

Profesor: Michael Karkulik Ayudante: Sebastián Fuentes

Pauta Ayudantía 10 Álgebra Lineal

2 de junio de 2022

Problema 1. Considere la aplicación lineal $f: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_3(\mathbb{R}), p \mapsto xp$ definida en los espacios de polinomios reales. Considere las bases siguientes bases de los espacios anteriores

$$\mathcal{A} = \{1, x, x^2\}, \mathcal{B} = \{1, x - 1, (x - 1)^2\}, \qquad \mathcal{C} = \{1, x, x^2, x^3\}, \mathcal{D} = \{1, -x, x^2, x^2 - x^3\}$$

Con respecto a las bases anteriores

- 1. Encuentre la matriz de f con respecto a las bases \mathcal{A} y \mathcal{C} .
- 2. Encuentre la matriz de f con respecto a las bases \mathcal{B} y \mathcal{D} .

Demostración.

1. Para calcular dicha matriz debemos obtener las coordenadas de las imágenes de $\mathcal A$ bajo f en la base $\mathcal C$. Calculamos entonces que

$$f(1) = x = 0(1) + 1(x) + 0(x^{2}) + 0(x^{3})$$

$$f(x) = x^{2} = 0(1) + 0(x) + 1(x^{2}) + 0(x^{3})$$

$$f(x^{2}) = x^{3} = 0(1) + 0(x) + 0(x^{2}) + 1(x^{3})$$

deduciendo entonces que

$$A_{\mathcal{A},\mathcal{C}}^f = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

2. Recordamos que el cambio de base corresponde a la matriz de la identidad en las bases respectivas, por lo que calculamos las coordenadas de \mathcal{B} en \mathcal{A} :

$$1 = 1(1) + 0(x) + 0(x^{2})$$
$$x - 1 = (-1)(1) + 1(x) + 0(x^{2})$$
$$(x - 1)^{2} = 1(1) + (-2)(x) + 1(x^{2})$$

Así la matriz cambio de base queda

$$C_{\mathcal{B},\mathcal{A}} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$

Calculamos ahora la matriz de cambio de base entre \mathcal{C} y \mathcal{D} . Para ello vemos que

$$1 = 1(1) + 0(-x) + 0(x^{2}) + 0(x^{2} - x^{3})$$

$$x = 0(1) + (-1)(-x) + 0(x^{2}) + 0(x^{2} - x^{3})$$

$$x^{2} = 0(1) + 0(-x) + 1(x^{2}) + 0(x^{2} - x^{3})$$

$$x^{3} = 0(1) + 0(-x) + 1(x^{2}) + (-1)(x^{2} - x^{3})$$

MAT210 UTFSM

y así la matriz es

$$C_{\mathcal{C},\mathcal{D}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Finalmente, encontramos que la matriz de T en las bases \mathcal{B}, \mathcal{D} corresponde a

$$\begin{split} A^f_{\mathcal{B},\mathcal{D}} &= C_{\mathcal{C},\mathcal{D}} A_{\mathcal{A},\mathcal{C}} C_{\mathcal{B},\mathcal{A}} \\ &= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 0 & 0 & 0 \\ -1 & 1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & -1 \end{pmatrix} \end{split}$$

Problema 2. Sea V espacio vectorial de dimensión finita $\dim(V) = n$ sobre un cuerpo K. En la ayudantía 8 se estudiaron polinomios de aplicaciones lineales, definiendo para $T : V \to V$ aplicación lineal y para cada $P \in K[X]$ una aplicación lineal P(T).

1. Demuestre que para todo $T: \mathbf{V} \to \mathbf{V}$ existe un polinomio $P \in K[X] \setminus \{0\}$ tal que P(T) = 0.

Así como podemos componer polinomios con aplicaciones lineales, podemos también hacerlo con matrices. Para $P \in K[X], A \in K^{n \times n}$ definimos

$$P(A) := a_0 I_n + a_1 A + a_2 A^2 + \ldots + a_n A^n$$

- 2. Encuentre $P \in \mathbb{R}[X]$ no nulo tal que P(A) = 0 donde $A = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix}$
- 3. Demuestre que si $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ es base de \mathbf{V} y $P \in K[X]$, entonces

$$A_{\mathcal{B},\mathcal{B}}^{P(T)} = P(A_{\mathcal{B},\mathcal{B}}^T)$$

Demostración.

1. Consideremos las n^2+1 aplicaciones lineales $id_{\mathbf{V}}, T, T^2, \dots, T^{n^2}$. Como sabemos que $\dim(L(\mathbf{V})) = n^2$, las aplicaciones anteriores deben ser linealmente independendientes, y por lo tanto existirán $\alpha_0, \dots, \alpha_{n^2}$ no todos nulos tales que

$$\alpha_0 \operatorname{id}_{\mathbf{V}} + \alpha_1 T + \ldots + \alpha_{n^2} T^{n^2} = 0$$

Basta entonces definir $P(X) = \alpha_0 + \alpha_1 X + \ldots + \alpha_{n^2} X^{n^2}$.

2. Utilizando la idea de la demostración anterior, consideramos las primeras cuatro potencias de A:

$$A^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}, \qquad A^3 = \begin{pmatrix} 6 & 11 \\ 22 & 39 \end{pmatrix}, \qquad A^4 = \begin{pmatrix} 22 & 39 \\ 78 & 139 \end{pmatrix}$$

Tomando una combinación lineal de I_n , A, A^2 , A^3 , A^4 igual a 0, se encuentra que los coeficientes verifican las ecuaciones a+2b+6c+22e=0, b+3c+11d+39e=0, a+3b+11c+39d+139e=0. Tomando d=e=0 y c=1 encontramos entonces que a=-2, b=-3 de donde deducimos la relación $A^2-3A-2I=0$.

MAT210 UTFSM

3. En cátedra se demostró que (Lema 104), fijada la base \mathcal{B} , la aplicación $\Phi_{\mathcal{B}}: L(\mathbf{V}) \to K^{n \times n}, f \mapsto A^f_{\mathcal{B},\mathcal{B}}$ que asocia a cada aplicación lineal su matriz en la base \mathcal{B} es un isomorfismo. Esto significa que dadas $f, g \in L(\mathbf{V}), \alpha \in K$ entonces $\Phi_{\mathcal{B},\mathcal{B}}(\alpha f + g) = \alpha \Phi_{\mathcal{B},\mathcal{B}}(f) + \Phi_{\mathcal{B},\mathcal{B}}(g)$.

Por otro lado, se probó que la matriz de una composición (Lema 105) viene dada por la relación

$$\Phi_{\mathcal{B},\mathcal{B}}(g \circ f) = \Phi_{\mathcal{B},\mathcal{B}}(g) \cdot \Phi_{\mathcal{B},\mathcal{B}}(f)$$

Lo anterior dice que en particular tomando f = g = T se tiene que $\Phi_{\mathcal{B},\mathcal{B}}(T^2) = (\Phi_{\mathcal{B},\mathcal{B}}(T))^2$ e inductivamente vemos que

$$\Phi_{\mathcal{B},\mathcal{B}}(T^n) = (\Phi_{\mathcal{B},\mathcal{B}}(T))^n \quad \forall n \in \mathbb{N}$$

Sea ahora $P \in [X]$ dado por $P(X) = a_0 + a_1 X + \dots + a_2 X^n$. Utilizando las propiedades mencionadas anteriormente tenemos que

$$\Phi_{\mathcal{B},\mathcal{B}}(p(T)) = \Phi_{\mathcal{B},\mathcal{B}}(a_0 \operatorname{id}_V + a_1 T + a_2 T^2 + \dots + a_n T^n)
= a_0 \Phi_{\mathcal{B},\mathcal{B}}(\operatorname{id}_{\mathbf{V}}) + a_1 \Phi_{\mathcal{B},\mathcal{B}}(T) + a_2 \Phi_{\mathcal{B},\mathcal{B}}(T^2) + \dots + a_n (\Phi_{\mathcal{B},\mathcal{B}}(T^n))
= a_0 I_n + a_1 \Phi_{\mathcal{B},\mathcal{B}}(T) + a_2 (\Phi_{\mathcal{B},\mathcal{B}}(T))^2 + \dots + a_n (\Phi_{\mathcal{B},\mathcal{B}}(T))^n
= p(\Phi_{\mathcal{B},\mathcal{B}}(T))$$

Observación 1. La demostración del punto 1. del problema anterior también vale para matrices.

Problema 3. Sea $f: \mathbf{V} \to \mathbf{V}$ aplicación lineal y $\mathcal{B} = \{e_1, \dots, e_n\}$ base de \mathbf{V} . Demuestre que la matriz de la aplicación $A_{\mathcal{B},\mathcal{B}}^f$ es triangular superior si y solo si $A_{\mathcal{C},\mathcal{C}}^f$ es triangular inferior donde $\mathcal{C} = \{e_n, \dots, e_1\}$.

Demostración. Para un vector base tenemos la escritura

$$f(e_i) = \sum_{j=1}^n \alpha_j^i e_j = \alpha_1^i e_1 + \dots + \alpha_n^i e_n$$

y por definición entonces la columna i-ésima de $A_{\mathcal{C},\mathcal{C}}^f$ corresponde al vector $(\alpha_1^i \dots \alpha_n^i)^\top$. Ahora, en la base \mathcal{C} escribimos

$$f(e_i) = \sum_{j=1}^{n} \beta_j^i e_{n-j} = \beta_1^i e_n + \dots + \beta_n^i e_1$$

y por unicidad de las combinaciones lineales deducimos que $\beta^i_j = \alpha^i_{n-j}$ para todo $j=1,\ldots,n$ y para todo $i=1,\ldots,n$. Por lo tanto las columnas de $A^f_{\mathcal{C},\mathcal{C}}$ corresponden a las columnas de $A^f_{\mathcal{B},\mathcal{B}}$ invertidas tanto vertical como horizontalmente, y así vemos que $A^f_{\mathcal{C},\mathcal{C}}$ es triangular inferior.

Problema 4. Sea **V** espacio vrctorial de dimensión $\dim(\mathbf{V}) = n$ y $f : \mathbf{V} \to \mathbf{V}$ lineal. Sea $\mathbf{W} \subseteq \mathbf{V}$ subespacio de dimensión $\dim(\mathbf{W}) = m$ y supongamos que **W** es invariante bajo f, es decir, $f(\mathbf{W}) \subseteq \mathbf{W}$. Demuestre que existe una base \mathcal{B} de **V** tal que la matriz $A_{\mathcal{B},\mathcal{B}}^f$ de la aplicación es triangular superior por bloques

$$\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$$

MAT210 UTFSM

donde $A \in K^{m \times m}$. Generalice la idea anterior para probar que si $\mathbf{V} = \bigoplus_{k=1}^p \mathbf{V}_k$ y además $f(\mathbf{V}_k) \subseteq \mathbf{V}_k$ para todo $k = 1, \dots, p$ entonces para \mathcal{B}_j base respectiva de \mathbf{V}_j se tiene que

$$A_{\mathcal{B},\mathcal{B}}^{f} = \begin{pmatrix} A_{1} & 0 & 0 & 0 \\ -A_{1} & 0 & 0 & 0 \\ 0 & 0 & A_{p} & 0 \end{pmatrix}$$

donde $\mathcal{B} = (\mathcal{B}_1, \dots, \mathcal{B}_p)$ es la base obtenida como la unión de bases de $\mathcal{B}_1, \dots, \mathcal{B}_n$ donde $A_j \in K^{n_j \times n_j}$ con $n_j = \dim(\mathbf{V}_j)$.

Demostración. Consideremos $\{e_1, \ldots, e_m\}$ base de **W** y completémosla en una base $\mathcal{B} = \{e_1, \ldots, e_m, e_{m+1}, \ldots, e_n\}$. Como **W** es invariante bajo f se tendrá entonces que $f(e_k) \in \mathbf{W}$ para todo $1 \leq k \leq m$. Notar que la matriz $A_{\mathcal{B},\mathcal{B}}^f = (a_{jk})_{j=1,k=1}^{n,n}$ se define como

$$f(e_k) = \sum_{j=1}^{n} a_{jk} e_j$$

Entonces de la condición de invariancia de W deducimos que para i = 1, ..., m se tiene que

$$f(e_k) = \sum_{j=1}^{n} a_{jk} e_j = \sum_{j=1}^{m} a_{jk} e_j \Rightarrow a_{jk} = 0 \quad \forall j > k$$

de donde se obtiene entonces que la matriz de la aplicación tendrá la forma señalada pues para los primeros k vectores de la base sus imágenes serán combianciones lineales de los primeros k vectores.

Ahora, en el caso en que tenemos una suma directa en subespacios invariantes y bases como en el enunciado, por la misma idea anterior tendremos que, dado un vector base perteneciente a \mathbf{V}_k , entonces su imagen pertenecerá también a \mathbf{V}_k y será entonces combinación lineal de los vectores base \mathcal{B}_k , deduciendo la forma diagonal de la matriz. Detallamos esta idea como sigue: si $\mathcal{B}_j = \{\mathbf{v}_1^j, \dots, \mathbf{v}_{n_j}^j\}$ es la base de \mathbf{V}_j entonces se tiene que para cada $i \in \{1, \dots, n_j\}$

$$f(\mathbf{v}_i) = \sum_{k=1}^p \sum_{l=1}^{n_k} a_{li} \mathbf{v}_l^k = \sum_{l=1}^{n_j} a_{li} \mathbf{v}_l^j \Rightarrow \alpha_{li} \neq 0 \quad \text{si} \quad n_1 + \ldots + n_{j-1} < l < n_1 + \ldots + n_{j+1}$$