

Business understanding

- Nowadays the car is one of the most used medium to travel
- This phenomenon increases the number of cars in the streets and the possibilities of accidents
- Conditions like location, weather, road staus, speed, light and others can influence the accident
- The question or problem to be answered with this project is knowing certain conditions (weather, location, day, road status, etc) what is the severity when you have a car accident

Data understanding and cleaning

- The dataset is called Collision -All Years which has data for the Seattle city car accidents and is in .csv
- Contains 194673 observations and 38 features
- The target feature is the SEVERITYCODE
- The features with more than 50% Nan values were removed and also the features with unique values were removed
- Once cleaned the data, 11 features are used to modeling

Features engineering

- The target feature is unbalanced so the dataset is downsample to have a balance dataset and have a better modeling
- The observations with Nan values are removed
- The outliers are removed
- All features with test values are hot encoded and transformed to numeric values
- All the features are normalized

EDA - Accident locations

- The accidents are distributed in difference Seattle areas
- The severity is balanced between the different locations
- Only a few areas does not have accidents

EDA - Relation between people involved and the severity

Most of the accidents
have 2 and 3 people
involved in the accidents

 The severity is balanced between the different persons that participated in the accidents.

EDA - Relation between day of the week and accidents

- There is not big difference between monday thru thursday in the number of accidents
- Friday is the peak day of the week
- During weekends the number of accidents decreased
- The accident severity is balanced in the different days

EDA- Relation between accidents and road condition

Most of the accidents occurred during daylight or street lights on

EDA - Relation between road condition and accidents

- Most of the accidents occurred in dry conditions and the severity is balanced
- During wet conditions also occurred accidents but in minor quantity

Modeling

- Three classification machine learning algorithms are used to resolve the problem:
 - KNN K nearest neighbor
 - SVM Support Vector Machine
 - Logistic regression
- The dataset is split in training and testing to avoid overfitting
- Grid search is used for the three models to adjust the hyper parameters and get the best results

Modeling Performance

 Different metrics are used to evaluate the models performance and select the best model

Algorithm	MCC	RECALL	Precision	F1- score	Accuracy	LogLoss
KNN	42.9%	70.3%	72.0%	71.5%	71.5%	NA
SVM	43.9%	63.7%	75.9%	71.5%	71.7%	NA
LogisticRegression	29.4%	68.1%	63.7%	64.6%	64.6%	63.5%

The model with the best prediction accuracy is the SVM

CONCLUSSIONS

- Due to the nature of the problem three classification machine learning methods were used to classify the car accident severity
- The SVM model has the best results, however a 75% accuracy could be considered low for this kind of problem
- As starting point this model can be used to analyze the accidents in the Seattle area and predict the severity to take preventive measurements
- Using another features that are not in the dataset like cellular phone usage during the accident can be used and improve the model accuracy