BOHB: Robust and Efficient Hyperparameter Optimization at Scale

Stefan Falkner, Aaron Klein, Frank Hutter

Presented by: Muhammed Ugur

Hyperparameter Overview

- Hyperparameters = configurations
 - Continuous, discrete, categorical
- For ML
 - Architectural
 - Number and width of layers
 - Optimization
 - Learning rate, batch size, epochs, activation function
 - Regularization

Hyperparameter Overview

- Hyperparameter optimization (HPO) problem
 - Given a set of hyperparameters and an objective function
 - Select optimal assignment that minimizes objective function
 - Treat this as a search space

For ML

- Models are highly sensitive to internal configurations
- Hyperparameter optimization is critical
- Objective function is to minimize validation error

Example

[1]

Ideal HPO method

- Output best configuration
 - If constrained, output best configuration at any given time
- Scales efficiently
 - Exponential search space
 - Evaluating a configuration requires training and validation
- Utilizes resources efficiently
 - Parallelization
- Robustness
 - Different deep learning methods
 - Different types of hyperparameters

BOHB: High-level Idea

- Main HPO methods
 - Random search
 - Bayesian optimization (model-based)
 - Hyperband (bandit algorithms)
- BOHB combines Bayesian optimization and Hyperband
 - Attempts to satisfy all ideal goals

- High-level idea: use prior information to guide tuning
 - Balance out evaluating unknown regions (exploration) with known regions (exploitation)
 - Models underlying objective function distribution
- At each step
 - Determine the next best configuration to evaluate based on prior info
 - Uses acquisition function (tells us how desirable it is to evaluate a configuration)
 - e.g. maximize expected improvement (how much can we improve)
 - Evaluate
 - Update probabilistic model
 - Continue (until convergence or resource constraint)

[6]

9

[6]

12

[6]

14

- Converges to the best configurations
- However, does not scale well due to Gaussian processes
 - Cubic relative to configurations tried so far
- Tree Parzen Estimator
 - Also BO method, but uses a kernel density estimator (KDE)
 - Constructs two distributions for "good" and "bad" points
 - Maximize ratio of these two distributions to choose next configuration
 - Equivalent to maximizing expected improvement
 - Linear relative to configurations tried so far

Hyperband

- High-level idea: compare relative performance of configurations and prematurely stop the bad performers and continue the good performers
- Allocate a budget to each configuration
 - e.g. number of epochs or data points used for training
- Repeatedly call Successive Halving (SH) on different budgets
 - Evaluate n randomly sampled configurations and keep the top I/x
 - Increase the budget per configuration by a factor of x (allocate more resources)
 - Repeat until the maximum per-configuration budget is reached

Hyperband

- Hyperband calls SH with different budgets (different starting number of configurations)
- Returns the configuration with the smallest objective function overall

Example of early stopping (SH)

[2]

Hyperband

- Pros
 - Has theoretical guarantees
 - Parallelizable
 - Simpler than model-based methods
- Cons
 - Convergence
 - Randomly samples a set of configurations
 - Can eliminate late learners early
 - Requires many evaluations
 - Stragglers

BOHB

- Combines BO (specifically Tree Parzen Estimator) and HB
- Replaces random sampling in HB with BO component
 - Keep track of all configuration and budget pairs
 - Build up TPE model for each budget
 - Requires sufficient amount of evaluations
 - Use TPE model for largest budget with enough data (large budget => better validation)
 - Use this to better select configurations during HB

BOHB

- Initial progress from HB
- Strong final performance from BO

[2]

BOHB

- Parallelize aspects of HB (and TPE)
 - Parallel budget iterations
 - Evaluate many configurations at once
- Master node
 - Keeps track of model to make configuration selections
- Worker nodes
 - Evaluation configurations based on budget

Evaluation

- Effect of parallelization
 - n = number of workers

Evaluation

- SVM on MNIST
 - Regularization and kernel hyperparameters
 - Budget is number of training points

Evaluation

- Feed-Forward NNs on OpenML Datasets
 - Hyperparameters: initial learning rate, batch size, number of layers, etc.
 - 6 datasets, shown here is only one (Poker)

Questions

Implementation of BOHB: https://github.com/automl/HpBandSter

A System for Massively Parallel Hyperparameter Tuning

Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Jonathan Ben-Tzur, Moritz Hardt, Benjamin Recht, Ameet Talwalkar

- High-dimensional search spaces
- Increasing training times
 - Sequential methods are not necessarily feasible
 - Select configuration in the wall clock time it takes to train the model
- Rise of parallel computing
 - Exploit this to find good configurations in reasonable times
- Productionization of ML
 - Distributed HPO (efficient use of resources)

ASHA: High-level Idea

- Asynchronous Successive Halving Algorithm (ASHA)
 - Instead of starting with many configurations and narrowing down
 - Promote as soon as possible and keep adding new configurations
- Similar results to SHA, but more scalable
- Designed for
 - # configurations > # workers
 - Finishing within a small multiple of training time
- ASHA is "production-ready"

SHA

SHA

1/2 = rate of elimination at each rung (halving stage)

	Configurations Remaining	Epochs per Configuration
Rung 1	27	1
Rung 2	9	3
Rung 3	3	9
Rung 4	1	27

Table 1: SHA with η =3 starting with 27 configurations, each allocated a resource of 1 epoch in the first rung.

[5]

SHA

[5]

SHA

- Issues with SHA
 - Sequential
 - Wait for each configuration to finish in each rung before moving on (bottleneck)
 - Difficult to parallelize efficiently

ASHA

- Starts out by adding configurations to lowest rung
 - Based on worker availability
- Once a worker finishes, ASHA looks for promotions in all rungs
 - If not, add a configuration to lowest rung
 - This will eventually lead to more promotions

ASHA

[5]

ASHA

- Better utilizes workers compared to SHA
- Returns configuration in at most twice the training time

$$\left(\sum_{i=s}^{\log_{\eta}(R)} \eta^{i-\log_{\eta}(R)}\right) \times time(R) \le 2 time(R).$$

Related Systems

- Hyperband, BOHB
- Population-based training (PBT)
 - Evaluate population of hyperparameters
 - Remove worst performers
 - Mutate best performers and add them in place of removed ones
 - No theoretical guarantees
- Vizier
 - Google's black-box optimization service
 - Has various early-stopping configurations
- RayTune, CHOPT, Optuna

- Compare against SHA, PBT, and Random on a single machine
- Tune CIFAR-10 (CNN)

- Compare against SHA, BOHB, and PBT with 25 workers for 150 min (5 trials)
- Tune CIFAR-10 (CNN)

- Compare against SHA and BOHB on 16 workers
- Neural Architecture Search as a specialized HPO
 - Design CNNs (CIFAR-10)
 - Design RNNs (Penn Treebank)

- Compare against (parallel) Hyperband and Vizier with 500 workers
- LSTM (requires weeks to run)

Productionization

Usability

- Do not expose user to internal configurations of ASHA
- Set default values (elimination rate, max early-stopping rate, brackets to run)
- Set the number of configurations evaluated as the explicit stopping time
- Automatic Scaling of Parallel Training
 - Speed up training in higher rungs with more GPUs
- Resource Allocation
 - Adaptively allocate resources for better algorithm and cluster utilization
- Reproducibility
 - Pausing and restarting evaluations (checkpointing)
 - Track promotions for each bracket
 - Provides some fault-tolerance

Questions

References

- 1. James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter optimization. *J. Mach. Learn. Res.* 13, null (3/1/2012), 281–305.
- 2. Falkner, Stefan et al. "BOHB: Robust and Efficient Hyperparameter Optimization at Scale." ICML (2018).
- 3. Li, Liam, et al. "Massively parallel hyperparameter tuning." (2018).
- 4. Li, Lisha, et al. "Hyperband: A novel bandit-based approach to hyperparameter optimization." *The Journal of Machine Learning Research* 18.1 (2017): 6765-6816.
- 5. https://blog.ml.cmu.edu/2018/12/12/massively-parallel-hyperparameter-optimization/
- 6. https://distill.pub/2020/bayesian-optimization/?utm_campaign=Data_Elixir&utm_source=Data_Elixir_285