一、介绍概述

本文主要介绍yolov8在训练过程中的两个阶段:

- 1. Task-Aligned Assigner 正负样本动态分配策略
- 2. 损失函数计算

由于个人感觉官方代码读起来比较困难,故按照自己的思路重新写了一遍,下面将按照自己的代码进行讲解。

假设:

网络输入大小为: images = b x 3 x 640 x 640

类别数目 cls_num = 2 (person + car)

超参数 reg_max = 16 16 16

输出通道为: 4 * reg_max + cls_num

则**三个分支**的预测size分别为: b x 66 x 80 x 80 + b x 66 x 40 x 40 + b x 66 x 20 x 20

tip: 这里的66并不是网络直接输出66个通道的特征图,而是为了方便处理,在cls(输出通道c=2)和reg(c=64),经过concat后得到的66.

二、Task-Aligned Assigner

1. 分配原理

Task-Aligned Assigner,又名对齐分配器,在YOLOv8中是一种动态的分配策略。

一言以蔽之: 针对所有像素点预测的 Cls score 和 Reg Score(<u>Box与每个GT box的</u> <u>IOU</u>),通过**加权的方式**得到最终的<mark>加权分数</mark>,通过对加权分数进行排序后选择**Topk**个正样本。

$$t=s^{lpha}$$
 , y^{eta}

其中, s是所有像素点-所有类别的Cls score, U是所有像素点预测box与所有GTbox的 Reg score(IOU), α和β为权重超参数,两者相乘就可以衡量对齐程度,t作为加权分数。

2. 前期处理

```
2
          self.FloatTensor = torch.cuda.FloatTensor if self.cuda else torch.Float
 3
          self.LongTensor = torch.cuda.LongTensor if self.cuda else torch.LongTen
4
 5
6
          pred_scores,pred_regs,strides = self.pred_process(inputs)
 7
8
9
10
          # 表示每个像素点只有一个预测结果
11
          self.anc_points,self.stride_scales = self.make_anchors(strides)
12
13
14
15
16
          pred_bboxes = self.decode(pred_regs)
17
18
          # ----- 标注数据预处理 ----- #
19
          gt_bboxes,gt_labels,gt_mask = self.ann_process(annotations)
```

A. 预测结果解码

对于网络输出的box信息,实际上表示的是相对于每个像素点上不同anchor的偏移值(左上角或右下角相对于中心点的距离)

(1) 预测数据预处理

```
1 # ----- 预测结果预处理 ------ #
2 # 将多尺度输出整合为一个Tensor,便于整体进展矩阵运算
3 pred_scores,pred_regs,strides = self.pred_process(inputs)
```

```
predictions = [] # 记录每个尺度的转换结果
          strides = [] # 记录每个尺度的缩放倍数
8
          for input in inputs:
9
10
              self.bs,cs,in h,in w = input.shape
11
              stride = self.input_h // in_h
12
13
              strides.append(stride)
14
              # shape 转换 如 b x 80 x 80 x (64+cls_num) -> b x 6400 x (64+cls_num
15
              prediction = input.view(self.bs,4*self.reg_max+self.class_num,-1).p
              predictions.append(prediction)
16
17
          predictions = torch.cat(predictions,dim=1)
18
19
20
21
          pred_scores = predictions[...,4*self.reg_max:]
22
          pred_regs = predictions[...,:4*self.reg_max]
23
24
          return pred_scores,pred_regs,strides
25
```

(2) 生成所有anchor锚点的中心坐标和缩放尺度

```
1 # ------- 生成anchors锚点 ------#
2 # 各尺度特征图每个位置一个锚点Anchors(与yolov5中的anchors不同,此处不是先验框)
3 # 表示每个像素点只有一个预测结果
4 self.anc_points,self.stride_scales = self.make_anchors(strides)
```

```
10
               in h = self.input_h//stride
11
               in_w = self.input_w//stride
12
13
               sx = torch.arange(0,in_w).type(self.FloatTensor) + grid_cell offset
14
               sy = torch.arange(0,in_h).type(self.FloatTensor) + grid_cell_offset
15
16
17
               grid_y,grid_x = torch.meshgrid(sy,sx)
18
               anc_points.append(torch.stack((grid_x,grid_y),-1).view(-1,2).type(s
19
               strides_tensor.append(torch.full((in_h*in_w,1),stride).type(self.Fl
20
21
22
           return torch.cat(anc points,dim=0),torch.cat(strides tensor,dim=0)
```

(3) 预测结果解码

```
1 # ----- 解码 ----- #
2 # 预测回归结果解码到bbox xmin,ymin,xmax,ymax格式
3 pred_bboxes = self.decode(pred_regs)
```


此处,**reg_max = 16**,通过16个值,结合softmax对**box**的**4个预测值**实现离散回归。最后通过**积分的方式**,得到最终结果。

具体代码如下:

```
9
              # b x 8400 x 64 -> b x 8400 x 4 x 16 -> softmax处理
10
11
12
              pred regs = pred regs.view(b,a,4,c//4).softmax(3)
13
14
15
16
               pred regs = pred regs.matmul(self.proj.type(self.FloatTensor))
17
           # 此时的regs, shape-> bx8400x4, 其中4表示 anc point中心点分别距离预测box的左
18
19
           lt = pred_regs[...,:2]
20
           rb = pred_regs[...,2:]
21
22
           x1y1 = self.anc_points - lt
23
24
          x2y2 = self.anc points + rb
25
           pred_bboxes = torch.cat([x1y1,x2y2],dim=-1)
26
27
           return pred bboxes
```

积分之后得到的pred_regs,其中的4个值,分别表示什么?

如果pred_regs的最后维度的4个值用 left_regs,top_regs,right_regs,bottom_regs表示,则它们分别表示在特征图(80x80,40x40,20x20)每个像素点上,anchors points中心点距离预测框**左侧边、上侧边、右侧边、下侧边**的距离。

16个距离中心点距固定值

分別预测	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
左边	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.05	0.05	0.6	0.3	0.0	0.0	0.0	0.0	Softm
上边	0.0	0.0	0.0	0.03	0.2	0.7	0.07	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	离散
右边	0.0	0.0	0.0	0.0	0.05	0.0	0.0	0.0	0.0	0.05	0.6	0.02	0.1	0.8	0.08	0.0	分
下边	0.0	0.0	0.0	0.0	0.4	0.5	0.06	0.04	0.0	0.05	0.6	0.0	0.0	0.0	0.0	0.0	布值
grid中心 点距离																	11.

解码加权求和后得到的左边距离中心点的距离值

```
left_{regs} = 0.05x8 + 0.05x9 + 0.6x10 + 0.3x11 = 10.15
                                                                      # 概率表示每个位置对于最终坐标值的重要程度
                                                            代码
   top_{reg} = 0.03x3 + 0.2x4 + 0.7 \times 5 + 0.07x6 = 4.81
                                                                     pred_regs = pred_regs.view(b,a,4,c//4).softmax(3)
  right_reg = 0.02x11 + 0.1x12 + 0.8 \times 13 + 0.08 \times 14 = 12.94
bottom_reg = 0.4x4 + 0.5x5 + 0.06x6 + 0.04x7 = 3.58
                                                                     pred_regs = pred_regs.matmul(self.proj.type(self.FloatTensor))
                                                            Ţ
如当前特征图为40x40,中心点横坐标为20.6,纵坐标为18.3
                                                                     lt = pred_regs[...,:2]
  x1 = 20.6 - 10.15 = 10.45
                                                                     rb = pred_regs[...,2:]
  y1 = 18.3 - 4.81 = 13.49
                                                             代码
  x2 = 20.6 + 12.94 = 33.54
                                                                     x1y1 = self.anc_points - lt
  v2 = 18.3 + 3.58 = 21.88
                                                                     x2y2 = self.anc_points + rb
```

B. 标注Targets数据预处理

```
1 # ------ 标注数据预处理 ----- #
2 gt_bboxes,gt_labels,gt_mask = self.ann_process(annotations)
```

预处理的目的:

因为batch内不同图像的标注目标**个数可能不同**,需要进行对齐处理。所谓对齐,如batch_size=2, 其中第二张图像标注5个box,则其shape为 5 x 6, 6表示 [img_idx,cls_id,cx,cy,width,height],第一张图像标注2个box,则其shape为2x6,故需要按标注目标数目最大的进行对齐,即将第1张图像的2x6填充为5x6,空余位置用0补齐。

经过预处理之后,得到的标注数据,在后期训练正样本的筛选过程中就可以更方便的调用。

下面结合图像对该过程进行叙述:

(1) Dataloader获取信息

如batch_size = 2,cls_num=80, 其中第1张图像有2个obj, 第二张图像有5个obj, 如下所示:

(2) 对齐操作

将box信息由归一化尺度转换到输入图像尺度,并对bath内每张图像的gt个数进行对齐(目标个数都设置一个统一的值M,方便进行矩阵运算)

M值的设置规则为,选取batch内最大的gt num作为M

```
def ann_process(self,annotations):
1
              batch内不同图像标注box个数可能不同,故进行对齐处理
 3
              1. 按照batch内的最大box数目M,新建全0tensor
4
              2. 然后将实际标注数据填充与前面,如后面为0,则说明不足M,用0补齐
5
6
8
          batch idx = annotations[:,0]
9
10
          ,counts = batch idx.unique(return counts=True)
11
          counts = counts.type(torch.int32)
12
13
14
          res = torch.zeros(self.bs,counts.max(),5).type(self.FloatTensor)
15
          for j in range(self.bs):
              matches = batch idx == j
16
              n = matches.sum()
17
              if n:
18
19
                  res[j,:n] = annotations[matches,1:]
20
21
          scales = [self.input w,self.input h,self.input w,self.input h]
22
          scales = torch.tensor(scales).type(self.FloatTensor)
          res[...,:4] = xywh2xyxy(res[...,:4]).mul (scales)
23
24
25
          gt_bboxes,gt_labels = res[...,:4],res[...,4:]
26
27
28
29
          gt_mask = gt_bboxes.sum(2,keepdim=True).gt (0)
30
31
          return gt bboxes,gt labels,gt mask
```

过程如下:

然后, gt_bboxes、gt_labels分开,并得到相应的gt_mask(用于区分正负样本)

3. 正负样本分配

大体流程:

- (1) 网络输出的**pred_scores**[bx8400xcls_num],进行sigmoid处理(每个类别按照2分类处理)。
- (2) 经过解码的**pred_bboxes**[bx8400x4], 与 stride_tensor[8400x1]相乘,将bboxes转换到 网络输入尺度[bx3x640x640];
- (3) 预处理得到的**anchors_points**[8400x2],与stride_tensor[8400x1]相乘,将anchors的中心点坐标转换到输入尺度
- (4) 然后,将上述pred_scores、pred_bboxes、anchors_points,还有<mark>标注数据预处理</mark> 之后的gt_labels、gt_bboxes、gt_mask,相结合进行正样本的筛选工作。

$$t = s^{\alpha} \times u^{\beta}$$

其中,S是预测类别分值,U是预测框和GT Box的ciou值,α和β为权重超参数,两者**相乘** 就可以**衡量匹配程度**,当Cls的分值越高且ClOU越高时,t的值就越接近于1,此时预测box就与GTbox越匹配,就越符合正样本的标准.

通过训练t可以引导网络动态的关注于高质量的正样本。

- a. 对于每个GT,对**所有预测框**基于该GT的**类别pred score** 结合 与该GT box的 CIOU,加权得到一个关联Cls及Box Reg的对齐分数**alignment_metrics**。
- b. 对于每个GT,直接基于**alignment_metrics**对齐分数,通过排序后,选取topK个预测框作为正样本。

```
1 # ------ 正负样本筛选 ------ #
2 target_bboxes,target_scores,fg_mask= self.assigner(pred_scores.detach()
3 pred_bboxes.detach()*se
4 self.anc_points*self.st
5 gt_labels,
6 gt_bboxes,
7 gt_mask)
```

对流程进行梳理:

<1> 初步筛选

原理: anchor_points即落在gt_boxes内部,作为初步筛选的正样本。

得到gt_boxes的左上角lt,以及右下角rb,分别令anchor_points减去lt,rb减去anchor_points,如果结果均为正,则说明该anchor_point在gt_box内部。对于anchor_points:8400 x 2 ,得到对应的mask -> in_gts_mask,便于后面的过滤操作。

```
1 # ------ 初筛正样本 ------ #
2 # ------ 判断anchor锚点是否在gtbox内部 ----- #
3 # M x 8400
4 in_gts_mask = self.__get_in_gts_mask(gt_bboxes,anc_points)
```

```
def __get_in_gts_mask(self,gt_bboxes,anc_points):
1
           gt_bboxes = gt_bboxes.view(-1,1,4).repeat(1,self.nc,1)
 3
           lt,rb = gt_bboxes[...,:2],gt_bboxes[...,2:]# M x 8400 x 2
 4
           # anc points 增加一个维度 1 x 8400 x 2 -> M x 8400 x 2
5
6
           anc_points = anc_points.view(1,-1,2).repeat(self.n_max_boxes,1,1)
 7
8
           bbox_detals = torch.cat([anc_points - lt,rb - anc_points],dim=-1)
9
10
           in gts mask = bbox detals.amin(2).gt (self.eps)
11
12
           return in gts mask
```

<2> 精细筛选

上面只是进行了粗略的初步筛选,所得到的结果中<mark>仍然存在一部分负样本</mark>(虽然 anchor_point在gtbox内部,但IOU过低或scores过低),需要进一步进行筛除。

- a. 计算 每个预测box与所有GT box的CIOU值,即上面公式中的u.
- b. 预测的scores是上面公式中的s,将 scores 和 cious带入是公式得到t
- c. 对t进行排序后得到前 topk个作为正样本, 其余的作为负样本

思考: 此处yolov8与yolov5的区别?

- ___a. yolov5 采用的是静态分配策略,通过观察anchor_box与gt_box的iou值,如满足一定阈值0.5,则认为是正样本。
- b. yolov8采用的是动态分配策略,在分配过程中综合考虑了iou与scores值,对预测的两个分支综合考虑。
- **静态分配策略**是训练开始之前就确定的,这种分配策略通常基于经验得出,可以根据数据集的特点进行调整,但是不够灵活,可能无法充分利用样本的信息,导致训练结果不佳。
- 动态分配策略,可以根据训练的进展和样本的特点动态的调整权重(在损失函数中会添加对应的权重,下面会详细叙述),在训练初期,模型可能会很难区分正负样本,此时权重惩罚值很大,会更加关注那些容易被错分的样本。随着训练的进行,模型组件变得更加强大,可以更好地区分样本,因此权重的惩罚值就会动态的变低。动态分配策略可以根据训练损失或者其他指标来进行调整,可以更好地适应不同的数据集和模型。

```
1 # ------ 精细筛选 ----- #
2 # 按照公式获取计算结果
3 align_metrics,overlaps = self.__refine_select(pb_scores,pb_bboxes,gt_labels,gt_
4 # 根据计算结果,排序并选择top10
5 # M x 8400
6 topk_mask = self.__select_topk_candidates(align_metrics,gt_mask.repeat(1,self.next))
```

```
def __refine_select(self,pb_scores,pb_bboxes,gt_labels,gt_bboxes,gt_mask):
1
 2
          # reshape M x 4 \rightarrow M x 1 x 4 \rightarrow M x 8400 x 4
 3
          gt bboxes = gt bboxes.unsqueeze(1).repeat(1,self.nc,1)
4
5
6
          pb_bboxes = pb_bboxes.unsqueeze(0).repeat(self.n_max_boxes,1,1)
 7
          # 计算所有预测box与所有gtbox的ciou,相当于公式中的U. M x 8400
          gt_pb_cious = bbox iou(gt_bboxes,pb_bboxes,xywh=False,CIoU=True).squeez
8
9
10
          gt_pb_cious = gt_pb_cious * gt_mask
11
12
13
14
15
          pb_scores = pb_scores.unsqueeze(0).repeat(self.n_max_boxes,1,1)
16
          gt_labels = gt_labels.long().squeeze(-1)
17
          # 针对每个GTBOX从预测值(Mx8400xcls num)中筛选出对应自己类别Cls的结果,每个结
18
19
20
          scores = pb_scores[torch.arange(self.n_max_boxes),:,gt_labels]
21
22
          # 根据公式进行计算 M x 8400
          align_metric = scores.pow(self.alpha) * gt_pb_cious.pow(self.beta)
23
24
25
          align metric = align_metric * gt_mask
26
          return align_metric,gt_pb_cious
```

```
1  def __select_topk_candidates(self,align_metric,gt_mask):
2  # 从大到小排序,每个GT的从8400个结果中取前 topk个值,以及其中的对应索引
```

```
4
           topk_metrics,topk_idx = torch.topk(align_metric,self.topk,dim=-1,larges
 5
 6
           topk_mask = torch.zeros_like(align_metric,dtype=gt_mask.dtype,device=al
 7
 8
           for i in range(self.topk):
 9
               top_i = topk_idx[:,i]
10
11
               topk mask[torch.arange(self.n max boxes),top_i] = 1
           topk_mask = topk_mask * gt_mask
12
13
14
           return topk_mask
```

<3>排除一个锚点被分配给多个GT box的情况

- a. 通过对mask矩阵,每个anchor对于所有GT求和,查看值是否大于1,如大于1,这说明被分配给多个GT
- b. 筛除多余分配的情况,原则: 通过观察该anchor与被多分配的每个GT的CIOU值,选择值最大者。

```
1 # ------ 排除某个anchor被重复分配的问题 ----- #
2 # target_gt_idx : 8400
3 # fg_mask : 8400
4 # pos_mask: M x 8400
5 target_gt_idx,fg_mask,pos_mask = self.__filter_repeat_assign_candidates(pos_mask)
```

```
def __filter_repeat_assign_candidates(self,pos_mask,overlaps):

'''

pos_mask: M x 8400

overlaps: M x 8400

idia原则:如某anchor被重复分配,则保留与anchor的ciou值最大的GT

'''

# 对列求和,即每个anchor对应的M个GT的mask值求和,如果大于1,则说明该anchor被多数。
# 8400

fg_mask = pos_mask.sum(0)
```

```
10
          if fg_mask.max() > 1:#某个anchor被重复分配
11
12
13
             mask_multi_gts = (fg_mask.unsqueeze(0) > 1).repeat([self.n_max_boxe
             # 每个anchor找到CIOU值最大的GT 索引
14
15
16
             max_overlaps_idx = overlaps.argmax(0)
             # 用于记录重复分配的anchor的与所有GTbox的CIOU最大的位置mask
17
18
             # M x 8400
19
             is_max_overlaps = torch.zeros(overlaps.shape, dtype=pos_mask.dtype,
20
             is_max_overlaps.scatter_(0, max_overlaps_idx.unsqueeze(0),1)
21
22
23
             pos_mask = torch.where(mask_multi_gts, is_max_overlaps, pos_mask).f
             # 得到更新后的每个anchor的mask 8400
24
25
             fg mask = pos mask.sum(0)
26
          # 找到每个anchor最匹配的GT 8400
27
          target_gt_idx = pos_mask.argmax(0)
28
             target_gt_idx: 8400 为每个anchor最匹配的GT索引(包含了正负样本)
29
30
             fg mask: 8400 为每个anchor设置mask,用于区分正负样本
             pos_mask: M x 8400 每张图像中每个GT设置正负样本的mask
31
32
33
          return target_gt_idx,fg_mask,pos_mask
```

<4>获得筛选样本的训练标签

前面<1><2><3>步的目的是为了获得正负样本的mask,即fg_mask、pos_mask、以及target_gt_idx,其中:

fg_mask: shape为 8400,其作用是服务于8400个anchors的,对8400个anchors设置 True和False,代表该样本为正还是为负。

pos_mask: shape为M x 8400,其作用是服务于M个gtbox的,表示了每个gtbox的正负样本,其作用是对M个gtbox的负样本进行过滤。

target_gt_index: shape为 8400,其作用服务于8400个anchors,表示与每个anchor, M个gtbox中最匹配的gtbox的索引index。

因为网络输出的**预测值**分别为: pred_scores(8400xcls_num) + pred_bboxes(8400x4) 然后根据预处理阶段得到的gt_labels(5x1),gt_bboxes(5x4) 结合

target_gt_index、fg_mask,得到最终同shape的训练标

签: target_labels(8400xcls num)、target_bboxes(8400x4)

```
1 # ------ 根据Mask设置训练标签 ----- #
2 # target_labels : 8400 x cls_num
3 # target_bboxes : 8400 x 4
4 target_labels,target_bboxes = self.__get_train_targets(gt_labels,gt_bboxes,target_bboxes)
```

```
1
      def __get_train_targets(self,gt_labels,gt_bboxes,target_gt_idx,fg_mask):
 2
 3
              gt labels: M x 1
              gt bboxes: M x 4
4
              fg_mask : 8400 每个anchor为正负样本0或1
5
              target_gt_idx: 8400 每个anchor最匹配的GT索引(0~M)
6
8
9
          gt_labels = gt_labels.long().flatten()
10
          target_labels = gt_labels[target_gt_idx]
11
12
13
          target_bboxes = gt_bboxes[target_gt_idx]
14
15
          # 类别转换为one-hot形式, 8400xcls num
16
17
          target_one_hot_labels = torch.zeros((target_labels.shape[0],self.num_cl
18
                                            dtype=torch.int64,
19
                                            device=target_labels.device)
          # 赋值,对应的类别位置置为1,即one-hot形式 8400 x cls num
20
          target one hot labels.scatter (1,target labels.unsqueeze(-1),1)
21
22
          # 生成对应的mask, 用于过滤负样本 8400 -> 8400x1 -> 8400 x cls num
23
24
          fg labels mask = fg mask.unsqueeze(-1).repeat(1,self.num classes)
25
26
27
          target_one_hot_labels = torch.where(fg_labels_mask>0,target_one_hot_lab
28
29
          return target one hot labels, target bboxes
```

上面提到,动态分配策略,可以根据训练情况动态的调整权重值,所以在训练过程中,需要设置一个动态的权重,实现在训练过程中对欠佳的预测结果(困难样本)惩罚的目的。

提问: 那上面提到的这个动态的权重该如何设置, 才能有这样的效果呢?

灵感: 既然上面在选取正样本过程中进行了scores与overlaps的计算,那是否可以巧妙得利用这个结果,添加上一定的转换进而作为动态的权重呢?

同时,通过添加动态权重,也就更加深了cls与box的关联性,避免出现cls预测准确度很高,iou很低的情况。

答案是可以的,代码如下:

```
1
      align_metrics *= pos_mask # M x 8400
 2
      overlaps *= pos_mask # M x 8400
4
 5
      gt max metrics = align metrics.amax(axis=-1,keepdim=True)
6
      gt_max_overlaps = overlaps.amax(axis=-1,keepdim=True)
8
      # 为类别one-hot标签添加惩罚项 M x 8400 -> 8400 -> 8400 x 1
9
10
       norm_align_metric = (align_metrics*gt_max_overlaps/(gt_max_metrics+self.eps
11
12
      target_labels = target_labels * norm_align_metric
13
14
      b_target_labels[i] = target_labels
```