Python for Data Analysis Project

Eya El Hachemi Yanyu Chen

Plan

- 1- Description of the dataset
- 2- Understanding the problem
- 3- Feature Encoding
- 4- Feature Engineering

Description of the dataset

Drug consumption (quantified) Data Set

0	2	-0.07854	-0.48246	1.98437	0.96082	-0.31685	-0.67825	1.93886	1.43533	0.76096	-0.14277	-0.71126	-0.21575	CL5	CL2	CL2	CL0
1	3	0.49788	-0.48246	-0.05921	0.96082	-0.31685	-0.46725	0.80523	-0.84732	-1.62090	-1.01450	-1.37983	0.40148	CL6	CL0	CL0	CL0
2	4	-0.95197	0.48246	1.16365	0.96082	-0.31685	-0.14882	-0.80615	-0.01928	0.59042	0.58489	-1.37983	-1.18084	CL4	CL0	CL0	CL3
3	5	0.49788	0.48246	1.98437	0.96082	-0.31685	0.73545	-1.63340	-0.45174	-0.30172	1.30612	-0.21712	-0.21575	CL4	CL1	CL1	CL0
4	6	2.59171	0.48246	-1.22751	0.24923	-0.31685	-0.67825	-0.30033	-1.55521	2.03972	1.63088	-1.37983	-1.54858	CL2	CL0	CL0	CL0

Nscore Escore Oscore Ascore Cscore Impulsive

SS Alcohol Amphet Amyl Benzos

1884 Rows and 32 columns

Age Gender Education Country Ethnicity

- All input attributes are originally categorical and are quantified
- 0 missing values

ID

Information about the columns

To summarize, it contains:

- an ID column
- 5 demographic columns (features)
- 7 personality traits (features)
- 18 drugs with their usage frequency (target)
- a fake drug called Semeron to verify reliability of answers

Each drug variable can take 6 different values:

- CL0 Never Used
- CL1 Used over a Decade
- CL2 Used in the Last Decade
- CL3 Used in the Last Year
- CL4 Used in the Last Month
- CL5 Used in the Last Week
- CL6 Used in the Last Day

Understanding the problem

Classification Problem

 Problem will be transformed to binary classification by union of part of classes into one new class. For example, "Never Used", "Used over a Decade Ago" form class "Non-user" and all other classes form class "User".

Feature encoding

Creating a drug encoder to convert nominal drug values (CL0, CL1, CL2 ...) into ordered numerical data

[432]:	da	ta.h	ead()																	
out[432]:		Age	Gender	Education	Country	Ethnicity	Alcohol	Amphet	Amyl	Benzos	Caff	Cannabis	Choc	Coke	Crack	Ecstasy	Heroin	Ketamine	Legalh	L
	0	25- 34	Male	Doctorate degree	UK	Other	6	2	2	0	7	4	7	3	0	4	0	2	0	
	1	35- 44	Male	Professional certificate/ diploma	UK	Other	7	0	0	0	7	3	4	0	0	0	0	0	0	
	2	18- 24	Female	Masters degree	UK	Other	4	0	0	3	6	2	4	2	0	0	0	2	0	
	3	35- 44	Female	Doctorate degree	UK	Other	4	1	1	0	7	3	7	0	0	1	0	0	1	
	4	65+	Female	Left school at 18 years	Canada	Other	2	0	0	0	7	0	4	0	0	0	0	0	0	

Feature Engineering

We transformed the quantified categorical data back to a clearer, nominal, form (Columns: Age, Gender, Education, Country, Ethnicity) in order to explore our data and gain more information using encoders from the data description

	Age	Gender	Education	Country	Ethnicity	Ns
0	25- 34	Male	Doctorate degree	UK	Other	-0.6
1	35- 44	Male	Professional certificate/ diploma	UK	Other	-0.4
2	18- 24	Female	Masters degree	UK	Other	-0.1
3	35- 44	Female	Doctorate degree	UK	Other	0.7
4	65+	Female	Left school at 18 years	Canada	Other	-0.6
			- 12			

2. Age (Real) is age of participant and has one of the values: Value Meaning Cases Fraction -0 95197 18-24 643 34 11% -0 07854 25-34 481 25 52% 0.49788 35-44 356 18.89% 1.09449 45-54 294 15.60% 1 82213 55-64 93 4 93% 2.59171 65+ 18 0.95% Descriptive statistics Min Max Mean Std.dev. -0.95197 2.59171 0.03461 0.87813 3. Gender (Real) is gender of participant: Value Meaning Cases Fraction 0 48246 Female 942 49 97% -0.48246 Male 943 50.03% Descriptive statistics Min Max Mean Std dev

-0 48246 0 48246 -0 00026 0 48246

Feature encoding

We will create separate datasets to asses predict whether an individual uses cocaine, methamphetamines, or heroin...

```
Entrée [114]: #feature engeering
              #meth
              meth data = data.copy()
              meth data['Meth User'] = meth data['Meth'].apply(lambda x: 1 if x not in [0,1] else 0)
              meth data = meth data.drop(['Meth'], axis=1)
Entrée [115]: #cocaine
              coc data = data3.copy()
              coc data['Cocaine User'] = coc data['Coke'].apply(lambda x: 1 if x not in [0,1] else 0)
              coc data = coc data.drop(['Coke'], axis=1)
Entrée [116]: #crack
              crack data = data3.copy()
              crack data['Crack User'] = crack data['Crack'].apply(lambda x: 1 if x not in [0,1] else 0)
              crack data = crack data.drop(['Crack'], axis=1)
Entrée [117]: #nicotine
              nico data = data3.copy()
              nico data['Nico User'] = nico data['Nicotine'].apply(lambda x: 1 if x not in [0,1] else 0)
              nico data = nico data.drop(['Nicotine'], axis=1)
Entrée [118]: #heroin
              hero data = data3.copv()
              hero data['Hero User'] = nico data['Heroin'].apply(lambda x: 1 if x not in [0,1] else 0)
              hero data = nico data.drop(['Heroin'], axis=1)
```

Thank you for your attention