Edited: Dec 2019

Continuous Mapping

Theorem 1.1.1. Suppose (X_n) is a sequence of random variables and g is a continuous mapping, then:

- i. If $X_n \xrightarrow{as} X$, then $g(X_n) \xrightarrow{as} g(X)$.
- ii. If $X_n \stackrel{p}{\longrightarrow} X$, then $g(X_n) \stackrel{p}{\longrightarrow} g(X)$.
- iii. If $X_n \stackrel{d}{\longrightarrow} X$, then $g(X_n) \stackrel{d}{\longrightarrow} g(X)$.

Proof. (i.) Suppose $X_n \xrightarrow{as} X$, then there exits a set $A \subseteq \Omega$ such that:

$$\lim_{n\to\infty} X_n(\omega) = X(\omega)$$

for $\forall \omega \in A$ and $\mathbb{P}(A) = 1$. Since g is a continuous function, on the same set:

$$g\{X(\omega)\} = g\left\{\lim_{n\to\infty} X(\omega)\right\} = \lim_{n\to\infty} g\{X(\omega)\}.$$

Conclude that $g(X_n) \xrightarrow{as} g(X)$.

(ii.) Suppose $X_n \stackrel{p}{\longrightarrow} X$, and let $m \in \mathbb{N}$. By total probability:

$$\mathbb{P}(|g(X_n) - g(X)| > \epsilon) = \mathbb{P}(|g(X_n) - g(X)| > \epsilon, |X_n - X| < m^{-1}) + \mathbb{P}(|g(X_n) - g(X)| > \epsilon, |X_n - X| > m^{-1}).$$

Proposition 1.1.1.

$$\lim_{m \to \infty} \lim_{n \to \infty} \mathbb{P}(|g(X_n) - g(X)| > \epsilon, |X_n - X| < m^{-1}) = 0.$$

Define:

$$A_{mn} = \{ \omega : |g(X_n) - g(X)| > \epsilon, |X_n - X| < m^{-1} \}, \qquad A_m = \bigcup_{n=1}^{\infty} A_{mn}.$$

Observe first that the sequence (A_m) is decreasing, since if $m_2 > m_1$ and $\omega \in A_{m_2}$ then $\omega \in A_{m_1}$. Fix ω , and hence $X(\omega)$. By continuity of g at $X(\omega)$, there exists δ such that if $|\xi - X(\omega)| < \delta$ then $|g(\xi) - X(\omega)| < \epsilon$. Chose M such that $M^{-1} < \delta$, then $\omega \notin A_m$ for $m \geq M$. Since ω was arbitrary:

$$\bigcap_{m=1}^{\infty} A_m = \emptyset.$$

Consequently,

$$\lim_{m \to \infty} \lim_{n \to \infty} \mathbb{P}(A_{mn}) \le \lim_{m \to \infty} \mathbb{P}(A_m) = \mathbb{P}\left(\bigcap_{m=1}^{\infty} A_m\right) = 0.$$

Proposition 1.1.2.

$$\lim_{m \to \infty} \lim_{n \to \infty} \mathbb{P}(|g(X_n) - g(X)| > \epsilon, |X_n - X| > m^{-1}) = 0.$$

This follows from $X_n \stackrel{p}{\longrightarrow} X$ since:

$$\lim_{m \to \infty} \lim_{n \to \infty} \mathbb{P}(|g(X_n) - g(X)| > \epsilon, |X_n - X| > m^{-1})$$

$$\leq \lim_{m \to \infty} \left\{ \lim_{n \to \infty} \mathbb{P}(|X_n - X| > m^{-1}) \right\} = \lim_{m \to \infty} \left\{ 0 \right\} = 0.$$

Overall, if $X_n \stackrel{p}{\longrightarrow} X$, then for $\forall \epsilon > 0$:

$$\lim_{n \to \infty} \mathbb{P}(|g(X_n) - g(X)| > \epsilon) = 0.$$

(iii.) Suppose $X_n \stackrel{d}{\longrightarrow} X$. Let F_n denote the distribution of X_n and F the distribution of X. Also, let G_n denote the distribution of $g(X_n)$ and G the distribution of g(X). The aim is to show that $G_n \to G$ (at points of continuity of G). By the Skorokhod representation theorem, there exist (ξ_n) and ξ , defined on a common probability space, such that ξ_n has distribution F_n , ξ has distribution F, and $\xi_n \stackrel{as}{\longrightarrow} \xi$. Now, by (i.) $g(\xi_n) \stackrel{as}{\longrightarrow} g(\xi)$, and by the convergence hierarchy, $g(\xi_n) \stackrel{as}{\longrightarrow} g(\xi)$ implies $g(\xi_n) \stackrel{d}{\longrightarrow} g(\xi)$. Since $g(\xi_n)$ has distribution G_n and $g(\xi)$ has distribution G, conclude $G_n \to G$ (at points of continuity of G).

Slutsky's

Remark 1.2.1. Recall from the portmanteau theorem that the following statements are equivalent:

i.
$$X_n \stackrel{d}{\longrightarrow} X$$
,

ii. $E\{g(X_n)\} \to E\{g(X)\}$ for every bounded, continuous function g.

iii. $E\{\mathcal{L}(X_n)\} \to E\{\mathcal{L}(X)\}$ for every bounded, Lipschitz function \mathcal{L} .

Proposition 1.2.1. If $X_n \xrightarrow{d} X$ and $||Y_n - X_n|| = o_p(1)$, then $Y_n \xrightarrow{d} X$.

Edited: Dec 2019

Proof. Let \mathcal{L} denote a bounded, Lipschitz function. Then, there \exists a constant L such that $||\mathcal{L}(x) - \mathcal{L}(y)|| \leq L||x - y||$. Moreover, since \mathcal{L} is bounded, $||\mathcal{L}(x)|| \leq M$. First consider:

$$||E\{\mathcal{L}(Y_{n})\} - E\{\mathcal{L}(X_{n})\}|| \leq E||\mathcal{L}(Y_{n}) - \mathcal{L}(X_{n})||$$

$$= E\{||\mathcal{L}(Y_{n}) - \mathcal{L}(X_{n})||I(||Y_{n} - X_{n}|| < \epsilon)\}$$

$$+ E\{||\mathcal{L}(Y_{n}) - \mathcal{L}(X_{n})||I(||Y_{n} - X_{n}|| \geq \epsilon)\}$$

$$\leq LE\{||Y_{n} - X_{n}||I(||Y_{n} - X_{n}|| < \epsilon)\} + 2M\mathbb{P}\{||Y_{n} - X_{n}|| \geq \epsilon\}$$

$$< L\epsilon\mathbb{P}\{||Y_{n} - X_{n}|| < \epsilon\} + 2M\mathbb{P}\{||Y_{n} - X_{n}|| \geq \epsilon\}.$$

Next, consider:

$$||E\{\mathcal{L}(Y_n)\} - E\{\mathcal{L}(X)\}|| \le ||E\{\mathcal{L}(Y_n)\} - E\{\mathcal{L}(X_n)\}|| + ||E\{\mathcal{L}(X_n)\} - E\{\mathcal{L}(X)\}||$$

$$< L\epsilon + 2M\mathbb{P}\{||Y_n - X_n|| \ge \epsilon\} + ||E\{\mathcal{L}(X_n)\} - E\{\mathcal{L}(X)\}||.$$

Taking the limit as $n \to \infty$, the second and third terms vanish since $||Y_n - X_n|| = o_p(1)$ and $X_n \stackrel{d}{\longrightarrow} X$, hence:

$$\lim_{n \to \infty} ||E\{\mathcal{L}(Y_n)\} - E\{\mathcal{L}(X)\}|| < K\epsilon.$$

Since $\epsilon > 0$ was arbitrary, the limit vanishes. Conclude that $Y_n \xrightarrow{d} X$.

Proposition 1.2.2. Suppose $X_n \stackrel{d}{\longrightarrow} X$ and Y_n converges in probability to a constant α $(Y_n \stackrel{p}{\longrightarrow} \alpha)$, then (X_n, Y_n) converge jointly in distribution to (X, α) .

Proof. Let g(x,y) denote a bounded, continuous function. Define $h(x) = f(x,\alpha)$. Since $X_n \xrightarrow{d} X$, by the portmanteau theorem, $E\{h(X_n)\} \to E\{h(X)\}$, and equivalently:

$$E\{g(X_n,\alpha)\}\to E\{g(X,\alpha)\}.$$

Thus
$$(X_n, \alpha) \xrightarrow{d} (X, \alpha)$$
. Now $||(X_n, Y_n) - (X_n, \alpha)|| = ||Y_n - \alpha|| = o_p(1)$. Together, $(X_n, \alpha) \xrightarrow{d} (X, \alpha)$ and $||(X_n, Y_n) - (X_n, \alpha)|| = o_p(1)$ imply $(X_n, Y_n) \xrightarrow{d} (X_n, \alpha)$.

Theorem 1.2.1 (Slutsky's). If $X_n \stackrel{d}{\longrightarrow} X$ and Y_n converges in probability to a constant α ($Y_n \stackrel{p}{\longrightarrow} \alpha$), then for a continuous mapping f:

$$f(X_n, Y_n) \xrightarrow{d} f(X, \alpha).$$

Proof. By the preceding propositions, $(X_n, Y_n) \xrightarrow{d} (X, \alpha)$, and by the continuous mapping theorem $f(X_n, Y_n) \xrightarrow{d} f(X, \alpha)$.

Law of Large Numbers

Theorem 1.3.1 (LLN). Suppose (X_i) is a sequence of independent random variables. If the following conditions hold:

i.
$$\lim_{n\to\infty} \sum_{i=1}^n \mathbb{P}(|X_i| > n) = 0$$
,

ii. and
$$\lim_{n\to\infty} n^{-2} \sum_{i=1}^n E\{X_i^2 I(|X_i| \le n)\} = 0$$
,

then,

$$\underset{n\to\infty}{\text{plim}} \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu_{n,i}) = 0,$$

where $\mu_{n,i} = E\{X_i I(|X_i| \leq n)\}.$

Proof. Define $Y_{n,i} = X_i I(|X_i| \le n)$, and:

$$S_n = \sum_{i=1}^n X_i,$$
 $T_n = \sum_{i=1}^n Y_{n,i}.$

Proposition 1.3.1. The original sum S_n and the truncated sum T_n converge to the same limit: $S_n - T_n = o_p(1)$.

This follows from hypothesis (i.) since:

$$\mathbb{P}(|S_n - T_n| > \epsilon) \le \mathbb{P}(S_n \ne T_n) \le \mathbb{P}\left(\bigcup_{i=1}^n \{X_i \ne Y_{n,i}\}\right)$$
$$\le \sum_{i=1}^n \mathbb{P}(X_i \ne Y_i) = \sum_{i=1}^n \mathbb{P}(|X_i| > n) \to 0.$$

Proposition 1.3.2.

$$\underset{n \to \infty}{\text{plim}} \frac{1}{n} \sum_{i=1}^{n} (Y_{n,i} - \mu_{n,i}) = 0.$$

This follows from hypothesis (ii.) since:

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}\left(Y_{n,i}-\mu_{n,i}\right)\right| \ge \epsilon\right) \le \frac{1}{\epsilon^{2}n^{2}}\operatorname{Var}\left(T_{n}\right) \le \frac{1}{\epsilon^{2}n^{2}}\sum_{i=1}^{n}E\left(Y_{n,i}^{2}\right)$$
$$\le \frac{1}{\epsilon^{2}n^{2}}\sum_{i=1}^{n}E\left\{X_{i}^{2}I(|X_{i}| \le n)\right\} = 0.$$

Overall:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu_{n,i}) = \lim_{n \to \infty} \frac{S_n - T_n}{n} + \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} (Y_{n,i} - \mu_{n,i}) = 0.$$

Edited: Dec 2019

Example 1.3.1. Let (X_i) denote a sequence of independent random variables, with mean $E(X_i) = \mu_i$ and $Var(X_i) = \sigma_i^2$. Suppose:

$$\mu = \lim_{n \to \infty} \sum_{i=1}^{n} \mu_i$$

exists, and that the variances are uniformly bounded $Var(X_i) \leq M$. Then:

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}\stackrel{p}{\longrightarrow}\mu.$$

To see this, let $Y_i = X_i - \mu_i$ such that $E(Y_i) = 0$ for $\forall i \in \mathbb{N}$, then:

$$\lim_{n \to \infty} \sum_{i=1}^{n} \mathbb{P}(|Y_i| > n) \le \lim_{n \to \infty} \sum_{i=1}^{n} \frac{\operatorname{Var}(Y_i)}{n^2} \le \lim_{n \to \infty} \frac{n \cdot M}{n^2} = 0.$$

The second condition follows similarly:

$$\lim_{n \to \infty} \frac{1}{n^2} \sum_{i=1}^n E\{|Y_i|I(|Y_i| \le n)\} \le \lim_{n \to \infty} \frac{1}{n^2} \sum_{i=1}^n Var(Y_i) = \lim_{n \to \infty} \frac{n \cdot M}{n^2} = 0.$$

Theorem 1.3.2 (Kolmogorov LLN). Suppose (X_n) are IID. There exists a constant α such that:

$$\frac{1}{n} \sum_{i=1}^{n} X_i \stackrel{as}{\longrightarrow} \alpha$$

if and only if $E(X_i) < \infty$, in which case $\alpha = E(X_i)$.

Remark 1.3.1. See Resnick (2014), theorem 7.5.1; Serfling (1980), section 1.8. ♦

3.1 Glivenko-Cantelli

Theorem 1.3.3. Suppose (X_i) are IID random variables with common distribution function F. Let \mathbb{F}_n denote the empirical distribution function:

$$\mathbb{F}_n(x,\omega) = \frac{1}{n} \sum_{i=1}^n I\{X_i(\omega) \le x\}.$$

Then \mathbb{F}_n converges to F uniformly almost surely:

$$\sup_{x \in \mathbb{R}} \left| \mathbb{F}_n(x, \omega) - F(x) \right| \xrightarrow{as} 0.$$

5

Remark 1.3.2. See Resnick (2014), theorem 7.5.2.

Central Limit Theorem

4.1 IID Case

Proposition 1.4.1 (Lindeberg-Levy CLT). If (Y_i) are IID random variables with $E(Y_i) = 0$ and $E(Y_i^2) = 1$,

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} Y_i \xrightarrow{d} N(0,1).$$

Proof. Consider the characteristic function of $n^{-1/2} \sum_{i=1}^{n} Y_i$:

$$\phi_n(t) = E(e^{it \cdot n^{-1/2} \sum_{i=1}^n Y_i}) = \left\{ \phi(n^{-1/2}t) \right\}^n = \left\{ \phi(0) + \frac{t}{n^{1/2}} \dot{\phi}(0) + \frac{t^2}{2n} \ddot{\phi}(0) + o(n^{-1}) \right\}^n,$$

where $\phi(\cdot)$ is the characteristic function of Y. Now:

$$\dot{\phi}(0) = iE(Y) = 0,$$
 $\ddot{\phi}(0) = -E(Y^2) = -1.$

Thus:

$$\phi_n(t) = \left\{ \phi(0) - \frac{t^2}{2n} + o(n^{-1}) \right\}^n \to e^{-t^2/2}.$$

Since $\exp(-t^2/2)$ is the characteristic function of the standard normal distribution, by Levy's continuity theorem, $n^{-1/2} \sum_{i=1}^{n} Y_i$ converges in distribution to N(0,1).

Theorem 1.4.1 (Berry Essen). Suppose (X_i) are IID with mean $E(X_i) = \mu$ and $Var(X_i) = \sigma^2 > 0$ and $E|X_i|^3 < \infty$. Let F_n denote the finite-sample distribution of the normalized sum:

$$Z_n = \sqrt{n} \frac{\sum_{i=1}^n (X_i - \mu)}{\sigma},$$

then there exists a constant C > 0 such that for $\forall n \in \mathbb{N}$:

$$\sup_{x \in \mathbb{R}} |F_n(x) - \Phi(x)| \le \frac{CE|X_i - \mu|^3}{\sigma^3 \sqrt{n}},$$

where Φ is the standard normal distribution function.

Created: Feb 2019 6

4.2 Lindeberg Feller

Theorem 1.4.2 (Lindeberg-Feller CLT). Let (X_i) denote a sequence of independent random variables. Define the centered random variables $Y_i = X_i - E(X_i)$. Suppose $Var(X_i) = E(Y_i^2) = \sigma_i^2 < \infty$. Let $s_n^2 = \sum_{i=1}^n \sigma_i^2$. If, for $\forall \epsilon > 0$, the **Lindeberg condition** holds:

$$\lim_{n \to \infty} \frac{1}{s_n^2} \sum_{i=1}^n E\{X_i^2 I(|X_i| > \epsilon s_n)\} = 0, \tag{A_1}$$

then:

$$\frac{\sum_{i=1}^{n} (X_i - \mu_i)}{\sqrt{\left(\sum_{i=1}^{n} \sigma_i^2\right)}} \stackrel{d}{\longrightarrow} N(0, 1). \tag{B}$$

Remark 1.4.2. See Resnick (2014), theorem 9.8.1. For the multivariate extension, see Serfling (1980), section 1.9.

Proposition 1.4.2. The Lindeberg condition (A_1) implies:

$$\lim_{n \to \infty} \frac{\max_{1 \le i \le n} \sigma_i^2}{\sum_{i=1}^n \sigma_i^2} = 0. \tag{A_2}$$

Proof.

$$\frac{\sigma_i^2}{s_n^2} = \frac{E(Y_i^2)}{s_n^2} = \frac{1}{s_n^2} E\{Y_i^2 I(|Y_i| \le \epsilon s_n)\} + \frac{1}{s_n^2} E\{Y_i^2 I(|Y_i| \le \epsilon s_n)\}
\le \epsilon^2 + \frac{1}{s_n^2} \sum_{i=1}^n E\{Y_i^2 I(|Y_i| \le \epsilon s_n)\}.$$

Since this bound is independent of i:

$$\frac{\max_{1 \le i \le n} \sigma_i^2}{s_n^2} \le \epsilon^2 + \frac{1}{s_n^2} \sum_{i=1}^n E\{Y_i^2 I(|Y_i| \le \epsilon s_n)\}.$$

Taking the limit as $n \to \infty$, under (A_1) :

$$\lim_{n \to \infty} \frac{\max_{1 \le i \le n} \sigma_i^2}{s_n^2} \le \epsilon^2.$$

Proposition 1.4.3. Condition (A_2) implies uniform asymptotic negligibility:

$$\lim_{n \to \infty} \max_{1 \le i \le n} \mathbb{P}(|Y_i| > \epsilon s_n) = 0. \tag{A_3}$$

Proof. By Chebyshev's inequality:

$$\lim_{n\to\infty} \max_{1\leq i\leq n} \mathbb{P}\big(|Y_i|>\epsilon s_n\big) \leq \lim_{n\to\infty} \max_{1\leq i\leq n} \frac{E(Y_i^2)}{\epsilon^2 s_n^2} = \frac{1}{\epsilon^2} \lim_{n\to\infty} \frac{\max_{1\leq i\leq n} \sigma_i^2}{s_n^2} = 0.$$

Proposition 1.4.4. The Lyapunov condition requires that $\exists \delta > 0$ such that:

$$\lim_{n \to \infty} \frac{\sum_{i=1}^{n} E|X_i|^{2+\delta}}{s_n^{2+\delta}} = 0.$$
 (A₀)

The Lyapunov condition implies the Lindeberg condition (A_1) .

Proof.

$$\frac{1}{s_n^2} \sum_{i=1}^n E\left\{X_i^2 I(|X_i| > \epsilon s_n)\right\} = \sum_{i=1}^n E\left\{\left|\frac{X_i}{s_n}\right|^2 \cdot 1 \cdot I(|X_i|/(\epsilon s_n) > 1\right\} \\
\leq \sum_{i=1}^n E\left\{\left|\frac{X_i}{s_n}\right|^2 \left|\frac{X_i}{s_n}\right|^{\delta} I(|X_i|/(\epsilon s_n) > 1\right\} \\
\leq \frac{1}{\epsilon^{\delta}} \sum_{i=1}^n E|X_i|^{2+\delta} \to 0.$$

Remark 1.4.3. Based on the preceding, the Lyapunov implies Lindeberg implies uniform asymptotic negligibility:

$$A_0 \implies A_1 \implies A_2 \implies A_3.$$

The Lindeberg condition implies asymptotic normality:

$$A_0 \implies A_1 \implies B$$
.

Feller's theorem states that, under condition (A_2) , asymptotic normality holds if and only if the Lindeberg condition holds:

$$A_2 \implies (A_1 \iff B).$$

4.3 Triangular Array

Theorem 1.4.3 (Triangular Array CLT). Suppose $(X_{n,i})$ is a sequence of independent random variables, $Y_{n,i} = X_{n,i} - E(X_{n,i})$, $Var(X_{n,i}) = E(Y_{n,i}^2) = \sigma_{n,i}^2 < \infty$, and $s_n^2 = \sum_{i=1}^{r_n} \sigma_{n,i}^2$. If, for $\forall \epsilon > 0$, the Lindeberg condition holds:

$$\lim_{n \to \infty} \frac{1}{s_n^2} \sum_{i=1}^{r_n} E\{Y_{n,i}^2 I(|Y_{n,i}| > \epsilon s_n)\} = 0,$$

then:

$$\frac{\sum_{i=1}^{r_n} (X_{n,i} - \mu_{n,i})}{\sqrt{\left(\sum_{i=1}^{r_n} \sigma_{n,i}^2\right)}} \stackrel{d}{\longrightarrow} N(0,1).$$

Remark 1.4.4. See Billingsley (1995), theorem 27.2.

4.4 Delta Method

Theorem 1.4.4. Suppose r_n is a sequence of positive constants such that $r_n \to \infty$ as $n \to \infty$, and that:

$$r_n(T_n - \theta) \stackrel{d}{\longrightarrow} X.$$

If g is continuously differentiable in a neighborhood of θ , then:

$$r_n\{g(T_n) - g(\theta)\} \xrightarrow{d} \dot{g}(\theta)X.$$

Proof. Since $r_n(T_n - \theta)$ converges in distribution, $r_n(T_n - \theta) = \mathcal{O}_p(1)$ or:

$$T_n - \theta = \mathcal{O}_p(r_n^{-1}).$$

Since $r_n \to \infty$, this shows $T_n = \theta + o_p(1)$. Take the Taylor expansion of g about θ :

$$g(T_n) = g(\theta) + \dot{g}(\theta)(T_n - \theta) + \mathcal{O}_p(r_n^{-2}),$$

$$r_n \{g(T_n) - g(\theta)\} = \dot{g}(\theta)r_n(T_n - \theta) + \mathcal{O}_p(r_n^{-1}).$$

By Slutsky's theorem:

Created: Feb 2019

$$r_n\{g(T_n) - g(\theta)\} \xrightarrow{d} \dot{g}(\theta)X.$$

9

Edited: Dec 2019 Asymptotics Zachary McCaw

Example 1.4.1. Suppose that:

$$\sqrt{n}(\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) \stackrel{d}{\longrightarrow} N(0, \boldsymbol{\Sigma}).$$

Let $g: \mathbb{R}^p \to \mathbb{R}$ denote a continuous differentiable mapping, then:

$$\sqrt{n} \{ g(\hat{\boldsymbol{\theta}}_n) - g(\boldsymbol{\theta}_0) \} \stackrel{d}{\longrightarrow} N \{ 0, \dot{g}(\boldsymbol{\theta}_0)' \boldsymbol{\Sigma} \dot{g}(\boldsymbol{\theta}_0) \},$$

where:

$$\dot{g}(\boldsymbol{\theta}_0) = \frac{\partial g(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}_0}.$$

Remark 1.4.5. See also van der Vaart (1998), theorem 3.1.

Created: Feb 2019 10