







METEOROLOGICAL DATA REPORT

19702A MLRS Hissile No. BR-13 Round No. B-81 07 February 1980

by

White Sands Meteorological Team

THIS DOCUMENT IS BEST QUALITY PRACTICABLE.
THE COPY FURNISHED TO DDC CONTAINED A
SIGNIFICANT NUMBER OF PAGES WHICH DO NOT
STRODUCE LEGIBLY.

ATMOSPHERIC SCIENCES LABORATORY WHITE SANDS MISSILE RANGE, NEW MEXICO

ECOM

FILE COP

00

80 8 4 209

### Disposition instructions

Destroy this report when it is so longer seeded. Do not return to the originator.

### DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorised documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government indorsament or approval of commercial products or services referenced herein.

# **DISCLAIMER NOTICE**

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

| -                                | ORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | READ INSTRUCTIONS OF FORE COMPLETING FO                |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| DR 1127                          | AD-A087 458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
| 19702A HLRS.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S. Toll of the errors & for money                      |
| Round Number B                   | - BR-13,<br> -81 <sub>7</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6 PERFORMING ONG REPORT HU                             |
| 7 Februar.                       | The second second conductor of the second conductor of | 6. CONTHECT OF GRANT NUMBER                            |
| White Sands Me                   | eteorological data rept.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DA Task 1F6657920127 8                                 |
| PERFORMING ORGAN                 | NIZATION NAME AND ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ID PROGRAM ELEMENT PROJECT<br>AREA & WORK UNIT NUMBERS |
| YERA DCC                         | OM/ASL-DR-1127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12/18                                                  |
| US Army Electr                   | ronics Research & Development Cmd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | February 1996                                          |
| Atmospheric Sc<br>White Sands Mi | ciences Laboratory<br>Issile Range, New Mexico 88002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13. NUMBER OF PAGES                                    |
| US Army Electr                   | cy NAME & ADDRESSIII ditterant from Controlling Office<br>ronics Research & Development Caid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UNCLASSIFIED                                           |
| Adelphi, MD 2                    | <u>!0783</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 154. DECLASSIFICATION/ DOWNGRA                         |
| 16. DISTRIBUTION STAT            | TEMENT (of this Report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        |
|                                  | DISTRIBUTION STATEMENT A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |
|                                  | Approved for public releases  Distribution Unlimited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |
| 17 DISTRIBUTION STA              | TEMENT (of the chairect entered in Bluck 20, If different                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tro Report)                                            |
| Approved for p                   | public release; distribution unlimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ted.                                                   |
| 18. SUPPLEMENTARY                | HOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                      |
| 19 KEY WORDS (Centing            | ue on tererae alde if necessary and identify by block numb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19                                                     |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
| l                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
| 30. ABSTRACT (Continu            | on reverse alde If necessary and Identify by thick number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tr)                                                    |
| Meteorological                   | d at a gathered for the launching of Round Number B-81 are presented in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | f the 1 <b>9702A MLRS, Missil</b> e                    |

DD 17000 1473

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Main Date Entered)

# CONTENTS

| INTRODUC | TION                                                                                        | 1  |
|----------|---------------------------------------------------------------------------------------------|----|
| DISCUSSI | ON                                                                                          | 1  |
| LAUNCH A | REA MAP                                                                                     | 2  |
| GENERAL  | AREA MAP                                                                                    | 3  |
| TABLES:  |                                                                                             |    |
| 1.       | Surface Observation taken at 1424 MST at LC-33                                              | 4  |
| 2.       | Anemometer-Measured Wind Speed and Direction, LC-33 Fixed Pole, taken at 1424 MST           | 5  |
| 3.       | Anemometer-Measured Wind Speed and Direction, Tower Levels 1, 2, 3 and 4, taken at 1424 MST | 5  |
| 4.       | LC-33 Pilot-Balloon-Measured Wind Data at 1424 MST                                          | 6  |
| 5.       | Nick Site Pilot-Balloon-Measured Wind Data at 1424 MST                                      | 7  |
| 6.       | WSD Significant Level Data at 1400 MST                                                      | 8  |
| 7.       | WSD Upper Air Data at 1400 MST                                                              | 9  |
| 8.       | WSD Mandatory Levels at 1400 MST                                                            | 13 |

| Locos  | ion For                               |       |
|--------|---------------------------------------|-------|
| DDC 1  | GRALI<br>LB<br>Sunced<br>Sication_    |       |
| Ву     | · · · · · · · · · · · · · · · · · · · |       |
| Distri | bution/                               |       |
| Avai   | lability                              | Codes |
| Dist.  | Avail and special                     | *     |

# INTRODUCTION

| 1            | 9702A MLRS  |              | lissile Nu <b>mbe</b> r | RR-13           | , Round Number               | 8-81                |
|--------------|-------------|--------------|-------------------------|-----------------|------------------------------|---------------------|
|              | ched from   |              | _                       |                 | e Range (WSMR), Ne           |                     |
| at <u>14</u> | 24 HST (    | on <u>07</u> | February 198            | O The sche      | duled launch time            | was                 |
| 1400:04      | MST         | •            |                         |                 |                              |                     |
|              |             |              | DISC                    | USSION          |                              |                     |
| Meteorol     | ogical data | a were re    | corded and re           | duced by the Wi | nite S <b>ands Me</b> teorol | ogical              |
| Team. At     | mospheric : | Sciences     | Laboratory (A           | SL), White Sand | ls <b>Missile Range,</b> M   | lew Mexico          |
| The data     | were obta   | ined by t    | he following            | methods:        |                              |                     |
| 1.           | Observation | ons          |                         |                 | •                            |                     |
|              | a. Surfac   |              |                         |                 |                              |                     |
|              |             |              | surface obser           | vations to inc  | lude pressure, temp          | eratur <del>e</del> |
| (°C), re     |             |              |                         |                 | ), Wind direction            |                     |
|              |             |              |                         |                 | Site at T-O minus            |                     |
|              |             |              |                         |                 | cisting pole-mounte          |                     |
| tower-mou    |             |              | -                       |                 | peed and direction           |                     |
|              |             |              |                         | ch control room |                              |                     |
|              | b. Upper    |              |                         |                 |                              |                     |
|              |             |              | wind data we            | re obtained fro | om RAPTS T-9 pibal           | observa-            |
| tion at:     |             |              |                         |                 |                              |                     |
|              |             |              | SITE AN                 | D ALTITUDE      |                              |                     |
|              |             |              | LC-33<br>Nick           | 2 km<br>2 km    |                              |                     |
|              | (2)         | Air struc    | ture data (ra           | winsonde) were  | collected at the f           | following           |
| Met Sites    |             |              |                         |                 | 000 feet                     |                     |
| 500-feet     | increments  |              |                         |                 |                              |                     |
|              |             |              | c 1 To                  | AND TIME        |                              |                     |
|              |             |              | 2115                    | AND TIME        |                              |                     |

1400 HST

NORTH

| ·            | 7 Y186,500 | <del> </del> | <del></del> |              |     | <u> </u> |          |       |          |     | <del></del> |          | <br> | <br>     |
|--------------|------------|--------------|-------------|--------------|-----|----------|----------|-------|----------|-----|-------------|----------|------|----------|
| 1 1          | 1100,300   |              |             |              | ,   |          |          |       |          |     |             |          |      |          |
|              |            |              |             |              |     |          |          |       |          |     |             |          |      |          |
|              |            |              |             |              |     |          |          |       |          |     |             |          |      |          |
|              |            |              | POL         | .E 3         | 3 0 |          |          |       |          |     |             |          |      |          |
|              |            |              | POL         | . <b>E</b> 2 | 2 0 |          |          |       |          |     |             |          |      |          |
| 8            | Y186,000   |              | POL         | .E _ 1       | 40  | A        | L-51     | 9     |          |     |             |          |      |          |
| MET<br>TOWER |            |              |             |              | 79  |          |          |       |          |     |             |          |      |          |
|              |            |              |             |              |     |          |          |       |          |     |             |          |      |          |
|              |            |              |             |              |     |          |          |       |          |     |             |          |      |          |
|              | Y185,500   |              |             |              |     |          |          |       |          |     |             |          |      |          |
|              | 1103,300   |              |             |              |     |          |          |       |          |     |             |          |      |          |
|              |            |              |             |              |     |          |          | RA    | PTS      | r-9 |             |          |      |          |
|              |            |              |             |              |     |          |          |       | O        |     |             |          |      |          |
| X475,630     |            | X485,500     |             |              |     |          | 7460,000 | B1.01 | CHHO:    | JSE | 1           | 7486,300 |      | X487,000 |
| X47.5        | Y185,000   | X485         |             |              |     | ,        | 7400     |       | <u> </u> |     | 200         | 748C     |      | X487     |

- MET TOWER 4 Bendix Model T-20 Anemometers at 17 ft, 62 ft, 102 ft, and 202 ft with E/A recorders.
- 2. POLE ANEMOMETER Bendix Model T-120 with L/A recorders.
  - (a) Pole #1 38.7 ft.
  - (b) Pole #2 53.0 ft.
  - (c) Pole #3 83.6 ft.
- 3. RAPTS T-9 Radar Automatic Pilot-Balloon Tracking System T-9 Radar.



TABLE 1. Surface Observations taken at 1424 MST, 07 February 1980 at LC-33, 19702A MLRS, Missile Number BR-13, Round Number B-81.

| ELEVATION         | 3983  | FT/MSL            |
|-------------------|-------|-------------------|
| PRESSURE          | 868.0 | MBS               |
| TEMPERATURE       | 17.5  | °C                |
| RELATIVE HUMIDITY | 21    | %                 |
| DEW POINT         | -5.0  | o <sub>C</sub>    |
| DENSITY           | 1037  | GM/M <sup>3</sup> |
| WIND SPEED        | 17    | KTS               |
| WIND DIRECTION    | 240   | DEGREES           |
| CLOUD COVER       | 3     | Cu                |

| POLE #1<br>X485,87<br>Y185,95<br>H4018.7<br>38.7 ft | 4.29<br>8.90<br>4 |              | POLE #2<br>X485,874<br>Y186,012<br>H4033.57<br>53.0 ft | 1.93<br>2.00<br>7 |              | POLE #<br>X485,87<br>Y186,116<br>H4063.9<br>83.6 ft | 7.29<br>6.06<br>2 |              |
|-----------------------------------------------------|-------------------|--------------|--------------------------------------------------------|-------------------|--------------|-----------------------------------------------------|-------------------|--------------|
| T-TIME<br>SEC                                       | DIR<br>DEG        | SPEED<br>KTS | T-TIME<br>SEC                                          | DIR<br>DEG        | SPEED<br>KTS | T-TIME<br>SEC                                       | DI R<br>DE G      | SPEED<br>KTS |
| -30                                                 | 285               | 20           | - 30                                                   | 271               | 13           | -30                                                 | 265               | 22           |
| -20                                                 | 289               | 25           | -20                                                    | 273               | 17           | -20                                                 | 243               | 26           |
| -10                                                 | 272               | 28           | -10                                                    | 257               | 21           | -19                                                 | 249               | 25           |
| 0:0                                                 | 275               | 31           | 0.0                                                    | 266               | 19           | 0.0                                                 | 248               | 28           |
| +10                                                 | 276               | 25           | +10                                                    | 258               | 24           | +10                                                 | 249               | 26           |

TABLE 3 LC-33 METEOROLOGICAL TOWER ANEMOMETER MEASURED WINDS (202 FT TOWER)

| LEVEL #1,<br>X484,982.64 |         | 73, H3983.00 (base) | LEVEL #2, 62<br>X484.982.64, |         | 3, H3983.00 (base) |
|--------------------------|---------|---------------------|------------------------------|---------|--------------------|
| T-TIME SEC               | DIR DEG | SPEED KTS           | T-TIME SEC                   | DIR DEG | SPEED KTS          |
| -30                      | 251     | 16                  | - 30                         | 255     | 24                 |
| -20                      | 244     | 21                  | -20                          | 252     | 22                 |
| -10                      | 248     | 17                  | -10                          | 253     | 20                 |
| 0.0                      | 236     | 17                  | 0.0                          | 251     | 22                 |
| +10                      | 252     | 16                  | +10                          | 256     | 24                 |

| LEVEL #3, 102 FEET<br>x484,982.64, Y185,057.73, H3983.00 (base) |         |           | LEVEL #4, 202 FEET<br>X484,982, Y185,057.73, H3983.00 (base) |         |           |  |  |
|-----------------------------------------------------------------|---------|-----------|--------------------------------------------------------------|---------|-----------|--|--|
| T-TIME SEC                                                      | DIR DEG | SPEED KTS | T-TIME SEC                                                   | DIR DEG | SPEED KTS |  |  |
| -30                                                             | 260     | 23        | - 30                                                         | 254     | 25        |  |  |
| -20                                                             | 252     | 23        | -20                                                          | 249     | 27        |  |  |
| -10                                                             | 260     | 25        | -10                                                          | 250     | 24        |  |  |
| 0.0                                                             | 256     | 25        | 0.0                                                          | 252     | 24        |  |  |
| +10                                                             | 260     | 22        | +10                                                          | 261     | 23        |  |  |

TABLE 4 RELEASED FROM LC-33 DATE 07 February 1980 TIME 1424 MST COORDINATES (WSTM) X 486,037.24 Y= 182,350.36 H= 3977.30 TRACKER NOTE: WIND DIRECTIONS ARE REFERENCED TO TRUE NORTH HEIGHTS ARE METERS AGLYY OR FEET AGL HEIGHT DIRECTION SPEED HEIGHT DIRECTION | SPEED HEIGHT DIRECTION ISPEED DEGREES KTS DEGREES **AGL** AGL KTS AGL DEGREES KTS SFC MISG MISG MISG MISG 

TABLE 5 DATE 07 February 1980 TIME 1424 MST RELEASED FROM Nick COORDINATES (WSTM) x 470,734.56 Y 255,775.64 H 4126.57 TRACKER HOTE: WIND DIRECTIONS ARE REFERENCED TO TRUE NORTH HEIGHTS ARE METERS AGL XX OR FEET AUL ... DIRECTION | SPEED HEIGHT | DIRECTION | SPEED HEIGHT FIELGHT DIRECTION SPEED DEGREES KTS AGL DEGREES DEGREES AGL KTS AGL KTS SFC 245 13 90 265 11 11 290 150 295 12 210 MISG 270 MISG 330 MISG MISG 390 MISG MISG 500 MISG MISG 650 MISG ! MISG 800 MISG MISG 950 265 30 250 1150 28 250 27 1350 1550 260 30 1750 260 33 2000 260 34

# SIGNIFICANT LEVEL DATA 035022059 WHITE SANUS TABLE 6

| PERCENT                | 20000000000000000000000000000000000000               | • |
|------------------------|------------------------------------------------------|---|
| CEMPOINT<br>CENTICHADE | 111144440444<br>000440044<br>0004400044<br>000440004 |   |
| AIR<br>DEGPEES         | មាម                                                  |   |
| TITUDE<br>L PEET       |                                                      |   |

GEODETIC COORDINATES 32.40043 LAT DEG 106.37033 LON DEG

| 00000000000000000000000000000000000000   | 00000000000000000000000000000000000000     | 1000          | 0 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 |      |
|------------------------------------------|--------------------------------------------|---------------|-----------------------------------------|------|
|                                          | 0 N H 0 2 2 2 1                            | 0             |                                         |      |
|                                          | N 15 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |               | ผ่                                      | 23.0 |
|                                          | 6 4 2 . A                                  | 15.3          | -2.0                                    | -    |
|                                          | 10 (2 to 2)                                | •             | 27.6                                    |      |
|                                          |                                            |               | 9.6-                                    | -    |
|                                          | 100                                        | 5.45          | -10.5                                   | ö    |
|                                          | ر<br>وم<br>وار                             | 1- a          | +13.0                                   | Ň    |
| 24 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 |                                            | -4.1          | .0                                      | ÷    |
| 9.6<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0   | . 4.                                       | -12.0         | -19.8                                   | 52.0 |
| 0.0 14<br>9.6 20<br>10.0 20              | 10                                         | •             | Q.                                      | 6    |
| 9.6 26                                   |                                            | •             | c                                       | ċ    |
| 5 C O C                                  | (4                                         | ٠             | N.                                      | ċ    |
|                                          |                                            | ٠             | •                                       |      |
| 30 St.                                   | ٠.,                                        | <b>⊕.88</b> € |                                         | å    |
| 9                                        | _                                          |               | 50.                                     | å    |
| E)                                       | _                                          | -46.7         |                                         |      |
| 2                                        |                                            | -50.8         |                                         |      |
| N.                                       | •                                          | -50°-5        |                                         |      |
| 2                                        | 5.11.3                                     | -             |                                         |      |
| ',<br>*                                  |                                            | <b>1-01-</b>  |                                         |      |
| r,                                       | •                                          | •             |                                         |      |
| Ģ                                        |                                            | •             |                                         |      |
| 9                                        |                                            | -43.3         |                                         |      |
| τ,<br>20                                 |                                            | 9-11-         |                                         |      |
| ~,<br>±                                  |                                            | -41.8         |                                         |      |
| 8                                        | -                                          | -43.9         |                                         |      |
| F) 1                                     | 8124.5                                     | •             |                                         |      |
| en i                                     |                                            | 0.40.41.      |                                         |      |
| ۍ .<br>ن د                               | ` -                                        | •<br>•        |                                         |      |
| <b>.</b>                                 | •                                          | 2.6.0-        |                                         |      |
| <b>3</b>                                 | 325.4                                      | -52.3         |                                         |      |
| <b>T</b>                                 | -                                          | 2             |                                         |      |
| <b>a</b>                                 | -                                          |               |                                         |      |
| 5                                        | 141.2                                      | 9             |                                         |      |
| 10-5 51                                  | 10                                         | •             |                                         |      |
| 00.00                                    | 55.                                        | -62.3         |                                         |      |
| .2 57                                    |                                            | ċ             |                                         |      |
| 0.0                                      | 6.69.3                                     |               |                                         |      |
| 67                                       | 000                                        | :             |                                         |      |
| 7.6 68                                   | 972.5                                      | -5R.4         |                                         |      |
| 17                                       | Ñ                                          |               |                                         |      |

| TRSL             | XV1          |           |
|------------------|--------------|-----------|
| FEE              | ¥            |           |
| 3989.00 FEET MSL | 1400 HKS KAT |           |
| ğ                |              | 30        |
| ALTITUDE         | c)<br>S)     | 2         |
| TATION           | 7 FEB.       | SCENSTO   |
| STATION ALTITU   | 7 FEB.       | ASCENSION |

UPPER AIR DATA

INATES IT DEG

| 32-40043 LAT<br>106-37033 LON                      | OATA INDEX                |
|----------------------------------------------------|---------------------------|
|                                                    | MIND DATA                 |
| ρ vi                                               | PEED OF                   |
| SASSOSSOSSOSSOSSOSSOSSOSSOSSOSSOSSOSSOSS           | TEL HUM. DENSITY SPEED OF |
| s.                                                 | PEL . HUM.                |
| JACO HAS AST                                       | TEMPERATURE               |
| 11:00E 3909:00 TEET FSL<br>14:00 HKS KST<br>10. 39 | PRESSURE                  |

| INDEX<br>OF<br>OF REFRACTION .                    | 9.9 1.000253 | 0       | -7 1.00025 | 1.00024 | 1-00054    | -8 1.0052 | 0 1.00023 | .2 1.0 | .5 1.0 | 1.00022  | •8 1•00022 | 6.4   | .8 1.00021 | .5    | . <del>.</del> | 21.7 1.000205 | .5      | .7      | .2 2.    | .8           | .4 1.         | .2 1.0       | .3 1.0  | 3 1.    | •6 1.00017 | •      | •8 1•00016 | .8 1.0001c | .2 1.0001 | .5 1.00015 | 1.00015 | .7 1.00 | .2 1.00014 | 3.9 1.00014  | 0.0 1.00014 | 6.3 1.0001 | 3.8 1.00013 | 5.0 1.0001 | 1.00013 |
|---------------------------------------------------|--------------|---------|------------|---------|------------|-----------|-----------|--------|--------|----------|------------|-------|------------|-------|----------------|---------------|---------|---------|----------|--------------|---------------|--------------|---------|---------|------------|--------|------------|------------|-----------|------------|---------|---------|------------|--------------|-------------|------------|-------------|------------|---------|
| #IND DATA<br>DIRECTION SPEED<br>DEGREES(IN) KNOTS | 250.0        | 50.3    | _          | •       | 9          | 'n        | 2         | o.     | 7      | <b>.</b> | ທຸ         |       | 9.         | v     | 15.7           | 8             | 7,      | 77.2    | <b>.</b> | ٠.<br>د      | 46.0          | 47.5         | 48.5    | 2.64    | 1.65       | 250.6  | 51.7       | _          |           | <b>~</b>   | _       | S.      | ນ          | 254.0        | 6           | 9.         | 260.0 7     | ٥          | 266.5   |
| SPEED OF SOUND KHUTS                              | 667.2        | 667.1   |            |         | 659.0      | 657.3     | 655.6     | 653.9  | 652.1  | 650.5    | 648.8      | •     | •          | 643.8 | 642.3          | •             | 38.     | 637.5   | 36.      | 634.7        | 33.           | 631.5        | 6       | g,      | 0          | 6,7,5  | O.         | 625.1      | •         | _          | •       | 618.7   | •          | -            |             | 12.        | 17.         | 10         | 9:      |
| DENSITY S<br>GV/CUHIC<br>METER                    | 1031.1       | 31.     | 020        | 014.    | •          | •         | •         | •      | •      | 937.0    | •          | •     | ċ          | 697.2 | 874.4          | 862.4         | ځ       | 638.0   | 825.4    | 813.0        | 801-1         | 789.5        | •       | 764.7   | •          |        | •          | •          | <b>5</b>  | 'n         | 683.2   | •       | å          | <b>9.139</b> | •           | 6-11-5     | ė           | 10.        | 600.1   |
| PERCENT                                           | 23.0         | 23.1    | 29.9       | 31.9    | 32.9       | 33.9      | 35.0      | 36.0   | 37.1   | 46.1     | 43.0       | 46.0  | 0.04       | 50.7  | 50.1           | 51.0          | 51.9    | 51.4    | 50.7     | 50.1         | 50.6          | 51.3         | 52.0    | 51.3    | 50.5       | 46.1   | 48.6       | •          | 33.2      | •          | •       | 20.0    | •          |              | •           | •          | •           | •          | 24.0    |
| EMPERATURE<br>DEWPOINT<br>ES CENTIGRADE           | -2.2         | ٠       | •          | •       | <b>3.5</b> | •         | 50.5      | •      |        | -7.3     |            | -8-1  | -R-Ó       | O     | -10.7          | -11-3         |         | -14.1   | 'n       | •            | -             | -13.7        | •       | •       | -21.3      | -22.1  | -23.0      | -26.1      | 23        | 33.        | •       |         | C off      | 1-04-        | -           | •          |             | 1.24-      |         |
| TEMP<br>AIR<br>DEGREES                            | 19.5         | 6       | 15.6       | 13.8    | 12.3       | 10.9      | 9.5       | 0.8    | 6.6    | 5.1      | 3.7        | •     | <b>.</b>   | į     | -1.1           | -3.1          | 9.4-    | -5.1    | 9.9-     | 0-8-         | -9.5          | -10.0        | -11.9   | -15.6   | -13.2      | -13.9  | -14.6      | -15.4      | -17.2     | -18.5      | -19.8   | -21.0   | -22.3      | -23.5        | -24·B       | -26.0      | -27.0       | -28.0      | -20.1   |
| PRESSUME<br>HILLIBANS                             | 868.2        | 867.9   | 852.5      | 437.1   | 822.0      | 407.4     | 192.5     | 1.871  | 164.0  | 2.04/    |            |       |            |       | 4.289          |               |         | 0 + + 0 |          | <b>619.5</b> | <b>\$0.20</b> | <b>295.3</b> | 283.4   |         |            |        |            |            | 217.1     | 507.3      | 497.1   | 4.984   | 410.3      | 467.1        | 457.0       | 1.811      | 1.854       | 429.5      | #20°    |
| GEOMETHIC<br>ALTITUDE<br>MSL FEET                 | 3989.0       | 40.00.0 | 4500.0     | 5000-0  | 5500.0     |           | 0.0050    | 7000-0 |        | 8.000°C  | 8500-0     | 90000 | 9500.0     | 10000 | 10500.0        | 11000.0       | 11503.0 | 12000.0 | 12500-0  | 13000-0      | 13500.0       | 14000-0      | 14500.0 | 15000.0 | 15500.0    | 100001 | 16500.0    | 17000.0    | 17509.0   | 18000-0    | 18500.0 | 19000.0 | 19500.0    | 20000-0      | 20500.0     | 21000.0    | 21500.0     | 220000     | 22500.0 |

| FEET MSL         | HKS MST      |
|------------------|--------------|
| 3989.3           | 1400 H       |
| STATION ALTITUDE | 98<br>5: 40. |
| STATION          | ASCENSION    |

| STATION ALTITUDE<br>7 FEB. BU<br>ASCENSION NO. | 66                                                          | 89.30 FEET A<br>1400 HKS MST          | ET #SL<br>MST                    | _          | UPPER AIR CATA<br>0363020059<br>WHITE SANDS<br>TABLE 7 (cont) | A LATA<br>2059<br>ANDS<br>(cont)                                  |                | \$E00ETIC<br>32.4<br>106.5                                   | DETIC COORDINATE<br>32.40043 LAT UE<br>106.37033 LON DE |
|------------------------------------------------|-------------------------------------------------------------|---------------------------------------|----------------------------------|------------|---------------------------------------------------------------|-------------------------------------------------------------------|----------------|--------------------------------------------------------------|---------------------------------------------------------|
| GEOME 1 HIC                                    | PRESSUME                                                    | 14.41                                 | TEMPERATURE                      | REL . HUM. | DENSITY                                                       | SPEED OF                                                          | AD UNIN        | DATA                                                         | X3CNI                                                   |
| ALITONE<br>MSL FERT                            | HILLIBANS                                                   | DEGREES                               | CENTIGRADE                       | PERCENT    | GW/CUMIC<br>METER                                             | SCUND<br>KNO 1S                                                   | DEGREES (TW)   | SPEED<br>KNOTS                                               | REFRACTION                                              |
| 23500.0                                        | 403.0                                                       | -31.1                                 | 0.44-                            | 56.6       | 580.1                                                         |                                                                   | 265.7          | 83.3                                                         | 1.00013                                                 |
| 2.000.0                                        | 394.0                                                       | -32.2                                 | 1000                             | 25.5       | 570.3                                                         |                                                                   | 265.4          | 87.1                                                         | 1.00012                                                 |
|                                                | 327.1                                                       | (100)<br>(100)                        | V                                | 23.0       | 4.000                                                         | 0.00<br>8.104                                                     | 254.0          | 91.0                                                         | 1.00012                                                 |
| 25,000                                         | 369.5                                                       | 30° €                                 | 1.6h-                            | 22.0       | 542.3                                                         |                                                                   | 204.6          | 91.5                                                         | 1.00012                                                 |
| 200000                                         | 361.5                                                       | -37.0                                 | -53.8                            | 22.0       | 553.3                                                         |                                                                   | 264.3          | 91.6                                                         | 1.00011                                                 |
| 26500-0                                        | 553.1                                                       | -38.5                                 | -51.9                            | 22.0       | 524.5                                                         | 597.1                                                             | 263.7          | 91.7                                                         | 1.00011                                                 |
| 27.000.0                                       | D. 040                                                      | 139.0                                 | 0.00                             | 22.0       | 515.9                                                         | 555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>55 | 262.0          | 91.7                                                         | 1.0001                                                  |
| 2000000                                        | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 10.00<br>10.00<br>10.00<br>10.00 | 15.2##     | N = 400 a                                                     | 10 V                                                              | 262.0          | 84.7                                                         | 1.0001                                                  |
| 23500.0                                        | するのなり                                                       | 42.5                                  | 6.09-                            | 11.74      | 1.034<br>1.034                                                |                                                                   | 260.3          | 76.7                                                         | 1.00010                                                 |
| 29000-0                                        | 316.2                                                       | 1-55-                                 | 64.5                             | 8.2**      | 8.00t                                                         |                                                                   | 258•1          | 68.6                                                         |                                                         |
| 29500.0                                        | 209.1                                                       | -45.2                                 | -69.3                            | 4*7.4      | 472.4                                                         |                                                                   | 254.2          | 63.2                                                         | 1.00010                                                 |
| 30000-0                                        | 202.2                                                       | -4D.3                                 | -19.2                            | 1.1**      | 454.2                                                         |                                                                   | 220.0          | 58.7                                                         |                                                         |
| 550                                            | 562 ·                                                       | <b>**/*</b>                           |                                  |            | 455.6                                                         | USU.                                                              | *              | 3/02                                                         |                                                         |
| 31300.0                                        | 288.0                                                       | C. 87                                 |                                  |            | 0.7.5                                                         |                                                                   | 240.0          | 20.5<br>20.5<br>20.5<br>20.5<br>20.5<br>20.5<br>20.5<br>20.5 | 10001                                                   |
| 31500.0                                        | 782.0                                                       | ひ・0 a l                               |                                  |            | で で で で で で で で で で で で で で で で で で で                         |                                                                   | 3 · / + / ·    | 34.50                                                        | 1 - 00000                                               |
| 32500.0<br>32500.0                             | 250                                                         | 2000                                  |                                  |            | 670.0                                                         | 7.75                                                              | 255.7          | 4.00                                                         | 1.0000                                                  |
| 53000.0                                        | 263.1                                                       | 1.94-                                 |                                  |            | 8-404                                                         |                                                                   | 255.0          | 67.5                                                         |                                                         |
| 33200.0                                        | 257.2                                                       | 1.00-                                 |                                  |            | 345.6                                                         |                                                                   | 256.1          | 76.8                                                         |                                                         |
| 3.000.5                                        | 251.3                                                       | -47.5                                 |                                  |            | 3-17-8                                                        |                                                                   | 255.3          | 80.3                                                         |                                                         |
| 24500.0                                        | 745.6                                                       | -47.1                                 |                                  |            | 378.6                                                         | 5.000                                                             | 253•3          | 79.5                                                         |                                                         |
| 35300.0                                        | **************************************                      | 0.03                                  |                                  |            | 358•1                                                         |                                                                   | 251.5          | 82.0                                                         |                                                         |
| 5.00000<br>C.000084                            | 10・3へい                                                      | 140.0                                 |                                  |            | いっぱい                                                          | 100 P                                                             | 0.00 s.c.      | 93.7                                                         | 1.00001                                                 |
| 35500.0                                        | 224.4                                                       | -41.7                                 |                                  |            | 357-8                                                         |                                                                   | 248.5          | 95.2                                                         |                                                         |
| 30                                             | •                                                           | -42.3                                 |                                  |            | 331.1                                                         |                                                                   | 246.7          | 8.46                                                         |                                                         |
| 37500.0                                        | 214.0                                                       | -43·5                                 |                                  |            | 325.4                                                         |                                                                   | 245.1          | 93.8                                                         | 1.00007                                                 |
| 35000.0                                        | 209•B                                                       | 4.00                                  |                                  |            | 216.1                                                         |                                                                   | 244.0          | 91.1                                                         |                                                         |
| <u>ئ</u>                                       | 7002                                                        | す・ハコー                                 |                                  |            | 310.9                                                         |                                                                   | 243.5          | 38.2                                                         | 1.00006                                                 |
| 29000-0                                        | 2000                                                        | 9.64                                  |                                  |            | M + 40E                                                       | 590                                                               | 9.54Z          | 84.7                                                         |                                                         |
| 0.00560                                        | 2001                                                        | J. 0. 2. 2. 1                         |                                  |            | 257.8                                                         | n i                                                               | 240.2          | 81.9                                                         | 1.00006                                                 |
|                                                | 10161                                                       | T • # #                               |                                  |            | 9-162                                                         |                                                                   | 2.0.7<br>0.140 | 2002                                                         |                                                         |
| 6.00004.8                                      | 183.2                                                       | 30.5                                  |                                  |            | 279.4                                                         | 5.4.6                                                             | 253.7          | 78.4                                                         | 1.000063                                                |
| 3                                              | 179.0                                                       | -45.8                                 |                                  |            | 274.3                                                         | 547.4                                                             | 256.4          | 78.4                                                         |                                                         |
| 900                                            | 175.0                                                       | -46.8                                 |                                  |            | 269.                                                          | 5,00.1                                                            | 259.3          | 89.7                                                         | 1.0000                                                  |
| 2500.                                          | 171.0                                                       | -47.8                                 |                                  |            | 264.4                                                         | 504                                                               | 262.1          |                                                              | 1.00005                                                 |
| 45000.0                                        | 167.1                                                       | 48.4                                  |                                  |            | 259.6                                                         |                                                                   | 263.3          | 92.4                                                         | 1.00005                                                 |

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

| Þ                                 | -                           |
|-----------------------------------|-----------------------------|
|                                   |                             |
| STATION ALTITUDE 3989.00 FEET MSL | 1400 HKS MST                |
| STATION ALTITUDE                  | 7 FEY. BO.<br>ASCENSION NO. |

UPPER AIR LATA 0.580020059 WHATE SANUS TABLE 7 (cont)

GEODETIC COORDINATES 32.40043 LAT DEG 106.37033 LON LEG

| INDEX<br>OF<br>REFRACTION            | •       | •               |         | •       | •     |       | •     | 1.000049 | +00000+ | •       | <b>*0000</b> | 200     | •     | 1.000043 | •      | •       | •       | •       | 1.00039  | 1.000038 | 1.000037 | 1.000036      | 1.000025    | 1.000034 | .0000   | •00000  | 1.000032 | .00003  | .00003       | .00003  | •        | .90002  | -00002  | •00005 | • 00002         | •           | 1.000025 | 0000  | -00005 | .0000.  |
|--------------------------------------|---------|-----------------|---------|---------|-------|-------|-------|----------|---------|---------|--------------|---------|-------|----------|--------|---------|---------|---------|----------|----------|----------|---------------|-------------|----------|---------|---------|----------|---------|--------------|---------|----------|---------|---------|--------|-----------------|-------------|----------|-------|--------|---------|
| TA<br>SPEED<br>KNOTS                 | 87.5    | 87.6            | 83.7    | 79.7    | 75.5  | 71.2  | 71.4  | 72.5     | 75.6    | 79.1    | 79.8         | 80.0    | 77.2  | 72.2     | 67.0   | 61.6    | 56.7    | 55.0    | 53.3     | 54.2     | 55.6     | 50.3          | 43.2        | 35.9     | 26.3    | 18.4    | 13.9     | 9.8     | 6.2          | 7.2     | 10.9     | 20.8    | •       | •      | 8               | -4          | 39.5     | 6     | •      | 21.2    |
| WIND DAT<br>DIRECTION<br>DEGREES(IN) | 264.2   | 265.6           | 265-4   | 205.8   | 202.9 | 266.0 | 265.8 | 205.7    | 200.0   | 201.5   | 267.4        | 267.1   | 266•3 | 265.0    | 204.5  | 205.6   | 500.9   | 208.4   | 270.0    | 272.1    | 274.1    | 274.5         | 285.6       | 295.3    | 305.7   | 320.5   | 358.0    | 340.5   | 320.2        | 591.9   | 80       | 226.9   | 256.2   | 255.5  | 257.5           | 259.5       | 263.7    | 260.1 | 320.6  | 6.24    |
| SPEED OF<br>SOUND<br>KNOTS           | 562.2   | •<br>•••<br>••• | 0       | 579.5   | 578.6 | 577.6 | •     | 570.5    | 574.5   | 573.4   | 572.4        | 572.0   | 571.9 | 5.075    | 5c9.3  | 558.1   | 556.4   | 5.8.3   | 5.7.6    | 5,00     | 500.1    | 5,50.0        | 500.0       | 567.3    | 567.9   | 508.5   | 5°9.1    | 505.7   | 5e9.8        | 5c9.2   | 568.6    | 5,7,9   | 567.3   | 566.7  | 506.0           | 505.4       | Š        | S     | 505.7  | 5,5.8   |
| OPASITY S<br>GWZCUBIC<br>METER       | 30      | 249.7           | 244.6   | າ       | 7)    | 230.3 | 225.7 | 221.2    | 21.6+8  | 212.4   | 205.2        | 203.6   | 198.8 | D.       | 181.1  | # - 181 | 142.7   | 178.3   | 174.5    | 1.0.1    | 10701    | 1.201         | 153.8       | 154.7    | 150.6   | 146.7   | 142.8    | 129.1   | 135.7        | 132.7   | 129.8    | 127.0   | 124.2   | 121.5  | 118.8           | 116.2       | 113.4    | 110.6 | ÷      | 105.2   |
| REL.HUM.<br>PERCENT                  |         |                 |         |         |       |       |       |          |         |         |              |         |       |          |        |         |         |         |          |          |          |               |             |          |         |         |          |         |              |         |          |         |         |        |                 |             |          |       |        |         |
| EMPERATURE DEMPOINT LS CENTIGRADE    |         |                 |         |         |       |       |       |          |         |         |              |         |       |          |        |         |         |         |          |          |          |               |             |          |         |         |          |         |              |         |          |         |         |        |                 |             |          |       |        |         |
| TENT<br>AIR<br>DEGRELS               | S • 64- | -50.5           | -51.2   | 6-19-   | -52.6 | -53.4 | -54.1 | 6.45-    | -55.7   | -56.5   | -57.3        | 9.75    | -57.7 | -53.6    | -29.6  | ₹.09-   | 0       | -60.3   | 6.09-    | -61.5    | -62.0    | -62.1         | E           | -61.1    | -60.7   | -80.2   | -29.1    | က်      | <b>5</b> 7 ( | -29.7   | -60.2    | $\circ$ | -61.1   | -61.6  | •               |             | -62.5    | •     | ċ      | -52.2   |
| PRESSURE<br>MILLIBARS                | 163.3   | 159.0           | 155.9   | 152.3   | 7+8+T | 145.3 | 101.9 | 136.5    | 135.0   | 132.1   | 129.0        | 120.0   | 125.0 | 120.0    | 117.2  | 114.4   | 111.6   | 80      | ဥ        | 5        | 101.5    | ₹ <b>•</b> ₽0 | <b>1.96</b> | 7.06     | 91.9    | 89.0    | 67.5     | 82.4    | 83.5<br>0.53 | 81.3    | 79.4     | 77.5    | 73.0    | 73.6   | 72.0            | 70.3        | 9-89     | 60.7  |        | 63.     |
| GEOME INIC<br>ALTITUDE<br>MSL FEET   | 43530.0 | 0.00mm          | 0.00S++ | 45000.0 | •     | 40000 | •     | 47000.0  | •       | 46900.0 | 40500.0      | U-00064 | 3     | 30000c   | 56525. | 910ac•6 | 51500.0 | 52003.0 | 955:00.0 | 525.00.0 | 525.00   | 2+000+0       | 24500.0     | C•000cc  | 55500-6 | 0-00056 | 50536.3  | 2.0.026 | 3.01.170     | C.00.20 | 55,500.0 | O-00050 | 29500.0 | 0.00ca | 60200• <b>0</b> | <b>3</b> 50 | 61500.0  | 000   | $\sim$ | 650n0-B |

UPPER AIR LATA 0360205059 WHITE SANJS

| ALITUDE WILLIAMS |            |              |         |             |       |           |       |              |
|------------------|------------|--------------|---------|-------------|-------|-----------|-------|--------------|
|                  | AIR        | AIR DEFECTAL | PERCENT | OK/CUBIC    | SCUIS | DIRECTION | SPEED | OF.          |
|                  | KS DEGREES | CENTIGRADE   |         | WE TER      | KNOTS |           | K5013 | KEPKAC 1 10N |
| 62•              | -62.1      |              |         | 102.6       | 566.0 | 55.6      | 35.7  | 1.000023     |
| <b>•</b> 09      | / -62.0    |              |         | 100-1       |       | 55.7      | 33.5  | 1.000022     |
| 59.              |            |              |         | 91.6        |       | 20.0      | 22.4  | 1.000022     |
| 57.              |            |              |         | 3.55        |       | 9000      | 11.1  | 1.000021     |
| 56.              |            |              |         | 05.0        |       | 281.8     | 11.0  | 1.000021     |
| 55.              |            |              |         | 9.06        |       | 259.5     | 27.6  | 1.000020     |
| 550              |            |              |         | 4.69        |       | 255·ë     | 36.3  | 1.000020     |
| 52.              |            |              |         | 999         |       | 256.3     | 40.7  | 1.000019     |
| 51.              |            |              |         | 54+1        | 5.7.0 | 556.4     | 43.1  | 1.000019     |
| *64              | y61.1      |              |         | 62•(        |       | 260.1     | 34.0  | 1.000016     |
| 43.              | 1-59.1     |              |         | 79.5        |       | 200.5     | 25.1  | 1.000018     |
| 47.              |            |              |         | 1.47        |       | 281.6     | 16.4  | 1.900017     |
| 146.             |            |              |         | 75.         |       | 321.3     | 10.3  | 1.000017     |
| 4.<br>4.         |            |              |         | 73.5        |       | 10.5      | 13.7  | 1.000016     |
| * 111            | 2 -58.4    |              |         | 71.1        |       | 6.6       | 15.7  | 1.000016     |
| 43.2             | -59.4      |              |         | 70.0        | 571.0 | 7.6       | 17.6  | 1.000016     |
| 71500.0 42.      |            |              |         | <b>7•89</b> |       |           |       | 1.000015     |
| + T +            |            |              |         | 66.         |       |           |       | 1.000015     |
| . O 7            | K -58.3    |              |         | 55.         |       |           |       | 1.000014     |
| 39               | 2 -58.5    |              |         | 63.6        | 571.0 |           |       | 1.000014     |

| ITES   | CE6          | CEG   |
|--------|--------------|-------|
| ROIN/  | DO43 LAT UEG | LON   |
| ဥ<br>ပ | C+00+-       | 37033 |
| ODETI  | 32.40        | 106.  |
| 씽      |              |       |

| PK   | SSURE     | PRESSURE GEOPOTENTIAL |         | 1EMPERATURE | REL . HU.4. | WIND DATA    | ATA   |
|------|-----------|-----------------------|---------|-------------|-------------|--------------|-------|
|      |           |                       | AIR     | DEMPOINT    | PEKCENT     | DIRECTION    | SPEED |
| MILL | MILLIBARS | FEET                  | DEGREES | CENTIGRADE  |             | DEGREES (TN) | KNOTS |
|      | 850.0     | 4579.                 | 15.0    | -2.0        | 31.         | 262.2        | 14.3  |
|      | 800.0     |                       | 10.2    | 80·t-       | 34.         | 274.3        | 27.9  |
|      | 750.0     | 7992                  | 5.0     | -7.3        | 40          | 281.4        | 42.8  |
|      | 700.0     | 9823.                 |         | 0.6-        | 51.         | 208.7        | 50.9  |
|      | 650.0     |                       | -5.2    | -13.5       | 50.00       |              | 41.0  |
|      | 600 · n   | 13798.                | -10.1   | -18.3       | 51.         |              | 46.7  |
|      | 550.0     |                       | -13.9   | -22-1       | 50.         |              | 66.4  |
|      | 500.0     | •                     | -19.4   | 35.6        | , O.        |              | 74.3  |
|      | 450.0     |                       | -25.3   | -45.0       | 20.         |              | 77.1  |
|      | 400.0     | _                     | -31.5   | 2.44-       | 27.         |              | 64.7  |
|      | 350.0     | _                     | -38.9   | -52.4       | 22.         |              | 91.7  |
|      | 300.0     |                       | -46.7   |             | )           |              | 56.4  |
|      | 250.0     | 34040                 | -47.5   |             |             |              | 80.2  |
|      | 200.0     |                       | -43.6   |             |             |              | 84.5  |
|      | 175.0     | •                     | -46.8   | •           |             |              | 80.6  |
|      | 150.0     |                       | -52.3   |             |             |              | 77.2  |
|      | 125.0     | _                     | -57.5   |             |             |              | 60.1  |
|      | 100.0     | •                     | -62.3   |             |             |              | 55.2  |
|      | 60.0      |                       | -60.0   |             |             |              | 4.6   |
|      | 70.0      |                       | -62.6   |             |             |              | 51.9  |
|      | 0·09      |                       | -62.0   |             |             |              | 29.2  |
|      | 50.0      | 67702.                | -61.2   |             |             | 259.4        | 35.4  |
|      | 40.0      | 72501.                | -58.3   |             |             |              |       |

\*\* AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

