Covid-19 Recognition in CT Scans using Artificial Intelligence (AI) guided tools

Supriti Ghosh & Shotabdi Roy

supriti.ghosh@coyotes.usd.edu & shotabdi.roy@coyotes.usd.edu

CSC 761

Advanced Artificial Intelligence

Department of Computer Science University of South Dakota May 04, 2022

Overview

- In this research, we build AI-guided tools to detect Covid-19 positive cases using chest X-ray image.
- Inception V3 and U-net models have been leveraged to build automated Covid-19 screening.
- Results show performance improvement and further possibilities.

Healthy

Motivation

• Since December 2019, the infection rate of Covid-19 cases has been very high.

• In such infectious disease, early detection tools would help largely to mitigate the spread and save lives.

The New Hork Times

Coronavirus in the U.S.: Latest Map and Case Count

Literature Review

- A. A. Farid, G. I. Selim, H. Awad, and A. Khater, "A novel approach of ct images feature analysis and prediction to screen for corona virus disease (covid-19)," Int. J. Sci. Eng. Res, vol. 11, no. 3, pp. 1–9, 2020.text
- D. Singh, V. Kumar, and M. Kaur, "Classification of covid-19 patients from chest ct images using multi-objective differential evolution—based convolutional neural networks," European Journal of Clinical Microbiology & Infectious Diseases, pp. 1–11, 2020.
- A. M. Hasan, M. M. AL-Jawad, H. A. Jalab, H. Shaiba, R. W. Ibrahim, and A. R. AL-Shamasneh, "Classification of covid-19 coronavirus, pneumonia and healthy lungs in ct scans using q-deformed entropy and deep learning features," Entropy, vol. 22, no. 5, p. 517, 2020.

Literature Review (continue..)

- S. Hu, Y. Gao, Z. Niu, Y. Jiang, L. Li, X. Xiao, M. Wang, E. F. Fang, W. Menpes-Smith, J. Xia, et al., "Weakly supervised deep learning for covid-19 infection detection and classification from ct images," IEEE Access, vol. 8, pp. 118869–118883, 2020.
- X. Wang, X. Deng, Q. Fu, Q. Zhou, J. Feng, H. Ma, W. Liu, and C. Zheng, "A weakly-supervised framework for covid-19 classification and lesion localization from chest ct," IEEE Transactions on Medical Imaging, 2020.
- X. Wu, H. Hui, M. Niu, L. Li, L. Wang, B. He, X. Yang, L. Li, H. Li, J. Tian, et al., "Deep learning-based multi-view fusion model for screening 2019 novel coronavirus pneumonia: a multicentre study," European Journal of Radiology, p. 109041, 2020.
- X. Xu, X. Jiang, C. Ma, P. Du, X. Li, S. Lv, L. Yu, Q. Ni, Y. Chen, J. Su, et al., "A deep learning system to screen novel coronavirus disease 2019 pneumonia," Engineering, 2020.

Proposed Methodology

Proposed Methodology

Data Collection

Experiment: 1,810 CT Scans (1,267 Covid-19 positive & 543 Healthy)

Kaggle dataset: https://www.kaggle.com/datasets/hgunraj/covidxct?select=2Aimages

Results

Inception V3

Folds	Accuracy	AUC
Fold-1	0.5103	0.5071
Fold-2	0.9655	0.9655
Fold-3	0.9517	0.9581
Fold-4	0.9862	0.9862
Fold-5	0.9758	0.9756
Mean (µ)	0.8779	0.8785
σ	0.2059	0.2079

U-net

Folds	Accuracy	AUC
Fold-1	0.6862	0.6862
Fold-2	0.7207	0.7252
Fold-3	0.687	0.718
Fold-4	0.692	0.759
Fold-5	0.7024	0.71
Mean (µ)	0.6977	0.7197
σ	0.0144	0.0264

Results: Accuracy and AUC of Inception V3 and U-net

Result Analysis

Inception V3

U-net

Conclusions and Future Works

Conclusion

AI-driven tools must be integrated from the start of data collection, in collaboration with experts in the field.

The necessity of AI-driven tools for future Covid-19 epidemics has been discussed in this study.

Future Works

Our future plan is to work on the explainable artificial intelligence in CT scan images to screen Covid-19.

Also, we can use Unet for the purpose of lung segmentation for better visualization.

Thank you