Bayesian Inference by Visuomotor Neurons in Prefrontal Cortex

Thomas A. Langlois¹, Julie Charlton², Robbe L. T. Goris¹

¹UT Austin Center for Perceptual Systems (CPS) ²Princeton University Neuroscience Institute (PNI)

contact: thomas.langlois@austin.utexas.edu

Background

Different brain regions represent variations in perceptual expectations¹ Confounded experimental designs: perceptual choice or motor plan?

¹Rao, V., DeAngelis, G. C., & Snyder, L. H. (2012). Neural correlates of prior expectations of motion in the lateral intraparietal and middle temporal areas. Journal of Neuroscience, 32(29), 10063-10074.

Question:

How does the brain integrate perceptual priors with sensory signals?

Behavioral task

Two mapping rules distinguish perceptual from motor response activity

Behavioral results

Behavior shows bias towards the prior with more perceptual uncertainty

Electrophysiology & Decision Variables

- Measurements in two macaque monkeys
- Multi-electrode recordings in prearcuate gyrus

Decision Variable (DV) estimation from perceptual choice-conditioned activity

Descriptive model parameters model capture latent perceptual inference process

Single trial model DVs

DVs reflect bias & uncertainty

DV dynamic range predicts behavior

Low DV dynamic range trials predict more bias and perceptual uncertainty

Choice predictability of DVs drives the strength of the behavioral predictions

Dynamic range of DVs is a signature of the perceptual inference process