# 實驗三、醫學影像分析Ultrasound

107 學年度第一學期 台大電機生醫工程實驗

第三組 張景程 B04901138 解正平 B04901020 劉維凱 B04901153

指導助教:趙珮妤 實驗室:明達館304室

# 目次

| -, | Point Spread Function (PSF)         | p.3  |
|----|-------------------------------------|------|
| =, | 斑點雜訊 (Speckle Statistics)           | p.11 |
| 三、 | 訊雜比 (Contrast-to-Noise Ratio, CNR)  | p.17 |
| 四、 | Carotid Color Doppler and PW Images | p.19 |
| 五、 | 補充資料                                | p.21 |

## — Point Spread Function (PSF)

- 1. 實驗結果與 PSF 計算
  - a. High gain, In-focused



## b. High gain, Out-focused



## c. Low gain, In-focused



## d. Low gain, Out-focused



## 2. 比較與討論



| Mode | Gain | Focus Region | Lateral | Axial |
|------|------|--------------|---------|-------|
|      | low  | In           | 13.2    | 7.9   |
| res  | 1000 | Out          | 20.4    | 9.6   |
| 103  | high | In           | 24.2    | 12.3  |
|      |      | Out          | 27.5    | 12.5  |
|      | low  | In           | 24      | 14    |
| pen  | IOW  | Out          | 22.1    | 12.2  |
| реп  | high | In           | 38.1    | 20.7  |
|      |      | Out          | 42.8    | 16.8  |

#### a. Lateral vs Axial

#### i. Lateral

在水平狀態觀察6db內的PSF的size,發現不同region會有很大的差距,in-focused的pixel都較out-focused的pixel小,是因為超音波聚焦的關係使得點圖不會散開,也就會有較小的PSF size,而這就要分析側向解析度(lateral resolution)。

當調整探頭,幾何焦距於特定深度,該深度的側向解析度會較其他深度 好式由於聚焦處能量較高,不會因為散射與衰減而造成超音波回傳時產 生雜訊,因此會受模式(RES or PEN)及focus region影響。





#### ii. Axial

在垂直狀態觀察6db內的PSF的size,雖然out-focused的pixel還是都比較大,但是與in-focused相差不大,幾乎可以算是沒有差別,推測原因是因為軸向解析度(axial resolution)與spatial pulse length(SPL)有關。SPL就是一個脈衝超音波在空間中的總長度,當SPL越高,則軸向解析度越高,關係式為Axial Resolution = SPL/2,而SPL公式為:

SPL = Number of Cycles × Wavelength



因此,若超音波的頻率以及每周期產生的波數固定,則不會軸向解析度就不會再更動,無論是解析模式或是深度都不會有影響。

#### iii. Conclusion

Lateral resolion很容易受其他因素影響, Axial resolution幾乎一致。

#### b. High Gain vs Low Gain

#### i. High Gain

從圖中可以發現大部分Gain如果較大則具有較大的pixel size,推測是因為high gain會使得能量更集中於點附近,造成要找降低6db的寬度會較寬,而且在Lateral比Axial更為明顯,推測是因為超音波傳遞方向振幅變大,影響lateral方向,而axial方向影響就較小。

#### ii. Low Gain

從圖中發現Gain較小也會有較小pixel size,這是因為波的diffraction及 scattering,gain較小能量不集中,觀察能量在pixel之間變化也較大。

#### iii. Conclusion

PSF size會隨Gain成正向關係,而且Lateral比Axial變化明顯。

#### c. In Focused vs Out Focused

i. In Focused 超音波聚焦的位置,能量集中與周圍差異較大,因此具有較小的PSF size,通常比Out Focused清楚,而且在Lateral會比Axial有明顯差異。

ii. Out Fouced 超音波非聚焦的位置,能量分散與周圍差異不大,因此具有較大的PSF size,通常比In Focused模糊。

iii. Conclusion 超音波In Focused的PSF size比Out Focused清楚,而且Lateral比Axial 變化明顯。

## d. total affecting factor



## 二、斑點雜訊 (Speckle Statistics)

## 1. 實驗結果

a. High gain, In-focused



## b. High gain, Out-focused



## c. Low gain, In-focused



## d. Low gain, Out-focused



## 2. 比較與討論

- intensity and amplitude
  - o Intensity, exponetial distribution



Amplitude, Rayleigh distribution



| Mode | Gain     | Focus Region | Standard<br>Deviation (dB) | error(%) |
|------|----------|--------------|----------------------------|----------|
|      | low      | In           | 2.8276                     | -34.86%  |
| res  |          | Out          | 3.5028                     | -19.29%  |
| 103  | high     | In           | 4.0423                     | 6.86%    |
|      | riigii   | Out          | 4.5792                     | 5.51%    |
|      | pen high | In           | 2,3042                     | -46.91%  |
| nen  |          | Out          | 2.0706                     | -52.29%  |
| реп  |          | In           | 4,8728                     | 12.28%   |
|      |          | Out          | 3.9228                     | -9.61%   |

#### a. High Gain vs Low Gain

我們在計算 speckle 的強度時,是先找出 speckle 的 histogram 之後計算其標準差,然而標準差值會因為整個樣本都乘以某個倍數 k,則標準差也會變 k 倍。因此high gain理論上標準差會比low gain來的大,而從我們的實驗也可以發現這個現象。

#### b. In Focused vs On Focused

分析之前先討論 In-focused 與 Out-focused 的差別,理論上 In-focused時,解析度高,能辨別出不同點的PSF size較小,點跟點的能量差異較大,因此可以清楚的分辨點與點之間的明暗程度,反之 Out-focused 則因為在相同的size下能辨別的點較少,所以點與點之間的明暗差別就不明顯。因此我們認為,In-focused 的狀態下,由於明暗分明,因此標準差就會比 Out-focused 大。從實驗數據上觀察,可以發現在PEN mode的時候In-focused的標準差都較大,但是在res的mode就沒有那麼明顯,推測是因為PEN為了最佳穿透度,聚焦會使得FOCUS點的明暗差異大且較能辨識清楚,會有大的標準差,而在RES會為了最佳解析度使得大部分speckle的差異較小,使得會有Out-focused比In-focused標準差大的現象。

## 三、訊雜比 (Contrast-to-Noise Ratio, CNR)

## 1. 實驗結果

a. High gain, In-focused

| 超音波影像               | 儀器設定      |                                      |
|---------------------|-----------|--------------------------------------|
|                     | 模式        | B mode。<br>多個探頭並排。                   |
|                     | 最佳化       | PEN。<br>提供最佳穿透度。<br>深處的點在in-focused。 |
|                     | CNR_left  | 0.6358                               |
| topomie L. Surrendo | CNR_right | 0.6093                               |

## b. High gain, Out-focused

| 超音波影像 | 儀器設定      |                                       |  |
|-------|-----------|---------------------------------------|--|
|       | 模式        | B mode。<br>多個探頭並排。                    |  |
|       | 最佳化       | RES。<br>提供最佳解析度。<br>深處的點在out-focused。 |  |
|       | CNR_left  | 0.6117                                |  |
|       | CNR_right | 0.5325                                |  |

#### 2. 比較與討論

我們使用 +15dB 和 +6dB 的兩個 Gray Scale Target Group 來進行本次實驗,並將 dB值轉換為Linear Value,而實驗所測量的 constant-to-noise ratio CNR 值定義為  $CNR = \left| \frac{I_{in} - I_{out}}{\sigma_{in} - \sigma_{out}} \right|$ ,其中,I 表示強度,也就是本身的signal; $\sigma$  表示 target region 的標準差,也就是雜訊。若CNR越高,代表雜訊越低( $\sigma_{in} - \sigma_{out}$ 越小),或是訊號本身強度 較背景要來得大( $\left| I_{in} - I_{out} \right|$ 越大),目標物愈能被清楚辨認。

實驗結果的部分,我們可以觀察到,In-focused 的 CNR 值要比 Out-focused 的值還高,推測是因為 In-focused 的側向解析度比較好,因此更能從背景中分辨出物體的明亮程度、形狀與位置,但兩者的差異並不巨大。此外,在這兩種模式下,+15dB target (left) 的CNR值都比+6dB target (right) 的CNR值還大,和我們預測的結果相符,也就是CNR愈高就愈能從背景中辨別出target。

## 四、Carotid Color Doppler and PW Images



在測量頸動脈血管流速狀況時,由於彩色都卜勒效應的關係,靠近探頭這側的血液因流向探頭因此呈現紅色,而根據流速的不同,顏色會有深淺的差異。

由上圖我們可以看到流速是有波鋒的,也就是我們血管收縮的時候,流速會呈現最大值,彩色都卜勒會是鮮紅色,反之舒張的時候流速較慢,而呈現暗紅色。



我們在多次測量時,發現有時候是只有正值的流速,有時候卻是有正負,且並非是可以靠儀器所調整,因此我們猜測應該是和探頭有關。而根據都卜勒效應,靠近為正,遠離為負的原理來思考,發現應該是我們探頭擺放的位置和血管的分布不是平行的關係,因此造成探頭有時候接收到都只有靠近的血液流速,有時卻是有靠近也有遠離的血液流速,這樣才會造成一個大小相等方向相反的波形。

再者,圖中可以看出頸動脈血液流速一個有趣的點,在打出最高速的流速之後,本應隨著收縮減弱,舒張增加,而逐漸降低的流速卻有一個小小的反彈。而這是在舒張早期時,由於心室血壓較動脈低,因此造成動脈血液回流,而此回流造成主動脈瓣很快地關閉。而這些回流的血液受到關閉的主動脈瓣阻擋的影響,形成一個回波,稱為重搏波,若是主動脈瓣關閉不全,此波則會變得較不明顯。反彈前的波谷稱為重搏切跡。



## 五、補充資料:

https://zh.wikipedia.org/wiki/多普勒效应

https://zh.wikipedia.org/wiki/医学超声检查

http://big5.wiki8.com/jingdongmaibodongtu\_124379/

https://sites.google.com/site/usphysicsefolio/axial-lateral-resolution