192620010 Mobile & Wireless Networking

Lecture 2: Wireless Transmission (2/2)

[Schiller, Section 2.6 & 2.7] [Reader Part 1:

OFDM: An architecture for the fourth generation]

Geert Heijenk

Outline of Lecture 2

- □ Wireless Transmission (2/2)
 - Modulation
 - □ Spread Spectrum
 - □ Orthogonal Frequency Division Multiplexing (OFDM)

Modulation

Process of encoding information from a message source in a manner suitable for transmission

Two major steps:

- 1. Digital modulation
 - □ digital data is translated into an analog signal (baseband)
- 2. Analog modulation
 - □ shifts center frequency of baseband signal up to the radio carrier
 - Motivation
 - smaller antennas (e.g., λ/4)
 - Frequency Division Multiplexing
 - medium characteristics

Modulation and demodulation

Modulation

□ Carrier

$$s(t) = A_t \sin(2 \pi f_t t + \phi_t)$$

- Basic analog modulation schemes schemes
 - □ Amplitude Modulation (AM)
 - □ Frequency Modulation (FM)
 - □ Phase Modulation (PM)
- Digital modulation
 - □ ASK, FSK, PSK main focus here
 - □ differences in spectral efficiency, power efficiency, robustness

Digital modulation

Modulation of digital signals known as Shift Keying

Amplitude Shift Keying (ASK):

- □ very simple
- □ low bandwidth requirements
- very susceptible to interference

Frequency Shift Keying (FSK):

- □ binary FSK (BFSK)
- □ continuous phase modulation (CPM)
- □ needs larger bandwidth

Phase Shift Keying (PSK):

- □ Binary PSH (BPSK)
- □ more complex
- □ robust against interference

Advanced Frequency Shift Keying

- □ bandwidth needed for FSK depends on the distance between the carrier frequencies (and bit rate of source signal)
- special pre-computation avoids sudden phase shifts
 - → MSK (Minimum Shift Keying)
- □ bits separated into even and odd bits, the duration of each bit is doubled
- depending on the bit values (even, odd) the higher or lower frequency, original or inverted is chosen
- the frequency of one carrier is twice the frequency of the other
- □ even higher bandwidth efficiency using a Gaussian low-pass filter → GMSK (Gaussian MSK), used in GSM

Example of MSK

Advanced Phase Shift Keying

BPSK (Binary Phase Shift Keying):

- □ bit value 0: sine wave
- □ bit value 1: inverted sine wave
- □ very simple PSK
- □ low spectral efficiency
- □ robust, used e.g. in satellite systems

QPSK (Quadrature Phase Shift Keying):

- □ 2 bits coded as one symbol
- symbol determines shift of sine wave
- needs less bandwidth compared to BPSK
- □ more complex

Often also transmission of relative, not absolute phase shift: DQPSK - Differential QPSK (IS-136, PHS)

Quadrature Amplitude Modulation

Quadrature Amplitude Modulation (QAM): combines amplitude and phase modulation

- □ it is possible to code n bits using one symbol
- □ 2ⁿ discrete levels, n=2 identical to QPSK
- □ bit error rate increases with n, but less errors compared to comparable PSK schemes

Example: 16-QAM (4 bits = 1 symbol)

Symbols 0011 and 0001 have the same phase φ , but different amplitude a. 0000 and 1000 have different phase, but same amplitude.

Hierarchical Modulation

- DVB-T modulates two separate data streams onto a single DVB-T stream
- □ High Priority (HP) embedded within a Low Priority (LP) stream
- □ Multi carrier system, about 2000 or 8000 carriers
- □ QPSK, 16 QAM, 64QAM
- Example: 64QAM
 - □ good reception: resolve the entire 64QAM constellation
 - poor reception, mobile reception: resolve only QPSK portion
 - □ 6 bit per QAM symbol, 2 most significant determine QPSK
 - □ HP service coded in QPSK (2 bit),LP uses remaining 4 bit

Outline of Lecture 2

- □ Wireless Transmission (2/2)
 - Modulation
 - □ Spread Spectrum
 - □ Orthogonal Frequency Division Multiplexing (OFDM)

Spread spectrum technology

Problem of radio transmission: frequency dependent fading can wipe out narrow band signals for duration of the interference

Solution: spread the narrow band signal into a broad band signal using a special code

protection against narrow band interference

Side effects:

- coexistence of several signals without dynamic coordination
- □ tap-proof

Alternatives: Direct Sequence, Frequency Hopping

Effects of spreading and interference

Spreading and frequency selective fading

narrowband channels

spread spectrum channels

Spread spectrum technology

Protection against narrow band interference Tightly coupled to CDM □ coexistence of several signals without dynamic coordination High security Military use Overlay of new SS technologies on the same spectrum as old NB Civil applications □ IEEE802.11 □ Bluetooth □ UMTS Disadvantages High complexity □ Large transmission bandwidth Alternatives: Direct Sequence, Frequency Hopping

DSSS (Direct Sequence Spread Spectrum) I

XOR of the signal with pseudo-random number (chipping sequence)

- ☐ many chips per bit (e.g., 128) result in higher bandwidth of the signal Advantages
 - reduces frequency selective fading
 - □ in cellular networks
 - base stations can use the same frequency range
 - several base stations can detect and recover the signal
 - soft handover

Disadvantages

precise power control necessary

DSSS (Direct Sequence Spread Spectrum) II

The Rake Receiver

- □ Takes advantage of multipath propagation
- □ Each multipath component is called a "finger"
- □ Need to estimate delay, amplitude and phase for each finger
- □ The Rake receiver combines multipath components with a separation in time ≥ one chip period Tchip

Example: 3.84 Mcps \Rightarrow Tchip = 0.26 μ s \Rightarrow 78 m

Time Dispersion – Rake receiver – Channel Estimation

Diversity Combination	Channel Estimation	a ₂	a ₁	a ₀
Selective	Delay	0	0	1
Equal gain	Delay	1/3	1/3	1/3
Maximum Ratio	Delay and complex amplitudes	h ₂ *	h ₁ *	h ₀ *

FHSS (Frequency Hopping Spread Spectrum) I

Discrete changes of carrier frequency

 sequence of frequency changes determined via pseudo random number sequence

Two versions

- □ Fast Hopping: several frequencies per user bit
- □ Slow Hopping: several user bits per frequency

FHSS (Frequency Hopping Spread Spectrum) II

FHSS (Frequency Hopping Spread Spectrum) III

FHSS (Frequency Hopping Spread Spectrum) IV

Example:
□ Bluetooth (1600 hops/sec on 79 carriers)
Advantages
frequency selective fading and interference limited to short period
simple implementation
uses only small portion of spectrum at any time
Disadvantages
□ not as robust as DSSS
□ simpler to detect

Outline of Lecture 2

- □ Wireless Transmission (2/2)
 - Modulation
 - □ Spread Spectrum
 - □ Orthogonal Frequency Division Multiplexing (OFDM)

Multicarrier modulation

□ Target: increase data rate □ Increase bandwidth? □ Increase symbol rate? Problem: increase of frequency selective fading and Inter Symbol Interference (ISI) Solution: ☐ High bit rate signal split into many low bit rate signals □ Each low bit rate signal used to modulate a different carrier □ Less vulnerable to ISI and frequency selective fading But: How to make multicarrier systems efficient?

Spectrum of a rectangular pulse

Two-carrier pulse spectrum

Spectra for Three Orthogonal Carriers

OFDM(A)

A multicarrier system based on orthogonal subcarriers:

- → Orthogonal Frequency-Division Multiplexing (OFDM)
 When different subcarriers can be used by different users:
- → Orthogonal Frequency-Division Multiple Access (OFDMA)

Typically uses phase and amplitude modulation on each subcarrier:

→ QAM (BPSK, QPSK, 8PSK, 16QAM, 32QAM, 64QAM)

Composite signal given by:
$$f(t) = \sum_{k=0}^{N-1} A_k \cos(k\omega_0 t + \varphi_k)$$
, for $0 \le t \le T_p$ where T_p is symbol width,
$$\omega_0 = 2\pi/T_p$$
,
$$A_k \text{ and } \varphi_k \text{ are QAM amplitude and phase on carrier } k$$

→ Can by computed by Inverse Fast Fourier Transform (IFFT)

OFDM(A) deployment

OFDM is used in IEEE 802.11a and g

48 (+4 pilot) subcarriers of 312.5 kHz (total 20 MHz)

 \rightarrow 3.2µs time

0.8µs guard space (ISI mitigation) → 250 000 symbols/s

64QAM on 48 carriers results in 6 * 48 = 288 bits/symbol

→ 72 Mbit/s, with ¾ coding rate (error correction): 54 Mbit/s

OFDM is also used in DAB, DVB

OFDMA is used in WiMAX and LTE with up to 1200 subcarriers of 15 kHz in 20 MHz.