REGRESSÃO LOGÍSTICA

Prof. Valmir Macário Filho

DC - UFRPE

CLASSIFICAÇÃO DE OBJETOS

VS

Pessoa

Fundo

- Fronteira de Classificação \rightarrow Hiperplano em \mathbb{R}^n :
 - $w_o = \sum_{i=1}^n w_i x_i = 0$, por exemplo: uma linha em \mathbb{R}^2

um plano em \mathbb{R}^3

Vetor que define o hiperplano (modelo): $w = (w_0, w_1, ..., w_n)^T$

Ponto em \mathbb{R}^{n+1} (descritor) $x = (1, x_1, ..., w_n)^T$

CLASSIFICAÇÃO BINÁRIA

- Para 2 características (n = 2)
 - $\mathbf{w} = (w_0, w_2, w_3)^T$
 - $x = (1, x_1, x_2, x_3)^T$

- $w^T x < 0$
 - 0 = Fundo
- Para $w^T x = 0$, teríamos que decidir o valor

- Alternativamente
 - Classificar $(x; w, T) = \text{Limiar } (w^T x, T)$
- Onde
 - Limiar $(y,T) = \begin{cases} 0 \text{ se } y < T \\ 1 \text{ se } y \ge T \end{cases}$

COM REDES NEURAIS

Pra cada valor $w^T x$, é dado como resposta um valor 0 ou 1, dado T

FUNÇÃO LOGÍSTICA

• Alternativa: converter os valores $w^T x$ para uma transição mais suave: por exemplo, utilizar a função sigmóid (também chamada de função logística): $Logistic (w^T x)$

$$Logistic(y) = \frac{1}{1+e^{-y}}$$

Transição mais suave

COM REDES NEURAIS

PROBABILIDADE CONDICIONAL

- Seja $Y \in \{0,1\}$ $e \ X \in \mathbb{R}^{n+1}$ das variáveis aleatórias, $y \in P(Y|X)$ a probabilidade de Y condicionada a X.
- Se Y é usado para classificar, $Y = 1 \rightarrow$ Pedestre, $Y = 0 \rightarrow$ Fundo e X é o vetor de características então ao utilizar P(Y|X):
- Se P(Y = 1|X = x) < P(Y = 0|X = x), então Y = 0Senão Y = 1

FUNÇÃO LOGÍSTICA

• Utilizando uma forma paramétrica de P(Y|X) baseada na função logística:

$$P(Y = 1|X = x; w) = Logistic(w^T x)$$

$$P(Y = 0|X = x; w) = 1 - Logistic (w^{T}x)$$

FUNÇÃO LOGÍSTICA

$$P(Y = 1 | X = x) < P(Y = 0 | X = x),$$

Então $Y = 0$,
Senão $Y = 1$

Se
$$1 < \frac{P(Y=1|X=x,w)}{P(Y=0|X=x,w)}$$
,
Então $Y=0$,
Senão $Y=1$

Vemos que $\frac{P(Y=1|X=x,w)}{P(Y=0|X=x,w)} = \exp(-w^Tx)$, é possível simplificar

Ln()
$$1 < \exp(-w^T x)$$

 $0 < \exp(-w^T x)$
Se $w^T x < 0$
Então $Y = 0$,
Senão $Y = 1$

Isto equivale a usar T=0.5 em relação ao valor P(Y=1|X=x)Usando T com um valor qualquer teríamos $w^T x < ln\left(\frac{T}{1-T}\right)$

APRENDIZAGEM

$$\boldsymbol{c}_{\boldsymbol{w},T}(\boldsymbol{x})$$

$$\boldsymbol{w}^{\mathsf{T}}\boldsymbol{x} = 0$$

$$\boldsymbol{c}_{\boldsymbol{w},T}(\boldsymbol{x}) = \begin{cases} 1 \text{ se } h_{\boldsymbol{w}}(\boldsymbol{x}) < T \sim \boldsymbol{w}^{T}\boldsymbol{x} < \ln\left(\frac{T}{T-1}\right) \\ 0, \text{ senão} \end{cases}$$

Onde
$$h_w(x) = Logistic(w^T x) = \frac{1}{1 + e^{-w^T x}}$$

APRENDIZAGEM

- w se aprende a partir de um conjunto de exemplos
- Conjunto de treinamento: $S = \{(x'^1, y^1)\}, ..., (x'^M, y^M)\}$
 - (x'^j, y^j) j-ésimo exemplo de treinamento
 - $x'^j \in \mathbb{R}^n$ transforma $x^j \in \mathbb{R}^{n+1}$, onde $x^j = (1, x'^j)$
 - $y^j \in \{0,1\}$ classificação binária e supervisionada

- O custo do erro pode ser definido como $(y^j h_w, h(x^j))^2$ utilizando o erro quadrático (L_2) .
- O vetor w^* que minimiza o erro de classificação de S que pode-se obter resolvendo:

$$\mathbf{w}^* \leftarrow \underset{\mathbf{w} \in \mathbb{R}^{n+1}}{\operatorname{argmin}} \frac{1}{M} \sum_{j=1}^{M} (y^j - h_{\mathbf{w}}(\mathbf{x}^j))^2$$

$$\mathcal{J}(\mathbf{w})$$

- Não existe uma solução fácil pra obter w^*
- Para tanto, se utiliza um método de otimização que a partir de valores iniciais de w e algumas equações de atualização, nos leve a solução que buscamos
- Porém, essa a função $\mathcal{J}(w)$ não é convexa a respeito de w. Portanto, muito difícil de otimizar (neste caso, minimizar)

- Por isso, se utiliza a seguinte alternativa:
- $(y^j h_w, h(x^j))^2 custo(h_w(x^j), y^j)$

•
$$custo(\hat{y}, y) = \begin{cases} -\ln(\hat{y}) & se \ y = 1 \\ -\ln(1 - \hat{y}) se \ y = 0 \end{cases}$$

 $\hat{y} \in [0,1]$

•
$$custo(\hat{y}, y) = \begin{cases} -\ln(\hat{y}) & se \ y = 1\\ -\ln(1 - \hat{y}) se \ y = 0 \end{cases}$$

$$-(y \ln(\hat{y}) + (1-y)\ln(1-\hat{y}))$$

 $\mathcal{J}(w)$ é convexa com respeito a w

$$\mathcal{J}(w) = -\frac{1}{M} \sum_{j=1}^{M} y^{j} \ln \left(h_{w}(x^{j}) \right) + \left(1 - y^{j} \right) \ln \left(1 - h_{w}(x^{j}) \right)$$

$$w^{*} \longleftarrow \underset{w \in \mathbb{R}^{n+1}}{\operatorname{argmin}} \mathcal{J}(w)$$

REGRESSÃO LOGÍSTICA

- (x^j, y^j) j-ésimo exemplo de treinamento
- $x^j \in \mathbb{R}^{n+1}$ descritor do exemplo j
- $y^j \in \{0,1\}$ rótulo do exemplo j
- $h_w(x^j) = \text{Logistic } (w^T x^j)$

•
$$\mathcal{J}(w) = -\frac{1}{M} \sum_{j=1}^{M} y^{j} \ln \left(h_{w}(x^{j}) \right) + (1 - y^{j}) \ln \left(1 - h_{w}(x^{j}) \right)$$

$$\mathbf{w}^* \longleftarrow \underset{\mathbf{w} \in \mathbb{R}^{n+1}}{\operatorname{argmin}} \mathcal{J}(\mathbf{w})$$

 $\mathcal{J}(w)$ é convexa com respeito a w

 Por ser convexa, pode-se utilizar algum algoritmo do tipo "descida de gradiente".

$$\frac{df(x)}{dx} \sim \frac{\Delta y}{\Delta x}$$

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f(\mathbf{x})}{\partial x_1}, \frac{\partial f(\mathbf{x})}{\partial x_2}\right)^{\mathsf{T}}$$

$$\nabla \mathcal{J}(\mathbf{w}) = \left(\frac{\partial \mathcal{J}(\mathbf{w})}{\partial w_0}, \dots, \frac{\partial \mathcal{J}(\mathbf{w})}{\partial w_n}\right)^{\mathsf{T}}$$

Repetir (em paralelo)

$$w_0^{(k)} \longleftarrow w_0^{(k-1)} - \frac{\partial}{\partial w_0} \mathcal{J}(\boldsymbol{w}^{(k-1)})$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$w_n^{(k)} \longleftarrow w_n^{(k-1)} - \frac{\partial}{\partial w_n} \mathcal{J}(\boldsymbol{w}^{(k-1)})$$

Até convergir / ver $\mathcal{J}(w)$

Repetir (em paralelo)

$$w_0^{(k)} \longleftarrow w_0^{(k-1)} - \alpha \frac{\partial}{\partial w_0} \mathcal{J}(\mathbf{w}^{(k-1)})$$

 $\vdots \qquad \vdots \qquad \vdots$
 $w_n^{(k)} \longleftarrow w_n^{(k-1)} - \alpha \frac{\partial}{\partial w_n} \mathcal{J}(\mathbf{w}^{(k-1)})$
Até convergir / ver $\mathcal{J}(w)$

• $a \in \mathbb{R}^+$: velocidade de aprendizagem

$$\frac{\partial \mathcal{J}(w)}{\partial w_i} = \frac{\partial}{\partial w_i} \left[-\frac{1}{M} \sum_{j=1}^{M} y^j \ln \left(h_w(x^j) \right) + \left(1 - y^j \right) \ln \left(1 - h_w(x^j) \right) \right]$$

Repetir (em paralelo)

$$w_{0}^{(k)} \leftarrow w_{0}^{(k-1)} - \alpha \frac{1}{M} \sum_{j=1}^{M} (h_{w}(x^{j}) - y^{j}) x_{0}^{j}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$w_{n}^{(k)} \leftarrow w_{n}^{(k-1)} - \alpha \frac{1}{M} \sum_{j=1}^{M} (h_{w}(x^{j}) - y^{j}) x_{n}^{j}$$

Até convergir / ver $\mathcal{J}(w)$

REVISÃO DE CÁLCULO

• Regra da cadeia: Se h(x) = g(f(x)) então, pra qualquer mudança em x, f(x) muda por $\frac{\partial f}{\partial x}$, e pra cada mudança em f, g muda por $\frac{\partial g}{\partial f}$, então a mudança total em h(x) = g(f(x) é:

ALGUMAS DERIVADAS

Função

$$y = \frac{1}{2} \sum_{k \in K} (c_k - x_k)^2$$

$$y = \sum w_i \cdot x_i$$

$$y = \frac{1}{1 + \exp\{-(x - T)\}}$$

Derivadas:

$$\frac{\partial y}{\partial x_i} = -(c_i - x_i)$$

$$\frac{\partial y}{\partial w_i} = x_i$$

$$\frac{\partial y}{\partial x} = \frac{\exp\{-(x-T)\}}{(1+\exp\{-(x-T)\})^2} = y(1-y)$$

EXEMPLOS EM REDES NEURAIS

 O primeiro passo é a definição do custo do erro na última camada:

•
$$L(w) = L_{MSE} = \frac{1}{M} \sum_{j=1}^{M} (h_w(x^j) - y^j)^2$$

• Erro:
$$y^{j} - h_{w}(x^{j}) = y - z$$

 Então definimos a derivada da camada em função de suas entradas

$$\frac{\partial f(z)}{\partial z} = w$$

$$\frac{\partial f(z)}{\partial z} = -\frac{2}{M} \sum (y - z)$$

 Depois, definimos a derivada da camada em função com respeito aos parâmetros da camada

$$\frac{\partial f(z)}{\partial w} = z$$

- Intuitivamente, queremos saber como mudanças em w afetam a função de custo L(w)
- Se definirmos camadas com esses dois ou três mecanismos será possível saber a derivada da função custo com respeito a qualquer parâmetro

MODULARIDADE

- No passo forward, uma camada i recebe como entrada z_i e produz como saída z_{i+1}
- Também, a derivada da função de custo com relação a entrada i como δ_i
- Assim, podemos derivar o algoritmo de backpropagation em termos de z e δ .

BACKWARD

$$\bullet \ \delta_i = \frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_{i+1}} * \frac{\partial z_{i+1}}{\partial z_i} = \delta_{i+1} \frac{\partial z_{i+1}}{\partial z_i}$$

- Vemos que δ_i é definido pelo próximo δ_{i+1} , então pode-se definir todos δ_s , recursivamente.
- Como na última camada a derivada da entrada é o próprio custo, o último δ_i pode ser 1.

BACKWARD

Agora, derivamos em relação aos parâmetros de entrada:

- Então, a derivada da função de custo pode ser definida em termos de δ_{i+1} e da derivada da saída da camada em relação aos pesos
- O poder desse algoritmo é ele não nos diz como deve ser essa arquitetura, podemos organizar da maneira que quisermos, desde que a função de ativação seja diferenciável.

ALGORITMO DE APRENDIZADO

- Passo foward: $f(z_i, w) = wz_i = z_{i+1}$
- Passo backward última camada: $\delta_i = \delta_{i+1} \frac{\partial f(z_i)}{\partial z_i} = \delta_{i+1} w$
- Passo backward outras camadas: $\frac{\partial L}{\partial w_i} = \delta_{i+1} \frac{\partial z_{i+1}}{\partial w_i} = \delta_{i+1} z_i$
- Se utilizarmos o erro quadrático médio:
- $f(z_i, w) = \frac{1}{M} \sum (y z_i)^2 = z_{i+1}$
- Passo backward: $\delta_i = \delta_{i+1} \frac{\partial f(z_i)}{\partial z_i} = -\delta_{i+1} \frac{1}{M} \sum (y z_i)$
 - Como vamos multiplicar o último δ pela taxa de aprendizado, podemos eliminar $\frac{1}{M}$ da equação.
 - $a\delta_{i+1}\sum (z_i-y)$

$$\bullet \frac{\partial L}{\partial w_i} = \delta_{i+1} \frac{\partial z_{i+1}}{\partial w_i} = \delta_{i+1} z_i = \delta_{i+1} \sum (\delta_i w)$$

REDE NEURAL MULTICAMADA

• Observem o exemplo da rede neural abaixo aprendendo com o valor $(x_1=1, x_2=0; y=1)$, que significa que a entrada é 1,0 e a saída esperada é y=1

FORWARD

Fase Forward: Calcula a saída de cada neurônio da camada da camada intermediária.

net =
$$\sum w_i x_i$$

net=1*1+0*0,2=1
net=1*(-1)+0*3=-1

FORWARD

Fase Forward: Calcula a saída de cada neurônio da camada de saída.

Fase Backward: Ajusta os pesos da rede a partir da camada de saída.

Fase Backward: Ajusta os pesos da rede a partir da camada de

saída. Use (η =0.1)

$$\delta_j = (1 - 0.38) * 0.38(1 - 0.38) = 0.146$$

$$\Delta w_{21} = 0.1 * 0.146 * 0.27 = 0.004$$

$$\Delta w_{21} = -1 + 0.004 = -0.996$$

$$\Delta w_{22} = 0.1 * 0.146 * 0.73 = 0.0106$$

 $\Delta w_{22} = 1 + 0.017 = 1.0106$

Fase Backward: Ajusta os pesos da camada intermediária.

$$\delta_1 = (0.146 * (-0.996)) * 0.27(1 - 0.27)$$

= -0.03

$$\Delta w_{11} = 0.1 * (0.03) * 1 = 0.003$$

$$\Delta w_{11} = 1 + (0.003) = 1.003$$

$$\Delta w_{12} = 0.1 * 0.03 * 0 = 0$$

$$\Delta w_{12} = 0.2 + 0 = 0.2$$

Fase Backward: Ajusta os pesos da camada intermediária.

$$\delta_1 = (0.146 * (-0.996)) * 0.27(1 - 0.27)$$

= -0.03

$$\Delta w_{11} = 0.1 * (0.03) * 1 = 0.003$$

$$\Delta w_{11} = 1 + (0.003) = 1.003$$

$$\Delta w_{12} = 0.1 * 0.03 * 1 = 0$$

$$\Delta w_{12} = 0.2 + 0 = 0.2$$

Fase Backward: Ajusta os pesos da camada intermediária.

$$\delta_2 = (0.146 * (1.0106)) * 0.73(1 - 0.73)$$

$$= 0.029$$

$$\Delta w_{13} = 0.1 * 0.029 * 1 = 0.0029$$

$$\Delta w_{13} = -1 + 0.0029 = -0.997$$

$$\Delta w_{14} = 0.1 * -0.442 * 0 = 0$$

$$\Delta w_{14} = 3 + 0 = 3$$

Rede após fase backward

