Claims reserving with R: ChainLadder-0.1.5-3 Package Vignette DRAFT

Markus Gesmann*and Wayne Zhang†

April 13, 2012

Abstract

The ChainLadder package provides various statistical methods which are typically used for the estimation of outstanding claims reserves in general insurance.

The package has implementations of the Mack-, Munich-, Bootstrap, and multi-variate chain-ladder methods, as well as the loss development factor curve fitting methods of Dave Clark and generalised linear model based reserving models.

This document is still in a draft stage. Any pointers which will help to iron out errors, clarify and make this document more helpful will be much appreciated.

^{*}markus.gesmann@gmail.com

[†]actuary_zhang@hotmail.com

Contents

1	Introduction								
	1.1	Claims reserving in insurance	4						
2	The	ChainLadder package	4						
	2.1	Motivation	4						
	2.2	Brief package overview	5						
	2.3	Installation	6						
3	Usin	Using the ChainLadder package							
	3.1	Working with triangles	7						
		3.1.1 Plotting triangles	7						
		3.1.2 Transforming triangles between cumulative and incremental representation	9						
		3.1.3 Importing triangles from external data sources	10						
		3.1.4 Coping and pasting from MS Excel	12						
	3.2	Chain-ladder methods	13						
		3.2.1 Basic idea	13						
		3.2.2 Mack chain-ladder	16						
		3.2.3 Bootstrap chain-ladder	19						
		3.2.4 Munich chain-ladder	22						
	3.3	Multivariate chain-ladder	24						
	3.4	Clark's methods	30						
		3.4.1 Clark's Cap Cod method	30						
		3.4.2 Clark's LDF method	30						
	3.5	Generalised linear model methods	30						
4	Usin	g ChainLadder with RExcel and SWord	35						
5	Furt	ner resources 3	36						
	5.1	Other insurance related R packages	36						
	5.2	Presentations	37						
	53	Further reading	37						

6	Training and consultancy	38
Re	eferences	40

1 Introduction

1.1 Claims reserving in insurance

Unlike other industries the insurance industry does not sell products as such, but promises. An insurance policy is a promise by the insurer to the policyholder to pay for future claims for an upfront received premium.

As a result insurers don't know the upfront cost of their service, but rely on historical data analysis and judgement to derive a sustainable price for their offering. In General Insurance (or Non-Life Insurance, e.g. motor, property and casualty insurance) most policies run for a period of 12 months. However, the claims payment process can take years or even decades. Therefore often not even the delivery date of their product is known to insurers.

In particular claims arising from casualty insurance can take a long time to settle. Claims can take years to materialise. A complex and costly example are the claims from asbestos liabilities. A research report by a working party of the Institute of Actuaries has estimated that the undiscounted cost of UK mesothelioma-related claims to the UK Insurance Market for the period 2009 to 2050 could be around £10bn [GBB $^+$ 09]. The cost for aAsbestos related claims in the US for the worldwide insurance industry was estimate to be around \$120bn in 2002 [Mic02].

Thus, it should come to no surprise that the biggest item on the liability side of an insurer's balance sheet is often the provision or reserves for future claims payments. Those reserves can be broken down in case reserves (or out-standings claims), which are losses already reported to the insurance company and incurred but not reported (IBNR) claims.

Over the years several methods have been developed to estimate reserves for insurance claims, see [Sch11], [PR02] for an overview. Changes in regulatory requirements, e.g. Solvency $\rm II^1$ in Europe, have fostered further research into this topic, with a focus on stochastic and statistical techniques.

2 The ChainLadder package

2.1 Motivation

The ChainLadder [GMZ12] package provides various statistical methods which are typically used for the estimation of outstanding claims reserves in general insurance. The package started out of presentations given by Markus Gesmann at the Stochastic Reserving Seminar at the Institute of Actuaries in 2007 and 2008, followed by talks at Casualty Actuarial Society (CAS) meetings joined by Dan Murphy in 2008 and Wayne Zhang in 2010.

¹See http://ec.europa.eu/internal_market/insurance/solvency/index_en.htm

Implementing reserving methods in R has several advantages. R provides:

- a rich language for statistical modelling and data manipulations allowing fast prototyping
- a very active user base, which publishes many extension
- many interfaces to data bases and other applications, such as MS Excel
- an established framework for documentation and testing
- workflows with version control systems
- code written in plain text files, allowing effective knowledge transfer
- an effective way to collaborate over the internet
- built in functions to create reproducible research reports²
- in combination with other tools such as LATEX and Sweave easy to set up automated reporting facilities
- access to academic research, which is often first implemented in R

2.2 Brief package overview

This vignette will give the reader a brief overview of the functionallity of the Chain-Ladder package. The functions are discussed and explained in more detail in the respective help files and examples.

The ChainLadder package has implementations of the Mack-, Munich- and Bootstrap chain-ladder methods [Mac93a], [Mac99], [QM04], [EV99]. Since version 0.1.3-3 it provides general multivariate chain ladder models by Wayne Zhang [Zha10]. Version 0.1.4-0 introduced new functions on loss development factor (LDF) fitting methods and Cape Cod by Daniel Murphy following a paper by David Clark [Cla03]. Version 0.1.5-0 has added loss reserving models within the generalized linear model framework following a paper by England and Verrall [EV99] implemented by Wayne Zhang.

The package also offers utility functions to convert quickly tables into triangles, triangles into tables, cumulative into incremental and incremental into cumulative triangles.

A set of demos is shipped with the packages and the list of demos is available via:

R> demo(package="ChainLadder")

and can be executed via

²For an example see the project: Formatted Actuarial Vignettes in R, http://www.favir.net/

```
R> library(ChainLadder)
R> demo("demo name")
```

Additionally the ChainLadder package comes with example files which demonstrates how to the ChainLadder functions can be embedded in Excel and Word using the statconn interface[BN07].

For more information and examples see the project web site: http://code.google.com/p/chainladder/

2.3 Installation

We can install ChainLadder in the usual way from CRAN, e.g.:

```
R> install.packages('ChainLadder')
```

For more details about installing packages see [Tea12b]. The installation was successful if the command library(ChainLadder) gives you the following message:

```
R> library(ChainLadder)
```

ChainLadder version 0.1.5-3 by:
Markus Gesmann <markus.gesmann@gmail.com>
Wayne Zhang <actuary_zhang@hotmail.com>
Daniel Murphy <danielmarkmurphy@gmail.com>

Type library(help='ChainLadder') or ?ChainLadder to see overall documentation.

Type demo(ChainLadder) to get an idea of the functionality of this package.

See demo(package='ChainLadder') for a list of more demos.

Feel free to send us an email if you would like to be kept informed of new versions or if you have any feedback, ideas, suggestions or would like to collaborate.

More information is available on the ChainLadder project web-site: http://code.google.com/p/chainladder/

To suppress this message use the statement: suppressPackageStartupMessages(library(ChainLadder))

3 Using the ChainLadder package

3.1 Working with triangles

Historical insurance data is often presented in form of a triangle structure, showing the development of claims over time for each origin period. An origin period could be the year the policy was sold, or the accident year. Of course the frequency doesn't have to be yearly, e.g. quarterly of monthly origin periods are also often used. Most reserving methods of the ChainLadder package expect triangles as input data sets with development periods along the columns and the origin period in rows. The package comes with several example triangles. The following R command will list them all:

```
R> require(ChainLadder)
R> data(package="ChainLadder")
```

Let's look at one example triangle more closely. The following triangle shows data from the Reinsurance Association of America (RAA):

```
R> ## Sample triangle
R> RAA
```

C	dev									
origin	1	2	3	4	5	6	7	8	9	10
1981	5012	8269	10907	11805	13539	16181	18009	18608	18662	18834
1982	106	4285	5396	10666	13782	15599	15496	16169	16704	NA
1983	3410	8992	13873	16141	18735	22214	22863	23466	NA	NA
1984	5655	11555	15766	21266	23425	26083	27067	NA	NA	NA
1985	1092	9565	15836	22169	25955	26180	NA	NA	NA	NA
1986	1513	6445	11702	12935	15852	NA	NA	NA	NA	NA
1987	557	4020	10946	12314	NA	NA	NA	NA	NA	NA
1988	1351	6947	13112	NA						
1989	3133	5395	NA							
1990	2063	NA								

The objective of a reserving exercise is to forecast the future claims development in the bottom right corner of the triangle and potential further developments. Eventually all claims for a given origin period wil be settled, but it is not always obvious to judge how many years or even decades it will take. We speak of long and short tail business depending on the time it takes to pay all claims.

3.1.1 Plotting triangles

The first thing you often want to do is to plot the data to get an overview. For a data set of class triangle the ChainLadder package provides default plotting

methods to give a graphical overview of the data:

R> plot(RAA)

Figure 1: Claims development chart of the RAA triangle, with one line per origin period. Output of plot(RAA)

Setting the argument lattice=TRUE will produce individual plots for each origin period³, see Figure 2.

R> plot(RAA, lattice=TRUE)

You will notice from the plots in Figures 1 and 2 that the triangle RAA presents claims developments for the origin years 1981 to 1990 in a cumulative form. For more information on the triangle plotting functions see the help pages of plot.triangle, e.g. via

R> ?plot.triangle

 $^{^3\}mbox{ChainLadder}$ uses the ${\tt lattice}$ package for plotting the development of the origin years in separate panels.

Figure 2: Claims development chart of the RAA triangle, with individual panels for each origin period. Output of plot(RAA, lattice=TRUE)

3.1.2 Transforming triangles between cumulative and incremental representation

The ChainLadder packages comes with two helper functions, cum2incr and incr2cum to transform cumulative triangles into incremental triangles and vice versa:

```
R> raa.inc <- cum2incr(RAA)
R> ## Show first origin period and it
```

R> ## Show first origin period and its incremental development
R> raa.inc[1,]

R> raa.cum <- incr2cum(raa.inc)</pre>

 $\mbox{R>}$ ## Show first origin period and its cumulative development

R> raa.cum[1,]

```
1 2 3 4 5 6 7 8 9 10
5012 8269 10907 11805 13539 16181 18009 18608 18662 18834
```

3.1.3 Importing triangles from external data sources

In most cases you want to analyse your own data, usually stored in data bases. R makes it easy to access data using SQL statements, e.g. via an ODBC connection⁴ and the ChainLadder packages includes a demo to showcase how data can be imported from a MS Access data base, see:

R> demo(DatabaseExamples)

For more details see [Tea12a].

In this section we use data stored in a CSV-file⁵ to demonstrate some typical operations you will want to carry out with data stored in data bases. In most cases your triangles will be stored in tables and not in a classical triangle shape. The ChainLadder package contains a CSV-file with sample data in a long table format. We read the data into R's memory with the read.csv command and look at the first couple of rows and summarise it:

```
R> filename <- file.path(system.file("Database",
                                        package="ChainLadder"),
                           "TestData.csv")
R> myData <- read.csv(filename)</pre>
R> head(myData)
  origin dev
               value lob
1
    1977
            1 153638 ABC
    1978
            1 178536 ABC
3
    1979
            1 210172 ABC
4
    1980
            1 211448 ABC
    1981
            1 219810 ABC
5
6
    1982
            1 205654 ABC
```

R> summary(myData)

origin			dev		value	:		lob
Min.	:	1	Min.	: 1.00	Min. :	-17657	AutoLiab	:105
1st Qu.	:	3	1st Qu.	: 2.00	1st Qu.:	10324	GeneralLiab	:105
Median	:	6	Median	: 4.00	Median :	72468	M3IR5	:105

⁴See the RODBC package

⁵Please ensure that your CSV-file is free from formatting, e.g. characters to separate units of thousands, as those columns will be read as characters or factors rather than numerical values.

```
Mean
       : 642
                Mean
                        : 4.61
                                  Mean
                                          : 176632
                                                      ABC
                                                                          : 66
3rd Qu.:1979
                3rd Qu.: 7.00
                                  3rd Qu.: 197716
                                                      CommercialAutoPaid: 55
Max.
       :1991
                Max.
                        :14.00
                                  Max.
                                          :3258646
                                                      GenIns
                                                                          : 55
                                                      (Other)
                                                                          :210
```

Let's focus on one subset of the data. We select the RAA data again:

```
R> raa <- subset(myData, lob %in% "RAA")
R> head(raa)
   origin dev value lob
67
               5012 RAA
     1981
             1
68
     1982
                 106 RAA
             1
69
     1983
             1
                3410 RAA
70
     1984
            1
                5655 RAA
71
     1985
             1
                1092 RAA
72
     1986
             1
                1513 RAA
```

To transform the long table of the RAA data into a triangle we use the function as.triangle. The arguments we have to specify are the column names of the origin and development period and further the column which contains the values:

```
R> raa.tri <- as.triangle(raa,
                           origin="origin",
                          dev="dev",
                           value="value")
R> raa.tri
      dev
origin
                                5
                                     6
                                           7
                                                      10
                        898 1734 2642 1828 599
  1981 5012 3257 2638
                                                  54 172
  1982 106 4179 1111 5270 3116 1817 -103 673
                                                 535
                                                      NA
  1983 3410 5582 4881 2268 2594 3479
                                         649 603
                                                  NA
                                                      NA
  1984 5655 5900 4211 5500 2159 2658
                                         984
                                              NA
                                                  NA
                                                      NA
  1985 1092 8473 6271 6333 3786
                                   225
                                         NA
                                              NA
                                                  NA
                                                      NA
  1986 1513 4932 5257 1233 2917
                                    NA
                                         NA
                                              NA
                                                  NA
                                                      NA
  1987 557 3463 6926 1368
                               NA
                                    NA
                                         NA
                                              NA
                                                  NA
                                                      NA
  1988 1351 5596 6165
                                    NA
                                                      NA
                         NA
                               NA
                                         NA
                                              NA
                                                  NA
  1989 3133 2262
                    NA
                         NA
                               NA
                                    NA
                                         NA
                                              NA
                                                  NA
                                                      NA
                    NA
  1990 2063
              MΔ
                         NA
                               NA
                                    NA
                                         NA
                                              NA
                                                  NA
                                                      NA
```

We note that the data has been stored as an incremental data set. As mentioned above, we could now use the function incr2cum to transform the triangle into a cumulative format.

We can transform a triangle back into a data frame structure:

R> raa.df <- as.data.frame(raa.tri, na.rm=TRUE)
R> head(raa.df)

	origin	dev	value
1981-1	1981	1	5012
1982-1	1982	1	106
1983-1	1983	1	3410
1984-1	1984	1	5655
1985-1	1985	1	1092
1986-1	1986	1	1513

This is particular helpful when you would like to store your results back into data base. Figure 3 gives you an idea of a potential data flow between R and data bases.

Figure 3: Flow chart of data between R and data bases.

3.1.4 Coping and pasting from MS Excel

Small data sets in Excel can be transfered to R backwards and forwards with via the clipboard under MS Windows.

Copying from Excel to R Select a data set in Excel and copy it into the clipboard, then go to R and type:

R> x <- read.table(file="clipboard", sep="\t", na.strings="")

Copying from R to Excel Suppose you would like to copy the RAA triangle into Excel, then the following statement would copy the data into the clipboard:

```
R> write.table(RAA, file="clipboard", sep="\t", na="")
```

Now you can paste the content into Excel. Please note that you can't copy lists structures from R to Excel.

3.2 Chain-ladder methods

The classical chain-ladder is a deterministic algorithm to forecast claims based on historical data. It assumes that the proportional developments of claims from one development period to the next are the same for all origin years.

3.2.1 Basic idea

The age-to-age link ratios are calculated as the volume weighted average development ratios of a cumulative loss development triangle from one development period to the next C_{ik} , $i, k = 1, \ldots, n$.

$$f_k = \frac{\sum_{i=1}^{n-k} C_{i,k+1}}{\sum_{i=1}^{n-k} C_{i,k}} \tag{1}$$

```
[1] 2.999 1.624 1.271 1.172 1.113 1.042 1.033 1.017 1.009
```

Often it is not suitable to assume that the oldest origin year is fully developed. A typical approach is to extrapolate the development ratios, e.g. assuming a log-linear model.

```
R> dev.period <- 1:(n-1)
R> plot(log(f-1) ~ dev.period, main="Log-linear extrapolation of age-to-age factors")
R> tail.model <- lm(log(f-1) ~ dev.period)
R> abline(tail.model)
R> co <- coef(tail.model)
R> ## extrapolate another 100 dev. period
```

```
R> tail <- \exp(\cos[1] + c((n + 1):(n + 100)) * \cos[2]) + 1
R> f.tail <- \operatorname{prod}(\operatorname{tail})
R> f.tail
```

[1] 1.005

Log-linear extrapolation of age-to-age factors

The age-to-age factors allow us to plot the expected claims development patterns.

Expected claims development pattern

The link ratios are then applied to the latest know cumulative claims amount to forecast the next development period.

```
R> f <- c(f, f.tail)
R> fullRAA <- RAA
R> for(k in 1:(n-1)){
+ fullRAA[(n-k+1):n, k+1] <- fullRAA[(n-k+1):n,k]*f[k]
+ }
R> fullRAA[,n] <- fullRAA[,n]*f[n]
R> round(fullRAA)
```

```
dev
origin
                2
                      3
                                  5
                                                                10
             8269 10907 11805 13539 16181 18009 18608 18662 18928
  1981 5012
        106
             4285
                   5396 10666 13782 15599 15496 16169 16704 16942
  1983 3410
             8992 13873 16141 18735 22214 22863 23466 23863 24204
  1984 5655 11555 15766 21266 23425 26083 27067 27967 28441 28847
  1985 1092
             9565 15836 22169 25955 26180 27278 28185 28663 29072
  1986 1513
             6445 11702 12935 15852 17649 18389 19001 19323 19599
             4020 10946 12314 14428 16064 16738 17294 17587 17838
  1987
        557
  1988 1351
             6947 13112 16664 19525 21738 22650 23403 23800 24139
  1989 3133
             5395 8759 11132 13043 14521 15130 15634 15898 16125
```

This approach is also called Loss Development Factor (LDF) method.

Since the early 1990s several papers have been published to embed the simple chain-ladder method into a statistical framework. Ben Zehnwirth and Glenn Branett point out in [Zx00] that the age-to-age link ratios can be regarded as the coefficients of a weighted linear regression through the origin, see also [Mur94].

3.2.2 Mack chain-ladder

Thomas Mack published in 1993 [Mac93b] an article which allows to estimate the standard errors of the chain-ladder forecast without assuming a distribution under certain constrain to the data.

Following Mack [Mac99] let C_{ik} denote the cumulative loss amounts of origin period (e.g. accident year) $i=1,\ldots,m$, with losses known for development period (e.g. development year) $k\leq n+1-i$.

In order to forecast the amounts C_{ik} for k>n+1-i the Mack chain-ladder-model assumes:

CL1:
$$E[F_{ik}|C_{i1}, C_{i2}, \dots, C_{ik}] = f_k$$
 with $F_{ik} = \frac{C_{i,k+1}}{C_{ik}}$ (2)

CL2:
$$Var(\frac{C_{i,k+1}}{C_{ik}}|C_{i1}, C_{i2}, \dots, C_{ik}) = \frac{\sigma_k^2}{w_{ik}C_{ik}^{\alpha}}$$
 (3)

CL3:
$$\{C_{i1}, \ldots, C_{in}\}, \{C_{j1}, \ldots, C_{jn}\},$$
 are independent for origin period $i \neq j$ (4)

with $w_{ik} \in [0;1], \alpha \in \{0,1,2\}$. If these assumptions are hold, the Mack-chain-ladder-model gives an unbiased estimator for IBNR (Incurred But Not Reported) claims.

The Mack-chain-ladder model can be regarded as a weighted linear regression through the origin for each development period: $lm(y ~x + 0, weights=w/x^(2-alpha))$, where y is the vector of claims at development period k+1 and x is the vector of claims at development period k.

R> mack <- MackChainLadder(RAA, est.sigma="Mack") R> mack

MackChainLadder(Triangle = RAA, est.sigma = "Mack")

	${\tt Latest}$	Dev.To.Date	${\tt Ultimate}$	IBNR	Mack.S.E	CV(IBNR)
1981	18,834	1.000	18,834	0	0	NaN
1982	16,704	0.991	16,858	154	206	1.339
1983	23,466	0.974	24,083	617	623	1.010
1984	27,067	0.943	28,703	1,636	747	0.457
1985	26,180	0.905	28,927	2,747	1,469	0.535
1986	15,852	0.813	19,501	3,649	2,002	0.549
1987	12,314	0.694	17,749	5,435	2,209	0.406
1988	13,112	0.546	24,019	10,907	5,358	0.491
1989	5,395	0.336	16,045	10,650	6,333	0.595
1990	2,063	0.112	18,402	16,339	24,566	1.503

Totals

Latest: 160,987.00
Dev: 0.76
Ultimate: 213,122.23
IBNR: 52,135.23
Mack S.E.: 26,909.01
CV(IBNR): 0.52

Access the loss development factors and the full triangle

R> mack\$f

[1] 2.999 1.624 1.271 1.172 1.113 1.042 1.033 1.017 1.009 1.000

R> mack\$FullTriangle

dev 5 8 10 origin 3 4 6 1981 5012 8269 10907 11805 13539 16181 18009 18608 18662 18834 1982 106 4285 5396 10666 13782 15599 15496 16169 16704 16858 1983 3410 8992 13873 16141 18735 22214 22863 23466 23863 24083 1984 5655 11555 15766 21266 23425 26083 27067 27967 28441 28703 9565 15836 22169 25955 26180 27278 28185 28663 28927 1985 1092 1986 1513 6445 11702 12935 15852 17649 18389 19001 19323 19501 1987 557 4020 10946 12314 14428 16064 16738 17294 17587 17749 1988 1351 6947 13112 16664 19525 21738 22650 23403 23800 24019 1989 3133 5395 8759 11132 13043 14521 15130 15634 15898 16045 1990 2063 6188 10046 12767 14959 16655 17353 17931 18234 18402

R> plot(mack)

R> plot(mack, lattice=TRUE)

Development period

3.2.3 Bootstrap chain-ladder

 $\mbox{R>}$ # See also the example in section 8 of England & Verrall (2002) on page 55. $\mbox{R>}$

R> B <- BootChainLadder(RAA, R=999, process.distr="gamma") R> B

BootChainLadder(Triangle = RAA, R = 999, process.distr = "gamma")

	Latest	Mean	Ultimate	Mean	IBNR	\mathtt{SD}	IBNR	IBNR	75%	IBNR	95%
1981	18,834		18,834		0		0		0		0
1982	16,704		16,820		116		662		129	1,	,254
1983	23,466		24,077		611	1	1,224	1,	106	3,	,026
1984	27,067		28,737	1	1,670	1	1,935	2	662	5,	,067
1985	26,180		29,061	2	2,881	2	2,385	4	099	7,	,161
1986	15,852		19,573	3	3,721	2	2,567	5	102	8,	,587
1987	12,314		17,829	5	5,515	3	3,080	7	404	11,	,256
1988	13,112		24,462	11	1,350	5	5,194	14	370	21,	,283
1989	5,395		16,472	11	1,077	6	3,132	14	933	22,	,293
1990	2,063		19,707	17	7,644	13	3,159	25	222	41,	,327

Totals
Latest: 160,987
Mean Ultimate: 215,574
Mean IBNR: 54,587
SD IBNR: 18,395
Total IBNR 75%: 64,929
Total IBNR 95%: 87,655

R> plot(B)

R> # Compare to MackChainLadder

R> MackChainLadder(RAA)

MackChainLadder(Triangle = RAA)

	${\tt Latest}$	Dev.To.Date	${\tt Ultimate}$	IBNR	Mack.S.E	CV(IBNR)
1981	18,834	1.000	18,834	0	0	NaN
1982	16,704	0.991	16,858	154	143	0.928
1983	23,466	0.974	24,083	617	592	0.959
1984	27,067	0.943	28,703	1,636	713	0.436
1985	26,180	0.905	28,927	2,747	1,452	0.529
1986	15,852	0.813	19,501	3,649	1,995	0.547
1987	12,314	0.694	17,749	5,435	2,204	0.405
1988	13,112	0.546	24,019	10,907	5,354	0.491
1989	5,395	0.336	16,045	10,650	6,332	0.595
1990	2,063	0.112	18,402	16,339	24,566	1.503

Totals

Latest: 160,987.00
Dev: 0.76
Ultimate: 213,122.23
IBNR: 52,135.23
Mack S.E.: 26,880.74
CV(IBNR): 0.52

R> quantile(B, c(0.75, 0.95, 0.99, 0.995))

\$ByOrigin

	0			
	IBNR 75%	IBNR 95%	IBNR 99%	IBNR 99.5%
1981	0.0	0	0	0
1982	128.8	1254	2810	3481
1983	1105.6	3026	4600	5354
1984	2661.8	5067	7804	8905
1985	4098.9	7161	10165	11113
1986	5101.8	8587	11541	12452
1987	7404.0	11256	14952	16579

```
1988 14369.7
                 21283
                           26130
                                      28868
1989 14932.9
                 22293
                           27964
                                      29910
1990 25221.5
                           56069
                 41327
                                      57605
$Totals
            {\tt Totals}
IBNR 75%:
             64929
IBNR 95%:
             87655
IBNR 99%:
            105968
IBNR 99.5%: 117800
R> # fit a distribution to the IBNR
R> library(MASS)
R> plot(ecdf(B$IBNR.Totals))
R> # fit a log-normal distribution
R> fit <- fitdistr(B$IBNR.Totals[B$IBNR.Totals>0], "lognormal")
R> fit
    {\tt meanlog}
                 sdlog
 10.847099
               0.360747
 ( 0.011414) ( 0.008071)
R> curve(plnorm(x,fit$estimate["meanlog"], fit$estimate["sdlog"]),
        col="red", add=TRUE)
```


3.2.4 Munich chain-ladder

R> MCLpaid

	dev						
origin	1	2	3	4	5	6	7
1	576	1804	1970	2024	2074	2102	2131
2	866	1948	2162	2232	2284	2348	NA
3	1412	3758	4252	4416	4494	NA	NA
4	2286	5292	5724	5850	NA	NA	NA
5	1868	3778	4648	NA	NA	NA	NA
6	1442	4010	NA	NA	NA	NA	NA
7	2044	NA	NA	NA	NA	NA	NA

R> MCLincurred

dev
origin 1 2 3 4 5 6 7
1 978 2104 2134 2144 2174 2182 2174
2 1844 2552 2466 2480 2508 2454 NA

```
3 2904 4354 4698 4600 4644
                                    NA
                                         NA
     4 3502 5958 6070 6142
                                    NA
                                         NA
     5 2812 4882 4852
                              NA
                                    NA
                                         NA
     6 2642 4406
                    NA
                         NA
                              NA
                                    NA
                                         NA
     7 5022
              NA
                    NA
                         NA
                              NA
                                    NA
                                         NA
R> op <- par(mfrow=c(1,2))</pre>
R> plot(MCLpaid)
R> plot(MCLincurred)
R> par(op)
R> # Following the example in Quarg's (2004) paper:
R> MCL <- MunichChainLadder(MCLpaid, MCLincurred, est.sigmaP=0.1, est.sigmaI=0.1)
R> MCL
MunichChainLadder(Paid = MCLpaid, Incurred = MCLincurred, est.sigmaP = 0.1,
    est.sigmaI = 0.1)
 Latest Paid Latest Incurred Latest P/I Ratio Ult. Paid Ult. Incurred
                         2,174
                                           0.980
                                                      2,131
1
        2,131
                                                                     2,174
2
        2,348
                         2,454
                                           0.957
                                                      2,383
                                                                     2,444
3
        4,494
                         4,644
                                           0.968
                                                      4,597
                                                                     4,629
4
        5,850
                         6,142
                                           0.952
                                                      6,119
                                                                     6,176
5
                                           0.958
        4,648
                         4,852
                                                      4,937
                                                                     4,950
6
        4,010
                                           0.910
                                                      4,656
                         4,406
                                                                     4,665
7
        2,044
                         5,022
                                           0.407
                                                      7,549
                                                                    7,650
 Ult. P/I Ratio
1
           0.980
2
           0.975
3
           0.993
4
           0.991
           0.997
5
6
           0.998
7
           0.987
Totals
            Paid Incurred P/I Ratio
          25,525
Latest:
                    29,694
                                0.86
```

R> plot(MCL)

Ultimate: 32,371

0.99

32,688

3.3 Multivariate chain-ladder

The Mack chain ladder technique can be generalized to the multivariate situation where multiple reserving triangles are modeled simultaneuously. The advantage of the multivariate modeling is that correlations among different triangles can be modeled, which will lead to more accurate uncertainty assessment. There has been considerable development in this area, but most of the chain-ladder-based models can be summarized as sequential seemingly unrelated regressions (see Zhang 2010).

Denote $Y_{i,k}=(Y_{i,k}^{(1)},\cdots,Y_{i,k}^{(N)})$ as an $N\times 1$ vector of cumulative losses at accident year i and development year k where (n) refers to the n-th triangle. Zhang (2010) specifies the model in development period k as:

$$Y_{i,k+1} = A_k + B_k \cdot Y_{i,k} + \epsilon_{i,k},$$
 (5)

where A_k is a column of intercepts and B_k is the a development matrix. Assump-

tions for this model are:

$$E(\epsilon_{i,k}|Y_{i,1},\cdots,Y_{i,I+1-k}) = 0.$$
 (6)

$$cov(\epsilon_{i,k}|Y_{i,1},\cdots,Y_{i,I+1-k}) = D(Y_{i,k}^{-\delta/2})\Sigma_k D(Y_{i,k}^{-\delta/2}).$$
 (7)

(9)

$$\epsilon_{i,k}$$
 are symmetrically distributed.

In the above, D is the diagonal opterator, and δ is a known positive value that controls how the variance depends on the mean (as weights).

The simplest case where $A_k=0$ and B_k are diagonal is a naive generalizatio of the chain ladder, often referred to as the multivariate chain ladder (see Pröhl and Schmidt 2005). The following shows an application of this case. The following is a data set used in Merz and Wüthrich (2008):

```
R> data(liab)
R> # this is a list of two triangles
R> length(liab)
```

[1] 2

R> dim(liab[[1]])

[1] 14 14

If we specify fit.method = "OLS", the ordinary lease squares will be used in estimating the development factors. As a result, the multivariate model is equivalent to running two Mack chain ladders separately.

```
R> fit1 <- MultiChainLadder(liab, fit.method = "OLS")
R> (s1 <- summary(fit1))</pre>
```

\$`Summary Statistics for Triangle 1`

	Latest Dev	7.To.Date	Ultimate	IBNR	S.E	CV
1	549,589	1.0000	549,589	0	0	0.0000
2	562,795	0.9966	564,740	1,945	1,743	0.8961
3	602,710	0.9911	608,104	5,394	7,354	1.3633
4	784,632	0.9867	795,248	10,616	9,042	0.8518
5	768,373	0.9806	783,593	15,220	11,181	0.7346
6	811,100	0.9690	837,088	25,988	16,781	0.6457
7	896,728	0.9551	938,861	42,133	19,690	0.4673
8	1,022,241	0.9308	1,098,200	75,959	23,344	0.3073
9	1,019,303	0.8826	1,154,902	135,599	29,585	0.2182
10	1,141,750	0.7976	1,431,409	289,659	37,492	0.1294

```
11
       1,174,196
                       0.6766
                                1,735,433
                                             561,237
                                                       57,623 0.1027
12
       1,032,684
                       0.4998
                                2,065,991 1,033,307
                                                       89,488 0.0866
13
         772,971
                       0.2905
                                2,660,561 1,887,590 193,210 0.1024
14
         204,325
                       0.0898
                                2,274,941 2,070,616 282,960 0.1367
Total 11,343,397
                       0.6482 17,498,658 6,155,261 427,289 0.0694
$`Summary Statistics for Triangle 2`
         Latest Dev.To.Date
                                               IBNR
                                                         S.E
                                                                   CV
                                Ultimate
1
                                                              0.0000
        391,428
                       1.000
                                 391,428
                                                   0
                                                           0
2
        483,974
                       1.000
                                 483,839
                                               -135
                                                         604 -4.4825
                                                       1,436 -1.9416
3
        540,742
                       1.001
                                 540,002
                                               -740
4
                                              1,211
        485,016
                       0.998
                                 486,227
                                                       2,912
                                                              2.4043
5
        507,752
                       0.998
                                 508,744
                                                992
                                                       3,202
                                                              3.2284
6
        549,693
                       0.994
                                 552,825
                                              3,132
                                                       5,418
                                                              1.7298
                                                              1.6993
7
        635,452
                       0.994
                                 639,113
                                              3,661
                                                       6,221
8
        648,365
                       0.985
                                 658,410
                                             10,045
                                                       7,483
                                                              0.7449
                                             21,567
9
        663,152
                       0.969
                                 684,719
                                                       9,123
                                                              0.4230
10
        790,901
                       0.935
                                 845,543
                                             54,642
                                                      16,191
                                                              0.2963
                       0.877
                                            118,575
                                                      26,742
                                                              0.2255
11
        844,159
                                 962,734
12
        915,109
                       0.783
                               1,169,260
                                            254,151
                                                      36,736
                                                              0.1445
13
                                            565,448
                                                      53,398
        909,066
                       0.617
                               1,474,514
                                                              0.0944
                        0.277
                               1,426,060 1,031,063 126,613
14
        394,997
                                                              0.1228
Total 8,759,806
                       0.809 10,823,418 2,063,612 162,872
                                                              0.0789
$`Summary Statistics for Triangle 1+2`
          Latest Dev.To.Date
                                 Ultimate
                                                IBNR
                                                          S.E
                                                                   CV
1
         941,017
                         1.000
                                  941,017
                                                            0.0000
                                                   0
2
       1,046,769
                        0.998
                                1,048,579
                                               1,810
                                                        1,845 1.0190
3
                                1,148,107
       1,143,452
                        0.996
                                               4,655
                                                        7,493 1.6097
4
       1,269,648
                        0.991
                                1,281,475
                                              11,827
                                                        9,499 0.8032
5
       1,276,125
                        0.988
                                1,292,337
                                              16,212
                                                       11,631 0.7174
                                              29,120
                                                       17,634 0.6056
6
       1,360,793
                        0.979
                                1,389,913
7
       1,532,180
                        0.971
                                1,577,973
                                              45,793
                                                       20,650 0.4509
8
       1,670,606
                        0.951
                                1,756,610
                                              86,004
                                                       24,514 0.2850
9
       1,682,455
                        0.915
                                1,839,620
                                             157,165
                                                       30,960 0.1970
10
       1,932,651
                        0.849
                                2,276,952
                                             344,301
                                                       40,838 0.1186
11
       2,018,355
                        0.748
                                2,698,167
                                             679,812
                                                       63,526 0.0934
12
       1,947,793
                                3,235,251 1,287,458
                                                       96,735 0.0751
                        0.602
13
                                4,135,075 2,453,038 200,453 0.0817
       1,682,037
                        0.407
```

By default, the summary produces reserve statistics for all individual triangles, as well as for the portfolio that is assumed to be the sum of the two triangles. This behavior can be changed by supplying the portfolio argument. See the documentation for details.

0.162

3,701,001 3,101,679 309,995 0.0999

0.710 28,322,077 8,218,874 457,278 0.0556

14

599,322

Total 20,103,203

We can verify if this is indeed the same as the univariate Mack chain ladder:

R> MackChainLadder(liab[[1]], est.sigma = "Mack")

MackChainLadder(Triangle = liab[[1]], est.sigma = "Mack")

	Latest	Dev.To.Date	Ultimate	IBNR	Mack.S.E	CV(IBNR)
1	549,589	1.0000	549,589	0	0	NaN
2	562,795	0.9966	564,740	1,945	1,743	0.8961
3	602,710	0.9911	608,104	5,394	7,354	1.3633
4	784,632	0.9867	795,248	10,616	9,042	0.8518
5	768,373	0.9806	783,593	15,220	11,181	0.7346
6	811,100	0.9690	837,088	25,988	16,781	0.6457
7	896,728	0.9551	938,861	42,133	19,690	0.4673
8	1,022,241	0.9308	1,098,200	75,959	23,344	0.3073
9	1,019,303	0.8826	1,154,902	135,599	29,585	0.2182
10	1,141,750	0.7976	1,431,409	289,659	37,492	0.1294
11	1,174,196	0.6766	1,735,433	561,237	57,623	0.1027
12	1,032,684	0.4998	2,065,991	1,033,307	89,488	0.0866
13	772,971	0.2905	2,660,561	1,887,590	193,210	0.1024
14	204,325	0.0898	2,274,941	2,070,616	282,960	0.1367

Totals

Latest: 11,343,397.00
Dev: 0.65
Ultimate: 17,498,658.29
IBNR: 6,155,261.29
Mack S.E.: 427,288,99
CV(IBNR): 0.07

The model.summary slot in the summary stores the fitted parameters in the regression fit for each development period:

R> names(s1)

```
[1] "Triangles"
                       "FullTriangles"
                                        "S.E.Full"
                                                          "S.E.Est.Full"
[5] "S.E.Proc.Full"
                       "Ultimate"
                                        "IBNR"
                                                          "S.E.Ult"
[9] "S.E.Est.Ult"
                      "S.E.Proc.Ult"
                                        "report.summary" "coefficients"
[13] "coefCov"
                       "residCov"
                                        "rstandard"
                                                          "fitted.values"
[17] "residCor"
                       "model.summary"
                                        "portfolio"
```

R> head(s1\$model.summary)

```
Estimate Std. Error t value Pr(>|t|) dev eq1_x[[1]] 3.235 0.113591 28.48 2.182e-12 1
```

```
eq2_x[[2]]
              2.226
                      0.065316
                                 34.08 2.593e-13
eq1_x[[1]]
              1.720
                      0.043880
                                 39.21 3.599e-13
                                                   2
eq2_x[[2]]
              1.269
                      0.011148 113.87 0.000e+00
eq1_x[[1]]
              1.354
                                 81.92 1.776e-15
                                                   3
                      0.016523
eq2_x[[2]]
              1.120
                      0.007803 143.59 0.000e+00
```

To allow correlations to be incorporated, we employ the seemingly unrelated regressions that simultaneously model the two triangles. We now specify fit.method = "SUR":

R> fit2 <- MultiChainLadder(liab, fit.method = "SUR")
R> (s2 <- summary(fit2))</pre>

\$`Summary Statistics for Triangle 1`

	Latest	${\tt Dev.To.Date}$	Ultimate	IBNR	S.E	CV
1	549,589	1.0000	549,589	0	0	0.0000
2	562,795	0.9966	564,740	1,945	1,743	0.8961
3	602,710	0.9913	608,013	5,303	6,720	1.2673
4	784,632	0.9868	795,128	10,496	8,154	0.7769
5	768,373	0.9805	783,649	15,276	10,497	0.6871
6	811,100	0.9688	837,214	26,114	16,269	0.6230
7	896,728	0.9544	939,595	42,867	19,154	0.4468
8	1,022,241	0.9301	1,099,087	76,846	22,726	0.2957
9	1,019,303	0.8818	1,155,890	136,587	29,055	0.2127
10	1,141,750	0.7970	1,432,561	290,811	36,849	0.1267
11	1,174,196	0.6761	1,736,765	562,569	57,024	0.1014
12	1,032,684	0.4999	2,065,835	1,033,151	88,941	0.0861
13	772,971	0.2907	2,658,834	1,885,863	192,733	0.1022
14	204,325	0.0901	2,268,006	2,063,681	282,477	0.1369
Total	11,343,397	0.6484	17,494,907	6,151,510	419,293	0.0682

\$`Summary Statistics for Triangle 2`

	Latest De	v.To.Date	Ultimate	IBNR	S.E	CV
1	391,428	1.000	391,428	0	0	0.0000
2	483,974	1.000	483,839	-135	604	-4.4846
3	540,742	1.001	540,020	-722	1,324	-1.8323
4	485,016	0.998	486,242	1,226	2,868	2.3394
5	507,752	0.998	508,744	992	3,158	3.1844
6	549,693	0.994	552,877	3,184	5,388	1.6923
7	635,452	0.994	639,272	3,820	6,187	1.6193
8	648,365	0.985	658,591	10,226	7,454	0.7289
9	663,152	0.968	684,957	21,805	9,097	0.4172
10	790,901	0.935	846,012	55,111	16,173	0.2935
11	844,159	0.876	963,052	118,893	26,734	0.2249
12	915,109	0.783	1,169,300	254,191	36,722	0.1445

```
13
        909,066
                       0.617
                             1,473,826
                                           564,760 53,370
                                                            0.0945
14
                       0.278 1,423,182 1,028,185 126,538
        394,997
                                                            0.1231
Total 8,759,806
                       0.809 10,821,341 2,061,535 162,464
$`Summary Statistics for Triangle 1+2`
          Latest Dev.To.Date
                                Ultimate
                                               IBNR
                                                        S.E
                                                                 CV
                                                           0 0.0000
1
         941,017
                        1.000
                                 941,017
                                                  0
2
       1,046,769
                        0.998
                               1,048,579
                                              1,810
                                                      1,851 1.0221
3
                                              4,580
                                                      7,859 1.7158
       1,143,452
                        0.996
                               1,148,032
4
                        0.991
                               1,281,370
                                             11,722
                                                      9,545 0.8143
       1,269,648
5
       1,276,125
                        0.987
                               1,292,393
                                             16,268
                                                     12,133 0.7458
6
                                             29,298
       1,360,793
                        0.979
                               1,390,091
                                                     18,913 0.6455
7
       1,532,180
                        0.970
                              1,578,868
                                             46,688
                                                     22,448 0.4808
                                             87,073
8
       1,670,606
                        0.951
                               1,757,679
                                                     25,913 0.2976
                                            158,391
9
       1,682,455
                        0.914
                               1,840,846
                                                     33,294 0.2102
10
       1,932,651
                        0.848
                               2,278,572
                                            345,921
                                                     45,253 0.1308
11
       2,018,355
                        0.748
                               2,699,816
                                            681,461
                                                     72,050 0.1057
12
       1,947,793
                        0.602
                               3,235,135 1,287,342 112,187 0.0871
13
                               4,132,660 2,450,623 222,927 0.0910
       1,682,037
                        0.407
```

We see that the portfolio prediction error is inflated to 500,607 from 457,278 due to the positive correlations between the two triangles. The estimated correlation for each development period can be retrieved through the residCor function:

R> unlist(residCor(fit2))

599,322

Total 20,103,203

14

```
[1] 0.247283 0.495379 0.682483 0.446450 0.486991 0.450551 -0.171639 [8] 0.804882 0.336744 0.687983 -0.003797 1.000000 0.020989
```

0.162 3,691,189 3,091,867 342,127 0.1107

0.710 28,316,248 8,213,045 500,607 0.0610

Similarly, most methods that work for linear models such as coef, fitted, resid and so on will also work. For example, we can retrieve the estimated development factors for the first two periods as

The plot function can also be used to generate various summary and diagonostic figures:

We use the which.triangle to suppress the plot for the portfolios, and use the which.plot to select the desired types of plots. See the documentation for possible values for these two arguments.

3.4 Clark's methods

3.4.1 Clark's Cap Cod method

3.4.2 Clark's LDF method

3.5 Generalised linear model methods

Recent years have also seen growing interest in using generalised linear models [GLM] for insurance loss reserving. The use of GLM in insurance loss reserving has many compelling aspects, e.g.,

- when over-dispersed Poisson model is used, it reproduces the estimates from Chain Ladder;
- it provides a more coherent modeling framework than the Mack method;
- all the relevant established statistical theory can be directly applied to perform hypothesis testing and diagnostic checking;

The glmReserve function takes an insurance loss triangle, converts it to incremental losses internally if necessary, transforms it to the long format (see as.data.frame) and fits the resulting loss data with a generalised linear model where the mean structure includes both the accident year and the development lag effects. The function also provides both analytical and bootstrapping method to compute the associated prediction errors. The bootstrapping approach also simulates the full predictive distribution, based on which the user can compute other uncertainty measures such as predictive intervals.

Only the Tweedie family of distributions are allowed, that is, the exponential family that admits a power variance function $V(\mu)=\mu^p$. The variance power p is specified in the var.power argument, and controls the type of the distribution. When the Tweedie compound Poisson distribution 1 is to be used, the user has the option to specify var.power = NULL, where the variance power <math>p will be estimated from the data using the cplm package.

For example, the following fits the over-dispersed Poisson model and spells out the estimated reserve information:

R> # load data
R> data(GenIns)

```
R> parold <- par(mfrow = c(4, 2), mar = c(4, 4, 2, 1),
+ mgp = c(1.3, 0.3, 0), tck = -0.02)
R> plot(fit2, which.triangle = 1:2, which.plot = c(1, 3, 4), legend.cex = 0.8)
R> par(parold)
```



```
R> GenIns <- GenIns / 1000
```

- R> # fit Poisson GLM
- R> (fit1 <- glmReserve(GenIns))</pre>

	Latest	Dev.To.Date	Ultimate	IBNR	S.E	CV
2	5339	0.98252	5434	95	110.1	1.1589
3	4909	0.91263	5379	470	216.0	0.4597
4	4588	0.86599	5298	710	260.9	0.3674
5	3873	0.79725	4858	985	303.6	0.3082
6	3692	0.72235	5111	1419	375.0	0.2643
7	3483	0.61527	5661	2178	495.4	0.2274
8	2864	0.42221	6784	3920	790.0	0.2015
9	1363	0.24162	5642	4279	1046.5	0.2446
10	344	0.06922	4970	4626	1980.1	0.4280
total	30457	0.61982	49138	18681	2945.7	0.1577

We can also extract the underlying GLM model by specify type = "model" in the summary function:

```
R> summary(fit1, type = "model")
```

Call:

glm(formula = value ~ factor(origin) + factor(dev), family = fam,
 data = ldaFit, offset = offset)

Deviance Residuals:

Min 1Q Median 3Q Max -14.701 -3.913 -0.688 3.675 15.633

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	5.59865	0.17292	32.38	< 2e-16
factor(origin)2	0.33127	0.15354	2.16	0.0377
factor(origin)3	0.32112	0.15772	2.04	0.0492
factor(origin)4	0.30596	0.16074	1.90	0.0650
factor(origin)5	0.21932	0.16797	1.31	0.1999
factor(origin)6	0.27008	0.17076	1.58	0.1225
factor(origin)7	0.37221	0.17445	2.13	0.0398
factor(origin)8	0.55333	0.18653	2.97	0.0053
factor(origin)9	0.36893	0.23918	1.54	0.1317
<pre>factor(origin)10</pre>	0.24203	0.42756	0.57	0.5749
factor(dev)2	0.91253	0.14885	6.13	4.7e-07
factor(dev)3	0.95883	0.15257	6.28	2.9e-07
factor(dev)4	1.02600	0.15688	6.54	1.3e-07
factor(dev)5	0.43528	0.18391	2.37	0.0234

```
factor(dev)6
                  0.08006
                             0.21477
                                        0.37
                                                0.7115
factor(dev)7
                 -0.00638
                             0.23829
                                        -0.03
                                                0.9788
factor(dev)8
                 -0.39445
                             0.31029
                                        -1.27
                                                0.2118
factor(dev)9
                  0.00938
                                                0.9768
                             0.32025
                                        0.03
factor(dev)10
                 -1.37991
                             0.89669
                                        -1.54
                                                0.1326
```

(Dispersion parameter for Tweedie family taken to be 52.6)

Null deviance: 10699 on 54 degrees of freedom Residual deviance: 1903 on 36 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 4

Similarly, we can fit the Gamma and a compound Poisson GLM reserving model by changing the var.power argument:

R> # Gamma GLM
R> (fit2 <- glmReserve(GenIns, var.power = 2))</pre>

	Latest	Dev.To.Date	Ultimate	IBNR	S.E	CV
2	5339	0.98288	5432	93	45.17	0.4857
3	4909	0.91655	5356	447	160.56	0.3592
4	4588	0.88248	5199	611	177.62	0.2907
5	3873	0.79611	4865	992	254.47	0.2565
6	3692	0.71757	5145	1453	351.33	0.2418
7	3483	0.61440	5669	2186	526.29	0.2408
8	2864	0.43870	6529	3665	941.32	0.2568
9	1363	0.24854	5485	4122	1175.95	0.2853
10	344	0.07078	4860	4516	1667.39	0.3692
total	30457	0.62742	48543	18086	2702.71	0.1494

R> # compound Poisson GLM (variance function estimated from the data):
R> (fit3 <- glmReserve(GenIns, var.power = NULL))</pre>

	Latest	Dev.To.Date	${\tt Ultimate}$	IBNR	S.E	CV
2	5339	0.98270	5433	94	91.6	0.9745
3	4909	0.91331	5375	466	186.5	0.4003
4	4588	0.86780	5287	699	223.7	0.3201
5	3873	0.79709	4859	986	264.8	0.2685
6	3692	0.72164	5116	1424	333.2	0.2340
7	3483	0.61505	5663	2180	452.9	0.2078
8	2864	0.42365	6761	3897	754.6	0.1936
9	1363	0.24231	5626	4263	1019.5	0.2391
10	344	0.06943	4955	4611	1911.0	0.4144
total	30457	0.62058	49078	18621	2831.5	0.1521

By default, the formulaic approach is used to compute the prediction errors. We can also carry out bootstrapping simulations by specifying mse.method = "bootstrap" (note that this argument supports partial match):

```
R> set.seed(11)
R> (fit5 <- glmReserve(GenIns, mse.method = "boot"))</pre>
```

	Latest	Dev.To.Date	Ultimate	IBNR	S.E	CV
2	5339	0.98252	5434	95	105.4	1.1098
3	4909	0.91263	5379	470	216.1	0.4597
4	4588	0.86599	5298	710	266.6	0.3755
5	3873	0.79725	4858	985	307.5	0.3122
6	3692	0.72235	5111	1419	376.3	0.2652
7	3483	0.61527	5661	2178	496.1	0.2278
8	2864	0.42221	6784	3920	812.9	0.2074
9	1363	0.24162	5642	4279	1050.9	0.2456
10	344	0.06922	4970	4626	2004.1	0.4332
total	30457	0.61982	49138	18681	2959.4	0.1584

When bootstrapping is used, the resulting object has three additional components - "sims.par", "sims.reserve.mean", and "sims.reserve.pred" that store the simulated parameters, mean values and predicted values of the reserves for each year, respectively.

R> names(fit5)

We can thus compute the quantiles of the predictions based on the simulated samples in the "sims.reserve.pred" element as:

```
R> pr <- as.data.frame(fit5$sims.reserve.pred)</pre>
R > qv < -c(0.025, 0.25, 0.5, 0.75, 0.975)
R> res.q <- t(apply(pr, 2, quantile, qv))</pre>
R> print(format(round(res.q), big.mark = ","), quote = FALSE)
   2.5% 25%
                50%
                      75%
                            97.5%
2
       0
            34
                   82
                        170
                              376
3
     136
           337
                  470
                        615
                               987
4
     279
           556
                 719
                        917 1,302
           797
                  972 1,197 1,674
5
     506
     774 1,159 1,404 1,666 2,203
```

```
7 1,329 1,877 2,210 2,547 3,303
8 2,523 3,463 3,991 4,572 5,713
9 2,364 3,593 4,310 5,013 6,531
10 913 3,354 4,487 5,774 9,165
```

The full predictive distribution of the simulated reserves for each year can be visualized easily:

4 Using ChainLadder with RExcel and SWord

The spreadsheet is located in the Excel folder of the package. The R command

```
R> system.file("Excel", package="ChainLadder")
```

will tell you the exact path to the directory. To use the spreadsheet you will need the RExcel-Add-in [BN07]. The package also provides an example SWord file, demonstrating how the functions of the package can be integrated into a MS Word file via SWord [BN07]. Again you find the Word file via the command:

```
R> system.file("SWord", package="ChainLadder")
```

The package comes with several demos to provide you with an overview of the package functionality, see

R> demo(package="ChainLadder")

5 Further resources

Other useful documents and resources to get started with R in the context of actuarial work:

- Introduction to R for Actuaries [DS06].
- An Actuarial Toolkit [MSH+06].
- The book Modern Actuarial Risk Theory Using R [KGDD01]
- Actuar package vignettes: http://cran.r-project.org/web/packages/actuar/index.html
- Mailing list R-SIG-insurance⁶: Special Interest Group on using R in actuarial science and insurance

5.1 Other insurance related R packages

Below is a list of further R packages in the context of insurance. The list is by nomeans complete, and the CRAN Task Views 'Emperical Finance' and Probability Distributions will provide links to additional resources. Please feel free to contact us with items to be added to the list.

- cplm: Monte Carlo EM algorithms and Bayesian methods for fitting Tweedie compound Poisson linear models [Zha11].
- lossDev: A Bayesian time series loss development model. Features include skewed-t distribution with time-varying scale parameter, Reversible Jump MCMC for determining the functional form of the consumption path, and a structural break in this path [LS11].

 $^{^{6} \}verb|https://stat.ethz.ch/mailman/listinfo/r-sig-insurance|$

- favir: Formatted Actuarial Vignettes in R. FAViR lowers the learning curve of the R environment. It is a series of peer-reviewed Sweave papers that use a consistent style [Esc11].
- actuar: Loss distributions modelling, risk theory (including ruin theory), simulation of compound hierarchical models and credibility theory [DGP08].
- fitdistrplus: Help to fit of a parametric distribution to non-censored or censored data [DMPDD10].
- mondate: R packackge to keep track of dates in terms of months [Mur11].
- lifecontingencies: Package to perform actuarial evaluation of life contingencies [Spe11].

5.2 Presentations

Over the years the contributors of the ChainLadder package have given numerous presentations and most of those are still available online:

- Bayesian Hierarchical Models in Property-Casualty Insurance, Wayne Zhang, 2011
- ChainLadder at the Predictive Modelling Seminar, Institute of Actuaries, November 2010, Markus Gesmann, 2011
- Reserve variability calculations, CAS spring meeting, San Diego, Jimmy Curcio Jr., Markus Gesmann and Wayne Zhang, 2010
- The ChainLadder package, working with databases and MS Office interfaces, presentation at the "R you ready?" workshop, Institute of Actuaries, Markus Gesmann, 2009
- The ChainLadder package, London R user group meeting, Markus Gesmann, 2009
- Introduction to R, Loss Reserving with R, Stochastic Reserving and Modelling Seminar, Institute of Actuaries, Markus Gesmann, 2008
- Loss Reserving with R, CAS meeting, Vincent Goulet, Markus Gesmann and Daniel Murphy, 2008
- The ChainLadder package R-user conference Dortmund, Markus Gesmann, 2008

5.3 Further reading

Other papers and presentation which cited ChainLadder: [Orr07], [Nic09], [Zha10], [MNNV10], [Sch10], [MNV10], [Esc11], [Spe11]

6 Training and consultancy

Please contact us if you would like to discuss tailored training or consultancy.

References

- [BN07] Thomas Baier and Erich Neuwirth. Excel :: Com :: R. *Computational Statistics*, 22(1), April 2007. Physica Verlag.
- [Cla03] David R. Clark. LDF Curve-Fitting and Stochastic Reserving: A Maximum Likelihood Approach. Casualty Actuarial Society, 2003. CAS Fall Forum.
- [DGP08] C Dutang, V. Goulet, and M. Pigeon. actuar: An R package for actuarial science. *Journal of Statistical Software*, 25(7), 2008.
- [DMPDD10] Marie Laure Delignette-Muller, Regis Pouillot, Jean-Baptiste Denis, and Christophe Dutang. *fitdistrplus: help to fit of a parametric distribution to non-censored or censored data*, 2010. R package version 0.1-3.
- [DS06] Nigel De Silva. An introduction to r: Examples for actuaries. http://toolkit.pbwiki.com/RToolkit, 2006.
- [Esc11] Benedict Escoto. *favir: Formatted Actuarial Vignettes in R*, 0.5-1 edition, January 2011.
- [EV99] Peter England and Richard Verrall. Analytic and bootstrap estimates of prediction errors in claims reserving. *Mathematics and Economics*, Vol. 25:281 293, 1999.
- [GBB+09] Brian Gravelsons, Matthew Ball, Dan Beard, Robert Brooks, Naomi Couchman, Brian Gravelsons, Charlie Kefford, Darren Michaels, Patrick Nolan, Gregory Overton, Stephen Robertson-Dunn, Emiliano Ruffini, Graham Sandhouse, Jerome Schilling, Dan Sykes, Peter Taylor, Andy Whiting, Matthew Wilde, and John Wilson. B12: Uk asbestos working party update 2009. http://www.actuaries.org.uk/research-and-resources/documents/b12-uk-asbestos-working-party-update-2009-5mb, October 2009. Presented at the General Insurance Convention.
- [GMZ12] Markus Gesmann, Dan Murphy, and Wayne Zhang. *ChainLadder: Mack-, Bootstrap and Munich-chain-ladder methods for insurance claims reserving*, 2012. R package version 0.1.5-2.
- [KGDD01] R. Kaas, M. Goovaerts, J. Dhaene, and M. Denuit. *Modern actuarial risk theory*. Kluwer Academic Publishers, Dordrecht, 2001.

- [LS11] Christopher W. Laws and Frank A. Schmid. *lossDev: Robust Loss Development Using MCMC*, 2011. R package version 3.0.0-1.
- [Mac93a] Thomas Mack. Distribution-free calculation of the standard error of chain ladder reserve estimates. *Astin Bulletin*, Vol. 23:213 25, 1993.
- [Mac93b] Thomas Mack. Distribution-free calculation of the standard error of chain ladder reserve estimates. *ASTIN Bulletin*, 23:213–225, 1993.
- [Mac99] Thomas Mack. The standard error of chain ladder reserve estimates: Recursive calculation and inclusion of a tail factor. *Astin Bulletin*, Vol. 29(2):361 266, 1999.
- [Mic02] APH: Darren Michaels. the carnal how love and Lloyd's silicone implants nearly destroyed (slides). http://www.actuaries.org.uk/research-andresources/documents/aph-how-love-carnal-and-siliconeimplants-nearly-destroyed-lloyds-s, December 2002. sented at the Younger Members' Convention.
- [MNNV10] Maria Dolores Martinez Miranda, Bent Nielsen, Jens Perch Nielsen, and Richard Verrall. *Cash flow simulation for a model of outstanding liabilities based on claim amounts and claim numbers.* CASS, September 2010.
- [MNV10] Maria Dolores Martinez Miranda, Jens Perch Nielsen, and Richard Verrall. *Double Chain Ladder*. ASTIN, Colloqiua Madrid edition, 2010.
- [MSH+06] Trevor Maynard, Nigel De Silva, Richard Holloway, Markus Gesmann, Sie Lau, and John Harnett. An actuarial toolkit. introducing The Toolkit Manifesto. http://www.actuaries.org.uk/sites/all/files/documents/pdf/actuarial-toolkit.pdf, 2006. General Insurance Convention.
- [Mur94] Daniel Murphy. Unbiased loss development factors. *PCAS*, 81:154 222, 1994.
- [Mur11] Dan Murphy. mondate: Keep track of dates in terms of months, 2011. R package version 0.9.8.24.
- [Nic09] Luke Nichols. *Multimodel Inference for Reserving*. Australian Prudential Regulation Authority (APRA), December 2009.
- [Orr07] James Orr. *A Simple Multi-State Reserving Model*. ASTIN, Colloqiua Orlando edition, 2007.
- [PR02] P.D.England and R.J.Verrall. Stochastic claims reserving in general insurance. *British Actuarial Journal*, 8:443–544, 2002.

- [QM04] Gerhard Quarg and Thomas Mack. Munich chain ladder. Munich Re Group, 2004.
- [Sch10] Ernesto Schirmacher. Reserve variability calculations, chain ladder, R, and Excel. http://www.casact.org/affiliates/cane/0910/schirmacher.pdf, September 2010. Presentation at the Casualty Actuaries of New England (CANE) meeting.
- [Sch11] Klaus D. Schmidt. A bibliography on loss reserving. http://www.math.tu-dresden.de/sto/schmidt/dsvm/reserve.pdf, 2011.
- [Spe11] Giorgio Alfredo Spedicato. *Introduction to lifecontingencies Package*. StatisticalAdvisor Inc, 0.0.4 edition, November 2011.
- [Tea12a] R Development Core Team. *R Data Import/Export*. R Foundation for Statistical Computing, 2012. ISBN 3-900051-10-0.
- [Tea12b] R Development Core Team. *R Installation and Administration*. R Foundation for Statistical Computing, 2012. ISBN 3-900051-09-7.
- [Zha10] Y. Zhang. A general multivariate chain ladder model. *Insurance: Mathematics and Economics*, 46:588 599, 2010.
- [Zha11] Wayne Zhang. *cplm: Tweedie compound Poisson linear models*, 2011. R package version 0.4-1.
- [Zx00] Ben Zehnwirth and Glenn xbBarnett. Best estimates for reserves. *Proceedings of the CAS*, LXXXVII(167), November 2000.