Fahrzeugmechatronik I Aktoren

Prof. Dr.-Ing. Steffen Müller M.Sc. Osama Al-Saidi

Fachgebiet Kraftfahrzeuge • Technische Universität Berlin

Allgemeine Betrachtungen Mechatronisches System

Allgemeine Betrachtungen

Aktoren – Wirkungsweise und gängige Wandler

Allgemeine Betrachtungen Energie und Leistung beim Energiewandler

Seite 5

Allgemeine Betrachtungen Verlustleistung und Wirkungsgrad des Energiewandlers

Allgemeine Betrachtungen Behandlung eines Energiewandlers als Vierpol

Seite 7

Allgemeine Betrachtungen Potenzial- und Flussgrößen von Energiewandlern

Leistungsform	Potenzialgröße p	Flussgröße f	Leistung P= p f
mechanisch translatorisch			
mechanisch rotatorisch			
elektrisch			
fluidisch			
thermisch			

Allgemeine Betrachtungen Wirkungsgrade gängiger Wandler

$P^{ab} = P_2$ $P^{zu} = P_1$	mechanisch translatorisch	η	mechanisch rotatorisch	η
mechanisch translatorisch	$\uparrow F_1, v_1 \qquad \downarrow F_2, v_2$		F_1, v_1 M_2, ω_2	
mechanisch rotatorisch	F_2, v_2 M_1, ω_1		M_1, ω_1 M_2, ω_2	
elektrisch	Elektromagnet U_1 F_2 , V_2		Elektromotor I_1 M_2 , ω_2 U_1	
fluidisch	Hydrozylinder F_2, v_2 $\dot{V_1}, \Delta p_1$		M_2, ω_2 Fluidmotor $\dot{V}_1, \Delta p_1$	

Elektromechanische Wandler Klassifizierung

Elektromechanische Wandler Übersicht der behandelten Motorprinzipien

Elektromechanische Wandler / Aktoren

Grundgleichungen elektromechanische Wandler Lorentzkraft - Kraftwirkung auf einen Leiter

Elementarmaschine

Leiter im magnetischen Fluss

Grundgleichungen elektromechanische Wandler Induktion – Spannungsänderung bei Ф-Änderung

Seite 13

Grundgleichungen elektromechanische Wandler Induktion – Spannungsänderung bei Ф-Änderung

Seite 14

Gleichstrommotor Allgemein

- 1832: Erster Generator von H. Pixii (Franzose) mit rotierenden Hufeisenmagneten
- 1860: Entwicklung der Ringwicklung und dem vielteiligen Stromwender durch A. Pacinotti
- 1866: Entdeckung des dynamoelektrischen Prinzips durch Werner v. Siemens, Aufbau der nach heutigen Maßstäben "ersten" elektrischen Maschine

Mit Einführung des Drehstroms 1890 verloren die Gleichstrommaschinen ihre beherrschende Marktstellung an die Asynchron- und Synchronmaschinen. Im Bereich der drehzahlgeregelten Antriebe behauptet die Gleichstrommaschine noch immer einen bedeutenden Marktanteil.

Einsatzgebiete:

Unterhaltungselektronik, Spielzeuge, Haushaltsgeräte, Elektrowerkzeuge, Kfz-Elektrik, Werkzeugmaschinen, Förderanlagen, Walzstraßen, Fahrmotoren für Nahverkehrsbahnen.

Seite 15

Gleichstrommotor Momentenwirkung auf eine Leiterschleife

Gleichstrommotor Motormoment mit Kommutator

Seite 17

Gleichstrommotor Prinzipskizze einer Gleichstrommaschine

Gleichstrommotor

U_{ind} bei einem Gleichstrommotor

Seite 19

Vielen Dank für Ihre Aufmerksamkeit!