

Robert John Dunn

BSc Computer Science

Supervisor: Dr Patricia A. Vargas Co-Supervisor: Dr Fabrício Olivetti de França Federal University of ABC, Brazil

SCHOOL OF MATHEMATICAL AND COMPUTER SCIENCES

Evolving a Learning Agent using Neuroevolution in the FightingICE Game Framework

Motivation

- Artificial intelligence is the study of emulating intelligence in machines. [1]
- One fundamental attribute of intelligence is the ability to learn.
- The field of machine-learning aims to imitate this ability in machines. [2]

- Dissertation aims to implement the machine-learning method neuroevolution: evolutionary algorithms evolving an artificial neural network.
- Agent implemented in the FightingICE framework.
- Can the agent be evolved to a competitive level?
- Will the introduction of an incremental learning environment benefit evolution rate?

FightingICE

- 2-dimensional fighting video game.
- Java based game framework organised and maintained by Ritsumeikan University, Japan. [3]
- Two characters fight in an arena similar to popular games such as Tekken and Street Fighter.

Design

- Prototype 1: Agent controlled by artificial neural network perceiving and acting in environment.
- Prototype 2: Neuroevolution machine-learning method acting on weights of neural network.
- Prototype 3: Implement incremental learning environment.

https://github.com/robbiejdunn/FightingICENeuroevolution https://youtu.be/EIxX_CfB4Q0

Results

- Evaluate data from agent's evolution to determine effectiveness of evolution and incremental learning environment.
- Evaluate performance versus human opponent.

Agent Difficulty	Round 1	Round 2	Round 3	Average	Perfor-
	Result	Result	Result	mance	
Easy	-160	-234	-215	-169	
Moderate	147	-26	37	52	
Difficult	168	145	250	187	

- Learning agent implemented neuroevolution successfully.
- Agent was evolved to point of being competitive versus a human opponent.
- Incremental learning environment benefits rate of agent evolution.

[1] Barto, S. (1998). Reinforcement Learning: An Introduction.

[3] FightingICE website - http://www.ice.ci.ritsumei.ac.jp/~ftgaic/index-2.html

[2] Michalski, R. (1983). Machine Learning: An Artificial Intelligence Approach.

