# **CULEGERE DE PROBLEME**

2019

# TRANSFER DE CĂLDURĂ:

**CONDUCŢIA TERMICĂ** 

Carmen-Ema PANAITE Aristotel POPESCU



# **CUPRINS**

| 1 | Intro | oducere                                               | 7   |
|---|-------|-------------------------------------------------------|-----|
|   | 1.1   | Tehnica rezolvării problemelor – generalități         | 7   |
|   | 1.2   | Elemente specifice problemelor de transfer de căldură |     |
|   | 1.3   | Notaţii şi simboluri                                  |     |
|   | 1.4   | Grupuri adimensionale şi constante semnificative      |     |
| 2 | Noţ   | iuni generale de transfer de căldură                  | 21  |
|   | 2.1   | Relaţii de calcul importante                          | 21  |
|   | 2.2   | Probleme rezolvate                                    | 23  |
|   | 2.3   | Probleme propuse                                      | 38  |
| 3 | Con   | ducția termică – Noțiuni introductive                 | 43  |
|   | 3.1   | Relaţii de calcul importante                          | 43  |
|   | 3.2   | Probleme rezolvate                                    | 45  |
|   | 3.3   | Probleme propuse                                      | 56  |
| 4 | Con   | ducția termică – Unidimensională                      | 65  |
|   | 4.1   | Relaţii de calcul importante                          | 65  |
|   | 4.2   | Probleme rezolvate                                    | 69  |
|   | 4.3   | Probleme propuse                                      | 97  |
| 5 | Con   | ducţia termică – Bidimensională                       | 119 |
|   | 5.1   | Relaţii de calcul importante                          | 119 |
|   | 5.2   | Probleme rezolvate                                    | 123 |
|   | 5.3   | Probleme propuse                                      | 138 |

| 6 C     | onducția termică - Tranzitorie     | 145 |
|---------|------------------------------------|-----|
| 6.1     | Relații de calcul importante       | 145 |
| 6.2     | Probleme rezolvate                 | 149 |
| 6.3     | Probleme propuse                   | 164 |
| Anexe.  |                                    | 171 |
| Anex    | xa 1 Proprietăți termofizice       | 173 |
| Anex    | xa 2 Funcții și relații matematice | 227 |
| Anex    | xa 3 Diagrame                      | 233 |
| Bibilog | grafie                             | 251 |

#### 1 INTRODUCERE

cest capitol introductiv prezintă câteva elemente importante ce vor fi utilizate pe parcursul întregii culegeri de probleme. Astfel, sunt prezentate noţiunile generale de rezolvare a problemelor, elemente specifice rezolvării problemelor de transfer de căldură, notaţii şi termeni utilizaţi atât în abordarea specific românească (Est-Europeană), cât şi în cea internaţională.

# 1.1 Tehnica rezolvării problemelor - generalități

Înțelegerea aprofundată a unui domeniu științific nu se reduce numai la învățarea elementelor și legilor fundamentale aplicabile. Cunoștințele dobândite în primă fază sunt utilizate pentru a rezolva probleme reale, importante în practică. Rezolvarea problemelor poate fi ușurată de aplicarea unei tehnici de rezolvare adecvate. Un bun inginer poate transforma o problemă complicată într-o sumă de probleme simple, ușor de rezolvat, prin aplicarea unor etape succesive.

În cele ce urmează sunt prezentate aceste etape, punctele (a. – f.) fiind valabile în rezolvarea oricărei probleme inginerești.

În cazul particular al problemelor din domeniul ştiinţelor termice, mai exact cel al transferului de căldură, elementele specifice din aceste etape vor fi detaliate după prezentarea elementelor generale.

#### a. Enunțul problemei:

Citiţi cu mare atenţie enunţul problemei / temei de rezolvat. Identificaţi elementele-cheie şi asiguraţi-vă că aţi înţeles problema (**Date cunoscute**) şi obiectivele (**Date cerute**) înainte de a încerca rezolvarea acesteia. Deşi pare a fi un pas simplu şi poate exista tendinţa de a-i minimiza importanţa, trebuie acordată atenţia cuvenită pentru a nu rezolva "altă problemă".

#### b. Schema problemei:

Deseori este foarte utilă desenarea unei scheme (**Schematizare**) care să cuprindă elementele descrise în enunțul problemei. Nu trebuie să fie un desen artistic complicat, ci o reprezentare realistă a elementelor-cheie și a datelor cunoscute. Astfel pot fi identificate elementele lipsă (proprietăți, cantități necunoscute, ipoteze necesare) în rezolvarea problemei.

#### c. Ipoteze:

Unele indicaţii din enunţul problemei permit, în limite rezonabile, formularea unor ipoteze simplificatoare. Când datele nu sunt foarte clare, toate ipotezele formulate trebuie justificate. În unele cazuri, aceste ipoteze sunt enunţate, utilizate la rezolvarea problemei şi justificate (sau confirmate) cu ajutorul rezultatului obţinut.

#### d. Proprietăți:

Pentru stări cunoscute, proprietățile necunoscute necesare rezolvării problemei sunt determinate din tabele şi/sau diagrame. Este bine să indicați separat proprietățile cu valorile aferente şi sursa de informare, pentru uşurarea evetualelor verificări ulterioare. Uneori, în aplicarea acestui pas va fi necesară combinarea cu pasul următor, atunci când pentru determinarea anumitor proprietăți sunt necesare formule sau legi fizice.

#### e. Analiza:

Pentru obţinerea soluţiei se stabilesc ecuaţiile matematice necesare, cantităţile cunoscute, cât şi cele de determinat.

• <u>Formule, legi</u>: Ca urmare a identificării fenomenelor fizice, aplicați legile și principiile fizice de bază relevante pentru problema în cauză. Utilizând ipotezele simplificatoare, reduceți aceste formule la forma cea mai simplă posibil, dar specificați clar condițiile și domeniul de aplicare.

- <u>Calcule</u>: Valorile cantităților cunoscute se substituie în ecuațiile stabilite anterior, se efectuează calculele şi se determină valorile necunoscute. O atenție deosebită trebuie acordată acestui pas în mai multe privințe:
  - evitarea erorilor de citire;
    - o substituirea valorilor în ecuație;
    - o transcrierea rezultatelor de pe calculator;
  - evitarea erorilor de calcul şi verificarea formulelor
    - o tastarea valorilor în calculator;
    - o ordinea efectuării operațiilor;
    - o înscrierea unităților de măsură;
    - verificarea unităților și simplificarea acestora;
  - aplicarea rotunjirilor rezonabile (reducerea la minim a numărului de cifre semnificative după punctul zecimal).

În mod normal, 2 cifre sau cel mult 3 cifre sunt mai mult decât suficiente pentru a menţine o precizie acceptabilă a rezultatelor, în timp ce lungimea şirului de cifre este sensibil redusă (în loc de circa 8 cifre cât poate arăta ecranul calculatorului).

#### f. Concluzii, comentarii

Prin rezolvarea problemelor se urmăreşte aplicarea cunoștințelor teoretice în unele situații practice, asemănătoare cu cazurile reale din viața de zi cu zi.

De aceea, obținerea unei soluții este urmată în mod evident de unele concluzii sau comentarii legate de condițiile de utilizare a rezultatelor, eventualele modificări ce se impun sau observații, implicații și recomandări.

Deasemenea, rezultatele trebuie analizate din punct de vedere ingineresc, cele nerezonabile sau nerealiste indicând posibile erori fie în analiza problemei fie în calculele efectuate.

# 1.2 Elemente specifice problemelor de transfer de căldură

În cazul problemelor de transfer de căldură, pot fi specificate câteva elemente suplimentare pentru clarificarea/detalierea etapelor prezentate anterior (a. – f.). Pentru a evita repetiţia, se vor face referiri numai la etapele ce necesită aceste specificaţii.

- **b.** Schematizare pe schiţa întocmită pentru vizualizarea problemei, se va identifica şi trasa direcţia (sau direcţiile, în cazul transferului de căldură multidimensional) principală a fluxului termic, se vor identifica modurile de transfer de căldură ce intervin, eventual se va reprezenta circuitul electric echivalent cu identificarea rezistenţelor termice şi a nodurilor.
- **e. Analiza** dacă în enunțul problemei nu sunt specificate valorile coeficienților convectivi de transfer de căldură, acestea trebuie determinate prin efectuarea unor etape suplimentare de calcul, și anume:
  - calculul temperaturii pentru care se determină proprietățile termo-fizice ale fluidului. În majoritatea cazurilor, aceasta este reprezentată de temperatura filmului de fluid, T<sub>f</sub>, adică media aritmetică a temperaturii suprafeței solide și cea a fluidului în curgerea liberă, neperturbată. În alte cazuri, se va utiliza temperatura suprafeței solide, T<sub>s</sub>;
  - se extrag proprietățile termofizice din tabele, grafice, diagrame;
  - se calculează criteriile specifice tipului de convecţie analizat (Re sau Ra, Pr etc.);
  - se determină condițiile specifice (ex. laminar/turbulent, complet dezvoltat);
  - se alege relația criterială pentru calculul criteriului Nusselt, Nu;
  - se determină valoarea coeficientului convectiv de transfer de căldură.

Aceste etape suplimentare se efectuează pentru determinarea tuturor coeficienților convectivi de transfer de căldură care apar în problemă.

Dacă nu se cunosc temperaturile necesare calculului  $T_f$ , se adoptă o valoare (realistă), se efectuează calculele pe baza etapelor suplimentare prezentate anterior şi, după rezolvarea problemei, se calculează valoarea temperaturii adoptate inițial.

Se compară valoarea adoptată cu cea calculată; daca există o diferenţă de maxim 10% între cele două valori, se considera ipoteza viabilă şi valoarea rezultată din calcul este considerată ca fiind rezultatul căutat; daca diferenţa este mai mare, sunt necesare iteraţii matematice, adoptând valoarea reieşită din calcul ca valoare de start pentru următoarea iteraţie.

Pragul de eroare menţionat anterior (10%) este utilizat în general pentru rezolvarea problemelor teoretice, având în vedere faptul că proprietăţile termo-fizice ale substanţelor nu variază prea mult într-un astfel de interval de temperaturi, mai ales pentru valori scăzute. Pentru aplicaţii industriale (probleme tehnice reale) se va utiliza nivelul de eroare cerut prin specificaţiile beneficiarului.

# 1.3 Notații și simboluri

În acest subcapitol se vor detalia notațiile și simbolurile folosite în această culegere de probleme. În tabelele de mai jos sunt specificate atât varianta utilizată tradițional în Romania (aflată sub influența notațiilor specifice publicațiilor sovietice), cât și varianta internațională (acceptată tacit ca provenind din țările vorbitoare de limbă engleză). Aceasta și din cauză că noile publicații românești adopta din ce în ce mai mult varianta internațională și se poate crea astfel o confuzie de notații.

#### Mărimi fundamentale (SI)

| Darametru                     | Sim            | bol | Unitatea de măsură |
|-------------------------------|----------------|-----|--------------------|
| Parametru<br>                 | Rom            | Eng | SI                 |
| Lungime                       | L              | L   | m                  |
| Masă                          | m              | m   | kg                 |
| Timp                          | t              | t   | S                  |
| Curent electric (intensitate) | 1              | I   | Α                  |
| Temperatura termodinamică     | Т              | Т   | K                  |
| Intensitatea luminoasă        | l <sub>v</sub> | J   | cd                 |
| Cantitatea de substanţă       | ν              | N   | mol                |

# Mărimi suplimentare (SI)

| Parametru     |  | Simbol |     | Unitatea de măsură |
|---------------|--|--------|-----|--------------------|
|               |  | Rom    | Eng | SI                 |
| Unghiul plan  |  | α      | α   | rad                |
| Unghiul solid |  | ω      | ω   | sr                 |

# Mărimi derivate

| Doubles of the                             | Sim             | bol                | Unitatea de măsură |
|--------------------------------------------|-----------------|--------------------|--------------------|
| Parametru<br>                              | Rom             | Eng                | SI                 |
| Accelerație liniară                        | a               | а                  | m/s <sup>2</sup>   |
| Difuzivitate termică                       | а               | α                  | m²/s               |
| Arie                                       | Α               | Α                  | m <sup>2</sup>     |
| Parametru generic                          | В               | В                  | -                  |
| Viteza luminii în vid                      | С               | С                  | m/s                |
| Căldură specifică la presiune constantă    | $c_{p}$         | $c_p$              | J / kg · K         |
| Căldură specifică la volum constant        | $C_v$           | $C_v$              | J/kg·K             |
| Capacitate calorică                        | С               | С                  | J/kg               |
| Coeficient de frecare                      | $C_f$           | $C_{f,x}$          | -                  |
| Diametru                                   | D               | D                  | m                  |
| Diametru hidraulic                         | $D_h$           | $D_h$              | m                  |
| Energie specifică                          | е               | е                  | J/kg               |
| Energie                                    | E               | Е                  | J                  |
| Putere totală de emisie                    | E               | Ε                  | W/m²               |
| Putere totală de emisie a corpului negru   | $E_0$ , $E_cn$  | $E_b$              | W/m²               |
| Puterea de emisie monocromatică            | $E_\lambda$     | $E_\lambda$        | $W/m^2 \cdot m$    |
| Factor de frecare                          | f               | f                  | -                  |
| Forţă                                      | F               | F                  | N                  |
| Accelerație gravitațională                 | g               | g                  | m/s²               |
| Flux radiant unitar incident               | G               | G                  | W/m <sup>2</sup>   |
| Entalpie specifică                         | h               | h                  | J/kg               |
| Căldură specifică de vaporizare/condensare | $h_{fg}$        | $h_{\text{lg}} \\$ | J/kg               |
| Căldură specifică de topire/solidificare   | h <sub>sf</sub> | $h_{\text{sl}}$    | J/kg               |

Mărimi derivate (continuare din pagina anterioară)

| - Domination                                     | Sim           | bol           | Unitatea de măsură |
|--------------------------------------------------|---------------|---------------|--------------------|
| Parametru<br>                                    | Rom           | Eng           | SI                 |
| Entalpie                                         | Н             | Н             | J                  |
| Înălţime                                         | Н             | Н             | m                  |
| Intensitatea de radiație (în unghi solid unitar) | $I_{\lambda}$ | $I_{\lambda}$ | $W/m^3 \cdot sr$   |
| Radiozitate                                      | J             | J             | W/m <sup>2</sup>   |
| Conductivitate termică                           | λ             | k             | W/m·K              |
| Lăţime                                           | I             | W             | m                  |
| Lucru mecanic                                    | L             | W             | J                  |
| Lungime                                          | L             | L             | m                  |
| Masă                                             | m             | m             | kg                 |
| Debit masic                                      | ṁ             | ṁ             | kg/s               |
| Masă molară                                      | М             | М             | kg/kmol            |
| Direcție normală la suprafață                    | N             | n             | m                  |
| Număr de unități de transfer de căldură          | NTC           | NTU           | -                  |
| Presiune                                         | р             | р             | Pa, N/m²           |
| Perimetru                                        | Р             | Р             | m                  |
| Putere                                           | Р             | Р             | W                  |
| Căldură                                          | Q             | Q             | J                  |
| Flux termic                                      | ġ             | ġ             | W                  |
| Flux termic unitar liniar                        | ά′            | ġ′            | W/m                |
| Flux termic unitar                               | ġ"            | ġ"            | W/m <sup>2</sup>   |
| Flux termic unitar volumetric                    | ġ‴            | ġ‴            | W/m³               |
| Rază, coordonată radială                         | r             | r             | m                  |
| Coordonate cilindrice                            | r,φ,z         | r, φ, z       |                    |
| Coordonate sferice                               | r,θ,φ         | r,θ,φ         |                    |
| Constanta gazului ideal                          | R             | R             | kJ / kg · K        |
| Rezistență termică                               | $R_{t}$       | $R_{t}$       | K/W                |
| Entropie specifică                               | S             | S             | J/kg·K             |
| Entropie                                         | S             | S             | J/K                |
| Factor de formă în conducția bi-dimensională     | S             | S             | m                  |
| Timp                                             | t             | t             | S                  |

# Mărimi derivate (continuare din pagina anterioară)

| Do you manature                               | Sim       | ibol      | Unitatea de măsură |
|-----------------------------------------------|-----------|-----------|--------------------|
| Parametru<br>                                 | Rom       | Eng       | SI                 |
| Temperatură                                   | Т         | Т         | K,°C               |
| Temperatură de saturație                      | $T_{sat}$ | $T_{sat}$ | K,°C               |
| Energie internă specifică                     | u         | u         | J/kg               |
| Componentele vitezei în coordonate carteziene | u,v,w     | u,v,w     | m/s                |
| Energie internă                               | U         | U         | J                  |
| Coeficient global de transfer de căldură      | k         | U         | $W/m^2 \cdot K$    |
| Volum specific                                | V         | ٧         | m³/kg              |
| Volum                                         | V         | V         | $m^3$              |
| Debit volumic                                 | Ÿ         | Ÿ         | m³/s               |
| Viteză                                        | w         | V         | m/s                |
| Coordonate Carteziene                         | x,y,z     | x,y,z     | m                  |

# Mărimi derivate (simboluri grecești)

| Darametru                                  | Sim                    | bol                    | Unitatea de măsură |
|--------------------------------------------|------------------------|------------------------|--------------------|
| Parametru<br>                              | Rom                    | Eng                    | SI                 |
| Coeficient convectiv de schimb de căldură  | α                      | h                      | $W/m^2 \cdot K$    |
| Absorptivitate                             | α                      | α                      | -                  |
| Coeficient de expansiune termică           | β                      | β                      | K <sup>-1</sup>    |
| Debit masic liniar de condensat            | Γ                      | Γ                      | kg/s·m             |
| Grosimea stratului limită                  | δ                      | δ                      | m                  |
| Diferență                                  | Δ                      | Δ                      |                    |
| Diferența logaritmică medie de temperatură | $\Delta T_{\text{Im}}$ | $\Delta T_{\text{Im}}$ | K                  |
| Eficiența schimbătorului de căldură        | ε                      | 3                      | -                  |
| Eficiența totală a suprafeței              | 3                      | 3                      | -                  |
| Emisivitatea totală                        | 3                      | 3                      | -                  |
| Coeficient unghiular mediu de radiație     | ф12                    | F <sub>12</sub>        | -                  |
| Eficiența aripioarelor                     | η                      | η                      | -                  |
| Coordonata unghiulară (polar, sferic)      | θ                      | θ                      | rad                |
| Lungimea de undă                           | λ                      | λ                      | m                  |

# Mărimi derivate (simboluri grecești) (continuare din pagina anterioară)

| Davamatru                             | Sim | ıbol | Unitatea de măsură |
|---------------------------------------|-----|------|--------------------|
| Parametru<br>                         | Rom | Eng  | SI                 |
| Vâscozitate absolută                  | μ   | μ    | kg/s·m             |
| Vâscozitate cinematică                | ν   | ν    | m²/s               |
| Frecvenţă                             | ν   | ν    | S <sup>-1</sup>    |
| Densitate                             | ρ   | ρ    | kg/m³              |
| Reflectivitate                        | ρ   | ρ    | -                  |
| Tensiunea superficială                | σ   | σ    | N/m                |
| Transmisivitate                       | τ   | τ    | -                  |
| Profilul adimensional al temperaturii | θ   | θ    | -                  |
| Viteză unghiulară                     | ώ   | ώ    | rad/s              |
| Accelerație unghiulară                | ä   | ö    | rad/s²             |

# Indici inferiori

| Indice                             | Sim  | ıbol | Cubcovint                  |  |
|------------------------------------|------|------|----------------------------|--|
|                                    | Rom  | Eng  | - Subscript                |  |
| absorbit                           | abs  | abs  | absorbed                   |  |
| aripioară                          | ar   | f    | fin                        |  |
| bază                               | b    | b    | base; blackbody            |  |
| conducție                          | cond | cond | conduction                 |  |
| convecţie                          | conv | conv | convection                 |  |
| critic                             | cr   | cr   | critical                   |  |
| diametru                           | D    | D    | diameter                   |  |
| exterior; iesire                   | е    | out  | outlet                     |  |
| evaporare                          | evap | evap | evaporation                |  |
| fluid, film de fluid               | f    | f    | fluid, film                |  |
| complet dezvoltat                  | fd   | fd   | fully developed            |  |
| gazos; condiții de vapori saturați | g    | g    | saturated vapor conditions |  |
| hidrodinamic                       | h    | h    | hydrodynamic               |  |
| iniţial; interior                  | i    | i    | initial; inner             |  |
| intrare                            | i    | in   | inlet                      |  |

Indici inferiori (continuare din pagina anterioară)

| Indica                                | Simbol   |          | Code a suite t                 |  |
|---------------------------------------|----------|----------|--------------------------------|--|
| Indice                                | Rom      | Eng      | Subscript                      |  |
| condiții de lichid saturat            | I        | I        | saturated liquid conditions    |  |
| condiția medie logaritmică            | lm       | lm       | log mean condition             |  |
| bazat pe lungimea caracteristică      | L        | L        | based on characteristic length |  |
| condiții de valori medii              | m        | m        | mean value conditions          |  |
| maximum                               | max      | max      | maximum                        |  |
| minimum                               | min      | min      | minimum                        |  |
| mediu înconjurător                    | mî       | sur      | surroundings                   |  |
| central sau plan median               | О        | 0        | center or midplane; outer      |  |
| rază, radial                          | r        | r        | radius                         |  |
| radiație                              | rad      | rad      | radiation                      |  |
| reflectat                             | ref      | ref      | reflected                      |  |
| suprafaţă; solid                      | S        | S        | surface; solid conditions      |  |
| termic                                | t        | t        | thermal                        |  |
| transmis                              | tr       | tr       | transmitted                    |  |
| transversal                           | tr       | С        | cross-sectional                |  |
| condiții de vapori                    | v        | ٧        | vapor conditions               |  |
| perete                                | W        | W        | wall                           |  |
| condiții locale                       | x        | х        | local conditions               |  |
| spectral                              | λ        | λ        | spectral                       |  |
| fluid în curgere liberă, neperturbată | $\infty$ | $\infty$ | free stream conditions         |  |

# 1.4 Grupuri adimensionale și constante semnificative

# **Grupuri adimensionale semnificative**

| Denumire | Definiţie                                                                         | Semnificație                                                          |
|----------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Biot     | $Bi = \frac{L/(\lambda \cdot A)}{1/(\alpha \cdot A)} = \frac{R_{t,cd}}{R_{t,cv}}$ | Raportul rezistențelor termice<br>la conducție și conveție            |
| Fourier  | $Fo = \frac{a \cdot t}{L^2}$                                                      | Timpul adimensional                                                   |
| Nusselt  | $Nu = \frac{\alpha \cdot L}{\lambda}$                                             | Gradientul temperaturii<br>adimensionale la suprafață                 |
| Reynolds | $Re = \frac{\rho \cdot V \cdot L}{\mu}$                                           | Raportul forțelor de interție și viscozitate în convecția forțată     |
| Prandtl  | $Pr = \frac{c_p \mu}{\lambda} = \frac{v}{a}$                                      | Difuzia momentului de mișcare raportată la difuzia termică            |
| Peclet   | $Pe = \frac{\rho c_p \cdot V \cdot L}{\lambda}$                                   | Produsul dintre Reynolds și Prandtl<br>în convecția forțată           |
| Grashof  | $Gr = \frac{g \cdot \beta \cdot (T_s - T_{\infty}) \cdot L^3}{v^2}$               | Raportul forțelor de flotabilitate și viscozitate în convecția liberă |
| Rayleigh | $Ra = \frac{g \cdot \beta \cdot (T_s - T_{\infty}) \cdot L^3}{v \cdot a}$         | Produsul dintre Grashof și Prandtl<br>în convecția liberă             |
| Mach     | $Ma = \frac{V}{c}$                                                                | Viteza de deplasare raportată la<br>viteza sunetului în același fluid |
| Euler    | $Eu = \frac{p}{\rho \cdot V^2}$                                                   | Raportul forțelor de presiune și inerție în curgere la presiune mare  |

### **Constante semnificative**

| Denumire                      | Simbol             | Valoare                                                |
|-------------------------------|--------------------|--------------------------------------------------------|
|                               | π                  | 3.141 592 653                                          |
|                               | е                  | 2.718 281 828                                          |
| Avogadro                      | $N_A$              | $6.022 \times 10^{23} \text{ mol}^{-1}$                |
| Boltzmann                     | k                  | $1.381 \times 10^{-23} \text{ J K}^{-1}$               |
| Constanta gazului ideal       | R                  | 8.315 J K <sup>-1</sup> mol <sup>-1</sup>              |
| Faraday                       | $F = e \times N_A$ | 96,485 C mol <sup>-1</sup>                             |
| Masa de repaus a electronului | me                 | 9.109 × 10 <sup>-31</sup> kg                           |
| Planck                        | h                  | $6.626 \times 10^{-34} \mathrm{J}\mathrm{s}$           |
| Sarcina elementară            | е                  | 1.602 × 10 <sup>-19</sup> C                            |
| Stefan-Boltzmann              | σ                  | $5.671 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$ |
| Unitatea atomică de masă      | u                  | $1.661 \times 10^{-27} \text{ kg}$                     |
| Viteza luminii în vid         | С                  | 2.998 × 10 <sup>8</sup> m s <sup>-1</sup>              |

# Factori de multiplicare

| Prefix | Simbol                                                                                                  |
|--------|---------------------------------------------------------------------------------------------------------|
| yotta  | Υ                                                                                                       |
| zetta  | Z                                                                                                       |
| еха    | E                                                                                                       |
| peta   | Р                                                                                                       |
| tera   | Т                                                                                                       |
| giga   | G                                                                                                       |
| mega   | M                                                                                                       |
| kilo   | k                                                                                                       |
| hecto  | h                                                                                                       |
| deca   | da                                                                                                      |
| _      | _                                                                                                       |
| deci   | d                                                                                                       |
| centi  | С                                                                                                       |
| milli  | m                                                                                                       |
| micro  | μ                                                                                                       |
| nano   | n                                                                                                       |
| pico   | р                                                                                                       |
| femto  | f                                                                                                       |
| atto   | a                                                                                                       |
| zepto  | Z                                                                                                       |
| yocto  | У                                                                                                       |
|        | yotta zetta exa peta tera giga mega kilo hecto deca - deci centi milli micro nano pico femto atto zepto |

# 2 NOȚIUNI GENERALE DE TRANSFER DE CĂLDURĂ

apitolul introductiv din orice carte de transfer de căldură prezintă noţiunile generale ale ariei tematice. Acestea descriu ecuaţiile de bază utilizate şi în termodinamică (principiile de conservare a masei, impulsului şi energiei), ecuaţiile de principiu ale modurilor de transfer de căldură (conducţie, convecţie şi radiaţie), precum şi exemple simple de utilizare ale acestora.

# 2.1 Relații de calcul importante

Ecuația calorimetrică de stare:

$$Q = m \cdot c_n \cdot \Delta T \tag{2.1}$$

și raportată la unitatea de timp:

$$\dot{Q} = \dot{m} \cdot c_{p} \cdot \Delta T \tag{2.2}$$

Fluxul termic:

$$\dot{Q} = \frac{Q}{t} \tag{2.3}$$

respectiv, fluxul termic unitar:

$$\dot{Q}'' = \frac{\dot{Q}}{\Delta} \tag{2.4}$$

Bilanţul energetic pentru un volum:

$$\dot{E}_{i} - \dot{E}_{e} + \dot{E}_{gen} = \dot{E}_{st} \tag{2.5}$$

Bilanțul energetic pentru o suprafață:

$$\dot{\mathsf{E}}_{\mathsf{i}} = \dot{\mathsf{E}}_{\mathsf{e}} \tag{2.6}$$

Legea lui Fourier pentru conducția termică:

$$\dot{Q}_{x}'' = -\lambda \cdot \frac{dT}{dx} \tag{2.7}$$

iar pentru un perete plan:

$$\dot{Q}_{x}'' = \lambda \cdot \frac{T_{1} - T_{2}}{L} = \lambda \cdot \frac{\Delta T}{L}$$
(2.8)

Legea lui Newton pentru convecția termică:

$$\dot{Q}'' = \alpha \cdot (T_s - T_{\infty}) \tag{2.9}$$

Legea **Stefan – Boltzmann** pentru **radiaţia termică** a corpului absolut negru (ideal):

$$\dot{\mathsf{E}}_{\scriptscriptstyle 0} = \boldsymbol{\sigma} \cdot \mathsf{T}_{\scriptscriptstyle s}^{\scriptscriptstyle 4} \tag{2.10}$$

iar pentru corpul cenuşiu (real):

$$\dot{E} = \varepsilon \cdot \sigma \cdot T_s^4 \tag{2.11}$$

Fluxul termic radiativ net ce părăsește o suprafață:

$$\dot{Q} = \varepsilon \cdot \sigma \cdot A \cdot \left(T_s^4 - T_{mi}^4\right) \tag{2.12}$$

# 2.2 Probleme rezolvate

### Problema rezolvată R2.1

Un tranzistor de formă cilindrică, de 1 cm înălţime şi 2 cm diametru, lipit cu suprafaţa inferioară pe o placă de circuite integrate are o putere disipată de 0,2 W. Presupunând că energia termică este disipată uniform prin suprafeţele expuse mediului înconjurător să se determine:

- a) căldura disipată în 24 de ore de funcționare continuă;
- b) fluxul termic unitar;
- c) raportul dintre cantitățile disipate prin suprafața superioară și cea laterală.

### **Soluție**

### Se știe:

- corp cilindric de dimensiuni cunoscute disipă uniform o putere de 0,2 W

#### Se cere:

- căldura disipată în 24 de ore;
- fluxul termic unitar;
- raportul dintre suprafețe.

#### Schematizare:



#### Ipoteze:

- puterea disipată uniform prin suprafețele expuse
- suprafaţa inferioară este lipită de placa de circuite integrate. Dacă lipirea se efectuează cu materiale termoizolante, transferul de căldură este neglijabil prin această suprafată.

#### Proprietăți:

-

#### Analiză:

a) Puterea disipată este  $\dot{Q} = 0.2[W] = 0.2[J/s]$ . Deci, căldura disipată în 24 de ore

$$Q = \dot{Q} \cdot \Delta t = 0, 2 \left[ \frac{J}{s} \right] \cdot 24 \left[ \text{ore} \right] \cdot 3600 \left[ \frac{s}{\text{ora}} \right]$$

$$Q = 17, 28 \left[ \text{kJ} \right]$$

b) Prin definiție, fluxul temic unitar este:  $\dot{Q}'' = \frac{\dot{Q}}{A}$ 

Conform ipotezei că transferul de căldură se produce uniform prin suprafețele expuse, aria totală considerată este formată din suma ariilor superioară și laterală:

$$A = A_{sup} + A_{lat} = \frac{\pi D^{2}}{4} + \pi DH = \frac{\pi \cdot (0,02)^{2}}{4} \left[ m^{2} \right] + \pi \cdot (0,02) \cdot (0,01) \left[ m^{2} \right]$$

$$A = 9,42 \times 10^{-4} \left[ m^{2} \right]$$

Astfel, fluxul termic unitar devine:

$$\dot{Q}'' = \frac{\dot{Q}}{A} = \frac{0.2 \left[W\right]}{9.42 \times 10^{-4} \left[m^2\right]}$$

$$\dot{Q}'' = 212.2 \left[\frac{W}{m^2}\right]$$

c) Raportul dintre cantitățile disipate prin suprafața superioară și cea laterală se reduce la raportul ariilor implicate în transferul de căldură:

$$\frac{\dot{Q}_{sup}}{\dot{Q}_{lat}} = \frac{\dot{Q}'' \cdot A_{sup}}{\dot{Q}'' \cdot A_{lat}} = \frac{A_{sup}}{A_{lat}} = \frac{\frac{\pi \cdot (0,02)^2}{4} \left[m^2\right]}{\pi \cdot (0,02) \cdot (0,01) \left[m^2\right]}$$

$$\frac{\dot{Q}_{sup}}{\dot{Q}_{lat}} = 0,5$$

### Concluzii / Comentarii:

- prin suprafaţa superioară se degajă cu 50% mai puţină căldură;
- dacă tranzistorul nu ar fi fost lipit pe placă, ci ar fi plasat la o distanţă oarecare de placă, atunci trebuie considerată şi suprafaţa inferioară ca parte a suprafeţei totale de transfer de căldură.

A = 12,6×10<sup>-4</sup> 
$$\left[m^2\right]$$
 şi deci:  
 $\dot{Q}'' = 159,2 \left[\frac{W}{m^2}\right]$   
 $\frac{\dot{Q}_{sup+inf}}{\dot{Q}_{lat}} = 1$ 

#### Problema rezolvată R2.2

Suprafaţa exterioară a peretelui unui cuptor are temperatura de 120°C. Pierderile de căldură de la perete către mediul exterior (aflat la 20°C) au fost estimate la 1800 W, neglijându-se radiaţia termică. Prin ataşarea unui strat izolator de conductivitate termică  $\lambda$  = 0,03 W/mK, de aceeaşi suprafaţă cu peretele, A = 2 m², şi de grosime  $\delta$  = 2 cm, se urmăreşte reducerea acestor pierderi.

- a) Este posibil sau nu? Consideraţi cazul ideal în care suprafaţa exterioară a stratului izolator se află la temperatura mediului înconjurător. Care este valoarea pierderilor?
- b) Dacă se păstrează aceleași caracteristici ale convecției termică, care este valoarea pierderilor în cazul real?

#### **Soluție**

#### Se ştie:

- se încearcă reducerea pierderilor de căldură de la peretele unui cuptor prin adăugarea unui strat izolator.
- temperaturile, proprietățile termofizice ale materialului sunt specificate.

#### Se cere:

- valoarea pierderilor în cazul ideal;
- valoarea pierderilor în cazul real.

#### Schematizare:

- cazul ideal





- cazul real



#### Ipoteze:

- regim staţionar, radiaţie termică neglijabilă;
- propietăți constante a materialului izolator;
- atât pentru cazul ideal, cât şi pentru cazul real, contactul între stratul izolator şi peretele cuptorului se consideră a fi un contact perfect, fără diferențe de temperatură între cele două suprafețe

#### Proprietăți:

\_

#### Analiză:

a) Pentru a putea da un răspuns rapid la întrebarea din textul problemei, vom analiza cazul ideal; conform legii lui Fourier,

$$\dot{Q} = \frac{\lambda}{\delta} \cdot A \cdot \Delta T$$

Dacă A,  $\delta$  și  $\lambda$  au valori determinate, valoarea maximă a fluxului termic se atinge când diferența de temperatură este maximă. Adică, pentru temperaturile suprafețelor stratului izolator de 120°C (în contact perfect cu peretele cuptorului), respectiv 20°C (la aceeași temperatură cu mediul exterior).

În consecință dispare convecţia termică, iar problema se reduce la conducţie termică pură:

$$\dot{Q} = \frac{0.03 \left[ W/mK \right]}{0.02 \left[ m \right]} \cdot 2 \left[ m^2 \right] \cdot (120 - 20) \left[ K \right]$$

$$\dot{Q}_{ideal} = 300 \left[ W \right]$$

Comparativ cu pierderile iniţiale, acestea s-au redus de 6 ori, deci este posibilă reducerea pierderilor prin adăugarea unui strat izolator.

b) În cazul real, temperatura suprafeței exterioare a stratului izolator este mai mare de 20°C, deci va exista convecție termică de la perete către mediul exterior. Aplicând ecuația de bilanț termic la suprafața exterioară se obține succesiv:

$$\dot{E}_{i} = \dot{E}_{e} \Rightarrow \dot{Q}_{cond} = \dot{Q}_{conv}$$

deci,

$$\frac{\lambda}{\delta} \cdot A \cdot \left( T_{iz,H} - T_{iz,L} \right) = \alpha \cdot A \cdot \left( T_{iz,L} - T_{\infty} \right)$$

Deoarece se păstrează aceleași caracteristici ale procesului de convecţie termică, atunci se poate determina coeficientul convectiv de transfer de căldură,

$$\dot{Q} = \alpha \cdot A \cdot (T_s - T_{\infty}) \implies \alpha = \frac{\dot{Q}}{A \cdot (T_s - T_{\infty})}$$

$$\alpha = \frac{1800 \left[ W \right]}{2 \left[ m^2 \right] \cdot \left( 120 - 20 \right) \left[ K \right]} = 9 \left[ \frac{W}{m^2 K} \right]$$

Singura necunoscută în ecuația de bilanț ramâne acum Tiz,L:

$$T_{iz,L} = \frac{\frac{\lambda}{\delta} \cdot T_{iz,H} + \alpha \cdot T_{\infty}}{\frac{\lambda}{\delta} + \alpha} = \frac{\frac{0.03[W/mK]}{0.02[m]} \cdot 120[^{\circ}C] + 9[W/m^{2}K] \cdot 20[^{\circ}C]}{\frac{0.03[W/mK]}{0.02[m]} + 9[W/m^{2}K]} = 34.3[^{\circ}C]$$

$$T_{iz,L} = 34,3[^{\circ}C]$$

În această situație, fluxul termic devine:

$$\dot{Q} = \frac{0.03 [W/mK]}{0.02 [m]} \cdot 2 [m^2] \cdot (120 - 34.3) [K]$$

$$\dot{Q}_{real} = 257.1 [W]$$

adică fluxul termic este de 7 ori mai mic decât cel iniţial. Deci în cazul real, există o reducere mai accentuată a pierderilor de căldură.

#### Concluzii / Comentarii:

- prin adăugarea stratului izolator, pierderile de căldură se reduc de 6 ori în cazul idealizat (fară convecţie termică), şi de 7 ori în cazul real;
- diferenţa între cele două cazuri analizate nu este foarte mare, studiul cazului idealizat fiind facil şi oferind rapid un rezultat acceptabil;
- remarcaţi două condiţii impuse în textul problemei, care, în realitate, nu sunt satisfăcute:
  - temperatura peretelui cuptorului nu rămâne constantă, ci va creşte în cazul reducerii fluxului termic către exterior;
  - coeficientul convectiv de transfer de căldură depinde de temperatura suprafeţei, deci va avea valori diferite când temperatura suprafeţei este la 120°C sau la 34°C.
- de asemenea, cazul real tratat în această problemă nu respectă în totalitate
  o situație reală. Prin ipoteza contactului ideal între suprafeţe, se consideră că
  temperatura pe faţa exterioară a peretelui cuptorului este identică cu cea de
  pe suprafaţa interioară a stratului izolator. În realitate, funcţie de materialele
  folosite şi modalitatea de realizare a contactului, va exista o diferenţă (salt)
  de temperatură între cele două suprafeţe, adică valorile considerate în cazul
  (b) se vor modifica.

### Problema rezolvată R2.3

Un element electric de încălzire, de formă cilindrică, are lungimea 50 cm şi diametrul 1 cm. Plasat în cuva unei maşini de spălat, acesta degajă prin suprafaţa laterală 1500 W pentru încălzirea apei.

- a) Dacă temperatura suprafeței laterale a elementului este 100°C, în cât timp încălzește 15 kg apă, de la 15°C la 30°C?
- b) Care este coeficientul convectiv de transfer de căldură la începutul, respectiv la sfârșitul procesului de încălzire?

#### <u>Soluţie</u>

#### Se știe:

 corp cilindric de dimensiuni cunoscute disipă uniform o putere de 1500 W pentru încălzirea apei cu 15°C

#### Se cere:

- timpul necesar încălzirii;
- coeficientul convectiv de transfer de căldură la începutul și sfârșitul încălzirii;

#### Schematizare:



#### Ipoteze:

- regim staţionar
- proprietățile termice ale apei sunt relativ constante
- pierderi termice neglijabile prin pereţii cuvei.

#### Proprietăți:

- apă la 25°C: c<sub>p</sub> = 4185 J/kgK

#### Analiză:

a) În regim staţionar,  $\dot{Q} = E = 1500[W]$ .

Ştiind că  $Q = m \cdot c_{_{D}} \cdot \Delta T \implies \dot{Q} \cdot \Delta t = m \cdot c_{_{D}} \cdot \Delta T$ , atunci

$$\Delta t = \frac{m \cdot c_p \cdot \Delta T}{\dot{Q}} = \frac{15 \big[ kg \big] \cdot 4185 \big[ J/kgK \big] \cdot 15 \big[ K \big]}{1500 \big[ J/s \big]} \ ,$$

deci 
$$\Delta t = 627,75[s] \cong 10,5[min]$$

b) Coeficientul convectiv de transfer de căldură se obține din Legea lui Newton:

$$\dot{Q} = \alpha \cdot A \cdot (T_s - T_{\infty}) \implies \alpha = \frac{\dot{Q}}{A \cdot (T_s - T_{\infty})}$$

Aria considerată pentru transferul de căldură este:

$$A_{lat} = \pi DL = \pi \cdot (0.01) \cdot (0.5) \lceil m^2 \rceil$$
, deci  $A_{lat} = 15.7 \times 10^{-3} \lceil m^2 \rceil$ 

Astfel, la începutul procesului de încălzire  $(T_s - T_{\infty}) = (100 - 15)[^{\circ}C] = 85[K]$ :

$$\alpha = \frac{1500 [W]}{15,7 \times 10^{-3} [m^2] \cdot 85 [K]} = 1123,44 \left[\frac{W}{m^2 K}\right] ,$$

iar la sfârșitul procesului de încălzire  $(T_s - T_{\infty}) = (100 - 30)[^{\circ}C] = 70[K]$ :

$$\alpha = \frac{1500 [W]}{15,7 \times 10^{-3} [m^2] \cdot 70 [K]} = 1368,20 \left[\frac{W}{m^2 K}\right]$$

#### Concluzii / Comentarii:

 de obicei, proprietățile fluidului se determină la o temperatură medie între cea a suprafeței și cea a fluidului, deoarece stratul de fluid din imediata vecinătate a elementului de încălzire are aceeași temperatură cu acesta. Aici, încălzirea întregii cantități de fluid se produce într-o plajă de valori precizată, iar temperatura de determinare a proprietăților a fost aleasă în acest interval.

#### Problema rezolvată R2.4

O cutie de formă cubică cu laturi de 20 cm ce conţine circuite electronice este plasată pe exteriorul unei navete spaţiale şi se presupune că va funcţiona în vacuum perfect. Cutia are pereţi subţiri, din material conductiv şi este amplasată astfel încât toţi pereţii sunt expuşi mediului exterior. Circuitele electronice sunt plasate uniform pe suprafeţele interioare ale cutiei şi au aceeaşi temperatură cu acestea. Dacă emisivitatea suprafeţei exterioare este de 0,95 şi puterea totală disipată este de 100 W, la ce temperatură vor funcţiona circuitele electronice? Ştiind că temperatura maximă de funcţionare este 55°C, circuitele vor funţiona normal sau nu? Consideraţi temperatura mediului înconjurător din spaţiul cosmic de -200°C.

### **Soluție**

#### Se știe:

- cutie de formă cubică cu latura de 20 cm ce va funcționa în vacuum, cu valori cunoscute pentru emisivitatea suprafețelor și puterea disipată.

#### Se cere:

- temperatura de funcţionare a circuitelor, comparativ cu temperatura maximă.

#### Schematizare:



#### Ipoteze:

- regim staţionar
- radiație pură, alte moduri de transfer de căldură inexistente

# Proprietăți:

\_

#### Analiză:

a) Din ecuația Stefan – Boltzmann, a fluxului termic ce radiază de la o suprafață:

$$\dot{Q} = \varepsilon \cdot \sigma \cdot A \cdot (T_s^4 - T_{mi}^4)$$

se poate determina temperatura suprafeţei:  $T_s = \left[T_{mi}^4 + \frac{\dot{Q}}{\epsilon \cdot \sigma \cdot A}\right]^{\frac{1}{4}}$ . Adică,

$$T_{s} = \left[ (273 - 200) \left[ K^{4} \right] + \frac{100 \left[ W \right]}{0.95 \cdot 5.67 \times 10^{-8} \left[ W/m^{2}K^{4} \right] \cdot 0.24 \left[ m^{2} \right]} \right]^{\frac{7}{4}},$$

$$T_s = 296.8[K]$$

Cum  $T_s = 296,8[K] = 23,8[^{\circ}C] < 55[^{\circ}C]$ , circuitele electronice vor funcționa în parametri normali.

#### Concluzii / Comentarii:

Dacă se consideră numai emisia de energie şi nu transferul net radiativ de căldură, adică se neglijează "mediul înconjurător"

$$\dot{Q} = \dot{E} \cdot A = \varepsilon \cdot \sigma \cdot A \cdot T_c^4$$

atunci rezultatul este  $T_s = 296,6[K]$ , adică o eroare neglijabilă.

#### Problema rezolvată R2.5

Termosul este un recipient utilizat pentru menţinerea fluidelor la temperatură constantă, fie ridicată (cafea, ceai), fie scăzută (sucuri, ceai rece). În principiu, acesta este construit dintr-un înveliş cu pereţi dubli, cu spaţiu vidat între pereţi.

- a) Presupunând că termosul conţine o băutură răcoritoare şi îl luaţi vara pe plajă, identificaţi toate procesele de transfer de căldură care apar la încălzirea lichidului din termos. Particularizaţi ecuaţia de bilanţ energetic pentru peretele exterior.
- b) Cum se modifică schema şi ecuația de bilanț energetic dacă izolația de tip spațiu vidat cedează, iar spațiul dintre pereți se umple cu aer?
- c) Dar dacă termosul este aruncat în spațiul cosmic?

#### **Soluție**

#### Se ştie:

- băutură răcoritoare stocată într-un termos aflat pe o plajă fierbinte. Lichidul separat de exterior prin izolație de tip spaţiu vidat.

#### Se cere:

- identificarea proceselor de transfer de căldură; aplicarea ecuaţiei de bilanţ energetic pentru peretele exterior;
- cum se modifică acestea când spaţiul vidat este umplut cu aer;
- cum se modifică acestea când termosul este aruncat în spațiul cosmic.

#### Schematizare:



#### Ipoteze:

- izolația de tip spațiu vidat asigură un vacuum perfect între cei doi pereți;
- se neglijează pierderile prin dopul izolator;
- spaţiul cosmic are o temperatură foarte scăzută, apropiată de zero absolut;
- spaţiul cosmic poate fi asemănat cu un vacuum perfect (vid absolut).

#### Proprietăți:

\_

#### Analiză:

a) Procesele de transfer de căldură sunt identificate pe schema de mai jos:



 $\dot{\mathbf{Q}}_{_{1}}$  = radiație termică de la mediul înconjurător către peretele exterior

 $\dot{Q}_2$  = convecție liberă de la aerul cald către peretele exterior

 $\dot{Q}_3$  = conducție termică prin peretele exterior

 $\dot{\mathbf{Q}}_{_{4}}$  = radiație termică de la peretele exterior către peretele interior

 $\dot{Q}_{_{5}}$  = conducție termică prin peretele interior

 $\dot{\mathbf{Q}}_{_{6}}$  = convecție liberă de la peretele interior către lichidul rece.



Pentru peretele exterior, ecuația de bilanț energetic se particularizează astfel:

$$\dot{E}_{_{i}} - \dot{E}_{_{e}} + \dot{E}_{gen} = \dot{E}_{st} \quad devine \quad \dot{E}_{_{i}} = \dot{E}_{_{e}} \quad \Longrightarrow \quad \dot{Q}_{_{1}} + \dot{Q}_{_{2}} = \dot{Q}_{_{4}}$$

# b) Schema se modifică astfel:



 $\dot{Q}_{_7}=$  convecție liberă de la peretele exterior către aerul din spațiul dintre pereți  $\dot{Q}_{_8}=$  convecție liberă de la aerul din spațiul dintre pereți către peretele interior



și ecuația de bilanț este:

$$\dot{E}_{_{i}} - \dot{E}_{_{e}} + \dot{E}_{_{gen}} = \dot{E}_{_{st}} \quad devine \quad \dot{E}_{_{i}} = \dot{E}_{_{e}} \quad \Longrightarrow \quad \dot{Q}_{_{1}} + \dot{Q}_{_{2}} = \dot{Q}_{_{4}} + \dot{Q}_{_{7}}$$

c) În acest caz, fluxul termic este dinspre interior către exterior, iar schema se modifică astfel:



 $\dot{\mathbf{Q}}_{_{1}}$  = convecție liberă de la lichid către peretele interior

 $\dot{\mathbf{Q}}_{_{2}}$  = conducție termică prin peretele interior

 $\dot{\mathbf{Q}}_{_3}$  = radiație termică de la peretele interior către peretele exterior

 $\dot{Q}_4$  = conducție termică prin peretele exterior

 $\dot{Q}_s$  = radiaţie termică către spaţiul cosmic



În acest caz, ecuația de bilanţ se simplifică astfel:

$$\dot{E}_{i} - \dot{E}_{e} + \dot{E}_{gen} = \dot{E}_{st}$$
 devine  $\dot{E}_{i} = \dot{E}_{e} \Rightarrow \dot{Q}_{3} = \dot{Q}_{5}$ 

# Concluzii / Comentarii:

\_

# 2.3 Probleme propuse

## Problema P2.1

O bilă de cupru cu diametrul de 10 cm trebuie încălzită de la o temperatură de 20°C la o temperatură de 120°C în 40 de minute. Să se determine:

- a) căldura transferată către bila de cupru;
- b) fluxul termic mediu;
- c) fluxul termic unitar mediu.

#### Problema P2.2

Compartimentul de congelare al unui frigider este considerat de formă cubică cu latura de 0,5 m. Care este grosimea minimă a stratului de izolație ( $\lambda$  = 0,025 W/mK) ce trebuie aplicat pe laturile exterioare pentru a reduce pierderile de frig către exterior sub 500 W? Considerați temperatura de  $-10^{\circ}$ C la interior și respectiv  $+30^{\circ}$ C la exterior.

## Problema P2.3

Unul dintre pereţii exteriori ai unei case are dimensiunile de 5 m lungime, 3 m înălţime şi 0,10 m grosime. Conductivitatea termică a materialului din care este fabricat peretele este  $\lambda$  = 0,8 W/mK. Temperaturile medii ale suprafeţelor interioară şi exterioară, măsurate pe o perioadă de 10 ore sunt de 14°C şi respectiv 4°C.

- a) determinaţi fluxul termic prin acest perete;
- b) presupunând un cost mediu al unității de energie de 0,1 Euro/kWh, care este costul datorat pierderilor termice prin acest perete, pe perioada de timp specificată.

## Problema P2.4

Se consideră doi pereți plani de dimensiuni identice și supuși la aceeași diferență de temperatură. Unul dintre pereți este alcătuit din zidărie, cu o conductivitate termică de 1,0 W/mK, iar celălalt din materiale compozite. Care este conductivitatea termică a peretelui alcătuit din materiale compozite, știind că fluxul termic unitar este cu 30% mai mic decât cel prin peretele de zidărie?

O placă circuite integrate conţine 50 de circuite electronice identice, care sunt plasate foarte aproape unul de celălalt, în contact direct cu placa. Fiecare circuit disipă o putere de 100 W, iar temperatura nominală de funcţionare este de 80°C. Ştiind că 80% din fluxul termic disipat de către circuite este transferat prin convecţie liberă către mediul ambiant, să se determine temperatura plăcii de circuite integrate pe suprafaţa opusă circuitelor electronice. Dimensiunile geometrice ale plăcii sunt 20x10x0,2 cm (lungime, lăţime, grosime) şi materialul plăcii are conductivitatea termică  $\lambda = 25$  W/mK.

#### Problema P2.6

Un element electric de încălzire de formă cilindrică, cu diametrul de 2 cm şi lungimea de 30 cm, este plasat succesiv într-un curent de aer cu viteza de 10 m/s, respectiv într-un curent de apă cu viteza de 1,0 m/s. Ambele fluide au aceeaşi temperatură, 25°C, iar cea a suprafeței elementului de încăzire este 100°C. Care este valoarea coeficientului de transfer de căldură în cele două cazuri, ştiind că elementul disipă 10 kW în cazul apei și 400 W în cazul aerului?

## Problema P2.7

O ţeavă din sistemul de încălzire al unui bloc trece prin subsolul clădirii, unde iarna temperatura aerului este de 5°C. Agentul termic vehiculat prin ţeavă asigură o temperatură uniformă de 80°C la suprafaţa exterioară a ţevii. Presupunând un coeficient convectiv de transfer de căldură  $\alpha$  = 25,5 W/m²K şi un diametru exterior de 10 cm,

- a) care este fluxul termic disipat pe unitatea de lungime a ţevii?
- b) Dacă țeava are 15 m lungime și o gigacalorie costă circa 50 Euro, care este pierderea financiară înregistrată în 24 de ore?

#### **Problema P2.8**

Suprafaţa exterioară a peretelui unei case are temperatura de 4°C. Fluxul termic conductiv transferat prin perete către suprafaţa exterioară este de 1200 W. Ştiind că peretele are o suprafaţă de 15  $\text{m}^2$  şi că temperatura aerului exterior este de -6°C, să se determine coeficientul convectiv de transfer de căldură.

Pentru a menţine ceaiul cald la o temperatură de  $40^{\circ}$ C, ceainicul este plasat pe o plită electrică. Energia generată de plită menţine suprafaţa exterioară a bazei ceainicului la o temperatură de  $95^{\circ}$ C. Pierderile de căldură prin suprafeţele laterale ale ceainicului sunt de 400 W. Să se determine coeficientul convectiv de transfer de căldură de la suprafaţa interioară a bazei ceainicului către lichid, ştiind că baza ceainicului are 2 mm grosime,  $20 \text{ cm}^2$  suprafaţă şi o conductivitate termică  $\lambda = 80 \text{ W/m}^2$ K.

## Problema P2.10

Un termos cu pereţi subţiri şi izolaţie tip spaţiu vidat conţine gheaţă la 0°C. Termosul este plasat într-un mediu de 27°C astfel încât, după o perioadă de timp suficient de îndelungată, învelişul exterior ajunge la echilibru termic cu mediul, iar învelişul interior la echilibru termic cu gheaţa. Consideraţi învelişul interior ca un cilindru de oţel inoxidabil cu d = 6 cm şi H = 20 cm, iar emisivitatea  $\varepsilon$  = 0,6. Să se determine:

- a) pierderile termice (fluxul termic);
- b) dacă la presiune atmosferică avem căldura latentă de topire h<sub>sl</sub> = 334 kJ/kg, care este cantitatea de gheață ce se topește în 24 de ore?
- c) cât timp este necesar pentru topirea totală a gheţii?

## Problema P2.11

Senzaţiile de "frig" şi de "cald" în timpul iernii sau verii sunt datorate în mare parte radiaţiei termice de la suprafaţa corpului uman către obiectele înconjurătoare (mediul înconjurător). Consideraţi o persoană aflată într-o încăpere ai cărei pereţi se menţin la o temperatură constantă de 14°C iarna şi 24°C vara. Dacă persoana are o suprafaţă exterioară totală de 1,5 m² la o temperatură medie de 29°C şi emisivitate  $\varepsilon$  = 0,95, comparaţi fluxurile termice degajate în cele două anotimpuri.

## Problema P2.12

Un oţelar poate determina temperatura materialului topit după intensitatea strălucirii acestuia, o abilitate ce necesită mulţi ani de antrenament. Un fluxmetru, un dispozitiv ce măsoară fluxul termic unitar radiat către de materialul topit, indică o valoare de 100.000 W/m². Ştiind că în hala de topire temperatura mediului ambiant şi a structurilor interioare este de 30°C, iar emisivitatea topiturii este  $\varepsilon$  = 0,9 să se determine temperatura materialului topit.

Un corp absolut negru la temperatura de 223°C radază termic într-o incintă vidată. La ce temperatură trebuie să se afle un corp cenuşiu de emisivitate  $\varepsilon$  = 0,7 pentru a emite aceeaşi cantitate de radiație termică?

#### Problema P2.14

Bilele de oțel turnate (d = 5 cm) se răcesc la trecerea printr-o zonă cu temperatură constantă de 20°C. Coeficientul convectiv de transfer de căldură  $\alpha$  = 50 W/m²K, iar emisivitatea materialului  $\epsilon$  = 0,7. Dacă temperatura la suprafața bilelor scade de la 150°C la 50°C, să se determine fluxul termic total la începutul și sfârșitul procesului de răcire.

#### Problema P2.15

Un satelit de comunicaţii de formă sferică cu raza de 5 m orbitează în jurul Terrei la o înălţime suficient de mare pentru a fi considerat în spaţiul cosmic, adică vacuum. Dacă energia generată de componentele electronice de la bordul satelitului este de 2000 W, iar suprafaţa satelitului are emisivitatea de 0,9, care este temperatura suprafeţei. Se va neglija radiaţia incidentă de la soare sau de la alte corpuri.

#### Problema P2.16

Procesorul unui calculator are o formă paralelipipedică cu dimensiunile geometrice de 5 cm x 5 cm x 0,5 cm. Pentru răcirea corespunzătoare a procesorului, pe partea superioară se ataşează un schimbător de căldură cu suprafaţa totală de 0,05 m², întreg ansamblul având o emisivitate de 0,75. Dacă la temperatura medie de 50°C procesorul disipă o putere totală de 50 W, care va fi temperatura medie a ansamblului dacă procesorul disipă 70 W? Mediul ambiant se consideră constant la 27°C.

## Problema P2.17

Un conductor electric din cupru, cu diametrul D=3 mm, lungimea L=5 m şi rezistenţa electrică pe unitatea de lungime  $R_e'=0.7~\Omega/m$ , este plasat într-o încăpere cu aerul ambiant şi mediul înconjurător (pereţi, obiecte) la aceeaşi temperatură de 27°C. Prin conductor trece un curent electric de 4,5 A, perturbând echilibrul termic iniţial.

- a) obțineți ecuația de variație în timp a temperaturii conductorului;
- b) ce temperatură are conductorul în noul punct de echilibru dacă emisivitatea este 0,79 și coeficientul convectiv de transfer de căldură este 60 W/m²K?

Peretele exterior al unei construcții separă mediul interior, aflat la + 27°C, de mediul înconjurător exterior aflat la -13°C. Peretele are grosimea de 20 cm, conductivitatea termică  $\lambda$  = 1,6 W/mK și emisivitatea  $\epsilon$  = 0,75, iar coeficientul convectiv de transfer de căldură către exterior este  $\alpha$  = 10 W/m²K.

Se consideră că suprafaţa interioară a peretelui are aceeaşi temperatură ca a mediului interior.

- a) Să se determine temperatura suprafeței exterioare;
- b) Se modifică această temperatură dacă grosimea peretelui crește cu 50%?
- c) Dar dacă, faţă de condiţiile iniţiale, se măreşte cu 50% conductivitatea termică a materialului peretelui?

## Problema P2.19

Peretele unui cuptor are conductivitatea termică  $\lambda$  = 2,2 W/mK și emisivitatea  $\epsilon$  = 0,87. Temperatura aerului din turnătorie este 30°C, în timp ce mediul înconjurător se află la 22°C. Coeficientul convectiv de transfer de căldură este  $\alpha$  = 30 W/m²K. Știind că temperatura suprafeței exterioare este de 75°C, iar materialul din care este alcătuit cuptorul se deteriorează la temperaturi peste 500°C, care este grosimea maximă a peretelui cuptorului?

## Problema P2.20

Un colector solar pelicular cu suprafaţa de 2  $m^2$  este alcătuit dintr-un rezervor pelicular de apă acoperit cu un capac de sticlă pe suprafaţa expusă la soare. Consideraţi fluxul solar incident de 1000 W/ $m^2$ , temperatura mediului ambiant de 25°C, temperatura suprafeţei exterioare a capacului de sticlă de 30°C, şi coeficientul convectiv de transfer de căldură  $\alpha$  = 20 W/ $m^2$ K.

- a) Să se determine fluxul termic transferat către pelicula de apă;
- b) Dacă sticla are 5 mm grosime şi conductivitatea termică  $\lambda$  = 1,4 W/mK, care este temperatura suprafeței interioare a capacului de sticlă?
- c) Pentru un debit de apă de 40 kg/oră, cu cât se modifică temperatura apei?

# 3 CONDUCȚIA TERMICĂ - NOȚIUNI INTRODUCTIVE

onducția termică reprezintă cel mai simplu mod de transfer de căldură. Analiza acestui domeniu pleacă de la noțiunile tratate anterior și generează ecuația diferențială de difuzie a căldurii. Tratarea cazurilor simple nu necesită cunoștințe vaste de matematici speciale, ci se rezumă la aplicarea unor derivări și integrări simple: legea lui Fourier, ecuația diferențială a conducției termice, condiții de univocitate.

# 3.1 Relații de calcul importante

Legea lui Fourier:

$$\dot{Q}_{x}'' = -\lambda \cdot \frac{dT}{dx} \tag{3.1}$$

Ecuația diferențială a conducției termice (coordonate carteziene)

$$\frac{\partial}{\partial x} \left( \lambda \cdot \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left( \lambda \cdot \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left( \lambda \cdot \frac{\partial T}{\partial z} \right) + \dot{Q}_{gen}^{"'} = \rho \cdot c_{p} \cdot \frac{\partial T}{\partial t}$$
(3.2)

Condiții de univocitate: geometrice, fizice, temporale și de contul (la limită).



| Temperatură constantă | Flux termic constant                                       | Condiția convectivă                                                                                             |
|-----------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| De speţa I            | De speţa a II-a                                            | De speţa a III-a                                                                                                |
| $T_{(0,t)} = T_s$     | $-\lambda \cdot \frac{dT}{dx}\bigg _{x=0} = \dot{Q}_{s}''$ | $-\lambda \cdot \frac{\partial T}{\partial x}\bigg _{x=0} = \alpha \cdot \left[ T_{(0,t)} - T_{\infty} \right]$ |

Ecuația diferențială a conducției termice (coordonate cilindrice)

$$\frac{1}{r} \frac{\partial}{\partial x} \left( \lambda r \cdot \frac{\partial T}{\partial x} \right) + \frac{1}{r^2} \frac{\partial}{\partial \phi} \left( \lambda \cdot \frac{\partial T}{\partial \phi} \right) + \frac{\partial}{\partial z} \left( \lambda \cdot \frac{\partial T}{\partial z} \right) + \dot{Q}_{gen}^{""} = \rho \cdot c_{p} \cdot \frac{\partial T}{\partial t}$$
(3.3)

Ecuația diferențială a conducției termice (coordonate cilindrice)

$$\frac{1}{r^{2}}\frac{\partial}{\partial x}\left(\lambda r^{2}\cdot\frac{\partial T}{\partial x}\right) + \frac{1}{r^{2}sin^{2}\theta}\frac{\partial}{\partial \varphi}\left(\lambda\cdot\frac{\partial T}{\partial \varphi}\right) + \frac{1}{r^{2}sin\theta}\frac{\partial}{\partial \theta}\left(\lambda\cdot sin\theta\cdot\frac{\partial T}{\partial \theta}\right) + \dot{Q}_{gen}^{"'} = \rho\cdot c_{_{p}}\cdot\frac{\partial T}{\partial t}$$

$$(3.4)$$

Ecuația lui Laplace (coordonate carteziene, proprietăți fizice constante, fără generare și condiții staționare):

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = 0$$
 (3.5)

## 3.2 Probleme rezolvate

## Problema rezolvată R3.1

Un cilindru de rază  $r_0$  = 5 cm și lungime L = 50 cm este realizat dintr-un material cu conductivitatea termică  $\lambda$  = 40 W/mK. Cilindrul este imersat într-un mediu fluid cu temperatura  $T_{\infty}$ , necunoscută. Coeficientul de transfer termic convectiv pe suprafața cilindrului este  $\alpha$  = 100 W/m²K. Distribuția temperaturii în interiorul cilindrului, la un moment dat, este dată de relația T(r) =  $a+br+cr^2$ , în care a, b și c reprezintă constante dimensionale cu valorile a = 200 °C, b = -100 °C/m, c = -50 °C/m². Să se determine fluxul termic transferat pe suprafața laterală a cilindrului precum și temperatura fluidului.

## <u>Soluție</u>

#### Se știe:

- distribuția temperaturii pe direcție radială T = T(r), în interiorul cilindrului;
- conductivitatea termică  $\lambda$ , coeficientul de transfer termic convectiv  $\alpha$ .

## Se cere:

- a) Fluxul termic pe suprafața laterală a cilindrului;
- b) Temperatura fluidului.

#### Schematizare:



#### Ipoteze:

- transferul de căldură staționar, unidimensional (pe direcție radială);
- conductivitate termică constantă și uniformă pentru cilindru.

#### Analiză:

Legea lui Fourier aplicată conducției termice pe direcție radială este

$$\dot{Q}_r = -\lambda \cdot A_r \cdot \frac{dT}{dr}$$
, unde  $A_r = 2\pi \cdot r \cdot L$ .

Folosind relația distribuției temperaturii  $T(r) = a + br + cr^2 \Rightarrow \frac{dT}{dr} = b + 2cr$ .

Se obține relația de calcul a fluxul termic transferat pe direcție radială

$$\dot{Q}_r = -\lambda \cdot (2\pi \cdot r \cdot L) \times (b + 2c \cdot r)$$

Particularizând această ultimă relație pentru  $r=r_0$ , se obține fluxul termic conductiv transferat prin suprafața laterală a a cilindrului:

$$\dot{Q}_{r=r_0} = -\lambda \cdot (2\pi \cdot r_0 \cdot L) \times (b + 2c \cdot r_0).$$

Conform ecuației de bilanț termic aplicată pe suprafața laterală a cilindrului

$$\dot{Q}_{r=r_0} = \dot{Q}_{conv} \Rightarrow -\lambda \cdot (2\pi \cdot r_0 \cdot L)(b + 2c \cdot r_0) = \alpha \cdot (2\pi \cdot r_0 \cdot L)[T(r_0) - T_{\infty}]$$

$$T_{\infty} = T(r_0) + \frac{\lambda \cdot (b + 2c \cdot r_0)}{\alpha} = a + br_0 + cr_0^2 + \frac{\lambda \cdot (b + 2c \cdot r_0)}{\alpha}$$

Folosind valorile numerice precizate în enunţ, se obţine:

$$\dot{Q}_{r=r_0} = -40 \frac{W}{mK} \cdot \left(2\pi \cdot 0.05m \cdot 0, 5m\right) \cdot \left[-100 \frac{^{\circ}C}{m} + 2 \cdot \left(-50 \frac{^{\circ}C}{m} \cdot 0.05m\right)\right] = 659,73 \text{ W}$$

$$T_{\infty} = 200 \, ^{\circ}C - 100 \frac{^{\circ}C}{m} \cdot 0.05m + \left(20 \, ^{\circ}C\right) \left(0.05m\right)^2 +$$

$$+\frac{-40 \frac{W}{mK} \cdot \left[-100 \frac{^{\circ}C}{m} + 2 \cdot \left(-50 \frac{^{\circ}C}{m} \cdot 0.05m\right)\right]}{100 \frac{W}{m^{^{2}}K}} = 154,19 \,^{\circ}C$$

#### Problema rezolvată R3.2

O piesă cilindrică având diametrul de 30 mm și lungimea de 0,15 m este izolată adiabatic pe suprafața laterală. Cele două extremități ale piesei sunt menținute la 100°C, respectiv 20°C.

Care este fluxul termic transferat prin piesă, dacă pentru realizarea acesteia se utilizează materialele: a) cupru pur; b) aliaj Al 2024-T6 (4,5 %Cu; 1,5 % Mg; 0,6 % Mn); c) oțel inoxidabil AISI 304; d) lemn de stejar.

## **Soluție**

#### Se știe:

- temperaturile celor două fețe ale piesei;
- dimensiunile piesei (diametru, lungime).

#### Se cere:

- fluxul termic transferat prin piesa cilindrică realizată din diferite materiale.

#### Schematizare:



## Ipoteze:

- transferul de căldură staționar, unidimensional (pe direcție axială);
- suprafața laterală a piesei izolată adiabatic.

## Proprietăți:

- conductivitatea termică λ va fi apreciată la temperatura medie a piesei

$$\overline{T} = \frac{T_1 + T_2}{2} = \frac{100 + 20}{2} = 60^{\circ}\text{C}$$
, respectiv  $60 + 273 = 333\text{K}$ ;

 - în anexa 1 valorile conductivității termice pentru materialele utilizate la realizarea piesei cilindrice sunt precizate pentru temperaturile 200 K și 400 K ce încadrează valoarea medie calculată;  prin interpolare liniară se determină λ la 333 K, metodă acceptată, în general, pentru calcule inginereşti; astfel,

$$\lambda_{333} = \lambda_{200} + \frac{\lambda_{400} - \lambda_{200}}{\lambda_{200}} \cdot (333 - 200)$$

$$\rightarrow \lambda_{333,Cu} = 413 + \frac{393 - 413}{400 - 200} (333 - 200) = 399,7 [W/mK]$$

$$\rightarrow \lambda_{333,Al} = 163 + \frac{186 - 163}{400 - 200} (186 - 163) = 178,3 [W/mK]$$

$$\rightarrow \lambda_{333,OL} = 12,6 + \frac{16,8 - 12,6}{400 - 200} (333 - 200) = 15,39 [W/mK];$$

$$\rightarrow \lambda_{333,Steiar} = \lambda_{300} = 0,16 [W/mK]$$

Pentru stejar, literatura de specialitate precizează doar valoarea λ la 300 K.

#### Analiză:

Relația de calcul a fluxului termic transferat de-a lungul cilindrului va fi obținută din legea lui Fourier

$$\dot{Q} = -\lambda \cdot A \cdot \frac{dT}{dx}$$
, unde  $A = \frac{\pi D^2}{4}$ 

Separând variabilele și integrând între limitele [0, x], respectiv  $[T_1, T_2]$ , rezultă

$$\dot{Q} = \lambda \cdot \frac{\pi D^2}{4} \cdot \frac{T_1 - T_2}{L} = \lambda \cdot \frac{\pi \cdot \left(0,03\right)^2}{4} \left[m^2\right] \cdot \frac{100 - 20}{0,15} \left[\frac{K}{m}\right] = \lambda \cdot 0,377 \left[W\right]$$

Deci:

$$\dot{Q}_{Cu} = 399, 7 \cdot 0, 377 = 150, 69 [W]$$
 $\dot{Q}_{Al} = 178, 3 \cdot 0, 377 = 67, 22 [W]$ 
 $\dot{Q}_{OL} = 15, 39 \cdot 0, 377 = 5, 8 [W]$ 
 $\dot{Q}_{stejar} = 0, 16 \cdot 0, 377 = 0, 06 [W]$ 

## Concluzii / Comentarii:

Dependența conductivității termice de temperatură se manifestă diferit funcție de tipul materialului; astfel, pentru Cu,  $\lambda$  scade cu creșterea temperaturii, iar pentru aliajul de Al și OL,  $\lambda$  crește cu creșterea temperaturii.

Valoarea lui  $\lambda$  are un efect direct asupra fluxului termic transferat, Cuprul fiind materialul pentru care fluxul termic transferat este cel mai mare.

#### Problema rezolvată R3.3

Într-un reactor nuclear, căldura generată într-un element combustibil de uraniu de formă cilindrică având diametrul de 3 cm este de  $4\cdot10^7$  W/m³. Conductivitatea termică a uraniului, considerată constantă, este de 27,6 W/mK. Să se determine diferența de temperatură în interiorul elementului combustibil, între axa centrală și suprafața exterioară.

## **Soluție**

## Se știe:

- fluxul termic generat în interiorul elementului combustibil.

#### Se cere:

- diferența de temperatură dintre axa centrală și suprafața exterioară a elementului combustibil.

## Schematizare:



## Ipoteze:

- fluxul termic generat este uniform, sursele interne de căldură fiind uniform distribuite;
- condiții de lucru/de transfer termic staționare;
- transferul de căldură prin conducție este unidimensional, pe direcție radială;
- conductivitatea termică a materialului combustibil este constantă.

## Proprietăți:

\_

#### Analiză:

Căldura generată în elementul combustibil este transferată prin conducție către suprafața exterioară a cilindrului.

Din legea lui Fourier

$$\dot{Q}''' \cdot V_r = -\lambda A_r \cdot \frac{dT}{dr}$$
, cu  $A_r = 2\pi r \cdot L$  şi  $V_r = \pi r^2 \cdot L$ 

se obține:

$$\dot{Q}''' \cdot \pi r^2 \cdot L = -\lambda \cdot 2\pi r \cdot L \cdot \frac{dT}{dr} \iff \dot{Q}''' \cdot r = -\lambda \cdot 2 \cdot \frac{dT}{dr} \ .$$

Prin separarea variabilelor se obține:

$$\frac{\dot{Q}'''}{2\lambda} \cdot rdr = -dT \iff dT = -\frac{\dot{Q}'''}{2\lambda} \cdot rdr.$$

Integrând între limitele r = 0, unde  $T = T_0$  și  $r = r_0$ , unde  $T = T_S$ , rezultă:

$$\int_{T_0}^{T_s} dT = -\frac{\dot{Q}'''}{2\lambda} \cdot \int_{0}^{r_0} r dr \Leftrightarrow T_s - T_0 = -\frac{\dot{Q}'''}{2\lambda} \cdot \frac{r_0^2}{2} \Leftrightarrow T_0 - T_s = \frac{4 \times 10^7}{2 \cdot 27.6} \cdot \frac{\left(1.5 \times 10^{-2}\right)^2}{2} = 81.52^{\circ}C \blacktriangleleft$$

## Concluzii / Comentarii:

- Ecuația  $T_s - T_o = -\frac{\dot{Q}'''}{2\lambda} \cdot \frac{r_o^2}{2}$  obținută anterior pe baza ecuației de bilanț termic aplicată unui volum de control de rază r poate fi obținută și prin particularizarea ecuației diferențiale a conducției termice pentru sisteme radiale. În condițiile precizate prin ipotezele de lucru, aceasta devine

$$\frac{d^2T}{dr^2} + \frac{1}{r} \cdot \frac{dT}{dr} + \frac{\dot{Q}'''}{\lambda} = 0.$$

Rezolvarea acestei ecuații necesită precizarea a două condiții de contur:

$$T(r_0) = T_s$$
 si  $\frac{dT}{dr}\Big|_{r=0} = 0$ .

## Problema rezolvată R3.4

Distribuția de temperatură în interiorul unui perete plan omogen de grosime  $\delta = 200$  mm și conductivitate termică  $\lambda = 40$  W/mK este redată de relația  $T(x) = a + b \cdot x^2$  unde a = 200°C, b = -2000°C/m², iar x [m] este coordonata pe direcția de propagare a fluxului termic.

- a) Care este fluxul termic generat în interiorul peretelui?
- b) Care sunt fluxurile termice unitare transferate pe cele două fețe ale peretelui ,  $\dot{Q}''|_{x=0}$  și  $\dot{Q}''|_{x=0}$  ?
- c) Care sunt temperaturile pe cele două fețe ale peretelui?

## **Soluţie**

## Se ştie:

- distribuția de temperatură într-un perete plan omogen de grosime și conductivitate termică cunoscute.

#### Se cere:

- a) fluxul termic generat în interiorul peretelui, Q''';
- b) fluxurile termice transferate pe cele două fețe ale peretelui.

## Schematizare:



## Ipoteze:

- condiții de lucru staționare;
- transferul de căldură unidimensional (perpendicular pe perete);
- proprietăți fizice constante.

#### Analiză:

 a) Ecuația diferențială a conducției termice particularizată pentru condițiile din problemă are următoarea formă

$$\frac{d^2T}{dx^2} + \frac{\dot{Q}'''}{\lambda} = 0 \iff \dot{Q}''' = -\lambda \cdot \frac{d}{dx} \left( \frac{dT}{dx} \right)$$

Apoi T(x) = a + b · x<sup>2</sup>  $\rightarrow \frac{dT}{dx}$  = 2bx şi înlocuind se obţine:

$$\dot{Q}''' = -\lambda \cdot \frac{d}{dx}(2bx) = -2\lambda b = -2 \cdot 40 \cdot (-2000) = 16 \times 10^4 \left[ \frac{W}{m^3} \right]$$

b) Fluxurile termice transferate prin cele două fețe ale peretelui pot fi determinate aplicând ecuația Fourier. Rezultă

$$\dot{Q}'' = -\lambda \cdot \frac{dT}{dx} = -\lambda \cdot \frac{d}{dx} (a + b \cdot x^2) = -\lambda \cdot (2bx) = -2\lambda bx$$
.

- la 
$$x = 0 \rightarrow \dot{Q}''(0) = 0 \lceil W / m^2 \rceil$$
;

- la 
$$x = \delta \rightarrow \dot{Q}''(\delta) = -2 \cdot 40 \cdot (-2000) \cdot 0, 2 = 32 \times 10^3 \, \Big\lceil W \, / \, m^2 \, \Big\rceil$$
.

Observație: Fluxul termic unitar  $\dot{Q}''(\delta)$  are valoare pozitivă, deci este orientat în sensul pozitiv al axei Ox.

c) temperaturile pe cele două fețe ale peretelui se obțin din distribuția de temperatură; astfel

$$T(0) = a + b \cdot 0 = 200 [°C]$$

$$T(\delta) = a + b \cdot \delta^2 = 200 - 2000 \cdot (0,2)^2 = 120 [°C].$$

#### Concluzii / Comentarii:

Cheia de verificare a rezultatelor este reprezentată de ecuația de bilanț termic aplicată unei suprafețe de 1 m² din peretele plan considerat; astfel,

$$\dot{Q}_{intrata}^{\,\prime\prime}$$
 -  $\dot{Q}_{iesita}^{\,\prime\prime}$  +  $\dot{Q}^{\,\prime\prime\prime}$  ·  $\delta$  = 0 , adică:

$$\dot{Q}''|_{x=0} - \dot{Q}''|_{x=\delta} + \dot{Q}''' \cdot \delta = 0 \implies 0 - 32 \times 10^3 + 16 \times 10^4 \times 0, 2 = 0 \implies 0 = 0$$

deci, ecuația de bilanț termic este verificată, rezultatele fiind corecte.

#### Problema rezolvată R3.5

Un perete plan realizat dintr-un material cu conductivitate termică constantă și fără surse interne de căldură se găsește inițial la temperatură uniformă  $T_i$ .

La un moment dat, suprafața din stânga (poziția x=0) este încălzită de un fluid cu temperatura  $T_{\infty}$ , înregistrându-se coeficientul de transfer termic convectiv  $\alpha$ , în timp ce suprafața din dreapta ( $x=\delta$ ) este izolată adiabatic.

- a) Particularizați ecuația diferențială a conducției termice pentru acest caz și identificați condițiile inițiale și de contur adecvate pentru rezolvarea acestei ecuații și obținerea temperaturii în perete la diverse profunzimi;
- b) Reprezentați în coordonate ( T x ) distribuția de temperatură în perete pentru următoarele situații: momentul inițial ( t = 0 ); condiții de lucru staționare ( $t \rightarrow \infty$ ); alte două momente intermediare.
- c) În coordonate ( $\dot{Q}_x'' t$ ) reprezentați fluxul termic unitar pentru pozițiile x = 0 și  $x = \delta$ ; ce se deduce din această reprezentare?

#### Soluţie

## Se ştie:

- perete plan, aflat inițial la temperatură uniformă, încălzit la un moment dat pe suprafața din stânga de un fluid.

#### Se cere:

- a) ecuația diferențială a conducției termice și condițiile inițiale și la limită adecvate pentru rezolvarea ecuației și obținerea distribuției de temperatură T(x,t);
- b) reprezentarea T(x,t) pentru momentul inițial ( t=0 ); condiții de lucru staționare ( $t\to\infty$ ); alte două momente intermediare;
- reprezentarea fluxului termic transferat între fluid și perete ca o funcție de timp;

Schematizare:



Ipoteze:

- transferul de căldură unidimensional (perpendicular pe perete);

- proprietăți fizice constante;

- absența surselor interne de căldură.

Analiză:

a) Ecuația diferențială a conducției termice particularizată pentru condițiile din problemă are următoarea formă

$$\frac{d^2T}{dx^2} = \frac{1}{a} \cdot \frac{\partial T}{\partial t}$$

Condiții inițiale:

$$t = 0 \rightarrow T(x,0) = T_i$$
 (temperatură uniformă).

Condiții la limită:

- din ecuația de bilanț termic la suprafață:  $\dot{Q}''_{\text{conv}} = \dot{Q}''_{\text{cond}}$  :

$$x = 0 \Rightarrow -\lambda \cdot \frac{\partial T}{\partial x}\Big|_{x=0} = \alpha \cdot \left[T_{\infty} - T(0,t)\right]$$

$$x = \delta \rightarrow \frac{\partial T}{\partial x}\Big|_{x=\delta} = 0$$
 (suprafață adiabatică)

Distribuția de temperatură pe grosimea peretelui T(x,t) este:



Se observă că gradientul de temperatură pe suprafața din stânga scade în timp, manifestându-se o tendință de uniformizare a temperaturii în perete. După un timp de contact perete-fluid foarte mare ( $\rightarrow \infty$ ), temperatura pe grosimea peretelui devine uniformă și egală cu temperatura mediului fluid. Evident, fluxul termic transferat este nul.

b) Variația în timp a fluxului termic transferat de la fluid către perete este:



Pentru x=0 și la momentul inițial, fluxul termic transferat este maxim. Pe măsură ce temperatura pe această suprafață crește, diferența de temperatură și implicit fluxul termic transferat scad. Deoarece suprafața corespunzătoare poziției  $x=\delta$  este adiabatică  $\to \dot{Q}_x''(\delta,t)=0$ .

## Concluzii / Comentarii:

Fluxul termic transferat la interfața fluid-perete este orientat în sensul pozitiv al axei O-x, deci este pozitiv.

# 3.3 Probleme propuse

## Problema P3.1

Pentru a analiza influența dependenței de temperatură a conductivității termice  $\pmb{\lambda}$  asupra distribuției de temperatură în interiorul unui corp solid, se consideră trei materiale caracterizate de următoarea relație  $\lambda = \lambda_0 + b \cdot T$ , unde  $\lambda_0$  este o constantă pozitivă, iar  $\pmb{b}$  este un coeficient a cărui valoare poate fi poate fi pozitivă, negativă sau zero în funcție de tipul materialului. Să se reprezinte distribuția de temperatură asociată fiecărui caz în parte considerând că materialele sunt utilizate pentru realizarea unui perete plan omogen cu temperaturile pe suprafețele delimitatoare cunoscute.

#### Problema P3.2

Se consideră un perete plan paralel cu o grosime  $\delta=0,3$  m, realizat dintr-un material cu conductivitatea termică  $\lambda=25$  W/mK. Transferul de căldură este unidimensional, staționar și se desfășoară în absența surselor interne de căldură. Temperaturile pe cele două fețe ale peretelui ( $T_1$  și  $T_2$ ) sunt considerate uniforme. Să se determine mărimile necunoscute și să se completeze următorul tabel. De asemenea, să se reprezinte distribuția de temperatură pe grosimea peretelui și să se indice direcția de propagare a fluxului termic.

| Cazul | T <sub>1</sub> | T <sub>2</sub> | dT/dx | ġ"     |
|-------|----------------|----------------|-------|--------|
|       | [°C or K]      | [°C or K]      | [K/m] | [W/m²] |
| 1     | 450 K          | 300 K          |       |        |
| 2     | 127 °C         |                | -180  |        |
| 3     | 90 °C          |                | 200   |        |
| 4     |                | -15 °C         |       | 5000   |
| 5     | 27 °C          |                |       | -2500  |

O conductă cu lungimea L = 30 m, raza interioară  $r_1$  = 6 cm, grosimea peretelui cilindric  $\delta$  = 1 cm și conductivitatea termică  $\lambda$  = 35 W/mK este utilizată pentru transport abur. Temperaturile pe suprafețele interioară și exterioară sunt  $T_1$  = 160 °C, respectiv  $T_2$  = 60 °C. Care este distribuția temperaturii pe grosimea țevii în condiții staționare? Justificați alura curbei T=T(r). Determinați fluxul termic pierdut pe toată lungimea conductei și pe 1m.

## Problema P3.4

O piesă metalică de secțiune variabilă, izolată termic pe suprafața laterală, are extremitățile menținute la temperatură constantă, dar de valoare diferită, T(0), respectiv T(L). Considerând conducția termică de tip staționar, unidimensional, într-un mediu cu conductivitate termică constantă și uniformă, să se determine:

- a) relația de calcul a fluxului termic conductiv și distribuția de temperatură pe direcția de propagare în cazul în care T(0) > T(L);
- b) relația de calcul a fluxului termic în cazul în care în interiorul piesei există surse interne de căldură uniform distribuite care generează un flux termic  $\dot{Q}''' = \text{ct.}$ , iar extremitatea/fața stângă a piesei este perfect izolată termic.



Se consideră un perete plan, omogen, de grosime  $\delta$ , a cărui conductivitate termică variază liniar cu temperatura după relația  $\lambda = \lambda_{_0} + b \cdot T$ , unde  $\lambda_{_0}$  și b sunt constante precizate. Cele două suprafețe ale peretelui sunt menținute la temperaturi constante,  $T_1$ , respectiv  $T_2$ . În condițiile în care transferul de căldură prin perete este staționar, unidimensional, să se obțină relația de calcul pentru (a) fluxul termic transferat prin perete și (b) distribuția de temperatură pe grosimea peretelui; (c) cum apreciați eroarea ce intervine în calculul fluxului termic (nulă, redusă, semnificativă), dacă se presupune conductivitate termică constantă, corespunzătoare temperaturii

medii, 
$$\overline{\lambda} = \lambda_0 + b \cdot \overline{T}$$
, unde  $\overline{T} = \frac{T_1 + T_2}{2}$ ; justificați răspunsul.

## Problema P3.6

Un aparat pentru determinarea conductivității termice conține, în principiu, un încălzitor electric foarte subțire (de tip folie) fixat între două probe/piese identice de diametru 5 cm și lungime 10 cm. Totul este presat între două plăci menținute la temperatură constantă de 70 °C. Suprafațele laterale ale celor două probe sunt bine izolate termic pentru a se asigura transferul de căldură unidimensional. Două termocupluri sunt sunt fixate simetric pe cele două piese, distanța dintre joncțiuni fiind de 3 cm, iar diferența de temperatură indicată de 15°C. Încălzitorul electric este alimentat la o tensiune de 110 V și este parcurs de un curent de 0,4 A. Să se determine conductivitatea termică a materialului din care sunt realizate cele două probe.



O conductă pentru transport apă caldă cu o lungime L = 10 m, raza interioară  $r_1$  = 17 mm și raza exterioară  $r_2$  = 20 mm este realizată dintr-un material a cărui conductivitate termică este variabilă ( $\lambda = \lambda_0 + b \cdot T^2$ ), unde b = 2,49 x 10<sup>-2</sup> W/mK² și  $\lambda_0$  = 46,4 W/mK. Temperatura pe cele două suprafețe, interioară și exterioară, este constantă,  $T_1$  = 60°C, respectiv  $T_2$  = 50°C. Presupunând transferul de căldură prin perete de tip staționar, unidimensional (radial), să se determine fluxul termic transferat.

## Problema P3.8

Se consideră un perete sferic cu raza interioară  $r_1$  și raza exterioară  $r_2$ , a cărui conductivitate termică variază liniar cu temperatura,  $\lambda = \lambda_0 + b \cdot T$ , unde  $\lambda_0$  și b sunt două constante precizate. Suprafața interioară a peretelui sferic este menținută la o temperatură constantă  $T_1$ , iar suprafața exterioară este menținută la o temperatură  $T_2$ , de asemenea constantă. Presupunând transferul de căldură unidimensional (radial) să se obțină relația de calcul (a) pentru fluxul termic transferat prin peretele sferic și (b) distribuția de temperatură T(r) pe grosimea peretelui.

Aplicație numerică:  $r_1$ = 5 cm;  $r_2$  = 6 cm;  $\lambda_{_0}$  = 38 W/mK; b = 0,035 W/mK<sup>2</sup>;  $T_1$  = 400 K;  $T_2$  = 350°C.

#### Problema P3.9

Elementul combustibil al unui reactor nuclear are formă cilindrică cu diametrul de 60 mm și generează fluxul termic  $\dot{Q}'''' = 4 \times 10^7 \, \text{W} \, / \, \text{m}^3$ . În condiții de lucru staționare, distribuția de temperatură în interiorul elementului combustibil este descrisă de relația  $T(r) = a + b \cdot r^2$ , cu  $T(c) = r^2$ , cu  $r^2$ . Combustibilul are proprietățile:  $r^2 = r^2$ ,  $r^2$  w/mK;  $r^2 = r^2$ ,  $r^2$  combustibilul are proprietățile:  $r^2$ 

- a) Care este fluxul termic unitar liniar pentru pozițiile caracterizate de r = 0 (axa centrală) și r = 30 mm (pe suprafața laterală);
- b) Dacă puterea reactorului este mărită brusc la  $\dot{Q}''' = 8 \times 10^7 \text{ W/m}^3$ , care este viteza de variație a temperaturii pentru aceleași poziții la momentul inițial?

Un element rezistiv realizat dintr-un fir de Kanthal cu raza  $r_1$  = 2,9 mm și conductivitatea termică  $\lambda_{\text{fir}}$  = 15 W/mK, generează un flux termic volumetric  $\dot{Q}'''$  = 1,3 · 10<sup>6</sup> W / m³. Izolația electrică plasată pe suprafața exterioară a tubului este din material plastic cu conductivitatea termica  $\lambda$  = 0,17 W/mK și are o grosime  $\delta$  = 1 mm. Elementul încălzitor este plasat în aer cu temperatura  $T_{\infty}$  = -10 °C, transferul de căldură prin convecție termică de la suprafața izolației către aer fiind caracterizat de coeficientul  $\alpha$  = 10 W/m²K.

Presupunând transferul de căldură staționar, unidimensional, să se determine temperaturile în centrul firului și la interfața fir-izolație.

#### Problema P3.11

Un încălzitor electric de 2 kW este realizat dintr-un fir metalic cu diametrul D = 3 mm, lungimea L = 0.7 m și conductivitatea termică  $\lambda$  = 18 W/mK.

Dacă temperatura pe suprafața exterioară a firului este T<sub>s</sub> = 110°C,

- (a) să se obțină relația pentru distribuția de temperatură pe direcție radială
- (b) să se determine temperatura pe axa centrală a firului.

## Problema P3.12

La un moment dat, distribuția de temperatură în interiorul unui perete plan omogen de grosime  $\delta$  = 0,4 m este redată de relația T(x) =  $a+b\cdot x+c\cdot x^2$ , unde a = 150°C, b = -200°C/m, c = 50°C/m², iar x [m] reprezintă coordonata pe direcția de propagare a fluxului termic. Conductivitatea termică a materialului din care este realizat peretele are valoarea  $\lambda$  = 20 W/mK.

- a) Care sunt fluxurile termice unitare transferate pe cele două fețe ale peretelui ,  $\dot{Q}''\big|_{x=0}$  și  $\dot{Q}''\big|_{x=0}$  ?
- b) Care este fluxul termic acumulat în interiorul peretelui?
- c) Dacă suprafața mai rece a peretelui este pusă în contact cu un fluid cu temperatura  $T_f = 50$ °C, care este valoarea coeficientului de transfer termic convectiv pe acea suprafață?

Distribuția de temperatură în interiorul unui perete plan omogen cu grosimea  $\delta$  = 40 mm și conductivitate termică  $\lambda$  = 1,4 W/mK este de tip parabolic după relația  $T(x) = a + b \cdot x + c \cdot x^2$ , unde  $a = 100^{\circ}$ C,  $b = 100^{\circ}$ C/m ,  $c = -2000^{\circ}$ C/m², iar x [m] reprezintă coordonata pe direcția de propagare a fluxului termic.

- a) Care sunt fluxurile termice unitare transferate pe cele două fețe ale peretelui,  $\dot{Q}''|_{v=0}$  și  $\dot{Q}''|_{v=0}$  ?
- b) Care este fluxul termic acumulat în interiorul peretelui?

## Problema P3.14

În interiorul unui perete plan, fără surse interne de căldură și conductivitate termică constantă se desfășoară un proces de transfer de căldură staționar, unidimensional. Se cere:

- a) să se precizeze dacă este posibilă distribuția de temperatură reprezentată în figura de mai jos;
- b) să se calculeze și să se reprezinte temperatura  $T(\delta) = f(\alpha)$  pentru
- c)  $\alpha \in [10,100] \text{ W/m}^2 \text{K}$ ; se vor lua în considerare următoarele valori:  $T(0) = 0^{\circ} \text{C}$  $T_{\infty} = 20^{\circ} \text{C}$  și  $\delta = 0.2 \text{ m}$ . Explicați succint rezultatele.



O conductă de abur este izolată la exterior pentru reducerea pierderilor de căldură. Razele exterioare pentru conductă și izolație sunt  $r_0$  și  $r_i$ . Distribuția de temperatură pe grosimea izolației este exprimată sub forma  $T(r) = C \cdot ln \left( \frac{r}{r_0} \right)$ . Aceste condiții corespund unui regim staționar sau tranzitoriu? Cum variază fluxul termic unitar (pe unitatea de suprafată) cu raza?

## Problema P3.16

O incintă sferică de rază interioară  $r_1$  și rază exterioară  $r_2$  conține surse interne de căldură. Știind că distribuția de temperatură în peretele sferic este descrisă de formula  $T(r) = \frac{C_1}{r} + C_2$ , precizați natura condițiilor lucru, staționare sau tranzitorii. Cum variază fluxul termic unitar și fluxul termic total (pe întreaga suprafață) cu raza?

#### Problema P3.17

Un perete plan de grosime  $\delta=0.2$  m conține surse interne de căldură uniform distribuite care generează fluxul termic Q̄''' . Una dintre suprafețele peretelui este pusă în contact cu un fluid în mișcare a cărui temperatură este  $T_{\infty}=50^{\circ}\text{C}$  . Coeficientul de transfer termic convectiv la interfața fluid-perete este  $\alpha=800$  W/m²K. Inițial, distribuția de temperatură în interiorul peretelui est de forma  $T(x,0)=a+b\cdot x^2$ , cu  $a=350^{\circ}\text{C}$  și  $b=-5\cdot10^3$  °C/m² . Proprietățile materialului peretelui sunt: densitatea  $\rho=7500$  kg/m³; căldura specifică  $c_p=500$  J/kgK; conductivitatea termică  $\lambda=100$  W/mK. La un moment dat, considerat t = 0, sursele interne sunt dezactivate.

- a) Determinați fluxul termic generat în interiorul peretelui (Q''') în condiții inițiale.
- b) Reprezentați în coordonate T-x distribuția de temperatură în perete pentru următoarele situații: la momentul inițial (t = 0); pentru condiții de lucru staționare ( $t \rightarrow \infty$ ); alte două momente intermediare.
- c) În coordonate  $(\dot{Q}_x'',t)$ , reprezentați fluxul termic unitar pentru poziția  $x=\delta$ ; calculați valoarea corespunzătoare momentului t=0.

Se consideră un rezervor sferic de rază interioară  $r_1$ , rază exterioară  $r_2$  și conductivitate termică  $\lambda$ . Exprimați condițiile la limită pe suprafața exterioară a rezervorului pentru conducție termică staționară, unidimensională, în următoarele situații:

- a) temperatură pe suprafața exterioară cunoscută,  $T(r_1) = 60^{\circ}C$ ;
- b) flux termic unitar de 40 W/m<sup>2</sup> orientat către centrul rezervorului;
- c) convecție către un mediu fluid cu temperatura  $T_{\infty} = 80^{\circ}\text{C}$  , coeficientul de transfer termic convectiv fiind  $\alpha = 20 \text{ W/m}^2\text{K}$ .

#### Problema P3.19

O conductă transportă apă la o temperatură de 60°. Razele la interior și la exterior au valorile  $r_1$  = 5 mm, respectiv  $r_2$  = 7 mm. Pe suprafața exterioară a țevii este înfășurat un încălzitor electric sub formă de folie care disipă 300 W/m. Suprafața liberă a foliei încălzitoare este apoi bine izolată termic astfel încât întreaga căldură generată este transferată către țeavă. De la suprafața interioară a țevii, transferul de căldură se realizează prin convecție termică, caracterizată de un coeficient de transfer termic,  $\alpha$  = 70 W/m²K. Care este formularea matematică a acestei probleme (ecuația diferențială a conducției termice și condițiile de contur) în următoarele ipoteze: conductivitate termică constantă; transfer de căldură unidimensional, radial.

## Problema P3.20

Un conductor de rază  $\mathbf{r}_i$  și conductivitate  $\lambda_c$  este parcurs de curent electric. Fluxul termic volumetric generat prin efect Joule este  $\dot{Q}'''$ . Izolația electrică plasată în exteriorul conductorului este realizată din material plastic cu conductivitatea termică  $\lambda_{iz}$  și are raza exterioară  $\mathbf{r}_{iz}$ . Pentru condiții de lucru staționare, scrieți ecuația diferențială a conducției termice pentru conductor și pentru stratul de izolație. Conductorul este plasat într-un mediu fluid cu temperatura  $T_{\infty}$ , pe suprafața exterioară a izolației înregistrându-se valoarea  $\alpha$  pentru coeficientul de transfer termic convectiv. Precizați condițiile la limită adecvate pentru rezolvarea acestor ecuații.

# 4 CONDUCȚIA TERMICĂ – UNIDIMENSIONALĂ

Studiul proceselor de conducție termică începe cu cel mai simplu caz, conducția unidimensională. Adică, sunt neglijate efectele conductive în două din cele trei coordonate. De regulă, se vor neglija direcțiile  $\mathbf{y}$  și  $\mathbf{z}$  în coordonate carteziene, direcțiile  $\mathbf{\varphi}$  și  $\mathbf{z}$  în coordonate cilindrice, respectiv direcțiile  $\mathbf{\varphi}$  și  $\mathbf{\theta}$  în coordonate sferice. De asemenea, în acest capitol sunt tratate procesele staționare, adică în care variația distribuției temperaturilor este nulă sau are valori neglijabile. Vor fi tratate mai întâi cazurile simple, fără generare, apoi cele ce implică surse uniform distribuite, iar la final, cazul conducției termice prin suprafețe extinse (aripioare).

# 4.1 Relații de calcul importante

Pentru conductivitate constantă,  $\lambda$ , fără generare și  $\Delta T = T_{s,1} - T_{s,2}$ :

| Tip perete                  | Plan                                                                           | Cilindric                                                                                   | Sferic                                                                                                              |
|-----------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Ecuația<br>simplificată     | $\frac{\partial}{\partial x} \left( \frac{\partial T}{\partial x} \right) = 0$ | $\frac{1}{r}\frac{\partial}{\partial r}\left(r\cdot\frac{\partial T}{\partial r}\right)=0$  | $\frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \cdot \frac{\partial T}{\partial r} \right) = 0$              |
| Distribuţia<br>temperaturii | $T_{s,1} - \Delta T \cdot \frac{X}{L}$                                         | $T_{s,2} + \Delta T \cdot \frac{\ln(r/r_2)}{\ln(r_1/r_2)}$                                  | $T_{s,1} - \Delta T \cdot \left[ \frac{1 - \left(r_{1}/r_{\;\;\right)}{1 - \left(r_{1}/r_{2}_{\;\;\right)} \right]$ |
| Flux termic<br>unitar       | $\lambda \!\cdot\! \frac{\Delta T}{L}$                                         | $\frac{\lambda \cdot \Delta T}{r \cdot ln \big(r_2/r_1\big)}$                               | $\frac{\lambda \cdot \Delta T}{r^2 \Big[ \big( 1/r_1 \big) - \big( 1/r_2 \big) \Big]}$                              |
| Flux termic                 | $\lambda A \cdot \frac{\Delta T}{L}$                                           | $\frac{2\pi L \cdot \lambda \cdot \Delta T}{\ln(r_2/r_1)}$                                  | $\frac{4\pi \cdot \lambda \cdot \Delta T}{\left(1/r_{_{1}}\right) \cdot \left(1/r_{_{2}}\right)}$                   |
| $R_{t,cond}$                | $\frac{L}{\lambda \cdot A}$                                                    | $\frac{\ln(r_{\!\scriptscriptstyle 2}/r_{\!\scriptscriptstyle 1})}{2\pi L\!\cdot\!\lambda}$ | $\frac{1}{4\pi \cdot \lambda} \cdot \left(\frac{1}{r_{_{1}}} - \frac{1}{r_{_{2}}}\right)$                           |
| $R_{t,conv}$                | $\frac{1}{\alpha \cdot A}$                                                     | $\frac{1}{\alpha \cdot \left(2\pi r_2 L\right)}$                                            | $\frac{1}{\alpha \cdot \left(4\pi r_2^2\right)}$                                                                    |

Fluxul termic printr-un perete în condiții de speța a III-a pe ambele suprafețe:

$$\dot{\mathbf{Q}} = \frac{\mathsf{T}_{\infty,2} - \mathsf{T}_{\infty,1}}{\mathsf{R}_{\text{total}}} \tag{4.1}$$

Pentru perete plan dintr-un singur strat, Rtotal este:

$$R_{total} = R_{conv,1} + R_{perete} + R_{conv,2} = \frac{1}{\alpha_1 \cdot A} + \frac{L}{\lambda \cdot A} + \frac{1}{\alpha_2 \cdot A}$$
 (4.2)

Pentru radiație, rezistența termică se poate exprima similar cu rezistența termică la convecție, utilizând coeficientul liniarizat de transfer de căldură,  $\alpha_{rad}$ :

$$R_{t,rad} = \frac{1}{\alpha_{rad} \cdot A} = \frac{1}{\epsilon \cdot \sigma \cdot A \cdot (T_s + T_{m\hat{i}})(T_s^2 + T_{m\hat{i}}^2)}$$
(4.3)

Dacă se cunoaște valoarea fluxului termic, se poate determina căderea de temperatură în orice strat al peretelui compozit:

$$\Delta T = \hat{Q} \cdot R \tag{4.4}$$

Raza critică a izolațieieste determinată ca fiind:

$$r_{cr,cilindru} = \frac{\lambda_{ins}}{\alpha}$$
 (4.5)

$$r_{cr,sfera} = \frac{2\lambda_{ins}}{\alpha} \tag{4.6}$$

#### Cu generare:

Pentru conductivitate constantă,  $\lambda$ , cu surse interne uniform distribuite, legea de variație a temperaturii într-un perete plan de grosime 2L este:

$$T_{(x)} = \frac{\dot{Q}_{gen}^{"''} \cdot L^{2}}{2\lambda} \cdot \left(1 - \frac{x^{2}}{L^{2}}\right) + \frac{T_{s,2} - T_{s,1}}{2} \cdot \frac{x}{L} + \frac{T_{s,1} + T_{s,2}}{2}$$
(4.7)

Locația, x<sub>max</sub>, și valoarea maximă a temperaturii în condițiile de mai sus, sunt:

$$\frac{\partial T}{\partial x} = 0 \quad \Rightarrow \quad x_{\text{max}} = \frac{\lambda}{\dot{Q}_{\text{gen}}'''} \cdot \left(\frac{T_{s,2} - T_{s,1}}{2L}\right)$$

$$66$$

$$T_{\text{max}} = \frac{\dot{Q}_{\text{gen}}^{"''} \cdot L^{2}}{2\lambda} + \frac{\lambda}{2\dot{Q}_{\text{gen}}^{"''}} \cdot \left(\frac{T_{s,2} - T_{s,1}}{2L}\right)^{2} + \frac{T_{s,1} + T_{s,2}}{2}$$
(4.9)

Pentru condiții simetrice,  $T_s = T_{s,1} = T_{s,2}$ :

| Geometrie   | Ts                                                                              | T <sub>max</sub>                                                        |
|-------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Perete plan | $\frac{\dot{Q}_{\rm gen}^{\prime\prime\prime} \cdot L}{\alpha} + T_{\infty}$    | $\frac{\dot{Q}_{gen}^{\prime\prime\prime}\cdot L^{2}}{2\lambda}+T_{s}$  |
| Cilindru    | $\frac{\dot{Q}_{\rm gen}^{\prime\prime\prime} \cdot r_0}{2\alpha} + T_{\infty}$ | $\frac{\dot{Q}_{gen}^{\prime\prime\prime} \cdot r_0^2}{4\lambda} + T_s$ |
| Sferă       | $\frac{\dot{Q}_{gen}^{"'} \cdot r_0}{3\alpha} + T_{\infty}$                     | $\frac{\dot{Q}_{gen}^{\prime\prime\prime} \cdot r_0^2}{6\lambda} + T_s$ |

## Suprafețe extinse (aripioare)

Ecuația generală a aripioarei

$$\frac{\partial}{\partial x} \left( A_{tr} \cdot \frac{\partial T}{\partial x} \right) - \frac{\alpha}{\lambda} \cdot \frac{dA_{lat}}{dx} \cdot \left( T - T_{\infty} \right) = 0$$
 (4.10)

Funcție de condiția la limită la vârful aripioarei, soluția acestei ecuații devine:

- 1. Temperatură constantă,  $T_{(x=L)} = T_L$ 
  - Distribuţia temperaturii:  $\frac{\theta}{\theta_b} = \frac{\left(\theta_L/\theta_b\right) \cdot \sinh\left(mx\right) + \sinh\left[m\left(L-x\right)\right]}{\sinh\left(mL\right)}$
  - Fluxul termic:  $\dot{Q}_{ar} = \sqrt{\alpha P \lambda A_{tr}} \cdot \theta_{b} \cdot \frac{\cosh(mL) \theta_{L}/\theta_{b}}{\sinh(mL)}$
- 2. Aripioară de lungime infinită,  $\theta_{(L \to \infty)} \to 0$ 
  - Distribuţia temperaturii:  $\frac{\theta}{\theta_h} = e^{-m \cdot x}$
  - Fluxul termic:  $\dot{Q}_{ar} = \sqrt{\alpha P \lambda A_{tr}} \cdot \theta_{b}$

3. Flux termic convectiv, 
$$-\lambda \cdot \frac{d\theta}{dx}\Big|_{x=L} = \alpha \cdot \theta_{(L)}$$

$$- \ \, \text{Distribuţia temperaturii:} \ \, \frac{\theta}{\theta_{_{b}}} = \frac{\cosh \left[m \left(L - x\right)\right] + \left(\alpha / m \lambda\right) \cdot \sinh \left[m \left(L - x\right)\right]}{\cosh \left(m L\right) + \left(\alpha / m \lambda\right) \times \sinh \left(m L\right)}$$

- Fluxul termic: 
$$\dot{Q}_{ar} = \sqrt{\alpha P \lambda A_{tr}} \cdot \theta_b \cdot \frac{\sinh(mL) + (\alpha/m\lambda) \times \cosh(mL)}{\cosh(mL) + (\alpha/m\lambda) \times \sinh(mL)}$$

4. Adiabatică (izolat termic), 
$$\frac{d\theta}{dx}\Big|_{x=L} = 0$$

- Distribuţia temperaturii: 
$$\frac{\theta}{\theta_b} = \frac{\cosh[m(L-x)]}{\cosh(mL)}$$

- Fluxul termic: 
$$\dot{Q}_{ar} = \sqrt{\alpha P \lambda A_{tr}} \cdot \theta_b \cdot tanh(mL)$$

Efectivitatea aripioarei:

$$\varepsilon_{\text{ar}} \equiv \frac{\dot{Q}_{\text{ar}}}{\dot{Q}_{\text{b}}} = \frac{\dot{Q}_{\text{ar}}}{\alpha \cdot A_{\text{tr,b}} \cdot \theta_{\text{b}}} \tag{4.10}$$

Eficiența aripioarei:

$$\eta_{ar} \equiv \frac{\dot{Q}_{ar}}{\dot{Q}_{ar}} = \frac{\dot{Q}_{ar}}{\alpha \cdot A_{..} \cdot \theta_{.}} \tag{4.11}$$

Eficiența globală a suprafeței:

$$\eta_o = 1 - \frac{NA_{ar}}{A_{\star}} \cdot (1 - \eta_{ar})$$
 (4.12)

## 4.2 Probleme rezolvate

#### Problema rezolvată R4.1

Pentru determinarea coeficientului de transfer termic convectiv ( $\alpha$ ) se utilizează o structură realizată dintr-o folie metalică subțire aplicată pe un material izolator termic. Fluidul pentru care se dorește determinarea coeficientului  $\alpha$  circulă de-a lungul suprafeței libere a foliei. Folia fiind parcursă de curent electric, se disipă un flux termic unitar uniform  $\dot{Q}''$ . Se cunosc grosimea ( $\delta_{iz}$ ) și conductivitatea termică a stratului izolator ( $\lambda_{iz}$ ), iar temperatura fluidului ( $T_{\infty}$ ), a foliei ( $T_{iz}$ ) și a izolației ( $T_{iz}$ ) se pot măsura. Se consideră următoarea situație:  $T_{\infty}$  = 25 °C;  $T_{iz}$  = 28 °C;  $\dot{Q}''$  = 2500 W/m²;  $\delta_{iz}$  = 10 cm;  $\lambda_{iz}$  = 0.05 W/mK.

- a) Ce valoare are coeficientul de transfer termic convectiv dacă mediul fluid studiat este apa, iar măsurătorile indică pentru temperatura foliei valoarea  $T_f = 35\,^{\circ}\text{C}$ ? Ce eroare implică considerarea ipotezei conform căreia întreaga căldură disipată este transferată prin convecție către apă?
- b) Care este coeficientul convectiv în cazul în care fluidul considerat este aer, iar temperatura foliei este  $T_f = 130\,^{\circ}\text{C}$ ? Folia are emisivitatea de  $\epsilon = 0,1\,$  și se găsește într-o incintă largă cu temperatura pe suprafețele delimitatoare de 25°C.

## Soluție

#### Se știe:

- grosimea stratului izolator, tipul izolației;
- temperatura fluidului, a foliei, a izolației termice;
- fluxul termic disipat.

#### Se cere:

- a) coeficientul de transfer termic convectiv în cazul în care fluidul utilizat este apă și eroarea de calcul ce decurge din neglijarea conducției prin stratul izolator;
- b) coeficientul de transfer termic convectiv pentru cazul în care mediul fluid este aer.

#### Schematizare:



#### Ipoteze:

- transferul de căldură staționar, unidimensional;
- conductivitate termică constantă.

#### Analiză:

 a) Fluxul termic disipat în folie este transferată prin convecţie către apă şi prin conducţie în interiorul stratului izolator. Ecuaţia de bilanţ termic are următoarea formă:

$$\dot{Q}_{\text{el}}'' = \dot{Q}_{\text{conv}}'' + \dot{Q}_{\text{cond}}'' \quad \Leftrightarrow \quad \dot{Q}_{\text{el}}'' = \alpha \Big( T_{\text{f}} - T_{_{\infty}} \Big) + \frac{\lambda_{_{iz}}}{\delta_{_{iz}}} \Big( T_{\text{f}} - T_{_{iz}} \Big)$$

Rezultă relația de calcul a coeficientului de transfer termic convectiv la interfața folie –fluid:

$$\alpha = \frac{\dot{Q}_{el}'' - \frac{\lambda_{iz}}{\delta_{iz}} (T_f - T_{iz})}{T_f - T_{\infty}} = \frac{2500 - \frac{0.05}{0.015} (35 - 28)}{35 - 25}$$

$$\alpha = 247.7 \frac{W}{m^2 K}$$

Dacă este neglijată conducția prin izolație, ecuația de bilanț termic se rescrie sub forma

$$\dot{Q}_{el}^{"} = \dot{Q}_{conv}^{"} \Leftrightarrow \dot{Q}_{el}^{"} = \alpha (T_f - T_{\infty})$$

iar valoarea coeficientul de transfer termic convectiv rezultă din relația

$$\alpha = \frac{\dot{Q}_{el}^{"}}{T_f - T_{\infty}} = \frac{2500}{35 - 25} = 250 \frac{W}{m^2 K}$$

Eroarea ce intervine în determinarea coeficientului  $\alpha$  este de

$$\frac{250-247,7}{247,7} \cdot 100 = 0.9\%$$

b) Fluxul termic disipat în folie este transferată către aer atât prin convecție cât și prin radiație. Radiația termică devine semnificativă datorită temperaturii mult mai mari pe care o are folia.

Ecuația de bilanț termic are următoarea formă:

$$\dot{Q}_{el}'' = \dot{Q}_{conv}'' + \dot{Q}_{rad}'' + \dot{Q}_{cond}'' \Leftrightarrow \dot{Q}_{el}'' = \alpha \left( T_f - T_{\infty} \right) + \epsilon \sigma \left( T_s^4 - T_{sd}^4 \right) + \frac{\lambda_{iz}}{\delta_{iz}} \left( T_f - T_{iz} \right)$$

Rezultă relația de calcul a coeficientului de transfer termic convectiv la interfața folie –fluid:

$$\alpha = \frac{\dot{Q}_{el}^{"} - \epsilon \sigma \left(T_{s}^{4} - T_{sd}^{4}\right) - \frac{\lambda_{iz}}{\delta_{iz}} \left(T_{f} - T_{iz}\right)}{T_{f} - T_{\infty}}$$

$$\alpha = \frac{2500 - 0, 1 \cdot 5, 67 \times 10^{-8} \left(403^{4} - 298^{4}\right) - \frac{0,05}{0,015} \left(403 - 301\right)}{130 - 25}$$

$$\alpha = 19,57 \frac{W}{m^2 K}$$

În ultima relație, temperatura foliei, temperatura suprafețelor delimitatoare și temperatura fluidului au fost exprimate în Kelvin.

Dacă este neglijată conducția prin izolație, ecuația de bilanț termic se rescrie sub forma

$$\dot{Q}_{el}^{\prime\prime} = \dot{Q}_{conv}^{\prime\prime} + \dot{Q}_{rad}^{\prime\prime} \quad \Longleftrightarrow \quad \dot{Q}_{el}^{\prime\prime} = \alpha \Big( T_f - T_{_{\infty}} \Big) + \epsilon \sigma \Big( T_s^4 - T_{sd}^4 \Big)$$

iar valoarea coeficientul de transfer termic convectiv rezultă din relația

$$\alpha = \frac{\dot{Q}_{el}'' - \epsilon \sigma \left(T_{s}^{4} - T_{sd}^{4}\right) - \frac{\lambda_{iz}}{\delta_{iz}} \left(T_{f} - T_{iz}\right)}{T_{f} - T_{\infty}}$$

$$\alpha = \frac{2500 - 0.1 \cdot 5,67 \times 10^{-8} \left(403^{4} - 298^{4}\right)}{130 - 25}$$

$$\alpha = 22,81 \frac{W}{m^{2}K}$$

Eroarea ce survine în urma aplicării acestei ipoteze de lucru este de

$$\frac{22,81-19,57}{19,57} \cdot 100 = 16,6\%$$

Dacă este neglijată atât conducția prin izolație cât și radiația, coeficientul  $\alpha$  se calculează cu relatia

$$\alpha = \frac{2500}{130 - 25} = 23.8 \frac{W}{m^2 K}$$

În acest ultim caz eroarea de calcul este de

$$\frac{23,8-19,57}{19,57} \cdot 100 = 21,6\%$$

## Concluzii / Comentarii:

- lichidele sunt caracterizate de coeficienți α mari; o bună aproximare se obține dacă se consideră că întreaga energie disipată se transferă doar prin convecție, erorile de calcul fiind foarte mici (0,9 % în cazul analizat).
- în cazul mediilor gazoase, la temperaturi relativ ridicate, neglijarea conducției și a radiației termice duce la erori mult mai mari.

## Problema rezolvată R4.2

Se consideră un perete exterior neomogen a cărui structură este sugerată în figura de mai jos. Care este rezistența termică echivalentă a peretelui care are înălțimea de 3 m și lățimea de 6,4 m. Peretele conține 10 unități de tipul celei detaliate în figură.

Condițiile în care se realizează transferul de căldură sunt caracterizate de  $T_{\infty,i}$  = 20 °C ;  $\alpha_i$  = 8 W/m²K ;  $T_{\infty,e}$  = -18 °C ;  $\alpha_e$  = 23 W/m²K . În acest caz, care este fluxul termic transferat către exterior?



## <u>Soluţie</u>

## Se ştie:

- dimensiunile și materialele corespunzătoare straturilor din care este realizat peretele ;
- temperaturile mediilor fluide separate de perete;
- coeficienții de transfer termic convectiv pe cele două suprafețe delimitatoare ale peretelui.

#### Se cere:

- rezistența termică a peretelui;
- fluxul termic transferat prin perete.

#### Schematizare:



## Ipoteze:

- transferul de căldură staționar, unidimensional, perpendicular pe perete;
- conductivitate termică constantă pentru straturile constituente;
- rezistențe de contact neglijabile.

# Proprietăți:

Din tabelele 3 și 4 (Anexa 1) se determină conductivitatea termică a elementelor din care este alcătuit peretele:

- a izolației din plăci semirigide din vată de sticlă ( $\lambda_{iz}$ = 0,036 W/mK),
- a elementelor din lemn (λ<sub>lemn</sub>= 0,16 W/mK)
- a plăcii de gips carton ( $\lambda_{gips}$ = 0,036 W/mK).

## Analiză:

Dacă se admite ipoteza variației de temperatură doar pe direcție perpendiculară pe perete (direcția x), circuitul termic echivalent al unei unități reprezentată cu linie punctată în figură este:



Cele două rezistențe termice ale straturilor ce constituie umplutura peretelui (izolație și structură lemn) sunt dispuse în paralel în raport cu direcția de propagare a fluxului termic; așadar, relația de calcul a rezistenței termice echivalente a umpluturii peretelui se obține plecând de la relația fluxului termic transmis prin umplutura unei unități de calcul:

$$\dot{Q} = \dot{Q}_{iz} + \dot{Q}_{lemn,1} \iff \frac{\Delta T}{R_{umplutura}} = \frac{\Delta T}{R_{iz}} + \frac{\Delta T}{R_{lemn,1}} \implies R_{umplutura} = \frac{R_{iz} \cdot R_{lemn,1}}{R_{iz} + R_{lemn,1}}$$

Rezistențele termice corespunzătoare structurii din lemn și izolației termice se determină cu relațiile:

$$\begin{split} R_{iz} &= \frac{\delta_{iz}}{\lambda_{iz} \cdot A_{iz}} = \frac{0,12}{0,036 \cdot (0,6 \cdot 3)} \\ R_{iz} &= 1,852 \left[ K/W \right] \\ R_{lemn,1} &= \frac{\delta_{lemn,1}}{\lambda_{lemn,1} \cdot A_{lemn}} = \frac{0,12}{0,16 \cdot (0,04 \cdot 3)} \\ R_{lemn,1} &= 6,25 \left[ K/W \right] \end{split}$$

Rezultă

$$R_{umplutură} = \frac{R_{iz} \cdot R_{lemn,1}}{R_{iz} + R_{lemn,1}} = \frac{1,852 \cdot 6,25}{1,852 + 6,25} = 1,429 \left[ K/W \right]$$

$$R_{umplutură} = 1,429 [K/W]$$

Rezistența totală a unei unități de calcul ce include atât umplutura cât și straturile de pe cele două suprafețe delimitatoare ale peretelui (ghips carton și lemn) se calculează cu relația:

$$R_{tot,1} = R_{lemn,2} + R_{umplutura} + R_{gips carton} = \frac{\delta_{lemn,2}}{\lambda_{lemn} \cdot A} + R_{umplutura} + \frac{\delta_{gips carton}}{\lambda_{gips carton} \cdot A}$$

$$R_{tot,1} = \frac{0.01}{0.16 \cdot 0.64 \cdot 3} + 1.429 + \frac{0.012}{0.17 \cdot 0.64 \cdot 3}$$

$$R_{tot,1} = 1,499 [K/W]$$

Peretele este realizat din 10 astfel de unități cu o lățime de 0,64 m, dispuse în paralel. Rezistența termică totală (conductivă) a peretelui va fi:

$$\frac{1}{R_{\text{tot,cond}}} = \sum_{1}^{10} \frac{1}{R_{\text{tot,1}}} \implies R_{\text{tot}} = \frac{1}{\sum_{1}^{10} \frac{1}{R_{\text{tot,1}}}} = \frac{1}{\frac{10}{1,499}} = 0,150 \left[ \text{K/W} \right].$$

$$\frac{1}{R_{tot,cond}} = 0.150 [K/W].$$

Pentru a determina fluxul termic transferat prin perete, la rezistența totală conductivă se adaugă rezistențele convective pe cele două fețe ale peretelui (toate cele trei rezistențe fiind înseriate):

$$\dot{Q} = \frac{\Delta T}{R_{tot}}$$

în care:

$$R_{tot} = R_{conv.i} + R_{tot.cond} + R_{conv.e}$$

Înlocuind în relația de mai sus, se obține:

$$\dot{Q} = \frac{\Delta T}{\left(R_{conv,i} + R_{tot,cond} + R_{conv,e}\right)} = \frac{\Delta T}{\left(\frac{1}{\alpha_1 \cdot A} + R_{tot,cond} + \frac{1}{\alpha_2 \cdot A}\right)}$$

În condițiile precizate în enunțul problemei, fluxul termic transferat către exterior va avea valoarea

$$\dot{Q} = \frac{20 - (-18)}{\frac{1}{8 \cdot 3 \cdot 6.4} + 0.15 + \frac{1}{23 \cdot 3 \cdot 6.4}} = \frac{38}{0.159} = 239 \text{ W}.$$

# Concluzii / Comentarii:

Una dintre ipoteze considera rezistența termică neglijabilă la contactul între straturi. În realitate, există o diferență de temperatură în zona de contact, deci o rezistență termică suplimentară, ce va diminua valoarea fluxului termic.

## Problema rezolvată R4.3

O conductă din oțel (AISI 1010) cu diametrul interior de 60 mm și grosimea de 5 mm este utilizată pentru transportul aburului saturat la o presiune de lucru de 20 bar într-o incintă cu temperatura de 20°C. Coeficientul de transfer termic convectiv la interior este  $\alpha_{\rm i} = 600\,{\rm W/m^2K}$  iar la exterior este  $\alpha_{\rm e} = 20\,{\rm W/m^2K}$ . Emisivitatea suprafeței exterioare a conductei este  $\epsilon = 0.8$ . Care este pierderea de căldură liniară (pe un metru de conductă)? Reprezentați circuitul termic echivalent.

# <u>Soluţie</u>

## Se ştie:

- presiunea aburului transportat;
- dimensiunile conductei (diametru interior, grosime);
- temperatura mediului ambiant;
- coeficienții de transfer termic convectiv;
- emisivitatea suprafeței exterioare a conductei.

#### Se cere:

- pierderea de căldură pe metru liniar ( fluxul termic liniar transferat către exterior);
- circuitul termic echivalent.

## Schematizare:



#### Ipoteze:

- transferul de căldură staționar, unidimensional (în direcție radială);
- conductivitate termică constantă;
- suprafețele delimitatoare ale încăperii și aerul din interior au aceeași temperatură ( $T_{\infty,e} = T_{sd} = 20\,^{\circ}\text{C}$ ).

# Proprietăți:

- din tabelul 10 (Anexa 1), la presiunea p = 20 bar, temperatura aburului saturat este  $T_{\infty,i}$  = 213 °C;
- temperatura peretelui metalic al țevii este apropiată de temperatura aburului și deci, conductivitatea termică a oțelului se va considera la temperatura de 213°C, respectiv 486 K; în tabelul 1 (Anexa 1) sunt date valorile conductivității oțelului AISI 1010 la 400 K și 600 K; prin urmare, valoarea conductivității termice la 486 K se va calcula prin interpolare liniară cu formula

$$\lambda_{p} = \lambda \Big|_{486K} = \lambda \Big|_{400K} - \frac{\lambda \Big|_{400K} - \lambda \Big|_{600K}}{600 - 400} (486 - 400) = 58, 7 - \frac{58, 7 - 48, 8}{200} \times 86$$

$$\lambda_p = 54,44 [W/mK]$$

#### Analiză:

Așa cum se sugerează în enunțul problemei, fluxul termic este transferat către exterior prin două mecanisme, convecție și radiație; cele două componente ale fluxului termic liniar pot fi calculate cu relațiile lui Newton și Stefan Boltzmann,

$$\dot{Q}' = \dot{Q}'_{rad} + \dot{Q}'_{conv, e} = \varepsilon \cdot \sigma \cdot \pi \cdot \left(d_i + 2\delta\right) \cdot \left(T_{p2}^4 - T_{sd}^4\right) + \alpha \cdot \pi \cdot \left(d_i + 2\delta\right) \cdot \left(T_{p2} - T_{\infty, e}\right)$$
 (1)

Același flux termic se transferă prin convecție de la abur la suprafața interioară a conductei și apoi prin conducție pe grosimea peretelui; așadar, poate fi determinat cu relația

$$\dot{Q}' = \frac{T_{\infty,i} - T_{p2}}{\frac{1}{\pi \cdot d_i \cdot \alpha_i} + \frac{1}{2\pi \cdot \lambda_p} \cdot \ln\left(\frac{d_i + 2\delta}{d_i}\right)}$$
(2)

Din ecuațiile (1) și (2) se obține

$$\begin{split} \epsilon \cdot \sigma \cdot \pi \Big( d_{_{1}} + 2\delta \Big) \cdot \Big( T_{p2}^{4} - T_{_{sd}}^{4} \Big) + \alpha \cdot \pi \Big( d_{_{1}} + 2\delta \Big) \cdot \Big( T_{p2} - T_{_{\infty,e}} \Big) &= \frac{T_{_{\infty,i}} - T_{p2}}{\frac{1}{\pi d_{_{1}} \cdot \alpha_{_{1}}} + \frac{1}{2\pi \cdot \lambda_{_{p}}} ln \Big( \frac{d_{_{i}} + 2\delta}{d_{_{i}}} \Big)} \\ 0, 8 \cdot 5, 67 \times 10^{-8} \cdot \pi \cdot (60 + 2 \cdot 5) \times 10^{-3} \cdot \Big( T_{p2}^{4} - 293^{4} \Big) + \\ &+ 25 \cdot \pi \cdot (60 + 2 \cdot 5) \times 10^{-3} \cdot \Big( T_{p2} - 293 \Big) = \\ &= \frac{486 - T_{p2}}{\frac{1}{\pi \cdot 60 \times 10^{-3} \cdot 600}} + \frac{1}{2\pi \cdot 54,44} ln \Big( \frac{60 + 2 \cdot 5}{60} \Big) \\ 0, 997 \times 10^{-8} \Big( T_{p2}^{4} - 293^{4} \Big) + 5, 5 \Big( T_{p2} - 293 \Big) = 107, 558 \Big( 486 - T_{p2} \Big) \end{split}$$

Aplicând metoda încercare și eroare, lipsită de rafinament, dar eficientă, se obține temperatura pe suprafața exterioară a conductei  $T_{p2} \approx 473 \text{ K}$ ;

Fluxul termic liniar transferat către exterior se poate calcula cu oricare dintre relațiile prezentate anterior; dacă alegem, de exemplu, ecuația (2), obținem

$$\dot{Q}' = \frac{486 - 473}{\frac{1}{\pi \cdot 60 \cdot 10^{-3} \times 600} + \frac{1}{2\pi \cdot 54,44} \ln\left(\frac{60 + 2 \cdot 5}{60}\right)} = 1398,3 \text{ W/m}$$

$$\dot{Q}' = 1398,3 \text{ [W/m]}$$

Circuitul termic echivalent este reprezentat în următoarea figură.



$$\dot{Q}' = \frac{T_{\infty,i} - T_{p1}}{R'_{conv,i}} = \frac{T_{p1} - T_{p2}}{R'_{cond}} = \frac{T_{p2} - T_{\infty,e}}{R'_{conv,e}} + \frac{T_{p2} - T_{sd}}{R'_{rad}}$$

Rezistențele termice liniare se calculează cu relațiile:

$$\begin{split} R'_{conv,i} &= \frac{1}{\pi \cdot d_i \cdot \alpha_i} = \frac{1}{3,14 \cdot 0,06 \cdot 600} \\ R'_{conv,i} &= 0,009 \left[ m K/W \right]; \\ R'_{cond} &= \frac{1}{2\pi \cdot \lambda_p} \cdot ln \Bigg( \frac{d_i + 2\delta}{d_i} \Bigg) = \frac{1}{2\pi \cdot 54,44} ln \Bigg( \frac{60 + 2 \cdot 5}{60} \Bigg) \\ R'_{cond} &= 7,51 \times 10^{-5} \left[ m K/W \right]; \\ R'_{conv,e} &= \frac{1}{\pi \cdot (d_i + 2\delta) \cdot \alpha_e} = \frac{1}{3,14 \cdot 0,07 \cdot 25} \\ R'_{conv,e} &= 0,182 \left[ m K/W \right]; \\ R'_{rad} &= \frac{1}{\epsilon \cdot \sigma \cdot \pi \cdot (d_i + 2\delta) \left( T_{p2} + T_{sd} \right) \left( T_{p2}^{-2} - T_{sd}^{-2} \right)} \end{split}$$

## Concluzii / Comentarii:

 $R'_{rad} = 0.95 [mK/W]$ 

Rezistențele termice corespunzătoare transferului de căldură convectiv, respectiv radiant, pe suprafața exterioară a conductei au valori mult mai mari decât rezistența termică pe suprafața interioară (transfer convectiv) sau pe grosimea conductei (transfer conductiv); explicația constă în valorile mari ale coeficientului convectiv  $\alpha_i$  și conductivității termice a metalului.

Abordarea problemei reprezintă în fapt aplicarea metodei bilanţului energetic la suprafaţa exterioară a conductei, adică ecuaţia (2.6):

$$\dot{E}_{i} = \dot{E}_{e}$$

## Problema rezolvată R4.4

Pentru depozitarea unor deșeuri radioactive este utilizat un container sferic de tip multistrat cu diametrul interior de 0,6 m. Straturile succesive sunt realizate din plumb și din oțel inoxidabil cu grosimile  $\delta_{Pb}$  = 50 mm și respectiv  $\delta_{inox}$  = 10 mm .

Deșeurile radioactive generează un flux termic uniform  $\dot{Q}_{gen}^{"'} = 6 \times 10^5 \, \text{W/m}^3$ . Se intenționează depozitarea containerului în apa mării ce are o temperatură de 10 °C și asigură un coeficient de transfer termic convectiv pe suprafața peretelui de 550 W/mK.

Credeți că această soluție constructivă este acceptabilă din punctul de vedere al integrității materialelor utilizate?

### <u>Soluție</u>

## Se știe:

- dimensiunile și materialele utilizate pentru confecționarea containerului;
- căldura generată de deșeurile radioactive depozitate.

#### Se cere:

 verificarea soluției constructive propuse, adică determinarea temperaturii pe suprafața interioară a containerului (deci a stratului de plumb), temperatură care trebuie să fie mai mică decât temperatura de topire a plumbului.

#### Schematizare:



## Ipoteze:

- transferul de căldură staționar, unidimensional (pe direcție radială);
- conductivitate termică constantă pentru plumb și oțel;
- rezistență termică de contact neglijabilă.

### Proprietăți:

- din tabelul 1 (Anexa 1) pentru plumb la temperatura de 400 K, se găsesc următoarele valori: conductivitatea termică  $\lambda_{Pb}$  = 34 W / mK şi temperatura de topire  $T_p$  = 601 K;
- din același tabel, conductivitatea termică a oțelului la temperatura medie de 300 K are valoarea  $\lambda_{inox}$  = 14,9 W / mK .

## Analiză:

În condiții staționare fluxul termic generat este egal cu fluxul termic transferat către apa mării (ecuația de bilanț energetic la suprafața interioară a containerului):

$$\dot{Q}_{gen}^{"'} = \dot{Q} = \frac{\Delta T}{R_{tot}};$$

$$\dot{Q}_{gen}^{""} \xrightarrow{T_{p1}} \underbrace{R_{cond,Pb}}_{R_{cond,lnox}} \underbrace{R_{conv,e}}_{R_{conv,e}}$$

Pentru determinarea fluxului termic transferat se utilizează relația

$$\dot{Q} = \frac{T_{p1} - T_{\infty,e}}{R_{tot}} = \frac{T_{p1} - T_{\infty,e}}{R_{cond,Pb} + R_{cond,inox} + R_{conv,e}};$$

- rezistențele termice se determină cu relațiile

$$R_{\text{cond,Pb}} = \frac{1}{4\pi \cdot \lambda_{\text{Pb}}} \Biggl( \frac{1}{r_{_{i}}} - \frac{1}{r_{_{i}} + \delta_{\text{Pb}}} \Biggr) = \frac{1}{4\pi \cdot 34} \Biggl( \frac{1}{0,3} - \frac{1}{0,3 + 0,05} \Biggr)$$

$$R_{cond,Pb} = 1,1145 \times 10^{-3} [K/W]$$

$$R_{cond,inox} = \frac{1}{4\pi \cdot \lambda_{inox}} \left( \frac{1}{r_i + \delta_{Pb}} - \frac{1}{r_i + \delta_{Pb} + \delta_{inox}} \right) = \frac{1}{4\pi \cdot 14.9} \left( \frac{1}{0.35} - \frac{1}{0.35 + 0.01} \right)$$

$$R_{cond,inox} = 0.4239 \times 10^{-3} [K/W]$$

$$R_{\text{conv,e}} = \frac{1}{4\pi \cdot \alpha \left(r_{i} + \delta_{p_{b}} + \delta_{\text{inox}}\right)^{2}} = \frac{1}{4\pi \cdot 550 \left(0.3 + 0.05 + 0.01\right)^{2}}$$

$$R_{conv.e} = 1,1164 \times 10^{-3} [K/W]$$

Rezistența termică totală va fi:

$$R_{tot} = R_{cond, Pb} + R_{cond, inox} + R_{conv, e} = 2,6548 \times 10^{-3} [K/W];$$

Fluxul termic generat se determină cu relația

$$\dot{Q}_{gen} = \dot{Q}_{gen}^{"'} \cdot V_i = \dot{Q}_{gen}^{"'} \cdot \frac{4}{3} \pi r_i^3 = 6 \times 10^5 \cdot \frac{4}{3} \pi (0,3)^3$$

$$\dot{Q}_{gen} = 67858, 4 [W]$$

Din relația de calcul a fluxului termic transferat către apa mării rezultă

$$T_{p1} = T_{\infty,e} + \dot{Q}_{gen} \cdot R_{tot} = (10 + 273) + 67858, 4 \cdot 2,6548 \times 10^{-3}$$

$$T_{p1} = 463,15[K] < 601[K]$$

Deci temperatura maximă a plumbului, pe suprafața interioară a containerului este mai mică decât temperatura de topire; prin urmare, nu este nici o problemă din punctul de vedere al integrității materialelor utilizate; pentru oțel, temperatura de topire este de 1670 K, mult peste temperatura maximă posibilă în sistemul studiat.

## Concluzii / Comentarii:

În rezolvarea problemei s-a neglijat rezistența termică de contact între cele două straturi metalice.

Pentru a preveni coroziunea în timp a oțelului, pe suprafața exterioară a containerului poate fi aplicat un înveliş protector.

## Problema rezolvată R4.5

Un cip de siliciu foarte subțire este lipit de o placă de aluminiu de grosime 6 mm cu un adeziv special (rășină epoxidică). Realizarea acestei îmbinări duce la apariția unei rezistențe termice de contact de  $0.7\times10^{-4}\,\text{m}^2\text{K/W}$ . Cipul și placa suport au forma unui pătrat cu latura de 10 mm, iar suprafețele expuse sunt răcite cu aer cu temperatura de  $25^{\circ}\text{C}$  și coeficienți de transfer termic convectiv de  $120\,\text{W/m}^2\text{K}$ .

- a) Reprezentați circuitul termic echivalent pentru ansamblu cip placă.
- b) Care este temperatura cipului, dacă în condiții normale de funcționare acesta disipă  $9\times10^3\,\text{W/m}^2$  ?

## **Soluție**

#### Se știe:

- energia termică disipată de cip;
- dimensiunile suportului din Al și valoarea rezistenței de contact;
- temperatura mediului ambiant;
- condițiile de transfer termic convectiv pe cele două fețe expuse.

#### Se cere:

- reprezentarea circuitului termic echivalent;
- să se determine temperatura cipului.

### Schematizare:



### Ipoteze:

- transferul de căldură staționar, unidimensional (transferul de căldură prin suprafețele laterale neglijabil);
- conductivitate termică constantă;
- transferul de căldură radiant neglijabil;
- cipul are temperatură uniformă.

### Proprietăți:

- din tabelul 1 (Anexa 1), pentru aluminiu la temperatura de 350 K, valoarea conductivității termice este  $\lambda_{AI}$  = 238 W/mK ; s-a anticipat 350 K ca fiind temperatura medie a plăcii suport din aluminiu.

#### Analiză:

Căldura disipată de chip este transferată către exterior direct, prin convecție (fluxul  $\dot{Q}_1''$ ) și indirect, prin intermediul plăcii de aluminiu (fluxul  $\dot{Q}_2''$ ). Circuitul termic echivalent va fi:



Ecuația de bilanț termic aplicată cipului se scrie sub forma

$$\dot{Q}_{chip}'' = \dot{Q}_{1}'' + \dot{Q}_{2}'' = \frac{T_{chip} - T_{\infty}}{\frac{1}{\alpha}} + \frac{T_{chip} - T_{\infty}}{R_{t,c}'' + \frac{\delta}{\lambda_{Al}} + \frac{1}{\alpha}};$$

Rezultă relația de calcul și valoarea temperaturii chipului

$$T_{chip} = T_{\infty} + \dot{Q}_{chip}'' \left( \alpha + \frac{1}{R_{t,c}'' + \frac{\delta}{\lambda_{Al}} + \frac{1}{\alpha}} \right)^{-1} \Rightarrow$$

$$T_{chip} = 25 + 0.9 \times 10^{3} \left( 120 + \frac{1}{0.7 \times 10^{-4} + \frac{0.006}{238} + \frac{1}{120}} \right)^{-1} \Rightarrow$$

$$T_{chip} = 25 + 0.9 \times 10^{3} \left( 120 + \frac{1}{0.7 \times 10^{-4} + 0.252 \times 10^{-4} + 83.33 \times 10^{-4}} \right)^{-1} \Rightarrow$$

$$T_{chip} = 62.64 \, ^{\circ}\text{C}$$

### Concluzii / Comentarii:

Rezistența termică de contact și rezistența termică a plăcii din aluminiu sunt mult mai mici decât cea convectivă.

Creșterea puterii disipate de chip fără a se depăși o temperatură maximă admisă, se poate face prin îmbunătățirea condițiilor de transfer pe suprafețele expuse, adică valori mai mari ale coeficientul de transfer termic convectiv:

- prin utilizarea unui fluid de răcire mai eficient
- prin creșterea vitezei de circulație a acestuia

sau mărirea suprafeței de schimb de căldură:

- ataşarea unui schimbător de căldură cu aripioare (cooler)
- microcanale

## Problema rezolvată R4.6

Un conductor electric din cupru cu diametrul de 2,7 mm și lungimea de 7 m este acoperit cu o izolație din PVC cu grosimea de 1 mm și conductibilitatea termică  $\lambda_{\rm iz}$  = 0,15 W/mK . Prin conductor circulă un curent de 30 A, rezistivitatea cuprului fiind  $\rho_{\rm el}$  = 1,72  $\times 10^{-6}~\Omega \cdot \text{cm}$  . Temperatura mediului ambiant este  $T_{\infty}$  = 25 °C , iar coeficientul de transfer termic convectiv pe suprafața exterioară a izolației este  $\alpha$  = 15 W/m²K .

Să se determine temperatura la interfața conductor - izolație în condiții de lucru staționare. Ce efect are dublarea grosimii izolației asupra acestei temperaturi?

## **Soluție**

## Se știe:

- diametrul, lungimea și rezistivitatea conductorului;
- grosimea și conductivitatea termică a izolației;
- temperatura mediului ambiant și coeficientul de transfer termic convectiv;
- intensitatea curentului electric.

#### Se cere:

- determinarea temperaturii la interfața conductor-izolație;
- efectul dublării grosimii izolației asupra temperaturii dintre straturi;
- reprezentarea circuitului termic echivalent.

## Schematizare:



### Ipoteze:

- transferul de căldură staționar, unidimensional (în direcție radială);
- conductivitate termică constantă;
- rezistența termică de contact fir-izolație neglijabilă;
- rezistivitatea conductorului constantă în raport cu temperatura.

# Proprietăți:

\_

#### Analiză:

 a) Se presupune că temperatura firului metalic este uniformă ca urmare a generării uniforme de căldură; fluxul termic generat este transferat către exterior în două etape, conducție prin stratul de izolație și convecție termică;

Conform ecuației de bilanț termic

$$\dot{Q}_{gen} = \dot{Q}' \cdot L \tag{1}$$

Fluxul termic generat în conductor prin efect Joule se calculează cu relația

$$\dot{Q}_{gen} = R \cdot I^2 = \frac{\rho_{el} \cdot L}{A} \cdot I^2 = \frac{\rho_{el} \cdot L}{\frac{\pi d_c^2}{4}} \cdot I^2 = \frac{1,72 \times 10^{-6} \cdot 700}{\frac{\pi \cdot 0,27^2}{4}} \cdot 30^2$$

$$\dot{Q}_{gen} = 19[W]$$

Circuitul termic echivalent este:

$$\dot{Q}_{gen}' \xrightarrow{T_c} \underset{R_{cond}}{\underbrace{T_c}} \underset{R_{conv}}{\underbrace{T_{\infty,e}}}$$

Formula de calcul a fluxului termic transferat prin izolație este

$$\dot{Q}' = \frac{T_c - T_\infty}{R'_{cond} iz} + R'_{conv}$$

Rezistența termică conductivă corespunzătoare stratului de izolație și cea convectivă se determină cu relatiile

$$\begin{split} R'_{cond,iz} &= \frac{1}{2\pi \cdot \lambda_{iz}} ln \frac{d_{iz}}{d_c} = \frac{1}{2\pi \cdot 0,15} ln \frac{4,7}{2,7} \\ R'_{conv} &= \frac{1}{\pi d_{iz} \cdot \alpha} = \frac{1}{\pi \cdot 4,7 \times 10^{-3} \cdot 15} \\ \end{split} \qquad \qquad \begin{aligned} R'_{conv} &= 0,588 \big[ mK/W \big] \\ R'_{conv} &= 4,517 \big[ mK/W \big]; \end{aligned}$$

Revenind la ecuația de bilanț termic (1), se deduce relația de calcul pentru temperatura pe interfața conductor-izolație

$$\dot{Q}_{gen} = \dot{Q}' \cdot L \quad \Leftrightarrow \quad 19 = \frac{T_c - 25}{0.588 + 4.517} \cdot 7$$

 $T_c = 38,86$ °C

b) trebuie determinată raza critică a izolației; pentru strat cilindric se utilizează următoarea relație

$$r_{cr} = \frac{\lambda_{iz}}{\alpha} = \frac{0.15}{15} = 0.01 \text{m}$$
  $r_{cr} = 10 \text{ mm}$ 

Din enunțul problemei  $r_{iz} = 4.7/2 = 2.35 \text{ mm}$ 

Se observă că  $r_{cr} > r_{iz}$ , deci dublarea grosimii izolației, care duce la  $r_{iz} = 3,35\,\mathrm{mm}$  va avea ca efect creșterea fluxului termic transferat către exterior; abia după atingerea razei critice, creșterea grosimii izolației va determina scăderea fluxului termic transferat către exterior.

## Concluzii / Comentarii:

Repetând calculul anterior pentru o grosime a izolației de două ori mai mare ( $\delta$ iz = 2 mm), temperatura pe interfață va scădea până la valoarea  $T_c = 36,22$ °C; valoarea minimă a acestei temperaturi se va atinge atunci când raza exterioară a izolației este egală cu raza critică; în aceste condiții, fluxul termic transferat către exterior este maxim.

#### Problema rezolvată R4.7

O tijă foarte lungă cu un diametru de 5 mm are unul din capete menținut la o temperatură de 110 °C. Suprafața tijei este expusă mediului ambiant cu o temperatură de 20°C, înregistrându-se coeficientul de transfer termic convectiv  $\alpha$  = 80 W/m²K.

- a) Să se determine distribuția de temperatură de-a lungul tijei şi fluxul termic transferat către exterior pentru trei materiale utilizate în realizarea tijei (cupru, aliaj de aluminiu 2024-T6 şi oțel inox AISI 316).
- b) Estimați cât de lungă trebuie să fie tija pentru ca ipoteza "tijă de lungime infinită" să nu introducă erori în calculul pierderii de căldură.

# **Soluție**

# Se ştie:

- diametrul tijei de lungime foarte mare;
- materialul din care este confecționată tija;
- temperatura la unul din capetele tijei;
- temperatura mediului ambiant și coeficientul de transfer termic convectiv;

#### Se cere:

- distribuția de temperatură de-a lungul tijei;
- fluxul termic transferat către exterior;
- verificarea condiției "tijă de lungime infinită".

## Schematizare:



#### Ipoteze:

- transferul de căldură staționar, unidimensional (de-a lungul tijei);
- conductivitate termică constantă;
- schimb de căldură radiativ neglijabil;
- coeficient de transfer termic convectiv uniform;
- tijă de lungime infinită, ceea ce presupune că cel de-al doilea capăt se găsește la temperatura mediului ambiant.

# Proprietăți:

- temperatura medie a tijei este

$$\overline{T} = \frac{T_b + T_{\infty}}{2} = \frac{110 + 20}{2} = 65^{\circ}C \implies \overline{T} = 338 \text{ K}$$

unde T<sub>b</sub> este temperatura bazei tijei (capătul cald); din tabelul 1 (Anexa 1) pentru aluminiu la temperatura medie, valoarea conductivității termice se calculează prin interpolare liniară

$$\lambda_{AI} = \lambda \Big|_{300} + \frac{\lambda \Big|_{400} - \lambda \Big|_{300}}{400 - 300} \cdot (338 - 300) = 177 + \frac{186 - 177}{400 - 300} \cdot (338 - 300)$$
$$\lambda_{AI} = 180,42 \left[ W / mK \right]$$

- într-un mod similar se calculează conductivitatea termică a oțelului inox (AISI 316) și a cuprului; rezultă  $\lambda_{inox}$  = 14,084 [W/mK] și  $\lambda_{cu}$  = 396,04 [W/mK].

#### Analiză:

Pe baza ipotezei "tijă de lungime infinită", distribuția de temperatură se determină cu formula

$$\frac{\theta}{\theta_b} = e^{-mx} \quad \Longleftrightarrow \quad \frac{T - T_{\infty}}{T_b - T_{\infty}} = e^{-mx}$$

unde

$$m = \left(\frac{\alpha \cdot P}{\lambda \cdot A_{tr}}\right)^{1/2} = \left(\frac{\alpha \cdot \pi d}{\lambda \cdot \frac{\pi d^2}{4}}\right)^{1/2} = \left(\frac{\alpha \cdot 4}{\lambda \cdot d}\right)^{1/2};$$

Înlocuind valorile numerice din enunțul problemei se obține

- pentru Cu  $\rightarrow$  m = 12,71 m-1;
- pentru Al  $\rightarrow$  m = 18,83 m-1;
- pentru inox  $\rightarrow$  m = 67,41 m-1;

Distribuția de temperatură pentru tija realizată din cele trei materiale este reprezentată în figura de mai jos:



Se observă că diferența dintre  $T_b$  și  $T_{\infty}$  devine nesemnificativă pentru

- x≥75mm în cazul oțelului inoxidabil
- x≥250 mm în cazul aliajului de aluminiu
- x≥350 mm în cazul cuprului

Deci ipoteza "tijă de lungime infinită" nu introduce erori în calculul fluxului termic transferat către exterior.

Considerând această ipoteză valabilă, pentru determinarea fluxului termic se utilizează relația

$$\dot{Q}_{ar} = \sqrt{\alpha \cdot P \cdot \lambda \cdot A_{tr}} \cdot \theta_{b} = \sqrt{\alpha \cdot \pi d \cdot \lambda \cdot \frac{\pi d^{2}}{4}} \times (T_{b} - T_{\infty})$$

$$\dot{Q}_{ar} = \sqrt{80 \cdot \pi \cdot 5 \times 10^{-3} \cdot \lambda \cdot \frac{\pi \cdot (5 \times 10^{-3})^2}{4}} \cdot (110 - 20)$$

Se obțin următoarele rezultate

- pentru Cu

$$\dot{Q}_{f} = \sqrt{80 \cdot \pi \cdot 5 \times 10^{-3} \cdot 396,04 \cdot \frac{\pi \cdot \left(5 \times 10^{-3}\right)^{2}}{4}} \cdot \left(110 - 20\right)$$

$$\dot{Q}_{f} = 8,89 [W];$$

- pentru Al

$$\dot{Q}_{f} = \sqrt{80 \cdot \pi \cdot 5 \times 10^{-3} \cdot 180,42 \cdot \frac{\pi \cdot \left(5 \times 10^{-3}\right)^{2}}{4}} \cdot (110 - 20)$$

$$\dot{Q}_{f} = 6 \left[W\right];$$

- pentru Oțel inox

$$\dot{Q}_{f} = \sqrt{80 \cdot \pi \cdot 5 \times 10^{-3} \cdot 14,084 \cdot \frac{\pi \cdot \left(5 \times 10^{-3}\right)^{2}}{4}} \cdot \left(110 - 20\right)$$

$$\dot{Q}_{f} = 1,68 \text{ W}.$$

## Concluzii / Comentarii:

Verificarea condiției "tijă de lungime infinită" a fost făcută pe baza distribuției de temperatură de-a lungul acesteia; dacă lungimea tijei depășește limitele determinate pentru fiecare tip de material, atunci observația/condiția legată de lipsa erorilor se extinde și asupra calculului fluxului termic transferat prin tijă.

## Problema rezolvată R4.8

Pe un perete plan sunt atașate aripioare rectangulare din aluminiu cu lungimea de 50 mm și grosimea de 0,5 mm, la o distanță de 4 mm. Coeficientul de transfer termic convectiv este de 45 W/m²K în cazul peretelui liber și de 35 W/m²K în cazul peretelui cu aripioare atașate. Care este creșterea procentuală a fluxului termic transferat către exterior, creștere obținută prin atașarea aripioarelor?

## **Soluție**

## Se ştie:

- dimensiunile și numărul aripioare atașate;
- materialul din care sunt confecționate aripioarele;
- coeficientul de transfer termic convectiv cu și fără aripioare.

#### Se cere:

- creșterea procentuală a fluxului termic transferat către exterior prin atașarea aripioarelor.

#### Schematizare:



## Ipoteze:

- transferul de căldură staționar, unidimensional;
- conductivitate termică constantă;
- schimb de căldură radiativ neglijabil;
- coeficient de transfer termic convectiv uniform;
- rezistență de contact neglijabilă la interfața perete-aripioară.

## Proprietăți:

- din tabelul 1 (Anexa 1), pentru aluminiu pur la temperatura de 400 K, conductivitatea termică are valoarea  $\lambda_{AI}$  = 240 W / mK ;

#### Analiză:

Pe perete sunt atașate

$$N = \frac{1}{4 \times 10^{-3}} = 250$$
 aripioare / m

Se evaluează parametrii aripioarei:

- lungimea corectată

$$L_c = L + \frac{t}{2} = 0.05 + \frac{0.0005}{2} = 0.05025 \,\mathrm{m}$$

- aria profilului corectat al aripioarei

$$A_p = L_c \cdot t = 0,05025 \cdot 0,5 \times 10^{-3} = 25,13 \times 10^{-6} \text{ m}^2$$

- coeficientul (mL<sub>c</sub>)

$$\text{m} \cdot \text{L}_{c} = \text{L}_{c}^{3/2} \left( \frac{\alpha}{\lambda \cdot \text{A}_{p}} \right)^{1/2} = 0,05025^{3/2} \cdot \left( \frac{30}{240 \cdot 25,13 \times 10^{-6}} \right)^{1/2} = 0,858$$

Din figura 18 (Anexa 3) rezultă eficiența aripioarei

$$\eta_{ar} = 68\% = 0.68$$

Fluxul transferat prin aripioară se calculează cu relația:

$$\dot{Q}_{ar} = \eta_{ar} \cdot \alpha_{ar} \cdot A_{ar} \cdot \theta_{b} = \eta_{ar} \cdot \alpha_{ar} \cdot L_{c} \cdot P \cdot \theta_{b} = \eta_{ar} \cdot \alpha_{ar} \cdot L_{c} \cdot 2w \cdot \theta_{b};$$

$$\dot{Q}_{ar} = 0.68 \cdot 35 \cdot 0.05025 \cdot 2w \cdot \theta_{h}$$
;

$$\dot{Q}_{ar} = 2,392 \cdot w \cdot \theta_{h}$$
;

Fluxul total transferat prin cele 250 de aripioare și prin spațiul dintre aripioare se determină cu relația

$$\dot{Q}_{t} = N \cdot \eta_{ar} \cdot \alpha_{ar} \cdot L_{c} \cdot 2w \cdot \theta_{b} + (1 - N \cdot t) \cdot w \cdot \alpha_{ar} \cdot \theta_{b}$$

$$\dot{Q}_{t} = 250 \cdot 2,392 \cdot w \cdot \theta_{b} + (1 - 250 \cdot 0,5 \times 10^{-3}) \cdot w \cdot 35 \cdot \theta_{b}$$

$$\dot{Q}_{t} = 598 \cdot w \cdot \theta_{b} + 30,625 \cdot w \cdot \theta_{b}$$

$$\dot{Q}_{t} = 628,625 \cdot w \cdot \theta_{b}$$

Pentru a determina fluxul termic transferat prin peretele liber

$$\begin{split} \dot{Q}_{liber} &= \alpha_{liber} \cdot A_{liber} \cdot \theta_b = \alpha_{liber} \cdot 1 \cdot w \cdot \theta_b = 45 \cdot 1 \cdot w \cdot \theta_b \\ \\ \dot{Q}_{liber} &= 45 \cdot w \cdot \theta_b \end{split}$$

Creșterea procentuală a fluxului termic transferat către exterior prin atașarea aripioarelor este

$$\frac{\dot{Q}_{t} - \dot{Q}_{liber}}{\dot{Q}_{liber}} = \frac{628,625 \cdot w \cdot \theta - 45 \cdot w \cdot \theta_{b}}{45 \cdot w \cdot \theta_{b}} \cdot 100\%$$

$$\frac{\dot{Q}_{t} - \dot{Q}_{liber}}{\dot{Q}_{liber}} = 1297\%$$

# Concluzii / Comentarii:

- prin ataşarea aripioarelor se obține o creștere semnificativă a fluxului termic transferat către exterior;
- în general, creşterea fluxului transferat se obține prin micșorarea grosimii aripioarei și prin micșorarea distanței dintre aripioare; în acest caz aceste intervenții nu sunt posibile deoarece atât grosimea aripioarelor cât și spațiul dintre acestea sunt foarte mici, 0,0005 m, respectiv 0,004 m (distanța dintre axele a două aripioare succesive).

# 4.3 Probleme propuse

#### Problema P4.1

Un perete are următoarele dimensiuni: înălțime 3 m, lățime 6 m, grosime 0,3 m și conductivitate termică  $\lambda = 1$  W/mK . Temperaturile măsurate pe cele două fețe ale peretelui sunt de 18°C, respectiv -5°C. Să se determine fluxul termic unitar și fluxul termic total transferate prin perete.

## Problema P4.2

Pereţii unui frigider sunt de tip multistrat şi sunt realizaţi din două panouri metalice separate printr-un strat de izolaţie termică (spumă poliuretanică) de conductivitate termică  $\lambda_{iz}$  = 0,026 W/mK şi grosime  $\delta_{iz}$  = 5 cm . Panourile metalice sunt din tablă de oţel cu grosimea  $\delta_{oţel}$  = 2 mm şi conductivitatea termică  $\lambda_{oţel}$  = 50 W/mK . Care este aportul de căldură din exterior, pe unitatea de suprafaţă, dacă temperatura din interiorul incintei frigiderului este  $T_{\infty,i}$  = 5 °C şi temperatura aerului exterior este  $T_{\infty,e}$  = 23 °C . Se consideră că valorile coeficienţilor de transfer termic asociaţi convecţiei naturale pe cele două suprafeţe delimitatoare ale peretelui sunt  $\alpha_i$  =  $\alpha_e$  = 8 W/m²K .

#### Problema P4.3

O fereastră cu înălțimea de 1,2 m și lățimea de 0,8 m este realizată din două foi de sticlă cu grosimea de 4 mm, dispuse la o distanță de 12 mm, între care este introdus un mediu gazos stagnant (aer) cu conductivitatea termică  $\lambda_{aer}=0,025\,\text{W/mK}$ . Temperatura în interiorul camerei este de 22°C, iar temperatura exterioară are valoarea de -15°C . Coeficienții de transfer termic la interior și la exterior au valorile  $\alpha_i=8\,\text{W/m}^2\text{K}$  respectiv  $\alpha_e=70\,\text{W/m}^2\text{K}$  . Se neglijează efectul radiației termice. Să se determine pierderea de căldură prin suprafața ferestrei. Ce efect ar putea avea dispunerea unui al treilea strat de sticlă?

Geamul din spate al unui automobil de grosime  $\delta$  = 4 mm este dezaburit prin trecerea unui curent de aer cald peste suprafața sa interioară.

Temperatura aerului exterior este  $T_{\omega,e}$  = -15°C , iar coeficientul de transfer termic convectiv pe suprafața exterioară este  $\alpha_e$  = 60 W/m²K .

- a) Care sunt temperaturile pe cele două fețe ale lunetei ( $T_{p,e}$ ,  $T_{p,i}$ ) dacă temperatura aerului cald este  $T_{\infty,i}$  = 40 °C și coeficientul de transfer termic convectiv corespunzător este  $\alpha_i$  = 35 W/m²K?
- b) Temperatura exterioară  $T_{\infty,e}$  și coeficientul  $\alpha_e$  se modifică în funcție de condițiile meteorologice și de viteza mașinii. Să se calculeze temperatura pe cele două fețe ale geamului ca o funcție de  $T_{\infty,e}$ , pentru  $T_{\infty,e} \in [-25,0]^{\circ}C$ , pentru valorile  $\alpha_e = 5,60,100 \text{ W/m}^2\text{K}$

# Problema P4.5

O altă metodă utilizată pentru dezaburirea geamului constă în aplicarea unui element încălzitor foarte subțire pe suprafața interioară a gemului. Prin încălzire electrică, pe întreaga suprafață a geamului de grosime  $\delta$  = 4 mm, se disipă un flux termic unitar uniform.

Temperatura aerului exterior este  $T_{\infty,e}$  = -15°C , iar coeficientul de transfer termic convectiv pe suprafața exterioară are valoarea  $\alpha_e$  = 60 W/m²K .

- a) Să se determine puterea electrică necesară pe  $m^2$  de geam pentru a menține temperatura suprafeței interioare la valoarea de 16 °C. Se consideră că temperatura aerului interior și coeficientul de transfer termic convectiv corespunzător au valorile  $T_{\infty,i} = 23$  °C, respectiv  $\alpha_i = 10$  W/m²K.
- b) Pentru valori  $\alpha_e = 5,60,100 \text{ W/m}^2\text{K}$ , să se determine necesarul de putere electrică ca o funcție de  $T_{\infty,e}$ , pentru  $T_{\infty,e} \in [-25,0]^{\circ}\text{C}$ .

## Problema 4.6P

Peretele exterior al unei clădiri are o structură realizată din trei straturi: lemn, izolație de vată minerală de sticlă și placă din ghips carton, așa cum este indicat în figura de mai jos. Suprafața totală a peretelui este de 100 m².

larna, temperatura exterioară medie este  $T_{\infty,e}$  = -15 °C , iar coeficientul de transfer termic convectiv pe suprafața exterioară a peretelui este  $\alpha_e$  = 70 W/m²K . Condițiile interioare sunt  $T_{\infty,i}$  = 22 °C și  $\alpha_i$  = 10 W/m²K .

- a) Să se determine fluxul termic pierdut prin întreaga suprafață a peretelui și per m².
- b) Care este fluxul termic unitar și total, pe întreaga suprafață, dacă peretele este înlocuit cu geam dublu din sticlă cu grosimea de 4 mm, între care se găsește un strat de aer stagnant cu grosimea de 12 mm?
- c) Dacă vântul bate puternic, coeficientul  $\alpha_e$  poate ajunge până la valoarea de 250 W/m²K . Care este creșterea procentuală a pierderii de căldură pe m² în ambele variante constructive.



Peretele exterior al unei clădiri este realizat din beton armat, cu grosimea de 0,2 m. Aerul interior are temperatura de 20°C și umiditatea relativă de 70%. Temperatura exterioară este de -15°C.

Izolația termică este realizată din polistiren expandat și este protejată de un strat de tencuială cu grosimea de 10 mm și conductivitatea termică de 0,17 W/mK. Coeficienții de transfer termic convectiv la interior și la exterior sunt  $\alpha_{_{i}}$  =  $8\,\text{W}/\text{m}^{2}\text{K}$  , respectiv  $\alpha_{_{e}}$  =  $30\,\text{W}/\text{m}^{2}\text{K}$  .

Care este grosimea stratului de izolație termică plasat la exterior pentru a evita condensarea vaporilor pe suprafața interioară a peretelui?

## Problema P4.8

Un perete exterior cu grosimea de 28 cm și suprafața de 24 m² este realizat din zidărie de cărămidă. Temperaturile în interiorul și exteriorul încăperii sunt  $T_{\infty,i}$  = 20 °C, respectiv  $T_{\infty,e}$  = -18°C.

Coeficienții de transfer termic convectiv pe cele două suprafețe ale peretelui sunt  $\alpha_i = 8 \, W/m^2 K \, \text{și} \, \alpha_e = 23 \, W/m^2 K \, .$ 

- a) Să se determine pierderea de căldură către mediul exterior prin peretele de zidărie de cărămidă.
- b) Să se determine temperaturile pe cele două fețe ale peretelui.
- c) Ce modificare în ceea ce privește pierderea de căldură și distribuția de temperatură pe grosimea peretelui aduce dispunerea unui strat de izolație termică din polistiren expandat cu grosimea de 10 cm? Are importanță unde plasăm izolația (la interior/la exterior)? Justificați răspunsul.

Peretele unei camere de uscare este realizat din două panouri metalice subțiri ce încadrează un strat izolator termic din vată de sticlă. Temperatura în interiorul cuptorului este de 330°C, iar coeficientul de transfer termic convectiv are valoarea  $\alpha_i = 35 \, \text{W/m}^2 \text{K}$ . Suprafața interioară a peretelui camerei absoarbe fluxul termic radiant  $\dot{Q}''_{rad} = 35 \, \text{W/m}^2$  de la obiectele fierbinți din interiorul cuptorului. Temperatura aerului din exteriorul cuptorului este de 25°C, iar coeficientul global de transfer termic convectiv și radiant pe suprafața exterioară este  $\alpha_e = 12 \, \text{W/m}^2 \text{K}$ .

- Reprezentați circuitul termic echivalent pentru perete și indicați temperaturile și fluxul termic transferat.
- b) Ce grosime trebuie să aibă izolația ( $\delta_{iz}$ ) pentru a limita temperatura pe suprafața exterioară la 45°C?

#### Problema P4.10

Peretele metalic al unui cazan termic cu o suprafață de 3,5 m² nu este izolat termic, astfel încât temperatura pe suprafața exterioară este de 80°C. Temperatura din încăperea în care se află cazanul este de 30°C, iar coeficientul de transfer termic global pe suprafața exterioară este de 10 W/m²K. Se intenționează reducerea cu 75% a pierderilor de căldură către exterior prin dispunerea unui strat de vată de sticlă cu conductivitatea termică  $\delta_{iz}$  = 0,036 W/mK (conform tab.3, anexa 1).

Presupunând că temperatura pe suprafața metalică rămâne aceeași (80°C), să se determine grosimea stratului izolator.

Cazanul funcționează continuu cu un randament termic de 85 %. Combustibilul utilizat este gaz natural cu puterea calorifică inferioară  $H_i = 35,5\,\text{MJ/m}^3$  și un preț de 1,4 lei/m³. Ce sumă de bani se economisește în decursul unui an prin plasarea stratului izolator?

Dacă cheltuielile cu materialele utilizate pentru izolare termică și manopera sunt de 800 lei, să se determine perioada în care această investiție va fi recuperată.

Peretele unui cuptor industrial are următoarea structură: un strat de cărămidă refractară cu conductivitatea termică  $\lambda_1$  = 0,4 W/mK, un strat de izolație termică din diatomit de grosime  $\delta_2$  = 0,06 m și conductivitatea termică  $\lambda_2$  = 0,12 W/mK și un strat de cărămidă roșie de grosime  $\delta_3$  = 0,25 m și conductivitatea termică  $\lambda_3$  = 0,8 W/mK.

Temperatura medie a gazelelor din cuptor este de 1200°C, iar cea a aerului din hală este de 27°C. Coeficienții de transfer termic convectiv pe cele două suprafețe delimitatoare ale peretului sunt  $\alpha_i = 40 \, \text{W/m}^2 \text{K}$  și  $\alpha_e = 10 \, \text{W/m}^2 \text{K}$ .

- a) Să se calculeze grosimea stratului de cărămidă refractară astfel încât temperatura maximă a izolației de diatomit să nu depășească valoarea de 760°C.
- b) Să se determine fluxul termic unitar transferat prin perete considerând grosimea stratului de cărămidă refractară ca fiind cea calculată la punctul anterior, (a).
- c) Cu cât se micșorează fluxul termic unitar dacă pe suprafața interioară a peretelui se depune un strat de funingine de grosime  $\delta_4$  = 1 mm și conductivitatea termică  $\lambda_2$  = 1 W/mK.

#### Problema P4.12

Miezul unui transformator este realizat din tole din tablă de grosime  $\delta_1 = 0.5\,\text{mm} \text{ și conductivitate termică } \lambda_1 = 57\,\text{W/mK} \text{ , alternând cu straturi de hârtie cu grosimea } \delta_2 = 0.05\,\text{mm} \text{ și conductivitate termică } \lambda_2 = 0.14\,\text{W/mK} \text{ .}$ 

Să se calculeze conductivitatea termică echivalentă a miezului dacă transferul de căldură conductiv se realizează pe direcție

- a) transversală
- b) longitudinală, față de starturile componente.

Se consideră că această structură nu duce la apariția unor rezistențe de contact de valori semnificative.

Un tub din oțel inoxidabil este utilizat pentru transportul unui lichid cu temperatura de 10 °C. Diametrul interior al tubului este de 30 mm, iar grosimea acestuia este de 3 mm. Aerul ambiant are temperatura de 25 °C, iar coeficienții de transfer termic convectiv la interior și la exterior au valorile  $\alpha_i = 300 \, \text{W/m}^2 \text{K}$  și  $\alpha_p = 10 \, \text{W/m}^2 \text{K}$ .

- a) Ce valoare are fluxul termic liniar transferat pe direcție radială?
- b) Ce modificări se pot produce în ceea ce privește fluxul termic, dacă pe suprafața exterioară a tubului este aplicat un strat de izolație termică cu grosimea de 15 mm și conductivitatea termică de 0,026 W/mK?

### Problema P4.14

Într-o centrală termoelectrică aburul supraîncălzit cu temperatura de 550°C este transportat de la cazan până la turbina cu abur printr-o conductă de oțel cu diametrul interior de 300 mm, grosimea peretelui de 30 mm și conductivitatea termică  $\lambda_p = 40 \, \text{W/mK}$ . Pentru a reduce pierderile de căldură și pentru a limita temperatura pe suprafața exterioară a țevii, se aplică un strat de izolație termică din silicat de calciu cu conductivitatea termică  $\lambda_{iz} = 0.07 \, \text{W/mK}$ . Pentru a împiedica degradarea în timp a izolației, aceasta este protejată cu tablă subțire de aluminiu cu emisivitatea  $\epsilon = 0.2$ .

Temperatura aerului ambiant este de 27°C , iar coeficientul de transfer termic convectiv corespunzător are valoarea  $\alpha_e = 8 \, W/m^2 K$  . Temperatura suprafețelor delimitatoare ale halei au, de asemenea, temperatura de 27°C.

- a) Dacă la interfața abur-perete metalic se înregistrează coeficientul de transfer termic convectiv  $\alpha_i$  = 1200 W/m²K, care este grosimea minimă a stratului izolator pentru ca temperatura foliei de aluminiu să nu depășească temperatura de 50°C?
- b) Evidențiați grafic influența grosimii izolației asupra temperaturii suprafeței exterioare și asupra pierderii de căldură pe metru liniar de conductă.

Conducta de alimentare cu abur (debit solicitat  $\dot{m}$  = 1,5 kg/s) a unui consumator industrial are diametrul interior de 274 mm, grosimea de 8 mm și este realizată din oțel cu conductivitatea termică  $\lambda_p$  = 40 W/mK . Pe suprafața exterioară a conductei este dispus un strat izolator din silicat de calciu cu grosimea de 80 mm și conductivitatea termică  $\lambda_{iz}$  = 0,07 W/mK .

La sursă, aburul are temperatura  $T_1 = 600$  K, căldura specifică  $c_p = 4200$  J/kgK și este transportat pe o distanță de 2 km.

Temperatura aerului exterior este  $T_{\infty,e}$  = 280 K , iar coeficienții de transfer termic convectiv la interior și exterior au valorile  $\alpha_i$  = 1100 W/m²K și  $\alpha_e$  = 15 W/m²K .

Să se determine temperatura cu care aburul ajunge la consumator.

### Problema P4.16

Vaporizatorul unei instalații frigorifice este realizat din tuburi metalice subțiri cu diametrul interior de 10 mm prin care circulă freon cu temperatura de -15°C. Trecând peste aceste tuburi, aerul se răcește, coeficientul de transfer termic convectiv corespunzător fiind de 120 W/m²K.

- a) Dacă temperatura aerului este de -2°C, care este fluxul termic liniar transferat de la aer către agentul frigorific?
- b) În cazul în care instalația de degivrare nu funcționează, pe suprafața exterioară a tuburilor se formează un strat de gheață a cărui conductivitate termică este  $\lambda_{gh}$  = 1,88 W/mK .

Evidențiați efectul formării stratului de gheață asupra capacității de răcire a instalației frigorifice pentru intervalul  $0 \le \delta_{gh} \le 4\,\text{mm}$ .

O țeavă din oțel (AISI 1010), neizolată, cu diametrul interior de 100 mm și grosimea de 4 mm este utilizată pentru transportul apei de răcire către o instalație plasată în exterior. Iarna, temperatura suprafeței exterioare a țevii atinge temperatura de -18 °C, astfel încât pe suprafața interioară se formează un strat cilindric de gheață. Se știe că temperatura medie a apei este de 3 °C , iar coeficientul de transfer termic convectiv la interior este de 1800 W/m²K.

Considerând că temperatura stratului de gheață format la interior este de 0 °C, care este grosimea acestuia?

#### Problema P4.18

O țeavă din oțel normal, cu diametrul exterior de 100 mm și grosimea de 12 mm este acoperită cu două straturi de materiale izolatoare. Stratul izolator ( i ), în contact direct cu conducta, este rezistent la temperaturi înalte (ignifug), are o conductivitate termică de 0,1 W/mK și grosimea de 25 mm. Stratul izolator ( j ) de la exterior, are o conductivitate termică de 0,05 W/mK și grosimea de 25 mm.

Această țeavă este testată pentru transportul unui gaz fierbinte, care asigură la suprafața interioară a țevii o temperatură de 500 °C, în timp de temperatura supafeței exterioare a stratului izolator ( j ) este 0 °C.

- a) Să se determine fluxul termic pe metru liniar de conductă.
- b) Să se determine valoarea temperaturii la interfaţa între cele două straturi de izolaţie, ( i ) şi ( j ).
- c) Dacă s-ar putea schimba între ele cele două materiale (adică stratul ( j ) este acum in contact direct cu conducta de oţel, iar stratul ( i ) se află la exterior), cum se modifică valoarea fluxului termic?
- d) Să se compare și să se explice rezultatele de la punctele (a) și (c)

# Problema P4.19

Să se refacă problema P4.18, considerând că gazul din interior are temperatura de 500 °C, în timp mediul exterior este la 0 °C. Coeficienții convectivi de transfer de căldură sunt 100 W/m²K la interior și 10 W m²K la exterior.

O ţeavă lungă are raza interioară  $r_i$  şi temperatura pe suprafaţa interioară  $T_i$ , respectiv raza exterioară  $r_e$  şi temperatura pe suprafaţa exterioară  $T_e$ . Dacă se poate exprima conductivitatea termică a materialului ţevii ca fiind  $\lambda = \lambda_0 \left[1 + b \cdot \left(T - T_0\right)\right]$ , să se obţină o ecuaţie pentru fluxul termic pe unitatea de lungime a conductei.

#### Problema P4.21

Printr-o țeavă cu diametrul interior  $d_i$  = 54 mm, diametrul exterior  $d_e$  = 60 mm, realizată dintr-un material cu conductivitatea termică  $\lambda_p$  = 49 W/mK , circulă abur cu temperatura de 300 °C. Țeava este acoperită cu un strat de izolație termică din vată de sticlă cu o grosime de 30 mm și conductivitate termică  $\lambda_{iz}$  = 0,046 W/mK . Transferul de căldură se realizează de la conductă către mediul exterior (aer cu temperatura de 3 °C) prin convecție și radiație, coeficientul de transfer termic echivalent/combinat fiind  $\alpha_p$  = 20 W/m²K .

Considerând coeficientul de transfer termic pe suprafața interioară a țevii  $\alpha_i = 100 \, W/m^2 K$ , să se determine fluxul termic liniar pierdut către exterior și variația de temperatură în stratul de izolație și în peretele metalic al țevii. Reprezentați circuitul termic echivalent.

# Problema P4.22

O doză din aluminiu conține inițial o băutură cu temperatura uniformă de 5 °C. Doza are 12,5 cm înălțime și diametrul de 6 cm. Dacă coeficientul de transfer termic combinat convecție/radiație între doză și aerul înconjurător cu temperatura de 23 °C este  $\alpha_{\rm e} = 10\,{\rm W/m^2K}$ , să se determine timpul necesar ca temperatura lichidului din interiorul dozei să crească cu 10 °C. Pentru a menține temperatura rece un timp mai îndelungat, doza se introduce într-o husă termoizolantă cu grosimea de 1 cm și conductivitatea termică  $\lambda_{\rm i}$ , = 0,15 W/mK .

În cât timp temperatura băuturii va crește cu 10°C în această situație? Reprezentați circuitul termic echivalent.

O doză din aluminiu conține inițial o băutură cu temperatura uniformă de 5 °C. Doza are 12,5 cm înălțime și diametrul de 6 cm. Pentru a menține temperatura rece un timp mai îndelungat, doza se introduce într-o husă termoizolantă cu grosimea de 1 cm și conductivitatea termică  $\lambda_{iz}=0,15\,\text{W/mK}$ . Se presupune că suprafața superioară a dozei nu este acoperită. La interfața izolație termică - perete metalic apare o rezistență de contact cu valoarea  $R''_{t,c}=5\times10^{-4}\,\text{m}^2\text{K/W}$ . Coeficientul de transfer termic combinat convecție/radiație între doză și aerul înconjurător (aflat la 25 °C) este  $\alpha_s=10\,\text{W/m}^2\text{K}$ .

Să se determine timpul necesar ca temperatura lichidului din interiorul dozei să crească cu 10 °C.

## Problema P4.24

La ieșirea din turbina unei centrale termoelectrice, aburul saturat are presiunea de 0,06 bar și temperatura de 36 °C. Aburul trebuie condensat într-un condensator alimentat cu apă de răcire care curge prin țevi de cupru cu diametrul interior de 10 mm și grosimea peretelui de 2 mm. Temperatura medie a apei de răcire în condensator se presupune a fi de 20 °C. Coeficienții de transfer termic convectiv pe partea de abur și pe partea de apă de răcire au valorile  $\alpha_{\rm e}=8000~{\rm W/m^2 K}$ , respectiv  $\alpha_{\rm i}=200~{\rm W/m^2 K}$ .

În aceste condiții, ce lungime de țeavă este necesară pentru a condensa un debit de abur de 52 kg/h?

# Problema P4.25

În interiorul unui condensator, un debit de 45 kg/h abur saturat cu presiunea de 0,04 bar trebuie condensat. Apa de răcire cu o temperatură medie de 20 °C circulă prin țevi de cupru cu diametrul interior de 10 mm și grosimea peretelui de 2 mm. Pentru coeficienții de transfer termic convectiv pe partea de abur și pe partea de apă de răcire se consideră valorile  $\alpha_{\rm e}$  = 8000 W/m²K , respectiv  $\alpha_{\rm i}$  = 200 W/m²K . În interiorul țevilor s-a format un strat de depuneri de piatră cu grosimea de 0,015 mm și conductivitatea termică  $\lambda_{\rm d}$  = 0,865 W/mK .

Ce lungime de teavă e necesară pentru a condensa debitul de abur specificat?

Pentru depozitarea unei cantități de ulei ce trebuie menținut la o temperatură constantă de 400 K este utilizat un rezervor cilindric cu capetele de formă semisferică. Lungimea părții cilindrice și diametrul porțiunii semisferice au valorile L = 1,5 m și d<sub>i</sub> = 0,8 m. Materialul rezervorului este tablă din oțel inoxidabil cu grosimea de 10 mm. Rezervorul este plasat în aer ambiant cu temperatura de 25 °C, iar coeficienții de transfer termic convectiv la interior și la exterior sunt  $\alpha_{\rm i}$  = 100 W/m²K și  $\alpha_{\rm p}$  = 8 W/m²K .

Determinați puterea electrică a încălzitorului imersat în ulei pentru a menține constantă temperatura lichidului.

## Problema P4.27

Într-un rezervor de formă sferică, cu diametrul exterior de 600 mm și grosimea peretelui de 5 mm este depozitat oxigen lichid cu temperatura de fierbere de -183 °C, căldura latentă de vaporizare de 213 kJ/kg și densitatea de 1140 kg/m³. Rezervorul este confecționat din oțel inoxidabil și este amplasat într-o incintă cu temperatura aerului și a suprafetelor delimitatoare de 20 °C.

- a) Care sunt pierderile de oxigen în mediul ambiant (prin supapele de siguranță, ca urmare a vaporizării parțiale a oxigenului lichid), dacă emisivitatea suprafeței exterioare a rezervorului este  $\epsilon$  = 0,17 și coeficientul de transfer termic convectiv are valoarea  $\alpha_{\rm e}$  = 10 W/m²K?
- b) Pentru limitarea pierderilor de oxigen la 1,2 kg/zi, se adaugă un strat de izolație termică ( $\lambda_{iz}$  = 0,0017 W/mK) pe suprafața exterioară a rezervorului. Care trebuie să fie grosimea izolației?

#### Problema P4.28

O probă de cercetare marină este alcătuită din două straturi sferice în contact perfect. Stratul interior de oțel normal are raza interioară de 25 cm și grosimea 25 mm. Stratul extern este din oțel inox cu grosimea de 25 mm. Echipamentul electronic al probei generează un flux termic de 1000 W/m² (raportat la suprafața interioară).

Dacă la suprafața exterioară apa de mare asigură o temperatură de 5 °C, care este temperatura suprafeței interioare a probei? Este mai mică de 50 °C?

Un rezervor sferic a cărui geometrie este caracterizată de razele  $r_i$  (raza interioară) și  $r_e$  (raza exterioară) este plin cu o substanță în interiorul căreia au loc reacții chimice exoterme. Suprafața exterioară a rezervorului este pusă în contact cu un fluid cu temperatura  $T_{\infty}$ , înregistrându-se coeficientul de transfer termic convectiv  $\alpha.$  Conductivitatea termică a materialului din acre este confecționat rezervorul este  $\lambda$ , iar fluxul termic volumetric degajat în urma reacțiilor chimice este  $\dot{Q}^{\prime\prime\prime}$ .

Deduceți expresia de calcul a distribuției de temperatură pe grosimea peretelui.

## Problema P4.30

Un rezervor sferic cu diametrul de 3 m este plin azot lichid la presiunea de 1 atm și temperatura de 196 °C. Temperatura aerului exterior este de 18 °C, iar coeficientul de transfer termic combinat convecție/radiație are valoarea  $\alpha_{\rm e}$  = 30 W/m²K .

Să se determine debitul masic de azot eliminat la nivelul supapelor de siguranță datorită aportului de căldură din exterior prin peretele rezervorului. Se vor considera următoarele situații:

- a) rezervor neizolat;
- b) rezervor izolat cu un saltele de vată de sticlă cu grosimea de 5 cm și conductivitatea termica  $\lambda_{i,}$  = 0,038 W/mK .

#### Problema P4.31

Un rezervor sferic cu diametrul interior de 2,5 m conține GPL (gaz petrolier lichefiat) la temperatura de -55 °C. Peretele sferic are o grosime de 5 mm și este realizat din oțel cu conductibilitatea termică  $\lambda_p$  = 12,6 W/mK . Pentru a reduce aportul de căldură din exterior, rezervorul este acoperit cu un start de izolație termică cu grosimea  $\delta_{iz}$  = 100 mm și conductivitatea termică  $\lambda_{iz}$  = 0,026 W/mK . Temperatura mediului ambiant este  $T_{\infty}$  = 23 °C , iar coeficientul de transfer termic convectiv pe suprafața exterioară are valoarea  $\alpha_e$  = 15 W/m²K .

Dacă izolația termică este permeabilă la umiditatea din aer, există posibilitatea apariției gheții în interiorul izolației? Ce soluții sugerați pentru a evita această situație?

Pentru stocarea unei cantități de azot lichid cu temperatura de -196 °C este folosit un rezervor metalic de formă sferică, confecționat dintr-un material cu conductivitatea termică  $\lambda_p$  = 40 W/mK . Rezervorul are un diametru interior de 0,7 m și o grosime a peretelui sferic de 5 mm. Pe suprafața exterioară este aplicat un strat de izolație termică de 20 mm grosime și conductivitate termică  $\lambda_{iz}$  = 0,0017 W/mK . Aerul ambiant are temperatura de 25 °C, iar coeficientul de transfer termic corespunzător are valoarea  $\alpha_e$  = 15 W/m²K . Căldura latentă de vaporizare și densitatea azotului lichid la presiune de 1 atm sunt  $h_{ig}$  = 198 kJ/Kg , respectiv  $\rho$  = 810 kg/m³.

- a) Ce valoare are fluxul termic transferat prin peretele rezervorului?
- b) Care este debitul de vapori evacuat din interiorul rezervorului (la supapele de siguranță, ca urmare a vaporizării azotului lichid).
- c) Ce grosime trebuie să aibă izolația pentru reducerea pierderilor la 9 l/zi?

#### Problema P4.33

Un cip de siliciu foarte subțire ce disipă un flux termic unitar de  $25 \cdot 10^3 \, \text{W/m}^2$  este lipit de o placă suport cu grosimea de 5 mm și conductivitatea termică de  $10 \, \text{W/mK}$  Cipul este răcit direct cu un lichid dielectric cu temperatura de  $25 \, ^{\circ}\text{C}$ , iar coeficientul de transfer termic convectiv pe suprafața de contact cip-lichid are valoarea de  $1000 \, \text{W/m}^2$ . Rezistența termică de contact între cip și placă este de  $0.9 \times 10^{-4} \, \text{m}^2\text{K/W}$ . Suprafața liberă a plăcii este răcită cu aer cu temperatura de  $25 \, ^{\circ}\text{C}$ , iar coeficientul de transfer termic convectiv corespunzător este de  $60 \, \text{W/m}^2\text{K}$ .

- a) Reprezentați circuitul termic echivalent pentru ansamblu cip placă.
- b) Care este temperatura cipului în condițiile precizate în enunțul problemei?
- c) Care este fluxul unitar maxim ce poate fi disipat de cip pentru a nu depăşi temperatura de 80°C?
- d) Dacă lichidul dielectric este înlocuit cu aer, coeficientul de transfer termic convectiv scade la 120 W/m<sup>2</sup>K. Care este fluxul termic unitar maxim ce se poate disipa acum, fără a depăși temperatura maximă admisă de 80°C?

O cameră frigorifică de formă cubică cu latura de 3,5 m are peretele realizat din următoarele straturi succesive: un strat exterior cu grosimea de 1 mm din tablă de oțel, un strat intermediar izolator din spumă poliuretanică cu grosimea de 100 mm și un strat interior din tablă de aluminiu cu grosimea de 1 mm. La interfața izolație-tablă apar rezistențe termice de contact cu valoarea  $R_{\rm t,c}''=5\times10^{-4}~{\rm m}^2{\rm K/W}$ . Coeficienții de transfer termic convectiv pe suprafețele delimitatoare ale peretelui au valorile  $\alpha_{\rm i}=30~{\rm W/m}^2{\rm K}$ , respectiv  $\alpha_{\rm e}=8~{\rm W/m}^2{\rm K}$ .

În condiții staționare de funcționare, caracterizate de temperatura interioară  $T_{\infty,i}$  = -17 °C, temperatura exterioară  $T_{\infty,e}$  = 25 °C, să se determine sarcina de răcire a agregatului frigorific și reprezentați distribuția de temperatură pe grosimea peretelui.

### Problema P4.35

O placă de cupru cu grosimea de 2 mm este presată între alte două plăci cu grosimea de 5 mm și conductivitate termică  $\lambda = 0.3 \, \text{W/mK}$ . Pe ambele fețe ale plăcii de Cu apar rezistențe de contact de valoare  $R_{t,c}'' = 1.6 \times 10^{-4} \, \text{m}^2 \text{K/W}$ .

Să se determine eroarea ce ar apărea în determinarea rezistenței totale a acestei structuri, dacă rezistența de contact ar fi neglijată.

### Problema P4.36

O bandă din aluminiu foarte subțire este înfășurată pe un tub cilindric a cărui suprafață interioară este menținută la temperatura de 10 °C. Peretele cilindric are raza interioară de 10 mm și raza exterioară de 13 mm. Rezistența termică de contact între banda de aluminiu și tub este  $R'_{t,c} = 0,01$  mK/W . În exteriorul tubului circulă un fluid cu temperatura de -5 °C, iar coeficientul de transfer termic convectiv este  $\alpha_e = 100$  W/m²K

- a) Ce flux termic trebuie să disipeze folia atunci când este parcursă de curent electric pentru a se menține la temperatura de 40°C.
- b) Ce temperatură se înregistrează pe suprafața interioară a tubului?

Un conductor electric cu diametrul de 5 mm și rezistența electrică de  $6\times10^{-4}~\Omega/m$  este parcurs de un curent de 500 A. Aerul și suprafețele delimitatoare din jurul conductorului au temperatura de 25 °C.

Suprafața conductorului are emisivitatea  $\epsilon$  = 0,24 și coeficientul de transfer termic convectiv  $\alpha$  = 20 W/m²K .

- a) Conductorul fiind neizolat, care este temperatura pe suprafața exterioară?
- b) Dacă pe conductor este aplicată o izolație electrică cu grosimea de 2 mm și conductivitate termică 0,3 W/mK, care sunt temperaturile extreme ale stratului izolator?

Se consideră că izolația are emisivitatea  $\epsilon$  = 0,8, coeficientul de transfer termic convectiv este cel din enunțul problemei, iar la interfața conductorizolație intervine rezistența termică de contact  $R_{t,c}'' = 2,5 \times 10^{-4} \, m^2 K/W$ .

#### Problema P4.38

Un reactor chimic de formă sferică, cu diametrul interior de 0,9 m și grosimea peretelui de 10 mm este confecționat din oțel inox. Reactorul este amplasat într-o incintă cu temperatura de 20 °C, iar coeficientul de transfer termic convectiv pe suprafața exterioară are valoarea  $\alpha$  = 10 W/m²K .

- a) Datorită căldurii generate în timpul reacțiilor chimice, suprafața interioară a peretelui sferic se menține la temperatura constantă de 70 °C. În aceste condiții, care sunt pierderile de căldură către mediul ambiant?
- b) Pe suprafața exterioară este aplicat un strat de izolație termică din vată de sticlă cu grosimea de 20 mm și conductivitatea termică  $\lambda_{iz}=0,038~\text{W/mK}$ . Astfel, la interfața izolație-perete metalic apare rezistența termică de contact  $R''_{t,c}=10^{-3}~\text{m}^2\text{K/W}$ . Dacă fluxul termic generat în interiorul reactorului rămâne neschimbat, care este temperatura suprafeței interioare?

Un conductor electric din Cu având diametrul de 3 mm și rezistivitatea la 0 °C de valoare  $\rho_0$  = 1,68 × 10  $^8$   $\Omega m$  este acoperit cu un strat de izolație electrică cu grosimea  $\delta_{iz}$  = 1 mm și conductivitatea termică  $\lambda_{iz}$  = 0,24 W/mK . Rezistența termică de contact la interfața conductor-izolație este  $R_{t,c}''=3\times 10^{-3}~m^2 \text{K/W}$  . Temperatura mediului ambiant este  $T_{\infty}$  = 20 °C , iar coeficientul de transfer termic convectiv la suprafața izolației are valoarea  $\alpha$  = 15 W/m²K . Dependența rezistivității electrice a materialului conductorului de temperatură se exprimă prin relația  $\rho$  =  $\rho_0 \left(1+\beta T\right)$  , unde coeficientul  $\beta$  = 0,0043 °C  $^{-1}$  iar temperatura este exprimată în °C.

Care este valoarea maximă a intensității curentului electric care poate trece prin acest conductor, dacă temperatura maximă admisibilă pentru izolație este de 75 °C?

#### Problema P4.40

Un conductor electric cu lungimea de 10 m și diametrul de 2 mm este acoperit cu o izolație din PVC cu grosimea de 1 mm și conductivitate termică  $\lambda$  = 0,15 W/mK . La interfața izolație-conductor rezistența termică de contact este  $R_{t,c}'' = 3 \times 10^{-4} \text{ m}^2\text{K/W}$  . Măsurătorile au indicat un curent de 10 A prin conductor și o tensiune de 8 V la capetele acestuia. Condițiile exterioare sunt precizate prin temperatura mediului ambiant  $T_{\infty}$  = 27 °C și coeficientul de transfer termic convectiv  $\alpha$  = 15 W/m²K .

Să se determine temperatura la interfața conductor - izolație în condiții de lucru staționare. Ce efect are dublarea grosimii izolației asupra acestei temperaturi? Să se reprezinte circuitul termic echivalent.

### Problema P4.41

O bilă cu diametrul de 10 mm și temperatura de 60 °C este acoperită cu un strat de izolație din PVC cu grosimea de 2 mm și conductivitatea termică  $\lambda$  = 0,13 W/mK. Bila este plasată într-un mediu cu temperatura de 20 °C, iar coeficientul de transfer termic combinat convecție/radiație are valoarea  $\alpha$  = 20 W/m²K.

Să se clarifice dacă izolația ajută sau împiedică transferul de căldură de la bilă către exterior.

Determinați raza critică pentru un material izolator cu conductivitatea termică  $\lambda$  = 0,05 W/mK ce este dispus pe exteriorul unei țevi de diametru  $d_e$  = 50 mm. Mediul ambiant are temperatura  $T_{\infty}$  = 27 °C , iar coeficientul de transfer termic convectiv are valoarea  $\alpha$  = 10 W/m²K .

Să se determine fluxul termic transferat către exterior dacă temperatura pe suprafața exterioară a țevii este de 100 °C. Calculul se va efectua în două variante: țeavă neizolată și țeavă izolată, grosimea izolației rezultând de raza critică a izolației.

### Problema P4.43

Determinați relația de calcul a razei critice a izolației în cazul unui rezervor sferic.

Efectuați calculul numeric pentru următoarele condiții: diametrul exterior al rezervorului  $d_e$  = 1 m; temperatura pe suprafața exterioară a rezervorului  $T_p$  = 10 °C; conductivitatea termică a izolației  $\lambda$  = 0,1 W/mK ; temperatura aerului exterior  $T_{\infty}$  = 30 °C ; coeficientul de transfer termic convectiv  $\alpha_e$  = 30 W/m²K .

Ce grosime trebuie să aibă izolația pentru a reduce aporturile de căldură cu 75 % fată de cazul rezervorului neizolat.

### Problema P4.44

Să se compare distribuția de temperatură de-a lungul unei tije cilindrice cu diametrul de 2 cm și lungimea de 15 cm ce are unul din capete atașat de o placă suport cu temperatura de 100°C.

Temperatura mediului ambiant la care este expusă tija este de 25 °C, iar coeficientul de transfer termic convectiv are valoarea  $\alpha$  = 25 W/m<sup>2</sup>K.

De asemenea, să se determine fluxul termic transferat între tijă și mediul ambiant.

Se vor considera trei materiale pentru realizarea tijei: cupru ( $\lambda_{cu}$  = 293 W/mK) oțel inox ( $\lambda_{inox}$  = 15,2 W/mK) și sticlă ( $\lambda_{sticla}$  = 1,4 W/mK).

O tijă din oțel inox cu lungimea de 10 cm, are secțiunea transversală un pătrat cu latura de 1 cm. Baza tijei are temperatura de 350°C. Tija este expusă unui mediu cu temperatura de 45 °C, iar coeficientul de transfer termic convectiv corespunzător are valoarea  $\alpha$  = 40 W/m²K.

Să se determine fluxul termic transferat către exterior prin tijă (considerată o aripioară) și eficiența aripioarei.

### Problema P4.46

O aripioară dreaptă din aluminiu cu profil rectangular de 3 mm grosime și 7 cm lățime este dispusă de-a lungul unui perete plan a cărui temperatură pe suprafața exterioară este de 250 °C. Condițiile exterioare sunt caracterizate de temperatura  $T_{\infty} = 40$  °C și coeficientul de transfer termic convectiv  $\alpha = 15$  W/m²K.

Să se determine fluxul termic transferat către exterior prin aripioară.

### Problema P4.47

O aripioară dreaptă din oțel cu profil rectangular, cu o grosime de 2 cm și o lungime de 17 cm este fixată pe un perete a cărui suprafață se menține la 300°C. Temperatura mediului ambiant este de  $T_{\infty}$  = 27 °C , iar coeficientul de transfer termic convectiv are valoarea  $\alpha$  = 23 W/m²K.

Să se determine fluxul termic transferat și eficiența aripioarei.

### Problema P4.48

O aripioară inelară cu profil rectangular din oțel inoxidabil (AISI 1010) cu o grosime de 2 mm și o lungime de 7 cm este fixată pe o țeavă a cărei diametru exterior este de 2 cm. Temperatura bazei aripioarei, respectiv temperatura pe suprafața exterioară a țevii este de 150 °C. Aripioara este expusă mediului ambiant ce are o temperatură de 10 °C, coeficientul de transfer termic convectiv fiind de 23 W/m²K.

Să se determine pierderea de căldură prin suprafața aripioarei.

Un element de încălzire constă din țevi cu diametrul exterior de 2,5 cm prin care circulă abur. Temperatura pe suprafața exterioară a țevilor este de 120 °C. Pentru a mări suprafața de transfer de căldură, pe țeavă sunt atașate aripioare inelare din aliaj de aluminiu ( $\lambda_{AI} = 186 \text{ W/mK}$ ) cu diametrul exterior de 5 cm și grosime de 1,5 mm. Distanța dintre aripioare fiind de 2,5 mm, pe fiecare metru liniar de țeavă pot fi atașate 250 de aripioare. Temperatura aerului exterior este de 25 °C, iar coeficientul de transfer termic combinat convecție/radiație are valoarea  $\alpha = 60 \text{ W/m}^2\text{K}$ .

Să se determine ce efect au aripioarele asupra fluxului termic transferat către exterior.

### Problema P4.50

Un motor de motocicletă este realizat dintr-un aliaj de aluminiu (2024-T6) și are înălțimea de 15 cm și diametrul exterior de 5 cm. În condiții normale de funcționare, pe suprafața exterioară a cilindrului motorului se înregistrează o temperatură de 500 K. Condițiile exterioare sunt caracterizate de temperatura uniformă  $T_{\infty} = 300 \, K$  și coeficientul de transfer termic convectiv  $\alpha = 40 \, \text{W/m}^2 \text{K}$ . Pentru a mări fluxul termic transferat către exterior, pe suprafața exterioară a cilindrului sunt dispuse 6 aripioare inelare cu grosimea de 5 mm și lungimea de 20 mm, dispuse la distanță egală.

Ce efect asupra fluxului termic transferat au aceste aripioare?

### Problema P4.51

Pentru transportul aburului sunt utilizate țevi din oțel ce sunt fixate prin intermediul unor flanșe cu grosimea de 15 mm. Diametrul interior al țevii este 159 mm, grosimea țevii este de 5 mm, iar diametrul exterior al flanșei este de 250 mm. În condiții normale de funcționare, suprafața interioară a țevii este menținută la 250 °C, iar temperatura mediului ambiant are valoarea de 20 °C.

Dacă coeficientul de transfer termic convectiv este  $\alpha_e$  = 15 W/m²K, care este pierderea de căldură către exterior la nivelul flanșei? Conductivitatea termică a oțelului (materialul din care sunt confecționate țevile și flanșa) este de 40 W/mK.

### Problema P4.52

Două țevi din oțel ( $\lambda_{otel}$  = 52 W/mK) cu lungimea de 4 m, grosimea peretelui metalic de 3,6 mm și diametrul exterior de 108 mm sunt conectate prin intermediul unor flanșe din același material cu grosimea de 10 mm și diametrul exterior de 200 mm. Aburul circulă prin țevi la o temperatură medie de 200 °C, coeficientul de transfer termic convectiv pe suprafața interioară fiind  $\alpha$  = 200 W/m²K. Suprafața exterioară a țevii este expusă mediului ambiant cu o temperatură de 15 °C, coeficientul de transfer termic convectiv fiind  $\alpha$  = 23 W/m²K.

- a) Ignorând prezența flanșei, să se determine temperatura pe suprafața exterioară a tevii.
- b) Considerând că la baza flanșei, considerată o aripioară, temperatura are valoarea determinată la punctul (a), să se determine eficiența flanșei și fluxul termic transferat către exterior prin intermediul acesteia.

#### Problema P4.53

O placă cu circuite imprimate de grosime 3 mm, lățime de 12 cm și lungime de 18 cm, conține 70 de componente electronice ce disipă fiecare 0,045 W. Placa este realizată dintr-un strat de material izolator pe care sunt dispuse straturi foarte subțiri de cupru, conductivitatea echivalentă a plăcii fiind  $\lambda_p = 20 \, \text{W/mK}$ . Toată căldura generată de componentele electronice se transferă prin placă și de pe suprafața inferioară a plăcii este disipată în mediul ambiant cu temperatura de 45 °C. Coeficientul de transfer termic convectiv are valoarea  $\alpha = 45 \, \text{W/m}^2 \text{K}$ .

- a) Să se determine temperatura pe cele două fețe ale plăcii.
- b) Pe fața inferioară a plăcii este atașat un radiator realizat dintr-o placă de aluminiu ( $\lambda_{AI} = 237 \, \text{W/mK}$ ) cu grosimea de 2 mm (lățimea și lungimea fiind identice cu cele ale plăcii cu circuite imprimate) pe care sunt fixate 864 de aripioare aciculare din aluminiu cu lungimea de 20 mm și diametrul de 0,25 mm. Fixarea aripioarelor se face cu rășină epoxidică ( $\lambda_{AI} = 1.8 \, \text{W/mK}$ ), stratul de adeziv având o grosime de 2 mm. Să se determine temperaturile pe cele două fețe ale plăcii în acest caz.

### Problema P4.54

Pe o țeavă din aluminiu cu diametrul exterior de 30 mm sunt atașate aripioare din același material cu grosimea de 1,5 mm și lungimea de 15 mm. Lipirea aripioarelor de țeavă determină apariția unei rezistențe termice de contact de valoare  $R_{t,c}^{\prime\prime}=3\times10^{-4}\,\text{m}^2\text{K/W}$ . Temperatura exterioară a țevii este de 100 °C. Mediul ambiant are temperatura  $T_{\infty}=27\,^{\circ}\text{C}$ , iar coeficientul de transfer termic convectiv pe suprafața exterioară a țevii are valoarea  $\alpha_e=70\,\text{W/m}^2\text{K}$ .

Să se determine fluxul termic transferat corespunzător unei singure aripioare. Ce valoare ar avea fluxul termic dacă rezistența termică de contact ar fi eliminată?

### Problema P4.55

O placă fierbinte cu temperatura de 110 °C trebuie răcită. Pentru aceasta, pe suprafața plăcii sunt atașate tije din aluminiu ( $\lambda_{AI}$  = 237 W/mK) cu lungimea de 35 mm și diametrul de 3 mm, dispuse la distanța de 6 mm între ele (măsurată între axele centrale). Temperatura mediului ambiant este de 30 °C și coeficientul de transfer termic convectiv are valoarea  $\alpha$  = 50 W/m²K.

Să se determine fluxul termic transferat către mediul ambiant dacă placa are dimensiunile  $1,2m \times 1,2m$ .

Să se determine eficiența globală a aripioarelor.

# 5 CONDUCȚIA TERMICĂ - BIDIMENSIONALĂ

situație mai realistă consideră cazurile pentru care conducția termică apare în mai multe direcții, deci este necesară determinarea distribuției temperaturii într-un domeniu 2-D sau 3-D. Sunt necesare ecuații pentru toate direcțiile considerate, împreună cu condițiile la limită corespunzătoare. Astfel de probleme pot fi rezolvate analitic pentru cazurile simple, prin metode grafice pentru a obține rezultate rapide, sau prin metode numerice, care de regulă necesită programe specializate.

## 5.1 Relații de calcul importante

Ecuația diferențială în două coordonate carteziene, proprietăți fizice constante, fără generare și condiții staționare:

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0 \tag{5.1}$$

#### Soluția analitică

- separarea variabilelor (cazuri simple – soluția pentru condiții de speța I pe toate laturile domeniului analizat):

$$\theta_{(x,y)} = \sum_{n=1}^{\infty} \frac{2 \cdot \left[1 - \left(-1\right)^{n}\right]}{n\pi \cdot \sinh(n\pi H/L)} \cdot \sin\frac{n\pi x}{L} \cdot \sinh\frac{n\pi y}{L}$$
(5.2)

### Soluția grafică

- se pretează numai pentru cazuri simple condiții de speța I și speța a II-a (pereți izolați termic) pe toate laturile domeniului analizat:
  - 1. identificarea tuturor liniilor de simetrie (adiabate).
  - 2. identificarea liniilor de temperatură constantă la limitele sistemului analizat.
  - 3. trasarea liniilor izoterme, la intervalele egale, perpendinculare pe adiabate.

4. trasarea liniilor de flux pentru a forma pătratele curbilinii (liniile de flux termic să intersecteze izotermele la unghiuri drepte, și toate laturile unui pătrat astfel format ar trebui să fie de aproximativ aceeași lungime,  $\Delta x \approx \Delta y$ .

Factorul de formă:

$$S = \frac{M \cdot Z}{N} \tag{5.3}$$

Fluxul termic transferat:

$$\dot{Q} \approx \lambda \cdot S \cdot \Delta T_{1-2}$$
 (5.4)

Valorile factorului de formă S, pentru configurații uzuale:

| Configurația                                        | Schematizare                                 | Relaţii de calcul |
|-----------------------------------------------------|----------------------------------------------|-------------------|
| Perete plan mare                                    | T <sub>1</sub> T <sub>2</sub> A              | $S = \frac{A}{L}$ |
| Muchia comună a doi<br>pereţi de grosime egală      | T <sub>2</sub> T <sub>1</sub> T <sub>2</sub> | S=0.54w           |
| Colţul comun pentru trei<br>pereţi de grosime egală |                                              | S=0.15L           |

| Configurația                                                                                                                                                  | Schematizare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Relaţii de calcul                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Cilindru izoterm de<br>lungime <b>L</b> şi diametru <b>D</b><br>îngropat într-un mediu<br>semi-infinit<br>( <b>L</b> >> <b>D</b> şi <b>z</b> > 1.5 <b>D</b> ) | $ \begin{array}{c c}  & & & \\ \hline z & & & \\ \hline & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $S = \frac{2\pi \cdot L}{\ln(4z/D)}$                                                       |
| Cilindru izoterm de<br>ungime <b>L</b> şi diametru <b>D</b><br>Ingropat vertical într-un<br>mediu semi-infinit<br>( <b>L</b> >> <b>D</b> )                    | T <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $S = \frac{2\pi \cdot L}{\ln(4L/D)}$                                                       |
| Doi cilindri izotermi, plasaţi<br>paralel într-un mediu semi-<br>nfinit<br>L>> D <sub>1</sub> , D <sub>2</sub> , z )                                          | $ \begin{array}{c c}  & T_1 \\ \hline  & D_1 \downarrow \\ \hline  & T_2 \\ \hline  & D_2 \downarrow \\ \hline  & L \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $S = \frac{2\pi \cdot L}{\cosh^{-1} \left( \frac{4z^2 - D_1^2 - D_2^2}{2D_1 D_2} \right)}$ |
| Gir de cilindri izotermi paraleli, plasaţi la intervale egale într-un mediu semi- nfinit ( L >> D, z şi w > 1.5D ) eper cilindru-                             | Z T <sub>2</sub> T <sub>2</sub> W W W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $S = \frac{2\pi \cdot L}{\ln\left(\frac{2w}{\pi D} \cdot \sinh\frac{2\pi z}{w}\right)}$    |
| Cilindru izoterm de<br>ungime <b>L</b> şi diametru <b>D</b><br>plasat în planul median al<br>unui perete infinit<br>( <b>z</b> > 0.5 <b>D</b> )               | $ \begin{array}{c c}  & & & & & & \\ \hline z & & & & & & \\ \hline z & & & & & & \\ \hline z & & & & & & \\ \hline  & & & & \\ \hline  & & & & \\ \hline  & & & & \\ \hline  & & $ | $S = \frac{2\pi \cdot L}{\ln\left(\frac{8z}{\pi D}\right)}$                                |
| Cilindru izoterm de<br>ungime <b>L</b> şi diametru <b>D</b><br>olasat în centrul unei bare<br>oătrate de aceeași lungime                                      | $T_2$ $T_1$ $D$ $W$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $S = \frac{2\pi \cdot L}{\ln(1.08w/D)}$                                                    |

| Configurația                                                                                             | Schematizare                                           | Relații de calcul                       |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------|
| Disc îngropat paralel cu<br>suprafaţa într-un mediu<br>semi-infinit<br>( z >> D )                        | $z$ $T_2$ $T_1$ $D$                                    | S=4D<br>Pentru z = 0, S=2D              |
| Sferă izotermă de<br>diametru <b>D</b> îngropată într-<br>un mediu semi-infinit                          | z T <sub>2</sub>                                       | $S = \frac{2\pi \cdot D}{1 - 0.25 D/z}$ |
| Sferă izotermă de<br>diametru <b>D</b> îngropată într-<br>un mediu semi-infinit, cu<br>suprafaţa izolată | Izolaţie  T <sub>2</sub> (material)  Z  T <sub>1</sub> | $S = \frac{2\pi \cdot D}{1 + 0.25 D/z}$ |

### Soluţia **numerică**

- fie pentru exemple simple (calcule/programe scrise de utilizator), fie pentru geometrii complexe (necesită software specializate)
  - 1. discretizarea domeniului.
  - 2. scrierea aproximaţiilor cu diferenţe finite.
  - 3. rezolvarea ecuației cu diferențe finite pentru nodurile rețelei.

Soluţia cu diferenţe finite pentru noduri interioare şi  $\Delta x = \Delta y$ :

$$T_{m+1,n} + T_{m-1,n} + T_{m,n+1} + T_{m,n+1} - 4T_{m,n} = 0 (5.5)$$

Soluția metodei bilanțului energetic în noduri pe contur (condiție convectivă) și  $\Delta x = \Delta y$  :

$$2 \cdot T_{m-1,n} + T_{m,n+1} + T_{m,n-1} - 4 \cdot T_{m,n} + \frac{2\alpha \cdot \Delta y}{\lambda} (T_{\infty} - T_{m,n}) = 0$$
 (5.6)

## 5.2 Probleme rezolvate

## Problema rezolvată R5.1

O bară foarte lungă (în direcția z), cu secțiunea rectangulară, are trei laturi menținute la o temperatură constantă; cea de a patra latură prezintă o distribuție sinusoidală a temperaturii, cu valoarea maximă  $\theta_m$ :

$$\theta = \theta_{m} \cdot \sin \frac{\pi x}{L}$$

Să se determine distribuţia temperaturii în secţiunea analizată.

## <u>Soluţie</u>

### Se ştie:

- bară lungă in direcţia z, sectiune rectangulară (L x H)
- trei laturi sunt la temperatură constantă, a patra are distribuţie sinusoidală a temperaturii

#### Se cere:

- distribuţia temperaturii în secţiunea analizată

### Schematizare:



#### Ipoteze:

- regim staţionar
- efectele conductive neglijabile de-a lungul celei de-a treia dimensiuni
- nu sunt surse interne de energie
- valoare constantă pentru conductivitatea termică

### Proprietăți:

\_

#### Analiză:

Cu ipotezele de mai sus și folosind ecuația (5.1) și considerând  $\theta$  ca fiind diferența de temperatură față de 0 °C, se poate obține:

$$\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2} = 0$$

cu condițiile la limită:

$$\theta_{(0,y)}=0 \qquad \quad \theta_{(x,0)}=0$$

$$\theta_{(L,y)} = 0$$
  $\theta_{(x,H)} = \theta_{m} \cdot \sin \frac{\pi x}{L}$ 

Metoda separării variabilelor presupune că soluția căutată este de forma:

$$\theta_{(x,y)} = X_{(x)} \cdot Y_{(y)}$$

adică un produs de două funcții necunoscute, cu X(x) fiind o constantă sau o funcție numai de x, iar Y(y) fiind cel mult o funcție numai de y.

Derivând ecuația de două ori pentru fiecare direcție, înlocuind în ecuația diferențială și împărțind prin  $\theta$  se obține:

$$-\frac{1}{X} \cdot \frac{\partial^2 X}{\partial x^2} = \frac{1}{Y} \cdot \frac{\partial^2 Y}{\partial y^2}$$

Matematic, galitatea poate exista numai dacă ambii membri ai ecuației sunt egali cu o constantă.

Se consideră această constantă ca fiind  $k^2$ , numită și constanta de separare.

Se obțin astfel două ecuații diferențiale ordinare, cu coeficienți constanți:

$$\frac{\partial^2 X}{\partial x^2} + k^2 X = 0$$

$$\frac{\partial^2 Y}{\partial v^2} - k^2 Y = 0$$

cu soluțiile generale:

$$X = C_1 \cdot \cos(kx) + C_2 \cdot \sin(kx)$$

$$Y = C_3 \cdot e^{-ky} + C_4 \cdot e^{ky}$$

Forma generală a soluției bidimensionale devine:

$$\theta_{(x,y)} = \left[ C_1 \cdot \cos(kx) + C_2 \cdot \sin(kx) \right] \cdot \left[ C_3 \cdot e^{-ky} + C_4 \cdot e^{ky} \right]$$

Aplicând primele trei condiții la limită se obține:

$$x = 0$$
:  $C_1 \cdot \left[ C_3 \cdot e^{-ky} + C_4 \cdot e^{ky} \right] = 0$ , adică  $C_1 = 0$ 

$$y = 0$$
:  $C_2 \cdot \sin(kx) \cdot [C_3 + C_4] = 0$ , adică  $C_3 = -C_4$ 

$$x = L$$
:  $C_2C_3 \cdot \sin(kL) \cdot \left[e^{-ky} - e^{ky}\right] = -2C_2C_3 \cdot \sin(kL) \cdot \sinh(ky) = 0$ 

Pentru ultima ecuație trebuie făcută observația că funcția hiperbolică nu poate fi zero, iar dacă una din cele două constante ar fi zero, atunci s-ar obține soluția trivială. Astfel, trebuie ca **sin (kL) = 0**, care are rădăcinile  $\mathbf{k}_n = \mathbf{n}\pi/\mathbf{L}$ , pentru  $\mathbf{n} = 0, 1, 2, ...$ 

Aceste valori se numesc valori caracteristice sau valori proprii ale problemei. Există câte o soluție distinctă pentru fiecare valoare proprie, fiecare având un produs al constantelor ( $C_2C_3$ ) caracteristic. Dacă se notează acest produs cu  $A_n$  pentru a n-a soluție, se obține:

$$\theta_{n}(x,y) = A_{n} \cdot \sin \frac{n\pi x}{1} \cdot \sinh \frac{n\pi y}{1}$$
 pentru **n** = 0, 1, 2, ...

Cum ecuația diferențială este liniară, soluția generală este suma soluțiilor individuale din serie, cu excepția valorii pentru  $\mathbf{n} = \mathbf{0}$ , unde  $\sinh(\mathbf{0}) = \mathbf{0}$ 

$$\theta_{(x,y)} = \sum_{n=1}^{\infty} A_n \cdot \sin \frac{n\pi x}{L} \cdot \sinh \frac{n\pi y}{L}$$

Din ultima condiție la limită, rezultă:

$$\theta_{(x,H)} = \theta_{m} \sin \frac{\pi x}{L} = \sum_{n=1}^{\infty} A_{n} \cdot \sin \frac{n\pi x}{L} \cdot \sinh \frac{n\pi H}{L}$$

Matematic, această egalitate este posibilă numai dacă toate constantele  $A_n = 0$ 

$$A_2 = A_3 = A_4 = ... = 0$$

şi:

$$A_1 = \frac{\theta_m}{\sinh \frac{\pi H}{I}}$$

Astfel, distribuția de temperatură va avea forma:

$$\theta_{(x,y)} = \theta_{m} \sin \frac{\pi x}{L} \cdot \frac{\sinh \frac{\pi y}{L}}{\sinh \frac{\pi H}{L}}$$

#### Concluzii/Comentarii:

Soluţia problemei apare mai facil decât în exemplul clasic în care  $\theta$  = 1 pe cea de a patra latură, deoarece se impune soluţia matematică limitativă care păstrează doar primul termen al seriei din cea de a patra condiţie la limită. Astfel, nu mai este necesară dezvoltarea în serii Fourier şi analiza acestora pentru determinarea formei distribuţiei de temperatură.

#### Problema rezolvată R5.2

Placa de beton de la intrarea într-un garaj are o lăţime de 4.2 m şi o grosime de 6 cm. În placa de beton sunt îngropate tuburi de cupru cu diametrul exterior de 2.8 cm prin care este pompată apă caldă pentru a încălzi placa de beton în lunile de iarnă. Astfel, zăpada şi gheaţa ce s-ar putea depune pe placa de beton se vor topi şi vor fi îndepărtate. Tuburile de cupru sunt plasate la intervale egale de 6 cm (măsuraţi între liniile mediane ale două tuburi alăturate) şi la 4 cm sub suprafaţa superioară a plăcii de beton. Apa caldă care este pompată în tuburi, asigură la suprafaţa exterioară a acestora o temperatură de 85 °C.

Dacă se consideră că temperatura mediului material de sub placa de beton se menţine constantă la 0 °C, iar suprafaţa superioară a plăcii de beton trebuie să aibă o temperatură de minim 0 °C, să se determine fluxul termic de la un singur tub pentru datele menţionate.

#### **Soluție**

### Se ştie:

- tuburi de cupru de dimensiuni și temperaturi exterioare cunoscute
- placă de beton de dimensiuni cunoscute, ce înglobează tuburile de cupru

#### Se cere:

- fluxul termic de la un tub de cupru, dacă temperaturile pe cele două fețe ale plăcii de beton sunt 0 °C

#### Schematizare:



#### Ipoteze:

- regim staţionar
- conducție termică bi-dimensională
- nu sunt surse interne de energie
- valoare constantă pentru conductivitatea termică

### Proprietăți:

- conductivitate termică beton:  $\lambda_{beton}$  = 1.4 W/mK

#### Analiză:

Din ipotezele enunțate, este evident că cea mai rapidă soluție este reprezentată de metoda grafică. Se vor urmări paşii enumeraţi în sub-capitolul 5.1:

- sunt identificate liniile de simetrie, ceea ce va delimita domeniul de interes; aceste linii vor fi tratate ca suprafețe adiabate (izolate termic);
- sunt identificate suprafețele izoterme la limitele domeniului analizat;
- sunt trasate izoterme perpendiculare pe adiabatele de la limitele domeniului;
- sunt trasate adiabate, formând pătrate (curbilinii), cu condiția de a fi pe cât posibil perpendiculare pe izotermele trasate anterior.

Ca urmare a procedurii de mai sus a rezultat următorul desen grafic:



Din reprezentarea grafică anterioară se observă că numărul total de canale de flux este  $\mathbf{M} = \mathbf{8}$ . Numărul de intervale de temperatură per canal de flux este  $\mathbf{N} = \mathbf{6}$ .

Considerând o lungime **Z = 1 m**, se obţine pentru factorul de formă:

$$S = \frac{M \cdot Z}{N} = \frac{8 \cdot 1}{6} = 1.33$$

Fluxul termic transferat pe unitatea de lungime pentru o jumătate de tub de cupru va fi:

$$\dot{Q}_{1/2} \approx \lambda \cdot S \cdot \Delta T_{1-2} = \lambda \cdot S \cdot (T_1 - T_2)$$

$$\dot{Q}_{1/2} = 1.4 \left[ \frac{W}{mK} \right] \cdot 1.33 [m] \cdot (85 - 0) [^{\circ}C] = 158.27 [W]$$

Ca urmare, fluxul termic pe unitatea de lungime (s-a presupus valoarea Z = 1) pentru un tub de cupru va fi:

$$\dot{Q} = 2 \cdot \dot{Q}_{1/2} = 2 \cdot 158.27 [W]$$

$$\dot{Q} = 316.54[W]$$

#### Concluzii/Comentarii:

Este important de remarcat faptul că această problemă este dependentă de temperatură, adică temperatura variază de-a lungul ţevilor de cupru, odată cu răcirea agentului cald circulat prin acestea. Astfel, calculul efectuat mai sus, per metru de lungime al conductei de cupru, este valabil numai pentru datele indicate în secţiunea respectivă a conductei. În aval, unde temperaturile peretelui tubului vor fi diferite, şi transferul de căldură va fi diferit. Cu toate acestea, factorul de formă este funcţie numai de geometria domeniulul analizat şi se poate aplica oriunde secţiunea transversală a domeniului este aceeaşi.

De asemenea, dacă s-ar fi încercat aproximarea cu unul dintre cazurile indicate în tabelul cu factorul de formă (chiar dacă ţevile de cupru nu sunt plasate în planul median al plăcii de beton), s-ar fi obţinut un factor de formă **S** = **4.83**, mult mai mare decât cel rezultat din metoda grafică.

### Problema rezolvată R5.3

În pardoseala de beton a unei camere de baie sunt îngropate țevile de apă caldă și apă rece pentru alimentarea instalațiilor sanitare. Se consideră că stratul de beton este destul de gros comparativ cu diametrul țevilor ( $D_1 = D_2 = 5$  cm). Țevile sunt dispuse paralel, la o distanță de 30 cm între ele. Temperaturile la suprafețele celor două țevi sunt 60 °C, respectiv 10 °C. Dacă lungimea țevilor se consideră 2.5 m, să se determine fluxul termic între cele două țevi.

### **Soluție**

### Se ştie:

- ţevi îngropate paralel în beton, dimensiuni geometrice cunoscute
- temperaturile la suprafețele celor două țevi sunt cunoscute

#### Se cere:

- fluxul termic între cele două ţevi, dacă printr-o ţeavă circulă apă caldă, iar prin cealaltă circulă apă rece.

#### Schematizare:



### Ipoteze:

- regim staţionar
- conducție termică bi-dimensională
- nu sunt surse interne de energie
- valoare constantă pentru conductivitatea termică

### Proprietăți:

- conductivitate termică beton:  $\lambda_{beton}$  = 1.4 W/mK

#### Analiză:

Din analiza datelor problemei, rezultă că acest caz face parte din cazurile uzuale prezentate în tabelul din subcapitolul 5.1, și anume doi cilindri izotermi, plasați paralel într-un mediu semi-infinit, ( $L >> D_1$ ,  $D_2$ , Z).

Valoarea factorului de formă, S, se determină cu relația:

$$S = \frac{2\pi \cdot L}{\cosh^{-1}\left(\frac{4z^2 - D_1^2 - D_2^2}{2D_1D_2}\right)}$$

unde z = 30 cm,  $D_1 = D_2 = 5$  cm, L = 2.5 m. Ca urmare,

$$S = \frac{2\pi \cdot 2.5m}{\cosh^{-1} \left( \frac{4 \cdot 0.3^2 m^2 - 0.05^2 m^2 - 0.05^2 m^2}{2 \cdot 0.05 m \cdot 0.05 m} \right)}$$

$$S = 3.17 \text{ m}$$

Utilizând ecuația (5.4), fluxul termic staționar între cele două țevi devine:

$$\dot{Q} \approx \lambda \cdot S \cdot \Delta T_{1-2}$$

$$\dot{Q}\approx 1.4\frac{W}{mK}\cdot 3.17m\cdot \left(60\text{-}10\right)^{\circ}C$$

$$\dot{Q} \approx 221.9W$$

#### Concluzii/Comentarii:

Acest flux termic reprezintă pierderi de căldură de la ţeava de apă caldă către ţeava de apă rece. Acesta poate fi redus prin mărirea distanţei între ţevi, **z** .

#### Problema rezolvată R5.4

Se consideră o porțiune dintr-o țeavă, de 30 m lungime și 5 cm diametru, prin care se transportă agent termic (apă caldă) cu temperatura de 80 °C, cu viteza de 1 m/s. Ţeava iese din peretele unei clădiri, are o porțiune orizontală de 2 m expusă la mediul exterior, apoi intră vertical în pământ până la o adâncime de 3 m, restul țevii fiind dispus orizontal până la intrarea în subsolul altei clădiri. Se consideră temperatura mediului ambiant de 10 °C, coeficientul convectiv de transfer de căldură către mediul ambiant de 25 W/m²K, conductivitatea solului în zona respectivă  $\lambda$  = 1.5 W/mK și că suprafața solului este acoperită de zăpadă la 0 °C.

- a) Să se determine fluxul termic pierdut de agentul termic
- b) Căderea de temperatură pe întreaga secțiune a țevii

### **Soluţie**

### Se ştie:

- ţeavă cu dimensiuni geometrice cunoscute transportă apă caldă
- caracteristicile solului și ale schimbului convectiv de căldură

#### Se cere:

- fluxul termic pierdut de la ţeavă
- căderea de temperatură la trecerea agentului termic prin sectiunea de ţeavă.

#### Schematizare:



#### Ipoteze:

- regim staţionar
- conducție termică bi-dimensională (prin sol)
- convecţie (prin aer)
- nu sunt surse interne de energie
- valoare constantă pentru conductivitatea termică
- temperatura suprafeței exterioare a țevii este aceeași cu cea a apei calde

### Proprietăți:

- conductivitatea termică a solului:  $\lambda_{sol}$  = 1.5 W/mK
- pentru apă:  $\rho = 1000 \text{ kg/m}^3$ ;  $c_p = 4180 \text{ J/kgK}$

#### Analiză:

a) Pentru porţiunea aeriană a ţevii, transferul de căldură către mediul ambiant se produce prin convecţie. Din legea lui Newton (ecuaţia 2.9) rezultă:

$$\dot{Q}'' = \alpha \cdot (T_s - T_{\infty})$$
 adică  $\dot{Q} = \alpha \cdot A \cdot (T_s - T_{\infty})$ 

în care **A** reprezintă aria suprafeței de schimb de căldură. În cazul unei țevi cu secțiune transversală circulară,

$$A = \pi DL = \pi \cdot 0.05 \, m \cdot 2 \, m$$

$$A = 0.314 \,\mathrm{m}^2$$

Deci fluxul termic transferat prin convecţie de la porţiunea aeriană a ţevii:

$$\dot{Q}_a = 25 \frac{W}{m^2 K} \cdot 0.314 \,\text{m}^2 \cdot (80 - 10) \,^{\circ}\text{C}$$

$$\dot{Q}_a = 549.5 \, W$$

Pentru porţiunea verticală a ţevii, se consideră că toată lungimea indicată este îngropată. Avem cazul unui cilindru izoterm de lungime  $\bf L$  şi diametru  $\bf D$  îngropat vertical într-un mediu semi-infinit (  $\bf L >> \bf D$  ).

Valoarea factorului de formă, S<sub>V</sub>, se determină cu relaţia:

$$S_v = \frac{2\pi \cdot L}{\ln(4L/D)} = \frac{2\pi \cdot 3m}{\ln(4 \cdot 3m/0.05m)}$$

$$S_v = 3.44 \text{ m}$$

Utilizând ecuația (5.4), fluxul termic staționar de la porțiunea verticală a țevii:

$$\dot{Q}_{_{v}} \approx \lambda \cdot S \cdot \Delta T_{_{1-2}} \approx 1.5 \frac{W}{mK} \cdot 3.44 m \cdot (80 - 0)^{\circ}C$$

$$\dot{Q}_{_{\text{M}}} \approx 413\,\text{W}$$

Pentru porţiunea orizontală a ţevii, avem cazul unui cilindru izoterm de lungime  $\bf L$  şi diametru  $\bf D$  îngropat vertical într-un mediu semi-infinit (  $\bf L >> \bf D$  şi  $\bf z > 1.5\bf D$  ).

Valoarea factorului de formă, So, se determină cu relaţia:

$$S_o = \frac{2\pi \cdot L}{\ln(4z/D)} = \frac{2\pi \cdot 25m}{\ln(4 \cdot 3m/0.05m)}$$

$$S_0 = 28.625 \text{ m}$$

Utilizând ecuația (5.4), fluxul termic staționar de la porțiunea orizontală a țevii:

$$\dot{Q}_{o} \approx \lambda \cdot S \cdot \Delta T_{1-2} \approx 1.5 \frac{W}{mK} \cdot 28.625 m \cdot (80 - 0)^{\circ}C$$

$$\dot{Q}_{0} \approx 3005.625 \, \text{W}$$

Fluxul total de pierderi de la ţeava de apă caldă va fi suma celor trei fluxuri termice individuale, aerian, vertical şi orizontal, adică:

$$\dot{Q} = \dot{Q}_a + \dot{Q}_v + \dot{Q}_o$$

 $\dot{Q} = 549.5 \text{ W} + 413 \text{ W} + 3005.625 \text{ W}$ 

$$\dot{Q} = 3968.125 \, \text{W}$$

b) Pentru calculul căderii de temperatură se va utiliza ecuaţia calorimetrică de stare raportată la unitatea de timp (ecuaţia 2.2):

$$\dot{Q} = \dot{m} \cdot c_p \cdot \Delta T$$

în care, debitul masic se definește ca:

$$\dot{m} = \rho \cdot \dot{V} = \rho \cdot (v \cdot A_{tr})$$

unde viteza fluidului  $\mathbf{v}=1.5$  m/s, iar aria transversală  $\mathbf{A}_{tr}$  reprezintă aria secțiunii transversale interioare a conductei:

$$A_{tr} = \frac{\pi \cdot D^2}{4} = \frac{\pi \cdot (0.05)^2 \text{ m}^2}{4} = 0.002 \text{ m}^2$$

Înlocuind în relația de mai sus, se obține succesiv:

$$\Delta T = \frac{\dot{Q}}{\dot{m} \cdot c_{p}} = \frac{\dot{Q}}{\rho \cdot (v \cdot A_{tr}) \cdot c_{p}}$$

$$\Delta T = \frac{3968.125 \text{ W}}{1000 \frac{\text{kg}}{\text{m}^3} \cdot \left(1.5 \frac{\text{m}}{\text{s}} \cdot 0.002 \text{ m}^2\right) \cdot 4180 \frac{\text{J}}{\text{kgK}}}$$

$$\Delta T = 0.323$$
 °C

## Concluzii/Comentarii:

În calculele efectuate la punctul (a), s-a neglijat căderea de temperatură (rezistența termică la conducție) prin peretele țevii. Aceasta și pentru că în textul problemei nu sunt indicate elementele geometrice (diametru interior sau grosimea peretelui) sau fizice (materialul) ale țevii. În cazul real, va exista o cădere suplimentară de temperatură, ceea ce va modifica ușor rezultatul final.

Aceeaşi observaţie şi pentru calculul ariei transversale la punctul (b), unde ar fi trebuit utilizat diametrul interior al ţevii şi nu cel exterior indicat în textul problemei.

### Problema rezolvată R5.5

Se consideră un domeniu bi-dimensional discretizat într-o rețea ( $\Delta x$ ,  $\Delta y$ ), ce respectă condiția  $\Delta x = \Delta y$ . Se consideră nodul din colțul închis aflat la limita domeniului supus unei condiții convective dinspre mediului exterior (cu caracteristicile  $T_{\infty}$  și  $\alpha$ ).

Să se deriveze o ecuație pentru temperatură în acest nod.

### **Soluție**

### Se ştie:

- discretizarea domeniului într-o rețea  $(\Delta x, \Delta y)$
- caracteristicile schimbului convectiv de căldură la limita domeniului

### Se cere:

- derivarea unei expresii pentru temperatură în nodul (**m,n**) specificat.

#### Schematizare:



### Ipoteze:

- metoda bilanţului energetic: toate fluxurile au sensul spre regiunea nodală
- conducție bi-dimensională, staționară, fără generare, proprietăți constante

### Proprietăți:

-

#### Analiză:

Pentru calculul ariilor de transfer de căldură, se va considera  $\Delta z = 1$ .

Fluxurile termice conductive sunt derivate din legea lui Fourier (2.7). Pentru nodurile (m-1,n) şi (m,n+1), fluxurile sunt proporţionale cu  $\Delta y$ , respectiv  $\Delta x$ . Similar, pentru nodurile (m+1,n) şi (m,n-1), fluxurile sunt proporţionale cu  $\Delta y/2$ , respectiv  $\Delta x/2$ .

$$\begin{split} \dot{Q}_{(m-1,n)\to(m,n)} &= \lambda \Big(\Delta y \cdot 1\Big) \frac{T_{m-1,n} - T_{m,n}}{\Delta x} \\ \dot{Q}_{(m,n+1)\to(m,n)} &= \lambda \Big(\Delta x \cdot 1\Big) \frac{T_{m,n+1} - T_{m,n}}{\Delta y} \\ \dot{Q}_{(m+1,n)\to(m,n)} &= \lambda \bigg(\frac{\Delta y}{2} \cdot 1\Big) \frac{T_{m+1,n} - T_{m,n}}{\Delta x} \\ \dot{Q}_{(m,n-1)\to(m,n)} &= \lambda \bigg(\frac{\Delta x}{2} \cdot 1\Big) \frac{T_{m,n-1} - T_{m,n}}{\Delta y} \end{split}$$

Fluxurile termice convective sunt derivate din legea lui Newton (2.9). Pentru regiunea nodală considerată, (m,n), fluxurile termice sunt proporţionale cu  $\Delta x/2$ , respectiv  $\Delta y/2$ :

De observat că toate fluxurile termice sunt pozitive și orientate spre regiunea nodală considerată, conform rezolvării propuse de metoda bilanţului energetic,  $\sum \dot{Q} = 0$ . Adunând toate expresiile pentru fluxurile explicitate mai sus, după câteva manipulări matematice simple, se obţine expresia matematică pentru temperatura în nodul (m,n) specificat:

$$\dot{Q}_{(\infty)\to(m,n)} = \alpha \left(\frac{\Delta x}{2} \cdot 1\right) \left(T_{\infty} - T_{m,n}\right) + \alpha \left(\frac{\Delta y}{2} \cdot 1\right) \left(T_{\infty} - T_{m,n}\right)$$

### Concluzii/Comentarii:

În manipulările matematice efectuate mai sus s-a considerat  $\Delta x = \Delta y$ .

## 5.3 Probleme propuse

### Problema P5.1

O bară foarte lungă (în direcţia z), cu secţiunea rectangulară, are trei laturi menţinute la o temperatură constantă; cea de a patra latură prezintă o distribuţie temperaturii sub forma unei funcţii arbitrare, f(x). Utilizaţi schematizarea prezentată în problema rezolvată R5.1.

- a) Să se determine distribuția temperaturii în secțiunea analizată.
- b) Cum se modifică ecuația obținută dacă  $f(x) = \theta_c = constantă$

### Problema P5.2

O bară foarte lungă (în direcţia z), cu secţiunea rectangulară  $a \times b$ , are trei laturi menţinute la o temperatură constantă, T = 0 °C; cea de a patra latură prezintă o distribuţie temperaturii sub forma unei funcţii liniare, T(x) = Ax. Să se deriveze o ecuaţie pentru distribuţia temperaturii T(x,y) în secţiunea analizată, în condiţii staţionare. Utilizaţi schematizarea prezentată în problema rezolvată R5.1.

### Problema P5.3

O bară foarte lungă (în direcţia z), cu secţiunea rectangulară are dimensiunile geometrice şi distribuţia de temperaturi pe contur indicate în figura de mai jos. Să se calculeze temperatura în mijlocul secţiunii (1, ½) considerând primii cinci termeni ai seriei. Care este diferenţa dacă se folosesc doar primii trei termeni?



O bară foarte lungă (în direcţia z), are dimensiunile geometrice şi distribuţia de temperaturi pe contur indicate în figura de mai jos.

- a) Să se determine distribuţia temperaturii în secţiunea analizată.
- b) Care va fi temperatura staţionară în centrul secţiunii, T<sub>(½,1)</sub> ?



#### **Problema P5.5**

O bară foarte lungă (în direcţia z), cu secţiunea pătrată a  $\times$  a, are trei laturi menţinute la o temperatură constantă,  $T=T_0$ , iar cea de a patra latură la o temperatură constantă,  $T=T_H$ .

Să se arate că temperatura staționară în centrul plăcii (a/2,a/2) este un sfert din temperatura  $T_{\rm H}$  .

$$T_{\left(\frac{a}{2},\frac{a}{2}\right)} = \frac{T_H}{4}$$

### Problema P5.6

O conductă de 30 m lungime și 10 cm diametru este îngropată la 1 m sub nivelul suprafeței solului. Conductivitatea termică a solului în locația respectivă este 1 W/mK, iar temperatura suprafeței solului este 5 °C. Prin conductă este transportată apă caldă, astfel încât temperatura suprafeței exterioare a conductei este de 60 °C.

Să se determine pierderile de căldură de la conductă.

Se consideră o casă cu formă paralelipipedică, atfel încât acoperișul are formă de placă plană orizontală cu dimensiunile 12 m x 12 m, iar pereţii exteriori ai casei au înălţimea de 6 m. Toate aceste elemente de construcţie au grosimea de 20 cm, iar materialul utilizat este betonul. Temperaturile suprafeţelor interioare şi exterioare ale pereţilor şi acoperişului sunt 15 °C, respectiv 5 °C. Să se determine pierderile de căldură prin pereţii şi acoperişul casei:

- a) când se iau în considerare muchiile şi colţurile comune ale elementelor de construcţii.
- b) când, pentru simplificare, se neglijează muchiile şi colţurile comune luând în considerare acoperişul de 12 m x 12 m şi cei patru pereţi de 12 m x 6 m; care este diferenţa între cele două cazuri (exprimată în procente)?

#### Problema P5.8

Canalul de gaze arse evacuate dintr-un furnal are secţiunea transversală de formă dreptunghiulară, cu dimensiunile exterioare de 2 m x 2.5 m. Grosimea pereţilor canalului este de 0.5 m, astfel încât dimensiunile interioare sunt 1 m x 1.5 m. Canalul este alcătuit din cărămidă refractară (cu conductivitatea termică  $\lambda$  = 1.2 W/mK). Temperaturile pe suprafeţele interioară şi exterioară ale pereţilor canalului sunt 500 °C şi respectiv 50 °C. Să se determine factorul de formă şi transferul net de căldură per metru liniar de lungime al canalului utilizând metoda grafică. Să se compare valoarea factorului de formă cu cea rezultată din formula corespunzătoare din tabelul din secţiunea 5.1.

#### Problema P5.9

O conductă lungă, utilizată pentru transportul ţiţeiului, are diametrul exterior de 0.5 m şi este îngropată în pământ la o adâncime de 2 m (măsurată de la axa centrală a conductei până la suprafaţa solului). Se aproximează că temperatura la suprafaţa exterioară a conductei este de 120 °C, în timp ce temperatura la suprafaţa solului este de 10 °C. Conductivitatea termică a pământului în zona respectivă este  $\lambda$  = 0.5 W/mK. Să se determine factorul de formă şi transferul net de căldură per metru liniar de lungime al canalului utilizând metoda grafică. Să se compare valoarea factorului de formă cu cea rezultată din formula corespunzătoare din tabelul din secțiunea 5.1.

Două conducte lungi, una cu diametrul exterior de 10 cm și temperatura suprafeței exterioare de 50 °C și cealaltă cu diametrul exterior de 5 cm și temperatura suprafeței exterioare de 10 °C, sunt așezate la o distanță de 20 cm, măsurată între axele centrale ale celor două conducte. Conductele sunt plasate orizontal într-un canal de serviciu de dimensiuni mari, care este umplut cu vată de sticlă. Să se determine transferul net de căldură de la conducta caldă către cea rece, per metru liniar de conductă.

### Problema P5.11

Un element electric de încălzire, de formă cilindrică cu dimensiunile de 150 mm lungime și 10 mm diametru, este îngropat vertical pe toată lungimea într-un material a cărui conductivitate termică este  $\lambda=5$  W/mK. Temperatura la suprafața materialului este de 20 °C. Să se determine temperatura la suprafața elementului de încălzire, dacă acesta disipă un flux termic de 50 W.

## Problema P5.12

Un rezervor de formă sferică cu diametrul  $\mathbf{D}=5$  m, conține deșeuri radioactive și este îngropat la o adâncime de 15 m în pământ (conductivitatea termică a solului în zona respectivă este  $\lambda=1.5$  W/mK). Suprafața solului are temperatura de  $\mathbf{T}_s=15$  °C iar suprafața rezervorului are temperatura  $\mathbf{T}_r=150$  °C. Să se determine fluxul termic dinspre rezervor către suprafață.

### Problema P5.13

Se consideră un bloc paralelipipedic care are lungimea L=3 m şi secţiunea transversală este un pătrat cu latura de 1 m. Prin centrul secţiunii transversale se prelucrează o gaură cu diametrul D=0.2 m. Materialul blocului are conductivitatea termică  $\lambda=150$  W/mK. Suprafeţele exterioare sunt expuse unui fluid cu caracteristicile  $T_{\infty,1}=300$  °C şi  $\alpha_1=10$  W/m²K, în timp ce prin gaura din interior trece un fluid cu caracteristicile  $T_{\infty,2}=10$  °C şi  $\alpha_2=50$  W/m²K. Să se determine fluxul termic între cele două fluide şi temperaturile de pe suprafeţele exterioare, respectiv interioare ale blocului considerat.

Apa fierbinte cu temperatura medie de 85 °C este circulată printr-un registru de 10 ţevi paralele care au lungimea de L=3 m şi secţiunea transversală circulară cu diametrul D=2.5 cm. Ţevile sunt dispuse orizontal, în planul central al unui bloc de beton cu dimensiunile 3 m lăţime, 8 m lungime şi 10 cm grosime. Suprafeţele exterioare ale blocului de beton sunt expuse unui fluid cu caracteristicile  $T_{\infty}=35$ °C şi  $\alpha=10$  W/m²K.

Să se determine fluxul termic cedat de apa fierbinte și temperatura suprafețelor blocului de beton considerat.

### Problema P5.15

Un registru de 10 ţevi paralele cu lungimea de L=5 m şi secţiunea transversală circulară cu diametrul D=5 cm, este folosit pentru transportul aburului la temperatura medie de 150 °C. Ţevile sunt dispuse orizontal, îngropate în pardoseala de beton a unei încăperi cu dimensiunile de 10 m x 5 m. Încăperea trebuie menţinută la o temperatură medie de  $T_{\infty}=25$  °C, iar coeficientul de transfer de căldură combinat pentru convecţie şi radiaţie este  $\alpha=10$  W/m²K.

Să se determine adâncimea la care trebuie îngropate ţevile, dacă suprafaţa pardoselii de beton nu trebuie să depăşească 40 °C.

### Problema P5.16

Un rezervor de formă cilindrică, cu dimensiunile L=2 m și diametrul D=0.5 m, este folosit pentru depozitarea unui gaz lichefiat la o temperatură medie de -150 °C. Gazul lichefiat considerat are caracteristicile: densitate  $\rho=425$  kg/m³ și căldura specifică la presiune constantă  $c_p=3475$  kJ/kgK . Rezervorul este plasat orizontal, centrat într-un paralelipiped de lungime L=2 m și secțiunea transversală pătrată cu latura 1.5 m. Paralelipipedul este alcătuit dintr-un material izolator cu conductivitatea termică  $\lambda=0.0005$  W/mK.

- a) Dacă suprafețele exterioare ale paralelipipedului sunt menținute la o temperatură constantă de 20 °C, să se determine fluxul termic către rezervorul de gaz lichefiat.
- b) Să se determine temperatura gazului lichefiat din interiorul rezervorului după un interval de timp de o lună.

Un rezervor de formă sferică diametrul  $\mathbf{D}$  = 1.5 m, este umplut cu apă cu gheaţă la o temperatură medie de 0 °C. Rezervorul este îngropat la o adâncime de 2.5 m în pământ (cu conductivitatea termică locală a solului  $\lambda$  = 0.5 W/mK).

- a) Dacă temperatura la suprafaţa solului se consideră constantă la 20 °C, să se determine fluxul termic către rezervorul de apă cu gheaţă.
- b) Cum se modifică rezultatul de mai sus, dacă temperatura solului este 20 °C, iar suprafața solului este izolată termic.

#### Problema P5.18

Se consideră un domeniu bi-dimensional, cu conductivitate termică  $\lambda$  şi fără surse interne de energie, discretizat într-o rețea ( $\Delta x$ ,  $\Delta y$ ), ce respectă condiția  $\Delta x = \Delta y$ .

Să se deriveze o ecuație pentru temperatură, în cazul unui nod exterior (n) plasat în colțul domeniului discretizat, cu o latură adiacentă izolată termic și cealaltă latură adiacentă supusă unei condiții convective, ca în figura de mai jos.



### Problema P5.19

Se consideră o placă plană (bi-dimensională) alcătuită dintr-un material cu conductivitate termică  $\lambda$  și care conține o distribuție uniformă de surse de energie, ce generează un flux  $\dot{Q}_{rep}^{\prime\prime\prime}$ .

Folosind metoda bilanţului energetic, să se deriveze o ecuaţie cu diferenţe finite, în cazul unui nod exterior plasat pe o latură izolată termic a domeniului.

Se consideră un domeniu bi-dimensional, cu conductivitate termică  $\lambda$  și fără surse interne de energie, discretizat într-o rețea ( $\Delta x$ ,  $\Delta y$ ), ce respectă condiția  $\Delta x = \Delta y$ . Se consideră nodul din colțul închis aflat la limita domeniului supus unei condiții convective dinspre mediului exterior (cu caracteristicile  $T_{\infty}$  și  $\alpha$ ) și izolat termic pe cealaltă latură.

Să se deriveze o ecuație pentru temperatură în acest nod, (m,n).



# 6 CONDUCȚIA TERMICĂ - TRANZITORIE

rocesele termice tranzitorii sunt des întâlnite în inginerie, pentru că în multe cazuri ce implică transfer de căldură, temperatura variază în timp până la atingerea regimului staţionar. Distribuţia temperaturii în interiorul sistemului se modifică în mod continuu, generând o valoare diferită de zero pentru termenul de acumulare/depreciere a energiei din sistem, respectiv un proces tranzitoriu.

## 6.1 Relații de calcul importante

Vezi în subcapitolul 1.4, relaţiile de definiţie şi semnificaţiile fizice ale grupurilor adimensionale **Biot** şi **Fourier**.

### Metoda capacității termice infinite (Bi < 0.1)

Distribuția temperaturii după un interval de timp t de la începutul procesului:

$$T_{(t)} = T_{\infty} + \left(T_{i} - T_{\infty}\right) \cdot e^{\frac{-\alpha \cdot A_{s}}{\rho V \cdot c_{p}} \cdot t}$$
(6.1)

Energia totală transferată:

$$Q = \int_0^t h \cdot A_s \cdot (T - T_{\infty}) dt = \rho V \cdot c_{\rho} \cdot (T_i - T_{\infty}) \cdot \left[ 1 - e^{\frac{-t}{t_c}} \right]$$
(6.2)

#### Metoda analitică

Solutia ecuației diferențiale  $\frac{\partial^2 T}{\partial x^2} = \frac{1}{a} \cdot \frac{\partial T}{\partial t}$  pentru condiții la limită de speța I:

$$\frac{T - T_s}{T_i - T_s} = \sum_{n=1}^{\infty} \frac{2 \cdot \left(-1\right)^n}{\left(n + 1/2\right) \cdot \pi} \cdot e^{\left(n + 1/2\right)^2 \cdot \pi^2 \cdot Fo} \cdot \cos\left[\left(n + 1/2\right) \cdot \pi \cdot \frac{x}{L}\right]$$
(6.3)

cu soluția aproximativă (ce consideră numai primul termen al seriei):

$$\frac{\mathsf{T}_0 - \mathsf{T}_\infty}{\mathsf{T}_i - \mathsf{T}_\infty} = \mathsf{C}_1 \cdot \mathsf{e}^{-\zeta^2 \cdot \mathsf{Fo}} \tag{6.4}$$

în care  $T_0$  reprezintă temperatura în elementul de simetrie al geometriei considerate (planul central în cazul peretelui plan, axul central în cazul cilindrului infinit sau punctul central în cazul sferei). Valorile pentru  $C_1$  și  $\zeta$  sunt prezentate în tabelul de mai jos.

Valorile coeficienților  $C_1$  și  $\zeta$  pentru ecuațiile (6.4) și (6.5)

|      | Perete plan     |        | Cilindr         | u infinit | Sfo             | Sferă          |  |
|------|-----------------|--------|-----------------|-----------|-----------------|----------------|--|
| Bi   | $\zeta_1$ [rad] | $C_1$  | $\zeta_1$ [rad] | $C_1$     | $\zeta_1$ [rad] | C <sub>1</sub> |  |
| 0.01 | 0.0998          | 1.0017 | 0.1412          | 1.0025    | 0.1730          | 1.0030         |  |
| 0.02 | 0.1410          | 1.0033 | 0.1995          | 1.0050    | 0.2445          | 1.0060         |  |
| 0.03 | 0.1723          | 1.0049 | 0.2440          | 1.0075    | 0.2991          | 1.0090         |  |
| 0.04 | 0.1987          | 1.0066 | 0.2814          | 1.0099    | 0.3450          | 1.0120         |  |
| 0.05 | 0.2218          | 1.0082 | 0.3143          | 1.0124    | 0.3854          | 1.0149         |  |
| 0.06 | 0.2425          | 1.0098 | 0.3438          | 1.0148    | 0.4217          | 1.0179         |  |
| 0.07 | 0.2615          | 1.0114 | 0.3709          | 1.0173    | 0.4551          | 1.0209         |  |
| 0.08 | 0.2791          | 1.0130 | 0.3960          | 1.0197    | 0.4860          | 1.0239         |  |
| 0.09 | 0.2956          | 1.0145 | 0.4195          | 1.0222    | 0.5150          | 1.0268         |  |
| 0.10 | 0.3111          | 1.0161 | 0.4417          | 1.0246    | 0.5423          | 1.0298         |  |
| 0.15 | 0.3779          | 1.0237 | 0.5376          | 1.0365    | 0.6609          | 1.0445         |  |
| 0.20 | 0.4328          | 1.0311 | 0.6170          | 1.0483    | 0.7593          | 1.0592         |  |
| 0.25 | 0.4801          | 1.0382 | 0.6856          | 1.0598    | 0.8447          | 1.0737         |  |
| 0.30 | 0.5218          | 1.0450 | 0.7465          | 1.0712    | 0.9208          | 1.0880         |  |
| 0.4  | 0.5932          | 1.0580 | 0.8516          | 1.0932    | 1.0528          | 1.1164         |  |
| 0.5  | 0.6533          | 1.0701 | 0.9408          | 1.1143    | 1.1656          | 1.1441         |  |
| 0.6  | 0.7051          | 1.0814 | 1.0184          | 1.1345    | 1.2644          | 1.1713         |  |
| 0.7  | 0.7506          | 1.0919 | 1.0873          | 1.1539    | 1.3525          | 1.1978         |  |
| 0.8  | 0.7910          | 1.1016 | 1.1490          | 1.1724    | 1.4320          | 1.2236         |  |
| 0.9  | 0.8274          | 1.1107 | 1.2048          | 1.1902    | 1.5044          | 1.2488         |  |

(continuare pe pagina următoare)

(continuare din pagina anterioară)

|       | Perete plan     |        | Cilindre        | u infinit | Sf              | Sferă          |  |
|-------|-----------------|--------|-----------------|-----------|-----------------|----------------|--|
| Bi    | $\zeta_1$ [rad] | $C_1$  | $\zeta_1$ [rad] | $C_1$     | $\zeta_1$ [rad] | C <sub>1</sub> |  |
| 1.0   | 0.8603          | 1.1191 | 1.2558          | 1.2071    | 1.5708          | 1.2732         |  |
| 2.0   | 1.0769          | 1.1785 | 1.5994          | 1.3384    | 2.0288          | 1.4793         |  |
| 3.0   | 1.1925          | 1.2102 | 1.7887          | 1.4191    | 2.2889          | 1.6227         |  |
| 4.0   | 1.2646          | 1.2287 | 1.9081          | 1.4698    | 2.4556          | 1.7202         |  |
| 5.0   | 1.3138          | 1.2402 | 1.9898          | 1.5029    | 2.5704          | 1.7870         |  |
| 6.0   | 1.3496          | 1.2479 | 2.0490          | 1.5253    | 2.6537          | 1.8338         |  |
| 7.0   | 1.3766          | 1.2532 | 2.0937          | 1.5411    | 2.7165          | 1.8673         |  |
| 8.0   | 1.3978          | 1.2570 | 2.1286          | 1.5526    | 1.7654          | 1.8920         |  |
| 9.0   | 1.4149          | 1.2598 | 2.1566          | 1.5611    | 2.8044          | 1.9106         |  |
| 10.0  | 1.4289          | 1.2620 | 2.1795          | 1.5677    | 2.8363          | 1.9249         |  |
| 20.0  | 1.4961          | 1.2699 | 2.2881          | 1.5919    | 2.9857          | 1.9781         |  |
| 30.0  | 1.5202          | 1.2717 | 2.3261          | 1.5973    | 3.0372          | 1.9898         |  |
| 40.0  | 1.5325          | 1.2723 | 2.3455          | 1.5993    | 3.0632          | 1.9942         |  |
| 50.0  | 1.5400          | 1.2727 | 2.3572          | 1.6002    | 3.0788          | 1.9962         |  |
| 100.0 | 1.5552          | 1.2731 | 2.3809          | 1.6015    | 3.1102          | 1.9990         |  |
| ∞     | 1.5708          | 1.2733 | 2.4050          | 1.6018    | 3.1415          | 2.0000         |  |

Tot pentru **soluția aproximativă**, raportul între energia totală transferată de la geometrie în intervalul de timp  $\mathbf{t}$  și enegia energia maximă ce poate fi transferată, se determină astfel:

- perete plan: 
$$\frac{Q}{Q_0} = 1 - \frac{\sin \zeta_1}{\zeta_1} \cdot \theta_0^*$$
 (6.5)

- perete cilindric: 
$$\frac{Q}{Q_0} = 1 - \frac{2\theta_0^*}{\zeta_1} \cdot J_{1(\zeta_1)}$$
 (6.6)

- perete sferic: 
$$\frac{Q}{Q_0} = 1 - \frac{3\theta_0^*}{\zeta_1^3} \cdot \left[ \sin(\zeta_1) - \zeta_1 \cos(\zeta_1) \right]$$
 (6.7)

în care  $J_1$  reprezintă funcțiile Bessel de speța I (vezi Anexa 2).

## **Metode numerice**

Se rescrie ecuația diferențială bidimensională  $\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = \frac{1}{a} \cdot \frac{\partial T}{\partial t}$  cu diferențe

finite, atât pentru discretizarea în spaţiu, cât şi pentru discretizarea în timp. Pentru o reţea cu  $\Delta x = \Delta y$ , pentru un nod interior, ecuaţia

a) în schema implicită devine:

$$(1+4Fo) \cdot T_{m,n}^{p+1} - Fo \cdot (T_{m+1,n}^{p+1} + T_{m-1,n}^{p+1} + T_{m,n+1}^{p+1} + T_{m,n-1}^{p+1}) = T_{m,n}^{p}$$
 (6.8)

care este necondiţionat stabilă;

b) în schema explicită devine:

$$T_{m,n}^{p+1} = Fo \cdot \left( T_{m+1,n}^{p} + T_{m-1,n}^{p} + T_{m,n+1}^{p} + T_{m,n-1}^{p} \right) + \left( 1 - 4Fo \right) \cdot T_{m,n}^{p}$$
(6.9)

cu condiția de stabilitate:

$$Fo = \frac{\alpha \cdot \Delta t}{\left(\Delta x\right)^2} \le \frac{1}{4}$$

# 6.2 Probleme rezolvate

## Problema rezolvată R6.1

Să se determine constanta de timp şi numărul Biot pentru o joncţiune de termocuplu expusă la mediul înconjurător aflat la temperatura de 0 °C. Se vor considera următoarele elemente:

- joncţiunea este de tip sferic cu diametrul a) 0,1 mm; b) 0,2 mm;
- materialul este un amestec perfect de două metale (Cupru, Constantan);
- coeficientul convectiv de transfer de căldură este 25 [W/m²K].

## <u>Soluţie</u>

## Se ştie:

- corp sferic de dimensiuni și compoziție cunoscute
- coeficientul convectiv de transfer de căldură către mediul înconjurător

#### Se cere:

- constanta de timp;
- valoarea numărului Biot (Bi);

## Schematizare:



#### Ipoteze:

- regim tranzitoriu;
- proprietățile termice ale joncțiunii vor fi considerate ca medie aritmetică a valorilor corespunzătoare celor două materiale menționate;

## Proprietăți:

- Cupru pur la 0°C:  $c_{p,Cu} = 385 \text{ J/kgK}; \ \lambda_{Cu} = 401 \text{ W/mK}; \ \rho_{Cu} = 8933 \text{ kg/m}^3$ 

- Constantan la 0°C:  $c_{p,Ct} = 384 \text{ J/kgK}; \quad \lambda_{Ct} = 23 \text{ W/mK}; \quad \rho_{Ct} = 8920 \text{ kg/m}^3$ 

#### Analiză:

Se determină proprietățile joncțiunii:

$$\begin{split} c_{_{p}} &= \frac{c_{_{p,Cu}} + c_{_{p,Ct}}}{2} = \frac{385 \big[ \text{J/kgK} \big] + 384 \big[ \text{J/kgK} \big]}{2} = 385 \big[ \text{J/kgK} \big] \\ \lambda &= \frac{\lambda_{_{Cu}} + \lambda_{_{Ct}}}{2} = \frac{401 \big[ \text{W/mK} \big] + 23 \big[ \text{W/mK} \big]}{2} = 212 \big[ \text{W/mK} \big] \\ \rho &= \frac{\rho_{_{Cu}} + \rho_{_{Ct}}}{2} = \frac{8933 \big[ \text{kg/m}^3 \big] + 8920 \big[ \text{kg/m}^3 \big]}{2} = 8927 \big[ \text{kg/m}^3 \big] \end{split}$$

a) În regim tranzitoriu, constanta de timp este

$$t_{_{c}} = \frac{\rho \cdot V \cdot c_{_{p}}}{\alpha \cdot A_{_{s}}} = \frac{\rho \cdot c_{_{p}}}{\alpha} \cdot \frac{V}{A_{_{s}}} = \frac{\rho \cdot c_{_{p}} \cdot r}{3\alpha}$$

$$t_c = \frac{8927 \frac{kg}{m^3} \cdot 385 \frac{J}{kgK} \cdot 0.00005 m}{3 \cdot 25 \frac{W}{m^2 K}}$$

$$t_c = 2.29[s]$$

Numărul Biot este:

$$Bi = \frac{\alpha \cdot V}{\lambda \cdot A_s} = \frac{\alpha \cdot r}{3\lambda}$$

$$Bi = \frac{25 \frac{W}{m^2 K} \cdot 0.00005 m}{3 \cdot 212 \frac{W}{m K}}$$

$$Bi = 1.9 \times 10^{-6}$$

În concluzie, se poate utiliza metoda capacității termice infinite.

b) Se efectuează aceleași calcule, doar se dublează diametrul; constanta de timp devine

$$t_c = \frac{\rho \cdot V \cdot c_p}{\alpha \cdot A_s} = \frac{\rho \cdot c_p}{\alpha} \cdot \frac{V}{A_s} = \frac{\rho \cdot c_p \cdot r}{3\alpha}$$

$$t_c = \frac{8927 \frac{kg}{m^3} \cdot 385 \frac{J}{kgK} \cdot 0.0001m}{3 \cdot 25 \frac{W}{m^2 K}}$$

$$t_c = 4.58[s]$$

Numărul Biot este:

$$Bi = \frac{\alpha \cdot V}{\lambda \cdot A_s} = \frac{\alpha \cdot r}{3\lambda}$$

$$Bi = \frac{25 \frac{W}{m^2 K} \cdot 0.0001 m}{3 \cdot 212 \frac{W}{m K}}$$

Bi = 
$$3.8 \times 10^{-6}$$

Evident, și aici se poate utiliza metoda capacității termice infinite.

## Concluzii/Comentarii:

Raportul V/A₅ reprezintă lungimea caracteristică, Lc. În cazul unei sfere,

$$L_c = r/3$$
.

Valorile extrase din tabele au for rotunjite la cel mai apropiat întreg, deoarece sunt valori mari ce nu sunt influențate de zecimale.

Timpul de răspuns poate părea mare, dar dat fiind modul simplu de construcţie al unui termocuplu şi uşurinţa în folosire, este considerat un neajuns acceptabil. Dacă se doreşte o urmărire mai fidelă a variaţiei temperaturii, se poate apela la alte tehnici şi instrumente de măsură.

## Problema rezolvată R6.2

O joncţiune a unui termocuplu tip Cu-Ct se află iniţial la o temperatură de 0 °C. Se consideră că joncţiunea este perfect sferică şi are diametrul de 0,2 mm. Dacă joncţiunea este expusă la un mediu cu temperatura de 10 °C, să se determine în cât timp aceasta va atinge a) 9 °C; b) 9.5 °C; c) 9.9 °C; d) 9.99 °C. Se vor păstra celelalte proprietăţi determinate în exemplul anterior.

## **Soluție**

# Se știe:

- corp sferic de dimensiuni și compoziție cunoscute
- datele calculate în exemplul anterior

#### Se cere:

- timpul de răspuns pentru atingerea anumitor paliere de temperatură;

#### Schematizare:



#### Ipoteze:

- regim tranzitoriu;
- proprietățile termice ale joncțiunii vor fi considerate ca medie aritmetică a valorilor corespunzătoare celor două materiale menționate;

## Proprietăți:

Valori determinate în problema anterioară:

-  $c_p = 385 \text{ J/kgK}$ ;  $\lambda = 212 \text{ W/mK}$ ;  $\rho = 8927 \text{ kg/m}^3$ 

#### Analiză:

Din ecuația (6.1) rezultă:

$$t = -t_c \cdot \ln \frac{-T_{\infty} - T}{-T_{\infty} - T_i}$$

în care,  $\mathbf{t}_c$  reprezintă constanta de timp a joncțiunii termocuplului determinată în exemplul anterior,  $t_c = 4.58 \text{ s.}$ 

a) Timpul până la atingerea temperaturii T = 9 °C:

$$t = -t_c \cdot \ln \frac{-T_{\infty} - T}{-T_{\infty} - T_i} = 4.58[s] \cdot \ln \frac{-10 - 9}{-10 - 0}$$

b) Timpul până la atingerea temperaturii T = 9.5 °C:

$$t = -t_c \cdot ln \frac{-T_{\infty} - T}{-T_{\infty} - T_i} = 4.58[s] \cdot ln \frac{-10 - 9.5}{-10 - 0}$$

$$t = 3.06[s]$$

c) Timpul până la atingerea temperaturii T = 9.9 °C:

$$t = -t_c \cdot ln \frac{-T_{\infty} - T}{-T_{\infty} - T_i} = 4.58[s] \cdot ln \frac{-10 - 9.9}{-10 - 0}$$

d) Timpul până la atingerea temperaturii T = 9.99 °C:

$$t = -t_c \cdot ln \frac{-T_{\infty} - T}{-T_{\infty} - T_i} = 4.58[s] \cdot ln \frac{-10 - 9.99}{-10 - 0}$$

## Concluzii/Comentarii:

Deşi constanta de timp,  $\mathbf{t}_c$ , poate apărea intuitiv ca având o valoare mare, se observă că în aplicații practice un astfel de termocuplu va raspunde relativ rapid, adică va avea un timp de răspuns scurt.

# Problema rezolvată R6.3

Se consideră o bilă de rulment, din oţel, de formă sferică cu diametrul de 5 mm, care are temperatura de 500 °C. Aceasta este lăsată să se răcească în mediul ambiant cu temperatura de 25 °C..

După cât timp va atinge temperatura de 100 °C, dacă  $\alpha$  = 100 W/m<sup>2</sup>K?

## <u>Soluţie</u>

## Se ştie:

- corp sferic de dimensiuni și compoziție cunoscute
- răcire în mediul ambiant, coeficient convectiv de transfer cunoscut

#### Se cere:

- timpul după care se atingere temperatura indicată;

#### Schematizare:



## Ipoteze:

- conducție în regim tranzitoriu
- se neglijează radiația (nu sunt indicate elemente în textul problemei)

## Proprietăți:

- $c_p = 434 \text{ J/kgK}$ ;
- $\lambda$  = 63.9 W/mK;
- $\rho = 7832 \text{ kg/m}^3$

#### Analiză:

Mai întâi se verifică valoarea numărului Biot:

Bi = 
$$\frac{\alpha V}{\lambda A_s} = \frac{\alpha r}{3\lambda} = \frac{100[W/m^2K] \cdot 0.0025[m]}{3 \cdot 63.9[W/mK]} = 0.0013 < 0.1$$

Ca urmare, se pot folosi relaţiile metodei capacităţii termice infinite. Din ecuaţia (6.1) se obţine:

$$\frac{T_{(t)}-T_{_{\infty}}}{T_{_{i}}-T_{_{\infty}}}=e^{\frac{-\alpha\cdot A_{_{s}}-t}{\rho V\cdot c_{_{p}}}}=e^{-Bi\text{-}Fo}$$

de unde rezultă:

Bi·Fo = 
$$-\ln \frac{100 - 25}{500 - 25} = 1.846$$

adică, Fo = 1420.

Tinând cont că difuzivitatea termică este definită ca

$$a = \frac{\lambda}{\rho c_p} = \frac{63.9 \left[ W/mK \right]}{7832 \left\lceil kg/m^3 \right\rceil \cdot 434 \left[ J/kgK \right]} = 1.88 \times 10^{-5} [m^2/s]$$

atunci,

$$t = \frac{\text{Fo} \cdot (r/3)^2}{a} = \frac{1420 \cdot (0.0025 \text{m/3})^2}{1.88 \times 10^{-5} \text{ m}^2/\text{s}} = 52.45[\text{s}]$$

#### Concluzii/Comentarii:

Raportul V/A<sub>s</sub> reprezintă lungimea caracteristică, L<sub>c</sub>. În cazul unei sfere,

$$L_c = r/3$$
.

Prin ipoteze, s-a neglijat radiaţia termică, pentru ilistrarea metodei capacităţii termice infinite. Dar fluxul termic radiativ poate avea valori importante, comparative cu cele ale fluxului termic covectiv.

## Problema rezolvată R6.4

Două bile identice, cu diametrul de 10 mm, au temperatura de 500 °C în momentul în care sunt scoase din cuptorul de tratare. Bilele se vor răci în două medii diferite, astfel:

- Prima bilă este lăsată să se răcească prin convecţie liberă în mediul ambiant cu temperatura de 20 °C, considerându-se un coeficient convectiv de transfer de căldură  $\alpha_a$  = 18 W/m²K;
- A doua bilă este lăsată să se răcească prin convecţie forţată într-o baie cu un lichid amestecat permanent, cu temperatura de 20 °C, considerându-se un coeficient convectiv de transfer de căldură cu valoare de  $\alpha_b$  = 5000 W/m²K.

Să se determine timpul după care fiecare dintre bile va ajunge la temperatura de 50 °C, dacă se cunosc proprietățile termofizice ale materialului din care sunt făcute bilele:  $\lambda$  = 30 W/mK;  $c_p$  = 1000 J/kgK;  $\rho$  = 3000 kg/m³.

## **Soluție**

#### Se ştie:

- corpuri sferice de dimensiuni și compoziție cunoscute
- prima bilă se răcește în mediul ambiant, convecție liberă
- a doua bilă se răcește într-o baie cu lichid, convecție forțată

#### Se cere:

- timpul după care se atingere temperatura indicată în ambele cazuri

## Schematizare:



## Ipoteze:

- conducție în regim tranzitoriu, uni-dimensională
- se neglijează radiația (nu sunt indicate elemente în textul problemei)

# Proprietăți:

- identificate în text

#### Analiză:

Elemente geometrice pentru sferă:

- volumul:  $V = \frac{4}{3}\pi r^3$ 

- aria suprafeţei:  $A_s = 4\pi r^2$ 

Pentru bila ce se răcește prin convecție liberă în aer:

Mai întâi se verifică valoarea numărului Biot:

$$Bi = \frac{\alpha_a \cdot V}{\lambda \cdot A_s} = \frac{r \cdot \alpha_a}{3\lambda} = \frac{0.005 \, m \cdot 18 \frac{W}{m^2 K}}{3 \cdot 30 \lceil W/mK \rceil}$$

Bi = 0.001 < 0.1

Ca urmare, se pot folosi relaţiile metodei capacităţii termice infinite. Din ecuaţia (6.1) se obţine:

$$\frac{T_{(t)}^{}-T_{_{\infty}}^{}}{T_{_{i}}^{}-T_{_{\infty}}^{}}=e^{\frac{\cdot \alpha \cdot A_{_{s}}^{}}{\rho V \cdot c_{_{p}}^{}}t^{}} \qquad \Longrightarrow \qquad t_{a}^{}=\frac{\rho c_{_{p}}^{}\cdot V}{\alpha_{_{a}}^{}\cdot A_{_{s}}}\cdot ln\frac{T_{_{i}}^{}-T_{_{\infty}}^{}}{T_{(t_{a})}^{}-T_{_{\infty}}^{}}=\frac{r\cdot \rho c_{_{p}}^{}}{3\cdot \alpha_{_{a}}}\cdot ln\frac{T_{_{i}}^{}-T_{_{\infty}}^{}}{T_{(t_{a})}^{}-T_{_{\infty}}^{}}$$

$$t_{a} = \frac{0.005 \, m \cdot 3000 \, \frac{kg}{m^{3}} \cdot 1000 \, \frac{J}{kgK}}{3 \cdot 18 \, \frac{W}{m^{2}K}} \cdot \ln \frac{500 - 20}{50 - 20}$$

$$t_a = 770.16[s]$$

Pentru bila ce se răcește prin convecție forțată în lichid:

Mai întâi se verifică valoarea numărului Biot:

$$Bi = \frac{\alpha_b \cdot V}{\lambda \cdot A_s} = \frac{r \cdot \alpha_b}{3\lambda} = \frac{0.005 \, m \cdot 5000 \frac{W}{m^2 K}}{3 \cdot 30 \lceil W/mK \rceil}$$

Bi = 0.2778 > 0.1

Ca urmare, în acest caz nu se mai pot folosi relaţiile metodei capacităţii termice infinite. Timpul  $\mathbf{t}_b$  până la atingerea temperaturii indicate, se determină din ecuaţia de definiţie a numărului adimensional Fourier (vezi subcapitolul 1.4):

Fo = 
$$\frac{a \cdot t}{l^2}$$
  $\Rightarrow$   $t_b = Fo \frac{r^2}{a}$ 

Dată fiind complexitatea soluției analitice complete, în acest caz se apelează la soluția aproximativă, ce reține numai primul termen al seriei infinite.

Prin rearanjarea ecuației (6.4) se obține:

$$\frac{T_0 - T_{\infty}}{T_i - T_{\infty}} = C_1 \cdot e^{-\zeta^2 \cdot Fo} \qquad \Longrightarrow \quad Fo = -\frac{1}{\zeta^2} \cdot In \left[ \frac{1}{C_1} \cdot \frac{T_{(0, t_b)} - T_{\infty}}{T_i - T_{\infty}} \right]$$

Pentru determinarea constantelor C1 şi z, se apelează la tabelul din subcapitolul anterior, 6.1. Trebuie avută în vedere atenționarea de la sfârşitul tabelului, prin care se indică modul de calcul a numărului adimensional Biot, diferit de relația de definiție a acestuia indicată în subcapitolul 1.4. Astfel, numărul Biot ce va fi utilizat pentru determinarea valorilor din tabel este:

$$Bi = \frac{r \cdot \alpha_b}{\lambda} = \frac{0.005 \, m \cdot 5000 \frac{W}{m^2 K}}{30 \left[ W/mK \right]}$$

Bi = 0.83

Corespunzător acestei valori, din tabel se obţin:

$$\zeta = 1.45 \, \text{rad si C}_1 = 1.23$$

Ca urmare, pentru numărul Fourier se obţine:

Fo = 
$$-\frac{1}{(1.45 \,\text{rad})^2} \cdot \ln \left[ \frac{1}{1.23} \cdot \frac{(50 - 20)^{\circ} \text{C}}{(500 - 20)^{\circ} \text{C}} \right]$$

$$Fo = 1.42$$

Din definiția difuzibilității termice, se obține:

$$a = \frac{\lambda}{\rho c_p} = \frac{30 \frac{W}{mK}}{3000 \frac{kg}{m^3} \cdot 1000 \frac{J}{kgK}}$$

$$a = 1 \times 10^{-5} \frac{m^2}{s}$$

Timpul de răcire în baia de fluid va fi:

$$t_b = Fo \frac{r^2}{a} = 1.42 \cdot \frac{(0.005 \, \text{m})^2}{1 \times 10^{-5} \frac{\text{m}^2}{\text{s}}}$$

atunci,

$$t_b = 3.55[s]$$

## Concluzii/Comentarii:

Evident, în cazul (b) răcirea este mult mai rapidă.

Dat fiind faptul că diametrul bilelor este destul de mic, iar **Fo = 1.42** se poate utiliza soluția aproximativă, cu rezultate foarte apropiate de valorile reale.

Raportul V/A<sub>s</sub> reprezintă lungimea caracteristică, L<sub>c</sub>. În cazul unei sfere,

$$L_c = r/3$$
.

S-a neglijat radiaţia termică, dar fluxul termic radiativ poate avea valori importante, comparative cu cele ale fluxului termic covectiv.

## Problema rezolvată R6.5

Se consideră un corp paralelipipedic lung, cu secțiunea transversală pătrată, cu latura de 20 cm, care inițial se află la temperatură uniformă de 20 °C. Materialul din care este turnat corpul are conductivitatea termică  $\lambda = 28$  W/mK, difuzivitatea termică  $a = 12 \times 10^{-6}$  m²/s și o generare uniformă de energie cu rata de  $\dot{Q}_{\rm gen}^{\prime\prime\prime} = 8 \times 10^{5}$  W/m³. Toate suprafețele laterale ale corpului sunt supuse la condiții convective de transfer de căldură cu caracteristicile  $T_{\infty} = 30$  °C și  $\alpha = 45$  W/m²K.

Dacă se utilizează o rețea de discretizare cu pasul identic în ambele coordonate ( $\Delta x = \Delta y$ ) cu latura de 10 cm și soluția explicită a metodei cu diferențe finite, să se determine temperatura pe axul central al corpului:

- a) după 10 minute;
- b) după stabilirea condițiilor staționare.

## **Soluție**

#### Se ştie:

- corp de geometrie și proprietăți termofizice cunoscute
- condiții convective la suprafețele laterale, cu caracteristici specificate

#### Se cere:

 temperatura la axul central după 10 minute şi după instalarea condiţiilor staţionare

#### Schematizare:



#### Ipoteze:

- conducție bi-dimensională, în condiții tranzitorii
- generare uniformă în volumul corpului
- radiație neglijabilă (sau inclusă în coeficientul convectiv de transfer)

## Proprietăți:

- identificate în text

#### Analiză:

Se utilizează metoda explicită pentru ecuația cu diferențe finite, scrisă pentru bilanțul energetic pentru cazul tranzitoriu:

$$\sum_{k=1}^{4} \dot{Q}_{conv}^{i} + \dot{Q}_{gen}^{\prime \prime \prime} = \rho V \cdot c_{p} \frac{T_{m,n}^{p+1} - T_{m,n}^{p}}{\Delta t}$$

În ecuația de mai sus și în cele ce urmează, se utilizează următoarele notații:  $\mathbf{m}$  reprezintă indexarea în direcția  $\mathbf{x}$ ,  $\mathbf{n}$  reprezintă indexarea în direcția  $\mathbf{y}$ ,  $\mathbf{p}$  reprezintă indexarea pașilor de timp. Notația indicelui de sumă este  $\mathbf{k}$  = numărul de suprafețe laterale ( $\mathbf{k}$  = 1 ... 4).

În aceste condiții, forma ecuației cu diferențe finite pentru un nod interior, conform ecuației (6.9) devine:

$$T_{m,n}^{p+1} = Fo \cdot \left(T_{m+1,n}^{p} + T_{m-1,n}^{p} + T_{m,n+1}^{p} + T_{m,n+1}^{p}\right) + \left(1 - 4Fo\right) \cdot T_{m,n}^{p} + Fo \cdot \frac{\dot{Q}_{gen}''' \cdot \Delta x^{2}}{\lambda}$$

Deoarece există simetrie atât pe verticală şi orizontală, cât şi pe diagonală, se pot scrie următoarele egalități pentru temperaturile din cele 9 noduri specificate:

$$T_1 = T_3 = T_7 = T_9$$

$$T_{2} = T_{4} = T_{6} = T_{8}$$

Astfel, rămân numai trei necunoscute de determinat, şi anume  $T_1$ ,  $T_2$ , şi  $T_5$ . Se utilizează şi faptul că un plan de simetrie se poate echivala cu o suprafață izolată termic şi ecuațiile devin:

Nod 1: 
$$\alpha \Delta x \left(T_{\infty} + T_{1}^{p}\right) + \lambda \frac{\Delta y}{2} \frac{\left(T_{2}^{p} - T_{1}^{p}\right)}{\Delta x} + \lambda \frac{\Delta x}{2} \frac{\left(T_{4}^{p} - T_{1}^{p}\right)}{\Delta y} + \frac{\dot{Q}_{gen}^{m} \cdot \Delta x^{2}}{4} = \rho c_{p} \cdot \frac{\Delta x^{2}}{4} \cdot \frac{\left(T_{1}^{p+1} - T_{1}^{p}\right)}{\Delta t}$$

$$161$$

Nod 2: 
$$\alpha \frac{\Delta y}{2} \left( T_{\infty} + T_{2}^{p} \right) + \lambda \frac{\Delta y}{2} \frac{\left( T_{1}^{p} - T_{2}^{p} \right)}{\Delta x} + \lambda \frac{\Delta x}{2} \frac{\left( T_{5}^{p} - T_{2}^{p} \right)}{\Delta y} + \frac{\dot{Q}_{gen}^{m} \cdot \Delta x^{2}}{4} = \rho c_{p} \cdot \frac{\Delta x^{2}}{4} \cdot \frac{\left( T_{2}^{p+1} - T_{2}^{p} \right)}{\Delta t}$$

**Nod 5:** 
$$T_5^{p+1} = (1-4Fo) \cdot T_5^p + Fo \cdot \left(4T_2^p + \frac{\dot{Q}_{gen}''' \cdot \Delta x^2}{\lambda}\right)$$

Pentru că s-a adoptat soluția explicită, trebuie determinat criteriul de stabilitate al soluției, care presupune ca expresia coeficientului termenului  $T_{m,n}^{p}$  să fie mai mare sau cel mult egală cu zero.

Dintre expresiile pentru cele trei noduri exprimate mai sus, cea pentru nodul 1 are cel mai mic coeficient, pentru că nodul de tip 1 este cel mai expus convecţiei externe. Ca urmare, criteriul de stabilitate presupune că:

$$1 - 4Fo - 4Fo \cdot \frac{\alpha \cdot \Delta x}{\lambda} \ge 0$$

adică

$$Fo \le \frac{1}{4 \cdot \left(1 + \frac{\alpha \cdot \Delta x}{\lambda}\right)} \quad \Rightarrow \quad \Delta t \le \frac{\Delta x^2}{4a \cdot \left(1 + \frac{\alpha \cdot \Delta x}{\lambda}\right)}$$

Înlocuind valorile în expresia de mai sus se obține pasul maxim de timp:

$$\Delta t \leq \frac{\left(0.1 m\right)^2}{4 \cdot 12 \times 10^{-6} \, \frac{m^2}{s} \cdot \left(1 + \frac{45 \frac{W}{m^2 K} \cdot 0.1 m}{28 \frac{W}{m K}}\right)}$$

$$\Delta t \le 179[s]$$

Deci orice pas de timp mai mic decât cel indicat mai sus va garanta stabilitatea soluției numerice.

Pentru facilitarea calculelor ulterioare, se alege o valoare pentru discretizarea în timp de  $\Delta t$  = 60 s.

Astfel, numărul Fourier devine:

Fo = 
$$\frac{a \cdot \Delta t}{\Delta x^2} = \frac{12 \times 10^{-6} \frac{m^2}{s} \cdot 60 s}{(0.1 m)^2}$$

$$Fo = 0.072$$

Se utilizează un calculator pentru a calcula valorile pentru cele trei ecuații nodale specificate mai sus, cu increment temporal de 60 s. Soluția pentru nodul 5 devine succesiv:

| Timp<br>[min] | Temperatura T₅<br>[°C] |
|---------------|------------------------|
| 10            | 217.2                  |
| 15            | 302.8                  |
| 20            | 379.3                  |
| 25            | 447.7                  |
| 30            | 508.9                  |
| 40            | 612.4                  |
| 50            | 695.1                  |
| 60            | 761.2                  |

- a) după **10 minute**, temperatura la axul central va fi de **217.2** [°C]
- b) condiţiile staţionare se ating după circa **6 ore**, când temperatura la axul central va fi de **1023** [°C]

#### Concluzii/Comentarii:

Valorile determinate pentru temperaturi nu depind de valoarea incrementului de timp  $\Delta t$  ales. Valoarea de 60 de secunde din soluția problemei a fost aleasă tocmai pentru a determina mai uşor temperatura din minut în minut.

# **6.3** Probleme propuse

## Problema P6.1

Călirea unor bile de oțel AISI-1010 se face printr-un proces de răcire controlat. Când sunt scoase din cuptor, bilele au o temperatură de 800 °C; sunt lăsate să se răcească până la 125 °C într-un mediu cu temperatura de 50 °C, coeficientul convectiv de transfer de căldură fiind estimat la  $\alpha$  = 20 W/m²K.

Să se determine timpul necesar pentru procesul de răcire, dacă diametrul bilelor este 10 mm.

## Problema P6.2

O bilă din oțel carbon, cu diametrul de 20 mm, este răcită de la 600 °C într-un curent de aer care are temperatura de 25 °C. Coeficientul convectiv de transfer de căldură este estimat la  $\alpha$  = 100 W/m²K.

Să se determine temperatura la care ajunge bila după două minute.

Proprietățile se vor estima la o temperatură medie de 325 °C.

#### Problema P6.3

Un ax din oţel carbon AISI-1010 (diametrul 10 mm) este tratat termic într-un cuptor cu gaze ce asigură în interior o temperatură de 1000 °C. Coeficientul convectiv de transfer de căldură este estimat la  $\alpha$  = 100 W/m²K.

Dacă temperatura iniţială uniformă a axului a fost de 25 °C să se determine timpul necesar pentru încălzirea acestuia în cuptor până la temperatura de 500 °C.

#### Problema P6.4

Dacă axul din problema precedentă este scos din cuptor și lăsat să se răcească în mediul ambiant (la 25 °C) cu un coeficient convectiv de transfer de căldură estimat la  $\alpha$  = 20 W/m²K, să se determine la ce temperatură va ajunge axul după 5 minute.

Un pepene roşu, cu diametrul D = 30 cm, aflat iniţial la temperatura mediului ambiant de 25 °C, este introdus într-un frigider. Se consideră convecţie naturală cu un coeficient de transfer de căldură  $\alpha$  = 10 W/m²K. Se presupune că pepenele poate fi aproximat cu o sferă şi proprietăţile termo-fizice sunt similare cu cele ale apei la aceeaşi temperatură.

Să se determine dacă se poate utiliza metoda capacității termice infinite pentru analiza procesului de răcire.

## Problema P6.6

O bucată de fier, de formă paralelipipedică cu dimensiunile 20 x 18 x 80 cm, este la o temperatură mai ridicată decât cea a mediului înconjurător.

- a) Să se determine dacă se poate utiliza metoda capacității termice infinite pentru analiza procesului de răcire, dacă se consideră convecție naturală cu un coeficient de transfer de căldură  $\alpha$  = 5 W/m²K.
- b) Care este valoarea fluxului termic la 2 minute de la începerea procesului de răcire, dacă temperatura iniţială a fost 300 °C, iar temperatura mediului este de 25 °C.
- c) Energia totală transferată de la bucata de fier în primele două minute ale procesului de răcire

#### Problema P6.7

O sferă din aluminiu pur, cu emisivitatea suprafeței  $\varepsilon$  = 0.75 și diametrul 50 mm, este încălzită într-un cuptor până la temperatura de 500 °C. Apoi sfera este suspendată într-o încăpere unde atât aerul ambiant, cât și mediul înconjurător sunt la temperatura de 25 °C. Coeficientul convectiv de transfer de căldură este estimat la  $\alpha$  = 10 W/m²K.

Să se determine timpul necesar pentru răcirea sferei până la o temperatură de 100 °C dacă:

- a) se neglijează radiația termică
- b) se neglijează convecţia termică
- c) se iau în considerare ambele moduri de transfer de căldură

Se consideră un fir de aluminiu cu diametrul 0.5 mm, aflat în stare iniţială la o temperatură uniformă de 200 °C. Acesta este supus brusc unei răciri în mediul ambiant (la 25 °C) prin:

- a) convecţie naturală cu un coeficient de transfer de căldură  $\alpha$  = 5 W/m<sup>2</sup>K
- b) convecţie forţată cu un coeficient de transfer de căldură  $\alpha$  = 100 W/m<sup>2</sup>K

Să se determine relațiile de variație a temperaturii și să se reprezinte grafic cele două variante de răcire.

#### Problema P6.9

Un conductor electric lung are următoarele caracteristici: diametrul D = 1 mm; rezistența electrică liniară  $R_e$  = 0.01  $\Omega/m$ , densitatea  $\rho$  = 10000 kg/m³, căldura specifică la presiune constantă  $c_p$  = 500 J/kgK, conductivitatea termică  $\lambda$  = 25 W/mK. Acesta este imersat într-o baie în care se află un lichid cu inerție termică mare, aflat la temperatura uniformă de 20 °C.

Dacă prin acest conductor se trece un curent de 100 A, iar coeficientul convectiv de transfer de căldură este estimat ca fiind  $\alpha$  = 250 W/m<sup>2</sup>K, să se determine:

- a) temperatura de echilibru (funcționare staționară a sistemului)
- b) timpul necesar pentru ca temperatura în conductor să atingă 90% din temperatura de echilibru.

#### Problema P6.10

Un perete alcătuit din cărămidă, cu grosimea de 10 cm și dimensiuni mari pe înălțime și lățime, la momentul inițial se află la o temperatură uniformă egală cu temperatura mediului înconjurător de 20 °C. O latură a peretelui este perfect izolată termic, în timp ce cealaltă latură a peretelui este expusă unor condiții convective de convecție naturală cu caracteristicile: temperatură 0 °C; coeficient convectiv de transfer de căldură  $\alpha = 10 \text{ W/m}^2\text{K}$ . Să se determine

- a) temperaturile celor două suprafețe laterale ale peretelui după 6 ore
- b) energia termică totală raportată la unitatea de suprafață extrasă de la perete în această perioadă de timp.

În procesul de călire a unei plăci din oțel obișnuit, de  $0.1\,\mathrm{m}$  grosime, aceasta se încălzește de la o temperatură uniformă inițială de  $100\,\mathrm{^{\circ}C}$  până la o temperatură de minim  $600\,\mathrm{^{\circ}C}$ .

Cuptorul asigură o temperatură de 900 °C şi un coeficient convectiv de transfer de căldură de  $\alpha$  = 300 W/m²K pe ambele suprafeţe ale plăcii.

Să se estimeze cât timp trebuie să rămână placa de oţel în cuptor.

#### Problema P6.12

Se consideră o unitate de stocare a energiei termice, cu geometria unui perete plan cu carateristicile următoare: grosime D = 50 mm; densitatea  $\rho$  = 1900 kg/m³, căldura specifică  $c_0$  = 800 J/kgK, conductivitatea termică  $\lambda$  = 0.7 W/mK.

Aflată inițial la o temperatură uniformă de 25 °C, este încălzită pe ambele părți cu ajutorului unui fluid cald cu o temperatură de 700 °C și cu un coeficient convectiv de transfer de căldură de  $\alpha$  = 100 W/m²K.

Să se estimeze cât timp este necesar pentru ca placa să atingă 75% din valoarea maximă posibilă a energiei de stocare şi să se determine temperaturile maximă şi minimă în placă la acel moment.

## Problema P6.13

Pentru eliminarea tensiunilor remanente și tratament de călire, o placă de oțel din oțel obișnuit, de 0.2 m grosime, aflată inițial la o temperatură uniformă de 300 °C, este încălzită pe ambele părți până la o temperatură de 500 °C.

Cuptorul utilizat pentru tratament asigură o temperatură de 700 °C şi un coeficient convectiv de transfer de căldură de  $\alpha$  = 500 W/m²K.

Să se estimeze cât timp trebuie să rămână placa de oțel în cuptor și să se determine temperatura la suprafața plăcii în acel moment.

Un bloc de oţel din oţel obişnuit, de 10 mm grosime, foarte înalt şi foarte lat, aflat iniţial la o temperatură uniformă de 200 °C, este expus brusc la un mediu convectiv cu temperatura de 50 °C, coeficient convectiv de transfer de căldură de  $\alpha$  = 50 W/m²K şi difuzivitate termică a = 2 x 10<sup>-6</sup> m²/s.

Să se determine temperatura în planul central al plăcii și la 3 cm distanță de la suprafață după 10 minute de expunere.

#### Problema P6.15

Un cilindru de oţel inox, lung, cu diametrul de 65 mm, are la momentul iniţial o temperatură uniformă de 150 °C. Cilindrul este expus brusc unor condiţii convective caracterizate de temperatura mediului ambiant de 50 °C şi coeficientul convectiv de transfer de căldură de  $\alpha$  = 300 W/m²K. După trecerea a 5 minute din procesul de răcire, să se determine:

- a) temperatura la axul central al cilindrului;
- b) temperatura la 2.5 cm în direcție radială;
- c) energia totală pe unitatea de lungime transferată de la cilindru

#### Problema P6.16

Un cremwurst este scos din frigider şi aruncat într-o oală cu apă care fierbe. Datorită faptului ca lungimea cremwurst-ului este mult mai mare ca diametrul (10 mm), acesta poate fi aproximat cu un cilindru infinit, cu următoarele carateristici termofizice: densitatea  $\rho$  = 900 kg/m³, căldura specifică  $c_p$  = 3500 J/kgK şi conductivitatea termică  $\lambda$  = 0.5 W/mK.

Dacă se consideră temperatura iniţială uniformă a cremwurst-ului de 5 °C şi un coeficient convectiv de transfer de căldură de  $\alpha$  = 100 W/m²K în apa care fierbe, să se estimeze în cât timp temperatura pe axul central al "cilindrului infinit" atinge 80 °C. Să se utilizeze metoda analitică (soluţia aproximativă), cât şi diagramele corespunzătoare din Anexa 3. Să se compare rezultatele.

Se consideră un cub de plumb, cu latura de 100 mm. Inițial, cubul se află la o temperatură uniformă de 200 °C și apoi este expus brusc unor condiții convective caracterizate de temperatura mediului ambiant de 30 °C și coeficientul convectiv de transfer de căldură de  $\alpha$  = 100 W/m²K.

După 1 minut din procesul de răcire, să se determine valoarea temperaturii în centrul cubului.

Este utilizabilă metoda capacității termice infinite?

#### Problema P6.18

Se consideră conducţia tranzitorie bi-dimensională printr-o bară solidă cu secţiunea transversală în formă de L . Iniţial, bara se află la o temperatură uniformă de 150 °C şi are următoarele carateristici termofizice: conductivitate termică  $\lambda=15$  W/mK, difuzivitate a = 3.2 x 10 $^{-6}$  m²/s, generare uniformă de energie de  $\dot{Q}_{\rm gen}^{\prime\prime\prime}=2$  x  $10^{7}$  W/m³ . Suprafaţa de jos a barei este menţinută permanent la 150 °C, în timp ce cea din dreapta este izolată termic, ca în figura de mai jos. La momentul iniţial, întreaga suprafaţă superioară este supusă unei condiţii convective cu caracterisiticile: temperatura mediului ambiant 25 °C şi coeficient convectiv de transfer de căldură de  $\alpha=100$  W/m²K. De asemenea, în acelaşi moment, suprafaţa din stânga este supusă unei condiţii de flux termic constant şi uniform cu valoarea  $\dot{Q}^{\prime\prime}=1$  x  $10^4$  W/m² .

Să se utilizeze soluția explicită a metodei numerice pentru a determina temperatura nodului 3 (vezi figura) după 1, 2, 5 și 10 minute.



Pornind de la bilanţul energetic pentru un element de volum în coordonate carteziene, să se obţină ecuaţia cu diferenţe finite pentru un nod generic interior (m,n - bidimensional), în condiţii tranzitorii, cu conductivitate termică constantă, fără surse interne de energie, pentru:

- a) Metoda explicită
- b) Metoda implicită

## Problema P6.20

Pornind de la bilanţul energetic pentru un element de volum tip disc, să se obţină ecuaţia explicită cu diferenţe finite pentru un nod generic interior (m - unidimensional), în condiţii tranzitorii, într-un cilindru izolat termic pe suprafaţa laterală, cu surse interne de energie, cu conductivitate termică constantă.

# **ANEXE**

# Anexa 1 Proprietăți termofizice

#### Lista tabelelor

| Tabel | <ol> <li>Proprietăţile</li> </ol> | termofizice ale uno | r materiale selectate | <ul> <li>Metalice</li> </ul> |
|-------|-----------------------------------|---------------------|-----------------------|------------------------------|
|-------|-----------------------------------|---------------------|-----------------------|------------------------------|

- Tabel 2. Proprietățile termofizice ale unor materiale selectate Nemetalice
- Tabel 3. Proprietățile termofizice ale unor materiale izolatoare selectate
- Tabel 4. Proprietățile termofizice ale unor materiale de construcție selectate
- Tabel 5. Proprietățile termofizice ale unor materiale comune selectate
- Tabel 6. Informații de bază despre cele mai utilizate elemente și compuși
- Tabel 7. Proprietăți fizice ale unor lichide uzuale
- Tabel 8. Proprietăți fizice ale unor gaze uzuale
- Tabel 9. Proprietăți termodinamice pentru apă la saturație: temperatură
- Tabel 10. Proprietăți termodinamice pentru apă la saturație: presiune
- Tabel 11. Proprietăți fizice pentru apă la saturație
- Tabel 12. Proprietăți pentru vapori supraîncălziți
- Tabel 13. Proprietăți pentru apă la presiuni mari
- Tabel 14. Densitatea și vâscozitatea apei la 1 atm
- Tabel 15. Proprietăți pentru lichide uzuale la 1 atm și 20°C
- Tabel 16. Proprietăți fizice pentru lichide
- Tabel 17. Proprietăți fizice pentru metale lichide
- Tabel 18. Proprietățile aerului gaz ideal
- Tabel 19. Proprietățile aerului la 1 atm
- Tabel 20. Proprietățile aerului la altitudine mare
- Tabel 21. Densitatea și vâscozitatea aerului la 1 atm
- Tabel 22. Proprietăți pentru gaze uzuale la 1 atm și 20°C
- Tabel 23. Căldurile specifice ale unor gaze uzuale, în [kJ/kg·K]
- Tabel 24. Proprietățile gazelor la 1 atm

Tabel 1. Proprietățile termofizice ale unor materiale selectate – **Metalice** 

| Cubatanta                      | Punctul          | Proprietățile la<br>300 K |                            |                |                               |
|--------------------------------|------------------|---------------------------|----------------------------|----------------|-------------------------------|
| Substanţa                      | de topire<br>[K] | ρ<br>[kg/m³]              | c <sub>p</sub><br>[J/kg·K] | λ<br>[W/m · K] | a x 10 <sup>6</sup><br>[m²/s] |
| Aluminiu - pur                 | 933              | 2702                      | 903                        | 237            | 97.1                          |
| Aluminiu - aliaj 2024-T6       | 775              | 2770                      | 875                        | 177            | 73.0                          |
| Beriliu                        | 1550             | 1850                      | 1825                       | 200            | 59.2                          |
| Crom                           | 2118             | 7160                      | 449                        | 93.7           | 29.1                          |
| Cobalt                         | 1769             | 8862                      | 421                        | 99.2           | 26.6                          |
| Cupru - pur                    | 1358             | 8933                      | 385                        | 401            | 117                           |
| Cupru - bronz (90% Cu, 10% Al) | 1293             | 8800                      | 420                        | 52             | 14                            |
| Cupru - alamă (70% Cu, 30% Zn) | 1188             | 8530                      | 380                        | 110            | 33.9                          |
| Constantan (55% Cu, 45% Ni)    | 1493             | 8920                      | 384                        | 23             | 6.71                          |
| Germaniu                       | 1211             | 5360                      | 322                        | 59.9           | 34.7                          |
| Aur                            | 1336             | 19,300                    | 129                        | 317            | 127                           |
| Fier - pur                     | 1810             | 7870                      | 447                        | 80.2           | 23.1                          |
| Fier - Oţel carbon - normal    |                  | 7854                      | 434                        | 60.5           | 17.7                          |
| Fier - Oţel carbon - AISI 1010 |                  | 7832                      | 434                        | 63.9           | 18.8                          |
| Fier - Oţel inox - AISI 316    |                  | 8238                      | 468                        | 13.4           | 3.48                          |

(Continuare pe pagina următoare)

|       |       |       | Proprie             | tăţile la |        |        |        |
|-------|-------|-------|---------------------|-----------|--------|--------|--------|
| 100 K | 200 K | 400 K | 600 K               | 800 K     | 1000 K | 1200 K | 1500 K |
|       |       |       | λ, [W,              | /m · K]   |        |        |        |
|       |       |       | с <sub>р</sub> ,[J/ | kg K]     |        |        |        |
| 302   | 237   | 240   | 231                 | 218       |        |        |        |
| 482   | 798   | 949   | 1033                | 1146      |        |        |        |
| 65    | 163   | 186   | 186                 |           |        |        |        |
| 473   | 787   | 925   | 1042                |           |        |        |        |
| 990   | 301   | 161   | 126                 | 106       | 90.8   | 78.7   |        |
| 203   | 1114  | 2191  | 2604                | 2823      | 3018   | 3227   | 3519   |
| 159   | 111   | 90.9  | 80.7                | 71.3      | 65.4   | 61.9   | 57.2   |
| 192   | 384   | 484   | 542                 | 581       | 616    | 682    | 779    |
| 167   | 122   | 85.4  | 67.4                | 58.2      | 52.1   | 49.3   | 42.5   |
| 236   | 379   | 450   | 503                 | 550       | 628    | 733    | 674    |
| 482   | 413   | 393   | 379                 | 366       | 352    | 339    |        |
| 252   | 356   | 397   | 417                 | 433       | 451    | 480    |        |
|       | 42    | 52    | 59                  |           |        |        |        |
|       | 785   | 160   | 545                 |           |        |        |        |
| 75    | 95    | 137   | 149                 |           |        |        |        |
|       | 360   | 395   | 425                 |           |        |        |        |
| 17    | 19    |       |                     |           |        |        |        |
| 237   | 362   |       |                     |           |        |        |        |
| 232   | 96.8  | 43.2  | 27.3                | 19.8      | 17.4   | 17.4   |        |
| 190   | 290   | 337   | 348                 | 357       | 375    | 395    |        |
| 327   | 323   | 311   | 298                 | 284       | 270    | 255    |        |
| 109   | 124   | 131   | 135                 | 140       | 145    | 155    |        |
| 134   | 94.0  | 69.5  | 54.7                | 43.3      | 32.8   | 28.3   | 32.1   |
| 216   | 384   | 490   | 574                 | 680       | 975    | 609    | 654    |
|       |       | 56.7  | 48.0                | 39.2      | 30.0   |        |        |
|       |       | 487   | 559                 | 685       | 1169   |        |        |
|       |       | 58.7  | 48.8                | 39.2      | 31.3   |        |        |
|       |       | 487   | 559                 | 685       | 1168   |        |        |
|       |       | 15.2  | 18.3                | 21.3      | 24.2   |        |        |
|       |       | 504   | 550                 | 576       | 602    |        |        |

Tabel 1. (Continuare din pagina anterioară)

| Substanța      | Punctul<br>de topire | Proprietățile la<br>300 K |                            |                |                               |
|----------------|----------------------|---------------------------|----------------------------|----------------|-------------------------------|
| Substanța      | [K]                  | ρ                         | c <sub>p</sub><br>[J/kg·K] | λ<br>[W/m · K] | a x 10 <sup>6</sup><br>[m²/s] |
| Plumb          | 601                  | 11,340                    | 129                        | 35.3           | 24.1                          |
| Magneziu       | 923                  | 1740                      | 1024                       | 156            | 87.6                          |
| Molibden       | 2894                 | 10,240                    | 251                        | 138            | 53.7                          |
| Nichel - pur   | 1728                 | 8900                      | 444                        | 90.7           | 23.0                          |
| Platină - pură | 2045                 | 21,450                    | 133                        | 71.6           | 25.1                          |
| Silicon        | 1685                 | 2330                      | 712                        | 148            | 89.2                          |
| Argint         | 1235                 | 10,500                    | 235                        | 429            | 174                           |
| Tantal         | 3269                 | 16,600                    | 140                        | 57.5           | 24.7                          |
| Toriu          | 2023                 | 11,700                    | 118                        | 54.0           | 39.1                          |
| Staniu         | 505                  | 7310                      | 227                        | 66.6           | 40.1                          |
| Titaniu        | 1953                 | 4500                      | 522                        | 21.9           | 9.32                          |
| Tungsten       | 3660                 | 19,300                    | 132                        | 174            | 68.3                          |
| Uraniu         | 1406                 | 19,070                    | 116                        | 27.6           | 12.5                          |
| Vanadiu        | 2192                 | 6100                      | 489                        | 30.7           | 10.3                          |
| Zinc           | 693                  | 7140                      | 389                        | 116            | 41.8                          |

Sursa: Adaptat din: Moran M.J. et al., 2002

|       |       |       | Proprie             | tățile la |        |        |        |
|-------|-------|-------|---------------------|-----------|--------|--------|--------|
| 100 K | 200 K | 400 K | 600 K               | 800 K     | 1000 K | 1200 K | 1500 K |
|       |       |       | λ, [W,              | /m · K]   |        |        |        |
|       |       |       | с <sub>р</sub> ,[J/ | kg K]     |        |        |        |
| 39.7  | 36.7  | 34.0  | 31.4                |           |        |        |        |
| 118   | 125   | 132   | 142                 |           |        |        |        |
| 169   | 159   | 153   | 149                 | 146       |        |        |        |
| 649   | 934   | 1074  | 1170                | 1267      |        |        |        |
| 179   | 143   | 134   | 126                 | 118       | 112    | 105    | 98     |
| 141   | 224   | 261   | 275                 | 285       | 295    | 308    | 330    |
| 164   | 107   | 80.2  | 65.6                | 67.6      | 71.8   | 76.2   | 82.6   |
| 232   | 383   | 485   | 592                 | 530       | 562    | 594    | 616    |
| 77.5  | 72.6  | 71.8  | 73.2                | 75.6      | 78.7   | 82.6   | 89.5   |
| 100   | 125   | 136   | 141                 | 146       | 152    | 157    | 165    |
| 884   | 264   | 98.9  | 61.9                | 42.4      | 31.2   | 25.7   | 22.7   |
| 259   | 556   | 790   | 867                 | 913       | 946    | 967    | 992    |
| 444   | 430   | 425   | 412                 | 396       | 379    | 361    |        |
| 187   | 225   | 239   | 250                 | 262       | 277    | 292    |        |
| 59.2  | 57.5  | 57.8  | 58.6                | 59.4      | 60.2   | 61.0   | 62.2   |
| 110   | 133   | 144   | 146                 | 149       | 152    | 155    | 160    |
| 59.8  | 54.6  | 54.5  | 55.8                | 56.9      | 56.9   | 58.7   |        |
| 99    | 112   | 124   | 134                 | 145       | 156    | 167    |        |
| 85.2  | 73.3  | 62.2  |                     |           |        |        |        |
| 188   | 215   | 243   |                     |           |        |        |        |
| 30.5  | 24.5  | 20.4  | 19.4                | 19.7      | 20.7   | 22.0   | 24.5   |
| 300   | 465   | 551   | 591                 | 633       | 675    | 620    | 686    |
| 208   | 186   | 159   | 137                 | 125       | 118    | 113    | 107    |
| 87    | 122   | 137   | 142                 | 146       | 148    | 152    | 157    |
| 21.7  | 25.1  | 29.6  | 34.0                | 38.8      | 43.9   | 49.0   |        |
| 94    | 108   | 125   | 146                 | 176       | 180    | 161    |        |
| 35.8  | 31.3  | 31.3  | 33.3                | 35.7      | 38.2   | 40.8   | 44.6   |
| 258   | 430   | 515   | 540                 | 563       | 597    | 645    | 714    |
| 117   | 118   | 111   | 103                 |           |        |        |        |
| 297   | 367   | 402   | 436                 |           |        |        |        |

Tabel 2. Proprietățile termofizice ale unor materiale selectate – **Nemetalice** 

| Substanța                                           | Punctul<br>de topire | Proprietățile la<br>300 K |                            |                |                               |
|-----------------------------------------------------|----------------------|---------------------------|----------------------------|----------------|-------------------------------|
| Substanţa                                           | [K]                  | ρ<br>[kg/m³]              | c <sub>p</sub><br>[J/kg·K] | λ<br>[W/m · K] | a x 10 <sup>6</sup><br>[m²/s] |
| Aluminiu (oxid) - policristalin                     | 2323                 | 3970                      | 765                        | 36.0           | 11.9                          |
| Aluminiu (oxid) - safir                             | 2323                 | 3970                      | 765                        | 46.0           | 15.1                          |
| Beriliu oxid                                        | 2725                 | 3000                      | 1030                       | 272            | 88.0                          |
| Diamant                                             |                      | 3500                      | 509                        | 2300           |                               |
| Grafit - pirolitic<br>(flux paralel cu straturile)  | 2273                 | 2210                      | 709                        | 1950           |                               |
| Grafit - pirolitic (flux perpendicular pe straturi) | 2273                 | 2210                      | 709                        | 5.70           |                               |
| Grafit - fibre<br>(flux paralel cu straturile)      | 450                  | 1400                      | 935                        | 11.1           |                               |
| Grafit - fibre<br>(flux perpendicular pe straturi)  | 450                  | 1400                      | 935                        | 0.87           |                               |
| Pyroceram - Corning 9606<br>(sticlă tratată termic) | 1623                 | 2600                      | 808                        | 3.98           | 1.89                          |
| Siliciu - carbură                                   | 3100                 | 3160                      | 675                        | 490            | 230                           |
| Siliciu - dioxid - policristalin                    | 1883                 | 2220                      | 745                        | 1.38           | 0.834                         |
| Siliciu - nitrat                                    | 2173                 | 2400                      | 691                        | 16.0           | 9.65                          |
| Sulf                                                | 392                  | 2070                      | 708                        | 0.206          | 0.141                         |
| Toriu - dioxid                                      | 3573                 | 9110                      | 235                        | 13             | 6.1                           |
| Titaniu dioxid - policristalin                      | 2133                 | 4157                      | 710                        | 8.4            | 2.8                           |

Sursa: Adaptat din: Moran M.J. et al., 2002

|                      |              |             | Proprie | tăţile la |        |        |        |
|----------------------|--------------|-------------|---------|-----------|--------|--------|--------|
| 100 K                | 200 K        | 400 K       | 600 K   | 800 K     | 1000 K | 1200 K | 1500 K |
| λ <b>,</b> [W/m · K] |              |             |         |           |        |        |        |
|                      |              |             |         | kg·K]     |        |        |        |
| 133                  | 55           | 26.4        | 15.8    | 10.4      | 7.85   | 6.55   | 5.66   |
|                      |              | 940         | 1110    | 1180      | 1225   |        |        |
| 450                  | 82           | 32.4        | 18.9    | 13.0      | 10.5   |        |        |
|                      |              | 940         | 1110    | 1180      | 1225   |        |        |
|                      |              | 196         | 111     | 70        | 47     | 33     | 21.5   |
|                      |              | 1350        | 1690    | 1865      | 1975   | 2055   | 2145   |
| 10,000               | 4000         | 1540        |         |           |        |        |        |
|                      |              |             |         |           |        |        |        |
| 4970                 | 3230         | 1390        | 892     | 667       | 534    | 448    | 357    |
| 136                  | 411          | 992         | 1406    | 1650      | 1793   | 1890   | 1974   |
| 16.8                 | 9.23         | 4.09        | 2.68    | 2.01      | 1.60   | 1.34   | 1.08   |
| 136                  | 411          | 992         | 1406    | 1650      | 1793   | 1890   | 1974   |
| 5.7                  | 8.7          | 13.0        |         |           |        |        |        |
| 337                  | 642          | 1216        |         |           |        |        |        |
| 0.46                 | 0.68         | 1.10        |         |           |        |        |        |
| 337                  | 642          | 1216        |         |           |        |        |        |
| 5.25                 | 4.78         | 3.64        | 3.28    | 3.08      | 2.96   | 2.87   | 2.79   |
|                      |              | 908         | 1038    | 1122      | 1197   | 1264   | 1498   |
|                      |              |             |         |           | 87     | 58     | 30     |
|                      |              | 880         | 1050    | 1135      | 1195   | 1243   | 1310   |
| 0.69                 | 1.14         | 1.51        | 1.75    | 2.17      | 2.87   | 4.00   |        |
|                      |              | 905         | 1040    | 1105      | 1155   | 1195   |        |
|                      |              | 13.9        | 11.3    | 9.88      | 8.76   | 8.00   | 7.16   |
|                      | 578          | 778         | 937     | 1063      | 1155   | 1226   | 1306   |
| 0.165<br>403         | 0.185<br>606 |             |         |           |        |        |        |
| 403                  | 000          | 10.2        | 6.6     | 4.7       | 3.68   |        |        |
|                      |              | 255         | 274     | 285       | 295    |        |        |
|                      |              | 7.01        | 5.02    | 8.94      | 3.46   |        |        |
|                      |              | 7.01<br>805 | 880     | 910       | 930    |        |        |
|                      |              | 000         | 000     | 310       | 530    |        |        |

Tabel 3. Proprietățile termofizice ale unor materiale **izolatoare** selectate

| Material / Sistem                    | ρ<br>[kg/m³] | λ<br>[W/m · K] | c <sub>p</sub><br>[J/kg · K] |
|--------------------------------------|--------------|----------------|------------------------------|
| Vată de sticlă - acoperită cu hârtie | 16           | 0.046          | _                            |
|                                      | 28           | 0.038          | _                            |
|                                      | 40           | 0.035          | _                            |
| Placă - sticlă granule               | 145          | 0.058          | 1000                         |
| Placă - fibră de sticlă              | 105          | 0.036          | 795                          |
| Placă - polistiren extrudat          | 55           | 0.027          | 1210                         |
| Placă - polistiren expandat          | 16           | 0.040          | 1210                         |
| Umplutură - fibră de sticlă          | 16           | 0.043          | 835                          |
| Umplutură - fulgi                    | 80           | 0.068          | 835                          |
|                                      | 160          | 0.063          | 1000                         |
| Spumă - polivinil mastic             | _            | 0.100          | _                            |
| Spumă - uretan                       | 70           | 0.026          | 1045                         |
| Siliciu pudră, vacuum                | 160          | 0.0017         |                              |

Sursa: Adaptat din diverse surse

Tabel 4. Proprietățile termofizice ale unor materiale **de construcție** selectate

| Material                         | ρ<br>[kg/m³] | λ<br>[W/m · K] | c <sub>p</sub><br>[J/kg·K] |
|----------------------------------|--------------|----------------|----------------------------|
| Ghips or placă rigips            | 800          | 0.170          | _                          |
| Lemn stratificat, siding         | 640          | 0.094          | 1170                       |
| Plăci aglomerate, densitate mică | 590          | 0.078          | 1300                       |
| Plăci aglomerate, densitate mare | 1000         | 0.170          | 1300                       |
| Placaj                           | 545          | 0.120          | 1215                       |
| Lemn esenţă tare (stejar, arţar) | 720          | 0.160          | 1255                       |
| Lemn esenţă moale (brad, pin)    | 510          | 0.120          | 1380                       |
| Cărămidă                         | 1920         | 0.720          | 835                        |
| Beton                            | 2300         | 1.400          | 880                        |

Sursa: Adaptat din diverse surse

Tabel 5. Proprietățile termofizice ale unor materiale **comune** selectate

| Substanţa                              | Т   | ρ       | λ         | Ср       |
|----------------------------------------|-----|---------|-----------|----------|
|                                        | [K] | [kg/m³] | [W/m · K] | [J/kg·K] |
| Asfalt                                 | 300 | 2115    | 0.062     | 920      |
| Cărbune                                | 300 | 1350    | 0.260     | 1260     |
| Bumbac                                 | 300 | 80      | 0.060     | 1300     |
| Măr (75% apă)                          | 300 | 840     | 0.513     | 3600     |
| Blat tort, copt                        | 300 | 280     | 0.121     | _        |
| Pui - carne albă (74.4% apă)           | 198 | _       | 1.600     | _        |
|                                        | 273 | _       | 0.476     | _        |
| Sticlă - placă                         | 300 | 2500    | 1.400     | 750      |
| Sticlă - pyrex                         | 300 | 2225    | 1.400     | 835      |
| Gheaţă                                 | 273 | 920     | 1.880     | 2040     |
|                                        | 253 | _       | 2.030     | 1945     |
| Piele                                  | 300 | 998     | 0.159     | _        |
| Hârtie                                 | 300 | 930     | 0.180     | 1340     |
| Parafină                               | 300 | 900     | 0.240     | 2890     |
| Piatră, Granit                         | 300 | 2630    | 2.790     | 775      |
| Piatră, Marmură                        | 300 | 2680    | 2.800     | 830      |
| Piatră, Gresie                         | 300 | 2150    | 2.900     | 745      |
| Cauciuc, moale                         | 300 | 1100    | 0.130     | 2010     |
| Cauciuc, tare                          | 300 | 1190    | 0.160     | _        |
| Nisip                                  | 300 | 1515    | 0.270     | 800      |
| Pământ                                 | 300 | 2050    | 0.520     | 1840     |
| Zăpadă                                 | 273 | 110     | 0.049     | _        |
|                                        |     | 500     | 0.190     | _        |
| Teflon                                 | 300 | 2200    | 0.350     | _        |
|                                        | 400 | _       | 0.450     | _        |
| Ţesut, piele umană                     | 300 | _       | 0.370     | _        |
| Lemn (perpendicular pe fibră) - brad   | 300 | 415     | 0.110     | 2720     |
| Lemn (perpendicular pe fibră) - stejar | 300 | 545     | 0.170     | 2385     |
| Lemn (radial) - brad                   | 300 | 420     | 0.140     | 2720     |
| Lemn (radial) - stejar                 | 300 | 545     | 0.190     | 2385     |

Sursa: Adaptat din diverse surse

Tabel 6. Informații de bază despre cele mai utilizate elemente și compuși

| Substanţa        | Formula                        | M         | T <sub>c</sub> | p <sub>c</sub> |
|------------------|--------------------------------|-----------|----------------|----------------|
|                  | chimică                        | [kg/kmol] | [K]            | [bar]          |
| Acetilenă        | CH                             | 26.04     | 309            | 62.8           |
| Aer (echivalent) | $C_2H_2$                       | 28.97     | 133            | 37.7           |
| ,                |                                |           |                |                |
| Amoniac          | NH <sub>3</sub>                | 17.03     | 406            | 112.8          |
| Argon            | Ar                             | 39.94     | 151            | 48.6           |
| Benzen           | C <sub>6</sub> H <sub>6</sub>  | 78.11     | 563            | 49.3           |
| Butan            | C <sub>4</sub> H <sub>10</sub> | 58.12     | 425            | 38.0           |
| Carbon           | С                              | 12.01     | _              | _              |
| Carbon - dioxid  | CO <sub>2</sub>                | 44.01     | 304            | 73.9           |
| Carbon - monoxid | CO                             | 28.01     | 133            | 35.0           |
| Cupru            | Cu                             | 63.54     | _              | _              |
| Etan             | $C_2H_6$                       | 30.07     | 305            | 48.8           |
| Alcool etilic    | $C_2H_5OH$                     | 46.07     | 516            | 63.8           |
| Etilen           | $C_2H_4$                       | 28.05     | 283            | 51.2           |
| Heliu            | He                             | 4.003     | 5.2            | 2.3            |
| Hidrogen         | $H_2$                          | 2.016     | 33.2           | 13.0           |
| Metan            | CH <sub>4</sub>                | 16.04     | 191            | 46.4           |
| Alcool metilic   | CH <sub>3</sub> OH             | 32.04     | 513            | 79.5           |
| Nitrogen (azot)  | $N_2$                          | 28.01     | 126            | 33.9           |
| Octan            | $C_8H_{18}$                    | 114.22    | 569            | 24.9           |
| Oxigen           | $O_2$                          | 32.00     | 154            | 50.5           |
| Propan           | C₃H <sub>8</sub>               | 44.09     | 370            | 42.7           |
| Propilenă        | C₃H <sub>6</sub>               | 42.08     | 365            | 46.2           |
| Refrigerant 12   | $CCl_2F_2$                     | 120.92    | 385            | 41.2           |
| Refrigerant 22   | CHCIF <sub>2</sub>             | 86.48     | 369            | 49.8           |
| Refrigerant 134a | CF₃CH₂F                        | 102.03    | 374            | 40.7           |
| Sulf dioxid      | SO <sub>2</sub>                | 64.06     | 431            | 78.7           |
| Apă              | H <sub>2</sub> O               | 18.02     | 647.3          | 220.9          |

Surse: International Critical Tables și Nelson L.C., Obert E.F., 1954

Tabel 7. Proprietăți fizice ale unor lichide uzuale

| Substanţa              | T<br>[°C] | ρ<br>[kg/m³] | $\gamma$ [kN/m <sup>3</sup> ] | μ x 10 <sup>3</sup><br>[Ns/m²] | ν x 10 <sup>6</sup><br>[m²/s] |
|------------------------|-----------|--------------|-------------------------------|--------------------------------|-------------------------------|
|                        |           |              |                               |                                |                               |
| Tetraclorură de carbon | 20        | 1,590        | 15.60                         | 0.958                          | 0.603                         |
| Alcool etilic          | 20        | 789          | 7.74                          | 1.190                          | 1.510                         |
| Gazolină               | 15.6      | 680          | 6.67                          | 0.310                          | 0.460                         |
| Glicerină              | 20        | 1,260        | 12.40                         | 1,500.0                        | 1,190.0                       |
| Mercur                 | 20        | 13,600       | 133.00                        | 1.570                          | 0.115                         |
| Ulei SAE 30            | 15.6      | 912          | 8.95                          | 380.0                          | 420.0                         |
| Apă de mare            | 15.6      | 1,030        | 10.10                         | 1.200                          | 1.170                         |
| Арă                    | 15.6      | 999          | 9.80                          | 1.120                          | 1.120                         |

Sursa: Moran M.J. et al., 2002

Tabel 8. Proprietăți fizice ale unor gaze uzuale

| l'abei 8. Proprietați fizice ale unoi gaze uzuale |           |              |                               |                                |                                     |  |  |  |
|---------------------------------------------------|-----------|--------------|-------------------------------|--------------------------------|-------------------------------------|--|--|--|
| Substanţa                                         | T<br>[°C] | ρ<br>[kg/m³] | $\gamma$ [kN/m <sup>3</sup> ] | μ x 10 <sup>5</sup><br>[Ns/m²] | $v \times 10^5$ [m <sup>2</sup> /s] |  |  |  |
|                                                   |           |              |                               |                                |                                     |  |  |  |
| Aer                                               | 15        | 1.230        | 12.00                         | 1.790                          | 1.460                               |  |  |  |
| Carbon - dioxid                                   | 20        | 1.830        | 18.00                         | 1.470                          | 0.803                               |  |  |  |
| Heliu                                             | 20        | 0.166        | 1.63                          | 1.940                          | 11.50                               |  |  |  |
| Hidrogen                                          | 20        | 0.084        | 0.82                          | 0.884                          | 10.50                               |  |  |  |
| Metan (gaz natural)                               | 20        | 0.667        | 6.54                          | 1.100                          | 1.650                               |  |  |  |
| Nitrogen (azot)                                   | 20        | 1.160        | 11.40                         | 1.760                          | 1.520                               |  |  |  |
| Oxigen                                            | 20        | 1.330        | 13.00                         | 2.040                          | 1.530                               |  |  |  |
|                                                   |           |              |                               |                                |                                     |  |  |  |

Sursa: Moran M.J. et al., 2002

Tabel 9. Proprietăți termodinamice pentru apă la saturație: temperatură

| - roprictação te |                    | Volum             | specific         | Energia        | a internă        |
|------------------|--------------------|-------------------|------------------|----------------|------------------|
| Temp.            | Presiune           |                   | /kg]             |                | /kg]             |
| [°C]             | [bar]              | Lichid Sat.       | Vapori Sat.      |                | Vapori Sat.      |
|                  |                    | $v_f \times 10^3$ | Vg               | Uf             | Ug               |
| .01              | 0.00611            | 1.0002            | 206.136          | 0.00           | 2375.3           |
| 4                | 0.00813            | 1.0001            | 157.232          | 16.77          | 2380.9           |
| 5                | 0.00872            | 1.0001            | 147.120          | 20.97          | 2382.3           |
| 6                | 0.00935            | 1.0001            | 137.734          | 25.19          | 2383.6           |
| 8                | 0.01072            | 1.0002            | 120.917          | 33.59          | 2386.4           |
| 10               | 0.01228            | 1.0004            | 106.379          | 42.00          | 2389.2           |
| 11               | 0.01312            | 1.0004            | 99.857           | 46.20          | 2390.5           |
| 12               | 0.01402            | 1.0005            | 93.784           | 50.41          | 2391.9           |
| 13               | 0.01497            | 1.0007            | 88.124           | 54.60          | 2393.3           |
| 14               | 0.01598            | 1.0008            | 82.848           | 58.79          | 2394.7           |
| 15               | 0.01705            | 1.0009            | 77.926           | 62.99          | 2396.1           |
| 16               | 0.01818            | 1.0011            | 73.333           | 67.18          | 2397.4           |
| 17               | 0.01938            | 1.0012            | 69.044           | 71.38          | 2398.8           |
| 18               | 0.02064            | 1.0014            | 65.038           | 75.57          | 2400.2           |
| 19               | 0.02198            | 1.0016            | 61.293           | 79.76          | 2401.6           |
| 20               | 0.02339            | 1.0018            | 57.791           | 83.95          | 2402.9           |
| 21               | 0.02487            | 1.0020            | 54.514           | 88.14          | 2404.3           |
| 22<br>23         | 0.02645            | 1.0022            | 51.447           | 92.32<br>96.51 | 2405.7<br>2407.0 |
| 23<br>24         | 0.02810<br>0.02985 | 1.0024<br>1.0027  | 48.574<br>45.883 | 100.70         | 2407.0           |
| 25               | 0.02985            | 1.0027            | 43.360           | 100.70         | 2408.4           |
| 25<br>26         | 0.03169            | 1.0029            | 40.994           | 104.88         | 2409.8           |
| 27               | 0.03567            | 1.0032            | 38.774           | 113.25         | 2411.1           |
| 28               | 0.03307            | 1.0033            | 36.690           | 117.42         | 2412.5           |
| 29               | 0.03782            | 1.0037            | 34.733           | 121.60         | 2415.2           |
| 30               | 0.04246            | 1.0043            | 32.894           | 125.78         | 2416.6           |
| 31               | 0.04496            | 1.0046            | 31.165           | 129.96         | 2418.0           |
| 32               | 0.04759            | 1.0050            | 29.540           | 134.14         | 2419.3           |
| 33               | 0.05034            | 1.0053            | 28.011           | 138.32         | 2420.7           |
| 34               | 0.05324            | 1.0056            | 26.571           | 142.50         | 2422.0           |
| 35               | 0.05628            | 1.0060            | 25.216           | 146.67         | 2423.4           |
| 36               | 0.05947            | 1.0063            | 23.940           | 150.85         | 2424.7           |
| 38               | 0.06632            | 1.0071            | 21.602           | 159.20         | 2427.4           |
| 40               | 0.07384            | 1.0078            | 19.523           | 167.56         | 2430.1           |
| 45               | 0.09593            | 1.0099            | 15.258           | 188.44         | 2436.8           |

|                | Entalpie        |             |             | opie        |       |
|----------------|-----------------|-------------|-------------|-------------|-------|
|                | [kJ/kg]         |             |             | g K]        | Temp. |
| Lichid Sat.    | Evap.           | Vapori Sat. | Lichid Sat. | Vapori Sat. | [°C]  |
| h <sub>f</sub> | h <sub>fg</sub> | hg          | Sf          | Sg          |       |
| 0.01           | 2501.3          | 2501.4      | 0.0000      | 9.1562      | .01   |
| 16.78          | 2491.9          | 2508.7      | 0.0610      | 9.0514      | 4     |
| 20.98          | 2489.6          | 2510.6      | 0.0761      | 9.0257      | 5     |
| 25.20          | 2487.2          | 2512.4      | 0.0912      | 9.0003      | 6     |
| 33.60          | 2482.5          | 2516.1      | 0.1212      | 8.9501      | 8     |
| 42.01          | 2477.7          | 2519.8      | 0.1510      | 8.9008      | 10    |
| 46.20          | 2475.4          | 2521.6      | 0.1658      | 8.8765      | 11    |
| 50.41          | 2473.0          | 2523.4      | 0.1806      | 8.8524      | 12    |
| 54.60          | 2470.7          | 2525.3      | 0.1953      | 8.8285      | 13    |
| 58.80          | 2468.3          | 2527.1      | 0.2099      | 8.8048      | 14    |
| 62.99          | 2465.9          | 2528.9      | 0.2245      | 8.7814      | 15    |
| 67.19          | 2463.6          | 2530.8      | 0.2390      | 8.7582      | 16    |
| 71.38          | 2461.2          | 2532.6      | 0.2535      | 8.7351      | 17    |
| 75.58          | 2458.8          | 2534.4      | 0.2679      | 8.7123      | 18    |
| 79.77          | 2456.5          | 2536.2      | 0.2823      | 8.6897      | 19    |
| 83.96          | 2454.1          | 2538.1      | 0.2966      | 8.6672      | 20    |
| 88.14          | 2451.8          | 2539.9      | 0.3109      | 8.6450      | 21    |
| 92.33          | 2449.4          | 2541.7      | 0.3251      | 8.6229      | 22    |
| 96.52          | 2447.0          | 2543.5      | 0.3393      | 8.6011      | 23    |
| 100.70         | 2444.7          | 2545.4      | 0.3534      | 8.5794      | 24    |
| 104.89         | 2442.3          | 2547.2      | 0.3674      | 8.5580      | 25    |
| 109.07         | 2439.9          | 2549.0      | 0.3814      | 8.5367      | 26    |
| 113.25         | 2437.6          | 2550.8      | 0.3954      | 8.5156      | 27    |
| 117.43         | 2435.2          | 2552.6      | 0.4093      | 8.4946      | 28    |
| 121.61         | 2432.8          | 2554.5      | 0.4231      | 8.4739      | 29    |
| 125.79         | 2430.5          | 2556.3      | 0.4369      | 8.4533      | 30    |
| 129.97         | 2428.1          | 2558.1      | 0.4507      | 8.4329      | 31    |
| 134.15         | 2425.7          | 2559.9      | 0.4644      | 8.4127      | 32    |
| 138.33         | 2423.4          | 2561.7      | 0.4781      | 8.3927      | 33    |
| 142.50         | 2421.0          | 2563.5      | 0.4917      | 8.3728      | 34    |
| 146.68         | 2418.6          | 2565.3      | 0.5053      | 8.3531      | 35    |
| 150.86         | 2416.2          | 2567.1      | 0.5188      | 8.3336      | 36    |
| 159.21         | 2411.5          | 2570.7      | 0.5458      | 8.2950      | 38    |
| 167.57         | 2406.7          | 2574.3      | 0.5725      | 8.2570      | 40    |
| 188.45         | 2394.8          | 2583.2      | 0.6387      | 8.1648      | 45    |

Tabel 9. (Continuare din pagina anterioară)

| Temp.      | Presiune       | Volum             | specific<br>/kg]   | _                | n internă<br>/kg] |
|------------|----------------|-------------------|--------------------|------------------|-------------------|
| [°C]       | [bar]          | Lichid Sat.       | Vapori Sat.        | Lichid Sat.      | Vapori Sat.       |
| ,          |                | $v_f \times 10^3$ | Vg                 | Uf               | Ug                |
| 50         | 0.1235         | 1.0121            | 12.032             | 209.32           | 2443.5            |
| 55         | 0.1576         | 1.0146            | 9.568              | 230.21           | 2450.1            |
| 60         | 0.1994         | 1.0172            | 7.671              | 251.11           | 2456.6            |
| 65         | 0.2503         | 1.0199            | 6.197              | 272.02           | 2463.1            |
| 70         | 0.3119         | 1.0228            | 5.042              | 292.95           | 2469.6            |
| 75         | 0.3858         | 1.0259            | 4.131              | 313.90           | 2475.9            |
| 80         | 0.4739         | 1.0291            | 3.407              | 334.86           | 2482.2            |
| 85         | 0.5783         | 1.0325            | 2.828              | 355.84           | 2488.4            |
| 90         | 0.7014         | 1.0360            | 2.361              | 376.85           | 2494.5            |
| 95         | 0.8455         | 1.0397            | 1.982              | 397.88           | 2500.6            |
| 100        | 1.014          | 1.0435            | 1.673              | 418.94           | 2506.5            |
| 110        | 1.433          | 1.0516            | 1.210              | 461.14           | 2518.1            |
| 120        | 1.985          | 1.0603            | 0.8919             | 503.50           | 2529.3            |
| 130        | 2.701          | 1.0697            | 0.6685             | 546.02           | 2539.9            |
| 140        | 3.613          | 1.0797            | 0.5089             | 588.74           | 2550.0            |
| 150        | 4.758          | 1.0905            | 0.3928             | 631.68           | 2559.5            |
| 160        | 6.178          | 1.1020            | 0.3071             | 674.86           | 2568.4            |
| 170        | 7.917          | 1.1143            | 0.2428             | 718.33           | 2576.5            |
| 180        | 10.02          | 1.1274            | 0.1941             | 762.09           | 2583.7            |
| 190        | 12.54          | 1.1414            | 0.1565             | 806.19           | 2590.0            |
| 200        | 15.54          | 1.1565            | 0.1274             | 850.65           | 2595.3            |
| 210        | 19.06          | 1.1726            | 0.1044             | 895.53           | 2599.5            |
| 220        | 23.18          | 1.1900            | 0.08619            | 940.87           | 2602.4            |
| 230<br>240 | 27.95<br>33.44 | 1.2088            | 0.07158            | 986.74           | 2603.9            |
| 250        | 39.73          | 1.2291<br>1.2512  | 0.05976<br>0.05013 | 1033.2<br>1080.4 | 2604.0<br>2602.4  |
| 260        | 46.88          | 1.2755            | 0.03013            | 1128.4           | 2599.0            |
| 270        | 54.99          | 1.3023            | 0.03564            | 1177.4           | 2593.7            |
| 280        | 64.12          | 1.3321            | 0.03017            | 1227.5           | 2586.1            |
| 290        | 74.36          | 1.3656            | 0.02557            | 1278.9           | 2576.0            |
| 300        | 85.81          | 1.4036            | 0.02357            | 1332.0           | 2563.0            |
| 320        | 112.7          | 1.4988            | 0.01549            | 1444.6           | 2525.5            |
| 340        | 145.9          | 1.6379            | 0.01080            | 1570.3           | 2464.6            |
| 360        | 186.5          | 1.8925            | 0.006945           | 1725.2           | 2351.5            |
| 374.14     | 220.9          | 3.155             | 0.003155           | 2029.6           | 2029.6            |

Sursa: Keenan J.H. et al., 1969

|                | Entalpie        |                |                | opie<br>g K] | Tomo   |
|----------------|-----------------|----------------|----------------|--------------|--------|
| Liebiel Cen    | [kJ/kg]         | \/: C-+        |                |              | Temp.  |
| Lichid Sat.    | Evap.           | Vapori Sat.    | Lichid Sat.    | Vapori Sat.  | [°C]   |
| h <sub>f</sub> | h <sub>fg</sub> | h <sub>g</sub> | S <sub>f</sub> | Sg           |        |
| 209.33         | 2382.7          | 2592.1         | 0.7038         | 8.0763       | 50     |
| 230.23         | 2370.7          | 2600.9         | 0.7679         | 7.9913       | 55     |
| 251.13         | 2358.5          | 2609.6         | 0.8312         | 7.9096       | 60     |
| 272.06         | 2346.2          | 2618.3         | 0.8935         | 7.8310       | 65     |
| 292.98         | 2333.8          | 2626.8         | 0.9549         | 7.7553       | 70     |
| 313.93         | 2321.4          | 2635.3         | 1.0155         | 7.6824       | 75     |
| 334.91         | 2308.8          | 2643.7         | 1.0753         | 7.6122       | 80     |
| 355.90         | 2296.0          | 2651.9         | 1.1343         | 7.5445       | 85     |
| 376.92         | 2283.2          | 2660.1         | 1.1925         | 7.4791       | 90     |
| 397.96         | 2270.2          | 2668.1         | 1.2500         | 7.4159       | 95     |
| 419.04         | 2257.0          | 2676.1         | 1.3069         | 7.3549       | 100    |
| 461.30         | 2230.2          | 2691.5         | 1.4185         | 7.2387       | 110    |
| 503.71         | 2202.6          | 2706.3         | 1.5276         | 7.1296       | 120    |
| 546.31         | 2174.2          | 2720.5         | 1.6344         | 7.0269       | 130    |
| 589.13         | 2144.7          | 2733.9         | 1.7391         | 6.9299       | 140    |
| 632.20         | 2114.3          | 2746.5         | 1.8418         | 6.8379       | 150    |
| 675.55         | 2082.6          | 2758.1         | 1.9427         | 6.7502       | 160    |
| 719.21         | 2049.5          | 2768.7         | 2.0419         | 6.6663       | 170    |
| 763.22         | 2015.0          | 2778.2         | 2.1396         | 6.5857       | 180    |
| 807.62         | 1978.8          | 2786.4         | 2.2359         | 6.5079       | 190    |
| 852.45         | 1940.7          | 2793.2         | 2.3309         | 6.4323       | 200    |
| 897.76         | 1900.7          | 2798.5         | 2.4248         | 6.3585       | 210    |
| 943.62         | 1858.5          | 2802.1         | 2.5178         | 6.2861       | 220    |
| 990.12         | 1813.8          | 2804.0         | 2.6099         | 6.2146       | 230    |
| 1037.3         | 1766.5          | 2803.8         | 2.7015         | 6.1437       | 240    |
| 1085.4         | 1716.2          | 2801.5         | 2.7927         | 6.0730       | 250    |
| 1134.4         | 1662.5          | 2796.6         | 2.8838         | 6.0019       | 260    |
| 1184.5         | 1605.2          | 2789.7         | 2.9751         | 5.9301       | 270    |
| 1236.0         | 1543.6          | 2779.6         | 3.0668         | 5.8571       | 280    |
| 1289.1         | 1477.1          | 2766.2         | 3.1594         | 5.7821       | 290    |
| 1344.0         | 1404.9          | 2749.0         | 3.2534         | 5.7045       | 300    |
| 1461.5         | 1238.6          | 2700.1         | 3.4480         | 5.5362       | 320    |
| 1594.2         | 1027.9          | 2622.0         | 3.6594         | 5.3357       | 340    |
| 1760.5         | 720.5           | 2481.0         | 3.9147         | 5.0526       | 360    |
| 2099.3         | 0               | 2099.3         | 4.4298         | 4.4298       | 374.14 |

Tabel 10. Proprietăți termodinamice pentru apă la saturație: presiune

| Presiune     | Temp.          |                   | specific<br>/kg] | _                | a internă<br>/kg] |
|--------------|----------------|-------------------|------------------|------------------|-------------------|
| [bar]        | [°C]           | Lichid Sat.       | Vapori Sat.      | Lichid Sat.      | Vapori Sat.       |
|              |                | $v_f \times 10^3$ | ,<br>Vg          | $u_f$            | u <sub>g</sub>    |
| 0.04         | 28.96          | 1.0040            | 34.800           | 121.45           | 2415.2            |
| 0.06         | 36.16          | 1.0064            | 23.739           | 151.53           | 2425.0            |
| 0.08         | 41.51          | 1.0084            | 18.103           | 173.87           | 2432.2            |
| 0.10         | 45.81          | 1.0102            | 14.674           | 191.82           | 2437.9            |
| 0.20         | 60.06          | 1.0172            | 7.649            | 251.38           | 2456.7            |
| 0.30         | 69.10          | 1.0223            | 5.229            | 289.20           | 2468.4            |
| 0.40         | 75.87          | 1.0265            | 3.993            | 317.53           | 2477.0            |
| 0.50         | 81.33          | 1.0300            | 3.240            | 340.44           | 2483.9            |
| 0.60         | 85.94          | 1.0331            | 2.732            | 359.79           | 2489.6            |
| 0.70         | 89.95          | 1.0360            | 2.365            | 376.63           | 2494.5            |
| 0.80         | 93.50          | 1.0380            | 2.087            | 391.58           | 2498.8            |
| 0.90         | 96.71          | 1.0410            | 1.869            | 405.06           | 2502.6            |
| 1.00         | 99.63          | 1.0432            | 1.694            | 417.36           | 2506.1            |
| 1.50         | 111.4          | 1.0528            | 1.159            | 466.94           | 2519.7            |
| 2.00         | 120.2          | 1.0605            | 0.8857           | 504.49           | 2529.5            |
| 2.50         | 127.4          | 1.0672            | 0.7187           | 535.10           | 2537.2            |
| 3.00         | 133.6          | 1.0732            | 0.6058           | 561.15           | 2543.6            |
| 3.50         | 138.9          | 1.0786            | 0.5243           | 583.95           | 2546.9            |
| 4.00<br>4.50 | 143.6<br>147.9 | 1.0836            | 0.4625<br>0.4140 | 604.31<br>622.25 | 2553.6<br>2557.6  |
| 5.00         | 151.9          | 1.0882<br>1.0926  | 0.4140           | 639.68           | 2561.2            |
| 6.00         | 151.9          | 1.1006            | 0.3749           | 669.90           | 2567.4            |
| 7.00         | 165.0          | 1.1080            | 0.3137           | 696.44           | 2572.5            |
| 8.00         | 170.4          | 1.1148            | 0.2723           | 720.22           | 2576.8            |
| 9.00         | 175.4          | 1.1212            | 0.2150           | 741.83           | 2580.5            |
| 10.0         | 179.9          | 1.1273            | 0.1944           | 761.68           | 2583.6            |
| 15.0         | 198.3          | 1.1539            | 0.1318           | 843.16           | 2594.5            |
| 20.0         | 212.4          | 1.1767            | 0.09963          | 906.44           | 2600.3            |
| 25.0         | 224.0          | 1.1973            | 0.07998          | 959.11           | 2603.1            |
| 30.0         | 233.9          | 1.2165            | 0.06668          | 1004.8           | 2604.1            |
| 35.0         | 242.6          | 1.2347            | 0.05707          | 1045.4           | 2603.7            |
| 40.0         | 250.4          | 1.2522            | 0.04978          | 1082.3           | 2602.3            |
| 45.0         | 257.5          | 1.2692            | 0.04406          | 1116.2           | 2600.1            |
| 50.0         | 264.0          | 1.2859            | 0.03944          | 1147.8           | 2597.1            |
| 60.0         | 275.6          | 1.3187            | 0.03244          | 1205.4           | 2589.7            |

|                | Entalpie        |             |             | opie        |          |
|----------------|-----------------|-------------|-------------|-------------|----------|
|                | [kJ/kg]         |             |             | g·K]        | Presiune |
| Lichid Sat.    | Evap.           | Vapori Sat. | Lichid Sat. | Vapori Sat. | [bar]    |
| h <sub>f</sub> | h <sub>fg</sub> | hg          | Sf          | Sg          |          |
| 121.46         | 2432.9          | 2554.4      | 0.4226      | 8.4746      | 0.04     |
| 151.53         | 2415.9          | 2567.4      | 0.5210      | 8.3304      | 0.06     |
| 173.88         | 2403.1          | 2577.0      | 0.5926      | 8.2287      | 0.08     |
| 191.83         | 2392.8          | 2584.7      | 0.6493      | 8.1502      | 0.10     |
| 251.40         | 2358.3          | 2609.7      | 0.8320      | 7.9085      | 0.20     |
| 289.23         | 2336.1          | 2625.3      | 0.9439      | 7.7686      | 0.30     |
| 317.58         | 2319.2          | 2636.8      | 1.0259      | 7.6700      | 0.40     |
| 340.49         | 2305.4          | 2645.9      | 1.0910      | 7.5939      | 0.50     |
| 359.86         | 2293.6          | 2653.5      | 1.1453      | 7.5320      | 0.60     |
| 376.70         | 2283.3          | 2660.0      | 1.1919      | 7.4797      | 0.70     |
| 391.66         | 2274.1          | 2665.8      | 1.2329      | 7.4346      | 0.80     |
| 405.15         | 2265.7          | 2670.9      | 1.2695      | 7.3949      | 0.90     |
| 417.46         | 2258.0          | 2675.5      | 1.3026      | 7.3594      | 1.00     |
| 467.11         | 2226.5          | 2693.6      | 1.4336      | 7.2233      | 1.50     |
| 504.70         | 2201.9          | 2706.7      | 1.5301      | 7.1271      | 2.00     |
| 535.37         | 2181.5          | 2716.9      | 1.6072      | 7.0527      | 2.50     |
| 561.47         | 2163.8          | 2725.3      | 1.6718      | 6.9919      | 3.00     |
| 584.33         | 2148.1          | 2732.4      | 1.7275      | 6.9405      | 3.50     |
| 604.74         | 2133.8          | 2738.6      | 1.7766      | 6.8959      | 4.00     |
| 623.25         | 2120.7          | 2743.9      | 1.8207      | 6.8565      | 4.50     |
| 640.23         | 2108.5          | 2748.7      | 1.8607      | 6.8212      | 5.00     |
| 670.56         | 2086.3          | 2756.8      | 1.9312      | 6.7600      | 6.00     |
| 697.22         | 2066.3          | 2763.5      | 1.9922      | 6.7080      | 7.00     |
| 721.11         | 2048.0          | 2769.1      | 2.0462      | 6.6628      | 8.00     |
| 742.83         | 2031.1          | 2773.9      | 2.0946      | 6.6226      | 9.00     |
| 762.81         | 2015.3          | 2778.1      | 2.1387      | 6.5863      | 10.0     |
| 844.84         | 1947.3          | 2792.2      | 2.3150      | 6.4448      | 15.0     |
| 908.79         | 1890.7          | 2799.5      | 2.4474      | 6.3409      | 20.0     |
| 962.11         | 1841.0          | 2803.1      | 2.5547      | 6.2575      | 25.0     |
| 1008.4         | 1795.7          | 2804.2      | 2.6457      | 6.1869      | 30.0     |
| 1049.8         | 1753.7          | 2803.4      | 2.7253      | 6.1253      | 35.0     |
| 1087.3         | 1714.1          | 2801.4      | 2.7964      | 6.0701      | 40.0     |
| 1121.9         | 1676.4          | 2798.3      | 2.8610      | 6.0199      | 45.0     |
| 1154.2         | 1640.1          | 2794.3      | 2.9202      | 5.9734      | 50.0     |
| 1213.4         | 1571.0          | 2784.3      | 3.0267      | 5.8892      | 60.0     |

Tabel 10. (Continuare din pagina anterioară)

| Presiune | Temp. |                   | specific<br>/kg] | Energia internă<br>[kJ/kg] |             |
|----------|-------|-------------------|------------------|----------------------------|-------------|
| [bar]    | [°C]  | Lichid Sat.       | Vapori Sat.      | Lichid Sat.                | Vapori Sat. |
|          |       | $v_f \times 10^3$ | Vg               | $u_f$                      | $u_g$       |
| 70.0     | 285.9 | 1.3513            | 0.02737          | 1257.6                     | 2580.5      |
| 80.0     | 295.1 | 1.3842            | 0.02352          | 1305.6                     | 2569.8      |
| 90.0     | 303.4 | 1.4178            | 0.02048          | 1350.5                     | 2557.8      |
| 100.0    | 311.1 | 1.4524            | 0.01803          | 1393.0                     | 2544.4      |
| 110.0    | 318.2 | 1.4886            | 0.01599          | 1433.7                     | 2529.8      |
| 120.0    | 324.8 | 1.5267            | 0.01426          | 1473.0                     | 2513.7      |
| 130.0    | 330.9 | 1.5671            | 0.01278          | 1511.1                     | 2496.1      |
| 140.0    | 336.8 | 1.6107            | 0.01149          | 1548.6                     | 2476.8      |
| 150.0    | 342.2 | 1.6581            | 0.01034          | 1585.6                     | 2455.5      |
| 160.0    | 347.4 | 1.7107            | 0.009306         | 1622.7                     | 2431.7      |
| 170.0    | 352.4 | 1.7702            | 0.008364         | 1660.2                     | 2405.0      |
| 180.0    | 357.1 | 1.8397            | 0.007489         | 1698.9                     | 2374.3      |
| 190.0    | 361.5 | 1.9243            | 0.006657         | 1739.9                     | 2338.1      |
| 200.0    | 365.8 | 2.036             | 0.005834         | 1785.6                     | 2293.0      |
| 220.9    | 374.1 | 3.155             | 0.003155         | 2029.6                     | 2029.6      |

Sursa: Keenan J.H. et al., 1969

|             | Entalpie<br>[kJ/kg] |                | Presiune             |             |       |
|-------------|---------------------|----------------|----------------------|-------------|-------|
| Lichid Sat. | Evap.               | Vapori Sat.    | [kJ/k<br>Lichid Sat. | Vapori Sat. | [bar] |
| $h_f$       | h <sub>fg</sub>     | h <sub>g</sub> | Sf                   | Sg          |       |
| 1267.0      | 1505.1              | 2772.1         | 3.1211               | 5.8133      | 70.0  |
| 1316.6      | 1441.3              | 2758.0         | 3.2068               | 5.7432      | 80.0  |
| 1363.3      | 1378.9              | 2742.1         | 3.2858               | 5.6772      | 90.0  |
| 1407.6      | 1317.1              | 2724.7         | 3.3596               | 5.6141      | 100.0 |
| 1450.1      | 1255.5              | 2705.6         | 3.4295               | 5.5527      | 110.0 |
| 1491.3      | 1193.6              | 2684.9         | 3.4962               | 5.4924      | 120.0 |
| 1531.5      | 1130.7              | 2662.2         | 3.5606               | 5.4323      | 130.0 |
| 1571.1      | 1066.5              | 2637.6         | 3.6232               | 5.3717      | 140.0 |
| 1610.5      | 1000.0              | 2610.5         | 3.6848               | 5.3098      | 150.0 |
| 1650.1      | 930.6               | 2580.6         | 3.7461               | 5.2455      | 160.0 |
| 1690.3      | 856.9               | 2547.2         | 3.8079               | 5.1777      | 170.0 |
| 1732.0      | 777.1               | 2509.1         | 3.8715               | 5.1044      | 180.0 |
| 1776.5      | 688.0               | 2464.5         | 3.9388               | 5.0228      | 190.0 |
| 1826.3      | 583.4               | 2409.7         | 4.0139               | 4.9269      | 200.0 |
| 2099.3      | 0                   | 2099.3         | 4.4298               | 4.4298      | 220.9 |

Tabel 11. Proprietăți fizice pentru apă la saturație

| T    | p <sub>sat</sub> | ρ<br>[kg/m3] |        | h <sub>fg</sub> | μ x 10 <sup>3</sup><br>[kg/l | μ x 10 <sup>5</sup><br>m·s] |
|------|------------------|--------------|--------|-----------------|------------------------------|-----------------------------|
| [°C] | [kPa]            | Lichid       | Vapori | [kJ/kg]         | Lichid                       | Vapori                      |
| 0.01 | 0.6113           | 999.8        | 0.0048 | 2501            | 1.792                        | 0.922                       |
| 5    | 0.8721           | 999.9        | 0.0068 | 2490            | 1.519                        | 0.934                       |
| 10   | 1.2276           | 999.7        | 0.0094 | 2478            | 1.307                        | 0.946                       |
| 15   | 1.7051           | 999.1        | 0.0128 | 2466            | 1.138                        | 0.959                       |
| 20   | 2.339            | 998.0        | 0.0173 | 2454            | 1.002                        | 0.973                       |
| 25   | 3.169            | 997.0        | 0.0231 | 2442            | 0.891                        | 0.987                       |
| 30   | 4.246            | 996.0        | 0.0304 | 2431            | 0.798                        | 1.001                       |
| 35   | 5.628            | 994.0        | 0.0397 | 2419            | 0.720                        | 1.016                       |
| 40   | 7.384            | 992.1        | 0.0512 | 2407            | 0.653                        | 1.031                       |
| 45   | 9.593            | 990.1        | 0.0655 | 2395            | 0.596                        | 1.046                       |
| 50   | 12.35            | 988.1        | 0.0831 | 2383            | 0.547                        | 1.062                       |
| 55   | 15.76            | 985.2        | 0.1045 | 2371            | 0.504                        | 1.077                       |
| 60   | 19.94            | 983.3        | 0.1304 | 2359            | 0.467                        | 1.093                       |
| 65   | 25.03            | 980.4        | 0.1614 | 2346            | 0.433                        | 1.110                       |
| 70   | 31.19            | 977.5        | 0.1983 | 2334            | 0.404                        | 1.126                       |
| 75   | 38.58            | 974.7        | 0.2421 | 2321            | 0.378                        | 1.142                       |
| 80   | 47.39            | 971.8        | 0.2935 | 2309            | 0.355                        | 1.159                       |
| 85   | 57.83            | 968.1        | 0.3536 | 2296            | 0.333                        | 1.176                       |
| 90   | 70.14            | 965.3        | 0.4235 | 2283            | 0.315                        | 1.193                       |
| 95   | 84.55            | 961.5        | 0.5045 | 2270            | 0.297                        | 1.210                       |
| 100  | 101.33           | 957.9        | 0.5978 | 2257            | 0.282                        | 1.227                       |
| 110  | 143.27           | 950.6        | 0.8263 | 2230            | 0.255                        | 1.261                       |
| 120  | 198.53           | 943.4        | 1.121  | 2203            | 0.232                        | 1.296                       |
| 130  | 270.10           | 934.6        | 1.496  | 2174            | 0.213                        | 1.330                       |
| 140  | 361.30           | 921.7        | 1.965  | 2145            | 0.197                        | 1.365                       |
| 150  | 475.80           | 916.6        | 2.546  | 2114            | 0.183                        | 1.399                       |
| 160  | 617.80           | 907.4        | 3.256  | 2083            | 0.170                        | 1.434                       |
| 170  | 791.70           | 897.7        | 4.119  | 2050            | 0.160                        | 1.468                       |
| 180  | 1002.1           | 887.3        | 5.153  | 2015            | 0.150                        | 1.502                       |
| 190  | 1254.4           | 876.4        | 6.388  | 1979            | 0.142                        | 1.537                       |
| 200  | 1553.8           | 864.3        | 7.852  | 1941            | 0.134                        | 1.571                       |

|        | p _    |        | λ      | F      | )r     | $\beta$ x $10^3$ | Т    |
|--------|--------|--------|--------|--------|--------|------------------|------|
|        | g K]   |        | mK]    |        | _      | [1/K]            | [°C] |
| Lichid | Vapori | Lichid | Vapori | Lichid | Vapori | Lichid           |      |
| 4217   | 1854   | 0.561  | 0.0171 | 13.5   | 1.00   | -0.068           | 0.01 |
| 4205   | 1857   | 0.571  | 0.0173 | 11.2   | 1.00   | 0.015            | 5    |
| 4194   | 1862   | 0.580  | 0.0176 | 9.45   | 1.00   | 0.733            | 10   |
| 4185   | 1863   | 0.589  | 0.0179 | 8.09   | 1.00   | 0.138            | 15   |
| 4182   | 1867   | 0.598  | 0.0182 | 7.01   | 1.00   | 0.195            | 20   |
| 4180   | 1870   | 0.607  | 0.0186 | 6.14   | 1.00   | 0.247            | 25   |
| 4178   | 1875   | 0.615  | 0.0189 | 5.42   | 1.00   | 0.294            | 30   |
| 4178   | 1880   | 0.623  | 0.0192 | 4.83   | 1.00   | 0.337            | 35   |
| 4179   | 1885   | 0.631  | 0.0196 | 4.32   | 1.00   | 0.377            | 40   |
| 4180   | 1892   | 0.637  | 0.0200 | 3.91   | 1.00   | 0.415            | 45   |
| 4181   | 1900   | 0.644  | 0.0204 | 3.55   | 1.00   | 0.451            | 50   |
| 4183   | 1908   | 0.649  | 0.0208 | 3.25   | 1.00   | 0.484            | 55   |
| 4185   | 1916   | 0.654  | 0.0212 | 2.99   | 1.00   | 0.517            | 60   |
| 4187   | 1926   | 0.659  | 0.0216 | 2.75   | 1.00   | 0.548            | 65   |
| 4190   | 1936   | 0.663  | 0.0221 | 2.55   | 1.00   | 0.578            | 70   |
| 4193   | 1948   | 0.667  | 0.0225 | 2.38   | 1.00   | 0.607            | 75   |
| 4197   | 1962   | 0.670  | 0.0230 | 2.22   | 1.00   | 0.653            | 80   |
| 4201   | 1977   | 0.673  | 0.0235 | 2.08   | 1.00   | 0.670            | 85   |
| 4206   | 1993   | 0.675  | 0.0240 | 1.96   | 1.00   | 0.702            | 90   |
| 4212   | 2010   | 0.677  | 0.0246 | 1.85   | 1.00   | 0.716            | 95   |
| 4217   | 2029   | 0.679  | 0.0251 | 1.75   | 1.00   | 0.750            | 100  |
| 4229   | 2071   | 0.682  | 0.0262 | 1.58   | 1.00   | 0.798            | 110  |
| 4244   | 2120   | 0.683  | 0.0275 | 1.44   | 1.00   | 0.858            | 120  |
| 4263   | 2177   | 0.684  | 0.0288 | 1.33   | 1.01   | 0.913            | 130  |
| 4286   | 2244   | 0.683  | 0.0301 | 1.24   | 1.02   | 0.970            | 140  |
| 4311   | 2314   | 0.682  | 0.0316 | 1.16   | 1.02   | 1.025            | 150  |
| 4340   | 2420   | 0.680  | 0.0331 | 1.09   | 1.05   | 1.145            | 160  |
| 4370   | 2490   | 0.677  | 0.0347 | 1.03   | 1.05   | 1.178            | 170  |
| 4410   | 2590   | 0.673  | 0.0364 | 0.983  | 1.07   | 1.210            | 180  |
| 4460   | 2710   | 0.669  | 0.0382 | 0.947  | 1.09   | 1.280            | 190  |
| 4500   | 2840   | 0.663  | 0.0401 | 0.910  | 1.11   | 1.350            | 200  |

Tabel 11. (Continuare din pagina anterioară)

| T      | p <sub>sat</sub> |        | o<br>'m3] | h <sub>fg</sub> | μ x 10 <sup>3</sup> μ x 10 <sup>5</sup><br>[kg/m·s] |        |
|--------|------------------|--------|-----------|-----------------|-----------------------------------------------------|--------|
| [°C]   | [kPa]            | Lichid | Vapori    | [kJ/kg]         | Lichid                                              | Vapori |
| 220    | 2318             | 840.3  | 11.60     | 1859            | 0.122                                               | 1.641  |
| 240    | 3344             | 813.7  | 16.73     | 1767            | 0.111                                               | 1.712  |
| 260    | 4688             | 783.7  | 23.69     | 1663            | 0.102                                               | 1.788  |
| 280    | 6412             | 750.8  | 33.15     | 1544            | 0.094                                               | 1.870  |
| 300    | 8581             | 713.8  | 46.15     | 1405            | 0.086                                               | 1.965  |
| 320    | 11274            | 667.1  | 64.57     | 1239            | 0.078                                               | 2.084  |
| 340    | 14586            | 610.5  | 92.62     | 1028            | 0.070                                               | 2.255  |
| 360    | 18651            | 528.3  | 144.0     | 720             | 0.060                                               | 2.571  |
| 374.14 | 22090            | 317.0  | 317.0     | 0               | 0.043                                               | 4.313  |

Sursa: Adaptat din Cengel Y., 2003

| c<br>[kJ/k | g · K] | λ<br>[W/mK] |        | Pr     |        | β x 10 <sup>3</sup><br>[1/K] | T      |
|------------|--------|-------------|--------|--------|--------|------------------------------|--------|
| Lichid     | Vapori | Lichid      | Vapori | Lichid | Vapori | Lichid                       | [°C]   |
| 4610       | 3110   | 0.650       | 0.0442 | 0.865  | 1.15   | 1.520                        | 220    |
| 4760       | 3520   | 0.632       | 0.0487 | 0.836  | 1.24   | 1.720                        | 240    |
| 4970       | 4070   | 0.609       | 0.0540 | 0.832  | 1.35   | 2.000                        | 260    |
| 5280       | 4835   | 0.581       | 0.0605 | 0.854  | 1.49   | 2.380                        | 280    |
| 5750       | 5980   | 0.548       | 0.0695 | 0.902  | 1.69   | 2.950                        | 300    |
| 6540       | 7900   | 0.509       | 0.0836 | 1.000  | 1.97   | _                            | 320    |
| 8240       | 11870  | 0.469       | 0.1100 | 1.230  | 2.43   | _                            | 340    |
| 14690      | 25800  | 0.427       | 0.1780 | 2.060  | 3.73   | _                            | 360    |
| _          | _      | _           | _      | _      | _      | _                            | 374.14 |

Tabel 12. Proprietăți pentru vapori supraîncălziți

|      |         | p = 0.06 bar    | l        |           | p = 0.35 bar = |                     |
|------|---------|-----------------|----------|-----------|----------------|---------------------|
| Т    |         | $(T_{sat} = 3)$ | 6.16 °C) |           |                | (T <sub>sat</sub> = |
| [°C] | V       | u               | h        | S         | ٧              | u                   |
|      | [m³/kg] | [kJ/kg]         | [kJ/kg]  | [kJ/kg·K] | [m³/kg]        | [kJ/kg]             |
| Sat  | 23.739  | 2425.0          | 2567.4   | 8.3304    | 4.526          | 2473.0              |
| 80   | 27.132  | 2487.3          | 2650.1   | 8.5804    | 4.625          | 2483.7              |
| 120  | 30.219  | 2544.7          | 2726.0   | 8.7840    | 5.163          | 2542.4              |
| 160  | 33.302  | 2602.7          | 2802.5   | 8.9693    | 5.696          | 2601.2              |
| 200  | 36.383  | 2661.4          | 2879.7   | 9.1398    | 6.228          | 2660.4              |
| 240  | 39.462  | 2721.0          | 2957.8   | 9.2982    | 6.758          | 2720.3              |
| 280  | 42.540  | 2781.5          | 3036.8   | 9.4464    | 7.287          | 2780.9              |
| 320  | 45.618  | 2843.0          | 3116.7   | 9.5859    | 7.815          | 2842.5              |
| 360  | 48.696  | 2905.5          | 3197.7   | 9.7180    | 8.344          | 2905.1              |
| 400  | 51.774  | 2969.0          | 3279.6   | 9.8435    | 8.872          | 2968.6              |
| 440  | 54.851  | 3033.5          | 3362.6   | 9.9633    | 9.400          | 3033.2              |
| 500  | 59.467  | 3132.3          | 3489.1   | 10.1336   | 10.192         | 3132.1              |

|      |         | p = 1.0 bar     | = 0.10 MPa |           |         | p = 1.5 bar =       |
|------|---------|-----------------|------------|-----------|---------|---------------------|
| Т    |         | $(T_{sat} = 9)$ | 9.63 °C)   |           |         | (T <sub>sat</sub> = |
| [°C] | V       | u               | h          | S         | V       | u                   |
|      | [m³/kg] | [kJ/kg]         | [kJ/kg]    | [kJ/kg·K] | [m³/kg] | [kJ/kg]             |
| Sat  | 1.694   | 2506.1          | 2675.5     | 7.3594    | 1.159   | 2519.7              |
| 100  | 1.696   | 2506.7          | 2676.2     | 7.3614    | _       | _                   |
| 120  | 1.793   | 2537.3          | 2716.6     | 7.4668    | 1.188   | 2533.3              |
| 160  | 1.984   | 2597.8          | 2796.2     | 7.6597    | 1.317   | 2595.2              |
| 200  | 2.172   | 2658.1          | 2875.3     | 7.8343    | 1.444   | 2656.2              |
| 240  | 2.359   | 2718.5          | 2954.5     | 7.9949    | 1.570   | 2717.2              |
| 280  | 2.546   | 2779.6          | 3034.2     | 8.1445    | 1.695   | 2778.6              |
| 320  | 2.732   | 2841.5          | 3114.6     | 8.2849    | 1.819   | 2840.6              |
| 360  | 2.917   | 2904.2          | 3195.9     | 8.4175    | 1.943   | 2903.5              |
| 400  | 3.103   | 2967.9          | 3278.2     | 8.5435    | 2.067   | 2967.3              |
| 440  | 3.288   | 3032.6          | 3361.4     | 8.6636    | 2.191   | 3032.1              |
| 500  | 3.565   | 3131.6          | 3488.1     | 8.8342    | 2.376   | 3131.2              |

| = 0.035 MPa |           |         |                 |          |           |      |
|-------------|-----------|---------|-----------------|----------|-----------|------|
| = 72.69 °C) |           |         | $(T_{sat} = 8)$ | 9.95 °C) |           | Т    |
| h           | S         | V       | u               | h        | S         | [°C] |
| kJ/kg       | [kJ/kg·K] | [m³/kg] | kJ/kg           | kJ/kg    | [kJ/kg·K] |      |
| 2631.4      | 7.7158    | 2.365   | 2494.5          | 2660.0   | 7.4797    | Sat  |
| 2645.6      | 7.7564    | 2.434   | 2509.7          | 2680.0   | 7.5341    | 80   |
| 2723.1      | 7.9644    | 2.571   | 2539.7          | 2719.6   | 7.6375    | 120  |
| 2800.6      | 8.1519    | 2.841   | 2599.4          | 2798.2   | 7.8279    | 160  |
| 2878.4      | 8.3237    | 3.108   | 2659.1          | 2876.7   | 8.0012    | 200  |
| 2956.8      | 8.4828    | 3.374   | 2719.3          | 2955.5   | 8.1611    | 240  |
| 3036.0      | 8.6314    | 3.640   | 2780.2          | 3035.0   | 8.3162    | 280  |
| 3116.1      | 8.7712    | 3.905   | 2842.0          | 3115.3   | 8.4504    | 320  |
| 3197.1      | 8.9034    | 4.170   | 2904.6          | 3196.5   | 8.5828    | 360  |
| 3279.2      | 9.0291    | 4.434   | 2968.2          | 3278.6   | 8.7086    | 400  |
| 3362.2      | 9.1490    | 4.698   | 3032.9          | 3361.8   | 8.8286    | 440  |
| 3488.8      | 9.3194    | 5.095   | 3131.8          | 3488.5   | 8.9991    | 500  |

| = 0.15 MPa   |           |         | p = 3.0  bar = 0.30  MPa |           |           |      |  |
|--------------|-----------|---------|--------------------------|-----------|-----------|------|--|
| = 111.37 °C) |           |         | $(T_{sat} = 13)$         | 33.55 °C) |           | Т    |  |
| h            | S         | V       | u                        | h         | S         | [°C] |  |
| kJ/kg        | [kJ/kg·K] | [m³/kg] | kJ/kg                    | kJ/kg     | [kJ/kg·K] |      |  |
| 2693.6       | 7.2233    | 0.606   | 2543.6                   | 2725.3    | 6.9919    | Sat  |  |
| _            | _         | _       | _                        | _         | _         | 100  |  |
| 2711.4       | 7.2693    | _       | _                        | _         | _         | 120  |  |
| 2792.8       | 7.4665    | 0.651   | 2587.1                   | 2782.3    | 7.1276    | 160  |  |
| 2872.9       | 7.6433    | 0.716   | 2650.7                   | 2865.5    | 7.3115    | 200  |  |
| 2952.7       | 7.8052    | 0.781   | 2713.1                   | 2947.3    | 7.4774    | 240  |  |
| 3032.8       | 7.9555    | 0.844   | 2775.4                   | 3028.6    | 7.6299    | 280  |  |
| 3113.5       | 8.0964    | 0.907   | 2838.1                   | 3110.1    | 7.7722    | 320  |  |
| 3195.0       | 8.2293    | 0.969   | 2901.4                   | 3192.2    | 7.9061    | 360  |  |
| 3277.4       | 8.3555    | 1.032   | 2965.6                   | 3275.0    | 8.0330    | 400  |  |
| 3360.7       | 8.4757    | 1.094   | 3030.6                   | 3358.7    | 8.1538    | 440  |  |
| 3487.6       | 8.6466    | 1.187   | 3130.0                   | 3486.0    | 8.3251    | 500  |  |

Tabel 12. (Continuare din pagina anterioară)

|      |         | p = 5.0 bar      |           |           | p = 7.0 bar =        |                     |
|------|---------|------------------|-----------|-----------|----------------------|---------------------|
| Т    |         | $(T_{sat} = 15)$ | 51.86 °C) |           |                      | (T <sub>sat</sub> = |
| [°C] | V       | u                | h         | S         | V                    | u                   |
|      | [m³/kg] | [kJ/kg]          | [kJ/kg]   | [kJ/kg·K] | [m <sup>3</sup> /kg] | [kJ/kg]             |
| Sat  | 0.3749  | 2561.2           | 2748.7    | 6.8213    | 0.2729               | 2572.5              |
| 180  | 0.4045  | 2609.7           | 2812.0    | 6.9656    | 0.2847               | 2599.8              |
| 200  | 0.4249  | 2642.9           | 2855.4    | 7.0592    | 0.2999               | 2634.8              |
| 240  | 0.4646  | 2707.6           | 2939.9    | 7.2307    | 0.3292               | 2701.8              |
| 280  | 0.5034  | 2771.2           | 3022.9    | 7.3865    | 0.3574               | 2766.9              |
| 320  | 0.5416  | 2834.7           | 3105.6    | 7.5308    | 0.3852               | 2831.3              |
| 360  | 0.5796  | 2898.7           | 3188.4    | 7.6660    | 0.4126               | 2895.8              |
| 400  | 0.6173  | 2963.2           | 3271.9    | 7.7938    | 0.4397               | 2960.9              |
| 440  | 0.6548  | 3028.6           | 3356.0    | 7.9152    | 0.4667               | 3026.6              |
| 500  | 0.7109  | 3128.4           | 3483.9    | 8.0873    | 0.5070               | 3126.8              |
| 600  | 0.8041  | 3299.6           | 3701.7    | 8.3522    | 0.5738               | 3298.5              |

|      |         | p = 15.0 ba      |           |           | o = 20.0 bar =       |              |
|------|---------|------------------|-----------|-----------|----------------------|--------------|
| Т    |         | $(T_{sat} = 19)$ | 98.32 °C) |           |                      | $(T_{sat} =$ |
| [°C] | V       | u                | h         | S         | ٧                    | u            |
|      | [m³/kg] | [kJ/kg]          | [kJ/kg]   | [kJ/kg·K] | [m <sup>3</sup> /kg] | [kJ/kg]      |
| Sat  | 0.1318  | 2594.5           | 2792.2    | 6.4448    | 0.0996               | 2600.3       |
| 200  | 0.1325  | 2598.1           | 2796.8    | 6.4546    | _                    | _            |
| 240  | 0.1483  | 2676.9           | 2899.3    | 6.6628    | 0.1085               | 2659.6       |
| 280  | 0.1627  | 2748.6           | 2992.7    | 6.8381    | 0.1200               | 2736.4       |
| 320  | 0.1765  | 2817.1           | 3081.9    | 6.9938    | 0.1308               | 2807.9       |
| 360  | 0.1899  | 2884.4           | 3169.2    | 7.1363    | 0.1411               | 2877.0       |
| 400  | 0.2030  | 2951.3           | 3255.8    | 7.2690    | 0.1512               | 2945.2       |
| 440  | 0.2160  | 3018.5           | 3342.5    | 7.3940    | 0.1611               | 3013.4       |
| 500  | 0.2352  | 3120.3           | 3473.1    | 7.5698    | 0.1757               | 3116.2       |
| 540  | 0.2478  | 3189.1           | 3560.9    | 7.6805    | 0.1853               | 3185.6       |
| 600  | 0.2668  | 3293.9           | 3694.0    | 7.8385    | 0.1996               | 3290.9       |
| 640  | 0.2793  | 3364.8           | 3783.8    | 7.9391    | 0.2091               | 3362.2       |

| = 0.70 MPa   | •         |         | p = 10.0 bar = 1.0 MPa |           |           |      |  |
|--------------|-----------|---------|------------------------|-----------|-----------|------|--|
| = 164.97 °C) |           |         | $(T_{sat} = 17)$       | 79.91 °C) |           | Т    |  |
| h            | S         | V       | u                      | h         | S         | [°C] |  |
| kJ/kg        | [kJ/kg·K] | [m³/kg] | kJ/kg                  | kJ/kg     | [kJ/kg·K] |      |  |
| 2763.5       | 6.7080    | 0.1944  | 2583.6                 | 2778.1    | 6.5865    | Sat  |  |
| 2799.1       | 6.7880    | _       | _                      | _         | _         | 180  |  |
| 2844.8       | 6.8865    | 0.2060  | 2621.9                 | 2827.9    | 6.6940    | 200  |  |
| 2932.2       | 7.0641    | 0.2275  | 2692.9                 | 2920.4    | 6.8817    | 240  |  |
| 3017.1       | 7.2233    | 0.2480  | 2760.2                 | 3008.2    | 7.0465    | 280  |  |
| 3100.9       | 7.3697    | 0.2678  | 2826.1                 | 3093.9    | 7.1962    | 320  |  |
| 3184.7       | 7.5063    | 0.2873  | 2891.6                 | 3178.9    | 7.3349    | 360  |  |
| 3268.7       | 7.6350    | 0.3066  | 2957.3                 | 3263.9    | 7.4651    | 400  |  |
| 3353.3       | 7.7571    | 0.3257  | 3023.6                 | 3349.3    | 7.5883    | 440  |  |
| 3481.7       | 7.9299    | 0.3541  | 3124.4                 | 3478.5    | 7.7622    | 500  |  |
| 3700.2       | 8.1956    | 0.4011  | 3296.8                 | 3697.9    | 8.0290    | 600  |  |

| = 2.0 MPa    |           |         |                  |           |           |      |
|--------------|-----------|---------|------------------|-----------|-----------|------|
| = 212.42 °C) |           |         | $(T_{sat} = 23)$ | 33.90 °C) |           | Т    |
| h            | S         | V       | u                | h         | S         | [°C] |
| kJ/kg        | [kJ/kg·K] | [m³/kg] | kJ/kg            | kJ/kg     | [kJ/kg·K] |      |
| 2799.5       | 6.3409    | 0.0667  | 2604.1           | 2804.2    | 6.1869    | Sat  |
| _            | _         | _       | _                | _         | _         | 200  |
| 2876.5       | 6.4952    | 0.0682  | 2619.7           | 2824.3    | 6.2265    | 240  |
| 2976.4       | 6.6828    | 0.0771  | 2709.9           | 2941.3    | 6.4462    | 280  |
| 3069.5       | 6.8452    | 0.0850  | 2788.4           | 3043.4    | 6.6245    | 320  |
| 3159.3       | 6.9917    | 0.0923  | 2861.7           | 3138.7    | 6.7801    | 360  |
| 3247.6       | 7.1271    | 0.0994  | 2932.8           | 3230.9    | 6.9212    | 400  |
| 3335.5       | 7.2540    | 0.1062  | 3002.9           | 3321.5    | 7.0520    | 440  |
| 3467.6       | 7.4317    | 0.1162  | 3108.0           | 3456.5    | 7.2338    | 500  |
| 3556.1       | 7.5434    | 0.1227  | 3178.4           | 3546.6    | 7.3474    | 540  |
| 3690.1       | 7.7024    | 0.1324  | 3285.0           | 3682.3    | 7.5085    | 600  |
| 3780.4       | 7.8035    | 0.1388  | 3357.0           | 3773.5    | 7.6106    | 640  |

Tabel 12. (Continuare din pagina anterioară)

|      |         | p = 40 bar      |          |           | p = 60 bar = |                     |
|------|---------|-----------------|----------|-----------|--------------|---------------------|
| Т    |         | $(T_{sat} = 2)$ | 50.4 °C) |           |              | (T <sub>sat</sub> = |
| [°C] | V       | u               | h        | S         | ٧            | u                   |
|      | [m³/kg] | [kJ/kg]         | [kJ/kg]  | [kJ/kg·K] | [m³/kg]      | [kJ/kg]             |
| Sat  | 0.04978 | 2602.3          | 2801.4   | 6.0701    | 0.03244      | 2589.7              |
| 280  | 0.05546 | 2680.0          | 2901.8   | 6.2568    | 0.03317      | 2605.2              |
| 320  | 0.06199 | 2767.4          | 3015.4   | 6.4553    | 0.03876      | 2720.0              |
| 360  | 0.06788 | 2845.7          | 3117.2   | 6.6215    | 0.04331      | 2811.2              |
| 400  | 0.07341 | 2919.9          | 3213.6   | 6.7690    | 0.04739      | 2892.9              |
| 440  | 0.07872 | 2992.2          | 3307.1   | 6.9041    | 0.05122      | 2970.0              |
| 500  | 0.08643 | 3099.5          | 3445.3   | 7.0901    | 0.05665      | 3082.2              |
| 540  | 0.09145 | 3171.1          | 3536.9   | 7.2056    | 0.06015      | 3156.1              |
| 600  | 0.09885 | 3279.1          | 3674.4   | 7.3688    | 0.06525      | 3266.9              |
| 640  | 0.1037  | 3351.8          | 3766.6   | 7.4720    | 0.06859      | 3341.0              |
| 700  | 0.1110  | 3462.1          | 3905.9   | 7.6198    | 0.07352      | 3453.1              |
| 740  | 0.1157  | 3536.6          | 3999.6   | 7.7141    | 0.07677      | 3528.3              |

|      |         | p = 100 bar      | = 10.0 MPa |           |            | p = 120 bar =       |
|------|---------|------------------|------------|-----------|------------|---------------------|
| Т    |         | $(T_{sat} = 32)$ | 11.06 °C)  |           |            | (T <sub>sat</sub> = |
| [°C] | V       | u                | h          | S         | V          | u                   |
|      | [m³/kg] | [kJ/kg]          | [kJ/kg]    | [kJ/kg·K] | $[m^3/kg]$ | [kJ/kg]             |
| Sat  | 0.01803 | 2544.4           | 2724.7     | 5.6141    | 0.01426    | 2513.7              |
| 320  | 0.01925 | 2588.8           | 2781.3     | 5.7103    | _          | _                   |
| 360  | 0.02331 | 2729.1           | 2962.1     | 6.0060    | 0.01811    | 2678.4              |
| 400  | 0.02641 | 2832.4           | 3096.5     | 6.2120    | 0.02108    | 2798.3              |
| 440  | 0.02911 | 2922.1           | 3213.2     | 6.3805    | 0.02355    | 2896.1              |
| 480  | 0.03160 | 3005.4           | 3321.4     | 6.5282    | 0.02576    | 2984.4              |
| 520  | 0.03394 | 3085.6           | 3425.1     | 6.6622    | 0.02781    | 3068.0              |
| 560  | 0.03619 | 3164.1           | 3526.0     | 6.7864    | 0.02977    | 3149.0              |
| 600  | 0.03837 | 3241.7           | 3625.3     | 6.9029    | 0.03164    | 3228.7              |
| 640  | 0.04048 | 3318.9           | 3723.7     | 7.0131    | 0.03345    | 3307.5              |
| 700  | 0.04358 | 3434.7           | 3870.5     | 7.1687    | 0.03610    | 3425.2              |
| 740  | 0.04560 | 3512.1           | 3968.1     | 7.2670    | 0.03781    | 3503.7              |

| = 6.0 MPa    |           |         | p = 80 bar       | = 8.0 MPa |           |      |
|--------------|-----------|---------|------------------|-----------|-----------|------|
| = 275.64 °C) |           |         | $(T_{sat} = 29)$ | 95.06 °C) |           | Т    |
| h            | S         | V       | u                | h         | S         | [°C] |
| kJ/kg        | [kJ/kg·K] | [m³/kg] | kJ/kg            | kJ/kg     | [kJ/kg·K] |      |
| 2784.3       | 5.8892    | 0.02352 | 2569.8           | 2758.0    | 5.7432    | Sat  |
| 2804.2       | 5.9252    | _       | _                | _         | _         | 280  |
| 2952.6       | 6.1846    | 0.02682 | 2662.7           | 2877.2    | 5.9489    | 320  |
| 3071.1       | 6.3782    | 0.03089 | 2772.7           | 3019.8    | 6.1819    | 360  |
| 3177.2       | 6.5408    | 0.03432 | 2863.8           | 3138.3    | 6.3634    | 400  |
| 3277.3       | 6.6853    | 0.03742 | 2946.7           | 3246.1    | 6.5190    | 440  |
| 3422.2       | 6.8803    | 0.04175 | 3064.3           | 3398.3    | 6.7240    | 500  |
| 3517.0       | 6.9999    | 0.04448 | 3140.8           | 3496.7    | 6.8481    | 540  |
| 3658.4       | 7.1677    | 0.04845 | 3254.4           | 3642.0    | 7.0206    | 600  |
| 3752.6       | 7.2731    | 0.05102 | 3330.1           | 3738.3    | 7.1283    | 640  |
| 3894.1       | 7.4234    | 0.05481 | 3443.9           | 3882.4    | 7.2812    | 700  |
| 3989.2       | 7.5190    | 0.05729 | 3520.4           | 3978.7    | 7.3782    | 740  |

| = 12.0 MPa   |           |         | p = 140 bar      | = 14.0 MPa |           |      |
|--------------|-----------|---------|------------------|------------|-----------|------|
| = 324.75 °C) |           |         | $(T_{sat} = 33)$ | 36.75 °C)  |           | Т    |
| h            | S         | ٧       | u                | h          | S         | [°C] |
| kJ/kg        | [kJ/kg·K] | [m³/kg] | kJ/kg            | kJ/kg      | [kJ/kg·K] |      |
| 2684.9       | 5.4924    | 0.01149 | 2476.8           | 2637.6     | 5.3717    | Sat  |
| _            | _         | _       | _                | _          | _         | 320  |
| 2895.7       | 5.8361    | 0.01422 | 2617.4           | 2816.5     | 5.6602    | 360  |
| 3051.3       | 6.0747    | 0.01722 | 2760.9           | 3001.9     | 5.9448    | 400  |
| 3178.7       | 6.2586    | 0.01954 | 2868.6           | 3142.2     | 6.1474    | 440  |
| 3293.5       | 6.4154    | 0.02157 | 2962.5           | 3264.5     | 6.3143    | 480  |
| 3401.8       | 6.5555    | 0.02343 | 3049.8           | 3377.8     | 6.4610    | 520  |
| 3506.2       | 6.6840    | 0.02517 | 3133.6           | 3486.0     | 6.5941    | 560  |
| 3608.3       | 6.8037    | 0.02683 | 3215.4           | 3591.1     | 6.7172    | 600  |
| 3709.0       | 6.9164    | 0.02843 | 3296.0           | 3694.1     | 6.8326    | 640  |
| 3858.4       | 7.0749    | 0.03075 | 3415.7           | 3846.2     | 6.9939    | 700  |
| 3957.4       | 7.1746    | 0.03225 | 3495.2           | 3946.7     | 7.0952    | 740  |

Tabel 12. (Continuare din pagina anterioară)

|      |         | p = 160 baı      | r = 4.0 MPa |           |         | p = 180 bar =       |
|------|---------|------------------|-------------|-----------|---------|---------------------|
| Т    |         | $(T_{sat} = 34)$ | 17.44 °C)   |           |         | (T <sub>sat</sub> = |
| [°C] | V       | u                | h           | S         | V       | u                   |
|      | [m³/kg] | [kJ/kg]          | [kJ/kg]     | [kJ/kg·K] | [m³/kg] | [kJ/kg]             |
| Sat  | 0.00931 | 2431.7           | 2580.6      | 5.2455    | 0.00749 | 2374.3              |
| 360  | 0.01105 | 2539.0           | 2715.8      | 5.4614    | 0.00809 | 2418.9              |
| 400  | 0.01426 | 2719.4           | 2947.6      | 5.8175    | 0.01190 | 2672.8              |
| 440  | 0.01652 | 2839.4           | 3103.7      | 6.0429    | 0.01414 | 2808.2              |
| 480  | 0.01842 | 2939.7           | 3234.4      | 6.2215    | 0.01596 | 2915.9              |
| 520  | 0.02013 | 3031.1           | 3353.3      | 6.3752    | 0.01757 | 3011.8              |
| 560  | 0.02172 | 3117.8           | 3465.4      | 6.5132    | 0.01904 | 3101.7              |
| 600  | 0.02323 | 3201.8           | 3573.5      | 6.6399    | 0.02042 | 3188.0              |
| 640  | 0.02467 | 3284.2           | 3678.9      | 6.7580    | 0.02174 | 3272.3              |
| 700  | 0.02674 | 3406.0           | 3833.9      | 6.9224    | 0.02362 | 3396.3              |
| 740  | 0.02808 | 3486.7           | 3935.9      | 7.0251    | 0.02483 | 3478.0              |
| 800  | _       | _                | _           | _         | _       | _                   |

| Т    |                      | p = 240 bar |         |           | p = 280 bar = |         |
|------|----------------------|-------------|---------|-----------|---------------|---------|
| [°C] | V                    | u           | h       | S         | V             | u       |
|      | [m <sup>3</sup> /kg] | [kJ/kg]     | [kJ/kg] | [kJ/kg·K] | $[m^3/kg]$    | [kJ/kg] |
| 400  | 0.00673              | 2477.8      | 2639.4  | 5.2393    | 0.00383       | 2223.5  |
| 440  | 0.00929              | 2700.6      | 2923.4  | 5.6506    | 0.00712       | 2613.2  |
| 480  | 0.01100              | 2838.3      | 3102.3  | 5.8950    | 0.00885       | 2780.8  |
| 520  | 0.01241              | 2950.5      | 3248.5  | 6.0842    | 0.01020       | 2906.8  |
| 560  | 0.01366              | 3051.1      | 3379.0  | 6.2448    | 0.01136       | 3015.7  |
| 600  | 0.01481              | 3145.2      | 3500.7  | 6.3875    | 0.01241       | 3115.6  |
| 640  | 0.01588              | 3235.5      | 3616.7  | 6.5174    | 0.01338       | 3210.3  |
| 700  | 0.01739              | 3366.4      | 3783.8  | 6.6947    | 0.01473       | 3346.1  |
| 740  | 0.01835              | 3451.7      | 3892.1  | 6.8038    | 0.01558       | 3433.9  |
| 800  | 0.01974              | 3578.0      | 4051.6  | 6.9567    | 0.01680       | 3563.1  |
| 900  | _                    | _           | _       | _         | 0.01873       | 3774.3  |

Sursa: Keenan J.H. et al., 1969

| = 18.0 MPa   |           |         | p = 200 bar      | = 20.0 MPa |           |      |
|--------------|-----------|---------|------------------|------------|-----------|------|
| = 357.06 °C) |           |         | $(T_{sat} = 36)$ | 55.81 °C)  |           | Т    |
| h            | S         | V       | u                | h          | S         | [°C] |
| kJ/kg        | [kJ/kg·K] | [m³/kg] | kJ/kg            | kJ/kg      | [kJ/kg·K] |      |
| 2509.1       | 5.1044    | 0.00583 | 2293.0           | 2409.7     | 4.9269    | Sat  |
| 2564.5       | 5.1922    | _       | _                | _          | _         | 360  |
| 2887.0       | 5.6887    | 0.00994 | 2619.3           | 2818.1     | 5.5540    | 400  |
| 3062.8       | 5.9428    | 0.01222 | 2774.9           | 3019.4     | 5.8450    | 440  |
| 3203.2       | 6.1345    | 0.01399 | 2891.2           | 3170.8     | 6.0518    | 480  |
| 3378.0       | 6.2960    | 0.01551 | 2992.0           | 3302.2     | 6.2218    | 520  |
| 3444.4       | 6.4392    | 0.01689 | 3085.2           | 3423.0     | 6.3705    | 560  |
| 3555.6       | 6.5696    | 0.01818 | 3174.0           | 3537.6     | 6.5048    | 600  |
| 3663.6       | 6.6905    | 0.01940 | 3260.2           | 3648.1     | 6.6286    | 640  |
| 3821.5       | 6.8580    | 0.02113 | 3386.4           | 3809.0     | 6.7993    | 700  |
| 3925.0       | 6.9623    | 0.02224 | 3469.3           | 3914.1     | 6.9052    | 740  |
| _            | _         | 0.02385 | 3592.7           | 4069.7     | 7.0544    | 800  |

| = 28.0 MPa |           |                      | Т      |        |           |      |
|------------|-----------|----------------------|--------|--------|-----------|------|
| h          | S         | V                    | u      | h      | S         | [°C] |
| kJ/kg      | [kJ/kg·K] | [m <sup>3</sup> /kg] | kJ/kg  | kJ/kg  | [kJ/kg·K] |      |
| 2330.7     | 4.7494    | 0.00236              | 1980.4 | 2055.9 | 4.3239    | 400  |
| 2812.6     | 5.4494    | 0.00544              | 2509.0 | 2683.0 | 5.2327    | 440  |
| 3028.5     | 5.7446    | 0.00722              | 2718.1 | 2949.2 | 5.5968    | 480  |
| 3192.3     | 5.9566    | 0.00853              | 2860.7 | 3133.7 | 5.8357    | 520  |
| 3333.7     | 6.1307    | 0.00963              | 2979.0 | 3287.2 | 6.0246    | 560  |
| 3463.0     | 6.2823    | 0.01061              | 3085.3 | 3424.6 | 6.1858    | 600  |
| 3584.8     | 6.4187    | 0.01150              | 3184.5 | 3552.5 | 6.3290    | 640  |
| 3758.4     | 6.6029    | 0.01273              | 3325.4 | 3732.8 | 6.5203    | 700  |
| 3870.0     | 6.7153    | 0.01350              | 3415.9 | 3847.8 | 6.6361    | 740  |
| 4033.4     | 6.8720    | 0.01460              | 3548.0 | 4015.1 | 6.7966    | 800  |
| 4298.8     | 7.1084    | 0.01633              | 3762.7 | 4285.1 | 7.0372    | 900  |

Tabel 13. Proprietăți pentru apă la presiuni mari

|      | ŗ                    | ) = 25 bar                      | = 2.5 MP | a         | ı                    | o = 50 bar                      | = 5.0 MP | а         |  |
|------|----------------------|---------------------------------|----------|-----------|----------------------|---------------------------------|----------|-----------|--|
| Т    |                      | $(T_{sat} = 223.99  ^{\circ}C)$ |          |           |                      | $(T_{sat} = 263.99  ^{\circ}C)$ |          |           |  |
| [°C] | V                    | u                               | h        | S         | V                    | u                               | h        | S         |  |
|      | [m <sup>3</sup> /kg] | [kJ/kg]                         | [kJ/kg]  | [kJ/kg·K] | [m <sup>3</sup> /kg] | [kJ/kg]                         | [kJ/kg]  | [kJ/kg·K] |  |
| 20   | 1.0006               | 83.80                           | 86.30    | 0.2961    | 0.9995               | 83.65                           | 88.65    | 0.2956    |  |
| 40   | 1.0067               | 167.25                          | 169.77   | 0.5715    | 1.0056               | 166.95                          | 171.97   | 0.5705    |  |
| 80   | 1.0280               | 334.29                          | 336.86   | 1.0737    | 1.0268               | 333.72                          | 338.85   | 1.0720    |  |
| 100  | 1.0423               | 418.24                          | 420.85   | 1.3050    | 1.0410               | 417.52                          | 422.72   | 1.3030    |  |
| 140  | 1.0784               | 587.82                          | 590.52   | 1.7369    | 1.0768               | 586.76                          | 592.15   | 1.7343    |  |
| 180  | 1.1261               | 761.16                          | 763.97   | 2.1375    | 1.1240               | 759.63                          | 765.25   | 2.1341    |  |
| 200  | 1.1555               | 849.90                          | 852.80   | 2.3294    | 1.1530               | 848.10                          | 853.90   | 2.3255    |  |
| 220  | 1.1898               | 940.70                          | 943.70   | 2.5174    | 1.1866               | 938.40                          | 944.40   | 2.5128    |  |
| Sat. | 1.1973               | 959.10                          | 962.10   | 2.5546    | 1.2859               | 1147.80                         | 1154.20  | 2.9202    |  |

|      | ı                    | o = 75 bar       | = 7.5 MP | а         | р       | = 100 bar       | = 10.0 M  | Pa        |
|------|----------------------|------------------|----------|-----------|---------|-----------------|-----------|-----------|
| Т    |                      | $(T_{sat} = 29)$ | 0.59 °C) |           |         | $(T_{sat} = 3)$ | 11.06 °C) |           |
| [°C] | ٧                    | u                | h        | S         | V       | u               | h         | S         |
|      | [m <sup>3</sup> /kg] | [kJ/kg]          | [kJ/kg]  | [kJ/kg·K] | [m³/kg] | [kJ/kg]         | [kJ/kg]   | [kJ/kg·K] |
| 20   | 0.9984               | 83.50            | 90.99    | 0.2950    | 0.9972  | 83.36           | 93.33     | 0.2945    |
| 40   | 1.0045               | 166.64           | 174.18   | 0.5696    | 1.0034  | 166.35          | 176.38    | 0.5686    |
| 80   | 1.0256               | 333.15           | 340.84   | 1.0704    | 1.0245  | 332.59          | 342.83    | 1.0688    |
| 100  | 1.0397               | 416.81           | 424.62   | 1.3011    | 1.0385  | 416.12          | 426.50    | 1.2992    |
| 140  | 1.0752               | 585.72           | 593.78   | 1.7317    | 1.0737  | 584.68          | 595.42    | 1.7292    |
| 180  | 1.1219               | 758.13           | 766.55   | 2.1308    | 1.1199  | 756.65          | 767.84    | 2.1275    |
| 220  | 1.1835               | 936.20           | 945.10   | 2.5083    | 1.1805  | 934.10          | 945.90    | 2.5039    |
| 260  | 1.2696               | 1124.40          | 1134.00  | 2.8763    | 1.2645  | 1121.10         | 1133.70   | 2.8699    |
| Sat. | 1.3677               | 1282.00          | 1292.20  | 3.1649    | 1.4524  | 1393.00         | 1407.60   | 3.3596    |

Tabel 13. (Continuare din pagina anterioară)

|      | р       | = 150 bar        | = 15.0 M | Pa        | р                               | = 200 bar | = 20.0 M | Pa        |
|------|---------|------------------|----------|-----------|---------------------------------|-----------|----------|-----------|
| Т    |         | $(T_{sat} = 34)$ | 2.24 °C) |           | $(T_{sat} = 365.81  ^{\circ}C)$ |           |          |           |
| [°C] | V       | u                | h        | S         | V                               | u         | h        | S         |
|      | [m³/kg] | [kJ/kg]          | [kJ/kg]  | [kJ/kg·K] | [m³/kg]                         | [kJ/kg]   | [kJ/kg]  | [kJ/kg·K] |
| 20   | 0.9950  | 83.06            | 97.99    | 0.2934    | 0.9928                          | 82.77     | 102.62   | 0.2923    |
| 40   | 1.0013  | 165.76           | 180.78   | 0.5666    | 0.9992                          | 165.17    | 185.16   | 0.5646    |
| 80   | 1.0222  | 331.48           | 346.81   | 1.0656    | 1.0199                          | 330.40    | 350.80   | 1.0624    |
| 100  | 1.0361  | 414.74           | 430.28   | 1.2955    | 1.0337                          | 413.39    | 434.06   | 1.2917    |
| 140  | 1.0707  | 582.66           | 598.72   | 1.7242    | 1.0678                          | 580.69    | 602.04   | 1.7193    |
| 180  | 1.1159  | 753.76           | 770.50   | 2.1210    | 1.1120                          | 750.95    | 773.20   | 2.1147    |
| 220  | 1.1748  | 929.90           | 947.50   | 2.4953    | 1.1693                          | 925.90    | 949.30   | 2.4870    |
| 260  | 1.2550  | 1114.60          | 1133.40  | 2.8576    | 1.2462                          | 1108.60   | 1133.50  | 2.8459    |
| 300  | 1.3770  | 1316.60          | 1337.30  | 3.2260    | 1.3596                          | 1306.10   | 1333.30  | 3.2071    |
| Sat. | 1.6581  | 1585.60          | 1610.50  | 3.6848    | 2.036                           | 1785.60   | 1826.30  | 4.0139    |

| Т    | р                    | = 250 bar | = 25.0 M | Ра        | p = 300 bar = 30.0 MPa |         |         |           |
|------|----------------------|-----------|----------|-----------|------------------------|---------|---------|-----------|
| [°C] | V                    | u         | h        | S         | V                      | u       | h       | S         |
|      | [m <sup>3</sup> /kg] | [kJ/kg]   | [kJ/kg]  | [kJ/kg·K] | [m <sup>3</sup> /kg]   | [kJ/kg] | [kJ/kg] | [kJ/kg·K] |
| 20   | 0.9907               | 82.47     | 107.24   | 0.2911    | 0.9886                 | 82.17   | 111.84  | 0.2899    |
| 40   | 0.9971               | 164.60    | 189.52   | 0.5626    | 0.9951                 | 164.04  | 193.89  | 0.5607    |
| 100  | 1.0313               | 412.08    | 437.85   | 1.2881    | 1.0290                 | 410.78  | 441.66  | 1.2844    |
| 200  | 1.1344               | 834.50    | 862.80   | 2.2961    | 1.1302                 | 831.40  | 865.30  | 2.2893    |
| 300  | 1.3442               | 1296.60   | 1330.20  | 3.1900    | 1.3304                 | 1287.90 | 1327.80 | 3.1741    |

Sursa: Keenan J.H. et al., 1969

Tabel 14. Densitatea și vâscozitatea apei la 1 atm

| T<br>[°C] | ρ<br>[kg/m³] | μ x 10 <sup>3</sup><br>[Ns/m <sup>2</sup> ] | v x 10 <sup>6</sup><br>[m²/s] |
|-----------|--------------|---------------------------------------------|-------------------------------|
| 0         | 1000         | 1.788                                       | 1.788                         |
| 10        | 1000         | 1.307                                       | 1.307                         |
| 20        | 998          | 1.003                                       | 1.005                         |
| 30        | 996          | 0.799                                       | 0.802                         |
| 40        | 992          | 0.657                                       | 0.662                         |
| 50        | 988          | 0.548                                       | 0.555                         |
| 60        | 983          | 0.467                                       | 0.475                         |
| 70        | 978          | 0.405                                       | 0.414                         |
| 80        | 972          | 0.355                                       | 0.365                         |
| 90        | 965          | 0.316                                       | 0.327                         |
| 100       | 958          | 0.283                                       | 0.295                         |

Curbe de regresie liniară sugerate pentru apă în domeniul  $0 \le T \le 100$ °C:

$$\begin{split} \rho \Big[ kg \big/ m^3 \, \Big] &\approx 1000 \text{--} 0.0178 \Big( T \big[ ^{\circ}C \big] \text{--} 4 \big[ ^{\circ}C \big] \Big)^{1.7} \pm 0.2\% \\ & In \frac{\mu}{\mu_0} \approx \text{--} 1.704 \text{--} 5.306 \cdot z + 7.003 \cdot z^2 \\ & z = \frac{273 \big[ K \big]}{T \big[ K \big]} \\ & \mu_0 = 1.788 \cdot 10^{-3} \big[ kg \, / \, ms \big] \end{split}$$

Sursa: Adaptat din White F.M., 1998

Tabel 15. Proprietăți pentru lichide uzuale la 1 atm și 20°C

| Lichid                | ρ<br>[kg/m³] | μ<br>[kg/m·s] | Tensiune<br>superficială<br>Y, [N/m] | p <sub>v</sub><br>[N/m²] | Modul de<br>elasticitate<br>[N/m²] | Parametru<br>vâscozitate<br>C |
|-----------------------|--------------|---------------|--------------------------------------|--------------------------|------------------------------------|-------------------------------|
| Amoniac               | 608          | 2.20 E-4      | 2.13 E-2                             | 9.10 E+5                 | _                                  | 1.05                          |
| Benzen                | 881          | 6.51 E-4      | 2.88 E-2                             | 1.01 E+4                 | 1.40 E+9                           | 4.34                          |
| Carbon - tetraclorură | 1590         | 9.67 E-4      | 2.70 E-2                             | 1.20 E+4                 | 9.65 E+8                           | 4.45                          |
| Etanol                | 789          | 1.20 E-3      | 2.28 E-2                             | 5.70 E+3                 | 9.00 E+8                           | 5.72                          |
| Etilen glicol         | 1117         | 2.14 E-2      | 4.84 E-2                             | 1.20 E+1                 | _                                  | 11.7                          |
| Freon 12              | 1327         | 2.62 E-4      | _                                    | _                        | _                                  | 1.76                          |
| Gazolină              | 680          | 2.92 E-4      | 2.16 E-2                             | 5.51 E+4                 | 9.58 E+8                           | 3.68                          |
| Glicerină             | 1260         | 1.49          | 6.33 E-2                             | 1.40 E-2                 | 4.34 E+9                           | 28.0                          |
| Kerosen               | 804          | 1.92 E-3      | 2.80 E-2                             | 3.11 E+3                 | 1.60 E+9                           | 5.56                          |
| Mercur                | 13550        | 1.56 E-3      | 4.84 E-1                             | 1.10 E-3                 | 2.55 E+10                          | 1.07                          |
| Metanol               | 791          | 5.98 E-4      | 2.25 E-2                             | 1.34 E+4                 | 8.30 E+8                           | 4.63                          |
| Ulei SAE 10W          | 870          | 1.04 E-1      | 3.60 E-2                             | _                        | 1.31 E+9                           | 15.7                          |
| Ulei SAE 10W30        | 876          | 1.70 E-1      | _                                    | _                        | _                                  | 14.0                          |
| Ulei SAE 30W          | 891          | 2.90 E-1      | 3.50 E-2                             | _                        | 1.38 E+9                           | 18.3                          |
| Ulei SAE 50W          | 902          | 8.60 E-1      | _                                    | _                        | _                                  | 20.2                          |
| Арӑ                   | 998          | 1.00 E-3      | 7.28 E-2                             | 2.34 E+3                 | 2.19 E+9                           | Tabel 14                      |
| Apă de mare (30%)     | 1025         | 1.07 E-3      | 7.28 E-2                             | 2.34 E+3                 | 2.33 E+9                           | 7.28                          |

Sursa: Adaptat din White F.M., 1998

Tabel 16. Proprietăți fizice pentru lichide

| T           | ρ                    | Cp        | λ      | a           | μ          | ν         | Pr     | β       |
|-------------|----------------------|-----------|--------|-------------|------------|-----------|--------|---------|
| [°C]        | [kg/m <sup>3</sup> ] | [kJ/kg K] | [W/mK] | [m²/s]      | [kg/m · s] | [m²/s]    | [-]    | [1/K]   |
| Metan [CH₄] |                      |           |        |             |            |           |        |         |
| -160        | 420.2                | 3492      | 0.1863 | 1.270 E-7   | 1.133 E-4  | 2.699 E-7 | 2.126  | 0.00352 |
| -150        | 405.0                | 3580      | 0.1703 | 1.174 E-7   | 9.169 E-5  | 2.264 E-7 | 1.927  | 0.00391 |
| -140        | 388.8                | 3700      | 0.1550 | 1.077 E-7   | 7.551 E-5  | 1.942 E-7 | 1.803  | 0.00444 |
| -130        | 371.1                | 3875      | 0.1402 | 9.749 E-8   | 6.288 E-5  | 1.694 E-7 | 1.738  | 0.00520 |
| -120        | 351.4                | 4146      | 0.1258 | 8.634 E-8   | 5.257 E-5  | 1.496 E-7 | 1.732  | 0.00637 |
| -110        | 328.8                | 4611      | 0.1115 | 7.356 E-8   | 4.377 E-5  | 1.331 E-7 | 1.810  | 0.00841 |
| -100        | 301.0                | 5578      | 0.0967 | 5.761 E-8   | 3.577 E-5  | 1.188 E-7 | 2.063  | 0.01282 |
| -90         | 261.7                | 8902      | 0.0797 | 3.423 E-8   | 2.761 E-5  | 1.055 E-7 | 3.082  | 0.02922 |
|             |                      |           | Me     | etanol [CH₃ | (OH)]      |           |        |         |
| 20          | 788.4                | 2515      | 0.1987 | 1.002 E-7   | 5.857 E-4  | 7.429 E-7 | 7.414  | 0.00118 |
| 30          | 779.1                | 2577      | 0.1980 | 9.862 E-8   | 5.088 E-4  | 6.531 E-7 | 6.622  | 0.00120 |
| 40          | 769.6                | 2644      | 0.1972 | 9.690 E-8   | 4.460 E-4  | 5.795 E-7 | 5.980  | 0.00123 |
| 50          | 760.1                | 2718      | 0.1965 | 9.509 E-8   | 3.942 E-4  | 5.185 E-7 | 5.453  | 0.00127 |
| 60          | 750.4                | 2798      | 0.1957 | 9.320 E-8   | 3.510 E-4  | 4.677 E-7 | 5.018  | 0.00132 |
| 70          | 740.4                | 2885      | 0.1950 | 9.128 E-8   | 3.146 E-4  | 4.250 E-7 | 4.655  | 0.00137 |
|             |                      |           | lz     | obutan (R6  | 00a)       |           |        |         |
| -100        | 683.8                | 1881      | 0.1383 | 1.075 E-7   | 9.305 E-4  | 1.360 E-6 | 12.650 | 0.00142 |
| -75         | 659.3                | 1970      | 0.1357 | 1.044 E-7   | 5.624 E-4  | 8.531 E-7 | 8.167  | 0.00150 |
| -50         | 634.3                | 2069      | 0.1283 | 9.773 E-8   | 3.769 E-4  | 5.942 E-7 | 6.079  | 0.00161 |
| -25         | 608.2                | 2180      | 0.1181 | 8.906 E-8   | 2.688 E-4  | 4.420 E-7 | 4.963  | 0.00177 |
| 0           | 580.6                | 2306      | 0.1068 | 7.974 E-8   | 1.993 E-4  | 3.432 E-7 | 4.304  | 0.00199 |
| 25          | 550.7                | 2455      | 0.0956 | 7.069 E-8   | 1.510 E-4  | 2.743 E-7 | 3.880  | 0.00232 |
| 50          | 517.3                | 2640      | 0.0851 | 6.233 E-8   | 1.155 E-4  | 2.233 E-7 | 3.582  | 0.00286 |
| 75          | 478.5                | 2896      | 0.0757 | 5.460 E-8   | 8.785 E-5  | 1.836 E-7 | 3.363  | 0.00385 |
| 100         | 429.6                | 3361      | 0.0669 | 4.634 E-8   | 6.483 E-5  | 1.509 E-7 | 3.256  | 0.00628 |

Tabel 16. (Continuare din pagina anterioară)

| Т         | ρ                    | Cp        | λ      | а           | μ          | ν                   | Pr    | β       |
|-----------|----------------------|-----------|--------|-------------|------------|---------------------|-------|---------|
| [°C]      | [kg/m <sup>3</sup> ] | [kJ/kg K] | [W/mK] | [m²/s]      | [kg/m · s] | [m <sup>2</sup> /s] | [-]   | [1/K]   |
| Glicerină |                      |           |        |             |            |                     |       |         |
| 0         | 1276                 | 2262      | 0.2820 | 9.773 E-8   | 10.4900    | 8.219 E-3           | 84101 | _       |
| 5         | 1273                 | 2288      | 0.2835 | 9.732 E-8   | 6.7300     | 5.287 E-3           | 54327 | _       |
| 10        | 1270                 | 2320      | 0.2846 | 9.662 E-8   | 4.2410     | 3.339 E-3           | 34561 | _       |
| 15        | 1267                 | 2354      | 0.2856 | 9.576 E-8   | 2.4960     | 1.970 E-3           | 20570 | _       |
| 20        | 1264                 | 2386      | 0.2860 | 9.484 E-8   | 1.5190     | 1.201 E-3           | 12671 | _       |
| 25        | 1261                 | 2416      | 0.2860 | 9.388 E-8   | 0.9934     | 7.878 E-4           | 8392  | _       |
| 30        | 1258                 | 2447      | 0.2860 | 9.291 E-8   | 0.6582     | 5.232 E-4           | 5631  | _       |
| 35        | 1255                 | 2478      | 0.2860 | 9.195 E-8   | 0.4347     | 3.464 E-4           | 3767  | _       |
| 40        | 1252                 | 2513      | 0.2863 | 9.101 E-8   | 0.3073     | 2.455 E-4           | 2697  | _       |
|           | -                    |           | Ulei d | le motor (r | ne-uzat)   |                     |       |         |
| 0         | 899.0                | 1797      | 0.1469 | 9.097 E-8   | 3.814000   | 4.242 E-3           | 46636 | 0.00070 |
| 20        | 888.1                | 1881      | 0.1450 | 8.680 E-8   | 0.837400   | 9.429 E-4           | 10863 | 0.00070 |
| 40        | 876.0                | 1964      | 0.1444 | 8.391 E-8   | 0.217700   | 2.485 E-4           | 2962  | 0.00070 |
| 60        | 863.9                | 2048      | 0.1404 | 7.934 E-8   | 0.073990   | 8.565 E-5           | 1080  | 0.00070 |
| 80        | 852.0                | 2132      | 0.1380 | 7.599 E-8   | 0.032320   | 3.794 E-5           | 499.3 | 0.00070 |
| 100       | 840.0                | 2220      | 0.1367 | 7.330 E-8   | 0.017180   | 2.046 E-5           | 279.1 | 0.00070 |
| 120       | 828.9                | 2308      | 0.1347 | 7.042 E-8   | 0.010290   | 1.241 E-5           | 176.3 | 0.00070 |
| 140       | 816.8                | 2395      | 0.1330 | 6.798 E-8   | 0.006558   | 8.029 E-6           | 118.1 | 0.00070 |
| 150       | 810.3                | 2441      | 0.1327 | 6.708 E-8   | 0.005344   | 6.595 E-6           | 98.31 | 0.00070 |

Sursa: Adaptat din Cengel Y., 2003

Tabel 17. Proprietăți fizice pentru metale lichide

| Mercur (Hg) Punct de topire: -39 °C  0 13595 140.4 8.1820 4.287 E-6 1.687 E-3 1.241 E-7 0.0289 1 25 13534 139.4 8.5153 4.514 E-6 1.534 E-3 1.133 E-7 0.0251 1 50 13473 138.6 8.8363 4.734 E-6 1.423 E-3 1.056 E-7 0.0223 1        | 1.810<br>1.810<br>1.810<br>1.810<br>1.810<br>1.810 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 0 13595 140.4 8.1820 4.287 E-6 1.687 E-3 1.241 E-7 0.0289 1<br>25 13534 139.4 8.5153 4.514 E-6 1.534 E-3 1.133 E-7 0.0251 1<br>50 13473 138.6 8.8363 4.734 E-6 1.423 E-3 1.056 E-7 0.0223 1                                       | 1.810<br>1.810<br>1.810<br>1.810                   |
| 25       13534       139.4       8.5153       4.514 E-6       1.534 E-3       1.133 E-7       0.0251       1         50       13473       138.6       8.8363       4.734 E-6       1.423 E-3       1.056 E-7       0.0223       1 | 1.810<br>1.810<br>1.810<br>1.810                   |
| 50 13473 138.6 8.8363 4.734 E-6 1.423 E-3 1.056 E-7 0.0223 1                                                                                                                                                                      | 1.810<br>1.810<br>1.810                            |
|                                                                                                                                                                                                                                   | 1.810<br>1.810                                     |
| 75 13/12 1378 9.1563 / 956 F-6 1.316 F-3 9.919 F-9 0.0199 1                                                                                                                                                                       | 1.810                                              |
| 75 13412 137.0 3.1303 4.330 1-0 1.310 1-3 3.013 1-0 0.0130                                                                                                                                                                        |                                                    |
| 100 13351 137.1 9.4671 5.170 E-6 1.245 E-3 9.326 E-8 0.0180 1                                                                                                                                                                     |                                                    |
| 150 13231 136.1 10.0778 5.595 E-6 1.126 E-3 8.514 E-8 0.0152 1                                                                                                                                                                    | 1.810                                              |
| 200 13112 135.5 10.6546 5.996 E-6 1.043 E-3 7.959 E-8 0.0133 1                                                                                                                                                                    | 1.815                                              |
| 250 12993 135.3 11.1815 6.363 E-6 9.820 E-4 7.558 E-8 0.0119 1                                                                                                                                                                    | 1.829                                              |
| 300 12873 135.3 11.6815 6.705 E-6 9.336 E-4 7.252 E-8 0.0108 1                                                                                                                                                                    | 1.854                                              |
| Bismut (Bi) Punct de topire: 271°C                                                                                                                                                                                                |                                                    |
| 350 9969 146.0 16.28 1.118 E-5 1.540 E-3 1.545 E-7 0.01381                                                                                                                                                                        | _                                                  |
| 400 9908 148.2 16.10 1.096 E-5 1.422 E-3 1.436 E-7 0.01310                                                                                                                                                                        | _                                                  |
| 500 9785 152.8 15.74 1.052 E-5 1.188 E-3 1.215 E-7 0.01154                                                                                                                                                                        | _                                                  |
| 600 9663 157.3 15.60 1.026 E-5 1.013 E-3 1.048 E-7 0.01022                                                                                                                                                                        | _                                                  |
| 700 9540 161.8 15.60 1.010 E-5 8.736 E-4 9.157 E-8 0.00906                                                                                                                                                                        | _                                                  |
| Plumb (Pb) Punct de topire: 327°C                                                                                                                                                                                                 |                                                    |
| 400 10506 158 15.97 9.623 E-6 2.277 E-3 2.167 E-7 0.02252                                                                                                                                                                         | _                                                  |
| 450 10449 156 15.74 9.649 E-6 2.065 E-3 1.976 E-7 0.02048                                                                                                                                                                         | _                                                  |
| 500 10390 155 15.54 9.651 E-6 1.884 E-3 1.814 E-7 0.01879                                                                                                                                                                         | _                                                  |
| 550 10329 155 15.39 9.610 E-6 1.758 E-3 1.702 E-7 0.01771                                                                                                                                                                         | _                                                  |
| 600 10267 155 15.23 9.568 E-6 1.632 E-3 1.589 E-7 0.01661                                                                                                                                                                         | _                                                  |
| 650 10206 155 15.07 9.526 E-6 1.505 E-3 1.475 E-7 0.01549                                                                                                                                                                         | _                                                  |
| 700 10145 155 14.91 9.483 E-6 1.379 E-3 1.360 E-7 0.01434                                                                                                                                                                         | _                                                  |
| Sodiu (Na) Punct de topire: 98°C                                                                                                                                                                                                  |                                                    |
| 100 927.3 1378 85.84 6.718 E-5 6.892 E-4 7.432 E-7 0.01106                                                                                                                                                                        | _                                                  |
| 200 902.5 1349 80.84 6.639 E-5 5.385 E-4 5.967 E-7 0.008987                                                                                                                                                                       | _                                                  |
| 300 877.8 1320 75.84 6.544 E-5 3.878 E-4 4.418 E-7 0.006751                                                                                                                                                                       | _                                                  |
| 400 853.0 1296 71.20 6.437 E-5 2.720 E-4 3.188 E-7 0.004953                                                                                                                                                                       | _                                                  |
| 500 828.5 1284 67.41 6.335 E-5 2.411 E-4 2.909 E-7 0.004593                                                                                                                                                                       | _                                                  |
| 600 804.0 1272 63.63 6.220 E-5 2.101 E-4 2.614 E-7 0.004202                                                                                                                                                                       | _                                                  |

Tabel 17. (Continuare din pagina anterioară)

| abci 17. (C | ontinuare a                       | in pagina an | teriouruj  |           |                  |             |          |                  |  |  |
|-------------|-----------------------------------|--------------|------------|-----------|------------------|-------------|----------|------------------|--|--|
| Т           | ρ                                 | $C_p$        | λ          | a         | μ                | ν           | Pr       | $\beta$ x $10^3$ |  |  |
| [°C]        | [kg/m³]                           | [kJ/kg·K]    | [W/mK]     | $[m^2/s]$ | $[kg/m \cdot s]$ | $[m^2/s]$   | [-]      | [1/K]            |  |  |
|             | Potasiu (K) Punct de topire: 64°C |              |            |           |                  |             |          |                  |  |  |
| 200         | 795.2                             | 790.8        | 43.99      | 6.995 E-5 | 3.350 E-4        | 4.213 E-7   | 0.006023 | _                |  |  |
| 300         | 771.6                             | 772.8        | 42.01      | 7.045 E-5 | 2.667 E-4        | 3.456 E-7   | 0.004906 | _                |  |  |
| 400         | 748.0                             | 754.8        | 40.03      | 7.090 E-5 | 1.984 E-4        | 2.652 E-7   | 0.003740 | _                |  |  |
| 500         | 723.9                             | 750.0        | 37.81      | 6.964 E-5 | 1.668 E-4        | 2.304 E-7   | 0.003309 | _                |  |  |
| 600         | 699.6                             | 750.0        | 35.50      | 6.765 E-5 | 1.487 E-4        | 2.126 E-7   | 0.003143 | _                |  |  |
|             |                                   | Sodiu-Po     | tasiu (%22 | Na-%78K)  | Punct de to      | pire: -11°C |          |                  |  |  |
| 100         | 847.3                             | 944.4        | 25.64      | 3.205 E-5 | 5.707 E-4        | 6.736 E-7   | 0.02102  | _                |  |  |
| 200         | 823.2                             | 922.5        | 26.27      | 3.459 E-5 | 4.587 E-4        | 5.572 E-7   | 0.01611  | _                |  |  |
| 300         | 799.1                             | 900.6        | 26.89      | 3.736 E-5 | 3.467 E-4        | 4.339 E-7   | 0.01161  | _                |  |  |
| 400         | 775.0                             | 879.0        | 27.50      | 4.037 E-5 | 2.357 E-4        | 3.041 E-7   | 0.00753  | _                |  |  |
| 500         | 751.5                             | 880.1        | 27.89      | 4.217 E-5 | 2.108 E-4        | 2.805 E-7   | 0.00665  | _                |  |  |
| 600         | 728.0                             | 881.2        | 28.28      | 4.408 E-5 | 1.859 E-4        | 2.553 E-7   | 0.00579  |                  |  |  |

Sursa: Adaptat din Cengel Y., 2003

Tabel 18. Proprietățile aerului – gaz ideal

| T   | h       | u       | S         | când .         | $\Delta s = 0$ |
|-----|---------|---------|-----------|----------------|----------------|
| [K] | [kJ/kg] | [kJ/kg] | [kJ/kg·K] | p <sub>r</sub> | V <sub>r</sub> |
| 200 | 199.97  | 142.56  | 1.29559   | 0.3363         | 1707           |
| 210 | 209.97  | 149.69  | 1.34444   | 0.3987         | 1512           |
| 220 | 219.97  | 156.82  | 1.39105   | 0.4690         | 1346           |
| 230 | 230.02  | 164.00  | 1.43557   | 0.5477         | 1205           |
| 240 | 240.02  | 171.13  | 1.47824   | 0.6355         | 1084           |
| 250 | 250.05  | 178.28  | 1.51917   | 0.7329         | 979.0          |
| 260 | 260.09  | 185.45  | 1.55848   | 0.8405         | 887.8          |
| 270 | 270.11  | 192.60  | 1.59634   | 0.9590         | 808.0          |
| 280 | 280.13  | 199.75  | 1.63279   | 1.0889         | 738.0          |
| 285 | 285.14  | 203.33  | 1.65055   | 1.1584         | 706.1          |
| 290 | 290.16  | 206.91  | 1.66802   | 1.2311         | 676.1          |
| 295 | 295.17  | 210.49  | 1.68515   | 1.3068         | 647.9          |
| 300 | 300.19  | 214.07  | 1.70203   | 1.3860         | 621.2          |
| 305 | 305.22  | 217.67  | 1.71865   | 1.4686         | 596.0          |
| 310 | 310.24  | 221.25  | 1.73498   | 1.5546         | 572.3          |
| 315 | 315.27  | 224.85  | 1.75106   | 1.6442         | 549.8          |
| 320 | 320.29  | 228.42  | 1.76690   | 1.7375         | 528.6          |
| 325 | 325.31  | 232.02  | 1.78249   | 1.8345         | 508.4          |
| 330 | 330.34  | 235.61  | 1.79783   | 1.9352         | 489.4          |
| 340 | 340.42  | 242.82  | 1.82790   | 2.1490         | 454.1          |
| 350 | 350.49  | 250.02  | 1.85708   | 2.3790         | 422.2          |
| 360 | 360.58  | 257.24  | 1.88543   | 2.6260         | 393.4          |
| 370 | 370.67  | 264.46  | 1.91313   | 2.8920         | 367.2          |
| 380 | 380.77  | 271.69  | 1.94001   | 3.1760         | 343.4          |
| 390 | 390.88  | 278.93  | 1.96633   | 3.4810         | 321.5          |
| 400 | 400.98  | 286.16  | 1.99194   | 3.8060         | 301.6          |
| 410 | 411.12  | 293.43  | 2.01699   | 4.1530         | 283.3          |
| 420 | 421.26  | 300.69  | 2.04142   | 4.5220         | 266.6          |
| 430 | 431.43  | 307.99  | 2.06533   | 4.9150         | 251.1          |
| 440 | 441.61  | 315.30  | 2.08870   | 5.3320         | 236.8          |

Tabel 18. (Continuare din pagina anterioară)

| Т   | h       | u       | S         | când           | $\Delta s = 0$ |
|-----|---------|---------|-----------|----------------|----------------|
| [K] | [kJ/kg] | [kJ/kg] | [kJ/kg·K] | p <sub>r</sub> | V <sub>r</sub> |
| 450 | 451.80  | 322.62  | 2.11161   | 5.775          | 223.6          |
| 460 | 462.02  | 329.97  | 2.13407   | 6.245          | 211.4          |
| 470 | 472.24  | 337.32  | 2.15604   | 6.742          | 200.1          |
| 480 | 482.49  | 344.70  | 2.17760   | 7.268          | 189.5          |
| 490 | 492.74  | 352.08  | 2.19876   | 7.824          | 179.7          |
| 500 | 503.02  | 359.49  | 2.21952   | 8.411          | 170.6          |
| 510 | 513.32  | 366.92  | 2.23993   | 9.031          | 162.1          |
| 520 | 523.63  | 374.36  | 2.25997   | 9.684          | 154.1          |
| 530 | 533.98  | 381.84  | 2.27967   | 10.37          | 146.7          |
| 540 | 544.35  | 389.34  | 2.29906   | 11.10          | 139.7          |
| 550 | 554.74  | 396.86  | 2.31809   | 11.86          | 133.1          |
| 560 | 565.17  | 404.42  | 2.33685   | 12.66          | 127.0          |
| 570 | 575.59  | 411.97  | 2.35531   | 13.50          | 121.2          |
| 580 | 586.04  | 419.55  | 2.37348   | 14.38          | 115.7          |
| 590 | 596.52  | 427.15  | 2.39140   | 15.31          | 110.6          |
| 600 | 607.02  | 434.78  | 2.40902   | 16.28          | 105.8          |
| 610 | 617.53  | 442.42  | 2.42644   | 17.30          | 101.2          |
| 620 | 628.07  | 450.09  | 2.44356   | 18.36          | 96.92          |
| 630 | 638.63  | 457.78  | 2.46048   | 19.84          | 92.84          |
| 640 | 649.22  | 465.50  | 2.47716   | 20.64          | 88.99          |
| 650 | 659.84  | 473.25  | 2.49364   | 21.86          | 85.34          |
| 660 | 670.47  | 481.01  | 2.50985   | 23.13          | 81.89          |
| 670 | 681.14  | 488.81  | 2.52589   | 24.46          | 78.61          |
| 680 | 691.82  | 496.62  | 2.54175   | 25.85          | 75.50          |
| 690 | 702.52  | 504.45  | 2.55731   | 27.29          | 72.56          |
| 700 | 713.27  | 512.33  | 2.57277   | 28.80          | 69.76          |
| 710 | 724.04  | 520.23  | 2.5881    | 30.38          | 67.07          |
| 720 | 734.82  | 528.14  | 2.60319   | 32.02          | 64.53          |
| 730 | 745.62  | 536.07  | 2.61803   | 33.72          | 62.13          |
| 740 | 756.44  | 544.02  | 2.63280   | 35.50          | 59.82          |

Tabel 18. (Continuare din pagina anterioară)

| Т    | h       | u       | S         | când           | $\Delta s = 0$ |
|------|---------|---------|-----------|----------------|----------------|
| [K]  | [kJ/kg] | [kJ/kg] | [kJ/kg·K] | p <sub>r</sub> | Vr             |
| 750  | 767.29  | 551.99  | 2.64737   | 37.35          | 57.63          |
| 760  | 778.18  | 560.01  | 2.66176   | 39.27          | 55.54          |
| 770  | 789.11  | 568.07  | 2.67595   | 41.31          | 53.39          |
| 780  | 800.03  | 576.12  | 2.69013   | 43.35          | 51.64          |
| 790  | 810.99  | 584.21  | 2.70400   | 45.55          | 49.86          |
| 800  | 821.95  | 592.30  | 2.71787   | 47.75          | 48.08          |
| 820  | 843.98  | 608.59  | 2.74504   | 52.59          | 44.84          |
| 840  | 866.08  | 624.95  | 2.77170   | 57.60          | 41.85          |
| 860  | 888.27  | 641.40  | 2.79783   | 63.09          | 39.12          |
| 880  | 910.56  | 657.95  | 2.82344   | 68.98          | 36.61          |
| 900  | 932.93  | 674.58  | 2.84856   | 75.29          | 34.31          |
| 920  | 955.38  | 691.28  | 2.87324   | 82.05          | 32.18          |
| 940  | 977.92  | 708.08  | 2.89748   | 89.28          | 30.22          |
| 960  | 1000.55 | 725.02  | 2.92128   | 97.00          | 28.40          |
| 980  | 1023.25 | 741.98  | 2.94468   | 105.2          | 26.73          |
| 1000 | 1046.04 | 758.94  | 2.96770   | 114.0          | 25.17          |
| 1020 | 1068.89 | 776.10  | 2.99034   | 123.4          | 23.72          |
| 1040 | 1091.85 | 793.36  | 3.01260   | 133.3          | 22.39          |
| 1060 | 1114.86 | 810.62  | 3.03449   | 143.9          | 21.14          |
| 1080 | 1137.89 | 827.88  | 3.05608   | 155.2          | 19.98          |
| 1100 | 1161.07 | 845.33  | 3.07732   | 167.1          | 18.896         |
| 1120 | 1184.28 | 862.79  | 3.09825   | 179.7          | 17.886         |
| 1140 | 1207.57 | 880.35  | 3.11883   | 193.1          | 16.946         |
| 1160 | 1230.92 | 897.91  | 3.13916   | 207.2          | 16.064         |
| 1180 | 1254.34 | 915.57  | 3.15916   | 222.2          | 15.241         |
| 1200 | 1277.79 | 933.33  | 3.17888   | 238.0          | 14.470         |
| 1220 | 1301.31 | 951.09  | 3.19834   | 254.7          | 13.747         |
| 1240 | 1324.93 | 968.95  | 3.21751   | 272.3          | 13.069         |
| 1260 | 1348.55 | 986.90  | 3.23638   | 290.8          | 12.435         |
| 1280 | 1372.24 | 1004.76 | 3.25510   | 310.4          | 11.835         |

Tabel 18. (Continuare din pagina anterioară)

| T    | h<br>h  | u       | S         | când           | $\Delta s = 0$ |
|------|---------|---------|-----------|----------------|----------------|
| [K]  | [kJ/kg] | [kJ/kg] | [kJ/kg·K] | p <sub>r</sub> | V <sub>r</sub> |
| 1300 | 1395.97 | 1022.82 | 3.27345   | 330.9          | 11.275         |
| 1320 | 1419.76 | 1040.88 | 3.29160   | 352.5          | 10.747         |
| 1340 | 1443.60 | 1058.94 | 3.30959   | 375.3          | 10.247         |
| 1360 | 1467.49 | 1077.10 | 3.32724   | 399.1          | 9.780          |
| 1380 | 1491.44 | 1095.26 | 3.34474   | 424.2          | 9.337          |
| 1400 | 1515.42 | 1113.52 | 3.36200   | 450.5          | 8.919          |
| 1420 | 1539.44 | 1131.77 | 3.37901   | 478.0          | 8.526          |
| 1440 | 1563.51 | 1150.13 | 3.39586   | 506.9          | 8.153          |
| 1460 | 1587.63 | 1168.49 | 3.41247   | 537.1          | 7.801          |
| 1480 | 1611.79 | 1186.95 | 3.42892   | 568.8          | 7.468          |
| 1500 | 1635.97 | 1205.41 | 3.44516   | 601.9          | 7.152          |
| 1520 | 1660.23 | 1223.87 | 3.46120   | 636.5          | 6.854          |
| 1540 | 1684.51 | 1242.43 | 3.47712   | 672.8          | 6.569          |
| 1560 | 1708.82 | 1260.99 | 3.49276   | 710.5          | 6.301          |
| 1580 | 1733.17 | 1279.65 | 3.50829   | 750.0          | 6.046          |
| 1600 | 1757.57 | 1298.30 | 3.52364   | 791.2          | 5.804          |
| 1620 | 1782.00 | 1316.96 | 3.53879   | 834.1          | 5.574          |
| 1640 | 1806.46 | 1335.72 | 3.55381   | 878.9          | 5.355          |
| 1660 | 1830.96 | 1354.48 | 3.56867   | 925.6          | 5.147          |
| 1680 | 1855.50 | 1373.24 | 3.58335   | 974.2          | 4.949          |
| 1700 | 1880.1  | 1392.7  | 3.5979    | 1025           | 4.761          |
| 1750 | 1941.6  | 1439.8  | 3.6336    | 1161           | 4.328          |
| 1800 | 2003.3  | 1487.2  | 3.6684    | 1310           | 3.944          |
| 1850 | 2065.3  | 1534.9  | 3.7023    | 1475           | 3.601          |
| 1900 | 2127.4  | 1582.6  | 3.7354    | 1655           | 3.295          |
| 1950 | 2189.7  | 1630.6  | 3.7677    | 1852           | 3.022          |
| 2000 | 2252.1  | 1678.7  | 3.7994    | 2068           | 2.776          |
| 2050 | 2314.6  | 1726.8  | 3.8303    | 2303           | 2.555          |
| 2100 | 2377.4  | 1775.3  | 3.8605    | 2559           | 2.356          |
| 2150 | 2440.3  | 1823.8  | 3.8901    | 2837           | 2.175          |
| 2200 | 2503.2  | 1872.4  | 3.9191    | 3138           | 2.012          |
| 2250 | 2566.4  | 1921.3  | 3.9474    | 3464           | 1.864          |

Sursa: Adaptat din Keenan J.H., Kaye J., 1945

Tabel 19. Proprietățile aerului la 1 atm

| Т    | ρ                    | Cp        | λ       | а         | μ         | ν         | Pr     |
|------|----------------------|-----------|---------|-----------|-----------|-----------|--------|
| [°C] | [kg/m <sup>3</sup> ] | [kJ/kg·K] | [W/mK]  | $[m^2/s]$ | [kg/m·s]  | $[m^2/s]$ | [-]    |
| -150 | 2.866                | 983       | 0.01171 | 4.158 E-6 | 8.636 E-6 | 3.013 E-6 | 0.7246 |
| -100 | 2.038                | 966       | 0.01582 | 8.036 E-6 | 1.189 E-6 | 5.837 E-6 | 0.7263 |
| -50  | 1.582                | 999       | 0.01979 | 1.252 E-5 | 1.474 E-5 | 9.319 E-6 | 0.7440 |
| -40  | 1.514                | 1002      | 0.02057 | 1.356 E-5 | 1.527 E-5 | 1.008 E-5 | 0.7436 |
| -30  | 1.451                | 1004      | 0.02134 | 1.465 E-5 | 1.579 E-5 | 1.087 E-5 | 0.7425 |
| -20  | 1.394                | 1005      | 0.02211 | 1.578 E-5 | 1.630 E-5 | 1.169 E-5 | 0.7408 |
| -10  | 1.341                | 1006      | 0.02288 | 1.696 E-5 | 1.680 E-5 | 1.252 E-5 | 0.7387 |
| 0    | 1.292                | 1006      | 0.02364 | 1.818 E-5 | 1.729 E-5 | 1.338 E-5 | 0.7362 |
| 5    | 1.269                | 1006      | 0.02401 | 1.880 E-5 | 1.754 E-5 | 1.382 E-5 | 0.7350 |
| 10   | 1.246                | 1006      | 0.02439 | 1.944 E-5 | 1.778 E-5 | 1.426 E-5 | 0.7336 |
| 15   | 1.225                | 1007      | 0.02476 | 2.009 E-5 | 1.802 E-5 | 1.470 E-5 | 0.7323 |
| 20   | 1.204                | 1007      | 0.02514 | 2.074 E-5 | 1.825 E-5 | 1.516 E-5 | 0.7309 |
| 25   | 1.184                | 1007      | 0.02551 | 2.141 E-5 | 1.849 E-5 | 1.562 E-5 | 0.7296 |
| 30   | 1.164                | 1007      | 0.02588 | 2.208 E-5 | 1.872 E-5 | 1.608 E-5 | 0.7282 |
| 35   | 1.145                | 1007      | 0.02625 | 2.277 E-5 | 1.895 E-5 | 1.655 E-5 | 0.7268 |
| 40   | 1.127                | 1007      | 0.02662 | 2.346 E-5 | 1.918 E-5 | 1.702 E-5 | 0.7255 |
| 45   | 1.109                | 1007      | 0.02699 | 2.416 E-5 | 1.941 E-5 | 1.750 E-5 | 0.7241 |
| 50   | 1.092                | 1007      | 0.02735 | 2.487 E-5 | 1.963 E-5 | 1.798 E-5 | 0.7228 |
| 60   | 1.059                | 1007      | 0.02808 | 2.632 E-5 | 2.008 E-5 | 1.896 E-5 | 0.7202 |
| 70   | 1.028                | 1007      | 0.02881 | 2.780 E-5 | 2.052 E-5 | 1.995 E-5 | 0.7177 |
| 80   | 0.9994               | 1008      | 0.02953 | 2.931 E-5 | 2.096 E-5 | 2.097 E-5 | 0.7154 |
| 90   | 0.9718               | 1008      | 0.03024 | 3.086 E-5 | 2.139 E-5 | 2.201 E-5 | 0.7132 |
| 100  | 0.9458               | 1009      | 0.03095 | 3.243 E-5 | 2.181 E-5 | 2.306 E-5 | 0.7111 |
| 120  | 0.8977               | 1011      | 0.03235 | 3.565 E-5 | 2.264 E-5 | 2.522 E-5 | 0.7073 |
| 140  | 0.8542               | 1013      | 0.03374 | 3.898 E-5 | 2.345 E-5 | 2.745 E-5 | 0.7041 |
| 160  | 0.8148               | 1016      | 0.03511 | 4.241 E-5 | 2.420 E-5 | 2.975 E-5 | 0.7014 |
| 180  | 0.7788               | 1019      | 0.03646 | 4.593 E-5 | 2.504 E-5 | 3.212 E-5 | 0.6992 |
| 200  | 0.7459               | 1023      | 0.03779 | 4.954 E-5 | 2.577 E-5 | 3.455 E-5 | 0.6974 |
| 250  | 0.6746               | 1033      | 0.04104 | 5.890 E-5 | 2.760 E-5 | 4.091 E-5 | 0.6946 |
| 300  | 0.6158               | 1044      | 0.04418 | 6.871 E-5 | 2.934 E-5 | 4.765 E-5 | 0.6935 |

Tabel 19. (Continuare din pagina anterioară)

| Т    | ρ          | Cp        | λ       | а         | μ                | ν         | Pr     |
|------|------------|-----------|---------|-----------|------------------|-----------|--------|
| [°C] | $[kg/m^3]$ | [kJ/kg·K] | [W/mK]  | $[m^2/s]$ | $[kg/m \cdot s]$ | $[m^2/s]$ | [-]    |
| 350  | 0.5664     | 1056      | 0.04721 | 7.892 E-5 | 3.101 E-5        | 5.475 E-5 | 0.6937 |
| 400  | 0.5243     | 1069      | 0.05015 | 8.951 E-5 | 3.261 E-5        | 6.219 E-5 | 0.6948 |
| 450  | 0.4880     | 1081      | 0.05298 | 1.004 E-4 | 3.415 E-5        | 6.997 E-5 | 0.6965 |
| 500  | 0.4565     | 1093      | 0.05572 | 1.117 E-4 | 3.563 E-5        | 7.806 E-5 | 0.6986 |
| 600  | 0.4042     | 1115      | 0.06093 | 1.352 E-4 | 3.846 E-5        | 9.515 E-5 | 0.7037 |
| 700  | 0.3627     | 1135      | 0.06581 | 1.598 E-4 | 4.111 E-5        | 1.133 E-4 | 0.7092 |
| 800  | 0.3289     | 1153      | 0.07037 | 1.855 E-4 | 4.362 E-5        | 1.326 E-4 | 0.7149 |
| 900  | 0.3008     | 1169      | 0.07465 | 2.122 E-4 | 4.600 E-5        | 1.529 E-4 | 0.7206 |
| 1000 | 0.2772     | 1184      | 0.07868 | 2.398 E-4 | 4.826 E-5        | 1.741 E-4 | 0.7260 |
| 1500 | 0.1990     | 1234      | 0.09599 | 3.908 E-4 | 5.817 E-5        | 2.922 E-4 | 0.7478 |
| 2000 | 0.1553     | 1264      | 0.11113 | 5.664 E-4 | 6.630 E-5        | 4.270 E-4 | 0.7539 |

Sursa: Adaptat din Cengel Y., 2003

Tabel 20. Proprietățile aerului la altitudine mare

| Z    | Т      | р      | g         | С     | ρ       | μ         | λ               |
|------|--------|--------|-----------|-------|---------|-----------|-----------------|
| [m]  | [°C]   | [kPa]  | $[m/s^2]$ | [m/s] | [kg/m³] | [kg/m·s]  | $[W/m \cdot K]$ |
| 0    | 15.00  | 101.33 | 9.807     | 340.3 | 1.225   | 1.789 E-5 | 0.0253          |
| 200  | 13.70  | 98.95  | 9.806     | 339.5 | 1.202   | 1.783 E-5 | 0.0252          |
| 400  | 12.40  | 96.61  | 9.805     | 338.8 | 1.179   | 1.777 E-5 | 0.0252          |
| 600  | 11.10  | 94.32  | 9.805     | 338.0 | 1.156   | 1.771 E-5 | 0.0251          |
| 800  | 9.80   | 92.08  | 9.804     | 337.2 | 1.134   | 1.764 E-5 | 0.0250          |
| 1000 | 8.50   | 89.88  | 9.804     | 336.4 | 1.112   | 1.758 E-5 | 0.0249          |
| 1200 | 7.20   | 87.72  | 9.803     | 335.7 | 1.090   | 1.752 E-5 | 0.0248          |
| 1400 | 5.90   | 85.60  | 9.802     | 334.9 | 1.069   | 1.745 E-5 | 0.0247          |
| 1600 | 4.60   | 83.53  | 9.802     | 334.1 | 1.048   | 1.739 E-5 | 0.0245          |
| 1800 | 3.30   | 81.49  | 9.801     | 333.3 | 1.027   | 1.732 E-5 | 0.0244          |
| 2000 | 2.00   | 79.50  | 9.800     | 332.5 | 1.007   | 1.726 E-5 | 0.0243          |
| 2200 | 0.70   | 77.55  | 9.800     | 331.7 | 0.987   | 1.720 E-5 | 0.0242          |
| 2400 | -0.59  | 75.63  | 9.799     | 331.0 | 0.967   | 1.713 E-5 | 0.0241          |
| 2600 | -1.89  | 73.76  | 9.799     | 330.2 | 0.947   | 1.707 E-5 | 0.0240          |
| 2800 | -3.19  | 71.92  | 9.798     | 329.4 | 0.928   | 1.700 E-5 | 0.0239          |
| 3000 | -4.49  | 70.12  | 9.797     | 328.6 | 0.909   | 1.694 E-5 | 0.0238          |
| 3200 | -5.79  | 68.36  | 9.797     | 327.8 | 0.891   | 1.687 E-5 | 0.0237          |
| 3400 | -7.09  | 66.63  | 9.796     | 327.0 | 0.872   | 1.681 E-5 | 0.0236          |
| 3600 | -8.39  | 64.94  | 9.796     | 326.2 | 0.854   | 1.674 E-5 | 0.0235          |
| 3800 | -9.69  | 63.28  | 9.795     | 325.4 | 0.837   | 1.668 E-5 | 0.0234          |
| 4000 | -10.98 | 61.66  | 9.794     | 324.6 | 0.819   | 1.661 E-5 | 0.0233          |
| 4200 | -12.3  | 60.07  | 9.794     | 323.8 | 0.802   | 1.655 E-5 | 0.0232          |
| 4400 | -13.6  | 58.52  | 9.793     | 323.0 | 0.785   | 1.648 E-5 | 0.0231          |
| 4600 | -14.9  | 57.00  | 9.793     | 322.2 | 0.769   | 1.642 E-5 | 0.0230          |
| 4800 | -16.2  | 55.51  | 9.792     | 321.4 | 0.752   | 1.635 E-5 | 0.0229          |
| 5000 | -17.5  | 54.05  | 9.791     | 320.5 | 0.736   | 1.628 E-5 | 0.0228          |
| 5200 | -18.8  | 52.62  | 9.791     | 319.7 | 0.721   | 1.622 E-5 | 0.0227          |
| 5400 | -20.1  | 51.23  | 9.790     | 318.9 | 0.705   | 1.615 E-5 | 0.0226          |
| 5600 | -21.4  | 49.86  | 9.789     | 318.1 | 0.690   | 1.608 E-5 | 0.0224          |
| 5800 | -22.7  | 48.52  | 9.785     | 317.3 | 0.675   | 1.602 E-5 | 0.0223          |

Tabel 20. (Continuare din pagina anterioară)

| -      |       | . , , |           |       |            |           |         |
|--------|-------|-------|-----------|-------|------------|-----------|---------|
| Z      | Т     | р     | g         | С     | ρ          | μ         | λ       |
| [m]    | [°C]  | [kPa] | $[m/s^2]$ | [m/s] | $[kg/m^3]$ | [kg/m·s]  | [W/m·K] |
| 6000   | -24.0 | 47.22 | 9.788     | 316.5 | 0.660      | 1.595 E-5 | 0.0222  |
| 6200   | -25.3 | 45.94 | 9.788     | 315.6 | 0.646      | 1.588 E-5 | 0.0221  |
| 6400   | -26.6 | 44.69 | 9.787     | 314.8 | 0.631      | 1.582 E-5 | 0.0220  |
| 6600   | -27.9 | 43.47 | 9.786     | 314.0 | 0.617      | 1.575 E-5 | 0.0219  |
| 6800   | -29.2 | 42.27 | 9.785     | 313.1 | 0.604      | 1.568 E-5 | 0.0218  |
| 7000   | -30.5 | 41.11 | 9.785     | 312.3 | 0.590      | 1.561 E-5 | 0.0217  |
| 8000   | -36.9 | 35.65 | 9.782     | 308.1 | 0.526      | 1.527 E-5 | 0.0212  |
| 9000   | -43.4 | 30.80 | 9.779     | 303.8 | 0.467      | 1.493 E-5 | 0.0206  |
| 10,000 | -49.9 | 26.50 | 9.776     | 299.5 | 0.414      | 1.458 E-5 | 0.0201  |
| 12,000 | -56.5 | 19.40 | 9.770     | 295.1 | 0.312      | 1.422 E-5 | 0.0195  |
| 14,000 | -56.5 | 14.17 | 9.764     | 295.1 | 0.228      | 1.422 E-5 | 0.0195  |
| 16,000 | -56.5 | 10.53 | 9.758     | 295.1 | 0.166      | 1.422 E-5 | 0.0195  |
| 18,000 | -56.5 | 7.57  | 9.751     | 295.1 | 0.122      | 1.422 E-5 | 0.0195  |

Sursa: Adaptat din Cengel Y., 2003

Tabel 21. Densitatea și vâscozitatea aerului la 1 atm

| T<br>[°C] | ρ<br>[kg/m³] | μ x 10 <sup>5</sup><br>[Ns/m²] | v x 10 <sup>5</sup><br>[m²/s] |
|-----------|--------------|--------------------------------|-------------------------------|
| -40       | 1.520        | 1.51                           | 0.99                          |
| 0         | 1.290        | 1.71                           | 1.33                          |
| 20        | 1.200        | 1.80                           | 1.50                          |
| 50        | 1.090        | 1.95                           | 1.79                          |
| 100       | 0.946        | 2.17                           | 2.30                          |
| 150       | 0.835        | 2.38                           | 2.85                          |
| 200       | 0.746        | 2.57                           | 3.45                          |
| 250       | 0.675        | 2.75                           | 4.08                          |
| 300       | 0.616        | 2.93                           | 4.75                          |
| 400       | 0.525        | 3.25                           | 6.20                          |
| 500       | 0.457        | 3.55                           | 7.77                          |

Curbe de regresie liniară sugerate pentru aer:

$$\rho = \frac{p}{RT} \qquad R_{aer} \approx 287 \left[ J/kgK \right]$$
$$\frac{\mu}{\mu_0} \approx \left( \frac{T}{T_0} \right)^{0.7}$$

Legea exponenţială:

Legea lui Sutherland:  $\frac{\mu}{\mu_0} \approx \left(\frac{T}{T_0}\right)^{3/2} \left(\frac{T_0 + S}{T + S}\right)$   $S_{aer} \approx 110.4[K]$ 

cu T $_0$  = 273 [K],  $\,\mu_0^{}$  = 1.71  $\cdot\,10^{\text{-5}}[\text{kg}\,/\,\text{ms}]$  și T în Kelvin

Sursa: Adaptat din White F.M., 1998

Tabel 22. Proprietăți pentru gaze uzuale la 1 atm și 20°C

| Gaz              | Greutate<br>moleculară | $\frac{R}{[m^2/s^2 \cdot K]}$ | ρg<br>[N/m³] | μ<br>[N · s /m²] | Raportul<br>căldurilor<br>specifice | Indicele legii<br>exponenţiale |
|------------------|------------------------|-------------------------------|--------------|------------------|-------------------------------------|--------------------------------|
| H <sub>2</sub>   | 2.02                   | 4124                          | 0.82         | 9.05 E-6         | 1.41                                | 0.68                           |
| Не               | 4.00                   | 2077                          | 1.63         | 1.97 E-5         | 1.66                                | 0.67                           |
| H <sub>2</sub> O | 18.02                  | 461                           | 7.35         | 1.02 E-5         | 1.33                                | 1.15                           |
| Ar               | 39.94                  | 208                           | 16.3         | 2.24 E-5         | 1.67                                | 0.72                           |
| Aer uscat        | 28.96                  | 287                           | 11.8         | 1.80 E-5         | 1.40                                | 0.67                           |
| CO <sub>2</sub>  | 44.01                  | 189                           | 17.9         | 1.48 E-5         | 1.30                                | 0.79                           |
| СО               | 28.01                  | 297                           | 11.4         | 1.82 E-5         | 1.40                                | 0.71                           |
| $N_2$            | 28.02                  | 297                           | 11.4         | 1.76 E-5         | 1.40                                | 0.67                           |
| $O_2$            | 32.00                  | 260                           | 13.1         | 2.00 E-5         | 1.40                                | 0.69                           |
| NO               | 30.01                  | 277                           | 12.1         | 1.90 E-5         | 1.40                                | 0.78                           |
| $N_2O$           | 44.02                  | 189                           | 17.9         | 1.45 E-5         | 1.31                                | 0.89                           |
| Cl <sub>2</sub>  | 70.91                  | 117                           | 28.9         | 1.03 E-5         | 1.34                                | 1.00                           |
| CH <sub>4</sub>  | 16.04                  | 518                           | 6.54         | 1.34 E-5         | 1.32                                | 0.87                           |

Sursa: Adaptat din White F.M., 1998

Tabel 23. Căldurile specifice ale unor gaze uzuale, în [kJ/kg·K]

| Т    | A     | er      | Nitrog | Nitrogen, N <sub>2</sub> |       | en, O <sub>2</sub> |
|------|-------|---------|--------|--------------------------|-------|--------------------|
| [K]  | $c_p$ | $C_{V}$ | Cp     | $C_v$                    | Cp    | C <sub>v</sub>     |
| 250  | 1.003 | 0.716   | 1.039  | 0.742                    | 0.913 | 0.653              |
| 300  | 1.005 | 0.718   | 1.039  | 0.743                    | 0.918 | 0.658              |
| 350  | 1.008 | 0.721   | 1.041  | 0.744                    | 0.928 | 0.668              |
| 400  | 1.013 | 0.726   | 1.044  | 0.747                    | 0.941 | 0.681              |
| 450  | 1.020 | 0.733   | 1.049  | 0.752                    | 0.956 | 0.696              |
| 500  | 1.029 | 0.742   | 1.056  | 0.759                    | 0.972 | 0.712              |
| 550  | 1.040 | 0.753   | 1.065  | 0.768                    | 0.988 | 0.728              |
| 600  | 1.051 | 0.764   | 1.075  | 0.778                    | 1.003 | 0.743              |
| 650  | 1.063 | 0.776   | 1.086  | 0.789                    | 1.017 | 0.758              |
| 700  | 1.075 | 0.788   | 1.098  | 0.801                    | 1.031 | 0.771              |
| 750  | 1.087 | 0.800   | 1.110  | 0.813                    | 1.043 | 0.783              |
| 800  | 1.099 | 0.812   | 1.121  | 0.825                    | 1.054 | 0.794              |
| 900  | 1.121 | 0.834   | 1.145  | 0.849                    | 1.074 | 0.814              |
| 1000 | 1.142 | 0.855   | 1.167  | 0.870                    | 1.090 | 0.830              |

Sursa: Adaptat din Wark K., 1983

| Dioxid de c | arbon, CO <sub>2</sub> | Monoxid de carbon, CO |       | Hidrogen, H₂ |        | Т    |
|-------------|------------------------|-----------------------|-------|--------------|--------|------|
| Cp          | $C_v$                  | Ср                    | $C_v$ | Cp           | $C_v$  | [K]  |
| 0.791       | 0.602                  | 1.039                 | 0.743 | 14.051       | 9.927  | 250  |
| 0.846       | 0.657                  | 1.040                 | 0.744 | 14.307       | 10.183 | 300  |
| 0.895       | 0.706                  | 1.043                 | 0.746 | 14.427       | 10.302 | 350  |
| 0.939       | 0.750                  | 1.047                 | 0.751 | 14.476       | 10.352 | 400  |
| 0.978       | 0.790                  | 1.054                 | 0.757 | 14.501       | 10.377 | 450  |
| 1.014       | 0.825                  | 1.063                 | 0.767 | 14.513       | 10.389 | 500  |
| 1.046       | 0.857                  | 1.075                 | 0.778 | 14.530       | 10.405 | 550  |
| 1.075       | 0.886                  | 1.087                 | 0.790 | 14.546       | 10.422 | 600  |
| 1.102       | 0.913                  | 1.100                 | 0.803 | 14.571       | 10.447 | 650  |
| 1.126       | 0.937                  | 1.113                 | 0.816 | 14.604       | 10.480 | 700  |
| 1.148       | 0.959                  | 1.126                 | 0.829 | 14.645       | 10.521 | 750  |
| 1.169       | 0.980                  | 1.139                 | 0.842 | 14.695       | 10.570 | 800  |
| 1.204       | 1.015                  | 1.163                 | 0.866 | 14.822       | 10.698 | 900  |
| 1.234       | 1.045                  | 1.185                 | 0.888 | 14.983       | 10.859 | 1000 |

Tabel 24. Proprietățile gazelor la 1 atm

| T                                 | ρ                    | Ср         | λ       | a                    | μ         | ν         | Pr     |
|-----------------------------------|----------------------|------------|---------|----------------------|-----------|-----------|--------|
| [°C]                              | [kg/m <sup>3</sup> ] | [kJ/kg·K]  | [W/mK]  | [m²/s]               | [kg/m·s]  | [m²/s]    | [-]    |
| Dioxid de carbon, CO <sub>2</sub> |                      |            |         |                      |           |           |        |
| -50                               | 2.4035               | 746.0      | 0.01051 | 5.860 E-6            | 1.129 E-5 | 4.699 E-6 | 0.8019 |
| 0                                 | 1.9635               | 811.0      | 0.01456 | 9.141 E-6            | 1.375 E-5 | 7.003 E-6 | 0.7661 |
| 50                                | 1.6597               | 866.6      | 0.01858 | 1.291 E-5            | 1.612 E-5 | 9.714 E-6 | 0.7520 |
| 100                               | 1.4373               | 914.8      | 0.02257 | 1.716 E-5            | 1.841 E-5 | 1.281 E-5 | 0.7464 |
| 150                               | 1.2675               | 957.4      | 0.02652 | 2.186 E-5            | 2.063 E-5 | 1.627 E-5 | 0.7445 |
| 200                               | 1.1336               | 995.2      | 0.03044 | 2.698 E-5            | 2.276 E-5 | 2.008 E-5 | 0.7442 |
| 300                               | 0.9358               | 1060       | 0.03814 | 3.847 E-5            | 2.682 E-5 | 2.866 E-5 | 0.7450 |
| 400                               | 0.7968               | 1112       | 0.04565 | 5.151 E-5            | 3.061 E-5 | 3.842 E-5 | 0.7458 |
| 500                               | 0.6937               | 1156       | 0.05293 | 6.600 E-5            | 3.416 E-5 | 4.924 E-5 | 0.7460 |
| 1000                              | 0.4213               | 1292       | 0.08491 | 1.560 E-4            | 4.898 E-5 | 1.162 E-4 | 0.7455 |
| 1500                              | 0.3025               | 1356       | 0.10688 | 2.606 E-4            | 6.106 E-5 | 2.019 E-4 | 0.7745 |
| 2000                              | 0.2359               | 1387       | 0.11522 | 3.521 E-4            | 7.322 E-5 | 3.103 E-4 | 0.8815 |
|                                   |                      |            | Monoxid | de carbon, C         | 0         |           |        |
| -50                               | 1.5297               | 1081       | 0.01901 | 1.149 E-5            | 1.378 E-5 | 9.012 E-6 | 0.7840 |
| 0                                 | 1.2497               | 1048       | 0.02278 | 1.739 E-5            | 1.629 E-5 | 1.303 E-5 | 0.7499 |
| 50                                | 1.0563               | 1039       | 0.02641 | 2.407 E-5            | 1.863 E-5 | 1.764 E-5 | 0.7328 |
| 100                               | 0.9148               | 1041       | 0.02992 | 3.142 E-5            | 2.080 E-5 | 2.274 E-5 | 0.7239 |
| 150                               | 0.8067               | 1049       | 0.03330 | 3.936 E-5            | 2.283 E-5 | 2.830 E-5 | 0.7191 |
| 200                               | 0.7214               | 1060       | 0.03656 | 4.782 E-5            | 2.472 E-5 | 3.426 E-5 | 0.7164 |
| 300                               | 0.5956               | 1085       | 0.04277 | 6.619 E-5            | 2.812 E-5 | 4.722 E-5 | 0.7134 |
| 400                               | 0.5071               | 1111       | 0.04860 | 8.628 E-5            | 3.111 E-5 | 6.136 E-5 | 0.7111 |
| 500                               | 0.4415               | 1135       | 0.05412 | 1.079 E-4            | 3.379 E-5 | 7.653 E-5 | 0.7087 |
| 1000                              | 0.2681               | 1226       | 0.07894 | 2.401 E-4            | 4.557 E-5 | 1.700 E-4 | 0.7080 |
| 1500                              | 0.1925               | 1279       | 0.10458 | 4.246 E-4            | 6.321 E-5 | 3.284 E-4 | 0.7733 |
| 2000                              | 0.1502               | 1309       | 0.13833 | 7.034 E-4            | 9.826 E-5 | 6.543 E-4 | 0.9302 |
|                                   | •                    |            | Me      | tan, CH <sub>4</sub> |           |           |        |
| -50                               | 0.8761               | 2243       | 0.02367 | 1.204 E-5            | 8.564 E-6 | 9.774 E-6 | 0.8116 |
| 0                                 | 0.7158               | 2217       | 0.03042 | 1.917 E-5            | 1.028 E-5 | 1.436 E-5 | 0.7494 |
| 50                                | 0.6050               | 2302       | 0.03766 | 2.704 E-5            | 1.191 E-5 | 1.969 E-5 | 0.7282 |
| 100                               | 0.5240               | 2443       | 0.04534 | 3.543 E-5            | 1.345 E-5 | 2.567 E-5 | 0.7247 |
| 150                               | 0.4620               | 2611       | 0.05344 | 4.431 E-5            | 1.491 E-5 | 3.227 E-5 | 0.7284 |
| 200                               | 0.4132               | 2791       | 0.06194 | 5.370 E-5            | 1.630 E-5 | 3.944 E-5 | 0.7344 |
| Continua                          | re ne naaina         | următoara) |         |                      |           |           |        |

Tabel 24. (Continuare din pagina anterioară)

| T    | ρ          | C <sub>p</sub> | λ       | a                    | μ         | ν         | Pr     |  |
|------|------------|----------------|---------|----------------------|-----------|-----------|--------|--|
| [°C] | [kg/m³]    | [kJ/kg·K]      | [W/mK]  | $[m^2/s]$            | [kg/m·s]  | $[m^2/s]$ | [-]    |  |
|      | Metan, CH₄ |                |         |                      |           |           |        |  |
| 300  | 0.3411     | 3158           | 0.07996 | 7.422 E-5            | 1.886 E-5 | 5.529 E-5 | 0.7450 |  |
| 400  | 0.2904     | 3510           | 0.09918 | 9.727 E-5            | 2.119 E-5 | 7.297 E-5 | 0.7501 |  |
| 500  | 0.2529     | 3836           | 0.11933 | 1.230 E-4            | 2.334 E-5 | 9.228 E-5 | 0.7502 |  |
| 1000 | 0.1536     | 5042           | 0.22562 | 2.914 E-4            | 3.281 E-5 | 2.136 E-4 | 0.7331 |  |
| 1500 | 0.1103     | 5701           | 0.31857 | 5.068 E-4            | 4.434 E-5 | 4.022 E-4 | 0.7936 |  |
| 2000 | 0.0860     | 6001           | 0.36750 | 7.120 E-4            | 6.360 E-5 | 7.395 E-4 | 1.0386 |  |
|      |            |                | Hidr    | ogen, H <sub>2</sub> |           |           |        |  |
| -50  | 0.11010    | 12635          | 0.1404  | 1.009 E-4            | 7.293 E-6 | 6.624 E-5 | 0.6562 |  |
| 0    | 0.08995    | 13920          | 0.1652  | 1.319 E-4            | 8.391 E-6 | 9.329 E-5 | 0.7071 |  |
| 50   | 0.07603    | 14349          | 0.1881  | 1.724 E-4            | 9.427 E-6 | 1.240 E-4 | 0.7191 |  |
| 100  | 0.06584    | 14473          | 0.2095  | 2.199 E-4            | 1.041 E-5 | 1.582 E-4 | 0.7196 |  |
| 150  | 0.05806    | 14492          | 0.2296  | 2.729 E-4            | 1.136 E-5 | 1.957 E-4 | 0.7174 |  |
| 200  | 0.05193    | 14482          | 0.2486  | 3.306 E-4            | 1.228 E-5 | 2.365 E-4 | 0.7155 |  |
| 300  | 0.04287    | 14481          | 0.2843  | 4.580 E-4            | 1.403 E-5 | 3.274 E-4 | 0.7149 |  |
| 400  | 0.03650    | 14540          | 0.3180  | 5.992 E-4            | 1.570 E-5 | 4.302 E-4 | 0.7179 |  |
| 500  | 0.03178    | 14653          | 0.3509  | 7.535 E-4            | 1.730 E-5 | 5.443 E-4 | 0.7224 |  |
| 1000 | 0.01930    | 15577          | 0.5206  | 1.732 E-3            | 2.455 E-5 | 1.272 E-3 | 0.7345 |  |
| 1500 | 0.01386    | 16553          | 0.6581  | 2.869 E-3            | 3.099 E-5 | 2.237 E-3 | 0.7795 |  |
| 2000 | 0.01081    | 17400          | 0.5480  | 2.914 E-3            | 3.690 E-5 | 3.414 E-3 | 1.1717 |  |
|      |            |                | Nitr    | ogen, N <sub>2</sub> |           |           |        |  |
| -50  | 1.5299     | 957.3          | 0.02001 | 1.366 E-5            | 1.390 E-5 | 9.091 E-6 | 0.6655 |  |
| 0    | 1.2498     | 1035           | 0.02384 | 1.843 E-5            | 1.640 E-5 | 1.312 E-5 | 0.7121 |  |
| 50   | 1.0564     | 1042           | 0.02746 | 2.494 E-5            | 1.874 E-5 | 1.774 E-5 | 0.7114 |  |
| 100  | 0.9149     | 1041           | 0.03090 | 3.244 E-5            | 2.094 E-5 | 2.289 E-5 | 0.7056 |  |
| 150  | 0.8068     | 1043           | 0.03416 | 4.058 E-5            | 2.300 E-5 | 2.851 E-5 | 0.7025 |  |
| 200  | 0.7215     | 1050           | 0.03727 | 4.921 E-5            | 2.494 E-5 | 3.457 E-5 | 0.7025 |  |
| 300  | 0.5956     | 1070           | 0.04309 | 6.758 E-5            | 2.849 E-5 | 4.783 E-5 | 0.7078 |  |
| 400  | 0.5072     | 1095           | 0.04848 | 8.727 E-5            | 3.166 E-5 | 6.242 E-5 | 0.7153 |  |
| 500  | 0.4416     | 1120           | 0.05358 | 1.083 E-4            | 3.451 E-5 | 7.816 E-5 | 0.7215 |  |
| 1000 | 0.2681     | 1213           | 0.07938 | 2.440 E-4            | 4.594 E-5 | 1.713 E-4 | 0.7022 |  |
| 1500 | 0.1925     | 1266           | 0.11793 | 4.839 E-4            | 5.562 E-5 | 2.889 E-4 | 0.5969 |  |
| 2000 | 0.1502     | 1297           | 0.18590 | 9.543 E-4            | 6.426 E-5 | 4.278 E-4 | 0.4483 |  |

Tabel 24. (Continuare din pagina anterioară)

| Т    | ρ                    | C <sub>p</sub> | λ       | а           | μ         | ν         | Pr     |  |
|------|----------------------|----------------|---------|-------------|-----------|-----------|--------|--|
| [°C] | [kg/m <sup>3</sup> ] | [kJ/kg·K]      | [W/mK]  | $[m^2/s]$   | [kg/m·s]  | [m²/s]    | [-]    |  |
|      | Oxigen, O₂           |                |         |             |           |           |        |  |
| -50  | 1.7475               | 984.4          | 0.02067 | 1.201 E-5   | 1.616 E-5 | 9.246 E-6 | 0.7694 |  |
| 0    | 1.4277               | 928.7          | 0.02472 | 1.865 E-5   | 1.916 E-5 | 1.342 E-5 | 0.7198 |  |
| 50   | 1.2068               | 921.7          | 0.02867 | 2.577 E-5   | 2.194 E-5 | 1.818 E-5 | 0.7053 |  |
| 100  | 1.0451               | 931.8          | 0.03254 | 3.342 E-5   | 2.451 E-5 | 2.346 E-5 | 0.7019 |  |
| 150  | 0.9216               | 947.6          | 0.03637 | 4.164 E-5   | 2.694 E-5 | 2.923 E-5 | 0.7019 |  |
| 200  | 0.8242               | 964.7          | 0.04014 | 5.048 E-5   | 2.923 E-5 | 3.546 E-5 | 0.7025 |  |
| 300  | 0.6804               | 997.1          | 0.04751 | 7.003 E-5   | 3.350 E-5 | 4.923 E-5 | 0.7030 |  |
| 400  | 0.5793               | 1025           | 0.05463 | 9.204 E-5   | 3.744 E-5 | 6.463 E-5 | 0.7023 |  |
| 500  | 0.5044               | 1048           | 0.06148 | 1.163 E-4   | 4.114 E-5 | 8.156 E-5 | 0.7010 |  |
| 1000 | 0.3063               | 1121           | 0.09198 | 2.678 E-4   | 5.732 E-5 | 1.871 E-4 | 0.6986 |  |
| 1500 | 0.2199               | 1165           | 0.11901 | 4.643 E-4   | 7.133 E-5 | 3.243 E-4 | 0.6985 |  |
| 2000 | 0.1716               | 1201           | 0.14705 | 7.139 E-4   | 8.417 E-5 | 4.907 E-4 | 0.6873 |  |
|      |                      |                | Vapori  | de apă, H₂O |           |           |        |  |
| -50  | 0.9839               | 1892           | 0.01353 | 7.271 E-6   | 7.187 E-6 | 7.305 E-6 | 1.0047 |  |
| 0    | 0.8038               | 1874           | 0.01673 | 1.110 E-5   | 8.956 E-6 | 1.114 E-5 | 1.0033 |  |
| 50   | 0.6794               | 1874           | 0.02032 | 1.596 E-5   | 1.078 E-5 | 1.587 E-5 | 0.9944 |  |
| 100  | 0.5884               | 1887           | 0.02429 | 2.187 E-5   | 1.265 E-5 | 2.150 E-5 | 0.9830 |  |
| 150  | 0.5189               | 1908           | 0.02861 | 2.890 E-5   | 1.456 E-5 | 2.806 E-5 | 0.9712 |  |
| 200  | 0.4640               | 1935           | 0.03326 | 3.705 E-5   | 1.650 E-5 | 3.556 E-5 | 0.9599 |  |
| 300  | 0.3831               | 1997           | 0.04345 | 5.680 E-5   | 2.045 E-5 | 5.340 E-5 | 0.9401 |  |
| 400  | 0.3262               | 2066           | 0.05467 | 8.114 E-5   | 2.446 E-5 | 7.498 E-5 | 0.9240 |  |
| 500  | 0.2840               | 2137           | 0.06677 | 1.100 E-4   | 2.847 E-5 | 1.002 E-4 | 0.9108 |  |
| 1000 | 0.1725               | 2471           | 0.13623 | 3.196 E-4   | 4.762 E-5 | 2.761 E-4 | 0.8639 |  |
| 1500 | 0.1238               | 2736           | 0.21301 | 6.288 E-4   | 6.411 E-5 | 5.177 E-4 | 0.8233 |  |
| 2000 | 0.0966               | 2928           | 0.29183 | 1.032 E-3   | 7.808 E-5 | 8.084 E-4 | 0.7833 |  |

Sursa: Adaptat din Cengel Y., 2003

## Anexa 2 Funcții și relații matematice

#### Lista de tabele

Tabel 2.1 Funcţii hiperbolice

Tabel 2.2 Funcţia de eroare Gauss

Tabel 2.3 Funcții Bessel de gradul întâi

Tabel 2.1 Funcţii hiperbolice

| X    | sinh x | cosh x | tanh x  |
|------|--------|--------|---------|
| 0.00 | 0.0000 | 1.0000 | 0.00000 |
| 0.10 | 0.1002 | 1.0050 | 0.09967 |
| 0.20 | 0.2013 | 1.0201 | 0.19738 |
| 0.30 | 0.3045 | 1.0453 | 0.29131 |
| 0.40 | 0.4108 | 1.0811 | 0.37995 |
| 0.50 | 0.5211 | 1.1276 | 0.46212 |
| 0.60 | 0.6367 | 1.1855 | 0.53705 |
| 0.70 | 0.7586 | 1.2552 | 0.60437 |
| 0.80 | 0.8881 | 1.3374 | 0.66404 |
| 0.90 | 1.0265 | 1.4331 | 0.71630 |
| 1.00 | 1.1752 | 1.5431 | 0.76159 |
| 1.10 | 1.3356 | 1.6685 | 0.80050 |
| 1.20 | 1.5095 | 1.8107 | 0.83365 |
| 1.30 | 1.6984 | 1.9709 | 0.86172 |
| 1.40 | 1.9043 | 2.1509 | 0.88535 |
| 1.50 | 2.1293 | 2.3524 | 0.90515 |
| 1.60 | 2.3756 | 2.5775 | 0.92167 |
| 1.70 | 2.6456 | 2.8283 | 0.93541 |
| 1.80 | 2.9422 | 3.1075 | 0.94681 |
| 1.90 | 3.2682 | 3.4177 | 0.95624 |
| 2.00 | 3.6269 | 3.7622 | 0.96403 |
| 2.10 | 4.0219 | 4.1443 | 0.97045 |
| 2.20 | 4.4571 | 4.5679 | 0.97574 |
| 2.30 | 4.9370 | 5.0372 | 0.98010 |
| 2.40 | 5.4662 | 5.5569 | 0.98367 |
| 2.50 | 6.0502 | 6.1323 | 0.98661 |
| 2.60 | 6.6947 | 6.7690 | 0.98903 |
| 2.70 | 7.4063 | 7.4735 | 0.99101 |
| 2.80 | 8.1919 | 8.2527 | 0.99263 |
| 2.90 | 9.0596 | 9.1146 | 0.99396 |

Tabel 2.1 (Continuare din pagina anterioară)

| X       | sinh x | cosh x | tanh x  |
|---------|--------|--------|---------|
| 3.00    | 10.018 | 10.068 | 0.99505 |
| 3.50    | 16.543 | 16.573 | 0.99818 |
| 4.00    | 27.290 | 27.308 | 0.99933 |
| 4.50    | 45.003 | 45.014 | 0.99975 |
| 5.00    | 74.203 | 74.210 | 0.99991 |
| 6.00    | 201.71 | 201.72 | 0.99999 |
| 7.00    | 548.32 | 548.32 | 1.0000  |
| 8.00    | 1490.5 | 1490.5 | 1.0000  |
| 9.00    | 4051.5 | 4051.5 | 1.0000  |
| 10.00 . | 11013  | 11013  | 1.0000  |

Relații de definiție ale funcțiilor hiperbolice:

$$\sinh x = \frac{e^{x} - e^{-x}}{2}$$

$$\cosh x = \frac{e^{x} + e^{-x}}{2}$$

$$\tanh x = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

Derivarea funcţiilor hiperbolice:

$$\frac{d}{dx}(\sinh u) = (\cosh u)\frac{du}{dx}$$
$$\frac{d}{dx}(\cosh u) = (\sinh u)\frac{du}{dx}$$
$$\frac{d}{dx}(\tanh u) = \left(\frac{1}{\cosh^2 u}\right)\frac{du}{dx}$$

Tabel 2.2 Funcţia de eroare Gauss

| W    | erf w   | W    | erf w   | W    | erf w   |
|------|---------|------|---------|------|---------|
| 0.00 | 0.00000 | 0.36 | 0.38933 | 1.04 | 0.85865 |
| 0.02 | 0.02256 | 0.38 | 0.40901 | 1.08 | 0.87333 |
| 0.04 | 0.04511 | 0.40 | 0.42839 | 1.12 | 0.88679 |
| 0.06 | 0.06762 | 0.44 | 0.46622 | 1.16 | 0.89910 |
| 0.08 | 0.09008 | 0.48 | 0.50275 | 1.20 | 0.91031 |
| 0.10 | 0.11246 | 0.52 | 0.53790 | 1.30 | 0.93401 |
| 0.12 | 0.13476 | 0.56 | 0.57162 | 1.40 | 0.95228 |
| 0.14 | 0.15695 | 0.60 | 0.60386 | 1.50 | 0.96611 |
| 0.16 | 0.17901 | 0.64 | 0.63459 | 1.60 | 0.97635 |
| 0.18 | 0.20094 | 0.68 | 0.66378 | 1.70 | 0.98379 |
| 0.20 | 0.22270 | 0.72 | 0.69143 | 1.80 | 0.98909 |
| 0.22 | 0.24430 | 0.76 | 0.71754 | 1.90 | 0.99279 |
| 0.24 | 0.26570 | 0.80 | 0.74210 | 2.00 | 0.99532 |
| 0.26 | 0.28690 | 0.84 | 0.76514 | 2.20 | 0.99814 |
| 0.28 | 0.30788 | 0.88 | 0.78669 | 2.40 | 0.99931 |
| 0.30 | 0.32863 | 0.92 | 0.80677 | 2.60 | 0.99976 |
| 0.32 | 0.34913 | 0.96 | 0.82542 | 2.80 | 0.99992 |
| 0.34 | 0.36936 | 1.00 | 0.84270 | 3.00 | 0.99998 |

Relația de definiție a funcției de eroare Gauss:

$$erf w = \frac{2}{\sqrt{\pi}} \int_0^w e^{-v^2} dv$$

Relaţia de definiţie a funcţiei complementare de eroare:

Tabel 2.3 Funcții Bessel de ordinul întâi

| Х   | $J_0(x)$ | Х   | $J_0(x)$ | Х   | J <sub>0</sub> (x) |
|-----|----------|-----|----------|-----|--------------------|
| 0.0 | 1.0000   | 1.0 | 0.7652   | 2.0 | 0.2239             |
| 0.1 | 0.9975   | 1.1 | 0.7196   | 2.1 | 0.1666             |
| 0.2 | 0.9900   | 1.2 | 0.6711   | 2.2 | 0.1104             |
| 0.3 | 0.9776   | 1.3 | 0.6201   | 2.3 | 0.0555             |
| 0.4 | 0.9604   | 1.4 | 0.5669   | 2.4 | 0.0025             |
| 0.5 | 0.9385   | 1.5 | 0.5118   | 2.5 | -0.0484            |
| 0.6 | 0.9120   | 1.6 | 0.4554   | 2.6 | -0.0968            |
| 0.7 | 0.8812   | 1.7 | 0.3980   | 2.7 | -0.1424            |
| 0.8 | 0.8463   | 1.8 | 0.3400   | 2.8 | -0.1850            |
| 0.9 | 0.8075   | 1.9 | 0.2818   | 2.9 | -0.2243            |

Definiția funcției Bessel de ordinul întâi,  $J_{\nu}(x)$ :

$$J_{v}(x) = \sum_{k=0}^{\infty} \frac{\left(-1\right)^{k}}{k! \Gamma\left(v+k+1\right)} \left(\frac{x}{2}\right)^{v+2k}, \quad v > -1$$

reprezintă soluția ecuației diferențiale Bessel:

$$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + (x^{2} - v^{2})y = 0$$

care nu este singulară în origine. Constanta  $\mathbf{v}$ , determină ordinul funcțiilor Bessel, iar  $\mathbf{\Gamma}(\mathbf{z})$  reprezintă funcția gamma, o translare generalizată a funcției factoriale către valori fracționare (non-întregi).

Funcțiile Bessel nu sunt tocmai periodice, dar pentru valori mari ale lui x, pot fi aproximate cu funcții trigonometrice:

$$J_{v}(x) \approx \sqrt{\frac{2}{\pi x}} \cdot \cos\left(x - \left[\frac{v}{2} + \frac{1}{4}\right]\pi\right)$$

# Anexa 3 Diagrame

### Lista de diagrame

| Diagrama | 1 Factorul de frecare (diagrama Moody)                                         |
|----------|--------------------------------------------------------------------------------|
| Diagrama | 2 Diagrama psihrometrică pentru aer la nivelul mării                           |
| Diagrama | 3 Diagrama Mollier diagram (i-x) pentru aer                                    |
| Diagrama | 4 Diagrama Mollier (presiune-entalpie) pentru R134a                            |
| Diagrama | 5 Diagrama Mollier (presiune-entalpie) pentru R404a                            |
| Diagrama | 6 Diagrama Mollier (presiune-entalpie) pentru R410a                            |
| Diagrama | 7 Diagrama entalpie – entropie pentru apă                                      |
| Diagrama | 8 Perete plan de grosime 2L: Temperatura planului central în funcție de timp   |
| Diagrama | 9 Perete plan de grosime 2L: Distribuţia temperaturii                          |
| Diagrama | 10 Perete plan de grosime 2L: Variația energiei interne funcție de timp        |
| Diagrama | 11 Cilindru infinit de rază r0 : Temperatura liniei mediene în funcție de timp |
| Diagrama | 12 Cilindru infinit de rază r0 : Distribuţia temperaturii                      |
| Diagrama | 13 Cilindru infinit de rază r0 : Variația energiei interne funcție de timp     |
| Diagrama | 14 Sferă de rază r0 : Temperatura centrală în funcție de timp                  |
| Diagrama | 15 Sferă de rază r0 : Distribuția temperaturii                                 |
| Diagrama | 16 Sferă de rază r0 : Variația energiei interne funcție de timp                |
| Diagrama | 17 Eficiența aripioarelor pe o suprafață plană cu lățimea w                    |
| Diagrama | 18 Eficiența aripioarelor pe o suprafață plană (lungime L, grosime t)          |
| Diagrama | 19 Eficienta aripioarelor circulare cu lungimea L si grosimea t                |



Diagrama 1 Factorul de frecare (diagrama Moody)



Diagrama 2 Diagrama psihrometrică pentru aer la nivelul mării (furnizată de Dell™)



Diagrama 3 Diagrama Mollier diagram (i-x) pentru aer (furnizată de Staefa Control System)



Diagrama 4 Diagrama Mollier (presiune-entalpie) pentru R134a (furnizată de DuPont $^{\circ}$ )



Diagrama 5 Diagrama Mollier (presiune-entalpie) pentru R404a (furnizată de DuPont®)



Diagrama 6 Diagrama Mollier (presiune-entalpie) pentru R410a (furnizată de DuPont®)



Diagrama 7 Diagrama entalpie – entropie pentru apă



Diagrama 8 Perete plan de grosime 2L: Temperatura planului central în funcție de timp (Adaptat din Heisler M.P., 1947)



Diagrama 9 Perete plan de grosime 2L: Distribuţia temperaturii (Adaptat din Heisler M.P., 1947)



Diagrama 10 Perete plan de grosime 2L: Variația energiei interne funcție de timp (Adaptat din Grober H. et al., 1961)



Diagrama 11 Cilindru infinit de rază  $r_0$ : Temperatura liniei mediene în funcție de timp (Adaptat din Heisler M.P., 1947)



Diagrama 12 Cilindru infinit de rază  $r_0$ : Distribuţia temperaturii (Adaptat din Heisler M.P., 1947)



Diagrama 13 Cilindru infinit de rază  $r_0$ : Variația energiei interne funcție de timp (Adaptat din Grober H. et al., 1961)



Diagrama 14 Sferă de rază  $r_0$ : Temperatura centrală în funcție de timp (Adaptat din Heisler M.P., 1947)



Diagrama 15 Sferă de rază  $r_0$ : Distribuţia temperaturii (Adaptat din Heisler M.P., 1947)



Diagrama 16 Sferă de rază  $r_0$ : Variația energiei interne funcție de timp (Adaptat din Grober H. et al., 1961)



Diagrama 17 Eficiența aripioarelor pe o suprafață plană cu lățimea w (adaptată din Gardner K.A., 1945)



Diagrama 18 Eficiența aripioarelor pe o suprafață plană (lungime L, grosime t) (adaptată din Gardner K.A., 1945)



Diagrama 19 Eficiența aripioarelor circulare cu lungimea L și grosimea t (adaptată din Gardner K.A., 1945)

### **BIBILOGRAFIE**

- Cengel Y. and Ghajar A., 2014, *Heat and Mass Transfer, Fundamentals and Applications*, 4<sup>th</sup> Ed., McGraw-Hill, New York, NY
- Gardner K.A., 1945, Efficiency of Extended Surfaces, Trans. ASME 67, 621-631
- Grober H., Erk S., Grigull U., 1961, Fundamentals of Heat Transfer, 3<sup>rd</sup> Ed., McGraw-Hill, New York, NY
- Heisler M.P., 1947, Temperature Charts for Induction and Constant-Temperature Heating, Trans. ASME **69**, 227-236
- Bergman T.L., Incropera F.P., DeWitt D.P., Lavine, A.S., 2011, Fundamentals of Heat and Mass Transfer, 7<sup>th</sup> Ed., Wiley, New York, NY
- Keenan J.H., Kaye J., 1945, Gas Tables, Wiley, New York, NY
- Keenan J.H., Keyes F.G., Hill P.G., Moore J.G., 1969, Steam Tables, Wiley, New York, NY
- Moran M.J., Shapiro H.N., Munson B.R., DeWitt D.P., 2002, Introduction to Thermal Systems Engineering: Thermodynamics, Fluid Mechanics, and Heat Transfer, Wiley, New York, NY
- Nelson L.C., Obert E.F., 1954, Generalized Compressibility Charts, Chem. Eng. **61**(17), 203-208
- Wark K., 1983, Thermodynamics, 4th Ed., McGraw-Hill, New York, NY
- White F.M., 2015, Fluid Mechanics, 8th Ed., McGraw-Hill, New York, NY