1. Floating-point arithmetic

• Fixed point representation:

$$x = \pm (d_1 d_2 ... d_{k-1}. d_k ... d_n)_{\beta}$$

• Floating-point representation:

$$x = (0. d_1...d_{k-1})\beta^{d_k...d_n-B}$$

where B is an **exponent bias**.

- If $d_1 \neq 0$ then the floating point system is **normalised** and each float has a unique representation.
- binary64: stored as

$$se_{10}...e_0d_1...d_{52}$$

where s is the **sign** (0 for positive, 1 for negative), $e_{10}...e_0$ is the **exponent**, and $d_1...d_{52}$ is the **mantissa**. The bias is 1023. The number represented is

$$\begin{cases} (-1)^s (1. d_1...d_{52})_2 2^e & \text{if } e \neq 0 \text{ or } 2047 \\ (-1)^s (0. d_1...d_{52})_2 2^{-1022} & \text{if } e = 0 \end{cases}$$

where $e = (e_{10}...e_0)_2$ e = 2047 is used to store NaN, $\pm \infty$. The first case $e \neq 0$ is a **normal** representation, the e = 0 case is a **subnormal representation**.

- · Floating-point numbers have finite range and precision.
- **Underflow**: where floating point calculation result is smaller than smallest representable float. Result is set to zero.
- Overflow: where floating point calculation result is larger than largest representable float. Floating-point exception is raised.
- Machine epsilon ε_M : difference between smallest representable number greater than 1 and 1. $\varepsilon_M = \beta^{-k+1}$.
- fl(x) maps real numbers to floats.
- Chopping: rounds towards zero. Given $x=\left(0.\,d_1...d_kd_{k+1}...\right)_{\beta}\cdot\beta^e$, if the float has k mantissa digits, then

$$\mathrm{fl}_{\mathrm{chop}}(x) = (0. \, d_1...d_k) \cdot \beta^e$$

• Rounding: rounds to nearest. Given $x=\left(0.\,d_1...d_kd_{k+1}...\right)_{\beta}\cdot\beta^e$, if the float has k mantissa digits, then

$$\tilde{\mathrm{fl}}_{\mathrm{round}}(x) = \begin{cases} \left(0.\,d_1...d_k\right)_{\beta} \cdot \beta^e & \text{if } \rho < \frac{1}{2} \\ \left(\left(0.\,d_1...d_k\right)_{\beta} + \beta^{-k}\right) \cdot \beta^e & \text{if } \rho \geq \frac{1}{2} \end{cases}$$

where $\rho = (0. d_{k+1}...)$.

• Relative rounding error:

$$\varepsilon_x = \frac{\mathrm{fl}(x) - x}{x} \Longleftrightarrow \mathrm{fl}(x) = x(1 + \varepsilon_x)$$

1

$$\left| \frac{\mathrm{fl}_{\mathrm{chop}} - x}{x} \right| \le \beta^{-k+1}, \quad \left| \frac{\tilde{\mathrm{fl}}_{\mathrm{round}}(x) - x}{x} \right| \le \frac{1}{2} \beta^{-k+1}$$

• Round-to-nearest half-to-even: fairer rounding than regular rounding for discrete values. In the case of a tie, round to nearest even integer:

$$\mathrm{fl_{round}}(x) = \begin{cases} \left(0.\,d_1...d_k\right)_{\beta} \cdot \beta^e & \text{if } \rho < \frac{1}{2} \text{ or } \left(\rho = \frac{1}{2} \text{ and } d_k \text{ is even}\right) \\ \left(\left(0.\,d_1...d_k\right)_{\beta} + \beta^{-k}\right) \cdot \beta^e & \text{if } \rho > \frac{1}{2} \text{ or } \left(\rho = \frac{1}{2} \text{ and } d_k \text{ is odd}\right) \end{cases}$$

- $x \oplus y = \mathrm{fl}(\mathrm{fl}(x) + \mathrm{fl}(y))$ and similarly for \otimes , \ominus , \oplus .
- Relative error in $x \pm y$ can be large:

$$\mathrm{fl}(x) \pm \mathrm{fl}(y) - (x \pm y) = x(1 + \varepsilon_x) \pm y(1 + \varepsilon_y) - (x \pm y) = x\varepsilon_x \pm y\varepsilon_y$$

so relative error is

$$\frac{x\varepsilon_x \pm y\varepsilon_y}{x+y}$$

- In general, $x \oplus (y \oplus z) \neq (x \oplus y) \oplus z$
- For some computations, can avoid round-off errors (usually caused by subtraction of numbers close in value) e.g. instead of

$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

compute

$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \cdot \frac{-b - \sqrt{b^2 - 4ac}}{-b - \sqrt{b^2 - 4ac}} = \frac{-2c}{b + \sqrt{b^2 - 4ac}}$$

2. Polynomial Interpolation

- \mathcal{P}_n is set of polynomials of degree $\leq n$.
- $conv\{x_0,...,x_n\}$ is smallest closed interval containing $\{x_0,...,x_n\}$.
- Taylor's theorem: for function f, if for $t \in \mathcal{P}_n$, $t^{(j)}(x_0) = f^{(j)}(x_0)$ for $j \in \{0,...,n\}$ then

$$f(x) - t(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

for some $\xi \in \text{conv}\{x_0, x\}$ (Lagrange form of remainder).

- Polynomial interpolation: given nodes $\{x_j\}_{j=0}^n$ and function f, there exists unique $p\in\mathcal{P}_n$ such that p interpolates $f\colon p\big(x_j\big)=f\big(x_j\big)$ for $j\in\{0,...,n\}$.

 • Cauchy's theorem: let $p\in P_n$ interpolate f at $\big\{x_j\big\}^{(j=0)^n}$, then

$$\forall x \in \operatorname{conv} \big\{ x_j \big\}, f(x) - p(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0) \, \cdots \, (x - x_n) \quad \text{for some } \xi \in \operatorname{conv} \big\{ x_j \big\}$$

• Chebyshev polynomials:

$$T_n(x) = \cos(n\cos^{-1}(x)), \quad x \in [-1, 1]$$

- $\bullet \ T_{n+1}(x) = 2xT_n(x) T_{n-1}(x).$
- Roots of $T_n(x)$ are $x_j=\cos\left(\pi\left(j+\frac{1}{2}\right)/n\right)$ for $j\in\{0,...,n-1\}.$ Local extrema at $y_j=\cos(j\pi/n)$ for $j\in\{0,...,n-1\}.$
- Let $\omega_n(x)=(x-x_0)\cdots(x-x_n)$, $\left\{x_j\right\}_{j=0}^n\subset [-1,1]$ (if $\left\{x_j\right\}\not\subset [-1,1]$ so interval is [a,b], then we can map $x_j\to a+\frac{1}{2}(x_j+1)(b-a)$). Then $\sup_{x\in [-1,1]}|\omega_n(x)|$ attains its min value iff $\left\{x_j\right\}$ are zeros of $T_{n+1}(x)$. Also,

$$2^{-n} \leq \sup_{x \in [-1,1]} \lvert \omega_n(x) \rvert < 2^{n+1}$$

• Convergence theorem: let $f \in C^2([-1,1])$, $\left\{x_j\right\}_{j=0}^n$ be zeros of Chebyshev polynomial $T_{n+1}(x)$ and $p_n \in \mathcal{P}_n$ interpolate f at $\left\{x_j\right\}$. Then

$$\sup_{x \in (-1,1)} \Bigl| f(x) - p_n(x) \Bigr| \to 0 \quad \text{as } n \to \infty$$

• Weierstrass' theorem: let $f \in C^0([a,b])$. $\forall \varepsilon > 0$, exists polynomial p such that

$$\sup_{x \in (a,b)} |f(x) - p(x)| < \varepsilon$$

• Lagrange construction: basis polynomials given by

$$L_k(x) = \prod_{j \neq k} \frac{x - x_j}{x_k - x_j}$$

satisfy $L_k(x_i) = \delta_{ik}$. Then

$$p(x) = \sum_{k=0}^{n} L_k(x) f(x_k)$$

interpolates f at $\{x_j\}$.

- Note: Lagrange construction not often used due to computational cost and as we have to recompute from scratch if $\{x_i\}$ is extended.
- Divided difference operator:

$$\begin{split} \big[x_j\big]f &:= f\big(x_j\big) \\ \big[x_j, x_k\big]f &:= \frac{\big[x_j\big]f - [x_k]f}{x_j - x_k}, \quad [x_k, x_k]f := \lim_{y \to x_k} [x_k, y] = f'(x_k) \\ \big[x_j, ..., x_k, y, z\big]f &:= \frac{\big[x_j, ..., x_k, y\big]f - \big[x_j, ..., x_k, z\big]f}{y - z} \end{split}$$

These can be computed incrementally as new nodes are added.

• **Newton construction**: Interpolating polynomial p is

$$\begin{split} p(x) &= [x_0]f + (x-x_0)[x_0,x_1]f + (x-x_0)(x-x_1)[x_0,x_1,x_2]f \\ &+ \cdots + (x-x_0)\cdots(x-x_{n-1})[x_0,...,x_n]f \end{split}$$

- Hermite construction: for nodes $\left\{x_j\right\}_{j=0}^n$, exists unique $p_{2n+1} \in \mathcal{P}_{2n+1}$ that interpolates f and f' at $\left\{x_j\right\}$. Can be found using Newton construction, using nodes $(x_0, x_0, x_1, x_1, ..., x_n, x_n)$. Generally, if $p'(x_k) = f'(x_k)$ is needed, include x_k twice. If $p^{(n)}(x_k) = f^{(n)}(x_k)$ is needed, include x_k n+1 times.
- If $y_0,...,y_k$ is permutation of $x_0,...,x_k$ then $\left[y_0,...,y_k\right]f=[x_0,...,x_k]f.$
- Interpolating error is

$$f(x) - p(x) = (x - x_0) \cdots (x - x_n)[x_0, ..., x_n, x]f$$

which gives

$$[x_0,...,x_{n-1},x]f = \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

• Range reduction: when computing a function e.g. $f(x) = \arctan(x)$, f(-x) = -f(x) and $f(1/x) = \frac{\pi}{2} - f(x)$ so only need to compute for $x \in [0, 1]$.

3. Root finding

- Intermediate value theorem: if f continuous on [a, b] and f(a) < c < f(b) then exists $x \in (a, b)$ such that f(x) = c.
- Bisection: let $f \in C^0([a_n,b_n]),$ $f(a_n)f(b_n)<0.$ Then set $m_n=(a_n+b_n)\ /\ 2$ and

$$(a_{n+1},b_{n+1}) = \begin{cases} (m_n,b_n) \text{ if } f(a_n)f(m_n) > 0 \\ (a_n,m_n) \text{ if } f(b_n)f(m_n) > 0 \end{cases}$$

Then:

- $\bullet \ b_{n+1} a_{n+1} = \tfrac{1}{2} (b_n a_n).$
- By intermediate value theorem, exists $p_n \in (a_n,b_n)$ with $f\Big(p_n\Big)=0.$
- $\bullet \ \left| p_n m_n \right| \leq 2^{-(n+1)} (b_0 a_0).$
- False position: same as bisection except set m_n as x intercept of line from $(a_n, f(a_n))$ to $(b_n, f(b_n))$:

$$m_n = b_n - \frac{f(b_n)}{f(b_n) - f(a_n)}(b_n - a_n)$$

- Bisection and false position are **bracketing methods**. Always work but slow.
- Fixed-point iteration: rearrange $f(x_*)=0$ to $x_*=g(x_*)$ then iterate $x_{n+1}=g(x_n)$.
- f is **Lipschitz continuous** if for some L,

$$|f(x)-f(y)| \leq L|x-y|$$

- Space of Lipschitz functions on X is $C^{0,1}(X)$.
- Smallest such L is **Lipschitz constant**.
- Every Lipschitz function is continuous.
- Lipschitz constant is bounded by derivative:

$$\sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|} \le \sup_{x} |f'(x)|$$

• f is **contraction** if Lipschitz constant L < 1.

- Contraction mapping or Banach fixed point theorem: if g is a contraction and g(X) ⊂ X (g maps X to itself) then:
 - Exists unique solution $x_* \in X$ to g(x) = x and
 - The fixed point iteration method converges $x_n \to x_*$.
- Local convergence theorem: Let $g \in C^1([a,b])$ have fixed point $x_* \in (a,b)$ with $|g'(x_*)| < 1$. Then with x_0 sufficiently close to x_* , fixed point iteration method converges to x_* .
 - If $g'(x_*) > 0$, $x_n \to x_*$ monotonically.
 - If $g'(x_*) < 0$, $x_n x_*$ alternates in sign.
 - If $|g'(x_*)| > 1$, iteration method almost always diverges.
- $x_n \to x_*$ with order at least $\alpha > 1$ if

$$\lim_{n\to\infty}\frac{|x_{n+1}-x_*|}{\left|x_n-x_*\right|^\alpha}=\lambda<\infty$$

If $\alpha = 1$, then $\lambda < 1$ is required.

• Exact order of convergence of $x_n \to x_*$:

$$\alpha\coloneqq\sup\left\{\beta:\lim_{n\to\infty}\frac{|x_{n+1}-x_*|}{\left|x_n-x_*\right|^\beta}<\infty\right\}$$

Limit must be < 1 for $\alpha = 1$.

- Convergence is **superlinear** if $\alpha > 1$, **linear** if $\alpha = 1$ and $\lambda < 1$, **sublinear** otherwise.
- If $g \in C^2$, then with fixed point iteration,

$$\frac{|x_{n+1} - x_*|}{|x_n - x_*|} \to |f'(x_*)| \text{ as } n \to \infty$$

so $x_n \to x_*$ superlinearly if $g'(x_*) = 0$ and linearly otherwise.

• If $g \in C^N$, fixed point iteration converges with order N > 1 iff

$$g'(x_*)= \cdots = g^{(N-1)}(x_*)=0, \quad g^{(N)}(x_*) \neq 0$$

- Newton-Raphson: fixed point iteration with $g(x) = x - f(x) \, / \, f'(x)$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- For Newton-Raphson, $g'(x_*) = 0$ so quadratic convergence.
- Can use Newton-Raphson to solve 1/x-b=0:

$$x_{n+1} = x_n - \frac{1 / x_n - b}{-1 / x_n^2} = x_n (2 - bx_n)$$

• Newton-Raphson in d dimensions:

$$\underline{x}_{n+1} = \underline{x}_n - (Df)^{-1} \left(\underline{x}_n\right) \underline{f} \left(\underline{x}_n\right)$$

where Df is **Jacobian**.

• Secant method: approximate $f'(x_n) pprox rac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$ with Newton-Raphson:

$$x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n)$$

4. Numerical differentiation

· Taylor expansion:

$$f(x \pm h) = f(x) \pm hf'(x) + \frac{h^2}{2!}f''(x) \pm \frac{h^3}{3!}f'''(x) + \cdots$$

• Forward difference approximation:

$$f'(x) = \frac{f(x+h) - f(x)}{h} - \frac{h}{2}f''(\xi), \quad \xi \in \operatorname{conv}\{x, x+h\}$$

with h > 0.

- **Backward difference approximation**: forward difference but with h < 0.
- Centred difference approximation:

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{h^2}{12} \Big(f'''(\xi_-) + f'''\Big(\xi_+\Big) \Big), \quad \xi_\pm \in [x-h, x+h]$$

• **Richardson extrapolation**: for approximation of R(x; 0) of the form

$$R(x;h) = R^{(1)}(x;h) = R(x;0) + a_1(x)h + a_2(x)h^2 + a_3(x)h^3 + \cdots$$

we have

$$R^{(1)}(x;h\,/\,2) = R(x;0) + a_1(x)\frac{h}{2} + a_2(x)\frac{h^2}{4} + a_3(x)\frac{h^3}{8} + \cdots$$

This gives **second order approximation**:

$$R^{(2)}(x;h) = 2R^{(1)}(x;h\,/\,2) - R^{(1)}(x;h) = R(x;0) - a_2(x)\frac{h^2}{2} + \cdots$$

Similarly,

$$R^{(3)}(x;h) = \frac{4R^{(2)}(x;h\,/\,2) - R^{(2)}(x;h)}{3} = R(x;0) + \tilde{a}_3(x)h^3 + \cdots$$

is **third order approximation**. Generally,

$$R^{(n+1)}(x;h) = \frac{2^n R^{(n)}(x;h/2) - R^{(n)}(x;h)}{2^n - 1} = R(x;0) + O(h^{n+1})$$