## 13 Machine Learning II - Case Study

Telung Pan telung@mac.com

#### 監督式機器學習

- ① 蒐集訓練資料
- ②訓練分類器 (Classifier)
- ③ 執行預測



### 蒐集訓練資料

訓練資料

**Examples** 

Leabel

| 重量   | 表皮 | 顏色 | 答案 |
|------|----|----|----|
| 150g | 粗糙 | 黃色 | 柳丁 |
| 170g | 粗糙 | 棕色 | 柳丁 |
| 140g | 光滑 | 紅色 | 蘋果 |
| 130g | 光滑 | 紅色 | 蘋果 |
|      |    |    |    |

**Features** 

#### 好的 Feature



- **☐** Informative
- **□** Independent
- **□** Simple

#### 觀察資料找到好的特徵

```
import numpy as np
import matplotlib.pyplot as plt

apple = 600
orange = 600

apple_weight = 130 + 20 * np.random.randn(apple)
orange_weight = 170 + 20 * np.random.randn(orange)

plt.hist([apple_weight, orange_weight], stacked=True, color=['r','g'])
plt.show()
```



#### Avoid Useless Features



#### 轉換資料格式

```
import sklearn
features = [[140, "smooth"],[130, 'smooth'],[150,"bumpy"],[170,"bumpy"]]
labes = ["apple", "apple", "orange", "orange"]
```

□ 提供給分類器機器學習的資料必須為數字,因此將原始資料轉換成 DICT 格式,然後再使用DiuctVectorizer 進行 one-hot 類別編碼:

```
[21]: vec.get_feature_names()
[21]: ['skin=bumpy', 'skin=smooth', 'weight']
```

### 2) 訓練分類器機器

#### 決定機器學習所使用的分類器演算法



- □ Decision Tree
- □ Cluster
- □ Classification
- **□** Regression
- □ Bayes

#### Decision-tree Diagram



#### 用決策樹演算法建立分類器

```
from sklearn import tree

clf = tree.DecisionTreeClassifier()

clf = clf.fit(tranning_features, labels)
```

3

## 執行預測

#### 執行預測

```
print (clf.predict([[0, 1, 120 ]]))
['apple']
```



## Pipeline

**Machine Learning** 

#### What is Pipeline?



# 完成一個機器學習架構需要做的事情

```
[46]: #匯入 iris 資料集
from sklearn import datasets
iris = datasets.load_iris()
X = iris.data #Features
y = iris.target #Label
from sklearn.model_selection import train_test_split
#切割訓練與測試資料
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .5)
from sklearn import tree
my_classifier = tree.DecisionTreeClassifier()
my_classifier.fit(X_train, y_train)
predictions = my_classifier.predict(X_test)
```

#### print(predictions)

from sklearn.metrics import accuracy\_score
print (accuracy\_score(y\_test, predictions))



顯示決策樹針對這類資料的 預測準確性

#### 測試不同的機器學習演算法

□ 修改下列程式碼,改採 Cluster 類別的演算法:

from sklearn.neighbors import KNeighborsClassifier
my\_classifier = KNeighborsClassifier()



## 使用tensorflow協助建立機器學習架構

- ☐ <a href="https://www.tensorflow.org/overview/?hl=zh">https://www.tensorflow.org/overview/?hl=zh</a> tw
- □ 載入 MNIST dataset 然後將資料轉換成浮點數,手寫數位資料: