Application No: 10/810,080 Docket No.: Q202-US1

Page 2

IN THE CLAIMS

NOV 2 5 2008

Please amend the claims as follows:

1. (currently amended) An electrochemical device, comprising:

an a electrolyte including one or more polysiloxanes, one or more alkali metal salts, and one or more silanes,

the silane and the polysiloxane being included in different compounds, and
the silane including at least one substituent that includes a poly(alkylene oxide)
moiety.

- 2. (withdrawn) The device of claim 1, wherein at least one polysiloxane is cyclic.
- 3. (previously presented) The device of claim 1, wherein at least one polysiloxane has a backbone that includes one or more silicons linked to one or more side chains that include a poly(alkylene oxide) moiety.
- 4. (previously presented) The device of claim 3 wherein the backbone includes one or more silicons linked to one or more side chains that include a carbonate moiety.
- 5. (withdrawn) The device of claim 3, wherein one or more of the backbone silicons are linked to a plurality of side chains that each include a poly(alkylene oxide) moiety.
- 6. (withdrawn) The device of claim 3, wherein an organic spacer is positioned between the backbone silicons and the poly(alkylene oxide) moiety.
- 7. (withdrawn) The device of claim 6, wherein the spacer includes oxygen linked directly to the backbone silicons.
- 8. (currently amended) The device of claim 1, wherein the silane includes at least one substituent that includes a moiety selected from a first group consisting of an alkyl group,

Docket No.: Q202-US1

Page 3

an aryl group, an alkoxy group, an alkylene oxide group or a poly(alkylene oxide) and at least one substituent that includes a moiety selected from a second group consisting of an alkoxy group, a carbonate group, and an alkylene oxide group and a poly(alkylene oxide) group.

9. (canceled)

10. (previously presented) The device of claim 1, wherein at least one polysiloxane has a structure selected from a group consisting of structures represented by formula I-a through formula I-d:

$$Z_{3}SiO - O - \begin{bmatrix} R_{1} & R_{3} \\ Si - O \end{bmatrix} - \begin{bmatrix} R_{1} & R_{3} \\ Si - O \end{bmatrix} - \begin{bmatrix} SiZ_{3} \\ R_{2} & R_{4} \end{bmatrix}$$

$$O - \begin{bmatrix} CH_{2} - CH - O \end{bmatrix} - R_{6}$$

formula I-a:

where R₁ is an alkyl

group, R_2 is an alkyl group or an alkoxy group, R_3 is an alkyl group, R_4 is nil or an organic spacer, R_5 is a hydrogen atom or an alkyl group, and R_6 are alkyl groups, Z is an alkyl or an aryl group, m is from 0 to 15, n is from 1 to 30, x is from 2 to 15;

Z₃SiO — O
$$= \begin{bmatrix} R_{15} \\ Si - O \end{bmatrix}_{m} = \begin{bmatrix} R_{15} \\ Si - O \end{bmatrix}_{n} = \begin{bmatrix} R_{15} \\ Si - O \end{bmatrix}_{n} = \begin{bmatrix} R_{15} \\ Si - O \end{bmatrix}_{n} = \begin{bmatrix} R_{11} \\ CH_{2} - CH - O \end{bmatrix}_{x} = \begin{bmatrix}$$

formula I-b:

wherein R₈ is an alkyl

group, R_9 is an alkyl group or an alkoxy group, R_{10} is nil or an organic spacer, R_{11} is a hydrogen or an alkyl group, R_{12} is an alkyl group, R_{14} is nil or an organic spacer, R_{15} is a hydrogen or an alkyl group, R_{16} is an alkyl group, Z is an alkyl or an aryl group, R_{16} is from 0 to 15, n is from 1 to 30, x is from 2 to 15; and

Docket No.: Q202-US1

Page 4

formula I-c:

wherein, R₂₆ is an alkyl

group, R_{27} is an alkyl group or an alkoxy group, R_{28} is an alkyl group, R_{29} is an oxygen or an organic spacer, R_{30} is a hydrogen atom or an alkyl group, R_{31} is alkyl group, m is 0 or greater than 0, n is from 3 to 10, and x is from 2 to 15; and

$$SiZ_3$$
 R_{34}
 R_{36}
 R_{39}
 R_{39}
 R_{31}
 R_{31}
 R_{32}
 R_{33}
 R_{35}
 R_{38}
 R_{40}
 R_{40}
 R_{41}
 R_{42}
 R_{42}

formula I-d:

where, R₃₄ is

an alkyl group; R_{35} is an alkyl group or an alkoxy group; R_{36} is an alkyl group; R_{38} is nil an oxygen or an organic spacer; R_{39} is an alkyl group; R_{40} is an organic spacer; R_{41} is a hydrogen or an alkyl group; R_{42} is an alkyl group; Z is an alkyl or an aryl group; Z is or Z0 or greater than 0; Z1 is 2 to 15.

- 11. (previously presented) The device of claim 10, wherein m is 0.
- 12. (withdrawn) The device of claim 10, wherein R₄, R₁₀, R₁₄, R₂₉, R₃₈ and R₄₀, are nil.
- 13. (previously presented) The device of claim 10, wherein R_4 , R_{10} , R_{14} , R_{29} , and R_{38} are an organic spacer.
- 14. (currently amended) The device of claim 10 wherein the <u>polysiloxane</u> is represented by formula I-d and the organic spacer represented by R₄₀ includes an oxygen linked directly to a silicon on the backbone of the polysiloxane.

[7] 008/022

Page 5

Application No: 10/810,080 Docket No.: Q202-US1

- 15. (withdrawn) The device of claim 10, wherein at least one polysiloxane has a structure selected from the group consisting of structures represented by formula I-a.
- 16. (withdrawn) The device of claim 10, wherein at least one polysiloxane has a structure selected from the group consisting of structures represented by formula I-b.
- 17. (withdrawn) The device of claim 10, wherein at least one polysiloxane has a structure selected from the group consisting of structures represented by formula I-c.
- 18. (previously presented) The device of claim 10, wherein at least one polysiloxane has a structure selected from the group consisting of structures represented by formula I-d.
- 19. (withdrawn) The device of claim 18, wherein p is 0.
- 20. (currently amended) The device of claim 1, wherein at least one silane has a structure selected from a group consisting of structures represented by formula II-a through formula II-c;

$$Z_3$$
— S_1 — Z_1 formula II-A;

$$R_2$$
— S_1 — Z_1

$$\begin{array}{c} R_1 \\ \vdots \\ S_i - Z_1. \end{array}$$

; wherein, R₁ is an alkyl, aryl, an alkoxy, or is represented formula II-C: by formula II-D; R2 is an alkyl, aryl, an alkoxy or is represented by formula II-D; R3 is an alkyl, aryl, an alkoxy, or is represented by formula II-D; Z₁ is an alkoxy, is represented by formula II-E or is represented by formula II-F; Z₂ is an alkoxy, is

Docket No.: Q202-US1

Page 6

2 009/022

represented by formula II-E or is represented by formula II-F; Z₃ is an alkoxy, is represented by formula II-E or is represented by formula II-F;

formula II-D: : wherein R₉₀ is oxygen or an organic spacer

and r is 1 or 2;

formula II-E:

: wherein R₉₃ is oxygen or an organic spacer

and q is 1 or 2; and

$$-R_{94}-O-\left[CH_{2}-CH-O\right]R_{96}$$

formula II-F:

: wherein R₉₄ is nil or an organic spacer;

R₉₅ is hydrogen; alkyl or aryl; R₉₆ is alkyl or aryl; p is 1 to 12.

- 21. (previously presented) The device of claim 20, wherein at least one silane has a structure selected from a group consisting of structures represented by formula II-a.
- 22. (withdrawn) The device of claim 20, wherein at least one silane has a structure selected from a group consisting of structures represented by formula II-b.
- 23. (withdrawn) The device of claim 20, wherein at least one silane has a structure selected from a group consisting of structures represented by formula II-c.
- 24. (previously presented) The device of claim 20, wherein at least one of the R₁, R₂, R₃, Z1, Z2, and Z3 includes an organic spacer, the organic spacer being an alkylene, alkylene oxide or a bivalent ether group.
- 25. (previously presented) The device of claim 20, wherein at least one of the R₁, R₂, R₃ includes a halogenated alkyl, a halogenated aryl or a halogenated alkoxy.

Docket No.: Q202-US1

Page 7

- 26. (previously presented) The device of claim 1, wherein the salt is a lithium salt.
- 27. (previously presented) The device of claim 1, wherein the concentration of alkali metal salt is about 0.3 to 2.0 M.
- 28. (previously presented) The device of claim 1, wherein the salt is chosen from the group consisting of: LiClO₄, LiBF₄, LiAsF₆, LiPF₆, LiCF₃SO₃, Li(CF₃SO₂)₂N, Li(CF₃SO₂)₃C, LiN(SO₂C₂F₅)₂, lithium alkyl fluorophosphates, lithium bis(chelato)borates, and mixtures thereof.
- 29. (previously presented) The device of claim 1, wherein the electrolyte further includes:

at least one additive selected from the group consisting of: vinyl carbonate, vinyl ethylene carbonate, ethylene sulfite, 1,3 dimethyl butadiene, styrene carbonate, aromatic carbonates, vinyl pyrrole, vinyl piperazine, vinyl piperidine, vinyl pyridine, and mixtures thereof.

- 30. (previously presented) The device of claim 1, wherein the electrolyte includes a lithium(oxalato)borate (LiBOB) salt and one or more additives selected from a group consisting of VC and VEC.
- 31. (previously presented) The device of claim 1, wherein the device is lithium secondary battery comprising:
 - a lithium metal oxide cathode;
 - a porous separator; and
 - a carbon or lithium metal anode.
- 32. (previously presented) The device of claim 31, wherein the cathode includes a material chosen from the group consisting of: Li_xVO_y, LiCoO₂, LiNiO₂, LiNi₁. _xCo_yMe_zO₂, LiMn_{0.5}Ni_{0.5}O₂, LiMn_{0.3}Co_{0.3}Ni_{0.3}O₂, LiFePO₄, LiMn₂O₄, LiFeO₂,

Ø 011/022

Application No: 10/810,080 Docket No.: Q202-US1 Page 8

LiMc_{0.5}Mn_{1.5}O₄, vanadium oxide, and mixtures thereof, wherein Me is Al, Mg, Ti, B, Ga, or Si, and Mc is a divalent metal.

- 33. (previously presented) The device of claim 31, wherein the anode includes a material chosen from the group consisting of: graphite, carbon, Li₄Ti₅O₁₂, tin alloys, silica alloys, intermetallic compounds, lithium metal, and mixtures thereof.
- 34. (previously presented) The device of claim 1, wherein the electrolyte is a liquid.
- 35. (withdrawn) The device of claim I, wherein the electrolyte is a solid.
- 36. (currently amended) The device of elaim 35 claim 1, wherein the electrolyte includes an interpenetrating network.
- (previously presented) The device of claim 36, wherein the interpenetrating network includes a cross-linked polyacrylates or a cross-linked polymethacrylates.
- 38. (previously presented) The device of claim 36, wherein a compound selected from the group consisting of an acrylate having two or more functionalities and a methacrylates having two or more functionalities serves as a monomer for a member of the interpenetrating network.
- 39. (previously presented) The device of claim 38, wherein the monomer is a dialkyl acrylate, dimethacrylate, a diallyl terminated compound or a dialkyl methacrylate.
- 40. (previously presented) The device of claim 38, wherein the electrolyte includes one or more solid polymers.
- 41. (previously presented) The device of claim 40, wherein at least one of the solid polymers is selected from the group consisting of polyacrylonitrile (PAN), poly(methyl methacrylate) (PMMA), poly(vinylidene fluoride) (PVDF), poly(vinylidene fluoride-co-

Application No: 10/810,080 Docket No.: Q202-US1 Page 9

→ PTO

hexafluoropropylene), polystyrene, polyvinyl chloride, poly(alkyl methacrylate), poly(alkyl acrylate), styrene butadiene rubber (SBR), poly(vinyl acetate), poly(ethylene oxide) (PEO) and mixtures thereof.

- 42. (previously presented) The device of claim 1, wherein the electrolyte has an ionic conductivity greater than 1.0 x 10⁻⁴ S/cm at 25 °C.
- 43. (previously presented) The device of claim 1, wherein the electrolyte has an ionic conductivity greater than 4.0 x 10⁻⁴ S/cm at 25 °C.
- 44. (withdrawn-currently amended) A method of forming an electrochemical device, comprising:

forming an electrolyte including one or more polysiloxanes, one or more alkali metal salts, and one or more silanes.

the silane and the polysiloxane being included in different compounds, and

the silane including at least one substituent that includes a poly(alkylene oxide) moiety; and

activating at least one anode and at least one cathode with the electrolyte.

- 45. (withdrawn) The method of claim 44, wherein at least one polysiloxane is cyclic.
- 46. (withdrawn) The method of claim 44, wherein at least one polysiloxane has a backbone that includes one or more silicons linked to one or more side chains that include a poly(alkylene oxide) moiety.
- 47. (withdrawn) The method of claim 46, wherein one or more of the backbone silicons are linked to a plurality of side chains that each include a poly(alkylene oxide) moiety.
- 48. (withdrawn) The method of claim 46, wherein an organic spacer is positioned between the backbone silicons and the poly(alkylene oxide) moiety.

Docket No.: Q202-US1

Page 10

- 49. (withdrawn) The method of claim 46, wherein the spacer includes an oxygen linked to the backbone silicons.
- 50. (withdrawn) The method of claim 44, wherein the silane includes at least one substituent that includes a moiety selected from a first group consisting of an alkyl group, a halogenated alkyl group, an aryl group, a halogenated aryl group, an alkoxy group and an oxyalkylene group and at least one substituent that includes a moiety selected from a second group consisting of an alkoxy group, an oxyalkylene group or a cyclic carbonate group.
- 51. (withdrawn) The method of claim 50, wherein the silane includes four substituents that each includes a moiety selected from the first group or from the second group.
- 52. (withdrawn) The method of claim 44, wherein at least one polysiloxane has a structure selected from a group consisting of structures represented by formula I-a through formula I-d:

$$Z_{3}SiO - O - \underbrace{\begin{bmatrix} R_{1} \\ Si - O \end{bmatrix}}_{R_{2}} \underbrace{\begin{bmatrix} R_{3} \\ Si - O \end{bmatrix}}_{R_{4}} siZ_{3}$$

$$O - \underbrace{\begin{bmatrix} CH_{2} - CH - O \end{bmatrix}}_{X} R_{6}$$

formula I-a:

where R₁ is an alkyl

group, R_2 is an alkyl group or an alkoxy group, R_3 is an alkyl group, R_4 is nil or an organic spacer, R_5 is a hydrogen atom or an alkyl group, and R_6 are alkyl groups, Z is an alkyl or an aryl group, m is from 0 to 15, n is from 1 to 30, x is from 2 to 15;

Application No: 10/810,080 Docket No.: Q202-US1

Page 11

$$Z_{3}SiO - O = \begin{bmatrix} R_{15} \\ CH_{2} - CH - O \end{bmatrix} - R_{16}$$

$$Z_{3}SiO - O = \begin{bmatrix} R_{15} \\ Si - O \end{bmatrix} - \begin{bmatrix} R_{14} \\ Si - O \end{bmatrix} - SiZ_{3}$$

$$R_{10} - \begin{bmatrix} R_{11} \\ O - \begin{bmatrix} CH_{2} - CH - O \end{bmatrix} - R_{12} \end{bmatrix}$$

formula I-b:

wherein R₈ is an alkyl

group, R_9 is an alkyl group or an alkoxy group, R_{10} is nil or an organic spacer, R_{11} is a hydrogen or an alkyl group, R_{12} is an alkyl group, R_{14} is nil or an organic spacer, R_{15} is a hydrogen or an alkyl group, R_{16} is an alkyl group, Z is an alkyl or an aryl group, R_{16} is from 0 to 15, n is from 1 to 30, x is from 2 to 15; and

formula I-c;

wherein, R26 is an alkyl

group, R_{27} is an alkyl group or an alkoxy group, R_{28} is an alkyl group, R_{29} is an oxygen or an organic spacer, R_{30} is a hydrogen atom or an alkyl group, R_{31} is alkyl group, m is 0 or greater than 0, n is from 3 to 10, and x is from 2 to 15; and

formula I-d:

where, R₃₄ is

an alkyl group; R_{35} is an alkyl group or an alkoxy group; R_{36} is an alkyl group; R_{38} is nil an oxygen or an organic spacer; R_{39} is an alkyl group; R_{40} is nil or an organic spacer; R_{41} is a hydrogen or an alkyl group; R_{42} is an alkyl group; Z is an alkyl or an aryl group; Z is an alkyl or an aryl group; Z is 0 or greater than 0; Z is 1 or 2; Z is 2 to 15.

Docket No.: Q202-US1

Page 12

- 53. (withdrawn) The method of claim 52, wherein m is 0.
- 54. (withdrawn) The method of claim 52, wherein R_4 , R_{10} , $R1_{14}$, R_{29} , R_{38} and R_{40} , are nil.
- 55. (withdrawn) The method of claim 52, wherein R₄, R₁₀, R₁₄, R₂₉, R₃₈ and R₄₀, are an organic spacer.
- 56. (withdrawn) The method of claim 55, wherein the organic spacer includes an oxygen linked to a silicon on the backbone of the polysiloxane.
- 57. (withdrawn) The method of claim 52, wherein at least one polysiloxane has a structure selected from the group consisting of structures represented by formula I-a.
- 58. (withdrawn) The method of claim 52, wherein at least one polysiloxane has a structure selected from the group consisting of structures represented by formula I-b.
- 59. (withdrawn) The method of claim 52, wherein at least one polysiloxane has a structure selected from the group consisting of structures represented by formula I-c.
- 60. (withdrawn) The method of claim 52, wherein at least one polysiloxane has a structure selected from the group consisting of structures represented by formula I-d.
- 61. (withdrawn) The method of claim 60, wherein p is 0.
- 62. (withdrawn) The method of claim 44, wherein at least one silane is selected from a group represented by formula II-a through formula II-c:

$$z_3$$
— s_i — z_1 formula II-A:

Application No: 10/810,080 Docket No.: Q202-US1 Page 13

$$\begin{array}{c} R_1 \\ R_2 \longrightarrow \begin{array}{c} Si \longrightarrow Z_1 \\ I \end{array}$$
 formula II-B:

$$\begin{matrix} R_1 \\ \vdots \\ R_2 & Si - Z_1 \end{matrix}$$

formula II-C: R_3 ; wherein, R_1 is an alkyl, aryl, an alkoxy, or is represented by formula II-D; R_2 is an alkyl, aryl, an alkoxy or is represented by formula II-D; R_3 is an alkyl, aryl, an alkoxy, or is represented by formula II-D; Z_1 is an alkoxy, is represented by formula II-E or is represented by formula II-F; Z_2 is an alkoxy, is represented by formula II-E or is represented by formula II-F; Z_3 is an alkoxy, is represented by formula II-E or is represented by formula II-F;

formula II-D: (CH₂)r—O: wherein R₉₀ is oxygen or an organic spacer and r is 1 or 2;

formula II-E:

: wherein R₉₃ is oxygen or an organic spacer

and q is 1 or 2; and

$$-R_{94}-O-CH_{2}-CH-O$$

formula II-F:

: wherein R94 is nil or an organic spacer;

R₉₅ is hydrogen; alkyl or aryl; R₉₆ is alkyl or aryl and p is 1 to 12.

- 63. (withdrawn) The method of claim 62, wherein at least one silane has a structure selected from a group consisting of structures represented by formula II-a.
- 64. (withdrawn) The method of claim 62, wherein at least one silane has a structure selected from a group consisting of structures represented by formula II-b.

Docket No.: Q202-US1 Application No: 10/810,080

Page 14

- 65. (withdrawn) The method of claim 62, wherein at least one silane has a structure selected from a group consisting of structures represented by formula II-c.
- 66. (withdrawn) The method of claim 44, wherein the electrolyte includes at least one additive selected from the group consisting of: vinyl carbonate, vinyl ethylene carbonate, ethylene sulfite, 1,3 dimethyl butadiene, styrene carbonate, aromatic carbonates, vinyl pyrrole, vinyl piperazine, vinyl piperidine, vinyl pyridine, and mixtures thereof.
- 67. (withdrawn) The method of claim 44, wherein at least one cathode is a lithium metal oxide cathode and at least one anode is a carbon or lithium metal anode.
- 68. (withdrawn) The method of claim 44, wherein at least one cathode includes a material chosen from the group consisting of: LiCoO2, LiNiO2, LiNi1-xCoyMezO2, $LiMn_{0.5}Ni_{0.5}O_2, \quad LiMn_{0.3}Co_{0.3}Ni_{0.3}O_2, \quad LiFePO_4, \quad LiMn_2O_4, \quad LiFeO_2, \quad LiMc_{0.5}Mn_{1.5}O_4, \quad LiMn_2O_4, \quad L$ vanadium oxide, and mixtures thereof, wherein Me is Al, Mg, Ti, B, Ga, or Si, and Mc is a divalent metal.
- 69. (withdrawn) The method of claim 44, wherein at least one anode includes a material chosen from the group consisting of: graphite, carbon, Li₄Ti₅O₁₂, tin alloys, silica alloys, intermetallic compounds, lithium metal, and mixtures thereof.
- 70. (withdrawn) The method of claim 44, wherein the electrolyte is a liquid.
- 71. (withdrawn) The method of claim 44, wherein the electrolyte is a solid.
- 72. (withdrawn) The method of claim 44, wherein forming the electrolyte includes forming an interpenetrating network.
- 73. (previously presented) The device of claim 18, wherein m is 0; R₃₈ is an organic spacer; and the organic spacer represented by R₄₀ includes an oxygen linked directly to a

Docket No.: Q202-US1

Page 15

silicon on the backbone of the polysiloxane.

74. (new) The device of claim 21, wherein the variable R_{94} in the substituent represented by Z_1 is nil.