Literature Survey: Real-Time Food Object Detection and Classification for Smart Kitchen Assistants

- **1. Introduction** With growing interest in personal health, dietary monitoring, and smart kitchen technologies, AI-based food recognition systems have emerged as powerful tools. Real-time food object detection and classification has the potential to revolutionize food logging, nutrition tracking, and kitchen automation. This survey details a practical implementation of such a system, encompassing dataset preparation, model selection, annotation methodology, system deployment, and user interface development.
- **2. Dataset Acquisition and Preprocessing** The foundation of this project began with the acquisition of a food image dataset from Kaggle. The preprocessing pipeline included: **Normalization** to standardize image data, **Class balancing** to reduce label skew and improve fairness during training, **Data augmentation** to expand the dataset's diversity and robustness.

The dataset was structured in COCO format to ensure compatibility with contemporary object detection frameworks.

3. Initial Model Selection: RF-DETR The initial model selected for experimentation was **RF-DETR** (**Region-Focused Detection Transformer**), a state-of-the-art vision transformer architecture provided via Roboflow. However, practical issues arose: - **Lack of MPS** (**Metal Performance Shaders**) **support** limited its GPU compatibility on Apple hardware. - **High computational demand** rendered it impractical for local training without specialized hardware.

Despite robust documentation and support, RF-DETR was found unsuitable for the resource constraints of the local development environment.

4. Transition to YOLOv11n After identifying limitations with RF-DETR, the project pivoted to **YOLOv11n**, a lightweight object detection model with: - Low latency and efficient inference, - Compatibility with COCOstyle datasets, - Acceptable accuracy benchmarks for real-time performance.

This shift required reformatting the dataset to adhere to YOLOv11n's expected input structure, but provided significant benefits in computational efficiency.

5. Automated Annotation using Grounding DINO To annotate images programmatically, **Grounding DINO**, a zero-shot object detection model, was employed. This tool used class-specific text prompts to generate bounding boxes.

The annotation script accomplished the following: - Inferred bounding boxes for each image using class prompts, - Converted annotations to both YOLO and COCO formats, - Discarded unannotated images, - Rebalanced and partitioned the dataset into training, validation, and test sets.

This step dramatically reduced manual labeling effort while maintaining sufficient annotation quality.

6. Training Challenges and Cloud-Based Solution Initial attempts to train the YOLOv11n model on a MacBook using MPS resulted in severe memory leaks. Specifically, RAM usage doubled after each training epoch, leading to a slowdown and eventual instability.

To overcome this, the training pipeline was migrated to **Google Colab**, which provided: - Access to GPU acceleration, - A stable and reproducible environment, - Support for the **Ultralytics YOLO** framework.

The model was trained for 10 epochs using the custom dataset, yielding the following results: - **mAP50**: 0.813, - **mAP50-95**: 0.769.

High-performing categories included Besan Cheela, Jalebi, and Poha, while moderately performing classes included Idli and Dahl.

- **7. Inference and Real-Time Testing** Once trained, the model was evaluated using static images via OpenCV. The inference script demonstrated reliable real-time object detection performance with low latency.
- **8. User Interface Development with Streamlit** A user interface was created using **Streamlit**, providing multiple interaction modes: Real-time webcam-based food detection, Image upload and snapshot support, Annotated image display with overlaid bounding boxes.

The interface was extended to include a nutritional insights panel that: - Displayed macronutrients and micronutrients for each detected food item, - Showed estimated per-item and total caloric intake, - Linked to recipes and ingredient lists.

- **9. Nutrition Tracking and Logging** To provide comprehensive dietary monitoring, the system incorporated: A nutrition CSV mapped to food class names, Real-time calorie computation based on detection counts, Persistent logging of each detection session, Visualization of daily and historical caloric trends using Plotly, Export functionality for food logs and nutrition summaries.
- **10. Technical Architecture Overview Backend**: PyTorch, OpenCV, Grounding DINO, Ultralytics YOLO **Frontend**: Streamlit, Streamlit-WebRTC, Plotly **Data Processing**: Pandas, PIL, JSON, COCO/YOLO converters **Training Infrastructure**: Google Colab
- **11. Challenges Encountered Model Incompatibility**: RF-DETR was incompatible with macOS-based GPU acceleration. **Annotation Gaps**: Some classes were inconsistently annotated and required removal or manual correction. **Memory Leaks**: MPS-based training proved inefficient, necessitating a shift to cloud compute.
- **12. Future Directions** To improve the system's accuracy and applicability: **Depth estimation** could be added to approximate food volume and improve calorie estimation. **Instance segmentation** may enhance boundary accuracy for overlapping food items. **Edge optimization** is necessary for deployment on low-power devices.

These enhancements would offer more precise nutritional insights but may increase computational overhead.

13. Conclusion This project demonstrates a viable and scalable pipeline for real-time food detection and nutritional analysis. By combining lightweight object detection models, automated annotation, and an intuitive interface, it provides a strong foundation for applications in health monitoring and kitchen

automation. Despite computational challenges, the adopted methods ensured real-time usability and formed a platform for future development in AI-driven dietary assistance systems.