

Sistemas Operativos 1

Paginación

Paginación

- El espacio lógico de direcciones puede no ser continuo; se le asigna memoria a un proceso siempre que haya disponible
- Divide la memoria física en bloques de tamaño fijo llamados marcos (frames) (el tamaño es una potencia de 2, entre 512 bytes y 8192 bytes)
- Divide la memoria lógica en bloques de igual tamaño llamados páginas.
 (tamaño de pagina == tamaño del frame).
- Mantiene registro de todos los marcos (frames) vacíos
- Para ejecutar un programa de n páginas, necesita encontrar n marcos libres y cargar el programa
- Inicializar una tabla de páginas que permita traducir una dirección lógica a una física
- Fragmentación interna

Paginación: Memoria Lógica y Física

Marcos Libres

Esquema de Traducción

- Las direcciones generadas por la CPU son divididas en:
 - Número de Página (p) usado para indexar dentro de la tabla de página que contiene la dirección base de cada marco
 - Desplazamiento de Página u "offset" (d) combinado con la dirección base para definir la dirección física de memoria que se envía a la unidad de memoria

page number	page offset		
р	d		
m-n	n		

Para un espacio de direcciones lógico 2^my un tamaño de página de 2ⁿ

Hardware de Paginación

Esquema de Traducción

Con memoria de 32-bytes con "frame size" = 4-bytes

Espacio de direcciones lógico: Con 5 bits puedo direccionar 32 bytes o "instrucciones"

•
$$00000b = 0d$$

$$m = 5$$

- 11111b = 31d
- Tamaño de página: Con 2 bits puedo direccionar 4 bytes o "instrucciones" (= Frame size)
 - 00b = 0d
 - 11b = 3d

n = 2

Dirección Lógica a traducir: 7d

$$001 = 1d$$

Offset:

$$11 = 3d$$

p offset offset

001

m-n

n

Paginación de memoria de 32-bytes con "frame size" = 4-bytes

Paginación de memoria de 32-bytes con "frame size" = 4-bytes

Memoria lógica

Memoria física

TLB (Translation lookaside buffer)

ESQUEMA DE TRADUCCIÓN 2-NIVELES

ESQUEMA DE 3-NIVELES

número de página externo		número de página interno	desplazamiento
p1		p2	d
42		10	12
número de página externo 1-nivel	número de página interno 2-nivel	número de página interno	desplazamiento
p1	p2	p2	d
32	10	10	12

Paginación

- + Soporta multiples programas ejecutando a la vez
- + Los programas de usuario tienen un **espacio de memoria** definido (protección)
- Requiere traducción Dirección Lógica → Dirección Física
 - MMU Hardware
- Page Table: Requiere 2 accesos a memoria
 - + Optimización TLB

- + No Genera Fragmentación Externa
- Genera Fragmentación Interna (muy poca)