Содержание

5	Источники мудрости	9
1	Решения	9
3	Лог. КЛШ-2023 3.1 Плакат	9
2	Встреча два	2
1	Встреча раз	2

Анонс

...

Я завязал КЛШ-2023 (46 сезон)

1. Встреча раз

Узел: верёвка, соединяющая две стены или замкнутая кривая в пространстве.

Вяжем прямой или встречный узел.

Упражнение. Завяжи произвольный узел и нарисуй его плоскую диаграмму.

Упражнение. Занумеруй пересечения и запиши узёл, произжая по нему на машини и отмечая, сверху или снизу едешь по мосту, направо или налево ведёт поперечная дорога.

A = Above, B = Below, L = Left, R = Right, AL = Above Left и так далее.

Упражнение. Нарисуй плоскую диаграмму по записи узла.

Определение косы.

2. Встреча два

Упражнение. Нарисуй плоскую диаграмму по записи.

Три нити. Коса b_1 . Коса b_2 . Умножение кос.

- 1. Единичная коса 1 при умножении на любую косу не меняет её.
 - Как выглядит единичная коса на пяти нитях?
- 2. Коса b_1^{-1} при умножении на косу b_1 должна порождать единичную косу. Нарисуй косу b_1^{-1} на трёх нитях.
- 3. Нарисуй косу $b_1b_2b_3^3b_1^{-1}b_2b_3^{-1}$ на четырёх нитях.
- 4. Правда ли, что $b_1b_2=b_2b_1$? Правда ли, что $b_2b_4=b_4b_2$?
- 5. Правда ли, что $b_1b_2b_3=b_3b_2b_1$? Правда ли, что $b_2b_1b_2=b_1b_2b_1$?
- 6. Нарисуй косу $b_1^3 b_2$ на трёх нитях, замкни её и запиши плоскую диаграмму полученного узла.
- 7. Перед тобой узлы:
 - Для каждого узла нарисуй косу, которая его порождает при замыкании. Запиши полученную косу.
- 8. Сколько узлов получается при замыкании косы $b_1^2 b_3^4$ на четырёх нитях?
- 9. Сколько узлов получается при замыкании косы $b_1b_2^2b_3^3b_4^4b_5^5$ на шести нитях?
- 10. Нарисуй узел $(AL)_1(BL)_2(AR)_3(BR)_1(AL)_4(BL)_3(AR)_2(BR)_4$. Нарисуй косу, которая при замыкании даёт этот узел. Запиши эту косу.
- 1. *Единичная* коса 1 при умножении на любую косу не меняет её. Как выглядит единичная коса на пяти нитях?
- 2. Коса b_1^{-1} при умножении на косу b_1 должна порождать единичную косу. Нарисуй косу b_1^{-1} на трёх нитях.
- 3. Нарисуй косу $b_1b_2b_3^3b_1^{-1}b_2b_3^{-1}$ на четырёх нитях.
- 4. Правда ли, что $b_1b_2=b_2b_1$? Правда ли, что $b_2b_4=b_4b_2$?
- 5. Правда ли, что $b_1b_2b_3=b_3b_2b_1$? Правда ли, что $b_2b_1b_2=b_1b_2b_1$?
- 6. Нарисуй косу $b_1^3b_2$ на трёх нитях, замкни её и запиши плоскую диаграмму полученного узла.
- 7. Перед тобой узлы:
 - Для каждого узла нарисуй косу, которая его порождает при замыкании. Запиши полученную косу.
- 8. Сколько узлов получается при замыкании косы $b_1^2b_3^4$ на четырёх нитях?
- 9. Сколько узлов получается при замыкании косы $b_1b_2^2b_3^3b_4^4b_5^5$ на шести нитях?
- 10. Нарисуй узел $(AL)_1(BL)_2(AR)_3(BR)_1(AL)_4(BL)_3(AR)_2(BR)_4$. Нарисуй косу, которая при замыкании даёт этот узел. Запиши эту косу.

Воровской узел.

- 1. Какой узел O при сложении с любым другим узлом K не изменяет его, K#O=O#K=K?
- 2. Правда ли, что для узлов $K_1 \# K_2 = K_2 \# K_1$?
- 3. Зацепи n тривиальных узлов самым простым образом так, чтобы при разрезании одного любого кольца всё зацепления распадалось на отдельные кусочки:
 - а) Зацепление Хопфа, n=2;
- б) Зацепление n = 3;
- Борромео,
- B) n=4;
- 4. Используя движения Рейдемейстера перевиди одну картинку в другую

б)

- 5. Зарисуй движение Рейдемейстера Ω_1 на диаграмме Гаусса и запиши его в коде узла Гаусса. Рассмотри все варианты.
- 6. Как может выглядеть движение Рейдемейстера Ω_2 на диаграмме Гаусса и в коде узла Гаусса?
- 7. Как может выглядеть движение Рейдемейстера Ω_3 на диаграмме Гаусса и в коде узла Гаусса?
- 1. Какой узел O при сложении с любым другим узлом K не изменяет его, K#O=O#K=K?
- 2. Правда ли, что для узлов $K_1 \# K_2 = K_2 \# K_1$?
- 3. Зацепи n тривиальных узлов самым простым образом так, чтобы при разрезании одного любого кольца всё зацепления распадалось на отдельные кусочки:
 - а) Зацепление Хопфа, n=2;
- б) Зацепление n = 3;
- Борромео,
- B) n=4;
- 4. Используя движения Рейдемейстера перевиди одну картинку в другую

б

- 5. Зарисуй движение Рейдемейстера Ω_1 на диаграмме Гаусса и запиши его в коде узла Гаусса. Рассмотри все варианты.
- 6. Как может выглядеть движение Рейдемейстера Ω_2 на диаграмме Гаусса и в коде узла Гаусса?
- 7. Как может выглядеть движение Рейдемейстера Ω_3 на диаграмме Гаусса и в коде узла Гаусса?

Для зацепления из двух компонент коэффициент зацепления ${\rm lk}=(N_R-N_L)/2$, где N_R- число мостов, где первая компонента проходит над второй и под мостом поток приходит с правой стороны, а N_L- число мостов, где первая компонента проходит над второй и под мостом поток приходит с левой стороны.

Плоская диаграмма узла называется *раскрашиваемой в три цвета*, если каждый отрезок узла от прохода под мостом до прохода под мостом можно раскрасить в один из трёх цветов так, чтобы в каждом пересечении встречались три цвета или один цвет.

- 1. Какие из диаграмм можно раскрасить в три цвета по правилам?
- 2. Для каждого двухкомпонентного зацепления посчитай коэффициент зацепления.
- 3. Что происходит с коэффициентом зацепления, если первую компоненту считать второй, а вторую первой?
- 4. Что происходит с коэффициентом зацепления, если поменять направление обхода первой компоненты?
- 5. Докажи, что движения Рейдемейстера сохраняют раскрашиваемость в три цвета.
- 6. Докажи, что движения Рейдемейстера сохраняют коэффициент зацепления.

Для зацепления из двух компонент коэффициент зацепления $lk=(N_R-N_L)/2$, где N_R- число мостов, где первая компонента проходит над второй и под мостом поток приходит с правой стороны, а N_L- число мостов, где первая компонента проходит над второй и под мостом поток приходит с левой стороны.

Плоская диаграмма узла называется *раскрашиваемой в три цвета*, если каждый отрезок узла от прохода под мостом до прохода под мостом можно раскрасить в один из трёх цветов так, чтобы в каждом пересечении встречались три цвета или один цвет.

- 1. Какие из диаграмм можно раскрасить в три цвета по правилам?
- 2. Для каждого двухкомпонентного зацепления посчитай коэффициент зацепления.
- 3. Что происходит с коэффициентом зацепления, если первую компоненту считать второй, а вторую первой?
- 4. Что происходит с коэффициентом зацепления, если поменять направление обхода первой компоненты?
- 5. Докажи, что движения Рейдемейстера сохраняют раскрашиваемость в три цвета.
- 6. Докажи, что движения Рейдемейстера сохраняют коэффициент зацепления.

Я завязал КЛШ-2023 (46 сезон)

Я завязал КЛШ-2023 (46 сезон)

3. Лог. КЛШ-2023

Курс выбрали 7 школьников.

1.

В теховском файле \newpage стоит, чтобы легко было скопировать секцию, для печати двух копий подряд на одном листе. Это позволяет экономить бумагу и время при печати :)

3.1. Плакат

4. Решения

5. Источники мудрости

передалать потом в bib-файл

- 1. https://ctan.org/pkg/braids: рисование кос
- 2. https://tex.stackexchange.com/questions/559167/: шрифт с набором реалистичных узлов
- 3. https://ctan.org/pkg/pst-knot: десяток готовых узлов: не работает?
- 4. https://ctan.org/pkg/spath3: рисуем произвольные узлы
- 5. https://ncatlab.org/nlab/show/SVG+images: немного svg-картинок узлов, движения Рейдемейстера