Video Surveillance for road traffic monitoring

Final Presentation - Team 1

> Aditya Rana, Carmen García, Juan Chaves & Germán Barquero <

I - MTSC tracking - Scenario

Goal: assigning a unique IDs to the same object along the whole video sequence.

Tracking algorithms

All-in-one ← Detection-based

<u>Classic</u> ← → <u>Deep learning</u>

<u>Online</u> ← → Offline

<u>Short-term</u> ← Long-term

2. Update 1. Kill and/or trackers. start trackers **Tracking** algorithm 3. Association strategy

1. Kill and/or start trackers

2. Update 1. Kill and/or trackers. start trackers **Tracking** algorithm 3. Association strategy

1. Kill and/or start trackers

2. Update 1. Kill and/or trackers. start trackers **Tracking** algorithm 3. Association strategy

1. Kill and/or start trackers

2. Update 1. Kill and/or trackers. start trackers **Tracking** algorithm 3. Association strategy

2. Trackers update

² Li, Bo, et al. "Siamrpn++: Evolution of siamese visual tracking with very deep networks".

2. Update 1. Kill and/or trackers. start trackers **Tracking** algorithm 3. Association strategy

3. Association strategy

2. Update 1. Kill and/or trackers. start trackers **Tracking** algorithm 3. Association strategy

3. Association strategy

2. Update 1. Kill and/or trackers. start trackers **Tracking** algorithm 3. Association strategy

3. Association strategy

I - MTSC tracking

- → Detections used were extracted with the SSD512⁽¹⁾ detector.
- → Baselines: SSD512 + DeepSort⁽²⁾

			IDF1 (SEQ 3)						
Camera		c10	c11	c012	c013	c014	c015	Average	
BASELINE		30.9	4.3	2.8	58.1	44.6	0.3	23.5	
	IOU	34.5	16.9	4.1	64.6	45.6	1.4	27.9	
000	Kalman	34.1	15.8	4.1	60.2	43.0	1.4	26.4	
SSD	KCF	35.2	17.1	3.9	64.6	46.6	1.4	28.1	
	SiamRPN++	34.9	17.5	4.1	64.8	44.7	1.4	27.9	

¹ Liu, Wei, et al. "Ssd: Single shot multibox detector." *European conference on computer vision*. Springer, Cham, 2016. ² Wojke, Nicolai, and Alex Bewley. "Deep cosine metric learning for person re-identification." WACV, 2018.

I - MTSC tracking - Post-processing 1

Small detections were filtered.

GT clearly does not consider small detections

I - MTSC tracking - Post-processing 2

→ Parked cars were removed.

		IDF1 (SEQ 3)							
Camera		c10	c11	c012	c013	c014	c015	Average	Increase
BASELINE		84.0	52.4	8.6	67.5	72.0	6.9	48.6	+25.1
	IOU	80.4	66.3	10.9	63.6	66.3	11.5	49.8	+21.9
000	Kalman	79.5	64.0	10.9	60.7	62.7	11.5	48.2	+21.8
SSD	KCF	80.7	67.1	10.2	63.6	66.9	11.5	<u>50.0</u>	+21.9
	SiamRPN++	81.4	68.6	10.7	63.5	63.6	11.5	49.9	+22.0

			IDF1 (SEQ 1)						
Camera		c01	c02	с03	c04	c05	Average		
BASELINE		54.0	62.8	52.4	69.1	22.0	52.1		
	IOU	55.6	76.1	51.8	72.4	22.9	<u>55.8</u>		
SSD	Kalman	56.4	72.9	52.5	72.1	22.5	55.3		
330	KCF	54.3	75.2	50.6	69.1	21.7	54.2		
	SiamRPN++	55.6	72.7	50.5	69.1	21.7	53.9		

		IDF1 (SEQ 4)								
Camera		c16	c17	c18	c19	c20	c21	c22	c23	c24
BASELINE		63.5	46.5	59.1	89.2	75.3	70.4	66.6	69.4	34.7
	IOU	57.7	61.2	54.7	42.2	72.9	82.1	62.9	61.7	56.1
SSD	Kalman	57.8	48.7	56.0	42.3	51.3	79.7	62.9	57.2	57.1
330	KCF	63.8	43.5	57.0	41.9	72.7	79.4	66.1	62.4	56.6
	SiamRPN++	61.2	53.9	66.2	58.2	45.5	80.5	65.9	62.4	55.6

		IDF1 (SEQ 4)								
Camera		c25	c26	c27	c28	c29	c30	c31	c32	c33
BASELINE		76.3	70.8	33.9	55.0	59.9	53.0	40.6	29.4	72.9
	IOU	54.1	65.8	32.6	34.3	63.3	45.7	40.0	42.2	63.9
SSD	Kalman	41.9	66.4	37.7	33.7	65.3	46.1	40.8	38.5	63.8
330	KCF	54.4	65.6	38.9	46.0	62.1	45.8	39.7	42.2	70.9
	SiamRPN++	49.3	65.1	39.2	47.8	65.3	44.4	39.7	41.3	63.4

			IDF1 (SEQ 4)						
Camera		c34	c35	c36	c37	c38	c39	c40	Average
BASELINE		57.2	72.5	62.2	73.6	69.9	64.6	50.9	61.2
	IOU	45.1	71.6	53.6	60.5	59.9	60.3	70.5	56.3
SSD	Kalman	45.4	71.6	54.9	63.1	59.3	54.8	69.7	54.8
330	KCF	53.5	74.7	56.1	60.7	58.2	57.5	51.7	57.1
	SiamRPN++	54.4	71.1	57.1	66.2	58.9	55.3	69.9	57.5

I - MTSC tracking - Analysis

		IDF1 (SEQ 4)
C	amera	c28
BA	SELINE	55.0
	IOU	34.3
SSD	Kalman	33.7
220	KCF	46.0
	SiamRPN++	47.8

→ Detections at *frame=19*

19,	-1,	352.421,	121.505,	136.740,	58.375,	0.539
19,	-1,	193.297,	121.174,	125.303,	<mark>57.130,</mark>	0.458
19,	-1,	1196.477,	317.899,	551.855,	228.320,	0.412
19,	-1,	186.036,	133.312,	<mark>81.675,</mark>	<mark>47.166,</mark>	0.280
19,	-1,	283.902,	120.508,	65.168,	44.273,	0.228
19,	-1,	1200.248,	306.825,	554.370,	244.190,	0.856

IOU and Kalman are less precise so the **identity** switches a lot

I - MTSC tracking - Analysis

		IDF1 (SEQ 4)		
· ·	Camera	c40		
В	ASELINE	50.9		
	IOU	70.5		
SSD	Kalman	69.7		
טסס	KCF	51.7		
	SiamRPN++	69.9		

→ Very fast car size changes may decrease the performance of correlation filters.

I - MTSC tracking - Conclusions

- → IOU and Kalman trackers work well in constrained environments.
- → The performance boost provided by DL trackers can not be appreciated.
- → IDF1 values are similar for all algorithms due to noisy detections.

MTSC

Get Track Features

Match Tracklets

MTSC

Generate tracks for detected objects in all camera sequences

Track Features

Generate an embedding for each tracklet using classical or deep learning techniques

Match Tracklets

Generate an embedding for each track using classical or deep learning techniques

MTMC: Algorithm*

We start from the **MTSC** we obtained for each camera and we define a **adjacency matrix** per sequence.

MTMC: Algorithm*

We start from the **MTSC** we obtained for each camera and we define a **adjacency matrix** per sequence.

MTMC: Algorithm*

We start from the **MTSC** we obtained for each camera and we define a **adjacency matrix** per sequence.

We **synchronize** our search in time between cameras

C a m e r a s

Active frames

MTMC: Algorithm*

We start from the **MTSC** we obtained for each camera and we define a **adjacency matrix** per sequence.

We **synchronize** our search in time between cameras

cameras

C a m e r a s

Neighbours: cameras on which a car can appear in a reasonable time

Sync with different **time** stamps

MTMC: Algorithm*

We start from the **MTSC** we obtained for each camera and we define a **adjacency matrix** per sequence.

We **synchronize** our search in time between cameras

cameras

Temporal window

 Only consider tracks within a user defined window of n seconds around current track

MTMC: Algorithm*

We start from the **MTSC** we obtained for each camera and we define a **adjacency matrix** per sequence.

We **synchronize** our search in time between cameras

We look for a possible match in the spatial and time windows

cameras

Neighbours: cameras on which a car can appear in a reasonable time

Active frames

Sync with different **time stamps**

Temporal window

This **reduces** a lot the **number of comparisons**(especially for seq 4)

Query

Candidates

MTMC: Algorithm* Track Matching Match ID Query Candidates 1 on 1 matching Set of ROI images Set of **ROI images** for Confidence algorithm Some of the features (bbox containing the each candidate in the employed: car) for the query in the camera we are looking **RGB Concat** for correspondences query camera Histogram 3D RGB Histogram VGG16⁽¹⁾ TransReID⁽²⁾

¹ Simonyan et al. "Very deep convolutional networks for large-scale image recognition." 2014

² He, Shuting, et al. "Transreid: Transformer-based object re-identification." 2021

MTMC: Qualitative results on S01

 Matched in 3 and 2 cameras, but separately • Car visible in all images

II - MTMC tracking - Color Histograms

Features explored: Histograms

	IDF1				
SEQUENCE	S01	S03	S04		
1D RGB Histogram	56.6	54.2	45.8		
3D RGB Histogram	58.1	46.6	45.3		

New Baseline

The boxes contain a lot of background around the car. Without vehicle segmentation it will greatly affect the histogram.

Even for the **same vehicle** the histogram changes a lot depending of the background and position of the car

Advantages:

- Easy to implement
- No training
- Fast

Drawbacks:

Not very robust

II - MTMC tracking - CNNs

Features explored: CNNs (VGG16)

	IDF1				
SEQUENCE	S01	S03	S04		
BASELINE	56.6	54.2	45.8		
VGG_16_hell	51.8	55.7	45.5		
VGG_16_l2	-	58.4	-		

- Slight improvement on baseline for some sequences
- Trainable (fine tuning)

Drawbacks:

- Longer computation time
- Not trained with a focus on data separation (see Metric learning)

Error cases

II - MTMC Tracking - Metric Learning

Objective: learn embeddings such that the anchor is closer to the positive example than it is to the negative example by some margin value.

Backbone Model: MobileNetV3 pre-trained on ImageNet as our

Training data: Sequences 01 and 04

Optimizer: Adam with Ir=1e-4

Embedding Size:256

Strategy: Online Mining Triplet Loss¹

Triplets are generated on the fly for each batch using hardest negative sample for each positive pair.

The training scripts were adapted from Adam Bielski's metric learning <u>library</u>.

II - MTMC Tracking - Metric Learning

False positive

False negative

BackBone	Retrieval Results			
Dackbolle	Rank 1	Rank 5		
MobileNetV3	63.1	75.8		

We also try to visualize the embeddings assuming that validation set has only 10 classes. We add a fully-connected layer with the number of classes and train the network for classification with softmax and cross-entropy and then we extract 2 dimensional embeddings from penultimate layer.

II - MTMC tracking - Transformers

Features explored: TransReId(1)

	IDF1		
SEQUENCE	S01	S03	S04
BASELINE	56.6	54.2	45.8
Simplified	56.7	48.0	46.1
Intensive (all patches)		48.0	

Re-arranges patch embeddings (shift and shuffle)

Cameras and viewpoints information

II - MTMC tracking - Overall results

Metric	IDF1	IDP	IDR	Feature
SEQ 1	58.1	58.3	58.1	3D RGB Hell
SEQ 3	58.4	59.4	58.4	VGG16 I2
SEQ 4	45.8	45.8	45.8	3D RGB Hell
AVERAGE	54.1	54.5	54.1	

II - MTMC Tracking - Conclusions

- → Re-identification is a much harder task than tracking.
- → Object detection and tracking, like AP and IDF1, **metrics are tricky**
- → Different camera configurations makes MTMC much harder (distortions, mismatches, different resolutions...)
- → Future Work would be to exploit Transformers and Graph based architectures for tracking multiple objects