Bilgisayar Mühendisliğinde Matematik Uygulamaları

Mert ATAY - 180202090

25 Mayıs 2021

Programlama Dili: Python

Kullanılan Kütüphaneler: Pandas, Numpy, Scikit-learn, Seaborn

1 Örnek 1:

1.1 Problemimizin Tanımı:

Bu örnekteki problemimizde herhangi bir üniversiteye başvuru yapan öğrenci adayların üniversite yönetimi tarafından kabul edilip edilmeyeceğini belirlemek için logistik regresyon analizi yöntemiyle sonuç elde edilmek isteniyor.

1.2 Problemde Uygulanan Adımlar

Bu problemimizde uygulanacak adımları sırasıyla veri seti oluşturulup, kodda çözüm içi neler yaptığımızla devam edip, en son olarak programımızın sonuçlarını göstereceğim.

1.2.1 1.Adım : Veri Seti Oluşturma

Oncelikle binary classfication yapısına göre burada iki olası sonuç vardır: Ya "admitted" (1 değeri) olarak veya "rejected" (0 değeri) olarak sonuçlanacaktır.

Eğer Python'da bir lojistik regresyon oluşturmak istersek burada:

- Bağımlı değişken, bir kişinin kabul edilip edilmeyeceğini temsil eder,
- Bağımsız değişkenlerimiz ise GMAT puanı, GPA ve iş deneyimi süresidir.

Veri setini aşağıda görebilirsiniz:

	gmat	gpa	work_experience	admitted
0	780	4	3	1
1	750	3.9	4	1
2	690	3.3	3	0
3	710	3.7	5	1
4	680	3.9	4	0
5	730	3.7	6	1
6	690	2.3	1	0
7	720	3.3	4	1
8	740	3.3	5	1
9	690	1.7	1	0
10	610	2.7	3	0
11	690	3.7	5	1
12	710	3.7	6	1
13	680	3.3	4	0
14	770	3.3	3	1
15	610	3	1	0
16	580	2.7	4	0
17	650	3.7	6	1
18	540	2.7	2	0
19	590	2.3	3	0
20	620	3.3	2	1
21	600	2	1	0
22	550	2.3	4	0
23	550	2.7	1	0
24	570	3	2	0
25	670	3.3	6	1
26	660	3.7	4	1
27	580	2.3	2	0
28	650	3.7	6	1
29	660	3.3	5	1
30	640	3	1	0
31	620	2.7	2	0
32	660	4	4	1
33	660	3.3	6	1
34	680	3.3	5	1
35	650	2.3	1	0
36	670	2.7	2	0
37	580	3.3	1	0
38	590	1.7	4	0
39	690	3.7	5	1

Bu veri setiyle çalıştım. Kodda ise nasıl oluşturulduğunu görebilirsiniz:

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
import seaborn as sn
import matplotlib.pyplot as plt

#veri setini excel dosyasindan okuyoruz
dataset = pd.read_excel('dataset.xlsx',index_col=0)
#veri setini dataframe olacak sekilde pandas kut. yardimiyla
tanimliyoruz.

df = pd.DataFrame(dataset)
#Dataframe i gosteriyoruz
print (df)
```

Listing 1: Veri Seti Oluşturma

Sonuç olarak da aşağıya bu terminal sonucu gelecektir:

PS	C:\Use	rs\Me	rt Atay\Desktop\ö	idev bmmu>	python	logisticr	egresyon.py
	gmat	gpa	work_experience		.,		3 , .,
0	780	4.0	3	1			
1	750	3.9	4	1			
2	690	3.3	3	0			
3	710	3.7	5	1			
4	680	3.9	4	0			
5	730	3.7	6	1			
6	690	2.3	1	0			
7	720	3.3	4	1			
8	740	3.3	5	1			
9	690	1.7	1	0			
10	610	2.7	3	0			
11	690	3.7	5	1			
12	710	3.7	6	1			
13	680	3.3	4	0			
14	770	3.3	3	1			
15	610	3.0	1	0			
16	580	2.7	4	0			
17	650	3.7	6	1			
18	540	2.7	2	9			
19	590	2.3	3	0			
20	620	3.3	2	1			
21	600	2.0	1	0			
22	550	2.3	4	0			
23	550	2.7	1	0			
24	570	3.0	2	0			
25	670	3.3	6	1			
26	660	3.7	4	1			
27	580	2.3	2	0			
28	650	3.7	6	1			
29	660	3.3	5	1			

Figure 1: Veri Seti Oluşturma (Sonucu)

1.2.2 2.Adım: Logistic Regresyon Modeli

2.adımda modelimizi oluşturan kodları ve onların sonuçlarını göreceksiniz. Öncelikle analiz için x ve y değerlerimizin olması gerekiyor. Bunları şu şekilde aldım.

```
1 X = df[['gmat', 'gpa', 'work_experience']]
2 y = df['admitted']
```

Listing 2: x ve y Değerleri

Daha sonra bu değerlerden eğitilecek verileri ayrı ve test verileri ayrı olacak şekilde seçtim.

```
#egitilecek x degerlerinden bir test veri seti elde ediyoruz.
Belirtilen test_size = veri
#setinin ceyregini kullaniyor.
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.25,random_state=0)
```

Listing 3: Kullanılacak verilerin ayrıştırılması

Şimdi modelimizi oluşturabilecek kıvama geldi. Modelimizin ismini logisticregression değişkenine tanımlayarak model oluşturuldu.Daha sonra eğilecek değerler verildi ve en son da tahmin (predict) işlemleri yapıldı.

```
#lojistik regresyon modelini belirtiyoruz
logistic_regression= LogisticRegression()
#analize giricek modeli e itiyoruz
logistic_regression.fit(X_train,y_train)
#yukar dan al nan x elemanlar ndan olu an test verisetinden
e itilen ve
#tahmin edilen y de erlerini de i kene at yoruz
y_pred=logistic_regression.predict(X_test)
print("-----")
print (X_test)
print("-----")
print (y_pred)
```

Listing 4: Logistic Regression

Eğer örnek bir veri seti görmek istersek :

```
work_experience
          gpa
     550
          2.3
     620
     670
10
     610
     610
     650
11
     690
     540
     660
          3.3
[0011001101]
```

Figure 2: Test Verileri

Figure 3: Skor ve Doğruluk Değeri

Bu verilerde test amaçlı olarak kullanılıp eğitilen modele göre bir doğruluk payı değeri alırlar. Bu değerin 0 ile 1 arasında olması gerekir. Bu değer 0'a ne kadar çok yaklaşırsa tahminler olumsuz sonuçlar ortaya çıkaracaktır. Fakat 1'e ne kadar çok yaklaşırsa bir o kadar olumlu sonuç ortaya çıkma şansı doğurur. Yukarıda gördüğünüz örnek verilerde bir dizide bulunan 0 ve 1 değerleri gördünüz. Test verilerinde kabul edilen sayısı ve kabul edilmeyenler eğitilen modele göre bu sonucu almıştır.

Son olarak bu doğruluk değeri ve eğitilen modelimizin doğruluk değerini görelim.

1.2.3 3.Adım: Sonuçlar

Listing 5: Logistic Regression Sonuç Bastırımı

Şimdiki sonuçta gerçek ve tahmin değerleri arasındaki 4 farklı şekilde bulunan:

- Doğru Pozitifler: 4
- Doğru Negatifler: 4
- Yanlış Pozitifler: 1
- Yanlış Negaifler: 1

şeklide elde edilmiştir.

Figure 4: Sonuç Grafiği

2 Örnek 2:

2.1 Problemimizin Tanımı:

Bu örnekteki problemimizde herhangi bir araba galerisinde bulunan arabaların katettiği yolun km olarak arabanın değerine göre hangi durumda olduğunu anlamak için lineer regresyon analizi yöntemiyle sonuç elde edilmek isteniyor.

2.2 Problemde Uygulanan Adımlar

Aynı şekilde bu problemimizde uygulanacak adımları sırasıyla veri seti oluşturulup, kodda çözüm içi neler yaptığımızla devam edip, en son olarak programımızın sonuçlarını göstereceğim.

2.2.1 1.Adım : Veri Seti Oluşturma

Lineer regresyonda, bir dizi noktaya en uygun düz çizgiyi veya hiper düzlemi bulmak için kullanılmakta idi. Bir diğer ifadeyle lineer regresyon, en uygun düz çizgi (regresyon çizgisi) kullanarak bağımlı değişken (Y) ile bir veya daha fazla bağımsız değişken (X) arasında bir ilişki kurar. Aşağıdaki grafikte kırmızı çizgi en uygun düz çizgi olarak adlandırılır.

Ben de bu veri setinde arabaların kilometre ömürlerine göre fiyatlarının nasıl bir ilişki içerisinde olacağını göstereceğim.

Hadi veri setimizi görelim:

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Km	Yil	Fiyat
57000 5 26100 22500 2 40000 46000 4 31500 59000 5 26750 52000 5 32000 72000 6 19300 91000 8 12000 67000 6 22000 83000 7 18700 79000 7 19500 59000 5 26000 58780 4 27500 82450 7 19400 25400 3 35000	69000	6	18000
22500 2 40000 46000 4 31500 59000 5 26750 52000 5 32000 72000 6 19300 91000 8 12000 67000 6 22000 83000 7 18700 79000 7 19500 59000 5 26000 58780 4 27500 82450 7 19400 25400 3 35000	35000	3	34000
46000 4 31500 59000 5 26750 52000 5 32000 72000 6 19300 91000 8 12000 67000 6 22000 83000 7 18700 79000 7 19500 59000 5 26000 58780 4 27500 82450 7 19400 25400 3 35000	57000	5	26100
59000 5 26750 52000 5 32000 72000 6 19300 91000 8 12000 67000 6 22000 83000 7 18700 79000 7 19500 59000 5 26000 58780 4 27500 82450 7 19400 25400 3 35000	22500	2	40000
52000 5 32000 72000 6 19300 91000 8 12000 67000 6 22000 83000 7 18700 79000 7 19500 59000 5 26000 58780 4 27500 82450 7 19400 25400 3 35000	46000	4	31500
72000 6 19300 91000 8 12000 67000 6 22000 83000 7 18700 79000 7 19500 59000 5 26000 58780 4 27500 82450 7 19400 25400 3 35000	59000	5	26750
91000 8 12000 67000 6 22000 83000 7 18700 79000 7 19500 59000 5 26000 58780 4 27500 82450 7 19400 25400 3 35000	52000	5	32000
67000 6 22000 83000 7 18700 79000 7 19500 59000 5 26000 58780 4 27500 82450 7 19400 25400 3 35000	72000	6	19300
83000 7 18700 79000 7 19500 59000 5 26000 58780 4 27500 82450 7 19400 25400 3 35000	91000	8	12000
79000 7 19500 59000 5 26000 58780 4 27500 82450 7 19400 25400 3 35000	67000	6	22000
59000 5 26000 58780 4 27500 82450 7 19400 25400 3 35000	83000	7	18700
58780 4 27500 82450 7 19400 25400 3 35000	79000	7	19500
82450 7 19400 25400 3 35000	59000	5	26000
25400 3 35000	58780	4	27500
1 1	82450	7	19400
	25400	3	35000
28000 2 35500	28000	2	35500
69000 5 19700	69000	5	19700
87600 8 12800	87600	8	12800
52000 5 28200	52000	5	28200

Bu veri setiyle çalıştım. Kodda ise nasıl oluşturulduğunu görebilirsiniz:

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.linear_model import LinearRegression

data = pd.read_csv('fiyatlar.csv') # veriyi aliyoruz
X = data.iloc[:, 0].values.reshape(-1, 1) # Verideki degerleri numpy dizisine donduruyoruz
Y = data.iloc[:, 2].values.reshape(-1, 1) # -1, satirlarin boyutunun hesaplandigi, ancak 1 sutun oldugu anlamina gelir
print("------")
print(data)
```

Listing 6: Veri Seti Oluşturma

Sonuç olarak da aşağıya bu terminal sonucu gelecektir:

0123456789111234567	Km 69000 35000 57000 52500 46000 52000 72000 72000 67000 83000 79000 59000 58780 82450	1163524556886775473258	Fiyat 18000 34000 26100 40000 31500 26750 32000 19300 12000 22000 18700 19500 27500
11 12	79000 59000	? 5	19500 26000
13 14 15	82450 25400	4 7 3	19400 35000
16 17 18 19	28000 69000 87600	2 5 8	35500 19700 12800
19	52000	5	28200

Figure 5: Veri Seti

2.2.2 2.Adım: Lineer Regresyon Modeli

2.adımda modelimizi oluşturan kodları ve onların sonuçlarını göreceksiniz. Öncelikle analiz için x ve y değerlerimizin olması gerekiyor. Bunları şu şekilde aldım.

```
1 X = data.iloc[:, 0].values.reshape(-1, 1) # Verideki degerleri
numpy dizisine donduruyoruz
2 Y = data.iloc[:, 2].values.reshape(-1, 1) # -1, satirlarin
boyutunun hesaplandigi, ancak 1 sutun oldugu anlamina gelir
```

Listing 7: x ve y Değerleri

Daha sonra bu değerleri kullanan eğitim modelimizi oluşturdum.

```
linear_regressor = LinearRegression() # model objemizi olusturduk
linear_regressor.fit(X, Y) # linear regresyon modelimizi egittik
Y_pred = linear_regressor.predict(X) # tahminler yaptik
print(X)#e itti imiz x de erleri
print("-----")
print(Y_pred)#tahminler
```

Listing 8: Model

Şimdi modelimizi oluşturduk. Modelimizi lineerregressor değişkenine tanımladık. Daha sonra eğilecek değerler verildi ve en son da tahmin (predict) işlemleri yapıldı. Bu işlemlerin sonucunda galeride bulunan arabaların km ömürlerine göre fiyatlarının ne seviyede olduğunu ilişkilendirmeye çalıştım. En son da bu değerleri görelim.

```
[[21789.35155452]
[34298.34352801]
[26204.2898981]
[38897.23763591]
[30251.31671306]
[25468.46684084]
[28043.84754126]
[20685.61696862]
[13695.29792461]
[22525.17461178]
[16638.59015367]
[18110.23626819]
[25548.46684084]
[25549.40737714]
[16840.94149441]
[37830.29420288]
[36873.72422844]
[21789.35155452]
[14946.19712196]
[28043.84754126]]
```

Figure 6: Tahmin değerleri

```
Skor: 0.9354244112393256
```

Figure 7: Doğruluk Skoru

2.2.3 3.Adım: Sonuçlar

```
6 plt.plot(X, Y_pred, color='red')
7 plt.show()
```

Listing 9: Lineer Regression Sonuç Bastırımı

Sonuç grafiğini de aşağıda görebilirsiniz.

Figure 8: Sonuç Grafiği