Logic Design CH3

Q1

(a)

W	X	Y	Z
1	1	1	1
1	1	0	0
1	0	1	0
0	1	1	0
0	0	1	0
0	1	0	0
1	0	0	0
0	0	0	0

$$W = 0$$

$$Y = 0$$

$$X = 1$$

$$Z = 0$$

- (a) A three-input AND gate = A.B.C =D
- (b) A four-input AND gate = A.B.C.D = E
- (c) (c) A three-input OR gate = A+B+C = D

Q4

Q5

(A)

(B)

Q8

$$X = \overline{A} \ Z = \overline{X}$$

$$X = 0$$

$$\mathsf{Y} = \overline{CD}$$

()	D	Υ
()	0	1
()	1	1
1		0	1

4	4	_
1	1	()
		U

Q11

(b)

CH4

Q1

$$\mathsf{B}(\mathsf{A} {+} \mathsf{C}) = \mathsf{X}$$

$$AB+B+(B+C) * D= Z$$

Q2

a. R=CPF

b. G=CP(M+F)

c.
$$B = (H+C+P)F$$

a.

unsimplified: P = (AC + BC)(A + C)

simplified: P = A+BC

Q4

unsimplified: A((A+B).(B+C))

simplified: A((A+B).(B+C))

$$= A+(A+B)+(B+C)$$

$$= A+A+B+B+C$$

$$= A+B+C$$

(c) =
$$\overline{\overline{AB}}$$
 = $\overline{\overline{A}}$ + $\overline{\overline{B}}$ =A + B

$$(d) = A + B$$

c and d are equivalent

Q9

$$Out = AB(C+D)$$

$$Out = A+B+C$$

