A Unified Efficient Pyramid Transformer for Semantic Segmentation

Fangrui Zhu*1, Yi Zhu², Li Zhang¹, Chongruo Wu³, Yanwei Fu¹, Mu Li²

¹ School of Data Science, Fudan University

² Amazon Web Services

³ University of California, Davis

语义分割存在的广泛问题

- ADE20K 类别比较多的情况-> 类别混淆
- Cityscapes 类别不多 -> 边界混淆

解决策略

• 全局语义信息 • 局部细节 Transformer 大图像带来的爆显 存问题

Contributions

• 提出了新的attention模块--efficient pyramid transformer, 充分学习图像的上下文信息

•引入空间分支,提供自适应图像特征信息以及边界信息

• 实验效果,在ADE20K,Cityscapes, Pascal-Context 表现卓越

Related work (context modeling && boundary handling)

- FCN
- pyramid pooling
- Global pooling
- attention mechanism(last convolutional features)

Transformer(sparse sampling strategy)

Related work (context modeling && boundary handling)

- localizing semantic boundaries
- refining boundary segmentation results

- 1. 没有考虑全局语义信息
- 2. 大部分工作是two-stage的

Method

Efficient Transformer for modeling contexts

- 1. 输入像素序列过长会爆显存
- 2. 对于任务本身而言也不需要输入全部像素

General MSA in transformer

$$K \in \mathbb{R}^{n \times d_m}$$

$$K \in \mathbb{R}^{n \times d_m} \qquad Q \in \mathbb{R}^{n \times d_m} \qquad V \in \mathbb{R}^{n \times d_m}$$

$$V \in \mathbb{R}^{n \times d_m}$$

$$A_{m} = \operatorname{softmax} \left(\frac{QW_{m}^{Q} \left(KW_{m}^{K} \right)^{\mathsf{T}}}{\sqrt{d_{model}}} \right) \quad W_{m}^{Q}, W_{m}^{K} \in \mathbb{R}^{d_{m} \times d_{k}} \qquad A_{m} \in \mathbb{R}^{n \times n}$$

$$W_m^Q, W_m^K \in \mathbb{R}^{d_m \times d_k}$$

$$A_m \in \mathbb{R}^{n \times n}$$

$$Attn_m = A_m V W_m^V$$

$$W_m^V \in \mathbb{R}^{d_m \times d_v}$$
 Attn $_m \in \mathbb{R}^{n \times d_v}$

$$\text{Attn}_m \in \mathbb{R}^{n \times d_v}$$

$$\mathbf{MH}\text{-}\mathbf{Attn} \ = \ \left[\mathbf{Attn}_1,...,\mathbf{Attn}_M\right]W^O \qquad W^O \ \in \ \mathbb{R}^{Md_v \times d_m}$$

$$W^O \in \mathbb{R}^{Md_v \times d_n}$$

Transformer with sparse sampling

$$X \in \mathbb{R}^{HW \times d_{model}}$$

$$Q \in \mathbb{R}^{HW \times d_{model}}$$

$$V \in \mathbb{R}^{HW \times d_{model}}$$

$$\operatorname{Attn}_{mq} = \operatorname{softmax} \left(\sum_{n=1}^{N} w_{nq} \right) v_{\langle c_q + \Delta_n \rangle} \qquad \operatorname{O(n^*n)} -> \operatorname{O(kn)}$$

$$A_m = \operatorname{softmax} \left(QW_m^Q U_m^{wts} \right)$$

$$U_m^{wts} \in \mathbb{R}^{d_k \times N}$$

$$\operatorname{Attn}_{m} = A_{m} \left(V W_{m}^{V} \right)_{\left\langle Q W_{m}^{Q} U_{m}^{pos} \right\rangle}$$

Pyramid transformer

$$\left\{X^l\right\}_{l=1}^L \qquad X^l \in \mathbb{R}^{H_l W_l \times C}$$

$$X_{ms} \in \mathbb{R}^{L_{ms} \times d_{model}}$$

$$\operatorname{Attn}_{mq} = \operatorname{softmax} \left(\sum_{l=1}^{L} \sum_{n=1}^{N} w_{lnq} \right) v_{\langle c_q + \Delta_{ln} \rangle}$$

Dynamic learnable spatial branch

Boundary refinement

把边界作为一个类预测出来(语义分割)预测边界的方向

测试时将一些边界像素标签进行重新优化

Experiments

Method	Reference	Backbone	mIoU	pixAcc
PSPNet [70]	CVPR2017	ResNet50	41.7	80.0
PSANet [71]	ECCV2018	ResNet50	42.9	80.9
UperNet [51]	ECCV2018	ResNet50	41.2	79.9
EncNet [65]	CVPR2018	ResNet50	41.1	79.7
CFNet [67]	CVPR2019	ResNet50	42.9	-
CPNet [56]	CVPR2020	ResNet50	44.5	81.4
Ours	-	ResNet-50	46.1	81.7
RefineNet [36]	CVPR2017	ResNet101	40.2	
PSPNet [70]	CVPR2017	ResNet101	43.3	81.4
SAC [69]	ICCV2017	ResNet101	44.3	81.9
UperNet [51]	ECCV2018	ResNet101	42.7	81.0
DSSPN [35]	CVPR2018	ResNet101	43.7	81.1
PSANet [71]	ECCV2018	ResNet101	43.8	81.5
EncNet [65]	CVPR2018	ResNet101	44.7	81.7
ANL [78]	ICCV2019	ResNet101	45.2	:-
CCNet [26]	ICCV2019	ResNet101	45.2	1
CFNet [67]	CVPR2019	ResNet101	44.9	100
CPNet [56]	CVPR2020	ResNet101	46.3	81.9
OCRNet [62]	ECCV2020	ResNet101	45.3	-
Efficient FCN [37]	ECCV2020	ResNet101	45.3	-
ResNeSt [66]	arXiv2020	ResNeSt200	48.4	-
SETR [72]	CVPR2021	T-large	50.2	83.5
Ours		DeiT	50.5	83.6

Table 1. Quantitative evaluations on the ADE20K validation set.

Experiments

Method	Backbone	mIoU	
PSPNet [70]	ResNet101	78.5	
DeepLabv3 [11] (MS)	ResNet101	79.3	
PointRend [29]	ResNet101	78.3	
OCRNet [62]	ResNet101	80.6	
Multiscale DEQ [2] (MS)	MDEQ	80.3	
CCNet [26]	ResNet101	80.2	
GCNet [6]	ResNet101	78.1	
Axial-DeepLab-XL [49] (MS)	Axial-ResNet-XL	81.1	
Axial-DeepLab-L [49] (MS)	Axial-ResNet-L	81.5	
SETR [72] (MS)	T-large	82.2	
Ours (80k, MS)	ResNet50	79.8	
Ours (80k, MS)	DeiT	82.9	

Table 2. Quantitative evaluations on the Cityscapes validation set (training iterations: 80k, MS: Multi-scale inference).

Method	Reference	Backbone	mIoU
FCN-8S [41]	CVPR2015	VGG16	37.8
BoxSup [17]	ICCV2015	VGG16	40.5
RefineNet [36]	CVPR2017	ResNet152	47.3
PSPNet [70]	CVPR2017	ResNet101	47.8
EncNet [65]	CVPR2018	ResNet101	51.7
DANet [21]	CVPR2019	ResNet101	52.6
ANL [78]	ICCV2019	ResNet101	52.8
CPNet [56]	CVPR2020	ResNet101	53.9
OCRNet [62]	ECCV2020	ResNet101	54.8
Efficient FCN [37]	ECCV2020	ResNet101	55.3
SETR [72]	CVPR2021	T-large	55.8
Ours	-	ResNet50	49.5
Ours	-	DeiT	55.2

Table 4. Quantitative evaluations on the PASCAL-Context validation set.

Ablation studies

Variants	pixAcc	mIoU	
baseline	80.3	42.3	
+ pyramid features	81.1	45.0	
+ spatial path	81.7	46.1	
+ stronger backbone	83.6	50.5	

Table 5. Evaluation of different components on ADE20K validation set.

Feature scales (L)	Sampling points (N)	pAcc	mIoU
	4	77.5	37.5
1	16	80.3	42.5
	64	80.5	42.9
	4	80.6	44.1
3	16	81.7	46.1
	64	80.4	45.6

Table 6. Ablation studies on different sampling points (N) and different feature scales (L) on ADE20K dataset with a ResNet50 backbone. Note that, boundary refinement is not applied here.

Ablation studies

Method	Backbone	Mem Cost	mIoU
Sparse Transformer [14]	ResNet50	18.6G	40.3
Longformer [3]	ResNet50	11.3G	39.4
Reformer [30]	ResNet50	15.5G	38.2
CCNet [26]	ResNet50	9.8G	43.1
ANL [78]	ResNet50	2.0G	42.6
SETR [72]	T-large	30.0G	50.2
Ours	ResNet50	7.0G	46.1
Ours	DeiT	8.5G	50.5

Table 8. Ablation studies on the memory efficiency of UN-EPT. We report results on ADE20K validation set.

Figure 4. Visualization of segmentation results with/without boundary refinement. Examples are taken from ADE20K validation set.

谢谢大家!