Program Analysis

5. Abstract Interpretation (1): Concrete Semantics

Kihong Heo

Abstract Interpretation

- A powerful framework for designing correct static analysis
 - Framework: given some inputs, a static analysis comes out
 - Powerful: all static analyses are understood in this framework (e.g., type systems, data-flow analysis, etc)
 - Correct: mathematically proven
- Estcabilished by Patrick and Radhia Cousot
 - Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints, 1977
 - Systematic Design of Program Analysis Frameworks, 1979

Abstract?

- Concrete (execution, dynamic) vs Abstract (analysis, static)
- Without abstraction, it is undecidable to subsume all possible behavior of SW
 - Recall the Rice's theorem and the Halting problem

Abstract

Example

```
x = 3;
while (*) {
   x += 2;
}
x -= 1;
print(x);
```

Q: What are the possible output values?

- Concrete interpretation : 2, 4, ..., uncomputable (infinitely many possibilities)
- Abstract interpretation 1 : "integers" (good)
- Abstract interpretation 2: "positive integers" (better)
- Abstract interpretation 3: "positive even integers" (best)

How to analyze?

- Interpret the target program
 - with abstract semantics (= analyzer's concern)
 - not concrete semantics (= interpreter's and compiler's concern)

 Example 		Concrete	Abstract 1	Abstract 2	Abstract 3
	x = 3; while (*) {	{3}	Int	Pos	PosOdd
	x += 2; }	{3, 5, 7,}	Int	Pos	PosOdd
	x -= 1; print(x);	{2, 4, 6,}	Int	Pos	PosEven

Principles

- How to guarantee soundness?
- How to guarantee termination?
- How to design more precise abstraction?
- How to compute abstract semantics?

Practice

- Guidance for a lot of design choices in practice such as
 - Soundness vs Scalability vs Precision vs Usability vs ...
 - Characteristics of target programs and properties
 - Optimizations of program analyzers

Abstract Interpretation Framework

- Abstract interpretation concerns
 - Concrete semantics: $[\![C]\!] = \mathsf{lfp}F \in \mathbb{D}$
 - Abstract semantics: $[\![C]\!]^\sharp = \bigsqcup_{i \geq 0} F^{\sharp i}(\bot) \in \mathbb{D}^\sharp$
- Requirements:
 - Relationship between $\mathbb D$ and $\mathbb D^{\sharp}$
 - Relationship between $F \in \mathbb{D} \to \mathbb{D}$ and $F^{\sharp} \in \mathbb{D}^{\sharp} \to \mathbb{D}^{\sharp}$
- Guarantees:
 - Correctness (soundness): $[\![C]\!] \approx [\![C]\!]^{\sharp}$
 - Computability: $\llbracket C \rrbracket^\sharp$ is computable within finite time

Design of Static Analysis

- Goal: conservative and terminating static analysis
- Design principles:
 - Define concrete semantics
 - Define abstract semantics (sound w.r.t the concrete semantics)
- Computation & implementation:
 - Abstract semantics of a program: the least fixed point of the semantic function
 - Static analyzer: compute the least fixed point within finite time

Define Standard Semantics

- Formalization of a single program execution
 - Recall Lecture 2 and 3 (operational and denotation semantics)
- What to describe: different choices depending on the purpose
 - E.g., denotational, operational, etc
- In this lecture, we will use denotational semantics
 - Recall the denotational semantics the simple imperative language

$$\llbracket C \rrbracket : \mathbb{M} \to \mathbb{M}$$

Define Standard Semantics

*from Patrick Cousot's slides

Standard Semantics

- Define a semantic domain $\mathbb{D} = \mathbb{M} \to \mathbb{M}$ (CPO)
- Define a semantic function $F:\mathbb{D}\to\mathbb{D}$ (continuous)
- ullet Semantics of a program: the least fixed point of F

$$\mathbf{lfp}F = \bigsqcup_{i>0} F^i(\bot)$$

Standard Semantics of Commands

Define Concrete Semantics

- Formalization of all possible program executions
 - So-called collecting semantics
 - Usually a simple extension of the standard semantics
- What to describe: different choices depending on the purposes (recall, property)
 - Some are more expressive than others
 - E.g., traces (sequence of states), reachable states (set of states), etc
- In this lecture, we will use reachable states for concrete semantics

Transitions of Sets of States

*from Patrick Cousot's slides

Traces vs Reachable States

Traces

Reachable States

Can Answer:

- Can variable p be NULL at line 10?
- Can buffer index i be larger than size s?

– ...

Can't Answer:

- Does the red trace exist?
- ...

*from Patrick Cousot's slides

Concrete Semantics

- Define a semantic function $F:\mathbb{D}\to\mathbb{D}$ (continuous)
- ullet Then the concrete semantics is defined as the least fixed point of the semantic function F:

$$\mathbf{lfp}F = \bigsqcup_{i>0} F^i(\bot)$$

Example

- Define a concrete semantics of the simple language using denotational semantics
 - Concrete domain $\mathbb{D} = \mathfrak{D}(\mathbb{M}) \to \mathfrak{D}(\mathbb{M})$
 - Define a semantic function $F:\mathbb{D}\to\mathbb{D}$
 - Concrete semantics $\mathbf{lfp}F \in \mathbb{D}$
- Q: How to define F?

Concrete Semantics of Expressions

$$\begin{aligned}
[E]_{\wp} : \wp(\mathbb{M}) \to \wp(\mathbb{Z}) \\
[n]_{\wp} &= \lambda M.\{n\} \\
[x]_{\wp} &= \lambda M.\{m(x) \mid m \in M\} \\
[E_1 \odot E_2]_{\wp} &= \lambda M.\{v_1 \odot v_2 \mid v_1 \in \llbracket E_1 \rrbracket_{\wp}(M), v_2 \in \llbracket E_2 \rrbracket(M)\}
\end{aligned}$$

$$\begin{split} \llbracket B \rrbracket_{\wp} \; : \; \wp(\mathbb{M}) &\to \wp(\mathbb{M}) \\ \llbracket \mathsf{true} \rrbracket_{\wp} \; = \; \lambda M.M \\ \llbracket \mathsf{false} \rrbracket_{\wp} \; = \; \lambda M.\emptyset \\ \llbracket E_1 \otimes E_2 \rrbracket_{\wp} \; = \; \lambda M.\{m \in M \mid \llbracket E_1 \rrbracket_{\wp}(\{m\}) \otimes \llbracket E_2 \rrbracket_{\wp}(\{m\}) = \mathsf{true} \} \end{split}$$

Concrete Semantics of Commands

Summary

- Abstract interpretation: a framework for designing correct static analysis
- Concrete semantics: collection of all possible behaviors of a program
 - Usually a simple extension of the standard semantics
 - Defined as a least fixed point of a concrete semantic function
- Plan: define and compute a sound abstract semantics of the program