

SEQUENCE LISTING

Yale University Abbott, Geoffrey W Sesti, Federico Splawski, Igor Keating, Mark T Goldstein, Steve A.N. <120> MinK-Related Genes, Formation of Potassium Channels and Association with Cardiac Arrythmia <130> 2323-150.a <140> 09/550,163 <141> 2000-04-14 <150> US 60/129,404 <151> 1999-04-15 <160> 22 <170> PatentIn version 3.1/2.0 <210> 1 <211> 732 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (74)..(442) <400> 1 caaatccaga aaagatccgt tttcctaacc ttgttcgcct attttattat ttaaattgca gcaggaggga agc atg tct act tta tcc aat ttc aca cag acg ctg gaa 109 Met Ser Thr Leu Ser Asn Phe Thr Gln Thr Leu Glu gac gtc ttc cga agg att ttt att act tat atg gac aat tgg cgc cag Asp Val Phe Arg Arg Ile Phe Ile Thr Tyr Met Asp Asn Trp Arg Gln 20 aac aca aca gct gag caa gag gcc ctc caa gcc aaa gtt gat gct gag 205 Asn Thr Thr Ala Glu Gln Glu Ala Leu Gln Ala Lys Val Asp Ala Glu aac ttc tac tat gtc atc ctg tac ctc atg gtg atg att gga atg ttc 253 Asn Phe Tyr Tyr Val Ile Leu Tyr Leu Met Val Met Ile Gly Met Phe 45 50 tot tto ato ato gtg goo ato otg gtg ago act gtg aaa too aag aga 301 Ser Phe Ile Ile Val Ala Ile Leu Val Ser Thr Val Lys Ser Lys Arg 65 70 cgg gaa cac tcc aat gac ccc tac cac cag tac att gta gag gac tgg 349 Arg Glu His Ser Asn Asp Pro Tyr His Gln Tyr Ile Val Glu Asp Trp 80 cag gaa aag tac aag agc caa atc ttg aat cta gaa gaa tcg aag gcc Gln Glu Lys Tyr Lys Ser Gln Ile Leu Asn Leu Glu Glu Ser Lys Ala 95 100

442 acc atc cat gag aac att ggt gcg gct ggg ttc aaa atg tcc ccc Thr Ile His Glu Asn Ile Gly Ala Ala Gly Phe Lys Met Ser Pro 115 tgataaggga gaaaggcacc aagctaacat ctgacgtcca gacatgaaga gatgccagtg 502 ccacgaggca aatccaaatt gtctttgctt agaagaaagt gagttccttg ctctttgttg 562 agaattttca tggagattat gtggttggcc aataaagata gatgacattt caatctcagt 622 gatttatgct tgcttgttgg agcaatattt tgtgctgaag acctctttta ctttccgggc 682 aagtgaatgt cattttaatc aatatcaatg atgaaaataa agccaaattt 732 <210> 2 <211> 123 <212> PRT <213> Homo sapiens <400>2Met Ser Thr Leu Ser Asn Phe Thr Gln Thr Leu Glu Asp Val Phe Arg Arg Ile Phe Ile Thr Tyr Met Asp Asn Trp Arg Gln Asn Thr Thr Ala 25 Glu Gln Glu Ala Leu Gln Ala Lys Val Asp Ala Glu Asn Phe Tyr Tyr Val Ile Leu Tyr Leu Met Val Met Ile Gly Met Phe Ser Phe Ile Ile Val Ala Ile Leu Val Ser Thr Val Lys Ser Lys Arg Arg Glu His Ser Asn Asp Pro Tyr His Gln Tyr Ile Val Glu Asp Trp Gln Glu Lys Tyr 90 Lys Ser Gln Ile Leu Asn Leu Glu Glu Ser Lys Ala Thr Ile His Glu Asn Ile Gly Ala Ala Gly Phe Lys Met Ser Pro 115 <210> 3 <211> 468 <212> DNA <213> Rattus norvegicus <220> <221> CDS <222> (35)..(403) <400> 3 cctgtgagga atctctcatc ctcaaggggg aaac atg acc act tta gcc aac ttg 55 Met Thr Thr Leu Ala Asn Leu acg cag acc ctg gag gat gcc ttc aaa aag gtt ttc att act tat atg Thr Gln Thr Leu Glu Asp Ala Phe-Lys Lys Val Phe Ile Thr Tyr Met

gac agc tgg agg agg aac aca aca gcc gaa caa cag gcg ctc cag gcc Asp Ser Trp Arg Arg Asn Thr Thr Ala Glu Gln Gln Ala Leu Gln Ala 25 30 35	151
aga gtg gat gcc gag aac ttc tac tac gtc atc ctg tac ctc atg gtg Arg Val Asp Ala Glu Asn Phe Tyr Tyr Val Ile Leu Tyr Leu Met Val 40 45 50 55	199
atg atc ggc atg ttc gcc ttc atc gtg gtg gcc atc ctg gtg agc acg Met Ile Gly Met Phe Ala Phe Ile Val Val Ala Ile Leu Val Ser Thr 60 65 70	247
gtg aag tcg aag cgg cgg gag cac tcc cag gac ccg tac cac cag tac Val Lys Ser Lys Arg Arg Glu His Ser Gln Asp Pro Tyr His Gln Tyr 75 80 85	295
atc gtg gag gat tgg cag cag aag tat agg agt cag atc ttg cat ctg Ile Val Glu Asp Trp Gln Gln Lys Tyr Arg Ser Gln Ile Leu His Leu 90 95 100	343
gaa gac tcc aag gcc acc atc cat gag aac ctg ggg gcg acg ggg ttc Glu Asp Ser Lys Ala Thr Ile His Glu Asn Leu Gly Ala Thr Gly Phe 105 110 115	391
aca gtg tca ccc tgataaagaa cgagagtcca tctgcccagg aaggggtgct Thr Val Ser Pro 120	443
tctgccgcct tgaagcccca cttgc	468
<210> 4 <211> 123 <212> PRT <213> Rattus norvegicus	
<211> 123 <212> PRT	
<211> 123 <212> PRT <213> Rattus norvegicus <400> 4 Met Thr Thr Leu Ala Asn Leu Thr Gln Thr Leu Glu Asp Ala Phe Lys	
<pre><211> 123 <212> PRT <213> Rattus norvegicus <400> 4 Met Thr Thr Leu Ala Asn Leu Thr Gln Thr Leu Glu Asp Ala Phe Lys</pre>	
<pre><211> 123 <212> PRT <213> Rattus norvegicus <400> 4 Met Thr Thr Leu Ala Asn Leu Thr Gln Thr Leu Glu Asp Ala Phe Lys</pre>	
<pre> <211> 123 <212> PRT <213> Rattus norvegicus <400> 4 Met Thr Thr Leu Ala Asn Leu Thr Gln Thr Leu Glu Asp Ala Phe Lys</pre>	
<pre> <211> 123 <212> PRT <213> Rattus norvegicus <400> 4 Met Thr Thr Leu Ala Asn Leu Thr Gln Thr Leu Glu Asp Ala Phe Lys</pre>	
<pre> <211> 123 <212> PRT <213> Rattus norvegicus <400> 4 Met Thr Thr Leu Ala Asn Leu Thr Gln Thr Leu Glu Asp Ala Phe Lys</pre>	

<212> DNA <213> Homo sapiens <220> <221> CDS <222> (93)..(401) <400> 5 aaaqqqactc cttgaaactq attgagagcc cagtggattt gccagcagtt tgagcttcta 60 ccgagtcttc ccccacctca atccctgttg ct atg gag act acc aat gga acg 113 Met Glu Thr Thr Asn Gly Thr gag acc tgg tat gag agc ctg cat gcc gtg ctg aag gct cta aat gcc 161 Glu Thr Trp Tyr Glu Ser Leu His Ala Val Leu Lys Ala Leu Asn Ala 10 15 act ctt cac age aat ttg ctc tgc cgg cca ggg cca ggg ctg ggg cca 209 Thr Leu His Ser Asn Leu Leu Cys Arg Pro Gly Pro Gly Leu Gly Pro 25 30 gac aac cag act gaa gag agg cgg gcc agc cta cct ggc cgt gat gac 257 Asp Asn Gln Thr Glu Glu Arg Arg Ala Ser Leu Pro Gly Arg Asp Asp 40 45 50 aac too tac atg tac att oto ttt gto atg ttt ota ttt got gta act 305 Asn Ser Tyr Met Tyr Ile Leu Phe Val Met Phe Leu Phe Ala Val Thr 65 gtg ggc agc ctc atc ctg gga tac acc cgc tcc cgc aaa gtg gac aag 353 Val Gly Ser Leu Ile Leu Gly Tyr Thr Arg Ser Arg Lys Val Asp Lys 75 80 cgt agt gac ccc tat cat gtg tat atc aag aac cgt gtg tct atg atc 401 Arg Ser Asp Pro Tyr His Val Tyr Ile Lys Asn Arg Val Ser Met Ile 95 taacacgaga gggctgggac ggtggaagac caagacacct ggggattgcg tctggggcct 461 ccagaactct gctgtggact gcatcaggtc t 492 <210> 6 <211> 103 <212> PRT <213> Homo sapiens <400> 6 Met Glu Thr Thr Asn Gly Thr Glu Thr Trp Tyr Glu Ser Leu His Ala 5 10 Val Leu Lys Ala Leu Asn Ala Thr Leu His Ser Asn Leu Leu Cys Arg Pro Gly Pro Gly Leu Gly Pro Asp Asn Gln Thr Glu Glu Arg Arg Ala 35 Ser Leu Pro Gly Arg Asp Asp Asn Ser Tyr Met Tyr Ile Leu Phe Val Met Phe Leu Phe Ala Val Thr Val Gly Ser Leu Ile Leu Gly Tyr Thr

65

Arg Ser Arg Lys Val Asp Lys Arg Ser Asp Pro Tyr His Val Tyr Ile
85 90 95

Lys Asn Arg Val Ser Met Ile 100

<210> 7

<211> 972

<212> DNA

<213> Mus musculus

<220>

<221> CDS

<222> (241)..(549)

<400> 7

atcctggaaa cttgataatc aatgactctc taggagttgg aaatccgggg actcaaggaa 60 gagaaacaaa acaccagtgt ttctgtctgt gcccatttgg aaccaagaga tgcaccttgc 120 aaggaactga ggggttgtgg gacatccacg aagagatcct caaagatgtc tcagagccag 180 cagagtctct gaactgtttg atcacattcc agctcttccc atacctcaat atctgttgct 240 atg gag act tcc aac ggg act gag acc tgg tac atg agc ctc cat gct 288 Met Glu Thr Ser Asn Gly Thr Glu Thr Trp Tyr Met Ser Leu His Ala 1 5 10 15

gtg ctg aag gct ctg aac aca acc ctt cac agt cac ttg ctc tgc cgg 336 Val Leu Lys Ala Leu Asn Thr Thr Leu His Ser His Leu Leu Cys Arg

cct ggg cca gga cca ggg cca gac aat caa act gag gat cgt cgg gct 384 Pro Gly Pro Gly Pro Gly Pro Asp Asn Gln Thr Glu Asp Arg Arg Ala 35 40 45

agc ctt cct ggt cgt aat gac aac tcc tac atg tat att ctc ttt gtc 432 Ser Leu Pro Gly Arg Asn Asp Asn Ser Tyr Met Tyr Ile Leu Phe Val 50 55 60

atg ttc cta ttt gcc gtc act gtg ggc agt ctc atc ctg gga tat acc 480 Met Phe Leu Phe Ala Val Thr Val Gly Ser Leu Ile Leu Gly Tyr Thr 65 70 75 80

cgt tca cgc aaa gtg gac aaa cgt agt gac ccc tat cat gtg tac atc 528
Arg Ser Arg Lys Val Asp Lys Arg Ser Asp Pro Tyr His Val Tyr Ile
85 90 95

aag aac cgt gtg tct atg atc tgatgtgagg aacctgaaga caatggaaga 579 Lys Asn Arg Val Ser Met Ile

ttacaatgtc tgaggattgt cttctggtgc ctccggaact caactcaacc atatcaagcc 639 acagtgtatc tatgtaagat caacaggaaa ctggtaagag gattaggtca ttattaggac 699 cagagaagag ggactgatag gcccagtctt gtggatgaga catttttcga gacacagatg 759 cgcattataa actcagagcc catgaacaca tatatataaa gtatggacaa ccagcaagta 819 gaagaggaag ctgtggcgaa gggaaatggg gcagaaagat gctctggata tataatcttt 879 taatgtatga tcttcaacat gagaaacctt gataaaactg agaatgctac ttaaaaaaaa 939

```
<210> 8
<211> 103
<212> PRT
<213> Mus musculus
<400> 8
Met Glu Thr Ser Asn Gly Thr Glu Thr Trp Tyr Met Ser Leu His Ala
                                     10
Val Leu Lys Ala Leu Asn Thr Thr Leu His Ser His Leu Leu Cys Arg
Pro Gly Pro Gly Pro Asp Asn Gln Thr Glu Asp Arg Ala
                             40
Ser Leu Pro Gly Arg Asn Asp Asn Ser Tyr Met Tyr Ile Leu Phe Val
Met Phe Leu Phe Ala Val Thr Val Gly Ser Leu Ile Leu Gly Tyr Thr
Arg Ser Arg Lys Val Asp Lys Arg Ser Asp Pro Tyr His Val Tyr Ile
Lys Asn Arg Val Ser Met Ile
            100
<210> 9
<211> 1932
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (604)..(1113)
<400> 9
gaaccetett ggaetggaeg atttgggaat teaaaaettg ggaeaaaetg teageettgg
taagtcagca aggctacact ttgctttcag aaacatttaa aagagggaca tttttgccaa
                                                                    120
ttaatagatg aattttttc ctttattttc ttcctqcttt tctttqttct aaggaaacat
                                                                    180
tgttttgaat ttaaaatagt ttggttttgg aaacacaatg taaactttgt ttctgctcag
                                                                   240
ttaaaatacg tttcccagtt ttaaagatac tatttactgt atgctcctgt cttacattga
                                                                   300
ttttttttt aatcaaagta atactgctca ctacaaacag gacaaatgtg tacactaaaa
                                                                    360
aaaaaaaaa agteettett aetttteeea gtgaaeette eegggettet eteeegtgea
                                                                   420
ctccaagccc tcatagctca ctcttgtcag ctgtttggct tatgctattt ctttcatqca
cttttaagct tttttggtat tgcagttcca caaacctcgt gctcccccac ctccctggcc
                                                                    540
caggacctgg gggagagtct aacctgcggc tttttcccag cccctgctgt ggaggcagcc
                                                                    600
tca atg ctg aaa atg gag cct ctg aac agc acg cac ccc ggc acc gcc
                                                                    648
    Met Leu Lys Met Glu Pro Leu Asn Ser Thr His Pro Gly Thr Ala
```

		cc ago er Ser														696
		gc aac ly Asr														744
		tc ttg he Leu 50	ılle													792
		ag aag ys Lys 65	•	_		_	_	_			_					840
		gg gag lly Glu														888
		ag gtç In Val	-	_	_	_		_	_	_		_				936
		tg tco Leu Ser														984
		cc tcc Ser Ser 130	Ser													1032
·	Asp A	gat gag Asp Gli .45														1080
		ggg tco Sly Ser									tago	cacco	ccc (gggad	ccctg	1133
	ccggt	ggctc	catca	agcca	ag ca	aacct	taga	a gag	gagga	aaag	acag	gttt	tca a	agtgt	tctggt	1193
	ttcac	tttca	cagt	gcggc	t go	ccact	ttga	a aga	agaco	cctt	ggta	aaac	ccc	tgatt	tcgggg	1253
													•		tgcctg	
															tttggg	
															ttctca	
															gcttta ctagat	
															ttacaa	
															ccagcc	
															gggtta	
	taaga	agatga	tctt	ctatt	t to	gacct	ttt	g to	taact	ttat	gaco	cttga	aac	tctga	acctgt	1793
	gacca	atgcag	catc	acato	ga to	ggcai	tgac	g tto	cttt	ggat	caga	aaga	gct	tccc	cagaat	1853

ctaacctgca ctcccgatgg tggttcagga gactcttcct gatctttcta gaaggggtaa 1913 1932 agtggggttg aacaaggcc <210> 10 <211> 170 <212> PRT <213> Homo sapiens <400> 10 Met Leu Lys Met Glu Pro Leu Asn Ser Thr His Pro Gly Thr Ala Ala Ser Ser Pro Leu Glu Ser Arg Ala Ala Gly Gly Ser Gly Asn Gly Asn Glu Tyr Phe Tyr Ile Leu Val Val Met Ser Phe Tyr Gly Ile Phe Leu Ile Gly Ile Met Leu Gly Tyr Met Lys Ser Lys Arg Arg Glu Lys Lys Ser Ser Leu Leu Leu Tyr Lys Asp Glu Glu Arg Leu Trp 70 Gly Glu Ala Met Lys Pro Leu Pro Val Val Ser Gly Leu Arg Ser Val Gln Val Pro Leu Met Leu Asn Met Leu Gln Glu Ser Val Ala Pro Ala 105 Leu Ser Cys Thr Leu Cys Ser Met Glu Gly Asp Ser Val Ser Ser Glu 115 120 125 Ser Ser Ser Pro Asp Val His Leu Thr Ile Gln Glu Glu Gly Ala Asp Asp Glu Leu Glu Glu Thr Ser Glu Thr Pro Leu Asn Glu Ser Ser Glu 145 Gly Ser Ser Glu Asn Ile His Gln Asn Ser 165 <210> 11 <211> 2499 <212> DNA <213> Mus musculus <220> <221> CDS <222> (86)..(595) <400> 11 aacatcctca gatttggccg tttaagagtt ccacacttgg gacaaactgt cagcttttga tcccggctgt gtgagcggca attca atg ctg agg atg gag cct ctg aac agc 112 Met Leu Arg Met Glu Pro Leu Asn Ser aca tac ecc age get gea gee tee age age ecc etc gag tee eat gtg 160

Thr Tyr Pro Ser Ala Ala Ala Ser Ser Pro Leu Glu Ser His Val

20

15

		tac ttc tat att ttg gtc Tyr Phe Tyr Ile Leu Val 40	208
		gga atc atg ctg ggc tac Gly Ile Met Leu Gly Tyr 55	256
		agc ctt ctg ctg ttg tac Ser Leu Leu Leu Tyr 70	304
		atg aag ccg cta cct atg Met Lys Pro Leu Pro Met 85	352
Met Ser Gly Leu Arg Se		atg atg ctg aat atg ctg Met Met Leu Asn Met Leu 100 105	400
		act ctt tgc tcg atg gaa Thr Leu Cys Ser Met Glu 120	448
		cct gat gtg cac ctt ccc Pro Asp Val His Leu Pro 135	496
		gag gag acc tcc gag acg Glu Glu Thr Ser Glu Thr 150	544
cct ctc aac gac agc ag Pro Leu Asn Asp Ser Se 155	r Glu Gly Ser Ser 160	gag aac atc cac cag aat Glu Asn Ile His Gln Asn 165	592
tcc tagcacccac caggtgc Ser 170	tag gaggtagete egt	aagctac acttgacaga	645
gggaagacac ttgccaagtg	ccgggtttcg cttttgc	tct gcggctgcca cattgaacag	705
		agg ctcagctgca gtccttgagg	765
		ata cagcatgacc attgactctg	825
		ctg gataatgtgg tgttttttca	885
		gcc cagggctgac aactgcccag	945
		cta gagetttgtt ettetagate	
		cag attgtttgca caatgcaaag	
		gag tataagctat gacctcatct	
		eatt gcaggtgagc atggctttct	
		gga tggctgttca tggtggtcct	
		aag gccaaatcat tgacagctct	

gctgcagctc tttttcccag cctagttttc tgaggccaga aaggacacat gtgggcctca 1425 taatatgggg ttttgtcacg tagctggacc ctggaagggc atacttaggc gagatcgagc 1485 agagetgggg ttcaagcaat gtgetteetg gtetgageee tgaeaeteat teaetgtgag 1545 gttctgggca tgtcatcaca agattctgcc tacatgaggc tcctgaggct gtgcagcccc 1605 agggggctgg gaggacatct ttagactttg tactgtgtga taaatcctcc acagcctggt 1665 gtgaggaagt ttggagcaag tatttcccct ttggccgctt agtctggaga aagatgtgtt 1725 gacttaaaga cacagttgga gactttggat atgtgtagct ggggaattcg aggctggatc 1785 ateggeette ettaetgtgg ettteecagg atgegaetga agaagetgge ageatagttt 1845 cctctgcaga gtcgtgtgga tgggaggatg ttaacacacc caaccgaggg aaagagaaat 1905 ttaaagggag ctactcaaga gctttgcagc aggctcttgt gcccttagaa gaccaqaagg 1965 aagcagaaaa ctccccaaag gtcaagtttg cctctagtgc aaaaccttct taatttttat 2025 ttatctgaac tctccctgga ttgagacaga gcagtcacta atgtccccat gaggggttaa 2085 cactataagg agctgttttt ttcaatcagt tttgacacag agatagaaag gtaatttatg 2145 ttagaggcgg aaaggggccc tctgttcact ttaagattca gagtgtggat caactccaaa 2205 gggggccgtt taagttgaaa gaagccaagt taagtttggc ctcgtgcctg gaatcacttq 2265 aattotgaaa otttactgog acagacatgt gogttgtoac attttocatt gottaatoot 2325 ggtttggtgc aagtctgtct gcgcctgtta caaagtgatg tatatacttc cttccagtat 2385 gctgagttgt agacaattgt ctggtgtatt taatggttttg taattttcac gatattttt 2445

<210> 12

<211> 170

<212> PRT

<213> Mus musculus

<400> 12

Met Leu Arg Met Glu Pro Leu Asn Ser Thr Tyr Pro Ser Ala Ala Ala 1 5 10 15

Ser Ser Ser Pro Leu Glu Ser His Val Pro Ser Asn Ser Ser Gly Asn 20 25 30

Gly Asn Glu Tyr Phe Tyr Ile Leu Val Val Met Ser Phe Tyr Gly Val 35 40

Phe Leu Ile Gly Ile Met Leu Gly Tyr Met Lys Ser Lys Arg Arg Glu 50 60

Lys Lys Ser Ser Leu Leu Leu Tyr Lys Asp Glu Glu Arg Leu Trp 65 70 75 80

Gly Glu Ala Met Lys Pro Leu Pro Met Met Ser Gly Leu Arg Ser Gly 85 90 95

Gln Val Pro Met Met Leu Asn Met Leu Gln Glu Ser Val Ala Pro Ala

		100					105					110			
Leu Se	r Cys 115	Thr	Leu	Cys	Ser	Met 120	Glu	Gly	Asp	Ser	Val 125	Ser	Ser	Glu	
Ser Se		Pro	Asp	Val	His 135	Leu	Pro	Ile	Gln	Glu 140	Glu	Gly	Ala	Asp	
Asp Gl 145	u ['] Leu	Glu	Glu	Thr 150	Ser	Glu	Thr	Pro	Leu 155	Asn	Asp	Ser	Ser	Glu 160	
Gly Se	r Ser	Glu	Asn 165	Ile	His	Gln	Asn	Ser 170							
<210><211><211><212><213><223>	21 DNA Artif					cial	Seqi	uence	∋:PCI	R pr:	imer	for			
	mutat.						•			-					
<400> ccgttt		aacct	ttgti	tc g											21
<210><211><211><212><213>	21 DNA	icia	l Se	quen	ce										
<220> <223>	Descr mutat					cial	Seq	uenc	e : PC	R pr	imer	for			
<400> agcato		ttgg	cttg	ga g											21
<210><211><212><212><213>	23 DNA	icia	l Se	quen	ce										
<220> <223>	Descr mutat					cial	Seq	uenc	e : PC	R pr	imer	for			
<400> gtctt		ggat	tttt	at t	ac										23
<210><211><212><212><213>	21	icia	l Se	quen	ce										
<220> <223>	Descr mutat					cial	. Seq	uenc	e:PC	R pr	imer	for			

<400> 16

```
21
gttcccgtct cttggatttc a
<210> 17
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: PCR primer for
      mutation screening
<400> 17
aatgttctct ttcatcatcg tg
                                                                    22
<210> 18
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: PCR primer for
      mutation screening
<400> 18
                                                                    21
tgtctggacg tcagatgtta g
<210> 19
<211> 09
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: HA residues for
      epitope mapping
<400> 19
Tyr Pro Tyr Asp Val Pro Asp Tyr Ala
                 5
<210> 20
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:cmyc residues
      for epitope-mapping
Ile Ser Met Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Asn
  1
                  5
<210> 21
<211> 130
<212> PRT
<213> rattus norvgecicus
<400> 21
Met Ala Leu Ser Asn Ser Thr Thr Val Leu Pro Phe Leu Ala Ser Leu
```

1				5					10					15	
Trp	Gln	Glu	Thr 20	Asp	Glu	Pro	Gly	Gly 25	Asn	Met	Ser	Ala	Asp 30	Leu	Ala
Arg	Arg	Ser 35	Gln	Leu	Arg	Asp	Asp 40	Ser	Lys	Leu	Glu	Ala 45	Leu	Tyr	Ile
Leu	Met 50	Val	Leu	Gly	Phe	Phe 55	Gly	Phe	Phe	Thr	Leu 60	Gly	Ile	Met	Leu
Ser 65	Tyr	Ile	Arg	Ser	Lys 70	Lys	Leu	Glu	His	Ser 75	His	Asp	Pro	Phe	Asn 80
Val	Tyr	Ile	Glu	Ser 85	Asp	Ala	Trp	Gln	Glu 90	Lys	Gly	Lys	Ala	Leu 95	Phe
Gln	Ala	Arg	Val 100	Leu	Glu	Ser	Phe	Arg 105	Ala	Cys	Tyr	Val	Ile 110	Glu	Asn
Gln	Ala	Ala 115	Val	Glu	Gln	Pro	Ala 120	Thr	His	Leu	Pro	Glu 125	Leu	Lys	Pro
Leu	Ser 130														
<210 <211 <211 <211	1 > 3 2 > 1	22 129 PRT 10mo	sap:	iens											
<400 Met 1		22 Leu	Ser	Asn 5	Thr	Thr	Ala	Val	Thr 10	Pro	Phe	Leu	Thr	Lys 15	Leu
Trp	Gln	Glu	Thr 20	Val	Gln	Gln	Gly	Gly 25	Asn	Met	Ser	Gly	Leu 30	Ala	Arg
Arg	Ser	Pro 35	Arg	Ser	Gly	Asp	Gly 40	Lys	Leu	Glu	Ala	Leu 45	Tyr	Val	Leu
Met	Val 50	Leu	Gly	Phe	Phe	Gly 55	Phe	Phe	Thr	Leu	Gly 60	Ile	Met	Leu	Ser
Tyr 65	Ile	Arg	Ser	Lys	Lys 70	Leu	Glu	His	Ser	Asn 75	Asp	Pro	Phe	Asn	Va] 80
Tyr	Ile	Glu	Ser	Asp 85	Ala	Trp	Gln	Glu	Lys 90	Asp	Lys	Ala	Tyr	Val 95	Glr
Ala	Arg	Val	Leu 100	Glu	Ser	Tyr	Arg	Ser 105	Cys	Tyr	Val	Val	Glu 110	Asn	His
Leu	Ala	Ile 115		Gln	Pro	Asn	Thr 120	His	Leu	Pro	Glu	Thr 125		Pro	Sei

Pro