PROCESADORES DE LENGUAJES

Prof. Dr. Nicolás Luis Fernández García

Departamento de Informática y Análisis Numérico Escuela Politécnica Superior de Córdoba Universidad de Córdoba

- Tema I.- Introducción
- Tema II .- Análisis Lexicográfico
- Tema III.- Fundamentos Teóricos del Análisis Sintáctico
- Tema IV.- Análisis Sintáctico Descendente
- Tema V.- Análisis Sintáctico Ascendente

- Introducción
- Especificación de componentes léxicos
- 3 Reconocimiento de componentes léxicos
- 4 Implementación de los analizadores léxicos
- 5 Detección y recuperación de errores

- Introducción
- 2 Especificación de componentes léxicos
- 3 Reconocimiento de componentes léxicos
- 4 Implementación de los analizadores léxicos
- 5 Detección y recuperación de errores

- Introducción
- 2 Especificación de componentes léxicos
- 3 Reconocimiento de componentes léxicos
- 4 Implementación de los analizadores léxicos
- 5 Detección y recuperación de errores

- Introducción
- 2 Especificación de componentes léxicos
- 3 Reconocimiento de componentes léxicos
- 4 Implementación de los analizadores léxicos
- Detección y recuperación de errores

- Introducción
- 2 Especificación de componentes léxicos
- 3 Reconocimiento de componentes léxicos
- 4 Implementación de los analizadores léxicos
- 5 Detección y recuperación de errores

Contenido del tema

- Introducción
- 2 Especificación de componentes léxicos
- 3 Reconocimiento de componentes léxicos
- 4 Implementación de los analizadores léxicos
- 5 Detección y recuperación de errores

Contenido de la sección

- Introducción
 - El análisis léxico en el proceso de traducción
 - Componentes Léxicos
 - Tabla de Símbolos
 - Palabras claves
 - Ejemplo
 - Autonomía del analizador léxico
- 2 Especificación de componentes léxicos
- 3 Reconocimiento de componentes léxicos
- 4 Implementación de los analizadores léxicos

El análisis léxico en el proceso de traducción

- Primera fase del proceso de traducción
- Lee el código fuente "carácter a carácter"
- Genera los componentes léxicos
- Procedimiento auxiliar del Análisis Sintáctico
- Crea la Tabla de Símbolos
- El Gestor de errores procesa los errores léxicos detectados

El análisis léxico en el proceso de traducción

- Primera fase del proceso de traducción
- Lee el código fuente "carácter a carácter"
- Genera los componentes léxicos
- Procedimiento auxiliar del Análisis Sintáctico
- Crea la Tabla de Símbolos
- El Gestor de errores procesa los errores léxicos detectados

El análisis léxico en el proceso de traducción

- Primera fase del proceso de traducción
- Lee el código fuente "carácter a carácter"
- Genera los componentes léxicos
- Procedimiento auxiliar del Análisis Sintáctico
- Crea la Tabla de Símbolos
- El Gestor de errores procesa los errores léxicos detectados

El análisis léxico en el proceso de traducción

- Primera fase del proceso de traducción
- Lee el código fuente "carácter a carácter"
- Genera los componentes léxicos
- Procedimiento auxiliar del Análisis Sintáctico
- Crea la Tabla de Símbolos
- El Gestor de errores procesa los errores léxicos detectados

El análisis léxico en el proceso de traducción

- Primera fase del proceso de traducción
- Lee el código fuente "carácter a carácter"
- Genera los componentes léxicos
- Procedimiento auxiliar del Análisis Sintáctico
- Crea la Tabla de Símbolos
- El Gestor de errores procesa los errores léxicos detectados

El análisis léxico en el proceso de traducción

- Primera fase del proceso de traducción
- Lee el código fuente "carácter a carácter"
- Genera los componentes léxicos
- Procedimiento auxiliar del Análisis Sintáctico
- Crea la Tabla de Símbolos
- El Gestor de errores procesa los errores léxicos detectados

El análisis léxico en el proceso de traducción

Código Fuente

Contenido de la sección

- Introducción
 - El análisis léxico en el proceso de traducción
 - Componentes Léxicos
 - Tabla de Símbolos
 - Palabras claves
 - Ejemplo
 - Autonomía del analizador léxico
- 2 Especificación de componentes léxicos
- 3 Reconocimiento de componentes léxicos
- 4 Implementación de los analizadores léxicos

Componentes Léxicos

Definición (Componente léxico)

Elemento más simple con significado propio de un lenguaje de programación.

Eiemplo

- Identificadores: variables, palabras claves,
- Números
- Cadenas de caracteres
- Operadores: aritméticos, relacionales, lógicos,
- Signos de puntuación
- Etc.

Componentes Léxicos

Definición (Componente léxico)

Elemento más simple con significado propio de un lenguaje de programación.

- Identificadores: variables, palabras claves, ...
- Números
- Cadenas de caracteres
- Operadores: aritméticos, relacionales, lógicos, ...
- Signos de puntuación
- Etc

Componentes Léxicos

Definición (Componente léxico)

Elemento más simple con significado propio de un lenguaje de programación.

- Identificadores: variables, palabras claves, ...
- Números
- Cadenas de caracteres
- Operadores: aritméticos, relacionales, lógicos, ...
- Signos de puntuación
- Etc

Componentes Léxicos

Definición (Componente léxico)

Elemento más simple con significado propio de un lenguaje de programación.

- Identificadores: variables, palabras claves, ...
- Números
- Cadenas de caracteres
- Operadores: aritméticos, relacionales, lógicos, ...
- Signos de puntuación
- Etc

Componentes Léxicos

Definición (Componente léxico)

Elemento más simple con significado propio de un lenguaje de programación.

- Identificadores: variables, palabras claves, ...
- Números
- Cadenas de caracteres
- Operadores: aritméticos, relacionales, lógicos, ...
- Signos de puntuación
- Etc

Componentes Léxicos

Definición (Componente léxico)

Elemento más simple con significado propio de un lenguaje de programación.

- Identificadores: variables, palabras claves, ...
- Números
- Cadenas de caracteres
- Operadores: aritméticos, relacionales, lógicos, ...
- Signos de puntuación
- Etc

Componentes Léxicos

Definición (Componente léxico)

Elemento más simple con significado propio de un lenguaje de programación.

- Identificadores: variables, palabras claves, ...
- Números
- Cadenas de caracteres
- Operadores: aritméticos, relacionales, lógicos, ...
- Signos de puntuación
- Etc.

Componentes Léxicos

Los componentes léxicos

- También se denominan "tokens"
- Son los símbolos terminales de las gramáticas de contexto libre que generan los lenguajes de programación.
- Son en realidad códigos numéricos

Componentes Léxicos

Los componentes léxicos

- También se denominan "tokens"
- Son los símbolos terminales de las gramáticas de contexto libre que generan los lenguajes de programación.
- Son en realidad códigos numéricos

Componentes Léxicos

Los componentes léxicos

- También se denominan "tokens"
- Son los símbolos terminales de las gramáticas de contexto libre que generan los lenguajes de programación.
- Son en realidad códigos numéricos

Contenido de la sección

- Introducción
 - El análisis léxico en el proceso de traducción
 - Componentes Léxicos
 - Tabla de Símbolos
 - Palabras claves
 - Ejemplo
 - Autonomía del analizador léxico
- 2 Especificación de componentes léxicos
- 3 Reconocimiento de componentes léxicos
- 4 Implementación de los analizadores léxicos

Tabla de Símbolos

Tabla de Símbolos

- Se crea durante el Análisis Léxico
- Puede almacenar:
 - + Números
 - + Cadenas
 - + ..
 - + Pero, sobre todo, identificadores

Tabla de Símbolos

Tabla de Símbolos

- Cuando el analizador léxico reconoce un identificador:
 - + Se inserta el identificador en la Tabla de Símbolos
 - + Devuelve el componente léxico de identificador y un puntero o índice a su posición en la Tabla de Símbolos
- La información del identificador depende de su naturaleza:
 - + Variable: tipo de dato, valor,
 - + Función: número y tipo de argumentos, ...
 - + Etc

Tabla de Símbolos

Tabla de Símbolos

- Cuando el analizador léxico reconoce un identificador:
 - + Se inserta el identificador en la Tabla de Símbolos
 - + Devuelve el componente léxico de identificador y un puntero o índice a su posición en la Tabla de Símbolos
- La información del identificador depende de su naturaleza:
 - + Variable: tipo de dato, valor, ...
 - + Función: número y tipo de argumentos, ...
 - + Etc.

Tabla de Símbolos

Ejemplo (dividendo = divisor * cociente + resto)

Nombre	Tipo	Valor	
cociente			
dividendo			
divisor			
resto			

Tabla de Símbolos

Nota

La información de los identificadores se completa durante todas las fases del proceso de traducción

Contenido de la sección

- Introducción
 - El análisis léxico en el proceso de traducción
 - Componentes Léxicos
 - Tabla de Símbolos
 - Palabras claves
 - Ejemplo
 - Autonomía del analizador léxico
- 2 Especificación de componentes léxicos
- 3 Reconocimiento de componentes léxicos
- 4 Implementación de los analizadores léxicos

Palabras claves

Palabras claves o reservadas

- Son identificadores con un significado especial
- Algunos lenguajes de programación también permiten usar las palabras claves como variables
 - + Las palabras claves no serían palabras reservadas
 - + Dificulta la legibilidad de los programas

Ejemplo (PL/I)

IF(IF > 1) THEN THEN = 0

Palabras claves

Palabras claves o reservadas

- Son identificadores con un significado especial
- Algunos lenguajes de programación también permiten usar las palabras claves como variables
 - + Las palabras claves no serían palabras reservadas
 - + Dificulta la legibilidad de los programas

Ejemplo (PL/I)

IF(IF > 1) THEN THEN = 0

Palabras claves

Palabras claves o reservadas

- Son identificadores con un significado especial
- Algunos lenguajes de programación también permiten usar las palabras claves como variables
 - + Las palabras claves no serían palabras reservadas
 - + Dificulta la legibilidad de los programas

Ejemplo (PL/I)

IF (IF > 1) THEN THEN = 0;

Palabras claves

- Tipos de reconocimiento de las palabras claves:
 - 1.- Implícito: preinstalación en la Tabla de Símbolos
 - 2.- Explícito: reconocimiento específico de cada palabra clave.

Palabras claves

- Tipos de reconocimiento de las palabras claves:
 - 1.- Implícito: preinstalación en la Tabla de Símbolos
 - 2.- **Explícito**: reconocimiento específico de cada palabra clave.

Palabras claves

- Tipos de reconocimiento de las palabras claves:
 - 1.- Implícito: preinstalación en la Tabla de Símbolos
 - 2.- **Explícito**: reconocimiento específico de cada palabra clave.

Palabras claves

Palabras claves

1.- Preinstalación en la Tabla de Símbolos:

- + Se almacena el nombre y el componente léxico
- + Al reconocer un identificador, se consulta la Tabla de Símbolos para comprobar si es una palabra clave o no.
- + Ventajas
 - La programación del analizador léxico es más sencilla
- + Inconvenientes
 - El reconocimiento es más lento
 - Se necesita más memoria para la Tabla de Símbolos

Palabras claves

- 1.- Preinstalación en la Tabla de Símbolos:
 - + Se almacena el nombre y el componente léxico
 - + Al reconocer un identificador, se consulta la Tabla de Símbolos para comprobar si es una palabra clave o no.
 - + Ventajas
 - La programación del analizador léxico es más sencilla
 - + Inconvenientes
 - El reconocimiento es más lento
 - Se necesita más memoria para la Tabla de Símbolos

Palabras claves

Palabras claves

- 1.- Preinstalación en la Tabla de Símbolos:
 - + Se almacena el nombre y el componente léxico

Ejemplo

Nombre	Componente Léxico	
if	IF	
while	WHILE	

- + Al reconocer un identificador, se consulta la Tabla de Símbolos para comprobar si es una palabra clave o no.
- + Ventajas
 - La programación del analizador léxico es más sencilla

Palabras claves

- 1.- Preinstalación en la Tabla de Símbolos:
 - + Se almacena el nombre y el componente léxico
 - + Al reconocer un identificador, se consulta la Tabla de Símbolos para comprobar si es una palabra clave o no.
 - + Ventajas
 - La programación del analizador léxico es más sencilla
 - Inconvenientes
 - El reconocimiento es más lento
 - Se necesita más memoria para la Tabla de Símbolos

Palabras claves

- 1.- Preinstalación en la Tabla de Símbolos:
 - + Se almacena el nombre y el componente léxico
 - + Al reconocer un identificador, se consulta la Tabla de Símbolos para comprobar si es una palabra clave o no.
 - + Ventajas
 - La programación del analizador léxico es más sencilla
 - Inconvenientes
 - El reconocimiento es más lento
 - Se necesita más memoria para la Tabla de Símbolos

Palabras claves

- 1.- Preinstalación en la Tabla de Símbolos:
 - + Se almacena el nombre y el componente léxico
 - + Al reconocer un identificador, se consulta la Tabla de Símbolos para comprobar si es una palabra clave o no.
 - + Ventajas
 - La programación del analizador léxico es más sencilla
 - + Inconvenientes
 - El reconocimiento es más lento
 - Se necesita más memoria para la Tabla de Símbolos

Palabras claves

- 2.- Reconocimiento específico de cada palabra clave.
 - + Cada palabra clave es reconocida de forma independiente de los demás identificadores y palabras claves
 - + Ventajas
 - El reconocimiento es más rápido
 - No se necesita aumentar la memoria de la Tabla de Símbolos:
 las palabras claves no se almacenan
 - + Inconvenientes
 - La programación del analizador léxico es más compleja

Palabras claves

- 2.- Reconocimiento específico de cada palabra clave.
 - + Cada palabra clave es reconocida de forma independiente de los demás identificadores y palabras claves
 - + Ventajas
 - El reconocimiento es más rápido
 - No se necesita aumentar la memoria de la Tabla de Símbolos: las palabras claves no se almacenan
 - Inconvenientes
 - La programación del analizador léxico es más compleja

Palabras claves

- 2.- Reconocimiento específico de cada palabra clave.
 - + Cada palabra clave es reconocida de forma independiente de los demás identificadores y palabras claves
 - + Ventajas
 - El reconocimiento es más rápido
 - No se necesita aumentar la memoria de la Tabla de Símbolos: las palabras claves no se almacenan
 - + Inconvenientes
 - La programación del analizador léxico es más compleja

Contenido de la sección

- Introducción
 - El análisis léxico en el proceso de traducción
 - Componentes Léxicos
 - Tabla de Símbolos
 - Palabras claves
 - Ejemplo
 - Autonomía del analizador léxico
- 2 Especificación de componentes léxicos
- 3 Reconocimiento de componentes léxicos
- 4 Implementación de los analizadores léxicos

Ejemplo

Ejemplo

Sentencia del lenguaje C

dividendo = divisor * cociente + resto ;

- dividendo
 - + Es reconocido como IDENTIFICADOR
 - + Se devuelve el componente léxico y el puntero a la Tabla de Símbolos

Ejemplo

Ejemplo

- Se eliminan
 - + Espacios en blanco
 - + Tabuladores
 - + Saltos de línea

Ejemplo

Ejemplo

- Signo =
 - + Se devuelve el token de ASIGNACIÓN

Ejemplo

Ejemplo

Sentencia del lenguaje C dividendo = divisor * cociente + resto ;

Nota

- El Análisis Sintáctico sólo necesita saber que se ha reconocido el componente léxico ASIGNACIÓN
- No le importa si el símbolo es = o := o cualquier otro
- No interesa el texto concreto, sino la categoría a la que pertenece

Ejemplo

Ejemplo

- divisor
 - + Es reconocido como IDENTIFICADOR
 - + Se devuelve el componente léxico y el puntero a la Tabla de Símbolos

Ejemplo

Ejemplo

- Signo *
 - + Se devuelve el token de PRODUCTO

Ejemplo

Ejemplo

- cociente
 - + Es reconocido como IDENTIFICADOR
 - + Se devuelve el componente léxico y el puntero a la Tabla de Símbolos

Ejemplo

Ejemplo

- Signo +
 - + Se devuelve el token de SUMA

Ejemplo

Ejemplo

- resto
 - + Es reconocido como IDENTIFICADOR
 - + Se devuelve el componente léxico y el puntero a la Tabla de Símbolos

Ejemplo

Ejemplo

- Signo;
 - + Se devuelve el token de FIN DE SENTENCIA

Contenido de la sección

- Introducción
 - El análisis léxico en el proceso de traducción
 - Componentes Léxicos
 - Tabla de Símbolos
 - Palabras claves
 - Ejemplo
 - Autonomía del analizador léxico
- 2 Especificación de componentes léxicos
- 3 Reconocimiento de componentes léxicos
- 4 Implementación de los analizadores léxicos

Autonomía del analizador léxico

- Modularidad
- Menor complejidad de los componentes léxicos
- Pre-procesamiento del código fuente
- Mejora en la eficiencia del analizador léxico
- Portabilidad

Autonomía del analizador léxico

- Modularidad
 - + La separación de tareas facilita el mantenimiento y mejora del traductor
- Menor complejidad de los componentes léxicos
- Pre-procesamiento del código fuente
- Mejora en la eficiencia del analizador léxico
- Portabilidad

Autonomía del analizador léxico

- Modularidad
- Menor complejidad de los componentes léxicos
- Pre-procesamiento del código fuente
- Mejora en la eficiencia del analizador léxico
- Portabilidad

Autonomía del analizador léxico

- Modularidad
- Menor complejidad de los componentes léxicos
 - + Los componentes léxicos pueden ser denotados por Expresiones Regulares
 - + Los Autómatas Finitos Deterministas (AFD) reconocen las palabras denotadas por las expresiones regulares
 - + Los Analizadores Léxicos están basados en los Autómatas Finitos
- Pre-procesamiento del código fuente
- Mejora en la eficiencia del analizador léxico
- Portabilidad

Autonomía del analizador léxico

- Modularidad
- Menor complejidad de los componentes léxicos
 - + Los componentes léxicos pueden ser denotados por Expresiones Regulares
 - + Los Autómatas Finitos Deterministas (AFD) reconocen las palabras denotadas por las expresiones regulares
 - + Los Analizadores Léxicos están basados en los Autómatas Finitos
- Pre-procesamiento del código fuente
- Mejora en la eficiencia del analizador léxico
- Portabilidad

Autonomía del analizador léxico

- Modularidad
- Menor complejidad de los componentes léxicos
 - + Los componentes léxicos pueden ser denotados por Expresiones Regulares
 - + Los Autómatas Finitos Deterministas (AFD) reconocen las palabras denotadas por las expresiones regulares
 - + Los Analizadores Léxicos están basados en los Autómatas Finitos
- Pre-procesamiento del código fuente
- Mejora en la eficiencia del analizador léxico
- Portabilidad

Autonomía del analizador léxico

- Modularidad
- Menor complejidad de los componentes léxicos
- Pre-procesamiento del código fuente
- Mejora en la eficiencia del analizador léxico
- Portabilidad

Autonomía del analizador léxico

- Modularidad
- Menor complejidad de los componentes léxicos
- Pre-procesamiento del código fuente
 - + El Análisis Léxico es la única fase que tiene contacto con el código fuente
 - + Puede procesar el texto: eliminar espacios en blanco, comentarios
 - + Almacena la posición de los saltos de línea para informar sobre la localización de los errores detectados
- Mejora en la eficiencia del analizador léxico
- Portabilidad

Autonomía del analizador léxico

- Modularidad
- Menor complejidad de los componentes léxicos
- Pre-procesamiento del código fuente
 - + El Análisis Léxico es la única fase que tiene contacto con el código fuente
 - + Puede procesar el texto: eliminar espacios en blanco, comentarios
 - + Almacena la posición de los saltos de línea para informar sobre la localización de los errores detectados
- Mejora en la eficiencia del analizador léxico
- Portabilidad

Autonomía del analizador léxico

- Modularidad
- Menor complejidad de los componentes léxicos
- Pre-procesamiento del código fuente
 - + El Análisis Léxico es la única fase que tiene contacto con el código fuente
 - + Puede procesar el texto: eliminar espacios en blanco, comentarios
 - + Almacena la posición de los saltos de línea para informar sobre la localización de los errores detectados
- Mejora en la eficiencia del analizador léxico
- Portabilidad

Autonomía del analizador léxico

- Modularidad
- Menor complejidad de los componentes léxicos
- Pre-procesamiento del código fuente
- Mejora en la eficiencia del analizador léxico
- Portabilidad

Autonomía del analizador léxico

- Modularidad
- Menor complejidad de los componentes léxicos
- Pre-procesamiento del código fuente
- Mejora en la eficiencia del analizador léxico
 - + Las operaciones de lectura / escritura son computacionalmente muy costosas
 - + Se puede mejorar la eficiencia si se codifican con sentencias de bajo nivel: ensamblador, ...
- Portabilidad

Autonomía del analizador léxico

- Modularidad
- Menor complejidad de los componentes léxicos
- Pre-procesamiento del código fuente
- Mejora en la eficiencia del analizador léxico
 - + Las operaciones de lectura / escritura son computacionalmente muy costosas
 - + Se puede mejorar la eficiencia si se codifican con sentencias de bajo nivel: ensamblador, ...
- Portabilidad

Autonomía del analizador léxico

- Modularidad
- Menor complejidad de los componentes léxicos
- Pre-procesamiento del código fuente
- Mejora en la eficiencia del analizador léxico
- Portabilidad

Autonomía del analizador léxico

- Modularidad
- Menor complejidad de los componentes léxicos
- Pre-procesamiento del código fuente
- Mejora en la eficiencia del analizador léxico
- Portabilidad
 - + La codificación de los caracteres pueden variar de un entorno de ejecución a otro: ASCII, EBCDIC, ...
 - + El cambio de codificación sólo requerirá modificar el Analisis Léxico, no siendo necesario modificar el resto de fases.

Autonomía del analizador léxico

- Modularidad
- Menor complejidad de los componentes léxicos
- Pre-procesamiento del código fuente
- Mejora en la eficiencia del analizador léxico
- Portabilidad
 - + La codificación de los caracteres pueden variar de un entorno de ejecución a otro: ASCII, EBCDIC, ...
 - + El cambio de codificación sólo requerirá modificar el Analisis Léxico, no siendo necesario modificar el resto de fases.

Autonomía del analizador léxico

- Modularidad
- Menor complejidad de los componentes léxicos
- Pre-procesamiento del código fuente
- Mejora en la eficiencia del analizador léxico
- Portabilidad

Contenido del tema

- Introducción
- 2 Especificación de componentes léxicos
- 3 Reconocimiento de componentes léxicos
- 4 Implementación de los analizadores léxicos
- 5 Detección y recuperación de errores

Contenido de la sección

- Introducción
- 2 Especificación de componentes léxicos
 - Descripción de los componentes léxicos
 - Palabras y lenguajes formales
 - Expresiones Regulares
- 3 Reconocimiento de componentes léxicos
- 4 Implementación de los analizadores léxicos
- 5 Detección y recuperación de errores

Descripción de los componentes léxicos

- Elementos básicos de los lenguajes de programación
- Se describen mediante
- + Una descripción informal
 - + Una descripción formal mediante expresiones re
 - Ejemplos o paradigmass

Descripción de los componentes léxicos

- Elementos básicos de los lenguajes de programación
- Se describen mediante
 - + Una descripción informal
 - + Una descripción formal mediante expresiones regulares
 - $+\,\,$ Ejemplos o paradigmas

Descripción de los componentes léxicos

- Elementos básicos de los lenguajes de programación
- Se describen mediante
 - + Una descripción informal
 - + Una descripción formal mediante expresiones regulares
 - Ejemplos o paradigmas

Descripción de los componentes léxicos

- Elementos básicos de los lenguajes de programación
- Se describen mediante
 - + Una descripción informal
 - + Una descripción formal mediante expresiones regulares
 - Ejemplos o paradigmas

Descripción de los componentes léxicos

- Elementos básicos de los lenguajes de programación
- Se describen mediante
 - + Una descripción informal
 - + Una descripción formal mediante expresiones regulares
 - + Ejemplos o paradigmas

Descripción de los componentes léxicos

Ejemplo (Componentes léxicos en el lenguaje C

. / 7)

- IDENTIFICADOR
- **Descripción informal:** cadenas de caracteres compuestas por letras, cifras y el símbolo de subrayado, pero que no comienza por una cifra.
- Descripción formal:

```
(letra + subrayado)(letra + cifra + subrayado)^*
```

Ejemplos o paradigmas:

dividendo, divisor, cociente, resto, suma_total, x_1, ...

Descripción de los componentes léxicos

Ejemplo (Componentes léxicos en el lenguaje C

(2 / 7)

- NÚMERO
- Descripción informal: números enteros, reales, ...
- Descripción formal:

cifra cifra*
$$(\epsilon + .cifra*(\epsilon + (E + e)(\epsilon + " + " + " - ")cifra cifra*))$$

• Ejemplos o paradigmas: *9*, *19.7*, *97.7e2*, ...

Descripción de los componentes léxicos

Ejemplo (Componentes léxicos en el lenguaje C 3 / 7)

- IF
- **Descripción informal:** palabra clave de la sentencia condicional if
- Descripción formal: if
- Ejemplo o paradigma: if

Descripción de los componentes léxicos

Ejemplo (Componentes léxicos en el lenguaje C 4/7)

- FOR
- Descripción informal: palabra clave de la sentencia de repetición for
- Descripción formal: for
- Ejemplo o paradigma: for

Descripción de los componentes léxicos

Ejemplo (Componentes léxicos en el lenguaje C

5 / 7)

- ASIGNACIÓN
- Descripción informal: signo igual para la sentencia de asignación
- Descripción formal: =
- Ejemplo o paradigma: =

Descripción de los componentes léxicos

Ejemplo (Componentes léxicos en el lenguaje C

- MAYOR_IGUAL_QUE
- Descripción informal: operador relacional mayor o igual que
- Descripción formal: >=
- Ejemplo o paradigma: >=

Descripción de los componentes léxicos

Ejemplo (Componentes léxicos en el lenguaje C 7 / 7)

- FIN_SENTENCIA
- **Descripción informal:** signo de punto y coma para indicar el fin de una sentencia
- Descripción formal:
- Ejemplo o paradigma:

Descripción de los componentes léxicos

Nota

Sólo interesa saber el significado (Componente Léxico) que se asocia a uno o más signos, no cómo son dichos signos.

Ejemplo (Lenguaje Fortran)

La expresión regular para el componente léxico $MAYOR_IGUAL_QUE$ es: .(G+g)(E+e).

- .GE.
- .gE.
- .Ge.
- .ge.

Contenido de la sección

- Introducción
- 2 Especificación de componentes léxicos
 - Descripción de los componentes léxicos
 - Palabras y lenguajes formales
 - Expresiones Regulares
- 3 Reconocimiento de componentes léxicos
- 4 Implementación de los analizadores léxicos
- 5 Detección y recuperación de errores

Palabras y lenguajes formales

Definición (Alfabeto o vocabulario)

- Conjunto finito y no vacío de símbolos que permiten formar la palabras pertenecientes a un lenguaje
- Se suele denotar por Σ o V
- $\Sigma = \{\sigma_1, \sigma_2, \cdots, \sigma_n\}$

Palabras y lenguajes formales

Ejemplo

- $\Sigma_1 = \{0,1\}$ (Alfabeto binario)
- $\Sigma_2 = \{0, 1, 2, \cdots, 9\}$
- $\bullet \ \Sigma_3 = \{a, b, c, \cdots, z\}$
- $\Sigma_4 = \{if, else\}$
- $\Sigma_5 = \{ab, ca, bbc\}$

Palabras y lenguajes formales

Definición (Palabra o cadena)

• Secuencia finita de símbolos pertenecientes a un alfabeto

Palabras y lenguajes formales

Definición (Palabra o cadena)

• Secuencia finita de símbolos pertenecientes a un alfabeto

Ejemplo (Palabras definidas sobre)

- \bullet $\Sigma_1 = \{0,1\}: 0, 1, 00, 01, 10, 11, ..., 010101, ...$
- $\Sigma_3 = \{a, b, c, \dots, z\}$: aab, valor, punto,...
- $\Sigma_5 = \{ab, ca, bbc\}$: ab, bbc, abab, abbbc,...

Palabras y lenguajes formales

Definición (Longitud de una palabra x)

- Número de símbolos de un alfabeto que componen dicha palabra.
- Se denota por |x|
- $Si \Sigma = \{\sigma_1, \sigma_2, \cdots, \sigma_n\}$ $y x = \sigma_{i_1} \sigma_{i_2} \cdots \sigma_{i_k}$ entonces |x| = k

Palabras y lenguajes formales

Nota

La longitud de una palabra depende del alfabeto sobre el que esté definida.

Palabras y lenguajes formales

Nota

La longitud de una palabra depende del alfabeto sobre el que esté definida.

Ejemplo (Longitud de la palabra x = abab definida sobre)

- $\Sigma_3 = \{a, b, c, \cdots, z\}$: |x| = 4
- $\Sigma_5 = \{ab, ca, bbc\}$: |x| = 2

Palabras y lenguajes formales

Definición (Lenguaje universal definido sobre Σ)

- Conjunto de palabras compuestas por cero o más símbolos de Σ.
- Se representa por Σ^* .

Palabras y lenguajes formales

Ejemplo (Palabras definidas sobre un alfabeto Σ)

• $Si \Sigma = {\sigma_1, \sigma_2, \cdots, \sigma_n}$ entonces Σ^* se puede generar a partir de las palabras de:

```
+ |x| = 0: "palabra vacía" que se denota por \epsilon o \lambda.
```

$$+ |x| = 1$$
: $x = \sigma_1, x = \sigma_2, \dots, x = \sigma_n$

$$+ |x| = 2$$
: $x = \sigma_1 \sigma_1$, $x = \sigma_1 \sigma_2$, ...

Palabras y lenguajes formales

Ejemplo (Palabras definidas sobre $\Sigma = \{a, b, c\}$)

- $\bullet |x| = 0$: $x = \epsilon$.
- |x| = 1: x = a, x = b, x = c
- |x| = 2: x = aa, x = ab, x = ac, x = ba, ...
- Etc.
- En resumen, $\Sigma^* = \{\epsilon, a, b, c, aa, ab, ac, ba, \cdots\}$

Palabras y lenguajes formales

Definición (Lenguajes formales)

• L es un lenguaje formal definido sobre Σ si L $\subseteq \Sigma^*$

Palabras y lenguajes formales

Definición (Lenguajes formales)

• L es un lenguaje formal definido sobre Σ si $L \subseteq \Sigma^*$

Ejemplo (Lenguajes formales definidos sobre Σ)

- $L_\emptyset = \emptyset$.
- Σ
- Σ*
- $L_{\sigma} = \{\sigma\}$ donde $\sigma \in \Sigma$
- $L_{\epsilon} = \{\epsilon\}$
- $\Sigma^+ = \{ x | x \in \Sigma^* \land |x| \ge 1 \}$

Palabras y lenguajes formales

Nota

•
$$L_{\epsilon} = \{\epsilon\} \neq L_{\emptyset} = \emptyset$$

$$\bullet \ \epsilon \in \Sigma^+ \Longleftrightarrow \epsilon \in \Sigma$$

Palabras y lenguajes formales

Ejemplo (Lenguajes formales sobre $\Sigma = \{a, b, c\}$)

- $L_\emptyset = \emptyset$
- $L_{\epsilon} = \{\epsilon\}$
- $\Sigma = \{a, b, c\}$
- $\Sigma^* = \{\epsilon, a, b, c, aa, ab, ac, \cdots\}$
- $L_a = \{a\}$
- $L = \{a, ab, abb, abbb, \cdots \}$

Nota

L puede ser denotado por la expresión regular ab*

Palabras y lenguajes formales

Operaciones con palabras

- Concatenación
- Potencia

Palabras y lenguajes formales

Definición (Concatenación de palabras)

- Sea $\Sigma = \{\sigma_1, \sigma_2, \cdots, \sigma_n\}$
- $x = \sigma_{i_1}\sigma_{i_2}\cdots\sigma_{i_p}$, $y = \sigma_{j_1}\sigma_{j_2}\cdots\sigma_{j_q} \in \Sigma^*$
- La concatenación de x con y se denota por x · y o simplemente xy
- $xy = \sigma_{i_1}\sigma_{i_2}\cdots\sigma_{i_p}\sigma_{j_1}\sigma_{j_2}\cdots\sigma_{j_q}$

(Concatenación de palabras sobre $\Sigma = \{a, b, c\}$)

Si x = ab, y = bcc entonces xy = abbcc

Palabras y lenguajes formales

Definición (Concatenación de palabras)

- Sea $\Sigma = \{\sigma_1, \sigma_2, \cdots, \sigma_n\}$
- $x = \sigma_{i_1}\sigma_{i_2}\cdots\sigma_{i_p}$, $y = \sigma_{j_1}\sigma_{j_2}\cdots\sigma_{j_q} \in \Sigma^*$
- La concatenación de x con y se denota por x · y o simplemente xy
- $xy = \sigma_{i_1}\sigma_{i_2}\cdots\sigma_{i_p}\sigma_{j_1}\sigma_{j_2}\cdots\sigma_{j_q}$

Ejemplo (Concatenación de palabras sobre $\Sigma = \{a, b, c\}$)

 $Si \ x = ab$, y = bcc entonces xy = abbcc

Palabras y lenguajes formales

Propiedades de la concatenación de palabras

- Operación cerrada sobre Σ^* : si $x, y \in \Sigma^*$ entonces $xy \in \Sigma^*$
- |xy| = |x| + |y|
- Asociativa: x(yz) = (xy)z = xyz
- Existencia de elemento neutro: ϵ .

$$x\epsilon = \epsilon x = x$$

• No conmutativa: $xy \neq yx$

Ejemplo (No conmutativa)

- Sea $\Sigma = \{a, b, c\}$
- Si x = ab, y = bcc entonces $xy = abbcc \neq bccab = yx$

Palabras y lenguajes formales

Definición (Potencia de una palabra)

- Sea $\Sigma = \{\sigma_1, \sigma_2, \cdots, \sigma_n\}$
- $x = \sigma_{i_1}\sigma_{i_2}\cdots\sigma_{i_p} \in \Sigma^*$
- La potencia "i-ésima" de x se denota por xⁱ
- $x^i = \underbrace{xx \cdots x}_{i \text{ veces}}$

Palabras y lenguajes formales

Ejemplo (Potencia una palabra definida sobre $\Sigma = \{a, b, c\}$)

 $Si x = abb \ entonces$

- $\bullet x^0 = \epsilon$
- $x^1 = x = abb$
- $x^2 = xx = abbabb$
- $x^3 = xxx = abbabbabb$
- Etc.

Palabras y lenguajes formales

Definición (Potencia de una palabra (versión recursiva))

- $x^0 = \epsilon$
- $x^i = xx^{i-1}$

Palabras y lenguajes formales

Propiedades de la potencia de una de palabra

Operación cerrada sobre Σ*:

si
$$x \in \Sigma^*$$
 entonces $\forall i \in \mathbb{N}, x^i \in \Sigma^*$

 $\bullet |x^i| = i|x|$

Palabras y lenguajes formales

Operaciones con lenguajes formales

- Unión
- Concatenación
- Potencia
- Clausura o cierre de Kleene
- Clausura positiva
- Intersección
- Diferencia
- Complementación

Palabras y lenguajes formales

Definición (Unión de lenguajes formales)

Si $L_1, L_2 \subseteq \Sigma^*$ entonces

$$L_1 \cup L_2 = \{x | x \in L_1 \lor x \in L_2\}$$

Ejemplo

Si
$$L_1 = \{ab, bc, bcc\}$$
 y $L_2 = \{a, bc, abb, ac\}$ entonces $L_1 \cup L_2 = \{ab, bc, bcc, a, abb, ac\}$

Nota

Palabras y lenguajes formales

Definición (Unión de lenguajes formales)

Si $L_1, L_2 \subseteq \Sigma^*$ entonces

$$L_1 \cup L_2 = \{x | x \in L_1 \lor x \in L_2\}$$

Ejemplo

Si
$$L_1 = \{ab, bc, bcc\}$$
 y $L_2 = \{a, bc, abb, ac\}$ entonces $L_1 \cup L_2 = \{ab, bc, bcc, a, abb, ac\}$

Nota

Palabras y lenguajes formales

Definición (Unión de lenguajes formales)

Si $L_1, L_2 \subseteq \Sigma^*$ entonces

$$L_1 \cup L_2 = \{x | x \in L_1 \lor x \in L_2\}$$

Ejemplo

Si
$$L_1 = \{ab, bc, bcc\}$$
 y $L_2 = \{a, bc, abb, ac\}$ entonces $L_1 \cup L_2 = \{ab, bc, bcc, a, abb, ac\}$

Nota

Palabras y lenguajes formales

Propiedades de la unión de lenguajes

Operación cerrada sobre Σ*:

si
$$L_1, L_2 \subseteq \Sigma^*$$
 entonces $L_1 \cup L_2 \subseteq \Sigma^*$

- Asociativa: $L_1 \cup (L_2 \cup L_3) = (L_1 \cup L_2) \cup L_3 = L_1 \cup L_2 \cup L_3$
- Conmutativa: $L_1 \cup L_2 = L_2 \cup L_1$
- Existencia de elemento neutro: ∅

$$L \cup \emptyset = \emptyset \cup L = L$$

• Idempotente: $L \cup L = L$

Palabras y lenguajes formales

Definición (Concatenación de lenguajes formales)

Si
$$L_1, L_2 \subseteq \Sigma^*$$
 entonces
$$L_1L_2 = \{x | x = yz \land y \in L_1 \land z \in L_2\}$$

Eiemplo

Si
$$L_1 = \{ab, a, bb\}$$
 y $L_2 = \{bc, c, aa\}$ entonces $L_1L_2 = \{abbc, abc, abaa, ac, aaa, bbbc, bbc, bbaa\}$

Nota

Palabras y lenguajes formales

Definición (Concatenación de lenguajes formales)

Si
$$L_1, L_2 \subseteq \Sigma^*$$
 entonces
$$L_1L_2 = \{x | x = yz \land y \in L_1 \land z \in L_2\}$$

Ejemplo

Si
$$L_1 = \{ab, a, bb\}$$
 y $L_2 = \{bc, c, aa\}$
entonces $L_1L_2 = \{abbc, abc, abaa, ac, aaa, bbbc, bbc, bbaa\}$

Nota

Palabras y lenguajes formales

Definición (Concatenación de lenguajes formales)

Si
$$L_1, L_2 \subseteq \Sigma^*$$
 entonces
$$L_1L_2 = \{x | x = yz \land y \in L_1 \land z \in L_2\}$$

Ejemplo

Si
$$L_1 = \{ab, a, bb\}$$
 y $L_2 = \{bc, c, aa\}$
entonces $L_1L_2 = \{abbc, abc, abaa, ac, aaa, bbbc, bbc, bbaa\}$

Nota

Palabras y lenguajes formales

Propiedades de la concatenación de lenguajes

Operación cerrada sobre Σ*:

si
$$L_1, L_2 \subseteq \Sigma^*$$
 entonces $L_1L_2 \subseteq \Sigma^*$

- Asociativa: $L_1(L_2L_3) = (L_1L_2)L_3 = L_1L_2L_3$
- Existencia de elemento neutro: $L_{\epsilon} = \{\epsilon\}$ $L\{\epsilon\} = \{\epsilon\} L = L$
- No conmutativa: $L_1L_2 \neq L_2L_1$

Nota

La concatenación lenguajes formales **no** es conmutativa porque la concatenación de palabras tampoco lo es

Palabras y lenguajes formales

Propiedades de la concatenación de lenguajes

Operación cerrada sobre Σ*:

si
$$L_1, L_2 \subseteq \Sigma^*$$
 entonces $L_1L_2 \subseteq \Sigma^*$

- Asociativa: $L_1(L_2L_3) = (L_1L_2)L_3 = L_1L_2L_3$
- Existencia de elemento neutro: $L_{\epsilon} = \{\epsilon\}$ $L\{\epsilon\} = \{\epsilon\} L = L$
- No conmutativa: $L_1L_2 \neq L_2L_1$

Nota

La concatenación lenguajes formales **no** es conmutativa porque la concatenación de palabras tampoco lo es

Palabras y lenguajes formales

Definición (Potencia de un lenguaje formal)

Si
$$L \subseteq \Sigma^*$$
 e $i \in \mathbb{N}$ entonces
$$L^i = \{x | x = x_{j_1} \cdots x_{j_i} \land x_{j_1}, \cdots, x_{j_i} \in L\}$$

Ejemplo

$$L^{0} = \{x^{0} | x \in L\} = \{\epsilon\}$$

$$L^{1} = L$$

$$L^{2} = LL$$
...

Palabras y lenguajes formales

Definición (Potencia de un lenguaje formal)

Si
$$L \subseteq \Sigma^*$$
 e $i \in \mathbb{N}$ entonces
$$L^i = \{x | x = x_{j_1} \cdots x_{j_i} \land x_{j_1}, \cdots, x_{j_i} \in L\}$$

Ejemplo

$$L^{0} = \{x^{0} | x \in L\} = \{\epsilon\}$$

$$L^{1} = L$$

$$L^{2} = LL$$

$$...$$

$$L^{i} = LL^{i-1}$$

Palabras y lenguajes formales

Propiedades de la potencia de un lenguaje formal

Operación cerrada sobre Σ*:

si $L \subseteq \Sigma^*$ entonces $\forall i \in \mathbb{N}$ $L^i \subseteq \Sigma^*$

Palabras y lenguajes formales

Definición (Clausura de Kleene de un lenguaje formal)

Si $L \subseteq \Sigma^*$ entonces

$$L^* = \bigcup_{i=0}^{\infty} L^i = L^0 \cup L^1 \cup L^2 \cup \cdots$$

Palabras y lenguajes formales

Ejemplo

Si $L = \{a\}$ entonces

$$L^* = \bigcup_{i=0}^{\infty} L^i$$

$$= L^0 \cup L^1 \cup L^2 \cup \cdots$$

$$= \{\epsilon\} \cup \{a\} \cup \{aa\} \cdots$$

$$= \{\epsilon, a, aa, \cdots\}$$

 $L^* = \{a\}^*$ puede ser denotado por la expresión regular a^*

Palabras y lenguajes formales

Propiedades de la clausura de un lenguaje formal

• Operación cerrada sobre Σ^* :

si $L \subseteq \Sigma^*$ entonces $L^* \subseteq \Sigma^*$

Palabras y lenguajes formales

Definición (Clausura positiva de un lenguaje formal)

Si
$$L \subseteq \Sigma^*$$
 entonces

$$\frac{L^+}{L^+} = \bigcup_{i=1}^{\infty} L^i = L^1 \cup L^2 \cup \cdots$$

Palabras y lenguajes formales

Propiedades de la clausura positiva de un lenguaje formal

Operación cerrada sobre Σ*:

si
$$L \subseteq \Sigma^*$$
 entonces $L^+ \subseteq \Sigma^*$

Palabras y lenguajes formales

Ejemplos (Operaciones con lenguajes formales)

Si
$$L_1 = \{a\}$$
 y $L_2 = \{b\}$ entonces
$$L_3 = L_1L_2 = \{ab\}$$

$$L_4 = L_2L_1 = \{ba\}$$

$$L_5 = L_3 \cup L_4 = \{ab, ba\}$$

$$L_6 = L_5^* = \bigcup_{i=0}^{\infty} L_5^i = L_5^0 \cup L_5^1 \cup L_5^2 \cup \cdots$$

$$= \{\epsilon\} \cup \{ab, ba\} \cup \{abab, abba, baab, baba\} \cdots$$

$$= \{\epsilon, ab, ba, abab, abba, baab, baba, \cdots\}$$

Palabras y lenguajes formales

Definición (Intersección de lenguajes formales)

Si $L_1, L_2 \subseteq \Sigma^*$ entonces

$$L_1 \cap L_2 = \{x | x \in L_1 \land x \in L_2\}$$

Ejemplo

Si
$$L_1 = \{ab, bc, bcc\}$$
 y $L_2 = \{a, bc, abb, ac\}$ entonces $L_1 \cap L_2 = \{bc\}$

Nota

Palabras y lenguajes formales

Definición (Intersección de lenguajes formales)

Si $L_1, L_2 \subseteq \Sigma^*$ entonces

$$L_1 \cap L_2 = \{x | x \in L_1 \land x \in L_2\}$$

Ejemplo

Si
$$L_1 = \{ab, bc, bcc\}$$
 y $L_2 = \{a, bc, abb, ac\}$
entonces $L_1 \cap L_2 = \{bc\}$

Nota

Palabras y lenguajes formales

Definición (Intersección de lenguajes formales)

Si $L_1, L_2 \subseteq \Sigma^*$ entonces

$$L_1 \cap L_2 = \{x | x \in L_1 \land x \in L_2\}$$

Ejemplo

Si
$$L_1 = \{ab, bc, bcc\}$$
 y $L_2 = \{a, bc, abb, ac\}$ entonces $L_1 \cap L_2 = \{bc\}$

Nota

Palabras y lenguajes formales

Propiedades de la intersección de lenguajes

Operación cerrada sobre Σ*:

si
$$L_1, L_2 \subseteq \Sigma^*$$
 entonces $L_1 \cap L_2 \subseteq \Sigma^*$

- Asociativa: $L_1 \cap (L_2 \cap L_3) = (L_1 \cap L_2) \cap L_3 = L_1 \cap L_2 \cap L_3$
- Conmutativa: $L_1 \cap L_2 = L_2 \cap L_1$
- Existencia de elemento neutro: Σ*

$$L \cap \Sigma^* = \Sigma^* \cap L = L$$

• Idempotente: $L \cap L = L$

Palabras y lenguajes formales

Definición (Diferencia de lenguajes formales)

Si $L_1, L_2 \subseteq \Sigma^*$ entonces

$$L_1 - L_2 = \{x | x \in L_1 \land x \not\in L_2\}$$

Ejemplo

Si
$$L_1 = \{ab, bc, bcc\}$$
 y $L_2 = \{a, bc, abb, ac\}$
entonces $L_1 - L_2 = \{ab, bcc\}$

Palabras y lenguajes formales

Definición (Diferencia de lenguajes formales)

Si $L_1, L_2 \subseteq \Sigma^*$ entonces

$$L_1 - L_2 = \{x | x \in L_1 \land x \not\in L_2\}$$

Ejemplo

Si
$$L_1 = \{ab, bc, bcc\}$$
 y $L_2 = \{a, bc, abb, ac\}$
entonces $L_1 - L_2 = \{ab, bcc\}$

Palabras y lenguajes formales

Propiedades de la diferencia de lenguajes

Operación cerrada sobre Σ*:

si
$$L_1, L_2 \subseteq \Sigma^*$$
 entonces $L_1 - L_2 \subseteq \Sigma^*$

- No asociativa: $(L_1 L_2) L_3 \neq L_1 (L_2 L_3)$
- No conmutativa: $L_1 L_2 \neq L_2 L_1$
- No existencia de elemento neutro
- No idempotente: $L L = \emptyset$

Palabras y lenguajes formales

Definición (Complementación de un lenguaje formal)

Si $L \subseteq \Sigma^*$ entonces

$$\overline{L} = \Sigma^* - L = \{x | x \in \Sigma^* \land x \notin L\}$$

Palabras y lenguajes formales

Ejemplo

```
Si \Sigma = \{a, b\}

Si L = \{\epsilon, a, ab, abb, abbb, \ldots\}

entonces \overline{L} = \{b, aa, ba, bb, aaa, aab, \ldots\}
```

Ejemplo

$$\overline{\emptyset} = \Sigma$$

Palabras y lenguajes formales

Ejemplo

```
Si \Sigma = \{a, b\}

Si L = \{\epsilon, a, ab, abb, abbb, \ldots\}

entonces \overline{L} = \{b, aa, ba, bb, aaa, aab, \ldots\}
```

Ejemplo

$$\overline{\emptyset} = \Sigma^*$$

$$\overline{\Sigma^*} = \emptyset$$

Palabras y lenguajes formales

Propiedades de la complementación de lenguajes

- Operación cerrada sobre Σ*:
 - si $L \subseteq \Sigma^*$ entonces $\overline{L} \subseteq \Sigma^*$
- Doble complementación $\overline{\overline{L}} = L$

Contenido de la sección

- Introducción
- 2 Especificación de componentes léxicos
 - Descripción de los componentes léxicos
 - Palabras y lenguajes formales
 - Expresiones Regulares
- 3 Reconocimiento de componentes léxicos
- 4 Implementación de los analizadores léxicos
- 5 Detección y recuperación de errores

Expresiones Regulares

Definición (Expresión regular)

Expresiones regulares sobre $\Sigma = \{\sigma_1, \sigma_2, \cdots, \sigma_n\}$:

- Ø es una expresión regular
- 2 es una expresión regular
- **3** Si $\sigma \in \Sigma$ entonces σ es una expresión regular
- **1** Si α y β son expresiones regulares entonces también son:
 - a) $\alpha + \beta$
 - b) $\alpha \cdot \beta$
 - c) (α) $(o(\beta))$
 - d) $\alpha^* = \sum_{i=0}^{\infty} \alpha^i = \alpha^0 + \alpha^1 + \alpha^2 + \cdots$

Expresiones Regulares

Notas

- La palabra vacía se puede representar por ϵ o λ
- La alternativa se puede representar por + o por |
- El punto de la concatenación se suele omitir

Expresiones Regulares

Ejemplos (Expresiones regulares sobre $\Sigma = \{0,1\}$)

- ∅, ϵ, 0, 1
- $0 + \epsilon$, $\epsilon + 0$, 0ϵ , $\epsilon 0$
- $1 + \epsilon$, $\epsilon + 1$, 1ϵ , $\epsilon 1$
- \bullet 0 + 0, 0 + 1, 1 + 0, 1 + 1
- 00, 01, 10, 11
- 0*, 1*
- \bullet (0+1), (0+1)*, 0*(0+1)1*

Expresiones Regulares

Prioridad de los operadores de las expresiones regulares + Máxima prioridad () * - Mínima prioridad +

Expresiones Regulares

Definición (Lenguaje denotado por una expresión regular)

- $2 L(\epsilon) = \{\epsilon\}$
- **3** Si $\sigma \in \Sigma$ entonces $L(\sigma) = {\sigma}$
- Si α y β son expresiones regulares sobre Σ
 - a) $L(\alpha + \beta) = L(\alpha) \cup L(\beta)$
 - b) $L(\alpha \cdot \beta) = L(\alpha) \cdot L(\beta)$
 - c) $L((\alpha)) = L(\alpha)$
 - d) $L(\alpha^*) = L(\sum_{i=0}^{\infty} \alpha^i) = \bigcup_{i=0}^{\infty} L(\alpha^i) = \bigcup_{i=0}^{\infty} (L(\alpha))^i$

Expresiones Regulares

Ejemplos (Lenguajes denotados

. / 5)

Dado $\Sigma = \{0,1\}$

- $L(0) = \{0\}$
- $L(0+1) = L(0) \cup L(1) = \{0\} \cup \{1\} = \{0,1\}$
- $L(01) = L(0)L(1) = \{0\}\{1\} = \{01\}$

Expresiones Regulares

Ejemplo (Lenguaje denotado 2 / 5) $L(1^*) = L(\sum_{i=0}^{\infty} 1^i) = \bigcup_{i=0}^{\infty} L(1^i)$ $= \bigcup_{i=0}^{\infty} (L(1))^i = \bigcup_{i=0}^{\infty} \{1\}^i$ $= \{\epsilon, 1, 11, 111, \cdots \}$

Expresiones Regulares

Ejemplo (Lenguaje denotado

(2 / 5)

$$L(1^*) = L(\sum_{i=0}^{\infty} 1^i) = \bigcup_{i=0}^{\infty} L(1^i)$$
$$= \bigcup_{i=0}^{\infty} (L(1))^i = \bigcup_{i=0}^{\infty} \{1\}^i$$
$$= \{\epsilon, 1, 11, 111, \dots\}$$

Palabras compuestas por cero o más unos

Expresiones Regulares

```
Ejemplo (Lenguaje denotado 3/5)
L((0+1)1^*) = L((0+1))L(1^*)
= L(0+1)L(1^*)
= \{0,1\}\{\epsilon,1,11,111,\cdots\}
= \{0,01,011,0111,\cdots,1,11,111,\cdots\}
```

Expresiones Regulares

Ejemplo (Lenguaje denotado

/ 5)

$$L((0+1)1^*) = L((0+1))L(1^*)$$

$$= L(0+1)L(1^*)$$

$$= \{0,1\}\{\epsilon,1,11,111,\cdots\}$$

$$= \{0,01,011,0111,\cdots,1,11,111,\cdots\}$$

Palabras que comienza por cero o por uno y van seguidas por cero o más unos

Expresiones Regulares

```
Ejemplo (Lenguaje denotado  L(0^*(11)0^*) = L(0^*)L((11))L(0^*) 
= \{\epsilon, 0, 00, 000, \cdots\}\{11\}\{\epsilon, 0, 00, 000, \cdots\} 
= \{11, 011, 0011, 00011, \cdots\}\{\epsilon, 0, 00, 000, \cdots\} 
= \{11, 0110, 00110, \cdots 00110, 001100, \cdots\}
```

Expresiones Regulares

Ejemplo (Lenguaje denotado

(5)

```
L(0^*(11)0^*) = L(0^*)L((11))L(0^*)
= \{\epsilon, 0, 00, 000, \dots\}\{11\}\{\epsilon, 0, 00, 000, \dots\}\}
= \{11, 011, 0011, 00011, \dots\}\{\epsilon, 0, 00, 000, \dots\}
= \{11, 0110, 00110, \dots 00110, 001100, \dots\}
```

Palabras que contienen a la cadena 11 y comienzan y terminan por una secuencia de ceros, posiblemente nula

Expresiones Regulares

Ejemplo (Lenguaje denotado 5 / 5) $Dado \Sigma = \{a, b, c, \dots, z\}$ $L(a+b+c+\dots+z) = L(a) \cup L(b) \cup L(c) \cup \dots L(z)$ $= \{a\} \cup \{b\} \cup \{c\} \cup \dots \cup \{z\}$ $= \{a, b, c, \dots, z\}$

Expresiones Regulares

Definición (Definición regular)

- Identificador que se asocia a una expresión regular
- Puede ser utilizado para definir nuevas expresiones regulares

Expresiones Regulares

Ejemplos

- $letra = (a + b + c + \cdots + z)$
- $cifra = (0 + 1 + \cdots + 9)$
- \bullet guion = -
- subrayado = _

Expresiones Regulares

Ejemplos (Identificadores de lenguajes de programación)

• Pascal:

• C:

Cobol:

Expresiones Regulares

```
Ejemplos (Números en el Lenguaje C)

número = parte\_entera (\epsilon + parte\_decimal)

donde

parte\_entera = cifra cifra^*

parte\_decimal

= punto cifra^*(\epsilon + (E + e)(\epsilon + " - " + " + ")cifra cifra^*)
```

Expresiones Regulares

Nota (Abreviaturas)

- α ? = $\alpha + \epsilon = \epsilon + \alpha$
- \bullet $\alpha^+ = \alpha \ \alpha^* = \alpha^* \alpha$

Ejemplo (Números en el Lenguaje C)

número = parte_entera parte_decimal

Expresiones Regulares

Nota (Abreviaturas)

- α ? = $\alpha + \epsilon = \epsilon + \alpha$
- $\bullet \ \alpha^+ = \alpha \ \alpha^* = \alpha^* \alpha$

Ejemplo (Números en el Lenguaje C)

número = parte_entera parte_decimal?

Expresiones Regulares

Nota

Palabras claves: existe una expresión regular para cada palabra clave.

Expresiones Regulares

Ejemplo (Palabras claves en C

- COMPONENTE LÉXICO: IF
- Expresión regular: if
- Paradigma: if

Expresiones Regulares

Ejemplo (Palabras claves en C

- COMPONENTE LÉXICO: WHILE
- Expresión regular: while
- Paradigma: while

Expresiones Regulares

Ejemplo (Palabras claves en C

- COMPONENTE LÉXICO: FOR
- Expresión regular: for
- Paradigma: for

Expresiones Regulares

Ejemplo (Palabras claves en FORTRAN

- COMPONENTE LÉXICO: DO
- Expresión regular: (D+d)(O+o)
- Paradigma: DO, Do, dO, do

Expresiones Regulares

Ejemplo (Palabras claves en FORTRAN

- COMPONENTE LÉXICO: FORMAT
- Expresión regular: (F+f)(O+o)(R+r)(M+m)(A+a)(T+t)
- Paradigma: FORMAT, ..., Format, ..., format

Expresiones Regulares

Ejemplo (Palabras claves en FORTRAN

- COMPONENTE LÉXICO: REAL
- Expresión regular: (R+r)(E+e)(A+a)(L+l)
- Paradigma: REAL, ..., Real, ... real

Expresiones Regulares

Ejemplo (Palabras claves en Pascal

1/3

- COMPONENTE LÉXICO: INTEGER
- Expresión regular: (I+i)(N+n)(T+t)(E+e)(G+g)(E+e)(R+r)
- Paradigma: INTEGER, ..., Integer, ..., integer

Expresiones Regulares

Ejemplo (Palabras claves en Pascal

2/3

- COMPONENTE LÉXICO: THEN
- Expresión regular: (T+t)(H+h)(E+e)(N+n)
- Paradigma: THEN, ..., Then, ..., then

Expresiones Regulares

Ejemplo (Palabras claves en Pascal

- COMPONENTE LÉXICO: VAR
- Expresión regular: (V+v)(A+a)(R+r)
- Paradigma: VAR, ..., Var, ..., var

Expresiones Regulares

Ejemplo (Operadores aritméticos en C)

COMPONENTE LÉXICO	Expresión regular	Paradigma
SUMA	+	+
RESTA	-	-
MULTIPLICACIÓN	*	*
DIVISIÓN	/	/
RESTO_DIVISIÓN_ENTERA	%	%

Expresiones Regulares

Ejemplo (Operadores aritméticos en FORTRAN)

COMPONENTE LÉXICO	Expresión regular	Paradigma
SUMA	+	+
RESTA	-	-
MULTIPLICACIÓN	*	*
DIVISIÓN	/	/
POTENCIA	**	**

Expresiones Regulares

Ejemplo (Operadores aritméticos en PASCAL)

COMPONENTE LÉXICO	Expresión regular	Paradigma
SUMA	+	+
RESTA	-	-
MULTIPLICACIÓN	*	*
DIVISIÓN	/	/
RESTO_DIVISIÓN_ENTERA	mod	mod
COCIENTE_DIVISIÓN_ENTERA	div	div

Expresiones Regulares

Ejemplo (Operadores relacionales en C)

COMPONENTE LÉXICO	Expresión regular	Paradigma
MENOR_QUE	<	<
MENOR_IGUAL_QUE	<=	<=
MAYOR_QUE	>	>
MAYOR_IGUAL_QUE	>=	>=
IGUAL	==	==
DISTINTO	!=	!=

Expresiones Regulares

Ejemplo (Operadores relacionales en FORTRAN)

COMPONENTE LÉXICO	Expresión regular	Paradigma
MENOR_QUE	L(L+I)(T+t).	.LT.,lt.
$MENOR_IGUAL_QUE$.(L+I)(E+e).	.LE.,le.
$MAYOR_{-}QUE$	G(G+g)(T+t).	.GT.,gt.
$MAYOR_IGUAL_QUE$	G+g(E+e).	.GE.,ge.
IGUAL	L(E+e)(Q+q).	.EQ.,eq.
DISTINTO	.(N+n)(E+e).	.NE.,ne.

Expresiones Regulares

Ejemplo (Operadores relacionales en Pascal)

COMPONENTE LÉXICO	Expresión regular	Paradigma
MENOR_QUE	<	<
MENOR_IGUAL_QUE	<=	<=
MAYOR_QUE	>	>
MAYOR_IGUAL_QUE	>=	>=
IGUAL	=	=
DISTINTO	<>	<>

Expresiones Regulares

Ejemplo (Operadores lógicos en C)

COMPONENTE LÉXICO	Expresión regular	Paradigma
NEGACIÓN_LÓGICA	!	!
CONJUNCIÓN_LÓGICA	&&	&&
DISYUNCIÓN₋LÓGICA		

Expresiones Regulares

Ejemplo (Operadores lógicos en FORTRAN)

COMPONENTE LÉXICO	Expresión regular	Paradigma
NEGACIÓN_LÓGICA	.(N+n)(O+o)(T+t).	.NOT,not.
CONJUNCIÓN_LÓGICA	.(A+a)(N+n)(D+d).	.AND.,and.
DISYUNCIÓN_LÓGICA	.(O+o)(R+r).	.OR.,or.

Expresiones Regulares

Ejemplo (Operadores lógicos en PASCAL)

COMPONENTE LÉXICO	Expresión regular	Paradigma
NEGACIÓN_LÓGICA	(N+n)(O+o)(T+t)	NOT, not
CONJUNCIÓN_LÓGICA	(A+a)(N+n)(D+d)	AND, and
DISYUNCIÓN_LÓGICA	(O+o)(R+r)	OR, or

Expresiones Regulares

Nota

- El analizador sintáctico sólo necesita saber cuál es el componente léxico reconocido
- No necesita saber cómo es dicho componente léxico.

Expresiones Regulares

Definición (Equivalencia de expresiones regulares)

 α y β son **equivalentes** si y sólo si denotan el mismo lenguaje:

$$L(\alpha) = L(\beta)$$

$$\alpha \equiv \beta \iff L(\alpha) = L(\beta)$$

Expresiones Regulares

Ejemplo

Se verifica que

$$aa^* \equiv a^*a$$

porque

$$L(aa^*) = L(a)L(a^*)$$

$$= \{a\}\{\epsilon, a, aa, \dots\}$$

$$= \{a, aa, aaa, \dots\}$$

$$= \{\epsilon, a, aa, \dots\}\{a\}$$

$$= L(a^*)L(a)$$

$$= L(a^*a)$$

Expresiones Regulares

- 1.- Disyunción idempotente: $\alpha + \alpha = \alpha$
- 2.- Disyunción asociativa: $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$
- 3.- Disyunción conmutativa: $\alpha + \beta = \beta + \alpha$
- 4.- Concatenación asociativa: α (β γ) = (α β) γ
- 5.- Concatenación no conmutativa: $\alpha \beta \neq \beta \alpha$
- 6.- Distributiva: $\alpha (\beta + \gamma) = \alpha \beta + \alpha \gamma$
- 7.- Elemento neutro de la disyunción: $\alpha + \emptyset = \emptyset + \alpha = \alpha$
- 8.- Elemento neutro de la concatenación: $\alpha \epsilon = \epsilon \alpha = \alpha$

Expresiones Regulares

- 1.- Disyunción idempotente: $\alpha + \alpha = \alpha$
- 2.- Disyunción asociativa: $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$
- 3.- Disyunción conmutativa: $\alpha + \beta = \beta + \alpha$
- 4.- Concatenación asociativa: α (β γ) = (α β) γ
- 5.- Concatenación no conmutativa: $\alpha \beta \neq \beta \alpha$
- 6.- Distributiva: $\alpha (\beta + \gamma) = \alpha \beta + \alpha \gamma$
- 7.- Elemento neutro de la disyunción: $\alpha + \emptyset = \emptyset + \alpha = \alpha$
- 8.- Elemento neutro de la concatenación: $\alpha \epsilon = \epsilon \alpha = \alpha$

Expresiones Regulares

- 1.- Disyunción idempotente: $\alpha + \alpha = \alpha$
- 2.- Disyunción asociativa: $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$
- 3.- Disyunción conmutativa: $\alpha + \beta = \beta + \alpha$
- 4.- Concatenación asociativa: α (β γ) = (α β) γ
- 5.- Concatenación no conmutativa: $\alpha \beta \neq \beta \alpha$
- 6.- Distributiva: $\alpha (\beta + \gamma) = \alpha \beta + \alpha \gamma$
- 7.- Elemento neutro de la disyunción: $\alpha + \emptyset = \emptyset + \alpha = \alpha$
- 8.- Elemento neutro de la concatenación: $\alpha \epsilon = \epsilon \alpha = \alpha$

Expresiones Regulares

- 1.- Disyunción idempotente: $\alpha + \alpha = \alpha$
- 2.- Disyunción asociativa: $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$
- 3.- Disyunción conmutativa: $\alpha + \beta = \beta + \alpha$
- 4.- Concatenación asociativa: α (β γ) = (α β) γ
- 5.- Concatenación no conmutativa: $\alpha \beta \neq \beta \alpha$
- 6.- Distributiva: $\alpha (\beta + \gamma) = \alpha \beta + \alpha \gamma$
- 7.- Elemento neutro de la disyunción: $\alpha + \emptyset = \emptyset + \alpha = \alpha$
- 8.- Elemento neutro de la concatenación: $\alpha \epsilon = \epsilon \alpha = \alpha$

Expresiones Regulares

- 1.- Disyunción idempotente: $\alpha + \alpha = \alpha$
- 2.- Disyunción asociativa: $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$
- 3.- Disyunción conmutativa: $\alpha + \beta = \beta + \alpha$
- 4.- Concatenación asociativa: α (β γ) = (α β) γ
- 5.- Concatenación no conmutativa: $\alpha \beta \neq \beta \alpha$
- 6.- Distributiva: $\alpha (\beta + \gamma) = \alpha \beta + \alpha \gamma$
- 7.- Elemento neutro de la disyunción: $\alpha + \emptyset = \emptyset + \alpha = \alpha$
- 8.- Elemento neutro de la concatenación: $\alpha \epsilon = \epsilon \alpha = \alpha$

Expresiones Regulares

- 1.- Disyunción idempotente: $\alpha + \alpha = \alpha$
- 2.- Disyunción asociativa: $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$
- 3.- Disyunción conmutativa: $\alpha + \beta = \beta + \alpha$
- 4.- Concatenación asociativa: α (β γ) = (α β) γ
- 5.- Concatenación no conmutativa: $\alpha \beta \neq \beta \alpha$
- 6.- Distributiva: $\alpha (\beta + \gamma) = \alpha \beta + \alpha \gamma$
- 7.- Elemento neutro de la disyunción: $\alpha + \emptyset = \emptyset + \alpha = \alpha$
- 8.- Elemento neutro de la concatenación: $\alpha \epsilon = \epsilon \alpha = \alpha$

Expresiones Regulares

- 1.- Disyunción idempotente: $\alpha + \alpha = \alpha$
- 2.- Disyunción asociativa: $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$
- 3.- Disyunción conmutativa: $\alpha + \beta = \beta + \alpha$
- 4.- Concatenación asociativa: α (β γ) = (α β) γ
- 5.- Concatenación no conmutativa: $\alpha \beta \neq \beta \alpha$
- **6.-** Distributiva: $\alpha (\beta + \gamma) = \alpha \beta + \alpha \gamma$
- 7.- Elemento neutro de la disyunción: $\alpha + \emptyset = \emptyset + \alpha = \alpha$
- 8.- Elemento neutro de la concatenación: $\alpha \epsilon = \epsilon \alpha = \alpha$

Expresiones Regulares

- 1.- Disyunción idempotente: $\alpha + \alpha = \alpha$
- 2.- Disyunción asociativa: $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$
- 3.- Disyunción conmutativa: $\alpha + \beta = \beta + \alpha$
- 4.- Concatenación asociativa: α (β γ) = (α β) γ
- 5.- Concatenación no conmutativa: $\alpha \beta \neq \beta \alpha$
- 6.- **Distributiva**: α (β + γ) = α β + α γ
- 7.- Elemento neutro de la disyunción: $\alpha + \emptyset = \emptyset + \alpha = \alpha$
- 8.- Elemento neutro de la concatenación: $\alpha \epsilon = \epsilon \alpha = \alpha$

Expresiones Regulares

9.-
$$\alpha \emptyset = \emptyset \alpha = \emptyset$$

$$10.-\epsilon^*=\epsilon$$

$$11.- \emptyset^* = \epsilon$$

12.-
$$\alpha^* \alpha^* = \alpha^*$$

13.-
$$\alpha \alpha^* = \alpha^* \alpha = \alpha^+$$

14.-
$$(\alpha^*)^* = \alpha^*$$

15.-
$$\alpha^* = \epsilon + \alpha \alpha^*$$

Expresiones Regulares

9.-
$$\alpha \emptyset = \emptyset \alpha = \emptyset$$

10.-
$$\epsilon^* = \epsilon$$

$$11.- \emptyset^* = \epsilon$$

12.-
$$\alpha^* \alpha^* = \alpha^*$$

13.-
$$\alpha \alpha^* = \alpha^* \alpha = \alpha^+$$

14.-
$$(\alpha^*)^* = \alpha^*$$

15.-
$$\alpha^* = \epsilon + \alpha \alpha^*$$

Expresiones Regulares

9.-
$$\alpha \emptyset = \emptyset \alpha = \emptyset$$

10.-
$$\epsilon^* = \epsilon$$

11.-
$$\emptyset^* = \epsilon$$

$$12.- \alpha^* \alpha^* = \alpha^*$$

13.-
$$\alpha \alpha^* = \alpha^* \alpha = \alpha^+$$

14.-
$$(\alpha^*)^* = \alpha^*$$

15.-
$$\alpha^* = \epsilon + \alpha \alpha^*$$

Expresiones Regulares

9.-
$$\alpha \emptyset = \emptyset \alpha = \emptyset$$

10.- $\epsilon^* = \epsilon$

11.-
$$\emptyset^* = \epsilon$$

$$L(\emptyset^*) = (L(\emptyset))^* = (\emptyset)^*$$

$$= \bigcup_{i=0}^{\infty} \emptyset^i = \emptyset^0 \cup \emptyset^1 \cup \emptyset^2 \cdots$$

$$= \{\epsilon\} \cup \emptyset \cup \emptyset \cdots$$

$$= \{\epsilon\} = L(\epsilon)$$

12.-
$$\alpha^* \alpha^* = \alpha^*$$

13.- $\alpha \alpha^* = \alpha^* \alpha = \alpha^+$
14.- $(\alpha^*)^* = \alpha^*$

Expresiones Regulares

9.-
$$\alpha \emptyset = \emptyset \alpha = \emptyset$$

10.-
$$\epsilon^* = \epsilon$$

11.-
$$\emptyset^* = \epsilon$$

12.-
$$\alpha^* \alpha^* = \alpha^*$$

13.-
$$\alpha \alpha^* = \alpha^* \alpha = \alpha^+$$

14.-
$$(\alpha^*)^* = \alpha^*$$

15.-
$$\alpha^* = \epsilon + \alpha \alpha^*$$

Expresiones Regulares

9.-
$$\alpha \emptyset = \emptyset \alpha = \emptyset$$

10.-
$$\epsilon^* = \epsilon$$

11.-
$$\emptyset^* = \epsilon$$

12.-
$$\alpha^* \alpha^* = \alpha^*$$

13.-
$$\alpha \alpha^* = \alpha^* \alpha = \alpha^+$$

14.-
$$(\alpha^*)^* = \alpha^*$$

15.-
$$\alpha^* = \epsilon + \alpha \alpha^*$$

Expresiones Regulares

9.-
$$\alpha \emptyset = \emptyset \alpha = \emptyset$$

10.-
$$\epsilon^* = \epsilon$$

11.-
$$\emptyset^* = \epsilon$$

12.-
$$\alpha^* \alpha^* = \alpha^*$$

13.-
$$\alpha \alpha^* = \alpha^* \alpha = \alpha^+$$

14.-
$$(\alpha^*)^* = \alpha^*$$

15.-
$$\alpha^* = \epsilon + \alpha \alpha^*$$

Expresiones Regulares

9.-
$$\alpha \emptyset = \emptyset \alpha = \emptyset$$

10.-
$$\epsilon^* = \epsilon$$

11.-
$$\emptyset^* = \epsilon$$

12.-
$$\alpha^* \alpha^* = \alpha^*$$

13.-
$$\alpha \alpha^* = \alpha^* \alpha = \alpha^+$$

14.-
$$(\alpha^*)^* = \alpha^*$$

15.-
$$\alpha^* = \epsilon + \alpha \alpha^*$$

Expresiones Regulares

Capacidad de las expresiones regulares

- Denotan los componentes léxicos
- Pueden denotar
 - + Un número fijo de repeticiones: aaaaa
 - + Un número **arbitrario** de repeticiones: **a***
 - + Repeticiones no coordinadas

Ejemplo

```
L_1 = \{a^i \ b^j | i, j \ge 0\}
= \{\epsilon, a, aa, aaa, \dots b, ab, aab, \dots\}
= \{\epsilon, a, aa, aaa, \dots\} \{\epsilon, b, bb, bbb\}
= L(a^*b^*)
```

Expresiones Regulares

Capacidad de las expresiones regulares

- Denotan los componentes léxicos
- Pueden denotar
 - + Un número fijo de repeticiones: aaaaa
 - + Un número arbitrario de repeticiones: a*
 - + Repeticiones no coordinadas

Ejemplo

```
L_1 = \{a^i \ b^j | i, j \ge 0\}
= \{\epsilon, a, aa, aaa, \dots b, ab, aab, \dots\}
= \{\epsilon, a, aa, aaa, \dots\} \{\epsilon, b, bb, bbb\}
= L(a^*b^*)
```

Expresiones Regulares

Nota (Limitaciones de las expresiones regulares)

- No pueden denotar características sintácticas
- No pueden denotar repeticiones coordinadas

Expresiones Regulares

Nota (Limitaciones de las expresiones regulares)

- No pueden denotar características sintácticas
- No pueden denotar repeticiones coordinadas

Ejemplo

Lenguaje que no puede ser denotado por una expresión regular

$$L_2 = \{a^i \ b^i | i \ge 0\} = \{\epsilon, ab, aabb, aaabbb, \cdots\}$$

 L_2 no es un lenguaje regular.

Expresiones Regulares

Nota (Limitaciones de las expresiones regulares)

- No pueden denotar características sintácticas
- No pueden denotar repeticiones coordinadas

Ejemplo

 $L_2 = \{a^i \ b^i | i \ge 0\}$ representa a muchas estructuras sintácticas de los lenguajes de programación:

- + Balanceo de paréntesis, llaves o corchetes.
- + Paso de parámetros
- + Etc.

Contenido del tema

- Introducción
- 2 Especificación de componentes léxicos
- 3 Reconocimiento de componentes léxicos
- 4 Implementación de los analizadores léxicos
- 5 Detección y recuperación de errores

Contenido de la sección

- Introducción
- 2 Especificación de componentes léxicos
- 3 Reconocimiento de componentes léxicos
 - Autómatas finitos
 - Autómatas finitos deterministas: AFD
 - Autómatas finitos NO deterministas: AFN
 - Minimización de autómatas finitos deterministas
- 4 Implementación de los analizadores léxicos
- 5 Detección y recuperación de errores

Reconocimiento de componentes léxicos

Autómatas finitos

COMPONENTES LÉXICOS

Autómatas finitos

COMPONENTES LÉXICOS

EXPRESIONES REGULARES

- Expresiones regulares: denotan componentes léxicos.
- Autómatas finitos: reconocen componentes léxicos:
 - + Autómata finito no determinista: AFN
 - + Autómata finito determinista: AFD
- Generación de autómatas finitos a partir de expresiones regulares:
- Paso 1.- Algoritmo de **Thompson**: genera un AFN a partir de una expresión regular
- Paso 2.- Algoritmo de **Construcción de subconjuntos**: genera un AFD a partir de un AFN.

- Expresiones regulares: denotan componentes léxicos.
- Autómatas finitos: reconocen componentes léxicos:
 - + Autómata finito no determinista: AFN
 - + Autómata finito determinista: AFD
- Generación de autómatas finitos a partir de expresiones regulares:
- Paso 1.- Algoritmo de **Thompson**: genera un AFN a partir de una expresión regular
- Paso 2.- Algoritmo de **Construcción de subconjuntos**: genera un AFD a partir de un AFN.

- Expresiones regulares: denotan componentes léxicos.
- Autómatas finitos: reconocen componentes léxicos:
 - + Autómata finito no determinista: AFN
 - + Autómata finito determinista: AFD
- Generación de autómatas finitos a partir de expresiones regulares:
- Paso 1.- Algoritmo de **Thompson**: genera un AFN a partir de una expresión regular
- Paso 2.- Algoritmo de **Construcción de subconjuntos**: genera un AFD a partir de un AFN.

Contenido de la sección

- Introducción
- 2 Especificación de componentes léxicos
- 3 Reconocimiento de componentes léxicos
 - Autómatas finitos
 - Autómatas finitos deterministas: AFD
 - Autómatas finitos NO deterministas: AFN
 - Minimización de autómatas finitos deterministas
- 4 Implementación de los analizadores léxicos
- 5 Detección y recuperación de errores

Autómatas finitos deterministas: AFD

- Descripción general
- Definición formal
- Función de transición para palabras
- Representación gráfica
- Lenguaje reconocido por un AFD

Autómatas finitos deterministas: AFD

- Descripción general
- Definición formal
- Función de transición para palabras
- Representación gráfica
- Lenguaje reconocido por un AFD

Autómatas finitos deterministas: AFD

Definición (Autómata finito determinista: AFD)

- Dispositivo formal que permite reconocer si una palabra pertenece o no a un lenguaje regular.
- También se denomina "máquina reconocedora o aceptadora"

Autómatas finitos deterministas: AFD

Componentes de un AFD

- Cinta de lectura:
 - + Dividida en celdas.
 - + Infinita hacia la derecha.
- Cabeza de lectura:
 - + Lee el símbolo actual de la cinta.
 - + Sólo se puede mover hacia la derecha.
- Alfabeto de la cinta
- Unidad de control de estados: indica el estado actual.

Autómatas finitos deterministas: AFD

Unidad de control de estados

Componentes básicos de un autómata finito determinista.

Autómatas finitos deterministas: AFD

Pasos del AFD para reconocer a $x = \sigma_{i_1} \dots \sigma_{i_j} \sigma_{i_{j+1}} \dots \sigma_{i_k} \in \Sigma^*$

Autómatas finitos deterministas: AFD

Pasos del AFD para reconocer a $x = \sigma_{i_1} \dots \sigma_{i_i} \sigma_{i_{i+1}} \dots \sigma_{i_k} \in \Sigma^*$

Configuración inicial

Autómatas finitos deterministas: AFD

Pasos del AFD para reconocer a $x = \sigma_{i_1} \dots \sigma_{i_i} \sigma_{i_{i+1}} \dots \sigma_{i_k} \in \Sigma^*$

Transición: situación anterior

Autómatas finitos deterministas: AFD

Pasos del AFD para reconocer a $x = \sigma_{i_1} \dots \sigma_{i_l} \sigma_{i_{l+1}} \dots \sigma_{i_k} \in \Sigma^*$

Transición: situación posterior

Autómatas finitos deterministas: AFD

Pasos del AFD para reconocer a $x = \sigma_{i_1} \dots \sigma_{i_i} \sigma_{i_{i+1}} \dots \sigma_{i_k} \in \Sigma^*$

Configuración final

Autómatas finitos deterministas: AFD

- Descripción general
- Definición formal
- Función de transición para palabras
- Representación gráfica
- Lenguaje reconocido por un AFD

Autómatas finitos deterministas: AFD

Definición (Autómata finito determinista)

$$A = (Q, \Sigma, \delta, q_0, F)$$

donde

- Q: conjunto finito de estados
- Σ: alfabeto de símbolos de entrada
- δ: función de transición entre estados:

$$\delta: Q \times \Sigma \longrightarrow Q$$
$$\delta(q, \sigma) = q'$$

- $q_0 \in Q$: estado inicial
- $F \subseteq Q$: conjunto de estados **finales**

Autómatas finitos deterministas: AFD

Ejemplo (AFD que reconoce identificadores de COBOL)

Autómatas finitos deterministas: AFD

Ejemplo (AFD que reconoce identificadores de COBOL)

Los componentes del autómata son:

- $Q = \{q_0, q_1, q_2, q_3\}$
- $F = \{q_1\}$
- El símbolo "→" indica el estado inicial.
- El símbolo "←" indica los estados finales.
- $\Sigma = \{l, d, g\}$ donde: l = letra, d = digito y g = guion.

Autómatas finitos deterministas: AFD

- Descripción general
- Definición formal
- Función de transición para palabras
- Representación gráfica
- Lenguaje reconocido por un AFD

Autómatas finitos deterministas: AFD

Definición (Función de transición para palabras)

$$\hat{\delta}: Q \times \Sigma^* \longrightarrow Q$$

$$\begin{array}{lcl} \hat{\delta}(q,\epsilon) & = & q \in Q \\ \hat{\delta}(q,x\sigma) & = & \delta(\hat{\delta}(q,x),\sigma) \in Q \quad \forall x \in \Sigma^* \land \sigma \in \Sigma \end{array}$$

Autómatas finitos deterministas: AFD

Notas

• $\hat{\delta}$ y δ coinciden sobre símbolos de Σ :

$$\hat{\delta}(q,\sigma) = \hat{\delta}(q,\epsilon \cdot \sigma) = \delta(\hat{\delta}(q,\epsilon),\sigma) = \delta(q,\sigma) \quad \forall \sigma \in \Sigma$$

•
$$\hat{\delta}(q, xy) = \hat{\delta}(\hat{\delta}(q, x), y) \quad \forall x, y \in \Sigma^*$$

•
$$\hat{\delta}(q, \sigma x) = \hat{\delta}(\hat{\delta}(q, \sigma), x) = \hat{\delta}(\delta(q, \sigma), x)$$

Autómatas finitos deterministas: AFD

Ejemplo

$$\hat{\delta}(q_0, x) = \hat{\delta}(q_0, llgd) = \hat{\delta}(\delta(q_0, l), lgd)
= \hat{\delta}(q_1, lgd) = \hat{\delta}(\delta(q_1, l), gd)
= \hat{\delta}(q_1, gd) = \hat{\delta}(\delta(q_1, g), d)
= \hat{\delta}(q_2, d) = \delta(q_2, d)
= q_1 \in F$$

Autómatas finitos deterministas: AFD

Nota

x = l l g d es reconocida por el AFD porque q_1 es un estado final.

Autómatas finitos deterministas: AFD

Nota

Existe una **notación más simple** para el reconocimiento de un AFD.

Eiemplo

$$(q_0, ||gd) \vdash (q_1, ||gd)$$
 $\vdash (q_1, gd)$
 $\vdash (q_2, d)$
 $\vdash (q_1, \epsilon)$

o simplemente

 $(q_0, llgd) \vdash^* (q_1, \epsilon)$

Autómatas finitos deterministas: AFD

Nota

Existe una **notación más simple** para el reconocimiento de un AFD.

Ejemplo

$$(q_0, llgd) \vdash (q_1, lgd)$$
 $\vdash (q_1, gd)$
 $\vdash (q_2, d)$
 $\vdash (q_1, \epsilon)$

Autómatas finitos deterministas: AFD

Nota

Existe una **notación más simple** para el reconocimiento de un AFD.

Ejemplo

o simplemente

$$egin{array}{lll} (q_0, \emph{llgd}) & dash & (q_1, \emph{lgd}) \\ & dash & (q_1, \emph{gd}) \\ & dash & (q_2, \emph{d}) \\ & dash & (q_1, \epsilon) \end{array}$$
 $(q_0, \emph{llgd}) & dash^* & (q_1, \epsilon) \end{array}$

Autómatas finitos deterministas: AFD

- Descripción general
- Definición formal
- Representación gráfica
- Lenguaje reconocido por un AFD

Autómatas finitos deterministas: AFD

Definición (Representación gráfica de un AFD)

Grafo dirigido:

- Número de nodos = cardinal(Q).
- Etiqueta de cada nodo $\in Q$.
- Estado inicial:
- Estados finales:
- $Si \ \delta(q, \sigma) = q' \ entonces$
- Se agrupan las aristas que enlazan los mismos estados.

Autómatas finitos deterministas: AFD

Autómatas finitos deterministas: AFD

- Descripción general
- Definición formal
- Representación gráfica
- Lenguaje reconocido por un AFD

Autómatas finitos deterministas: AFD

Definición (Lenguaje reconocido por un AFD)

$$L(A) = \{x | x \in \Sigma^* \land \hat{\delta}(q_0, x) \in F\}$$

Autómatas finitos deterministas: AFD

Notas

- Si F = Q entonces $L(A) = \Sigma^*$
- Si $F = \emptyset$ entonces $L(A) = \emptyset$
- $q_0 \in F$ si y sólo si $\epsilon \in L(A)$

Autómatas finitos deterministas: AFD

Ejemplo

$$L(A) = L(I(I + d + g(I + d))^*)$$

Lenguaje reconocido por un AFD que reconoce identificadores de COBOL

Autómatas finitos deterministas: AFD

Función de transición

$$\begin{array}{c|ccccc}
 & \delta & a & b \\
 & & q_0 & q_0 & q_1 \\
 & \leftarrow & \hline
 & q_1 & q_2 & q_1 \\
 & q_2 & q_2 & q_2
\end{array}$$

Autómatas finitos deterministas: AFD

Ejemplo (Lenguaje reconocido por un AFD)

Los componentes del autómata son:

- $Q = \{q_0, q_1, q_2\}$
- $F = \{q_0, q_1\}$
- $\Sigma = \{a, b\}$

Autómatas finitos deterministas: AFD

Nota

El estado q₂ es inútil o superfluo

Autómatas finitos deterministas: AFD

Ejemplo (Lenguaje reconocido por un AFD)

$$\hat{\delta}(q_0, aabb) = \hat{\delta}(\delta(q_0, a), abb)
= \hat{\delta}(\delta(q_0, a), bb)
= \hat{\delta}(\delta(q_0, b), b)
= \hat{\delta}(q_1, b)
= \delta(q_1, b)
= q_1 \in F$$

Autómatas finitos deterministas: AFD

Ejemplo (Lenguaje reconocido por un AFD)

$$(q_0, aabb) \vdash (q_0, abb)$$
 $\vdash (q_0, bb)$
 $\vdash (q_1, b)$
 $\vdash (q_1, \epsilon)$

Autómatas finitos deterministas: AFD

Ejemplo (AFD que reconoce identificadores de C)

Función de transición

	δ	letra	subrayado	dígito
\rightarrow	q_0	q_1	q_1	q ₂
\leftarrow	q_1	q_1	q_1	q_1
	q_2	q_2	q_2	q_2

Nota

El estado q₂ es superfluo

Autómatas finitos deterministas: AFD

Ejemplo (AFD que reconoce cadenas de caracteres)

$$L(A) = L("(letra + \cdots)(BARRA" + letra + \cdots)*")$$

Contenido de la sección

- Introducción
- 2 Especificación de componentes léxicos
- 3 Reconocimiento de componentes léxicos
 - Autómatas finitos
 - Autómatas finitos deterministas: AFD
 - Autómatas finitos NO deterministas: AFN
 - Minimización de autómatas finitos deterministas
- 4 Implementación de los analizadores léxicos
- 5 Detección y recuperación de errores

- Descripción general
- Definición formal
- Representación gráfica
- Función de transición para palabras
- Lenguaje reconocido por un AFN
- Equivalencia entre AFN y AFD
- Equivalencia entre expresiones regulares y autómatas finitos

- Descripción general
- Definición formal
- Representación gráfica
- Función de transición para palabras
- Lenguaje reconocido por un AFN
- Equivalencia entre AFN y AFD
- Equivalencia entre expresiones regulares y autómatas finitos

Autómatas finitos NO deterministas: AFN

Definición (Autómata finito NO determinista: AFN)

- Un autómota finito es **no** determinista si posee alguna de las siguientes transiciones:
 - Transición €: no lee el símbolo actual pero cambia de estado
 - Transición múltiple: puede cambiar a más de un estado.
- Estos tipos de transiciones no son excluyentes.

- Descripción general
- Definición formal
- Representación gráfica
- Función de transición para palabras
- Lenguaje reconocido por un AFN
- Equivalencia entre AFN y AFD
- Equivalencia entre expresiones regulares y autómatas finitos

Autómatas finitos NO deterministas: AFN

Definición (Autómata finito NO determinista: AFN)

$$A = (Q, \Sigma, \delta, q_0, F)$$

- Q: conjunto finito de estados
- Σ: alfabeto de símbolos de entrada
- δ: función de transición entre estados:

$$egin{aligned} \delta: Q imes (\Sigma \cup \{\epsilon\}) &\longrightarrow \mathcal{P}(Q) \ \delta(q,\epsilon) \subseteq Q \ \delta(q,\sigma) \subseteq Q \end{aligned}$$

- $q_0 \in Q$: estado inicial
- $F \subseteq Q$: conjunto de estados finales
- $\mathcal{P}(Q)$: conjunto de las partes de Q

Autómatas finitos NO deterministas: AFN

Definición (Transición (ϵ) trivial)

$$q \in \delta(q, \epsilon) \quad \forall q \in Q$$

Nota

Las transiciones triviales siempre existen y se suponen tácitamente por defecto.

Definición (Transición (ϵ) **no** trivial)

$$q' \in \delta(q, \epsilon) \quad \land \quad q \neq q'$$

Not:

Si existen, estas transiciones se han de indicar expresamente.

Autómatas finitos NO deterministas: AFN

Definición (Transición (ϵ) trivial)

$$q \in \delta(q, \epsilon) \quad \forall q \in Q$$

Nota

Las transiciones triviales siempre existen y se suponen tácitamente por defecto.

Definición (Transición (ϵ) **no** trivial)

$$q' \in \delta(q, \epsilon) \quad \land \quad q \neq q'$$

Not.

Si existen, estas transiciones se han de indicar expresamente.

Autómatas finitos NO deterministas: AFN

Definición (Transición (ϵ) trivial)

$$q \in \delta(q, \epsilon) \quad \forall q \in Q$$

Nota

Las transiciones triviales siempre existen y se suponen tácitamente por defecto.

Definición (Transición (ϵ) **no** trivial)

$$q' \in \delta(q, \epsilon) \quad \land \quad q \neq q'$$

Not

Si existen, estas transiciones se han de indicar expresamente

Autómatas finitos NO deterministas: AFN

Definición (Transición (ϵ) trivial)

$$q \in \delta(q, \epsilon) \quad \forall q \in Q$$

Nota

Las transiciones triviales siempre existen y se suponen tácitamente por defecto.

Definición (Transición (ϵ) no trivial)

$$q' \in \delta(q, \epsilon) \quad \land \quad q \neq q'$$

Nota

Si existen, estas transiciones se han de indicar expresamente.

Autómatas finitos NO deterministas: AFN

Ejemplo

	δ	а	Ь	ϵ
\rightarrow	q_0	$\{q_1\}$	Ø	$\{q_0,q_1\}$
	q_1	Ø	$\{q_3,q_4\}$	$\{q_1,q_2\}$
	q_2	Ø	$\{q_5\}$	{ q ₂ }
	q 3	$\{q_2\}$	Ø	{ q ₃ }
	q_4	$\{q_4,q_5\}$	Ø	$\{q_2,q_4\}$
\leftarrow	q 5	Ø	$\{q_5\}$	$\{q_3,q_5\}$

Las transiciones triviales se pueden omitir.

Autómatas finitos NO deterministas: AFN

Nota

Un AFD puede considerarse un caso especial de AFN:

- No existen transiciones- ϵ no triviales.
- y no existen transiciones múltiples, es decir,

$$\delta(q,\sigma) = \{q'\}$$

- Descripción general
- Definición formal
- Representación gráfica
- Función de transición para palabras
- Lenguaje reconocido por un AFN
- Equivalencia entre AFN y AFD
- Equivalencia entre expresiones regulares y autómatas finitos

Autómatas finitos NO deterministas: AFN

Definición (AFN: representación gráfica)

- Número de nodos del grafo = cardinal(Q).
- Etiqueta de cada nodo $\in Q$.
- Estado inicial: q_0
- Estados finales:
- $Si \ q' \in \delta(q, \sigma)$ entonces
- Si $q' \in \delta(q, \epsilon)$ entonces
- Las aristas de las transiciones- ϵ triviales se pueden omitir.
- Se agrupan las aristas que enlazan los mismos estados.

- Descripción general
- Definición formal
- Representación gráfica
- Función de transición para palabras
- Lenguaje reconocido por un AFN
- Equivalencia entre AFN y AFD
- Equivalencia entre expresiones regulares y autómatas finitos

- Función de transición para palabras en un AFN:
 - + Clausura ϵ aplicada a estados
 - + Clausura ϵ aplicada a conjuntos de estados
 - + Función de transición para palabras: $\hat{\delta}$

Autómatas finitos NO deterministas: AFN

Definición (Clausura - ϵ aplicada a estados)

$$\begin{aligned} \textit{clausura} &- \epsilon : Q \longrightarrow \mathcal{P}(Q) \\ &\text{Si } q \in Q \\ &+ q \in \textit{clausura} - \epsilon(q) \\ &+ \text{Si } q' \in \textit{clausura} - \epsilon(q) \land q'' \in \delta(q', \epsilon) \\ &\text{entonces } q'' \in \textit{clausura} - \epsilon(q) \end{aligned}$$

Autómatas finitos NO deterministas: AFN

Definición (Clausura - ϵ aplicada a estados)

Segunda versión

$$clausura - \epsilon: Q \longrightarrow \mathcal{P}(Q)$$

clausura
$$-\epsilon(q) = \{q'|q' \in Q \land \exists un \ camino \ de \ q \ a \ q' \ con \ las \ aristas \ etiquetadas \ con \ \epsilon\}$$

Nota

Siempre se verifica que $q \in clausura - \epsilon(q)$

Autómatas finitos NO deterministas: AFN

Ejemplos (Clausura- ϵ de los estados del AFN anterior)

$$clausura - \epsilon(q_0) = \{q_0, q_1, q_2\}$$

 $clausura - \epsilon(q_1) = \{q_1, q_2\}$
 $clausura - \epsilon(q_2) = \{q_2\}$
 $clausura - \epsilon(q_3) = \{q_3\}$
 $clausura - \epsilon(q_4) = \{q_2, q_4\}$
 $clausura - \epsilon(q_5) = \{q_3, q_5\}$

Autómatas finitos NO deterministas: AFN

Definición (Clausura - ϵ aplicada a conjuntos de estados)

$$\begin{aligned} \textit{clausura} &- \epsilon: \mathcal{P}(Q) \longrightarrow \mathcal{P}(Q) \\ &\text{Si } P \subseteq Q \\ &+ &P \in \textit{clausura} - \epsilon(P) \\ &+ &\text{Si } q' \in \textit{clausura} - \epsilon(P) \land q'' \in \delta(q', \epsilon) \\ &\text{entonces } q'' \in \textit{clausura} - \epsilon(P) \end{aligned}$$

Autómatas finitos NO deterministas: AFN

Definición (Clausura - ϵ aplicada a conjuntos de estados)

Segunda versión

Si $P \subseteq Q$ entonces

$$clausura - \epsilon(P) = \bigcup_{q \in P} clausura - \epsilon(q)$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Clausura- ϵ de un conjunto de estados)

$$\begin{array}{lll} \textit{clausura} - \epsilon(\{q_1, q_3\}) & = & \bigcup_{q \in \{q_1, q_3\}} \textit{clausura} - \epsilon(q) \\ \\ & = & \textit{clausura} - \epsilon(q_1) \cup \textit{clausura} - \epsilon(q_3) \\ \\ & = & \{q_1, q_2\} \cup \{q_3\} \\ \\ & = & \{q_1, q_2, q_3\} \end{array}$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Clausura- ϵ de un conjunto de estados)

$$\begin{array}{lll} \textit{clausura} - \epsilon(\{q_0, q_5\}) & = & \bigcup_{q \in \{q_0, q_5\}} \textit{clausura} - \epsilon(q) \\ \\ & = & \textit{clausura} - \epsilon(q_0) \cup \textit{clausura} - \epsilon(q_5) \\ \\ & = & \{q_0, q_1, q_2\} \cup \{q_3, q_5\} \\ \\ & = & \{q_0, q_1, q_2, q_3, q_5\} \end{array}$$

Autómatas finitos NO deterministas: AFN

Definición (Función de transición para palabras)

$$\hat{\delta}: Q \times \Sigma^* \longrightarrow \mathcal{P}(Q)$$

$$\hat{\delta}(q,\epsilon) = ext{clausura} - \epsilon(q)$$
 $\hat{\delta}(q,x\sigma) = ext{clausura} - \epsilon \left(igcup_{q' \in \hat{\delta}(q,x)} \delta(q',\sigma)
ight)$

Autómatas finitos NO deterministas: AFN

Definición (Función de transición para palabras)

En particular

$$+ \hat{\delta}(q,\sigma) = clausura - \epsilon \left(\bigcup_{q' \in \hat{\delta}(q,\epsilon)} \delta(q',\sigma) \right)$$

$$= clausura - \epsilon \left(\bigcup_{q' \in clausura - \epsilon(q)} \delta(q',\sigma) \right)$$

Ejemplo (Reconocimiento de una palabra:
$$1/8$$
)
$$\hat{\delta}(q_0,x) = \hat{\delta}(q_0,abb)$$

$$= clausura - \epsilon \left(\bigcup_{q' \in \hat{\delta}(q_0,ab)} \delta(q',b)\right)$$

Ejemplo (Reconocimiento de una palabra:
$$2/8$$
)
$$\hat{\delta}(q_0, ab) = clausura - \epsilon \left(\bigcup_{q' \in \hat{\delta}(q_0, a)} \delta(q', b) \right)$$

Ejemplo (Reconocimiento de una palabra:
$$3/8$$
)
$$\hat{\delta}(q_0,a) = clausura - \epsilon \left(\bigcup_{q' \in \hat{\delta}(q_0,\epsilon)} \delta(q',a)\right)$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Reconocimiento de una palabra:

$$\hat{\delta}(q_0, \epsilon) = clausura - \epsilon(q_0)$$

= $\{q_0, q_1, q_2\}$

Autómatas finitos NO deterministas: AFN

Ejemplo (Reconocimiento de una palabra: Se sustituye $\hat{\delta}(q_0, \epsilon)$ en $\hat{\delta}(q_0, a)$: $\hat{\delta}(q_0, a) = clausura - \epsilon \left(\bigcup_{q' \in \hat{\delta}(q_0, \epsilon)} \delta(q', a) \right)$ = $clausura - \epsilon \left(\bigcup_{q' \in \{q_0, q_1, q_2\}} \delta(q', a) \right)$ = clausura $-\epsilon(\delta(q_0,a)\cup\delta(q_1,a)\cup\delta(q_2,a))$ = clausura $-\epsilon(\lbrace q_1\rbrace \cup \emptyset \cup \emptyset)$ $= \{q_1, q_2\}$

Autómatas finitos NO deterministas: AFN

Ejemplo (Reconocimiento de una palabra: Se sustituye $\hat{\delta}(q_0, a)$ en $\hat{\delta}(q_0, ab)$: $\hat{\delta}(q_0, ab) = clausura - \epsilon \left(\bigcup_{q' \in \hat{\delta}(q_0, a)} \delta(q', b) \right)$ = clausura $-\epsilon \left(igcup_{q' \in \{q_1,q_2\}} \delta(q',b) ight)$ = $clausura - \epsilon(\delta(q_1, b) \cup \delta(q_2, b))$ = $clausura - \epsilon(\lbrace q_3, q_4 \rbrace \cup \lbrace q_5 \rbrace)$ = $clausura - \epsilon(\lbrace q_3, q_4, q_5 \rbrace)$ $= \{q_2, q_3, q_4, q_5\}$

Autómatas finitos NO deterministas: AFN

Ejemplo (Reconocimiento de una palabra: Por último, se sustituye $\hat{\delta}(q_0, ab)$ en $\hat{\delta}(q_0, abb)$: $\hat{\delta}(q_0, abb) = clausura - \epsilon \left(\bigcup_{q' \in \hat{\delta}(q_0, ab)} \delta(q', b) \right)$ = $clausura - \epsilon \left(\bigcup_{q' \in \{q_1, q_2, q_3, q_4, q_5\}} \delta(q', b) \right)$ = clausura $-\epsilon(\delta(q_2,b)\cup\delta(q_3,b)\cup\delta(q_4,b)\cup\delta(q_5,b))$ = $clausura - \epsilon(\lbrace q_5 \rbrace \cup \emptyset \cup \emptyset \cup \lbrace q_5 \rbrace)$

 $= clausura - \epsilon(\{q_5\}) = \{q_3, q_5\}$

Autómatas finitos NO deterministas: AFN

Ejemplo (Reconocimiento de una palabra: 8 / 8) $x = abb \in L(A)$ porque $\hat{\delta}(q_0, abb) \cap F = \{q_3, q_5\} \cap F = \{q_5\} \neq \emptyset$

- Descripción general
- Definición formal
- Representación gráfica
- Función de transición para palabras
- Lenguaje reconocido por un AFN
- Equivalencia entre AFN y AFD
- Equivalencia entre expresiones regulares y autómatas finitos

Autómatas finitos NO deterministas: AFN

Definición (Lenguaje reconocido por un AFN)

$$L(A) = \{x | x \in \Sigma^* \land \hat{\delta}(q_0, x) \cap F \neq \emptyset\}$$

- Descripción general
- Definición formal
- Representación gráfica
- Función de transición para palabras
- Lenguaje reconocido por un AFN
- Equivalencia entre AFN y AFD
- Equivalencia entre expresiones regulares y autómatas finitos

Autómatas finitos NO deterministas: AFN

Necesidad de convertir AFN en AFD

- Calcular $\hat{\delta}(q_0, x)$ en un AFN es muy tedioso.
- Se suele evitar el uso de AFN.
- AFN y AFD tienen la misma capacidad de reconocimiento.
- Paso de AFN a AFD: algoritmo de Construcción de subconjuntos.
- Se ha de extender la definición de la función de transición a subconjuntos de Q.

Autómatas finitos NO deterministas: AFN

Definición (Extensión de δ a subconjuntos de Q)

$$\delta: \mathcal{P}(Q) \times (\Sigma \cup \{\epsilon\}) \longrightarrow \mathcal{P}(Q)$$
$$\delta(P, \sigma) = \bigcup_{q \in P} \delta(q, \sigma)$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Aplicación de δ a $p \subseteq Q$)

Sea el AFN anterior y $p = \{q_0, q_3\}$:

$$\delta(p, a) = \delta(\{q_0, q_3\}, a)
= \bigcup_{q \in \{q_0, q_3\}} \delta(q, a)
= \delta(q_0, a) \cup \delta(q_3, a)
= \{q_1\} \cup \{q_2\}
= \{q_1, q_2\}$$

Autómatas finitos NO deterministas: AFN

Teorema

Dado un AFN A_N , se puede construir otro AFD A_D equivalente:

$$L(A_N) = L(A_D)$$

Autómatas finitos NO deterministas: AFN

Demostración

Algoritmo de Construcción de subconjuntos

Autómatas finitos NO deterministas: AFN

Algoritmo (Construcción de subconjuntos)

- Entrada: $A_N = (Q_N, \Sigma, \delta_N, q_0, F_N)$
- Salida: $A_D = (Q_D, \Sigma, \delta_D, p_0, F_D)$

Algoritmo (Construcción de subconjuntos)

inicio

fin

$$p_0 \leftarrow clausura - \epsilon(q_0)$$
; $Q_D \leftarrow \{p_0\}$ y p_0 no marcado mientras haya un estado $p \in Q_D$ no marcado hacer Marcar a p
para cada $\sigma \in \Sigma$ hacer
 $p' \leftarrow clausura - \epsilon(\delta_N(p,\sigma))$
si $p' \notin Q_D$ entonces
 $Q_D \leftarrow Q_D \cup \{p'\}$ y p' no marcado fin_si
Definir $\delta_D(p,\sigma) \leftarrow p'$
fin para
fin mientras
 $F_D \leftarrow \{p_i | F_N \cap p_i \neq \emptyset\}$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 0: Estado inicial del AFD:

$$p_0 = clausura - \epsilon(q_0) = \{q_0, q_1, q_2\}$$

 $Q_D = \{p_0\}$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 0: estado inicial p_0

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 1: *Transiciones de* $p_0 = \{q_0, q_1, q_2\}$

Se marca el estado p_0 :

$$Q_D = \{\underline{p}_0\}$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 1: Transiciones de
$$p_0 = \{q_0, q_1, q_2\}$$

$$clausura - \epsilon(\delta_N(p_0, a)) =$$

$$= clausura - \epsilon(\bigcup_{q \in p_0} \delta_N(q, a))$$

$$= clausura - \epsilon(\bigcup_{q \in \{q_0, q_1, q_2\}} \delta_N(q, a))$$

$$= clausura - \epsilon(\delta_N(q_0, a) \cup \delta_N(q_1, a) \cup \delta_N(q_2, a))$$

$$= clausura - \epsilon(\{q_1\} \cup \emptyset \cup \emptyset)$$

$$= clausura - \epsilon(\{q_1\}) = \{q_1, q_2\} = p_1$$
Por tanto, $\delta_D(p_0, a) = p_1$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 1: *Transiciones de* $p_0 = \{q_0, q_1, q_2\}$

Como $p_1 \notin Q_D$:

$$Q_D = Q_D \cup \{p_1\} = \{p_0, p_1\}$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 1: Transiciones de
$$p_0 = \{q_0, q_1, q_2\}$$
 $clausura - \epsilon(\delta_N(p_0, b)) =$
 $= clausura - \epsilon(\bigcup_{q \in p_0} \delta_N(q, b))$
 $= \cdots$
 $= clausura - \epsilon(\delta_N(q_0, b) \cup \delta_N(q_1, b) \cup \delta_N(q_2, b))$
 $= clausura - \epsilon(\emptyset \cup \{q_3, q_4\} \cup \{q_5\})$
 $= clausura - \epsilon(\{q_3, q_4, q_5\})$
 $= \{q_2, q_3, q_4, q_5\} = p_2$
 $\delta_D(p_0, b) = p_2$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 1: *Transiciones de* $p_0 = \{q_0, q_1, q_2\}$

Como $p_2 \notin Q_D$:

$$Q_D = Q_D \cup \{p_2\} = \{p_0, p_1, p_2\}$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 2: Transiciones de $p_1 = \{q_1, q_2\}$

Se marca el estado p₁:

$$Q_D = \{\underline{p}_0, \underline{p}_1, p_2\}$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 2: Transiciones de $p_1 = \{q_1, q_2\}$

$$\begin{array}{lll} \textit{clausura} - \epsilon(\delta_{N}(p_{1}, a)) & = & \textit{clausura} - \epsilon(\bigcup_{q \in p_{1}} \delta_{N}(q, a)) \\ \\ & = & \cdots \\ \\ & = & \textit{clausura} - \epsilon(\delta_{N}(q_{1}, a) \cup \delta_{N}(q_{2}, a)) \\ \\ & = & \textit{clausura} - \epsilon(\emptyset \cup \emptyset) \\ \\ & = & \textit{clausura} - \epsilon(\emptyset) = \emptyset \end{array}$$

Por tanto, $\delta_D(p_1, a) = -$, es decir, está indefinida.

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 2: Transiciones de
$$p_1 = \{q_1, q_2\}$$

$$\begin{array}{lll} \textit{clausura} - \epsilon(\delta_N(p_1,b)) & = & \textit{clausura} - \epsilon(\bigcup_{q \in p_1} \delta_N(q,b)) \\ & = & \cdots \\ & = & \textit{clausura} - \epsilon(\delta_N(q_1,b) \cup \delta_N(q_2,b)) \\ & = & \textit{clausura} - \epsilon(\{q_3,q_4\} \cup \{q_5\}) \\ & = & \textit{clausura} - \epsilon(\{q_3,q_4,q_5\}) \\ & = & \{q_2,q_3,q_4,q_5\} = p_2 \end{array}$$

$$\delta_D(p_1,b)=p_2$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 3: *Transiciones de* $p_2 = \{q_2, q_3, q_4, q_5\}$

Se marca el estado p2:

$$Q_D = \{\underline{p}_0, \underline{p}_1, \underline{p}_2\}$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 3: *Transiciones de*
$$p_2 = \{q_2, q_3, q_4, q_5\}$$

$$\begin{array}{lll} \textit{clausura} - \epsilon(\delta_N(p_2, a)) & = & \textit{clausura} - \epsilon(\bigcup_{q \in p_2} \delta_N(q, a)) \\ \\ & = & \textit{clausura} - \epsilon(\bigcup_{\{q_2, q_3, q_4, q_5\}} \delta_N(q, a)) \\ \\ & = & \textit{clausura} - \epsilon(\delta_N(q_2, a) \cup \dots \cup \delta_N(q_5, a)) \\ \\ & = & \textit{clausura} - \epsilon(\emptyset \cup \{q_2\} \cup \{q_4, q_5\} \cup \emptyset) \\ \\ & = & \textit{clausura} - \epsilon(\{q_2, q_4, q_5\}) \\ \\ & = & \{q_2, q_3, q_4, q_5\} = p_2 \end{array}$$

$$\delta_D(p_2,a)=p_2$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 3: *Transiciones de*
$$p_2 = \{q_2, q_3, q_4, q_5\}$$

$$\begin{array}{lll} \textit{clausura} - \epsilon(\delta_N(p_2,b)) & = & \textit{clausura} - \epsilon(\bigcup_{q \in p_2} \delta_N(q,b)) \\ \\ & = & \textit{clausura} - \epsilon(\bigcup_{\{q_2,q_3,q_4,q_5\}} \delta_N(q,a)) \\ \\ & = & \textit{clausura} - \epsilon(\delta_N(q_2,b) \cup \cdots \cup \delta_N(q_5,b)) \\ \\ & = & \textit{clausura} - \epsilon(\{q_5\} \cup \emptyset \cup \emptyset \cup \{q_5\})) \\ \\ & = & \textit{clausura} - \epsilon(\{q_5\}) \\ \\ & = & \{q_3,q_5\} = p_3 \end{array}$$

$$\delta_D(p_2,b)=p_3$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 3: *Transiciones de* $p_2 = \{q_2, q_3, q_4, q_5\}$

Como $p_3 \notin Q_D$

$$Q_D = \{\underline{p}_0, \underline{p}_1, \underline{p}_2, p_3\}$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 4: Transiciones de $p_3 = \{q_3, q_5\}$

Se marca el estado p3:

$$Q_D = \{\underline{p}_0, \underline{p}_1, \underline{p}_2, \underline{p}_3\}$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 4: Transiciones de
$$p_3 = \{q_3, q_5\}$$

$$\begin{array}{lll} \textit{clausura} - \epsilon(\delta_N(p_3, a)) & = & \textit{clausura} - \epsilon(\bigcup_{q \in p_3} \delta_N(q, a)) \\ \\ & = & \cdots \\ \\ & = & \textit{clausura} - \epsilon(\delta_N(q_3, a) \cup \delta_N(q_5, a)) \\ \\ & = & \textit{clausura} - \epsilon(\{q_2\} \cup \emptyset) \\ \\ & = & \textit{clausura} - \epsilon(\{q_2\}) \\ \\ & = & \{q_2\} = p_4 \end{array}$$

 $\delta_D(p_3, a) = p_4$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 4: Transiciones de $p_3 = \{q_3, q_5\}$

Como $p_4 \notin Q_D$

$$Q_D = \{\underline{p}_0, \underline{p}_1, \underline{p}_2, \underline{p}_3, p_4\}$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 4: Transiciones de
$$p_3 = \{q_3, q_5\}$$

$$\begin{array}{lll} \textit{clausura} - \epsilon(\delta_{N}(p_{3},b)) &=& \textit{clausura} - \epsilon(\bigcup_{q \in p_{3}} \delta_{N}(q,b)) \\ &=& \cdots \\ &=& \textit{clausura} - \epsilon(\delta_{N}(q_{3},b) \cup \delta_{N}(q_{5},b)) \\ &=& \textit{clausura} - \epsilon(\emptyset \cup \{q_{5}\}) \\ &=& \textit{clausura} - \epsilon(\{q_{5}\}) \\ &=& \{q_{3},q_{5}\} = p_{3} \end{array}$$

 $\delta_D(p_3,b)=p_3$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 5: Transiciones de $p_4 = \{q_2\}$

Se marca el estado p₄

$$Q_D = \{\underline{p}_0, \underline{p}_1, \underline{p}_2, \underline{p}_3, \underline{p}_4\}$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 5: Transiciones de $p_4 = \{q_2\}$

$$\begin{array}{lll} \textit{clausura} - \epsilon(\delta_N(p_4, a)) & = & \textit{clausura} - \epsilon(\bigcup_{q \in p_4} \delta_N(q, a)) \\ \\ & = & \cdots \\ \\ & = & \textit{clausura} - \epsilon(\delta_N(q_2, a)) \\ \\ & = & \textit{clausura} - \epsilon(\emptyset) = \emptyset \end{array}$$

$$\delta_D(p_4,a) = -$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 5: Transiciones de $p_4 = \{q_2\}$

clausura
$$-\epsilon(\delta_N(p_4, b))$$
 = clausura $-\epsilon(\bigcup_{q \in p_4} \delta_N(q, b))$
= \cdots
= clausura $-\epsilon(\delta_N(q_2, b))$
= clausura $-\epsilon(\{q_5\})$
= $\{q_3, q_5\} = p_3$

$$\delta(p_4,b)=p_3$$

Autómatas finitos NO deterministas: AFN

Nota (Algoritmo de Construcción de Subconjuntos)

El algoritmo finaliza al estar marcados todos los estados de Q_D .

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

La función de transición del AFD es:

$$\begin{array}{c|ccccc}
\delta & a & b \\
\hline
p_0 & p_1 & p_2 \\
\hline
p_1 & - & p_2 \\
\leftarrow & p_2 & p_2 & p_3 \\
\leftarrow & p_3 & p_4 & p_3 \\
\hline
p_4 & - & p_3
\end{array}$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Los dos únicos estados finales son p_2 y p_3 porque

$$p_2 \cap F_N = \{q_2, q_3, q_4, q_5\} \cap \{q_5\} = \{q_5\} \neq \emptyset$$

$$p_3 \cap F_N = \{q_3, q_5\} \cap \{q_5\} = \{q_5\} \neq \emptyset$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Análisis de x = abb usando el AFD construido:

$$(p_0, abb) \vdash (p_1, bb) \\ \vdash (p_2, b) \\ \vdash (p_3, \epsilon)$$

 $x \in L(A_D)$ porque $p_3 \in F_D$

- Descripción general
- Definición formal
- Representación gráfica
- Función de transición para palabras
- Lenguaje reconocido por un AFN
- Equivalencia entre AFN y AFD
- Equivalencia entre expresiones regulares y autómatas finitos

Autómatas finitos NO deterministas: AFN

AFN

Autómatas finitos NO deterministas: AFN

Teorema

Dada una **expresión regular** α , se puede construir un **AFN** A_N equivalente:

$$L(\alpha)=L(A_N)$$

Autómatas finitos NO deterministas: AFN

Demostración

Algoritmo de Thompson

Autómatas finitos NO deterministas: AFN

Algoritmo (Thompson)

- Entrada: expresión regular α .
- Salida: **AFN** $A_N = (Q_N, \Sigma, \delta_N, q_0, F_N)$

Autómatas finitos NO deterministas: AFN

Nota (Algoritmo de Thompson)

$$L((\alpha)) = L(\alpha) = L(A_N)$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Thompson aplicado a $\alpha = I(I+d)^*$)

Paso 1: AFN equivalente a l

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Thompson aplicado a $\alpha = I(I+d)^*$)

Paso 2: AFN equivalente a d

Autómatas finitos NO deterministas: AFN

EXPRESIÓN REGULAR

Autómatas finitos NO deterministas: AFN

EXPRESIÓN REGULAR

Algoritmo de Thompson

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 0: Estado inicial del AFD:

$$p_0 = clausura - \epsilon(q_0) = \{q_0\}$$

$$Q_D = \{p_0\}$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 0: *estado inicial* p_0

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 1: Transiciones de $p_0 = \{q_0\}$

Se marca el estado p_0 :

$$Q_D = \{\underline{p}_0\}$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 1: Transiciones de
$$p_0 = \{q_0\}$$

$$clausura - \epsilon(\delta_N(p_0, l)) =$$

$$= clausura - \epsilon(\bigcup_{q \in p_0} \delta_N(q, l))$$

$$= clausura - \epsilon(\bigcup_{q \in \{q_0\}} \delta_N(q, l))$$

$$= clausura - \epsilon(\delta_N(q_0, l))$$

$$= clausura - \epsilon(\{q_1\})$$

$$= \{q_1, q_2, q_3, q_4, q_5, q_9\} = p_1$$

Por tanto, $\delta_D(p_0, I) = p_1$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 1: Transiciones de $p_0 = \{q_0\}$

Como $p_1 \notin Q_D$:

$$Q_D = Q_D \cup \{p_1\} = \{\underline{p}_0, p_1\}$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 1: Transiciones de
$$p_0 = \{q_0\}$$

$$clausura - \epsilon(\delta_N(p_0, d)) =$$

$$= clausura - \epsilon(\bigcup_{q \in p_0} \delta_N(q, d))$$

$$= clausura - \epsilon(\bigcup_{q \in \{q_0\}} \delta_N(q, d))$$

$$= clausura - \epsilon(\delta_N(q_0, d)))$$

$$= clausura - \epsilon(\emptyset)$$

$$= \emptyset$$

$$\delta_D(p_0, d) = -$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 1: *transiciones de p* $_0$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 2: Transiciones de $p_1 = \{q_1, q_2, q_3, q_4, q_5, q_9\}$

Se marca el estado p1:

$$Q_D = \{\underline{p}_0, \underline{p}_1\}$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 2: Transiciones de
$$p_1 = \{q_1, q_2, q_3, q_4, q_5, q_9\}$$

$$\begin{array}{lll} \textit{clausura} - \epsilon(\delta_N(p_1, I)) & = & \textit{clausura} - \epsilon(\bigcup_{q \in p_1} \delta(q, I)) \\ \\ & = & \cdots \\ \\ & = & \textit{clausura} - \epsilon(\delta_N(q_1, I) \cup \cdots \cup \delta_N(q_9, I)) \\ \\ & = & \textit{clausura} - \epsilon(\emptyset \cup \emptyset \cup \emptyset \cup \{q_6\} \cup \emptyset) \\ \\ & = & \textit{clausura} - \epsilon(\{q_6\}) \\ \\ & = & \{q_3, q_4, q_5, q_6, q_8, q_9\} = p_2 \end{array}$$

Por tanto,
$$\delta_D(p_1, l) = p_2$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 2: Transiciones de $p_1 = \{q_1, q_2, q_3, q_4, q_5, q_9\}$

Como $p_2 \notin Q_D$:

$$Q_D = Q_D \cup \{p_2\} = \{\underline{p}_0, \underline{p}_1, p_2\}$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 2: Transiciones de
$$p_1 = \{q_1, q_2, q_3, q_4, q_5, q_9\}$$

$$\begin{array}{lll} \textit{clausura} - \epsilon(\delta_N(p_1,d)) & = & \textit{clausura} - \epsilon(\bigcup_{q \in p_1} \delta(q,d)) \\ & = & \cdots \\ & = & \textit{clausura} - \epsilon(\delta_N(q_1,d) \cup \cdots \cup \delta_N(q_9,d)) \\ & = & \textit{clausura} - \epsilon(\emptyset \cup \emptyset \cup \emptyset \cup \{q_7\} \cup \emptyset) \\ & = & \textit{clausura} - \epsilon(\{q_7\}) \\ & = & \{q_3,q_4,q_5,q_7,q_8,q_9\} = p_3 \end{array}$$

Por tanto,
$$\delta_D(p_1,d)=p_3$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 2: Transiciones de $p_1 = \{q_1, q_2, q_3, q_4, q_5, q_9\}$

Como $p_3 \notin Q_D$:

$$Q_D = Q_D \cup \{p_3\} = \{\underline{p}_0, \underline{p}_1, p_2, p_3\}$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 3: Transiciones de $p_2 = \{q_3, q_4, q_5, q_6, q_8, q_9\}$

Se marca el estado p₂:

$$Q_D = \{\underline{p}_0, \underline{p}_1, \underline{p}_2, p_3\}$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 3: Transiciones de
$$p_2 = \{q_3, q_4, q_5, q_6, q_8, q_9\}$$

$$\begin{array}{lll} \textit{clausura} - \epsilon(\delta_N(p_2, l)) & = & \textit{clausura} - \epsilon(\bigcup_{q \in p_2} \delta_N(q, l)) \\ \\ & = & \cdots \\ \\ & = & \textit{clausura} - \epsilon(\delta_N(q_3, l) \cup \cdots \cup \delta_N(q_9, l)) \\ \\ & = & \textit{clausura} - \epsilon(\emptyset \cup \{q_6\} \cup \emptyset \cup \emptyset \cup \emptyset)) \\ \\ & = & \textit{clausura} - \epsilon(\{q_6\}) \\ \\ & = & \{q_3, q_4, q_5, q_6, q_8, q_9\} = p_2 \end{array}$$

$$\delta_D(p_2,I)=p_2$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 3: *Transiciones de*
$$p_2 = \{q_3, q_4, q_5, q_6, q_8, q_9\}$$

$$\begin{array}{lll} \textit{clausura} - \epsilon(\delta_N(p_2, d)) & = & \textit{clausura} - \epsilon(\bigcup_{q \in p_2} \delta_N(q, d)) \\ \\ & = & \cdots \\ \\ & = & \textit{clausura} - \epsilon(\delta_N(q_3, d) \cup \cdots \cup \delta_N(q_9, d)) \\ \\ & = & \textit{clausura} - \epsilon(\emptyset \cup \emptyset \cup \{q_7\} \cup \emptyset \cup \emptyset) \cup \emptyset) \\ \\ & = & \textit{clausura} - \epsilon(\{q_7\}) \\ \\ & = & \{q_3, q_4, q_5, q_7, q_8, q_9\} = p_3 \end{array}$$

$$\delta_D(p_2,d)=p_3$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 4: Transiciones de $p_3 = \{q_3, q_4, q_5, q_7, q_8, q_9\}$

Se marca el estado p3:

$$Q_D = \{\underline{\rho}_0, \underline{\rho}_1, \underline{\rho}_2, \underline{\rho}_3\}$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 4: Transiciones de
$$p_3 = \{q_3, q_4, q_5, q_7, q_8, q_9\}$$

$$\begin{array}{lll} \textit{clausura} - \epsilon(\delta(p_3, I)) & = & \textit{clausura} - \epsilon(\bigcup_{q \in p_3} \delta(q, I)) \\ \\ & = & \textit{clausura} - \epsilon(\delta_N(q_3, I) \cup \dots \cup \delta_N(q_9, I)) \\ \\ & = & \textit{clausura} - \epsilon(\emptyset \cup \{q_6\} \cup \emptyset \cup \emptyset \cup \emptyset \cup \emptyset)) \\ \\ & = & \textit{clausura} - \epsilon(\{q_6\}) \\ \\ & = & \{q_3, q_4, q_5, q_6, q_8, q_9\} = p_2 \end{array}$$

$$\delta_D(p_3,I)=p_2$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Paso 4: Transiciones de
$$p_3 = \{q_3, q_4, q_5, q_7, q_8, q_9\}$$

$$\begin{array}{lll} \textit{clausura} - \epsilon(\delta(p_3,d)) & = & \textit{clausura} - \epsilon(\bigcup_{q \in p_3} \delta(q,d)) \\ \\ & = & \textit{clausura} - \epsilon(\delta_N(q_3,d) \cup \dots \cup \delta_N(q_8,d)) \\ \\ & = & \textit{clausura} - \epsilon(\emptyset \cup \emptyset \cup \{q_7\} \cup \emptyset \cup \emptyset) \cup \emptyset) \\ \\ & = & \textit{clausura} - \epsilon(\{q_7\}) \\ \\ & = & \{q_3,q_4,q_5,q_7,q_8,q_9\} = p_3 \end{array}$$

$$\delta_D(p_3,d)=p_3$$

Autómatas finitos NO deterministas: AFN

Nota (Algoritmo de Construcción de Subconjuntos)

El algoritmo finaliza al estar marcados todos los estados de Q_D .

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Función de transición del AFD

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

Estados finales: p_1 , p_2 y p_3

$$p_1 \cap F_N = \{q_1, q_2, q_3, q_4, q_5, q_9\} \cap \{q_9\} = \{q_9\} \neq \emptyset$$

$$p_2 \cap F_N = \{q_3, q_4, q_5, q_6, q_8, q_9\} \cap \{q_9\} = \{q_9\} \neq \emptyset$$

$$p_3 \cap F_N = \{q_3, q_4, q_5, q_7, q_8, q_9\} \cap \{q_9\} = \{q_9\} \neq \emptyset$$

Autómatas finitos NO deterministas: AFN

Ejemplo (Algoritmo de Construcción de Subconjuntos)

AFD equivalente a $\alpha = I(I + d)^*$

AFD minimizado y equivalente a $\alpha = I(I + d)^*$

Contenido de la sección

- Introducción
- 2 Especificación de componentes léxicos
- 3 Reconocimiento de componentes léxicos
 - Autómatas finitos
 - Autómatas finitos deterministas: AFD
 - Autómatas finitos NO deterministas: AFN
 - Minimización de autómatas finitos deterministas
- 4 Implementación de los analizadores léxicos
- 5 Detección y recuperación de errores

Minimización de autómatas finitos deterministas

Definición

Dos autómatas son equivalentes si reconocen el mismo lenguaje:

$$A \equiv A' \Leftrightarrow L(A) = L(A')$$

Minimización de autómatas finitos deterministas

Razones para minimizar un AFD

- Un lenguaje regular puede ser reconocido por varios autómatas finitos deterministas equivalentes.
- Se debe usar el AFD con el menor número de estados.
- La Minimización permite generar el AFD que reconoce un lenguaje regular con el menor número de estados.
- La minimización está basada en una relación de equivalencia entre estados.
- El autómata cociente de la relación de equivalencia es el AFD mínimo.

Minimización de autómatas finitos deterministas

Definición (Equivalencia entre estados)

Se dice que dos estados $q, q' \in Q$ son equivalentes (qEq') si se verifica que:

$$\forall x \in \Sigma^* \ (\hat{\delta}(q, x) \in F \Leftrightarrow \hat{\delta}(q', x) \in F)$$

Minimización de autómatas finitos deterministas

E es una relación de quivalencia

 $\forall x \in \Sigma^* \land \forall q, q' \in Q$:

- Reflexiva: $qEq \ \hat{\delta}(q,x) \in F \Leftrightarrow \hat{\delta}(q,x) \in F$
- Simétrica: $qEq' \Longrightarrow q'Eq$

$$(\hat{\delta}(q,x) \in F \Leftrightarrow \hat{\delta}(q',x) \in F) \Longrightarrow (\hat{\delta}(q',x) \in F \Leftrightarrow \hat{\delta}(q,x) \in F)$$

• Transitiva: $qEq' \land q'Eq'' \Longrightarrow qEq''$

$$\begin{pmatrix}
(\hat{\delta}(q,x) \in F \Leftrightarrow \hat{\delta}(q',x) \in F) \\
(\hat{\delta}(q',x) \in F \Leftrightarrow \hat{\delta}(q'',x) \in F)
\end{pmatrix} \Rightarrow (\hat{\delta}(q,x) \in F \Leftrightarrow \hat{\delta}(q'',x) \in F)$$

Minimización de autómatas finitos deterministas

Definición (Clase de equivalencia de un estado)

Si $q \in Q$, la clase de equivalencia de q respecto de la relación E se define como:

$$E[q] = \{q'|qEq'\} = \{q' \mid \forall x \in \Sigma^* \ (\hat{\delta}(q,x) \in F \Leftrightarrow \hat{\delta}(q',x) \in F)\}$$

Minimización de autómatas finitos deterministas

Propiedades de la relación de equivalencia E

- $\forall q \in Q \ q \in E[q]$
- Si $q' \notin E[q]$ entonces $E[q'] \cap E[q] = \emptyset$
- $Q = \bigcup_{q \in Q} E[q]$
- $|Q_{|_E}| \le |Q|$

Minimización de autómatas finitos deterministas

Definición (Autómata cociente)

$$A_{|_{E}} = (Q_{|_{E}}, \Sigma, \delta_{|_{E}}, E[q_{0}], F_{|_{E}})$$

- $Q_{|_E} = \{E[q]|q \in Q\}$
- La función de transición $\delta_{|_E}$ se define como:

$$\delta_{|_{\mathcal{E}}}: Q_{|_{\mathcal{E}}} \times \Sigma \longrightarrow Q_{|_{\mathcal{E}}}$$

$$\delta_{|_{\mathcal{E}}}(p, \sigma) = p' \in Q_{|_{\mathcal{E}}} \iff \begin{cases} \exists q, q' \in Q \\ p = E[q] \land p' = E[q'] \\ \land \delta(q, \sigma) = q' \end{cases}$$

- $E[q_0]$ es el estado inicial y
- $\bullet \ F_{|_E} = \{E[q_f] | q_f \in F\},$

Minimización de autómatas finitos deterministas

Nota

La función $\hat{\delta}_{|_{E}}$ se define de manera similar a $\hat{\delta}$.

Minimización de autómatas finitos deterministas

Teorema

Todo AFD es equivalente a su autómata cociente:

$$L(A)=L(A_{\mid_{E}})$$

Demostración

$$x \in L(A) \Leftrightarrow \hat{\delta}(q_0, x) \in F$$

$$\Leftrightarrow \exists q_f \in F \ \hat{\delta}(q_0, x) = q_f$$

$$\Leftrightarrow p_0 = E[q_0] \land \exists q_f \in F \ p_f = E[q_f] \land \hat{\delta}_{|_{\mathcal{E}}}(p_0, x) = p_f$$

$$\Leftrightarrow \hat{\delta}_{|_{\mathcal{E}}}(p_0, x) = p_f \in F_{|_{\mathcal{E}}}$$

$$\Leftrightarrow x \in L(A|_{F})$$

Minimización de autómatas finitos deterministas

Teorema

Todo AFD es equivalente a su autómata cociente:

$$L(A)=L(A_{\mid_E})$$

Demostración

$$\begin{array}{lll} x \in L(A) & \Leftrightarrow & \hat{\delta}(q_0,x) \in F \\ & \Leftrightarrow & \exists q_f \in F \ \hat{\delta}(q_0,x) = q_f \\ & \Leftrightarrow & p_0 = E[q_0] \land \exists q_f \in F \ p_f = E[q_f] \land \hat{\delta}_{\mid_E}(p_0,x) = p_f \\ & \Leftrightarrow & \hat{\delta}_{\mid_E}(p_0,x) = p_f \in F_{\mid_E} \\ & \Leftrightarrow & x \in L(A_{\mid_E}) \end{array}$$

Minimización de autómatas finitos deterministas

Demostración

Algoritmo de Construcción del Autómata Cociente

Minimización de autómatas finitos deterministas

Algoritmo (Construcción del Autómata Cociente)

- Entrada: $A = (Q, \Sigma, \delta, q_0, F)$.
- Salida: $A_{|E} = (Q_{|E}, \Sigma, \delta_{|E}, E[q_0], F_{|E})$, Autómata cociente

Algoritmo (Construcción del Autómata Cociente)

```
inicio
```

```
p_0 \leftarrow Q - F, p_1 \leftarrow F
Nuevo \leftarrow \{p_0, p_1\} y p_0 y p_1 no marcados
mientras \exists p \in Nuevo \ no \ marcado \ hacer
     Marcar a p
     para cada \sigma \in \Sigma hacer
           Dividir p en subconjuntos de forma que sus estados
           qi y qi estarán en el mismo subconjunto
           si \delta(q_i, \sigma) y \delta(q_i, \sigma) pertenecen al mismo subconjunto
     fin para
     si se ha dividido p en subconjuntos
           entonces
                Sustituir p por los nuevos subconjuntos
                Desmarcar todos los estados de Nuevo
     fin si
```

fin

fin mientras

Minimización de autómatas finitos deterministas

Ejemplos (Minimización de AFD)

- AFD que reconoce identificadores de Pascal.
- **②** AFD que reconoce componentes de arrays.
- **③** AFD que reconoce algunas cadenas de ceros y unos.

Minimización de autómatas finitos deterministas

Ejemplos (Minimización de AFD)

- AFD que reconoce identificadores de Pascal.
- AFD que reconoce componentes de arrays.
- **3** AFD que reconoce algunas cadenas de ceros y unos.

Minimización de autómatas finitos deterministas

Minimización de autómatas finitos deterministas

Ejemplo (1.- Minimización de AFD: identificadores de Pascal)

- Estados **no** finales: $p_0 = Q F = \{q_0\}$
- Estados finales: $p_1 = F = \{q_1, q_2, q_3\}$
- *Nuevo* = $\{p_0, p_1\}$
- Los estados de Nuevo no están marcados.

Minimización de autómatas finitos deterministas

Ejemplo (1.- Minimización de AFD: identificadores de Pascal)

Paso 1: Análisis de $p_0 = \{q_0\}$

- Se marca p_0 : Nuevo = $\{\underline{p}_0, p_1\}$
- ullet p_0 sólo contiene un estado y no se puede descomponer más.
- Transiciones "provisionales" de p₀:

$$\delta_{|E}(p_0, I) = E[\delta(q_0, I)] = E[q_1] = p_1$$

 $\delta_{|E}(p_0, d) = E[\delta(q_0, d)] = E[-] = -$

Minimización de autómatas finitos deterministas

Ejemplo (1.- Minimización de AFD: identificadores de Pascal)

Paso 2: Análisis de $p_1 = \{q_1, q_2, q_3\}$

- Se marca p_1 : Nuevo $= \{\underline{p}_0, \underline{p}_1\}$
- Se comprueban que los estados de p₁ son homogéneos:

$$\begin{array}{c|cccc}
\delta & I & d \\
\hline
q_1 & p_1 & p_1 \\
\hline
q_2 & p_1 & p_1 \\
\hline
q_3 & p_1 & p_1
\end{array}$$

• Transiciones de p_1 : $\delta_{|E}(p_1, I) = p1$, $\delta_{|E}(p_1, d) = p1$

Minimización de autómatas finitos deterministas

Ejemplo (1.- Minimización de AFD: identificadores de Pascal)

- El algoritmo finaliza porque todos los estados de Nuevo están marcados.
- Los estados generados son:

$$+ p_0 = \{q_0\}$$

$$+ p_1 = \{q_1, q_2, q_3\}$$

- El estado inicial es p_0 porque $q_0 \in p_0$.
- $F_{|_F} = \{p_1\}$ porque $p_1 \cap F = \{q_1, q_2, q_3\} \neq \emptyset$

Minimización de autómatas finitos deterministas

Ejemplo (1.- Minimización de AFD: identificadores de Pascal)

• Función de transición del autómata minimizado

$$\begin{array}{c|ccccc}
\delta & I & d \\
\hline
\rightarrow p_0 & p_1 & - \\
\leftarrow p_1 & p_1 & p_1
\end{array}$$

Minimización de autómatas finitos deterministas

Minimización de autómatas finitos deterministas

Ejemplos (Minimización de AFD)

- AFD que reconoce identificadores de Pascal.
- **②** AFD que reconoce componentes de arrays.
- **3** AFD que reconoce algunas cadenas de ceros y unos.

Minimización de autómatas finitos deterministas

Ejemplo (2.- Minimización de AFD: componentes de arrays)

Minimización de autómatas finitos deterministas

Ejemplo (2.- Minimización de AFD: componentes de arrays)

- Estados **no** finales: $p_0 = Q F = \{q_1, q_2, q_4\}$
- *Estados* **finales**: $p_1 = F = \{q_0, q_3\}$
- *Nuevo* = $\{p_0, p_1\}$
- Los estados p₀ y p₁ no están marcados

Minimización de autómatas finitos deterministas

Nota (2.- Minimización de AFD: componentes de arrays)

El estado inicial q_0 pertenece a p_1 porque también es un estado final

Minimización de autómatas finitos deterministas

Ejemplo (2.- Minimización de AFD: componentes de arrays)

Paso 1: Análisis de $p_0 = \{q_1, q_2, q_4\}$

- Se marca p_0 : Nuevo = $\{\underline{p}_0, p_1\}$
- Se comprueban las transiciones de los estados de p₀:

δ	[d]
q_1	_	p_0	_
q_2	_	p_0	p_1
q_4	_	p_0	p_1

Minimización de autómatas finitos deterministas

Ejemplo (2.- Minimización de AFD: componentes de arrays)

Paso 1: Análisis de $p_0 = \{q_1, q_2, q_4\}$

- q₁ **no** es equivalente a q₂ y q₄.
- El antiguo estado p_0 se divide en dos nuevos estados:

$$p_0 = \{q_1\}$$
 $p_2 = \{q_2, q_4\}$

- Nuevo = $\{p_0, p_1, p_2\}$
- Todos los estados están desmarcados.

Minimización de autómatas finitos deterministas

Ejemplo (2.- Minimización de AFD: componentes de arrays)

Paso 2: Segundo análisis de $p_0 = \{q_1\}$

- Se marca p_0 : Nuevo = $\{\underline{p}_0, p_1, p_2\}$
- p₀ sólo contiene un estado y no se puede descomponer más.
- Transiciones "provisionales" de p₀:

$$\delta_{|_{E}}(p_{0}, [) = E[\delta(q_{1}, [)] = E[-] = -$$

$$\delta_{|_{E}}(p_{0}, d) = E[\delta(q_{1}, d)] = E[q_{2}] = p_{2}$$

$$\delta_{|_{E}}(p_{0}, [) = E[\delta(q_{1}, [)]] = E[-] = -$$

Minimización de autómatas finitos deterministas

Ejemplo (2.- Minimización de AFD: componentes de arrays)

Paso 3: Análisis de $p_1 = \{q_0, q_3\}$

- Se marca p_1 : Nuevo = $\{\underline{p}_0, \underline{p}_1, p_2\}$
- Se comprueban que los estados de p₁ son homogéneos:

• Transiciones "provisionales" de p₁:

$$\begin{aligned} \delta_{|_{E}}(p_{1},[) &= E[\delta(q_{0},[)] = E[q_{1}] = p_{0} \\ \delta_{|_{E}}(p_{1},d) &= E[\delta(q_{0},d)] = E[-] = - \\ \delta_{|_{E}}(p_{1},]) &= E[\delta(q_{0},])] = E[-] = - \end{aligned}$$

Minimización de autómatas finitos deterministas

Ejemplo (2.- Minimización de AFD: componentes de arrays)

Paso 4: Análisis de $p_2 = \{q_2, q_4\}$

- Se marca p_2 : Nuevo = $\{\underline{p}_0, \underline{p}_1, \underline{p}_2\}$
- Se comprueban que los estados de p₁ son homogéneos:

• Transiciones de p₂:

$$\begin{aligned} \delta_{|E}(p_1, [) &= E[\delta(q_2, [)] = E[-] = -\\ \delta_{|E}(p_1, d) &= E[\delta(q_2, d)] = E[q_4] = p_2\\ \delta_{|E}(p_1,]) &= E[\delta(q_2,])] = E[q_3] = p_1 \end{aligned}$$

Minimización de autómatas finitos deterministas

Ejemplo (2.- Minimización de AFD: componentes de arrays)

- El algoritmo finaliza porque todos los estados de Nuevo están marcados.
- Los estados generados son:

$$+ p_0 = \{q_1\}$$

 $+ p_1 = \{q_0, q_3\}$
 $+ p_2 = \{q_2, q_4\}$

- El estado inicial es p_1 porque $q_0 \in p_1$.
- $F_{|_{E}} = \{p_1\}$ porque $p_1 \cap F = \{q_0, q_3\} \neq \emptyset$

Minimización de autómatas finitos deterministas

Ejemplo (2.- Minimización de AFD: componentes de arrays)

• Función de transición del autómata minimizado

δ	[d]
p_0	_	<i>p</i> ₂	-
$\stackrel{ ightarrow}{\leftarrow} p_1$	<i>p</i> ₀		-
p_2	_	<i>p</i> ₂	p_1

Minimización de autómatas finitos deterministas

Minimización de autómatas finitos deterministas

Ejemplos (Minimización de AFD: cadenas de ceros y unos)

- AFD que reconoce identificadores de Pascal.
- **②** AFD que reconoce componentes de arrays.
- **3** AFD que reconoce algunas cadenas de ceros y unos.

Minimización de autómatas finitos deterministas

Ejemplo (3.- Minimización de AFD: cadenas de ceros y unos)

AFD que se va a minimizar.

Minimización de autómatas finitos deterministas

Ejemplo (3.- Minimización de AFD: cadenas de ceros y unos)

- Estados **no** finales: $p_0 = Q F = \{q_0, q_2, q_3, q_4, q_5, q_6\}$
- *Estados* **finales**: $p_1 = F = \{q_1\}$
- *Nuevo* = $\{p_0, p_1\}$
- Los estados p₀ y p₁ no están marcados

Minimización de autómatas finitos deterministas

Ejemplo (3.- Minimización de AFD: cadenas de ceros y unos)

Paso 1: Análisis de $p_0 = \{q_0, q_2, q_3, q_4, q_5, q_6\}$

- Se marca p_0 : Nuevo = $\{\underline{p}_0, p_1\}$
- Se comprueban las transiciones de los estados de p_0 :

δ	0	1
q 0	p_1	<i>p</i> ₀
q_2	p_0	p_1
q_3	p_0	p_1
q_4	p_1	p_0
q 5	p_0	p_1
q 6	p_0	p_1

Minimización de autómatas finitos deterministas

Ejemplo (3.- Minimización de AFD: cadenas de ceros y unos)

Paso número 1: Análisis de $p_0 = \{q_0, q_2, q_3, q_4, q_5, q_6\}$

- q₀ y q₄ tienen transiciones diferentes de los otros estados
- El antiguo estado p₀ se divide en dos nuevos estados:

$$p_0 = \{q_0, q_4\}$$

 $p_2 = \{q_2, q_3, q_5, q_6\}$

- Nuevo = $\{p_0, p_1, p_2\}$
- Todos los estados están desmarcados.

Minimización de autómatas finitos deterministas

Ejemplo (3.- Minimización de AFD: cadenas de ceros y unos)

Paso 2: Segundo análisis de $p_0 = \{q_0, q_4\}$

- Se marca p_0 : Nuevo = $\{\underline{p}_0, p_1, p_2\}$
- Se comprueban si las transiciones de los estados contenidos en p₀ son homogéneas:

$$\begin{array}{c|cccc}
\delta & 0 & 1 \\
\hline
q_0 & p_1 & p_2 \\
\hline
q_4 & p_1 & p_2
\end{array}$$

• Transiciones "provisionales" de p₀:

$$\delta_{|_{E}}(p_{0},0) = E[\delta(q_{0},0)] = E[q_{1}] = p_{1}$$

$$\delta_{|_{E}}(p_{0},1) = E[\delta(q_{0},1)] = E[q_{5}] = p_{2}$$

Minimización de autómatas finitos deterministas

Ejemplo (3.- Minimización de AFD: cadenas de ceros y unos)

Paso 3: Análisis de $p_1 = \{q_1\}$

- Se marca p_1 : Nuevo $= \{\underline{p}_0, \underline{p}_1, p_2\}$
- ullet p₁ sólo contiene un estado y no se puede descomponer más.
- Transiciones "provisionales" de p₁:

$$\delta_{|_{\mathcal{E}}}(p_1, 0) = E[\delta(q_1, 0)] = E[q_1] = p_1$$

 $\delta_{|_{\mathcal{E}}}(p_1, 1) = E[\delta(q_1, 1)] = E[q_2] = p_2$

Minimización de autómatas finitos deterministas

Ejemplo (3.- Minimización de AFD: cadenas de ceros y unos)

Paso 4: Análisis de $p_2 = \{q_2, q_3, q_5, q_6\}$

- Se marca p_2 : Nuevo = $\{\underline{p}_0, \underline{p}_1, \underline{p}_2\}$
- Se comprueban si son homogéneas las transiciones de los estados contenidos en p₂:

$$\begin{array}{c|cccc} \delta & 0 & 1 \\ \hline q_2 & p_2 & p_1 \\ \hline q_3 & p_2 & p_1 \\ \hline q_5 & p_0 & p_1 \\ \hline q_6 & p_0 & p_1 \\ \hline \end{array}$$

Minimización de autómatas finitos deterministas

Ejemplo (3.- Minimización de AFD: cadenas de ceros y unos)

Paso 4: Análisis de $p_2 = \{q_2, q_3, q_5, q_6\}$

- q₂ y q₃ tienen transiciones diferentes de los otros estados
- El antiguo estado p₂ se divide en dos nuevos estados:

$$p_2 = \{q_2, q_3\}$$

 $p_3 = \{q_5, q_6\}$

- Nuevo = $\{p_0, p_1, p_2, p_3\}$
- Todos los estados están desmarcados.

Minimización de autómatas finitos deterministas

Ejemplo (3.- Minimización de AFD: cadenas de ceros y unos)

Paso 5: Tercer análisis de $p_0 = \{q_0, q_4\}$

- Se marca p_0 : Nuevo = $\{\underline{p}_0, p_1, p_2, p_3\}$
- Se comprueban si las transiciones de los estados contenidos en p₀ son homogéneas:

$$\begin{array}{c|cccc}
\delta & 0 & 1 \\
\hline
q_0 & p_1 & p_3 \\
\hline
q_4 & p_1 & p_3
\end{array}$$

• Transiciones "provisionales" de p₀ han cambiado:

$$\delta_{|E}(p_0, 0) = E[\delta(q_0, 0)] = E[q_1] = p_1$$

$$\delta_{|E}(p_0, 1) = E[\delta(q_0, 1)] = E[q_5] = p_3$$

Minimización de autómatas finitos deterministas

Ejemplo (3.- Minimización de AFD: cadenas de ceros y unos)

Paso 6: Segundo análisis de $p_1 = \{q_1\}$

- Se marca p_1 : Nuevo = $\{\underline{p}_0, \underline{p}_1, p_2, p_3\}$
- El estado p₁ no se puede dividir porque sólo contiene a q₁
- Se comprueba si han cambiado las transiciones "provisionales" de p₁:

$$\delta_{|_{\mathcal{E}}}(p_1, 0) = E[\delta(q_1, 0)] = E[q_1] = p_1$$

 $\delta_{|_{\mathcal{E}}}(p_1, 1) = E[\delta(q_1, 1)] = E[q_2] = p_2$

Minimización de autómatas finitos deterministas

Ejemplo (3.- Minimización de AFD: cadenas de ceros y unos)

Paso número 7: **Segundo** análisis de $p_2 = \{q_2, q_3\}$

- Se marca p_2 : Nuevo = $\{\underline{p}_0, \underline{p}_1, \underline{p}_2, p_3\}$
- Se comprueban si son homogéneas las transiciones de los estados contenidos en p₂:

$$\begin{array}{c|cccc} \delta & 0 & 1 \\ \hline q_2 & p_2 & p_1 \\ \hline q_3 & p_2 & p_1 \end{array}$$

 Los estados q₂ y q₃ son equivalentes y no se requiere ninguna división.

Minimización de autómatas finitos deterministas

Ejemplo (3.- Minimización de AFD: cadenas de ceros y unos)

Paso número 8: Análisis de $p_3 = \{q_5, q_6\}$

- Se marca p_3 : Nuevo = $\{\underline{p}_0, \underline{p}_1, \underline{p}_2, \underline{p}_3\}$
- Se comprueban si son homogéneas las transiciones de los estados contenidos en p₃:

$$\begin{array}{c|cccc} \delta & 0 & 1 \\ \hline q_5 & p_0 & p_1 \\ \hline q_6 & p_0 & p_1 \end{array}$$

• Los estados q₅ y q₆ son equivalentes y no se requiere ninguna división.

Minimización de autómatas finitos deterministas

Ejemplo (3.- Minimización de AFD: cadenas de ceros y unos)

- El algoritmo finaliza porque todos los estados de Nuevo están marcados.
- Los estados generados son:

$$+ p_0 = \{q_0, q_4\}$$

$$+ p_1 = \{q_1\}$$

$$+ p_2 = \{q_2, q_3\}$$

$$+ p_3 = \{q_5, q_6\}$$

- El estado inicial es p_0 porque $q_0 \in p_0$.
- $F_{|_F} = \{p_1\}$ porque $p_1 \cap F = \{q_1\} \neq \emptyset$

Minimización de autómatas finitos deterministas

Ejemplo (3.- Minimización de AFD: cadenas de ceros y unos)

• Función de transición del autómata minimizado

Minimización de autómatas finitos deterministas

Contenido del tema

- Introducción
- 2 Especificación de componentes léxicos
- 3 Reconocimiento de componentes léxicos
- 4 Implementación de los analizadores léxicos
- 5 Detección y recuperación de errores

Contenido de la sección

- Introducción
- 2 Especificación de componentes léxicos
- 3 Reconocimiento de componentes léxicos
- 4 Implementación de los analizadores léxicos
 - Introducción
 - Codificación manual del analizador léxico
 - Generación automática del analizador léxico
- 5 Detección y recuperación de errores

Introducción

Definición

Se denomina implementación de un analizador léxico a su codificación en un lenguaje de programación.

Introducción

Nota

Se recuerda que el analizador léxico suele ser una función o procedimiento auxiliar del analizador sintáctico.

Introducción

Tareas del analizador léxico

- Reconocer todos los componentes léxicos:
 - + Palabras reservadas
 - Identificadores
 - + números
 - + Operadores aritméticos, relacionales, etc.
 - + Etc.
- Enviar al analizador sintáctico los componentes léxicos reconocidos.
- Procesar los errores léxicos que pueda detectar.

Introducción

Nota (Primer paso para implementar el analizador léxico)

Definir una expresión regular para denotar cada componente léxico

Introducción

Tipo de reconocimiento de las palabras reservadas

Implícito

- + Se pre-instalan en la tabla de símbolos.
- + Se procesan inicialmente como identificadores.
- Se reconocen como palabras claves al buscarlas en la tabla de símbolos.

Explícito

- + Se reconocen de forma independiente a los identificadores
- + Siempre se utiliza el lexema más largo: if ifa
- + En caso de igualdad de longitudes, se escoge el componente léxico que se haya especificado en primer lugar.

Introducción

Métodos de implementación del Analizador Léxico

- Codificación manual utilizando un lenguaje de programación.
- Utilización de un generador automático del analizador léxico:
 - + lex: lenguaje C y unix.
 - + flex: lenguaje C y linux.
 - + pclex: lenguaje C y MSDOS.
 - + Jlex: lenguaje java y multiplataforma.

Contenido de la sección

- Introducción
- 2 Especificación de componentes léxicos
- 3 Reconocimiento de componentes léxicos
- 4 Implementación de los analizadores léxicos
 - Introducción
 - Codificación manual del analizador léxico
 - Generación automática del analizador léxico
- 5 Detección y recuperación de errores

Codificación manual del analizador léxico

Características

- Se utiliza un lenguaje de programación:
 - + Alto nivel: C, C++, Pascal, Java, etc.
 - + Bajo nivel: ensamblador.
- Se codifica una función que combina todos los AFDs transformados.

Codificación manual del analizador léxico

Lenguaje de programación de alto nivel

- Ventajas
 - + Computacionalmente eficiente.
 - + Permite la detección y recuperación específica de errores.
- Inconvenientes
 - + Requiere un gran esfuerzo de programación.
 - + Las modificaciones pueden ser dificultosas.

Codificación manual del analizador léxico

Lenguaje de programación de bajo nivel

- Ventajas
 - + Computacionalmente muy eficiente: permite controlar de forma directa la Entrada / Salida.
 - + Permite la detección y recuperación específica de errores.
- Inconvenientes
 - + Requiere un esfuerzo de programación muy elevado.
 - + Las modificaciones son muy dificultosas.

Codificación manual del analizador léxico

Combinación de los Autómatas Finitos Deterministas transformados

- Se transforma cada AFD para que:
 - + reconozca el componente léxico
 - + compruebe si es necesario procesar el símbolo que sigue al componente léxico:
 - Si el símbolo es correcto, se devuelve al "buffer" de entrada.
 - Si el símbolo es incorrecto, se procesa el error detectado.
 - + devuelva el componente léxico reconocido.
 - + y continúe el análisis léxico.
- Se combinan todos los Autómatas Finitos Deterministas transformados.

Codificación manual del analizador léxico

Codificación manual del analizador léxico

Codificación manual del analizador léxico

Ejemplo (1.- Transformación de AFD:

3/3)

- El estado q₂ debe:
 - + Devolver el componente léxico reconocido.
 - + Devolver al "buffer" de entrada el símbolo correcto que no pertenece al identificador de C:
 - espacio en blanco
 - punto y coma,
 - etc.
- El estado q₃ debe procesar el error detectado.

Codificación manual del analizador léxico

Nota

Las celdas vacías de la función de transición se completan con "rutinas" de tratamiento de errores:

	δ	 σ_j	
\rightarrow	q_0		
	qi	Error	

Error representa una función o procedimiento que permite el tratamiento del error detectado.

Codificación manual del analizador léxico

Nota

- Algunas veces no es necesario comprobar el símbolo que sigue al componente léxico.
- Suele ocurrir con los componentes léxicos más simples:
 - Punto y coma
 - Espacio en blanco, tabular o salto de línea
 - Operadores aritméticos
 - Etc.

Codificación manual del analizador léxico

Codificación manual del analizador léxico

Ejemplo (2.- Transformación AFD:

(2/2)

- q₂ reconoce el componente léxico MENOR IGUAL
 - + No se necesita procesar el símbolo siguiente, porque no ha sido leído.
- q₃ reconoce el componente léxico MENOR.
 - + El "otro símbolo" debe ser devuelto al "buffer" de entrada.

Codificación manual del analizador léxico

Estrategias de la codificación manual

- Utilizar directamente las tablas de la función de transición de los AFDs.
- Simular el funcionamiento de los AFDs mediante sentencias de control.

Codificación manual del analizador léxico

Ejemplo (Uso de la tabla de la función de transición)

```
INICIO ESTADO ← INICIAL
LEER (CARÁCTER)
MIENTRAS (FINAL(ESTADO) = FALSO Y CARÁCTER ≠ FIN-DE-FICHERO)
  HACER
   ESTADO \leftarrow M(ESTADO, CARÁCTER)
   LEER (CARÁCTER)
FIN MIENTRAS
```

Codificación manual del analizador léxico

Ejemplo (Uso de la tabla de la función de transición)

```
INICIO ESTADO ← INICIAL
LEER (CARÁCTER)

MIENTRAS (FINAL(ESTADO) = FALSO Y CARÁCTER ≠ FIN-DE-FICHERO)

HACER

ESTADO ← M(ESTADO, CARÁCTER)

LEER (CARÁCTER)

FIN MIENTRAS

SI ERROR(ESTADO) = VERDADERO ENTONCES

PROCESAR-ERROR(ESTADO)

SI NO
```

SI DEVOLVER-CARÁCTER (ESTADO) ENTONCES

FIN SI

COMPONENTE-LÉXICO(ESTADO)

DEVOLVER (CARÁCTER)

FIN

Codificación manual del analizador léxico

Ejemplo (Simulación con sentencias de control:

1/3)

```
yylex()
int c;
/* Salta blancos y tabuladores */
while((c=getchar())==', ', || c=='\t', ); /* Sentencia nula */
 if (c == EOF)
   printf("\n Fin de la ejecución de %s \n", progname);
   return 0;
else if (c == '.' || isdigit(c))
  { /* El símbolo leído se devuelve al buffer de entrada
  para leerlo como parte de un número */
   ungetc(c,stdin);
   /* Lee el número */
   scanf("%lf",&yylval.val);
   return NUMBER;
```

Codificación manual del analizador léxico

Ejemplo (Simulación con sentencias de control:

2/3)

```
else if (isalpha(c))
 { /* comprueba si lee un identificador */
  Symbol *s;
  char sbuf[100],*p=sbuf;
  do {
    *p++=c;
   } while((c=getchar()) != EOF && isalnum(c));
  /* Devuelve el símbolo que no pertenece al identificador */
  ungetc(c,stdin);
  /* Cadena correcta: carácter nulo al final */
  *p='\0';
  /* Si no está en la tabla de símbolos, lo instala */
  if ((s=lookup(sbuf))==0) s = install(sbuf,INDEFINIDA,0.0);
  yylval.sym=s;
  return s->tipo==INDEFINIDA ? VAR : s->tipo;
```

Codificación manual del analizador léxico

```
Ejemplo (Simulación con sentencias de control: 3/3)

else if (c=='\n')
    {
    lineno++;
    return FIN;
    }
    else if (c==';') return FIN;

/* Devuelve el código ASCII de los demás caracteres */
    return c;
}
```

Contenido de la sección

- Introducción
- 2 Especificación de componentes léxicos
- 3 Reconocimiento de componentes léxicos
- 4 Implementación de los analizadores léxicos
 - Introducción
 - Codificación manual del analizador léxico
 - Generación automática del analizador léxico
- 5 Detección y recuperación de errores

Generación automática del analizador léxico

Características de la generación automática

- Los componentes léxicos se denotan mediante expresiones regulares.
- El generador léxico crea automáticamente el código a partir de las expresiones regulares.
- Generadores léxicos: lex, flex, pclex, jlex, ...

Generación automática del analizador léxico

COMPONENTES LÉXICOS

Generación automática del analizador léxico

COMPONENTES LÉXICOS

EXPRESIONES REGULARES

Generación automática del analizador léxico

LEX

- Creado por M. E. Lesk y E. Schmidt (Bell Laboratories).
- Genera analizadores léxicos para C, Fortran, Raftor.
- Hay versiones para Unix, Linux, DOS, etc.

Funcionamiento de LEX

- Unix
 - > lex nombre.l
 - > cc -g lex.yy.c -ll -o nombre.exe
- Linux
 - > flex nombre.l
 - > gcc -g lex.yy.c -lfl -o nombre.exe

Ejecución

- > ./nombre.exe
- Redirigiendo la entrada y la salida
 - > ./nombre.exe < fichero_entrada
 - > ./nombre.exe < fichero_entrada > fichero_salida
- Usando argumentos desde la línea de comandos
 - > ./nombre.exe fichero_entrada
 - > ./nombre.exe fichero_entrada fichero_salida

Estructura del fichero de LEX

declaraciones (opcional)

%%

reglas de traducción de las expresiones regulares

%%

funciones auxiliares (opcional)

LEX: expresiones regulares

- Símbolos especiales:
 - + : disyunción
 - + (): agrupación de expresiones regulares
 - + *: repetición de un patrón cero o más veces.
 - + +: repetición de un patrón una o más veces.
 - + ?: el patrón puede aparecer cero o una vez.
 - + "": delimitadores de cadenas
 - + .: cualquier carácter distinto del salto de línea (\n).
 - + \n: salto de línea
 - + \$: carácter de final de línea
 - + []: delimitadores de clases de caracteres
 - + ^: inicio de línea y complementario de una clase.

Nota (LEX: expresiones regulares)

Si se antepone la barra \ delante de un símbolo especial entonces sólo se representa a sí mismo:

 \setminus . \rightarrow sólo representa el punto.

Ejemplo (LEX: expresiones regulares			1 / 3)
	Expresión regular	Significado	
	a b	a, b	
	[ab]	a, b	
	ab	ab	
	ab+	ab, abb, abbb, · · ·	
	(ab)+	ab, abab, ababab, · · ·	
	ab*	a, ab, abb, · · ·	
	(ab)*	ϵ , ab, abab, \cdots	
	ab{1,3}	ab, abb, abbb	

Ejemplo (LEX: expresiones regulares

Expresión regular	Significado	
[a-z]	a, b, c, · · · , z	
[a \-z]	a, -, z	
[-az]	-, a, z	
[az-]	a, z, —	
[a-zA-Z]	a, b, · · · , z, A, B, · · · , Z	
[a-zA-Z0-9]	a, b, ···, z, A, B, ···, Z, 0, 1, ···, 9	
[a-zA-Z0-9]*	cero o más veces a, b, c, ···, 9	
[a-zA-Z0-9]+	una o más veces a, b, c, ···, 9	

Ejemplo (LEX: expresiones regulares Expresión regular Significado $\backslash t \backslash n$ espacio en blanco, tabulador y salto de línea cualquier carácter distinto de a o b aba, acento circunflejo, b a/b a sólo si va seguido de b a\$ a si va seguido del carácter \n a/\n a si va seguido del carácter \n ^ abc

[\40-\176]

abc si está escrito al principio de la línea

caracteres ASCII imprimibles desde octal 40 (espacio) hasta octal 176 (tilde ~)

LEX: Zona de declaraciones

(opcional)

- Código extendido de lenguaje C delimitado por %{ y } %
 - + Ficheros de cabecera.
 - + Macros.
 - + Prototipos de funciones.
 - + Variables globales
 - + Etc.
- Directivas de lex: %x, %a, %n %o, %p, ...
- Declaración de definiciones regulares.

LEX: Zona de declaraciones

opcional)

- Directivas de lex (tablas internas):
 - + %x ESTADO: permite activar reglas condicionales (véase el ejemplo del comentario).
 - + %a número: cambia el número de transiciones empaquetadas.
 - + %n número: cambia el número de transiciones.
 - + %e número: cambia el número de nodos.
 - + %p número: cambia el número de posiciones.
 - + Etc

```
Ejemplo (Definiciones regulares 1/2)

numero [0-9]

letra [a-zA-Z]

identificador {letra}({letra}|{numero})*
```

Ejemplo (Definiciones regulares

(2/2)

La definición regular identificador definida como

$${letra}({letra}|{numero})*$$

es transformada en

$$[a - zA - Z]([a - zA - Z]|[0 - 9])*$$

LEX: Zona de reglas de traducción expresión regular sentencia de lenguaje C expresión regular { sentencias de lenguaje C }

LEX: resolución de ambigüedades

- Si una secuencia de caracteres se puede emparejar con varias expresiones regulares,
 - 1 tiene preferencia la expresión regular que denote la cadena de caracteres de mayor longitud.
 - si la longitud de la cadena es igual, tiene preferencia la que aparezca en primer lugar.

Ejemplo (Lex: resolución de la ambigüedad de if)

```
% %
if
{ return IF; }
{identificador}
    { Symbol *s;
        if ((s=lookup(yytext)) == 0)
            s = install (yytext, INDEFINIDA, 0.0);
        yylval.sym = s;
        return s->tipo == INDEFINIDA ? VAR : s->tipo;
}
```

LEX: comandos especiales

- ECHO: imprime por pantalla el texto reconocido.
- BEGIN: cambia a un estado definido por el programador (véase el ejemplo del comentario).
- REJECT: rechaza el texto reconocido para que pueda ser procesado por otra regla (véase el ejemplo de pink).

Ejemplo (ECHO)

Imprime por pantalla todos los caracteres

```
% %
.|\n ECHO;
% %

Equivalencia
% %
.|\n printf("%s",yytext);
% %
```

LEX: Zona de funciones auxiliares

(opcional)

- Código de funciones auxiliares utilizadas por las reglas de traducción
- También se pueden incluir
 - + Ficheros de cabecera.
 - + Macros.
 - + Prototipos de funciones.
 - + Declaración de variables globales
 - + Etc.

LEX: variables globales predefinidas

- yytext: cadena que contiene el texto reconocido (tipo: char *)
- yyleng: longitud de yytext (tipo: int)
- yyin:
 - Puntero al fichero de entrada
 - Tipo: FILE *
 - Valor por defecto: stdin, el teclado
- yyout:
 - Puntero al fichero de salida
 - Tipo: FILE *
 - Valor por defecto: stdout, la pantalla

LEX: funciones predefinidas

- yylex(): contiene el analizador léxico generado por flex o lex
- yymore(): indica a lex que añada el siguiente componente léxico al componente léxico actual (véase el ejemplo hiper).
- yywrap(): se ejecuta cuando el analizar léxico encuentra el fin de fichero:
 - Si devuelve 0, el analizador léxico continúa explorando.
 - Si devuelve 1 (valor por defecto), el analizador léxico devuelve un componente léxico nulo para indicar el fin del fichero.
 - Esta función puede ser redefinida por el programador.
- yyless(n): retiene los primeros n caracteres de yytext y devuelve el resto al dispositivo de lectura.

```
Ejemplo (Lex: zona de declaraciones
%{
#include "macros.h"
#include "hoc3.h"
#include "y.tab.h"
extern char *progname;
extern int lineno;
%}
/* definiciones regulares */
                [0-9]
numero
letra
                [a-zA-Z]
identificador {letra}({letra}|{numero})*
```

```
Ejemplo (Lex: zona de reglas
%%
[\t]
              { ; } /* saltar los espacios y los tabuladores */
\{numero\}+\.?|\{numero\}*\.\{numero\}+
                                  sscanf(yytext, "%lf", &yylval.val);
                                  return NUMBER:
{identificador} { Symbol *s;
                 if ((s=lookup(yytext)) == 0)
                      s = install (yytext, INDEFINIDA, 0.0);
                 vvlval.svm = s;
                 return s->tipo == INDEFINIDA ? VAR : s->tipo;
        {return FIN ;}
        {lineno++; return FIN;}
\n
        {return yytext[0];} /* Devuelve cualquier otro carácter */
```

Implementación de los analizadores léxicos

```
Ejemplo (Lex: zona de funciones auxiliares
/**** Zona de funciones auxiliares ****/
extern FILE *yyin, *yyout;
main(int cantidad, char *palabras[])
     switch(cantidad)
    case 2: yyin=fopen(palabras[1], ''r');
       break:
    case 3: yyin=fopen(palabras[1], ''r');
       yyout=fopen(palabras[2], ''w');
yylex();
```

Contenido del tema

- Introducción
- 2 Especificación de componentes léxicos
- 3 Reconocimiento de componentes léxicos
- 4 Implementación de los analizadores léxicos
- 5 Detección y recuperación de errores

Contenido de la sección

- Introducción
- 2 Especificación de componentes léxicos
- 3 Reconocimiento de componentes léxicos
- 4 Implementación de los analizadores léxicos
- 5 Detección y recuperación de errores
 - Clasificación de los errores del proceso de traducción
 - Errores léxicos
 - Tratamiento de los errores
 - Métodos de recuperación de los errores léxicos

Clasificación de los errores del proceso de traducción

Tipos de errores

- Invisibles: errores que no pueden ser detectados por el procesador de lenguajes
- Visibles: errores que sí pueden ser detectados

Clasificación de los errores del proceso de traducción

Ejemplo (Error invisible)

Se ha tecleado

$$a = b + c$$

en vez

$$a = b * c$$

Clasificación de los errores del proceso de traducción

Errores invisibles

- Suelen ser errores "conceptuales" o "algorítmicos"
- No pueden ser detectados porque no infrigen ninguna norma del lenguaje de programación.
- Podrían ser detectados si se incluyen técnicas de verificación en el procesador de lenguajes:
 - + Poseen gran complejidad
 - + Su coste computacional es muy elevado
- En la práctica, estos errores son "detectados" y "corregidos" manualmente

Clasificación de los errores del proceso de traducción

Errores visibles

- Pueden ser detectados:
 - + durante el proceso de traducción
 - + o durante la ejecución del programa ejecutable.
- Son producidos porque no se ha tenido suficiente "cuidado" al programar:
 - + **falta de comprensión o desconocimiento** de las características del lenguaje
 - + o **confusión** con las características de otro lenguaje.
- Se caracterizan por
 - + Ser errores de **ortografía**
 - + Ser errores que **omiten** requisitos formales del lenguaje de programación.

Clasificación de los errores del proceso de traducción

Errores visibles

Se clasifican según la fase en que son detectados:

- Errores léxicos: no se reconoce un componente léxico correcto.
- Errores sintácticos:
 - + Sentencia que no respeta las reglas gramaticales del lenguaje de programación
 - + Se origina al procesar un componente léxico "inesperado"
- Errores semánticos: el significado de un componente léxico es incorrecto o inapropiado.
- Errores de ejecución:
 - + Funcionamiento incorrecto del programa.
 - + No detectables durante el proceso de compilación.

Clasificación de los errores del proceso de traducción

Ejemplos (Errores visibles)

- Errores léxicos:
 - + Componente léxico mal escrito.
 - + Componente léxico con símbolos no permitidos.
- Errores sintácticos:
 - + Sentencias de control incompletas o mal escritas.
 - + Parámetros incorrectos, paréntesis no balanceados, ...
- Errores semánticos:
 - + Identificador usado incorrectamente o no declarado.
 - + Valor fuera de rango, ...
- Errores de ejecución:
 - + Bucles infinitos.
 - + Flujo de control incorrecto, ...

Contenido de la sección

- Introducción
- 2 Especificación de componentes léxicos
- 3 Reconocimiento de componentes léxicos
- 4 Implementación de los analizadores léxicos
- 5 Detección y recuperación de errores
 - Clasificación de los errores del proceso de traducción
 - Errores léxicos
 - Tratamiento de los errores
 - Métodos de recuperación de los errores léxicos

Errores léxicos

Tipos de errores léxicos

Componentes léxicos

- o con símbolos ilegales.
- incompletos o muy largos.
- mal escritos: infrigen alguna restricción del lenguaje de programación

Errores léxicos

Ejemplos (Errores léxicos

1/3)

- Componentes léxicos con símbolos ilegales
 - + Símbolo no permitido en un identificador: dato\$
 - + Símbolo no permitido en un número: 3.17#10

Errores léxicos

Ejemplos (Errores léxicos 2/3) • Componentes léxicos incompletos + Cadenas de caracteres no cerradas /* faltan las comillas finales */ static char *nombre = ''Almudena ...; + Comentarios no cerrados. /* Este es un ejemplo maravilloso de comentario que no tiene cierre final

Errores léxicos

Errores léxicos

Características de los errores de los componentes léxicos

- Son provocados por una escritura incorrecta.
- Son los más frecuentes.
- El Análisis Léxico no puede detectar todos los errores de los componentes léxicos.
- Muchos errores de los componentes léxicos son detectados durante las demás fases.
- Pueden provocar errores sintácticos, semánticos o de ejecución.

Errores léxicos

Ejemplo (1.- Error no detectable durante el análisis léxico)

Palabra reservada mal escrita

```
fi (x >= 0) valor_absoluto = x;
  else valor_absoluto = -x;
```

Nota

- El análisis léxico genera para fi el componente léxico IDENTIFICADOR en vez de IF.
- Este error podrá ser detectado durante el análisis sintáctico

Errores léxicos

Ejemplo (1.- Error no detectable durante el análisis léxico)

Palabra reservada mal escrita

```
fi (x >= 0) valor_absoluto = x;
else valor_absoluto = -x;
```

Nota

- El análisis léxico genera para fi el componente léxico IDENTIFICADOR en vez de IF.
- Este error podrá ser detectado durante el análisis sintáctico

Errores léxicos

Ejemplo (2.- Error no detectable durante el análisis léxico)

Omisión de símbolo de fin de sentencia

```
/* falta el punto y coma */
if (x >= 0) valor_absoluto = x
  else valor_absoluto = -x;
```

Nota

Este error puede ser detectado durante el análisis sintáctico.

Errores léxicos

Ejemplo (2.- Error no detectable durante el análisis léxico)

Omisión de símbolo de fin de sentencia

```
/* falta el punto y coma */
if (x >= 0) valor_absoluto = x
  else valor_absoluto = -x;
```

Nota

Este error puede ser detectado durante el análisis sintáctico.

Errores léxicos

Ejemplo (3.- Error no detectable durante el análisis léxico)

Índice de un array que posee un valor que fuera de rango

$$a[-999999] = 10;$$

Nota

Este error puede ser detectado durante el análisis semántico.

Errores léxicos

Ejemplo (3.- Error no detectable durante el análisis léxico)

Índice de un array que posee un valor que fuera de rango

$$a[-999999] = 10;$$

Nota

Este error puede ser detectado durante el análisis semántico.

Errores léxicos

Ejemplo (4.- Error no detectable durante el análisis léxico)

Argumento erróneo de una función

valor =
$$log(-10)$$
;

Nota

- Este error se detectará durante la ejecución.
- Podría ser detectado con técnicas de verificación

Errores léxicos

Ejemplo (4.- Error no detectable durante el análisis léxico)

Argumento erróneo de una función

valor =
$$log(-10)$$
;

Nota

- Este error se detectará durante la ejecución.
- Podría ser detectado con técnicas de verificación

Contenido de la sección

- Introducción
- 2 Especificación de componentes léxicos
- 3 Reconocimiento de componentes léxicos
- 4 Implementación de los analizadores léxicos
- 5 Detección y recuperación de errores
 - Clasificación de los errores del proceso de traducción
 - Errores léxicos
 - Tratamiento de los errores
 - Métodos de recuperación de los errores léxicos

Tratamiento de los errores

- Informar del error
 - + Localización: ubicación del error dentro del código.
 - + Descripción: motivo o características del error
- Evitar la cascada de errores
 - + Informar una sola vez de cada error.
 - + Si un error es producido por otro entonces sólo se debe informar del primero.
- Reparar el error, si es posible, e informar de la corrección realizada.
- Continuar con el proceso de traducción para detectar otros posibles errores.

Tratamiento de los errores

- Informar del error
 - + Localización: ubicación del error dentro del código.
 - + Descripción: motivo o características del error
- Evitar la cascada de errores
 - + Informar una sola vez de cada error.
 - + Si un error es producido por otro entonces sólo se debe informar del primero.
- Reparar el error, si es posible, e informar de la corrección realizada.
- Continuar con el proceso de traducción para detectar otros posibles errores.

Tratamiento de los errores

- Informar del error
 - + Localización: ubicación del error dentro del código.
 - + Descripción: motivo o características del error
- Evitar la cascada de errores
 - + Informar una sola vez de cada error.
 - + Si un error es producido por otro entonces sólo se debe informar del primero.
- Reparar el error, si es posible, e informar de la corrección realizada.
- Continuar con el proceso de traducción para detectar otros posibles errores.

Tratamiento de los errores

- Informar del error
 - + Localización: ubicación del error dentro del código.
 - + Descripción: motivo o características del error
- Evitar la cascada de errores
 - + Informar una sola vez de cada error.
 - + Si un error es producido por otro entonces sólo se debe informar del primero.
- Reparar el error, si es posible, e informar de la corrección realizada.
- Continuar con el proceso de traducción para detectar otros posibles errores.

Tratamiento de los errores

Nota

Los criterios "generales" para el tratamiento de los errores son aplicables a todos los tipos de errores.

Tratamiento de los errores

Nota (Reparación del error)

- Siempre debe ser revisada después por el programador.
- Sólo **propone** una solución, que no tiene por qué ser la correcta.
- Sólo pretende que el proceso de traducción continúe ... para detectar más errores.

Contenido de la sección

- Introducción
- 2 Especificación de componentes léxicos
- 3 Reconocimiento de componentes léxicos
- 4 Implementación de los analizadores léxicos
- 5 Detección y recuperación de errores
 - Clasificación de los errores del proceso de traducción
 - Errores léxicos
 - Tratamiento de los errores
 - Métodos de recuperación de los errores léxicos

Métodos de recuperación de los errores léxicos

Métodos de procesamiento de los errores léxicos

- Modo de pánico o de sincronización
- Método de la mínima distancia

Métodos de recuperación de los errores léxicos

Modo de pánico o de sincronización

- Se eliminan los caracteres de la entrada hasta que se encuentra un componente léxico bien formado
- Es **sencillo** de aplicar
- Puede provocar errores en el análisis sintáctico al suprimir otros componentes léxicos correctos.
- Es útil en un entorno interactivo.

Métodos de recuperación de los errores léxicos

Método de la mínima distancia

- **Supone** que la mayoría de los errores léxicos son provocados por una **única** transformación.
- Se realizan transformaciones relativamente simples:
 - + Eliminar un carácter: dato\$1 ⇒ dato1
 - + **Insertar** un carácter: include ⇒ #include
 - + **Permutar** dos caracteres: => ⇒ >=
 - + Modificar un carácter: /# ⇒ /*
- Es costoso de implementar.
- Es adecuado para un entorno local o interactivo.

Métodos de recuperación de los errores léxicos

Nota

- Se debe informar de la transformación realizada.
- La transformación no pretende corregir el error, sino continuar con el análisis léxico.
- Posteriormente, el programador deberá supervisar la transformación realizada.

PROCESADORES DE LENGUAJES

Prof. Dr. Nicolás Luis Fernández García

Departamento de Informática y Análisis Numérico Escuela Politécnica Superior de Córdoba Universidad de Córdoba