LECTURE 8

Split Functions, Implicit Differentiation and Related Rates

Implicit Differentiation
$$\leftrightarrow \frac{d}{dx}(f(y)) = \frac{d}{dy}(f(y))\frac{dy}{dx}$$
.

Differentiating a relation between x and y implicitly with respect to t will produce a new relation between the rates of change $\frac{dx}{dt}$ and $\frac{dy}{dt}$.

A split function is usually constructed from two or more differentiable component functions. To verify (or force) the differentiability of such a split function we simply need to first verify that the pieces join up (continuity) and then that they *join smoothly* (differentiability) by showing that the derivatives match up properly.

Example 1: Find all real values of a and b such that the function defined by

$$f(x) = \begin{cases} 1 - x^2, & x < 2; \\ ax + b, & x \ge 2. \end{cases}$$

is differentiable at x = 2.

A sketch:

The leading to name the pieces.

Let $p(x) = 1 - x^2$ and q(x) = ax + b. It helps to name the pieces.

We first demand that the function be continuous at x = 2. That is the pieces must join, and hence p(2) = q(2): $1 - (2)^{2} = 2a + b$

$$-(2) = 2a+6$$

$$-3 = 2a+6$$

We next force the weld to be smooth! Thus we require that p'(2) = q'(2). That is: $9^2 - 4 \times 15$

$$p'(x) = -2_X \rightarrow p'(2) = -2(r) = -4$$

$$q'(x) =$$
 $\longrightarrow q'(2) =$

$$\frac{a=-4}{-8+b} = -3 = -3 = -5$$

Implicit Differentiation

Usually when you differentiate, your starting point is a nice clean function y = f(x). But sometimes you need to start with a horrible messy relation instead, for example $x^2 + y^3 + 4y^2 = 3$. It can be difficult or even impossible to write y in terms of x. We can still find the derivative $\frac{dy}{dx}$ but need to use **implicit differentiation**. First a simple skill.

Example 2: If
$$\frac{3}{7} = \frac{3}{11} \times \frac{*}{*}$$
 what is $\frac{*}{*}$?

$$\star \frac{11}{7} \star$$

Implicit differentiation is little more than the above trick!

Example 3: Find $\frac{dy}{dx}$ if $x^{2} + y^{3} + 4y^{2} = 3$. $\frac{dy}{dx} = \frac{dy}{dx} (x^{2}) + \frac{dz}{dx} (y^{3}) + \frac{dz}{dx} (y^{2}) = \frac{dz}{dx} (3)$ $\frac{dy}{dx} = \frac{dy}{dx} (y^{3}) (\frac{dy}{dx}) = (3y^{2}) (\frac{dy}{dx})$ $\frac{dy}{dx} = \frac{dy}{dx} (y^{3}) (\frac{dy}{dx}) = \frac{dy}{dx} = \frac{dy}{dx} (y^{2}) = \frac{dy}{dx} = 0$ $\frac{dy}{dx} = \frac{dy}{dx} + \frac{dy}{dx} = -2x$ $\frac{dy}{dx} = \frac{dy}{dx} + \frac{dy}{dx} = -2x$

$$\bigstar \quad \frac{-2x}{3y^2 + 8y} \quad \bigstar$$

Example 4: Find
$$\frac{dy}{dx}$$
 if $\sin(x) + e^{y} = \ln(y) + x^{3}$
 $\cos x$
 $\sin x + \int_{\pi}^{x} e^{y} = \int_{\pi}^{y} \ln y + \int_{\pi}^{y} x^{3}$
 $\cos x$
 $\int_{\pi}^{y} \ln y = \int_{\pi}^{y} \ln y + \int_{\pi}^{y} x^{3} = \int_{\pi}^{y} \ln y + \int_{\pi}^{y} x^{3}$
 $\int_{\pi}^{y} \ln y = \int_{\pi}^{y} \ln y + \int_{\pi}^{y} x^{3} = \int_{\pi}^{y} \int_{\pi$

Related Rates

Differentiating a relation between x and y implicitly with respect to t will produce a new relation between the rates of change $\frac{dx}{dt}$ and $\frac{dy}{dt}$.

Example 6: Suppose that the surface area S (in m^2) of a human body is related to its weight W (in kg) by

$$S^3 = \frac{W^2}{512}$$

- a) Bob weighs 64 kg. What is the surface area of his body?
- b) Find a relation between $\frac{dS}{dt}$ and $\frac{dW}{dt}$.
- c) Prove that if Bob's weight were to change in any way, the rate of change of his surface area would be $\frac{1}{48}$ the rate of change of his weight.

a)
$$S^3 = \frac{(64)^2}{5(2)} = 8 = 3$$
 $S = 2$ m^2

b)
$$S^3 = \frac{w^2}{512} = 3$$
 $= \frac{1}{2} (S^3) = \frac{1}{24} (\frac{w^2}{512})$

$$\frac{d}{dt}(S^{13}) = \frac{d}{ds}(s^{13})\frac{ds}{dt} = 3s^{2}\frac{ds}{dt}
\frac{d}{dt}(\frac{w^{2}}{5^{12}}) = \frac{d}{dw}(\frac{w^{2}}{5^{12}})\frac{dw}{dt} = \frac{w}{258}\frac{dw}{dt}
=> 3s^{2}\frac{ds}{dt} = 258\frac{w}{dt}$$

c) Bob:
$$S = 2$$
, $W = 64$
 $3(2)^2 \frac{ds}{dt} = \frac{64}{256} \frac{dw}{dt} = > 12 \frac{ds}{dt} = 4 \frac{dw}{dt}$
 $= > \frac{ds}{dt} = \frac{1}{48} \frac{dw}{dt}$

$$\bigstar$$
 a) S=2 b) $3S^2 \frac{dS}{dt} = \frac{W}{256} \frac{dW}{dt}$ c) Proof \bigstar

Example 7: A spherical balloon is inflated at a rate of 100 m³/sec. Determine the rate at which the radius is increasing when

a)
$$r = 5$$
m.

b)
$$V = 36\pi \text{ m}^3$$
.

Our first task is to find a relationship between the central variables which remains fixed throughout the entire process. This is of course the volume formula for a sphere:

$$V = \frac{4}{3}\pi r^{3}$$

$$dr = \int \left(\frac{4}{3}\pi r^{3}\right)^{3} dr = 4\pi r^{2} dr$$

$$dr = \int \left(\frac{4}{3}\pi r^{3}\right)^{3} dr = 4\pi r^{2} dr$$

$$dr = \int r \left(\frac{4}{3}\pi r^{3}\right)^{3} dr = 4\pi r^{2} dr$$

$$dr = \int r r^{2$$

Error Estimates (Homework)

This topic was of enormous importance before the advent of calculators but is now a bit dated.

Recall that $\frac{\Delta y}{\Delta x} \approx \frac{dy}{dx}$ and hence $\Delta y \approx \frac{dy}{dx} \Delta x$. This gives us a way of estimating errors.

Example 8: Find an error estimate when approximating $\sqrt{9.001}$ by $\sqrt{9}$.

We have x = 9 and $\Delta x = 0.001$.

Let
$$y = \sqrt{x}$$
. Then $\frac{dy}{dx} = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$.

Now
$$\Delta y \approx \frac{dy}{dx} \Delta x \to \Delta y \approx \frac{1}{2\sqrt{x}} \Delta x = \frac{1}{2\sqrt{9}} (0.001) = \frac{1}{6000}$$
.

$$\Delta y = \frac{1}{2} \int_{0.001}^{\infty} \Delta x. = \frac{1}{2} \int_{0.001}^{\infty} \frac{1}{59} (0.001)$$

C) Melan Paher 2020