Projekt

STEROWNIKI ROBOTÓW

Założenia projektowe

Bioniczna ręka Hand

Skład grupy: Kamil Drewnowski Tomasz Bednarski

Termin: PT TN15

Prowadzący: mgr inż. Wojciech DOMSKI

Spis treści

1	Opis projektu	2
2	Konfiguracja mikrokontrolera	2
	2.1 Mikrokontroler	2
	2.2 Moduły	
	2.3 Konfiguracja pinów	
	2.4 USART	
	2.5 Zakładane działanie projektu	5
3	Harmonogram pracy	5
	3.1 Wykres Gantta	5
	3.2 Opis kamieni milowych	7
	3.3 Podział pracy	7
4	Podsumowanie	7
Bi	pilografia	8

1 Opis projektu

Projekt zakłada zbudowanie bionicznej ręki - dłoni, umożliwiającej zasiskanie palców zgodnie z wolą osoby obsługującej urządzenie.

Sterowanie odbywać się będzie poprzez aplikacje na urządzeniu mobilnym, komunikującym się poprzez moduł Bluetooth.

Korpus ręki wykonany zostanie przy pomocy drukarki 3D, przy wykorzystaniu własnego projektu (posiłkując się gotowymi modelami).

Sterowanie odbywać się będzie dzięki zamontowaniu serw oraz układu linek.

Urządzenie wykrywać będzie dodatkowo obecność obiektu w obrębie pracy "palców".

2 Konfiguracja mikrokontrolera

2.1 Mikrokontroler

Projekt ręki opierać się będzie na mikrokonrolerze Arduino Uno ze względu na prostą budowę, łatwy dostęp do pinów oraz mozliwość zasilania zarówno z portu USB oraz zasilacza 12 V.

Rysunek 1: Schemat wejść oraz wyjść mikrokontrolera Arduino UNO

2.2 Moduly

Do projektu wykorzystane będą równierz następujce moduły:

- 1. Cztery serwomechanizmy SG-90. Ich zadaniem będzie ściąganie poszczególnych linek ciągnących za palce, a co za tym idzie zaciśnięcie palców. Dwa palce będą działały jednocześnie ze względów oszczędności miejsca oraz ograniczeniu kosztów budowy.
- 2. Moduł Bluetooth HC-05. Pozwoli on na komunikację z urządzeniem mobilnym oraz przesyłanie komunikatów w obu kierunkach.

- 3. Ultradźwiękowy miernik odległości HC-SR04. Jego zadaniem będzie kontrola obcności obiektu w strefie zacisku ręki.
- 4. Zielona dioda LED sygnalizująca pracę serwomechanizmów

Serwomechanizm SG-90				
Napięcie pracy	4,5V - 6V			
Waga	9g			
Moment	1.8 kg/cm			

Tabela 1: Serwomechanizm SG-90

Moduł Bluetooth HC-05		
Napięcie pracy	3,3V - 6V	
Komunikacja	UART (RX, TX)	
Zasięg	do 10 m	

Tabela 2: Moduł Bluetooth HC-05

Ultradźwiękowy miernik odległości HC-SR04		
Napięcie pracy	5V	
Zakres pomiarowy	od 2 cm do 200 c	
Częstotliwość pracy	40 kHz	

Tabela 3: Ultradźwiękowy miernik odległości HC-SR04

Zielona dioda LED		
Napięcie pracy	od 2,3V do 2,5 V	
Obudowa	5mm średnicy	
Prąd	20 mA	

Tabela 4: Zielona dioda LED

2.3 Konfiguracja pinów

Rysunek 2: Schemat połączeń w programie Fritzing

Numer pinu	PIN	Tryb pracy	Funkcja/etykieta
2	PD0	RX	Bluetooth RX
3	PD1	TX	Bluetooth TX
4	PD2	Digital in	HC-SR04 Echo
5	PD3	Digital out	HC-SR04 Trig
14	PB0	Digital out	Servo 1 signal
15	PB1	Digital out	Servo 2 signal
16	PB2	Digital out	Servo 3 signal
17	PB3	Digital out	Servo 4 signal
19	PB5	Digital out	LED
GND			
5V			

Tabela 5: Konfiguracja pinów mikrokontrolera

2.4 USART

Interfejs szeregowy wykorzystany będzie do debugowania urządzenia, wysyłania do użytkownika informacji o obecnym stanie robota oraz informowania o wykonywanym zadaniu. Funkcje jakie będzie posiadać ręka:

Parametr	Wartość
Baud Rate	9600
Word Length	16 Bits
Parity	None
Stop Bits	1

Tabela 6: Konfiguracja peryferium USART

2.5 Zakładane działanie projektu

Początkowy plan zakłada zaprogramowanie mikrokontrolera w sposób umożliwiający zdalne kontrolowanie pracy ręki poprzez wpisywanie odpowiednich komend w aplikacji mobilnej.

- 1. Sterowanie wybranymi palcami pojedynczo.
- 2. Zamykanie/otwieranie wszystkich palców jednocześnie.
- 3. Zamykanie dłoni bez użycia aplikacji (przy pomocy modułu ultradźwiękowego) na określony czas.

3 Harmonogram pracy

3.1 Wykres Gantta

Poniżej przedstawiono wykres Gantta oraz naniesione na nim kamienie milowe, podsumowujące planowany postęp pracy nad projektem.

3.2 Opis kamieni milowych

Czarne kropki przedstawiają kamienie milowe. Są to kolejno:

- 1. Zatwierdzenie koncepcji projektu, czyli moment ustalenia pełnych informacji na temat pożądanej konstrukcji oraz sposobu działania ręki.
- 2. Wykonanie części konstrukcyjnej, czyli wytworzenie elementów mechanicznych koniecznych do budowy ręki oraz ich zmontowanie w pożądanym kształcie.
- 3. Ukończenie częsci technicznej projektu, moment w którym cały projekt od strony technicznej będzie gotowy do prezentacji, zostaną złożone części mechaniczne, elektryczne, elektryczne oraz zostanie opracowany i napisany kod programu obsługujący zamierzone funkcje.

3.3 Podział pracy

Podział prac dla projektu pod tytułem "Hand":

Kamil Drewnowski	%	Tomasz Bednarski	%
Projekt komputerowy elementów sztucznej		Projekt komputerowy elementów sztucznej	
ręki		ręki (pomoc techniczna)	
Druk 3D elementow sztucznej ręki		Opracowanie algorytmu działania	

Tabela 7: Podział pracy – Etap II

Kamil Drewnowski	%	Tomasz Bednarski	%
Montaż ręki wraz z podzespołami elektronicznymi		Implementacja kodu dla Arduino	
Kontrola działania urządzenia		Kontrola działania urządzenia	

Tabela 8: Podział pracy – Etap III

4 Podsumowanie

Projekt wymaga od nas sporego za
angażowania oraz cierpliwości - między innymi podczas druku elementów. Zakładany czas druku to około 18 godzin. W projekcie pokładane są spore nadzieje, gdyż
 protezy ręki to nie tylko ciekawe doświadczenie podczas tworzenia, ale równierz możliwa pomoc osobą po
 wypadkach.

Literatura

 $https://botland.com.pl/pl/\\ https://fritzing.org/home/$