On Quantile Treatment Effects, Rank Similarity, and Multiple IVs

Sukjin Han & Haiqing Xu
U of Bristol & UT Austin

18 October 2022

UCL & CeMMAP Seminar

Observed vs. Counterfactual Distributions

Question:

How relationship between observed vs. counterfactual distributions plays a role in identification of treatment effects under endogeneity?

Observed vs. Counterfactual Distributions

Question:

How relationship between observed vs. counterfactual distributions plays a role in identification of treatment effects under endogeneity?

e.g., Condition:

if
$$F_{\mathbf{Y}_1|\eta\in A} \leq F_{\mathbf{Y}_1|\eta\in \tilde{A}}$$

For arbitrary A and \tilde{A} ,

then
$$F_{\mathbf{Y_0}|\eta\in A} \leq F_{\mathbf{Y_0}|\eta\in \tilde{A}}$$

Observed vs. Counterfactual Distributions

Condition 1.1 (preservation of stochastic dominance):

$$\text{ if } F_{Y_1|\eta\in A}\leq F_{Y_1|\eta\in \tilde{A}}$$
 For arbitrary A and $\tilde{A},$
$$\text{then } F_{Y_0|\eta\in A}\leq F_{Y_0|\eta\in \tilde{A}}$$

This paper...

- proposes this condition (and related ones) as possible source of identification...
- ▶ for quantile treatment effect (QTE) and average treatment effect (ATE) for treated and untreated populations, and
- proposes a simple procedure to calculate bounds using linear programming

Example

D: observed indicator of college degree (endogenous)

 Y_1 : hypothetical earnings with college education

 Y_0 : hypothetical earnings without college education

 $Y = DY_1 + (1 - D)Y_0$: observed earnings

Z: instrument(s) for D (e.g., local earnings, distance to college)

Common parameters of interest are

$$QTE_{\tau} = Q_{Y_1}(\tau) - Q_{Y_0}(\tau)$$

and

$$ATE = E[Y_1 - Y_0]$$

Example

D: observed indicator of college degree (endogenous)

 Y_1 : hypothetical earnings with college education

 Y_0 : hypothetical earnings without college education

 $Y = DY_1 + (1 - D)Y_0$: observed earnings

Z: instrument(s) for D (e.g., local earnings, distance to college) ...or more fundamentally

$$QTE_{\tau}(d) = Q_{Y_1|D=d}(\tau) - Q_{Y_0|D=d}(\tau)$$

and

$$ATE(d) = E[Y_1 - Y_0|D = d]$$

Well-Known Approach: Rank Similarity

Assume

$$Y_d = q(d, U_d)$$

where $q(d,\cdot)$ is strictly increasing and $U_d \sim U[0,1]$

Assume $D = h(Z, \eta)$ and $Z \perp U_d$

Rank similarity (Chernozhukov & Hansen 05):

$$F_{U_1|\eta,Z}=F_{U_0|\eta,Z}$$

- observationally equivalent to $U_1=U_0\equiv U$ (Chernozhukov & Hansen 13)
- reducing degree of unobs'ed heterogeneity

Under these assumptions, QTE_{τ} and ATE are point identified

Rank similarity (Chernozhukov & Hansen 05):

$$F_{U_1|\eta,Z}=F_{U_0|\eta,Z}$$

Strong assumption with fragile empirical justification

► e.g., wages in US CPS for past decades (Massoumi & Wang 19)

Rank similarity (Chernozhukov & Hansen 05):

$$F_{U_1|\eta} = F_{U_0|\eta}$$

Strong assumption with fragile empirical justification

• e.g., wages in US CPS for past decades (Massoumi & Wang 19)

Recall Condition 1.1:

For arbitrary
$$A$$
 and \tilde{A} ,
$$\Longrightarrow F_{Y_{1}|\eta\in A} \leq F_{Y_{1}|\eta\in \tilde{A}} \Longrightarrow F_{Y_{0}|\eta\in A} \leq F_{Y_{0}|\eta\in \tilde{A}}$$

Rank similarity (Chernozhukov & Hansen 05):

$$F_{U_1|\eta} = F_{U_0|\eta}$$

Strong assumption with fragile empirical justification

• e.g., wages in US CPS for past decades (Massoumi & Wang 19)

Stronger than Condition 1.1 is Condition 2:

For arbitrary
$$A$$
 and \tilde{A} ,
$$\Longleftrightarrow F_{Y_{1}|\eta\in\tilde{A}} \leq F_{Y_{1}|\eta\in\tilde{A}}$$
$$\iff F_{Y_{0}|\eta\in A} \leq F_{Y_{0}|\eta\in\tilde{A}}$$

Rank similarity (Chernozhukov & Hansen 05):

$$F_{U_1|\eta} = F_{U_0|\eta}$$

Strong assumption with fragile empirical justification

• e.g., wages in US CPS for past decades (Massoumi & Wang 19)

Stronger than Condition 1.1 is Condition 2:

For arbitrary
$$A$$
 and \tilde{A} ,
$$\Longleftrightarrow F_{Y_{\mathbf{1}}|\eta\in A} \leq F_{Y_{\mathbf{1}}|\eta\in \tilde{A}}$$

$$F_{Y_{\mathbf{0}}|\eta\in A} \leq F_{Y_{\mathbf{0}}|\eta\in \tilde{A}}$$

We show rank similarity implies Condition 2 (within their model)

Rank similarity (Chernozhukov & Hansen 05):

$$F_{U_1|\eta} = F_{U_0|\eta}$$

Strong assumption with fragile empirical justification

• e.g., wages in US CPS for past decades (Massoumi & Wang 19)

Stronger than Condition 1.1 is **Condition 2**:

For arbitrary
$$A$$
 and \tilde{A} ,
$$\Longleftrightarrow F_{Y_{1}|\eta\in A} \leq F_{Y_{1}|\eta\in \tilde{A}}$$

$$F_{Y_{0}|\eta\in A} \leq F_{Y_{0}|\eta\in \tilde{A}}$$

We show rank similarity implies Condition 2 (within their model)

Therefore, we propose Condition 1.1 as substantial relaxation of rank similarity

Making Use of Condition 1

Condition 1.1:

For arbitrary
$$A$$
 and \tilde{A} ,
$$\Longrightarrow F_{Y_0|\eta\in\tilde{A}} \leq F_{Y_0|\eta\in\tilde{A}}$$

$$F_{Y_0|\eta\in\tilde{A}} \leq F_{Y_0|\eta\in\tilde{A}}$$

Key step: Find A and \tilde{A} such that

$$F_{Y_1|\eta\in A,D=1} \le F_{Y_1|\eta\in \tilde{A},D=1}$$

- ▶ more likely if Z can produce finer partition of $Supp(\eta)$
- therefore, multiple IVs can be helpful (makes sense given how much we give up by dropping rank similarity)

Condition 1.1:

For arbitrary
$$A$$
 and \tilde{A} ,
$$\Longrightarrow F_{Y_0|\eta\in A} \leq F_{Y_1|\eta\in \tilde{A}}$$

$$\Longrightarrow F_{Y_0|\eta\in A} \leq F_{Y_0|\eta\in \tilde{A}}$$

Condition 1.1 yields bounds for $QTE_{\tau}(1)$

Condition 1.1:

For arbitrary
$$A$$
 and \tilde{A} ,
$$\Longrightarrow F_{Y_0|\eta\in A} \leq F_{Y_1|\eta\in \tilde{A}}$$

$$F_{Y_0|\eta\in A} \leq F_{Y_0|\eta\in \tilde{A}}$$

Condition 1.1 yields bounds for $QTE_{\tau}(1)$

Condition 1.0 (with " \Leftarrow ") yields bounds for $QTE_{\tau}(0)$

Condition 1.1:

For arbitrary
$$A$$
 and \tilde{A} ,
$$\Longrightarrow F_{Y_0|\eta\in A} \leq F_{Y_1|\eta\in \tilde{A}}$$

$$\Longrightarrow F_{Y_0|\eta\in A} \leq F_{Y_0|\eta\in \tilde{A}}$$

Condition 1.1 yields bounds for $QTE_{\tau}(1)$

Condition 1.0 (with " \Leftarrow ") yields bounds for $QTE_{\tau}(0)$

We provide models that...

- rationalize these conditions
- justify the assumption-driven parameters of interest for a policymaker concerning "conservative" populations

Condition 1.1:

For arbitrary
$$A$$
 and \tilde{A} ,
$$\Longrightarrow F_{Y_{0}|\eta\in A} \leq F_{Y_{1}|\eta\in \tilde{A}}$$

$$\Longrightarrow F_{Y_{0}|\eta\in A} \leq F_{Y_{0}|\eta\in \tilde{A}}$$

Condition 1.1 yields bounds for $QTE_{\tau}(1)$

Condition 1.0 (with " \Leftarrow ") yields bounds for $QTE_{\tau}(0)$

We provide models that...

- rationalize these conditions
- justify the assumption-driven parameters of interest for a policymaker concerning "conservative" populations

Condition 2 (with " \iff ") yields bounds for QTE_{τ}

Previous Related Approaches

IV quantile models (with rank similarity):

Chernozhukov & Hansen 05, Vuong & Xu 17

Triangular models (in the sense of explicit first stage):

- ► Control function approach with continuous *D*: Chesher 03, Lee 07, Imbens & Newey 09
- Threshold crossing first stage with binary D:
 - ATE (rank similarity): Shaikh & Vytlacil 11, Vytlacil & Yildiz 07
 - ▶ MTE: Heckman & Vytlacil 05, Mogstad et al. 08, Han & Yang 22

Local QTE with binary *D*:

▶ Abadie, Angrist & Imbens 02 (local parameter, strong homogeneity with multiple IVs (Mogstad et al. 21))

Generalized IV:

Chesher & Rosen 17 (sharp bounds with IVs)

This Paper

This paper...

- relaxes rank similarity (without completely abandoning it) and
- constructs informative bounds on QTE and ATE for the treated or untreated
- for binary endogenous treatment
- using discrete IVs,
- bounds that are simple to calculate

Condition 1.1 differs from other assumptions on the relationship between Y_1 and Y_0

• e.g., stochastic increasing for distributional treatment effects (with experimental data) (Frandsen & Lefgren 21)

I. Key Conditions and Bounds on Treatment Effects

Maintained Assumptions

D: observed treatment indicator (endogenous)

 Y_1 : counterfactual outcome of being treated

 Y_0 : counterfactual outcome of not being treated

$$Y = DY_1 + (1 - D)Y_0$$

 $Z\colon$ vector of binary IVs or a multi-valued IV, taking values $\{z_1,...,z_L\}$

Suppress X for simplicity; easy to incorporate (in the paper)

Assume $D = h(Z, \eta)$ where $\eta \in \mathcal{T}$ has arbitrary dimensions

Define counterfactual treatment $D_z = h(z, \eta)$

Assumption Z

For $d \in \{0,1\}$ and $z \in \{z_1,...,z_L\}$, (i) $Y_{d,z} = Y_d$; (ii) $Z \perp (Y_d, D_z)$.

Condition 1.1

For arbitrary weight functions $w: \mathcal{T} \to \mathbb{R}_+$ and $\tilde{w}: \mathcal{T} \to \mathbb{R}_+$ s.t. $\int w(t)dt = \int \tilde{w}(t)dt = 1,$ $\int w(t)F_{Y_1|\eta}(\cdot|t)dt \leq \int \tilde{w}(t)F_{Y_1|\eta}(\cdot|t)dt$ \Longrightarrow $\int w(t)F_{Y_0|\eta}(\cdot|t)dt \leq \int \tilde{w}(t)F_{Y_0|\eta}(\cdot|t)dt.$

$$\int w(t)F_{Y_d|n}(\cdot|t)dt$$
 is mixture of CDFs, and thus itself a CDF

Meaning: FOSD btw Y_1 's conditional on two different compliance types is preserved with Y_0 's conditional on the same types

Condition 1.1 implies the following:

Condition 1.1*

For arbitrary nonnegative weight vectors $(w_1,...,w_L)$ and $(\tilde{w}_1,...,\tilde{w}_L)$ s.t. $\sum_{\ell=1}^L w_\ell = \sum_{\ell=1}^L \tilde{w}_\ell = 1$,

$$\sum_{\ell=1}^{L} w_{\ell} P[Y_{1} \leq \cdot | D = 1, Z = z_{\ell}] \leq \sum_{\ell=1}^{L} \tilde{w}_{\ell} P[Y_{1} \leq \cdot | D = 1, Z = z_{\ell}]$$

$$\Longrightarrow$$

$$\sum_{\ell=1}^{L} w_{\ell} P[Y_{0} \leq \cdot | D = 1, Z = z_{\ell}] \leq \sum_{\ell=1}^{L} \tilde{w}_{\ell} P[Y_{0} \leq \cdot | D = 1, Z = z_{\ell}].$$

Under Assumption Z, Condition 1.1' is equivalent to:

Condition 1.1*

For arbitrary positive weight vectors $(w_1,...,w_L)$ and $(\tilde{w}_1,...,\tilde{w}_L)$ s.t. $\sum_{\ell=1}^L w_\ell = \sum_{\ell=1}^L \tilde{w}_\ell = 1$,

$$\sum_{\ell=1}^{L} w_{\ell} P[\underline{Y_1} \leq \cdot | D_{z_{\ell}} = 1] \leq \sum_{\ell=1}^{L} \tilde{w}_{\ell} P[\underline{Y_1} \leq \cdot | D_{z_{\ell}} = 1]$$

$$\Longrightarrow$$

$$\sum_{\ell=1}^L w_\ell P[\mathbf{Y_0} \leq \cdot | D_{z_\ell} = 1] \leq \sum_{\ell=1}^L \tilde{w}_\ell P[\mathbf{Y_0} \leq \cdot | D_{z_\ell} = 1].$$

Under Assumption Z, Condition 1.1 is equivalent to:

Condition 1.1*

For arbitrary positive weight vectors $(w_1,...,w_L)$ and $(\tilde{w}_1,...,\tilde{w}_L)$ s.t. $\sum_{\ell=1}^L w_\ell = \sum_{\ell=1}^L \tilde{w}_\ell = 1$,

$$\sum_{\ell=1}^{L} w_{\ell} P[Y_{1} \leq \cdot | D_{z_{\ell}} = 1] \leq \sum_{\ell=1}^{L} \tilde{w}_{\ell} P[Y_{1} \leq \cdot | D_{z_{\ell}} = 1]$$

$$\Longrightarrow$$

$$\sum_{\ell=1}^L w_\ell P[\mathbf{Y_0} \leq \cdot | D_{z_\ell} = 1] \leq \sum_{\ell=1}^L \tilde{w}_\ell P[\mathbf{Y_0} \leq \cdot | D_{z_\ell} = 1].$$

 $\{D_{z_{\ell}}=1\}$ (for $z_1,...,z_L$) captures different compliance types

▶ e.g., when L = 2 with LATE monotonicity, then between always-takers and compliers

Lemma 0

Under Assumption Z, Condition 1.1 implies Condition 1.1*.

Let
$$p(z) \equiv P[D=1|Z=z]$$
, then $p(z) = P[\eta \in H(z)]$ with $H(z) \equiv \{\eta : 1 = h(z,\eta)\}$

Then, for example,

$$\begin{split} &\sum_{\ell} w_{\ell} P[Y_1 \leq \cdot | D = 1, Z = z_{\ell}] \\ &= \sum_{\ell} w_{\ell} P[Y_1 \leq \cdot | \eta \in H(z_{\ell})] \\ &= \int \frac{\sum_{\ell} w_{\ell} 1[t \in H(z)]}{p(z_{\ell})} P[Y_1 \leq \cdot | \eta = t] dt \end{split}$$

Take
$$w(t) = \frac{\sum_{\ell} w_{\ell} \mathbb{1}[t \in H(z_{\ell})]}{p(z_{\ell})}$$
, which satisfies $\int w(t) dt = 1$

Bounds on $F_{Y_0|D=1}(\cdot)$

Recall
$$p(z_\ell) \equiv P[D=1|Z=z_\ell]$$

Let
$$\Gamma_p = \{(\gamma_1, ..., \gamma_L) \in \mathbb{R}^L : \sum_{\ell=1}^L \gamma_\ell = 0 \text{ and } \sum_{\ell=1}^L p(z_\ell) \gamma_\ell = 1\}$$

Theorem 1

Suppose Assumption Z and Condition 1.1* hold. For $\gamma = (\gamma_1, ..., \gamma_L) \in \Gamma_p$, suppose

$$P[Y \le \cdot | D = 1] \le \sum_{\ell=1}^{L} \gamma_{\ell} P[Y \le \cdot, D = 1 | Z = z_{\ell}]$$
 (1)

Then $F_{Y_0|D=1}(\cdot)$ is upper bounded by

$$P[Y_0 \le \cdot | D = 1] \le -\sum_{\ell=1}^{L} \gamma_{\ell} P[Y \le \cdot, D = 0 | Z = z_{\ell}]$$

Analogous theorem for lower bound

Let
$$q(z_\ell) \equiv P[Z = z_\ell | D = 1]$$

WLOG, let $\gamma_\ell \leq 0$ for $\ell \leq \ell^*$ and $\gamma_\ell > 0$ for $\ell > \ell^*$

Then (1) can be rewritten as

$$\sum_{\ell=1}^{\ell^*} \frac{q(z_\ell)}{a} P[Y_1 \le y | D = 1, Z = z_\ell]$$

$$+ \sum_{\ell=\ell^*+1}^{L} \frac{q(z_\ell)}{a} P[Y_1 \le y | D = 1, Z = z_\ell]$$

$$\le \sum_{\ell=\ell^*}^{L} \frac{p(z_\ell) \gamma_\ell}{a} P[Y_1 \le y | D = 1, Z = z_\ell]$$

where
$$a \equiv 1 - \sum_{\ell=1}^{\ell^*} p(z_\ell) \gamma_\ell$$

Let
$$q(z_\ell) \equiv P[Z = z_\ell | D = 1]$$

WLOG, let $\gamma_\ell \leq 0$ for $\ell \leq \ell^*$ and $\gamma_\ell > 0$ for $\ell > \ell^*$

Then (1) can be rewritten as

$$\sum_{\ell=1}^{\ell^*} \frac{q(z_{\ell}) - p(z_{\ell})\gamma_{\ell}}{a} P[Y_1 \le y | D = 1, Z = z_{\ell}]$$

$$+ \sum_{\ell=\ell^*+1}^{L} \frac{q(z_{\ell})}{a} P[Y_1 \le y | D = 1, Z = z_{\ell}]$$

$$\le \sum_{\ell=\ell^*+1}^{L} \frac{p(z_{\ell})\gamma_{\ell}}{a} P[Y_1 \le y | D = 1, Z = z_{\ell}]$$

where $a\equiv 1-\sum_{\ell=1}^{\ell^*}p(z_\ell)\gamma_\ell$ and the positive weights sum to 1

Therefore, by Condition 1.1*,

$$\sum_{\ell=1}^{\ell^*} \frac{q(z_{\ell}) - p(z_{\ell})\gamma_{\ell}}{a} P[Y_0 \le y | D = 1, Z = z_{\ell}]$$

$$+ \sum_{\ell=\ell^*+1}^{L} \frac{q(z_{\ell})}{a} P[Y_0 \le y | D = 1, Z = z_{\ell}]$$

$$\le \sum_{\ell=\ell^*+1}^{L} \frac{p(z_{\ell})\gamma_{\ell}}{a} P[Y_0 \le y | D = 1, Z = z_{\ell}]$$

Equivalently, we have

$$P[Y_{0} \leq y | D = 1]$$

$$\leq \sum_{\ell=1}^{L} \gamma_{\ell} P[Y_{0} \leq y, D = 1 | Z = z_{\ell}]$$

$$= \sum_{\ell=1}^{L} \gamma_{\ell} [P[Y_{0} \leq y | Z = z_{\ell}] - P[Y_{0} \leq y, D = 0 | Z = z_{\ell}]]$$

$$= P[Y_{0} \leq y] \sum_{\ell=1}^{L} \gamma_{\ell} - \sum_{\ell=1}^{L} \gamma_{\ell} P[Y \leq y, D = 0 | Z = z_{\ell}]$$

$$= -\sum_{\ell=1}^{L} \gamma_{\ell} P[Y \leq y, D = 0 | Z = z_{\ell}]$$

Bounds on $F_{Y_0|D=1}(\cdot)$

Finally, want to collect all γ that satisfy (1):

Corollary 1

Suppose Assumption Z and Condition 1.1* hold. Then,

$$F_{Y_0|D=1}^{UB}(y) = \min_{\gamma \in \Gamma_p:(1) \text{ holds}} - \sum_{\ell=1}^{L} \gamma_{\ell} P[Y \le y, D = 0 | Z = z_{\ell}]$$

Symmetric condition and bound can be derived for $F_{Y_0|D=1}^{LB}(\cdot)$

Then,

$$F_{Y_0|D=1}^{LB}(\cdot) \leq F_{Y_0|D=1}(\cdot) \leq F_{Y_0|D=1}^{UB}(\cdot)$$

Bounds on $QTE_{\tau}(1)$

Note that

$$QTE_{\tau}(1) = Q_{Y_1|D=1}(\tau) - Q_{Y_0|D=1}(\tau) = Q_{Y|D=1}(\tau) - Q_{Y_0|D=1}(\tau)$$

Worst case bounds for quantile (Manski 94, Blundell et al. 07):

$$Q_{Y_0|D=1}^{LB}(\tau) \leq Q_{Y_0|D=1}(\tau) \leq Q_{Y_0|D=1}^{UB}(\tau)$$

with
$$Q_{Y_0|D=1}^{LB}(\tau) = F_{Y_0|D=1}^{UB}(\tau)^{-1}$$
 and $Q_{Y_0|D=1}^{UB}(\tau) = F_{Y_0|D=1}^{LB}(\tau)^{-1}$

More on Theorem 1

Need to find $\gamma \in \Gamma_p$ that satisfies

$$P[Y \le \cdot | D = 1] \le \sum_{\ell=1}^{L} \gamma_{\ell} P[Y \le \cdot, D = 1 | Z = z_{\ell}]$$
 (1)

• equiv. to finding (w, \tilde{w}) that satisfy "if" part of Condition 1.1*:

$$\sum_{\ell=1}^{L} w_{\ell} P[Y_{1} \leq \cdot | D = 1, Z = z_{\ell}] \leq \sum_{\ell=1}^{L} \tilde{w}_{\ell} P[Y_{1} \leq \cdot | D = 1, Z = z_{\ell}]$$

More on Theorem 1

Need to find $\gamma \in \Gamma_p$ that satisfies

$$P[Y \le \cdot | D = 1] \le \sum_{\ell=1}^{L} \gamma_{\ell} P[Y \le \cdot, D = 1 | Z = z_{\ell}]$$
 (1)

• equiv. to finding (w, \tilde{w}) that satisfy "if" part of Condition 1.1*:

$$\sum_{\ell=1}^L \mathbf{w}_\ell P[\mathbf{Y_1} \leq \cdot | D=1, Z=z_\ell] \leq \sum_{\ell=1}^L \tilde{\mathbf{w}}_\ell P[\mathbf{Y_1} \leq \cdot | D=1, Z=z_\ell]$$

When L=2 then $\gamma=\left(\frac{1}{p(z_1)-p(z_2)},-\frac{1}{p(z_1)-p(z_2)}\right)$, and under LATE monotonicity, (1) is equiv. to

$$Y_1|\{\text{always-takers}\} \prec_{FOSD} Y_1|\{\text{compliers}\}$$

Why Multi-Valued IVs

$$\{\gamma \in \Gamma_p : \gamma \text{ satisfies (1)}\}$$

The size of this set determines the width of our bound

- ▶ a larger set ⇒ narrower bounds
- ▶ more values Z takes \Rightarrow ...
 - greater degree of freedom in Γ_p and
 - (1) is more likely to hold

Why Multi-Valued IVs

$$\{\gamma \in \Gamma_p : \gamma \text{ satisfies (1)}\}$$

The size of this set determines the width of our bound

- ▶ a larger set ⇒ narrower bounds
- ▶ more values Z takes \Rightarrow ...
 - greater degree of freedom in Γ_p and
 - (1) is more likely to hold

Multi-valued IV or multiple IVs are common in practice

e.g., "continuous" IV, double eligibility in RCT

Why Multi-Valued IVs

$$\{\gamma \in \Gamma_p : \gamma \text{ satisfies (1)}\}$$

The size of this set determines the width of our bound

- ▶ a larger set ⇒ narrower bounds
- ightharpoonup more values Z takes $\Rightarrow ...$
 - greater degree of freedom in Γ_p and
 - (1) is more likely to hold

Multi-valued IV or multiple IVs are common in practice

e.g., "continuous" IV, double eligibility in RCT

Then (1) establishes FOSD btw the mixtures of F_{Y_1} conditional on various always-takers and compliers groups

Bounds on $QTE_{\tau}(0)$ and QTE_{τ}

Condition 1.0

For arbitrary weight functions $w: \mathcal{T} \to \mathbb{R}_+$ and $\tilde{w}: \mathcal{T} \to \mathbb{R}_+$ s.t. $\int w(t)dt = \int \tilde{w}(t)dt = 1$,

$$\int w(x)F_{\mathbf{Y_1}|\eta}(\cdot|t)dt \leq \int \tilde{w}(t)F_{\mathbf{Y_1}|\eta}(\cdot|t)dt$$

$$\iff$$

$$\int w(t)F_{\mathbf{Y_0}|\eta}(\cdot|t)dt \leq \int \tilde{w}(t)F_{\mathbf{Y_0}|\eta}(\cdot|t)dt.$$

With Condition 1.0 (" \Leftarrow "), we can derive bounds on $QTE_{\tau}(0)$

Bounds on $QTE_{\tau}(0)$ and QTE_{τ}

Condition 1.0

For arbitrary weight functions $w: \mathcal{T} \to \mathbb{R}_+$ and $\tilde{w}: \mathcal{T} \to \mathbb{R}_+$ s.t. $\int w(t)dt = \int \tilde{w}(t)dt = 1$,

$$\int w(x)F_{\mathbf{Y_1}|\eta}(\cdot|t)dt \leq \int \tilde{w}(t)F_{\mathbf{Y_1}|\eta}(\cdot|t)dt$$

$$\iff$$

$$\int w(t)F_{\mathbf{Y_0}|\eta}(\cdot|t)dt \leq \int \tilde{w}(t)F_{\mathbf{Y_0}|\eta}(\cdot|t)dt.$$

With Condition 1.0 (" \Leftarrow "), we can derive bounds on $QTE_{\tau}(0)$

With Condition 2 (" \iff "), we can derive bounds on QTE_{τ}

Bounds on $QTE_{\tau}(0)$ and QTE_{τ}

Condition 1.0

For arbitrary weight functions $w: \mathcal{T} \to \mathbb{R}_+$ and $\tilde{w}: \mathcal{T} \to \mathbb{R}_+$ s.t. $\int w(t)dt = \int \tilde{w}(t)dt = 1$,

$$\int w(x)F_{\mathbf{Y_1}|\eta}(\cdot|t)dt \leq \int \tilde{w}(t)F_{\mathbf{Y_1}|\eta}(\cdot|t)dt$$

$$\iff$$

$$\int w(t)F_{\mathbf{Y_0}|\eta}(\cdot|t)dt \leq \int \tilde{w}(t)F_{\mathbf{Y_0}|\eta}(\cdot|t)dt.$$

With Condition 1.0 (" \Leftarrow "), we can derive bounds on $QTE_{\tau}(0)$

With Condition 2 (" \iff "), we can derive bounds on QTE_{τ}

We also provide a condition for bounds on ATE(d) and ATE (in the paper)

II. Structural Models and Policymaker's Problems

Sufficient Conditions: A Structural Model

To further interpret Conditions 1.1 (and 1.0), we propose a model that rationalizes it

Suppress "conditional on Z" throughout

Model 1

$$Y_d = q(d, U_d)$$
 for $d \in \{0, 1\}$

- (i) $q(d,\cdot)$ is continuous and monotone increasing
- (ii) conditional on η , $U_d \stackrel{d}{=} U + \xi_d$ where $\xi_d \perp (\eta, U)$
- (iii) ξ_0 is (weakly) more noisy than ξ_1 , i.e., $\xi_0 \stackrel{d}{=} \xi_1 + V$ for some V independent of ξ_1

i.e.,
$$U_0 \stackrel{d}{=} U_1 + V$$

Sufficient Conditions: A Structural Model

To further interpret Conditions 1.1 (and 1.0), we propose a model that rationalizes it

Suppress "conditional on Z" throughout

Model 1

$$Y_d = q(d, U_d)$$
 for $d \in \{0, 1\}$

- (i) $q(d,\cdot)$ is continuous and monotone increasing
- (ii) conditional on η , $U_d \stackrel{d}{=} U + \xi_d$ where $\xi_d \perp (\eta, U)$
- (iii) ξ_0 is (weakly) more noisy than ξ_1 , i.e., $\xi_0 \stackrel{d}{=} \xi_1 + V$ for some V independent of ξ_1

i.e.,
$$U_0 \stackrel{d}{=} U_1 + V$$

This model nests that in Chernozhukov and Hansen (2005)

▶ by taking $\xi_d=0$ for all d, $U_0\stackrel{d}{=}U_1\stackrel{d}{=}U$ conditional on η

Sufficient Conditions: A Structural Model

Condition 1.1

For arbitrary weight functions $w: \mathcal{T} \to \mathbb{R}_+$ and $\tilde{w}: \mathcal{T} \to \mathbb{R}_+$ s.t. $\int w(t)dt = \int \tilde{w}(t)dt = 1$,

$$\int w(x)F_{\mathbf{Y_1}|\eta}(\cdot|t)dt \leq \int \tilde{w}(t)F_{\mathbf{Y_1}|\eta}(\cdot|t)dt$$

$$\Longrightarrow$$

$$\int w(t)F_{\mathbf{Y_0}|\eta}(\cdot|t)dt \leq \int \tilde{w}(t)F_{\mathbf{Y_0}|\eta}(\cdot|t)dt.$$

Lemma 1

Model 1 implies Condition 1.1

Model 1 with ξ_0 being *less* noisy than ξ_1 implies Condition 1.0

Example 1: Auction

Y: bid (which subsequently forms revenue)

D: participating in auction with different format

▶ D = 1 if online vs. = 0 if offline

 $U_d \stackrel{d}{=} U + \xi_d$: valuation of the item

- ▶ U: common valuation (correlated with D)
- ξ_d : format specific random shocks, $\xi_d \perp (\eta, U)$
 - bidders may have limited info on certain features of auction that affect valuation
 - ightharpoonup e.g., they know the distribution of ξ_d but not its realization

Example 1: Auction

Y: bid (which subsequently forms revenue)

D: participating in auction with different format

▶ D = 1 if online vs. = 0 if offline

$$U_d \stackrel{d}{=} U + \xi_d$$
: valuation of the item

- ▶ U: common valuation (correlated with D)
- ξ_d : format specific random shocks, $\xi_d \perp (\eta, U)$
 - bidders may have limited info on certain features of auction that affect valuation
 - lacktriangle e.g., they know the distribution of ξ_d but not its realization

What justifies $var(\xi_0) > var(\xi_1)$?

▶ in offline auction, bidders may be more emotionally affected by others, which makes their bids more variable

Example 2: Insurance

Y: health outcome

D: getting insurance

▶ D = 1 if insured, = 0 if not

 $U_d \stackrel{d}{=} U + \xi_d$: health conditions

- U: health conditions known to participant (and thus correlated with D)
- ξ_d : health conditions not fully known a priori

 $var(\xi_0) > var(\xi_1)$: insurance by definition may ensure a certain level of health conditions

Example 3.1: Vaccination

Y : health outcome

D: getting vaccination (of established vaccine)

▶ D = 1 if vaccinated, = 0 if not

 $U_d \stackrel{d}{=} U + \xi_d$: underlying health conditions

- U: health conditions known to participant (and thus correlated with D)
- \blacktriangleright ξ_d : vaccination status specific health conditions, which is not fully known a priori

 $var(\xi_0) > var(\xi_1)$: when not vaccinated, there is risk of dying, while vaccination ensures certain level of immunity

Example 3.1: Vaccination

Y : health outcome

D: getting vaccination (of established vaccine)

▶ D = 1 if vaccinated, = 0 if not

 $U_d \stackrel{d}{=} U + \xi_d$: underlying health conditions

- U: health conditions known to participant (and thus correlated with D)
- \blacktriangleright ξ_d : vaccination status specific health conditions, which is not fully known a priori

 $var(\xi_0) > var(\xi_1)$: when not vaccinated, there is risk of dying, while vaccination ensures certain level of immunity

This scenario justifies Condition $1.1 \Rightarrow$ bounds on $QTE_{\tau}(1)$

Example 3.0: Frontier Medical Trial

A contrasting example would be risky medical trial

Y: health outcome

D: participating in medical trial

▶ D = 1 if participate, = 0 if not

 $U_d \stackrel{d}{=} U + \xi_d$: underlying health conditions

- U: health conditions known to participant (and thus correlated with D)
- ξ_d : health conditions not fully known a priori

 $var(\xi_0) < var(\xi_1)$: with newly developed medicine, there is high risk of unknown side effects

Example 3.0: Frontier Medical Trial

A contrasting example would be risky medical trial

Y: health outcome

D: participating in medical trial

▶ D = 1 if participate, = 0 if not

 $U_d \stackrel{d}{=} U + \xi_d$: underlying health conditions

- U: health conditions known to participant (and thus correlated with D)
- ξ_d : health conditions not fully known a priori

 $var(\xi_0) < var(\xi_1)$: with newly developed medicine, there is high risk of unknown side effects

This scenario justifies Condition $1.0 \Rightarrow$ bounds on $QTE_{\tau}(0)$

Policymaker's Problem

Assumption: The policymaker concerns risk averse individuals, which are the majority

Under this assumption, the policymaker wants to understand treatment effects for the target individuals in order to provide "insurance"

▶ literally insurance or policy that serves as insurance (e.g., vaccination, subsidies)

Our procedure provides a statistical tool for such a policymaker

Policymaker's Problem

Under Model 1, our procedure has the ability to bound treatment effect for individuals with D = d such that $var(\xi_d) < var(\xi_{1-d})$

This is a unique feature of our setting:

- the plausibility of assumptions dictates the parameter of interest
- ▶ i.e., "assumption-driven" treatment parameters

Sufficient Condition: Model 1 with Rank Similarity

Condition 2

For arbitrary weight functions $w:\mathcal{T}\to\mathbb{R}_+$ and $\tilde{w}:\mathcal{T}\to\mathbb{R}_+$ s.t. $\int w(t)dt=\int \tilde{w}(t)dt=1$,

$$\int w(x)F_{\mathbf{Y_1}|\eta}(\cdot|t)dt \leq \int \tilde{w}(t)F_{\mathbf{Y_1}|\eta}(\cdot|t)dt$$

$$\iff$$

$$\int w(t)F_{\mathbf{Y_0}|\eta}(\cdot|t)dt \leq \int \tilde{w}(t)F_{\mathbf{Y_0}|\eta}(\cdot|t)dt.$$

Lemma 2

Model 1 with $F_{U_0|n} = F_{U_1|n}$ (rank similarity) implies Condition 2.

Lemma 2

Model 1 with $F_{U_0|\eta} = F_{U_1|\eta}$ (rank similarity) implies Condition 2.

Converse is not true!

Counter-example of the converse:

Rank Linearity

 $Y_d = q(d, U_d)$ (monotonic $q(d, \cdot)$) with

$$F_{\mathbf{Y_0}|\eta}(\cdot|t) = \lambda(\cdot)F_{\mathbf{Y_1}|\eta}(\psi(\cdot)|t)$$

where $\psi(\cdot)$ is one-to-one and onto mapping and $\lambda(\cdot)$ is consistent with $F_{Y_d|\eta}$ being a proper CDF

Rank linearity implies Condition 2 but is weaker than rank similarity

Rank Linearity

 $Y_d = q(d, U_d)$ (monotonic $q(d, \cdot)$) with

$$F_{\mathbf{Y_0}|\eta}(\cdot|t) = \lambda(\cdot)F_{\mathbf{Y_1}|\eta}(\psi(\cdot)|t)$$

where $\psi(\cdot)$ is one-to-one and onto mapping and $\lambda(\cdot)$ is consistent with $F_{Y_d|n}$ being a proper CDF

Rank linearity implies Condition 2 but is weaker than rank similarity:

$$F_{U_0|\eta}(q^{-1}(0,y)|t) = \lambda(y)F_{U_1|\eta}(q^{-1}(1,\psi(y))|t)$$

and by choosing $\lambda(y) = 1$ and $\psi(y) = q(1, q^{-1}(0, y))$, we have

$$F_{U_0|\eta}(\cdot|t) = F_{U_1|\eta}(\cdot|t)$$

Rank Linearity

 $Y_d = q(d, U_d)$ (monotonic $q(d, \cdot)$) with

$$F_{\mathbf{Y_0}|\eta}(\cdot|t) = \lambda(\cdot)F_{\mathbf{Y_1}|\eta}(\psi(\cdot)|t)$$

where $\psi(\cdot)$ is one-to-one and onto mapping and $\lambda(\cdot)$ is consistent with $F_{Y_d|n}$ being a proper CDF

Rank linearity implies Condition 2 but is weaker than rank similarity:

$$F_{U_0|\eta}(q^{-1}(0,y)|t) = \lambda(y)F_{U_1|\eta}(q^{-1}(1,\psi(y))|t)$$

and by choosing $\lambda(y) = 1$ and $\psi(y) = q(1, q^{-1}(0, y))$, we have

$$F_{U_0|\eta}(\cdot|t) = F_{U_1|\eta}(\cdot|t)$$

In fact, rank linearity may be equivalent to Condition 2

Suppose
$$Y_d \in \left\{y_{d,1}, \cdots, y_{d,k_d}\right\}$$
 and $\eta \in \left\{t_1, \cdots, t_{k_\eta}\right\}$

Lemma 3

For any \tilde{F}_d on $\{y_{d,1}, \cdots, y_{d,k_d}\}$, suppose there always exists a nonnegative sequence $\{c_{d,1}, \cdots, c_{d,k_\eta}\}$ s.t.

$$\tilde{F}_d(\cdot) = \sum_{j=1}^{k_\eta} c_{d,j} F_{Y_d|\eta}(\cdot|t_j). \tag{2}$$

Then, Condition 2 holds if and only if (i) $k_0 = k_1$ and (ii) for some one-to-one and onto mapping $\psi(\cdot)$ and $\lambda(\cdot) > 0$,

$$F_{\mathbf{Y_0}|\eta}(\cdot|t_j) = \lambda(\cdot)F_{\mathbf{Y_1}|\eta}(\psi(\cdot)|t_j), \qquad \text{for } j = 1, \cdots, k_{\eta}.$$

Suppose
$$Y_d \in \{y_{d,1}, \cdots, y_{d,k_d}\}$$
 and $\eta \in \{t_1, \cdots, t_{k_\eta}\}$

Lemma 3

For any \tilde{F}_d on $\{y_{d,1},\cdots,y_{d,k_d}\}$, suppose there always exists a nonnegative sequence $\{c_{d,1},\cdots,c_{d,k_n}\}$ s.t.

$$\tilde{F}_d(\cdot) = \sum_{j=1}^{k_\eta} c_{d,j} F_{Y_d|\eta}(\cdot|t_j). \tag{2}$$

Then, Condition 2 holds if and only if (i) $k_0 = k_1$ and (ii) for some one-to-one and onto mapping $\psi(\cdot)$ and $\lambda(\cdot) > 0$,

$$F_{\mathbf{Y_0}|\eta}(\cdot|t_j) = \lambda(\cdot)F_{\mathbf{Y_1}|\eta}(\psi(\cdot)|t_j), \quad \text{for } j = 1, \dots, k_{\eta}.$$

We conjecture an analogous result with continuous Y_d and η (in progress)

We only prove necessity

Recall Condition 2:

$$\sum_{j=1}^{k_{\eta}} w_{j} F_{\mathbf{Y_{1}}|\eta}(\cdot|t_{j}) \leq \sum_{j=1}^{k_{\eta}} \tilde{w}_{j} F_{\mathbf{Y_{1}}|\eta}(\cdot|t_{j})$$

$$\iff$$

$$\sum_{j=1}^{k_{\eta}} w_{j} F_{\mathbf{Y_{0}}|\eta}(\cdot|t_{j}) \leq \sum_{j=1}^{k_{\eta}} \tilde{w}_{j} F_{\mathbf{Y_{0}}|\eta}(\cdot|t_{j})$$

We only prove necessity

Recall Condition 2:

$$\sum_{j=1}^{k_{\eta}} \delta_{j} F_{Y_{1}|\eta}(\cdot|t_{j}) \leq 0$$
 \iff
 $\sum_{j=1}^{k_{\eta}} \delta_{j} F_{Y_{0}|\eta}(\cdot|t_{j}) \leq 0$

We only prove necessity

Recall Condition 2:

$$\sum_{j=1}^{k_{\eta}} \delta_{j} F_{\mathbf{Y_{1}}|\eta}(\cdot|t_{j}) \leq 0$$
 \iff
 $\sum_{j=1}^{k_{\eta}} \delta_{j} F_{\mathbf{Y_{0}}|\eta}(\cdot|t_{j}) \leq 0$

Define cone:

$$\Delta_d \equiv \{\delta \in \mathbb{R}^{k_\eta} : \sum_{i=1}^{k_\eta} \delta_j F_{Y_d|\eta}(\cdot|t_j) \leq 0, \sum_{i=1}^{k_\eta} \delta_j = 0\}$$

Then, by Condition 2, $\Delta_1 = \Delta_0$

Define polar cone:

$$\Delta_d^* \equiv \{ F_d \in \mathbb{R}^{k_\eta} | F_d' \delta \le 0, \ \forall \delta \in \Delta_d \}$$

 Δ_d^* is a convex cone whose extreme ray is generated by

$$\left\{ \left(F_{Y_d|\eta}(y|t_1), \cdots, F_{Y_d|\eta}(y|t_{k_{\eta}}) \right)' : y = y_{d,1}, \cdots, y_{d,k_d} \right\}$$

as they are linearly indep. by (2)

Define polar cone:

$$\Delta_d^* \equiv \{ F_d \in \mathbb{R}^{k_\eta} | F_d' \delta \le 0, \ \forall \delta \in \Delta_d \}$$

 Δ_d^* is a convex cone whose extreme ray is generated by

$$\left\{ \left(F_{Y_d|\eta}(y|t_1), \cdots, F_{Y_d|\eta}(y|t_{k_{\eta}}) \right)' : y = y_{d,1}, \cdots, y_{d,k_d} \right\}$$

as they are linearly indep. by (2)

Note $\Delta_1=\Delta_0$ implies $\Delta_1^*=\Delta_0^*$, and therefore $\mathit{k}_1=\mathit{k}_0$

Define polar cone:

$$\Delta_d^* \equiv \{ F_d \in \mathbb{R}^{k_\eta} | F_d' \delta \le 0, \ \forall \delta \in \Delta_d \}$$

 Δ_d^* is a convex cone whose extreme ray is generated by

$$\left\{\left(F_{Y_d|\eta}(y|t_1),\cdots,F_{Y_d|\eta}(y|t_{k_\eta})\right)':y=y_{d,1},\cdots,y_{d,k_d}\right\}$$

as they are linearly indep. by (2)

Note $\Delta_1=\Delta_0$ implies $\Delta_1^*=\Delta_0^*$, and therefore $k_1=k_0$

Moreover, any extreme ray in Δ_0^* must be identical to some extreme ray in Δ_1^* : For any y

$$\left(F_{\mathbf{Y_0}|\eta}(y|t_1), \cdots, F_{\mathbf{Y_0}|\eta}(y|t_{k_\eta})\right) = \lambda \times \left(F_{\mathbf{Y_1}|\eta}(y'|t_1), \cdots, F_{\mathbf{Y_1}|\eta}(y'|t_{k_\eta})\right)$$

for some $\lambda > 0$ and y'

Summary

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● りゅ○

Summary

III. Systematic Calculation of Bounds

Computation of Bounds

Recall, the upper bound on $F_{Y_0|D=1}(\cdot)$ is

$$F_{Y_0|D=1}^{UB}(\cdot) = \min_{\gamma \in \Gamma_p: (1) \text{ holds}} - \sum_{\ell=1}^L \gamma_\ell P[Y \leq \cdot, D = 0 | Z = z_\ell]$$

where

$$P[Y \le \cdot | D = 1] \le \sum_{\ell=1}^{L} \gamma_{\ell} P[Y \le \cdot, D = 1 | Z = z_{\ell}]$$
 (1)

and
$$\Gamma_p = \{(\gamma_1, ..., \gamma_L) \in \mathbb{R}^L : \sum_{\ell=1}^L \gamma_\ell = 0 \text{ and } \sum_{\ell=1}^L p(z_\ell) \gamma_\ell = 1\}$$

Computation of Bounds: Semi-Infinite Program

Simplifying notation:

$$p_{y,d|z} \equiv \{P[Y \le y, D = d|Z = z_{\ell}]\}_{\ell=1}^{L}$$

 $p_{y|1} \equiv P[Y \le y|D = 1]$

Consider the following semi-infinite program:

$$F_{Y_0|D=1}^{UB}(\bar{y}) = \min_{\gamma \in \Gamma_p} -p'_{\bar{y},0|z} \gamma$$

$$s.t. \quad p_{y|1} - p'_{y,1|z} \gamma \le 0, \quad \forall y \in \mathcal{Y}$$

$$(1)$$

- feasible as long as \exists such γ
- ▶ i.e., (1) is testable from data
- ▶ if *Y* is discrete, then we already have linear program (but not in general)

Computation of Bounds: Linear Program I

The semi-infinite program:

$$\begin{aligned} F_{Y_0|D=1}^{UB}(\bar{y}) &= \min_{\gamma \in \Gamma_p} - p_{\bar{y},0|z}' \gamma \\ s.t. \quad p_{y|1} - p_{y,1|z}' \gamma &\leq 0, \quad \forall y \in \mathcal{Y} \end{aligned}$$

In practice, with i.i.d. $\{Y_i, D_i, Z_i\}_{i=1}^n$, we solve linear program:

$$\begin{split} \widehat{F}_{Y_0|D=1}^{UB}(\bar{y}) &= \min_{\gamma \in \Gamma_{\hat{\rho}}} - \hat{\rho}_{\bar{y},0|z}' \gamma \\ s.t. &\quad \hat{\rho}_{Y_i|1} - \hat{\rho}_{Y_i,1|z}' \gamma \leq 0, \quad \forall i = 1,...,n \end{split}$$

The optimization can sometimes be unstable

Computation of Bounds: Linear Program II

The semi-infinite program:

$$\begin{aligned} F_{Y_0|D=1}^{UB}(\bar{y}) &= \min_{\gamma \in \Gamma_p} -p_{\bar{y},0|z}' \gamma \\ s.t. \quad p_{y|1} - p_{y,1|z}' \gamma &\leq 0, \quad \forall y \in \mathcal{Y} \end{aligned}$$

Dual program:

$$\begin{split} F^{UB,\dagger}_{Y_0|D=1}(\bar{y}) &= \sup_{\Lambda\succeq 0, \lambda\in\mathbb{R}^2} \int_{\mathcal{Y}} p_{y|1} d\Lambda(y) - [0 \quad 1] \lambda \\ \text{s.t.} & [1 \quad p] \lambda - \int_{\mathcal{Y}} p_{y,1|z} d\Lambda(y) - p_{\bar{y},0|z} = \mathbf{0} \end{split}$$

Λ is a nonnegative measure

Strong duality may hold (in progress)

Computation of Bounds: Linear Program II

Approximate $\lambda(y) \equiv d\Lambda(y)/dy$ using Bernstein polynomial:

$$\lambda(y) pprox \sum_{j=1}^J \theta_j b_j(y)$$

Then, results in linear program:

$$\begin{aligned} F_{Y_0|D=1}^{UB,\dagger\dagger}(\bar{y}) &= \max_{\theta \in \mathbb{R}_+^J, \lambda \in \mathbb{R}^2} \theta' b^1 - [\ 0 \ 1 \] \lambda \\ s.t. & [\ 1 \ p \] \lambda - B_1' \theta - \hat{p}_{\bar{y},0|z} = \mathbf{0} \end{aligned}$$

$$\bullet \ \theta \equiv (\theta_1, ..., \theta_J)'$$

$$lacksquare$$
 $b^d \equiv (b_1^d, ..., b_J^d)'$ with $b_j^d \equiv \int_{\mathcal{Y}} b_j(y) \hat{\rho}_{y|d} dy$

▶
$$\boldsymbol{b}_{d,j} \equiv (b_{d,j,1},...,b_{d,j,L})'$$
 with $b_{d,j,\ell} \equiv \int_{\mathcal{V}} b_j(y) \hat{p}_{y,d|z_\ell} dy$

$$\triangleright$$
 $B_d \equiv [\ \boldsymbol{b}_{d,1} \ \cdots \ \boldsymbol{b}_{d,J} \]$

IV. Numerical Studies

Numerical Illustration: Design

$$Y_d = q(d, U_d) = 1 - d + (d+1)U_d$$

$$Y_1 = 2U_1 \text{ and } Y_0 = 1 + U_0$$

- $(U, \eta) \sim BVN((0, 0)', \Sigma)$
- $V \sim \mathit{N}(0, \sigma_V^2)$ and $\xi_1 \sim \mathit{N}(0, \sigma_V^2)$

•
$$\xi_0 = \xi_1 + V$$

$$U_d = U + \xi_d$$

- ► $Z \sim Bin(L-1,p)/(L-1) \in [0,1]$
 - L is the number of values Z takes
 - Z is normalized

▶
$$D = 1\{\pi_0 + \pi_1 Z \ge \eta\}$$

$$Y = DY_1 + (1 - D)Y_0$$

Bounds on $P[Y_0 \le y | D = 1]$ when L = 2

Bounds on $P[Y_0 \le y | D = 1]$ when L = 5

Bounds on $P[Y_0 \le y | D = 1]$ when L = 6

V. Conclusions

Conclusions

The paper...

- proposes a way to weaken rank similarity and
- shows how to construct informative bounds on QTE and ATE
- for treated or untreated (e.g., risk-averse) populations
- using multi-valued IVs

Calculation of the bounds are simple

Inference is an open question

Thank You! ©