Photo-z comparison

Aperture Flux

- PSF: constructed by the median value of scores of point sources
- aperture flux: flux in adaptive aperture
 - min_aper: determined by FWHM of PSF
- total flux: aperture flux corrected by PSF
- Flux error: $\sigma = \sqrt{\sigma_{bkg}^2 + \frac{\tau_{aper}}{g_{ain}}}$
- Total flux error: same correction as total

- Outlier fraction: $\left|\frac{z_{phot}-z_{spec}}{1+z_{spec}}\right| > 15\%$ $\sigma_{nMAD} = median\left(\left|\frac{z_{phot}-z_{spec}}{1+z_{spec}}\right|\right)$

Photo-z with aperture flux

Photo-z with aperture flux no prior

Photo-z with Stefanon+2017 flux catalog

Photo-z with Stefanon+2017 flux catalog no prior

Outlier fraction σ_{nMAD}	With f160w prior		Without f160w prior	
	Stefanon+17	Aperture flux	Stefanon+17	Aperture flux
12FSPS	5.16%	3.89%	5.35%	3.99%
	0.0250	0.0262	0.0303	0.0288
12FSPS+6bin	6.75%	4.33%	7.32%	6.08%
	0.0336	0.0332	0.0343	0.0397
CWW+KIN	9.43%	6.66%	9.85%	7.73%
	0.0541	0.0374	0.0549	0.0416
Eazy_v1.2_dusty	4.55%	4.43%	4.64%	5.01%
(default)	0.0281	0.0243	0.0280	0.0261

Eazy photo—z from Stefanon flux catalog v.s. Stefanon photo—z catalog

Blue point means high chi-square; Red point means high q_z.

High specz objects

Photo-z with aperture flux

Photo-z with aperture flux no prior

Photo-z with Stefanon+2017 flux catalog

Photo—z with Stefanon+2017 flux catalog no prior

A example of high-specz, object

Upper panel: without prior Lower panel: with prior

Maybe we can use chi—square to choose better photo—z.

- For faint source in HST image, we need use TPHOT or other software to fit the flux;
- For bright source, aperture flux and fitting flux have no significant difference.

• For faint sources we need calculate photo—z with/without prior at the same time, to determine which one is better.