exercise3 109301060

May 14, 2024

1 Exercises for Lecture 3

109301060

```
1.0.1 Q1
```

a.

```
[]: import numpy as np
import pandas as pd
import statsmodels.formula.api as smf

data = pd.read_csv('data_exercise_3c.csv')
```

b.

```
[]: data['DATE'] = pd.to_datetime(data['DATE'])

# Calculate simple return
AAPL_sr = np.diff(data['AAPL_Adj_Close'])/data['AAPL_Adj_Close'][:-1]

data['AAPL_sr'] = np.append(np.nan, AAPL_sr)

# Calculate excess return
data['AAPL_rp'] = data['AAPL_sr'] - data['RF']
```

c.

```
[ ]: results_sst = data.loc[:,'AAPL_sr':'AAPL_rp'].describe()
print(results_sst)
```

```
AAPL_sr
                     AAPL_rp
      130.000000 130.000000
count
mean
        0.024280
                  -0.017643
                   0.102524
std
        0.078486
       -0.184045
                  -0.364045
min
25%
       -0.026441
                   -0.074593
50%
        0.027021
                  -0.011113
75%
        0.076592
                  0.060982
        0.214380
                  0.204380
max
```

d.

```
[]: data = data.drop(data.index[0])
   capm = smf.ols(formula = 'AAPL_rp ~ Mkt_RF', data = data)
   result_capm = capm.fit()
   print(f'result_capm.summary():\n{result_capm.summary()}\n')
   result_capm.summary():
                       OLS Regression Results
   ______
   Dep. Variable:
                         AAPL_rp
                               R-squared:
                                                         0.239
                               Adj. R-squared:
   Model:
                            OLS
                                                         0.233
   Method:
                    Least Squares F-statistic:
                                                         40.15
   Date:
                  Tue, 14 May 2024 Prob (F-statistic):
                                                      3.67e-09
                        01:21:14
   Time:
                               Log-Likelihood:
                                                       129.87
   No. Observations:
                            130
                               AIC:
                                                        -255.7
   Df Residuals:
                            128
                               BIC:
                                                        -250.0
   Df Model:
                             1
   Covariance Type:
                  nonrobust
   ______
                             t
                                      P>|t|
               coef std err
                                              Γ0.025
   ______
                                      0.000
                                               -0.047
   Intercept
            -0.0310
                     0.008 -3.801
                                                        -0.015
                              6.336
             0.0122
   Mkt RF
                      0.002
                                       0.000
                                               0.008
                                                        0.016
   ______
   Omnibus:
                          15.494 Durbin-Watson:
                                                        1.015
   Prob(Omnibus):
                          0.000 Jarque-Bera (JB):
                                                        18.915
   Skew:
                          -0.712 Prob(JB):
                                                      7.81e-05
                                Cond. No.
   Kurtosis:
                          4.210
                                                         4.41
   ______
   [1] Standard Errors assume that the covariance matrix of the errors is correctly
   specified.
   \alpha = -0.0310
   \beta_{MKT} = 0.0122
[]: ff3 = smf.ols(formula = 'AAPL_rp ~ Mkt_RF + SMB + HML', data = data)
   result_ff3 = ff3.fit()
   print(f'result_ff3.summary():\n{result_ff3.summary()}\n')
   result_ff3.summary():
                       OLS Regression Results
```

Dep. Variable:	AAPL_rp	R-squared:	0.255
Model:	OLS	Adj. R-squared:	0.237
Method:	Least Squares	F-statistic:	14.37
Date:	Tue, 14 May 2024	Prob (F-statistic):	4.13e-08
Time:	01:21:14	Log-Likelihood:	131.26
No. Observations:	130	AIC:	-254.5
Df Residuals:	126	BIC:	-243.1
Df Model:	3		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept Mkt_RF SMB HML	-0.0329 0.0134 -0.0047 -0.0013	0.008 0.002 0.003 0.003	-4.008 6.458 -1.377 -0.490	0.000 0.000 0.171 0.625	-0.049 0.009 -0.011 -0.006	-0.017 0.018 0.002 0.004
Omnibus: Prob(Omnibus Skew: Kurtosis:	s):	0	.000 Jarq .802 Prob	======================================):	0.959 24.644 4.45e-06 4.65

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
\alpha = -0.0329 \beta_{MKT} = 0.0134 \beta_{SMB} = -0.0047 \beta_{HML} = -0.0013 f.
```

```
[]: ff5 = smf.ols(formula = 'AAPL_rp ~ Mkt_RF + SMB + HML + RMW + CMA', data = data)
result_ff5 = ff5.fit()
print(f'result_ff5.summary():\n{result_ff5.summary()}\n')
```

result_ff5.summary():

OLS Regression Results

Dep. Variable:	AAPL_rp	R-squared:	0.307
Model:	OLS	Adj. R-squared:	0.279
Method:	Least Squares	F-statistic:	10.98
Date:	Tue, 14 May 2024	Prob (F-statistic):	9.20e-09
Time:	01:21:15	Log-Likelihood:	135.96
No. Observations:	130	AIC:	-259.9

Df Residuals: 124 BIC: -242.7

Df Model: 5
Covariance Type: nonrobust

========	=======	========	========		========	========
	coef	std err	t	P> t	[0.025	0.975]
Intercept Mkt_RF SMB HML RMW CMA	-0.0348 0.0122 0.0006 -0.0018 0.0140 -0.0034	0.008 0.002 0.004 0.003 0.005 0.006	-4.300 5.724 0.160 -0.562 3.011 -0.606	0.000 0.000 0.873 0.575 0.003 0.545	-0.051 0.008 -0.007 -0.008 0.005 -0.015	-0.019 0.016 0.008 0.005 0.023 0.008
Omnibus: Prob(Omnibu Skew: Kurtosis:	s):	0	.000 Jarq	oin-Watson: que-Bera (JB o(JB): l. No.):	0.951 21.040 2.70e-05 4.78

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
\alpha = -0.0348
```

 $\beta_{MKT}=0.0122$

 $\beta_{SMB} = 0.0006$

 $\beta_{HML} = -0.0018$

 $\beta_{RMW} = 0.0140$

 $\beta_{CMA} = -0.0034$

g.

result_ff6.summary():

OLS Regression Results

Dep. Variable:	AAPL_rp	R-squared:	0.312
Model:	OLS	Adj. R-squared:	0.279
Method:	Least Squares	F-statistic:	9.309
Date:	Tue, 14 May 2024	Prob (F-statistic):	2.08e-08
Time:	01:21:15	Log-Likelihood:	136.47

No. Observations:	130	AIC:	-258.9
Df Residuals:	123	BIC:	-238.9

Df Model: 6
Covariance Type: nonrobust

========	:========	========	========	========	========	========
	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.0358	0.008	-4.391	0.000	-0.052	-0.020
Mkt_RF	0.0128	0.002	5.771	0.000	0.008	0.017
SMB	0.0012	0.004	0.314	0.754	-0.006	0.009
HML	-0.0005	0.004	-0.156	0.876	-0.008	0.006
RMW	0.0146	0.005	3.117	0.002	0.005	0.024
CMA	-0.0037	0.006	-0.651	0.516	-0.015	0.008
MOM	0.0027	0.003	0.989	0.325	-0.003	0.008
========	=======	========		========	========	========
Omnibus:		15	.389 Durb	in-Watson:		0.958
Prob(Omnibu	ıs):	0	.000 Jarq	ue-Bera (JB):	18.536
Skew:		-0	.716 Prob	(JB):		9.44e-05
Kurtosis:		4	.170 Cond	. No.		5.32

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
\begin{split} &\alpha = -0.0358 \\ &\beta_{MKT} = 0.0128 \\ &\beta_{SMB} = 0.0012 \\ &\beta_{HML} = -0.005 \\ &\beta_{RMW} = 0.0146 \\ &\beta_{CMA} = -0.0037 \\ &\beta_{MOM} = 0.0027 \\ &\text{h.} \end{split}
```

```
[]: capm_alpha = round(result_capm.params['Intercept'], 4)
    ff3_alpha = round(result_ff3.params['Intercept'], 4)
    ff5_alpha = round(result_ff5.params['Intercept'], 4)
    ff6_alpha = round(result_ff6.params['Intercept'], 4)

print('CAPM Alpha :',capm_alpha)
    print('FF3 Alpha :',ff3_alpha)
    print('FF5 Alpha :',ff5_alpha)
    print('FF6 Alpha :',ff6_alpha)
```

```
FF3 Alpha : -0.0329
    FF5 Alpha : -0.0348
    FF6 Alpha : -0.0358
            \alpha
       \alpha
                 \alpha
    1.0.2 Q2
      a.
[]: import wooldridge as woo
     import numpy as np
     import statsmodels.formula.api as smf
     wage2 = woo.data('WAGE2')
     reg_IQ = smf.ols(formula = 'IQ ~ educ', data = wage2)
     results_IQ = reg_IQ.fit()
     delta_educ_hat = results_IQ.params['educ']
     print(round(results_IQ.params, 4))
    Intercept
                 53.6872
    educ
                   3.5338
    dtype: float64
      b.
[]: reg1 = smf.ols(formula = 'np.log(wage) ~ educ', data = wage2)
     results1 = reg1.fit()
     beta_educ_tilde = results1.params['educ']
     print(round(results1.params, 4))
    Intercept
                 5.9731
    educ
                  0.0598
    dtype: float64
[]: reg = smf.ols(formula = 'np.log(wage) ~ educ + IQ', data = wage2)
     results = reg.fit()
     beta_hat = results.params
     print(beta_hat)
    Intercept
                 5.658288
    educ
                 0.039120
                 0.005863
    ΙQ
    dtype: float64
```

CAPM Alpha : -0.031

d.

```
[]: print('Value by regression:',beta_educ_tilde)
     beta_educ_tilde1 = beta_hat['educ']+beta_hat['IQ']*delta_educ_hat
     print('Value by equation :',round(beta_educ_tilde1, 4))
    Value by regression: 0.05983920788637073
    Value by equation: 0.0598
[]: delta_int_hat = results_IQ.params['Intercept']
     beta_int_tilde = results1.params['Intercept']
     print('Value by regression:',beta_int_tilde)
     beta_int_tilde1 = results.params['Intercept'] + results.
      →params['IQ']*delta_int_hat
     print('Value by equation :',round(beta_int_tilde1, 4))
    Value by regression: 5.973062450264955
    Value by equation: 5.9731
    1.0.3 Q3
[]: import statsmodels.api as sm
     import numpy as np
     import statsmodels.formula.api as smf
     # Redo the OLS estimation
     wage1 = woo.data('wage1')
     reg = smf.ols(formula='np.log(wage) ~ educ + exper + tenure', data = wage1)
     results = reg.fit()
     beta_educ_hat = results.params['educ']
     beta_educ_hat = round(beta_educ_hat, 4)
     print(f'beta_educ_hat: \n{beta_educ_hat}')
     # The first step: regress educ on exper and tenure with the OLS
     # and save the residuals
     reg_educ = smf.ols(formula='educ ~ exper + tenure', data = wage1)
     results_educ = reg_educ.fit()
     wage1['resid_educ'] = results_educ.resid
     # The second step: regress log(wage) on resid educ with the OLS
     # and obtain the estimated slop parameter
     reg1 = smf.ols(formula='np.log(wage) ~ resid_educ', data = wage1)
     results1 = reg1.fit()
     beta_educ_hat1 = results1.params['resid_educ']
```

```
beta_educ_hat1 = round(beta_educ_hat1, 4)
print(f'beta_educ_hat1: \n{beta_educ_hat1}')
# Is this result applied to the estimated intercept?
# The first step: regress a vector of ones on educ, exper and tenure with the
 →OLS
# and save the residuals
# note that NO INTERCEPT HERE!
wage1['ones'] = 1
                                         # add a vector of ones into the data set
reg_int = smf.ols(formula='ones ~ educ + exper + tenure -1', data = wage1)
results_int = reg_int.fit()
wage1['resid_int'] = results_int.resid
# The second step: regress y on resid_educ with the OLS
# and obtain the estimated slop parameter
reg_int1 = smf.ols(formula='np.log(wage) ~ resid_int', data = wage1)
results_int1 = reg_int1.fit()
beta_int_hat1 = results_int1.params['resid_int']
beta_int_hat1 = round(beta_int_hat1, 4)
# The OLS intercept from original regression
beta_int_hat = results.params['Intercept']
beta_int_hat = round(beta_int_hat, 4)
print(f'beta_int_hat: \n{beta_int_hat}')
print(f'beta_int_hat1: \n{beta_int_hat1}')
beta educ hat:
0.092
beta_educ_hat1:
0.092
beta_int_hat:
0.2844
beta_int_hat1:
-1.3861
```

 $\hat{r_1}$ and β_1 is the same, but the result not applied to estimating the intercept term β_0 .