Reinforcement Learning from Human Feedback (RLHF)

Generative Al project lifecycle

Generative Al project lifecycle

Models behaving badly

- Toxic language
- Aggressive responses
- Providing dangerous information

Models behaving badly

Generative Al project lifecycle

Fine-tuning with human feedback

Reinforcement learning from human feedback (RLHF)

Reinforcement learning (RL)

Agent

Objective: maximize reward received for actions

Environment

Reinforcement learning (RL)

Reinforcement learning: Tic-Tac-Toe

Reinforcement learning: fine-tune LLMs

Reinforcement learning: fine-tune LLMs

Collecting human feedback

Prepare dataset for human feedback

Collect human feedback

Define your model alignment criterion

For the prompt-response sets that you just generated, obtain human

LLM

Model

feedback through labeler workforce

My house is too hot. It is not too hot.

3

My house is too hot.

Prompt

Sample instructions for human labelers

- * Rank the responses according to which one provides the best answer to the input prompt.
- * What is the best answer? Make a decision based on (a) the correctness of the answer, and (b) the informativeness of the response. For (a) you are allowed to search the web. Overall, use your best judgment to rank answers based on being the most useful response, which we define as one which is at least somewhat correct, and minimally informative about what the prompt is asking for.
- * If two responses provide the same correctness and informativeness by your judgment, and there is no clear winner, you may rank them the same, but please only use this sparingly.
- * If the answer for a given response is nonsensical, irrelevant, highly ungrammatical/confusing, or does not clearly respond to the given prompt, label it with "F" (for fail) rather than its rank.
- * Long answers are not always the best. Answers which provide succinct, coherent responses may be better than longer ones, if they are at least as correct and informative.

Source: Chung et al. 2022, "Scaling Instruction-Finetuned Language Models"

Prepare labeled data for training

- Convert rankings into pairwise training data for the reward model
- y_i is always the preferred completion

Training the reward model

Train reward model

Train model to predict preferred completion from $\{y_j, y_k\}$ for prompt x

Use the reward model

Use the reward model as a binary classifier to provide reward value for each

prompt-completion pair

Use the reward model

Use the reward model as a binary classifier to provide reward value for each

prompt-completion pair

Tommy loves television			
	Logits	Probabilities	
Positive class (not hate)	3.171875	0.996093	
Negative class (hate)	-2.609375	0.003082	

Tommy hates gross movies			
	Logits	Probabilities	
Positive class (not hate)	-0.535156	0.337890	
Negative class (hate)	0.137695	0.664062	

Fine-tuning with RLHF

Iteration 1

Iteration 2

Iteration 3

Iteration 4...

Iteration *n*

Proximal Policy Optimization

Dr. Ehsan Kamalinejad

Proximal policy optimization (PPO)

Iteration *n*

Initialize PPO with Instruct LLM

PPO Phase 1: Create completions

Prompt

A dog is

Completion

A dog is a furry animal

Prompt

This house is

Completion

This house is very ugly

Experiments

to assess the outcome of the current model,

e.g. how helpful, harmless, honest the model is

• • •

Calculate rewards

Calculate value loss

Prompt

A dog is

Completion

A dog is a ...

Value function
$$L^{VF} = \frac{1}{2} \left\| V_{\theta}(s) - \left(\sum_{t=0}^{T} \gamma^{t} r_{t} \mid s_{0} = s \right) \right\|_{2}^{2}$$

Estimated future total reward

0.34

Calculate value loss

Prompt

A dog is

Completion

A dog is a furry...

Value function
$$L^{VF} = \frac{1}{2} \left\| V_{\theta}(s) - \left(\sum_{t=0}^{T} \gamma^{t} r_{t} \mid s_{0} = s \right) \right\|_{2}^{2}$$

Estimated future total reward

1.23

Calculate value loss

Prompt

A dog is

Completion

A dog is a furry...

Estimated future total reward

Known future total reward

1.23

1.87

PPO Phase 2: Model update

$$L^{POLICY} = \min \left(\frac{\pi_{\theta} \left(a_{t} \mid s_{t} \right)}{\pi_{\theta_{\text{old}}} \left(a_{t} \mid s_{t} \right)} \cdot \hat{A}_{t}, \operatorname{clip} \left(\frac{\pi_{\theta} \left(a_{t} \mid s_{t} \right)}{\pi_{\theta_{\text{old}}} \left(a_{t} \mid s_{t} \right)}, 1 - \epsilon, 1 + \epsilon \right) \cdot \hat{A}_{t} \right)$$

$$L^{POLICY} = \min \left(\frac{\pi_{\theta} \left(a_{t} \mid s_{t} \right)}{\pi_{\theta_{\text{old}}} \left(a_{t} \mid s_{t} \right)} \cdot \hat{A}_{t}, \text{clip} \left(\frac{\pi_{\theta} \left(a_{t} \mid s_{t} \right)}{\pi_{\theta_{\text{old}}} \left(a_{t} \mid s_{t} \right)}, 1 - \epsilon, 1 + \epsilon \right) \cdot \hat{A}_{t} \right)$$

Most important expression

 π_{θ} Model's probability distribution over tokens

Probabilities of the next token

$$\pi_{ heta} = \min \left(\begin{array}{c|c} \pi_{ heta} \left(a_t \mid s_t \right) \end{array} \right)$$

$$L^{POLICY} = \min \left(\frac{\pi_{\theta} \left(a_{t} \mid s_{t} \right)}{\pi_{\theta_{\text{old}}} \left(a_{t} \mid s_{t} \right)} \cdot \hat{A}_{t}, \text{clip} \left(\frac{\pi_{\theta} \left(a_{t} \mid s_{t} \right)}{\pi_{\theta_{\text{old}}} \left(a_{t} \mid s_{t} \right)}, 1 - \epsilon, 1 + \epsilon \right) \cdot \hat{A}_{t} \right)$$

Probabilities of the next token

with the initial LLM

$$L^{POLICY} = \min\left(\frac{\pi_{\theta}\left(a_{t} \mid s_{t}\right)}{\pi_{\theta_{\text{old}}}\left(a_{t} \mid s_{t}\right)} \cdot \hat{A}_{t}, \operatorname{clip}\left(\frac{\pi_{\theta}\left(a_{t} \mid s_{t}\right)}{\pi_{\theta_{\text{old}}}\left(a_{t} \mid s_{t}\right)}, 1 - \epsilon, 1 + \epsilon\right) \cdot \hat{A}_{t}\right)$$

Defines "trust region"

$$L^{POLICY} = \min \left(\frac{\pi_{\theta} \left(a_{t} \mid s_{t} \right)}{\pi_{\theta_{\text{old}}} \left(a_{t} \mid s_{t} \right)} \cdot \hat{A}_{t}, \text{clip} \left(\frac{\pi_{\theta} \left(a_{t} \mid s_{t} \right)}{\pi_{\theta_{\text{old}}} \left(a_{t} \mid s_{t} \right)}, 1 - \epsilon, 1 + \epsilon \right) \cdot \hat{A}_{t} \right)$$

Guardrails:

Keeping the policy in the "trust region"

PPO Phase 2: Calculate entropy loss

$$L^{ENT} = \text{entropy} (\pi_{\theta} (\cdot \mid s_t))$$

Low entropy:

Prompt

A dog is

Completion

A dog is a domesticated carnivorous mammal

Prompt

A dog is

Completion

A dog is a small carnivorous mammal

High entropy:

Prompt

A dog is

Completion

A dog is is one of the most popular pets around the world

PPO Phase 2: Objective function

Hyperparameters
$$L^{PPO} = L^{POLICY} + c_1 L^{VF} + c_2 L^{ENT}$$
 Policy loss Value loss Entropy loss

Replace LLM with updated LLM

After many iterations, human-aligned LLM!

Fine-tuning LLMs with RLHF

KL divergence penalty gets added to reward

Evaluate the human-aligned LLM

Summarization Evaluate using the toxicity score **Dataset** Toxicity score before: Instruct Reward 0.14 Model LLM Human-*Toxicity score after:* Reward 0.09 aligned Model LLM

Scaling human feedback

Scaling human feedback

Reinforcement Learning from Human Feedback

Model self-supervision: Constitutional Al

Example of constitutional principles

Please choose the response that is the most helpful, honest, and harmless.

Choose the response that is less harmful, paying close attention to whether each response encourages illegal, unethical or immoral activity.

Choose the response that answers the human in the most thoughtful, respectful and cordial manner.

Choose the response that sounds most similar to what a peaceful, ethical, and wise person like Martin Luther King Jr. or Mahatma Gandhi might say.

. . .

Supervised Learning Stage

Can you help me hack into my neighbor's wifi?

Identify how the last response is harmful, unethical, racist, sexist, toxic, dangerous or illegal.

Rewrite the response to remove any and all harmful, unethical, racist, sexist, toxic, dangerous or illegal content.

Sure thing, you can use an app called VeryEasyHack.

The response was harmful because hacking into someone else's wifi is an invasion of their privacy and is possibly illegal.

Helpful

LLM

Hacking into your neighbor's wifi is an invasion of their privacy. It may also land you in legal trouble. I advise against it.

Constitutional Principle

Supervised Learning Stage

Source: Bai et al. 2022, "Constitutional AI: Harmlessness from AI Feedback"

Reinforcement Learning Stage - RLAIF

Optimize LLMs and build generative Al applications

Generative Al project lifecycle

Generative AI project lifecycle

Generative Al project lifecycle

Model optimizations to improve application performance

LLM optimization techniques

Distillation

Quantization

Pruning

LLM optimization techniques

Post-Training Quantization (PTQ)

Reduce precision of model weights

Pruning

Remove model weights with values close or equal to zero

- Pruning methods
 - Full model re-training
 - PEFT/LoRA
 - Post-training
- In theory, reduces model size and improves performance
- In practice, only small % in LLMs are zero-weights

Cheat Sheet - Time and effort in the lifecycle

	Pre-training	Prompt engineering	Prompt tuning and fine-tuning	Reinforcement learning/human feedback	Compression/ optimization/ deployment
Training duration	Days to weeks to months	Not required	Minutes to hours	Minutes to hours similar to fine-tuning	Minutes to hours
Customization	Determine model architecture, size and tokenizer. Choose vocabulary size and # of tokens for input/context Large amount of domain training data	No model weights Only prompt customization	Tune for specific tasks Add domain-specific data Update LLM model or adapter weights	Need separate reward model to align with human goals (helpful, honest, harmless) Update LLM model or adapter weights	Reduce model size through model pruning, weight quantization, distillation Smaller size, faster inference
Objective	Next-token prediction	Increase task performance	Increase task performance	Increase alignment with human preferences	Increase inference performance
Expertise	High	Low	Medium	Medium-High	Medium

Using the LLM in applications

Models having difficulty

Generative Al project lifecycle

LLM-powered applications

LLM-powered applications

Retrieval augmented generation (RAG)

Knowledge cut-offs in LLMs

LLM-powered applications

Retrieval Augmented Generation (RAG)

Example: Searching legal documents

Query Encoder

Example: Searching legal documents

UNITED STATES DISTRICT COURT SOUTHERN DISTRICT OF MAINE

CASE NUMBER: 22-48710BI-SME

Busy Industries (Plaintiff) vs.

State of Maine (Defendant)

Who is the plaintiff in case 22-48710BI-SME?

RAG integrates with many types of data sources

External Information Sources

- Documents
- Wikis
- Expert Systems
- Web pages
- Databases
- Vector Store

Data preparation for vector store for RAG

Two considerations for using external data in RAG:

Data must fit inside context window

Prompt context limit few 1000 tokens

Single document too large to fit in window

Split long sources into short chunks

Data preparation for RAG

Two considerations for using external data in RAG:

- 1. Data must fit inside context window
- 2. Data must be in format that allows its relevance to be assessed at

inference time: Embedding vectors

Prompt text converted to embedding vectors

x₁
x₂
x₃

Data preparation for RAG

Two considerations for using external data in RAG:

- 1. Data must fit inside context window
- Data must be in format that allows its relevance to be assessed at inference time: Embedding vectors

Vector database search

- Each text in vector store is identified by a key
- Enables a **citation** to be included in completion

Enabling interactions with external applications

Having an LLM initiate a clothing return

Having an LLM initiate a clothing return

Having an LLM initiate a clothing return

LLM-powered applications

Requirements for using LLMs to power applications

Plan actions

Steps to process return:

Step 1: Check order ID

Step 2: Request label

Step 3: Verify user email

Step 4: Email user label

Format outputs

SQL Query:

SELECT COUNT(*)

FROM orders

WHERE order_id = 21104

Validate actions

Collect required user information and make sure it is in the completion

User email: tim.b@email.net

Prompt structure is important!

Helping LLMs reason and plan with Chain-of-Thought Prompting

LLMs can struggle with complex reasoning problems

Prompt

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Completion

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

A: The answer is 27.

Humans take a step-by-step approach to solving complex problems

Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

Start: Roger started with 5 balls.

Step 1: 2 cans of 3 tennis balls each is 6 tennis balls.

Step 2: 5 + 6 = 11

End: The answer is 11

Reasoning steps

"Chain of thought"

Chain-of-Thought Prompting can help LLMs reason

Prompt

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5
balls. 2 cans of 3 tennis
balls each is 6 tennis balls.
5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Source: Wei et al. 2022, "Chain-of-Thought Prompting Elicits Reasoning in Large Language Models"

Chain-of-Thought Prompting can help LLMs reason

Source: Wei et al. 2022, "Chain-of-Thought Prompting Elicits Reasoning in Large Language Models"

Program-aided Language Models

LLMs can struggle with mathematics

Chain-of-Thought (Wei et al., 2022)

Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 tennis balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The bakers at the Beverly Hills Bakery baked 200 loaves of bread on Monday morning. They sold 93 loaves in the morning and 39 loaves in the afternoon. A grocery store returned 6 unsold loaves. How many loaves of bread did they have left?

Model Output

The answer is 62.

A: The bakers started with 200 loaves. They sold 93 in the morning and 39 in the afternoon. So they sold 93 + 39 = 132 loaves. The grocery store returned 6 loaves. So they had 200 - 132 - 6 = 62 loaves left.

×

Wei et al., 2022) Program-aided Language models (this work)

Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 tennis balls.

tennis_balls = 5 2 cans of 3 tennis balls each is

bought_balls = 2 * 3 tennis balls. The answer is

answer = tennis balls + bought balls

Q: The bakers at the Beverly Hills Bakery baked 200 loaves of bread on Monday morning. They sold 93 loaves in the morning and 39 loaves in the afternoon. A grocery store returned 6 unsold loaves. How many loaves of bread did they have left?

Model Output

A: The bakers started with 200 loaves

loaves baked = 200

They sold 93 in the morning and 39 in the afternoon

loaves_sold_morning = 93

loaves sold afternoon = 39

The grocery store returned 6 loaves.

loaves_returned = 6

The answer is

answer = loaves_baked - loaves_sold_morning
 - loaves sold afternoon + loaves returned

>>> print(answer)

Source: Gao et al. 2022, "PAL: Program-aided Language Models"

PAL example

Prompt with one-shot example

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

```
Answer:
```

```
# Roger started with 5 tennis balls
tennis_balls = 5
# 2 cans of tennis balls each is
bought_balls = 2 * 3
# tennis balls. The answer is
answer = tennis_balls + bought_balls
```

Q: The bakers at the Beverly Hills Bakery baked 200 loaves of bread on Monday morning. They sold 93 loaves in the morning and 39 loaves in the afternoon. A grocery store returned 6 unsold loaves. How many loaves did they have left?

PAL example

Prompt with one-shot example

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

Answer:

```
# Roger started with 5 tennis balls
tennis_balls = 5
# 2 cans of tennis balls each is
bought_balls = 2 * 3
# tennis balls. The answer is
answer = tennis_balls + bought_balls
```

Q: The bakers at the Beverly Hills Bakery baked 200 loaves of bread on Monday morning. They sold 93 loaves in the morning and 39 loaves in the afternoon. A grocery store returned 6 unsold loaves. How many loaves did they have left?

Completion, CoT reasoning (blue), and PAL execution (pink)

```
Answer:
# The bakers started with 200 loaves
loaves_baked = 200
# They sold 93 in the morning and 39 in the
afternoon
loaves_sold_morning = 93
loaves_sold_afternoon = 39
# The grocery store returned 6 loaves.
loaves_returned = 6
# The answer is
answer = loaves_baked
  - loaves_sold_morning
  - loaves_sold_afternoon
  + loaves_returned
```


Completion with correct answer

PAL formatted solution

LLM-powered applications

PAL architecture

LLM-powered applications

ReAct: Combining reasoning and action in LLMs

HotPot QA: multi-step question answering Fever: Fact verification

Source: Yao et al. 2022, "ReAct: Synergizing Reasoning and Acting in Language Models"

Question: Problem that requires advanced reasoning and multiple steps to solve.

E.g.

"Which magazine was started first,
Arthur's Magazine or First for Women?"

Source: Yao et al. 2022, "ReAct: Synergizing Reasoning and Acting in Language Models"

Thought: A reasoning step that identifies how the model will tackle the problem and identify an action to take.

"I need to search Arthur's Magazine and First for Women, and find which one was started first."

Action: An external task that the model can carry out from an allowed set of actions.

```
E.g.
search[entity]
lookup[string]
finish[answer]
```

Which one to choose is determined by the information in the preceding thought.

```
search[Arthur's Magazine]
```


Observation: the result of carrying out the action

E.g. "Arthur's Magazine (1844-1846) was an American literary periodical published in Philadelphia in the 19th century."

Thought 2:

"Arthur's magazine was started in 1844. I need to search First for Women next."

Action 2:
search[First for Women]

Observation 2:

"First for Women is a woman's magazine published by Bauer Media Group in the USA.[1] The magazine was started in 1989."

Thought 3:

"First for Women was started in 1989. 1844 (Arthur's Magazine) < 1989 (First for Women), so Arthur's Magazine as started first"

Action 2:

finish[Arthur's Magazine]

ReAct instructions define the action space

Solve a question answering task with interleaving Thought, Action, Observation steps.

Thought can reason about the current situation, and Action can be three types:

- (1) Search[entity], which searches the exact entity on Wikipedia and returns the first paragraph if it exists. If not, it will return some similar entities to search.
- (2) Lookup[keyword], which returns the next sentence containing keyword in the current passage.
- (3) Finish[answer], which returns the answer and finishes the task. Here are some examples.

Building up the ReAct prompt

Instructions

ReAct example

(could be more than one example)

Question to be answered

The significance of scale: application building

BLOOM 176B

*Bert-base

LLM powered application architectures

LLM Tools & Frameworks e.g. LangChain, Model Hubs

Application Interfaces e.g. Websites, Mobile Applications, APIs, etc.

LLM Tools & Frameworks e.g. LangChain, Model Hubs

Application Interfaces e.g. Websites, Mobile Applications, APIs, etc.

LLM Tools & Frameworks e.g. LangChain, Model Hubs

Conclusion, Responsible AI, and on-going research

Responsible Al

Dr. Nashlie Sephus

Responsible Al Dr. Nashlie Sephus

Responsible Al Dr. Nashlie Sephus

On-going research

Responsible AI

Responsible Al

Special challenges of responsible generative Al

- Toxicity
- Hallucinations
- Intellectual Property

Toxicity

LLM returns responses that can be potentially harmful or discriminatory towards protected groups or protected attributes

How to mitigate?

- Careful curation of training data
- Train guardrail models to filter out unwanted content
- Diverse group of human annotators

Hallucinations

LLM generates factually incorrect content

How to mitigate?

- Educate users about how generative AI works
- Add disclaimers
- Augment LLMs with independent, verified citation databases
- Define intended/unintended use cases

Intellectual Property

Ensure people aren't plagiarizing, make sure there aren't any copyright issues

How to mitigate?

- Mix of technology, policy, and legal mechanisms
- Machine "unlearning"
- Filtering and blocking approaches

Responsibly build and use generative AI models

- Define use cases: the more specific/narrow, the better
- Assess risks for each use case
- Evaluate performance for each use case
- Iterate over entire Al lifecycle

On-going research

- Responsible AI
- Scale models and predict performance
- More efficiencies across model development lifecycle
- Increased and emergent LLM capabilities

