Neural Networks

Perceptrons and Single-Layer Networks

CSCI 4850/5850

Pattern Recognition

- The classification problem involves assigning one of a discrete set of category labels to an object, based on a collection of measurements (i.e features) of that object:
- The statistical pattern recognition problem involves finding a function which does a good job of classifying objects, based on a combination of prior knowledge and a data set of labeled objects (i.e. feature vectors).
 - Goodness is formalized in terms of a performance measure, typically an error function.
 - The main goal is **generalization**: good classification performance on objects **not** used to find the classification function (i.e. "heldout" feature vectors).

Feature Extraction

- Often, features provided may not be related to the class membership in a simple way, but other features calculated based on the input features may be. Thus, transforming input features into a more useful set of features before finding class regions is common.
 - One key advantage of deep-learning networks that we will see later is that such transformations are not as necessary as in other machine learning methods, but studying these transformations can help us understand why.
- Such methods are known as feature **pre-processing** or **feature extraction** which often require **prior knowledge** concerning the problem to domain to be successful.
- Feature extraction often seeks to leverage **invariances** (translation, rotation, scaling, skew, etc.)

Example: Single-layer Network

- Consider the case where we have a network comprised of only two layers: input and output
- The neural units in the input layer are fullyconnected to the units in the output layer: every input unit, x_i, connects to every output unit, y_i.
- All weights initially set to zero.
- Output units use the **linear** activation function (without a bias weight, w_0).

[Note that the **input layer** has no neural units upstream. By convention, we set the activations of these units directly to the input vectors we are processing with the **network**. Therefore, since they perform no computation, we don't count them in the number of layers in the network (hence, single-layer network).]

A Training Procedure

 Consider that we are calculating c=2 linear discriminant regions given d=5 dimensional input vectors:

- We hope to achieve **good performance** on these training patterns, i.e. we want the network to produce the c-dimensional output pattern on the right from the output units when providing the d-dimensional pattern on the left to the input layer
- We will present these patterns to the network one at a time to our network during learning.
- Each pattern presentation is called a training trial
- Exposure to all patterns in the set counts as a training epoch

A Training Procedure

$$\vec{y} = W \vec{x}$$

$$= \sum_{i} x_{i} w_{ki}$$

Biological Inspiration

- Long-term potentiation (LTP)
- Long-term depression (LTD)

Hebbian Learning (1949 theory, 1982 practice)

 Modify each connection weight in proportion to the product of the activation levels on both sides of the connection.

$$\Delta w_{ki} = \eta x_i t_k \qquad \qquad w_{ki}^{new} = w_{ki}^{old} + \Delta w_{ki}$$

- The target value, t_k , is the desired output for output unit, y_k , given the corresponding input vector. The parameter, η , is called the learning rate, and specifies the step size of the weight update.
- If starting from W=0, then after N epochs W will be:

$$w_{ki} = \eta N_e \sum_{n=1}^{N} x_i^n t_k^n$$

Hebbian/Correlation Learning

The correlation coefficient (normalized covariance) for an input and target value, given both have zero mean:

$$r_{ki} = \frac{cov[x_i, t_k]}{\sqrt{var[x_i] var[t_k]}} = \frac{\frac{1}{N} \sum_{n=1}^{N} x_i^n t_k^n}{\sqrt{\left(\frac{1}{N} \sum_{n=1}^{N} (x_i^n)^2\right) \left(\frac{1}{N} \sum_{n=1}^{N} (t_k^n)^2\right)}} = k_{train} \sum_{n=1}^{N} x_i^n t_k^n$$

Hebbian = Correlation

 Weight values will be proportional to the correlation between the input and the output

$$r_{ki} = k_{train} \sum_{n=1}^{N} x_i^n t_k^n + w_{ki} = \eta N_e \sum_{n=1}^{N} x_i^n t_k^n$$

$$w_{ki} = \frac{\eta N_e}{k_{train}} r_{ki}$$

Successful Hebbian Learning

- Proven: if the input patterns are **mutually orthogonal**, then Hebbian learning will result in outputs that are **proportional** to the desired targets
- But it's not enough:

$$+1$$
 -1 $+1$ -1 \Rightarrow $+1$
 $+1$ $+1$ $+1$ $+1$ \Rightarrow $+1$
 $+1$ $+1$ $+1$ -1 \Rightarrow -1
 $+1$ -1 -1 $+1$ \Rightarrow -1

- There is a weight vector which can solve this problem, but Hebbian learning cannot find it... $(-1,-1,+2,+1)^T$
- Why? Weights updates are not sensitive to other connections (even those coming into the same output unit) are doing (too local).

Error-Correction Learning

Hebbian learning involves learning correlations, but this is not the objective of classification or regression problems.

Error-correction learning involves using an explicit measure of **loss/error** which should be **minimized** to produce good performance.

One example of such a function is the sum-squared error (SSE):

$$E(\mathbf{W}) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{c} (y_k(\mathbf{x}^n; \mathbf{w}) - t_k^n)^2$$

The Loss/Error Function

 Notice that by summing over all of the individual training vectors, xⁿ, the error function becomes dependent only on the weights in the network...

Gradient Descent

 This search isn't uninformed since we can calculate the partial derivative of the error with respect to each weight

Stochastic Gradient Descent

In practice, some **data sets** are very **large**, so a full pass through the data is computationally expensive (long time to wait between weight updates = **slow learning**)

In neuroscience, we see evidence of learning **before** a completing a full sequence of experiences

A variant of gradient descent called **stochastic gradient descent** is therefore often used, where we compute the error for each training pattern (or a subset of patterns)

This variant doesn't follow the gradient in precisely the same manner since the particular patterns experienced and the order in which they are experienced differs between epochs...

$$E^{Q}(\mathbf{W}) = \frac{1}{2} \sum_{p=1}^{P} \sum_{k=1}^{c} (y_{k}(\mathbf{x}^{q^{p}}; \mathbf{w}) - t_{k}^{q^{p}})^{2}$$

where $Q \in \{1 ... N\}$ of length P

One **batch** is now a complete pass through the **subset** Q:

P=N: gradient descent

P < N: stochastic gradient descent

Non-linear Activation Function

- Result: the Delta Rule
 - Least Mean Squares
 - Widrow-Hoff
 - Adaline Rule

$$\frac{\partial E^{n}(\mathbf{W})}{\partial w_{kj}} = \frac{\partial}{\partial w_{kj}} \left(\frac{1}{2} (y_{k}(\mathbf{x}^{n}; \mathbf{W}) - t_{k}^{n})^{2} \right) = (y_{k}(\mathbf{x}^{n}; \mathbf{W}) - t_{k}^{n}) \frac{\partial}{\partial w_{kj}} (y_{k}(\mathbf{x}^{n}; \mathbf{W}) - t_{k}^{n}) = g'(net_{k}^{n}) \frac{\partial}{\partial w_{kj}} (y_{k}(\mathbf{x}^{n}; \mathbf{W}) - t_{k}^{n}) = g'(net_{k}^{n}) x_{j}^{n}$$

$$\delta_k^n = (y_k(\boldsymbol{x}^n; \boldsymbol{W}) - t_k^n)$$

$$y_k(\mathbf{x}^n; \mathbf{W}) = g(net_k^n)$$

$$net_k^n = \sum_{i=1}^M w_{ki} x_i^n$$

$$\frac{\partial y_k(\mathbf{x}^n; \mathbf{W})}{\partial w_{kj}} = \frac{\partial g(net_k^n)}{\partial net_k^n} \frac{\partial net_k^n}{\partial w_{kj}}$$

$$= g'(net_k^n) \frac{\partial}{\partial w_{kj}} \left(\sum_{i=1}^M w_{ki} x_i^n \right)$$

$$\frac{\partial y_k(\mathbf{x}^n; \mathbf{W})}{\partial w_{kj}} = g'(net_k^n) x_j^n$$

$$\frac{\partial E(\mathbf{W})}{\partial w_{kj}} = \delta_k^n \frac{\partial y_k(\mathbf{x}^n; \mathbf{W})}{\partial w_{kj}} = \delta_k^n g'(net_k^n) x_j^n$$
$$\Delta w_{kj}^n = -\alpha \delta_k^n g'(net_k^n) x_j^n$$

The Perceptron (1957, Rosenblatt)

- Delta Rule requires functions to be differentiable
- However, a slight modification makes error correction possible with a discontinuous activation function (eg. step function)
 - Let g be the step function -1 to 1 centered at 0

if
$$y_k^n = t_k^n$$
 then let $\Delta w_{kj} = 0$
if $y_k^n > t_k^n$ then let $\Delta w_{kj} = -\alpha x_j^n$
if $y_k^n < t_k^n$ then let $\Delta w_{kj} = +\alpha x_j^n$

$$\Delta w_{kj} = \alpha x_j^n t_k^n$$

Similar to the delta rule, but with an error term that is always 0, -1 or +1

The Perceptron Convergence Theorem

Learning: Some Observations

- In classification, we start with a rich observation of features and end with a discrete class assignment
- In regression, we start with a rich observation of features and often end with only a continuous value of interest
- Classification and regression involve throwing away information
 - Learning involves throwing away information
 - Memorization is **not** learning
 - Need to learn a general concept/function

Key Concept: Generalization

- Consider a stock option problem...
 - You want to know if a stock will increase or decrease in value in the next month (classification)
 - You want to know what the value of a stock will be at the end of the next month (regression)
 - Classification and Regression are closely related concepts...
- We must utilize data (eg. past stock option properties and performance information) to train a network to make accurate predictions
- Performance improves over time for predictions on this training data, but we really want to do better on data not experienced while training
- That is, we want the network to generalize to new experiences
- For this, we often separate data sets into three distinct sets
 - Training: used to learn the parameters (i.e. weights)
 - Validation: used to check generalization and tune hyper-parameters (eg. α, number of layers, number of units, etc.)
 - Testing: used to check generalization performance –after- training/tuning (no more parameter/hyperparameter changes allowed)

Multiclass Activation Function = Softmax

Softmax Activation Function

$$y_k = \frac{e^{net_k}}{\sum_{c=1}^{C} e^{net_c}}$$

$$\frac{\partial y_j}{\partial net_k} = -y_j y_k \qquad \frac{\partial y_k}{\partial net_k} = y_k - y_k^2$$

Categorical CrossEntropy Loss Function

$$E = -\sum_{n=1}^{N} \sum_{c=1}^{C} t_{c}^{n} \ln y_{c}^{n}$$

$$\delta_k = y_k - t_k$$

The softmax activation function is a generalization of the sigmoid activation function for multiple classes

It considers the relative activity of the other units and scales activity accordingly

Each activation will be between 0 and 1, just like the sigmoid

The sum of the activations across all output units will be 1, which is appropriate for representing discrete probability distributions