensor is more suited to applications that detect temperature variations instead of absolute temperatures. If accurate temperature readings are needed, an external temperature sensor part should be used.
- (3) Guaranteed by design, not tested in production.
- (4) Shortest sampling time can be determined in the application by multiple iterations.

Obtain the temperature using the following formula:

Temperature (in °C) = $\{(V_{25} - V_{SENSE}) / Avg_Slope\} + 25$.

Where.

V₂₅ = V_{SENSE} value for 25° C and

Avg_Slope = Average Slope for curve between Temperature vs. V_{SENSE} (given in mV/° C).

Figure 43. V_{SENSE} vs. temperature

6 Package information

6.1 LQFP100 package information

Figure 44. LQFP100 – 14 x 14 mm 100 pin low-profile quad flat package outline

(1) Drawing is not in scale.

Table 60. LQFP100 - 14 x 14 mm 100 pin low-profile quad flat package mechanical data

0		millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max		
Α	-	-	1.60	-	-	0.063		
A1	0.05	-	0.15	0.002	-	0.006		
A2	1.35	1.40	1.45	0.053	0.055	0.057		
b	0.17	0.20	0.26	0.007	0.008	0.010		
С	0.10	0.127	0.20	0.004	0.005	800.0		
D		16.00 BSC.		0.630 BSC.				
D1		14.00 BSC.		0.551 BSC.				
Е		16.00 BSC.		0.630 BSC.				
E1	14.00 BSC. 0.551 BSC.							
е	0.50 BSC.				0.020 BSC.			
L	0.45	0.60	0.75	0.018	0.024	0.030		
L1	1.00 REF.			1.00 REF. 0.039 REF.				

⁽¹⁾ Values in inches are converted from mm and rounded to 3 decimal digits.

Device marking for LQFP100

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Part No. 32F403AVG Lot No. **Date Code** (Year + Week) **ARM** Pin 1 Identifier Revision Code (1~2 characters)

Figure 45. LQFP100 – 14 x 14 mm marking example (package top view)

2020.8.7 Ver 1.03

6.2 LQFP64 package information

Figure 46. LQFP64 - 10 x 10 mm 64 pin low-profile quad flat package outline

(1) Drawing is not in scale.

Table 61. LQFP64 - 10 x 10 mm 64 pin low-profile quad flat package mechanical data

		millimeters		inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max	
Α	-	-	1.60	-	-	0.063	
A1	0.05	-	0.15	0.002	-	0.006	
A2	1.35	1.40	1.45	0.053	0.055	0.057	
b	0.17	0.20	0.27	0.007	0.008	0.011	
С	0.09	-	0.20	0.004	-	0.008	
D	11.75	12.00	12.25	0.463	0.472	0.482	
D1	9.90	10.00	10.10	0.390	0.394	0.398	
E	11.75	12.00	12.25	0.463	0.472	0.482	
E1	9.90	10.00	10.10	0.390	0.394	0.398	
е		0.50 BSC.			0.020 BSC.		
Θ	3.5° REF.				3.5° REF.		
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1	1.00 REF.			0.039 REF.			
ccc	0.08				0.003		

⁽¹⁾ Values in inches are converted from mm and rounded to 3 decimal digits.

Device marking for LQFP64

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Part No.

Lot No.

Date Code
(Year + Week)

Pin 1 Identifier

Revision Code (1~2 characters)

Figure 47. LQFP64 – 10 x 10 mm marking example (package top view)

2020.8.7 89 Ver 1.03

6.3 LQFP48 package information

Figure 48. LQFP48 – 7 x 7 mm 48 pin low-profile quad flat package outline

(1) Drawing is not in scale.

Table 62. LQFP48 - 7 x 7 mm 48 pin low-profile quad flat package mechanical data

		millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Max		
Α	-	-	1.60	-	-	0.063		
A1	0.05	-	0.15	0.002	-	0.006		
A2	1.35	1.40	1.45	0.053	0.055	0.057		
b	0.17	0.22	0.27	0.007	0.009	0.011		
С	0.09	-	0.20	0.004	-	0.008		
D		9.00 BSC		0.345 BSC				
D1		7.00 BSC		0.276 BSC				
Е		9.00 BSC		0.345 BSC				
E1		7.00 BSC	C 0.276 BSC					
е		0.50 BSC.			0.020 BSC.			
Θ	0°	3.5°	7°	0°	3.5°	7°		
L	0.45	0.60	0.75	0.018	0.024	0.030		
L1		1.00 REF.			0.039 REF.			

⁽¹⁾ Values in inches are converted from mm and rounded to 3 decimal digits.

Device marking for LQFP48

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Part No.

Lot No.

Date Code
(Year + Week)

Pin 1 Identifier

Revision Code (1~2 characters)

Figure 49. LQFP48 - 7 x 7 mm marking example (package top view)

2020.8.7 91 Ver 1.03

6.4 QFN48 package information

Figure 50. QFN48 - 6 x 6 mm 48 pin fine-pitch quad flat package outline

(1) Drawing is not in scale.

Table 63. QFN48 - 6 x 6 mm 48 pin fine-pitch quad flat package mechanical data

	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max	
Α	0.80	0.85	0.90	0.031	0.033	0.035	
A1	0.00	0.02	0.05	0.000	0.001	0.002	
А3	0.203 REF.			0.008 REF.			
b	0.15	0.20	0.25	0.006	0.008	0.010	
D		6.00 BSC.			0.236 BSC.		
D2	4.45	4.50	4.55	0.175	0.177	0.179	
Е		6.00 BSC.			0.236 BSC.		
E2	4.45	4.50	4.55	0.175	0.177	0.179	
е	0.40 BSC.				0.016 BSC.		
K	0.20	-	-	0.008	-	-	
L	0.35	0.40	0.45	0.014	0.016	0.018	

⁽¹⁾ Values in inches are converted from mm and rounded to 3 decimal digits.(2) Topside view.

Device marking for QFN48

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Figure 51. QFN48 – 6 x 6 mm marking example (package top view)

2020.8.7 Ver 1.03

6.5 Thermal characteristics

The maximum chip junction temperature (T_J max) must never exceed the values given in *Table 11*.

The maximum chip-junction temperature, T_J max, in degrees Celsius, may be calculated using the following equation:

$$T_j max = T_a max + (P_d max x \Theta_{JA})$$

Where:

- T_amax is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_{d} max is the sum of P_{INT} max and $P_{I/O}$ max (P_{d} max = P_{INT} max + $P_{I/O}$ max),
- P_{INT} max is the product of I_{DD} and V_{DD} , expressed in Watts. This is the maximum chip internal power. $P_{I/D}$ max represents the maximum power dissipation on output pins where:

$$P_{I/O} max = \Sigma(V_{OL} \times I_{OL}) + \Sigma((V_{DD} - V_{OH}) \times I_{OH}),$$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Table 64. Package thermal characteristics

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient LQFP100 – 14 × 14 mm / 0.5 mm pitch	61.2	
Α	Thermal resistance junction-ambient LQFP64 – 10 × 10 mm / 0.5 mm pitch	64.6	°C/W
⊖⊿	Thermal resistance junction-ambient LQFP48 – 7 × 7 mm / 0.5 mm pitch	68.8	C/VV
	Thermal resistance junction-ambient QFN48 – 6 × 6 mm / 0.4 mm pitch	30.2	

7 Part numbering

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest Artery sales office.

2020.8.7 95 Ver 1.03

8 Revision history

Table 66. Document revision history

Date	Version	Change
2020.1.8	1.00	Initial release
2020.2.10	1.01	Modified the max. frequency of the system and the internal AHB clock as 240
2020.2.10	1.01	MHz; and the internal APB clock as 120 MHz
	.22 1.02	1. Modified the minimum value of V _{REF+} of ADC and DAC as 2.0 V
		2. Modified conditions and max. frequencies of the internal AHB clock in <i>Table 11</i>
2020.4.22		3. Updated current values in sector 5.3.5
2020.4.22		4. Removed the original note (9) of <i>Table 6</i>
		5. Modified the parameter descriptions, conditions, and the maximum values of
		the SPI clock frequency in <i>Table 47</i>
2020.8.7	1.03	Corrected values in <i>Table 59</i>

IMPORTANT NOTICE - PLEASE READ CAREFULLY

Purchasers understand and agree that purchasers are solely responsible for the selection and use of Artery's products and services.

Artery's products and services are provided "AS IS" and Artery provides no warranties express, implied or statutory, including, without limitation, any implied warranties of merchantability, satisfactory quality, non-infringement, or fitness for a particular purpose with respect to the Artery's products and services.

Notwithstanding anything to the contrary, purchasers acquires no right, title or interest in any Artery's products and services or any intellectual property rights embodied therein. In no event shall Artery's products and services provided be construed as (a) granting purchasers, expressly or by implication, estoppel or otherwise, a license to use third party's products and services; or (b) licensing the third parties' intellectual property rights; or (c) warranting the third party's products and services and its intellectual property rights.

Purchasers hereby agrees that Artery's products are not authorized for use as, and purchasers shall not integrate, promote, sell or otherwise transfer any Artery's product to any customer or end user for use as critical components in (a) any medical, life saving or life support device or system, or (b) any safety device or system in any automotive application and mechanism (including but not limited to automotive brake or airbag systems), or (c) any nuclear facilities, or (d) any air traffic control device, application or system, or (e) any weapons device, application or system, or (f) any other device, application or system where it is reasonably foreseeable that failure of the Artery's products as used in such device, application or system would lead to death, bodily injury or catastrophic property damage.

© 2020 ARTERY Technology Corporation - All rights reserved