Regression

1. Introduction

Olivier Sigaud

Sorbonne Université http://people.isir.upmc.fr/sigaud

Motivations

Two main motivations for this class:

- ▶ Regression for robotics: approximating mechanical models
- ► Function approximation with deep neural networks, particularly deep RL

Sigaud, O., Salaün, C., & Padois, V. (2011) On-line regression algorithms for learning mechanical models of robots: a survey. Robotics and Autonomous Systems, 59(12):1115–1129

Regression is function approximation

Temperature (°C)	Temperature (K)	Pressure (kPa)	
-150	173	36.0	
-100	223	46.4	
-50	273	56.7	
0	323	67.1	
50	373	77.5	
100	423	88.0	

In regression:

- ▶ We have a set of related measurements
- ▶ We look for a latent function that relates the corresponding variables
- ▶ We choose a model over a class of (parametric) functions
- ► Here an example of linear (center) and nonlinear (right) regression

Nonlinear regression

Sample Size(n)	λ	k	BIAS	CV
120	0 (without ridge)	30	6.12	6.01
100	1.15e-1	50	0.0030	0.0090
100	1.15e-5	20	2.52e-6	0.008
100	7.15e-5	20	1.57e-5	0.0085
100	1.15e-2	20	0.0023	0.0098
100	1.15e-3	20	2.50e-4	0.0083
100	1.15e-7	20	2.88e-8	0.009
100	8.15e-10	10	3.61e-6	0.0082
100	1.15e-3	10	0.0058	0.0096
100	7.15e-5	5	0.0179	0.0182
100	8.15e-10	5	0.0165	0.0177
120	1.15e-3	30	1.68e-5	0.0086
120	7.15e-5	30	0.0014	0.0093

- ▶ The function between variables can be arbitrarily complicated
- ▶ It can be multidimensional

Regression: basic process and notations

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_{1,1} & \mathbf{x}_{1,2} & \cdots & \mathbf{x}_{1,D} \\ \mathbf{x}_{2,1} & \mathbf{x}_{2,2} & \cdots & \mathbf{x}_{2,D} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_{N,1} & \mathbf{x}_{N,2} & \cdots & \mathbf{x}_{N,D} \end{pmatrix} \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix}$$
(design matrix)

- ▶ The set of measurements is a batch of datapoints
- ▶ Input: N samples $\mathbf{x}_n \in \mathbb{R}^D$, $y_n \in \mathbb{R}$,
- ▶ Stored in $\mathbf{X} = [\mathbf{x}_1, \cdots, \mathbf{x}_N]$ (design matrix), $\mathbf{y} = [y_1, \cdots, y_N]$

Regression: latent function

- ▶ The measurements correspond to an unknown function
- ▶ They can be subject to some noise
- ▶ We want to approximate the latent function (in red)

Regression: the output is a model

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_{1,1} & \mathbf{x}_{1,2} & \cdots & \mathbf{x}_{1,D} \\ \mathbf{x}_{2,1} & \mathbf{x}_{2,2} & \cdots & \mathbf{x}_{2,D} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_{N,1} & \mathbf{x}_{N,2} & \cdots & \mathbf{x}_{N,D} \end{pmatrix} \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix}$$
(design matrix)

- We choose a parametric model over a class of functions
- ► Here we consider linear models (in blue)
- ▶ Output: a model \hat{f} of the latent function f such that $\mathbf{y} \sim \hat{f}(\mathbf{X})$

Regression: minimizing the expectation of the error

$$\mathbf{X} = \left(\begin{array}{cccc} \mathbf{x}_{1,1} & \mathbf{x}_{1,2} & \cdots & \mathbf{x}_{1,D} \\ \mathbf{x}_{2,1} & \mathbf{x}_{2,2} & \cdots & \mathbf{x}_{2,D} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_{N,1} & \mathbf{x}_{N,2} & \cdots & \mathbf{x}_{N,D} \end{array} \right) \ \mathbf{y} = \left(\begin{array}{c} y_1 \\ y_2 \\ \vdots \\ y_N \end{array} \right)$$

$$\left(\text{design matrix} \right)$$

- lacktriangle We want to minimize some difference between f and \hat{f}
- An option would be the expectation of the error between f and \hat{f} over the input space (light blue area)
- In practice, since we do not know f, we cannot compute this expectation

Regression: over a batch of samples

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_{1,1} & \mathbf{x}_{1,2} & \cdots & \mathbf{x}_{1,D} \\ \mathbf{x}_{2,1} & \mathbf{x}_{2,2} & \cdots & \mathbf{x}_{2,D} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_{N,1} & \mathbf{x}_{N,2} & \cdots & \mathbf{x}_{N,D} \end{pmatrix} \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix}$$
(design matrix)

- ▶ We rather compute the error at the datapoints that we know
- ▶ We will formalize this in the next class

Regression: generalisation

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_{1,1} & \mathbf{x}_{1,2} & \cdots & \mathbf{x}_{1,D} \\ \mathbf{x}_{2,1} & \mathbf{x}_{2,2} & \cdots & \mathbf{x}_{2,D} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_{N,1} & \mathbf{x}_{N,2} & \cdots & \mathbf{x}_{N,D} \end{pmatrix} \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix}$$
(design matrix)

 \triangleright If the error is low, the model will generalize well to unseen data (new x)

Regression and classification

- Classification and regression are two forms of supervised learning
- In classification, the output space is a discrete set of classes, in regression it is continuous
- ► To perform classification, we usually rely on labelled databases (e.g. Imagenet)
- ▶ To perform regression, we rather rely on related measurements

Outline of next videos

- 1. Introduction (this video)
- 2. Linear Least Squares
- 3. Batch non-linear locally weighted regression
- 4. Batch non-linear regression through projection
- 5. Iterative and incremental methods
- Gradient descent
- 7. Advanced gradient descent

Any question?

Send mail to: Olivier.Sigaud@upmc.fr

Olivier Sigaud, Camille Salaün, and Vincent Padois.

On-line regression algorithms for learning mechanical models of robots: a survey. Robotics and Autonomous Systems, 59(12):1115-1129, December 2011.