Analysis of Algorithms Skip Lists

Andres Mendez-Vazquez

October 23, 2020

Outline

- Dictionaries
 - Definitions
 - Dictionary operations
 - Dictionary implementation
- 2 Skip Lists
 - Why Skip Lists?
 - The Idea Behind All of It!!!
 - A Little of Optimization
 - Skip List Definition
 - Skip list implementation
 - Insertion for Skip Lists
 - Deletion in Skip Lists
 - Properties
 - The Height of the Skip List
 - Search and Insertion Times
 - Applications
 - Summary

Outline

- Dictionaries
 - Definitions
 - Dictionary operations
 - Dictionary implementation
- Skip List:
 - Why Skip Lists?
 - The Idea Behind All of It!!!
 - A Little of Optimization
 - Skip List Definition
 - Skip list implementation
 - Insertion for Skip Lists
 - Deletion in Skip Lists
 - Properties
 - The Height of the Skip List
 - Search and Insertion Times
 - Applications
 - Summary

Definition

A dictionary is a collection of elements; each of which has a unique search key.

- Uniqueness criteria may be relaxed (multi-set).
- Do not force uniqueness.

Definition

A dictionary is a collection of elements; each of which has a unique search key.

• Uniqueness criteria may be relaxed (multi-set).

Definition

A dictionary is a collection of elements; each of which has a unique search key.

- Uniqueness criteria may be relaxed (multi-set).
- Do not force uniqueness.

- Dictionaries keep track of current members, with periodic insertions and deletions into the set (similar to a database).
- Momborship in a slub
 - Course records.
 - Symbol table (with duplicates)
 - a Languago dictionany (Mobster PAE Oxfe

Definition

A dictionary is a collection of elements; each of which has a unique search key.

- Uniqueness criteria may be relaxed (multi-set).
- Do not force uniqueness.

Purpose

Dictionaries keep track of current members, with periodic insertions and deletions into the set (similar to a database).

Definition

A dictionary is a collection of elements; each of which has a unique search key.

- Uniqueness criteria may be relaxed (multi-set).
- Do not force uniqueness.

Purpose

Dictionaries keep track of current members, with periodic insertions and deletions into the set (similar to a database).

- Membership in a club.
- Course records.
- Symbol table (with duplicates).
- Language dictionary (Webster, RAE, Oxford).

Definition

A dictionary is a collection of elements; each of which has a unique search key.

- Uniqueness criteria may be relaxed (multi-set).
- Do not force uniqueness.

Purpose

Dictionaries keep track of current members, with periodic insertions and deletions into the set (similar to a database).

- Membership in a club.
- Course records.

Definition

A dictionary is a collection of elements; each of which has a unique search key.

- Uniqueness criteria may be relaxed (multi-set).
- Do not force uniqueness.

Purpose

Dictionaries keep track of current members, with periodic insertions and deletions into the set (similar to a database).

- Membership in a club.
- Course records.
- Symbol table (with duplicates).

Definition

A dictionary is a collection of elements; each of which has a unique search key.

- Uniqueness criteria may be relaxed (multi-set).
- Do not force uniqueness.

Purpose

Dictionaries keep track of current members, with periodic insertions and deletions into the set (similar to a database).

- Membership in a club.
- Course records.
- Symbol table (with duplicates).
- Language dictionary (Webster, RAE, Oxford).

Example: Course records

Dictionary with member records

key ID	Student Name	HW1				
123	Stan Smith	49				
125	Sue Margolin	45				
128	Billie King	24				
190	Roy Miller	36				

Outline

- Dictionaries
 - Definitions
 - Dictionary operations
 - Dictionary implementation
- Skip Lists
 - Why Skip Lists?
 - The Idea Behind All of It!!!
 - A Little of Optimization
 - Skip List Definition
 - Skip list implementation
 - Insertion for Skip Lists
 - Deletion in Skip Lists
 - Properties
 - The Height of the Skip List
 - Search and Insertion Times
 - Applications
 - Summary

Some operations on dictionaries

• size(): Returns the size of the dictionary.

- size(): Returns the size of the dictionary.
- empty(): Returns TRUE if the dictionary is empty.

- size(): Returns the size of the dictionary.
- empty(): Returns TRUE if the dictionary is empty.
- findItem(key): Locates the item with the specified key.

- size(): Returns the size of the dictionary.
- empty(): Returns TRUE if the dictionary is empty.
- findItem(key): Locates the item with the specified key.
- findAllItems(key): Locates all items with the specified key.

- size(): Returns the size of the dictionary.
- empty(): Returns TRUE if the dictionary is empty.
- findItem(key): Locates the item with the specified key.
- findAllItems(key): Locates all items with the specified key.
- removeltem(key): Removes the item with the specified key.

- size(): Returns the size of the dictionary.
- empty(): Returns TRUE if the dictionary is empty.
- findItem(key): Locates the item with the specified key.
- findAllItems(key): Locates all items with the specified key.
- removeltem(key): Removes the item with the specified key.
- removeAllItems(key): Removes all items with the specified key.

- size(): Returns the size of the dictionary.
- empty(): Returns TRUE if the dictionary is empty.
- findItem(key): Locates the item with the specified key.
- findAllItems(key): Locates all items with the specified key.
- removeltem(key): Removes the item with the specified key.
- removeAllItems(key): Removes all items with the specified key.
- insertItem(key,element): Inserts a new key-element pair.

Example of unordered dictionary

Example

Consider an empty unordered dictionary, we have then...

Operation	Dictionary	Output	
$\boxed{InsertItem(5,A)}$	$\{(5, A)\}$		
InsertItem $(7, B)$	$\{(5,A),(7,B)\}$		
findItem(7)	$\{(5,A),(7,B)\}$	B	
findItem(4)	$\{(5,A),(7,B)\}$	No Such Key	
size()	$\{(5,A),(7,B)\}$	2	
removeltem(5)	$\{(7,B)\}$	A	
findItem(4)	$\{(7,B)\}$	No Such Key	

Outline

- Dictionaries
 - Definitions
 - Dictionary operations
 - Dictionary implementation
- Skip List
 - Why Skip Lists?
 - The Idea Behind All of It!!!
 - A Little of Optimization
 - Skip List Definition
 - Skip list implementation
 - Insertion for Skip Lists
 - Deletion in Skip Lists
 - Properties
 - The Height of the Skip List
 - Search and Insertion Times
 - Applications
 - Summary

- Sequences / Arrays
 - Ordered
 - ▶ Unordered
- Binary search trees
- a Skin lists
- Hack tables

- Sequences / Arrays
 - Ordered
 - ▶ Unordered
- Binary search trees
- Skip lists
 - . Uach tables

- Sequences / Arrays
 - Ordered
 - Unordered
- Binary search trees
- Skip lists

- Sequences / Arrays
 - Ordered
 - Unordered
- Binary search trees
- Skip lists
- Hash tables

Complexity

• Searching and removing takes O(n).

22 34 14 12 18

Complexity

- Searching and removing takes O(n).
- Inserting takes O(1).

34	14	12	22	18
----	----	----	----	----

Complexity

- Searching and removing takes O(n).
- Inserting takes O(1).

Applications

This approach is good for log files where insertions are frequent but searches and removals are rare.

Complexity

 \bullet Searching takes $O(\log n)$ time (binary search).

12	14	18	22	34
----	----	----	----	----

Complexity

- Searching takes $O(\log n)$ time (binary search).
- Insert and removing takes O(n) time.

Complexity

- Searching takes $O(\log n)$ time (binary search).
- Insert and removing takes O(n) time.

Applications

This approach is good for look-up tables where searches are frequent but insertions and removals are rare.

Binary searches

Features

- Narrow down the search range in stages
- "High-low" game.

Binary searches

Binary searches

Binary searches

Binary searches

Implement a dictionary with a BST

A binary search tree is a binary tree T such that:

Kevs stored at nodes in the left subtree of n are less than or each

k:

ullet Keys stored at nodes in the right subtree of v are greater than or

equal to k.

Implement a dictionary with a BST

A binary search tree is a binary tree T such that:

• Each internal node stores an item (k, e) of a dictionary.

Implement a dictionary with a BST

A binary search tree is a binary tree T such that:

- ullet Each internal node stores an item (k,e) of a dictionary.
- \bullet Keys stored at nodes in the left subtree of v are less than or equal to k.

Implement a dictionary with a BST

A binary search tree is a binary tree T such that:

- ullet Each internal node stores an item (k,e) of a dictionary.
- ullet Keys stored at nodes in the left subtree of v are less than or equal to k.
- ullet Keys stored at nodes in the right subtree of v are greater than or equal to k.

Binary searches Trees

Binary Search Trees

- They are not so well suited for parallel environments.
 - ► Unless a heavy modifications are done

Binary Search Trees

- They are not so well suited for parallel environments.
 - ► Unless a heavy modifications are done

In addition

We want to have a

Compact Data Structure

Using as little memory as possible

Binary Search Trees

- They are not so well suited for parallel environments.
 - ► Unless a heavy modifications are done

In addition

We want to have a

Compact Data Structure.

Binary Search Trees

- They are not so well suited for parallel environments.
 - ► Unless a heavy modifications are done

In addition

We want to have a

- Compact Data Structure.
- Using as little memory as possible

Thus, we have the following possibilities

Unordered array complexities

Insertion: O(1)

Search: O(n)

Thus, we have the following possibilities

Unordered array complexities

Insertion: O(1)

Search: O(n)

Ordered array complexities

Insertion: O(n)

Search: $O(\log n)$

Insertion: $O(\log n)$

Search: $O(\log n)$

Big Drawback - Complex parallel Implementation and waste of memory.

Thus, we have the following possibilities

Unordered array complexities

Insertion: O(1)

Search: O(n)

Ordered array complexities

Insertion: O(n)

Search: $O(\log n)$

Well balanced binary trees complexities

Insertion: $O(\log n)$

Search: $O(\log n)$

Big Drawback - Complex parallel Implementation and waste of memory.

We want something better!!!

For this

We will present a probabilistic data structure known as Skip List!!!

Outline

- Dictionaries
 - Definitions
 - Dictionary operations
 - Dictionary implementation
- 2 Skip Lists
 - Why Skip Lists?
 - The Idea Behind All of It!!!
 - A Little of Optimization
 - Skip List Definition
 - Skip list implementation
 - Insertion for Skip Lists
 - Deletion in Skip Lists
 - Properties
 - The Height of the Skip List
 - Search and Insertion Times
 - Applications
 - Summary

First

- Imagine that you only require to have searches.

First

- Imagine that you only require to have searches.
- A first approximation to it is the use of a link list for it $(\Theta(n))$ search complexity).

First

- Imagine that you only require to have searches.
- A first approximation to it is the use of a link list for it $(\Theta(n))$ search complexity).
- Then, using this How do we speed up searches?

Use two link list, one a subsequence of the other.

- lacktriangle The Bottom is the normal road system, L_2 .
- lacksquare The Top is the high way system, L_1 .

First

- Imagine that you only require to have searches.
- A first approximation to it is the use of a link list for it $(\Theta(n))$ search complexity).
- Then, using this How do we speed up searches?

Something Notable

• Use two link list, one a subsequence of the other.

First

- Imagine that you only require to have searches.
- A first approximation to it is the use of a link list for it $(\Theta(n))$ search complexity).
- Then, using this How do we speed up searches?

Something Notable

• Use two link list, one a subsequence of the other.

Imagine the two lists as a road system

1 The Bottom is the normal road system, L_2 .

First

- Imagine that you only require to have searches.
- A first approximation to it is the use of a link list for it $(\Theta(n))$ search complexity).
- Then, using this How do we speed up searches?

Something Notable

• Use two link list, one a subsequence of the other.

Imagine the two lists as a road system

- **1** The Bottom is the normal road system, L_2 .
- The Top is the high way system, L_1 .

Outline

- Dictionaries
 - Definitions
 - Dictionary operations
 - Dictionary implementation
- 2 Skip Lists
 - Why Skip Lists?
 - The Idea Behind All of It!!!
 - A Little of Optimization
 - Skip List Definition
 - Skip list implementation
 - Insertion for Skip Lists
 - Deletion in Skip Lists
 - Properties
 - The Height of the Skip List
 - Search and Insertion Times
 - Applications
 - Summary

Example

Thus, we have...

The following rule

To Search first search in the top one (L_1) as far as possible, then go down and search in the bottom one (L_2) .

We can use a little bit of optimization

We have the following worst cost

 ${\sf Search\ Cost\ High-Bottom\ Way\ System} = {\sf Cost\ Searching\ Top\ +}...$

Cost Search Bottom

Or

 $\mathsf{Search}\ \mathsf{Cost}\ \mathit{=} length\left(L_1\right) + \mathsf{Cost}\ \mathsf{Search}\ \mathsf{Bottom}$

This can be calculated by the following quotient:

 $\frac{length (L_2)}{length (L_1)}$

We can use a little bit of optimization

We have the following worst cost

 ${\sf Search\ Cost\ High-Bottom\ Way\ System} = {\sf Cost\ Searching\ Top\ +}...$

Cost Search Bottom

Or

Search Cost $= length(L_1) + Cost Search Bottom$

The interesting part is "Cost Search Bottom"

This can be calculated by the following quotient:

$$\frac{length\left(L_{2}\right)}{length\left(L_{1}\right)}$$

Why?

Then the matic is a "deceat" appropriate to the segments = 2

I hus the ratio is a "decent" approximation to the worst case search

 $\frac{length\left(L_2\right)}{length\left(L_1\right)} = \frac{5}{3} = 1.66$

Why?

If we think we are jumping

Then cost of searching each of the bottom segments = 2

Thus the ratio is a "decent" approximation to the worst case search

$$\frac{length(L_2)}{length(L_1)} = \frac{5}{3} = 1.66$$

Outline

- Dictionaries
 - Definitions
 - Dictionary operations
 - Dictionary implementation
- 2 Skip Lists
 - Why Skip Lists?
 - The Idea Behind All of It!!!
 - A Little of Optimization
 - Skip List Definition
 - Skip list implementation
 - Insertion for Skip Lists
 - Deletion in Skip Lists
 - Properties
 - The Height of the Skip List
 - Search and Insertion Times
 - Applications
 - Summary

Thus, we have...

Then, the cost for a search (when $length(L_2) = n$)

$$\mathsf{Search}\ \mathsf{Cost}\ = length\left(L_1\right) + \frac{length\left(L_2\right)}{length\left(L_1\right)} = length\left(L_1\right) + \frac{n}{length\left(L_1\right)} \tag{1}$$

$$rac{d ext{Search Cost}}{d length \left(L_{1}
ight)}=1-rac{n}{length^{2}\left(L_{1}
ight)}=0$$

Thus, we have...

Then, the cost for a search (when $length(L_2) = n$)

Search Cost
$$= length(L_1) + \frac{length(L_2)}{length(L_1)} = length(L_1) + \frac{n}{length(L_1)}$$
 (1)

Taking the derivative with respect to $length\left(L_{1}\right)$ and making the result equal 0

$$\frac{d\mathsf{Search Cost}}{dlength(L_1)} = 1 - \frac{n}{length^2(L_1)} = 0$$

Final Cost

We have that the optimal length for L_1

$$length(L_1) = \sqrt{n}$$

Plugging back in (Eq. 1)

Search Cost $=\sqrt{n}+\frac{n}{\sqrt{n}}=\sqrt{n}+\sqrt{n}=2\times\sqrt{n}$

Final Cost

We have that the optimal length for L_1

$$length(L_1) = \sqrt{n}$$

Plugging back in (Eq. 1)

Search Cost
$$=\sqrt{n}+\frac{n}{\sqrt{n}}=\sqrt{n}+\sqrt{n}=2\times\sqrt{n}$$

Data structure with a Square Root Relation

Now

For a three layer link list data structure

We get a search cost of $3 \times \sqrt[3]{n}$

- for k layers, we have
 - $k \times \sqrt[k]{n}$

us, if we

- Search Cost $=\log_2 n imes \frac{\log_2 n}{n}$
 - $= \log_2 n \times (n)^{1/\log_2 n}$
 - $=\log_2 n \times (n)^{\log_n 2}$
 - $=\log_2 n \times 2$
 - $=\Theta(\log_2 n)$

Now

For a three layer link list data structure

We get a search cost of $3 \times \sqrt[3]{n}$

In general for k layers, we have

$$k \times \sqrt[k]{n}$$

```
Search Cost = \log_2 n \times \frac{\log_2 n}{n}

= \log_2 n \times (n)^{1/\log_2 n}

= \log_2 n \times (n)^{\log_n 2}

= \log_2 n \times 2
```

Now

For a three layer link list data structure

We get a search cost of $3 \times \sqrt[3]{n}$

In general for k layers, we have

$$k \times \sqrt[k]{n}$$

Thus, if we make $k = \log_2 n$, we get

$$\begin{aligned} \mathsf{Search} \; \mathsf{Cost} &= \log_2 n \times \sqrt[\log_2 n]{n} \\ &= \log_2 n \times (n)^{1/\log_2 n} \\ &= \log_2 n \times (n)^{\log_n 2} \\ &= \log_2 n \times 2 \\ &= \Theta \left(\log_2 n \right) \end{aligned}$$

Something Notable

We get the advantages of the binary search trees with a simpler architecture!!!

Problem!!!

If we decided to have a deterministic algorithm

- We need to decide how to do
 - Insertion
 - Deletions

Problem!!!

If we decided to have a deterministic algorithm

- We need to decide how to do
 - ► Insertion
 - Deletions

We can simplify them

By using probabilities

We are ready to give a

Definition for Skip List

Outline

- Dictionaries
 - Definitions
 - Dictionary operations
 - Dictionary implementation
- 2 Skip Lists
 - Why Skip Lists?
 - The Idea Behind All of It!!!
 - A Little of Optimization
 - Skip List Definition
 - Skip list implementation
 - Insertion for Skip Lists
 - Deletion in Skip Lists
 - Properties
 - The Height of the Skip List
 - Search and Insertion Times
 - Applications
 - Summary

Skip List

They were invented by William Worthington "Bill" Pugh Jr.!!!

Skip List

They were invented by William Worthington "Bill" Pugh Jr.!!!

How is him?

 He is is an American computer scientist who invented the skip list and the Omega test for deciding Presburger arithmetic.

Skip List

They were invented by William Worthington "Bill" Pugh Jr.!!!

How is him?

- He is is an American computer scientist who invented the skip list and the Omega test for deciding Presburger arithmetic.
- He was the co-author of the static code analysis tool FindBugs.

Skip List

They were invented by William Worthington "Bill" Pugh Jr.!!!

How is him?

- He is is an American computer scientist who invented the skip list and the Omega test for deciding Presburger arithmetic.
- He was the co-author of the static code analysis tool FindBugs.
- He was highly influential in the development of the current memory model of the Java language together with his PhD student Jeremy Manson.

Definition

Definition

A skip list for a set S of distinct (key,element) items is a series of lists $S_0, S_1, ..., S_h$ such that:

ullet Each list S_i contains the special keys $+\infty$ and $-\infty$

Definition

- Each list S_i contains the special keys $+\infty$ and $-\infty$
- ullet List S_0 contains the keys of S in nondecreasing order

Definition

- Each list S_i contains the special keys $+\infty$ and $-\infty$
- ullet List S_0 contains the keys of S in nondecreasing order
- Each list is a subsequence of the previous one

Definition

- Each list S_i contains the special keys $+\infty$ and $-\infty$
- ullet List S_0 contains the keys of S in nondecreasing order
- Each list is a subsequence of the previous one
 - $S_0 \supseteq S_1 \supseteq S_2 \supseteq \dots \supseteq S_h$

Definition

- Each list S_i contains the special keys $+\infty$ and $-\infty$
- ullet List S_0 contains the keys of S in nondecreasing order
- Each list is a subsequence of the previous one
 - $S_0 \supseteq S_1 \supseteq S_2 \supseteq \dots \supseteq S_h$
- List S_h contains only the two special keys

We search for a key x in a skip list as follows

• We start at the first position of the top list.

- We start at the first position of the top list.
- At the current position p, we compare x with y == p.next.key

- We start at the first position of the top list.
- At the current position p, we compare x with y == p.next.key
 - $\blacktriangleright x == y$: we return p.next.element

- We start at the first position of the top list.
- At the current position p, we compare x with y == p.next.key
 - \bullet x == y: we return p.next.element
 - x > y: we scan forward

- We start at the first position of the top list.
- At the current position p, we compare x with y == p.next.key
 - \bullet x == y: we return p.next.element
 - x > y: we scan forward
 - x < y: we "drop down"

- We start at the first position of the top list.
- At the current position p, we compare x with y == p.next.key
 - x == y: we return p.next.element
 - x > y: we scan forward
 - x < y: we "drop down"
- If we try to drop down past the bottom list, we return null.

Outline

- Dictionaries
 - Definitions
 - Dictionary operations
 - Dictionary implementation
- 2 Skip Lists
 - Why Skip Lists?
 - The Idea Behind All of It!!!
 - A Little of Optimization
 - Skip List Definition
 - Skip list implementation
 - Insertion for Skip Lists
 - Deletion in Skip Lists
 - Properties
 - The Height of the Skip List
 - Search and Insertion Times
 - Applications
 - Summary

How do we implement this data structure?

We can implement a skip list with quad-nodes

A quad-node stores:

- Entry Value
- Link to the previous node
- Link to the next node
- Link to the above node
- Also we define special keys PLUS_INF and MINUS_INF, and we modify the key
- comparator to handle them.

We can implement a skip list with quad-nodes

A quad-node stores:

- Entry Value
- Link to the previous node
- A link to the next node
- Link to the above node
- Link to the below node
- Also we define special keys PLUS_INF and MINUS_INF, and we modify the key
- comparator to handle them.

We can implement a skip list with quad-nodes

A quad-node stores:

- Entry Value
- Link to the previous node
- Link to the above node
- Link to the below node
- comparator to handle them

We can implement a skip list with quad-nodes

A quad-node stores:

- Entry Value
- Link to the previous node
- Link to the next node

I ink to the above node

Link to the helow node

Also we define special keys PLUS_INF and MINUS_INF, and we modify the key

comparator to handle them.

We can implement a skip list with quad-nodes

A quad-node stores:

- Entry Value
- Link to the previous node
- Link to the next node
- Link to the above node
- a Link to the below node
- Also we define special keys PLUS_II
- comparator to handle them.

We can implement a skip list with quad-nodes

A quad-node stores:

- Entry Value
- Link to the previous node
- Link to the next node
- Link to the above node
- Link to the below node

We can implement a skip list with quad-nodes

A quad-node stores:

- Entry Value
- Link to the previous node
- Link to the next node
- Link to the above node
- Link to the below node

Also we define special keys PLUS_INF and MINUS_INF, and we modify the key comparator to handle them.

Example

Use of randomization

We use a randomized algorithm to insert items into a skip list.

Use of randomization

We use a randomized algorithm to insert items into a skip list.

Running time

We analyze the expected running time of a randomized algorithm under the following assumptions:

- The coins are unbiased.
- The coin tosses are independent.
- The worst case running time of a randomized algorithm is often large but
- has very low probability.
 - e.g. It occurs when all the coin tosses give "heads."

Use of randomization

We use a randomized algorithm to insert items into a skip list.

Running time

We analyze the expected running time of a randomized algorithm under the following assumptions:

• The coins are unbiased.

The worst case running time of a randomized algorithm is often large but

has very low probability.

• e.g. It occurs when all the coin tosses give "heads."

Use of randomization

We use a randomized algorithm to insert items into a skip list.

Running time

We analyze the expected running time of a randomized algorithm under the following assumptions:

- The coins are unbiased.
- The coin tosses are independent.

- The worst case running time of a randomized algorithm is often large but
- has very low probability.
 - e.g. It occurs when all the coin tosses give "heads."

Use of randomization

We use a randomized algorithm to insert items into a skip list.

Running time

We analyze the expected running time of a randomized algorithm under the following assumptions:

- The coins are unbiased.
- The coin tosses are independent.

Worst case running time

The worst case running time of a randomized algorithm is often large but has very low probability.

Use of randomization

We use a randomized algorithm to insert items into a skip list.

Running time

We analyze the expected running time of a randomized algorithm under the following assumptions:

- The coins are unbiased.
- The coin tosses are independent.

Worst case running time

The worst case running time of a randomized algorithm is often large but has very low probability.

e.g. It occurs when all the coin tosses give "heads."

Outline

- Dictionaries
 - Definitions
 - Dictionary operations
 - Dictionary implementation
- 2 Skip Lists
 - Why Skip Lists?
 - The Idea Behind All of It!!!
 - A Little of Optimization
 - Skip List Definition
 - Skip list implementation
 - Insertion for Skip Lists
 - Deletion in Skip Lists
 - Properties
 - The Height of the Skip List
 - Search and Insertion Times
 - Applications
 - Summary

Insertion

To insert

To insert an entry (key, object) into a skip list, we use a randomized algorithm:

Insertion

To insert

To insert an entry (key, object) into a skip list, we use a randomized algorithm:

• We repeatedly toss a coin until we get tails:

Insertion

To insert

To insert an entry (key, object) into a skip list, we use a randomized algorithm:

- We repeatedly toss a coin until we get tails:
 - ightharpoonup We denote with i the number of times the coin came up heads.

If $i \geq h$, we add to the skip list new lists $S_{h+1},...,S_{i+1}$

• Each containing only the two special keys.

If $i \geq h$, we add to the skip list new lists $S_{h+1}, ..., S_{i+1}$

- Each containing only the two special keys.
- We search for x in the skip list and find the positions $p_0, p_1, ..., p_i$ of the items with largest key less than x in each lists $S_0, S_1, ..., S_i$.

If $i \geq h$, we add to the skip list new lists $S_{h+1}, ..., S_{i+1}$

- Each containing only the two special keys.
- We search for x in the skip list and find the positions $p_0, p_1, ..., p_i$ of the items with largest key less than x in each lists $S_0, S_1, ..., S_i$.
- For $j \leftarrow 0, ..., i$, we insert item (key, object) into list S_j after position p_j .

If $i \geq h$, we add to the skip list new lists $S_{h+1}, ..., S_{i+1}$

- Each containing only the two special keys.
- We search for x in the skip list and find the positions $p_0, p_1, ..., p_i$ of the items with largest key less than x in each lists $S_0, S_1, ..., S_i$.
- For $j \leftarrow 0,...,i$, we insert item (key,object) into list S_j after position p_j .

If i < h, we do not insert new lists

• We search for x in the skip list and find the positions $p_0, p_1, ..., p_{i-1}$ of the items with largest key less than x in each lists $S_0, S_1, ..., S_{i-1}$.

If $i \geq h$, we add to the skip list new lists $S_{h+1}, ..., S_{i+1}$

- Each containing only the two special keys.
- We search for x in the skip list and find the positions $p_0, p_1, ..., p_i$ of the items with largest key less than x in each lists $S_0, S_1, ..., S_i$.
- For $j \leftarrow 0, ..., i$, we insert item (key, object) into list S_j after position p_j .

If i < h, we do not insert new lists

- We search for x in the skip list and find the positions $p_0, p_1, ..., p_{i-1}$ of the items with largest key less than x in each lists $S_0, S_1, ..., S_{i-1}$.
- For $j \leftarrow 0, ..., i-1$, we insert item (key, object) into list S_j after position p_j .

If $i \geq h$, we add to the skip list new lists $S_{h+1}, ..., S_{i+1}$

- Each containing only the two special keys.
- We search for x in the skip list and find the positions $p_0, p_1, ..., p_i$ of the items with largest key less than x in each lists $S_0, S_1, ..., S_i$.
- For $j \leftarrow 0, ..., i$, we insert item (key, object) into list S_j after position p_j .

If i < h, we do not insert <u>new lists</u>

- We search for x in the skip list and find the positions $p_0, p_1, ..., p_{i-1}$ of the items with largest key less than x in each lists $S_0, S_1, ..., S_{i-1}$.
- For $j \leftarrow 0, ..., i-1$, we insert item (key, object) into list S_j after position p_j .

Outline

- Dictionaries
 - Definitions
 - Dictionary operations
 - Dictionary implementation
- 2 Skip Lists
 - Why Skip Lists?
 - The Idea Behind All of It!!!
 - A Little of Optimization
 - Skip List Definition
 - Skip list implementation
 - Insertion for Skip Lists
 - Deletion in Skip Lists
 - Properties
 - The Height of the Skip List
 - Search and Insertion Times
 - Applications
 - Summary

Deletion

To remove an entry with key x from a skip list, we proceed as follows

• We search for x in the skip list and find the positions $p_0, p_1, ..., p_i$ of the items with key x, where position p_i is in list S_i .

Deletion

To remove an entry with key \boldsymbol{x} from a skip list, we proceed as follows

- We search for x in the skip list and find the positions $p_0, p_1, ..., p_i$ of the items with key x, where position p_i is in list S_i .
- We remove positions $p_0, p_1, ..., p_i$ from the lists $S_0, S_1, ..., S_i$.

Deletion

To remove an entry with key \boldsymbol{x} from a skip list, we proceed as follows

- We search for x in the skip list and find the positions $p_0, p_1, ..., p_i$ of the items with key x, where position p_i is in list S_i .
- We remove positions $p_0, p_1, ..., p_i$ from the lists $S_0, S_1, ..., S_i$.
- We remove all but one list containing only the two special keys

Example: Delete of 34 in the skip list

Example: Delete of 34 in the skip list

Example: Delete of 34 in the skip list

Outline

- Dictionaries
 - Definitions
 - Dictionary operations
 - Dictionary implementation
- 2 Skip Lists
 - Why Skip Lists?
 - The Idea Behind All of It!!!
 - A Little of Optimization
 - Skip List Definition
 - Skip list implementation
 - Insertion for Skip Lists
 - Deletion in Skip Lists
 - Properties
 - The Height of the Skip List
 - Search and Insertion Times
 - Applications
 - Summary

Space usage

Space usage

The space used by a skip list depends on the random bits used by each invocation of the insertion algorithm.

Theorem

The expected space usage of a skip list with n items is $\mathcal{O}(n)$.

Theorem

The expected space usage of a skip list with n items is O(n).

Proof

Theorem

The expected space usage of a skip list with n items is O(n).

Proof

We use the following two basic probabilistic facts:

• Fact 1: The probability of getting i consecutive heads when flipping a coin is $\frac{1}{2i}$.

Theorem

The expected space usage of a skip list with n items is O(n).

Proof

- Fact 1: The probability of getting i consecutive heads when flipping a coin is $\frac{1}{2^i}$.
- ② Fact 2: If each of n entries is present in a set with probability p, the expected size of the set is np.

Theorem

The expected space usage of a skip list with n items is O(n).

Proof

- Fact 1: The probability of getting i consecutive heads when flipping a coin is $\frac{1}{2^i}$.
- ② Fact 2: If each of n entries is present in a set with probability p, the expected size of the set is np.
 - How? Remember $X=X_1+X_2+\ldots+X_n$ where X_i is an indicator function for event $A_i=$ the i element is present in the set. Thus:

Theorem

The expected space usage of a skip list with n items is O(n).

Proof

- Fact 1: The probability of getting i consecutive heads when flipping a coin is $\frac{1}{2^i}$.
- ② Fact 2: If each of n entries is present in a set with probability p, the expected size of the set is np.
 - How? Remember $X=X_1+X_2+\ldots+X_n$ where X_i is an indicator function for event $A_i=$ the i element is present in the set. Thus:

$$E[X] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} Pr\{A_i\} = \sum_{i=1}^{n} p = np$$
Equivalence $E[X_A]$ and $Pr\{A\}$

Proof

Now consider a skip list with n entries

Using Fact 1, an element is inserted in list S_i with a probability of

$$P\left[x \in S_i\right] = \frac{1}{2^i}$$

Now by Fact 2

The expected size of list S_i is

$$E\left[|S_i|\right] = \frac{n}{2^i}$$

Proof

Now consider a skip list with n entries

Using Fact 1, an element is inserted in list S_i with a probability of

$$P\left[x \in S_i\right] = \frac{1}{2^i}$$

Now by Fact 2

The expected size of list S_i is

$$E\left[|S_i|\right] = \frac{n}{2^i}$$

Proof

The expected number of nodes used by the skip list with height h

$$E[\mathsf{Size}\ \mathsf{Skip}\ \mathsf{List}] = \sum_{i=0}^{h} \frac{n}{2^i} = n \sum_{i=0}^{h} \frac{1}{2^i}$$

Here, we have a problem!!! What is the value of h?

Height h

First

The running time of the search and insertion algorithms is affected by the height h of the skip list.

We show that with high probability, a skip list with n items has height $O(\log n)$.

Height h

First

The running time of the search and insertion algorithms is affected by the height h of the skip list.

Second

We show that with high probability, a skip list with n items has height $O(\log n)$.

For this, we have the following fact!!!

We use the following Fact 3

We can view the level $l\left(x_i\right) = \max\left\{j\middle| \text{where } x_i \in S_j\right\}$ of the elements in the skip list as the following random variable

$$X_i = l\left(x_i\right)$$

for each element x_i in the skip list.

For this, we have the following fact!!!

We use the following Fact 3

We can view the level $l(x_i) = \max\{j | \text{where } x_i \in S_i\}$ of the elements in the skip list as the following random variable

$$X_i = l\left(x_i\right)$$

for each element x_i in the skip list.

And this is a random variable!!!

Remember the insertions!!! Using an unbiased coin!!

For this, we have the following fact!!!

We use the following Fact 3

We can view the level $l(x_i) = \max\{j | \text{where } x_i \in S_i\}$ of the elements in the skip list as the following random variable

$$X_i = l\left(x_i\right)$$

for each element x_i in the skip list.

And this is a random variable!!!

- Remember the insertions!!! Using an unbiased coin!!
- Thus, all X_i have a geometric distribution.

Example for $l(x_i)$

BTW What is the geometric distribution?

k failures where

$$k=\{1,2,3,\ldots\}$$

Probability mass function

 $Pr(X = k) = (1 - p)^{k-1} p$

BTW What is the geometric distribution?

$m{k}$ failures where

$$k = \{1, 2, 3, \ldots\}$$

Probability mass function

$$Pr(X = k) = (1 - p)^{k-1} p$$

Probability Mass Function

Then

We have the following inequality for the geometric variables

$$Pr[X_i > t] \le (1-p)^t \ \forall i = 1, 2, ..., n$$

 \bullet If we assume we have a fair coin $p=\frac{1}{2}$

$$F(t) = P[X_i \le t] = \sum_{i=1}^{n} (1-p)^{i-1} p$$

Then

We have the following inequality for the geometric variables

$$Pr[X_i > t] \le (1-p)^t \ \forall i = 1, 2, ..., n$$

ullet If we assume we have a fair coin $p=\frac{1}{2}$

This is because

$$F(t) = P[X_i \le t] = \sum_{i=1}^{t} (1-p)^{i-1} p$$

Then, we have that

$$Pr[X_i > t] = \sum_{i=t+1}^{\infty} (1-p)^{i-1} p = 1$$

Then, we have that

$$Pr[X_i > t] = \sum_{i=t+1}^{\infty} (1-p)^{i-1} p = 1$$

$$\sum_{i=t+1}^{\infty} (1-p)^{i-1} p = p \sum_{i=t+1}^{\infty} (1-p)^{i-1}$$

Then, we have that

$$Pr[X_i > t] = \sum_{i=t+1}^{\infty} (1-p)^{i-1} p = 1$$

$$\sum_{i=t+1}^{\infty} (1-p)^{i-1} p = p \sum_{i=t+1}^{\infty} (1-p)^{i-1}$$
$$= p \sum_{k=1, k=i-t}^{\infty} (1-p)^{k+t-1}$$

Then, we have that

$$Pr[X_i > t] = \sum_{i=t+1}^{\infty} (1-p)^{i-1} p = 1$$

$$\sum_{i=t+1}^{\infty} (1-p)^{i-1} p = p \sum_{i=t+1}^{\infty} (1-p)^{i-1}$$

$$= p \sum_{k=1, k=i-t}^{\infty} (1-p)^{k+t-1}$$

$$= p (1-p)^t \sum_{k=1, k=i-t}^{\infty} (1-p)^{k-1}$$

Then, we have that

$$Pr[X_i > t] = \sum_{i=t+1}^{\infty} (1-p)^{i-1} p = 1$$

$$\begin{split} \sum_{i=t+1}^{\infty} (1-p)^{i-1} \, p &= p \sum_{i=t+1}^{\infty} (1-p)^{i-1} \\ &= p \sum_{k=1, k=i-t}^{\infty} (1-p)^{k+t-1} \\ &= p \, (1-p)^t \sum_{k=1, k=i-t}^{\infty} (1-p)^{k-1} \\ &= (1-p)^t \, \frac{p}{1-p} \leq (1-t)^t \text{ Given the fair coin} \end{split}$$

Using our original formula

$$Pr\left[X_i > t\right] \le \left(1 - t\right)^t$$

In this way, we have

Then, we have

$$Pr\left\{\max_{i} X_{i} > t\right\} \le n(1-p)^{t}$$

How?

We have that

$$Pr\left\{\max_{i} X_{i} > t\right\} = Pr\left\{\max\left\{X_{1}, X_{2}, ..., X_{n}\right\} > t\right\}$$

$$= \sum_{i=1}^{n} Pr\left\{X_{i} > t \text{ and } X_{i} = \max\left\{X_{1}, X_{2}, ..., X_{n}\right\}\right\}$$

That one of the elements becomes the maximum

 That one of the elements becomes the maximum in height and a height greater than t

How?

We have that

$$Pr\left\{\max_{i} X_{i} > t\right\} = Pr\left\{\max\left\{X_{1}, X_{2}, ..., X_{n}\right\} > t\right\}$$

$$= \sum_{i=1}^{n} Pr\left\{X_{i} > t \text{ and } X_{i} = \max\left\{X_{1}, X_{2}, ..., X_{n}\right\}\right\}$$

How?

 That one of the elements becomes the maximum in height and a height greater than t

Why?

Because the height of an element depends on independent event

• Each toss coin until tails is independent of the others!!!

Example

When having two lists

$$\left\{ \max \left(X_1, X_2 \right) > t \right\} = \left\{ X_1 > t \text{ and } X_1 > X_2 \text{ or exclusive } X_2 > t \text{ and } X_2 > X_1 \right\}$$

Therefore

Then

$$Pr\left\{X_1>t \text{ and } X_1>X_2 \text{ or exclusive } X_2>t\right\}=Pr\left\{X_1>t \text{ and } X_1>X_2\right\}+\dots$$

$$Pr\left\{X_2>t \text{ and } X_2>X_1\right\}$$

 $Pr\left\{X_{1}>t \text{ and } X_{1}>X_{2} \text{ or exclusive } X_{2}>t\right\} = P\left(X_{1}>t\right) P\left(X_{1}>X_{2}\right) + \dots$ $P\left(X_{2}>t\right) P\left(X_{2}>X_{1}\right)$ $\leq P\left(X_{2}>t\right) + P\left(X_{2}>t\right)$

Therefore

Then

$$Pr\left\{X_1>t \text{ and } X_1>X_2 \text{ or exclusive } X_2>t\right\}=Pr\left\{X_1>t \text{ and } X_1>X_2\right\}+\dots$$

$$Pr\left\{X_2>t \text{ and } X_2>X_1\right\}$$

Assuming exclusivity between phenomena $X_i > X_i$ and $X_i > t$

$$Pr\left\{X_1>t \text{ and } X_1>X_2 \text{ or exclusive } X_2>t\right\}=P\left(X_1>t\right)P\left(X_1>X_2\right)+\dots$$

$$P\left(X_2>t\right)P\left(X_2>X_1\right)$$

$$\leq P\left(X_1>t\right)+P\left(X_2>t\right)$$

This gives us something

We have that

$$Pr\{X_i > t \text{ and } X_i = \max\{X_i\}_{i=1}^n\} = Pr\{X_i > t\} P\{X_i = \max\{X_i\}_{i=1}^n\}$$

 $Pr\{X_i > t \text{ and } X_i = \max\{X_i\}_{i=1}^n\} \le Pr\{X_i > t\}$

This gives us something

We have that

 $Pr\{X_i > t \text{ and } X_i = \max\{X_i\}_{i=1}^n\} = Pr\{X_i > t\} P\{X_i = \max\{X_i\}_{i=1}^n\}$

Then, we can say that

 $Pr\{X_i > t \text{ and } X_i = \max\{X_i\}_{i=1}^n\} \le Pr\{X_i > t\}$

Finally, using this fact

We have when summing over all events X_i

$$\sum_{i=1}^{n} Pr\left\{X_{i} > t\right\} \leq \sum_{i=1}^{n} (1-p)^{t} = n (1-p)^{t}$$

An Observation

Another One

Also REMEMBER!!!

We are talking about a fair coin, thus $p = \frac{1}{2}$.

Outline

- Dictionaries
 - Definitions
 - Dictionary operations
 - Dictionary implementation
- 2 Skip Lists
 - Why Skip Lists?
 - The Idea Behind All of It!!!
 - A Little of Optimization
 - Skip List Definition
 - Skip list implementation
 - Insertion for Skip Lists
 - Deletion in Skip Lists
 - Properties
 - The Height of the Skip List
 - Search and Insertion Times
 - Applications
 - Summary

Height: $3\log_2 n$ with probability at least $1-\frac{1}{n^2}$

Theorem

A skip list with n entries has height at most $3\log_2 n$ with probability at least $1-\frac{1}{n^2}$

Proof

Consider a skip list with n entires

By Fact 3, the probability that list S_t has at least one item (The $\max_i X_i > t$) is at most $\frac{n}{2^t}$.

$$P(|S_t| \ge 1) = P\left(\max_i X_i > t\right) \le \frac{n}{2^t}.$$

By picking $\tau =$

We have that the probability that $S_{3\log_2 n}$ has at least one entry is at most

$$\frac{n}{2^{3\log_2 n}} = \frac{n}{n^3} = \frac{1}{n^2}$$

Proof

Consider a skip list with n entires

By Fact 3, the probability that list S_t has at least one item (The $\max_i X_i > t$) is at most $\frac{n}{2^t}$.

$$P(|S_t| \ge 1) = P\left(\max_i X_i > t\right) \le \frac{n}{2^t}.$$

By picking $t = 3 \log n$

We have that the probability that $S_{3\log_2 n}$ has at least one entry is at most:

$$\frac{n}{2^{3\log_2 n}} = \frac{n}{n^3} = \frac{1}{n^2}.$$

Look at we want to model

We want to model

 \bullet The height of the Skip List is at most $t=3\log_2 n$

Look at we want to model

We want to model

- The height of the Skip List is at most $t = 3 \log_2 n$
- Equivalent to the negation of having list $S_{3\log_2 n}$

Look at we want to model

We want to model

- The height of the Skip List is at most $t = 3 \log_2 n$
- Equivalent to the negation of having list $S_{3\log_2 n}$

Then, the probability that the height $h=3\log_2 n$ of the skip list is

$$P\left(\mathsf{Skip\ List\ height\ } 3\log_2 n\right) = 1 - \frac{1}{n^2}$$

Finally

The expected number of nodes used by the skip list with height h

 \bullet Given that $h=3\log_2 n$

$$\sum_{i=0}^{3\log_2 n} \frac{n}{2^i} = n \sum_{i=0}^{3\log_2 n} \frac{1}{2^i}$$

Given the geometric s

$$S_m = \sum_{k=0}^{m} r^k = \frac{1 - r^{m+1}}{1 - r}$$

Finally

The expected number of nodes used by the skip list with height h

 \bullet Given that $h=3\log_2 n$

$$\sum_{i=0}^{3\log_2 n} \frac{n}{2^i} = n \sum_{i=0}^{3\log_2 n} \frac{1}{2^i}$$

Given the geometric sum

$$S_m = \sum_{k=0}^{m} r^k = \frac{1 - r^{m+1}}{1 - r}$$

$$n\sum_{i=0}^{3\log_2 n} \frac{1}{2^i} = n\left(\frac{1 - \left(\frac{1}{2}\right)^{3\log_2 n + 1}}{1 - 1/2}\right)$$

$$n \sum_{i=0}^{3\log_2 n} \frac{1}{2^i} = n \left(\frac{1 - \left(\frac{1}{2}\right)^{3\log_2 n + 1}}{1 - 1/2} \right)$$
$$= n \left(\frac{1 - \frac{1}{2^{3\log_2 n + 1}}}{1/2} \right)$$

$$n \sum_{i=0}^{3\log_2 n} \frac{1}{2^i} = n \left(\frac{1 - \left(\frac{1}{2}\right)^{3\log_2 n + 1}}{1 - 1/2} \right)$$
$$= n \left(\frac{1 - \frac{1}{2^{3\log_2 n + 1}}}{1/2} \right)$$
$$= n \left(\frac{1 - \frac{1}{(2^{\log_2 n})^{3}2}}{1/2} \right)$$

$$n \sum_{i=0}^{3\log_2 n} \frac{1}{2^i} = n \left(\frac{1 - \left(\frac{1}{2}\right)^{3\log_2 n + 1}}{1 - 1/2} \right)$$

$$= n \left(\frac{1 - \frac{1}{2^{3\log_2 n + 1}}}{1/2} \right)$$

$$= n \left(\frac{1 - \frac{1}{(2^{\log_2 n})^3 2}}{1/2} \right)$$

$$= n \left(\frac{1 - \frac{1}{2n^3}}{1/2} \right) = n \left(\frac{2\left[2n^3 - 1\right]}{2n^3} \right)$$

Finally

We have

$$\left(\frac{2n^3 - 1}{n^2}\right) = 2n - \frac{1}{n^2} \le 2n$$

$$2n - \frac{1}{n^2} \le 2n = O(n)$$

Finally

We have

$$\left(\frac{2n^3 - 1}{n^2}\right) = 2n - \frac{1}{n^2} \le 2n$$

The Upper Bound with probability $1 - \frac{1}{n^2}$

$$2n - \frac{1}{n^2} \le 2n = O(n)$$

Outline

- Dictionaries
 - Definitions
 - Dictionary operations
 - Dictionary implementation
- 2 Skip Lists
 - Why Skip Lists?
 - The Idea Behind All of It!!!
 - A Little of Optimization
 - Skip List Definition
 - Skip list implementation
 - Insertion for Skip Lists
 - Deletion in Skip Lists
 - Properties
 - The Height of the Skip List
 - Search and Insertion Times
 - Applications
 - Summary

Search and Insertion Times

Fact 4

The expected number of coin tosses required in order to get tails is 2:

Given that
$$x \sim G\left(\frac{1}{2}\right) \Longrightarrow E\left[x\right] = \frac{1}{n} = 2$$
 (Fair Coin Assumption)

We use this

To prove that a search in a skip list takes $O(\log n)$ expected time.

After all insertions require searches!!!

Search and Insertion Times

Fact 4

The expected number of coin tosses required in order to get tails is 2:

Given that
$$x \sim G\left(\frac{1}{2}\right) \Longrightarrow E\left[x\right] = \frac{1}{p} = 2$$
 (Fair Coin Assumption)

We use this

To prove that a search in a skip list takes $O(\log n)$ expected time.

• After all insertions require searches!!!

Search and Insertions times

Search time

The search time in skip list is proportional to

the number of drop-down steps + the number of scan-forward steps

Search and Insertions times

Search time

The search time in skip list is proportional to

the number of drop-down steps + the number of scan-forward steps

Drop-down steps

The drop-down steps are bounded by the height of the skip list and thus are $O(\log_2 n)$ with high probability.

Search and Insertions times

Search time

The search time in skip list is proportional to

the number of drop-down steps + the number of scan-forward steps

Drop-down steps

The drop-down steps are bounded by the height of the skip list and thus are $O(\log_2 n)$ with high probability.

Theorem

A search in a skip list takes $O(\log_2 n)$ expected time.

Proof

First

• When we scan forward in a list, the destination key does not belong to a higher list.

By Fact 4, in each list the expected number of scan-forward steps is 2

Proof

First

• When we scan forward in a list, the destination key does not belong to a higher list.

A scan-forward step is associated with a former coin toss that gave tails

• By Fact 4, in each list the expected number of scan-forward steps is 2.

Why?

Given the list S_i

ullet Then, the scan-forward intervals (Jumps between x_i and x_{i+1}) to the right of S_i are

$$I_1 = [x_1, x_2], I_2 = [x_2, x_3]...I_k = [x_k, +\infty]$$

Then

These interval exist at level i if and only if all $x_1, x_2, ..., x_k$ belong to $S_{i\,i}$

Why?

Given the list S_i

ullet Then, the scan-forward intervals (Jumps between x_i and x_{i+1}) to the right of S_i are

$$I_1 = [x_1, x_2], I_2 = [x_2, x_3]...I_k = [x_k, +\infty]$$

Then

These interval exist at level i if and only if all $x_1, x_2, ..., x_k$ belong to S_i .

We introduce the following concept based on these intervals

Now

Given that a search is being done, S_i contains l forward siblings

It must be the case that given $x_1,...,x_l$ scan-forward siblings, we have that

$$x_1, ..., x_l \notin S_{i+1}$$

and $x_{l+1} \in S_{i+1}$

Thus

We have

Since each element of S_i is independently chosen to be in S_{i+1} with probability $p=\frac{1}{2}.$

We have

The number of scan-forward siblings is bounded by a geometric random variable X_i with parameter $p=rac{1}{2}.$

• Imagine the fact that you have multiple fails... then $x_1,...,x_l \notin S_{i+1}$ is modeled by X_i

Thu

The expected number of scan-forward siblings is bounded by 2!!!

Expected # Scan-Fordward Siblings at $i \leq E\left[X_i\right] = \frac{1}{1/2} =$

Mean

Thus

We have

Since each element of S_i is independently chosen to be in S_{i+1} with probability $p=\frac{1}{2}.$

We have

The number of scan-forward siblings is bounded by a geometric random variable X_i with parameter $p = \frac{1}{2}$.

• Imagine the fact that you have multiple fails... then $x_1,...,x_l \notin S_{i+1}$ is modeled by X_i

- The expected number of scan-forward siblings is bounded by 2!!!
 - Expected # Scan-Fordward Siblings at $i \le E[X_i] = \frac{1}{100} = 2$

Thus

We have

Since each element of S_i is independently chosen to be in S_{i+1} with probability $p=\frac{1}{2}.$

We have

The number of scan-forward siblings is bounded by a geometric random variable X_i with parameter $p = \frac{1}{2}$.

• Imagine the fact that you have multiple fails... then $x_1,...,x_l \notin S_{i+1}$ is modeled by X_i

Thus, we have that

The expected number of scan-forward siblings is bounded by 2!!!

Expected # Scan-Fordward Siblings at
$$i \leq \underbrace{E\left[X_i\right] = \frac{1}{1/2}}_{\text{Mean}} = 2$$

Then

In the worst case scenario

A search is bounded by $O\left(\log_2 n\right) + 2\log_2 n = O\left(\log_2 n\right)$

An given that a insertion is a (search) + (deletion bounded by the height)

Thus, an insertion is bounded by $2\log_2 n + 3\log_2 n = O\left(\log_2 n\right)$

Then

In the worst case scenario

A search is bounded by $O\left(\log_2 n\right) + 2\log_2 n = O\left(\log_2 n\right)$

An given that a insertion is a **(search)** + **(deletion bounded by the height)**

Thus, an insertion is bounded by $2\log_2 n + 3\log_2 n = O(\log_2 n)$

Outline

- Dictionaries
 - Definitions
 - Dictionary operations
 - Dictionary implementation
- 2 Skip Lists
 - Why Skip Lists?
 - The Idea Behind All of It!!!
 - A Little of Optimization
 - Skip List Definition
 - Skip list implementation
 - Insertion for Skip Lists
 - Deletion in Skip Lists
 - Properties
 - The Height of the Skip List
 - Search and Insertion Times
 - Applications
 - Summary

- Cyrus IMAP servers offer a "skiplist" backend Data Base implementation.
- Lucene uses skip lists to search delta-encoded posting lists in logarithmic time
- Redis, an ANSI-C open-source persistent key/value store for Posix
 systems uses skin lists in its implementation of ordered sets
- leveldb, a fast key-value storage library written at Google that
 - provides an ordered mapping from string keys to string values.
- Skip lists are used for efficient statistical computations of running

- Cyrus IMAP servers offer a "skiplist" backend Data Base implementation.
- Lucene uses skip lists to search delta-encoded posting lists in logarithmic time.

- Cyrus IMAP servers offer a "skiplist" backend Data Base implementation.
- Lucene uses skip lists to search delta-encoded posting lists in logarithmic time.
- Redis, an ANSI-C open-source persistent key/value store for Posix systems, uses skip lists in its implementation of ordered sets.

- Cyrus IMAP servers offer a "skiplist" backend Data Base implementation.
- Lucene uses skip lists to search delta-encoded posting lists in logarithmic time.
- Redis, an ANSI-C open-source persistent key/value store for Posix systems, uses skip lists in its implementation of ordered sets.
- leveldb, a fast key-value storage library written at Google that provides an ordered mapping from string keys to string values.

- Cyrus IMAP servers offer a "skiplist" backend Data Base implementation.
- Lucene uses skip lists to search delta-encoded posting lists in logarithmic time.
- Redis, an ANSI-C open-source persistent key/value store for Posix systems, uses skip lists in its implementation of ordered sets.
- leveldb, a fast key-value storage library written at Google that provides an ordered mapping from string keys to string values.
- Skip lists are used for efficient statistical computations of running medians.

Outline

- Dictionaries
 - Definitions
 - Dictionary operations
 - Dictionary implementation
- 2 Skip Lists
 - Why Skip Lists?
 - The Idea Behind All of It!!!
 - A Little of Optimization
 - Skip List Definition
 - Skip list implementation
 - Insertion for Skip Lists
 - Deletion in Skip Lists
 - Properties
 - The Height of the Skip List
 - Search and Insertion Times
 - Applications
 - Summary

Summary

• A skip list is a data structure for dictionaries that uses a randomized insertion algorithm.

- A skip list is a data structure for dictionaries that uses a randomized insertion algorithm.
- ullet In a skip list with n entries:

- A skip list is a data structure for dictionaries that uses a randomized insertion algorithm.
- \bullet In a skip list with n entries:
 - ▶ The expected space used is O(n)

- A skip list is a data structure for dictionaries that uses a randomized insertion algorithm.
- In a skip list with n entries:
 - ▶ The expected space used is O(n)
 - ▶ The expected search, insertion and deletion time is $O(\log n)$

- A skip list is a data structure for dictionaries that uses a randomized insertion algorithm.
- In a skip list with n entries:
 - ▶ The expected space used is O(n)
 - ▶ The expected search, insertion and deletion time is $O(\log n)$

- A skip list is a data structure for dictionaries that uses a randomized insertion algorithm.
- \bullet In a skip list with n entries:
 - ► The expected space used is *O*(*n*)
 - ▶ The expected search, insertion and deletion time is $O(\log n)$
- Skip list are fast and simple to implement in practice.

Thanks

