

NASA Missions Enabled by Space Nuclear Systems

John H. Scott
Chief, Energy Conversion Branch
NASA Lyndon B. Johnson Space Center/EP3
Houston, TX 77058 USA
281.483.3136
John.h.scott@nasa.gov

George R. Schmidt, PhD, PE
Deputy Director, Research and Technology
NASA Glenn Research Center, M.S. 3-5
21000 Brookpark Rd.
Cleveland, OH 44135
216.433.3944
george.schmidt@nasa.gov

Electric Power Generation

Thermal Propulsion

Commercial/Military Electric Power Systems:

- Development, Production & Operation Cost (\$/kW)
- Specific Power/Energy (kW/kg, kWh/kg)
- Emissions (NO_x, CO_x, noise)

Spacecraft Power Systems:

- Specific Energy (kWh/kg)
- Specific Energy (kWh/kg)
- Specific Energy (kWh/kg)
- Development Cost

Power Generation Specific Energy Trade Space

- Heat produced from natural alpha (α) particle decay of Plutonium (Pu-238)
 - 87.7-year half-life
- Waste heat rejected through radiators or can be utilized for thermal control of spacecraft subsystems

Source: NASA HQ/L. Dudzinski

- Steady power independent of distance and orientation w/respect to Sun;
- Operation in thick atmospheres and shadowed areas;
- Operation in extreme and high-radiation environments (e.g., Venus, Titan, Jovian space);
- Long duration operation (≥10 years);
- Scalability to very low power levels (≤1-10 kWe);
- Use in close proximity to crew (low penetrating radiation);
- Readily available excess heat;
- Compactness and ease of transport;
- Enables Radioisotope Electric Propulsion (REP) benefits of NEP with low power spacecraft (1-5 kWe)
 - High-performance electric propulsion in deep space
 - Specific powers comparable to near-term reactor-based NEP
 - Much smaller spacecraft

Source: NASA HQ/L. Dudzinski

Duration of Use

Plutonium Supply Limitations

Radioisotope Power Generation

Lyndon B. Johnson Space Center

Development Directions

Radioisotope Thermoelectric Generation (RTG)

- •Decay heat to DC electricity via thermoelectics
- •<8% conversion efficiency
- •Specific power ~3/W/kg
- •Long history in unmanned deep space probes

Advanced Stirling Radioisotope Generator

- •Decay heat to AC electricity via stirling conversion
- •>30% conversion efficiency
- •Specific power ~7 W/kg
- Next generation technology

U-235 Neutron Capture Spectrum

SNAP-10

- •Launched 1965
- •~500 We
- •Thermoelectric

SP-100

- •Designed 1990's
- •100 kWe
- •Thermoelectric
- •Fast spectrum
- •Li coolant
- $\bullet T = 1375K$
- •Nb-Zr cladding

JIMO

- •Designed 2000's
- •200 kWe
- Brayton
- •Fast spectrum
- •HeXe coolant
- $\bullet T = 1050K$
- Refractory cladding

Fission Surface Power

- •Current study group
- •25-100 kWe
- Brayton or stirling
- •Fast spectrum
- •NaK coolant
- $\bullet T = 900K$
- •Stainless steel cladding

Scenario 4.2.1

Lyndon B. Johnson Space Center

Static Polar Base with Excursions, LSS Scenario 4.3.1

Lyndon B. Johnson Space Center

Power System Concept

Stationary Outpost

- •Ultraflex solar arrays
- •Sizes from 5.5m diameter (Orion) up to 9.0m
- •Power from 5.7 kWe to 15.9 kWe/array
- •Regenerative fuel cells (gaseous reactant storage) or
- •Advanced Li-ion secondary batteries for night energy storage

Mobility Applications

- •SPRs traverse with logistics support vehicle equipped with
- a Mobility Power Unit (MPU)
- •MPU is also equipped with solar arrays and Advanced Li-ion batteries
- •SPRs periodically rejoin logistics vehicle to recharge
- •Regenerative fuel cells will be needed on the logistics vehicle for long SPR traverses over the lunar night

Solar Availability Model for Shackleton Rim Outpost

Lyndon B. Johnson Space Center

"Pervasive Mobility" Base Concept, LSS Scenario 8.2.1

Human Lunar Initial Core Return Capability Start of Continuous Human Presence

- Crew Size

- Surface Duration - Mission Number

Source: NASA JSC/J. Poffenberger

Fission Powered Lunar Outpost

Lyndon B. Johnson Space Center

Static Base with Excursions, LSS Scenario 5.6.2

John H. Scott NASA/JSC/EP3 Houston TX 77058 USA, (281) 483-3136, john.h.scott@nasa.gov

PRE-DECISIONAL. FOR DISCUSSION ONLY. A NETS-2009 8 June 2009

Source: NASA JSC/J. Poffenberger

Conceptual Fission Surface Power Emplacement Options

Source: NASA GRC/D. Palac

Fission Powered Lunar Outpost

"ROxygen" End to End O₂ Production from Lunar Regolith

II.dunam Dadardian Danam

Two Fluidized H₂ Reduction Reactors - 10 kg/batch each

Source: NASA JSC/T. Simon

Fission Electric Power Generation

Lyndon B. Johnson Space Center

Extensible to Mars

Design Reference Architecture 5.0 Surface Power System

- 30 kWe fission power system supports ISRU (prior to crew arrival) and during crew exploration
- Reactor deployed 1 km from lander remotely
- Close derivative of the lunar system

Source: NASA JSC/B. Drake

Extensible to Mars

Deliver 5 - 5 kWe PV/RFC Modules

- * Sufficient for O2 production when Habitat in standby Mode
- * Not capable of dust storm crew survival

Source: NASA GRC/R. Cataldo

Extensible to Mars

Source: NASA GRC/R. Cataldo

Fission Nuclear Thermal Propulsion

Key for Humans to Mars

Lyndon B. Johnson Space Center

Design Transition from Single Large NTR to Clustered Smaller Engines Supplying Modest Electrical Power

"Bimodal" NTR Earth Return Vehicle using Clustered 15 klb, / 25 kW, Engines -- Mars DRM 1.0 (1993) Artificial Gravity BNTR Crewed Transfer Vehicle also using Clustered 15 klb_f / 25 kW_e Engines -- Mars DRM 4.0 (1999)

Source: NASA GRC/S. Borowski

Fission Nuclear Thermal Propulsion

Key for Humans to Mars

Lyndon B. Johnson Space Center

"The first person to set foot on Mars is alive today in America"

-Boeing Outreach Poster

