#### MAT77C - Fundamentos de Análise - Lista 8

### Fabio Zhao Yuan Wang\*

1. Sejam  $a,b\in\mathbb{R}$  em que a< b. Mostre que (a,b),  $(-\infty,b)$ ,  $(a,+\infty)$  são conjuntos abertos. Dem: Vejamos que A=(a,b) é um conjunto aberto. Note que para todo  $x\in A, x\in\mathbb{R}$  e a< x< b, (1.0). Sejam  $\overline{a}=x-a$  e  $\overline{b}=b-x$ . Como x>a, segue que  $\overline{a}=x-a>0$ , ou seja  $\overline{a}>0$ , analogamente temos  $\overline{b}>0$ . Com isto, considere  $r=\min(\overline{a},\overline{b})$ , vejamos então, que para todo  $x\in A$ ,  $\left(x-\frac{r}{2},x+\frac{r}{2}\right)\subset A$ . Ora, como  $r=\min(\overline{a},\overline{b})$ , segue que  $r\leq \overline{a}$  e  $r\leq \overline{b}$ . Ao considerar  $r\leq \overline{a}$ , isto é,  $-r\geq -\overline{a}$ , podemos verificar que,

$$x - \frac{r}{2} \ge x - \frac{\overline{a}}{2} = x - \frac{x - a}{2} = \frac{x + a}{2},$$

e, como x>a, segue que  $x-\frac{r}{2}\geq\frac{x+a}{2}>\frac{a+a}{2}=a$ , isto é,  $x-\frac{r}{2}>a$ . Agora, considere  $r\leq\overline{b}$ , ou seja,

$$x + \frac{r}{2} \le x + \frac{\overline{b}}{2} = x + \frac{b - x}{2} = \frac{b + x}{2},$$

mas como x < b, segue que  $x + \frac{r}{2} < \frac{b+b}{2} = b$ , portanto  $x + \frac{r}{2} < b$ . Ademais, visto que  $\overline{b} > 0$  e  $\overline{a} > 0$ , temos que  $r = \min(\overline{a}, \overline{b}) > 0$ , ou seja, -r < r. Isto posto, temos que,

$$a < x - \frac{r}{2} < x + \frac{r}{2} < b \tag{1.1}$$

e como para todo  $x \in A$  temos (1.0), então (1.1) pode ser expressa por  $\left(x - \frac{r}{2}, x + \frac{r}{2}\right) \subset A$ . Com isso, podemos concluir que  $A \subset \operatorname{int} A$ . Mais ainda, pela definição de pontos interiores, temos que  $\operatorname{int} A \subset A$ , portanto  $A = \operatorname{int} A$  que, pela definição de abertos, segue que A = (a, b) é um aberto, como queríamos.

Vejamos que  $B=(-\infty,b)$  é um conjunto aberto. Análogo ao caso anterior, considere  $\overline{b}=b-x>0$  tal que  $x\in B$ . Como  $x+\frac{\overline{b}}{2}=\frac{b+x}{2}<\frac{b+b}{2}=b$ , e $-\overline{b}<\overline{b}$ , então

$$x - \frac{\overline{b}}{2} < x + \frac{\overline{b}}{2} < b \tag{1.2}$$

e, visto que  $x \in B$  se, e somente se,  $x \in \mathbb{R}$  e x < b, segue que  $\left(x - \frac{\overline{b}}{2}, x + \frac{\overline{b}}{2}\right) \subset B$ , (1.3). Mais ainda, como para todo  $x \in B$  temos (1.2), e por conseguinte (1.3), então  $B \subset \text{int}B$  e, da definição de pontos interiores, int $B \subset B$ , ou seja B = intB. Em vista disso, pela definição de abertos, segue que B é aberto, como queríamos.

Vejamos agora que  $C=(a,\infty)$  é um conjunto aberto. Como visto anteriormente, sejam  $x\in A$  e  $\overline{a}=x-a>0$ . Visto que  $x-\frac{\overline{a}}{2}=\frac{x+a}{2}>a$  e  $-\overline{a}<\overline{a}$ , então,

$$a < x - \frac{\overline{a}}{2} < x + \frac{\overline{a}}{2},\tag{1.4}$$

Portanto  $\left(x-\frac{\overline{a}}{2},x+\frac{\overline{a}}{2}\right)\subset C$ , (1.5). Já que para todo  $x\in C$  temos (1.5), segue que  $C\subset \mathrm{int}C$ , e da definição de pontos interiores,  $\mathrm{int}C\subset C$ , ou seja  $C=\mathrm{int}C$ , sendo assim, C é aberto, como queríamos.  $\square$ 



# 2. Seja $A \subset \mathbb{R}$ . Mostre que $a \in A$ é um ponto de acumulação de A se, e somente se, toda vizinhança V de a, contém um ponto de $A \setminus \{a\}$ , isto é, $V \cap (A \setminus \{a\}) \neq \emptyset$ .

**Dem:** Suponhamos que  $a \in A$  é um ponto de acumulação de A, ou seja, existe uma sequência  $(x_n)_{n \in \mathbb{N}}$  tal que  $x_n \in A \setminus \{a\}$  e  $\lim_{n \to \infty} x_n = a$ . Como  $\lim_{n \to \infty} x_n = a$ , para todo  $\epsilon > 0$  existe  $n_0 \in \mathbb{N}$  tal que, para  $n \in \mathbb{N}$ , temos  $|x_n - a| < \epsilon$  com  $n \ge n_0$ , ou seja

$$|x_n - a| < \epsilon \iff -\epsilon < x_n - a < \epsilon \implies a - \epsilon < x_n < a + \epsilon$$
 (2.1)

e, como (2.1) vale para todo  $\epsilon>0$ , é conveniente escolher um  $\epsilon$  suficiente pequeno, tal que  $(a-\epsilon,a+\epsilon)$  é uma vizinhança de a de raio  $\epsilon$  centrada em a que esteja contida em A e que denotaremos por  $V_{\epsilon}(a)$ . Com isto, como  $\epsilon>0$ , existe um ponto  $a-\frac{\epsilon}{2}\in(a-\epsilon,a+\epsilon)=V_{\epsilon}(a)=V_{\epsilon}(a)\cap A$  que é diferente de a, ou seja, em particular,  $a-\frac{\epsilon}{2}\in(V_{\epsilon}(a)\cap A)\setminus\{a\}=V_{\epsilon}(a)\cap(A\setminus\{a\})$ . Com isto, temos o que queríamos.

Por outro lado, suponhamos que toda vizinhança V de a contém um ponto de  $A\setminus\{a\}$ , (2.2). Ora, como (2.2) vale para qualquer vizinhança V(a), então, seja  $V(a)=(\alpha,\beta)$ , tal que  $\alpha,\beta\in\mathbb{R}$  e  $\alpha<\beta$ . Da hipótese, sabemos que  $V(a)\cap(A\setminus\{a\})\neq\emptyset$ , portanto, podemos construir uma sequência  $(x_n)_{n\in\mathbb{N}}$  em V(a) tal que  $\lim_{n\to\infty}x_n=a$ . Com isto, sejam  $\overline{\alpha}=a-\alpha$  e  $\overline{\beta}=\beta-a$ , e  $r=\min(\overline{\alpha},\overline{\beta})$ , e, considere a sequência  $(x_n)_{n\in\mathbb{N}}$  tal que  $x_n=a+\frac{r}{n+1}$ . Note que  $\lim_{n\to\infty}x_n=a$ , mais ainda, por construção, para todo  $n\in\mathbb{N}$ ,  $x_n\in V(a)\setminus\{a\}$ , portanto, a é um ponto de acumulação, como queríamos.  $\square$ 

# 3. Mostre que todo conjunto enumerável tem interior vazio. Dê exemplos de conjuntos com interior vazio.

Antes da demonstração, devemos relembrar da seguinte proposição e de um teorema demonstrados em aula.

**Proposição:** Seja A um conjunto contável. Se  $B \subset A$ , então B é contável.

A proposição acima é logicamente equivalente a seguinte afirmação:

**Proposição:** Sejam dois conjuntos A e B tais que  $B \subset A$ . Se A é contável então B é contável. Mais ainda, a contrapositiva da reescrita proposta nos diz que:

**Lema:** Sejam dois conjuntos A e B tais que  $B \subset A$ . Se B não é contável, então A não é contável.

**Teorema:** Todo intervalo I, não-degenerado é não-enumerável.

**Demonstração do exercício proposto:** Seja um conjunto qualquer  $A \subset \mathbb{R}$  enumerável, ou seja, contável, e, afim de contradição, suponha que  $\operatorname{int} A \neq \emptyset$ , isto é, existe pelo menos um  $a \in \operatorname{int} A \subset A$ . Note que, se  $A = \emptyset$ , temos uma contradição; Visto que há pelo menos um  $a \in \operatorname{int} A$ , da definição de ponto interior, existe  $\epsilon > 0$  tal que  $(a - \epsilon, a + \epsilon) \subset A$ . Como  $(a - \epsilon, a + \epsilon)$  é um intervalo não-degenerado, do teorema citado, segue que  $(a - \epsilon, a + \epsilon)$  é não-enumerável, portanto  $(a - \epsilon, a + \epsilon)$  não é contável. Daqui, visto que  $\operatorname{int} A \subset A$  e  $\operatorname{int} A$  não é contável, segue do lema acima que A não é contável, o que contradiz a hipótese. Portanto  $\operatorname{int} A = \emptyset$ , como queríamos.  $\square$ 

#### Exemplos de conjuntos com interior vazio:

- (a) Qualquer conjunto unitário, isto é,  $A = \{a\}$  onde  $a \in \mathbb{R}$ , tem interior vazio, visto que para todo  $\epsilon > 0$ ,  $(a \epsilon, a + \epsilon) \notin A$ . **Exemplo:**  $A_0 = \{0\}, A_1 = \{1\}, A_{-1} = \{-1\}$  tem interior vazio.
- (b) Qualquer conjunto finito contido nos reais, isto é,  $A = \{x_0, \dots, x_n\}$  onde  $n \in \mathbb{N}$  e  $x_k \in \mathbb{R}$  para todo  $k \in \mathbb{Z} \cap [0, n]$  e  $x_i < x_j$  quando i < j, tem interior vazio. Demonstração alternativa para este caso em específico: Considere  $d = \min\{|x_i x_{i+1}|; i = 1\}$

 $0,1,\ldots,n-1\}$ , para cada  $d>\epsilon_0>0$  e  $k\in\mathbb{Z}\cap[0,n]$ , não existe  $a\in A$  tal que  $a\neq x_k$  e  $a\in (x_k-\epsilon_0,x_k+\epsilon_0)$ , já que, caso contrário, violaríamos a definição de d; ou seja,  $(x_k-\epsilon_0,x_k+\epsilon_0)\not\in A$ . Note que, para todo  $\epsilon>0$  existe pelo menos um  $\epsilon_0$  como descrito anteriormente, tal que  $I_{0,k}=(x_k-\epsilon_0,x_k+\epsilon_0)\subset (x_k-\epsilon,x_k+\epsilon)=I_{1,k}$  com  $k\in\mathbb{Z}\cap[0,n]$ , portanto, como  $I_{0,k}\not\in A$ ,  $I_{0,k}\subset I_{1,k}$  e  $I_{0,k}\cap I_{1,k}\neq\emptyset$ , segue que  $I_{1,k}\not\in A$ , em outras palavras, para cada  $k\in\mathbb{Z}\cap[0,n]$  e  $\epsilon>0$ , temos que  $(x_k-\epsilon,x_k+\epsilon)\not\in A$ , isto é, int $A=\emptyset$ . **Exemplo:**  $A_0=\{0,1\},A_1=\{0,1,2\},A_3=\{0,1,2,3\}$  tem interior vazio.

- 4. Sejam  $A, B \subset \mathbb{R}$ . Mostre que
- a)  $\operatorname{int}(A \cup B) = \operatorname{int}(A) \cup \operatorname{int}(B)$ **Dem:** Da definição de interior, para todo  $x \in \operatorname{int}(A \cup B)$ , existe  $\epsilon > 0$  tal que  $(x - \epsilon, x + \epsilon) \subset (A \cup B)$
- b)  $int(A \cap B) = int(A) \cap int(B)$