$12a_{0505} \ (K12a_{0505})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^{36} + u^{35} + \dots + 8b + 1, \ -u^4 - u^2 + a - 1, \ u^{37} + 9u^{35} + \dots + 2u + 1 \rangle \\ I_2^u &= \langle 3.27537 \times 10^{24}u^{59} - 2.69309 \times 10^{24}u^{58} + \dots + 7.42634 \times 10^{24}b + 2.04518 \times 10^{25}, \\ &3.26602 \times 10^{25}u^{59} - 2.45564 \times 10^{25}u^{58} + \dots + 3.71317 \times 10^{25}a - 4.48295 \times 10^{25}, \ u^{60} - u^{59} + \dots - 10u + 5 \\ I_3^u &= \langle b^3 - b^2u - u, \ a + 1, \ u^2 + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 103 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{36} + u^{35} + \dots + 8b + 1, -u^4 - u^2 + a - 1, u^{37} + 9u^{35} + \dots + 2u + 1 \rangle$$

(i) Arc colorings

a) Are colorings
$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ -\frac{1}{8}u^{36} - \frac{1}{8}u^{35} + \cdots - \frac{3}{8}u - \frac{1}{8} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{8}u^{36} + \frac{1}{8}u^{35} + \cdots + \frac{1}{8}u + \frac{1}{8} \\ \frac{9}{8}u^{36} - \frac{9}{8}u^{35} + \cdots - \frac{3}{8}u - \frac{11}{8} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -\frac{1}{8}u^{36} - \frac{1}{8}u^{35} + \cdots - \frac{3}{8}u - \frac{11}{8} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ \frac{1}{8}u^{36} - \frac{1}{8}u^{35} + \cdots + \frac{7}{8}u - \frac{1}{8} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{8}u^{36} + \frac{1}{8}u^{35} + \cdots + \frac{3}{8}u + \frac{9}{8} \\ -\frac{1}{8}u^{36} - \frac{1}{8}u^{35} + \cdots - \frac{3}{8}u - \frac{1}{8} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{8}u^{36} + \frac{11}{8}u^{35} + \cdots + \frac{11}{8}u + \frac{17}{8} \\ \frac{5}{8}u^{36} - \frac{15}{8}u^{35} + \cdots - \frac{29}{8}u - \frac{27}{8} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $3u^{36} 2u^{35} + \dots + \frac{1}{2}u + \frac{9}{2}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1,c_{11}	$u^{37} + 18u^{36} + \dots - 4u - 1$
c_2, c_6, c_7 c_{12}	$u^{37} + 9u^{35} + \dots + 2u - 1$
c_3	$u^{37} - 3u^{36} + \dots + 192u - 128$
c_4,c_5,c_9	$u^{37} + 3u^{36} + \dots + 5u - 2$
c ₈	$u^{37} - 9u^{36} + \dots + 839u - 136$
c_{10}	$u^{37} - 9u^{36} + \dots - 11u + 6$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$y^{37} + 10y^{36} + \dots - 28y^2 - 1$
c_2, c_6, c_7 c_{12}	$y^{37} + 18y^{36} + \dots - 4y - 1$
c_3	$y^{37} - 19y^{36} + \dots - 241664y - 16384$
c_4, c_5, c_9	$y^{37} - 33y^{36} + \dots + 5y - 4$
c ₈	$y^{37} + 3y^{36} + \dots - 309823y - 18496$
c_{10}	$y^{37} + 3y^{36} + \dots + 2101y - 36$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.579757 + 0.811240I		
a = -0.103123 - 0.334884I	1.63409 - 2.87409I	6.79965 + 3.00528I
b = 0.210307 - 0.793482I		
u = -0.579757 - 0.811240I		
a = -0.103123 + 0.334884I	1.63409 + 2.87409I	6.79965 - 3.00528I
b = 0.210307 + 0.793482I		
u = 0.660932 + 0.777746I		
a = -0.196752 + 0.682520I	7.59911 + 0.56066I	10.84916 - 2.82822I
b = 0.020008 + 0.830017I		
u = 0.660932 - 0.777746I		
a = -0.196752 - 0.682520I	7.59911 - 0.56066I	10.84916 + 2.82822I
b = 0.020008 - 0.830017I		
u = 0.598857 + 0.895651I		
a = -0.397571 + 0.121089I	1.06998 + 6.49521I	4.63176 - 9.74629I
b = 0.283942 + 0.517469I		
u = 0.598857 - 0.895651I		
a = -0.397571 - 0.121089I	1.06998 - 6.49521I	4.63176 + 9.74629I
b = 0.283942 - 0.517469I		
u = -0.334683 + 0.831422I		
a = 0.446559 + 0.088208I	0.64214 - 4.70900I	4.48227 + 9.00130I
b = 0.29700 - 1.64195I		
u = -0.334683 - 0.831422I		
a = 0.446559 - 0.088208I	0.64214 + 4.70900I	4.48227 - 9.00130I
b = 0.29700 + 1.64195I		
u = -0.646478 + 0.915440I		
a = -0.644580 - 0.189148I	6.75139 - 9.60723I	8.81725 + 9.07290I
b = 0.107909 - 0.368165I		
u = -0.646478 - 0.915440I		
a = -0.644580 + 0.189148I	6.75139 + 9.60723I	8.81725 - 9.07290I
b = 0.107909 + 0.368165I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.789213 + 0.256338I		
a = 1.70385 - 0.85547I	5.01504 + 6.37659I	9.98575 - 3.65198I
b = 0.943538 - 0.763487I		
u = -0.789213 - 0.256338I		
a = 1.70385 + 0.85547I	5.01504 - 6.37659I	9.98575 + 3.65198I
b = 0.943538 + 0.763487I		
u = 0.695008 + 0.436202I		
a = 1.010840 + 0.961350I	6.84785 + 2.05532I	12.30177 - 3.15304I
b = 0.449960 + 0.949790I		
u = 0.695008 - 0.436202I		
a = 1.010840 - 0.961350I	6.84785 - 2.05532I	12.30177 + 3.15304I
b = 0.449960 - 0.949790I		
u = 0.267265 + 0.757126I		
a = 0.586216 - 0.001465I	-2.99869 + 1.29654I	0.41754 - 5.03416I
b = -0.33049 + 1.55851I		
u = 0.267265 - 0.757126I		
a = 0.586216 + 0.001465I	-2.99869 - 1.29654I	0.41754 + 5.03416I
b = -0.33049 - 1.55851I		
u = 0.435576 + 1.141880I		
a = 0.137669 - 1.221900I	-2.53196 + 0.72133I	1.56215 - 2.28769I
b = 2.47959 - 0.23224I		
u = 0.435576 - 1.141880I		
a = 0.137669 + 1.221900I	-2.53196 - 0.72133I	1.56215 + 2.28769I
b = 2.47959 + 0.23224I		
u = 0.735650 + 0.223048I		
a = 1.62524 + 0.65072I	-0.28750 - 2.94833I	5.40294 + 3.57703I
b = 0.854743 + 0.603989I		
u = 0.735650 - 0.223048I		
a = 1.62524 - 0.65072I	-0.28750 + 2.94833I	5.40294 - 3.57703I
b = 0.854743 - 0.603989I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.457950 + 1.157540I		
a = 0.023122 + 1.336210I	-7.34230 - 4.54614I	-2.96628 + 3.53654I
b = 2.38148 + 0.53796I		
u = -0.457950 - 1.157540I		
a = 0.023122 - 1.336210I	-7.34230 + 4.54614I	-2.96628 - 3.53654I
b = 2.38148 - 0.53796I		
u = -0.175543 + 0.729050I		
a = 0.684486 + 0.000358I	1.05378 + 2.11841I	6.68673 + 1.35034I
b = -0.98683 - 1.36977I		
u = -0.175543 - 0.729050I		
a = 0.684486 - 0.000358I	1.05378 - 2.11841I	6.68673 - 1.35034I
b = -0.98683 + 1.36977I		
u = 0.488487 + 1.174270I		
a = -0.15617 - 1.46909I	-4.81962 + 8.45799I	0.56436 - 7.63985I
b = 2.19414 - 0.89867I		
u = 0.488487 - 1.174270I		
a = -0.15617 + 1.46909I	-4.81962 - 8.45799I	0.56436 + 7.63985I
b = 2.19414 + 0.89867I		
u = -0.555532 + 1.145930I		
a = -0.61648 + 1.28475I	2.49474 - 7.72914I	6.13298 + 6.04219I
b = 1.39365 + 0.98713I		
u = -0.555532 - 1.145930I		
a = -0.61648 - 1.28475I	2.49474 + 7.72914I	6.13298 - 6.04219I
b = 1.39365 - 0.98713I		
u = 0.525269 + 1.184470I		
a = -0.40515 - 1.56057I	-4.34811 + 8.74768I	1.47209 - 5.09609I
b = 1.88435 - 1.21421I		
u = 0.525269 - 1.184470I		
a = -0.40515 + 1.56057I	-4.34811 - 8.74768I	1.47209 + 5.09609I
b = 1.88435 + 1.21421I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.541417 + 1.203980I		
a = -0.51875 + 1.71160I	-6.0591 - 12.8093I	-1.04768 + 9.71238I
b = 1.81915 + 1.50300I		
u = -0.541417 - 1.203980I		
a = -0.51875 - 1.71160I	-6.0591 + 12.8093I	-1.04768 - 9.71238I
b = 1.81915 - 1.50300I		
u = 0.554572 + 1.210400I		
a = -0.62000 - 1.76542I	-0.7099 + 16.6004I	3.43252 - 10.27286I
b = 1.70993 - 1.63840I		
u = 0.554572 - 1.210400I		
a = -0.62000 + 1.76542I	-0.7099 - 16.6004I	3.43252 + 10.27286I
b = 1.70993 + 1.63840I		
u = -0.651494		
a = 1.60460	1.43047	7.69190
b = 0.776097		
u = -0.555298 + 0.310287I		
a = 1.138300 - 0.490768I	1.031120 - 0.352879I	9.62908 + 3.43873I
b = 0.399568 - 0.580206I		
u = -0.555298 - 0.310287I		
a = 1.138300 + 0.490768I	1.031120 + 0.352879I	9.62908 - 3.43873I
b = 0.399568 + 0.580206I		

 $II. \\ I_2^u = \langle 3.28 \times 10^{24} u^{59} - 2.69 \times 10^{24} u^{58} + \dots + 7.43 \times 10^{24} b + 2.05 \times 10^{25}, \ 3.27 \times 10^{25} u^{59} - 2.46 \times 10^{25} u^{58} + \dots + 3.71 \times 10^{25} a - 4.48 \times 10^{25}, \ u^{60} - u^{59} + \dots - 10u + 5 \rangle$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.879576u^{59} + 0.661333u^{58} + \dots - 2.95523u + 1.20731 \\ -0.441048u^{59} + 0.362640u^{58} + \dots + 0.517628u - 2.75396 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -1.75591u^{59} + 0.844749u^{58} + \dots - 9.22135u + 14.3286 \\ -0.537990u^{59} - 0.114698u^{58} + \dots + 0.0765766u + 4.03754 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1.03659u^{59} + 0.545959u^{58} + \dots - 3.19620u + 6.41441 \\ -1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.690628u^{59} + 0.0925694u^{58} + \dots - 5.75146u + 7.18294 \\ -0.490628u^{59} - 0.107431u^{58} + \dots - 2.95146u + 5.18294 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1.43090u^{59} + 0.814450u^{58} + \dots - 4.72528u + 9.20320 \\ -0.548015u^{59} + 0.468963u^{58} + \dots - 0.700607u + 0.552623 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -2.21790u^{59} + 0.477834u^{58} + \dots - 12.9388u + 20.4700 \\ -0.790742u^{59} + 0.147862u^{58} + \dots - 6.12592u + 7.76486 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = $\frac{296160791761981929020628}{7426337532523198719401443}u^{59} - \frac{5551680871825337236878432}{7426337532523198719401443}u^{58} + \cdots + \frac{98782715163117266498435060}{7426337532523198719401443}u^{-69811644631314225254421270}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1,c_{11}	$u^{60} + 35u^{59} + \dots + 40u + 25$
c_2, c_6, c_7 c_{12}	$u^{60} + u^{59} + \dots + 10u + 5$
c_3	$(u^{30} + u^{29} + \dots + 5u + 5)^2$
c_4, c_5, c_9	$(u^{30} - u^{29} + \dots + u + 1)^2$
<i>c</i> ₈	$(u^{30} - 7u^{29} + \dots - 39u + 7)^2$
c_{10}	$(u^{30} + 3u^{29} + \dots + u + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$y^{60} - 21y^{59} + \dots - 20300y + 625$
c_2, c_6, c_7 c_{12}	$y^{60} + 35y^{59} + \dots + 40y + 25$
c_3	$(y^{30} - 19y^{29} + \dots + 115y + 25)^2$
c_4, c_5, c_9	$(y^{30} - 27y^{29} + \dots + 3y + 1)^2$
<i>c</i> ₈	$(y^{30} + 5y^{29} + \dots + 383y + 49)^2$
c_{10}	$(y^{30} + y^{29} + \dots - y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.654719 + 0.775857I		
a = 1.000080 + 0.319639I	7.60322 + 4.47665I	11.02629 - 3.57345I
b = -0.132709 + 0.268622I		
u = 0.654719 - 0.775857I		
a = 1.000080 - 0.319639I	7.60322 - 4.47665I	11.02629 + 3.57345I
b = -0.132709 - 0.268622I		
u = -0.705833 + 0.618685I		
a = 0.714300 + 0.203149I	7.60322 + 4.47665I	11.02629 - 3.57345I
b = -0.132709 + 0.268622I		
u = -0.705833 - 0.618685I		
a = 0.714300 - 0.203149I	7.60322 - 4.47665I	11.02629 + 3.57345I
b = -0.132709 - 0.268622I		
u = -0.585091 + 0.732497I		
a = 0.758383 - 0.318002I	1.86136 - 1.73295I	7.31181 + 4.09879I
b = -0.348006 - 0.154253I		
u = -0.585091 - 0.732497I		
a = 0.758383 + 0.318002I	1.86136 + 1.73295I	7.31181 - 4.09879I
b = -0.348006 + 0.154253I		
u = -0.369267 + 1.000960I		
a = -0.81969 + 1.69178I	0.241291 + 0.398317I	4.00000 + 1.62643I
b = 0.599243 + 0.619360I		
u = -0.369267 - 1.000960I		
a = -0.81969 - 1.69178I	0.241291 - 0.398317I	4.00000 - 1.62643I
b = 0.599243 - 0.619360I		
u = 0.887386 + 0.192378I		
a = -1.71190 - 1.19516I	2.35082 - 11.35200I	6.55345 + 7.31316I
b = -1.35137 - 1.30488I		
u = 0.887386 - 0.192378I		
a = -1.71190 + 1.19516I	2.35082 + 11.35200I	6.55345 - 7.31316I
b = -1.35137 + 1.30488I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.860363 + 0.177411I		
a = -1.75246 + 0.97453I	-2.99171 + 7.69168I	1.96957 - 6.90287I
b = -1.38007 + 1.17534I		
u = -0.860363 - 0.177411I		
a = -1.75246 - 0.97453I	-2.99171 - 7.69168I	1.96957 + 6.90287I
b = -1.38007 - 1.17534I		
u = 0.620306 + 0.614446I		
a = 0.572088 + 0.056222I	1.86136 - 1.73295I	7.31181 + 4.09879I
b = -0.348006 - 0.154253I		
u = 0.620306 - 0.614446I		
a = 0.572088 - 0.056222I	1.86136 + 1.73295I	7.31181 - 4.09879I
b = -0.348006 + 0.154253I		
u = -0.797594 + 0.287809I		
a = -0.923998 + 0.765282I	5.03529 + 2.69486I	9.41344 - 2.42783I
b = -0.927020 + 1.008110I		
u = -0.797594 - 0.287809I		
a = -0.923998 - 0.765282I	5.03529 - 2.69486I	9.41344 + 2.42783I
b = -0.927020 - 1.008110I		
u = 0.049074 + 1.157380I		
a = -0.440083 - 0.156255I	-3.42503 - 0.99510I	4.00000 + 6.82295I
b = -0.196012 + 0.321873I		
u = 0.049074 - 1.157380I		
a = -0.440083 + 0.156255I	-3.42503 + 0.99510I	4.00000 - 6.82295I
b = -0.196012 - 0.321873I		
u = 0.797025 + 0.175191I		
a = -1.62095 - 0.56131I	-1.37739 - 3.85600I	4.77500 + 2.05029I
b = -1.31375 - 0.94290I		
u = 0.797025 - 0.175191I		
a = -1.62095 + 0.56131I	-1.37739 + 3.85600I	4.77500 - 2.05029I
b = -1.31375 + 0.94290I		

Solutions to I_2^u	$\int \sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.542487 + 1.054280I		
a = 0.534358 + 1.258220I	5.03529 + 2.69486I	0
b = -0.927020 + 1.008110I		
u = 0.542487 - 1.054280I		
a = 0.534358 - 1.258220I	5.03529 - 2.69486I	0
b = -0.927020 - 1.008110I		
u = 0.344630 + 1.138730I		
a = -0.185985 + 0.893612I	-4.22892 + 0.37332I	0
b = -1.48789 + 0.39113I		
u = 0.344630 - 1.138730I		
a = -0.185985 - 0.893612I	-4.22892 - 0.37332I	0
b = -1.48789 - 0.39113I		
u = -0.282474 + 1.156520I		
a = -0.302716 - 0.708874I	0.60611 + 3.12979I	0
b = -1.50483 - 0.15757I		
u = -0.282474 - 1.156520I		
a = -0.302716 + 0.708874I	0.60611 - 3.12979I	0
b = -1.50483 + 0.15757I		
u = 0.185316 + 0.781676I		
a = -1.92088 - 0.82725I	-3.42503 + 0.99510I	1.51394 - 6.82295I
b = -0.196012 - 0.321873I		
u = 0.185316 - 0.781676I		
a = -1.92088 + 0.82725I	-3.42503 - 0.99510I	1.51394 + 6.82295I
b = -0.196012 + 0.321873I		
u = -0.007052 + 1.205260I		
a = -0.373467 + 0.086652I	1.48330 + 3.51597I	0
b = -0.555846 - 0.531956I		
u = -0.007052 - 1.205260I		
a = -0.373467 - 0.086652I	1.48330 - 3.51597I	0
b = -0.555846 + 0.531956I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.424008 + 1.139460I		
a = -0.053611 - 1.161700I	-1.72825 - 3.89629I	0
b = -1.47079 - 0.70709I		
u = -0.424008 - 1.139460I		
a = -0.053611 + 1.161700I	-1.72825 + 3.89629I	0
b = -1.47079 + 0.70709I		
u = -0.485155 + 1.121090I		
a = 0.163291 - 1.319390I	-1.37739 - 3.85600I	0
b = -1.31375 - 0.94290I		
u = -0.485155 - 1.121090I		
a = 0.163291 + 1.319390I	-1.37739 + 3.85600I	0
b = -1.31375 + 0.94290I		
u = -0.206059 + 1.210030I		
a = -0.019729 + 0.553355I	0.241291 - 0.398317I	0
b = 0.599243 - 0.619360I		
u = -0.206059 - 1.210030I		
a = -0.019729 - 0.553355I	0.241291 + 0.398317I	0
b = 0.599243 + 0.619360I		
u = 0.464076 + 1.142730I		
a = 0.17596 - 2.17762I	-2.32727 + 7.24749I	0
b = 1.55826 - 0.69337I		
u = 0.464076 - 1.142730I		
a = 0.17596 + 2.17762I	-2.32727 - 7.24749I	0
b = 1.55826 + 0.69337I		
u = -0.439473 + 1.157520I		
a = 0.24361 + 1.97599I	-7.47443 - 3.64220I	0
b = 1.55057 + 0.49229I		
u = -0.439473 - 1.157520I		
a = 0.24361 - 1.97599I	-7.47443 + 3.64220I	0
b = 1.55057 - 0.49229I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.751141 + 0.102372I		
a = -1.94060 - 0.10853I	-1.72825 - 3.89629I	3.54228 + 4.15365I
b = -1.47079 - 0.70709I		
u = 0.751141 - 0.102372I		
a = -1.94060 + 0.10853I	-1.72825 + 3.89629I	3.54228 - 4.15365I
b = -1.47079 + 0.70709I		
u = 0.387822 + 1.183350I		
a = 0.31301 - 1.57099I	-5.49797 + 0.02948I	0
b = 1.46023 - 0.10534I		
u = 0.387822 - 1.183350I		
a = 0.31301 + 1.57099I	-5.49797 - 0.02948I	0
b = 1.46023 + 0.10534I		
u = 0.366743 + 1.205600I		
a = 0.40148 - 1.38026I	-5.49797 - 0.02948I	0
b = 1.46023 + 0.10534I		
u = 0.366743 - 1.205600I		
a = 0.40148 + 1.38026I	-5.49797 + 0.02948I	0
b = 1.46023 - 0.10534I		
u = 0.522428 + 1.152290I		
a = 0.17559 + 1.54731I	-2.99171 + 7.69168I	0
b = -1.38007 + 1.17534I		
u = 0.522428 - 1.152290I		
a = 0.17559 - 1.54731I	-2.99171 - 7.69168I	0
b = -1.38007 - 1.17534I		
u = -0.545771 + 1.158110I		
a = 0.23953 - 1.65450I	2.35082 - 11.35200I	0
b = -1.35137 - 1.30488I		
u = -0.545771 - 1.158110I		
a = 0.23953 + 1.65450I	2.35082 + 11.35200I	0
b = -1.35137 + 1.30488I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.344101 + 1.255420I		
a = 0.635497 + 1.085770I	-7.47443 + 3.64220I	0
b = 1.55057 - 0.49229I		
u = -0.344101 - 1.255420I		
a = 0.635497 - 1.085770I	-7.47443 - 3.64220I	0
b = 1.55057 + 0.49229I		
u = -0.296315 + 0.623891I		
a = -2.58035 + 1.30683I	1.48330 - 3.51597I	6.79512 + 5.12276I
b = -0.555846 + 0.531956I		
u = -0.296315 - 0.623891I		
a = -2.58035 - 1.30683I	1.48330 + 3.51597I	6.79512 - 5.12276I
b = -0.555846 - 0.531956I		
u = 0.330952 + 1.277840I		
a = 0.717873 - 0.924652I	-2.32727 - 7.24749I	0
b = 1.55826 + 0.69337I		
u = 0.330952 - 1.277840I		
a = 0.717873 + 0.924652I	-2.32727 + 7.24749I	0
b = 1.55826 - 0.69337I		
u = -0.664015 + 0.029232I		
a = -2.10848 - 0.55839I	-4.22892 + 0.37332I	-0.206745 + 0.534714I
b = -1.48789 + 0.39113I		
u = -0.664015 - 0.029232I		
a = -2.10848 + 0.55839I	-4.22892 - 0.37332I	-0.206745 - 0.534714I
b = -1.48789 - 0.39113I		
u = 0.608465 + 0.053859I		
a = -2.39014 - 1.03423I	0.60611 - 3.12979I	4.91872 + 1.86186I
b = -1.50483 + 0.15757I		
u = 0.608465 - 0.053859I		
a = -2.39014 + 1.03423I	0.60611 + 3.12979I	4.91872 - 1.86186I
b = -1.50483 - 0.15757I		

III.
$$I_3^u = \langle b^3 - b^2 u - u, \ a+1, \ u^2+1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ b \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -bu + u \\ b^{2}u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1 \\ b - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ bu \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -b - 1 \\ b \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -b^{2}u + b^{2} - u + 1 \\ -b^{2} + bu - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -4bu 4

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1,c_{11}	$(u-1)^6$
c_2, c_6, c_7 c_{12}	$(u^2+1)^3$
c_3	u^6
c_4, c_5, c_9	$u^6 - 3u^4 + 2u^2 + 1$
c ₈	$(u^3 + u^2 - 1)^2$
c_{10}	$u^6 + u^4 + 2u^2 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$(y-1)^6$
c_2, c_6, c_7 c_{12}	$(y+1)^6$
c_3	y^6
c_4, c_5, c_9	$(y^3 - 3y^2 + 2y + 1)^2$
<i>c</i> ₈	$(y^3 - y^2 + 2y - 1)^2$
c_{10}	$(y^3 + y^2 + 2y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.000000I		
a = -1.00000	-0.26574 + 2.82812I	-0.49024 - 2.97945I
b = 0.744862 + 0.877439I		
u = 1.000000I		
a = -1.00000	-0.26574 - 2.82812I	-0.49024 + 2.97945I
b = -0.744862 + 0.877439I		
u = 1.000000I		
a = -1.00000	-4.40332	-7.01950
b = -0.754878I		
u = -1.000000I		
a = -1.00000	-0.26574 - 2.82812I	-0.49024 + 2.97945I
b = 0.744862 - 0.877439I		
u = -1.000000I		
a = -1.00000	-0.26574 + 2.82812I	-0.49024 - 2.97945I
b = -0.744862 - 0.877439I		
u = -1.000000I		
a = -1.00000	-4.40332	-7.01950
b = 0.754878I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing	
c_1, c_{11}	$((u-1)^6)(u^{37} + 18u^{36} + \dots - 4u - 1)(u^{60} + 35u^{59} + \dots + 40u + 25u^{60})$	5)
c_2, c_6, c_7 c_{12}	$((u^{2}+1)^{3})(u^{37}+9u^{35}+\cdots+2u-1)(u^{60}+u^{59}+\cdots+10u+5)$	
<i>c</i> ₃	$u^{6}(u^{30} + u^{29} + \dots + 5u + 5)^{2}(u^{37} - 3u^{36} + \dots + 192u - 128)$	
c_4, c_5, c_9	$ (u^6 - 3u^4 + 2u^2 + 1)(u^{30} - u^{29} + \dots + u + 1)^2(u^{37} + 3u^{36} + \dots + 5u^{36}) $	u-2)
c ₈	$((u^3 + u^2 - 1)^2)(u^{30} - 7u^{29} + \dots - 39u + 7)^2$ $\cdot (u^{37} - 9u^{36} + \dots + 839u - 136)$	
c_{10}	$(u^{6} + u^{4} + 2u^{2} + 1)(u^{30} + 3u^{29} + \dots + u + 1)^{2}$ $\cdot (u^{37} - 9u^{36} + \dots - 11u + 6)$	

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$((y-1)^6)(y^{37} + 10y^{36} + \dots - 28y^2 - 1)$ $\cdot (y^{60} - 21y^{59} + \dots - 20300y + 625)$
c_2, c_6, c_7 c_{12}	$((y+1)^6)(y^{37}+18y^{36}+\cdots-4y-1)(y^{60}+35y^{59}+\cdots+40y+25)$
<i>c</i> ₃	$y^{6}(y^{30} - 19y^{29} + \dots + 115y + 25)^{2}$ $\cdot (y^{37} - 19y^{36} + \dots - 241664y - 16384)$
c_4, c_5, c_9	$((y^3 - 3y^2 + 2y + 1)^2)(y^{30} - 27y^{29} + \dots + 3y + 1)^2$ $\cdot (y^{37} - 33y^{36} + \dots + 5y - 4)$
<i>C</i> ₈	$((y^3 - y^2 + 2y - 1)^2)(y^{30} + 5y^{29} + \dots + 383y + 49)^2$ $\cdot (y^{37} + 3y^{36} + \dots - 309823y - 18496)$
c_{10}	$((y^3 + y^2 + 2y + 1)^2)(y^{30} + y^{29} + \dots - y + 1)^2$ $\cdot (y^{37} + 3y^{36} + \dots + 2101y - 36)$