1 Применение нейроных сетей для апроксимации криптографического примитива ГОСТ 28147

Для оценки точности построенной модели использовалось расстояние Хэмминга. $w(y,\hat{y}) = \sum_{i=1}^{j} y_i \oplus \hat{y}_i$, где $y_i \in V_j$.

В данной работе рассмотривались следующие задачи:

- 1. $y = g_0(x,x_1) \equiv x \oplus x_1$, где $x \in V_4$ вектор входных данных, $x_1 \in V_4$ добавочный вектор данных;
- 2. $y=g_1(x,x_1,k)\equiv S[x\boxplus k]\oplus x_1$, где $x\in V_4$ вектор входных данных, $x_1\in V_4$ добавочный вектор данных, $k\in V_4$ ключ (4-битная часть ключа), S стандартный S-блок из Γ OCT-28147;
- 3. $y=g_2(\hat{x},x_1,K)\equiv S[\hat{x}]\oplus x_1$, где $x\in V_4$ вектор входных данных, $x_1\in V_4$ добавочный вектор данных, $K=k_1||k_2||...||k_8,k_i\in V_4$ ключ, $X=x^{(1)}||x^{(2)}||...||x^{(8)},x^{(i)}\in V_4$ блок входных данных, S стандартный S-блок из Γ ОСТ-28147, $\hat{X}=\bar{X}\boxplus \bar{K}\equiv \hat{x}^{(1)}||\hat{x}^{(2)}||...||\hat{x}^{(8)},\hat{x}^{(i)}\in V_4$.

Для решения поставленных задач использовались следующие математические модели:

- 1. Однослойная нерйоная сеть, 15000 итераций обучения.
- 2. Многослойная нерйоная сеть с одним скрытым слоем с 4 нейронами на скрытом слое, 15000 итераций обучения.
- 3. Многослойная нерйоная сеть с одним скрытым слоем с 8 нейронами на скрытом слое, 15000 итераций обучения.
- 4. Многослойная нерйоная сеть с одним скрытым слоем с 16 нейронами на скрытом слое, 15000 итераций обучения.
- 5. Многослойная нерйоная сеть с одним скрытым слоем с 32 нейронами на скрытом слое, 15000 итераций обучения.
- 6. Многослойная нерйоная сеть с двумя скрытым слоями с 32 нейронами на скрытых слоях, 15000 итераций обучения.

Компьютерные эксперименты проводились на следующих данных:

- 1. Обучающая выборка $T_o = 18*10^3$ пар (x, x_1) ;
- 2. Экзаменационная выборка $T_e = 2*10^3$ пар (x,x_1) .

Для оценки точности использовалась следующая функция: $\hat{f} = \frac{1}{T_e} \sum_{j=1}^{T_e} w(y^{(j)}, y^{(j)}).$

Результаты:

Задача	Модель	Результаты
1.	1	f(pred, real) = 1.3699500560760498
1.	2	f(pred, real) = 1.4635499715805054
1.	3	f(pred, real) = 0.8504499793052673
1.	4	f(pred, real) = 0.07020000368356705
1.	5	f(pred, real) = 0.001
1.	6	f(pred, real) = 2.012
2.	1	f(pred, real) = 1.6059999465942383
2.	2	f(pred, real) = 1.4520000219345093
2.	3	f(pred, real) = 1.253999948501587
2.	4	f(pred, real) = 1.1009999513626099
2.	5	f(pred, real) = 0.9789999723434448
2.	6	f(pred, real) = 2.001212
3.	1	f(pred, real) = 1.6059999465942383
3.	2	f(pred, real) = 1.4520000219345093
3.	3	f(pred, real) = 1.253999948501587
3.	4	f(pred, real) = 1.1009999513626099
3.	5	f(pred, real) = 0.9789999723434448
3.	6	f(pred, real) = 2.001212