definities fundamenten

Contents

1	inleiding									
2	achtergrond									
3	Talen, automaten en berekenbaarheid									
	3.1	strings	s en talen	3						
		3.1.1	strings	3						
		3.1.2	talen	3						
		3.1.3	reguliere talen	4						
		3.1.4	reguliere uitdrukkingen	4						
	3.2	eindige	e automaten	4						
		3.2.1	eindige automaten	4						
		3.2.2	Eindige automaten en reguliere talen	4						
		3.2.3	Niet-deterministische automaten	4						
	3.3	Turing	gmachines	5						
		3.3.1	Turingmachines	5						
		3.3.2	Turingmachines en functies	5						
		3.3.3	Turingmachines en talen	5						
		3.3.4	Niet-deterministische turing-machines	5						
	3.4	analys	e van algoritmen	5						
		3.4.1	tijdscomplexiteit van algoritmen	6						
		3.4.2	het bepalen van complexiteit in enkele voorbeelden	6						
	3.5	comple	exiteitsklassen van beslissingsproblemen	6						
		3.5.1	de klassen P en NP	6						
		3.5.2	De klasse NP-compleet	7						
		3.5.3	andere complexiteitsklassen	7						
	3.6	hoeluit		7						

4	grafentheorie				
	4.1	inleidi	ng	7	
		4.1.1	de kortste weg tussen twee adressen	7	
		4.1.2	de bruggen van Koningsberg	7	
		4.1.3	de boer, de wolf, de kool en de geit	7	
		4.1.4	Vier op een rij	7	
	4.2	Grafer	1	7	
		4.2.1	basisdefinities	7	
		4.2.2	paden	8	
		4.2.3	deelgrafen en componenten	8	
		4.2.4	Gerichte grafen	8	
	4.3	voorst	elling van grafen	9	
		4.3.1	buurmatrix	9	
		4.3.2	booleaanse buurmatrix	9	
		4.3.3	incidentiematrix	9	
	4.4	isomo	rfisme van grafen	9	
	4.5	gewog	en grafen	9	
		4.5.1	kortste pad algoritme van Dijkstra	9	
		4.5.2	Dijkstra, versie 1	9	
		4.5.3	dijkstra versie 2	9	
		4.5.4	complexiteit van Dijkstra's algoritme	9	
	4.6	bijzon	dere klassen van grafen	9	
	4.7	vlakke	e grafen	9	
		4.7.1	de formule van Euler	9	
		4.7.2	karakterisatie van vlakke grafen	9	
		4.7.3	duale grafen	10	
	4.8	kleurii	ng van grafen	10	
	4.9	bomer	1	10	
		4.9.1	opspannende bomen	10	
		4.9.2	minimaal opspannende bomen	10	
	4.10	gewort	telde bomen	10	
		4.10.1	binaire bomen	10	
		4.10.2	zoekbomen	10	
		4.10.3	Praktische voorstelling van bomen	10	
		4.10.4	Het doorlopen van gewortelde bomen	10	

		4.10.5	Spelbomen	1.
	4.11	Netwe	rkmodellen en petri-netten	11
		4.11.1	Transportmodel	11
		4.11.2	Maximale stroming	11
		4.11.3	Matching	1.
		4.11.4	Petrinetten	12
5 Vastepuntstheorie				
	5.1 Orderelaties		elaties	12
		5.1.1	Basisbegrippen	12
		5.1.2	Monotone en continue afbeeldingen	13
5.2 De stellingen van Tarski en Kleene		llingen van Tarski en Kleene	13	
		5.2.1	de stelling van Tarski	13
		5.2.2	de stelling van Kleene	13
		5.2.3	voorbeeld: de transitieve sluiting van een relatie	13

1 inleiding

2 achtergrond

3 Talen, automaten en berekenbaarheid

3.1 strings en talen

3.1.1 strings

alfabet een alfabet is een niet-lege eindige verzameling. De elementen van de verzameling worden symbolen genoemd.

string Een string s over een alfabet Σ is een eindige rij symbolen uit Σ . Het aantal symbolen in een string is de lengte van de string, genoteerd met |s|. De string met lengte nul wordt de lege string genoemd en wordt genoteerd met λ . De verzameling van alle strings over een alfabet Σ wordt genoteerd met Σ^* .

3.1.2 talen

taal een taal over een alfabet Σ is een verzameling strings over Σ , anders gezegd: een taal over Σ is een deelverzameling van Σ^*

3.1.3 reguliere talen

reguliere taal indien Σ een alfabet is, dan wordt de klasse R van alle reguliere talen over Σ inductief als volgt gedefinieert:

- $\emptyset \in R, \{\lambda\} \in R \text{ en } \forall \sigma \in \Sigma : \sigma \in R$
- indien $A, B \in R$, dan ook $AB \in R$ en $A^* \in R$.
- Elke taal uit R wordt ook een reguliere taal genoemd.

3.1.4 reguliere uitdrukkingen

reguliere uitdrukking indien Σ een alfabet is, dan wordt een reguliere uitdrukking op volgende wijze inductief gedefieerd:

- Ø is een regeliere uitdrukking
- λ is een reguliere uitdrukking
- voor elke $\sigma \in \Sigma$ is σ een reguliere uitdrukking
- indien A en B reguliere uitdrukkingen zijn, dan zijn ook (A), A^* , A|BenAB reguliere uitdrukkingen

3.2 eindige automaten

3.2.1 eindige automaten

eindige automaat Een eindige automaat is een vijftal $A = (Q, \Sigma, \delta, q_0, F)$ met

- Q een eindige verzameling, we noemen de elementen van Q de toestanden van de automaat A.
- $F \subseteq Q$ is de verzameling van de aanvaardbare eindtoestanden.
- $q_0 \in Q$ deze toestand wordt de begintoestand genoemd
- Σ een alfabet
- δ een afbeelding, de transitieafbeelding genoemd.

3.2.2 Eindige automaten en reguliere talen

taal bepaald door eindige automaat als $A = (Q, \Sigma, \delta, q_0, F)$ een eindige automaat is, noemen we

$$L(A) = \{ x \in \Sigma^* | \delta^*(q_0, x) \in F \}$$

de taal bepaald door de eindige automaat. Voor een gegeven taal $L \subseteq \Sigma^*$ zeggen we dat A de taal herkent als L = L(A).

3.2.3 Niet-deterministische automaten

niet-deterministische, eindige automaat Een niet-deterministische eindige automaat is een vijftal $A = 9Q, \Sigma, \delta, q_0, F)$ met

- Q een eindige verzameling (de toestanden van de automaat A)
- $F \subseteq Q$ de verzameling van aanvaarde eindtoestanden

- q_0 de begintoestand van de automaat
- Σ het alfabet van de automaat
- δ een afbeelding $\delta: Q \times (\Sigma \cup {\lambda}) \to P(Q)$

taal bepaald door niet-deterministische eindige automaat als $A=(Q,\Sigma,\delta,q_0,F)$ een niet-deterministische eindige automaat is, noemen we

$$L(A) = \{ x \in \Sigma^* | \delta^*(q_0, x) \cap F \neq \emptyset \}$$

de taal bepaald door de eindige automaat. Voor een gegeven taal $L \subseteq \Sigma^*$ zeggen we dat A de taal herkent als L = L(A).

3.3 Turingmachines

3.3.1 Turingmachines

Turingmachine een turingmachine is een zestal $M = (Q, \Sigma, T, P, q_0, F)$ met

- Q een eindige verzameling, we noemen de elementen van Q toestanden.
- $F \subset Q$ de verzameling van aanvaardbare eindtoestanden
- $q_0 \in Q$ de begintoestand
- Σ het alfabet van de turingmachine. Dit alfabet bevat naast andere symbolen minstens een speciaal symbool: het blanco of lege symbool, genoteerd met #.
- $T \subseteq \Sigma \setminus \{\#\}$ is de verzameling invoersymbolen. De elementen van $\Sigma \setminus (T \cup \{\#\})$ worden hulpsymbolen genoemd.
- P een functie $P:(Q\backslash F)\times\Sigma\to Q\times\Sigma\times\{L,R,0\}$. P wordt het programma of de instructieset van de turingmachine genoemd. (in de verzameling $\{L,R,0\}$ staat L voor links, R voor rechts en 0 voor blijf staan, waarmee de beweging van de schrijfkop wordt aangegeven.)

3.3.2 Turingmachines en functies

3.3.3 Turingmachines en talen

taal bepaald door een turingmachine De taal bepaald door een turingmachine M, genoteerd l(M), is de verzameling van alle invoerstrings waarvoor M in een aanvaardbare toestand eindigt. Gegeven een taal L zeggen we dat L herkend wordt door M als L = L(M)

turing-herkenbaar Een taal L wordt turing-herkenbaar genoemd als er een turingmachine is die L herkent. Turing-herkenbare talen worden ook recursief opsombare talen genoemd.

beslissen van een taal Een turingmachine beslist een taal als voor elke string $s \in L$ de turingmachine stopt in een aanvaardbare toestand, en voor elke string $s \notin L$ de turingmachine stopt in een onaanvaardbare toestand.

turingbeslisbaar Een taal wordt turing-beslistbaar, of kortweg beslisbaar genoemd als er een turingmachine bestaat die L beslist. Turing-beslisbare talen worden ook wel recursieve talen genoemd.

3.3.4 Niet-deterministische turing-machines

niet-determinisische turingmachine Een niet-deterministische turingmachine M bestaat uit een zestal $M = (Q, \Sigma, T, P, q_0, F)$ dat aan dezelfde voorwaardes voldoet als die voor een deterministische turingmachine, alleen moet P geen functie meer zijn. P is een relatie tussen $(q \setminus F) \times \Sigma$ en $Q \times \Sigma \times \{L, R, 0\}$

3.4 analyse van algoritmen

3.4.1 tijdscomplexiteit van algoritmen

- **tijdscomplexiteit** de tijdscomplexiteit van een bepaald algoritme A is een functie $tijd_A(n): \mathbb{N} \to \mathbb{N}$ die voor een gegeven invoeromvang n het maximum aantal elementaire bewerkingen aangeeft die door het algoritme A bij een invoer van grootte n zullen worden uitgevoerd.
- **de O-notatie** indien f en g functies zijn van mathbbN naar \mathbb{R}^+ , dan zeggen we f(n) is O(g(n)) of f is O(g) als

$$\exists c \in \mathbb{R}_0^+, \exists N \in \mathbb{N}, \forall n \in \mathbb{N} : n \ge N \Rightarrow f(n) \le cg(n)$$

3.4.2 het bepalen van complexiteit in enkele voorbeelden

3.5 complexiteitsklassen van beslissingsproblemen

3.5.1 de klassen P en NP

3.5.1.1 turingmachines en de klasse P

- **polynomiale beslisbaarheid** een taal L wordt in polynomiale tijd beslist door een turingmachine M indien er een $k \in \mathbb{N}$ bestaat zodat M voor elke invoersstring s beslist of $s \in L$ in een aantal stappen dat $O(n^k)$ is met n = |s|. Een taal is polynomiaal beslisbaar als er een turingmachine bestaat die de taal in polynomiale tijd beslist
- de klasse P men duidt met P de klasse aan van alle talen waarvoor geldt dat er een turingmachine bestaat die die taal in polynomiale tijd beslist.

3.5.1.2 Niet-deterministische turingmachines en de klasse NP

tijdscomplexiteit van een niet-deterministische turing-machine de tijdscomplexiteit $tijd_M : \mathbb{N} \to \mathbb{R}^+$ voor een NDTM wordt gedefinieerd als

$$tijd_{M} = \begin{cases} 0 in diener geen en kelestring van lengten wordt aan vaard \\ max\{m|erbestaateen string x \in T^{*}, van lengten die in mstappen aan vaard wordt door M.\} \end{cases}$$

- **NDTM van polynomiale tijd** een niet-deterministische Turingmachine M heet van polynomiale tijd te zij als en slechts als $tijd_m(n)O(n^k)$ is, voor een $k \in \mathbb{N}$.
- niet-deterministisch polynomiaal herkenbaar een taal L wordt herkend in polynomiale tijd door een NDTM indien M L herkent en M van polynomiale tijd is. een taal L is niet-deterministisch polynomiaal herkenbaar als er een NDTM bestaat die L herkent in polynomiale tijd.
- de klasse NP Men duidt met NP de klasse aan van alle talen die beslisbaar en niet-deterministisch polynomiaal herkenbaar zijn.

3.5.1.3 Polynomiale verifieerbaarheid

polynomiaal verifieerbaar een taal L is polynomiaal verifieerbaar als en slechts als er een TM bestaat zodat voor elke string s een andere string c, een zogenaamd certificaat, bestaat zodat geldt: M aanvaardt de string (c,s) in een tijd polynomiaal is -s- als en slechts als $s \in L$.

de klasse NP (alternatieve definitie) Men duidt met NP de klasse aan van polynomiaal verifieerbare talen.

3.5.2 De klasse NP-compleet

polynomiale transformatie van een taal Zij gegeven twee talen $L_1 \subseteq T_1^*$ (op een alfabet T_1) en $L_2 \subseteq T_2^*$ (op een alfabet T2). We zeggen dat l_1 polynomiaal transformeerbaar is in l_2 indien er een afbeelding $f: T_1^* \to T_2^*$ bestaat waarvoor de volgende twee zaken gelden

- $\forall x \in T_1^* : x \in L_1 \Leftrightarrow f(x) \in L_2$
- Er bestaat een deterministische turing-machine die f in polynomiale tijd berekent.

polynomiale equivalentie van talen twee talen L_1 en L_2 worden polynomiaal equivalent genoemd, notatie $L_1 \sim L_2$ indien $L_1 \alpha L_2$ en $L_2 \alpha L_1$.

de klasse NPC een taal L is NP-compleet als en slechts als

- $L \in NP$
- voor elke andere taal $L' \in NP$ geldt dat $L'\alpha L$.

3.5.3 andere complexiteitsklassen

3.6 besluit

4 grafentheorie

- 4.1 inleiding
- 4.1.1 de kortste weg tussen twee adressen
- 4.1.2 de bruggen van Koningsberg
- 4.1.3 de boer, de wolf, de kool en de geit
- 4.1.4 Vier op een rij
- 4.2 Grafen

4.2.1 basisdefinities

graaf een graaf is een drietal (V, E, ϕ) met V een verzameling waarvan de elementen knopen genoemd worden; E een verzameling waarvan de elementen bogen genoemd wordenen $\phi: E \to M_2(V)$ een functie die met elke boog twee knopen associeert.

- lus een lus is een boog e waarvoor geldt dat er een $v \in V$ bestaat zodat $\phi(e) = (v, v)$. Met andere woorden een boog die een knoop met zichzelf verbind.
- parallelle bogen in een graaf $G(V, E, \phi)$ noemen ze de bogen e_1 en e_2 parallelle bogen als en slechts als $\phi(e_1) = \phi(e_2)$. Met andere woorden twee bogen zijn parallel als ze dezelfde knopen met elkaar verbinden.
- enkelvoudige graaf een enkelvoudige graaf is een graaf die noch lussen noch bogen bevat.
- $\mathbf{graaf}(\mathbf{vereenvoudigd})$ een graaf is een koppel (V, E) met V een verzameling knopen en E een multiverzameling multiparen uit V.
- **graad** de graad van een knoop v
, genoteerd $\delta(v)$ is het aantal bogen dat op v
 invalt. Een lus telt hierbij voor twee.

4.2.2 paden

- pad Een pad in een graaf G(V, E) is een rij bogen van de vorm $(V_0, v_1), (v_1, v_2), ..., (v_{n-1}v_n)$ waarbij $\forall i : (v_i, v_{i+1}) \in E$
- enkelvoudig pad een enkelvoudig pad is een pad $(v_0, v_1, ..., v_n)$ waarvan alle knopen verschillend zijn, dit wil zeggen : $\forall i, j : i \neq j \Rightarrow v_i \neq v_i$.
- **kring, enkelvoudige kring** Een kring is een pad $(V_0, v_1), (v_1, v_2), ..., (v_{n-1}v_n)$ waarin alle bogen verschillend zijn, en waarin $v_0 = v_n$. Een enkelvoudige kring is een kring waarin ook alle knopen verschillend zijn, afgezien van $v_0 = v_n$.
- samenhangende graaf een graaf is samenhangend als en slechts als tussen elke twee knopen een pad bestaat.
- Hamiltoniaans pad, hamiltoniaanse kring Zij gegeven een graaf G. Een hamiltoniaans pad van G is een pad waarin elke knoop van G precies een keer voorkomt. Een hamiltoniaanse kring van G is een enkelvoudige kring waarin elke knoop van G voorkomt.
- euleriaans pad, euleriaanse kring Zij gegeven een graaf G. Een euleriaans pad is een waarin elke knoop van G minstens 1 keer voorkomt en elke boog van G precies 1 keer voorkomt. Een euleriaanse kring van G is een Euleriaans pad dat ook een kring is.

4.2.3 deelgrafen en componenten

- **deelgraaf** een graaf G'(V', E') is een deelgraaf van een graaf G(V, E) genoteerd $G' \subseteq G$ als en slechts als $V' \subseteq V$ en $E' \subseteq E$.
- **geinduceerde deelgraaf** gegeven een graaf G(V, E) en een deelverzameling $V' \subseteq V$ noemen we G'(V', E') de deelgraaf van G geinduceerd door V' als en slechts als $E' = \{(v, w) \in E | (v, w) \in V'\}$
- **component** een graaf G(v, E) is een component van een graaf G'(V', E') als en slechts als $G \subset G', G$ is niet leeg, G is samenhangend, en er bestaat geen samenhangende graaf G" waarvoor $G \subset G$ " $\subseteq G'$

4.2.4 Gerichte grafen

- gerichte graaf een gerichte graaf is een koppel (V,E) met V een verzameling waarvan de elementen knopen genoemd worden en $E \subseteq V^2$ een verzameling koppels
- **gericht pad, ongericht pad** een gericht pad in een gerichte graaf G(V, E) is een pad $(v_0, v_1, ..., v_n)$ met $\forall i : (v_i, v_{i+1}) \in E$. Een ongericht pad is een pad $(v_0, v_1, ..., v_n)$ met $\forall i : (v_i, v_{i+1}) \in V \lor (v_{i+1}, v_i) \in E$

4.3 voorstelling van grafen

4.3.1 buurmatrix

buurmatrix Gegeven een enkelvoudige graaf G(V, E), met $V = \{v_1, v_2, ..., v_n\}$ is de buurmatrix van G een $n \times n$ matrix A met $A_{ij} = 1 \Leftrightarrow (v_i, v_j) \in E$, en $A_{ij} = 0 \Leftrightarrow (v_i, v_j) \notin E$

4.3.2 booleaanse buurmatrix

booleaanse buurmatrix Gegeven een enkelvoudige graaf G(V, E) met $V = \{v_1, v_2, ..., v_n\}$ is de booleaanse buurmatrix van G een $n \times n$ matrix B met $B_{ij} = ((v_i, v_j) \in E)$

4.3.3 incidentiematrix

incidentiematrix gegeven een enkelvoudige graaf G(V, E) met $V = \{v_1, v_2, ..., v_n\}$ en $E = \{e_1, e_2, e_n\}$ is de incidentiematrix van G een $n \times m$ matrix A met $A_{ij} = 1$ als e_j invalt op v_i en $A_{ij} = 0$ in alle andere gevallen.

4.4 isomorfisme van grafen

grafen-isomorfisme Twee grafen G(V, E) en G'(V', E') zijn isomorf als en slechts als er een bijectie $h: V \to V'$ bestaat zodat $\{h(x)|x \in V\} = V'$ en $\{h(x), h(y)|(x,y) \in E\} = E'$

4.5 gewogen grafen

- 4.5.1 kortste pad algoritme van Dijkstra
- 4.5.2 Dijkstra, versie 1
- 4.5.3 dijkstra versie 2
- 4.5.4 complexiteit van Dijkstra's algoritme
- 4.6 bijzondere klassen van grafen

4.7 vlakke grafen

vlakke graaf een vlakke graaf is een graaf die getekend kan worden zonder snijdende bogen

4.7.1 de formule van Euler

4.7.2 karakterisatie van vlakke grafen

 (β, B) Gegeven een vlakke graaf G noteren we het aantal bogen waardoor een zijvlak z begrensd wordt als $\beta(z)$. De som van $\beta(z)$ voor alle zijvlakken Z wordt B genoteerd. $B = \sum_{z \in Z} \beta(z)$, met Z de verzameling zijvlakken van de graaf.

4.7.3 duale grafen

duale graaf Zij G een graaf met v knopen, e knopen en f zijvlakken. De duale graaf G' heeft 1 knoop voor elk zijvlak van G, dus v' = f knopen. Voor elke boog tussen de oorspronkelijke zijvlakken is er een boog tussen de overeenkomstige knopen in de duale graaf.

4.8 kleuring van grafen

kleuring Met een kleuring van een graaf (V, E) bedoelt men een toekenning van een kleur aan elke $v \in V$ zodanig dat de kleur van v naar w verschilt indine $(v, W) \in E$. een n-kleuring is een kleuring met n of minder verschillende kleuren. Een minimale kleuring is een n-kleuring met minimale n.

4.9 bomen

4.9.1 opspannende bomen

opspannende boom $T(V_T, E_T)$ is een opspannende boom voor G(V, E) als en slechts als T een boom is, $V_T = V$ en $E_T \subseteq E$

4.9.2 minimaal opspannende bomen

minimaal opspannende boom een minimaal opspannende boom van een gewogen graaf G is een opspannende boom van G waarvoor geldt dat er geen andere opspannende boom is met een kleiner gewicht.

4.10 gewortelde bomen

gewortelde boom een gewortelde boom is een boom waarin een willekeurige knoop wordt aangeduid als de wortel

4.10.1 binaire bomen

4.10.2 zoekbomen

binaire zoekboom een binaire zoekboom is een binaire boom waarin met elke knoop v een waarde w(v) is geassocieerd (bv. een getal) zodanig dat als l behoort tot de linker en r tot de rechterdeelboom van v, dat dan w(l) < w(v) < w(r)

4.10.3 Praktische voorstelling van bomen

4.10.3.1 Voorstelling van gewortelde bomen in computerprogramma's

4.10.4 Het doorlopen van gewortelde bomen

4.10.4.1 Het volledig doorlopen van een gewortelde boom

4.10.4.2 Diepte-eerst en breedte-eerst doorlopen

4.10.5 Spelbomen

4.11 Netwerkmodellen en petri-netten

4.11.1 Transportmodel

transportnetwerk een transportnetwerk(of simpelweg een netwerk) is een enkelvoudige gewogen, gerichte graaf die voldoet aan:

- er is juist één knoop in G zonder binnenkomende bogen, deze knoop wordt de bron genoemd.
- er is juist één knoop in G zonder buitengaande bogen, deze knoop wordt de put genoemd.
- het gewicht $c_{i,j}$ van de gerichte boog (i,j) is positief en wordt de capaciteit van de boog genoemd.
- G is samenhangend.

stroming Voor een netwerk G(V, E) met capaciteiten $C_{i,j}, i, j \in V$ is F een stroming als F een afbeelding is van E naar \mathbb{R}^+ zodanig dat

- $F(i,j) \leq c_{i,j}$
- voor elke knoop j
die niet de bron of de put is geldt $\sum\limits_{i\in V}F(i,j)=\sum\limits_{i\in V}j,i.$

We noemen F(i,j) de stroming in een boog (i,j). Voor een knoop j noemen we $\sum_{i \in v} F(i,j)$ de stroming naar of in j en $\sum_{i \in v} F(j,i)$ de stroming van of uit j.

grootte van een stroming de grootte van een stroming F in een netwerk G(V, E) met bron a en put z is gedefinieerd door $\sum_{i \in V} F(a, i)$ of $\sum_{i \in V} F(i, z)$

4.11.2 Maximale stroming

goede/slechte boog in een gerichte graaf G(V, E) met met pad $(v_1, v_2, ..., v_n)$ noemen we een boog (v_i, v_{i+1}) goed (gericht) indien $(v_i, v_{i+1}) \in E$ en anders slecht gericht.

snede een s
nsede van een netwerk G(V,E) met bron a en put z
is een tweetal (P,\bar{P}) zodanig dat $a\in P,z\in \bar{P},P\cup \bar{P}=V$ en $P\cap \bar{P}=\emptyset$

capaciteit van een snede de capaciteit van een snede (p, \bar{P}) is $C(P, \bar{P}) = \sum_{i \in P} \sum_{j \in \bar{P}} C_{(i,j)}$.

Max flow, min cut Voor een snede (P, \bar{P}) en stroming F in een net G(V, E) geldt dat als $C(P, \bar{P}) = F$, dan is de stroming maximaal en de snede minimaal.

4.11.3 Matching

matching Voor een gerichte tweeledige graaf $G(V \cup W, E)$ waarbij $V \cap W = \emptyset$ en $E \subseteq V \times W$ is M een overeenkomst of matching indien

- M ⊆ E
- $\forall (x,y), (i,j) \in M$: indien $(i,j) \neq (x,y)$ dan is $i \neq x$ en $j \neq y$ (ttz in elke knoop komt hoogstens een boog aan en vertrekt er hoogstens een)

maximale matching een maximale matching heeft een maximaal aantal bogen in M. Een matching is volledig indien $\forall v \in V, \exists w \in W : (v, w) \in M$

4.11.4 Petrinetten

- **petrinet** een petrinet is een enkelvoudige gerichte graaf G(V, E) waarbij $V = P \cup T, P \cap T = \emptyset$ en $E \subseteq P \times T \cup T \times P; P$ noemen we plaatsen en T transities.
- markering van een petrinet een markering van een petrinet is een toekenning van een natuurlijk getal aan elke plaats van het petrinet.
- bereikbare markering een markering M' is bereikbaar vanuit een markering M indien er vertrekkend van M een salvo is dat M' als resultaat heeft.
- levende markering Een markering M van een petrinet is levend indien na elk salvo te beginnnen bij M er voor elke transitie t een salvo bestaat zodanig dat na dat salvo t actief wordt
- begrensde markering een markering M is begrensd indien er een n bestaat zodanig dat bij gelijk welk salvo geen enkele plaats ooit meer dan n tokes bevat. Een begrensde markering waarvoor n = 1 wordt een veilige markering genoemd.

5 Vastepuntstheorie

5.1 Orderelaties

5.1.1 Basisbegrippen

partiele orderelatie Een relatie R op een verzameling S is een (partiele)orde(relatie) als en slechts als voldaan is aan de volgende drie voorwaarden

- R is reflexief: $\forall x \in S : xRx$
- R is antisymmetrisch: $\forall x, y \in S : xRy \text{ en } yRx \Rightarrow x = y$
- R is transitief: $\forall x, y, z \in S : xRy \text{ en } yRz \Rightarrow xRz$

boven -en ondergrens zij S een verzameling met een partiele orde leq

- $q \in S$ is een bovengrens (of majorant) voor een deel $X \subseteq S \Leftrightarrow \forall x \in X : x \leq a$
- $b \in S$ is een ondergrens (of minorant) voor een deel $X \subseteq S \Leftrightarrow \forall x \in X : b \leq x$

sup en inf zij S, \leq een een geordende verzameling $X \subseteq S$

- $a \in S$ is een kleinste bovengrens van X of een supremum van X, notatie $a = \sup(X)$ als en slechts als a een bovengrens is voor X en voor elke bovengrens a' vqn X geldt dat $a \le a'$
- $b \in S$ is een grootste ondergrens van X of een infinum van X, notatie b = inf(X) als en slechts als b een ondergrens is voor X en voor elke ondergrens b' van X gelt dat $b \ge b'$

complete tralie Een partieel geordende verzameling L, \leq is een complete tralie als $\sup(X)$ en $\inf(X)$ bestaan voor een niet-lege deelverzameling $X \subseteq L$

top-en bodemelement In een complete tralie L, \leq noemen we

- \top = topelement = sup(L)
- \perp = bodemelement = inf(L)

5.1.2 Monotone en continue afbeeldingen

- **monotone afbeelding** zij L, \leq een geordende verzameling. Een afbeelding $T: L \to L$ noemen we monotoon als uit $x \leq y$ volgt dat $T(x) \leq T(Y)$
- **gerichte verzameling** Beschouw een willekeurige deelverzameling X van een complete tralie L, \leq . X is gericht \Leftrightarrow elke eindige deelverzameling van X heeft een bovengrens in X
- **continue afbeelding** een afbeelding $T: L \to L$ op een complete tralie L, \leq wordt een continue afbeelding genoemd indien T(sup(X)) = sup(T(X)) voor elke gerichte deelverzameling X van L. $(T(X) = \{t(x) | x \in X\})$

5.2 De stellingen van Tarski en Kleene

5.2.1 de stelling van Tarski

vaste punten zij L, \leq een complete tralie en beschouw afbeelding $T: L \to L$

- we noemen $a \in L$ een vast punt voor T als T(a) = a
- een kleinste vast punt voor T is een vast punt a voor T zodat elk ander vast punt b voor T geldt dat a < b
- een grootste vast punt voor T is een vast punt a voor T zodat voor elk ander vast punt voor T geldt dat $a \ge b$

5.2.2 de stelling van Kleene

5.2.3 voorbeeld: de transitieve sluiting van een relatie