

Final Report

Out-of-Distribution Detection

Jiwon KANG Mochamad Ardiansyah NUGRAHA

SIC7002 Artificial Intelligence for Data Science M1 Electrical Engineering for Communications and Information Processing - Datapac Institut Polytechnique de Paris 21 June 2024

Introduction

What is OOD (Out-Of-Distribution) detection?

Determine whether a given new data point matches the distribution of the existing ID (In-Distribution) data or not.

Why is it important?

Ensures machine learning models remain reliable and safe when encountering unexpected data.

State-of-the-Art – Generalized OOD Detection

Background

- OOD is critical to ensure the reliability and safety of ML systems i.e. autonomous driving
- Isolated development of similar problems, such as anomaly detection (AD), novelty detection (ND), open set recognition (OSR), outlier detection (OD), are leading to confusion
- Incomplete summarization of OOD detection

Objective

- To present a unified framework called generalized OOD detection, each problem (AD, ND, OSR, OD, OOD) is considered as subtask
- To provide comprehensive discussion of methods from other subtasks
- To identify open challenges and potential research directions

State-of-the-Art – Generalized OOD Detection

Baseline of OOD detection taxonomy

- 1. Distribution shift
 - a. Covariate shift: change in input space while label space remains constant i.e. adversarial, style changes
 - b. Semantic shift: introduction of new categories or alteration of existing ones, directly impacting label space and consequently the input space
- 2. ID classes: single or multiple
- 3. Is required ID classification?
- 4. Transductive or inductive task

ND is often **interchangeable with AD**, but ND is more concerned on **semantic** anomalies.

OOD detection is generally **interchangeable with OSR**.

State-of-the-Art

Summary of all latest OOD detection methods

Table 1 Paper list for out-of-distribution detection.

	Sections	
§ 3.1 Classification	§ 3.1.1 Output-based Methods	a: Training-free
		b: Training-based
	§ 3.1.1 Outlier Exposure	a: Real Outliers
		b: Data Generation
	§ 3.1.3: Gradient-based Methods	
	§ 3.1.4: Bayesian Models	
	§ 3.1.5: OOD for Foundation Models	
8	3.2: Density-based M	Methods
8	3.3: Distance-based	Methods
§ 3.4	Reconstruction-bas	ed Methods
	§ 3.5: Theoretical A	nalysis

Methodology

Methodology - Building Blocks

Optimizer : Stochastic gradient descent

Momentum: 0.9

Learning rate : 0.1, with cosine annealing decay schedule

Batch size : 128

OOD: CIFAR-10, TinyImageNet

2. ID: CIFAR-10

OOD: CIFAR-100, TinyImageNet

- OpenOOD library
 https://github.com/Jingkang50/OpenOOD
- PyTorch

Methodology – ResNet-18 Architecture + Post-hoc OOD

Result – CIFAR-100

CIFAR-100 ID accuracy: 77.17%

OOD datasets: CIFAR-10, TinyImageNet

Average OOD scores vs baseline (MSP):

	Baseline (MSP) vs Average OOD	
	scores	
Lowest FPR	0.54	
Highest AUROC	0.80	0.81 (MLS, TempScale)
Highest AUPR_IN	0.83	0.84 (TempScale)
Highest AUPR_OUT	0.74	0.75 (MLS, TemScale)

Since the AUROC and AUPR values among all methods share very small differences, we consider the FPR as the primary score.

baseline

best

Result – CIFAR-100 with MSP

ID CIFAR-100

Ground Truth: sea Predicted: sea Score: 0.9998

Ground Truth: apple Predicted: apple Score: 0.9994

Ground Truth: bridge Predicted: bridge Score: 0.6664

Ground Truth: rabbit Predicted: flatfish Score: 0.2287

Ground Truth: otter Predicted: seal Score: 0.2100

OOD CIFAR-10

Ground Truth: bird Predicted: cockroach OOD score: 0.5170 is OOD: True

Ground Truth: cat Predicted: Ilzard OOD score: 0.4215 Is OOD: False

Ground Truth: automobile Predicted: boy OOD score: 0.9519

Ground Truth: dog Predicted: poppy OOD score: 0.7205

Ground Truth: horse Predicted: tiger OOD score: 0.2735 is OOD: False

Result – CIFAR-10

CIFAR-10 ID accuracy: 95.22%

OOD datasets: CIFAR-100.

TinylmageNet

Average OOD scores vs baseline (MSP):

Lowest FPR: 0.535 (MSP)

Highest AUROC: 0.877 (MSP)

Highest AUPR_IN: 0.864 (MSP)

Highest AUPR_OUT: 0.869 (EBO) vs. 0.854 (MSP)

Overall, as baseline, **MSP performs better** than other post-processors.

Conclusion

- ID accuracy of CIFAR-10 is way better than CIFAR-100, 95.22% vs. 77.17%.
- CIFAR-100: Temperature Scaling
 (TempScale) and Maximum Logit Scaling
 (MLS) share the highest values in terms
 of AUROC and AUPR. But, the
 differences with other pre-processors are
 also very small.
- CIFAR-10: Maximum Softmax Probability (MSP) outperforms other pre-processors.
- Dataset with smaller number of ID class seems can be equipped with simpler post-processor (i.e. CIFAR-10 with MSP).

Comments & Suggestions

- Due to time and computing resource limitation, this research only covered post-hoc methods.
- For real-life application, post-hoc-only methods might not be sufficient. It needs broader benchmark and data.
- Some OOD methods might be well-fit and tailored for specific problems (i.e. self-driving, cancer detection, etc). Hence, it is encouraged to explore other methods than post-hoc for future works.

Reference

- 1. Jingkang Yang et al., "Generalized Out-of-Distribution Detection", arXiv:2110.11334v3, 2024.
- Jingyang Zhang et al., "OpenOOD v1.5: Enhanced Benchmark for Out-of-Distribution Detection", arXiv:2306.09301v2, 2023.
- 3. Jingkang Yang et al., "OpenOOD: Benchmark Generalized Out-of-Distribution Detection", arXiv:2210.07242v1, 2022.

Questions

- 1. What are the advantages and limitations of using MSP as a baseline method for OOD detection?
- 2. Why do models perform better on CIFAR-10 compared to CIFAR-100 in OOD detection?
- 3. What are the main issues commonly encountered in OOD detection?
- 4. Referring to generalized OOD detection framework, which OOD detection subtask that is suitable for product quality control in manufacture? Why?