AnyFin Hiring Task Report

Data Science Case - Probability of Default Prediction

Name: NGUYEN Thanh-Long

Email: nguyenthanhlong1990@gmail.com

Linkedin: https://www.linkedin.com/in/longtng/

Problem Statement

The purpose of this task is to build a predictive model that assigns default probabilities to loan applications to classify customers going to **default (target=1)** or **non-default (target=0)**. The noticeable problem is the data is highly imbalanced as defaulted customers contributed only 6% in total.

Data Processing and Model Building Stages:

- Data Exploration and General Pre-processing:
 - Remove Duplicates 2,256 duplicated data points were dropped.
 - Missing values max_dpd_120d, min_dpd_120d, loans_created_120d, has_paid_120d, payments_120d, payment_vacation_120d, has_payment_plan were dropped due to it percentages of missing values or undetermined distribution of values.
 - Check high correlation features and create new crossing-feature to remove collinearity:
 - day vs. week_of_month: drop day, consider week_of_month as the binning of day.
 - credit_used vs. mortgage_house vs. mortgage_apartment: as
 (mortgage_house + mortgage_apartment) < credit_used, drop all three, then
 create new credit_used_left = credit_used (mortgage_house +
 mortgage_apartment).</pre>
 - income_gross vs. salary_surplus: create new feature sal_sur_inc_gross = salary_surplus/income_gross.
 - creditors_count vs. credit_count: create new feature credit_creditors = credit_count/creditors_count.
- Split Data and Create Dummy Variables:
 - Data set is split into 80% train/ 20% test while the distribution of target remains unchanged in both train/ test sets.
 - Fine-classing/ Coarse classing for creating Dummy Variables on both train and test set:
 - Turn the features into Dummy categorical variables via fine-classing/ coarse classing methods (binning into different small categories).
 - Binning creates dummy variables and drops the one with the lowest WoE value to avoid the Dummy trap.
- The Logistic model was trained with following strategy:

- Train a baseline model with class_weight = {0:6, 1:94}, which is revert of the dataset classes distribution. The class_weight hyperparameter is used to penalty on the Loss Function due to the imbalanced data
- The Logistic model's hyper-parameters optimization via GridSearchCV:
 - Hyperparameters tuning on C and class_weight.
 - RepeatedStratifiedKFold Cross-Validation was used to avoid overfitting/ data leakage.
 - The training task will focus on maximizing the roc_auc_score while fine-tuning the hyperparameters.
 - Calculate the p_values of each coefficient output from the best performance model and only keep the statistically significant ones (p_values < 0.05). Note that, only the features, which got all dummies variables are statistically non-significant, will be removed.
 - The address_count feature has been removed as its all dummies variables are statistically non-significant. It is also correct when the Information Value of address_count is also lowest within all features at 0.05.
 - Refit the old model with final selected feature for the final model output.

Model Evaluation:

- Calculate the best threshold of Area Under the Receiver Operating Characteristic Curve (AUROC) from the final model.
- Calculate the GINI coefficient.

Further Discussions/ Suggestions:

- The feature definitions are not provided in the instructions, if provided, the feature engineering would be more focused and result in a better performance model.
- The task was conducted in the classic PD model fashion which concentrated on explainability and only used Logistic Regression. Further methods could be considered such as tree-based, ensemble models such as voting, boosting, bagging or stacking - refer to my Kaggle notebook about this issue Bank Marketing: Ensemble Learning Pipeline
- Other model tuning techniques could be considered, such as Random search, Bayesian, etc.
- The roc_auc_score was focused as there is no information about the required evaluation metrics, such as minimizing the False Negative/ focus on Positive Class, etc. The notebook could extend in this fashion by using other metrics such as Precision-Recall AUC, Fbeta, etc.