Assignment 3

Soham Sanjay Zemse CRS 2012

Given a 2 cubit state
$$|\Psi\rangle = \frac{1}{\sqrt{2}} |00\rangle + \frac{1}{\sqrt{2}} |11\rangle = 0$$

It is not possible to find $|\Psi\rangle = |\Psi\rangle = 0$ such that

 $|\Psi\rangle = |\Psi\rangle \otimes |\Psi\rangle$

Let us arsume, for some Complex α_1, β_1 and α_2, β_2

that catisfy $|\alpha_1|^2 + |\beta_1|^2 = 1$ and $|\alpha_2|^2 + |\beta_2|^2 = 1$

the following holds:

 $|\Psi\rangle = |\Psi\rangle \otimes |\Psi\rangle + |\Psi\rangle$
 $|\Psi\rangle = |\Psi\rangle \otimes |\Psi\rangle$
 $= |\Psi\rangle = |\Psi\rangle \otimes |\Psi\rangle$
 $= |\Psi\rangle \otimes |\Psi\rangle + |\Psi\rangle \otimes |\Psi\rangle$
 $= |\Psi\rangle \otimes |\Psi\rangle \otimes |\Psi\rangle + |\Psi\rangle \otimes |\Psi\rangle \otimes$

Comparing 1 & D we have

$$\begin{array}{ccccc}
\alpha_{1} & \alpha_{2} & = & 1 & & - & \boxed{3} \\
& & \sqrt{5}^{2} & & & & \\
\alpha_{1} & \beta_{2} & = & 0 & & - & \boxed{4}
\end{array}$$

$$\beta_1 \beta_2 = \frac{1}{\sqrt{2}}$$

From (3) $x_1 \neq 0$ and $x_2 \neq 0$ From (4) $x_1 = 0$ or $x_2 = 0$ \Rightarrow $x_2 = 0$ From (5) $x_1 = 0$ or $x_2 = 0$ \Rightarrow $x_2 = 0$ But in eqn (6) it is $x_1 = 0$ Hence there cannot be any $x_1, x_2 = 0$ and hence no $x_1 = 0$ that satisfy eqn (1).

Q 2	Find Matrix representation of CCMOT x CSWAP gate.
	i) CCNOT
	According to (CNOT, if the 1st & 2nd bits are 1
	then third bit will be flipped.
	State Transformations:
	$ \circ \circ \rangle \longrightarrow \circ \circ \rangle$
	$ 001\rangle \longrightarrow 001\rangle$
	$ 010\rangle \longrightarrow 010\rangle$
	$ 011\rangle \longrightarrow 011\rangle$
	1100>> 100>
	$ 101\rangle \longrightarrow 101\rangle$
	110> 111>
	1111) - 1110)
	Hence Matrix Representation or permutation matrix form is
	<u> </u>
	1 0 0 0 0 0 0
	0 1 0 0 0 0 0
	0 0 1 0 0 0 0 0
	0 0 0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1

0 0

0 0

0

is) CSWAP

According to CSWAP if first bit is I then Next two bits are flipped.

State transformations!

Hence the matrix representation or pennutation matrix form is