Marco Bayesiano para el análisis de datos, calibración de parámetros y modelamiento inverso

Introducción a la Teoría de Probabilidades

Universidad Industrial de Santander U18 Fest

Ud. es el modelador

- Como toda teoría matemática, la teoría de probabilidades no representa realidades físicas. En cambio, es útil para representar conceptos
- Nuestro objetivo es modelar información de manera consistente y fácil de interpretar
- El modelador, ud., juega un rol fundamental
- El modelador toma decisiones subjetivas
- La validez de éstas suposiciones está en la utilidad de los resultados

Elementos de la teoría probabilidades

Experimento

Resultados

Resultado: Posible resultado de un experimento aleatorio

Espacio de resultados Ω : "Conjunto" de resultados

Ejemplos

Lanzar una moneda

$$\Omega = \{\mathsf{cara}, \mathsf{sello}\}$$

Lanzar un dado

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

Lanzar dos monedas

$$\Omega = \{(\mathsf{cara}, \mathsf{cara}), (\mathsf{cara}, \mathsf{sello}), (\mathsf{sello}, \mathsf{cara}), (\mathsf{sello}, \mathsf{sello})\}$$

Resultados

El espacio de resultados puede ser...

■ Finito contable

Ejemplo: Elegir un número de 1 a 10

$$\Omega = \{1, 2, 3, \dots, 10\}$$

■ Infinito contable

Ejemplo: Elegir un número de 0 a infinito

$$\Omega=\mathbb{N}^0=\{0,1,2,\dots\}$$

Incontable

Ejemplo: Elegir un número real no negativo

$$\Omega=\mathbb{R}^+=[0,\infty)$$

Definición: Funciones

La notación

$$f \colon A \to B$$

define la función $f(\cdot)$ que asigna un elemento de B a un elemento A. E.g., f(a)=b indica que la función asocia $b\in B$ a $a\in A$

Funciones de los resultados que representan cantidades asociadas al resultado del experimento

$$X \colon \Omega \to C$$

Ejemplos

Lanzar dos dados

$$\begin{split} \Omega &= \{(1,1), (1,2), (1,3), \dots, (2,1), (2,2), \dots (6,6)\} \\ & \omega \in \Omega, \quad \omega = (\omega_1, \omega_2) \end{split}$$

Variable aleatoria: Suma de los dos dados

$$X \colon \Omega \to \mathbb{N}, \quad X(\omega) = \omega_1 + \omega_2$$

Ejemplos

 \blacksquare Suma de dos dados: $X{:}\ \Omega \to \mathbb{N}$, $X(\omega) = \omega_1 + \omega_2$

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Pueden ser discretas o contínuas Ejemplo: Altura, ingreso y género de una población

$$\Omega = \{ personas en la población \}$$

■ **Discreta**: Género

$$G \colon \Omega \to \{\mathsf{masc.}, \mathsf{fem.}, \dots\}$$

Contínua: Altura

$$A \colon \Omega \to \mathbb{R}$$

■ Ingreso: Variable contínua o discreta?

Evento: Subconjunto de resultados del experimento

Campo de eventos \mathcal{F} : "Conjunto" de eventos

Definición: Conjunto-poder

Para Ω contable, una selección común de campo de eventos es el conjunto-poder 2^{Ω} , que contiene los siguientes eventos:

- Cada resultado (evento elemental)
- lacksquare Todos los subconjuntos de Ω
- Todos los resultados (osea Ω)
- Ningún resultado (conjunto vacío, ∅)

)

Ejemplo: Lanzar un dado

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

Algunos eventos en el conjunto-poder $\mathcal{F}=2^{\Omega}$:

- El número 3
- Un número par
- Un número menor a 4

- Un número entre 2 y 5
- Cualquier número (Ω)
- Ningún número (∅)

Ejemplo: Lanzar dos dados

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Ambos dados menor o igual a $4\,$

Ejemplo: Lanzar dos dados

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Dado # 1...

 \blacksquare E_1 : Menor a 3

 \blacksquare E_2 : Mayor a 6

También es posible definir eventos en términos de los valores de variables aleatorias

Ejemplo: Lanzar dos dados, suma $X(\omega)=\omega_1+\omega_2$

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Suma X mayor o igual a 7

También es posible definir eventos en términos de los valores de variables aleatorias

Ejemplo: Lanzar dos dados

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Suma mayor o igual a 7, pero el dado # 2 es 3 o mayor

Definición: Axiomas de probabilidades

Las probabilidades son...

1. ... cantidades reales no negativas asociadas a cada evento en \mathcal{F} ...

$$P: \mathcal{F} \to \mathbb{R}^+$$

2. ... aditivas sobre eventos mutuamente exclusivos

Si
$$A \cap B = \emptyset$$
, entonces $P(A \cup B) = P(A) + P(B)$

3. ... que suman a 1 sobre el conjunto de resultados

$$P(\Omega) = 1$$

Definición: Axiomas de probabilidades

Las probabilidades son...

1. ... cantidades reales no negativas asociadas a cada evento en \mathcal{F} ...

$$P: \mathcal{F} \to \mathbb{R}^+$$

2. ... aditivas sobre eventos mutuamente exclusivos

Si
$$A \cap B = \emptyset$$
, entonces $P(A \cup B) = P(A) + P(B)$

3. ... que suman a 1 sobre el conjunto de resultados

$$P(\Omega)=1$$

Los axiomas implican que $0 \le P(E) \le 1$ para $E \in \mathcal{F}$

Ejemplo: Lanzar dos dados, suma $X(\omega)=\omega_1+\omega_2$

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

- E_i , $i \in [1, 36]$: Eventos elementales
- $\blacksquare \ P(E_i) = 1/36 \approx 2.8\%$
- $P(X \ge 7) = 21/36 \approx 58\%$

- Hasta ahora probabilidades se han definido de manera enteramente abstracta
- Probabilidad es una *medida*: "Área" o "masa" asociada a una región (evento) del espacio de resultados
- Qué significa que un evento tenga probabilidad de 58%?

■ Interpretación frecuentista: Si el experimento se ejecuta n veces, se observará un 58% de las veces el evento en cuestión

- Interpretación frecuentista: Si el experimento se ejecuta n veces, se observará un 58% de las veces el evento en cuestión
- Cuál es la interpretación adecuada para la probabilidad de eventos que sólo ocurren una vez?
- E.g. el evento "llover mañana": Sólo hay –un– mañana!

- Interpretación frecuentista: Si el experimento se ejecuta n veces, se observará un 58% de las veces el evento en cuestión
- Cuál es la interpretación adecuada para la probabilidad de eventos que sólo ocurren una vez?
- E.g. el evento "llover mañana": Sólo hay –un– mañana!
- Probabilidades como medida de (in)certidumbre

Eventos asociados a variables aleatorias contínuas

Considérese la variable aleatoria contínua

$$A\colon \Omega \to C$$

Eventos asociados a variables aleatorias contínuas

Considérese la variable aleatoria contínua

$$A \colon \Omega \to C$$

Qué eventos podemos definir en términos de los valores de A?

Para $C \equiv \mathbb{R}$ y cierto valor $a \in C...$

- $lacksquare P(A \leq a)$, P(A > a), $P(a \leq A \leq b)$, etc.
- P(A = a)? En general, A = a es un evento con probabilidad trivial (= 0)
- Revisaremos éste aspecto luego