closer the darts land to the bull's-eye, the more accurately they were thrown. The closer they land to one another, the more precisely they were thrown. Thus, the set of results shown in **Figure 8a** is both accurate and precise because the darts are close to the bull's-eye and close to each other. In **Figure 8b**, the set of results is inaccurate but precise because the darts are far from the bull's-eye but close to each other. In **Figure 8c**, the set of results is both inaccurate and imprecise because the darts are far from the bull's-eye and far from each other. Notice also that the darts are not evenly distributed around the bull's-eye, so the set, even considered on average, is inaccurate. In **Figure 8d**, the set on average is accurate compared with the third case, but it is imprecise. That is because the darts are distributed evenly around the bull's-eye but are far from each other.

Percentage Error

The accuracy of an individual value or of an average experimental value can be compared quantitatively with the correct or accepted value by calculating the percentage error. **Percentage error** is calculated by subtracting the accepted value from the experimental value, dividing the difference by the accepted value, and then multiplying by 100.

$$Percentage \; error = \frac{Value_{experimental} - Value_{accepted}}{Value_{accepted}} \times 100$$

Percentage error has a negative value if the accepted value is greater than the experimental value. It has a positive value if the accepted value is less than the experimental value. The following sample problem illustrates the concept of percentage error.

extension

Chemistry in Action

Go to **go.hrw.com** for a full-length article on using measurements to determine a car's pollution rating.

SAMPLE PROBLEM C

A student measures the mass and volume of a substance and calculates its density as 1.40 g/mL. The correct, or accepted, value of the density is 1.30 g/mL. What is the percentage error of the student's measurement?

SOLUTION

$$\begin{aligned} \textit{Percentage error} &= \frac{\textit{Value}_{\textit{experimental}} - \textit{Value}_{\textit{accepted}}}{\textit{Value}_{\textit{accepted}}} \times 100 \\ &= \frac{1.40 \text{ g/mL} - 1.30 \text{ g/mL}}{1.30 \text{ g/mL}} \times 100 = 7.7\% \end{aligned}$$

PRACTICE

Answers in Appendix E

- **1.** What is the percentage error for a mass measurement of 17.7 g, given that the correct value is 21.2 g?
- **2.** A volume is measured experimentally as 4.26 mL. What is the percentage error, given that the correct value is 4.15 mL?

extension

Go to **go.hrw.com** for more practice problems that ask you to calculate percentage error.

