Лабораторная работа №5. Томография квантовых процессов

Пусть ρ есть матрица плотности некоторого состояния, заданного в гильбертовом пространстве размерности d. Её преобразование под действием квантового процесса $\mathcal E$ может быть описано с использованием операторного разложения Крауса:

$$\mathcal{E}(\rho) = \sum_{k=1}^{r} E_k \rho E_k^{\dagger}. \tag{1}$$

Здесь E_k операторы Крауса, а число r этих операторов задаёт ранг квантового процесса. Для того, чтобы рассматриваемый процесс сохранял нормировку матрицы плотности, необходимо выполнения условия

$$\sum_{k=1}^{r} E_k^{\dagger} E_k = I_d \tag{2}$$

Здесь и ниже I_d обозначает единичную матрицу размерности $d \times d$. Легко видеть, что случай r=1 описывает унитарный квантовый процесс с единственным оператором Крауса.

Введём матричный базис $\{A_m, m=1,\ldots,d^2: {\rm Tr}\big(A_m^\dagger A_n\big)=\delta_{mn}\}$ и запишем через него разложение (1):

$$\mathcal{E}(\rho) = \sum_{m,n=0}^{d^2 - 1} \chi_{mn} A_m \rho A_n^{\dagger}. \tag{3}$$

Здесь была введена комплексная эрмитова матрица размерности $d^2 \times d^2$:

$$\chi = ee^{\dagger},\tag{4}$$

где матрица e имеет размерность $d^2 \times r$ и задаётся коэффициентами разложения операторов Крауса по введённому базису:

$$E_k = \sum_{m=0}^{d^2 - 1} e_{mk} A_m. (5)$$

Наиболее естественным является следующий операторный базис (такой базис называют стандартным):

$$A_m = |m_2\rangle\langle m_1|, \quad m = m_1 \cdot d + m_2, \quad m_1, m_2 = 0, \dots, d - 1.$$
 (6)

На пересечении $(m_1 + 1)$ -го столбца и $(m_2 + 1)$ -ой строки матрицы оператора A_m находится единица, а все остальные матричные элементы равны нулю:

$$A_{0} = \begin{pmatrix} 1 & \cdots & 0 \\ 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix}, \quad A_{1} = \begin{pmatrix} 0 & \cdots & 0 \\ 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix}, \quad \dots, \quad A_{d^{2}-1} = \begin{pmatrix} 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix}.$$
 (7)

В таком базисе k-й столбец матрицы e из (4) получается путём вытягивания матрицы k-го оператора Крауса в столбец (второй столбец помещается под первый, затем идёт третий и т.д.).

Из определения (4) видно, что матрица χ является неотрицательно определённой. Она задана в гильбертовом пространстве размерности d^2 , которое можно представить как тензорное произведение пространств подсистем A и B размерности d каждая. Тогда условие сохранение следа (2) для матрицы χ выражается в виде:

$$Tr_B(\chi) = I_d, \tag{8}$$

Полный след матрицы χ равен d.

Описание процесса в терминах операторов Крауса и матрицы процесса χ полностью эквивалентны, и могут быть сведены друг к другу. Однако, как можно видеть из (4), операторы Крауса определены с точностью до весьма широкого унитарного произвола. В самом деле, матрицы e и eV, где V — унитарная матрица размерности $r \times r$, порождают одну и ту же матрицу χ и определяют, таким образом, один и тот же квантовый процесс.

Аналогично, операторы Крауса могут быть легко вычислены на основе матрицы χ посредством её спектрального разложения: $\chi = UDU^\dagger$, где U — унитарная унитарная матрица собственных векторов, а D — диагональная матрица собственных значений матрицы χ . Тогда $e = U\sqrt{D}$, и матрицы операторов Крауса вычисляются из столбцов матрицы e путём выполнения процедуры, обратной вытягиванию в столбец. Отсюда также можно видеть, что ранг матрицы χ задаёт ранг квантового процесса. Матрица χ ранга 1 определяет унитарный квантовый процесс.

Поскольку матрица процесса обладает всеми теми же свойствами, что и матрица плотности, заданная в пространстве большей размерности, для реконструкции процесса могут использоваться методы реконструкции квантовых состояний. В частности, использование корневого подхода и решение уравнения правдоподобия позволяют получить матрицу e с заданным числом столбцов r (заданным рангом квантового процесса).

Рассмотрим квантовое состояние, описываемое матрицей плотности ρ . Пусть над этим состоянием выполняется процесс \mathcal{E} , после чего производится измерение с операторами P_l . Тогда вероятность получения l-го результата определяется выражением

$$p_l = \text{Tr}[\mathcal{E}(\rho)P_l] = \text{Tr}(\chi\Lambda_l), \quad \Lambda_l = \rho^* \otimes P_l.$$
 (9)

Таким образом, описанное измерение статистически эквивалентно измерению квантового состояния χ в гильбертовом пространстве размерности d^2 с операторами измерения Λ_l . Подавая на вход процесса различные квантовые состояния и выполняя на выходе различные измерения, можно получить такой набор операторов $\Lambda_{j,l}$ (индекс j задаёт измерительную схему, а l — индекс результата измерения в этой схеме), который будет обеспечивать информационную полноту относительно реконструкции матрицы χ .

Ниже мы будем рассматривать протокол измерений, в котором на вход процесса подаётся m_p различных состояний, и каждое из этих состояний подвергается одному из m_m измерений. Тогда в общей сложности необходимо реализовать $m=m_p\cdot m_m$ измерительных схем.

Пусть j-я схема измерений повторялась n_j раз, в результате чего были получены числа отсчётов $k_{j,l}$, а соответствующие эффективные операторы измерений есть $\Lambda_{j,l}$. Реконструкция матрицы e из (4) может быть выполнена с использованием того же алгоритма, которым выполнялась реконструкция квантового состояния в разделе: решается уравнение правдоподобия с нулевым приближением, полученным в результате псевдо-инверсии с проецированием. Из полученной матрицы e далее вычисляется матрица процесса:

$$\chi = d \cdot \frac{ee^{\dagger}}{\text{Tr}(e^{\dagger}e)}.$$
 (10)

Полученный результат, однако, в общем случае не будет удовлетворять свойству сохранения следа (8). Пусть $\Pi_{\varphi} = |\varphi\rangle\langle\varphi|$ — проектор на некоторое состояние $|\varphi\rangle$. Введём фиктивный оператор измерения $\Lambda_{\varphi} = \Pi_{\varphi} \otimes E$. Из уравнения (8) можно видеть, что соответствующая вероятность есть

$$p_{\varphi} = \text{Tr}(\chi \Lambda_{\varphi}) \equiv \text{Tr}_{AB}(\chi \Lambda_{\varphi}) = \text{Tr}_{A}(\text{Tr}_{B}(\chi)\Pi_{\varphi}) = \text{Tr}_{A}(I_{d}\Pi_{\varphi}) = 1. \tag{11}$$

Таким образом, описанное выше фиктивное измерение матрицы χ посредством оператора Λ_{φ} для сохраняющих след процессов даёт одну и ту же вероятность вне зависимости от $|\varphi\rangle$ и конкретного вида рассматриваемого процесса. Число отсчётов в таком фиктивном измерении асимптотически равняется числу измерений: $k_{\varphi} = n_{\varphi}$. Таким образом, дополняя исходный протокол измерений операторами $\Lambda_{\varphi_1}, \Lambda_{\varphi_2}, \ldots$ такими, что $\{|\varphi_1\rangle, |\varphi_2\rangle, \ldots\}$ является информационно полным набором векторов для подсистемы A, можно обеспечить автоматическое выполнение условия сохранения следа в результате реконструкции. При этом для обеспечения достаточной точности выполнения данного условия, следует взять $n_{\varphi} = 1000 \cdot \max_{j}(n_{j})$ для каждого φ .

Для оценки близости истинного χ и реконструированного $\hat{\chi}$ процессов будем использовать меру fidelity для квантовых состояний:

$$F(\chi, \hat{\chi}) = \left(\text{Tr}\sqrt{\sqrt{\rho_{\chi}}\rho_{\hat{\chi}}\sqrt{\rho_{\chi}}}\right)^{2},\tag{12}$$

где $\rho_{\rm g}=\chi/d$ есть квантовое состояние, соответствующее процессу.

Задание

Выберите размерность пространства и протокол томографии согласно своему варианту:

Вариант	d	Входные состояния	Набор измерений
1	2	Грани тетраэдра	MUB
2	3	15 случайных состояний	MUB
3	4	20 случайных состояний	MUB
4	3	Вектора MUB	Случайные базисы
5	4	Вектора MUB	Случайные базисы
6	2	Вектора MUB	Грани тетраэдра
7	2	Вектора MUB	Грани октаэдра

- 1. Составьте эффективные операторы измерения $\Lambda_{j,l}$ квантового процесса.
- 2. На основе полученных операторов составьте матрицу измерений B и определите её число обусловленности. Является ли рассматриваемый протокол информационно полным?
- 3. Сгенерируйте статистические данные для случайного унитарного процесса, полагая, что на каждую измерительную схему приходится по 100 измерений.
- 4. Дополните исходный протокол измерений фиктивными операторами измерений, используя все вектора MUB для соответствующей размерности.
- 5. На основе результатов симулированных измерений, дополненных асимптотическими результатами фиктивных измерений, выполните реконструкцию квантового процесса. Вычислите *fidelity* между истинным и реконструированным процессами.
- 6. Выполните описанные выше процедуры 100 раз и постройте гистограмму fidelity.