Note to other teachers and users of these slides: We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. If you make use of a significant portion of these slides in your own lecture, please include this message, or a link to our web site: http://www.mmds.org

Frequent Itemset Mining & Association Rules

Mining of Massive Datasets
Jure Leskovec, Anand Rajaraman, Jeff Ullman
Stanford University

http://www.mmds.org

Association Rule Discovery

Supermarket shelf management – Market-basket model:

- Goal: Identify items that are bought together by sufficiently many customers
- Approach: Process the sales data collected with barcode scanners to find dependencies among items
- A classic rule:
 - If someone buys diaper and milk, then he/she is likely to buy beer
 - Don't be surprised if you find six-packs next to diapers!

The Market-Basket Model

- A large set of items
 - e.g., things sold in a supermarket
- A large set of baskets
- Each basket is a small subset of items
 - e.g., the things one customer buys on one day
- Want to discover association rules

Input:

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Output:

Rules Discovered:

```
{Milk} --> {Coke}
{Diaper, Milk} --> {Beer}
```

- People who bought {x,y,z} tend to buy {v,w}
 - Amazon!

Applications – (1)

- Items = products; Baskets = sets of products someone bought in one trip to the store
- Real market baskets: Chain stores keep TBs of data about what customers buy together
 - Tells how typical customers navigate stores, lets them position tempting items
 - Suggests tie-in "tricks", e.g., run sale on diapers and raise the price of beer
 - Need the rule to occur frequently, or no \$\$'s
- Amazon's people who bought X also bought Y

Applications – (2)

- Baskets = sentences; Items = documents containing those sentences
 - Items that appear together too often could represent plagiarism
 - Notice items do not have to be "in" baskets
- Baskets = patients; Items = drugs & side-effects
 - Has been used to detect combinations of drugs that result in particular side-effects
 - But requires extension: Absence of an item needs to be observed as well as presence

Applications – (3)

- Baskets = Documents; Items = words
 - Unusual words appearing in a large number of documents, e.g. "Brad" and "Angelina" may indicate an interesting relationship.

More generally

- A general many-to-many mapping (association) between two kinds of things
 - But we ask about connections among "items", not "baskets"

Scale of the Problem

- WalMart sells 100k items and can store billions of basket
- Web has billions of words and many billions of pages

Frequent Itemsets

- Simplest question: Find sets of items that appear together "frequently" in baskets
- Support for itemset I: Number of baskets containing all items in I
 - (Often expressed as a fraction of the total number of baskets)
- Given a support threshold s, then sets of items that appear in at least s baskets are called frequent itemsets

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Support of {Beer, Bread} = 2

Example: Frequent Itemsets

- Items = {milk, coke, pepsi, beer, juice}
- Support threshold = 3 baskets

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, b\}$ $B_4 = \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$
 $B_7 \neq \{c, b, j\}$ $B_8 = \{b, c\}$

Frequent itemsets: {m}, {c}, {b}, {j}, {m,b}, {b,c}, {c,j}.

Association Rules

- Association Rules:
 - If-then rules about the contents of baskets
- $\{i_1, i_2, ..., i_k\} \rightarrow j$ means: "if a basket contains all of $i_1, ..., i_k$ then it is *likely* to contain j"
- In practice there are many rules, want to find significant/interesting ones!
- **Confidence** of this association rule is the probability of j given $I = \{i_1, ..., i_k\}$

$$conf(I \to j) = \frac{support(I \cup j)}{support(I)}$$

Example of calculating support and confidence

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

- {m, br}
 - Support = 2/5 = 0.4
- {m, c}
 - **Support =** 3/5 = 0.6

- [{m} →c
 - **Confidence =** 3/4 = 0.75
- {m, d} →be
 - **Confidence =** 2/3 = 0.66

Interesting Association Rules

- Not all high-confidence rules are interesting
 - The rule $X \to milk$ may have high confidence for many itemsets X, because milk is just purchased very often (independent of X) and the confidence will be high
- Interest of an association rule $I \rightarrow j$: difference between its confidence and the fraction of baskets that contain j

$$Interest(I \rightarrow j) = conf(I \rightarrow j) - Pr[j]$$

 Interesting rules are those with high positive or negative interest values (usually above 0.5)

Example: Confidence and Interest

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, b\}$ $B_4 = \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$
 $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$

- **Association rule:** $\{m, b\} \rightarrow c$
 - **Confidence = 2/4 = 0.5**
 - Interest = |0.5 5/8| = 1/8
 - Item c appears in 5/8 of the baskets
 - Rule is not very interesting!

Finding Association Rules

- Problem: Find all association rules with support ≥s and confidence ≥c
 - Note: Support of an association rule is the support of the set of items on the left side
- Hard part: Finding the frequent itemsets!
 - If $\{i_1, i_2, ..., i_k\} \rightarrow j$ has high support and confidence, then both $\{i_1, i_2, ..., i_k\}$ and $\{i_1, i_2, ..., i_k, j\}$ will be "frequent"

$$conf(I \rightarrow j) = \frac{support(I \cup j)}{support(I)}$$

Mining Association Rules

- Step 1: Find all frequent itemsets I
 - (we will explain this next)
- Step 2: Rule generation
 - For every subset A of I, generate a rule $A \rightarrow I \setminus A$
 - Since I is frequent, A is also frequent
 - Variant 1: Single pass to compute the rule confidence
 - confidence($A,B \rightarrow C,D$) = support(A,B,C,D) / support(A,B)
 - Variant 2:
 - Observation: If A,B,C \rightarrow D is below confidence, so is A,B \rightarrow C,D
 - Can generate "bigger" rules from smaller ones!
 - Output the rules above the confidence threshold

```
B_1 = \{m, c, b\} B_2 = \{m, p, j\}

B_3 = \{m, c, b, n\} B_4 = \{c, j\}

B_5 = \{m, p, b\} B_6 = \{m, c, b, j\}

B_7 = \{c, b, j\} B_8 = \{b, c\}
```

- Support threshold s = 3, confidence c = 0.75
- 1) Frequent itemsets:
 - {b,m} {b,c} {c,m} {c,j} {m,c,b}
- 2) Generate rules:

• **b**→**m**:
$$c$$
=4/6 **b**→**c**: c =5/6 **b**,**c**→**m**: c =3/5
• **m**→**b**: c =4/5 ... **b**,**m**→**c**: c =3/4
• **b**→**c**,**m**: c =3/6

Compacting the Output

- To reduce the number of rules we can post-process them and only output:
 - Maximal frequent itemsets:
 No immediate superset is frequent
 - Gives more pruning

or

- Closed itemsets:
 - No immediate superset has the same count (> 0)
 - Stores not only frequent information, but exact counts

Finding Frequent Itemsets

Itemsets: Computation Model

- Back to finding frequent itemsets
- Typically, data is kept in flat files rather than in a database system:
 - Stored on disk
 - Stored basket-by-basket
 - Baskets are small but we have many baskets and many items
 - Expand baskets into pairs, triples, etc.
 as you read baskets
 - Use k nested loops to generate all sets of size k

Item ltem Etc.

Note: We want to find frequent itemsets. To find them, we have to count them. To count them, we have to generate them.

Items are positive integers, and boundaries between baskets are -1.

Computation Model

- The true cost of mining disk-resident data is usually the number of disk I/Os
- In practice, association-rule algorithms read the data in passes – all baskets read in turn
- We measure the cost by the number of passes an algorithm makes over the data

Main-Memory Bottleneck

- For many frequent-itemset algorithms, main-memory is the critical resource
 - As we read baskets, we need to count something, e.g., occurrences of pairs of items
 - The number of different things we can count is limited by main memory
 - Swapping counts in/out is a disaster (why?)

Finding Frequent Pairs

- The hardest problem often turns out to be finding the frequent pairs of items $\{i_1, i_2\}$
 - Why? Freq. pairs are common, freq. triples are rare
 - Why? Probability of being frequent drops exponentially with size; number of sets grows more slowly with size
- Let's first concentrate on pairs, then extend to larger sets
- The approach:
 - We always need to generate all the itemsets
 - But we would only like to count (keep track) of those itemsets that in the end turn out to be frequent

Naïve Algorithm

- Naïve approach to finding frequent pairs
- Read file once, counting in main memory the occurrences of each pair:
 - From each basket of n items, generate its
 n(n-1)/2 pairs by two nested loops
- Fails if (#items)² exceeds main memory
 - Remember: #items can be 100K (Wal-Mart) or 10B (Web pages)
 - Suppose 10⁵ items, counts are 4-byte integers
 - Number of pairs of items: $10^5(10^5-1)/2 = 5*10^9$
 - Therefore, 2*10¹⁰ (20 gigabytes) of memory needed

Counting Pairs in Memory

Two approaches:

- Approach 1: Count all pairs using a matrix
- Approach 2: Keep a table of triples [i, j, c] = "the count of the pair of items {i, j} is c."
 - If integers and item ids are 4 bytes, we need approximately 12 bytes for pairs with count > 0
 - Plus some additional overhead for the hashtable

Note:

- Approach 1 only requires 4 bytes per pair
- Approach 2 uses 12 bytes per pair (but only for pairs with count > 0)

Comparing the 2 Approaches

Triangular Matrix

Triples

Comparing the two approaches

- Approach 1: Triangular Matrix
 - n = total number items
 - Count pair of items {i, j} only if i<j</p>
 - Keep pair counts in lexicographic order:
 - $\{1,2\}$, $\{1,3\}$,..., $\{1,n\}$, $\{2,3\}$, $\{2,4\}$,..., $\{2,n\}$, $\{3,4\}$,...
 - Pair $\{i, j\}$ is at position (i-1)(n-i/2) + j-1
 - Total number of pairs n(n-1)/2; total bytes= $2n^2$
 - Triangular Matrix requires 4 bytes per pair
- Approach 2 uses 12 bytes per occurring pair (but only for pairs with count > 0)
 - Beats Approach 1 if less than 1/3 of possible pairs actually occur

Comparing the two approaches

Approach 1: Triangular Matrix **n** = total number items Problem is if we have too many items so the pairs do not fit into memory. Can we do better?

possible pairs actually occur

A-Priori Algorithm

A-Priori Algorithm – (1)

- A two-pass approach called A-Priori limits the need for main memory
- Key idea: monotonicity
 - If a set of items *I* appears at least *s* times, so does every **subset** *J* of *I*
- Contrapositive for pairs:
 If item i does not appear in s baskets, then no pair including i can appear in s baskets
- So, how does A-Priori find freq. pairs?

A-Priori Algorithm – (2)

- Pass 1: Read baskets and count in main memory the occurrences of each individual item
 - Requires only memory proportional to #items
- Items that appear $\geq s$ times are the <u>frequent items</u>
- Pass 2: Read baskets again and count in main memory <u>only</u> those pairs where both elements are frequent (from Pass 1)
 - Requires memory proportional to square of frequent items only (for counts)
 - Plus a list of the frequent items (so you know what must be counted)

Main-Memory: Picture of A-Priori

Detail for A-Priori

- You can use the triangular matrix method with n = number of frequent items
 - May save space compared with storing triples
- Trick: re-number frequent items 1,2,... and keep a table relating new numbers to original item numbers

Frequent Triples, Etc.

- For each k, we construct two sets of k-tuples (sets of size k):
 - **C**_k = candidate k-tuples = those that might be frequent sets (support \geq s) based on information from the pass for k−1
 - \mathbf{L}_{k} = the set of truly frequent k-tuples

** Note here we generate new candidates by generating C_k from L_{k-1} and L_1 . But that one can be more careful with candidate generation. For example, in C_3 we know {b,m,j} cannot be frequent since {m,j} is not frequent

Hypothetical steps of the A-Priori algorithm

- $C_1 = \{ \{b\} \{c\} \{j\} \{m\} \{n\} \{p\} \}$
- Count the support of itemsets in C₁
- Prune non-frequent: L₁ = { b, c, j, m }
- Generate $C_2 = \{ \{b,c\} \{b,j\} \{b,m\} \{c,j\} \{c,m\} \{j,m\} \}$
- Count the support of itemsets in C₂
- Prune non-frequent: L₂ = { {b,m} {b,c} {c,m} {c,j} }
- Generate $C_3 = \{ \{b,c,m\} \{b,c,j\} \{b,m,j\} \{c,m,j\} \}$
- Count the support of itemsets in C₃
- Prune non-frequent: L₃ = { {b,c,m} }

TID	List of item_IDs	
T100	11, 12, 15	-
T'200	12, 14	Min.support count=2
T300	12, 13	
T400	11, 12, 14	
T500	11, 13	
T600	12, 13	
T700	11, 13	_
T800	11, 12, 13, 15	CSE GURUS @ M3
T900	11, 12, 13	
		•

TID			List of item	_IDs		
T100			11, 12, 15	-		
T'200			12, 14		Min.su	pport count=2
T300			12, 13		, , , , , , , , ,	
T400			11, 12, 14			
T500			11, 13			
T600			12, 13			
T700			11, 13			
T800			11, 12, 13, 15		CSE GURUS @ M3	
T900			11, 12, 13			
	C_I			L_I		
Scan D for	Itemset	Sup. count	Compare candidate	Itemset	Sup. count	
count of each	{II}	6	support count with	(II)	6	
candidate	{I2}	7	minimum support	{I2}	7	
	{13}	6	count	{13}	6	
	{I4}	2		{I4}	2	
	(15)	2		(I5)	2	

A-Priori for All Frequent Itemsets

- One pass for each k (itemset size)
- Needs room in main memory to count each candidate k-tuple
- For typical market-basket data and reasonable support (e.g., 1%), k = 2 requires the most memory

Additional Resources

https://www.youtube.com/watch?v=h_l3b2ClQ_o