CS217 - Data Structures & Algorithm Analysis (DSAA)

Lecture #12

Prof. Pietro S. Oliveto

Department of Computer Science and Engineering

Southern University of Science and Technology (SUSTech)

olivetop@sustech.edu.cn
https://faculty.sustech.edu.cn/olivetop

Reading: Sections 15.1 and 15.2

Aims of this lecture

- To discuss the greedy design paradigm for solving optimisation problems.
- To show how to prove correctness of greedy algorithms.
- To see examples of problems where greedy algorithms succeed,
 and examples of problems where the greedy approach fails.

Greedy Algorithms

- A greedy algorithm makes
 "greedy" locally optimal –
 choices for subproblems.
- The hope is that this yields a globally optimal solution.
- Greedy algorithms work well for some problems, but may fail miserably on others.

Activity Selection Problem

- Problem of scheduling competing activities that require exclusive use of a common resource, e.g. a lecture theatre.
- Input: activities $a_1, a_2, ..., a_n$ with start times $s_1, ..., s_n$ and finish times $f_1, ..., f_n$, where $0 \le s_i \le f_i < \infty$
- Activities are **compatible** if the intervals $[s_i, f_i]$ and $[s_j, f_j]$ do not overlap.
- Goal: select a maximum-size set of mutually compatible activities (e.g. schedule a maximum number of lectures in a lecture theatre).
- Assume without loss of generality that activities are sorted according to finish time: $f_1 \le f_2 \le \cdots \le f_n$

► Activity Selection Problem

i	1	2	3	4	5	6	7	8	9	10	11
S_i	1	3	0	5	3	5	6	7	8	2	12
f_i	4	5	6	7	9	9	10	11	12	14	16

Optimal substructure for activity selection

- Assume the optimal solution contains an activity a_k .
- By including a_k , we are left with two subproblems:
 - 1. Selecting mutually compatible activities that end **before** a_k starts.
 - 2. Selecting mutually compatible activities that start **after** a_k **has ended**.
- The solutions to the subproblems used within the optimal solution must themselves be optimal.
- Smells like Dynamic Programming!
 - Try all possible a_k and solve smaller subproblems

Dynamic programming approach

- Let S_{ij} : set of activities that start after a_i finishes and finish before a_j starts;
- Suppose you want to find the max set of compatible activities in S_{ij}
- Assume the optimal solution contains an activity a_k . So:

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset, \\ \max \{c[i,k] + c[k,j] + 1 : a_k \in S_{ij}\} & \text{if } S_{ij} \neq \emptyset. \end{cases}$$

- $c[i,j] = Opt(S_{ij})$ be the optimal solution size for S_{ij}
- Try all possible a_k and solve smaller subproblems
- Complete problem (n activities):

$$> Opt(S_{0(n+1)}) = \max\{Opt(S_{0k}) + Opt(S_{k(n+1)}) + 1, 0 < k < (n+1)\}$$

- S_{0k} denotes the set of activities that finish before a_k starts
- $S_{k(n+1)}$ those that start after a_k finishes.
- Actually, a simpler approach is possible.

Runtime?

Greedy choice for activity selection

- Intuition: choose an activity that leaves the resource available for as many other activities as possible.
- One of the activities we choose must be the first to finish.
- Intuition: choose the activity a_1 with the earliest finish time, since that leaves the resource available for as many activities that follow it as possible.
- Note: there may be other activities that start before a_1 , but they won't finish before time f_1 .

Correctness of the greedy choice

- Define S_k as the set of activities that start after a_k finishes.
- Theorem 15.1: Consider any nonempty subproblem S_k , and let a_m be an activity in S_k with the earliest finish time. Then a_m is included in **some** maximum-size subset of mutually compatible activities of S_k .
 - In other words: there is a maximum-size set that includes the activity with earliest finish time (greedy choice).
 - When applying the greedy choice we are still on track for finding a maximum-size set of activities.
 - Hence the greedy choice is always safe.

Proof of Theorem 15.1

Theorem 15.1: Consider any nonempty subproblem S_k , and let a_m be an activity in S_k with the earliest finish time. Then a_m is included in some maximum-size subset of mutually compatible activities of S_k .

- Let A_k be a maximum-size subset of mutually compatible activities in S_k , and let a_i be the activity in A_k with the earliest finish time.
 - a_m is the first-finishing activity in the whole subproblem (greedy choice)
 - a_i is the first-finishing activity selected in A_k , so $f_m \leq f_i$.
- To prove: there is a maximum-size compatible subset that includes a_m .
- If A_k includes the greedy choice a_m (that is, $a_i = a_m$), we're done.
- Otherwise, let's swap a_j for greedy choice a_m : $A_k' = A_k \setminus \{a_j\} \cup \{a_m\}$.
- Since $f_m \leq f_i$ and a_i is first-finishing, no incompatibilities are created.
- Since all activities in A_k were compatible, they are compatible in A_k '.
- As $|A_k'| = |A_k|$, A_k' is a maximum-size subset of compatible activities.

► Activity Selection Problem

i	1	2	3	4	5	6	7	8	9	10	11
S_i	1	3	0	5	3	5	6	7	8	2	12
f_i	4	5	6	7	9	9	10	11	12	14	16

Correctness of the greedy choice (2)

- General scheme for correctness of greedy algorithms:
 - Cast the optimisation problem as one in which we make a choice and are left with one subproblem to solve.
 - Prove that there is always an optimal solution to the original problem that makes the greedy choice, so that the greedy choice is always safe.

Idea behind Theorem 15.1:

- Consider an optimal solution A.
- If A contains the greedy choice, we're done.
- Otherwise, change A into A' such that A' contains the greedy choice and show that A' is also an optimal solution.

Greedy algorithm for activity selection

- ullet Pick first activity a_1 (earliest finish time) [line 1]
- Ignore activities starting before f_1 finishes [line 4]
- Pick first activity that starts after f_1 finishes (it has lowest f) [line 5]
- Iterate with remaining activities (k gives index of last activity added) [line
 6]

Runtime?

Recursive version

```
RECURSIVE-ACTIVITY-SELECTOR (s, f, k, n)

1 m = k + 1

2 while m \le n and s[m] < f[k] // find the first activity in S_k to finish

3 m = m + 1

4 if m \le n

5 return \{a_m\} \cup \text{RECURSIVE-ACTIVITY-SELECTOR}(s, f, m, n)

6 else return \emptyset
```

- Set $f_0 = 0$ and first recursive call for (s, f, 0, n)
- Looks for the first **compatible** activity to finish in S_k
- Recurse with remaining activities (m gives index of last activity added)
- Runtime?

Solution of example instance

Coin Changing Problem

 How to give make change for n pence with the fewest number of coins?

- What's a greedy strategy here?
 - Pick the largest coin of value $a_i \leq n$ and add $\lfloor n/a_i \rfloor$ coins.
 - Iterate with remaining value.
- Does it always work for Sterling?
- Does it always work for every currency?

▶ When Greed is not Good

When Greed is not Good (2)

- Travelling Salesman Problem (TSP): given n cities and distances $d_{i,j}$ between each two cities i, j, find a shortest tour that visits all cities exactly once.
- What's a greedy strategy?
 - Always visit the nearest unseen city.
- Does it always work?
- Consider the following instance: $d_{1,2}=d_{2,3}=d_{3,4}=...=d_{n-1,n}=1$ but $d_{n,1}=M$ for some arbitrarily large cost M. Let $d_{i,j}=2$ for all other edges.
 - Greedy algorithm picks all edges of weight 1, but is then forced to pick weight M. Solution can be arbitrarily bad!
 - Optimal tour has length n+2, e.g. 1, 2, 3, ..., n-2, n, n-1, 1

▶ 0-1 Knapsack problem

- A thief robbing a store finds n items. The i-th item is worth v_i Yuan $(\overline{\pi})$ and weighs w_i Grams (all integers). The thief can only carry at most W grams in his knapsack. Which items should he take to maximise profit?
- Called 0-1 because the thief can either take or leave items.
- What would a greedy approach look like?
 - 1. Sort items according to value per gram.
 - 2. Try to add items to the knapsack in this order.
- Have a guess: does this greedy approach always work?

► 0-1 Knapsack problem: greedy fails

Fractional Knapsack problem

Assume the thief can take fractions of items (e.g. stealing cheese)

Will the greedy strategy work?

▶ Greedy works for fractional knapsack

Greedy algorithm takes the best possible value per weight.

Summary

- Greedy algorithms make "greedy" local choices that hopefully lead to globally optimal solutions.
- Greedy algorithms work well for activity selection, coin changing, fractional knapsack and many other problems (more examples coming up later).
- Greedy algorithms may fail badly. For the Travelling Salesman
 Problem (TSP) we saw an instance class where the solution quality
 can be arbitrarily bad.
- Greedy fails for 0-1 Knapsack, but works for the (easier) fractional knapsack problem.