(FILE 'HOME' ENTERED AT 11:37:05 ON 20 DEC 2002)

	FILE 'MEDL	INE, CANCERLIT, BIOTECHDS, CAPLUS, EMBASE' ENTERED AT 11:38:41						
	ON 20 DEC 2002							
L1	1301	S POLYDENTATE						
L2	3599481	S DNA OR NUCLEIC ACID OR GENE OR VECTOR						
L3	22	S L1 AND L2						
L4	13	DUP REM L3 (9 DUPLICATES REMOVED)						
L5	682114	S CARRIER OR VECTOR						
L6	. 10	S L5 AND L1						
ь7	9	DUP REM L6 (1 DUPLICATE REMOVED)						
L8	1	S L1 AND POLYLYSINE						
L9	115213	S GENE DELIVERY OR GENE THERAPY OR DNA TRANSFE?						
L10	0	S L9 AND L1						
L11	76929	S CROWN ETHER OR POLYETHER						
L12	15	S L11 AND POLYLYSINE						
L13	15	DUP REM L12 (0 DUPLICATES REMOVED)						
L14	1084	S L11 AND L5						
L15	64	S L14 AND L2						
L16	55	DUP REM L15 (9 DUPLICATES REMOVED)						
L17	6	S L16 AND L9						
L18	6	DUP REM L17 (0 DUPLICATES REMOVED)						

(FILE 'HOME' ENTERED AT 11:54:04 ON 20 DEC 2002)

FILE 'MEDLINE, CANCERLIT, CAPLUS, EMBASE, BIOTECHDS' ENTERED AT 11:54:18 ON 20 DEC 2002

L1 4035 S CRYPTA?

L2 115213 S GENE THERAPY OR GENE DELIVERY OR DNA TRANSFE?

L3 5 S L2 AND L1

L4 2 DUP REM L3 (3 DUPLICATES REMOVED)

L5 0 S L1 AND CRIPTATE# L6 0 S L1 AND CRIPTAT?

L7 0 S CRIPTATES

L8 0 S CRIPTATE

```
L13 ANSWER 5 OF 15 CAPLUS COPYRIGHT 2002 ACS
    2000:68361 CAPLUS
AN
    132:127724
DN
     Chelating systems for use in the delivery of compounds to cells
TI
IN
    Wolff, Jon A.
    Mirus Corporation, USA
PA
SO
     PCT Int. Appl., 39 pp.
     CODEN: PIXXD2
DT
    Patent
    English
LA
FAN.CNT 1
    PATENT NO.
                   KIND DATE
                                        APPLICATION NO. DATE
     _____ ___
    WO 2000003738 A1 20000127
                                         WO 1999-US16095 19990716
PΙ
        W: JP
        RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,
            PT, SE
                                         EP 1999-935616 19990716
                          20010516
     EP 1098667
                      A1
        R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
            IE, SI, LT, LV, FI, RO
PRAI US 1998-93230P
                     P
                           19980717
    WO 1999-US16095
                    W
                           19990716
     Chelator contg. compds. are utilized in the delivery of mols., polymers,
AB
    nucleic acids and genes to animal cells. At least one chelator such as
     crown ether is attached to a polymer and then assocd.
    with another polymer such as DNA. An ion is then added to the mixt.
     thereby forming condensed DNA. In condensed form and in complex with the
     chelator, DNA can be delivered to a cell. Polyacrylamidobenzo-18-crown-6
    was prepd. and cation binding as well as interaction with
```

polylysine and DNA of this crown ether was

studied.

```
L13 ANSWER 11 OF 15 CAPLUS COPYRIGHT 2002 ACS
```

AN 1997:479337 CAPLUS

DN 127:99879

TI Conjugates of drugs with peptides and polyethers

IN Sinn, Hannsjoerg; Maier-Borst, Wolfgang; Schrenk, Hans-Hermann; Stehle, Gerd; Fiebig, Heinz-H.

PA Deutsches Krebsforschungszentrum Stiftung Des Oeffentlichen Rechts, Germany

SO Ger. Offen., 8 pp.

CODEN: GWXXBX

DT Patent

LA German

FAN.CNT 1

FAN.CNT 1						
	PATENT NO.	KIND	DATE	APPLICATION NO. DATE		
ΡI	DE 19548114	A1	19970626	DE 1995-19548114 19951221		
	DE 19548114	C2	20000427			
	WO 9723240	A2	19970703	WO 1996-DE2487 19961220		
		A3	19971009			
	W: JP, US					
		CH, DE	, DK, ES, FI	I, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE		
	EP 952853	A2	19991103	EP 1996-946222 19961220		
	R: AT, BE,	CH, DE	, DK, ES, FF	R, GB, IT, LI, NL, SE		
	JP <u>200050</u> 2109	T2	20000222	JP 1997-523224 19961220		
	us 6395254	B1	20020528	US 1999-308103 19990504		
PRAI	DE 1995-19548114	Α	19951221			
	WO 1996-DE2487	W	19961220			

The title conjugates facilitate the uptake of drugs and their enrichment in tissues (e.g., tumors, inflamed tissues). The peptides contain preferably 7-30 amino acid residues. The polyethers are preferably of 2000-5000 mol. wt.; these confer good water soly. on the product. Such conjugates have the advantage of being nonimmunogenic. A description is given of a conjugate composed of polylysine, 8 mols of aminofluorescein, 4 mols. of methoxy polyethyleneglycol, and 2 mols. of 111In-labeled DTPA, which was used as a scintigraphic agent that was selectively taken up by tumor tissue in rats.

```
L4 ANSWER 1 OF 13 CAPLUS COPYRIGHT 2002 ACS
```

AN 2002:669607 CAPLUS

DN 137:211893

TI Nucleosides comprising polydentate ligands

IN Meade, Thomas J.; Welch, Thomas W.

PA Molecular Dynamics, Inc., USA

SO U.S., 40 pp., Cont.-in-part of U.S. Ser. No. 659,987, abandoned. CODEN: USXXAM

DT Patent

LA English

FAN.CNT 2

1724.	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PΙ	us 6444423)	В1	20020903	US 1998-191785	19981113
PRAI	US 1996-475051	A 1	19960607		
	US 1996-659987	B2	19960607		

AB The present invention provides for the selective covalent modification of nucleic acids with redox active moieties such as transition metal complexes. Electron donor and electron acceptor moieties are covalently bound to the ribose-phosphate backbone of a nucleic acid at predetd. positions. The resulting complexes represent a series of new derivs. that are bimol. templates capable of transferring electrons over very large distances at extremely fast rates. These complexes possess unique structural features which enable the use of an entirely new class of bioconductors and photoactive probes.

ANSWER 5 OF 13 BIOTECHDS COPYRIGHT 2002 THOMSON DERWENT AND ISI L4AN2001-02530 BIOTECHDS In vitro cleavage of nucleic acid sequence useful to ΤI prepare smaller nucleotide fragments for cloning, involves contacting the sequence to be cleaved with cationic dinuclear metal complex with polydentate ligands; pna cleavage and RNA cleavage method for use in diagnosis and therapy ΑU Que Jr L; Hanson R S; Schnaith L M T PΑ Univ.Minnesota Minneapolis, MN, USA.

OS 6143679 7 Nov 2000
US 1998-123848 28 Jul 1998 LO PΙ ΑI US 1998-123848 28 Jul 1998 PRAI DTPatent English LA OS WPI: 2001-006446 [01] An in vitro method (I) for cleaving a nucleotide sequence (NS) involves AΒ contacting (NS) to be cleaved with a cationic dinuclear metal complex with one or two polydentate ligands to cleave NS in its phosphate backbone to form a hydroxyl end and a phosphate end, where the polydentate ligand is tethered to a NS recognition element. is used for DNA cleavage or RNA cleavage, preferably sequence-specific cleavage i.e. site-specific cleavage, to give smaller nucleotide fragments for cloning, sequencing, and other molecular biology applications. (I) is useful as a diagnostic tool for detecting certain DNA or RNA viruses such as hepatitis virus, measles virus and to detect specific genes e.g. oncogenes and other genes associated with specific genetic abnormalities in biological fluid or tissue samples, and as therapeutic tools to destroy target molecules, e.g. viruses and oncogenes. (I) is performed in the presence of a dioxygen source such as

oxygen or hydrogen peroxide in the presence of a reductant and NS to be

cleaved is a ds DNA supercoiled sequence and the cleavage is ds

cleavage effective to give linear DNA. (18pp)

```
ANSWER 9 OF 13 BIOTECHDS COPYRIGHT 2002 THOMSON DERWENT AND ISI
L4
     1998-02535 BIOTECHDS
AN
      Nucleic acids covalently modified with electron donors and acceptors;
ΤI
          DNA probe for use in hybridization, diagnostic or
         bioconductor
      Meade T J; Welch T W
ΑU
      California-Inst.Technol.
PA
      Pasadena, -CA, USA.
LO
PI W0 9746568 11 Dec 1997
     WO 1997-US9739 4 Jun 1997
ΑI
PRAI US 1996-659987 7 Jun 1996
DT
      Patent
LA
      English
     WPI: 1998-042109 [04]
OS
     A nucleoside containing a covalently attached polydentate
AΒ
      ligand (CAPL) is claimed. The ligand is attached at the 2' or 3'
      position of the nucleoside. Also claimed are: a phosphoramidite
     nucleoside containing a CAPL; a composition of a nucleoside containing a
      CAPL, where the nucleoside is covalently attached to control pore glass
      (CPG); a composition of an oligonucleotide (oligo) covalently attached to
      CPG, where at least 1 nucleoside of the oligo is polydentate
      -modified; a composition of nucleoside, oligo or phosphoramidite
     nucleoside with a transition metal chelated to the polydentate
     nucleoside; a ss nucleic acid containing at least 1
     electron donor and at least 1 electron acceptor attached via
     polydentate nucleoside, a terminal base or the 2' or 3' position
     of a ribose of the ribose-phosphate backbone; a composition of a ss
     nucleic acid containing at least 1 electron donor and a
      ss nucleic acid with at least 1 electron acceptor;
     production of nucleic acid with electron transfer
     moiety attached; and detecting a target sequence by hybridizing a ss
     nucleic acid containing at least 1 electron donor and
```

electron acceptor. (81pp)

DATE: Friday, December 20, 2002 Printable Copy Create Case

Set Name	Query	Hit Count	Set Name result set				
DB=USPT,PGPB,JPAB,EPAB,DWPI; PLUR=YES; OP=ADJ							
<u>L32</u>	L31 and l12	9	<u>L32</u>				
<u>L31</u>	L30 with 18	38	<u>L31</u>				
<u>L30</u>	L29 with 123	349	<u>L30</u>				
<u>L29</u>	polycationic or polymer	1398472	<u>L29</u>				
<u>L28</u>	L27 with 15	14	<u>L28</u>				
<u>L27</u>	L23 with 18	713	<u>L27</u>				
<u>L26</u>	124 and 112	2	<u>L26</u>				
<u>L25</u>	124 same 112	0	<u>L25</u>				
<u>L24</u>	L23 with (polylysine or polyamine)	50	<u>L24</u>				
<u>L23</u>	chelator	7054	<u>L23</u>				
<u>L22</u>	L21	3	<u>L22</u>				
<u>L21</u>	120 with 15	3	<u>L21</u>				
<u>L20</u>	L19 with (polylysine or polyamine)	240	<u>L20</u>				
<u>L19</u>	EDTA	64247	<u>L19</u>				
<u>L18</u>	L17 with 14	7	<u>L18</u>				
<u>L17</u>	coordination sphere	465	<u>L17</u>				
<u>L16</u>	14 with more than	0	<u>L16</u>				
<u>L15</u>	112 and 111	3	<u>L15</u>				
<u>L14</u>	112 same 111	0	<u>L14</u>				
<u>L13</u>	L12 with 111	0	<u>L13</u>				
<u>L12</u>	gene therapy or gene delivery or gene transfe\$	29892	<u>L12</u>				
<u>L11</u>	17 with 14	48	<u>L11</u>				
<u>L10</u>	18 same 16	2	<u>L10</u>				
<u>L9</u>	L8 with 16	0	<u>L9</u>				
<u>L8</u>	dna or plasmid or nucleic or gene or polynucleotide	262918	<u>L8</u>				
<u>L7</u>	dna or plasmid or nucleic or gene or polynucleotide	262918	<u>L7</u>				
<u>L6</u>	L5 with l4	421	<u>L6</u>				
<u>L5</u>	conjugated or complexed or electro\$	1599359	<u>L5</u>				
<u>L4</u>	polydentate ligand or crown ether	7465	<u>L4</u>				
<u>L3</u>	6143879.pn.	2	<u>L3</u>				
<u>L2</u>	6444423.pn.	1	<u>L2</u>				
<u>L1</u>	6395254.pn.	2	<u>L1</u>				

END OF SEARCH HISTORY