1) A sliding collar of $m=80\ kg$ falls onto a flange at the bottom of a vertical rod. Calculate the height h through which the mass m should drop to produce a maximum stress in the rod of $350\ MPa$. The rod has length L=2m, cross-sectional area $A=250\ mm^2$, and modulus of elasticity $E=105\ GPa$.

2) If the given stress field acts in the thin plate shown and p is a known constant, determine the values of the constant c's so that edges $x = \pm a$ are free of shearing stress and no normal stress acts on edge x = a.

$$\sigma_x = pyx^3 - 2c_1xy + c_2y$$

$$\sigma_y = pxy^3 - 2px^3y$$

$$\tau_{xy} = -\frac{3}{2}px^2y^2 + c_1y^2 + \frac{1}{2}px^4 + c_3$$

3) Verify that Eqs. (3.37) in the text are determined from the equilibrium of forces acting on the elements shown (below left; Fig. P3.26).

Problem 3

Problem 4

- 4) Consider the pivot (above right) of unit thickness subject to force P=1 N per unit thickness at its vertex. Plot the values of σ_x , σ_y , and τ_{xy} as a function of θ (in deg) at section m-n a distance L=1 m from the apex using Eq'ns. (3.37) and (3.43). Also plot σ_x using the elementary (mechanics of materials) approach for comparison. Take $\alpha=15^{\circ}$.
- 5) Verify the results shown by employing Eq. (3.55b) and the method of superposition.

6) A $20 \, mm$ -thick steel bar with a slot ($25 \, mm$ radii at ends) is subjected to an axial load P, as shown. What is the maximum stress for $P=180 \, kN$? Use Appendix D to estimate the value of the K.

7) The figure depicts a filleted cantilever spring. Find the largest bending stress for two cases: (a) the fillet radius is $r = 5 \ mm$; (b) the fillet radius is $r = 10 \ mm$. Given: $b = 12 \ mm$ and $P = 400 \ N$.

8) The shaft shown has the following dimensions: r=20~mm, d=400~mm, and D=440~mm. The shaft is subjected simultaneously to a torque $T=20~kN\cdot m$, a bending moment $M=10~kN\cdot m$, and an axial force P=50~kN. Calculate at the root of the notch (a) the maximum principal stress, (b) the maximum shear stress, and (c) the octahedral stresses.

