HANDELSKAMMER HAMBURG

Seite 2

Abschlussprüfung Teil 2- Winter 2011/2012 Beruf: Fachinformatiker Systemintegration Prüfungsfach: Ganzheitliche Aufgabe 1

LÖSUNG

Ausgangssituation

Sie sind Mitarbeiter der Steinlaus GmbH & Co. KG, einem international tätigen Unternehmen mit Hauptsitz in Frankfurt.

In der IT-Abteilung sind Sie zuständig für Aufbau und Betreuung des Datennetzes und der Telefonanlage. Die Steinlaus GmbH & Co. KG expandiert und bezieht demnächst ein zusätzliches Bürogebäude in Hamburg.

Der Aufbau des Gesamtnetzes steht bereits heute fest:

LAN Hamburg 10.128.1.0/24

LAN Frankfurt 10.1.0.0/16

1. Handlungsschritt:

(25 Punkte)

Auswahl von Verkabelung, IT-Infrastruktur und Telefonanlage am neuen Standort Hamburg.

Die TK-Anlage am neuen Standort soll unabhängig von der am Hauptsitz funktionieren. Es liegen zwei Angebote für Telefonanlagen für den neuen Standort vor, eine klassische Anlage und eine, die intern Voice-over-IP (VoIP) verwendet. Beide arbeiten ausschließlich kabelgebunden (also keine DECT- oder WLAN-Telefonie). Unabhängig vom internen Aufbau soll die Anlage Gespräche nach außen über mehrere ISDN-Leitungen abwickeln.

Aus dem Datenblatt der VolP-Anlage folgt:

"Wichtiger Vorteil einer internen Verwendung von VolP ist, dass weniger Verkabelung als bei einer klassischen TK-Anlage notwendig ist."

a) Warum ist dies der Fall, auch wenn eventuell in den Telefonen enthaltene Switches nicht verwendet werden?
 (3 Teilpunkte)

VolP -Daten mehrerer Anschlüsse können durch Switches zusammengefasst werden. Es ist $_$
daher keine sternförmige Verkabelung notwendig. Außerdem ist keine physikalische
Trennung von Telefon- und Datennetz notwendig

HANDELSKAMMER HAMBURG

Seite 3

Abschlussprüfung Teil 2- Winter 2011/2012 Beruf: Fachinformatiker Systemintegration Prüfungsfach: Ganzheitliche Aufgabe 1

LÖSUNG

b) Auswahl von Verkabelung und TK-Anlage

Sollte die klassische TK-Anlage ausgewählt werden, sollen alle Kabel (PC und Telefon) direkt und ohne Etagenverteiler (EV) zum zentralen Verteiler (ZV) im Keller laufen. Bei Auswahl der VoIP-Anlage sollen für PCs und Telefone gemeinsame Etagenverteiler verwendet werden.

Folgende Grunddaten sind bekannt: In jedem der vier Obergeschosse des Gebäudes sind jeweils 15 Mitarbeiter mit je einem PC- und Telefon-Anschluss zu versehen. Jeder Meter Kupfer-Kabel kostet inklusive Anschluss und Verlegung 3 €, die Glasfaserleitung 9 €/m. Die Server sollen im Keller direkt neben dem ZV angeschlossen werden. Dies ist auch der Standort für die geplante TK-Anlage. Für die Server ist ein eigener Switch vorzusehen. Dieser soll per LWL mit den Switches für die Anwender verbunden werden.

Ein Switch mit 48 Ports kostet 2.500 €. Bei einem LWL-Anschluss wird zusätzlich jeweils ein GBIC für 200 € benötigt. Ein Switch kann bis zu 4 GBICs aufnehmen. Die mittlere Entfernung innerhalb eines Obergeschosses zum Kabelschacht bzw. Etagenverteiler beträgt 30 m. Die Entfernung vom ZV im Keller zu den Stockwerken beträgt 10 m zzgl. 5 m je Stockwerk. Kosten für Patch-Leitungen zwischen direkt benachbarten Switches sind zu vernachlässigen.

Die klassische TK-Anlage soll 20.000 € kosten, die VolP-Anlage 30.000 €. Alle nicht genannten Positionen sind für beide Anlagen gleich, können für einen Vergleich also ignoriert werden.

Bitte beachten Sie die Skizzen zum Aufbau der Verkabelung auf der nächsten Seite!

Abschlussprüfung Teil 2- Winter 2011/2012 Beruf: Fachinformatiker Systemintegration Prüfungsfach: Ganzheitliche Aufgabe 1

LÖSUNG

HANDELSKAMMER HAMBURG

Seite 5

Abschlussprüfung Teil 2- Winter 2011/2012 Beruf: Fachinformatiker Systemintegration Prüfungsfach: Ganzheitliche Aufgabe 1

LÖSUNG

ba) Berechnen Sie

(8 Teilpunkte)

	Klassische Anlage	VolP-Anlage
Anzahl der Server-Switches	1	1
Anzahl der Switches für PCs und VoIP-Telefone	4*15 PCs => 60 Ports => 2 Switches	30 Ports je Stockwerk => 4 Switches
Anzahl der insgesamt benötigten GBICs	2+1 Switches => 4 GBICs	4+1 Switches => 8 GBICs
Länge der Kabel innerhalb eines Stockwerks	(15+15)*30 m = 900 m Cu- Kabel	(15+15)*30 m = 900 m Cu- Kabel
Gesamtlänge der Kabel/LWL von Stockwerken zum ZV	30*15+30*20+30*25+30*30= 2700 m Cu-Kabel	15+20+25+30=90 m LWL

bb) Wenn die Gesamtkosten von TK-Anlage, Verkabelung und aktiven Komponenten betrachtet werden, welche der beiden Anlagen ist dann günstiger? Bitte berechnen Sie hierfür die Gesamtkosten der beiden Varianten. (14 Teilpunkte)

K	(/a	S	sis	SC.	he	A	h	ag	/e:				K	ka	be	:/ =	= (4	4 *	90	0	m	+ 2	₹.7	00	m	() ·	13	€/	m	=	18	90	00	€					
						Γ				Τ	T		K	SIA	ita	h		12	+	1)	* 2	51	20	€.	+ 4	*	20	n:	€ =	R	3	nn	E						Г
+	1	1				1		\dagger	\dagger	+		╁										00				-				-	10,	00		-	+-	-	_	\vdash	\vdash
	-	+	\dashv	_	_	\vdash	+		+	+	+	1.															١.	_	-		\vdash	-	١,		_		_	⊢	\vdash
	+	+	-		_	-	╀	+	-	+	-	+	K	101	aı	=	KI	gar)ei	+	KS	W	ItC	n ·	+ /	SEE	e/e	ro	na	nia	3 <i>g</i>	e =	4	/	200	<i>y</i> €	_	<u> </u>	
_		1			_	_	_	-	+	1		_	ļ	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ	L	<u> </u>							_	<u> </u>			<u> </u>	_			Ш	$oxedsymbol{oxed}$	L	
V	0	IP.	·A	<u>nl</u>	ag	e:	1	<u> </u>			_	<u> </u>	K	ka	be	1,1	ΨI	=	4	* 9	00	m) *	3	€//	m	+ ;	90	m	* ;	9 €	/n) =	1	1.6	10	€		
													K	Sи	it	¢h	=	(4	+	1)	* 2	.50	00	€	+ 8	*	20	0	€ =	1	4.	10	b€	ŀ					ĺ
																						.00																	
	T						T	T		T																4	K	ام	of.	200	o n	12	10		55	7	ın	€	
\dagger	\dagger	+	7		\vdash	\vdash	T	+	+		+	╁┈	1	.01		F	- 17	CIA	101	100	_		.31	VIL	<i>-,,</i>	-	1 71	CI	310	7110	4//	a	10	<u> </u>	73	H	J		ļ —
-		-			:-	-	_	-			•		-	- 1			-			-									-				-	-	$\vdash\vdash$	$\vdash\vdash$	-	-	
L	//e	- K	ıa.	55	IS	<u>Cr</u>	<i>r</i> e	Ir	\- <i>/</i> -	\m	lag	e i	Sī	aı:	so	a	eu	THE	<u>n</u>	gι	ıns	ST/	ge	r.								_		_	\vdash	\vdash	\vdash	$\vdash \vdash$	-
_	4	_	4			_	_		_	1	_	_	ļ	<u> </u>			_	┕																	$oxed{oxed}$	Ш		Ш	<u> </u>
	┸																																					Ш	<u></u>
	ŀ		1																																				
T		Т																																					_
1	T	T	1					T	†	1		T																		_			_				\dashv	\dashv	
+	+	+	+			-		+	\dagger	╁	1	-						-								-									\vdash	\dashv	\dashv	\dashv	
-	+	+	+	_		_	-	╁	╁	+-	╂	-												_	\dashv	_									\vdash			\dashv	
+	┿	4	4				-	-	-	╀	-	<u> </u>	ļ			ļ	_		_					_												_	_	_	
	_	_	_	_			<u> </u>					<u> </u>																											
			I																									\neg							П	\exists	ヿ	\exists	
	T		1				Г																	\neg		\exists									П	\dashv	\dashv	\dashv	_
\dagger	\dagger	\dagger	\dagger				H	H	 	1	-													\dashv	\dashv		-			-		\vdash	\dashv			+	\dashv	\dashv	
+	+	+	+	\dashv			-	 	-	+-	-									-		-		\dashv	\dashv		-		-	-			_		\vdash	\dashv	\dashv	\dashv	
-	+	+	+	_		_	_		-	_	_	<u> </u>				_					_	4	_		_	_		_							\vdash	_	\dashv	\dashv	
	\perp	_	_	_					_	L		_													$ \bot $														
		\perp					L	L									L																						
									1	T	1												_	-	\rightarrow	-t	_			_		_			-	-	-	\rightarrow	-

HAN	IDELSKAMMER HA	MBURG	,	Seite						
Beru	chlussprüfung Teil 2- if: Fachinformatiker 9 ungsfach: Ganzheitli	Systemintegration		LÖSUNG						
2. H	andlungsschritt:			(16 Punkte)						
Aufs	tellen der Routing-Ta	abellen								
a)	Ergänzen Sie die f orts Hamburg.	Routing-Tabelle für den Sta	ndort Frankfurt zur Anb	oindung des neuen Stand- (je Zeile 2 Teilpunkte)						
	Adresse	Maske	Gateway	Interface						
	10.1.0.0	255.255.0.0	keines	ETH1						
	83.120.5.16	255.255.255.252	keines	ETH0						
	10.254.0.0	255.255.255.252	keines	ETH2						
	10.128.1.0	255.255.255.0	10.254.0.2	ETH2						
	0.0.0.0	0.0.0.0	83.120.5.20	ETH0						
b)	b) Erstellen Sie die Routingtabelle für den Standort Hamburg. Der Internet-Zugang in Hamburg soll über den Router in Frankfurt realisiert werden. Adresse Maske Gateway Interface									
	10.128.1.0	255.255.255.0	keines	ETH1						
	10.254.0.0	255.255.255.252	keines	ETH2						
	10.1.0.0	255.255.0.0	10.254.0.1	ETH2						
	0.0.0.0	0.0.0.0 0.0.0.0 10.254.0.1								
Kost Zuga	Frankfurt erfolgen s enersparnis (sowie ng in Hamburg hät	mögliche Gründe dafür, wa oll. so notwendige Standleitur te Mehrkosten zur Folge), am Standort Frankfurt, and	ng hat fixe Kosten, zu bessere Administrierl	(4 Teilpunkte) sätzlicher Internet parkeit, zentrale						

HANDELSKAMMER HAI	VIBURG		Seite 7
Abschlussprüfung Teil 2-	Winter 2011/2012		
Beruf: Fachinformatiker S	•		_
Prüfungsfach: Ganzheitlic	the Aufgabe 1		LÖSUNG
3. Handlungsschritt:			(9 Punkte)
•	überflüssigem Verkehr frei ort stehenden Server aufgel	zuhalten, soll am Standort F paut werden.	lamburg eine eigene
Die Sicherung soll nach fo	olgendem Schema ablaufer	n:	
Sicherungszeit	Sicherungsmethode	Überschreibbar nach	
Montag bis Donnerstag	Inkrementelle Sicherung	2 Wochen	
1.Freitag im Monat	Vollsicherung	12 Monate	
25. Freitag im Monat	Vollsicherung	4 Wochen	
a) Wie nennt man ein	solches Sicherungsschema	?	(1 Teilpunkte)
Generationenprinzip, Gr	oßvater-Vater-Sohn-Prinz	zip, 3G-Sicherung o.ä	
b) Welche Vorteile bief	et ein solches Sicherungss	chema?	(2 Teilpunkte)
Weniger Bänder als Auf	bewahrung aller Vollsiche	erungen für ein Jahr,	
mehrere Kopien vorhan	den, kürzere Sicherungsz	eit bei der täglichen Sicher	ung,
	- - la	_	
andere Antworten mogii	cn		
	raucht man für das Sichert erung jeweils komplett auf e	ungsschema? Es kann dabe	i angenommen wer-
·		r-Bänder = 24 Bänder	
		erte Sicherung in einer virtu teil und einen Nachteil einer	
Vorteile: Schnellere Sich	nerung, kein Wechsel von	Bändern notwendig, länge	ere Lebensdauer _
der "Bänder" für die Tag	essicherung, Spulzeiten	entfallen, andere Antworte	n möglich
	•	ch, höherer Energiebedarf,	
			· · · · · · · · · · · · · · · · · · ·

Yan "	and an order of the second		

E: