Lecture 37

Simple Linear Regression: Resiual Analysis and Hypothesis Testing

STAT 8010 Statistical Methods I November 29, 2019

> Whitney Huang Clemson University

Simple Linear Regression: Resiual Analysis and Hypothesis Testing
UNIVERSITY
37.1

is s	Notes
N	
	-

Agenda

- Review of Last Class
- Residual Analysis
- 3 Hypothesis Testing

Notes	6			

Simple Linear Regression (SLR)

Y: dependent (response) variable; *X*: independent (predictor) variable

• In SLR we assume there is a linear relationship between *X* and *Y*:

$$\begin{aligned} Y_i &= \beta_0 + \beta_1 X_i + \varepsilon_i, \\ \text{where } \mathrm{E}(\varepsilon_i) &= 0, \text{ and } \mathrm{Var}(\varepsilon_i) = \sigma^2, \forall i. \text{ Furthermore,} \\ \mathrm{Cov}(\varepsilon_i, \varepsilon_j) &= 0, \forall i \neq j \end{aligned}$$

Least Squares Estimation:

argmin_{$$\beta_0,\beta_1$$} $\sum_{i=1}^{n} (Y_i - (\beta_0 + \beta_1 X_i))^2 \Rightarrow$
• $\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$
• $\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$
• $\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}{n-2}$

•	Residuals: e _i =	V	V.	whara	V.	- B	R	~ Y.
•	nesiduais. σ_i –	1 i -	ıį,	WILLELE	I j	- PO.LS	5 T P1.L	-S^i

le Linear ression: al Analysis ypothesis sisting	Notes		
E R S I T Y			
of Last			

Maximum Heart Rate vs. Age: SLR Fit

Question: Is linear relationship between max heart rate and age reasonable? ⇒ Residual Analysis

Notes

Residuals

• The residuals are the differences between the observed and fitted values:

$$e_i = Y_i - \hat{Y}_i,$$

where $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$

- e_i is NOT the error term $\varepsilon_i = Y_i E[Y_i]$
- Residuals are very useful in assessing the appropriateness of the assumptions on ε_i . Recall
 - $E[\varepsilon_i] = 0$
 - $Var[\varepsilon_i] = \sigma^2$
 - $Cov[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$

Simple Linear Regression: Resiual Analysis and Hypothesis Testing
CLEMS N
Residual Analysis

Notes

-			
	·		

Maximum Heart Rate vs. Age Residual Plot: ε vs. X

Simple Linear Regression: Resiual Analysis and Hypothesis Testing
CLEMS#N
Residual Analysis

Notes				

Interpreting Residual Plots

Figure: Figure courtesy of Faraway's Linear Models with R (2005, p. 59).

Simple Linear Regression: Resiual Analysis and Hypothesis Testing
Residual Analysis

Notes	
	_
	_
	-
	_
	_

How (Un)certain We Are?

Can we formally quantify our estimation uncertainty? \Rightarrow We need additional (distributional) assumption on ε

Notes			

Normal Error Regression Model

Recall

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- Further assume $\varepsilon_i \sim N(0, \sigma^2) \Rightarrow Y_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2)$
- With normality assumption, we can derive the sampling distribution of $\hat{\beta}_1$ and $\hat{\beta}_0 \Rightarrow$

$$\begin{split} & \bullet \quad \frac{\hat{\beta}_1 - \beta_1}{\hat{\sigma}_{\hat{\beta}_1}} \sim t_{n-2}, \quad \hat{\sigma}_{\hat{\beta}_1} = \frac{\hat{\sigma}}{\sqrt{\sum_{i=1}^n (X_i - \bar{X})^2}} \\ & \bullet \quad \frac{\hat{\beta}_0 - \beta_0}{\hat{\sigma}_{\hat{\beta}_0}} \sim t_{n-2}, \quad \hat{\sigma}_{\hat{\beta}_0} = \hat{\sigma} \sqrt{\left(\frac{1}{n} + \frac{\bar{X}^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right)} \end{split}$$

where t_{n-2} denotes the Student's t distribution with n-2 degrees of freedom

Notes			

Maximum Heart Rate vs. Age: Hypothesis Test for Slope

- **1** $H_0: \beta_1 = 0$ vs. $H_a: \beta_1 \neq 0$
- ② Compute the **test statistic**: $t^* = \frac{\hat{\beta}_1 0}{\hat{\sigma}_{\hat{\beta}_4}} = \frac{-0.7977}{0.06996} = -11.40$
- **Outpute P-value:** $P(|t_{13}| \ge |t^*|) = 3.85 \times 10^{-8}$
- **①** Compare to α and draw conclusion:

Reject H_0 at α = .05 level, evidence suggests a negative linear relationship between MaxHeartRate and Age

Simple Linear Regression: Resiual Analysi and Hypothesis Testing
CLEMS *
Hypothesis Testin

Notes			

Maximum Heart Rate vs. Age: Hypothesis Test for Intercept

- **1** $H_0: \beta_0 = 0$ vs. $H_a: \beta_0 \neq = 0$
- ② Compute the **test statistic**: $t^* = \frac{\beta_0 0}{\beta_{\beta_0}} = \frac{210.0485}{2.86694} = 73.27$
- **③** Compute **P-value**: $P(|t_{13}| \ge |t^*|) \simeq 0$
- **③** Compare to α and draw conclusion:

Reject H_0 at α = .05 level, evidence suggests evidence suggests the intercept (the expected MaxHeartRate at age 0) is different from 0

Notes

Summary

In this lecture, we learned

- Residual analysis to (graphically) check model assumptions
- Normal Error Regression Model and statistical inference for β_0 and β_1

Next time we will talk about

- Confidence/Prediction Intervals
- Analysis of Variance (ANOVA) Approach to Regression

Simple Linear Regression: Resiual Analysis and Hypothesis Testing
CLEMS N
Hypothesis Testing

Notes			