2018 ACC/AHA/HRS Guideline for the Evaluation and Management of Patients With Bradycardia and Cardiac Conduction Delay Data Supplement

Table of Contents

Abbreviations:
Data Supplement 1. Nonrandomized Trials, Observational Studies, and/or Registries of 12-Lead Electrocardiography in Bradycardia or Conduction
Disturbance (Section 4.2.1)
Data Supplement 2. Nonrandomized Trials, Observational Studies, and/or Registries of Exercise Stress Testing in Bradycardia and Conduction Disturbances (Section 4.2.2)
Data Supplement 3. Nonrandomized Trials, Observational Studies, and/or Registries of Ambulatory Electrocardiography in Bradycardia or
Conduction Disorders (Sections 4.2.3 and 4.2.4)
Data Supplement 4. Nonrandomized Trials, Observational Studies, and/or Registries of Ambulatory Electrocardiography in Bradycardia or Conduction Disorders (Section 4.2.4)
Data Supplement 5. Nonrandomized Trials, Observational Studies, and/or Registries of Nocturnal / Sleeping Bradyarrhythmias and Sleep Apnea (Section-4.2.7)
Data Supplement 6. RCTs of Implantable Loop Recorder in Patients With Documented or Suspected Bradycardia or Conduction Disorders (Section 4.3.1)
Data Supplement 7. Nonrandomized Trials, Observational Studies, and/or Registries of Electrophysiology Testing in Patients With Documented or
Suspected Bradycardia or Conduction Disorders (Section 4.3.2)67
Data Supplement 8. RCTs Comparing Atropine to Placebo for Bradycardia (Section 5.3.2.1)
Data Supplement 9. Nonrandomized Trials, Observational Studies, and/or Registries of Atropine in SND and Hemodynamically Significant Bradycardia (Section 5.3.2.1)
Data Supplement 10. Nonrandomized Trials, Observational Studies, and/or Registries of Isoproterenol Effect in Electrophysiology Laboratory
(Section 5.3.2.1)
Data Supplement 11. RCTs of Dopamine in Bradycardia (Section 5.3.2.1)
Data Supplement 12. Nonrandomized Trials, Observational Studies, and/or Registries of Calcium, Glucagon and High Dose Insulin Therapy to treat
Beta-Blocker and Calcium Channel Blocker Toxicity (CCB) (Section 5.3.2.2)
Data Supplement 13. RCTs Comparing Anti-Digoxin Fab to placebo (Section 5.3.2.3)76
Data Supplement 14. Nonrandomized Trials, Observational Studies, and/or Registries of Digoxin Fab Antibody Fragments (Section 5.3.2.3) 77
Data Supplement 15. Nonrandomized Trials, Observational Studies, and/or Registries of Dialysis for Digoxin Toxicity (Section 5.3.2.3 – Patton)79
Data Supplement 16. RCTs Comparing Methylxanthines in Bradycardic Arrest (Section 5.3.2.4)

Data Supplement 17. Nonrandomized Trials, Observational Studies, and/or Registries of Methylxanthines for acute therapy of bradycardia due to
spinal cord injury or post-heart transplant (Section 5.3.2.4)80
Data Supplement 18. Trials of Temporary Transesophageal or Transvenous Pacing (Section 5.3.3)
Data Supplement 19. Nonrandomized Trials, Observational Studies, and/or Registries of Temporary Transvenous Pacing (TTVP) (Section 5.3.3)82
Data Supplement 20. RCTs of Transcutaneous Pacing (Section 5.3.3)
Data Supplement 21. Nonrandomized Trials, Observational Studies, and/or Registries of Transcutaneous Pacing (Section 5.3.3)
Data Supplement 22. RCTs of General Principles of Chronic Therapy/Management of Bradycardia due to Sinus Node Dysfunction (Section 5.4.1)
Data Supplement 23. Nonrandomized Trials, Observational Studies, and/or Registries of General Principles of Chronic Therapy/Management of
Bradycardia due to Sinus Node Dysfunction (Section 5.4.1)
Data Supplement 24. RCTs of Clinical Presentation of Bradycardia due to Sinus Node Dysfunction (Section 5.3)92
Data Supplement 25. RCTs of Permanent Pacing for Chronic Therapy/Management of Bradycardia due to Sinus Node Dysfunction (Section 5.4.4)
Data Supplement 26. Nonrandomized Trials, Observational Studies, and/or Registries of Reversible Causes of AV block (Section 6.3.1) 101
Data Supplement 27. RCTs Comparing Medical treatment for AV block (Section 6.3.2)
Data Supplement 28. Nonrandomized Trials, Observational Studies, and/or Registries of Medical Treatment for AV block (Section 6.3.2) 104
Data Supplement 29. RCTs Comparing Temporary Pacing (Section 6.3.3)
Data Supplement 30. Nonrandomized Trials, Observational Studies, and/or Registries of Temporary Pacing (Section 6.3.3)109
Data Supplement 31. RCTs of clinical presentation of bradycardia due to AV block (Section 6.3)
Data Supplement 32. Nonrandomized data of Clinical Presentation of Bradycardia due to AV block (Section 6.3)117
Data Supplement 33. RCTs of General Principles of Chronic Therapy/Management of Bradycardia due to AV block (Section 6.4.1)135
Data Supplement 34. Nonrandomized data of General Principles of Chronic Therapy/Management of Bradycardia due to AV block (Section 6.4)
Data Supplement 35. RCTs of meds/reversible/transient causes of bradycardia due to AVB (Section 6.4.2)146
Data Supplement 36. Nonrandomized data of Medications/Reversible/Transient Causes of Bradycardia due to AVB (Section 6.4.2)146
Data Supplement 37. RCT data of additional testing for Bradycardia due to AV block (Section 6.4.3)150
Data Supplement 38. Nonrandomized data of additional testing for Bradycardia due to AV block (Section 6.4.3)
Data Supplement 39. RCTs for Permanent Pacing for AV block (Section 6.4.4)
Data Supplement 40. Nonrandomized data for Permanent Pacing for AV block (Section 6.4.4)
Data Supplement 41. Nonrandomized Trials, Observational Studies, and/or Registries of Conduction Disorders (Section 7)
Data Supplement 42. Randomized Data for Predicting Perioperative Bradycardia (Section 8.1.1)
Data Supplement 43. RCTs of Conduction Disorders (Section 7)
Data Supplement 44. Nonrandomized Data for predicting perioperative bradycardia (Section 8.1.1)
Data Supplement 45. Nonrandomized Data for predicting complete heart block with pulmonary artery catheter insertion (Section 8.1.1) 175
Data Supplement 46. Nonrandomized data for Permanent Pacing for TAVI/valve surgery176

The Birmingham Trial	178
Data Supplement 47. Nonrandomized Trials, Observational Studies, and/or Registries of CABG (Section 8.1.2.1)	
Data Supplement 48. Nonrandomized Trials, Observational Studies, and/or Registries of Open Surgery for Atrial Fibrillation or Valvular	Surgery
(Section 8.1.2.2. and 8.1.2.3)	197
Data Supplement 49. Nonrandomized Trials, Observational Studies, and/or Registries of Conduction Abnormalities After TAVR (Section	8.1.2.4)
	200
Data Supplement 50. Nonrandomized Trials, Observational Studies, and/or Registries of Pacing after Heart Transplant (Section 8.1.2.5.	1) 206
Data Supplement 51. Nonrandomized Studies for Alcohol Septal Ablation/Septal Myectomy (Section 8.1.2.5.2)	208
Data Supplement 52. Nonrandomized Studies for ICDs for Alcohol Septal Ablation/Septal Myectomy (Section 8.1.2.5.2)	215
Data Supplement 53. Nonrandomized Trials, Observational Studies, and/or Registries of Adult Congenital Heart Disease (ACHD) (Sectio	n 8.2)216
Data Supplement 54. RCTs, Nonrandomized Trials, Observational Studies, and/or Registries of Bradycardia and Pacemaker Implantation	n in Patients
with an Acute MI (Section 8.3)	221
Data Supplement 55. Nonrandomized Data for Predicting Bradycardia Associated with Seizures (Section 8.4.1)	227
Data Supplement 56. Nonrandomized Data for Device Type (Section 9)	228
References	

Methodology and Evidence Review

The recommendations listed in this guideline are, whenever possible, evidence based. An extensive evidence review was conducted from January through September 2017, that included literature published through September 2017. Other selected references published through January 2018 were incorporated by the writing committee. Literature included was derived from research involving human subjects, published in English, and indexed in MEDLINE (through PubMed), EMBASE, the Cochrane Library, the Agency for Healthcare Research and Quality, and other selected databases relevant to this guideline. Key search words included but were not limited to the following: adult, adult congenital heart disease, ACS, AF, AL amyloid, AL amyloidosis, alcohol septal ablation, ambulatory electrocardiography, aminophylline, amyloidosis, antiarrhythmic drugs, antibradycardia, aortic dissection, aortic valve, asystole, arrhythmia, atrial fibrillation, atrioventricular block, atropine, AV block, AV block symptoms, beta-adrenergic agonist, beta-blocker, Birmingham trial, biventricular pacemaker, bradyarrest, bradyarrhythmia, bradyasystole, bradycardia, bundle branch block, cardiac, cardiac AL amyloid, cardiac arrest, cardiac pacing, cardiac resynchronization therapy, cardiac sarcoidosis, cardiac surgery, cardiology, cardiovascular implantable electronic devices, catecholamines, cilostazol, clinical presentation, clinical trial, complications, conduction, conduction disturbance, congenital AV block, coronary artery bypass, cost, cost-effectiveness, cost-effectiveness analysis, CPAP, deactivation, defibrillator, defibrillator versus pacemaker, device, device implantation, devices, device therapy, digoxin, digoxin antibody, dialysis, dizziness, dopamine, drug therapy, drug induced, dual chamber, dyssynchrony, echocardiogram, electrocardiogram, endocarditis, English, EP study, epidemiology, epinephrine, evaluation studies, event monitor, event recorder, exercise induced, exercise test, exercise treadmill, first degree, first degree AV block, genetic variation, genetics, genotype, glucagon, health status, heart, heart block, heart transplant, hemochromatosis, Holter, Holter monitor, human, hypertrophic cardiomyopathy, ICD, ILR, implantable loop recorder, intraoperative bradycardia, isoproterenol, lamin A/C, left bundle branch block, life, LMNA, loop recorder, Lyme carditis, Lyme disease, magnetic resonance imaging, management, medical, medical therapy, medications, mitral valve, mortality, muscular dystrophies, myectomy, myocardial infarction, myocardial perfusion imagina, myocarditis, myotonic dystrophy, natural history, orthotopic heart transplant, OSA, pacemaker, pacemaker syndrome, pacing, pacing induced cardiomyopathy, patients nearing end, pauses, permanent pacemaker, PM, pregnancy, preoperative bradycardia, preoperative risk, procainamide, procedure, prognosis, prophylactic temporary pacing, pulmonary artery catheter, quality of life, radionuclide imaging, RCT, rejection, reversal, reversible causes, review, right bundle branch block, RV pacing, sarcoid, sarcoidosis, seizure, shared decision making, sick sinus syndrome, sinus, sinus arrest, sinus bradycardia, sinus node, sinus node dysfunction, sinus of Valsalva aneurysm, sleep apnea, sleep apnea syndromes, spinal cord dysfunction, spinal cord injury, steroid, sudden cardiac death, syncope, symptomatic, TAVR, temporary, temporary pacemaker, temporary pacing, theophylline, thyroid disease, tomography-emission-computed-single photon, tomography-X-ray computed, transcatheter aortic valve replacement, transcutaneous pacemaker, transesophageal echocardiogram, transient, treatment, vagal, vagally mediated, vagally mediated AV block, ventricular arrhythmia risk, ventricular remodeling

Abbreviations: 1° indicates primary; 2°, secondary; AAD, antiarrhythmic drug; ABP, atrial-based pacing; ACEI, angiotensin-converting enzyme inhibitor; ACLS, advanced cardiac life support; AED, antiepileptic drug; AF, atrial fibrillation; AMI, acute myocardial infarction; AS, aortic stenosis; ASA, American Society of Anesthesiology OR alcohol septal ablation; asx, asymptomatic; ATP, antitachycardia pacing; AV, atrioventricular; AVB, atrioventricular block; AVN, atrioventricular nodal; AVR, aortic valve replacement; BB, beta blocker; BBB, bundle branch block; BiV, biventricular; BMI, body mass index; BP, blood pressure; bpm, beats per minute; C, comparator; CABG, coronary artery bypass grafting; CAD, coronary artery disease; CCB, calcium channel blocker; ccTGA, congenitally corrected transposition of the great arteries; CEA, carotid endarterectomy; CHB, complete heart block; CHD, coronary heart disease; CHF, congestive heart failure; CI, confidence interval; CIED, cardiac implantable electronic device; CMP, cardiomyopathy; CPAP, continuous positive airway pressure; CRT, cardiac resynchronization therapy; CRT-D, device that provides both cardiac resynchronization therapy and defibrillator capabilities; CRT-P, device that provides cardiac resynchronization therapy only; CSM, carotid sinus massage; CV, cardiovascular; CVA, cerebrovascular accident; Cum%VP, cumulative percentage of ventricular pacing; Cx, circumflex coronary artery; CXR, chest X-ray; DC, dual chamber; DCCV, direct current cardioversion; DM, diabetes mellitus; DOE, dyspnea on exertion; D-TGA, d-transposition of the great arteries; Dx, diagnosis; echo, echocardiogram; ECG, electrocardiogram; ED, emergency department; EEG, electroencephalogram; EF, ejection fraction; EMD,

electromechanical dissociation; EMS, emergency medical service; EP, electrophysiologic; EPS, electrophysiologic study; GDMT, guideline-directed medical therapy; HCM, hypertrophic cardiomyopathy; HDIT, high-dose insulin therapy; HF, heart failure; HFH, heart failure hospitalization; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; HOCM, hypertrophic obstructive cardiomyopathy; HR, hazard ratio; HTN, hypertension; HUTT, head-up tilt test; Hx, history; I, intervention; ICD, implantable cardioverter defibrillator; ICM, ischemic cardiomyopathy; ILR, implantable loop recorder; IV, intraventricular OR intravenous; LA, left atrial; LAD, left anterior descending coronary artery; LAH, left anterior hemiblock; LBBB, left bundle branch block; LHC, left heart catheterization; LMNA, Lamin A/C; LR, lower rate; LV, left ventricular OR left ventricle; LVED, left ventricular end-diastolic; LVEF, left ventricular ejection fraction; LVES, left ventricular end-systolic; LVFS, left ventricular fractional shortening; LVH, left ventricular hypertrophy; LVOT, left ventricular outflow tract; MACE, major adverse cardiovascular event; MDT, Medtronic; MI, myocardial infarction; MLHFQ, Minnesota Living with Heart Failure Questionnaire; MMSE, Mini Mental State Examination; MPHR, maximum predicted heart rate; ms, millisecond; MVP, mitral valve prolapse; N/A, not applicable; nCPAP, nasal continuous positive airway pressure; nLBBB, new left bundle branch block; NICM, nonischemic cardiomyopathy; NR, not relevant; NS, not significant; NSVT, nonsustained ventricular tachycardia; NSVT, non-sustained ventricular tachycardia; NT-proBNP, N-terminal pro-B-type natriuretic peptide; NYHA, New York Heart Association; OR, odds ratio; OSA, obstructive sleep apnea; PA, pulmonary artery; PAF, paroxysmal atrial fibrillation; PCI, percutaneous coronary intervention; PerAF, persistent atrial fibrillation; PFO, patent foramen ovale; PM, pacemaker; postop, postoperative; PPI, permanent pacemaker implantation; PPM, permanent pacemaker; ppm, paced beats per minute; preop, preoperative; PSG, polysomnography; pt, patient; pVO₂, peak oxygen consumption; PVC, premature ventricular contraction; QOL, quality of life; QRSd, QRS duration; RBBB, right bundle branch block; RCA, right coronary artery; RCT, randomized controlled trial; ROSC, return of spontaneous circulation; RR, relative risk; RV, right ventricle; SA, sino-atrial; SAS, sleep apnea syndrome; SACT, sino-atrial conduction time; SAVR, surgical aortic valve replacement; SB, sinus bradycardia; SCD, sudden cardiac death; SD, standard deviation; SLE, systemic lupus erythematosus; SND, sinus node dysfunction; SNRT, sinus node recovery time; SR, sinus rhythm; SSS, sick sinus syndrome; STEMI, STelevation myocardial infarction; SVT, supraventricular tachycardia; sx, symptom; TAP, transesophageal atrial pacing; TAVI, transcatheter aortic valve implantation; TCP, transcutaneous pacing OR transcutaneous pacemaker; TE, thromboembolism; TIA, transient ischemic attack; TPM, temporary pacemaker; TPPM, temporary permanent pacemaker; TTT, tilt table testing; TTVP, temporary transvenous pacing; TVP, transvenous pacemaker; tx, treatment; UNOS, United Network for Organ Sharing; V, volts: VA, ventricular arrhythmia OR ventriculoatrial; VF, ventricular fibrillation; Vp, ventricular pacing; VT, ventricular tachycardia; WHO, World Health Organization.

Data Supplement 1. Nonrandomized Trials, Observational Studies, and/or Registries of 12-Lead Electrocardiography in Bradycardia or Conduction Disturbance (Section 4.2.1)

Study Acronym;	Study Type/Design;	Patient Population	Primary Endpoint and Results	Summary/Conclusion
Author; Year	Study Size		(P values; OR or RR; & 95% CI)	Comment(s)
Published; PMID	Charles to an and the materials	La alcosta a contracta d	40 1 1 5	5
Linzer M, et al. 1997 (1)	Study type: Literature Review- MEDLINE search	Inclusion criteria: English language	1° endpoint: Diagnostic yield of a test analyzed separately for each test	Despite low yield, authors recommend ECG at presentation
9182479	and manual review of	publications from 1980–	analyzed separately for each test	for virtually all pts with syncope
<u>5162475</u>	bibliographies	1995 reporting on	Results: Diagnostic yield of ECG at	due to its lack of risk and relatively
	Sionographics	diagnostic yield of a test	presentation was 5% (47/902). This	low expense. Further they cite the
	Size: 4 population-based	(e.g., Hx and physical,	compares to 45% (504/1110) for Hx and	value of ECG findings indicative of
	studies evaluating	ECG, EEG, Holter,	physical	structural heart disease or
	diagnostic yield of ECG in	external LR, EPS, HUTT,	,	indicative of potentially life-
	syncope were included,	SAE, ETT, carotid U/S,		threatening conditions (e.g., NSVT)
	N=902	head CT, psych		in this population
		evaluation) evaluated in		This review did not identify any
		10 or more subjects over		suitable studies evaluating
		18 y with syncope		echocardiography in syncope
		(±presyncope)		
		Exclusion criteria:		
		Review articles and case		
		reports		
Thiruganasamb-	Study type: Retrospective	Inclusion criteria: ≥16 y	1° endpoint: Composite of death, MI,	ECG findings in pts presenting to
amdamoorthy V, et al.	single-center evaluation	with local address and	arrhythmias, and "cardiac procedures"	the ED with syncope can predict
2012 (2)	of pt characteristics, 12-	syncope	over 30 d	adverse cardiac events in the short
22813399	lead ECG and ED ECG monitoring as predictors	Evaluaion aritoria	Parulta, 10 serious outcomes including	term.
	of adverse outcomes in	Exclusion criteria: Presyncope, LOC >5 min,	Results: 49 serious outcomes including 27cardiac outcomes (including 2 deaths,	Bradycardia or conduction disorders are an important
	consecutive adult ED pts	ongoing altered mental	18 PPM, 7 SND, 6 3 rd degree AVB, 2	component to the constellation of
	with syncope from	status, or LOC caused by	profound bradycardia) and 22 serious	predictive ECG findings (19/132 -
	8/1/05–1/30/07	ETOH or illicit drug use,	noncardiac outcomes. Of 19 primary ECG	14%)
		seizure, head injury, or	variables, 2 combination ECG variables	,
	Size: 505 visits from 490	severe trauma requiring	(e.g., LBBB with 1 st degree AVB) and 8	
	separate pts [of whom	admission	variables based on QRS or QTc duration)	
	470 (93%) had at least 1		16 variables were significant predictors	
	ECG]		of adverse cardiac events at 30 d by	
			univariate analysis. Using recursive	

Del Rosso A, et al. 2008 (3) 18519550	Study type: Prospective cohort of consecutive pts Size: 516 (260 derivation/256 validation)	Inclusion criteria: Unexplained syncope presenting to 1 of 14 Italian EDs Exclusion criteria: <18 y, syncope of known non- cardiac cause (e.g., seizure, TIA or drop attack)	partitioning they developed ECG criteria for risk that included 5 predictors: 2nd degree Mobitz type 2 or 3rd degree AVB, bundle branch block +first-degree AV block, right bundle branch with either left anterior or posterior fascicular block, new ischemic changes, non-SR, left axis deviation, or ED cardiac monitor abnormalities. Using these predictors yielded a sensitivity of 96% (95% CI: 80–100), a specificity of 76% (95% CI: 75–76) and an area under the ROC curve of 0.89 (95% CI: 0.82–0.95). 1° endpoint: Dx of cardiac syncope or death Results: A risk score composed of historical features, exam findings suggesting structural heart disease/CHF, or abnormal ECG (including but not exclusively bradycardia and conduction abnormalities) was predictive of cardiac syncope or death at an avg. Follow-up of 614 d in both derivation and validation cohorts. 56/79 (71%) pts with a defined mechanism of syncope had arrhythmic syncope. Of these, 38/56 (68%) were attributed to bradyarrhythmias or conduction disturbances and 24/38 (63%) syncopal episodes attributable to bradycardia or conduction disturbances were diagnosed on 12 lead ECG.	 12 lead ECG in the ED can identify syncope attributable to bradycardia and conduction disturbances in a majority of those with bradycardic syncope presenting to the ED. As part of the EGSYS risk score, ECG abnormalities (both those indicative of bradyarrhythmias and those indicative of other forms of heart disease) can predict cardiac causes of syncope and all-cause mortality more than 1.5 y after initial presentation. Specific ECG abnormalities predict
Perez-Rondon J, et al. 2014 (4) 24993462	prospective observational Size: 524 (from a total of 1,080 pts and from 14 of	≥14 y presenting to ED with transient LOC within 24 h for whom initial questionnaire	criteria to predict 12 mo mortality Results: 65.6% had an abnormal ECG and 6 (6.3%) died at 1 y (only 1 SCD). 22 pts	1 y mortality in adolescents and adults presenting with syncope (ventricular pacing, LVH, AF, and

19 centers participating in main trial)	data, presenting ECG and 1-y follow-up was available	(4.2%) manifested AV nodal conduction disturbance (13 first-degree, 2 second-degree and 7 third-degree AVB) which did not predict mortality (p=0.642). 108	intraventricular conduction disturbance) • AV nodal block is uncommon on presenting ECG (4.2%) and is not
	Exclusion criteria: N/A	(20.6%) manifested an intraventricular conduction disturbance [13 LBBB (2.5%), 28 RBBB (5.4%), 18 IRBBB (3.4%), 17 NSIVCD (3.3%), 13 LAFB (2.5%) and 19 assorted others (18%)]. Intraventricular conduction disturbances were 1 of 4 independently predictive indicators of mortality (OR: 3.8; 95% CI: 1.7–8.3; p=0.001). Other predictive variables included ventricular pacing, AF and LVH.	predictive of mortality at 1 y. Intraventricular conduction disturbances are more common (20.8%) and do predict 1 y mortality in adolescents and adults with syncope.

Data Supplement 2. Nonrandomized Trials, Observational Studies, and/or Registries of Exercise Stress Testing in Bradycardia and Conduction Disturbances (Section 4.2.2)

Study Acronym;	Study	Patient Population	Primary Endpoint and Results	Summary/Conclusion
Author; Year	Type/Design;		(P values; OR or RR; & 95% CI)	Comment(s)
Published; PMID	Study Size			
Lauer MS, et al. 1999 (5) 10022108	Study type: Prospective cohort study between 9/90–12/93 Size: 2953 consecutive pts referred for sx- limited ETT with thallium MPI, of whom 1078 (37%) manifested chronotropic incompetence [316 (11%) by % MPHR and 762 (26%) by low chronotropic index]	Inclusion criteria: Referred for sx-limited ETT thallium and with failure to achieve ≥85% MPHR or failure to achieve ≥80% of chronotropic index* Exclusion criteria: Prior coronary angiography or PCI, cardiac surgery, CHF, valvular heart disease, preexcitation syndrome, ACHD, or ß-blocker therapy.	1º endpoint: Association of chronotropic incompetence with all-cause mortality at 2 y. Results: 91 deaths (8.4%) - 22 cardiac deaths. Those with chronotropic incompetence were older and sicker with more ASCVD risk factors, lower exercise capacity and more angina and perfusion defects during the test (but not more ischemic ECG changes). Cox proportional hazards analyses incorporating 13 clinical confounders (age, sex perfusion defects, etc. but not EF): chronotropic incompetence independently associated with increased risk of death (adjusted RR:1.85; 95% CI: 1.13–3.00; p=0.01) when measured by failure to achieve 85% MPHR and adjusted RR:2.19; 95% CI: 1.43–3.44; p<0.001) when measured by low chronotropic index. 612 (21%) manifested perfusion defects [reversible in 311 (11%)]. Perfusion defects predictive of mortality with a similar magnitude as chronotropic incompetence. Mortality risk of chronotropic incompetence and perfusion defects were	Chronotropic incompetence is independently predictive of mortality in those with known or suspected CAD
			additive (e.g., adjusted RR for combined low chronotropic index and perfusion defect: 3.31; 95% CI: 1.82–6.02; p<0.001)	
Savonen KP, et al.	Study type:	Inclusion criteria: Enrolled	1° endpoint:	• Conclusion: Heart rate 40–100
2008 (6)	Prospective cohort	in KIHD with clinical CAD	1) Association of chronotropic incompetence	independently predicts long-term
<u>18556711</u>	study (derived	and underwent bicycle	with mortality over an average follow-up of 11 y	all-cause mortality in Finnish men
	from the Kuopio	ergometry	(0.8–14.8 y) of chronotropic incompetence	with known or suspected CAD
	Ischemic Heart		calculated during bicycle ergometry with VO ₂	■ Heart rate 40—100 intended to
	Disease Risk Factor	Exclusion criteria: Cancer,	testing and defined as change in heart rate	isolate the effects of exercise-
	Study – a	heart rate-lowering Rx		induced increases in sympathetic

Doi A, et al. 2002 (7) 12368930	longitudinal Finnish population study- representative sample of middle- aged men from Kuopio and environs recruited 3/1984–12/1989) Size: 294 (3235 eligible/2682 participated in primary study/2240 exercise tests/294 with CAD and no exclusions) Study type: Prospective cohort study	Inclusion criteria: Unexplained syncope or presyncope (18 exercise-	between 40% of maximal workload and peak exercise (heart rate: 40–100). 2) Compared ability of heart rate 40–100 to predict death with that of other indices of chronotropic incompetence Results: 61 (20.7%) deaths. Mean (SD) heart rate 40–100 =45 (15) bpm. Risk of death increased 41% for each 1-SD (15 bpm) decrement in heart rate 40–100. Multivariate analysis identified a heart rate 40–100 value at or below the mean (<46 bpm) as a significant predictor of all-cause mortality relative to those with a heart rate 40–100 above the mean (RR: 2.9; 95% CI: 2.0–5.0). With propensity score added to model, the risk decreased to 2.0; 95% CI: 1.22–3.70. Only 1 of 6 other indices of chronotropic incompetence that were evaluated was predictive of mortality, heart rate reserve RR: 1.30; 95% CI: 1.02–1.69. (Chronotropic index not included). 1º endpoint: Diagnostic accuracy of HUTT and modified exercise treadmill testing according to relationship of unexplained syncope to exercise.	tone on CV physiology and risk from those of parasympathetic withdrawal which predominates in modulating chronotropic responses from baseline to ~100 bpm. • Heart rate 40–100 was predictive of mortality in members of this same population w/o clinical evidence of CAD (separate study, Savonen, et al.) • Bicycle exercise has a greater isometric component than treadmill walking and is usually associated with lower maximal workloads and brisker heart rate response, all of which may reduce generalizability of findings to other exercise modalities.
	Prospective cohort study Size: 44 pts and 20 normal controls		relationship of unexplained syncope to exercise. Modified ETT included abrupt termination followed by prolonged standing (positive ETT defined as syncope or presyncope with SBP<80 mm Hg and/or heart rate<40 bpm) Results: HUTT: Sensitivity =84% and 77%; Specificity =84% and 85%; Accuracy= 84% and 80% in exercise-related and exercise-unrelated syncope respectively. None	isoproterenol infusion to elicit syncope/presyncope with associated hemodynamic compromise in pts with suspected exercise-related neurally mediated syncope and presyncope. • Modified exercise testing is less sensitive but similarly specific to HUTT with provisional isoproterenol infusion to elicit
			of these differences were statistically significant Modified Exercise Test: Sensitivity =78% and 19% (p<0.05); Specificity =95 and 95% (p=NS); Accuracy =86% and 52% (p<0.05) in exercise-related and exercise-unrelated syncope respectively.	syncope/presyncope with associated hemodynamic compromise in pts with suspected neurally mediated syncope and presyncope unrelated to exercise.

Woelfel AK, et al.	Study type: Case	Inclusion criteria: Pts with	1° endpoint: N/A	Exercise testing can uncover
1983 (8)	series	exercise-related	<u> </u>	apparent rate -related infranodal
6875122		palpitations or dizziness, or	Results: All had evidence of infranodal block on	conduction block in carefully
	Size: 3 pts	asx progressive	EP study. 2 of 3 underwent rapid atrial pacing	selected pts with exercise related
		intraventricular conduction	with evidence of rate related infranodal block.	symptoms or progressive
		disorder with 1:1 AV	One underwent coronary angiography revealing	intraventricular conduction
		conduction at rest who	a 90% RCA and a 60% LAD stenosis but no	disturbance w/o clinical evidence
		demonstrate rate related	ischemia on exercise, stress MUGA, no ischemic	of exercise induced ischemia.
		2:1 and 3:1 rate-related	ECG changes on exercise ECG and no angina.	The authors suggest such pts
		conduction block on	Exercise-related symptoms were relieved with	should be considered for PPM but
		exercise treadmill testing	pacing in all 3.	acknowledge the natural Hx is
		w/o overt ischemia. 2 had		undefined. They draw correlates to
		baseline intraventricular		the high rate of subsequent
		conduction disturbance		symptomatic AVB in those with
				either spontaneous or rapid atrial
		Exclusion criteria: N/A		pacing-induced infra-nodal
				advanced AVB in previous reports.
Boran KJ, et al.	Study type:	Inclusion criteria:	1° endpoint: N/A	 Ischemically mediated transient
1983 (9)	Retrospective case	1) Symptom-limited ECG		intraventricular conduction
<u>6837453</u>	series	showing ischemic ST	Results:	disturbance elicited by exercise
		segment changes and	1) Exercise-induced conduction abnormalities:	treadmill testing is rare (<0.5%).
	<u>Size</u> : 10 of 2200	intraventricular conduction	LAFB in 4, LPFB in 2, RBBB in 2, RBBB with left	When present in pts with
	(0.45%)	disturbance.	axis deviation in 1, and LAFB evolving to LBBB in	significant CAD, exercise-induced
	consecutive,	2) Subsequent coronary	1.	conduction abnormalities are
	clinically-referred	angiography	2) Demographics: 9/10 were men, age 37–71 y.	typically preceded by angina and
	pts who		1 prior MI. All had angina.	ischemic ECG changes
	underwent	Exclusion criteria:	3). Stress Test: All had angina and ischemic ST	• The constellation of ischemic signs,
	symptom-limited	Reproducible rate-related	segment changes on ETT that preceded	symptoms and transient
	exercise treadmill	intraventricular conduction	conduction disturbance. All conduction	conduction disturbance during
	testing (9/10 Bruce	disturbances w/o evidence	disturbances resolved in recovery as chest pain	exercise stress testing connotes a
	protocol) at a	of ischemia or a clinical Dx	and ST segment changes resolved.	high probability of advanced CAD,
	single referral center (includes	of CAD (N=4 – 3 LAFB and 1 LBBB)	4) Coronary angiogram: All had proximal LAD	and in particular, high-grade
	the 2 pts from		stenosis [9/10 ≥90% (one=60%)].7/10 had anterior and/or apical regional wall motion	proximal LAD disease
	Oliveros below)		abnormalities. EF mildly to moderately reduced	Revascularization can alleviate
	Oliveros below)		in 3. 2 had LMCA stenosis ≥50%. 3 single vessel	ischemically mediated
			disease/3 2 V disease/4 3V disease.	intraventricular conduction
			uiscase/3 2 v uiscase/4 3 v uiscase.	disturbances

Oliveros RA, et al. 1977 (10) 908218	Study type: Case series Size: 2	N/A	5) Response to therapy: 9/10 repeated ETT after CABG or institution of medical Rx. Exercise duration and peak heart rate increased. None manifested angina, ischemic ST changes or conduction disturbance on the repeat ETT. 1° endpoint: N/A Results: ETT in both revealed LAFB concomitantly with ST segment depression in the lateral leads (V5 in one and I and aVL in the other). In one, LAFB progressed to LBBB and then reverted back to LAFB in recovery before resolving. In the other LAFB resolved after 2 min of recovery.	Exercise-induced ischemia associated with proximal LAD stenosis can be manifest as transient LAFB on treadmill stress test.
Bobba P, et al. 1972 (11) 5081145	Study type: Case series Size: 4	Inclusion criteria: New, transient LPFB during supine bicycle ergometry in middle-aged Italian men referred for chest pain and suspicion of CAD. Exclusion criteria: N/A	1° endpoint: N/A Results: All had significant ECG changes with exercise. 3 had inferior ST elevation prior to LPFB (2 of whom had inferior Q waves on baseline ECG). 2 of those with inferior ST elevation also had significant lateral ST segment depression). A 4 th had significant inferior and lateral ST segment depression w/o inferior ST elevation or baseline Q waves. Exercise-related symptoms were not reported. All 3 who underwent coronary angiography manifested significant proximal-mid RCA stenosis.	Exercise-related transient LPFB accompanied by ischemic ECG changes can be associated with significant, symptomatic RCA stenosis.
Bharati S, et al. 1977 (12) 299790	Study type: Case report Size: 1	Inclusion criteria: 33 y woman with hypertensive urgency, LVH and pulmonary edema, and angina accompanied by inferior ST segment elevation and progressive AVB (normal conduction at baseline, to 1 st degree, then 2:1 2 nd degree, and ultimately CHB). Symptoms,	1° endpoint: N/A Results: EPS during cath revealed normal A-H and A-V intervals while asx. During an episode of chest pain with ST elevation, she manifested progressive AVB again, culminating in CHB. At all stages of conduction disturbance, the AV node was implicated with prolonged A-H intervals and normal H-V intervals. The pt died 1 d following emergent single vessel CABG to RCA. Pathology revealed slight fibrosis and	 Authors speculate right coronary vasospasm or ischemia due to fixed obstruction led to transient AV nodal block w/o evidence of infranodal block Extrapolating from other clinical scenarios, there may be a significant component of neurally—mediated AV node dysfunction at play, as well

		ST changes and conduction	"distinct arteriosclerosis" of the AV node and	Coronary vasospasm can be elicited
		disturbance were all	HIS bundle along with advanced "fibro-	during exercise testing and such
		transient and resolved	elastosis" of the main left bundle w/o ECG	exercise-induced vasospasm may
		together. There was no ECG	correlate antemortem.	also be manifest as progressive
		evidence of associated MI.		AVB as seen in this case
		Cath revealed a 90%		717 b as seen in this case
		proximal stenosis of a		
		dominant RCA and		
		moderate LAD and LCx		
		disease. Normal LV systolic		
		function and LVEDP when		
		asx.		
		us		
		Exclusion criteria: N/A		
Coplan NL, et al.	Study type: Case	Inclusion criteria: 62 y	1° endpoint: N/A	Authors speculate that exercise-
1991 (13)	report	woman underwent		induced ischemia (more than
1959424		treadmill exercise test in	Results: She exercised for only 2.5 min of a	coronary vasospasm or occult
	<u>Size</u> : 1	evaluation of exertional	Bruce protocol and stopped due to dizziness	intrinsic conduction disease) was
		chest pain.	and non-sustained VT. ECG revealed marked	responsible for the transient
			anterior ST elevation. 2:1 second-degree AVB	exercise-induced AVB that resolved
		Exclusion criteria: N/A	developed in early recovery, evolving to	with revascularization.
			complete AVB. By 8 min of recovery both the ST	Cause of marked anterior ST
			segment changes and the AVB had resolved.	elevation in the absence of
			She manifested no evidence of infarction	significant LAD disease was unclear.
			related to these events while evaluated in the	Based on this and other case
			hospital. Coronary angiography revealed a 90%	reports, exercise-induced AVB
			proximal RCA stenosis w/o significant	when accompanied by signs of
			obstructive CAD elsewhere. Uncomplicated	ischemia is frequently associated
			balloon angioplasty of the RCA lesion was	with significant right CAD
			followed 3 wk later with a normal exercise	3 3
			thallium myocardial perfusion study w/o	
			ischemic ST segment changes, scintigraphic	
			evidence of ischemia, or conduction	
			disturbance.	

^{*} Chronotropic index = % heart rate (HR) reserve used / % of metabolic reserve used = (HR_{stage} - HR_{rest}) / (220-age - HR_{rest}) ÷ (MET_{stage} - MET_{rest}) / (MET_{peak} - MET_{rest})

Data Supplement 3. Nonrandomized Trials, Observational Studies, and/or Registries of Ambulatory Electrocardiography in Bradycardia or Conduction Disorders (Sections 4.2.3 and 4.2.4)

Study Acronym;	Study Type/Design;	Patient Population	Primary Endpoint and Results	Summary/Conclusion
Author;	Study Size		(P values; OR or RR; & 95% CI)	Comment(s)
Year Published' PMID				
Gibson TC and	Study type:	Inclusion criteria: 24 h 2-	1° endpoint: Diagnostic yield of Holter	• 24 h Holter rarely yields evidence of
Heitzman MR 1984	Retrospective	channel Holter	for syncope and presyncope	bradycardia or conduction disorder
(14)	observational	monitoring in evaluation	Tot symbols and prosymospe	temporally related to syncope or
<u>6702676</u>		of syncope	Results:	presyncope in pts who have
	Size: 1,512 of all ages		• 7 (0.5%) experienced syncope and 23	previously experienced syncope.
	(66% >60 y) referred	Exclusion criteria: Unable	(1.5%) experienced presyncope	• Findings of advanced AVB were rare
	for Holter for syncope	to keep diary or	(total=2%) associated with a significant	in this population (1%) and
	(7,364 total over 5 y)	technically inadequate	arrhythmia.	symptomatic only 20% of the time.
		recordings	• 225 (17%) had either syncope or	• Findings of SSS increase with age but
			presyncope unrelated to arrhythmia.	were present in only 3% of those >60
			• 2/7 (29%) of syncopal episodes	y in this cohort and symptomatic only
			associated with bradyarrhythmia/	6% of the time
			conduction disorder: 1 SB, 1 AVB.	
			• 5/23 (22%) of presyncope associated with bradyarrhythmia/ conduction	
			disorder: 1 SB, 2 "sinoatrial	
			abnormality", 2 AVB	
			• 0.5% of the 1,521 pts studied had	
			symptoms associated with bradycardia	
			or conduction disorder.	
			• 15 (1%) manifested Mobitz type 2 2 nd	
			degree or 3 rd degree AVB. 3 (20%) were	
			symptomatic.	
			• Of 1,004 pts >60 y, 32 (3%) had SSS: 13	
			SB while awake, 2 sinus pause, 2	
			junctional rhythm, 2 AF, 13 tachy-	
Linzon M. et al. 1007	Chudu hunas Litaratuus	Indusion suitorio. Espeliale	brady. 2 (6%) were symptomatic	- Authors go common d 24 h Holton
Linzer M, et al. 1997 (15)	Study type: Literature review- MEDLINE	Inclusion criteria: English language publications	<u>1° endpoint</u> : Diagnostic yield of prolonged ambulatory monitoring in pts	Authors recommend 24-h Holter monitor (or inpatient telemetry)
9214258	search and manual	from 1980–1995	with syncope or dizziness	when symptoms suggest arrhythmic
3217230	review of	reporting on diagnostic	with syncope of dizziness	syncope, the ECG is abnormal,
	bibliographies	yield of a test (e.g., Hx	Results:	structural heart disease is present, or

	Size: Identified 8 studies that evaluated pts with syncope or presyncope with at least 12 h of Holter monitoring and reported on symptoms, N=2612	and physical, ECG, EEG, Holter, external LR, EPS, HUTT, SAE, ETT, carotid U/S, head CT, psychiatric evaluation) evaluated in 10 or more subjects over 18 y with syncope (± presyncope) Exclusion criteria: Review articles and case reports	 15% symptoms w/o arrhythmia (range: 7–39%) 14% Arrhythmia with no symptoms (range 10–41%) 4% symptoms with arrhythmia (range 1–26%) Note: includes Gibson et al. (14), the largest study included 	the cause of syncope remains unexplained after Hx, physical and 12-lead ECG.
Reiffel JA, et al. 2005 (16) 15842970	Study type: Retrospective observational Size: 1,800 randomly selected studies from a single year derived from ~100,000-pt ambulatory monitoring database of a commercial monitoring company. 600 studies each of 3 different classes of monitoring equipment were reviewed [24 h Holter, 30 d memory loop recording, and 30 d autotriggered loop recording]	Inclusion criteria: Referred for monitoring for known or suspected dysrhythmias Exclusion criteria: N/A	1° endpoint: Relative diagnostic yield of the different monitoring devices Results: Groups were identical in age and symptoms that prompted monitoring Fewer women were referred for Holter 12% <20 y Majority (50%) referred for palpitations 292 (16%) referred for syncope 80 (4%) referred for dizziness 6 (0.3%) referred for dyspnea 5 (0.3%) referred for dyspnea 42 (23%) pts manifested bradycardia (heart rate <40 for those >10 y). 7 detected by Holter, 4 by memory loop recording, 31 by autotriggered loop recording For other detected bradyarrhythmias/conduction disorders the events were too few and the differences too slight to suggest an advantage of 1 device over the others (7 (0.4%) pauses >3 s,15 (0.8%) 2 nd degree AVB, 7 (0.4%) 3 rd degree AVB) Autotriggered loop recording produced a higher yield of diagnostic events	 Conclusions: Auto-triggered memory loop recorders detects a greater number of arrhythmias than Holter or pttriggered memory loop recorder, including a greater number of asx events It is unclear from this analysis what the clinical impact of this enhanced detection might be in the management of bradycardia and conduction disorders due to the limited scope of this analysis and the infrequency of events Limitations: Selection of monitoring device was not randomized, chosen on clinical grounds by the referring practitioner. Selection bias may influence results Statistical significance of differences in detection rates not reported – data is descriptive only. No data available regarding associated structural heart disease or medications

Cirolumaton C. et al.	Charles to man	In chusing prikania Di	(36%) than Holter (6.2%) or memory loop recording (17%).	Timing of bradycardia not reported (asleep vs. awake) Proportion of arrhythmias that were symptomatic is not reported Complexity to the contract of the con
Sivakumaran S, et al. 2003 (17) 12867227	Study type: Prospective randomized observational Size: 100 pts referred for ambulatory ECG monitoring in evaluation of syncope/presyncope randomized to 48 h 2- channel Holter (N=51) or 30 d external loop recorder (N=49)	Inclusion criteria: Pts with syncope or pre- syncope referred from all sources for Holter monitor or external loop recorder Exclusion criteria: N/A	1° endpoint: Relative diagnostic yield of the 2 monitoring strategies for "clinically important arrhythmias" (sinus pause >3 s, CHB, Mobitz II 2 nd degree AVB, AF with slow VR, symptomatic SB <40 bpm, SVT >10 s or symptomatic, and VT). Results: 31/49 (63%) pts assigned initially to external loop recorder had arrhythmia diagnosed or excluded as cause of symptoms (30 symptoms w/o arrhythmia, 1 symptomatic 5-s conversion pause in AF) 12/51 (24%) assigned initially to Holter had arrhythmia excluded through symptoms w/o arrhythmia. No symptomatic or asx arrhythmia was diagnosed by Holter 29/51 randomized to initial Holter accepted cross-over to external loop recorder, while 4/18 with unrevealing initial external loop recorder accepted cross-over to Holter 13/29 (45%) of cross-over external loop recorders had symptoms w/o arrhythmia during external loop recorder. None had an arrhythmia None of the 4 pts who underwent cross-over Holter following external loop recorder manifested an arrhythmia or symptoms w/o arrhythmia or symptoms w/o arrhythmia.	 Conclusions: Ambulatory monitoring is more likely to document the absence of arrhythmia during symptoms than symptomatic arrhythmia In this cohort, arrhythmias, symptomatic or otherwise, were rare (1%) The diagnostic yield of 30 d external loop recorder is more than twice that of 48 h Holter, almost exclusively through its ability to document symptoms w/o arrhythmia Despite careful instructions and confirmatory test activations, 13/57 (23%) of pts who had symptoms during external loop recorder monitoring failed to successfully activate their device Limitations: Low incidence of arrhythmias in this unselected population with syncope or pre-syncope

Brown AP, et al. 1987 (18) 3663425	Study type: Retrospective observational Size: 100 unselected pts experiencing palpitations, dizziness, or syncope (collected from 106 pts who underwent external loop recorder over 3 y). 39% had some form of structural heart disease	Inclusion criteria: Unselected pts who had undergone pt-activated ambulatory electrocardiography for up to 3 wk. 42 had undergone prior 24 h Holter of which 17 (40%) were abnormal Exclusion criteria: Incomplete case notes (N=6)	 In all 55 pts had Holter. None had an arrhythmia identified as the cause of presenting symptoms, 12 (22%) had arrhythmia excluded as a cause. In all 78 pts underwent external loop recorder monitoring. 1 had an arrhythmia thought to be the cause of the presenting symptoms and 43 had arrhythmia excluded as a cause [Diagnostic yield 44/78 (56%; p<0.0001 vs. Holter)] 1º endpoint: Diagnostic yield of external loop recorder Results: "Clinically useful information" was obtained in 68% Of 56 diagnostic recordings and 13 recordings "of some diagnostic value" there were 6 bradyarrhythmias (4 reflecting sinus node dysfunction and 2 implicating conduction disorder) 6 of 17 pts with paroxysmal arrhythmias had returned to SR by the time the event button was pressed 	 Early study of pt-activated external loop recorder Authors noted the advantages of a pt-activated external loop recorder over pt-activated recorders w/o a looping memory available at the time Study demonstrates the feasibility and utility of pt-activated external loop recorder in a population with a relatively high prevalence of structural heart disease and Holter-documented arrhythmias Authors suggested that the pt-activated external loop recorder was complimentary to 24 h Holter, not a substitute in part due to the stress.
				substitute, in part due to the pt- activated external loop recorder's inability to capture asx events.
Cumbee SR, et al. 1990 (19) 2300833	Study type: Retrospective observational	Inclusion criteria: Unexplained syncope or presyncope, referred for pt-activated	 1° endpoint: Diagnostic yield of external loop recorder Frequency with which external loop 	Small early evaluation of pt-activated external loop recorder suggesting diagnostic utility Diagnostic yield in this highly
	Size: N=39 Derived from first 48 pts referred for pt- activated external cardiac loop recorder	external loop recorder Exclusion criteria: No documented Hx of syncope or presyncope	recorder provided relevant information missed by preceding Holter and EPS • Extent to which external loop recorder influenced pt management	selected population referred to an academic medical center for syncope and presyncope that remained unexplained after fairly extensive testing was understandably lower

	at an academic medical center (see exclusion criteria)	(1), cause of syncope already established (1), inaccessible medical record or loop recorder ongoing at the time data collection was completed (7)	Results: 92% had prior Holter, 46% had prior EPS 35/39 (90%) wore the monitor (2 pts. declined, 1 stopped due to skin irritation, 1 device malfunctioned) 32/35 (91%) pts were able to successfully record symptomatic events (others were incapacitated) Diagnostic in 14/39 (yield=36%; 95% CI, 21%-53%). 11/39 (28%) = syncope w/o arrhythmia and 3/39 (7.6%) symptomatic arrhythmia (asystole, junctional bradycardia, and paroxysmal atrial tachycardia) External loop recorder led to management changes in all 3 pts with symptomatic arrhythmia including PPM implantation in 2.	than some other studies of external loop recorder (36%). Most of the diagnostic yield was derived from those with syncope or presyncope w/o associated arrhythmia (11/14, 78.5%) 7/39 (17.9%) pts referred for external loop recorder either couldn't/wouldn't tolerate wearing the monitor, had it malfunction, or were too incapacitated to capture symptomatic events
SYNAAR-Flash Locati ET, et al. 2016 (20) 26519025	Study type: Prospective observational multicenter Size: 392 pts; 282 (72%) enrolled for palpitations and 110 (28%) for syncope	Inclusion criteria: Recent (within 1 mo) episode of syncope or sustained palpitations (index event), after being discharged from emergency room or hospitalization w/o a conclusive Dx, and a suspected arrhythmic origin Exclusion criteria: N/A	1° endpoint: Evaluate the role of 4 wk auto-triggered external loop recorder in the clinical evaluation of unexplained syncope or sustained palpitations of suspected arrhythmic origin. Analyzed rhythm at the time of symptoms and asx arrhythmias predefined as significant (sustained SVT or VT, advanced AVB, SB <30 bpm, pauses >6 s) Results: 27/110 (25%) of pts. evaluated for syncope had a diagnostic test. Of these 11/110 (10%) experienced a conclusive event regarding the arrhythmic nature of the symptoms and 16/110 (15%) had an asx significant arrhythmia Of the 11 pts. with a conclusive event, 5 manifested recurrence of symptoms	Conclusions: Authors conclude that the 4 wk external ECG monitoring can be considered as first-line tool in the diagnostic work-up of syncope and palpitation. Early recorder use, Hx of supraventricular (tachy and brady) arrhythmia, and frequent previous events increased the likelihood of diagnostic events during the 4 wk external ECG monitoring Limitations: Reliance on pt diary in efforts to correlate rhythm and symptom introduces potential error The precise mechanism of a syncopal event associated with arrhythmias documented on external loop

			w/o significant arrhythmia and 6 had symptomatic arrhythmia (all 6 were either bradycardia or conduction disorder) • Of the 16 asx significant arrhythmias, one third (5/16) were either pauses, advanced AVB, or sinus bradycardia • Predictors of diagnostic events in those evaluated for syncope were early start of recording (≤15 d between index event and enrollment vs. >15 d) (OR: 3.2; 95%CI: 1.3−26.6; p=0.021) and previous Hx of supraventricular arrhythmias (OR: 3.6; 95% CI: 1.4−9.7; p=0.018) • 202/282 (72%) of pts referred for palpitations had a diagnostic test (68% conclusive event and 23% symptoms w/o arrhythmia). Less than 3% of	recorder can be uncertain despite the associated arrhythmia The clinical benefit of external loop recorder remains undefined in the absence of data documenting improved outcomes predicated on therapy guided by external loop recorder results
Barrett PM, et al. 2014 (21) 24384108	Study type: Prospective observational Size: N=146 pts referred for ambulatory ECG monitoring who	Inclusion criteria: Pts ≥18 y referred for evaluation of cardiac arrhythmia able to provide consent and comply with continuous ECG monitoring for 14 d	conclusive event and 23% symptoms	Despite slightly lower sensitivity to supraventricular tachyarrhythmias during simultaneous monitoring, 14 d adhesive patch monitor provided greater diastolic yield than 24 h Holter monitoring, primarily through the benefit of prolonged monitoring time
	underwent simultaneous 24 h Holter monitor and a novel, single-lead 14-d	Exclusion criteria: Skin allergies, conditions, or sensitivities to any of the components of the	 Median wear time for Holter =1.0 d (range 0.9–1.0) and for adhesive patch monitor =11.1 d (range 0.9–14) 	The adhesive patch monitor was considered preferable to wear by the pts in this study with less impact on QOL

	adhesive patch monitor (Zio Patch). 238 screened, 88 declined, 150 enrolled, 4 lost to follow-up.	adhesive patch monitor, receiving or anticipated to receive pacing or external DCCV during the monitoring period, or the anticipation of being exposed to high-frequency surgical equipment during the monitoring period	 During the 24 h period of simultaneous monitoring with both devices, Holter monitor detected more of the prespecified arrhythmias than the patch monitor. However, in nearly all such pts, the patch monitor subsequently detected the missed arrhythmia through prolonged monitoring. None of the discrepancies related to bradycardia or conduction disorders. 81% of pts preferred to wear the adhesive patch to the Holter monitor and the participants found the adhesive patch more comfortable with less impact on their activities of daily living. 	
Rosenberg MA, et al. 2013 (22) 23240827	Study type: Prospective observational Size: N=74 consecutive pts. referred for Holter monitor for the evaluation of PAF who underwent simultaneous 24 h Holter monitor and 14 d single-lead adhesive patch monitor (Zio Patch)	Inclusion criteria: PAF, referred for Holter monitor as part of clinical management Exclusion criteria: 1 potential participant was excluded because the adhesive patch monitor was inadvertently not activated during placement	 1° endpoint: Comparative diagnostic utility of the 2 devices Results: Mean wear time for adhesive patch monitor =10.8±2.8 d (range 4–14) and the mean monitoring time for the Holter was 22.5±1.8 h) All 25 AF events detected by Holter in the first 24 h were detected by the adhesive patch monitor. Recorded AF burden during simultaneous monitoring was comparable (58.4±42.7% on Holter and 54.7±41.2% on adhesive patch monitor (r=0.96; p<0.0001) During prolonged monitoring, the adhesive patch monitor identified AF in 18 (24%) additional individuals in whom it was not detected by 24 h Holter and reclassified pts' pattern of AF (i.e., persistent or paroxysmal) in 	 Conclusions: 14 d adhesive patch monitoring is a useful tool to refine assessment of PAF, due to the benefits of prolonged monitoring When compared to simultaneous Holter monitoring, the adhesive patch monitor performs in a comparable fashion in the detection of AF and in the quantitation of cumulative AF burden. The adhesive patch monitor fell off of 16 pts, was removed by 6 others, or had battery malfunction in one. In all, 23/74 (49%) of participants in this trial failed to complete 14 d of monitoring for non-medically directed reasons. Mean wear time for those whose device fell off was 7.9±1.8 d (range 5.8–12.2 d).

Joshi AK, et al. 2005 Study type: Inclusion criteria: 1° endpoint: Diagnostic yield • Early evaluation of new technology at	Turakhia MP, et al. 2013 (23) 23672988			21 (28%). The prolonged adhesive patch monitoring also documented from 1 to 99 pauses of 3.1–9.7 s in 4 pts, as well as Mobitz type 1 second-degree AVB in 1 pt. Of the pauses only 2 were >5 s and only 1 of these was only detected by prolonged adhesive patch monitoring. 1° endpoint: Analyzed compliance, analyzable signal time, interval to arrhythmia detection and diagnostic yield of the Zio patch Results: • Mean wear time =7.6±36 d • Median analyzable time =99% of total wear time • Arrhythmia was detected in 60.3% of pts. • 29.9% of all arrhythmias occurred after the first 48 h of monitoring and 51.1% of symptom-triggered arrhythmias occurred after 48 h. • Compared to the first 48 h, the diagnostic yield of the entire monitoring period for any arrhythmia was superior (62.2% vs. 43.9%; p<0.0001) as was the yield for any symptomatic arrhythmia (9.7% vs. 4.4%; p<0.0001) • 3.7% of pts manifested pauses >3 s (42.9 % of which occurred after 48 h) and 1.4% of pts manifested Mobitz II or complete AVB (36.6% of which occurred after 48 h) 1° endpoint: Diagnostic yield	Conclusions:
<u> </u>	(24)				
	15781022	•	Mercired for clinically	Results	the time

Page 21

	Size: First 100 consecutive pts. monitored by 2-channel MCOT for a mean of 9.9 d (range 2–28 d).	indicated MCOT monitoring Exclusion criteria: N/A	 "Clinically significant" arrhythmia detected in 51 (51%) pts, 25 (49%) of which were asx. 3 pts manifested "sinus node disease," 2 symptomatic sinus bradycardias, 2 2nd degree AVB, 1 CHB, 1 junctional rhythm, and 1 PM malfunction Monitoring led to a change in management in 34 (34%) pts., including implantation of PPM in 5 and ICD in 2, as well as 1 PPM replacement. 	 MCOT detected clinically significant" arrhythmias in approximately half of those referred and led to a change in management in a third Authors note that 30 of their pts had previously undergone Holter monitoring or event recorder. In 16 of these MCOT detected an arrhythmia not previously detected.
Rothman SA, et al. 2007 (25) 17318994	Study type: Prospective, multicenter observational Size: N=266 randomized to pt- activated external loop recorder (132) or MCOT (134) in evaluation of syncope, presyncope or severe palpitations	Inclusion criteria: Symptoms of syncope, presyncope or severe palpitations (less frequent than once per 24 h) with a nondiagnostic 24 h Holter or telemetry monitor within 45 d of enrollment. Exclusion criteria: NYHA class IV HF; MI within past 3 mo; USA; candidate for or recent valvular cardiac surgery; h/o sustained VT or VF; ≥10 VPCs/h and EF ≤35%; <18 y; inability to complete or comply with protocol	1° endpoint: Confirmation or exclusion of a probable arrhythmic cause of their symptoms Results: • 266/305 randomized pts completed at least 225 d of monitoring • 114/266 (43%) presented with syncope or presyncope • Overall diagnostic yield: MCOT =88%. external loop recorder =75% (p=0.008) • For those presenting with syncope or presyncope, comparison of diagnostic yield was similar: MCOT =89%. external loop recorder =69% (p=0.008) • MCOT was superior in confirming the Dx of clinically significant arrhythmias [55/134 (41%) vs. 19/132 (15%); p<0.001] • 8/266 (3%) manifested bradycardia or conduction disorder, 6 pauses, 1 complete AVB, 1 Mobitz II 2 nd degree AVB, and no symptomatic bradycardia.	 Conclusions: MCOT provided a higher diagnostic yield than pt-activated external loop recorder in this cohort of pts referred for syncope, presyncope, and severe palpitations in a randomized head-to-head comparison Authors speculate this likely relates to pt inability to properly use the external loop recorder, compliance, and/or the ability of MCOT to detect asx arrhythmias. Limitations:
Linzer M, et al. 1990	Study type:	Inclusion criteria:	1° endpoint:	Conclusions:
(26) 2371954	Prospective observational	≥1 episode of unexplained syncope	Utility of external loop recorder after indeterminate Holter	Early study of external loop recorder in syncope that suggests utility, but

	Size: N=57 pts	Exclusion criteria: Prior EPS	Results: In 14 /57 (25%) of pts, external loop recorder was diagnostic. • Half of these diagnoses (7/14) came from symptoms w/o associated arrhythmia • Symptomatic arrhythmias include VT (1 pt), high-grade AVB (2 pts), SVT (1 pt), asystole or junctional bradycardia from neurally mediated syncope (3 pts)	only rarely by identifying non- neurally mediated bradycardia or conduction disorder (<4% of those studied). Limitations: • Referral bias • Small sample size
Framingham Schneider JF, et al. 1979 (27) 154870	Study type: Prospective observational community-based study Size: N=55 cases of new LBBB. N=110 age/sex- matched controls w/o incident LBBB N=5,209 total cohort followed biennially up to 18 y	Inclusion criteria: New LBBB detected on biennial exams Exclusion criteria: 17 with LBBB at start of the study	1° endpoint: Describe the incidence of new LBBB, describe the prevalence of antecedent, coincident and subsequent CV disease and risk factors in those with vs. w/o incident LBBB (HTN, CHF, CHD, DM, cardiac enlargement) Results: 31 men, 24 women Mean age at LBBB=62 y (36–78) Mean follow-up = 18 y (12 pre- and 6 post-LBBB) range: 4–22 y Those with LBBB had a higher prevalence of HTN (65%), cardiac enlargement (44%), CHF, CAD, DM vs. those w/o LBBB Only 27% of LBBB group was free of obvious CVD at the time of Dx 5/15 (33%) free of antecedent CVD, developed evidence thereof coincident to or following the detection of LBBB 6/15 of those with incident CVD had evidence thereof at the time of the new LBBB (all CAD) 14/55 (28%) developed new CHF with (N=4) or after (N=10) LBBB first noted	Strengths: Large population-based study with lengthy follow-up and rigorous data collection Limitations: Small number of incident cases of LBBB with wide confidence margins of estimated rates of events No echocardiogram or other assessment for structural heart disease with incident LBBB Conclusion: Incident LBBB in middle aged populations is often associated with antecedent or subsequent clinically apparent CV disease, and is associated with increased CV mortality in men

	Charlana		 Rate of incident CAD in those with LBBB = 2x controls during follow-up Rate of incident CHF in those with LBBB=7x controls during follow-up Median time to first recognized CAD=3.7 y Median time to first recognized CHF=3.3 y 11% of LBBB group and 48% of controls remained free of any evidence of CVD during follow-up (p<0.001) No advanced AVB or PPM in those with LBBB LBBB: 50% mortality at 10 y Controls 11.6% mortality at 10 y Controls cohort (17 with LBBB at initial screening) were younger (mean age=49 y), but had similar incidence of CVD on average 3 y after initial Dx) 	
Framingham Schneider JF, et al.	Study type: Prospective	Inclusion criteria: New RBBB	<u>1° endpoint</u> : Compare the prevalence of antecedent, coincident and subsequent	StrengthsLarge population-based study with
1980 (28)	observational		CV disease and risk factors in those with	lengthy follow-up and rigorous data
<u>7350871</u>	community-based	Exclusion criteria:	incident RBBB (HTN, CHF, CHD, DM,	collection
	study	Extant RBBB (N=16) at first visit	cardiac enlargement)	Limitations
	Size	III ST VISIT		Limitations: • Small number of incident cases of
	N=70 cases of newly		Results:	RBBB with wide confidence margins
	diagnosed RBBB		• Mean age at Dx of RBBB=60 y (38–77)	of estimated rates of events
	N=140 sex and age- matched controls		Prevalence increased with age At all ages (70 × BBBB more semmen)	rendering several trends statistically insignificant
	N=5,209 total cohort		At all ages <70 y, RBBB more common in men than women	No echocardiogram or other
	followed biennially up		70% of cases of RBBB associated with	assessment for structural heart
	to 18 y		antecedent CVD, most commonly HTN	disease with incident LBBB
			(60%)	

Page 24

 Only the prevalence of HTN and valvular heart disease antecedent to the Dx of RBBB were significantly greater than controls (roughly twice as common for both) 15/53 (28%) of those w/o evidence of CHD at the time RBBB was diagnosed developed CHD subsequent to the development of RBBB, (OR: 2.5; p<0.001) Incident RBBB is commonly associated with CV abnormalities at the time of Dx. Incident RBBB associated with a 2.5-fold increased risk of subsequent CHD and 4-fold increased risk of CHF. Incident RBBB is associated with a 2.5-fold increased risk of CHF. Incident RBBB associated with a 2.5-fold increased risk of CHF. Incident RBBB is commonly associated with CV abnormalities at the time of Dx. Incident RBBB associated with a 2.5-fold increased risk of CHF. Incident RBBB is commonly associated with CV abnormalities at the time of Dx. Incident RBBB associated with a 2.5-fold increased risk of CHF. Incident RBBB is commonly associated with CV abnormalities at the time of Dx. Incident RBBB is commonly associated with CV abnormalities at the time of Dx. Incident RBBB associated with a 2.5-fold increased risk of CHF. Incident RBBB is commonly associated with a 2.5-fold increased risk of CHF. Incident RBBB is commonly associated with a 2.5-fold increased risk of CHF. Incident RBBB is commonly associated with a 2.5-fold increased risk of CHF. Incident RBBB is commonly associated with a 2.5-fold increased risk of CHF. Incident RBBB is commonly associated with a 2.5-fold increased risk of CHF. Incident RBBB is commonly associated with a 2.5-fold increased risk of CHF. Incident RBBB is commonly associated with a 2.5-fold increased risk of CHF.
disease. CHF at the time RBBB was diagnosed developed CHF subsequent to the development of RBBB, (OR~4; p=0.02) Multivariate analysis suggests the relationship between RBBB and subsequent CHD and CHF remains valid for women but not men when age, SBP, and DM are considered. 20 individuals (15 men) had no evidence of CVD at the time RBBB was noted. Of these, CHD developed in 25% (2/5 women and 2/15 men), CHF developed in 5%, and 75% remained free of clinical CVD. In these 20 individuals free of apparent CVD at the time RBBB is first diagnosed, subsequent 10-y CV mortality=9% vs. 40% for the 50 individuals with at least 1 CV abnormality prior to the Dx of RBBB (p=not reported) Total prevalence of most CV
abnormalities at any time during the study was higher in RBBB than in controls: CHF=19% vs. 4 % (p<0.001), Cardiac Enlargement=31% vs. 14% (p<0.01), CHD=46% vs. 24% (p<0.01),

		Ī		
			valvular heart disease=6% vs.1%	
			(p<0.05)	
			No statistically significant difference in	
			total prevalence of HTN, DM, or	
			absence of all CV abnormalities.	
			 Those with RBBB had "about 3 times 	
			greater" 10 y CV mortality compared	
			to those w/o conduction disorder	
			(p<0.001). 34% in men and 23% in	
			women vs. 11% in controls (p=NS for	
			men vs women with incident RBBB).	
			• 10 y rate of SCD: RBBB=11%,	
			controls=3% (p=0.05).	
			RBBB was a univariate predictor of CV	
			mortality but not by multivariate	
			analysis incorporating age, SBP, DM,	
			CHD, CHF.	
			In the 50 individuals with evidence of	
			CV abnormalities prior to or coincident	
			with the Dx of RBBB, 10 y CV	
			mortality=40% vs. 9% in the 20	
			individuals free of such abnormalities	
			prior to or coincident with the Dx of	
			RBBB (p=not reported)	
Framingham	Study type:	Inclusion criteria: New	1° endpoint: Compare the prevalence of	Strengths:
Schneider JF, et al.	Prospective	LBBB or RBBB	antecedent, coincident and subsequent	 Large population-based study with
1981 (29)	observational		CV disease and risk factors in those with	lengthy follow-up and rigorous data
<u>6452050</u>	community-based	Exclusion criteria: Extant	incident LBBB vs. incident RBBB (HTN,	collection
	study	L (N=17) or R (N=16) BBB	CHF, CHD, DM, cardiac enlargement)	
		at first visit		<u>Limitations</u> :
	Size: N=55 cases of			Small number of incident cases of
	new LBBB and N=70		Results:	LBBB and RBBB with wide confidence
	cases of new RBBB.		No difference in prevalence of HTN,	margins of estimated rates of events
	N=5,209 total cohort		CAD or DM in LBBB vs. RBBB	rendering several strong trends
	followed biennially up		Trend toward higher CV mortality in	statistically insignificant
	to 18 y		LBBB vs. RBBB that was stronger in	No echocardiogram or other
			men than women (p>0.05)	assessment for structural heart
				disease with incident LBBB
			" ,	

Overall those with LBBB had a 4-fold	
increased 10-y CV mortality after Dx	Conclusion:
and those with RBBB had a 3-fold	Both LBBB and RBBB are associated
increased 10 y CV mortality compared	with increased 10-y risk of CV death
to those w/o conduction disorder	in a middle aged unselected
(p<0.001 for both)	population than those w/o BBB
Men with incident LBBB had a higher	Strong trend toward higher CV
cumulative prevalence of "advanced	mortality in LBBB than RBBB that was
CV abnormalities" before or after the	stronger in men than women
development of LBBB than men who	The vast majority of individuals with
develop RBBB	incident LBBB or RBBB manifest
Women with incident LBBB had similar	some form of CV abnormality (most
prevalence of "advanced CV	commonly HTN) during follow-up.
abnormalities" before or after the	Although LBBB and RBBB are
development of LBBB than women	univariate predictors of incident CHD
who develop RBBB	and CHF in both men and women,
 In both men and women and for both 	controlling for age, SBP, DM, CHD
RBBB and LBBB, the development of	and CHF renders LBBB and RBBB
BBB was a univariate predictor of	independently predictive of incident
incident CHD or CHF	CHD and CHF only in women but not
Multivariate analysis: LBBB and RBBB	in men
remained predictive for incident CHD	
and CHF in women but not men	
(p<0.05 for LBBB in women and	
P<0.001 for RBBB in women)	
Only 11% of those with LBBB and only	
21% of those with RBBB remained free	
of all CV abnormalities during follow-	
up	
Multivariate analysis: LBBB in men was	
independently predictive of 10-y CV	
mortality (p<0.01). RBBB in men and	
both LBBB and RBBB in women were	
not predictive of 10 y CV mortality	
independent of age, SBP, DM, CHD and	
CHF	
Amongst the 33 individuals with LBBB	
or RBBB at first visit (excluded form	

			 analysis above), there was a 2-fold higher prevalence of HTN (p<0.05) and a 4-fold higher prevalence of radiographic cardiac enlargement (p<0.01) in LBBB vs. RBBB. 2-fold higher rate of CHD, CHF, and DM was also evident in those with BBB at baseline (p=NS) Overall there was a trend toward increased prevalence of all CV abnormalities during follow-up for LBBB vs. RBBB (94% vs. 75%; p=NS) in those with BBB at baseline exam. 	
Eriksson P, et al. 1998 (30) 9832497	Study type: Longitudinal prospective community-based study Size: N=855	Inclusion criteria: Sample of men living in Göteborg, Sweden born on days divisible by 3 in 1913 obtained from the county census bureau's register of names (N973) Agreed to participate (N=855) Followed for 30 y with serial exams at 4–8 y intervals starting in 1963 when all were 50 y. Exclusion criteria: N/A	1° endpoint: Describe the cumulative incidence of BBB and its relationship with CV disease, risk factors, and prognosis based on ECGs obtained at baseline and 3 subsequent exams in 1980, 1988, and 1993. Results: • follow-up 98% complete • Prevalence of BBB=82/855 (9.6%), 22 (2.6%) LBBB, 60 (7.0%) RBBB, 86% after age 50 y. • 26% of LBBB and 6% of RBBB showed LVH on ECGs prior to development of BBB (p<0.01 for comparison) • At age 80 y, cumulative incidence rate: LBBB=6.5% RBBB=12.9% • Prevalence of LBBB in survivors: 0.4% at 50 y. and 5.7% at 80 y • Prevalence of RBBB in survivors: 0.8% at 50 y and 11.3% at 80 y • No difference in baseline CV risk factors between those with and w/o incident BBB, except greater	 Strengths: Long-term prospective follow-up of moderately large and homogeneous population Limitations: Too few LBBB cases rendering statistical significance elusive as it relates to underlying structural heart disease and outcomes. Small number of cases also precludes meaningful comparison between LBBB and RBBB. Combining RBBB and LBBB likely dilutes the potential impact compared to LBBB alone Limited to men Conclusion: Prevalence of LBBB and RBBB increases with age RBBB is twice as common as LBBB Those who develop LBBB are more likely to have LVH on ECGs preceding the development of LBBB than those

			radiographic heart volume in those with BBB (794 vs. 746 ml; p<0.05) Those with incident BBB: higher prevalence of CHF in follow-up (36 vs. 14%; p<0.01 vs. no BBB) and higher prevalence of DM (36 vs. 17%; p<0.05 vs. no BBB) No apparent difference between LBBB and RBBB in baseline risk factors or outcomes Trend toward increased mortality and CV mortality with BBB vs. no BBB, but p=NS. 73/262 (28%) CV deaths associated with prior Dx of CHF in those w/o BBB vs. 14/23 (61%) of CV deaths associated with prior Dx of CHF in those with BBB (p<0.01)	who develop RBBB (a potential indicator that underlying structural heart disease is more likely with LBBB vs. RBBB) Those who develop BBB have greater radiographic cardiac volume at baseline compared to those who do not (again suggesting greater likelihood of underlying structural heart disease in those who develop BBB) Those with BBB are more likely to develop clinically evident CHF or DM BBB associated with a trend towards higher mortality that fails to reach statistical significance.
Fahy GJ, et al. 1996 (31) 8651093	Study type: Prospective observational community-based study Size: • N=110,000 participants in an Irish CV prevention screening study over 25 y. • N=310 with BBB but w/o suspected CVD	 Inclusion criteria: BBB at baseline exam (N=480, 0.44%) Age and sex matched controls w/o BBB Exclusion criteria: HTN at baseline exam (N=109) H/o CVD at baseline exam (N=84) Both HTN and CVD=23 	 1° endpoint: Determine the prevalence of isolated BBB and the associated long-term prognosis over a 25-y period Results: Prevalence of isolated BBB=0.28% RBBB: N=198 (0.18%) more common than LBBB: N=112 (0.1%); p<0.001. Those with LBBB (51±13 y) older than RBBB (44±13 y); p=0.001. RBBB but not LBBB was more common in men than women (p<0.001) Mean follow-up=9.5 y. median follow-up=87.5 y. 49 total deaths No difference in mortality rate between BBB vs. no BBB and between RBBB and LBBB 	 Strengths: Long-term prospective follow-up of large middle-aged population including men and at least some women (<25% in this analysis) Larger number of cases of LBBB and RBBB compared to other studies Protracted prospective follow-up Limitations: Lack of physical exam, CXR, echo, or CAD screening at baseline Conclusion: RBBB and LBBB rare in middle age (~0.1–0.2%) RBBB more common than LBBB RBBB (but not LBBB) more common in men than women.

Investida De et al 2006			 Actuarial freedom from CV death up to 15 y worse in LBBB vs. controls (p=0.01) Actuarial freedom from CV death up to 15 y worse in LBBB vs. RBBB (p=0.001). When age included in Cox multiple regression model, differences in CV mortality were no longer significant (p=0.08) Overt CV disease developed in more individuals with LBBB than controls (21% vs. 11%; p=0.04). Not so with RBBB No increased rate of PPM implantation 	 Overt CV disease develops in ~20% in those with LBBB during follow-up (nearly twice as often) than in controls w/o conduction disorder. CV death (but not all-cause mortality) more common in combined left and right bundle branch block than in those w/o conduction disorder CV death (but not all-cause mortality) more common in those with LBBB vs. RBBB In multivariate analyses, the differences in CV death associated with BBB and amongst types of BBB are no longer significant when age is considered.
Imanishi R, et al. 2006 (32)	Study type: Case- control	Inclusion criteria: Atomic bomb survivors in	1° endpoint: Incidence and mortality of LBBB	Strengths: • Large population-based study with
<u>16923453</u>	Size:	Hiroshima and Nagasaki, Japan, participants in	Results:	lengthy follow-up and rigorous data collection
	N=17,361 (6,663 men)	biennial health exams	Mean age at LBBB=69.6 ± 10.0 y in	• 40-y follow-up
	screened	(including CXR and ECG)	men and 68.3±10.9 y in women	·
	N=110 incident LBBB	from 1958–2002	LBBB increased with age	<u>Limitations</u> :
	(41 men) N=456 (156 men)	Exclusion criteria:	Incident LBBB associated with HTN (5.4.60) (5.4.60)	Although larger than Framingham
	randomly selected age	LBBB at initial exam (N=9)	(54.6% of LBBB vs. 43.2% of controls; p=0.033), ischemic heart disease	study, still a limited number of cases of incident LBBB to analyze
	and sex-matched	Controls with PPM or AF	(22.7% vs. 5.7%; p<0.001), and non-	Lack of echo or cath data may
	controls w/o LBBB, 3–5	(no cases of LBBB had AF)	cardiac disease (43.6% vs. 33.3%;	underestimate the prevalence of
	controls per incident		p=0.045)	underlying CMP or valvular heart
	case of LBBB		• Incident LBBB associated with:	disease
			Radiographic cardiothoracic ratio: /51 016 1 at Du of LBBB up 50 315 5 in	Conclusion
			(51.9±6.1 at Dx of LBBB vs. 50.3±5.5 in controls; p=0.010)	Conclusion: Incident LBBB is independently
			• ECG-derived LVH (60.9% of LBBB vs.	predictive of CHF-related mortality
			22.3% of controls; p<0.001)	(RR >3) but not all-cause mortality
			• ST-T abnormalities (39.1% of LBBB vs.	Incident LBBB is associated with
			16.2% of controls; p<0.001)	antecedent or coincident markers of

			 antecedent to the development of LBBB LBBB independently predictive of CHF mortality; RR: 3.08 (1.62–5.87; p<0.001) but not all-cause mortality; RR: 1.22 (0.90–1.65; p=0.206) 	structural heart disease such as increased radiographic CT ratio or electrocardiographic LVH or ST-T abnormalities
Framingham Dhingra R, et al. 2006 (33) 16585411	Study type: Prospective, longitudinal, community-based study Size: N=1,759 (1,113 women)	Inclusion criteria: Attendees of the 16 th (1979–1981) or 17 th (1982–1984) biennial exam of the Framingham Heart Study with available ECG and echo data (2-D guided M- mode) Exclusion criteria: Prevalent HF or previous MI (N=135) Anti-arrhythmic therapy or PPM (N=187)	1º endpoint: Assess the relationship of QRSd to CHF incidence during mean follow-up of 12.7 y; range 0.4–22.3 y. Results: ■ 324 participants developed CHF (205 women); 231 (17.3%) of 1339 with QRS <100 ms, 62 (20.2%) of 307 with incomplete BBB (QRS=100–119 ms), and 31 (27.4%) of 113 with complete BBB (QRS ≥120 ms). ■ Survival free of CHF decreased with increasing QRSd category (log-rank p<0.001) ■ In multivariable time-dependent Cox models, BBB associated with a 1.74-fold risk of CHF (p<0.001) compared to the referent group. ■ In multivariable analyses LBBB had the highest incidence of CHF during follow-up compared to QRS <100 msec. □ LBBB: adjusted HR: 4.45 (95% CI: 2.33–8.51; p=0.0001) □ Indeterminate BBB: adjusted HR: 2.18 (95% CI: 1.13–4.20; p=0.02) □ RBBB: adjusted HR: 1.73 (95% CI: 0.93–3.21; p=0.08)	 Strengths: Large community-based population Long duration of follow-up (up to 22 y) Prospective, systematic data acquisition Both sexes well represented Limitations: Limited statistical power to analyze relations of BBB type to CHF incidence Single assessment of QRSd Predominantly Caucasian population Conclusion: There is a positive association between ECG QRSd with CHF risk in a large community-based population free of CHF or MI at baseline Association strongest for complete BBB who experienced a 2-fold risk of CHF compared to those with QRS <100 msec. Baseline incomplete and complete BBB accounted for only 30% of incident CHF during follow-up. In an exploratory analysis of a subgroup (N=82, 25% of CHF cases) of pts undergoing echo within 30 d of CHF Dx, incomplete and complete

				BBB both associated equally with HFrEF and HFpEF.
Rotman M, et al. 1975	Study type:	Inclusion criteria:	1° endpoint: Review clinical status and	Strengths:
Rotman M, et al. 1975 (34) 1132086	Study type: Retrospective observational cohort study Size: N=237,000 with ECGs in the United States Air Force Central Electrocardiographic Library, 1957–1972 N=394 RBBB N=125 LBBB	Inclusion criteria: Routine initial ECGs obtained on a heterogeneous group of Airforce Academy cadets and applicants for flight training and serial ECGs on rated flying personnel taken throughout their Air Force career. The population that was critically examined included only those subjects that had had either an initial clinical evaluation and/or available complete follow-up information. Exclusion criteria: N/A	1° endpoint: Review clinical status and mortality of those with BBB at the United States Air Force School of Aerospace Medicine. Compare and contrast those with RBBB with LBBB and explore various combinations of fascicular blocks for their impact on findings at initial evaluation and subsequent clinical course. Results: • Mean age=36±9 (range 17–58) y for RBBB • Mean age=40±7 (range 20–56) y for LBBB (higher % of RBBB were <25 y and a higher % of LBBB was >45 y; p<0.001) • 251/394 (63.7%) RBBB present on initial ECG and 143/394 (36.3%) were noted on subsequent ECG • 44/125 (35.2%) LBBB present on initial ECG and 81/125 (64.8%) were noted on subsequent ECG • 372/394 RBBB had complete evaluation at time of initial Dx, 97% of these were asx, 94% had a normal CV evaluation, 10/372 (2.7%) had evidence of CAD, 9/372 (2.4%) had	 Strengths: Large pool of routine screening ECGs in a young, generally healthy, predominantly asx population Fairly long duration of follow-up Limitations: Exclusively male population Low prevalence of BBB and of underlying structural heart disease renders the study largely descriptive Conclusion: The majority of young airmen with right and left bundle branch block are asx and free of underlying structural heart disease/CAD. Although underpowered to allow conclusions, LBBB may be more predictive of CV death than RBBB The prognosis of BBB relates more to the underlying structural heart disease than the conduction abnormality itself. "Significant progressive electrical dysfunction is a rare occurrence" in this population (1 PPM for advanced AVB in each group, and 1 additional
			evidence of CAD, 9/372 (2.4%) had hypertension, 5/372 (1.3%) congenital heart disease 121/125 LBBB had complete evaluation at the time of initial Dx,	
			95% of these were asx, 89% had a normal CV evaluation, 11/121 (9.1%) had evidence of CAD (4 confirmed by cath), 8/121 (6.6%) had hypertension	

Froelicher VF, et al. 1977 (35) 831426	Study type: Retrospective cross – sectional study Size: N=34 with asx LBBB N=41 with asx RBBB Derived from 325 airmen referred for cardiac catheterization	Inclusion criteria: Airmen who underwent coronary angiography for clinical indications between 2/1971 and 12/1974. All but 27 with possible angina were asx. Exclusion criteria: Declined catheterization (N=not provided)	 54 subjects with RBBB and 29 with LBBB had a complete cardiac catheterization LBBB had a significant higher rate of CAD (p<0.01) and HTN (p<0.05) than RBBB, independent of age. Mean follow-up: RBBB=10.8±4.7 y, LBBB=8.8±4.8 y During follow-up of those with RBBB, 21 (6%) new cases of CAD and 21 new cases (6%) of HTN developed. During follow-up of those with LBBB, 6 (5%) new cases of CAD and 7(6%) new cases of HTN developed 14 (4%) of those with RBBB died, all but 3 from non-cardiac causes 9 (8%) of those with LBBB died, all but 2 from cardiac related causes. Combinations of fascicular blocks did not inform clinical status at the time of initial evaluation or subsequent prognosis. 1° endpoint: Prevalence of significant CAD (>50% stenosis) according to referral Dx (e.g., abnormal ETT, angina, BBB, etc.) Results: Mean age=42±7 y Significant CAD: LBBB=8/34 (24%) RBBB=8/41 (20%) All pts=98/325 (30%) 5/34 (14.7%) with LBBB and no significant CAD had "generalized LV dyskinesia" and LVEDP >12 mm Hg 1/34 (2.9%) with LBBB and normal coronary arteries manifested overt HFrEF subsequent to catheterization and died suddenly 2 months after Dx 	Strengths: Coronary angiography performed in asx pts with isolated LBBB and no other indication of CV disease (justified by public safety concerns) Limitations: Small size Potential selection bias (clinically referred for cardiac evaluation) No systematic follow-up Conclusion: ECG abnormalities are "poorer predictors of heart disease in asx apparently healthy men than in hospital or clinic populations."
--	---	---	--	---

Manitoba Heart Study	Study type:	Inclusion criteria:	1° endpoint: Death, including sudden	Strengths:
Rabkin SW, et al. 1980	Prospective,	Participants in regular	death during follow-up, association of	Long period of close follow-up
(36)	observational cohort	annual medical exams	ECG findings antecedent to the Dx of	
<u>6444828</u>	study	with no clinical evidence	LBBB with the development of	<u>Limitations:</u>
		of CHD or valvular heart	subsequent LBBB	Highly selected population
	<u>Size</u> :	disease antecedent to or		Exclusively male
	N=29	coincident with the	Results:	Young at the start with predictably
		discovery of LBBB	Mean age at entry=30.8 y.	very low prevalence of LBBB
	Derived from 3,983		Average follow-up=29 y	Low number of cases of LBBB
	male pilots from the	Exclusion criteria:	Only 1 case of LBBB present at entry	
	Royal Canadian Air	One participant with	• 13/28 (46.4%) who developed LBBB	Conclusion:
	Force or licensed by	LBBB at entry exam was	after the initial exam had some	Incident LBBB is associated with LVH
	the Canadian Dept. of	excluded from analysis of	antecedent ECG abnormality (14% had	on prior ECGs
	Transport participating	factors contributing to	LVH, 14% has ST-T abnormalities, and	LBBB in a relatively young, male
	in regular health	the development of LBBB	14% had some form of conduction	population is associated with a >10-
	exams (including ECG)	but was included in the	abnormality such as PR prolongation,	fold risk of sudden cardiac death.
	every 3–5 y from	prognostic study	IVCD, LAD, etc)	
	1948–1977		Only the prevalence of LVH was	
			significantly different from the	
			population free of incident LBBB (14%	
			vs. 3.5%; p<0.05)	
			• Risk of SCD: 6/29 (20.7%) was >10 fold	
			higher than in those w/o LBBB (1.6%);	
			p<0.01	
Women's Health	Study type:	Inclusion criteria:	1° endpoint: CHD-related and all-cause	Strengths:
Initiative	Prospective	Participants in the	mortality associated with L and R BBB	 Relatively large number of cases of
Zhang ZM, et al. 2012	observational cohort	Women's Health Initiative		LBBB and RBBB
(37)	study	with interpretable ECG	Results:	Long systematic follow-up
<u>22858187</u>			 Mean follow-up=14.2 y 	
	<u>Size</u> :	Exclusion criteria:	Avg. age=63 y; 10% African American	<u>Limitations</u> :
	N=66,450 (1,739 with	 No available electronic 	• 19% had h/o CVD or ECG evidence of	Exclusively women
	BBB, of which 708 had	ECG (N=960)	prior MI	
	clinical evidence of CV	Inadequate quality ECG	• 2.6% BBB (714 LBBB, 832 RBBB, 122	Conclusion:
	disease)	(N=614)	NSIVCD, 71 RBBB with LAFB)	In women with baseline CVD, after
	Derived from 68,133	• PPM or WPW (N=109)	• 18% with BBB died	adjusting for potential confounders,
	participants in the		8% with LBBB had fatal CHD events	LBBB and RBBB were predictive of
	Women's Health			CHD death, but only LBBB was
	Initiative study			predictive of all-cause death

			 HR for CHD death for LBBB in women with CVD: 2.92 (95% CI: 2.08–4.08; p<0.01). HR for CHD death for RBBB in women with CVD: 1.62 (95% CI: 1.08–2.43; p<0.05) HR for all-cause mortality for LBBB in women with CVD: 1.43 (95% CI: 1.11–1.83; p<0.01) HR for all-cause mortality for RBBB in women with CVD: 1.1 (95% CI: 0.84–1.44. p=NS) HR for CHD death for LBBB in women free of baseline CVD: 2.17 (1.37–3.43; p<0.01) 	 In women free of CVD, only LBBB was predictive of CHD death, and neither BBB was a predictor of all-cause death NSIVCD and RBBB with LAFB is associated with a 2.5- to 3-fold increased risk of CHD death in those with baseline CV disease. Most repolarization parameters do not predict CHD or all-cause mortality.
OPTIMAAL Bogale N, et al. 2007 (38) 17317365	Study type: Prospective observational study derived from an RCT of losartan vs. captopril in pts with AMI and HF or asx impaired LVEF Size: N=356 (6.5%) with LBBB at baseline or subsequently developing LBBB during 2.7 y mean follow-up N=354 (6.5%) with RBBB at baseline or subsequently developing RBBB during 2.7 y mean follow-up N=5,477 in the RCT	Inclusion criteria: Acute MI (average time to enrollment=3 d), ≥50 y, HF, impaired LVEF <35%, or LVEDD >65 mm and anterior Q waves on ECG (old or new) Exclusion criteria: • Supine SBP <100 mm Hg at the time of enrollment • Rx with an ACEI or ARB • Unstable angina • Hemodynamically significant valvular stenosis • Hemodynamically significant arrhythmia • Planned revascularization • Unable/unwilling to give consent	1° endpoint: All-cause death. Outcomes and crude rates were stratified according to presence of LBBB or RBBB at baseline. Kaplan—Meier curves plotted for death and SCD stratified by BBB pattern at baseline. Cox regression models assessed effect of BBB pattern at baseline on death and SCD and the effect of the development of BBB during follow-up adjusted for age, pulse rate, h/o CABG, DM, CHF or prior MI Results: Pts with BBB patterns were older, fewer were smokers at time of inclusion, and more had previous HTN, AMI, CABG, and DM. 946/5477 (17.3%) all-cause deaths. 442/5477 (46.7%) were SCD Baseline: 203/5477 (3.7%) had LBBB and 235/5477 (4.3%) had RBBB	 Strengths: Relatively large number of cases of LBBB and RBBB Systematic follow-up for fatal outcomes Limitations: No core lab interpretation of ECGs No data to correlate BBB with EF No data on presence or absence of BBB before index AMI No ability to assess reversion rates of BBB back to normal after AMI (reported to be >10% after revascularization in some studies) Only 10% received PCI (54% received thrombolysis) Conclusion: In middle-aged and older pts with high-risk findings after acute MI, LBBB present at time of MI is independently predictive of all-cause

Paldassaroni S. et al.	Study types	Participation in another research trial Inclusion criterios	 Follow-up: additional 153 (2.8%) developed LBBB and 119 (2.2%) developed RBBB. LBBB at baseline independently predictive of all-cause death (HR: 1.48; 95% CI: 1.25–1.77; p<0.01) and CV death (HR: 1.53; 95% CI: 1.17–1.99; p<0.01), but not SCD/resuscitated cardiac arrest (HR:1.28; 95% CI: 0.96–1.71; p=NS) Late onset LBBB independently predictive of all-cause death (HR: 2.06; 95% CI: 1.49–2.90; p<0.01), CV death (HR:2.70; 95% CI: 1.68–4.35; p<0.0001), and SCD/resuscitated cardiac arrest (HR: 2.38; 95% CI, 1.48–3.83; p=0.01) RBBB at baseline independently predictive of SCD/resuscitated cardiac arrest (HR:1.60; 95% CI: 1.25–2.04; p<0.01) but not all-cause death (HR:1.16; 95% CI, 0.96–1.39; p=NS) or CV death (HR: 1.25; 95% CI: 0.95–1.64; p=NS) Late-onset RBBB independently predictive of SCD/resuscitated cardiac arrest (HR: 2.02; 95% CI: 1.22–3.34; p=0.05) but not all-cause death (HR: 1.26; 95% CI: 0.84–1.89; p=NS) or CV death (HR: 1.42; 95% CI: 0.76–2.67; p=NS) 	death and CV death, but not SCD/resuscitated cardiac arrest. Subsequently developing LBBB during an average of 2.7-y follow-up is associated with all 3. In middle-aged and older pts with high-risk findings after acute MI, RBBB present at time of MI and subsequently developing RBBB during an average of 2.7-y follow-up is independently predictive of SCD/resuscitated cardiac arrest but not all-cause death or CV death.
Baldasseroni S, et al. 2002 (39)	Study type: Retrospective,	Inclusion criteria: Participants in the Italian	1° endpoint: 1-y, all-cause mortality rate	Strengths: • Large prospective outpatient registry
<u>11868043</u>	observational registry	Network CHF Registry,	Results:	of pts referred to cardiologists for
	study	created in 1995 by the	 Mean age=63±12 y 	management of CHF
		Italian Association of	• 1295/5517 (23.5%) women	Standardized definitions and data
	<u>Size</u> : N=5,517	Hospital Cardiologists and	• 1544/5517 (28.0%) NYHA class 3-4	collection methods (for most
			• LBBB 1391/5517 (25.2%)	elements)

		derived from 150 Italian medical facilities. Exclusion criteria: CHF due to valvular heart disease (N=745) Inadequate quality ECG (N=270) Cardiac transplantation within the 1st year of follow-up	 RBBB: 336/5517 (6.1%) Other forms of IVCD: 339/5517 (6.1%) Those with LBBB more likely to be female, have non-ischemic CM, NYHA 3–4 status, S3, cardiomegaly on CXR, EF <30%, or receive diuretics, ACEI, digoxin, and amiodarone, and less likely to have AF and receive nitrates, BBs, antiplatelet agents, and CCBs Overall 1-y mortality: 659/5517 (11.9%) 306/659 (46.4%) deaths attributed to sudden death LBBB 1-y all-cause mortality: 224/1391 (16.1%) RBBB 1-y all-cause mortality: 40/336 (11.9%) Other IVCD 1-y all-cause mortality: 30/339 (8.8%) By multivariable analysis, LBBB remained independently predictive of all-cause mortality (HR: 1.360; 95% CI: 1.148–1.610; p=0.0004) By multivariable analysis, LBBB remained independently predictive of sudden death (HR: 1.348; 95% CI: 1.051–1.729; p=0.0188) 	No core lab interpretation of ECGs Chose QRSd >140 ms to reduce likelihood of false classification of IVCD as LBBB. This may exaggerate the prognostic impact of LBBB as QRSd itself is predictive of outcome with higher mortality with longer QRSd. No systematic coronary angiogram to determine etiology of CM No systematic definition of sudden death Conclusion: Amongst outpatients referred to Italian cardiologists for HF management, LBBB is associated with both a higher risk population (as indicated by clinical status and co-morbidities) and an approximate 35% increased 1-y risk of both all-cause death and sudden death, independent of a large number of other CHF risk indicators.
Erne P, et al. 2017 (40) 28224924	Study type: Retrospective observational registry study Size: N=29,114 in registry N=28,421 had presenting ECG data N=26,090 STEMI w/o LBBB	Inclusion criteria: Participants in the AMIS Plus Registry, an ongoing Swiss nationwide prospective cohort of pts admitted with ACS, founded by the Swiss Societies of Cardiology, Internal Medicine, and Intensive Care Medicine in 1997.	1° endpoint: All-cause, in-hospital mortality Results: Age: STE=64.3 [SD 13.2], LBBB=75.0 [10.7]; p<0.001 Those with LBBB at the time of acute MI were more likely to be female, present later, have less chest pain and more dyspnea as chief complaint, have higher heart rate, and higher	Strengths: • Largest prospective registry of unselected pts with suspected acute MI and LBBB to date • Standardized definitions and data collection methods Limitations: • No core laboratory for ECG analysis • No systematic algorithm to differentiate isolated LBBB from LBBB associated with transmural

	2,295 had LBBB with or w/o concomitant STE	Definitive acute MI with either STE or new/ presumed to be new LBBB Exclusion criteria: N/A	prevalence of AF, Killip class 3–4 status, DM, HTN, hyperlipidemia, and prior MI, HF, CVA, PAD, or CKD (p<0.001 for all) Those with LBBB had higher prevalence of impaired EF (354/1530 [23.1%] vs. 1582/18622 [8.5%]; p<0.001). Those with LBBB were less aggressively treated with antiplatelet, antithrombotic, BB, statin, and revascularization therapies (p<0.001 for all) All-cause in-hospital mortality: LBB=371/2,295 (16.2%); STE=1,707/26,090 (6.5%); p<0.001 Cardiogenic shock after admission: LBB=286/2252 (11.6%) STE=1642/25,834 (6.4%); p<0.001 MACCE: LBBB=394/2244 (17.6%) STE=2102/25,751 (8.2%); p<0.001 Multivariate analysis: LBBB no longer an independent predictor of in-hospital mortality, HR: 1.01 (95% CI: 0.86–1.19;	 Ischemia (e.g. Sgarbossa criteria) No prior or subsequent ECGs after admission to know if the LBBB was new or not and whether the LBBB was transient No assessments of clinical eligibility for each therapeutic option. Therefore, hard to interpret differences in treatment rendered between those with and w/o LBBB LBBB identifies a pt subset with a higher baseline CV risk profile and greater burden of preexisting CV diseases and comorbidities compared with pts with STE Pts with LBBB are less likely to receive evidence-based antithrombotic therapy and invasive treatment strategy compared with STE pts LBBB is associated with a higher incidence of unadjusted in-hospital MACE, mortality, and cardiogenic shock rates but the same adjusted
Voo KK ot al. 2012	Study type:	Inclusion critoria:	p=NS)	risk
Yeo KK, et al., 2012 (41) 22152973	Study type: Retrospective registry study utilizing the NCDR's ACTION registry- GTWG Size: N=46,006 in registry with STEMI (STE or nLBBB)	Inclusion criteria: • Participants in the ACTION registry from January 2007 to March 2009 from 343 participating US hospitals, enrolling 117,781 pts with ACS presenting within 24 h of symptom onset Exclusion criteria:	 1° endpoint: Prevalence of presumed nLBBB in the setting of AMI Compare characteristics and treatments of those with AMI and either nLBBB or persistent STE Compare the risk for adverse inhospital CV outcomes in the 2 groups Results: 	 Strengths: Large prospective registry of unselected pts with suspected acute MI and LBBB Standardized definitions and data collection methods Limitations: No core laboratory for ECG analysis No systematic algorithm to differentiate isolated LBBB from LBBB associated with transmural Ischemia (e.g. Sgarbossa criteria)

N=44,405 (96.5%) had STE w/o LBBB N=1,601 (3.5%) AMI with nLBBB N=1,601 (3.5%) AMI (N=160) Subsequent admissions in those with multiple admission (only the index admission was used; N=79)	 Median age: STE=60 [interquartile range 51.0, 71.0], nLBBB=74.0 [63.0, 82.0]; p<0.0001 Those with nLBBB at the time of acute MI were more likely to be female, non-smoker, have h/o DM, HTN, hyperlipidemia, prior MI, CABG, HF, CVA, PAD, or CKD, have higher heart rate, or present with signs of CHF (p<0.001 for all) Also those with nLBBB were more likely to have prior PCI (p=0.0013), or cardiogenic shock at presentation (p=0.0052) Those with nLBBB were less aggressively treated with antiplatelet therapy, beta blocker, and statin medications and were less likely to receive reperfusion therapy, including primary PCI (p<0.0001 for all) Time to primary PCI was delayed on average 33 min for those with nLBBB relative to those with STEMI (p<0.0001) More pts in the STEMI group had LVEF ≥50% compared to the nLBBB group (47.9% vs. 27.2%) and fewer pts with LVEF <25% (4.8% vs. 17.4%; p<0.0001) Median peak troponin and creatine kinase-MB levels were higher in pts with STEMI compared to those with nLBBB (131.9 vs. 32.3; p<0.0001, and 21.8 vs. 6.0; p<0.0001, respectively) 	 Insufficient angiographic data to distinguish AMI with LBBB vs. other causes of biomarker elevation in the setting of LBBB No data on pre-existing LBBB prior to incident AMI Conclusion: LBBB identifies a pt subset with a higher baseline CV risk profile and greater burden of preexisting CV diseases and comorbidities compared with pts with STE Pts with LBBB are less likely to receive evidence-based antithrombotic therapy and invasive treatment strategy compared with STE pts LBBB is associated with a higher incidence of unadjusted in-hospital mortality but the same adjusted risk
---	--	---

Framingham Dhingra R, et al. 2005 (42) 15734611	Study type: Prospective, cross- sectional, community- based study Size: N=4,534 (2,583 women)	Inclusion criteria: Attendees of the 16 th or 17 th biennial exam of the Framingham Heart Study or the 2 nd exam of the Framingham Offspring Study with available ECG and echo data (2-D guided M-mode) Exclusion criteria: • Prevalent HF (N=51)	Multivariate analysis: nLBBB no longer an independent predictor of in-hospital mortality, (OR: 0.91; 95% CI: 0.75–1.12; p=0.38) 1º endpoint: Gender-specific linear regression models to assess the relationship of QRSd to echo parameters of LV size, mass and fractional shortening and left atrial size at end-systole. Results: In linear regression models, LV mass, end-diastolic dimension, and septal and posterior wall thickness were positively related to log-QRSd (p<0.001) Fractional shortening was inversely	Strengths: Large community-based population Long duration of follow-up Prospective, systematic data acquisition Both sexes well represented Limitations: Limited statistical power to analyze relations of BBB type to LV measurements Use of M-mode for EF estimation (reflects only basal function of 2
		 Prevalent HF (N=31) Previous MI (N=146) Digoxin or quinidine use (N=206) PPM (N=3) 	 Fractional snortening was inversely related to log-QRSd (p<0.001) LBBB (N=32) was associated with higher LV mass and lower fractional shortening compared to a normal QRSd (p<0.001) RBBB (N=92) was not associated with significant differences in LV mass, dimensions, wall thickness or fractional shortening in men, but was associated with higher LV mass (p=0.02) and greater septal (p=0.01) and posterior (p=0.001) wall thickness in women. A stronger association of LV mass with QRSd was seen in obese men, older women, and in hypertensive women 	 (reflects only basal function of 2 segments) Single assessment of QRSd Predominantly Caucasian population Conclusion: There is a positive association between ECG QRSd, as well as LBBB pattern, and LV mass, dimensions and wall thickness, and an inverse relation to systolic function in a large, community-based cohort free of MI and HF.
Talreja D, et al. 2000	Study type:	Inclusion criteria:	1° endpoint:	Strengths:
(43) 10689252	Prospective case- control study <u>Size</u> : N= 300	Consecutive inpatients referred for echocardiographic assessment of LV systolic	Predictive value of historical features, symptoms, physical findings, chest radiography and/or ECG findings to predict LVEF <45%	Systematic assessment of clinical features including ECG features that might predict LVSD in those referred for echocardiography

		function of which 124 (41%) had LVEF <45%. Exclusion criteria: No ECG within 1 wk prior to echo (N=30)	Results: LBBB was the most predictive ECG finding to suggest LVSD; p<0.0001 Multivariate predictors of LVSD: Radiographic cardiomegaly. OR: 3.8 (95% CI: 1.6–4.6; p<0.01) LBBB. OR: 3.7 (3.6–67.2; p<0.01) Male sex. OR: 3.45 (1.4–4.9; p<0.01) Normal ECG: OR: 0.30 (0.02–0.45, p<0.004)	Limitations: • Small sample size with wide confidence margins Conclusion: The presence of LBBB is an independent predictor of echocardiographically-determined LVSD in inpatients for whom LVSD is a clinical concern
Mendu ML, et al. 2009 (44) 19636031	Study type: Retrospective observational Size: N=2106 consecutive admissions for 1920 individuals ≥65 y admitted following syncope from 7/2002 to 12/2006	Inclusion criteria: ≥65 y admitted following syncope Exclusion criteria: Documented presyncope, 103 cases omitted for complete lack of data	 1º endpoint: Diagnostic yield of a broad spectrum of clinical assessments Results: 163 (8.5%) had more than 1 admission 32% known CAD, 18% h/o AF, 9% h/o MI, 5% h/o AVB 980 (47%) etiology unknown, 453 (22%) vasovagal, 282 (13%) orthostatic hypo. 821 (39%) had echocardiogram, abnormal in 516 (63%), "affected Dx" in 35 (4%), "helped determine etiology" in 13 (2%)- most frequently aortic stenosis, affected management in 36 (4%) Yield in defining etiology for echocardiogram similar to ECG (3%), ETT (2%), Head MRI (2%), Carotid US (2%) but less than telemetry (5%) and orthostatic VS (15%). Of 11 tests analyzed, echo yielded the 4th lowest cost per test affecting Dx (\$6,272/ influential test) after postural BP, telemetry and ECG Diagnostic impact of echo was greater and cost per test affecting Dx were lower 	Strengths Sample size, standardized abstraction, consistent definitions, blinded reabstraction (mean bias-adjusted κ statistic = 87% (SD 20%) for the diagnostic test variables), inclusion of effect on management not just Dx yield Limitations: Reliance on administrative database to identify cases, reliance on chart documentation to assess impact of tests on clinical management (? underestimated effect of negative tests), using charges adjusted by costcharge ratio rather than actual costs. Test ordering was not protocol driven and at the discretion of the clinicians, likely affecting the yield of the tests (echocardiogram likely ordered more indiscriminately than some others). Conclusion: Echocardiogram was a frequent part of syncope evaluation in elderly hospitalized pts (39%) at an academic

			in those who met SFSR criteria for increased risk	medical center and only occasionally provided information that affected management (4% of those studied) or established an etiology of syncope (2%). Compared to the litany of diagnostic tests used in this population, however, it was relatively cost-effective.
Recchia D, et al. 1995 (45) 8770716	Study type: Retrospective observational Size: N=128	Inclusion criteria: All pts admitted to a university teaching hospital due to syncope over a 7 mo period Exclusion criteria: Syncope of known cause, presyncope, obvious seizure, referred for EPS	 1° endpoint: Dx yield of echo beyond that provided by Hx, physical, and ECG Results: 48/128 (37.5%) had a cause of syncope identified. Of these 37/48 (77%) were diagnosed by Hx, physical and ECG. 82/128 (64%) underwent echo Echo normal in 52% of total population and 63% of those with no clinical evidence of heart disease (46% of population had no clinical evidence of heart disease) Echo confirmatory in 48% of those with suspected heart disease and refuted it in 52% Echo provided no etiology of syncope that was unsuspected on clinical grounds 	Limitations: Small sample size, test ordering at the discretion of the clinicians, did not address the impact of echo on management in those with clinically suspected heart disease in whom it was confirmatory half the time
Sarasin FP, et al. 2002 (46) 12231593	Study type: Prospective observational with 18 mo-follow-up Size: N=650 consecutive pts presenting to the ED of a university teaching	Inclusion criteria: Syncope with clinical suspicion of cardiac valve disease or unexplained syncope after Hx, physical and ECG Exclusion criteria: Those presenting with syncope	 1° endpoint: Diagnostic yield of echo, either confirming a suspected Dx or revealing an unexpected one Results: 61/650 (9%) had a systolic murmur and severe AS was suspected in 20 (3% of total). Echo confirmed severe AS in 8 (40%). In 18 months of follow- 	Conclusions • Echo is most useful to assess the severity of suspected underlying cardiac disease and for risk stratification in those whose syncope is unexplained but have a Hx of heart disease or an abnormal ECG. • Echo is unlikely to yield a clinically unexpected etiology of syncope in

	hospital who underwent a standardized initial clinical evaluation, and for those with syncope of undetermined etiology thereafter, a stepwise testing algorithm that started with echocardiography.	who did not complete the standardized evaluation (105) or refused to participate (33)	up no further cases of severe AS emerged 155/650 (24%) had unexplained syncope and echo revealed no abnormalities that established a cause in them (this group was older with more comorbidities than those with an established cause of syncope) 71/155 (46%) had "abnormal but notrelevant" echo findings that include clinically relevant findings such as severe MR, moderate PH, moderate MS, LVH In those with a normal ECG (N=67), echo was normal or "non-relevant" in all In those with a cardiac Hx or abnormal ECG (88/650=13.5%), echo revealed EF ≤40% in 24/88 (27%) and minor non-relevant findings in the rest Arrhythmias were diagnosed in 12/24 (50%) of those with Hx of heart disease or abnormal ECG and low EF on echo and 12/64 (19%) of those with EF >40% on echo (P<0.01)	those w/o evidence of cardiac disease on initial evaluation • Comment: Echo has greater relevance than these conclusions suggest due to the possibility that the clinically relevant but not definitively diagnostic abnormalities (other than low EF) will influence management
Dagres N, et al. 2013 (47) 24280765	Study type: Descriptive survey of member institutions of the EHRA EP research network Size: 43 centers from 17 countries from Europe (and Argentina)	Inclusion criteria: EHRA members who responded to the survey Exclusion criteria: N/A	1° endpoint: Define current practice habits regarding the work-up and management of pts with syncope Results: ECG used "always or almost always" by 98% of respondents ("in most case" =2%) Echo used "always or almost always' by 66% ("in most cases" =27%, "only if specific indication" =7%)	 Offers little regarding appropriate use of tests but does define current practice suggesting stubborn reliance on echo in contemporary practice despite data to suggest relatively low yield in unselected pts 42% of respondents used formal diagnostic algorithms and only 26% had a dedicated syncope unit Compared to other tests, there was relative uniformity of utilization of echo, second only to ECG

Badheka AO, et al. 2013 (48) 23726176	Study type: Retrospective cohort study on prospectively collected data from NHANES III Size: 8,527 of 8,561 individuals >40 y who underwent resting 12- lead ECG as part of NHANES III.	Inclusion criteria: NHANES III enrollee with available ECG data Exclusion criteria: Missing QRS data (N=30) Missing mortality data (N=4)	 Holter used "always or almost always" by 59% All other tests queried <50% "always or almost always" 1º endpoint: Describe the relationship between QRSd on routine ECG and CV mortality Results: Mean age was 60.5±13.6 y "White" race: 87% Female: 53% Follow-up: 106,244.6 person-y HR for risk adjusted CV mortality of highest quartile of QRSd: 1.3; 95% CI: 1.01–1.7; p=0.04 LBBB HR: 2.4; 95% CI: 1.3–4.7; p=0.009) RBBB HR: 1.9; 95% CI: 1.2–3.0; p=0.008) Adding QRSd in 10-ms increments to Framingham Risk Score yielded 4.4% overall net reclassification improvement (95% CI: 0.02–0.04; p=0.00006) 	Strengths: Large representative cross section of US population (part of a cohort of 72,062,796 in NHANES III). Prospectively acquired data Limitations: Retrospective and observational analysis Single ECG at baseline interpreted by software Diagnoses based on death certificate w/o chart review No data on SCD Conclusions: Increased QRSd in general and LBBB and RBBB specifically are all associated with increased risk of risk-adjusted CV death.
Chiu DT, et al. 2014 (49) 24698512	Study type: Secondary analysis of a prospective, observational, cohort study Size: 570 consecutive ED pts aged ≥18 y presenting with syncope between	Inclusion criteria: Presented to a single, large urban teaching hospital emergency department with syncope Exclusion criteria: Near syncope Persistent altered mental status	1° endpoint: Diagnostic yield of tests performed in ED, during hospitalization, or during 30 d of follow-up. Tests chosen at clinician discretion. Positive tests identified a serious condition deemed responsible for the index syncopal event Results:	Strengths: Busy ED with 55,000 annual visits Prospectively acquired data 99% follow-up Assessed current clinical practice (tests ordered according to clinical suspicion) Limitations:
	9/2003 and 6/2006	Syncope due to alcohol or illicit drugs	 Mean age was 57.2 ± 24.5 y Female: 64% Admitted to hospital: 60.2% 	ObservationalTesting not ordered systematically (not all pts had all tests)

Page 44

		Seizure Coma due to hypoglycemia or head trauma Lost to follow-up (n=5)	 330 (58%) underwent in-hospital telemetry, 317 (55%) serum troponin, 150 (26%) echocardiography, 56 (10%) ambulatory monitoring Overall yield of all tests analyzed: 73 pts (8%; 95% CI: 7–10%) Diagnostic yield: Echo – 22% (5.8% overall yield for the entire syncope population – κ=0.78); Telemetry – 5.8% (overall yield 3.3% – κ=0.66); Ambulatory Monitoring – 3.6% (overall yield 0.4% – κ=0.5); Serum troponin – 3% (overall yield 3.3% – κ=1) 	 Single center Small sample size Short-term follow-up Limited range of commonly employed testing studied (i.e., no head CT, routine blood tests, CXR, EEG, etc.) Conclusions: Although routine testing is prevalent in ED pts with syncope, the diagnostic yield is relatively low. Nevertheless, some testing, particularly echocardiography, may yield critical findings.
Menozzi C, et al. 1998 (50) 9832095	Study type: Prospective observational study of the placebo arm of an RCT of oral theophylline and permanent pacing in pts with symptomatic SND (THEOPACE trial) Size: 162 screened 55 excluded (12 for "severe" SSS) N=107 randomized to 3 treatment arms 35 randomized to no treatment	Inclusion criteria: Symptomatic SND, age ≥45 Exclusion criteria: Severe SSS (heart rate <30 bpm or sinus pauses >3 s) Refractory HF Recent MI or CVA (<3 mo) "Very severe general diseases" "Significant renal or hepatic disease" H/O sustained VT Secondary bradycardia (e.g., hypothyroidism/drugs) Need for BB or CCB Other causes of syncope besides SND Pt refusal Unable to follow up	1° endpoint: 1st episode of syncope, CHF requiring hospitalization, persistent AF, "poorly tolerated" sustained paroxysmal tachyarrhythmia requiring treatment, thromboembolic event Results: • Mean age was 71 ± 11 y • Female: 49% • "Organic" heart disease: 63% • H/O Syncope: 57% • Mean ambulatory heart rate: 51 ± 8 bpm • Follow-up: 17 ± 15 months • 20 (57%) experienced CV events requiring treatment [8 (23%) syncope, 6 (17%) CHF, 4 (11%) AF, 2 (6%) paroxysmal tachyarrhythmia] • Actuarial rates at 1, 2, and 4 y for any CV event: 35%, 49%, and 63% respectively • Actuarial rates at 1, 2, and 4 y for syncope: 16%, 31%, and 31% respectively	Strengths: Prospective Up to 4-y follow-up Limitations: Small sample size Conclusions: Clinical CV events occur in most untreated SSS pts during long-term follow-up. The outcome can be "partly predicted" on initial evaluation. Along with age ≥65, echocardiographic parameters of LV size and EF help identify those at risk for CV events (but not necessarily syncope per se). A prior Hx of syncope and a corrected SNRT ≥800 ms identifies those at increased risk of syncope during follow-up.

Page 45

 Predictors of any CV event by multivariate analysis: age ≥65 y (HR: 7.80 [95% CI:1.97–30.9]; p=0.001), LVEDD ≥52 by echo (HR: 2.89 [1.07 to 7.81]; p=0.04), EF <55% by echo (HR: 3.68 [1.28 to 10.52]; p=0.01) Predictors of syncope by multivariate analysis: corrected sinus node recovery time ≥800 ms (HR: 7.80 [0.94–65];
p=0.02), h/o syncope (HR: 5.96 [0.71– 49.7]; p=0.05)

Data Supplement 4. Nonrandomized Trials, Observational Studies, and/or Registries of Ambulatory Electrocardiography in Bradycardia or Conduction Disorders (Section 4.2.4)

Study Acronym; Author; Year Published' PMID	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Mendu ML, et al. 2009 (44) 19636031	Study type: Retrospective observational Size: N=2106 consecutive admissions for 1920 individuals ≥65 y admitted following syncope from 7/2002 to 12/2006	Inclusion criteria: ≥65 y. admitted following syncope Exclusion criteria: Documented presyncope, 103 cases omitted for complete lack of data	1º endpoint: Diagnostic yield of a broad spectrum of clinical assessments Results: 163 (8.5%) had >1 admission 32% known CAD, 18% h/o AF, 9% h/o MI, 5% h/o AVB 980 (47%) etiology unknown, 453 (22%) vasovagal, 282 (13%) orthostatic hypotension. 821 (39%) had echo, abnormal in 516 (63%), "affected Dx" in 35 (4%), "helped determine etiology" in 13 (2%)- most frequently AS, affected management in 36 (4%) Yield in defining etiology for echo similar to ECG (3%), ETT (2%), Head MRI (2%), Carotid US (2%) but less than telemetry (5%) and orthostatic VS (15%). Of 11 tests analyzed, echo yielded the 4th lowest cost per test affecting Dx (\$6,272/ influential test) after postural BP, telemetry and ECG Diagnostic impact of echo was greater ad cost per test affecting Dx were lower in those who met SFSR criteria for increased risk	 87% (SD 20%) for the diagnostic test variables), inclusion of effect on management not just Dx yield Limitations: Reliance on administrative database to identify cases, reliance on chart documentation to assess impact of tests on clinical management (? underestimated effect of negative tests), using charges adjusted by cost-charge ratio rather than actual costs. Test ordering was not protocol driven and at the discretion of the clinicians, likely affecting the yield of the tests (echo likely ordered more indiscriminately than some others). Conclusion: Echo was a frequent part of syncope evaluation in elderly hospitalized pts (39%) at an academic medical center and only occasionally provided information that affected management (4% of those studied) or established an etiology of syncope (2%). Compared to the litany of diagnostic tests used in this population, however, it was
Recchia D, et al.1995 (45) <u>8770716</u>	Study type: Retrospective observational	Inclusion criteria: All pts admitted to a university teaching hospital due to	1° endpoint: Dx yield of echo beyond that provided by Hx, physical, and ECG	relatively cost-effective. • •Limitations: Small sample size, test ordering at the discretion of the clinicians, did not address the

		syncope over a 7 mo	Results:	impact of echo on management in
	Size: N=128	period	• 48/128 (37.5%) had a cause of syncope	those with clinically suspected
			identified. Of these 37/48 (77%) were	heart disease in whom it was
		Exclusion criteria:	diagnosed by Hx, physical and ECG.	confirmatory half the time
		Syncope of known cause,	• 82/128 (64%) underwent echo	
		presyncope, obvious	• Echo normal in 52% of total population	
		seizure, referred for EPS	and 63% of those with no clinical	
			evidence of heart disease (46% of	
			population had no clinical evidence of heart disease)	
			• Echo confirmatory in 48% of those with	
			suspected heart diseases and refuted it	
			in 52%	
			Echo provided no etiology of syncope	
			that was unsuspected on clinical	
			grounds	
Sarasin FP, et al. 2002	Study type:	Inclusion criteria:	1° endpoint: Diagnostic yield of echo,	<u>Conclusions</u>
(46)	Prospective	Syncope with clinical	either confirming a suspected Dx or	 Echo is most useful to assess the
<u>12231593</u>	observational with 18-	suspicion of cardiac valve	revealing an unexpected one	severity of suspected underlying
	mo follow-up	disease or unexplained	_	cardiac disease and for risk
		syncope after Hx,	Results:	stratification in those whose
	<u>Size</u> : N=650	physical and ECG	• 61/650 (9%) had a systolic murmur and	syncope is unexplained but have a
	consecutive pts		severe AS was suspected in 20 (3% of	Hx of heart disease or an abnormal
	presenting to the ED of	Exclusion criteria: Those	total). Echo confirmed severe AS in 8	ECG.
	a university teaching	presenting with syncope	(40%). In 18 mo of follow-up no further	Echo is unlikely to yield a clinically
	hospital, who underwent a	who did not complete the standardized	cases of severe AS emerged	unexpected etiology of syncope in
	standardized initial		• 155/650 (24%) had unexplained	those w/o evidence of cardiac
	clinical evaluation, and	evaluation (105) or refused to participate	syncope and echo revealed no	disease on initial evaluation
	for those with syncope	(33)	abnormalities that established a cause	Comment: Echo has greater relevance than these conclusions
	of undetermined	(33)	in them (this group was older with more comorbidities than those with an	
	etiology thereafter, a		established cause of syncope)	suggest due to the possibility that the clinically relevant but not
	stepwise testing		• 71/155 (46%) had "abnormal but not-	definitively diagnostic
	algorithm that started		relevant" echo findings that include	abnormalities (other than low EF)
	with echocardiography.		clinically relevant findings such as	will influence management
			severe MR, moderate PH, moderate	imachee management
			MS, LVH	
	1	l	IVIO, LVII	

Dagres N, et al. 2013 (47) 24280765	Study type: Descriptive survey of member institutions of the EHRA EP research network Size: 43 centers from 17 countries from Europe (and Argentina)	Inclusion criteria: EHRA members who responded to the survey Exclusion criteria: N/A	 • In those with a normal ECG (N=67), echo was normal or "non-relevant" in all • In those with a cardiac Hx or abnormal ECG (88/650 =13.5%), echo revealed EF ≤40% in 24/88 (27%) and minor non-relevant findings in the rest • Arrhythmias were diagnosed in 12/24 (50%) of those with Hx of heart disease or abnormal ECG and low EF on echo and 12/64 (19%) of those with EF >40% on echo (p<0.01) 1° endpoint: Define current practice habits regarding the work-up and management of pts with syncope Results: • ECG used "always or almost always" by 98% of respondents ("in most case" =2%) • Echo used "always or almost always' by 66% ("in most cases" =27%, "only if specific indication" =7%) • Holter used "always or almost always" by 59% 	Offers little regarding appropriate use of tests but does define current practice suggesting stubborn reliance on echo in contemporary practice despite data to suggest relatively low yield in unselected pts 42% of respondents used formal diagnostic algorithms and only 26% had a dedicated syncope unit Compared to other tests, there was relative uniformity of utilization of echo, second only to ECG
			 All other tests queried <50% "always or almost always" 	cens, second only to Ecd

Data Supplement 5. Nonrandomized Trials, Observational Studies, and/or Registries of Nocturnal / Sleeping Bradyarrhythmias and Sleep Apnea (Section-4.2.7)

Study Acronym;	Study Type/Design;	Patient Population	Primary Endpoint and Results	Summary/Conclusion
Author; Year	Study Size		(P values; OR or RR; & 95% CI)	Comment(s)
Published				
NORMALS				
Brodsky M, et al.	Study type:	Inclusion criteria: Healthy,	1° endpoint: Define rates of arrhythmia on	Sinus bradycardia <40 bpm is
1977 (51)	Prospective	Caucasian, male medical	24 h Holter in normal young Caucasian	common in healthy young men
<u>65912</u>	observational – 24h	students, age 23-27 y with	men	(none trained athletes),
	Holter			

	<u>Size</u> : 50	normal exam, ECG, cardiac silhouette on CXR, and echo Exclusion criteria: Of 61 volunteers, 9 excluded and 2 did not complete study. Excluded: 2 with DM,1 each with ASH on echo, MVP, WPW, h/o pericarditis, IVCD, MVP and HTN, QRS axis of -100°	Results: • 50% marked sinus arrhythmia • 24% SB <40 bpm at least once/night • 28% >1.75 s pause • 4% pause >2 s • 8% 1° AVB (1/2 exclusively nocturnal. 1/2 both d and night) • 6% type 1 2 nd degree AVB-virtually all nocturnal	 Pauses >2 s and type 1 second-degree AVB are uncommon (4%–6%) No specific screening for OSA and no information regarding obesity.
Bjerregaard P, 1983 (52) 7160388	Study type: Prospective observational – 24 h Holter Size: 260	Inclusion criteria: Healthy middle age and older volunteers (40–79 y). 65% male. Mean age: male =53 y; female =56 y Exclusion criteria: • technically inadequate tracings (N=9) • HTN (N=17) • Abnormal 12-lead ECG x 2 min except for arrhythmias (N=9) • CV Sx (N=7) • Illness within 3 mo (N=3) • Abnormal CV physical exam (N=5) • CM or pul. venous congestion on CXR (N=0)	1° endpoint: Establish norms for mean 24 h heart rate, minimal HR, and pauses Results: • Mean heart rate =74±18 bpm (range 53–95) • Mean min heart rate =56±16 bpm (range 36–78) • 30% had pause ≥1.5 s • <1% had pause >2 s (longest =2.24 s) • 60% of those with pauses had longest pause at night • 4.6% sinus arrest • 3.5% blocked PACs • 0.8% Wenckebach (both nocturnal) • 1.1% marked SB (heart rate <40 bpm) • Males, non-smokers, and physically active had lower mean and minimal HR by ANOVA (no p value reported). Age differences NS.	 Nocturnal pauses >2 s, marked sinus brady, and type 1 2nd degree AVB are rare in a middle aged, healthy population (1% or less) Sinus arrest is more common but still uncommon in this population (~ 5%) No information on obesity or screening for OSA
Clarke JM, et al. 1976 (53) 74472	Study type: Prospective observational, 2 separate 24 h Holter	Inclusion criteria: Healthy volunteers (16–65 y) with normal clinical exam, ECG, and biochemical/hematologic screening	1° endpoint: Describe the distribution and frequency of arrhythmias in 2 separate 24 h Holter monitors in healthy subjects (41 male, 45 female) Results:	 In healthy adolescents and adults, 2nd degree AVB is rare and exclusively nocturnal (2.5%) Heart rate drops ~20 bpm during sleep relative to

	Size: 86/101 G.D. Searle & Co. employee volunteers, mostly office workers	Exclusion criteria: HTN (6), BBB (2), heart murmur (1), epilepsy (1), sedative use (3), anemia (1), anxiety (1)	 2/81 (2.5%) had nocturnal 2nd degree AVB: 1 had both type 1 and type 2 2nd degree AVB, the other had type 1 2nd degree AVB only 1 subject had 1st degree AVB 8 (10%) subjects had junctional rhythm both awake and asleep. 	wakefulness in both men and women • Average daily heart rate is higher in women than men (p<0.05) and in smokers vs. non-smokers (p<0.001) • No information on obesity or screening for OSA
Fleg JL, et al. 1982 (54) 7056104	Study type: Prospective observational – 24 h Holter Size: 98/110 healthy active subjects, ages 60–85 y (69 men). 59/98 (60%) in 60s, 32/98 (33%) in 70s and 7/98 (7%) in 80s.	Inclusion criteria: Participants in the Baltimore Longitudinal Study on Aging > >60 y No CV Hx or sx No systemic illness NL exam BP <160/95 NL CXR No MI, atrial abnormality, LVH, RVH or BBB on ECG NL PFT NL ETT No meds affecting heart rate/rhythm Exclusion criteria: 8/38 had abnormal thallium 1/38 had abnormal echo 3 technically unsatisfactory Holter	1° endpoint: Describe frequency and distribution of arrhythmias in healthy elderly adults Results: • Marked SB (heart rate <40 bpm): 2/98 (2%) • Sinus pause >1.5 s: 2/98 (2%). No pause >2 s • 2 nd degree AVB: 1/98 (1%) • All bradyarrhythmias occurred during sleep	Conclusions Healthy, active elderly individuals screened for significant cardiac and pulmonary disease manifest rare nocturnal bradyarrhythmias (1–2%)
		АТН	LETES	
Meytes I, et al. 1975 (55) <u>1163436</u>	Study type: Prospective observational – awake 12-lead ECG Size: 126	Inclusion criteria: Athletes from Israeli national teams Exclusion criteria: N/A	1° endpoint: Frequency of conduction disturbances on awake 12-lead ECG after 15 min. of resting recumbency Results: • 11/126 (8.7%) 1 st degree AVB (P-R ≥0.21 s)	 Wakeful type I 2nd degree AVB is rare in athletes and is presumed to be physiological Authors point out it is, nonetheless, "much more frequent than hitherto suspected."

			 3/126 (2.4%) type I 2nd degree AVB (abolished by sitting, standing, and atropine) Followed the 3 athletes with Wenckebach for 6 y – Wenckebach present only during intense training and resolved consistently within a few weeks of reducing intensity of training No heart disease or decline in performance developed over 6 y 	By comparison: 1/67,375 asx healthy male USAF fliers manifested type I 2 nd degree AVB on awake routine ECG
Viitasalo MT, et al. 1982 (56) 7059398	Study type: Prospective observational – Nocturnal Holter Size: 35 Finnish male "top-class" nationally competitive endurance athletes (mean age 23.1±6.1 y) and 35 controls (age 23.0±5.8 y) who were med students and army conscripts who were not engaged in regular intensive physical training, normal ECG and CXR	Inclusion criteria:	1° endpoint: Describe the range of arrhythmias including conduction disturbances on nocturnal 2-channel ambulatory ECG monitor (4pm–8am). No training or alcohol consumption during study Results: • Slowest heart rate =37.7±4.3 bpm (range 24–48) in athletes and 45.4±6.3 bpm (range 33–63) in controls (p<0.001) • 13/35 (37.1%) of athletes and 2/35 (5.7%) of controls had sinus pause >2 s (all from 10pm–6am). Longest pause =2.76 and 2.6 s respectively • 1st degree AVB (PR >0.22): 13/35 (37.1%) of athletes and 5/35 (14.3%) of controls (p<0.05) – 6 exclusively during sleep, 4 asleep and awake, 3 exclusively awake in athletes. All controls had 1st degree AVB exclusively during sleep • Type 1 2nd degree AVB: 8/35 (22.9%) of athletes and 2/35 (5.7%) of controls (p<0.05) – 5 exclusively while asleep, 2 awake and asleep, and exclusively while awake in 1. All controls had type 1 2nd degree AVB exclusively during sleep	 Heart rate slows substantially (>20 bpm) while asleep in athletes and non-athletes alike Nocturnal sinus pauses >2 s are common in young male athletes (present in >1/3) and infrequent in untrained healthy young men (<6%) 1st degree AVB at any time is common in young male athletes (present in >1/3) and occasional in untrained young men (present in ~15%) AVN Wenckebach and SB with junctional or idioventricular escape rhythm are both fairly common in young male athletes (≥20%) and occur primarily while asleep. AVN Wenckebach is infrequent in untrained young men (<6%) and occurs exclusively while asleep SB with junctional or idioventricular escape rhythm and type 2 second-degree AVB are exceedingly rare in untrained healthy young men

			 Type 2 2nd degree AVB: 3/35 (8.6%) of athletes but no controls – 1 while awake and asleep, 1 only while awake, 1 only while asleep SB with competing junctional or idioventricular rhythm in 7/35 (20%) of athletes but no controls – 3 exclusively while asleep, 3 while awake and asleep, and 1 exclusively while awake 	while awake or asleep (neither demonstrated in this study).
Northcote RJ, et al. 1989 (57) 2923752	Study type: Prospective observational – 48 h Holter Size: 20 male Scottish veteran runners and 20 age- matched sedentary male controls	Inclusion criteria: • Age >45 y (mean =56±7) • >25 y regular running • >25 miles/wk Exclusion criteria: • Smoking • Medications • Hx CV disease.	1° endpoint: Describe distribution of ECG abnormalities and arrhythmias in middleaged male athletes detected with resting, exercise, and 48 H ambulatory ECG Results: Heart rate <35 bpm Athletes: 8/20 (40%) Controls: 1/20 (5%) Mean nocturnal heart rate Athletes: 51±8.5 bpm Controls: 66±13.2 bpm Sinus pauses (1.8–15 s) Athletes: 8/20 (40%) ->80% nocturnal Controls: 2/20 (10%) 1st Degree AVB (PR >220 ms) Athletes: 6/20 (30%) Controls: 0/20 (0%) Type 2 2nd Degree AVB Athletes: 4/20 (20%) Controls: 0/20 (0%) CHB Athletes: 3/20 (15%) Controls: 0/20 (0%)	 In this older cohort of distance runners, bradycardia and AVB was more common than in previously studied younger cohorts of athletes Bradycardia and AVB are more frequent in distance runners than in healthy, active agematched controls and predominantly nocturnal in both groups
SLEEP APNEA	L	<u> </u>	Controls. 0/20 (0/0)	
Tilkian AG, et al. 1977 (58) 331948	Study type: Prospective observational	Inclusion criteria: OSA identified on PSG. All male. Mean age =44 y (30–60). Mean time in apnea	1° endpoint: Describe the distribution and frequency of arrhythmias while awake and asleep in pts with OSA and evaluate the	ConclusionsIn pts with fairly profound OSA, bradycardia and conduction

	Size: 15 pts with OSA who underwent extensive monitoring: • 2 separate 24 h Holters and simultaneous PSG in all • 12/15 participated in overnight invasive hemodynamic monitoring • 6 underwent a third 24 h Holter to assess the effect of atropine • 6 underwent awake EPS • 8 underwent repeat Holter after tracheostomy • 4 underwent ECG monitoring while the tracheostomy was temporarily plugged during sleep.	=51% (35–72%). Mean duration =24 s (11–40 s) Exclusion criteria: N/A	influence of atropine and tracheostomy on those arrhythmias Results: 14/15 (93.3%) marked sinus arr. (>30 bpm swing) 6/15 (40%) marked SB (heart rate <30 bpm), all nocturnal 5/15 (33%) "Asystole" (pauses of 2.5–6.3 s), all nocturnal 2/15 (13.3%) 2 nd degree AVB, all nocturnal 7racheostomy eliminated arrhythmias which recurred when transiently replugged Atropine (1.2–2.4 mg) blunted degree of sinus arrhythmia but did not eliminate. It prevented marked SB in 3 of 6, 2 nd degree AVB in 1 of 2, and pauses in 3 of 5. 5 with wakeful EPS had normal SNRT, A-H and H-V intervals. Of these 2 had marked SB, 2 had prolonged pauses (3–6 s), and 1 had AVN Wenckebach	disturbances are common and can be profound Tracheostomy can eliminate the nocturnal arrhythmias associated with OSA The nocturnal bradycardia and conduction disturbances associated with OSA are at least partially vagally mediated based on partial suppression with atropine Confounders No AHI reported Highly selected population Particularly unnatural sleeping environment No normal comparator group
Guilleminault C, et al. 1983 (59) 6193700	Study type: Retrospective observational – 24 h Holter Size: 400 pts with SAS who underwent 24 h Holter and simultaneous PSG. 384 men, median	Inclusion criteria: AHI >5 (range 25–92) and had simultaneous Holter and PSG Exclusion criteria: No simultaneous testing or no SAS. 187 excluded of which 111 did have AHI >5	1° endpoint: Describe frequency and distribution of arrhythmias during sleep in pts with SAS Results: 193/400 (48%) had nocturnal arrhythmias 98% of arrhythmias occurred during an obstructive event	• In aggregate, nocturnal arrhythmias are common in pts with moderate to severe SAS and occur almost exclusively during obstructive events • There appears to be an O₂ sat threshold of 72% for nocturnal bradyarrhythmias in this cohort

	age =48 y (19–71 y). 16 women, median age 59 (25–68 y)		 Arrhythmias (except for PVCs) seen only with O₂ sat <72% (93% occurred with O₂ sat ≤65%). 8/400 (2%) NSVT 43/400 (10.8%) Sinus arrest (2.5–13 s). In 32/43 (74.4%) it lasted ≥4 s 31/400 (7.8%) 2nd degree AVB (19 type 1 (5%) and 12 type 2 (3%) 29/400 (7.2%) had profound SB (<30 bpm for ≥10 s) 10/400 (2.5%) had PAF 3/400 (1%) had AFL 75 /400 (18.8%) >2 VPC/min during sleep 50 with significant arrhythmias underwent trach: repeat monitoring 3–6 mo postop: no arrhythmias except VPCs in 4 (vs. 18 prior) 	 Profound SB, sinus pauses ≥2.5 s, and 2nd degree AVB occur occasionally (~7–10% of pts) Tracheostomy eliminates nocturnal bradyarrhythmias in pts with OSA Confounders Highly selected population No normal comparator group
Shepard JW Jr, et al. 1985 (60) 2411477	Study type: Prospective observational – nocturnal ECG only Size: 31	Inclusion criteria: Clinically referred males with OSA (apnea index 44±26/h and hypopnea index 1±24/h). Age 55±11 y (range 30–76) Exclusion criteria: N/A	 1º endpoint: Determine the relationship between ventricular ectopy and the severity of oxyhemoglobin desaturation during sleep Results: Profound SB (heart rate <30 bpm): 10% Sinus pauses (2–13 s): 10% 2nd degree AVB: 6% 	Conclusions Bradycardia and AVB occur occasionally during sleep in pts with moderate to severe OSA (6%–10%) Confounders Primary data not reported in original study or in subsequent review article.
Hoffstein V, et al. 1994 (61) 7774322	Study type: Prospective observational – Nocturnal ECG only Size: 458 clinically referred for PSG (214 (46.7%) with SAS – AHI >10)	Inclusion criteria: Consecutive, unselected pts referred for PSG (primarily for snoring). Age 48±13 y. BMI 31±7 kg/m² Exclusion criteria: N/A	1° endpoint: Compare the frequency of sleep-related arrhythmias in those with and w/o SAS and examine separately the relationships between arrhythmias and the severity of apnea, hypoxemia, and snoring, Results: 121 (26%) AHI 10–30, 41 (9%) AHI 30–50, 52 (11%) AHI >50) Arrhythmia prevalence: SAS: 58%; No SAS: 42% (X²=16.7; p<0.0001); AHI ≥40:	Conclusions AVB or junctional rhythm during sleep in adults with severe SAS is uncommon (<3%) but does not occur at all in pts referred for PSG w/o SAS Arrhythmias in aggregate are more frequent in those with more profound SAS and in those with nocturnal hypoxemia

			 70% (X² =9.2; p=0.002); mean O₂ sat <90%: 82%; mean O₂ sat >90%: 40% (X² =7.4; p=0.006) Most frequent arrhythmias in all groups = ventricular or supraventricular tachyarrhythmias 6/214 (2.8%) with SAS had some bradyarrhythmia (AVB, junctional) all associated with other arrhythmias and all with AHI >30. 0/244 (0%) had AVB or junctional rhythm with AHI ≤10. Significance for difference in prevalence of bradyarrhythmias among the groups not reported 	 Confounders Too few bradycardic events to correlate with AHI or hypoxemia. No data regarding profound bradycardia, sinus pauses, etc
Boudoulas H, et al. 1983 (62) 6580372	Study type: Prospective observational - Holter Size: 120 pts with sleep disordered breathing: • SAS =61 (46 males; mean age 49.6±12 y; 15 with HTN, 4 with MI) • Narcolepsy =35 • Idiopathic hypersomnolence =24	Inclusion criteria: Pts with sleep disordered breathing previously diagnosed by PSG admitted to a clinical research center for ≥3 d to undergo echo, 24 h Holter, and 24 h urinary catecholamines on 3 successive d Exclusion criteria: N/A	1° endpoint: Describe the incidence of primary cardiac abnormalities in pts with SDB Results: 1st degree AVB: 2/61 (3.3%) of SAS SN exit block: 2/61 (3.3%) of SAS Neither evident in other groups Malignant ventricular arrhythmias: 26% of SAS, 3% in narcolepsy, and 4% in idiopathic hypersomnolence Urinary catecholamines similarly elevated in all 3 groups	• First degree AVB and sinus node exit block occur occasionally in pts with SAS (~3%) • SDB of disparate types is associated with increased urinary catecholamines
SHHS Mehra R, et al. 2006 (63) 16424443	Study type: Prospective, cross- sectional, observational Size: 228 SAS (RDI ≥30)	Inclusion criteria: • Participant of original SHHS (N=6,441) who were alive, agreed to undergo repeat PSG 3-7 y after enrollment and who were not on CPAP (N=3,295) • Age ≥40 y	1° endpoint: Examine the association between SDB and cardiac arrhythmias Results: • Mean age 70.6±9.72 vs. 68.6±9.1 y (p=0.01)	• In this community-based cohort, there was no evidence of an increased prevalence of conduction disturbances in those with severe SDB and those w/o SDB

		RDI ≥30 Comparison group RDI <5 Matched for age, sex, race/ethnicity, and BMI (N=338) Exclusion criteria: BMI <18 or >40 kg/m²	 3.1% of SDB had PPM and 0.9% of non-SDB had PPM (p=0.05) No difference in frequency of conduction delays (SDB vs. no SDB) Sinus pause ≥3 s: 11 vs. 8.6%; p=0.34 1st degree AVB: 25 vs. 22.5%; p=0.49 Type I 2nd degree AVB: 1.8 vs. 0.3%; p=0.07 Type II 2nd degree AVB: 2.2 vs. 0.9%; p=0.20 AF (OR: 4.02), NSVT (OR: 3.4), complex V ectopy (OR: 1.74) were more common in SDB than non SDB groups. No dose response relationship noted between severity of SDB and V arrhythmia SDB much more strongly associated with complex ectopy in younger members than older [OR:9.3 (2.8–30.6) at age 50 to 2.0 (1.3–3.1) at age 70 (p=0.002)] 	• The prevalence of sinus pauses, and 2 nd degree AVB was ~15% in the SDB group, however.
Miller WP, et al. 1982 (64) 7124758	Study type: Prospective observational - Holter Size: 23 SAS (AHI 12.5–62.5; 78% with AHI >43.75). Age 25– 57 y, 87% male.	Inclusion criteria: SAS severe enough to warrant referral for tracheostomy Exclusion criteria: N/A	1° endpoint: Describe the frequency and distribution of arrhythmias during sleep in pts with SAS Results: Marked sinus arrhythmia: 18/23 (78%) Heart rate <30 bpm: 2/23 (8.7%) Sinus pause >1.8 s: 2/23 (8.7%) 1st degree AVB: 1/23 (4.3%) Type 1 2nd degree AVB: 1/23 (4.3%) Aggregate: 6/23 (26%) brady (non-sinus arrhythmia) while asleep vs. 1/23 (4.3%) while awake	 Conclusions Nocturnal marked sinus arrhythmia is common in pts with SAS (predominantly severe SAS) Nocturnal profound bradycardia and sinus pauses occur occasionally in pts with SAS (~9%) Nocturnal first degree and type I 2nd degree AVN occur infrequently in pts with SAS (<5% each) Such bradyarrhythmias are far more common while asleep than awake in this cohort. Comments

EFFECT OF CPAP ON ARRIBecker H, et al. Stu	RHYTHMIAS - OBSERV	14 no show 3 Intercurrent illness 1 declined to participate VATIONAL Inclusion criteria: Sleep apnea	p=NS • Sinus arrest: SAS =5.2% (95% CI: 2.2–12.6) vs. No SAS =1.0% (95% CI: 0.2–5.6) p=NS • Complex ventricular ectopy: SAS =1.3% (95% CI: 0.4–6.9) vs. No SAS =4.1% (95% CI: 1.6–10.1). p=NS	fell below previously suggested thresholds for arrhythmia (Guilleminault and Shepard) • Only 2 prior studies=consecutive pts (Guilleminault and Boudoulas) and the others may have been subject to selection bias • Only Boudoulas compared SAS to comparator group (albeit pts with other types of sleep disorder) • Excluded "major medical conditions" and there may be a complex interaction between CV disease and SAS
1995 (66) Pro	rospective oservational	and Mobitz type 2 nd degree	distribution of arrhythmias during sleep in pts with SAS and assess the effect of nCPAP	CPAP effectively suppresses sleep and sleep apnea

		AVB, 3 rd degree AVB or sinus	on the 2 nd night of treatment and after 4 wk	associated "heart block" in
	<u>Size</u> : 17/239	pause >2 s on Holter monitor	of treatment	pts with fairly advanced SA.
	consecutive pts	•		·
	referred to a	Exclusion criteria: N/A	Results:	Comments
	German sleep clinic		 Mean age =50.7 (27–78) 	Potential referral bias
	over 17 mo who		• Median RDI =90/h (±36.1) at baseline	 Non-randomized,
	manifested both SAS		Median RDI =6/h (±6.2) on nCPAP	observational
	and "heart block" on		• No. of HB episodes =1,575 at baseline	• 16/17 subjects were male
	ambulatory		No. of HB episodes =165 on CPAP	-
	screening tests. They		(p<0.001 vs. baseline) – an 89% reduction	
	then underwent		• 12/17 (70.6%) manifested no arrhythmia	
	serial PSGs with		on CPAP	
	Holter monitoring,		• 3/17 (17.6%) manifested a 71–97%	
	w/o and		reduction in heart block episodes on	
	subsequently with		CPAP (2 of these 3: resolution of HB at 4	
	CPAP		wk)	
			• 2/17 (11.8%) demonstrated increased	
			heart block on CPAP but 1 demonstrated	
			resolution of HB at 4 wk.	
			• 15/17 (88%) manifested no arrhythmia	
			after 4 wk of CPAP	
Koehler U, et al.	Study type:	Inclusion criteria: Sleep apnea	1° endpoint: Correlate the frequency of	Conclusions
1998 (67)	Prospective	(AHI >10/h), no evidence of SAN	bradyarrhythmias to stages of sleep,	 CPAP effectively suppresses
<u>9551750</u>	observational	or AVN dysfunction on EPS, and	oxygen desaturation and apnea, as well as	sleep apnea associated "heart
		nocturnal "heart block" who	the effect of nCPAP/nasal bilevel positive	block" in pts with fairly
	<u>Size</u> : 16	underwent baseline PSG and PSG	airway pressure therapy on these	advanced SA.
		on CPAP the following night	arrhythmias in pts w/o EP abnormalities.	
				<u>Comments</u>
		Exclusion criteria:	Results:	Potential referral bias
		AVN blocking or AADs	• Mean age=49.6 (±10.4) y	Non-randomized,
			• BMI 36.8 (±7.9) kg/m ²	observational
			• 13/16 (81.3%) HTN; 0 MI; 2/16 (12.5%)	• 14/16 subjects were male
			DM; 11/16 (68.8%) LVH by echo; 7/16	
			(43.8%) COPD	
			• 651 episodes of HB; 87.9% during REM and	
			12.1% during stages 1 and 2 non-REM	
			• (p<0.001)	

			• 609/651 (93.5%) occurred during apnea/hypopnea with desaturation ≥4% (but no correlation to nadir O ₂ sat above/below 72%)	
			 Mean AHI =75.5±39.6/h at baseline and 3.0±6.6/h on nCPAP/BiPAP (p<0.01) Bradyarrhythmia: 651 at baseline (432) 	
			episodes of 2 nd degree AVB, 178 sinus pauses >2 s, 41 3 rd degree AVB)	
			Bradyarrhythmia on nCPAP/BiPAP: 72 (p<0.01) – an 89% reduction in bradyarrhythmia.	
Grimm W, et al.	Study type:	Inclusion criteria: Sleep apnea,	1° endpoint: Describe the long-term	<u>Conclusions</u>
2000 (68)	Prospective	no evidence of SAN or AVN	prognosis for symptomatic bradyarrhythmia	Pts free of significant SAN or
10980227	observational	dysfunction on EPS, and	in pts with asx bradyarrhythmias associated	AVN dysfunction by EPS who
		ventricular asystole of 6.7±3.3 s	with sleep apnea and w/o significant	are chronically treated with
	<u>Size</u> : 29	(3.1–16.8 s) exclusively during	conduction abnormalities on EPS.	CPAP for SA c/b nocturnal
		sleep who underwent PSG with		bradycardia are extremely
		and w/o CPAP and were followed	Results:	unlikely to have symptomatic
		clinically for 54±10 mo	• 93% male	bradycardia or syncope in long-
		Exclusion criteria:	Mean age: 49 y	term follow-up of 4.5 y.
		'	• BMI: 36 kg/m ²	Such pts who receive a PM are
		AVN blocking or AADs"Advanced" SAN or AVN	• HTN: 19/29 (66%); CAD: 6/29 (21%); MI:	unlikely to require pacing very much, at all, if PMs are set to
		disease at EPS	2/29 (7%)	low back-up pacing rates.
		 Symptomatic bradycardia on 24 	Bradyarrhythmia: 14/29 (48%) sinus 13/20 (446) 3 rd degree AV(B 3/20)	low back-up pacing rates.
		h Holter (or symptoms of	arrest, 12/29 (41%) 3 rd degree AVB, 3/29	Comments
		bradycardia, otherwise)	(10%) both sinus arrest and 3 rd degree AVB	Potential referral bias
		Studyeardia, etherwise,	 nCPAP abolished all pauses >3 s in 21/29 	Non-randomized,
			(72%)	observational
			 nCPAP failed to abolish all pauses in 8/29 	Same group as Koehler
			(28%) with persistent pauses of 3–5 s	• 93% of subjects were male
			No pt developed symptomatic	
			bradycardia over 54±10 mo of follow-up	
			58% always used CPAP	
			10% never used CPAP	

Harbison J, et al. 2000 (69) 10988177	Study type: Prospective observational Size: 45 consecutive eligible pts from a university hospital's dedicated sleep disorders unit referred to initiate nCPAP	Inclusion criteria: Previously diagnosed moderate-severe OSA (AHI 50±23/h) who underwent overnight oximetry and concurrent 18 h 2-channel Holter prior to and after initiating CPAP (Becker, Koehler, within 2 nights of initiating). Studies performed in hospital. Exclusion criteria: N/A	 w/o PPM had asx pauses up to 3.6 s in duration, while asleep 12/29 (41%) received PPM at discretion of their care provider during study (including 7/8 with persistent pauses on CPAP. 8 PPM programmed in VDI at 30–40 bpm: <1% paced at follow-up 3 PPM programmed in DDD at 40–50 bpm: <10% paced at follow-up 1 PPM programmed in DDD at 60 bpm: >10% paced at follow-up 1 PPM programmed in DDD at 60 bpm: >10% paced at follow-up 1° endpoint: Establish the frequency of pathologically significant cardiac rhythm disturbances in the group and, in particular, to determine the effect of nCPAP on these disturbances. Results: 91% male Mean age: 50 (SD: 13.1) y BMI: 32.7 (SD: 6.0) kg/m² 35/45 (78%) had some rhythm disturbance at baseline 8/45 (18%) manifested "pathological arrhythmia (complex ectopy, SVT other than sinus tach, or pauses >2 s, 2nd and 3rd degree AVB) 7/45 (15.6%) sinus pause >2 s (frequencies reflect individuals with more than 1 type of arrhythmia and sum is >8) 2/45 (4.4%) from among these 7 with pauses had sinus pauses >3 s (longest =10 s) 2 /45 (4.4%) had complex ventricular ectopy (1 NSVT, 1 ventricular bigeminy) 1/45 (2.2%) had 2nd degree AVB 	Conclusions Cardiac rhythm disturbances during sleep are common in pts with OSA Potentially significant arrhythmias during sleep are relatively common (18%) Potentially significant nocturnal arrhythmias correlate with OSA severity Potentially significant arrhythmias during sleep are effectively treated by nCPAP therapy. Comments Small sample size Potential referral bias No control group Non-randomized, observational design 91% of subjects were male Absence of data to suggest the presence of arrhythmias during sleep directly
---------------------------------------	---	---	--	--

ASYX BRADYCARDIA	AS A MARKER OF OSA -	- OBSERVATIONAL	 nCPAP abolished all "pathological" arrhythmias in 7/8 (87.5%) The outlier had ischemic CM and severe AS and had both ventricular ectopy and sinus pauses with and w/o CPAP "Pathological" arrhythmias correlated with severity of OSA as indicated by AHI (p=0.04), but not to mean oxygen saturation, BMI, age, BP, glucose, or lipids 	mortality in OSA and the lack of evidence that suppression of arrhythmias with CPAP contributes to improved outcomes in OSA.
Stegman SS, et al. 1996 (70) <u>8774819</u>	Study type: Prospective observational cohort study Size: 7 pts with clinical indications for cardiac rhythm assessment (ECG, hospital telemetry, and ambulatory monitoring) referred to an EP service for PPM for asx bradyarrhythmias	Inclusion criteria: Referred for PPM for asx profound SB, sinus pauses of 2.08–7.52 s, or 2 nd or 3 rd degree AVB detected on clinically indicated rhythm assessment. Screened clinically for SAS. Those with suggestive sx were referred for PSG. Exclusion criteria: • Medications include beta blocker, digoxin or verapamil. • None were trained athletes	1º endpoint: Prevalence of SAS as indicated by PSG in those with asx bradycardia and sx suggestive of SAS. Results: • All had normal resting awake heart rates during all EP clinic visits before and after enrollment • Bradyarrhythmias prompting referral were all nocturnal or during daytime sleep • OSA diagnosed in all by PSG (1 mild, 2 moderate, and 4 severe). • Mean nadir O₂ sat: 70.6% (45−88%) • 6 treated with CPAP or sleep position modification • 1 received tracheostomy after failing CPAP • Mean follow-up: 22 mo (18−32 mo) • 6/7 (86%) remained free of typical bradyarrhythmia symptoms on treatment for OSA. • 7/7 reported improved sx of OSA on treatment	 Conclusions Asx bradyarrhythmias occurring during sleep should prompt screening for SAS. Those with sx suggestive of SAS and significant nocturnal bradycardia have a high likelihood of OSA on PSG Such pts are likely to remain asx on treatment for OSA w/o PPM implantation during 18–32 months of follow-up. Establishing a Dx of OSA in these pts may obviate the need for PPM by facilitating treatment of the underlying cause of the bradyarrhythmia and identify pts at (potentially modifiable) increased risk for CV events. Comments
			 1 with AS and severe CHF had syncope during follow-up but also showed resolution of nocturnal bradycardia on hospital tele after tracheostomy. Authors describe 1 additional subject with daytime and nocturnal profound resting 	 Small sample size Potential referral bias No control group with negative response to screening questions who also underwent PSG

			sinus bradycardia in the 30s with preserved chronotropic response to exercise and no sx of SAS who did not undergo PSG and refused PPM. Remained asx over 17 mo of follow-up. They highlight the distinct pattern of persistent d and night time bradycardia in this subject vs. exclusively nocturnal bradyarrhythmias in those with SAS	 Non-randomized, observational design and size preclude conclusions regarding the impact of treatment of OSA on outcomes Most did not present definitive indications for PPM in the absence of sx
European Multicenter Polysomno-graphy Study Garrigue S, et al. 2007 (71) 17353437	Study type: Prospective observational cohort study Size: 98 consecutive pts with PPM from 11 European centers	Inclusion criteria: PPM for at least a month for symptomatic SND, advanced AVB, or CRT for HFrEF and QRS >120 ms. Mean spontaneous nocturnal atrial rate ≥50 bpm PPM settings during PSG = DDI at lower rate of 50 bpm in all Exclusion criteria: Recent (<6 mo) MI, USA, or coronary revascularization Permanent atrially paced rhythm	1° endpoint: Prevalence and consequence of undiagnosed SAS as indicated by PSG in those with PPM according to indication for pacing: HF, symptomatic "diurnal" bradycardia, and advanced AVB Results: Mean age 64±8 y Pacing indication: 29/98 (30%) DCM/CRT; 33/98 (34%) advanced AVB; 36/98 (37%) for SND T7% male BMI 26.8±5.2 kg/m² HTN: 49%; CAD: 22%; DM: 10% Mean Epworth Sleepiness Score =7±4, similar in all pacing indications. 13/98 (25%) had ESS >11. Prevalence of SAS: 59% (95% CI: 46–69), over twice the estimated prevalence in the general population in other studies SND prevalence of SAS: 58% (27% severe-AHI >30/h) AVB prevalence of SAS: 68% (27% severe) HFrEF prevalence of SAS: 50% (5% severe) V-pacing during PSG: AVB=97±4%; SND=15±12%, CRT: 0% (p<0.01 by ANOVA for AVB and CRT) A-pacing rate similar in all groups at 15—20% (p=NS)	 Conclusions Regardless of indication for pacing, those with PPM have a significantly higher prevalence of SAS (59%) than the general population despite relatively few symptoms of SAS (mean ESS =7) The majority of the SA is obstructive even in those with HFrEF/CRT Authors call for systematic screening of PPM recipients for SAS due to the high prevalence and potential CV consequences of SAS Comments No control group w/o PPM for comparison of ESS and PSG results Some elements inconsistent with previous observations including lack of correlation of AHI with age or BMI and the preponderance of OSA rather than CSA in the HFrEF/CRT group

	 Prevalence of SAS was similar in those with or w/o HTN, CAD or DM, regardless of pacing indication. 75% of SDB events were hypopneas All pts had mixed OSA and CSA. Most apneic events were obstructive, including in the CRT group <5% of pts had predominantly CSA, regardless of pacing indication No correlation between ESS and AHI (r=0.01; p=NS) Although atrial pacing occurred <20% of the time with lower pacing rate of 50 bpm, it was not entirely eliminated atrial pacing has been linked in some studies to reductions in SDB
--	---

Data Supplement 6. RCTs of Implantable Loop Recorder in Patients With Documented or Suspected Bradycardia or Conduction Disorders (Section 4.3.1)

Study Acronym; Author; Year Published; PMID	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P value; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
RAST Krahn AD, et al. 2001 (72) 11435336	Aim: To find out whether prolonged monitoring strategy is better than conventional strategy in the evaluation of recurrent syncope Study type: Prospective randomized trial Size: 60 pts	Inclusion criteria: Recurrent unexplained syncope or syncope X 1 associated with injury Exclusion criteria: LVEF <35%, <1 y expected survival, unable to provide follow-up or consent, clear NMS	Intervention: ILR (MDT Reveal) monitoring for 1 y (N=27) Comparator: Conventional testing – 2 to 4 wk of external loop recorder, TTT and EP testing (SNRT, SACT, antegrade/retrograde conduction, programmed electrical stimulation) (N=30) Crossover was allowed if Dx was unable to be made.	• Dx obtained in 14 of 27 pts (ILR group) vs. 6 of 30 pts (conventional group) (52% vs. 20%; p=0.012)	
EaSyAS Farwell DJ, et al. 2004 (73) 15246645	Aim: Investigate the impact of ILRs on unselected population of syncopal pts presenting to one institution Study type: Randomized trial Size: 201 pts	Inclusion criteria: recurrent syncope but no definitive Dx following initial clinical w/u (including CSM and TTT) Exclusion criteria: Structural heart disease	Interventions: CSM+TTT+implantation of loop recorder (N=103) Comparator: CSM+TTT+conventional investigation (N=98) Mean follow-up 276 d	EKG Dx made: 34 (33%) in ILR group vs. 4 (4%) in conventional group (HR: 8.93; 95% CI: 3.17–25; p<0.0001)	Total medical costs: £406 in ILR group vs. £1210 in conventional group (mean difference £809; 95% Cl: 123–2730)
FRESH Podoleanu C, et al. 2014 (74) 25241220	Aim: To compare conventional evaluation vs. early use of ILR in low-risk pts with syncope in France	Inclusion criteria: Any recent unexplained syncope (after basic clinical exam)	Intervention: ILR group (N=39) Comparator: Conventional evaluation strategy group (N=39) F/u 14 mo	• Identification of cause: 18 (46.2%) pts in ILR group vs. 2 (5%) pts in conventional group (p<0.001)	Quality of life was no different between the 2 groups

	Exclusion criteria:	Days of hospitalization:
Study type:	Significant heart disease,	5.7 d in ILR group vs.
Prospective open-	EF <40%, Hx of MI or	8.0 d in conventional
label randomized	unstable CAD, Hx of	group (p=0.55)
multicenter study	arrhythmia, family Hx of	Number of advanced
	SCD, conduction	cardiac tests needed:
<u>Size</u> : 78 pts	disturbance on EKG,	0.03/pt in ILR group vs.
	HOCM, AS, potentially	0.2/pt in conventional
	arrhythmogenic drug use	group (p=0.05)

Data Supplement 7. Nonrandomized Trials, Observational Studies, and/or Registries of Electrophysiology Testing in Patients With Documented or Suspected Bradycardia or Conduction Disorders (Section 4.3.2)

Study Acronym; Author; Year Published; PMID	Study Type/Design; Study Size (N)	Patient Population	Primary Endpoint and Results	Summary/Conclusion; Comments
Denniss AR, et al. 1992 (75) 1572741	Aim: Electrophysiologic studies in pts with unexplained syncope Study type: Prospective cohort Size: 111 pts	Inclusion criteria: Unexplained syncope, prior general medical evaluation (H&P, CXR, echo, LHC, neuro exam, heart monitor, etc) Exclusion criteria: Documented tachy or bradyarrhythmia, Dx of vasovagal syncope, postural hypotension, AS, HOCM or prolonged QT interval Mean follow-up 20 mo	 Results: No mortality within 30 d of EPS Pts with heart disease (CAD, HTN, MVP, CMP) had higher incidence of conduction disease (26%) than those w/o heart disease (8%; p<0.05) Abnormal EPS (conduction disease, SVT, VT) findings in 42% of pts with heart disease but 16% of pts w/o heart disease (p<0.01) Syncope occurred in only 5% of treated pts with abnormal findings at EPS vs. 24% in the group not receiving any Rx (p<0.05) No recurrent syncope in 27 pts treated with PPM vs. recurrent syncope in 20 of 84 pts (24%) not given PPM (p<0.05) 	 Diagnostic yield of EPS is increased in pts with heart disease. Pts with no heart disease had no mortality.

Data Supplement 8. RCTs Comparing Atropine to Placebo for Bradycardia (Section 5.3.2.1)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
Smith I, et al. 1994 (76) 7906108	Aim: To compare the effectiveness in the treatment of intraoperative bradycardia of transesophageal atrial pacing, atropine, and glycopyrrolate Study type: RCT	Inclusion criteria: Men undergoing elective radical prostatectomy with sufentanil/N₂O/vecuronium anesthetic resulting in bradycardia (<50 bpm or <60 bpm and hypotension) Exclusion criteria: Pts not ASA status I–III.	Intervention: 15 patients were randomized to each group. Comparator: TAP vs. atropine vs. glycopyrrolate	1° endpoint: Time for heart rate to increase to >70 bpm was shortest in the temporary pacing group. There were no significant differences in postoperative course in the 3 groups. Safety endpoint: N/A	• N/A

	Size: N=64, of which 45 had treatment for bradycardia				
Sodeck GH et. al. 2007 (77) <u>17212976</u>	Study type: Observational, retrospective, single center Size: N= 277	Inclusion criteria: Pts presenting to ED with symptomatic bradycardia of <60 bpm Exclusion criteria: Asymptomatic bradycardia	Of 170 with persisting atropine, 92 catechol adrenaline in 24 and 0 and 7 required transcomedical therapy nor 0	rtality ts did well with flat positioning. g symptoms, 141 received amines (orciprenaline in 62, dopamine/dobutamine in 6), utaneous pacing. Neither cause-specific treatment could of pts, who required temporary	Initial stabilization with bedrest and intravenous atropine or catecholamines was effective in the majority of pts.
Aghamohammadi, H., et al. 2009 (78) 19472126	Aim: To determine the efficacy of pre-induction atropine in preventing bradycardia during laparoscopic urologic surgery Study type: RCT Size: N=64	Inclusion criteria: 15–50 y old undergoing elective urologic laparoscopic surgery Exclusion criteria: History of cardiac arrhythmia, drug induced bradycardia, cardiac disease, contraindication to general surgery.	Intervention: Atropine sulfate 0.6 mg IV Comparator: Saline	1° endpoint: Frequency of bradycardia was 28% in non-atropine group and 0 in the atropine group (p<0.01) Safety endpoint (if relevant): Mean systolic BP decrease was 15.7±10 mm Hg in atropine group and 23.5±9.8 mm Hg in controls (p<0.01)	 None of the pts treated with atropine had bradycardia, compared to 28.1% of pts in the saline group Mean systolic and diastolic BP was more stable in the atropine group.

Data Supplement 9. Nonrandomized Trials, Observational Studies, and/or Registries of Atropine in SND and Hemodynamically Significant Bradycardia (Section 5.3.2.1)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Brady WJ, et al. 1999 (79) 10459592	Study type: Retrospective observational study of prehospital, emergency department, and hospital records Size: 172 pts met entry criteria, data were available for 131	Inclusion criteria: Prehospital pts with hemodynamically unstable bradycardia who received atropine by EMS. Hemodynamic instability was defined as the presence of any of the following: ischemic chest pain, dyspnea, syncope, altered mental status, and systolic BP less than 90 mm Hg. Bradycardia was defined as sinus bradycardia, junctional bradycardia, or idioventricular bradycardia (grouped as bradycardia) while AVB included first-, second- (types I and II), or third-degree (grouped as AVB). Exclusion criteria: N/A	1º endpoint: Heart rate response that occurred within one minute following each dose of atropine. Results: 45 pts with AVB, 86 bradycardia. 26 (19.8%)had a partial response, 36 (27.5%) complete, 65 (49.6%) none, and 4 (2.3%) had an adverse response	 One-half of pts had a complete or partial response to atropine and adverse reactions were uncommon. Pts who presented with non-AVB bradycardia received less atropine and were more likely to arrive in the emergency department with SR.
Swart, G, et al. 1999 (80) 10597081	Study type: Retrospective observational study of	Inclusion criteria: Prehospital pts with hemodynamically	1° endpoint: Heart rate response that occurred within	There were no differences in response to atropine in AMI vs. non-AMI pts with

emergency department, and hospital records Size: 172 pts met criteria, data available for 131; 45 presented with AMI Hemodynamic instability was defined as the presence of any of the following: ischemic chest pain, dyspnea, syncope, altered mental status, and systolic BP less than 90 mm Hg. Bradycardia was defined as sinus bradycardia, or idioventricular bradycardia, whereas AVB included first., second- (types I and II), or third-degree (grouped as AVB). Warren JV, et al. 1976 (81) 1244735 Study type: Retrospective observational study of pts with AMI and bradycardia AVB who received atropine by EMS. Atropine by EMS.		prehospital,	unstable bradycardia or	1 min following each dose of	hemodynamically unstable bradycardia
department, and hospital records Hemodynamic instability was defined as the presence of any of the following: ischemic chest pain, dyspnea, syncope, altered mental status, and systolic BP less than 90 mm Hg. Bradycardia was defined as bradycardia, or idloventricular bradycardia (grouped as bradycardia), whereas AVB included first-, second- (types I and II), or third-degree (grouped as AVB). Warren JV, et al. 1976 (81) Warren JV, et al. 1976 (81) Warren JV, et al. 1976 (81) Description of the following: instability was defined as the presence of any of the following: instability was defined as the presence of any of the following: instability was defined as the presence of any of the following: instability was defined as the presence of any of the following: instability was defined as the presence of any of the following: instability was defined as the presence of any of the following: instability was defined as the presence of any of the following: instability was defined as the presence of any of the following: instability was defined as the presence of any of the following: instability was defined as the presence of any of the following: instability was defined as the presence of any of the following: instability was defined as the presence of any of the following: instability was defined as the presence of any of the following: instability was defined as the presence of any of the following: instability was defined as the presence of any of the following: instability was defined as the presence of any of the file file file file file file file fil				I -	
hospital records Hemodynamic instability was defined as the presence of any of the following: ischemic chest pain, dyspnea, syncope, altered mental status, and systolic BP less than 90 mm Hg. Bradycardia wind as bradycardia, or idioventricular bradyca				atropine	
Hemodynamic instability was defined as the presence of any of the following: ischemic chest pain, dyspnea, syncope, altered mental status, and systolic BP less than 90 mm Hg. Bradycardia was defined as sinus bradycardia, junctional bradycardia, or idioventricular bradycardia (grouped as bradycardia), whereas AVB included first-, second. (types I and II), or third-degree (grouped as AVB). Warren JV, et al. 1976 (81) Study type: Retrospective observational study of pts with AMI and bradycardia			atropine by Eivis.	Describer No difference in ANAL	1
Size: 172 pts met criteria, data available for 131; 45 presented with AMI Size: 172 pts met criteria, data available for 131; 45 presented with AMI Size: 172 pts met criteria, data available for 131; 45 presented with AMI Size: 172 pts met criteria, data available for 131; 45 presented with AMI Size: 172 pts met criteria; Pts in presented with AMI Size: 172 pts met criteria; Pts in presented with AMI and bradycardia Size: 172 pts met criteria; Pts in pts with AMI and bradycardia Size: 172 pts met criteria; Pts in presented of the following: 183 presented with AMI and bradycardia Size: 183 presented with AMI and hypotension, the mortality Size: 183 presented with AMI and hypotension, the mortality Size: 183 presented with AMI and hypotension, the mortality Size: 183 presented with AMI and hypotension, the mortality Size: 183 presented with AMI and hypotension, the mortality Size: 183 presented with AMI and hypotension, the mortality Size: 183 presented with AMI and hypotension, the mortality Size: 183 presented with AMI and hypotension, the mortality Size: 183 presented with AMI and hypotension with AMI and hypotension with AMI and hypotension the mortality Size: 183 presented with AMI and hypotension with AMI and hypotension the mortality Size: 183 presented with AMI and hypotension with AMI and hypotension the mortality Size: 183 presented with AMI and hypotension with AMI and hypotension the mortality Size: 183 presented with AMI and hypotension the mortality Size: 183 presented with AMI and hypotension with AMI and hypo		nospitai records		·	associated with AMI in 55.6% of pts.
criteria, data available for 131, 45 presented with AMI as the presence of any of the following: ischemic chest pain, dyspnea, syncope, altered mental status, and systolic BP less than 90 mm Hg. Bradycardia was defined as sinus bradycardia, junctional bradycardia, or idioventricular bradycardia (grouped as bradycardia), whereas AVB included first-, second- (types I and II), or third-degree (grouped as AVB). Exclusion criteria: N/A Warren JV, et al. 1976 (81) 2 Study type: (81) 1244735 Study type: (81) 125 Pendpoint: Mortality with and w/o hypotension was effective and safe. **Other use of atropine to treat bradycardia with and w/o hypotension was effective and safe. **Other use of atropine to treat bradycardia with and w/o hypotension was effective and safe. **Other use of atropine to treat bradycardia with and w/o hypotension was effective and safe. **Other use of atropine to treat bradycardia with and w/o hypotension was effective and safe.					
for 131; 45 presented with AMI of the following: ischemic chest pain, dyspnea, syncope, altered mental status, and systolic BP less than 90 mm Hg. Bradycardia was defined as sinus bradycardia, junctional bradycardia, or idioventricular bradycardia (grouped as bradycardia), whereas AVB included first-, second- (types I and II), or third-degree (grouped as AVB). Warren JV, et al. 1976 (81) Retrospective observational study of pts with AMI and bradycardia Bradycardia Study type: Retrospective observational study of pts with AMI and bradycardia Exclusion criteria: N/A Exclusion criteria: N/A Pendpoint: Mortality * The use of atropine to treat bradycardia with and w/o hypotension was effective and safe. * The use of atropine to treat bradycardia with and w/o hypotension was effective and safe. * The use of atropine to treat bradycardia with and w/o hypotension was effective and safe. * The use of atropine to treat bradycardia with and w/o hypotension was effective and safe. * The use of atropine to treat bradycardia with and w/o hypotension was effective and safe. * The use of atropine to treat bradycardia with and w/o hypotension was effective and safe. * The use of atropine to treat bradycardia with and w/o hypotension was effective and safe. * The use of atropine to treat bradycardia with and w/o hypotension was effective and safe. * The use of atropine to treat bradycardia with and with AMI and hypotension, the mortality and safe. * The use of atropine to treat bradycardia with and with AMI and hypotension, the mortality and safe. * The use of atropine to treat bradycardia with and with AMI and hypotension, the mortality and with AMI and hypotension, the mortality at the results in th			instability was defined		
with AMI sichemic chest pain, dyspnea, syncope, altered mental status, and systolic BP less than 90 mm Hg. Bradycardia was defined as sinus bradycardia, junctional bradycardia (grouped as bradycardia), whereas AVB included first-, second- (types I and II), or third-degree (grouped as AVB). Warren JV, et al. 1976 (81) Retrospective observational study of pts with AMI and bradycardia Beautis: In pts with hypotension, the mortality Presuscitative therapies given. resuscitative therapies given. resuscitative therapies given. Presuscitative therapies			as the presence of any		
with AMI ischemic chest pain, dyspnea, syncope, altered mental status, and systolic BP less than 90 mm Hg. Bradycardia was defined as sinus bradycardia, junctional bradycardia (grouped as bradycardia (grouped as bradycardia), whereas AVB included first-, second- (types I and II), or third-degree (grouped as AVB). Exclusion criteria: N/A Warren JV, et al. 1976 (81) 1244735 Warren JV, et al. 1976 (81) Personation of the size of AMI with heart rate <60 bpm. Put with AMI and bradycardia Study type: Retrospective observational study of pts with AMI and bradycardia Exclusion criteria: N/A Pendpoint: Mortality * The use of atropine to treat bradycardia with and w/o hypotension was effective and safe. * The use of atropine to treat bradycardia with and w/o hypotension was effective and safe. * The use of atropine to treat bradycardia with and w/o hypotension was effective and safe.		•	of the following:	I	
dyspnea, syncope, altered mental status, and systolic BP less than 90 mm Hg. Bradycardia was defined as sinus bradycardia, junctional bradycardia, or idioventricular bradycardia (grouped as bradycardia), whereas AVB included first-, second- (types I and II), or third-degree (grouped as AVB). Warren JV, et al. 1976 (81) Retrospective observational study of pts with AMI and bradycardia Exclusion criteria: N/A Study type: Retrospective observational study of pts with AMI and bradycardia Exclusion criteria: N/A Study type: Retrospective observational study of pts with AMI and bradycardia Exclusion criteria: N/A Exclusion criteria: N/A Study type: Retrospective observational study of pts with AMI and bradycardia Exclusion criteria: N/A Exclusion criteria: N/A Presentation with AMI and hypotension complicating presentation with AMI and hypotension, the mortality		with AMI		resuscitative therapies given.	
warren JV, et al. 1976 (81) Warren JV, et al. 1976 (81) Retrospective observational study of pts with AMI and bradycardia Page 1244735 April 1976 (81) Retrospective observational study of pts with AMI and bradycardia Page 1244735 April 1976 (81) Retrospective observational study of pts with AMI and bradycardia Page 1244735 April 1976 (81) Retrospective observational study of pts with AMI and bradycardia Page 1244735 April 1976 Retrospective observational study of pts with AMI and bradycardia Page 1244735 Page 125 Page 126 Page 126 Page 126 Page 126 Page 127 Page 128 Page 129 Page 130 Page 147			• •		
and systolic BP less than 90 mm Hg. Bradycardia was defined as sinus bradycardia, junctional bradycardia (grouped as bradycardia), whereas AVB included first-, second- (types I and II), or third-degree (grouped as AVB). Exclusion criteria: N/A Marren JV, et al. 1976 (81) 1244735 Study type: Retrospective observational study of pts with AMI and bradycardia Inclusion criteria: N/A Results: In pts with hypotension complicating presentation with AMI and hypotension, the mortality The use of atropine to treat bradycardia with and w/o hypotension was effective and safe.					
than 90 mm Hg. Bradycardia was defined as sinus bradycardia, junctional bradycardia, or idioventricular bradycardia), whereas AVB included first-, second- (types I and II), or third-degree (grouped as AVB). Exclusion criteria: N/A Warren JV, et al. 1976 (81) Retrospective observational study of pts with AMI and bradycardia Exclusion criteria: N/A Results: In pts with hypotension complicating presentation with AMI and hypotension, the mortality Results: In pts with hypotension complicating presentation with AMI and hypotension, the mortality Bradycardia was defined as sinus bradycardia, or idioventricular bradycardia (grouped as bradycardia), whereas AVB included first-, second- (types I and II), or third-degree (grouped as AVB). Exclusion criteria: N/A 1° endpoint: Mortality N The use of atropine to treat bradycardia with and w/o hypotension was effective and safe.			<u> </u>		
Bradycardia was defined as sinus bradycardia, junctional bradycardia, or idioventricular bradycardia (grouped as bradycardia), whereas AVB included first-, second- (types I and II), or third-degree (grouped as AVB). Exclusion criteria: N/A Warren JV, et al. 1976 (81) Retrospective observational study of pts with AMI and bradycardia Pts with AMI and bradycardia Exclusion criteria: N/A Bradycardia was defined as sinus bradycardia, junctional bradycardia, junctional bradycardia (grouped as bradycardia), whereas AVB included first-, second- (types I and II), or third-degree (grouped as AVB). Exclusion criteria: Pts in early phase of AMI with heart rate <60 bpm. pts with AMI and hypotension complicating presentation with AMI and hypotension, the mortality **O The use of atropine to treat bradycardia with and w/o hypotension was effective and safe.** **O The use of atropine to treat bradycardia with and w/o hypotension was effective and safe.**			<u> </u>		
defined as sinus bradycardia, junctional bradycardia, or idioventricular bradycardia (grouped as bradycardia), whereas AVB included first-, second- (types I and II), or third-degree (grouped as AVB). Exclusion criteria: N/A Warren JV, et al. 1976 (81) Retrospective observational study of pts with AMI and bradycardia Beach second as a sinus bradycardia, junctional bradycardia (grouped as bradycardia) whereas AVB included first-, second- (types I and II), or third-degree (grouped as AVB). Exclusion criteria: N/A 1º endpoint: Mortality with and w/o hypotension was effective and safe. • The use of atropine to treat bradycardia with and w/o hypotension was effective and safe.					
bradycardia, junctional bradycardia, or idioventricular bradycardia (grouped as bradycardia), whereas AVB included first-, second- (types I and II), or third-degree (grouped as AVB). Warren JV, et al. 1976 (81) Study type: Retrospective observational study of pts with AMI and bradycardia					
bradycardia, or idioventricular bradycardia (grouped as bradycardia), whereas AVB included first-, second- (types I and II), or third-degree (grouped as AVB). Exclusion criteria: N/A			defined as sinus		
idioventricular bradycardia (grouped as bradycardia), whereas AVB included first-, second- (types I and II), or third-degree (grouped as AVB). Exclusion criteria: N/A			bradycardia, junctional		
bradycardia (grouped as bradycardia), whereas AVB included first-, second- (types I and II), or third-degree (grouped as AVB). Exclusion criteria: N/A Warren JV, et al. 1976 (81) Retrospective observational study of pts with AMI and bradycardia Exclusion criteria: N/A Part of the use of atropine to treat bradycardia with and w/o hypotension was effective and safe. Provided Heart rate < 60 bpm. Results: In pts with hypotension complicating presentation with AMI and hypotension, the mortality			bradycardia, or		
as bradycardia), whereas AVB included first-, second- (types I and II), or third-degree (grouped as AVB). Exclusion criteria: N/A Warren JV, et al. 1976 (81) Retrospective observational study of pts with AMI and bradycardia Exclusion criteria: N/A Study type: Retrospective observational study of pts with AMI and bradycardia Exclusion criteria: N/A Exclusion criteria: N/A Pendpoint: Mortality The use of atropine to treat bradycardia with and w/o hypotension was effective and safe. Exclusion criteria: N/A Pesults: In pts with hypotension complicating presentation with AMI and hypotension, the mortality			idioventricular		
as bradycardia), whereas AVB included first-, second- (types I and II), or third-degree (grouped as AVB). Exclusion criteria: N/A Warren JV, et al. 1976 (81) Retrospective observational study of pts with AMI and bradycardia Exclusion criteria: N/A Results: In pts with heart rate <60 bpm. Results: In pts with hypotension complicating presentation with AMI and hypotension, the mortality The use of atropine to treat bradycardia with and w/o hypotension was effective and safe.			bradycardia (grouped		
whereas AVB included first-, second- (types I and II), or third-degree (grouped as AVB). Exclusion criteria: N/A Warren JV, et al. 1976 (81) 1244735 Study type: Retrospective observational study of pts with AMI and bradycardia Exclusion criteria: N/A Results: In pts with hypotension complicating presentation with AMI and hypotension, the mortality **The use of atropine to treat bradycardia with and w/o hypotension was effective and safe.** **Results: In pts with hypotension complicating presentation with AMI and hypotension, the mortality* **The use of atropine to treat bradycardia with and w/o hypotension was effective and safe.**					
first-, second- (types I and II), or third-degree (grouped as AVB). Exclusion criteria: N/A Warren JV, et al. 1976 (81) Retrospective observational study of pts with AMI and bradycardia Exclusion criteria: N/A Retrospective observational study of pts with AMI and bradycardia Exclusion criteria: N/A Exclusion criteria: N/A Inclusion criteria: Pts in early phase of AMI with heart rate <60 bpm. Exclusion criteria: N/A Exclusion criteria: N/A Pendpoint: Mortality The use of atropine to treat bradycardia with and w/o hypotension was effective and safe. Presentation with AMI and hypotension, the mortality					
warren JV, et al. 1976 (81) Retrospective observational study of pts with AMI and bradycardia Amid II), or third-degree (grouped as AVB). Exclusion criteria: N/A					
Warren JV, et al. 1976 (81) Retrospective observational study of pts with AMI and bradycardia Backlusion criteria: N/A Warren JV, et al. 1976 (81) Retrospective observational study of pts with AMI and bradycardia Backlusion criteria: N/A Backlusion criteria: Pts in early phase of AMI with heart rate <60 bpm. Results: In pts with hypotension complicating presentation with AMI and hypotension, the mortality Backlusion criteria: N/A Proposition in the suse of atropine to treat bradycardia with and w/o hypotension was effective and safe.					
Warren JV, et al. 1976 (81) Retrospective observational study of pts with AMI and bradycardia Backlusion criteria: N/A Inclusion criteria: Pts in early phase of AMI with heart rate <60 bpm.			_		
Warren JV, et al. 1976 (81) Retrospective observational study of pts with AMI and bradycardia Exclusion criteria: N/A Study type: Retrospective observational study of pts with AMI and bradycardia Exclusion criteria: N/A Inclusion criteria: Pts in early phase of AMI with heart rate <60 bpm. Results: In pts with hypotension complicating presentation with AMI and hypotension, the mortality • The use of atropine to treat bradycardia with and w/o hypotension was effective and safe.			(grouped as AVB).		
Warren JV, et al. 1976 (81) Retrospective observational study of pts with AMI and bradycardia Exclusion criteria: N/A Study type: Retrospective observational study of pts with AMI and bradycardia Exclusion criteria: N/A Inclusion criteria: Pts in early phase of AMI with heart rate <60 bpm. Results: In pts with hypotension complicating presentation with AMI and hypotension, the mortality • The use of atropine to treat bradycardia with and w/o hypotension was effective and safe.					
Retrospective observational study of pts with AMI and bradycardia Retrospective early phase of AMI with heart rate <60 bpm. Exclusion criteria: N/A Results: In pts with hypotension complicating presentation with AMI and hypotension, the mortality with and w/o hypotension was effective and safe.					
observational study of pts with AMI and bradycardia Amount	1			1° endpoint: Mortality	· · · · · · · · · · · · · · · · · · ·
pts with AMI and bradycardia Exclusion criteria: N/A Exclusion criteria: N/A hypotension complicating presentation with AMI and hypotension, the mortality	1	·			with and w/o hypotension was effective
bradycardia Exclusion criteria: N/A presentation with AMI and hypotension, the mortality	<u>1244735</u>		heart rate <60 bpm.	· · · · · · · · · · · · · · · · · · ·	and safe.
hypotension, the mortality		· ·		I	
		bradycardia	Exclusion criteria: N/A	presentation with AMI and	
Size: N=70				I	
· · · · · ·		<u>Size</u> : N=70		rate was 75% w/o atropine	
and 25% with atropine. In pt					
with normal BP, the mortality					
rate was 13 and 14% and did				rate was 13 and 14% and did	
not differ between groups.				not differ between groups.	

Scheinman MM, et al. 1975 (82)	Study type: Observational, single	Inclusion criteria: Pts with AMI and sinus bradycardia	Ventricular fibrillation occurred in 1/45 pts treated with atropine, and 2/45 pts not treated with atropine. Atropine at a dose of 0.5–1 mg was effective in increasing heart rate. 1° endpoint: Heart rate	Atropine had beneficial effects in pts with AMI complicated by sinus
1157275	center Size: N=56	Exclusion criteria: Preterminal pts, during or after CPR, AMI and AVB, use of digitalis, propranolol, or preexisting sinus bradycardia.	Results: Atropine increased heart rate and BP, abolished PVCs and accelerated idioventricular rhythm. 7 pts had serious adverse effects, including ventricular fibrillation and sinus tachycardia.	bradycardia, particularly at dosages of 0.5–0.6 mg. Higher doses were associated with a higher incidence of adverse effects.

Data Supplement 10. Nonrandomized Trials, Observational Studies, and/or Registries of Isoproterenol Effect in Electrophysiology Laboratory (Section 5.3.2.1)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR RR; & 95% CI)	Summary/Conclusion Comment(s)
Ogawa H, et. al. 1991 (83) 2010943	Study type: Single center study of IV isoproterenol, propranolol, atropine and methoxamine in electrophysiology lab Size: N=36	Inclusion criteria: SND and normal Exclusion criteria: N/A	1° endpoint: 28 pts with SND, 8 normal pts. Heart rate and recovery time before and after IV drug administration were measured. Results: 17 pts with SND w/o syncope had a normal heart rate response to isoproterenol compared to a significantly lower heart rate response in 11 pts with syncope	Many pts with SND showed heart rate increases with isuprel similar to normal controls; this was seen less often in pts with SND and syncope
Mandel WJ, et al. 1972 (84) 5072776	Study type: Single center electrophysiology study Size: N=31	Inclusion criteria: Pts with ECG/monitor documented SND Exclusion criteria: N/A	1º endpoint: Response to autonomic, exercise and pacing maneuvers, isoproterenol infusion at 1–2 mcg/min. Results: 12 pts underwent Isoproterenol testing, all responded with an increase in heart rate to infusion (mean 52 bpm—mean 118 bpm). Comparatively, the response to atropine was less (52 bpm—64 bpm)	 In an SND population, response to exercise and isoproterenol was within the expected normal range. Relative unresponsiveness of heart rate to atropine was noted in several pts. The study concluded this small group of pts with SND are characterized by normal sympathetic reactivity and abnormal parasympathetic reactivity.
Strauss HC, et al. 1976 (85) 1260979	Study type: Single center electrophysiology study Size: N=20	Inclusion criteria: Pts with ECG documented SND Exclusion criteria: N/A	1° endpoint: Conduction times, response to atropine and isoproterenol infusion Results: Graded infusion of isoproterenol resulted in 19 pts, 4 required a dosage higher than 28.3 ng/kg/min to produce a 20% decrease in sinus cycle length. 19 pts received 1 mg of atropine, resulting in a mean reduction of sinus cycle length of 19%	 Heart rate increased in response to atropine and isuprel in pts with SND. Higher doses of isoproterenol may be required.

Data Supplement 11. RCTs of Dopamine in Bradycardia (Section 5.3.2.1)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
• 'PrePACE' Morrison LJ, et al. 2006 (86) 17933452	Aim: To evaluate the feasibility of a RCT of transcutaneous pacing vs. dopamine for atropine and fluid refractory bradycardia in the prehospital setting. Study type: RCT Size: 151 met criteria, 82 enrolled	Inclusion criteria: Unstable bradycardia unresponsive to fluid and atropine: heart rate <60/min and systolic BP (SBP) <80 mm Hg; or heart rate <60/min and SBP <100 mm Hg and at least one additional sign/symptom Exclusion criteria: Advance directives, trauma, hyperthermia, hypothermia or cardiac arrest, pts in whom it was not possible to start an intravenous line.	Intervention: All pts received 250 ml saline IV bolus. If nonresponse, pts received atropine 1 mg, repeated if improved. If pts failed to respond, they were randomized to transcutaneous pacing (with midazolam) vs. dopamine Comparator: Dopamine starting at 5 mcg/kg/min, increasing the dose by 5 mcg/kg min every 2 min until an improvement in signs and symptoms was observed, maximum dose of 20 mcg/kg/min	1° endpoint: Survival to hospital discharge Safety endpoint (if relevant): Ventricular arrhythmia, cutaneous burns, chest wall discomfort, cardiac arrest, TCP failure.	Survival to hospital discharge was similar in both groups (70% vs. 69%; p=0.93), as were 2° outcomes.

Data Supplement 12. Nonrandomized Trials, Observational Studies, and/or Registries of Calcium, Glucagon and High Dose Insulin Therapy to treat Beta-Blocker and Calcium Channel Blocker Toxicity (CCB) (Section 5.3.2.2)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Howarth DM, et al.	Study type: Multi-	Inclusion criteria: Admission	1° endpoint: Clinical outcome	 Atropine was only effective after
1994 (87)	center observational	for CCB overdose		IV calcium was administered
<u>7909677</u>	study of CCB			Calcium often reversed
		Exclusion criteria: N/A		hypotension and bradycardia, but

	overdose in an Australian population Size: N=15		Results: All pts treated with oral activated charcoal, most required calcium, atropine, and inotropic support. 4 pts died.	atropine and inotropic support were frequently required
Ramoska EA, et al. 1993 (88) <u>8427431</u>	Study type: Retrospective, observational, 3 poison control centers Size: N= 138	Inclusion criteria: Hospitalized pts with CCB ingestion Exclusion criteria: N/A	1° endpoint: Clinical outcomes Results: There were no deaths. Ipecac (26%), lavage (40%), and activated charcoal (81%)were administered. Calcium was administered to 23 pts with sinus node suppression; 64% responded with an increased heart rate. Dopamine had no effect on bradycardia. Atropine was used in 7 pts with SND, 29% responded with an increased heart rate. Transvenous pacing was used in 4 pts. Isoproterenol increased heart rate in 2 pts with SND, but not the pt with AVB. Glucagon increased BP w/o effect on heart rate.	 Hypotension, dysrhythmias, and depression of the sinus node occurred with equal frequency in verapamil, nifedipine, and diltiazem overdose. AVB was more common and severe with verapamil. Although IV calcium was not universally effective, its use was associated with clinical improvement in hemodynamic parameters in the majority. No dose response relationship for either calcium gluconate or calcium chloride was noted
St-Onge M, et al. 2014 (89) 25283255	Study type: Systematic review Size: 216 studies	Inclusion criteria: Studies examining effects of various treatments for CCB poisoning for efficacy. Exclusion criteria: N/A	1° endpoint: Efficacy of treatments for CCB poisoning with primary outcomes of mortality and hemodynamic parameters Results: 117 case reports of 216 studies. 7 animal studies showing hemodynamic and mortality improvement with calcium. In humans, 11 case series and 21 case reports were inconsistent in demonstrating benefit.	Evidence to support IV calcium in CCB overdose is of low quality, but animal studies and human case reports and series often demonstrate improved hemodynamic parameters, and adverse effects (hypercalcemia) are rare.
GLUCAGON	l.	I		
Love JN, et al. 1998 (90) 9674488	Study type: Retrospective, observational, single center Size: N=9	Inclusion criteria: Pts presenting with symptomatic bradycardia who received glucagon therapy. Exclusion criteria: Clinical response to atropine	1° endpoint: Clinical improvement in heart rate and perfusion. Results: 9 pts were receiving BB, CCB, or digoxin therapy. Heart rate and BP increased significantly in all but one pt who received glucagon.	8/9 pts presenting with symptomatic bradycardia, that may have been caused or exacerbated by chronic BB, CCB, or digoxin therapy demonstrated clinical improvement with glucagon after failing atropine therapy.

Bailey B 2003 (91)	Study type:	Inclusion criteria: Studies	1° endpoint: Effect of glucagon on heart rate,	Evidence supporting the use of
<u>14514004</u>	Systematic review	evaluating glucagon use in	arterial pressure, contractility, cardiac output	glucagon in the management of
		BB and CCB overdose.	and survival in BB or CCB overdose.	pts with BB or CCB overdose is
	<u>Size</u> : N=30 (all			limited, but demonstrates
	animal)	Exclusion criteria: Case	Results: 5 animal studies of BB overdose,	transient improvement in heart
		report or case series.	glucagon increased heart rate, but effect on	rate and conduction.
			survival was unclear. In 6 animal studies of	
			CCB overdose, glucagon transiently increased	
			heart rate and reversed AVB w/o effect on survival.	
St-Onge M, et al.	Study type:	Inclusion criteria: Studies	1° endpoint: Efficacy of treatments for CCB	Evidence to support the use of
2014 (89)	Systematic review	examining effects of various	poisoning with primary outcomes of	glucagon in CCB overdose is
25283255	Systematic review	treatments for CCB	mortality and hemodynamic parameters	scant. Hyperglycemia and
23203233	Size: 216 studies	poisoning for efficacy.	mortality and hemodynamic parameters	vomiting were side effects seen in
	<u>5120</u> 1 210 3tdd1c3	poisoning for emeday.	Results: 2 of 3 animal studies, and 1 of 3	case reports.
		Exclusion criteria: N/A	human case series showed improvement in	
			heart rate with glucagon.	
HIGH DOSE INSULIN	THERAPY	1	<u> </u>	
Engebretsen KM, et	Study type:	Inclusion criteria: N/A	1° endpoint: Efficacy	Evidence to support HDIT is of
al. 2011 (92)	Systematic review			low quality, but validates safety
<u>21563902</u>		Exclusion criteria: N/A	Results: Clinical data are limited; animal	and efficacy in the treatment of
	Size: 72 studies		studies and case reports demonstrate safety	BB and CCB toxicity.
			and survival in BB and CCB poisoning is	
			superior when treated with HDIT compared	
			with calcium, glucagon, epinephrine, and	
			vasopressin.	
St-Onge M, et al.	Study type:	Inclusion criteria: Studies	<u>1° endpoint</u> : Efficacy of treatments for CCB	Evidence to support HDIT in CCB
2014 (89)	Systematic review	examining effects of various	poisoning with primary outcomes of	overdose is of low quality, but
<u>25283255</u>	Cinc. 21 Catualian	treatments for CCB	mortality and hemodynamic parameters	observational data demonstrate
	Size: 216 studies	poisoning for efficacy.	Baseltas One abasementianal atualisis bureaus	improved hemodynamics and
			Results: One observational study in humans of HDIT showed improved hemodynamic	survival.
		Exclusion criteria: N/A	parameters and decreased mortality with risk	
		Exclusion criteria.	of hypoglycemia and hypokalemia.	
Greene SL, et al.	Study type:	Inclusion criteria: Pts with	1° endpoint: Safety of HDIT in CCB overdose.	HDIT in the setting of
2007 (93)	Prospective, single	CCB toxicity and hypotension		hemodynamically significant CCB
17622512	center, observational	treated with HDIT	Results: 6/7 pts survived.	overdose was safe in a critical
<u></u>				care setting. Systolic BP was

Ī	<u>Size</u> : N=7	Exclusion criteria: N/A	increased by insulin loading. Mild
			hypoglycemia and hypokalemia
			were noted.

Data Supplement 13. RCTs Comparing Anti-Digoxin Fab to placebo (Section 5.3.2.3)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
Eddleston M, et al. 2000 (94) 10768435	Aim: To determine effectiveness of antidigoxin Fab fragments in reversing oleander induced arrhythmias Study type: RCT Size: N=66	Inclusion criteria: Pts with Hx of yellow oleander ingestion with sinus bradycardia <40 bpm, sinus arrest or block, atrial tachyarrhythmias, or 2 nd or 3 rd degree heart block. Exclusion criteria: Hypotension (SBP < 80 mm Hg), ventricular tachycardia with shock	Intervention: 1200 mg of anti-digoxin antibodies Comparator: Saline placebo	1° endpoint: Reversal of original arrhythmia in 15/24 treated pts vs. 2/32 controls. Heart rate increased from 49.1 bpm to 66.8 bpm in 2 h in treated pts, did not change in controls (p<0.001). Serum potassium decreased from 4.9 mmol/L to 4.1 mmol/L at 2 h in cases, not in controls (p< 0.001). Safety endpoint (if relevant): N/A	Anti-digoxin Fab antibody therapy increased heart rate and improved time to reversal of bradycardia.

Data Supplement 14. Nonrandomized Trials, Observational Studies, and/or Registries of Digoxin Fab Antibody Fragments (Section 5.3.2.3)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Lapostolle F, et al. 2008 (95) 18824911	Study type: Retrospective, single center, observational Size: N=141	Inclusion criteria: Pts admitted with digitalis poisoning Exclusion criteria: N/A	1° endpoint: Survival Results: 66/141 pts received Digoxin Fab. 5 pts died. No adverse effects were noted.	Therapy of digitalis overdose with digoxin Fab was associated with a mortality rate of 7.6%
Lapostolle F, et al. 2008 (96) 18389220	Study type: Retrospective, observational, multicenter (20) Size: N=838	Inclusion criteria: Pts presenting with elevated digitalis concentration. Exclusion criteria: N/A	1° endpoint: Use and efficacy of digoxin antibody. Results: 67/838 pts received digoxin antibody. Mortality was significantly lower in Fab treated pts (6% vs. 15%)	Digoxin antibody therapy may be underused, and is associated with improved mortality.
Chan BS and Buckley NA, 2014 (97) 25089630	Study type: Systematic Review Size: N= 140 studies	Inclusion criteria: N/A Exclusion criteria: Case reports w/o pharmacologic data.	1° endpoint: Effectiveness, pharmacology, safety and dosage of digoxin-Fab in pts with digoxin overdose. Results: There were no RCT of digoxin Fab for the treatment of digoxin toxicity. 10 case series with 2080 pts were evaluated. Clinical response occurs in 50–90% of pts within 30–45 min. Exacerbation of HF, tachycardia, hypokalemia, and allergic reactions happen in <10%.	 Digoxin Fab is safe and indicated in pts with life-threatening arrhythmias and an elevated digoxin concentration. Full neutralizing dosages may not be required. In acute toxicity, 80 mg, repeated as required, is likely to be effective. In chronic toxicity, 40 mg with repeat in 60 min (or sooner if pt is unstable) is likely to be beneficial.
Smith TW, et al. 1982 (98) 6752715	Study type: Observational, single center Size: N=26	Inclusion criteria: Pts with digitalis toxicity and arrhythmia or hyperkalemia refractory to initial therapy Exclusion criteria: N/A	1° endpoint: Morality Results: 21/26 pts survived. Arrhythmia and hyperkalemia were rapidly reversed by digoxin Fab, and no adverse reactions were seen.	Digoxin Fab is an effective and safe therapy for digitalis toxicity associated with arrhythmias or hyperkalemia
Wenger TL, et al. 1985 (99) 3886748	Study type: Observational multi- center (20)	Inclusion criteria: Pts with life-threatening digitalis toxicity.	1º endpoint: Clinical outcome	Life-threatening digoxin toxicity can be safely and effectively treated with digoxin Fab.

			Results: Reversal of clinical toxicity	
	<u>Size</u> : N=63	Exclusion criteria: N/A	within 30 min of administration. Digoxin	
			concentration decreased to	
			undetectable. No adverse reactions.	
Antman EM, et al.	Study type:	Inclusion criteria: Pts with	1° endpoint: Response to therapy.	Digoxin Fab is an effective antidote to
1990 (100)	Observational multi-	digitalis toxicity and life-		digitalis toxicity.
2188752	center (21)	threatening cardiac rhythm	Results: 119/148 resolved all clinical	
		disturbances or	evidence of toxicity, 14 improved, 15	
	<u>Size</u> : N=150	hyperkalemia refractory or	showed no response. 5 pts were on	
		likely to be refractory to	hemodialysis and improved.	
		conventional therapy.		
		Exclusion criteria: N/A		
Hickey AR, et al.	Study type:	Inclusion criteria: Adults	1° endpoint: Clinical response	Digoxin Fab was well tolerated and
1991 (101)	Observational,	who received digoxin Fab for		effective in pts with digitalis toxicity.
<u>1993775</u>	retrospective.	digitalis intoxication.	Results: 50% complete, 24% partial, and	
			12% had no response. 0.8% had an	
	<u>Size</u> : N=717	Exclusion criteria: N/A	allergic reaction.2.8% developed	
			recurrent toxicity, which was associated	
			with inadequate dosing.	
Wenger TL, 1991	Study type:	Inclusion criteria: Pts in	1° endpoint: Clinical response	 Digoxin Fab was effective and safe in
(102)	observational,	multicenter study of digoxin		pts with digitalis toxicity and renal
<u>1997017</u>	retrospective	Fab, a postmarket	Results: No evidence of decreased	dysfunction.
		surveillance study, and any	safety or efficacy with respect to	
	<u>Size</u> : N/A	reports in the literature of	response or recurrence. 28 subjects	
		pts treated with digoxin Fab	were anephric, one of these pts possibly	
		with renal dysfunction.	had recrudescent toxicity with AVB.	
		Evaluaion aritaria, N/A		
		Exclusion criteria: N/A		

Data Supplement 15. Nonrandomized Trials, Observational Studies, and/or Registries of Dialysis for Digoxin Toxicity (Section 5.3.2.3 – Patton)

Study Acronym;	Study Type/Design;	Patient Population	Primary Endpoint and Results	Summary/Conclusion
Author;	Study Size		(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	
EXTRIP	Study type: Systematic	Inclusion criteria: Use of	1° endpoint: Clinical outcome	The workgroup suggested against the use
Mowry JB, et al. 2016	review	dialysis in digitalis toxicity	and toxicokinetic data.	of dialysis in cases of digoxin toxicity,
(103)				whether or not digoxin Fab was available.
<u>26795743</u>	Size: N= 77 articles	Exclusion criteria: N/A	Results: Only in vitro, animal	
			studies, case reports, and case	
			series were identified, with a	
			total of 84 pts. Digoxin is	
			slightly dialyzable, and dialysis	
			is unlikely to improve the	
			outcome of digoxin toxicity.	

Data Supplement 16. RCTs Comparing Methylxanthines in Bradycardic Arrest (Section 5.3.2.4)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
Abu-Laban RB, et al. 2006 (104) 16698410	Aim: To determine if administration of aminophylline increases ROSC in bradycardic cardiac arrest Study type: RCT Size: N= 971	Inclusion criteria: Asystole, or PEA <60 bpm, unresponsive to epinephrine and atropine Exclusion criteria: Age <16 y, pregnancy, DNR, evidence of hemorrhage, trauma or hypothermia, dialysis, theophylline sensitivity or use.	Intervention: 250 mg aminophylline IV x2. Comparator: Placebo	1° endpoint: ROSC Safety endpoint (if relevant): N/A	• There was no difference in ROSC in the group that received aminophylline adjunctive therapy. Use of aminophylline was associated with an increase in nonsinus tachycardias
Hurley KF, et al. 2015 (105) 26593309	Study type: Systematic Review of effects of aminophylline in the treatment of	Inclusion criteria: All randomized trials of aminophylline vs. placebo in adults with		1° endpoint: Survival to hospital discharge.	Prehospital administration of aminophylline in

bradycardic cardiac	nontraumatic	Results: There was no	bradyasystolic arrest
arrest	bradycardic cardiac	survival benefit of	is not associated with
	arrest treated with ACLS	aminophylline (RR: 0.58;	improved survival,
Size: 5 trials, N=1254 pts		95% CI: 0.12–1.39); or	ROSC, or survival to
		on survival to hospital	hospital admission.
		admission (RR: 0.92;	
		95% CI: 0.61–1.39); or	
		ROSC (RR: 1.15; 95% CI:	
		0.89-1.49).	

Data Supplement 17. Nonrandomized Trials, Observational Studies, and/or Registries of Methylxanthines for acute therapy of bradycardia due to spinal cord injury or post-heart transplant (Section 5.3.2.4)

Study Acronym; Author;	Study Type/Design;	Patient Population	Primary Endpoint and Results (P values; OR or RR;	Summary/Conclusion Comment(s)
Year Published	Study Size		& 95% CI)	Comment(s)
Post-heart Transplant				
Redmond JM, et al. 2005 (106) 8443190	Study type: Nonrandomized trial of oral theophylline Size: N=15	Inclusion criteria: Sinus or nodal bradycardia or sinus arrest post-heart transplant Exclusion criteria: N/A	1° endpoint: restoration of normal SR Results: Normal SR was restored with a rate >90 bpm in 93.3% given theophylline • Therapy was initiated 3–24 d after transplantation • Mean duration of treatment was 57.4 d	 Oral theophylline was effective at restoring SR at a desirable heart rate. Compared to historical controls, placement of a PPM was reduced from 16.1% to 2.6%
Bertolet BD, et al. 1996 (107) 8800116	Study type: Nonrandomized trial of oral theophylline Size: N=29	Inclusion criteria: Bradyarrhythmia (heart rate <70 bpm) in in heart transplant recipients Exclusion criteria: N/A	1° endpoint: Mean heart rate, length of stay Results: Mean heart rate increased from 62± 7 to 89±10 after administration of theophylline. Length of stay did not differ.	Theophylline was effective at increasing heart rate post-transplant
Rothman SA, et al. 1995 (108) 7654727	Study type: Observational study	Inclusion criteria: Post- heart transplant pts Exclusion criteria: N/A	1° endpoint: Effects of IV aminophylline on heart transplant recipients	Both groups had abnormal sinus node recovery times. Aminophylline did not correct this in transplant recipients with or w/o SND.

Heinz G, et al. 1993 (109) <u>8427182</u>	Size: N=26 (13 with and 13 w/o sinus node dysfunction) Study type: observational single center. Size: N=9	Inclusion criteria: Pts with and w/o SND after heart transplant Exclusion criteria: N/A	Results: Sinus node testing was performed in electrophysiology lab before and after infusion of 6 mg/kg of aminophylline. 1º endpoint: Changes in sinus node recovery time from baseline after aminophylline infusion Results: Normalization of sinus node function was seen after aminophylline 0.48 gm IV in all 3 pts with abnormal sinus node function.	Aminophylline can improve sinus node function in heart transplant recipients with SND
Spinal Cord Injury	<u> </u>	•		
Pasnoori VR, et al. 2004 (110) 14766019	Study type: Case series Size: N=2	Inclusion criteria: Pts with severe bradycardia and spinal cord injury Exclusion criteria: N/A	1° endpoint: Effects of aminophylline Results: Increased heart rate and BP with 300 mg IV aminophylline and 5 mg/kg/h infusion, changed to theophylline after 2 d	Use of aminophylline, followed by theophylline in atropine resistant bradycardia was associated with increased heart rate and avoidance of PM placement
Sadaka F, et al. 2010 (111) 20878263	Study type: Observational case series Size: N=6	Inclusion criteria: Pts with severe bradycardia due to spinal cord injury Exclusion criteria: N/A	1° endpoint: Heart rate response to theophylline Results: Heart rates improved in all 6 pts with severe bradycardias and hypotension. Theophylline was used as a second-line agent (after atropine and/or dopamine) in 4/6, and first-line in 2/6	 Theophylline was effective and safe as a second-line agent, and potentially a first-line agent for treatment of hemodynamically unstable bradycardia in pts with acute spinal cord injury. Effective dosages resulted in serum levels below the therapeutic range of 10–20 mcg/ml. No pt required a PM.
Schulz-Stübner S, 2005 (112) 16301263	Study type: Case series Size: N=3	Inclusion criteria: Pts with severe bradycardia due to spinal cord injury Exclusion criteria: N/A	1° endpoint: Heart rate response to theophylline Results: Heart rates increased from 30–40 with pauses to 60–70 after theophylline. Increased respiratory drive was seen in one pt.	 Improved heart rate was seen in all 3 pts after IV theophylline, and maintained with oral theophylline Dosages were 200 mg IV theophylline and 50–100 mg po every 8 h

Data Supplement 18. Trials of Temporary Transesophageal or Transvenous Pacing (Section 5.3.3)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
Smith I, et al. 1994 (76) 7906108	Aim: To compare the effectiveness in the treatment of intraoperative bradycardia of transesophageal atrial pacing, atropine, and glycopyrrolate Study type: RCT Size: N=64, of which 45 had treatment for bradycardia	Inclusion criteria: Men undergoing elective radical prostatectomy with sufentanil/N ₂ O/vecuronium anesthetic resulting in bradycardia (<50 bpm or <60 bpm and hypotension) Exclusion criteria: Pts not ASA status I-IFII.	Intervention: 15 pts were randomized to each group. Comparator: TAP vs. atropine vs. glycopyrrolate	1° endpoint: Time for heart rate to increase to >70 bpm was shortest in the temporary pacing group. There were no significant differences in postoperative course in the 3 groups. Safety endpoint: N/A	Transesophageal pacing route is relevant to SND.
Ferguson JD, et.al. 1997 (113) 9217762	Aim: To compare effectiveness of conventional TTVP with balloon floatation pacing catheters. Study type: Randomized, parallel-group trial Size: N= 40	Inclusion criteria: Pts needing TTVP. Exclusion criteria: N/A	Intervention: Balloon flotation pacing catheter. Comparator: Conventional TTVP.	1° endpoint: Procedural outcomes Safety endpoint: Complications	 Only 1/40 pts had sinus arrest. Satisfactory TTVP positions were more frequently achieved with a reduction in procedure and fluoroscopy time using the balloon catheter. Adverse event rates (crossover, dislodgement) were similar, but death and perforation did not occur in the balloon catheter group.

Data Supplement 19. Nonrandomized Trials, Observational Studies, and/or Registries of Temporary Transvenous Pacing (TTVP) (Section 5.3.3)

Study Acronym;	Study Type/Design;	Patient Population	Primary Endpoint and Results	Summary/Conclusion
Author;	Study Size		(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	

Lopez Ayerbe J, et al. 2004 (114)	Study type: Retrospective, observational, single-center	Inclusion criteria: Pts who underwent TTVP for	1° endpoint: Clinical outcomes	TTVP is effective, yet has a complication rate of 22%,
15544753	<u>Size</u> : N=530	symptomatic bradycardia.	Results: Indications induced symptomatic SSS in 7.5% of implants, use in generator	including an associated 6% mortality rate.
		Exclusion criteria: N/A	replacement in 14.7%, bradycardic drug toxicity in 12.2%. Femoral access was used in 99%, and duration was 4.2 d. 69.6% of pts required a PPM. 6.4% of pts died, 3 deaths were attributable to temporary pacing. There were complications in 22%,	Use of TTVP for treatment of SND is comparatively rare.
Human IV, at al. 1002	Charde have a Detace a cation	In alcosion onitonio. Dto in	including dislodgement in 9%.	TTVD
Hynes JK, et al. 1983 (115)	Study type: Retrospective, observational, single-center	Inclusion criteria: Pts in the coronary care unit	1º endpoint: Clinical outcomes	TTVP was associated with an overall risk of complications
6823157	observational, single-center	with TTVP.	Results: Access was antecubital in 59%,	in approximately 14% of pts.
<u> </u>	<u>Size</u> : N=1022		subclavian in 17%, right internal jugular in	in approximately 1470 of pts.
		Exclusion criteria: N/A	11%, and femoral in 5%. Complications	
			occurred in 13.7% with no deaths. The	
			right internal jugular approach was	
			associated with a decreased risk of	
Murphy JJ, 1996 (116)	Study type: Retrospective,	Inclusion criteria: Pts	complications. 1° endpoint: Clinical outcomes	TTVP was associated with
8620131	observational, multicenter	undergoing TTVP.	1 enupoint. Clinical outcomes	complications in 35% of pts,
	(18)		Results: 129/194 TTVP were implanted for	including vascular access
		Exclusion criteria: N/A	CHB. Immediate or delayed complications	difficulties, dislodgement,
	<u>Size</u> : N=194		occurred in 68 pts.	infection, and sepsis.
Austin JL, et al. 1982	Study type: Retrospective,	Inclusion criteria: Pts	1° endpoint: Complications and	TTVP was associated with a
(117) 7058746	observational. Single center	who received TTVP.	malfunction	20% complication rate, and a high rate of malfunction.
	<u>Size</u> : N=100	Exclusion criteria: N/A	Results: 113 TTVPs were placed in 100 pts.	• 21/100 subjects underwent
			Failure to capture or sense occurred in	TTVP for SND; 18 for PM
			37% and complications in 20%. These	failure not otherwise
			included ventricular arrhythmia, fever, pulmonary emboli, perforation, sepsis and	specified
			phlebitis. There were no deaths.	
Munoz Bono JM, et al.	Study type: Prospective,	Inclusion criteria: Pts in	1° endpoint: Clinical indications,	TTVP was associated with a
2011 (118) 21640435	observational	cardiac intensive care	morbidity, mortality.	risk of complications in 40%.

	<u>Size</u> : N=182	unit who underwent	Results: Indication for TTVP was CHB in	TTVP was indicated for SND
	<u>5120</u> . 11 102	TTVP.	77%, access was via the femoral vein in	in 9.3%, and bradycardia
			92%, and complications occurred in	from drug intoxication in
		Exclusion criteria: N/A	40.11%. Predictors of complications were	12.1%
			restlessness, CV risk factors, and jugular or	
			subclavian access.	
Betts TR, 2003 (119)	Study type: Prospective,	Inclusion criteria: Pts	1° endpoint: Procedural and pt	TTVP was associated with a
12954959	observational, multi-center	requiring TTVP	characteristics, outcomes.	high risk of complications.
	(5).		·	Infectious risk is increased
		Exclusion criteria: N/A	Results: 144 procedures in 111 pts.	with longer time of implant.
	<u>Size</u> : N=111		Venous access was subclavian in 47%,	Immediate complication risk
			jugular in 33%, and femoral in 20%. There	was lower for experienced
			were procedural complications in 32% of	operators.
			the procedures; risk was decreased for	Pacing indication was not
			experienced operators. Infection risk	described.
			increased with dwell time >48 h.	
			Complications delayed permanent implant	
			in 23% of pts.	
Jowett NI, et al. 1989	<u>Study type</u> : Retrospective,	Inclusion criteria: Pts	1° endpoint: Clinical outcomes.	TTVP was associated with a
(120)	observational, single center	admitted to coronary		19.8% complication rate.
<u>2594596</u>		care unit who underwent	Results: The majority of TTVP was for CHB	Some TTVP was
	<u>Size</u> : N=162	TTVP.	and MI (84.6%). 15.4% of TTVPs were	prophylactic, and may not
			placed for symptomatic bradycardia,	have been indicated.
		Exclusion criteria: N/A	including SND. Complications occurred in	A minority of TTVP was
			19.8%, including arrhythmias during	performed for SND (15%)
			insertion, dislodgement, pneumothorax,	
Weinstein J, et al.	Study type, Prospective	Inclusion criteria: Pts	and perforation.	TTVP via the femoral
1973 (121)	Study type: Prospective, observational, single center	with bradycardia and	1° endpoint: Clinical response and stability.	approach was found to be
4697639	observational, single center	conduction disease in the	Stability.	reliable, and rapid with a
4037033	Size: N=100	acute setting	Results: 17% of placements required	reasonable complication
	<u>5126</u> . N-100	acate setting	repositioning, 2 instances of ventricular	rate in critically ill pts.
		Exclusion criteria: N/A	tachycardia, 2 perforations, 2 infections.	Pts were restricted to
		<u> </u>	Placement and stability was improved	bedrest after dislodgements
			compared with prior historical series of	were noted to be associated
			100 pts with jugular and subclavian	with activity.
			approach.	• 10% of TTVP were placed for
				sinus bradycardia
				Sirius Diauycalüld

Garcia Guerrero JJ, et al. 2010 (122) 20667893	Study type: Prospective, observational, single center Size: N=47	Inclusion criteria: Pts requiring TTVP who underwent novel active fixation femoral TTVP. Exclusion criteria: N/A	1º endpoint: Rate of deep venous thrombosis Results: Asymptomatic thrombosis was seen in 6.4%, compared with 25–39% in other observational reports. No pulmonary emboli were noted on lung scan.	 Mobility afforded by an active fixation TTVP is associated with a decreased risk of deep venous thrombosis. Pacing indications were not reported.
Nolewajka AJ, et al. 1980 (123) 7398027	Study type: Prospective, observational Size: N=29	Inclusion criteria: Pts requiring TTVP. Exclusion criteria: N/A	1º endpoint: Femoral vein thrombosis and pulmonary emboli Results: 34% of pts had femoral vein thrombosis, and 60% had lung scan evidence of pulmonary emboli.	 TTVP via femoral vein access is associated with a high rate of thromboembolic complications, despite low- dose heparin. 2/29 pts received TTVP for SND.
Sodeck GH, et al. 2006 (77) 17212976	Study type: Observational, retrospective, single center Size: N=277	Inclusion criteria: Pts presenting to ED with compromising bradycardia Exclusion criteria: Asymptomatic bradycardia	1º endpoint: 30 d mortality Results: 48% AVB, 17% SB/AVB, Sinus arrest 15%, AF 14%, PM failure 6%. 20% required transvenous pacing for stabilization, 50% permanent pacing	Not all pts with bradycardia required temporary pacing
Jou YL, et al. 2010 (124) <u>20946290</u>	Study type: Observational, retrospective, single-center Size: N=509	Inclusion criteria: Pts presenting with bradycardia requiring temporary pacing Exclusion criteria: N/A	1° endpoint: Clinical characteristics and underlying etiologies Results: 64% of temporary pacers were for AVB. AAD use correlated with SND in 38%. Increasing AVB seen over time	Idiopathic degeneration was related to AVB, whereas extrinsic etiologies were related to SND.
McCann P, 2006 (125) 17235372	Study type: Systematic review of temporary cardiac pacing Size: N=15 studies, 3817 subjects	Inclusion criteria: Studies of temporary pacing wires Exclusion criteria: N/A	1° endpoint: Complication by access site, outcomes Results: The most common indication was AVB. Mean complication rate was 26.5% (10–59.9%), including access failure, lead malposition, sepsis, arterial puncture, lung or myocardial puncture, or arrhythmia	 Internal jugular vein access was associated with a lower complication rate compared with subclavian and femoral veins Complications appear to be lower if operator is specialized

				 Antibiotics and ultrasound access reduced the risk of complications. Methodologic limitations
Bjornstad CC, et al. 2012 (126) 22390277	Study type: Observational, prospective, 5 center study Size: N = 50	Inclusion criteria: All pts with temporary cardiac pacing wires Exclusion criteria: N/A	1° endpoint: Complications, outcomes Results: 30% with SND. Permanent pacing required in 60%, repeat procedures in 12%, mortality 18%, bacteremia 6%.	 High rates of subsequent PPM implantation High rates of complications.

Data Supplement 20. RCTs of Transcutaneous Pacing (Section 5.3.3)

Study Acronym; Author;	Aim of Study; Study Type;	Patient Population	Study Intervention (# patients) /	Endpoint Results (Absolute Event Rates,	Relevant 2° Endpoint (if any);
Year Published	Study Size (N)		Study Comparator	P values; OR or RR; &	Study Limitations;
			(# patients)	95% CI)	Adverse Events
PrePACE	Aim: To evaluate the	Inclusion criteria: Unstable	Intervention: All pts received	1° endpoint: Survival to	 Survival to hospital
Morrison LJ, et	feasibility of a RCT of	bradycardia unresponsive	250 ml saline IV bolus. If	hospital discharge	discharge was similar
al. 2006 (86)	transcutaneous pacing	to fluid and atropine: heart	nonresponse, pts received		in both groups (70% vs.
<u>17933452</u>	vs. dopamine for	rate <60 per minute and	atropine 1 mg, repeated if	Safety endpoint (if	69%; p=0.93), as were
	atropine and fluid	systolic BP (SBP) <80 mm	improved. If pts failed to	<u>relevant)</u> :	2° outcomes.
	refractory bradycardia	Hg; or heart rate <60/min	respond, they were randomized	Ventricular arrhythmia,	Paramedics chose not
	in the prehospital	and SBP <100 mm Hg and	to transcutaneous pacing (with	cutaneous burns, chest	to enroll 20 pts due to
	setting.	at least one additional	midazolam) vs. comparator.	wall discomfort, cardiac	pain concerns. 71% of
	Cturdu tura o DCT	sign/symptom	Commence Departing starting	arrest, TCP failure.	TCP pts experienced
	Study type: RCT	Exclusion criteria: Advance	Comparator: Dopamine starting at 5 mcg/kg min, increasing the		chest discomfort
	Size: 151 met criteria,	directives, trauma,	dose by 5 mcg/kg min every 2		during pacing.
	82 enrolled	hyperthermia,	min until an improvement in		
	oz emoneu	hypothermia or cardiac	signs and symptoms was		
		arrest, pts in whom it was	observed, maximum dose of 20		
		not possible to start an	mcg/kg min		
		intravenous line.			
Barthell E, et al.	Aim: To determine if	Inclusion criteria: Pts with	Intervention: Transcutaneous	1° endpoint: Survival to	Randomization by day
1988 (127)	prehospital cardiac	hemodynamically	pacing	hospital admission	No difference in
3056132	pacing affects mortality	significant bradycardia	_	(21.4% in pacing group	rhythm subgroups of
			Comparator: ACLS	vs. 20.6%) and survival	asystole vs. EMD
	Study type: RCT)	Exclusion criteria: N/A		to discharge (6.8% vs.	Improved survival in
				4.4%)	hypotensive
	<u>Size</u> : N=239; 226				bradycardic group (6/6
	pulseless (asystole and			Safety endpoint: None	resuscitated, 5/6
	EMD); 13 with				survived, vs. 2/7 and
	hemodynamically				1/7 controls)
	significant bradycardia				

Data Supplement 21. Nonrandomized Trials, Observational Studies, and/or Registries of Transcutaneous Pacing (Section 5.3.3)

		, ,	<u> </u>	<u> </u>
Study Acronym;	Study Type/Design;	Patient Population	Primary Endpoint and Results	Summary/Conclusion
Author;	Study Size		(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	

1991 (129) importance of hemodynamic status and effect of prehospital transcutaneous pacing in pts with symptomatic bradycardia Witnessed CV decompensation and initial bradycardia Witnessed CV decompensation and initial bradycardia Safety endpoint: N/A Witnessed CV discharge. Showed a trend towards improvement in the pacing group (15% vs. 0%; p=0.07)	Sherbino J, et al. 2006 (128) 16814446	Study type: Systematic review of the efficacy of transcutaneous pacing in the management of symptomatic bradycardia and bradyasystolic arrest in the prehospital setting Size: 7 studies	Inclusion criteria: Case series, RCTs, and one subgroup analysis of transcutaneous pacing in symptomatic bradycardia or bradyasystolic arrest. inclusion criteria were euthermic, nontraumatized adults, who experienced prehospital hemodynamically symptomatic bradycardia or bradyasystolic cardiac arrest. Symptomatic bradycardia was defined a priori as a heart rate less than 60 bpm and at least one of the following: systolic BP less than 80 mm Hg; a change in mental status; angina pectoris; or acute pulmonary oedema.8 Bradyasystolic cardiac arrest was defined as the absence of a palpable pulse in the presence of an electrocardiographic bradycardic or asystolic rhythm. Exclusion criteria: N/A Inclusion criteria:	1° endpoint: Survival to hospital discharge Results: No difference in survival to hospital discharge was noted in bradyasystolic cardiac arrest. A subgroup analysis in symptomatic bradycardia study showed borderline improved survival to discharge.	Evidence to support the use of transcutaneous pacing in the prehospital setting for symptomatic bradycardia is insufficient. Symptomatic bradycardia was defined as a heart rate less than 60 bpm and at least one of: systolic BP <80 mm Hg, change in mental status, angina, or pulmonary edema; the relevance to acute SND is therefore unclear.
status and effect of prehospital transcutaneous pacing in pts with symptomatic bradycardia status and effect of prehospital decompensation and initial bradycardia status and effect of prehospital decompensation and initial bradycardia status and effect of prehospital decompensation and initial bradycardia status and effect of prehospital decompensation and initial bradycardia status and effect of prehospital decompensation and initial bradycardia status and effect of prehospital transcutaneous pacing in pts with symptomatic bradycardia status and effect of prehospital decompensation and initial bradycardia status and effect of prehospital transcutaneous pacing in pts with symptomatic bradycardia status and effect of prehospital transcutaneous pacing in pts with symptomatic bradycardia status and effect of prehospital transcutaneous pacing in pts with symptomatic bradycardia status and effect of prehospital transcutaneous pacing in pts with symptomatic bradycardia status and effect of prehospital transcutaneous pacing in pts with symptomatic bradycardia status and effect of prehospital transcutaneous pacing in pts with symptomatic bradycardia status and effect of prehospital transcutaneous pacing in pts with symptomatic bradycardia status and effect of prehospital transcutaneous pacing in pts with symptomatic bradycardia status and effect of prehospital transcutaneous pacing in pts with symptomatic bradycardia status and effect of prehospital transcutaneous pacing in pts with symptomatic bradycardia status and effect of prehospital transcutaneous pacing in pts with symptomatic bradycardia status and effect of prehospital transcutaneous pacing in pts with symptomatic bradycardia status and effect of prehospital transcutaneous pacing in pts with symptomatic bradycardia status and effect of prehospital transcutaneous pacing in pts with symptomatic bradycardia status and effect of prehospital transcutaneous pacing in pts with symptomatic bradycardia status and effect of prehospital transcutane				1º endpoint: Survival to hospital discharge	Survival to hospital discharge showed a trend towards
transcutaneous pacing in pts with symptomatic bradycardia with symptomatic bradycardia with symptomatic bradycardia	, ,	1 .		discriatige.	
with symptomatic bradycardia		1	-	Safety endpoint: N/A	
		, , ,		Carety chaponic 14/74	(15/0 43. 0/0, p 0.0/)
Exclusion criteria:		symptomatic bradycardia	Exclusion criteria:		
Study type: Observational		Study type, Observations!	LACIUSIUII CITCETIA.		

	Intervention: Transcutaneous pacing Comparator: No pacing Size: N=51			Pts with a palpable pulse on EMS arrival had better survival (80% in paced group vs. 0%; p= 0.02)
Zoll PM, et al., 1985	Aim: To evaluate the	Inclusion criteria: Pts	1° endpoint: Clinical outcomes	TCP was clinically useful.
(130)	effectiveness of external	requiring or likely to		Over 25% of enrolled subjects had
<u>3886190</u>	noninvasive TCP	require temporary	Results: TCP was well tolerated in	SND as an indication for pacing.
		pacing.	73/82 awake pts, and successfully	
	Study type: Prospective,		evoked response in 105/134.	
	observational, multicenter (3)	Exclusion criteria: N/A		
	<u>Size</u> : N=134			
Clinton JE, et al. 1985	Study type: Observational,	Inclusion criteria:	1° endpoint: Successful pacing	TCP can effectively treat
(131)	single center	Emergency room pts with	capture and hemodynamic	hemodynamically significant
<u>3914511</u>		hypotension and	pacing response.	bradycardia, but does not appear to
	<u>Size</u> : N=37	bradycardia		be useful in asystole.
			Results: 8/37 pts were	• 2/37 pts had SND as an indication
		Exclusion criteria: N/A	successfully treated with TCP.	for pacing.
			Surviving responders were more	
			likely to present with sinus	
			bradycardia, AF with bradycardia,	
			or CHB, compared to asystole.	

Data Supplement 22. RCTs of General Principles of Chronic Therapy/Management of Bradycardia due to Sinus Node Dysfunction (Section 5.4.1)

(
Study Acronym; Author; Year Published; PMID	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P value; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
ADEPT	Aim: To	Inclusion criteria: Age ≥21 y,	Intervention: MDT	• Total exercise time (6 mo): 7.3	 No differences in other 2°
Lamas GA, et al.	determine	Class I or 2A indication for	Kappa 400 DDDR	vs. 7.1 min (p=0.98)	QOL endpoints
2007 (132)	whether DDDR	pacing, demonstrated	pacemaker programmed	Specific Activity Scale (SAS) at	CHF hospitalizations in
<u>17765608</u>	pacing improves	chronotropic incompetence,	to DDDR (N=443)	1 y: 1.5 vs. 1.6 (p=0.96)	DDDR group vs. DDD
	QOL when				

	compared to DDD pacing alone	cannot exceed 80% of MPHR (220-age) at peak exercise	Comparator: MDT Kappa 400 DDDR		group: 7.3% vs. 3.5%; p=0.01
	Study type: Multi- center single-	Exclusion criteria: AF for >1 mo, overt CHF, serious chronic	pacemaker programmed to DDD (N=429)		 No differences in other clinical endpoints
	blind RCT	illness, score of <17 on MMSE, inability to tolerate high-rate	Mean follow-up 1 y 64% had SND		
	Size: 872 pts	pacing, severe limitations of functional capacity	Vp% >90 in both groups		
THEOPACE Alboni P, et al. 1997 (133) 9236443	Aim: To prospectively assess the effects of PPMs and theophylline in pts with SSS Study type: Randomized controlled trial	Inclusion criteria: Age ≥45 y, mean resting sinus rate <50 bpm and/or intermittent SA block, symptoms attributable to SND Exclusion criteria: very severe SSS, refractory HF, recent MI or stroke, life expectancy <2 y, significant renal or hepatic	Intervention 1: oral theophylline 550 mg/d (N=36) Intervention 2: DDDR PPM programmed to lower rate of 60–70 ppm and prolonged AV delay (N=36) Comparator: No	 Syncope: 6 (17%) theophylline, 2(6%) PPM, 8 (23%) control arm: p=0.02 (PPM vs. control); p=0.07 (theophylline vs. control) HF: 1(3%) theophylline, 1(3%) PPM, 6(17%) control arm: p=0.05 (lower HF in PPM and theophylline vs. control arm Permanent AF: 2(6%) 	• Thromboembolism: 3(9%) theophylline, 3(9%) PPM, 1(3%) control arm: no difference (p=NS)
	Size: 107 pts	disease, Hx of VT, prior usage of theophylline, need for BB or CCB	treatment (N=35) Mean follow-up 19±14 mo	theophylline, 3(9%) PPM, 4(11%) control arm: no difference (p=NS)	

Data Supplement 23. Nonrandomized Trials, Observational Studies, and/or Registries of General Principles of Chronic Therapy/Management of Bradycardia due to Sinus Node Dysfunction (Section 5.4.1)

Study Acronym;	Study Type/Design;	Patient Population	Primary Endpoint and Results	Summary/Conclusion
Author;	Study Size		(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	
Sasaki Y, et al.	Long-term follow-up	Inclusion criteria: Pts with SSS	Results:	• In this group of pts with SSS requiring
1988 (134)	of pts with SSS	who underwent EPS and were	 VVI pacing – 25 pts; atrial/DC 	PPM, mode of pacing did not influence
<u>2462243</u>		symptomatic from	pacing – 24 pts	the survival rate; however, CV deaths
	Study type:	bradycardia and requiring	Chronic AF: VVI vs. physiologic	were fewer in the physiologic pacing
	Prospective cohort	pacing, sinus pause >3 s	pacing group (36% vs. 0%; p<0.01)	group.
		during EPS	• Thromboembolism: VVI vs.	
	Size: 49 pts		physiologic pacing group (20% vs.	There were significantly higher incidences
		Exclusion criteria: N/A	0%; p<0.05)	of chronic AF and thromboembolism in

Goldberger JJ, et	Significance of asx	Inclusion criteria: Age >60 y,	No difference in HF occurrence Results:	the VVI group although this group was followed for a significantly longer period of time than the physiologic pacing group (35.1 vs. 19.7 mo; p<0.01) • Higher incidence of PPM implantation in
al. 2011 (135) 21757182	bradycardia for subsequent PM implantation and mortality in pts age >60 y Study type: Retrospective cohort	resting heart rate <55 bpm (bradycardia group, N=470) or heart rate between 60–70 bpm (control group, N=2,090) Exclusion criteria: PPM implantation within 2 wk of initial EKG, heart rate outside the above range	 Incidence of PPM placement: 9% in bradycardia cohort vs. 5% in control group; p<0.001 Protection against mortality in the bradycardia group (HR: 0.78; 95% CI: 0.65–0.94; p=0.010) 	 the bradycardia group did not appear until after the first 4 y. Older outpatients with bradycardia not requiring urgent PPM implantation have very low rate (<1%/y) of subsequent PPM implantation. Asymptomatic bradycardia has no adverse impact on all-cause mortality and may even be protective.
Denniss AR, et al. 1992 (75) 1572741	Size: 2,560 pts Electrophysiologic studies in pts with unexplained syncope Study type: Prospective cohort Size: 111 pts	Mean follow-up 7.2 ± 2.9 y Inclusion criteria: Unexplained syncope, prior general medical evaluation (H&P, CXR, echo, LHC, neuro exam, heart monitor, etc) Exclusion criteria: Documented tachy or bradyarrhythmia, Dx of vasovagal syncope, postural hypotension, AS, HOCM or prolonged QT interval Mean follow-up 20 mo	Results: No mortality within 30 d of EPS Pts with heart disease (CAD, HTN, MVP, CMP) had higher incidence of conduction disease (26%) than those w/o heart disease (8%; p<0.05) Abnormal EPS (conduction disease, SVT, VT) findings in 42% of pts with heart disease but 16% of pts w/o heart disease (p<0.01) Syncope occurred in only 5% of treated pts with abnormal findings at EPS vs. 24% in the group not receiving any Rx (p<0.05) No recurrent syncope in 27 pts treated with PPM vs. recurrent syncope in 20 of 84 pts (24%) not given PPM (p<0.05)	 Diagnostic yield of EPS is increased in pts with heart disease. Pts with no heart disease had no mortality.
Teichman SL, et al. 1985 (136) 4025122	The value of EPS in syncope of undetermined origin: Report of 150 cases	Inclusion criteria: Pts with syncopal and near- syncopal events (SUO) unexplained after general	EP abnormality that could explain SUO was demonstrated in 36% of pts	Presence of organic heart disease increased the incidence of positive EPS finding.

	Study type: Prospective cohort Size: 150 pts	medical evaluation, neuro evaluation, CXR, orthostatic, CSM, continuous rhythm monitoring for at least 24 h Exclusion criteria: Heart block, bradycardia, pauses >2.5 s, PVCs, VT, SVT, orthostasis Mean follow-up 31 mo	 Presence of organic heart disease was associated with increase in the incidence of EP findings (85% with vs. 64% w/o organic heart disease; p<0.005) Pts with LBBB were more likely to have abnormal EPS than pts with RBBB (p<0.02) 	 Pts who had EPS abnormalities detected and treated had had fewer recurrence of SUO than those with negative EPS. SUO pts overall had low mortality rates during follow-up (±EPS)
Seidl K, et al. 2000 (137) 11227598	Diagnostic assessment of recurrent unexplained syncope with a new subcutaneously ILR Study type: Prospective cohort Size: 133 pts	Inclusion criteria: Recurrent unexplained syncope with initial nondiagnostic investigations (resting EKG, echo, ambulatory monitor, etc) Exclusion criteria: None Mean follow-up 10.8 mo	 Device-related complications in 9% Definite determination of whether arrhythmia was the cause or not in 54% of pts. 87% diagnostic yield (72 out of 83 pts) Arrhythmic cause of syncope found in 44% of pts. 	ILR is useful for establishing a Dx when symptoms are recurrent but too infrequent for conventional noninvasive monitoring.

Data Supplement 24. RCTs of Clinical Presentation of Bradycardia due to Sinus Node Dysfunction (Section 5.3)

Study Acronym; Author; Year Published; PMID	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P value; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
DANPACE	Aim: To	Inclusion criteria: SA	Intervention: Bipolar	Mortality: 29.6% (AAIR) vs.	• PAF: 28.4% (AAIR) vs. 23.0%
Nielsen JC, et al.	compare the	block or sinus arrest	atrial lead only (AAIR	27.3% (DDDR) (adjusted HR:	(DDDR) (adjusted HR: 1.24; 95% CI:
2011 (138)	efficacy of AAIR	with pauses >2 s, PR	pacing programmed to	0.94; 95% CI: 0.77-1.14;	1.01–1.52; p=0.042)
21300730	vs. DDDR pacing	≤260 ms, QRS <120	LR of 60 ppm) – must	p=0.52)	• Chronic AF: 11.2% (AAIR) vs. 10.7%
	in pts with SSS	ms, heart rate <40	have 1:1 AV conduction		(DDDR) (adjusted HR: 1.01; 95% CI:
	and bradycardia	while awake	at paced rate of 100 bpm		0.74-1.39; p=0.93)
			(N=707)		• Stroke: 5.5% (AAIR) vs. 4.8%
	Study type: RCT	Exclusion criteria:			(DDDR) (adjusted HR: 1.11; 95% CI:
		AVB, BBB, long-	Comparator: DDDR		0.70–1.77; p=0.65)
	<u>Size</u> : 1,415 pts	standing PerAF, and	pacing programmed to		, ,

cai	arotid sinus	LR of 60 ppm AND to	• HFH: 27 pts (AAIR) vs. 28 pts
hy	ypersensitivity,	minimize V pacing	(DDDR) (p=0.90)
pla	lanned cardiac	(N=708) [mean Vp%=65]	• PPM reoperation: 22.1% (AAIR) vs.
sui	urgery, life		11.9% (DDDR) (adjusted HR: 2.00;
ex	xpectancy <1 y		95% CI: 1.54-2.61; p<0.001)

Data Supplement 25. RCTs of Permanent Pacing for Chronic Therapy/Management of Bradycardia due to Sinus Node Dysfunction (Section 5.4.4)

Study Acronym; Author;	Aim of Study; Study Type;	Patient Population	Study Intervention (# patients) /	Endpoint Results (Absolute Event Rates, P	Relevant 2° Endpoint (if any); Study Limitations;
Year Published: PMID	Study Size (N)		Study Comparator (# patients)	value; OR or RR; & 95% CI)	Adverse Events
DANISH Andersen HR, et al. 1997 (139) 9652562	Aim: Long-term follow-up of pts from a randomized trial of atrial vs. ventricular pacing for sick-sinus syndrome. To examine whether the beneficial effect of atrial pacing is maintained during extended follow-up of up to 8 y Study type: RCT Size: 225 pts	Inclusion criteria: Symptomatic bradycardia <50 bpm or pause >2 s Exclusion criteria: AVB, chronic AF, BBB, age <50, planned cardiac surgery, cancer, cerebral disease, CVA within 3 mo, major surgery, etc.	Intervention: Single chamber atrial pacing (only if 1:1 AV conduction at atrial pacing rate of 100 bpm) (N=110) Comparator: Single chamber ventricular pacing (N=115) Mean follow-up 5.5 y	 All-cause mortality: 39 atrial vs. 57 ventricular (RR: 0.66; 95% Cl: 0.44–0.99; p=0.045) CV mortality: 19 atrial vs. 39 ventricular (RR: 0.47; 95% Cl: 0.27–0.82; p=0.0065) AF: 26 atrial vs. 40 ventricular (RR: 0.54; 95% Cl: 0.33–0.89; p=0.012) Thromboembolism: 13 atrial vs. 26 ventricular (RR: 0.47; 95% Cl: 0.24–0.92; p=0.023) 	Use of diuretics: significantly higher in the atrial group (p<0.05)
PASE Lamas GA, et al. 1998 (140) 9545357	Aim: To compare DC vs. ventricular only pacing for pts with symptomatic bradycardia Study type: RCT Size: 407 pts	Inclusion criteria: ≥65 y old, in SR, required PPM for prevention or treatment of bradycardia Exclusion criteria: Overt CHF, AF with no documentation of SR within 6 mo, serious noncardiac illnesses, cannot participate in quality-of-life assessments	Intervention: Dual chamber PPM programmed VVIR and programmed to LR limit of ≥50 bpm (N=204) Comparator: Dual chamber PPM programmed DDDR and programmed to LR limit of ≥50 bpm (N=203)	 PPM indications: AVB 49%, SND 43% 26% (53) of VVIR group crossed over to DDDR group due to PM syndrome QOL (as measured by SF-36 survey) improved significantly after PPM implantation (p<0.001) but NO difference between 2 pacing modes in QOL In SND group (but not in AVB group), DC pacing resulted in significantly better QOL and CV functional status 	 No significant differences in the rates of death from all causes, stroke or death, stroke or death or hospitalization for HF, and development of AF Risk of AF development was higher in VVIR compared to DDDR group but was not statistically significant (28% vs. 19%; p=0.06)

MOST Lamas GA, et al. 2002 (141) 12063369	Aim: To compare DC vs. ventricular only pacing to treat pt with clinically significant bradycardia due to SND Study type: RCT Size: 2,010 pts	Inclusion criteria: ≥21 y old, in SR, undergoing DC PPM implant for symptomatic SND Exclusion criteria: Serious concurrent illnesses	Intervention: Dual chamber PPM programmed DDDR and programmed to LR limit of ≥60 bpm (N=1,014) Comparator: Dual chamber PPM programmed VVIR and programmed to LR limit of ≥60 bpm (N=996)	Death or nonfatal stroke occurred in 21.5% of DDDR pts vs. 23.0% of VVIR pts (p=0.48) 31.4% (313) of pts in the VVIR group was crossed over to DDDR group	 Incidence of AF was 21.4% in DDDR group vs. 27.1% in VVIR group (adjusted HR:0.77; 95% CI: 0.64–0.92; p=0.004) Hospitalization for HF was 10.3% in DDDR group vs. 12.3% in VVIR group (adjusted HR:0.73; 95% CI: 0.56–0.95; p=0.02) Combined clinical endpoint (death, stroke or HFH) was 27.6% in DDDR group vs. 29.9% in VVIR group (adjusted HR:0.85; 95% CI: 0.72–1.00; p=0.05) DDDR pacing resulted in better improvement in QOL as compared with VVIR pacing. Adverse events: Total 30 d rate of complication 4.8% (1.8% A-lead issue, 1.5% pneumothorax, 1.1% V-lead issue)
CTOPP Connolly SJ, et al. 2000 (142) 10805823	Aim: To assess whether physiologic pacing or ventricular pacing is better for pts with symptomatic bradycardia Study type: RCT Size: 2,568 pts	Inclusion criteria: ≥18 y old Exclusion criteria: Chronic AF, s/p AV nodal ablation, life expectancy <2 y	Intervention: Atrial-only pacing can be considered (if evidence of 1:1 AV conduction at paced rate of up to 130 bpm), o/w DC pacing (only 5.2% received atrial-only pacing) (N=1,094) Comparator: VVI pacing (N=1,474)	 PPM indications: 60% AVB, 42% SND Annual rate of stroke or death was 5.5% for VVI pacing vs. 4.9% for physiologic pacing (95% CI: 10.5–25.7; p=0.33) Subgroup analysis showed that pt with SND received no particular benefit from physiologic pacing compared to VVI pacing 	 Annual rate of AF was 6.6% for VVI pacing vs. 5.3% for physiologic pacing (18% RR reduction; 95% CI: 0.3–32.6; p=0.05) Annual rate of hospitalization for HF was 3.5% for VVI pacing vs. 3.1% for physiologic pacing (95% CI: -18.5–28.3%; p=0.52) Annual rate of stroke was 1.1% for VVI pacing vs. 1.0% for physiologic pacing

					Adverse events: More common in physiologic pacing group primarily due to atrial lead complications
SAVE PACe Sweeney MO, et al. 2007 (143) 17804844	Aim: To compare DC minimal ventricular pacing vs. DC pacing only in pts with sinus node disease Study type: RCT Size: 1,065 pts	Inclusion criteria: Symptomatic bradycardia due to SND, >18 y old, QRSd ≤120, AV conduction of 1:1 at 100 ppm Exclusion criteria: Persistent AF, ≥2 DCCV for AF within 6 mo, 2° or 3° AVB, life expectancy <2 y	Intervention: DC-minimal ventricular pacing (N=530) Comparator: DC pacing only (N=535)	 Median % of Vp (DC-minimal ventricular pacing 9.1% vs. DC only 99.0%; p<0.001) Development of persistent AF (DC-minimal ventricular pacing 7.9% vs. DC only 12.7%; p=0.004); thus, 40% RR reduction for development of persistent AF (HR: 0.60; 95% CI: 0.41–0.88; p=0.009) Time to 1st DCCV, AV node ablation or PVI favored DC-minimal ventricular pacing (HR: 0.62; 95% CI: 0.37–1.03; p=0.06) 	 No significant difference in mortality (4.9% vs. 5.4%; HR: 0.85; 95% CI: 0.50–1.44; p=0.54) or rate of hospitalization for HF (2.8% vs. 3.1%; HR: 0.84; 95% CI: 0.42–1.68; p=0.62) Adverse events: 4.0% lead problems, 0.3% device infections requiring removal, 1 intra-op death
DANPACE Nielsen JC, et al. 2011 (138) 21300730	Aim: To compare the efficacy of AAIR vs. DDDR pacing in pts with SSS and bradycardia Study type: RCT Size: 1,415 pts	Inclusion criteria: SA block or sinus arrest with pauses >2 s, PR ≤260 ms, QRS <120 ms, heart rate <40 while awake Exclusion criteria: AVB, BBB, LS PerAF, +carotid sinus hypersensitivity, planned cardiac surgery, life expectancy <1 y	Intervention: Bipolar atrial lead only (AAIR pacing programmed to LR of 60 ppm) – must have 1:1 AV conduction at paced rate of 100 bpm (N=707) Comparator: DDDR pacing programmed to LR of 60 ppm AND to minimize V pacing (N=708) (mean Vp%=65)	Mortality: 29.6% (AAIR) vs. 27.3% (DDDR) (adjusted HR: 0.94; 95% CI: 0.77–1.14; p=0.52)	 PAF: 28.4% (AAIR) vs. 23.0% (DDDR) (adjusted HR: 1.24; 95% CI: 1.01–1.52; p=0.042) Chronic AF: 11.2% (AAIR) vs. 10.7% (DDDR) (adjusted HR: 1.01; 95% CI: 0.74–1.39; p=0.93) Stroke: 5.5% (AAIR) vs. 4.8% (DDDR) (adjusted HR: 1.11; 95% CI: 0.70–1.77; p=0.65) HFH: 27 pts (AAIR) vs. 28 pts (DDDR) (p=0.90) PPM reoperation: 22.1% (AAIR) vs. 11.9% (DDDR) (adjusted HR 2.00; 95% CI: 1.54–2.61; p<0.001)

Healey JS, et al. 2006 (144) 16801463	Aim: To determine whether atrial-based pacing (AAI or DDD) prevents MACE as compared to VVI pacing in pts with	Inclusion criteria: Publications since 1980, randomized controlled parallel design, have pt level data on outcomes	Intervention: Studies including pts who were AAI or DDD paced (atrial-based) pacing	 SND subgroup: Overall mortality: ABP vs. VVI pacing (HR 0.92; 95% CI 0.81–1.05; p=NS Entire group:	 SND subgroup: Composite of stroke or CV death: ABP vs. VVI pacing (HR: 0.83; 95% CI: 0.72–0.97; p=0.04) AF: ABP vs. VVI pacing (HR:
	bradycardia Study type: Meta- analysis Size: 7,231 pts	Exclusion criteria: Post cardiac surgery or AV node ablation pts, multi-site A or V pacing, follow-up <6 mo	Comparator: Studies including pts who were VVI paced (ventricular-based) pacing	 AF: ABP vs. VVI pacing (HR: 0.80; 95% CI: 0.72–0.89; p=0.00003) Stroke: ABP vs. VVI pacing (HR: 0.81; 95% CI: 0.67–0.99; p=0.035) Implant complication rate: ABP 6.2% vs. VVI pacing 3.2% 	0.76; 95% CI: 0.67–0.86; p<0.0001) • Stroke: ABP vs. VVI pacing (HR: 0.84; 95% CI: 0.64–1.11; p=NS) • HFH: ABP vs. VVI pacing (HR: 0.92; 95% CI: 0.75–1.13; p=NS)
DANISH Andersen HR, et al. 1994 (145) 7983951	Aim: Prospective randomized trial of atrial vs. ventricular pacing in sick-sinus syndrome. To determine whether single chamber atrial or ventricular pacing is better in pts with SSS Study type: Prospective randomized Size: 225 pts	Inclusion criteria: Symptomatic bradycardia <50 bpm or pause >2 s Exclusion criteria: AVB, chronic AF, BBB, age <50 y, planned cardiac surgery, cancer, cerebral disease, CVA within 3 mo, major surgery, etc.	Intervention: Single chamber atrial pacing (only if 1:1 AV conduction at atrial pacing rate of 100bpm) (N=110) Comparator: Single chamber ventricular pacing (N=115) Mean follow-up 40±18 mo	 Death: 21 (atrial) vs. 25 (ventricular) (p=0.74) CV death: 11 (atrial) vs. 20 (ventricular) (p=0.16) AF: higher frequency in the ventricular group at follow-up Thromboembolism: 6 (atrial) vs. 20 (ventricular) (p=0.0083) HF did not differ between 2 groups 	 LA diameter increased by more in the ventricular (p=0.0001) group vs. the atrial group (p=0.037) compared with preop values 2 pts in the atrial group developed AVB Adverse events: More common in atrial group (most common, lead dislodgement) than ventricular group (most common, PPM syndrome)
MOST sub-study Sweeney MO, et al. 2003 (146) 12782566	Aim: To examine the effect of pacing-induced ventricular desynchronization in pts with SND and normal QRSd	Inclusion criteria: SND, SR at the time of assignment, baseline QRSd <120 ms	Intervention: DDDR pacing (N=707) Comparator: VVIR pacing (N=632)	 Cum%VP: DDDR 90% vs. VVIR 58%; p=0.001 HFH: In DDDR mode, the risk increased with increased Cum VP% from 0% up to ~40% pacing then leveled out. Vp >40% of time as 	• AF: Risk increased by 1% for each 1% increase in Cum%VP up to 85%; p=0.012 (DDDR). Risk increased by 0.7% increase in Cum%VP up to 80%; p=0.039 (VVIR).

	Study type: Post-hoc analysis of RCT Size: 1,339 pts	Exclusion criteria: Baseline QRSd >120 ms	Median follow-up 33.1 mo	compared to <40% of time was associated with HR: 2.60 (p=0.040). In VVIR mode, the risk was level between 0–80% and increased from 80–100%. Vp >80% of time as compared to <80% of time was associated HR: 2.50 (p=0.0012)	
Nielsen JC, et al. 2003 (147) 12932590	Aim: A randomized comparison of atrial and dual-chamber pacing in 177 consecutive patients with SSS. To compare AAI and DDD pacing in pts with SSS Study type: RCT Size: 177 pts	Inclusion criteria: SSS, normal AV conduction, symptomatic bradycardia <40 b symptomatic QRS pause of >2 s, age>18 y Exclusion criteria: BBB, AVB, chronic AF, cerebral disease, planned cardiac or major surgery, cancer	Intervention 1: AAIR (N=54) Intervention 2: DDDR with short AV delay (<150 ms) (DDDR-s) (N=60) Intervention 3: DDDR with fixed long AV delay (300 ms) (DDDR-l) (N=63) Mean follow-up 2.9 y	 LA diameter increased significantly in both DDDR groups (p<0.05) LVES diameter increased significantly in both DDDR groups (p<0.05) LVED diameter increased significantly in DDDR-I group (p<0.01) LVFS decreased significantly in DDDR-s group (p<0.01) Percent Vp: 90% in DDDR-s vs. 17% in DDDR-I 	 AF incidence at follow-up: AAIR 7.4%, DDDR-s 23.3%, DDDR-I 17.5% (p=0.03) Stroke: AAIR 5.6%, DDDR-s 11.7%, DDDR-I 6.3% (p=0.32) Death: AAIR 16.7%, DDDR-s 23.3%, DDDR-I 22.2% (p=0.51) CV death: AAIR 7.4%, DDDR-s 11.7%, DDDR-I 14.3% (p=0.43)
DANPACE Brandt NH, et al. 2016 (148) 28039212	Aim: To present a long-term outcome of initial DANPACE trial Study type: Long-term follow-up of RCT Size: 1,384 pts	Inclusion criteria: SA block or sinus arrest with pauses >2 s, PR ≤260 ms, QRS <120 ms, heart rate <40 while awake Exclusion criteria: AVB, BBB, long- standing PerAF, with carotid sinus hypersensitivity, planned cardiac surgery, life expectancy <1 y	Intervention: Bipolar atrial lead only (AAIR pacing programmed to LR of 60 ppm) – must have 1:1 AV conduction at paced rate of 100 bpm (N=696) Comparator: DDDR pacing programmed to LR of 60 ppm AND to minimize V pacing (N=688) Mean follow-up 8.9 y	• All-cause mortality: 59.3% AAIR vs. 53.3% DDDR (HR: 1.03; 95% CI: 0.90–1.19; p=0.65)	 AF: 28.6% AAIR vs. 29.1% DDDR (aHR: 0.98; 95% CI: 0.80–1.19; p=0.82) Ischemic stroke: 9.0% AAIR vs. 8.6% DDDR (Ahr: 1.00; 95% CI: 0.69–1.43; p=0.99) HFH: 12.0% AAIR vs. 11.5% DDDR (aHR: 1.01; 95% CI: 0.74–1.38; p=0.95) Annual rate of pacing mode change from AAIR to DDDR 4.5%

ADEPT	Aim: To determine	Inclusion criteria: Age	Intervention: MDT	Total exercise time (6 mo):	No differences in other 2°
Lamas GA, et al.	whether DDDR pacing	≥21 y, Class I or 2A	Kappa 400 DDDR	7.3 vs. 7.1 min (p=0.98)	QOL endpoints
2007 (132)	improves QOL when	indication for pacing,	pacemaker programmed	Specific Activity Scale (SAS)	CHF hospitalizations in
<u>17765608</u>	compared to DDD	demonstrated	to DDDR (N=443)	at 1 y: 1.5 vs. 1.6 (p=0.96)	DDDR group vs. DDD group:
	pacing alone	chronotropic			7.3% vs. 3.5%; p=0.01
		incompetence, cannot	Comparator: MDT		No differences in other
	Study type: Multi-	exceed 80% of MPHR	Kappa 400 DDDR		clinical endpoints
	center single-blind	(220-age) at peak	pacemaker programmed		·
	RCT	exercise	to DDD (N=429)		
	<u>Size</u> : 872 pts	Exclusion criteria: AF			
		for >1 mo, overt CHF,	Mean follow-up 1 y		
		serious chronic illness,	64% had SND		
		score of <17 on	Vp% >90% in both		
		MMSE, inability to	groups		
		tolerate high-rate			
		pacing, severe			
		limitations of			
		functional capacity			
RAST	Aim: To find out	Inclusion criteria:	Intervention: ILR (MDT	• Dx obtained in 14 of 27 pts	N/A
Krahn AD, et al.	whether prolonged	Recurrent unexplained	Reveal) monitoring for 1	(ILR group) vs. 6 of 30 pts	
2001 (72)	monitoring strategy is	syncope or syncope X	y (N=27)	(conventional group) (52%	
11435336	better than	1 associated with		vs. 20%; p=0.012)	
	conventional strategy	injury	Comparator:		
	in the evaluation of		Conventional testing – 2		
	recurrent syncope	Exclusion criteria:	to 4 wk of external loop		
		LVEF <35%, <1 y	recorder, TTT and EP		
	Study type:	expected survival,	testing (SNRT, SACT,		
	Prospective	unable to provide	antegrade/retrograde		
	randomized trial	follow-up or consent,	conduction,		
		clear NMS	programmed electrical		
	Size: 60 pts		stimulation) (N=30)		
		i	1		1
			Crossover was allowed if		
			Crossover was allowed if Dx was unable to be		
EaSyAS	Aim: Investigate the	Inclusion criteria:	Dx was unable to be made. Interventions: CSM +	• EKG Dx made: 34 (33%) in	Total medical costs: £406 in
EaSyAS Farwell DJ, et al.	Aim: Investigate the impact of ILRs on	Inclusion criteria: Recurrent syncope but no definitive Dx	Dx was unable to be made.	• EKG Dx made: 34 (33%) in ILR group vs. 4 (4%) in	• Total medical costs: £406 in ILR group vs. £1210 in

<u>15246645</u>	population of syncopal pts presenting to one institution Study type: Randomized trial Size: 201 pts	following initial clinical w/u (including CSM and TTT) Exclusion criteria: Structural heart disease	Comparator: CSM + TTT + conventional investigation (N=98) Mean follow-up 276 d	conventional group (HR: 8.93; 95% CI: 3.17–25; p<0.0001)	conventional group (mean difference £809; 95% CI: 123–2730)
FRESH Podoleanu C, et al. 2014 (74) 25241220	Aim: To compare conventional evaluation vs. early use of ILR in low-risk pts with syncope in France Study type: Prospective openlabel randomized multicenter study Size: 78 pts	Inclusion criteria: Any recent unexplained syncope (after basic clinical exam) Exclusion criteria: Significant heart disease, EF <40%, Hx of MI or unstable CAD, Hx of arrhythmia, family Hx of SCD, conduction disturbance on EKG, HOCM, AS, potentially arrhythmogenic drug use	Intervention: ILR group (N=39) Comparator: Conventional evaluation strategy group (N=39) F/u 14 mo	 Identification of cause: 18 (46.2%) pts in ILR group vs. 2 (5%) pts in conventional group (p<0.001) Days of hospitalization: 5.7 d in ILR group vs. 8.0 d in conventional group (p=0.55) Number of advanced cardiac tests needed: 0.03/pt in ILR group vs. 0.2/pt in conventional group (p=0.05) 	Quality of life was no different between the 2 groups
THEOPACE Alboni P, et al. 1997 (133) 9236443	Aim: To prospectively assess the effects of PPMs and theophylline in pts with SSS Study type: Randomized controlled trial Size: 107 pts	Inclusion criteria: Age ≥45 y, mean resting sinus rate <50 bpm and/or intermittent SA block, symptoms attributable to SND Exclusion criteria: Very severe SSS, refractory HF, recent MI or stroke, life expectancy <2 y, significant renal or hepatic disease, Hx of	Intervention 1: oral theophylline 550 mg/d (N=36) Intervention 2: DDDR PPM programmed to lower rate of 60–70 ppm and prolonged AV delay (N=36) Comparator: No treatment (N=35)	 Syncope: 6(17%) theophylline, 2(6%) PPM, 8(23%) control arm: p=0.02 (PPM vs. control); p=0.07 (theophylline vs. control) HF: 1(3%) theophylline, 1(3%) PPM, 6(17%) control arm: p=0.05 (lower HF in PPM and theophylline vs. control arm Permanent AF: 2(6%) theophylline, 3(9%) PPM, 	• Thromboembolism: 3(9%) theophylline, 3(9%) PPM, 1(3%) control arm: no difference (p=NS)

Page 100

	VT, prior usage of	Mean follow-up 19±14	4(11%) control arm: no	
	theophylline, need for	mo	difference (p=NS)	
	BB or CCB			

Data Supplement 26. Nonrandomized Trials, Observational Studies, and/or Registries of Reversible Causes of AV block (Section 6.3.1)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Kenneback G, et al. 2007 (149) <u>17255148</u>	Study type: Single- center, prospective cohort (Sweden) Size: N=17 (53% men), mean age 77 y	Inclusion criteria: Pts admitted with high-degree AVB on antiarrhythmic therapy (88% beta blocker) who received PPM, who then had AAD withdrawn with return of AV conduction. Exclusion criteria: Valve surgery in past year, permanent AF	1° endpoint: Recurrence of AVB detected by PM algorithm over 2 y Results: 9/12 pts (75%) with QRS ≥120 ms and 1/5 pts (20%) developed recurrent AVB. 6/17 pts (35%) developed atrial tachyarrhythmias requiring AAD tx	Appropriate to place PPM in pts with AVB and QRS >120 ms w/o further delay or evaluation.
Knudsen MB, et al. 2013 (150) 23869746	Study type: Single-center, retrospective cohort (Denmark) Size: N=55 (55% male, mean age 77 y)	Inclusion criteria: Pts admitted with 2/3 AVB, had temporary wire, were on class II-IV AADs or digoxin. Exclusion criteria: No ECG documentation, AVB due to other identified cause, prior PPM explant, died within several days	1° endpoint: Need for PPM; complications of TPM Results: 47/55 (85%) required PPM in hospital. 2/55 had recurrent AVB and required PPM. 11% of pts had complication of TPM (infection/dislodgment), also prolonged hospital stay	 Pts with AVB on AADs /digoxin do not benefit from TPM and drug washout. Should proceed to PPM w/o delay. "In the elderly, the drug is virtually never the sole culprit; rather, it just exposes the underlying weakness of the aging conduction system"
Osmonov D, et al. 2012 (151) 22530749	Study type: Single-center retrospective cohort (Turkey) Size: N=108 (16% of all 668 pts admit with 2/3 AVB). 30/108 (28%) had AF with SVR	Inclusion criteria: All pts admitted with 2/3 AVB who were on AV nodal blocking drugs 2008–9 Exclusion criteria: MI, electrolyte disturbances, digoxin toxicity, vasovagal syncope	1° endpoint: Resolution/ recurrence AVB, need for PPM Results: Resolution of AVB with 72 h in 78/108 (72%). 21/78 (27%) had recurrence of AVB. Overall 51/108 (48%) had persistent of recurrent AVB despite drug withdrawal.	 Half of pts with AVB on nodal-blocking drugs require PPM before discharge despite drug withdrawal. Limited follow-up – other pts may have required PPM at later date

Zeltser D, et al. 2004	Study type: Single-	Inclusion criteria: All pts	1° endpoint: Resolution/ recurrence	• Overall, only 15% of pts with AVB
(152)	center retrospective	admitted with 2/3 AVB 1999–	AVB, need for PPM	on nodal blocking drugs had AVB
15234417	cohort (Israel)	2003.		"caused by drugs"
			Results: 79/92 (86%) had drug	• F-u limited to 3 wk
	Size: N=169 (60% male,	Exclusion criteria: MI, digoxin	discontinued. 32/79(41%) had	a mineca to 5 WK
	mean age 78 y). 92/169	toxicity, vasovagal syncope	resolution of AVB. 18/32 had relapse of	
	(54%) receiving AV		AVB within 3 wk	
	nodal blockers			
Risgaard B, et al.	Study type:	Inclusion criteria: All pts	1° endpoint: d to implant,	Pt harm results from delay to
2012 (153)	Retrospective single-	referred for urgent PPM in 2009	complications during wait	PPM for capacity issues.
22333242	center/region cohort		_	·
	study (Denmark)	Exclusion criteria: Discharged	Results: Mean 8.3 d hospitalization to	
		from hospital before implant,	implant (3.2 d to Dx; 5.1 d waiting for	
	Size: N=259 (mean age	referred from outpatient	PPM). 83/259 pts (32%) had	
	78 y, 46% male). 49.7%	department	complications while waiting – Infection	
	had 2/3 AVB. 15% had		(11%), asystole (20%), NSVT (5%),	
	AF-slow ventricular		cardiac arrest (3%), death (1%)	
	response			
Farre N, et al. 2014	Study type:	Inclusion criteria: Consecutive	1° endpoint: Persistence/recurrence of	 Outside setting of MI/ischemia,
(154)	Retrospective single-	pts with "reversible" 3 rd degree	AVB, PPM implant	high proportion of pts with 3 rd
<u>24491864</u>	center cohort (Spain)	AVB not undergoing initial PPM		degree AVB and "reversible
		implant	Results: 39% of pts w/o	causes" develop recurrent AVB.
	Size: N=79; mean age		ischemic/infarction developed	Close f-u warranted
	72 y, 50% male	Exclusion criteria: None stated	recurrent AVB, had PPM	 Study was research letter with
				little data presented
Antman EM, et al.	Study type: Open-label,	Inclusion criteria: Pts who	1° endpoint: Clinical "response"	 AVB pts not separately analyzed
1990 (100)	21-center prospective	received digoxin-specific Fab		
<u>2188752</u>	cohort study 1974–86	fragments in trial 1974–86.	Results: 80% complete resolution of	
			signs/sx. 10% partial response, 10%	
	Size: N=150 pts	Exclusion criteria: None stated	complete response.	
	(79=53% with high-			
	degree AVB). 46%			
	male, mean age 65 y			-
Hickey AR, et al.	Study type: Multi-	Inclusion criteria: All pts in US	<u>1º endpoint</u> : Resolution of symptoms	No separate analysis of AVB pts
1991 (101)	center US national	receiving anti-digoxin Fab	of digoxin toxicity	
<u>1993775</u>	prospective cohort	fragments		
		Evaluaion evitorio: Nono etatad		
		Exclusion criteria: None stated		

	<u>Size</u> : N=717; 40% men,		Results: 50% complete response, 24%	
	mean age 74 y		partial response; 12 % no response. 3%	
Carlal, NANA at al	Charles have as Constant attended	La dissi su sultania. En aliab	recurrence rate. 1% allergy to therapy	
Sadek MM, et al.	Study type: Systematic	Inclusion criteria: English	<u>1° endpoint</u> : Reversal or improvement	Considerable study
2013 (155) 23623644	review	language, original outcome data on pts with cardiac sarcoidosis	in AVB	heterogeneity
23023044	Size: 10 publications;	tx with steroids.	Results: 27/57 (47%) cases treated	 "Improvement" in AV conduction not defined
	299 pts	tx with steroids.	with steroids had improved or	Outcome not defined in terms of
	255 pt5	Exclusion criteria: Reports less	recovered AV conduction vs. 0/16 pts.	need for PM
		than 5 subjects or less than 3-	w/o steroid treatment.	need for 1 W
		mo follow-up		
Kandolin R, et al.	Study type: Single-	Inclusion criteria: Pts. 18–55 y	1º endpoint: Dx of cardiac sarcoidosis;	Selected population, tertiary
2011 (156)	center retrospective	who had PPM implant for	reversal of AVB with treatment.	referral center
<u>21427276</u>	cohort (Finland)	unexplained 2 nd /3 rd -degree AVB		Little data about AVB described
			Results: 18/72 (25%) had probable (4)	Overall suggests low chance of
	<u>Size</u> : N=133; 72 pts	Exclusion criteria: None	or definite (14) cardiac sarcoidosis AVB	reversing AVB with steroid
	with unexplained AVB	described	reversed in only 2/16 pts (13%) treated	treatment
			with steroids	
Ozcan KS, et al. 2012	Study type: Single-	Inclusion criteria: All pts. with	1º endpoint: Persistent AVB despite	Thyroid abnormalities are rarely
(157)	center retrospective	2 nd /3 rd degree AVB who had	treatment of thyroid abnormalities	a cause of reversible AVB.
22738687	cohort (Turkey)	hyper- or hypothyroidism	Booulton 46/50 (030/) into including d	
	Size: N=50 (29	Exclusion criteria: MI,	Results: 46/50 (92%) pts required PPM; 2 additional pts had persistent	
	hypothyroid, 21	electrolytes abnormalities,	AVB. 22/29 (76%) with hypothyroidism	
	hyperthyroid)	digoxin toxicity, vasovagal	and 18/21 (86%) with hyperthyroidism	
	, in per any ionary	syncope, on AADs	had irreversible AVB.	
Forrester JD, et al.	Study type: Systematic	Inclusion criteria: English	1° endpoint: Outcomes, need for PPM,	AVB with Lyme carditis almost
2014 (158)	review of case reports	language case reports or series	persistence of AVB	always resolves with treatment
<u>24879781</u>	and case series	in peer-reviewed journal of pts		
		with Lyme disease and ECG-	Results: 18/45 (40%) required TPM,	
	Size: 34 manuscripts	documented 3 rd degree AVB	2/45 (4%) had PPM, both in 1980s. All	
	reporting 45 cases		other cases resolved, median time to	
		Exclusion criteria: Not in	resolution 6 d (range 1–42 d).	
		English, pt not US, no pt		
Man dentied AAD	Charles to an an Co. 1	variables reported	10 1 10 1	
Van der Linde, MR,	Study type: Review of	Inclusion criteria: Published	1° endpoint: Outcome, resolution of	PPM rarely needed after episode
1991 (159)	published case reports	case reports 1977–90,	AVB, need for PPM	of Lyme carditis
<u>1947815</u>	in Europe and North			

America, European	questionnaire, personal	Results: 49% had 3 rd degree AVB, 16%	
questionnaire, personal	communication, observations	had 2 nd degree AVB. 35% required	
communication,		TPM, 94% with complete recovery of	
observations	Exclusion criteria: None	AV conduction, only 1 pt (1%) had	
		persistent 3 rd degree AVB	
Size: 105 cases			

Data Supplement 27. RCTs Comparing Medical treatment for AV block (Section 6.3.2)

Study Acronym;	Aim of Study;	Patient Population	Study Intervention	Endpoint Results	Relevant 2° Endpoint
Author;	Study Type;		(# patients) /	(Absolute Event Rates,	(if any);
Year Published	Study Size (N)		Study Comparator	P values; OR or RR; &	Study Limitations;
			(# patients)	95% CI)	Adverse Events
Abu-Laban RB, et al.	Aim: To determine	Inclusion criteria: Pts over 16	Intervention: 500	1° endpoint: ROSC:	Did not call out pt
2006 (104)	whether	y in British Columbia 2001–3	mg IV aminophylline	24.5% I vs. 23.7% C (0.8%, -	with AVB
<u>16698410</u>	aminophylline	with brady-asystolic arrest	bolus	4.6–6.2; p=0.778)	 Prehospital setting
	increases rate of	refractory to intubation,		Survival to hospital admission:	only
	ROSC after out of	atropine and epinephrine	<u>Comparator</u> :	6.6% I vs. 7.6% C (-1.0%, -4.3–	
	hospital cardiac		Matching placebo	2.2; p=0.527)	
	arrest	Exclusion criteria: Do-not-		Survival to hosp. discharge:	
		resuscitate order, pregnancy,		0.4% I vs. 0.6% C (-0.2%, -1.1–	
	Study type: RCT	hemorrhage/trauma or		0.7%; p=0.653)	
		hypothermia, end-stage			
	<u>Size</u> : N=971	renal disease, on		Safety endpoint (if relevant):	
		theophylline		None	
PrePACE	Aim: To compare	In Inclusion criteria: Pts ≥18	Intervention: TCP	1° endpoint: Survival to	 Half of eligible pts
Morrison, LJ, et al.	outcome of pts with	y presenting to Toronto EMS	80 bpm	hospital discharge	not randomized
2008 (86)	prehospital unstable	with hemodynamically		69% I vs. 70% C (p=NS)	 This was a pilot
<u>17933452</u>	bradycardia with	unstable bradycardia	Comparator :		study for potential
	TCP vs. dopamine	unresponsive to fluids and	Dopamine 5–20	Safety endpoint:	larger RCT
		atropine	mcg/kg/min	VT/VF/cardiac arrest/burn:	 Dopamine
	Study type: RCT			7.1% C vs. 7.5% C (p=NS)	equivalent to TCP
		Exclusion criteria: Trauma,			in this small pilot
	Size: N=82; mean	hyperthermia, hypothermia,			study
	age 71 y; 57% male	cardiac arrest			

Data Supplement 28. Nonrandomized Trials, Observational Studies, and/or Registries of Medical Treatment for AV block (Section 6.3.2)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Brady WJ, et al. 1999 (79) 10459592	Study type: Single-EMS system retrospective cohort in US	Inclusion criteria: All nontraumatized pts from 1990–1993 who experienced	1° endpoint: "Response" in 4 categories – adverse, none, partial, complete	Limited methodology, results poorly described
	Size: N=131; 45 with AVB; Mean age 69 y; 53% male	bradycardia with associated hemodynamic instability who received atropine in field. Exclusion criteria: Not stated, but presumably cardiac arrest.	Results: Mean dose 1.1 mg. Of 37 pts with 3 rd degree AVB in field, 21 arrived in ED with 3 rd degree AVB and only 9 left ED with 3 rd degree AVB. Of all pts, 27% had complete response, 20% partial, 50% none; 3% adverse	
Feigl D, et al.	Study type: Single	Also excluded pre-hospital deaths (N=16) Inclusion criteria: 2 nd or 3 rd	1° endpoint: Outcomes, response to	Descriptive, uncontrolled study
1984 (160) 6736451	center retrospective cohort study in Israel 1978–1982	degree AVB developing in course of IMI who survived >72 h	Results: Of 15 pts with early AVB (<6 h). Atropine normalized conduction in 20%,	No adverse events to drug therapy reported
	Size: N=34; mean age 62 y; 82% male	Exclusion criteria: None	increased V rate in others. 5 had normalization with isoproterenol. 14 pts had late AVB – less response to atropine (mean 16 bpm). 50% required TPM	
Sclarovsky S, 1984 (161) <u>6731277</u>	Study type: Single center retrospective cohort study in Israel 1972–1982	Inclusion criteria: All pts with acute inferior MI who developed 2 nd or 3 rd degree AVB in hospital	1° endpoint: Description of outcomes, response to atropine and isoproterenol Results: 6/14 (36%) of pts with early AVB improved vs. 13/17 (77%) pts with late	 Descriptive uncontrolled study No adverse events to drug therapy reported
	<u>Size</u> : N=76	Exclusion criteria: Combined AMI and IMI	AVB (p<0.05). 2/8 (25%) of pts with early block and 2/6 (33%). 50% of pts had TPM	
Chihrin SM, et al. 2008 (162) 18308011	Study type: Single center prospective cohort in Canada	Inclusion criteria: Consecutive pts from 2003–2006 undergoing PPM generator change who were PM dependent	1° endpoint: Elicitation of escape rhythm with PM stepdown to 30 bpm or isoproterenol 1–2 mcg/min	Suggests that isoproterenol can be used to elicit faster escape rate in pts with AVB
	Size: N=100; mean age 75 y; 56% male	Exclusion criteria: None	Results: 59% demonstrated intrinsic rhythm with stepdown alone. Of remaining 41 pts, 28 (68%) demonstrated	

			intrinsic rhythm with isoproterenol. No	
			adverse events.	
Hurley KF, et al.	Study type: Systematic	Inclusion criteria: RCTs of	1° endpoint: Survival to	Aminophylline not useful in
2015 (105)	review of 5 RCTs	aminophylline used for pre-		
	Teview 01 5 KC15		discharge/admission, ROSC	out of hospital bradyasystolic
<u>26593309</u>	6: N. 4254	hospital resuscitate of		arrest
	<u>Size</u> : N=1254	bradyasystolic cardiac arrest	Results: No improvement in outcome by	
		- 1	any measure with aminophylline. Overall	
		Exclusion criteria: N/A	survival extremely low	
Sodeck GH, et al.	Study type:	Inclusion criteria: Consecutive	1° endpoint: Use of drugs for bradycardia,	Descriptive study with no
2007 (77)	Retrospective analysis	pts admitted to ED 1994–2004	use of pacing	control group
<u>17212976</u>	of single ED registry	with symptomatic,		 Pts with AVB not separately
	from tertiary center in	hemodynamically significant	Results: IV medications given to 170 pts	reported or analyzed
	Austria	bradycardia	(61%) – Atropine in 141 (51%),	Minimal information on clinical
			orciprenaline 62 (22%), epi 24 (9%),	effects of intervention given
	Size: N=277; mean age	Exclusion criteria:	dopamine 6 (2%). 7 pts had TCP (4	
	68 y; 62% male; about	Asymptomatic and terminally ill	successful); 54 (20%) had temporary TVP.	
	50% AVB	pts	137/277 (50%) received PPM	
Bertolet BD, et al.	Study type: Single-	Inclusion criteria: Pts with	1° endpoint: Restoration of 1-1 AV	No controls
1995 (163)	center observational	significant AVB developing	conduction	 Very small, single-center
7661495	cohort in US	within 4 h of admission for acute		experience
		inferior MI, resistant to	Results: All 8 pts had restoration of 1-1 AV	·
	<u>Size</u> : N=8; 3 with	atropine, given IV theophylline	conduction within 3 min lasting at least 24	
	complete AVB	up to 250 mg	h	
		Exclusion criteria: Pts who		
		received BBs or CCBs prior		
Altun A, et al. 1998	Study type: Single-	Inclusion criteria: Pts with 2 nd or	1° endpoint: Restoration of AV	No controls
(164)	center observational	3 rd degree AVB after IMI for at	conduction	Very small, single-center
9789698	cohort in Turkey	least 1 h, resistant to atropine.		experience
	, ,	Given 2 doses of aminophylline	Results: Aminophylline restored 1-1 AV	
	Size: N=8; 6 with	240 mg 1 h apart	conduction in 7 pts and Mobitz I AVB in 1.	
	complete AVB; mean		No adverse effects. AVB relapsed in 1 pt	
	age 68 y	Exclusion criteria: Pts in	only	
	,	hyperacute phase of MI,		
		received AV nodal blocking		
		drugs		
L	I.	-ن - ا	1	

Goodfellow J, et al.	Study type: Single-	Inclusion criteria: Pts with	1° endpoint: Restoration of 1-1 AV	No controls
1995 (165)	center case series in	atropine-resistant AVB with	conduction	Very small case series
<u>7588933</u>	United Kingdom	acute inferior MI treated with		,
		streptokinase. All had	Results: 1-1 AV conduction restored	
	<u>Size</u> : N=3	hypotension	promptly with resolution of hypotension	
			in all	
		Exclusion criteria: None		
Love, JN, et al. 1998	Study type: Single	Inclusion criteria: Pts presenting	1° endpoint: Improvement in bradycardia	 Most pts had BBs and/or CCBs
(90)	center case series in US	with symptomatic bradycardia	and hemodynamics	as significant co-factors
<u>9674488</u>		resistant to atropine 1 mg who		 Unknown how many had AVB
	<u>Size</u> : N=9	received IV glucagon 1-7 mg	Results: All pts improved at least	
		then 3–5 mg/h	transiently	
		Exclusion criteria: None		
Dhingra RC, et al.	Study type: Single	Inclusion criteria: 42 pts with	1º endpoint: Improvement in AV	Very small study
1973 (166)	center cohort	heart disease undergoing	conduction and change in ventricular rate	Bias in reflects those able to
<u>4744693</u>	undergoing invasive EP	invasive EPS w/o and with		undergo EPS
	study in US	isoproterenol	Results: 2/8 pts with 3 rd degree AVB had	Hemodynamics/ BP not
	Ci N. 42. Oist- 2rd	Such at an extension None	improved conduction with isoproterenol,	measured
	Size: N=42; 8 with 3 rd degree AVB, 3 with 2 nd	Exclusion criteria: None	as did 3/3 pts with 3 rd degree AVB.	Suggests isoproterenol useful
	degree AVB		Ventricular rate improved in all subjects	to augment heart rate in 2 nd
	uegree AVB		from mean of 45 bpm to 62 bpm, regardless of site of block	and 3 rd degree AVB
Hatle L, et al. 1971	Study type: Single	Inclusion criteria: Pts with acute	1° endpoint: Improvement in heart rate	Very early cohort when there
(167)	center prospective	MI treated 1966–1970 with 2 nd	1 enupoint. Improvement in heart rate	was minimal treatment for
5557475	cohort from Norway	or 3 rd degree AVB treated with	Results: In hospital mortality 48%. 60 pts	acute MI
3337473	conort from Norway	isoproterenol, generally 1–3	received isoproterenol: 38 (63%) had	Extremely high mortality
	Size: N=105 pts with	mcg/min	increase in heart rate and BP; 12 (20%)	• In this group, isoproterenol
	2nd or 3 rd degree AVB	-0,	had increased in heart rate but minimal	appeared safe compared with
	in setting of acute MI	Exclusion criteria: None stated	change in BP; 8 (13%) had minimal	TVP
			change; 2 (3%) isoproterenol terminated	Uncontrolled cohort study
			due to ventricular ectopy. 3 pts had	2canca conort study
			ventricular fibrillation on isoproterenol, 1	
			of which died. 14 pts treated with TVP, 3	
			of whom died from ventricular fibrillation	

Data Supplement 29. RCTs Comparing Temporary Pacing (Section 6.3.3)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator	Endpoint Results (Absolute Event Rates, P values; OR or RR; &	Relevant 2° Endpoint (if any); Study Limitations;
			(# patients)	95% CI)	Adverse Events
Ferguson JD, et al. 1997 (113) 9217762	Aim: Compare 2 types of TVP catheters for success and complication rates Study type: Unblinded RCT Size: 40 pts, mean age 72 y. 85% with AVB	Inclusion criteria: Undergoing temporary VVI pacing (85% with AVB) guided by fluoroscopy Exclusion criteria: None stated	Intervention: Use of balloon-tipped electrode (N=20) Comparator: Use of semi-rigid electrode (N=20)	1° endpoint: Procedure duration (264 vs. 540 s; p<0.002), fluoroscopy time (87 vs. 189 s; p<0.01), suitability of final position (0 unacceptable vs. 7; p<0.0001). Thresholds similar Safety endpoint (if relevant): Dislodgement (1 vs. 3) Death (0 vs. 2)	 When guided by fluoroscopy, balloon- tipped catheters are easier to place successfully than semi- rigid catheters Use of balloon-tipped catheter associated with trend toward lower complication rate
Barthell E, 1988 (127) 3056132	Aim: Compared TCP added to ACLS vs. ACLS alone for pre-hospital pts with asystole, EMD, or hypotensive bradycardia Study type: Unblinded RCT (alternate d randomization) Size: N=239; 142 with asystole; 84 with EMD; 13 with hypotensive bradycardia	Inclusion criteria: All adult, nontraumatic bradyasystolic episodes or arrests treated by Milwaukee County Paramedic System Oct 1986–May 1987 Exclusion criteria: None stated	Intervention: TCP + ACLS Comparator: ACLS alone	1° endpoint: Survival to hospital admission: Asystole/EMD 17% I vs. 20% C (p=NS) Hypo-brady 100% I vs. 29% C (p=0.01) Survival to hospital discharge: Asystole/EMD 2% I vs. 4% C (p=NS) Hypo-brady 83% I vs. 14% C (p=0.01) Safety endpoint: None	 Limited form of randomization Overall, no effect of TCP for pre-hospital use for asystole/EMD arrest Possible benefit for hypotensive bradycardia, but number of pts very small

Cummins RO, et	Aim: Determine efficacy	Inclusion criteria: All	Intervention: 16	1° endpoint: Survival to	No improvement for pts
al. 1993 (168)	of TCP of asystolic out of	cardiac arrests in	EMS/fire districts given	hospital admission/ primary	with initial VF
8474514	hospital cardiac arrest	Seattle area over 3 y	TCP and trained in use	asystole:	Limited form of
	·	period; Primary group		8% I vs. 8% C (p=NS)	randomization
	Study type: Modified	was those with asystole	Comparator: 23	Survival to discharge:	Tarradimization
	RCT by center	as first rhythm	EMS/fire districts given	4% I vs. 2% C (OR: 2.05; p=NS)	
	1	,	TCP and trained in use		
	Size: N=1056 cardiac	Exclusion criteria:		Safety endpoint: None	
	arrests; N=537 with	None			
	asystole as first rhythm;				
	N=305 with asystole				
	after VF				
Hedges JR, et al.	Aim: Determine efficacy	Inclusion criteria: All	Intervention: On odd	1° endpoint:	Limited form of
1987 (169)	of TCP added to ACLS for	pts over 14 y treated by	calendar days, EMS	Survival to hospital admission:	randomization
<u>3315295</u>	prehospital	Thurston County, EMS	used TCP 100 bpm at	17% I vs. 17% C (p=NS)	No improvement with
	hemodynamically	for hemodynamically-	max output for pts	Survival to hospital discharge:	TCP
	significant bradycardia	significant bradycardia		6% I vs. 4% C (p=NS)	
	or asystole	with decreased mental	Comparator: On even		
		status (Glasgow coma	calendar days, TCP was	Safety endpoint: None	
	Study type: RCT	score ≤12)	not used		
	(alternate day)				
		Exclusion criteria:			
	<u>Size</u> : N=202	None stated			
PrePACE	Aim: To compare	Inclusion criteria: Pts	Intervention: TCP 80	1° endpoint: Survival to	 Half of eligible pts not
Morrison, LJ, et	outcome of pts with	18 y or older	bpm	hospital discharge	randomized
al. 2008 (86)	prehospital unstable	presenting to Toronto		69% I vs. 70% C (p=NS)	 This was a pilot study for
<u>17933452</u>	bradycardia with TCP vs.	EMS with	<u>Comparator</u> : Dopamine		potential larger RCT
	dopamine	hemodynamically	5-20 mcg/kg/min	Safety endpoint:	 No benefit to TCP seen
		unstable bradycardia		VT/VF/cardiac arrest/burn:	
	Study type: RCT	unresponsive to fluids		7.1% C vs. 7.5% C (p=NS)	
		and atropine			
	Size: N=82; mean age 71				
	y; 57% male	Exclusion criteria:			
		Trauma, hyperthermia,			
		hypothermia, cardiac			
		arrest			

Data Supplement 30. Nonrandomized Trials, Observational Studies, and/or Registries of Temporary Pacing (Section 6.3.3)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Sodeck GH, et al. 2006 (77) <u>17212976</u>	Study type: Single center retrospective cohort in Austria Size: 277 pts (62% male, 48% AVB)	Inclusion criteria: Pts >18 y presenting to ED with "compromising bradycardia from 1994–2004; mean heart rate 33 bpm Exclusion criteria: Asymptomatic bradycardia, terminal illness	1° endpoint: 30 d mortality Results: 5% mortality at 30 d. 20% of pts treated with temporary TVP. 50% of those pts went on to have permanent pacing	 Temporary TVP required in about 20% of pts presenting to ED with symptomatic bradycardia Half of those pts go on to PPM
Brikhahn RH, et al. 2004 (170) <u>15039689</u>	Study type: Single-center retrospective cohort in US Size: 154 pts, 117 meeting inclusion/exclusion criteria. Mean age 78 y, 38% male, 51% AVB)	Inclusion criteria: All pts with temporary TVP placed in ED, intensive care unit, or ward 1999–2002. Only 3% placed under fluoroscopy Exclusion criteria: Indication asystole, TVP placed in cath or EP lab, no attending supervision	1º endpoint: Successful temporary TVP placement. Complication rate. Results: 88% success on first attempt. 17% serious complication rate. 96% placed by cephalic approach. 67% had PPM. 23% in-hospital mortality	 Similar success rates between ED physicians and cardiologists High overall success rate of implantation of TVP Cephalic route rarely used in general practice today
Betts TR, 2003 (119) 12954959	Study type: Prospective registry in 5 regional hospitals in England in 1999 Size: 144 procedures in 111 pts; mean age 75 y.; 63% male; 51% AVB	Inclusion criteria: All TVPs placed over 9 mo period in 1999 Exclusion criteria: None cited	1° endpoint: General overview of procedure technique, outcomes, complications Results: Procedure times shorter for cardiologists, 28% complication rate. Immediate complication rates lower with experience (1/81) vs. inexperienced (5/59) operators. Infection occurred more in wires left in >48 h (17/86) than <48 h (2/55). 23% of comps resulted in delayed PPM	 Suggests benefit to TVP implant by cardiologists/ experienced operators Greater infection risk for TVP wires left in >48 h High rate of overall complications seen 23% of comps delayed PPM implantation

Mahapatra S, et al.	Study type: Case-	Inclusion criteria: Pts	1° endpoint: Risk factors for	Suggests benefit to avoiding
2005 (171)	control derived from	undergoing PPM 1995–2003	perforation after PPM	TVP prior to permanent pacing
<u>16171740</u>	prospective database	with perforation and new		unless essential
	1995–2003 at Mayo	effusion.	Results: 1.2% of all pts had	
	Clinic		perforation. Predictors of perforation	
		Exclusion criteria: Age <18 y,	in multivariate analysis included prior	
	Size: 50 pts with	prior effusion or cardiac	TVP (HR: 2.7; 95% CI: 1.4–3.9], helical	
	cardiac perforation	surgery within 4 wk of PPM	screw leads (HR: 2.5), steroid use (HR:	
	after PPM vs. 100		3.2)	
	controls			
Lang R, et al. 1981	Study type: Single-	Inclusion criteria: Consecutive	1° endpoint: Successful implant,	 Superiority of balloon-tipped,
(172)	center	pts requiring emergency or	procedure time, threshold, multiple	flow guided electrode catheter
<u>6169032</u>	nonrandomized	semi-urgent temporary TVP at	safety endpoints	for temporary TVP
	controlled study	a single Israeli center		demonstrated.
	comparing balloon-		Results: Flow-guided TVP had 1)	
	tipped, flow-guided	Exclusion criteria: None stated	shorter insertion time (7 min vs. 14	
	TVP vs. standard semi-		min); less dislodgement (13% vs.	
	rigid catheter		32%), lower incidence of serious	
	Cinc. 111 concession		ventricular arrhythmia (1.5 vs. 20.4%)	
	Size: 111 consecutive		Thresholds similar.	
	pts (67 flow-guided, 44 semi-rigid)			
Hynes JK, et al.	Study type:	Inclusion criteria: Consecutive	10 and a interconnications	- Dueference for internal insular
1983 (115)	Retrospective single-	pts undergoing temporary TVP	1º endpoint: Complications	Preference for internal jugular rand subclavian vein access
6823157	center cohort at Mayo	wire in Mayo Clinic coronary	Results: Implanted mean 3.1 d, 64%	sites confirmed
0823137	Clinic	care unit 1976–81.	placed antecubital route, 19%	sites commined
	Cirrie	care and 1370 of.	subclavian vein, 12 % internal jugular	
	Size: 1022 pts, mean	Exclusion criteria: None stated	vein. 13.7% complication rate,	
	age 68 y, (65% male)	<u> </u>	increasing with duration of TVP.	
	age oo y, (oo, mare)		Lowest comp rate with internal	
			jugular vein 5.3% pericarditis. PPM	
			implanted in 58% of pts.	
Winner S and	Study type:	Inclusion criteria: Consecutive	1° endpoint: Complications, defined	Advise avoiding TVP before
Boon N, 1989	Retrospective single	pts referred to regional center	as "major problems": dislodgement,	PPM unless absolutely
(173)	region cohort study	for PPM	infection, pericarditis/perforation,	necessary
<u>2769615</u>	,		thrombosis, wire in left ventricle	,
		Exclusion criteria: Missing		
		records		

	I		I	T
	<u>Size</u> : 266 pts/ 158		Results: 36% rate of major problems,	
	(59%) had temporary		much higher rate at smaller referral	
	TVP		hospitals. 6% infection; 30% failure to	
			pace, 4% pericarditis	
López Ayerbe J, et	Study type:	Inclusion criteria: Pts receiving	1° endpoint: Complications,	Complication rates improved
al.	Retrospective single	TVP 1997–2003. All via femoral	outcomes	compared with series from
2004 (114)	center cohort in	route (99%) with fluoroscopic		1980s and 1990s (18–43%)
<u>15544753</u>	Barcelona, Spain	guidance	Results: Mean duration 4.2 d. 22%	Lower use in pts with acute MI
			complication rate: 1% death (3	seen
	Size: N=530; mean age	Exclusion criteria: Pts	tamponade, 1 asystole, 1 PE, 1	
	74 y, 54% male; 51%	transferred out with no	sepsis). 9% migration/dislodgement'	
	AVB.	available f-u (N=38)	9% other (VTE, effusion, infection)	
Bjornstad CC, et al.	Study type:	Inclusion criteria: All pts with	1° endpoint: Complications,	• Fewer TVPs being performed by
2012 (126)	Prospective regional 5	TVP in 5 hospitals March 2010-	outcomes	more physicians with less
22390277	hospital study in	March 2011. All with		experience
	Norway 2010–11.	fluoroscopy	Results: 96% TVP; 4% TCP. 60%	Lower complication rate with
			received PPM; 14% died. 30% rate of	more experienced implanters
	<u>Size</u> : N=50; 45% AVB;	Exclusion criteria: None stated	"serious complications" including 6%	·
	mean age 79 y, 62%		death from sepsis	
	male		·	
McCann P, 2006	Study type:	Inclusion criteria: Cohort	1° endpoint: Complications,	Methodologically limited
(125)	Systematic review	studies of TVP published 1973–	outcomes	systematic review
<u>17235372</u>	1973-2004	2004		Higher complication rate in
			Results: Overall complication rate	older pts
	Size: 15 studies;	Exclusion criteria: None stated	26.5%: 15% failed access, 10% failed	Lower complication rate when
	N=3737; mean age 71		placement, 9% sepsis, 4% arterial	implanted by specialists
	у		puncture, 2% lung/myocardium	Trend toward greater use of
			puncture	right internal jugular access
				over time
Jou YL, et al. 2010	Study type: Single	Inclusion criteria: All pts with	1° endpoint: Trends in use	High rate of PPM for
(124)	center retrospective	TVP 2002 8 at single center		degenerative AVB
20946290	cohort in Taiwan		Results: Greater use for AVB with	
	2002-8	Exclusion criteria: None stated	intrinsic disease, less for sinus node	
			dysfunction and MI over time. 48%	
	Size: N=509; mean age		had PPM implant within 30 d (mean 6	
	77 y, 74% male; 64%		d) with increasing rate over time.	
	AVB		a, with moreusing rate over time.	
	/ 1.4.0			

Knudsen MB, et al.	Study type:	Inclusion criteria: Pts getting	1° endpoint: Indication for PPM	Authors conclude that:
2013 (150)	Retrospective single-	TVP wire 2000–11 who had	despite drug discontinuation;	"Primary PPM implantation
23869746	center cohort at	AVB and potential culprit drug	complications and outcomes	should be considered in pts
	academic medical	discontinued	•	with high-degree AVB and
	center in Denmark		Results: 49/55 (89%) ultimately	concomitant AV blocking
	2000-11.	Exclusion criteria: No ECG	required PPM, including 26/27 (96%)	therapy, unless other reversible
		documentation; other etiology	on BBs. 11% comp rate from TVP.	causesexist."
	Size: N=575 with TVP.	of bradycardia documented;	PPM postponed mean of 7 d for drug	 "In the elderly, the drug is
	N=55 with AVB and	PPM infection; in hospital	withdrawal	virtually never the sole culprit;
	potential culprit drug.	death		rather, it just exposes the
	Mean age 77 y, 56%			underlying weakness of the
	male			aging conduction system
Murphy JJ, 1996	Study type:	Inclusion criteria: All TVP	1° endpoint: Complications	High rate of implant by junior
(116)	Prospective cohort in	implants in 18 hospitals.		staff (residents)
<u>8620131</u>	18 hospitals in		Results: Immediate complications in	 Continued high rate of
	Northern England	Exclusion criteria: None stated	12/194 (6%) – VT/VF in 6, arterial	complications in British medical
	over 6 mo		puncture (3), pneumothorax (2),	system in 1990s
			brachial plexus injury (1). Late comps	
	<u>Size</u> : N=194. Mean		in 22/194 (11%) – VT/VF 10,	
	age 71 y; AVB (67%).		definite/possible sepsis in 10 (5.2%) –	
	Acute MI in 53%		almost all had TVP>48 h. 38/194	
			(20%) needed repositioning. Total	
			comps 35%. 11/194 (5.5%) died	
			within 1 h of procedure. 56/194 (29%)	
D: :E . I	C : 1 : C: 1		had PPM	51 170
Pinneri F, et al.	Study type: Single-	Inclusion criteria: Consecutive	1º endpoint: The primary efficacy	• Echo-guided TVP was safer and
2013 (174) 22240748	center nonrandomized	pts requiring TVP 2003–2010. Pts underwent TVP guided by	endpoints were time to pacing, pacing	more effective in this single
22240748	controlled study.	echo (N=53) or fluoroscopy	threshold, changes in threshold and need for catheter replacement. The	center cohort with cardiologists
	controlled study.	(N=53) based on operator	primary safety endpoints were overall	comfortable with technique. Not clear why dislodgment rate
	Size: N=106; mean age	preference.	complications and death related to	and thresholds would be worse
	77 y, 51% male; 75%	preference.	TVP implant.	in fluoroscopy group.
	had AVB; 59%	Exclusion criteria: Incomplete	i vi mipiant.	iii iiuoroscopy group.
	ultimately required	follow-up (N=4)	Results: Successful in all but 1 in each	
	PPM	, , , , , , , , , , , , , , , , , , ,	group (98%). Time to pacing and 24 h	
			threshold better in echo-guided	
			group. TVP repositioned in 6% of	
			echo-guided and 22% of fluoroscopy-	

Braun MU, et al.	Study type: Non-	Inclusion criteria: Pts with	guided groups (p<0.001), Comp rate lower in echo (11%) than fluoroscopy (41%) group; p<0.001).	Externalized active fixation TVP
2006 (175) 16923004	randomized prospective controlled study comparing externalized active- fixation lead vs. standard temporary TVP wire) Size: 49 pts, mean age 72 y, 63% male	systemic infection requiring VVI pacing >48 h Exclusion criteria: None stated	1° endpoint: Implant success, pacing thresholds, acute complications, dislodgement rate Results: 100% implant success in both groups, paced median 8 d, similar procedure time, acute comps, pacing threshold. There were 24 dislodgments in 12 pts in control group, only 1 in active-fixation lead group (p<0.01)	 Externalized active fixation TVP lead associated with much lower dislodgment rate than standard TVP wire. Equally safe to implant Externalized active fixation TVP preferred if pacing >48 h is anticipated.
de Cock CC, et al. 2003 (176) 12765453	Study type: Non-randomized single-center comparison of TVP by femoral route with active vs. passive fixation wire in Netherlands 1998–2001 Size: N=72 pts; mean age 70 y, 51% male	Inclusion criteria: Consecutive pts requiring TVP at single center requiring prolonged temporary pacing (>48 h) — mean 6 d Exclusion criteria: None stated	1° endpoint: Implant parameters, dislodgments, other adverse events Results: Threshold higher in active (1.38V) than passive (0.7V). Dislodgement lower in active (2/36) than passive (12/36) groups (p<0.001). Other comps similar	Fewer dislodgments using an active fixation lead using femoral approach
Kawata H, et al. 2013 (177) 23482613	Study type: Single center retrospective cohort study of temp active fix lead (TPPM) after lead extraction at UCSD Size: N=23; mean age 72 y, 70% male; 87% AVB	Inclusion criteria: 23/47 pts undergoing extraction for CIED infection who were PM- dependent 2010–12 Exclusion criteria: None stated	1º endpoint: Duration of TPPM, complications Results: Duration of TPPM mean 12 d. 12/23 discharged to home or SNF. 1 pt died of sepsis from primary infection; 1 pt developed vegetation on TPPM lead – removed and replaced. No dislodgements. One pts had late pocket infection after reimplant.	 TPPM is a safe and effective option for PM-dependent pts awaiting reimplant after CIED infection Allows earlier mobilization and potential discharge to home/nursing facility to await CIED reimplant

Chihrin SM, et al. 2006 (178) 17145220	Study type: Single center retrospective cohort in Canada 2001–5 Size: N=20 pts; median 2 d; mean age 62 y; 75% male	Inclusion criteria: Pts implanted with TPPM via left subclavian vein or right internal jugular vein over 5 y period Exclusion criteria: None stated	1º endpoint: Pacing duration, complications, costs Results: Duration median 2 d (1–83 d); 1 dislodgement requiring repositioning (5%). Using economic modeling, costs lower with TPPM than conventional TVP at 48 h	Despite higher lead cost, TPPM cost-effective after 24 h due to lower complications and less intensive bed use
Lever N, et al. 2003 (179) 12527682	Study type: Single center cohort in United Kingdom Size: N=20; mean age 66 y, 85% male	Inclusion criteria: Consecutive pts requiring prolonged temp pacing due to infection or drug washout who had tunneled TPPM Exclusion criteria: None stated	1º endpoint: Pacing duration, outcome, complications Results: Duration median 28 d (9–81 d); no dislodgments or repositioning; 2 minor local site infections, no systemic infection. One pt died from sepsis unrelated to TPPM	TPPM safe and effective, allows early mobility for pts requiring prolonged temporary pacing
Kornberger A, et al. 2013 (180) 23718817	Study type: Single center cohort in Germany Size: N=60; mean age 73 y, 73% male	Inclusion criteria: Consecutive pts implanted with TPPM for CIED infection (70%) or other reasons (30%) 2000–2009 Exclusion criteria: None stated	1º endpoint: Duration of pacing, outcomes, complications at 30 d Results: Successful in 98% - VVI in 56, DDD in 3) Duration mean 15 d. Intraoperative comps in 2 pts (3.3% - one venous thromboembolism and tamponade, one dislodgement during lead extraction). 4 late comps (6.7%) - 3 possible lead infections, 1 dislodgement.	TPPM safe and effective option for prolonged temporary pacing
Zei P, et al. 2006 (181) 16580542	Study type: Single- center cohort in Boston MA Size: N=62 pts; mean age 68 y; 60% male	Inclusion criteria: All pts getting TPPM for prolonged temp pacing at BWH 2000–2004 Exclusion criteria: None stated	1º endpoint: Duration of pacing, outcomes, complications Results: Median duration 7.5 d. 66% went on to have PPM. No deaths from arrhythmia, no complications from TPPM, no dislodgements	 TPPM safe and effective option for prolonged temporary pacing. Allows management in lower cost less intensive setting

Zoll PM, et al. 1985	Study type:	Inclusion criteria: All ED and	1° endpoint: Stimulation	Methodology for data
(130)	Prospective 5-center	hospital pts in whom TCP	effectiveness, clinical usefulness,	collection not described
<u>3886190</u>	cohort study in US	applied	survival in-hospital	No controls
	Size: 134 pts; mean age 70 y; 65% men	Exclusion criteria: None stated	Results: QRS response to TCP in 78%, deemed clinically useful in 61%, survival in 62%	 Endpoints not well described or documented "This extensive experience with 134 pts treated by several investigators in 5 institutions under varied circumstances confirms the safety and efficacy of this new technique of
Charbina Latal	Chudu huna	Inclusion evitorio. Futbormio	10 and a link Committed to be solited	noninvasive temporary pacing."
Sherbino J, et al. 2006 (128)	Study type: Systematic review of 7	Inclusion criteria: Euthermic, nontraumatized adults who	1º endpoint: Survival to hospital	Limited systematic review:
, ,	studies of TCP for		discharge	Heterogeneity of study designs
<u>16814446</u>		experience prehospital	Beauta Nelson State TCD for	precluded statistical analysis
	prehospital	hemodynamically symptomatic	Results: No benefits to TCP for	
	bradyasystole	bradycardia or bradyasystolic	bradyasystolic cardiac arrest. Data	
	Cina 7 atrodica N	cardiac arrest	inadequate to determine efficacy of	
	Size:7 studies, N=		TCP for SB	
	1487	Exclusion criteria: None stated		
Hedges JR, et al.	Study type: Single	Inclusion criteria: Pt >17 y with	1° endpoint: Arrival to ED with	Non-randomized
1991 (129)	EMS-system cohort in	hemodynamically	palpable pulse:	 Potential for confounding by
<u>1721129</u>	US	compromised bradycardia with	26% paced group vs. 13% control	indication
		witness collapse	Survival to hospital discharge:	
	Size: N=51; mean age		15% paced group vs. 0% control	
	73 y, 67% male;	Exclusion criteria: Trauma,		
		hypothermia, initial rhythm	Results: Above	
		asystole, VT, VF		

Data Supplement 31. RCTs of clinical presentation of bradycardia due to AV block (Section 6.3)

St	udy	Aim of Study;	Patient Population	Study Intervention (#	Endpoint Results	Relevant 2° Endpoint (if any);
Acr	onym;	Study Type;		patients) /	(Absolute Event Rates, P value;	Study Limitations;
Αι	uthor;	Study Size (N)		Study Comparator (#	OR or RR; & 95% CI)	Adverse Events
Year P	ublished			patients)		
PI	MID					

PRESS	Aim: Assess	Inclusion criteria:	Intervention: All pts got	1° combined endpoint: Syncope,	• 5% developed a new PM
Santini M, et	whether PM in pts	LBBB or	PM; DDD 60 or DDI 30	presyncope, or other symptoms	indication with AVB
al. 2013 (182)	with bifascicular	RBBB+LPFB/LAFB and		due to AVB occurred in 23%.	
23390123	block+syncope	syncope.	Comparator: DDI 30 pts		
	reduces symptoms	Negative EKG, Holter,		Results: Reduction in combined	
		TTT, EPS		events (HR: 0.32; p=0.042) but	
	Study type: RCT			syncope alone not reduced.	
		Exclusion criteria:			
	<u>Size</u> : N=101	Known PM indication			

Data Supplement 32. Nonrandomized data of Clinical Presentation of Bradycardia due to AV block (Section 6.3)

Study Acronym; Author; Year Published PMID	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P value; OR or RR; & 95% CI)
Guerrero- Marquez FJ, et al. 2016 (183) 28496928 Brignole M, et al. 2011; (184)	Aim: To write a featured review of paroxysmal AVB Study type: Review Size: N/A Aim: Follow 18 pts with unexplained	Inclusion criteria: N/A Exclusion criteria: N/A Inclusion criteria: Normal EKG, no SHD ,	Intervention: N/A Comparator: N/A Intervention: EPS, Adenosine plasma level,	 Idiopathic AVB is paroxysmal 3rd degree heart block (sudden CHB) with no other rhythm abnormal pre or post in pts with NL heart and EKG Etiology unknown Intrinsic AVB occurs in pts with underlying HD due to phase 3 or phase 4 block, degeneration of HP or valve disease, ACS (infant MI) Other causes of AVB; extrinsic vagal effect, Lev-Lenegre disease, SLE, bacterial endocarditis with abscess, sarcoid, Lyme disease, sickle cell PPM relieved symptoms in all pts None progressed to perm AVB
21570228 ISSUE Brignole M, et al. 2001 (185) 11673344	Aim: Determine mechanism of syncope in pts with BBB and neg EPS Study type: Single arm prospective	parox CHB per monitoring Inclusion criteria: 52 pts with syncope, BBB, QRS >100, neg EPS	ATP test, TTT, CSM Intervention: ILR	Results: Most frequent cause of recurrent finding was sudden onset AVB with pauses (63%); CHB typically lasts 2–10 d

	<u>Size</u> : N=52			
Carano N, et al. 2012 (186) 23110777	Aim: Case report and review of RHD and CHB	Inclusion criteria: Case report and PubMed search	Intervention: Amoxicillin	Results: Resolution of CHB
	Size: N=1			
Ando G, et al. 2005 (187) 16091145	Aim: Assess hemodynamic of long AVD	Inclusion criteria: Case report	Intervention: PPM	Results: AVD from 290 to 150 and improved symptoms
Koehler U, et al. 1998 (67) 9551750	Aim: Assess effect of OSA Rx on brady Size: N=651	Inclusion criteria: Mod- sec OSA, neg EPS, echo, EKG, stress test	Intervention: CPAP	Results: 651 brady episodes in 16 pts- 73% were 2 nd and 3 rd AVB; reduced to 72 episodes post CPAP, 3 got PPM for >5 s pauses despite good Rx
Maeno K, et al. 2009 (188) <u>19466526</u>	Aim: Report the interaction of hypoxia and bradyarrhythmia Study type: Case report, literature review Size: N=1	Inclusion criteria: N/A	Intervention: CPAP	Results: Profound AVB resolved
Moya A, et al. 2011 (189) 21444367	Aim: Ability of protocol to Dx etiology of syncope Study type: Prospective nonrandomized study using 3 phases; EKG/echo/Holter, EPS/CSM, ILR Size: N=323	Inclusion criteria: Syncope +BBB, preserved EF	Prospective nonrandomized study using 3 phases; EKG/echo/Holter, EPS/CSM, ILR	Results: 158 (about 50%) were due to paroxysmal AVB or infraHisian abnormalities on EPS
Panic G, et al. 2011 (190) 20226549	Aim: Case report	N/A	N/A	Results: • Presented with high-grade AVB, resolution after 12 d abx

				5% of pts with Lyme will have cardiac involvement, typically AVB
Carroz P, et al. 2010 (191) 19946114	Aim: Discuss pseudo PM syndrome	Inclusion criteria: Case report	Case report	Results: PR was 480 ms, had intermittent cannon A waves, symptoms of fatigue due to atrial contraction before complete A filling, increase PCWP, decrease CO, improved with PPM
Marti-Almor J, et al. 2009 (192) 19578058	Aim: N=259 with BFB, 82% had syncope or presyncope, 18% no symptoms; 61% on EPS had conduction abnormal and received PPM Study type: Observational Size; N=259	Inclusion criteria: LBBB or RBBB+LAFB or RBBB+LPFB 82% had syncope	Prospective consecutive observational study	Results: 82% had symptoms (syncope, presyncope) 61% had pos. EPS (HV >70 if sx, HV>100 if asx, or infraHisian with RAP) and almost all got PPM, 2/3 had progression of AVB
Barold SS, et al. 1996 (193) 8734740	Aim: Editorial Study type: N/A Size: N=N/A	Inclusion criteria: N/A		Opinion: PMs can be used especially in pts with normal LVEF
Barold SS, et al. 2006 (194) 17334913	Aim: Describe clinical manifestations of 1st AVB Study type: Review paper Size: N=N/A	Inclusion criteria: N/A	Intervention: PM, CRT	Results: Pacing addresses symptoms, CRT response is less than in those with normal PR
Barra SN, et al. 2012 (195) 22897386	Aim: Review the more common and rarer causes of AVB in young adults	Inclusion criteria: N/A	Recommendations: Work up for underlying cause based on family Hx and symptoms and risk factors for CAD	Results: More common causes in young adults: CAD, degenerative diseases, cardiomyopathies, infection, rheumatic, autoimmune, infiltrative, vagally induced, drugs

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Kenneback G, et al. 2007 (149) 17255148	Study type: Single-center, prospective cohort (Sweden) Size: N=17 (53% men), mean age 77 y	Inclusion criteria: Pts admitted with high-degree AVB on antiarrhythmic therapy (88% beta blocker) who received PPM, who then had AAD withdrawn with return of AV conduction. Exclusion criteria: Valve surgery in past year, permanent AF	1° endpoint: Recurrence of AVB detected by PM algorithm over 2 y Results: 9/12 pts (75%) with QRS ≥120 ms and 1/5 pts (20%) developed recurrent AVB. 6/17 pts (35%) developed atrial tachyarrhythmias requiring AAD tx	Appropriate to place PPM in pts with AVB and QRS ≥120 ms w/o further delay or evaluation.
Knudsen MB, et al. 2013 (150) 23869746	Study type: Single-center, retrospective cohort (Denmark) Size: N=55 (55% male, mean age 77 y)	Inclusion criteria: Pts admitted with 2/3 AVB, had temporary wire, were on class II-IV AADs or digoxin. Exclusion criteria: No ECG documentation, AVB due to other identified cause, prior PPM explant, died within several days	1° endpoint: Need for PPM; complications of TPM Results: 47/55 (85%) required PPM in hospital. 2/55 had recurrent AVB and required PPM. 11% of pts had complication of TPM (infection/dislodgment), also prolonged hospital stay	 Pts with AVB on AADs /digoxin do not benefit from TPM and drug washout. Should proceed to PPM w/o delay. "In the elderly, the drug is virtually never the sole culprit; rather, it just exposes the underlying weakness of the aging conduction system"
Osmonov D, et al. 2012 (151) 22530749	Study type: Single-center retrospective cohort (Turkey) Size: N=108 (16% of all 668 pts admit with 2/3 AVB). 30/108 (28%) had AF with SVR	Inclusion criteria: All pts admitted with 2/3 AVB who were on AV nodal blocking drugs 2008–9 Exclusion criteria: MI, electrolyte disturbances, digoxin toxicity, vasovagal syncope	1° endpoint: Resolution/ recurrence AVB, need for PPM Results: Resolution of AVB with 72 h in 78/108 (72%). 21/78 (27%) had recurrence of AVB. Overall 51/108 (48%) had persistent of recurrent AVB despite drug withdrawal.	 Half of pts with AVB on nodal-blocking drugs require PPM before discharge despite drug withdrawal. Limited follow-up – other pts may have required PPM at later date
Zeltser D, et al. 2004 (152) 15234417	Study type: Single- center retrospective cohort (Israel)	Inclusion criteria: All pts admitted with 2/3 AVB 1999–2003.	1° endpoint: Resolution/ recurrence AVB, need for PPM Results: 79/92 (86%) had drug discontinued. 32/79(41%) had	 Overall, only 15% of pts with AVB on nodal blocking drugs had AVB "caused by drugs" F-u limited to 3 wk

	Size: N=169 (60% male, mean age 78 y). 92/169 (54%) receiving AV nodal blockers	Exclusion criteria: MI, digoxin toxicity, vasovagal syncope	resolution of AVB. 18/32 had relapse of AVB within 3 wk	
Risgaard B, et al. 2012 (153) 22333242	Study type: Retrospective single- center/region cohort study (Denmark) Size: N=259 (mean age 78 y, 46% male). 49.7% had 2/3 AVB. 15% had AF-slow ventricular response	Inclusion criteria: All pts referred for urgent PPM in 2009 Exclusion criteria: Discharged from hospital before implant, referred from outpatient department	1° endpoint: d to implant, complications during wait Results: Mean 8.3 d hospitalization to implant (3.2 d to Dx; 5.1 d waiting for PPM). 83/259 pts (32%) had complications while waiting – Infection (11%), asystole (20%), NSVT (5%), cardiac arrest (3%), death (1%)	Pt harm results from delay to PPM for capacity issues.
Farre N, et al. 2014 (154) 24491864	Study type: Retrospective single- center cohort (Spain) Size: N=79; mean age 72 y, 50% male	Inclusion criteria: Consecutive pts with "reversible" 3 rd degree AVB not undergoing initial PPM implant Exclusion criteria: None stated	1° endpoint: Persistence/recurrence of AVB, PPM implant Results: 39% of pts w/o ischemic/infarction developed recurrent AVB, had PPM	 Outside setting of MI/ischemia, high proportion of pts with 3rd degree AVB and "reversible causes" develop recurrent AVB. Close f-u warranted Study was research letter with little data presented
Antman EM, et al. 1990 (100) 2188752	Study type: Open-label, 21-center prospective cohort study 1974–86 Size: N=150 pts (79=53% with high- degree AVB). 46% male, mean age 65 y	Inclusion criteria: Pts who received digoxin-specific Fab fragments in trial 1974–86. Exclusion criteria: None stated	1° endpoint: Clinical "response" Results: 80% complete resolution of signs/sx. 10% partial response, 10% complete response.	AVB pts not separately analyzed
Hickey AR, et al. 1991 (101) 1993775	Study type: Multicenter US national prospective cohort Size: N=717; 40% men, mean age 74 y	Inclusion criteria: All pts in US receiving anti-digoxin Fab fragments Exclusion criteria: None stated	1° endpoint: Resolution of symptoms of digoxin toxicity Results: 50% complete response, 24% partial response; 12 % no response. 3% recurrence rate. 1% allergy to therapy	No separate analysis of AVB pts
Sadek MM, et al. 2013 (155) 23623644	Study type: Systematic review	Inclusion criteria: English language, original outcome data	1° endpoint: Reversal or improvement in AVB	Considerable study heterogeneity

	Size: 10 publications; 299 pts	on pts with cardiac sarcoidosis tx with steroids.	Results: 27/57 (47%) cases treated with steroids had improved or	"Improvement" in AV conduction not defined
	255 μισ		recovered AV conduction vs. 0/16 pts.	Outcome not defined in terms of
		Exclusion criteria: Reports less	w/o steroid treatment.	need for PM
		than 5 subjects or less than 3- mo follow-up		
Kandolin R, et al.	Study type: Single-	Inclusion criteria: Pts. 18–55 y	1° endpoint: Dx of cardiac sarcoidosis;	Selected population, tertiary
2011 (156)	center retrospective	who had PPM implant for	reversal of AVB with treatment.	referral center
<u>21427276</u>	cohort (Finland)	unexplained 2 nd /3 rd -degree AVB		Little data about AVB described
			Results: 18/72 (25%) had probable (4)	Overall suggests low chance of
	<u>Size</u> : N=133; 72 pts	Exclusion criteria: None	or definite (14) cardiac sarcoidosis AVB	reversing AVB with steroid
	with unexplained AVB	described	reversed in only 2/16 pts (13%) treated	treatment
			with steroids	
Ozcan KS, et al. 2012	Study type: Single-	Inclusion criteria: All pts. with	1° endpoint: Persistent AVB despite	Thyroid abnormalities are rarely
(157)	center retrospective	2 nd /3 rd degree AVB who had	treatment of thyroid abnormalities	a cause of reversible AVB.
<u>22738687</u>	cohort (Turkey)	hyper- or hypothyroidism		
	et 11 50 /00		Results: 46/50 (92%) pts required	
	<u>Size</u> : N=50 (29	Exclusion criteria: MI,	PPM; 2 additional pts had persistent	
	hypothyroid, 21	electrolytes abnormalities,	AVB. 22/29 (76%) with hypothyroidism	
	hyperthyroid)	digoxin toxicity, vasovagal	and 18/21 (86%) with hyperthyroidism	
	6. 1	syncope, on AADs	had irreversible AVB.	
Forrester JD, et al.	Study type: Systematic	Inclusion criteria: English	1º endpoint: Outcomes, need for PPM,	AVB with Lyme carditis almost
2014 (158)	review of case reports	language case reports or series	persistence of AVB	always resolves with treatment
<u>24879781</u>	and case series	in peer-reviewed journal of pts with Lyme disease and ECG-	Describes 10/45 (400/) required TDM	
	Size: 34 manuscripts	documented 3 rd degree AVB	Results: 18/45 (40%) required TPM, 2/45 (4%) had PPM, both in 1980s. All	
	reporting 45 cases	documented 3 degree AVB	other cases resolved, median time to	
	reporting 45 cases	Exclusion criteria: Not in	resolution 6 d (range 1–42 d).	
		English, pt not US, no pt	resolution of trange 1 42 dy.	
		variables reported		
Van der Linde, MR,	Study type: Review of	Inclusion criteria: Published	1° endpoint: Outcome, resolution of	PPM rarely needed after episode
1991 (159)	published case reports	case reports 1977–90,	AVB, need for PPM	of Lyme carditis
1947815	in Europe and North	questionnaire, personal	,	,
	America, European	communication, observations	Results: 49% had 3 rd degree AVB, 16%	
	questionnaire, personal		had 2 nd degree AVB. 35% required	
	communication,	Exclusion criteria: None	TPM, 94% with complete recovery of	
	observations		AV conduction, only 1 pt (1%) had	
			persistent 3 rd degree AVB	

Size: 105 cases		

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
Abu-Laban RB, et al. 2006 (104) 16698410	Aim: To determine whether aminophylline increases rate of ROSC after out of hospital cardiac arrest Study type: RCT Size: N=971	Inclusion criteria: Pts over 16 y in British Columbia 2001–3 with brady-asystolic arrest refractory to intubation, atropine and epinephrine Exclusion criteria: Do-not- resuscitate order, pregnancy, hemorrhage/trauma or hypothermia, end-stage renal disease, on theophylline	Intervention: 500 mg IV aminophylline bolus Comparator: Matching placebo	1° endpoint: ROSC: 24.5% I vs. 23.7% C (0.8%, - 4.6–6.2; p=0.778) Survival to hospital admission: 6.6% I vs. 7.6% C (-1.0%, -4.3– 2.2; p=0.527) Survival to hosp. discharge: 0.4% I vs. 0.6% C (-0.2%, -1.1– 0.7%; p=0.653) Safety endpoint (if relevant): None	 Did not call out pt with AVB Prehospital setting only
PrePACE Morrison, LJ, et al. 2008 (86) <u>17933452</u>	Aim: To compare outcome of pts with prehospital unstable bradycardia with TCP vs. dopamine Study type: RCT Size: N=82; mean age 71 y; 57% male	In Inclusion criteria: Pts ≥18 y presenting to Toronto EMS with hemodynamically unstable bradycardia unresponsive to fluids and atropine Exclusion criteria: Trauma, hyperthermia, hypothermia, cardiac arrest	Intervention: TCP 80 bpm Comparator: Dopamine 5–20 mcg/kg/min	1° endpoint: Survival to hospital discharge 69% I vs. 70% C (p=NS) Safety endpoint: VT/VF/cardiac arrest/burn: 7.1% C vs. 7.5% C (p=NS)	 Half of eligible pts not randomized This was a pilot study for potential larger RCT Dopamine equivalent to TCP in this small pilot study

Study Acronym;	Study Type/Design;	Patient Population	Primary Endpoint and Results	Summary/Conclusion
Author;	Study Size		(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	

Brady WJ, et al.	Study type: Single-EMS	Inclusion criteria: All	1° endpoint: "Response" in 4 categories –	Limited methodology, results
1999 (79)	system retrospective	nontraumatized pts from 1990–	adverse, none, partial, complete	poorly described
10459592	cohort in US	1993 who experienced		
		bradycardia with associated	Results: Mean dose 1.1 mg. Of 37 pts with	
	Size: N=131; 45 with	hemodynamic instability who	3 rd degree AVB in field, 21 arrived in ED	
	AVB; Mean age 69 y;	received atropine in field.	with 3 rd degree AVB and only 9 left ED	
	53% male		with 3 rd degree AVB. Of all pts, 27% had	
		Exclusion criteria: Not stated,	complete response, 20% partial, 50%	
		but presumably cardiac arrest.	none; 3% adverse	
		Also excluded pre-hospital		
		deaths (N=16)		
Feigl D, et al.	Study type: Single	Inclusion criteria: 2 nd or 3 rd	1° endpoint: Outcomes, response to	Descriptive, uncontrolled study
1984 (160)	center retrospective	degree AVB developing in	atropine	No adverse events to drug
<u>6736451</u>	cohort study in Israel	course of IMI who survived >72		therapy reported
	1978–1982	h	Results: Of 15 pts with early AVB (<6 h).	
			Atropine normalized conduction in 20%,	
	Size: N=34; mean age	Exclusion criteria: None	increased V rate in others. 5 had	
	62 y; 82% male		normalization with isoproterenol. 14 pts	
			had late AVB – less response to atropine	
			(mean 16 bpm). 50% required TPM	
Sclarovsky S, 1984	Study type: Single	Inclusion criteria: All pts with	1° endpoint: Description of outcomes,	Descriptive uncontrolled study
(161)	center retrospective	acute inferior MI who	response to atropine and isoproterenol	 No adverse events to drug
<u>6731277</u>	cohort study in Israel	developed 2 nd or 3 rd degree AVB		therapy reported
	1972–1982	in hospital	Results: 6/14 (36%) of pts with early AVB	
			improved vs. 13/17 (77%) pts with late	
	<u>Size</u> : N=76	Exclusion criteria: Combined	AVB (p<0.05). 2/8 (25%) of pts with early	
		AMI and IMI	block and 2/6 (33%). 50% of pts had TPM	
Chihrin SM, et al.	Study type: Single	Inclusion criteria: Consecutive	1° endpoint: Elicitation of escape rhythm	Suggests that isoproterenol
2008 (162)	center prospective	pts from 2003–2006 undergoing	with PM stepdown to 30 bpm or	can be used to elicit faster
<u>18308011</u>	cohort in Canada	PPM generator change who	isoproterenol 1–2 mcg/min	escape rate in pts with AVB
		were PM dependent		
	Size: N=100; mean age		Results: 59% demonstrated intrinsic	
	75 y; 56% male	Exclusion criteria: None	rhythm with stepdown alone. Of	
			remaining 41 pts, 28 (68%) demonstrated	
			intrinsic rhythm with isoproterenol. No	
			adverse events.	

Hurley KF, et al.	Study type: Systematic	Inclusion criteria: RCTs of	1° endpoint: Survival to	Aminophylline not useful in
2015 (105)	review of 5 RCTs	aminophylline used for pre-	discharge/admission, ROSC	out of hospital bradyasystolic
<u>26593309</u>		hospital resuscitate of		arrest
	<u>Size</u> : N=1254	bradyasystolic cardiac arrest	Results: No improvement in outcome by	
			any measure with aminophylline. Overall	
		Exclusion criteria: N/A	survival extremely low	
Sodeck GH, et al.	Study type:	Inclusion criteria: Consecutive	1° endpoint: Use of drugs for bradycardia,	Descriptive study with no
2007 (77)	Retrospective analysis	pts admitted to ED 1994–2004	use of pacing	control group
<u>17212976</u>	of single ED registry	with symptomatic,		Pts with AVB not separately
	from tertiary center in	hemodynamically significant	Results: IV medications given to 170 pts	reported or analyzed
	Austria	bradycardia	(61%) – Atropine in 141 (51%),	Minimal information on clinical
			orciprenaline 62 (22%), epi 24 (9%),	effects of intervention given
	Size: N=277; mean age	Exclusion criteria:	dopamine 6 (2%). 7 pts had TCP (4	
	68 y; 62% male; about	Asymptomatic and terminally ill	successful); 54 (20%) had temporary TVP.	
	50% AVB	pts	137/277 (50%) received PPM	
Bertolet BD, et al.	Study type: Single-	Inclusion criteria: Pts with	1° endpoint: Restoration of 1-1 AV	No controls
1995 (163)	center observational	significant AVB developing	conduction	Very small, single-center
7661495	cohort in US	within 4 h of admission for acute		experience
		inferior MI, resistant to	Results: All 8 pts had restoration of 1-1 AV	
	Size: N=8; 3 with	atropine, given IV theophylline	conduction within 3 min lasting at least 24	
	complete AVB	up to 250 mg	h	
	·			
		Exclusion criteria: Pts who		
		received BBs or CCBs prior		
Altun A, et al. 1998	Study type: Single-	Inclusion criteria: Pts with 2 nd or	1° endpoint: Restoration of AV	No controls
(164)	center observational	3 rd degree AVB after IMI for at	conduction	Very small, single-center
9789698	cohort in Turkey	least 1 h, resistant to atropine.		experience
		Given 2 doses of aminophylline	Results: Aminophylline restored 1-1 AV	
	<u>Size</u> : N=8; 6 with	240 mg 1 h apart	conduction in 7 pts and Mobitz I AVB in 1.	
	complete AVB; mean		No adverse effects. AVB relapsed in 1 pt	
	age 68 y	Exclusion criteria: Pts in	only	
		hyperacute phase of MI,		
		received AV nodal blocking		
		drugs		
Goodfellow J, et al.	Study type: Single-	Inclusion criteria: Pts with	1° endpoint: Restoration of 1-1 AV	No controls
1995 (165)	center case series in	atropine-resistant AVB with	conduction	Very small case series
7588933	United Kingdom	acute inferior MI treated with		2., 5
	3			
	1		L	l

Love, JN, et al. 1998 (90) 9674488	Size: N=3 Study type: Single center case series in US Size: N=9	streptokinase. All had hypotension Exclusion criteria: None Inclusion criteria: Pts presenting with symptomatic bradycardia resistant to atropine 1 mg who received IV glucagon 1–7 mg then 3–5 mg/h	Results: 1-1 AV conduction restored promptly with resolution of hypotension in all 1° endpoint: Improvement in bradycardia and hemodynamics Results: All pts improved at least transiently	Most pts had BBs and/or CCBs as significant co-factors Unknown how many had AVB
Dhingra RC, et al.	Study type: Single	Exclusion criteria: None Inclusion criteria: 42 pts with	1° endpoint: Improvement in AV	Very small study
1973 (166)	center cohort	heart disease undergoing	conduction and change in ventricular rate	Bias in reflects those able to
<u>4744693</u>	undergoing invasive EP study in US	invasive EPS w/o and with isoproterenol	Results: 2/8 pts with 3 rd degree AVB had	undergo EPS
	study III 03	Isoproterenoi	improved conduction with isoproterenol,	Hemodynamics/ BP not measured
	Size: N=42; 8 with 3 rd	Exclusion criteria: None	as did 3/3 pts with 3 rd degree AVB.	Suggests isoproterenol useful
	degree AVB, 3 with 2 nd degree AVB		Ventricular rate improved in all subjects from mean of 45 bpm to 62 bpm,	to augment heart rate in 2 nd and 3 rd degree AVB
			regardless of site of block	-
Hatle L, et al. 1971 (167)	Study type: Single center prospective	Inclusion criteria: Pts with acute MI treated 1966–1970 with 2 nd	1º endpoint: Improvement in heart rate	Very early cohort when there
5557475	cohort from Norway	or 3 rd degree AVB treated with	Results: In hospital mortality 48%. 60 pts	was minimal treatment for acute MI
	,	isoproterenol, generally 1–3	received isoproterenol: 38 (63%) had	Extremely high mortality
	Size: N=105 pts with	mcg/min	increase in heart rate and BP; 12 (20%)	• In this group, isoproterenol
	2nd or 3 rd degree AVB		had increased in heart rate but minimal	appeared safe compared with
	in setting of acute MI	Exclusion criteria: None stated	change in BP; 8 (13%) had minimal	TVP
			change; 2 (3%) isoproterenol terminated	Uncontrolled cohort study
			due to ventricular ectopy. 3 pts had ventricular fibrillation on isoproterenol, 1	
			of which died. 14 pts treated with TVP, 3	
			of whom died from ventricular fibrillation	

Study Acronym;	Aim of Study;	Patient Population	Study Intervention	Endpoint Results	Relevant 2° Endpoint (if
Author;	Study Type;		(# patients) /	(Absolute Event Rates,	any);
Year Published	Study Size (N)		Study Comparator	P values; OR or RR; &	Study Limitations;
			(# patients)	95% CI)	Adverse Events

Ferguson JD, et	Aim: Compare 2 types of	Inclusion criteria:	Intervention: Use of	1° endpoint: Procedure	When guided by
al. 1997 (113)	TVP catheters for	Undergoing temporary	balloon-tipped	duration (264 vs. 540 s;	fluoroscopy, balloon-
9217762	success and	VVI pacing (85% with	electrode (N=20)	p<0.002), fluoroscopy time (87	tipped catheters are
3217702	complication rates	AVB) guided by	ciccii duc (i v 20)	vs. 189 s; p<0.01), suitability of	easier to place
		fluoroscopy	Comparator: Use of	final position (0 unacceptable	successfully than semi-
	Study type: Unblinded		semi-rigid electrode	vs. 7; p<0.0001). Thresholds	rigid catheters
	RCT	Exclusion criteria:	(N=20)	similar	Use of balloon-tipped
		None stated	,		catheter associated with
	Size: 40 pts, mean age			Safety endpoint (if relevant):	trend toward lower
	72 y. 85% with AVB			Dislodgement (1 vs. 3)	complication rate
	·			Death (0 vs. 2)	·
Barthell E, 1988	Aim: Compared TCP	Inclusion criteria: All	Intervention: TCP +	1° endpoint: Survival to	Limited form of
(127)	added to ACLS vs. ACLS	adult, nontraumatic	ACLS	hospital admission:	randomization
<u>3056132</u>	alone for pre-hospital	bradyasystolic episodes		Asystole/EMD 17% I vs. 20% C	Overall, no effect of TCP
	pts with asystole, EMD,	or arrests treated by	Comparator : ACLS	(p=NS)	for pre-hospital use for
	or hypotensive	Milwaukee County	alone	Hypo-brady 100% I vs. 29% C	asystole/EMD arrest
	bradycardia	Paramedic System Oct		(p=0.01)	 Possible benefit for
		1986–May 1987			hypotensive bradycardia,
	Study type: Unblinded			Survival to hospital discharge:	but number of pts very
	RCT (alternate d	Exclusion criteria:		Asystole/EMD 2% I vs. 4% C	small
	randomization)	None stated		(p=NS)	
				Hypo-brady 83% I vs. 14% C	
	Size: N=239; 142 with			(p=0.01)	
	asystole; 84 with EMD;				
	13 with hypotensive			Safety endpoint: None	
2 . 22 .	bradycardia				
Cummins RO, et	Aim: Determine efficacy	Inclusion criteria: All	Intervention: 16	1° endpoint: Survival to	No improvement for pts
al. 1993 (168)	of TCP of asystolic out of	cardiac arrests in	EMS/fire districts given	hospital admission/ primary	with initial VF
8474514	hospital cardiac arrest	Seattle area over 3 y	TCP and trained in use	asystole:	Limited form of
	Charles to make a Nordificat	period; Primary group	Commonatory 22	8% I vs. 8% C (p=NS)	randomization
	Study type: Modified	was those with asystole	Comparator: 23	Survival to discharge:	
	RCT by center	as first rhythm	EMS/fire districts given TCP and trained in use	4% I vs. 2% C (OR: 2.05; p=NS)	
	Size: N=1056 cardiac	Exclusion criteria:	Ter and trained in use	Safety endpoint: None	
	arrests; N=537 with	None		Salety enupoint: None	
	asystole as first rhythm;	TVOTE			
	N=305 with asystole				
	after VF				
	arter vi	I		1	

Hedges JR, et al. 1987 (169) 3315295	Aim: Determine efficacy of TCP added to ACLS for prehospital hemodynamically significant bradycardia or asystole Study type: RCT (alternate day) Size: N=202	Inclusion criteria: All pts over 14 y treated by Thurston County, EMS for hemodynamicallysignificant bradycardia with decreased mental status (Glasgow coma score ≤12) Exclusion criteria: None stated	Intervention: On odd calendar days, EMS used TCP 100 bpm at max output for pts Comparator: On even calendar days, TCP was not used	1º endpoint: Survival to hospital admission: 17% I vs. 17% C (p=NS) Survival to hospital discharge: 6% I vs. 4% C (p=NS) Safety endpoint: None	 Limited form of randomization No improvement with TCP
PrePACE Morrison, LJ, et al. 2008 (86) 17933452	Aim: To compare outcome of pts with prehospital unstable bradycardia with TCP vs. dopamine Study type: RCT Size: N=82; mean age 71 y; 57% male	Inclusion criteria: Pts 18 y or older presenting to Toronto EMS with hemodynamically unstable bradycardia unresponsive to fluids and atropine Exclusion criteria: Trauma, hyperthermia, hypothermia, cardiac arrest	Intervention: TCP 80 bpm Comparator: Dopamine 5–20 mcg/kg/min	1° endpoint: Survival to hospital discharge 69% I vs. 70% C (p=NS) Safety endpoint: VT/VF/cardiac arrest/burn: 7.1% C vs. 7.5% C (p=NS)	 Half of eligible pts not randomized This was a pilot study for potential larger RCT No benefit to TCP seen

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Sodeck GH, et al. 2006 (77) <u>17212976</u>	Study type: Single center retrospective cohort in Austria Size: 277 pts (62% male, 48% AVB)	Inclusion criteria: Pts >18 y presenting to ED with "compromising bradycardia from 1994–2004; mean heart rate 33 bpm Exclusion criteria: Asymptomatic bradycardia, terminal illness	1° endpoint: 30 d mortality Results: 5% mortality at 30 d. 20% of pts treated with temporary TVP. 50% of those pts went on to have permanent pacing	 Temporary TVP required in about 20% of pts presenting to ED with symptomatic bradycardia Half of those pts go on to PPM

Brikhahn RH, et al. 2004 (170) 15039689 Betts TR, 2003 (119) 12954959	Study type: Single-center retrospective cohort in US Size: 154 pts, 117 meeting inclusion/exclusion criteria. Mean age 78 y, 38% male, 51% AVB) Study type: Prospective registry in 5 regional hospitals in England in 1999 Size: 144 procedures in 111 pts; mean age	Inclusion criteria: All pts with temporary TVP placed in ED, intensive care unit, or ward 1999–2002. Only 3% placed under fluoroscopy Exclusion criteria: Indication asystole, TVP placed in cath or EP lab, no attending supervision Inclusion criteria: All TVPs placed over 9 mo period in 1999 Exclusion criteria: None cited	1º endpoint: Successful temporary TVP placement. Complication rate. Results: 88% success on first attempt. 17% serious complication rate. 96% placed by cephalic approach. 67% had PPM. 23% in-hospital mortality 1º endpoint: General overview of procedure technique, outcomes, complications Results: Procedure times shorter for cardiologists, 28% complication rate. Immediate complication rates lower	 Similar success rates between ED physicians and cardiologists High overall success rate of implantation of TVP Cephalic route rarely used in general practice today Suggests benefit to TVP implant by cardiologists/ experienced operators Greater infection risk for TVP wires left in >48 h High rate of overall complications seen
	75 y.; 63% male; 51% AVB		with experience (1/81) vs. inexperienced (5/59) operators. Infection occurred more in wires left in >48 h (17/86) than <48 h (2/55). 23% of comps resulted in delayed PPM	• 23% of comps delayed PPM implantation
Mahapatra S, et al. 2005 (171) 16171740	Study type: Case-control derived from prospective database 1995–2003 at Mayo Clinic Size: 50 pts with cardiac perforation after PPM vs. 100 controls	Inclusion criteria: Pts undergoing PPM 1995–2003 with perforation and new effusion. Exclusion criteria: Age <18 y, prior effusion or cardiac surgery within 4 wk of PPM	1° endpoint: Risk factors for perforation after PPM Results: 1.2% of all pts had perforation. Predictors of perforation in multivariate analysis included prior TVP (HR: 2.7; 95% CI: 1.4–3.9], helical screw leads (HR: 2.5), steroid use (HR: 3.2)	Suggests benefit to avoiding TVP prior to permanent pacing unless essential
Lang R, et al. 1981 (172) 6169032	Study type: Single- center nonrandomized controlled study	Inclusion criteria: Consecutive pts requiring emergency or semi-urgent temporary TVP at a single Israeli center	1° endpoint: Successful implant, procedure time, threshold, multiple safety endpoints	 Superiority of balloon-tipped, flow guided electrode catheter for temporary TVP demonstrated.

	comparing balloon-		Results: Flow-guided TVP had 1)	
	tipped, flow-guided	Exclusion criteria: None stated	shorter insertion time (7 min vs. 14	
	TVP vs. standard semi-		min); less dislodgement (13% vs.	
	rigid catheter		32%), lower incidence of serious	
			ventricular arrhythmia (1.5 vs. 20.4%)	
	Size: 111 consecutive		Thresholds similar.	
	pts (67 flow-guided,			
	44 semi-rigid)			
Hynes JK, et al.	Study type:	Inclusion criteria: Consecutive	1° endpoint: Complications	Preference for internal jugular
1983 (115)	Retrospective single-	pts undergoing temporary TVP		rand subclavian vein access
<u>6823157</u>	center cohort at Mayo	wire in Mayo Clinic coronary	Results: Implanted mean 3.1 d, 64%	sites confirmed
	Clinic	care unit 1976–81.	placed antecubital route, 19%	
			subclavian vein, 12 % internal jugular	
	Size: 1022 pts, mean	Exclusion criteria: None stated	vein. 13.7% complication rate,	
	age 68 y, (65% male)		increasing with duration of TVP.	
			Lowest comp rate with internal	
			jugular vein 5.3% pericarditis. PPM	
			implanted in 58% of pts.	
Winner S and	Study type:	Inclusion criteria: Consecutive	1° endpoint: Complications, defined	 Advise avoiding TVP before
Boon N, 1989	Retrospective single	pts referred to regional center	as "major problems": dislodgement,	PPM unless absolutely
(173)	region cohort study	for PPM	infection, pericarditis/perforation,	necessary
<u>2769615</u>			thrombosis, wire in left ventricle	
	<u>Size</u> : 266 pts/ 158	Exclusion criteria: Missing		
	(59%) had temporary	records	Results: 36% rate of major problems,	
	TVP		much higher rate at smaller referral	
			hospitals. 6% infection; 30% failure to	
			pace, 4% pericarditis	
López Ayerbe J, et	Study type:	Inclusion criteria: Pts receiving	1° endpoint: Complications,	Complication rates improved
al.	Retrospective single	TVP 1997–2003. All via femoral	outcomes	compared with series from
2004 (114)	center cohort in	route (99%) with fluoroscopic		1980s and 1990s (18–43%)
<u>15544753</u>	Barcelona, Spain	guidance	Results: Mean duration 4.2 d. 22%	Lower use in pts with acute MI
			complication rate: 1% death (3	seen
	Size: N=530; mean age	Exclusion criteria: Pts	tamponade, 1 asystole, 1 PE, 1	
	74 y, 54% male; 51%	transferred out with no	sepsis). 9% migration/dislodgement'	
	AVB.	available f-u (N=38)	9% other (VTE, effusion, infection)	

Bjornstad CC, et al.	Study type:	Inclusion criteria: All pts with	1° endpoint: Complications,	• Fewer TVPs being performed by
2012 (126)	Prospective regional 5	TVP in 5 hospitals March 2010-	outcomes	more physicians with less
22390277	hospital study in	March 2011. All with		experience
	Norway 2010–11.	fluoroscopy	Results: 96% TVP; 4% TCP. 60%	Lower complication rate with
			received PPM; 14% died. 30% rate of	more experienced implanters
	<u>Size</u> : N=50; 45% AVB;	Exclusion criteria: None stated	"serious complications" including 6%	
	mean age 79 y, 62%		death from sepsis	
	male			
McCann P, 2006	Study type:	Inclusion criteria: Cohort	1° endpoint: Complications,	Methodologically limited
(125)	Systematic review	studies of TVP published 1973–	outcomes	systematic review
<u>17235372</u>	1973-2004	2004		Higher complication rate in
			Results: Overall complication rate	older pts
	Size: 15 studies;	Exclusion criteria: None stated	26.5%: 15% failed access, 10% failed	Lower complication rate when
	N=3737; mean age 71		placement, 9% sepsis, 4% arterial	implanted by specialists
	У		puncture, 2% lung/myocardium	Trend toward greater use of
			puncture	right internal jugular access
				over time
Jou YL, et al. 2010	Study type: Single	Inclusion criteria: All pts with	1° endpoint: Trends in use	High rate of PPM for
(124)	center retrospective	TVP 2002 8 at single center		degenerative AVB
20946290	cohort in Taiwan		Results: Greater use for AVB with	
	2002-8	Exclusion criteria: None stated	intrinsic disease, less for sinus node	
			dysfunction and MI over time. 48%	
	Size: N=509; mean age		had PPM implant within 30 d (mean 6	
	77 y, 74% male; 64%		d) with increasing rate over time.	
	AVB			
Knudsen MB, et al.	Study type:	Inclusion criteria: Pts getting	1° endpoint: Indication for PPM	Authors conclude that:
2013 (150)	Retrospective single-	TVP wire 2000–11 who had	despite drug discontinuation;	"Primary PPM implantation
<u>23869746</u>	center cohort at	AVB and potential culprit drug	complications and outcomes	should be considered in pts
	academic medical	discontinued		with high-degree AVB and
	center in Denmark		Results: 49/55 (89%) ultimately	concomitant AV blocking
	2000–11.	Exclusion criteria: No ECG	required PPM, including 26/27 (96%)	therapy, unless other reversible
		documentation; other etiology	on BBs. 11% comp rate from TVP.	causesexist."
	<u>Size</u> : N=575 with TVP.	of bradycardia documented;	PPM postponed mean of 7 d for drug	"In the elderly, the drug is
	N=55 with AVB and	PPM infection; in hospital	withdrawal	virtually never the sole culprit;
	potential culprit drug.	death		rather, it just exposes the
	Mean age 77 y, 56%			underlying weakness of the
	male			aging conduction system

Murphy JJ, 1996	Study type:	Inclusion criteria: All TVP	1° endpoint: Complications	High rate of implant by junior
(116)	Prospective cohort in	implants in 18 hospitals.		staff (residents)
<u>8620131</u>	18 hospitals in		Results: Immediate complications in	Continued high rate of
	Northern England	Exclusion criteria: None stated	12/194 (6%) – VT/VF in 6, arterial	complications in British medical
	over 6 mo		puncture (3), pneumothorax (2),	system in 1990s
			brachial plexus injury (1). Late comps	
	<u>Size</u> : N=194. Mean		in 22/194 (11%) – VT/VF 10,	
	age 71 y; AVB (67%).		definite/possible sepsis in 10 (5.2%) –	
	Acute MI in 53%		almost all had TVP>48 h. 38/194	
			(20%) needed repositioning. Total	
			comps 35%. 11/194 (5.5%) died	
			within 1 h of procedure. 56/194 (29%)	
			had PPM	
Pinneri F, et al.	Study type: Single-	Inclusion criteria: Consecutive	1° endpoint: The primary efficacy	Echo-guided TVP was safer and
2013 (174)	center	pts requiring TVP 2003–2010.	endpoints were time to pacing, pacing	more effective in this single
22240748	nonrandomized	Pts underwent TVP guided by	threshold, changes in threshold and	center cohort with cardiologists
	controlled study.	echo (N=53) or fluoroscopy	need for catheter replacement. The	comfortable with technique.
		(N=53) based on operator	primary safety endpoints were overall	Not clear why dislodgment rate
	Size: N=106; mean age	preference.	complications and death related to	and thresholds would be worse
	77 y, 51% male; 75%		TVP implant.	in fluoroscopy group.
	had AVB; 59%	Exclusion criteria: Incomplete		
	ultimately required	follow-up (N=4)	Results: Successful in all but 1 in each	
	PPM		group (98%). Time to pacing and 24 h	
			threshold better in echo-guided	
			group. TVP repositioned in 6% of	
			echo-guided and 22% of fluoroscopy-	
			guided groups (p<0.001), Comp rate	
			lower in echo (11%) than fluoroscopy	
Draup MII at al	Chudu huma Non	Inclusion suitorio. Dts with	(41%) group; p<0.001).	a Futamatical active fivetics TVD
Braun MU, et al. 2006 (175)	Study type: Non- randomized	Inclusion criteria: Pts with systemic infection requiring	1° endpoint: Implant success, pacing	Externalized active fixation TVP lead associated with much
16923004		VVI pacing >48 h	thresholds, acute complications,	lead associated with much
10525004	prospective controlled study comparing	vvi pacilig >40 II	dislodgement rate	lower dislodgment rate than
	externalized active-	Exclusion criteria: None stated	Results: 100% implant success in both	standard TVP wire. Equally safe to implant
	fixation lead vs.	LACIUSION CITTERIA. NONE Stated	groups, paced median 8 d, similar	Externalized active fixation TVP
	standard temporary		procedure time, acute comps, pacing	
	TVP wire)		threshold. There were 24	preferred if pacing >48 h is
	ivr wile)			anticipated.
			dislodgments in 12 pts in control	

	Size: 49 pts, mean age 72 y, 63% male		group, only 1 in active-fixation lead group (p<0.01)	
de Cock CC, et al. 2003 (176) 12765453	Study type: Non-randomized single-center comparison of TVP by femoral route with active vs. passive fixation wire in Netherlands 1998–2001 Size: N=72 pts; mean age 70 y, 51% male	Inclusion criteria: Consecutive pts requiring TVP at single center requiring prolonged temporary pacing (>48 h) — mean 6 d Exclusion criteria: None stated	1° endpoint: Implant parameters, dislodgments, other adverse events Results: Threshold higher in active (1.38V) than passive (0.7V). Dislodgement lower in active (2/36) than passive (12/36) groups (p<0.001). Other comps similar	Fewer dislodgments using an active fixation lead using femoral approach
Kawata H, et al. 2013 (177) 23482613	Study type: Single center retrospective cohort study of temp active fix lead (TPPM) after lead extraction at UCSD Size: N=23; mean age 72 y, 70% male; 87% AVB	Inclusion criteria: 23/47 pts undergoing extraction for CIED infection who were PM- dependent 2010–12 Exclusion criteria: None stated	1° endpoint: Duration of TPPM, complications Results: Duration of TPPM mean 12 d. 12/23 discharged to home or SNF. 1 pt died of sepsis from primary infection; 1 pt developed vegetation on TPPM lead – removed and replaced. No dislodgements. One pts had late pocket infection after reimplant.	 TPPM is a safe and effective option for PM-dependent pts awaiting reimplant after CIED infection Allows earlier mobilization and potential discharge to home/nursing facility to await CIED reimplant
Chihrin SM, et al. 2006 (178) 17145220	Study type: Single center retrospective cohort in Canada 2001–5 Size: N=20 pts; median 2 d; mean age 62 y; 75% male	Inclusion criteria: Pts implanted with TPPM via left subclavian vein or right internal jugular vein over 5 y period Exclusion criteria: None stated	1° endpoint: Pacing duration, complications, costs Results: Duration median 2 d (1–83 d); 1 dislodgement requiring repositioning (5%). Using economic modeling, costs lower with TPPM than conventional TVP at 48 h	Despite higher lead cost, TPPM cost-effective after 24 h due to lower complications and less intensive bed use

Lever N, et al. 2003 (179) 12527682	Study type: Single center cohort in United Kingdom Size: N=20; mean age 66 y, 85% male	Inclusion criteria: Consecutive pts requiring prolonged temp pacing due to infection or drug washout who had tunneled TPPM Exclusion criteria: None stated	1° endpoint: Pacing duration, outcome, complications Results: Duration median 28 d (9–81 d); no dislodgments or repositioning; 2 minor local site infections, no systemic infection. One pt died from sepsis unrelated to TPPM	TPPM safe and effective, allows early mobility for pts requiring prolonged temporary pacing
Kornberger A, et al. 2013 (180) 23718817	Study type: Single center cohort in Germany Size: N=60; mean age 73 y, 73% male	Inclusion criteria: Consecutive pts implanted with TPPM for CIED infection (70%) or other reasons (30%) 2000–2009 Exclusion criteria: None stated	1º endpoint: Duration of pacing, outcomes, complications at 30 d Results: Successful in 98% - VVI in 56, DDD in 3) Duration mean 15 d. Intraoperative comps in 2 pts (3.3% - one venous thromboembolism and tamponade, one dislodgement during lead extraction). 4 late comps (6.7%) - 3 possible lead infections, 1 dislodgement.	TPPM safe and effective option for prolonged temporary pacing
Zei P, et al. 2006 (181) 16580542	Study type: Single- center cohort in Boston MA Size: N=62 pts; mean age 68 y; 60% male	Inclusion criteria: All pts getting TPPM for prolonged temp pacing at BWH 2000– 2004 Exclusion criteria: None stated	1° endpoint: Duration of pacing, outcomes, complications Results: Median duration 7.5 d. 66% went on to have PPM. No deaths from arrhythmia, no complications from TPPM, no dislodgements	 TPPM safe and effective option for prolonged temporary pacing. Allows management in lower cost less intensive setting
Zoll PM, et al. 1985 (130) 3886190	Study type: Prospective 5-center cohort study in US Size: 134 pts; mean age 70 y; 65% men	Inclusion criteria: All ED and hospital pts in whom TCP applied Exclusion criteria: None stated	1° endpoint: Stimulation effectiveness, clinical usefulness, survival in-hospital Results: QRS response to TCP in 78%, deemed clinically useful in 61%, survival in 62%	 Methodology for data collection not described No controls Endpoints not well described or documented "This extensive experience with 134 pts treated by several investigators in 5 institutions under varied circumstances confirms the safety and efficacy of this new technique of noninvasive temporary pacing."

Sherbino J, et al.	Study type:	Inclusion criteria: Euthermic,	1° endpoint: Survival to hospital	Limited systematic review:
2006 (128)	Systematic review of 7	nontraumatized adults who	discharge	Heterogeneity of study designs
<u>16814446</u>	studies of TCP for	experience prehospital		precluded statistical analysis
	prehospital	hemodynamically symptomatic	Results: No benefits to TCP for	
	bradyasystole	bradycardia or bradyasystolic	bradyasystolic cardiac arrest. Data	
		cardiac arrest	inadequate to determine efficacy of	
	<u>Size</u> :7 studies, N=		TCP for SB	
	1487	Exclusion criteria: None stated		
Hedges JR, et al.	Study type: Single	Inclusion criteria: Pt >17 y with	1° endpoint: Arrival to ED with	Non-randomized
1991 (129)	EMS-system cohort in	hemodynamically	palpable pulse:	Potential for confounding by
<u>1721129</u>	US	compromised bradycardia with	26% paced group vs. 13% control	indication
		witness collapse	Survival to hospital discharge:	
	Size: N=51; mean age		15% paced group vs. 0% control	
	73 y, 67% male;	Exclusion criteria: Trauma,		
		hypothermia, initial rhythm	Results: Above	
		asystole, VT, VF		

Data Supplement 33. RCTs of General Principles of Chronic Therapy/Management of Bradycardia due to AV block (Section 6.4.1)

Study Acronym; Author;	Aim of Study; Study Type;	Patient Population	Study Intervention (# patients) /	Endpoint Results (Absolute Event Rates, P value;	Relevant 2º Endpoint (if any); Study Limitations;
Year Published	Study Size (N)		Study Comparator (# patients)	OR or RR; & 95% CI)	Adverse Events
THEOPACE Alboni P et al. 1997 (133) 9236443	Aim: Compare the effects of PM to oral theophylline and to control	Inclusion criteria: Pts with SND Exclusion criteria: Heart rate <30 bpm,	Intervention: PM or theophylline Comparator: Control	Results: Syncope reduced in PM group but not in theophylline group compared to control (p=0.02 and 0.07 respectively)	 PM and theophylline groups had lower incidence of HF compared to control (p=0.05) Theophylline stopped for side effects in 11%
	Study type: RCT (3 arms) Size: 107	pauses >3 s.			circus iii 11%

Data Supplement 34. Nonrandomized data of General Principles of Chronic Therapy/Management of Bradycardia due to AV block (Section 6.4)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P value; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
Dhingra RC, et al. 1974 (196) 4817704	Aim: Describe natural Hx of 2 nd AVB+ BBB Study type: Prospective observational Size: 15	Inclusion criteria: BBB+ 2 nd degree AVB Exclusion criteria: Acute MI	Intervention: EPS Comparator: N/A	Results: At EPS, type I (Wenckebach) block pts had block proximal to the His and those with type II block or 2:1 block had block distal to the His	 Syncope more common in those with block distal to the His All 9 pts with infra-His block implanted with PM for syncope, CHF LBBB, but not RBBB, was associated with block distal to the His
Shaw DB and Eraut D 1970 (197) 5413952	Aim: Follow 2nd and 3 rd degree HB pts for symptoms and mortality Study type: Observational Size: 100	Inclusion criteria: 2 nd 3 rd degree HB Exclusion criteria: Digoxin or propranolol use, acute MI	Intervention: None	Results: Prevalence of heart block increases with age.	About 50% had syncopal events About 10% had CHF No reported deaths
Simon AB, et al. 1978 (198) 626128	Aim: Follow natural Hx of AVB pts with PMs Study type: Observational Size: 246	Inclusion criteria: 2 nd or 3 rd degree AVB Exclusion criteria: SND	Intervention: PM implant	Results: Survival at 1 and 5 y was 88% and 61% mostly due to underlying cardiac disease and age	 Using historical data (50% mortality in first year), authors conclude large mortality benefit with PM Most common mode of death was SCD deaths clearly attributable to PM failure
Strasberg B, et al. 1981 (199) 7471363	Aim: Assess natural Hx of 2 nd AVB Study type: Prospective observational Size: 56	AVB that is chronic, and shown by EPS Exclusion criteria: Acute AVB in setting of MI	Intervention: None	Results: 2/3 had Hx of heart disease which conferred worse survival. Causes of death were CHF, MI, and SCD	 All ECGs showed type I AVB. None progressed to CHB 3 deaths were attributed to PM failure

Edhag O, et al.	Aim: Report natural	Inclusion criteria: PM	Intervention: None	Results: CHB with Adams-Stokes	• Survival at 1 y=68%, at 5
1976 (200)	Hx of pts with CHB	not implanted		had worse survival than asx CHB	y=37%
1015354	or arrhythmic	·			,
	syncope	Exclusion criteria:			
		PM implantation			
	Study type:				
	Retrospective				
	Size: 101				
Shaw DB, et al.	Aim: Compare	Inclusion criteria: 2 nd	Intervention: PM	Results: 5-y survival for pts with	Pts with Mobitz I and Mobitz
1985 (201)	outcomes in pts	degree AVB		PM=78%; survival for those w/o	II had similar prognosis
4005079	with type I and type		Comparator: No PM	a PM=41%	
	II 2 nd degree AVB				
	Study type:				
	Observational				
	Observational				
	Size: 214 (77 Mobitz				
	I, 86 Mobitz II, 51				
	2:1)				
Wahbi K, et al.	Aim: Determine	Inclusion criteria: PR	Intervention: EPS and	Results: Overall survival 74.4%	The HR of dying suddenly
2012 (202)	whether EPS+	>200, QRS >100, or	implant PM if HV >70	(95% CI: 69.2–79.9%) The	was 75% lower in the
<u>22453570</u>	prophylactic PM	both	ms	EPS+PM group survival was	invasive group
	improves survival in			76.7% and the noninvasive group	The noninvasive group had
	MD	Exclusion criteria:	Comparator:	was 69.2%; when adjusted for	an incidence if SCD of 18%
		High-grade AVB or	Noninvasive strategy	clinical variables the HR=0.61	(95% CI: 10.2-27.4%)
	Study type:	already have PM		(95% CI: 0.38–0.98; p=0.04)	
	Retrospective study				
	using DM1 Heart				
	Registry				
	<u>Size:</u> 486				
Buckley AE, et al.	Aim: Describe	Inclusion criteria: Pts	Intervention: PM	Results: The pts exhibited atrial	• N/A
1999 (203)	cardiac involvement	with Emery Dreifuss		tachycardia, AF, and atrial	
<u>10377322</u>	in Emery Dreifuss	and cardiac		standstill with junctional	
		involvement		bradycardia.	
	Study type: Small				
	case series				

	Size: 3				
Kitaguchi T, et al.	Aim: Describe a	Inclusion criteria:	Intervention: PM	Results: All family members had	• N/A
2001 (204)	proband and his	Family members with		AVB and arrhythmias requiring	,
11525883	family	limb girdle MD		PM	
	Study type:				
	Observational				
	6. 44				
Finatanan Latal	Size: 14	La distanta di sala di	1-t	Barrillar Carranal and arts of	21/2
Finsterer J, et al.	Aim: Thorough review of all	Inclusion criteria:	Intervention: N/A	Results: Several aspects of cardiac involvement were	• N/A
2016 (205) 27014341	neuromuscular	Comprehensive list of search terms and		including hypertrophic CM, DCM,	
27014341	disease and cardiac	manual searches		CHF, SCD, arrhythmias	
	involvement	manual scarciles		Citi, Seb, arringtimilas	
	Involvement	Exclusion criteria:			
	Study type:	Abstracts			
	Comprehensive				
	literature search				
	Size: 224 papers				
Ha AH, et al.	Aim: Determine	Inclusion criteria:	Intervention: PM and	Results: 23.8% of DM I and	Over 44 months of follow-up
2012 (206)	predictors of AVB in	MD type I and II	ICD	16.7% of DM II pts had a severe	mean rates of ventricular
22385162	MD pts			ECG abnormality (defined as PR	pacing in device pts was 24%
	Charles to an an		<u>Comparator</u> : No device	>240 ms or QRS >120 ms). PMs	and 13% developed CHB
	Study type:			and ICDs were implanted in 14% overall but in 65% of those with	3 pts died of SCD, 2 of
	Observational single center			severe ECG abnormality	whom had functioning PMs (1.3%)
	Center			Severe LCG ability	(1.5%)
	<u>Size:</u> 236				
Lazarus A, et al.	Aim: Document	Inclusion criteria:	Intervention: PM	Results: 43% developed CHB,	No deaths due to AVB
2002 (207)	incidence of AVB in	MD pts with HV >70		51% had atrial tachyarrhythmias	• 4 sudden deaths; 2 of which
12427418	MD pts with HV>70	regardless of		and 26.5% had VA.	did not have arrhythmia
	but no symptoms	symptoms			cause per PM interrogation
	Study type: Single				
	arm, prospective				

	<u>Size:</u> 49				
Facenda-Lorenzo M, et al. 2013 (208) 24775453	Aim: Document frequency of arrhythmias in MD type I pts Study type: Retrospective observational study	Inclusion criteria: Pts with genetic tested Dx of type I MD pts referred to cardiology	Intervention: EPS, PM, ICD per physician discretion	Results: At baseline visit, 71.6% had a normal ECG. At follow-up, 48.8% had sinus bradycardia and 31.3% had PR >220 ms	 8.6% developed 2nd or 3rd degree AVB during follow-up Holter found 2nd or 3rd AVB in 9 pts 2 pts required an ICD
Bhakta D, et al. 2011 (209) 22035077	Size: 81 Aim: Assess implantation of PM and ICD rates in type I MD pts Study type: Prospective multicenter registry Size: 406	Inclusion criteria: Pts seen at 23 different neuromuscular clinics in US	Intervention: PM or ICD per physician discretion	Results: • 11.3% implanted with a PM, 5.2% with an ICD • 52% of PM pts died in follow- up. PM pts often died of respiratory failure or sudden death • None of pts implanted for isolated 1st AVB progressed to CHB	PR interval > 240 or QRSd > 120 ms appear to predict 2nd or 3rd degree AVB (NPV 99.6% and PPV of 10.3%) Almost 1/3 of PM pts were PM dependent by last follow-up
Groh WJ, et al. 2008 (210) 18565861	Aim: Assess if ECG can predict SCD in MD type I pts Study type: Prospective multicenter registry Size: 406; of which 96 had severe ECG abnormality	Inclusion criteria: Pts seen at 23 different neuromuscular clinics in US; including those with either non-SR, PR ≥240 ms, QRS ≥120 ms, 2 nd /3 rd degree AVB (termed "severe ECG abnormality") Exclusion criteria: N/A	Intervention: PM or ICD per physician discretion	Results: 20% died; 33% were sudden death. 41 received PM; 27 were prophylactic Severe EKG abnormality had sensitivity =74.1%, specificity =61.7% for prediction of SCD	Atrial tachyarrhythmias were common (30%) Risk factors for sudden death were severe ECG abnormalities and atrial tachyarrhythmias
Groh WJ, 2012 (211) 22760083	Aim: Contemporary review and expert opinion	Inclusion criteria: N/A	Intervention: N/A	Reviews role of PM and ICDConduction abnormalities are frequent	• N/A

	Study type: N/A Size: N/A			ICDs are often needed to treat VA and SCD	
Kabunga P, et al. 2015 (212) 25540845	Aim: Systematic review of arrhythmias in Kearns-Sayre pts Study type: Literature review Size: 54 studies	Inclusion criteria: Specific search terms	Intervention: PM or ICD	Results: 57% of Kearns Sayre pts develop cardiac disease SCD has been reported in up to 20% Most common is conduction disease which can progress to CHB, or PMVT/torsade	 Most common ECG abnormality is LAFB +/-RBBB Progression to high-grade AVB can be sudden VA are often bradycardia related
Saxon LA, et al. 1990 (213) 1695352	Aim: Look at Holter and correlate to cerebral symptoms Study type: Retrospective Size: 411	Inclusion criteria: All Holters with persistent AF	Intervention: N/A	Results: There was no difference between the group with symptoms and 2-s pauses and the group with no symptoms and 2-s pauses Many pts had resolution of symptoms w/o PM implant	2 s did not appear to correlate to cerebral symptoms
Hilgard J, et al. 1985 (214) <u>3984858</u>	Aim: Look at 3 s pauses on Holter and correlate clinical outcomes Study type: Retrospective Size: 52	Inclusion criteria: 6470 Holters screened; 52 had pauses ≥3 s.	Intervention: Per the physician discretion to implant PM	Results: Of 52 Holters with pauses, 18 showed AF with slow ventricular response, and 12 had AVB.	 26 of 52 received a PM 5 out of 52 pts had symptoms during the pause
Ector H, et al. 1983 (215) 6191291	Aim: Assess etiology of pauses and indications for PM Study type: Retrospective	Inclusion criteria: Consecutive Holters, 53 had a pause ≥3 s.	Intervention: None	Results: Of the 53 Holters with pauses, 5 had AVB and 29 had slow AF. Symptoms were reported in 45 of 53	Authors propose pauses of 3 s as the cutoff for PM

	Size: 2350 Holters; 53 had pauses				
Michaelsson M, et al. 1995 (216) 7634461	Aim: Assess long- term outcome of adults with CCHB Study type: Prospective observational Size: 102	Inclusion criteria: Isolated CCHB diagnosed in pts 15 y or younger; mean age at follow-up was 38 y	Intervention: 54 implanted with a PM	Results: Stokes Adams attacks occurred in 27, 8 of whom died 24 women w/o PM gave birth, 6 had syncope during pregnancy	 There were 11 deaths; 2 died of PM failure and 6 died suddenly 2 pts required an ICD 8 had BBB, QRS not a predictor of syncope/death
Sholler GF, et al. 1989 (217) 2480059	Aim: Identify factors that predict need for PM in congenital CHB pts Study type: Retrospective chart review Size: 43	Inclusion criteria: Children with isolated CCHB 1955— 1985 at Boston Children's Hospital	Intervention: PM for symptoms only, not EKG or Holter findings	Results: • 29 remained free of symptoms • 14 had symptoms (near syncope, exercise intolerance), 1 had CHF at birth, 1 had cardiac arrest	Heart rate on ECG or Holter did not predict need for PM
Ando G, et al. 2005 (187) 16091145	Aim: Assess hemodynamics of long AV delay Study type: Case report Size: 1	Inclusion criteria: Case report	Intervention: PM	Results: During a hemodynamic assessment, atrial contraction was seen to occur while AV valves are closed, similar to PM syndrome	AV delay decreased from 290 to 150 with PM improved symptoms
Carroz P, et al. 2010 (191) 19946114	Aim: Report pseudo PM syndrome Study type: Case report Size: 1	Inclusion criteria: Case report of pt with marked 1 st degree AV block	Intervention: Rapid atrial pacing and atropine injection	Results: At baseline, pt had PR= 480 ms, intermittent cannon A waves. Symptoms of dizziness and dyspnea improved with PM	• N/A

Kim YH, et al.	Aim: Describe	Inclusion criteria:	Intervention: Fast PW	Results: Marked 1st degree AVB,	• N/A
1993 (218)	symptoms of	C ase report of	ablation	very symptomatic. Symptoms	
<u>8269289</u>	pseudo-PM	pseudo-PM		improved with PM	
	syndrome	syndrome after fast			
		PW ablation and			
	Study type: Case	resultant long PR			
	report				
	Size: 1				
Barold SS, 1996	Aim: Editorial to	Inclusion criteria:	Intervention: PM	Opinion: PMs can be used	• N/A
(193)	discuss role of PM in	N/A	implant	especially in pts with normal	,
8734740	1 st degree AVB	,	·	LVEF	
	Study type: N/A				
	Size: N/A				
Alboni P, et al.	Aim: Describe	Inclusion criteria:	Intervention: None	 PMs are not warranted in asx 	• N/A
2013 (219)	vagally mediated	N/A		pts with vagally mediated AVB	
<u>23286970</u>	AVB			 Typically, these pts have 	
				normal AV conduction	
	Study type: N/A				
	C: N1/A				
Manaia D. at al	Size: N/A	to destan autoute.	Internation FDC DM	Decolor Melite to a Herital circus	-1 · 1 · C
Massie B, et al.	Aim: Describe EPS	Inclusion criteria:	Intervention: EPS; PM	Results: Mobitz type II with sinus	• These episodes of
1978 (220)	findings in pts with Mobitz II AVB	Mobitz type II with concomitant sinus	for persistent symptoms	slowing appears related to vagal	bradycardia were responsive
<u>668079</u>	IVIODILZ II AVB	slowing		tone	to atropine
	Study type: Case	Slowing			Dx of Mobitz type II best when sinus rate is stable
	series	Exclusion criteria: No			when sinus rate is stable
	Series	associated sinus			
	Size: 13	slowing			
Mosqueda-	Aim: Attempt to	Inclusion criteria:	Intervention: N/A	Conclusions: neurally mediated	• N/A
Garcia, R et al.	explain the	N/A		syncope is not a uniform	,
2000 (221)	pathophysiology of			syndrome in all pts and involves	
11104751	neurally mediated			baroreceptor reflex	
	syncope			abnormalities and neurohumoral	
				mechanisms	

Guerrero- Marquez FJ, et al. 2016 (183) 28496928	Study type: Comprehensive review Size: N/A Aim: To write a featured review of paroxysmal AVB Study type: Review Size: N/A	Inclusion criteria: N/A	Intervention: N/A	Conclusions: Idiopathic AVB is paroxysmal 3 rd degree heart block with no other rhythm abnormalities pre or post in pts with normal heart and EKG	Other causes of AVB include; extrinsic vagal effect, Lev- Lenegre disease, SLE, bacterial endocarditis with abscess, sarcoid, Lyme disease, sickle cell
Kato Y, et al. 2003 (222) 12870723	Aim: Assess efficacy of steroids for resolution of AVB in sarcoidosis Study type: retrospective Size: 20	Inclusion criteria: Pts with cardiac sarcoid, AVB and normal EF	Intervention: Steroids per physician discretion	• Results: Of the 7 treated with steroids 4 had resolution of AVB, 6 had steroid side effects	None of the 13 untreated pts resolved the AVB
Takaya Y, et al. 2015 (223) 25529542	Aim: Assess outcomes of sarcoid pts with AVB as initial manifestation Study type: Retrospective observational study Size: 53	Inclusion criteria: Consecutive cardiac sarcoid pts with either AVB or VT or CHF	Intervention: PM or ICD per physician	 in general pts presenting with AVB have fewer cardiac adverse events than those with VT/HF (mostly HFH) however cardiac mortality is about the same Of the 17 with high-grade AVB treated with steroids, 7 responded 	Of the 17 pts with AVB, 7 died of fatal SCD including 3 who responded to steroids for AVB
Padala SK, et al. 2017 (224) <u>27836297</u>	Aim: Assess impact of steroids given early on AVB, VA, and LVEF Study type: retrospective	Inclusion criteria: Cardiac sarcoid pts given steroids early after Dx	Intervention: Steroids	Results: Only those where steroids started within 30 d had improvement in LVEF • Some with early steroid treatment had no VT or AVB recurrence	Pts who did not receive early steroid treatment did not have any improvement

Aim: Review iterature on cardiac arcoid Study type: N/A Size: N/A Aim: Systematic	Inclusion criteria: N/A	Intervention: N/A	• Results: RBBB is more common than LBBB. Epsilon waves are rare.	 Sarcoidosis with cardiac involvement portends a worse prognosis
Nim: Systematic				
eview and meta- analysis of cardiac arcoidosis and ateroids	Inclusion criteria: Published studies on steroids for cardiac sarcoidosis	Intervention: Steroids	Results: Overall steroids beneficial for recovery of AVB with 47.4% of pts improved	There are no RCT looking at steroid use in cardiac sarcoid
Study type: N/A				
Size: 10 studies Aim: Determine outcome of cardiac sarcoidosis in a single institution Study type: Retrospective	Inclusion criteria: All pts who met criteria for sarcoid	Intervention: Per physician discretion	• Results: Heart block was present in 19.2% of pts. 5-y survival overall was 95.5%.	Lack of ICD or PM predicted increased mortality
Aim: Characterize he oradyarrhythmias in tardiac AL amyloid ots Study type: Single	Inclusion criteria: AL amyloidosis + (pre) syncope symptoms	Intervention: All pts received ILR	Results: 13 of the 20 died with median survival 60 d • 8 of the 13 had bradycardia (heart rate <35 bpm) preceding PEA	Baseline ECG showed 1st degree AVB in 45% and 1 pt had Mobitz type I at baseline
sarciang Stuc Retr he brace card ots	come of cardiac oidosis in a le institution ly type: ospective: 73: Characterize lyarrhythmias in liac AL amyloid	pts who met criteria for sarcoid ly type: ospective : 73 : Characterize dyarrhythmias in iac AL amyloid ly type: Single pts who met criteria for sarcoid pts who met criteria for sarcoid ly type: pytype: pytyp	pts who met criteria for sarcoid physician discretion physician discretion	pts who met criteria for sarcoid pts who met criteria for sarcoid physician discretion physician discretion physician discretion present in 19.2% of pts. 5-y survival overall was 95.5%. present in 19.2% of pts. 5-y survival overall was 95.5%. present in 19.2% of pts. 5-y survival overall was 95.5%. present in 19.2% of pts. 5-y survival overall was 95.5%. present in 19.2% of pts. 5-y survival overall was 95.5%. present in 19.2% of pts. 5-y survival overall was 95.5%. present in 19.2% of pts. 5-y survival overall was 95.5%. present in 19.2% of pts. 5-y survival overall was 95.5%. present in 19.2% of pts. 5-y survival overall was 95.5%. Present in 19.2% of pts. 5-y survival overall was 95.5%.

Reisinger J, et al. 1997 (228) <u>9316537</u>	Aim: Assess spectrum of EP abnormalities in AL amyloid Study type: Case series Size: 25	Inclusion criteria: AL amyloid	Intervention: EPS. ICD or PM per physician discretion	Results: All 25 had abnormal EKG with conduction disease present • 23 of 25 had HV >55ms (most had narrow QRS)	• 23 died; 10 died of SCD (of which 2 had PM and 1 had ICD)
Panic G, et al.	Aim: Case report of	Inclusion criteria: Pt	Intervention:	Results: Pt presented with high-	Pt presented for symptoms of
2011 (190)	AVB due to Lyme	with Lyme disease	Antibiotics	grade AVB which resolved after	fatigue and heart rate of 31
20226549	disease	and high-grade 2 nd degree AVB		12 d of antibiotics	bpm
	Study type: Case				
	report				
	Size: 1				
Maeno K, et al.	Aim: Report the	Inclusion criteria:	Intervention: CPAP	• <u>Results</u> : Profound AVB	• In this case, AVB was seen
2009 (188) 19466526	interaction of OSA and	N/A		resolved with CPAP	prior to hypoxia and was not simultaneous
19400320	bradyarrhythmia				simuitaneous
	Study type: Case report and literature				
	review				
	<u>Size</u> : 1				
Benditt DG, et al.	Aim: Assess EP effects of IV and PO	Inclusion criteria: No	Intervention: Acute IV	Results: Chronic treatment with level 0, 13 telerated in	• N/A
1983 (229) 6359850	theophylline	significant structural heart disease and	theophylline, then chronic PO theophylline	with level 9–12 tolerated in 8/10 (80%); suppression of	
0555050	теорпуште	bradycardia with	chi chie i c theophylline	symptoms achieved in 6 of the	
	Study type: Single	symptoms. All had		8	
	arm	prior syncope			
	<u>Size</u> : 10				
Nimura A, et al.	Aim: Discuss	Inclusion criteria:	Intervention: Cilostazol	• Results: In an elderly pt with	• N/A
2011 (230)	possible	Case report		high-grade AVB, the AVB	
<u>21921376</u>	mechanisms of AVB				

resolution with	resolved after cilostazol	
cilostazol	treatment	
Study type: Case		
report		
<u>Size</u> :		

Data Supplement 35. RCTs of meds/reversible/transient causes of bradycardia due to AVB (Section 6.4.2)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P value; OR or RR; & 95% CI)	Relevant 2 ⁰ Endpoint (if any); Study Limitations; Adverse Events
Birmingham Trial Watson RD, et al. 1984 (231) 6475712	Aim: Determine if PM in post MI pts with conduction disease reduces mortality	Inclusion criteria: Survived 14 d post MI, have RBBB or RBBB+ left hemiblock	Intervention: Ventricular PM (27) Comparator: Control (23)	Results: At 5-y follow-up, 61% of PM pts had died compared to 41% of control pts	 Over 5-y follow-up no progression of AVB PM of no benefit VT was an important cause of death
	Study type: RCT Size: 50	Exclusion criteria: Prior conduction disease, PM			

Data Supplement 36. Nonrandomized data of Medications/Reversible/Transient Causes of Bradycardia due to AVB (Section 6.4.2)

Study Acronym; Author; Year Published PMID	Study Type/Design; Study Size (N)	Patient Population	Primary Endpoint and Results	Summary/Conclusion; Comments
Tans AC, et al. 1980 (232) 7350750	Aim: Prognosis of acute inferior MI with heart block Study type: Observational Size: 144	Inclusion criteria: Acute inferior MI, 2 nd and 3 rd AVB, AF with rate <60, 2:1 AVB, AVB lasted >30 min	1° endpoint: AVB was associated with increased mortality (22% vs. 9%) Results: AVB developed between 1 and 5 d after MI	 94 had CHB, 84 recovered 1:1 conduction, 10 died Duration of AVB was 30 min–16 d AVB after MI typically resolves

Ginks WR, et al.	Aim: Determine the need for	Inclusion criteria:	1° endpoint: Of the 25 survivors, 4	• Of the surviving 25 pts, 1 remained
1977 (233)	permanent PM in pts with	Anterior MI, CHB	required permanent pacing	in CHB and underwent PM before
<u>836733</u>	Anterior MI and temp.	2 had CHB, narrow QRS		discharge and 2 pts developed CHB
	pacing for CHB	50 had QRS >120	Results: 27 of the 52 died	months later
				Do not recommend PM if CHB
	<u>Study type</u> : Observational			resolves
G: 1 G14 · 1	<u>Size</u> : 52			
Singh SM, et al.	Aim: Determine incidence of	Inclusion criteria:	1º endpoint: 2.9% of subjects had high-	• 46% present initially with AVB and
2015 (234)	high-grade AVB in ACS	GRACE Registry subject	grade AVB	54% developed in hospital
<u>25205530</u>	Standart and Clab along status	with high-grade AVB	D In D ((1) 1 AVD	• 23% of high-grade AVB pts died in
	Study type: Global registry	Fuelusian eritaria, I aal	Results: Rate of high-grade AVB	the hospital (OR: 4.2; 95% CI: 3.6–
	(GRACE)	Exclusion criteria: Lack	decreased over time.	4.9; p<0.001)
	Size: 1701 (of F0 220	of high-grade AVB		• Of the 1701, 100 (5.9%) required
	Size: 1701 (of 59,229			permanent PM
Osmonov D, et al.	subjects in GRACE) Study type: Single-center	Inclusion criteria: All	19 and nainte Desclution / requiremen	Half of pts with AVB on nodal-
2012 (151)	retrospective cohort of pts	pts admitted with	1° endpoint: Resolution/ recurrence AVB, need for PPM	blocking drugs require PM before
22530749	with drug induced AVB	Mobitz type II or 3 rd	AVB, fieed for PPIVI	discharge despite drug withdrawal.
22330743	with drug mudced AVB	degree AVB or 2:1 AVB	Results: Resolution of AVB within 72 h in	Limited follow-up – other pts may
	Size: N=108 (16% of all 668	who were on AV nodal	72%. 21/78 (27%) had recurrence of AVB.	have required PPM at later date
	pts admit AVB).	blocking drugs	Overall 51/108 (48%) had persistent of	liave required Frivi at later date
	pts danne / (v b).	Stocking at ago	recurrent AVB despite drug withdrawal.	
		Exclusion criteria: MI,	recurrent // B despite drug withdrawaii.	
		electrolyte		
		disturbances, digoxin		
		toxicity		
Zeltser D, et al.	Study type: Single-center	Inclusion criteria: All	1° endpoint: Resolution/ recurrence	Overall, only 15% of pts with AVB
2004 (152)	retrospective cohort	pts admitted with 2 nd	AVB, need for permanent PM	on nodal blocking drugs had AVB
<u>15234417</u>		or 3 rd degree AVB		"caused by drugs"
	<u>Size</u> : N=169 (60% male,	1999–2003.	Results: 92/169 (54%) were receiving AV	AVB may recur despite remaining
	mean age 78 y).		nodal blockers; 79/92 (86%) had drug	off the drug
		Exclusion criteria: MI,	discontinued. 41% had resolution of AVB	
		digoxin toxicity	with stopping drug; 56% had relapse of	
			AVB	
Knudsen MB, et al.	Study type: Single-center,	Inclusion criteria: Pts	1° endpoint: Need for permanent PM	Pts with AVB on AADs or digoxin do
2013 (150)	retrospective cohort	admitted with 2 nd or 3 rd	after drug discontinuation; complications	not benefit from temp. PM and
<u>23869746</u>		degree AVB, had	of TPM	

	Size: N=55	temporary pacing wire, were on class II-IV AADs or digoxin. Exclusion criteria: AVB due to other identified cause, prior PM explant, died within several days	Results: 47/55 (85%) required permanent PM in hospital. 2/55 had recurrent AVB and required PPM. 11% of pts had complication of temp. PM (infection/ dislodgment)	drug washout. Should proceed to PPM w/o delay.
Ozcan KS, et al. 2012 (157) 22738687	Study type: Single-center retrospective cohort Size: N=50 (29 hypothyroid, 21 hyperthyroid)	Inclusion criteria: All pts. with 2 nd /3 rd degree AVB who had hyper- or hypothyroidism Exclusion criteria: MI, electrolytes abnormalities, digoxin toxicity, on AADs	1° endpoint: Persistent AVB despite treatment of thyroid abnormalities Results: 46/50 (92%) pts required permanent PM; 2 additional pts had persistent AVB. 76% of hypothyroid and 86% of hyperthyroid had irreversible AVB.	Thyroid abnormalities are rarely a cause of reversible AVB.
Farre N, et al. 2014 (154) 24491864	Aim: Assess outcome of CHB due to ACS and other causes Study type: Retrospective Size: 79 pts with reversible AVB; grp A=ACS, N=52 Grp B=non-ACS, N=27	Inclusion criteria: reversible CHB, no indwelling PM Exclusion criteria: relt not to be reversible	Results: For the ACS group 1/52 received a permanent PM. For the non-ACS, AVB was due to hyperkalemia, AVN blockers, acute infection, 1 PE; 9/27 had recurrent AVB and required permanent PM	 If ACS, syncope presenting symptom of CHB 6%; for non-ACS 33%. 39% of reversible non-ACS pts had recurrent AVB requiring permanent PM 2% of ACS had recurrent AVB Many non-ACS had residual LBBB
Panic G, et al. 2011 (190) 20226549	Aim: Case report of AVB due to Lyme disease Study type: Case report Size: 1	Inclusion criteria: Pt with Lyme disease and high-grade 2 nd degree AVB	Results: Pt presented with high-grade AVB which resolved after 12 d of antibiotics	 Pt presented with high-grade AVB, resolution after 12 d antibiotics 5% of pts with Lyme will have cardiac involvement, typically AVB
Kostic T, et al. 2017 (235) 28082088	Study type: Review of Lyme carditis and clinical course	Inclusion criteria: N/A	Results: AVB is the most common conduction disorder with Lyme carditis	Manifestations of AVB may progress rapidly in hours or days

Robinson ML, et al. 2015 (236) 25999222	Study type: Review Size: N/A	Inclusion criteria: N/A	Results: 1.1% of Lyme disease reported to CDC between 2000–2010 included cardiac manifestations	• N/A
Carano N, et al. 2012 (186) 23110777	Aim: Case report and review of rheumatic HD and CHB Study type: Literature review and case report Size: 1	Inclusion criteria: N/A	Results: Pt presented with acute rheumatic carditis and CHB; CHB resolved within 24 h of antibiotics	 Of the 25 cases found in the literature, the AVB lasted from minutes to several days PM implant typically not needed (in 7 of 25 cases)
Koehler U, et al. 1998 (67) 9551750	Aim: Assess effect of OSA Rx on brady Study type: Prospective single arm Size: 16	Inclusion criteria: Pts with OSA, and negative EPS, echo, EKG, stress test	1° endpoint: Assess effect of CPAP or BiPAP on nocturnal AVB Results: CPAP and BiPAP reduced the number of AVB episodes from 651 to 72 (p<0.01)	4 pts received PM for continued pauses despite effective OSA therapy
Maeno K, et al. 2009 (188) <u>19466526</u>	Aim: Report the interaction of hypoxia and AVB Study type: Case report, literature review Size: 1	Inclusion criteria: N/A	1° endpoint: Resolution of AVB with CPAP Results: AVB occurred prior to oxygen desaturation and resolved with CPAP	AVB may be due to increased vagal tone
Becker H, et al. 1995 (66) 7812557	Aim: Assess effect of CPAP on AVB and bradycardia Study type: Prospective single arm observational Size: 17	Inclusion criteria: All referrals for sleep apnea and if 2 nd or 3 rd degree AVB or asystole >2 s. noted during sleep study	1° endpoint: CPAP reduced incidence of heart block Results: 12 of 17 had AVB eliminated with CPAP, 3 had substantial reduction in AVB, and 2 had persistent bradycardia	 7.1% of sleep apnea pts referred for sleep study had AVB during sleep Most had normal baseline EKG (1 RBBB, 1 1st AVB) Mean duration of 3rd AVB was 8.4 s
Grimm W, et al. 2000 (68) 10980227	Aim: Assess outcomes of pts with OSA-related bradycardia Study type: Prospective single arm	Inclusion criteria: Negative EPS and Holter for AVB Exclusion criteria: Taking digoxin/BB/CCB	1° endpoint: Effect of CPAP Results: CPAP resolved >3 s pauses in 21/29	 7 out of 8 with continued pauses received a PM PM had no effect on outcomes (syncope) and prognosis is good

	<u>Size</u> : 29			
Unterberg C, et al. 2005 (237) 16126716	Aim: Compare CPAP to atrial overdrive pacing Study type: Prospective crossover Size: 10	Inclusion criteria: Pts on CPAP for OSA, no PM indication	1° endpoint: Assess if atrial overdrive pacing or CPAP is superior for reducing apneic episodes Results: The apneas were significantly reduced with CPAP but not with atrial pacing	 CPAP improved apneas but pacing did not despite elimination of bradycardia or asystole episodes
Garrigue S, et al. 2002 (238) 11832528	Aim: Assess utility of PM overdrive pacing for OSA and central sleep apnea Study type: Prospective crossover study Size: 15	Inclusion criteria: Pts with DC pacemakers with symptoms of OSA and had positive test for OSA	1° endpoint: Compare ventricular back up pacing to atrial overdrive pacing Results: The hypopnea index was reduced from 9 to 3 with atrial overdrive pacing (p<0.001)	Atrial overdrive pacing reduced the number of apneic episodes >50% in majority of pts
Stegman SS, et al. 1996 (70) <u>8774819</u>	Aim: Determine if asx bradycardia during sleep is due to OSA Study type: Prospective single arm Size: 8	Inclusion criteria: Pts with asx bradycardia referred for PM	1° endpoint: Determine incidence of OSA in these pts Results: 7 of 8 had a positive sleep study for OSA and did not receive PM	Pts remained asx and improved sleep symptoms

Data Supplement 37. RCT data of additional testing for Bradycardia due to AV block (Section 6.4.3)

Study Acronym; Author; Year Published PMID	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P value; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
Sivakumaran S, et al. 2003 (17) 12867227	Aim: Compare utility of loop recorder vs. Holter	Inclusion criteria: Syncope or presyncope	Intervention: 48 h Holter (n=51) vs. 30 d event (n=49)	Diagnostic yield was 63% for loop vs. 24 % for Holter (p<0.0001)	23% of loop recorder pts failed to activate during symptoms

	Study type: RCT				
	Size: 100				
Kinlay S, et al. 1996 (239) 7503472	Aim: Compare 3- month event monitor to 48-h Holters	Inclusion criteria: Pts with palpitations and no prior testing	Intervention: Received a 90-d Event monitor	Results: Event monitors were more likely to provide a Dx (67% vs. 35%; p<0.001). Holter not a good test for intermittent symptoms or events	The event monitor is more cost effective due to higher yield (\$213 per additional rhythm strip)
	Study type:				
	Randomized				
	Crossover trial				
	<u>Size</u> : 43				
Giada F, et al. 2007	Aim: Compare	Inclusion criteria:	Intervention: ILR	Results: ILR more effective in	The event monitor is more
(240)	Holter+event+ EPS	Infrequent		establishing etiology of	cost effective
<u>17498580</u>	to ILR for	palpitations that last	Control: 24-h Holter, 4-	palpitations (73% vs. 21%;	
	diagnostic yield	>1 min	wk external monitor, and if negative, an EPS	p<0.001)	
	Study type: RCT	Exclusion criteria: Abnormal H&P, ECG,			
	<u>Size</u> : 50	echo			
FRESH	<u>Aim</u> : Role of ILR	Inclusion criteria:	Intervention: ILR	Results: ILR yield is superior	The ILR was more cost
Podoleanu C, et al.	for syncope	Syncope		(cause of syncope identified in	effective with fewer
2014 (74)	evaluation		<u>Control</u> : Standard of	46.2% vs. 5%; p<0.001)	hospitalization days and
<u>25241220</u>			care, per physician		fewer tests
	Study type: RCT		discretion		
	<u>Size</u> : 78				

Data Supplement 38. Nonrandomized data of additional testing for Bradycardia due to AV block (Section 6.4.3)

Data Supplement	but supplement so it of management of additional testing for bradyear and due to At block (section of 4.5)						
Study Acronym;	Aim of Study;	Patient Population	Study Intervention (#	Endpoint Results			
Author;	Study Type;		patients) /	(Absolute Event Rates, P value; OR or RR; & 95%			
Year Published	Study Size (N)		Study Comparator (#	CI)			
PMID			patients)				
Katritsis DG, et al.	Aim: Review the role of	Inclusion criteria: N/A	Intervention: N/A	• 30% of Mobitz II blocks have narrow QRS			
2017 (241)	EPS in bradycardia			• 20% of 2:1 AVB is in the AV Node			
28507743		Exclusion criteria: N/A	Comparator: N/A				

	Study type: N/A			HV >70 is nonspecific, HV >100 is specific but insensitive Proposed indications for FDC of AV Plants.
	<u>Size</u> : N/A			 Proposed indications for EPS of AV Block: (1) Asymptomatic 2nd degree AVB with BBB (type I or not sure) (2) suspect phase 4 infranodal block (3) suspect type II but QRS narrow (4) symptomatic type I block and BBB
Mangiardi LM, et al. 1982 (242)	Aim: Assess utility of CSM and atropine	Inclusion criteria: Documented AVB at EPS and	Intervention: Carotid sinus massage × 10 s., 2 mg	• Atropine and carotid massage yielded a Dx in 22 (13/15 and in 9/10) pts
7064840		narrow QRS	atropine, EPS	Atropine and carotid sinus did yield differing
	Study type: Prospective, nonrandomized			results at bedside vs. EPS in some pts
	Size: 25 (15 with intraHis block and 10 with intranodal block)			
Twidale N, et al. 1988 (243)	Aim: Determine use for assessing AVB	Inclusion criteria: 51 with bifascicular block and	Intervention: EPS with IV procainamide	In those with bifascicular block, procainamide prolonged HV, developed high-grade AVB; in
2462213	Study type: Prospective,	syncope or transient high- grade AVB or		control group HV only minimally prolonged and no AVB seen
	nonrandomized	tachyarrhythmia; 38 with no		no AVB seen
		syncope and normal ECG		
Danasian II at al	Size: 89	(control group)	Lutamantiana FDC	
Bogossian H, et al. 2017 (244)	<u>Aim</u> : Assess role of EPS in BBB pts	Inclusion criteria: Symptomatic bifascicular	Intervention: EPS	 All pts had long HV, mean 82 ms 1st AVB in symptomatic pts with bifascicular
<u>28294370</u>	BBB pt3	block (RBBB+LAFB) and 1st		block likely due to infraHisian delay
	Study type: Prospective single arm	AVB		·
	Size:30			
Kalscheur MM, et	Aim: Examine the IIa	Inclusion criteria: Pts with	Intervention: Negative EPS,	Primary endpoint: time to 1 st recurrence of
al. 2016 (245)	indication for PM for	bifascicular block and	and empiric PM	syncope
• <u>27565449</u>	bifascicular block +syncope	syncope who underwent PM	Implant (n=26)	• Syncope recurrence was 18%/5 y in empiric grp vs. 0% in pos. EPS/ILR group
	Study type: Retrospective	Exclusion criteria: vasovagal, orthostatic cause of syncope	Comparator: Positive EPS or ILR findings for AVB and PM	Progression to high-grade AVB in 53% of the pos. EPS/ILR group vs. 27% of the empiric group
	<u>Size</u> : 43		implant (n=17)	(p=0.11)

Morady F, et al.	Aim: Assess role of EPS in	Inclusion criteria: BBB and	Intervention: EPS	• 12/32 had HV ≥70 ms
1984 (246)	pts with BBB and syncope	syncope		• 44% had inducible VT
6475778	Study type: Prospective, nonrandomized	Exclusion criteria: 2nd or 3rd degree AVB or SVT, SND		
	<u>Size</u> : 32			
Click RL, et al. 1987 (247)	Aim: Assess role of EPS	Inclusion criteria: Chronic BBB, with symptoms	Intervention: EPS	34 received PM for long HV39 had ventricular arrhythmias induced and 21
3825942	Study type: Retrospective			had conduction disease and VT
	<u>Size</u> : 112			
Brignole M, et al.	Aim: Look at role of EPS	Inclusion criteria:	<u>Intervention</u> : EPS, TTT, CSM	EPS useful for AVB Dx
1995 (248) 7618623	in syncope pts	Unexplained syncope who during monitoring had		Carotid massage and TTT useful for neurally mediated Dx
	Study type: Prospective	documented bradycardia		These 3 tests are complimentary when done
		causing syncope		together; if all 3 are negative bradycardia
	<u>Size</u> : 25			unlikely as cause of syncope
Dhingra RC, et al.	Aim: Role of EPS in	Inclusion criteria:	Intervention: EPS with atrial	Pacing induced infraHisian block during
1979 (249) 498473	bifascicular block	Bifascicular block w/o 2nd or 3rd degree block	pacing	Wenckebach was functional but if occurred during normal AV conduction, was pathologic
450475	Study type: Prospective nonrandomized	Siù degree block		during normal AV conduction, was pathologic
	Size: 531			
Zipes DP, et al. 1979 (250) 378457	Aim: Physiology review of 2 nd degree AVB	Inclusion criteria: N/A	Intervention: N/A	Described maneuvers to distinguish type I vs. type II 2 nd degree AVB
<u>370137</u>	Study type: N/A			
	Size: N/A			
Shetty RK, et al.	Aim: Describe worsening	Inclusion criteria: Pt with	Intervention: Treadmill	• 1:1 AV conduction present at rest; CHB seen
015 (251)	AVB with exercise	RBBB, LAFB and 1st degree	which induced complete	during treadmill testing
<u>25819829</u>	Study type: Case report	AVB	AVB	
	<u>Size</u> : 1			

Toeda T, et al. 2000	Aim: Assess for exercise	Inclusion criteria: Pt with	Intervention: EPS showed	EPS showed gap phenomenon with AV
(252)	induced AVB	exercise induced AVB	infranodal AVB	conduction
10793447				
	Study type: Case report			
	Size: 1			
Chokshi SK, et al.	Aim: Assess importance	Inclusion criteria: AVB during	Intervention: EPS showed	All 3 had negative Holter monitoring
1990 (253)	of exercise induced AVB	exercise testing	prolonged HV and block	All 3 had prolonged HV interval and infraHisian
<u>2360528</u>			distal to His	block at EPS
	Study type: Case series			
	<u>Size</u> : 3			
Bakst A, et al. 1975	Aim: Assess exercise	Inclusion criteria: Pt with	Intervention: Treadmill and	Exercise improves Mobitz type I AVB and
(254)	induced AVB	exertional dyspnea and EKG	atropine	worsens AV conduction if underlying Mobitz
<u>1191459</u>		with 1:1 conduction		type II AVB
	Study type: Case report			Atropine similarly worsens AV conduction when
	and discussion			underlying Mobitz type II
	Size: 1			
Egred M, et al.	<u>Aim</u> : Assess importance	Inclusion criteria: Syncope	Intervention: Treadmill	Treadmill testing can be an important
2004 (255)	of exercise induced AVB	during walking		diagnostic tool when evaluating exertional
<u>15561349</u>				syncope
	Study type: Case report			
	<u>Size</u> : 1			
Fisher JD, 1981	Aim: Assess role of EPS	Inclusion criteria: N/A	Intervention: Detailed	Reviews role of CSM, exercise testing, breath
(256)			account of how to do EPS	holding
7019962	Study type: Review of			
	EPS, its role in SSS, AVN			
	disease			

Data Supplement 39. RCTs for Permanent Pacing for AV block (Section 6.4.4)

Study Acronym;	Aim of Study;	Patient Population	Study Intervention (#	Endpoint Results	Relevant 2° Endpoint
Author;	Study Type;		patients) /	(Absolute Event Rates, P value; OR RR;	(if any);
Year Published	Study Size (N)		Study Comparator (#	& 95% CI)	Study Limitations;
			patients)		Adverse Events

UKPace	Aim: Assess	Inclusion criteria: Age	Intervention:	1° endpoint: No all-cause mortality	More procedural
Toff WD, et al.	mortality benefit	>70 y, 2 nd or 3 rd	Randomized to dual PM,	benefit for DC pacing at 3 y (7.2% vs.	complications in the
2005 (257)	from dual vs.	degree AVB (73.3%	or ventricular PM-fixed	7.4%; p=NS; CI: 0.83–1.11)	DC group
16014884	ventricular pacing in	had CHB)	rate, or to ventricular	7.4%, p=N3, Cl. 0.65=1.11)	Slightly higher risk of
10014004	pts with AVB	naa cribj	PM-adaptive rate		CVA/TIA/TE event in
	pts with 700	Exclusion criteria: AF,	Tivi adaptive rate		fixed rate ventricular
	Study type: RCT	NYHA class IV	Comparator: Compare		pacing group (p=0.04)
	stady type. No	TVTTI/ Cluss IV	DC pacing to ventricular		but not in the rate
	Size: 2,021		pacing		adaptive ventricular
	<u>5120</u> , 2,021		pacing		pacing group
PASE	Aim: Determine	Inclusion criteria: >65	Intervention: Implanted	1° endpoint: QOL improved for both	No difference in
Lamas GA, et al.	difference in health	y, SR (49% had AVB at	with DC PM; randomized	groups compared to baseline (p<0.001)	death, stroke, AF
1998 (140)	related QOL in	baseline)	to ventricular or DC	but no difference between pacing	rates
9545357	ventricular vs. DC	buseline	pacing	modes.	AVB subgroup did not
33 13337	pacing in pts >65 y	Exclusion criteria: AF	paemg	modes.	experience better
	pacing in providing	<u> </u>	Comparator: Ventricular		QOL or functional
	Study type: RCT		pacing		status
	<u></u>		pasg		Status
	<u>Size</u> : 407				
MOST	Aim: Assess	Inclusion criteria:	Intervention: Implanted	1° endpoint: All-cause mortality+	No subgroup analysis of
Lamas GA, et al.	mortality and stroke	SND (21% with	with DC PM, randomized	nonfatal stroke in DC pacing (21.5%) vs.	AVB group done
2002 (141)	benefit with DC	concomitant AVB)	to pacing mode	ventricular pacing (23%) was not	
<u>12063369</u>	pacing			significant (p=0.48)	
		Exclusion criteria:	Comparator: Ventricular		
	Study type: RCT	Non-SR	pacing		
	<u>Size</u> : 2,010				
MOST Vp40%	Aim: Use MOST	Inclusion criteria:	Intervention: Implanted	1° endpoint: Ventricular pacing >40% of	 The increasing risk of
Sweeney MO, et	database to assess	MOST trial subjects	DC PM, randomized to	the time increases risk of a HFH (HR	HFH with increasing
al. 2003 (146)	whether RV pacing	with % ventricular	pacing mode	2.56–2.99)	ventricular pacing
<u>12782566</u>	increases HFH and	pacing data		and AF risk linearly increases as %	levels off after 40%
	AF		Comparator:	ventricular pacing increases regardless	
		Exclusion criteria:		of pacing mode	
	Study type:	MOST trial subjects			
	Reanalysis of RCT	w/o ventricular			
	data	pacing data			
	<u>Size</u> : 1,339				

CTOPP Connolly SJ, et al. 2000 (142) 10805823	Aim: Assess for reduction in stroke and CV mortality with DC pacing vs. ventricular pacing Study type: RCT Size: 2,568	Inclusion criteria: Indicated for PM (60% had AVB) Exclusion criteria: AF	Intervention: Randomized to ventricular or DC PM Comparator: Ventricular pacing	1° endpoint: First occurrence of CVA or CV mortality over 3 y was 5.5% in the ventricular group and 4.9% in the DC group (p=0.33) • Less AF with DDD (p=0.05)	 All-cause mortality was 6.6% vs6.3% (p=0.92) Annual AF rates were lower in the dual pacing group (5.3% vs. 6.6%; p=0.5) No difference in HFH or stroke
CTOPP Extended Kerr CR, et al. 2004 (258) 14707022	Aim: Reassess primary endpoint of stroke and CV mortality at 6 y of follow-up Study type: RCT Size: 1995	Inclusion criteria: Undergoing PM for bradycardia (60% had AVB) Exclusion criteria: AF	Intervention: Randomized to ventricular or DC PM Comparator: Ventricular pacing	1° endpoint: No change from above (combined endpoint of CV mortality+ stroke 6.1% vs. 5.5%; p=0.26)	Annual risk of AF was less with DC pacing (4.5% vs. 5.7%; p=0.009)
BLOCK-HF Curtis AB, et al. 2013 (259) 23614585	Aim: Whether BiV pacing reduces mortality+ morbidity or LV remodeling in AVB pts Study type: RCT Size: 691	Inclusion criteria: Pts with AVB indicated for PM, LVEF ≤50% Exclusion criteria: Indicated for CRT	Intervention: BiV PM or ICD, randomized to RV or BiV pacing Comparator: Dual chamber pacing	1º endpoint: Composite of all-cause mortality, HF event, or 15% increase in LVESV was met (HR: 0.74; 95% CI: 0.6–0.9)	• 2° endpoint: Composite of death or HFH was met (HR: 0.78; 95% CI: 0.61– 0.99)
Gierula J, et al. 2013 (260) 23736807	Aim: Assess benefit of CRT upgrade in CHB PM pts Study type: RCT Size: 50	Inclusion criteria: PM dep pts (pacing >80%), LVEF <50% Exclusion criteria: Symptomatic HF or recent HFH	Intervention: Upgrade to BiV PM Comparator: DC pacing	1º endpoint: Change in LVEF at 6 months was significantly improved in the CRT group (9% vs1.5%; p<0.0001)	• 2° endpoints: pVO ₂ , QOL, and NT- proBNP improved with CRT (p≤0.03 for all 3 outcomes) • Reduction in LVEDD did not reach statistical significance
HOBIPACE Kindermann M, et al. 2006 (261)	Aim: Assess benefit of CRT in pts with depressed LVEF who	Inclusion criteria: LVEF ≤40%, LVEDD	Intervention: CRT devices implanted	1° endpoints: (1) With CRT, LVESV decreased 17% (p<0.001), (2) LVEF	• NT-proBNP reduced 31% with CRT (p<0.002)

16697307	are indicated for pacing Study type: Prospective randomized crossover Size: 30	≥60 mm, PM indication with AVB Exclusion criteria: Not meeting inclusion criteria	Comparator: After 3-month run in period, 3 months of RV pacing compared to 3 months of CRT	increased 22% (p<0.0002), (3) pVO ₂ increased 12% (p<0.0003)	
DAVID Wilkoff BL, et al. 2002 (262) 12495391	Aim: Compare DC pacing to VVI backup pacing in ICD indicated pts with no pacing indication Study type: RCT Size: 506	Inclusion criteria: ICD indicated, LVEF ≤40% Exclusion criteria: Any PM indication	Intervention: All pts were implanted with a DC ICD Comparator: Ventricular back up pacing vs. DC pacing	1° endpoint: Freedom from composite of time to death or 1st HFH at 1 y (83.9% for ventricular backup vs. 73.3% for DC pacing; HR: 1.61; 95% CI: 1.06–2.44)	HFH was 13.3% in the ventricular back up group vs. 22.6% (HR: 1.54; 95% CI: 0.97–2.46)
PAVE Doshi RN, et al. 2005 (263) 16302897	Aim: Compare RV to BiV pacing in pts with AVN ablation for AF Study type: RCT Size: 184	Inclusion criteria: Any LVEF, AF, AVN ablation, Exclusion criteria: NYHA class IV	Intervention: AVN ablation +dual or BiV PM Comparator: RV pacing	1° endpoint: BiV group had a greater improvement at 6 months in 6MHW (31% increase vs. 24%; p=0.04)	 No difference in QOL No difference in LVEF The benefit of BiV with 6MHW more pronounced in those with LVEF <45%
APAF Brignole M, et al. 2011 (264) 21606084	Aim: Compare RV pacing to CRT in pts undergoing AV node ablation Study type: RCT Size: 186	Inclusion criteria: Permanent AF undergoing AV node ablation with or w/o refractory HF and reduced EF	Intervention: All subjects implanted with CRT Comparator: RV pacing to CRT pacing 1:1 randomization	1º endpoint: Composite endpoint of death due to HF, HFH, worsening HF was lower with CRT (11% vs. 26% event rate p=0.005; 95% CI: 0.18–0.73)	• 2º endpoint: CRT had lower rates of worsening HF (p=0.001; 95% CI: 0.12–0.58) and HFH (p=0.013; 95% CI: 0.06–0.72)
	<u>312e</u> : 180	Exclusion criteria: NYHA class IV with systolic BP ≤80 mm Hg, prior PM			 No mortality difference between groups CRT benefit evident in LVEF >35% subgroup

OPSITE Brignole M, et al. 2005 (265)	Aim: Compare RV to LV and to BiV pacing in pts with	Inclusion criteria: Permanent AF and AV node ablation	Intervention: AV node ablation and CRT implant	1° endpoint: QOL measures were minimally improved with BiV (MLHFQ up 10%, NYHA improved 11%, LVEF	Large interpatient variability present LV only pacing did not
<u>15618036</u>	AV node ablation	Exclusion criteria: NYHA class IV,	Comparator: Each subject paces RV, LV,	increased 5%; all with p<0.05) but exercise capacity at 3 months did not improve.	confer as much benefit as BiV pacing
	Study type: Prospective randomized	unsuccessful AV node ablation	and BiV		
	crossover Size: 56				

Data Supplement 40. Nonrandomized data for Permanent Pacing for AV block (Section 6.4.4)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P value; OR or RR; & 95% CI)
Brignole M, et al. 2012 (266) 22095616	Aim: Identify predictors of improvement after AV node ablation Study type: Prospective observational study of RCT cohort	Inclusion criteria: Subjects enrolled in APAF with 2-y follow-up Exclusion criteria: Inadequate follow-up	Intervention: CRT vs. RV pacing after AV node ablation Comparator: Compared responders and nonresponders	 1º endpoint: RV 63% responder rate and 83% responder rate for CRT (p=0.003) On multivariate Cox regression analysis, the only predictor of response was CRT mode and having CRT echo optimized
Dretzke J, et al. 2004 (267) 15106214	Size: 171 Aim: Cochrane review: compare clinical effectiveness of VVI and DC PMs in pts with SND or AVB Study type: Review of RCT and crossover Size: N= 31 studies	Inclusion criteria: RCT and crossover studies comparing DDD and VVI PMs Exclusion criteria: Atrial single chamber pacing	Intervention: N/A Comparator: N/A	There is significantly less AF with DDD pacing Dual chamber pacing is favored for PM syndrome Trend (NS) for less stroke, HF, mortality and improved exercise capacity

Dhingra RC, et al.	Aim: Natural Hx of 20	Inclusion criteria: BBB+	Intervention: EPS; follow-	Only 3 were asx at presentation
1974 (196)	AVB+BBB	2 nd degree AVB	up	Permanent PM indicated for severe bradycardia,
<u>4817704</u>				syncope, CHF
	Study type: Prospective	Exclusion criteria: Acute	Comparator: N/A	• All 9 pts with infra-His block got PM for syncope, CHF
	observational	MI		• 2 of 4 with supra-Hisian block got PM for syncope,
				CHF, 1 developed interim CHB but refused PM, 1 asx
GL 55	<u>Size</u> : N=15	and ord		
Shaw DB, et al.	Aim: Determine	Inclusion criteria: 2 nd 3 rd	Intervention: None	• 48% had syncopal events
1970 (197)	prevalence of pts with	degree AVB		• 9% had CHF
<u>5413952</u>	2 nd and 3 rd degree AVB		Comparator: N/A	No reported deaths
	pts and record their	Exclusion criteria: Digoxin		
	symptoms	or propranolol use, acute MI		
	Study type:	IVII		
	Observational			
	Observational			
	<u>Size</u> : N=100			
Simon AB, et al.	Aim: Follow natural Hx	Inclusion criteria: 2 nd or	Intervention: Ventricular	Natural Hx of CHB is 50% mortality in the first year
1978 (198)	and survival of AVB pts	3 rd degree AVB	PM	based on prior historical literature
<u>626128</u>	who underwent PM			 Survival improved to 61% at 5 y with a PM
	implant	Exclusion criteria: SND	Comparator: Historical	• Post PM, new CV events were common including MI,
			reports of pts w/o a PM	CHF, and stroke and SCD was the most common
	Study type:			mode of death
	Retrospective			
	Sizo: N=246			
Strasberg B, et al.	Size: N=246 Aim: Assess natural Hx of	Inclusion criteria:	Intervention: None	All had 2 nd degree type I (Wenckebach) on baseline
1981 (199)	2 nd AVB	Consecutive pts with	intervention. None	ECG (none had type II)
7471363	2 /// 2	chronic 2 nd AVB and EPS		• 34% did not have heart disease and had a normal HV
7-7-1303	Study type:	positive for 2 nd AVB		interval; none died of cardiac cause
	Retrospective,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		• 66% had heart disease, some had prolonged HV; 25%
	observational	Exclusion criteria: Acute		received a PM
		AVB in setting of MI or		No one progressed to CHB
	Size: N=56	digoxin toxicity		• No one progressed to one

Vatankulu MA, et al. 2009 (268) 19406272	Aim: Assess LV remodeling in CHB PM pts after PM upgrade to CRT Study type: Prospective single arm Size: N=26	Inclusion criteria: CHB, upgraded PM to CRT, on optimal GDMT Exclusion criteria: Asymptomatic, medications stable <1 month	Intervention: BiV upgrade+/- defibrillator Comparator: None	 NYHA improved by one class in most subjects Mean EF increased from 39% to 46% 25% decrease in mean LVESV 18% decrease in mean LVEDV No clinical hard endpoints such as HFH or mortality
Kiehl EL, et al. 2016 (269) <u>27855853</u>	Aim: Determine incidence of PM-induced CM, and identify predictors of RV-pacing induced CM Study type: Retrospective	Inclusion criteria: Consecutive pts receiving PM between 2000–2014 for CHB; LVEF >50%; many pts had procedural/surgical AVB Exclusion criteria: Generator change	Intervention: CRT upgrade in some PM pts Comparator: Compared those with RV-induced CM and those w/o	 12.3% developed PM-induced CM with mean EF 34% Of the 25 CRT upgrades with post CRT echo, 84% were responders with mean LVEF increase 18%, LVESV decreased by 45% RV pacing burden of 20% seemed to delineate increased risk of developing HF
MOST Ellenbogen KA, et	Size: N=823 Aim: Characterize complications from DC	procedure, no echo within 6 months of implant Inclusion criteria: DDDR PM implanted for SND; SR	Intervention: Dual chamber PM	 Most common complication in the DC PM group was atrial lead dislodgement (1.7%)
al. 2003 (270) 12972124	PM implants using the MOST database Study type: Retrospective analysis of RCT Size: N=2010	Exclusion criteria: Serious comorbidities	Comparator: Ventricular single chamber PM	Female sex seemed to predict risk of complication
FOLLOWPACE	Aim: Determine	Inclusion criteria: All pts	Intervention: PM implant	• 69% of implanted PMs were DC
Udo EO, et al. 2012 (271) 22182495	incidence and predictors of PM complications Study type: Prospective,	undergoing initial PM implant Exclusion criteria:	Comparator: None	 There were 5.54% lead related problems in the 1st 2 months 12.4% of pts had a complication within 2 months of implication
	multicenter Size: N=1517	Generator change procedures;		 implant Multivariate analysis showed a HR of 3.09 for DC devices compared to single chamber devices for complications within 2 months of implant

Ellenbergen VA. et	Aim: Determine	investigational PM implanted	Internation Pandamized	Desdistants of DNA anadroses in a Consequition rists
Ellenbogen KA, et al. 2000 (272) 10867093	predictors of PM syndrome in the PASE study Study type: Retrospective analysis of RCT Size: N= 407	Inclusion criteria: Indication for PM implant; in SR Exclusion criteria: Severe CHF; AF	Intervention: Randomized to single or DC PM Comparator: Compare the 2 arms	 Predictors of PM syndrome in a Cox multivariate regression model include: reduced systolic BP with VVI pacing, use of BB, DCM 26% crossed over from ventricular to DC pacing
MOST Link MS, et al. 2004 (273) 15172414	Aim: Determine incidence and predictors of PM syndrome in SND pts treated with ventricular pacing using the MOST database Study type: Retrospective analysis of RCT Size: N= 996	Inclusion criteria: Randomized to ventricular pacing and meet criteria for PM syndrome Exclusion criteria: Not meeting pre-defined criteria for PM syndrome	Intervention: PM syndrome pts crossed over to DC pacing Comparator: Pts compared to themselves pre-crossover	 18.3% met criteria for PM syndrome Predictors of PM syndrome include lower sinus rate, higher paced rate, higher % paced beats
Arbustini E, et al. 2002 (274) 11897440	Aim: Assess prevalence of LMNA mutations in a DCM cohort Study type: Prospective Size: N=73 and 107 controls	Inclusion criteria: DCM (familial and sporadic) with and w/o AVB. Control group=29 with ischemic or valvular disease and 107 blood donors w/o known heart disease Exclusion criteria: DCM pts who do not meet WHO criteria	Intervention: Genetic testing (73) Comparator: Genetic testing (107)	 LMNA gene mutations accounted for 33% of the pts with DCM with AVB AVB associated with DCM is a reason for LMNA gene molecular screening None of the DCM pts with intact AV conduction had any LMNA defects

Page 161

Anselme, F, et al. 2013 (275) 23811080	Aim: Assess utility of primary prevention ICD placement in pts with LMNA mutation and AVB Study type: Prospective,	Inclusion criteria: Consecutive pts with LMNA mutation and either a (1) PM, or an (2) indication for PM, or (3) PR interval>240 ms and	Intervention: ICD (n=21) Comparator: Standard of care w/o ICD (n=24); 2° prevention ICD (n=2)	 None of the ICD pts died of SCD over median follow-up of 62 months 52% of primary prevention ICD recipients experienced sustained VAs requiring ICD therapy Conduction disorders was a predictor of VA
	single arm Size: N=47	Exclusion criteria: LMNA pts w/o the 3 additional criteria were enrolled but did not receive an ICD		
Hasselberg, NE, et al. 2014 (276) 24058181	Aim: To look for predictors of VA in pts with lamin A/C mutation	Inclusion criteria: LMNA mutation positive Exclusion criteria:	Intervention: ECG, Holter, echo, CMRI, genetic testing	 7 of the 41 (27%) lamin A/C mutation positive subjects had AVB 21 (51%) had VA All 8 pts with sustained VT had AVB and markedly
	Study type: Prospective observational Size: N= 41	Inability to consent	Comparator: N/A	prolonged AVB (median 310 ms) • Prolonged PR interval and any type of AVB were the strongest predictors of sustained VA

Data Supplement 41. Nonrandomized Trials, Observational Studies, and/or Registries of Conduction Disorders (Section 7)

Study Acronym;	Study Type/Design;	Patient Population	Primary Endpoint and Results	Summary/Conclusion
Author;	Study Size		(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	
The Framingham	Aim: Assess the clinical	Inclusion criteria: LBBB and	1° endpoint: Development of CV	Comparison with age- and sex-
Study	implications of LBBB	age- and sex-matched	disease	matched control subjects free from
Schneider JF, et al.		control pts who did not		LBBB suggests that newly acquired
1979 (27)	Study type: Nested case-	develop LBBB from	Results: 55/5209 people	LBBB is most often a hallmark of
<u>154870</u>	control in Framingham cohort	Framingham cohort	developed LBBB in 18 y of follow-	advanced hypertensive or ischemic
			up	heart disease, or both
	Size: 55 pts who developed	Exclusion criteria: N/A	48% of these develop CAD or HF	
	LBBB, 110 matched controls		for the 1 st time with or following	
	Mean age at study onset =50 y		Dx of LBBB	
	Mean age at onset of LBBB =62		Only 11% remained free of	
	У		clinically apparent CV abnormal	
			In men, the appearance of LBBB	
			contributed independently to an	

			increased risk of CV disease	
			mortality	
Fahy GJ, et al.	Aim: Determine the long-term	Inclusion criteria: BBB/age-	1° endpoint: Long-term	• Isolated left BBB is associated with an
1996 (31)	outcome of pts with BBB and	and sex-matched controls	"outcome" of BBB pts	increased risk of developing overt CV
<u>8651093</u>	no clinical evidence of CV			disease and increased cardiac
	disease	Exclusion criteria: Suspected	Results: BBB did not impact	mortality.
		heart disease	overall mortality	
	Study type: Nested case-		Cardiac mortality was significantly	
	control		increased in the LBBB group	
			compared to their controls	
	Size : 310 pts with BBB, 310		LBBB, but not RBBB, was	
	matched controls out of		associated with an increased	
	110,000 participant screening		prevalence of CV disease at the	
	program in Ireland		follow-up (21% vs. 11%; p=0.04).	
Talreja D, et al.	Aim: Assess ability to predict	Inclusion criteria:	1° endpoint: LVER <45%	When ECG is normal, it is extremely
2000 (43)	LV dysfunction on echo, by	Consecutive inpatients		unlikely to have LV systolic
10689252	historic, clinical, radiographic,	referred for the	Results: 124 (41%) had LVEF <45%	dysfunction.
	and ECG parameters	echocardiographic	Presence of LBBB, male sex, and	It can be argued that such pts should
		assessment of LV function	CM on CXR were associated with	not be referred for
	Study type: Cross-sectional		presence of LV dysfunction	echocardiography.
			Only 2 pts with LVSD had a normal	
	<u>Size</u> : 300		ECG	
			More than 50% of the predictive	
			power of the model rested on the	
			discriminatory ability of a normal	
			ECG	
Eriksson P, et al.	Aim: Assess prevalence of BBB,	Inclusion criteria: Random	1° endpoint: Mortality and CV	BBB correlates strongly to age and is
1998 (30)	its impact on mortality and	sampling of Swedish men	disease	common in elderly men.
<u>9832497</u>	coexisting CV conditions			BBB is a marker of a slowly
		Exclusion criteria: N/A	Results: The prevalence of BBB	progressing degenerative disease
	Study type: Prospective cohort		increases from 1% at age 50 y to	that affects the myocardium.
			17% at age 80 y, resulting in a	BBB is not associated with increased
	Size: 855 men who were 50 y		cumulative incidence of 18%.	mortality
	old in 1963 followed for 30 y		BBB did not predict ischemic heart	• I could not find data broken down by
	82 developed BBB		disease or mortality	LBBB vs. RBBB; vast majority were
	22 of those were LBBB		Men who developed BBB had	RBBB*
			bigger LV volume at baseline and	
			greater incidence of DM and HF	

Mahmod M, et al.	Aim: Evaluate the diagnostic	Inclusion criteria:	1° endpoint: Pathologic findings	• CMR detects subclinical CMP in 1/3
2012 (277)	value of CMR in asx pts with	Asymptomatic adults with	on MR	of asx pts with LBBB and normal echo
21805313	LBBB	complete LBBB referred for	OH WIIV	CMR provides additional clinically
		cardiac MR	Results: 9/29 (31%) had abnormal	relevant data in over 50% of pts
	Study type: Cross-sectional		MR despite normal echo: 6 with	CMR is valuable adjuvant diagnostic
		Exclusion criteria: Absence	DCM, 2 with LVH	tool for pt with asx LBBB
	Size: 54 pts	of echo	19/25 (76%) with abnormal echo	toor for pt with ask EBBB
			also had abnormal MR; in 13 of	
			them (52%) the MR provided new	
			"clinically relevant" findings: 8	
			DCM, 1 cardiac sarcoid	
Brignole M, et al.	Study type: Prospective	Inclusion criteria: BBB and	1° endpoint: Rhythm at syncope	In pts with BBB and negative EPS, most
2001 (185)	Observational	negative conventional	recurrence as assessed by ILR	syncopal recurrences result from
<u>11673344</u>		workup		prolonged asystolic pauses, mainly
	Size: 52 pts		Safety endpoint: N/A	attributable to paroxysmal AVB.
Moya A, et al.	Aim: To analyze the clinical	Inclusion criteria: ≥1	1° endpoint: Clinical Dx	 In pts with syncope, BBB, and
2011 (189)	outcomes of pts with syncope	syncope in the last 6 mo. and	(established in 267 patients	preserved LVEF, a systematic
<u>21444367</u>	and BBB following a systematic	BBB on EGG with a QRSd of	(82.7%)	diagnostic strategy (ESC guidelines)
	diagnostic approach: 3-phase:	≥120 ms	-recurrent syncope: in 15/215 (7%)	achieves a high rate of Dx (82.6%)
	clinical evaluation, EPS, ILR	Exclusion criteria: Indication	after phase 1/2; 36 of 108	with a low rate of mortality (6%),
		for prophylactic ICD due to	(33% after phase 3	allowing clinicians to institute
	Study type: Multicentered	low	-documented spontaneous	etiology-specific treatment.
	prospective observational trial	LVEF; pre-excitation; long QT	arrhythmias	• The most common cause of syncope
	a. 222	syndrome; Brugada	-death due to any cause: no	was bradyarrhythmia, mostly due to
	Size: 323 patients (after	syndrome; acute MI;	difference in mortality rate	paroxysmal A-V block. Other
	exclusions)	pregnancy; life expectancy	between pts diagnosed at Phase I	etiologies of syncope were
		<1 y due to noncardiac	or II,	recognized in 17.6%
		cause; geographically or otherwise inaccessible for	compared with those who had	• initial clinical evaluation achieved a
		follow-up; unwilling or	implanted ILR (6.0 vs. 6.5%)	Dx in 25%; the most frequent Dx at
		unable to give informed	Safety endpoint: N/A	EPS was a bradyarrhythmia (76%), VT or SVT was induced in 14%.
		consent	Salety eliupolit. N/A	
		Consent		The study was not designed to determine whether this diagnostic
				strategy was better than implanting
				a PM in the majority of pts
McAnulty JH, et al.	Study type: Prospective	Inclusion criteria:	1° endpoint: Major clinical events,	A higher percentage of pts with
1982 (278)	Observational	Bifascicular or trifascicular	death, heart block, need for PPM,	syncope were shown to develop CHB
7088050		block		(17%) vs. those w/o syncope (2%)
7000000		DIOCK	syncope	(17/0) vs. those w/o syncope (2%)

	Size: 554 pts 351 had EPS and 203 refused it	Exclusion criteria: Terminal non-cardiac disease; symptoms already documented as due to bradycardia prior to study	Safety endpoint: N/A	 Heart block occurred in 4.9% of those with long HV compared to 1.9% with normal HV A prolonged PR interval (found in 13%) was associated with and increased risk of all death, sudden death, major clinical events or HF, but not development of heart block. Bundle branch block occurs in 1% of population, and requires no special evaluation in asx pts
Kwok CS, et al. 2016 (279) 26879241	Aim: Determine if prolonged PR interval is associated with adverse CV outcomes and mortality. Study type: Systemic review + meta-analysis Size: 14 studies, 400,750 pts	Inclusion criteria: Studies that evaluated clinical outcomes associated with prolonged and normal PR intervals Exclusion criteria: From main analysis: Studies of pts with specific cardiac pathologies (such as AS, sinus nodal dysfunction and HF) or of pts who had received intervention (angiography or CRT)	1° endpoint: Mortality Results: Increased risk of mortality with prolonged PR interval risk ratio (RR: 1.24; 95% CI: 1.02–1.51, 5 studies. Prolonged PR interval was associated with significant risk of HF or LV dysfunction (RR: 1.39; 95% CI: 1.18–1.65, 3 studies) and AF (RR: 1.45; 95% CI: 1.23–1.71, 8 studies) but not CV mortality, coronary heart disease or MI or stroke or TIA.	Possible association between prolonged PR interval and significant increases in AF, HF and mortality.
Boriani G, et al. 2003 (280) 12649505	Size: 18 pts (age 42.8±19.6 y) with genetically confirmed X- linked (N=10) or autosomal dominant (N=8) EDMD	Inclusion criteria: N/A Exclusion criteria: N/A	Results: Pacemakers were required by 10 of 18 (56%) pts for bradyarrhythmia	 >50% of pts with muscular dystrophy (EDMD) require PM implant. Survival after PM implant is very reasonable
Mymin D, et al. 1986 (281) 3762641	Study type: Longitudinal, Observational Size: 3983 healthy men	Inclusion criteria: Healthy males Exclusion criteria: Females	1° endpoint: 1°AVB Results: 52 initial cases plus 124 new cases over 30 y. No difference in all-cause mortality	 Primary first-degree heart block with moderate PR prolongation is a benign condition may not apply to more marked prolongation of the PR interval
Huhta JC, et al. 1983 (282) 6851033	Study type: Retrospective review	107 pts with ccTGA	23 of 107 (21%) developed naturally occurring AVB at a rate of 2% per yr. 12 of 49 (24%) developed AVB at VSD closure.	Pts with ccTGA are at a constant and elevated risk of developing complete AVB throughout their lives.

Connelly MS, et al. 1996 (283) 8609349	Study type: Retrospective review	52 pts with ccTGA	9 or 52 (17.3%) developed spontaneous AVB; 9 of 52 (17.3%) developed postoperative AVB	17% of pts developed progressive AVB unrelated to surgery
Weindling SN, et al. 1998 (284) 9723647	Study type: Retrospective review	54 pts with postoperative heart block following congenital heart surgery	31 of 32 pts who recovered AV conduction did so by the 9 th postoperative day.	 43% did not recover conduction 97% of those who recovered conduction – did so by d 9
Meune C, et al. 2006. (285) 16407522	Study type: Prospective observational	19 pts with lamin A mutations referred for pacing and receiving an ICD	9 pts (46%) received an appropriate shock for ventricular tachyarrhythmias	The implantation of an ICD, rather than a PM, should be considered for these pts
van Rijsingen, IA, et al. 2012. (286) 22281253	Study type: Retrospective multicentered cohort	269 pts with LMNA mutations	Malignant ventricular arrhythmias occurred (5%/y) in pts with ≥2 of: NSVT, LVEF <45% at the first clinical contact, male sex, and nonmissense mutations	Specific risk factors portend a higher risk of ventricular arrhythmia in carriers of LMNA mutations
Maury P, et al. 2013. (287) 24011739	Study type: Retrospective review	325 pts	First degree AVB was independently associated with sudden death or implantable cardioverter-defibrillator appropriated therapies (OR: 2.41; 95% CI: 1.01–0.73; p=0.046)	First degree AVB is independently linked to outcome and may be proposed to be used for individual risk stratification
O'Mahony C, et al. 2011. (288) 21856674	Study type: Observational, longitudinal, retrospective cohort study	204 pts; 12 had device implant during follow-up for bradyarrhythmias	Independent predictors of future antibradycardia pacing were (in a multivariable Cox model): QRSd and PR interval duration	 Pacing for AV and sinus node disease is common (±8%) Pts with QRS ≥110 ms should be closely monitored for bradyarrhythmias
Polak PE, et al. 1989 (289) <u>2707275</u>	Study type: Case series	2 pts	Pts with fascicular block progressed to PM-dependent complete block	• N/A
Khambatta S, et al. 2014 (290) 25061332	Study type: Retrospective review	35 pts	PM/ICD required in 31 % (11 pts) 4 pts (11%) in the series died, but all deaths were from sudden cardiac events.	High incidence of device implantation implant and sudden death
Ali H, et al. 2017 (291) 28583850	Study type: Systematic Review	Case reports on CHB following blunt cardiac injury were available for 50 pts	PPM implantation was indicated in ~50% of early survivors because of recurrent or permanent CHB. BBB was present in >70% of pts A fatal outcome occurred in 20% of pts; structural damage of AV	CHB secondary to blunt cardiac injury is associated with 20% mortality mainly occurring in the early post-traumatic period and most of the deaths are due to arrhythmia.

	conduction system in 50% of	Recurrent or permanent CHB
	necropsies	requiring PM implantation occurs in
		~50% of survivors.
		A structural damage of the AV
		conductive system can be found in
		50% of victims

Data Supplement 42. Randomized Data for Predicting Perioperative Bradycardia (Section 8.1.1)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
Chierichini A, et al. 2015 (292) 25953222	Aim: Evaluate the use of irrigation fluid using norepinephrine or epinephrine in pts undergoing arthroscopy for rotator cuff surgery Study type: Prospective randomized double blind controlled study	Inclusion criteria: ASA status 1 or 2, >18 y, scheduled for rotator cuff surgery with interscalene brachial plexus block Exclusion criteria: CAD, cardiac conduction defects, BB or ACEI:	Intervention: Norepinephrine (0.66 mg/L) to the irrigation bag Comparator: Epinephrine (0.33 mg/L) to the irrigation bag	1° endpoint: Development of hypotension or bradycardia (<30 bpm in ≤5 min or <50 bpm Safety endpoint: Timing and safety of events	 Hypotension and/or bradycardia NE: 5/60 (8%) E: 15/59 (25%) Did not separate bradycardia events Timing similar (30–35 min)
	<u>Size</u> : 120 pts				

Data Supplement 43. RCTs of Conduction Disorders (Section 7)

Data Supplement 44. Nonrandomized Data for predicting perioperative bradycardia (Section 8.1.1)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Marrocco-Trischitta MM, et al. 2016 (293)	Aim: Evaluate use of temporary transvenous	Inclusion criteria: Database searched for pts with CEA	1° endpoint: 4/34 CEA surgeries with TTVP had PM activation	Temporary transvenous pacing may be useful in
<u>27177706</u>	pacing (TTVP) for pts with	and TTVP		pts undergoing CEA

	trifascicular block		Results:	
	undergoing CEA	Exclusion criteria: None	Adverse events were	
	dideigonig CLA	Exclusion criteria.	Defined as follows: PM activation, occurrence	
	Study type: Retrospective		Of block progression to 2 nd degree AVB of	
	with historical controls		Mobitz type II, or third-degree A-V block,	
	(other pts with vascular		bradycardia 40 bpm with a minimum duration	
	surgery and TTVP		10 s and/or a hemodynamic compromise (i.e.,	
	Janger, and the		systolic BP <90 mm Hg), asystole with a	
	Size: 31 CEAs compared		duration >5 s	
	to 37 other vascular		4 pts with PM activation	
	surgery (68 total)		• In 2 pts procedure stopped due to asystole	
Cheung CC, et al.	Aim: Evaluate prevalence	Inclusion criteria: Post-hoc	1° endpoint: 67 pts developed intraoperative	Surgical risk for
2015 (294)	of hypotension and	analysis of prospectively	bradycardia (< 60 bpm for 2 sequential	hypotension and
25541033	bradycardia during	acquired data from a study	measurements >5 min apart)	bradycardia can be
233 12033	elective noncardiac	evaluating	measurements > 5 mm aparty	assessed preoperatively
	surgery	withdrawal/management	Results: Developed a HEART score for predicting	ussessed preoperatively
	age.,	of a loop diuretic prior to	hypotension or bradycardia based on baseline	
	Study type: Retrospective	surgery	heart rate and BP, Age, Drug Rx, Cardiac	
	<u></u>	53.7	complications score, and complexity of surgery	
	Size: 193 pts undergoing	Exclusion criteria: None	(OR: 2.51; 95% CI: 1.79–3.53; C-statistic: 0.75)	
	noncardiac elective		(, , , , , , , , , , , , , , , , , , ,	
	surgery			
Bauer AM, et al. 2014	Aim:	Inclusion criteria: N/A	1° endpoint: N/A	Single pt with a carotid
(295)				body tumor who became
<u>24651937</u>	Study type:	Exclusion criteria: None	Results:	asystolic during surgery
	Case report		Single pt with a carotid body tumor who became	
	<u>Size</u> :		asystolic during surgery	
Fritsch G, et al. 2012	Aim: Identify factors	Inclusion criteria: 1,363	1° endpoint: 86 pts (6.3%) developed some	Did not specifically
(296)	associated with surgical	consecutive pts in a 3 mo	complication. Hypotension most common but 20	analyze pts with
<u>22188223</u>	complications	period scheduled for	pts (1.5%) developed hemodynamically relevant	bradycardia
		elective surgery	bradycardia	 Age, type of surgery and
	Study type: Retrospective			medical Hx were
	analysis	Exclusion criteria: None		predictors for
				complications in general
	Size: 1,363 consecutive			
	pts			

Perreira ID, et al. 2011 (297) 21920207	Aim: Identify factors associated with intraoperative bradycardia Study type: Retrospective Size: 80,660 pts with neuraxial anesthesia from a single center	Inclusion criteria: >18 y old Exclusion criteria: None	Pesults: Sinus bradycardia more common with age 18–40 y: 2.5% 41–60 y: 4.1% >61 y: 5.2% Sinus bradycardia dependent on anesthesia SSA (single puncture subarachnoid): 3.4% CSA (continuous subarachnoid): 3.5% SE (single puncture epidural): 1.3% CE (continuous epidural): 3.4% DB (double block): 1.5% Variables associated with sinus bradycardia: Age Gender (0.74 for women) Physical status (ASA III/IV 2.49/1.94)	Sinus bradycardia more common with age, sex, anesthesia, and physical status
Mitar MD, et al. 2015 (298) 25746023	Aim: Evaluate pacing requirement for rotational atherectomy Study type: Retrospective Size: 138 pts Temporary pacing in 67 No temporary pacing in 67	Inclusion criteria: Consecutive pts undergoing rotational atherectomy Exclusion criteria: None	 Type of surgery (Emergency 1.98) 1° endpoint: (2nd degree AVB or asystole >2 s in the no PM group Results: Pacemaker activated in PM group or AVB in no PM group: LM: 1/19 (5%) LAD: 2/38 (5%) Cx: 10/25 (40%) RCA: 28/51 (55%) 	Pacemaker activated in PM group or AVB in no PM group in pts with RCA or Cx PCI
Im SH, et al. 2008 (299) <u>18254669</u>	Aim: Evaluate utility of transcutaneous pacing with carotid angioplasty and stenting Study type: Retrospective cohort Size: 30 pts and 31 procedures	Inclusion criteria: Consecutive pts who underwent elective carotid angioplasty and stenting and placement of a transcutaneous pacing system. Exclusion criteria: None	1° endpoint: Transcutaneous pacing use Results: 24/31 required transcutaneous pacing (77%) Continuous pacing for 10–30 min required in 5/31 pts (16%)	Pacing support often required with elective carotid angioplasty and stenting

Page 169

Bush RL, et al. 2004	Aim: Evaluate incidence	Inclusion criteria: Carotid	1° endpoint: Clinically significant bradycardia or	Significant bradycardia or
(300)	of bradycardia with	artery stenting procedures	hypotension	asystole in 11/49 in
<u>15181504</u>	carotid stenting	in consecutive pts who		carotid stenting
	procedures	were thought to be of	Results:	procedures
		unacceptable risk for	 Access site hematomas in 2 pts (4%) 	
	Study type: Retrospective	carotid artery	• Significant bradycardia or asystole in 11/49	
		endarterectomy.	(22%) of procedures	
	Size: 48 pts who		 Mean time of pacing was 6.6±1.2 min (range: 	
	underwent 51 procedures	Exclusion criteria: None	2.2–20.1 min)	
			No correlation between preprocedural cardiac	
			status (History of MI or CABG) and development	
			of bradycardia and hypotension	
Harrop JS, et al. 2001	<u>Aim</u> : Evaluate	Inclusion criteria: All pts	1° endpoint: Use of pacing for bradycardia and	Pacemaker activation
(301)	hypotension and	undergoing carotid artery	hypotension	common with CEA
<u>11564241</u>	bradycardia associated	procedures		
	with carotid artery		Results:	
	interventional procedures	Exclusion criteria: 10 pts	Pacemaker activation in 23/37 procedures	
		excluded; no reasons given	(73%)	
	Study type: Retrospective		• No correlation between PM activation and sex,	
			etiology of stenosis, severity of stenosis, number	
	Size: 43 pts underwent 47		of inflations	
	carotid artery angioplasty			
	and stenting procedures			
Gauss A, et al. 1999	Aim:	Inclusion criteria:	1º endpoint: Progression of AVB, asystole >5 s or	 No pts absolutely
(302)	Evaluation of	Consecutive pts with asx	bradycardia <40 bpm >10 s)	required pacing for rate
10456813	transcutaneous pacing in	chronic 1st degree AVB and		support
	pts thought to be at risk	LBBB or bifascicular block.	Results:	
	for bradycardia	Fresh and a suite state of the state of	• 37 of 39 pts could be paced transcutaneously	
	(trifascicular block)	Exclusion criteria: None	• 0/39 had progression of AVB	
	Charles have as Company there		• 9 pts had bradycardia <40 bpm (6	
	Study type: Consecutive,		intraoperatively and 3 postoperatively)	
	prospective		No pts absolutely required pacing for rate	
	<u>Size</u> : 39 pts		support	
Killeavey ES, et al.	Aim: Evaluate the use of	Inclusion criteria:	1° endpoint: Requirement for pacing	Requirement for pacing
1990 (303)	transvenous pacing	Consecutive pts undergoing		low
15227187	during PCI	PCI	Results:	

	Size: 778 pts (398 w/o transvenous pacing and 379 with prophylactic pacing and 1 emergent pacing)	Exclusion criteria: None	 2 pts developed ventricular arrhythmias associated with prophylactic pacing (0.5%) 8/379 had pacing required (2%) Overall incidence for pacing for hemodynamically significant bradycardia in prophylactic situations was 7/777 (0.8%) 	
Chowdhury T, et al. 2015 (304) 26656339	Aim: Propofol boluses aborted the trigeminal cardiac reflex (TCR) induced severe bradycardia during dural manipulation. Study type: Case report Size: 1 pt	Inclusion criteria: N/A Exclusion criteria: N/A	1° endpoint: N/A Results: During dural stimulation, propofol 50 mg IV terminated sinus bradycardia	Case report discussing that during dural stimulation, propofol 50 mg IV terminated sinus bradycardia
Yong J, et al. 2015 (305) 26424701	Aim: Evaluate development of cardiac arrest during laparoscopic surgery Study type: Retrospective analysis of the Australian Incident Monitoring Study (AIMS) database Size: 14 cases from >11,000 pt database	Inclusion criteria: Cardiac arrest pts Exclusion criteria: N/A	1° endpoint: Cardiac arrest (bradycardia) Results: 9/14 bradycardia 2 critical points for cardiac arrest: insufflation or establishment of pneumoperitoneum (12/14; 86%) Anesthesia induction (2/14; 14%)	Bradycardia common during laparoscopy
Vimala S, et al. 2016 (306) <u>26114985</u>	Aim: Case report of asystole during dural manipulation Study type: Case report Size: 1 pt	Inclusion criteria: N/A Exclusion criteria: N/A	1° endpoint: N/A Results: • Bradycardia and asystole during dural manipulation and excision of a temporal lobe meningioma (near the left insula)	Case report of bradycardia during dural manipulation

Mohan S, et al. 1990 (307) <u>24788865</u>	Aim: Evaluate the use of transvenous pacing during PCI Study type: Case report Size: 1	Inclusion criteria: 60 y undergoing maxillectomy for squamous cell cancer Exclusion criteria: N/A	1° endpoint: N/A Results: Asystole during posterior osteotomy Bradycardia again during manipulation of the posterior maxillary tuberosity Treatment by atropine and minimizing surgical manipulation	
Ishii D, et al. 1990 (308) 23834853	Aim: Evaluate the use of cilostazol for preventing bradycardia during carotid artery stenting Study type: Retrospective Size: 53 pts who underwent 54 carotid artery stenting procedures divided into procedures where pts received cilostazol (26) and those who did not (28)	Inclusion criteria: Pts who underwent carotid artery stenting at a single institution Exclusion criteria: None	1° endpoint: Bradycardia (<50 bpm or hypotension (<90 mm Hg) Results: Intraprocedural bradycardia: Cilostazol: 4/26 (15%) No cilostazol: 15/28 (54%) Postprocedure bradycardia Cilostazol: 0/26 No cilostazol: 3/28 (11%)	Cilostazol reduced intraoperative bradycardia
Schipke JD, et al. 2013 (309) 23332411	Aim: 1 pt who developed asystole during paranasal sinus surgery Study type: Case report Size: 1	Inclusion criteria: N/A Exclusion criteria: N/A	1° endpoint: N/A Results: • 15 s of asystole with instrumenting the paranasal sinuses	Asystole with instrumenting the paranasal sinuses
Haldar R, et al. 2013 (310) 23242253	Aim: 1 pt who developed bradycardia during skull pin fixation Study type: Case report Size: 1	Inclusion criteria: N/A Exclusion criteria: N/A	1° endpoint: N/A Results: • Heart rate decreased from 88 to 44 bpm with skull fixation pin tightening that stopped when instrumentation stopped and recurred with tightening again.	Heart rate decreased with skull fixation pin tightening that stopped when instrumentation stopped and recurred with tightening again.

Seo KC, et al. 2010 (311) 20498810	Aim: Identify possible factors contributing to bradycardia and hypotension during shoulder surgery Study type: Retrospective Size: 63	Inclusion criteria: ASA I/II pts who received interscalene block for arthroscopic shoulder surgery in the sitting position Exclusion criteria: N/A	1° endpoint: Bradycardia (<50 bpm) and/or hypotension (<100 mm Hg or use of ephedrine) Results: 13/63 with bradycardia and hypotension Bradycardia and hypotension more likely with: Right sided procedures (R: 27% vs. L: 5%) Higher use of fentanyl (54% vs. 0.4%)	Bradycardia and hypotension more common with tight sided procedures
Jeyabalan G, et al. 2010 (312) 20557186	Aim: Identify factors associated with bradycardia during pharmacomechanical thrombectomy for deep vein thrombosis Study type: Retrospective Size: 57 pts	Inclusion criteria: Consecutive pts who underwent pharmacomechanical (AngioJet) therapy for deep vein thrombosis Exclusion criteria: N/A	1° endpoint: Bradycardia Safety endpoint: 7/57 (12.3%) had bradyarrhythmias asystole 2 sinus bradycardia: 5 More than 1 episode: 4 Bradycardia resolved in 5/7 pts with cessation of therapy. 2 pts received atropine	Bradycardia observed with AngioJet procedures
Usami K, et al. 2010 (313) 20448432	Aim: Describe 3 pts who developed bradycardia with surgery for cerebellopontine angle meningiomas Study type: Case series Size: 3	Inclusion criteria: Case series of pts with bradycardia during meningioma surgery Exclusion criteria: N/A	1° endpoint: Bradycardia Results: Transient bradycardia/asystole and hypotension apparently due to activation of the trigeminocardiac reflex by direct stimulation of the trigeminal nerve or branches in the dura mater or cerebellar tentorium Remifentanil suggested as a possible contributor	Transient bradycardia/asystole and hypotension apparently due to activation of the trigeminocardiac reflex by direct stimulation of the trigeminal nerve or branches in the dura mater or cerebellar tentorium
Lubbers HT, et al. 2010 (314) 20347202	Aim: Describe 3 pts who developed bradycardia with craniomaxillofacial surgery. Study type: Case series Size: 3	Inclusion criteria: Case series, N/A Exclusion criteria: N/A	1º endpoint: Bradycardia Results: Describe 3 pts identified from a single center surgical database with bradycardia during craniomaxillofacial surgery	Purely descriptive with no specific recommendations or findings

Christensen RE, et al. 2010 (315) 19933174	Aim: Describe outcomes in pts with surgically corrected D transposition of the great arteries (D-TGA) undergoing noncardiac surgery Study type: Retrospective Size: 50 procedures (34 pts)	Inclusion criteria: Consecutive pts with surgically corrected D-TGA undergoing noncardiac surgery (43 pediatric and 7 adults) Exclusion criteria: N/A	1° endpoint: Adverse events including bradycardia Results: 4 adverse events. 1 pt with severe bradycardia during abdominal insufflation	4 adverse events observed in pts with congenital heart disease and noncardiac surgeries.
Jacques F, et al. 2009 (316) 18657390	Aim: Compare regional anesthesia and general anesthesia for CEA surgery Study type: Retrospective Size: 72 Regional anesthesia: 25 General anesthesia: 47	Inclusion criteria: Consecutive pts undergoing CEA from a single center Exclusion criteria: None	1° endpoint: Hypotension and bradycardia (<60 bpm) Results: Regional anesthesia associated with less intraoperative bradycardia (4%) when compared to general anesthesia (63%)	Regional anesthesia associated with less intraoperative bradycardia
Hanss R, et al. 2008 (317) 18211442	Aim: Evaluate heart rate variability as a tool to identify pts who will have hypotension or bradycardia during surgery Study type: Retrospective model followed by a prospective study Size: 100	Inclusion criteria: High perioperative risk (ASA III/IV) undergoing major vascular or abdominal surgery Exclusion criteria: Not in SR, <18 y, emergency surgery	Pesults: No specific data on bradycardia but those pts with lower heart rate variability (stratified by a total power <500 Ms²Hz⁻¹) were more likely to develop hypotension and bradycardia 4/50 pts in the retrospective model development group had bradycardia (<50 bpm)	Small numbers of bradycardia (mostly hypotension)
Reddy MK, et al. 2008 (318) 18157036	Aim: Describe a pt who developed bradycardia during surgical positioning of an unstable cervical spine	Inclusion criteria: N/A Exclusion criteria: N/A	1° endpoint: Bradycardia Results: Bradycardia (35 bpm) and hypotension (50 mm Hg) with initial skull positioning	Case report of bradycardia with skull positioning

	Study type: Case report Size: 1		Atropine and beta agonists not successful but surgical repositioning of the spine led to resolution and development of a heart rate 100 bpm	
Ardesch JJ, et al. 2007 (319) 17825483	Aim: Describe cardiac responses with vagal nerve stimulation Study type: Retrospective Size: 111	Inclusion criteria: Pts who received a vagal nerve stimulator for treatment of epilepsy Exclusion criteria: None	1° endpoint: Bradycardia Results: 3 cases of bradycardia during intraoperative testing. Not subsequently observed on postoperative testing.	 Transient bradycardia can be observed with vagal stimulation.
Jones PM and Soderman RM, 2007 (320) 17223834	Aim: Describe a pt on 2 cholinesterase inhibitors who developed intraoperative bradycardia Study type: Case report Size: 1	Inclusion criteria: N/A Exclusion criteria: N/A	1° endpoint: Bradycardia Results: Bradycardia (35 bpm) with induction of anesthesia	Bradycardia (35 bpm) with induction of anesthesia
Wijeysundera DN, et al. 2014 (321) 25091545	Aim: ERC report on perioperative BB use Study type: Meta-analysis Size: N/A	Inclusion criteria: Varied among studies Exclusion criteria: Varied among studies	1° endpoint: Bradycardia Results: Perioperative beta blockade started within 1 d or less before noncardiac surgery increases risks of intraoperative bradycardia (RR: 2.61; 95% CI: 2.18–3.12).	Perioperative beta blockade started within 1 d or less before noncardiac surgery increases risks of intraoperative bradycardia

Data Supplement 45. Nonrandomized Data for predicting complete heart block with pulmonary artery catheter insertion (Section 8.1.1)

Study Acronym; Author;	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR;	Summary/Conclusion Comment(s)
Year Published			& 95% CI)	

Morris D, et al. 1987	Aim: Evaluate the	Inclusion criteria: All pts with	1° endpoint: CHB	Authors do not recommend
(322)	incidence of CHB in pts	LBBB who underwent PA		prophylactic temporary
<u>3675104</u>	with LBBB undergoing PA	catheter placement	Results:	transvenous pacing
	catheter placement		• 5 episodes of CHB in the setting of	
		Exclusion criteria: None	old LBBB but none temporally	
	Study type: Retrospective		related to PA catheter placement	
			• 2 episodes of CHB in the setting of	
	Size: 47 pts who		new LBBB but none temporally	
	underwent 82 PA		related to PA catheter insertion-	
	catheter placements		though occurred while the catheter	
			was in place	
Elliott CG, et al. 1979	Aim: Evaluate	Inclusion criteria:	1° endpoint: Arrhythmias, ECG	Transient RBBB fairly rare
(323)	complications associated	Consecutive pts undergoing	changes, or complications	- Transient Robb famy fare
510002	with PA catheter	PA catheter placement	changes) or complications	
	placement	p	Results: Transient RBBB in 3% of pts	
	•	Exclusion criteria: None		
	Study type: Prospective			
	Size: 116 PA catheters			
Unnikrishnan D, et al.	Aim: Describe	Inclusion criteria: N/A	1° endpoint: N/A	Transient CHB may occur with
2003 (324)	complications associated			placement of central venous
<u>14570803</u>	with PA catheter	Exclusion criteria: N/A	Results: Complete heart block with	catheter
	placement		central venous line placement in a pt	
			with LBBB	
	Study type: Case report			
	Size: 1			

Data Supplement 46. Nonrandomized data for Permanent Pacing for TAVI/valve surgery

Study Acronym;	Aim of Study;	Patient Population	Study Intervention (# patients)	Endpoint Results
Author;	Study Type;		/	(Absolute Event Rates, P value; OR or RR;
Year Published	Study Size (N)		Study Comparator (# patients)	& 95% CI)
Mouillet G, et al.	Aim: Predict which pts need	Inclusion criteria: Pts	Follow for 2 nd or 3 rd degree AVB	• All pts got temp pacing x 72 h; of 90 pts,
2013 (325)	PPM after Core Valve	getting Core Valve		11 had immediate AVB and PPM; 21
22972678				subsequently needed PPM, mostly in
				the first wk.

	Study type: Prospective Observational study of pts getting Core Valve Size: N=90			Post TAVI QRSd <128 ms predicted no PM needed
Rabinovitz, E et al. 2016 (326) 26936468	Aim: Assess need for PM Study type: Observational Size: N=302	Inclusion criteria: Consecutive TAVI pts	Intervention: TAVI	• 20% required PPM
PARTNER Leon MB, et al. 2010 (327) 20961243	Aim: Assess TAVI in severe AS pts	Inclusion criteria: Severe AS N=358	TAVI vs. medical Rx	• 3.4% underwent PPM after TAVI
Kogan A, et al. 2015 (328) 25583151	Aim: Assess incidence of PPM with SAVR pre and post TAVI Study type: Retrospective Size: N=290	Inclusion criteria: SAVR pre and post 2008 and TAVI pts, single center	Retrospective observational study	 Results: 2.48% got PPM within 7 d, over half of these had CHB. Pre TAVI, was 3.79% and post TAVI was 1.47%. PARTNER trial: SAVR had 3.6% PPM
Rivard L, et al. 2015 (329) 25446155	Aim: Determine if EPS helps predict PM post TAVI Study type: Retrospective Size: N=75	Inclusion criteria: 75 consecutive TAVI pts with no prior PM	EPS, assess HV interval	 Delta HC >13 ms (pre-post TAVI) and new LBBB with HV >65 were predictive of PM 13 ms delta is 100% sensitivity and 84% specificity
Rene AG, et al. 2013 (330) 24028584	Aim: Assess recovery of AV conduction after valve surgery Study type: Observational Size: N=98	Inclusion criteria: S/P valve surgery and received PPM same hospital.	Intervention: PPM	 Of the 98 with CHB, 77% became PM dependent 40% who received a PM had no evidence of high-grade AVB during PM follow-up 26% of those who recovered AV conduction in 30 d had recurrent AVB
Steyers CM, et al. 2015 (331) 26470027	Aim: Comprehensive review of AVB post cardiac surgery Study type: Review	Inclusion criteria: AVR, MVR, CABG, CABG/valve	N/A	 PM dependency was highly variable Recovery of AV conduction highly variable

	Size: N=10 studies, 780 pts			Optimal timing for PM (how long to wait for recovery) not established
Dawkins S, et al.	Aim: Identify incidence and	Inclusion criteria: Surgical	Intervention: PM	• 7% needed PM in AS pts
2008 (332) 18154792	predictors of AVB after AVR	AVR		• 16% needed PM in AI pts
	Study type: Retrospective observational			
	<u>Size</u> : N=354			
Viles-Gonzalez	Aim: Observe natural Hx of AVB	Inclusion criteria: 290 MVR	Retrospective observational	• Results: 2% got PPM mostly for AVB,
JF, et al. 2014	after MVR	pts	study	55% recovered conduction abnormal,
(333)				some had residual 1st AVB; mean time to
<u>24526511</u>				recover was 3 d. Predictors include
				RBBB
Merin O, et al.	Aim:	Inclusion criteria: CABG,	Intervention: PM	• 81% had a CABG
2009 (334)		AVR, MVR		Predictor for PM=LBBB
<u>19140907</u>	Study type:			• 1.5% got a PM
				• 1/3 recovered AV conduction at late
	<u>Size</u> : N=4,999			follow-up

Study Acronym; Author;	Aim of Study; Study Type;	Patient Population	Study Intervention (# patients) /	Endpoint Results (Absolute Event Rates,	Relevant 2° Endpoint (if any); Study Limitations;
Year Published	Study Size (N)		Study Comparator	P values; OR or RR; &	Adverse Events
The Birmingham Trial Watson RD, et al. 1984 (231) 6475712	Aim: To determine whether permanent pacing reduces mortality in pts with fascicular block ≥14 d post-MI, and whether measurement of intracardiac conduction times predicts later death. Study type: RCT	Inclusion criteria: Survived at least 14 d after AMI; RBBB alone or in combination with left anterior or left posterior hemiblock or left posterior hemiblock alone Exclusion criteria: Age ≥70 y; previous ECG evidence of conduction disorder (before infarction)	(# patients) Intervention: Permanent pacing Comparator: No permanent pacing Resting intracardiac conduction times were measured in both groups prior to pacing	95% CI) 1° endpoint: No difference in mortality Safety endpoint (if relevant): N/A	Progression of conduction disease was not observed Measurement of infranodal conduction time (HV interval) did not predict outcome Ventricular arrhythmia was an important cause of death

	Size: 50 pts	Pts with left bundle branch block were not included due to the difficulty in identifying the ECG features of AMI.			
PACE Petrac, D., et al. 1996 (335) 8734745	Aim: Study type: Size: 192 pts.	Inclusion criteria: Exclusion criteria:	Intervention: His bundle recording during atrial pacing Comparator: Nonfunctional infraHisian 2° AVB	1° endpoint: In pts with chronic BBB and syncope, a nonfunctional infraHisian AVB induced by incremental atrial pacing identified pts with particularly high risk of development of spontaneous infraHisian AVB. Safety endpoint: N/A	Incremental atrial pacing identified pts at high risk of development of spontaneous infraHisian AVB
The PRESS Study Santini M, et al. 2013 (182) 23390123	Aim: To demonstrate a reduction in symptomatic events in pts with bifascicular block and syncope of undetermined origin implanted with PPM. Study type: Randomized Size: 100 pts	Inclusion criteria: Exclusion criteria:	Intervention: Permanent DDD pacing with a low rate of 60 bpm Comparator: Permanent DDI pacing with a low rate of 30 bpm	1° endpoint: (1) syncope, (2) symptomatic presyncopal episodes associated with a device intervention (ventricular pacing), and (3) symptomatic episodes associated with intermittent or permanent AVB (any degree).	DDD60 led to a significant reduction of syncope or symptomatic events associated with a cardioinhibitory origin, compared with DDI30 programming

Study Acronym;	Study Type/Design;	Patient Population	Primary Endpoint and Results	Summary/Conclusion
Author;	Study Size		(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	
The Framingham	Aim: Assess the clinical	Inclusion criteria: LBBB and	1° endpoint: Development of CV	Comparison with age- and sex-
Study	implications of LBBB	age- and sex-matched	disease	matched control subjects free from
Schneider JF, et al.		control pts who did not		LBBB suggests that newly acquired

1979 (27)	Study type: Nested case-	develop LBBB from	Results: 55/5209 people	LBBB is most often a hallmark of
154870	control in Framingham cohort	Framingham cohort	developed LBBB in 18 y of follow-	advanced hypertensive or ischemic
		3 3 33 3	up	heart disease, or both
	Size: 55 pts who developed	Exclusion criteria: N/A	48% of these develop CAD or HF	
	LBBB, 110 matched controls		for the 1st time with or following	
	Mean age at study onset =50 y		Dx of LBBB	
	Mean age at onset of LBBB =62		Only 11% remained free of	
	У		clinically apparent CV abnormal	
			In men, the appearance of LBBB	
			contributed independently to an	
			increased risk of CV disease	
			mortality	
Fahy GJ, et al.	<u>Aim:</u> Determine the long-term	Inclusion criteria: BBB/age-	1° endpoint: Long-term	• Isolated left BBB is associated with an
1996 (31)	outcome of pts with BBB and	and sex-matched controls	"outcome" of BBB pts	increased risk of developing overt CV
<u>8651093</u>	no clinical evidence of CV			disease and increased cardiac
	disease	Exclusion criteria: Suspected	Results: BBB did not impact	mortality.
	Charles to an an Nigota di anno	heart disease	overall mortality	
	Study type: Nested case-		Cardiac mortality was significantly	
	control		increased in the LBBB group compared to their controls	
	Size: 310 pts with BBB, 310		LBBB, but not RBBB, was	
	matched controls out of		associated with an increased	
	110,000 participant screening		prevalence of CV disease at the	
	program in Ireland		follow-up (21% vs. 11%; p=0.04).	
Talreja D, et al.	Aim: Assess ability to predict	Inclusion criteria:	1° endpoint: LVER <45%	When ECG is normal, it is extremely
2000 (43)	LV dysfunction on echo, by	Consecutive inpatients	T Chaponie. EVER (43/)	unlikely to have LV systolic
10689252	historic, clinical, radiographic,	referred for the	Results: 124 (41%) had LVEF <45%	dysfunction.
	and ECG parameters	echocardiographic	Presence of LBBB, male sex, and	It can be argued that such pts should
	·	assessment of LV function	CM on CXR were associated with	not be referred for
	Study type: Cross-sectional		presence of LV dysfunction	echocardiography.
			Only 2 pts with LVSD had a normal	
	<u>Size</u> : 300		ECG	
			More than 50% of the predictive	
			power of the model rested on the	
			discriminatory ability of a normal	
			ECG	

Eriksson P, et al.	Aim: Assess providence of DDD	Inclusion criteria: Random	40	. DDDl-ttl-t
1998 (30)	Aim: Assess prevalence of BBB, its impact on mortality and	sampling of Swedish men	1º endpoint: Mortality and CV	BBB correlates strongly to age and is
, ,	coexisting CV conditions	sampling of Swedish men	disease	common in elderly men.
<u>9832497</u>	coexisting CV conditions	Evaluation aritaria, N/A	Describer The providence of DDD	BBB is a marker of a slowly
	Chudu tuma Duagnasticus askaut	Exclusion criteria: N/A	Results: The prevalence of BBB	progressing degenerative disease
	Study type: Prospective cohort		increases from 1% at age 50 y to	that affects the myocardium.
	6: 055		17% at age 80 y, resulting in a	BBB is not associated with increased
	Size : 855 men who were 50 y		cumulative incidence of 18%.	mortality
	old in 1963 followed for 30 y		BBB did not predict ischemic heart	I could not find data broken down by
	82 developed BBB		disease or mortality	LBBB vs. RBBB; vast majority were
	22 of those were LBBB		Men who developed BBB had	RBBB*
			bigger LV volume at baseline and	
			greater incidence of DM and HF	
Mahmod M, et al.	Aim: Evaluate the diagnostic	Inclusion criteria:	1° endpoint: Pathologic findings	• CMR detects subclinical CMP in 1/3
2012 (277)	value of CMR in asx pts with	Asymptomatic adults with	on MR	of asx pts with LBBB and normal echo
<u>21805313</u>	LBBB	complete LBBB referred for		CMR provides additional clinically
		cardiac MR	Results: 9/29 (31%) had abnormal	relevant data in over 50% of pts
	Study type: Cross-sectional		MR despite normal echo: 6 with	CMR is valuable adjuvant diagnostic
		Exclusion criteria: Absence	DCM, 2 with LVH	tool for pt with asx LBBB
	Size: 54 pts	of echo	19/25 (76%) with abnormal echo	
			also had abnormal MR; in 13 of	
			them (52%) the MR provided new	
			"clinically relevant" findings: 8	
			DCM, 1 cardiac sarcoid	
Brignole M, et al.	Study type: Prospective	Inclusion criteria: BBB and	1° endpoint: Rhythm at syncope	In pts with BBB and negative EPS, most
2001 (185)	Observational	negative conventional	recurrence as assessed by ILR	syncopal recurrences result from
<u>11673344</u>		workup		prolonged asystolic pauses, mainly
	Size: 52 pts		Safety endpoint: N/A	attributable to paroxysmal AVB.
Moya A, et al.	Aim: To analyze the clinical	Inclusion criteria: ≥1	1° endpoint: Clinical Dx	• In pts with syncope, BBB, and
2011 (189)	outcomes of pts with syncope	syncope in the last 6 mo. and	(established in 267 patients	preserved LVEF, a systematic
21444367	and BBB following a systematic	BBB on EGG with a QRSd of	(82.7%)	diagnostic strategy (ESC guidelines)
	diagnostic approach: 3-phase:	≥120 ms	-recurrent syncope: in 15/215 (7%)	achieves a high rate of Dx (82.6%)
	clinical evaluation, EPS, ILR	Exclusion criteria: Indication	after phase 1/2; 36 of 108	with a low rate of mortality (6%),
		for prophylactic ICD due to	(33% after phase 3	allowing clinicians to institute
	Study type: Multicentered	low	-documented spontaneous	etiology-specific treatment.
	prospective observational trial	LVEF; pre-excitation; long QT	arrhythmias	The most common cause of syncope
		syndrome; Brugada	-death due to any cause: no	was bradyarrhythmia, mostly due to
	Size: 323 patients (after	syndrome; acute MI;	difference in mortality rate	paroxysmal A-V block. Other
	exclusions)	pregnancy; life expectancy	,	

		<1 y due to noncardiac cause; geographically or otherwise inaccessible for follow-up; unwilling or unable to give informed consent	between pts diagnosed at Phase I or II, compared with those who had implanted ILR (6.0 vs. 6.5%) Safety endpoint: N/A	etiologies of syncope were recognized in 17.6% • initial clinical evaluation achieved a Dx in 25%; the most frequent Dx at EPS was a bradyarrhythmia (76%), VT or SVT was induced in 14%. • The study was not designed to determine whether this diagnostic strategy was better than implanting a PM in the majority of pts
McAnulty JH, et al. 1982 (278) 7088050	Study type: Prospective Observational Size: 554 pts	Inclusion criteria: Bifascicular or trifascicular block	1° endpoint: Major clinical events, death, heart block, need for PPM, syncope	 A higher percentage of pts with syncope were shown to develop CHB (17%) vs. those w/o syncope (2%) Heart block occurred in 4.9% of
	351 had EPS and 203 refused it	Exclusion criteria: Terminal non-cardiac disease; symptoms already documented as due to bradycardia prior to study	Safety endpoint: N/A	those with long HV compared to 1.9% with normal HV • A prolonged PR interval (found in 13%) was associated with and increased risk of all death, sudden death, major clinical events or HF, but not development of heart block. • Bundle branch block occurs in 1% of population, and requires no special evaluation in asx pts
Kwok CS, et al. 2016 (279) 26879241	Aim: Determine if prolonged PR interval is associated with adverse CV outcomes and mortality.	Inclusion criteria: Studies that evaluated clinical outcomes associated with prolonged and normal PR intervals	<u>Results</u> : Increased risk of mortality with prolonged PR interval risk ratio (RR: 1.24; 95% CI: 1.02–1.51,	 Possible association between prolonged PR interval and significant increases in AF, HF and mortality.
	Study type: Systemic review + meta-analysis	Exclusion criteria: From main analysis: Studies of pts with	5 studies. Prolonged PR interval was associated with significant risk of	
	Size: 14 studies, 400,750 pts	specific cardiac pathologies (such as AS, sinus nodal dysfunction and HF) or of pts who had received intervention (angiography or CRT)	HF or LV dysfunction (RR: 1.39; 95% CI: 1.18–1.65, 3 studies) and AF (RR: 1.45; 95% CI: 1.23–1.71, 8 studies) but not CV mortality, coronary heart disease or MI or stroke or TIA.	

Boriani G, et al. 2003 (280)	Size: 18 pts (age 42.8±19.6 y)	Inclusion criteria: N/A	Results: Pacemakers were required by 10 of 18 (56%) pts for	• >50% of pts with muscular dystrophy
12649505	with genetically confirmed X- linked (N=10) or autosomal dominant (N=8) EDMD	Exclusion criteria: N/A	bradyarrhythmia	(EDMD) require PM implant. • Survival after PM implant is very
Mymin D, et al. 1986 (281)	Study type: Longitudinal,	Inclusion criteria: Healthy	1° endpoint: 1°AVB	reasonable Primary first-degree heart block with
<u>3762641</u>	Observational	males	Results: 52 initial cases plus 124	moderate PR prolongation is a benign condition
	Size: 3983 healthy men	Exclusion criteria: Females	new cases over 30 y. No difference in all-cause mortality	may not apply to more marked prolongation of the PR interval
Huhta JC, et al. 1983 (282) 6851033	Study type: Retrospective review	107 pts with ccTGA	23 of 107 (21%) developed naturally occurring AVB at a rate of 2% per yr. 12 of 49 (24%) developed AVB at VSD closure.	 Pts with ccTGA are at a constant and elevated risk of developing complete AVB throughout their lives.
Connelly MS, et al. 1996 (283) <u>8609349</u>	Study type: Retrospective review	52 pts with ccTGA	9 or 52 (17.3%) developed spontaneous AVB; 9 of 52 (17.3%) developed postoperative AVB	17% of pts developed progressive AVB unrelated to surgery
Weindling SN, et al. 1998 (284) <u>9723647</u>	Study type: Retrospective review	54 pts with postoperative heart block following congenital heart surgery	31 of 32 pts who recovered AV conduction did so by the 9 th postoperative day.	 43% did not recover conduction 97% of those who recovered conduction – did so by d 9
Meune C, et al. 2006. (285) <u>16407522</u>	Study type: Prospective observational	19 pts with lamin A mutations referred for pacing and receiving an ICD	9 pts (46%) received an appropriate shock for ventricular tachyarrhythmias	 The implantation of an ICD, rather than a PM, should be considered for these pts
van Rijsingen, IA, et al. 2012. (286) 22281253	Study type: Retrospective multicentered cohort	269 pts with LMNA mutations	Malignant ventricular arrhythmias occurred (5%/y) in pts with ≥2 of: NSVT, LVEF <45% at the first clinical contact, male sex, and nonmissense mutations	Specific risk factors portend a higher risk of ventricular arrhythmia in carriers of LMNA mutations
Maury P, et al. 2013. (287) 24011739	Study type: Retrospective review	325 pts	First degree AVB was independently associated with sudden death or implantable cardioverter-defibrillator appropriated therapies (OR: 2.41; 95% CI: 1.01–0.73; p=0.046)	First degree AVB is independently linked to outcome and may be proposed to be used for individual risk stratification
O'Mahony C, et al. 2011. (288) 21856674	Study type: Observational, longitudinal, retrospective cohort study	204 pts; 12 had device implant during follow-up for bradyarrhythmias	Independent predictors of future antibradycardia pacing were (in a multivariable Cox model): QRSd and PR interval duration	 Pacing for AV and sinus node disease is common (±8%) Pts with QRS ≥110 ms should be closely monitored for bradyarrhythmias

Polak PE, et al. 1989 (289) <u>2707275</u>	Study type: Case series	2 pts	Pts with fascicular block progressed to PM-dependent complete block	• N/A
Khambatta S, et al. 2014 (290) 25061332	Study type: Retrospective review	35 pts	PM/ICD required in 31 % (11 pts) 4 pts (11%) in the series died, but all deaths were from sudden cardiac events.	High incidence of device implantation implant and sudden death
Ali H, et al. 2017 (291) <u>28583850</u>	Study type: Systematic Review	Case reports on CHB following blunt cardiac injury were available for 50 pts	PPM implantation was indicated in ~50% of early survivors because of recurrent or permanent CHB. BBB was present in >70% of pts A fatal outcome occurred in 20% of pts; structural damage of AV conduction system in 50% of necropsies	 CHB secondary to blunt cardiac injury is associated with 20% mortality mainly occurring in the early post-traumatic period and most of the deaths are due to arrhythmia. Recurrent or permanent CHB requiring PM implantation occurs in ~50% of survivors. A structural damage of the AV conductive system can be found in 50% of victims

Study Acronym;	Aim of Study;	Patient Population	Study Intervention	Endpoint Results	Relevant 2° Endpoint (if any);
Author;	Study Type;		(# patients) /	(Absolute Event Rates,	Study Limitations;
Year Published	Study Size (N)		Study Comparator	P values; OR or RR; &	Adverse Events
			(# patients)	95% CI)	
Chierichini A, et	Aim: Evaluate the use	Inclusion criteria: ASA	Intervention:	1° endpoint: Development	Hypotension and/or
al. 2015 (292)	of irrigation fluid	status 1 or 2, >18 y,	Norepinephrine (0.66	of hypotension or	bradycardia
<u>25953222</u>	using norepinephrine	scheduled for rotator	mg/L) to the irrigation	bradycardia (<30 bpm in ≤5	o NE: 5/60 (8%)
	or epinephrine in pts	cuff surgery with	bag	min or <50 bpm	o E: 15/59 (25%)
	undergoing	interscalene brachial			Did not separate bradycardia
	arthroscopy for	plexus block	Comparator:	Safety endpoint: Timing	events
	rotator cuff surgery		Epinephrine (0.33	and safety of events	• Timing similar (30–35 min)
		Exclusion criteria: CAD,	mg/L) to the irrigation		
	Study type:	cardiac conduction	bag		
	Prospective	defects, BB or ACEI:			
	randomized double				
	blind controlled study				

<u>Size</u> : 120 pts		

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Marrocco-Trischitta	Aim: Evaluate use of	Inclusion criteria: Database	1° endpoint: 4/34 CEA surgeries with TTVP had	Temporary transvenous
MM, et al. 2016 (293)	temporary transvenous	searched for pts with CEA	PM activation	pacing may be useful in
<u>27177706</u>	pacing (TTVP) for pts with	and TTVP		pts undergoing CEA
	trifascicular block		Results:	
	undergoing CEA	Exclusion criteria: None	Adverse events were	
			Defined as follows: PM activation, occurrence	
	Study type: Retrospective		• Of block progression to 2 nd degree AVB of	
	with historical controls		Mobitz type II, or third-degree A-V block,	
	(other pts with vascular		bradycardia 40 bpm with a minimum duration	
	surgery and TTVP		10 s and/or a hemodynamic compromise (i.e.,	
	Since 21 CEAs some named		systolic BP <90 mm Hg), asystole with a	
	Size: 31 CEAs compared to 37 other vascular		duration >5 s	
			4 pts with PM activation	
	surgery (68 total)		In 2 pts procedure stopped due to asystole	
Cheung CC, et al.	<u>Aim</u> : Evaluate prevalence	Inclusion criteria: Post-hoc	1º endpoint: 67 pts developed intraoperative	Surgical risk for
2015 (294)	of hypotension and	analysis of prospectively	bradycardia (< 60 bpm for 2 sequential	hypotension and
<u>25541033</u>	bradycardia during	acquired data from a study	measurements >5 min apart)	bradycardia can be
	elective noncardiac	evaluating		assessed preoperatively
	surgery	withdrawal/management	Results: Developed a HEART score for predicting	
		of a loop diuretic prior to	hypotension or bradycardia based on baseline	
	Study type: Retrospective	surgery	heart rate and BP, Age, Drug Rx, Cardiac	
	6. 400		complications score, and complexity of surgery	
	Size: 193 pts undergoing	Exclusion criteria: None	(OR: 2.51; 95% CI: 1.79–3.53; C-statistic: 0.75)	
	noncardiac elective			
	surgery			

Bauer AM, et al. 2014 (295)	Aim:	Inclusion criteria: N/A	1° endpoint: N/A	Single pt with a carotid body tumor who became
24651937	Study type:	Exclusion criteria: None	Results:	asystolic during surgery
	Case report		Single pt with a carotid body tumor who became	
	<u>Size</u> :		asystolic during surgery	
Fritsch G, et al. 2012 (296) 22188223	Aim: Identify factors associated with surgical complications	Inclusion criteria: 1,363 consecutive pts in a 3 mo period scheduled for	1º endpoint: 86 pts (6.3%) developed some complication. Hypotension most common but 20 pts (1.5%) developed hemodynamically relevant	 Did not specifically analyze pts with bradycardia
22100223	Study type: Retrospective	elective surgery	bradycardia	Age, type of surgery and medical Hx were
	analysis	Exclusion criteria: None		predictors for complications in general
	Size: 1,363 consecutive pts			compression in Series
Perreira ID, et al. 2011 (297)	Aim: Identify factors associated with	Inclusion criteria: >18 y old	1º endpoint: Sinus bradycardia	 Sinus bradycardia more common with age, sex,
<u>21920207</u>	intraoperative	Exclusion criteria: None	Results:	anesthesia, and physical
	bradycardia		Sinus bradycardia more common with age	status
			• 18–40 y: 2.5%	
	Study type: Retrospective		• 41–60 y: 4.1%	
	s : 00 550		• >61 y: 5.2%	
	Size: 80,660 pts with neuraxial anesthesia from		Sinus bradycardia dependent on anesthesia	
			 SSA (single puncture subarachnoid): 3.4% 	
	a single center		CSA (continuous subarachnoid): 3.5%	
			SE (single puncture epidural): 1.3%	
			CE (continuous epidural): 3.4%	
			DB (double block): 1.5%	
			Variables associated with sinus bradycardia:	
			• Age	
			Gender (0.74 for women)	
			Physical status (ASA III/IV 2.49/1.94) The status (ASA III/IV 2.49/1.94) The status (ASA III/IV 2.49/1.94)	
M4:	Atan Frankrik	Industry with 1	• Type of surgery (Emergency 1.98)	
Mitar MD, et al. 2015	Aim: Evaluate pacing requirement for	Inclusion criteria:	1° endpoint: (2 nd degree AVB or asystole >2 s in	Pacemaker activated in PM group or AVP in no
(298) <u>25746023</u>	rotational atherectomy	Consecutive pts undergoing rotational atherectomy	the no PM group	PM group or AVB in no PM group in pts with RCA
			Results: Pacemaker activated in PM group or	or Cx PCI
	Study type: Retrospective	Exclusion criteria: None	AVB in no PM group:	
			• LM: 1/19 (5%)	

Im SH, et al. 2008 (299) <u>18254669</u>	Size: 138 pts Temporary pacing in 67 No temporary pacing in 67 Aim: Evaluate utility of transcutaneous pacing with carotid angioplasty and stenting Study type: Retrospective cohort	Inclusion criteria: Consecutive pts who underwent elective carotid angioplasty and stenting and placement of a transcutaneous pacing system.	 LAD: 2/38 (5%) Cx: 10/25 (40%) RCA: 28/51 (55%) 1º endpoint: Transcutaneous pacing use Results: 24/31 required transcutaneous pacing (77%) Continuous pacing for 10–30 min required in 5/31 pts (16%) 	Pacing support often required with elective carotid angioplasty and stenting
	Size: 30 pts and 31 procedures	Exclusion criteria: None		
Bush RL, et al. 2004 (300) 15181504	Aim: Evaluate incidence of bradycardia with carotid stenting procedures Study type: Retrospective Size: 48 pts who underwent 51 procedures	Inclusion criteria: Carotid artery stenting procedures in consecutive pts who were thought to be of unacceptable risk for carotid artery endarterectomy. Exclusion criteria: None	1° endpoint: Clinically significant bradycardia or hypotension Results: • Access site hematomas in 2 pts (4%) • Significant bradycardia or asystole in 11/49 (22%) of procedures • Mean time of pacing was 6.6±1.2 min (range: 2.2–20.1 min) • No correlation between preprocedural cardiac status (History of MI or CABG) and development of bradycardia and hypotension	Significant bradycardia or asystole in 11/49 in carotid stenting procedures
Harrop JS, et al. 2001 (301) 11564241	Aim: Evaluate hypotension and bradycardia associated with carotid artery interventional procedures Study type: Retrospective Size: 43 pts underwent 47 carotid artery angioplasty and stenting procedures	Inclusion criteria: All pts undergoing carotid artery procedures Exclusion criteria: 10 pts excluded; no reasons given	1° endpoint: Use of pacing for bradycardia and hypotension Results: • Pacemaker activation in 23/37 procedures (73%) • No correlation between PM activation and sex, etiology of stenosis, severity of stenosis, number of inflations	Pacemaker activation common with CEA

Gauss A, et al. 1999	Aim:	Inclusion criteria:	1° endpoint: Progression of AVB, asystole >5 s or	No pts absolutely
(302)	Evaluation of	Consecutive pts with asx	bradycardia <40 bpm >10 s)	required pacing for rate
<u>10456813</u>	transcutaneous pacing in	chronic 1st degree AVB and		support
	pts thought to be at risk	LBBB or bifascicular block.	Results:	
	for bradycardia		• 37 of 39 pts could be paced transcutaneously	
	(trifascicular block)	Exclusion criteria: None	• 0/39 had progression of AVB	
			• 9 pts had bradycardia <40 bpm (6	
	Study type: Consecutive,		intraoperatively and 3 postoperatively)	
	prospective		No pts absolutely required pacing for rate	
			support	
	<u>Size</u> : 39 pts			
Killeavey ES, et al.	<u>Aim</u> : Evaluate the use of	Inclusion criteria:	1° endpoint: Requirement for pacing	 Requirement for pacing
1990 (303)	transvenous pacing	Consecutive pts undergoing		low
<u>15227187</u>	during PCI	PCI	Results:	
			• 2 pts developed ventricular arrhythmias	
	<u>Study type</u> : Retrospective	Exclusion criteria: None	associated with prophylactic pacing (0.5%)	
			• 8/379 had pacing required (2%)	
	<u>Size</u> : 778 pts (398 w/o		Overall incidence for pacing for	
	transvenous pacing and		hemodynamically significant bradycardia in	
	379 with prophylactic		prophylactic situations was 7/777 (0.8%)	
	pacing and 1 emergent			
	pacing)			
Chowdhury T, et al.	<u>Aim</u> : Propofol boluses	Inclusion criteria: N/A	1º endpoint: N/A	Case report discussing
2015 (304)	aborted the trigeminal			that during dural
<u>26656339</u>	cardiac reflex (TCR)	Exclusion criteria: N/A	Results: During dural stimulation, propofol 50	stimulation, propofol 50
	induced severe		mg IV terminated sinus bradycardia	mg IV terminated sinus
	bradycardia during dural			bradycardia
	manipulation.			
	Charles have as Coop age and			
	Study type: Case report			
	Size: 1 pt			
Yong J, et al. 2015	Aim: Evaluate	Inclusion criteria: Cardiac	1° endpoint: Cardiac arrest (bradycardia)	Bradycardia common
(305)	development of cardiac	arrest pts		during laparoscopy
<u>26424701</u>	arrest during laparoscopic		Results:	
	surgery	Exclusion criteria: N/A	• 9/14 bradycardia	
	i	I	• 2 critical points for cardiac arrest:	1

	Study type: Retrospective analysis of the Australian Incident Monitoring Study (AIMS) database		insufflation or establishment of pneumoperitoneum (12/14; 86%) Anesthesia induction (2/14; 14%)	
	Size: 14 cases from			
Viscolo C. et al. 2016	>11,000 pt database	La alcaia a asita sia a NI/A	40 1 1 1 1 1 1 1	
Vimala S, et al. 2016 (306)	Aim: Case report of asystole during dural	Inclusion criteria: N/A	1° endpoint: N/A	Case report of bradycardia during dural
<u>26114985</u>	manipulation	Exclusion criteria: N/A	Results: • Bradycardia and asystole during dural	manipulation
	Study type: Case report		manipulation and excision of a temporal lobe meningioma (near the left insula)	
	Size: 1 pt			
Mohan S, et al. 1990 (307)	Aim: Evaluate the use of transvenous pacing	Inclusion criteria: 60 y undergoing maxillectomy	1° endpoint: N/A	
<u>24788865</u>	during PCI	for squamous cell cancer	Results:	
	Study type: Case report	Exclusion criteria: N/A	 Asystole during posterior osteotomy Bradycardia again during manipulation of the posterior maxillary tuberosity 	
	<u>Size</u> : 1		Treatment by atropine and minimizing surgical manipulation	
Ishii D, et al. 1990	Aim: Evaluate the use of	Inclusion criteria: Pts who	1° endpoint: Bradycardia (<50 bpm or	Cilostazol reduced
(308)	cilostazol for preventing	underwent carotid artery	hypotension (<90 mm Hg)	intraoperative
<u>23834853</u>	bradycardia during	stenting at a single		bradycardia
	carotid artery stenting	institution	Results:	
	Study type: Retrospective	Exclusion criteria: None	 Intraprocedural bradycardia: Cilostazol: 4/26 (15%) No cilostazol: 15/28 (54%) 	
	Size: 53 pts who		Postprocedure bradycardia	
	underwent 54 carotid		o Cilostazol: 0/26	
	artery stenting		o No cilostazol: 3/28 (11%)	
	procedures divided into			
	procedures where pts			
	received cilostazol (26)			
	and those who did not (28)			

Schipke JD, et al.	Aim: 1 pt who developed	Inclusion criteria: N/A	1° endpoint: N/A	Asystole with
2013 (309)	asystole during paranasal			instrumenting the
<u>23332411</u>	sinus surgery	Exclusion criteria: N/A	Results:	paranasal sinuses
			• 15 s of asystole with instrumenting the	
	Study type: Case report		paranasal sinuses	
	<u>Size</u> : 1			
Haldar R, et al. 2013	Aim: 1 pt who developed	Inclusion criteria: N/A	1° endpoint: N/A	Heart rate decreased
(310)	bradycardia during skull			with skull fixation pin
<u>23242253</u>	pin fixation	Exclusion criteria: N/A	Results:	tightening that stopped
			 Heart rate decreased from 88 to 44 bpm with 	when instrumentation
	Study type: Case report		skull fixation pin tightening that stopped when	stopped and recurred
			instrumentation stopped and recurred with	with tightening again.
	<u>Size</u> : 1		tightening again.	
Seo KC, et al. 2010	Aim: Identify possible	Inclusion criteria: ASA I/II	1° endpoint: Bradycardia (<50 bpm) and/or	Bradycardia and
(311)	factors contributing to	pts who received	hypotension (<100 mm Hg or use of ephedrine)	hypotension more
<u>20498810</u>	bradycardia and	interscalene block for		common with tight sided
	hypotension during	arthroscopic shoulder	Results:	procedures
	shoulder surgery	surgery in the sitting	• 13/63 with bradycardia and hypotension	
		position	Bradycardia and hypotension more likely with:	
	Study type: Retrospective		Right sided procedures (R: 27% vs. L: 5%)	
		Exclusion criteria: N/A	Higher use of fentanyl (54% vs. 0.4%)	
	<u>Size</u> : 63			
Jeyabalan G, et al.	Aim: Identify factors	Inclusion criteria:	1º endpoint: Bradycardia	Bradycardia observed
2010 (312)	associated with	Consecutive pts who		with AngioJet procedures
<u>20557186</u>	bradycardia during	underwent	Safety endpoint:	
	pharmacomechanical	pharmacomechanical	• 7/57 (12.3%) had bradyarrhythmias	
	thrombectomy for deep	(AngioJet) therapy for deep	asystole 2	
	vein thrombosis	vein thrombosis	sinus bradycardia: 5	
			More than 1 episode: 4	
	Study type: Retrospective	Exclusion criteria: N/A	Bradycardia resolved in 5/7 pts with cessation	
			of therapy. 2 pts received atropine	
	Size: 57 pts		10 1 1 1 1	
Usami K, et al. 2010	Aim: Describe 3 pts who	Inclusion criteria: Case	1º endpoint: Bradycardia	• Transient
(313)	developed bradycardia	series of pts with		bradycardia/asystole and
<u>20448432</u>	with surgery for	bradycardia during	Results:	hypotension apparently
	cerebellopontine angle	meningioma surgery	Transient bradycardia/asystole and	due to activation of the
	meningiomas		hypotension apparently due to activation of the	trigeminocardiac reflex

	Study type: Case series Size: 3	Exclusion criteria: N/A	trigeminocardiac reflex by direct stimulation of the trigeminal nerve or branches in the dura mater or cerebellar tentorium Remifentanil suggested as a possible contributor	by direct stimulation of the trigeminal nerve or branches in the dura mater or cerebellar tentorium
Lubbers HT, et al. 2010 (314) 20347202	Aim: Describe 3 pts who developed bradycardia with craniomaxillofacial surgery. Study type: Case series Size: 3	Inclusion criteria: Case series, N/A Exclusion criteria: N/A	1° endpoint: Bradycardia Results: Describe 3 pts identified from a single center surgical database with bradycardia during craniomaxillofacial surgery	Purely descriptive with no specific recommendations or findings
Christensen RE, et al. 2010 (315) 19933174	Aim: Describe outcomes in pts with surgically corrected D transposition of the great arteries (D-TGA) undergoing noncardiac surgery Study type: Retrospective Size: 50 procedures (34 pts)	Inclusion criteria: Consecutive pts with surgically corrected D-TGA undergoing noncardiac surgery (43 pediatric and 7 adults) Exclusion criteria: N/A	1° endpoint: Adverse events including bradycardia Results: 4 adverse events. 1 pt with severe bradycardia during abdominal insufflation	4 adverse events observed in pts with congenital heart disease and noncardiac surgeries.
Jacques F, et al. 2009 (316) <u>18657390</u>	Aim: Compare regional anesthesia and general anesthesia for CEA surgery Study type: Retrospective Size: 72 Regional anesthesia: 25 General anesthesia: 47	Inclusion criteria: Consecutive pts undergoing CEA from a single center Exclusion criteria: None	1° endpoint: Hypotension and bradycardia (<60 bpm) Results: Regional anesthesia associated with less intraoperative bradycardia (4%) when compared to general anesthesia (63%)	Regional anesthesia associated with less intraoperative bradycardia

Hanss R, et al. 2008 (317) 18211442	Aim: Evaluate heart rate variability as a tool to identify pts who will have hypotension or bradycardia during surgery Study type: Retrospective model followed by a prospective study Size: 100	Inclusion criteria: High perioperative risk (ASA III/IV) undergoing major vascular or abdominal surgery Exclusion criteria: Not in SR, <18 y, emergency surgery	Pesults: No specific data on bradycardia but those pts with lower heart rate variability (stratified by a total power <500 Ms²Hz⁻¹) were more likely to develop hypotension and bradycardia 4/50 pts in the retrospective model development group had bradycardia (<50 bpm)	Small numbers of bradycardia (mostly hypotension)
Reddy MK, et al. 2008 (318) 18157036	Aim: Describe a pt who developed bradycardia during surgical positioning of an unstable cervical spine Study type: Case report Size: 1	Inclusion criteria: N/A Exclusion criteria: N/A	Pesults: Bradycardia (35 bpm) and hypotension (50 mm Hg) with initial skull positioning Atropine and beta agonists not successful but surgical repositioning of the spine led to resolution and development of a heart rate 100 bpm	Case report of bradycardia with skull positioning
Ardesch JJ, et al. 2007 (319) 17825483	Aim: Describe cardiac responses with vagal nerve stimulation Study type: Retrospective Size: 111	Inclusion criteria: Pts who received a vagal nerve stimulator for treatment of epilepsy Exclusion criteria: None	1° endpoint: Bradycardia Results: 3 cases of bradycardia during intraoperative testing. Not subsequently observed on postoperative testing.	Transient bradycardia can be observed with vagal stimulation.
Jones PM and Soderman RM, 2007 (320) 17223834	Aim: Describe a pt on 2 cholinesterase inhibitors who developed intraoperative bradycardia Study type: Case report Size: 1	Inclusion criteria: N/A Exclusion criteria: N/A	1° endpoint: Bradycardia Results: Bradycardia (35 bpm) with induction of anesthesia	Bradycardia (35 bpm) with induction of anesthesia

Wijeysundera DN, et	Aim: ERC report on	Inclusion criteria: Varied	1° endpoint: Bradycardia	Perioperative beta	
al. 2014 (321)	perioperative BB use	among studies		blockade started within 1	
<u>25091545</u>			Results: Perioperative beta blockade started	d or less before	
	Study type: Meta-analysis	Exclusion criteria: Varied	within 1 d or less before noncardiac surgery	noncardiac surgery	
		among studies	increases risks of intraoperative bradycardia (RR:	increases risks of	İ
	Size: N/A		2.61; 95% CI: 2.18– 3.12).	intraoperative	
				bradycardia	

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Morris D, et al. 1987	<u>Aim</u> : Evaluate the	Inclusion criteria: All pts with	1° endpoint: CHB	Authors do not recommend
(322)	incidence of CHB in pts	LBBB who underwent PA		prophylactic temporary
<u>3675104</u>	with LBBB undergoing PA	catheter placement	Results:	transvenous pacing
	catheter placement		• 5 episodes of CHB in the setting of	
		Exclusion criteria: None	old LBBB but none temporally	
	Study type: Retrospective		related to PA catheter placement	
	6. 47		• 2 episodes of CHB in the setting of	
	Size: 47 pts who underwent 82 PA		new LBBB but none temporally	
	catheter placements		related to PA catheter insertion-	
	catheter placements		though occurred while the catheter was in place	
			·	
Elliott CG, et al. 1979	Aim: Evaluate	Inclusion criteria:	1° endpoint: Arrhythmias, ECG	Transient RBBB fairly rare
(323)	complications associated	Consecutive pts undergoing	changes, or complications	
<u>510002</u>	with PA catheter	PA catheter placement	Baselta Torus i aut DDDD in 20/ of at-	
	placement	Exclusion criteria: None	Results: Transient RBBB in 3% of pts	
	Study type: Prospective	Exclusion criteria. None		
	study type. Flospective			
	Size: 116 PA catheters			
Unnikrishnan D, et al.	Aim: Describe	Inclusion criteria: N/A	1° endpoint: N/A	Transient CHB may occur with
2003 (324)	complications associated			placement of central venous
<u>14570803</u>	with PA catheter	Exclusion criteria: N/A	Results: Complete heart block with	catheter
	placement		central venous line placement in a pt	
			with LBBB	
	Study type: Case report			

Size: 1		

Data Supplement 47. Nonrandomized Trials, Observational Studies, and/or Registries of CABG (Section 8.1.2.1)

Study Acronym; Author; Year Published' PMID	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Bougioukas I, et al. 2017 (336) 28122567	Aim: Correlation of temporary pacing wire removal and bleeding Study type: Observational Size: 4244	Inclusion criteria: Pts undergoing cardiac surgery	Intervention: Cardiac surgery Comparator: Pts who underwent re-exploration unrelated to pacer removal 1° endpoint: 0.18% bleeding after temporary pacing wire removal Safety endpoint: 2 pts died after removal from tamponade	Retrospective review Not clear of decision to leave in and cut wires instead of removal
Bethea BT, et al. 2005 (337) 15620924	Aim: Determine need for temporary pacing Study type: Observational Size: 222	Inclusion criteria: CABG Exclusion criteria: OP- CABG	Intervention: CABG 1° endpoint: 3 risk factors related to need for pacing: DM, need for pacing at CPB separation, preop arrhythmia	Small, retrospective Even after risk factors eliminated 2.6% still needed wires.
Puskas JD, et al. 2003 (338) 14721993	Aim: Compare off- pump vs. on pump CABG Study type: RCT sub- analysis Size: 200	Inclusion criteria: Pts undergoing CABG Exclusion criteria: Addition of valve surgery recognized at time of operation	Intervention: Temporary pacing wires only placed if needed before chest closure 1° endpoint: Only 17% of pts need wires Safety endpoint: No adverse event in the non-pacing wire group	 Not intervention randomized Small, retrospective Does not discuss any need for pacing Swann No adverse event reported from pulling wires

Caspi Y, et al.	Aim: Identify	Inclusion criteria: Pts	Intervention: CABG	Small. retrospective
1987 (339)	incidence of	undergoing CABG		Potentially dated due to changes
<u>3493391</u>	conduction block		Comparator: Pts who did not have conduction block	in surgical technique
	after CABB			
			1° endpoint: 17% had new bundle branch block	
	Study type:		associated with preop MI, low cardiac output and	
	Observational		death	
	<u>Size</u> : 316			
Zeldis SM, et al.	Aim: Identify	Inclusion criteria:	Intervention: CABG	Small, retrospective
1978 (340)	frequency of new	Isolated CABG		 Potentially dated due to changes
<u>306190</u>	fascicular conduction		<u>Comparator</u> : Pts who did not have conduction block	in surgical technique
	disturbances after			
	CABG		1º endpoint: 20% new disturbances, 6% RBBB, 6% LAH.	
			Pts with transient or persistent LBB or L anterior	
	Study type:		hemiblock had increased late mortality and MI	
	Observational			
Cook DJ, et al.	Aim: Assess	Inclusion criteria:	Intervention: CABG	Small, retrospective
2005 (341)	incidence of n ew	Isolated CABG pts		
<u>16242447</u>	conduction defects		<u>Comparator</u> : Pts whose operations were performed in	
	over time after	Exclusion criteria: Pre-	1991 vs. 2001	
	isolated CABG	existing conduction		
		defect, PM, peri-op AF	1º endpoint: Decline in conduction defects from 19%	
	Study type:		to 6%. Associated with year of operation, age, IABP	
	Observational		use, number of vessels bypassed and crystalloid	
			cardioplegia	
	<u>Size</u> : 800			
Tuzcu EM, et al.	Aim: Identify	Inclusion criteria:	Intervention: CABG	Small, retrospective
1990 (342)	incidence and	Isolated elective CABG	Intervention. CADO	Sinail, leti ospective
2387933	significance of new	isolated elective CADO	Comparator: Matched pts w/o conduction defects	
2337333	conduction defects		comparator materica pro w/o conduction defects	
	after CABG		1° endpoint: 5.5% new conduction block, 85% RBBB,	
			4% LBBB. No difference in late mortality or need for	
	Study type:		PM with matched group	
	Observational,			
	matched			

	<u>Size</u> : 2,000			
Ngaage DL, et al. 2007 (343)	Aim: Influence of preop AF on	Inclusion criteria: Pts undergoing CABG with	Intervention: CABG	Small, retrospective
<u>17198809</u>	outcomes after	preop AF	<u>Comparator</u> : Matched pts	
	CABG		1° endpoint: AF pts: higher MACE, late mortality and	
	Study type: observational,		late PM implantation (RR: 2.1)	
	matched			
	<u>Size</u> : 526			
Yesil M, et al. 2008 (344)	Aim: Determine effect of	Inclusion criteria: Pts with CAD and 3rd	Intervention: Revascularization	Small, retrospective
<u>18855876</u>	revascularization on present conduction	degree block	<u>Comparator</u> : Medical management of CAD	
	disturbances	Exclusion criteria:	1° endpoint: 81% in medical arm vs. 73% in	
	Study type:	Acute coronary syndrome	revascularized arm still in 3 degree heart block	
	Observational	Syndrome		
	<u>Size</u> : 53			
Satinsky JD, et al.	Study type:	Inclusion criteria: Pts	1° endpoint: New conduction defects after cardiac	Small, retrospective, mixed
1974 (345)	Retrospective case	undergoing cardiac	surgery	group
4843620	series	surgery	Populter COV of all into had now conduction defeate 420V	
	<u>Size</u> : 280 pts		Results: 6% of all pts had new conduction defects, 12% after valve surgery-only 0.7% of total, both valve pts required PM	

Data Supplement 48. Nonrandomized Trials, Observational Studies, and/or Registries of Open Surgery for Atrial Fibrillation or Valvular Surgery (Section 8.1.2.2. and 8.1.2.3)

Study Acronym; Author; Year Published' PMID	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Dawkins S, et al. 2008 (332) 18154792	Aim: Determine incidence and predictors of PPM after AVR Study type: Observational Size: 354	Inclusion criteria: Pts undergoing AVR Exclusion criteria: Pts with preop pacer	Intervention: PM placement Comparator: No pacer required 1° endpoint: 8.5% required permanent pacer. Only predictor: preop conduction system disease (RR: 2.88).	Small, retrospective
Limongelli G, et al. 2003 (346) 12860869	Aim: Identify incidence and predictors of PPM after AVR Study type: Observational cohort Size: 276	Inclusion criteria: Pts undergoing AVR	Intervention: PPM Comparator: No PPM 1° endpoint: 3.2% required PPM. Risk factors: preop AI, MI, PHTN, and postop electrolyte abnormalities.	Small, retrospective Did not control for preop conduction abnormalities
Bagur R, et al. 2011 (347) 21828221	Aim: Identify incidence and predictors of PPM after AVR in elderly Study type: Observational cohort Size: 780	Inclusion criteria: Pts ≥70 y undergoing isolated AVR Exclusion criteria: Age <70 y, preop PPM/AICD, ascending aortic replacement	Intervention: PPM Comparator: NO PPM 1° endpoint: 3.2% needed PPM, predicted by preop LBB or RBB. PPM associated with longer hospital stay but no survival difference at 30d or 5 y.	Small, retrospective
Baraki H, et al. 2013 (348) 23300203	Aim: Determine if AVN function recovers after PPM post AVR Study type: Observational cohort Size: 138/2,106	Inclusion criteria: PPM post AVR Exclusion criteria: Death	Intervention: PM interrogation 1° endpoint: only 10% of survivors were no longer pacer-dependent	Small, retrospective

Greason KL, et al. 2017 (349)	Aim: Determine if PPM after AVR effects survival	Inclusion criteria: Pts undergoing AVR	Intervention: PPM within 30 d of surgery (N=146)	Small, retrospective
28433222	Study type: Observational cohort		<u>1° endpoint</u> : PPM associated with increased mortality (HR: 1.49).	
Berdajs D, et al. 2008 (350) 18482844 Goldstein D, et	Size: 5,482 Aim: Identify cause of conduction block after MV surgery Study type: Observational cohort, autopsy Size: 391/92/55 Aim: Compare outcomes	Inclusion criteria: 2 populations: (1) those undergoing MV operations and (2) cadaver dissection	Intervention: (1) MVR +/- PPM: (2) dissection 1° endpoint: (1) 23% AVB, 4% needed PPM. (2) 23% of cadavers had AV nodal artery running near MV annulus Intervention: Mitral valve repair or replacement	 Amiodarone, sotalol, cross-clamp time risk factors for PPM; digoxin protective AV nodal artery injury possible mechanism for block Small, retrospective, dissections not on surgical pts. Small
al. 2016 (351) <u>26550689</u>	between chordal-sparing mitral replacement and mitral repair Study type: RCT sub-analysis Size: 256		<u>1° endpoint</u> : Readmission higher in MV repair group largely due to higher rate of PPM/AICD placement (59 vs. 38)	Not designed to answer question
Saint LL, et al. 2013 (352) 23998785	Aim: Identify incremental risk of adding a maze operation in MV surgery Study type: Observational cohort Size: 213	N/A	Intervention: MV surgery plus Maze Comparator: MV surgery w/o Maze 1° endpoint: No difference in mortality, no difference in PM Safety endpoint: Pts not offered a Maze had more	 Small, retrospective PPM 11% in Maze vs. 6% w/o-study likely not powered to show difference Pts not offered a Maze had more serious comorbidities

Gammie JS, et al.	Aim: Identify if AF surgery	Inclusion criteria: All pts	Intervention: MV surgery + preop AF + AF correction	• Non-randomized, no
2008 (353)	increased risk in pts	in database		propensity match,
<u>18291169</u>	undergoing mitral surgery		<u>Comparator</u> : MV surgery + preop AF - AF correction	probable selection bias
		Exclusion criteria: Non-		
	Study type: STS Database	mitral surgery	1° endpoint: Mortality same: PPM higher in Maze	
	sub-analysis		group (AOR: 1.26)	
	<u>Size</u> : 12,235			
Gillinov AM, et	Aim: Determine if the	Inclusion criteria: Pre-op	Intervention: MV+ AF surgery	Not standardized AF
al.	addition of AF surgery to MV	AF + MV surgery		surgery
2015 (354)	surgery is effective		Comparator: MV – AF surgery	 No analysis of repair vs.
25853744				replace
	Study type: RCT		1° endpoint: Lower rate of AF post maze (63% vs.	 Unclear if powered for
			24%), Higher need for PPM (21 vs. 8 per 100 pt y)	PPM endpoint
	Size: 260		(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 W Chaponic
			Safety endpoint: No difference in mortality	
Phan K, et al.	Aim: Determine efficacy of AF	Inclusion criteria: RCT	Intervention: AF surgery	Not standardized lesion
2014 (355)	surgery			set
24650881	33.85.7	Exclusion criteria: RCT	Comparator: No AF surgery	 Subgroup analysis on
<u> </u>	Study type: Meta-analysis of	that did not include		cardiac surgery type not
	16 RCT	sinus restoration or AF-	1° endpoint: No difference in mortality, no difference	available
	10 1.01	free survival	in PPM, higher prevalence of SR in Maze group	• Follow-up ECG or 24 h
	<u>Size</u> : 1,082	ince survival	in this, higher prevalence of 5K in Waze group	Holter
Chikwe J, et al.	Aim: To assess long-term	Inclusion criteria: Mitral	Intervention: Tricuspid repair	
2015 (356)	effect of TV repair		intervention: Tricuspid repair	Selection Bias
, ,	enect of TV repair	surgery	Community No TV renein	• 99% MV repair, likely
<u>25936265</u>	Church turn a Observational	Fuelusian suitania: 2 V	<u>Comparator</u> : No TV repair	avoided anterior leaflet
	Study type: Observational	Exclusion criteria: 3 V	40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Likely not powered for
	cohort	CAD, AV surgery	1º endpoint: No difference in morbidity, mortality or	difference in PPM
	Single CAE		PPM (2.4% vs. 1.3%)	
Cardination	<u>Size</u> : 645	to design outroits Di	Internation Trinsmid and some	6 11 1
Scully HE, et al.	Aim: Describe early and late	Inclusion criteria: Pts	<u>Intervention</u> : Tricuspid replacement	 Small, retrospective
1995 (357)	results after tricuspid valve	undergoing tricuspid	Commenter	 Potentially outdated
<u>7776666</u>	replacement	valve surgery	Comparator:	surgical technique
	Study type: Observational		1° endpoint: 22% required permanent epicardial lead	
	cohort		· · · ·	
	Conort		placement	
	<u>Size</u> : 60			
	<u> </u>	<u>l</u>		

Jokinen JJ, et al.	Aim: Need for PPM after TV	Inclusion criteria: Pts	Intervention: PPM placement	• Small, retrospective
2009 (358)	surgery and implications on	undergoing tricuspid		 Potentially outdated
<u>19463599</u>	morbidity	valve surgery-94%	Comparator: TV surgery w/o PPM placement	surgical technique
		repaired		
	Study type: Observational		1° endpoint: 21% needed PPM, PPM pts had better 5	
	cohort		y survival, MORE TIA and worse CHF and QOL	
	<u>Size</u> : 136			
McCarthy PM, et	Aim: Assess durability of TV	Inclusion criteria:	Intervention: Tricuspid repair	Small, retrospective
al. 2004 (359)	repair	Tricuspid repair		Potentially outdated
<u>15001895</u>			Comparator: Use of Ring vs. No ring	surgical technique
	Study type: Observational			, , , , , , , , , , , , , , , , , , ,
	cohort		1° endpoint: Freedom from TR. In pts who need PPM	
			after repair, Incidence of TR ≥3 is 42%	
	<u>Size</u> : 790			

Data Supplement 49. Nonrandomized Trials, Observational Studies, and/or Registries of Conduction Abnormalities After TAVR (Section 8.1.2.4)

Study Acronym; Author; Year Published' PMID	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Incidence of Conduction	on Abnormality and PPM			
Piazza N, et al. 2008 (360) <u>19463319</u>	Study type: Retrospective Size: 40	Inclusion criteria: CoreValve TAVR 11/2005 3/2008	1° endpoint: Conduction abnormalities and the need for pacing Results: • LBBB: 15% pre, 55% post (p<0.001) • 18% required PPM 2 pts with RBBB required PPM (100%)	 Significant increase in LBBB Pts with RBBB may be at risk for CHB
Roten L, et al. 2010 (361) 21059439	Study type: Observational Size: 67	Inclusion criteria: MDT or Edwards TAVI Follow-up: >30 d Exclusion criteria: Pre- existing PPM	1° endpoint: AV conduction abnormality and/or need for PPM Results: PPM in 34%, 3°HB in 22% 2° HB in 6%, new LBBB in 22%, 3°HB resolved in 64%, RBBB only predictor of CHB (OR: 7.3; 2.4–22.2)	 TAVI associated with AV conduction impairment 3°HB resolves in over half pts Preexisting RBBB at risk for 3°HB

van der Boon, RM, et	Study type: Observational	Inclusion criteria: 36	1° endpoint: Number pacer dependent at median	Improvement in AV
al. 2013 (362)	Study type: Observational	who received new PPM	follow-up 11.5 mo (IQR 5–18)	conduction occurs in over
23295037	Size: 167 pts from	after TAVR	Tollow-up 11.5 Tilo (IQN 5-18)	half of pts
23233037	11/2005–2/2011	arter TAVIN	Results (number dependent):	Hall of pts
	11/2005-2/2011	Exclusion criteria:		
			16 of 30 (53.3%) with HDAVB	
		Existing PPM or no new	Overall 20 of 36 (55.6%)	
S: 1: 00 1 1	6. 1	PPM	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Siontis, GC, et al.	Study type: Meta-analysis	Inclusion criteria:	1º endpoint: PPM post TAVR	Male, baseline conduction
2014 (363)		Studies reporting		disturbance, and
<u>25011716</u>	Size: 41 studies	incidence of PPM after	Results: Increased risk of PPM	intraprocedural AVB are
	encompassing 11,210 pts	TAVR	Men- RR: 1.23; p<0.01	predictors of PPM
			1°block- RR: 1.52; p<0.01	
		Exclusion criteria: 194	L ant hemiblock-RR: 2.89; p<0.01	
		of 235 studies	RBBB- RR: 2.89; p<0.01	
			AVB- RR: 3.49; p<0.01	
Boerlage-Van Dijk K,	Study type: Observational	Inclusion criteria:	1° endpoint: Conduction abnormalities and new	MAC and RBBB predictors
2014 (364)		Single center TAVR	PPM	of new PPM
25040838	<u>Size</u> : 121	10/2007-6/2011		Prosthesis size is a
		Follow-up 1, 3 and 12	Results:	predictor of LBBB
		mo	38.8% new LBBB, half of which were temporary	Production of 2222
			New PPM in 23 pts (19%)	
		Exclusion criteria:	Predictors of new PPM: MAC (OR: 1.3, 1.05–1.56;	
		Valve in valve	p=0.02), RBBB (OR: 8.8, 1.61–44.91; p=0.01)	
			At follow-up: 52% pacer dependent, 22% not	
			paced, 26% intermittent	
Mortality and new PP	L M after TΔVR		pacca) 2070 Intermittent	
Nazif TM, et al. 2015	Study type: Registry	Inclusion criteria: In	1° endpoint: New PPM	8.8% required new PPM
(365)	- sau y syper	PARTNER Registry	<u> </u>	New PPM associated with:
25616819	Size: 1973	17 MATTALIA MEGISTIY	Results: 8% new PPM	longer LOS, more re-
25010819	<u>512C.</u> 1373	Exclusion criteria: Pre-	Predictors: RBBB (OR: 7.03, 4.92–10.06;	hospitalization
		procedure PPM	p<0.0001), prosthesis/outflow tract diameter	New PPM not associated
		procedure i i ivi	ratio (OR: 1.29, 1.10–1.51; p=0.002),	with increased mortality or
			New PPM not associated with increased 1 y	•
			•	decreased EF at 1 y
			mortality.	
FDANICE 2	Charles to an an Dominton	to decide a suite site a 20	EF at 1 y same in PPM vs. no PPM	All III
FRANCE 2	Study type: Registry	Inclusion criteria: 29	1º endpoint:	All-cause mortality same in
Mouillet G, et al.		centers in FRANCE 2	Incidence of new PPM or	PPM vs. no PPM at mean
2015 (366)	<u>Size:</u> 833	registry	Mortality at 242±179 d	follow-up of 8 mo

25573445	1/2010-10/2011			
23373443	1/2010-10/2011	Exclusion criteria: Pre-	Results:	
		existing PPM	30% rate of new PPM	
		CAISTING I I IVI	Mortality PPM vs.no PPM: 16.3 vs. 16.9; p=0.83	
Impact of Mitral Annu	ular Calcification (MAC)		Wortanty 11 W V3.110 11 W. 10.5 V3. 10.5, p=0.05	
Abramowitz Y, et al.	Study type: Observational	Inclusion criteria: 3 y	1° endpoint: 30 d mortality ± MAC	Severe MAC is associated
2017 (367)	<u></u>	series of TAVR at	<u> </u>	with increased all-cause
28039339	Size:	Cedars-Sinai	Results : Severe MAC is a predictor of:	and cardiac mortality and
	761 pts:		overall mortality HR: 1.95 (1.24–3.07; p=0.004)	with conduction
	49.3% MAC	Exclusion criteria: N/A	Cardiovascular mortality HR: 2.35 (1.99–4.66;	abnormalities after TAVR
	Mild MAC 30.4%	,	p=0.01)	Mild and moderate MAC
	Mod MAC 9.5%		New PPM HR: 2.83 (1.08–7.47; p=0.03)	are not predictors of
	Severe MAC 9.5%		(2.00, p 2.00)	adverse outcomes
Predictors and impact	t of new LBBB after TAVR			
Franzoni I, et al.	Study type: Observational	Inclusion criteria: TAVR	1° endpoint: New LBBB	LBBB was NOT a predictor
2013 (368)			<u> </u>	of: PPM, overall mort,
23726173	Size: 238 (2007–2011) San	Exclusion criteria:	Results:	cardiac mort, at 1 y
	Raffaele, Milan	Previous: PPM, RBBB,	New LBBB in 26.5% (ESV 13.5%, MCVS 50%)	, , , ,
	MCRS N=87	LBBB	Persistent LBBB at discharge= 17.2%	
	ESV N=151		New PPM=12.7% (2° CHB, bradycardia)	
Urena M, et al. 2012	Study type: Observational	Inclusion criteria: TAVR	1° endpoint New onset LBBB	Pts with new LBBB at
(369)				discharge are at 20% risk of
23040577	Size: 202, median follow-	Exclusion criteria: No	Results: 30.2% new LBBB	receiving a new PPM but
	up 12 mo	baseline conduction	LBBB resolved in 37.7% at discharge	do not have increased all-
		disturbances	LBBB resolved in 57.3% at 6–12 mo	cause or cardiac mortality
			LBBB at discharge associated with:	LBBB persistent at
			Higher rate of syncope (16.0% vs. 0.7%; p=0.001)	discharge is associated with
			CHB needing PPI (20 vs. 0.7%; p<0.001	increased syncope, CHB
			no increase in global or cardiac mortality	
Testa L, et al. 2013	Study type: Observational	Inclusion criteria:	1° endpoint: New LBBB	• new LBBB post TAVR not
(370)		CoreValve TAVR		associated with higher all-
<u>23443735</u>	Size: 818 10/2007 to		Results: 27.4% new LBBB	cause or cardiac mortality
	4/2011	Exclusion criteria:	At 30 d and 1 y, LBBB not associated with higher	New LBBB at discharge is
		Baseline PPM or LBBB	all-cause or cardiac mortality	associated with a higher
		Received new PPM <48	At 30 d LBBB had higher rate of PPI (4.9% vs. 2%;	rate of PPI at 30 d
		h postop	p=0.02)	
Egger F, et al. 2014	Study type: Single center	Inclusion criteria: TAVR	1° endpoint: Development of high degree AVB	In pts with LBBB after
(371)	prospective			TAVR, intensified

25034184	<u>Size:</u> 50	10 with pre-existing LBBB and 7 with new LBBB received new DDD PMI	Results: 10 of 17 with LBBB developed episode of high degree AVB. In 5/17 (29.4%) the first episode of high degree AVB occurred after discharge (mean follow-up 578 d)	monitoring may be reasonable
Schymik G, et al. 2015 (372) 25388650	Study type: Observational 10/2008–4/2012 Size: 197	Inclusion criteria: New onset LBBB after TAVR Exclusion criteria: N/A	1° endpoint: Mortality Results: 31% new LBBB New LBBB independent predictor of all-cause mortality at 1 y (HR: 1.84; 1.35–2.02) At 1-y survival with PPM not different than survival w/o PPM (81.2% vs. 85.0%; p=0.377)	New onset LBBB is a predictor of increased 1 y all-cause mortality, but mortality is not altered by PPI
Regueiro A, et al. 2016 (373) 27169577	Study type: Meta-analysis Size: 17 studies 4,756 pts w/new LBBB 7,032 pts w/new LBBB&PPI	Inclusion criteria: New LBBB post TAVR Exclusion criteria: N/A	PPI or mortality at 1 y Results: New onset LBBB associated with: PPI (RR: 2.18, 1.28–3.70) Cardiac death (RR: 1.39, 1.04–1.86) No increase in all-cause mort (RR: 1.21, 0.98–1.50) Peri-procedural PPI post TAVR -> NO protective effect on cardiac death (RR: 0.78, 0.6–1.03)	New onset LBBB post TAVR is associated with increased cardiac death and need for PPI at 1 y Peri-procedural PPI post TAVR did not decrease the risk of cardiac death at 1 y.
RBBB as predictor of F	PPI post TAVR			
Mauri V, et al. 2016 (374) 27832845	Study type: Observational Size: 229 8/2013–1/2016	Inclusion criteria: TAVR with Edwards SAPIEN 3 Exclusion criteria: N/A	1° endpoint: PPI Results: Among other preprocedure nonconduction factors, RBBB is an independent predictor of 30 d PPI	 Confusing and self-contradictory paper. Abstract says that RBBB is a predictor of PPI Body of the paper just says that prior conduction abnormalities are predictive.
OCEAN-TAVI Wantanabe, Y, et al. 2016 (375) 27832846	Study type: Registry Size: 749, 102 with RBBB 10/2013–8/2015	Inclusion criteria: TAVR at 8 Japanese centers Exclusion criteria: N/A	 1° endpoint: Incidence of PPI and death with preexistent RBBB Results: New PPI higher in RBBB (17.6% vs. 2.9%; p<.01) Early survival RBBB vs. no RBBB (96% vs. 98.6; p=0.09) Overall survival at 24mo lower in RBBB, log rank p=0.03 	 Pts with RBBB with and w/o PPM at higher risk of cardiac death early after discharge Pts with RBBB should be carefully monitored

			 Cardiac survival lower in RBBB, log rank p<.01 RBBB is a predictor of cardiac death: HR: 2.59 (1.15–5.86; p=0.021) 	
Nazif TM, et al. 2015 (365) <u>25616819</u>	Study type: Analysis of PARTNER Trial and Registry post hoc	Inclusion criteria: TAVR Exclusion criteria: N/A	1° endpoint: Requiring ppm Results: New PPM RBBB vs. no RBBB: 47.6% vs. 12.8%; p<0.001	Pre-existing RBBB is a predictor of PPI after TAVR
Auffret V, et al 2017 (376) 28734885	Size: 2559 Study type: Multicenter Size: 3,527 pts, 362 with preexisting RBBB	Inclusion criteria: TAVR	1° endpoint: Complications and death Results: Preexisting RBBB associated with increased all-cause mortality (HR: 1.31) and CV mortality (HR: 1.45). Baseline RBBB associated with a higher 30-d rate of PPM implant (40% vs. 13.5%; p<0.001)	Preexisting RBBB associated with poorer outcomes in pts undergoing TAVR
Rampat R, et al. 2017 (377) 28641846	Study type: Retrospective multicenter Size: 228 pts	Inclusion criteria: LOTUS TAVR	1° endpoint: PPM Results: PPM in 64 pts for AVB or LBBB and first degree AVB. Preprocedural conduction abnormality associated with higher likelihood for PPM	Pts with preprocedural conduction disturbance and noncalcified AV more likely to require PPM after LOTUS TAVR
Predictors of readmiss	sion post TAVR			
Nombela-Franco L, et al. 2015 (378) <u>26476610</u>	Size: 720 consecutive pts at 2 centers, follow-up 23 mo	Inclusion criteria: TAVR Exclusion criteria: N/A	1° endpoint: Early readmission <30 d Late readmission 30–365 d Results: 4.9% readmitted Average 1.6 readmits /pt	 Although rhythm disturbances cause 21.2% of readmissions, BBB is not a predictor.
Predictors of Late Dea	th after TAVR		Noncardiac 59% vs. cardiac 41% BBB not a predictor of readmission but AF was (p=0.012)	
Urena, M, et al. 2015 (379) 25660921	Study type: Observational Size: 3726	Inclusion criteria: TAVR at 18 centers	1° endpoint: Death from HF and SCD post TAVR mean follow-up 22 mo	 New onset persistent LBBB is a predictor of SCD post TAVR
		Exclusion criteria: N/A	Results:	PPI in LBBB is not protective against SCD

			4% died of HF (15% of total deaths, 46.1% cardiac deaths) 15% died of SCD (5.6% of all deaths, 16.9% of cardiac)	
			Predictors of SCD: new LBBB HR: 2.26 (1.23–4.14; p=0.009)	
			new LBBB and QRS >160 ms HR: 4.78 (1.56–14.63;	
			p=0.006) NO difference in SCD between LBBB w/o ppm	
			(N=471) and LBBB with PPI (N=92): HR: 3.13	
			(0.38–25.63; p=0.287)	
Dizon JM, et al. 2015	Study type: Series of pts in	Inclusion criteria: Trial	1° endpoint: 1 y mortality and re-hospitalization	LBBB/no ppm was not
(380)	PARTNER Trial and	and registry, 1-y follow-		compared to LBBB/new
<u>26261157</u>	Registry- post hoc analysis	up	Results	ppm
			Prior PPM (p=0.001), new PPM (p=0.05) and	 LBBB associated with worse
	Size:	Exclusion criteria: N/A	LBBB/no ppm (p=0.02) all had higher mort than	outcomes but not an
	Prior ppm:586		no PPM	independent predictor of
	New ppm:173		LBBB not a predictor of mortality	mort
	No ppm: 1612		new ppm HR: 1.38(1.0–1.89; p=0.05) and prior	Any PPM: higher 1 y
	LBBB& no ppm: 160		ppm HR: 1.31 (1.08–1.6; p=0.006) predict 1 y mort	mortality

Data Supplement 50. Nonrandomized Trials, Observational Studies, and/or Registries of Pacing after Heart Transplant (Section 8.1.2.5.1)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Mallidi HR, et al. 2017 (381) 28331443	Study type: Retrospective single center study Size: 1,450 transplants	Inclusion criteria: Heart transplant at Stanford Exclusion criteria: None	 1° endpoint: Pacemaker implant Results: 84/1,450 pts (5.8%) had a PPM placed Of these 55 (65%) had the PPM placed within 30 d Early PPM implant with shorter survival compared to late PPM (6.4 y vs. 7.7 y) Incidence of PPM was 2% for bicaval and 9.1% for biatrial transplant More rejection episodes with PPM 	 Decreased PPM need with bicaval transplant PPM more likely with older donor grafts
Wellmann P, et al. 2017 (382) 28101990	Study type: Retrospective single center study Size: 1,179 transplants	Inclusion criteria: Transplant Exclusion criteria: None	1° endpoint: PPM Results: 135/1,179 pts (11.5%) required a PPM PPM more likely with prolonged operation and biatrial transplant (9.4% vs. 4.4 %) Approximately 85% with SND and 15% with AVB No survival differences	PPM mainly for SND Requirement for PPM has decreased with bicaval transplant
Lee W, et al. 2016 (383) 26847073	Study type: Retrospective single center Size: 33 (2 pacing dependent)	Inclusion criteria: Requirement for pacing after transplant Exclusion criteria: None	1° endpoint: Clinical HF or LVEF <35% Results: 2 pts were PM dependent and developed HF 31 pts with a PPM but did not pace continuously did not have HF	 AVB with high RV pacing burden associated with HF Numbers small
El-Assaad I, et al. 2015 (384) 25956965	Study type: Retrospective UNOS database Size: 6,156	Inclusion criteria: Transplant UNOS <18 y old Exclusion criteria: None	1° endpoint: Acute PPM placement Results: 69/6,156 pts required a PPM acutely PPM use decreased over time	PPM recipients with higher risk of infection and dialysis but similar survival

Knight CS, et al. 2010 (385) 19144548	Study type: Case series Size: 6 (2 with autopsy)	Inclusion criteria: Pts identified from a transplant database with	PPM more likely with a biatrial anastomosis, higher donor age PPM pts more likely to have post-transplant infection (48% vs. 26%) 1° endpoint: Pathologic evaluation Results: Autopsy revealed preferential	Rejection can preferentially affect the conduction system
Braith RW, et al. 2000	Study type: Prospective	syncope due to bradycardia Exclusion criteria: None Inclusion criteria:	severe rejection in the cardiac conduction system	Rate adaption helpful
(386) 11144044	treadmill testing Size: 8 pts with PPM	Transplant with PPM Exclusion criteria: None	1° endpoint: Treadmill performance Results: Chronotropic support improves treadmill times (14.6 min vs. 12.4 min) and peak VO₂ (18.9 vs. 15.4 mL/kg/min)	
Bacal F, et al. 2000 (387) 10904516	Study type: Single center retrospective Size: 114 pts	Inclusion criteria: Transplant Exclusion criteria: None	1º endpoint: Temporary or permanent pacing Results: 14/114 (12%) required temporary pacing mainly for SND (78.5%), 4 pts required PPM, 3 for SND Rejection with AF	SND main reason for PPM or temporary pacing after transplant
Nagele H, et al. 1998 1998 (388) 9773864	Study type: Single center retrospective Size: 112 pts	Inclusion criteria: Transplant and placement of epicardial biatrial pacing Exclusion criteria: None	1° endpoint: NYHA class, hemodynamic parameters Results: Modest improvement with biatrial pacing	Biatrial pacing may be beneficial
Jones DG, et al. 2011 (389) 21783383	Study type: Single center retrospective Size: 48 pts	Inclusion criteria: PPM after transplant Exclusion criteria: None	1° endpoint: Prognosis Results: 48/309 pts required PPM after transplant (12.3%) 30 with PPM during hospitalization and 18 with late PPM (3 y after transplant) SND more common early and AVB later.	Late pacing not associated with rejection

			Late pacing not associated with rejection	
Cantillon DJ, et al. 2010 (390) 20601151	Study type: UNOS Size: 35,998 pts	Inclusion criteria: Transplant and PPM Exclusion criteria: None	1° endpoint: Outcomes Results: 3,940/35,987 (10.9%) required PPM PPM recipients with improved survival (8 y vs.5.2 y) Bicaval implant with less PPM (OR: 0.33; 95% CI: 0.29–0.36) PPM associated with increasing donor age (OR: 1.04; 95% CI: 1.00–1.09; p<0.001) and recipient age (OR: 1.09; 95% CI: 1.0–1.12; p<0.001) Transplant CAD (OR: 2.12; 95% CI: 0.92–2.33; p=0.409), donor heart ischemic time (OR: 1.03; 95% CI: 0.97–1.04; p=0.880), and graft rejection requiring treatment (OR: 0.95; 95% CI: 0.84–1.07, P.367) were not associated with PPM requirement.	PPM less common with bicaval PPM not associated with rejection PPM less common with bicaval PPM not associated with rejection

Data Supplement 51. Nonrandomized Studies for Alcohol Septal Ablation/Septal Myectomy (Section 8.1.2.5.2)

Study Acronym;	Study Type/Design;	Patient Population	Primary Endpoint and Results	Summary/Conclusion
Author;	Study Size		(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	

Liebregts M, et	Aim: Evaluate use of ASA	Inclusion criteria: International	1° endpoint:	Heart block more common in
al. 2017 (391)	particularly in younger pts	multicenter study of pts who	All-cause mortality	older pts
28595881	particularly in younger pts	underwent ASA (National	Adverse arrhythmic event (VT, VF,	Authors conclude ASA safe in
20333001	Study type: Retrospective	registries of Germany,	appropriate ICD shocks)	
	analysis of 3 registries	Netherlands, Denmark)	appropriate ICD shocks)	younger ptsDo not discuss PPM use 30 d
	unarysis or 5 registries	Netherlands, Definition,	2° endpoint:	
	<u>Size</u> : 1,197 pts who	Exclusion criteria: None	Periprocedural AVB (<30 d)	after the procedure
	underwent ASA	Exclusion criteria.	PPM	Note that outcomes are better
	under went ASA		PPIVI	with lower dose alcohol use
			Poculto	
			Results	
			Mean follow-up 5.4 y	
			• Complete Heart block	
			o <50: 119/369 (32%)	
			0 51–64: 161/423 (39%)	
			o >65: 169/405 (42%)	
			• PPM	
			o <50: 29/369 (8%)	
			o 51–64: 53/423 (13%)	
			o >65: 65/405 (16%)	
			• ICD (rate support?)	
			o <50: 21/369 (6%)	
			o 51–64: 18/423 (4%)	
			o >65: 11/405 (3%)	
Poon SS, et al.	Aim: Evaluate outcomes	Inclusion criteria: Systematic	1° endpoint: Multiple depending on study	Authors conclude both
2017 (392)	between ASA and	search-keywords:		procedures reduce LVOT
28329292	myectomy	Cardiomyopathy and	Results	gradient
		myectomy and ablation	PPM implant:	
	Study type: Systematic	218 studies	• ASA: 1.7–22%	
	search		• Myectomy: 2.4%–12.5%	
		Exclusion criteria: 15 studies	, 2000, 2, 22.0,	
	Size: 15 articles-14	chosen as best nonoverlapping		
	observational and 1 meta-	studies		
	analysis			
Axelsson A, et al.	Aim: Evaluate AV	Inclusion criteria: Pts who	1° endpoint: Pacing and AV conduction	Late PPM in 3 pts at variable
2014 (393)	conduction over time after	underwent ASA	over time	times after ASA
24662414	ASA			• About 40% of pts who need
		Exclusion criteria: Baseline	Results:	PPM will have recurrent 1:1 AV
	Study type:	CIED	11000110	THE WIN HAVE TECHTETIC I.I AV
	acady cype.	0.25		

	Single center retrospective study Size: 87 pts		 24/87 (28%) pts had PPM paced after ASA 10 lost to follow-up 6/14 remaining pts had recovery of AV conduction at follow-up 6.2 y (2.1–9.4 y) Pts with persistent AVB after ASA had longer PR intervals at baseline Permanent AV conduction abnormalities in pts with baseline 1st degree AVB and persistent CHB 3 pts who initially did not need a PPM later had a PPM implanted (8 mo, 9 y, 	conduction at extended follow- up
Veselka J, et al. 2014 (394) 24360153	Aim: Evaluate outcomes in pts with PPM for AVB after ASA Study type: Retrospective analysis Size: 167 pts	Inclusion criteria: 167 consecutive pts with HCM who underwent ASA for LVOT gradients Exclusion criteria: Baseline CIED	and 9 y after the index ASA) 1° endpoint: 17 pts (10%) required PPM placed 3–15 d after ASA Results: • At follow-up 11/17 (65%) had recovery of AV conduction at 6 mo. • In the nonpaced group 3/150 pts (2%) had PPM placed • Similar outcomes between the paced and nonpaced groups	 Recovery of AV conduction was high at 6 mo. Pacemakers placed if conduction block >24 h In the nonpaced group 3/150 pts (2%) had PPM placed 12–53 mo after ASA Pacing vs. nonpacing does not change clinical outcomes
El-Jack SS, et al. 2007 (395) <u>17300408</u>	Aim: Evaluate ECG changes after ASA Study type: Retrospective Size: 50 pts who underwent ASA	Inclusion criteria: 50 pts who underwent ASA Exclusion criteria: N/A	1° endpoint: ECG changes Results: • ECG changes • New RBBB (57%) • Transient CHB with recovery <24 h: 10 pts (20%) • Persistent CHB (>24 h) requiring PPM: 9 pts (18%) • PPM more likely with baseline LBBB	 PPM placed if CHB >24 h PPM more likely with baseline LBBB 7/9 were still PPM dependent at 14 d New RBBB common (57%)
McCann, GP et al. 2007 (396) <u>17293204</u>	Aim: Evaluate scarring after ASA Study type: Retrospective	Inclusion criteria: Consecutive pts undergoing ASA Exclusion criteria: None	1° endpoint: ECG changes Results: • ECG after ASA • 2 with persistent RBBB	 New RBBB suggestive of more extensive septal infarct At 6-mo follow-up no new PPM

	Size: 27 pts evaluated with MRI at baseline and at 1 mo. 25 pts with baseline, 1 mo, 6 mo		 30 with normal QRS 17 with new RBBB (1/17 required PPM) 9 normal 1 LBBB New RBBB associated with >CPK and larger scar by MRI No change in status at 6 mo (1 PPM in new RBBB pt) 	
Faber L, et al. 2007 (397) <u>17067708</u>	Aim: Evaluate post ASA AV conduction abnormalities Study type: Retrospective cohort Size: 155 pts	Inclusion criteria: 155 Consecutive pts who underwent ASA Exclusion criteria: N/A	1° endpoint: ECG changes Results: Transient AVB: 71/155 pts (46%) Permanent pacing in 11/155 pts (7%) 4/11 pt who required PPM had baseline LBBB AV conduction returned in 4/11 pts who had PPM placed No late development of AVB	 Used a point score for identifying whether to put in a PPM rather than a prescribed time. Point score used AVB recovery but also baseline ECG and LVOT characteristics Pt assessed at 48 h for whether PPM should be implanted
Talreja DR, et al. 2004 (398) <u>15607394</u>	Aim: Evaluate effect of septal reduction therapies on conduction tissue Study type: Retrospective Size: 58 pts who underwent ASA; 117 pts who underwent myectomy	Inclusion criteria: Myectomy or ASA for HCM Exclusion criteria: None	 1° endpoint: ECG changes Results: ASA: RBBB: 21/58 (36%) CHB requiring PPM: 6/58 (12%); 3 of these pts with baseline LBBB Myectomy New LBBB: 47/117 (40%) CHB requiring PPM: 4/117 pts (3%) 	 Can use baseline conduction abnormalities to predict whether CHB will develop. No specific protocol listed on when PPM implanted
Wang S, et al. 2013 (399) 22761504	Aim: Evaluate pts after myectomy Study type: Retrospective Size: 93 pts underwent myectomy	Inclusion criteria: Consecutive pts undergoing myectomy Exclusion criteria: N/A	1° endpoint: ECG changes Results: ECG changes New LBBB: 44/93 (40%) CHB requiring PPM: 3/93 (3%) RBBB: 2/93 pts (2%)	No late PPM identified-though follow-up only to 1 y.

			During follow-up (10.7 mo), no progression of AV conduction abnormalities or PPM	
Agarwal S, et al. 2013 (400) 20170823	Aim: Meta-analysis of myectomy vs. ASA Study type: Meta-analysis Size: 12 studies	Inclusion criteria: All observational studies that compared ASA with myectomy Exclusion criteria: 288 abstracts, 177 excluded for lack of a control/comparison group, 39 excluded because case report/case series	1° endpoint: 30 d all-cause mortality Results: No significant difference in mortality (long-term or short-term), postintervention functional class, postintervention ventricular arrhythmias ASA associated with increased risk for new RBBB (OR: 56.3; 95% CI: 11.6–273.9) ASA associated with increased risk for PPM (OR: 2.6; 95% CI: 1.7–3.9)	No significant difference in mortality (long-term or short-term), postintervention functional class, postintervention ventricular arrhythmias ASA associated with increased risk for new RBBB and PPM
Schuller JL, et al. 2015 (401) 25689552	Aim: Evaluate predictors of late CHB after ASA Study type: Retrospective Size: 145 pts followed for 3.2±2.3 y	Inclusion criteria: 145 pts who underwent ASA Exclusion criteria: N/A	1° endpoint: Late CHB (First identified >48 h after ASA) Safety endpoint: Late CHB in 15/168 pts (8.9%) Late CHB more likely: Multiple ASA procedures (OR: 4.14; 95% CI:1.24–13.9) High resting or provocable LVOT (OR for each 10 mm Hg: 1.14; 95% CI:1.00–1.20) High provocable LVOT gradient after Multivariate analysis a unexplained deaths: new RBBB, found dead 5 mo after 2 nd ASA, new LBBB, found dead 3 d after discharge, no change in QRS, found dead after 5 mo	 Late CHB can be seen in almost 10% of pts Authors suggest post discharge ECG surveillance

Veselka J, et al. 2013 (402) 23927866	Aim: Evaluate predictors of complications after ASA	Inclusion criteria: 421 pts who underwent ASA	1° endpoint: CHB >10 s Early <24 h, late >24 h	 Authors suggest close post procedural monitoring and 5 d hospitalizations after ASA
	Study type: Retrospective multicenter Size: 421 pts from 8 European Centers	Exclusion criteria: If outside 2003–5 (to include only "low dose" era)	Results: Transient CHB in 70/421 pts (17%), Intraprocedural: 51 (12%) Transient: 33 (8%) Late: 12 (3%) Recurrent: 9 (2%) 97% CHB up to 5 th d after ASA PPM in 35% of pts figure 10 d after ASA	
Kim LK, et al. 2016 (403) 27438114	Aim: Evaluate effect of hospital volume on complications after ASA or myectomy Study type: Retrospective evaluation of the Nationwide Inpatient Sample from 2003 to 2011 Size: 11,248 patients underwent septal reduction procedures	Inclusion criteria: All pts who underwent septal reduction procedures Exclusion criteria: N/A	1° endpoint: Mortality, PPM, bleeding Results: PPM: myectomy Total: 9.8% First tertile: 10% Second tertile: 13.8% Third tertile: 8.9% PPM: ASA Total: 11.9 % First tertile: 14.2 % Second tertile: 12.4 % Third tertile: 11.5 %	 PPM common in both myectomy and ASA at discharge No data on post discharge outcomes after myectomy and ASA.
Liebregts M, et al. 2015 (404) 26454847	Aim: Evaluate ASA or myectomy Study type: Systematic review Size: 16 myectomy cohorts and 15 ASA cohorts	Inclusion criteria: Studies of myectomy of ASA Exclusion criteria: N/A	1° endpoint: Mortality, PPM, SCD Results: PPM: ASA: 10 % Myectomy: 4.4%	 ASA with similar mortality compared to septal myectomy but with higher PPM rate and higher likelihood of repeat procedures

Balt JC, et al. 2015 (405) 25073885	Aim: Evaluate use of continuous ECG monitoring after ASA Study type: Retrospective	Inclusion criteria: Pts undergoing ASA with PPM or ILR Exclusion criteria: N/A	1° endpoint: VT/VF or other events recorded on the ILR Results: • Pts with VT/VF often had associated	ILR did not identify any arrhythmias with 3 y monitoring after ASA
			CHB (during hospitalization)	
	Size: 44 pts		No late AVB identified	
Qin JX, et al. 2004 (406) 14715342	Aim: Evaluate conduction tissue after ASA or myectomy	Inclusion criteria: Pts undergoing ASA or myectomy	1° endpoint: ECG Results:	 In pts with preexisting BBB, PPM more likely-approximately 60% (7/12)
	Study type: Retrospective	Exclusion criteria: N/A	 146 pts with normal QRS preprocedure had prolongation of the QRS (72%) RBBB in 62% of pts after ASA 	 Although PPM in 25 pts in the entire cohort-33% PPM dependent at follow-up
	Size: 70 pts ASA; 134 myectomy		LBBB in 93 % of pts after myectomy	
			• 174 pts w/o a preexisting CIED	
			ASA: 22% required PPMMyectomy: 10%	
Chang SM, et al. 2003 (407) 12875767	Aim: Evaluate conduction tissue after ASA	Inclusion criteria: Pts undergoing ASA	1° endpoint: ECG/PPM Results:	Similar hemodynamic benefit regardless of whether a PPM required or not
120/3/0/	Study type: Retrospective	Exclusion criteria: N/A	 Independent predictors for CHB: Women (OR: 4.33) 	required of flot
	Size: 261 pts ASA, 224 w/o a CIED		Bolus injection (OR: 51)>1septal (OR: 4.6)	
			Baseline LBBB (OR: 39) A VD (OR 14)	
			 Baseline 1st degree AVB (OR: 14) Describe 1 pt who developed AVB 5 d after DC 	
			31/224 (14%) required new PPM:At 2-y follow-up 25/31 PPM dependent	
Chen AA, et al. 2006 (408) 16442376	Aim: Evaluate conduction tissue after ASA	Inclusion criteria: Pts undergoing ASA	1° endpoint: ECG/PPM Results:	Authors conclude temporary pacing for 48 h ASA or after resolution of CHB
10772370	Study type: Retrospective	Exclusion criteria: N/A	 Acute CHB in 62% of pts; all normalized within 24 h 	Authors conclude that pts w/o acute CHB or new IVCD are at low risk for subacute CHB

Page 214

	Size: 52 pts ASA, 224 w/o a CIED		• Recurrent CHB in 13 pts (25%), 36±22 h)	
Lawrenz T, et al. 2007 (409) 17572252	Aim: Evaluate conduction tissue after ASA Study type: Retrospective Size: 172 pts underwent simultaneous ASA and EPS	Inclusion criteria: Pts undergoing ASA Exclusion criteria: N/A	1° endpoint: ECG/PPM Results: Intraprocedural AVB Delayed AVB occurred in 15 pts (8.7%) 1–6 d after ASA. All of these pts showed lack of VA conduction No pt with intact VA conduction after ASA developed delayed CHB	Intact VA conduction a helpful sign for determining whether a PPM will be required
			 Risk factors for delayed AVB were advanced age, intraprocedural CHB, and prolonged QRSd before or after ASA PPM in 20 pts 	

Data Supplement 52. Nonrandomized Studies for ICDs for Alcohol Septal Ablation/Septal Myectomy (Section 8.1.2.5.2)

Study Acronym;	Study Type/Design;	Patient Population	Primary Endpoint and Results	Summary/Conclusion
Author;	Study Size		(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	
Wang W, et al.	Aim: Evaluate NSVT as a	Inclusion criteria: Single	1° endpoint:	NSVT confirmed to be a
2017 (410)	predictor for appropriate ICD	center	ICD treated VT/VF	risk factor in pts with ICDs
<u>28314849</u>	therapy			
		Exclusion criteria: None	Results:	
	Study type: Retrospective		NSVT associated with appropriate ICD therapy:	
	analysis		No NSVT: 10.2%	
			NSVT: 47.4%	
	Size: 160 pts who underwent			
	ICD implant			
Thavilkulwat AC,	Aim: Evaluate appropriate	Inclusion criteria: Single	1° endpoint: ICD treated VT/VF	Appropriate ICD therapy
et al. 2016 (411)	ICD use in HCM	center review of pts with		lower than previously
<u>27138377</u>		HCM receiving an ICD	Results:	reported
	Study type: Retrospective		Appropriate ICD therapy in 25 pts	
		Exclusion criteria: NR	Primary prevention: 2.6%/y	
	Size: 135 pts with ICD		Secondary prevention: 9.8%/y	

٨	laron BJ, et al.	Aim: Evaluate appropriate	Inclusion criteria:	1° endpoint: ICD treated VT/VF	Presence of any risk factor
2	007 (412)	ICD use in HCM	Multicenter Registry of		sufficient to confer risk
1	7652294		pts with HCM receiving	Results:	
		Study type: Retrospective	an ICD	Appropriate ICD therapy:	
				Primary prevention: 3.6%/y	
		Size: 506 pts with ICD	Exclusion criteria: NR	Secondary prevention: 10.6%/y. Similar event	
				rates for 1,2, or 3 risk factors for SCD	

Data Supplement 53. Nonrandomized Trials, Observational Studies, and/or Registries of Adult Congenital Heart Disease (ACHD) (Section 8.2)

Study Acronym; Author; Year	Aim of Study Study Type Study Size (N) Patient population	Primary endpoint results (p values OR or RR; & 95% CI)	Relevant 2° Endpoint (if any) Study limitations Adverse events	Outcomes
Gelatt M, et al. 1997 (413) 8996314	Aim: Examination of mortality after Mustard Study type: Retrospective observational; 534 pts – single center	Pacemaker implantation is required in 11% of these pts over 35-y follow-up.	No PM implant	 Loss of SR is associated with higher mortality Late SND and PM implantation is common
Helbing WA, et al. 1994 (414) 8041184	Aim: Assess long-term results of atrial switch Study type: Retrospective observational; 122 atrial switch pts followed for a median duration of 16 y	Loss of SR occurred in 50– 80% of pts depending on type of surgery	Sinus rhythm maintained	Loss of sinus node function is especially common in this group
Anand N, et al. 2006 (415) 16762984	Aim: Evaluate the association of bradycardia with atrial flutter Study type: Retrospective casecontrol; 84 pts; CHD and with or w/o atrial arrhythmias	Development of atrial arrhythmias	Pacemaker implant	Late postop atrial flutter is associated with chronotropic incompetence in CHD pts.
Diller G, et al. 2006 (416) 16979014	Aim: Assess the long-term outcomes in atrial switch pts	Heart rate reserve predicted mortality independently of	Pts who did not develop CHB	Blunted heart rate with exercise predicts an enhanced mortality risk

	Study type: Retrospective observational; 727 consecutive pts with CHD; longitudinal follow-up	antiarrhythmic therapy, functional class, and peak VO ₂		independently of antiarrhythmic medication
Janousek J, et al. 1994 (417) 7846933	Aim: Determine the natural history for pts with an atrial switch	SND	N/A	SND occurred in 51% of pts
	Study type: Retrospective observational; 359 pts with transposition and atrial switch; longitudinal follow-up			
Fishberger S, et al. 1997 (418) 9011705	Aim: Identify factors that influence the development of atrial flutter after Fontan operation	Development of atrial arrhythmias	N/A	The presence of SND was associated with a higher incidence of atrial flutter (p<0.001).
	Study type: Retrospective observational; 334 pts with prior Fontan surgery; longitudinal follow-up			
Michaëlsson M, et al. 1995 (216) <u>7634461</u>	Aim: Longitudinal study of isolated congenital complete AVB in adult life	 Mean age at death: 38 y SA attacks in 27 pts, (8 fatal) 6 was first event 	N/A	High incidence of unpredictable SA attacks
	Study type: Prospective follow-up 102 pts	PM reduced the risk of death		
Dewey RC, et al. 1987 (419) 3821827	Aim: Define long-term natural Hx of congenital CHB Study type: 27 pts prospectively followed with frequent Holters for a mean of 8 y; longitudinal follow-up	No pts with a mean daytime heart rate of 50 bpm or more had an adverse clinical outcome	N/A	Mean daytime junctional rate below 50 bpm may represent a manifestation of junctional instability and should be viewed as a risk factor for sudden death or eventual need for a PPM
Lundtsrom U, et al. 1990 (420) 2337032	Aim: Natural Hx of ccTGA Study type: 111 pts with ccTGA 20-y follow-up	Major risk factor for early death: heart block	N/A	N/A
Connelly MS, et al. 1996 (283)	Aim: Clinical outcome of ccTGA	40% required PPM	N/A	High rate of AVB
8609349	Study type: Retrospective observational; 52 pts			

Graham TP, et al. 2000 (421) 10898443	Aim: Long-term outcome in ccTGA Study type: Multicenter retrospective	41% required PPM	N/A	PM implantation common. Also associated with systemic ventricular dysfunction
Khairy P, et al. 2006 (422) 16702467	182 pts from 19 institutions Aim: Assess risk of thromboemboli in pts with transvenous pacing leads and intracardiac shunts Study type: Multicenter, retrospective cohort study of 202 pts with intracardiac shunts	Transvenous leads an independent predictor of systemic thromboemboli (HR: 2.6; p=0.0265)	N/A	Transvenous leads incur a >2-fold increased risk of systemic thromboemboli in pts with intracardiac shunts
DeSimone CV, et al. 2013 (423) 23946264	Aim: Stroke or TIA in pts with endocardial leads and a PFO Study type: Retrospective observational; 6,075 pts (364 with PFO)	1° endpoint: Stroke/TIA: 30/364 (8.2%) PFO vs 117/5711 (2.0%) non-PFO (HR: 3.49; 95% CI: 2.33– 5.25; p<0.0001)	N/A	Presence of a PFO is associated with a substantially increased risk of embolic stroke/TIA
Kim MH, et al. 2001 (424) 11230857	Aim: Assess prevalence and natural history of complete AVB after valvular heart surgery. Assess the optimal timing of PM implantation Study type: Retrospective observational; 155 pts with valvular surgery; 17 (11%) pts had complete AVB in the postop period	 At 1-y follow-up: 5 of 9 pts (56%) remained in complete AVB 2 of 9 pts (22%) had resolution of AVB 2 of 9 (22%) lost to follow-up 	N/A	If complete AVB is present after aortic and mitral valve surgery within the first 24 h postop and persists for >48 h, it is unlikely to resolve within the next 1–2 wk
Glikson M, et al. 1997 (425) 9388104	Aim: Define long-term dependency in permanent pacing after cardiac surgery Study type: Retrospective observational; 120 adults post-cardiac surgery who received PPM	Postop complete AVB is the most important predictor of PM dependency	N/A	In pts with complete AVB, an early decision to implant a permanent PM is probably justified
Edwards W, et al. 1978 (426) 625125	Aim: Examination of postmortem findings of the sinus nodal tissue in pts with an atrial switch procedure	Sinus nodal artery damage	N/A	• The sinus node showed acute necrosis or compression in 77% of cases

	Study type: 32 pts; atrial switch pts; postmortem pathological analyses			Para-nodal areas were damaged in 100% of pts
Sanders P, et al. 2004 (427) <u>15007004</u>	Aim: Atrial mapping in pts with SND Study type: 32 pts, 16 pts with SND, 16 controls; case control comparative analysis	SND	Normal hearts with no evidence of SND	SND is associated with diffuse atrial remodeling characterized by structural change, conduction abnormalities, and increased right atrial refractoriness. Also associated with caudal shift of PM
Bolens M and Friedli B 1984 (428) <u>6720586</u>	Aim: EP mapping of sinus and AV nodal function in pts with secundum ASD Study type: Case control comparative analysis; 18 pts studied before and after surgical closure	Prior to surgery	Following ASD repair	 Sinus nodal, atrial conduction, atrial refractory and AV nodal refractory times improved following surgery Ectopic atrial rhythms developed postop in a third of pts
Gillette PC, et al. 1974 (429) 4818151	Aim: Electrophysiological examination of atrial, sinus and AV nodal function Study type: Prospective observational 16 pts studied following atrial switch surgery (Mustard)		N/A	SND was the primary abnormality detected
Garson A, et al. 1985 (430) 4031302	Aim: Identify predictors of death in younger pts (predominantly CHD) and atrial flutter Study type: Longitudinal retrospective observational; 380 pts followed long-term for morbidity and mortality		N/A	 Effective control of atrial flutter was associated with improved outcomes Surgical repair in CHD pts with atrial flutter results in a marked improvement in outcomes
Albin G, et al. 1985 (431) 4033231	Aim: SND in young adult pts: treatment by implantation of a PPM Study type: Retrospective observational; 39 pts, mean age 23 y; most commonly TGA; mean follow-up of 50.5 mo	No PM-related deaths	N/A	 Permanent pacing is an effective therapeutic modality Prognosis seems to be excellent Mortality unrelated to pacing

McLeod CJ, et al. 2010 (432) 20563634	<u>Aim</u> : Epicardial versus endocardial permanent pacing in adults with congenital heart disease	Re-intervention was driven primarily by lead failure (49%)	N/A	Epicardial systems were most likely to develop lead failure, predominantly in the ventricular lead
	Study type: Retrospective observational; 106 pts and 259 PM procedures: SND in 20%, heart block (25%); followed for 11.6±14 y			
Walker F, et al. 2004 (433) 15145118	Aim: Long-term outcomes of cardiac pacing in adults with congenital heart disease Study type: Retrospective observational; 168 adults with CHD, and with PMs; mean age at implant was 28 y; mean pacing duration 11 y at follow-up		N/A	Lead complications were not significantly different for epicardial vs. endocardial improved lead survival in pts with endocardial leads
Bink-Boelkens M, et al. 1983 (434) 6869177	Aim: Identification of surgical factors which affect the development of bradycardia and arrhythmias Study type: Retrospective observational; 204 pts with secundum ASD repair, 50 pts with atrial switch (Mustard)		N/A	Postop atrial flutter is common occurring in 20–40% of the group Damage to the sinus node at surgery was considered a major predictor of SND
Stephenson E, et al. 2003 (435) <u>14516898</u>	Aim: Efficacy of atrial ATP in treating atrial flutter in ACHD pts Study type: 5 pts with atrial arrhythmias	AT was appropriately detected and ATP was enabled for 167 treatable episodes, successfully converting 90 (54%)	N/A	Atrial tachycardias in congenital heart disease are amenable to ATP algorithms
Rhodes LA, et al. 1995 (436) 7659551	Aim: Atrial ATP in ACHD after repair of congenital heart disease Study type: Prospective cohort 18 pts (2–32 y with a variety of antitachycardia congenital heart lesions underwent atrial PM	Over 4–30 mo, 6 pts had 189 episodes of tachycardia successfully converted with atrial ATP	N/A	In selected cases, atrial ATP is a useful tool in the management of pts with congenital heart disease and atrial arrhythmias

	placement for recurrent atrial tachycardia			
Weindling SN, et al. 1998 (284) <u>9723647</u>	Study type: Out of 2,698 cardiac surgeries 54 (2%) were complicated by CHB	Recovery of AV conduction occurred by postoperative d 9 in 97% of pts with transient heart block	The greatest risk for CHB occurred in surgery for: LVOT ccTGA VSD Tetralogy of Fallot Majority were children	Heart block following surgery for congenital heart disease resolves in 2/3 of pts, usually by the 9th postop day
Ayyildiz P, et al. 2015 (437) 26517970	Aim: Evaluation for AVB following pediatric cardiac surgery for CHD Study type: Retrospective observational; 1,550 pts with CHD surgery between 2010–2015; median age 0.5–1 y	• Complete AVB occurred (6.2%) in the early postop period • 97% of transient AVB recovered by d 10; 84% at 1 wk	Tetralogy of Fallot and complete AV septal defect are at highest risk	Transient AVB occurred in 12%, and complete AVB in 6% Transient AVB recovered almost entirely by 10 d
Aziz PF, et al. 2013 (438) 23179430	Aim: Evaluation for AVB following pediatric cardiac surgery for CHD Study type: Retrospective, observational, single center, cohort; pediatric not adult group; 44 pts in this study who experienced TCHB - 37 recovered completely	All 37 subjects with transient heart block recovered AV conduction within 12 d	N/A	Delayed recovery of conduction after transient AVB (≥7 d) is a predictor of late block
Lin A, et al. 2010 (439) 20381087	Aim: Evaluation for AVB following pediatric cardiac surgery for CHD Study type: Retrospective, observational, single center; 922 pts, median age 6 mo	Postop AVB developed in 2.3% transient, with recovery at mean of 3 d in 1.4% permanent, with PPM implanted at mean 10 d 0.9%	N/A	By 10 d minimal recovery of transient AVB is present

Data Supplement 54. RCTs, Nonrandomized Trials, Observational Studies, and/or Registries of Bradycardia and Pacemaker Implantation in Patients with an Acute MI (Section 8.3)

Study Acronym; Author; Year	Aim of Study; Study Type	Patient Population	Study Intervention / Study Comparator	Primary endpoint results (p values OR or RR; & 95% CI)	Summary/Conclusion Comments
Domenghetti G, et al. 1980 (440) 7363920	Aim: Examine impact of acute intraventricular conduction abnormalities on survival following acute MI Study type: Retrospective observational	59 pts admitted to CCU – single center	N/A	 IV conduction disturbances Mortality 13% if AVB present 	 Higher mortality in the context of intraventricular conduction abnormalities following an MI. This was evident short term and long term. Mortality rate twice the comparator group
Col JJ and Weinberg SL 1972 (441) 5060806	Aim: Assess incidence and mortality of conduction defects following AMI Study type: Retrospective observational	212 consecutive pts admitted to CCU with MI	N/A	IV conduction disturbances	 Most common defect was LAH Mortality rate among those with IV conduction abnormal – 47% vs. 21%
Ritter WS, et al. 1976 (442) 952264	Aim: Evaluate prognosis following permanent pacing in pts with trifascicular block following AMI Study type: Retrospective observational	18 pts with RBBB, LAH and transient CHB during AMI	Pts who received a PPM	 5/6 pts w/o PPM died within 2.4 mo of discharge 6/12 pts with a PPM survived (mean survival 18 mo) 	Prophylactic permanent pacing significantly improves the prognosis after MI in this select subgroup
Lamas GA, et al. 1986 (443) <u>3717016</u>	Aim: Development of a method to predict CHB following AMI Study type: Retrospective observational	698 pts with AMI.	N/A	Pts who developed CHB	CHB risk score can predict risk of CHB development based on ECG findings.
Shaw, DB et al. 1980 (444) 7357290	Aim: Determine the natural Hx for pts with sick-sinus syndrome Study type: Prospective survey	381 pts with sinoatrial disease	N/A	Longitudinal study of pts with sinus node disease	 Sinoatrial dysfunction has a benign prognosis, and PPM implantation did not affect mortality – yet did improve symptoms Acute MI during this follow-up did not affect

					mortality in a significant manner.
Hindman MC, et al. 1978 (445, 446) <u>688580</u> <u>688579</u>	Aim: To identify determinants of SCD or recurrent high degree AVB in pts following MI with BBB Study type: Retrospective observational	432 pts with AMI and BBB.	N/A	• Mortality	 Pts with progression to 2nd or 3rd degree AV have increased mortality Pts with transient high degree AVB during MI had a 28% incidence of sudden death or recurrent high degree block during the first year of follow-up At highest risk were those pts with RBBB and left fascicular block
Ginks WR, et al. 1977 (233) 836733	Aim: Assess long-term prognosis of AMI with AVB Study type: Retrospective observational	52 pts with CHB and AMI	21 hospital survivors w/o PPM followed for 49 months	 10 /14 survived w/o PPM PPM failed to prevent sudden death in 2/4 	 Recommendation: PPM implant is not justified in pts with partial bilateral bundle-branch block following AMI
The Birmingham Trial Watson RD, et al. 1984 (231) 6475712	Aim: To determine whether permanent pacing reduces mortality in pts with fascicular block ≥14 d post-MI, and whether measurement of intracardiac conduction times predicts later death. Study type: RCT Size: 50 pts	Inclusion criteria: Survived at least 14 d after AMI; RBBB alone or in combination with left anterior or left posterior hemiblock or left posterior hemiblock alone Exclusion criteria: Age ≥70 y; previous ECG evidence of conduction disorder, LBBB	Intervention: Permanent pacing Comparator: No permanent pacing Resting intracardiac conduction times were measured in both groups prior to pacing	1° endpoint: No difference in mortality Safety endpoint: N/A	 Progression of conduction disease was not observed Measurement of infranodal conduction time (HV interval) did not predict outcome Ventricular arrhythmia was an important cause of death
Meine TJ, et al. 2005 (447)	Aim: Incidence, predictors, and outcomes of high-	70,742 pts with STEMI compared	N/A	Incidence of AVB was 6.9%	In the thrombolytic era:

<u>15990751</u>	degree AVB AMI treated with thrombolytics Study type: Meta-analysis from 4 studies	with 5,251 pts with STEMI and AVB		 AVB and inferior MI, mortality OR: 2.2 (95% CI: 1.7–2.7) AVB and anterior MI, mortality OR: 3.0 (95% CI: 2.2–4.1) 	 AVB in the setting of STEMI is common It is associated with higher mortality
Gang UJ, et al. 2012 (448) 22645234	Aim: High-grade AVB in STEMI pts treated with PCI Study type: Retrospective observational	2073 STEMI pts with primary PCI from Danish National Registry	All-cause mortality was the primary endpoint	 High-grade AVB: 3.2% Early mortality higher Yet equal mortality at 30 d compared with pts w/o AVB 	In primary PCI era: • incidence of AVB in STEMI pts treated with PCI has been reduced • If pts survive to 30 d: mortality is equal to non- AVB pts
Auffret V, et al. 2016 (449) 26660871	Aim: High-grade AVB complicating STEMI (2006–2013) Study type: Large prospective registry	6,662 pts with STEMI	N/A	 AVB in 3.5% AVB at admission or in first 24 h had higher mortality rates (18.1% and 28.6%) 	Combine thrombolytic and primary PCI: • HAVB was not independently associated with in-hospital mortality
Kim HL, et al. 2014 (450) 25304975	Aim: High-grade AVB on 30-d outcome following AMI in the drug-eluting stent era Study type: Retrospective observational	13,862 pts with AMI, registered in the nation-wide AMI database from 2005–2013	N/A	 Heart block occurred in 2.7% Pts with heart block showed worse clinical parameters at admission, presence of AVB associated with 30 d MACE in univariate but not multivariate after adjustment 	STEMI treated with DES: Heart block was not an independent risk factor for 30-d MACE in adjusted analyses LAD culprit was an independent risk factor for 30-d MACE among pts with heart block
Singh SM, et al. 2015 (234) 25205530	Aim: High-grade AVB in acute coronary syndromes Study type: GRACE registry	59,229 pts with ACS between 1999 and 2007	N/A	 2.9% of pts had HAVB High in-hospital death (23%) Pts with AVB surviving to discharge had similar adjusted survival at 6 mo compared with those w/o AVB 	 AVB is continues to decrease Mortality dictated by type of MI and time to reperfusion
Ranganathan N, et al. 1972 (451) 5009474	Aim: Determine the validity of His bundle recordings in managing BBB	20 pts with BBB and 13 pts w/o BBB	EPS	Abnormal His-Purkinje conduction	BBB may be associated with infra-nodal conduction abnormalities as evidenced by an abnormal His recording

	Study type: Prospective observational				
Scheinman MM, et al. 1975 (82) 1157275	Aim: Use of atropine in pts with acute MI and sinus bradycardia Study type: Retrospective observational	56pts with AMI and sinus brady	N/A	Atropine improved AV conduction in 11 of 13 pts (85%) acute inferior MIs (with 2 nd or 3 rd degree AVB	 Atropine recommended as drug of choice for sinus brady and AMI 7 pts developed 10 side effects: VT/VF, ventricular ectopy
Swart G, et al. 1999 (80) 10597081	Aim: Use of atropine in acute MI in prehospital setting Study type: Retrospective Observational	131 pts with acute MI and associated bradycardia	Atropine	N/A	 No difference in response to atropine between AMI vs. non-AMI pts MI pts are more likely to recover conduction in hospital
Feigl D, et al. 1984 (160) 6736451	Aim: Early and late AVB in acute inferior MI Study type: Single center retrospective cohort	34 pts with 2nd or 3rd degree AVB developing in course of AMI who survived >72 h	Atropine	Of 15 pts with early AVB (<6 h). Atropine normalized conduction in 20%, increased V-rate in others. 5 had normalization with isoproterenol. 14 pts had late AVB – less response to atropine (mean 16 bpm). 50% required TPM	No adverse events to drug therapy reported
Bertolet BD, et al. 1995 (163) 7661495	Aim: Theophylline for the treatment of AVB after MI Study type: Single center retrospective cohort	8 pts with significant AVB developing within 4 h of admission for acute inferior MI, resistant to atropine, given IV theophylline up to 250 mg	Aminophylline	All 8 pts had restoration of 1–1 AV conduction within 3 min lasting at least 24 h	 Potentially safe Efficacy in very small study
Altun A, et al. 1998 (164) <u>9789698</u>	Aim: Effect of aminophylline in pts with atropine-resistant later advanced AVB during acute inferior MI	8 pts with 2 nd or 3 rd degree AVB after IMI for at least 1 h, resistant to atropine.	Given 2 doses of aminophylline 240 mg 1 h apart	Aminophylline restored 1-1 AV conduction in 7 pts and Mobitz I AVB in 1. No adverse effects. AVB relapsed in 1 pt only	Very small, single-center experience

	Study type: Retrospective observational				
Hatle L, et al. 1971 (167) 5557475	Aim: Conservative treatment of AVB in AMI Study type: Results in 105 consecutive pts	Pts with acute MI treated with 2 nd or 3 rd degree AVB	Treated with isoproterenol, generally 1–3 mcg/min	• In hospital mortality 48%. 60 pts received isoproterenol: 38 (63%) had increase in heart rate and BP; 12 (20%) had increased in heart rate but minimal change in BP; 8 (13%) had minimal change; 2 (3%) isoproterenol terminated due to ventricular ectopy. 3 pts had ventricular fibrillation on isoproterenol, 1 of which died. 14 pts treated with TVP, 3 of whom died from ventricular fibrillation	Extremely high mortality In this group, isoproterenol appeared safe compared with TVP
Hynes JK, et al. 1983 (115) 6823157	Aim: 5-y experience with TPM therapy in the coronary care unit. Study type: Retrospective, observational, single-center Size: N = 1,022	1,022 pts in the coronary care unit with TTVP.	Temporary transvenous pacing	1° endpoint: Clinical outcomes Results: Access was antecubital in 59%, subclavian in 17%, right internal jugular in 11%, and femoral in 5%. Complications occurred in 13.7% with no deaths. The right internal jugular approach was associated with a decreased risk of complications.	TTVP was associated with an overall risk of complications in approximately 14% of pts.
Jowett NI, et al. 1989 (120) 2594596	Aim: Temporary transvenous cardiac pacing: 6 y experience in 1 coronary care unit Study type: Retrospective, observational, single-center	162 pts admitted to coronary care unit who underwent TTVP.	Temporary transvenous pacing	• The majority of TTVP was for CHB and MI (84.6%). 15.4% of TTVPs were placed for symptomatic bradycardia, including SND. Complications occurred in 19.8%, including arrhythmias during insertion, dislodgement, pneumothorax, and perforation.	 TTVP was associated with a 19.8% complication rate. Some TTVP was prophylactic and may not have been indicated. A minority of TTVP was performed for SND (15%)
Rotman M, et al. 1972 (452) 4551931	Aim: Bradyarrhythmias in AMI	539 pts with acute MI (prethrombolytic and pre-PCI)	Short- and long- term outcomes	 Incidence of sinus bradycardia 26% 3-fold more frequent in the setting of inferior infarction 	Sinus brady is common Sinus bradycardia not associated with worse outcomes

Study type: Retrospective,	Overall mortality of 539 pts was
observational, single-center	20%.
	• In those pts with sinus
	bradycardia the mortality was
	10%.

Data Supplement 55. Nonrandomized Data for Predicting Bradycardia Associated with Seizures (Section 8.4.1)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Bestawros M, et al.	<u>Aim</u> : Evaluate incidence of	Inclusion criteria: Database	1° endpoint: Ictal asystole	 Permanent pacing can be
2015 (453)	ictal asystole	searched for pts with ictal		considered if seizure
<u>25391254</u>		asystole defined as RR	Results:	poorly controlled by drug
	Study type: Retrospective	interval >3s and >2-fold	• 10 pts with 76 seizures with 26 ictal asystole	or surgery
	evaluation of an epilepsy	lengthening over the prior	events, 15 of which had associated syncope	
	database	RR interval	 Seizure with asystole duration >6 s 	
			associated with syncope	
	<u>Size</u> : 10 ictal asystole events	Exclusion criteria: None	All with temporal lobe seizure	
	from 5,312 video-EEG/ECG		 8 pts received a PPM with resolution of 	
	studies		syncope	
Lanz M, et al. 2011	Aim: Evaluate incidence of	Inclusion criteria: >3 s	1° endpoint: >3 s pause	No cases of sudden
(454)	ictal asystole			unexpected death in
<u>21183363</u>		Exclusion criteria: None	Results:	epilepsy with a mean
	Study type: Retrospective		• 7/2,003 pts with bradycardia	follow-up of 5.6 y
			• 1 pt with insular seizure prolonged, the rest	
	Size: 2,003 pts undergoing		were self-limited though durations of 5, 6,	
	video EEG/ECG studies		25, 29, 34, 35, and 77 s and from the	
			temporal lobe	
			Sinus arrest in 3. CHB in 4	
			Pacemakers in 6	
Schuele SU, et al.	Aim: Evaluate incidence of	Inclusion criteria: >3 s and	1° endpoint: >3 s pause	No specific data on
2007 (455)	ictal asystole	>2-fold lengthening over the		response to pacing
<u>17664402</u>		prior RR interval	Results:	
	Study type: Retrospective		• 10 pts with ictal asystole	
		Exclusion criteria: None	8 temporal	
	Size: 6,825 pts undergoing		Pacemakers in 6 of 8 pts	
	video EEG/ECG studies			

Tamui D. at al. 2017	Aires Fredricks incidence of	Indicates suitanias > 2 a and	40 1 1 1 2	
Tenyi D, et al. 2017	Aim: Evaluate incidence of	Inclusion criteria: >3 s and	1° endpoint: >3 s pause	No specific data on
(456)	ictal asystole using a	>2-fold lengthening over the	_	response to pacing
<u>27988965</u>	systematic review	prior RR interval	Results:	
			Localization:	
	Study type: Systematic	Exclusion criteria: None	o Temporal: 80–82%	
	review		o Frontal: 6–10%	
			o Insular: 3–5%	
	Size: 157 cases of ictal		o Other 3–11%	
	asystole pts undergoing video		Duration	
	EEG/ECG studies		o <30 s: 90%	
			o >30 s: 10%	
			• Rx:	
			Pacemaker: 35/68	
			• Adjusted AED: 25/33 pts who did not receive	
			a PPM	
			• Surgery: 8/33	
			o Rx response:	
			 Pacemaker: no asystole falls,14/33 	
			with recurrent seizures, 19/33 w/o	
			recurrent seizures	
			 Adjusted AED: 5/23 with recurring 	
			asystolic falls, 6/23 with recurrent	
			seizures (w/o asystole), 12/23 w/o	
			recurrent seizures	
			o Surgery:	
			No asystolic falls, 2/8 with recurring	
			nonasystolic seizures, 6/8 w/o	
			recurrent seizures	
			recurrent seizures	

Data Supplement 56. Nonrandomized Data for Device Type (Section 9)

Ctudy Acronym	Study Type/Designs	Patient Population	Primary Endpoint and Results	Summary/Conclusion
Study Acronym;	Study Type/Design;	Patient Population	Primary Enupoint and Results	Summary/Conclusion
Author;	Study Size		(P values; OR or RR;	Comment(s)
Year Published	•		& 95% CI)	`,

Ogunbayo GO, et al.	Aim: Evaluate incidence of pneumothorax	Inclusion criteria:	1° endpoint: Pneumothorax	Pneumothorax
2017 (457)	associated with CIED implant	Database searched for		remains an important
<u>28735733</u>		pts with primary	Results:	complication
	Study type: Retrospective evaluation of	implantation of a CIED	 Pneumothorax occurred in 1.6% 	
	National Inpatient Sample	with at least 1 vascular	of cases	
		access	 Pneumothorax associated with 	
	<u>Size</u> : 3.7 million people underwent CIED		increased length of stay and	
	implant	Exclusion criteria: None	increased mortality (1.2% vs.	
			0.7%)	
			 Pneumothorax associated with 	
			older age, female sex, chronic	
			obstructive lung disease, DC	
			device	
Sochala M, et al. 2017	<u>Aim</u> : Evaluate risk of complication after	Inclusion criteria:	1° endpoint: Complications	 Increased risk of
(458)	CIED implant for myotonic dystrophy	Myotonic dystrophy		complications with
<u>28598855</u>		type 1 and CIED	Results:	ICD though small
	Study type: Retrospective	placement	After 6-y follow-up device related	numbers
			complications in 9 ICD pts	
	<u>Size</u> : 914 pts with myotonic dystrophy Type	Exclusion criteria: None	(Inappropriate shocks 5, lead	
	1–23 with an ICD and 46 with a PPM		dysfunction 5, infection 2) and 3	
			PPM pts (lead dysfunction)	
Bai Y, et al. 2017 (459)	<u>Aim</u> : Evaluate incidence of hematoma after	Inclusion criteria: Pts	1° endpoint: Hematoma	 Larger devices type
<u>28587353</u>	CIED	undergoing CIED		though do not
		placement	Results:	address vascular
	Study type: Retrospective		 History of allergy associated with 	access
		Exclusion criteria: None	hematoma	Only 27 pts with
	<u>Size</u> : 339 pts from a single center		Hematoma more common with	larger device
	undergoing CIED placement		larger devices (ICD and CRT): 30%	
			vs. 8%)	
Hosseini SM, et al. 2017	<u>Aim</u> : Evaluate complications associated	Inclusion criteria: CRT	1° endpoint: In-hospital	Increased
(460)	with CRT	device	complications	complication rate
<u>28329322</u>				over time
	Study type: Retrospective	Exclusion criteria: None	Results:	No difference
			• 6.1% of pts with at least one	between CRT-P and
	Size: 439,010 pts from National Inpatient		complication	CRT-D
	Sample undergoing CRT		Complications more likely in older	
			pts, women, elective admission,	

			and increased comorbidities (Charlson)	
Gupta N, et al. 2016 (461) 26961369	Aim: Evaluate complications associated different CIED	Inclusion criteria: CIED implant	1° endpoint: In-hospital complications, 30 d failure rates, outcomes	Increased complication rate over time
	<u>Study type</u> : Retrospective-Kaiser database	Exclusion criteria: None		No difference
	Size: 11,924 ICDs, 33,519 PPMs, 4,472 CRT		Results: • CIED failure • PM: 0.85% • ICD: 2.17%	between CRT-P and CRT-D
			o CRT: 4.93%	
Friedman DJ, et al. 2015 (462) 26670062	Aim: Evaluate complications associated CRT in pts with moderate renal dysfunction Study type: Retrospective-NCDR and	Inclusion criteria: CRT eligible pts with stage 3–5 CKD	1° endpoint: Mortality, HFH Results: • HFH or death: 0.84; 95% CI: 0.78–	CRT associated with improved outcomes
	matched to Medicare Size: 9.525 CRT-D vs. propensity matched	Exclusion criteria: None	0.91 • Death: 0.85; 95% CI: 0.77–0.93	
	ICD only (1,421)			
Witt CT, et al. 2016 (463) 26378089	Aim: Evaluate complications associated ICD Rx with CRT	Inclusion criteria: CRT and HF	1° endpoint: Mortality Results:	ICD associated with better outcomes in ICM but not NICM
20370005	Study type: Retrospective-single center	Exclusion criteria: None	Median follow-up 4 y Mortality:	ICIVI BUL HOL MICIVI
	Size: 917 HF pts-427 with NICM and 490 with ICM		○ NICM: 0.96; 95% CI: 0.60– 1.51; p=0.85 ○ ICM: 0.74; 95% CI: 0.56–0.97; p=0.03	
Gadler F, et al. 2015 (464)	Aim: Evaluate complications associated with CIED implant	Inclusion criteria: First CIED implant	1° endpoint: Complications	• ICD associated with higher complication
25336667	Study type: Retrospective-multicenter registry (Sweden)	Exclusion criteria: None	Results: Complications (1 y) • PM: 5.3% • ICD: 10.1%	rate
	<u>Size</u> : 6,617 PPM. 1,298 ICD			

Essebag V, et al. 2015	Aim: Evaluate complications associated	Inclusion criteria:	1° endpoint: Complications	Similar results for
(465)	with CRT upgrade vs. de novo implant	Randomized to CRT-D		CRT-D whether de
<u>25417892</u>			Results: Success rate	Novo or as an
	Study type: Subgroup analysis of the	Exclusion criteria: None	• de Novo: 95%	upgrade
	Canadian cohort		• Upgrade: 96%	
	Size: Pts with CRT: 644 de Novo and 80 upgrade			
Chung MK, et al. 2014	Aim: Evaluate mortality associated with	Inclusion criteria: CIED	1° endpoint:	 Complications,
(466) <u>25221331</u>	different cardiac procedures	replacement	Complications/mortality	mortality due to comorbidities
	Study type: Retrospective subanalysis	Exclusion criteria: None	Results: Mortality due to	
			comorbidities and not device type	
	Size: 1,744 pts with CIED replacement			
Adelstein E, et al. 2014	<u>Aim</u> : Evaluate risks and benefits with	Inclusion criteria:	1° endpoint:	 Better outcomes in
(467)	device upgrades	Pacemaker dependent	Complications/mortality	the absence of CAD
<u>24657426</u>		with CRT upgrade		
	Study type: Retrospective subanalysis		Results: Pts w/o CAD had fewer	
	Si 157 mts	Exclusion criteria: None	comorbidities, longer survival, and	
W. I.C. I.I. D I. 2014	Size: 157 pts		low risk of appropriate shocks	
Kirkfeldt RE, et al. 2014	Aim: Evaluate risks and benefits with	Inclusion criteria: CIED	1° endpoint:	Complications are
(468) <u>24347317</u>	different device types	implant in Denmark	Complications/mortality	relatively common, particularly with
	<u>Study type</u> : Retrospective subanalysis	Exclusion criteria: None	Results:	complex devices
			Overall complication rate was	
	<u>Size</u> : 5,918 pts		9.5%	
			More complex procedures with	
			worse outcomes	
			o Dual chamber: 2.0; 95% CI:	
			1.4–2.7	
Acosta J, et al. 2017	Aim: Evaluate use of defibrillator	Inclusion criteria: Class I	o CRT-D: 2.6; 95% CI: 1.9–3.4	• MDI mou ba balaful
(469)	capabilities in pts who were eligible for CRT	indication for CRT and	1° endpoint: Appropriate ICD therapy or SCD	 MRI may be helpful for identifying those
28780194	capabilities ill pts who were eligible for CN1	cardiac MRI	therapy of 3CD	pts at risk for
<u> </u>	Study type: Prospective, nonrandomized	55. 4146 11111	Results:	sustained ventricular
		Exclusion criteria: None	• 1° endpoint in 11.5% of cases	arrhythmias
	Size: 217 pts		• No 1° endpoint in pts w/o	,
			myocardial scar	

			Scar mass, "channel mass," were predictors of 1° endpoint	
Martens P, et al. 2017 (470) 28716973	Aim: Evaluate use of defibrillator capabilities in pts who were eligible for CRT Study type: Retrospective Size: 687 pts	Inclusion criteria: CRT implant Exclusion criteria: None	Pesults: • All-cause mortality was higher in pts with CRT-P vs. CRT-D (21% vs. 12%; p=0.003), even after adjusting for baseline characteristics (HR: 2.5; 95% CI: 1.36–4.60; p=0.003). • Multivariate analysis revealed that age >80 y, New York Heart Association class IV, intolerance to BBs and underlying nonischemic CMP were independently associated with little incremental value of a primary prevention ICD on top of	Weighing the risk of arrhythmia and nonarrhythmia risk helpful
Yokoshiki H, et al. 2017 (471) <u>28626201</u>	Aim: Evaluate use of defibrillator capabilities in pts who were eligible for CRT Study type: Retrospective Size: 717 pts	Inclusion criteria: CRT implant Exclusion criteria: None	CRT. 1° endpoint: Mortality Results: Combined events for all-cause death or HFH (whichever came first) diverged between the CRT-D (N=620) and CRT-P(N=97) groups with a rate of 22% vs. 42%, respectively, at 24 mo (p=0.0011). Did not remain statistically significant after controlling for baseline variables	Weighing the risk of arrhythmia and nonarrhythmia risk helpful

Ip JE, et al. 2017 (472)	Aim: Evaluate ECG suitability of a	Inclusion criteria:	1° endpoint: ECG analysis	Transvenous pacing
28185354	subcutaneous ICD in pts with PMs	Transvenous CIED	,	and subcutaneous
	·		Results:	ICD may be
	Study type: Prospective	Exclusion criteria: None	• 58% of pts would still be possible	compatible
			candidates for subcutaneous ICD	·
	<u>Size</u> : 100 pts		based on ECG morphology.	
			RV septal pacing or CRT more	
			likely to qualify vs. RV apical	
			pacing (67% and 80% vs. 37%)	
Maisel WH, et al. 2006	Aim: Evaluate ICD and PPM malfunction	Inclusion criteria:	1° endpoint: Device failures, deaths	Device malfunction
(473)	from annual manufacturer FDA reports	Manufacturer report for		has affected pt
<u>16639048</u>		explant	Results:	healthcare outcomes
	Study type: Retrospective		Battery/capacitor abnormalities	
		Exclusion criteria: None	(4,085 malfunctions [23.6%]) and	
	Size: 2.25 million PM implants and 416,000		electrical issues (4,708	
	ICDs from 1990–2002; 17,323 explanted		malfunctions [27.1%]) accounted	
	due to malfunction		for half of the total device	
			failures.	
			Overall, the	
			annual ICD malfunction	
			replacement rate was significantly	
			higher than the PM malfunction	
			replacement rate (mean [SD]: 20.7	
			[11.6] vs. 4.6 [2.2] replacements	
			per 1,000 implants; p<0.001; rate	
			ratio, 5.9; 95% CI: 2.7–9.1]).	
Maisel WH, 2006. (474)	Aim: Evaluate ICD and PPM malfunction	Inclusion criteria: ICD or	1° endpoint: Device failure	CD failures more
<u>16639052</u>	from published meta-analyses	PPM implant		common than PM
			Results:	failures
	Study type: Meta-analyses	Exclusion criteria: None	• There were 2,981 PM and	
			384 ICD generator malfunctions.	
	<u>Size</u> : 100 pts		Morphology	
			Overall, the mean	
			annual ICD malfunction rate was	
			about 20-fold higher than	
			the PM malfunction rate (26.5	
			[3.8] vs1.3 [0.1] malfunctions per	
			1000 person-y; p<0.001).	

Maron BJ, et al. 2007 Aim: Evaluate appropriate ICD use in HCM Inclusion criteria: 1° endpoint: ICD treated VT/VF	 Presence of any risk
(412) Multicenter Registry of	factor sufficient to
• 17652294 Study type: Retrospective pts with HCM receiving Results:	confer risk
an ICD • Appropriate ICD therapy:	
Size: 506 pts with ICD • Primary prevention: 3.6%/y	
Exclusion criteria: NR • Secondary prevention: 10.6%/y	v
Similar event rates for 1,2, or 3 r	•
factors for SCD	isk
Sochala M, et al. 2017 Aim: Evaluate arrhythmias in pts with Inclusion criteria: 1° endpoint: Arrhythmias	ICD associated with
(458) myotonic dystrophy Myotonic dystrophy (bradycardia, tachycardia),	higher complication
28598855 complications	rates
Study type: Retrospective Exclusion criteria:	1.4665
Matched Results:	
Size: 914 pts with 23 pts with an ICD Size: 914 pts with 23 pts with an ICD • Over a 6-y follow-up period, we	e
matched with 46 pts with a PPM observed device-related	
complications in 9 ICD recipien	its
(inappropriate shocks in 5, lead	
dysfunction in 5, infection in 2)	
and in 3 PM recipients (lead	,
dysfunction in 3). Pts with an IO	CD
had, compared to those with a	
PM, higher rates of complication	
(39.1% vs. 6.5%; p=0.0006) and	
more frequent complications	
requiring hospitalization and/o	nr l
re-intervention (respectively	<i>'</i>
30.4% and 21.7% vs. 0%).	
Benhayon D, et al. 2015 Aim: Evaluate arrhythmias in pts with Inclusion criteria: 1° endpoint: Arrhythmias	Presence of AV
(475) myotonic dystrophy Myotonic dystrophy (bradycardia, tachycardia)	conduction
25546341	abnormalities in the
Study type: Retrospective Exclusion criteria: None Results:	setting of myotonic
• Pts with MD1 were more likely	
Size: 37 pts have evidence of conduction	with ventricular
disease abnormalities (40% vs.	
8.3%; p=NS) and had a higher a	
cause mortality (16% vs. 0%) th	
those with MD2	

Takaya Y, et al. 2015	Aim: Evaluate arrhythmias in pts with	Inclusion criteria:	1° endpoint: Arrhythmias	• ICD should be
(223)	cardiac sarcoidosis	Cardiac sarcoidosis	(bradycardia, tachycardia)	considered in all pts
<u>25529542</u>	Charles to an an analysis a	Footonian auteuria Nana		with cardiac
	Study type: Retrospective	Exclusion criteria: None	Results: • Similar rates of SCD regardless of	sarcoidosis
	Size: 53 pts		whether presenting with	
			HF/ventricular arrhythmias or	
			high-grade AVB	
Anselme F, et al. 2013	Aim: Evaluate arrhythmias in pts with lamin	Inclusion criteria: Lamin	1° endpoint: Arrhythmias	• ICD should be
(275) 23811080	A/C mutation	A/C mutation	(bradycardia, tachycardia)	considered in all pts with lamin A/C
23811080	Study type: Retrospective	Exclusion criteria: None	Results:	mutations
			• 21 pts received an ICD for severe	
	<u>Size</u> : 47 pts		conduction disorders	
			• Among ICD recipients, no pt died	
			suddenly and 11 (52%) pts required appropriate ICD therapy	
			during a median follow-up of 62	
			mo.	
Ha AH, et al. 2012 (206)	Aim: Evaluate arrhythmias in pts with	Inclusion criteria:	1º endpoint: Arrhythmias	Pts with PM may
<u>22385162</u>	myotonic dystrophy	Myotonic dystrophy	(bradycardia, tachycardia)	have sudden cardiac death
	Study type: Retrospective	Exclusion criteria: None	Results:	
	Size: 226 pts		Pacemakers or defibrillators were implanted in 14% of all pts,	
	<u>5120</u> , 220 pts		including 65% of pts with severe	
			ECG abnormalities.	
			• During 57±46 mo, 13 pts died	
			(1.16%/y), including 3 pts who died suddenly, 2 of whom had	
			normally functioning PMs.	
Bhakta D, et al. 2012	Aim: Evaluate arrhythmias in pts with	Inclusion criteria:	1° endpoint: Arrhythmias	• Pts with PM may
(209) <u>22035077</u>	myotonic dystrophy	Myotonic dystrophy	(bradycardia, tachycardia)	have sudden cardiac death
	Study type: Retrospective	Exclusion criteria: None	Results:	
	<u>Size</u> : 406 pts			

Faber TS, et al. 2007 (476) 17636308	Aim: Evaluate presence of ventricular arrhythmias in pts with a PPM for bradycardia Study type: Retrospective Size: 231 pts	Inclusion criteria: PPM Exclusion criteria: None	 46 (11.3%) had or received a PM and 21 (5.2%) received an ICD. 5 (10.9%) PM pts underwent upgrade to an ICD, 3 for LV systolic dysfunction, 1 for VT/VF, and 1 for progressive conduction disease. 24 (52.2%) PM pts died including 13 of respiratory failure and 7 of sudden death. 7 (33.3%) ICD pts died including 2 of respiratory failure and 3 of sudden death. The pts with ICDs and sudden death all had LV systolic dysfunction and 1 death was documented due to inappropriate therapies. 1° endpoint: Ventricular arrhythmias Results: In 54 (25.7%) of 210 pts with at least 1 follow-up, episodes of nonsustained VT were documented by stored ECGs. 1 pt received an ICD 	• Pts with PM will have NSVT
Lazarus A, et al. 2002 (207) 12427418	Aim: Evaluate arrhythmias in pts with myotonic dystrophy Study type: Retrospective	Inclusion criteria: PPM implant Exclusion criteria: None	1° endpoint: Mortality Results: Paroxysmal arrhythmias in 84% of pts	 Arrhythmias particularly in the setting of infraHisian disease associated
	Size: 49 pts			with arrhythmias

References

- 1. Linzer M, Yang EH, Estes NA, 3rd, et al. Diagnosing syncope. Part 1: Value of history, physical examination, and electrocardiography. Clinical Efficacy Assessment Project of the American College of Physicians. Ann Intern Med. 1997;126:989-96.
- 2. Thiruganasambandamoorthy V, Hess EP, Turko E, et al. Defining abnormal electrocardiography in adult emergency department syncope patients: the Ottawa Electrocardiographic Criteria. CJEM. 2012;14:248-58.

- 3. Del Rosso A, Ungar A, Maggi R, et al. Clinical predictors of cardiac syncope at initial evaluation in patients referred urgently to a general hospital: the EGSYS score. Heart. 2008;94:1620-6.
- 4. Perez-Rodon J, Martinez-Alday J, Baron-Esquivias G, et al. Prognostic value of the electrocardiogram in patients with syncope: data from the group for syncope study in the emergency room (GESINUR). Heart Rhythm. 2014;11:2035-44.
- 5. Lauer MS, Francis GS, Okin PM, et al. Impaired chronotropic response to exercise stress testing as a predictor of mortality. JAMA. 1999;281:524-9.
- 6. Savonen KP, Kiviniemi V, Laukkanen JA, et al. Chronotropic incompetence and mortality in middle-aged men with known or suspected coronary heart disease. Eur Heart J. 2008;29:1896-902.
- 7. Doi A, Tsuchihashi K, Kyuma M, et al. Diagnostic implications of modified treadmill and head-up tilt tests in exercise-related syncope: comparative studies with situational and/or vasovagal syncope. Can J Cardiol. 2002;18:960-6.
- 8. Woelfel AK, Simpson RJ, Jr., Gettes LS, et al. Exercise-induced distal atrioventricular block. J Am Coll Cardiol. 1983;2:578-81.
- 9. Boran KJ, Oliveros RA, Boucher CA, et al. Ischemia-associated intraventricular conduction disturbances during exercise testing as a predictor of proximal left anterior descending coronary artery disease. Am J Cardiol. 1983;51:1098-102.
- 10. Oliveros RA, Seaworth J, Weiland FL, et al. Intermittent left anterior hemiblock during treadmill exercise test. Correlation with coronary arteriogram. Chest. 1977;72:492-4.
- 11. Bobba P, Salerno JA, Casari A. Transient left posterior hemiblock. Report of four cases induced by exercise test. Circulation. 1972;46:931-8.
- 12. Bharati S, Dhingra RC, Lev M, et al. Conduction system in a patient with Prinzmetal's angina and transient atrioventricular block. Am J Cardiol. 1977;39:120-5.
- 13. Coplan NL, Morales MC, Romanello P, et al. Exercise-related atrioventricular block. Influence of myocardial ischemia. Chest. 1991;100:1728-30.
- 14. Gibson TC, Heitzman MR. Diagnostic efficacy of 24-hour electrocardiographic monitoring for syncope. Am J Cardiol. 1984;53:1013-7.
- 15. Linzer M, Yang EH, Estes NA, 3rd, et al. Diagnosing syncope. Part 2: Unexplained syncope. Clinical Efficacy Assessment Project of the American College of Physicians. Ann Intern Med. 1997;127:76-86.
- 16. Reiffel JA, Schwarzberg R, Murry M. Comparison of autotriggered memory loop recorders versus standard loop recorders versus 24-hour Holter monitors for arrhythmia detection. Am J Cardiol. 2005;95:1055-9.
- 17. Sivakumaran S, Krahn AD, Klein GJ, et al. A prospective randomized comparison of loop recorders versus Holter monitors in patients with syncope or presyncope. Am J Med. 2003;115:1-5.
- 18. Brown AP, Dawkins KD, Davies JG. Detection of arrhythmias: use of a patient-activated ambulatory electrocardiogram device with a solid-state memory loop. Br Heart J. 1987;58:251-3.
- 19. Cumbee SR, Pryor RE, Linzer M. Cardiac loop ECG recording: a new noninvasive diagnostic test in recurrent syncope. South Med J. 1990;83:39-43.
- 20. Locati ET, Moya A, Oliveira M, et al. External prolonged electrocardiogram monitoring in unexplained syncope and palpitations: results of the SYNARR-Flash study. Europace. 2016;18:1265-72.
- 21. Barrett PM, Komatireddy R, Haaser S, et al. Comparison of 24-hour Holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring. Am J Med. 2014;127:95.e11-7.

- 22. Rosenberg MA, Samuel M, Thosani A, et al. Use of a noninvasive continuous monitoring device in the management of atrial fibrillation: a pilot study. Pacing Clin Electrophysiol. 2013;36:328-33.
- 23. Turakhia MP, Hoang DD, Zimetbaum P, et al. Diagnostic utility of a novel leadless arrhythmia monitoring device. Am J Cardiol. 2013;112:520-4.
- Joshi AK, Kowey PR, Prystowsky EN, et al. First experience with a Mobile Cardiac Outpatient Telemetry (MCOT) system for the diagnosis and management of cardiac arrhythmia. Am J Cardiol. 2005;95:878-81.
- 25. Rothman SA, Laughlin JC, Seltzer J, et al. The diagnosis of cardiac arrhythmias: a prospective multi-center randomized study comparing mobile cardiac outpatient telemetry versus standard loop event monitoring. J Cardiovasc Electrophysiol. 2007;18:241-7.
- 26. Linzer M, Pritchett EL, Pontinen M, et al. Incremental diagnostic yield of loop electrocardiographic recorders in unexplained syncope. Am J Cardiol. 1990;66:214-9.
- 27. Schneider JF, Thomas HE, Jr., Kreger BE, et al. Newly acquired left bundle-branch block: the Framingham study. Ann Intern Med. 1979;90:303-10.
- 28. Schneider JF, Thomas HE, Kreger BE, et al. Newly acquired right bundle-branch block: The Framingham Study. Ann Intern Med. 1980;92:37-44.
- 29. Schneider JF, Thomas HE, Jr., Sorlie P, et al. Comparative features of newly acquired left and right bundle branch block in the general population: the Framingham study. Am J Cardiol. 1981;47:931-40.
- 30. Eriksson P, Hansson PO, Eriksson H, et al. Bundle-branch block in a general male population: the study of men born 1913. Circulation. 1998;98:2494-500.
- 31. Fahy GJ, Pinski SL, Miller DP, et al. Natural history of isolated bundle branch block. Am J Cardiol. 1996;77:1185-90.
- 32. Imanishi R, Seto S, Ichimaru S, et al. Prognostic significance of incident complete left bundle branch block observed over a 40-year period. Am J Cardiol. 2006;98:644-8.
- 33. Dhingra R, Pencina MJ, Wang TJ, et al. Electrocardiographic QRS duration and the risk of congestive heart failure: the Framingham Heart Study. Hypertension. 2006;47:861-7.
- 34. Rotman M, Triebwasser JH. A clinical and follow-up study of right and left bundle branch block. Circulation. 1975;51:477-84.
- 35. Froelicher VF, Jr., Thompson AJ, Wolthuis R, et al. Angiographic findings in asymptomatic aircrewmen with electrocardiographic abnormalities. Am J Cardiol. 1977;39:32-8.
- 36. Rabkin SW, Mathewson FA, Tate RB. Natural history of left bundle-branch block. Br Heart J. 1980;43:164-9.
- 37. Zhang ZM, Rautaharju PM, Soliman EZ, et al. Mortality risk associated with bundle branch blocks and related repolarization abnormalities (from the Women's Health Initiative [WHI]). Am J Cardiol. 2012;110:1489-95.
- 38. Bogale N, Orn S, James M, et al. Usefulness of either or both left and right bundle branch block at baseline or during follow-up for predicting death in patients following acute myocardial infarction. Am J Cardiol. 2007;99:647-50.
- 39. Baldasseroni S, Opasich C, Gorini M, et al. Left bundle-branch block is associated with increased 1-year sudden and total mortality rate in 5517 outpatients with congestive heart failure: a report from the Italian network on congestive heart failure. Am Heart J. 2002;143:398-405.
- 40. Erne P, Iglesias JF, Urban P, et al. Left bundle-branch block in patients with acute myocardial infarction: Presentation, treatment, and trends in outcome from 1997 to 2016 in routine clinical practice. Am Heart J. 2017;184:106-13.
- 41. Yeo KK, Li S, Amsterdam EA, et al. Comparison of clinical characteristics, treatments and outcomes of patients with ST-elevation acute myocardial infarction with versus without new or presumed new left bundle branch block (from NCDR(R)). Am J Cardiol. 2012;109:497-501.

- 42. Dhingra R, Ho Nam B, Benjamin EJ, et al. Cross-sectional relations of electrocardiographic QRS duration to left ventricular dimensions: the Framingham Heart Study. J Am Coll Cardiol. 2005;45:685-9.
- 43. Talreja D, Gruver C, Sklenar J, et al. Efficient utilization of echocardiography for the assessment of left ventricular systolic function. Am Heart J. 2000;139:394-8.
- 44. Mendu ML, McAvay G, Lampert R, et al. Yield of diagnostic tests in evaluating syncopal episodes in older patients. Arch Intern Med. 2009;169:1299-305.
- 45. Recchia D, Barzilai B. Echocardiography in the evaluation of patients with syncope. J Gen Intern Med. 1995;10:649-55.
- 46. Sarasin FP, Junod AF, Carballo D, et al. Role of echocardiography in the evaluation of syncope: a prospective study. Heart. 2002;88:363-7.
- 47. Dagres N, Bongiorni MG, Dobreanu D, et al. Current investigation and management of patients with syncope: results of the European Heart Rhythm Association survey. Europace. 2013;15:1812-5.
- 48. Badheka AO, Singh V, Patel NJ, et al. QRS duration on electrocardiography and cardiovascular mortality (from the National Health and Nutrition Examination Survey-III). Am J Cardiol. 2013;112:671-7.
- 49. Chiu DT, Shapiro NI, Sun BC, et al. Are echocardiography, telemetry, ambulatory electrocardiography monitoring, and cardiac enzymes in emergency department patients presenting with syncope useful tests? A preliminary investigation. J Emerg Med. 2014;47:113-8.
- 50. Menozzi C, Brignole M, Alboni P, et al. The natural course of untreated sick sinus syndrome and identification of the variables predictive of unfavorable outcome. Am J Cardiol. 1998;82:1205-9.
- 51. Brodsky M, Wu D, Denes P, et al. Arrhythmias documented by 24 hour continuous electrocardiographic monitoring in 50 male medical students without apparent heart disease. Am J Cardiol. 1977;39:390-5.
- 52. Bjerregaard P. Premature beats in healthy subjects 40-79 years of age. Eur Heart J. 1982;3:493-503.
- 53. Clarke JM, Hamer J, Shelton JR, et al. The rhythm of the normal human heart. Lancet. 1976;1:508-12.
- 54. Fleg JL, Kennedy HL. Cardiac arrhythmias in a healthy elderly population: detection by 24-hour ambulatory electrocardiography. Chest. 1982;81:302-7.
- 55. Meytes I, Kaplinsky E, Yahini JH, et al. Wenckebach A-V block: a frequent feature following heavy physical training. Am Heart J. 1975;90:426-30.
- 56. Viitasalo MT, Kala R, Eisalo A. Ambulatory electrocardiographic recording in endurance athletes. Br Heart J. 1982;47:213-20.
- 57. Northcote RJ, Canning GP, Ballantyne D. Electrocardiographic findings in male veteran endurance athletes. Br Heart J. 1989;61:155-60.
- 58. Tilkian AG, Guilleminault C, Schroeder JS, et al. Sleep-induced apnea syndrome. Prevalence of cardiac arrhythmias and their reversal after tracheostomy. Am J Med. 1977;63:348-58.
- 59. Guilleminault C, Connolly SJ, Winkle RA. Cardiac arrhythmia and conduction disturbances during sleep in 400 patients with sleep apnea syndrome. Am J Cardiol. 1983;52:490-4.
- 60. Shepard JW, Jr., Garrison MW, Grither DA, et al. Relationship of ventricular ectopy to oxyhemoglobin desaturation in patients with obstructive sleep apnea. Chest. 1985;88:335-40.
- 61. Hoffstein V, Mateika S. Cardiac arrhythmias, snoring, and sleep apnea. Chest. 1994;106:466-71.
- 62. Boudoulas H, Schmidt HS, Clark RW, et al. Anthropometric characteristics, cardiac abnormalities and adrenergic activity in patients with primary disorders of sleep. J Med. 1983;14:223-38.

- 63. Mehra R, Benjamin EJ, Shahar E, et al. Association of nocturnal arrhythmias with sleep-disordered breathing: The Sleep Heart Health Study. Am J Respir Crit Care Med. 2006;173:910-6.
- 64. Miller WP. Cardiac arrhythmias and conduction disturbances in the sleep apnea syndrome. Prevalence and significance. Am J Med. 1982;73:317-21.
- 65. Flemons WW, Remmers JE, Gillis AM. Sleep apnea and cardiac arrhythmias. Is there a relationship? Am Rev Respir Dis. 1993;148:618-21.
- 66. Becker H, Brandenburg U, Peter JH, et al. Reversal of sinus arrest and atrioventricular conduction block in patients with sleep apnea during nasal continuous positive airway pressure. Am J Respir Crit Care Med. 1995;151:215-8.
- 67. Koehler U, Fus E, Grimm W, et al. Heart block in patients with obstructive sleep apnoea: pathogenetic factors and effects of treatment. Eur Respir J. 1998;11:434-9.
- 68. Grimm W, Koehler U, Fus E, et al. Outcome of patients with sleep apnea-associated severe bradyarrhythmias after continuous positive airway pressure therapy. Am J Cardiol. 2000;86:688-92, a9.
- 69. Harbison J, O'Reilly P, McNicholas WT. Cardiac rhythm disturbances in the obstructive sleep apnea syndrome: effects of nasal continuous positive airway pressure therapy. Chest. 2000;118:591-5.
- 70. Stegman SS, Burroughs JM, Henthorn RW. Asymptomatic bradyarrhythmias as a marker for sleep apnea: appropriate recognition and treatment may reduce the need for pacemaker therapy. Pacing Clin Electrophysiol. 1996;19:899-904.
- 71. Garrigue S, Pepin JL, Defaye P, et al. High prevalence of sleep apnea syndrome in patients with long-term pacing: the European Multicenter Polysomnographic Study. Circulation. 2007;115:1703-9.
- 72. Krahn AD, Klein GJ, Yee R, et al. Randomized assessment of syncope trial: conventional diagnostic testing versus a prolonged monitoring strategy. Circulation. 2001;104:46-51.
- 73. Farwell DJ, Freemantle N, Sulke AN. Use of implantable loop recorders in the diagnosis and management of syncope. Eur Heart J. 2004:25:1257-63.
- 74. Podoleanu C, DaCosta A, Defaye P, et al. Early use of an implantable loop recorder in syncope evaluation: a randomized study in the context of the French healthcare system (FRESH study). Arch Cardiovasc Dis. 2014;107:546-52.
- 75. Denniss AR, Ross DL, Richards DA, et al. Electrophysiologic studies in patients with unexplained syncope. Int J Cardiol. 1992;35:211-7.
- 76. Smith I, Monk TG, White PF. Comparison of transesophageal atrial pacing with anticholinergic drugs for the treatment of intraoperative bradycardia. Anesth Analg. 1994;78:245-52.
- 77. Sodeck GH, Domanovits H, Meron G, et al. Compromising bradycardia: management in the emergency department. Resuscitation. 2007;73:96-102.
- 78. Aghamohammadi H, Mehrabi S, Mohammad Ali Beigi F. Prevention of bradycardia by atropine sulfate during urological laparoscopic surgery: a randomized controlled trial. Urol J. 2009;6:92-5.
- 79. Brady WJ, Swart G, DeBehnke DJ, et al. The efficacy of atropine in the treatment of hemodynamically unstable bradycardia and atrioventricular block: prehospital and emergency department considerations. Resuscitation. 1999;41:47-55.
- 80. Swart G, Brady WJ, Jr., DeBehnke DJ, et al. Acute myocardial infarction complicated by hemodynamically unstable bradyarrhythmia: prehospital and ED treatment with atropine. Am J Emerg Med. 1999;17:647-52.
- 81. Warren JV, Lewis RP. Beneficial effects of atropine in the pre-hospital phase of coronary care. Am J Cardiol. 1976;37:68-72.

- 82. Scheinman MM, Thorburn D, Abbott JA. Use of atropine in patients with acute myocardial infarction and sinus bradycardia. Circulation. 1975;52:627-33.
- 83. Ogawa H, Inoue T, Miwa S, et al. Heart rate responses to autonomic drugs in sick sinus syndrome--correlation with syncope and electrophysiologic data. Jpn Circ J. 1991;55:15-23.
- 84. Mandel WJ, Hayakawa H, Allen HN, et al. Assessment of sinus node function in patients with the sick sinus syndrome. Circulation. 1972;46:761-9.
- 85. Strauss HC, Bigger JT, Saroff AL, et al. Electrophysiologic evaluation of sinus node function in patients with sinus node dysfunction. Circulation. 1976;53:763-76.
- 86. Morrison LJ, Long J, Vermeulen M, et al. A randomized controlled feasibility trial comparing safety and effectiveness of prehospital pacing versus conventional treatment: 'PrePACE'. Resuscitation. 2008;76:341-9.
- 87. Howarth DM, Dawson AH, Smith AJ, et al. Calcium channel blocking drug overdose: an Australian series. Hum Exp Toxicol. 1994;13:161-6.
- 88. Ramoska EA, Spiller HA, Winter M, et al. A one-year evaluation of calcium channel blocker overdoses: toxicity and treatment. Ann Emerg Med. 1993;22:196-200.
- 89. St-Onge M, Dube PA, Gosselin S, et al. Treatment for calcium channel blocker poisoning: a systematic review. Clin Toxicol (Phila). 2014;52:926-44.
- 90. Love JN, Sachdeva DK, Bessman ES, et al. A potential role for glucagon in the treatment of drug-induced symptomatic bradycardia. Chest. 1998;114:323-6.
- 91. Bailey B. Glucagon in beta-blocker and calcium channel blocker overdoses: a systematic review. J Toxicol Clin Toxicol. 2003;41:595-602.
- 92. Engebretsen KM, Kaczmarek KM, Morgan J, et al. High-dose insulin therapy in beta-blocker and calcium channel-blocker poisoning. Clin Toxicol (Phila). 2011;49:277-83.
- 93. Greene SL, Gawarammana I, Wood DM, et al. Relative safety of hyperinsulinaemia/euglycaemia therapy in the management of calcium channel blocker overdose: a prospective observational study. Intensive Care Med. 2007;33:2019-24.
- 94. Eddleston M, Rajapakse S, Rajakanthan, et al. Anti-digoxin Fab fragments in cardiotoxicity induced by ingestion of yellow oleander: a randomised controlled trial. Lancet. 2000;355:967-72.
- 95. Lapostolle F, Borron SW, Verdier C, et al. Digoxin-specific Fab fragments as single first-line therapy in digitalis poisoning. Crit Care Med. 2008;36:3014-8.
- 96. Lapostolle F, Borron SW, Verdier C, et al. Assessment of digoxin antibody use in patients with elevated serum digoxin following chronic or acute exposure. Intensive Care Med. 2008;34:1448-53.
- 97. Chan BS, Buckley NA. Digoxin-specific antibody fragments in the treatment of digoxin toxicity. Clin Toxicol (Phila). 2014;52:824-36.
- 98. Smith TW, Butler VP, Jr., Haber E, et al. Treatment of life-threatening digitalis intoxication with digoxin-specific Fab antibody fragments: experience in 26 cases. N Engl J Med. 1982;307:1357-62.
- 99. Wenger TL, Butler VP, Jr., Haber E, et al. Treatment of 63 severely digitalis-toxic patients with digoxin-specific antibody fragments. J Am Coll Cardiol. 1985;5:118a-23a.
- 100. Antman EM, Wenger TL, Butler VP, Jr., et al. Treatment of 150 cases of life-threatening digitalis intoxication with digoxin-specific Fab antibody fragments. Final report of a multicenter study. Circulation. 1990;81:1744-52.

- 101. Hickey AR, Wenger TL, Carpenter VP, et al. Digoxin Immune Fab therapy in the management of digitalis intoxication: safety and efficacy results of an observational surveillance study. J Am Coll Cardiol. 1991;17:590-8.
- 102. Wenger TL. Experience with digoxin immune Fab (ovine) in patients with renal impairment. Am J Emerg Med. 1991;9:21-3; discussion 33-4.
- 103. Mowry JB, Burdmann EA, Anseeuw K, et al. Extracorporeal treatment for digoxin poisoning: systematic review and recommendations from the EXTRIP Workgroup. Clin Toxicol (Phila). 2016;54:103-14.
- 104. Abu-Laban RB, McIntyre CM, Christenson JM, et al. Aminophylline in bradyasystolic cardiac arrest: a randomised placebo-controlled trial. Lancet. 2006;367:1577-84.
- 105. Hurley KF, Magee K, Green R. Aminophylline for bradyasystolic cardiac arrest in adults. Cochrane Database Syst Rev. 2015;Cd006781.
- 106. Redmond JM, Zehr KJ, Gillinov MA, et al. Use of theophylline for treatment of prolonged sinus node dysfunction in human orthotopic heart transplantation. J Heart Lung Transplant. 1993;12:133-8; discussion 8-9.
- 107. Bertolet BD, Eagle DA, Conti JB, et al. Bradycardia after heart transplantation: reversal with theophylline. J Am Coll Cardiol. 1996;28:396-9.
- 108. Rothman SA, Jeevanandam V, Seeber CP, et al. Electrophysiologic effects of intravenous aminophylline in heart transplant recipients with sinus node dysfunction. J Heart Lung Transplant. 1995;14:429-35.
- 109. Heinz G, Kratochwill C, Buxbaum P, et al. Immediate normalization of profound sinus node dysfunction by aminophylline after cardiac transplantation. Am J Cardiol. 1993;71:346-9.
- 110. Pasnoori VR, Leesar MA. Use of aminophylline in the treatment of severe symptomatic bradycardia resistant to atropine. Cardiol Rev. 2004;12:65-8.
- 111. Sadaka F, Naydenov SK, Ponzillo JJ. Theophylline for bradycardia secondary to cervical spinal cord injury. Neurocrit Care. 2010;13:389-92.
- 112. Schulz-Stubner S. The use of small-dose theophylline for the treatment of bradycardia in patients with spinal cord injury. Anesth Analg. 2005;101:1809-11.
- 113. Ferguson JD, Banning AP, Bashir Y. Randomised trial of temporary cardiac pacing with semirigid and balloon-flotation electrode catheters. Lancet. 1997;349:1883.
- 114. López Ayerbe J, Villuendas Sabaté R, García García C, et al. Temporary Pacemakers: Current Use and Complications. Revista Española de Cardiología (English Edition). 2004;57:1045-52.
- 115. Hynes JK, Holmes DR, Jr., Harrison CE. Five-year experience with temporary pacemaker therapy in the coronary care unit. Mayo Clin Proc. 1983;58:122-6.
- 116. Murphy JJ. Current practice and complications of temporary transvenous cardiac pacing. Bmj. 1996;312:1134.
- 117. Austin JL, Preis LK, Crampton RS, et al. Analysis of pacemaker malfunction and complications of temporary pacing in the coronary care unit. Am J Cardiol. 1982;49:301-6.
- 118. Muñoz Bono J, Prieto Palomino MA, Macías Guarasa I, et al. Efficacy and safety of non-permanent transvenous pacemaker implantation in an intensive care unit. Medicina Intensiva (English Edition). 2011;35:410-6.
- 119. Betts TR. Regional survey of temporary transvenous pacing procedures and complications. Postgrad Med J. 2003;79:463-5.
- 120. Jowett NI, Thompson DR, Pohl JE. Temporary transvenous cardiac pacing: 6 years experience in one coronary care unit. Postgrad Med J. 1989;65:211-5.

- 121. Weinstein J, Gnoj J, Mazzara JT, et al. Temporary transvenous pacing via the percutaneous femoral vein approach. A prospective study of 100 cases. Am Heart J. 1973;85:695-705.
- 122. Garcia Guerrero JJ, Fernandez de la Concha Castaneda J, Lopez Quero D, et al. Lower incidence of venous thrombosis with temporary active-fixation lead implantation in mobile patients. Europace. 2010;12:1604-7.
- 123. Nolewajka AJ, Goddard MD, Brown TC. Temporary transvenous pacing and femoral vein thrombosis. Circulation. 1980;62:646-50.
- 124. Jou YL, Hsu HP, Tuan TC, et al. Trends of temporary pacemaker implant and underlying disease substrate. Pacing Clin Electrophysiol. 2010;33:1475-84.
- 125. McCann P. A review of temporary cardiac pacing wires. Indian Pacing Electrophysiol J. 2007;7:40-9.
- 126. Bjornstad CC, Gjertsen E, Thorup F, et al. Temporary cardiac pacemaker treatment in five Norwegian regional hospitals. Scand Cardiovasc J. 2012;46:137-43.
- 127. Barthell E, Troiano P, Olson D, et al. Prehospital external cardiac pacing: a prospective, controlled clinical trial. Ann Emerg Med. 1988;17:1221-6.
- 128. Sherbino J, Verbeek PR, MacDonald RD, et al. Prehospital transcutaneous cardiac pacing for symptomatic bradycardia or bradyasystolic cardiac arrest: a systematic review. Resuscitation. 2006;70:193-200.
- 129. Hedges JR, Feero S, Shultz B, et al. Prehospital transcutaneous cardiac pacing for symptomatic bradycardia. Pacing Clin Electrophysiol. 1991;14:1473-8.
- 130. Zoll PM, Zoll RH, Falk RH, et al. External noninvasive temporary cardiac pacing: clinical trials. Circulation. 1985;71:937-44.
- 131. Clinton JE, Zoll PM, Zoll R, et al. Emergency noninvasive external cardiac pacing. J Emerg Med. 1985;2:155-62.
- 132. Lamas GA, Knight JD, Sweeney MO, et al. Impact of rate-modulated pacing on quality of life and exercise capacity--evidence from the Advanced Elements of Pacing Randomized Controlled Trial (ADEPT). Heart Rhythm. 2007;4:1125-32.
- 133. Alboni P, Menozzi C, Brignole M, et al. Effects of permanent pacemaker and oral theophylline in sick sinus syndrome the THEOPACE study: a randomized controlled trial. Circulation. 1997:96:260-6.
- Sasaki Y, Shimotori M, Akahane K, et al. Long-term follow-up of patients with sick sinus syndrome: a comparison of clinical aspects among unpaced, ventricular inhibited paced, and physiologically paced groups. Pacing Clin Electrophysiol. 1988;11:1575-83.
- 135. Goldberger JJ, Johnson NP, Gidea C. Significance of asymptomatic bradycardia for subsequent pacemaker implantation and mortality in patients >60 years of age. Am J Cardiol. 2011;108:857-61.
- 136. Teichman SL, Felder SD, Matos JA, et al. The value of electrophysiologic studies in syncope of undetermined origin: report of 150 cases. Am Heart J. 1985;110:469-79.
- 137. Seidl K, Rameken M, Breunung S, et al. Diagnostic assessment of recurrent unexplained syncope with a new subcutaneously implantable loop recorder. Reveal-Investigators. Europace. 2000;2:256-62.
- 138. Nielsen JC, Thomsen PE, Hojberg S, et al. A comparison of single-lead atrial pacing with dual-chamber pacing in sick sinus syndrome. Eur Heart J. 2011;32:686-96.
- 139. Andersen HR, Nielsen JC, Thomsen PE, et al. Long-term follow-up of patients from a randomised trial of atrial versus ventricular pacing for sick-sinus syndrome. Lancet. 1997;350:1210-6.

- 140. Lamas GA, Orav EJ, Stambler BS, et al. Quality of life and clinical outcomes in elderly patients treated with ventricular pacing as compared with dual-chamber pacing. Pacemaker Selection in the Elderly Investigators. N Engl J Med. 1998;338:1097-104.
- 141. Lamas GA, Lee KL, Sweeney MO, et al. Ventricular pacing or dual-chamber pacing for sinus-node dysfunction. N Engl J Med. 2002;346:1854-62.
- 142. Connolly SJ, Kerr CR, Gent M, et al. Effects of physiologic pacing versus ventricular pacing on the risk of stroke and death due to cardiovascular causes. Canadian Trial of Physiologic Pacing Investigators. N Engl J Med. 2000;342:1385-91.
- 143. Sweeney MO, Bank AJ, Nsah E, et al. Minimizing ventricular pacing to reduce atrial fibrillation in sinus-node disease. N Engl J Med. 2007;357:1000-8.
- 144. Healey JS, Toff WD, Lamas GA, et al. Cardiovascular outcomes with atrial-based pacing compared with ventricular pacing: meta-analysis of randomized trials, using individual patient data. Circulation. 2006;114:11-7.
- 145. Andersen HR, Thuesen L, Bagger JP, et al. Prospective randomised trial of atrial versus ventricular pacing in sick-sinus syndrome. Lancet. 1994;344:1523-8.
- 146. Sweeney MO, Hellkamp AS, Ellenbogen KA, et al. Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction. Circulation. 2003;107:2932-7.
- 147. Nielsen JC, Kristensen L, Andersen HR, et al. A randomized comparison of atrial and dual-chamber pacing in 177 consecutive patients with sick sinus syndrome: echocardiographic and clinical outcome. J Am Coll Cardiol. 2003;42:614-23.
- 148. Brandt NH, Kirkfeldt RE, Nielsen JC, et al. Single lead atrial vs. dual chamber pacing in sick sinus syndrome: extended register-based follow-up in the DANPACE trial. Europace. 2016;
- 149. Kenneback G, Tabrizi F, Lindell P, et al. High-degree atrioventricular block during anti-arrhythmic drug treatment: use of a pacemaker with a bradycardia-detection algorithm to study the time course after drug withdrawal. Europace. 2007;9:186-91.
- 150. Knudsen MB, Thogersen AM, Hjortshoj SP, et al. The impact of drug discontinuation in patients treated with temporary pacemaker due to atrioventricular block. J Cardiovasc Electrophysiol. 2013;24:1255-8.
- 151. Osmonov D, Erdinler I, Ozcan KS, et al. Management of patients with drug-induced atrioventricular block. Pacing Clin Electrophysiol. 2012;35:804-10.
- 152. Zeltser D, Justo D, Halkin A, et al. Drug-induced atrioventricular block: prognosis after discontinuation of the culprit drug. J Am Coll Cardiol. 2004;44:105-8.
- 153. Risgaard B, Elming H, Jensen GV, et al. Waiting for a pacemaker: is it dangerous? Europace. 2012;14:975-80.
- 154. Farre N, Bazan V, Garcia-Garcia C, et al. Long-term outcome of transitory "reversible" complete atrio-ventricular block unrelated to myocardial ischemia. Int J Cardiol. 2014;172:503-5.
- 155. Sadek MM, Yung D, Birnie DH, et al. Corticosteroid therapy for cardiac sarcoidosis: a systematic review. Can J Cardiol. 2013;29:1034-41.
- 156. Kandolin R, Lehtonen J, Kupari M. Cardiac sarcoidosis and giant cell myocarditis as causes of atrioventricular block in young and middle-aged adults. Circ Arrhythm Electrophysiol. 2011;4:303-9.
- 157. Ozcan KS, Osmonov D, Erdinler I, et al. Atrioventricular block in patients with thyroid dysfunction: prognosis after treatment with hormone supplementation or antithyroid medication. J Cardiol. 2012;60:327-32.
- 158. Forrester JD, Mead P. Third-degree heart block associated with lyme carditis: review of published cases. Clin Infect Dis. 2014;59:996-1000.
- 159. van der Linde MR. Lyme carditis: clinical characteristics of 105 cases. Scand J Infect Dis Suppl. 1991;77:81-4.

- 160. Feigl D, Ashkenazy J, Kishon Y. Early and late atrioventricular block in acute inferior myocardial infarction. J Am Coll Cardiol. 1984;4:35-8.
- 161. Sclarovsky S, Strasberg B, Hirshberg A, et al. Advanced early and late atrioventricular block in acute inferior wall myocardial infarction. Am Heart J. 1984;108:19-24.
- 162. Chihrin SM, Mohamed U, Yee R, et al. Utility of isoproterenol in unmasking latent escape rhythm in pacemaker dependent patients undergoing pacemaker replacement. Am J Cardiol. 2008;101:631-3.
- 163. Bertolet BD, McMurtrie EB, Hill JA, et al. Theophylline for the treatment of atrioventricular block after myocardial infarction. Ann Intern Med. 1995;123:509-11.
- 164. Altun A, Kirdar C, Ozbay G. Effect of aminophylline in patients with atropine-resistant late advanced atrioventricular block during acute inferior myocardial infarction. Clin Cardiol. 1998;21:759-62.
- 165. Goodfellow J, Walker PR. Reversal of atropine-resistant atrioventricular block with intravenous aminophylline in the early phase of inferior wall acute myocardial infarction following treatment with streptokinase. Eur Heart J. 1995;16:862-5.
- 166. Dhingra RC, Winslow E, Pouget JM, et al. The effect of isoproterenol on atrioventricular and intraventricular conduction. Am J Cardiol. 1973;32:629-36.
- 167. Hatle L, Rokseth R. Conservative treatment of AV block in acute myocardial infarction. Results in 105 consecutive patients. Br Heart J. 1971;33:595-600.
- 168. Cummins RO, Graves JR, Larsen MP, et al. Out-of-hospital transcutaneous pacing by emergency medical technicians in patients with asystolic cardiac arrest. N Engl J Med. 1993;328:1377-82.
- 169. Hedges JR, Syverud SA, Dalsey WC, et al. Prehospital trial of emergency transcutaneous cardiac pacing. Circulation. 1987;76:1337-43.
- 170. Birkhahn RH, Gaeta TJ, Tloczkowski J, et al. Emergency medicine-trained physicians are proficient in the insertion of transvenous pacemakers. Ann Emerg Med. 2004;43:469-74.
- 171. Mahapatra S, Bybee KA, Bunch TJ, et al. Incidence and predictors of cardiac perforation after permanent pacemaker placement. Heart Rhythm. 2005;2:907-11.
- 172. Lang R, David D, Klein HO, et al. The use of the balloon-tipped floating catheter in temporary transvenous cardiac pacing. Pacing Clin Electrophysiol. 1981;4:491-6.
- 173. Winner S, Boon N. Clinical problems with temporary pacemakers prior to permanent pacing. J R Coll Physicians Lond. 1989;23:161-3.
- 174. Pinneri F, Frea S, Najd K, et al. Echocardiography-guided versus fluoroscopy-guided temporary pacing in the emergency setting: an observational study. J Cardiovasc Med (Hagerstown). 2013;14:242-6.
- 175. Braun MU, Rauwolf T, Bock M, et al. Percutaneous lead implantation connected to an external device in stimulation-dependent patients with systemic infection--a prospective and controlled study. Pacing Clin Electrophysiol. 2006;29:875-9.
- de Cock CC, Van Campen CM, In't Veld JA, et al. Utility and safety of prolonged temporary transvenous pacing using an active-fixation lead: comparison with a conventional lead. Pacing Clin Electrophysiol. 2003;26:1245-8.
- 177. Kawata H, Pretorius V, Phan H, et al. Utility and safety of temporary pacing using active fixation leads and externalized re-usable permanent pacemakers after lead extraction. Europace. 2013;15:1287-91.
- 178. Chihrin SM, Mohammed U, Yee R, et al. Utility and cost effectiveness of temporary pacing using active fixation leads and an externally placed reusable permanent pacemaker. Am J Cardiol. 2006;98:1613-5.

- 179. Lever N, Ferguson JD, Bashir Y, et al. Prolonged temporary cardiac pacing using subcutaneous tunnelled active-fixation permanent pacing leads. Heart. 2003;89:209-10.
- 180. Kornberger A, Schmid E, Kalender G, et al. Bridge to recovery or permanent system implantation: an eight-year single-center experience in transvenous semipermanent pacing. Pacing Clin Electrophysiol. 2013;36:1096-103.
- 181. Zei PC, Eckart RE, Epstein LM. Modified temporary cardiac pacing using transvenous active fixation leads and external re-sterilized pulse generators. J Am Coll Cardiol. 2006;47:1487-9.
- 182. Santini M, Castro A, Giada F, et al. Prevention of syncope through permanent cardiac pacing in patients with bifascicular block and syncope of unexplained origin: the PRESS study. Circ Arrhythm Electrophysiol. 2013;6:101-7.
- 183. Guerrero-Marquez FJ, Arana-Rueda E, Pedrote A. Idiopathic Paroxysmal Atrio-Ventricular Block. What is The Mechanism? J Atr Fibrillation. 2016;9:1449.
- 184. Brignole M, Deharo JC, De Roy L, et al. Syncope due to idiopathic paroxysmal atrioventricular block: long-term follow-up of a distinct form of atrioventricular block. J Am Coll Cardiol. 2011;58:167-73.
- 185. Brignole M, Menozzi C, Moya A, et al. Mechanism of syncope in patients with bundle branch block and negative electrophysiological test. Circulation. 2001;104:2045-50.
- 186. Carano N, Bo I, Tchana B, et al. Adams-Stokes attack as the first symptom of acute rheumatic fever: report of an adolescent case and review of the literature. Ital J Pediatr. 2012;38:61.
- 187. Ando G, Versaci F. Ventriculo-atrial gradient due to first degree atrio-ventricular block: a case report. BMC Cardiovasc Disord. 2005;5:23.
- 188. Maeno K, Kasai A, Setsuda M, et al. Advanced atrioventricular block induced by obstructive sleep apnea before oxygen desaturation. Heart Vessels. 2009;24:236-40.
- 189. Moya A, Garcia-Civera R, Croci F, et al. Diagnosis, management, and outcomes of patients with syncope and bundle branch block. Eur Heart J. 2011;32:1535-41.
- 190. Panic G, Stanulovic V, Popov T. Atrio-ventricular block as the first presentation of disseminated Lyme disease. Int J Cardiol. 2011;150:e104-6.
- 191. Carroz P, Delay D, Girod G. Pseudo-pacemaker syndrome in a young woman with first-degree atrio-ventricular block. Europace. 2010;12:594-6.
- 192. Marti-Almor J, Cladellas M, Bazan V, et al. Long-term mortality predictors in patients with chronic bifascicular block. Europace. 2009;11:1201-7.
- 193. Barold SS. Indications for permanent cardiac pacing in first-degree AV block: class I, II, or III? Pacing Clin Electrophysiol. 1996;19:747-51.
- 194. Barold SS, Ilercil A, Leonelli F, et al. First-degree atrioventricular block. Clinical manifestations, indications for pacing, pacemaker management & consequences during cardiac resynchronization. J Interv Card Electrophysiol. 2006;17:139-52.
- 195. Barra SN, Providencia R, Paiva L, et al. A review on advanced atrioventricular block in young or middle-aged adults. Pacing Clin Electrophysiol. 2012;35:1395-405.
- 196. Dhingra RC, Denes P, Wu D, et al. The significance of second degree atrioventricular block and bundle branch block. Observations regarding site and type of block. Circulation. 1974;49:638-46.
- 197. Shaw DB, Eraut D. Prevalence and morbidity of heart block in Devon. Br Med J. 1970;1:144-7.
- 198. Simon AB, Zloto AE. Atrioventricular block: natural history after permanent ventricular pacing. Am J Cardiol. 1978;41:500-7.
- 199. Strasberg B, Amat YLF, Dhingra RC, et al. Natural history of chronic second-degree atrioventricular nodal block. Circulation. 1981;63:1043-9.

- 200. Edhag O, Swahn A. Prognosis of patients with complete heart block or arrhythmic syncope who were not treated with artificial pacemakers. A long-term follow-up study of 101 patients. Acta Med Scand. 1976;200:457-63.
- 201. Shaw DB, Kekwick CA, Veale D, et al. Survival in second degree atrioventricular block. Br Heart J. 1985;53:587-93.
- 202. Wahbi K, Meune C, Porcher R, et al. Electrophysiological study with prophylactic pacing and survival in adults with myotonic dystrophy and conduction system disease. Jama. 2012;307:1292-301.
- 203. Buckley AE, Dean J, Mahy IR. Cardiac involvement in Emery Dreifuss muscular dystrophy: a case series. Heart. 1999;82:105-8.
- 204. Kitaguchi T, Matsubara S, Sato M, et al. A missense mutation in the exon 8 of lamin A/C gene in a Japanese case of autosomal dominant limb-girdle muscular dystrophy and cardiac conduction block. Neuromuscul Disord. 2001;11:542-6.
- 205. Finsterer J, Stollberger C. Heart Disease in Disorders of Muscle, Neuromuscular Transmission, and the Nerves. Korean Circ J. 2016;46:117-34.
- 206. Ha AH, Tarnopolsky MA, Bergstra TG, et al. Predictors of atrio-ventricular conduction disease, long-term outcomes in patients with myotonic dystrophy types I and II. Pacing Clin Electrophysiol. 2012;35:1262-9.
- 207. Lazarus A, Varin J, Babuty D, et al. Long-term follow-up of arrhythmias in patients with myotonic dystrophy treated by pacing: a multicenter diagnostic pacemaker study. J Am Coll Cardiol. 2002;40:1645-52.
- 208. Facenda-Lorenzo M, Hernandez-Afonso J, Rodriguez-Esteban M, et al. Cardiac manifestations in myotonic dystrophy type 1 patients followed using a standard protocol in a specialized unit. Rev Esp Cardiol (Engl Ed). 2013;66:193-7.
- 209. Bhakta D, Shen C, Kron J, et al. Pacemaker and implantable cardioverter-defibrillator use in a US myotonic dystrophy type 1 population. J Cardiovasc Electrophysiol. 2011;22:1369-75.
- 210. Groh WJ, Groh MR, Saha C, et al. Electrocardiographic abnormalities and sudden death in myotonic dystrophy type 1. N Engl J Med. 2008;358:2688-97.
- 211. Groh WJ. Arrhythmias in the muscular dystrophies. Heart Rhythm. 2012;9:1890-5.
- 212. Kabunga P, Lau AK, Phan K, et al. Systematic review of cardiac electrical disease in Kearns-Sayre syndrome and mitochondrial cytopathy. Int J Cardiol. 2015;181:303-10.
- 213. Saxon LA, Albert BH, Uretz EF, et al. Permanent pacemaker placement in chronic atrial fibrillation associated with intermittent AV block and cerebral symptoms. Pacing Clin Electrophysiol. 1990;13:724-9.
- 214. Hilgard J, Ezri MD, Denes P. Significance of ventricular pauses of three seconds or more detected on twenty-four-hour Holter recordings. Am J Cardiol. 1985;55:1005-8.
- 215. Ector H, Rolies L, De Geest H. Dynamic electrocardiography and ventricular pauses of 3 seconds and more: etiology and therapeutic implications. Pacing Clin Electrophysiol. 1983;6:548-51.
- 216. Michaelsson M, Jonzon A, Riesenfeld T. Isolated congenital complete atrioventricular block in adult life. A prospective study. Circulation. 1995;92:442-9.
- 217. Sholler GF, Walsh EP. Congenital complete heart block in patients without anatomic cardiac defects. Am Heart J. 1989;118:1193-8.
- 218. Kim YH, O'Nunain S, Trouton T, et al. Pseudo-pacemaker syndrome following inadvertent fast pathway ablation for atrioventricular nodal reentrant tachycardia. J Cardiovasc Electrophysiol. 1993;4:178-82.
- 219. Alboni P, Holz A, Brignole M. Vagally mediated atrioventricular block: pathophysiology and diagnosis. Heart. 2013;99:904-8.

- 220. Massie B, Scheinman MM, Peters R, et al. Clinical and electrophysiologic findings in patients with paroxysmal slowing of the sinus rate and apparent Mobitz type II atrioventricular block. Circulation. 1978;58:305-14.
- 221. Mosqueda-Garcia R, Furlan R, Tank J, et al. The elusive pathophysiology of neurally mediated syncope. Circulation. 2000;102:2898-906.
- 222. Kato Y, Morimoto S, Uemura A, et al. Efficacy of corticosteroids in sarcoidosis presenting with atrioventricular block. Sarcoidosis Vasc Diffuse Lung Dis. 2003;20:133-7.
- 223. Takaya Y, Kusano KF, Nakamura K, et al. Outcomes in patients with high-degree atrioventricular block as the initial manifestation of cardiac sarcoidosis. Am J Cardiol. 2015;115:505-9.
- Padala SK, Peaslee S, Sidhu MS, et al. Impact of early initiation of corticosteroid therapy on cardiac function and rhythm in patients with cardiac sarcoidosis. Int J Cardiol. 2017;227:565-70.
- 225. Birnie DH, Nery PB, Ha AC, et al. Cardiac Sarcoidosis. J Am Coll Cardiol. 2016;68:411-21.
- 226. Zhou Y, Lower EE, Li HP, et al. Cardiac Sarcoidosis: The Impact of Age and Implanted Devices on Survival. Chest. 2017;151:139-48.
- 227. Sayed RH, Rogers D, Khan F, et al. A study of implanted cardiac rhythm recorders in advanced cardiac AL amyloidosis. Eur Heart J. 2015;36:1098-105.
- 228. Reisinger J, Dubrey SW, Lavalley M, et al. Electrophysiologic abnormalities in AL (primary) amyloidosis with cardiac involvement. J Am Coll Cardiol. 1997;30:1046-51.
- 229. Benditt DG, Benson DW, Jr., Kreitt J, et al. Electrophysiologic effects of theophylline in young patients with recurrent symptomatic bradyarrhythmias. Am J Cardiol. 1983;52:1223-9.
- 230. Nimura A, Sato N, Sakuragi H, et al. Recovery of advanced atrioventricular block by cilostazol. Intern Med. 2011;50:1957-61.
- 231. Watson RD, Glover DR, Page AJ, et al. The Birmingham Trial of permanent pacing in patients with intraventricular conduction disorders after acute myocardial infarction. Am Heart J. 1984;108:496-501.
- 232. Tans AC, Lie KI, Durrer D. Clinical setting and prognostic significance of high degree atrioventricular block in acute inferior myocardial infarction: a study of 144 patients. Am Heart J. 1980;99:4-8.
- 233. Ginks WR, Sutton R, Oh W, et al. Long-term prognosis after acute anterior infarction with atrioventricular block. Br Heart J. 1977;39:186-9.
- 234. Singh SM, FitzGerald G, Yan AT, et al. High-grade atrioventricular block in acute coronary syndromes: insights from the Global Registry of Acute Coronary Events. Eur Heart J. 2015;36:976-83.
- 235. Kostic T, Momcilovic S, Perisic ZD, et al. Manifestations of Lyme carditis. Int J Cardiol. 2017;232:24-32.
- 236. Robinson ML, Kobayashi T, Higgins Y, et al. Lyme carditis. Infect Dis Clin North Am. 2015;29:255-68.
- 237. Unterberg C, Luthje L, Szych J, et al. Atrial overdrive pacing compared to CPAP in patients with obstructive sleep apnoea syndrome. Eur Heart J. 2005;26:2568-75.
- 238. Garrigue S, Bordier P, Jais P, et al. Benefit of atrial pacing in sleep apnea syndrome. N Engl J Med. 2002;346:404-12.
- 239. Kinlay S, Leitch JW, Neil A, et al. Cardiac event recorders yield more diagnoses and are more cost-effective than 48-hour Holter monitoring in patients with palpitations. A controlled clinical trial. Ann Intern Med. 1996;124:16-20.
- 240. Giada F, Gulizia M, Francese M, et al. Recurrent unexplained palpitations (RUP) study comparison of implantable loop recorder versus conventional diagnostic strategy. J Am Coll Cardiol. 2007;49:1951-6.
- 241. Katritsis DG, Josephson ME. Electrophysiological Testing for the Investigation of Bradycardias. Arrhythm Electrophysiol Rev. 2017;6:24-8.

- 242. Mangiardi LM, Bonamini R, Conte M, et al. Bedside evaluation of atrioventricular block with narrow QRS complexes: usefulness of carotid sinus massage and atropine administration. Am J Cardiol. 1982;49:1136-45.
- 243. Twidale N, Heddle WF, Tonkin AM. Procainamide administration during electrophysiology study--utility as a provocative test for intermittent atrioventricular block. Pacing Clin Electrophysiol. 1988;11:1388-97.
- 244. Bogossian H, Frommeyer G, Gobbert K, et al. Is there a prognostic relevance of electrophysiological studies in bundle branch block patients? Clin Cardiol. 2017;40:575-9.
- 245. Kalscheur MM, Donateo P, Wenzke KE, et al. Long-Term Outcome of Patients with Bifascicular Block and Unexplained Syncope Following Cardiac Pacing. Pacing Clin Electrophysiol. 2016;39:1126-31.
- 246. Morady F, Higgins J, Peters RW, et al. Electrophysiologic testing in bundle branch block and unexplained syncope. Am J Cardiol. 1984;54:587-91.
- 247. Click RL, Gersh BJ, Sugrue DD, et al. Role of invasive electrophysiologic testing in patients with symptomatic bundle branch block. Am J Cardiol. 1987;59:817-23.
- 248. Brignole M, Menozzi C, Bottoni N, et al. Mechanisms of syncope caused by transient bradycardia and the diagnostic value of electrophysiologic testing and cardiovascular reflexivity maneuvers. Am J Cardiol. 1995;76:273-8.
- 249. Dhingra RC, Wyndham C, Bauernfeind R, et al. Significance of block distal to the His bundle induced by atrial pacing in patients with chronic bifascicular block. Circulation. 1979;60:1455-64.
- 250. Zipes DP. Second-degree atrioventricular block. Circulation. 1979;60:465-72.
- 251. Shetty RK, Agarwal S, Ganiga Sanjeeva NC, et al. Trifascicular block progressing to complete AV block on exercise: a rare presentation demonstrating the usefulness of exercise testing. BMJ Case Rep. 2015;2015:
- Toeda T, Suetake S, Tsuchida K, et al. Exercise induced atrioventricular block with gap phenomenon in atrioventricular conduction. Pacing Clin Electrophysiol. 2000;23:527-9.
- 253. Chokshi SK, Sarmiento J, Nazari J, et al. Exercise-provoked distal atrioventricular block. Am J Cardiol. 1990;66:114-6.
- 254. Bakst A, Goldberg B, Schamroth L. Significance of exercise-induced second degree atrioventricular block. Br Heart J. 1975;37:984-6.
- Egred M, Jafary F, Rodrigues E. Exercise induced atrio-ventricular (AV) block: important but uncommon phenomenon. Int J Cardiol. 2004;97:559-60.
- 256. Fisher JD. Role of electrophysiologic testing in the diagnosis and treatment of patients with known and suspected bradycardias and tachycardias. Prog Cardiovasc Dis. 1981;24:25-90.
- 257. Toff WD, Camm AJ, Skehan JD. Single-chamber versus dual-chamber pacing for high-grade atrioventricular block. N Engl J Med. 2005;353:145-55.
- 258. Kerr CR, Connolly SJ, Abdollah H, et al. Canadian Trial of Physiological Pacing: Effects of physiological pacing during long-term follow-up. Circulation. 2004;109:357-62.
- 259. Curtis AB, Worley SJ, Adamson PB, et al. Biventricular pacing for atrioventricular block and systolic dysfunction. N Engl J Med. 2013;368:1585-93.
- 260. Gierula J, Cubbon RM, Jamil HA, et al. Cardiac resynchronization therapy in pacemaker-dependent patients with left ventricular dysfunction. Europace. 2013;15:1609-14.

- 261. Kindermann M, Hennen B, Jung J, et al. Biventricular versus conventional right ventricular stimulation for patients with standard pacing indication and left ventricular dysfunction: the Homburg Biventricular Pacing Evaluation (HOBIPACE). J Am Coll Cardiol. 2006;47:1927-37.
- 262. Wilkoff BL, Cook JR, Epstein AE, et al. Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator: the Dual Chamber and VVI Implantable Defibrillator (DAVID) Trial. Jama. 2002;288:3115-23.
- 263. Doshi RN, Daoud EG, Fellows C, et al. Left ventricular-based cardiac stimulation post AV nodal ablation evaluation (the PAVE study). J Cardiovasc Electrophysiol. 2005;16:1160-5.
- 264. Brignole M, Botto G, Mont L, et al. Cardiac resynchronization therapy in patients undergoing atrioventricular junction ablation for permanent atrial fibrillation: a randomized trial. Eur Heart J. 2011;32:2420-9.
- 265. Brignole M, Gammage M, Puggioni E, et al. Comparative assessment of right, left, and biventricular pacing in patients with permanent atrial fibrillation. Eur Heart J. 2005;26:712-22.
- 266. Brignole M, Botto GL, Mont L, et al. Predictors of clinical efficacy of 'Ablate and Pace' therapy in patients with permanent atrial fibrillation. Heart. 2012;98:297-302.
- 267. Dretzke J, Toff WD, Lip GY, et al. Dual chamber versus single chamber ventricular pacemakers for sick sinus syndrome and atrioventricular block. Cochrane Database Syst Rev. 2004;Cd003710.
- 268. Vatankulu MA, Goktekin O, Kaya MG, et al. Effect of long-term resynchronization therapy on left ventricular remodeling in pacemaker patients upgraded to biventricular devices. Am J Cardiol. 2009;103:1280-4.
- 269. Kiehl EL, Makki T, Kumar R, et al. Incidence and predictors of right ventricular pacing-induced cardiomyopathy in patients with complete atrioventricular block and preserved left ventricular systolic function. Heart Rhythm. 2016;13:2272-8.
- 270. Ellenbogen KA, Hellkamp AS, Wilkoff BL, et al. Complications arising after implantation of DDD pacemakers: the MOST experience. Am J Cardiol. 2003;92:740-1.
- 271. Udo EO, Zuithoff NP, van Hemel NM, et al. Incidence and predictors of short- and long-term complications in pacemaker therapy: the FOLLOWPACE study. Heart Rhythm. 2012;9:728-35.
- 272. Ellenbogen KA, Stambler BS, Orav EJ, et al. Clinical characteristics of patients intolerant to VVIR pacing. Am J Cardiol. 2000;86:59-63.
- 273. Link MS, Hellkamp AS, Estes NA, 3rd, et al. High incidence of pacemaker syndrome in patients with sinus node dysfunction treated with ventricular-based pacing in the Mode Selection Trial (MOST). J Am Coll Cardiol. 2004;43:2066-71.
- 274. Arbustini E, Pilotto A, Repetto A, et al. Autosomal dominant dilated cardiomyopathy with atrioventricular block: a lamin A/C defect-related disease. J Am Coll Cardiol. 2002;39:981-90.
- 275. Anselme F, Moubarak G, Savoure A, et al. Implantable cardioverter-defibrillators in lamin A/C mutation carriers with cardiac conduction disorders. Heart Rhythm. 2013;10:1492-8.
- 276. Hasselberg NE, Edvardsen T, Petri H, et al. Risk prediction of ventricular arrhythmias and myocardial function in Lamin A/C mutation positive subjects. Europace. 2014;16:563-71.
- 277. Mahmod M, Karamitsos TD, Suttie JJ, et al. Prevalence of cardiomyopathy in asymptomatic patients with left bundle branch block referred for cardiovascular magnetic resonance imaging. Int J Cardiovasc Imaging. 2012;28:1133-40.
- 278. McAnulty JH, Rahimtoola SH, Murphy E, et al. Natural history of "high-risk" bundle-branch block: final report of a prospective study. N Engl J Med. 1982;307:137-43.

- 279. Kwok CS, Rashid M, Beynon R, et al. Prolonged PR interval, first-degree heart block and adverse cardiovascular outcomes: a systematic review and meta-analysis. Heart. 2016;102:672-80.
- 280. Boriani G, Gallina M, Merlini L, et al. Clinical relevance of atrial fibrillation/flutter, stroke, pacemaker implant, and heart failure in Emery-Dreifuss muscular dystrophy: a long-term longitudinal study. Stroke. 2003;34:901-8.
- 281. Mymin D, Mathewson FA, Tate RB, et al. The natural history of primary first-degree atrioventricular heart block. N Engl J Med. 1986;315:1183-7.
- Huhta JC, Maloney JD, Ritter DG, et al. Complete atrioventricular block in patients with atrioventricular discordance. Circulation. 1983;67:1374-7.
- 283. Connelly MS, Liu PP, Williams WG, et al. Congenitally corrected transposition of the great arteries in the adult: functional status and complications. J Am Coll Cardiol. 1996:27:1238-43.
- Weindling SN, Saul JP, Gamble WJ, et al. Duration of complete atrioventricular block after congenital heart disease surgery. Am J Cardiol. 1998;82:525-7.
- 285. Meune C, Van Berlo JH, Anselme F, et al. Primary prevention of sudden death in patients with lamin A/C gene mutations. N Engl J Med. 2006;354:209-10.
- van Rijsingen IA, Arbustini E, Elliott PM, et al. Risk factors for malignant ventricular arrhythmias in lamin a/c mutation carriers a European cohort study. J Am Coll Cardiol. 2012;59:493-500.
- 287. Maury P, Rollin A, Sacher F, et al. Prevalence and prognostic role of various conduction disturbances in patients with the Brugada syndrome. Am J Cardiol. 2013;112:1384-9.
- 288. O'Mahony C, Coats C, Cardona M, et al. Incidence and predictors of anti-bradycardia pacing in patients with Anderson-Fabry disease. Europace. 2011;13:1781-8.
- 289. Polak PE, Zijlstra F, Roelandt JR. Indications for pacemaker implantation in the Kearns-Sayre syndrome. Eur Heart J. 1989;10:281-2.
- 290. Khambatta S, Nguyen DL, Beckman TJ, et al. Kearns-Sayre syndrome: a case series of 35 adults and children. Int J Gen Med. 2014;7:325-32.
- 291. Ali H, Furlanello F, Lupo P, et al. Clinical and Electrocardiographic Features of Complete Heart Block Following Blunt Cardiac Injury: A Systematic Review of the Literature. Heart Rhythm. 2017;
- 292. Chierichini A, Frassanito L, Vergari A, et al. The effect of norepinephrine versus epinephrine in irrigation fluid on the incidence of hypotensive/bradycardic events during arthroscopic rotator cuff repair with interscalene block in the sitting position. Arthroscopy. 2015;31:800-6.
- 293. Marrocco-Trischitta MM, Mazzone P, Vitale R, et al. Temporary Transvenous Pacemaker Implantation during Carotid Endarterectomy in Patients with Trifascicular Block. Ann Vasc Surg. 2016;34:206-11.
- 294. Cheung CC, Martyn A, Campbell N, et al. Predictors of intraoperative hypotension and bradycardia. Am J Med. 2015;128:532-8.
- 295. Bauer AM, Smith RB, Thorell WE. Implications of carotid sinus hypersensitivity following preoperative embolization of a carotid body tumor. An indication for prophylactic intraoperative cardiac pacing. JAMA Otolaryngol Head Neck Surg. 2014;140:459-63.
- 296. Fritsch G, Flamm M, Hepner DL, et al. Abnormal pre-operative tests, pathologic findings of medical history, and their predictive value for perioperative complications. Acta Anaesthesiol Scand. 2012;56:339-50.
- 297. Pereira ID, Grando MM, Vianna PT, et al. Retrospective analysis of risk factors and predictors of intraoperative complications in neuraxial blocks at Faculdade de Medicina de Botucatu-UNESP. Rev Bras Anestesiol. 2011;61:568-81, 311-8.

- 298. Mitar MD, Ratner S, Lavi S. Heart block and temporary pacing during rotational atherectomy. Can J Cardiol. 2015;31:335-40.
- 299. Im SH, Han MH, Kim SH, et al. Transcutaneous temporary cardiac pacing in carotid stenting: noninvasive prevention of angioplasty-induced bradycardia and hypotension. J Endovasc Ther. 2008;15:110-6.
- 300. Bush RL, Lin PH, Bianco CC, et al. Reevaluation of temporary transvenous cardiac pacemaker usage during carotid angioplasty and stenting: a safe and valuable adjunct. Vasc Endovascular Surg. 2004;38:229-35.
- 301. Harrop JS, Sharan AD, Benitez RP, et al. Prevention of carotid angioplasty-induced bradycardia and hypotension with temporary venous pacemakers. Neurosurgery. 2001;49:814-20; discussion 20-2.
- 302. Gauss A, Hubner C, Meierhenrich R, et al. Perioperative transcutaneous pacemaker in patients with chronic bifascicular block or left bundle branch block and additional first-degree atrioventricular block. Acta Anaesthesiol Scand. 1999;43:731-6.
- 303. Killeavy ES, Ferguson JJ, 3rd. The use of temporary transvenous pacing catheters during percutaneous transluminal coronary angioplasty. Tex Heart Inst J. 1990;17:37-41.
- 304. Chowdhury T, Ahuja N, Schaller B. Severe Bradycardia During Neurosurgical Procedure: Depth of Anesthesia Matters and Leads to a New Surrogate Model of the Trigeminocardiac Reflex: A Case Report. Medicine (Baltimore). 2015;94:e2118.
- 305. Yong J, Hibbert P, Runciman WB, et al. Bradycardia as an early warning sign for cardiac arrest during routine laparoscopic surgery. Int J Qual Health Care. 2015;27:473-8.
- 306. Vimala S, Arulvelan A. Sudden Bradycardia and Hypotension in Neurosurgery: Trigeminocardiac Reflex (TCR) and More. J Neurosurg Anesthesiol. 2016;28:175-6.
- 307. Mohan S, Flis DW, O'Leary MA. A Case of Trigeminocardiac Reflex During Infrastructure Maxillectomy. JAMA Otolaryngol Head Neck Surg. 2014;140:563-4.
- 308. Ishii D, Satow T, Murao K, et al. Efficacy of cilostazol in prevention of bradycardia during carotid artery stenting. J Stroke Cerebrovasc Dis. 2014:23:662-6.
- 309. Schipke JD, Cleveland S, Caspers C. Computer-assisted paranasal sinus operation induces diving bradycardia. Am J Otolaryngol. 2013;34:353-4.
- 310. Haldar R, Gyanesh P, Bettaswamy G. Isolated bradycardia due to skull pin fixation: an unusual occurrence. J Neurosurg Anesthesiol. 2013;25:206-7.
- 311. Seo KC, Park JS, Roh WS. Factors contributing to episodes of bradycardia hypotension during shoulder arthroscopic surgery in the sitting position after interscalene block. Korean J Anesthesiol. 2010;58:38-44.
- 312. Jeyabalan G, Saba S, Baril DT, et al. Bradyarrhythmias during rheolytic pharmacomechanical thrombectomy for deep vein thrombosis. J Endovasc Ther. 2010;17:416-22.
- 313. Usami K, Kamada K, Kunii N, et al. Transient asystole during surgery for posterior fossa meningioma caused by activation of the trigeminocardiac reflex: three case reports. Neurol Med Chir (Tokyo). 2010;50:339-42.
- 314. Lubbers HT, Zweifel D, Gratz KW, et al. Classification of potential risk factors for trigeminocardiac reflex in craniomaxillofacial surgery. J Oral Maxillofac Surg. 2010;68:1317-21.
- 315. Christensen RE, Reynolds PI, Bukowski BK, et al. Anaesthetic management and outcomes in patients with surgically corrected D-transposition of the great arteries undergoing non-cardiac surgery. Br J Anaesth. 2010;104:12-5.

- 316. Jacques F, Elkouri S, Bracco D, et al. Regional anesthesia for carotid surgery: less intraoperative hypotension and vasopressor requirement. Ann Vasc Surg. 2009;23:324-9.
- 317. Hanss R, Renner J, Ilies C, et al. Does heart rate variability predict hypotension and bradycardia after induction of general anaesthesia in high risk cardiovascular patients? Anaesthesia. 2008;63:129-35.
- 318. Reddy MK, Arivazhagan A, Chandramouli BA. Intractable hypotension and bradycardia during surgical positioning in atlantoaxial dislocation. J Neurosurg Anesthesiol. 2008;20:71.
- 319. Ardesch JJ, Buschman HP, van der Burgh PH, et al. Cardiac responses of vagus nerve stimulation: intraoperative bradycardia and subsequent chronic stimulation. Clin Neurol Neurosurg. 2007;109:849-52.
- 320. Jones PM, Soderman RM. Intra-operative bradycardia in a patient with Alzheimer's disease treated with two cholinesterase inhibitors. Anaesthesia. 2007;62:201.
- 321. Wijeysundera DN, Duncan D, Nkonde-Price C, et al. Perioperative beta blockade in noncardiac surgery: a systematic review for the 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol. 2014;64:2406-25.
- 322. Morris D, Mulvihill D, Lew WY. Risk of developing complete heart block during bedside pulmonary artery catheterization in patients with left bundle-branch block. Arch Intern Med. 1987;147:2005-10.
- 323. Elliott CG, Zimmerman GA, Clemmer TP. Complications of pulmonary artery catheterization in the care of critically ill patients. A prospective study. Chest. 1979;76:647-52.
- 324. Unnikrishnan D, Idris N, Varshneya N. Complete heart block during central venous catheter placement in a patient with pre-existing left bundle branch block. Br J Anaesth. 2003;91:747-9.
- 325. Mouillet G, Lellouche N, Lim P, et al. Patients without prolonged QRS after TAVI with CoreValve device do not experience high-degree atrioventricular block. Catheter Cardiovasc Interv. 2013;81:882-7.
- Rabinovitz E, Finkelstein A, Ben Assa E, et al. Norton scale for predicting prognosis in elderly patients undergoing trans-catheter aortic valve implantation: A historical prospective study. J Cardiol. 2016;67:519-25.
- 327. Leon MB, Smith CR, Mack M, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363:1597-607.
- 328. Kogan A, Sternik L, Beinart R, et al. Permanent pacemaker insertion following isolated aortic valve replacement before and after the introduction of TAVI. Pacing Clin Electrophysiol. 2015;38:424-30.
- 329. Rivard L, Schram G, Asgar A, et al. Electrocardiographic and electrophysiological predictors of atrioventricular block after transcatheter aortic valve replacement. Heart Rhythm. 2015;12:321-9.
- 330. Rene AG, Sastry A, Horowitz JM, et al. Recovery of atrioventricular conduction after pacemaker placement following cardiac valvular surgery. J Cardiovasc Electrophysiol. 2013;24:1383-7.
- 331. Steyers CM, 3rd, Khera R, Bhave P. Pacemaker Dependency after Cardiac Surgery: A Systematic Review of Current Evidence. PLoS One. 2015;10:e0140340.
- 332. Dawkins S, Hobson AR, Kalra PR, et al. Permanent pacemaker implantation after isolated aortic valve replacement: incidence, indications, and predictors. Ann Thorac Surg. 2008;85:108-12.

- 333. Viles-Gonzalez JF, Enriquez AD, Castillo JG, et al. Incidence, predictors, and evolution of conduction disorders and atrial arrhythmias after contemporary mitral valve repair. Cardiol J. 2014;21:569-75.
- 334. Merin O, Ilan M, Oren A, et al. Permanent pacemaker implantation following cardiac surgery: indications and long-term follow-up. Pacing Clin Electrophysiol. 2009;32:7-12.
- Petrac D, Radic B, Birtic K, et al. Prospective evaluation of infrahisal second-degree AV block induced by atrial pacing in the presence of chronic bundle branch block and syncope. Pacing Clin Electrophysiol. 1996;19:784-92.
- Bougioukas I, Jebran AF, Grossmann M, et al. Is there a correlation between late re-exploration after cardiac surgery and removal of epicardial pacemaker wires? J Cardiothorac Surg. 2017;12:3.
- Bethea BT, Salazar JD, Grega MA, et al. Determining the utility of temporary pacing wires after coronary artery bypass surgery. Ann Thorac Surg. 2005;79:104-7.
- Puskas JD, Sharoni E, Williams WH, et al. Is routine use of temporary epicardial pacing wires necessary after either OPCAB or conventional CABG/CPB? Heart Surg Forum. 2003;6:E103-6.
- 339. Caspi Y, Safadi T, Ammar R, et al. The significance of bundle branch block in the immediate postoperative electrocardiograms of patients undergoing coronary artery bypass. J Thorac Cardiovasc Surg. 1987;93:442-6.
- 340. Zeldis SM, Morganroth J, Horowitz LN, et al. Fascicular conduction distrubances after coronary bypass surgery. Am J Cardiol. 1978;41:860-4.
- 341. Cook DJ, Bailon JM, Douglas TT, et al. Changing incidence, type, and natural history of conduction defects after coronary artery bypass grafting. Ann Thorac Surg. 2005;80:1732-7.
- 342. Tuzcu EM, Emre A, Goormastic M, et al. Incidence and prognostic significance of intraventricular conduction abnormalities after coronary bypass surgery. J Am Coll Cardiol. 1990;16:607-10.
- 343. Ngaage DL, Schaff HV, Mullany CJ, et al. Does preoperative atrial fibrillation influence early and late outcomes of coronary artery bypass grafting? J Thorac Cardiovasc Surg. 2007;133:182-9.
- 344. Yesil M, Bayata S, Arikan E, et al. Should we revascularize before implanting a pacemaker? Clin Cardiol. 2008;31:498-501.
- 345. Satinsky JD, Collins JJ, Jr., Dalen JE. Conduction defects after cardiac surgery. Circulation. 1974;50:li170-4.
- 346. Limongelli G, Ducceschi V, D'Andrea A, et al. Risk factors for pacemaker implantation following aortic valve replacement: a single centre experience. Heart. 2003;89:901-4.
- 347. Bagur R, Manazzoni JM, Dumont É, et al. Permanent pacemaker implantation following isolated aortic valve replacement in a large cohort of elderly patients with severe aortic stenosis. Heart. 2011;97:1687-94.
- 348. Baraki H, Al Ahmad A, Jeng-Singh S, et al. Pacemaker dependency after isolated aortic valve replacement: do conductance disorders recover over time? Interact Cardiovasc Thorac Surg. 2013;16:476-81.
- 349. Greason KL, Lahr BD, Stulak JM, et al. Long-Term Mortality Effect of Early Pacemaker Implantation After Surgical Aortic Valve Replacement. Ann Thorac Surg. 2017;104:1259-64.
- 350. Berdajs D, Schurr UP, Wagner A, et al. Incidence and pathophysiology of atrioventricular block following mitral valve replacement and ring annuloplasty. Eur J Cardiothorac Surg. 2008;34:55-61.
- 351. Goldstein D, Moskowitz AJ, Gelijns AC, et al. Two-Year Outcomes of Surgical Treatment of Severe Ischemic Mitral Regurgitation. New England Journal of Medicine. 2016;374:344-53.

- 352. Saint LL, Damiano RJ, Jr., Cuculich PS, et al. Incremental risk of the Cox-maze IV procedure for patients with atrial fibrillation undergoing mitral valve surgery. J Thorac Cardiovasc Surg. 2013;146:1072-7.
- 353. Gammie JS, Haddad M, Milford-Beland S, et al. Atrial fibrillation correction surgery: lessons from the Society of Thoracic Surgeons National Cardiac Database. Ann Thorac Surg. 2008;85:909-14.
- 354. Gillinov AM, Gelijns AC, Parides MK, et al. Surgical ablation of atrial fibrillation during mitral-valve surgery. N Engl J Med. 2015;372:1399-409.
- 355. Phan K, Xie A, La Meir M, et al. Surgical ablation for treatment of atrial fibrillation in cardiac surgery: a cumulative meta-analysis of randomised controlled trials. Heart. 2014;100:722-30.
- 356. Chikwe J, Itagaki S, Anyanwu A, et al. Impact of Concomitant Tricuspid Annuloplasty on Tricuspid Regurgitation, Right Ventricular Function, and Pulmonary Artery Hypertension After Repair of Mitral Valve Prolapse. J Am Coll Cardiol. 2015;65:1931-8.
- 357. Scully HE, Armstrong CS. Tricuspid valve replacement. Fifteen years of experience with mechanical prostheses and bioprostheses. J Thorac Cardiovasc Surg. 1995;109:1035-41.
- Jokinen JJ, Turpeinen AK, Pitkanen O, et al. Pacemaker therapy after tricuspid valve operations: implications on mortality, morbidity, and quality of life. Ann Thorac Surg. 2009;87:1806-14.
- 359. McCarthy PM, Bhudia SK, Rajeswaran J, et al. Tricuspid valve repair: durability and risk factors for failure. J Thorac Cardiovasc Surg. 2004;127:674-85.
- 360. Piazza N, Onuma Y, Jesserun E, et al. Early and persistent intraventricular conduction abnormalities and requirements for pacemaking after percutaneous replacement of the aortic valve. JACC Cardiovasc Interv. 2008;1:310-6.
- 361. Roten L, Wenaweser P, Delacretaz E, et al. Incidence and predictors of atrioventricular conduction impairment after transcatheter aortic valve implantation. Am J Cardiol. 2010;106:1473-80.
- van der Boon RM, Van Mieghem NM, Theuns DA, et al. Pacemaker dependency after transcatheter aortic valve implantation with the self-expanding Medtronic CoreValve System. Int J Cardiol. 2013;168:1269-73.
- 363. Siontis GC, Juni P, Pilgrim T, et al. Predictors of permanent pacemaker implantation in patients with severe aortic stenosis undergoing TAVR: a meta-analysis. J Am Coll Cardiol. 2014;64:129-40.
- Boerlage-Van Dijk K, Kooiman KM, Yong ZY, et al. Predictors and permanency of cardiac conduction disorders and necessity of pacing after transcatheter aortic valve implantation. Pacing Clin Electrophysiol. 2014;37:1520-9.
- Nazif TM, Dizon JM, Hahn RT, et al. Predictors and clinical outcomes of permanent pacemaker implantation after transcatheter aortic valve replacement: the PARTNER (Placement of AoRtic Transcatheter Valves) trial and registry. JACC Cardiovasc Interv. 2015;8:60-9.
- 366. Mouillet G, Lellouche N, Yamamoto M, et al. Outcomes following pacemaker implantation after transcatheter aortic valve implantation with CoreValve((R)) devices: Results from the FRANCE 2 Registry. Catheter Cardiovasc Interv. 2015;86:E158-66.
- 367. Abramowitz Y, Kazuno Y, Chakravarty T, et al. Concomitant mitral annular calcification and severe aortic stenosis: prevalence, characteristics and outcome following transcatheter aortic valve replacement. Eur Heart J. 2017;38:1194-203.
- Franzoni I, Latib A, Maisano F, et al. Comparison of incidence and predictors of left bundle branch block after transcatheter aortic valve implantation using the CoreValve versus the Edwards valve. Am J Cardiol. 2013;112:554-9.
- 369. Urena M, Mok M, Serra V, et al. Predictive factors and long-term clinical consequences of persistent left bundle branch block following transcatheter aortic valve implantation with a balloon-expandable valve. J Am Coll Cardiol. 2012;60:1743-52.

- 370. Testa L, Latib A, De Marco F, et al. Clinical impact of persistent left bundle-branch block after transcatheter aortic valve implantation with CoreValve Revalving System. Circulation. 2013;127:1300-7.
- 371. Egger F, Nurnberg M, Rohla M, et al. High-degree atrioventricular block in patients with preexisting bundle branch block or bundle branch block occurring during transcatheter aortic valve implantation. Heart Rhythm. 2014;11:2176-82.
- 372. Schymik G, Tzamalis P, Bramlage P, et al. Clinical impact of a new left bundle branch block following TAVI implantation: 1-year results of the TAVIK cohort. Clin Res Cardiol. 2015;104:351-62.
- 373. Regueiro A, Abdul-Jawad Altisent O, Del Trigo M, et al. Impact of new-onset left bundle branch block and periprocedural permanent pacemaker implantation on clinical outcomes in patients undergoing transcatheter aortic valve replacement: a systematic review and meta-analysis. Circ Cardiovasc Interv. 2016;9:e003635.
- 374. Mauri V, Reimann A, Stern D, et al. Predictors of Permanent Pacemaker Implantation After Transcatheter Aortic Valve Replacement With the SAPIEN 3. JACC Cardiovasc Interv. 2016;9:2200-9.
- Watanabe Y, Kozuma K, Hioki H, et al. Pre-Existing Right Bundle Branch Block Increases Risk for Death After Transcatheter Aortic Valve Replacement With a Balloon-Expandable Valve. JACC Cardiovasc Interv. 2016;9:2210-6.
- 376. Auffret V, Webb JG, Eltchaninoff H, et al. Clinical Impact of Baseline Right Bundle Branch Block in Patients Undergoing Transcatheter Aortic Valve Replacement. JACC Cardiovasc Interv. 2017;10:1564-74.
- 377. Rampat R, Khawaja MZ, Hilling-Smith R, et al. Conduction Abnormalities and Permanent Pacemaker Implantation After Transcatheter Aortic Valve Replacement Using the Repositionable LOTUS Device: The United Kingdom Experience. JACC Cardiovasc Interv. 2017;10:1247-53.
- Nombela-Franco L, del Trigo M, Morrison-Polo G, et al. Incidence, Causes, and Predictors of Early (</=30 Days) and Late Unplanned Hospital Readmissions After Transcatheter Aortic Valve Replacement. JACC Cardiovasc Interv. 2015;8:1748-57.
- 379. Urena M, Webb JG, Eltchaninoff H, et al. Late cardiac death in patients undergoing transcatheter aortic valve replacement: incidence and predictors of advanced heart failure and sudden cardiac death. J Am Coll Cardiol. 2015;65:437-48.
- 380. Dizon JM, Nazif TM, Hess PL, et al. Chronic pacing and adverse outcomes after transcatheter aortic valve implantation. Heart. 2015;101:1665-71.
- 381. Mallidi HR, Bates M. Pacemaker Use Following Heart Transplantation. Ochsner J. 2017;17:20-4.
- Wellmann P, Herrmann FE, Hagl C, et al. A Single Center Study of 1,179 Heart Transplant Patients-Factors Affecting Pacemaker Implantation. Pacing Clin Electrophysiol. 2017;40:247-54.
- 383. Lee W, Tay A, Walker BD, et al. Accelerated graft dysfunction in heart transplant patients with persistent atrioventricular conduction block. Europace. 2016;18:1837-41.
- 384. El-Assaad I, Al-Kindi SG, Oliveira GH, et al. Pacemaker implantation in pediatric heart transplant recipients: Predictors, outcomes, and impact on survival. Heart Rhythm. 2015;12:1776-81.
- 385. Knight CS, Tallaj JA, Rayburn BK, et al. Bradycardia and syncope as a presentation of cardiac allograft rejection involving the conducting system. Cardiovasc Pathol. 2010;19:117-20.
- 386. Braith RW, Clapp L, Brown T, et al. Rate-responsive pacing improves exercise tolerance in heart transplant recipients: a pilot study. J Cardiopulm Rehabil. 2000;20:377-82.

- 387. Bacal F, Bocchi EA, Vieira ML, et al. Permanent and temporary pacemaker implantation after orthotopic heart transplantation. Arq Bras Cardiol. 2000;74:5-12.
- 388. Nagele H, Doring V, Kalmar P, et al. Long-term hemodynamic benefit of atrial synchronization with A2A2D or A2A2T pacing in sinus node syndrome after orthotopic heart transplantation. J Heart Lung Transplant. 1998;17:906-12.
- 389. Jones DG, Mortsell DH, Rajaruthnam D, et al. Permanent pacemaker implantation early and late after heart transplantation: clinical indication, risk factors and prognostic implications. J Heart Lung Transplant. 2011;30:1257-65.
- 390. Cantillon DJ, Tarakji KG, Hu T, et al. Long-term outcomes and clinical predictors for pacemaker-requiring bradyarrhythmias after cardiac transplantation: analysis of the UNOS/OPTN cardiac transplant database. Heart Rhythm. 2010;7:1567-71.
- 391. Liebregts M, Faber L, Jensen MK, et al. Outcomes of Alcohol Septal Ablation in Younger Patients With Obstructive Hypertrophic Cardiomyopathy. JACC Cardiovasc Interv. 2017;10:1134-43.
- 392. Poon SS, Field M, Gupta D, et al. Surgical septal myectomy or alcohol septal ablation: which approach offers better outcomes for patients with hypertrophic obstructive cardiomyopathy? Interact Cardiovasc Thorac Surg. 2017;24:951-61.
- 393. Axelsson A, Weibring K, Havndrup O, et al. Atrioventricular conduction after alcohol septal ablation for obstructive hypertrophic cardiomyopathy. J Cardiovasc Med (Hagerstown). 2014;15:214-21.
- 394. Veselka J, Krejci J, Tomasov P, et al. Outcome of patients after alcohol septal ablation with permanent pacemaker implanted for periprocedural complete heart block. Int J Cardiol. 2014;171:e37-8.
- 395. El-Jack SS, Nasif M, Blake JW, et al. Predictors of complete heart block after alcohol septal ablation for hypertrophic cardiomyopathy and the timing of pacemaker implantation. J Interv Cardiol. 2007;20:73-6.
- 396. McCann GP, Van Dockum WG, Beek AM, et al. Extent of myocardial infarction and reverse remodeling assessed by cardiac magnetic resonance in patients with and without right bundle branch block following alcohol septal ablation for obstructive hypertrophic cardiomyopathy. Am J Cardiol. 2007;99:563-7.
- 397. Faber L, Welge D, Fassbender D, et al. Percutaneous septal ablation for symptomatic hypertrophic obstructive cardiomyopathy: managing the risk of procedure-related AV conduction disturbances. Int J Cardiol. 2007;119:163-7.
- 398. Talreja DR, Nishimura RA, Edwards WD, et al. Alcohol septal ablation versus surgical septal myectomy: comparison of effects on atrioventricular conduction tissue. J Am Coll Cardiol. 2004;44:2329-32.
- 399. Wang S, Luo M, Sun H, et al. A retrospective clinical study of transaortic extended septal myectomy for obstructive hypertrophic cardiomyopathy in China. Eur J Cardiothorac Surg. 2013;43:534-40.
- 400. Agarwal S, Tuzcu EM, Desai MY, et al. Updated meta-analysis of septal alcohol ablation versus myectomy for hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010;55:823-34.
- 401. Schuller JL, Zipse MM, Krantz MJ, et al. Incidence and predictors of late complete heart block after alcohol septal ablation treatment of hypertrophic obstructive cardiomyopathy. J Interv Cardiol. 2015;28:90-7.
- 402. Veselka J, Lawrenz T, Stellbrink C, et al. Low incidence of procedure-related major adverse cardiac events after alcohol septal ablation for symptomatic hypertrophic obstructive cardiomyopathy. Can J Cardiol. 2013;29:1415-21.
- 403. Kim LK, Swaminathan RV, Looser P, et al. Hospital Volume Outcomes After Septal Myectomy and Alcohol Septal Ablation for Treatment of Obstructive Hypertrophic Cardiomyopathy: US Nationwide Inpatient Database, 2003-2011. JAMA Cardiol. 2016;1:324-32.

- 404. Liebregts M, Vriesendorp PA, Mahmoodi BK, et al. A Systematic Review and Meta-Analysis of Long-Term Outcomes After Septal Reduction Therapy in Patients With Hypertrophic Cardiomyopathy. JACC Heart Fail. 2015;3:896-905.
- 405. Balt JC, Wijffels MC, Boersma LV, et al. Continuous rhythm monitoring for ventricular arrhythmias after alcohol septal ablation for hypertrophic cardiomyopathy. Heart. 2014;100:1865-70.
- 406. Qin JX, Shiota T, Lever HM, et al. Conduction system abnormalities in patients with obstructive hypertrophic cardiomyopathy following septal reduction interventions. Am J Cardiol. 2004;93:171-5.
- 407. Chang SM, Nagueh SF, Spencer WH, 3rd, et al. Complete heart block: determinants and clinical impact in patients with hypertrophic obstructive cardiomyopathy undergoing nonsurgical septal reduction therapy. J Am Coll Cardiol. 2003;42:296-300.
- 408. Chen AA, Palacios IF, Mela T, et al. Acute predictors of subacute complete heart block after alcohol septal ablation for obstructive hypertrophic cardiomyopathy. Am J Cardiol. 2006;97:264-9.
- 409. Lawrenz T, Lieder F, Bartelsmeier M, et al. Predictors of complete heart block after transcoronary ablation of septal hypertrophy: results of a prospective electrophysiological investigation in 172 patients with hypertrophic obstructive cardiomyopathy. J Am Coll Cardiol. 2007;49:2356-63.
- 410. Wang W, Lian Z, Rowin EJ, et al. Prognostic Implications of Nonsustained Ventricular Tachycardia in High-Risk Patients With Hypertrophic Cardiomyopathy. Circ Arrhythm Electrophysiol. 2017;10:
- 411. Thavikulwat AC, Tomson TT, Knight BP, et al. Appropriate Implantable Defibrillator Therapy in Adults With Hypertrophic Cardiomyopathy. J Cardiovasc Electrophysiol. 2016;27:953-60.
- 412. Maron BJ, Spirito P, Shen WK, et al. Implantable cardioverter-defibrillators and prevention of sudden cardiac death in hypertrophic cardiomyopathy. Jama. 2007;298:405-12.
- 413. Gelatt M, Hamilton RM, McCrindle BW, et al. Arrhythmia and mortality after the Mustard procedure: a 30-year single-center experience. J Am Coll Cardiol. 1997;29:194-201.
- 414. Helbing WA, Hansen B, Ottenkamp J, et al. Long-term results of atrial correction for transposition of the great arteries. Comparison of Mustard and Senning operations. J Thorac Cardiovasc Surg. 1994;108:363-72.
- 415. Anand N, McCrindle BW, Chiu CC, et al. Chronotropic incompetence in young patients with late postoperative atrial flutter: a case-control study. Eur Heart J. 2006;27:2069-73.
- 416. Diller GP, Dimopoulos K, Okonko D, et al. Heart rate response during exercise predicts survival in adults with congenital heart disease. J Am Coll Cardiol. 2006;48:1250-6.
- 417. Janousek J, Paul T, Luhmer I, et al. Atrial baffle procedures for complete transposition of the great arteries: natural course of sinus node dysfunction and risk factors for dysrhythmias and sudden death. Z Kardiol. 1994;83:933-8.
- 418. Fishberger SB, Wernovsky G, Gentles TL, et al. Factors that influence the development of atrial flutter after the Fontan operation. J Thorac Cardiovasc Surg. 1997;113:80-6.
- 419. Dewey RC, Capeless MA, Levy AM. Use of ambulatory electrocardiographic monitoring to identify high-risk patients with congenital complete heart block. N Engl J Med. 1987;316:835-9.
- 420. Lundstrom U, Bull C, Wyse RK, et al. The natural and "unnatural" history of congenitally corrected transposition. Am J Cardiol. 1990;65:1222-9.
- 421. Graham TP, Jr., Bernard YD, Mellen BG, et al. Long-term outcome in congenitally corrected transposition of the great arteries: a multi-institutional study. J Am Coll Cardiol. 2000;36:255-61.

- 422. Khairy P, Landzberg MJ, Gatzoulis MA, et al. Transvenous pacing leads and systemic thromboemboli in patients with intracardiac shunts: a multicenter study. Circulation. 2006;113:2391-7.
- 423. DeSimone CV, Friedman PA, Noheria A, et al. Stroke or transient ischemic attack in patients with transvenous pacemaker or defibrillator and echocardiographically detected patent foramen ovale. Circulation. 2013;128:1433-41.
- 424. Kim MH, Deeb GM, Eagle KA, et al. Complete atrioventricular block after valvular heart surgery and the timing of pacemaker implantation. Am J Cardiol. 2001;87:649-51, a10.
- 425. Glikson M, Dearani JA, Hyberger LK, et al. Indications, effectiveness, and long-term dependency in permanent pacing after cardiac surgery. Am J Cardiol. 1997;80:1309-13.
- 426. Edwards WD, Edwards JE. Pathology of the sinus node in d-transposition following the Mustard operation. J Thorac Cardiovasc Surg. 1978;75:213-8.
- 427. Sanders P, Morton JB, Kistler PM, et al. Electrophysiological and electroanatomic characterization of the atria in sinus node disease: evidence of diffuse atrial remodeling. Circulation. 2004;109:1514-22.
- 428. Bolens M, Friedli B. Sinus node function and conduction system before and after surgery for secundum atrial septal defect: an electrophysiologic study. Am J Cardiol. 1984;53:1415-20.
- 429. Gillette PC, el-Said GM, Sivarajan N, et al. Electrophysiological abnormalities after Mustard's operation for transposition of the great arteries. Br Heart J. 1974;36:186-91.
- 430. Garson A, Jr., Bink-Boelkens M, Hesslein PS, et al. Atrial flutter in the young: a collaborative study of 380 cases. J Am Coll Cardiol. 1985;6:871-8.
- 431. Albin G, Hayes DL, Holmes DR, Jr. Sinus node dysfunction in pediatric and young adult patients: treatment by implantation of a permanent pacemaker in 39 cases. Mayo Clin Proc. 1985;60:667-72.
- 432. McLeod CJ, Attenhofer Jost CH, Warnes CA, et al. Epicardial versus endocardial permanent pacing in adults with congenital heart disease. J Interv Card Electrophysiol. 2010;28:235-43.
- 433. Walker F, Siu SC, Woods S, et al. Long-term outcomes of cardiac pacing in adults with congenital heart disease. J Am Coll Cardiol. 2004;43:1894-901.
- 434. Bink-Boelkens MT, Velvis H, van der Heide JJ, et al. Dysrhythmias after atrial surgery in children. Am Heart J. 1983;106:125-30.
- 435. Stephenson EA, Casavant D, Tuzi J, et al. Efficacy of atrial antitachycardia pacing using the Medtronic AT500 pacemaker in patients with congenital heart disease. Am J Cardiol. 2003;92:871-6.
- 436. Rhodes LA, Walsh EP, Gamble WJ, et al. Benefits and potential risks of atrial antitachycardia pacing after repair of congenital heart disease. Pacing Clin Electrophysiol. 1995;18:1005-16.
- 437. Ayyıldiz P, Kasar T, Ozturk E, et al. Evaluation of Permanent or Transient Complete Heart Block after Open Heart Surgery for Congenital Heart Disease. Pacing Clin Electrophysiol. 2016;39:160-5.
- 438. Aziz PF, Serwer GA, Bradley DJ, et al. Pattern of recovery for transient complete heart block after open heart surgery for congenital heart disease: duration alone predicts risk of late complete heart block. Pediatr Cardiol. 2013;34:999-1005.
- 439. Lin A, Mahle WT, Frias PA, et al. Early and delayed atrioventricular conduction block after routine surgery for congenital heart disease. J Thorac Cardiovasc Surg. 2010;140:158-60.

- 440. Domenighetti G, Perret C. Intraventricular conduction disturbances in acute myocardial infarction: short- and long-term prognosis. Eur J Cardiol. 1980;11:51-9.
- 441. Col JJ, Weinberg SL. The incidence and mortality of intraventricular conduction defects in acute myocardial infarction. Am J Cardiol. 1972;29:344-50.
- 442. Ritter WS, Atkins JM, Blomqvist CG, et al. Permanent pacing in patients with transient trifascicular block during acute myocardial infarction. Am J Cardiol. 1976;38:205-8.
- 443. Lamas GA, Muller JE, Turi ZG, et al. A simplified method to predict occurrence of complete heart block during acute myocardial infarction. Am J Cardiol. 1986;57:1213-9.
- 444. Shaw DB, Holman RR, Gowers JI. Survival in sinoatrial disorder (sick-sinus syndrome). Br Med J. 1980;280:139-41.
- 445. Hindman MC, Wagner GS, JaRo M, et al. The clinical significance of bundle branch block complicating acute myocardial infarction. 2. Indications for temporary and permanent pacemaker insertion. Circulation. 1978;58:689-99.
- 446. Hindman MC, Wagner GS, JaRo M, et al. The clinical significance of bundle branch block complicating acute myocardial infarction. 1. Clinical characteristics, hospital mortality, and one-year follow-up. Circulation. 1978;58:679-88.
- 447. Meine TJ, Al-Khatib SM, Alexander JH, et al. Incidence, predictors, and outcomes of high-degree atrioventricular block complicating acute myocardial infarction treated with thrombolytic therapy. Am Heart J. 2005;149:670-4.
- 448. Gang UJ, Hvelplund A, Pedersen S, et al. High-degree atrioventricular block complicating ST-segment elevation myocardial infarction in the era of primary percutaneous coronary intervention. Europace. 2012;14:1639-45.
- 449. Auffret V, Loirat A, Leurent G, et al. High-degree atrioventricular block complicating ST segment elevation myocardial infarction in the contemporary era. Heart. 2016;102:40-9.
- 450. Kim HL, Kim SH, Seo JB, et al. Influence of second- and third-degree heart block on 30-day outcome following acute myocardial infarction in the drug-eluting stent era. Am J Cardiol. 2014;114:1658-62.
- 451. Ranganathan N, Dhurandhar R, Phillips JH, et al. His Bundle electrogram in bundle-branch block. Circulation. 1972;45:282-94.
- 452. Rotman M, Wagner GS, Wallace AG. Bradyarrhythmias in acute myocardial infarction. Circulation. 1972;45:703-22.
- 453. Bestawros M, Darbar D, Arain A, et al. Ictal asystole and ictal syncope: insights into clinical management. Circ Arrhythm Electrophysiol. 2015;8:159-64.
- 454. Lanz M, Oehl B, Brandt A, et al. Seizure induced cardiac asystole in epilepsy patients undergoing long term video-EEG monitoring. Seizure. 2011;20:167-72.
- 455. Schuele SU, Bermeo AC, Alexopoulos AV, et al. Video-electrographic and clinical features in patients with ictal asystole. Neurology. 2007:69:434-41.
- 456. Tenyi D, Gyimesi C, Kupo P, et al. Ictal asystole: A systematic review. Epilepsia. 2017;58:356-62.
- 457. Ogunbayo GO, Charnigo R, Darrat Y, et al. Incidence, predictors, and outcomes associated with pneumothorax during cardiac electronic device implantation: A 16-year review in over 3.7 million patients. Heart Rhythm. 2017;14:1764-70.
- 458. Sochala M, Wahbi K, Sorbets E, et al. Risk for Complications after Pacemaker or Cardioverter Defibrillator Implantations in Patients with Myotonic Dystrophy Type 1. J Neuromuscul Dis. 2017;4:175-81.

- 459. Bai Y, Duan J, Wang L, et al. Clinical analysis of the effect of anti-allergy treatment on pocket-related complications following pacemaker implantation. Exp Ther Med. 2017;13:2876-82.
- 460. Hosseini SM, Moazzami K, Rozen G, et al. Utilization and in-hospital complications of cardiac resynchronization therapy: trends in the United States from 2003 to 2013. Eur Heart J. 2017;38:2122-8.
- 461. Gupta N, Kiley ML, Anthony F, et al. Multi-Center, Community-Based Cardiac Implantable Electronic Devices Registry: Population, Device Utilization, and Outcomes. J Am Heart Assoc. 2016;5:e002798.
- 462. Friedman DJ, Singh JP, Curtis JP, et al. Comparative Effectiveness of CRT-D Versus Defibrillator Alone in HF Patients With Moderate-to-Severe Chronic Kidney Disease. J Am Coll Cardiol. 2015;66:2618-29.
- 463. Witt CT, Kronborg MB, Nohr EA, et al. Adding the implantable cardioverter-defibrillator to cardiac resynchronization therapy is associated with improved long-term survival in ischaemic, but not in non-ischaemic cardiomyopathy. Europace. 2016;18:413-9.
- 464. Gadler F, Valzania C, Linde C. Current use of implantable electrical devices in Sweden: data from the Swedish pacemaker and implantable cardioverter-defibrillator registry. Europace. 2015;17:69-77.
- 465. Essebag V, Joza J, Birnie DH, et al. Incidence, predictors, and procedural results of upgrade to resynchronization therapy: the RAFT upgrade substudy. Circ Arrhythm Electrophysiol. 2015;8:152-8.
- 466. Chung MK, Holcomb RG, Mittal S, et al. REPLACE DARE (Death After Replacement Evaluation) score: determinants of all-cause mortality after implantable device replacement or upgrade from the REPLACE registry. Circ Arrhythm Electrophysiol. 2014;7:1048-56.
- 467. Adelstein E, Schwartzman D, Bazaz R, et al. Outcomes in pacemaker-dependent patients upgraded from conventional pacemakers to cardiac resynchronization therapy-defibrillators. Heart Rhythm. 2014;11:1008-14.
- 468. Kirkfeldt RE, Johansen JB, Nohr EA, et al. Complications after cardiac implantable electronic device implantations: an analysis of a complete, nationwide cohort in Denmark. Eur Heart J. 2014;35:1186-94.
- 469. Acosta J, Fernandez-Armenta J, Borras R, et al. Scar Characterization to Predict Life-Threatening Arrhythmic Events and Sudden Cardiac Death in Patients With Cardiac Resynchronization Therapy: The GAUDI-CRT Study. JACC Cardiovasc Imaging. 2017;
- 470. Martens P, Verbrugge FH, Nijst P, et al. Incremental benefit of cardiac resynchronisation therapy with versus without a defibrillator. Heart. 2017;103:1977-84.
- 471. Yokoshiki H, Shimizu A, Mitsuhashi T, et al. Survival and Heart Failure Hospitalization in Patients With Cardiac Resynchronization Therapy With or Without a Defibrillator for Primary Prevention in Japan- Analysis of the Japan Cardiac Device Treatment Registry Database. Circ J. 2017;81:1798-806.
- 472. Ip JE, Wu MS, Kennel PJ, et al. Eligibility of Pacemaker Patients for Subcutaneous Implantable Cardioverter Defibrillators. J Cardiovasc Electrophysiol. 2017;28:544-8.
- 473. Maisel WH, Moynahan M, Zuckerman BD, et al. Pacemaker and ICD generator malfunctions: analysis of Food and Drug Administration annual reports. Jama. 2006;295:1901-6.
- 474. Maisel WH. Pacemaker and ICD generator reliability: meta-analysis of device registries. Jama. 2006;295:1929-34.
- 475. Benhayon D, Lugo R, Patel R, et al. Long-term arrhythmia follow-up of patients with myotonic dystrophy. J Cardiovasc Electrophysiol. 2015;26:305-10.
- 476. Faber TS, Gradinger R, Treusch S, et al. Incidence of ventricular tachyarrhythmias during permanent pacemaker therapy in low-risk patients results from the German multicentre EVENTS study. Eur Heart J. 2007;28:2238-42.