

POLITECHNIKA POZNAŃSKA

WYDZIAŁ INFORMATYKI I TELEKOMUNIKACJI Instytut Informatyki

Praca dyplomowa licencjacka

APLIKACJA INTERNETOWA SŁUŻĄCA DO GENEROWANIA PLANÓW LEKCJI DLA SZKÓŁ PODSTAWOWYCH ORAZ ŚREDNICH

Mateusz Biernacki, 140681 Dominik Boła, 136524 Maciej Goral, 132228 Grzegorz Piątkowski, 135868

Promotor dr inż. Izabela Janicka-Lipska

POZNAN 2022

Spis treści

1	$\mathbf{W}\mathbf{step}$			1			
2	Pod	Podstawy teoretyczne					
3	Analiza i porównanie możliwych rozwiązań						
4	\mathbf{Prz}	Przygotowanie infrastruktury informatycznej					
5	Projekt i implementacja aplikacji internetowej w technologii Vue.js						
	5.1	Narzęc	lzia i techonologie	6			
		5.1.1	Node.js	6			
		5.1.2	Vue.js	6			
		5.1.3	Vuex	6			
		5.1.4	Jest	7			
		5.1.5	Json Web Tokens	7			
		5.1.6	Postman	7			
		5.1.7	Visual Studio Code	8			
		5.1.8	Axios	8			
		5.1.9	Bootstrap	8			
	5.2	Widok	· · · · · · · · · · · · · · · · · · ·	8			
		5.2.1	Strona główna	8			
		5.2.2	Widok szkoły	8			
		5.2.3	Rejestracja	9			
		5.2.4	Logowanie	10			
		5.2.5	Ankieta	10			
		5.2.6	Dodawanie przedmiotów	10			
		5.2.7	Dodawanie nauczycieli	10			
		5.2.8	Dodawanie sali lekcyjnych	10			
		5.2.9	Dodawanie klas	10			
			Edycja danych	10			
		0.2.10	Layoja danyon	10			
6	Projekt i implementacja strony serwerowej opartej na architekturze REST w						
	tech	nnologi	Django	13			
7	Pro	jekt i i	implementacja algorytmu generującego plan lekcji	14			
8	Tes	\mathbf{ty}		15			
9	Wn	ioski		16			

10 Zakończenie								
A	Składanie dokumentu w systemie LATEX							
	A.1	Struktura dokumentu	18					
	A.2	Akapity i znaki specjalne	18					
	A.3	Wypunktowania	18					
	A.4	Polecenia pakietu ppfcmthesis	19					
	A.5	Rysunki	19					
		A.5.1 Tablice	20					
		A.5.2 Checklista	20					
	A.6	Literatura i materiały dodatkowe	21					

Wstęp

(Źródła?) Tematem podjętym w pracy jest aplikacja służąca do generowania planów zajęć. Główną motywacją do podjęcia takiego (tego?,) tematu stanowią wady obecnie stosowanego przez większość szkół manualnego tworzenia planów zajęć. Ręczne tworzenie planu jest czasochłonne i wymaga dużego nakładu pracy. Dla osób odpowiedzialnych za ich przygotowanie (dalej zwanymi planistami) jest to zadanie monotonne, a także przytłaczające. Planiści, nawet ci z dużym doświadczeniem, nie są zdolni do utworzenia planu, który optymalnie wykorzystywałby godziny uczniów, nauczycieli, a także dostępność sali lekcyjnych. Skutkuje to znaczną liczbą niewykorzystanego czasu w środku dnia lekcyjnego.

Celem pracy jest zaprojektowanie aplikacji, dzięki której po podaniu niezbędnych danych, możliwe byłoby automatyczne wygenerowanie planu zajęć dla szkoły. Aplikacja ma umożliwić planiście dodawanie danych o przedmiotach, nauczycielach, salach i klasach. Na podstawie podanych danych planista ma mieć możliwość generacji rozkładu zajęć dla wszystkich klas w szkole. Aplikacja ma być przeznaczona dla szkół podstawowych oraz średnich. Ograniczenie to wynika z założenia niepodzielności klasy. W przypadku uczelni wyższych niejednolity podział na grupy znacząco zwiększa poziom skomplikowania rozwiązywanego problemu.

Projekt można podzielić na pięć głównych części: konfigurację infrastruktury informatycznej, implementację back-end, implementację front-end, implementację algorytmu oraz testy.

Praca ma następującą strukturę. Rozdział drugi poświecony jest podstawom teoretycznym. Rozdział trzeci zawiera analizę problemu i dostępnych rozwiązań. Rozdział czwarty to opis infrakstruktury informatycznej. Rozdział piąty omawia część fronendową aplikacji. Rozdział szósty charakteryzuje backend aplikacji. Rozdział siódmy wyjaśnia działanie algorytmu generacji planu. Rozdział ósmy opisuje testy. Rozdział dziewiąty stanowią wnioski. Rozdział dziesiąty jest podumowaniem pracy.

Implementacja aplikacji została wykonana przez cztery osoby. Mateusz Biernacki wykonał ... Dominik Boła wykonał ... Maciej Goral wykonał ... Grzegorz Piątkowski wykonał ...

Wstęp do pracy powinien zawierać następujące elementy:

- krótkie uzasadnienie podjęcia tematu;
- cel pracy (patrz niżej);
- zakres (przedmiotowy, podmiotowy, czasowy) wyjaśniający, w jakim rozmiarze praca będzie realizowana;
- ewentualne hipotezy, które autor zamierza sprawdzić lub udowodnić;
- krótka charakterystykę źródeł, zwłaszcza literaturowych;

Wstęp

 układ pracy (patrz niżej), czyli zwięzłą charakterystykę zawartości poszczególnych rozdziałów;

ewentualne uwagi dotyczące realizacji tematu pracy np. trudności, które pojawiły się w trakcie realizacji poszczególnych zadań, uwagi dotyczące wykorzystywanego sprzętu, współpraca z firmami zewnętrznymi.

Wstęp do pracy musi się kończyć dwoma następującymi akapitami:

Celem pracy jest opracowanie / wykonanie analizy / zaprojektowanie /
oraz:

```
Struktura pracy jest następująca. W rozdziałe 2 przedstawiono przegląd literatury na temat ....... Rozdział 3 jest poświęcony ...... (kilka zdań). Rozdział 4 zawiera ..... (kilka zdań) ........... itd. Rozdział X stanowi podsumowanie pracy.
```

W przypadku prac inżynierskich zespołowych lub magisterskich 2-osobowych, po tych dwóch w/w akapitach musi w pracy znaleźć się akapit, w którym będzie opisany udział w pracy poszczególnych członków zespołu. Na przykład:

Jan Kowalski w ramach niniejszej pracy wykonał projekt tego i tego, opracował Grzegorz Brzęczyszczykiewicz wykonał, itd.

Podstawy teoretyczne

Wygenerowanie najlepszego możliwego planu zajęć dla dużej szkoły jest problemem NP-zupełnym. Liczba wszystkich możliwych do ułożenia poprawnych planów zajęć rośnie wykładniczo, wraz z wielkością szkoły, dla której plan jest tworzony. Nie jest możliwa, w rozsądnym przedziale czasowym, iteracja przez wszystkie rozwiązania i wybranie najlepszego z nich. Należy skorzystać z rozwiązania, które dostarczy rozwiązanie dobre, jak najbardziej zbliżone do optymalnego. Uzyskanie takiego wyniku umożliwia wykorzystanie podejścia ewolucyjnego.

Rozdział teoretyczny — przegląd literatury naświetlający stan wiedzy na dany temat.

Przegląd literatury naświetlający stan wiedzy na dany temat obejmuje rozdziały pisane na podstawie literatury, której wykaz zamieszczany jest w części pracy pt. *Literatura* (lub inaczej *Bibliografia, Piśmiennictwo*). W tekście pracy muszą wystąpić odwołania do wszystkich pozycji zamieszczonych w wykazie literatury. **Nie należy odnośników do literatury umieszczać w stopce strony.** Student jest bezwzględnie zobowiązany do wskazywania źródeł pochodzenia informacji przedstawianych w pracy, dotyczy to również rysunków, tabel, fragmentów kodu źródłowego programów itd. Należy także podać adresy stron internetowych w przypadku źródeł pochodzących z Internetu.

Analiza i porównanie możliwych rozwiązań

Rozdziały dokumentujące pracę własną studenta: opisujące ideę, sposób lub metodę rozwiązania postawionego problemu oraz rozdziały opisujące techniczną stronę rozwiązania — dokumentacja techniczna, przeprowadzone testy, badania i uzyskane wyniki.

Praca musi zawierać elementy pracy własnej autora adekwatne do jego wiedzy praktycznej uzyskanej w okresie studiów. Za pracę własną autora można uznać np.: stworzenie aplikacji informatycznej lub jej fragmentu, zaproponowanie algorytmu rozwiązania problemu szczegółowego, przedstawienie projektu np. systemu informatycznego lub sieci komputerowej, analizę i ocenę nowych technologii lub rozwiązań informatycznych wykorzystywanych w przedsiębiorstwach, itp.

Autor powinien zadbać o właściwą dokumentację pracy własnej obejmującą specyfikację założeń i sposób realizacji poszczególnych zadań wraz z ich oceną i opisem napotkanych problemów. W przypadku prac o charakterze projektowo-implementacyjnym, ta część pracy jest zastępowana dokumentacją techniczną i użytkową systemu.

W pracy **nie należy zamieszczać całego kodu źródłowego** opracowanych programów. Kod źródłowy napisanych programów, wszelkie oprogramowanie wytworzone i wykorzystane w pracy, wyniki przeprowadzonych eksperymentów powinny być umieszczone np. na płycie CD, stanowiącej dodatek do pracy.

Styl tekstu

Należy¹ stosować formę bezosobową, tj. w pracy rozważono, w ramach pracy zaprojektowano, a nie: w pracy rozważyłem, w ramach pracy zaprojektowałem. Odwołania do wcześniejszych fragmentów tekstu powinny mieć następującą postać: "Jak wspomniano wcześniej,", "Jak wykazano powyżej". Należy unikać długich zdań.

Niedopuszczalne są zwroty używane w języku potocznym. W pracy należy używać terminologii informatycznej, która ma sprecyzowaną treść i znaczenie.

¹Uwagi o stylu pochodzą częściowo ze stron prof. Macieja Drozdowskiego [?].

Przygotowanie infrastruktury informatycznej

Rozdziały dokumentujące pracę własną studenta: opisujące ideę, sposób lub metodę rozwiązania postawionego problemu oraz rozdziały opisujące techniczną stronę rozwiązania — dokumentacja techniczna, przeprowadzone testy, badania i uzyskane wyniki.

Praca musi zawierać elementy pracy własnej autora adekwatne do jego wiedzy praktycznej uzyskanej w okresie studiów. Za pracę własną autora można uznać np.: stworzenie aplikacji informatycznej lub jej fragmentu, zaproponowanie algorytmu rozwiązania problemu szczegółowego, przedstawienie projektu np. systemu informatycznego lub sieci komputerowej, analizę i ocenę nowych technologii lub rozwiązań informatycznych wykorzystywanych w przedsiębiorstwach, itp.

Autor powinien zadbać o właściwą dokumentację pracy własnej obejmującą specyfikację założeń i sposób realizacji poszczególnych zadań wraz z ich oceną i opisem napotkanych problemów. W przypadku prac o charakterze projektowo-implementacyjnym, ta część pracy jest zastępowana dokumentacją techniczną i użytkową systemu.

W pracy **nie należy zamieszczać całego kodu źródłowego** opracowanych programów. Kod źródłowy napisanych programów, wszelkie oprogramowanie wytworzone i wykorzystane w pracy, wyniki przeprowadzonych eksperymentów powinny być umieszczone np. na płycie CD, stanowiącej dodatek do pracy.

Styl tekstu

Należy¹ stosować formę bezosobową, tj. w pracy rozważono, w ramach pracy zaprojektowano, a nie: w pracy rozważyłem, w ramach pracy zaprojektowałem. Odwołania do wcześniejszych fragmentów tekstu powinny mieć następującą postać: "Jak wspomniano wcześniej,", "Jak wykazano powyżej". Należy unikać długich zdań.

Niedopuszczalne są zwroty używane w języku potocznym. W pracy należy używać terminologii informatycznej, która ma sprecyzowaną treść i znaczenie.

¹Uwagi o stylu pochodzą częściowo ze stron prof. Macieja Drozdowskiego [?].

Projekt i implementacja aplikacji internetowej w technologii Vue.js

5.1 Narzędzia i techonologie

5.1.1 Node.js

Node.js jest środowiskiem uruchomieniowym umożliwiającym używanie języka Javascript poza przeglądarką. Środowisko to charakteryzuje asynchroniczność oraz sterowanie zdarzeniami. Asynchroniczność umożliwia wykonywanie wielu czynności w tym samym czasie bez względu na jednowątkowość wynikającą z ograniczenia języka Javascript. Sterowanie zdarzeniami jest rozwiązaniem typowym dla interfejsów graficznych. Zapewnia ono elastyczność oraz możliwość tworzenia bardziej interaktywnych elementów GUI. Ponadto Node.js udostępnia menenadzer pakietów środowiska Node (NPM - Node Package Manager) dający możliwość zarządzania zainstalowanymi funkcjonalnościami w prosty i przejrzysty sposób.

5.1.2 Vue.js

Vue.js to framework języka Javascript slużący do budowania interfejsów użytkownika. W stosunku do dwóch najpopularnieszych alternatyw - frameworków React oraz Angular - wyróżnia się prostotą, szybkością działania oraz niewielkim rozmiarem. Framework Vue.js został zaprojektowany tak, aby zapewnić jak największą elastyczność. Przy jego użyciu możliwe jest tworzenie nie tylko prostych komponentów, ale i aplikacji typu single-page-application oraz multi-page-application.

Cechą charakterystyczną Vue.js jest wykorzystanie szablonów jako sposobu na powiązanie języka znaczników HTML z wartwą logiki Javascript. Powiązanie to umożliwia wykorzystywanie w prosty sposób instrukcji warunkowych oraz pętli do wyświetlanie zawartości aplikacji.

5.1.3 Vuex

Vuex to biblioteka oferująca zcentralizowany magazyn danych dostępny dla wszystkich komponentów w aplikacji. Stan danych w magazynie Vuex jest zmieniany poprzez mutacje wykonywane w reakcji na działanie dyspozytora 5.1. Takie podejście, że dane z części backendowej aplikacji mogą zostać pobrane tylko raz, a później bedą one dostępne bezpośrednio w częsci frontendowej za pośrednictwem magazynu.

Rysunek 5.1: Schemat przepływu danych w Vuex.

5.1.4 Jest

W projekcie wykorzystano framework testowy Jest bedący częscią Vue Test Utils. Vue Test Utils to zestaw funkcjonalności upraszczających testowanie komponentów Vue.js. Zestaw ten zapewnia metody umożliwiające symulowanie działań użytkownika w aplikacji oraz przechwytywanie i porównywanie rezultatów tych interakcji z oczekiwanymi. Jest cechuje brak konieczności konfiguracji, izolacja testów oraz szybkość i bezpieczeństwo działania.

5.1.5 Json Web Tokens

Json Web Token jest otwartym standardem przesyłania zabezpieczonych danych. Dane w formacie Json są podpisywane cyfrowo co umożliwia weryfikacje uprawnień. W aplikacjach internetowych JWT stosowane są głownie do autoryzacji użytkowników oraz zapewnienia bezpieczeństwa przesyłanie informacji pomiędzy frotendem, a backendem. Niewielki rozmiar tokenu sprawia iż możliwe jest przesyłanie go w tre ści zapytania HTTP lub nawet w jego nagłówku. Ta cecha sprawia również, że token może być przechowywany w pamięci przeglądarki, eliminując konieczność ponownego uwierzytelniania po rozpoczęciu nowej sesji.

5.1.6 Postman

Postman jest zestawem narzędzi do testowania API (application programming interface). Zapewnia on możliwość wysyłania zapytań HTTP dowolnego typu oraz podgląd odpowiedzi i kodów błędów, jeśli takie wystąpiły. Główną zaletą Postmana jest możliwość tworzenia kolekcji zapytań,

które ułatwiają organizację pracy podczas planowania połączeń pomiędzy częścią frontendową i backendową aplikacji. Dodatkowo narzędzie pozwala na wpółdzielenie kolekcji z zaproszonymi użytkownikami, co znacząco upraszcza proces testowania manualnego. Poza testowaniem manualnym Postman umożliwia tworzenie automatycznych testów przy pomocy języka Javascript. Dzięki generatorowi losowych danych możliwa jest symulacja działań nawet kilku tysięcy różnych użytkowników w systemie.

5.1.7 Visual Studio Code

Visual Studio Code jest edytorem kodu, którego głównymi zaletami jest wsparcie dla debugowania, inteligentnego uzupełniania kodu, refaktoryzacji oraz kontroli wersji. Dużą korzyścią płynącą z korzystania z program Visual Studio Code jest dostęp do rozszerzeń, usprawniających pracę z kodem w dowolnym języku programowania. Rozszerzenia zapewniają róznież wsparcie dla frameworków, w tym Vue.js, najbardziej istotnym dla tej części projektu. Mały rozmiar oraz wysoka wydajność znacznie przyśpieszają korzystanie z aplikacji i sprzyjają intensywnej iteracji rozwiazań.

5.1.8 Axios

Axios jest biblioteką języka Javascript służacą do wykonywania zapytań HTTP z poziomu Node.js lub przeglądarki. W aplikacjach internetowych wykorzystywany jest do uzyskiwania danych z części backendowej aplikacji. Axios bazuje na obietnicach (promise), co pozwala na obsługiwanie akcji asynchronicznie. Biblioteka może być użyta poprzez zwykły Javascript lub framework taki jak Vue.js. W porównaniu z innymi bibliotekami służacymi do wykonywania zapytań HTTP Axios oferuje wspracie dla starszych przeglądarek, możliwość ustawienia ograniczenia czasowego dla zapytań, ochronę przed CSRF (Cross-Site Request Forgery), a także automatyczną transformację danych JSON.

5.1.9 Bootstrap

5.2 Widoki

5.2.1 Strona główna

Strona główna aplikacji została stworzona na bazie szablonu Bootstrap o nazwie One Page Wonder(źródło). Zawiera ona krótki opis aplikacji, a także korzyści płynących z wykorzystania jej dla planistów, nauczycieli oraz uczniów. Pasek menu znajdujący się zawsze na górze strony jest stałym elementem aplikacji pojawiającym się w każdym z widoków. Pozwala on na przejście do widoków logowania i rejestracji, a przypadku gdy użytkownik jest już zalogowany na wylogowanie lub przejście do widoku szkoły.

5.2.2 Widok szkoły

Widok szkoły pozwala na przejście do dodawania danych potrzebnych do wygenerowania planu, a przypaku gdy plan został już wygenerowany jest również miejscem w którym jest on wyświetlany. Rozkład zajęć jest możliwy do wyświetlenia na trzy sposoby - z podziałem na klasy, nauczycieli lub sale lekcyjne.

Rysunek 5.2: Aplikacja internetowa - Strona głowna

Rysunek 5.3: Aplikacja internetowa - Widok szkoły

Rysunek 5.4: Aplikacja internetowa - Widok rejestracji

5.2.3 Rejestracja

Widok rejestracji umożliwia utworzenie konta w serwisie. Od użytkownika wymaga się podania adresu email, nazwy użytkownika oraz hasła. Adres email musi być unikatowy. Wynika to z konieczności weryfikacji konta poprzez wiadomość wysłaną przy pomocy serwera SMTP. Rozwiązanie to ma na celu zapobieganie atakom na stronę poprzez masowe tworzenie nowych kont.

Rysunek 5.6: Aplikacja internetowa - Widok ankiet dla nauczycieli

5.2.4 Logowanie

Widok logowania pozwala na dostęp do konta i zapisanych na nim danych z dowolnego urządzenia. Do uwierzytelnienia użytkownika wykorzystywany jest adres email oraz hasło podane w procesie rejestracji. Powodzenie procesu logowania powoduje otrzymanie przez aplikację tokenu JWT, zapisywanego w pamięci przeglądarki. W przypadku utraty hasła użytkownik posiada możliwość odzyskania go po podaniu adresu email powiązanego z istniejącym kontem.

- 5.2.5 Ankieta
- 5.2.6 Dodawanie przedmiotów
- 5.2.7 Dodawanie nauczycieli
- 5.2.8 Dodawanie sali lekcyjnych
- 5.2.9 Dodawanie klas
- 5.2.10 Edycja danych

Rysunek 5.7: Aplikacja internetowa - Widok dodawania przedmiotów

Rysunek 5.8: Aplikacja internetowa - Widok dodawania nauczycieli

 $\ensuremath{\operatorname{Rysunek}}$ 5.9: Aplikacja internetowa - Widok dodawania sali lekcyjnych

 $\ensuremath{\operatorname{Rysunek}}$ 5.10: Aplikacja internetowa - Widok dodawania klas

Rysunek 5.11: Aplikacja internetowa - Widok edycji danych nauczyciela

Projekt i implementacja strony serwerowej opartej na architekturze REST w technologi Django

Rozdziały dokumentujące pracę własną studenta: opisujące ideę, sposób lub metodę rozwiązania postawionego problemu oraz rozdziały opisujące techniczną stronę rozwiązania — dokumentacja techniczna, przeprowadzone testy, badania i uzyskane wyniki.

Praca musi zawierać elementy pracy własnej autora adekwatne do jego wiedzy praktycznej uzyskanej w okresie studiów. Za pracę własną autora można uznać np.: stworzenie aplikacji informatycznej lub jej fragmentu, zaproponowanie algorytmu rozwiązania problemu szczegółowego, przedstawienie projektu np. systemu informatycznego lub sieci komputerowej, analizę i ocenę nowych technologii lub rozwiązań informatycznych wykorzystywanych w przedsiębiorstwach, itp.

Autor powinien zadbać o właściwą dokumentację pracy własnej obejmującą specyfikację założeń i sposób realizacji poszczególnych zadań wraz z ich oceną i opisem napotkanych problemów. W przypadku prac o charakterze projektowo-implementacyjnym, ta część pracy jest zastępowana dokumentacją techniczną i użytkową systemu.

W pracy **nie należy zamieszczać całego kodu źródłowego** opracowanych programów. Kod źródłowy napisanych programów, wszelkie oprogramowanie wytworzone i wykorzystane w pracy, wyniki przeprowadzonych eksperymentów powinny być umieszczone np. na płycie CD, stanowiącej dodatek do pracy.

Styl tekstu

Należy¹ stosować formę bezosobową, tj. w pracy rozważono, w ramach pracy zaprojektowano, a nie: w pracy rozważyłem, w ramach pracy zaprojektowałem. Odwołania do wcześniejszych fragmentów tekstu powinny mieć następującą postać: "Jak wspomniano wcześniej,", "Jak wykazano powyżej". Należy unikać długich zdań.

Niedopuszczalne są zwroty używane w języku potocznym. W pracy należy używać terminologii informatycznej, która ma sprecyzowaną treść i znaczenie.

¹Uwagi o stylu pochodzą częściowo ze stron prof. Macieja Drozdowskiego [?].

Projekt i implementacja algorytmu generującego plan lekcji

Rozdziały dokumentujące pracę własną studenta: opisujące ideę, sposób lub metodę rozwiązania postawionego problemu oraz rozdziały opisujące techniczną stronę rozwiązania — dokumentacja techniczna, przeprowadzone testy, badania i uzyskane wyniki.

Praca musi zawierać elementy pracy własnej autora adekwatne do jego wiedzy praktycznej uzyskanej w okresie studiów. Za pracę własną autora można uznać np.: stworzenie aplikacji informatycznej lub jej fragmentu, zaproponowanie algorytmu rozwiązania problemu szczegółowego, przedstawienie projektu np. systemu informatycznego lub sieci komputerowej, analizę i ocenę nowych technologii lub rozwiązań informatycznych wykorzystywanych w przedsiębiorstwach, itp.

Autor powinien zadbać o właściwą dokumentację pracy własnej obejmującą specyfikację założeń i sposób realizacji poszczególnych zadań wraz z ich oceną i opisem napotkanych problemów. W przypadku prac o charakterze projektowo-implementacyjnym, ta część pracy jest zastępowana dokumentacją techniczną i użytkową systemu.

W pracy **nie należy zamieszczać całego kodu źródłowego** opracowanych programów. Kod źródłowy napisanych programów, wszelkie oprogramowanie wytworzone i wykorzystane w pracy, wyniki przeprowadzonych eksperymentów powinny być umieszczone np. na płycie CD, stanowiącej dodatek do pracy.

Styl tekstu

Należy¹ stosować formę bezosobową, tj. w pracy rozważono, w ramach pracy zaprojektowano, a nie: w pracy rozważyłem, w ramach pracy zaprojektowałem. Odwołania do wcześniejszych fragmentów tekstu powinny mieć następującą postać: "Jak wspomniano wcześniej,", "Jak wykazano powyżej". Należy unikać długich zdań.

Niedopuszczalne są zwroty używane w języku potocznym. W pracy należy używać terminologii informatycznej, która ma sprecyzowaną treść i znaczenie.

¹Uwagi o stylu pochodzą częściowo ze stron prof. Macieja Drozdowskiego [?].

Testy

Rozdziały dokumentujące pracę własną studenta: opisujące ideę, sposób lub metodę rozwiązania postawionego problemu oraz rozdziały opisujące techniczną stronę rozwiązania — dokumentacja techniczna, przeprowadzone testy, badania i uzyskane wyniki.

Praca musi zawierać elementy pracy własnej autora adekwatne do jego wiedzy praktycznej uzyskanej w okresie studiów. Za pracę własną autora można uznać np.: stworzenie aplikacji informatycznej lub jej fragmentu, zaproponowanie algorytmu rozwiązania problemu szczegółowego, przedstawienie projektu np. systemu informatycznego lub sieci komputerowej, analizę i ocenę nowych technologii lub rozwiązań informatycznych wykorzystywanych w przedsiębiorstwach, itp.

Autor powinien zadbać o właściwą dokumentację pracy własnej obejmującą specyfikację założeń i sposób realizacji poszczególnych zadań wraz z ich oceną i opisem napotkanych problemów. W przypadku prac o charakterze projektowo-implementacyjnym, ta część pracy jest zastępowana dokumentacją techniczną i użytkową systemu.

W pracy **nie należy zamieszczać całego kodu źródłowego** opracowanych programów. Kod źródłowy napisanych programów, wszelkie oprogramowanie wytworzone i wykorzystane w pracy, wyniki przeprowadzonych eksperymentów powinny być umieszczone np. na płycie CD, stanowiącej dodatek do pracy.

Styl tekstu

Należy¹ stosować formę bezosobową, tj. w pracy rozważono, w ramach pracy zaprojektowano, a nie: w pracy rozważyłem, w ramach pracy zaprojektowałem. Odwołania do wcześniejszych fragmentów tekstu powinny mieć następującą postać: "Jak wspomniano wcześniej,", "Jak wykazano powyżej". Należy unikać długich zdań.

Niedopuszczalne są zwroty używane w języku potocznym. W pracy należy używać terminologii informatycznej, która ma sprecyzowaną treść i znaczenie.

¹Uwagi o stylu pochodzą częściowo ze stron prof. Macieja Drozdowskiego [?].

Wnioski

Rozdziały dokumentujące pracę własną studenta: opisujące ideę, sposób lub metodę rozwiązania postawionego problemu oraz rozdziały opisujące techniczną stronę rozwiązania — dokumentacja techniczna, przeprowadzone testy, badania i uzyskane wyniki.

Praca musi zawierać elementy pracy własnej autora adekwatne do jego wiedzy praktycznej uzyskanej w okresie studiów. Za pracę własną autora można uznać np.: stworzenie aplikacji informatycznej lub jej fragmentu, zaproponowanie algorytmu rozwiązania problemu szczegółowego, przedstawienie projektu np. systemu informatycznego lub sieci komputerowej, analizę i ocenę nowych technologii lub rozwiązań informatycznych wykorzystywanych w przedsiębiorstwach, itp.

Autor powinien zadbać o właściwą dokumentację pracy własnej obejmującą specyfikację założeń i sposób realizacji poszczególnych zadań wraz z ich oceną i opisem napotkanych problemów. W przypadku prac o charakterze projektowo-implementacyjnym, ta część pracy jest zastępowana dokumentacją techniczną i użytkową systemu.

W pracy **nie należy zamieszczać całego kodu źródłowego** opracowanych programów. Kod źródłowy napisanych programów, wszelkie oprogramowanie wytworzone i wykorzystane w pracy, wyniki przeprowadzonych eksperymentów powinny być umieszczone np. na płycie CD, stanowiącej dodatek do pracy.

Styl tekstu

Należy¹ stosować formę bezosobową, tj. w pracy rozważono, w ramach pracy zaprojektowano, a nie: w pracy rozważyłem, w ramach pracy zaprojektowałem. Odwołania do wcześniejszych fragmentów tekstu powinny mieć następującą postać: "Jak wspomniano wcześniej,", "Jak wykazano powyżej". Należy unikać długich zdań.

Niedopuszczalne są zwroty używane w języku potocznym. W pracy należy używać terminologii informatycznej, która ma sprecyzowaną treść i znaczenie.

¹Uwagi o stylu pochodzą częściowo ze stron prof. Macieja Drozdowskiego [?].

Zakończenie

Zakończenie pracy zwane również Uwagami końcowymi lub Podsumowaniem powinno zawierać ustosunkowanie się autora do zadań wskazanych we wstępie do pracy, a w szczególności do celu i zakresu pracy oraz porównanie ich z faktycznymi wynikami pracy. Podejście takie umożliwia jasne określenie stopnia realizacji założonych celów oraz zwrócenie uwagi na wyniki osiągnięte przez autora w ramach jego samodzielnej pracy.

Integralną częścią pracy są również dodatki, aneksy i załączniki zawierające stworzone w ramach pracy programy, aplikacje i projekty.

Dodatek A

Składanie dokumentu w systemie LATEX

W tym rozdziale znajduje się garść informacji o tym, jak poprawnie składać tekst pracy w systemie LATEX wraz z przykładami, które mają służyć do przeklejania do własnych dokumentów.

A.1 Struktura dokumentu

Praca składa się z rozdziałów (chapter) i podrozdziałów (section). Ewentualnie można również rozdziały zagnieżdzać (subsection, subsubsection), jednak nie powinno się wykraczać poza drugi poziom hierarchii (czyli subsubsection).

A.2 Akapity i znaki specjalne

Akapity rozdziela się od siebie przynajmniej jedną pustą linią. Podstawowe instrukcje, które się przydają to wyróżnienie pewnych słów. Można również stosować **styl pogrubiony**, choć nie jest to generalnie zalecane.

Należy pamiętać o zasadach polskiej interpunkcji i ortografii. Po spójnikach jednoliterowych warto wstawić znak tyldy (\sim) , który jest tak zwaną "twardą spacją" i powoduje, że wyrazy nią połączone nie będą rozdzielane na dwie linie tekstu.

Polskie znaki interpunkcyjne różnią się nieco od angielskich: to jest "polski", a to jest "angielski". W kodzie źródłowym tego tekstu będzie widać różnicę.

Proszę również zwrócić uwagę na znak myślnika, który może być pauzą "—" lub półpauzą: "–". Należy stosować je konsekwentnie. Do łączenia wyrazów używamy zwykłego "-" (północnowschodni), do myślników — pauzy lub półpauzy. Inne zasady interpunkcji i typografii można znaleźć w słownikach.

A.3 Wypunktowania

Wypunktowanie z cyframi:

- 1. to jest punkt,
- 2. i to jest punkt,
- 3. a to jest ostatni punkt.

Po wypunktowaniach czasem nie warto wstawiać wcięcia akapitowego. Wtedy przydatne jest polecenie noindent. Wypunktowanie z kropkami (tzw. bullet list) wygląda tak:

Rysunek A.1: Wykres.

- to jest punkt,
- i to jest punkt,
- a to jest ostatni punkt.

Wypunktowania opisowe właściwie niewiele się różnią:

elementA to jest opis,

elementB i to jest opis,

elementC a to jest ostatni opis.

A.4 Polecenia pakietu ppfcmthesis

Parę poleceń zostało zdefiniowanych aby uspójnić styl pracy. Są one przedstawione poniżej (oczywiście nie trzeba się do nich stosować).

Makra zdefiniowane dla języka angielskiego. Są nimi: termdef oraz acronym. Przykłady poniżej obrazują ich przewidywane użycie w tekście.

źródło	we call this a $\texttt{Termdef}\{\texttt{Database Management System}\}\ (\texttt{DBMS}\})$
docelowo	we call this a $Database\ Management\ System\ (DBMS)$

Makra zdefiniowane dla języka polskiego. Podobnie jak dla języka angielskiego zdefiniowano odpowiedniki polskie: definicja, akronim oraz english dla tłumaczeń angielskich terminów. Przykłady poniżej obrazują ich przewidywane użycie w tekście.

źródło	nazywamy go \definicja{systemem zarządzania bazą danych} (\akronim{DBMS}, \english{Database Management System})	
docelowo	nazywamy go systemem zarządzania bazą danych (DBMS, ang. Database Management System)	

A.5 Rysunki

Wszystkie rysunki (w tym również diagramy, szkice i inne) osadzamy w środowisku figure i umieszczamy podpis pod rysunkiem, w formie elementu caption. Rysunki powinny zostać umieszczone u góry strony (osadzone bezpośrednio w treści strony zwykle utrudniają czytanie tekstu). Rysunek A.1 zawiera przykład pełnego osadzenia rysunku na stronie.

Styl FCMu to nieco inne nagłówki rysunków. Dostepne są one poleceniem fcmfcaption (zob. rysunek A.2).

A.5. Rysunki

Rysunek A.2. Ten sam wykres ale na szerokość tekstu. Formatowanie podpisu zgodne z wytycznymi FCMu.

A.5.1 Tablice

Tablice to piękna rzecz, choć akurat ich umiejętne tworzenie w IATEXu nie jest łatwe. Jeśli tablica jest skomplikowana, to można ją na przykład wykonać w programie OpenOffice, a następnie wyeksportować jako plik *PDF*. W każdym przypadku tablice wstawia się podobnie jak rysunki, tylko że w środowisko table. Tradycja typograficzna sugeruje umieszczenie opisu tablicy, a więc elementu caption ponad jej treścią (inaczej niż przy rysunkach).

Tablica A.1 pokazuje pełen przykład.

TABLICA A.1: Przykładowa tabela. Styl opisu jest zgodny z rysunkami.

artykuł	cena [zł]
bułka	0, 4
masło	2, 5

Zasady FCMu sugerują nieco inne nagłówki tablic. Dostepne są one poleceniem fcmtcaption (zob. tablicę A.2).

 ${\bf Tablica~A.2} \\ {\bf Przykładowa~tabela.~Styl~opisu~jest~zgodny~z~wytycznymi~FCMu.}$

artykuł	cena [zł]
bułka masło	0, 4 $2, 5$

A.5.2 Checklista

• Znakiem myślnika jest w LaTeXu dywiz pełen (—) albo półpauza (–), przykład: A niech to jasna cholera — wrzasnąłem.

- Połączenie między wyrazami to zwykły myślnik, przykład: północno-zachodni
- Sprawdź czy tutuł pracy ma maksymalnie dwa wiersze i czy stanowią one pełne frazy (czy nie ma przeniesienia bez sensu).
- Sprawdź ostrzeżenia o 'overfull' i 'underful' boxes. Niektóre z nich można zignorować (spójrz
 na wynik formatowania), niektóre trzeba poprawić; czasem przeformułować zdanie.
 item Przypisy stawia się wewnątrz zdań lub za kropką, przykład: Footnote is added after a
 comma.¹
- Nie używaj przypisów zbyt często. Zobacz, czy nie lepiej będzie zintegrować przypis z tekstem.
- Tytuły tabel, rysunków powinny kończyć się kropką.
- Nie używaj modyfikatora [h] (here) do rysunków i tabel. Rysunki i tabele powinny być justowane do góry strony lub na stronie osobnej.
- Wyróżnienie w tekście to polecenie *wyraz*, nie należy używać czcionki pogrubionej (która wystaje wizualnie z tekstu i rozprasza).
- Nazwy plików, katalogów, ścieżek, zmiennych środowiskowych, klas i metod formatujemy poleceniem plik_o_pewnej_nazwie.
- Po ostatniej zmianie do treści, sprawdź i przenieś wiszące spójniki wstawiając przed nie znak tyldy (twardej spacji), przykład: Ala i kotek nie lubią mleczka, a Stasiu lubi.
- Za i.e. (id est) i e.g. (exempli gratia) stawia się zwyczajowo przecinek w typografii amerykańskiej.
- Przed i za pełną pauza nie ma zwyczajowo spacji w typografii amerykańskiej, przykład: Darn, this looks good—said Mary.
- Zamykający cudzysłów oraz footnote wychodzą za ostatni znak interpunkcji w typografii amerykańskiej, przykłady: It can be called a "curiosity," but it's actually normal. Footnote is added after a comma.²
- Odwołania do tabel i rysunków zawsze z wielkiej litery, przykład: In Figure A.1 we illustrated XXX and in Table A.1 we show detailed data.

A.6 Literatura i materialy dodatkowe

Materiałów jest mnóstwo. Oto parę z nich:

- The Not So Short Introduction..., która posiada również tłumaczenie w języku polskim. http://www.ctan.org/tex-archive/info/lshort/english/lshort.pdf
- Klasy stylu memoir posiadają bardzo wiele informacji o składzie tekstów anglosaskich oraz sposoby dostosowania LATEXa do własnych potrzeb.

http://www.ctan.org/tex-archive/macros/latex/contrib/memoir/memman.pdf

 $^{^{1}\}mathrm{Here}$ is a footnote.

²Here is a footnote.

• Nasza grupa dyskusyjna i repozytorium Git są również dobrym miejscem aby zapytać (lub sprawdzić czy pytanie nie zostało już zadane).

https://github.com/politechnika/put-latex

• Dla łaknących więcej wiedzy o systemie LaTeX podstawowym źródłem informacji jest książka Lamporta [?]. Prawdziwy *hardcore* to oczywiście *The TEXbook* profesora Knutha [?].

