Introduction to Deep Generative Models

Herman Dong

Music and Audio Computing Lab (MACLab), Research Center for Information Technology Innovation, Academia Sinica

MuseGAN

Learn about our recent work on using GAN to compose pop song at https://salu133445.github.io/musegan/

Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang and Yi-Hsuan Yang. 2017. MuseGAN: Symbolic-domain Music Generation and Accompaniment with Multi-track Sequential Generative Adversarial Networks. arXiv preprint arXiv:1709.06298.

Outline

Brief introduction to deep generative models

- AE (Autoencoder)
- VAE (Variational Autoencoder)
- GAN (Generative Adversarial Networks)
- AAE (Adversarial Autoencoder)
- VAE/GAN
- ADA (Adversarial Domain Adaption)

Reformulation

- Graphical model representation
- Connection to Wake-sleep Algorithm

AE (Autoencoder)

• minimize reconstruction loss

AE (Autoencoder)

• minimize reconstruction loss

AE (Autoencoder)

• minimize reconstruction loss

- minimize reconstruction loss
- minimize distance between encoded latent distribution and prior distribution

- minimize reconstruction loss
- minimize distance between encoded latent distribution and prior distribution

- minimize reconstruction loss
- minimize distance between encoded latent distribution and prior distribution

minimize reconstruction loss

minimize reconstruction loss

minimize reconstruction loss

 minimize distance between the distribution of real data and generated samples

• minimize distance between the distribution of real data and generated

• minimize distance between the distribution of real data and generated

• minimize distance between the distribution of real data and generated

minimize distance between the distribution of real data and generated

GAN vs VAE

GAN

- Generator aim to fool the discriminator
- Discriminator aim to distinguish generated data from real data
- output images are sharper
- higher diversity, lower stability

VAE

- Objective: reconstruct real data
- using pixel-to-pixel loss
- output images are more blurred
- lower diversity, higher stability

GAN vs VAE

• GAN

- Generator aim to fool the discriminator
- Discriminator aim to distinguish generated data from real data
- output images are sharper
- higher diversity, lower stability

VAE

- Objective: reconstruct real data
- using pixel-to-pixel loss
- output images are more blurred
- lower diversity, higher stability

AAE (Adversarial Autoencoder)

- minimize reconstruction loss
- minimize distance between encoded latent distribution and prior distribution

AAE (Adversarial Autoencoder)

minimize reconstruction loss

AAE (Adversarial Autoencoder)

- minimize reconstruction loss
- minimize distance between encoded latent distribution and prior distribution

GAN

VAE Ground Truth VAE_{DIS} **VAE** VAE_{DIS} GAN/VAE VAE/GAN **GAN**

Generation test Reconstruction test

What's going on?

What's going on?

- $G_{\theta} \theta$ are parameters in generator
- ${\it D}_{\it \phi}$ $\it \phi$ are parameters in generator

- $G_{\theta} \theta$ are parameters in generator
- $D_{\phi} \phi$ are parameters in generator
- **Solid line** generative process
- Dashed line inference process
- Hollow arrow deterministic transformation
- Red arrow adversarial mechanism
- $q_{\phi}^{(r)}(y|x)$ denotes $q_{\phi}(y|x)$ and $q_{\phi}(1-y|x)$

GAN
$$y = \begin{cases} 1, & \text{if } x \text{ is real} \\ 0, & \text{if } x \text{ is } fake \end{cases}$$
ADA $y = \begin{cases} 1, & \text{if } x \text{ is in source domain} \\ 0, & \text{if } x \text{ is in target domain} \end{cases}$

- $G_{\theta} \theta$ are parameters in generator
- $D_{\phi} \phi$ are parameters in generator
- **Solid line** generative process
- **Dashed line** inference process
- Hollow arrow deterministic transformation
- Red arrow adversarial mechanism
- $q_{\phi}^{(r)}(y|x)$ denotes $q_{\phi}(y|x)$ and $q_{\phi}(1-y|x)$

GAN
$$y = \begin{cases} 1, & \text{if } x \text{ is real} \\ 0, & \text{if } x \text{ is fake} \end{cases}$$

ADA $y = \begin{cases} 1, & \text{if } x \text{ is in source domain} \\ 0, & \text{if } x \text{ is in target domain} \end{cases}$

GAN vs VAE

label

InfoGAN vs VAE

InfoGAN vs AAE

Wake-sleep Algorithm

- h general latent variables
- λ general parameters
- θ generator parameters

Wake: $\max_{\theta} \mathbb{E}_{q_{\lambda}(h|x)p_{data}(x)}[\log p_{\theta}(x|h)]$

Sleep: $\max_{\lambda} \mathbb{E}_{p_{\theta}(x|h)p(h)}[\log q_{\lambda}(h|x)]$

- In wake phase, update θ by fitting $p_{\theta}(x|h)$ to x and h inferred by $q_{\lambda}(h|x)$.
- In sleep phase, update λ based on generated samples.
- VAE: $h \rightarrow z$, $\lambda \rightarrow \eta$
- GAN: $h \rightarrow y$, $\lambda \rightarrow \phi$

References

- D. P. Kingma, M. Welling. Auto-Encoding Variational Bayes. arXiv preprint arXiv:1312.6114, 2014
- I. J. GoodFellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio.
 Genrative Adversrial Nets. arXiv:preprint arXiv:1406.2661, 2014
- A. B. L. Larsen, S. K. Sønderby and O. Winther. Autoencoding beyond pixels using a learned similarity metric. arXiv preprint arXiv:1512.09300, 2015
- A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow and B. Frey. Adversarial Autoencoders. arXiv preprint arXiv:1511.05644, 2016
- Z. Hu, Z. Yang, R. Salakhutdinov and E. P. Xing. **On unifying deep generative models**. arXiv preprint arXiv:1706.00550, 2017