Constructing Lagrangian torus fibrations

Jonny Evans

joint with Mirko Mauri

Theorem (Gross 1999)

Many Calabi-Yau 3-folds admit topological torus fibrations over S^3 with singular fibres over a trivalent graph.

Question

- ► Can we make these fibrations Lagrangian?
- ► Even just (semi-)locally?

Positive vertex: Yes!

$$F: \mathbb{C}^3 \setminus \{xyz - 1 = 0\} \to \mathbb{R}^3$$

$$F(x, y, z) = (|x|^2 - |y|^2, |x|^2 - |z|^2, |xyz - 1|)$$

Negative vertex: ?

$$F: \mathbb{C}^3 \setminus \{(xy-z-1)z=0\} \to \mathbb{R}^3?$$

Negative vertex: Yes!

$$F: \mathbb{C}^3 \setminus \{(xy-z-1)z=0\} \to \mathbb{R}^3$$

Evans & Mauri 2019

Proof

Proof

1. Lagrangian skeleton is Gross fibre.

Morse-Bott

Index 1

Index 0

Proof

- 1. Lagrangian skeleton is Gross fibre.
- 2. Contact boundary has LTF with three nodal fibres.

Compactifying normal crossing divisor with LTF

