3 概形的基本性质

习题 3.1. 证明概形同态 $f: X \to Y$ 局部有限型当且仅当对 Y 中任意仿射开集 $V = \operatorname{Spec} B$, $f^{-1}(V)$ 都可以由若干仿射开集 $U_i = \operatorname{Spec} A_i$ 覆盖, 其中 A_i 都是有限生成 B-代数.

证明. 充分性显然, 只需证明必要性. 首先要证明: 若 Y 中仿射开集 $V = \operatorname{Spec} B$ 满足条件, $b \in B$, 则 $D(b) = \operatorname{Spec} B_b \subseteq V$ 也满足条件. 这是因为对每个 $U_j = \operatorname{Spec} A_j$, 都有 $U_j \cap f^{-1}(D(b)) = \operatorname{Spec}(A_j)_{\bar{b}}$, 且 $(A_j)_{\bar{b}}$ 是有限生成 B_b -代数 $(\bar{b} \in b)$ 的像). 因此满足条件的仿射开集 $V \subseteq Y$ 构成 Y 的一组基.

再设 $V = \operatorname{Spec} B$ 是 Y 中任意的仿射开集. 则 V 可以由有限个基本开集 $D(b_i)$ 覆盖, 且每个 $D(b_i)$ 都满足条件, 即存在若干 $U_{ij} = \operatorname{Spec} A_{ij}$ 覆盖 $f^{-1}(D(b_i))$, 使得 A_{ij} 是有限生成 B_{b_i} 代数. 因此它们也都是有限生成 B 代数, 并且覆盖 $f^{-1}(V)$. 因此 V 也满足条件.

习题 3.2. 设 $f: X \to Y$ 是概形同态. 若 Y 可以由若干仿射开集 V_i 覆盖, 且其中每个 $f^{-1}(V_i)$ 都拟紧, 就称 f 拟 紧. 证明 f 拟紧当且仅当对任意仿射开集 $V \subset Y$, $f^{-1}(V)$ 都拟紧.

证明. 充分性显然, 只需证明必要性. 显然, 概形中的开集拟紧当且仅当其可以被有限个仿射开集覆盖.

设 $V = \operatorname{Spec} B$ 满足 $f^{-1}(V)$ 拟紧, 记其被 $U_1, ..., U_k$ 覆盖, 其中 $U_i = \operatorname{Spec} A_i$. 则对任意 $b \in B$, $f^{-1}(D(b))$ 可以被 $U_i \cap f^{-1}(D(b)) = \operatorname{Spec}(A_i)_b$ 覆盖. 因此满足条件的开集构成基.

再设 $V = \operatorname{Spec} B$ 是 Y 中任意仿射开集,则其可以有有限个基本开集 $D(b_i)$ 覆盖,其中每个 $f^{-1}(D(b_i))$ 拟紧. 因此 $f^{-1}(V) = \bigcup f^{-1}(D(b_i))$ 拟紧.

习题 3.3. (a) 证明概形同态 $f: X \to Y$ 有限型当且仅当其局部有限型且拟紧.

- (b) 由此说明 f 有限型当且仅当对 Y 中任意仿射开集 $V = \operatorname{Spec} B$, $f^{-1}(V)$ 都可以被有限个仿射开集 $U_j = \operatorname{Spec} A_i$ 覆盖, 其中每个 A_i 都是有限生成 B-代数.
- (c) 证明如果 f 有限型, 则对 Y 中任意仿射开集 $V = \operatorname{Spec} B$, 以及 X 中任意仿射开集 $U = \operatorname{Spec} A \subseteq f^{-1}(V)$, A 都是有限生成 B-代数.
- 证明. (a) 若 f 有限型,则其当然局部有限型.且若 Y 中的仿射开集 $V = \operatorname{Spec} B$ 使得 $f^{-1}(V)$ 可以被有限个仿射开集覆盖,则 $f^{-1}(V)$ 当然拟紧.因此 f 拟紧.

反之, 若 f 局部有限型且拟紧,则由前两习题知: 对 Y 中任意仿射开集 $V = \operatorname{Spec} B$, $f^{-1}(V)$ 可以被若干仿射开集 $U_i = \operatorname{Spec} A_i$ 覆盖,每个 A_i 都是有限生成 B-代数. 而 $f^{-1}(V)$ 又拟紧,从而可以被这其中有限个所覆盖.因此 f 有限型.

- (b) 由前两习题及 (a) 即证.
- (c) 固定 $V = \operatorname{Spec} B$. 若 $U = \operatorname{Spec} A \subset f^{-1}(V)$ 满足 A 是有限生成 B-代数,则对任意 $a \in A$, A_a 也是有限生成 B-代数. 因此 $f^{-1}(V)$ 中所有满足 $U = \operatorname{Spec} A$ 且 A 是有限生成 B-代数的仿射开集构成一组基.

现在任取 $f^{-1}(V)$ 中的仿射开集 $U = \operatorname{Spec} A$. 则存在有限个 $a_i \in A$, 它们生成 A, 且每个 A_{a_i} 都是有限生成 B-代数. 设 n 是足够大的正整数, 使得每个 A_{a_i} 都可以通过 $a_i^{-n}x_{ij}$ 在 B 上生成. 由于所有 a_i 生成 A, 所有 a_i^n 也生成 A. 不妨设 $1 = \sum_i y_i a_i^n$. 则对任意 $a \in A$, $a = \sum_i y_i (a_i^n a)$. 因此易知 A 可以由 $\{x_{ij}\} \cup \{y_i\}$ 在 B 上生成, 从而是有限生成 B-代数.

习题 3.4. 证明:概形同态 $f: X \to Y$ 有限当且仅当对 Y 中任意仿射开集 $V = \operatorname{Spec} B$, $f^{-1}(V)$ 都是仿射开集, 且 若记 $f^{-1}(V) = \operatorname{Spec} A$, 则 A 在 B 上有限.

证明. 充分性显然.

设 f 有限, $V = \operatorname{Spec} B \subseteq Y, U = f^{-1}(V) = \operatorname{Spec} A$, 且 A 是有限 B-模. 记 $A \to B$ 的环同态是 φ , 则对任意 $b \in B$, $f^{-1}(D(b)) = \operatorname{Spec} A_{\varphi(b)}$ 是有限 B_b -模. 再设 $V = \operatorname{Spec} B \subseteq Y$ 是任意仿射开集, $U = f^{-1}(V)$. 则由上可知存在有限个 $b_i \in B$, 它们生成 B, 且每个 $f^{-1}(D(b_i)) = \operatorname{Spec} A_i$, 对应的 A_i 是有限 B_{b_i} -模. 设 $a_i = f^*(V)(b_i) \in \mathcal{O}_X(U)$. 则 a_i 也生成 $\mathcal{O}_X(U)$, 且每个 $U_{a_i} = f^{-1}(D(b_i))$ 仿射. 因此由习题 2.17 即知 U 也仿射. 记 $U = \operatorname{Spec} A$. 则每个 A_{a_i} 是有限 B_{b_i} 模. 接下来类似前一习题中的(c)易证 A 是有限 B 模.

习题 3.5. 设 $f: X \to Y$ 是概形态射. 若对每个 $y \in Y$, $f^{-1}(y)$ 都是有限集, 就称 f 拟有限.

- (a) 证明有限态射也拟有限.
- (b) 证明有限态射是闭映射, 即其将任意闭子集映射到闭子集.
- (c) 给出反例以证明有限型、拟有限、闭的满概形态射不一定是有限态射.

- 证明. (a) 若 $y \in Y$, 取包含 y 的仿射开集 $V = \operatorname{Spec} B$. 记 $f^{-1}(V) = \operatorname{Spec} A$, y 对应 B 中的素理想 \mathfrak{p} . 则 $f^{-1}(y)$ (至少作为拓扑空间) 同胚于 $\operatorname{Spec}(B \otimes_A k(\mathfrak{p}))$, 其中 $k(\mathfrak{p}) = A_{\mathfrak{p}}/\mathfrak{p}$ 是 \mathfrak{p} 的剩余域. 而 $B \otimes_A k(\mathfrak{p})$ 作为模是有限维 $k(\mathfrak{p})$ -线性空间, 从而只包含有限个素理想.
 - (b) 在任意仿射开集上, 这就是上行性质. 由于概形被仿射开集覆盖, 命题即证.
 - (c) 取"两个原点的直线"到直线的映射即可.显然其有限型,拟有限,满且闭.但双原点的直线并不仿射,因此这个映射并不有限.

又或者令 $X = \operatorname{Spec} \mathbb{Z}[i]_{(1+2i)}$,其中 $i^2 = -1$.则 $X \to \operatorname{Spec} \mathbb{Z}$ 有限型,拟有限,满且闭.然而其不有限.

习题 3.6. 设 X 是整概形. 证明一般点 ξ 处的局部环 \mathcal{O}_{ξ} 是域. 其被称作 X 的函数域, 记作 K(X). 证明如果 $U=\operatorname{Spec} A$ 是 X 的任意仿射开集, 则 K(X) 同构于 A 的分式域.

证明. 设 $U = \operatorname{Spec} A$ 是任意仿射开集, 则 $\xi \in U$, 且 ξ 也是 U 的一般点. 因此 ξ 对应 A 中的零理想, 从而 \mathcal{O}_{ξ} 同构于 A 的分式域.

习题 3.7. 设 $f: X \to Y$ 是概形同态, Y 不可约, 如果对 Y 的一般点 η , $f^{-1}(\eta)$ 是有限集, 就称 f 一般有限. 如果概形同态 $f: X \to Y$ 的像集 f(X) 在 Y 中稠密, 就称 f 支配. 现设 $f: X \to Y$ 是整概形之间的支配、一般有限、有限型同态. 证明存在稠密开集 $U \subseteq Y$ 使得诱导映射 $f^{-1}(U) \to U$ 有限 [提示: 先证明 X 的函数域是 Y 的函数域的有限扩张].

证明. 设 ξ, η 分别是 X, Y 的一般点, K, L 分别为 X, Y 的函数域. 任取 Y 中的仿射开集 $V = \operatorname{Spec} A$, 以及 $f^{-1}(V)$ 中的仿射开集 $U = \operatorname{Spec} A \subseteq f^{-1}(V)$. 由于 f 支配且 X 不可约, f(U) 在 V 中稠密, 因此 $A \otimes_B L$ 非零. 又因为 f 有限型、一般有限, $A \otimes_B L$ 在 L 上有限生成, 且仅包含有限个素理想 (与 $f^{-1}(\eta)$ ——对应).

由 Noether 正规化定理, 存在 $A \otimes_B L$ 的子环 $C \cong L[y_1, ..., y_k]$ 使得 $A \otimes_B L$ 在 C 上整. 那么由上述一般有限性即知 k = 0, 从而 $A \otimes_B L$ 在 L 上整 (因此有限), 所以其分式域 K 是 L 的有限扩张.

更进一步地,设 $f^{-1}(V)$ 可以由有限个仿射开集 $U_i = \operatorname{Spec} A_i$ 覆盖,设 $A_i \otimes_B L$ 作为 L-代数可以由 $x_{ij} \in A_i$ 生成.由于它们在 L 上整,即满足 L 系数首一多项式.令 $f \in B$ 为这些多项式系数的分母的乘积,则 x_{ij} 在 B_f 上整;因此 $(A_i)_f$ 在 B_f 上整.

用 $D(f) = \operatorname{Spec} B_f$ 代替 Y, 用 $f^{-1}(D(f))$ 代替 X, 则问题归约为: 若 $f: X \to Y$ 是整概形同态, $Y = \operatorname{Spec} B$, 且 X 可以被有限个仿射开集 $U_i = \operatorname{Spec} A_i$, 其中每个 A_i 都是有限 B-模, 就存在稠密开集 $V \subseteq Y$ 使得 $f^{-1}(V) \to V$ 有限.

记 $W = \bigcap_i U_i$. 对每个 i, 设 $U_i - W = V(\mathfrak{a}_i)$, $\mathfrak{a}_i \subseteq A_i$. 由于 A_i 在 B 上整, 存在 $b_i \in B \cap \mathfrak{a}_i$. 设 $V = \bigcap_i D(b_i) \subseteq Y$, 显然 $V \cong \operatorname{Spec} B[\{b_i^{-1}\}_i]$. 且由于 $f^{-1}(V) \subseteq W$, 即知 $f^{-1}(V) \cong \bigcap_i D(b_i) \cap U_j \cong \operatorname{Spec} A_j[\{b_i^{-1}\}_i]$ 仿射, 且 $f: f^{-1}(V) \to V$ 有限. 由于 Y 不可约, V 是开集, 从而稠密.

习题 3.8 (正规化). 若一概形的所有局部环都整闭, 就称其正规. 令 X 为整概形. 对每个仿射开集 $U = \operatorname{Spec} A$, 设 \tilde{A} 是 A 在其分式域中的整闭包, 令 $\tilde{U} = \operatorname{Spec} \tilde{A}$. 证明这些 \tilde{U} 可以粘接成一个正规概形 \tilde{X} , 称为 X 的正规化. 再证明存在同态 $\tilde{X} \to X$ 满足如下泛性质: 对任意正规概形 Z 和同态 $f: Z \to X$, f 都唯一地穿过 \tilde{X} . 若 X 在域 k 上有限型, 则同态 $\tilde{X} \to X$ 有限. 这推广了第一章习题 3.17.

证明. 仿照构造纤维积的办法, 可以如下证明:

第一步, 若 $X=\operatorname{Spec} A$, 则 $\tilde{X}=\operatorname{Spec} \tilde{A}$ 配备自然的同态 $\tilde{X}\to X$ 必定满足上述泛性质. 这可以由习题 2.4 自然得到.

第二步, 若 $g: \tilde{X} \to X$ 满足泛性质, $U \in X$ 的开子概形, 则 g 在 $g^{-1}(U)$ 上的限制 $g^{-1}(U) \to U$ 也满足泛性质. 若 Z 正规, $f: Z \to U$, 则复合嵌入映射得到 $i \circ f: Z \to X$. 由泛性质, i: f 唯一地穿过 \tilde{X} ; 显然其像集必定包含在 $g^{-1}(U)$ 中.

第三步, 若 U,V 都是 X 中的仿射开集, 则 $U \cap V$ 在 \tilde{U} 和 \tilde{V} 中的原像都具有上述泛性质, 因此可以自然地等同. 这样就给出了将所有 \tilde{U} 粘接为 \hat{X} 的办法. 且每个同态 $\tilde{U} \to U \to X$ 也可粘接成 $\hat{X} \to X$, 不难验证其满足泛性质.

接下来设 X 在 k 上有限型. 则 X 可以由有限个仿射开集 $U_i = \operatorname{Spec} A_i$ 覆盖, 且每个 A_i 都是有限生成 k-代数; 因此 \tilde{A}_i 在 A_i 上有限. 所以 $\tilde{X} \to X$ 有限.

习题 3.9. 回忆在代数簇范畴中, 两个代数簇的乘积的 Zariski 拓扑并不是乘积拓扑 (第一章习题 1.4). 我们将会看到, 在概形范畴中, 乘积概形的底集合甚至都不是乘积集合.

- (a) 令 k 是域, $\mathbf{A}_k^1 = \operatorname{Spec} k[x]$ 是 k 上的仿射直线. 证明 $\mathbf{A}_k^1 \times_{\operatorname{Spec} k} \mathbf{A}_k^1 \cong \mathbf{A}_k^2$, 并证明其底集合并不是两个因子的底集合的乘积 (即使 k 代数闭也一样).
- (b) 令 k 是域, s,t 是不定元, 则 Spec k, Spec k(s), Spec k(t) 都是单点空间. 描述 Spec k(s) $\times_{\operatorname{Spec} k}$ Spec k(t).
- 证明. (a) 由定义, $\mathbf{A}_k^1 \times_{\operatorname{Spec} k} \mathbf{A}_k^1 = \operatorname{Spec}(k[x] \otimes_k k[x]) = \operatorname{Spec} k[x,y] = \mathbf{A}_k^2$. 其中任意显含两个变量的不可约多项式生成的素理想 (如 (x-y)) 都不属于两个因子底集合的乘积.

(b) k, k(s), k(t) 都是域, 因此其谱当然是单点空间.

然而 Spec $k(s) \times_{\text{Spec } k}$ Spec $k(t) = \text{Spec}(k(s) \otimes_k k(t))$. 而 $k(s) \otimes_k k(t) = S^{-1}k[s,t]$, 其中 $S = \{f(s)g(t) \mid f,g \in k[x] \setminus \{0\}\}$. 其素理想为 (0) 以及 (h(s,t)), 其中 h 是同时显含 s 和 t 的不可约多项式. (hmm... 去掉所有闭点以及平行于坐标轴直线的平面?)

- **习题 3.10** (同态的纤维). (a) 若 $f: X \to Y$ 是同态, $y \in Y$, 证明 $\mathrm{sp}(X_v)$ 同胚于装备子空间拓扑的 $f^{-1}(y)$.
 - (b) 令 $X = \operatorname{Spec} k[s,t]/(s-t^2)$, $Y = \operatorname{Spec} k[s]$, $f: X \to Y$ 是由 $s \mapsto s$ 决定的同态. 若 $y \in Y$ 是 $a \in k$ 对应的点且 $a \neq 0$, 证明纤维 X_y 恰好包含两个点, 剩余域都是 k. 若 $y \in Y$ 对应 $0 \in k$, 则 X_y 是非既约的单点概形. 若 $\eta \in Y$ 是一般点,则 X_n 是单点概形,其剩余域是 η 处剩余域的二次扩张 (假设 k 代数闭).
- 证明. (a) 记同态 $g: X_y = X \otimes_Y \operatorname{Spec} k(y) \to X$, 任取 Y 中包含 y 的仿射开集 $V = \operatorname{Spec} B$. 只需证明: 对 $f^{-1}(V)$ 中任意仿射开集 $U, g: g^{-1}(U) \to U$ 在底空间上诱导了 $g^{-1}(U)$ 和 $U \cap f^{-1}(y)$ 的同胚. 而这种情况下, 设 $U = \operatorname{Spec} A, y$ 对应 B 中的素理想 \mathfrak{p} , 则

$$g^{-1}(U) = U \otimes_V \operatorname{Spec} k(y) = \operatorname{Spec}(A \otimes_B k(\mathfrak{p})) = \operatorname{Spec}(A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}).$$

因此显然.

(b) 若 y 对应 $a \neq 0 \in k$, 则

$$X_y = \operatorname{Spec}(k[s,t]/(s-t^2)) \otimes_{k[s]} (k[s]/(s-a)) = \operatorname{Spec}(k[t]/(t^2-a)).$$

其包含 $(t \pm \sqrt{a})$ 两个素理想.

若 y 对应 $0 \in k$, 则同理, $X_v = \operatorname{Spec}(k[t]/(t^2))$ 是非既约的单点概形.

若 η 是一般点, 则 $X_{\eta} = \operatorname{Spec}(k[s,t]/(s-t^2))_s = \operatorname{Spec}(k(\sqrt{s}), \, \text{m } k(\sqrt{s}) \, \text{是 } \eta$ 处的剩余域 k(s) 的二次扩张. \Box

- **习题 3.11** (闭子概形). (a) 闭浸入在基扩张下不变: 即若 $f: Y \to X$ 是闭浸入, $X' \to X$ 是任意同态, 则 $f': Y \times_X X' \to X'$ 也是闭浸入.
 - (b) 若 Y 是仿射概形 $X = \operatorname{Spec} A$ 的闭子概形,则 Y 仿射;事实上 Y 一定是某个闭浸入 $\operatorname{Spec} A/\mathfrak{a} \to \operatorname{Spec} A$ 的像, \mathfrak{a} 是合适的理想. [提示: 先证明 Y 可以被有限个形如 $D(f_i) \cap Y$ 的仿射开集覆盖,其中 $f_i \in A$. 通过添加一些 $D(f_i) \cap Y = \emptyset$ 的 f_i ,可以假设这些 $D(f_i)$ 覆盖 X. 接下来证明 f_i 生成 A,因此由习题 2.17b 证明 Y 仿射,然后用习题 2.18d 证明 Y 可以由某个理想 $\mathfrak{a} \subseteq A$ 得来.]
 - (c) 令 $Y \in X$ 的闭子集, 并为其装备既约诱导闭子集概形结构. 若 $Y' \in X$ 中此闭子集上的另一个闭子概形, 证明闭浸入 $Y \to X$ 穿过 Y'. 我们可以将此性质表达为: 既约诱导闭子概形结构是闭子集上最小的闭子概形结构.
- (d) 令 $f: Z \to X$ 是概形同态. 则 X 中存在唯一的闭子概形 Y 使得: f 穿过 Y; 且若 f 也穿过另一个闭子概形 Y', 则 $Y \to X$ 也穿过 Y'. 我们将 Y 称为 Z 的概形论像. 若 Z 既约, 证明 Y 就是 f(Z) 的闭包上的既约诱导闭子概形.

证明. 我们先证明 (b).

(b) 设 Y 可以由仿射开集 $V_i = \operatorname{Spec} B_i$ 覆盖, 而 $f(V_i) = (\bigcup_j U_{ij}) \cap f(Y)$, 其中 U_{ij} 是基本开集 $D(f_{ij})$. 则对每个 $i, j, f^{-1}(U_{ij}) = \operatorname{Spec}(B_i)_{f_{ij}} \subseteq V_i$ 也仿射. 并且由于 f(Y) 是 X 中的闭集,因此也拟紧,从而可以选出有限个 U_{ii} 覆盖 f(Y), 设为 $\{D(g_i)\}_i$.

通过添加一些 $D(g_i) \cap Y = \emptyset$ 的 g_i ,不妨设这些 $D(g_i)$ 覆盖了 X; 即 g_i 生成了 A. 设 $\varphi: A \to \Gamma(Y, \mathcal{O}_Y)$ 是 f 诱导的整体截面上的映射,则 $\varphi(g_i)$ 生成了 $\Gamma(Y, \mathcal{O}_Y)$. 且 $Y_{\varphi(g_i)} = f^{-1}(D(g_i))$ 均仿射. 因此由习题 2.17b 即知 Y 是仿射概形. 再由习题 2.18d 即知 $Y \cong \operatorname{Spec} A/\mathfrak{a}$.

(a) 若 X,Y,X' 都是仿射概形,设为 $X = \operatorname{Spec} A,Y = \operatorname{Spec} A/\mathfrak{a},X' = \operatorname{Spec} B$ (由习题 2.18d, Y 一定形如 $\operatorname{Spec} A/\mathfrak{a}$). 则 $Y \times_X X' = \operatorname{Spec} B/(B\mathfrak{a})$ 到 X' 是闭浸入.

进一步地,设 X,Y 仍然仿射, X' 为任意概形.设 X' 可以由若干仿射开集 $U_i = \operatorname{Spec} B_i$ 覆盖.则对每个 U_i , $f'^{-1}(U_i) \cong Y \times_X U_i$ 到 U_i 是闭浸入.因此 $Y \times_X X'$ 在 X' 中的像是闭集.且由于层上的映射 f'' 在每个开集上都是满射,因此整体上也是满射.因此 $Y \times_X X' \to X'$ 也是闭浸入.

若 X,Y 未必仿射, 则设 X 可以由仿射开集 $X_i = \operatorname{Spec} A_i$ 覆盖. 设 X_i 在 Y,X' 中的原像分别是 Y_i,X_i' . 显然, $Y_i \to X_i'$ 也仍然是闭浸入, 因此由 (b) 即知 Y_i 仿射. 由上述论证, 每个 $Y_i \times_{X_i} X_i' \to X_i'$ 都是闭浸入, 即 $Y \times_X X_i' \to X_i'$ 是闭浸入. 类似于上述推理即知 $Y \times_X X_i' \to X_i'$ 也是闭浸入.

(c) 由于可以将映射做粘接, 只需考虑 $X = \operatorname{Spec} A$ 仿射的情况. 设 $Y = \operatorname{Spec} \mathfrak{a}$. 由 (b) 可知 Y' 也仿射, 设为 $\operatorname{Spec} A/\mathfrak{a}'$, 则 $\mathfrak{a} = \sqrt{\mathfrak{a}'} \supseteq \mathfrak{a}'$, 因此 $Y \to X$ 穿过 Y'.

- (d) 若 $X = \operatorname{Spec} A$ 仿射,则可以定义 $\mathfrak{a} = \ker(A \to \Gamma(Z, \mathcal{O}_Z))$,并定义 $Y = \operatorname{Spec} A/\mathfrak{a}$,显然其满足泛性质.此时, Y 在底空间上就是 f(Z) 的闭包.且若 Z 既约,则 A/\mathfrak{a} 也既约,因此此时 Y 就是既约诱导闭子概形.若 X 任意,则对每个仿射开集定义 Y 之后粘接起来即可.
- **习题 3.12** (Proj *S* 的闭子概形). (a) 设 $\varphi: S \to T$ 是分次环之间保持次数的满射. 证明习题 2.14 中的开集 *U* 就等于 Proj *T*, 且同态 Proj $T \to \text{Proj } S$ 是闭浸入.
- (b) 若 $I \subseteq S$ 是齐次理想, T = S/I, 令 Y 为由 $\operatorname{Proj} S/I \to \operatorname{Proj} S$ 定义的 $X = \operatorname{Proj} X$ 的闭子概形. 证明不同的齐 次理想可以给出相同的闭子概形. 例如说, 设 d_0 为整数, $I' = \bigoplus_{d \ge d_0} I_d$, 则 I 和 I' 决定相同的闭子概形. 我们之后将会看到 X 的任意闭子概形 (至少在 S 是 S_0 上的多项式环的时候) 都可以从 S 某个齐次理想得来.
- 证明. (a) 回忆 $U = \{ \mathfrak{p} \in \operatorname{Proj} T \mid \mathfrak{p} \not\supseteq \varphi(S_+) \}$. 若 $S \to T$ 是满射, 则 $S_+ \to T_+$ 也是满射. 因此 U 必然是全空间 $\operatorname{Proj} T$.
 - 记同态 $f: \operatorname{Proj} T \to \operatorname{Proj} S$, 则 f^* 在茎上的映射是 $S_{(\varphi^{-1}(\mathfrak{p}))} \to T_{(\mathfrak{p})}$ 都是满射. 因此 f^* 是满射. 而 $f(\operatorname{Proj} T) = V(\ker \varphi)$ 是 $\operatorname{Proj} S$ 中的闭集. 因此 f 是闭浸入.
 - (b) 若 $I' = \bigoplus_{d \geq d_0} I_d$, 则 $S/I \rightarrow S/I'$ 的映射在不小于 d_0 的次数上都是同构. 因此由习题 2.14c 即知 Proj S/I 和 Proj S/I' 同构.
- 习题 3.13 (有限型同态的性质). (a) 闭浸入有限型.
 - (b) 拟紧的开浸入 (习题 3.2) 有限型.
 - (c) 有限型同态的复合有限型.
 - (d) 有限型同态的基扩张仍然有限型.
 - (e) 若 X,Y 都在 S 上有限型, 则 $X \times_S Y$ 也在 S 上有限型.
 - (f) 若 $X \xrightarrow{f} Y \xrightarrow{g} Z$ 是概形同态, f 拟紧, $g \circ f$ 有限型, 则 f 也有限型.
 - (g) 若 $f: X \to Y$ 有限型, Y Noether, 则 X 也 Noether.
- 证明. (a) 若 $f: X \to Y$ 是闭浸入, 由习题 3.11 即知对 Y 中任意仿射开集 $V = \operatorname{Spec} A$, 其原像都形如 $\operatorname{Spec} A/\mathfrak{a}$. 因此 f 有限型 (甚至有限).
 - (b) 若 $f: X \to Y$ 是开浸入,则对 Y 中任意仿射开集 $U, f^{-1}(U) \cong f(X) \cap U$ 可以由 U 的若干个仿射开集覆盖,因此局部有限型. 若 f 拟紧,则其有限型.
 - (c) 显然.
 - (d) 设 $f: X \to S$ 有限型, $g: S' \to S$. 若 $S = \operatorname{Spec} A$ 仿射, 则对 S' 中任意仿射开集 $U = \operatorname{Spec} A'$, 其在 $X \times_S S'$ 中的原像是 $X \times_S U$. 因此若 X 可以由有限个仿射开集 $V_i = \operatorname{Spec} B_i$ 覆盖, 每个 B_i 都是有限生成 A-代数,则 对应地, $X \times_S U$ 也可以由 $\operatorname{Spec}(B_i \otimes_A A')$ 覆盖,且 $B_i \otimes_A A'$ 是有限生成 A'-代数.因此 f 有限型. 一般情况下,设 S 可以由若干个仿射开集 $U_i = \operatorname{Spec} A_i$ 覆盖.记 X_i, U_i' 为 U_i 在 X, S' 中的原像,则 $X \times_S S'$ 可以由 $X_i \times_{U_i} U_i'$ 粘接而成.而每个 $X_i \times_{U_i} U_i'$ 在 U_i' 上有限型,因此 $X \times_S S'$ 在 S' 上有限型.
 - (e) 若 $U = \operatorname{Spec} A$ 是 S 中的仿射开集. 设其在 X,Y 中的原像分别是 X_0,Y_0 , 则其在 $X \times_S Y$ 中的原像就是 $X_0 \times_U Y_0$. 因此若 X_0,Y_0 分别有若干个在 A 上有限型的环对应的仿射开集覆盖,则 $X_0 \times_U Y_0$ 就由这些环的 张量积对应的仿射开集覆盖,从而 $X \times_S Y$ 在 S 上有限型.
 - (f) 对 Z 中任意仿射开集 $U = \operatorname{Spec} A$, 若 $V = \operatorname{Spec} B \subseteq g^{-1}(U)$, $W = \operatorname{Spec} A = \subseteq f^{-1}(V)$ 分别是 Y, X 中的仿射开集,则由 $g \circ f$ 有限型即知 C 在 A 上有限生成. 而 $A \to C$ 穿过 B, 因此 C 在 B 上有限生成. 而 Y 中满足这样条件的 V 可以覆盖 Y, 因此 f 局部有限型. f 又拟紧, 从而有限型.
 - (g) 若 Y 可以由有限个仿射开集 $V_i = \operatorname{Spec} A_i$ 覆盖, 其中每个 A_i Noether, 则由于 f 有限型, 每个 $f^{-1}(V_i)$ 又可以由有限个仿射开集 $U_{ij} = \operatorname{Spec} B_{ij}$ 覆盖, 其中 B_{ij} 在 A_i 上有限生成. 由 Hilbert 基定理, B_{ij} Noether. 因此 X Noether.
- **习题 3.14.** 若 X 是域上的有限型概形, 证明 X 的闭点稠密. 给出反例说明这个结论对一般的概形并不成立.

证明. 我们断言: 若 X 是域 k 上的有限型概形, 则点 $p \in X$ 是闭点当且仅当其剩余域是 k 的有限扩张.

事实上, 若 k(p) 是 k 的有限扩张, 则对 X 中任意包含 p 的仿射开集 $U = \operatorname{Spec} A$, 若 p 对应 $\mathfrak{p} \subseteq A$, 则 A/\mathfrak{p} 的分式域同构于 k(p). 但 $A/\mathfrak{p} \to k(p)$ 又是 k-同态, 因此 A/\mathfrak{p} 在 k 上有限, 从而必定是域. 也就是说, p 在 X 的任意仿射子集中闭, 从而在 X 中闭.

反之, 若 $p \in X$ 是闭点, 则任取包含 p 的仿射开集 Spec A, 设 p 对应 $\mathfrak{p} \subseteq A$, 则由 Hilbert 零点定理即知 $k(p) = A/\mathfrak{p}$ 是 k 的有限扩张.

因此, 若 X 是域 k 上的有限型概形, 由于每个仿射开集中有 (相对的) 闭点, 而由上述断言可知若 $p \in X$ 在某个开集中闭, 就一定是闭点; 因此 X 中的闭点稠密.

若去除 X 的有限型条件,则任取离散赋值环 A,那么 $\mathrm{Spec}\,A$ 即不满足条件(因为存在非幂零但属于所有极大理想的元素).

习题 3.15. 令 X 为域 k (不一定代数闭) 上有限型概形.

- (a) 证明以下三个条件等价 (若它们成立, 则称 X 几何不可约):
 - (i) $X \times_k \bar{k}$ 不可约, 其中 \bar{k} 表示 k 的代数闭包.
 - (ii) $X \times_k k_s$ 不可约, 其中 k_s 表示 k 的可分闭包.
 - (iii) 对 k 的任意扩域 K, $X \times_k K$ 都不可约.
- (b) 证明以下三个条件等价 (若它们成立, 则称 X 几何既约):
 - (i) $X \times_k \bar{k}$ 既约, 其中 \bar{k} 表示 k 的代数闭包.
 - (ii) $X \times_k k_p$ 既约, 其中 k_p 表示 k 的完美闭包.
 - (iii) 对 k 的任意扩域 K, $X \times_k K$ 都既约.
- (c) 如果 $X \times_k \bar{k}$ 整, 就说 X 几何整. 给出一个既不几何不可约也不几何既约的整概形.
- 证明. (a) 我们使用 Stacks Project 中的Stacks Project 037K: 对于 k 上的环 R, 若 $S \otimes_k k_p$ 的素谱不可约,则 对任意扩域 K/k, $S \otimes_k K$ 的素谱不可约. 也就是说 $X = \operatorname{Spec} R$ 时命题成立.

对于任意的 X, 设其可以被仿射开集 $\{U_i\}$ 覆盖, 则对任意的 K, $X \times_k K$ 都可以被 $V_i = \pi^{-1}(U_i) \cong U_i \times_k K$ 覆盖. 且对任意 i, j, 易知 $V_i \cap V_j \cong (U_i \cap U_j) \times_k K$ 非空当且仅当 $U_i \cap U_j$ 非空.

而 $X \times_k K$ 不可约当且仅当每个 V_i 都不可约并且 $V_i \cap V_j$ 都非空. 因此即证.

(b) 类似 (a): 我们使用Stacks Project 030V: 对于 k 上的环 S, 若 $S \otimes_k k_s$ 既约, 则对任意扩域 K/k, 都有 $S \otimes_k K$ 既约. 换言之, 当 X 仿射时, 命题成立.

当 X 是任意概形时, 类似于 (a), 并且此时 X 既约当且仅当其可以被既约开子概形覆盖. 因此即证.

(c) 设 $k=\mathbb{F}_p(x), A=\mathbb{F}_q(x^{1/p}), X=\operatorname{Spec} A,$ 其中 p 是素数, $q=p^2$. 则 A 是整环, 因此 X 是整概形.

那么 $X \times_k \mathbb{F}_p(x^{1/p}) = \operatorname{Spec}(A \otimes_k \mathbb{F}_p(x^{1/p}))$,而

$$A \otimes_k \mathbb{F}_p(x^{1/p}) \cong \mathbb{F}_q(y, z)/(y^p - z^p) \cong \mathbb{F}_q(y, z)/((y - z)^p)$$

不既约, 因此 X 不既约.

而 $X \times_k \mathbb{F}_q = \operatorname{Spec}(A \otimes_k \mathbb{F}_q)$, 其中 $A \otimes_k \mathbb{F}_q \cong (\mathbb{F}_q \otimes_k \mathbb{F}_q)(x) \cong (\mathbb{F}_q \oplus \mathbb{F}_q)(x)$ 并非不可约, 因此 X 并不几何不可约.

习题 3.16 (Noether 归纳法). 设 X 为 Noether 拓扑空间, 并令 $\mathcal P$ 是对 X 的闭集定义的性质. 假设对 X 的任意 闭子集 Y, 若 Y 的所有真闭子集都满足 $\mathcal P$, 则 Y 也满足 $\mathcal P$ (特别地, 空集必定满足 $\mathcal P$). 那么 X 的所有闭子集都满足 $\mathcal P$.

证明. 反证. 若不然, 则由于 X Noether, 存在极小的不满足 \mathcal{P} 的闭子集, 矛盾.

习题 3.17 (Zariski 空间). 若拓扑空间 X 是 Noether 空间, 且其任意非空不可约闭集都有唯一的一般点, 则称其为 Zariski 空间.

例如说,令 R 是离散赋值环, $T=\mathrm{sp}(\mathrm{Spec}\,R)$. 则 T 包含两个点 $t_0=$ 极大理想, $t_1=$ 零理想.其开集有 Ø, $\{t_1\}$,T. 其是不可约 Zariski 空间,具有一般点 t_1 .

- (a) 证明若 X 是 Noether 概形, 则 sp(X) 是 Zariski 空间.
- (b) 证明 Zariski 空间的每个极小的非空闭子集都是单点集. 我们将这些点称之为闭点.
- (c) 证明 Zariski 空间满足 To 公理: 任意两个点都可以用开集区分.

- (d) 若 X 是不可约 Zariski 空间,则其一般点包含在任意非空开集中.
- (e) 若 x_0 , x_1 是拓扑空间 X 中的点, $x_0 \in \{x_1\}^-$, 就称 x_0 是 x_1 的特殊化,记作 $x_1 \rightsquigarrow x_0$. 我们也说 x_1 特殊化为 x_0 ,以及 x_1 是 x_0 的一般化.现设 X 是 Zariski 空间.证明由特殊化定义的偏序 ($x_1 > x_0$ 当且仅当 $x_1 \rightsquigarrow x_0$)中的极小点就是 X 的不可约分支的一般点.证明闭集包含其所有点的特殊化 (即对特殊化稳定).同理,开集对一般化稳定.
- (f) 令 t 是命题 (2.6) 中定义的拓扑空间的函子. T若 X 是 Noether 空间, 证明 t(X) 是 Zariski 空间. 进一步地, X 是 Zariski 空间当且仅当 $\alpha: X \to t(X)$ 是同胚.
- 证明. (a) 概形的不可约闭集都有一般点, 因此是 Zariski 空间.
 - (b) 设 X 是 Zariski 空间, Z 是其极小非空闭子集. 则 Z 中所有点都是 Z 的一般点, 因此由一般点的唯一性即 知 Z 是单点集.
 - (c) 若 x, y 不能被区分, 则他们有一样的闭包, 这个闭包以这两个点为一般点, 矛盾.
 - (d) 平凡.
 - (e) 平凡.
 - (f) t 给出了 X 的闭集到 t(X) 的闭集的双射,因此若 X Noether,则 t(X) 也 Noether,此时 t(X) 按定义当然是 Zariski 空间.
 - 若 X 是 Zariski 空间, 则 α 是闭的连续双射, 所以是同胚. 反过来若 α 是同胚, 则 X 当然是 Zariski 空间.

习题 3.18 (可构造集). 令 X 为 Zariski 空间. 记 $\mathscr F$ 是包含 X 的所有闭集且在有限交和取补集下封闭的最小集族. 我们将 $\mathscr F$ 中的集合称为 X 的可构造子集.

- (a) X 中的开集与闭集的交集称为局部闭集. 证明 X 的一个子集可构造当且仅当它可以写成局部闭集的有限不交并.
- (b) 证明 X 中的某个可构造集稠密当且仅当它包含一般点. 进一步地, 此时它一定包含某个非空开集.
- (c) X 的子集 S 是闭集当且仅当它可构造并且对特殊化封闭. 类似地, 子集 T 是开集当且仅当它可构造并且对一般化封闭.
- (d) 若 $f: X \to Y$ 是 Zariski 空间之间的连续映射, 则 Y 的任意可构造子集的原像也是 X 的可构造子集.
- 证明. (a) 集合 $S \subseteq X$ 可以写成局部闭集的有限不交并, 当且仅当它可以写成局部闭集的有限并, 当且仅当它可以由开集和闭集做有限次交和并操作得到, 当且仅当它属于 \mathcal{F} .
 - (b) 若 $S \subseteq X$ 是可构造的稠密集,由 (a), $S = \bigcup_{i=1}^{n} U_i \cap Z_i$,其中 U_i 是开集, Z_i 是闭集.那么 $X = \bar{S} = \bigcup_{i=1}^{n} \overline{U_i} \cap Z_i$. 因此存在 i 使得 $\overline{U_i} \cap Z_i = X$,即 $Z_i = X$ 且 U_i 在 X 中稠密.因此 X 的一般点 $\in U_i \subseteq S$.此时 S 包含非空开集 U_i .

反过来若 S 包含一般点, 则 S 稠密.

(c) 设 S 可构造并且对特殊化封闭. 设 Z 是 \bar{S} 中的不可约闭集. 由 (b), S 包含 Z 中的一般点, 因此由其对特殊化封闭即知 $Z \subseteq S$. 所以 $\bar{S} \subseteq S$, 从而 S 是闭集.

П

反过来, 闭集当然可构造且对特殊化封闭.

- (d) 平凡. 因为连续映射的原像保持闭集, 有限交和补集.
- **习题 3.19.** 可构造集的重要性由下述的 Chevally 定理给出: 设 $f: X \to Y$ 是 Noether 概形之间的有限型同态. 那么 X 的任意构造集的像仍是构造集. 特别地, f(X) 不一定是开集或者闭集, 但是一定是可构造集. 请按如下步骤证明该定理.
 - (a) 归约到在 X,Y 都是整的 Noether 仿射概形且 f 支配的情况下, 证明 f(X) 本身可构造.
 - (b) 这种情况下,通过如下交换代数结果证明 f(X) 包含 Y 的非空开子集: 若 $A \subseteq B$ 分别是 Noether 整环,且 B 是有限生成 A-代数.那么对任意 $b \ne 0 \in B$,存在 $a \in A$,满足:对任意将 A 映射到某个代数闭域 K 中的同态 $\varphi:A \to K$,只要 $\varphi(a) \ne 0$,就可以将其延拓为 $\varphi':B \to K$,使得 $\varphi'(b) \ne 0$. [提示:通过对 B 的生成元个数做归纳来证明这个代数结果.然后使用 b=1 的情况.]
 - (c) 通过对 Y 做 Noether 归纳来完成证明.

 $^{^1}$ 若 X 是任意拓扑空间, 则 t(X) 是 X 的所有不可约闭集构成的集合, t(X) 中的闭集形如 t(Y), 其中 Y 是 X 的闭集.

- (d) 给出一个如下的例子: $f: X \to Y$ 是代数闭域上的代数簇之间的态射, 而 f(X) 不开也不闭.
- 证明. (a) 设 $S \subseteq X$ 是构造集, 不妨设 $S = \bigcup U_i \cap Z_i$, 其中 U_i 是开集, Z_i 是闭集. 则只需要对每个 i, 证明 $f(U_i \cap Z_i)$ 可构造. 由于 X Noether, U_i 可以写作有限多个仿射开集 V_{ij} 的并. 只需证明 $f(V_{ij} \cap Z_i)$ 可构造. 而 $V_{ij} \cap Z_i$ 可以看作仿射概形 V_{ii} 的闭子概形.

这样, 我们就归约到了 X 本身是仿射概形, 且只需证明 f(X) 可构造的情况. 同理也可以归约到 X,Y 都仿射的情况. 再通过把 X,Y 替换为 $X_{\text{red}},Y_{\text{red}}$ 并取不可约分支, 即可假设 X,Y 整.

(b) 先证明这个代数结论. 通过对 B 在 A 上的生成元个数归纳, 只需要考虑 B = A[x] 或者 B = A[x]/(f(x)) 的情况, 其中 f 是首一不可约多项式. 设 $b = b(x) \in A[x]$, 而 $b(x)c(x) \equiv a \pmod{f(x)}$, 其中 $a \in A, c \in A[x]$. 则此 a 满足条件. 这样的 a, c(x) 的存在性可以由裴属定理保证, 或者说考虑 $\frac{c}{a} = b^{-1} \in (\operatorname{Frac} A)[x]/(f(x))$.

接下来设 $X = \operatorname{Spec} B, Y = \operatorname{Spec} A$. 由于 f 支配, 对应的映射 $A \to B$ 是单射. 取 b = 1, 则存在 $a \in A$ 满足上述命题条件. 此时若 $a \notin \mathfrak{p} \subset A$, 则 A/\mathfrak{p} 可以嵌入到某个代数闭域 K (其分式域的代数闭包), 因此给出了映射 $\varphi: A \to K$, 且 $\varphi(a) \neq 0$. 由上述命题, 此时 φ 可以延拓为 $\varphi': B \to K$. 因此 $f(\ker \varphi') \cap A = \ker \varphi = \mathfrak{p}$, 从 而 $D(a) \subseteq f(X)$.

(c) 由类似于 (a) 的方法, 可以将 (b) 推广为: 只要 $f: X \to Y$ 有限型, f(X) 就包含一个非空开集. 我们用 Noether 归纳法证明: 对 Y 中每个闭子集 $E, f(X) \cap E$ 可构造. 若 E 的每个真闭子集都具有此性质, 则考虑 $Z = f^{-1}(E)$ (配备任意闭子概形结构), 则 $f(X) \supseteq f(Z)$ 包含 E 中的非空开集 U. 因此由归纳假设, $f(X) \cap E = U \cup (f(X) \cap (E \setminus U))$ 可构造.

(d) 由去掉原点的直线到平面的嵌入的像不开也不闭.

习题 3.20 (维数). \Diamond X 为域 k (未必代数闭) 上的有限型整概形. 利用 $(I, \S 1)$ 中的结果 2 证明下列命题:

- (a) 对于 X 中的闭点 P, 有 dim X = dim \mathcal{O}_P . 对于环, dim 总是表示 Krull 维数.
- (b) 令 K(X) 表示 X 的函数域, 证明 $\dim X = \text{tr.d.} K(X)/k$.
- (c) 若 Y 是 X 的闭子集, 则 $\operatorname{codim}(Y, X) = \inf \{ \dim \mathcal{O}_{P,X} \mid P \in Y \}$.
- (d) 若 Y 是 X 的闭子集, 则 $\dim Y + \operatorname{codim}(Y, X) = \dim X$.
- (e) 若 U 是 X 的非空开子集, 则 $\dim U = \dim X$.
- (f) 若 k'/k 是域扩张, 则 $X' = X \times_k k'$ 的每个不可约分支都具有和 X 相同的维数.
- 证明. (a) 首先考虑到 $\dim X = \sup\{n \mid V_0 \subseteq V_1 \subseteq \cdots \subseteq V_n\}$, 其中 V_k 都是 X 中的不可约闭集. 取闭集的一般点即知 $\dim X = \sup\{n \mid P_0 \rightsquigarrow P_1 \rightsquigarrow \ldots \rightsquigarrow P_n\}$. 而对于点 P, 易知有 $\dim \mathcal{O}_P = \sup\{n \mid P_0 \rightsquigarrow P_1 \rightsquigarrow \ldots \rightsquigarrow P_n = P\}$. 因此 $\dim X = \sup_{P \in X} \dim \mathcal{O}_P$. 但对 X 中任意仿射开集 $\operatorname{Spec} A$, 有 $\dim A = \operatorname{tr. d. Frac}(A)/k = \operatorname{tr. d. } K(X)/k$, 且对于 A 中任意极大理想 \mathfrak{m} 有 $\dim A_{\mathfrak{m}} = \operatorname{height} \mathfrak{m} = \dim A$. 因此对任意闭点 P, $\dim X = \dim \mathcal{O}_P = \operatorname{tr. d. } K(X)/k$.
 - (b) 在 a 中已证.
 - (c) 由定义, $\operatorname{codim}(Y, X) = \inf_{V \to \neg \emptyset \subseteq Y} \operatorname{codim}(V, X)$. 取一般点即证.
 - (d) 对任意点 P, 设其有仿射邻域 $\operatorname{Spec} A$, 在 A 中对应素理想 \mathfrak{p} . 则由 $\operatorname{height} \mathfrak{p} + \operatorname{dim} A/\mathfrak{p} = \operatorname{dim} A$ 即知 $\operatorname{dim}(\overline{\{P\}} \cap A) + \operatorname{dim} \mathscr{O}_{P,X} = \operatorname{dim} X$. 由于这对任意仿射邻域成立,即知 $\operatorname{dim}(\overline{\{P\}} + \operatorname{dim} \mathscr{O}_{P,X} = \operatorname{dim} X$. 再由 c 即证.
 - (e) U 必定包含某个仿射开集, 而仿射开集与 X 具有相同维数.
 - (f) 由 e, 仅需考虑仿射开集情况. 此时利用 $\dim A = \operatorname{tr.d.Frac}(A)/k$ 易证.

习题 3.21. 令 R 为离散赋值环, 且包含其剩余域 k. 令 $X = \operatorname{Spec} R[t]$ 为 $\operatorname{Spec} R$ 上的仿射直线. 证明习题 3.20 中的 (a), (d), (e) 对 X 不成立.

证明. 设 R 的素理想为 (0), $\mathbf{m} = (a)$. 则 R[t] 的素理想有 (0), (f), (a,g). 其中 f 是 R 上的不可约多项式, g 是 k 上的不可约多项式. 因此 $\dim X = \dim R[t] = 2$.

然而 R[t] 中, $(t\varphi - 1)$ 也是极大理想 (因 $R[t]/(t\varphi - 1) \cong R_{\varphi}$ 是域), 但其局部环维数为 1. 因此 a 不成立. 取 $Y = \{[(t\varphi - 1)]\}$, 则 d 不成立.

取 $U = D(\varphi)$, 则 $\mathcal{O}_{|U} \cong \operatorname{Spec} F[t]$, 其中 $F = \operatorname{Frac}(R)$. 因此 $\dim U = 1$, e 不成立.

习题 3.22 (态射纤维的维数). 令 $f: X \to Y$ 为 k 上有限型整概形之间的支配映射.

 $^{^{2}}$ 若 B 是域 B 上的有限生成整环,则 $\dim B = \operatorname{tr.d.} K(B)/k$,且对任意素理想 $^{\mathfrak{p}}$ 有 height $^{\mathfrak{p}}$ + $\dim B/\mathfrak{p}$ = $\dim B$.

- (a) 令 Y' 为 Y 中的不可约闭子集, 其一般点 η' 属于 f(X). 令 Z 为 $f^{-1}(Y')$ 的不可约分支, 且 $\eta' \in f(Z)$, 证明 $\operatorname{codim}(Z,X) \leq \operatorname{codim}(Y',Y)$.
- (b) 令 $e = \dim X \dim Y$ 为 X 在 Y 上的相对维数. 对任意 $y \in f(X)$, 证明纤维 X_y 的不可约分支的维数不小于 e. [提示: 令 $Y' = \{y\}^-$, 使用 (a) 和习题 3.20 (b).]
- (c) 证明存在 X 的稠密开子集 U, 使得对任意 $y \in f(U)$, 都有 $\dim U_y = e$. [提示: 首先规约到 X,Y 都仿射的情况. 记 $X = \operatorname{Spec} A, Y = \operatorname{Spec} B$, 则 A 是有限生成 B 代数. 取 K(A) 在 K(B) 上的一组超越基 $t_1, ..., t_e \in A$, 令 $X_1 = \operatorname{Spec} B[t_1, ..., t_e]$. 则 X_1 同构于 Y 上的 e 维仿射空间, 且映射 $X \to X_1$ 一般有限. 使用习题 3.7.]
- (d) 回到原本的映射 $f: X \to Y$. 对任意整数 h, 令 $E_h \subseteq X$ 为满足下述条件的点 x 构成的子集: 记 y = f(x), 存 在 X_y 的包含 x 的不可约分支 Z, 且 dim $Z \ge h$. 证明:
 - 1. $E_e = X$ (使用上面的 (b));
 - 2. 若 h > e, 则 E_h 在 X 中不稠密.
 - 3. 对任意 h, Eh 闭 (对 dim X 做归纳).
- (e) 证明如下的 Chevalley 定理 (见 Cartan, Chevalley [1, exposé 8]): 对任意整数 h, 令 $C_h = \{y \in Y \mid \dim X_y = h\}$. 则 C_h 可构造, 且 C_e 包含 Y 的某个稠密开子集.
- 证明. (a) 按定义, $\operatorname{codim}(Z,X) = \bigcup Z$ 的一般点 θ 结尾的最长特殊化序列长度, $\operatorname{codim}(Y',Y)$ 同理. 而 f 保持特殊化 (连续映射都保持特殊化), 且 $\eta' \in f(Z) \Longrightarrow f(\theta) \rightsquigarrow \eta'$. 因此即证.
 - (b) 作为拓扑空间, X_y 同胚于 $f^{-1}(y)$. 因此若 $Z \in X_y$ 的不可约分支, 则 Z 同胚于 $\overline{f^{-1}(y)}$ 的某个不可约分支 Z' 与 $f^{-1}(y)$ 的交集. 又由 3.20 (e),

$$\dim Z = \dim(Z' \cap f^{-1}(y)) = \dim \overline{Z' \cap f^{-1}(y)} = \dim Z'.$$

而由 (a) 与 3.20 (d), 取 $Y' = \{y\}$ 得

$$\dim Z' = \dim X - \operatorname{codim}(Z', X) \ge e + \dim Y - \operatorname{codim}(Y', Y) = e + \dim Y' \ge e.$$

(c) 任取 Y 中仿射开集和其原像中仿射开集以替换 Y 和 X, 则 f 仍然支配, 且只要这种情况成立, 原命题显然成立. 记 $X = \operatorname{Spec} A, Y = \operatorname{Spec} B$.

此时由 3.20 (b), $e = \text{tr.d.Frac}\,A/k - \text{tr.d.Frac}\,B/k = \text{tr.d.Frac}\,A/\text{Frac}\,B$. 按提示, 取 $t_1, ... t_e \in A$ 使得它们是 Frac(A) 在 Frac(B) 上的超越基. 令 $X_1 = \text{Spec}\,B[t_1, ... t_e]$, 则 X_1 是 Y 上的 e 维仿射空间且 $g: X \to X_1$ 一般有限 (X_1 的一般点的原像恰仅包含 X 的一般点). 由 3.7, 存在 X_1 中的稠密开集 V 使得 $U = g^{-1}(V) \to V$ 有限. 那么若 $y \in f(U)$, 则 U_y 在 V_y 上有限且支配; 而 V_y 是 $\text{Spec}\,k(y)[t_1, ... t_e]$ 中的稠密开集, 因此 $\dim U_v = \dim V_v = e$.

- (d) 1. \pm (b), $E_e = X$.
 - 2. 由 (c), 若 h > e, 则 $E_h \subseteq X \setminus U$. 因此 E_h 不稠密.
 - 3. 我们对 dim X 做归纳.

若 $h \le e$, 则由 (a) 已证完. 否则以 (c) 的方法取出一开集 $U \subseteq X$, 则 $U \cap E_h = \emptyset$. 由于 X Noether, $X \setminus U$ 有有限个不可约分支 $\{X^j\}$, 只需证明对其中每个不可约分支, 都有 $X^j \cap E_h$ 在 X^j 中闭.

我们赋予 X^j 既约诱导闭子概形结构, 记 $Y^j=f(X^j)$, 也赋予既约诱导闭子概形结构. 那么 X^j,Y^j 也是 k 上有限型整概形, 且 $f|_{X^j}:X^j\to Y^j$ 支配.

设把 X,Y 替换为 X^{j},Y^{j} 后定义出的 E_{h} 为 E_{h}^{l} , 原本的 E_{h} 仍记为 E_{h} . 显然有 $E_{h}^{l} \subseteq X^{j} \cap E_{h}$.

另一方面,若 $x \in X^j \cap E_h$,记 y = f(x),则存在 X_y 的包含 x 的不可约分支 Z 具有维数 h. 若 $y \notin U$,则 X_y 是若干个 X_y^k 的并,因此不可约分支 Z 是 X_y^j 的子集,从而 $x \in E_h^j$. 即使 $y \in U$,也一定有 $Z \cap U_y = \emptyset$, 否则 $\dim Z = \dim(Z \cap U_y) \leq \dim U_y = e$. 接下来同上即知 $x \in E_h^j$.

因此我们知道 $E_h \cap X^j = E_h^j$. 由于 $\dim X^j < \dim X$, 按归纳假设知 $E_h \cap X^j$ 闭. 因此由数学归纳法, 结论成立.

[这里没有归纳起点, 因为 $\dim X = 0$ 的时候 U = X = 单点集.]

(e) 由于 E_h 闭, 由 3.19, $C_h = f(E_h) \setminus f(E_{h+1})$ 可构造. 而 Y 的一般点 $\in C_e$, 因此 C_e 稠密. 由 3.18 (b), C_e 包含某个稠密开集.

习题 3.23. 设 V,W 是代数闭域 k 上的概形, $V \times W$ 是其乘积 (在 I, 习题 3.15, 3.16 中定义), t 是 2.6 中的函子, 则 $t(V \times W) = t(V) \times_{\text{Spec } k} t(W)$.