Bootstrap Your Own Latent

A New Approach to Self-Supervised Learning

Self-supervised learning

• Cross-view prediction framework에 기반

• Collapsed representation 방지→ negative pairs

Contrastive loss

• collapased representation 방지

Cosine similarity (Positive pair)
$$L_{i,j} = -\log \frac{\exp\left(\frac{sim(\boldsymbol{z_i}, \boldsymbol{z_j})}{\tau}\right)}{\sum_{k=1}^{N} [k \neq i]} \exp\left(\frac{sim(\boldsymbol{z_i}, \boldsymbol{z_k})}{\tau}\right)$$
 Cosine similarity (Negative pair)

Contrastive Learning의 문제점

- Negative pairs 처리의 중요성
 - Large batch size(SimCLR), memory banks(MoCo) 그리고 customized mining strategies
- Data augmentation 선택의 중요성

Motivation

Architecture

Figure 2: BYOL's architecture. BYOL minimizes a similarity loss between $q_{\theta}(z_{\theta})$ and $\operatorname{sg}(z'_{\xi})$, where θ are the trained weights, ξ are an exponential moving average of θ and sg means stop-gradient. At the end of training, everything but f_{θ} is discarded, and y_{θ} is used as the image representation.

 $\xi \leftarrow \tau \xi + (1 - \tau)\theta$.

- Prediction
- slow-moving average

- encoding more information within online projection
- avoid collapsed representation

Architecture

Figure 8: BYOL sketch summarizing the method by emphasizing the neural architecture.

Loss function

$$\mathcal{L}_{\theta,\xi} \triangleq \left\| \overline{q_{\theta}}(z_{\theta}) - \overline{z}_{\xi}' \right\|_{2}^{2} = 2 - 2 \cdot \frac{\langle q_{\theta}(z_{\theta}), z_{\xi}' \rangle}{\left\| q_{\theta}(z_{\theta}) \right\|_{2} \cdot \left\| z_{\xi}' \right\|_{2}}$$

$$\mathcal{L}_{ heta,\xi}^{ exttt{BYOL}} = \mathcal{L}_{ heta,\xi} + \widetilde{\mathcal{L}}_{ heta,\xi}$$

$$\theta \leftarrow \text{optimizer}(\theta, \nabla_{\theta} \mathcal{L}_{\theta, \xi}^{\text{BYOL}}, \eta),$$

 $\xi \leftarrow \tau \xi + (1 - \tau)\theta,$

 $\overline{q_{\theta}}(z_{\theta}) \triangleq q_{\theta}(z_{\theta}) / \|q_{\theta}(z_{\theta})\|_{2}$

 $\overline{z}_{\xi}' \triangleq z_{\xi}' / \|z_{\xi}'\|_2$

Algorithm

Algorithm 1: BYOL: Bootstrap Your Own Latent

```
Inputs:
      \mathcal{D}, \mathcal{T}, and \mathcal{T}'
                                          set of images and distributions of transformations
      \theta, f_{\theta}, g_{\theta}, and g_{\theta}
                                          initial online parameters, encoder, projector, and predictor
                                          initial target parameters, target encoder, and target projector
      \xi, f_{\xi}, g_{\xi}
      optimizer
                                          optimizer, updates online parameters using the loss gradient
      K and N
                                          total number of optimization steps and batch size
      \{\tau_k\}_{k=1}^K \text{ and } \{\eta_k\}_{k=1}^K
                                          target network update schedule and learning rate schedule
 1 for k=1 to K do
         \mathcal{B} \leftarrow \{x_i \sim \mathcal{D}\}_{i=1}^N
                                                                                                               // sample a batch of N images
       for x_i \in \mathcal{B} do
       t \sim \mathcal{T} and t' \sim \mathcal{T}'
                                                                                                             // sample image transformations
      z_1 \leftarrow g_{\theta}(f_{\theta}(t(x_i))) \text{ and } z_2 \leftarrow g_{\theta}(f_{\theta}(t'(x_i)))
                                                                                                                             // compute projections
          z'_1 \leftarrow g_{\xi}(f_{\xi}(t'(x_i))) and z'_2 \leftarrow g_{\xi}(f_{\xi}(t(x_i)))
                                                                                                                // compute target projections
             l_i \leftarrow -2 \cdot \left( \frac{\langle q_{\theta}(z_1), z_1' \rangle}{\|q_{\theta}(z_1)\|_2 \cdot \|z_1'\|_2} + \frac{\langle q_{\theta}(z_2), z_2' \rangle}{\|q_{\theta}(z_2)\|_2 \cdot \|z_2'\|_2} \right)
                                                                                                                       // compute the loss for x_i
 8
         end
        \delta\theta \leftarrow \frac{1}{N} \sum_{i=1}^{N} \partial_{\theta} l_{i}
                                                                                        // compute the total loss gradient w.r.t. \theta
         \theta \leftarrow \text{optimizer}(\theta, \delta\theta, \eta_k)
                                                                                                                    // update online parameters
         \xi \leftarrow \tau_k \xi + (1 - \tau_k)\theta
                                                                                                                    // update target parameters
12 end
    Output: encoder f_{\theta}
```

Intuitions on BYOL's behavior

• Undesirable equilibria가 unstable 하다고 가정함

$$Var(X|Y,Z) \le Var(X|Y)$$

X : target projection

Y : current online projection

Z: additional variability on top of the online projection

$$\operatorname{Var}(z_{\xi}'|z_{\theta}) \leq \operatorname{Var}(z_{\xi}'|c)$$

How BYOL prevents representation collapse?

- Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning
 - ✓ Addition of a predictor to the online network
 - ✓ Use of a moving average of online parameters

- 새로운 가설 제시
- Understanding self-supervised and contrastive learning with "Bootstrap Your Own Latent"
 - ✓ Batch Normalization 때문
- BYOL works even without batch statistics
 - ✓ Batch Normalization 때문이님

How BYOL prevents representation collapse?

Exploring Simple Siamese Representation Learning

Xinlei Chen Kaiming He

Facebook AI Research (FAIR)

2020.11 arXiv

Understanding self-supervised Learning Dynamics without Contrastive Pairs

Yuandong Tian 1 Xinlei Chen 1 Surya Ganguli 12

Abstract

Contrastive approaches to self-supervised learning (SSL) learn representations by minimizing

Facebook Al Research

man et al., 2019) whereby the hidden representations of two augmented views of the same object (positive pairs) are brought closer together, while those of different ob-

2021.02 arXiv

Experiment Results

Linear evaluation on ImageNet

Method	Top-1	Top-5
Local Agg.	60.2	-
PIRL [35]	63.6	-
CPC v2 [32]	63.8	85.3
CMC [11]	66.2	87.0
SimCLR[8]	69.3	89.0
MoCo v2 [37]	71.1	-
InfoMin Aug. [12]	73.0	91.1
BYOL (ours)	74.3	91.6

Method	Architecture	Param.	Top-1	Top-5
SimCLR [8]	ResNet-50 (2×)	94M	74.2	92.0
CMC [11]	ResNet-50 (2 \times)	94M	70.6	89.7
BYOL (ours)	ResNet-50 (2 \times)	94M	77.4	93.6
CPC v2 [32]	ResNet-161	305M	71.5	90.1
MoCo [9]	ResNet-50 $(4\times)$	375M	68.6	-
SimCLR [8]	ResNet-50 $(4\times)$	375M	76.5	93.2
BYOL (ours)	ResNet-50 $(4\times)$	375M	78.6	94.2
BYOL (ours)	ResNet-200 (2 \times)	250M	79.6	94.8

(b) Other ResNet encoder architectures.

Table 1: Top-1 and top-5 accuracies (in %) under linear evaluation on ImageNet.

Semi-supervised training on ImageNet

Method	Top	5-1	Top-5		
	1%	10%	1%	10%	
Supervised [77]	25.4	56.4	48.4	80.4	
InstDisc	-	-	39.2	77.4	
PIRL [35]	-	-	57.2	83.8	
SimCLR [8]	48.3	65.6	75.5	87.8	
BYOL (ours)	53.2	68.8	78.4	89.0	

Method	Architecture	Param.	Top) -1	Top	o-5
	W.M. L. & P. 2000		1%	10%	1%	10%
CPC v2 [32]	ResNet-161	305M	=	-	77.9	91.2
SimCLR [8]	ResNet-50 $(2\times)$	94M	58.5	71.7	83.0	91.2
BYOL (ours)	ResNet-50 (2 \times)	94M	62.2	73.5	84.1	91.7
SimCLR [8]	ResNet-50 $(4\times)$	375M	63.0	74.4	85.8	92.6
BYOL (ours)	ResNet-50 $(4\times)$	375M	69.1	75.7	87.9	92.5
BYOL (ours)	ResNet-200 (2 \times)	250M	71.2	77.7	89.5	93.7

Table 2: Semi-supervised training with a fraction of ImageNet labels.

⁽a) ResNet-50 encoder.

⁽a) ResNet-50 encoder.

⁽b) Other ResNet encoder architectures.

Experiment Results

• Transfer to other classification tasks

Method	Food101	CIFAR10	CIFAR100	Birdsnap	SUN397	Cars	Aircraft	VOC2007	DTD	Pets	Caltech-101	Flowers
Linear evaluation:												
BYOL (ours)	75.3	91.3	78.4	57.2	62.2	67.8	60.6	82.5	75.5	90.4	94.2	96.1
SimCLR (repro)	72.8	90.5	74.4	42.4	60.6	49.3	49.8	81.4	75.7	84.6	89.3	92.6
SimCLR [8]	68.4	90.6	71.6	37.4	58.8	50.3	50.3	80.5	74.5	83.6	90.3	91.2
Supervised-IN [8]	72.3	93.6	78.3	53.7	61.9	66.7	61.0	82.8	74.9	91.5	94.5	94.7
Fine-tuned:												
BYOL (ours)	88.5	97.8	86.1	76.3	63.7	91.6	88.1	85.4	76.2	91.7	93.8	97.0
SimCLR (repro)	87.5	97.4	85.3	75.0	63.9	91.4	87.6	84.5	75.4	89.4	91.7	96.6
SimCLR [8]	88.2	97.7	85.9	75.9	63.5	91.3	88.1	84.1	73.2	89.2	92.1	97.0
Supervised-IN [8]	88.3	97.5	86.4	75.8	64.3	92.1	86.0	85.0	74.6	92.1	93.3	97.6
Random init [8]	86.9	95.9	80.2	76.1	53.6	91.4	85.9	67.3	64.8	81.5	72.6	92.0

Table 3: Transfer learning results from ImageNet (IN) with the standard ResNet-50 architecture.

Transfer to other vision tasks

Method	AP ₅₀	mIoU			Higher better	1995	Lower	r better
Supervised-IN [9]	74.4	74.4	Method	pct.<1.25	$pct. < 1.25^2$	$pct.<1.25^3$	rms	rel
MoCo [9]	74.9	72.5	Supervised-IN [83]	81.1	95.3	98.8	0.573	0.127
SimCLR (repro)	75.2	75.2	SimCLR (repro)	83.3	96.5	99.1	0.557	0.134
BYOL (ours)	77.5	76.3	BYOL (ours)	84.6	96.7	99.1	0.541	0.129

⁽a) Transfer results in semantic segmentation and object detection.

Table 4: Results on transferring BYOL's representation to other vision tasks.

⁽b) Transfer results on NYU v2 depth estimation.

Ablation study

Batch size

Batch	Γ	op-1	Top-5		
size	BYOL (ours)	SimCLR (repro)	BYOL (ours)	SimCLR (repro)	
4096	72.5	67.9	90.8	88.5	
2048	72.4	67.8	90.7	88.5	
1024	72.2	67.4	90.7	88.1	
512	72.2	66.5	90.8	87.6	
256	71.8	64.3 ± 2.1	90.7	86.3 ± 1.0	
128	69.6 ± 0.5	63.6	89.6	85.9	
64	$59.7{\pm}1.5$	59.2 ± 2.9	83.2 ± 1.2	$83.0{\pm}1.9$	

(a) Impact of batch size

Ablation study

• Image Augmentation

	Т	Top-1	Top-5		
Image augmentation	BYOL (ours)	SimCLR (repro)	BYOL (ours)	SimCLR (repro)	
Baseline	72.5	67.9	90.8	88.5	
Remove flip	71.9	67.3	90.6	88.2	
Remove blur	71.2	65.2	90.3	86.6	
Remove color (jittering and grayscale)	63.4 ± 0.7	45.7	85.3 ± 0.5	70.6	
Remove color jittering	71.8	63.7	90.7	85.9	
Remove grayscale	70.3	61.9	89.8	84.1	
Remove blur in \mathcal{T}'	72.4	67.5	90.8	88.4	
Remove solarize in \mathcal{T}'	72.3	67.7	90.8	88.2	
Remove blur and solarize in \mathcal{T}'	72.2	67.4	90.8	88.1	
Symmetric blurring/solarization	72.5	68.1	90.8	88.4	
Crop only	59.4 ± 0.3	40.3 ± 0.3	82.4	64.8 ± 0.4	
Crop and flip only	60.1 ± 0.3	40.2	83.0 ± 0.3	64.8	
Crop and color only	70.7	64.2	90.0	86.2	
Crop and blur only	61.1 ± 0.3	41.7	83.9	66.4	

참고

- https://arxiv.org/pdf/2006.07733.pdf
- https://2-chae.github.io/category/2.papers/26
- https://doubleby.github.io/self-supervised-learning/2021/01/27/BYOL/
- https://hoya012.github.io/blog/byol/
- https://blog.promedius.ai/ssl_byol/