

NOMBRE: WALTER RAUL PEREZ MACHINENA

MATRICULA: 1603647

GRUPO: 003

NOMBRE ACTIVIDAD: MODELO DE REGRESION

NUMERO DE ACTIVIDAD: 2

MATERIA: APRENDIZAJE AUTOMATICO

DOCENTE: JOSE ANASTACIO HERNANDEZ SALDAÑA

Contenido

Introducción	3
Hallazgos	4
Grafica	4
Conclusiones	5
Referencias	5

Introducción

En esta actividad se considero una base de datos sobre eficiencia energética en los 12 diferentes formas de construcción de edificios, que considera 8 variables descriptivas, donde una de ellas es categórica y dos variables objetivo, siendo una para la calefacción y otra para el enfriamiento.

En este caso se busca conocer sobre enfriamiento.

Se busca aplicar un modelo de regresión (lineal, polinomial, knn y/o decisión tree) para encontrar el mejor modelo. A si mismo se realizara cross-validation entre varios modelos.

Tabla de variables			
Nombre de la variable	Role	Tipo	Descripción
X1	Característica	Continuo	Compacidad relativa
X2	Característica	Continuo	Área de superficie
Х3	Característica	Continuo	Área de la pared
X4	Característica	Continuo	Área del techo
X5	Característica	Continuo	Altura total
X6	Característica	Entero	Orientación
Х7	Característica	Continuo	Área de acristalamiento
X8	Característica	Entero	Distribución del área de acristalamiento
Y1	Objetivo	Continuo	Carga de calefacción
Y2	Objetivo	Continuo	Carga de enfriamiento

Hallazgos

Modelo	Cross validation (R2)	R2	RMSE
Regresión Lineal	0.8787 (+/- 0.0608)	0.8930	3.1065
Regresión	0.9486 (+/- 0.0422)	0.9659	1.7548
Polinomial			
KNN	R2: 0.9077 (+/- 0.0799)	0.8922	3.1182
Árbol de Decisión	0.9424 (+/- 0.0607)	0.9513	2.0958

Se evaluaron los 4 modelos de regresión solicitados, para predecir la variable objetivo Y2. Una vez realizadas las evaluaciones y su validación cruzada se identifica el mejor modelo.

Considerando la información obtenida el mejor modelo es: Regresión Polinomial

Grafica

Durante el desarrollo de la actividad considere que la mejor forma de interpretar los datos era de forma visual

De igual manera realice una impresión con las predicciones del mejor modelo, quedando de la siguiente manera:

Valor Real	Valor Predicho
17.63	17.17
13.57	13.15
34.62	38.38
21.16	23.65
33.34	33.07
34.20	31.12
30.18	29.71
30.34	29.87
29.82	32.13
24.61	25.48
11.67	11.71
38.35	43.43
14.65	14.19
39.41	42.84
37.70	42.84
31.06	28.51

Conclusiones

Con esta actividad logramos determinar el mejor modelo aplicable para nuestros datos es **Regresión Polinomial**, que nos permitirán obtener valores mas exactos a la hora de predecir el enfriamiento de los edificios. Se hizo uso de todos los modelos mencionados en la rubrica con la finalidad de identificar que modelo seria el mejor para este caso de estudio. De la misma manera se utilizo el RMSE para identificar la medida de error en la unidad de la variable objetivo. Y se realizó la validación cruzada (cross-validation) con todos los modelos.

Referencias

Guido, A. C. (2016). Introduction to Learning with Python. California: O'REILLY.

Xifara, A. T. (21 de 07 de 2024). *archive.ics.uci*. Obtenido de https://archive.ics.uci.edu/dataset/242/energy+efficiency

Material de Clase.