Dr. Jan-Willem Liebezeit Lukas Fuchs Niklas Eiermann SoSe 2024

12 Übungspunkte

Übungen zu: Mathematik für Informatik II Lösung

Blatt 04

(1)

1. (NA) Minifragen

1. Für welche $x, y \in \mathbb{R}^n$ gilt die Dreiecksungleichung (N3) in Bemerkung 8.2.4 mit "<" anstatt "\le "?

Lösung: Dies hängt von $p \in [1, \infty]$ ab. So gilt z.B. für $x = \binom{2}{1}$, $y = \binom{2}{2}$ $|x + y|_1 = |x|_1 + |y|_1$, $|x + y|_2 < |x|_2 + |y|_2$ und $|x + y|_\infty = |x|_\infty + |y|_\infty$

- 2. Zeigen oder widerlegen Sie für eine Matrix $A \in M(n \times n, \mathbb{R})$ mit $n \in \mathbb{N}$:
 - Wenn A eine Nullzeile hat, ist det A immer gleich 0.
 Lösung: Wahr, betrachte A^T.
 - Wenn A eine Nullspalte hat, ist det A immer gleich 0.
 Lösung: Wahr, Entwicklung nach 0-Spalte.
- 3. Zeigen oder widerlegen Sie: $\det(A+B) = \det(A) + \det(B)$. **Lösung:** Falsch, $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.
- 2. (A) Berechne mit möglichst wenig Aufwand die Determinanten folgender Matrizen:

$$A = \begin{pmatrix} 1 & -2 & 3 & 1 & -1 \\ 2 & 1 & 3 & -1 & 0 \\ 0 & -1 & 0 & 2 & 0 \\ 0 & 3 & 0 & 5 & 0 \\ 0 & 2 & 0 & 0 & 0 \end{pmatrix} \in M(5 \times 5, \mathbb{R}).$$

Lösung: Durch Permutationen der Spalten erhalten wir

$$A = \begin{pmatrix} -1 & 1 & 3 & 1 & -2 \\ 0 & 2 & 3 & -1 & 1 \\ 0 & 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & 5 & 3 \\ 0 & 0 & 0 & 0 & 2 \end{pmatrix} \in M(5 \times 5, \mathbb{R}).$$

Damit ist die Determinante gleich 0.

$$B = \begin{pmatrix} 2 & 0 & 1 & 0 & -1 \\ 3 & 0 & 2 & 0 & 0 \\ 3 & 0 & -2 & 0 & 0 \\ 0 & 3 & 0 & 5 & 0 \\ 0 & 2 & 0 & 1 & 0 \end{pmatrix} \in M(5 \times 5, \mathbb{R}).$$

(2)

(1)

Lösung: Durch Permutationen der Spalten erhalten wir:

$$B = (-1) \begin{pmatrix} 2 & -1 & 1 & 0 & 0 \\ 3 & 0 & 2 & 0 & 0 \\ 3 & 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 5 & 3 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix} \in M(5 \times 5, \mathbb{R}).$$

Damit folgt det $B = (-1) \det \begin{pmatrix} 2 & -1 & 1 \\ 3 & 0 & 2 \\ 3 & 0 & -2 \end{pmatrix} \det \begin{pmatrix} 5 & 3 \\ 1 & 2 \end{pmatrix} = (-1)(-12)(7) = 84$

$$C = \begin{pmatrix} 2 & 0 & 1 & 0 \\ 3 & 1 & 2 & 0 \\ 3 & 1 & -2 & 1 \\ 1 & 3 & 0 & 0 \end{pmatrix} \in M(4 \times 4, \mathbb{R}).$$

Lösung: Laplacesche Entwicklung nach 4. Spalte:

$$\det C = 0(\ldots) + 0(\ldots) - 1 \det \begin{pmatrix} 2 & 0 & 1 \\ 3 & 1 & 2 \\ 1 & 3 & 0 \end{pmatrix} + 0(\ldots) = -(0 + 0 + 9 - 1 - 12 - 0) = 4$$

$$D = \begin{pmatrix} 2 & 2 & 1 & 1 & -2 \\ 3 & 1 & 1 & 1 & 0 \\ 3 & 0 & -2 & 2 & 3 \\ 1 & 3 & 0 & 0 & -2 \\ 1 & -1 & 1 & 1 & 0 \end{pmatrix} \in M(5 \times 5, \mathbb{R}).$$

Lösung:
$$-\begin{pmatrix} 2\\3\\1\\1\\1 \end{pmatrix} + \begin{pmatrix} 2\\1\\0\\3\\-1 \end{pmatrix} + \begin{pmatrix} 1\\1\\-2\\0\\1 \end{pmatrix} + \begin{pmatrix} 1\\1\\2\\0\\1 \end{pmatrix} + \begin{pmatrix} -2\\0\\3\\-2\\0 \end{pmatrix} = 0.$$
 Damit ergibt sich det $D=0$

3. (A)

(a) Für jedes $n \in \mathbb{N}$ betrachten wir die Matrizen

$$A_{n} = \begin{pmatrix} 2 & -1 & 0 & \dots & 0 \\ -1 & 2 & -1 & \ddots & 0 \\ 0 & -1 & 2 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & -1 \\ 0 & \dots & 0 & -1 & 2 \end{pmatrix}, B_{n} = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ 2 & 2 & 3 & \dots & n \\ 3 & 3 & 3 & \dots & n \\ \vdots & & & & \vdots \\ n & n & n & \dots & n \end{pmatrix} \in M(n \times n, \mathbb{R}).$$

Wir definieren $d_n := \det(A_n)$ für alle $n \in \mathbb{N}$ und $d_0 := 1$.

i) Zeigen Sie die Rekursionsgleichung $d_{n+1} = 2d_n - d_{n-1}$ (2) Lösung: Wende Laplace auf erste Spalte an:

$$\det A_{n+1} = 2 \det A_n - (-1) \det \begin{pmatrix} -1 & 0 & 0 & \dots & 0 \\ -1 & 2 & -1 & \ddots & 0 \\ 0 & -1 & 2 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & -1 \\ 0 & \dots & 0 & -1 & 2 \end{pmatrix}$$

Durch das Subtrahieren der ersten Zeile dieser Matrix von der zweiten erhalten wir eine Blockmatrix, die als zweiten Block A_{n-1} enthält. Damit ergibt sich die Behauptung.

ii) Folgern Sie per Induktion $d_n = n + 1$ für alle $n \in \mathbb{N}$. (2)

Lösung: IA: $n = 1 \Rightarrow d_1 = 2 = n + 1$

IS: Sei $d_n = n + 1$ für alle $n \leq N$ für ein festes, aber beliebiges $N \in \mathbb{N}$.

Beh: $d_{N+1} = N + 2$

Bew: $d_{N+1} = 2d_N - d_{N-1} = 2(N+1) - N = 2N + 2 - N = N + 2$

iii) Zeigen Sie außerdem $\det(B_n) = (-1)^{n+1}n$ für alle $n \in \mathbb{N}$. (2) **Lösung:** Wir subtrahieren die (i-1)-te Zeile von der i-ten Zeile und bewegen anschließend die erste Zeile durch (n-1) Transpositionen in die letzte Zeile, so erhalten wir die folgende obere Dreiecksmatrix: $B'_n =$

$$\begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ \vdots & & & & \vdots \\ 1 & 1 & 1 & \dots & 0 \\ 1 & 2 & 3 & \dots & n \end{pmatrix} \text{ Damit ergibt sich: } \det B_n = (-1)^{n-1} n = (-1)^{n+1} n$$

4. (A)

(a) Es seien $x_1, \ldots, x_n \in \mathbb{R}$. Zeigen Sie (z.B. durch vollständige Induktion), dass

$$\begin{vmatrix} x_1^0 & x_1^1 & \dots & x_1^{n-1} \\ \vdots & \vdots & & \vdots \\ x_n^0 & x_n^1 & \dots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i)$$

gilt. (2)

Lösung: Beweis per Induktion.

IA: $n = 1 \Rightarrow \det 1 = 1 = \prod_{1 \le i < j \le 1} (x_j - x_i)$

IS: Die Behautptung gelte für ein festes, aber beliebiges $n \in \mathbb{N}$.

Bew: Wir betrachten die Matrix

$$A_{n+1} = \begin{pmatrix} x_1^0 & x_1^1 & \dots & x_1^n \\ \vdots & \vdots & & \vdots \\ x_n^0 & x_n^1 & \dots & x_n^n \\ x_{n+1}^0 & x_{n+1}^1 & \dots & x_{n+1}^n \end{pmatrix} = \begin{pmatrix} 1 & x_1^1 & \dots & x_1^n \\ \vdots & \vdots & & \vdots \\ 1 & x_n^1 & \dots & x_n^n \\ 1 & x_{n+1}^1 & \dots & x_{n+1}^n \end{pmatrix}$$

Nun ziehen wir von jeder (i-ten) Spalte das x_{n+1} fache der (i - 1)-ten Spalte ab. Damit erhalten wir:

$$\det A_{n+1} = \begin{vmatrix} 1 & x_1 - 1x_{n+1} & \dots & x_1^n - x_1^{n-1}x_{n+1} \\ 1 & x_2 - 1x_{n+1} & \dots & x_2^n - x_2^{n-1}x_{n+1} \\ \vdots & \vdots & & \vdots \\ 1 & x_n - 1x_{n+1} & \dots & x_n^n - x_n^{n-1}x_{n+1} \\ 1 & 0 & \dots & 0 \end{vmatrix}$$

Weiter erhalten wir, indem wir die (n+1)-te Zeile von den restlichen subtrahieren und vereinfachen:

$$\det A_{n+1} = \begin{vmatrix} 0 & (x_1 - x_{n+1}) & \dots & x_1^{n-1}(x_1 - x_{n+1}) \\ 0 & (x_2 - x_{n+1}) & \dots & x_2^{n-1}(x_2 - x_{n+1}) \\ \vdots & \vdots & & \vdots \\ 0 & (x_n - x_{n+1}) & \dots & x_n^{n-1}(x_n - x_{n+1}) \\ 1 & 0 & \dots & 0 \end{vmatrix}$$

$$= \prod_{i=1}^n (x_i - x_{n+1}) \begin{vmatrix} 0 & 1 & \dots & x_1^{n-1} \\ 0 & 1 & \dots & x_2^{n-1} \\ \vdots & \vdots & & \vdots \\ 0 & 1 & \dots & x_n^{n-1} \\ 1 & 0 & \dots & 0 \end{vmatrix}$$

$$= \prod_{i=1}^n (x_{n+1} - x_i) \begin{vmatrix} 1 & \dots & x_1^{n-1} \\ 1 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots \\ 1 & \dots & x_n^{n-1} \end{vmatrix}$$

$$= \prod_{i=1}^n (x_{n+1} - x_i) \prod_{1 \le i < j \le n} (x_j - x_i)$$

$$= \prod_{1 \le i < j \le n+1} (x_j - x_i)$$

- (b) Sei $A \in M(n \times n, \mathbb{R})$ eine Matrix, deren Spaltenvektoren eine Orthonormalbasis bilden. Zeigen Sie: det $A \in \{-1, 1\}$. (1) **Lösung:** $(\det A)^2 = \det A \det A = \det A \det A^\top = \det AA^\top = \det I = 1$
- (c) Sei $A \in M(n \times n, \mathbb{R})$ eine Matrix mit $A = -A^{\top}$ und n ungerade. Zeigen Sie: det A = 0.

 Lösung: det $A = \det -A^{\top} \Rightarrow \det A = \det -A = (-1)^n \det A = (-1) \det A \Rightarrow 2 \det A = 0$.

 (1)

- (d) Sei $A \in M(n \times n, \mathbb{R})$ invertierbar. Zeigen Sie: $\det(A^{-1}) = (\det A)^{-1}$. (1) Lösung: $1 = \det I = \det(AA^{-1}) = \det A \det(A^{-1}) \Rightarrow (\det A)^{-1} = \det(A^{-1})$
- (e) Seien $A, S \in M(n \times n, \mathbb{K})$ und S invertierbar. Zeigen Sie: $B := S^{-1}AS$ und A haben die gleiche Determinante.

 Lösung: $\det B = \det S^{-1}AS = \det S^{-1} \det A \det S = \det A \det(S)^{-1} \det S = \det A$

5. (A) Das charakteristische Polynom

Seien

$$A_1, A_2 \in M(3 \times 3, \mathbb{R}), \ A_1 = \begin{pmatrix} 2 & 1 & -2 \\ -6 & -5 & 8 \\ -2 & -2 & 3 \end{pmatrix}, \ A_2 = \begin{pmatrix} 10 & -3 & -9 \\ -18 & 7 & 18 \\ 18 & -6 & -17 \end{pmatrix}.$$

(a) Stellen Sie jeweils das sogenannte charakteristische Polynom

$$P_A(x) = \det(A - x \cdot I_3)$$

mit
$$x \in \mathbb{R}$$
 für $A \in \{A_1, A_2\}$ auf . (2)
Lösung: $P_{A_1} = \begin{vmatrix} 2 - x & 1 & -2 \\ -6 & -5 - x & 8 \\ -2 & -2 & 3 - x \end{vmatrix} = (2 - x)(-5 - x)(3 - x) + (-16) + (-24) - ((2 - x)(-16)) - ((-6)(3 - x)) - (4(-5 - x)) = -x^3 + x$

$$P_{A_2} = \begin{pmatrix} 10 - x & -3 & -9 \\ -18 & 7 - x & 18 \\ 18 & -6 & -17 - x \end{pmatrix} = ((10 - x)(7 - x)(-17 - x)) - 972 - 972 - ((10 - x)(-108)) - (54(-17 - x)) - ((7 - x)(-162)) = -x^3 + 3x - 2 = -(x - 1)^2(x + 2)$$

- (b) Bestimmen Sie die Nullstellen von $P_{A_1}(x)$ und $P_{A_2}(x)$. **Lösung:** $L_1 = \{-1, 0, 1\}, L_2 = \{-2, 1\}$
- (c) Sei nun X_A jeweils die Menge der bestimmten Nullstellen von $P_A(x)$ in Aufgabenteil b) für $A \in \{A_1, A_2\}$. Bestimmen Sie die Lösungsmenge des Gleichungssystems (A xI)v = 0 für jeweils alle Nullstellen $x \in X_A$ für beide $A \in \{A_1, A_2\}$. (2) Lösung

$$(A_1 + I)v = 0$$

$$\Leftrightarrow \begin{pmatrix} 3 & 1 & -2 \\ -6 & -4 & 8 \\ -2 & -2 & 4 \end{pmatrix} v = 0 \Leftrightarrow \begin{pmatrix} 3 & 1 & -2 \\ 0 & -2 & 4 \\ 0 & -4 & 8 \end{pmatrix} v = 0 \Leftrightarrow \begin{pmatrix} 3 & 1 & -2 \\ 0 & -2 & 4 \\ 0 & 0 & 0 \end{pmatrix} v = 0$$

$$\Rightarrow \langle \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} \rangle$$

$$(A_1 + 0I)v = 0$$

$$\Leftrightarrow \begin{pmatrix} 2 & 1 & -2 \\ -6 & -5 & 8 \\ -2 & -2 & 3 \end{pmatrix} v = 0 \Leftrightarrow \begin{pmatrix} 2 & 1 & -2 \\ 0 & -2 & 2 \\ 0 & -1 & 1 \end{pmatrix} v = 0 \Leftrightarrow \begin{pmatrix} 2 & 1 & -2 \\ 0 & -2 & 2 \\ 0 & 0 & 0 \end{pmatrix} v = 0$$

$$\Rightarrow \langle \begin{pmatrix} 0.5 \\ 1 \\ 1 \end{pmatrix} \rangle$$

$$(A_1 - I)v = 0$$

$$\Leftrightarrow \begin{pmatrix} 1 & 1 & -2 \\ -6 & -6 & 8 \\ -2 & -2 & 2 \end{pmatrix} v = 0 \Leftrightarrow \begin{pmatrix} 1 & 1 & -2 \\ 0 & 0 & -4 \\ 0 & 0 & -2 \end{pmatrix} v = 0 \Leftrightarrow \begin{pmatrix} 1 & 1 & -2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} v = 0$$

$$\Rightarrow \langle \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \rangle$$

$$(A_2 + 2I)v = 0$$

$$\Leftrightarrow \begin{pmatrix} 12 & -3 & -9 \\ -18 & 9 & 18 \\ 18 & -6 & -15 \end{pmatrix} v = 0 \Leftrightarrow \begin{pmatrix} 12 & -3 & -9 \\ 0 & 9 & 9 \\ 0 & -3 & -3 \end{pmatrix} v = 0 \Leftrightarrow \begin{pmatrix} 4 & -1 & -3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} v = 0$$

$$\Rightarrow v = \langle \begin{pmatrix} 0.5 \\ -1 \\ 1 \end{pmatrix} \rangle$$

$$\begin{aligned} &(A_2-I)v=0\\ &\Leftrightarrow \begin{pmatrix} 9 & -3 & -9\\ -18 & 6 & 18\\ 18 & -6 & -18 \end{pmatrix}v=0 \Leftrightarrow \begin{pmatrix} 9 & -3 & -9\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}v=0 \Leftrightarrow \begin{pmatrix} 3 & -1 & -3\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}v=0\\ &\Rightarrow &\langle \begin{pmatrix} \frac{1}{3}\\ 1\\ 0 \end{pmatrix}, \begin{pmatrix} 1\\ 0\\ 1 \end{pmatrix} \rangle \end{aligned}$$

6. (T),(NA) Berechnen Sie die Determinanten folgender Matrizen über \mathbb{R} :

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & 3 & 4 & 5 & 6 \\ 1 & 4 & 6 & 8 & 10 \end{pmatrix},$$

$$B = \begin{pmatrix} 1 & 2 & 8 & 9 & 14 & -8 \\ 3 & 1 & 3 & 4 & -4 & -1 \\ 4 & 0 & 0 & 3 & 9 & -1 \\ 0 & 0 & 0 & 0 & 7 & 6 \\ 0 & 0 & 0 & 0 & 8 & 7 \\ -2 & 0 & 0 & 0 & 0 & 11 \end{pmatrix}.$$

Erläuterungen zur Bearbeitung und Abgabe:

- (NA) Die Lösung dieser Aufgabe müssen Sie nicht aufschreiben und abgeben.
 - (A) Die Lösung dieser Aufgabe schreiben Sie bitte auf und geben Sie ab.
 - (T) Die Aufgabe dient der Vorbereitung auf das Tutorium. Sie sollten sie mindestens in groben Zügen verstanden und durchdacht haben.
 - Die Abgabe der Lösungen erfolgt einzeln auf Moodle als einzelne PDF Datei.
 - Wir korrigieren auf jedem Übungsblatt nur jeweils zwei Aufgaben. Eine Aufgabe wird von uns festgelegt, die andere dürfen Sie sich aussuchen. Schreiben Sie dazu bitte auf jede Abgabe eine Erst- und Zweitpräferenz von Aufgaben, die wir korrigieren sollen.