This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Previously Amended) A nickel-chromium-molybdenum alloy capable of being age hardened for improved strength while maintaining high corrosion resistance, having a composition comprised in weight percent of:

19.5 to 22 chromium 15 to 17.5 molybdenum up to 3 iron up to 1.5 manganese up to 0.5 aluminum up to 0.02 carbon up to 0.015 boron up to 0.5 silicon

tungsten

up to 1.5

with a balance of nickel and impurities, metallic impurities hafnium, tantalum and zirconium each up to 0.5 wt. %, wherein the alloy has a P value of from 33.5 to 35.9, P being defined as:

$$P = 2.64 \text{ Al} + 0.19 \text{ Co} + 0.83 \text{ Cr} - 0.16 \text{ Cu} + 0.39 \text{ Fe} + 0.52 \text{ Hf} + 0.59 \text{ Mn} + 1.0 \text{ Mo} + 0.68 \text{ Nb} + 2.15 \text{ Si} + 1.06 \text{ V} + 0.39 \text{ W} + 0.45 \text{ Ta} + 1.35 \text{ Ti} + 0.81 \text{ Zr}$$
 where the elemental compositions are given in weight percent.

2. (Original) The nickel-chromium-molybdenum alloy of claim 1, also comprising in weight percent:

up to 2.5	cobalt
up to 1.25	niobium
up to 0.7	titanium
up to 0.2	vanadium

- 3. (Original) The nickel-chromium-molybdenum alloy of claim 1, comprising up to 3.5 wt.% copper
- 4. (Original) The nickel-chromium-molybdenum alloy of claim 1, wherein the impurities comprise levels of at least one of sulfur, phosphorus, oxygen, nitrogen, magnesium, and calcium.
- 5. (Previously Amended) The nickel-chromium-molybdenum alloy of claim 1, wherein the alloy is in a wrought form selected from the group consisting of sheets, plates, bars, wires, tubes, pipes, and forgings.
- 6. (Original) The nickel-chromium-molybdenum alloy of claim 1, wherein the alloy is in cast form.
- 7. (Original) The nickel-chromium-molybdenum alloy of claim 1, wherein the alloy has been spray-formed.

Appl. No. 10/656,010 Amendment dated April 16, 2004

- 8. (Original) The nickel-chromium-molybdenum alloy of claim 1, wherein the alloy is in powder metallurgy form.
- 9. (Original) A nickel-chromium-molybdenum alloy capable of being age hardened for improved strength while maintaining high corrosion resistance, having a composition comprised in weight percent of:

19.9 to 21.4 chromium

15.1 to 17.4 molybdenum

up to 2 iron

0.1 to 0.4 manganese

0.1 to 0.4 aluminum

up to 0.01 carbon

up to 0.008 boron

up to 0.1 silicon

up to 1.0 tungsten

with a balance of nickel and impurities, metallic impurities hafnium, tantalum and zirconium each up to 0.2 wt. %, wherein the alloy has a P value of from 34.0 to 35.9, P being defined as:

$$P = 2.64 \text{ Al} + 0.19 \text{ Co} + 0.83 \text{ Cr} - 0.16 \text{ Cu} + 0.39 \text{ Fe} + 0.52 \text{ Hf} + 0.59 \text{ Mn} + 1.0 \text{ Mo} + 0.00 \text{ Mg}$$

0.68 Nb + 2.15 Si + 1.06 V + 0.39 W + 0.45 Ta + 1.35 Ti + 0.81 Zr

where the elemental compositions are given in weight percent.

10. (Original) The nickel-chromium-molybdenum alloy of claim 9, also comprising in weight percent:

up to 1	cobalt
up to 0.2	niobium
up to 0.2	titanium
up to 0.2	vanadium

- 11. (Original) The nickel-chromium-molybdenum alloy of claim 9, also comprising up to 0.5 wt.% copper.
- 12. (Currently Amended) A nickel-chromium-molybdenum alloy capable of being age hardened for improved strength while maintaining excellent corrosion resistance, having a composition comprised in weight percent of:

19.92 to 21.41	chromium
15.11 to 17.38	molybdenum
from 0.94 to 2.76	iron
from 0.29 to 1.18	manganese
from 0.11 to 0.21	aluminum
from 0.003 to 0.011	carbon
up to 0.003	boron
up to 0.003 up to 0.07	boron silicon
•	
up to 0.07	silicon
up to 0.07 from 0.09 to 1.06	silicon tungsten

Appl. No. 10/656,010 Amendment dated April 16, 2004

up to 0.16

vanadium

up to 0.02

tantalum

with a balance of nickel and impurities, metallic impurities hafnium, tantalum and zirconium each up to 0.5 wt. %, wherein the alloy has a P value of from 33.7 to 35.9, P being defined as:

$$P = 2.64 \text{ Al} + 0.19 \text{ Co} + 0.83 \text{ Cr} - 0.16 \text{ Cu} + 0.39 \text{ Fe} + 0.52 \text{ Hf} + 0.59 \text{ Mn} + 1.0 \text{ Mo} + 0.00 \text{ Mg}$$

where the elemental compositions are given in weight percent.

- 13. (Previously Amended) The nickel-chromium-molybdenum alloy of claim 12, also comprising 0.01 to 0.05 wt.% copper.
- 14. (Original) The nickel-chromium-molybdenum alloy of claim 13, wherein the impurities comprise levels of at least one of sulfur, phosphorus, oxygen, nitrogen, magnesium, and calcium.
- 15. (Previously Amended) The nickel-chromium-molybdenum alloy of claim 13, wherein the alloy is in a wrought form selected from the group consisting of sheets, plates, bars, wires, tubes, pipes, and forgings.
- 16. (Original) The nickel-chromium-molybdenum alloy of claim 13, wherein the alloy is in cast form.

Appl. No. 10/656,010 Amendment dated April 16, 2004

17. (Original) The nickel-chromium-molybdenum alloy of claim 13, wherein the alloy has been spray-formed.

18. (Original) The nickel-chromium-molybdenum alloy of claim 13, wherein the alloy is in powder metallurgy form.