Linear Algebra - Part 3: Inner Products, Linear Operators...

Inner product / Scalar product:

$$a = \sum_{i=1}^{N} a_i e_i$$

$$a = \sum_{i=$$

$$\langle a | b \rangle = \sum_{i} \sum_{j} a_{i}^{*} \langle b_{ij} | b_{j}$$
 $||a||^{2} = \langle a | a \rangle$ is this red even if the basis is non-orthogonal??

Othogonal: $= \left(\leq \left(a_i \right)^2 \right)^{\frac{1}{2}}$

$$\langle a \mid a \rangle = \sum_{i} \sum_{j} a_{i} \langle a_{i} \rangle \langle a_{j} \rangle$$
 $\langle a \mid a \rangle = \sum_{i} \sum_{j} a_{i} \langle a_{i} \rangle \langle a_{j} \rangle$
 $\langle a \mid a \rangle = \sum_{i} \sum_{j} a_{i} \langle a_{i} \rangle \langle a_{j} \rangle \langle a_{i} \rangle \langle a_{i} \rangle \langle a_{j} \rangle \langle a_{i} \rangle \langle a_{i}$

Advantageous: Otherwind batio
$$\langle \hat{e}_i | \hat{q} \rangle = \delta_{ij} \langle \hat{e}_j | \hat{q} \rangle$$

$$a = \sum_{i=1}^{N} a_i \langle \hat{e}_i | \hat{e}_i \rangle$$

$$= \sum_{i=1}^{N} a_i \langle \hat{e}_j | \hat{e}_i \rangle$$

$$= \sum_{i=1}^{N} a_i \delta_{ij} = |a_j = \langle \hat{e}_j | a_j \rangle$$

Example

$$U = \begin{bmatrix} 1+i \\ \sqrt{2} + i \end{bmatrix} = \begin{bmatrix} (1+i) \\ 0 \end{bmatrix} + \begin{bmatrix} \sqrt{3}+i \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 $A_{12} = A_{12} = A_{12$

N otherwal verbs.

Linear Myelon. Linear operators function s: operators:

y = A 2

operator

output $x \rightarrow f(x) \rightarrow y$ y= f(x) 2 = 1. × Z. 2 = 0 + Z Examples: 2D geometric vectors. Identity grander $\chi = \left(\frac{1}{2}\right), \chi$ $\begin{pmatrix} 1 & O \\ O & 1 \end{pmatrix}$ 2 2 2 Retation matrix: $\stackrel{?}{\underline{\mathbb{Z}}} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ a'= R.a hinear operators. A(ra+hb) = raa + hAb defor of linear spendor: y = A(2) "abstruct relation" How loes the linear transformation y = A a happen in a given basis?Given basis: $\{e_i\}$ $y = \sum_{i=1}^{N} y_i e_i$ $z = \sum_{i=1}^{N} z_i e_i$ Y: Az Zy: e; = A \(\times \) \(\times \)

A (> 2 thy) = > Az + h Ag $y = A \times \frac{x}{y}$ lin. drawly a = Za Ei ≥ 4 e; = ≤ 4 1 e; (ejla) = aj Need k^{tk} component jk. Take inner fact with e_k $\leq y_i \langle e_k | e_i \rangle = \leq x_j \langle e_k | A e_j \rangle$ $\forall k = \leq x_j \langle e_k | A e_j \rangle \Rightarrow A_{kj}$ $\frac{1}{2} = A \underline{z}$ $\frac{1}{2$ Components of the linear speratur in the given orthonormal basis linear transformation A(72+hy)=7Az+hAyIn a given bases

The = \(\frac{1}{3} \text{ Arg } \text{ T} \)

