1 Exercises

1.1

Verify that 1184 and 1210 are amicable.

$$\sigma(1184) = \sigma(2^5)\sigma(37) = 2394 = 1184 + 1210$$

$$\sigma(1210) = \sigma(2)\sigma(5)\sigma(11^2) = 2394 = 1184 + 1210$$

2 Problems

2.1

Verify that 2620, 2924 and 17296, 18416 are amicable pairs.

$$\sigma(2620) = \sigma(2^2)\sigma(5)\sigma(131) = 5544 = 2620 + 2924$$

$$\sigma(2924) = \sigma(2^2)\sigma(17)\sigma(43) = 5544 = 2620 + 2924$$

$$\sigma(17296) = \sigma(2^4)\sigma(23)\sigma(47) = 35712 = 17296 + 18416$$

$$\sigma(18416) = \sigma(2^4)\sigma(1151) = 35712 = 17296 + 18416$$

2.2

It was long thought that even perfect numbers ended alternately in 6 and 8. Show that this is wrong by verifying that the prefect numbers corresponding to the primes $2^{13} - 1$ and $2^{17} - 1$ both end in 6.

The perfect numbers corresponding to these primes are $2^{12}(2^{13}-1)=2^{25}-2^{12}$ and $2^{16}(2^{17}-1)=2^{33}-2^{16}$

$$2 \equiv 2 \pmod{10}$$

$$2^{2} \equiv 4 \pmod{10}$$

$$2^{4} \equiv 6 \pmod{10}$$

$$2^{8} \equiv 6 \pmod{10}$$

$$2^{16} \equiv 6 \pmod{10}$$

$$2^{32} \equiv 6 \pmod{10}$$

$$2^{25} \equiv 2 \pmod{10}$$

$$2^{12} \equiv 6 \pmod{10}$$

$$2^{12} \equiv 6 \pmod{10}$$

$$2^{25} - 2^{12} \equiv -4 \equiv 6 \pmod{10}$$

$$2^{33} \equiv 2 \pmod{10}$$

$$2^{16} \equiv 6 \pmod{10}$$

$$2^{33} - 2^{16} \equiv -4 \equiv 6 \pmod{10}$$

2.3

Classify the integers 2, 3, ..., 21 as abundant, deficient, or perfect.

```
\sigma(2) = 3 \Rightarrow deficient, \quad \sigma(3) = 4 \Rightarrow deficient,
\sigma(4) = 7 \Rightarrow deficient, \quad \sigma(5) = 6 \Rightarrow deficient,
\sigma(6) = 12 \Rightarrow perfect, \quad \sigma(7) = 8 \Rightarrow deficient,
\sigma(8) = 15 \Rightarrow deficient, \quad \sigma(9) = 13 \Rightarrow deficient,
\sigma(10) = 18 \Rightarrow deficient, \quad \sigma(11) = 12 \Rightarrow deficient,
\sigma(12) = 28 \Rightarrow abundant, \quad \sigma(13) = 14 \Rightarrow deficient,
\sigma(14) = 24 \Rightarrow deficient, \quad \sigma(15) = 24 \Rightarrow deficient,
\sigma(16) = 31 \Rightarrow deficient, \quad \sigma(17) = 18 \Rightarrow deficient,
\sigma(18) = 39 \Rightarrow abundant, \quad \sigma(19) = 20 \Rightarrow deficient,
\sigma(20) = 42 \Rightarrow abundant, \quad \sigma(21) = 32 \Rightarrow deficient.
```

2.4

Classify the integers 402, 403, ..., 421 as abundant, deficient, or perfect.

TODO sounds boring...

2.5

If $\sigma(n) = kn$, then n is called a k-perfect number. Verify that 672 is 3-perfect and 2,178,540 = $2^2 * 3^2 * 5 * 7^2 * 13 * 19$ is 4-perfect.

$$\sigma(672) = \sigma(2^5)\sigma(3)\sigma(7) = 2016 = 3*672$$

$$\sigma(2178540) = \sigma(2^2)\sigma(3^2)\sigma(5)\sigma(7^2)\sigma(13)\sigma(19) = 8714160 = 4*2178540$$

2.6

Show that no number of the form $2^a 3^b$ is 3-perfect.

In order for this to work, would need $\sigma(2^a3^b) = 2^a3^{b+1}$. Note that $\sigma(2^a3^b) = \sigma(2^a)\sigma(3^b) = \frac{1}{2}(2^{a+1}-1)(3^{b+1}-1) = \frac{1}{2}(2^{a+1}3^{b+1}-2^{a+1}-3^{b+1}+1) = 2^a3^{b+1}-\frac{1}{2}(2^{a+1}+3^{b+1}-1)$. This would only equal 2^a3^{b+1} if $2^{a+1}+3^{b+1}=1$, but since the term is at minimum 4+9=13 with a,b=1, this cannot be the case.

2.7

Let us say that n is superperfect if and only if $\sigma(\sigma(n)) = 2n$. Show that if $n = 2^k$ and $2^{k+1} - 1$ is prime, then n is superperfect.

If $n = 2^k$, then $\sigma(n) = \sigma(2^k) = 2^{k+1} - 1$. Since $2^{k+1} - 1$ is prime, we know that $\sigma(2^{k+1} - 1) = 2^{k+1} = 2 * 2^k$.

2.8

It was long thought that every abundant number was even. Show that 945 is abundant, and find another abundant number of the form $3^a * 5 * 7$.

$$\begin{split} &\sigma(945) = \sigma(3^3)\sigma(5)\sigma(7) = 1200 > 945. \\ &\operatorname{Try} \ n = 3^4 * 5 * 7 = 2835. \ \sigma(2835) = \sigma(3^4)\sigma(5)\sigma(7) = 4235 > 2835. \end{split}$$

2.9

In 1575, it was observed that every even perfect number is a triangular number. Show that this is so.

If n is an even perfect number, then we know by Euler's theorem that $n=2^{p-1}(2^p-1)$. We

can rewrite this, multiplying by $\frac{2}{2}$, as $\frac{2^p(2^p-1)}{2}$. So, setting k as 2^p-1 , this fits the formula for a triangular number, namely n=k(k+1)/2.

2.10

In 1652, it was observed that

$$6 = 1 + 2 + 3,$$

$$28 = 1 + 2 + 3 + 4 + 5 + 6 + 7,$$

$$496 = 1 + 2 + 3 + \dots + 31.$$

Can this go on?

A sum of consecutive integers $1 + ... + k = \frac{k(k+1)}{2}$, and in the previous exercise we've shown that every perfect even number is a triangular number, so sure.

2.11

Let

$$p = 3 * 2^{e} - 1,$$

$$q = 3 * 2^{e-1} - 1,$$

$$r = 3^{2} * 2^{2e-1} - 1,$$

where e is a positive integer. If p, q, and r are all prime, show that $2^e pq$ and $2^e r$ are amicable.

Assume all p, q, r > 2, which is the case for e > 1. know that $\sigma(2^e pq) = \sigma(2^e)\sigma(p)\sigma(q)$ and $\sigma(2^e r) = \sigma(2^e)\sigma(r)$. In order for the two numbers to be amicable, need $\sigma(r) = 1 + r = 3^2 * 2^{2e-1} = (p+1)(q+1)$:

$$(p+1)(q+1) = (3*2^e)(3*2^{e-1})$$

= 3^2*2^{2e-1}
= $r+1$

For e = 1, have $2^e pq = 20$ with $\sigma(2^e pq) = 42$ and $2^e r = 34$, with $\sigma(2^e r) = 54$?

2.12

Show that if p > 3 and 2p + 1 is prime, then 2p(2p + 1) is deficient.

 $\sigma(2p(2p+1)) = \sigma(2)\sigma(p)\sigma(2p+1) = 6*(p+1)^2 = 6p^2 + 12p + 6$. We want to compare this with $2*2p(2p+1) = 8p^2 + 4p$. For p=5, the smallest acceptable p, 216; 300. Consider the difference between the two, $2p^2 - 8p - 6$. The derivative of this with respect to p is 4p - 8, which is > 0 for p > 3. So, $2*2p(2p+1) > \sigma(2p(2p+1))$, and 2p(2p+1) is deficient.

2.13

Show that all even perfect numbers end in 6 or 8.

By Euler's theorem, if n is an even perfect number, then it can be written $n=2^{p-1}(2^p-1)$. Consider

the sequence of powers of 2 (mod 10):

$$2^{1} \equiv 2 \pmod{10}$$
 $2^{2} \equiv 4 \pmod{10}$
 $2^{3} \equiv 8 \pmod{10}$
 $2^{4} \equiv 6 \pmod{10}$
 $2^{5} \equiv 2 \pmod{10}$
 $2^{6} \equiv 4 \pmod{10}$
 $2^{7} \equiv 8 \pmod{10}$
 $2^{8} \equiv 6 \pmod{10}$

Subsequent powers of 2 will follow this cycle of 2, 4, 8, 6 (mod 10). 2^{p-1} will have an even exponent when p > 2, so it will be will be \equiv to either 4 or 6 (mod 10). If it's \equiv 4, then $2^p - 1 \equiv 7$ and $2^{p-1}(2^p - 1) \equiv 4 * 7 \equiv 8 \pmod{10}$. If it's \equiv 6, then $2^p - 1 \equiv 1$ and $2^{p-1}(2^p - 1) \equiv 1 * 6 \equiv 6 \pmod{10}$. For p = 2, $2^{p-1}(2^p - 1) = 6$, which ends with a 6.

2.14

If n is an even perfect number and n > 6, show that the sum of its digits is congruent to 1 (mod 9).

n can be written $d_k 10^k + d_{k-1} 10^{k-1} + ... + d_1 10 + d_0$. Note that $10^k \equiv 1 \pmod{9}$. So $n \equiv d_k + d_{k-1} + ... + d_1 + d_0 \pmod{9}$. So if the sum of digits $\sum d_i \equiv 1 \pmod{9}$, then $n \equiv 1 \pmod{9}$. If n is an even perfect number, can write $n = 2^{p-1}(2^p - 1)$. Consider the sequence of powers of 2 (mod 9):

$$2^{1} \equiv 2 \pmod{9}$$
 $2^{2} \equiv 4 \pmod{9}$
 $2^{3} \equiv 8 \pmod{9}$
 $2^{4} \equiv 7 \pmod{9}$
 $2^{5} \equiv 5 \pmod{9}$
 $2^{6} \equiv 1 \pmod{9}$
 $2^{7} \equiv 2 \pmod{9}$
 $2^{8} \equiv 4 \pmod{9}$
 $2^{8} \equiv 4 \pmod{9}$
 $2^{4} \equiv 7 \pmod{9}$
 $2^{5} \equiv 5 \pmod{9}$

By a similar argument as the previous exercise, $2^{p-1} \equiv 4, 7$, or 1 and $2^p - 1 \equiv 7, 4$, or 1, respectively. Then $4*7 \equiv 7*4 \equiv 1 \pmod{9}$, and $1*1 \equiv 1 \pmod{9}$.

2.15

If p is odd, show that $2^{p-1}(2^p - 1) \equiv 1 + 9p(p-1)/2 \pmod{81}$.

TODO