§ 18. Тепловое излучение

В задачах дайного раздела используются данные таблиц 5 и 11 приложения.

18.1. Найти температуру T печи, если известно, что излучение из отверстия в ней плошадью $S = 6.1 \,\mathrm{cm}^2$ имсет мощность $N = 34.6 \,\mathrm{Bt}$. Излучение считать близким к излучению абсолютно черного тела.

Решение:

Мощность излучения из отверстия печи определяется соотношением $N=R_{3}S$ — (1). Поскольку по условию излучение близко к излучению абсолютно черного тсла, то по закону Стефана — Больцмана $R_{3}=\sigma T^{4}$ — (2), где $\sigma=5,67\cdot10^{-8}$ Вт/(м²·К³) — постоянная Стефана — Больцмана. Подставляя (2) в (1), получаем $N=\sigma T^{4}S$, откуда

температура печи $T = \left(\frac{N}{\sigma S}\right)^{\frac{1}{4}} = 1000 \text{ K}.$

18.2. Какую мощность N излучения имеет Солице? Излучение Солнца считать близким к излучению абсолютно черного тела. Температура поверхности Солица $T = 5800 \, \mathrm{K}$.

Решение:

Поскольку по условию излучение близко к излучению абсолютно черного тела, то мощность излучения Солнца (см. задачу 18.1) выражается соотношением $N = \sigma T^4 S$ — (1), где $S = 4\pi R_{\rm C}^2$ — (2) — площадь поверхности Солица, $R_{\rm C} = 6.96 \cdot 10^8 \, {\rm M}$ — радиус Солнца. Подставляя (2) в (1), получаем $N = 4\pi\sigma T^4 R_{\rm C}^2 = 3.9 \cdot 10^{26} \, {\rm Bt}$.

18.3. Какую энергетическую светимость R'_3 имеет запводевший свинец? Отношение энергетических светимостей свиности абсолютно черного тела для данной температуры k = 0.6.

Решение:

Затвердевающий свинец ведет себя как серое тело. $\{1\}$ закону Стефана — Больцмана для серого тела $R_3' = koT$, где k — отношение эпергетических светимостей абогологию черного и серого тел при данной температуре, или коэффициент черноты, $T = 600 \, \mathrm{K}$ — температура плавиления свинца. Подставляя числовые данные, получен $R_5 = 4.4 \, \mathrm{kBt/m}^2$.

18.4. Мощность излучения абсолютно черного т. : $N = 34 \, \mathrm{kBr}$. Найти температуру T этого тела, если известно, ч.э его поверхность $S = 0.6 \, \mathrm{m}^2$.

Решение:

Мощность излучения абсолютно черного тела (см. задачу 18.1) выражается соотношением $N = \sigma T^4 S = 1000 \text{ K}$.

18.5. Мощность излучения раскаленной металлической поверхности $N' = 0.67 \, \mathrm{kBt}$. Температура поверхности $T = 2500 \, \mathrm{K}$, ее площадь $S = 10 \, \mathrm{cm}^2$. Какую мощность излучения N имела бы эта поверхность, если бы она была абсолютно черной? Най и отношение k эпергетических светимостей этой поверхности и абсолютно черного тела при данной температуре.

Решение:

Если бы поверхность была абсолютно черной, то ее мощность излучения (см. задачу 18.1) была равна $N=\sigma T^4S=2,22~\mathrm{kBr}$. Отношение энергетических светимостей поверхности и абсолютно черного тела при данией температуре равно $k=\frac{N'}{N}=0,3$.

18.6. Диаметр вольфрамовой спирали в электрической лампочке d = 0.3 мм, длина спирали l = 5 см. При включении лампочки в сеть напряжением U = 127 В через лампочку течет ток I = 0.31 А. Найти температуру T спирали. Считать, что по установлении равновесия все выделяющееся в нити тепло теряется в результате излучения. Отношение энергетических светимостей вольфрама и абсолютно черного тела для данной температуры k = 0.31.

Решение:

Поскольку вольфрамовая спираль излучает как серое тело, то ее мощность излучения $N'=R_3'S$ — (1), гдс по закону Стефана — Больцмана $R_2'=k\sigma T^4$ — (2) — энергетическая светимость серого тела, $S=2\pi dl$ — (3) — площадь поверхности вольфрамовой спирали. Подставляя (2) и (3) в (1), получаем $N'=2\pi k\sigma T^4 dl$ — (4). С другой стороны, мощность тока N'=IU — (5), получаем $IU=2\pi k\sigma T^4 dl$, откуда температура спирали $T=\left(\frac{IU}{2\pi k\sigma dl}\right)^{\frac{1}{4}}=2208\,\mathrm{K}.$

18.7. Температура вольфрамовой спирали в 25-ваттной электрической лампочке $T=2450\,\mathrm{K}$. Отпошение се энергетической светимости к энергетической светимости абсолютно черного тела при данной температуре k=0,3. Найти площадь S излучающей поверхности спирали.

Решение:

Мощность излучения вольфрамовой спирали (см. задачу 18.6) $N' = k\sigma T^4 S$. Отсюда площадь излучающей поверхности спирали $S = \frac{N'}{k\sigma T^4} = 0.4 \, \mathrm{cm}^2$.

18.8. Найти солнечную постоянную K, т. е. количество лучистой энергии, посылаемой Солнцем в единицу времени через единичную площадку, перпендикулярную к солнечным лучам и

находящуюся на таком же расстоянии от него, как и $3e_{\rm MLM}$. Температура поверхности Солица $T=5800\,{\rm K}$. Излучение Солица считать близким к излучению абсолютно черного тела.

Решение:

Поскольку по условию излучение Солнца близко к излучению абсолютно черного тела, то по закону Стефана — Больцмана его энсргетическая светимость $R_3 = \sigma T^4 - (1)$. Мощность излучения Солнца $N = R_3 S_1 - (2)$, иде $S_1 = 4\pi R_{\rm C}^2 - (3)$ — площадь поверхности Солнца. Подставляя (1) и (3) в (2), получаем $N = 4\pi \sigma T^4 R_{\rm C}^2 - (4)$. Мощность, излучаемая Солицем, падает на впутреннымо поверхность сферы, раднус которой равен среднему расстоянию от Солнца до Земли $\langle r_3 \rangle = 1.496 \cdot 10^{11} \, {\rm M}$. Подставляя (4) и (5) в (6), окончательно получаем $K = \frac{N}{S_2} - (5)$. Подставляя (4) и (5) в (6), окончательно получаем $K = \frac{\sigma T^4 R_{\rm C}^2}{\langle r_3 \rangle^2} = 1.38 \, {\rm kBr/m}^2$.

18.9. Считая, что атмосфера поглощает 10% лучнегой в срегии, посыдаемой Солнцем, найти мощность излучения N, и дечаемую от Солнца горизонтальным участком Земли плои вызо S=0.5 га. Высота Солнца над горизонтом $\varphi=30^\circ$. Издучение Солнца считать близким к излучению абсолютно черцого те. S=0.5

Решение:

448

Монимость излучения $N_0 = KS\cos\alpha$, где $\alpha = \frac{\pi}{2} - \phi$ — учел падения солнечных лучей, K — солнечная постемных (см. задачу 18:8). По условию мощность излучения N_0 получаемая горизонтальным участком Земли, равна $0.9\,N_0$.

т. е. $N = 0.9 KS cos \left(\frac{\pi}{2} - \varphi \right)$. Подставляя числовые данные, получим $N = 3.1 \cdot 10^6 \; \mathrm{Bt}$.

18.10. Зная значение солнечной постоянной для Земли (см. задачу 18.8), найти значение солнечной постоянной для Марса.

Решение:

Значение солнечной постоянной для Земли (см. задачу **18.8**) определяется соотношением $K_3 = \frac{\sigma T^4 R_{\rm C}^2}{\langle r_3 \rangle^2}$ — (1).

Аналогично можно определить солнечную постоянную для Марса $K_{\rm M} = \frac{\sigma T^4 R_{\rm C}^2}{\left\langle r_{\rm M} \right\rangle^2}$ — (2), где $\left\langle r_{\rm M} \right\rangle = 2.279 \cdot 10^{11} \, {\rm M}$ —

среднее расстояние от Солнца до Марса. Разделив (2) на (1), получим $\frac{K_{\rm M}}{K_{\rm 3}} = \frac{\left\langle r_{\rm 3} \right\rangle^2}{\left\langle r_{\rm M} \right\rangle^2}$, откуда солнечная постоянная

для Марса $K_{\rm M} = K_3 \left(\frac{\langle r_3 \rangle}{\langle r_{\rm M} \rangle} \right)^2 = 0.59 \, \mathrm{kBr/M}^2.$

18.11. Какую энергетическую светимость R, имеет абсолютно черное тело, если максимум спектральной плотности его энергетической светимости приходится на длину волны $\lambda = 484 \, \mathrm{Hm}$?

Решение:

Согласно первому закону Вина $\hat{\lambda}_m T = C_1$ — (1), где $C_1 \approx 2.9 \cdot 10^{-3}$ м·К. По закону Стефана — Больцмана для абсолютно черного тела энергетическая светимость 15–3269

$$R_{\rm p} = \sigma T^4$$
 — (2). Из формулы (1) абсолютная температура $T = \frac{C_1}{\lambda_m}$ — (3). Подставляя (3) в (2), окончательно получим

$$R_3 = \sigma \left(\frac{C_1}{\lambda_m}\right)^4 = 73,08 \,\mathrm{MBT/M}^2.$$

18.12. Мощность излучения абсолютно черного тела $N=10~\mathrm{kBr}$. Найти площадь S излучающей поверхности тела, если максимум спектральной плотности его энергетической светимости приходится на длину волны $\lambda=700~\mathrm{km}$.

Решение:

Мощность излучения абсолютно черного тела (см. задачу 18.1) равна $N = \sigma T^4 S$ — (1). Из первого закона Вина (см. задачу 18.11) абсолютная температура равна $T = \frac{C_1}{\lambda_m}$ — (2). Подставляя (2) в (1), получаем $N = \sigma S \left(\frac{C_1}{\lambda_m}\right)^4$, отсюда площадь излучающей поверхности тела $S = \frac{N}{\sigma} \times \left(\frac{\lambda_m}{C_1}\right)^4 = 6 \, \text{cm}^2$.

18.13. В каких областях спектра лежат длины воли, соответствующие максимуму спектральной плотности эпергетической светимости, если источником света служит: а) спираль электрической лампочки ($T = 3000 \, \mathrm{K}$); б) новерхность Солица ($T = 6000 \, \mathrm{K}$); в) атомная бомба, в которой в момент взрыва развивается температура $T \approx 10^7 \, \mathrm{K}$? Излучение считать близким к излучению абсолютно черного тела.

Решение:

По первому закону Вина $\lambda_m T = C_1$, откуда $\lambda_m = \frac{C_1}{T}$, где $C_1 = 2.9 \cdot 10^{-3} \, \mathrm{M·K.}$ а) Для спирали электрической лампочки, при $T_1 = 3000 \, \mathrm{K}$, $\lambda_1 = 1.03 \, \mathrm{mkm}$ — инфракрасная область. б) Для поверхности Солнца, при $T_2 = 6000 \, \mathrm{K}$, $\lambda_2 = 483 \, \mathrm{hm}$ — область видимого света. в) Для атомной бомбы в момент взрыва, при $T_3 = 10^7 \, \mathrm{K}$, $\lambda_3 = 290 \, \mathrm{nm}$ — область рентгеновских лучей.

.18.14. На рисунке дана кривая зависимости спектральной плотности энергетической светимости абсолютно черного тела r_{λ} от длины волны λ при некоторой температуре. К какой температуре T относится эта кривая? Какой процент излучаемой энергии приходится на долю видимого спектра при этой температуре?

Решение:

По графику найдем длину волны, на которую приходится максимальная спектральная плотность энергетической светимости тела: $\lambda_{max}\approx 1.2\cdot 10^{-6}$ м. Согласно закону Вина $\lambda_{max}T=2.9\cdot 10^{-3}$ м·К, отсюда $T=\frac{2.9\cdot 10^{-3}}{1.2\cdot 10^{-6}}=2400$ К. Про-

цент излучаемой энергии, приходящейся на долю видимого спектра, определяется той долей площади, ограниченной кривой $r_{\lambda}=f(\lambda)$, которая отсекается ординатами, восстановленными по краям интересующего нас интервала. Пределы видимого спектра приблизительно от 400 до 750 нм. При данной температуре на долю видимого излучения приходится около 3—5% всего излучения.

18.15. При нагревании абсолютно черного тела длина волиы λ , на которую приходится максимум спектральной плотноста энергетической светимости, изменилась от 690 до 500 им. Во сколько раз увеличичась при этом энергетическая светимость, тела?

Решение:

Из первого закона Випа $\lambda_n T = C_1$ имеем: $\lambda_1 T_1 = C_1$ — (1) п $\lambda_2 T_2 = C_1$ — (2). Приравнивая левые части уравнений (1) и (2), нолучаем $\lambda_1 T_1 = \lambda_2 T_2$ или $\frac{T_1}{T_2} = \frac{\lambda_2}{\lambda_1}$ — (3). По закону Стефана — Больцмана для абсолютно черного тела энергетическая светимость $R_1 = \sigma T^4$ — (4). Из формулы

(4) имеем:
$$\frac{R_{\rm pl}}{R_{\rm p2}} = \left(\frac{T_{\rm l}}{T_{\rm 2}}\right)^4$$
 — (5). Подставляя (3) в (5), окончательно получаем $\frac{R_{\rm sl}}{R_{\rm s2}} = \left(\frac{\lambda_2}{\lambda_{\rm l}}\right)^4 = 3.63$.

18.16. На какую длину волны λ приходится максимум спектральной плотности энергетической светимости абсолютно черного тела, имеющего температуру, равную температуре $t = 37^\circ$ человеческого тела, т. е. $T = 310 \, \mathrm{K}$?

Решенис:

Из первого закона Вина $\lambda_m T = C_1$ имеем: $\lambda_m = \frac{C_1}{T} = 9.35$ мкм.

18.17. Температура T абсолютно черного тела изменицальной нагревании от 1000 до 3000 К. Во сколько раз увеличилось при этом его энергетическая светимость R_3 ? На сколько изменилась длина волны λ , на которую приходится максимум спектральной плотности энергетической светимости? Во сколько раз увеличилась его максимальная спектральная плотность энергетической светимость энергетической светимость энергетической светимость энергетической светимость энергетической светимость 2

Решение:

По закону Стефана — Больцмана для абсолютно черного $R_{\rm pl} = \left(\frac{T_{\rm pl}}{T_{\rm pl}} \right)^4 = 1 - R_{\rm pl}$

тела (см. задачу 18.15)
$$\frac{R_{51}}{R_{52}} = \left(\frac{T_1}{T_2}\right)^4 = \frac{1}{81}$$
 или $\frac{R_{52}}{R_{51}} = 81$. Из

первого закона Вина (см. задачу 18.16) $\lambda_{\rm I} = \frac{C_{\rm I}}{T_{\rm I}} = 2.9\,{\rm mkm}$ н

$$\lambda_2 = \frac{C_1}{T_2} = 0.97 \, \text{мкм.}$$
 Согласно второму закону Вина макси-

мальная спектральная плотность энергетической светимости возрастает пропорционально пятой степени абсолютной температуры $r_{\lambda max} = C_2 T^5$ — (1), где $C_2 = 1,29 \cdot 10^{-5} \, \mathrm{BT/m}^3 \mathrm{K}^5$. Из формулы (1) имеем $r_1 = C_2 T_1^5$ — (2) и $r_2 = C_2 T_2^5$ — (3). Разделив (3) на (2), получаем

$$\frac{r_2}{r_1} = \left(\frac{T_2}{T_1}\right)^5 = 243.$$

18.18. Абсолютно черное тело имеет температуру $T_1 = 2900 \, \text{K}$. В результате остывания тела длина волны, на которую приходится максимум спектральной плотности энергетической светимости, изменилась на $\Delta \lambda = 9 \, \text{мкм}$. До какой температуры T_2 охладилось тело?

Решение:

Из первого закона Вина (см. задачу 18.16) $\hat{\lambda}_{\parallel} = \frac{C_{\parallel}}{T_{\parallel}}$ — (1) и

$$\lambda_2 = \frac{C_2}{\lambda_2}$$
 — (2). Изменение длины волны, на которую при-

ходится максимум спектральной плотности энергетической светимости, $\Delta \lambda = \lambda_2 - \lambda_1$ — (3). Подставляя (1) и

(2) в (3), получаем
$$\Delta \lambda = \frac{C_1}{T_2} - \frac{C_1}{T_1}$$
, откуда $T_2 = \frac{T_1 C_1}{T_1 \Delta \lambda + C_1} = 290$ K.

18.19. Поверхность тела нагрета до температуры T=100011 Затем одна половина этой поверхности нагревается ± 0 $\Delta T=100\,\mathrm{K},$ другая охлаждается на $\Delta T=100\,\mathrm{K},$ Во сколько разменится энергетическая светимость R_s поверхности этого тела?

Решение:

По закону Стефана — Больцмана для серого тела $R_3' = k\sigma T^4$ — (1). После нагревання и охлаждения одколетическая светимость нервой и второй половии і будет соответственню равна $R_{31}' = k\sigma (T+\Delta T)^4$ — (2) и $R_{32}' = k\sigma (T-\Delta T)^4$ — (3). При этом средняя энерготическая светимость станет равной $\langle R_3' \rangle = \frac{R_{31}' + R_{32}'}{2}$ — (4). Подставляя (2) и (3) в (4), получаем $\langle R_3' \rangle = \frac{k\sigma \left[(T+\Delta T)^4 + (T-\Delta T)^4 \right]}{2}$ — (5). Разделив (5) на (1), находим $\frac{\langle R_2' \rangle}{R_2'} = \frac{(T+\Delta T)^4 + (T-\Delta T)^4}{2T} = 1,06$.

18.20. Какую мощность N надо подводить к зачерненно ў металлическому шарику раднусом r=2 см. чтобы поддержив з вего температуру на $\Delta T=27\,\mathrm{K}$ выше температуры окружают: Я среды? Температура окружающей среды $T=293\,\mathrm{K}$. Счита сы. +10 тепло теряется только вследствие излучения.

Решение:

Мощность: необходимая для поддержания температу и равна $N=R_{x}S$ — (1), где R_{x} — энергетическая светим: 454

шарика, $S = 4\pi^{-2}$ — (2) — площадь его поверхности. Поскольку по условию шарик зачерненный, то по закону Стефана — Больцмана $R_s = \sigma(T + \Delta T)^4$ — (3). Подставляя (2) и (3) в (1), получаем $N = 4\pi^{-2}\sigma(T + \Delta T)^4 = 3$ Вт.

18.21. Зачерненный шарик остывает от температуры $T_1 = 300 \, \mathrm{K}$ до $T_2 = 293 \, \mathrm{K}$. Па сколько изменилась длина волны λ , соответствующая максимуму спектральной плотности его энергетической светимости?

Решение:

Изменение длины волны, соответствующей максимуму спектральной плотности энергетической светимости (см.

задачу 18.18), равно
$$\Delta \lambda = \frac{C_1}{T_2} - \frac{C_1}{T_1} = 0.24$$
 мкм.

18.22. На еколько уменьшится масса Солнца за год вследствие излучения? За какое время τ масса Солнца уменьшится вдвое? Температура поверхности Солнца T = 5800 K. Излучение Солнца считать постоянным.

Решение:

Мощность, излучаемая Солнцем, равна $N=R_{s}S$ — (1), где R_{s} — энергетичсская светимость Солнца, $S=4\pi R_{c}^{2}$ — (2) — площадь его поверхности, $R_{c}=6.96\cdot10^{8}\,\mathrm{m}$ — радиус Солнца. По закону Стефана — Больцмана $R_{s}=\sigma T^{4}$ — (3). Подставляя (2) и (3) в (1), получаем $N=4\pi R_{c}^{2}\sigma T^{4}$ — (4). Изменение энергии Солица за счет излучения $\Delta W=N\tau$ — (5). С другой стороны, $\Delta W=c^{2}\Delta m$ — (6), где $c=3\cdot10^{8}\,\mathrm{m/c}$ — скорость света, Δm — изменение массы Солица. Приравнивая правые части уравнений (5) и (6), получаем

 $N\tau=c^2\Delta m$, откуда изменение массы Солнца $\Delta m=\frac{N\tau}{c^2}$ — (7). Подставляя (4) в (7), получаем $\Delta m=\frac{4\pi R_{\rm C}^2\sigma T^4\tau}{c^2}=$ = =1,37·10¹⁷ кг. Если $\Delta m=\frac{1}{2}M_{\rm C}$, где $M_{\rm C}=1,989\cdot10^{30}$ кг. — $M_{\rm C}c^2$

масса Солнца, то $\tau = \frac{M_C c^2}{8\pi R_o^2 \sigma T^4} = 7,06 \cdot 10^{12}$ лет.