Homework 3

Christopher Hunt

7. Consider the statement: for all integers a and b, if a is even and b is a multiple of 3, then ab is a multiple of 6.

Let us begin by defining our terms.

Let: $a, b, n, m \in \mathbb{Z}$

P = a = 2n (by the definition of even numbers from class)

Q = 3|b = m or b = 3m

R = 6|ab = nm or ab = 6(nm)

a. Prove the statement. What sort of proof are you using?

This claim will be proven using a Direct Proof.

Claim. For all integers a and b, if P and Q are true, then R is true. That is, $\forall a, b \in \mathbb{Z}(P \land Q \to R)$.

Proof. Suppose P and Q are true. Consider the product of a and b:

$$ab = (2n)(3m)$$
$$= 6(nm)$$

Since a, b, n, and m are all integers, and integers are closed under multiplication, we can conclude that the product of ab is divisible by b. Therefore, the claim is true.

b. State the converse. Is it true? Prove or disprove.

Now consider the converse claim.

Claim. For all integers a and b, if R is true, then P and Q are true. That is, $\forall a, b \in \mathbb{Z}(R \to P \land Q)$.

Proof. Suppose R is true. For the statement to be true a must be even and b a multiple of 3. To disprove this claim we need to show that there exists a product of a and b that is a multiple of 6 where either a is not even or b is not a multiple of 3. Consider this counterexample:

Let:
$$a = 6$$
 and $b = 2$

$$ab = 6(2)$$
$$= 12$$

Since the product of a and b is a multiple of 6, and b is not a multiple of 3 there exists a case where the statement R is true but the implication $P \wedge Q$ is false. Therefore, the converse claim is false.

Homework 3 2

9. Prove the statement: For all integers a, b, and c, if $a^2 + b^2 = c^2$, then a or b is even.

To begin this proof we must first prove this lemma.

Lemma 1. If n is an odd integer, then n^2 is an odd integer. Let n = 2k + 1 where k is some integer.

$$n^{2} = (2k+1)^{2}$$

$$= (2k+1)(2k+1)$$

$$= 4k^{2} + 4k + 1$$

$$= 2(2k^{2} + 2k) + 1$$

Since k is an integer and integers are closed under multiplication n^2 is odd. Therefore, the statement is true.

Claim. For all integers a, b, and c, if $a^2 + b^2 = c^2$, then a or b is even. That is, $\forall a, b, c \in \mathbb{Z}$ such that $(a^2 + b^2 = c^2 \to a \text{ or } b \text{ is even})$

Proof. Let us begin by finding the contradiction to the claim.

Contradiction: $\exists a, b, c \in \mathbb{Z}$ such that $(a^2 + b^2 = c^2 \text{ and } a \text{ and } b \text{ are odd.})$

To disprove this claim we need to find a case where this contradiction is true. Suppose a and b are odd, that is a = 2k + 1 and b = 2j + 1 where k and j are some integer. Now consider $c^2 = a^2 + b^2$

$$c^{2} = a^{2} + b^{2}$$

$$= (2k+1)^{2} + (2j+1)^{2}$$

$$= 4k^{2} + 4k + 1 + 4j^{2} + 4j + 1$$

$$= 2(2k^{2} + 2k + 2j^{2} + 2j + 1)$$

Since k and j are integers, and integers are closed under multiplication, this would mean that when a and b are some odd integer c^2 will always be an even. From lemma 1 we know that it's contra-positive is also true, that is if n^2 is an even integer, then n is an even integer. From the definition of an even integer we can rewrite c as c = 2p where p is some integer. Now continue our work from above:

$$c^{2} = (2p)^{2}$$

$$(2p)^{2} = 2(2k^{2} + 2k + 2j^{2} + 2j + 1)$$

$$4p^{2} = 2(2k^{2} + 2k + 2j^{2} + 2j + 1)$$

$$2p^{2} = 2k^{2} + 2k + 2j^{2} + 2j + 1$$

$$2(p^{2}) \neq 2(k^{2} + k + j^{2} + j) + 1$$

Since we proved in class that integers must be either odd or even the above equality is a contradiction for all cases of odd integers a and b. Therefore, the original statement must be true.

Christopher Hunt MTH 231

Homework 3 3

SQ-2. Use the definitions of even and odd integers to prove the following claim: "If k is any odd integer and m is any even integer, then $k^2 + m^2$ is odd."

Let us begin by defining our terms.

Let:
$$k, m, a, b \in \mathbb{Z}$$

 $P = k = 2a + 1$
 $Q = m = 2b$
 $R = "k^2 + m^2 \text{ is odd"}$

Claim. If k is any odd integer and m is any even integer, then $k^2 + m^2$ is odd, that is $\forall k, m \in \mathbb{Z}$ such that $(P \land Q \to R)$.

Proof. Suppose P and Q are both true. Consider $k^2 + m^2$:

$$k^{2} + m^{2} = (2a + 1)^{2} + (2b)^{2}$$
$$= 4a^{2} + 4a + 1 + 4b^{2}$$
$$= 2(2a^{2} + 2a + 2b^{2}) + 1$$

Since a and b are integers and integers are closed under multiplication we can conclude that $k^2 + m^2$ will always be an odd number. Therefore the claim is true.

Christopher Hunt MTH 231