Ensemble Models: Bagging

Hunter Glanz

1 / 14

OUTLINE

Introduction

Bagging

Random Forests

2 / 14

Foundational Machine Learning

- You've learned about:
 - ► Traditional Regression
 - Logistic Regression
 - K-Nearest Neighbors
 - Discriminant Analysis
 - Support Vector Machines
 - Tree-Based Methods

Foundational Machine Learning

- You've learned about:
 - ► Traditional Regression
 - Logistic Regression
 - K-Nearest Neighbors
 - Discriminant Analysis
 - Support Vector Machines
 - Tree-Based Methods

Remember there's no free lunch!

Ensemble Learning Strategies

- ► Ensemble learning refers to algorithms that combine the predictions from two or more models:
 - Let's team up!

Ensemble Learning Strategies

- ► Ensemble learning refers to algorithms that combine the predictions from two or more models:
 - Let's team up!
 - Near infinite number of ways to do this so we'll talk generally about three broad strategies:
 - Bagging
 - Stacking
 - Boosting

Ensemble Learning Strategies

- ► Ensemble learning refers to algorithms that combine the predictions from two or more models:
 - Let's team up!
 - Near infinite number of ways to do this so we'll talk generally about three broad strategies:
 - Bagging
 - Stacking
 - Boosting

Today we will focus on bagging

- ▶ Decision trees suffer from *high variance*
 - ► ⇒ The fit could be quite different depending on the data used

- Decision trees suffer from high variance
 - ► ⇒ The fit could be quite different depending on the data used
- Bagging (or bootstrap aggregation) is a general-purpose procedure for reducing the variance of a statistical learning method

- Decision trees suffer from high variance
 - ➤ The fit could be quite different depending on the data used
- Bagging (or bootstrap aggregation) is a general-purpose procedure for reducing the variance of a statistical learning method
 - Particularly useful and frequently used with decision trees

- Decision trees suffer from high variance
 - → The fit could be quite different depending on the data used
- Bagging (or bootstrap aggregation) is a general-purpose procedure for reducing the variance of a statistical learning method
 - Particularly useful and frequently used with decision trees

Think back to the sampling distribution of X. What was the variance of \bar{X} ?

- 1. 1
- $2. \sigma^2$
- 3. σ^2/n

- Decision trees suffer from high variance
 - ▶ ⇒ The fit could be quite different depending on the data used
- Bagging (or bootstrap aggregation) is a general-purpose procedure for reducing the variance of a statistical learning method
 - Particularly useful and frequently used with decision trees

Think back to the sampling distribution of \bar{X} . What was the variance of \bar{X} ?

- 1. 1
- $2. \sigma^2$
- 3. σ^2/n
- ► ⇒ Averaging a set of observations reduces variance

The General Idea

► Take many training sets from the population

$$ightharpoonup Z^1, \ldots, Z^B$$

6 / 14

The General Idea

- ► Take many training sets from the population
 - $ightharpoonup Z^1, \ldots, Z^B$
- Build a separate prediction model using each training set
 - $ightharpoonup \hat{f}^1,\ldots,\hat{f}^B$

The General Idea

- ► Take many training sets from the population
 - $\triangleright Z^1, \ldots, Z^B$
- Build a separate prediction model using each training set
 - $ightharpoonup \hat{f}^1,\ldots,\hat{f}^B$
- Average the resulting predictions!
 - ► ⇒ Single low-variance statistical learning model

$$\hat{f}_{avg}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^b(x)$$

The Reality

▶ We don't have multiple training sets, so we bootstrap

$$ightharpoonup Z^{*1}, \ldots, Z^{*B}$$

7 / 14

The Reality

- ▶ We don't have multiple training sets, so we bootstrap
 - $ightharpoonup Z^{*1}, ..., Z^{*B}$
- ▶ Build a separate prediction model using each training set
 - $ightharpoonup \hat{f}^{*1},\ldots,\hat{f}^{*B}$

- ► We don't have multiple training sets, so we bootstrap
 - ▶ 7*1....7*B
- Build a separate prediction model using each training set
 - $\hat{f}^{*1}, \dots, \hat{f}^{*B}$
- Average the resulting predictions!
 - ► ⇒ Single low-variance statistical learning model

$$\hat{f}_{bag}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{*b}(x)$$

Bagging Visual

Bagging Ensemble

8 / 14

- ▶ Bagging can improve predictions for many methods
- ▶ Bagging is particularly useful for decisions trees because...

- ▶ Bagging can improve predictions for many methods
- Bagging is particularly useful for decisions trees because...
 - ► Large trees have high variance, but low bias

- ▶ Bagging can improve predictions for many methods
- ▶ Bagging is particularly useful for decisions trees because...
 - Large trees have high variance, but low bias
 - Construct B trees (grown deep with no pruning) based on the B bootstrapped training sets, and then average the predictions

- Bagging can improve predictions for many methods
- ▶ Bagging is particularly useful for decisions trees because...
 - ► Large trees have high variance, but low bias
 - Construct *B* trees (grown deep with no pruning) based on the *B* bootstrapped training sets, and then average the predictions
- ► If we're performing classification instead, how should we obtain a prediction since we can't take an average?

Out-of-Bag Error

- Out-of-Bag Error
 - On average, each bagged tree makes use of around 2/3 of the observations
 - ► The remaining 1/3 are referred to as the out-of-bag (OOB) observations
 - Make predictions for each observation using trees for which the observation was OOB
 - Compute overall OOB MSE using these predictions

Out-of-Bag Error

- Out-of-Bag Error
 - On average, each bagged tree makes use of around 2/3 of the observations
 - The remaining 1/3 are referred to as the out-of-bag (OOB) observations
 - Make predictions for each observation using trees for which the observation was OOB
 - Compute overall OOB MSE using these predictions
- ► For sufficiently large *B*, OOB error is virtually equivalent to leave-one-out cross-validation error

Out-of-Bag Error

- Out-of-Bag Error
 - On average, each bagged tree makes use of around 2/3 of the observations
 - ► The remaining 1/3 are referred to as the out-of-bag (OOB) observations
 - Make predictions for each observation using trees for which the observation was OOB
 - Compute overall OOB MSE using these predictions
- ► For sufficiently large *B*, OOB error is virtually equivalent to leave-one-out cross-validation error
- Much easier to compute than using cross-validation when dealing with a very large data set

Bagged Model Assessment

▶ Number of trees *B* is not a critical parameter

Bagged Model Assessment

- ▶ Number of trees *B* is not a critical parameter
 - ► A very large value of *B* will not lead to overfitting
 - We just want the error estimate to be stable

Bagged Model Assessment

- ▶ Number of trees *B* is not a critical parameter
 - A very large value of B will not lead to overfitting
 - We just want the error estimate to be stable
- Variable Importance
 - Bagging improves prediction accuracy at the expense of interpretability, since we have many trees now
 - For each variable, average the RSS (or Gini index) reduction across all B trees
 - ► [Larger]/[Smaller] values indicate an important predictor

Suppose there is one very strong predictor in the data set, along with many other moderately strong predictors

12 / 14

- ► Suppose there is one very strong predictor in the data set, along with many other moderately strong predictors
- Most or all of the bagged trees will use this strong predictor in the top split

- ► Suppose there is one very strong predictor in the data set, along with many other moderately strong predictors
- Most or all of the bagged trees will use this strong predictor in the top split
 - ➤ All of the bagged trees will look similar to each other and produce highly correlated predictions

- ► Suppose there is one very strong predictor in the data set, along with many other moderately strong predictors
- Most or all of the bagged trees will use this strong predictor in the top split
 - ➤ All of the bagged trees will look similar to each other and produce highly correlated predictions
- Averaging highly correlated quantities does not reduce variance as much as averaging uncorrelated quantities

▶ Build decision trees just like we would in *bagging*

- Build decision trees just like we would in bagging
- ► However, each time a split in a tree is considered, a random sample of m predictors is chosen as split candidates

- Build decision trees just like we would in bagging
- However, each time a split in a tree is considered, a random sample of m predictors is chosen as split candidates
 - A fresh set of *m* predictors is taken at each split

- Build decision trees just like we would in bagging
- However, each time a split in a tree is considered, a random sample of m predictors is chosen as split candidates
 - A fresh set of *m* predictors is taken at each split
- ▶ What happens if m = p?

- Build decision trees just like we would in bagging
- However, each time a split in a tree is considered, a random sample of m predictors is chosen as split candidates
 - A fresh set of *m* predictors is taken at each split
- ▶ What happens if m = p?
- ► Typically we choose $m \approx \sqrt{p}$

Customizing Random Forests

- ► As with bagging, random forests will not overfit for large numbers of trees (large *B*)
 - ightharpoonup \Longrightarrow We just want B sufficiently large

Customizing Random Forests

- As with bagging, random forests will not overfit for large numbers of trees (large B)
 - ightharpoonup \Longrightarrow We just want B sufficiently large
- ▶ Different values of *m* could affect the performance:

: Ensemble Models 14 / 14