

Summer 2022

Data Integration

Thorsten Papenbrock

Duplicate: Two representations (e.g. records, objects, XML structures) that represent the same real-world entity or concept

• Example:

Name	Street	Number
Ernie	Sesamstr.	2
Fienchen	Sesamstr.	1
Bert	Sesamstr.	2
Samson	Sesamstr.	1
Tiffy	Sesamstr.	1 3
Kermit	Sesamstr.	6
Grobi	Sesamstr.	4
Krümelmonster	Sesamstr.	8
Mumpitz	Sesamstr.	7
Oscar	Sesamstr.	5
Bibo	Sesamstr.	9
Graf Zahl	Sesamstr.	93/4
Kermitt	Sesamstr.	6
Finchen	Sesamstr.	1
Rumpel	Sesamstr.	1.5

Data Integration

Entity Resolution

Duplicate: Two representations (e.g. records, objects, XML structures) that represent the same real-world entity or concept

Example:

Data Integration

Entity Resolution

Two representations (e.g. records, objects, XML structures) Duplicate: that represent the same real-world entity or concept

- Typically not equal but similar (w.r.t. values, attribute sets, references)
- Example:

THE RESIDENCE OF THE RESIDENCE OF THE STATE OF THE STATE

QWMQ0071368 Dr Felix Naumann 72 A R.-Breitscheid-Str Potsdam

14482 GERMANY

QWMX0071362 Felix Naumann Rudolf-Breitscheid-Str 72A Potsdam 14482

GERMANY

- Origin examples:
 - Data integration: data silos, data sharing, data discovery
 - Errors in data entry: typos, redundancies, transmission
 - Fraudulent actions: manipulation, human mistakes

Data Integration

Entity Resolution

Duplicate: Two representations (e.g. records, objects, XML structures) that represent the same real-world entity or concept

- Typically not equal but similar (w.r.t. values, attribute sets, references)
- Effects:
 - Wrong decision making
 - Actions are carried out multiple times per entity
 - Inaccurate statistics
 - Number of entities is counted to high
 - Poorly trained machine learning models
 - Duplicate entries introduce bias and misclassifications
 - Software failures
 - Unique constraints may be violated

All this costs a lot of money in practice!

Data Integration

Entity Resolution

Token-based Similarity: n-grams

k

- The function to (x) splits the string x into short substrings of length n by sliding a window of size n over x; every slide creates an n-gram.
 - n=2: Bigrams; n=3: Trigrams
 - Number of n-grams = |x| n + 1
- Variation 1: Pad with n 1 special characters
 - Emphasizes beginning and end of string
- Variation 2: Include positional information
 - Useful to weight tokens by their positions

String	Bigrams	Padded bigrams	Positional bigrams	Trigrams	
gail	ga, ai, il	⊙g, ga, ai, il, l⊗	(ga,1), (ai,2), (il,3)	gai, ail	
gayle	ga, ay, yl, le	\odot g, ga, ay, yl, le, e \otimes	(ga,1), (ay,2), (yl,3), (le,4)	gay, ayl, yle	
peter	pe, et, te, er	⊙p, pe, et, te, er, r⊗	(pe,1), (et,2), (te,3), (er,4)	pet, ete, ter	
pedro	pe, ed, dr, ro	\odot p, pe, ed, dr, ro, o \otimes	(pe,1), (ed,2), (dr,3), (ro,4)	ped, edr, dro	

Data Integration

Data Matching

"Thorsten Papenbrock"

"Th", "ho", "or", ...

Token-based Similarity: n-grams

Data Integration

Data Matching

Levenshtein Distance

This is the challenge!

Definition:

- $dist_{levenshtein}(x,y)$ = minimum number of edits (insert, delete, replace) that transform the string x into string y
- The most popular metric for describing the edit-distance of strings

Operations:

- 1. insert a character into the string
- 2. delete a character from the string
- 3. replace (substitute) a character with a different character

Examples:

- dist_{levenshtein}('table', 'cable') = 1 (1 replace)
- dist_{levenshtein}('Thorsten Papenbrock', 'Papenbrock, Thorsten') = 19
 (9 deletes + 10 inserts)

Insertion

Substitution

ThorstenPapenbrock Slide **8**

Deletion

Levenshtein Distance

Calculation:

- Calculating the minimum edit-distance is a case for dynamic programming
- Optimality principle:
 - Any minimum edit-distance of two substrings must be part of the best overall solution.
- Dynamic programming algorithm:
 - 1. Initialize a matrix M of size $(|x|+1) \times (|y|+1)$
 - 2. Fill matrix: $M_{i,0} = i$ and $M_{0,j} = j$
 - 3. Recursion: $M_{i,j} = \begin{cases} n & M_{i-1,j-1} & \text{if } x[i] = y[j] \\ 1 + \min \left(M_{i-1,j}, M_{i,j-1}, M_{i-1,j-1} \right) & \text{els} \end{cases}$
 - 4. Distance: dis_{levens} $(x, y) = M_{|x|,|y|}$

Data Integration

Data Matching

Levenshtein Distance

Calculation example:

		J	0	N	Ε	S
	0	1	2	3	4	5
J	1					
0	2					
н	3					
N	4					
S	5					
0	6					
N	7					

$$M_{i,0} = i$$
 and $M_{0,j} = j$

		J	0	N	E	S
	0	,1	2	3	4	5
J	1	0	1	25	3	4
0	2					
Н	3					
N	4					
S	5					
0	6					
N	7					

		J	0	N	E	S
	0	1	2	3	4	5
J	1	0	.1	2	3	4
0	2	1	0	1	2	3
Н	3	2	1	1,	2	3
N	4	3	2	1-	2	3
S	5	4	3	2	2	2
0	6	5	4	3	3	3
N	7	6	5	4	4	4

$$M_{i,j} = \begin{cases} & n & M_{i-1,j-1} & if \ x[i] = y[j] \\ 1 + \min \ \left(M_{i-1,j}, M_{i,j-1}, M_{i-1,j-1} \right) & els \end{cases}$$

Every path leads to the same optimal solution!

Data Integration

Data Matching

String Similarity Levenshtein Distance

Similarity:

• $sim_{levenshtein}(x,y) = 1 - dist_{levenshtein}(x,y) / max(|x|,|y|)$

x	у	Lev. Distance	Lev. Similarity
Jones	Johnson	4	0.43
Paul	Pual	2	0.5
Paul Jones	Jones, Paul	11	0

Discussion:

- Robust against different forms and positions of typos
- Easy to understand and implement
- Unsupervised similarity metric
- Sensitive to word order changes
- Expensive to calculate

Data Integration

Data Matching

Levenshtein Distance

Complexity:

- Time: $O(|x| \cdot |y|)$ (calculate entire matrix)
- Space: $O(\min(|x|,|y|))$ (store only two rows of the matrix)

Properties:

- $0 \le dist_{levenshtein}(x,y) \le max(|x|,|y|)$
- $||x|-|y|| \le dist_{levenshtein}(x,y)$

Good lower-bound estimate to possibly skip the exact distance computation!

Cost models (extension): Assign different costs to edit-operations.

- By operation:
 - E.g. replace costs 0.5 but insert/delete cost 1.0 to punish string length changes.
- By character:
 - E.g. OCR (m \simeq n, 1 \simeq l) or keyboard (a \simeq s) or brain (6 \simeq 9) or biology (a \simeq t)

Data Integration

Data Matching

Blocking

Real-world Data is Dirty: Data Cleansing and The Merge/Purge Problem. 1998

Sorted Neighborhood Method (SNM)

	1	2	m	4	5	9	7	œ	6	10	11	12	13	14	15	16	17	18	19	20	
1																					
2																					1
3																					
4																					
5																					ľ
6																					
7																					
8																					
9																					
10																					
11																					
12																					
13																					
14																					
15																					
16																					
17																					
18																					
19																					
20																					

- Sort tuples so that similar tuples are close to each other.
- Compare tuples only within a small neighborhood (= window).

Real-world Data is Dirty: Data Cleansing and The Merge/Purge Problem. 1998

Sorted Neighborhood Method (SNM)

	H	2	м	4	N	9	7	œ	6	10	11	12	13	14	15	16	17	18	19	20	S
1]
2																					•
3																					
4																					L
5																					•
6																					
7																					1
8																					-
9																					
10																					
11																					
12																					2
13																					
14																					
15																					
16																					3
17																					را
18																					
19																					
20																					

- Sort tuples so that similar tuples are close to each other.
- Compare tuples only within a small neighborhood (= window).
- Generate a key
 - E.g. SSN
 - E.g. Name[1-3] + Age + ...
- 2. Sort entire relation by the key
 - Sort records physically or create a sorted index.
- 3. Slide a window over sorted tuples
 - Compare all pairs of tuples within the sliding window.

Real-world Data is Dirty: Data Cleansing and The Merge/Purge Problem.

Sorted Neighborhood Method (SNM)

- Sort tuples so that similar tuples are close to each other.
- Compare tuples only within a small neighborhood (= window).
- Generate a key
 - E.g. SSN
 - E.g. Name[1-3] + Age + ...
- Sort entire relation by the key
 - Sort records physically or create a sorted index.
 - Slide a window over sorted tuples
 - Compare all pairs of tuples within the sliding window.

Blocking

Real-world Data is Dirty: Data Cleansing and The Merge/Purge Problem.

Sorted Neighborhood Method (SNM)

- Sort tuples so that similar tuples are close to each other.
- Compare tuples only within a small neighborhood (= window).
- Generate a key
 - E.g. SSN
 - E.g. Name[1-3] + Age + ...
- Sort entire relation by the key
 - Sort records physically or create a sorted index.
 - Slide a window over sorted tuples
 - Compare all pairs of tuples within the sliding window.

Real-world Data is Dirty: Data Cleansing and The Merge/Purge Problem.

Sorted Neighborhood Method (SNM)

- Sort tuples so that similar tuples are close to each other.
- Compare tuples only within a small neighborhood (= window).
- Generate a key
 - E.g. SSN
 - E.g. Name[1-3] + Age + ...
- Sort entire relation by the key
 - Sort records physically or create a sorted index.
 - Slide a window over sorted tuples
 - Compare all pairs of tuples within the sliding window.