Analyse de la dynamique des modèles biologiques par programmation logique

Léo-Paul Delsaux

Stage effectué au laboratoire CRIStAL de Villeneuve-d'Ascq

29 août 2022

Introduction

Mots-clés:

- ► Bio-informatique
- Answer Set Programming (ASP)
- Réseau d'automates asynchrone (AAN)
- État local/global, transition locale/globale, chemin, cycle, automate produit, attracteur

Hitori

FIGURE - Grille de Hitori (https://fr.wikipedia.org/wiki/Hitori)

Hitori - Instance

Hitori - Instance

```
\begin{array}{l} c(1,1,2).\ c(2,1,2).\ c(3,1,1).\ c(4,1,5).\ c(5,1,3).\\ c(1,2,2).\ c(2,2,3).\ c(3,2,1).\ c(4,2,4).\ c(5,2,5).\\ c(1,3,1).\ c(2,3,1).\ c(3,3,1).\ c(4,3,3).\ c(5,3,5).\\ c(1,4,1).\ c(2,4,3).\ c(3,4,5).\ c(4,4,4).\ c(5,4,2).\\ c(1,5,5).\ c(2,5,4).\ c(3,5,3).\ c(4,5,2).\ c(5,5,1). \end{array}
```

taille(5).

```
taille(5).
Faits utiles
colonne(1..S) :- taille(S).
ligne(1..S) :- taille(S).
```

```
taille(5).

Faits utiles
colonne(1..S) :- taille(S).
ligne(1..S) :- taille(S).

Déclaration des colorations
couleur(blanc). couleur(jaune).
```

```
taille(5).
Faits utiles
colonne(1..S) := taille(S).
ligne(1..S) := taille(S).
Déclaration des colorations
couleur(blanc). couleur(jaune).
Génération des différents ensembles solutions
1 \{ sol(L, C, V) : couleur(V) \} 1 :- colonne(C), ligne(L).
```

Il ne peut pas y avoir deux cases jaunes juxtaposées :- sol(L, C, jaune), sol(L+1, C, jaune).

Il ne peut pas y avoir deux cases jaunes juxtaposées

- :- sol(L, C, jaune), sol(L+1, C, jaune).
- :- sol(L, C, jaune), sol(L-1, C, jaune).
- :- sol(L, C, jaune), sol(L, C+1, jaune).
- :- sol(L, C, jaune), sol(L, C-1, jaune).

Il ne peut pas y avoir deux cases jaunes juxtaposées

- :- sol(L, C, jaune), sol(L+1, C, jaune).
- :- sol(L, C, jaune), sol(L-1, C, jaune).
- :- sol(L, C, jaune), sol(L, C+1, jaune).
- :- sol(L, C, jaune), sol(L, C-1, jaune).

Les cases blanches sur une même ligne/colonne ont toutes une valeur différente

:- sol(L, C, blanc), sol(L, C2, blanc), C!=C2, c(L, C, V), c(L, C2, V).

Il ne peut pas y avoir deux cases jaunes juxtaposées

- :- sol(L, C, jaune), sol(L+1, C, jaune).
- :- sol(L, C, jaune), sol(L-1, C, jaune).
- :- sol(L, C, jaune), sol(L, C+1, jaune).
- :- sol(L, C, jaune), sol(L, C-1, jaune).

Les cases blanches sur une même ligne/colonne ont toutes une valeur différente

- :- sol(L, C, blanc), sol(L, C2, blanc), C = C2, c(L, C, V), c(L, C2, V).
- :- sol(L, C, blanc), sol(L2, C, blanc), L!=L2, c(L, C, V), c(L2, C, V).

L'ensemble des cases blanches est connexe (par déplacement haut/bas/gauche/droite) chemin((L, C), (L+1, C)) :- sol(L, C, blanc), sol(L+1, C, blanc).

```
L'ensemble des cases blanches est connexe (par déplacement haut/bas/gauche/droite) chemin((L, C),(L+1, C)) :- sol(L, C, blanc), sol(L+1, C, blanc). chemin((L, C),(L-1, C)) :- sol(L, C, blanc), sol(L-1, C, blanc). chemin((L, C),(L, C+1)) :- sol(L, C, blanc), sol(L, C+1, blanc). chemin((L, C),(L, C-1)) :- sol(L, C, blanc), sol(L, C-1, blanc).
```

```
L'ensemble des cases blanches est connexe (par déplacement haut/bas/gauche/droite) chemin((L, C),(L+1, C)) :- sol(L, C, blanc), sol(L+1, C, blanc). chemin((L, C),(L-1, C)) :- sol(L, C, blanc), sol(L-1, C, blanc). chemin((L, C),(L, C+1)) :- sol(L, C, blanc), sol(L, C+1, blanc). chemin((L, C),(L, C-1)) :- sol(L, C, blanc), sol(L, C-1, blanc). chemin((L1, C1), (L2, C2)) :- chemin((L1, C1), (X, Y)), chemin((X, Y), (L2, C2)).
```

```
L'ensemble des cases blanches est connexe (par déplacement haut/bas/gauche/droite) chemin((L, C),(L+1, C)) :- sol(L, C, blanc), sol(L+1, C, blanc). chemin((L, C),(L-1, C)) :- sol(L, C, blanc), sol(L-1, C, blanc). chemin((L, C),(L, C+1)) :- sol(L, C, blanc), sol(L, C+1, blanc). chemin((L, C),(L, C-1)) :- sol(L, C, blanc), sol(L, C-1, blanc). chemin((L1, C1), (L2, C2)) :- chemin((L1, C1), (X, Y)), chemin((X, Y), (L2, C2)). :- sol(L, C, blanc), sol(L2, C2, blanc), not chemin((L, C), (L2, C2)).
```

Hitori résolu

FIGURE - Grille de Hitori résolu (https://fr.wikipedia.org/wiki/Hitori)

Sokoban

FIGURE – Grille de Sokoban. P symbolise le joueur, les ronds rouges sont les cases d'arrivée, et les carrés rouges représentent les caisses.

Naïf : on considère un coup en tant que déplacement possible du personnage

Naïf : on considère un coup en tant que déplacement possible du personnage

Plus rapide : on ne considère que les coups de déplacement de caisse. On considère alors l'ensemble connexe des cases atteignables depuis celles du personnage

Plus rapide : on ne considère que les coups de déplacement de caisse. On considère alors l'ensemble connexe des cases atteignables depuis celles du personnage

AAN - Schéma

AAN - Schéma

FIGURE - Schéma qui fera office d'exemple de référence

Un réseau d'automates asynchrone est un triplet (Σ, S, T) , avec :

Un réseau d'automates asynchrone est un triplet (Σ, S, T) , avec :

 $\Sigma = \{a, b, ...\}$ est un ensemble fini d'automates non vides.

Un réseau d'automates asynchrone est un triplet (Σ, S, T) , avec :

 $\Sigma = \{a, b, ...\}$ est un ensemble fini d'automates non vides. $\Sigma = \{a, b, c\}$

a∈Σ

Un réseau d'automates asynchrone est un triplet (Σ, S, T) , avec :

- $\Sigma = \{a, b, ...\}$ est un ensemble fini d'automates non vides. $\Sigma = \{a, b, c\}$
- Si C_a est le nombre d'états d'un automate a, alors $S_a = \{a_0, a_1, ..., a_{C_a-1}\}$ est l'ensemble des **états locaux** de a. $S = \prod_{a \in \Sigma} S_a$ est l'ensemble fini des **états globaux**, et $LS = \bigcup S_a$ représente l'ensemble de tous les états locaux.

Un réseau d'automates asynchrone est un triplet (Σ, S, T) , avec :

- $\Sigma = \{a, b, ...\}$ est un ensemble fini d'automates non vides. $\Sigma = \{a, b, c\}$
- Si C_a est le nombre d'états d'un automate a, alors $S_a = \{a_0, a_1, ..., a_{C_a-1}\}$ est l'ensemble des **états locaux** de a. $S = \prod_{a \in \Sigma} S_a$ est l'ensemble fini des **états globaux**, et $LS = \bigcup_{a \in \Sigma} S_a$ représente l'ensemble de tous les états locaux. $S_a = \{a_0, a_1, a_2\}, S_b = \{b_0, b_1\}$ et $S_c = \{c_0, c_1, c_2\}$

AAN - Formalismes

Pour chaque $a \in \Sigma$, $T_a \subseteq \left\{a_i \stackrel{l}{\to} a_j \in S_a \times \mathbb{P}(LS/S_a) \times S_a | a_i \neq a_j\right\}$ est l'ensemble des **transitions locales** d'un automate a. $T = \bigcup_{a \in \Sigma} T_a$ est l'ensemble des transitions locales du modèle.

AAN - Formalismes

Pour chaque $a \in \Sigma$. $T_a \subseteq \left\{ a_i \stackrel{l}{ o} a_j \in S_a imes \mathbb{P}(LS/S_a) imes S_a | a_i
eq a_j
ight\}$ est l'ensemble des transitions locales d'un automate a. $T = \bigcup T_a$ est

l'ensemble des transitions locales du modèle.
$$T_a = \left\{ a_0 \overset{b_0}{\longrightarrow} a_1, a_0 \overset{b_1, c_1}{\longrightarrow} a_1, a_1 \overset{b_1}{\longrightarrow} a_0, a_1 \overset{b_0}{\longrightarrow} a_2, a_2 \overset{b_1}{\longrightarrow} a_1 \right\}$$

$$T_b = \left\{ b_0 \overset{c_0}{\longrightarrow} b_1, b_1 \overset{a_2}{\longrightarrow} b_0 \right\}$$

$$T_c = \left\{ c_0 \overset{b_1}{\longrightarrow} c_1, c_0 \overset{a_2}{\longrightarrow} c_2, c_1 \overset{b_0}{\longrightarrow} c_0, c_1 \overset{a_1}{\longrightarrow} c_2, c_2 \overset{b_1}{\longrightarrow} c_0 \right\}$$

AAN - Traduction de l'exemple en ASP

En ASP, on définit l'exemple de référence en deux temps.

AAN - Traduction de l'exemple en ASP

En ASP, on définit l'exemple de référence en deux temps.

On déclare les niveaux : automaton_level("a", 0..2). automaton_level("b", 0..1). automaton_level("c", 0..2).

AAN - Traduction de l'exemple en ASP

En ASP, on définit l'exemple de référence en deux temps.

- ► On déclare les niveaux : automaton_level("a", 0..2). automaton_level("b", 0..1). automaton_level("c", 0..2).
- ► Et les transitions à l'aide de labels :
 condition(t1, "a", 0). target(t1, "a", 1). condition(t1, "b", 0).
 condition(t2, "a", 1). target(t2, "a", 2). condition(t2, "b", 0).
 [...](11 lignes supplémentaires)
 condition(t12, "a", 0). target(t12, "a", 1). condition(t12, "b",
 1). condition(t12, "c", 1).

Sémantiques

Sémantiques

On s'intéressera à 3 sémantiques :

Sémantiques

On s'intéressera à 3 sémantiques :

FIGURE – Schéma repris du pdf Folschette_Bioss18.pdf de Maxime Folschette

Attracteurs

Attracteurs

Un **domaine de piège** est un ensemble d'états globaux duquel toutes les transitions globales pour la sémantique choisie mènent à un élément de ce domaine.

Attracteurs

Un **domaine de piège** est un ensemble d'états globaux duquel toutes les transitions globales pour la sémantique choisie mènent à un élément de ce domaine.

FIGURE – Sous-graphe du graphe produit de l'exemple de référence avec la sémantique synchrone. 3 des 6 domaines de piège y sont encadrés.

Un **attracteur** est un domaine de piège minimal en terme d'inclusion ensembliste.

Un attracteur est un domaine de piège minimal en terme d'inclusion ensembliste.

FIGURE – Sous-graphe du graphe produit de l'exemple de référence avec la sémantique synchrone. Le seul attracteur y est encadré.

Un attracteur est un domaine de piège minimal en terme d'inclusion ensembliste.

FIGURE – Sous-graphe du graphe produit de l'exemple de référence avec la sémantique synchrone. Le seul attracteur y est encadré.

Lemme : Les attracteurs d'un AAN sont exactement les domaines de piège cycliques.

Problématique

Pour la version synchrone, le code préexistant ne fonctionnait que partiellement : seuls les attracteurs simples (dont les états globaux ont exactement une transition sortante) étaient trouvés.

Problématique

Pour la version synchrone, le code préexistant ne fonctionnait que partiellement : seuls les attracteurs simples (dont les états globaux ont exactement une transition sortante) étaient trouvés.

FIGURE – Exemple d'AAN sur lequel le code pré-existant ne trouvait pas l'attracteur

Problématique

 $\begin{array}{l} \mathbf{F}\mathbf{IGURE}-\mathbf{G}\mathbf{raphe}\ produit\ de\ l'AAN\ précédent\ pour\ la\ sémantique\\ \mathbf{synchrone} \end{array}$

Solutions étudiées :

Solutions étudiées :

correction de la troisième contrainte en Python

Solutions étudiées :

- correction de la troisième contrainte en Python
- utilisation des états globaux en ASP

Une fois que l'on a généré tous les chemins possibles dans un AAN à l'aide d'agrégats, il nous faut filtrer les ensembles-solutions qui nous intéressent. On doit alors respecter 3 contraintes :

Une fois que l'on a généré tous les chemins possibles dans un AAN à l'aide d'agrégats, il nous faut filtrer les ensembles-solutions qui nous intéressent. On doit alors respecter 3 contraintes :

avoir un cycle

Une fois que l'on a généré tous les chemins possibles dans un AAN à l'aide d'agrégats, il nous faut filtrer les ensembles-solutions qui nous intéressent. On doit alors respecter 3 contraintes :

- avoir un cycle
- tout les états globaux du chemin visités après l'étape de fin du visite du cycle doivent être des éléments de ce dernier

Une fois que l'on a généré tous les chemins possibles dans un AAN à l'aide d'agrégats, il nous faut filtrer les ensembles-solutions qui nous intéressent. On doit alors respecter 3 contraintes :

- avoir un cycle
- tout les états globaux du chemin visités après l'étape de fin du visite du cycle doivent être des éléments de ce dernier
- toutes les transitions globales jouables depuis chacun des éléments du cycle doivent arriver dans un autre élément de ce cycle (= domaine piège)

n	exam.
$ \Sigma $	4
2	2
5	2
10	2
15	2

FIGURE – Nombre d'attracteurs trouvés pour la sémantique synchrone (version avec python)

n	exam.
2	.051
5	.052
10	.054 .093
15	.093

n	exam.	lamb.	
$ \Sigma $	4	4	
2	2	2	
5	2	2	
10	2	2	
15	2	2	

FIGURE – Nombre d'attracteurs trouvés pour la sémantique synchrone (version avec python)

n	exam.	lamb.	
2	.051 .052 .054	.053	
5	.052	.060	
10	.054	.076	
15	.093	.096	

n	exam.	lamb.	trp.	
$ \Sigma $	4	4	4	
2	2	2	0	
5	2	2	1	
10	2	2	1	
15	2	2	1	

FIGURE – Nombre d'attracteurs trouvés pour la sémantique synchrone (version avec python)

n	exam.	lamb.	trp.	
2	.051	.053	.044	
5	.052	.060	.039	
10	.054	.076	.050	
15	.051 .052 .054 .093	.096	.051	

n	exam.	lamb.	trp.	fis.	
$ \Sigma $	4	4	4	9	
2	2	2	0	1	
5	2	2	1	1	
10	2	2	1	1	
15	2	2	1	1	

FIGURE – Nombre d'attracteurs trouvés pour la sémantique synchrone (version avec python)

	exam.				
2	.051	.053	.044	.047	
5	.051 .052 .054	.060	.039	.057	
10	.054	.076	.050	.084	
	.093				

n	exam.	lamb.	trp.	fis.	mamm.	
$ \Sigma $	4	4	4	9	10	
2	2	2	0	1	0	
5	2	2	1	1	0	
10	2	2	1	1	1	
15	2	2	1	1	1	

FIGURE – Nombre d'attracteurs trouvés pour la sémantique synchrone (version avec python)

					mamm.	
2	.051	.053	.044	.047	.047	
5	.051 .052 .054	.060	.039	.057	.043	
10	.054	.076	.050	.084	.082	
15	.093	.096	.051	.108	.123	

n	exam.	lamb.	trp.	fis.	mamm.	tcr.	
$ \Sigma $	4	4	4	9	10	40	
2	2	2	0	1	0	0	
5	2	2	1	1	0	0	
10	2	2	1	1	1	1	
15	2	2	1	1	1	1	

 $\begin{array}{l} {\rm FIGURE-Nombre\ d'attracteurs\ trouv\'es\ pour\ la\ s\'emantique\ synchrone} \\ {\rm (version\ avec\ python)} \end{array}$

					mamm.		
2	.051	.053	.044	.047	.047	.049	
5	.052	.060	.039	.057	.047 .043 .082	.079	
10	.054	.076	.050	.084	.082	.201	
15	.093	.096	.051	.108	.123	.362	

n	exam.	lamb.	trp.	fis.	mamm.	tcr.	t-helper
$ \Sigma $	4	4	4	9	10	40	101
2	2	2	0	1	0	0	8878+
5	2	2	1	1	0	0	5477 +
10	2	2	1	1	1	1	4072 +
15	2	2	1	1	1	1	2850 +

 $\begin{array}{l} \mathbf{F}_{\mathbf{IGURE}} - \mathsf{Nombre} \ \mathsf{d'attracteurs} \ \mathsf{trouv\acute{e}s} \ \mathsf{pour} \ \mathsf{la} \ \mathsf{s\acute{e}mantique} \ \mathsf{synchrone} \\ \mathsf{(version avec python)} \end{array}$

					mamm.		
2	.051	.053	.044	.047	.047 .043 .082	.049	T.O
5	.052	.060	.039	.057	.043	.079	T.O
10	.054	.076	.050	.084	.082	.201	T.O
15	.093	.096	.051	.108	.123	.362	T.O

Utilisation des états globaux en ASP

Utilisation des états globaux en ASP

Une autre manière de gérer la troisième contrainte consiste à créer des prédicats pour les états globaux, et de mémoriser dans la sémantique quels sont les coups jouables depuis un état global, et non une étape temporelle donnée.

n	exam.
$ \Sigma $	4
2	2
5	2
10	2
15	2

FIGURE – Nombre d'attracteurs trouvés pour la sémantique synchrone (version avec états globaux)

n	exam.
2	3.724
5	6.457
10	11.349
15	18.767

n	exam.	lamb.	
$ \Sigma $	4	4	
2	2	2	
5	2	2	
10	2		
15	2		

FIGURE – Nombre d'attracteurs trouvés pour la sémantique synchrone (version avec états globaux)

n	exam.	lamb.	
	3.724		
5	6.457	71.786	
10	11.349	T.O	
15	18.767	T.O	

n	exam.	lamb.	trp.	
$ \Sigma $	4	4	4	
2	2	2	0	
5	2	2	0	
10	2		0	
15	2		1	

FIGURE – Nombre d'attracteurs trouvés pour la sémantique synchrone (version avec états globaux)

n	exam.	lamb.	trp.	
	3.724			
5	6.457	71.786	6.288	
10	11.349	T.O	11.561	
15	18.767	T.O	19.636	

n	exam.	lamb.	trp.	fis.	
$ \Sigma $	4	4	4	9	
2	2	2	0		
5	2	2	0		
10	2		0		
15	2		1		

FIGURE – Nombre d'attracteurs trouvés pour la sémantique synchrone (version avec états globaux)

	exam.				
	3.724				
5	6.457	71.786	6.288	T.O	
	11.349				
15	18.767	T.O	19.636	T.O	

n	exam.	lamb.	trp.	fis.	mamm.	
$ \Sigma $	4	4	4	9	10	
2	2	2	0			
5	2	2	0			
10	2		0			
15	2		1			

FIGURE – Nombre d'attracteurs trouvés pour la sémantique synchrone (version avec états globaux)

n	exam.	lamb.	trp.	fis.	mamm.	
2	3.724	43.623	4.155	T.O	T.O	
5	6.457	71.786	6.288	T.O	T.O	
10	11.349	T.O	11.561	T.O	T.O	
15	18.767	T.O	19.636	T.O	T.O	

n	exam.	lamb.	trp.	fis.	mamm.	tcr.	
$ \Sigma $	4	4	4	9	10	40	
2	2	2	0				
5	2	2	0				
10	2		0				
15	2		1				

FIGURE – Nombre d'attracteurs trouvés pour la sémantique synchrone (version avec états globaux)

n	exam.	lamb.	trp.	fis.	mamm.	tcr.
					T.O	
5	6.457	71.786	6.288	T.O	T.O	T.O
10	11.349	T.O	11.561	T.O	T.O	T.O
15	18.767	T.O	19.636	T.O	T.O	T.O

n	exam.	lamb.	trp.	fis.	mamm.	tcr.	t-helper
$ \Sigma $	4	4	4	9	10	40	101
2	2	2	0				
5	2	2	0				
10	2		0				
15	2		1				

FIGURE – Nombre d'attracteurs trouvés pour la sémantique synchrone (version avec états globaux)

n	exam.	lamb.	trp.	fis.	mamm.	tcr.	t-helper
					T.O		
5	6.457	71.786	6.288	T.O	T.O	T.O	T.O
					T.O		
15	18.767	T.O	19.636	T.O	T.O	T.O	T.O

Conclusions (et pistes)

Conclusions (et pistes)

- 2 versions fonctionnelles :
 - une efficace avec du filtrage sous Python
 - l'autre moins efficace avec utilisation d'états globaux (avec quelques fonctions de calcul en Python)

Conclusions (et pistes)

- 2 versions fonctionnelles :
 - une efficace avec du filtrage sous Python
 - l'autre moins efficace avec utilisation d'états globaux (avec quelques fonctions de calcul en Python)
- Pistes : la seconde version pourrait être améliorée avec de l'incrémental; considérer des classes d'équivalence des attracteurs, et manipuler des sortes de "bassins d'attraction"

Remerciements

Merci à :

- ▶ l'ENS de Lyon qui m'a proposé ce stage
- Maxime Folschette pour son encadrement
- les personnes au sein de l'équipe BioComputing
- mes quelques collègues stagiaires de bureau
- les auditeurs présents dans cette salle pour leur écoute