

*	Attenuation
	Ladoss of signal strength
	100000000000000000000000000000000000000
	P ₁ P ₂
	Power of signal at point 2
	$dB = 10 log_{10} \left(\frac{P_2}{2} \right)$
	dB = 10.log 10 (P2) deabels Prower of signal at point 1:
	* One of reasons for TI.
*	Distortion
	Change of signal pattern
	m m
	m m
*	Nove
Jupes: -	Dhermal - cable gets heated up
100	2) Grosstalk - If a cable overlay on each other
	3) Impulse - 6003 of other magnetic interference
	* Measured using SNR - Signal to Novice Ratio
	SNR - Average Samal Perses
	SNR = Average Signal Power Average Noise Power
	In deabels,
	SNR = 10 log SNR
*	Problem:
)	I segnal travely through an Amplefies & the power is
	10 times. Nhat is attention. P2 = 10%
	dB = 10 log (IDP) = 10 decibels.
	010 (81)

2) The Power of a signal is 10 mWx Power of moise is 14W SNR=) SNRdp=? SNR = 10×10-3 = 104 SNRy = 10 Leg 10" = 4×10 = 40 decibele 3) Calculate SNR & SNR de for a noiseless fan channel SNR = Ang SP = 60 SNRdo = 10 leg, 10 9.6.2023 * Data Rate limits: - Restrictions you have on Data Rate

1) Bandwidth availability 2) Levels in signal - More levels, amt of data that can be transford high 3) Noise - Ant of data transfer 1 * Algorithms: 1) Nouselus Channel [Non-Edeal channel] * Nyguist bitate - scientist - proposes a formula 1 level Bétiate = 2 x B/w x log_L L-No. of levels in signals Olw-Bandwidth 2) Nousy Channel * Channel exposed to noise = BIW * log_ (1+SNR) * Shannon * Problems: DIW = 20KHz. How many signal levels is seq? 265 x 103 bps = 2 x 20 x 103 x log 2 L

2) SNR_{dB} = 36 & BIW = 20 MHz, Calulte capacity

10 log, SNR = SNR dB SNR = 10 16

SNR = 3981.07

Capacity = Blw * log (1+SNR) = 20 × 10 x log (3982.07) = 239.186 Mbps

* Latency

* Time taken by entire packet to move from source to destination machines.

*It depends on:-

1) * Propogation time (PT)

Jime taken by single bit to move from 3 to D machine PT = Distance / Propogation speed

2) * Jamusson time (TT)

Jine take by entire message to move from S to D.

TT = Msg Size / BIN

3) * Queuting Jime (BT)

Time spent by nrissage in sender's queue & recelver's queue.

4) * Processing Delay (PD)

19hen mag is received by entermediate node, et has to
be processed [mag)

Lateray = PT +.TT + BT + PD

*	Data Jeansmisson
y D	Analog Transmission
*	Channel which supports only analog signals
*	Channel which supports only analog signals Analog data => Analog signal - A-A Conversion
	Digital data D-A Conversion
	Modulation-Conversion of Data to signal (sender)
*	Demodulation- Signal to Data (Receiver)
*	Demodulation-Bignal to Data (Receiver) Modern supports both modulation & demodulation
(2)	Dégétal Transmission
*	Supports only Deaptal Signals
*	Analog data > Digital signal - 1-D Conversion
	Supports only Dégétal signals Analog data > Digital signal - A-D Conversion Digital data D-D Conversion
*	Digital to Digital Conversion
1	* Line Coding
	*Lêne Coding 1. Unipolar -NRZ
	One eide et asant
	One side of graph 2. Polar -NRZ, RZ, bighase Single level
	Roth elder of search
	Both sides of graph 3. Bipelar - AMI
	D. H. widow
	Both sides of graph 4. Multilevel 4 Multi level
× /	4. Multille
	5. Multitransition
×	3. Multitarism
1.	Unipolar-NRZ
7	NRZ prop D -> No Voltage + Consecutive 0 > d 1 > are
L	Not not disperentiated NKZ
	Return
to	
7	ero)
	ov Teme

3.	Bepolar AMI - Alternate Marking Index O -> OV always
9)	AMI - Alternate Marking Index
	0 -> ov always
	1 -> +ve, -ve, +ve - alternate
	Amp 1
	> time
11)	Pseudo-ternary Oppo to AMI
	1 > 0 V always
	0 -> +ve, -ve, +ve - alternate
	that 1 0 1 0 1
	> time
	1524 19 Th
9V)*	Bishase (Polas)
	Bighase (Polar) a) Manchester
	$0 \rightarrow +ve$ to -ve
	1 -> -ve to tue
	r MP
	1 0 0
	TIMA LEBI 4 18
) Joins

