Title

D. Zack Garza

Table of Contents

Contents

Table of Contents			2
1	Lect	cure 10	3
	1.1	Representability and Local Triviality	4
		1.1.1 What Hilbert 90 Means	5
		1.1.2 Geometric Interpretations	6
	1.2	Computing the Cohomology of Curves	7
		1.2.1 Proof of Theorem	8
	1.3	Pushforwards and the Leray Spectral Sequence	9

Table of Contents

Lecture 10

Remark 1.0.1: What we've been calling a *torsor* (a sheaf with a group action plus conditions) is called by some sources a **pseudotorsor** (e.g. the Stacks Project), and what we've been calling a *locally trivial torsor* is referred to as a *torsor* instead.

Recall that statement of ??; we'll now continue with the proof:

Proof (of Hilbert 90).

Observation 1.0.2: Let $\tau = X_{\text{zar}}, X_{\text{\'et}}, X_{\text{fppf}}$, then the data of a GL_n -torsor split by a τ -cover $U \to X$ is the same as descent data for a vector bundle relative to $U_{/X}$.

This descent data comes from the following:

$$U \times_X U$$

$$\pi_1 \bigcup_{\pi_2} \pi_2$$

$$U$$

That U trivializes our torsor means that $\pi^*T = \pi^*G$ as a G-torsor, where G acts on itself by left-multiplication. We have two different ways of pulling back, and identifications with G in both, yielding

$$\pi_1^*\pi^*T \xrightarrow{\sim} \pi_2^*\pi^*T$$

$$\downarrow \qquad \qquad \downarrow$$

$$\pi_1^*\pi^*G \xrightarrow{\sim} \pi_2^*\pi^*G$$

Both of the bottom objects are isomorphic to $G|_{U\times U}$.

Claim: The top horizontal map is descent data for T, and the bottom horizontal map is an automorphism of a G-torsor and thus is a section to G. I.e. a section to GL_n is an invertible matrix on double intersections (satisfying the cocycle condition) and a cover, which is precisely descent data for a vector bundle.

Using fppf descent, proved previously, we know that descent data for vector bundles is effective. So if we have a locally trivial GL_n -torsor on the fppf site, it's also trivial on the other two sites, yieldings the desired maps back and forth. Thus $H^1(X_{\text{\'et}}, GL_n)$ is in bijection with n-dimensional vector bundles on X.

Exercise 1.0.3(?): See if Hilbert 90 is true for groups other than GL_n .

1.1 Representability and Local Triviality

Lecture 10 3

Question 1.1.1: Suppose G is an affine flat X-group scheme. Are all G-torsors representable by a X-scheme?

Answer 1.1.2: Yes, by the same proof as last time, try working out the details. Idea: you can trivialize a G-torsor flat locally and use fppf descent.

Question 1.1.3: Given a G-torsor T that is fppf locally trivial, is it étale locally trivial?

Answer 1.1.4: In general no, but yes if G is smooth.

Proof (Sketch).

You can take an fppf local trivialization, trivialize by p itself, then slice to get an étale trivialization. Given a torsor $T \to X$, we can base change it to itself:

$$T \times_X T \longrightarrow T$$

$$\downarrow \uparrow \exists \qquad \qquad \downarrow$$

$$T \xrightarrow{f} X$$

The torsor $T \times_X T \to T$ is trivial since there exists the indicated section given by the diagonal map. Another way to see this is that $T \times T \cong T \times G$ by the G-action map, which is equivalent to triviality here. Here f is smooth map since G itself was smooth and the fibers of T are isomorphic to the fibers of G. We can thus find some U such that

Here "slicing" means finding such a U, and this can be done using the structure theorem for smooth morphisms.

Example 1.1.5 (non-smooth group schemes):

- α_p , the kernel of Frobenius on \mathbb{A}^1 or \mathbb{G}_a ,
- μ_p in characteristic p, representing pth roots of unity, the kernel of Frobenius on \mathbb{G}_m ,
- The kernel of Frobenius on any positive dimensional affine group scheme.
- $\mu_p \times \operatorname{GL}_n$, etc.

1.1.1 What Hilbert 90 Means

Example 1.1.6(?): Let $X = \operatorname{Spec} k, n = 1$, so we're looking at $H^{\cdot}(\operatorname{Spec} k, \mathbb{G}_m)$.

$$\begin{split} H^1\left((\operatorname{Spec} k)_{\operatorname{zar}}, \mathbb{G}_m\right) &= 0 \\ &= H^1\left((\operatorname{Spec} k)_{\operatorname{\acute{e}t}}, \mathbb{G}_m\right) \\ &= H^1(\operatorname{Gal}(k^s/k), \bar{k}^{\times}). \end{split}$$

The first comes from the fact that we're looking at line bundles of spec of a field, i.e. a point, which are all trivial. The last line comes from our previous discussion of the isomorphism between étale cohomology of fields and Galois cohomology. Etymology: the fact that this cohomology is zero is usually what's called **Hilbert 90**.¹

Let's generalize this observation.

Example 1.1.7(?): Let X be any scheme and n = 1, then $H^1(X_{\text{\'et}}, \mathbb{G}_m) = \text{Pic}(X)$.

Example 1.1.8(?): Let's compute $H^1(X_{\text{\'et}}, \mu_{\ell})$ where ℓ is an invertible function on X. We have a SES of ℓ tale sheaves, the **Kummer sequence**,

$$1 \to \mu_{\ell} \to \mathbb{G}_m \xrightarrow{z \mapsto z^p} \mathbb{G}_m \to 1.$$

This is exact in the étale topology since adjoining an ℓ th power of any function gives an étale cover. We get a LES in cohomology

$$H^{0}(X_{\operatorname{\acute{e}t}}, \mu_{\ell}) \xrightarrow{H^{0}(X_{\operatorname{\acute{e}t}}, \mathbb{G}_{m})} H^{0}(X_{\operatorname{\acute{e}t}}, \mathbb{G}_{m})$$

$$H^{1}(X_{\operatorname{\acute{e}t}}, \mu_{\ell}) \xrightarrow{Pic(X)} \operatorname{Pic}(X)$$

$$H^{2}(X_{\operatorname{\acute{e}t}}, \mu_{\ell}) \xrightarrow{} \cdots$$

We know that $H^0(X_{\text{\'et}}, \mathbb{G}_m)$ are invertible functions on X, and the red term is what we'd like to compute.

Suppose now $H^0(X, \mathcal{O}_X) = k = \overline{k}$, then $H^0(X_{\text{\'et}}, \mu_\ell) = \mu_\ell(k)$ since it is the kernel of the ℓ th power map. We can also compute $H^1(X_{\text{\'et}}, \mu_\ell)$, since our diagram reduces to

¹This is called "90" since Hilbert numbered his theorems in at least one of his books.

where surjectivity of δ follows from the fact that $k = \bar{k}$ and thus every element has an ℓ th root, making H^1 the kernel of $[\ell]$.

Example 1.1.9(?): Let $X_{/k}$ with $k = \bar{k}$ with ℓ invertible in k, then (claim) $\mathbb{Z}/\ell\mathbb{Z} \cong \mu_{\ell}$ given by sending a generator to some choice of a primitive ℓ th root of unity. To be explicit, we have a representation $\mathbb{Z}/\ell\mathbb{Z} = \text{hom}(\cdot, \text{Spec}\,k[t]/t(t-1)\cdots(t-\ell+1))$ and $\mu_{\ell} = \text{Spec}\,k[t]/t^{\ell} - 1$. These are both disjoint unions of points, and hence schemes of dimension zero since ℓ is invertible in the base and the Chinese Remainder Theorem, so one can write down the isomorphism explicitly between the schemes and hence the functors they represent.

Corollary 1.1.10(?). If
$$\mu_{\ell} \subseteq k$$
, then
$$H^i(X_{\text{\'et}}, \underline{\mathbb{Z}/\ell\mathbb{Z}}) = H^i(X_{\text{\'et}}, \mu_{\ell}).$$

Since the isomorphism depends on the choice of a primitive root, this will not be Galois equivariant, which will come up when we talk about Galois actions on étale cohomology. This already happens for H^0 , since $G \sim \mathbb{Z}/\ell\mathbb{Z}$ trivially but not on μ_{ℓ} .

1.1.2 Geometric Interpretations

Let X be an affine scheme, we now know $H^1(X_{\text{\'et}}, \mathbb{F}_p) = \operatorname{coker}(\mathcal{O}_X \xrightarrow{x^p-x} \mathcal{O}_x)$, the Artin-Schreier map, and these are \mathbb{F}_p -torsors. We also know $H^1(X_{\text{\'et}}, \mathbb{Z}/\ell\mathbb{Z})$ in terms of the LES if $k = \bar{k}$ and $\operatorname{ch}(k) = p$, and this is a $\mathbb{Z}/\ell\mathbb{Z}$ -torsor. Being torsors here geometrically means they're covering spaces with those groups as Galois groups.

Question 1.1.11: How does one write down these torsors/covering spaces?

Example 1.1.12(?): Given

$$[Y] \in H^1(X_{\operatorname{\acute{e}t}}, \mathbb{F}_p) = \operatorname{coker}(\mathcal{O}_X \xrightarrow{x^p - x} \mathcal{O}_X)$$

where we write [Y] to denote thinking of the torsor as some geometric object, how to we write down the covering space? Using Artin-Schreier, we can write $Y = \{y^p - y = a\}$ for some $a \in \mathcal{O}_X$, an **Artin-Schreier covering**.

If $\ell \neq \operatorname{ch}(k)$ and $[Z] \in H^1(X_{\operatorname{\acute{e}t}}, \mu_{\ell})$ and assume $\operatorname{Pic}(X) = 0$. Then we can write

$$H^1(X_{\operatorname{\acute{e}t}}, \mu_\ell) = \operatorname{coker}(\mathcal{O}_X \xrightarrow{x \mapsto x^\ell} \mathcal{O}_X^{\times})$$

In this case, $Z = \{z^{\ell} = f\}$ where $f \in \mathcal{O}_X^{\times}$ is an element representing the class in cohomology, and $\mu_{\ell} \sim Z$ by multiplication by z.

Remark 1.1.13: The process of explicitly writing down covers is called **explicit geometric class** field **theory**, which gives a recipe for writing down abelian covers of covers. In general, for $Pic(X) \neq 0$, the Picard group plays a crucial role.

1.2 Computing the Cohomology of Curves

This is one of Daniel's favorite topics in the entire course!

Theorem 1.2.1(?).

Let $X_{/k}$ be a smooth curve over $k = \bar{k}$, then

$$H^{i}(X_{\text{\'et}}, \mathbb{G}_{m}) = \begin{cases} \mathcal{O}_{X}(X)^{\times} & i = 0 \\ \operatorname{Pic}(X) & i = 1 \\ 0 & \text{else,} \end{cases}$$

noting that $\mathcal{O}_X(X)^{\times}$ are the global sections of \mathbb{G}_m , i.e. invertible functions on X.

The first two cases we've done, i > 1 is the hard case.

Corollary 1.2.2(?).

For X a smooth proper connected curve of genus $g, k = \bar{k}$, and $\ell \neq \operatorname{ch}(k)$ is prime,

$$H^{i}(X_{\text{\'et}}, \underline{\mathbb{Z}/\ell^{n}}\underline{\mathbb{Z}}) = \begin{cases} \mathbb{Z}/\ell^{n}\mathbb{Z} & i = 0 \\ \operatorname{Pic}(X)[\ell^{n}] = (\mathbb{Z}/\ell^{n}\mathbb{Z})^{2g} & i = 1 \\ \mathbb{Z}/\ell^{n}\mathbb{Z} & i = 2 \\ 0 & i > 2 \end{cases}.$$

Proof (of corollary).

We'll use some theory of abelian varieties: $Pic^{0}(X) = Jac(X)$, and we have a SES

$$0 \to \operatorname{Jac}(X) \to \operatorname{Pic}(X) \xrightarrow{\operatorname{deg}} \mathbb{Z} \to 0$$

where we identify the Néron-Severi group as \mathbb{Z} .^a We'll use that $\operatorname{Jac}(X)$ is a g-dimensional abelian variety, and so $\operatorname{Jac}(X)[\ell^n] \cong_{\operatorname{Grp}} (\mathbb{Z}/\ell^n\mathbb{Z})^{2g}$.

The Kummer sequence

$$1 \to \mu_{\ell^n} \to \mathbb{G}_m \to \mathbb{G}_m \to 1$$

7

yields a LES where we identify $\mu_{\ell^n} \cong \mathbb{Z}/\ell^n\mathbb{Z}$:

$$H^{1}(X_{\text{\'et}}, \underline{\mathbb{Z}/\ell^{n}\mathbb{Z}}) \xrightarrow{\text{Pic}(X)} \underline{\text{Pic}(X)} \xrightarrow{[\ell]} \underline{\text{Pic}(X)}$$

$$H^{2}(X_{\text{\'et}}, \mathbb{Z}/\ell^{n}\mathbb{Z}) \xrightarrow{0} 0 \longrightarrow 0$$

So we're just computing the kernel and cokernel of $[\ell]$.

Computing H^1 : We'll need one more fact: $Jac(X)(\bar{k})$ is a divisible group. We can identify

$$H^1(X_{\text{\'et}}, \mathbb{Z}/\ell^n\mathbb{Z}) = \operatorname{Pic}(X)[\ell^n] = \operatorname{Jac}(X) = (\mathbb{Z}/\ell^n\mathbb{Z})^{2g}$$
.

where the 2nd equality uses the fact that Pic(X) is an extension of \mathbb{Z} by an abelian variety and \mathbb{Z} has no torsion, and the last equality is general theory of abelian varieties.

Computing H^2 : Since Jac(X) is divisible, we can identify

$$\operatorname{coker}(\operatorname{Pic}(X) \xrightarrow{[\ell^n]} \operatorname{Pic}(X)) \cong \operatorname{coker}(\mathbb{Z} \xrightarrow{[\ell^n]} \mathbb{Z}) = \mathbb{Z}/\ell^n \mathbb{Z}.$$

The vanishing of higher cohomology follows from the vanishing for \mathbb{G}_m . So assuming the theorem and the theory of abelian varieties proves this corollary.

Exercise 1.2.3(?): Check this using the snake lemma after applying multiplication by ℓ to the SES.

Remark 1.2.4: X is a scheme over \bar{k} , and if it started over some subfield L then $Gal(L_{/k}) \curvearrowright X$ and thus the corresponding functors. These isomorphisms will not be Galois equivariant, and the $\mathbb{Z}/\ell^n\mathbb{Z}$ showing up in degree 2 cohomology will admit a Galois action via the cyclotomic character.

1.2.1 Proof of Theorem

Goal: we want to show that $H^{>1}(X_{\text{\'et}},\mathbb{G}_m)=0$ for X a smooth curve over $k=\bar{k}$. Three ingredients:

- 1. The Leray spectral sequence,
- 2. The divisor exact sequence,
- 3. Brauer groups.

1.3 Pushforwards and the Leray Spectral Sequence

^aSee Hartshorne Ch. 4, or anything that discusses cohomology of curves.

Suppose $X \xrightarrow{f} Y$ is a morphism of schemes, then we get a functor $f_* \operatorname{Sh}(X_{\operatorname{\acute{e}t}}) \to \operatorname{Sh}(Y_{\operatorname{\acute{e}t}})$: given $\mathcal{F} \in \operatorname{Sh}(X_{\operatorname{\acute{e}t}})$, we have $f_*\mathcal{F}(U \to Y) \coloneqq \mathcal{F}(U \times_Y X)$. This is left-exact and thus has right-derived functors $R \cdot f_* : \operatorname{Sh}^{\operatorname{Ab}}(X_{\operatorname{\acute{e}t}}) \to \operatorname{Sh}^{\operatorname{Ab}}(Y_{\operatorname{\acute{e}t}})$.

How to think about this:

Figure 1: Cohomology of the fibers: but not quite!

This is not quite true, and the obstruction is called **the base change property**, which we'll see later in the course. What's true in general is that $R^i f_* \mathcal{F}$ is the sheafification of the presheaf $V \to H^i(f^{-1}(V), \mathcal{F})$, which is not quite the cohomology of the fibers since sheafification is somewhat brutal.

Proposition 1.3.1(Derived pushforwards for finite morphisms). If f is a finite morphism (e.g. a closed immersion) then $R^{>0}f_* = 0$.

Exercise 1.3.2(*Proof, must-do!*): Prove this. The claim is that f_* is right-exact, which in this case shows it is exact. Check on stalks. Compute that the stalk of $f_*\mathcal{F}$ at $\bar{y} \in Y$ is given by

$$f_*\mathcal{F}_{\bar{y}} = \bigoplus_{\bar{x} \in f^{-1}(\bar{y})} \mathcal{F}_{\bar{x}}$$

for f a finite morphism (not necessarily unramified).

Proposition 1.3.3 (technical). f_* preserves injectives.

Exercise 1.3.4(proof): Prove this! You can do this by showing the following fact from category theory: this is true for any functor with an exact left adjoint, which here is f^* and is exact since filtered colimits and sheafification are both exact, or alternatively you can check on stalks, since the stalks of f^{-1} are the stalks of the original functor.

Corollary 1.3.5 (The Leray Spectral Sequence).

Suppose $X \xrightarrow{f} Y$ and $Y \xrightarrow{g} Z$ are morphisms of schemes, then there is a spectral sequence

$$R^i g_* R^j f_* \mathcal{F} \Rightarrow R^{i+j} (g \circ f)_* \mathcal{F}.$$

As a special case, for $Z = \operatorname{Spec} k$ with $k = \overline{k}$, then g_*, f_* are taking global sections so we get

$$H^{i}(Y, R^{j} f_{*} \mathcal{F}) \Rightarrow H^{i+j}(X, \mathcal{F}).$$

Proof (sketch).

There is a general statement (see Tohoku): given two functors between abelian functors where the first preserves injectives, you get such a spectral sequence. How to explicitly compute this: we can take an injective resolution $\mathcal{F} \to \mathcal{I}$ and compute

$$R^i f_* \mathcal{F} \mathcal{H}^i (f_* \mathcal{I}^{\cdot}).$$

 $f_*\mathcal{I}$ is a complex of injectives, and we want $\mathcal{H}^{i+j}(g_*f_*\mathcal{I}^{\cdot}) = R^{i+j}(g \circ f)_*\mathcal{F}$, and the content here is that we don't have to take an additional injective resolution of $f_*\mathcal{I}$. Now take the spectral sequence of the filtered complex $f_*\mathcal{I}^{\cdot}$ where the filtration is by the truncations $\tau_{\leq p}f_*\mathcal{I}^{\cdot}$ where you replace the pth term with the kernel of the differential and zero beyond that.