ESTIA 2019 - Transformées Corrigé du devoir maison du 21 Octobre 2019

Exercice 1

1) On a, pour $x \in \mathbb{R}$, $x \neq 0$,

$$\begin{split} \widehat{f}(x) &= \int_{-\infty}^{+\infty} f(t) e^{-itx} dt = \int_{0}^{\pi} e^{-itx} dt - \int_{\pi}^{2\pi} e^{-itx} dt = \left[\frac{e^{-itx}}{-ix} \right]_{0}^{\pi} - \left[\frac{e^{-itx}}{-ix} \right]_{\pi}^{2\pi} \\ &= \frac{1 + e^{-2i\pi x} - 2e^{-i\pi x}}{ix} = \frac{(1 - e^{-i\pi x})^{2}}{ix} = \frac{\left(e^{-\frac{i\pi x}{2}} \left(e^{\frac{i\pi x}{2}} - e^{-\frac{i\pi x}{2}} \right) \right)^{2}}{ix} \\ &= e^{-i\pi x} \frac{\left(2i\sin\left(\frac{\pi x}{2}\right) \right)^{2}}{ix} = 4ie^{-i\pi x} \frac{\sin^{2}\left(\frac{\pi x}{2}\right)}{x} = 2i\pi e^{-i\pi x} \sin\left(\frac{\pi x}{2}\right) \sin_{c}\left(\frac{\pi x}{2}\right). \end{split}$$

D'autre part on a $\widehat{f}(0) = \int_{-\infty}^{+\infty} f(t)dt = \int_{0}^{\pi} dt - \int_{\pi}^{2\pi} dt = 0$, et la formule ci-dessus reste valable pour x = 0 puisque sin(0) = 0.

- 2) Si \widehat{f} était intégrable sur \mathbb{R} alors il résulterait de la formule d'inversion de Fourier que f serait égale presque partout à une fonction continue sur \mathbb{R} . Mais ceci est impossible puisque f admet des limites à droite et à gauche distinctes en $0, \pi$ et 2π .
 - 3) On a, d'après la formule de Parseval,

$$\int_{-\infty}^{+\infty} |f(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |\widehat{f}(x)|^2 dx,$$

ce qui donne

$$2\pi = \frac{1}{2\pi} \int_{-\infty}^{+\infty} 16 \frac{\sin^4\left(\frac{\pi x}{2}\right)}{x^2} dx = \frac{16}{\pi} \int_0^{+\infty} \frac{\sin^4\left(\frac{\pi x}{2}\right)}{x^2} dx,$$
$$\int_0^{+\infty} \frac{\sin^4\left(\frac{\pi x}{2}\right)}{x^2} dx = \frac{\pi^2}{8}.$$

Posons $s = \frac{\pi x}{2}$. On obtient $x = \frac{2}{\pi}s, dx = \frac{2}{\pi}ds$, et

$$\int_0^{+\infty} \frac{\sin^4\left(\frac{\pi x}{2}\right)}{x^2} dx = \frac{\pi}{2} \int_0^{+\infty} \frac{\sin^4(s)}{s^2} ds,$$

ce qui donne

$$\int_0^{+\infty} \frac{\sin^4(s)}{s^2} ds = \frac{\pi}{4}.$$

On vérifie le résultat avec Mupad.

 $int(sin^4(t)/t^2,t=0$. . infinity)

 $\frac{\pi}{4}$

4) Soit $g \in L^1(\mathbb{R})$. On a, pour $x \in \mathbb{R}$,

$$(\widehat{f*g})(x) = f(x)g(x) = 2i\pi e^{-i\pi x} \sin\left(\frac{\pi x}{2}\right) \sin_c\left(\frac{\pi x}{2}\right) g(x).$$

Donc $\widehat{f*g}(2k\pi)=0$ pour $k\in\mathbb{Z}$. Comme \widehat{H} ne s'annule pas sur \mathbb{R} , on a $\widehat{f*g}\neq\widehat{H},\ f*g\neq H$ et l'équation f*g=H n'admet pas de solution dans $L^1(\mathbb{R})$.

Exercice 2

1) Calculons la transformée de Walsh de f par "Walsh rapide" :

p	0	1	2	3	4	5	6	7
f[p]	7	7	5	5	3	3	1	1
étape 1, 2 par 2	14	0	10	0	6	0	2	0
étape 2, 4 par 4	24	0	4	0	8	0	4	0
étape 3, 8 par 8, $\mathcal{W}_3(f)[p]$	32	0	8	0	16	0	0	0

La transformée de Walsh de f est donc :

$$W_3(f) = [32, 0, 8, 0, 16, 0, 0, 0].$$

2) On sait que compresser le signal à 25% revient à remplacer $W_3(f)[i]$ par 0 si $cs_3(i) > 0, 25 \times 2^3 - 1 = 1$, et à conserver $W_3(f)[i]$ si $cs_3(i) \leq 1$, $cs_3(i)$ désignant le nombre de changements de signes de la ligne d'indice i de la matrice de Walsh W_3 pour $0 \leq i \leq 7$. La compression à 25% de f est alors de nouveau égale à la transformée de Walsh inverse de la "transformée de Walsh compressée."

On a vu en cours qu'on a le tableau suivant

i	0	1	2	3	4	5	6	7
$cs_3(i)$	0	7	3	4	1	6	2	5

On remplace donc $W_3(f)[i]$ par 0 si i=1,2,3,5,6 ou 7, et on conserve $W_3(f)[i]$ si i=0 ou 4.

On obtient

$$W_3(f)_{0,25} = [32, 0, 0, 0, 16, 0, 0, 0].$$

D'après le cours, on sait que $W_3^{-1} = \frac{1}{2^3}W_3$. Par conséquent, calculer la transformée de Walsh inverse de $W_3(f)_{0,5}$ revient à calculer sa transformée de Walsh et à diviser le résultat obtenu par $2^3 = 8$.

p	0	1	2	3	4	5	6	7
$\mathcal{W}_3(f)_{0,25}(p)$	32	0	0	0	16	0	0	0
étape 1, 2 par 2	32	32	0	0	16	16	0	0
étape 2, 4 par 4	32	32	32	32	16	16	16	16
étape 3, 8 par 8	48	48	48	48	16	16	16	16
division par 8, $f_{0,25}$	6	6	6	6	2	2	2	2

On obtient

$$f_{0.5} = [6, 6, 6, 6, 2, 2, 2, 2].$$

On sait que comprimer le signal f à 50% revient à remplacer $\mathcal{W}_3(f)[i]$ par 0 si $cs_3(i) > 0, 5 \times 2^3 - 1 = 3$, et à conserver $\mathcal{W}_3(f)[i]$ si $cs_3(i) \leq 3$, $cs_3(i)$ désignant le nombre de changements de signes de la ligne d'indice i de la matrice de Walsh \mathcal{W}_3 pour $0 \leq i \leq 7$. La compression à 50% de f est alors de nouveau égale à la transformée de Walsh inverse de la "transformée de Walsh compressée."

On remplace donc $W_3(f)[i]$ par 0 si i = 1, 3, 5 ou 7, et on conserve $W_3(f)[i]$ si i = 0, 2, 4 ou 6.

On obtient

$$W_3(f)_{0,5} = [32, 0, 8, 0, 16, 0, 0, 0] = W_3(f).$$

Comme la transformée de Walsh est injective, on voit que $f_{0,5}=f=[7,7,5,5,3,3,1,1]$ et la compression à 50% n'a rien changé à f.

Exercice 3

On va calculer la transformée de Walsh de A en utilisant l'algorithme rapide, appliqué aux lignes et ensuite aux colonnes.

$$A = \left[\begin{array}{rrrr} 1 & 3 & 1 & 3 \\ 3 & 1 & 3 & 1 \\ 1 & 3 & 1 & 3 \\ 3 & 1 & 3 & 1 \end{array} \right].$$

1e étape, lignes,

$$\left[\begin{array}{ccccc}
4 & -2 & 4 & -2 \\
4 & 2 & 4 & 2 \\
4 & -2 & 4 & -2 \\
4 & 2 & 4 & 2
\end{array}\right]$$

2e étape, lignes,

$$\begin{bmatrix}
8 & -4 & 0 & 0 \\
8 & 4 & 0 & 0 \\
8 & -4 & 0 & 0 \\
8 & 4 & 0 & 0
\end{bmatrix}$$

1e étape, colonnes

$$\left[\begin{array}{ccccc}
16 & 0 & 0 & 0 \\
0 & -8 & 0 & 0 \\
16 & 0 & 0 & 0 \\
0 & -8 & 0 & 0
\end{array}\right]$$

2e étape, colonnes, on obtient

On procède maintenant à la compression. On a

On numérote les lignes de W_2 de 0 à 3. Le nombre de changements de signe n(i) de la ligne d'indice i est alors donné par le tableau suivant.

i	0	1	2	3
n(i)	0	3	1	2

On ordonne les pixels (i,j) selon la règle $(i_1,j_1) \prec (i_2,j_2)$ si $n(i_1) + n(j_1) < n(i_2) + n(j_2)$ ou si $n(i_1) + n(j_1) = n(i_2) + n(j_2)$ et $n(i_1) < n(i_2)$. On numérote alors les 16 pixels considérés ici du plus petit au plus grand pour l'ordre cidessus. On obtient le tableau suivant.

(i, j)	n(i)	n(j)	n(i) + n(j)	rang[(i,j)]
(0,0)	0	0	0	1
(0,1)	0	3	3	7
(0,2)	0	1	1	2
(0,3)	0	2	2	4
(1,0)	3	0	3	10
(1,1)	3	3	6	16
(1,2)	3	1	4	13
(1,3)	3	2	5	15
(2,0)	1	0	1	3
(2,1)	1	3	4	11
(2,2)	1	1	2	5
(2,3)	1	2	3	8
(3,0)	2	0	2	6
(3,1)	2	3	5	14
(3, 2)	2	1	3	9
(3,3)	2	2	4	12

Pour la compression à 25% de A, on conserve les coefficients d'indice (0,0),(0,1),(0,2) et (2,0) de la transformée de Walsh de A et on annule les autres. Ceci donne

On effectue la transformée de Walsh inverse en utilisant l'algorithme rapide 1e étape, lignes,

2e étape, lignes,

1e étape, colonnes

$$\begin{bmatrix} 32 & 32 & 32 & 32 \\ 32 & 32 & 32 & 32 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

2e étape, colonnes,

$$\begin{bmatrix}
32 & 32 & 32 & 32 \\
32 & 32 & 32 & 32 \\
32 & 32 & 32 & 32 \\
32 & 32 & 32 & 32
\end{bmatrix}$$

Il ne reste plus qu'à diviser par 16, et on a

On obtient une image d'un gris uniforme.

Exercice 4

a) On considère l'équation différentielle

$$y''(t) + 6y'(t) + 5y(t) = 12e^t,$$

avec la condition initiale y(0) = 1, y'(0) = -3.

Notons Y la transformée de Laplace de y. On a $\mathcal{L}(y')(z)=zY(z)-y(0)=zY(z)-1$ et $\mathcal{L}(y'')(z)=z\mathcal{L}(y')(z)+3=z^2Y(z)-z+3$.

D'après la table des transformées de Laplace, si on pose $f_a(t)=e^{ta}$, on a $\mathcal{L}(f_a)(z)=\frac{1}{z-a}$. On obtient

$$\begin{split} z^2Y(z) + 6zY(z) + 5Y(z) - z + 3 - 6 &= \frac{12}{z - 1}, \quad (z^2 + 6z + 5)Y(z) = \frac{12}{z - 1} + z + 3 \\ &= \frac{z^2 + 2z + 9}{z - 1}. \end{split}$$

On a $z^2 + 6z + 5 = (z+1)(z+5)$, soit

$$Y(z) = \frac{z^2 + 2z + 9}{(z - 1)(z + 1)(z + 5)}.$$

Comme le degré du dénominateur de la fraction ci-dessus est supérieur à celui du numérateur, on a une décomposition en éléments simples de la forme

$$\frac{z^2 + 2z + 9}{(z - 1)(z + 1)(z + 5)} = \frac{a}{z - 1} + \frac{b}{z + 1} + \frac{c}{z + 5}.$$

En multipliant par z-1 et en faisant z=1, on obtient a=1. En multipliant par z+1 et en faisant z=-1, on obtient b=-1, et en multipliant par z+5 et en faisant z=-5, on obtient c=1, soit

$$\frac{z^2 + 2z + 9}{(z - 1)(z + 1)(z + 5)} = \frac{1}{z - 1} - \frac{1}{z + 1} + \frac{1}{z + 5}.$$

On obtient

$$Y(z) = \frac{1}{z-1} - \frac{1}{z+1} + \frac{1}{z+5}.$$

En lisant de gauche à droite la table des transformées de Laplace, on a alors

$$y(t) = e^t - e^{-t} + e^{-5t}.$$

2) On resout l'équation différentielle et on trace le graphe de la solution sur l'intervalle [0,1] avec Mupad.

3) On effectue avec Matlab la commande

edit eqdif2019

Mupad répond en anglais que la M-file n'existe pas et propose de la créer. Après avoir repondu 'yes', on peut créer la M-file.

```
function dy=eqdif2019(t,y)
dy=zeros(2,1)
dy(1)=y(2)
dy(2)=-5*y(1)-6*y(2)+12*exp(t);
```

Il ne reste plus qu'à demander à Matlab de tracer le graphe de la solution.

```
ode23(@eqdif2019,[0:0.05:1],[1,-3]);
legend('y(t)','yprime(t)');
title('Equation d^2y/dt^2+6dy/dt +5y=12e^t');
print -depsc eqdif2019
```


1) 1) 1) La transformée de Fourier discrète $\mathcal{F}_4=f\to \hat{f}$ sur \mathbb{C}^4 est définie pour $f=[f[0],f[1],f[2],f[3]]\in\mathbb{C}^4$ par la formule

$$\hat{f} = f \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{bmatrix}.$$

2) On commence par rappeler la procédure du renversement de bits sur $\{0,1,2,3\}$.

m	0	1	2	3
bits	00	01	10	11
rev	00	10	01	11
rev(m)	0	2	1	3

On considère alors les signaux f = [4, 1, 2, 0] et g = [1, 8, 0, 0] de longueur 4 formés des coefficients de p et q, complétés par des zéros.

On leur applique ensuite la FFT. On commence par "renverser les bits". Ensuite on effectue les étapes 1 et 2, qui correspondent aux schémas suivants

	a	b	a	b	c	d
Ì	a+b	a-b	a+c	$b + i^{-1}d = b - id$	a-c	$b - i^{-1}d = b + id$

Ceci donne

m	0	1	2	3
f[m]	4	1	2	0
rev(f)[m]	4	2	1	0
étape 1	6	2	1	1
étape $2, \hat{f}(m)$	7	2-i	5	2+i

m	0	1	2	3
g[m]	1	8	0	0
rev(g)[m]	1	0	8	0
étape 1	1	1	8	8
étape $2, \hat{g}(m)$	9	1 - 8i	-7	1 + 8i

Comme (2-i)(1-8i) = 2-i-16i-8 = -6-17i, on a (2+i)(1+8i) = -6+17i, et on obtient

$$\hat{f}.\hat{g} = [63, -6 - 17i, -35, -6 + 17i].$$

On va appliquer la FFT inverse à $h = \hat{f}.\hat{g}$. On commence de même que plus haut par "renverser les bits", et on applique les étapes 1 et 2, en remplaçant i par son conjugué -i, ce qui donne les schémas suivants

ſ	a	b	a	b	c	d
ſ	a+b	a-b	a+c	b+id	a-c	b-id

La transformée de Fourier inverse s'obtient alors en divisant par 4 le résultat obtenu à la 2e étape. On obtient

m	0	1	2	3
h[m]	63	-6 - 17i	-35	-6 + 17i
rev(h)[m]	63	-35	-6 - 17i	-6 + 17i
étape 1	28	98	-12	-34i
étape 2	16	132	40	64
$\mathcal{F}^{-1}(h)$	4	33	10	16

Ceci donne

$$pq = 4 + 33x + 10x^2 + 16x^3,$$

ce que confirme le cacul direct

$$(4+x+2x^2)(1+8x) = 4+x+2x^2+32x+8x^2+16x^3 = 4+33x+10x^2+16x^3.$$

On a alors

$$214 \times 81 = p(10)q(10) = pq(10) = 4 + 330 + 1000 + 16000 = 17334,$$

ce que confirme un calcul direct.

4) Comme le degré du produit de polynômes considéré est égal à 15, on va effectuer les calculs dans \mathbb{C}^{16} et utiliser les commandes $\mathrm{fft}((.,16))$ et iff $\mathrm{ft}(.,16)$ pour les calculs par FFT des transformées de Fourier discrètes et transformées de Fourier inverses discrètes dans \mathbb{C}^{16} . On utilise la commande "format long" pour obtenir des résultats précis.

```
>> format long
f=[4 1 2 0];g=[1 8 0 0];u=fft(f,16);v=fft(g,16);w=(u.^4).*(v.^(7));h=ifft(w)
h =
```

1.0e+09 *

Columns 1 through 7

Columns 8 through 14

On obtient les coefficients rangés par ordre de degré croissant du polynôme cherché (multiplier par 10^9 les nombres affichés). On retrouve évidemment le même résultat par un calcul direct effectué avec Mupad.

1) On a, pour $t \in \mathbb{R}$,

$$g(t) = \int_{-\infty}^{+\infty} f(s)f(t-s)ds.$$

Si t < 0 alors comme s + (t - s) = t l'un des nombres s ou t - s est négatif donc la fonction $s \to f(s)f(t - s)$ est nulle et g(t) = 0. De même si $t > 4\pi$, $\max(s, t - s) > 2\pi$ pour tout s, la fonction $s \to f(s)f(t - s)$ est nulle et g(t) = 0. On a alors, pour $0 \le t \le 4\pi$, puisque f(s)f(t - s) = 0 pour s < 0 ou pour s > t

$$g(t) = \int_0^t f(s)f(t-s)ds.$$

Si $0 \le t \le \pi$ on a $0 \le s \le \pi$ et $0 \le t - s \le \pi$ pour $s \in [0, x]$ donc $g(t) = \int_0^t ds = t$.

Si $\pi \leq t \leq 2\pi$, on a $g(t) = \int_0^\pi f(t-s)ds - \int_\pi^t f(t-s)ds$. Comme $t-s \in [0,\pi]$ pour $s \in [t-\pi]$, t et $t-s \in [\pi,2\pi]$ pour $t \in [0,t-\pi]$, on obtient

$$g(t) = -\int_0^{t-\pi} ds + \int_{t-\pi}^{\pi} ds - \int_{\pi}^{t} ds = \pi - t + \pi - (t-\pi) - t + \pi = 4\pi - 3t.$$

Si $2\pi \le t \le 3\pi$, on a $g(t) = \int_0^{2\pi} f(s) f(t-s) ds$. Comme $t-s > 2\pi$ pour $s < t-2\pi$, on a

$$g(t) = \int_{t-2\pi}^{2\pi} f(s)f(t-s)ds = \int_{t-2\pi}^{\pi} f(t-s)ds - \int_{\pi}^{t-\pi} f(t-s)ds - \int_{t-\pi}^{2\pi} f(t-s)ds$$
$$= -\int_{t-2\pi}^{\pi} ds + \int_{\pi}^{t-\pi} ds - \int_{t-\pi}^{2\pi} f(t-s)ds = -(3\pi - t) + t - 2\pi - (3\pi - t)$$

Si $3\pi \le t \le 4\pi$, on a $g(t) = \int_0^{2\pi} f(s) f(t-s) ds = \int_{t-2\pi}^{2\pi} f(s) f(t-s) ds$, puisque $t-s>2\pi$ pour $s< t-2\pi$. Si $t-2\pi \le s \le 2\pi$ alors $2\pi \ge s \ge 3\pi - 2\pi = \pi$ donc f(s)=1 et $-2\pi \le -s \le 2\pi - t$, donc $2\pi \ge t-s \ge t-2\pi \ge \pi$, et f(t-s)=1. Finalement

$$g(t) = \int_{2\pi - t}^{2\pi} ds = 4\pi - t.$$

On obtient bien g(t)=0 si $t\in]-\infty,0[\cup]4\pi,+\infty[,g(t)=t$ si $t\in [0,\pi],g(t)=4\pi-3t$ si $t\in [0,2\pi],g(t)=-8\pi+3t$ si $t\in [2\pi,3\pi]$ et $g(t)=4\pi-t$ si $t\in [3\pi,4\pi]$. Le tracé du graphe de g ne présente pas de difficulté.

2) Comme g = f * f, on a $\hat{g} = \hat{f}^2$, ce qui donne, pour $x \in \mathbb{R}$,

$$\widehat{g}(x) = \left[\widehat{f}(x)\right]^2 = \left[2i\pi e^{-i\pi x} sin\left(\frac{\pi x}{2}\right) sin_c\left(\frac{\pi x}{2}\right)\right]^2 = -4\pi^2 e^{-2i\pi x} sin^2\left(\frac{\pi x}{2}\right) sin_c^2\left(\frac{\pi x}{2}\right).$$

3) Comme g est continue et comme $\sup_{t\in\mathbb{R}}t^2g(t)$ est fini, on peut appliquer à g la formule sommatoire de Poisson, voir le théorème 9.3.1 du support de cours. Comme $\sup_{x\in\mathbb{R}}x^2|\widehat{g}(x)|^2\leq 16/\pi^2<+\infty$, la série $\sum\limits_{n=-\infty}^{+\infty}|\widehat{g}\left(\frac{2\pi n}{c}\right)|$ converge pour tout $c\in\mathbb{R}$, et on obtient

$$\sum_{n=-\infty}^{+\infty}g(cn)=\frac{1}{c}\sum_{n=-\infty}^{+\infty}\widehat{g}\left(\frac{2\pi n}{c}\right).$$

Pour $c = 2\pi$, ceci donne

$$\sum_{n=-\infty}^{+\infty} \widehat{g}(n) = 2\pi \sum_{n=-\infty}^{+\infty} g(2\pi n).$$

Il résulte de la question 1 que g(n)=0 pour $n\neq 1$ et que $g(1)=-2\pi$. D'autre part $\widehat{g}(n)=-4sin^2\left(\frac{\pi n}{2}\right)sin_c^2\left(\frac{\pi n}{2}\right)$. Donc $\widehat{g}(n)=0$ si n est pair, et $\widehat{g}(2m+1)=-\frac{-4\pi^2sin^4\left(\frac{\pi}{2}+\pi m\right)}{\pi^2(2m+1)^2/4}=\frac{16}{(2m+1)^2}$ si n=2m+1 est impair. Finalement

$$\sum_{n \in \mathbb{Z}} \widehat{g}(n) = \sum_{n \in \mathbb{Z}, n \text{ impair}} \widehat{g}(n) = -2 \sum_{m=0}^{+\infty} \frac{16}{(2m+1)^2} = -\frac{32}{\pi^2}.$$

Comme
$$2\pi \sum_{n=-\infty}^{+\infty} g(n) = -4\pi^2$$
, on obtient bien

$$\sum_{m=0}^{+\infty} \frac{1}{(2m+1)^2} = \frac{\pi^2}{8}.$$

Exercice 7

1) Le solide V_n est la portion du solide W_n comprise entre lles plans horizontaux d'équations $z=n^2$ et $z=n^2+\frac{2}{2n+1}$, où W_n est le solide défini par l'inéquation $x^2+y^2\leq z-n^2$. Donc W_n est un solide de révolution d'axe 0z. L'intersection avec le plan déquation y=0 donne $x^2\leq z-n^2$, qui est l'équation de l'intérieur d'une parabole. Donc V_n est le solide délimité par un paraboloide de révolution de sommet $(0,0,n^2)$ et d'axe Oz, et par les plans horizontaux d'équations $z=n^2$ et $z=n^2+\frac{2}{2n+2}$.

de révolution de sommet $(0,0,n^2)$ et d'axe Oz, et par les plans horizontaux d'équations $z=n^2$ et $z=n^2+\frac{2}{2n+2}$.

Pour calculer le volume de V_n on pose $V_n^z=\{(x,y)\in\mathbb{R}^2\mid (x,y,z)\in V_n\}$, et $\pi_2(V_n)=\{z\in\mathbb{R}\mid V_n\neq\emptyset\}$. On a $\pi_2(V_n)=[n^2,n^2+\frac{2}{2n+1}]$, et V_n^z est le disque fermé de rayon $\sqrt{z-n^2}$ centré en (0,0) pour $z\in\pi_2(V_n)$, de sorte que $\int\int_{V_n^z}dxdy=Aire(V_n^z)=\pi(z-n^2)$. Il résulte alors du théorème de Fubini que l'on a

$$Vol(V_n) = \int \int \int_{V_n} dx dy dz = \int_{\pi_2(V_n)} \left[\int \int_{V_n^z} dx dy \right] dz = \int_{n^2}^{n^2 + \frac{2}{2n+1}} \pi(z - n^2) dz$$
$$= \pi \left[\frac{(z - n^2)^2}{2} \right]_{n^2}^{n^2 + \frac{2}{2n+1}} = \frac{2\pi}{(2n+1)^2}$$

2) On constate que V_0 est défini par les inéquations $x^2+y^2 \le z, 0 \le z \le 2$, et que V_1 est défini par les inéquations $x^2+y^2 \le z-1, 1 \le z \le 5/3$. Donc $V_1 \subset V_0$. Par contre les solides $V_n, n \ge 2$ sont disjoints deux à deux et disjoints de $V_0 \cup V_1 = V_0$. On a donc

$$vol(V) = Vol(V_0 \cup V_1) + \sum_{n=2}^{+\infty} vol(V_n) = Vol(V_0) + \sum_{n=2}^{+\infty} vol(V_n) = -Vol(V_1) + \sum_{n=0}^{+\infty} vol(V_n)$$
$$= -\frac{2\pi}{9} + 2\pi \sum_{n=0}^{+\infty} \frac{1}{2n+1} = \frac{\pi^3}{4} - \frac{2\pi}{9}.$$

On dessine V_0, V_1, V_2, V_3, V_4 avec Matlab (V_1 n'apparait pas car il est inclus dans V_0). Une esquisse manuelle était tout à fait recevable.

```
[theta,r0]=meshgrid([0:pi/60:2*pi],[0:1/20:sqrt(2)]);
x0=r0.*cos(theta);
y0=r0.*sin(theta);
z0=x0.^2+y0.^2; axis equal
mesh(x0,y0,z0);
hold on
z01=2*ones(size(x0));
mesh(x0,y0,z01); hold on;
[theta,r1]=meshgrid([0:pi/60:2*pi],[0:1/20:sqrt(2/3)]);
x1=r1.*cos(theta);
y1=r1.*sin(theta);
z1=x1.^2+y1.^2 ;z10=z1+ones(size(z1));
mesh(x1,y1,z10);
hold on
z11=(5/3)*ones(size(x1));
mesh(x1,y1,z11); hold on;
[theta,r2]=meshgrid([0:pi/60:2*pi],[0:1/20:sqrt(2/5)]);
x2=r2.*cos(theta);
 y2=r2.*sin(theta);
 z2=x2.^2+y2.^2; z20=z2+4*ones(size(z2));
mesh(x2,y2,z20);
 hold on
z21=(22/5)*ones(size(x2));
mesh(x2,y2,z21); hold on;
[theta,r3]=meshgrid([0:pi/60:2*pi],[0:1/20:sqrt(2/7)]);
 x3=r3.*cos(theta);
 y3=r3.*sin(theta);
 z3=x3.^2+y3.^2; z30=z3+9*ones(size(z3));
mesh(x3,y3,z30);
 hold on
z31=(65/7)*ones(size(x3));
mesh(x3,y3,z31); hold on;
[theta,r4]=meshgrid([0:pi/60:2*pi],[0:1/20:sqrt(2/9)]);
x4=r4.*cos(theta);
y4=r4.*sin(theta);
z4=(x4.^2+y4.^2); z40=z4+16*ones(size(z4));
mesh(x4,y4,z40);
hold on
z41=(146/9)*ones(size(x4));
mesh(x4,y4,z41); hold on; axis equal
hold on; axis equal
title('Les solides V0, V1, V2, V3 et V4');
print -depsc DM2019b
```

Les solides V0,V1,V2,V3 et V4

