DESIGN AND ANALYSIS OF ALGORITHMS				
(Effective from the academic year 2018 -2019) SEMESTER – IV				
Course Code	18CS42	CIE Marks	40	
Number of Contact Hours/Week	3:2:0	SEE Marks	60	
Total Number of Contact Hours	50	Exam Hours	03	
CREDITS -4				
Course Learning Objectives: This course (18CS42) will enable students to:				
Explain various computational problem solving techniques.				
Apply appropriate method to solve a given problem.				
Describe various methods of algorithm analysis.				
Module 1			Conta	ict
			Hours	s
Introduction: What is an Algorithm? (T2:1.1), Algorithm Specification (T2:1.2), Analysis			•	
Framework (T1:2.1), Performance Analysis: Space complexity, Time complexity (T2:1.3).				
Asymptotic Notations: Big-Oh notation (O) , Omega notation (Ω) , Theta notation (Θ) , and				
Little-oh notation (o), Mathematical analysis of Non-Recursive and recursive Algorithms				
with Examples (T1:2.2, 2.3, 2.4). Important Problem Types: Sorting, Searching, String				
processing, Graph Problems, Combinatorial Problems. Fundamental Data Structures:				
Stacks, Queues, Graphs, Trees, Sets and D	Dictionaries. (T1:1.3,1.	4).		
DDT. 11 12 12				
RBT: L1, L2, L3 Module 2				
	Dinamy saarah Daayee	anaa aquatian fan divida	and 10	
Divide and Conquer : General method, Binary search, Recurrence equation for divide and conquer, Finding the maximum and minimum (T2:3.1, 3.3, 3.4), Merge sort, Quick sort				
(T1:4.1, 4.2), Strassen's matrix multiplication (T2:3.8), Advantages and Disadvantages of divide and conquer. Decrease and Conquer Approach: Topological Sort. (T1:5.3).				
divide and conquer. Decrease and Conque	ref reprodent ropore	gicai 501t. (11.5.5).		
RBT: L1, L2, L3				
Module 3				
Greedy Method: General method, C	oin Change Problen	n, Knapsack Problem,	Job 10	
sequencing with deadlines (T2:4.1, 4.3, 4.5). Minimum cost spanning trees: Prim's				
Algorithm, Kruskal's Algorithm (T1:9.1, 9.2). Single source shortest paths: Dijkstra's				
Algorithm (T1:9.3). Optimal Tree problem: Huffman Trees and Codes (T1:9.4).				
Transform and Conquer Approach: He	aps and Heap Sort (T1	:6.4).		
RBT: L1, L2, L3				
Module 4	1 14 12 1 3 7 1		5.0) 10	
Dynamic Programming: General metho				
Transitive Closure: Warshall's Algorit		,		
Optimal Binary Search Trees, Knapsa				
Algorithm (T2:5.4), Travelling Sales Pers	on problem (12:5.9), l	xenaomiy design (12:5.8	<i>9</i> .	
RBT: L1, L2, L3				
Module 5				
) N-Oueens problem	(T1:12.1) Sum of sul	osets 10	
Backtracking: General method (T2:7.1), N-Queens problem (T1:12.1), Sum of subsets problem (T1:12.1), Graph coloring (T2:7.4), Hamiltonian cycles (T2:7.5). Programme and				
Bound: Assignment Problem, Travelling Sales Person problem (T1:12.2), 0/1 Knapsack				
problem (T2:8.2, T1:12.2): LC Program:				
and Bound solution (T2:8.2). NP-Compl				
(==:=:,:=:= 00mp				

deterministic algorithms, P, NP, NP-Complete, and NP-Hard classes (T2:11.1).

RBT: L1, L2, L3

Course Outcomes: The student will be able to :

- Describe computational solution to well known problems like searching, sorting etc.
- Estimate the computational complexity of different algorithms.
- Devise an algorithm using appropriate design strategies for problem solving.

Question Paper Pattern:

- The question paper will have ten questions.
- Each full Question consisting of 20 marks
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Textbooks:

- 1. Introduction to the Design and Analysis of Algorithms, Anany Levitin:, 2rd Edition, 2009. Pearson.
- 2. Computer Algorithms/C++, Ellis Horowitz, Satraj Sahni and Rajasekaran, 2nd Edition, 2014, Universities Press

Reference Books:

- 1. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford Stein, 3rd Edition, PHI.
- 2. Design and Analysis of Algorithms , S. Sridhar, Oxford (Higher Education).