Indian Institute of Technology Roorkee

CHN-323 Computer Applications in Chemical Engineering

Ashwini Kumar Sharma

Department of Chemical Engineering Indian Institute of Technology Roorkee

Email: ashwini.fch@iitr.ac.in

- ightharpoonup Key idea: Rearrange f(x) = 0 as x = g(x) and then perform iterations as $x^{[n+1]} = g(x^{[n]})$
- \triangleright Example: $f(x) = x^2 2x 3 = 0$
 - Rearranging: $x^2 = 2x + 3 \rightarrow x = \sqrt{2x + 3}$
 - Iteration: Let us take x = 4 as initial guess

$$x_0 = 4$$
,
 $x_1 = \sqrt{11} = 3.31662$,
 $x_2 = \sqrt{9.63325} = 3.10375$,
 $x_3 = \sqrt{9.20750} = 3.03439$,
 $x_4 = \sqrt{9.06877} = 3.01144$,
 $x_5 = \sqrt{9.02288} = 3.00381$,

- Rearranging in the form of x = g(x) can be done in multiple ways
- Example: $f(x) = x^2 2x 3 = 0$ - $x^2 = 2x + 3 \rightarrow x = \sqrt{2x + 3}$ - $x = (x^2 - 3)/2$ - $x(x - 2) = 3 \rightarrow x = 3/(x - 2)$ - $x^2 = 2x - 3 \rightarrow x = 2 - (3/x)$

- > Let us try another rearrangement
- > Example: $f(x) = x^2 2x 3 = 0$
 - Rearranging: $x(x 2) = 3 \rightarrow x = 3/(x 2)$
 - Iteration: Let us take x = 4 as initial guess

$$x_0 = 4$$
, $x_3 = -0.375$,
 $x_1 = 1.5$, $x_4 = -1.263158$,
 $x_2 = -6$, $x_5 = -0.919355$,
 $x_6 = -1.02762$,
 $x_7 = -0.990876$,
 $x_8 = -1.00305$,

- > Let us try another rearrangement
- \triangleright Example: $f(x) = x^2 2x 3 = 0$
 - Rearranging: $x = (x^2 3)/2$
 - Iteration: Let us take x = 4 as initial guess

$$x_0 = 4,$$
 $x_1 = 6.5,$ $x_2 = 19.625,$ $x_3 = 191.070,$ Diverged!

➤ It appears that the different behaviors depend on whether the slope of the curve is greater, less, or of opposite sign to the slope of the line (which equals + 1).

- > Convergence is an issue
 - Not all rearrangements lead to convergence
- > Consider fixed point iteration:

-
$$x^{[n+1]} = g(x^{[n]})$$

- At convergence, r = g(r)

$$\rightarrow x^{[n+1]} - r = g(x^{[n]}) - g(r)$$

$$\rightarrow e^{[n+1]} = g(x^{[n]}) - g(r)$$

ightharpoonup Multiply and divide RHS with $x^{[n]}-r$

$$- e^{[n+1]} = \left(\frac{g(x^{[n]}) - g(r)}{x^{[n]} - r}\right) \left(x^{[n]} - r\right)$$

> With mean value theorem

$$e^{[n+1]} = g'(\xi)(x^{[n]} - r)$$

where ξ lies between $x^{[n]}$ and r

$$\rightarrow e^{[n+1]} = g'(\xi)e^{[n]}$$

- 1. The error will decrease with every iteration if $|g'(\xi)| < 1$
- 2. The rate of convergence is linear since $e^{[n+1]} \propto e^{[n]}$

Error analysis for Newton's method

- $x^{[n+1]} = x^{[n]} \frac{f(x^{[n]})}{f'(x^{[n]})}$
- \triangleright Comparing with the fixed point iteration method (i.e., x = g(x)), we can say

 $g(x) = x - \frac{f(x)}{f'(x)}$

 \succ We have found out that the method will converge if $|g'(\xi)| < 1$

$$g'(x) = 1 - \frac{(f')^2 - ff''}{(f')^2} = \frac{ff''}{(f')^2}$$

ightharpoonup At root (x=r), f(r)=0 and $f'(r)\neq 0$

Thus,
$$g'(r) = 0$$

For Newton scheme, we have |g'(r)| < 1. Therefore, with good initial guess, the Newton Scheme will converge.

System of nonlinear algebraic equations

$$f_1(x_1, x_2, \dots, x_n) = 0$$

 $f_2(x_1, x_2, \dots, x_n) = 0$
:
:
 $f_n(x_1, x_2, \dots, x_n) = 0$

- \triangleright In short form, $f(\underline{x}) = \underline{0}$
- \succ The equations are satisfied at the root ($\underline{x} = \underline{r}$), i.e.,

$$x_1 = r_1, x_2 = r_2, \dots, x_n = r_n$$

> Let us consider two nonlinear equations with two unknowns

$$f_1(x_1, x_2) = 0$$

$$f_2(x_1, x_2) = 0$$

$$\underline{f(\underline{x})} = \underline{0}$$

 \triangleright Assuming that the roots \underline{r} are $\{r1, r2\}$

Let us revise Taylor series expansion of f(x) around the point $x^{[0]}$ (for a single variable)

$$f(x) = f(x^{[0]}) + f'(x^{[0]})(x - x^{[0]}) + \frac{f''(x^{[0]})(x - x^{[0]})^2}{2!} + \cdots$$

Taylor series expansion of $\underline{f}(\underline{x})$ around the point $(x_1^{[0]}, x_2^{[0]})$ (for two variables)

$$f_{1}(x_{1}, x_{2}) = f_{1}\left(x_{1}^{[0]}, x_{2}^{[0]}\right) + \left[\frac{\partial f_{1}}{\partial x_{1}}\right]_{\left(x_{1}^{[0]}, x_{2}^{[0]}\right)} \left(x_{1} - x_{1}^{[0]}\right) + \left[\frac{\partial f_{1}}{\partial x_{2}}\right]_{\left(x_{1}^{[0]}, x_{2}^{[0]}\right)} \left(x_{2} - x_{2}^{[0]}\right) + \cdots$$

$$f_{2}(x_{1}, x_{2}) = f_{2}\left(x_{1}^{[0]}, x_{2}^{[0]}\right) + \left[\frac{\partial f_{2}}{\partial x_{1}}\right]_{\left(x_{1}^{[0]}, x_{2}^{[0]}\right)} \left(x_{1} - x_{1}^{[0]}\right) + \left[\frac{\partial f_{2}}{\partial x_{2}}\right]_{\left(x_{1}^{[0]}, x_{2}^{[0]}\right)} \left(x_{2} - x_{2}^{[0]}\right) + \cdots$$

 \succ Consider $\underline{x} = \underline{r}$ (roots)

$$f_{1}(r_{1}, r_{2}) = f_{1}\left(x_{1}^{[0]}, x_{2}^{[0]}\right) + \left[\frac{\partial f_{1}}{\partial x_{1}}\right]_{\left(x_{1}^{[0]}, x_{2}^{[0]}\right)} \left(r_{1} - x_{1}^{[0]}\right) + \left[\frac{\partial f_{1}}{\partial x_{2}}\right]_{\left(x_{1}^{[0]}, x_{2}^{[0]}\right)} \left(r_{2} - x_{2}^{[0]}\right)$$

$$f_{2}(r_{1}, r_{2}) = f_{2}\left(x_{1}^{[0]}, x_{2}^{[0]}\right) + \left[\frac{\partial f_{2}}{\partial x_{1}}\right]_{\left(x_{1}^{[0]}, x_{2}^{[0]}\right)} \left(r_{1} - x_{1}^{[0]}\right) + \left[\frac{\partial f_{2}}{\partial x_{2}}\right]_{\left(x_{1}^{[0]}, x_{2}^{[0]}\right)} \left(r_{2} - x_{2}^{[0]}\right)$$

ightharpoonup But $\underline{f}(\underline{r}) = \underline{0}$

$$0 = f_1 \left(x_1^{[0]}, x_2^{[0]} \right) + \left[\frac{\partial f_1}{\partial x_1} \right]_{\left(x_1^{[0]}, x_2^{[0]} \right)} \left(r_1 - x_1^{[0]} \right) + \left[\frac{\partial f_1}{\partial x_2} \right]_{\left(x_1^{[0]}, x_2^{[0]} \right)} \left(r_2 - x_2^{[0]} \right)$$

$$0 = f_2 \left(x_1^{[0]}, x_2^{[0]} \right) + \left[\frac{\partial f_2}{\partial x_1} \right]_{\left(x_1^{[0]}, x_2^{[0]} \right)} \left(r_1 - x_1^{[0]} \right) + \left[\frac{\partial f_2}{\partial x_2} \right]_{\left(x_1^{[0]}, x_2^{[0]} \right)} \left(r_2 - x_2^{[0]} \right)$$

 \succ Let us introduce $\delta_1=r_1-x_1^{[0]}$ and $\delta_2=r_2-x_2^{[0]}$

$$0 = f_1\left(x_1^{[0]}, x_2^{[0]}\right) + \left[\frac{\partial f_1}{\partial x_1}\right]_{\left(x_1^{[0]}, x_2^{[0]}\right)} \delta_1 + \left[\frac{\partial f_1}{\partial x_2}\right]_{\left(x_1^{[0]}, x_2^{[0]}\right)} \delta_2$$

$$0 = f_2\left(x_1^{[0]}, x_2^{[0]}\right) + \left[\frac{\partial f_2}{\partial x_1}\right]_{\left(x_1^{[0]}, x_2^{[0]}\right)} \delta_1 + \left[\frac{\partial f_2}{\partial x_2}\right]_{\left(x_1^{[0]}, x_2^{[0]}\right)} \delta_2$$

> In matrix form

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}_{\begin{pmatrix} x_1^{[0]}, x_2^{[0]} \end{pmatrix}} + \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix}_{\begin{pmatrix} x_1^{[0]}, x_2^{[0]} \end{pmatrix}} \begin{bmatrix} \delta_1 \\ \delta_2 \end{bmatrix}$$

> In compact form

$$\underline{0} = \underline{f}^{[0]} + \underline{J}^{[0]}\underline{\delta} \qquad \rightarrow \underline{\delta} = -\left[\underline{\underline{J}}^{[0]}\right]^{-1}\underline{f}^{[0]}$$

The improved guess $\underline{x}^{[1]}$ is obtained as $\underline{x}^{[0]} + \underline{\delta}$. Continue iterations until convergence.

> In general, we can write

$$\underline{\delta}^{[n]} = -\left[\underline{\underline{J}}^{[n]}\right]^{-1} \underline{f}^{[n]}$$

$$\underline{x}^{[n+1]} = \underline{x}^{[n]} + \underline{\delta}^{[n]}$$

Example

> 5 CSTR Of equal volume operating in series at steady state. Reaction $(A \rightarrow B)$ in CSTR is second order, reaction rate constant is unity. Volumetric flow rate at inlet of 1st reactor is 200 m³/s. In the figure below, x denotes concentration of A. Find Volume of each reactor.

