

YSI Precision Thermistors & Probes

Introduction

Thermistor Components

Special Test Services

Configure to Order Probes

YSI 400 and 700 Series Reusable Probes

YSI 4600 Precision Thermometers

Technical Information

Thermistors at YSI

YSI developed the first interchangeable thermistor probes in 1955 and the first line of precision interchangeable thermistors in 1961. In 1982, we introduced the first precision interchangeable glass-encapsulated thermistors. We have improved these products and expanded them into a full line of precision thermistors.

What Are Thermistors?

The name is derived from the device's major characteristic – it's a thermally sensitive resistor. There are two major types: NTC, with a negative temperature coefficient of resistance; and PTC, with a positive temperature coefficient. YSI manufactures NTC thermistors, which exhibit a steep drop in resistance as temperature increases, providing high sensitivity to temperature changes. The resistance changes approximately three orders of magnitude in a 100°C range. This provides a means to measure very small temperature variations very accurately.

How We Manufacture Thermistors

Manufacturing precision thermistors involves ceramics technology, solid state chemistry, electronics and precision temperature measurement.

Thermistors are mixed metal oxide semiconductors. We prepare them by intimately mixing fine powders of transition metal oxides, pressing them into disks under high pressure, and firing the disks at high temperature. In the high-temperature firing process, called sintering, the metal oxides undergo a solid state chemical reaction, forming an electrically active material called a spinel. Spinels of transition metal oxides, such as nickel, manganese and iron, exhibit large changes in resistance with small changes in temperature.

After sintering, we apply electrical contacts and attach leads. To protect thermistors from environmental damage, we encapsulate them in epoxy or glass.

The electrical properties are controlled by composition, sintering temperature and oxygen partial pressure. The material constant beta (or slope) and the resistivity (ohm-cm) are established by the manufac-

turing process. To achieve interchangeability over an extended temperature range, the material constant beta must be tightly controlled. YSI maintains variability in beta of less than 0.3%.

The resistance (ohm) is a function of the resistivity and the physical dimensions of the device. Although the slope and resistivity are fixed by composition and firing temperature, the resistance can be adjusted by varying the dimensions. YSI uses this property in a patented process to manufacture precision interchangeable thermistors.

The Advantages of Thermistors

- **Sensitivity**—A thermistor is much more sensitive to temperature change than other sensors. A typical thermistor changes 1,290 ohms per degree at 25°C.
- Interchangeability–YSI thermistors are available with interchangeabilities to ± 0.05 °C, not just at a single point but over a temperature range from 0 to 70°C. This is a result of precise process control and extreme attention to quality.
- Two-Wire Connection—No reference junction compensation necessary as with thermocouples. The thermistor's inherent higher resistance allows for longer lead length without introducing significant errors compared to platinum RTDs, which must operate in a 3-wire or 4-wire mode.
- Ruggedness—The NASA qualification program includes numerous tests of ruggedness, which YSI thermistors continue to pass. NASA has deemed YSI thermistors worthy of qualification for extended space flight.
- **Hermetic Seal**—YSI glass-encapsulated thermistors achieve a hermetic seal between the environment and the thermistor disk. This permits measurement in severe moisture environments without concern for silver migration.
- Flexibility—YSI thermistors come in a great variety of resistances, slope characteristics, lead configurations and encapsulation materials. The charts that follow will help you determine which thermistor will perform best in your application.

YSI Capabilities

This catalog describes YSI thermistors, probes and assemblies for laboratory, medical, industrial and process temperature measurement, control, indication and compensation. You may purchase YSI thermistors unmounted or as complete temperature sensing assemblies.

YSI manufactures thermistors and thermistor probe assemblies for use in diverse fields of temperature sensing: from neonatal infant monitoring to tracking the temperature of astronauts in space; from measurement of temperature in the ocean to maintaining critical temperature parameters of satellites; from one-time use in a disposable medical probe to decades in buried telecommunications cables.

We can provide you with the proper thermistor for the job as well as help you design the appropriate probe configuration for your critical temperature applications.

• Custom Profiles—When standard thermistors or probes just do not meet your requirements, YSI can help. We have 45 years of experience helping engineers develop temperature measurement solutions. Put our applications engineering staff to work for you.

• **Special Testing**—We have a special test section for thermistors requiring extraordinary or specific verification of characteristics. Our NASA qualification process includes long-term age testing, burn-in, vibration, impact, humidity, high-temperature and low-temperature exposure.

Our precision temperature measurement capabilities extend past the millikelvin range. The constant-temperature baths we use for verifying thermistor calibration have stabilities and accuracies better than ± 5 millikelvin (± 0.005 °C).

- NIST Traceability—Our thermistor temperature measurements are directly traceable to the National Institute of Standards and Technology (NIST). We maintain a world-class temperature calibration laboratory for thermistor reference probes and standard platinum resistance thermometers. It's the only laboratory outside Germany with DKD (*Deutscher Kalibrierdienst*) accreditation from the PTB, Germany's equivalent of our NIST.
- **SPRTs**—YSI also manufactures the world's working standard of temperature, the traditional standard platinum resistance thermometer (SPRT).

The internal construction of a YSI thermistor

Comparative Sensor Table

We specialize in thermistor-based temperature measurement. The chart tells you how thermistors compare with other temperature measurement methods. When **accuracy** and **sensitivity** are important, thermistors are the best choice.

	Thermistor 100 ohms to 1 megohms at 25°C	Thermocouple B, R, S, E, T, J, K	Platinum 100, 200, 500, 1,000 ohms at 0°C	Integrated Circuit Temperature Sensor
Sensitivity Units	3.3 to 53K ohms/°C at 25°C	7 to 62 μV/°C	0.00385 and 0.00392 ohms/ohm/°C	1μ A °C
Standard Accuracy (°C)				
Interchangeability	± 0.05 to ± 0.2 °C	±0.8 to ±4.4°C	±0.3°C	±0.6 to ±5.0°C
Stability at 100°C	0.02°C/ month (epoxy) 0.02°C/year (glass)	Depends on environment	0.05°C/year (film) 0.002°C/year (wire)	0.1°C/month
Power Required	Stable voltage or current	Self-powered	Stable voltage or current	4 to 30 V
Minimum Practical Span	1°C	100°C	25°C	25°C
Temperature Range	-100 to +250°C	-100 to +1750°C	-200 to +750°C	-55 to +150°C
Reference	None	Cold junction	None	None
Ruggedness	Very rugged	Large wire diameter very rugged	Rugged	Very Rugged
Maximum Power (self-heat) for Stated Accuracy	50 μW	NA (susceptible to amplifier bias current error)	500 μW	Offset error is supply voltage dependent
Sensitivity				
Hysteresis over Range	<0.01°C	>1°C	0.01°C	Not available
Repeatability over Range	<0.01°C	±0.5°C	<0.01°C	±0.1°C
Lead Wire Configuration	2-wire	Thermocouple or extension wire	2-, 3-, 4-wire	2-wire

Characteristics of YSI Thermistors

YSI Series	55000	46000	45000	44900	44000	Thermilinear
Coefficient	Negative	Negative	Negative	Negative	Negative	Negative
Resistance Ratio 25°C/125°C	23.51 to 29.26	23.51 to 29.26	23.51 to 29.26	23.51 to 29.26	11.49 to 61.96	NA
Maximum Operating Temperature (°C)	200°C	250°C	250°C	150°C	150°C	150°C
Recommended Operating Range	-80 to +200°C	-80 to +200°C	-80 to +200°C	-80 to +90°C	-80 to + 120°C	-30 to + 100°C
Dissipation Constant	6 mW/°C in oil min 1.5 mW/°C in air min	10 mW/°C in oil min 4 mW/°C in air min	10 mW/C in oil min 4 mW/°C in air min	8 mW/°C in oil min 1 mW/°C in air typical	8 mW/°C in oil min 1 mW/C in air typical	8 mW/°C in oil min 1 mW/°C in air typical
Thermal Time Constant	1.5 sec max in oil	2.5 sec max in oil	2.5 sec max in oil	1.0 sec max in oil	1.0 sec max in oil	1.0 sec max in oil
Resistance Available @ 25°C	2252-30K Ω	2252-30K Ω	2252-30K Ω	2252-30K Ω	100 Ω -1 meg Ω	NA
Stability	0.12°C/10 mo @ 100°C 0.15°C/10 mo @ 150°C	0.01°C/10 mo. @ 100°C 0.05°C/10 mo. @ 150°C	0.05°C/10 mo. @ 100°C 0.11°C/10 mo. @ 150°C	<0.2°C/10 mo. @ 100°C	<0.2°C/10 mo @ 100°C	<0.2°C/10 mo @ 100°C
Interchangeability 0 to 70°C	±0.1, ±0.2°C	±0.05, ±0.1 ±0.2°C	±0.2°C	±0.1, ±0.2°C	±0.1, ±0.2°C	±0.15°C others available
Size	0.095" w x 0.125" l max	0.125" w x 0.25" l max	0.125" w x 0.25" l max	0.095" w x 0.187" l max	0.095"w x 0.187" l max	0.110" w x 0.150" l max
Resistance to Moisture	Hermetic	Hermetic	Hermetic	MIL 23648 90-98% 10 days	90% noncondensing not for high moisture	90% noncondensing not for high moisture
Lead Material	Gold plated Dumet	Gold plated Dumet	Gold plated Dumet	Tinned copper	Tinned copper	Insulated tinned copper

Section 1 Thermistor Components

Precision Interchangeable Thermistors • YSI 44000 Series
High-Temperature Hermetic Thermistors • YSI 45000 Series
Super-Stable Thermistors • YSI 46000 Series
GEM (Glass-Encapsulated Material) Thermistors • YSI 55000 Series
NASA Space-Qualified Thermistors • YSI 44900 Series
Interchangeability Tolerance Data
Thermilinear Components

Precision Interchangeable Thermistors

- YSI 44000 Series Epoxy-Encapsulated for General Use
- YSI 44100 Series with Teflon Sheath for Harsh Environments

YSI thermistors provide highly accurate and stable temperature sensing for measurement, control, indication and compensation. The tight interchangeability of our precision components allows precise measurement without calibration of circuitry to match individual components.

We offer two interchangeability tolerances – ± 0.2 °C, ± 0.1 °C – and two configurations – epoxyencapsulated and epoxy-encapsulated with Teflon sheath.

Choose epoxy-encapsulated components for applications where cost, flexibility and a wide range of resistance values are important. The YSI 44000 Series is available in both $\pm 0.2^{\circ}$ C and $\pm 0.1^{\circ}$ C interchangeability tolerances.

Teflon-sheathed thermistors allow exposure to hostile environments such as conductive or corrosive liquids and particulate suspensions. A stiff wire in the tube lets you form the thermistor leads to various shapes with slight finger pressure. We make the YSI 44100 Series in various resistances in $\pm 0.2^{\circ}$ C tolerances.

YSI thermistors are fabricated using proprietary processes designed to achieve highly accurate stable thermistors with each production lot. Comparing stability and accuracy specifications will highlight the advantages of the YSI process. When accuracy is important today and in the future, there is only one choice, YSI.

YSI 44000 Series Thermistors

YSI 44100 Series Thermistors with Teflon Sheath

Specifications

Time Constant: 1 sec max for standard thermistors, 2.5 sec max for Teflon-sheathed thermistors, when suspended by their leads in a well-stirred oil bath. In still air, 10 sec max for standard thermistors, 25 sec max for Teflon-sheathed thermistors.

Dissipation Constant: 8 mW/°C min when suspended by their leads in a well-stirred oil bath, or 1 mW/°C in still air.

Stability: YSI thermistors are chemically stable and not significantly affected by aging or exposure to strong nuclear radiation. The table shows typical stability for a representative thermistor, the YSI 44005.

Operating	Typical Thern	nometric Drift
Temperature	10 months	100 months
0°C	<0.01°C	<0.01°C
25°C	<0.01°C	<0.02°C
100°C	0.20°C	0.32°C
150°C	1.5°C	not recommended

Resistance/Temperature Data: A °C/°F resistance versus temperature table in 1°C increments is in the Technical Information Section.

Interchangeability Tolerance Data: Tables on pages 17 and 18 show nominal resistance values, ohms per degree, and tolerance at select temperatures over the operating range.

Temperature Probe Assemblies: YSI 44000 Series Thermistors may be installed in many of the probes described in the Configure-to-Order Probe Section.

Maximum Power: 30 mW at 25°C to 1 mW at 125°C short-term.

How to Order

Please order from your YSI representative or YSI Customer Service.

	Ordering Part Numbers		Zero Power Resistance	Beta 0-50°C	$\begin{array}{ccc} \textbf{Ratio} & \textbf{Maximum} & \blacksquare \\ \Omega & \textbf{Working} \end{array}$		Best Storage & Working	Mix
	Standard Teflo	n	Ω at 25°C	(K)	25/125°C	Temperature	Temperature	
±0.2°C Interchangeability Tolerance 0 to 70°C	44002A 441	05 07 17 16 06 08 11	100 300 1000 2252 3000 5000 6000 10K 10K 30K 100K 300K 1 meg	2854 3118 3271 3891 3891 3891 3891 3574 3810 3988 4276 4582	11.49 15.15 17.33 29.26 29.26 29.26 29.26 29.26 29.26 29.15 34.82 46.02 61.96	100°C 100°C 100°C 150°C 150°C 150°C 150°C 150°C 150°C 150°C 150°C 150°C	-80-+50°C -80-+50°C -80-+50°C -80-+120°C -80-+120°C -80-+120°C -80-+120°C -80-+120°C -80-+120°C -80-+120°C -80-+120°C	L L B B B B H H H
±0.1°C Interchangeability Tolerance 0 to 70°C	44035 - 44033 - 44030 - 44034 - 44036 - 44037 - 44031 - 44032 -		1000 2252 3000 5000 10K 6K 10K 30K	3271 3891 3891 3891 3891 3891 3574 3810	17.33 29.26 29.26 29.26 29.26 29.26 29.26 23.51 29.15	100°C 75°C 75°C 75°C 75°C 75°C 75°C 75°C	-80-+50°C -80-+75°C -80-+75°C -80-+75°C -80-+75°C -80-+75°C -80-+75°C	L B B B B H

High-Temperature Hermetic Thermistors

YSI 45000 Series

YSI 45000 Series Thermistors are manufactured with glass hermetic encapsulation, providing stability over a wide range of operating temperatures. We've designed this series for elevated temperatures or for high humidity (95% or above). You may substitute these thermistors for the YSI 44000 Series with no circuit changes.

Replacement of the standard epoxy coating with glass hermetic encapsulation provides significant advantages.

- Improved resistance to humid environments
- Excellent high-temperature stability
- Interchangeability at high temperature
- Wide operating range: -80 to +250°C
- Higher power handling capabilities

YSI 45000 Series thermistors come in a range of resistance values, and $\pm 0.2^{\circ}$ C interchangeability tolerance. For further information on glass thermistor performance in severe moisture environments, see page 11, Tests Show Thermistor Stability.

For more information, contact us at **800 747-5367** or **937 767-7241 •** Fax 937 767-9353 Info@YSI.com • www.YSI.com

Specifications

Time Constant: 2.5 sec max when suspended by its leads in a well-stirred oil bath, 20 sec max in still air.

Dissipation Constant: 10 mW/°C min when suspended by its leads in a well-stirred oil bath, or 4 mW/°C in still air.

Stability: Typical thermistor stability at 100° C is 0.05° C for 10 months.

Resistance/Temperature Data: A °C/°F resistance versus temperature table is in the Technical Information Section.

Temperature Probe Assemblies: YSI 45000 Series Thermistors may be installed in many of the probes described in the Configure to Order Probe Section.

Interchangeability Tolerance Data: Table on page 17 shows nominal resistance values, ohms per degree, and tolerance at select temperatures over the operating range.

Maximum Power: 50 mW at 25°C derated to 2 mW at 125°C.

How to Order

Please order from your YSI representative or YSI Customer Service.

	Ordering Part Numbers	Zero Power Resistance Ω at 25°C	Beta 0 to 50°C β (K)	Ratio Ω 25/125°C	Maximum Working Temperature	Mix
±0.2°C	45004	2252	3891	29.26	200°C	B
Interchangeability	45005	3000	3891	29.26	200°C	B
Tolerance	45007	5000	3891	29.26	250°C	B
0 to 70°C	45017	6K	3891	29.26	250°C	B
0 to 70 C	45006	10K	3574	23.51	250°C	H
	45016	10K	3891	29.26	250°C	B
	45008	30K	3810	29.15	250°C	H

Super-Stable Thermistors

YSI 46000 Series

YSI 46000 Series components represent the state of the art in long-term stability performance. By coupling glass hermetic encapsulation with 100% resistance shift screening, we offer stability never before realized with thermistor components.

We offer YSI 46000 Series thermistors with interchangeability tolerances as tight as ± 0.05 °C, as well as ± 0.1 °C and ± 0.2 °C.

Many leading aerospace companies have recognized the advantages of these parts, developing their own specifications for qualifying, screening and using these thermistors in high-reliability applications. We welcome your inquiry on special measurement points and special test services.

• Tests Show Thermistor Stability

YSI 45000 and 46000 Series Thermistors offer unparalleled stability and moisture resistance in thermistor components. The data from the three tests we performed demonstrate that YSI glass thermistors are the device of choice in extreme environments.

High-Temperature Testing

The first was static high-temperature testing. All thermistors show some increase in resistance over time; the higher the temperature, the greater the shift. We placed YSI glass thermistors in an isothermal 150°C environment for extended time testing. On average, they shifted less than 0.040°C in 5,000 hours.

Differential Dew Point Cycling

The second test was cycling from ambient to below the dew point. Moisture is a major cause of failure in standard non-hermetic thermistors. This test exposed the thermistors to multiple cycles with 11 minutes below the dew point and 11 minutes at ambient. After over 3,500 cycles, we saw no appreciable shifts.

High-Temperature Cycling

The last, and most rigorous test, was thermal cycling. This cycle consisted of 11 minutes at ambient and 11 minutes at 200°C. We ran several hundred cycles. Shifts after 700 cycles averaged less than 0.2°C.

Specifications

Time Constant: 2.5 sec max when suspended by its leads in a well-stirred oil bath, 20 sec max in still air.

Dissipation Constant: 10 mW/ $^{\circ}$ C min when suspended by its leads in a well-stirred oil bath, or 4 mW/ $^{\circ}$ C in still air.

Resistance/Temperature Data: A °C/°F resistance versus temperature table is in the Technical Information Section.

Interchangeability Tolerance Data: Tables on pages 17, 18 and 19 show nominal resistance values, ohms per degree, and tolerance at select temperatures over the operating range.

Temperature Probe Assemblies: YSI 46000 Series Thermistors may be installed in many of the probes described in the Configure to Order Probe Section.

Typical Thermometric Drift

Operating	Typical Therm	Typical Thermometric Drift					
Temperature	10 months	100 months					
25°C	<0.01°C	<0.01°C					
70°C	<0.01°C	<0.01°C					
100°C	0.02°C	0.03°C					
150°C	0.05°C	0.08°C					
200°C	0.22°C	0.60°C					

How to Order

Please order from your YSI representative or YSI Customer Service.

	Ordering Part Numbers	Zero Power Resistance Ω at 25°C	Beta 0 to 50°C β (K)	Ratio Ω 25 /125°C	Maximum Working Temperature	Mix
±0.2°C Interchangeability Tolerance 0 to 70°C	46004 46005 46007 46017 46006 46016 46008	2252 3000 5000 6K 10K 10K 30K	3891 3891 3891 3891 3574 3891 3810	29.26 29.26 29.26 29.26 23.51 29.26 29.15	200°C 200°C 200°C 200°C 200°C 200°C 200°C	B B B H H
±0.1°C Interchangeability Tolerance 0 to 70°C	46033 46030 46034 46037 46031 46036 46032	2252 3000 5000 6K 10K 10K 30K	3891 3891 3891 3891 3574 3891 3810	29.26 29.26 29.26 29.26 23.51 29.26 29.15	200°C 200°C 200°C 200°C 200°C 200°C 200°C	B B B H B
±0.05°C Interchangeability Tolerance 0 to 70°C	46043 46040 46044 46047 46041 46046	2252 3000 5000 6000 10K 10K	3891 3891 3891 3891 3574 3891	29.26 29.26 29.26 29.26 23.51 29.26	200°C 200°C 200°C 200°C 200°C 200°C	B B B H B

GEM Thermistors

(Glass-Encapsulated Material)

• YSI 55000 Series

This thermistor product line from YSI combines the benefits of our high accuracy and super-stable thermistors with low-cost automated assembly technology. The result is a unique product line that defines a new cost versus performance model.

YSI GEM Thermistors use a specially formulated glass material which provides a hermetic package rugged enough for most industrial applications. The product has high-temperature capability, to 200°C, and improved stability compared to epoxy- or plastic- encapsulated thermistors. Automated manufacturing of the YSI 55000 Series allows us unprecedented process control in thermistor calibration and glass encapsulation.

A Variety of Types

- Interchangeability tolerance levels-±0.2°C, ±0.1°C
- Standard resistances–2252 Ω to 30K Ω at 25°C
- 3 standard slopes—B mix and 2 H mixes

Performance Advantages

- Excellent long-term stability
- Broad temperature range to 200°C
- Hermetically sealed in glass
- Price/performance leader

Qualification Testing

The YSI GEM Thermistor has been evaluated using MIL R-23648 specifications. The thermistor has passed requirements for insulation resistance, thermal shock, vibration, shock, moisture resistance, immersion, resistance to solder heat and short-time overload. High quality and reliability are achieved by combining the standard YSI thermistor fabrication process with a new proprietary process for glass encapsulation.

Applications

The YSI GEM Thermistor is ideal for applications which require high stability up to 200°C and are subject to a high-moisture environment. Temperature compensation for sensitive electronic circuits such as precision clocks, communications devices, and medical and scientific instruments achieve improved results with the YSI GEM Thermistor. YSI applications engineering can assist you in selecting the best thermistor for your application.

The YSI GEM Thermistor has the performance characteristics which directly compete with thin platinum RTDs. The thermistor's superior resolution, high resistance values and ruggedness are available in a low-cost package, making the YSI GEM the obvious choice for many applications.

The YSI GEM Thermistor is effective when combined with our Configure-to-Order (CTO) probe offerings. The high stability and temperature characteristics can be packaged in all CTO Probe styles, providing the flexibility to purchase a solution to the most demanding temperature measurement needs. See section 3 for Configure-to-Order probes.

Specifications

Time Constant: 1.5 sec max for GEM Thermistors, in a well-stirred oil bath. In still air, 15 sec max for GEM Thermistors.

Dissipation Constant: 6 mW/°C min when suspended by their leads in a well-stirred oil bath, or 1.5 mW/°C in still air.

Stability: YSI thermistors are chemically stable and not significantly affected by aging or exposure to strong nuclear radiation. The table shows typical stability for a YSI 55016.

Operating	Typical Thermometric Drift
Temperature	10 months
0°C	<0.01°C
25°C	<0.01°C
100°C	0.12°C
150°C	0.15°C
200°C	0.20°C

Resistance/Temperature Data: A °C/°F resistance versus temperature table is in the Technical Information Section.

Interchangeability Tolerance Data: Tables on pages 17 and 18 show nominal resistance values, ohms per degree, and tolerance at select temperatures over the operating range.

Temperature Probe Assemblies: YSI 55000 Series Thermistors may be installed in many of the probes described in the Configure to Order Probe Section.

Maximum Power: 30 mW at 25°C to 1 mW at 125°C short-term.

How to Order

Please order from your YSI representative or YSI Customer Service.

	Ordering Part Numbers	Zero Power Resistance Ω at 25°C	Beta 0-50°C (K)	Ratio Ω 25/125°C	Short Term Temperature	Best Working Temperature	Mix
±0.2°C	55004 55005	2252 3000	3891 3891	29.26 29.26	250°C 250°C	-80-+200°C -80-+200°C	B B
Interchangeability	55007	5000	3891	29.26	250°C	-80-+200°C	В
Tolerance	55017	6000	3891	29.26	250°C	-80-+200°C	В
0 to 70°C	55006	10K	3574	23.51	200°C	-80-+150°C	Н
	55016	10K	3891	29.26	250°C	-80-+200°C	В
±0.1°C	55008	30K	3810	29.15	200°C	-80-+150°C	Н
Interchangeability	55033	2252	3891	29.26	250°C	-80-+125°C	В
Tolerance	55030	3000	3891	29.26	250°C	-80-+125°C	В
0 to 70°C	55034	5000	3891	29.26	250°C	-80-+125°C	В
	55037	6000	3891	29.26	250°C	-80-+125°C	В
	55036	10K	3891	29.26	250°C	-80-+125°C	В
	55031	10K	3574	23.51	200°C	-80-+100°C	Н
	55032	30K	3810	29.15	200°C	-80-+100°C	Н

For more information, contact us at **800** 747-5367 or **937** 767-7241 • Fax 937 767-9353 Info@YSL.com • www.YSL.com

NASA Space-Qualified Thermistors

- YSI 44900 Series
- Goddard Space Flight Center GSFC S-311-P-18

NASA has qualified YSI epoxy-encapsulated thermistors for use in extended space flight. The Goddard Space Flight Center issued GSFC S-311-P-18 in 1974 to specify the performance requirements for these thermistors. We re-qualify a group of thermistors every year and screen every thermistor before stocking.

Re-qualification includes the following tests that are referenced in MIL R-23648.

- Short time load
- Thermal shock
- Insulation resistance
- Resistance to soldering heat
- Low-temperature storage
- High-temperature storage
- Dissipation constant
- Thermal time constant
- Terminal strength
- Moisture resistance
- High-temperature exposure
- High-frequency vibration
- Medium-impact shock
- Immersion

We screen every YSI 44900 Series Thermistor according to this specification. Screening includes visual and mechanical requirements, thermal shock, high-temperature storage, insulation resistance and additional resistance versus temperature analysis.

This qualification and screening gives you confidence that the component will perform to the rigorous requirements of space flight or other application. Customers often submit their own specifications that use our testing capabilities in combinations not in the Goddard specification.

Thermistors procured in compliance with GSFC-311-P-18 are identified by a specific Goddard part number with a 311P18 prefix, a dash number for resistance and range, a lead code and a lead length code. We stock components with S style leads 7.6 cm long. Please contact YSI Customer Service when ordering other lead styles or lengths.

Special Test Services

We offer special test services to qualify parts per customer source control drawings. All YSI thermistors and probes can be custom built and tested to meet the most stringent qualification requirements.

Specifications

Standard Configuration: YSI 44900 Series Thermistors are provided to the specifications shown on the drawings. Each unit is color-coded to indicate resistance value and marked with a green dot between the leads to indicate successful acceptance testing.

Configuration Options: On special order, YSI 44900 Series Thermistors are available with a wide variety of options, including leads of various lengths, special lead materials, insulated leads and as fullyencased units. Space-qualified thermistors also may be installed in many of the probes described in the Configure to Order Probe Section.

Time Constant: 1 sec max when suspended by its leads in a well-stirred oil bath.

Dissipation Constant: 8 mW/°C min when suspended by its leads in a well-stirred oil bath, or 1 mW/°C in still air.

Resistance/Temperature Data: A °C/°F resistance versus temperature table is in the Technical Information Section.

Interchangeability Tolerance Data: Tables on pages 17 and 18 show nominal resistance values, ohms per degree, and tolerance at select temperatures over the operating range.

Outgas: YSI 44900 Series Thermistors are tested in accordance with ASTM E-595-90, 0.66% TML 0.01% CVCM, 0.10% WVR.

Cage Code: 1L9U5

Bare Lead Thermistor Green Acceptance Dot 2.4 mm Dia. Max.

Type S Lead Configuration 32 AWG Tinned Solid Copper Wire 7.6 cm Min.

Type N Lead Configuration 32 AWG Solid Nickel Wire 7.6 cm Min. Insulated Lead Thermistor Green Acceptance Dot

Type A Lead Configuration 28 AWG Stranded Tefzel-Insulated Wire 7.6 cm Min.

Type T Lead Configuration 28 AWG Stranded Teflon-Insulated Wire 7.6 cm Min.

Teflon Covered Thermistor

Type E Lead Configuration
32 AWG Tinned Solid Copper Wire
7.6 cm Min.

	Ordering Part Number	GSFC S311P18 Number	Basic YSI Thermistor	Zero Power Resistance Ω at 25°C	Beta 0-50°C (K)	Operating & Storage Temperature*	Color Code Body	End	Mix
±0.2°C Interchangeability Tolerance 0 to 70°C	44901 44903 44905 44907 44909	-01S7R6 -03S7R6 -05S7R6 -07S7R6 -09S7R6	44004 44005 44007 44006 44008	2252 3000 5000 10K 30K	3891 3891 3891 3574 3810	-55-+90°C -55-+90°C -55-+90°C -55-+90°C -55-+90°C	black black black black black	yellow green violet blue gray	В В В Н
±0.1°C Interchangeability Tolerance 0 to 70°C	44902 44904 44906 44908 44910	-02S7R6 -04S7R6 -06S7R6 -08S7R6 -10S7R6	44033 44030 44034 44031 44032	2252 3000 5000 10K 30K	3891 3891 3891 3574 3810	-55-+70°C -55-+70°C -55-+70°C -55-+70°C -55-+70°C	orange orange orange orange orange	orange black yellow brown red	В В В Н

^{*}Thermistors with ±0.2°C interchangeability tolerance may have short-term operating temperature excursions to 150°C; thermistors with ±0.1°C interchangeability tolerance may have short-term operating temperature excursions to 100°C.

±0.2°C Interchangeability Tolerance Data

The table shows nominal resistance values, ohms per degree (sensitivity), and tolerances in °C and percent for the YSI Thermistor Series.

YSI Series Description 440__ Epoxy-Encapsulated 450__ High-Temperature Hermetic Thermistors 460__ Super-Stable Thermistors 550__ GEM Glass-Encapsulated Thermistors

The first three digits of the YSI model number specify the series of thermistor. The last two digits specify the thermistor type.

Example: 44016, 45016, 46016, 55016, all define YSI B Mix 10K Thermistors.

Thermistor	01	02	03	04	05	07	17	16	06	08	11	14	15
-80°C													
Nom Res	14470	67660	2788K	1660K	2211K	3685K	4423K	7371K	3558K				
Ohms/°	960	4880	20700	142K	189K	315K	379K	63K	262K				
Tol °C	0.60	0.60	0.60	1.00	1.00	1.00	1.00	1.00	1.00				
Tol %	4.10%	4.50%	4.64%	8.60%	8.60%	8.50%	8.60%	8.60%	7.40%				
-40°C													
Nom Res	1374	5198	19640	75790	101K	168300	201900	336500	239800	884600	3356K		
Ohms/°	69	284.5	1115	5045	6710	11250	13450	22400	14200	53700	209K		
Tol °C	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40		
Tol %	2.01%	2.19%	2.28%	2.66%	2.66%	2.66%	2.66%	2.66%	2.37%	2.50%	2.49%		
0°C													
Nom Res	239.2	777.5	2710	7355	9796	16330	19600	32660	29490	94980	333100	1088K	3966K
Ohms/°	9.1	32.05	117	376	500	835	1K	1670	1370	4695	17150	58K	226K
Tol °C	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Tol %	0.76%	0.83%	0.86%	1.02%	1.02%	1.02%	1.02%	1.02%	0.93%	1.00%	1.03%	1.10%	1.17%
25°C													
Nom Res	100	300	1K	2252	3K	5K	6K	10K	10K	30K	100K	300K	1000K
Ohms/°	3.2	10.55	37.05	99	131.5	219	264	438	402.5	1290	4495	14500	51650
Tol °C	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Tol %	0.64%	0.70%	0.74%	0.88%	0.88%	0.88%	0.88%	0.88%	0.81%	0.86%	0.90%	0.97%	1.03%
40°C													
Nom Res	63.1	181.4	589.5	1200	1598	2663	3197	5329	5592	16150	52190	149400	473200
Ohms/°	1.85	5.8	19.85	48.5	64.5	107	129.5	215	208	640	2175	6700	22800
Tol °C	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Tol %	0.61%	0.64%	0.67%	0.80%	0.80%	0.80%	0.80%	0.80%	0.74%	0.80%	0.83%	0.90%	0.96%
70° C													
Nom Res	28.3	75.2	233	394.5	525.4	875.7	1051	1752	1990	5359	16370	42850	123300
Ohms/°	0.7	2	6.6	13.5	17.95	29.95	36	60	63.5	182.5	585	1655	5150
Tol °C	0.36	0.36	0.36	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Tol %	0.88%	0.96%	1.02%	0.68%	0.68%	0.68%	0.68%	0.68%	0.64%	0.68%	0.71%	0.77%	0.84%
100°C													
Nom Res	14.3	35.8	106.4	152.8	203.8	339.6	407.1	678.5	816.8	2069	6005	14480	38200
Ohms/°	0.3	0.9	2.6	4.45	5.95	9.95	11.85	19.75	22.55	61	187	490	1380
Tol °C	1.00	1.00	1.00	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30
Tol %	2.09%	2.26%	2.41%	0.88%	0.88%	0.88%	0.88%	0.88%	0.83%	0.88%	0.93%	1.02%	1.09%
150°C													
Nom Res				41.9	55.6	92.7	111.6	186.1	237	550.2	1481	3186	7447
Ohms/°				0.9	1.3	2.17	2.4	4	5.3	13.3	38	88	222
Tol °C				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Tol %				2.30%	2.33%	2.30%	2.30%	2.30%	2.22%	2.35%	2.57%	2.71%	2.93%
200°C													
Nom Res				14.9	19.8	32.9	39.6	65.9	86.5	186.7			
Ohms/°				0.25	0.40	0.60	0.70	1.20	1.55	3.65			
Tol °C				1.30	1.30	1.30	1.30	1.30	1.30	1.30			
Tol %				2.40%	2.40%	2.40%	2.40%	2.40%	2.40%	2.40%			

±0.1°C Interchangeability Tolerance Data

The table shows nominal resistance values, ohms per degree (sensitivity), and tolerances in °C and percent for the YSI Thermistor Series.

YSI Series Description

Epoxy-Encapsulated
 Super-Stable Thermistors
 GEM Glass-Encapsulated Thermistors

The first three digits of the YSI model number specify the series of thermistor. The last two digits specify the thermistor type.

Note: YSI 45000 Thermistors are not available in

 $\pm 0.1^{\circ}C$ interchangeability tolerance

Example: 44016, 46016, 55016, all define YSI B Mix

10K Thermistors.

Thermistor	35	33	30	34	37	36	31	32
-80°C								
Nom Res	2788K	1660K	2211K	3685K	4423K	7371K	3558K	
Ohms/°	20700	142K	189K	315K	379K	630K	262K	
Tol °C	0.5	1.00	1.00	1.00	1.00	1.00	1.00	
Tol %	3.97%	8.60%	8.60%	8.50%	8.60%	8.60%	7.40%	
-40°C								
Nom Res	19640	75790	101K	168300	201900	336500	239800	884600
Ohms/°	1115	5045	6710	11250	13450	22400	14200	53700
Tol °C	0.20	0.20	0.20	0.20	0.20	0.20	0.40	0.20
Tol %	1.14%	1.33%	1.33%	1.33%	1.33%	2.66%	2.37%	1.25%
	1.1 170	1.5570	1.5570	1.5570	1.5570	2.0070	2.5770	1.2570
0°C	2710	7055	0706	1.6220	10.000	22660	20.400	0.4000
Nom Res	2710	7355	9796	16330	19600	32660	29490	94980
Ohms/° Tol °C	117	376	500	835	1K	1670	1370	4695
Tol %	0.20 0.86%	0.10 0.51%	0.10 0.51%	0.10 0.51%	0.10 0.51%	0.10 0.51%	0.1 0.46%	0.10 0.50%
	0.80%	0.5170	0.5170	0.5170	0.5176	0.5170	0.40%	0.50%
25°C					_			
Nom Res	1K	2252	3K	5K	6K	10K	10K	30K
Ohms/°	37.05	99	131.5	219	264	438	402.5	1290
Tol °C	0.20	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Tol %	0.74%	0.44%	0.44%	0.44%	0.44%	0.44%	0.40%	0.40%
40°C								
Nom Res	589.5	1200	1598	2663	3197	5329	5592	16150
Ohms/°	19.85	48.5	64.5	107	129.5	215	208	640
Tol °C	0.20	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Tol %	0.67%	0.40%	0.40%	0.40%	0.40%	0.40%	0.37%	0.40%
70°C								
Nom Res	233	394.5	525.4	875.7	1051	1752	1990	5359
Ohms/°	6.6	13.5	17.95	29.95	36	60	63.5	182.5
Tol °C	0.36	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Tol %	1.02%	0.34%	0.34%	0.34%	0.34%	0.34%	0.32%	0.34%
100°C								
Nom Res	106.4	152.8	203.8	339.6	407.1	678.5	816.8	2069
Ohms/°	2.6	4.45	5.95	9.95	11.85	19.75	22.55	61
Tol°C	1.00	0.15	0.15	0.15	0.15	0.15	0.30	0.30
Tol %	2.14%	0.44%	0.44%	0.44%	0.44%	0.44%	0.83%	0.88
150°C								
Nom Res		41.9	55.6	92.7	111.6	186.1	237	550.2
Ohms/°		0.9	1.3	2.17	2.4	4	5.3	13.3
Tol °C		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Tol %		2.30%	2.33%	2.30%	2.30%	2.30%	2.22%	2.35%
200°C								
Nom Res		14.9	19.8	32.9	39.6	65.9	86.5	186.7
Ohms/°		0.25	0.40	0.60	0.70	1.20	1.55	3.65
Tol °C		1.30	1.30	1.30	1.30	1.30	1.30	1.30
Tol %		2.40%	2.40%	2.40%	2.40%	2.40%	2.40%	2.40%

±0.05°C Interchangeability Tolerance Data

46046

46041

The table shows nominal resistance values, ohms per degree (sensitivity), and tolerances in °C and percent, for the YSI Thermistor Series.

YSI Series Description

Thermistor 46043

0.44%

41.9

0.9

1.00

14.9

0.25

1.30

2.40%

2.30%

Tol %

150°C Nom Res

Ohms/°

Tol °C

Tol %

200°C Nom Res

Ohms/°

Tol °C

Tol %

0.44%

55.6

1.3 1.00

19.8

0.40

1.30

2.40%

2.33%

0.44%

92.7

2.17

1.00

32.9

0.60

1.30

2.40%

2.30%

-80°C

460__ Super-Stable Thermistors

46040

46044

46047

1660K 3685K 4423K 7371K 3558K Nom Res 2211K Ohms/° 142K 189K 315K 379K 630K 262K Tol °C 1.00 1.00 1.00 1.00 1.00 1.00 8.60% 8.50% 7.40% Tol % 8.60% 8.60% 8.60% -40°C Nom Res 75790 101K 168.3K 201.9K 336.5K 239.8K Ohms/° 5045 6710 11250 13450 22400 14200 0.20 0.20 0.20 0.20 0.20 0.40 Tol °C 1.33% 1.33% 2.37% Tol % 1.33% 1.33% 1.33% $0^{\circ}C$ Nom Res 7355 9796 16.33K 19.6K 32.66K 29.49K 376 500 1370 Ohms/° 1670 0.05 Tol °C Tol % 0.26% 0.26% 0.26% 0.26% 0.26% 0.23% 25°C 6K 10K 2252 5K 10K Nom Res 3K 131.5 Ohms/° 99 219 264 438 402.5 0.05 Tol °C 0.05 0.05 0.05 0.05 0.05 0.22% 0.21% Tol % 0.22% 0.22% 0.22% 0.22% 40°C Nom Res 1200 1598 2663 3197 5329 5592 48.5 64.5 107 129.5 208 Ohms/° 215 0.05 0.05 0.05 0.05 0.05 0.05 Tol °C 0.20% 0.20% 0.20% 0.20% 0.20% 0.18% Tol % 70°C 394.5 525.4 875.7 1051 1752 1990 Nom Res 17.95 63.5 Ohms/° Tol °C 0.05 0.05 0.05 0.05 0.05 Tol % 0.17% 0.17% 0.17% 0.17% 0.17% 0.16% 100°C 203.8 407 1 678.5 152.8 339.6 816.8 Nom Res Ohms/° 4.45 5.95 9.95 11.85 19.75 22.55 Tol °C 0.15 0.15 0.15 0.15 0.15 0.30

0.44%

111.6

1.00

39.6

0.70

2.40%

2.30%

0.44%

186.1

1.00

65.9

1.20

2.40%

2.30%

0.83%

237 5.3

1.00

86.5

1.55

1.30

2.40%

2.22%

The first three digits of the YSI model number specify the series of thermistor. The last two digits specify the thermistor type.

Example: 46046 defines a YSI B Mix 10K Thermistor.

YSI Thermilinear Components

YSI Thermilinear Components are ideal for applications requiring linear electrical response to temperature change. Each Thermilinear Network consists of two sub-components – a thermistor component and a resistor set. The benefits of linear response are:

- •Easy to design in
- Low-cost electrical circuit
- •High-resolution measurement

The active element is the thermistor component, made from two YSI precision thermistors with three leads, epoxy encapsulated, to form the YSI 44018 and 44019A sensors; and three thermistors with four leads to form the YSI 44020 sensor.

The resistor set consists of two precision metal film resistors for use with the YSI 44018 and 44019A thermistor components, and three resistors for use with YSI 44020 thermistor components.

YSI 44018 Thermilinear Component

YSI 44019A Thermilinear Component

YSI 44020 Thermilinear Component

YSI 44300 Series Resistor

The combination of thermistor component and resistor set is called a Thermilinear Network. For example, a YSI 44018 thermistor component plus a YSI 44301 resistor set become a YSI 44201 Thermilinear Network. The Thermilinear Network may be used as a temperature sensor for linear voltage versus temperature or linear resistance versus temperature.

Sensitivity is 400 times greater than a thermocouple, with outputs as high as 30 mV/°C. Output voltage applied to a recorder or digital voltmeter will produce a precise, sensitive, direct-reading thermometer.

How to Use YSI Thermilinear Networks

To understand how a Thermilinear Network functions, first consider what happens when a single thermistor is shunted with a fixed resistor.

As shown in the R versus T charts, the thermistor has an approximately logarithmic, negative temperature characteristic. To make the R/T characteristic more nearly linear, the rate of resistance change must decrease as the temperature decreases. A single shunt resistor will do this.

If this shunt combination is supplied with a constant current, the voltage change across the combination will be linear with resistance change and temperature.

These two components can be reconnected with the resistor in series with the thermistor to form a voltage divider (half bridge) which, when connected across a constant voltage source, will yield a linear output voltage versus temperature across either the resistor or thermistor.

These circuits, although useful because of their simplicity, are restricted to very narrow temperature ranges, usually 25°C or less. As the range is extended, the fixed resistor will be too large at the high temperature end and too small at the low temperature end.

The solution is to add one or more thermistors to the circuit to compensate the first linearizing resistor already in the network.

Thermilinear Lead Color

Therminical Lead Goldi							
Thermistor	T1	T2	Т3	Common	Type		
44018	Brown	Red	-	Green	IV		
44019	Brown	Red	-	Green	IV		
44020	Red	Green	Blue	Brown	IV		

General Theory

Resistance Mode

Resistance mode operation is achieved by configuring the components as shown in the figures below.

Different networks may be created by changing resistor values. Each Thermilinear Network has a unique resistance versus temperature relationship. This relationship is defined by the formula:

$$R_T = mT + b$$

Where: $R_T = \text{total circuit resistance}$

m = change in resistance per degree (slope)

T =temperature in degrees C

b = resistance at 0° (0° offset or intercept)

The slope and intercept values for standard networks are on the following pages. Non-standard range values are in the Technical Information Section.

Variation from this calculated value by actual thermistor network values is defined as the linearity deviation. The lower the linearity deviation, the more closely the actual network values track the calculated values.

Voltage Mode

Voltage mode operation is achieved by configuring the components as shown in the figures below.

Since each network has a unique resistance versus temperature relationship, it follows that each will have a different sensitivity in the voltage mode. This relationship may be defined as

$$E_{out} = (mE_{in}) T + (bE_{in})$$

Where: E_{out} = voltage output

m = voltage change per degree (slope)

 E_{in} = input voltage

T = temperature in degrees C

b = voltage at 0° and 1 volt E_{in} (0° offset or

intercept)

The values for these slope and intercept values are on the same pages as the resistance mode values. How to use these equations in circuit development is in the Technical Information Section.

YSI Thermilinear Component Specifications

Component **Maximum Operating Temperature** Accuracy & Interchangeability

YSI 44018 105°C (220°F) ±0.15°C

YSI Thermilinear Network Specifications

YSI Networks Using 44018

44201 **Linear Range Linearity Deviation**

> 0 to +100°C ±0.216°C

44018 Resistance Mode

 $T_1 = 6,000 \Omega @ 25^{\circ}C$ $R_{+} = (-17.115)T + 2768.23$

 $T_2 = 30,000 \Omega @ 25^{\circ}C$ E Positive Mode E. Negative Mode

> $E_{out} = (+0.0053483 E_{in}) T + 0.13493 E_{in}$ $E_{out} = (-0.0053483 E_{in}) T + 0.86507 E_{in}$

44301 E_{in} Max I, Max Min RL $10\,\mathrm{M}\Omega$ $R_1 = 3200 \Omega$ 2.0 V 625 μΑ

 $R_2 = 6250 \Omega$ Resistor Error

±0.14°C @ 0°C, ±0.03°C @ +100°C

44202 **Linearity Deviation Linear Range**

-5 to +45°C ±0.065°C

44018 Resistance Mode

 $T_1 = 6,000 \Omega @ 25^{\circ}C$ $R_{+} = (-32.402) T + 4593.39$

 $T_2 = 30,000 \Omega @ 25^{\circ}C$ E Positive Mode E Negative Mode

 $E_{out} = (+0.0056846 E_{in}) T + 0.194142 E_{in}$ $E_{out} = (-0.0056846 E_{in}) T + 0.805858 E_{in}$

44302 E_{in} Max I, Max Min RL 3.5 V $10\,\mathrm{M}\Omega$ $R_1 = 5700 \Omega$ 615 µA

 $R_2 = 12,000 \Omega$ **Resistor Error**

±0.12°C @ -5°C, ±0.07°C @ +45°C

44203 **Linear Range Linearity Deviation**

> -30 to +50°C ±0.16°C

44018 Resistance Mode

 $T_1 = 6,000 \Omega @ 25^{\circ}C$ $R_{t} = (-127.096) T + 12175$

 $T_2 = 30,000 \Omega @ 25^{\circ}C$ E Positive Mode E Negative Mode

 $E_{out} = (-0.0067966 E_{in}) T + 0.65107 E_{in}$ $E_{out} = (+0.0067966 E_{in}) T + 0.34893 E_{in}$

44303 E_{in} Max I, Max Min RL $R_1 = 18,700 \Omega$ 3.0 V 475 μΑ $10 M\Omega$

 $R_2 = 35,250 \Omega$ **Resistor Error**

±0.12°C @ -30°C, ±0.02°C @ +50°C

44204 **Linearity Deviation Linear Range**

-2 to +38°C ±0.03°C

44018 Resistance Mode

 $T_1 = 6,000 \Omega @ 25^{\circ}C$ R = (-32.1012) T + 4603.11

 $T_2 = 30,000 \Omega @ 25^{\circ}C$ E Positive Mode E. Negative Mode

 $E_{out} = (-0.00563179 E_{in}) T + 0.807563 E_{in}$ $E_{out} = (+0.00563179 E_{in}) T + 0.192437 E_{in}$

44304 Min RL E., Max I. Max

 $R_1 = 5,700 \Omega$ 4.0 V 685 μΑ $10 M\Omega$

For more information, $R_2 = 12,400 \Omega$ **Resistor Error** contact us at **800 747-5367** or ±0.13°C @ -2°C, ±0.08°C @ +38°C 937 427-1231 • Fax 937 427-1640

Info@YSLcom • www.YSLcom

YSI Thermilinear Component Specifications

Component **Maximum Operating Temperature Accuracy & Interchangeability**

 ± 0.4 °C (0 to 85°C), ± 0.8 °C (0 to -55°C) YSI 44019A 85°C (185°F)

YSI 44020 55°C (131°F) ±0.1°C

YSI Thermilinear Network Specifications

YSI Network Using 44019A

44211A **Linear Range Linearity Deviation** -55 to +85°C ±1.1°C

44019A Resistance Mode $T_1 = 1,000 \Omega @ 25^{\circ}C$ R = (-17.99) T + 2339

 $T_2 = 10,000 \Omega @ 25^{\circ}C$ E Positive Mode

 $E_{out} = (+0.005068 E_{in}) T + 0.3411 E_{in}$

 $E_{out} = (-0.005068 E_{in}) T + 0.6589 E_{in}$ Min RL E, Max

44311A $R_1 = 3550 \Omega$ 2.0 V833 μΑ $10 \, \text{M}\Omega$

 $R_2 = 6025 \Omega$ **Resistor Error**

±0.18°C @ -55°C, ±0.02°C @ +85°C

YSI Network Using 44020

44212 **Linear Range Linearity Deviation** -50 to +50°C ±0.09°C 44020 Resistance Mode $T_1 = 2,000 \Omega @ 25^{\circ}C$ $R_{+} = (-129.163) T + 13698.23$

 $T_2 = 15,000 \Omega @ 25^{\circ}C$ E. Positive Mode E. Negative Mode $T_2 = 45,000 \Omega @ 25^{\circ}C$ $E_{out} = (+0.00559149 E_{in}) T + 0.40700 E_{in}$ $E_{out} = (-0.00559149 E_{in}) T + 0.59300 E_{in}$

44312 E, Max I, Max Min RL 700 μΑ $R_1 = 23,100 \Omega$ 3.5 V $10 \, \text{M}\Omega$

 $R_2 = 88,200 \Omega$ **Resistor Error**

 $R_3 = 38,000 \Omega$ ±0.15°C @ -50°C, ±0.03°C @ +50°C

Thermilinear Definitions

Thermilinear Component YSI 44018, 44019A or 44020 thermistor.

Resistor Set YSI 44301, 44302, 44303, 44304, 44311A or 44312 resistor sets consist of 2 resistors (3 for 44312) used with a Thermilinear component to create a Thermilinear Network.

Thermilinear Network A Thermilinear component and corresponding resistor set.

Linear Range Temperature range over which linearity deviation applies.

Linearity Deviation Deviation, in degrees, between actual network values and calculated straight line. This is stated as worst case; actual deviation is roughly sinosoidal about the calculated nominal.

Resistance Mode Formula for calculating R vs T.

E_o **Negative Mode** Formula for calculating the voltage across thermistor/resistor parallel network (bottom of bridge).

E Negative Mode

E_a **Positive Mode** Formula for calculating the voltage across R₁ (top of bridge).

E_{in} Max & I_i Max Values below which thermistors exhibit minimal self heating; determined using 8mW/°C dissipation. E_{in} max and I_t max values may be exceeded 5 times without damaging probe.

Load Resistance Minimum, RL The minimum recommended resistive impedance. Lower values may adversely affect linearity and other performance characteristics of the network.

Resistor Error Possible circuit error in degrees induced by $\pm 0.1\%$ fixed resistors.

YSI 44018 Thermilinear Composite

Maximum Operating Temperature: 105°C (220°F)

Accuracy and Interchangeability: $\pm 0.15^{\circ}$ C when incorporated in a

standard YSI Thermilinear Network.

Time Constant, Maximum: 1 sec in well-stirred oil, 10 sec in still air. Time constant is the time required for thermistor to indicate 63% of a newly impressed temperature.

Dissipation Constant, Minimum: 1mW/°C in still air, 8mW/°C in well stirred oil. Dissipation constant is the power in milliwatts required to raise a thermistor 1°C above surrounding temperature.

Color Code: Brown epoxy body, gray end.

Storage Temperature: $-80 \text{ to } +105^{\circ}\text{C} \text{ (-112 to } +221^{\circ}\text{F)}.$

Resistance versus Temperature: -30 to +100°C

Resistance versus Temperature Data

Temp °C	T1 Res. Ohms	T2 Res. Ohms	Te °C
-30	106.2K	481.0K	10
29	99.82K	453.5K	11
28	93.88K	427.7K	12
27	88.32K	403.5K	13
26	83.12K	380.9K	14
25	78.26K	359.6K	15
24	73.72K	339.6K	16
23	69.46K	320.9K	17
22	65.48K	303.3K	18
21	61.74K	286.7K	19
20	58.26K	271.2K	20
19	54.98K	256.5K	21
18	51.90K	242.8K	22
17	49.02K	229.8K	23
16	46.32K	217.6K	24
15	43.78K	206.2K	25
14	41.40K	195.4K	26
13	39.16K	185.2K	27
12	37.04K	175.6K	28
11	35.06K	166.6K	29
10	33.20K	158.0K	30
9	31.49K	150.0K	31
8	29.80K	142.4K	32
7	28.24K	135.2K	33
6	26.78K	128.5K	34
5	25.45K	122.1K	35
4	24.10K	116.0K	36
3	22.88K	110.3K	37
2	21.72K	104.9K	38
-1	20.62K	99.80K	39
0	19.59K	94.98K	40
+1	18.62K	90.41K	41
2	17.70K	86.09K	42
3	16.83K	81.99K	43
4	16.01K	78.11K	44
5	15.24K	74.44K	45
6	14.50K	70.96K	46
7	13.81K	67.66K	47
8	13.15K	64.53K	48
9	12.53K	61.56K	49

Temp	T1	T2
°C	Res.	Res.
	Ohms	Ohms
10	11.047	50 75V
10 11	11.94K 11.38K	58.75K 56.07K
12	10.85K	53.54K
13	10.85K	51.13K
14	9878	48.84K
15	9428	46.67K
16	9000	44.60K
17	8594	42.64K
18	8210	40.77K
19	7844	38.99K
20	7496	37.30K
21	7166	35.70K
22	6852	34.17K
23	6554	32.71K
24	6270	31.32K
25	6000	30.00K
26	5744	28.74K
27	5500	27.54K
28	5266	26.40K
29	5046	25.31K
30	4834	24.27K
31	4634	23.28K
32	4442	22.33K
33	4260	21.43K
34	4084	20.57K
35	3918	19.74K
36	3760	18.96K
37	3610	18.21K
38	3466	17.49K
39	3328	16.80K
4.0		
40	3196	16.15K
41	3070	15.52K
42	2950	14.92K
43 44	2836 2726	14.35K 13.80K
44		13.80K 13.28K
45 46	2620 2520	
46	2520	12.77K 12.29K
48	2334	12.29K 11.83K
48	2334	11.83K 11.39K
47	2240	11.37K

Temp °C	T1 Res. Ohms	T2 Res. Ohms
50	2162	10.97K
51	2080	10.57K
52	2004	10.18K
53	1930	9807
54	1859	9450
55	1792	9109
56	1727	8781
57	1664	8467
58	1605	8166
59	1547	7876
60	1493	7599
61	1440	7332
62	1389	7076
63	1341	6830
64	1294	6594
65	1249	6367
66	1207 1165	6149 5940
67 68	1105	5738
69	1087	5545
09	1067	3343
70	1051	5359
71	1016	5180
72	981.8	5007
73	949.4	4842
74	918.0	4682
75	888.0	4529
76	859.0	4381
77 78	831.2 804.4	4239 4102
78	773.6	3970
19	113.0	3970
80	753.8	3843
81	729.8	3720
82	706.8	3602
83	684.4	3489
84	663.0	3379
85	642.4	3273
86	622.6	3172
87	603.4	3073
88	584.4	2979
89	567.0	2887

Temp °C	T1 Res. Ohms	T2 Res. Ohms
90 91 92 93 94 95 96 97 98 99 100	Ohms 549.8 533.2 517.2 501.8 486.8 472.4 458.6 445.2 432.2 419.6 407.6	Ohms 2799 2714 2632 2552 2476 2402 2331 2262 2195 2131 2069

YSI 44019A Thermilinear Composite

Maximum Operating Temperature: 85°C (185°F). Not recommended for long-term continuous use above 50°C (122°F).

Accuracy and Interchangeability: $\pm 0.4^{\circ}\text{C}$ (0 to 85°C); $\pm 0^{\circ}\text{C}$ (0 to -55°C) when incorporated in a YSI Thermilinear Network.

Time Constant Maximum: 1 sec in well-stirred oil, 10 sec in still air. Time constant is the time required for a thermistor to indicate 63% of a newly impressed temperature.

Dissipation Constant, Mimimum: 8 mW/°C in well-stirred oil, 1 mW/°C in still air. Dissipation constant is the power in milliwatts to raise a thermistor 1°C above surrounding temperature.

Color Code: Brown epoxy body, white end.

Storage Temperature: $-80 \text{ to } +50^{\circ}\text{C} \text{ (-112 to } +122^{\circ}\text{F)}.$ **Resistance versus Temperature:** $-55 \text{ to } +85^{\circ}\text{C}$

Resistance versus Temperature Data

Temp	T1	T2		Temp	T1	T2
°C Î	Res.	Res.		°C	Res.	Res.
	Ohms	Ohms			Ohms	Ohms
-60				20	6815	78.91K
59				19	6489	74.91K
58				18	6180	71.13K
57				17	5887	67.57K
56				16	5611	64K
-55	48.32K	607.8K		15	5349	61.02K
54	45.36K	569.6K		14	5101	58.01K
53	42.60K	534.1K		13	4866	55.17K
52	40.03K	501.0K		12	4643	52.48K
51	37.63K	470.1K		11	4432	49.94K
50	35.39K	441.3K		10	4232	47.54K
49	33.30K	414.5K		9	4042	45.27K
48	31.35K	389.4K		8	3862	43.11K
47	29.52K	366.0K		7	3691	41.07K
46	27.81K	344.1K		6	3529	39.14K
45	26.22K	232.7K		5	3374	37.31K
44	24.72K	304.6K		4	3228	35.57K
43	23.32K	286.7K		3	3088	33.93K
42	22.01K	270.0K		2	2956	32.37K
41	20.79K	254.4K		-1	2830	30.89K
40	19.64K	239.8K		0	2710	29.49K
39	18.56K	226.0K		+1	2596	28.15K
38	17.54K	213.2K		2	2487	26.89K
37	16.59K	201.1K		3	2384	25.69K
36	15.70K	189.8K		4	2286	24.55K
35	14.86K	179.2K		5	2192	23.46K
34	14.07K	169.3K		6	2102	22.43K
33	13.30K	160.0K		7	2017	21.45K
32	12.63K	151.2K		8	1936	20.52K
31	11.97K	143.0K		9	1859	19.63K
30	11.35K	135.2K		10	1785	19.79K
				10	1785	19.79K 17.98K
29 28	10.77K 10.22K	127.9K 121.1K		11	1714	17.98K 17.55K
28 27	9705	121.1K 114.6K		12	1574	17.55K 16.49K
	9705 9218	114.6K 108.6K		13	1582	16.49K 15.79K
26 25	9218 8758	108.6K 102.9K		15	1521	15.79K 15.13K
25 24	8323	97.49K		16	1402	15.13K 14.50K
24	8323 7914	97.49K 92.43K		16	1353	14.50K 13.90K
23	7914 7527	92.43K 87.66K		17	1302	13.90K 13.33K
22				-		
21	7161	83.16K		19	1253	12.79K
			•			

Temp	T1	T2
°C ¯	Res.	Res.
	Ohms	Ohms
20	1206	12.26K
21	1161	11.77K
22	1118	11.29K
23	1077	10.84K
24	1038	10.41K
25	1000	10000
26	963.9	9605
27	929.4	9227
28	896.3	8867
29	864.5	8523
30	834.0	8194
31	804.8	7880
32	776.8	7569
33	749.9	7291
34	724.1	7016
35	699.4	6752
36	675.6	6500
37	652.7	6258
38	630.8	6026
39	609.7	5805
40	589.5	5592
41	570.0	5389
42	551.2	5193
43	533.2	5006
44	515.9	4827
45	499.2	4655
46	483.2	4489
47	467.8	4331
48	452.9	4179
49	438.6	4033
50	424.8	3893
51	411.6	3758
52	398.8	3629
53	386.5	3504
54	374.7	3385
55	363.2	3270
56	352.2	3160
57	341.6	3054
58	331.3	2952
59	321.5	2854

60 61 62 63 64 65 66 67 68 69	311.9 302.7 293.9 285.3 277.0 269.0 261.3 253.9 246.7 239.7	2760 2669 2582 2487 2417 2339 2264 2191 2122
62 63 64 65 66 67 68 69	293.9 285.3 277.0 269.0 261.3 253.9 246.7	2669 2582 2487 2417 2339 2264 2191
63 64 65 66 67 68 69	285.3 277.0 269.0 261.3 253.9 246.7	2487 2417 2339 2264 2191
64 65 66 67 68 69	277.0 269.0 261.3 253.9 246.7	2417 2339 2264 2191
65 66 67 68 69	269.0 261.3 253.9 246.7	2339 2264 2191
66 67 68 69	261.3 253.9 246.7	2264 2191
67 68 69	253.9 246.7	2191
68 69	246.7	
69		2122
	239.7	
		2055
70	233.0	1990
71	226.5	1928
72	220.2	1868
73	214.1	1810
74	208.3	1754
75	202.6	1700
76	197.1	1648
77 78	191.8	1598 1549
78 79	186.7	
19	181.7	1503
80	176.9	1458
81	172.2	1414
82	167.7	1372
83	163.3	1332
84	159.1	1293
85	154.9	1255

YSI 44020 Thermilinear Composite

Maximum Operating Temperature: 55°C (131°F)

Accuracy and Interchangeability: $\pm 0.1^{\circ}\text{C}$ when incorporated in a

YSI Thermilinear Network.

Time Constant, Maximum: 1 sec in well-stirred oil, 10 sec in still air. Time constant is the time required for a thermistor to indicate 63% of a newly impressed temperature.

Dissipation Constant, Minimum: 8 mW/°C in well-stirred oil, 1 mW/°C in still air. Dissipation constant is the power in milliwatts to raise a thermistor 1°C above surrounding temperature.

Color Code: Red epoxy body, black end.

Storage Temperature: $-80 \text{ to } +120 ^{\circ}\text{C} \text{ (-112 to } +250 ^{\circ}\text{C)}.$

Resistance versus Temperature: $-50 \text{ to } +50 ^{\circ}\text{C}.$

Resistance versus Temperature Data

Temp °C	T1 Res.	T2 Res.	T3 Res.
	Ohms	Ohms	Ohms
-50	134.1K	662.1K	2540K
-50 49	134.1K 124.9K	621.8K	
48	124.9K 116.4K	584.2K	2376K 2223K
48 47	116.4K 108.5K	584.2K 549.1K	2223K 2081K
46	108.3K 101.2K	549.1K 516.3K	1949K
45	94.41K	485.7K	1949K 1826K
45 44	94.41K 88.14K	485.7K 457.0K	1826K 1712K
44	88.14K 82.33K	437.0K 430.2K	1712K 1605K
43		430.2 K 405.	
	76.94K		1506K
41	71.93K	381.7K	1413K
40	67.29K	359.7K	1327K
39	62.97K	339.2K	1246K
38	58.96K	319.9K	1171K
37	55.22K	301.8K	1101K
36	51.75K	284.9K	1035K
35	48.52K	269.0K	973.7K
34	45.51K	254.0K	916.3K
33	42.71K	240.0K	862.6K
32	40.09K	226.9K	812.3K
31	37.65K	214.5K	765.3K
30	35.38K	202.9K	721.2K
29	33.25K	192.0K	698.0K
28	31.27K	181.7K	641.3K
27	29.42K	172.0K	605.0K
26	27.69K	162.9K	571.0K
25	26.07K	154.4K	539.1K
24	24.56K	146.3K	509.2K
23	23.14K	138.7K	481.1K
22	21.81K	131.5K	454.7K
21	20.57K	124.8K	429.9K
20	10 4117	110 417	40 <i>C</i> 517
20	19.41K	118.4K	406.5K
19	18.31K	112.4K	384.6K
18	17.29K	106.7K	364.0K
17	16.33K 15.43K	101.4K 96.34K	344.6K
16			326.3K
15	14.58K	91.56K	309.1K
14	13.79K	87.05K	292.9K
13	13.04K	92.79K	277.7K
12	12.34K	78.76K	263.3K
11	11.68K	74.94K	249.8K

Temp °C	T1 Res.	T2 Res.	T3 Res.
	Ohms	Ohms	Ohms
10	11.06K	71.34K	237.0K
9	10.48K	67.92K	224.9K
8	9928	64.69K	213.5K
7	9410	61.63K	202.8K
6	8922	58.73K	192.6K
5	8463	55.98K	183.1K
4	8029	53.38K	174.0K
3	7621	50.91K	165.4K
2	7236	48.57K	157.4K
1	6873	46.35K	149.7K
0	6529	44.24K	142.5K
+1	6205	42.24K	135.5K
2	5899	40.34K	129.1K
3	5610	38.54K	123.0K
4	5337	36.82K	117.2K
5	5078	35.20K	111.7K
6	4834	33.65K	106.4K
7	4603	32.18K	101.5K
8	4384	30.78K	96.79K
9	4177	29.45K	92.34K
10	3980	28.18K	88.12K
11	3794	26.98K	84.11K
12	3618	25.83K	80.30K
13	3451	24.73K	76.69K
14	3293	23.70K 22.71K	73.26K
15 16	3143 3000	22.71K 21.76K	69.99K 33.90K
17	2865	21.76K 20.86K	63.95K
16	3000	20.86K 21.76K	66.90K
17	2865	21.76K 20.86K	63.95K
17	2805	20.86K 20.00K	63.95K 61.15K
19	2614	20.00K 19.18K	58.49K
19	2014	17.10K	J0.47K

Temp	T1	T2	Т3
°C	Res.	Res.	Res.
	Ohms	Ohms	Ohms
20	2499	18.40K	55.95K
21	2389	17.66K	53.54K
22	2284	16.95K	51.25K
23	2185	16.27K	49.06K
24	20.90	15.62K	46.98K
25	2000	15.00K	45.00K
26	1915	14.41K	43.11K
27	1833	13.84K	41.31K
28	1756	13.30K	39.60K
29	1682	12.79K	37.96K
30	1611	12.30K	36.40K
31	1544	11.82K	34.91K
32	1480	11.37K	33.50K
33	1420	10.94K	32.14K
34	1362	10.53K	30.85K
35	1306	10.13K	29.61K
36	1253	9752	28.43K
37	1203	9390	27.31K
38	1155	9042	26.23K
39	1109	8710	25.20K
40	1065	8391	24.22K
41	1023	8085	23.28K
42	983.1	7792	22.38K
43	944.9	7511	21.52K
44	908.3	7242	20.70K
45	873.4	6984	19.91K
46	839.9	6736	19.16K
47	808.0	6498	18.44K
48	777.4	6270	17.75K
49	748.1	6051	17.09K
50	720.1	5840	16.45K

Section 2 Special Test Services

- YSI Facilities
- Custom Specifications
- Thermistor Calibration
- ISO 9001 Certification
- Platinum RTD Calibration
- Standard Platinum Resistance Thermometers

Special Test Services

Our Facilities

We have the facilities to qualify our thermistors to meet NASA specification GSFC S-311-P-18. We can also perform tests defined in MIL R-23648.

YSI has resistance temperature measurement capabilities to determine the resistance of thermistors from -60 to +125°C. Resolution is normally at least 1 part per 10,000 for the zero power resistance measurement. All temperature measurements are traceable to the National Institute of Standards and Technology (NIST).

Custom Specifications

Many leading aerospace companies have developed their own specifications for qualifying, screening and using thermistors in high-reliability applications. We welcome your inquiry on special measurement points or screening tests that use our capabilities, whether listed in MIL PRF-23648, GSFC-311-P-18 or your own requirements.

Thermistor Calibration

YSI will calibrate thermistors and thermistor probes based on ITS-90. All calibrations are traceable to NIST or derived from accepted values of physical constants. We furnish a certificate of calibration and a certificate of traceability with every thermistor we calibrate. We calibrate thermistor reference probes in NIST traceable constant temperature baths and with fixed points. Standard calibration temperatures are -40, 0, +25, +40, +70, +100 and +125°C.

ISO 9001 Certification

YSI has received ISO 9001 quality standard registration. The ISO 9001 standard includes quality management and quality assurance and is the most comprehensive standard in the series developed by the International Organization for Standardization (ISO) in Geneva.

Platinum RTD Calibration

YSI will calibrate platinum RTDs based on ITS-90. All calibrations are traceable to NIST. We furnish a certificate of calibration and a certificate of traceability with every RTD we calibrate. Standard calibration temperatures are -40, 0, +25, +40, +70, +100 and +125°C.

We can also calibrate your RTD at any reference point of ITS-90 between -189 and +420°C.

Standard Platinum Resistance Thermometers

These traditional Standard Platinum Resistance Thermometers (SPRTs) are the world's working standard of temperature. We have been building them since 1981 from a Leeds and Northrup design.

Made from carefully wound helixes of reference-grade platinum, these thermometers are highly stable over long periods and measure from -200 to +500°C. Resistance is about 25.5 ohms at 0°C.

We will calibrate any SPRT in good condition manufactured by L & N or YSI. We can often repair broken thermometers as well.

Section 3 Configure-to-Order Thermistor Probes

About Configure-to-Order Probes

YSI Configure-to-Order probes offer the flexibility of custom design at the price of standard parts. Match any YSI Precision Interchangeable Thermistor with cable and sheath options to create a custom probe for your temperature measurement application.

The following pages detail the materials we use, time constants and explain how to construct a probe to meet your requirements.

Operating Temperatures

If you plan to use your probe above 100°C, you must select options that can withstand higher temperatures. Probes with glass thermistors, stainless steel sheaths and Teflon cable are rated to 200°C.

Thermistor Components

Choose thermistors from Section 1. You may design probes to use any YSI thermistor.

YSI 44000 Series Thermistors

- Cost-effective
- ± 0.2 °C or ± 0.1 °C interchangeability

YSI 44000 Series Thermilinear Components

Linear outputs

YSI 45000 Series Thermistors

- Stable
- High operating temperature

YSI 46000 Series Thermistors

- Unsurpassed long-term stability
- ± 0.2 °C to ± 0.05 °C interchangeability

YSI 55000 GEM Series Thermistors

- Low cost hermetic
- Up to 200°C

Probe Materials

Epoxy–We match epoxies to design requirements.

Stainless Steel—316SS. Tubular probes have rolled ends and uniform wall thickness throughout, hermetic tips and a medical grade polished finish.

Glass–The YSI 036 glass probe is Pyrex. The tip is melted to form a hermetic seal.

Teflon—We use FEP Teflon for the YSI 015.

Aluminum—We use 2024 T4 in the YSI 083 probe.

Brass–Screws and fittings per ASTM B16 and ASTM B453.

Options

Compression Fitting–A compression fitting sized to fit the tubular probe. Available in ¹/₈, ¹/₄, ¹/₂ NPT threads. Specify by thread size.

FEP—Sealed end Teflon tubing over the stainless steel sheath to protect from caustic materials. FEP is compatible with compression fitting option.

Terminations

Stripped and Tinned Leads (ST)

#6 Spade Lugs (SP)

¹/₄" Phone Plug (PH)

Termination Table

For probe styles using multiple thermistors

Phone Plug Termination

Cable & Lead Styles

Туре	Description	Temperature Range	Color Available	Gauge	Conductor/Shield	Typical Oute 1-wire		3-wire	4-wire
RP	Round PVC	-40 to +105°C		24 AWG	stranded/-	-		0.147"	0.170"
RPS	Round PVC	-55 to +105°C		24 AWG	stranded/foil	-	0.150"	0.160"	0.180"
RPM	Round PVC	-55 to +105°C		28 AWG	stranded/-	-	0.100"	0.115"	0.135"
RT	Round TFE Teflon	-65 to +200°C		26 AWG	stranded/-	-	01.05"	0.125"	0.125"
RTS	Round TFE Teflon	-65 to +200°C		26 AWG	stranded/braid	-	0.120"	0.126"	0.136"
RN	Round SJO Neoprene	+60°C max		18 AWG	stranded/-	-	0.300"	0.330"	0.355"
RNS	Round SJO Neoprene	+60°C max		18 AWG	stranded/braid	-	0.295"	0.340"	0.340"
FPE	Flat PE	-60 to +105°C		28 AWG	stranded/-		.035" x .082"	.035" x .082	"-
FP	Flat PVC	-40 to +105°C		24 AWG	stranded/-	-	.058" x .115"	.044" x .150	"
FT	Flat TFE Teflon	-65 to +200°C		30 AWG	stranded/-	-	.032" x .80"	.032" x .125	"
IA	Individual Tefzel®	-65 to +150°C		28AWG	stranded/-	0.028"	-		-
IP	Individual PV	C -55 to +105°C	С	28 AWG	stranded/-	0.034"	-	-	-
IPL	Individual PV	C -40 to +80°C	С	22 AWG	stranded/-	0.057"	-	-	-
IPM	Individual PV	C -55 to +105°C		32 AWG	stranded/-	0.028"	-	-	-
IT	Individual TFI Teflon	E -60 to +200°C	С	28 AWG	stranded/-	0.027"	-	-	-
ITL	Individual TFI Teflon	E -60 to +200°C	С	24 AWG	stranded/-	0.036"	-	-	-
ITM	Individual TFI Teflon	E -60 to +200°C		32 AWG	stranded/-	0.021"	-	-	-
IV	Individual varnish-insul	-40 to +180°C ated		32 AWG	solid/-	0.008"	-	-	-
IC	Individual tinned coppe	NA r		32 AWG	solid/-	0.008"	-	-	-
ID	Individual Dumet	NA		32 AWG	solid/-	0.008"	-	-	-

Note: Lead length tolerance is -0 to +10%

How to Order Configure-to-Order Probes

You can easily configure your own probe from our many thermistor, sheath and cable options. We've created an example below of how to do it yourself.

- 1. Choose the probe style that matches your application. Turn to the page in this section that lists the options for that style. For our example, we've chosen the YSI 032.
- **2.** Select the thermistor that best suits your need from the choices on the probe page.
- **3.** Select the probe (sheath) length (L_1) in inches.
- **4.** Select a cable or lead type to match your requirements.

- **5.** If you're using individual leads, and color coding is important, enter those colors here. Non-Thermilinear parts are supplied with black individual leads.
- **6.** Select the length of cable (L_2) in inches.
- 7. Indicate cable termination: ST, PH, SP.
- **8.** Choose an option if required; the options are FEP (Teflon sheath) and/or Compression Fitting (Specify thread).

We Build OEM Probes

If you don't find a Configure-to-Order probe that suits your application, we can design probes specifically for your application.

YSI 010 Round Epoxy Tip Probe

The **YSI 010** probe provides a good mix of ruggedness, flexibility and response time. Epoxy encapsulation provides high compression strength and the PVC cable provides abrasion protection.

This design is excellent for pot-in-place applications such as analytical instruments and supplying temperature data of test subjects for compensation. This probe is not designed for long wet immersion; use the YSI 070 and 071 instead.

Typical Time Constant: 5.0 seconds Temperature Range: -40 to 105°C

YSI 011 Round PVC Tip Probe

The **YSI 011** probe combines ruggedness, flexibility and short response time. The vinyl plastisol encapsulation protects against mechanical shock. The PVC cable construction provides abrasion protection.

Since the thermistor and cable are constructed from the same material, the seal is as good as the cable. This design is excellent for applications such as environmental temperatures and supplying temperature data of test subjects for compensation. This design will tolerate many days of immersion without internal water shunts.

Typical Time Constant: 2.0 seconds **Temperature Range:** -40 to 105°C

YSI 012 Epoxy Tip Probe

The YSI 012 probe is similar to the YSI 010 probe. The YSI 012 offers parallel leads and a faster response time. Its shape allows it to be inserted in areas which are an integral part of the sample environment.

This style permits more accurate measurements of surfaces than the YSI 010 style because the lead may be placed in contact with the surface more effectively. Since the primary thermal transfer path is through the conductor (lead), it's important to have several inches of the lead at the sample temperature.

Use glass thermistors with FPE cable if longterm immersion is planned.

Typical Time Constant: 3.0 seconds **Temperature Range:** Thermistor and cable dependent

YSI 013 Acrylic Coated Tip Probe

The YSI 013 probe is a low-cost probe assembly using an ultraviolet curable acrylic coating material. Low cost is achieved through automation of the thermistor coating process. The acrylic material has good moisture resistance, which allows the probe to be used in high humidity environments and for short-term immersion. The HDPE (high-density polyethelene) cable and acrylic material have been tested for biocompatibility and are resistant to gamma radiation sterilization. This is appropriate for medical applications where a moderate temperature range and biocompatibility are required.

Typical Time Constant: 3.0 seconds **Temperature Range:** -60 to 105°C

YSI 014 Thermistor with Leads Probe

Glass-Encapsulated Thermistor

Epoxy-Encapsulated Thermistor

The YSI 014 probe is constructed with individual leads for flexibility or use. As with any sensor with leads, the stem artifact must be recognized. The advantage of the YSI 014 probe is the ability to control placement and insulation of the leads to maximize response time and reduce stem effect. This design lets you create a low stem effect, fast time constant and small volume sensor. YSI 014 probes are generally the lowest cost and are used frequently in instrumentation.

Typical Time Constant: 1.0 to 3.0 seconds **Temperature Range:** Thermistor and cable dependent

Probe Style Thermis	tor	Probe Length L1 NA Length in inches	Style	Color Se Opt		Le	nd Length L2 ngth in nches	Termination	
	Lead Sty		germine at	Thermist			ad Length L2	Termination	
Cithe Individual PVC	code IP •	Charkalidhe	Significano Signio Mario	JAN AMISA AMOZO	Minimum Length	addinum lengt	pad & There The Pi	A State Little Ser.	
Individual Miniature PVC	IPM	•	· <u>·</u>	. • 1 <u>1</u>	48"	•	• _ •	Lead Colors Av	<i>r</i> ailable
marriada 112 1011011	II •	•	•	• 1'	48"	•	•	Black: Blk	Green: Grn
	ITM IV	┨┇ ┈	 	• <u>1'</u> 0.	48" 12"		· —	- Brown: Brn	Blue: Blu
marriada ramon modiated	IC	•		0.				Red: Red	Violet: Vio
	ID	• •	•	0.		•		Orange: Org	Gray: Gry
Individual Tefzel	IA	• •	• •	• 1'	48"	•	•	Yellow: Yel	White: Wht
Individual Large TFE Teflon Individual Large PVC	ITL •	•	•	1'	48"		•		

YSI 015 Thermistor in Teflon Probe

The YSI 015 probe's design allows it to resist attack from almost all chemicals in the industrial environment. The exceptions are hydrofluoric acid, alkaline metals and a few other compounds. While Teflon is highly water-vapor-permeable, it's extremely resistant to attack by ionized compounds. The specific heat of Teflon is quite high, making the YSI 015 a poor choice for gas temperature measurement.

A frequent application of the YSI 015 probe is temperature measurement and control of plating baths. When mounting the YSI 015 probe in a chemically active environment, prevent splashing into the back of the tube.

Typical Time Constant: 2.5 seconds **Temperature Range:** Thermistor and cable dependent

YSI 016 Radial Leaded Thermistor

The **YSI 016** Radial Leaded Thermistor has been designed to allow use of automatic lead forming/insertion equipment. This style allows the use of any non-Thermilinear thermistor. The thermistor is potted into a 0.187"diameter, 0.375" long cylindrical potting cup. Leads are 22 AWG silver plated copper, 2" long. This component is an excellent choice for on-board temperature compensation, or other PC board application.

Typical Time Constant: 3.0 seconds **Temperature Range:** -40 to 120°C

YSI 030 1/8" OD Tubular Probe

The **YSI 030** tubular probe is a ½" diameter 316 stainless steel assembly. Its primary application is measurement and control sensing in wet environments. Internal construction reduces stem effect errors by increasing the thermal path at the thermistor. Immersion depths will significantly affect measurement accuracy. To establish the appropriate immersion depth, follow the instructions in the Technical Information Section. The optional compression fitting simplifies insertion in a process flow.

Typical Time Constant: 3.0 seconds **Temperature Range:** Thermistor and cable dependent

YSI 031 3/16" OD Tubular Probe

YSI 032 1/4" OD Tubular Probe

The **YSI 031** and **YSI 032** tubular probes are ${}^3/_{16}$ " or ${}^1/_4$ " diameter 316 stainless steel assemblies. Their primary application is measurement and control sensing in wet environments. Internal construction reduces stem effect errors by increasing the thermal path at the thermistor. Immersion depths will significantly affect measurement accuracy. To establish the appropriate immersion depth, follow the instructions in the Technical Information Section. The optional compression fitting simplifies insertion in a process flow.

YSI 031 Typical Time Constant: 3.8 seconds Temperature Range: Thermistor and cable

dependent

YSI 032 Typical Time Constant: 4.5 seconds Temperature Range: Thermistor and cable

dependent

Probe Style	Thermistor	Probe l L Lenginch min = max =	th in nes 1/2"	Lead Style	C]	olor Select Option /	ion 	Leng	Length L ₂ gth in thes] - [Termir	- [Options Compression Fitting 1/8", 1/4", 1/2" FEP
	calife	Lead So	•	se steer there's stand's	Jano 55000	inia	ermistor	inimum length		d Length Length Right Right Right		Termination	J
	Round PVC	RP		. (•		3"	1200"	· [•	. [•	
Ro	ound Miniature PVC	RPM	•	•	•	•	3"	1200"	•	•	•	Land Cala	A !l.a.la.la
	Round TFE Teflon	RT	•	•	•	•	3"	1200"	•	•	•		orsAvailable
Round S	Shielded TFE Teflon	RTS	•	<u> </u>	•	<u>· </u>	3"	1200"	<u> </u>	• _	•	Black: Blk	Green: Grn
	Individual PVC	₽ •	•		•	•	1"	48"	•	•	٠	Brown: Brr	
	dividual Large PVC	IPL •	•		• (032 only)	1"	48"	•	•	•	Red: Red	Violet: Vio
	dual Miniature PVC	IPM	•		•	<u>· </u>	1"	48"	•	• _	•	Orange: Or	g Gray: Gry
	dividual TFE Teflon	<u>II</u> •		•	•	•	1"	48"	•	•	•	Yellow: Yel	
	al Large TFE Teflon	ITL •	•		•	•	1"	48"	•	•	•		aco. wite
Individual M	liniature TFE Teflon	ITM	_ •	<u> </u>	• _	<u>· </u>	1"	48"	•	•	•		
1	Individual Tefzel	IA	•	•	•	•	1"	48"	•	•	•		

YSI 033 1/8" OD Hermetic Tubular Probe

For more information, contact us at 800 747-5367 or 937 427-1231 • Fax 937 427-1640 Info@YSI.com • www.YSI.com The YSI 033 probe has the same properties as the YSI 030 with the notable exception of being hermetically sealed. The hermetic seal prevents condensation of water at the sensor or leads and eliminates electrical shunt error.

The transfer rate of water vapor is a function of the differential vapor pressure. At 0°C and 100% RH the condensing vapor pressure is 4.58 mm Hg and at 20°C and 50% RH the vapor pressure is 8.77 mm Hg. The differential pressure is 4.19 mm Hg. This is approximately 0.8 PSIG, which is significant over time. Multiple cycle and life studies (ask for document TD001) demonstrate the value of this probe style for stability in long-term cooling fluid systems. Compression fitting adaptability enhances the YSI 033 probe's versatility.

Typical Time Constant: 3.0 seconds **Temperature Range:** Thermistor and cable dependent

YSI 034 3/16" OD Hermetic Tubular Probe

YSI 035 1/4" OD Hermetic Tubular Probe

The **YSI 034** and **YSI 035** are hermetically sealed, which prevents condensation at the sensor or leads and eliminates electrical shunt error. The transfer rate of water vapor is a function of the differential vapor pressure. At 0°C and 100% RH the condensing vapor pressure is 4.58 mm Hg and at 20°C and 50% RH the pressure is 8.77 mm Hg. The differential pressure is 4.19 mm Hg. This is approximately 0.8 PSIG, which is significant over time. Multiple cycle and life studies (ask for document TD001) demonstrate the value of this probe for stability in long-term cooling fluid applications. Compression fitting adaptability enhances the YSI 034 probe's versatility.

YSI 034 Typical Time Constant: 3.8 seconds Temperature Range: Thermistor and cable

dependent

YSI 035 Typical Time Constant: 4.5 seconds Temperature Range: Thermistor and cable dependent

Probe Style Thermisto	- Leng inc min		ad Color Selecti yle Option - /	on Lead Length L2 Length in inches	Termination	Options Compression Fitting 1/8", 1/4", 1/2" FEP
	Lead Sty	vle	Therm normalized the state of t		ength L2 Termination Termination Termination	
Round F Round Shielded F Round Miniature F Round TFE Tef Round Shielded TFE Tef Individual I Individual Large F Individual Miniature F Individual Large TFE Tef Individual Miniature TFE Tef Individual Miniature TFE Tef	PVC RP RPS PVC RPM Idon RT Idon RTS PVC IP PVC IPL PVC IPM Idon ITL Idon ITL Idon ITM		(035 only)	3" 1200" • 3" 1200" •	•	rn Blue: Blu Violet: Vio Org Gray: Gry

YSI 036 Pyrex Probe

The YSI 036 is a Pyrex-sheathed probe designed primarily for applications in wet chemistry. This glass probe is frequently used for measurement and control of temperatures in glass reactor systems. Pyrex is limited by its solubility and reaction in hydrofluoric acid and strong bases. In EPA-type applications, sample-to-sample carryover must be prevented.

The immersion depth of the tip may have a major effect on accuracy and repeatability. Refer to the Technical Information Section for guidelines to minimize stem effect error.

Pyrex is fragile. Use of compression fittings is feasible but they require Teflon ferrules (not available from YSI). We recommend stainless steel tubular probes (YSI 030-035), where practical.

Typical Time Constant: 4.2 seconds **Temperature Range:** Thermistor and cable dependent

/	Califfe		d Styl		e gan except the	Herritinest St.	son s	Maria A	rmistor	indunun Longi		and Length		Termination	
	Round PVC	RP		•	•	•		•	3"	1200"	•	•			
	Round Shielded PVC	RPS		•	•	•	•	•	3"	1200"	•	•	•		
	Round Miniature PVC	RPM		•	•	•	•	•	3"	1200"	•	•	•		
	Round TFE Teflon	RT		•	•	•	·	•	3"	1200"	•	•	•	Lead Colors A	vailable
	Round Shielded TFE Teflon	RTS		•	•	•	•	•	3"	1200"	•	•	•	Black: Blk	Green: Grn
	Individual PVC	IP	•	•	•	•	$\overline{}$	•	1"	48"	•	•	•	Brown: Brn	Blue: Blu
	Individual Large PVC	IPL	•	•	•	•	•	•	1"	48"	•	•	•		
	Individual Miniature PVC	IPM		•	•	•	•	•	1"	48"	•	•	•	Red: Red	Violet: Vio
	Individual TFE Teflon	IT	•	•	•	•	•	•	1"	48"	•	•	•	Orange: Org	Gray: Gry
- [Individual Large TFE Teflon	ITL	•	•	•	•	•	•	1"	48"	•	•	•	Yellow: Yel	White: Wht
L	ndividual Miniature TFE Teflon	IГМ		•	•	•	•	•	1"	48"	•	•	•		
Г	Individual Tefzel	IA		•	•	•	•	•	1"	48"	•	•	•		

YSI 038 1/4" OD Pointed Tubular Probe with Handle

The YSI 038 style probe is specially designed for measurement of internal temperature of various materials. The pointed tip and T handle aid in insertion. The detachable cable offers easy replacement in high wear situations. Although the cable attachment point is not waterproof, the probe is widely used in streambed temperature measurement and other environmental applications. Measurement of meat temperature is another common use.

Typical Time Constant: 4.5 seconds **Temperature Range:** 105°C at cable exit

For more information, contact us at 800 747-5367 or 937 427-1231 • Fax 937 427-1640 Info@YSI.com • www.YSI.com

YSI 050 Bird Cage Air Probe

The **YSI 050** probe is designed to measure temperature in dry gas streams. The YSI 050 has the fastest response time of any standard protected probe. Typical applications include incubator and low-temperature drying systems.

While the thermistor is sealed with an insulating epoxy, the seal is not useful in aqueous solutions and should not be immersed. For exposure to wet or abrasive environments, use either the YSI 030 or the YSI 052.

While the sensor is shielded from radiant energy, the cage may reradiate energy to the thermistor if exposed to direct sunlight and bias the measurement.

Typical Time Constant: 1.0 seconds **Temperature Range:** Thermistor and cable dependent

YSI 051 Air Probe for Compression Fitting

The **YSI 051** probe is designed to measure temperature in dry gas pipes and lines. The YSI 051 has the fastest response time of any standard probe that will pass through a compression fitting.

While the thermistor is sealed with an insulating epoxy, the seal is not useful in aqueous solutions and should not be immersed. For exposure to wet or abrasive environments, use either the YSI 030 or the YSI 052.

While the sensor is shielded from radiant energy, the cage may reradiate energy to the thermistor if exposed to direct sunlight and bias the measurement.

Typical Time Constant: 2.0 seconds **Temperature Range:** Thermistor and cable dependent

YSI 052 Waterproof Airway Probe

The YSI 052 probe is a completely enclosed gas temperature probe. Its primary benefit is pressure-resistant construction with fast response time. Applications include measurement in wet, abrasive or pressurized gas streams. The YSI 052 is also used to measure air temperature in fluidized baths. It has been used to measure wet air float transport of powdered coal, plastic and freeze dried foods. Stem effect may reduce accuracy and repeatability; see the Technical Information Section for guidelines on minimizing stem effect error.

Typical Time Constant: 3.0 seconds **Temperature Range:** Thermistor and cable dependent

YSI 070 Underwater Probe

The **YSI 070** probe is designed for long-term burial in soil, concrete or other high-wetness environments. This provides a high-integrity seal as well as mechanical protection to the thermistor itself.

For best long-term performance we recommend glass-encapsulated thermistors (YSI 45000, 46000, 55000).

While not designed for deepwater immersion, the YSI 070 is frequently used to measure the temperature of bogs, wetlands and wells. It can withstand the pounding punishment of burial in interstate roadways and airport runways.

It's potted in urethane in a polyvinyl cap. **Typical Time Constant:** 15.0 seconds **Temperature Range:** 60°C max

YSI 071 Deepwater Probe

The **YSI 071** probe is designed for long-term immersion at considerable depth. It has a stainless/neoprene vulcanized seal with a molded external splice protector. This assembly method provides a high-integrity seal as well as mechanical protection to the leads and the thermistor.

For best long-term performance we recommend glass-encapsulated thermistors (YSI 45000, 46000, 55000).

It's designed for deepwater immersion and is frequently used to measure the temperature of deepwater reservoirs, wetlands and wells. Multiple-year immersion at 2,000 feet is feasible. Several such installations are in place for thermal gradient power generation tests. The YSI 071 can withstand the forces of pier mounting in high-wave environments.

Typical Time Constant: 5.0 seconds **Temperature Range:** 60°C max

YSI 080 Banjo Surface Probe

The YSI 080 probe is designed for handheld surface temperature applications. The design provides fast response and minimal stem effect error, while providing an electrically isolated thermistor. Since the YSI 080 has a large capture area and small mass, it's also useful for sampling measurement of gas and air streams.

All flat surface sensors require the best contact feasible while protecting the noncontacting surface from high levels of radiant energy. This can be accomplished by placing a reflective surface between the sensor and the source.

Typical Time Constant: 0.6 seconds **Temperature Range:** Thermistor and cable dependent

YSI 081 Surface Probe

YSI 082 Small Surface Probe

YSI 081 and YSI 082 probes are designed for permanent or temporary fixed-mount surface temperature applications. The construction of the probes provides fast response and minimal stem effect error when used with relatively lightweight leads and properly mounting the leads. The thermistor is electrically isolated from the case.

One application of these probes is the measuring of coil and radiator temperatures in heat exchangers.

All flat surface sensors require good surface contact while protecting the noncontact surface from high levels of radiant energy. This can be accomplished by placing a reflective surface between the sensor and the source. These probes are not waterproof.

YSI 083 Attachable Surface Probe

The YSI 083 surface-temperature probe is designed for bolt-in-place applications. This is our most rugged surface temperature probe. With the use of a thermal transfer compound, the YSI 083 will collect accurate temperature data because it's in intimate contact with the body to be measured.

The YSI 083 is frequently used to measure, monitor and control temperatures of small motors, heat exchangers and fluid pumping systems.

All flat surface sensors require good surface contact while protecting the noncontact surface from high levels of radiant energy. This can be accomplished by placing a reflective surface between the sensor and the source.

Typical Time Constant: 8.0 seconds **Temperature Range:** Thermistor and cable dependent

For more information, contact us at 800 747-5367 or 937 427-1231 • Fax 937 427-1640 Info@YSI.com • www.YSI.com

YSI 084 Ring Lug Surface-Temperature Probe

The YSI 084 ring lug surface-temperature probe is designed for screw-in-place applications. The lug is uninsulated plated copper and corresponds to a #8 ring lug. The thermistor is potted in the barrel. The YSI 084 was originally designed for use in satellite systems and is frequently used to measure, monitor and control temperatures of small motors, heat exchangers and fluid pumping systems.

All flat surface sensors require good surface contact while protecting the noncontact surface from high levels of radiant energy. This can be accomplished by placing a reflective surface between the sensor and the source.

Typical Time Constant: 5 seconds **Temperature Range:** Thermistor and cable dependent

YSI 085 Flag Lug Probe

The **YSI 085** is an attachable surface temperature probe in a flag lug configuration. The flag is made of tin-plated copper and the mounting hole is a #6.

This probe can be used in a variety of surface temperature applications. All flat surface sensors require good surface contact while protecting the noncontact surface from high levels of radiant energy. This can be accomplished by placing a reflective surface between the sensor and the source.

Typical Time Constant: 3.1 seconds **Temperature Range:** Thermistor and cable dependent

Probe Style Thermistor	[L	be Lengt L ₁ NA ength in inches		ead yle	- [lor Sel Optio /		-	ead Le L2 Length inches	in	Te	ermination
c _{in} tr	Lead S	_	the exceptive high	Indinest Sisteman	gao na	, oto	emistor	dining beigh		ad Leng		Termination
Round PVC Round Shielded PVC Round Miniature PVC Round TFE Teflon Round Shielded TFE Teflon Flat PVC Flat TFE Teflon Individual PVC Individual Large PVC Individual Miniature PVC Individual TFE Teflon Individual Large TFE Teflon Individual Miniature TFE Teflon Individual Miniature TFE Teflon Individual Miniature TFE Teflon Individual Tefzel	RP RPS RPM RT RTS FP FT P				•		3" 3" 3" 3" 1" 1" 1" 1" 1" 1" 1" 1"	120" 120" 120" 120" 120" 120" 120" 48" 48" 48" 48" 48"				

For more information, contact us at 800 747-5367 or 937 427-1231 • Fax 937 427-1640 Info@YSI.com • www.YSI.com

YSI 090 8-32 Brass Screw Probe

The **YSI 090** probe is a thermistor mounted in a 8-32 brass hex head bolt. The design is especially useful for measuring relatively thick samples that are under vibration. The lead should not be excessively flexed in high-vibration environments. Brass provides an excellent thermal pathway and is much less susceptible than stainless steel to spurious heat source errors.

Typical Time Constant: 2.0 seconds **Temperature Range:** Thermistor and cable dependent

YSI 093 8-32 Stainless Steel Probe

The **YSI 093** probe is a thermistor mounted in a 8-32 stainless steel hex head bolt. The design is especially useful for measuring relatively thick samples which are under vibration. The lead should not be excessively flexed in high vibration environments. Stainless steel provides a poorer thermal pathway than brass and may be susceptible to spurious heat source errors.

Typical Time Constant: 2.5 seconds **Temperature Range:** Thermistor and cable dependent

For more information, contact us at 800 747-5367 or 937 427-1231 • Fax 937 427-1640 Info@YSI.com • www.YSI.com

YSI 091 10-32 Brass Screw Probe

The **YSI 091** probe is a thermistor mounted in a 10-32 brass hex head bolt. The design is especially useful for measuring relatively thick samples which are under vibration. The lead should not be excessively flexed in high vibration environments. Brass provides an excellent thermal pathway and is much less susceptible than stainless steel to spurious heat source errors.

Typical Time Constant: 3.5 seconds **Temperature Range:** Thermistor and cable dependent

YSI 094 10-32 Stainless Steel Probe

The **YSI 094** probe is a thermistor mounted in a 10-32 stainless steel hex head bolt. The design is especially useful for measuring relatively thick samples which are under vibration. The lead should not be excessively flexed in high vibration environments. Stainless steel provides a poorer thermal pathway than brass and may be susceptible to external heat source errors.

Typical Time Constant: 4.0 seconds **Temperature Range:** Thermistor and cable dependent

	Lea	d Sty	le				Thei	rmistor		I	ead Leng	th L2	Termination	
					/ *	PIG.								
				the exceptiff	Tilined	John Line of Marie	14			/		ET		
				. / N	Jeff. 31	ALL A C	in,			in ,		ed ly		
			Color Availab	oxcest.	REGUL	Jella da	18 AMI 9A		dininin lengt	distributed Let	stiffed a full	ione Plug (PH)	Andre Trees	
Capte	C.	ode	color A.	ing , in	3001	in all	18/1	ADZO NI	minit	diffill	tippe or	one L	-Agar	
/		,	7 *	, Or	.,	N.v.	,		, M		, v	***		
Round Miniature PVC	RPM		•	•	•	•		3"	120"	•	•	•		
Flat PVC	FP		•	•				1"	120"	•	•	•		
Flat TFE Teflon	FT		•	•	•	•	•	1"	120"	•	•	•	Land Onlaws A	!lalala
Individual PVC	IP	•	•	•	•	•		1"	48"	•	•	$\overline{}$	<u>Lead Colors <i>F</i></u>	
Individual Large PVC	IPL	•	•	•			•	1"	48"	•	•	•	Black: Blk	Green: Grn
Individual Miniature PVC	IPM		•	•	•	•	•	1"	48"	•	•	•	Brown: Brn	Blue: Blu
Individual TFE Teflon	ΙΤ	•	•	•	•	•	•	1"	48"	•	•	•	Red: Red	Violet: Vio
Individual Large TFE Teflon	ITL	•	•	•	•	•	•	1"	48"	•	•	•	Orange: Org	Gray: Gry
Individual Miniature TFE Teflon	IТМ		•	•	•	•	•	1"	48"	•	•	_ • _	Yellow: Yel	White: Wht
Individual Tefzel	IA		•	•	•	•	•	1"	48"	•	•	•	iciiow. ici	WITHUE. WITH

YSI 096 1/8" Brass Pipe Plug Probe

The **YSI 096** probe is a thermistor mounted in a ½" NPT brass pipe plug. The pipe plug design allows easy application in piping systems. The lead should not be excessively flexed in high vibration environments. While brass is an excellent conductor, unless care is taken, the wall temperature rather than the sample temperature will be measured.

Typical Time Constant: 10.0 seconds **Temperature Range:** Thermistor and cable

dependent

YSI 190 1/8" Stainless Steel Plug Probe

The **YSI 190** probe is a thermistor mounted in a $\frac{1}{8}$ " NPT stainless steel pipe plug. The pipe plug design allows easy application in piping systems. The lead should not be excessively flexed in high vibration environments. Since stainless steel is not a good thermal conductor, unless care is taken, the wall temperature rather than the sample temperature will be measured.

Typical Time Constant: 15.0 seconds **Temperature Range:** Thermistor and cable dependent

		d Sty		he had except h	nernitueat (Agono	.0	, A019A	rmistor	initial septiment in the septiment is a septiment in the		ead Leng		Termination	
Cathle	ਹ	ode	color M	A.	Sille 5	3000 4	Ante M	ing I	init.	atill St	ith by	John #6	*/	
Round PVC	RP		•		•		•	3"	120"		•	•		
Round Shielded PVC	RPS		•		•		•	3"	120"	•	•	•		
Round Miniature PVC	RPM		•		•	•	•	3"	120"	•	•	•		
Round TFE Teflon	RT		•	•	•	·	•	3"	120"	•	•	$\overline{}$		
Round Shielded TFE Teflon	RTS		•	•	•	•	•	3"	120"	•	•	•	Lead Colors A	lvailahle
Flat PVC	FP		•	•	•	<u> </u>	•	1"	120"	•	•	$\overline{}$	Black: Blk	
Flat TFE Teflon	FT		•	•	•	•	•	1"	120"	•	•			Green: Grn
Individual PVC	IP	•	•	•	•	·	•	1"	48"	•	•	$\overline{}$	Brown: Brn	Blue: Blu
Individual Large PVC	IPL	•	•	•	•	•	•	1"	48"	•	•	•	Red: Red	Violet: Vio
Individual Miniature PVC	IPM		•	•	•	•	•	1"	48"	•	•	•	Orange: Org	Gray: Gry
Individual TFE Teflon	Π	•	•	•	•	•	•	1"	48"	•	•	$\overline{}$	Yellow: Yel	White: Wht
Individual Large TFE Teflon	ITL	•	•	•	•	•	•	1"	48"	•	•	•		-2
Individual Miniature TFE Teflon	IТМ		•	•	•	•	•	1"	48"	•	•	_ • _		
Individual Tefzel	IA		•	•	•	•	•	1"	48"	•	•	\Box		

YSI 100 1/8" Tubular Probe with Fitting

YSI 101
3/16" Tubular Probe
with Fitting

YSI 102 1/4" Tubular Probe with Fitting

Info@YSL.com • www.YSL.com

The **YSI 100, 101, 102** are stainless steel tubular probes with ½" NPT fittings. This design has a high tolerance for pressure and tolerates high flow rates for short periods. The stainless steel construction provides protection from stress corrosion and cavitation etching. Applications include accurate readings in pipelines.

YSI 100 Typical Time Constant: 3.0 seconds YSI 101 Typical Time Constant: 3.4 seconds YSI 102 Typical Time Constant: 4.5 seconds Temperature Range: Thermistor and cable

dependant

SECTION 4 YSI Series 400 and YSI 700 Standard Reusable Probes

- General-Purpose and Tubular Probes
- Surface Probes and Autoclavable Probes
- Gas and Airway Probes
- Technical Data

YSI Standard Reusable Temperature Probes

We offer two series of precision probes for manufacturing, research and medicine.

- Every probe traceable to the NIST
- Substitute any probe in either series for any other in the same series with no loss of accuracy
- YSI reusable probes are the world standard for medical use in humans
- YSI Series 700 Probes provide linear response
- Made without latex to reduce allergic reactions
- Probes are electrically-isolated
- Durable molded phone plugs
- Extension leads available

Applications

- Incubators
- Cuvettes
- Patient monitoring
- Environmental control
- Research labs
- Many industrial uses

General-Purpose Probes

YSI 401 & 701 General-Purpose

- Rugged vinyl probe
- For air, sub-soil and short-term water
- Time constant 401: 7 sec; 701: 9 sec
- Range 401: -40 to +100°C; 701: -30 to +100°C

For more information, contact us at **800** 747-5367 or **937** 427-1231 • Fax **937** 427-1640 Info@YSI.com • www.YSI.com

YSI 402 & 702A Small Vinyl

- Smaller, flexible versions of YSI 401 and 701
- For patient monitoring with a quicker response time
- Time constant 402: 3.2 sec; 702A: 3.6 sec
- Range 402: -40 to +100°C; 702A: -30 to +100°C
- Rectal temperatures of small animals

YSI 423 Small Nylon

- Epoxy tip, nylon tube
- Fastest response time of general-purpose probes
- For cuvette, research, shallow immersion
- Time constant 1.4 sec
- Range -40 to +100°C

Tubular Probes

YSI 403 & 703 Stainless Steel Tubular

- Sheath compatible with many fluids
- Quick and durable
- Time constant 403: 3.4 sec; 703: 3.6 sec
- Range 403: -40 to +150°C; 703: -30 to +150°C

YSI 451 Teflon **Tubular**

- Can be fed through an 18- gauge thin-wall hypo. needle
- Short-term immersion in small liquid samples
- Time constant 3.1 sec
- Range: ± 0.1 °C from 0 to +70°C

4

YSI 404 & 704 Pyrex Tubular

- Chemically inert for immersion
- Thermometric titrations, freezing points
- Time constant 4.2 sec
- Range 404: -40 to +150°C; 704: -30 to +150°C

YSI 406 Small Tubular

- Similar to YSI 403 but thinner and faster
- Time constant 2.5 sec
- Range -40 to +150°C

YSI 410 & 710 Tubular with NPT Fitting

- For use in pipes and vessels
- 316 stainless steel withstands 500 psi
- Time constant 3.4 sec
- Range 410: -40 to +150°C; 710: -40 to +150°C

YSI 416 Autoclavable Tubular

- Stainless steel fitting and sheath; detachable lead
- Not electrically isolated
- Time constant 3.4 sec
- Range -40 to +150°C

YSI 418 Pointed Tubular

- For semi-solids such as meat, fruit, tobacco, rubber
- 316 stainless steel
- Time constant 3.7 sec: Range -40 to +150°C

YSI 433 Pointed Tubular

- For semi-solids such as meat and fruit
- 316 stainless steel
- Time constant 3.7 sec
- Range -40 to +150°C

Surface Probes

YSI 408 & 708 Banjo Surface

- For industrial, process and medical use
- Handle simplifies use
- Time constant 408: 0.6 sec; 708: 1.0 sec
- Range 408: -40 to +150°C; 708: -30 to +100°C

YSI 409A & 709A High-Temperature

- 12" Teflon leads
- Stainless steel disc with epoxy back protects probe from environment
- Time constant 1.1 sec
- Range 409A: -40 to +150°C; 709A: -30 to +100°C

YSI 409B & 709B Rugged Surface

- More rugged than YSI 409A and 709A
- Vinyl-covered leads; time constant 1.1 sec
- Range 409B: -40 to +100°C; 709B: -30 to +100°C

YSI 427 & 729 Small Surface

- Similar to YSI 421 but not autoclavable and leads not detachable
- Time constant 0.3 sec
- Range 427: -40 to +150°C; 729: -30 to +100°C

Gas Temperature Probes

YSI 405 Gas

- Thermistor protected by stainless steel cage
- For low humidity such as incubators, test rooms, gas streams
- Time constant 10 sec in 3 ft/sec air at 0% RH
- Range -40 to +150°C

YSI 441A Airway

- For anesthesia, respiratory care, in-line measurement
- Time constant 30 sec (worst case in air)
- Range 0 to 50°C

Technical Data

YSI Series 400 Probes

Temperature Range: $-40 \text{ to } +150^{\circ}\text{C}$ ($-40 \text{ to } +300^{\circ}\text{F}$) except as specified. Lead wires may be subjected to 100°C .

Interchangeability: ± 0.25 °C at -40°C; ± 0.10 °C from 0 to 70°C; ± 0.21 °C at 100°C; ± 0.40 °C at 150°C

Time Constant: Derived from measurements in water at 3 feet per second. A probe requires approximately 5 time constants to read 99% of a total change.

Leads: Non-detachable 10' vinyl-covered shielded wire, except as noted. Junction between probe and leads should not be immersed. Detachable leads are not water-resistant. Extension leads available:

YSI 4010 10' Extension Lead

YSI 4025 25' Extension Lead

YSI 4050 50' Extension Lead

Termination: Right-angle molded phone plug, except as specified. Gray plugs are 2-conductor.

Electrical Isolation: Sensing elements and lead wires are electrically isolated from the outer probe surfaces, except as noted.

Cleaning: All probes are EtO-sterilizable.

YSI Series 700 Probes

Temperature Range: -30 to +100°C (-22 to +212°F), except as specified. Lead wires may be subjected to 100°C.

Interchangeability: ±0.15°C from -30 to +100°C

Time Constant: Derived from measurements in water at 3 feet per second. A probe requires approximately 5 time constants to read 99% of a total change.

Leads: Non-detachable 10' vinyl-covered shielded wire, except as noted. Junction between probe and leads should not be immersed. Detachable leads are not water-resistant. Extension leads available:

YSI 7010 10' Extension Lead

YSI 7025 25' Extension Lead

YSI 7050 50' Extension Lead

Termination: Right-angle molded phone plug, except as specified. Black plugs are 3-conductor.

Electrical Isolation: Sensing elements and lead wires are electrically isolated from the outer probe surfaces, except as noted.

Cleaning: All probes are EtO-sterilizable.

Resistance or Voltage Outputs: You may combine a YSI Series 700 Probe with two fixed resistors for a linear response to temperature in either a resistance or voltage mode. YSI offers 4 standard networks for the range -30 to +100°C. Special networks are also available. For more information, call YSI Customer Service.

YSI Series 400AC Probes

Temperature Range: -40 to +130°C (-40 to +266°F), except as specified. Lead wires may be subjected to 100°C.

Interchangeability: ± 0.2 °C from -40 to +70; ± 0.1 °C from 0 to 50°C.

Sterilization: Steam autoclave (20 minutes at 121-123°C). See probe instructions for additional cleaning and sterilizing information.

Leads: Non-detachable 10' thermoplastic elastomer-covered wire.

Termination: Right-angle molded phone plug. Beige plugs are

2-conductor.

Autoclavable Probes (qualified for medical use)

YSI 401AC General Purpose

- Long-term immersion
- Time constant 10 sec
- Range -40 to +130°C

YSI 402AC General-Purpose

- Long-term immersion
- Time constant 6 sec
- Range -40 to +130°C

YSI 409AC Surface

- Measurement in high-moisture environments
- Time constant 18 sec
- Range -40 to +130°C

Section 5 YSI 4600 Precision Thermometer

- High-Precision with Standard Probes for Labs, the Manufacturing Floor and the Field
- Affordable Metrology-Level Measurement

YSI 4600 Series Precision Thermometers

Our new handheld YSI 4600 Series Precision Thermometers take metrology-level temperature measurement to the laboratory, the manufacturing floor and the field, at an affordable price.

Three Versions for a Range of Applications

We make three versions of the thermometer to address a broad range of temperature measurement applications.

The **YSI** 4600 gives you high-precision and the convenience of a wide selection of off-the-shelf YSI 400 Series Probes.

The **YSI 4610** offers higher system accuracy with interchangeable probes.

The **YSI 4600S** provides metrology-level accuracy because we calibrate each unit with a specific probe.

All Versions Include These Features

- Resolution to 0.01°C
- RS232 port
- NIST traceability
- °F or °C readout
- Hold
- Min/max
- ΔT
- Store

YSI 4600-Flexibility and Precision

The YSI 4600 is a precision thermometer for use with standard YSI 400 Series Probes over the wide range -40 to +150°C. It's ideal for applications requiring system accuracy and flexibility.

The instrument offers high accuracy, $\pm 0.015^{\circ}$ C, from 0 to 50°C; system accuracy is $\pm 0.115^{\circ}$ C with over 20 styles of YSI 400 Series Probes.

- · Stainless steel tubular
- Air/gas
- Vinyl tip
- Catheter

Use the YSI 4600 to measure-

- Gas & air
- Liquids
- Semi-solids & solids

YSI 4610-Higher Accuracy with Interchangeable Probes

The YSI 4610 offers extremely high system accuracy when you use the YSI interchangeable probes that we test and calibrate just for this thermometer. System accuracy is ± 0.05 °C from 20 to 50°C with two special probes—a catheter probe and a vinyl tip general-purpose probe. The temperature range is 0 to 70°C.

- Analytical instrument calibration
- Field service
- Process validation
- Data acquisition

YSI 4600S-Transfer Standard

The YSI 4600S offers metrology-level accuracy over user-defined temperature ranges. Each system is calibrated with a matched probe (built using a YSI 46000 Super-Stable Glass Thermistor) appropriate for your application. Single-point and 4-point NIST traceable calibrations are available. System accuracy as tight as ± 0.025 °C between 0 to 50 °C is obtainable with a 4-point calibration. Contact YSI for calibration details.

- Metrology labs
- Testing labs
- Critical process monitoring
- · Transfer standard

About calibration

We provide every YSI temperature product with a Certificate of Traceability, indicating that it was calibrated during manufacture with standards traceable to the National Institute of Standards and Technology.

Specifications

Accuracy and Temperature Range

YSI 4600 Thermometer-System accuracy with YSI 400 Series **Probes**

±0.350°C at -40°C

±0.115°C from 0 to 50°C

±0.125°C at 70°C

±0.275°C at 100°C

±0.720°C at 150°C

YSI 4610 Thermometer—System accuracy with YSI 4610 Series **Probes**

±0.05°C from 20 to 50°C

±0.1°C at 0°C

±0.1°C at 70°C

YSI 4600S Thermometer-System accuracy with YSI Configure-to-Order Probe

±0.025°C from 0 to 50°C

System accuracy from -40 to 125°C depends on specified calibration.

Resolution: 0.01° C from -40 to $+102^{\circ}$ C;

0.02°C from 102 to 150°C

Repeatability: 0.0002 to 0.01 °C (-20 to +100°C) typical for one

week at constant ambient temperature. Reading rate: 2 readings per second

Display: 4 1/2-digit LCD

Battery Life: 20 hours typical (9V alkaline cell included)

Battery Indicator: Displays flashing battery symbol when less than

5% of life remains

Temperature Units: °F or °C selected from keypad

Auto Shutoff: 10 minutes with battery power and no RS232

communications

Mating Connection: 1/4" phone jack

Operating Conditions: 10 to 40°C; 0 to 85% RH

Size: 21 H x 10w x 3.8p cm, 0.34 kg; 8.25 H x 4.00 w x 1.50 p inches, 12 oz

Thermometers

YSI 4600 Precision Thermometer (uses YSI 400 Series Probes)

YSI 4610 High-Accuracy Thermometer (uses YSI 4610 Series

Interchangeable Probes)

YSI 4600S Thermometer & Probe (calibrated with a Configure-to-Order Probe)

Accessories

YSI 4651 RS232 Cable YSI 4652 Carrying Case

YSI 4654 Tripod

YSI 4661 Battery Eliminator, US

YSI 400 Series Probes for YSI 4600 Thermometer

YSI 401 Vinyl Tip General-Purpose Probe

YSI 402 Small Vinyl Tip General-Purpose Probe

YSI 403 Stainless Steel Tubular Probe

YSI 404 Glass Tubular Probe

YSI 406 Small SS Tubular Probe

YSI 410 Tubular Probe with NPT Fitting

YSI 416 Autoclavable Tubular Probe

YSI 418 Pointed Tubular Probe

YSI 408 Banjo Surface Probe

YSI 409A High-Temperature Surface Probe

YSI 409B Surface Probe

YSI 421 Autoclavable Surface Probe

YSI 427 Small Surface Probe

YSI 405 Air/Gas Probe

YSI 451 1 mm Flexible General-Purpose Probe

YSI 4610 Series Probes for the YSI 4610 Thermometer

YSI 4611 1 mm Flexible General-Purpose Probe YSI 4612 Small Flexible General-Purpose Probe

YSI Configure-to-Order Probes for the YSI 4600S Thermometer

For optimal long-term performance, we recommend using YSI 46000 Super-Stable Glass Thermistors with the YSI 4600S system. These thermistors are available in Configure-to-Order Probes.

Section 6 Technical Information

- Thermistor Theory
- Assuring Accurate Measurement
- Basic Thermilinear Applications
- How to Use Thermilinears
- Custom Thermilinear Ranges
- Resistance versus Temperature Tables
- Glossary

Thermistor Theory

NTC thermistor materials are prepared by heating mixtures of metal oxides to high temperatures so that the oxides combine chemically to form the spinel crystallographic structure. The name derives from the mineral spinel, MgAl2O₄, which has this structure. In this structure Mg occupies tetrahedral, or A sites, in the crystal lattice and Al occupies octahedral, or B sites. This is a normal spinel, with one 2+ metal ion on the A site, two 3+ metal ions on the B sites and four oxygens. This is commonly written Mg[Al2]O₄, where the elements in the bracket represent the B sites.

An inverse spinel has half the trivalent ion on the A sites and the divalent ion on the B sites, such as nickel ferrite, $Fe[NiFe]O_4$. Various degrees of inversion can occur depending on the metal ions, the temperature of reaction, and any annealing cycles to which the material is subjected. A common thermistor material is nickel manganite, a partially inverse spinel with manganese present on the B sites in 3+ and 4+ states.

These types of materials are referred to as valence-controlled semiconductors. Conduction occurs when ions having multiple valence states occupy equivalent crystallographic sites. They must be the same element and differ in valence by one unit and occupy B sites. The conduction mechanism is a thermally activated electron hopping process, in which the electrons hop from one cation (Mn³⁺) to another (Mn⁴⁺) in the B lattice sites under the influence of a potential gradient across the material.

The conductivity is a product of charge density and mobility. Charge density is determined by the number of charge carries, the density of B sites and the probability of a B site being active. The mobility is determined by the distance between the nearest neighbor B sites, the activation energy (needed for the electron to move from one site to another) and a frequency factor (how often it tries to jump). Charge carries are also produced by other defects such as non-stoichiometry and grain boundaries.

By considering the effects of all the above factors, an expression for conductivity can be derived:

$$\sigma = \sigma_{\infty}^{(-q/kT)}$$

where S. is the infinite temperature conductivity (which includes consideration of charge density and mobility), -q is the activation energy, k is Boltzmann's constant, and T the absolute temperature. For thermistors, the resistivity s (and hence resistance) is of more interest and the above becomes

$$\sigma = \sigma_{\infty}^{(q/kT)}$$

Beta Constant

By replacing resistivity with resistance values and combining the activation energy and Boltzmann's constant terms, the familiar thermistor expression is obtained

$$R = A^{(\beta/T)}$$

where A includes dimensional factors and infinite temperature resistance, β is the material constant beta and T is the absolute temperature.

One can determine the beta constant by measuring the resistance at two temperatures and using the above equation,

$$R_{1}/R_{2} = e^{(\beta/T_{1} - \beta/T_{2})}$$

$$\ln(R_{1}/R_{2}) = \beta(1/T_{1} - 1/T_{2})$$

$$\beta = \ln(R_{1}/R_{2}) / (1/T_{1} - 1/T_{2})$$

Alpha Temperature Coefficient of Resistance

The temperature coefficient of resistance a is determined by

$$a = 1/R^{-}dR/dT$$

and is usually expressed in terms of % change in resistance per degree.

The coefficient of resistance and the material constant $\,\beta$ are related to each other by

$$a = (-\beta/T^2)$$

Beta and a are two different ways of expressing the same property.

R versus T Approximation Methods

Although the expression $R = A^{\left(\beta / T \right)}$ gives good agreement with empirical data over short temperature spans, a better method of interpolation over larger temperature ranges is necessary for accurate temperature measurements.

Narrow Range Approximation Methods

The following table shows two approximation methods, the applicable temperature range and range of deviation from nominal resistance.

Equation	Temperature Range	Deviation
$Ln(R_T) = \underline{A}$	very small	_
$R_T = A^{(B/T)}$	-20 to +120°C	+0.94, -0.82°C

Steinhart and Hart

The Steinhart and Hart equation is an empirical expression that has been determined to be the best mathematical expression for the resistance-temperature relationship of a negative temperature coefficient thermistor. It is usually found explicit in T:

$$1/T = a + b (Ln R) + c (Ln R)^3$$
 (1)

where: $T = Kelvin units (^{\circ}C + 273.15)$ a,b,c = coefficients derived from measurement Ln R = natural logarithm of resistance in ohms

To find a, b and c, measure a thermistor at three temperatures. The temperatures should be evenly spaced, and at least 10°C apart. Use the three temperatures and resistances to solve three simultaneous equations.

$$1/T_1 = a + b (Ln R_1) + c (Ln R_1)^3$$

$$1/T_2 = a + b (Ln R_2) + c (Ln R_2)^3$$

$$1/T_3 = a + b (Ln R_3) + c (LnR_3)^3$$

The equations allow you to derive a, b and c for any temperature range. We have calculated these coefficients for the range 0 to 100°C with 50°C as the intermediate point. These are listed below for your use.

Coefficients derived from 0, 50 and 100°C catalog resistance

Thermistor	25°C	a	b	С
type	resistance			
001A	100Ω	0.0017709	0.0003406	1.479E-07
002A	300Ω	0.0015632	0.0003108	9.747E-08
003A	$1 \text{K}\Omega$	0.001313	0.0002906	1.023E-07
004	2252 Ω	0.0014733	0.0002372	1.074E-07
005	$3\text{K}\Omega$	0.0014051	0.0002369	1.019E-07
007	$5\mathrm{K}\Omega$	0.001262	0.0002359	9.411E-08
017	$6\text{K}\Omega$	0.0012473	0.000235	9.439E-08
016	$10\mathrm{K}\Omega$	0.0011303	0.0002339	8.863E-08
006	$10\mathrm{K}\Omega$	0.0010295	0.0002391	1.568E-07
800	$30\text{K}\Omega$	0.0009354	0.0002211	1.275E-07
011	100 K Ω	0.0008253	0.0002045	1.144E-07
014	300 K Ω	0.0008207	0.0001848	1.014E-07
015	$1\text{MEG}\Omega$	0.0008142	0.000167	8.819E-08

Knowing a, b and c for the thermistor allows you to use the Steinhart and Hart equation in two ways. If resistance is known and temperature is desired, use equation (1) above. If the temperature is known and expected resistance is desired, use equation (2) below. Remember that T is in Kelvin units.

$$R = e^{\left[\left(\beta - (\alpha/2)\right)^{1/3} - \left(\beta + (\alpha/2)\right)^{1/3}\right]}$$
(2)

where

$$\alpha = (a - (1/T))/c$$
 and $\beta = \left[\left(\frac{b}{3c} \right)^3 + \frac{\alpha^2}{4} \right]^{1/2}$

It should be noted that these values of alpha and beta are not related to the alpha and beta used with single term exponential equations.

The ability to precisely interpolate for a given temperature from measurements at known fixed-points depends in part on the closeness of those points. Fixed-points such as the water triple point, mercury triple point, gallium melting point and indium freezing point provide a solid basis for the interpolation.

For practical reasons some of the R vs. T tables have small interpolation differences when random values from the tables are used in the above equations, particularly over large temperature spans.

For more information, contact us at **800 747-5367** or **937 767-7241 •** Fax 937 767-9353 Info@YSI.com • www.YSI.com

Spreadsheet Program

The following spreadsheet program (Lotus 123) allows calculation of the Steinhart and Hart coefficients, using three resistances at three temperatures. It calculates resistance, dR/dT or determines the temperature for a known resistance.

Labels start with an apostrophe ('). Brackets indicate data you must enter. Other cells are formulas.

B1: 'Temp.(C)

C1: 'Resistance

D1: 'T(K)

E1: 'In(R)

A2: 'Low

B2: [Input low temperature in °C]

C2: [Input low temp. resistance in ohms]

D2: +B2+273.15

E2: @LN(C2)

A3: 'Mid

B3: [Input mid temperature in °C]

C3: [Input mid temp. resistance in ohms]

D3: +B3+273.15

E3: @LN(C3)

A4: 'High

B4: [Input high temperature in °C]

C4: [Input high temp. resistance in ohms]

D4: +B4+273.15

E4: @LN(C4)

A6: 'In(R1)-In(R2)

B6: +E2-E3

A7: 'In(R1)-In(R3)

B7: +E2-E4

A8: '(1/T1)-(1/T2)

B8: 1/D2-1/D3

A9: '(1/T1)-(1/T3)

B9: 1/D2-1/D4

A11: 'Coefficients: a=

B11: 1/D2-B13*E2^3-B12*E2

A12: 'b=

B12: (B8-B13*(E2^3-E3^3))/B6

A13: 'c=

B13: (B8-B6*B9/B7)/((E2^3-E3^3)-B6*(E2^3-E4^3)/B7)

A15: 'Solving for R, given T:

A16: 'Degrees C=

B16: [Input known temperature in °C]

C16: +B16+273.15

D16: (B11-(1/C16))/B13

E16: '=A

D17: @SQRT((B12/(3*B13))^3+(D16^2)/4)

E17: '=E

A18: 'Resistance (0hm)=

B18: @EXP((D17-(D16/2))^(1/3)-(D17+(D16/2))^(1/3))

A19: 'dR/dT=

B19: -1*B18/(C16^2*(B12+3*B13*(@LN(B18))^2))

A20: '%dR/dT=

B20: +B19/B18*100

A23: 'Solving for T, given R:

A24: '0hms=

B24: [Input known resistance in ohms]

A26: 'Temperature (C)=

B26: 1/(B11+B12*@LN(B24)+B13*(@LN(B24))^3)-273.15

For more information, contact us at **800** 747-5367 or **937** 427-1231 • Fax **937** 427-1640 Info@YSL.com • www.YSL.com

How to Use Thermilinears

We present a general description of Thermilinear Networks in the Thermilinear Component Section of the catalog. The examples below describe general circuit development that may be used with YSI Thermilinear Networks.

Voltage Mode

You can develop a thermometer circuit without active circuitry using the voltage mode. The voltage mode configuration is based on a voltage divider (figure 1) or Wheatstone bridge (figure 2). We consider both circuits together in the following example since the bridge is an extension of the voltage divider.

Figure 1

Figure 2

Voltage Mode Circuit Design Example

The range and output slope must be established first. The signs and units must be known. The example will be:

range: 0 to 100°C

output slope: -10 mv/°C (negative slope)

We use the YSI 44201 network in the example. This network has a temperature range of 0 to 100°C, includes the YSI 44018 Thermilinear composite and the YSI 44301 resistor set. We've taken design data from the YSI Thermilinear Network Specification pages.

 $R_1 = 3200 \Omega$

 $R_2 = 6250 \Omega$

R, @ 0°C

$$E_{o} = (-0.0053483E_{in})t + 0.86507E_{in}$$
 sensitivity constant
$$= (\delta/\delta)/E_{in}$$

$$= -0.0053483$$
 output voltage at 0°C per volt in
$$= E_{o0°C}/\delta E_{in}$$

$$= +0.86507$$

$$R_{t} = (-17.115)t + 2768.23$$

$$-\delta R$$

1. Determine input voltage that results in the desired voltage sensitivity ($-10 \text{mV}/^{\circ}\text{C}$ in this example). This is equal to the voltage sensitivity per degree divided by the sensitivity constant.

$$E_{in} = (\delta E/\delta t) (\delta/\delta)/E_{in})$$
= -.01 V/°C 4 -0.0053483/°C
= 1.869753 V

2. Determine output voltage (E_{out}). The general equation is given with the temperature as the variable.

$$E_{\rm out} \! = \, \left[((\delta/\delta T)/E_{\rm in}) \, x \, E_{\rm in} \right] x \, t + (\delta E_{\rm o0^{\circ}C}\!/\,E_{\rm in} \, x \, E_{\rm in})$$

@ 0° C = -0.0053483/°C x 1.869753 V x 0° C + 0.86507 x 1.869753 V = 1.617467 V

3. Power dissipation. Calculate self-heat to evaluate the effect of power on measurement accuracy. Selfheat is most severe for the higher resistance thermistor (T_2) at high temperature. A 30K Ω @ 25°C thermistor has a resistance of 2069 Ω at 100°C.

 $P = E^2 4 R$

Where:

P = power dissipation in watts

E = voltage at the maximum temperature

R = resistance of the higher resistance thermistor at the maximum temperature

$$P = 0.617467^2 \text{ V } 4\ 2069\ \Omega = 0.000184 \text{ Watts}$$

The dissipation constant is used to turn this into a temperature unit. We will assume for the example that the component is immersed in flowing water. The dissipation constant for a YSI 44018 is 8 mW/°C (0.008W/°C) in flowing water.

Self-heat error = $0.000184 \text{ W } 4 \ 0.008 \text{W/}^{\circ}\text{C}$ = $0.023 ^{\circ}\text{C}$

The resistors R_3 , R_4 and R_5 are selected next. The goal is to pick these resistors to achieve 0 V out at 0°C. The first thing that must be done is to determine the resistance of T_1 , R_2 and T_2 at 0°C. The total of these resistances will be called R_{cal} will be calculated by first calculating the total resistance for the left half of the bridge, R_t and then subtracting the effect of R_1 . For this example, the equation for R_t is found in the data table for the YSI 44201 network.

$$R_{r} = (17.115 \Omega/^{\circ}C) \times t^{\circ}C + 2768.23 \Omega$$

@ 0°C =
$$(-17.115 \Omega/^{\circ}C) \times 0^{\circ}C + 2768.23 \Omega$$

= 2768.23

@
$$100^{\circ}$$
C = (-17.115 Ω/°C) x 100° C + 2768.23 Ω
= 1056.73

@ 100° C = $-0.0053483/^{\circ}$ C x 1.869753 V x 100° C + 0.86507 x 1.869753 V = 0.617467 V

For more information, contact us at **800** 747-5367 or **937** 427-1231 • Fax **937** 427-1640 Info@YSI.com • www.YSI.com Now R_{cal} is calculated with the following formula:

$$\frac{1}{R_{cal}} = \frac{1}{R_{t}} - \frac{1}{R_{1}}$$

$$\frac{1}{R_{cal@0^{\circ}C}} = \frac{1}{R_{t@0^{\circ}C}} - \frac{1}{R_{1}}$$

$$\frac{1}{R_{cal@0^{\circ}C}} = \frac{1}{R_{t@0^{\circ}C}} - \frac{1}{R_{1}}$$

For the example:

$$\frac{1}{R_{\text{cal@0°C}}} = \frac{1}{2768.23 \,\Omega} \frac{1}{3200 \,\Omega} = 0.000048742$$

 $R_{\rm cal@0^{\circ}C}=1\,/\,0.000048742=20516.3\,\Omega$ A ratio calculation is done to determine the values for $R_{_3}$ and $R_{_4}.$

$$\frac{\mathbf{R}_{1}}{\mathbf{R}_{\text{cal@0^{\circ}C}}} = \frac{\mathbf{R}_{3}}{\mathbf{R}_{4}}$$

Another resistor, R_5 , is introduced at this time. This is the zero control. The total resistance of this resistor is to be equal to two times the tolerance of the larger of R_3 and R_4 . When making circuit calculations, it is assumed that half of R_5 's resistance is included with R_3 and the other half with R_4 .

 R_4 is chosen by the designer and R_3 is calculated based on the selection of R_4 . For the example:

choose
$$R_4 = 4990 \pm 1\%$$
 (approximately $\pm 50 \Omega$)
 $R_5 = 2 \times 50 = 100$

 $R_3 + R_5/2$ is substituted for R_3 in the ratio equation above.

 $R_4 + R_5/2$ is substituted for R_4 in the ratio equation above.

Solve the ratio equation:

$$\begin{split} R_3 &= R_5/2 = \left[R_1 \, x \, (R_4 + R_5/2) \right] / R_{cal0^{\circ}C} \\ R_3 &= \left[(R_1 \, x \, (R_4 + R_5/2)) / \, R_{cal0^{\circ}C} \right] - R_5/2 \\ &= \left[(3200 \, \Omega \, \, x \, (4990 \, \Omega + 50 \, \Omega)) / 20516.3 \, \Omega \right] \, - 100/2 = \\ 736.1 \, \Omega \end{split}$$

A standard resistor value is selected that is near to this calculated value. 732 Ω is selected for the example. The last step is to ascertain that the null value of the circuit falls within the adjustment range of the control.

$$R_x = ((R_3 + R_4 + R_5) \times E_{out@0^\circ}) - R_4$$

Where:

 R_x = the part of the control added to R_4 . This is not to exceed $R_s/2$.

For the example:

$$R_x = ((732 + 4990 + 100) \times 0.86507) - 4990$$

= 46.44 \Omega

Since $R_x < R_s/2$, the resistor selections are acceptable.

Resistive Mode Operations

Using the Thermilinear Network in the resistive mode requires energizing the network with a constant current. This can be done by connecting the network in the feedback loop of an operational amplifier (below).

Figure 3

The general transfer function for this circuit is:

$$E_{out} = [1 + \frac{R_t}{R_4}] e_r - \frac{R_t}{R_4} E_{in}$$

Where: $R_t = Resistance$ of the network in the resistive mode

(feedback resistance) e_r = voltage at the positive input

As in the voltage mode, the range and output slope must be established. The signs and units must be known.

range: 30 to 100°F

output slope: -10mV/°C (negative slope)

We use the YSI 44204 Network in the example. This network has a temperature range of 30 to 100°F, includes the YSI 44018 Thermilinear composite and the YSI 44304 resistor set. We've taken design data from YSI Thermilinear Network Specification pages.

 $R_{\scriptscriptstyle 4}$ must be calculated for this circuit. As seen in the equation above, zero output occurs when $R_{\scriptscriptstyle t} = R_{\scriptscriptstyle 4}$ and $E_{\scriptscriptstyle in} = 2e_{\scriptscriptstyle r}$. Zero degrees can be placed at any reasonable point, either inside or outside the intended range of the circuit.

This example sets $R_4 = R_t$ at 0°F, which is outside the range. This means that the equation above may not be used, and the R_t equation must be used. The equation for the YSI 44204 Network is:

$$R_{t} = (-17.834)t + 5173.7$$
 $-dR$
 $R_{t} = 0^{\circ}F$

since
$$t = 0^{\circ}F$$
, $R_{t} = 5173.7 \Omega = R_{4}$

 R_5 , R_6 and R_7 are selected to achieve a voltage divider so that e_r can be set at one half of E_{in} .

The value of E_{in} is given by:

$$E_{in} = 2dE(R_{t}@0°F)$$

$$dR$$

Where: dE = The change in E_o per degree dR = The change in network resistance per degree

substituting numbers from the example:

$$E_{in} = \underbrace{2 \times 0.01 \times 5173.7}_{17.834}$$
$$= 5.802$$

Power Dissipation

A method to determine power dissipation is described in the voltage mode circuit design example.

The excitation voltage $(E_{\rm in})$ must be stable for supply and temperature variations because the current requirement is constant in this example. A series variable resistance can be used for setting $E_{\rm in}$ to produce the correct full scale output.

Two-Wire System

A 3-wire sensor can be reduced to a 2-wire sensor (below) if R_2 is connected at the sensor end of the cable in either the voltage or resistive mode. Note R_1 is connected to the other end of the cable. Resistance errors due to very long leads may then be subtracted from R_1 .

Multiplexing

One resistor set may serve any number of Thermilinear Composites for monitoring at several locations as shown below.

Figure 4

Figure 5

For more information, contact us at **800 747-5367** or **937 427-1231 •** Fax 937 427-1640 Info@YSI.com • www.YSLcom

Technical Publications

Technical Manuals/Documents

TD001	Thermistor Probes for Severe Moisture
	Environments
TD002	Measurement Science Conference Tutorial
TD003	Temperature Compensation Using Thermistor
	Networks
TD004	Goddard Specification S-311-P-18
TD005	Reproducibility, Stability and Linearization of
	Thermistor Resistance Thermometers
TD006	YSI 46000 and YSI 47000 Series Thermistors
TD007	Aging Phenomena in Nickel-Manganese
	Oxide Thermistors
TD008	Practical Design Techniques Tame Thermistor
	Design
TD009	Thermistor Aging Phenomenon Due to
	Temperature Cycling
TD010	All About Thermistors
TD011	Long-Term Thermistor Stability at an
	Elevated Temperature
TD012	Glass Thermistor Notebook
TD013	Thermistors Compensate Gain TC

Technical Notes

Statement of Qualification Requirements
Based on Similarity to YSI 44900 Series Parts
Thermistor-Specific Heat
Glass Thermistor Leads
Humidity Resistance of Oxycast Epoxy
Compared to EC210
Material Recommendation for Potting
Thermistors
Materials for MSFC-SPEC-1443 Outgas
Testing
Outgas Testing on Oxycast 6850FTLV
TN010 EC210 Replacement
YSI 44018 Special Range Values
Thermistor Test Data Life Tests
Thermistor Reliability and Accuracy at
High Pressure
NBS Study on YSI 403 Probe with YSI 44012
Thermistor TN015 CE Mark and YSI
Thermistors
CE Mark and YSI Thermistors

Technical Applications

TA001	Thermistor Self-Heat Mode
TA003	YSI 4600 Serial Interface
TA004	Thermistor A/D Converter Circuit

Assuring Accurate Measurement

You can ensure the accuracy of your measurement by avoiding the common errors explained below.

Immersion Stem Effect

An error source frequently ignored is stem effect. It can be the source of very large errors. Stem effect occurs when a portion of the probe is at a temperature other than the temperature of the sample.

Here's a simple method for determining stem effect. Slowly insert the probe into a sample at approximately the test temperature while observing the readout to determine when there's no further change with further insertion. When no further change is observed, stem effect error is eliminated.

How to Eliminate Immersion Stem Effect

- **1.** Immersion should be at least 10 times the diameter of the probe.
- **2.** The sample volume should be no less than 1,000 times the mass of the sensor.

Dissipation Error (Self-Heat)

Power application to a thermistor may induce a temperature change in the sensor. This change is called dissipation or self-heat error. You may reduce dissipation error by limiting the power applied to a thermistor during a measurement.

The graph curves represent 10 mk (0.010°C) of self-heat for a $1 k\Omega$ (YSI 44003A), $10 k\Omega$ (YSI 44006) and $100 k\Omega$ (YSI 44011) thermistor at a specific temperature when a specific voltage is applied. The dissipation constant is 1 mW/°C in still air.

Temperature, Degrees Celsius

Gas Stream Error

A major source of error in the measurement of lowflow gas streams is another sort of stem effect. In this case, the leads conduct better than the sample and transfer heat to the thermistor. Mounting the thermistor on its own leads and having as much of the leads exposed to the sample as possible will improve the accuracy of the measurement. A very low mass form for lead support exposes a greater length of lead to the sample.

In still air, self-heat from over application of power to the thermistor can contribute significantly to the error. If the thermistor is self-heated, any change in air flow will change its resistance and its apparent temperature.

Radiant Error

Radiant energy directed on the sensor may cause radiant error. This error, similar to stem effect, is common and significant when measuring in direct sunlight or other radiant source. Inserting a reflective surface between the radiant source and the sensor-lead combination reduces error.

Pipe Error

Pipe error may occur if a significant temperature differential exists between the pipe wall and the fluid or gas. Flow rate and immersion depth of the probe will significantly affect the accuracy of the measurement. The drawing below illustrates this effect. The two probes on the right are measuring pipe temperature; the probe on the left is measuring the temperature of the flow.

For more information, contact us at **800** 747-5367 or **937** 427-1231 • Fax **937** 427-1640 Info@YSI.com • www.YSI.com

Thermistor Applications

Complete Heating & Cooling Automatic Thermostat

T1 Thermistor #44007 Yellow Springs Instrument Co., Inc. Hysteresis = 5Vx82k = 20mV 20M

Reprinted with the permission of Linear Technology Corporation-LTC 1040 1990 Linear Databook Volume 1.

Micropower Thermocouple Signal Conditioner with Cold Junction Compensation

Half Bridge with A/D Converter

This circuit provides a low cost method of achieving precise temperature measurements when a microprocessor and A/D convertor are available. The half bridge interface provides a voltage which the A/D converts to counts. The microprocessor uses a lookup table which quickly converts the A/D counts to a temperature value. This eliminates the need to implement thermistor equations in code or use a floating point library.

Total Power Consumption ≤500µW *=TRW MAR-60.1% R† = Yellow Springs Inst. Co Model 44007 5k @25°C

Reprinted with the permission of Linear Technology Corporation-LTC 1006 Linear Databook Volume 1.

Custom Thermilinear Ranges

This page lists Thermilinear ranges developed for custom applications. Below are ranges developed for applications in °C. Please note that the user supplies the range resistors.

YSI 44018 Custom Thermilinear Ranges in °C

	Temperature	Linearity Deviation			R, Variables		E _{out} Variables	
No.	Range °C	$^{\circ}\mathbf{C}$	$\mathbf{R}_{_{1}}$	\mathbf{R}_2	Slope (m)	Intercept (b)	Slope (m)	Intercept (b)
1	-40 to +70	1.20	17290	35250	-112.6240	11457.50	-0.0065138	0.662664
1 2	-40 to +70 -30 to +50	0.16	18700	35250	-112.0240	12175.00	-0.0063138	0.651070
3	-30 to +50	0.10	18900	37000	-127.0900	12175.00	-0.0067903	0.651290
4	-30 to +55	0.31	14000	25500	-128.3340 -91.2740	9626.57	-0.0067902	0.687610
5	-30 to +70	0.37	14500	30000	-91.2740 -94.4784	10013.90	-0.0065158	0.690610
6	-30 to +70 -25 to +55	0.90	16000	31000	-106.6430	10015.90	-0.0065138	0.674130
7		0.20	5700	12000	-32.4020	4593.39	-0.0056846	0.805858
8	-5 to +45 -5 to +50	0.08	5690	11600	-32.4020	4593.39 4577.55	-0.0050846	0.803838
9				5230				
	-5 to +125	1.11	2610		-13.3552	2304.34	-0.0051169	0.882889
10	-2 to +38	0.03	5700	12400	-32.1012	4603.11	-0.0056318	0.807563
11	0 to 10	0.00	42000	67900	-310.7530	21849.50	-0.0073988	0.520226
12	0 to 30	0.04	11680	22960	-73.8485	8358.02	-0.0063226	0.715584
13	0 to 40	0.27	5900	12400	-28.5226	4442.72	-0.0048347	0.753067
14	0 to 60	0.14	7775	14800	-47.0450	5938.37	-0.0060508	0.763770
15	0 to 100	0.22	3200	6250	-17.1150	2768.23	-0.0053483	0.865070
16	0 to 120	0.81	2610	5230	-13.3552	2304.34	-0.0051169	0.882889
17	5 to 130	0.88	2130	4635	-10.6233	1936.67	-0.0049874	0.909235
18	15 to 35	0.01	4400	10100	-23.5611	3687.77	-0.0053547	0.838130
19	15 to 45	0.03	4380	9450	-23.8370	3660.60	-0.0054422	0.835753
20	15 to 65	0.07	6739	12252	-39.8117	5225.63	-0.0059080	0.775471
21	20 to 32	0.00	4400	10100	-23.5181	3686.65	-0.0053450	0.837875
22	20 to 65	0.06	2500	5360	-12.6473	2234.19	-0.0050589	0.893676
23	20 to 120	0.23	1696	3383	-8.2913	1577.55	-0.0048887	0.930159
24	22 to 42	0.02	5445	10800	-30.8702	4388.70	-0.0056694	0.806006
25	28 to 64	0.04	1900	4300	-9.1144	1750.58	-0.0047970	0.921358
26	35 to 135	0.27	1175	2375	-5.4353	1133.10	-0.0046257	0.964340
27	45 to 75	0.04	2000	3900	-9.8670	1816.00	-0.0049335	0.908000
28	45 to 125	0.19	1030	2050	-4.6619	1002.50	-0.0045261	0.973301
29	50 to 100	0.05	2500	4530	-12.8234	2202.82	-0.0051294	0.881120
30	55 to 65	0.00	2000	3900	-9.8319	1813.85	-0.0049159	0.906924

For more information, contact us at **800** 747-5367 or **937** 427-1231 • Fax **937** 427-1640 Info@YSI.com • www.YSI.com

Resistance versus Temperature -80 to -11°C

Thermis	tor 🛬	بيد	بيند	<u></u>	ىيىد	بيد	<u></u>	<u></u>					چھ.
Mix	tor Y	L.Mis	L Mix	B Mix	$BM_{\tilde{k}_{\tilde{k}}}$	B Mix	B Mix	BATix	HMis	H.Mis	$HMi_{ar{k}}$	H.Mis	$H_{Mi_{k}}$
Ω at 25°C	100	300	1000	2252	3000	5000	6000	10,000	10,000	30,000	100,000	300,000	1 MEG
°F °C													
-112.0 -80 110.2 79 108.4 78 106.6 77 104.8 76 103.0 75 101.2 74 99.4 73 97.6 72 95.8 71	14.47K 13.51K 12.62K 11.80K 11.04K 10.33K 9672 9061 8494 7966	67.66K 62.78K 58.29K 54.15K 50.34K 46.83K 43.58K 40.59K 37.82K 35.26K	278.8K 258.1K 239.1K 221.7K 205.6K 190.8K 177.2K 164.7K 153.1K 142.5K	1660K 1518K 1390K 1273K 1167K 1071K 982.8K 902.7K 829.7K 763.1K	2211K 2022K 1851K 1696K 1555K 1426K 1309K 1202K 1105K 1016K	3685K 3371K 3086K 2827K 2592K 2378K 2182K 2005K 1843K 1695K	4423K 4044K 3703K 3392K 3109K 2853K 2618K 2405K 2211K 2033K	7371K 6741K 6172K 5653K 5182K 4756K 4364K 4008K 3684K 3389K	3558K 3296K 3055K 2833K 2629K 2440K 2266K 2106K 1957K 1821K				
-94.0 -70 92.2 69 90.4 68 88.6 67 86.8 66 85.0 65 83.2 64 81.4 63 79.6 62 77.8 61	7475 7018 6592 6195 5825 5479 5157 4856 4575 4312	32.9K 30.71K 28.68K 26.8K 25.06K 23.45K 21.95K 20.55K 19.26K 18.05K	132.6K 123.5K 115.1K 107.3K 100.1K 93.48K 87.3K 81.58K 76.28K 71.35K	702.3K 646.7K 595.9K 549.4K 506.9K 467.9K 432.2K 399.5K 369.4K 341.8K	935.4K 861.4K 793.7K 731.8K 675.2K 623.3K 575.7K 532.1K 492.1K 455.3K	1560K 1436K 1323K 1220K 1126K 1039K 959.9K 887.2K 820.5K 759.2K	1871K 1723K 1588K 1464K 1351K 1247K 1152K 1064K 984.2K 910.7K	3119K 2872K 2646K 2440K 2251K 2078K 1919K 1774K 1640K 1518K	1694K 1577K 1469K 1369K 1276K 1190K 1111K 1037K 968.4K 904.9K				
-76.0 -60 74.2 59 72.4 58 70.6 57 68.8 56 67.0 55 65.2 54 63.4 53 61.6 52 59.8 51	4066 3835 3620 3418 3229 3051 2885 2729 2582 2445	16.93K 15.89K 14.92K 14.02K 13.17K 12.39K 11.65K 10.97K 10.33K 9730	66.78K 62.53K 58.59K 54.92K 51.5K 48.32K 45.36K 42.6K 40.03K 37.63K	316.5K 293.2K 271.7K 252K 233.8K 217.1K 201.7K 187.4K 174.3K 162.2K	421.5K 390.5K 361.9K 335.7K 311.5K 289.2K 268.6K 249.7K 232.2K 216K	702.9K 651.1K 603.5K 559.7K 519.4K 482.2K 447.9K 416.3K 387.1K 360.2K	843.3K 781.2K 723.9K 671.4K 622.9K 578.4K 537.4K 499.3K 464.4K 432.1K	1405K 1302K 1206K 1119K 1038K 964K 895.6K 832.1K 774K 720.2K	845.9K 791.1K 740.2K 692.8K 648.8K 607.8K 569.6K 534.1K 501K 470.1K				
-58.0 -50 56.2 49 54.4 48 52.6 47 50.8 46 49.0 45 47.2 44 45.4 43 43.6 42 41.8 41	2315 2194 2079 1972 1870 1775 1685 1600 1521 1445	9171 8647 8158 7699 7270 6867 6489 6135 5803 5491	35.39K 33.3K 31.35K 29.52K 27.81K 26.22K 24.72K 23.32K 22.01K 20.79K	151K 140.6K 131K 122.1K 113.9K 106.3K 99.26K 92.72K 86.65K 81.02K	201.1K 187.3K 174.5K 162.7K 151.7K 141.6K 132.2K 123.5K 115.4K 107.9K	335.3K 312.3K 291K 271.3K 253K 236.2K 220.5K 205.9K 192.5K 180K	402.3K 374.6K 349K 325.3K 303.5K 283.2K 264.5K 247K 230.9K 215.9K	670.5K 624.3K 581.7K 542.2K 505.8K 472.0K 440.8K 411.7K 384.8K 359.8K	441.3K 414.5K 389.4K 366K 344.1K 323.7K 304.6K 286.7K 270K 254.4K				
-40.0 -40 38.2 39 36.4 38 34.6 37 32.8 36 31.0 35 29.2 34 27.4 33 25.6 32 23.8 31	1374 1307 1244 1184 1127 1073 1023 974.9 929.6 886.6	5198 4922 4663 4420 4191 3975 3772 3580 3400 3230	19.64K 18.56K 17.54K 16.59K 15.7K 14.86K 14.07K 13.33K 12.63K 11.97K	75.79K 70.93K 66.41K 62.21K 58.3K 54.66K 51.27K 48.11K 45.17K 42.42K	101K 94.48K 88.46K 82.87K 77.66K 72.81K 68.3K 64.09K 60.17K 56.51K	168.3K 157.5K 147.5K 138.2K 129.5K 121.4K 113.9K 106.9K 100.3K 94.22K	201.9K 189K 176.9K 165.7K 155.3K 145.6K 136.6K 128.2K 120.3K 113K	336.5K 315K 294.9K 276.2K 258.9K 242.7K 227.7K 213.6K 200.6K 188.4K	239.8K 226K 213.2K 201.1K 189.8K 179.2K 169.3K 160K 151.2K 143K	884.6K 830.9K 780.8K 733.9K 690.2K 649.3K 611K 575.2K 541.7K 510.4K	3356K 3147K 2951K 2769K 2599K 2440K 2292K 2154K 2025K 1904K		
-22.0 -30 20.2 29 18.4 28 16.6 27 14.8 26 13.0 25 11.2 24 9.4 23 7.6 22 5.8 21	846.0 807.5 771.0 736.4 703.6 672.5 643.0 614.9 588.3 563.0	3069 2918 2775 2640 2512 2392 2278 2170 2068 1972	11.35K 10.77K 10.22K 9705 9218 8758 8323 7914 7527 7161	39.86K 37.47K 35.24K 33.15K 31.2K 29.38K 27.67K 26.07K 24.58K 23.18K	53.1K 49.91K 46.94K 44.16K 41.56K 39.13K 36.86K 34.73K 32.74K 30.87K	88.53K 83.22K 78.26K 73.62K 69.29K 65.24K 61.45K 57.9K 54.58K 51.47K	106.2K 99.83K 93.89K 88.32K 83.13K 78.28K 73.72K 69.46K 65.49K 61.76K	177K 166.4K 156.5K 147.2K 138.5K 130.5K 122.9K 115.8K 109.1K 102.9K	135.2K 127.9K 121.1K 114.6K 108.6K 102.9K 97.49K 92.43K 87.66K 83.16K	481 K 453.5 K 427.7 K 403.5 K 380.9 K 359.6 K 320.9 K 303.3 K 286.7 K	1791K 1685K 1586K 1494K 1407K 1326K 1250K 1178K 1111K 1049K		
-4.0 -20 2.2 19 0.4 18 1.4 17 3.2 16 5.0 15 6.8 14 8.6 13 10.4 12 12.2 11	538.9 516.1 494.3 473.6 454.0 435.2 417.4 400.4 384.2 368.8	1880 1794 1712 1634 1561 1491 1424 1361 1302 1245	6815 6489 6180 5887 5611 5349 5101 4866 4643 4432	21.87K 20.64K 19.48K 18.4K 17.39K 16.43K 15.54K 14.7K 13.91K 13.16K	29.13K 27.49K 25.95K 24.51K 23.16K 21.89K 20.7K 19.58K 18.52K 17.53K	48.56K 45.83K 43.27K 40.86K 38.61K 36.49K 34.5K 32.63K 30.88K 29.23K	58.27K 54.99K 51.9K 49.02K 46.33K 43.77K 41.4K 39.17K 37.06K 35.06K	97.11K 91.65K 86.5K 81.71K 77.22K 72.96K 69.01K 65.28K 61.77K 58.44K	78.91K 74.91K 71.13K 67.57K 64.2K 61.02K 58.01K 55.17K 52.48K 49.94K	271.2K 256.5K 242.8K 229.8K 217.6K 206.2K 195.4K 185.2K 175.6K	989.8K 934.6K 882.7K 834K 788.2K 745.2K 704.7K 666.7K 630.9K 597.2K		

Resistance versus Temperature -10 to +59°C

Part	Thermistor Mix	L Mar	L Max	L.Mis	B Maix	B Max	B Mar	B Maix	B Mix	HMis	H Mag	HANGE	HMis	HMis
1-14	Ω at 25°C	100	300	1000	2252	3000	5000	6000	10,000	10,000	30,000	100,000	300,000	1 MEG
15.8 9 13.0 11.40 4012 11.81K 15.72K 26.21K 31.47K 52.44K 45.27K 15.0 K 57.5 K 11.1														
17.6														
11.2	17.6 8	326.7	1091	3862	11.19K	14.90K	24.83K	29.81K	49.69K	43.11K	142.4K	507.5K		
24.6 4 278.9 919.0 322.8 9.950k 11.205k 20.8K 24.10K 40.17K 35.57K 116K 410.2K 22.84.2 22.83.2 44.18 298.6 81.90k 11.90k 22.8K 33.35K 33.35K 11.05K 30.8K 81.8K 33.35K 11.05K 30.8K 81.8K 33.35K 11.05K 30.8K 81.8K 33.35K 11.05K 30.8K 81.8K 33.05K 11.05K 30.8K 91.8K 33.0K 30.8K 98.8K 30.8K 98.8K 30.8K 30.8	21.2 6	301.7	1001	3529	10.05K	13.39K	22.32K	26.78K	44.63K	39.14K	128.5K	456K		
2.4 2.2 2.5 2.5 2.5 2.5 2.5 3.5														
4-90.2 -1 248.5 810.3 288.0 7.741K 10.31K 17.19K 20.62K 34.37K 30.98K 39.98K 350.7K 4-33.8 +1 229.2 277.5 2710 735.5 99.99 16.33K 18.06K 32.66K 29.49K 9.98K 39.87K 39.87K 39.87K 39.87K 33.3 33.1K 10.08K 33.3 1.08K 33.0K 10.08K 33.0K 10.08K 33.0K 10.08K 33.0K 10.08K 33.0K 10.08K 33.0K 10.08K 33.0K 33.0K 33.0K 30.0K 35.3K 10.00K 33.3K 10.08K 33.0K 30.0K 33.3K 10.00K 33.0K 30.00K 33.3K 10.00K 33.3K 10.00K 33.0K 33.0K 33.0K 33.0K														
+33.8 +1 230.3 746.2 2596 6989 9310 15.52% 18.62% 31.63% 28.15% 90.41% 31.64% 130.06% 93.740% 37.46%														
35.6 2 221.9 716.3 248.7 6644 8851 14.78K 17.70K 22.90K 26.90K 80.06K 975.3K 3529K 37.4 3 213.8 667.8 2286 6011 881.7 14.03K 16.06K 22.60K 25.60K 23.14K 16.02K 26.60K 23.46K 74.81K 27.0K 83.75K 33.14K 16.02K 26.60K 23.46K 74.81K 22.83K 23.50K 23.50K 24.44 6.7 181.6 600-2 22.01 54.41 72.83 12.01K 43.00K 23.17K 22.43K 71.66K 23.50K 25.50K 25.00K 44.42 8.7 71.76K 10.70K 43.43K 20.0K 23.41K 21.90K 22.41K 71.66K 23.50K 23.60K 23.50K 23.50K </th <th></th>														
19.2 4 206.0 666.6 2286 6911 8006 13.34K 16.02K 26.69K 24.58K 78.11K 27.16K 875.2K 23.44K 24.44K 275.84K 25.44K 25.44K 25.44K 24.44K 25.84K 24.44K 25.84K 24.54K	35.6 2	221.9	716.3	2487	6644	8851	14.75K	17.70K	29.50K	26.89K	86.09K	300.6K	975.3K	3529K
44.6 7 991.5 699.9 2102 5444 7252 12.09K 14.50K 24.17K 22.45K 70.96K 23.5K 786.5K 2804K 46.4 8 178.1 563.6 1936 4937 6576 10.96K 13.15K 21.92K 20.52K 64.55K 223.5K 776.5K 2504K 46.4 8 178.1 563.6 1936 4937 6576 10.96K 13.15K 21.92K 20.52K 64.55K 223.5K 707.2K 2504K 48.2 9 171.9 521.1 1859 4703 6255 10.44K 12.53K 20.88K 19.65K 61.56K 211.0K 671.K 22.57K 2504K 11.0K 25.5 K 21.0K 61.5 K 21.0K 63.6 K 22.5 K 63.5 K 12.0K 63.6 K 22.5 K 63.5	39.2 4				6011							271.6K		
446.4 8														
1982 9	44.6 7	184.6	586.2	2017	5183	6905	11.51K	13.81K	23.02K	21.45K	67.66K	233.8K	745.6K	2649K
53.6 12 154.6 482.9 1647 4074 4978 5692 9486 11.38K 18.97K 17.98K 56.07K 192.2K 604.5K 217K 53.6 12 154.6 482.9 1647 4074 4074 6046 10.85K 18.99K 17.5 53.4K 18.11K 574.K 2003K 55.4 13 149.3 464.9 1582 3886 5177 8628 10.35K 17.26K 16.49K 13.13K 174.5K 53.54K 18.90K 17.5 55.0 15 139.4 431.2 1462 3539 4714 7857 9429 15.71K 15.13K 46.67K 158.6K 492.3K 1700K 60.8 16 134.7 41.5 41.406 3378 4500 7500 9000 15K 14.5 40.6 44.6 0K 15.13K 46.6 44.6 0K 15.3 44.6 40.2 15.3 44.6 40.2 15.3 44.6 40.2 15.3 44.6 40.2 15.3 40.2 40.2 1353 32.26 4297 7162 8895 14.33K 13.90K 42.6 4K 144.3K 44.9 K 1525K 66.2 19 121.7 371.9 1253 2944 3922 6536 7844 13.07K 12.79K 38.90K 131.4 40.2 6K 1370K 68.0 20 11.77 33.8 6 12.6 294 3922 6536 7844 13.07K 12.79K 38.90K 131.4 40.2 6K 1370K 69.8 21 113.9 345.9 1161 2690 3583 5972 71.6 523 11.2 53 70.0 11.2 54 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2														
53.6 12 154.6 482.9 1647 4074 5427 9046 10.85K 18.19K 17.2EK 55.34 13 149.3 444.9 182.2 388.6 11.75K 17.26K 16.25K 18.35K 25.2 18.35K 17.26K 16.25K 18.96K 49.23K 17.95K 45.2K 1896K 49.33K 170K 48.84K 166.3K 51.8K 1795K 15.71K 15.17K 15.17K 16.50W 46.67K 18.66K 49.23K 170K 46.0K 16.34X 46.0K 41.34K 44.94 43.35X 43.0K 42.0K 44.6K 46.0K 15.13K 46.8K 41.4K 44.6K 46.4K 18.1K 45.9K 41.4SK 44.4K 44.6K 44.6K 46.6K 11.3K 46.7K 41.4K 44.6K 44.8K <th></th>														
57.2 14 144.2 447.6 1521 3708 4939 8232 9879 16.47K 15.79K 48.84K 166.5K 518K 1795K 59.0 15 139.4 431.2 1462 3539 4714 7857 9429 15.71K 15.13K 46.67K 158.6K 492.3K 1700K 60.8 16 134.7 415.4 1406 3378 4500 7500 9000 15K 14.35K 14.50K 158.6K 492.3K 1700K 60.8 16 134.7 415.4 1406 3378 4500 7500 9000 15K 14.35K 14.50K 158.6K 498.8 1610K 16.6 134.7 415.4 140.6 153.7K 42.3 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2	53.6 12	154.6	482.9	1647	4074	5427	9046	10.85K	18.09K	17.22K	53.54K	183.1K	574K	2003K
59.0 15 199.4 431.2 1462 3539 471.4 7857 9429 157.1K 15.13K 45.0K 45														
62.6 17 130.2 400.2 1353 3226 4297 7162 8595 14.33K 13.90K 42.64K 144.3K 444.9K 1525K 66.2 19 121.7 371.9 1253 2944 3922 6536 7844 13.07K 12.79K 38.99K 131.4K 402.6K 1370K 66.2 19 121.7 371.9 1253 2944 3922 6536 7844 13.07K 12.79K 38.99K 131.4K 402.6K 1370K 68.0 20 117.7 358.6 1206 2814 3748 6247 7497 12.50K 12.26K 37.30K 125.5K 383.1K 1299K 69.8 21 13.9 345.9 1161 2690 3583 5972 7167 11.94K 11.77K 35.70K 115.8K 347.1K 115.5 X 37.30K 125.5K 383.1K 1299K 71.6 22 110.2 333.7 1118 2572 3426 5710 6853 11.42K 11.29K 34.17K 114.5K 347.1K 1165K 77.4 22 110.2 333.7 1118 2572 3426 5710 6853 11.42K 11.29K 34.17K 114.5K 347.1K 1165K 77.4 22 110.3 310.8 1038 2354 3135 5225 6272 10.45K 10.45K 31.49K 330.6K 110.0K 30.0K 10.0K 30.0K 30.0K 10.0K 30.0K 30.0K 30.0K 30.0K 30.0K 30.0K 30.0K 30.0														
68.0 20 117.7 371.9 1253 2944 3922 6536 7844 13.07K 12.79K 38.99K 131.4K 402.6K 1370K 68.0 20 117.7 358.6 1206 2814 3748 6247 7497 12.50K 12.26K 37.30K 125.5K 383.1K 12.99K 69.8 21 113.9 345.9 1161 2690 3583 5972 7167 11.94K 11.77K 35.70K 119.8K 364.6K 1232K 71.6 22 110.2 333.7 1118 2572 3426 5710 6853 11.42K 11.29K 34.17K 114.5K 347.1K 1169K 73.4 23 106.7 322.0 1077 2460 3277 5462 6554 10.92K 10.84K 32.71K 109.4K 330.6K 1110K 75.2 24 103.3 310.8 1038 2354 3135 5225 6272 10.45K 10.84K 32.71K 109.4K 330.6K 1110K 77.0 25 100.0 300.0 1000 2252 3000 5000 6000 10.00K 10.00K 30.00K 100.0K 300.0K 100.0K 78.8 26 96.9 289.7 963.9 2156 2872 4787 5744 9574 9605 28.74K 95.51K 285.9K 949.7K 88.6 27 93.8 279.8 899.4 264 2750 4583 5499 9165 9227 27.54K 91.34K 272.5K 902.2K 82.4 28 90.9 270.3 896.3 1977 2633 4389 5267 8779 8867 26.4K 87.38K 259.8K 857.2K 84.2 29 88.1 261.1 864.5 1894 2523 4204 5046 8410 8523 25.31K 83.6K 247.8K 814.7K 88.0 38 85.4 243.9 804.8 1739 2317 3861 4633 7722 7880 23.28K 76.58K 825.6K 736.5K 73.8 31 82.8 243.9 804.8 1739 2317 3861 4633 7722 27880 23.28K 76.58K 825.6K 736.5K 73.2 80.3 27.7 8 228.1 749.9 1599 2130 3549 4260 7100 7291 21.43K 70.22K 205.5K 664.8 93.2 80.3 25.59 776.8 1667 2221 3702 4441 7402 7579 22.33K 73.32K 215.5K 700.5K 98.6 37 69.0 199.8 652.7 1355 1805 3008 3610 6017 6258 18.21K 70.22K 205.5K 664.8 93.2 34.3 47.5 5 220.6 724.1 1533 2042 3404 4084 6807 7016 20.57K 67.26K 196.26K 634.1K 95.0 35 73.2 213.4 699.4 1471 1959 3266 3919 6532 6752 19.74K 64.44K 187.4K 603.6K 98.6 37 69.0 199.8 652.7 1355 1805 3008 3610 6017 6258 18.21K 70.22K 205.5K 664.8 93.2 34.3 69.0 199.8 652.7 1355 1805 3008 3610 6017 6258 18.21K 70.22K 205.5K 664.8 10.0 4 43 57.9 199.8 652.7 1355 1805 3008 3610 6017 6258 18.21K 70.22K 205.5K 664.8 110.8 43 67.0 199.8 652.7 1355 1805 3008 3610 6017 6258 18.21K 70.22K 205.5K 664.4K 10.0 4 43 67.0 199.8 652.7 1355 1805 3008 3610 6017 6258 18.21K 70.22K 205.5K 664.4K 10.0 4 4 4 4 5 5.2 15.3 18.1 10.1 13.0 45 54.7 14.9 499.2 983.8 1301 2184 2621 4466 531.1 13.8 K 44.26K 125.	62.6 17	130.2	400.2	1353	3226	4297	7162	8595	14.33K	13.90K	42.64K	144.3K	444.9K	1525K
69.8 21 113.9 345.9 1161 2290 3583 5972 7167 21 11.71K 35.70K 119.8K 364.6K 1232K 71.6 22 110.2 333.7 1118 5272 342.6 571.0 6833 11.2K 11.3K 34.71K 11.9K 75.2 24 103.3 310.8 1038 2354 3135 5225 6272 10.45K 10.94K 33.2K 104.5K 314.9K 1058K 77.0 25 100.0 300.0 1000 2252 3000 5000 6000 11.09K 10.00K 30.00K 100.0K 30.00K 100.0K 30.00K 100.0K 30.00K 110.00K 30.00K 100.0K 30.00K 20.2X 22.2X 27.23K 90.2X 23.2X 23.2X 23.2X														
71.6 22 110.2 333.7 1118 2572 3426 5710 6853 11.42K 11.29K 34.17K 114.5K 347.1K 1169K 73.4 23 106.7 322.0 1077 2460 3277 5462 6554 10.92K 10.84K 32.71K 109.4K 33.06K 1110K 75.2 24 103.3 310.8 1038 2354 3135 5225 6272 10.45K 10.41K 31.32K 104.5K 314.9K 1053K 77.0 25 100.0 300.0 1000 2252 3000 5000 6000 10.00K 30.00K 100.0K 30.00K 100.0K 30.00K 100.0K 80.0 27 93.8 29.8 29.9 4 20.64 2750 4883 5499 91.65 28.74K 95.51K 28.59 K 949.7K 80.6 27 93.8 279.8 929.4 20.64 2750 4883 5499 91.65 9227 27.54K 91.34K 272.5K 90.2 2K 84.2 29 88.1 261.1 864.5 1894 2523 4204 50.6 8410 8523 25.31K 83.6K 247.8K 81.47K 86.0 30 85.4 252.4 834.0 1815 2417 4029 4836 8060 8194 24.27K 80.00K 236.4K 774.5K 89.6 32 80.3 235.9 776.8 1667 2221 3702 4441 7402 7579 22.33K 73.32K 215.3K 700.5K 99.14 33 77.8 228.1 749.9 1599 2130 3549 4260 7100 7291 21.43K 70.22K 205.5K 66.4K 93.2 34 75.5 220.6 724.1 1533 2042 3404 4084 6807 7016 20.57K 67.26K 196.2K 6341K 98.6 37 69.0 199.8 652.7 1353 2042 3404 4084 6807 7016 20.57K 67.26K 196.2K 6341K 98.6 37 69.0 199.8 652.7 1355 1805 3008 310 617.7 6258 18.21K 99.9 199.8 652.7 1355 1805 3008 310 617.7 6258 18.21K 99.19K 171K 547.2K 100.4 38 67.0 199.8 652.7 1355 1805 3008 310 617.7 6026 17.49K 150.3 181.4														
75.2 24 103.3 310.8 1038 2354 313.5 5225 6000 1000K 10.00K 10.00K 30.00K 300.0 1000K 300.0K 300	71.6 22													1169K
77.0 25 100.0 300.0 10000 2252 3000 5000 6000 10.00K 30.00K 100.0K 30.00K 100.0K 78.8 26 96.9 289.7 963.9 2156 2872 4787 574.4 95.14 9605 28.74K 95.14 272.5K 90.9 270.3 896.3 1977 2633 4389 5267 8779 8867 26.4K 87.38K 229.8K 857.2K 84.2 29 88.1 261.1 864.5 1894 2523 4204 5046 810 8523 25.31K 83.6K 247.8K 847.8K 841.7K 86.0 30 85.4 252.4 834.0 1815 2417 4029 4836 8060 8194 24.27K 80.00K 236.4K 774.5K 87.8 87.8 31 82.8 243.9 804.8 1739 2317 3861 4633 772.2 7880 23.3K 73.3XE 225.6K </th <th></th>														
80.6 27 93.8 279.8 999.4 2064 2750 4583 5499 9165 92.27 27.54K 91.34K 272.5K 902.2K 88.4 29 88.1 261.1 864.5 1894 2523 4389 5267 8779 8867 26.4K 87.38K 259.8K 872.2K 86.0 30 85.4 252.4 834.0 1815 2417 4029 4836 8060 8194 24.2TK 80.00K 236.4K 774.5K 87.8 31 82.8 243.9 804.8 1739 2317 361 4633 7722 7880 23.28K 76.58K 225.5K 736.5K 91.4 33 77.8 228.1 749.9 1599 2130 3549 4260 7100 7291 21.43K 70.22K 205.5K 666.4K 95.0 35 73.2 213.4 699.4 1471 1959 3266 3919 6532 6752 19.74K	77.0 25	100.0	300.0	1000	2252	3000	5000	6000	10.00K	10.00K	30.00K	100.0K	300.0K	1000K
84.2 29 88.1 261.1 864.5 1894 2523 4204 5046 8410 8523 25.31K 83.6K 247.8K 814.7K 86.0 30 85.4 252.4 834.0 1815 2417 4029 4836 8060 8194 24.27K 80.00K 236.4K 774.5K 87.8 31 82.8 243.9 804.8 1739 2317 3861 4633 7722 7880 23.28K 76.5K 76.5K 89.6 32 80.3 235.9 776.8 1667 2221 3702 4441 7402 7579 22.33K 73.32K 215.3K 700.5K 91.4 33 77.8 228.1 749.9 1599 2130 3549 4260 7100 7291 21.43K 70.22K 205.5K 666.4K 95.0 35 73.2 213.4 699.4 1471 1959 3266 3919 6632 6752 19.74K <th< th=""><th>80.6 27</th><th>93.8</th><th>279.8</th><th>929.4</th><th>2064</th><th>2750</th><th>4583</th><th>5499</th><th>9165</th><th>9227</th><th>27.54K</th><th>91.34K</th><th>272.5K</th><th>902.2K</th></th<>	80.6 27	93.8	279.8	929.4	2064	2750	4583	5499	9165	9227	27.54K	91.34K	272.5K	902.2K
87.8 31 82.8 243.9 804.8 1739 2317 3861 4633 7722 7880 232.28K 76.58K 225.6K 736.5K 89.6 32 80.3 235.9 776.8 1667 2221 3702 4441 7402 7579 22.33K 70.22K 205.5K 666.4K 93.2 34 75.5 220.6 724.1 1533 2042 3404 4084 6807 7016 20.57K 67.26K 196.2K 633.1K 95.0 35 73.2 213.4 699.4 1471 1959 3266 3919 6532 6752 19.74K 64.44K 187.4K 603.6K 96.8 36 71.1 206.5 675.6 1412 1880 3134 3762 6270 6500 18.96K 61.75K 179K 574.6K 98.6 37 69.0 199.8 652.7 1355 1805 3008 3610 6017 6258 <														
89.6 32 80.3 235.9 776.8 1667 2221 3702 4441 7402 7579 22.33K 73.32K 215.3K 700.5K 91.4 33 77.8 228.1 749.9 1599 2130 3549 4260 7100 7291 21.43K 70.22K 205.5K 666.4K 95.0 35 73.2 213.4 699.4 1471 1959 3266 3919 6532 6752 19.74K 64.44K 187.4K 603.6K 96.8 36 71.1 206.5 675.6 1412 1880 3134 3762 6270 6500 18.96K 61.75K 179K 574.6K 98.6 37 69.0 199.8 652.7 1355 1805 3008 3610 6017 6258 18.21K 59.19K 171K 547.2K 100.4 38 67.0 193.4 630.8 1301 1733 2888 3466 5777 6026 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>														
93.2 34 75.5 220.6 724.1 1533 2042 3404 4084 6807 7016 20.57K 67.26K 196.2K 634.1K 95.0 35 73.2 213.4 699.4 1471 1959 3266 3919 6532 6752 19.74K 64.44K 187.4K 603.6K 98.6 37 69.0 199.8 652.7 1355 1805 3008 3610 6017 6258 18.21K 59.19K 171K 547.2K 104.4 38 67.0 193.4 630.8 1301 1733 2888 3466 5777 6026 17.49K 56.75K 163.5K 521.2K 104.0 40 63.1 181.4 589.5 1200 1598 2663 3197 5329 5592 16.15K 50.07K 142.9K 451.K 105.8 41 61.3 175.7 570.0 1152 1535 2559 3069 5116 5389	89.6 32										22.33K	73.32K		
95.0 35 73.2 213.4 699.4 1471 1959 3266 3919 6532 6752 19.74K 64.44K 187.4K 603.6K 96.8 36 71.1 206.5 675.6 1412 1880 3134 3762 6270 6500 18.96K 61.75K 179K 574.6K 100.4 38 67.0 193.4 630.8 1301 1733 2888 3466 5777 6026 17.49K 56.75K 163.5K 521.2K 102.2 39 65.0 187.3 609.7 1249 1664 2773 3328 5546 5805 16.8K 54.42K 156.3K 496.6K 104.0 40 63.1 181.4 589.5 1200 1598 2663 3197 5329 5592 16.15K 52.19K 149.4K 473.2K 107.6 42 59.6 170.2 551.2 1107 147.5 2459 2949 4916 5193														
98.6 37 69.0 199.8 652.7 1355 1805 3008 3610 6017 6258 18.21K 59.19K 171K 547.2K 100.4 38 67.0 193.4 630.8 1301 1733 2888 3466 5777 6026 17.49K 56.75K 163.5K 521.2K 104.0 40 63.1 181.4 589.5 1200 1598 2663 3197 5329 5592 16.15K 52.19K 149.4K 473.2K 105.8 41 61.3 175.7 570.0 1152 1535 2559 3069 5116 5389 15.52K 50.07K 142.9K 451K 107.6 42 59.6 170.2 551.2 1107 1475 2459 2949 4916 5193 14.92K 48.04K 136.7K 430K 111.2 44 56.2 159.8 515.9 1023 1363 2272 2726 4543 4827 <	95.0 35	73.2	213.4	699.4	1471	1959	3266	3919	6532	6752	19.74K	64.44K	187.4K	603.6K
102.2 39 65.0 187.3 609.7 1249 1664 2773 3328 5546 5805 16.8K 54.42K 156.3K 496.6K 104.0 40 63.1 181.4 589.5 1200 1598 2663 3197 5329 5592 16.15K 52.19K 149.4K 473.2K 105.8 41 61.3 175.7 570.0 1152 1535 2559 3069 5116 5389 15.52K 50.07K 142.9K 451K 107.6 42 59.6 170.2 551.2 1107 1475 2459 2949 4916 5193 14.92K 48.04K 136.7K 430K 110.4 43 57.9 164.9 533.2 1064 1418 2363 2272 2726 4543 4827 13.8K 44.26K 125.1K 310.8K 410K 111.0 45 54.7 154.9 499.2 983.8 1310 2184 2621	98.6 37	69.0	199.8	652.7	1355	1805	3008	3610	6017	6258	18.21K	59.19K	171K	547.2K
105.8 41 61.3 175.7 570.0 1152 1535 2559 3069 5116 5389 15.52K 50.07K 142.9K 451K 107.6 42 59.6 170.2 551.2 1107 1475 2459 2949 4916 5193 14.92K 48.04K 136.7K 430K 109.4 43 57.9 164.9 533.2 1064 1418 2363 2835 4725 5006 14.35K 46.11K 130.8K 410K 111.2 44 56.2 159.8 515.9 1023 1363 2272 2726 4543 4827 13.8K 44.26K 125.1 483.1 113.0 2184 2621 4369 4655 13.28K 42.5K 119.8K 373.1K 114.8 46 53.1 150.1 483.2 946.2 1260 2101 2521 4202 4489 12.77K 40.81K 114.7K 356.1K 116.6 47														
107.6 42 59.6 170.2 551.2 1107 1475 2459 2949 4916 5193 14.92K 48.04K 136.7K 430K 109.4 43 57.9 164.9 533.2 1064 1418 2363 2835 4725 5006 14.35K 46.11K 130.8K 410K 111.2 44 56.2 159.8 515.9 1023 1363 2272 2726 4543 4827 13.8K 44.26K 125.1K 391.1K 113.0 45 54.7 154.9 499.2 983.8 1310 2184 2621 4369 4655 13.28K 42.5K 119.8K 373.1K 114.8 46 53.1 150.1 483.2 946.2 1260 2101 2521 4202 4489 12.77K 40.81K 114.7K 356.1K 118.4 48 50.2 141.2 452.9 875.8 1167 1944 2333 3889 4179														
111.2 44 56.2 159.8 515.9 1023 1363 2272 2726 4543 4827 13.8K 44.26K 125.1K 391.1K 113.0 45 54.7 154.9 499.2 983.8 1310 2184 2621 4369 4655 13.28K 42.5K 119.8K 373.1K 114.8 46 53.1 150.1 483.2 946.2 1260 2101 2521 4202 4489 12.77K 40.81K 114.7K 356.1K 118.4 48 50.2 141.2 452.9 875.8 1167 1944 2333 3889 4179 11.83K 37.66K 105.2K 324.4K 120.2 49 48.9 137.0 438.6 842.8 1123 1871 2246 3743 4033 11.39K 36.19K 100.8K 309.8K 122.0 50 47.5 132.9 424.8 811.3 1081 1801 2162 3603 3893	107.6 42				1107									430K
113.0 45 54.7 154.9 499.2 983.8 1310 2184 2621 4369 4655 13.28K 42.5K 119.8K 373.1K 114.8 46 53.1 150.1 483.2 946.2 1260 2101 2521 4202 4489 12.77K 40.81K 114.7K 356.1K 116.6 47 51.7 145.6 467.8 910.2 1212 2021 2425 4042 4331 12.29K 39.2K 109.8K 339.8K 118.4 48 50.2 141.2 452.9 875.8 1167 1944 2333 3889 4179 11.83K 37.66K 105.2K 324.4K 120.2 49 48.9 137.0 438.6 842.8 1123 1871 2246 3743 4033 11.39K 36.19K 100.8K 309.8K 122.0 50 47.5 132.9 424.8 811.3 1081 1801 2162 3603 3893 <th></th>														
116.6 47 51.7 145.6 467.8 910.2 1212 2021 2425 4042 4331 12.29K 39.2K 109.8K 339.8K 118.4 48 50.2 141.2 452.9 875.8 1167 1944 2333 3889 4179 11.83K 37.66K 105.2K 324.4K 120.2 49 48.9 137.0 438.6 842.8 1123 1871 2246 3743 4033 11.39K 36.19K 100.8K 309.8K 122.0 50 47.5 132.9 424.8 811.3 1081 1801 2162 3603 3893 10.97K 34.78K 96.54K 295.9K 123.8 51 46.2 128.9 411.6 781.1 1040 1734 2081 3469 3758 10.57K 33.44K 92.52K 282.7K 125.6 52 45.0 125.1 398.8 752.2 1002 1670 2004 3340 3629 <th>113.0 45</th> <th>54.7</th> <th>154.9</th> <th>499.2</th> <th>983.8</th> <th>1310</th> <th>2184</th> <th>2621</th> <th>4369</th> <th>4655</th> <th>13.28K</th> <th>42.5K</th> <th>119.8K</th> <th>373.1K</th>	113.0 45	54.7	154.9	499.2	983.8	1310	2184	2621	4369	4655	13.28K	42.5K	119.8K	373.1K
120.2 49 48.9 137.0 438.6 842.8 1123 1871 2246 3743 4033 11.39K 36.19K 100.8K 309.8K 122.0 50 47.5 132.9 424.8 811.3 1081 1801 2162 3603 3893 10.97K 34.78K 96.54K 295.9K 123.8 51 46.2 128.9 411.6 781.1 1040 1734 2081 3469 3758 10.57K 33.44K 92.52K 282.7K 125.6 52 45.0 125.1 398.8 752.2 1002 1670 2004 3340 3629 10.18 32.15K 88.69K 270.1K 127.4 53 43.8 121.5 386.5 724.5 965.0 1608 1930 3217 3504 9807 30.92K 85.04K 258.1K 129.2 54 42.6 117.9 374.7 697.9 929.6 1549 1859 3099 3385 <th>116.6 47</th> <th>51.7</th> <th>145.6</th> <th>467.8</th> <th>910.2</th> <th>1212</th> <th>2021</th> <th>2425</th> <th>4042</th> <th>4331</th> <th>12.29K</th> <th>39.2K</th> <th>109.8K</th> <th>339.8K</th>	116.6 47	51.7	145.6	467.8	910.2	1212	2021	2425	4042	4331	12.29K	39.2K	109.8K	339.8K
122.0 50 47.5 132.9 424.8 811.3 1081 1801 2162 3603 3893 10.97K 34.78K 96.54K 295.9K 123.8 51 46.2 128.9 411.6 781.1 1040 1734 2081 3469 3758 10.57K 33.44K 92.52K 282.7K 125.6 52 45.0 125.1 398.8 752.2 1002 1670 2004 3340 3629 10.18 32.15K 88.69K 270.1K 127.4 53 43.8 121.5 386.5 724.5 965.0 1608 1930 3217 3504 9807 30.92K 85.04K 258.1K 129.2 54 42.6 117.9 374.7 697.9 929.6 1549 1859 3099 3385 9450 29.74K 81.55K 246.7K 131.0 55 41.5 114.5 363.2 672.5 895.8 1493 1792 2986 3270 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>I</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							I							
125.6 52 45.0 125.1 398.8 752.2 1002 1670 2004 3340 3629 10.18 32.15K 88.69K 270.1K 127.4 53 43.8 121.5 386.5 724.5 965.0 1608 1930 3217 3504 9807 30.92K 85.04K 258.1K 129.2 54 42.6 117.9 374.7 697.9 929.6 1549 1859 3099 3385 9450 29.74K 81.55K 246.7K 131.0 55 41.5 114.5 363.2 672.5 895.8 1493 1792 2986 3270 9109 28.61K 78.22K 235.9K		47.5		424.8	811.3				3603		10.97K	34.78K	96.54K	295.9K
129.2 54 42.6 117.9 374.7 697.9 929.6 1549 1859 3099 3385 9450 29.74K 81.55K 246.7K 131.0 55 41.5 114.5 363.2 672.5 895.8 1493 1792 2986 3270 9109 28.61K 78.22K 235.9K														
131.0 55 41.5 114.5 363.2 672.5 895.8 1493 1792 2986 3270 9109 28.61K 78.22K 235.9K														
173 P 57 10 4 111 0 253 0 70 1 073 1 120 120 120 120 120 120 120 120 120 1	131.0 55	41.5	114.5	363.2	672.5	895.8	1493	1792	2986	3270	9109	28.61K	78.22K	235.9K
132.8 56 40.4 111.2 352.2 648.1 863.3 1439 1727 2878 3160 8781 27.53K 75.04K 225.6K 134.6 57 39.3 108.0 341.6 624.8 832.2 1387 1665 2774 3054 8467 26.5K 72.01K 215.8K	134.6 57		108.0	341.6	624.8	832.2		1665	2774	3054		26.5K	72.01K	215.8K
136.4 58 38.3 105.0 331.3 602.4 802.3 1337 1605 2675 2952 8166 25.5K 69.11K 206.4K 138.2 59 37.3 102.0 321.5 580.9 773.7 1290 1548 2580 2854 7876 24.56K 66.34K 197.5K														

Resistance versus Temperature 60 to 129°C

Thermisto Mix	or W	L Maix	L Mix	B Mix	B Max	B Mix	B Mix	B Mūr	HMis	HMas	HMA	HMus	H Mis
Ω at 25°C	100	300	1000	2252	3000	5000	6000	10,000	10,000	30,000	100,000	300,000	1 MEG
°F °C 140.0 60 141.8 61 143.6 62 145.4 63 147.2 64 149.0 65 150.8 66 152.6 67 154.4 68 156.2 69	36.4 35.4 34.5 33.7 32.8 32.0 31.2 30.4 29.7 29.0	99.1 96.3 93.7 91.1 88.6 86.1 83.8 81.5 79.3 77.2	311.9 302.7 293.9 285.3 277.0 269.0 261.3 253.9 246.7 239.7	560.3 540.5 521.5 503.3 485.8 469.0 452.9 437.4 422.5 408.2	746.3 719.9 694.7 670.4 647.1 624.7 603.3 582.6 562.8 543.7	1244 1200 1158 1117 1079 1041 1006.0 971.1 938.0 906.3	1493 1440 1389 1341 1294 1250 1207 1165 1126 1088	2488 2400 2316 2235 2157 2083 2011 1942 1876 1813	2760 2669 2582 2497 2417 2339 2264 2191 2122 2055	7599 7332 7076 6830 6594 6367 6149 5940 5738 5545	23.65K 22.77K 21.94K 21.14K 20.37K 19.63K 18.93K 18.25K 17.6K 16.97K	63.7K 61.17K 58.75K 56.44K 54.23K 52.12K 50.1K 48.17K 46.32K 44.54K	189.1K 181K 173.3K 166K 159K 152.3K 146K 139.9K 134.1K 128.6K
158.0 70 159.8 71 161.6 72 163.4 73 165.2 74 167.0 75 168.8 76 170.6 77 172.4 78 174.2 79	28.3 27.6 26.9 26.3 25.6 25.0 24.5 23.9 23.3 22.8	75.2 73.2 71.3 69.4 67.6 65.9 64.2 62.5 60.9 59.4	233.0 226.5 220.2 214.1 208.3 202.6 197.1 191.8 186.7 181.7	394.5 381.2 368.5 356.2 344.5 333.1 322.3 311.8 301.7 292.0	525.4 507.8 490.9 474.7 459.0 444.0 429.5 415.6 402.2 389.3	875.7 846.4 818.3 791.2 765.1 740.0 715.9 692.7 670.3 648.8	1051 1016 981.8 949.0 917.9 887.5 858.7 830.7 803.8 778.0	1752 1693 1636 1582 1530 1479 1431 1385 1340 1297	1990 1928 1868 1810 1754 1700 1648 1598 1549 1503	5359 5180 5007 4842 4682 4529 4381 4239 4102 3970	16.37K 15.8K 15.25K 14.72K 14.21K 13.72K 13.25K 12.79K 12.36K 11.94K	42.85K 41.23K 39.67K 38.18K 36.75K 35.39K 34.08K 32.82K 31.62K 30.46K	123.3K 118.3K 113.5K 108.9K 104.5K 100.3K 96.31K 92.48K 88.82K 85.32K
176.0 80 177.8 81 179.6 82 181.4 83 183.2 84 185.0 85 186.8 86 188.6 87 190.4 88 192.2 89	22.3 21.8 21.3 20.8 20.3 19.9 19.4 19.0 18.6 18.2	57.9 56.5 55.1 53.7 52.4 51.1 49.9 48.7 47.5	176.9 172.2 167.7 163.3 159.1 154.9 151.0 147.1 143.4 139.8	282.7 273.7 265.0 256.7 248.6 240.9 233.4 226.2 219.3 212.6	376.9 364.9 353.4 342.2 331.5 321.2 311.3 301.7 292.4 283.5	628.1 608.2 588.9 570.4 552.6 535.4 518.8 502.8 487.4 472.6	753.2 729.2 706.0 683.9 662.3 641.8 621.8 602.7 584.3 566.4	1255 1215 1177 1140 1104 1070 1036 1004 973.8 944.1	1458 1414 1372 1332 1293 1255 1218 1183 1149 1116	3843 3720 3602 3489 3379 3273 3172 3073 2979 2887	11.54K 11.15K 10.78K 10.42K 10.08K 9744 9424 9117 8821 8536	29.35K 28.29K 27.27K 26.29K 25.35K 24.45K 23.59K 22.76K 21.96K 21.19K	81.98K 78.78K 75.71K 72.78K 69.98K 67.29K 64.72K 62.26K 59.91K 57.65K
194.0 90 195.8 91 197.6 92 199.4 93 201.2 94 203.0 95 204.8 96 206.6 97 208.4 98 210.2 99	17.8 17.4 17.0 16.6 16.3 15.9 15.6 15.3 15.0 14.6	45.3 44.2 43.2 42.1 41.2 40.2 39.3 38.4 37.5 36.7	136.2 132.8 129.5 126.3 123.2 120.2 117.3 114.4 111.7 109.0	206.1 199.9 193.9 188.1 182.5 177.1 171.9 166.9 162.0 157.3	274.9 266.6 258.6 250.9 243.4 236.2 229.3 222.6 216.1 209.8	458.2 444.4 431.0 418.2 405.7 393.7 382.1 370.9 360.1 349.7	549.1 532.6 516.6 501.2 486.2 471.8 458.0 444.7 431.6 419.1	915.2 887.7 861.0 835.3 810.4 786.4 763.3 741.1 719.4 698.5	1084 1053 1023 994.2 966.3 939.3 913.2 887.9 863.4 839.7	2799 2714 2632 2552 2476 2402 2331 2262 2195 2131	8261 7996 7741 7496 7259 7030 6810 6598 6393 6195	20.45K 19.75K 19.07K 18.41K 17.78K 17.18K 16.6K 16.04K 15.5K 14.98K	55.48K 53.41K 51.42K 49.52K 47.69K 45.94K 44.26K 42.65K 41.1K 39.62K
212.0 100 213.8 101 215.6 102 217.4 103 219.2 104 221.0 105 222.8 106 224.6 107 226.4 108 228.2 109	14.3	35.8	106.4	152.8 148.4 144.2 140.1 136.1 132.3 128.6 125.0 121.6 118.2	203.8 197.9 192.2 186.8 181.5 176.4 171.4 166.7 162.0 157.6	339.6 329.8 320.4 311.3 302.5 294.0 285.7 277.8 270.1 262.6	407.1 395.4 384.2 373.3 362.6 352.5 342.6 333.0 324.0 314.9	678.5 659.0 640.3 622.1 604.4 587.5 571.0 555.1 540.0 524.9	816.8 794.6 773.1 752.3 732.1 712.6 693.6 675.3 657.5 640.3	2069 2009 1950 1894 1840 1788 1737 1688 1640 1594	6005 5821 5643 5472 5307 5147 4993 4844 4700 4561	14.48K 14K 13.54K 13.09K 12.66K 12.25K 11.86K 11.47K 11.11K 10.75K	38.2K 36.84K 35.53K 34.27K 33.06K 31.91K 30.79K 29.72K 28.69K 27.71K
230.0 110 231.8 111 233.6 112 235.4 113 237.2 114 239.0 115 240.8 116 242.6 117 244.4 118 246.2 119				115.0 111.8 108.8 105.8 103.0 100.2 97.6 95.0 92.5 90.0	153.2 149.0 145.0 141.1 137.2 133.6 130.0 126.5 123.2 119.9	255.4 248.4 241.6 235.1 228.7 222.6 216.7 210.9 205.3 199.9	306.4 297.9 289.9 281.9 274.4 267.0 260.0 253.1 246.4 239.8	510.7 496.4 483.1 469.8 457.4 444.9 433.4 421.8 410.7 399.6	623.5 607.3 591.6 576.4 561.6 547.3 533.4 519.9 506.8 494.1	1550 1507 1465 1425 1386 1348 1311 1276 1241 1208	4427 4297 4172 4051 3933 3820 3711 3605 3502 3403	10.41K 10.08K 9763 9456 9161 8876 8601 8336 8080 7832	26.76K 25.84K 24.96K 24.12K 23.31K 22.52K 21.77K 21.05K 20.35K 19.68K
248.0 120 249.8 121 251.6 122 253.4 123 255.2 124 257.0 125 258.8 126 260.6 127 262.4 128 264.2 129				87.7 85.4 83.2 81.1 79.0 77.0 75.0 73.1 71.3 69.5	116.8 113.8 110.8 107.9 105.2 102.5 99.9 97.3 94.9 92.5	194.7 189.6 184.7 179.9 175.3 170.8 166.4 162.2 158.1 154.1	233.7 227.5 221.7 216.1 210.5 205.2 199.8 194.8 190.0 185.2	389.4 379.2 369.4 360.1 350.8 341.9 333.0 324.6 316.6 308.6	481.8 469.8 458.2 446.9 435.9 425.3 414.9 404.9 395.1 385.6	1176 1145 1114 1085 1057 1029 1002 976.3 951.1 926.7	3307 3214 3124 3038 2953 2872 2793 2717 2643 2571	7594 7364 7142 6927 6720 6519 6326 6139 5958 5784	19.03K 18.41K 17.81K 17.23K 16.68K 16.14K 15.62K 15.12K 14.64K 14.18K

Resistance versus Temperature 130 to 199°C

Resistance versus Temperature 200 to 250°C

Thermist Mix	or A	L Mix	L.Mis	B.Mix	B Mūx	B.Mix	B.Mix	B Mix	HARIN	H Mix	HMis	HMik	HANIR
Ω at 25°C	100	300	1000	2252	3000	5000	6000	10,000	10,000	30,000	100,000	300,000	1 MEG
°F °C 392.0 200 393.8 201 395.6 202 397.4 203 399.2 204 401.0 205 402.8 206 404.6 207 406.4 208 408.2 209				14.9	19.8	32.9 32.3 31.7 31.2 30.6 30.0 29.5 29.0 28.5 28.0	39.6 38.8 38.1 37.4 36.7 36.0 35.4 34.8 34.2 33.6	65.9 64.7 63.5 62.3 61.2 60.1 59.0 58.0 57.0 56.0	86.5 84.9 83.3 81.9 80.4 79.0 77.6 76.2 74.9 73.6	186.7 183.1 179.5 176.0 172.6 169.3 166.1 162.9 159.8 156.8			
410.0 210 411.8 211 413.6 212 415.4 213 417.2 214 419.0 215 420.8 216 422.6 217 424.4 218 426.2 219						27.5 27.0 26.5 26.1 25.6 25.1 24.7 24.3 23.9 23.5	33.0 32.4 31.8 31.3 30.7 30.2 29.7 29.2 28.7 28.2	55.0 54.0 53.1 52.1 51.2 50.3 49.5 48.6 47.8 47.0	72.3 71.0 69.8 68.6 67.4 66.2 65.1 64.0 62.9 61.8	153.8 150.9 148.1 145.3 142.6 139.9 137.3 134.8 132.3 129.9			
428.0 220 429.8 221 431.6 222 433.4 223 435.2 224 437.0 225 438.8 226 440.6 227 442.4 228 444.2 229						23.1 22.7 22.3 22.0 21.6 21.3 20.9 20.5 20.2 19.9	27.7 27.2 26.8 26.3 25.9 25.5 25.0 24.6 24.2 23.8	46.2 45.4 44.7 43.9 43.2 42.5 41.8 41.1 40.4 39.7	60.8 59.8 58.8 57.8 56.8 55.9 55.0 54.1 53.2 52.3	127.5 125.2 122.9 120.7 118.5 116.3 114.3 112.2 110.2 108.3			
446.0 230 447.8 231 449.6 232 451.4 233 453.2 234 455.0 235 456.8 236 458.6 237 460.4 238 462.2 239						19.5 19.2 18.9 18.6 18.3 18.0 17.7 17.4 17.1 16.9	23.4 23.1 22.7 22.3 22.0 21.6 21.3 20.9 20.6 20.3	39.1 38.5 37.8 37.2 36.6 36.0 35.5 34.9 34.4 33.8	51.5 50.6 49.9 49.0 48.2 47.4 46.7 46.0 45.2 44.5	106.4 104.5 102.6 100.8 99.1 97.3 95.7 94.0 92.4 90.8			
464.0 240 465.8 241 467.6 242 469.4 243 471.2 244 473.0 245 474.8 246 476.6 247 478.4 249 480.2 249 482.0 250						16.6 16.3 16.1 15.8 15.6 15.3 15.1 14.9 14.6 14.4	20.0 19.6 19.3 19.0 18.7 18.5 18.2 17.9 17.6 17.4	33.3 32.8 32.2 31.7 31.3 30.8 30.3 29.8 29.4 28.9 28.5	43.8 43.1 42.4 41.8 41.1 40.5 39.9 39.3 38.7 38.1 37.5	89.2 87.7 86.2 84.8 83.3 81.9 80.5 79.2 77.9 76.6 75.3			

Glossary

316SS A stainless steel containing approximately 2% Mn, 2% Mo,12% Ni and 17% Cr, with the balance Fe and trace C, S, P and Si.

Absolute zero The lowest possible temperature; the temperature at which thermal energy is at a minimum. Defined as 0 Kelvin or -273.15°C.

Accuracy Measure of the closeness of a reading to the actual value.

Ambient range In general, the human environmental range, -20 to +50°C. The industrial application ambient range is 0 to 70°C, the military range is -55 to +125°C.

Ambient temperature Temperature of the background or surrounding environment.

Ampere (A) SI unit of electric current.

AWG American Wire Gauge.

Beta value An indicator of the shape of the resistance vs temperature curve.

 $\beta = \ln (R_T/R_{To})/(1/T-1/T_o)$

Calibration Documenting a sensor's value as determined by a precise measurement.

Celsius (Centigrade, °C) A temperature scale defined by setting the ice point of water at 0°C and the boiling point of water at 100°C.

CE Mark Signifies product acceptance by the European Community. The Joint European Standards Institution.

Control point The temperature at which the controlled system is to be maintained.

Current (I) The rate of flow of an electric charge, usually expressed in amperes.

Current proportioning A type of temperature controller which provides a control current proportional to the difference between the measured temperature and the control point.

Direct current (dc) Current that flows in one direction only. The type of current that is supplied by batteries.

Degree (°) An increment of a temperature scale. The size of a degree is different in different temperature scales; for example, $1^{\circ}C = 1.8^{\circ}F$

De-rated A deliberate reduction in the rating of a component to improve reliability.

Deviation The difference between an observed and a fixed value; the difference between the observed temperature and the set point of the controller.

Dielectric Any material capable of sustaining a steady electric field; an insulator.

Differential The difference between the temperature at which a controller turns heat off and the temperature at which the heat is turned on, in degrees.

Dissipation constant The ratio of power dissipation to temperature rise induced when current is applied to a thermistor (e.g. 8mW°/C represents a 1°C temperature rise for every 8 mW of power dissipated).

Drift A slow variation of any performance characteristic of a device or circuit.

Dumet A copper-clad, nickel-iron alloy with a thermal expansion closely matching that of glass. Provides hermetic seals in soft glasses.

emf Electromotive force. Difference of electrical potential that drives currents through circuits. Unit is the volt.

Epoxy A flexible resin used in coatings and adhesives. Also called epoxy resin.

Error The difference between the correct or desired value and the actual reading.

Fahrenheit A temperature scale defined by setting the freezing point of water at 32°C and the boiling point of water at 212°C.

Galvanometer An instrument that measures small electrical currents by means of deflecting magnetic coils.

Ground A conducting path between an electrical circuit and the earth or some conductor serving in its place.

GSFC S-311-P-18 A specification issued by the Goddard Space Flight Center covering thermistors for use in space flight.

Heat Energy in the process of transferring between a system and its surroundings as a result of temperature differences.

Heat transfer The process whereby thermal energy flows from a high energy body to a low energy body via conduction, convection or radiation.

Hermetic Airtight

Hysteresis The retardation or lagging of an effect behind the cause of the effect.

ID Inside diameter.

Input impedance The small signal impedance measured between the input terminals of a network.

Insulation resistance The resistance between two conductors, or between a conductor and ground, when they are separated only by insulating material.

Interchangeable Able to substitute one sensor for another while maintaining consistent readings.

Interchangeability error A measurement error that can occur if two or more probes are used to make the same measurement. It is caused by a slight variation in characteristics of different probes.

Isothermal Occurring at constant temperature.

ITS-90 International Temperature Scale of 1990.

Kelvin (**K**) An absolute temperature scale based on the Celcius scale; the thermodynamic temperature scale. One kelvin is the same temperature interval as one degree Celcius, and $0K = -273.15^{\circ}C$.

Linearity deviation The difference between the actual response of a device and its theoretical straight-line approximation.

Maximum operating temperature The temperature above which a device will not safely operate.

Maximum power rating The maximum power that a device can safely handle.

Metrology The science of measuring.

Mica A transparent mineral used to make the cross supporting the platinum wire windings in an SPRT. One of the best electrical insulators.

Microamp (μ **A**) One millionth of an ampere, 10⁻⁶ A.

MIL-R-23648 The US Department of Defense general specification for thermistors.

Milliamp (**mA**) One thousandth of an ampere, 10^{-3} A.

Millivolt (**mV**) One thousandth of a volt, 10^{-3} V.

Negative temperature coefficient (NTC) Decreasing resistance with increasing temperature.

NIST National Institute of Standards and Technology. The US government agency that defines measurement standards in the United States.

NPT National Pipe Thread.

OD Outer diameter.

Offset The difference in temperature between the set point and the actual process temperature.

Ohms (Ω) SI unit of electrical resistance.

Ohm's law A relationship between voltage (emf), current and resistance in an electrical component carrying direct current. E = IR.

On/Off controller A temperature controller that turns a heater fully on or fully off.

Operating Range The specified range over which a device is expected to operate.

Platinum resistance element An element made of platinum whose resistance varies with temperature.

Positive temperature coefficient (PTC) Increasing resistance with increasing temperature.

Power (p) Rate of doing work, in Watts (W).

Probe Usually refers to a sensing element built into a housing that is physically suitable for insertion into the environment or substance to be measured.

PVC Polyvinyl chloride.

Range An area between two limits within which a sensor or instrument is operational; the extent of the sensor's or instrument's capabilities.

Rankine (${}^{\circ}$ **R**) An absolute temperature scale based on the Fahrenheit scale, where one degree Rankine is the same temperature interval as one degree Fahrenheit, and $0{}^{\circ}$ R = -459.67 ${}^{\circ}$ F.

Repeatability The ability of a sensor or instrument to give the same reading or output under repeated identical conditions.

Resistance (**R**) The resistance to the flow of electric current measured in ohms (Ω).

Resistance ratio The ratio of the resistance of a thermistor at two different temperatures, usually resistance at 25°C to resistance at 125°C (R_{25}/R_{125}).

Resistor An electrical component designed to provide a known resistance.

Response time The time required to change the output of an electronic circuit after a sudden change in input. Used by YSI as the time required to sense 90% of a temperature change. See Time Constant.

Selection The examination of a device for compliance to a specific characteristic, usually associated with size or measurement tolerance.

Self-heating The effect of driving, usually resistive devices, at a level which induces a bias in the measured value.

Sensitivity The minimum change in temperature to which the instrument or sensor will respond.

Set point The temperature which a controller is set to maintain.

SI System Internationale. The standard metric system of units.

Sinter To form small particles into larger particles, cakes or masses by heating without liquifying.

SMD Surface-mount device.

SMT Surface-mount thermistor.

Solid wire A wire with no stranding.

Span The difference between the upper and lower limits of a range.

SPRT Standard Platinum Resistance Thermometer. A primary temperature standard calibrated to fixed-points of nature such as the triple-point of water.

Stability The ability of an instrument or sensor to maintain a constant output given a constant input.

Steinhart & Hart equation An equation which calculates resistance as a function of temperature for negative temperature coefficient thermistors.

Stranded wire Wire whose conductor is woven from individual wires or strands.

Teflon DuPont trademark name for polytetrafluoroethene. Used to insulate electrical conductors. Noted for its chemical inertness and heat resistance.

Temperature A measure of the degree of hotness or coolness of some sample. Temperature is to heat, what voltage is to power.

Temperature scale The scale assigned to allow determination of temperature. The International Practical Temperature Scale is reviewed for fit to the thermodynamic scale at approximately 20-year intervals. There are four practical scales, Celsius °C, Kelvin K, Fahrenheit °F, Rankine °R, and one theoretical scale, the Thermodynamic Temperature Scale. The scales differ in end points and value of divisions.

Thermal conductivity The ability of a material to conduct thermal energy.

Thermal expansion An increase in size due to an increase in temperature.

Thermal gradient The distribution of a differential temperature through a body or across a surface.

Thermal shock The shock which results when a body is subject to sudden changes in temperature.

Thermilinear component Two or three thermistor disks built into one bead which, when used in a network, provides a linear resistance vs temperature curve.

Thermilinear network One Thermilinear component and two or three resistors that can be wired to provide linear resistance response to temperature.

Thermistor A temperature-sensitive resistor made of metal oxides sintered into a disk which exhibits a large change in resistance for a small change in temperature.

Time constant The time required for a sensor to register 63.3% of a change in temperature.

Tolerance The range between allowable maximum and minimum values.

UL Underwriters Laboratories, Inc. An independent laboratory that establishes standards for commercial and industrial products.

Volt (**E**) SI unit of electrical potential difference.

Voltage An electrical potential measured in volts.

Voltage divider Usually a series of resistors used to divide the supply voltage in proportion to the value of each resistor in the string.

Watt SI unit of power.

Wheatstone bridge A network of four resistances, an emf source and a galvanometer connected so that when the four resistances are matched, the galvanometer will show a zero deflection or null reading.

Zero power resistance The resistance of a thermistor with no power being dissipated.

Sales Policy

New Accounts

To quickly qualify for open account status, please supply this information to our credit manager:

- Dun & Bradstreet rating or Duns number
- Two credit references from vendors
- Bank reference
- Name of chief executive officer or president
- Name of treasurer
- Name of controller
- Credit limit desired

Terms of Sale

Net 30 days from invoice date. We observe these terms rigidly. Failure to meet them may result in non-acceptance of new orders. Shipping prepaid and added, FOB Yellow Springs, Ohio.

OEM and Contract Discounts

Qualification for OEM discounts requires that these conditions be met:

- Use of YSI product in a fashion that's integral with the product—wired in.
- Description of application in the simplest non-proprietary terms.
- Expected use rate
- Permission to advertise if use is not proprietary.
- We will negotiate all agreements based on product and volume. Basically all purchases of similar products may be mixed for discount. Delivery schedules are a significant factor in developing the terms of a purchase agreement.
- Contact your local manufacturers' representative or YSI Customer Service.

Order Change and Cancellation

Our terms for order cancellation or change are:

- Any cancellation of orders for stock products after order entry must be 30 days before shipping date.
- Any cancellation after order entry of build-to-order or build-to-specification products will be subject to a minimum \$50 or 15% charge, whichever is greater
- Any order for which material or labor have been expended will carry cancellation charges equal to the percentage completed or \$50, whichever is greater.
- Any customer change which adds cost to the manufacture of products will be charged at normal overhead and profit.

Returned Goods

We will accept for return certain of our products.

- Cataloged thermistors
- Certain other products which have been negotiated before order placement.

Return for credit requires:

- Customer Service gives prior approval, RA number and shipping instructions
- Products are in new condition
- Products are not obsolete

Minimum Orders

Our minimum order requirements are:

- For thermistor components, 100 pieces. For smaller quantities, contact our distributors or stocking representatives.
- For all types of sensor assemblies (mixed), \$75.

Exceptional Service

Expected delivery for manufactured-to-order products is normally 4 weeks. When standard delivery needs to be improved with certainty, we offer exceptional service.

A. Two-week delivery assuming material availability for all pre-engineered products.

B. Best possible delivery will include full force effort (overtime) to complete and ship the product in minimum time.

Additional charges for A service are 25% of the normal price and 50% for B service.

On occasion, because of material shortages, exceptional service will be unable to meet your needs. Call Customer Service to establish that materials are available.

Limited Warranty

We warrant our products against defects in materials and workmanship when the products are used according to their ratings and specifications. Our maximum liability is limited to repair or replacement (at our option) of defective products.

For sensors, sensor assemblies and special products, the warranty period is 1 year from shipment date. We will handle warranty repairs and replacements expeditiously. Contact Customer Service for instructions and best turn-around time.

> For more information, contact us at **800** 747-5367 or **937** 427-1231 • Fax **937** 427-1640 Info@YSI.com • www.YSI.com

Contacting the YSI Precision Temperature Group

For order placement and product information:

Ph 800.747.5367 (US) 937.427.1231, Option 1

Fax: 937 427-1640

Email: bpetrus@ysis.com (Bob Petrus) phenry@ysis.com (Phyllis Henry)

YSI Precision Temperature Group accepts purchase orders (with approved credit), payment in advance (via Visa or Mastercard) and checks. Special payment terms are available for international orders.

YSI Precision Temperature Group takes orders direct, sells through distributors, and has Manufacturer's Representatives located throughout the United States. Small quantity orders, particularly thermistors, should be forwarded to the nearest distributor. Below is a list of YSI Distributors and Manufacturer's Representatives in the United States. If you are located outside the U.S., please contact YSI Temperature Products Customer Service for your nearest Distributor or to purchase direct.

YSI Precision Temperature Group

Thermistor Distributors

YSI distributors stock YSI Precision Thermistors and Thermilinear components. Orders for less than 100 units must be directed to them.

Andruss-Peskin Corp. P.O. Box 268 63 S. Main St. Natick, MA 01760-0268 (508) 653-3919 800 878-3919

RDP Corporation 5877 Huberville Avenue Dayton, OH 45431 (937) 253-6175

Fax: (508) 651-1924

Fax: (937) 254-1951

BJ Wolfe Enterprises 5321 Derry Ave., Unit E Agoura Hills, CA 91301 818 889-8412 800 554-1224

Fax: 818 889-8417

Computer Aided Solutions 8588 Mayfield Road Chesterland, OH 44026 (440) 729-2570 Fax: (440) 729-2257

RJM Sales 454 Park Avenue Scotch Plains, NJ 07076 800 752-9055 (908) 322-7880 Fax: (908) 322-2160

Finnan Engineered Prod. 1149 Bellamy Rd. N., Unit 22 Scarborough, Ontario M1H 1H7 (416) 438-6070

Fax: (416) 438-8739

Newark Electronics 4810 N. Ravenswood Chicago, IL 60624 (800) 367-3573 Fax: (312) 275-9050

Thermx of California 31363 Medallion Drive Hayward, CA 94544 800 300-1161 (510) 441-7566 Fax: (510) 441-2414

YSI Precision Temperature Group

Manufacturer's Representatives

Manufacturer's Representatives are available in your area for technical and purchasing support of YSI Precision Temperature Group products.

Analog Associates Oakland, CA 94602 510 531-8896 Fax: 510 531-8897

Email: analog@ccnet.com www.analogassociates.com

Quadra Sales Corporation Beaverton, OR 97008 503 626-7550 Fax: 503 626-6960 Email: quadraor@aol.com www.quadrasales.com

Sales Technology Inc. Ft. Collins, CO 80525 303 530-9409 Fax: 970 663-0809 Email: bobshil@aol.com

Andruss-Peskin Corp. Natick, MA 01760-0268 508 653-3919 800 878-3919 Fax: 508 651-1924 Email:

sales@andruss-peskin.com www.andruss-peskin.com

Quantum Measurements Hoover, AL 35226 205 824-3380 Fax: 205 824-3315 Email: qmcglenn@aol.com

Advanced Industrial Sys Chesterfield, MO 63005 314 532-2477 Fax: 314 532-7385

Email: sales@advindsys.com

www.advindsys.com

Quantum Measurements Lutz, FL 33549 813 909-8322 Fax: 813 909-8622 Email: gmcfl@aol.com

EQS Systems Chesterland, OH 44026 440 729-2222 800 729-8084 Fax: 440 729-2257 Email: sales@eqssystems.com

www.eqssystems.com

Quantum Measurements Smyrna, GA 30080 770 433-0093 Fax: 770 433-9254 Email: qmcrandy@aol.com

K-Technologies, Inc. Minneapolis, MN 55431 612 835-7615 Fax: 612 835-0180 Email: jkresse@hotmail.com

RJM Sales Scotch Plains, NJ 07076 908 322-7880 800 752-9055 Fax: 908 322-2160 Email: rjmnj@aol.com www.rjmsales.com

Quadra Sales Corporation Bothell, WA 98011 425 489-3428 Fax: 425 486-5784 Email: quadrawa@aol.com www.quadrasales.com RJM Sales Chadds Ford, PA 19317 610 358-4014 Fax: 610 358-3776 Email: rjmpa@aol.com www.rjmsales.com

Technical Component Sales of Southern California Costa Mesa, CA 92626 714 444-2276 Fax: 714 444-2278 Email:

techcompsales@earthlink.net www.sensortek.com

Canada -

Hoskin Scientific Ltd. Vancouver, BC, V5T 1J7 604 872-7894 Fax: 604 872-0281 Email: salesy@hoskin.ca

Hoskin Scientific Ltd.
Burlington, Ontario, L7L 5L6
905 333-5510
Fax: 905 333-4976
Email: salesb@hoskin.ca

Hoskin Scientific Ltd. Montreal, Quebec, H4P 2L1 514 735-5267 Fax: 514 735-3454 Email: salesm@hoskin.ca