Γ_1

Give an algorithm for MCP of running time $O(m \log \log m)$.

```
Solution. Require: edges e_1, \dots, e_m
function MCP
    C \leftarrow \{e_1, \cdots, e_m\}
    d \leftarrow 0
     while |C| > 1 do
        divisions \leftarrow C
        for i = 1 to 2^d do
             \{S_1, \cdots, S_k\} \leftarrow divisions
            m_1, \cdots, m_k \leftarrow the median of S_1, \cdots, S_k in means of weight
            divisions \leftarrow \bigcup_{j=1}^{k} \{ s \in S_j : c(s) \le m_j \} \cup \{ s \in S_j : c(s) > m_j \}
         end for
        C \leftarrow GetDivision(divisions).
         d \leftarrow 2^d + d
     end while
    return the only element in C
end function
function GetDivision(divisions)
    G \leftarrow (V, \{\})
    for div in divisions do (iterate from higher capacity to lower capacity)
        add all edges in div to G
        if G is s-t-connected then
             return div
        end if
    end for
end function
```

The correctness of the algorithm comes from below. First, we initialize our c* candidate to be all the edges in G. Then, in each iteration, we divide it into many divisions of approximately the same size in order, and test which division is c* in. Finally, there will be only one candidate left, and that is c*.

Now we'll analyze the running time. Note that finding the medium of a set S has running time O(|S|). In the inner "for" loop, we find the medium of S_1, \dots, S_k in d iterations. However there's an invariant equation $\sum_{i=1}^k |S_k| = |C|$. So the finding the median requires $O(|C|*2^d)$ in total. The GetDivision function needs to add all the edges into the graph in the worst case. Testing the connectivity will use O(m) time in total if we record a set of reachable vertices as decribed in Problem 1. So its running time is O(m) for GetDivision.

```
Observe that |C|*2^d=O(m). We'll prove it by induction. Initially, |C|=m, d=0. It obviously holds. Suppose |C_{old}|*2^{d_{old}}=O(m). We have |C_{new}|=O(|C_{old}|*\frac{1}{2}^{2^{d_{old}}}). d_{new}=d_{old}+2^{d_{old}}. So |C_{new}|*2^{d_{new}}=O(m)
```

Now we get the running time of one "while" loop is O(m). Note that $2^d < m$. Since d increases exponentially, the "while" loop will iterate for $O(\log *m)$ times. Finally, we get the running time is $O(m \log *m)$. Obviously this algorithm has a better running time than $O(m \log \log m)$, $O(m \log \log \log \log m)$, $O(m \log \log \log \log m)$

_	
ı	2

Give an algorithm for MCP that runs in $O(m \log \log \log m)$? How about $O(m \log \log \log \log m)$? How far can you get?

Solution. See Problem 2.