0.1. Functions

- 0.1.1. Definition. A function $f: X \to Y$ is called
 - injective if $f(x_1) = f(x_2)$ implies that $x_1 = x_2$ (equivalently, if $x_1 \neq x_2$ then $f(x_1) \neq f(x_2)$).
 - *surjective* if for every $y \in Y$, there exists $x \in X$ such that f(x) = y.
 - · bijective if it is both injective and surjective.

If f is bijective, we denote its inverse function by f^{-1} .

1.1. Symmetries of graphs

- 1.1.1. Definition. (similar to [L, §9]). A graph is a finite set of vertices joined by edges. We will assume that there is at most one edge joining two given vertices and no edge joins a vertex to itself. The valency of a vertex is the number of edges emerging from it.
- 1.1.3. Definition. A symmetry of a graph is a permutation of the vertices that preserves the edges. More precisely, let V denote the set of vertices of a graph. Then a symmetry is a bijection $f: V \to V$ such that $f(v_1)$ and $f(v_2)$ are joined by an edge if and only if v_1 and v_2 are joined by an edge.

1.2. Groups and Examples

1.2.1. Definition. [J, $\S 4.2$] Let S be any nonempty set. An operation * on S is a rule which, for every ordered pair (a, b) of elements of S, determines a unique element a*b of S. Equivalently, if we recall that

$$S \times S := \{(a, b) \mid a, b \in S\},\$$

then an operation is a function $S \times S \rightarrow S$.

- 1.2.3. Definition. (Definition of a Group) [J, $\S4.3$] We say that a nonempty set G is group under * if
 - G1. (Closure) * is an operation, so $g * h \in G$ for all $g, h \in G$.
 - G2. (Associativity) g * (h * k) = (g * h) * k for all $g, h, k \in G$.
 - G3. (Identity) There exists an identity element $e \in G$ such e * g = g * e = g for all $g \in G$.
 - G4. (Inverses) Every element $g \in G$ has an inverse g^{-1} such that $g * g^{-1} = g^{-1} * g = e$.

Further, if G is a group, the number of elements in G is written |G|, and is called the order of G.

1.2.4. Theorem. The symmetries of a graph forms a group (under composition).

1.3. Symmetries of regular n-gons (=dihedral groups)

1.3.2. The dihedral group. Consider now a regular n-gon (where $n \ge 3$). Its symmetry group is called the dihedral group D_n . It has precisely 2n elements,

1.4. Symmetries of finite sets (=the symmetric group)

1.4.1. Symmetric groups. A symmetry of a set X of n objects is a permutation (i.e. a bijection $X \to X$). The set of all symmetries of X is denoted S_n . It has precisely n! elements.

1.5. (Rotational) Symmetries of regular solids

Recall [L, p77–78] that there are five platonic solids "fire, earth, air, ether and water", convex bodies whose faces are all the same regular n-gon, where every vertex is identical. They are:

	Faces	Edges	Vertices	Faces per vertex
tetrahedron	4 triangles	6	4	3
hexahedron	6 squares	12	8	3
octahedron	8 triangles	12	6	4
dodecahedron	12 pentagons	30	20	3
icosahedron	20 triangles	30	12	5

1.6. Symmetries of vector spaces

- 1.6.1. Definition. The set of invertible $n \times n$ matrices with coefficients in \mathbb{R} is denoted $GL(n,\mathbb{R})$. Similarly, if p is a prime, then the set of invertible $n \times n$ matrices with coefficients in \mathbb{Z}_p is denoted $GL(n,\mathbb{Z}_p)$.
- 1.6.2. Theorem. $GL(n, \mathbb{R})$ is a group under matrix multiplication.

Similarly, when p is a prime, $GL(n, \mathbb{Z}_p)$ is a group under matrix multiplication.

2.1. First basic properties

- 2.1.1. Lemma. Let G be a group. If $g, h \in G$, then
 - There is one and only one element k ∈ G such that k * g = h.
 - 2. There is one and only one element $k \in G$ such that g * k = h.

- 2.1.3. Corollaries. (see also [J, §4.5])
 - 1. In a group you can always cancel: if g * s = g * t then s = t. Similarly, if s * g = t * g then s = t.
 - 2. Inverses are unique: given $g \in G$ then there is one and only one element $h \in G$ such that g * h = e. In particular, $e^{-1} = e$ and $(g^{-1})^{-1} = g$.
 - 3. A group has only one identity: if g * h = h (even just for one particular h) then g = e.

2.2. Commutativity

2.2.1. Definition. Suppose that G is a group and $g, h \in G$. If g * h = h * g then we say that g and h commute. If g * h = h * g for all $g, h \in G$, then we say G is an abelian group.

2.3. Products

- 2.3.1. Theorem. Let G, H be groups. The product $G \times H = \{(g, h) \mid g \in G, h \in H\}$ has the natural structure of a group as follows:
 - The group operation is (g, h) * (g', h') := (g *_G g', h *_H h') (where we write *_G for the group operation in G, etc).
 - The identity e in G × H is e := (e_G, e_H) (where we write e_G for the identity in G, etc).
 - The inverse of (g, h) is (g^{-1}, h^{-1}) (the inverse of g is taken in G, and the inverse of h is taken in H).
- 2.3.3. Note. If G, H are both finite then

$$|G \times H| = |G| |H|$$
.

2.4. Subgroups

2.4.1. Definition. [J, $\S 5$] Let G be a group. We say that a nonempty subset H of G is a subgroup of G if H itself is a group (under the operation from G). We write

 $H \leq G$ if H is a subgroup of G. If also $H \neq G$, we write H < G and say that H is a proper subgroup.

- 2.4.2. Lemma. Suppose that $H \leq G$. Then
 - 1. $e_H = e_G$
 - If h ∈ H, the inverse of h in H equals the inverse of h in G.
- 2.4.3. Theorem. (Test for a subgroup) $H \subseteq G$ is a subgroup of G if and only if
 - S1. H is not empty.
 - S2. If $h, k \in H$ then $h * k \in H$
 - S3. If $h \in H$ then $h^{-1} \in H$.

2.5. Order of elements

- 2.5.1. Definition. (Order of a group) A finite group G is one with only a finite number of elements. The *order* of a finite group, written |G|, is the number of elements in G.
- 2.5.2. Definition. (Order of an element) [J, $\S 6.3$] Let G be a group and $g \in G$. Then the order o(g) of g is the least natural number n such that

$$\underbrace{g*...*g}_{n} = e.$$

If no such n exists, we say that g has infinite order.

- 2.5.4. Theorem. In a finite group, every element has finite order.
- 2.5.5. Corollary. Let g be an element of a finite group G. Then there exists $k \in \mathbb{N}$ such that $g^k = g^{-1}$.

2.6. Cyclic subgroups

2.6.1. Definition. If G is a group, $g \in G$ and $k \in \mathbb{Z}$, define

$$\langle g \rangle := \{ g^k \mid k \in \mathbb{Z} \} = \{ \dots, g^{-2}, g^{-1}, e, g, g^2, \dots \}.$$

If G is finite, then $\langle g \rangle$ (being a subset of G) is finite, and we can think of $\langle g \rangle$ as

$$\langle g \rangle = \{e, g, \dots, g^{o(g)-1}\}$$

- 2.6.2. Lemma. If G is a group and $g \in G$, then $\langle g \rangle$ is a subgroup of G.
- 2.6.3. Definition. A subgroup $H \leq G$ is cyclic if $H = \langle h \rangle$ for some $h \in H$. In this case, we say that H is the cyclic subgroup generated by h. If $G = \langle g \rangle$ for some $g \in G$, then we say that the group G is cyclic, and that g is a generator.
- 2.6.6. Theorem. Let G be a cyclic group and let H be a subgroup of G. Then H is cyclic.
- 2.6.7. Theorem. Let $m, n \in \mathbb{N}$, let $G = \langle g \rangle$ be a cyclic group of order m and $H = \langle h \rangle$ be a cyclic group of order n. Then

$$G \times H$$
 is cyclic \iff m and n are coprime (i.e. $gcd(m, n) = 1$).

3.1. Recap on Equivalence relations

3.1.1. Definition. [L,§18] Let X be a set, and R a subset of $X \times X$ (thus R consists of some ordered pairs (s,t) with $s,t \in X$). If $(s,t) \in R$ we write $s \sim t$ and say "s is related to t". We call \sim a relation on X.

A relation \sim is called an equivalence relation on X if

- R. (Reflexive) $x \sim x$ for all $x \in X$
- S. (Symmetric) $x \sim y$ implies that $y \sim x$ for all $x, y \in X$
- T. (Transitive) $x \sim y$ and $y \sim z$ implies that $x \sim z$ for all $x, y, z \in X$.

3.2. Proof of Lagrange: cosets

3.2.1. Notation. Let A, B be subsets of a group G and let $g \in G$. Then

$$AB := \{ab \mid a \in A, b \in B\}, \quad gA := \{ga \mid a \in A\},\$$

and similarly for other obvious variants.

- 3.2.2. Definition. [J, $\S 10.1$] Let $H \leq G$ and let $g \in G$. Then a left coset of H in G is a subset of G of the form gH, for some $g \in G$.
- 3.2.4. Definition. We denote G/H to be the set of left cosets of H in G.
- 3.2.5. Lemma. Suppose that $H \leq G$, then |gH| = |H| for all $g \in G$.
- 3.2.6. Theorem. Let $H \leq G$.
 - 1. For all $h \in H$, hH = H. In particular eH = H.
 - For g₁, g₂ ∈ G, the following are equivalent
 - (a) g₁H = g₂H.
 - (b) there exists $h \in H$ such that $g_2 = g_1 h$.
 - (c) $g_2 \in g_1 H$.
 - 3. For a fixed $g \in G$, the number of $g_1 \in G$ such that $gH = g_1H$ is equal to |H|.
 - 4. For $g_1, g_2 \in G$, define $g_1 \sim g_2$ if and only if $g_1 H = g_2 H$. Then \sim defines an equivalence relation on G.
- Corollaries. [J, §10] Suppose that G is a finite group.
 - 1. (Lagrange's theorem) If $H \leq G$, then |H| divides |G|.
 - 2. Let $g \in G$. Then o(g) divides |G|.
 - 3. For all $g \in G$, we have that $g^{|G|} = e$.
- 3.2.8. *Corollary*. $|G/H| = \frac{|G|}{|H|}$.
- 3.2.9. Definition. The index of $H \leq G$ is defined to be the number of distinct left cosets of H in G, which by above is $|G/H| = \frac{|G|}{|H|}$.
- Definition. The right cosets of H in G are subsets of the form Hg.

3.3. First applications of Lagrange

- 3.3.1. Theorem. Suppose that G is a group with |G| = p, where p is prime. Then G is a cyclic group.
- 3.3.2. Corollary. Suppose that G is a group with |G| < 6. Then G is abelian.
- 3.3.3. Theorem. (Fermat's Little Theorem) If p is a prime and $a \in \mathbb{Z}$, then $a^p \equiv a \mod p$.
- 3.3.4. Theorem. If p is a prime, then
 - In Z_p^{*} only 1 and p − 1 are their own inverses.
 - 2. (Wilson's Theorem) $(p-1)! \equiv -1 \mod p$.

4.1. Homomorphisms and Isomorphisms

4.1.1. Definition. Let G, H be groups. A map $\phi : G \rightarrow H$ is called a group homomorphism if

$$\phi(xy) = \phi(x)\phi(y)$$
 for all $x, y \in G$.

- 4.1.2. Definition. A group homomorphism $\phi: G \to H$ that is also a bijection is called an *isomorphism* of groups. In this case we say that G and H are *isomorphic* and we write $G \cong H$. An isomorphism $G \to G$ is called an *automorphism* of G.
- 4.1.5. Lemma. Let $\phi: G \to H$ be a group homomorphism. Then
 - 1. $\phi(e) = e$ and further $\phi(g^{-1}) = (\phi(g))^{-1}$ for all $g \in G$.
 - 2. If ϕ is injective, the order of $g \in G$ equals the order of $\phi(g) \in H$.
- 4.1.6. Definition. Let $\phi: G \to H$ be a group homomorphism.
 - 1. The *image* of ϕ is defined to be

$$\operatorname{im} \phi := \{ h \in H \mid h = \phi(g) \text{ for some } g \in G \}$$

2. We define the *kernel* of ϕ to be

$$\operatorname{Ker} \phi := \{ g \in G \mid \phi(g) = e_H \}.$$

- 4.1.7. Proposition. Let $\phi: G \to H$ be a group homomorphism. Then
 - φ: G → H is injective if and only if ker φ = {e_G}.
 - 2. If $\phi: G \to H$ is injective, then ϕ gives an isomorphism $G \cong \operatorname{im} \phi$.

4.2. Products and Isomorphisms

4.2.1. Definition. (reminder) If S and T are subsets of G, then we define

$$ST := \{ st \mid s \in S, t \in T \}.$$

- 4.2.2. Theorem. [J, §14.3] Let $H, K \leq G$ be subgroups with $H \cap K = \{e\}$.
 - 1. The map $\phi: H \times K \to HK$ given by $\phi: (h, k) \mapsto hk$ is bijective.
 - If further every element of H commutes with every element of K when multiplied in G (i.e. hk = kh for all h ∈ H, k ∈ K), then HK is a subgroup of G, and furthermore it is isomorphic to H × K, via φ.
- 4.2.4. Corollary. Let $H, K \leq G$ be finite subgroups of a group G with $H \cap K = \{e\}$. Then $|HK| = |H| \times |K|$.

5.1. Definition of a group action

5.1.1. Definition. Let G be a group, and let X be a nonempty set. Then a (left) action of G on X is a map

$$G \times X \rightarrow X$$
.

written $(g, x) \mapsto g \cdot x$, such that

$$g_1 \cdot (g_2 \cdot x) = (g_1 g_2) \cdot x$$
 and $e \cdot x = x$

for all $g_1, g_2 \in G$ and all $x \in X$.

5.2. Faithful actions

5.2.1. Proposition. Suppose G acts on X. Define

$$N := \{ g \in G \mid g \cdot x = x \text{ for all } x \in X \}.$$

Then N is a subgroup of G.

5.2.2. Definition. Suppose that G acts on X, then the subgroup N defined above in $\S 5.2.1$ is called the *kernel* of the action. Note in [J] it is denoted $\operatorname{Ker} \cdot$, but this notation is quite hard to read. If $N = \{e\}$ then we say that the action is *faithful*.

Thus an action is faithful if $g \cdot x = x$ for all $x \in X$ implies that g = e. In words "the only member of G that fixes everything in X is the identity".

5.3. Every group lives inside a symmetric group

If X is a set, we denote

$$bij(X) := \{bijections X \rightarrow X\}.$$

5.3.1. Lemma. [J, 7.4] If G acts on a set X, then for all $g \in G$ the map

$$f_{\sigma}: X \to X$$

defined $x \mapsto g \cdot x$ is a bijection.

- 5.3.2. Theorem. [J, 7.4, 9.3] Let G be a group, and let X be a set. Then
 - 1. An action of G on X is equivalent to a group homomorphism $\phi : G \to bij(X)$.
 - 2. The action is faithful if and only if ϕ is injective.
 - 3. If the action is faithful, then ϕ gives an isomorphism of G with im $\phi \leq \text{bij}(X)$.
- 5.3.3. *Corollary*. (Cayley's Theorem) Every finite group is isomorphic to a subgroup of a symmetric group.

5.4. Orbits and Stabilizers

5.4.1. Definition. Let G act on X, and let $x \in X$. The stabilizer of x is defined to be

$$\mathsf{Stab}_{G}(x) := \{ g \in G \, | \, g \cdot x = x \}.$$

- 5.4.2. Lemma. For all $x \in X$, the stabilizer $\operatorname{Stab}_G(x)$ is a subgroup of G.
- 5.4.3. Definition. Let G act on X, and let $x \in X$. The orbit of x under G is

$$Orb_G(x) = \{g \cdot x \mid g \in G\}.$$

5.4.5. Theorem. [J, 8.4] Let G act on X. Then

$$x \sim y \iff y = g \cdot x \text{ for some } g \in G$$

defines an equivalence relation on X. The equivalence classes are the orbits of G. Thus when G acts on X, we obtain a partition of X into orbits.

- 5.4.7. Definition. An action of G on X is transitive if for all $x, y \in X$ there exists $g \in G$ such that $y = g \cdot x$. Equivalently, X is a single orbit under G.
- 5.4.9. Notation. [J, top p87] Suppose G acts on X and $x, y \in X$. If y and x are in the same orbit,

$$send_x(y) := \{g \in G \mid g \cdot x = y\}$$

is a non-empty subset of G.

5.4.11. Theorem. [J, p117] Let G act on X, let $x \in X$, and set $H := \operatorname{Stab}_G(x)$ Then the map

$$\operatorname{send}_x : \operatorname{Orb}_G(x) \to G/H$$
 which sends $y \mapsto \operatorname{send}_x(y)$

is a bijective map of sets.

- 5.4.12. Corollary. (The orbit-stabilizer theorem) Suppose G is a finite group acting on a set X, and let $x \in X$. Then $|\operatorname{Orb}_G(x)| \times |\operatorname{Stab}_G(x)| = |G|$, or in words
- 5.4.14. *Theorem.* (Cauchy's Theorem) Let G be a group, p be a prime. If p divides |G|, then G contains an element of order p.

5.5. Pólya counting

5.5.1. Theorem. [J, 11.3] Let G be a finite group acting on a finite set X. For $g \in G$ define

$$Fix(g) := \{ x \in X \mid g \cdot x = x \}$$

(so that |Fix(g)| is the number of elements of X that g fixes). Then

the number of orbits in
$$X = \frac{1}{|G|} \sum_{g \in G} |Fix(g)|$$
.

6.1. Symmetric and Alternating Groups

- 6.1.1. Definition. Let $n \in \mathbb{N}$, let $1 \le r \le n$ and let $\{a_1, a_2, \ldots, a_r\}$ be r distinct numbers between 1 and n. The cycle $(a_1 a_2 \ldots a_r)$ denotes the element of S_n that sends a_1 to a_2 , a_2 to a_3 , ..., a_{r-1} to a_r , a_r to a_1 , and leaves the remaining n-r numbers fixed. We say that the length of the cycle $(a_1 a_2 \ldots a_r)$ is r.
- 6.1.2. Definition. Two cycles $(a_1 a_2 \dots a_r)$ and $(b_1 b_2 \dots b_s)$ are disjoint if

$$\{a_1, a_2, \dots, a_r\} \cap \{b_1, b_2, \dots, b_s\} = \emptyset.$$

- 6.1.4. Theorem. Every permutation can be written as a product of disjoint cycles.
- 6.1.6. Definition. Given $\sigma \in S_n$, write σ as a product of disjoint cycles, as in §6.1.4. In this product, for each $t=1,\ldots,n$ let m_t denote the number of cycles of length t. Then we say that σ has cycle type

$$\underbrace{1,\ldots,1}_{m_1},\underbrace{2,\ldots,2}_{m_2},\ldots,\underbrace{n,\ldots,n}_{m_n},$$

As notation for cycle type, we usually abbreviate this to $1^{m_1}, 2^{m_2}, \dots, n^{m_n}$.

6.1.8. Theorem. The number of elements of S_n of cycle type $1^{m_1}, 2^{m_2}, \dots, n^{m_n}$ is

$$\frac{n!}{m_1! \dots m_n! 1^{m_1} 2^{m_2} \dots n^{m_n}}.$$

6.1.10. Definition. Let $n \in \mathbb{N}$ and set

$$P = \prod_{1 \le i < j \le n} (x_i - x_j).$$

Let $X = \{P, -P\}$. Then S_n acts on X by

$$\sigma \cdot P = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)})$$

If $\sigma \in S_n$ has the property that $\sigma \cdot P = P$, we say that σ is even. If $\sigma \cdot P = -P$, we say that σ is odd.

6.1.11. Theorem. Let A_n denote the set of all even permutations in S_n . Then A_n is a subgroup of S_n , with $|A_n| = \frac{|S_n|}{2} = \frac{n!}{2}$. We call A_n the alternating group.

7.1. Conjugate elements

7.1.1. Definition / Lemma. Let $h \in G$ and $g \in G := X$. Then

$$h \cdot g := hgh^{-1}$$

defines an action of a group G on itself, called the *conjugation action*. The orbits are called the *conjugacy classes* of G. Under this action, the stabilizer of an element $g \in G$ is precisely

$$C(g) := \{ h \in G \mid gh = hg \}.$$

which we define to be the centralizer of g in G.

- 7.1.3. Definition.
 - 1. We say that g, g' are *conjugate* if there exists $h \in G$ such that $g' = hgh^{-1}$. That is, two elements are conjugate if they lie in the same conjugacy class.
 - 2. [J, 13.5] We define the centre of a group G to be

$$C(G) := \{g \in G \mid gh = hg \text{ for all } h \in G\}.$$

If $g \in C(G)$, we say that g is central.

- 7.1.5. Corollaries.
 - For all g ∈ G, the centralizer C(g) is a subgroup of G.
 - The centre C(G) is a subgroup of G.
 - 3. If G is finite and $g \in G$, then

(the number of conjugates of g in G) $\times |C(g)| = |G|$.

- {e} is always a conjugacy class of G
- 5. $\{g\}$ is a conjugacy class if and only if $g \in C(G)$. Hence C(G) is the union of all the one-element conjugacy classes.
- 7.1.6. Theorem. Suppose that G is a finite group with conjugacy classes C_1, \ldots, C_n . We adopt the convention that $C_1 = \{e\}$. Let the conjugacy classes have sizes c_1, \ldots, c_n (so that $c_1 = 1$).
 - 1. If $g \in C_k$, then $c_k = \frac{|G|}{|C(g)|}$. In particular, c_k divides the order of the group.
 - 2. We have

$$|G| = c_1 + c_2 + ... + c_n$$

and further each of the c_j divides |G|. This is called the class equation of G.

7.2. Conjugacy in S_n is determined by cycle type

7.2.1. Lemma. Let $\sigma \in S_n$, and write σ as a product of disjoint cycles, say $\sigma = (a_1 \dots a_r)(b_1 \dots b_s) \dots$ Then for all $\tau \in S_n$,

$$\tau \sigma \tau^{-1} = (\tau(a_1) \dots \tau(a_r))(\tau(b_1) \dots \tau(b_s)) \dots$$

which is a product of disjoint cycles.

7.2.2. Theorem. Two permutations in S_n are conjugate if and only if they have the same cycle type (up to ordering).

7.3. Normal subgroups

7.3.1. Definition. A subgroup N of G is normal if

$$gng^{-1} \in N$$
 for all $g \in G$ and all $n \in N$.

We write $N \subseteq G$ if N is a normal subgroup of G.

- 7.3.3. Theorem. Let N be a subgroup in G, then N is a normal subgroup if and only if N is a union of conjugacy classes.
- 7.3.4. Corollary. If G is a group, then $C(G) \subseteq G$.
- 7.3.5. Lemma.
 - 1. Let $\phi: G \to H$ be a group homomorphism. Then $\ker \phi \subseteq G$.
 - (Recall §5.2.1) Suppose that G acts on X, then the kernel of the action

$$N := \{g \in G \mid g \cdot x = x \text{ for all } x \in X\}$$

is a normal subgroup of G.

- 7.3.6. Lemma. Let $N \leq G$. Then the following are equivalent:
 - N is normal in G.
 - 2. $gNg^{-1} = N$ for all $g \in G$.
 - 3. gN = Ng for all $g \in G$.
- 7.3.7. Theorem. Let $H \leq G$ with $\frac{|G|}{|H|} = 2$. Then H is normal in G.
- 7.3.9. Definition. We say that a group G is simple if the only normal subgroups of G are $\{e\}$ and G.

7.4. Factor groups

7.4.2. Theorem. G/H is a group under $g_1H * g_2H := g_1g_2H \iff H$ is a normal subgroup of G.