SOLUCIÓN EJERCICIO 3 HETEROCEDASTICIDAD

A.- Estimación MCO de G3 en función de Y. Modelo/ Mínimos Cuadrados Ordinarios

Modelo 1:MCO, usando las observaciones 1-52 Variable dependiente: G3

	Coeficiente	Desv. Típico	a Estadístico t	Valor p	
const	-34586.2	13764.1	-2.5128	0.01525	**
Y	0.0571362	0.00661446	8.6381	< 0.00001	***
Media de la vble. de	p. 834	82.67 D.7	T. de la vble. dep.	182	256.02
Suma de cuad. resid	uos 6.82	2e+09 D.7	T. de la regresión	116	578.95
R-cuadrado	0.59	98768 R-c	uadrado corregid	lo 0.5	90743
F(1, 50)	74.6	51619 Val	lor p (de F)	1.7	74e-11
Log-verosimilitud	-559	.7733 Cri	terio de Akaike	112	23.547
Criterio de Schwarz	112	7.449 Cri	t. de Hannan-Qui	nn 112	25.043

B.- Analizar la posible presencia heterocedasticidad utilizando todos los instrumentos disponibles.

1.- Gráfico de los residuos

GRÁFICO/GRÁFICO DE RESIDUOS/POR NÚMERO DE OBSERVACIONES

Se detecta un dato atípico que podría ser causa de heterocedasticidad.

Vamos a hacer el gráfico de los residuos contra la variable y-renta

GRÁFICO/GRÁFICO DE RESIDUOS/Contra y

Parece que el atípico se debe a una provincia con renta alta.

2.- Contraste de White

CONTRASTES/HETEROCEDASTICIDAD/CONTRASTE DE WHITE

Contraste de heterocedasticidad de White MCO, usando las observaciones 1-52 Variable dependiente: uhat^2

	Coeficiente	Desv. Típica	Estadístico t	Valor p
const	3.30131e+09	2.17010e+09	1.521	0.1346
Y	-3441.42	2103.70	-1.636	0.1083
sq_Y	0.000910209	0.000505048	1.802	0.0777 *

ATENCIÓN: ¡matriz de datos casi singular!

R-cuadrado = 0.159504

Estadístico de contraste: $TR^2 = 8.294203$, con valor p = P(Chi-cuadrado(2) > 8.294203) = 0.015810

Para un nivel de significación del 5% se rechaza la hipótesis nula de homocedasticidad

3.- Contraste de Breusch-Pagan

CONTRASTES/HETEROCEDASTICIDAD/BREUSCH-PAGAN

Contraste de heterocedasticidad de Breusch-Pagan MCO, usando las observaciones 1-52 Variable dependiente: uhat^2 escalado

	Coeficiente	Desv. Típica	Estadístico t	Valor p
const	-4.38305	2.25266	-1.946	0.0573 *
Y	2.60498e-06	1.08254e-06	2.406	0.0198 **

Suma de cuadrados explicada = 21.1557

Estadístico de contraste: LM = 10.577842, con valor p = P(Chi-cuadrado(1) > 10.577842) = 0.001145

Se rechaza la hipótesis nula de Homocedasticidad

4.- Contraste de GOLDFELD-QUANDT

Primero hay que ordenar las variables en función de las variables que creemos causan la heteroscedasticidad, en este caso Y.

DATOS/ORDENAR LOS DATOS hay que seleccionar la clave de ordenación, en nuestro caso la variable Y y el sentido de la ordenación ASCENDENTE

Estimar CAMBIANDO el tamaño de la MUESTRA: Cogemos c = 16 y la primera muestra de 1-18 y la segunda de 35-52.

Para la primera muestra estimamos el modelo:

Modelo gq1: MCO, usando las observaciones 1-18 Variable dependiente: G3

	Coeficiente	Desv. Típic	ca Estadístico t	Valor p
const	28769,8	27046,2	1,0637	0,30324
Y	0,0234885	0,0150212	2 1,5637	0,13745
Media de la vble. de	p. 7099	95,66 D	T. de la vble. dep	6666,834
Suma de cuad. resid	uos 6,55	5e+08 D	T. de la regresión	6400,345
R-cuadrado	0,13	32562 R-	-cuadrado corregio	do 0,078347
F(1, 16)	2,44	15118 V	alor p (de F)	0,137452
Log-verosimilitud	-182	,2348 C1	riterio de Akaike	368,4696
Criterio de Schwarz	370	,2503 C1	rit. de Hannan-Qu	inn 368,7151

SR1=655000000

Modelo gq2: MCO, usando las observaciones 34-52 (n = 19) Variable dependiente: G3

	Coeficiente	Desv.	Típica	Estadístico t	Valor p	
const	-217365	476	12,8	-4,5653	0,00027	***
Y	0,135751	0,020)4736	6,6305	<0,00001	***
Media de la vble. de	ep. 978.	56,20		de la vble. dep.)994,83
Suma de cuad. resid	luos 2,21	e+09	D.T.	de la regresión	11	1408,07
R-cuadrado	0,72	21147	R-cu	adrado corregio	lo 0,	704743
F(1, 17)	43,9	96391	Valo	r p (de F)	4	,25e-06
Log-verosimilitud	-203	,4026	Crite	rio de Akaike	41	0,8053
Criterio de Schwarz	412	,6941	Crit.	de Hannan-Qui	inn 41	1,1249
SSR2 = 2210000000						

GQ=SR2/SR1=3,37>((T-c)/2)-k, ((T-c)/2)-k)= $F_{16.16}(0,025) = 2,76$

Rechazamos la hipótesis nula de Homocedasticidad.

C.- Estimación MCG, transformamos el modelo dividiendo todas las observaciones por y_i

$$G3_{i} / y_{i} = \beta_{i} 1 / y_{i} + \beta_{2} y_{i} / y_{i} + u_{i} / y_{i}$$

$$E(u_{i} / y_{i}) = 0$$

$$v(u_{i} / y_{i}) = E(u_{i}^{2} / y_{i}^{2}) = \sigma^{2} y_{i}^{2} / y_{i}^{2} = \sigma^{2}$$

Llamamos G3M=G3/Y YM=Y/Y YM=1/Y

Y aplicamos MCO al modelo transformado, obtenemos las estimaciones MCG:

Modelo MCG:MCO, usando las observaciones 1-52 Variable dependiente: G3M

YM	<i>Coeficiente</i> 0,0512317	Desv. 2	•	Estadístico t 8,2820	<i>Valor p</i> <0,0001	***
				<i>'</i>	,	
iY	-22467,5	125	12	-1,7957	0,07859	*
Media de la vble. de	p. 0,04	40203	D.T.	de la vble. dep.	0,0	005443
Suma de cuad. resido	uos 0,00	01420	D.T.	de la regresión	0,0	005328
R-cuadrado	0,0	50583	R-cu	adrado corregid	o 0,0)41794
F(1, 50)	3,22	24476	Valo	r p (de F)	0,0)78589
Log-verosimilitud	199	,4409	Crite	rio de Akaike	-39	4,8818
Criterio de Schwarz	-390	,9793	Crit.	de Hannan-Qui	nn -39	3,3857

D.- Intentamos especificar otro modelo en logaritmos para corregir el posible problema de especificación del modelo.

Para ello transformamos las variables en logaritmos y aplicamos MCO.

Modelo 13: MCO, usando las observaciones 1-52 Variable dependiente: l_G3

	Coeficiente	Desv. 7	Гіріса	Estadístico t	Valor p	
const	-7,13411	2,193	393	-3,2517	0,00206	***
l_Y	1,26913	0,150	944	8,4079	<0,00001	***
Media de la vble. de	p. 11,3	31175	D.T.	de la vble. dep.	0,1	99836
Suma de cuad. resid	uos 0,84	13731	D.T.	de la regresión	0,1	29902
R-cuadrado	0,58	35728	R-cu	adrado corregid	o 0,5	77442
F(1, 50)	70,0	59353	Valo	r p (de F)	3,9	92e-11
Log-verosimilitud	33,3	36551	Crite	rio de Akaike	-62	,73102
Criterio de Schwarz	-58,8	32853	Crit.	de Hannan-Qui	nn -61	,23489

Aplicamos el contraste de White para ver si este nuevo modelo presenta o no problemas de heterocedasticidad.

Contraste de heterocedasticidad de White MCO, usando las observaciones 1-52 Variable dependiente: uhat^2

	Coeficiente	Desv. Típica	Estadístico t	Valor p
const	27,1828	43,1853	0,6294	0,5320
l_Y	-3,78435	5,94590	-0,6365	0,5274
sq_l_Y	0,131763	0,204653	0,6438	0,5227

R-cuadrado = 0,057481

Estadístico de contraste: $TR^2 = 2,989024$, con valor p = P(Chi-cuadrado(2) > 2,989024) = 0,224358

parece que la nueva especificación ha corregido el problemas de heterocedasticidad.

D.- Estimación robusta a heterocedasticidad de White

Se hace la estimación MCO pero se marca DESVIACIONES TIPICAS ROBUSTAS

Modelo 14: MCO, usando las observaciones 1-52 Variable dependiente: G3 Desviaciones típicas robustas ante heterocedasticidad, variante HC1

const Y	<i>Coeficiente</i> -34586,2 0,0571362	Desv. 7 1645 0,0083	1,1	Estadístico t -2,1024 6,8597	<i>Valor p</i> 0,04058 <0,00001	** ***
•	0,0271202	0,0000		0,0277	(0,00001	
Media de la vble. de	p. 834	82,67	D.T.	de la vble. dep.	182	256,02
Suma de cuad. reside	uos 6,82	2e+09	D.T.	de la regresión	110	578,95
R-cuadrado	0,59	98768	R-cu	adrado corregid	o 0,5	90743
F(1, 50)	47,0)5502	Valo	r p (de F)	9,9	95e-09
Log-verosimilitud	-559	,7733	Crite	rio de Akaike	112	23,547
Criterio de Schwarz	112	7,449	Crit.	de Hannan-Qui	nn 112	25,043

Las desviaciones típicas de los estimadores han cambiado y los contrastes ty F son válidos.

E.- Contraste de normalidad

Utilizamos el contraste de Jarque-Bera para el modelo lineal Modelo 1

Para ello guardamos los residuos del modelo como **uhat1** y calculamos los contrastes de normalidad: VARIABLE/CONTRASTES DE NORMALIDAD

Contraste de Jarque-Bera = 11,2, con valor p - valor=0,00369789

Rechazamos la hipótesis nula de normalidad

Si contrastamos la hipótesis nula de normalidad en el modelo logarítmico:

Contraste de Jarque-Bera = 0,184249, con valor p-valor =0,911992. No presenta problemas de normalida