Bartolomeo Ryan 10208 Jeux et Sports

Modélisation de solides déformables

Plan

I. Présentation et première approche

- A. Inspiration
- B. Étude d'un mouvement
- C. Première solution : les systèmes masse-ressort

II. Réalisation

- A. Première méthode d'intégration : Euler
- B. Deuxième Méthode : procédé de Runge et Kutta
- C. Problème de la réaction du support

III.Deuxième approche

- A. Modèle du gaz parfait
- B. Théorème de Stokes

Présentation du problème et première approche

<u>Motivation</u>

Contraintes :

- Multi-joueurs
- Simulation en temps réel
- Machine parfois avec de faibles capacités
- → Comment minimiser le temps de calcul dans la simulation de solides déformable ?

Modélisation réaliste d'un mouvement

Cas simple

Modèle informatique simple

Profil de déplacement linaire

Mouvement naturel

Mass-Spring-System model for real time expressive behaviour synthesis ~ Cyrille Henry

<u>Mouvements type Système masse-ressort</u>

Deux masses en mouvement l'une par rapport à l'autre

Mass-Spring-System model for real time expressive behaviour synthesis ~ Cyrille Henry

Problème à résoudre

II. Réalisation

Structure du système

<u>Méthode d'Euler explicite</u>

$$\vec{R} = k * (l - l_0)\vec{e_x}$$

$$\vec{f} = -\alpha \vec{v}$$

$$x[t + 1] = x[t] + v[t] * dt$$

 $v[t + 1] = v[t] + acceleration(t) * dt$

Résultat de la simulation avec la méthode d'Euler

État initial

Force élastique en violet Force fictive en noir

Compression sous l'effet de la force fictive

Explosion du système

Premier résultat

Méthode de Runge-Kutta

<u>Approximation de Runge-Kutta</u>

Problème de Cauchy à résoudre

$$\begin{cases} y'(t) = f(t, y) \\ y(t_0) = y_0 \end{cases}$$

Si z est solution alors :

$$t_{n,i} = t_n + c_i \times h$$

Tableau des coefficients utilisés

$$z(t_{n,i}) = z(t_n) + h \sum_{j < i} a_{i,j} f(t_{n,j}, z(t_{n,j}))$$

$$z(t_{n+1}) = z(t_n) + h \sum_{j < 4} b_j f(t_{n,j}, z(t_{n,j}))$$

Approximation de Runge-Kutta

Problème différentiel physique

$$\begin{cases} y'' = acc(t, y, y') \\ y'(t_0) = y'_0 \\ y(t_0) = y_0 \end{cases}$$

On pose alors :

$$Y(t) = \begin{pmatrix} y'(t) \\ y(t) \end{pmatrix}$$
$$Y(t_0) = \begin{pmatrix} y'_0 \\ y_0 \end{pmatrix}$$

d'où Y'(t) =
$$\begin{pmatrix} y''(t) \\ y'(t) \end{pmatrix}$$
 = F(t,Y) = $\begin{pmatrix} acc(t, y, y') \\ y'(t) \end{pmatrix}$

On a alors le problème de Cauchy d'ordre 1 :

$$\begin{cases} Y'(t) = F(t, Y) \\ Y(t_0) = Y_0 \end{cases}$$

Résultat d'algorithme

Déformation sous l'effet de la force fictive

Désordre qui revient à une position d'équilibre

Résultat de la simulation avec RK4

Comparaison des résultats par rapport aux méthodes utilisées

Force d'amortissement pour stabiliser plus rapidement

Mass-Spring-System model for real time expressive behaviour synthesis ~ Cyrille Henry

Collisions

Collision "magnétique"

<u>Résultats pour différentes valeurs de </u> <u>K</u>

Position moyenne verticale en fonction du temps

Résultats surprenants car :

- → Force discontinue
- → Force initialement très élevé lorsque d = 0

Résultats

Liaisons des ressorts de la position d'équilibre finale

Champ d'accélération lorsque le système rebondit en l'air

Champ d'accélération lorsque le système est au contact du sol

Résultats

Nombre de frames générées par période de 0,40s durant la simulation (sans affichage graphique)

III. Deuxième approche

Modèle de la bulle de gaz parfait

Complexcité :
$$\mathcal{O}(m*n) o \mathcal{O}(m+n)$$

Avantages :

- → Moins de particules au total à simuler
- → Moins de particules au contact du sol

Modèle de la bulle de gaz parfait

$$\vec{F} = P d\vec{S}$$

$$P = \frac{nRT}{V}$$

$$\vec{F} = K_{nRT} \frac{1}{V} \vec{dS}$$

Calcul du volume

Théorème de Stokes :

$$\iint_{S} \operatorname{div} \vec{F} \cdot \vec{dS} = \oint_{C} \vec{F} \cdot \vec{dl}$$

$$\vec{F} = x\vec{e_x}$$

$$\operatorname{div}\vec{F} = 1 \begin{vmatrix} \vec{F} \cdot \vec{dl} \\ = \vec{F} \cdot \hat{l}dl \\ = x \cdot \hat{l}_x \cdot dl \end{vmatrix}$$

$$S \approx \sum x_i \cdot \hat{l}_{i,x} \cdot dl$$

Compromis ressort/gaz pour conserver la forme

<u>Résultat</u>

Déformation après rebond

Forces appliquées sur les points

Position d'équilibre final

Profil d'accélération

Résultats

Comparaison du nombre de frames générés via les deux méthodes (pour un disque ayant la hauteur du cube)

Extrapolation en 3 dimensions

Annexe

Méthode d'Euler implicite

$$v[t + 1] = v[t] + acceleration(t) * dt$$

 $x[t + 1] = x[t] + v[t + 1] * dt$

Méthode d'Euler implicite

Effet de respiration grâce au frottement

gravité

frottement
amortisseur

force de ressort élastique

Construction de l'icosphère

On démarre avec un icosaèdre (20 faces) :

Pour chacune des faces, on applique la transformation :

4 triangles

Puis on norme les vecteurs des sommets pour qu'ils soient distants de R avec le centre

On itère ce procédé pour diminuer la rugosité de la sphère

Il y aura ainsi 20×3^n sommets après n itérations