Lecture 1 - 20/01/2021

Parity

The action of the parity operator \mathcal{P} is defined on the coordinate vector as

$$\mathcal{P}|x\rangle = |-x\rangle$$

. For a generical state $|\psi\rangle$ it automatically follows that

$$\mathcal{P} |\psi\rangle = \mathcal{P} \int dx |x\rangle \langle x|\psi \rangle = \int dx |-x\rangle \langle x|\psi \rangle = \int dx' |x'\rangle \langle -x'|\psi \rangle$$

so that

$$\langle x | \mathcal{P} | \psi \rangle = \psi(-x)$$

In spherical coordinates the action of the parity operator causes $r \to r$, $\theta \to \pi - \theta$ and $\phi \to \pi + \phi$.

Suppose now that $|\psi\rangle$ is an eigenstate of the parity operator so that

$$\mathcal{P} |\psi\rangle = c |\psi\rangle$$

By applying \mathcal{P} to both member of the last expression, one obtains that

$$\mathcal{P}^2 |\psi\rangle = c^2 |\psi\rangle \tag{1}$$

but also

$$\mathcal{P}^2 |\psi\rangle = \mathcal{P} \int dx |-x\rangle \langle x|\psi\rangle = \int dx |-x\rangle \langle x|\psi\rangle = |\psi\rangle \tag{2}$$

and combining 1 and 2 we conclude that $c = \pm 1$. If the eigenvalue is +1 (-1) we say that the corresponding eigenstate has even (odd) parity.