20th CSEC – Past Year Paper Solution 2015-2016 Sem 2 MH 1812 – Discrete Mathematics

1)

a)	$5^1 mod 7 = 5$
	$5^2 mod 7 = 25 mod 7 = 4$
	$5^3 mod 7 = 125 mod 7 = 6$
	$5^4 mod 7 = 2$
	$5^5 mod 7 = 3$
	$5^6 mod 7 = 1$
	$5^{2016} \equiv (5^6)^{336} \equiv 1^{336} (mod7) \equiv 1$

b) Last row is the critical row, it shows that when $\neg q$ and $p \rightarrow q$ are true, $\neg p$ is also true.

p	q	$\neg q$	$p \rightarrow q$	$\neg p$
Т	Т	F	Т	F
Т	F	Т	F	F
F	Т	F	Т	Т
F	F	T	T	T

c) 1, (hole 1) 2, (hole 2) 3, (hole 3) 4, ..., (hole n-1) n

There are r number, and all numbers are positive. So, we need to choose r-1 from n-1 holes. Thus, # of solutions = $(n-1)C_{r-1}$

d)

i)
$$\forall x \in A, \exists y \in B, P(x, y)$$

$$\frac{Proof}{when x = 1, y = 4,}$$

$$5|(x + y)$$

$$\therefore P(x, y) \text{ is true.}$$

$$When x = 3, y = 2$$

$$5|(x + y)$$

$$\therefore P(x, y) \text{ is true.}$$

ii) $\exists y \in B, \forall x \in A, P(x, y)$

<u>Proof</u>

Only when x = 1, y = 4 or x = 3, y = 2, will fulfill P(x, y)

∴ There is no intersection between them, so the statement $\exists y \in B, \forall x \in A, P(x, y)$ is false.

2)

a)
$$x^2 = 4x - 4$$

 $x^2 - 4x + 4 = 0$
 $(x - 2)^2 = 0$
 $x = 2$
 $\therefore a_n = nC_1(2^n) + C_22^n$
Substitute $a_1 = 2$
 $2 = C_1(2) + 2(C_2)$
 $1 = C_1 + C_2$ --- (1)

20th CSEC – Past Year Paper Solution 2015-2016 Sem 2 MH 1812 – Discrete Mathematics

Substitute
$$a_2 = 8$$

 $8 = 2(C_1)(2^2) + 2^2C_2$
 $2 = 2C_1 + C_2$ --- (2)
 $(2) - (1) \Rightarrow C_1 = 1, C_2 = 0$
 $\therefore a_n = n2^n$

b) Proof by induction

When
$$n = 1$$

 $LHS = 1 \cdot 2 = 2$
 $RHS = \frac{1(1+1)(1+2)}{3} = 2$
 $LHS = RHS$
When $n = k$

Assume
$$1(2) + 2(3) + \cdots + k(k+1) = \frac{k(k+1)(k+2)}{3}$$

When
$$n = k + 1$$

$$LHS = 1(2) + 2(3) + \dots + k(k+1) + (k+1)(k+2) = \frac{k(k+1)(k+2)}{3} + (k+1)(k+2)$$

$$= (k+1)(k+2)\left(\frac{k}{3}+1\right)$$

$$= \frac{(k+1)(k+2)(k+3)}{3} = RHS$$

3)

a) Proof by set identity

$$RHS = (B \cup C) - A$$

$$= (B \cup C) \cap \overline{A}$$

$$= (B \cap \overline{A}) \cup (C \cap \overline{A})$$

$$= (B - A) \cup (C - A)$$
 [Proven]

b) It's not Euler circuit, as degree of node B and D are odd number.

It's Euler path, as there are 2 nodes with odd degree

It's not Hamilton circuit as node B is the only node connect left-right graph together. It's impossible start and end at the same node without passing any node twice.

20th CSEC – Past Year Paper Solution 2015-2016 Sem 2 MH 1812 – Discrete Mathematics

4)

a) It's not reflexive, as $(b,b),(c,c),(d,d)\notin R$ It's not symmetric, as $(a,b)\in R, but\ (b,a)\notin R$ It's not transitive, as $(a,b)\in R\land (b,c)\in R, but\ (a,c)\notin R$

b)

i) $f(x) = x^2 + 2x + 3$ $= (x^2 + 2x + 1) + 2$ $= (x + 1)^2 + 2$ As $x \le -1$, range of $(x + 1)^2$ is $(0, \infty)$ \therefore Range of f(x) is $(2, \infty)$

ii)
$$f(f^{-1}(x)) = x$$

 $f^{-1}(x)^2 + 2f^{-1}(x) + 3 = x$
 $(f^{-1}(x) + 1)^2 + 2 = x$
 $f^{-1}(x) = \sqrt{x - 2} - 1$

--End of Answers--

Solver: Gan Hsien Yan