UNCLASSIFIED

AD 454056

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION ALEXANDRIA. VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

THE EFFECT OF NUCLEAR RAI RADIATION ON ELASTOMERIC AND PLASTIC CIC COMPONENTS AND MATERIALS ALS

10

RADIATION EFFECTS INFORMATION CENTER

Battelle Memorial Institute

Columbus, Ohio 4320143201

Best Available Copy

The Radiation Effects Information Center is sponsored at Battelle Memorial Institute by the United States Air Force and the National Aeronautics and Space Administration to provide a means of placing radiation-effects data in the hands of designers and those conducting research and development. Access to the Center and to its reports is obtained through the Air Force. This report has been prepared pursuant to the provisions of Contract No. AF 33(615)-1124 (Continuation of AF 33(657)-10085), BPs. Nr. 64-6899 7381 738103 and 64-6399 7634.

Addendum Report on

THE EFFECT OF NUCLEAR RADIATION ON ELASTOMERIC AND PLASTIC COMPONENTS AND MATERIALS

by

N. J. Broadway and S. Palinchak

to

RESEARCH TECHNOLOGY DIVISION AIR FORCE SYSTEMS COMMAND

RADIATION EFI'ECTS INFORMATION CENTER
Battelle Memorial Institute
Columbus, Ohio 43201

ABSTRACT

This report is an addendum to REIC Report No. 21 and resents the state of the art of the effects of nuclear radiation on elastomeric and plastic components and materials thom 1961 to the present.

The mechanism of radiation damage and the effects of radiation in various environments are briefly discussed. Data summarizing the radiation-effects information on specific components and on the various types of elastomers and plastics are presented in detail. Areas in which additional work is needed are indicated. Radiation polymerization or vulcanization are not covered in this report.

The report is intended to be sufficiently inclusive to make it valuable as a reference guide relative to radiation effects under varying conditions of temperature and vacuum or elastomeric and plastic components and materials.

TABLE OF CONTENTS

																		Page
SUMMARY AND CONCLUSIONS	•	•	•	•	•	•	,	•	•	•	•	•	•	•	•	•	•	1
INTRODUCTION	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	9.
COMPONENTS					•				•									11
Adhesives																_		il
Coatings																	·	22
Electrical Insulation .																		
Laminates			•	•	•	•	•	·	Ī	•	•	·	•	·	•	•	•	35
Potting Compounds																		
Seals, O-Rings, and Gask																		
Thermal Insulation (Foam	-4	Ma	. + - =		٠,	•	•	•	•	•	•	•	•	•	•	•	•	54
Andrical distration (Foath	eu	TATC		124	ויי	•	•	•	•	•	•	•	•	•	•	*.	•	34
FLASTOMERS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	55
Polyacrylic Rubber		•														٠	٠	55
Du l'Anther																		55
Chlorobutyl, Chlorobutyl-																		56
hlorosu. cnated Polyethy																		56
fluorocar' on Rubbers .			•		٠						•							58
Nitrile Rulper																		59
Polychloroprene (Neoprene																		60
Styrene-Butadiene (SBR)																		66
Polysulfides																		67
Polyurethane Rubber .																		67
Silicone Rubbers																		73
Antirads																		85
PLASTICS																		90
- . .														•			•	Ť
Acrylics	•	•	•	٠	٠	٠	٠	•	•		٠	•	•	•	•	•	٠	90
Acrylonitrile	•	•	•	•	٠	٠	٠	•	·	•	•	•	•	•	•	•	•	91
Acrylonitrile/Butadiene/St																		91
Cellulose Acetate																		92
Diallyl Phthalate																		92
Epoxy Resins	•	•	. •	•	٠	•	•	•	•	•	•		•	•	•	•	•	93
Fluorocarbons	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	95
Phenolic Resins						•	•	•	•		•	•	•	٠			•	98
Phosphonitrillic Chloride	Pol	ym	er	B	•	•	•		•	•	•	•						99
Polyaceta:	•					•		•			•							101
Polyamide (Nylon)																		101
Polycarbonates																		163
Polyesters																		104
Polyethylene Terephthalate					•												٠	105
Polyethylene	-	•																106
Polypropylene					•													107
Polyallomers			-	-	•												•	107
Dolorino 'do	-		-	-	-	-	-	٠	•	•	-	-	•	-	-	•	•	100

TABLE OF CONTENTS (Continued)

																						Page
Polystyrene				4																		110
Polyurethane																e						111
Poly n. Vinyl																						112
Silicones .																						
Vinyl Polyme	rs	•	٠		•	•	•	•	•	•	•	•	•		•		•	•	•	•	•	114
REFERENCES .	•							•	•				٠	•	٠		,	•		•		117
							4 57	रक्ष	ND.	λ.	۸.											
COMPONENTS .			•										•	•			•			•	•	A-1
							AP:	PE:	ND	X:	В											
ELASTOMERS .	•	•						•			·				•				•			7-1
							AP:	PE!	N'D	IX (С											
DIASTICS																						Cv1

LIST OF TABLES

		Page
Table 1.	Effect of Vacuum on Radiation Stability of Polymers	6
Table 2.	Effect of Ultraviolet Radiation on Polymer Stability	6
Table 3.	Conversion Factors,	10
Table 4.	Shear Strength of Adhesive 422-J Lap-Shear Specimens	12
Table 5.	Results of Exposure Tests on Adhesives to Vacuum, Elevated Temperature, and High-Energy Radiation	17
Table 5.	Average Ultimate Shear Strengths of Alter Irradiation	19
Table 7.	Vehicle Temperature Control	23
Table 3.	Organic Material Radiative Properties	23
Table 9.	Sample Composition	26
Table 1).	Directs of Gamma Radiation on Thermal Life of Magnet-Wire Insulation	33
Table 11.	Results of Combined Environment Exposures in Progress	34
Table 12,	Weight Loss of Laminates Exposed to High Vacuum for 1000 Hours	36
Table 13.	Weight Loss for Laminates Under Vacuum-Thermal Conditions	36
Table 14.	Surapsulating Materials	4^
Table 15.	Effect of Nuclear Radiation in Vacuum on Potting Compounds	44
Table 16.	Change in Compression Set and Mast Indentation of Elastomers Due to Gamma Radiation	46
Table 17.	Ultimate Properties of Precision Rubber Products Corporation O-Ring Compounds 2277 Special and 19007	47
Table 18,	Summary of Effect of Irradiation at Ambient Temperatures on PRPC-O-King Compound 1387	48
Table 19.	Summary of Effect of Irradiation at Ambient Temperature on PRPC O-Ring Compound 4387	49
Table 20.	Air Leak Racoof Elastomer Compounds	53

		Page	9
Table 21.	Comparison of Real Air Leak Rates of Elastomers as Measured Experimentally and as Calculated from Permeability Value	53	٠
Table 22.	Relation of Air Leak Rate of Gasket Material to Loading	53	a)
Table 23.	Engineering Properties of Hypalon 30 Elastomer Versus Radiation	57	,·
Table 24.	Effect of Gamma Radiation and Vacuum on Neoprene WRT Compounds at Room Temperature	63	•;
Table 25.	Elastomers - Tensile Properties of Neoprene Rubbers and Buna-N Versus Postirradiation Storage Time	64	94
Table 26.	Elastomers - Tensile Properties of Neoprene Versus Postirradiation Storage Time	65	,!
Table ?	Effect of Radiation and Temperature on Polyurethane Elastomers	69	•
Table 28.	S.mmary of Effects of Irradiation at Two Temperatures on Seilon UR-80T (Polyurethane Elastomer)	71	
Table 29.	Summary of Effect of Irradiation at Two Temperatures on Flexible Polyurethane Foam (Blown Polyether Urethane) (General Foam Cc.)	72	i
Table 30.	Effect of Nuclear Radiation and Temperature on Tensile Strength of Silicone Elastomers	76	(
Table 31.	Outgassing Rates of Silicone Elastomers	78	(
Table 32.	Effect of Gamma Radiation and Vacuum on Silicone Elastomers	80	(
Table 33.	Antirads for Styrene-Butadiene (SBR) Rubber	87	1
Table 34.	Antirads for Nitrile Rubber	88	(
Table 35.	Evaluation of the Best Antirads in NBR	89	Ç
Table 36.	Evaluation of DPPH2 in Various Elastomers	89	ç
Table 37.	Properties of Vacuum-Irradiated Transparent Glazing Materials Before and After 100-Hour Exposure	91	
Table 38.	Leakage Resistance of Diallyl Phthalate Connectors in Pile - Dynamic Testing.	93	•

(Continued)

		Page
Table 39.	Properties of a Blend of AP-Resin-XHU and Acrylonitrile Polymer	~100
Table 40.	Summary of Effects of Irradiation at Two Temperature on Propylene-Ethylene Polyallomer (Crystalline Polymer) (Eastman)	108
	•	
Table 41.	Effect of Irradiation on Tensile Properties of Polystyrene Film	110
Table 42.	Summary of Effects of Irradiation on Grinlan F (Poly N-Vinyl Carbazole) Plastic	1+2
Table A-1.	Test Environment and Results for High-Force Dynamic-Test Materials: Structural Adhesives	A-1
Table A-2,	Screening Tests, Paints	A-3
Table A	creening Tests, Nonpaint "Whites"	A-4
Table \-4.	("tical Properties of Best Materials Tested	A-5
Table A-5.	Representative Material Radiative Properties	A-6
Table A-6.	Results of Exposure of Coating Materials to Ultraviolet Radiation and Vacuum	A-8
Table A-7.	Commercial Materials Exposed to Ultraviolet Radiation and Vacuum	A-10
Table A-8.	Laboratory-Prepared Paints Exposed to Ultraviolet Radiation and Vacuum	A-11
Table A-9.	Color Changes of Organic Coatings in Simulated Solar Radiation	A-12
Table A-10.	Physical Evaluation of Coatings Before and After Ultraviolet irradiation in a Vacuum of 1 x 10^{-5} mm Hg	A-13
Table A-11.	Test Environment and Results of Static Test: Electrical Insulation	A-14
Table A-12.	Test Environments and Results of Static Tests: Dielectric Materials	A-24
Γable A-13.	Tensile Strength of Dynalam Laminates	A-33
Table A-!4,	Effect of Temperature and Vacuum on Laminates	A-34

		Page	2
rable A-15.	Composition of Plastic Test Specimens	A-35	ï
l'able A-16.	Summary of Property Changes for Materials Irradiated in Vacuum and Air and Tested in Air	A-36	,
Table A-17.	Summary of Property Changes for Materials Irradiated and Tested in Vacuum	A-37	7
Table A-18.	Test Environments and Results of Static Tests: Structural Laminates	A-38	3
Table A-19.	Test Environments and Result of Static Tests: Structural Laminates	A-44	į
Table A-20.	Flexural Strength of Laminates After Exposure to Vacuum and Varied Intensity of Ultraviolet Radiation	A-46	>
Fabla 1.21,	Compressive Strength of Laminates After Exposure to Vacuum and Varied Intensity of Ultraviolet Radiation	A-47	٠,
Ta) 1. A- 22.	Laminate Fanels Propared with Ultraviolet Absorbers	A-48	. }
Table A-23.	Percentage Loss in Weight of Polyester Laninates Containing Ultraviolet-Absorbing Agents	A-49	,
Γable A-24.	Summary of Ultimate Flexural Strengths of Polyester Laminates Containing Ultraviolet-Absorbing Agents	A-50)
Table A-25.	Test Environment and Results of Static Test: Potting Compounds	A-51	1
Table A-26.	Test Environment and Kesults for Low-Force Dynamic-Test Materials: Potting Compounds	A-52	:
Table A-27,	Test Environment and Results of S. etic Tests: Potting Compounds (Compression Buttons)	A-53	3
Table A-28.	Test Environment and Results of Static Test: Seals	A-56	,
Table A-29.	Low Force Dynamic Test Results	A-62	:
Table A-30,	Low-Force Dynamic Test Result	A-63	3
lable A-31,	Effect of Nuclear Radiation on Stals, Stati: Tests	A-64	ι
Table A-32.	Effect of Vacuum and Gamma R. diation on Seals	A-65	
Γεbie A-33,	Fluorobestos Test Data	A- 6t	

		<u> </u>
Table A-34.	Tests with Elastomer Seals	A-67
Table B-1.	Compound Formulations	B-1
Table B-2.	Exposure of a Polyester Elastomer to High Vacuum at Various Temperatures	B-3
Table B-3.	Effects of Vacuum and of Vacuum with Ultraviolet Radiation on Elastomers	B-4
Table B-4.	Recipes and Cure Schedules of the Chlorobutyl, Chlorobutyl-Polychlorophrene Blends and Chloroprenes, Used in the Irradiation Studies	В -
Table B-5.	Physical Properties of Compound 156-62	B- 6
Table B-6.	Physical Properties of Compound 157-62	B-8
Table l'	Thysical Properties of Compound 158-62	B-10
Table '-9.	ecipes and Cure Schedules of the Chlorosulfonated lyethylenes Used in the Irradiation Studies	B~12
Table B-9.	Physical Properties of Compound 130-62	B-13
Table B-10.	Physical Properties of Compound 131-62	B-15
Table B-11.	Physical Properties of Compound 132-62	B-17
Table B-12.	Physical Properties of Compound 134-62	B-19
Table B-13.	Physical Properties of Compound 136-62	B-21
Table B-14.	Elastomers Tested for Effects of High Temperatures in a Vacuum	B-22
Table B-15.	Effect of Low Pressure and High Temperatures on Space Vehicle Elastomers	B-23
Table B-16.	Exposure of Viton-B to High Vacuum at Various Temperatures	B-25
Table B-17.	Recipes and Cure Schedules of the Fluoroelastomers (Viton A) Used in the Irradiation Studies	B-26
" h'e B-18.	Physical Properties of Compound 150-62	B-27
Table B-19.	Physical Properties of Compound 151-62	B-29

		Page	<u>{e</u>
Table B-20.	Physical Properties of Compound 152-62	B-31	31
Table B-21.	Test Environment and Results of Static Test: Nitrile Rubber	B-33	33
Table B-22.	Changes in Properties of Nitrile Rubber Irradiated in Vacuum and in Air	B-34	34
Table B-23.	Exposure of Nit ile Rubber Vulcanizates to High Vacuum at Various Temperatures.	B-35	35
Table B-24.	Test Environment and Results of Static Test: Neoprene Rubber	B-57	37
Table B-25.	Changes in Properties of Elastomers Irradiated in Vacuum and in Air	B-38	38
Table B-26.	Recipes and Cure Schedules of the Polychloroprenes Used in the Irradiation Studies	B-39	39
Table F 21.	Physical Properties of Compound 138-62	B-40	40
Tab B-28.	Physical Properties of Compound 139-62	B-42	42
Table B-29.	Physical Properties of Compound 140-62	B-44	44
Table B-30.	Thysical Properties of Compound 159-62	B-46	46
Table B-01.	Physical Properties of Compound 161-62 Induced by Exposure to the Different Irradiation Conditions	B-49	48
fable B-32.	Effects of Vacuum and of Vacuum with Ultraviolet Radiation on Elastomers	B-50	50
Table B-33.	Exposure of Neoprene Vulcanizates to High Vacuum at Various Temperatures	B-51	51
Table B-34.	Exposure of SBR Vulcanizates to High Vacuum at Various Temperatures	B-53	5 3
Table B-35.	Cure Schedules of the Polysulfides Used in the Irradiation Studies	B-54	54
Table B-36.	Physical Properties of Compound 14'-62 ,	B-55	55
Table B-37.	Physical Properties of Compound 154-62	B-57	5 7
Table B-38.	Physical Properties of Compound 155-62	B-59	59

		Page
Table B-39.	Physical Properties of Compound 157-67	B-61
Table B-40,	Elastomers - Tensile Properties of Thiokol ST Versus Postirradiation Storage Time	B-63
Table B-41.	Elastomers - Tensile Properties of PU 3109B and PU 6865 Versus Postirragiation Storage Time	B-64
Table B-42.	Elastomers - Tensile Properties of PU-Genthane-S Versus Postirradiation Storage Time	B-65
Table B-43.	Elaston.crs - Tensile Properties of PU-4250 Versus Postirradiation Storage Time	B-66
Table B-44.	Polyurethane Rubbers - Tensile Properties of DuPont Adiprene L Versus Temperature and Irradiation	B-67
Table B-45.	Polyurethane Rubbers - Tensile Properties of DuPont L-167 Versus Temperature and Irradiation	B-68
Table Bear,	olyurathane Rubbers - Tensile Properties of Disogram 3DSA 8000 and 3DSA 9045 Versus Temperature and Irradiation	B-69
Table 13-47.	Follywrethane Rubbers - Tensile Properties of Disogrin 2DSA 8445 and 2DSA 9840 Versus Temperature and Irradiation	B-70
Table B-48.	Polyurethane Rubbers - Tensile Properties of Disogrin 1DSA 7560 and 1DSA 9250 Versus Temperature and Irradiation	B-71
Table B-49.	Polyurethane Rubbers - Tensile Properties of General Tire Polyurethane Type R and Disogrin 1DSA 6865 Versus Temperature and Irradiation	B-72
Table B-57.	Polyurethane Rubbers - Tensile Properties of Genthane S-1 and S-2 Versus Temperature and Irradiation	B-~3
Table B-51.	Physical Properties of Compound 160-52	B-74
Table B-52.	Exposure of Polyurethane Vulcanizate (272) to High Vacuum at Various Temperatures	B-76
Table B-53,	Fluid Soak Irradiation - Effects on Tensile Properties of Genthanc S-1 and Butadiene-Acrylonitrile	B~77
Table B-54.	Fluid Soak Irradiation - Effects on Tensile Properties of Disogrin, Butyl Rubber, and Du Pont Viton 4411A	B-78
Table B-55.	Fluid Soak Irradiation - Effects on Tensile Properties of Genthane 130R, Thiokol ST, and WADC-11	B-79

		rage	e
Tal'e B-56.	Fluid Soak Irradiation - Effects on Tensile Properties of Kirkhill MHL-R-68855 and Du Pout LD-234	B-80	·
1 able B-57.	Silicone Rubbers - Tensile Properties of DC-86 Versus Temperature and Irradiation	B-81	1
Table B-58.	Silicone Rubbers - Tensile Properties of DC-675 Versus Temperature and Irradiation	B-82	2
Table B-59.	Silicone Rubbers - Tensile Properties of DC-916 Versus Temperature and Irradiation	P-83	3
Table B-60.	Silicone Rubbers - Tensile Properties of SE-361 Versus Temperature and Irradiation	r 91	4
Table B-61.	Silicone Rubbers - Tensile Properties of SE-551 Versus Temperature and Irradiation	B-85	5
Table B-62.	Silicone Rubbers - Tensile Proporties of LS-53 Versus Temperature and Irradiation	B-86	ъ
Tabl B-63.	Silicone Rubbers - Tear Strength Versus Irradiation and Temperature	B-87	7
Table B-ó4.	Silicone Rubbers - Tensile and Shear Properties of DC-916 and SE-555 Versus Irradiation	B-88	8
Table B-65.	Elastomers - Tensile Properties of DC-916 Versus Postirradiation Storage Time.	B-89	9
Table B-66.	Nitrile-Silicone Rubber NSR-X5602 - Engineering Test Properties Versus Irradiation Temperature and Immersion Media (Air and JP4 Fuel)	B-90)
Table B-67.	Nitrile-Silicone Rubber NSR-X5602 - Engineering Test Properties Versus Irradiation Temperature and Immersion Media (Oronite 8515 and MIL-L-7808)	B-91	ì
Table B-68.	Compression Cycling of Elastomers During Irradiation	B-92	2
Table B-69.	Percent Weight Loss for Silicone Rubber Under Vacuum-Thermal Conditions	B-93	3
Table B-70.	Weight Loss in Vacuum, Pressure <5 x 10-6 mm Hg	B-94	1
Table B-71.	Exposure of Silicone Elastomers to High Vacuum at Various Temperatures	B-98	3

		Page
Table B-72.	Press and Post Cure Schedules or the Schoones Used in the Irradiation Studies	B-99
Table B-73,	Physical Properties of Compound 105-62	B-100
Table B-74.	Physical Properties of Compound 106-62	B-102
Table B-75.	Physical Properties of Compound 120-62	B-104
Table B-76.	Physical Properties of Compound 147-62	B-106
Table B-77.	Physical Properties of Compound 148-62	B-108
Table B-78.	Physical Properties of Compound 149-62	B-119
Table B-79.	Physical Properties of Compound 111-62	B-112
Table B-80.	Physical Properties of Compound 107-62	B-114
Table P-81.	Physical Properties of Compound 39-62	B-116
Table82.	Thysical Properties of Compound 109-62	B-118
Table B-83.	Pi ysical Properties of Compound 56-62	B-120
Table B-81.	Physical Properties of Compound 58-62	B-122
Table B-85.	Physical Properties of Compound 110-62	B-124
Table C-1.	Affects of Ultraviolet on Plastics	C-1
Table C-2.	Physical Properties of Acrilan Irradiated in Nitrogen With Monochromatic Light	C-2
Table C-3.	Physical Properties of Acrilan Irradiated With GLOGO Lamp	C-2
Table C-4.	Summary of Equilibrium 'Veight Loss Data	C-3
Table C-5.	Weight Loss in Vacuum of Diallyl Phthelate, Pressure <5 x 10-6 MM Hg	C-6
Table C-6.	Fluorocarbon Plastics - Comparative Properties	C-7
Table C-7.	Fluorocarbon Polymers - Tensile Properties of Teflon 100 FEP and Reinforced Teflon Versus Irradiation and Mixed	
	Environments	C-8

		Fage	
Table C-8.	Fluorocarbon Polymers - Tensile Properties of Teflon TFE Versus Irradiation and Mixed Environments	C-9	9
Table C-9.	Fluorocarbon Polymers - Tensile Properties of Teflon TFE Versus Irradiation and Mixed Environments	C-10	c
Table C-10.	Tensile Properties of Polyvinyl Fluoride Film Versus Irradiation, Temperature, and Immersion Media	C-11	1
Table C-11.	Design for Irradiated Teflon Resins	C-12	2
Table C-12.	Tentative Assignments of Infra-Red Peaks	C-13	3
Table C-13.	Low-Force Dynamic Test Results: Run II, June 4, 1963	C-14	4
Table C-14.	Test Environments and Results of Static Tests	C-15	5
Table C-15.	Effect of Nuclear Radiation on Fluorocarbons	C-20	:0
Table C-16.	Vacuum Data From Other Work	C-23	:3
Tabl C-17.	Physical Properties of Teflon Films Irradiated With Monochromatic Light	C-23	; 3
Table C-18.	Physical Properties of Teflon Films Irradiated With a G30T8 Lamp	C-24	:4
Table C-19.	Test Results - Before and After Thermal Irradiation	C-25	25
Table C-20.	Physical Properties of Plastic Films Irradiated With Monochromatic Light	C-26	46
Table C-21.	Physical Properties of Plastic Films Irradiated With a G30T8 Lamp	C-28	18
Table C-22.	Effects of Radiation on Mylar	C-30	۹0
Table C-23.	High-Vacuum Testing of Mylar Plastic Film	C-32	32
Table C-24.	Effects of Vacuum and of Vacuum With Ultraviolet Radiation on Films	C-33	33
Table C-25.	Effects of Vacuum and of Vacuum With Ultraviolet Radiation on Seamed Films	C-34	34
Table C-26.	Test Environments and Results of Static Tests: High Density Polyethylene	C-35	35

		Page
Table C-27.	Strength Properties of Nomex Yarns Exposed to Elevated Temperature	C- 36
Table C=28.	Elongation Properties of Nomex Yarns Exposed to Elevated Temperature	C-36
Table C-29.	Strength Properties of Nomex Yarns Exposed to Gamma Radiation and/or Elevated Temperature (400 F)	C-37
Table C-30.	Strength Properties of Nomex Yarns Exposed to Gamma Radiation and/or Elevated Temperature (500 F)	C-37
Table C-31,	Strength Properties of Nomex Yarns Exposed to Gamma Radiation and/or Elevated Temperature (600 F)	C-38
Table C-32.	Elongation Properties of Nomex Yarns Exposed to Gamma Radiation and/or Elevated Temperature (400 F)	C-38
Table C-33.	Elongation Properties of Nomex Yarns Exposed to Gamma Radiation and/or Elevated Temperature (500 F)	C-39
Table C-34.	Elongation Properties of Nomex Yarns Exposed to Gamma Radiation and/or Elevated Temperature (600 F)	C~39
Table C-35.	Test Environment and Results of Static Tests: Polyurethane	C 40

LIST OF FIGURES

		Page
Figure 1.	Maximum Radiation Exposure of Various Components for Retention of Useful Properties	. 2
Figure 2.	Relative Radiation Stability of Elastomers	. 3
Figure 3.	Relative Radiation Stability of Thermosetting Resins	. 4
Figure 4.	Relative Radiation Resistance of Thermoplastic Resins	. 5
Figure 5.	Effect of Radiation on Bond Performance at Various Temperatures	. 14
Figure 6.	Effect of Radiation on Honeycomb Beam Flexure	. 16
Figure 7.	Effect of Heat Aging on Tensile Shear Strength of Five Achesive Bonds in Nitrogen vs Approximate Behavior in Air	. 20
Figure 8.	Characteristic Weight Loss Versus Time - a Typical Weight Loss Versus Time Curve for a Polymeric Material in Vacuum	. 27
Figur 9.	Paints - Weight Loss in Vacuum (Pressure <5 x 10-6 mm H _B) Curves for a Number of Paints at 50 and 100 C	. 28
Figure 10.	Effects of Near-Ultraviolet Irradiation on Polymer Films Under Normal Atmospheric Conditions	r . 30
Figure 11.	Effects of Gamma Radiation on Electrical Properties of Silica Sand Impregnated With Dow Corning Solventless Silicone Resin R-7521	. 40
Figure 12.	Tensile Strength Versus Gamma Exposure (Buna N)	61
Figure 13.	Per Cent Elongation Versus Gamma Exposure (Buna N)	61
Figure 14.	Tensile Strength Versus Gamma Exposure (Neoprene)	62
Figure 15.	Per Cent Elongation Versus Gamma Exposure (Neoprene)	. 62
Figure 16.	Arylene-Modified Silicones	83
Figure 17.	Effect of Gamma Radiation on the Ultimate Elongation of Various Siloxanes	. 64
Figure 18.	Siloxane and Silcarbane Polymers	85
Figure 19.	Effect of Temperature on Wright Loss in Air and in Vacuum.	94

LIST OF FIGURES (Continued)

			Page
Figure 20.	Per Cent Weight Loss Versus Time at 10-6 Torr and Various Temperatures for Nylon.		102
Figure 21.	Per Cent Weight Loss Versus Time at 10 ⁻⁶ Torr and Various Temperatures for Polycarbonate	•	104
Figure A-1.	Combined Parameter Materials Tests		A- 70
Figure A-2.	Radiation Effects on Narmco 3135 and 3M 1469/1968 Adhesives	•	A-71
Figure A-3.	Radiation Effects on Apco 1219 and Lefkowell 109/LM52 Adhesives		A- 72
Figure A-4.	Ultraviolet Degradation in Vacuum, Spacecraft "White" Surfaces		A-73
Figure A-3.	Combined Parameter Parameter Materials Test		A-74
Figure A-6.	Radiation Effects on Sinewave Laminate		A-75
Figure '~7.	Raidation Effects on Hexcel Laminate		A-76
Figur, A-8.	Combined Parameter Materials Tests		A-77
Figure A-9.	Combined Parameter Materials Tests		A-78
Figure A-10.	Combined Parameters Materials Tests	•	A-79
Figure A-11.	C nbined Parameter Materials Tests		A 80
Figure B-1.	Change in Permeability on Exposure to Ultraviolet Radiation a Various Temperature Levels - Viion "A"		E\~126
Figure B-2.	Tensile Strength and Elongation for Polyurethane creadiated in Vacuum and in Air.		B-127
Figure B-3.	Stress/Strain Curves for Polyurethane Irradiated in Air		B-128
Figure B-4.	Stress/Strain Curves for Polyurethane Irradiated in Vacuum	•	B-129
Figur B-5.	Swelling of Irradiated Polyurethane Specimens in Benzene .		B-130
Figure 3-6.	Effects of Gamma Radiation on Physical Properties of Silastic 1602		B-131

LIST OF FIGURES (Continued)

		Page	îe.
Figure B-7.	Effects of Gamma Radiation on Electrical Properties of Silastic 1602	B-132	132
Figure C-1.	Initial Rates of Weight Loss for Organic Materials Tested	C-42	-42
Figure C-2.	Tensile Properties of Irradiated Polytetrafluoroethylene Film (Vacuum = 10 ⁻⁶ mm Hg)	C-43	-43
Figure C-3.	Coefficient of Friction and Rider Wear for Various Polytetraf proethylene Compositions Sliding on 440-C Stainless Steel in Vacuum (10-9 mm Hg)	C-44	-44
Figure C-4.	Tensile Strength of Fluorocarbon Plastics at Cryogenic Temperatures	C-45	· 4 5
Figure C-5.	Thermal Linear Expansion of PCTFE and PTFE at Subzero Temperatures	C-46	-46
Figure C-6.	Radiation Effects on Kel-F Film	C-47	-47
Figure C-7.	Effect of X-Ray irradiation on TFE-6 (Dissipation Factor)	C-48	-48
Fi, .re C-8	Recovery Characteristics of TFE-6 Specimens After X-Ray Irradiation	C-49	.40
Figure C-9.	Effect of X-Ray Irradiation on TFE-6 (Dielectric Constant)	C-50	-50
Figure C-10,	Effect of X-Ray Irradiation on FEP-100 (Dissipation Factor)	C-51	-51
Figure C-1'.	Effect of X-Ray Irradiation on FEP-100 (Dielectric Constant)	C-52	-52
Figure C-12.	Comparison of the Effects of X-Irradiation on the Dissipation Factor of PTFE-6 in Vacuo (5 x 10 ⁻⁶ mm Hg) and in Air.	C-53	∙53
Figure C-13.	Radiation Effects on Mylar Film	C-54	-54
Figure C-14.	Radiation Effects on Aluminized Mylar Film	C-54	.54
Figure C-15.	Radiation Effects on Alumiseal Film (Mylar-Aluminum-Mylar Laminate)	C=55	.55
Figure C-16.	Effects on Tensile Properties of HT-1 Fibers by Irradiation in Various Environments With 253, 7 mm Light	C-56	56
Figure C-17.	Effects on Tensile Properties of Polyberzimidazole Fibers by Irradiation in Various Environments with 253.7-mu Light	C-57	57
	BATTELLE MEMORIAL INSTITUTE		

LIST OF FIGURES (Continued)

		Page
Figure C-18.	Effects on Tensile Properties of Fibers of Thiazole Polymer by Irradiation in Various Atmospheres with 253.7-mu Light	
Figure C-19.	Radiation Effects on DuPont "H" Film	C-59
Figure C-20.	Comparison of Breakdown Voltage Under Different Test Ambients for Film-Coated Wires	C-60
Figure C-21.	Comparison of Breakdown Voltage Under Different Test Ambients for Fibrous-Coated Wires	C-61
Figure C-22.	Weight Loss of Polyimide in Vacuum as a Function of Specimen Temperature. Ambient Pressure, 10 ⁻⁷ to 10 ⁻⁸ Millimeter of Mercury	C-62
Figure C-23.	Coefficient of Friction and Rider Wear for Various Material Combinations in Vacuum (10 ⁻⁹ mm Hg)	C-63
Figure C-24.	Coefficient of Friction as a Function of Time for Polyimide Sliding on Polyimide and on 440-C Stainless Steel in Vacuum (10-9 mm Hg)	C-64
Figu: . C~25,	Radiation Effects on Magnolia Foam	C-65
Figure C-25.	Radiation Effects on Marfoam	C-66
Figure C-27.	Radiation Effects on Shear and Tensile Strengths of CPR20-3 Foar	C-67
Figure C-28.	Radiation Effects on Compressive Properties of CPR20-3 Foam	C-68
Figure C-29.	Effects of Gamma Radiation on Viscosity of Silicone Fluids	C- 69
Figure C-30.	Effects of Gamma Radiation on Electrical Properties of Silicone Fluids	C-70
Figure C-31.	Effects of Gamma Radiation on Penatration of Silicone Compounds	C-71
Figure C-32.	Effects of Gamma Radiation on Electrical Properties of Silicone Compounds	C-72
Figure C-33.	Effects of Gamma Radiation on Physical Properties of Silastic 1602	C-73
Figure C-34.	Effects of Gamma Radiation on Electrical Properties of Silastic 1602	C-74
	BATTELLE MEMORIAL INSTITUTE	

LIST OF FIGURES

(Continued)

		Page	
	Effects of Gamma Radiation on Bond Strength of Dow Corning 980 Varnish	. C-75	
Figure C-36.	Effects of Gamma Radiation on Electric Strength of Dow Corning 980 Varnish	. C-75	
Figure C-37.	Effects of Gamma Radiation on Electrical Properties of Sylgard 182	. C-76	

THE EFFECT OF NUCLEAR RADIATION ON ELASTOMERIC AND PLASTIC COMPONENTS AND MATERIALS (ADDENDUM REPORT)

---SUMMARY AND CONCLUSIONS

There is a widespread interest in polymeric materials which may be used in aerospace applications. There is an increasing demand for information on the behavior of these materials in a radiation environment (nuclear, ultraviolet and particle radiation), in a high vacuum, and at extreme temperatures. This is reflected in the amount and types of publications which have become available since the publication of REIC Report No. 21 on "The Effect of Nuclear Radiation on Elastomeric and Plastic Components and Materials". The amount of data which has become available since 1961 is somewhat limited, although both the quality and scope have improved. The trend, noted in Report No. 21, of testing components in the environments to be encountered in actual operation has increased. Data on the behavior of polymers in a radiation-vacuum extreme temperature environment have become available. Because of the difficulties in obtaining data of this type, the amount is still limited. However, it is encouraging to see the progress in this direction.

In general, materials having a high degree of cure, high molecular west, a good heat resistance, and little or no plasticizer or other volatile additive show promise for use materials. In some cases, the radiation resistance of a material is inteprove in vacuum because of the lack of oxygen which is generally the major contributing fact to poly her deterioration.

Polyimid. and phosphonitrillic chloride polymers have been reported as having improved radiation stability over presently used polymers and merit consideration for further development and application in end items. O-rings manufactured from rubber compositions containing antirads have shown improved service life in a radiation environment, although this improvement still falls short of the requirements for many applications. Several structural adhesives and laminates have been found to be satisfactory in radiation exposures at cryogenic temperatures. These include polyurethane, epoxy and modified epoxy, phenolic, and polyester materials.

In this addendum report, a brief summary of the effects of radiation and other known environmental conditions is given for end items and mail rals. A comparison of the relative resistance is provided by Figures 1 through 4 and Tables 1 and 2, which show the stability of the various elastomers and plantics to gamma radiation as well as noting the general effects of vacuum and ultraviolet radiation on these materials. At the present time, data are not sufficient to definitely establish the life of a particular material for all conditions of exposure, but the data do give guidelines which will help to determine the proper use of various types of polymeric materials.

In general, the vacuum environment has not proven to be too severe. Most of the polymeric materials have not been too seriously affected by this environment and have maintained satisfactory properties. Several plastic materials have shown promise for use at cryogenic temperatures. In most cases, the effects of nuclear radiation under

FIGURE 1. MAXIMUM RADIATION EXPOSURE OF VARIOUS COMPONENTS FOR RETENTION OF USEFUL PROPERTIES

Damage

Incipient to mild

Mild to moderate

Utility of Plastic

Nearly always usable

Often satisfactory

FIGURE 2. RELATIVE RADIATION STABILITY OF ELASTOMERS

Damage

Utility of Plastic

FIGURE 3. RELATIVE RADIATION STABILITY OF THERMOSETTING RESINS

Utility of Plastic
Nearly always usable
Often satisfactory
Limited use

incip.ent to mild

Afil to moderate

Moderate to severe

CHILL THESE

Jamage

Polyamide Polyamide Polyamide Polyamide Polyamyl formal Polyamyl formal Polyamyl formal Polyamyl formal Polyamyl butyral Celluluse acetate Polymethyl methacrylate Polyamide Vinyl chloride-acetate Vinyl chloride-acetate Teflon Gommo Exposure, polyamide Polyamyl butyral Celluluse acetate Polymethyl methacrylate Polymethyl methacrylate Polyamide Vinyl chloride-acetate Teflon Gommo Exposure, engs q² (C)
--

FIGURE 4. RELATIVE RADIATION RESISTANCE OF THERMOPLASTIC RESINS

TABLE 1. EFFECT OF VACUUM ON RADIATION STAPILITY OF POLYMERS

astins	
Diallyl phthalate	No significant effect
Epoty	No significant effect
: fylar	Improves stability
Poly: nide (nylon)	No significant effect
Polycarbonate	Slight improvement
Polyethylene	Improves stability
Polyvinyl chloride	Decreases stability
Silicone	Improves stability
Teflon	Improves stability substantially
Kynar (polyvinylidene fluoride)	·
	No significant effect
Tedlar (polyvinyl fluoride)	No significant effect
Kel-F (trifluoromonochloroethylene)	Improves stability
astomers	
Polyacrylic	No significant effect
Butyl	No significant effect
Hypalon (chlorosulfonated polyethylene)	Decreases stability
Neoprene	No significant effect (conflicting data)
Nitrile	Decreases stability
Polysulfide	No significant effect
Polynirothane	No significant effect
Silicone	No significant effect
Vito: 1 These offects are only general and individual compositions	Improves stability may behave differently.
These effects are one general and individual compositions	, , , , , , , , , , , , , , , , , , , ,
These effects are one general and individual compositions	may behave differently.
TABLE 2. EFFECT OF ULTRAVIOLET	may behave differently. TRADIATION ON POLYMER STABILITY
TABLE 2. EFFECT OF ULTRAVIOLET	may behave differently. FRADIATION ON POLYMER STABILITY Effect of Ultraviolet Energy
TABLE 2. EFFECT OF ULTRAVIOLET Polymer astics	may behave differently. TRADIATION ON POLYMER STABILITY
TABLE 2. EFFECT OF ULTRAVIOLET Polymer astics Mylar	T RADIATION ON POLYMER STABILITY Effect of Ultraviolet Energy Decreases tensile strength and el-ngation No significant effect
TABLE 2. EFFECT OF ULTRAVIOLET Polymer astics Mylar Polyamide (nylon) Polymethyl methacrylate	T RADIATION ON POLYMER STABILITY Effect of Ultraviolet Energy Decreases tensile strength and el-ngation
TABLE 2. EFFECT OF ULTRAVIOLET Polymer astics Mylar Polyamide (nylon) Polymethyl methacrylate Polyethylene	T RADIATION ON POLYMER STABILITY Effect of Ultraviolet Energy Decreases tensile strength and el ngation No significant effect Surface discoloration and crazing Embrittlement
TABLE 2. EFFECT OF ULTRAVICLET Polymer astics Mylar Polyamide (nylon) Polymethyl methacrylate Polypropylene	Decreases tensile strength and el ngation No significant effect Surface discoloration and crazing Embrittlement Embritsien
TABLE 2. EFFECT OF ULTRAVIOLET Polymer astics Mylar Polyamide (nylon) Polymethyl methacrylate Polypropylene Polypropylene Polyimide	Decreases tensile strength and el ngation No significant effect Surface discoloration and crazing Embrittlement Embritdenia
TABLE 2. EFFECT OF ULTRAVIOLET Polymer astics Mylar Polyamide (nylon) Polymethyl methacrylate Polypropylene Polypropylene Polystyrene	Decreases tensile strength and el ngation No significant effect Surface discoloration and crazing Embrittlement Embritdenia No significant effect Yellows
TABLE 2. EFFECT OF ULTRAVIOLET Polymer astics Mylar Polyamide (nylon) Polymethyl methacrylate Polypropylene Polypropylene Polyimide	Decreases tensile strength and el-ngation No significant effect Surface discoloration and crazing Embrittlement Embritdenia
TABLE 2. EFFECT OF ULTRAVIOLET Polymer astics Mylar Polyamide (nylon) Polymethyl methacrylate Polypropylene Polypropylene Polystyrene Plasticized polyvinyl chloride	Decreases tensile strength and el ngation No significant effect Surface discoloration and crazing Embrittlement Embritishen
TABLE 2. EFFECT OF ULTRAVIOLET Polymer astics Mylar Polyamide (nylon) Polymethyl methacrylate Polyethylene Polypropylene Polymide Polystyrene Plasticized polyvinyl chloride Teflon astomers	Decreases tensile strength and el ngation No significant effect Surface discoloration and crazing Embrittlement Embritishmen No significant effect Yellows Develops tacky and discolored surface No significant effect
TABLE 2. EFFECT OF ULTRAVICLET Polymer astics Mylar Polyamide (nylon) Polymethyl methacrylate Polythylene Polypropylene Polyimide Polystyrene Plasticized polyvinyl chloride Teflon astomers Butyl	Effect of Ultraviolet Energy Decreases tensile strength and el-ngation No significant effect Surface discoloration and crazing Embrittlement Embritien No significant effect Yellows Develops tacky and discolored surface No significant effect Increases tensile strength and elongation
TABLE 2. EFFECT OF ULTRAVICLET Polymer astics Mylar Polyamide (nylon) Polymethyl methacrylate Polyethylene Polyimylene Polyimylene Polyimylene Polystyrene Plasticized polyvinyl chloride Teflon astomers Butyl Hypalon (chlorosulfonated polyethylene)	Effect of Ultraviolet Energy Decreases tensile strength and el-ngation No significant effect Surface discoloration and crazing Embrittlement Embritien No significant effect Yellows Develops tacky and discolored surface No significant effect No significant effect Yellows Develops tacky and discolored surface No significant effect
TABLE 2. EFFECT OF ULTRAVICLET Polymer astics Mylar Polyamide (nylon) Polymethyl methacrylate Polythylene Polypropylene Polystyrene Plasticized polyvinyl chloride Teflon astomers Butyl Hypalon (chlorosulfonated polyethylene) Neoprene	Decreases tensile strength and el ngation No significant effect Surface discoloration and crazing Embrittlement Embridient Embridient No significant effect Yellows Develops tacky and discolored surface No significant effect No significant effect Increases tensile strength and elongation No significant effect Increases tensile strength, decreases elongation
TABLE 2. EFFECT OF ULTRAVICLET Polymer astics Mylar Polyamide (nylon) Polymethyl methacrylate Polythylene Polythylene Polystyrene Plasticized polyvinyl chloride Teflon astomers Butyl Hypalon (chlorosulfonated polyethylene) Neoprene Nitrile	Decreases tensile strength and el ngation No significant effect Surface discoloration and crazing Embrittlement Embritisher' No significant effect Yellows Develops tacky and discolored surface No significant effect Increases tensile strength and elongation No significant effect Lincreases tensile strength, decreases elongation Decreases tensile strength and elongation
TABLE 2. EFFECT OF ULTRAVICLET Polymer astics Mylar Polyamide (nylon) Polymethyl methacrylate Polythylene Polythylene Polymide Polystyrene Plasticized polyvinyl chloride Teflon astomers Butyl Hypalon (chlorosulfonated polyethylene) Neoprene Nitrile Styrene-butadiene (SBR)	Decreases tensile strength and el ngation No significant effect Surface discoloration and crazing Embrittlement Embritishen
TABLE 2. EFFECT OF ULTRAVICLET Polymer astics Mylar Polyamide (nylon) Polymethyl methacrylate Polythylene Polythylene Polystyrene Plasticized polyvinyl chloride Teflon astomers Butyl Hypalon (chlorosulfonated polyethylene) Neoprene Nitrile	Decreases tensile strength and el ngation No significant effect Surface discoloration and crazing Embrittlement Embritisher' No significant effect Yellows Develops tacky and discolored surface No significant effect Increases tensile strength and elongation No significant effect Lincreases tensile strength, decreases elongation Decreases tensile strength and elongation

these combined environments are not any more serious than under atmospheric conditions as far as usefulness in various components is concerned. Some materials such as Teflon have shown better properties in these combined environments. However, it remains a matter of proper compounding and curing and individual study to determine the applicability of the various materials for a particular component use.

Recommendations

- (1) The recommendations made in REIC Report No. 21 are still applicable.

 Although some steps have been made to secure the data recommended in that report, there is still need for more work in these areas.
- (2) More data are needed on the amount of damage which may be accrued by elastomeric and plastic materials before failure occurs in the operation of the fabricated component. Information is needed or minimum strength requirements before an item is considered inoperable.
- (3) Many of the experimental space flights have been successful and in many of these there has been good use made of polymeric materials. One of the more useful and relatively inexpensive pieces of information which would be of extremely great value would be an accurate and complete compilation of the elastomeric and plastic materials including trade names and specific compositions which have proved successful in these space missions. In cases where these data are of a proprietary nature, sufficient information should be made available so that designers of fiture verticles and components can be made aware of the availability of these materials.
- (4) Continued work is needed in fundamental studies leading to new and improved polymers having greater resistance to radiation damage.

INTRODUCTION

This report is the first addendum to REIC Report No. 21, "The Effect of Modean Radiation on Elastomeric and Plastic Components and Materials" and summarizes data published during the period April 30, 1961, and April 30, 1964, on radiation effects in polymeric components and materials. It also includes effects of vacuum, ultraviolet radiation, and extreme temperatures, where these data are available.

There has been a noticeable decrease in the volume of publications during the period covered in this report. This has been due in part to the amount of information which had been collected previously and to the scope of this earlier information. However, part of the reason for "e lack of new information is due to a cutback in the rate of effort and to a change in the overall objectives and pholosophy of both Government and industry. There is still a need for work to be continued on determining the effects of radiation at high exposures, the effects of exposure rate on components, high-impulse effects, and the mechanisms of degradation of various elastomers and plastics. In this last area, the amount of degradation which can be tolerated in various component parts before failure in operation needs to be determined.

ď.

to

Because of the interest in space vehicles, the greater portion of the present work being done is concerned with the effects of combined environments such as vernum and radiation and elevated and cryogenic temperatures and radiation. Because of the interest in space environments, data on the effects of vacuum and temperature are included in this space which do not refer directly to radiation stability. However, it is believed that these data will help to impart an understanding of the effects of radiation in space.

A few new polymers have been developed which are of interest both with respect to their properties and to their possible applications in a space-radiation environment. These are discussed under the individual polymeric materials.

Elastomers and plastics for which no new information was found are not included in this report and the reader is referred to REIC Report No. 21. In this addendum report, components are discussed, followed by the elastomers and then the plastics, arranged alphabetically.

It is often necessary in dealing with radiation exposures to convert from one unit of radiation exposure to another, particularly when comparing various reports. Table 3 lists the conversion factors which have been used by the REIC ... making the necessary conversions.

To permit comparison of data from various sources, reported in a variety of units, it is frequently necessary for the REIC to convert to the units recommended in this memorandum. In many cases, insufficient information is presented to permit an accurate conversion. Of the conversion factors listed below, those marked with an asterisk have been adopted by the REIC to be used in such instances. The values are approximately correct for hydrocarbons, assuming an average energy of 1 Mev for the radiations. These values should be used with caution and only in cases where information is not available on materials composition and energy distribution of the radiation to permit an accurate conversion.

TABLE 3. CONVERSION FACTORS

To Convert	To	Multiply By
Rads	ergs g-1	100
Ev $g^{-1}(C)$	ergs g ⁻¹ (C)	1.6×10^{-12}
Roentgen	ergs g ⁻¹ (C)	87.1
Rep	ergs g ⁻¹ (C)	84.6
Rad (tissue)	ergs g ⁻¹ (C)	90.9
Rad (water)	ergs g ⁻¹ (C)	90.0
Mev cm ^{-2(a)}	ergs g ⁻¹ (C)	4.5×10^{-8}
Photons cm-2(a)	ergs g ⁻¹ (C)	4.5×10^{-8}
Photons cm-2(a)	rep	5×10^{-10}
Rep hr-l(a)	$_{n \text{ cm}}^{-2} _{\text{sec}}^{-1(b)}$	7.1×10^{4}
Rad (C) $hr^{-1}(a)$	$n cm^{-2} sec^{-1(b)}$	1. 17 x 10^5
Rem hr-1(a)	$_{n \text{ cm}}^{-2} _{\text{sec}}^{-1(b)}$	8.3×10^3
(n v ₀)	$rad(C) hr^{-1}$	4.58×10^{-6}
n cm ^{-2(a, b)}	rads (C)	4. 17 x 10 ⁻⁹
n cm ^{-2(a, b)}	ergs g ⁻¹ (C)	4. 17 x 10^{-7}
(nv _o)	rads (C)	1.06 x 10 ⁻⁹
(nv ₀)	ergs g ⁻¹ (C)	1.06×10^{-7}

⁽a) Assumed rage energy of 1 Mev.

(b) The term n cm⁻² sec⁻¹ may appear as nv and the term n cm⁻² may frequently appear as nvt although the terminology is not strictly correct unless the "v" value is specified.

COMPONENTS

Adhesives

Adhesives are available which maintain shear strengths to a gamma exposure of 10^{10} to 10^{11} ergs g^{-1} (C) at room temperature. An epoxy-phenolic adhesive retained excellent shear strength after irradiation at 350 F to an exposure of 10^{11} ergs g^{-1} (C).

In order to retain useful strengths of adhesives as long as possible, it was recommended that adhesive thicknesses of 10 mils or better be used.

In general, vacuum is not harmful to adhesives, but there are exceptions. Tensile shear strengths of several adhesives either remained the same or increased when samples were exposed to a temperature of 200 C in a vacuum. Oxidation appears to be an important factor in the degradation of adhesives at high temperatures. Vacuum irradiation produced no detectable changes or only minor changes in the lap-, hear strengths of adhesives tested by various investigators.

Information is available on the effects of radiation at various temperatures in air for several adhesives. In general, these maintained their shear strength to a general exposure of 10^{10} ergs g^{-1} (C). Studies with structural adhesives have emphasized their stability in space environments, and several are commercially available that are serviceable for the vacuum and temperature conditions encountered in space. However, care must be exercised in choosing adhesives since some compositions may be adversed affected by vacuum. In the use of transparent adhesives for bonding transparent materials, such as polymethyl methacrylate, ultraviolet radiation is a factor to be considered.

Effects of Nuclear Radiation

Hexcell 422-J (epoxy-phenolic) adhesive was tested in the form of lap-shear specimens at room temperature and at elevated temperatures (1). Shear-strength tests were conducted at laboratory temperature (75 F) for samples irradiated at ambient temperatures (110 to 130 F) and at 350 F for the samples irradiated at elevated temperatures. Shear strengths of the samples irradiated at ambient temperature to gamma exposures up to 1.7 x 10^{11} ergs g^{-1} (C) were not greatly different from the chear strength of the control samples. Samples irradiated at 250 F and 310 F to 6.8 x 10^{10} ergs g^{-1} (C) and 2.2 x 10^{11} ergs g^{-1} (C), respectively, stored for 7 days at 350 F and then tested at 350 F, lost approximately 15 per cent and 10 per cent of their shear strength. The control (unirradiated) samples under similar test conditions lost approximately 70 per cent of their shear strength. Apparently heat alone affected the lap-shear strength to a much greater degree than the combined radiation-heat environment. At temperatures above 310 F, the effects of heat alone and heat plus radiation [6 x 10^{10} ergs g^{-1} (C)] were about equivalent. The shear strength of specimens, both control and irradiated, exposed to 450 F decreased from 2500 psi to about 800 psi. Data are shown in Table 4.

⁽¹⁾ References appear on page 117.

TABLE 4. SHEAR STRENGTH OF ADRESTY: 422-J LAP-SHEAR SPECIMENS⁽¹⁾

	Namen	Irradiation	ao	Swage		Test	3
Gamma,	n cm ·2	Temperature,	Time,	Temperature, F	Time, days	Temperature, F	Shear Strength ⁽⁴⁾ ,
enss 8 - (C)	(276.5 MCV)			75	;	75	2,490/51/16
Control		: ;	; ;	5 E	:	350	2, 690/102/8
Control						;	
, and a		110	ន	;	:	ę.	2,666/160/20
2.5×10^{10}	2,2 x 10 ¹⁵	110	æ	;	;	75	2, 782/123/20
,		677	ç	;	;	75	2,742/171/20
Control 9.1 x 10 ¹⁰	1.0 × 10 ¹⁶	9	3 8	;	:	75	2, 506/137/20
1		Č	ç	OS6	-	360	134/88/20
Control	31.00	000	š 2	32	-	350	2,240/150/16
6.8 x 10 ¹⁰ 6.8 x 10 ¹⁰	5.9 x 10 ¹⁵	250	ಕ ಕ	380	·on	350	1,987/191//
•		•		350		320	816,36/20
Control	1016	016	18	380		320	2,406/159/3
2,2 × 10 ¹¹	2,4 × 10 ⁻²	310	៖ ខ	380	ω	350	1,863/22/17
	; ;				;	75	2.542/195/10
Control	314.	: 3	: :	: (: :	2 22	2,861/199/20
5.6 × 10.0 1.7 × 10.11	5.2 x 10.5 1.7 x 10.16	130	8 8	:	;	75	2, 590/180/20
,		3	ď	;	;	450	1,#50/136/9
Control 6.0 x 10 ¹⁰	7.2×10^{15}	‡	8 8	:	•	450	1,280/74/9
		445	8	450	7	450	920/83/10
6.0 × 10 ¹⁰	7.2 x 1015	14 5	55	450		450	300/18/10
				of the second se	petamine do	observation estimated from the range, and n a number of	a number of

(a) Data are given as \$\overline{x}\subseteq \overline{x}\subseteq \overline{x}\subseteq \overline{x}\supereq \overline{x}\subseteq \overline{x}\supereq \overline{x}\supereq \overline{x}\subseteq \overline{x}\supereq \o

The effect of bamma radiation on four adhesives was studied by McCurdy and Rambosek(2). Included were:

EC-1469	A modified epoxy-based adhesive
AF-31	An elastomer-phenolic film adhesive
AF-32	An elastomer-phenolic film adhesive
EC 1639	A modified phenol: adhesive

All of these adhesives are relatively rigid and are used primarily for metal-to-metal bonding. The effects of radiation on overlap shear strengths and on peel strengths in air at room and at elevated temperatures were determined. Also, the effect of adhesive film thickness was studied. In each case, the adhesive seemed to benefit slightly from the additional crosslinking resulting from low orders of irradiation. However, degradation began at an exposure of \dot{z} to 6 x 10¹⁰ ergs g⁻¹ (C). The principal effect of the high exposure [8 to 9 x 10¹⁰ ergs g⁻¹ (C)] was embrittlement.

Figure 5 shows the effect of radiation on the bond performance over a wide temperature range. In most cases the high-temperature performance fell off in a way which paralleled the room-temperature performance. EC-1469 maintained its properties to about 6 x 10¹⁰ ergs g⁻¹(C), while EC-1639 was relatively unaffected at an exposure of 9 x 10¹⁰ ergs g⁻¹(C). The elastomer-phenolic films, AF-31 and AF-32, were affected by radiation to a greater extent than were the other adhesives. These rubber-modified films maintained their performance at room temperature up to 4 x 10¹⁰ ergs g⁻¹(C), but at elevated temperatures, both fell below the MIL-A 5090D, Type II specifications after about 10¹⁰ ergs g⁻¹(C).

The three elastomer phenolic films varied somewhat in flexibility and, therefore, in the mount capeel strength at room temperature. The most rigid, AF-31, showed the betretential of peel strength when subjected to radiation, but all three adhesives deteriorated to about the same over-all value after 9×10^{10} ergs g⁻¹ (C). It was thought that some gas formed at the interface.

To determine the effect of adhesive thickness, four bonds were made which varied in thickness from 1.2 mils to 16.1 mils. Prel strength varied from 10 to 30 pounds per inch width. However, under irradiation, all the adhesives lost strength rather rapidly: and at very high doses, there was little significant difference in peel strengths. The absolute peel strengths were such, however, that the use of adhesive thicknesses of 10 mils or greater was recommended to retain a useful strength as long as possible. Loss of peel strength was due to embrittlement and, to some extent, to degradation of the adhesive.

McCurdy and Rambosek also tested three composite adhesives for use in bonding honeycomb sandwich structures to metal surfaces. The composite consisted of a flexible adhesive to provide good peel strength at the metal interface and a rigid adhesive to provide wetting and filleting of the honeycomb core structure. One of the adhesive systems checked consisted of an EC-1469 epoxy coating on an AF-102 nitr. e-phenolic film. The other two composites, AF-200/1593 and AF-202/1593 were not identified as to chemical typs. The investigators found that radiation had an extremely detrimental effect on the properties of the rigid adhesive. Peel strength detectorated rapidly with failure in the fillet area. With high dosage, fillets spalled badly, leaving a relatively clean core surface. It was concluded that these composite adhisive films would not be suitable for high radiation areas in heneycomb sandwich structures where high peel strength is important. Where beam structural strength is a more important function, these adhesives will perform up to 3 to 4 x 1010 ergs g⁻¹ (C) exposure dose.

FIGURE 5. EFFECT OF RADIATION ON BOND PERFORMANCE AT VARIOUS TEMPERATURES⁽²⁾

Figure 6 shows the difference in performance of the same three adhesive systems under bending loads. It was found that the relatively rigid high-density system EC-1469/AF-102 maintained its performance over the whole range of irradiation. The two composite films, AF-200/1593 and AF-202/1593, deteriorated after an exposure of $3 t \cdot 4 \times 10^{10}$ ergs g⁻¹ (C), but not quite so fast in the beam structure requirement as they did in the peel test. Failure again was in adhesion to the core.

In an applications test, Litton Systems found that Epon VI did not prove satisfactory for use as an adhesive for bonding a metal spring when the bond was subjected to a radiation exposure of 1 x 10¹¹ ergs g⁻¹ (C) and a temperature of about 45 C(3). The adhesive appeared to lack dimensional stability, a movement of 1 to 10 mils being sufficient to seriously degrade performance.

Effects of Vacuum and Nuclear Radiation

Podlaseck and Suhorsky(4) and Blackmon, Clauss, and associates(5) reported data on the volatilization of adhesives in a vacuum and in a vacuum-radiation environment, In order to determine the extent of bond weakening of epoxy, epoxy-phenolic, epoxypolyamide, and silicone adhesives, long-term exposures up to 1100 hours at 93 to 121 C were carried out in vacuum. The samples were exposed to a vacuum of 10-6 torr and a temperature of 200 F for 865 hours, followed by an exposure to 250 F and 10⁻⁶ torr for 312 hours. With the exception of one modified phenolic, supported adhesive fine Aerohond 422, the adhesives were stable in these test environments. The samues were then exposed to 3.4 x 10^9 ergs g^{-1} (C) in air, followed by exposure to vacuum at temperature, of 2') F and 300 F, and finally to a cycling (10 cycles) over a temperature range (-80 F to 200 F. As can be seen in Table 5, there was an increase in leakage rate several of the adhesives after exposure to radiation. However, additional exposure to vacuur, and elevated temperatures decreased these leakage rates. It is believed by Blackmon and associates that the gamma radiation induced crosslinking, depolymerization, and chain scission so that low-molecular-weight fragments (e.g., hydrogen, carbon monoxide, carbon dioxide, and methane) were liberated and produced porosity in the glue line. Subsequent exposure to vacuum and elevated temperature permitted flow in the polymers and sealed up the pores,

Kerlin and Smith^(6,7) tested structural adhesives for shear strength under combined temperature, radiation, and vacuum environment. Data were included for the following adhesives:

Adhesive	Туре	Adhesive	Туре
Shell 929	Ероху	HT-42!	Epoxy phenolic
Shell 934	Ероху	Epon 422 J	Epoxy phenolic
Epon VIII	Ероху	Metlbond 4021	Nitrile phenolic
Narmco A	Modified epoxy	Scotchweld AF-6	Nitrile phenolic
FM-1000	Epoxy polyamide	FM-47	Vinyl phenolic
Metlbond 406	Epoxy polyamide	APCO 1252 (formerly	Polyurethane
Metlbond 408	Vinyl epoxy polyamide	Hexcel 1252)	
Methond 302	Epoxy phenolic	Narmco C	Polyurethane

FIGURE 6. EFFECT OF RADIATION ON HONEYCOMB BEAM FLEXURE(3)

-Le /ated temperature, and high-energy Kadiation $^{(4,5)}$ TABLE 5. RESULTS OF EXPOSURE TESTS ON ADHESIVES TO VACUL.

				k Rate oc/sec (Measured	k Pare co/sec (Measured With Hellum Leak Detector)	
				After Additional		3 4
			After Exposure of 865 Hours at	xposure to 3.4 x 10. Reengens of	After Additional	Temperature
			200 F Plus 312	Gamma Radiation	Exposure of 50 Hours at	Cycling at
			Hours at 250 F	From Co-60	250 F and 50 Hours at	-80 to 200 F
Adhesive	Chemical Type	Form	and 10-6 mm Hg	Source in A 'r	300 F at 10.0 mm Hg	(10 Cycles)
A erobond 422	Epoxy phenolic	Supported film	2 × 10 ⁻⁵	4.7 x 10 ⁻⁶	5 x 10 ⁻⁷	2 × 10 ⁻⁶
HT-424	Epoxy phenolic	Supported film	Large(^) 10 ^{-6(b)}	Too large to measure	to large: to measure	ï
HT-424-F	Epoxy phecolic	Pnmer or!y	10-6	2 × 10 ⁻⁵	4 × 10 ⁻⁷	1.3 , 10-0
EC-1648	Epoxy poly- amide	2-pt liquid	10-6	9 × 10 ⁻⁶	4 ~ 10-7	3 x 10 ⁻³
EC-1386	Epoxy	1-pt líquíd	10-6	4 x 10-6	2×10^{-7}	1, 3 x 10 ⁻⁶
Epon 901/8-1	Ероху	2-pt lique	10-6	1,4 x 10 ⁻⁷	2 × 10 ⁻⁷	2 x 1.5°6
Epon 8/A	Ероху	2. pt liquid	10-6	2.3 × 10-7	5 x 10"7	7.5×10^{-7}
A-1	Ероху	pindų jd. ?	10-6	2 x 10 ⁻⁵	2.5×10^{-7}	9 < 10-7
Q3-0019	Silicone	1-pt liquid	30-S	1,5 x 10 ⁻⁷	5 x 10 ⁻⁸	4.5 \ 10.6

(a) Leak in specimen bonded with HT-424 was detected after the first 21 hours of exponue. This may have been die to a poor seal rather than to the adhesive itself.
(b) Values taken from The Stability of Organic Materials in Vacuum. (4)

The adhesives were irradiated in vacuum to various gamma exposure doses and tested in air after the irradiation in vacuum had been completed. According to Kerlin, the data show that vacuum irradiation produced no detectable change in the lap-shear strength of FM-1000, Metibond 406, and Epon 422 J. Also, only minor changes were found for Shell 934, HT-424, and APGO 1252. Metibona 408 decreased 78 per cert in lap-, hear strength, Epon VIII and Shell 929 decreased by 12 per cent, and FM-47 decreased by approximately 42 percent. Metibona 1021 decreased by 25 per cent while Narmoo C decreased by 48 per cent in shear strengths. (In air, Narmoo C lost practically all shear strength when irradiated.) Narmoo A increased by 16 per cent in shear strength when irradiated in vacuum. Data are given in Table 6.

Two adhesives, FM-1000 (epoxy polyamide) and Metlbond 302 (epoxy phenolic), were tested for ultimate shear strength in vacuum immediately after irradiation (this was described as a dynamic foot). The average ultimate shear strength of the test specimens showed a significant increasing trend from the control tests, through the static irradiation (air) tests, to the dynamic irradiation tests (Table A-1 in Appendix A). This is attributed to a greater rate of crosslinking of the polymer relative to chain scission by oxygen during irradiation. At the lower partial pressures of oxygen in the higher vacuum, the rate of oxygen-induced chain scission is decreased and the relative rate of radiation-induced crosslinking is increased, leading to increased stiffness and strength of the polymers.

Gray, et al., (8) irradiated lap-shear specimens prepared with epoxy, a travephenolic, vinyl-phenolic, nitrile-phenolic, and glass-supported epoxy-film and silves. These were irradiated in air and in vacuum (10-6 torr) to a gamma exposure of 109 ergs g⁻¹ (C) and appearature of 100 F maximum. The specimens were then tested for shear strength at a temperature of -300 F. In all cases, loss in shear strength was small and the original silvength of the adhesive bond specimens could be considered for the design of parts to be silbjected to the above conditions.

DeWitt, Podlaseck, and Suhorsky(9) reported on adhesives FM-47, a polyvinyl butyral-phenolic adhesive, and HT-424, an epoxy-phenolic exposed to vacuum and elevated temperature. FM-47, after exposure for 3-1/2 hours at 250 F in a vacuum of 4.2 x 10^{-4} torr, decreased in peel strength by 13 per cent and in shear strength by 7.1 per cent. HT-424, after exposure to 450 F for 4 hours in a vacuum having an ultimate pressure of 5.9 x 10^{-4} torr, showed a 14.0 per cent decrease in peel strength and 0.6 per cent in shear strength. There was no change in color of the temperature-vacuum exposed samples. Both of these adhesives were evaluated as supported films, the adhesive being coated on an open-weave glass fabric.

Levine (10) noted that oxidation is an important factor in the degradation of adhesives at high temperatures, and he studied adhesive performance in nitrogen. He found that in this environment, serious degradation did not begin with epoxy-phenolic or phenolic adhesives even after an exposure to 600 F for almost 190 hours. Data are shown in Figure 7.

Kerlin⁽⁶⁾ reported work done at the George C. Marshall Space Flight Center on the effect of a temperature of 200 C in air and in vacuum on several adhesives. These included:

TABLE 6. AVERAGE ULTIMATE SHEAR STRENGTINS OF # LESIVES BEFORE AND AFTER IRRADIATION(6.1)

		Shear Strength	trad: 100	Shear Strength	Irradiation	Shear Strength
		Before attachation,	. 44 114	After Irradiation	in Vacuum,	After Inadiation
Adhesive	Type	ısd	ergs 3 ⁻¹ (C)	ın Air, psı	ergs g ⁻¹ (C)	in Vacuum, psi
She 11 929	Epoxy	2264	3.9 x 10 ¹⁰	2510	2.9×10^{10}	1973
She11 934	Eboxy	2562	3.9×10^{10}	2840	2.9×10^{10}	2320
Epon VIII	Epo., y	2361	;	:	1.7 × 1010	2672
FM-1000	Fooxy polysmide	6065	:	;	1.7 × 10 ¹⁰	6121
	and find a	6283	3.9×10^{10}	9809	2.9×10^{10}	6117
Merlbond 406	Epoxy polyamide	4873	1,1 x 10 ¹⁰	5940	;	:
			4.9×10^{10}	352	:	i
HT -424	Epoxy phenolic	3605	3.9 × 10 ¹⁰	2599	2.9×10^{10}	3303
Epon 422 J	Epoxy phenolic	2362	:	;	3.9 × 10 ¹⁰	2452
NarmeN	Modified epoxy	415	3.9 x 10 ¹⁰	3634	2.9 x 10 ¹⁰	4959
Metlbond 408	Modified vmyl	4083	:	:	3.9 x 1010	968
	epoxy nylon					
FW-47	Vinyl phen J.	4315	3.9 × 10 ¹⁰	3716	2.9 x 10 ¹⁰	2561
		4180	:		3.9 x 1010	2415
Merlbo 4 4621	Nurile phenolic	4370	3,9 x 10 ¹⁰	3234	2.9 x 10 10	3250
AF-6	Nitrile phenolic	2578	;	:	3.9 x 10 ¹⁰	2410
APCO 1252	Polyurethane	2743	3.9 × 10 ¹⁰	3262(a)	2.9 x 1010	3181
Narmco C	Polyurethane	883	3.9 x 10 ¹⁰	30.8	2.9×10^{10}	454

(a) At a radiation exposure of 1 x 1010 ergs g⁻¹ (C) shear strength given as 3416 and 4212 in two different tests. At a radiation dose of 6 x 10¹⁰ ergs g⁻¹ (C), shear strength was 5028 531.

1. 1.

EFFECT OF HEAT AGING ON TENSILE SHEAR STRENGTH OF FIVE ADHESIVE BONDS IN NITROGEN VS APPROXIMATE BEHAVIOR IN AIR(10) FIGURE 7.

Adhesive	Type	Adhesive	Туре
Epon VIII	Epoxy	FM-47	Vinyl phenolic
Metlbond 406-1	Epoxy polyamide	Metlbond 302A	Epoxy phenolic
FM-1000	Epoxy polyamide	AF-6	Nitrile phenolic
Epon 422 J	Epoxy phenolic	Metlbond 408	Modified vinyl
• •			epoxy nylon

Tensile shear strength of these adhesives either remained the same or increased when samples were exposed to a temperature of 200 C in a vacuum. In most cases, exposure in air to 200 C for the same period of time, 24 hours, caused a decrease in tensile shear strength. The exceptions to this were FM-1000, AF-6, and Metlbond 408. With FM-1000, shear strength increased both in air and in vacuum at the higher temperature, although the increase was greater in vacuum than in air. Data on the AF-6 and Metlbond 408 were incomplete, so no conclusions could be drawn. However, it was evident that these adhesives would withstand elevated temperatures better in a vacuum than in air.

Effects of Nuclear Radiation and Cryogenic Temperatures

Five classes of adhesives were selected for evaluation at cryogenic temperatures on the basis of promising high lap-shear strengths at -65 F and 75 F. (11) These were not subjected to radiation. Lap-shear specimens were tested at -423 F. -3.39 . -100 F. and 75 F. utilizing epoxy-nylon adhesives (Metlbond 406, AF-40, and FM-197), nitrile-galab cadhesives (Metlbond 4041 and AF-32), epoxy-polyamide adhesives (Resided No. 4 and Narmoo 3135), an epoxy-phenolic adhesive (Metlbond 302-A), and a poly rethane dhesive (APCO 1219). Selection of adherends for testing was based on the anticipated use of these materials in future missiles and spacecraft, the prevalent use of some of these materials. The adherends utilized were 0.020-inch EFH 301 CRES (stainless steel), 0.064-inch 2024-T3 bare aluminum, 0.020-inch A-110-AT titanium, 0.125-inch Conolon 506 (phenolic-glass fiber laminate) and 0.125-inch Conolon 527 (polyester-glass fiber laminate). Butt-tersile tests were conducted with 3/4-inch-round stock Type 371 stainless steel and AF-40 epoxy-nylon adhesive.

The epoxy-nylon adhesives resulted in the higher lap-shear strengths /ith all adherends over the entire temperature range of -423 F to 78 F. Values obtained at -423 F are more than 100 per cent higher than any previously reported values for similar tests. The nitrile-phenolic adhesive gave excellent results over the temperature range of -320 F to 78 F but strength values dropped off sharply at -432 F. The epoxy-phenolic adhesives gave uniform results over the complete temperature range. These results were significantly lower than the epoxy-nylon and nitrile-phenolic adhesives at -320 F, 100 F, and 78 F. At -423 F the epoxy-phenolic is superior to the nitrile-phenolics. Room-temperature-cured adhesives are generally inferior to those that are heat cured. Of the three room-temperature-cured adhesives tested, the polyurethane gave higher lap-shear strengths than the epoxy-polyamides with an aluminum adherend and approximately the same strengths with stainless steel adherends. All the adhesives tested had their highest lap-shear strengths at -100 F.

Gray, et al., (8) irradiated in vacuum at ambient temperature specimens prepared with epoxy, epoxy-phenolic, vinyl-phenolic, nitrile-phenolic, and glass-supported

ien sure

Tith Ture, Ibond

r,

res re

00 F.

nd a n the ise rop-IS

n, ound

ad-

imie xy-

e at

are ne end sives

ared

epoxy-film adhesives and tested them at -300 F for ultimate shear strength. Results are shown in Appendix A, Figure A-1. The test results indicated that the cryogenic temperature-vacuum environment had no effect on hip-sh in strength. Gray noted that specimens prepared with epoxy-phenolic, glass-supported epoxy film, and vinyl-phenolic appeared to be only slightly affected by vacuum. The effect was small enough that the original strength of the adhesive-bonded specimers could be considered in the design of parts for the above conditions. Epoxy and nit ale-phenolic-adhesive-bonded specimens showed no indication of deterioration.

Yasui^(12, 13) irradiated one polyurethane-adhesive-bonded and three epoxy-adhesive-bonded test specimens immersed in liquid nitrogen. They were then tested at liquid-nitrogen temperatures. Yasui found no effects of irradiation on single lap-shear or flatwise ultimate strengths for these materials. Data are shown in Figures A-2 and A-3. Narmco 3135, 3M 1469/1968, and Lefkoweld 109 are epoxy adhesives while APCO 1219 is a film-forming polyurethane polymer.

Coatings

When nuclear reactors are used in spacecraft, gamma radiation may be present in large quantities and may become an important design consideration. However, for exposure to the normal elements of the space environment, nuclear radiation does not appear to be so severe a problem as ultraviolet flux

Several coatings have shown negligible change in α/ϵ ratios as a resular exposure to 10° $_{\odot}$ $_{\odot}$ $_{\odot}$ $_{\odot}$ (C) of cobalt-60 gamma radiation,

Zing so fide in a silcone resin vehicle has afforded a very good combination of infigretiers ion and long service life, in spite of the fact that considerable discoloration developed under ultraviolet irradiation. Zinc sulfide in an acrylic coating matrix also has shown good promise.

Organic coatings were originally used solely for corrosion protection and decoration. Today, coatings used for temperature-control materials, have to survive and function reliably on, and within, spac craft in a totally new environment. When using coatings in thin films, the optical and hysical changes resulting from long exposure to high vacuum, intense ultraviolet radiation, and variable temperatures have to be considered.

Coating having selective properties can be used to control radian heat transfer by control of three basic optical properties: (1) reflectance, (2) absorptance, and (3) emittance. (14) In most practical systems, a belance between these three conditions will be used to obtain the desired temperatures as illustrated in Table 7.

Present-day coatings for spacecraft are designed to rely upon passive radiation techniques in which the desired average critical temperature is achieved by properly balancing the absorptivity of the surfaces for solar radiation (α) with their emissivity for infrared radiation (ϵ).

Organic coatings are virtually all very absorptive in the infrared and hence have high emittance. Such a surface is the most stable and efficient to use for long heating periods. The short-wavelength absorption can be readil; varied by pigmentation with

TABLE 7. VEHICLE TEMPERATURE CONTROL(14)

		Solar		Ten	perature, F
Coating	Reflection	Absorption	Er iltfance	Sphere	Striped Sphere
W h.te	0.82	0.18	0.95	-135	-20
White plus carbon black	0.47	0.53	0.95	-30	32
Flat black	0.03	0.97	0.95	45	85
Flat black plus aluminum	0.05	ე. 95	0.80	65	120

TA LE 8. ORGANIC MATERIAL RADIATIVE PROPERTIES (14)

Organic Material	α	ε	α/ε Ratio
White (30% PV zinc sulfide) silicone	0.31	0.77	0.40
Gray silicone	0.53	0.95	0 55
Leafing aluminum in silicone	0.32	0.33	0.98
White lead carbonate (30% PV) silicone	0.46	0.46	1. υ
Dull black (vinyi phenolic)	0.93	1,04	1.1

55

:e

e

٠t

et

ılly

ed

r

ו ל i

С

a s

.lso

he i

ntly

of

by

l --

ing

organic and inorganic materials. The organic coatings will have α/ϵ ratios of 1 or less and can be used to give cool or cold surfaces in space (Table 8). It is obvious that the reflectance and absorptance of the pigmented coating varies with the pigment. A leafing aluminum pigment is the most efficient reflector of ultraviolet energy. Several white pigments are superior to leafing aluminum in the visible and near-infrared spectral regions, but are inferior to it as a reflector of ultraviolet energy. Of the nonleading pigments, basic white lead carbonate is superior to all others in effecting ultraviolet energy. The white lead pigmented coatings lose much of their efficiency as ultraviolet reflectors when exposed to the simulated space environment. In other regions of the spectrum, zinc sulfide is an excellent reflector of visible and near infrared energy. Other paint for mulations use rutile, carbon black, red iron oxide, and chrome oxide green in various amounts as pigments, depending on the α/ϵ ratio desired.

The ultraviolet spectrum of the sun ranges from about 100 A to 4000 A. Virtually all the energy below 3000 A and most of the energy between 3000 and 4000 A is filtered out by the earth's atmosphere. As a result, coatings may absorb 10 to 100 times as much ultraviolet light above the atmosphere as on the surface of the ground on a clear day. Thus, ultraviolet light is definitely a serious radiation problem.

Intense radiation is the second major element of the space environment and cabe divided into two broad classes; electromagnetic and particulate. The electromagnetic component of cosmic radiation has low intensity and in rather inconsequential as far as coatings are concerned. When nuclear reactors are used in spacecraft, gamma radiation of high energy may be present in large quantity and can become an important consideration.

The in ingement of ionizing radiation in high doses on organic thin films will also result in physical, chemical, and optical changes. However, for exposure to all elements of the space environment, nuclear radiation is not so severe a problem area when compared to ultraviolet flux.

Effects of Nuclear Radiation

General Dynamics⁽¹⁵⁾ and Lockheed Missiles and Space Company⁽¹⁶⁾ are currently engaged in determining the effects of nuclear radiation on the optical characteristate of thermal coatings. This work is presently in progress and only limited data are available. Preliminary results indicate that negligible change in the α/ϵ was experienced by the materials listed below as a result of exposure to 10^9 ergs g⁻¹ (C) of cobalt-60 gamma radiation.

Kemacryl White Lacquer No. M49WC17 (Sherwin-Williams)

Kemacryl Black Lacquer No. M49BC12 (Sherwin-Williams)

Leafing aluminum pigment in Kemacryl acrylic vehicle (Sherwin-Williams)

Nonleafing aluminum pigment in Kemacryl acrylic vehicle (Sherwin-Williams)

Fuller 517-W-1 Gloss White Silicone (W. P. Fuller Co.)

Fuller 517-B-2 Flat Black Silicone (W. P. Fuller Co.)

Fuller 172-A-1 Aluminum Silicone (W. P. Fuliar Co.)

Fuller 171-A-152 Aluminum Silicone (W. P. Fuller Co.)

Dull Black Micobond L6X962 (Midland Industrial Finisher Co.)

LMSC White Silicate Paint on Al 1100 alum num alloy

The irradiations are to continue to 10^{11} ergs g^{-1} (C) gamma radiation and to other types of penetrating radiation.

pes

ric

that

are

nt

cal

:ial

ch

of

re

gh

rs

Effects of Ultraviolet Radiation

Fulk and Herr(17) determined the weight loss in vacuum of a number of polymeric materials used in spacecraft. Compositions of the materials are listed in Table 9 while a typical weight loss-versus-time curve is shown in Figure 8. Fulk points out that the "total weight loss until stationary state" and the "time to reach stationary state" are important characteristics of each material. These values should be taken into account when selecting materials for vacuum and/or spacecraft use. Figure 9 shows typical curves for a number of good points.

Carroll(18) reported on the evaluation of materials used on early Mariner space-craft. The results of screening tests on paints and nonpaint "whites" are lister in Appendix A, Tables A-2, A-3, and A-4, and Figure A-4. The values of init is a indicated in Table A-4 and Figure A-4 are nominal values for the materials. The aluminized Find is showed the least degradation of the materials tested and is the logical choic for the top of the heat shield. For rigid paintable surfaces, either ZW60 or ZW' zinc su's de paints (Table A-4) are recommended.

Effects of Ultraviolet Radiation and Vacuum

Wahl, et al., (19) and co-workers studied the effects of various combinations of ultraviolet radiations (2500 to 7000 A), moverate temperature (290 F), vacuum pressure (9.0 ± 7.0 x 10⁻⁶ torr), and atmospheric pressure (750 ± 20 torr) on a commer had white polyurethane enamel manufactured by Lowe Brothers Paint Company. This enamel consisted of two parts, No. Lil-2392 enamel and No. LH-2393 hardener, which were mixed in equal volumes just prior to use. The coating lost weight and changed color from white to light brown. Total spectral reflectance measurements indicated that the absorptivity increased as the ultraviolet radiation intensity and exposure time increased. It was predicted that the long-time, close temperature control of a space vehicle would not be successful using this polyurethane coating.

Clauss, et al., (20) and Gaumer, et al., (21) at Lockheed investigated the effect of ultraviolet radiation and vacuum on temperature-control surfaces. For electronic equipment aboard spacecraft to function properly, their temperatures must be maintained within a range of approximately 0 to 60 C. At the present time, white paints are largely used as solar reflectors, but their $\alpha_i \epsilon$ ratio is about 0.27 and is not low enough for many practical applications, such as attaining low temperature for infrared sensors to operate efficiently. Solar reflectors with an α/ϵ ratio not greater than 0.1 are needed. Table A-5 shows the α/ϵ ratios of a group of representative meterials

Table 9. Sample composition (17)

Material	'Annufacturer	Composition
EPO Enamel	Kohler-McLister Paint Co.	Epoxy 'aint No. 705-W- 132A
606 Line	Kohler-McLister Paint Co.	Alkyd Paint (industrial type)
606 White Line	Kohler-Mcinster Paint Co.	Alkyd Paint No. 605-W-135
BBRC "Satellite White" Paint (63 W)	Ball drothers Research Corporation	Satellite Paint having an cof.85 and a?
BBRC "One" Paint (80 U)	Ball Brothers Research Corporation	Satellite Paint having a α/ϵ ratio of i $\left(\frac{.42}{.42}\right)$

Fuller 172-A-1 Aluminum Silicone (W. P Fuller Co.)

Fuller 171-A-152 Aluminum Silicone (W. P. Fuller Co.)

Dull Black Micobond L6X962 (Midland Industrial Finisher Co.)

-LMSC White Silicate Paint on Al 1100 aluminum alloy.

The irradiations are to continue to 10^{11} ergs g^{-1} (C) gamma radiation and to other types of penetrating radiation.

es.

·ic

hat

re

ıŧ

·al

ial

٤b

of

re

ţħ.

rs

Effects of Ultraviolet Radiation

Fulk and Horr(17) determined the weight loss in vacuum of a number of polymeric materials used in spacecraft. Compositions of the materials are listed in Table 9 while a typical weight loss-versus-time curve is shown in Figure 8. Fulk points out that the "total weight loss until stationary state" and the "time to reach stationary state" are important characteristics of each material. These values should be taken into account when selecting materials for vacuum and/or spacecraft use. Figure 9 shows typical curves for a number of good points.

Carroll(18) reported on the evaluation of materials used on early Marinar space-craft. The results of screening tests on paints and nonpaint "whites" are list—in Appendix A, Tables A-2, A-3, and A-4, and Figure A-4. The values of initial a indicated in Table A-4 and Figure A-4 are nominal values for the materials. The aluminized FEP Tecton showed the least degradation of the materials tested and is the logical choice for the top of the heat shield. For rigid paintable surfaces, either ZW60 or ZW40 zinc sulfile paints (Table A-4) are recommended.

Effects of Ultraviolet Radiation and Vacuum

Wahl, et al., (19) and co-workers studied the effects of various combinations of ultraviolet radiations (2500 to 7000 A), moderate temperature (290 F), vacuum pressure (9.0 \pm 7.0 x 10^{-6} torr), and atmospheric pressure (750 \pm 20 torr) on a commercial white polyurethane enamel manufactured by Lowe Brothers Paint Company. This enamel consisted of two parts, No. LH-2392 enamel and No. LH-2393 hardener, which were mixed in equal volumes just prior to use. The coating lost weight and changed color from white to light brown. Total spectral reflectance measurements indicated that the absorptivity increased as the ultraviolet radiation intensity and exposure time increased. It was predicted that the long-time, close temperature control of a space vehicle would not be successful using this polyurethane coating.

Clauss, et al., (20) and Gaumer, et al., (21) at Lockheed investigated the effect of ultraviolet radiation and vacuum on temperature-control surfaces. For electronic equipment aboard spacecraft to function properly, their temperatures must be maintained within a range of approximately 0 to 60°C. At the present time, white paints are largely used as solar reflectors, but their a/ϵ ratio is about 0.27 and is not low enough for many practical applications, such as attaining low temperature for infrared sensors to operate efficiently. Solar reflectors with an a/ϵ ratio rot greater than 0.1 are needed. Table A-5 shows the a/ϵ ratios of a group of representative materials

TABLE 9. SAMPLE COMPOSITION⁽¹⁷⁾

Material	Manufacturer	Composition
EPO Enamel	Kohler-McLister Paint Co.	Epoxy laint No. 705-W- 1324
606 Line	Kohler-MuLister Paint Co.	Alkyd Paint (industrial type)
606 White Line	Kohler-McLister Paint Co.	Alkyd Paint No. 636-W-135
BBRC "Satellite White" Paint (63 W)	Ball Frothers Research Corporation	Satellite Paint having an e of .85 and a/r of .2730
BBRC "One" Paint (80 U)	Ball Brothers Research Corporation	Satellite Paint having a a/ϵ ratio of $1 \left(\frac{.42}{.42} \right)$

CHARACTERISTIC WEIGHT LOSS VERSUE LIME - A TYPICAL, WEIGHT LOSS VERSUS TIME CURVE FOR A POLYMERIC MATERIAL IN VACUUM(17) FIGURE 8.

FIGURE 9. PAINTS - WEIGHT LOSS IN VACUUM (PRESSURE <5 X 11-6 mm \odot g) CURVES FOR A NUMBER OF PAINTS AT 50 AND 100 C(11)

evaluated. The types of surfaces exposed as well as the results of exposure tests are summarized in Table A-6. The designation of the commercial coatings are listed in Table A-7, the compositions of the laboratory-prepared paints are listed in Table A-8. The acrylic-base paints were more resistant to visible yellowing than either the epoxy of silicone-base paints. For many of the organic-base paints, there was an increase of approximately 50 per cent in solar absorptivity (α), while the infrared emissivity (ϵ) remained constant. This 50 per cent increase in the $\sqrt{\epsilon}$ ratio of ϵ surface at room temperature would result in an increase of 57 F in temperature.

οí

m-

Σĺ

g-

у.

ì

h

0)

٦n

Alexander, et al., (22) studied the effect of very-short-wavelength radiation (1150 to 2000 A) on polymeric films. The percentage weight losses of various coating materials are shown in Figure 10.

Miller and co-workers⁽²³⁾ at Armour Research Foundation tested the stability of white coatings in simulated space environment (approximately 10⁻⁶ torr valuum, temperature varying from 150 to 275 F). The results indicated that all synthetic oxide pigments, except zinc oxide, darken appreciably in 100 equivalent solar hours; natural mineral pigments proved more stable. Among the organic binders, a silicone-type material appeared the most promising. Typical results are shown in Table A-9.

The weight loss through volatilization of pigmented coatings after exposure to a simulated space atmosphere for 100 hours (ultraviolet radiation in vacuum of 1×10^{-5} torr) was determined by Cowling, (24) The results are shown in Table A-10.

Effects of Ultraviolet Absorbers

Horman 125) exposed tailored coatings, some of which contained ultraviolet absor or each is:

- (1) 2, 2'-4,4' tetrahydroxybenzophenone (D50)
- (2) Dibenzoylresorcinol (DBR)
- (3) 2-hydroxybenzoylferrocene (HBx')
- (4) 2-hydroxy-4-methoxy-2'-trifluoro. ethyl benzophenone (DR1)

to ultraviolet and vacuum. He found that a flat white titanium dioxide-pigmented silicone-alkyd coating showed good vacuum-thermal and ultraviolet-radiation stability. A wide range of α/ϵ values (0.20-0.85) based on this coating >r available for various temperature-control conditions. Dispersion of an ultraviolet absorber in a clear film over the basic coating exhibited a protective action in reducing the weight loss through 500 F and in reducing $\Delta\alpha$ at 300, 400, and 500 F.

The black-leafing-aluminum system would provide high α / ϵ values (0.90 to 1.40) due to decreased emittance values with increased leafing-aluminum content. Hormann also indicated that above 400 F, polyurethane systems are inadequate in a vacuum-thermal environment.

EFFECTS OF NEAR "ILTRAVIOLET IRRAF" ON POLYMER FILMS UNDER NORMAL ATMOSPHERIC CONDITIONS(22) FIGURE 10.

Field, Cowling, and Noonan(26) found zinc sulfide (Cryptone 800 produced by the New Jersey Zinc Company) in a silicone vehicle afforded a very good combination of infrared emission and long service life, in spite of the fact that considerable discoloration developed under ultraviolet irradiation. Zinc sulfide in an acrylic coating matrix (Acryloid A-10, Rohm & Haas) also showed good promile. In at least one instance, the acrylic formulation proved superior to all the allicone formulations.

ıe

en

ay

al

no-

8.

in-

cly

Electrical Insulation

Insulation materials such as glass-diallyl phthalate, Formvar wire coating, Silicone DC 997 varnish, polystyrene coil dops, and polyolefin wire insulation have been satisfactory in room-temperature tests to an exposure of 10¹¹ ergs g⁻¹ (C).

A number of phenolic circuit boards tested have shown no deterioration at 10^{10} ergs g^{-1} (C).

In general, the effects on electrical properties of irradiation of electrical insulation in air and in vacuum are similar.

Polyimide film (Du Pont H-Film) shows excellent temperature and radiation stability in air and in vacuum to at least 10¹⁰ ergs g⁻¹ (C).

In general, permanent changes in electrical properties of polymeric meterials with it and are minor and the life of the insulation depends upon its resectance to mechalical demage. However, transient effects due to exposure in a radiation flux may cause difficult. The discussion in this section is limited to the physical properties of some of the made recent insulating materials which have been investigated. A more comprehensive discussion of electrical effects will be found in REIC Report No. 36, "The Effect of Nuclear Radiation on Electronic Components Including Semiconductor Devices", which is being published concurrently with this report.

Data have been obtained on Tedlar (polyvinyl fluoride), Kynar (polyvinylidine fluoride), and H-film (polyimide), some of the newer films which have appeared on the market. Also, limited data on effects of vacuum and radiation, and extreme temperatures and radiation have been collected.

Effects of Nuclear Radiation

Kaufman and Gardner (27) determined the performance characteristics of resistors, capacitors, and insulating materials used for printed-circuit boards or electrical connectors in a nuclear environment. At an exposure of 1×10^{11} ergs g⁻¹ (C)[1.67 × 10^{16} n/cm² (E_n>2.9 Mev)], glass-diallyl phthalate was the most suitable material tested as an insulating material for connectors. Melamine, silicone rubber, and phenolic were rated second best because of some degradation in their mechanical properties.

Several laminates were tested for use as circuit-board insulation. Silicone-resinimpregnated Fiberglas was satisfactory as an insulation at an exposure of approximately 1011 erg. g-1 (C), but the copper circuit could not be adequately bonded to this material. Only slight discoloration of the circuit board occurred owing to irradiation. A phenolic circuit board, 181 Volan A glass fiber impregnated with CTL-91D was exposed to 1010 ergs g-1 (C) [2.5 x 1015 n/cm² (E_n>2.9 Mev)]. No evidence could be found of any discoloration, warping, or blistering, and the copper circuit remained firmly bonded to the board.

Koehler and Pefnay⁽²⁸⁾ reported polyethylene, Zytel Nylon 33, and polyvinyl chloride as satisfactory insulation materials to an exposure of 10¹⁰ ergs g⁻¹ (C) in air wher dry. Litton Systems, Inc., (3) in work to secure data on the performance of subsystem components and hardware, exposed an LPR-10 drum to the neutron and gamma flux of General Dynamics Ground Test Reactor (GTR). Exposure was to an integrated neutron and gamma exposure of 1.3 x 10¹⁶ nv_ft and 1 x 10¹¹ ergs g⁻¹ (C) at a temperature of 30 C to 60 C. The specimens were at 45 C during the greater portion of the time. Polymeric materials which were found satisfactory included silicone glass insulation, Formvar magnet-wire coating, Silicone DC 997 varnish, Raychem polyolefin lead-wire insulation, polystyrene coil dope, and mineral filled diallyl phthalate (for the terminal block).

Effects of Elevated Temperature and Radiation

Campbell(29) studied the effect of combined heat and radiation on several pagnetwire-insulation materials, including polyvinyl formal, polyester, silicone, and fluorocarbon pages and varnishes. He found that the normal service life of some materials was increased by as much as 800 per cent in a combined radiation and thermal environment. He attributes this to a balancing of the chain-scission and crosslinking mechanisms. Tables '0 and II show a comparison of the service life of several insulation coatings in a thermal environment and that in a radiation-thermal environment. Radiation exposures varied from 1.8 x 106 ergs g-1 (C) hr-1 (2 x 104 roentgens hr-1) to 1.6 x 108 ergs g-1 (C) hr-1 (1.77 x 106 roentgens hr-1).

The normal service life at 160 C of polyvinyl formal was extended by 870 per cent when the material was in a combined thermal-radiat in environment as compared with the life in a thermal environment. Several other materials exhibited longer service life in the combined environment. Improvement ranged from 162 per cent for the combination of silicone enamel and silicone varnish at 240 C to 780 per cent for that of a polyester enamel and oil-modified phenolic varnish at 200 C. On the other hand, polytetra-fluoroethylene enamel retained less than 1 per cent of its neglect service life at 270 C when in a radiation field.

Effects of Vacuum and Radiation

General Dynamics^(6,7) irradiated in air and in vacuum electrical insulation materials designated as DC-7-170 (silicone), Geon 2046 and Geon 8800 (polyvinyl chloride), Estane 5740X1 (polyurethane), Kynar (polyvinylidine fluoride), Kel-F-81 (polytrifluoroethylene), Duroid (a Fiberglas-reinforced Teflon), and Mylar (polyester). Physical properties were determined before and after irradiation and the data are shown in Table A-11.

TABLE 10. EFFECTS OF GAMMA KADINTION ON THE SRMAL LIFE OF MAGNET-WIRE INSULATION (29)

					Exposure Environmen	Exposure Environment				
		(x)		 	(B)				<u>છ</u>	
		•			Thermal Aging	I Aging		Co	Combined Environment	Ironascut
		Thermal Aging;	ging:		Following Irradiation	Irradiation		ιχνJ	[Aging Temperature as in	iture as in
Insulation Material	aterial	No irradiation	tion	فسيا	[Aging Temperature as in (A)	sture as in (A	1) [(A); E	(A); Exposure Rate as in (B)	e as in (B)]
		4 ging	Average	Exposure	Total	Average		Total	Average	
Enamel	Varnish	Temperature, G	Lufe, hr	Rate, int/hr	Exposure,	Life, hr	Per Cent of Thermal Lite	Exposure,	Life, hr	Per Cent of Therroad Life
Polyvinyl formal	None	180	230	0.5	210	244	7.8	281	,7.0g	60),
Polyvinyl formal	None	0.50	634	٠ <u>.</u> ٠				2750	5507	Ÿ
Polyetter	Oil-nodified phenolic	200	3, 163	0, 02	125	2640	35	55	126.4	Ξ
Silicone	S.lıcone	240	253	ų	y:II	315	χ 65	286		791
Modified polyester	Oil-mod:íied phenclic	200	655	₹*n	125	725	011	1020	3.4	Ĩ.
Polytetta. fluoroethylene	Silicone	0/ 7	10, 000	0.02	35	D	٤	1.2	ā	÷
Polytetra • fluoroethylene	None	270	10, 005	0°0.				0.1	S	3
Modified silicone	None	240	900	0.5				154	307	ē

THE STATE OF

TABLE 11. RESULTS OF COMBINED ENVIRONMENT EXPOSURES IN PROGRESS(29)

Insulation M	aterial	Exposure Temperature,	Normal Therma Aging Life,	Exposure:	Exposure Time at End of Limited Test Period.	Per Cent of Normal Thermal Life at End of
Enamel	Varnish	<u> </u>	<u>ht</u>	ror/lir	hr	Limited Test Period(3
Polycinyl						
formal	None	200	190	0.5	288	200
Polyvinyl				.	•	,
formal	None	180	280	0.04	1862	665
Aromatic polyimide	None	300	940	0.5	2650	282
Polyester	Oil-modified phenolic	200	500	0 5	2798	112
Polytetra =						
fluoroethylene	Nons	13	>10,000	0.02	1882	<100

⁽a) Results not final; aging process being continued.

Silicone DC-7-170 increased in tensile strength 144 per cent, while elongation decreased 83.5 per cent when subjected to a nuclear-radiation exposure of 9 × 109 ergs g^{-1} (C) in vacuum. Average weight loss was 0.2 per cent. The color changed from a light cross to a dark brown during the vacuum irradiation. Mechanical projecties were more reverely affected by the vacuum irradiation than by air irradiation.

Kel F became very brittle with vacuum irradiation [exposure of 10¹⁰ ergs g-1(C)], one specimen breaking during removal from the vacuum chamber. Weight loss was 0.29 per cent. When irradiated in air to 8 x 10⁹ ergs g-1 (C), the specimens crumbled. For polyvinyl chloride (Geon 2046 and Geon 8800), changes were somewhat greater in a vacuum-radiation environment than in an air-radiation environment. At approximately 10¹⁰ ergs g-1 (C), changes in tensile strength were 20 to 30 per cent in vacuum and 5 to 15 per cent in air. Also, elongation decreased by 55 to 75 per cent in air and 80 to 85 per cent in vacuum. Kynar (polyvinylidene fluoride) increased in tensile strength by about 20 per cent when irradiated in air to an exposure of approximately 10⁹ rgs g-1 (C). In vacuum, the increase was negligible. Change in elongation was greater in vacuum than in air, although there was little change in this property.

Polyurethane and Duroid are less affected by irradiation exposure of 109 ergs g⁻¹ (C) in vacuum than in air. Mylar increased in tensile strength, but decreased in elongation when irradiated in vacuum. No significant weight loss was noted. This material appears satisfactory for applications in a vacuum-gamma radiation environment to 1010 ergs g⁻¹ (C). However, it is susceptible to ultraviolet radiation damage.

Kerlin and Smith(6,7) also investigated the physical properties of several dielectric materials when irradiated in air and in a vacuum (10⁻⁶ to 10⁻⁷ torr). These included Marlex 6002 (high-density polyethylene), Teflon TFE, Tedlar (polyvinyl fluoride), and H-film (polyimide). Data are given in Table A-12. The polyimide film showed the

highest tensile strength and the greatest stability to radiation both in air and in a vacuum. After 3×10^{10} ergs g⁻¹ (C) exposure, tensile strength dropped only from 19,470 psi to 17,903 psi when irradiated in air and to 18,877 psi when irradiated in vacuum. Elongation decreased from 128 per cent to 83 per cent when irradiated in air and to 105 per cent when irradiated in vacuum. Tedlar also showed good stability to radiation both in air and in vacuum when irradiated to an exposure of 109 ergs g⁻¹ (C).

Effects of Cryogenic Temperatures and Radiation

Mylar C was irradiated at liquid-nitrogen and liquid-hydrogen temperatures. (30) At cryogenic temperatures, there was an increase in tensile strength and a decrease in elongation. At the liquid-nitrogen temperature, gamma irradiation decreased the tensile strength, but not below the original value at room temperature.

The polyimide film, HT-1, was also irradiated at liquid-hydrogen and liquid-nitrogen temperatures. (30) Tensile strength of the polyimide film increased and elongation decreased at this temperature, but the effect of radiation up to 10^{10} ergs g⁻¹ (C) was very slight.

Laminates

Combined effects of radiation and vacuum [1010 ergs g-1 (C) and 10-7 torr] have shown no deleterious effects on the strength of various tested laminates except those prepared with Paraplex P-43 and Silicone DC-2104 resins. These decreased in tensile strength when subjected to exposures higher than 1010 ergs g-1 (C).

Dynalam (glass fiber-phosphonitrillic chloride polymer) shows promise for use at 450 F and an exposure of $6 \times 10^{10} \text{ ergs g}^{-1}$ (C).

Epoxy, polyester, phenolic, melamine, and silicone laminates have been investigated as to their behavior in a radiation environment. These do not appear to be adversely affected by ruclear-radiation exposure of 1010 ergs g-1 (C) and ultraviolet exposures of 2 pyrons for 500 hours (1 pyron = 1 cal/cm²/min). The polyesters were found to be the more sensitive to ultraviolet irradiation, but may be improved with the incorporation of ultraviolet stabilizers. Phenolics appear to be least sensitive to ultraviolet exposure. Epoxy laminates show improved strengths when tested in a vacuum environment. Present information would indicate that cryogenic temperatures will not be a serious problem with structural laminates.

Effects of Nuclear Radiation

Laminates called Dynalam consisting of 181 glass cloth (A-1100 finish) impregnated with AP-Resin-XHU (a phosphonitrillic chloride polymer) were irradiated for 55 hours at an ambient temperature (120 to 130 F) and at 450 F. (1) Some of these laminates contained an unspecified curing agent and some contained no curing agent. All of them showed excellent radiation stability. The tensile strength of samples radiated in air at 130 F to an exposure of 1.7 x 10¹¹ ergs g⁻¹ (C) and tested at room

temperature did not change more than 5 per cent. The tensile strength of samples irradiated at 450 F to an exposure of 6 x 1010 ergs g-1 (C) and tested at room temperature did not change appreciably. This was true for both laminates containing a curing agent and for those with no curing agent. Data are given in Appendix A, Table A-13.

ure .nt

Effects of Vacuum and Nuclear Radiation

DeWitt, Podlaseck, and Suhorsky⁽⁹⁾ exposed samples in a vacuum of 10^{-4} to 10^{-5} torr to a temperature of 250 F to 400 F for a 7-hour period. Materials investigated and test results are shown in Table A-14 in Appendix A. Only the phenolic 91 LD-Fiberglas laminate was significantly affected by the vacuum exposure. The compression strength of this material increased by 36.5 per cent. Wahl⁽¹⁹⁾ conditioned specimens of polyester (P-43), epoxy (Epon 81%, and phenolic (91 LD) laminates for 2 hours in an aircirculating oven. After being cooled in a desiccator and weighed, the samples were placed in a vacuum oven for 1000 hours. After 6 hours, pressure was 7.2 x 10^{-6} torr; after 100 hours, it was down to 6 x 10^{-7} torr, and at the end of 1000 hours the pressure was down to 3 x 10^{-7} torr. Temperature ranged from 78 to 80 F. After 1000 hours, the samples were reweighed. In all cases loss of weight was less than v, i per cent. Data are given in Table 12.

TABLE 12. WEIGHT LOSS OF LAMINATES EXPOSED TO HIGH VACUUM FOR 1000 HOURS(19)

	Poly	ester	υ _β iei	nolic	En	
Material	Sample A	Sample B	Sample A	Sample B	Sample A	Sample B
Original (re) grass	13.4794	13.6450	15.166v	14.6469	14.1908	14.0576
Weight A ter Exposure grams	13.4771	13.6408	15.1526	14,6352	14.1908	14.0570
Loss in Weight						
Grams	0.0023	0,0042	0.0134	0,0117	0.0	0.0
Per Cent	0.62	9.03	0.09	0.08	0.0	0.0

Boundy⁽³¹⁾ reports the per cent weight loss at a pressure of 10⁻⁶ torr and exposure temperatures of 75, 150, and 300 F after periods of 1, 4, and 7 days. Data are given in Table 13.

TABLE 13. WEIGHT LOSS FOR LAMINATES UNDER VACUUM-THERMAL CONDITIONS(31)

(Pressure, 106 mm Hg,

				Wei	ght Loss, per	cent			
		mperature,	75 F	Теп	npeure, 1	50 F	Ten	nperature, 3	
		Time, days			Time, days			Time, days	
Materials	1	5	8	1	4	7	1	4	7
Epoxy glass fiber	0.03	0.06	0.06	0.09	0.30	0.33	0.31	0.56	0.62
Phenolic glass fiber	0.11	v. 24	0.29	0.24	0.48	0.55	0.9'1	1.25	1.32
Phenolic cotton	0,41	0.95	1, 14	0, 93	1, 32	1.36	1.84	1.83	1.89

-5 and las

th

r;

re

e B 70

70

. 89

.....

The epoxy has a lower weight loss than the phenolics. It is believed that part of the weight loss of phenolics is due to the release of water formed during polymerization and which has remained in the laminate.

ρf

ъ.

to

χt

àC-

00-

١.

tch-

nvi-

09

ند

-81.

ter),

,10

68

10

h

1e

0

/ed

·e

in

grift.

`ig-

ir-

A-5

.ion

Podlaseck and Suhorsky (4, 32) show that the effect of vacuum on weight loss of polymers is to decrease the equilibrium weight-loss rate at elevated temperatures. They state that since the weight-loss rate is projectional to the degradation rate, the implication is that the normal rate of degradation observed in air can be considered to consist of two modes: (1) an oxidative degradation which is dependent on the partial pressure of oxygen or water vapor available to the specimen, and (2) a pure thermal degradation which is independent of the surrounding environment. A vacuum does not appear to alter the equilibrium weight-loss behavior of the unmodified crosslinked-resin system used, but seems only to provide an inert environment at temperatures where oxygen increases degradation. Nitrogen and helium can afford the same protection as a good vacuum.

Because the rate of weight-loss increase, with increasing temperature, is less in vacuum than in air, the upper temperature limit for the use of many plastics may actually be increased for extended space exposures in radiation-protected areas.

Gray, et al., (8) determined the tensile strength of several laminates after exposure to radiation and/or vacuum. Table A-15 lists the materials tested, and Figure A-5 shows the effect of vacuum, radiation, and combined environment on these provincials. It may be seen from Figure A-5 that, except for the epoxy glass-fiber made and (Scotch-ply 1909 76. Minnesota Mining and Manufacturing), there was little effect of these environments on the laminates. With the Scotchply materials, the combined radiation [109 erg/g⁻¹(C)] and vacuum (10⁻⁶ torr) environment increased tensile strength; whereas either factor clone slightly decreased this property.

Kerlin and Smith (7,33) tested nine glass-fabric laminates and one honeycomb laminate for effects of radiation-vacuum environment. These included Mobiloy AH-81, CTL-91-LD, and Conolon 506 (phenolic), Paraplex P-43 and Selectron 5003 (polyester), DC-2104 and DC-2106 (silicone), Epon 828 (epoxy), and HRP Honeycomb (phenolic). Tests indicated that the combined effects of radiation and vacuum [approximately 10^{10} ergs g^{-1} (C) and 10^{-7} torr] have no deleterious effect on the strength of the laminate-except for P-43 and DC-2104. Paraplex P-43 lost tensile strength rapidly efter 10^{10} ergs g^{-1} (C). At an exposure of 3.1 x 10^{10} ergs g^{-1} (C) in vacuum, tensile strength decreased by approximately 20 per cent as compared with a loss of 6 per cent when irradiated in air to 3.9 x 10^{10} ergs g^{-1} (C). Similarly, the tensile strength of Silicone DC-2104 decreased after an exposure of 10^{10} ergs g^{-1} (C) in vacuum. At 2.9 x 10^{10} ergs g^{-1} (C), tensile strength decreased by 15 per cent. In air, no loss was observed at an exposure of 3.9×10^{10} ergs g^{-1} (C). See Tables A-16 through A-19.

Effects of Nuclear Radiation and Cryogenic Temperature

Yasui(13) irradiated two phenolic-impregnated glass-cloth laminates (Sincwave and Hexcel) in liquid hydrogen to an exposure of 3.2 x 108 to 2.1 x 109 ergs g⁻¹ (C). Tensile strength and tear strength were determined while samples were immersed in liquid nitrogen. Exposure to 2 x 109 ergs g⁻¹ (C) in liquid nitrogen produced resignificant effect on the tensile and tear strengths of either material. Data are given in Figures A-6 and A-7.

Two laminates prepared by Lockheed-Georgia Company for possible hydrogen barriers also were evaluated. Laminate I consisted of two plies of Epon 820-resinimpregnated 116 Fiberglas cloth laminated to 1 ply of aluminized polyester film with the aluminum forming one exterior surface. Radiation results indicate that the strength properties of the material were not significantly affects by exposure to 2.6 x 109 ergs g⁻¹ (C). The same radiation exposure produced as statistically significant effects on Laminate II which consisted of one ply of 181 Fiberglas cloth impregnated with ERL 2795/2870 epoxy resin and coated with six thin layers of Elastathane M-50.

Gray, et al., (8) irradiated phenolic, polyester, epoxy, and silicone laminates in air and in vacuum (10-6 torr for 2 weeks) to an exposure of 109 ergs g-1 (C). These were then tested at a temperature of -300 F. Data are shown in Figures A-8 to A-11 (also compare with Figure A-5). According to Gray, the environmental conditioning improved the strength of epoxy with unidirectional glass fibers and phenolic with glass fabric. However, phenolic with high-silica fabric exhibited a slight degradation in ultimate strength. No trend of improvement or degradation due to environmental exposure was found for the remaining materials.

Kerlin and Smith⁽⁷⁾ irradiated Conolon 506 (phenolic) and Paraplex P-43 (polyester) at liquid-nitrogen and liquid-hydrogen temperatures to a gamma exposure of 6 x 10¹⁰ ergs g⁻¹ (C). No significant change in ultimate tensile strength occurred at the liquid-nitrogen temperature. Although tensile strength increased somewhat at the liquid-hydrogen temperature, this was believed to be due to chemical reactions between the ionized hydrogen and components of the adhesive rather than to the lower temperature.

Effe. s of Vacuum and Ultraviolet Raciation

Wahl, et al., (34, 35, 19) exposed three types of laminates to ultraviolet radiation in vacuum. These included glass-reinforced polyester P-43, epoxy Epon 815, and phenolic CTL-91 LD. The ultraviolet source was either an Osram HBO-109 high-pressure quartz-mercury lamp or Osram HBO-100 W/2 mercury lamp which produce ultraviolet and visible radiation from below 2500 to about 7000 A.

No significant degradation of the laminates occurred when exposed to radiation of 2 pyrons (2 cal/cm²/min) for periods up to 500 hours. To determine the relative effect of exposure to vacuum and varying intensities of ultraviolet radiation for greater lengths of time, further tests were conducted at 2, 3, 4, 5, and 5 pyrone.

Examination of the specimens after exposure to vacuum and ultraviolet radiation, of 2 and 3 pyrons intensity, for periods of 125 hours showed that the transparent polyester and epoxy laminates became opalescent and the surface facing the radiation became brown. This was not observed with the phenolic laminates since they were relatively dark brown and opaque before exposure. With greater exposure to ultraviolet, the polyester and epoxy laminates became more charred and blistered. The phenolics did not char even with 4, 5, and 6 pyrons of ultraviolet. Compressive and flexural strength data are given in Tables A-20 and A-21.

In summary, Wahl found that pressure showed little or no influence on flexural modulus except with polyester at moderate temperature in the presence of ultraviolet radiation. In all cases, higher temperatures decreased flexural strength. The extent of the influence is greatest with epoxy and least with phenolic. It is greatest in the presence of vacuum without radiation, and least in the presence of radiation at 1 acrossphere of pressure. The presence of radiation generally decreased strength. The effect was most pronounced with polyester at room temperature with 1 atmosphere of pressure. Wahl states that heat or ultraviolet alone, or combined, have the greatest influence on strength properties of the three types of laminates and it is important to separate these environmental elements when determining their effect on plastic materials.

Initial work would indicate that incorporation of an ultraviolet absorber in the polyester resin would be effective in reducing degradation due to vacuum ultraviolet. Tables A-22 through A-24 show the ultraviolet absorbers tried, weight loss, and flexural strengths of laminates after exposure.

ral

m

:;

ntr

Potting Compounds

Potting compounds are available that maintain good dielectric-constant, dissipation-factor, and volume-resistivity measurements before, during, and after pradiation to an exposure of about 10¹¹ ergs g⁻¹ (C).

For potting compounds to be used in a vacuum-radiation environment, a higher temp rature ourse is preferred to a room temperature cure. Solvent systems are general' not sat. factory because they tend to be gaseous as a result of entrapped solvent; this leads to por osity.

Potting compounds have been found satisfactory for use in vacuum at 170 F to a gamma exposure of 10¹⁰ ergs g⁻¹ (C).

Effects of Gamma Radiation

According to Dexter and Curtindale (36) Dow Corning R-7521 (silicone resin) combined with inorganic fillers such as silica sand or zirconium orthosilicate showed no apparent degradation of physical properties after irradiation exposures of 5×10^{10} ergs g⁻¹ (C) (500 megarads) at 23 C or after 10^{10} ergs g⁻¹ (C) and 2050 hours at 200 C. Because of its outstanding thermal endurance and radiation resistance, this system is considered an ideal potting material for such equipment as canned motor pumps and reactor-control-rod drives. Figure 11 shows the effects of combined heat and radiation on the electrical properties of R-7521 silicone resin.

Several potting compounds were investigated by Armstrong. (37) These included:

FIGURE 11. EFFECTS OF GAMMA RADIATION ON ELECTRICAL PROPERTIES OF SILICA SAND IMPREGNATED WITH POW CORNING SOLVENTILESS SILICONE RESIN R-7521(36)

Scotchcast No. 3
Stycast 2651 MM
RTV-501
Epon 828/D
Insulating Lacquer 1162 A/B
12-007
Stayfoam AA402
EG 758 T
Scotchcast Foam Resin No. 603

Minnesota Mining and Manufacturing Co.
Emerson and Cuming
Dow Corning
Shell Chemical Co.
Dennis Chemical Co.
Lysol Corp.
American Latex
Mica Corp.
Minnesota Mining and Manufacturing Co.

Insulation resistance measurements were taken before, during, and after irradiation. Resistances of the samples were cound to be dependent on the exposure [exposure rates varied from approximately 10⁴ ergs g⁻¹ (C) hr⁻¹ to 10⁸ ergs g⁻¹ (C) hr⁻¹]. The greatest change occurred in the Mica reference sample; the potting materials served to decrease the rate effects in the other samples. RTV-501 showed an appreciable change in insulation resistances at the higher exposure rates, as did Dennis Insulating Lacquer 1162 and American Latax Stayfoam AA-402.

Bendix Corporation measured dielectric constant, dissipation factor, and volume resistivity before, during, and after irradiation of seven types of epoxy resins. (38) Exposure was about 1011 e-gs g-1 (C) or 1.1 x 1016 nvft. Of the seven tested, five were considered as stable potting and insulating materials at the exposure of the test. These included:

Maraset 622-E K A 4 / -M Lish 420 A Scotches t 5 Scotchess 212

Effects of Radiation and Vacuum

Cure is an important factor with potting compounds subjected to the radiation and vacuum conditions of a space environment. A higher-temperature cure is preferred to a room-temperature cure. Solvent systems are generally not satisfactory as they tend to dissolve the insulation of imbedded wire and retain residual solvent which leads to porosity.

Blackmon, et al., (5) determined the effect of vacuum (15.7 torr) and radiation on a number of potting compounds at a temperature of 170 F. Some of the materials were exposed to 1010 ergs g-1 (C) gamma radiation in air. Table 14 summarizes the overall performance of the materials. No large changes in hardness or dielectric constant resulted. The greatest variations were in weight loss and, consequently, dimensional stability. Two of the materials, Epocast 202/9615 and Hysol 12-007 A/B were satisfactory on exposure to vacuum and gamma radiation. According to Clauss (39), the Hysol showed excellent stability, but cure shrinkage was greater than 2 per cent and shrinkage during exposure to vacuum at 170 F was 4.5 per cent. Three materials that were found satisfactory after exposure to vacuum at 170 F were not subjected to radiation exposure. These included a polyurethane, PRC 1535 A/B (Products Research Company), a silicone clastomer, DC 502/501 (Dow Corning Corp.), and an epoxy-polyamide, Epibond 1210/9615 (Furane Plastics Co.).

42

TABLE 14. ENCAPSULA, NG MATERIALS (39)

Material Designation	Туре	Manufacturer
в.	Satisfactory After Both Types of Exposure	
EPOCAST 202/9615	Epoxy-polyamide	Furane Plastics Co.
HYSOL 12-007 A/B	Epoxy (flexible)	Hysol, Inc.
Satisfactory Af	Satisfactory After Vacuum-Temperature Exposure (no radiation exposure)	ation exposure)
PRC 1535 A/B	Polyurethane	Products Research Co.
DC 502/501	Silicone (elastomer)	Dow-Corning Corp.
EPIBCND 1210/9615	Epoxy-polyamide	Furane Plastice Co.
	Unsatisfactory	
DENNIS 1162	Epoxy (solvent system)	Dennis Chemical Co.
PRC 1201Q	Polysulfide	Products Research Co.
ECCOSEAL HI-Q	Polystyrene (solvent system)	Emerson and Cuming, Inc.
EPON 828/D	Ероху	Shell Chemical Co.
HYSOL 3X	Epoxy (filled)	Hysol, Inc.
Vacuum—Temperature Exposure Radiation Exposure: 10 ⁸ ru	Vacuum-Temperature Exposure: 48 hours at room temperature followed by 96 hours at 170 F in a vacuum of المسلم forr Radiation Exposure: 108 roentgens total gamma عدداً من in air at room temperature at a dose	by 96 hours at 170 F
	מון דס ד/ יוד	

Kerlin and Smith(6,7) studied the effect of radiation and vacuum on several silicone and enoxy potting compounds. These included:

Epon 828/Z	Ероху
Silicone DC-R7521	Siliconc
Scotcheast 212	Epoxy
RTV-501	Sil one
RTV-50	Silicone elastomer
EC-1273	Fluorinated elastomer

The ultimate compressive strength of Epon 828/Z increased approximately 6 per cent when subjected to a radiation exposure of 10^{10} ergs g^{-1} (C) at a pressure of 2 x 10^{-6} torr. This change is not considered to be significant. There was no change in the weight of the material and its color panged from amber to dark brown. Silicone DC-R7521 did not change significantly in weight or compressive strength at a radiation exposure of 9×10^9 ergs g^{-1} (C) and a pressure of 2×10^{-6} torr, but changed from a straw color to dark brown. Data are given in Table A-25 in Appendix A.

ght

of

CO

11

h.

·le.

у-

he

RTV-60, a silicone elastomer, was exposed to radiation under chilic and dynamic conditions. The compressive strength was found to increase for a deflection of 0.02 inch after an exposure of 8.6 x 109 ergs g⁻¹ (C) in vacuum. Samples exposed under dynamic conditions required a 75 per cent increase in load to compress them 0.02 inch. Statically exposed samples tested several weeks later required a 386 per cert increase in load. A load of 1549 psi was required to compress the static irradiated since 25 per cent as compared to a value of 203 psi for the control, a change of 66 per cent. Data a legical in Table A-26 and Table 15.

The ire mation in hir of Scotchcast 212 (epoxy) and EC-2273 (a fluorinated elastomer) had little effect on their properties. Irradiation in vacuum caused compressive strength of the Scotchcast to increase by almost 50 per cent. A small increase was noted for EC 2273. With RTV-501 silicone, radiation both in air and in vacuum increased compressive strength. However, in vacuum, the increase was more noticeable. Data are given in Table A-27.

Seals, O-Rings, and Gaskets

Elastomers which have shown promise for use as seals, O-rings or gaskets for use in a radiation environment include natural rubber, SBR, nitrile rubber, some polyurethanes, neoprene, Viton A and B, and silicone elastomers.

For temperatures above 300 F, Viton A, Kel-F, nitrile rubber, and silicone elastomers may be considered.

Elastomers which have shown promise when irradiated to 10^{10} ergs g⁻¹ (C) at room temperature include natural, SBR, nitrile, neoprene (if not immersed in water), and some polyurethane rubbers.

At elevated temperatures, the most radiation-resistant elastomers appeared to be satisfactory to 109 ergs g⁻¹ (C).

The addition of antirads improved somewhat the stability of nitrile, neoprene, SBR, and natural rubbers. The antirads increased service life by about one order of magnitude.

TABLE 15. EFFECT OF NUCLEAR RALLATION IN VACUUM ON POTTING GOMPOU ... (25)

Category	Trade Name	Gamma Dose [ergs/gm(C)]	Vacuum (torr)	Jpacimen Configuration	Measured Property	Per
Fetting Compounds Epon 828/Z	s Epon 8.28/Z	i.0 × 10 ⁻¹⁰	2 × 10 ⁻⁶	Compression disks	Ultimate compressive strength Weight change	9
	DC R-7521	9.0 × 109	2 × 10 ⁻⁶	Compression disks	Ultimate compressivo strength Weight change	
	RTV-60	8.6 × 109	3 × 10 7	Compress on disks	Compressive strenging at 25% Compressive strengt at 0.02 inch	+ -

Nitrile rubber is not seriously affected by radiation either in air or in vacuum to an exposure of 109 ergs g⁻¹ (C). At 10¹⁰ ergs g⁻¹ (C), the effect of irradiation is about the same in air as in vacuum. Irradiation of neoprene to 10⁹ ergs g⁻¹ (C) has about the same effect in vacuum as in air. Radiation effects on Viton-B appeared to be similar whether irradiated in air or in vacuum.

ut

ıe

he

me

Effects of Nuclear Radiation

Morris and Caggegi⁽⁴⁰⁾ investigated 24 rubber vulcanizates and 93 antirads in an effort to develop rubber gaskers which would be resistant to nuclear radiation. The vulcanizates were exposed to a gamma exposure of 10¹⁰ ergs g⁻¹ (C) at a temperature of 75 F. Elastomers examinated included natural, styrene-butadiene, acrylonitrile, acrylic, neoprene, v nylpyridine, polyurethane, silicone, fluorinated silicone, and Viton-A. Using compression set as the criterion for behavior as a gasket material, the elastomers which were the most satisfactory were natural rubber, styrene-butadiene containing 23.5 per cent styrene polymerized at 41 F (Synpol 1500), and nitrile rubber (Hycar 1072). It was found that the resistance to gamma irradiation of styrene-butadiene rubber was improved if it was cured with dicumyl peroxide instead of sulfur.

Genthane S, a polyurethane, was rated as one of the best vulcanizates, but Adiprene C, also a polyurethane, was questionable. Some of the specimens of the latter including the control, hot-compression set, and irradiated samples, control while a corressed. Apparently, the strength of this vulcanizate was marginary Silicone vulcanizate and a ligh compression set before irradiation and showed large recreases in Most indensation. Irradiation caused the Philprene VP-25, Viton A-H, and Static LS-53 specimens to corrode the aluminum plates holding them in compression.

Table 15 shows the compression set and the decrease of Mar indentation of several vulcanizates after irradiation. The figures given are the differences between the irradiated values and the original values.

The radiation resistance of the vulcanized rubbers with respect to compression set can be improved by compounding with certain antioxidants, antioxonants, or with certain chemicals containing aromatic rings or condensed ring structures. These are discussed in the section on antirads.

In studies to determine the extent to which antirads can protect O-rings, Born and Associates (41) investigated the effect of the more promising antirads in nitrile, nitrile/styrene-butadiene (90/10), neoprene, and Viton-A premium-quality compounds used currently in commercial O-ring seal production. They found that on the basis of absolute postirradiation property values as well as percent retention of initial values, the nitrile rubber compound (NBR) plus 5 phr of Stabilite-FLX was the most promising all-around candidate rubber compound of this group for O-ring seals for radiation service. This formulation is compounded by Precision Rubber Products Corporation.

^{*}Mass indentation is the depti of penetration of a 0.125-inch hemispherical indenter into the sample with a 1000-gram weight resting on the indenter. Readings are taken after 1 minute and are expressed in hundredths of a millimeter. This test utilizes the Mass Indentometer Model 650-2, but otherwise it is the same test as ASTM D731-56, "Indentation of Rubber by Means of the Pusey and Jones Plastometer".

TABLE 16. CHANGE IN COMPRESSION SET AND MAST INDENTATION OF ELASTOMERS DUE TO GAMMA RADIATION⁽⁴⁰⁾;

	Compression Set	Decrease of Mast(a)
	due to	Indentation due to
Rubber	Radiation, %	Radiation_
Adiprene C	55	12 .
Silastic S2048	59	174
Silicone W96	71	185
Synpol 1500	74	41
Philprene VP-25	77	62
Natural	78	42
Genthane S	79	26
Hycar 1071	79	55
Hycar 1041	80	49
Hycar 1042	80	39
Hycar 2001	81	51
Hycar 1001	82	43
Synpol 1000	82	46
Naugapol 1504	83	45
Synpol 8000	83	42
Naugapol 1023	84	57
Hycar 1002	84	43
11 :ar 1043	84	48
Ncoprene WRT	85	59
H, ar 1014	88	61
Hy. r 4021	89	63
Silastic LS-53	98	97
Viton A-HV	100	44

⁽a) Mast indentation is the depth of penetration of a 0.125-inch hemispherical indentor into the sample with a 1000-pram weight resting on the indentor. Readings are taken after 1 minute and are expressed in hundredths of a millimeter. This test utilizes the Mast Indentometer Model 650-2, but otherwise it is the same test as ASTM D531-56, "Indentation of Rubber by Means of the Pusey and Jones Plastometer".

General Dynamics⁽¹⁾ irradiated four O-ring formulations manufactured by Precision Ruther Products Corporation (PRP). Three of the formulations were developed in a cooperative program by B. F. Goodrich Co. and PRP to develop radiation-resistant O-ring compounds. The fourth was a standard PRP Viton-B formulation. Data were given for a neoprene rubber containing 5 parts Antiox 4010 and for Viton B. These materials when irradiated at 375 F in air and in fluid maintained considerable tensile strength and elongation. Data are given in Table 17.

Lewis (15) at General Dynamics irradiated an SBR rubber and a nitrile rubber composition developed by Goodrich and Precision Rubber Products Companies. Both contained an antirad to improve radiation resistance. These compositions appeared to be serviceable to a radiation exposure of 10¹⁰ ergs g⁻¹ (C). (See Tables 18 and 19.)

TABLE 17. ULTIMATE FIOPERTIES OF PRECISION RUBBER PRITICULORPORATION OPRING COMPOUNDS 2277 SPECIAL AND 1900%¹⁾

	Exposure	ure	Irradiation					
		Neutron,	Time and		Tonsile Stre	Tensile Strength(2), poi	Ulrimate 8:0	Ultimate Blongation(a), %
Compound	Gamma, ergs g ⁻¹ (C)	n cm ⁻² (E>2.9 Mey)	Temperature, hr/F	Medium	No. 222 O-Rings	Tensile	No. 222 O-Rings	Tensile
2277	Countrols	Controls	5/75	Air	2638/140/5	2795/233/2	372/23/5	523/-/1
Special	1.2 × 109	2.3 × 1014	5/15	Αίτ	2339/158/5	26 4,146/3	287/14/5	362/11/3
containing	Controls	Controls	5/375	Air	1499/234/3	1879/102/3	180/21/3	144/8/9
S ple	9.1 × 108	1,1 × 1014	5/375	Aur	188/60/5	1076/15/3	65/5/5	69/3/3
A 18 10 X	Controls	Cor.rols	5/75	Oronite 8515	2584/82/3	2572/174/3	338/11/3	430/54/3
	1.2 x 10 ⁹	2,3 x 1014	5/75	Oronite 8515	1771/216/5	2389/110/3	227/23/5	323/14/3
	Controls	Controls	5/375	Orogite 8515	1631/87/3	1860/146/3	213/8/3	284/8/3
	9,1 x 10 ⁶	1.1 x 1014	5/375	Oronite 8515	1247/454/5	2145/203/3	142 '28/5	212/17/3
19007	Coerrols	Controls	5/75	νiτ	1984/89/3	2021/135/3	254/23/3	305/1,2/3
(Viton-B)	1,2 x 16 ⁹	2.3 × 10 ¹⁴	5/75	Αir	2041/181/3	2149/312/3	141/5/3	149/12/3
	Controls	Controls	5/375	Air	2024/57/3	2061/159/3	254 8/3	282/20/3
	1.1 × 10 ⁹	2.¢ × 1014	5/375	νп	1131/72/3	1285/55/3	148/5/3	191/1/3
	Controls		5/75	4P3E fluid(b)	1973/44/3	1951/116/3	256/4/3	293/35/3
	1,2 × 10 ⁹	2, t x 1014	5/15	4P3E fluid	1937/180/5	2319/154/3	138 /1/5	171/9/3
	Controls	Controls	5/375	4P3E fluid	1863/141/3	2005/181/3	269/10/3	307/34/3
	1.1 x 10°	2.9 × 10.4	5/375	4PSE fluid	1818/ 15/4	1844/176/3	164/6/4	181/14/3

(1) Data are given as \$\overline{x}(S.D./n, where \$\overline{x}\$ average value, S.D. a standard deviation of "" individual observation estimated from the range, and n a number of specimens used in calculating \$\overline{x}\$ and S.D.

(b) 4P3E - fluid-maxed isomers of phenoxyphenyl ether.

TABLE 18. SUMMARY OF EFFECT OF IRRADIATION AT AMBIENT TEMPERATURE ON PRPC-O-RING COMPOUND 1387(15)

Gamma Exposure.	Specific Grav	Specific Gravity at	Specific Gravit, at	iravit, at G	Compression Ser(c).	Hardness. Shore A	Shore A	Tensile Strength(d).	Ultimate Elongation.
ergs g-1 (G)	Before	After(a)	Before	(9)Yearly	80	Before	After	De1	૦ પૃથ
0					5.63	70.2	70.4	2701.8	342.3
4.9 x 10 ⁸	1,250	1,252	1,251	1,243	16,96	70.2	71.4	2512.3	300.7
1,8 x 10 ⁹	1.249	1,253	1,251	1.249	36.91	70.4	71.0	2621.4	290.1
3.6 x 10 ⁹	1,249	1,254	1,251	1,245	62*19	70.2	73.2	2808.1	266.7
1.2×10^{10}	1,250	1,253	1,252	1.25	82,96	9.69	82.6	3206.8	164.0
3.5 x 1010	1,250	1,267	1,253	1,257	94.44	70.6	92.4	4128.3	64.0
1.6 x 10 ¹¹	1.244	1,293	1,254	1,280	:	;	;	6018.7	9

(a) After urradiation in air.
(b) After irradiation in ASTM No. 3 oil, "oral oil soak time, 171 hours.
(c) Total time in compression for all specifying, 310 hours.
(d) Tensile values are average for 15 sample,; all others are average for 5 samples.
(e) Broke immediately; elongation could not be measured.

TABLE 19. SUMMARY OF EFFECT OF IRRADIATION AT AMBIENT TEMPERATURE ON PRPC O-RING COMPOUND 4387(15)

1

Gamma Exposure,	Specific Gravity at 25 C	ravity C	Compression Set(a),	Hardness, Shore A	Shore A	Tensile Strength(b),	Ultimate Elongation,
ergs g ⁻¹ (C)	Before	After	3 6	Before	After	18d	%
0			9.04			1890. 6	449.3
4.9×10^{8}	1.164	2.172	14.42	64.6	64.4	2014. 1	453.3
1.8 x 109	1. 166	1.173	27.88	65.0	65.0	2003. 2	427.3
3.6×10^{9}	1.165	1.157	43.26	65.0	4.79	1811. 2	339.4
1.2×10^{16}	1.162	1. 160	74.95	65.0	75.6	1779.7	209. \$
3.6 × 1010	1. 163	1.184	89.77	64.8	86.4	1749.2	65.5
1.6×10^{11}	1.160	1.211	:	;	;	3601.8	18.3

(a) Total time in compression for all specimens, 310 bours.

(b) Tentile values are average for 15 samples: all others are average for 5 samples.

Koehler and Pefhany⁽²⁸⁾ tested a gaging system for reactor pressure tubes designed to measure diameter, surface defects, wall thickness, and straightness in a defuelled, drained channel during periods of reactor shutdown. The ultrasonic crystal used to trace the wall contour required a water coupling to the tube wall and, therefore, some of the O-rings were wet or immersed in water during the testing of the gaging system. As a result, some of the O-ring materials were tested wet and some dry, depending on the location. The neopreme O-rings were found to be satisfactory to a radiation exposure of approximately 10¹⁰ ergs g⁻¹ (C) both wet and dry. Although the O-rings had hardened, they were considered satisfactory for this application. Silicone rubber O-rings (Armet Green and Grey, and Linear White) and a white Teflon O-ring were considered satisfactory when a v, but they hardened considerably when wet.

Effects of Vacuum and Nuclear Radiation

Gamma-radiation effects were determined by subjecting components containing the seals to nuclear radiation. Solenoid valves, check valves, relief valves, actuators, ball valves, and regulators were subjected to 2 weeks in a vacuum with the temperature cycled daily from -175 to +50 C. They were then subjected to radiation exposure in air and finally to a repetition of the vacuum exposure. Although the effects of environment on the seals in these components were not given directly and are not strictly comparable, it would appear that neoprene, Viton-A, Kel-F, and some Teflon seals were satisfactory. Butyl rubber, nitrile rubber, and other Teflon seals were adversely affected and thus were not satisfactory.

Continuous sealing materials within a solenoid changed in hardness or the continuous the mechanical forces required to actuate the valve. This is illustration of the type problems encountered. Leakage rates of components with elastomer seals and seats generally increased as a result of the combined environmental exposure testing.

Kerlin and Smith^(6,7) evaluated Viton-B, nitrile rubber, neoprene, and natural rubber as O-rings. These materials were subjected to nuclear-radiation exposure and to vacuum. Data are given in Tables A-28 through A-31, Appendix A. Table A-28 shows the data for O-rings which were irradiated in vacuum or in air and tested in air. These were described as being static tests. Tables A-29 and A-30 contain data for materials irradiated in vacuum and tested in vacuum. These were described as being dynamic tests.

Examination of Table A-28 will show that nitrile rubber (Pa-ker Compound 66-581) is not seriously affected by radiation either in air or vacuum to an exposure of 109 ergs g⁻¹ (C). At 10¹⁰ ergs g⁻¹ (C), the effect of irradiation is about the same whether or not air is present. When tensile strength was determined in a vacuum (dynamic tests, Table A-29), it appeared somewhat lower than when tested in air (static tests). Weight loss was approximately 1 per cent (Table A-31).

Tensile strength and elongation of natural rubber O-rings changed considerably when irradiated in vacuum to 9×10^9 ergs g⁻¹ (C). However, up to 5×10^9 ergs g⁻¹ (C), there was little difference between irradiation in air and in vacuum. No significant change in weight occurred.

Irradiation to an exposure of 109 ergs g⁻¹ (C) had practically no effect on neoprene either in air or in vacuum. Dynamic tests in vacuum) showed little difference from the tests in air (see Tables A-28 and 4-29).

Radiation effects on Viton-B appeared to be similar whether irradiated in air or in vacuum. Elongation decreased considerably after 109 ergs g⁻¹ (C) (compare Tables A-28 and A-30).

A nitrile rubber containing an antirad (PRP 737-70) showed better tensile strength when irradiated in air than in vacuum. After 10⁹ ergs g⁻¹ (C), elongation decreased considerably in air. No comparable data for vacuum were given.

All of these materials except Viton-B showed good stability to radiation both in air and in vacuum to about 109 ergs g⁻¹ (C), but above that exposure, changes in physical properties were large. Viton-B showed considerable change at 109 ergs g⁻¹ (C). At the highest exposures, natural and nitrile rubber appeared to be damaged more by exposure to gamma radiation in vacuum than exposure in air. Neoprene and Viton-B were not tested to sufficiently high radiation levels in vacuum to determine the effect of vacuum on gamma-radiation damage.

Wahl and Robinson⁽³⁵⁾ exposed several elastomeric reals to a gamma exposure of 5×10^6 ergs g⁻¹ (C) in a vacuum (2×10^{-6} torr at beginning of exposure and 9×10^{-6} torr at end of exposure) and measured weight and Durometer hardness changes. Samples remained in vacuum condition for 1 week following the radiation exposure before they were tested. No gross physical property changes of the seals were observed. Data are g = 0.000 Table A-32.

 $Gray^{(4)}$ determined the effect of radiation and vacuum exposure on the compressive ant tensile σ rength of Fluorobesios, a mixture of Teflon and random asbestos fibers. The results σ , these tests, shown in Table A-33, indicate that the material would still remain useful as a gasket material after radiation exposure of 10^9 ergs g⁻¹ (C) in vacuum.

Gray, et al., (8) investigated the performance of seals and gaskets to determine both design and material limitations, particularly those for unlubricated vacuum service. The studies consisted of performance tests and the determination of leak rates in static and dynamic operations. Tests included both rotational and reciprocating motion. Leakage rates were measured by means of a helium leak detector connected to the interior of the seal test container. The vacuum level was maintained below 10⁻⁶ torr except in case; of seals for which leakage rates were too high to maintain the vacuum.

All seals were dusted with molybdenum distifide before installation. Elastomers examined for use as seals in reciprocating engines included neoprene, silicone, Viton-A, nitrile (Buna N), and Butyl rubbers. Also tested were Kel-F, polyethylene, and polyvinyl chloride. Materials tested for rotating seals were silicone rubber, Viton-A, Kel-F elastomer, Teflon, and Kel-F. Leakage rates and pertinent comments on wear and abrasion effects are shown in Table A-34 in Appendix A.

Polyethylene and silicone rubber were the most effective seals for reciprocating service. Leak rates were very low, 5×10^{-5} standard cubic centimeters of helium gas, after test durations of 30 minutes. It was found that a dry lubricant such as molybdenum

disulfide improved performance. Silicone rubber and Viton-A proved to be good materials for rotational motion. Again, small amounts of dry lubricants were beneficial. Seal positioning and loading were found to be critical, and have to be carefully designed.

Teflon was particularly ineffective because of its relatively rigid, inflexible properties. The material were rapidly since it was not as porous as the elastomers and would not accept a surface coating of lubricant such as molybdenum disulfide to reduce friction and wear. Gray points out that self-lubricating properties of a material apportently do not increase its life when operated as a dynamic vacuum seal.

Abrasion and tearing were major problems. Many of the seals were turned and split after a few minutes' operation. Viton-A was an example of this mode of failure.

Static seal tests were conducted on the same elastomers used for the dynamic tests. Seals were loaded to obtain the deflections and contact pressures recommended by the manufacturers. Leak rates were measured before and after operation. Data are given in Table A-34. Some seals such as silicone rubber exhibited a reduced leak rate for static sealing after being subjected to dynamic operation.

Polyethylene and polyvinyl chloride (Vinylite) in an O-ring configuration were very effective in static applications. These materials as well as the remainder of the elastomers tested were not operably affected by a 2-week vacuum exposure at 1×10^{-7} torr.

In another study of sealants for space environment, Farkass and Barry (12) screene is even elastomer materials for use as O-ring-type door seals. These were studied from the standpoint of outgassing and leakage rates in a high vacuum environment. Again, a radiation environment was not considered in these studies. Butyl rubber, Viton-A, neoprene, and Buna-N were roughly comparable in combined gas load (leakage plus cutgassing) during the screening tests, with preference in the order named. Natural rubber was eliminated because of excessive physical damage, and Teflon was rejected because of permanent deformation. Silicone O-rings were substantially poorer in combined leakage and outgassing, although the outgassing studies rated the silicones as lowest in actual outgassing with Butyl, Viton-A, and neoprene in descending order of merit. The degree of compression of the O-rings was found to be an important factor and the effect of compression was approximately the same for all the materials tested.

The effect of temperature was explored in the range from 25 C to 100 C. Helium leak rate increased, at first, with increase in temperature 101. Wheelastomers studied. However, different elastomers reacted differently to long exposure at 100 C. The leak rate of the silicones ultimately decreased by a hundredfold, but the deformation made it impossible to re-use the O-ring. Butyl rubber is not deformed by prolonged heating and the leak rate remains at the level initially reached. Neoprene and Viton-A performed in a manner intermediate to these two extremes.

Tables 20, 21, and 22 show the air leak rates of the better elastomers at 20 C and at 100 C, as well as the permeability and effect of loading on the air leakage rates.

TABLE 26. AIR LEAK RATE OF ELASTOMER COMPOUNDS(42Xa)

	Leak Rate	
	inch/	year
Compound		100 C
Silicone (Compound 76-128)	2,2	3.6
Silicone (Compound 77-018)	2.1	3.6
Neoprene	0.03	0,29
Viton-A	0.022	0.44
Butyl	<0.001	0.37

⁽a) Elastomer was loaded by four clamps with 40 foot-pounds torque on each clamp in addition to atmospheric pressure.

TABLE 21. COMPARISON OF REAL AIR LEAK RATES OF ELASTOMER' AS MEASURED EXPERIMENTALLY AND AS CALCULATED FROM PERMEABILITY VALUE⁽⁴²⁾

	Permeability(a),	Loak Rate at 100 C	, std cc air/inch/year
Material	std cc/(cm ²)(cm)(atm)(sec)	Calculated	erimenta (b)
Viton-A	8.8 x 10 ⁻⁸	0.36	0.44
Neopren-	7.0 x 10 ⁻⁸	0.29	0.29
Silicone (C .npound 6-128)	450 x 10 ⁻⁸	18,40	3.60
Silicone Compound 77-018)	Ditto		
Butyl	3.2 x 10 ⁻⁸	0,13	0.37

⁽a) Obtained from WAIC Technical Report 56-331, References 20-23, cm2 refers to thickness of material.

TABLE 22. RELATION OF AIR LEAK RA'LE OF GASKET MATERIAL TO LOADING (42)

		Air Leak Rate, std cc	air/inch/year	
Torque on Clamps, ft-lb	Neoptene	Silicone	Butyl(a)	Viton-A
0 (atmospheric pressure)	1.28	10.0	<0.001	1.1
10	0,22	4.0	<0.001	0.2
20	0.09	2.8	<0.001	6.08
30	0.03	2.4	<0.001	0,04
40 (normal operating torque)	0.03	^, 2	<0.001	0.622
60	0.03	",2	<0.001	0.02
80	0.03	2.0	<0.001	0.02
100	0.018	1.6	<0.001	0.01
150	0.002	1.4	<0.001	0.01

⁽a) It should be pointed out that, in the case of a pressurized container subjected to space environment, the atmospheric pressure would not ordinarily be acting to compress the rubber scalant material. Therefore, the conclusion that an adequate scal can be constructed employing the action of atmospheric pressure on a flanged door using a Butyl O-ring gasket should not be too hastily drawn from these figures.

⁽b) The clamp torque was approximately 40 foor-pounds during these measurements.

Thermal Insulation (Foamed Materials)

Polyurethane foamed materials appeared stable when irradiated to 5×10^8 to 1×1^{-9} ergs g⁻¹ (C) in air and in vacuum. At cryogenic temperatures, the approximate threshold point for compressive resistance was an expensive of about 5×10^9 ergs g⁻¹ (C). The radiation threshold at cryogenic temperatures for a polystyrene thermal insulation was about 5×10^9 ergs g⁻¹ (C).

Two polyurethane foamed materials manufactured by Chemical Plastics Research Company were irradiated in vacuum at General Dynamics and tested for compression strength at 25 per cent deflection in air and in vacuum, (7) After a radiation exposure of 10^9 ergs g^{-1} (C), compression strength of CPR-20 did not change when tested in air (100 psi to 99 psi). When tested in vacuum to a radiation exposure of 5×10^8 ergs g^{-1} (C), compression strength for 25 per cent deflection increased to 124.5 psi. With the second material, CPR-1021-2, compression strength at 25 per cent deflection again did not change significantly when tested in air after being irradiated in vacuum to 5×10^8 ergs g^{-1} (C) gamma exposure. Values were 33 psi and 29.8 psi before and after irradiation, respectively. When tested in vacuum, after the same radiation exposure, compression strength increased to 49.4 psi.

Stayfoam AA 402, also a polyurethane thermal insulation material was irradiated at cryogenic temperatures. (43) There appeared to be an approximate threshold point for compressive resistance of this material at an exposure of about 5×10^9 ergs g^{-1} (C).

Styrofoam 22, a polystyrene thermal insulation, showed a radiation the shold of 2 to 5×10^{-6} gs g⁻¹ (C) at cryogenic temperatures.

ELASTOMERS

Radiation data relative to elastomeric materials since the publication of REIC Report No. 21 have resulted primarily from radiation studies of end items and components of operational equipment. Efforts to develop new and improved materials have met with only limited success, and, as a result, these studies have been cut back. Data on the effect of extreme temperatures and of vacuum with radiation are included in this report. Many of the data have been presented in the discussion of various components, but information of general significance is included under the several types of elastomers. For information on those elastomers for which no additional pertinent data have been received, the reader is referred to REIC Report No. 21, September 1, 1961.

Elastomers are among the most sensitive to environment of any of the materials considered for equipment to be used in space. (44) Vulcanizates containing plasticizers, oils, and other compounding ingredients are more apt to be affected adversely by space environments than are polymers without these additives. However, for applications such as seals or gaskets, there are few other materials which may be used satisfactorily. As a result, work is continuing in such areas to develop satisfactory seal materials.

Polyacrylic Rubber

and r oprene rubbers. An exposure of 10° ergs g⁻¹(C) will effect an over-all change in physical properties of 25 per cent.

Hycar 4(21 exposed to 400 F for 5 days in vacuum retained appreciable strength, although elongation decreased considerably.

No additional radiation-effects data were received since issuance of REIC Report No. 21. However, some information on the effect of vacuum was noted. Hycar 4021 exposed to 400 F for 5 days in vacuum retained appreciable strength, although elongation decreased considerably. (45) Compound formulations and values of the properties tested are given in Tables B-1 and B-2 in Appendix B. These data are included to help in design of parts for space, since, in general, radiation deterioration in air is greater than that in vacuum.

Butyl Rubber

Butyl rubber has probably the least radiation stability of any of the common synthetic rubbers. Twenty-five per cent damage is reached for tensile strength and elongation at about 109 ergs g⁻¹(C).

Ultraviolet radiation in vacuum caused an increase in tensile strength of about 10 to 15 per cent. Elongation decreased 10 to 25 per cent.

No additional data on effects of radiation on butyl .ubber were received. Data on the effects of vacuum and temperature are given below. DeWitt(9) found Butyl rubbers

K-121 and K-1330 increased in hardness, decreased in elongation, and only slightly changed (7 per cent) in tensile strength when exposed to vacuum (10^{-4} to 10^{-5} torr) and elevated temperature (250 to 300 F).

Snyder⁽⁴⁶⁾ exposed Butyl rubber to ultraviolet in vacuum (1 x 10⁻⁵ torr) for 24, 96, and 312 hours. In each case, tensile strength increased from about 10 to 15 per ment. Elongation decreased from 10 to 25 per cent. Data are given in Table B-3.

Chlorobutyl, Chlorobutyl-Chloroprene Blends

An attempt was made to achieve a balanced radiation resistance by maintaining a balanced crosslinking/scission reaction. These chlorobutyl-chloroprene blends were a step in this direction, but did not produce the needed improvement.

Chlorobutyl elastomer has, because of its chlorination, additional crosslinking sites. It was felt that gamma radiation could cause crosslinking at these sites and counteract the chain/scission reactions of regular Butyl compounds. For this study Heitz and coworkers (47) selected polychloroprene as the blending elastomer because of its widespread use as a seal material. Results are given in Tables B-4 through B-7 in Appendix B.

After an initial stiffening period, the scission reaction became predom ment in the chlorebytol compound (suggesting a threshold exposure of about 109 ergs g⁻¹(C) for scission similar to the one for crosslinking in other polymers). The scission effect seemed to be some predominant in air than in vacuum. The specimen surfaces decomposed to a stick, -tacky condition. Combined radiation prevented the formation of this tacky surface, but that this was purely a surface condition was indicated by a study of the other physical properties.

Increasing the polychloroprene content of the blends increased the tendency for crosslinking as indicated particularly by modulus changes and the lack of surface decomposition except in spots on the clamped ends, and the compound (158-62) containing 75 parts chloroprene to 25 parts chlorobutyl exhibited no surface decomposition a all.

The heat encountered, coupled with the ultraviolet radiation, makes the discussion of combined radiation difficult, but it was felt that blending compounds might be a good way to achieve a balanced radiation resistance, by maintaining a balanced crosslinking/scission reaction without adversely affecting the vacuum stability.

Chlorosulfonated Polyethylene (Hypalon)

Hypalon 30 showed good stress-strain properties up to a radiation exposure of 3.1 \times 109 ergs g⁻¹(C).

The addition of 3.3 parts hydroquinone improved the radiation resistance of a base compound. Also, aromatic plasticizers such as Kenflex A improve stability.

In general, the effect of gamma radiation in vacuum is more severe than that of radiation in sir.

Hypalon 30 as tested by Wattier, Newell, and Morgan⁽⁴⁸⁾ showed good stress-strain properties up to an exposure of 3.1 x 10^9 ergs g⁻¹(C), after which all properties tested except ultimate straigth underwont considerable change. Data are given in Table 23.

TABLE 23. ENGINEERING PROPERTIES^(a) OF Hipalon 30 ELASTOMER VERSUS RADIATION⁽⁴⁸⁾

Integrated Neutron Flux (N), n cm ⁻² (E > 0.33 Mev) ^(b) Gamma Exposure (G) ergs g ⁻¹ (C) ^(b)	Modulus at 100% Elorgation, psi	Ultimate Strength, psi	Ultimate Elongation, %	Compression Set, %	Slope of Load - Deflection Curve, lb/in.
Control	1184/8.7/5	2769/3.4/5	212/8.1/5	32. 7/7. 3/3	2947/2.4/3
N 2.3 x 10^{13} G 5.1 x 10^7	1392/5.4/5	2945/2.8/4	208/4.7/4		
N 1.4×10^{14} G 1.8×10^8				35, 2/4, 4/3	3293/3.6/ 3
N 8×10^{14} G 8×10^8				45, 2/3, 7/4	36- მემ . 8/4
N 1.2 $\times .0^{15}$ G 3.1 $\sim 10^9$	1610/3.2/4	2688/7.3/4	175/ /4		
N 5.5 to 7.6 x 10 ¹⁵ G 1.1 to 1.4 x 10 ¹⁰		4864/9.8/5	88/12 /5	83.2/6.3/2	7680/3.7/2

⁽a) Data are given as x/S.D./n, where x = average value, S.D. = standard deviation of an individual observation estimated from the range, and n = number of specimens used in calculati ∞ x and S.D.

The effects of filler level, antirad, and curing time on the radiation resistance of chlorosulfonated polyethylenes were examined by Heitz. (47) Addition of 3.3 parts hydroquinone (13-62) improved radiation resistance of the base compound (130-62). Decreased cure t me of this formulation produced a compound (130-62) with a lower radiation resistance rating (i.e., greater property changes) than the control compound. (See Appendix B, Tables B-8 through B-13.) Increasing the carbon black content (132-62) lowered the rating, but a test of this compound after addition of an antirad (138-62) indicated an improvement.

It was noted the antirad compound cured for 120 minutes and the compounds with the higher level of carbon black showed an initial decrease in modulus, indicating a possible threshold exposure for crosslinking to become predominant. This "threshold" effect was masked by further curing of the material. In any event, crosslinking was increased as the exposure time was increased.

⁽b) Ambient radiation : mperature; test temperature 80 F.

In general, the effect of straight gamma radiation in vacuum was more severe than that of radiation in air. The changes produced by the addition of ultraviolet radiation were mixed insofar as physical-property changes were concerned. The specimen showed a marked increase in weight gain during air irradiation as opposed to vacuum irradiation, indicating a strong oxidation reaction. The mixed radiation increased the weight gain in the vacuum condition and decreased the gains in air.

It must be noted that it was impossible to separate the effects of heat aging from the desired effects of the ultraviolet radiation, and the evaluation of the mixed gamma-ultraviolet radiation effects is colored by this fact.

Fluorocarbon Rubbers

Viton-A reaches threshold damage in air at a gamma exposure of 5×10^8 ergs $g^{-1}(C)$, and 25 per cent damage at 6×10^9 ergs $g^{-1}(C)$. This rubber possesses poor radiation stability when irradiated in air at temperatures higher than about 250 F. However, it can be used at 400 F when irradiated to an exposure of 10^9 ergs $g^{-1}(C)$ in jet turbine oil.

In vacuum there was no significant change in tensile strength at an exposure of 10^{10} ergs g⁻¹(C) at room temperature.

Vicon-B irradiated in bis-phenoxy-phenyl ether at 400 F at an exposure $< 10^{10}$ ergs e^{-1} of the wed excellent retention of tensile strength but a decrease of 50 per cent in clone ation.

(e)-F 10. maged by 25 per cent at 6×10^8 ergs g⁻¹(C) in air. It is stable in silicate ester fluids at room temperature to 10^{10} ergs g⁻¹(C).

Fluorobutyl acrylate elastomer increases: out 40 per cent in tensile strength and 20 per cent in hardness but decreases in elongation by 70 per cent when irradiated in air to an exposure of 10^{10} ergs $g^{-1}(C)$.

According to Kerlin⁽⁶⁾ there were wide variations in physical properties of control samples of Viton-A. However, it would appear that, at gamma exposures of 1.6 x 1010 ergs $g^{-1}(C)$ in vacuum, there was no significant change in tensile strength. On the other hand, when Viton-A was irradiated in air, there was an increase in tensile strength of 39 per cent. Vacuum did not appear to make a difference in the change in elongation due to radiation exposure. Weight loss was 1.2 per cent with a vacuum-nuclear radiation exposure of 1.6 x 1010 ergs $g^{-1}(C)$. DeWitt, et al., (11) found that a vacuum of 5.5 x 10-4 torr and a temperature of 400 F for 6-1/2 hours caused only a slight decrease in tensile strength and elongation of Viton-A and practically no change in hardness. (See Tables B-14 and B-15, Appendix B.)

Podlaseck and Suhorsky⁽⁴⁾ measured the change in permeability of Viton-A after exposures to vacuum and ultraviolet for periods of up to 2 weeks. The results (Figure B-1) showed that there were no significant changes. Equilibrium weight loss at 177 C for Viton-A was given by Podlaseck as 20 grams/sq cm/sec x 10¹⁰ for a pressure of 10⁻⁵ torr.

Ossefort and Ruby⁽⁴⁵⁾ found that a Viton-B vulcanizate showed better properties when subjected to 600 F in vacuum for 5 days than when exposed to the same temperature in air. However, tensile strength had decreased from 2610 psi to 620 psi. At 5.0 F, tensile strength had decreased only to 2140 psi. Data are given in Table B-16.

Heitz and coworkers⁽⁴⁷⁾ studied the effect of the amount and type of filler with Viton-A. They found that increasing the amount of change induced in the physical properties by exposure to irradiation. The compound containing GPF (152-62) rated slightly lower than the compound containing MT black (151-62), but the pattern of difference was not consistent between them.

Examination of the data in Tables B-17 through B-20 shows that crosslinking, as evidenced by increases in modulus and hardness and decreases in ultimate elongation, started immediately and continued increasing as the exposure time increased.

rediation in air produced greater changes than radiation in vacuum for all compounts. At low carbon black levels, the combined gamma-ultraviolet radiation produced greater changes than did straight gamma radiation, but the situation was reversed for the higher-carbon-black-content compounds.

The heat effects present in the combined gamma-ultraviolet radiation conditions sgair made evaluation of the effects of ultraviolet irradiation difficult. However, the heat resistance of the fluoroelastomers provided some help in separating the heat and ultraviolet effects, by minimizing the effects of heat on the elastomers.

Nitrile Rubber

Further work is needed to confirm reported results on the effect of radiation in vacuum because of conflicting data. For example, nitrile rubber appears to be less radiation stable in vacuum than in air. In air at 10^{10} ergs $g^{-1}(C)$ exposure, tensile strength increased from 2459 psi to 3512 psi. In vacuum, tensile strength at 109 ergs $g^{-1}(C)$ decreased from 2630 psi to 203 psi.

On the other hand, some nitrile rubber O-rings were not seriously affected by radiation either in air or in vacuum to an exposure of 10^9 ergs $g^{-1}(C)$. At 10^{10} ergs $g^{-1}(C)$, the effect of radiation was about the same whether or not air was present. When tensile strength was determined in a vacuum after irradiation, it appeared somewhat lower than when tested in air after being irradiated in a vacuum.

Additional work on nitrile rubber has included studies of the effects of vacuum, and nuclear radiation and vacuum, and some additional work on the effects of antirads. The latter is discussed in the section on antirads.

Bonanni⁽⁴⁹⁾ irradiated Buna N rubber to an exposure of 7.9 x 10^7 ergs $g^{-1}(C)$ in air, in a closed atmosphere, and in vacuum (5 x 10^{-5} torr). The per cent change in weight was negligible in each case. In an ampule containing approximately 7 cubic centimeters of air sealed under atmospheric conditions, the degradation of Buna N as a result of gamma irradiation was more severe than that in an open atmospheric condition. The average tensile strength was lower at an exposure of 7.2 x 10^8 ergs $g^{-1}(C)$, and at 7.9 x 10^9 ergs $g^{-1}(C)$ tensile strength was about two-thirds that of the samples exposed to gamma irradiation in an open atmosphere. In a vacuum, Buna N lost more

than 50 per cent of its tensile strength after exposure to 7.9×10^9 ergs $g^{-1}(C)$. The per cent elongation followed a straight-line degradation, but with a lower per cent elongation value in vacuum than in air. The value in a closed atmosphere was again intermediate. Thus, nitrile rubber appeared to be less satisfactory when irradiated in a vacuum than when irradiated in air. Data are shown in Figures 12 and 13.

Kerlin⁽⁶⁾ found that air produced a harder and more brittle material with Buna N (RA 30760), while vacuum irradiation produced a weak, tacky, ductile material. After exposure to 10^{10} ergs g⁻¹(C) in air, tensile strength increased from 2459 psi to 3512 psi, while after exposure to 10^9 ergs g⁻¹(C) in vacuum, tensile strength decreased from 2630 psi to 203 psi. Data are shown in Tables B-21 and B-22 in Appendix B. No weight loss occurred at a vacuum-gamma radiation dose of 7×10^9 ergs g⁻¹(C). (See also discussion on nitrile rubber under seals, O-rings, and gaskets.)

DeWitt, et al., (9) studied the effect of vacuum (1.2 x 10-3 torr) and temperature (300 F) on several nitrile elastomers. He found that vacuum exposure increased hardness and decreased elongation, but that tensile data were widely scattered and inconclusive.

Ossefort and Ruby⁽⁴⁵⁾ exposed plasticized and unplasticized nitrile rubber compounds to vacuum and elevated temperatures. Properties were not seriously affected after 5 days' exposure at 300 F in vacuum. Data are given in Table B-23.

Polychloroprene (Neoprene)

Fensile a rength of meoprene varies depending on the type of polymer, cure, and additives, but it general, tensile strength decreases to a radiation exposure of 4.3 to 8.7 x 10^9 ergs g⁻¹(C) and then increases with increasing radiation. Twerty-five per cent change occurs at about 10^9 to 5 x 10^9 ergs g⁻¹(C). Elongation decreases with increased radiation exposure; while hardness does not change to an absorbed radiation of 4.5 x 10^9 ergs g⁻¹(C).

Reports on the effect of vacuum and radiation on neoprene are conflicting. Some tests have shown improvement in properties in vacuum and others have shown less radiation resistance in vacuum for neoprene. No doubt, the type of neoprene, the filler, compounding materials, and cure affect the stability of the rubber in vacuum.

Data obtained on the effects of radiation on neoprene rubber in vacuum as compared with radiation in air are conflicting. Kerlin⁽⁶⁾ irradiated a neoprene rubber (type not specified) in vacuum and in air and the data show the rubber to be very sensitive to vacuum-gamma radiation. At an exposure of approximately 1.9 x 10⁹ ergs g⁻¹(C), tensile strength for the vacuum-irradiated samples decreased from 3134 psi to 191 psi; in air the decrease was from 3297 to 2769 psi. The decrease in elongation was of the same order of magnitude in both cases. Weight loss was not considered significant. Data are shown in Tables B-24 and B-25 in Appendix B.

On the other hand, Bonanni⁽⁴⁹⁾ irradiated a neoprene rubber to 7.9 x 10⁹ ergs g⁻¹(C) and found little difference between the effect of radiation in vacuum, in air, and in a sealed atmospheric environment. Data are shown graphically in Figures 14 and 15. Heitz, et al., ⁽⁴⁷⁾ found that room-temperature irradiation in air generally produced somewhat greater changes than room temperature irradiation in vacuum, although the

FIGURE 12. TENSILE STRENGTH VERSUS GAMMA EXPOSURE (Buile N) $^{(49)}$

FIGURE 13. PER CENT ELONGATION VERSUS GAMMA EXPOSURE (Buna N)(49)

FIGURE 14. TENSILE STRENGTH VERSUS GAMMA EXPOSURE (Neoprene) (49)

FIGURE 15. PER CENT ELONGATION VERSUS GAMMA EXPOSURE (Neoprene) (49)

-49)

differences were in general not large. There was one exception in which Neoprene WRT having 35 parts of SKF carbon black showed a much greater change in tensile strength in air than in vacuum (see Table 24).

TABLE 24. EFFECT OF GAMMA RADIATION AND VACUUM ON NEOPRENE WRT COMPOUNDS AT ROOM TEMPERATURE⁽⁴⁷⁾

		Radiation	Tensile St	rength, psi	Elongation	, per cent
Compound	Description	Exposure, ergs g ⁻¹ (C)	Irradiated in Air		Irradiated in Air	
138-62	35 parts SRF	None	2303		537	
	carbon black	3.6×10^9 1.3×10^9	5 79	2140	23	77
139-62	35 parts SRF	None	2149		516	
	carbon black,	3.6 x 10 ⁹	1016		70	
	2 % hydroquinone	4, 3 x 109		1367		123
140-62	35 parts SRF	None	1835		517	
	carbon black,	3.6 x 10 ⁹	1063		93	
	5 % È	4.3 x 10 ⁹		1243		123
159-69	50 parts HAF	None	2654		287	
•	carbon black;	3.6×10^9	898		27	
	c red 40 min at 193 F					
161-62	50 parts HAF	None	1651		437	
	carbon black;	4.3×10^9	2116		53	
	cured 20 min at 293 F	4. 3 x 10 ⁹		1864		47

The reasons for the conflicting data are not known, but could be due to the types of neoprene studied, differences in compounding, and cure. No definite conclusions on the relative effect of radiation in vacuum and radiation in air can be made at this time.

Wattier, Newell, and Morgan⁽⁴⁸⁾ studied postirradiation effects on three neoprene elastomers. They reported tensile data for specimens irradiated at 75 F and stored at 75 F and at -20 F for 1, 4, 11, and 29 days before testing. Data are given in Tables 25 and 26. Postirradiation changes were noted in two of the three neoprenes. In the Kirkhill and Rubbercraft neoprenes (60 mils thick), a postirradiation decrease in tensile strength with time occurred with room-temperature storage. There were no detectable postirradiation effects in the special O-ring formulation of neoprene (78 mils thick) by Parco. When neoprene is stored in an oxidizing atmosphere, postirradiation changes probably will be more noticeable in thin samples than in thick ones due to the time for diffusion of the oxyger through the rubber.

TABLE 25. TENSILE PROPERTIES^(A) OF NEOPRENE RUBBERS AND BUNA-N VERSUS POSTERADIATION STORAGE TIME⁽⁴⁸⁾

		Neo	Neoprene Rubber (Kirkhill)(b)	hin(b)		Neon	reas Rubber	Neograps Rubber (Rubber, rafri(b)	
Integrated Neuron		Ministure,				Miniature		ΑĊ	AUTON
Flux (M), n cm		60 M 11			60-M1		120-M11	60-M11	120-M11
(E > 2, 9 Mer) by	Days	The second	ASTM, 6	ASTM, 60 Mil Thick	Thick		Thick	Thick	Thick,
		10	24	13.5	75 FR	•	S PRO	75 PC	75 FC)
ergs g-1(C)(b)	After Ispadiation	Oltřímate, ped	Oltimate, pui	Vitimate, per	Ultimate, pei		Ultímate, Pei	Ultimate, pei	Uldmate, pei
Courrel	1	1630/2.3/8	1805/4.9/9	1780/4.6/12	2940/5.4/9	79 1850/6	e/ 9/0	2210/2.8/12	1980/2.6/9
N 1.5 x 10 ¹⁵				•					
G 7x 10°	-	1405/4.9/5		1350/8.3/5	1600/11 /5		1420/12 /5	1430/9.9/4	1350/11 /5
N 2.5 x 10 15	,			•					
G 1 x 10 to	-	1725/14 /4		1670/12 /4	1585/8,6/4		1506/7. \$/4	1354/13 /5	1320/6.9/5
N 5 x 10 ¹⁵								æ	
$G 2 \times 10^{10}$	1	3355/12 /4	3654/4.2/5	4030/5.1/4	2925/13 /4		9610/6.3/4	3460/5.1/4	2620/3.6/3
	หว	3650/5.2/4	3858/9.1/5	3760/8.3/4	3058/12 /4		2520/3.3/5	3060/12 /4	2654/5,7/5
	ග	3145/11 /4	3760/5.3/5	3440/10 /5	2344/9.7/5	•	9515/17 /4	2620/2.6/4	2060/3.4/5
	જ	2930/5.8/4	3675/8.3/5	3085/4.6/4	2640/9.3/5		1590/17 /4	2515/3.3/4	2750/7.2/4
			Necprene Rubber (Kirkhill)(b)	r (Kirkhiin ^(b)			Buns.	Buns -N Rubber(b)	
		Ministore, 60 M	60 Mil Thick, 5 F(c)	ASTM, 60 Mil Thick,	II Thick,	Ministres,	Miniature, 60 Mil Thick,		ASTW, 61 Mil Thick,
			Ultimate		Uldmate		Uldmate		Ultiman
		Ultimate	Slongation	Uldmate,	Elongation,	Ultimate,	Elongation,	, Ultimate,	Elongati-m,
		Pei	·F	peţ	*	pet	ĸ	ž.	×
Control	Ħ	1341/4.8/10	267/9.5/10	1832/6.5/8	342/6.1/7	1882(4)	262(4)	1307(4)	223(4)
	4	1.356/2.2/10	268/3, 1/10	1820/2, 1/9	/2.1/9				
	Ħ	.#03/5,6/10	277/7.9/9	1845/1.3/9	249/1.5/7				
	83	. 3 67/2.9/10	245/2.9/8	1870/1.3/8	247, 2.2/8				
N 1 x 16 ¹⁵									
G 8, 7 x 109	-	2280/11 /6	9/36 /6	4800/6 /7	5.5/6.1/7	/030\$	/11	3430/	18/
	→	2090/7.8/9	10/4.2/8	4016/5.4/10	5.6/12 /10	436 0/	17/	3350/	761
	11	1966/22 /9	14/19 /9	3040/8.2/9	7.6/18 /9	4861/	16/	3480/	20/
	83	1550/14 /	13/16 /8	CT. 1/9888	/ /10	4752/	15/	3280/	20/
									.

(a) Data are given as X/S.D./n. where X = average value, S.D. = standard deviation of an individual observation estimated from the range, and n = n inber of samples used in calculating X and S.D.

(b) Radiation temperature and test temperature, 75 F.
(c) Storage temperature.
(d) Individual values not available; average obtained from 4 to 8 samples.

(c) Strenge Comparature.
(c) Strenge Comparature.
(d) Individual values not available; average obtained from 4 to 8 samples.

TABLE 26. TENSILE PROPERTIES^(a) OF NEOPRENE VERSUS POSTIRRADIATION STORAGE TIME⁽⁴⁸⁾

Days Tested After Irradiation 1 3 10 34	Integrated Neutron Flux (N), n cm ⁻²			Neopz	Neoprene (Parco 3046-60)(b)	. (q)(p)	
After Irradiation 1 1 3 10 34	Gamma	Days Tested		Modulus, psi		Tensile	Ultimate
1 3 10 34 1015 1010 10	Exposure (G), ergs g-1(C)(b)	After Irradiation	At 25% Elongation	At 50% Elongation	At 100% Elongation	Strength, psi	Elongation, %
3 10 34 5 10 ¹⁵ 10 10	Control	1	141/16 /5	262/8,7/5	539/17 /5	2375/4,8/5	334/2,7/5
10 34 1,9 x 10 ¹⁵ 1,2 x 10 ¹⁰ 10		m	151/8,1/7	254/7.7/7	545/8.9/7	2058/5.2/7	324/8, 7/7
34 1, 9×10^{15} 1, 2×10^{10} 1 10		10	170/15 /10	277/17 /10	532/17 /10	2005/6, 7/10	321/10 /10
1, 9 x 1015 1, 2 x 1040 1 3		34	154/11 /9	565/9.9/9	511/8, 7/9	2223/4.5/9	330/4 /9
1.2 × 10 ⁴⁰ 1 3	$N 1.9 \times 10^{15}$						•
e 01	G 1.2 x 1040	-	920/32 /5	2066/30 /5		2150/18 /5	5/13/2
		٣	826/38 /5	1818/5 /5		2071/15 /5	57 11 /5
		01	664/20 /5	1872/20 /5		2291/8.9/5	52,50 /5
6/ 9/58/ 48		4.	785/6 /5	1820/25 /5		1926/24 /5	51/4.8/5

(a) Data are given as x/S.D./n, where x = average value, S.D. = standard deviation of an individual observation estimated from the tange, and n = number of specimens used in calculating x and S.D.
 (b) Irradiation, stockage, and test temperature, 75 F.

Heitz⁽⁴⁷⁾ studied the effect of cure, antirad (hydroquinone), and carbon-black type and level on neoprene. Addition of 2.0 parts of the antirad (Formulation 139-62, see Tables B-26 through B-31) decreased the radiation induced physical changes in air by a out 20 per cent, and an increase in the level of 5.0 parts decreased the changes by about 30 per cent. However, changing from 35 parts of SRF black to 50 parts HAT black (159-62) decreased the changes to a greater extent.

In general, the reaction was predominantly crosslinking and the crosslinking increased markedly with increases in dosage. Room-temperature irradiation in air generally produced greater changes than room-temperature radiation in vacuum, but the situation was generally reversed in the combined nuclear radiation-ultraviolet radiation exposures. The specimens seemed to gain weight during exposure, particularly after air exposure, and this increase was even more marked by the addition of ultraviolet irradiation and heat.

Snyder⁽⁴⁶⁾ exposed neoprene to ultraviolet radiation in vacuum. Exposure was at 80 and 155 F for 24, 96, and 312 hours. Ultraviole: caused tensile strength to increase and elongation to decrease. Values are given in Table B-32.

Data have also been reported for the effect of vacuum and elevated temperatures without exposure to radiation. DeWitt⁽⁹⁾ found that vacuum exposure of 5 x 10⁻⁴ torn and a temperature of 300 F for 3 hours caused an increase in tensile strength and hardness and a decrease in elongation (see Table B-15).

Ossefort and Ruby⁽⁴⁵⁾ showed the effect of exposure to elevated temperatures and vacuum. Determine are given in Table B-33. Both plasticized and unplasticized materials were usted. Samples were oven-aged for the same temperature exposures for comparison. In general, properties did not change significantly up to 212 F. At 300 F, and 5-day exposure, tensile strength decreased by approximately 25 per cent. However, properties had not changed to such an extent as to affect serviceability for most applications.

Styrene-Butadiene (SBI)

Styrene-butadiene rubber (SBR) commonly called GR-S resists radiation better than most of the common synthetic rubbers, but is not equal to natural rubber in radiation resistance. Threshold damage is reached at 2×10^8 ergs $g^{-1}(C)$, and 25 per cent damage is accrued at 1×10^9 ergs $g^{-1}(C)$.

No data on the effect of radiation and vacuum were reported. At elevated temperatures, tensile strength is better in vacuum (no radiation) than in air.

Data on radiation effects on SBR rubber included the effects of some antirads and are discussed in the section on antirads. Ossefort and Ruby(45) examined the effect of vacuum and elevated temperature on SBR vulcanizates with and without an antiozonant. Specimens with antiozonant lost their ozone resistance after exposure to vacuum at either room or elevated temperature. The antiozonant no doubt sublimed under vacuum and so was removed from the vulcanizate. Data are given in Table B-34, Appendix B.

Polysulfides

Polysulfide rubbers have poor radiation stability. An exposure of 10⁸ ergs g⁻¹(C) in air is sufficient to damage Thiokol ST seriously. However, it retains its elongation to a greater extent than do most elastomers. After an exposure of 10¹⁰ ergs g⁻¹(C), both Thiokol ST and FA retained considerable elongation. Thiokol materials can be used for applications where flexibility is required without any great strength.

Differences in the effects of radiation in air and in vacuum are not marked.

Heitz, et al., (47) studied the effect of gamma radiation, vacuum, and ultraviolet on polysulfide elastomers. These were vendor compounded, and the only known variation was the type of curing agent. One dichromate-cured compound (154-62), one lead peroxide-cured compound (155-62), and two manganese dioxide-cured compounds (146-62 and 167-62) were tested. Data are given in Appendix B, Tables B-35 through B-39.

The main observable difference between the curing agents was in the inferior heat resistance of the lead peroxide-cured compound (155-62) compared with that of the other three, although all compounds were affected by heat.

The primary reaction when irradiated was chain scission, and this grew more marked as the exposure was increased. In the case of the lead peroxide and manganese dioxide cures, this was indicated by decreases in modulus and hardness. The dichromate cure, however, produced slight increases in modulus along with slight decreases in reaction.

The atm. sphere effect (i.e., radiation in air versus vacuum) did not appear to be marked. Evaluation of the effects of ultraviolet irradiation was rendered impossible by the heat which accompanied the radiation and the heat sensitivity of the compounds.

Wattier, Newell, and Morgan⁽⁴⁸⁾ examined Thiokol ST rubber for postirradiation effects. There was evidence for some recovery of tensile strength. Materials tested for 1, 3, 10, and 34 days after being irradiated to 1.1 x 10^{10} ergs g⁻¹(C) increased in tensile strength (see Table B-40).

Polyurethane Rubber

Polyurethane rubber is one of the more radiation-mesistant elastomers. It is damaged by 25 per cent at an exposure of about 4×10^9 ergs g⁻¹(C). Hardness is unaffected even at 8.7 x 10^{10} ergs g⁻¹(C).

Irradiation in vacuum has about the same effect as irradiation in air. The effects of combined radiation and temperature up to 260 F are approximately the same as for radiation alone with respect to tensile strength. Elongation is greater at the elevated temperatures.

Cure and filler are important considerations in determining radiation stability of polyurethane rubbers.

Polyurethane rubber is recognized as being one of the more radiation-resistant elastomers. Born and associates⁽⁴¹⁾ found Estane VC cured with 4 phr DiCup (dicumyl peroxide) to be the most radiation-resistant compound tested. It required an exposure of 5.5 x 10⁹ ergs g⁻¹(C) to induce 50 per cent net compression set. On the other hand, Adiprene C, a carbon-black-reinforced sulfur-cuted polyurethane, showed poor radiation resistance. Thus cure and filler are important considerations in determining radiation stability. Born indicated that the type of crosslink appeared to play an important role in the radiation resistance of the different physicethanes. Also, spatial arrangements of the polymer chains, the degree of aromaticity, and the polymer main-chain composition were important factors in the radiation resistance of the polyurethane.

Effects of Temperature and Radiation

Wattier, Newell, and Morgan⁽⁴⁸⁾ irradiated fifteen commercial polyurethane elastomers and studied the effect of postirradiation storage time on some of these and the effect of elevated temperature on others. In general, their findings substantiated the fact that polyurethane rubbers are among the most radiation resistant of the elastomers. Ultimate tensile strength and elongation of all the elastomers decreased at the highest radiation doses. No major postirradiation effects are evident in their data and for most of the elastomers a temperature of 260 F did not seriously affect tensile strength of either the irradiated or nonirradiated samples. Elongation was greater for the samples irradiated at 260 F than for those irradiated at 80 F. In both cases, the test temperature was at 80 F. A summary of the polyurethanes studied and the results of radiation are shown in Table 27. Data for the individual elastomers are given in Table 8-41 through 7-50 in Appendix B.

Deilon ! R-80T, a polyurethane elastomer produced by Seiberling Rubber Co., was irraliated at $^{\circ}$ F and at 250 F to a gamma exposure of 9.4 x 10^{10} ergs $g^{-1}(C)$ at the lower temperature and 8 x 10^{10} ergs $g^{-1}(C)$ at the higher temperature. (15) Preliminary observations indicate that this elastomer has excellent radiation resistance. However, the original hardness of the materials before irradiation was about 96, Shore A, which is higher than is desirable for most applications. Data are given in Table 28.

A flexible polyurethane foam, a blown polyether urethane produced by General Foam Co., was also irradiated at 75 F and 250 F. Data are given in Table 29. It can be seen that at the lower temperature, compression set at 50 per cent deflection increased from 8 per cent to 20 per cent at 10^9 ergs $g^{-1}(C)$, to 95 per cent at 8.3 x 10^9 ergs $g^{-1}(C)$, and 100 per cent at 2.8 x 10^{10} ergs $g^{-1}(C)$. At the highest dose, 9.4 x 10^{10} ergs $g^{-1}(C)$, the material adhered to the plates. At 250 F, compression set of the uninradiated material was 103 per cent and irradiation did not change this value. However, at an exposure of 8 x 10^{10} ergs $g^{-1}(C)$, shrinkage and sticking to the plates again was encountered.

Effects of Radiation and Vacuum

Golden and Hazell⁽⁵⁰⁾ determined the effect of high energy radiation in air and in vacuum on polyurethane rubber. He found that tensile strength and elongation were steadily reduced by electron radiation. The effect is more marked in vacuum than in air. In vacuum, complete loss of strength of Vulkollan Grade 2018/40 (hardness 60 ± 5) was caused by an exposure of 10^{10} ergs $g^{-1}(C)$.

TABLE 27. EFFECT OF RADIATION AND TEMPERATURE ON POLYURETHANE ELASTOMERS

	Temperature				
	េរិ	Exposure	Γεst	Tensile	
	Irradiation,	Dose(a),	Temperature,	• .	•
Polyurethane	F	ergs g ⁻¹ (C)	F	psi	per cent
Genthane S	75	None 10	75	2360	468
(General Tire)	75	3.7×10^{10}	75	386	ó 3
3109-B-13	75	None	7 5	4745	434
(Du Pont)	75	2.1×10^{10}	75	3325	128
Disogrin 1-DSA-	75	None	75	7222	666
6865	75	2.2×10^{10}	75	899	56
Disogrin 1-DSA-	75	None .	75	4688	583
4250	75	2.2×10^{10}	75	2574	77
Adiprene L (Du	80	None	80	5346	390
Pont) 12 Phr		7×10^{10}	80	1679	75
MOCA Cure:	260	None	80	5542	420
3 hr at 100 C		5.4×10^9	80	1513	299
Adipre le L-1-7	80	None	80	5949	328
18 nr MOCA		7×10^{10}	80	2650	63
Cu e: 1 hr	260	None	80	6013	358
100 C		None 5.4 x 10 ⁹	80	3111	326
Adiprers L-167	80	None	80	1002	452
5.8 Phr 1,4		7×10^{10}	80	604	69
Butanediol	260	None a	80	1361	499
1 Phr		5.4 x 10 ⁹	03	575	465
Trimethylprope Cure: 4 hr at 140 C					
Genthane S-1	80	None	80	5564	589
		7×10^{10}	80	906	26
	260	None .	80	5697	614
		1.9×10^{10}	80 .	1218	138
Genthane S-2	80	None	80	2932	598
		7×10^{10}	80	692	25
	260	None	80	3008	622
		1.9×10^{10}	80	888	165
General Tire	80	None	80	4102	596
Type R		7×10^{10}	80	890	29
•	260	None	80	4160	609
		1.9×10^{10}	80	992	139

TABLE 27. (Continued)

Polyurethane	Temperature of Irradiation, F	Exposure Dose(a), ergs g ⁻¹ (C)	Test Temporature, F	Tensile Strength, psi	Elongation,
Disogrin 1-DSA-	80	None	80	4989	685
ხმ 6 5		7×10^{10}	80	830	36
	260	None	80	4345	676
		1.9×10^{10}	80	1260	278
Disogrin I-DSA-	80	None	80	5254	718
7560		7×10^{10}	80	850	35
	260	None	80		
		1.9×10^{10}	80	1474	362
Disogrin 1-DSA-	80	None	80	5544	578
9250		7×10^{10}	80	2426	27
	260	None	80	4585	566
		1.9×10^{10}	80	2285	247
Disogrin 2-DSA-	80	None	80	(5418)(b)	645
8445		7×10^{10}	80	1050	47
	260	None	80	5082	555
		1.9×10^{10}	80		
Disc rin 2-D5 A-	80	None	80	5661	563
9840		7×10^{10}	80	2585	56
	260	None 10	80	5917	599
		1.9 x 10 ¹⁰	80	2524	330
Disogrin 3-DSA-	80	None	80	(5759)(b)	(588) ^(b)
8050		7×10^{10}	80	1075	44
	260	None	80		
		1.9×10^{10}	80		
Disogrin 3-DSA-	80	None	80	3407	598
9045		7 x 10 ¹⁰	80	2472	49
	260	None	80	2928	616
		1.9×10^{10}	80	2071	313

⁽a) Control specimens were subjected to the same nonnuclear environment and test procedures as the irradiated ones.

⁽b) Numbers in parentheses are values from equivalent test.

SUMMARY OF EFFECTS OF IRRADIATION AT TWO TEMPERATURES ON SEILON UR-80T (POLYURETHANE ELASTOMER)⁽¹⁵⁾ TABLE 28.

Gamma	Temperature	Specific Gravity	ific Gravity	Compression	Hardness Shore A	. Y.	Tensile Strength,	Ultimate Elongation
Exposure, ergs g ⁻¹ (C)	Treatment, F/hr	Before	After	Set, %	Before	Afte	psi	88
				73 B			4648.4	623.8
。 。	75/67		239	4.4	96.5	96.7	4454.0	597.7
3.2×10^{9}	75/2	1. 625	1. 6.30	1 C	96.5	0.96	4062.0	580.0
1.2×10^{7}	15/2	1. 663	1. 534	2.5	96.7	97.0	3413.2	523,8
2.7×10^{9}	75/6.7	1. 225	1. 239	7:10		07.0	2,868.2	432, 1
8.3×10^{9}	75/6.7	1.225	1. 232	91.9	0.00		1931 7	116.5
0101 ~ 8 6	75/67	1,227	1, 240	93.6	97.0	78.0	1931.	
010:	75/57	1. 226	1, 234	94.5	96.5	92.5	1967.8	1.24
7.4 × 10-	10/61	700 .	1 217	100.4	96, 3	89.0	4175.9	9.909
0	7/017	1. 660			96	96.3	4150.9	582, 1
2.7×10^{8}	210/	1, 225	I. 237	77.5) u	2421 0	512 7
901 - 20	210/2	1.224	1, 235	101.2	97.0	70.0	0.10%	
21 4 1 4	240/6 7	•	ł	101.6	96.0	91.2	;	;
9, -	1.0/07/	1 226	1 225	102.8	96.5	96.3	3023.9	492.2
2.5 × 107	7.0/04.7	1 329	1 211	114.8	96.5	93.8	2648.0	414.0
1.1 × 10-	7.0/02	1: 22	:	105.1	96.0	92.0	:	:
0	0//057	;	106	107.5	0.46	78.2	1542, 3	123.9
2.4×10^{10}	250/67	1.640	C41 °1	7	9 40	9 40	1751.2	50, 5
0101 × 0 8	250/67	1. 226	1. 225	106.	72.0			•

(a) Total time is compression for all specimens, 31% bours.

(b) Tessile values are average for 15 samples; all others are average for 5 samples.

TABLE 29. SUMMARY OF EXFECTS OF IRRADIATION AT TWO TEMPERATURES ON FLEXIBLE POLYURETHANE FOAM (BLOWN POLYETHER URETHANE, GENERAL FOAM CO.)(15)

Gamma Exposure, ergs g ⁻¹ (C)	Temperature Treatment, F/hr	Density, lb/ft ³	Compression Set(a), %	Compression Deflection(b) psi
0	75/67	2, 65	7, 67	0. 500
3.2×10^{8}	75/2	2.57	4.70	0.565
1.2×10^9	75/2	2.75	19.42). 535
2.7×10^9	75/6.7	2.62	77. 39	J. 466
8 x . 0	75/6.7	2.51	95.99	ು, 340
.8 x 10 '0	75/67	2.67	100. 34	0.171
), 4 x 10 ·)	75/67	2.86	(c)	0.034
C	210/2	2. 36	69, 33	0.591
2.7 × 108	210/2	2.50	77. 37	0. 602
9.7 x 108	210/2	2.46	82.23	0.542
0	240/6.7	2, 30	99.69	0,638
2.9×10^9	240/6.7	2, 48	99. 02	0. 525
1, 1 7, 1010	240/6.7	7. 59	200, 33	0.407
0	250/67	2, 33	103.29	0.764
2.4×10^{10}	250/67	2,64	102.66	r. 330
8.0×10^{10}	250/67	3, 14	100.0(c)	J. 223

⁽a) Compressed to 50 per cent deflection during irradiation and for time period of 312 hours. Average of 6 samples.

⁽b) Load required for 25 per cent compression of 1-sq-in, -specimen area. Average of or a ples.

⁽c) Highest exposure groups adhered to plates. Some could not be removed. Also shrank in size.

Modulus was not greatly affected by radiation. Swelling measurements indicated that a greater degree of crosslinking occurred during irradiation in vacuum than in air. Specimens showed no loss of transparency after irradiation, but the pale amber color was considerably intensified at the higher doses. No voids or bubbles were formed. Data are shown in Figures B-2 to B-5.

Heitz, et al., (47) examined a polyurethane vuicanizate for st-bility to nuclear radiation and ultraviolet radiation in air and in vacuum. He found that the samples underwent an initial crosslinking period after which chain scission was more predominant. The difference between air and vacuum irradiation appeared very small. The weight changes were also small in view of the extensive degradation of some of the specimens. Regarding its resistance to gamma radiation alone, Heitz found that it compared with the best of the silicones evaluated. Data are given in Table B-51.

DeWitt, et al., (9) tested Adiprene L and C for effects of exposure to vacuum and elevated temperatures (200 and 300 F for L and C, respectively). He found either no change or an increase in tensile strength, hardness, and clongation. Vacuum pressure obtained with Adiprene L would suggest that quite a bit of outgassing occurred.

Ossefort and Ruby⁽⁴⁵⁾ found that 5 days' exposure to vacuum at 300 F did not significantly affect tensile strength, although elongation decreased about 50 per cent. Hardness increased from 56 to 80. Exposure to the same temperature in air decreased tensile strength by almost 65 per cent, but did not change hardness. Data are given in Table B-52.

Effects of Rad ation and Fluid Immersion

Wattier, Newell, and Morgan⁽⁴⁸⁾ irradiated four polyurethane elastomers while immersed in selected fluids. Those included:

Mil-L 7808 A phenoxy phenyl ether

4P3E A diester oil

Oronite 8515 A nonpetroleum-base hydraulic !luid

Samples were immersed for approximately I month prior to irradiation and soaked for 2 months after irradiation. Data obtained were of a preliminary nature only, and no conclusions were drawn except that irradiation in 4P3E fluid appeared to cause more degradation than irradiation in the other fluids used. Data are shown in Tables B-53 through B-56.

Silicone Rubbers

The tensile strength of silicone rubber increases with irradiation in air up to an exposure of approximately 10^9 ergs $g^{-1}(C)$, then it rapidly decreases. Elongation is the property most affected by radiation. Most silicones retain 50 per cent elongation after exposure to 5×10^9 ergs $g^{-1}(C)$ at room temperature, 10^9 ergs $g^{-1}(C)$ at 150 C, and 5×10^8 ergs $g^{-1}(C)$ at 200 C.

Nitrile silicone retained useful properties when irradiated in fluids such as Oronite 8515, MIL-L-7808, and JP-4 fuel to an exposure of 10¹⁰ ergs g⁻¹(C).

Changes in tensile properties of silicone elastomers due to vacuum irradiation (gamma) are, in general, equivalent to or somewhat greater than the changes inducted by irradiation in air.

Vacuum exposure to 600 F for 5 days had no appreciable effect on tensile strength of solicon elastomers, although exposure in air reduced this property by about 50 per cent. Elongation was not greatly affected.

The surface of silicone rubber shows crazing and discoloration on exposure to ultraviolet radiation.

Radiation-effects data have been obtained on the following types of commercially available silicone rubbers: dimethyl, methyl phenyl, methyl vinyl, methyl trifluoropropyl, and nitrile siloxanes. Of these, the nitrile and methyl phenyl silicone vulcanizates suffer the least damage when exposed to gamma radiation in air while the methyl trifluoropropyl type experiences the greatest damage. The methyl vinyl and methyl phenyl vinyl silicones are intermediate with respect to radiation stability. REIC Report No. 21 gives more detailed information regarding these types. Additional information covered in this addendum includes effect of temperature and gamma radiation-vacuum and gamma radiation, and some data on the effect of ultraviolet radiation.

Effects of Radiation and Temperature

Wittier, Newell, and Morgan (48) irradiated six silicone elastomers at -65 F, 80 F, and 350 F. The materials were stored at the same temperatures until testing. Testing was at -65 F, 80 F, and 300 F. Table 30 shows the changes in ultimate strength due to irradiation at the three temperatures. Additional tensile data are presented in Appendix B, Tables B-57 through B-63, for the control and irradiated specimens. An examination of these tables will show that all silicone rubbers tested gave evidence of extensive crosslinking, even when irradiated at -65 F. Ultimate strength increased with exposure to a certain point, generally about 109 ergs g⁻¹(C), and then decreased with increasing exposure. This decrease appeared to be quite rapid above 109 ergs g⁻¹(C), as shown by comparing the above tables with Tables B-64 through B-67. The increase in tensile strength was considered to be a continuation of the crosslinking that was not fully completed by the usual curing process and the decrease was attributed to chain cleavage. Tear strength decreased with increasing dose. It may be noted that the tensile properties were sensitive to the test temperature, tensile strength decreasing considerably at the 300 F temperature.

Two silicone rubbers, a methyl phenyl vinyl type (DC-916) and a nitrile silicone (NSR-X5602), were cycled under compression during radiation. A nitrile elastomer (Hycar 1001) was also tested for comparison. Data on the number of cycles and the compressive strengths are given in Table B-68. The cycling of the material was found to have an effect on the nitrile silicone and the nitrile rubber. Compression set for NSR-X5602 and Hycar 1001 was less for the cycled-compressed environment than for the static-compressed environment. No difference was found for DC-916.

Dexter and Curtindale at Dow Corning Corporation (36) determined the combined effects of gamma radiation and high temperatures on the electrical and physical properties of liquid, semisolid, elastomeric, and resinous silicones. These tests indicated that many silicone dielectrics exhibit appreciable resistance to changes in

properties induced by exposure to gamma radiation at temperatures ranging from 150 C to 200 C.

These investigators state that the tensile strength of silicone rubbers, e.g., Silastic 1602, was unaffected by irradiation at room temperature and at 150 C to 10^{10} ergs $g^{-1}(C)$, while irradiation at 200 C decreased tensile strength (see Figure B 5). In all cases, hardness of the cilicone elastomers increased with case, the rate of increase being greater at elevated temperatures. Ultimate elongation is the property most affected by irradiation. Most silicone elastomers retain 50 per cent elongation after exposures of 5×10^9 ergs $g^{-1}(C)$ at room temperature, 10^9 ergs $g^{-1}(C)$ at 150 C, and 5×10^8 ergs $g^{-1}(C)$ at 200 C. Dexter and Curtindale state that an experimental radiation-resistant stock retained 50 per cent elongation after 9×10^9 ergs $g^{-1}(C)$ and 340 hours at 200 C, indicating a life in radiation fields 15 times greater than that of conventional silicone elastomers.

Electrical properties examined by these investigators included dielectric constant, dissipation factor, volume resistivity, and electric strength. The increase in dielectric constant of silicone elastomers irradiated at high temperatures was found to be less than that of the same materials irradiated at room temperature. The increase was of such magnitude as to cause only a slight change in the operating characteristics of the materials. Dissipation factor was affected in a similar manner, but did not change sufficiently to affect its operation in electrical equipment. adiation exposure either at room temperature or high temperature did not significantly affect the volume resistivity or electric strength of the silicone elastomers at these exposures [10¹⁰ ergr. g⁻¹(C)]. The effect of radiation at 25 C, 150 C, and 200 C on the electrical properties of Silastic 1602 are shown in Figure B-7.

Effects of Radiation and Fluid Immersion

A nitrile silicone (General Electric NSR-S5602) was tested by Wattier, Newell, and Mcrgan⁽⁴⁸⁾ in a combination of fluid, temperature, and irradiation environments. Specimens tested in fluids were immersed for approximately 7 days prior to irradiation and 30 days after irradiation. Samples were then tested within 4 hours after removal from the fluid. Data are given in Tables b-66 and B-67. Degradation of the silicone was noted in rluid MIL-L-7808, as indicated by the decrease in stress at 50 per cent elongation with exposure. Irradiations in Oronite 8515 and air resulted in an increase in stress at 50 per cent elongation with increasing exposure up to the maximum given [about 109 ergs g⁻¹(C)]. There did not appear to be any major difference between the tensile values obtained for the samplen irradiated at 260 F and those irradiated at 80 F. Tests were run only at 80 F for JP-4 fuel immersion. In all cases, the nitrile silicone appeared to retain uscole properties when immersed in these fluids after a radiation dose of 10¹⁰ ergs g⁻¹(C).

Effects of Radiation and Vacuum

Silicone elastomers have been subjected to vacuum at room and at elevated temperatures. In general, outgassing and equilibrium-weight-loss rates are relatively low and properties are not seriously affected. According to Jaffe and Rittenhouse (51), the temperature for 10 per cent weight loss per year in vacuum for silicone rubber is 200 C

TABLE 30. EFFECT OF NUCLEAR RADIATION AND TEMPERATURE ON TENSILE STRENGTH OF SILICONE ELASTOMERS(48)

Silicone	Chemical Type	Temperature of Irradiation and Testing(a), F	Gamm. Exposure, ergs g ⁻¹ (C)	Tensile Strength, psi
DC-80	Methyl vinyl	-65	0 1.1 x 109	1303 1238
		80	0 7 x 10 ⁸	1057 1117
		300	0 1.6 x 10 ⁹	538 631
SE-361	Methyl vinyl	-65	0 1.1 x 109	1050 135 4
		80	0 1.6 x 10 ⁹	967 953
		300	0 1.6 x 10 ⁹	5 4) ()
D~-675	Methyl phenyl vinyl	-65	0 7 x 10 ⁸ 1.1 x 10 ⁹	1990 944 1109
		80	0 1.6 x 10 ⁹	992 936
		300	0 1.6 x 109	533 670
DC-916	Methyl phenyl vinyl	-65	0 1.1 × 10 ⁹	(1589) · 404
		80	0 1,6 x 10 ⁹	150 <u>4</u> 1182
		300	0 1,3 × 10 ⁸ 1,6 × 10 ⁹ 1,1 × 10 ⁹	489 772 322 611

TABLE 30. (Continued)

Silicone	Chemical Type	Temperature of irradiation and Testing(a), F	Gamma Exposure, ergs g ⁻¹ (C)	Tensile Strength, psi
SE-551	Methyl phenyl	-65	0 7 x 108 1. 1 x 10 ⁹	1404 1515 1259
		80	0 7 x 10 ⁸ 1, 6 x 109	976 1078 883
		300	0 1.6 x 10 ⁹	416 544
LS-53	Methyl trifluoropropyl	-65	0 1.1 x 10 ⁹	2052 1076
		80	0 1.6 x 10 ⁹	1289 517
		300	0 1.6 x 10 ⁹	172 243

^{, /} Samples tured at 300 F were irradiated and stored at 350 F.

(400 F). Podlaseck and Suhorsky⁽⁴⁾ give the following data for equilibrium-weight-loss rates:

Temperature,	Pressure,	Equilibrium Weight Loss Rate, g/(cn ²)(sec)
177	760 .	3, 9
	5 x 10 ⁻²	2
	10-5	ND
204	760	46.8
	5×10^{-2} 1.6 × 10 ⁻² 10 ⁻⁵	9.6
232	760	74. 9
	9.5 x 10 ⁻¹	11.3
	6×10^{-2}	7. 2
	10-5	5. 7

Outgassing rates as given by these investigators (4) are shown in Table 31. In general, these rates are low, and silicones are useful in vacuum environment. In areas where outgassing and possible recondensation may present problems, such as on optical surfaces and electrical contacts, silicones may be preferred over other elastomers, and plastic materials. Although silicone rubber has a relatively high permeability rate, loss or given a pressurized vehicles due to permeability is so small that it may be disregarded in most cases.

TABLE 31. OUTGASSING RATES OF SILICONE ELASTOMERS (4)

		outgassing Ra ters/sec for	
Elastomer	After 1 Hr	After 4 r'r	After 24 Hr
Silicone rubber (Wacker Ró0)	70	17	
Silicone rubber (Wacker R80)	180	41	
Silicone rubber (24 hours, 95 per cent humidity)	230	46	
Silicone rubber (outgassed + 24 hours dry N2)	13		
Silastic	25	6	
Silicone rubber	94	31	
Silastic X6145C	25	5.6	
Silastic 8-104 (red, 62 durometer)	12	3.7	
Silastic 80 (white, cured 24 hours at 480 F. 74 durometer)	28	6.0	
Silastic 50 (white, 55 durometer)	30	6.4	
Silastic 67-163 (red, 61 durometer)	19	5.4	
Silicone (red)			0.44
Silicone (green)		~-	0.44

Boundy⁽³¹⁾ listed the weight loss of several silicones after exposure to temperatures of 105 F and 300 F at a pressure of 10⁻⁶ torr after a period of 7 days. Values are

=

given in Table B-69. Per cent weight loss was in the order of 1.5 per cent. Boundy noted that an appreciable decrease in vacuum weight loss was noted when the rubber was postcured, especially if the postcure temperature was higher than the use temperature.

was re.

Fulk and Horr⁽¹⁷⁾ reported the stationary-state weight-loss rate at 50 C for several silicone rubbers as well as the weight loss occurring before they reached a stationary state. Data are given in Table B-70. Stationary-state values were of the order of magnitude of 10^{-5} g/sq cm/hr. Weight loss to reach stationary state varied from 4.2 to 5.8 x 10^{-3} g/sq cm for the elastomers. In general, a steady-state weight loss was reached in 44 to 68 hours.

i ht

Ossefort and Ruby⁽⁴⁵⁾ exposed 2 methyl vinyl silicone rubbers to temperatures from 400 to 700 F. Vacuum exposure to 500 F for 5 days had no appreciable effect on tensile strength, although on exposure in air, this property was reduced by about 50 per cent. Elongation was not greatly affected in vacuum exposure. Weight losses were higher at these temperatures but this was also true in oven aged samples. One of the silicones maintained almost 50 per cent of its tensile strength when exposed to 700 F in vacuum. In air at this temperature, samples were too brittle to be tested. Data are given in Table B-71. In general, the effect of elevated temperatures was greater in air than in vacuum.

ne r

in;

Heitz and coworkers (47) irradiated silicone elastomers in air and in vacuum with gamma radiation. They found that atmospheric conditions as compared with vacuum environment did not cause many significant differences in radiation effects on these materials. Where such differences did occur, gamma radiation in vacuum produced greater they inking in the dimethyl, dimethyl phenyl, and dimethyl vinyl types than radiation in air. The reverse was true of the methyl phenyl vinyl compound tested. Tables B-72 crough B-85 show the effect of radiation in air and in vacuum on tensile strength, 100 per cent modulus, ultimate elongation, hardness, and weight change for six types of elastomers. The values after 100 hours of radiation are compared for those rubbers in Table 32. It may be seen that changes in properties due to gamma radiation in vacuum were, in general, equivalent to or somewhat greater than those in air.

ith

ır

in

These data are in general agreement with the findings of McGarvey⁽⁵²⁾ who studied the effects of radiation in air, oxygen, argon, and vacuum on various silicons elastomers and found that the media had little influence in the vulcanizate's physical properties at the exposures employed [10^{10} ergs g⁻¹(C)].

idied

Heitz indicated that room-temperature vulcanizing comprised as a class, with one exception, were the most radiation resistant of the silicones. However, it should be pointed out that tensile strength of these materials was lower than that of the high-

one

Effects of Ultraviolet Radiation

temperature-cured materials (see Table 32).

Podlaseck and Suhorsky⁽⁴⁾ investigated the effect of ultraviolet and vacuum at 26 C and 53 C on the permeability of silicone rubber. No significant changes in the permeability rates were found, but the silicone rubber showed surface crazing as a result of the ultraviolet exposure. Ultraviolet exposure was equivalent to approximately 1300 hours of solar radiation for the samples tested at 55 C and about 24 hours for the samples tested at 26 C.

·ely

ra ra

TABLE 32. EFFECT OF GAMMA RADIATION AND VACUUM ON SILICONE ELASTOMERS^(4.7)

Nominal Canna Ca							100 P	100 Per Cent		,			:
Postcured 12 Frank cured None 15 150 1-6 150 1-6 150	•	; ;	Nominal Irradiated	Camma Expos re,	T _{GL} .	E 5	ă	Per Cont	Ultimate	Per Cent	Har	dnoss	Weight Change,
Postcured 12 Fr. a. cured None 15.1 193 196 426(c) 130 148 188 184	Compound	Curing Data	Common	(2) 8 efter	72	•		Çıığı.	ret cont	200	200	3	ه ه
Person cured 5 min at	106-62	Postcured 12 hr at	As cured	None	11 11		83		387		28		
Press cured 5 min at	Dimethyl	480 F	Gamma, air	3,4 x 109		5-	1016	+426(c)	120	-69	78	+20	+3
Press cured 5 min at As cured Samma, size Samma, size Samma, size Samma, size Samma, size Samma, size Samma, vacuum Samma,			Gamma, vacuum	6.2×10^{9}	9	-61	:	+894	4.1	88	4.	+16	+33
Postcured 24 hr at Gamma, vacuum 6,2 x 10 ⁴ 1210 12					9		į		e¥		8		į
Postcured 24 hr at Camma, air 3,4 x 10 ⁴ 1000 +28	105-62	Press cured o min at	As cured	BOUT TO	9 6	97	} ;	. onde	3 6	S	8 8	ì	; 7
(c) Viny Postcured 24 hr at As cured None 731 449 210 210 67 68 81 410 68 68 68 68 68 68 68 6	Dimethyl	240 F Postcured 24 hr at 480 F	Gamma, air Gamma, vacuum	6.2 x 109	1010	+58	: :	+298(c)	3 8	3 8	. 63 64	† 04 • *	9+
Lyl vinyl Postcured 24 hz at Gamma, air 4.9 x 109 838 +15 +196(°) 57 63 81 81 410 F Gamma, air 4.9 x 109 838 +15 +196(°) 57 63 81 81 81 81 81 81 81 81 81 81 81 81 81	29 20 20												
Forecard 24 hr at Gamma, air 4,1 x 109 839 +15 +196 57 -63 81 +196 58 52 52 156 53 -70 73 52 52 52 156 53 -70 73 52 52 52 52 52 -156 53 -70 73 52 52 52 52 52 52 -70 73 52 52 52 52 52 52 52 5	Dimett, 1 vinyl	Postcured 24 hr at	As cured	None	731		449		210		67		
Postcured 24 hr at As cured		410 F	Gamma, air	4.1 x 109	838	+15	:	+ 196(c)	57	-63	83	+14	
Postcured 24 hr at As cured			Gamma, vacuum	4.9 x 10 ⁹	787	+7.6	ï	+150(c)	63	-70	55	9+	4
Pyl vlny 480 F Gamma, air 3,4 x 109 926 +7,8 +164° 67 -55 75 75 75 75 75 75	107-62	Postcured 24 hr at	As cured		92		523		981		2		
2 Fostcured 24 hr st	Dimethyl vinyl	460 F	Gamma, sir	3.4 x 109	926	+7.8	;	+164(c)	63	-55	75	+11	÷
Postcured 24 hr at As cured			Gamme, vacuum	6.2 x 109	655	\$:	+213(c)	9	£7-	8	+16	+1
hyı vinyi 480 : Gamma, air 3,4 x 109 1151 +12 +340(c) 63 -72 79 87 67 68 68 68 68 68 68 68 68 68 68 68 68 68	111-62	Fostcured 24 hr at	As cured		1029		415		227		ជ		
2 Postcured 4 hr at As cured 1 phenyl 480 i: As cured 2 As cured 2 As cured 2 As cured 3.4 x 10 ⁹ 302 -5 ² 529 500 -8 ² 76 500 500 500 500 500 500 500 500 500 50	Dimethy, vinyl		Gamma, air	3.4 x 109	1151	+12	;	+340(c)	8	5.	:	+10	‡
2 Postcured 4 hr at As cured 1473 229 500 62 1 phenyl 480 i: Gamma, air 3.4 x 109 292 -52 +337 300 -82 76 1 phenyl 480 i: Gamma, vacuum 6.2 x 109 774 -48 +404(c) 67 -87 78 250 F 250 F 250 F Press cured 10 min at 250 F Press cured 10 min at 250 F Press cured 10 min at 250 F Press cured 24 hr at Gamma, vacuum 6.2 x 109 660 -41 737 +254 93 -77 67 250 F As cured 3.4 x 139 660 -41 737 +254 93 -77 67 250 F As cured 3.4 x 139 660 -41 737 +254 93 -77 67 250 F As cured 3.4 x 139 742 -35 742 60 80 -80 70 250 F As cured 3.4 x 139 742 -35 742 60 80 -80 70 250 F As cured 3.4 x 139 742 -35 742 60 80 -80 70 250 F As cured 3.4 x 139 742 -35 742 75 75 -81 76 250 F As cured 3.4 x 139 742 -35 742 75 75 -81 76 250 F As cured 3.4 x 139 742 -35 742 75 75 -81 76 250 F As cured 3.4 x 139 742 -35 742 75 75 -81 76 250 F As cured 3.4 x 139 742 -35 742 75 75 -81 76 250 F As cured 3.4 x 139 742 -35 742 75 75 -81 76 250 F As cured 3.4 x 139 742 -35 742 75 75 75 75 75 75 75 75 75 75 75 75 75	•		Gamma, vacuum	6.2 x 109	816	-21	:	+318(c)	4.1	-79	87	4 :-	‡
Prese cured 10 min at As cured As cured As cured As cured 24 hr at Gamma, vacuum G.2 x 10 ⁹ 774 -48 +404(c) 67 -87 78 78 78 78 78 78	11.9-62	Postcured 4 hr at	As cured		1473		229		300		62		
Prese cured 10 min at Camma, vacuum 6.2 x 10 ⁹ 774 -48 +404(c) 67 -87 78 78 750	Methyl phenyl	480 F:	Gamma, sir	3.4 x 109	202	ş		+337	8	-82	92	+14	÷
Press cured 10 min at 250 F As cured 3.4 x 10.9 692 403 50 50 350 F Gamma, air Gamma, vacuum 6.2 x 10.9 660 -41 737 +254 93 -77 67 93 -77 67 -41 737 +254 93 -77 67 93 -400 F Gamma, vacuum 6.2 x 10.9 660 -41 737 +254 93 -77 67 Press cured 10 min at 250 F As cured 24 As cured 3.4 x 11.9 742 -32 +42.4 (c) 80 -80 70 91 480 F Gamma, vacuum 6.3 x 10.9 777 -32 +45.8 (c) 75 -81 76	vinyl		Gamma, vacuum	6.2 x 109	4 LL	Ť		+404(c)	67	<u>*</u>	78	+16	+3
250 F As cured thyl Ponccured 3 hr at Gamma, vacuum: 6.2 x 109 680 -41 737 +254 93 -77 67 1yl 400 F Gamma, vacuum: 6.2 x 109 660 -41 737 +254 93 -77 67 1yl 400 F Gamma, vacuum: 6.2 x 109 660 -41 737 4254 75 -82 76 250 F As cured 250 F As cured 742 742 -35 742 69 80 -80 70 17 480 F Gamma, vacuum 6.2 x 109 777 -32 +458(c) 75 -81 76	2962												
hyl Poncured 3 hr at Gamma, air 3,4 x 10° 692 -41 737 +254 93 -77 67 67 67 690 F 60 660 -41 737 564 93 -77 67 67 67 67 67 67 67 68 680 680 680 680 680 78 680 76 75 680 70 75 680 70 77 680 F 680 F 680 mma, air 3,4 x 13° 742 -36 742 680 70 70 70 70 70 70 70 70 70 70 70 70 70		250 F	As cured	d	1169		808		4 03	;	3 t	;	•
yl 400 F Gamma, vacuum 6,2 x 10° 660 -41 +323*, 75 -82 76 Press cured 10 min at 250 F As cured hyl Postcured 24 hr at Gamma, air 3,4 x 11° 742 -3c +424(c) 80 -80 70 yl 480 F Gamma, vacuum 6,2 x 10° 777 -32 +458(c) 75 -81 76	Dimerhyl	Postcured 3 hr at	Gamma, air	3.4 x 10°	692	7	737	+254	88	-L-	67	+113	÷
Proce cured 10 min at 250 F As cured 1147 117 117 383 53 53 hyl Postcured 24 hr at Gamma, air 3,4 x 1,19 742 -30 +424(c) 80 -80 70 yl 480 F Gamma, vacuum 6,2 x 109 777 -32 +456(c) 75 -81 76	phenyl	400 F	Gamma, vacuum	6.2 x 10	099	Ŧ		+353(1)	75	89		+ 59	9
250 F As cured Postcured 24 hr at Gamma, air 3,4 x 11 ⁹ 742 -3c +42¢(c) 80 -80 70 480 F Gamma, vacuum 6,3 x 10 ⁹ 777 -32 +458(c) 75 -81 76	28-62	Press cured 10 min at											
Postcured 24 hr at Gamma, air 3,4 x 11° 742 -36 +424°-7 80 -80 70 480 F Gamma, vacuum 6,2 x 10° 777 -32 +458(c) 75 -81 76	_	250 F	As cured	G	1147		117	3	98 98	;	53	,	•
480 F Gamma, vacuum 6,2 x 10° 777 -32 +4584°/ 75 -81 76	Dimethyl	Postcured 24 hr at	Gamma, sir	3.4 x 17	75	-35		+426	8	8	2	, 17	+
	phenyl	480 F	Gamma, vacuum	6.2 x 10°	777	-32		+458(c)	75	-81	16	\$	+

TABLE 32. (Continued)

		,		Tantile		190 P	100 Per Cent Modulus	Ultímate Elongation	longation			Weight
Compound	Curing Data	Irradiated Condition(a)	Exposure,	F. F. C.	1 2 C	ž	Per Cem Chg.(b)	Per Cent	Per Cent Chg. (b)	Han Duro A	Hardness A Chg.(b)	Change, ir g
110-62 Methyl trifluoro propyl	Postcured 16 hr at 300 F	As cured Gamma, air Gainma, vacuum	4.1 x 109 6.2 x 10 ⁹	, 35 % 88 % 88 %	ន់ដ	311	+50(c) +54(c)	243 67 67	27- 27-	62 87 87	+11	ထူထု
120-62 Dimethyl	Roun temperature vulcantente atticone	As cured Gamma, air Gamma, vacuum	3.4 x 109 5.0 x 108	67.4 688 573	+2, 1 -15	80%	(-)90[+ +100[-)	147 70 57	8 6	62 27 55	+13	⁶⁰
147-62 Dimethy!	RTV, 35 parts com- pound, 4 parts curing agent	As cured Gamma, au Gamma, vacuum	3.4 x 10 ⁷ 6.2 x 10 ⁹	282 211 541	-25 +92	88	+362(c) +346(c)	167 88 90	* 4	51 68 73	+17	* ± ±
148-62 Dimethy?	RTV, 100 parts compound, 0.5 parts Thermolius T-12	As cured Gamma, att Gamma, vacuum	3.4 x 109 6.2 x 109	409 329 315	នុឌ	232	+77(c) +76(c)	3 8 E	† ?	2 8 8	+6 +11	નું જ
149-62 Dimethy	RTV, low desaity 100 parts can; osnd, 10 parts accelerator	As :ueed Gamma, air Gamma, vacuum	3.4 x 109 4.9 x 109	266 211 288	-21 + 6. 3		(2)89+ (2)88+	848	-48	49 87 87	\$ +	+18

(a) Samples irradiated for 100 hours at "0 F.

(b) From as-cured value,

(c) Value found by extrapolation.

Heitz(47) found that combined radiation (gamma and ultraviolet) caused more crosslinking than straight gamma radiation, the differences ranging from slight to marked. The evaluation of this, however, is complicated by the fact that the ultravolet radiation was accompanied by high temperatures. Since heating in vacuum causes chain scission of silicone compounds, and it was not possible to cool the specimens to room temperature. Heitz acknowledges that a straightforward evaluation of the changes caused only by the ultraviolet radiation was very difficult. However, specimens exposed to ultraviolet light showed a marked discolaration of the surfaces toward the lamp, thus indicating an ultraviolet-radiation-induced reaction. Data are given in Tables B-72 through B-85.

: 8

ьe

is

:t

ıſ

Studies to Improve Radiation Stability

The incorporation of arylene groups in the backbone structure of the silicone molecule appears to be promising for improved radiation resistance. Ossefort (53) and McGarvey (52) at Rock Island Arsenal studied the thermal and radiation stability of arylene-modified siloxanes prepared by Union Carbide Corporation. On the basis of this work, it appears that the incorporation of arylene structures in the modil chain does not contribute to their thermal stability or to their elevated-temperature properties. However, arylether aryl and arylether dimethyl silicones were found to possess significantly better initial physical properties than did the conventional silicones and were significantly better than any of the commercial types evaluated with respect to radiation stability. Figure 16 shows the chemical structure of the arylene-modified resolutes. The arvlether aryl vulcanizate retained some useful properties at exposures up to 3 x 10½ e pog (C) in both vacuum and in air. Figure 17 shows a comparison of the effect of galiana radiation on ultimate elongation of these materials as compared with those of methyl pheny' silicone and dimethyl silicone. Following is a comparison of the effect of radiation on the several types of silicone rubbers as found by McGarvey.

Radiation Resistance	Elongation After Exposure of 5 x 109 ergs g ⁻¹ (C)	Type of Silicone
Good	>50% of initial value	Aryl-ether aryl Aryl-ether dimethyl
Fair	<50%, >20% of initial value	Nitrile Aryl dimethyl Methylphenyl Methylphenylvinyl Methylvinyl
Poor	<20% of initial value	Methyltrifluoropropyl

It was also determined that the physical properties of the arylene-modified silicones cured by gamma radiation were equal to or better than those obtained with a peroxide-type cure. A dose of approximately 10 megarads produced optimum cures in the aryl dimethyl and the aryl-ether aryl silicones, and about 15 megarads produced the optimum cure for the aryl-ether dimethyl type.

Aryl-Ether Aryl

$$\begin{bmatrix}
CH_{3} & CH_{3} \\
Si & Si - O \\
CH_{2} & CH_{3}
\end{bmatrix}$$

$$\begin{bmatrix}
CH_{3} \\
Si - O \\
CH_{3}
\end{bmatrix}$$

$$\begin{bmatrix}
CH_{3} \\
Si - O \\
CH_{3}
\end{bmatrix}$$

$$\begin{bmatrix}
CH_{3} \\
Si - O \\
CH_{3}
\end{bmatrix}$$

$$\begin{bmatrix}
CH_{3} \\
Si - O \\
CH_{3}
\end{bmatrix}$$

$$\begin{bmatrix}
Si -$$

Aryl-Ether Dimethyl

$$\begin{bmatrix}
CH_{3} & CH_{3} \\
Si & Si & O \\
CH_{3} & CH_{3}
\end{bmatrix}$$

$$\begin{bmatrix}
CH_{3} \\
Si & O \\
CH_{3}
\end{bmatrix}$$

$$\begin{bmatrix}
CH_{3} \\
Si & O \\
CH_{3}
\end{bmatrix}$$

$$\begin{bmatrix}
CH_{3} \\
Si & O \\
CH_{3}
\end{bmatrix}$$

$$\begin{bmatrix}
CH_{3} \\
Si & O \\
CH_{3}
\end{bmatrix}$$

Aryl Dimethyl

FIGURE 16. ARYLENE-MODIFIED SILICONES

į

FIGURE 17. EFFECT OF GAMMA RADIATION ON THE ULTIMATE ELONGATION OF VARIOUS SILOXANES

NC

)

Two other phases of the program included the preparation of arylene-modified siloxanes connected by perfluoromethylene groups (Standford Research Institute) and the preparation of arylene-modified silcarbanes (Yarsiey Research Laboratories, London). In a structures of these materials are indicated in Figure 18. Data on these modifications are not yet available.

d the don).

$$\begin{bmatrix}
Me \\
Si \\
Me
\end{bmatrix}$$
(CF₂)_N

$$\begin{bmatrix}
Me \\
Si \\
Ni \\
Mc
\end{bmatrix}$$
N = 1 to 4

Fluorinated-Arylene-Modified Polysiloxane

Arylene-Modified Silcarbanes

FIGURE 18. SILOXANE AND SILCARBANE POLYMERS

Antirads

A considerable amount of work has been performed to improve radiation resistance of polymers by using antirads. Work has been done on the investigation of antirads at Mare Island Naval Shippard and at Rock Island Arsenal. Morris and Caggegi at the naval shippard investigated 93 antirads in an effort to develop rubber gaskets which would be resistant to nuclear radiation, and McGarvey at the arsenal evaluated approximately 200 potential antirads to determine the best one for low-acrylonitrile-content nitrile (NBR) rubber.

Stance at

toxi-

th cers or g the

daine,

Morris and Caggegi⁽⁴⁰⁾ were interested in improving the compression-set properties of gaskets. They found that improvement could be obtained by compounding with certain antioxidants, antiosonants, or with certain chemicals containing aromatic rings or condensed ring structures. Akroflex C, AgeRite HP, and Santoflex GP were among the best antioxidants for improving the radiation stability of Sympol 1500 (SBR). Those antioxidants having the best antirad properties were derivatives of p-phenylene diamine, phenyl naphthylamine, or a blend of these chemicals.

Some of the antirads which were good in Synpol 1500 were among the best also in Hycar 1072 (nitrile rubber). Examples were Wingstay 100, Akroflex C, Akroflex CD, and AgeRite HP. Antirads which were not outstanding in Synpol 1500 but which were quite good in Hycar 1072 and Hycar 1041 were Santovar A, Ionol, and Deenax. All of these are phenolic derivatives.

Vulcanizates were further improved in radistion resistance when both an antioxidant and a plasticizer with an aromatic ring structure were incorporated in the rubber stocks. Five parts of Thermoflex A and 10 parts of dibenzyl phthalate lowered compression set of Synpol 1500 from 74 per cent to 48 per cent after irradiation. It was
necessary to compound stocks with more carbon black to maintain the Shore hardness of
the plasticized vulcanizates within the range of 65 to 75.

Naphthalene was a plasticiser which was particularly effective in combination with an antirad for nitrile rubber (Hycar 1072). AgeRite Hiper (5 part \ and Naphthalene (10 parts) gave a vulcanisate with a compression set of 53 per cent after irradiation. Compression set of irradiated vulcanizates of Hycar 1072 without these additives was 80 per cent and that for Hycar 1972 with AgeRite Hiper was 65 per cent.

Acridine, pyrene, and fluoranthene were other plasticizers which provided improved radiation with antirads in Synpol 1500. Acridine was also outstanding with antirads in Hycar 1072. These antirads are listed, with the chemical composition and name of the supplier, in Tables 33 and 34.

McGarvey⁽⁵⁴⁾ evaluated antirads on the basis of per cent of initial NBS strain and Shore x : ...dix is values after an exposure of 5 x 10⁹ ergs g⁻¹(C). The compounds whose fulcanizates met the following requirements after irradiation were judged to posse a significant antirad activity:

NBS strain, 50 per cent, >50 per cent of initial value Ultimate elongation, 200 per cent, >50 per cent of initial value Ultimate tensile strength, >2000 psi.

Table 35 lists the 12 best antirads arranged in descending order according to their antirad activity. From this table it can be seen that several aromatic nitro compounds function as inhibitors of radiation damage in NBR rubber. In particular, 2,2-diphenyl 1-picrylhydrasyl (DPPH) and 1,1-diphenyl-2-picrylhydrazine (DPPH₂) appear to be the most efficient antirads. The nuchanism of their protective action was attributed to their function as radiation-stabilised scavengers for free radicals produced by high-energy radiation. It is not known how DPPH and DPPH₂ may attach to the free radicals produced in the NBR vulcanisate.

The antirad activity of DPPH₂ present at a concentration of 5 phr was also investigated in SBR, Butyl rubber, and natural rubber. A significant antirad activity was exhibited in only the SBR vulcanisate, as can be seen from Table 36.

TABLE 33. ANTIRADS FOR STYRENE-BUTADIENE (SBR) RUBBER (40)

Name	Chemical Composition (Supplier's Description)	Supplier			
	Antioxidants and Antiozona	nts			
Akioflex C	Diphenyl-p-phenylenediamine + phenyl-alpha-naphthylamine	E. I. du Pont de Nemours & Co.			
AgeRite HP	Phenyl-beta-naphthylamine + diphenyl-p-phenylenediamine	R. T. Vanderbilt Co.			
Santoflex GP	N-Cyclohexyl-N'-phenyl-p- phenylenediamine	Monsanto Chemical Co.			
Wirgst 100	Alkyl aryl amine	Goodyear Tire an! Rubber Co.			
Akr lex CD	Diphenyl-p-phenylenediamine + phenyl-beta-naphthylamine	E. I. du Pont de Nemours & Co.			
Thermoflex A	Di-p-methoxydiphenylamine + diphenyl-p-phenylenediamine + phenyl-beta-naphthylamine	E. I. du Pont de Nemours & Co.			
Plasticizers					
Dibenzyl phthalate	Dibenzyl phthalate	Eastman Chemical Products			
Miscellaneous					
Acridine	Acridine	Eastman Chemical Products			
Pyrene	Pyrene	Reilly Tar & Chemical Corp.			
Fluoranthene	Fluoranthene	Reilly Tar & Chemical Corp.			

TABLE 34. ANTIRADS FOR NITRILE RUBBER

Name	Chemical Composition (Supplier's Description)	Supplier
	Antioxidants and Antiozonar	its
Wingstay 100	Alkyl aryl amine	Goodyear Tire and Rubber Co.
Akroflex C	Diphenyl-p-phenylenediamine + phenyl-alpha-naphthylamine	E. I. du Pont de Nemours & Co.
Akroflex CD	Diphenyl-p-phenylenediamine + phenyl-beta-naphthylamine	E. I. du Pont de Nemours & Co.
AgeRii, TD	Phenyl-beta-naphthylamine + diphenyl-p-phenylenediamine	R. T. Vanderbilt C:
Santo ar A	2,5-diterriary-amyl hydroquinone	Mensanto Chemical Co.
Ionol	2,6-Di-tert-butyl-4-methyl phenol	Shell Chemical Corp.
Deenax	2,6 Di-tert-butyl-4-methyl phenol	Enjay Chemical Co.
AgeRite Hipar	Phenyl-beta-naphthylamine + isopropoxy diphenylamine + diphenyl-p-phenylenediamine	R. T. Vanderbilt Co.
	Miscellaneous	
Naphthalene	Naphthalene	Reiliy Tar & Chemical Corp.
Acridine	Acridine	Eastman Chemical Products

TABLE 35. EVALUATION OF THE BEST ANTIRADS IN NBR

	Per Cent of Original Property After 5 x 107 Rads				
Additive (5 Phr Polymer)	Tensile	Elongation	Hardness, Shore A	Strain, NBS	
None (Control)	92	33	116	34	
2,2-Diphenyl-l-picrylhydrazyl	109	61	104	58	
1, 1-Diphenyl-2-picrylhydrazine	98	63	108	55	
N, N'-Diphenyl paraphenylenediamine	82	51	110	55	
1-Fluoro-2,4-dinitrobenzene	113	70	116	5.	
5-Nitro-l-naphthylamine	100	58	110	54	
p-Phenylazoaniline	95	53	114	54	
4-Phenylazodiphenylamine	91	51	112	53	
2-Nitrodiphenylamine	97	51	112	52	
Phenothiazine	93	51	115	52	
p-Nitroh on rile	97	52	118	52	
p=Nitr benzhyr razide	92	51	112	51	
p-Nit ophenyil drazine	113	60	113	50	

TABLE 36. EVALUATION OF DPPH₂ IN VARIOUS ELASTOMERS

		Per Cent	of Original Pro	perty After 5 × 1	07 Rads
Polyme r	Additive	Tensile	Elongation	Hardness, Shore A	Strain, NBS
SBR	None	98	55	117	51
11	DPPHZ	112	84	108	65
Butyl	None	4	71	59	
11	DPPH ₂	4	70	66	
Natural	None	86	67	112	64
H	DPPH ₂	80	71	106	[.] 78

FLASTICS

As was true with elastomers, most of the data collected on plastics since the publication of REIC Report No. 21 have been in connection with the materials used in various components for space vehicles or missiles. Effects of combined environments such as vacuum and radiation have been investigated. Most of this work was discussed in the section on components. However, those plastics for which new information was obtained are discussed alphabetically in this section.

;-

3

ous

ed

i-

il-

ble

ant

to

0,

Three new polymers have been developed that look promising with respect to radiation stability. These are the polyimides, poly n-vinyl carbazole, and the phosphonitrillic chlorides. More work needs to be done with these materials before it will be possible to determine their suitability for specific applications. Ultraviolet radiation is important in the use of plastics and deterioration can be serious under certain conditions of exposure.

Acrylics

Polymethyl methacrylate (Lucite or Plexiglas) is unaffected by gamma radiation to an exposure of 8.2 x 10^7 ergs $g^{-1}(C)$, but tensile strength and elongation are decreased by 25 per cent at an exposure of 1.1 x 10^9 ergs $g^{-1}(C)$. Physical properties decreased quite rapidly above that amount of radiation. Above 10^9 ergs $g^{-1}(C)$ of absorbed radiation, pointh 1 methacrylate becomes very brittle.

aformation or acrylic polymers shows that work has been done on the effects of vacuum, temporature, and ultraviolet (UV) radiation on Plexiglas (methylmethacrylate) and on acrylic coatings. Data for the latter are presented in the section on coatings, and the information on the plastic is given here.

Effect of Ultraviolet Radiation

Wahl and Robinson⁽³⁵⁾ observed the effects of ultraviolet radiation (2 py: ons) and vacuum (6.0 ± 3 x 10⁻⁶ torr) for periods of 100 hours. Properties observed were surface and color changes, spectral transmission, luminous transmittance, and haze. Hardness, loss in weight, and changes in chemical structure after irradiation were also determined. Data are given in Table 37. Also included for comparison is Selectron 400, a heat-resistant polyester, transparent glazing material. Wahl stated that the plastics irradiated in a vacuum became slightly translucent and the haze measurements are of questionable value.

After vacuum exposure alone, Plexiglas 55 and Selectron 400 specimens lost less than 0.8 per cent in weight and there was no measurable change in Barcol hardness. With ultraviolet and vacuum, Plexiglas lost less than 2 per cent in weight and hardness decreased slightly. Selectron 400 showed no significant weight loss but a considerable increase in hardness. The irradiated Selectron 400 became very brittle and shattered when indented with the Barcol hardness tester. The surface of the plastics turned brown.

TABLE 37. PROPERTIES OF VACUUM-IRRADIATED TRANSPARENT CLAZING MATERIALS BEFORE AND AFTER 100-HOUR EXPOSURE⁽³⁵⁾

	Haze, j	oer cent After	Parallel Transmi per c	ission,	Weight Loss, per cent	Barcol H	ardness
Material	Exposure	Exposure	Before	After	After	Before	After
Selectron 400	6. 2	74. 8	89. 3	22, 3	0. 22	14	52
Plexiglas 55	4.8	68. 7	90.5	20, 0	1.89	58	54
Stretched Plexiglas 55	6.9	า0.0	89. 2	5. 0	1.80	59	54

Versluys, et al., (55) also irradiated Plexiglas in vacuum with ultraviolet. Data are shown in Table C-1 of Appendix C. The outgassing was believed to be adsorbed introgen since the dissolved gas was found to be of mass 28. No discoloration was observed.

Ringwood⁽⁵⁶⁾ states that polymethyl methacrylate tends to unzip or deplymerize in a vacuum of 10⁻⁸ torr at ambient temperatures under exposure to rays sho ter than 3800 Å. In space this effect is accelerated by the increase in temperature in the plastic caused by the absorption of infrared rays. Surface discoloration and crazing have been observed under the same ultraviolet exposure but at higher pressures (10⁻⁶ torr) when tested in a chamber maintained at 72 F.

ıc

ate

ght

le.

ar

gth

rds

Temperatures at which there is 10 per cent weight loss per year are 40 to 150 C (100 to 300 F) for methylacrylate, and 100 to 200 C (220 to 390 F) for methylmethacrylate in vacuum. An acrylate (MIL-P-5425) showed 0.3 per cent weight loss on disiccation, an additional 0.03 per cent on vacuum exposure, and maintained 0.15 per cent (net weight loss) after re-exposure to air (57).

Acrylonitrile

Wilcox, et al., (58) irradiated Acrilan in nitrogen with monochromatic light and irradiated samples with a G30T8 lamp in nitrogen and in a vacuum. Data are included in Tables C-2 and C-3. The shorter wavelengths produce greater changes in the tensile strength per joule of incident energy than the longer wavelengths produce. Tensile strength is degraded about 1.5 times as fast in nitrogen as in a vacuum. Jaffe and Rittenhouse(51) give 20 C (240 F) as the temperature for 10 per cent weight loss per year for acrylonitrile polymer.

Acrylonitrile/Butadiene/Styrene Terpolymer (ABS)

At room temperature, Kralastic MV (an ABS polymer) increased in tensile strength when irradiated to a gamma exposure of 2.8 x 10^{10} ergs g⁻¹(C). At 9.4 x 10^{10} ergs g⁻¹(C), tensile strength decreased by 30 per cent. At 250 F, the polymer lost two-thirds of its tensile strength at an exposure of 8 x 10^{10} ergs g⁻¹(C).

Lewis (15) determined the effects of irradiation on two types of ABS polymers at 75 F and at 250 F. These materials were Kralastic MV and Kralastic SRA plastics. At 75 F, both materials increased in tensile strength when irradiated to an exposure of 2.3 x 10¹⁰ ergs g⁻¹(C). At 9.4 x 10¹⁰ ergs g⁻¹(C), tensile strength decreased by approximately 30 per cent of the original. The MV material increased in tensile strength from 3730 psi to a maximum of 5070 psi and then decreased to 2140 psi. The tensile strength of SRA material increased from 4730 ps. to 6330 psi and then decreased to 2820 psi. In both cases, hardness increased with increasing radiation exposure. At elevated temperatures this change takes place more rapidly, and at 250 F Kralastic MV, nonirradiated, has a tensile strength of 3670 psi, while after irradiation to an exposure of 8 x 10¹⁰ ergs g⁻¹(C) at 250 F tensile strength decreased to 1230 psi. Under the same conditions, the SRA material decreased from 4350 psi to 875 psi. Hardness of both materials increased with increasing radiation at the elevated temperatures in approximately the same fashion as it 60 when irradiated at room temperature.

٩t

h

۷,

1e

on nd

£

f

:ck

he

yl

to

1er

Cellulose Acetate

Cellulose polymers are among the polymers least resistant to radiation damage. At an exposure of 1.9 x 10^9 ergs $g^{-1}(C)$, cellulose acetate has deteriorated by 25 per cent.

Weight-loss data for cellulose acetate and cellulose acetate butyrate only were found. Richl(57) indicates that neither material lost weight in 24 hours in vacuum after first collarge constant weight in a disiccator.

Diallyl Phthalate

Diallyl phthalate has shown excellent radiation stability. For example, a case molded from diallyl phthalate Type FS80 which is flamepoof and long-glass-fiber filled was exposed to 4.3 x 10^{16} nv_ft [the equivalent of 1.3 x 10^{10} ergs g⁻¹(C)]. The radiation resistance of this case was considered very good. (38) Also, coil forms, insulators, and standoffs were relatively unaffected at an exposure of 6.2 x 10^{12} ergs g⁻¹(C).

Although there are changes in electrical properties such as dielectric constant, dissipation factor, and volume resistance while exposed to a radiation flux, recovery of these properties after exposure is very good. Electrical leakage resistance of diallyl phthalate connectors was reduced to 0.1 of the initial value at an integrated exposure of 8.8 x 10^{12} ergs g⁻¹(C). The connectors were removed from the radiation field and within 15 minutes, leakage resistance had returned to the original value. (59,60) Table 38 shows the change in leakage resistance with exposure.

The affect of vacuum and temperature on diallyl phthalate was studied by Podlaseck and Suhorsky⁽⁴⁾ and Fulk and Horr⁽¹⁷⁾. Data are presented in Tables C-4 and C-5. The effect of temperature on weight loss in air and in vacuum is shown in Figure 19. Diallyl phthalate has a very low equilibrium outgassing rate at moderate temperature similar to those of epoxies and polyesters. But like these, the initial rates are considerably higher than those for fluorocarbons, silicones, and Mylar.

TABLE 38. LEAKAGE RESISTANCE OF DIALLYL PHTHALATE CONNECTORS IN PILE - DYNAMIC TESTING⁽⁶⁰⁾

Radiation Reposure, n cm ⁻² (E _n > 2.9 Mev)	Leakage Resistance(a), megohms at 55 C
None	56
1.68×10^{14}	36
5.04×10^{14}	41
1.34×10^{15}	33
2. 27 x 10 ¹⁵	12. 5
3.36×10^{15}	6.8
5. 12 x 10 ¹⁵	5.8
6.47×10^{15}	5. 2
9.24×10^{15}	5. 9
9.58 x 10 ¹⁵	5. 1
1.31×10^{16}	6. 2
1.43 x 10 ¹⁶	6.8
1.67×10^{16}	6.8
Scram + 2 min	17. 5
Scram + 22 min	40
Scram + 42 min	58
Scram + 237 min	90
Scram + 24 hours	110

⁽a) nitial leakage measurement before installation = 4009 megohms at room conditions; baveline leakage resistance = 56 megohms at 55 S.

Epoxy Resins

Epoxy resins are above average for plastics in radiation resistance, having withstood gamma exposures to 9.5 x 10^{10} ergs g⁻¹(C) without appreciable deterioration.

:h-

tes,

·e-

ini-

ı in

70.

Aromatic-type curing agents provide the best irradiation resistance.

Epoxy resins have low-weight-loss equilibrium constants, although initial outgassing is somewhat greater.

Epoxy resins are considered for use in space applications primarily for laminates, adhesives, encapsulating or potting materials, and coatings. In general, epoxy resins have low-weight-loss equilibrium constants, although initial outgassing is somewhat greater. In this latter respect it is inferior to the fluorocarbons and silicone but superior to the phenolics.

Equilibrium-weight loss data⁽¹⁸⁾ are given in Table C-4. A comparison of the initial rates of weight loss of several materials as given by Gloria et al., ⁽⁶¹⁾ are shown in Figure C-1. Weight losses were also obtained by Fulk⁽¹⁷⁾ and are given in Table B-70.

Figure 19. Effect of temperature on weight loss in air and in vacuum $^{(4)}$

At cryogenic temperatures, epoxies have the highest flexural strength, with phenolics and polyesters following in that o.der. (8)

Fluorocarbons

Tefion FEP 100 (a copolymer of hexafluorogy: opene and tetrafluoroethylene) is considerably more radiation resistant in air than is Tefion TFE (tetrafluoroethylene). Threshold damage for Tefion TFE in air occurs at 1.7 x 10^6 ergs $g^{-1}(C)$, and 25 per cent damage is accrued at an exposure of 3.4 x 10^6 ergs $g^{-1}(C)$.

In vacuum, tensile strength of Teflon TFE is satisfactory to 8×10^9 ergs g⁻¹(C).

Fiberglas reinforced Tesion retained 40 per cent of tensile strength and some flexibility at 1.2 x 10^{10} ergs $g^{-1}(C)$ in air.

Tedlar (polyvinyl fluoride) as a 4-mil film showed good radiation resistance to an exposure of 10¹⁰ ergs g⁻¹(C), but decomposed and gave off a considerable quantity of HCl above that exposure.

Kynar(polyvinylidene fluoride) shows excellent retention of tensile strength when irradiated in air and in vacuum to 109 ergs g⁻¹(C).

Kynar is reported to have excellent resistance to ultraviolet radiation.

Fluoroca bons with their excellent temperature and chemical resistance and with good to excellent electrical characteristics are of great interest for space applications. Fluo carbons for which information is available include Teflon TFE (polytetrafluoroethylene), Tefloa FEP (a copolymer of hexafluoropropene and tetrafluoroethylene), Kel-F (chlorotrifluoropropylene), Tedlar (polyvinyl fluoride), and Kynar (polyvinylidene fluoride)

Teflon is probably the best illustration of the importance of considering all factors of space environment in determining the behavior of a material in space. Teflon has poor radiation resistance in air and originally this was believed to preclude its use for space applications. However, in an oxygen-free atmosphere (as in a vacuum) its radiation resistance is improved by about two orders of magnitude. It is being used successfully for many applications in satellites and numerous studies have been made to determine the behavior of this material in space. The following data show the results of those efforts. Most of the work has been with Teflon TFE, Teflon FEF and Kel-F. Limited data are available on Kynar and Tedlar. Comparative properties of the first three materials in air are shown in Table C-6, Appendix C.

Effects of Nuclear Radiation

In order to determine differences in radiation resistance among fluorocarbon polymers, Wattier, Newell, and Morgan (48) studied the radiation resistance of Teflon TFE, Teflon FEP 100, and Tedlor. They found that Teflon FEP 100 had considerably more radiation resistance in air than the standard TFE of the same thickness. Teflon FEP also shows greater stability in the absence of air, as can be noted in its radiation

resistance when immersed in Oronite 8515 or in helium. Fiberglas-reinforced Teilon showed good radiation resistance. This material retained some of its flexibility as well as 40 per cent of its tensile strength at a radiation exposure of 1.2 x 10^{10} ergs $g^{-1}(C)$. Data are given in Tables C-7 through C-9.

Tedlar film decomposed and gave off a considerable quantity of HCl during irradiation. Radiation resistance of the 0.004-inch film was quite good up to an exposure of 1.0 to 1.4 x 10^{10} ergs g⁻¹(C). Data are included in Table C-10.

Effects of Nuclear Radiation and Vacuum

Golden and Hazell⁽⁵⁰⁾ irradiated Teflon in vacuum (10^{-6} torr). No change in color or opacity occurred at doses less than 1.3 x 10^{10} ergs g⁻¹(C), but above this dose, disks and film disintegrated. Polymers which had received a high radiation dose had a sharp melting point (327 C) and gave a clear colorless melt, whereas unirradiated material showed no visible change up to 400 C. Highly irradiated material evolved gas at and above the melting point.

Variation of tensile properties with increasing radiation dose are shown in Figure C-2. Table C-11 shows values as given by Shoffner (62). It may be seen in Figure C-2 that tensile strength equivalent to that of unirradiated material is maintained up to an irradiation exposure of 8 x 109 ergs g⁻¹(C). At higher exposures, the tensile strength, although somewhat erratic, is greatly decreased and at 1.2 x 10¹⁰ erg g⁻¹(C) is reduced to a negligible value. However, elongation is reduced from 200 per cent for the unirradiated naterial to a few per cent after an exposure of 4 x 10⁹ ergs g⁻¹(C). Thus dependation reduces the extensibility before appreciably reducing tensile scrength. Infrare spectro raphs of unirradiated samples and of those irradiated in air and in vacuum nave been made. (82) Table C-12 shows the differences in unirradiated and irradiated samples.

Kerlin^(6,7) irradiated Teflon TFE and Kel-F ir vacuum (2.5 x 10⁻⁷ torr) and tested the specimens while in vacuum (described as dynamic tests). The same polymers were irradiated in vacuum and in air and the tensile strength and ultimate elongation determined in air (described as static tests). Data are given in Tables G-13 and C-14. The difference between the effects of irradiation in vacuum and in air on ultimate strength and elongation can be seen in these tables. Although not strictly comparable, the ultimate strength and elongation appear to be greater when the materials are irradiated in vacuum than when irradiated in air. With Kel-F, tensile strength is greater than that for Teflon, and neither irradiation in vacuum and nor irradiation in air seriously affects tensile properties.

It may be noted that Teflon FEP shows better radiation stability in air than does TFE, but the improvement in vacuum is minor.

The effects of radiation on Duroid 5600, a glass-fiber-reinforced Teflon, and unfilled Teflon are similar. Kynar and Tedlar both show excellent retention of tensile strength and elongation when irradiated in air and in vacuum (see Table C-15). According to Kerlin, Kynar does not have low-temperature properties as good as those of Teflon. It has, however, excellent resistance to ultraviolet radiation.

The following data show the effect of vacuum and temperature with no irradiation. At 100 C, and after 100 hours exposure to a pressure of 10^{-7} torr, the weight loss of TFE resin was found by Jolley and Reed⁽⁶³⁾ to be 0.04 per cent and that of FEP resin was 0.08 per cent. No comparable data were found for Kel-F. However, Bringer⁽⁶⁴⁾ compares the outgassing of Kel-F and Teflon. He states that significant weight loss for Kel-F begins to occur at about 250 C, and for Teflon at about 350 C. Outgassing rate for Teflon at 25 C is 1.6 x 10^{-7} torr-liters/(sec)(sq cm). This compares with a value of 3.7 x 10^{-7} torr-liters/(sec)(sq cm) for aluminum. The rate of outgassing of Teflon TFE and FEP decreases with time. This is also true for Kel-F. Table C-16 gives the mole per cent and identity of evolved gases for Teflon TFE at 71, 180, and 200 C.

Analyses of gases evolved from vacuum outgassing of Teflon have indicated that no degradation of Teflon resins or of their properties occurs in high-vacuum service at room temperature. Tubing of Teflon in use in the vacuum systems (10⁻⁶ to 5 x 10⁻⁹ torr) of the Bendix Mass Spectrometer for more than 5 years has given no mass-spectrum-analysis evidence of outgassing or b. Almown of the Teflon tubing.

Buckley and Johnson⁽⁶⁵⁾ conducted experiments to determine the effects of vacuum on friction and wear for three polymers, including Teflou (PTFE) and Kel-F (PCFE). Both friction and wear for unfilled PTFE and PCFE in vacuum were nearly the same and were high. In general, the wear mechanism of the two polymers sliding on stainless steel surfaces was one of an abrasion process. It was found that heat generated at the sliding interface was transferred to the wear particles abraded from the polymer and adhering to the metal surface. This increased surface temperatures and cause? . urface degradation of the particles.

Puckley determined the influence of fillers on the wear of Teflon and Kel-F in vacuum. Fillers used for these studies included mass fiber, molybdenum disulfide, copput, silver, and graphite. The addition of glass fibers and copper powder markedly improved the fraction and wear characteristics for PTFE. Molybdenum disulfide offered essentially no improvement. It is believed that improvement came as a result of dissipation of frictional heat. The effect of fillers can be seen in Figure C-3.

Decomposition products were studied for PTFE. With unfilled polymer, the principal products of decomposition were the heavier-molecular-weight fragments of the polymer unit. With glass-filled compositions, the principal decomposition product was fluorine. Copper-filled Teflon gave very small concentrations of decomposition products.

As a matter of comparison, Buckley found the friction and wear characteristics of a polyimide resin to be superior to those of Teflon TFE in vacuum. This polyimide was stable to 500 F.

Effects of Cryogenic Temperatures

The utility of Kel-F and Tefion at cryogenic temperatures has been proven in practice by their extensive use in connection with liquid exygen (-325 F) and liquid hydrogen (-425 F)⁽⁶⁴⁾. The plastics retain some degree of ductility at these temperatures. Figure C-4 shows the tensile behavior of the fluorocurbon plastics in the subzero regions. According to Vickers⁽⁶⁶⁾, FEP has an impact strength of 2.0 ft-lb/in. while Kel-F (medium crystallinity) has an impact value of 1.25 ft-lb/in. Elongation of FEP is four times as great as that for Kel-F at -420 F. On the other hand, Bringer⁽⁶⁴⁾, measuring

thermal contraction between room temperature and liquid-oxygen or -hydrogen temperature, found that reflon contracts roughly twice as much as Kel-F. (See Figure C-5).

).

y

1

d

2.

b

ıe

Kel-F was irradiated (nuclear) at cryogenic temperatures by Yasui⁽¹³⁾. At radiation exposures to 2.6 \times 109 ergs g⁻¹(C), the Kel-F 2-mil film was not significantly affected by irradiation in liquid nitrogen (see Figure C-6).

Effects of X-Ray and Vacuum

Low-frequency loss properties of TFE polymers are drastically affected by X-ray irradiation. (63) High-frequency loss properties are considerably less affected. Increases in dielectric constant and dissipation factor depend on the ambient oxygen concentration during exposure and recovery.

The dielectric constant and dissipation factor of Teflon FEP resins are unaffected by X-ray irradiation in vacuum for measured frequencies of 60 cps to 100 kcps.

Figure C-7 shows the effect of X-ray irradiation in air and in vacuum on dissipation factor of Teflon. Recovery characteristics are shown in Figure C-3. Changes in dielectric constant are shown in Figure C-9. In the case of FEP, dissipation factor and dielectric constant were unaffected by X-ray irradiation in vacuum (Figures C-10 and C-11), although physical and optical property changes were evident.

Measurements of electrical properties made during irradiation without removal from $G(X_1)$ or the are given by Bringer (64). A comparison of the effects of X-ray irradiation on the discipation factor of PTFE in both air and in vacuum are given in Figure C-12.

Effects of Ultra: solet and Vacuum

Wilcox, et al., (58) irradiated Teflon with menchromatic light in nitrogen and with a G30T8 lamp in nitrogen and in vacuum. Data are given in Tables C-17 and C-18. The shorter wavelengths are more damaging than the longer wavelengths. Ultraviolet produces greater changes in elongation than in tensile strength; irradiation in a vacuum is approximately 14 times as severe as that in nitrogen.

Phenolic Resins

Unfilled phenolics stand fairly low in radiation resistance, 25 per cent damage being accrued at an absorbed dose of 10⁹ ergs g⁻¹(C). When irradiated, they swell, become very brittle, and tend to crumble.

The addition of fillers, particularly mineral fillers, increases the stability of phenolics. Phenol-formaldehyde with asbestos filler (Haveg 41) shows excellent radiation stability, being one of the more radiation-resistant plastics. It is unaffected by a radiation exposure of 3.9 x 10^{10} ergs g⁻¹(C) and is damaged by 25 per cent at an exposure of 3.9 x 10^{11} ergs g⁻¹(C).

Phenolic laminates irradiated to an exposure of 2×10^9 ergs g⁻¹(C) at temperatures of 600, 700, 800, and 900 F showed flexural-strength values equivalent to or higher than those for laminates heated to these temperatures with no irradiation.

Redeker and Van Sickle(67) studied the effect of rediation on phenolic-model compounds in a fundamental approach to determine basic chemical reactions involved. They found that the ring-connecting methylene bridges were most easily broken when ortho to a hydroxy group. The hydrogen-oxygen bond appeared to be the most labile to radiolysis, followed closely by the carbon-oxygen bond. Their work suggested that, for radiation environmental applications, as many para links should be used in the polymer as is possible. The work also suggests that incorporation of polyhydroxybenzenes or naphthalenes into resins as a means of providing energy sinks or dissipators for the absorbed radiation is desirable.

Phosphonitrillic Chloride Polymers

Glass-cloth laminates with this resin showed excellent stability n! 455 F and a exposure of 6 x 10^{10} ergs $g^{-1}(C)$.

A blend of this resin and acrylonitrile showed excellent tensile strength when irradiated in air to 10^{11} ergs $g^{-1}(C)$. However, elongation decreased to about 25 per cent when the blend was irradiated to 2.5 x 10^{10} ergs $g^{-1}(C)$. Elongation decrease. From 138 per cent to 94 per cent when heated to 110 F for 33 hours with no irradiation.

denoted Dynamics (1) developed a resin which is a derivative of phosphonitrillic chie de and which is designated as AP-Resin-XHU. The resin contains a number of unreacted polar proups (hydroxyphenyl) which can be reacted with selected curing agents and monomeric or polymeric materials containing reactive constituents. Blends of this resin with phenolics, polyesters, epoxies, polyamides, and many elastomers can be prepared. The cured resin or resin-polymer blends are reported to have flame resistance, high heat stability, high structural strength, and excellent environmental resistance.

Several of the phosphonitrillic chloride polymeric blends were irradiated both at "com temperature and at elevated temperatures. A blend of the AP-Resin XHU and acrylonitrile was prepared and irradiated in air, and immersed in 5P4E polyphenyl other (Monsanto OS-124) at temperatures ranging from 75 to 340 F. Data for this material are shown in Table 39.

In general, exposure of the blend to elevated imperatures and radiation resulted in an increase in tensile strength, elastic modulus (compression), and hardness. However, elongation decreased from 138 per cent to 94 per cent when the blend was heated to 110 F for 33 hours with no irradiation. When irradiated to 2.5 x 10^{10} ergs $g^{-1}(C)$ in air at this same temperature, elongation decreased to 26 per cent. Elongation was 50 per cent when the material was immersed in the polyphenyl ether for 33 hours at 110 F with no irradiation. After irradiation to 2.1 x 10^{10} ergs $g^{-1}(C)$ in the oil at 110 F (33 hours), elongation was 30 per cent. Glacs-cloth laminates of this resin showed excellent radiation stability at 455 F to an exposure of 6 x 10^{10} ergs $g^{-1}(C)$. Data are included in the section on laminates.

TABLE 39. PROPERTIES OF A BLEND OF AP-h. 'S.N-XHU AND ACRYLONITRILE POLYMER(1)

Exp	Exposure					
Gamma, ergs g ⁻¹ (C)	Neutron n cm ⁻² (E > 2.9 Mev)	Medium; femp, F; Cycle; and Time, hr	Strength(a),	Ultimate Elongation(a),	Elastic Modulus (Compression)(a), psi	Hardness(a), Shore D
Control		Air. 75	2.219/30/8	138/5, 5/7	48.041/5.578/3	
Control		Air, 110, II, 33	2,242/163/5	94/5.6/5	52,467/1,162/3	
2.5×10^{10}	2.2×10^{15}	Air, 110, II, 33	4,760/132/5	26/2.5/5	75.031/1,743/3	73.8/0.9/5
Control		Air, 150, I, 33	2,599/243/5	76/9. 7/4	57,913/1,395/3	
9.1×10^{10}	1.0×10^{16}	Air, 150, I, 33	8,067/1,230/5	1. 1/1/5	124,943/2,005/3	
Control		Oil, 110, II, 33	2,481/55/5	50/12/5	56,614/2,105/2	
2.1×10^{10}	2.1×10^{15}	110, п. 33	4,772/216/5	30.6/1.8/3	77,870/2,615/3	
Control	•	Cii, 200, III, 33	2,824/257/5	35/5.6/5	45,253/698/2	
7.5×10^{10}	1.0×10^{16}	Oil, 200, III, 33	6,839/555/5	3/1/4	101,659/1,162/3	
Control		Air, 240, IV, 31(b)	6,321/1,597/2	0	133,791/6,974/3	
6.8×10^{10}	5.9×10^{15}	Air, 240, IV, 31(b)	2,538/1,027/4	0	95,096/2,324/3	
Control	•	Air, 310, VI, 31(b)	3,023/237/5	0	129, 199/1, 162/3	
2.2×10^{11}	2.4×10^{16}	Air, 310, VI, 31(b)	1,798/723/4	0	125,920/11,621/3	
Control		Oil, 270, V, 31(b)	2,490/467/4	0	51,467/2,350/3	
5.2×10^{10}	5.1×10^{15}	Oil, 270, V, 31(b)		8.4/1.3/5	49, 181/2, 324/3	
Control	•	Oil, 340, VII, 31(b)		0	59,353/2,905/3	
1.7×10^{11}	2.4×10^{16}	Oil, 340, VII, 31(b)		0	104,671/3,487/3	
•						

⁽a) Data are given as \overline{x}/S . D. /n, where $\overline{x} = 2$ rage value, S. D. = standard deviation of an individual observation estimated from the range, and n = number of specime.18 used in calculating \overline{x} and S. D.

(b) Tensile specimens sagged and bent during the 14-day storage at 350 F; consequently, the data for these samples are of doubtful validity.

Polyacetal

No radiation data were found for this polymer. Podlaseck and Suhorsky⁽⁴⁾ gave the equilibrium-weight-loss rate for Delrin 500 and Delrin 507 (carbon-black-filled 500); see Table C-4 in Appendix C. Values were also given by Fulk⁽¹⁷⁾ in Table B-70 (Appendix B). These were the only data found for this polymer.

polymer.

Polyamide (Nylon)

Nylon, tested in sheet form, reaches threshold damage at an absorbed radiation of 8.6 x 10^7 ergs g⁻¹(C) and 25 per cent damage at 4.7 x 10^8 ergs g⁻¹(C). Its tensile strength increases with :adiation, reaching 25 per cent increase at 10^{11} ergs g⁻¹(C).

Nylon fiber was reported to have lost more than 50 per cent of its original strength at an exposure of 8.5 x 10^8 ergs $g^{-1}(C)$.

The service life of nylon in air can be increased by the use of antirads or antioidants.

Nylon shows good heat stability in vacuum.

Koehler and Pefhany⁽²⁸⁾ reported that nylon (Zytel 33), when irradiated to 2 x 10¹⁶ ergs g⁻¹ C) in a dry atmosphere was satisfactory and could be used in a gaging system for reactor pressure tubes designed to measure surface defects during periods of reactor shutdown. A nylon ring used in this equipment was also satisfactory, although its color changed to a brown.

Although the following data are not concerned with the effects of nuclear radiation, they are of interest with respect to space applications. These include weight-loss data in vacuum, and the effect of thermal radiation, ultraviolet, and the effect of fillers on lubrication properties of nylon in vacuum.

The stability of nylon in space environments will vary according to the processing of the material. However, in general, nylon is useful under space conditions. Podlaseck and Suhorsky⁽⁴⁾ give the equilibrium-weight-loss rate as follows:

Material	Temperature,	Pressure,	Equil'brium-Weight- Loss Rate, g/(sq cm)(sec) x 10 ¹⁰
Nylon (Zytel 105) (carbon-black-	50	5 x 10 ⁻⁶	0. 33
filled 101)	100	5 x 10 ^{-f}	3, 3
Nylon (Zytel 31) (electrical grade	50	5 x 10 ⁻⁶	0.89
nylon)	100	5 x 10-6	3. 3
Nylon (Zytel 101) (standard grade	50	5 x 10 ⁻⁶	0.94
nylon)	100	5 x 10 ⁻⁶	4. 2

n of

the:

...

ngth

sys... .f gh

ion,

n

ing

Jaffe and Rittenhouse⁽⁵¹⁾ give the temperature for 10 per cent weight loss per year for nylon in high vacuum as 30 to 210 C (80 to 410 F). He indicates nylons show high decomposition rates in vacuum. However, Riehl⁽⁵⁷⁾ states that nylon lost 0.05 per cent weight on desiccation and 0.01 per cent more on vacuum exposure. It returned to its original weight (<0.001 per cent difference) on re-exposure to air. He thus claims that vacuum exposure served only to provide more disastic desiccation.

t

b€

٠,

3

.18.

:re

le.

Boundy(31) reported the weight loss of Nylon-101 in vacuum (10⁻⁶ torr) at 75, 150. and 300 F. Even at 300 F, the weight loss was only about 0.63 per cent (see Figure 20).

FIGURE 20. PER CENT WEIGHT LOSS VERSUS TIME AT 10⁻⁶ TORR AND VARIOUS TEMPERATURES FOR NYLON⁽³¹⁾

Hargreaves (68) exposed Nylon 66 to thermal radiation in vacuum. Results are given in Table C-19 in Appendix C. He found that heat and vacuum (10⁻⁵ torr) decreased the over-all transmission in the 220 to 330 mµ range. The effect of heat and vacuum is, first, to induce crosslinking but later, to induce chain scission. However, less than 2 per cent of the chemical structures are affected. Thermal radiation in the range of 180 to 275 C has no significant effect on the melting point. Specimens heated to 275 C darkened, fused, and were insoluble in a calcium chloride-methyl alcohol solvent. The fiber was brittle and useless as such, but the basic structure was unchanged.

Wilcox, et al., (58) found that changes in tensile strength of nylon were produced twice as fast by ultraviolet in nitrogen as in a vacuum (see Tables C-20 and C-21). Blackmon(5) states that nylon irradiated in a vacuum (10-7 torr) with ultraviolet for 91 hours shows very slight discoloration, and retains good tear and tensile strengths.

Because of its stability in vacuum, and because of its use as bearings which need no lubrication, nylon has been examined for use as a dry lubricant for space applications. Bowen⁽⁶⁹⁾ determined the wear of nylon materials containing various fillers. Tests were run at rubbing velocities of 4.0 and 230 ft/min. at temperatures of 86 F and 160 F. The load on the test block was 3 pounds (150 psi for a 2-mm scar width). The atmosphere nitrogen. The nylon which did not contain a lubricant filler was unsatisfactory; it

was considered better with 40 per cent MoS₂ filler (Nylasint 144) than with 70 per cent carbon-graphite (even though the friction is higher because of the expected poor lubricating qualities of graphite in a space environment). Outgassing tests, however, indicated that Teflon would be more acceptable than the nylon.

Polycarbona: es

Lexan retained strength and toughness after an exposure of 8 x 10^9 ergs g⁻¹(C), but these properties decreased rapidly after 9 x 10^9 ergs g⁻¹(C). It can probably be considered as useful to 10^{10} ergs g⁻¹(C).

Radiation resistance of Lexan in vacuum is only slightly better than that in air.

:t

its

on

ıat

be

its

At 300 F, polycarbonates are superior to nylon with :sspect to vacuum-thermal stability.

Polycarbonates have excellent impact strength and dimensional stability and resist thermal-oxidative degradation up to 150 C. They are reasonably good with respect to radiation resistance. (70) Lexan (General Electric polycarbonate) retained most of its original strength and toughness after irradiation to 8 x 10⁹ ergs g⁻¹ (C). However, in another investigation, a sample irradiated in air⁽¹¹⁾ was found to have lost all tensile strength at an exposure of 2.9 x 10^{10} ergs g⁻¹ (C). Oxidation is relatively rainor below an exposure of 8.8 x 10^9 ergs g⁻¹ (C). Merlon polycarbonate irradiated at ⁷⁵ F to a dose of 3.5 x 10^{10} ergs g⁻¹ (C) in air showed no appreciable change in hardness. Its ultimate streagth decreased from 8590 psi to 2070 psi. At 10^{10} ergs g⁻¹ (C), elongation decreased from 104 per cent to 54 per cent. At an exposure of 2 x 10^{11} ergs g⁻¹ (C), the material was too brittle to determine these properties. Thus it would appear that these materials would be satisfactory to an exposure of about 10^{10} ergs g⁻¹ (C), but that properties begin to fall off considerably above that exposure.

Samples irradiated in vacuum were very brittle after an exposure of 8.8 x 10^{10} ergs g⁻¹ (C). Giberson⁽⁷¹⁾ states that it is possible that less than this exposure dose would be required to obtain this degradation. Evidently the radiation stability of this polymer in vacuum is just slightly better than its stability in air. Giberson concluded that degradation of polycarbonates in an irradiation field occurs by a chain scission mechanism.

Moulton and associates⁽⁷²⁾ studying the effect of X-ray irradiation on the optical, electron paramagnetic resonance, and diffusion properties of Lexan found that X-ray irradiation induced cross linking rather than degradation of the polymer.

Jaffe and Rittenhouse⁽⁵¹⁾ give 180 C (350 F) as the temperature for 10 per cent weight loss per year in vacuum, but indicate that the basis for this value is not too reliable. Gloria, et al., ⁽⁶¹⁾ tested Lexan in vacuum and found its initial weight loss to be similar to that of Teflon. There was no apparent change in physical appearance up to its heat-distortion temperature. The initial rates of weight loss of Lexan, epoxy, nylon-phenolic, and silica-phenolic were found to increase significantly with decreasing material thickness, indicating that the diffusion of the reaction products through the bulk of the material was a controlling factor in the weight-loss process of these materials.

Boundy⁽³¹⁾ determined the weight loss of polycarbonate resin in a vacuum (10⁻⁶ torr) at 75, 150, and 300 F. Data are shown in Figure 21. At the higher temperatures, polycarbonate is markedly superior to nylon as far as vacuum-thermal stability is concerned.

FIGURE 21. PER CENT WEIGHT LOSS VERSUS NIME AT 10⁻⁶ TORR AND VARIOUS TEMPERATURES FOR POLYCARBONATE⁽³¹⁾

Polyesters

U filled polyesters have poor radiation stability, hardening and developing small cracks under irradiation. Their properties begin to change at approximately 10^7 to 10^8 ergs $\rm g^{-1}$ (C).

Oriented films appear to have greater stability than the random polymer. Mylar (polyethylene terephthalate) has been reported as reaching threshold damage at an exposure of 4.4×10^8 ergs g⁻¹ (C) and 25 per cent damage at about 8.7×10^9 ergs g⁻¹ (C).

Irradiation of Mylar in vacuum to 8.7 x 10^9 ergs g^{-1} (C) produced the same damage as 4.4 x 10^9 ergs g^{-1} (C) in air.

Mylar is unaffected during thermal aging up to 200 C (397 F) by irradiation, exceptat levels above 1010 ergs g⁻¹ (C).

When exposed to ultraviolet in a vacuum, Mylar decreases in tensile strength and elongation.

Polyesters are used in laminates and in coatings and are covered in those sections of this report. Matacek(73) reported on work in which cumulative stepwise weight losses were obtained. One of the resins tested was unfilled Paraplex P-43 polyester. After exposure to 400 F and a vacuum of 4×10^{-5} torr for 24 hours, the polyester had lost 20 per cent in weight, and testing of this material was discontinued. Luperco ATC had been used as the catalyst, and it has been shown that benzoyl peroxide can cause depolymerization under proper conditions. This and the fact that ro filler was present may have been part of the reason for the high weight loss.

Polyethylene Terephthalate (Mylar)

Kerlin and Smith⁽⁷⁾ irradiated Mylar A and Mylar C in air and in vacuum. Although earlier tests had shown irradiation to be less damaging in vacuum than in air (part_cularly with a 3-mil film), later results (see Table C-22 in Appendix C) would indicate that there is little difference between irradiation in air and in vacuum.

ır d

.1-

Yasui⁽¹³⁾ irradiated Mylar film, aluminized Mylar, and several Mylar laminates at cryogenic temperatures. There were no significant effects on these materials. Data are shown in Figures C-13 to C-15.

nates Data

Mylar capacitors were tested for performance characteristics in a nuclearradiation field at Bendix Systems Division of Bendix Corporation (38) and at Litton Industries (27). The results of the tests at Bendix indicated that film capacitors were well suited for use in radiation environments, at least up to an exposure of approximately 10¹⁰ ergs g⁻¹ (C) (about 10¹⁵ nv_t). Capacitance and dissipation factor were little affected by irradiation. Leakage resistance was reduced during irradiation whenever the reactor was at power, but no permanent changes in leakage resistance were observed. The capacitors became slightly radioactive during the irradiation; this activity was sufficiently small to indicate that these capacitors do not present a serious handling problem when used in radiation environments with thermal-neutron shielding. Litton Industries. on the other hand, found that the Mylar film-foil capacitors suffered permanent degradation in insulation resistance, i.e., their insulation resistance showed negligible recovery 241 ms after removal from the environment. The exposure was 1011 ergs g-1 (C) (10 16 r cm⁻², E_n > 2.9 Mev). Also, it was shown that the electrical properties of capacities made from the same dielectric material but by different manufacturers differed cons lerably form one another.

indusell sly afr the ved. s sufproblem tries, gradascov--1 (C) cauiered

Mylar has been found to have extremely low outgassing rates at room temperature, similar in this respect to fluorocarbons and silicores. Riehl(57) tested the stability of Mylar under high vacuum (Table C-23). Plain and aluminum-vapor-coated Mylar films were exposed to various temperatures at a pressure of 10^{-5} to 10^{-6} torr for a duration of 72 hours. It was found that Mylar, with or without an aluminum coating, exhibited only a slight loss in flexibility after exposure to the test conditions at room temperature. At 100 C, under the same conditions of pressure and time, weight loss:s were appreciable. Both coated and uncoated films warped and/or writched, and all samples suffered appreciable losses in flexibility. Similar tests at 150 C produced increased weight losses and distortion.

ty of films ation ted raples

ed

Effects of Ultraviolet Radiation

Versluys, et al., (55) subjected Mylar to ultraviolet radiation at 10^{-8} torr to a dose of 50 hours of insolation in the 1300 to 1850 A band and 565 hours in the 1100 to 1300 band. Weight loss was 0.2 ± 0.2 per cent. Vacuum exposure alone gave 0.3 ± 0.3 per cent. The released gas was analyzed by means of a mass spectrometer and found to be nitrogen, which was assumed to be adsorbed to the Mylar

a dose 00 3 per to be

Table C-24 shows the effect of vacuum and combined vacuum and ultraviolet on Mylar aluminized on one side, as determined by Snyder (4/1). Ultraviolet (770 hours' exposure) caused a decrease of 43 per cent in tensile strength and a decrease of

on s' 88 per cent in ultimate elongation. Table C-25 shows the effect of ultraviolet and vacuum on the tensile strength at butt-seamed areas using Mylar tape with various adhesives.

Wilcox, et al., (58) irradiated Mylar in nitrogen and in vacuum with ultraviolet (Tubles C-20 and C-21). Elongation decreased faster for samples irradiated in nitrogen than it did for samples irradiated in a vacuum. Also, tensile strength was less affected in vacuum than in nitrogen.

gen ed

Blackmon, et al., (5) also reported the effects of ultraviolet and vacuum on Mylar, both metalized and nonmetalized. After 91 hours at 80 F and 10⁻⁷ torr, there was no change in the aluminized Mylar. The uncoated 5-mil material turned brown and disintegrated on handling.

ar,

In summary, Mylar has now outgassing in a vacuum at room temperature. However, elevated temperatures and, particularly, ultraviolet adversely affect weight loss and tensile properties.

; 5

Polyethylene

Polyethylene is unaffected by radiation to an absorbed radiation of 1.9 x 10^9 ergs g^{-1} (C), and accrues 25 per cent damage at 9.3 x 10^9 ergs g^{-1} (C). Tensile strongth increases at first, but at approximately 1.1 x 10^{10} ergs g^{-1} (C), it begins to decrease, and is 25 per cent lower than the initial value at approximately 10^{12} ergs g^{-1} (C).

rolyethy ene is subject to oxidation when irradiated. As a result it is more stable in value: that, n air.

υle

Kerlin and Smith⁽⁷⁾ found that Marlex 6002, a high-density polyethylene, irradiated in air to an exposure of 10⁹ ergs g⁻¹ (C) decreased in elongation from 907 per cent to 14 per cent. However, in vacuum, the decrease was only to 675 per cent. Tensile strength increased both in air and in vacuum but the increase was slightly higher in vacuum. Data are shown in Appendix C, Table C-26.

ated

Gray, et al., (8) found polyethylene, along with silicone rubber, to be the most effective seal for reciprocating service in a vacuum environment. Leak rates were very low (5×10^{-5}) standard cubic centimeters of helium gas per second) after test durations of 30 minutes. Gray suggests that a dry lubricant such as molyhdenum disulfide shou'd be used to obtain good results. Polyethylene and Vinylite (polyvinyl chloride), in an O-ring configuration, were also effective in static sealing applications. They were not appreciably affected by 2-week vacuum exposures at 1×10^{-7} torr.

3f-'y

Jaffe and Rittenhouse⁽⁵¹⁾ list polyethylene and polypropylene as exhibiting good-to-excellent behavior in high vacuum. Fulk⁽¹⁷⁾ determined the equilibrium-weight-loss rate for irradiated polyolefins (probably polyethylene). Values are given in Table B-70 (Appendix B).

ld >t

Versluvs, et al., (55) studied the effect of ultraviolet on polyethylene and noted that weight loss in vacuum with no irradiation was 0.3 ± 0.2 per cent, but when irradiated, no weight loss was observed. The exposure did not change the appearance of the

\$8 70

the

polymer. The exposure of the sample was equivalent to 28 hours of insolation in the 1300 to 1850 A band and 1975 hours in the 1100-1300 A band.

Wilcox, et al., (58) irradiated polyethylene with ultraviolet light in nitrogen and in vacuum. A wavelength of 244 m μ was more damaging than the 314 or 369 m μ . Also, changes in tensile strength were produced about three times faster in nitrogen than in a vacuum (see Table C-20).

Polypropylene

Polypropylene has been found to be inferior to polyethylene in radiation resistance. At an exposure of 8.7 x 10^9 ergs g⁻¹ (C), it has become brittle and lost all of its elongation and most of its tensile strength.

Sauer⁽⁷⁴⁾ in his studies of the effects of gamma irradiation on the dynamic mechanical properties of various polymers has shown that crosslinking efficiencies of polypropylene are from one and one-half to two times greater for quenciled isotactic polypropylene samples than for annealed specimens.

Polyallomers

In addard to an exposure of 9.4 x 10^{10} ergs g^{-1} (C) at 75 F, a propyler enthylene polyal omer retained only 25 per cent of its tensile strength. Above 2.8 x 10^{10} ergs g^{-1} (c), hardress decreased and the material became very tacky. Elongation decreased considerably between 3 x 10^8 ergs g^{-1} (C) and 10^9 ergs g^{-1} (C).

n

ιŧ

a

These materials are defined as crystalline thermoplastic polymers produced from two or more different monomers. These are not copolymers in the usual sense, nor are they blends, but are more like block polymers. One of the more interesting of these is the propylene-ethylene polyallomer. This polymer exhibits many of the best properties of both high-density polyethylene and crystalline polypropylene. Propylene-ethylene polyallomers are superior to the linear polyethylene in flow characteristics, softening point, hardness, stress-crack resistance, and mold shrinkage. They overcome the most serious property deficiencies of crystalline polypropylene, offering lower brittleness temperatures, higher impact strengths, and less notch sensitivity. However, the polyallomers retain the desirable built-in hinge effect that is exhibited by crystalline polypropylene. Polyallomers in many respects are as easy to mold as crystalline polypropylene and easier to mold than linear polyethylene.

In wire covering and cable jacketing, the propylene-ethylene polyallomers offer a good balance of impact strength, elongation, stress-crack resistance, and low-temperature toughness while retaining the desirable electrical properties of the other polyolefins.

Lewis $^{(15)}$ irradiated a propylene-ethylene polyallomer at room temperature and at temperatures of 205 to 250 F. When the material was irradiated to 9.4 x 10^{10} ergs g^{-1} (C) at 75 F, tensile strength decreased from 4380 psi to 1100 psi. Above 2.8 x 10^{10} ergs g^{-1} (C), hardness decreased and he material became very tacky. Elongation

decreased considerably between 3×10^8 and 10^9 ergs g^{-1} (C). At 250 F, after irradiation to an exposure of 2.4 x 10^{10} ergs g^{-1} (C), the specimens were stuck to the foil wrapper and tore easily. At 200 F, tensile strength decreased from 4390 psi to 1300 psi at a exposure of 2.9 x 10^9 ergs g^{-1} (C) while elongation decreased from 688 per cent to 34 per cent at an exposure of 9.7 x 10^8 ergs g^{-1} (C). Data are shown in Table 40.

si to

TABLE 40. SUMMARY OF EFFECTS OF IRRADIATION AT TWO TEMPERATURES ON PROPYLENE-ETHYLENE POLYALLOMER (CRYSTALLINE POLYMER) (EASTMAN)(2)(15)

Gamma Exposure, ergs g ⁻¹ (C)	Temp,	Hardness(b), Shore D	Yield Strength ^(a) , psi	Tensile Strength ^(a) , psi	Ultimate Elongation(a)
0	75	63. 9	3280/123/15	4380/482/15	770/60/15
3.2×10^8	80	67. 1	3460/84/15	4050/493/15	771/63/15
1.2×10^9	80	69. 5		3470/171/15	20/5.7/15
2.7×10^9	75	70. 3		2850/79/14	5
8.3×10^9	75	71.6		2130/122/15	2-3
2.8×10^{10}	75	64.7		2880/100/15	22/5/15
9.4×10^{10}	75	35, 4(c)		1100/75/13	30/9.0/13
0	250	69.7	3300/44/15	4390/196/15	688/40/15
2.7×10^8	205	68.9	3330/62/14	3100/469/15	687/22/11
9.7×10^{8}	205	68.7		3360/93/15	34 / 27 / 15
2.9 x 159	230	69.4		1300/135/14	5mall
1.1 x 10'J	235	63. 1		1400/135/15	5
$2.4 \times .010$	245	(d)			(e)
8.0 x \010	.: 48	(d)			(e)

⁽a) Data are given as \overline{x} /S, D. /n, where \overline{x} - average value, S. D. = standard deviation of an individual observation estimated from the range, and n = number of specimens used in calculating \overline{x} and S. D.

Polyimide

Nomex yarn (Fiber HT-1) was reported to be unaffected to an exposure of 3.3 x 10^{10} ergs g⁻¹ (E).

At 500 F and 1.4 \times 10⁹ ergs g⁻¹ (C) gamma exposure, the yarn retained 45 per cent of its elongation and 62 per cent of its tensile strength.

Polyimide fiber [HT-1 (Du Pont Nomex yarn)] has approximately the same strength characteristics as nylon, with greatly increased resistance to heat and gamma irradiation. (75) There are no melt-flow characteristics below 750 F. It does not have the objectionable melt-drop characteristics of nylon. Its strength is unaffected by exposure to 3.3 x 10¹⁰ ergs g⁻¹ (C) gamma irradiation. No practical solvents for this yarn are known at present.

18. 'e po-

rn

⁽b) Average of 30 measurements.

⁽c) Very tacky.

⁽d) Too tacky to measure.

⁽e) Specimens were stuck to foil wrapper and tore easily.

McGrath⁽⁷⁶⁾ irradiated Nomex yarns at 100, 400, 500, and 600 F. These were then oven aged for 2 hours. The natural yarn and two-color sealed yarns were irradiated, the colors used being International Orange and Olive Green. Strength and elongation properties are given in Tables C-27 through C-34 in Appendix C. It may be noted in Tables C-36 and C-33 that the natural yarn when irradiated at 500 F to an exposure of 1.4×10^9 ergs g⁻¹ (C) retained 45 per cent of its elongation and 62 per cent of its strength. Variations between the dyed yarns and the natural yarns were believed to be due to a variation in the yarns and twist of the yarns rather than to the color process.

Stephenson, et al., (77) irradiated polyimide fibers [HT-1 (Du Pont)], polybenzimidazole, and thiazole polymer (Southern Research Institute). During ultraviolet irradiation of HT-1, no volatile products were detected. No differences in degradation were noted between irradiations in air, nitrogen, or vacuum (10⁻³ and 10⁻⁶ torr) (see Figure C-16). Exposure to emergy at a wavelength of 369 mm caused greater deterioration than that at 244 or 314 mm. Arradiation of polybenzimidazole fibers with 253.7 mm light from the G30T8 lamp produced greater deterioration of tensile properties in oxygen than in nitrogen or in vacuum (see Figure C-17). Irradiation in nitrogen produced effects in elongation that were intermediate between those produced by irradiation in oxygen and in vacuum.

₹D

ιy

t

ng

of

to

Fibers of a thiazole polymer appeared not to be affected differently in nitrogen, oxygen, and vacuum. As shown in Figure C-18, no loss of tensile strength due to X-ray irradiation was apparent, but some decrease in elongation was noted.

the Pont "H" film, considered for use as a hydrogen barrier, was irreducted (nuclear) that is impressed in liquid nitrogen. (13) Tensile and tear strengths of brinil sheet were similar to those of 2-mil Mylar. These properties were not significantly affected by exposure to 2 x 10⁹ ergs g⁻¹ (C). Data are shown in Figure C-19. Radiation did not affect hydrogen permeability.

Mathes (78) evaluated wire insula non for cryogenic applications after thermal aging in air and vacuum and after moisture exposure. Among the materials examined were HML (a heavy aromatic polyimide enamel), HML asbestos [a polyimide solution (ML) coated, felted asbestos], and Glass/ML [a rolyimide solution (Du Pont ML) coated glass fiber insulation]. These were also examined at cryogenic temperatures. The advantages of the ML material is that it has the greatest flexibility at cryogenic temperatures, excellent thermal stability, mechanical toughness, and no measurable thermal cutthrough. Its disadvantages are that it is available only as a relatively thin film coating and it is somewhat sensitive to moisture. Evaluation of coated wires consisted of repeated mandrel flexibility tests in liquid hydrogen. Figures C-25 and C-21 give a comparison of breakdown voltage in air, vacuum, and liquid nitrogen. Voltage breakdown of HML is not significantly affected by thermal aging, even at 250 C.

Buckley and Johnson $^{(65)}$ investigated the usefulness of polyimide resins as lubricants in the space environment. To determine relative stability in a vacuum, some evaporation studies were conducted in vacuum to 10^{-8} torr and at ambient temperatures to 875 F. Data are shown in Figure C-22. Evaporation rate was less than 10^{-10} g/(sq cm)(sec) from ambient temperatures to 500 F. Above 500 F, the polyimide began to lose weight at an appreciable rate, and at 875 F, the rate was too high to follow with the recorder.

Friction and wear studies were conducted in vacuum (109 torr) with polyimides sliding both on metals and on themselves. Although friction for polyimides on Type 440 C stainless steel was relatively low, wear to the polyimide rider was somewhat high (Figure C-23). However, the wear for the polyimide is only one-fifteenth that obtained with Teflon, and the friction is also lower.

With polyimide sliding on itself, the friction was higher than with polyimide on stainless steel, but wear was 1/500th that of the polyimide on metal (Figure C-24).

A 15 per cent graphite-filled polyimide composition was also examined in friction and wear studies. The presence of graphite in the polyimide did not improve its lubricating characteristics; relatively high friction and wear were obtained.

Suess and Neff⁽⁷⁹⁾ examined six insulated wires for use in a space environment. One of these was "Suroc" FEP w/corona etched, bonded "ML polyimide" manufactured by Supernant Wires; another was Teflon FEP and "H" film laminated into tape and helically wrapped. On the basis of weight loss, dissipation for tor, dielectric constant, capacitance, and abrasion resistance, the best selection appeared to be an extruded Teflon and the FEP-ML coated wire. However, he found that the FEP-ML coating was quite sensitive to ultraviolet degradation.

Polystyrene

Polystyrene is one of the most radiation resistant of all polymers. It extents threshold degradation at an exposure of 10^{10} ergs g^{-1} (C) and 25 per cent damage at greater to an $e \sim 10^{11}$ ergs g^{-1} (C).

* xposure* of 10^{12} ergs g⁻¹ (C) are required in a vacuum to produce significant change in its infrared spectra.

Polystyrene film was not affected at 75 F by an exposure of 8 x 10^9 ergs g⁻¹ (C). At 9.4 x 10^{10} ergs g⁻¹ (C), it retained 54 per cent of its initial tensile strength.

Lewis $^{(15)}$ irradiated polysterene film \pm 75 F to an exposure of 9.4 x 10^{10} ergs g⁻¹ (C). Tensile strength did not change appreciably until after an exposure of 8 x 10^9 ergs g⁻¹ (C). At an exposure of 9.4 x $\cdot 10^{10}$ ergs g⁻¹ (C), the polystyrene retained 54 per cent of its initial tensile strength. Ultimate elongation decreased from 6.5 per cent to 3.2 per cent (see Table 41).

TABLE 41. EFFECT OF IRRADIATION OF TENSILE PROPERTIES OF POLICETYPPINE FILM(15)			/9-5
	TAR' & 41	FEFFCT OF IDDADIATION ON TEN	SHE PROPERTIES OF DOLVET VRIME FILLALLY

Gamma Exposure, ergs g ⁻¹ (C)	Temp, F	Tensile Strength(a), psi	Ultimate Elongation ^(a) , %
0	75	1120/40/15	6.5/0.29/15
3.2 x 10 ⁸	75	1130/32/14	6.8/0.44/14
1.2 x 10 ⁹	75	1090/28/15	6.3/0.46/15
2.7 x 10 ⁹	75	1090/37/15	6,4/0,32/15
8.3 x 10 ⁹	75	1080/45/15	6.3/0.40/15
2.8 x 10 ¹⁰	75	976/102/15	5.3/0.49/15
9.4 x 10 ¹⁰	75	512/52/18	3,2/0,25/15

⁽a) Data are given as x̄/S. D. /n, where x̄ = average value, S. D. = standard deviation of an individual observation estimated from the range, and n = number of specimens used in calculating x̄ and S. D.

Richi(57) found that high-impact polystyrene lost only moisture in vacuum at room temperature and at 50 C. At 100 C, sustained weight loss occurred.

Versluys, et al., (55) tested Trycite-1000 film (Dow polystyrene film - 1 mil) for weig't loss after exposure to vacuum and to X-ray in vacuum. Weight loss in both cases was 0.1 per cent. The exposure did not cause a change in appearance. Insolation was for 128 hours for the 1300 to 1850 A band and 3500 rours for 1100 to 1300 A band.

Blackmon, et al., and Clauss^(5,39) determined the effect of elevated temperature on plustic potting compounds. Eccoseal HI-Q, a polystyrene-solvent system, showed no visible effects after room-temperature vacuum exposure, but vigorous bubbling and outgassing resulted at 170 F in vacuum (10⁻⁷ torr). This was probably due to the trapped solvent.

Polyurethane

A polyurethane foam sandwich sample showed no reduction in mechanical proper ties up to 10^{11} ergs g^{-1} (C), the largest exposure to which the sample was subjected.

The compressive strength of a polyurethane thermal insulation appeared higher when irradiated in vacuum than when irradiated in air.

Kerlin and Smith⁽⁷⁾ irradiated two polyurethane thermal-insulation mater als in air and it vacuum. These were tested for compression strength. Irradiation of an exposure of 5×10^3 to 10^9 ergs g⁻¹ (C) did not seriously affect this property. Compressive silvens ength with a tested in a vacuum appeared somewhat higher. Data are given in Table C-35. Appendix C.

The effect of nuclear-radiation exposure at cryogenic temperatures was examined on four polyurethane foams by Yasui. (13) The materials were Magnolia Foam, Marfoam, CPR 20-3 Foam, and Douglas Insulation. Data are given in Figures C-25 to C-28. There was no statistically significant difference between the controls and irradiated specimens of Magnolia Foam or Marfoam. CPR-20-3 increased about 39 per cent in shear strength in the anisotropic direction. Yasui attributes this to the fact that the individual cells within the foam were elongated in this direction and were mutually parallel. Radiation did not affect compressive properties.

Matacek⁽⁸⁰⁾ investigated the effect of humidity during cure on a polyurethane resin (Multron R-10/Mondur C) with respect to weight loss in vacuum. The materials cured at high humidity had a greater weight loss when exposed to elevated temperatures in vacuum than those cured at low humidity.

Clauss and Blackmon, et al., (5,39) in their investigations of encapsulating materials, found PRC 1535A/B satisfactory after vacuum-temperature exposure. The material was not irradiated, but on the basis of its radiation stability in air, it would be anticipated as being satisfactory in the combined radiation-vacuum-temperature environment. They stated that it had a high mold shrinkage and turned slightly brown after 170 F aging. They rated it as appearing satisfactory as an encapsulant.

Poly n-Vinyl Carbazole

There was no appreciable change when Grinlan F flastic was irradiated to 2×10^{11} ergs g⁻¹ (C) at room temperature.

Grinlan F plastic (poly n-vinyl carbazole)⁽¹⁵⁾ showed extremely good radiation resistance at room temperature. When the material was irradiated to an exposure of 2 x 10¹¹ ergs g⁻¹ (C), there was no appreciable change in hardness, specific gravity, or tensile strength. Values for the last property were 2900 psi and 2590 psi before and after irradiation, respectively. Data are shown in Table 42.

TABLE 42. SUMMAR! OF EFFECTS OF IRRADIATION ON GRINLAN F (POLY N-VINYL CARBAZOLE) PLASTIC⁽¹⁵⁾

Gamma Exposure, ergs g ⁻¹ (C)	Temp,	Specific Gravity at 25 C	Hardness(a), Shore D	Tensile Strength(b)
0	75	1, 185	91.5	2900/206/15
4.9×10^8	75	1. 187	88.8	2630/448/14
1.8 x 10 ⁹	75	1. 187	ટે ?. 8	2700/421 + :
3.6×10^9	50	1. 186	88. 2	2690/371/15
10	50	1, 188	89. 4	2660/324 ' ! 5
3.5×10^{10}	50	1, 188	88. 9	2830/132/14
2.0 x (11	70	1, 188	91. 3	2590/274/14

⁽a) I verage ci 30 measurements.

Silicones

Silicone resins, used for laminates, coatings, and insulating materials, are not seriously degraded at exposures to 10^9 or 10^{10} ergs g⁻¹ (C) and, with the proper filler, are satisfactory to 10^{11} ergs g⁻¹ (C).

ot ler,

nce

ce of

sili-

d at

ì

The stability of silicones to radiation depends upon their structure. The presence of phenyl groups in the silicone chain increases radiation stability, while the presence of methyl groups increases flexibility.

Dexter and Curtindale (36) investigated the combined effects of temperature and radiation on silicones. Samples were irradiated at temperatures of 150 and 200 C. Electrical and physical properties were measured 24 hours or longer after removal from the radiation source. Since time constants of the decay of transient effects on silicones are less than 10 minutes and stable properties are attained within 1 hour, transient effects were not considered in this work. Electrical properties were measured at room temperature and in some cases at elevated temperatures. Materials evaluated included:

⁽b) Data are given as x̄/S, D, /n, where x̄ = average value, S, D, = standard deviation of individual observation estimated from the range, and n = number of specimens used in calculating x̄ and S, D.

Silicone Fluids

Dow Corning 200 Fluid, 20 centistokes Dow Corning 200 Fluid, 1000 centistokes Dow Corning 510 Fluid Pow Corning 710 Fluid Sylgard 51 Dielectric Gel

Dimethylpolysiloxane
Dimethylpolysiloxane
Fhenylmethylpolysiloxane
Phenylmethylpolysiloxane
Dimethylpolysiloxane

Silicone Compounds

Dow Corning 4 Compound
Dow Corning 5 Compound

Silica-filled dimethyl silicone Silica-filled phenylmethyl silicone

ıe

n

i-

:ts

tus

ls]

ίď

r

Silicone Elastomer

Silastic 1602

Silicone Resins

Dow Corning R-7521

Solventless resin

Silica sand or zirconium orthosilicate filled

Dow Corning 980

Impregnating varnish

Dow Corning Sylgard 182

Solventless resin

No filler

In general the effect of the elevated temperature was to decrease the radiation resistance of he material by approximately 50 per cent. Electrical properties of the silicone fluids dil not change significantly during exposure to radiation and high temperature. (150 to 00 C). Their usefulness is limited by their increase in viscosity. Effects of temperature and radiation on electrical and physical properties of silicone fluids are shown in Figures C-29 and C-30 in Appendix C.

Silicone insulating compounds are used as sealing materials in electronic apparatus and as a water-repellant surface coating for ceramic insulators. The phenylmethyl based compounds gelled after a radiation exposure of 4×10^9 ergs g⁻¹ (C) [40 megarads] at room temporature, 2×10^9 ergs g⁻¹ (C) at 150 C, or 10^9 ergs g⁻¹ (C) at 200 C. The expected life of a dimethyl based compound is about one-half of this. Electrically, neither compound was significantly affected by radiation doses in excess of the gelation dose. Data are shown in Figures C-31 and C-32.

Silastic 1602 is discussed in the section on silicone etastemers, while R-7521 is included in the discussion on potting compounds. Data on the effects of temperature and radiation on the various silicones are shown graphically in Figures C-29 to C-37.

Silicone resins are also used in laminates, coatings and seals. As such, they are discussed under those headings in this report. According to Jaffe and Rittenhouse⁽⁵¹⁾, the temperature for 10 per cent weight loss per year in vacuum for methyl phenyl silicone resins is greater than 380 C (710 F). Jaffe lists silicone resins along with Teflon, polyethylene, polypropylene, and Mylar as showing good-to-excellent behavior in high vacuum. Podlaseck and Suhorsky⁽⁴⁾ show the equilibrium weight loss for silicones at elevated temperatures (see Table C-4). At atmospheric pressure, these losses appear high, but in a vacuum they are considerably lower and within a usable range.

Vinyl Polymers

Polyvinyl chloride (PVC) is equivalent to polyethylene in its radiation stability. Its properties begin to change at a radiation exposure of 1.9×10^9 ergs g⁻¹ (C), while it is damaged by 25 per cent at an exposure of 1.1×10^{10} ergs g⁻¹ (C).

it

m

at

ıu-

ers

3nd

٠).

Tensile strength of PVC is not affected urtil it is given a radiation dose higher than that which affects polyethylene. However the tensile strength of PVC decreases more rapidly than that of polyethylene, whereas its elongation decreases less rapidly than that of polyethylene.

The liberation of hydrogen chloride when PVC is irradiated makes this material unsuitable for many applications in a nuclear environment.

Aithen and associates (81) investigated the effect of plasticizer, filler, and stabilizer on the radiation resistance of polyvinyl chloride. Two levels of radiation exposure were used, 10^{10} ergs g⁻¹ (C) and 2 x 10^{10} ergs g⁻¹ (C). The polymer used for this study was Geon 101. Fillers were carbon black (Vulcan black XXX), precipitated whiting (97 per cent CaCO₃, 99.98 per cent passes 200 mesh), china clay (Stockalite), anatase titanium dioxide (Tiona G), and rutile titanium dioxide (Runa R.G.). Plasticizers studied were tritolyl phosphate (TTP), Reopiex 100 (a sebacate polyester used in formulations which require maximum extraction resistance), and dioctyl sebacate. Stabilizers included white lead paste ground in DOP (dioctyl phthalate) in a ratio of 7:1 % reight and used a level of 8 parts per hundred parts of polymer, and "Stabilizer Mixture", a nonlead mixture consisted of:

Material	Parts by Weight
Organic tin (Stanclere DBTL)	1. 2
Organic cadmium (Ferroclere 202)	0.4
Epoxidized oil (Ferroclere 900)	1.0

The mixture was used at a level of 2.6 parts per hundred parts of polymer.

Plasticizer-polymer ratios of 35/65 and 45/55 by weight were used. Levels of filler were 10 per cent and 20 per cent by weight of the total (plasticizer plus polymer).

None of the interactions reached the level of significance in changes of tensile strength. However, on the basis of elongation and tensile values before and after radiation, the following conclusions were reached:

(1) Plasticizer Type and Content

Tritolyl phosphate showed the least degradation; the average drop in elongation was only 8 per cent after 1×10^{10} ergs g^{-1} (C) and 25 per cent after 2×10^{10} ergs g^{-1} (C). Reoplex 100 lost 36 per cent and 59 per cent, respectively, under the same radiation exposures. Only dioxtyl sebacate (DOS) showed a decrease in tensile strength.

Tri-xylyl phosphate has been shown to be identical in radiation stability to tri-tolyl phosphate.

Plasticizer content may be adjusted to suit the requirements of the formulation. For a given plasticizer, the decrease in elongation was independent of the plasticizer concentration. (Note that plasticizer ratios used were 35/65 and 45/55 parts by weight of plasticizer and polymer.)

(2) Filler type and content

No filler gave a better resistance to the degradative effect of radiation than was obtained in the absence of filler, but china clay and titanium dioxide (anatase) gave compounds that were no worse than those without filler, whether judged on the basis of actual elongation after exposure or on the basis of retention of initial elongation. Carbon black gave a very low initial elongation which was well retained. Whiting is very poor in retention of elongation and shared with carbon black the lowest actual elongation after exposure.

Addition of filler produced a small proportional diminution of the initial elongation, and the average effect of exposure to radiation was proportional to this initial elongation and independent of the filler content (zero to 20 per cent filler).

(3) Stabilizer

With Reoplex 100 plasticizer, stabilizer Mixture X is to be proferred; with tritolyl phosphate there was no difference between the two stabilizers.

(4) Cole stability

With respect to color only, the best filler was anatase titanium dioxide, the best plasticizer was DOS, the best stabilizer was Mixture X. The best individual formulation was DOS with anatase titanium dioxide and stabilizer Mixture X.

Specimens containing precipitated whiting were almost as good as those with titanium dioxide. One effect observed was that the wire staples holding the specimens to the card were rusted and corroded in nearly all the specimens except those containing whiting. There was very little exudation.

ter

88

de

ıe

ırk-

Versluys, et al., (55) found no weight loss in 2-mil polyvinyl chloride film after exposure to a vacuum of 10⁻⁸ torr for 8 hours at anabient temperature. No weight loss was observed after exposure to ultraviolet for a total insolation of 120 hours in the 1300 to 1850 A band and 2140 hours in the 1100 to 1300 A band.

Blackmon, et al., $^{(5)}$ exposed pigmented polyvinyl fluoride and polyvinyl chloride to ultraviolet for 96 hours in a vacuum of 3 x 10^{-7} torr at 80 F. The fluoride film darkened slightly, but no appreciable change in flexibility or tear strength was noted. The film retained an excellent appearance. The PVC film, however, turned brown, and voids and blisters from exuded plasticizer became evident. The film had a poor appearance.

Matacek⁽⁷³⁾ in his report on studies to determine the vacuum volatility of organic resins indicated that VMCH, a vinvlchloride-acetate copolymer, lost 60 per cent of its weight when exposed to a temperature of 300 F for 24 hours. Polyvinyl butyral (Vinylite XYHL) lost 40 per cent of its weight. This temperature is, of course, high for these relatively, but this would show their limitations for space applications.

REFERENCES

Components

- (1) "NARF Final Progress Report", General Dynamics/Fort Worth, Nuclear Aerospace Research Facility, Fort Worth, Texas, NARF-62-18P, FZK-9-184, Final Progress Report, October 1, 1961 September 30, 1962, AF 33(657)-7201, 375 pp.
- (2) McCurdy, R. M., and Rambosek, G. M., "The Effect of Gamma Radiation on Structural Adhesive Joints", Minnesota Mining & Manufacturing Company, Achesives, Coatings & Sealers Division, March 20, 1962, paper presented at the National Symposium on "Se Effects of Space Environment on Materials, St. Louis, Missouri, May 7-9, 1962, 12 pp.
- (3) Kaufman, A. B., Newhoff, H. R., and Gaz, R. A., "LPR-10 Drum Performance in a Nuclear Environment", Litton Systems, Inc., Guidance and Control Systems Division, Woodland Hills, California, 27 pp.
- (4) Podlaseck, S., and Suhorsky, J., "The Stability of Organic Materials in Vacuum", 1963 Proceedings of the Institute of Environmental Sciences, Annual Technical Meeting, Los Angeles, California, April 17-19, 1963, pp 593-603.
- (5) Blackmon, P. H., Clauss, F. J., Ledger, G. E., and Mauri, R. E., Materials Evaluate: Under High Vacuum and Other Satellite Environmental Conditions", Lockheed Missiles and Space Company, Sunnyvale, California, LMSC-3-77-61-23, Manuary, 1962, AF 04(647)-787, 40 pp.
- (6) Kerlin, E. E., "Investigation of Combined Effects of Radiation and Vacuum and of Radiation and Cryotemperatures on Engineering Materials. Volume I. Radiation-Vacuum Tests", General Dynamics/Fort Worth, Fort Worth, Texas, FZK-161-1, January 5, 1963, Annual Report, November 9, 1961 - November 8, 1962, NAS8-2450, 340 pp.
- (7) Kerlin, E. E., and Smith, E. T., "Measured Effects of the Various Combinations of Nuclear Radiation, Vacuum, and Cryotemperatures on Engineering Materials", General Dynamics/Fort Worth, Fort Worth, Texas, FZK-172, September 30, 1963, Quarterly Progress Report, June 1 August 31, 1963, NAS8-2450, 121 pp.
- (8) Gray, P. D., Cornelius, G. K., O'Donnell, J. D., and Howard, W. W., "Rockets in Space Environment. Volume I. The Experimental Program", Aerojet-General Corporation, Azusa, California, RTD-TDR-63-1050, February 1963, Final Report, AF 04(611)-7441, 150 pp.
- (9) DeWitt, E. A., Podlaseck, S., and Suhorsky, J., "Effect of Low Pressure at Elevated Temperatures on Space Vehicle Materials", The Martin Company,
 Baltimore, Maryland, M-RM-29, March 1959, Research Memorandum, 42 pp.
- (10) Levine, H. H., "Recent Developments in High Temperature Adhesives", paper presented at the Adhesives Symposium, Picatinny Arsenal, Dover, New Jersey, September 27-28, 1961.

- (11) Chafey, J. E., "Compilation of Materials Research Data", General Dynamic -/
 Astronautics, San Diego, California, GD-AE-62-0060, September, 1961,
 Summary Report No. 1, Phase II, March 1 September 1, 1961, AF 33(616)-6481,
 20 pp.
- (12) Yasui, G., "RIFT Radiation Effects Program Teradiation No. 1 and 2 Cryogenic Insulation Materials", Lockheed Missiles and Space Company, Sunnyvale, California, NSP-63-35, May 7, 1963, NAS8-5600, 50 pp.
- (13) Yasui, G., "Thermal Insulation Material Tests (Cryogenic)", RIFT Nuclear Engineering Report, Lockheed Aircraft Corporation, Lockheed-Georgia Company, Marietta, Georgia, ER-6512, September 10, 1963, pp 37-69.
- (14) Weaver, J. H., and Jacobs, C., "Coatings for Temperature Control in Space Vehicles", paper presented at Materials Symposium, Phoenix, Arizona, September 13-15, 1961, ASD-TR-C1-322, July, 1961, pp 456-468.
- (15) Lewis, J. H., "Second Quarterly Status Letter January 1 March 31, 1964", General Dynamics/Fort Worth, Fort Worth, Texas, NARF '64, April 16, 1964, AF 29(601)-6213, 150 pp.
- (16) Matthews, C. O., and Finch, W. L., "Report on the LMSC Spacecraft Materials Reliability Program", Lockheed Missiles and Space Company, Sunnyvale, California, May 7, 1962, AF 04(647)-787, 71 pp.
- (17) Figure, S., M., and Horr, K. S., "Sublimation of Some Polymeric Marcials in Vacuum", Ball Brothers Research Corporation, Boulder, Colorado, TN-62-118, September 10, 1962, 26 pp.
- (18) Carroll, W. F., "Development of Stable Temperature Control Surfaces for Spacecraft", California Institute of Technology, Jet Propulsion Laboratory, Pasadena, California, JPL-TR-32-340, November 20, 1962, Progress Report No. 1, NAS 7-100, 17 pp.
- (19) Wahl, N. E., Lapp, R. R., and Haas, F. C., "The Effects of High Vacuum and Ultraviolet Radiation on Nonmetallic Materials", Cornell Aeronautical Laboratories, Incorporated, Buffalo, New York, WADD-TR-60-125, Pt. II, June 19-2, February 1, 1960 April 1, 1961, AF 33(616)-6267, 73 pp.
- (20) Clauss, F. J., Mauri, R. E., Smith, E. C., and D. akt. S., "Evaluating the Behavior of Materials Under Space Conditions", 1961 Proceedings of the Institute of Environmental Sciences, National Meeting. Washington, D. C., April 5-7, 1961, pp 475-488.

1,

- (21) Gaumer, R. E., Clauss, F. J., Sibert, M. E., and Shaw, C. C., "Materials Effects in Spacecraft Thermal Control", paper presented at the ASD Conference on Coatings for the Aerospace Environment, Dayton, Ohio, November 9-10, 1960, WADD-TR-60-773, July 1961, pp 117-136.
- (22) Alexander, A. L., et al., "The Ultraviolet Degradation of Organic Coatings",
 U. S. Naval Research Laboratory, Washington, D. C., WADD-TR-60-703, Part II,
 November 1960, October 1, 1958 April 1, 1959, AF 33(616)-59-21, 14 pp.

(23) Miller, C. D., Rechter, H. L., and Tomkins, E. H., "Highly Reflecting Coatings for the Space Environment", paper presented at the National Symposium m on the Effects of Space Environment on Materials, St. Louis, Missouri, May 7-9, 1962, 21 pp. (24) Cowling, J. E., Alexander, A. L., and Noonan, F. N., "Th: Design of Organic Coatings for Use in the Space Environment" paper presented at the ASD Conference on Coatings for the Aerospace Environment, Dayton, Ohio, November 9-10, 1960, WADD-TR-60-773, July, 1961, pp 17-37. (25) Hormann, H. H., "Improved Organic Coatings for Temperature Control in a Space Environment", Aeronautical Systems Division, Nonmetallic Materials Laboratory, Wright-Patterson Air Force Base, Ohio, ASD-TDR-62-917, 1963, 54 pp. (26) Field, D. E., Cowling, J. E., and Noonan, F. M., "The Properties of Paints as 28 Affected by Ultraviolet Radiation in a Vacuum - Part II", U. S. Naval Research Laboratory, Chemistry Division, Washington, D. C., NRL-5737, March 8, 1962. ,2, Interim Report, 28 pp. (27) Kaufman, A. B., and Gardner, L. B., "Passive Components in a Hypernuclear Environment", Litton Systems, Incorporated, Woodland Hills, California, ASD-TN-61-99, August 1961, Technical Note, AF 33(600)-41452, 27 pp. (28) Keehler, H. P., and Pefhany, J., "Irradiation Test on Electrical and Mechanical :al Components for a Gauging System for Reactor Pressure Tubes", A. V. Roe anada I imited, Orenda Engines Division, Malton, Ontario, Canada, AECL-1627, 77, OE1,-Nuclear-56, February 9, 1962, 25 pp. (29) Campbell, F. J., "Effects of Combined Thermal and Nuclear Radiation Environmerts on Magnet Wire Insulation", Report of NRL Progress, August, 1963, pp 1-5. 1-5. (30) Smith, E. T., "Investigation of Combined Effects of Radiation and Vacuum and of of Radiation and Cryotemperatures on Engineering Materials", General Dynamics/ Fort Worth, Fort Worth, Texas, FZK-161-2, Annual Report, November 9, 1961 -November 8, 1962, NAS8-2450, January 5, 1963, 260 pp. (31) Boundy, R. A., "Spacecraft Applications of Polymeric Materials", paper presented ented at the 18th Annual Meeting of the Reinforced Plastics Division, SPI, Chicago, Illinois (1963). (32) Podlaseck, S., Suhorsky, J., and Fisher, A., "The Behavior of Organic Materials ·ials at Elevated Temperatures in a Vacuum", paper presented at the 9th National Symposium of the American Vacuum Society, Los Angeles, California, October 31 - November 2, 1963, 14 pp. (33) Kerlin, E. E., and Smith, E. T., "Measured Effects of the Various Combinations ons of Nuclear Radiation, Vacuum, and Cryotemperatures on Engineering Materials", 311, General Dynamics/Fort Worth, Nuclear Aerospace Research Facility, Fort Worth, rth, Texas, F2K-167, June 28, 1963, Quarterly Progress Report, March 1 -

May 31, 1963, NAS8-2450, 77 pp.

- (34) Wchl, N. E., and Lapp, R. R., "The Effects of High Vacuum and Ultraviolet Radiation on Plastic Materials", Cornell Aeronautical Laboratory, Incorporated, Buffalo, New York, WADD-TR-60-125, June 1960, February, 1959 February, 1960, AF 33(616)-6267, 71 pp.
- (35) Wahl, N. E., and Robinson, J. V., "The Effects of High Vacuum and Radiation on Polymeric Materials", paper presented at the National Symposium on the Effects of Space Environment on Materials, St. Louis, Missouri, May 7-9, 1962, 28 pp.
- (36) Dexter, J. F., and Curtindale, E. G., "The Effects of Gamma Radiation at Elevated Temperatures on Silicone Dielectrics", paper presented at the AIEE Summer General Meeting, Denver, Colorado, June 18-22, 1962, 25 pp.
- (37) Armstrong, E. L., "Racults of Irradiation Tests on Electronics Parts and Modules
 Conducted at the Vallecitos Atomic Laboratory", Lockheed Missiles and Space
 Company, Sunnyvale, California, SS-840-T62-6, LMSC-A054870, August 27, 1962,
 AF 04(695)-136, 1 3 pp.
- (38) "M&TC System Study", Bendix Corporation, Systems Division, Ann Arbor, Michigan, BSR-371, December, 1960, Final Report, Volume I, Part II, AF 33(600)-35026.
- (39) Clauss, F. J., "Materials and Components in Space Environments", paper presented at the Institute of the Aerospace Sciences 31st Annual Meeting, New York, New York, January 21-23, 1963, IAS Paper No. 63-58, 38 pp.
- (40) "Development of Rubber Gaskets Which are Resistant to Nuclear Radiation", Mare Island Paval Shipyard, Rubber Laboratory, Vallejo, California, Report No. 149-4, February 28, 1961, Final Report, Project No. NS-033-200.
- (41) Born, J. W., "Nuclear Radiation Resistant Polymers and Polymeric Compounds",
 B. F. Goodrich Company, Research Center, Brecksville, Ohio, WADC-TR-55-58,
 Part VII, March, 1962, Technical Documentary Report, April 1, 1960 May 31. 1961, AF 33(616)-7491, 20f pp.
- (42) Farkass, I., and Barry, E. J., "Study of Sealants for Space Environments", National Research Corporation, Cambridge, Massachusetts, Summary Report, December 4, 1959 December 20, 1960, DA-19-020-506-ORD-5097, 44 pp.

在1.1·原母等中 1984年中午

(43) Smith, E. T., "Investigation of Combined Effects of Radiation and Vacuum and of Radiation and Cryotemperatures on Engineering Materials", General Dynamics/
Fort Worth, Nuclear Aerospace Research Famility, Fort Worth, Texas, FZK-161-2, January 5, 1963, Annual Report, November 9, 1961 - November 8, 1962, NASS-2450, 260 pp.

Elastomers

(44) Gibbs, W. E., Griffin, W. R., and Spain, R. G., "Elastomers", paper presented at the Materials Symposium, Phoenix, Arizona, Sentember 13-15, 1961.

- (45) Ossefort, Z. T., and Ruby, J. D., "The Effects of a Simulated Space Environment on the Properties of Elastomers", Rock Island Arsenal Laboratory, RIA-61-1999, May 15, 1961, 9 pp.
- (46, Snyder, C. E., and Cross, W. B., "Theoretical and Experimental Evaluation of Polymeric Materials for Use in a Space Environment", paper presented at the ASD Conference on Coatings for the Aerospace Environment, Dayton, Ohio, November 9-10, 1960, WADD-TR-60-773, July 1961, pp 75-91.
- (47) Heitz, R. M., Hunter, R. W., and D'Anna, P. J., "Research on Elastomeric and Compliant Materials for Aerospace Sealants", Northrop Space Laboratories, Hawthorne, California, ASD-TDR-62-709, January, 1963, AF 33(616)-8258, 157 pp.
- (48) Wattier, J. B., Newell, L. M., and Morgan, L. L., "Effects of Reactor Radiation on the Engineering Properties of Elastomers and Plastics", General Dynamics/Fort Worth, Nuclear Aerospace Research Facility, Fort Worth, Texas, NARF-62-5T, FZK-9-174, June, 1962, AF 33(657)-7201, 115 pp.
- (49) Bonanni, A. P., and Cassola, C. A., "The Effects of Gamma Irraliation and High Vacuum on Polymeric Materials", Naval Air Engineering Center, Philadelphia, Pennsylvania, NAEC-AML-1712, August 20, 1963, Partial Report.
- (50) Golden, J. H., and Hazell, E. A., "The Effect of High Energy Radiation on Plastics and Rubbers. Part 3. Polyurethane Rubber", Explosives Resia chand De of purent Establishment, Essex, England, E.R.D.E. TM 16/M/60. J: mary, 1961, 3 pp.
- (51) affee, 1., D., and Rittenhouse, J. B., "Behavior of Materials in Space Environme its", ARS J., 32, 320-346 (March, 1962).
- (52) McGarvey, J. W., "The Effects of Radiation on Silicone Rubbers", Rock Island Arsenal, Rock Island, Illinois, RIA-61-2379, June 13, 1961, Technical Report,
- (53) Ossefort, Z. T., "Heat and Radiation Resistant Arylene Modified Folysiloxanes". Proceedings of the Sixth Joint Army-Navy-Air Force Conference on Elastomer Research and Development, Boston, Massachusetts, October 18-20, 1960, Volume 2, pp 612-626.
- (54) "Elastomer Research and Development", Seventh Joint Army-Navy-Air Force Conference on Elastomer Research and Development, Office of Naval Research. Department of the Navy, Washington, D. C., ONR-13, Volume 1, October 22-24, 1962, 276 pp.

Plastics

(55) Versluys, W., Beecher, N., Accardo, C., Herzog, R., and Warneck, P., "Ultraviolet Effects on Space Vehicle Operation in Ultra-High Vacuum Environment". :nt", National Research Corporation, Cambridge, Massachusetts, AEDC-TDR-62-17, January, 1962, March 22 - September 22, 1961, AF 40(600)-906, 118 pp.

BEREIC Debe Loose th Base + Shill of e. .

p,

(16) Ringwood, A. F., "Behavior of Plastics in Space Environment", Modern Plastics,

(,6)	Ringwood, A. F., "Behavior of Plastics in Space Environment", Modern Plastics, 41 (5), 173 (January, 1964).	ícs,
(57)	Riehl, W. A., "Considerations on the Evaporation of Materials in Vacuum", American Institute of Chemical Engineers, Chemical Engineering Progress Symposium Series No. 40, 59 (40), 103-117 (1963).	
(58)	Wilcox, W. S., Stephenson, C. V., Lacey, J. C., Jr., and Moses, B. C., "Deterioration of Textile Materials by Untraviolet Light", Southern Research Institute, Birmingham, Alabama, WADD-TR-60-510, October, 1960, May 1, 1959 - July 31, 1960, AF 33(616)-6565, 146 pp.	
(59)	"NGL Platform Nuclear Radiation Program", Litton Systems, Incorporated, Beverly Hills, California, BH-59-3461.10, October 10, 1960, 2nd Bimonthly Report, July 23 - September 23, 1960, AF 33(600)-41452.	
(60)	Kaufman, A. B., and Gardner, L. B., "NGL Platform Nuclear Radiation Program Volume I - Research and Analytical Data Section", Litton Systems, Incorporated, Flight Control Laboratory, Woodland Hills, California, ASD-TR-61-511, January, 1962, Final Report, AF 33(600)-41452, 312 pp.	;ram ed,
(61)	Gloria, H. R., Stewart, W. J., and Savin, R. C., "Initial Weight Lors of Plastics in a Van aum at Temperatures from 80 to 500 F", NASA, Ames Research Center, Moffett Field, California, NASA-TN-D-1329, December, 1962, 20 pp.	stics
(62)	Shoffner, J. P., "Effects of Radiation on Teflon' Resins in Space", J. of Teflon, 2 (1), 6-7 (January, 1961).	on
(63)	Jolley, C. E., and Reed, J. C., "The Effects of Space Environments on Insulation of Tellon, TFE and FEP Resins", paper presented at the Eleventh Annual Signal Corps Wire and Cable Symposium, Asbury Park, New Jersey, November 28-30, 1962, 2° pp.	ution al 0,
(64)	Bringer, R. P., "Fluorocarbon Plastics Under the Influence of Unusual Environmental Conditions", paper presented at the National Symposium on The Effects of Space Environment on Materials. St. Louis, Missouri. May 7-9, 1962, 22 pp.	of
(65)	Buckley, D. H., and Johnson, R. L., "Friction, Wear, and Decomposition Mechanisms for Various Polymer Compositions in Vacuum to 10-9 Millimeter of Mercury", NASA, Lewis Research Center, Cleveland, Ohio, NASA-TN-D-2073, December, 1963, 30 pp.	of 3,
(66)	Vickers, D. L., "Teflon in Cryogenic and Storable Propellants", E. I. du Pont de Nemours and Company, Incorporated.	ıt
(67)	Redeker, H. E., and Van Sickle, D. E., "Radiation of Selected Polymers and Model Compounds", Stanford Research Institute, Menlo Park, California, April 30, 1961, Summary Technical Report No. 1, April 1, 1960 - April 1, 1961,)61 ,
	DA-04-200-ORD-1056, 46 pp.	•

- (68) Hargre-ves, G., "Molecular Changes in Polyamide and Elastomeric Polymers
 Due to Nuclear, Ultraviolet and Thermal Radiation", Naval Air Material Center,
 Aeronautical Materials Laboratory, Philadelphia, Pennsylvania,
 December 15, 1961, Fourth Progress Report, June 16 December 15, 1961,
 NAMO-AML (16)-R360FR101, 25 pp.
- (69) Bowen, P. H., "Lubrication of Bearings and Gears in Aerospace Environmental Facilities", Westinghouse Electric Corporation, Research Laboratories, Pittsburgh, Pennsylvania, AEDC-TDR-63-166, July, 1963, AF 40(600)-915, 135 pp.
- (70) Turner, J. O., Plastics in Nuclear Engineering, Reinhold Publishing Corporation, New York, New York (June, 1961).
- (71) Giberson, R. C., "Gamma-Radiation Effects on Polycarbonate Resin", Modern Plastics, 39 (8), 146-228 (April, 1962).
- (72) "Spectroscopic Studies of Irradiation Damaged Solids", University of Alabama, Department of Physics, Final Technical Report, DA-01-009-ORD-561.
- (73) Matecek, G. F., "Vacuum Volatility of Organic Resins", Wright Air Development Center, Materials Laboratory, Wright Patterson Air Force Base, Ohio, WADG-TR-59-268, September, 1959, 32 pp.
- (74) Sauer, J. A., "Effect of Radiation on Dynamic Properties of High Polymers",

 The work visit and State University, Physics Department, University Park, Ponnsylvania,

 July 1, 1961, Progress Report, July 1, 1960 June 30, 1961, AF(30-1; 1858.

nt

- (75) Hargreaux, G., "Molecular Changes in Polyamide and Elastomeric Polymers Due to Nuclear, Ultraviolet and Thermal Radiation", U. S. Naval Air Material Center, Aeronautical Materials Laboratory, Philadelphia, Pennsylvania, June 15, 1962, Fifth Progress Report, December 16, 1961, June 15, 1962, 10 pp.
- (76) McGrath, J. C., "Thermal and Gamma Radiation Behavior of Dyed Nomex Yarns",
 Air Force Systems Command, Research and Technology Division, Air Force
 Materials Laboratory, Wright-Patterson Air Force Base, Ohio, ML-TIR-64-77,
 April, 1964, Technical Documentary Report, March November, 1963,
 May, 1961, 16 pp.
- (77) Stephenson, C. V., Wilcox, W. S., Crenshaw, H. T., Hancock, H. L., and Dismukes, E. B., "Deterioration of Fibrous Materials by Ultraviolet Light", Southern Research Institute, Birmingham, Alebama, ASD-TDR-63-57, February, 1963, Annual Report No. 3, December 15, 1961 December 15, 1962, AF 33(616)-7701, 22 pp.
- (78) Mathes, K. N., "Development of Low Temperature Dielectric Coatings for Electrical Conductors", General Electric Company, Missile and Space Vehicle Department, Philadelphia, Pennsylvania, NASA-CR-51332, July 15, 1963, Annual Summary and Quarterly Report No. 8, NAS8-2442, 69 pp.

(79)	Suess, R. H., and Neff, G. R., "Evaluation of Insulated Wire for Space Environment", Ardel Corporation, Report No. 05132-4, February 7, 1963, Final Report, 49 pp.	.al
(80)	Matecek, G. F., "Vacuum Volatility of Organic Coatings", paper presented at the First Symposium, Surface Effects on Spacecraft Materials, Palo Alto, California, May 12-13, 1959, pp 263-283.	the iia,
(81)	Aitken, I. D., Wells, H., and Williamson, I., "The Degradation of Plasticized PVC Compositions Under High Level Gamma Radiation, Part 2", Atomic Energy Research Establishment, England Division, Harwell, England, AERE-R-3381, 45 pp.	i şy
(82)	Golden, J. H., and Hazell, E. A., "The Effect of High Energy Radiation on Plastics and Rubbers. Part 1. Polytetrafluoroethylene", Explosive Research and Development Establishment, Essex, England, E.R. D. E. 21/R/60, November, 1960.	and

NJB/SP:all

APPENDIX A

COMPONENTS

TABLE A-1. TEST ENVIRONMENT AND RESULT: FOR HIGH-FORCE DYNAMIC-TEST MATERIALS: STRUCTURAL ADHESIVES⁽⁶⁾

~~~~~~	<del></del>	********		**********	**********			<del></del>	******
Material and Type of Test	Gamma [ergs/gm(C	Radiation New )] Thermal	5 posvre utrons (n/c E)2.9 Mev	<u>•</u> 2) €>8.1 Mev	Ultimate Shear Strength, psi	Tempe Avg. F	Fig.	Press Avg. c(torr)	Fig No.(e)
FH-1000	o	0 (control	0 specimens)	0	6302 6117 6004 5946 5955 6065/153³	77	•	760	•
High- Force Tester	1-1(10)	1.82(14) (vacuum i:	1.83(15) rradiution)	7-0(13)	6050 6096 6525 4830 4977 5696/779	157	D-16	3x10 ⁻¹	4.2
High- Force Test 2	1.9(10)	5-1(14) (vacuum i	4.15(15) rradiation)	1.7(14)	7016 6897 7689 7760 7340/419	-	-	5(-6)	4.3
Instron Tester	95(9)		1.51(15) rradiation)		6062 6200 5900 6185 6442 6162/233	207	D-16	3x10 ⁻¹	4.2
Metlbond 302 (epoxy phenolic)	0	0 (control	0 specimens)	0	2323 2510 2570 2526 2482/120°	77	-	760	-
High- Force Tester	1.6(10)	1.0(14) (vacuum i	2.33(15) rradiation)	8.8(13)	2964 2936 2949 27.7 2640 2856 2856/139	157 ^h	D-16	3x10 ⁻¹	4.2
High- Borce Tester	2.05(10)		4.32(15) rradiation)	1.98(14)	3613 3680 3310 3497 3455 3511,159	•	•	5(-6)	4.3

TABLE A-1. (Concluded)

Material and Type of Test	Gamma [ergs/gm(C)	Radiation   Heu   Thermal	trone 'n/c	2) 20.1 May	Ultimate Shear Strength, psi	Temps Avg.	rature Fig.	Avg.	Fig (e)
letibond 3 epoxy phe c) Instron Tester		1.34(14)	1.51(15)	5-95(13)	2586 2415 2355 2536 2643 2507/140	207b	D-16	3x10 ⁻¹	4.2

Average value/standard deviation on an individual basis.

⁽b) Estimated value based on temperature of FM-1000.

⁽c) figures giver in reference 6.

TABLE A-2. SCREENING TESTS, PAINTS(18)

٧٠,

Ĕź	Vehicle	P.gment	Manufacturer or Deelgnetion	Original Approximate a. (a)	11 Hours	Change Sa (*) Extended	Extended
-	Acrylic	Butile-Tale	Sherwin Williams Kemneryl M-49 MC-17	■ 0.29	0.028	0.760 to 0.085	
a		Ruti le	Fuller 6993 Insignia White 171-W-522	* 0.2	0.049	0.068 to 0.112	
•	Polyurethane	Rucile (5)	Mr. : Laminar X-500 WhiteM-1	<b>8</b> 0.22	•	8.8	
•	Silicone	Butile	JPL Compounded JW 40	• 0.21	0.018	0.030 to 0.049	300 (2)
•		Zinc Sulfide	9 77	£ 0.2	0.028	0.032 to 0.040	S: 5 (5)3.
•		Zirconium	0 <del>7</del> 45	• 0.30	•	0.15	
ı		Oxide	9 %	<b>60.30</b>	•	0.12	
			OS VOIEZ	8.9	•	0.19	
^	Acrylic		27 AQLZ	8.8	•	0.15	·

1

(a)s. Whites listed only to indicate general range of value, no attempt was made to accurately measure as for those saterials which degraded severely.

(b) Ultraviolet exponure at approximately 10 suns in vacuum.

(c) Figure given in Meference 15.

SCREENING TESTS, NON. YOU "WHITES" (19) TABLE A-3.

	System		Origina. Approxip.;	Chan 22 - 24 Hours(b)	Change de (b) 48 Houre(c)	Remarks
13	(1) Anodized high purity aluminum		<b>≈</b> 0.25	0 to 0.021	0.045 to 0.072	
6	(2) Al ₂ O ₂ Tile (Gladding McBean and Company)		<b>© 0.25</b>	X0.15	•	
<u>(e)</u>	"Scotchcal" 3650 white ps (Minn. Mining and Mfg. Co white pigmented vinyl tape)	ited vinyl	<b>*</b> 0.25	0.10	٠	
3	Tedlar 30 wh (Du Pont - white pigmented polyviny)	Type A Type S	# 0.23 0.23	>0.15 0.078(b)	11	
(3)	èè	204 200 ga. 405 200 ga.	8 0.2 8 0.2 8 0.2	0.047		
<b>.</b>	(6) Tefion - IFE aluminized clear film (Du Pont - polyletrafluorethylene film)	lo mil S mil	# # 0 0 4	0.0352	t i	"milky" film, high init.'
(2)	(7) Teflon FEP - aluminized clear film Type "G" (Du Pont - fluorinated ethylene-propylene) Type "A"	7. 1 mil	# # # # 0 0 0 0 0 0 0 0	0.065 0.117 0 0 0 0 0	0.015 to 0.019	

(a) Values listed to indicate general range of value.
 (b) Ultraviolet exposure time of approximately 10 suns in vacuum.
 (c) 20-hr exposure.

· ...

TABLE A-4. OPTICAL PROPERTIES OF BEST MATERIALS TESTED(18)

Material		tial erties 4 300 K	of 3 Mo	ination onths dission 4 300 K
inc sulfide-silicona ZW 40	0.26	0.90	6.74	0.00
inc sulfide-silicona ZW 60	0.21	0.91	0.29	0.91
luminized FEP teflon (Type "A", 5 mil	0.26	0.84	0.31	0.84

⁽a) These values represent the maximum degradation that test data indicate may occur during a 3-month Venus mission.

(b) No highificant change in a 300 K was found for any materials due to UV exposure.

TABLE A-5. REPRESENTATIVE MATE. IAL RADIATIVE PROPERTIES(24)

Material	đ	•	a/e Ratios
Meta is			
Aluminum 6061 alloy		•	
As received	0.41	0.0	10.3
Machine polished and degreased	0.35	0.04	& &
Sandblasted, 120 size grit	0.60	0.41	1.5
Aluminum 2024 alloy			
As received	0.27	0.02	13.5
Machine polished and degreased	0.31	90.0	5.2
QMU Beryllium alloy			
Rolled plate, chem. milled	0.48	0.11	4.4
Rolled plate, chem. milled, chem. polished	o. 30	60.0	5.6
Gold			
Vacuum deposit gold on aluminum	0.24	0.04	6.0
Vacuum deposit gold on buffed titanium	0.33	0.05	9.9
Nickel			
Electroless nickel	0.45	0.17	2.6
Special surfaces on metals	0.63	99.0	0.95
	0.53-0.72	0.50-0.82	0.95
ked metals	· ·		
Fascai chrome aluminized mylar film	0.25	0.09	2.8
Bright gold foil	0.29	0.23	1,3

TABLE A-5. (Concluded)

٠,٠

Material	ø	•	a/e Ratios
Paints (according to vehicle)			
From Micabond	0.93	0.84	1.1
Skyspar (untinted white)	0.26	ა. 86	0.3
4 1	0.30	0.81	0.37
Fuller aluminum silicone	0.23	0.20	1:5
Kemacryl lacquer (white) Kem.uryl lacquer (black)	0.26	0.75	0.35
Miscellaneous Silica oxida			
Dmile of silica on magnesium	0.21	0.83	0.25
Scotchc.1 (white) on aluminum	0.24	0.83	0.29
Cermet (ceramic containing sintered metal)	0.65	0.58	1.1

e = total hemispherical emissivity at 500º R
a = solar absorptivity, extraterrestrial

Values listed are averages of several determinations. Accuracy of the tabulated values is variable, but usually reliable to 10 per cent, except for very low emissivities.

RESULTS OF EXPOSURE OF CONTING MATERIALS TO ULTRAVIOLET RADIATION AND VACUUM(24) TABLE A-6.

1 No.	(Pr					-		440-
		Adteriol(1)	Substrate	Visible Changes		PATOTA	9	
	<b>4</b>	White Skyspar enamel, A	Dow 15 treated magnesium	yellowed	0.25	0.85	0.37	0.87
	J	Gloss white silicone	alloy Dow 15 treated magnesium alloy	slight yellowing	0.290	0.83	0.293	0.82
	8	White Skyspar enamel, A	Dow 17 treated magnesium	yellowish brown	0.22-0.23	0.82-0.85	95.0	c.82
	_	(Z samples) White Kemacry, lacquer	Dow 17 treated magnessium	very slight yellowing	0.26	٥ ت	0.33	0.78
	-24	Biz.: Kemacryl lacquer	Dow 17 treated magnesium	very slight change	8.0	0.81	0.92	\$ \$
	•	Aluminum silicone paint (2 samples)	alloy Bare, untreated magnesium alloy	slight crackling	0.21-0.22	0.20-0.19	0.30-0.33	0.23-C.27
ю	*8	White Skyspar anamel, B	Dow '7 treated magnesium	yellowish brown	0.24	0.83	0.37	0.85
	9	Gloss white silicone	Bare, untreated magnesium	yellowish brown	0.27-0.33	0.83	0.30-0.35	•
	Ü	(< samples) Gloss white silicone	Dow 15 treated magnesium	yellowish brown	0.30	0.81	5.34	o. 35
	-	White Kemacryl lacquer	Dow 17 treated magnesium	very little change	0.27	6.73	0.32	6.0
	-	<pre>(&lt; samples) White Kemacryl lacquer (20 times intensity)</pre>	alloy Dow 17 treated magnesium alloy	very little change	0.27	5.73	0.35	ė,
4	12	White Skyspar enarch, B	Dow 15 treated magnesium	yellowish brown	0.26	0.86	0.31	0.84
	Ü	(< samples) Gloss silicone witte	Bare, untreated	yellowish brown	0.30	0.81	0.29	0.83
	J,	Sicon white, A	Dow 15 treated magnesium	yellowish brown	0.25	0.83	0.33	0.83
	-	Dow 15 finish on	, torie	no change	0.23-0.17	0.06-0.07	0.28	0.07-0.08
	ш	magnesium (< samples) Dow 15 finish on magnesium (20 times intensity)	i	no change	81.0	60.0	° 36°0	0.14

TABLE A-6. (Concluded)

۲٠.

				Measu	red Kadiat	Measured Radiation Characteristics	18610
Test Exnosure				Be	Before	After	*
No. Time	Material (1)	Substrate	Visible Changes	đ	•	o	•
2 100	Gloss white silicone (2 samples)	Bare, untreated mannesium alloy	yellowish brown	0.30	0.81	0.33	3.84
	Sicon white, A	Dow 15 treated	yellowish brown	9.3	0.84	0.37	3.83
	White Kemacryl lacquer (2 samples)	Dow 17 treated magnesium alloy	no change	0.26	0.74	0.35-0.32	0.76
	White Skyspar enamel, B	Bare, untreated magnesium yellowish brown allow	yellowish brown	0.26	0.86	0.36	0.82
	Sicon white, (20 times intensity)	Dow 17 treated magnesium alloy	very dark brown	0.31	0.83	<b>09.</b> 0	0.83
6 127	Unpigmented silicone resin	Dow 17 treated magnesium alloy	slight yellowing	I	ı	1	ı
	Barium titunate pigment, silicone resin	Dow 17 treated magnesium alloy	yellovad	i	I	<b>₹</b>	0.84
	Strontium zircomate pigment, silicome resin	zirconate pigment, Dow 17 treated magnesium resin	severe yellowing	1	I	0.47,	2.85
	Zircon pigment, silicone resin	Dow 17 treated magnesium alloy	severe yellowing	ì	i	0.45	0.85

Note: Intensity of ultravioler radiation was six times solar ultraviolet intensity in space, except as noted.

Vacuum generally improved with time during each test, beginning at about 8 x 10-6 mm Hg and ending at about 1 x 10-6.

(i) Tests No. 1 through 5 are commercial paints; No. 6 are laboratory-prepared paints.

COMMERCIAL MATERIALS E  $^{\prime}$  POSED TO ULTRAVIOLET RADIATION AND VACUUM (24) TABLE A-7.

.

Material	Manufacturer and Designation	Vehicle	Pigment
White Kemacryl laquer	Sherwin Williams, M49WC17	Acrylic resin	50 per cent TiO2, 50 per cent talc
Black Kemacryl laquer	Sherwin Williams, M49BC12	Acrylic resin	Carbon black
White Skyspar enamel, A	Andrew Brown, SA-8818 A423-SA8818	Epoxy resin	TiO ₂ , tinted
White Skyspar enamel, B	Andrew Brown, A423-SA9185	Epoxy resin	TiO ₂ , untinted
Gloss white silicone	H. P. Fuller, 517-W-1	Silicone resin	TiO ₂ , untinted
Sicon white, A	Midland Incustrial Finishes Co., 7X1153	Silicone	TiO ₂ , tinted
Sicon white, B	Midland Industrial Finiches Co., 7X1120	Silicone	TiO2, tinted
Aluminum silicone paint	H. B. Fuller, 171-A-152	Silicone	Aluminum
Dow 15 bright metal finish	Dow Chemical Company	Chemical treatment;	Chemical treatment; no vehicle or pigment

TABLE A-8. LABORATORY-PPEPARED PAINTS EXPOSED TO ULTRAVIOLET RADIATION AND VACUUM(2-)

•

Coating Composition (parts by weight)	Curing Cycle
146 parts sodium silicate K 356 parts zircon 890 parts water	0.5 hr 20° C, 1 hr 110° C, 2 hr 150° C, 1.5 hr 250° C, 1 hr 400° C
120 parts silicone resin 40 parts xylene	2 hr 20° C, 0.5 hr 85° C, 0.5 hr 120° C, 16 hr 155° C, 1 hr 210° C, 1 hr 265° C, 1 hr 32' ° C
120 parts silicone resin 70 parts barium titanate 40 parts xylene	2 hr 20° C, 0.5 hr 85° C, 0.5 hr 120° C, 16 hr 155° C, 1 hr 210° C. 1 hr 265° C, 1 hr 325° C
120 parts silicone resin 70 parts strontium zirconate 40 parts xylene	2 hr 20° G, 0.5 hr 85° C, 0.5 hr 120° C, 16 hr 155° C, 1 hr 210° C, 1 hr 265° C, 1 hr 325° C
120 parts silicono res'n 70 parts zircon 40 parts xylene	2 hr 20° C, 0.5 hr 85° C, 0.5 hr 120° C, 16 hr 155° C, 1 hr 210° C, 1 hr 265° C, 1 hr 325° C
100 parts sodium silicate K 57 parts Aquablack B 50 parts water	88 hr 20° C, 1 hr 65° C, 1 hr 110° C, 2 hr 150° C
142 parts sodium silicate L 356 parts zirvun 890 parts water	0.5 hr 20° C, 1 hr 110° C, 2 hr 150° C, 1.5 hr 250° C, 1 hr 400° C

Sodium silicate D has  $N\epsilon_20iSiO_2$  ratio of 1:2.00; sodium :ilicate K, 1:2.90 Silicone resin was Dow Corning No. 805

TABLEA-9. COLOR CHANGES OF ORGANIC COATINGS IN SIMULATED SOLAR RADIATION (23)

7

		Weight Ratio (solids)	earnsed :		Reflectiv	Reflectivity1. % at	
Vehicle	Pigment	Vehicle/Pigment	E n-hours	380 mµ	440 mgs	THU 009	700 m µ
Feorite 201-S	ZrD	1.0814	v	33.0	93.8	96.5	95.6
	ì		74	26.2	76.5	93.7	94.5
Jeonite 201-S	ZuZ	1.08:4	0	60.5	86.4	89.6	64.5
			74	52.5	78.5	88.3	64.0
Kel-F 800	ZnO	1:5	0	65.0	87.5	30.5	71.5
			108	38.0	47.0	57.5	64.5
Temy	ZnO	1.5	0	36.0	84.0	°.0	93.5
			108	30.0	<b>6.</b> 0	81.0	87.5
Exon 461	ZuZ	124	0	63.0	9 <b>6.</b> 0	89.0	0.89
			108	25.5	38.0	64.5	0.09
Viton A	ZuO	184	0	31.0	88.0	0.46	93.0
			108	26.0	0.89	87.5	0.06
RTV-11 Silicone	Zzo	121	0	26.0	91.0	92.0	90.5
			108	26.0	0.98	91.5	% 0.0
LTV-A02 Silicone	270	1:5	0	31.5	0.43	95.5	94.5
			108	31.0	93.0	94.5	93.0
Silicone 806 A	ZuO	1.51	0	24.0	86.5	84.0	81.5
			108	12.5	46.0	79.0	80.5
Silicone 806 A	047	1-4:1	0	26.0	0.68	87.5	85.5
			108	17.0	26.0	83.5	83.5

(Firestone Plastics Co.)
Vinylidene fluoride homopolymer (Pennsalt Chemicals Ccrp.)
Linear copolymer of vinylidene fluoride and hexafluoro, propylene (Du Pont)
ne: Liquid dimethylpolysiloxane supplied by G.E.
A silica-reinforced dimethylpolysiloxane in A silica-reinforced dimethylpolysiloxane (Them: liquid supplied with CaO and CaCO, fillers by G.E. a catalyst (Them: lite-12) is required for a cure at room temperature. Leonite 201-S: A silicane-epoxy-acrylic resin supplied by Leon Chemical Industries.

It was cared for 1/2 hour at 125° G.

Kel-F 800: Copolymer of Kel-F and vinylidene fluorode.

Exon 461: Copolymer of vinyl chlogide and trifluorochloroethylene LTV-602 Silicone: RTV-11 Silicone: ¹Relative to MgO Viton A: Kynar:

Table A-10. Physical evaluation of Coatings before and after ultraviolet irable thon in a vacuum of 1  $\times$  105 mm Hg(24)

	Test	Flexibi	Flexibility - Pard et Band Territies	and e:	ĄĠ		Weight	ند
Coating Formulation	Period, (hr)	1/4 Inch		1/8 Inch	hesion (4)	Color	S	Quality - Remarks
Pnenylmethyl silicone (umpigmented)	° 001	s⊃	s⊃	sэ	шо	Coloriess Amber	0.63	Tough and flexible Mard - brittle
Leafing aluminum in silicone	°8	ທທ	ωω	ທທ	ဖဖ	Metallic Metallic	9.0	Tough and flexible Tough and flexible
Zinc sulfide (30% PV in silicone) (b)	° 83	ာဖ	⊃ vs	25	шщ	White Slight yellow	50.0	tucks on bending
Antimony oxide	0	w	υ(c)	η(c)	ш	White	1	Mard and slightly brittle
(30% PV is silicone)	8	v	U(c)	U(c)	w	Flight yellow	1.27	Hard and brittle
Galcium carbonate (30% PV in silicone)	0 001	s s	w w	v. 5	шш	Grayish Dark amber	0.34	Cough and flexible Hard and slightly brittle
China clay (30% PV in silicone)	0 201	ທທ	ທທ	ທທ	ى ق	Dark gray Dark amber	0.80	Tough and flexible Tough and flexible
Basic white losd sarbonate	٥	w	u	Þ	ш	White	•	Ward and 4ght'y brittle
(30% PV in silicone)	001	w	v	<b>&gt;</b>	v	Slight yellow	2.92	Hard and slightly brittle
Basic white lead carbonate	٥	ņ	>	ອ	ဗ	White	•	Hard and brittle
(40% PV in silicone)	105	n	2	Þ	ဗ	White	0.89	Hard and brittle
Butyl methacrylate (unpigmented)	105	တ ဟ	ω⊃	ω⊃	טט	Colorless Amber	62%	Soft Brittle
Basic white lead carbonate (40% PV in buty! methacrylate)	0 901	ທທ	თ თ	ວິ່	ပပ	White White	4.26	Slightly brittle Slightly brittle
Butylated urea formaldehyde (unpigmented)	0 501	ω⊃	s o	σÞ	ပပ	Colorless Amber	14.6	Hard and flexible Hard and brittle
Basic white lead carbonate (40% PV in urea formaldenyde)	105	22	ລວ	• >	ć	White White	5.8,	Brittle Brittle

(a) Et excellent, Gt good, St satisfactory, Ut unsatisfactory, (b) PVt oigment-volum. tatio. (c) Slight surface cracks not extent ng through the soating.

TABLE A-11. TEST ENVIRONMENT AND RESULTS (F STATIC TEST: ELECTRICAL INSULATION^(6,7))

Control specimes   Neutron (n/cm ¹ )   Test, Grights, Langs, gm   Elongst			! I	Radiation Exposure	ì	Time	W etames		1	Teneste Streneth* (DES)	(100)		Ultimate Elonga -	semper-	Press.
1.3(9) 6.4(12) 1.5(13) 5.8(11) 0.1216 0.3009 0.1304 0.0000 1.3(9) 9.2(13) 9.8(13) 3.7(12) 0.1304 0.0000 0.1394 0.0000 0.1394 0.0000 0.1394 0.0000 0.1395 0.0001 0.1315 0.0001 0.1391 0.0001 0.1391 0.0001 0.1391 0.0001 0.1391 0.0001 0.1391 0.0001 0.1391 0.0001 0.1391 0.0001 0.1391 0.0001 0.1391 0.0001 0.1391 0.0001 0.1391 0.0001 0.1391 0.0001 0.1391 0.0001 0.1391 0.0001 0.1391 0.0001 0.1391 0.0001 0.1391 0.0001 0.1391 0.0001 0.1391 0.0001 0.1391 0.0001 0.1391 0.0001 0.1391 0.0001 0.1391 0.0001 0.1391 0.0001 0.1391 0.0001 0.1391 0.0001 0.1391 0.0001 0.1391 0.0001 0.1391 0.0001 0.1391 0.0001 0.1391 0.0001 0.1391 0.0001 0.1391 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0	7	erge/ erge/ em(color	Thermal	Veutron (n/	cm ² ) E>8. 1 Mev		Origina.	and and	at 25% Elongation	at 50% Elongation	at 100% Elongation	Ultimate		Avg.	Avg . torr
6.4(12) 1.5(13) 5.8(11) 0.1218 0.0000 0.1201 0.0000 0.1201 0.00000 0.1201 0.00000 0.1201 0.00000 0.1201 0.00000 0.1201 0.00000 0.1201 0.00000 0.1201 0.00000 0.1201 0.00000 0.1201 0.00000 0.1201 0.00000 0.1201 0.00000 0.1201 0.00000 0.1201 0.00000 0.1201 0.00000 0.1201 0.00000 0.1201 0.00000 0.1201 0.00000 0.1201 0.00000 0.1201 0.00000 0.1201 0.00000 0.1201 0.00000 0.1201 0.00000 0.1201 0.00000 0.1201 0.00000 0.1201 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	(1 mt.)	0 9	(control a	o specimens)	•		1	ı	17500	50300	Broke in Java	24500 25.700 22600/3369	70 53/22.2	Ħ	35
(9) 9.2(13) 9.8(13) 3.7(12) 0.1191 4.0.0001 - 0.1192 4.0.0001 0.1193 4.0.0001 0.1193 4.0.0001 0.1193 4.0.0001 0.1193 4.0.0001 0.1193 4.0.0001 0.1193 4.0.0001 0.1193 4.0.0001 0.1193 4.0.0001 0.1193 4.0.0001 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.1193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.19	Batch 1	1.3(9)			5.8(11)		0.120 0.120 0.1194 0.0019	+0.000 +0.000 +0.0003 +0.0017	i	I	i	22500 15000 15000 21105 18675/7, 25	श्चाक	8	<u>%</u>
(5) (control specimes) (air irradiation) (air irradiation) (control stringens) (control specimes)		5.4(9)		9.8(13) rwdietion)	3.7(12)		0.1191 0.1189 0.1125 0.1191	0.0001 0.0000 0.0001 0.0001	1	1	1	17300 13600 12500 20300 17225/3768	3 6 18 25 75 5 5 5 5 5 5	&	(9-)5
(9) 1.3(12)	Myler C (1 md1) (polywei	- <del>-</del>	0 (custrol for 14	opecimens) ir test	0		t	t	ı	1	1	17400	47.2 5.53 7.64	<b>F</b>	345
(si _ 2.2(15)	Batch 2	(6)6.4	1 (a)	1.3(12) radiation)	1		1	i	ı	ŧ	ı	00000000000000000000000000000000000000	3333	1	Ä
0 0 0 0 0 214 214 214 218 219 219 219 211 211 211 211 211 211 211		6.9(3)		2.2(15) radiation)	ı		t	1	1	ı	ı	16500 15500 18500 16800	₹.8.83 3.4.2	1	1,b
5.1(13) 3.8652 -0.0099 -1 3.6566 -0.0068 3.7556 -0.0060 -1 7.556 -0.0060 -1 7.556 -0.0060 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1 7.556 -1	071-7 OC 8.11180	o ane)	0 (control	o svac <b>imens</b> )	o		1	ł	240 212 212 212 217 217 215/26.8	546 488 481 385 385 385 385 385 385	i	788 703 642 74.8 74.3 71.5 77.6	5.5.0 82 82 83 84 87 87 87 87 87 87 87 87 87	77	760
(control specimens)		9.03(9	) 2.9(14) (vecum in	1.4(15) rradiation)	5.1(13)		3.8692 3.6586 3.7556	0.0088 0.0068		ŧ	i	1690 1890 1775 118	13/3.5	112**	2(-6)
		c	o (centrol	o specimens)			1	1	. ` ` ` ` ` ` ` ` ` ` ` \	1 88 E 53 E E	18.83 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	84.7 633 7.26 102 103 7.45,64	888 1388 31/2	1	1

ASSESS. I ARRANGEMENT OF THE PROPERTY OF THE P

TABLE A-11. (Continued)

Pross. Avg .	92	5(-6)			<del>2</del> 6	£(-6)	765	5(~6)	5(-6)
Temper- Ature Avg	Ħ	#\$#			£	116 **	£	&	83
Ultimate Ter Elonga- at tion, A	ہا	7∨	0.58	1	103 (20 130 140 123/15.7****	% % I I	25 25 26.9/T	80 105 135 135 7 114/26.7	130 145 100 65 113/29.1
l'	1 ^	31	1568/3	Speciae: crusb`c4	16000 17000 17000 18300 16825/1090	17700 14,000 1,3850/3280	23650 24350 22167 22131 23076/107	\$1600 \$4700 64600 54600 54600 54600 54600 54600	60000 62667 52600 57892/4889
Tensile Strength* (psi)  % at 50% at 100% Finession Finestion literate	983	1 1	ı	ı	15500 15100 15367/590	1	Broke in javs	ı	ı
Tensile Strengthe (psi)  7 at 50% at 100%	3670	11	1	1	13300 13500 13467/224	t	200 200 200 200 200 200 200 200 200 200	ı	ı
E .	069	11	ł	;	13000 13500 13500/24	1	18180 17300 17300 17300 17901/500	I	1
Change at		-0 0415 -0.0805 Broken	i	ı	1	0.000 0.000 0.000 0.000	ı	6.000 6.000 6.000 6.000 6.000	+0.000 +0.0005 +0.0003 +0.0003
ဖြစ်		20.9974 21.2236 5.3352	1	!	ı	1.2589 1.2578 1.2690	1	1.2455 1.2643 1.2533 1.2477	1.238
Time Until Test,									_
e E		7.8(13)	ı	1	•	8. <b>k</b> (13)	•	6.1(11)	3.1(22)
Radiation Exposure Time Until	0 0 0 (control specimens)	1.47(10) 3.4(14) 2.1(15) (vacum irrediation)	_ 1.08(15) (air irradiation)	(eir irrediation)	0 0 (control specimens)	2.42(10) 3.7(14; 2.2(15) (vecum irrediation)	(control appoinment)	1.3(9) 5.8(12) 1.5(13) (vecum irradation)	8.1(12) 6.1(13) (vacuum trr .ietion)
derge/		1.47(10)	(6)6.5	8(9)	What 0 (10 mil) (10 polymeter)	2.42(10)	Mylar A 0 (3 mil) ( (polymeter)	1.3(9) (\$)	7.0(9) 8

TABLE A-11. (Continued)

										-		Ultimate	Tempe r.	
	-		Redigtion Exposure		E T	Samole V	:	Ten	seile Strengi	th* (p*i)			ature	P1 0 0 0
Trade			Neutron (	Neutron (a/cm²)		Tost, Origir , ange.	.vange.	41 25% at 56% at 100%	at 25% at 50% at 100%	at 100% Elongation	Ultimate	tion, percent	F F	AVR .
N-m•	(C)		1 52. 7 Me	v 256. i Mov	2	E								
	1.5(8)	3.3(12) (etr 1:	3,3(12) 3,0(13) (air irradiation)	1.1(12)	n	i	t	28 1 <b>2</b> 2	£1138	ı	<b>368</b> 633	E 3 8 8 8 8	8	t
~~	1.36(9)	1.36(9) 1.8(13) 2.5(1b) (mir irrminatio	8(13) 2.5(16) mar irradiation)	9.5(12)	ង	i	t	32385 \$\$285 \$\$	18122	1	#238#E	38888 <u>\$</u>	8	i
	9.1(7)		7.C(12) 1.T(13) (vacuum irr-iatiom)	7.0(11)	•	3.5347 3.7726 3.7636 3.7636	0.0003 0.0003 0.0003 0.0003 0.0003	****	1	•	\$63.63 E	683.52€	8	1.7(-1)
	3.9(4)	2.0(13) (vaccum 1	2.0(13) 5.8(13) (Western trrediction)	2.4(32)	<b>-</b>	5.55.55 5.55.55 5.55.55 5.55.55 5.55.55 5.55.5	0.006 0.006 0.006 0.006 0.006 0.006	<b>55869</b>	52232 <u>2</u>	•	\$8 £3 88	85×84 <u>¢</u>	· · · · · · · · · · · · · · · · · · ·	(t-:;
	8.8(8)		2.8(13) 1.7(14) (Wacumak irrediantom)	6.4(18)	<b>-</b>	1000 1000 1000 1000 1000 1000 1000 100	90000 9000 9000 9000 9000 9000 9000 90	*********	8 1 8 E	1	% E 3 8 E	25288	8	, ·
Kel-ş-Bı	•	् ( क्वा	control specimen)	o		i	•	3 1 3 HE	33333 <u>4</u> 8		\$ 500 K 9 60 K 9	इन् <u>ड</u> इन्हर्म हुन्	t	1
	6.5(7)		3.5(12) 1.4(13) (air irradiation)	6. <b>0(1</b> 1)	<b>ಸ</b>	1	1	13		聯	118 3 3 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	150 150 150 150 150 150 150 150 150 150	8	1
	1.5(8)	3.3(12)	3.3(12) 3.0(13) (eir irrediation)	(27)1-1	ដ	t	1	8 E E E E E E			138844 100 100 100 100 100 100 100 100 100 1	98 88 88 8 FE	3	ŧ

10:79

TABLE A-11. (Continued)

1 1 -	Time	Sample Weights	Tensile Str	Tenaile Strongthe (psi)		<u>.</u>	Temp. r.	ăi.
frgs/ Neutron (n/cm²) Test, gm(C) Thermal D2 "Mev D8 1 Mev days		I, 0, '¢,	1. 25% at 50% at 100% El agetion Flongation	tion Florgation	Ultimate	tion . percent	. F.	torr
6.8(8) 2.4(13) 1.2(14) 4.9(12) 14 (air irradiation)	ŧ	i	76 20 11/2/4	25 Feb. 25 Feb	\$276 \$173 \$110 \$246 \$17	210 210 215 200 200 200 200 200	38	į
7.5(7) 4.6(12) 5.2(12) 2.35(11) 8 (vacuum irradiation)	22.22 22.23 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53 23.53	6.0037 6.00034 6.00034 6.0019	17.65 m 58 m	250,120 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,117 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,1	\$605 \$100 \$174 \$174 \$100 \$100 \$100 \$100 \$100 \$100 \$100 \$10	100 H	8	1. ((-1)
9.1(7) 7.8(12) 1.7(13) 7.0(11) 8 (%coum irrediation)	22.25.22 22.55.02 23.56.68 23.58 23.58 23.58 23.58	10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000	14405 1340 3841 3777 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1		\$2888 \$388 \$388 \$388 \$388 \$388 \$388 \$388	2005 1005 1005 1007 1007 1007 1007 1007 1	8	1.7(-1)
4.45(8) 7.95(13) 5.45(13) 2.1(12) 10 (Wacurm irradiation)	25.60 25.70 25.70 23.11 23.11 23.11	-0.009 -0.0066 -0.0007 -0.0007	14.37 14.05 15.50 15.25 15.50 15.25 15.50 15.25 15.50 15.30 15.50 15.30	1 1373 1 1379 1 1379 1 1376/129	25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	25 8 8 5 7 FE	ঽ	(1-)*
Control specimens)	i	1	16300 17000 16600 17600 16500 17600 16500 17500 17600/301 17450/344	19000 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700 19700	2000 22000 1980 1980 2005 2005 2005 2005 2005 2005 2005 20	68 1 37 ST	i	t
6.8(d) 2.4(l3) 1.2(l4) 4.9(l2) 16 (air irredistim)	t	ı	16500 17200 16500 17200 16600 17500 16350/399 17350/16	18600 18600 18600 18600 18600 18600 18600	21800 225000 21300 21400 21600 21605 31605 31605	21/981 136/12	<b>3</b>	:
1.07(10) 1.9(14) 2.2(25) 8.2(13) 16 (air irran' ation)	ŧ	ı	15400 15700 15600 15800 15500 15800 15500 15800 15500/86 16600/#13	111 2000	16900 16900 16900 16800 16900 16900	8 1 to \$ 38 5	81	1
4.45(8) 1.95(13) 5.45(13) 9 (vs.cum irradiation)	1.4195 1.4057 1.4190 1.4184	0.0000 0.0000 0.0000	16500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500 17500	2500 2000 2000 2000 2000 2000 2000 2000	21500 19500 21500 22500 22000 19700 2004-0/1075	######################################	8	(i-) ₇

TABLE A-11. (Continued)

Press.	torr	8(-1)	8( -7)	ı	1	ŧ	1	t (-1)	r(-1)
Temper- ature Avg .	4.	93	991	1	ę,	ผ	8	ķ	8
Ultimate Elonga- tion,	percent	32358	18884	81833	338338	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	×85 1€	83533 <u>9</u>	88188 <u>8</u>
	Ultimate	17600 17500 17500 17300 17500 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600 17600	15770 15770 1757 3 1595 3 1595 1462	25,700/3497	137.00 167.00 853.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 225.00 22	23700 24300 28400 19300 22840/2193	16700 18800 20000 18500/1953	21,000 21300 21300 25,25/2283	23700 23700 24000 24000 23725/2574
at 100%	Elongation	11118	1	1 1 500 1	20000 19300 28500 28500 28500 28500 28500 28500 28500	21500 21500 22500 22500 21625/725	ı	×/0003	81111
Tensile Strength* (pei)	Liongation Elongation Elongation	16700 16800 16800 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700 16700	1118	19200 19700 17700 17700 18500 18500	17500 17500 17500 17500 17500 17500 17500 17500 17500	18300 17570 18000 17000 17300 17500/599	1	19000 19000 18500 20000 1925/7/729	18500 19000 19000 19000 18000
Ten:	Liongation	15.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00	111881	00091 00091 00091 00091 00091	15500 15500 15500 15500 15500 1500/301	15500 15700 15700 15000 15320/301	80 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	86 1888 1888 1888	16300: 16800 16700 16200 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500 16500
Sample Wights Drightal, Dr. ce.	: ć:	900000	0.000 0.000 0.000 0.000 0.000 0.000	1	ı	1	ı	0.000 0.000 0.000 0.000 0.000 0.000 0.000	6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000
Sample 1	6	1.3924	1.4154 1.4196 1.3976 1.3982	1	1	1	ı	0.1470 0.1598 0.1503 0.1562 0.1594	0.1475 0.1485 0.1422 0.1433
	days	4	<b>r-</b>	1	ជ	ជ	97	σ.	0,
100	D8. 1 Mev	ı	5.9(13)	•	(21)6 4	9.5(12)		(a)t.s	6.0(13)
Radiation Exposure Jamma  [ergs] Neutron (n/cm²)	hermal E>2. 9 Mev	1.18(14) 6.58(14) (weevm irradiation)	1.05(10) 1.35(14) 1.65(15) (vacum irradiation)	0 0 (control spectmens)	2.4(13) 1.2(14) (efr fraddetion)	8(13) 2.5(14) (air irradiation)	26(15) (air ir)edlation)	4.45(8) 1.95(13) 5.45(13) (Varuma irradiation)	2.8(13) 1.6(14) (vacuum irradiatica)
Gamma [ergs/	pm(C) T	5.9(9) 1 (v)	1.05(10)	•	6.8(8)	1.36(9),	6.0(9)	· (8)54.4	9.1(8)
10	Name			Myler C					

TABLE A-11. (Continued)

	Avg		1	1	ŧ	( ! )4	8(-7)	i
Temper-	Avg	1	88	901	97	8.	091	1
1_	Elongs- tion, percent	883.888 88	18888	12 12 12 12 12 12 12 12 12 12 12 12 12 1	2222222 22222222	HARRY &	8812×2	8 1 X X X X
	Ultimate	2017 2017 2017 2017 2017 2017 2017 2017	25.55 25.55 25.54 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76 26.76	25 25 25 25 25 25 25 25 25 25 25 25 25 2	\$25 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1000 00 00 00 00 00 00 00 00 00 00 00 00	25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5	25 25 25 25 25 25 25 25 25 25 25 25 25 2
	at 100% Elongation	1865 1948 1771 1508 1508 1175 1175 1186	1541 1675 1535 1539 1691 1517/28	1904 2008 1812 1810 1815 1815 185/122	2002 2004 2010 2010 2013 2013 2013 2013	1675 1685 1771 1872 1864/82	1	25 25 25 25 25 25 25 25 25 25 25 25 25 2
	Fensile Strength* (psi)  at 50% at 10  ion Elongation Elong	1885 1887 1887 1887 1887 1887 1887 1887		1286 1286 1286 1286 1286 1287 1287 1287 1287 1287 1287 1287 1287	88 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7.00 F	1 18 18 5	
ļ	Elon; 'ion	. \$35 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	\$88838 \$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	94.5 94.5 94.5 94.5 7.7 7.7	88888 191/58 191/58	1325 H	1944 1944 1944 1944 1944 1944 1944 1944
	Noighte Change.	1	1	ı	1	6.0065 6.0065 6.0065 6.0065 6.0065	00.2156 00.2156 00.2156 00.2156	1
	Sarr 2le Woight. Original. Change gm 2713	1	1	1	1	2.9888 3.3903 3.5627 2.5968	3.2.2.5.5.3.3.5.5.3.3.5.5.3.3.5.5.5.3.3.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	t
Time	Until Test, days		я	भ्र	7,	ង	9	
Radiation Exposure	Neutron (n/cm²) Thermal E>2.9 Mev E>8.1 Mev	0 0 0	.2(14) 4.9(12) distion)	.26(15) dirtion)	2.3(15) 8.2(13) distion)	.8(13) 2.4(12) adurtica)	1.3(10) 1.2(15) 2.0(°) 9.8(13) (Tacuum irrudi.tion)	o o o
Radiatio	Neu Thermal E	Control specialne)	2.4(13) 1.2(14) (air irradiation)	1.26(25) (eir irrediction)	1.07(10) 1.9(14) 2.3(15) (elf irrediation)	2.0(13) (vacum irradiction)	1.2(15) 2 Trough frr	(control spectmens)
	Germa Ferga/ gm(C)	o .	6.8(8)	6.0(9)	1.07(10)	3.9(8)	(01)(77)	o H a
	Material Trade Name	Geon 2046 Elastomer Die C Specimen						Geon 8900 Elastomer Mar C Specimen

TABLE A-il. (Continued)

1	Ave.	:	i	1	, (7)	()9	i	1
Temper	, r	8	8	8	۶	93	1	8
Utimate	tion:	2288 A	33 <b>3</b> 33	<b>38282</b> 5	83884	12283	¥1188814€	<b>8</b> 888 <b>8</b>
	Ultimate	35114	:33				※1 1 対象音音音音	
	at 100% Elongation	35825 5		ı	1 3 5 5 5 5	ı	34 <b>8888</b>	*****
	Tensile Streegibe (per) at 25% at 50% at Klongation Elemention Elon	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	121	1 11 33 1	2000 A 1000 A 10	1113	<b>42465</b>	12232
	at 29% Elongation	3 <b>333</b> 33		ន្ទ । । ลื่ <b>ม</b> ี	1385	181111	\$255588	1000 PE
	Spirit E.	1	ı	1	+0.000 +0.000 +0.000 +0.000 +0.000 +0.000	44544 4464 4464 4666	t	1
	Selente Selente	1	i	i	NA PROPERTY.		1	1
i.		ä	×	*	-	v		3
	Neutren (s/cm ³ ) Thermal D2.9 Mev D4.1 Mev	(m)6**		6.4(13)	2.4(12)	9,8(13)	•	(3.3(18)
Radiction Exposure	DZ. 9 Mov	2.10(13) 1.2(14) (atr izratiatian)	1.26(1b) (atr trrestation)	2.3(15) Antice)	5-8(13) refinition)	1.3(10) 1.2(15) 2.0(15) (Teams 1.70(1010)		1.B(13) 2.5(14) (air irrediation)
Laciatio	Z Tanna	(81) 24	<b>.</b> #	(41)6.14 (41) 4.26 (41) 4.	(3)	1.2(15)	O (oorsteed	1.8(13) (atr 1x)
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		6.0(3)	1.01(10) 1.9(14) 2.3(23) (421 127-43404)	3-9(8) 2-0(13) 5-6(13) (************************************	1.3(10)	o b	1.36(9)
	Material Trade				•		STAGE STAGE BLS C Specific	

TABLE A-11. (Continued)

\$1.00 - Containing of the field and the containing to

		Radiation Exposure	Exposit	ir.e	Time							Dilmate	Temper-	
Material			(1)	4	7 5	Sample Welking		4	Teache Strongthe (pel)	(pod) - 42			ature	Pres
Name	(C)	Thermal D2. 9 Mev D8. 1 Mev	9 Men	D8.1Mev			1	.9	Llongation	Llongation	Ultimate	percent	7	torr
	6.8(8)	2.4(13) 1.2(14) (air irre/lettos)		(at)6:4	я	1	1	I.	1	į	93 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	00000 384 225 384 225	8	1
	1.36(9)	1.36(9) 1.8(13) 2.5(14) (air irradiation)		9.5(12)	ន	t	t	1	ı	i	33355 2535 2535 2535 2535 2535 2535 253	4 2 2 8 4 2 2 8	<b>T</b> i	1
	1.8(8)	8.4(12) 1.95(13) (women trrediction)	(E)	7.6(11)	•	225228 225228 225238	6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.	1	ı	i	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	000000 000000 000000000000000000000000	8	1.1(-1)
	(9)	1.2(8) 1.5(13) 1.5(13) (w.eem irrudiation)	_	1.6(12)	•	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	# <b>##</b> <b>##</b> <b>#</b> <b>#</b> <b>#</b>	1	ı	i	28 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00000 VT 200000 VT 200000 VT	8	(t=) <b>1</b>
	8.8(8)	8.8(8) 2.8(13) 1.7(14) (momm irradiation)		(at) ₄ .9	•		99588 99588 99588	ı	ı	1	38555 <u>3</u>	000005 238629	8.	(l-) <del>4</del>
	•	o o o	ĵ	•		·1 · ·	1	i	1	ı	83328528 832	1113233 7 3 1	1	1
	•	(Transfer date)	•	•		ı	Į	t	1	1	8	8	1	•
	4.5(1)	3.5(12) 1.4(13) (air irrediation)		6. <b>0</b> (11)	ន	1	1	i	i	1	1837 A	3373 <b>1</b>	8	1

TABLE A-il. (Continued)

	Press.	torr	1	1	(1-1)	6(-1)	6(•)9	1	1
Temper-	Ave	'n	8	8	8.	35	88	 	8
L	Elonga -	percent	27872 P	83558888 8	88884 <u>8</u>	\$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$	98868 <del>8</del>	0.00.00 0.00.00 0.00.00 0.00.00	0.51/15.0
		Ultimate	2625 270 270 2621 2632 2635 2635 2635	4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5,50 5,50 5,50 5,50 5,50 5,50 5,50 5,50	3420 3770 1012 3571 3707/255	25.55 2005 3055 3056 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,00 27,	041/182 282 282 283 283 283 283 283 283 283 2	2193 1506 1972 1890 1890/257
	the (pai)	Elongation	######################################	1967 1705 1705 1705 1705 1705 1705 1705 170	13884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884 15884	1694 1700 1700 1594 1685 1685/98	1	1	1
	Tensile Strengtho (pai)	Elongation	£88448E	1264/21 1164 1164 1170 1170 1265/120	18888 178888 178888 178888 178888 178888 178888 178888 178888 178888 178888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 1788 17888 17888 17888 17888 17888 17888 17888 17888 17888 17888 178	8507 9507 9507 9507 9507 9507 9507 9507 9	1418 1359 1641 2369 1691 1991 1991 1991	t	1
	Te 25%	Elongation	132 132 132 132 132 132 132 132 132 132	85.8 88.8 88.8 89.3 89.3 89.3 89.3 89.3 89	5.3883 <u>15.</u>	557 258 191 191 191 191 191	555 1091 774 774 774 774 774 774 774 774 774 77	1	
		m8	1	1	+0.0024 +0.0020 +0.0020 +0.0020	6.012 6.013 6.013 6.013	0.00000 21.00000 21.00000000000000000000	1	1
	Samply W	w.	1	1	1.6393 1.6330 1.7473 1.6386 1.7363	1.7557 1.8095 1.7596 1.794 1.794	1.7709 1.8673 1.7760 1.7367 1.7511	1	-1 .
Time	Catil	days	91	93	t	•	9		ន
	- F	D8. 1 Mev	8.2(1 <del>4</del> )	2.6(14)	6.0(12)	9.8(13)	2.09(14)	•	(عن)، .
Radiation Exposure	Value of the Control	Thermal D2. 9 Mev D8. 1 Mev	1.07(10) 1.9(14) 2.3(15) (air irradiation)	2.8(14) 6.1(15; (mir irradiation)	2.8(13) 1 4,14) 6.0(12) (vacuma irradiation)	1.3(10) 1.2(15) 2.0(15) (vr.:um irradiation)	2.6(10) 4.86(14) <.36(15) (Vacum irradiation)	(control specimens)	3.3(12) 3.0(13) (air irradiation)
	Gamma Face	m(C)	1.07(10)	3.9(12)	9.1(8) 2 (v	1.3(10) 1.	, (ot) 5.5 (v)		1.5(8) 3
	Material G				~	•		Perold %00	

TABLE A-11. (Continued)

;

	Radiation exposure		Time				Toronto Comments (net)	atha (nati)		Ultimate Elones-	Temper-	Press.
(ergs/ Neutron (n/cm²)	Ü		•	Original, Change,			at 50	at 100%		tuon.	Avg.	Avg.
gm(C)] Thermal D2.9 Mev D8.1 Mev	μ		daye	Ē.	, E.	£.101.3	tion Elongs.	Flor, thon Florida, n Floridation Officers	O Transport		•	
1.5(8) 3.3(12) 3.0(13) 1 (air irradiation)	ਜ	1.1(12)	a	1	1	ł	ì	1	8 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	: 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200 % 200	&	t
1.36(9) 1.8(12) 2.5(14) 9.5 (air irradiation)	<b>9.</b>	6.5(12)	ដ	1	1	ì	i	1	6367 6200 8233 7333 5833 6793/982	10 20 20 20 20 20 20 20 20 20 20 20 20 20	88	1
6.2(7) 4.5(12) 6.3(12) 2.8(12) (vecum irradiation)	8.5	ମ୍ମି	ο.	1.5895 1.6895 1.6306 1.4761 1.520	989988 989988 989988 989988	t	1	t	55.55 25.85.5 25.55.7 25.65.7 25.65.7 25.65.7 25.65.7 25.65.7 25.65.7 25.65.7 25.65.7 25.65.7 25.65.7 25.65.7 25.65.7 25.65.7 25.65.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 2	28 25 26 26 26 26.25/6.77	8	1.7(-1)
1.6(8) 8.4(12) 1.65(13) 7.6(11) (vacuum irradiation)	39.7	a a	æ	8875 8875 8875 8875 8875 8875 8875 8875	00000 00000 00000 00000 00000 00000	1	1	1	55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	15 5 8.75/4.80	&	1.7(-1)
9.4(8) 2.8(1.3)\$(1.k) 5.6(12) (*acu'm ixrediation)	5.6(		ot .	1.	1	1	1	ı	25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	31331	8	r(-1)

# Values given as: average value/standard deviation on an individual basis.

*** Average value/standard oeviation on an individual basis.

Tested under atmospheric conditions.

**** Data point not used in average

TABLE A-12. TEST ENVIRONMENTS AND RESULT OF STATIC TESTS: DIELECTRIC MATERIALS(6,7)

		Radiation Exposure	Exposu	2	Time	Sample			Tensile Strength* (psi)	orth* (pai)		Ultimate Elonga-	Temper-	Press.
Trade Name	[cs gar(C)]	Neutron (n/cm²) Thermal D2.9 Mev D8.1 Mev	on (n/cz	m.b. 178.1 Mev		Test, Orig. A., Change, days gm	Chalige, gr:	at 25% Elongation	at 25% at 50% Elongation Elongation	at 100% Elongation	Ultimate	tion, percent	Avg	Avg.
(14 ML)		Ocetral specia	Î	•		1	1	200 M		25.55.55.55.55.55.55.55.55.55.55.55.55.5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1100 1100 1000 1000 1000 1000 1000 100	ı	1
	1.5(8)	3.3(12) 3.0(13) (air irradiation	(E)	1.1(12)	#	1	1	1115	1118	1118	260 260 260 260 260 260 260 260 260 260	11188	8	I .
	1.36(9	1.36(9) 1.8(13) 2.5(1b) (air irrediation)	7	9.5(12)	*	1	1	ì	i	ı	4307 4057 3993 1007 1007 1007 1007 1007 1007 1007 100	8282	&	1
	1.8(8)	8.4(12) 1.85(13) (vacom irradation	(3) (3) (4)	7.6( <b>u</b> )	φ	1.3796 1.3510 1.2338 1.2332 1.3605	0.0000 0.0000 0.0000 0.0000 0.0000	4 8 8 7 4 4 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	えい 意覧	1	23/26/26/26/26/26/26/26/26/26/26/26/26/26/	780 1030 690 885 848/145	ယ်	1.7(-7)
	4.5(8)	1.95(1:) 5.45(13) (vacum irradiation)	3	(21)1.2	ន	1.3555	\$\$\$\$\$ \$\$\$\$\$		8 1 E 3 E 6	i	\$ 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8 1 8 2 2 2	8	(1) _#
	9.4(8)	2.8(13) 1.6(14) (vacum irradiation	2	6.0(12)	ន	255 255 255 255 255 255 255 255 255 255	33588 35588 35588 35588	É 1 È 1 📆	UNITED IN	11311	3679 1101 1101 1101	51313 5	ડ્રે	£()
fection 178 (10 mtl)	° <b>१</b> न	0 0 (control specimen.	, d	o		t	1	1863 1800/111	2500 2300 2300 2500 2500 2500 2500 2500	22.5 25.50 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 2	35.28 2.28 2.28 3.28 5.38 5.38 5.38	25. 25. 25. 25. 25. 25. 25. 25. 25. 25.	1	1

TABLE A-12. (Continued)

		Avg.	1	1		1.7(-7)	1.7(-7)	2.3(-7)	;; }	2.5(-1)	1
	_	, v.	8	8		8	&	8	8.	6	ı
	Ultimate		85252 ⁵	32289		## 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	83834 <u>5</u>	888 88 88 88 88 88 88 88 88 88 88 88 88	8333335 5:3	828 858 858	36535 S
	-	Utimate	173 14 15 15 15 15 15 15 15 15 15 15 15 15 15	835 E E E E E E E E E E E E E E E E E E E		200 K W W W W W W W W W W W W W W W W W W		2000 2000 2000 2000 2000 2000 2000 200	25.00 mm m m m m m m m m m m m m m m m m m	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	20 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	(he (ned)	at 100%	1	1		व व व व व व व व व व व व व व व व व व व	200 200 200 200 200 200 200 200 200 200	200 mg 200 mg 20	805 1997/71:2	i	85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50
	Teneile Sevenethe (net)	at 50% Flongation	1	1	test	858 44 <u>8</u>	1900 1900 1900 1900 1900 1900 1900 1900	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4500 8 11 12 12 12 12 12 12 12 12 12 12 12 12	200 PM	20 10 10 10 10 10 10 10 10 10 10 10 10 10
	Ė	100 ton 1		1	Too brittle to test	200 200 200 200 200 200 200 200 200 200	225544 <u>8</u>	85 H 15 W 1		487 187 187 187 187 187 187 187 187 187 1	13 5 4 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	Sample 'Yelchie	10		i		0.000 0.000 0.000 0.000 0.000 0.000 0.000	000000 0000000000000000000000000000000	1	666688 666688 6666888 6666888	1	1
	Semale	lo.	i	1		2.2.4.4.2. 2.2.4.4.2.2.2.2.2.2.2.2.2.2.2	2.286 2.286 2.2865 2.385 2.385	t	2.241 2.2721 2.2721 2.3578 2.3578	1	1
1	Until		Ħ	Ħ	×	٥	0	9	ន	•	
		Cm	6.0(11)	1.1(12)	<b>4.</b> 9(12)	2.35(11)	7.0(11) a)	•	2.1(12) a)	2.77(12) a)	•
Badiation Fundamen	non-	Neutron (n/cm²) Thormal D2. 9 Mev D9. 1 Mev	3.5(12) 1.4(13) (edr irrediction)	3.3(12) 3.0(13) (air irradiation)	6.8(8) 2.4(13) 1.2(14)	k,6(12) 5.2(12) (ve.um treatetion)	7,6(12) 1.7(12, 7.0(11) (Tecum irradiation)	1.7(12) 1.9(13) (verum drrodiation)	4.45(8) 1.95(13) 5.45(13) 2.1(12) (weeke introduction)	8.31(12) 6. 9(13) 2.77(12) (vecum irrelation)	ol specimens)
200		Thorm	3.5(12) (efr 1	3.3(12) (eff 1	2.4(13)	.6(12)	7.8(12) (m.com	1.7(12 (vacru	1.95(13 (Traces		o (control
	Semme		(2)(1)	1.5(8)	6.8(8)	, (7)8.7	9-1(1)	1.68(8)	¥.45(8)	5.06(8)	o #∵ #
	Matorial										Tarlos 1778 (40 mll) Die A Speciaen

TABLE A-12 (Continued)

	Radiation Exposure					,	i	:		Ultimate	Temper-	
		u i		Semple		230	Tonsile Strengthe (pei)	the ibes		Flongs-	Ature	
Trade [ergs/ Name gm(C)]	Thermal D2.9Mev D6.1Mev days	ev D8.1Mev de			gm ge.	-		Elongation Elongation	Ultimate	percent	4	tor
1.5(8)	3.3(12) 3.0(13) (alf irrediction)	1.1(22)		1	ı	ı	1	1	\$255 FE		8	ı
6.8(8)	6.8(8) 2.50(13) 1.2(14) (air irrediction)	¥.9(12)	a	1	1	1	ı	ı	GU BASS		8	ı
6.1(7)	9.1(7) 7.8(12) 1.7(13) 7.0(11) (mcoms .cradiation)	3.c(n)		5 98 67 5 98 67 5 98 67 5 98 67	60000 60000 60000 60000	點調	111	1	SE 25 25 25 25 25 25 25 25 25 25 25 25 25	2223(§	&	1.7(-1)
3.4(8)	3.3(6) 1.9(13) 4.4(13) 1.7(12) (vacuum irradistium)		3	5.082.6 5.0827.7 5.08.57 5.08.57 5.7941.	-0.0003 -0.0004 -0.0003 -0.0003	1111歳	ı	1	ELEGANIST SECTION OF THE PERSON OF THE PERSO	ង <b>នាង</b> ខង <mark>ន</mark> ្ត	8.	¥(-1)
(10 all)	(control spectmen)	•	•	i	ı	18 18 18 18 18 18 18 18 18 18 18 18 18 1	28888888888888888888888888888888888888	83332888888   8538 8338888888   8538 83388888888   8538 833888888888   8538 833888888888   8538 833888888888   8538 8338888888888   8538 8538888888   8538 853888888   8538 8538888   8538 853888   8538 85388   8538 85388   8538 85388   8538 8538   8538   8538 8538   8538   8538 8538   8538   8538 8538   85		11131888888888	1	1
6.5(7)	6.5(7) 3.5(12) 1.4(13) (air irredistion)	6.0(11)	<b>,</b>	1	ι	2/Em2	2000 2000 2000 2000 2000 2000 2000 200	97/55 33 33 33 34 55 35 35 36 35 36 35 36 35 36 35 36 35 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 3	2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	85888 8	&	1

ABLE A-: (Continued)

Radiation Expocure
Onth Sample Wrights  Neutron (n/cm²) Te st. Original, Cr. over Thermal D2.9 Mev D8.1 Mev days gm out
- 91 (21)6' <del>1</del>
4.6(12) 5.2(12) 2.35(11) 9 2.1566 0.0004 (Tacuum irradiation) 2.1349 -0.0001 2.1317 -0.0007 2.1653 -0.0009
1.8(8) 8.4(12) 1.85(13) 7.6(11) 9 2.1591 0.0000 (recume irradiation) 2.1834 -0.0063 2.1876 -0.0037 2.1908 -0.0037 2.1908 -0.0031 2.1908 -0.0031
h.b5(θ) 1.95(13) 5.b5(13) 2.1(12) 1C 2.1542 +0.0021 (vacuum irradistica) 2.15(12) 2.1550 +0.0015 2.1849 +0.0012 2.1849 -0.0023 2.2139 -0.0023 2.2139 -0.0020
(control specimens)
_ 16 (c ² / ₁ 2
2.4(13) 1.2(14) 4.9(12) 16 (eir irrediation)

TABLE A-12. (Continued)

}				i ii		-					1.	Temper-	
	- "	Recistion Exponers			Sam-1c.	t. take	- 1	Teneile Strengthe [pei]	्विक क्या	-	ę.	Ature	
Material Trade		Neutron (n/cm²)	/cm ²	Teet,	Original.	Change.	at 25% Elongation	at 50% Elongation	at 100% Florestine	Ultimate	tion, rercent		tofr
Neme	(C)				1						á	8	1.7(-7)
	9.1(7)	7.8(12) 1.7(13) (vaceum terrediation)	7.0(11)	ω	でいい。 あるさい みずばま		8388 8388	2222 2222	£555	****	Reer	3	
						0.0030	18 SE	彩		66/28	T T		
	3.9(8)	1.9(13) 4.4(13) (wounn irrediation)	(at)1-1	<b>-</b>	88.55.55 5.55.55 5.55.55 5.55.55 5.55 5	0.000 0.000 0.000 0.000 0.000 0.000	35555 3555 3555 3555 3555 3555 3555 35	\$ 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<b>ESSE</b>	おり 2 日本 日	888888 <u>8</u>	8.	(L-)*
7 miler (2 mil.)	°	0 0 (control specimes)	•		1	1	25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55	35.588 5.5888 5.5888 5.5888	ı	88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88.55 88 88.55 88 88 88 88 88 86 86 86 86 86 86 86 86	SHE SHE	1	ı
	1.5(8)	3.3(12) 3.0(13) (air irraliation)	1.1(12)	ង	ł	1	8888 8888 811 111	2 2 2 3 2 3 2 5 5 5 5 5 5 5 5 5 5 5 5 5	85.5 85.5 85.7 87.7 87.7 87.7 87.7 87.7	\$55.35 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55 \$5.55	8888 8888	&	ì
	1.36(5	1.96(9) 1.8(13) 2.5(1k) (ele urediation)	9.5(14)	ឌ	1	1	288283 288283 28	327 327 327 327 327 327 327 327 327 327	3 5 3 5 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	25 5 5 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	38888 3888	8	1
	9.1(7)	7.6(1:) 1.7(13) (vacuum lirradiactica)	a) 7.0(111)	o	0.3186 0.3178 0.3168 0.3168	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		8 1 5 1 3 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	§11138	10000 17500 16400 1650 10550 1650 1650 1650 1650 1650 1	8188818 2	8	2.7(-7)
	354.4	4.45(8) 1.95(13) 5.45(13) (vecume irrefiction)	(ar)1.5 {a	σ.	0.3228 0.3250 0.3350 0.3350 0.3350	6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000		188388 8	) ) ) នៀវ	1 3 8 8 8 8	Razze	8 .	h(-7)

のでは、いいながらない。 中国のでは、東京のでは、1980年のでは、「Alexan Control of the Control

e . W

7

TABLE A-12. (Continued)

7		Radiation Exposure	Egg.	Sture	Time							Ultirize	Temper-	,
Trade Name	[ ergs/ gm(C)]	Thermal	Neutron (1/cm²) E>2. 9 Mev E>8.	/cm ² l 		riginal.	Until Sample Weig Test, Criginal, Chenge, days gm 370	1 .	Tensile Strength* (psi)   2576 at 100% at 100% at 100% at 100% at 100% at 100%   psi   p	at 100% Elongation	Ultimate	Elonga- tion, percent	Avg.	Avg.
	9.4(8)	2.8(13) 1.5(14) (vacum 1rra/1afica)	(h) arton)	(21)9'5	ω	0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325	2.4.3.6 2.000 2.000 2.000 2.000 2.000 2.000	28, 25, 25, 25, 25, 25, 25, 27, 37, 37,	57750 5900 6100 6100 6100 6100 6100	5900 6250 6250 6250 6200/201	88888888888888888888888888888888888888	888835 8	8	r(-1)
Betila (2 mtl)	•	O Control speciams)	(smatt	o		1	1	14651 1427 14407 15578 15339 15339 1682/56	15593 15539 15568 15568 15568 15686 15695 15695 15695	1747 17627 18395 18395 17542 17968 17967 18317	20678 19058 19407 20508 18644 20339 17767 1915	38833158882 5	i	1
	(6)0.9	1.26(15) (etr irradiation)	(15)		23	ı	1	900000	15678 15254 15678 16102 15103	1	16356 17797 18729 20508 20508 18780/1785	នេះ ខេត្តក្នុង	8	t
	3.9(10)	3.9(10) 2.8(14) 6.1(15) (eir irrwiietlop)		2.6(14)	93	i	1	1.678 1.667 1.667 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567 1.567	16610 16825 16932 16441 16377/329	1118	17458 17268 18136 18723 17903/700	ឧឧដីឱ្យ	8	!
	1.05(μ	1.05(10) 1 70(14) 1.65(15) (ve. aum irrediation)	55(15) 14100)	5.%(13)	ជ	ı	1	1:431 14431 14431 14254 14254 14937/205	16017 15847 1593 16102 15890/247	1	16949 20339 19492 21102 110871/2017	8 55 55 55 8 55 55 8 55 55 8 55 8 55 8	०५त	1(-3)
	2.85(11	2.85(10) 3.63(14) 6.62(15) 2.09(14) (vecum frimlation)	2(15) **tiom)	2.09(14)	9	0.158 0.1864 0.1860 0.1801 0.1373	6,6,6,6 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,00	15169 15000 18576 14576	15932 16016 16155 16101/250	ı	: 932 19492 11858 21186 11867/2592	हा हुई है। इस्टेड्स	S	(1-)9
Berzofit	0	(control specimes)	(amons)	0				1768 1430 1531 1571 1724 1724 1724	27.1 25.1 15.21 45.71 20.71 10.35/118	1563 1563 1563 1563 1563 1563 1500/91	27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55	13 13 13 13 13 13 13 13 13 13 13 13 13 1	i	1

TABLE A-12. (Continued)

			į		;					1		
Material Gamma	Newton Exporure	o de la constante de la consta	dint.	Sam, ite Weighte	Veighte		Trasile Strengtat (pei)	Ties (pel)		Clouds .	ature	Dress.
Trade [ergs/ Name gm(C)]	Therm	Kev 158. 1 Mev	Test, days	~		at 25% Llongacion	at 50% Elongation	-2 g	Ultimate	l	Avg.	Avg torr
1.5(8)	3.3(12) 3.c(33) (air irradiation)	1.1(12)	ឌ			2551 2551 2551 2551 2551 2551 2551 2551	25 28 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	99 E-197	25.05.05.05.05.05.05.05.05.05.05.05.05.05	388838	8	1
1.36(5	1.36(9) 1.8(13) 2.5(14) (air irradiation)	9.5(LC)	ង			8 9 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2888 28 28 28 28 28 28 28 28 28 28 28 28			28888 <u>8</u>	8	i
1.07(.	1.07(. 1) 1.9(1k) 2.3(1s)	6.2(13)	93			4508 1 1508	1	1	811248 81129 8129 8129 8129 8129 8129 8129 81	22822	8	ı
1.8(8)	1.6(8) 8.4(12) 1.55(13) 7.6(11) .vacum itrofiction)	7.6(11) =)	•	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	1671750 1533 1533	150 150 150 150 150 150 150 150 150 150	25 15 15 15 15 15 15 15 15 15 15 15 15 15	1122	8858 <u>1</u>	<b>&amp;</b> <	1.7(-7)
8.8(9)	8.8(9), 2.8(13), 1.7(14) (vacuum 'rradiation)	6.4(12) m)	٠	3.1783 3.2308 3.1378 3.332	00000 0000 0000 0000 0000 0000 0000	2252 2525 2525 2535 2535 2535 2535 2535	28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 28545 2854 2854	997 1655 1646 1646 1646 1646 1646 1646 1646	3 7 8 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5	rana#	8	(L-1)
n)8:1	1.3(10) 1.2(15) 2.0(15) 9.8(13) (vecum irrediation)	9.8(13)	v	3.30 3.30 3.30 3.30 3.30 4.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	0.1191 0.0978 0.0974 5741.0	18 18 18 18 18 18 18 18 18 18 18 18 18 1	1	1	200 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	82822E	91	9(-1)
Terior 178 0 (40 mil)	0 0 (control specimens)	o •				2.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	1683	1997	13 15 15 15 15 15 15 15 15 15 15 15 15 15	1 82 200	<b>F</b>	<b>3</b> 5

TABLE A ' (Continued)

	Radiation Exposure	٠						() - () - ()		Ultimate	Tempor-	0
Material Garnma Trade [ergs/ Name gm(C)]	Nev ron (n/cm²) Thermal E 2. 9 Mev E>8 1 Mev	m²) D8 1Mev	Test.	Until Sample Was gais. Test, Original, Ci days gm	•	15% at 50% Flongation Elongation	tensile Strength, 1981, at 100% at 100%; Elongation Elongatic	at 100% Elongation Ultimate		tion, percent	Avg.	Avg. torr
1.9(9)	6.7(12) 2.9(13) (vacuum irradiation)	8.o(11)		8.8495 9.0502	6.000 6.000 6.000 6.000 6.000	1	1	1	1564 1512 1681 1519/49.0	15 5 11.7/5.11	93	(9-)5
Teflos TFE 0 (10 mil)	0 0 (control specimens) August 1962	°				1630 1630 1670 1670 1665/29.1	1750 1860 1880 1798/43.7	1970 2050 1930 1980 1985/58.3	22.30 21.30 21.30 22.20 22.20 22.20 7.3	155 116 139 146 146 146 146 146 146 146	#	760
٥	0 0 (control specimens) February 1963	<u> </u>	1			1620 1580 1780 1780 1860/118	1800 1800 1870/03.51 5.08/03.51	21.0	2240 2300 2300 250/53.2	125 125 138/20.7	1	1
•	0 0 (vacuum controls) February 1963	•		2.128 2.0628 2.0623 2.1156 2.1156	+0.0000 +0.0000 +0.0000 +0.0001	260 1102 1609 1609 1603/53.1	1820 1875 1870 1850 1854 1854	2130 2130 2230 2260 2260 2260 2260 2260 2260 22	2180 2260 2260 2260 2235/18.6	1822	44	1(-6)
1.7(9)	6.5(12) 1.9(13) (vacum irrediation)	7.3(11)		2.1373 2.1377 2.1397 2.0991	0.0003 -0.0000 -0.0003 -0.003	1	1	I	1300 1250   1275/44.3	3 - 1 2.5/0.89		80*** (-6
Terron 100 7 (45 mil)	o o (control sycimens)	0		1	ı	1690 1725 1725 1713/20.7	1750 1770 1770 1770 1763/11.8	1775 1800 1805 1793/17.7	2106 1910 2165 2061/151	283 235 266 266 266 266 266 266 266 266 266 26	11.	750
8.6(9	8.6(9) 3.7 14) ' 3(15) (vacua tra dation)	4.6(13)		8.2465 8.1375 8.1265	6.0487 -0.0487 -0.0497	1	1	1	13.6 13.6	1.5/0.89	on .	5(~7)
Marlex 6002 0 (poly- ethylene)	c cottol specimens)			ı	ı	i	1	ı	2857 2857 1778 1778	800) 800) 1060 1060	*****	160

TABLE A-12. (Continued)

1 -	Avg.	(L-)¢	<b>760</b>	5(~6)	ž 6
Temper-	Avg.,	ส์	#	901	8
Ultimate	tion, percent	8 25 88 7.58 7.58	51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 5188 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 5188 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 5188 51888 51888 51888 51888 51888 51888 51888 51888 51888 51888 518	100 55 55 50 50 50 50 50 50 50 50 50 50 5	25 12 15 15 15 15 15 15 15 15 15 15 15 15 15
	Ultimate	25.05/25 25.05/25 25.05/25/25/25/25/25/25/25/25/25/25/25/25/25	9100 7500 77500 6755 7651/134	7650 8153 8100 1800 7925/283	7900 6800 9000 7800/13/8
the (bet)	at 100% Elongation Ultimate	1	6700 6800 775000 774/0007	1	1
Transite Citemethe (nel)	at 25% at 50% Elongation Elongation	i	6100 6130 6500 6315 6337 6337 6337	1	t
	at 25% Flongation	<b>\</b>	800 800 800 800 800 800 800 800 800 800	i 1	1
	Change	90000	1	60000 80000 80000 80000 80000 80000	6.000 6.000 6.000 6.000 6.000 6.000
	Original, Chang	1.2836 1.2862 1.2548	I	0.3060 0.3060 0.3035 0.3035	0.2914 0.2872 0.2610 0.3050
Time	dey.				
2	Neutron (n/cm²) Thermal D2.9 Mey D8.1 Mey	5.5(13)	•	(۳)66.5	3.4(12)
Radiation Exposure	Neutron (n/cm²)	1.1(10) 3.6(14) 1.3(15) (vacum irradiation)	Control specimens)	1.3(9) 6.1(12) 1.55(13) 5.95(11) (recom tradiction)	6.2.91 8.6 9.1(13) (vecum irradiation)
Radiat	Thermal	3.6(24)	0 (contaco)	6.1(12) (vecuus 1	3.6 (vacuum
	(crgs/	(01)1.1	0	1.3(9)	6.2.91
	Material Trade		fealer		

* Values given: s: avorage value/standard deviation on an individual basis.

** Average value/standard deviation on an individual basis.

*** Average value/standard deviation on an individual basis.

*** Estimated value based on temperature of Teffon (40 mill)

**** The elongation was greater than 800 pareats but was not the ultimate, since the original gage length selected for this cpecinien was on large and

*** resulted in an insufficient amount of fotal creasins a travel required to break the specimen. This did not offect the nexumum strength, however,

*** resulted in an insufficient amount of fotal creasins a travel required to break the specimen. This did not offect the nexumum strength, however,

*** specimen broke in jaws.

Tosted under atmospheric conditions.

table a-13. Tensile strength of dynalam laminates  $^{(1)}$ 

	Ex	posure			
	Gamma,	Neutron,	Irrad.	Tensile Stre	ngth ^{**} , psi
ſype*	ergs g-1(C)	n cm ⁻² (E>2.9)	Temp, F	Sheet 1	Sheet 2
A	Controls	Controls	75	39,411/4,528/6	31,163/2,453/8
Α	$5.6 \times 10^{10}$	$5.2 \times 10^{15}$	120	36,894/6,650/5	29,372/2,261/5
A	$1.7\times10^{11}$	$1.7 \times 10^{16}$	130	38,317/3,082/5	29,559/1,258/5
A	Controls	Controls	450	°1,157/7,724/5	20,44 , 5,226/5
A	9 : 1010	$7.2\times10^{15}$	455	28,160/3,494/5	22,6/0/1,826/5
В	Cos. rols	Controls	75	40,073/8,633/5	32,080/4,173/3
В	5.6 x 10 ¹⁰	$5.2 \times 10^{15}$	120	44,047/4,184/4	32,706/4,870/5
В	$1.7\times10^{11}$	$1.7 \times 10^{16}$	130	41,297/11,674/4	31,563/3,502/5
B	Controls	Controls	450	30,822/2,988/3	21,962/2,735/5
В	$6.0 \times 10^{10}$	$7.2 \times 10^{15}$	455	30,684/4,995/4	21,252/3,953/5

[•]A - with curing agent

B - without curing agent.

Data are given as x/S, D, /n, where  $\overline{y}$  = average value, S, D, = standard deviation of an L, is Equal observation estimated rom the range, and n = number of specimens used in calculating  $\overline{x}$  and S, D.

TABLE A-14. EFFECT OF TEL. TRATURE AND VACUUM ON LAMINATES (9)

- 1	Lamina te	Test Conditions	tions	Tests	Test Result	Comments
÷	Econ 828, Het anhydride cured, fiberglas cloth	Temperature Pressure Time at pressure	400 F 8.3 × 10 ⁻⁵ 6 bours	Wet compression test at room temperature	2.6% Increase in compression strength	
તં	Polyester, 181 glass cloth with Volan A finish	Temperature Pressure Time at pressure	250 F 1.0 × 10 ⁻⁴ 6 hours	Ditto	8-4% Increase	ŧ
ကို	Phenolic 91LD, 181 glass cloth with Volan A finish	Temperature Pressure Time at pressure	400 F 4.5 × 10 ⁻⁴ 4.5 hours	r	36.5% Increase	
4	Silic, we phenolic 37-9%, 181 glass cloth with Volan A finish	Temperature Pressure Time at pressure	400 F 4.4 x 10 ⁻⁴ 6 hours	•	9.6% Increase	Compression data widely scattered
ů	Epon X131, un 181 glass aluth with Volan A finish	Tenperature Pressure Time at pressure	400 F 2.2 × 10 ⁻⁴ 6 hours	•	No significant change	1
ý	Silicone R 7141 asbestos	remperature Fressure Time at pressure	400 F 6.5 x 10 ⁻⁵ 2.5 hours	r	3.7% Inc. sase	Compression data widely scattered
7.	DC 2105 Silicone asbestos RPI	Femperature Pressure Time at pressure	400 F I.1 x 10-4 6.5 hours	Ť	4.1% Decrease	Crmpression data Widely scattered
å	Melamine AllOO, 181 glass cloth with Volan A	Temperatura Pressure Time at pressure	400 F 9.6 x 10 ⁻⁵ 6 hours	ŧ	5.2% Decrease	Ditto
<b>.</b>	Phenolic 41RPD, asbestos	Temperature Pressure Time at pressure	400 F 4.3 × 10 ⁻⁴ 5.5 hours	Ŧ	6.1% Increase	*

TABLE A-15. COMPOSITION OF PLASTIC TEST SPECIMENS⁽⁷⁾

1 Epc 2 Phr 3 Phr 4 Phr			
2 Phe 3 Phe 4 Phe	Epoxy with unidirectional glass fibers	Scotch; ly 1009-26	3M Company
3 Ph	Phenolic with glass fabric - lengthwise	Type 143 glass fabric, SC 1008 resin	Coast Mfg.
4 Ph	Phenolic with high-silica fabric	Refrasil fabric, SC 1008 resin	Western Backing
2	Phenolic with asbestos felt - random	40 RPD asbestos, Plyophen 5900 resin	U.S. Polvmeric
5 Ph	Phenolic with graphite fabric!	Graphite fabric, SC 1008 resin	Coast Mfg.
ó Phí	Phenolic with chopped glass fixrs - random	Molding Compound OPX-197	Fibe "ite
7 Ph	Phenolic with chopped glass fibers - random	Molding Compound MX-2625	Fiberite
8 Pho fa	Phenolic with chopped graphite fabric random	Molding Compound MX-4551	Fiberite
9 Ph	Phenyl-silane with glass fabric	Type 181 glass fabric, SC 1013 resin	Monsanto
10 Epo	Epoxy with glass fabric	Type 181 glass fabric, E-787 regin	U.S. Polymeric

SUMMARY OF PROPER.". CHINGES FOR MATERIALS IRRADIATED IN VACUUM AND AIR AND TESTED IN AIR  $^{(6)}$ TABLE A-16.

		Gamma				Change in Measured
Category	Material Trade Name	Exposure. ergs/gm(C)	Vacuum (torr)	Specimen Configuration	n Measured Pro.erty	Property, per cent
Structural Laminates	\$11icone DC-2106	4.5 × 10 ¹⁰ 5 × 10 ⁻⁷	5 × 10 ⁻⁷	Tensile (ASTM-D-638~ 581, Type I)	Ultimate tensile strength Ultimate elongation Weight Change	0000
	CTL-91-LD (phenolic)	4.5 × 10 ¹⁰ 5 × 10 ⁻⁷	5 x 10 ⁻⁷	Tensile (ASTM-D-638- 58f, Type I)	Ultimate tensile strength Ultimate elongation Weight change	9. 000
	Epon 828 (epoxy)	8.6 × 109 3 × 10 ⁻¹	3 × 10 ⁻¹	Tensile, modified (ASIM-D-638-58T) Type I)	Ultimate tensile strength Ultimate elongation	00
		7.5 × 10 ⁹	3 × 10 ⁻⁷	Straight flexural specimens	Ultimate flexural strength Ultimate deflection Weight change	000
	Conolon 506 (phenolic)	9.7 × 10 ⁹ 3 × 10 ⁻¹	3 x 10 ⁻¹	Tensile, modified (ASTM-D-638-581, Type 1)	Ultimate tensile strength Ultimate elongation	00
	Mobiloy AH-81 (phenolic)	1.7 × 10 ¹⁰ 5 × 10 ⁻⁷	5 x 10 ⁻⁷	Straight tensile specimens	Ultimate tensile strength	-15.6

TABLE A-17. SIMMARY OF PROPERTY CHANG 2011 MATERIALS IRRADIATED AND TESTED IN VACUUM(6)

Category	Material Trade Name	Gamma Exposur : [ergs/gm(C)]	Vacuum (torr)	Specimen Configuration	on Measured Property	Change in Measured Property, per cent
Adhesive (	FM-1000 (epoxy polyamide)	1.1 × 10 ¹⁰ 1.9 × 10 ¹⁰	3 × 10 ⁻¹ 5 × 10 6	Lap shear, modified Lap shear, modified	Uitimate shear strength. Ultima e shear strength	0
Ŭ	MB-302 (epoxy phenolic)	1.6 $\times$ 10 ¹⁰ 2.1 $\times$ 10 ¹⁰	$\frac{3 \times 10^{-1}}{5 \times 10^{-6}}$	Lap shear, modified Lap shear, modified	Ultimate shear strength Ultimate shear strength	+15
Structural Laminate	. Canolon 506 (phenolic)	1.3 × 10 ¹⁰	3 × 10 ⁻¹	Tensile, modified (ASTM-D-638-58T)	Ultimate tensile strongth Ultimate elongation	+29.6 +50
		2.0 × 10 ¹⁰	5 × 10-6	Tensile, modified (ASTM-D-638-58T)	Ultimate tensile strength	+
	Epon 828/A (epogy)	1.4 × 10 ¹⁰	3 × 10-1	Tensile, modified (ASIN-D-638-58T)	Ultimate tensile strength Ultimate elongation	+27
		2.0 x 10 ¹⁰	5 × 10 ⁻⁶	Tensile, modified (ASIM-D-638-58T)	Ultimate tensile strength	\$ <del>\$</del>
Sea.	Viton F (PR2 19007)	9.0 × 10 ⁹	3 × 10 ⁻⁷	O-Rings	Ultimate tensile strength Ultimate elongation	;+ 6;-
Potting Compound	RIV-60 (silicone)	8.6 × 10 ⁹	3 × 10 ⁻⁷	Compression disks	Compressive strength at 0.02-inch deflection	<b>9</b> 2+
Thermal Tosulation		8.9 × 10 ⁹	3 × 10 ⁻⁷	Compression disks	Compressive strength at 25% deflection	œ <del>,</del>
					Ultimate compressive strength +22 Waight change -2	th +22 -2.0

TABLE A-18. TEST ENVIRONMENTS AND RESULTS OF STATIC TESTS: STAUCTURAL LAMINATES

		Radiation	adiation Exposure		Tine	Same la Madaha	140				
Material Trade Name	Gamma [ergs/gm(C)]	Thermal	Neutrons (n/cm E>2.9 Mev	2) =>8.1 Mev	Tesr, days	Original, grams	Chunge, grame	Intimeter Fensile Strength, psi	Citimate Elongations per cent	Average,	Average,
Mobiloy 81—AH7 (phenolic)	0	0 (control	0 (control specimens)	o	1	:	•	60866 41245 38717 54123	2.8 1.1.6 3.39	•	'
	(6)0.9	(air irr	_ 1.26(15) (air irradiation)	1	\$	1	•	49238/10/57 60082 45238 46746 38716 41122	1.80/0.32 1.75 1.37 1.75 1.75	8	1
	1.07(10)	1.9(14) (air irr	1.9(14; 2.3(15) (air irradiation)	8.2(13)	ય	i	1	46381/9186 49705 59153 42082 39289	1.52/0.19 1.53 1.96 1.36 1.18	001	1
	3.9(10)	2.8(14) (6.12 frr	2.8(14) 6.1(15) (.1. irradiation)	2.6(14)	41	ı	1	49380/8540 47380/8540 47199 50329 50385	1.54/0.29 1.57 1.81 1.56	100	1
	4.1(9)	6.4(13) (vacuum 1:	6.4(13) 3.7(14) (vacuum irradiation)	1.6(13)	•	15,1895 15,2567 14,8518 15,177 14,65,1	6.0261 6.0261 6.0231 6.0231	34613 477368/8469 47750 98373 98373 60949 60949 85638/5475	1.51/0.34 1.37 1.77 1.71 1.88 1.88	<b>9</b> 81	8(-7)

TABLE : 18. (Continued)

Pressure	Average, torr	8(-7)	6(-1)	•	1	1
Teamerature	Average,	91	<b>&amp;</b> .	ı	900	80
Ultimate	Elongation, per cent	1.50 1.63 1.29 1.61 1.51 1.51/0.15	:.05 1.50 - 1.19 1.25/0.27	1.61 1.78 1.78 1.94 2.15 2.15 1.75 1.75 1.88 1.88 1.88/0.18	1.77 1.75 1.45 1.66/0.19	1.87 1.95 1.10 1.61 1.63/0.41
Ultimate	Tensile Strength, psi	61167 57673 58771 60832 5264 56741/2538	39535 46400 — 41016 42317/4055	37925 35042 38738 38529 37638 43650 41117 40140 4615 39131	36322 35611 26891 32941/5571	40862 39239 25249 26370 36370
eight	Change, grams	0.0241 0.0287 0.0218 0.0194 0.0272	0.0151 0.0077 0.00101 0.0079 0.0103	•	ı	•
mple Weight	Original, grems	15.0600 14.6719 14.6645 14.6314 14.7718	15.2639 14.6430 14.358 14.5942 14.9385	<b>S</b>	•	1
Time Untr	days	9	13	ı	55	ដ
	E>8-1 Mev	7.4(13)	1	•	•	8.2(13)
Es posure	Neutrons (n/cm ² )	1.8(15) adiation)	7.87(15) adiation,	O specimens ⁾	1.26(15)	2.3(15) adiation)
Radiation Exposure	Neu Thermal	9.5(14) 1.8(15) (Jacuum irradiation)	2.87(14) 7.87(15) (vacuum irradiation)	0 0 (control specimens)	(aff frm	1.9/14) 2.3(15) (air irradiation)
	Garma [ergs/gm(C)]	1.4(10)	3.1(10)	0	(6)0.9	1.07(10)
	Material Trade Name			Paraplex P-43 (polyester)		

TABLE A-18. (Continued)

		Radiation Exposure	xposure	12	Tims Until Test.	Sample Weight Original, Change,	Change,	Ultimate Tensile Strength	Ultimate Elongation#	Temparature Average,	Pressure Average,
Matariai Gamma (rade hame [ergs/gm(C)] Thermal E>2.9 Hev	Therma	E>2.9	Ke v	E>8.1 Mev	days	grams	grame	psi	per cent	1	1383
3.9(10) 2.8(14) 6.1(15) (air irradiation)	2.8(14) 6.1(15 (air irradiation	6.1(15 adiation	33	2.6(14)	15	ī	•	36103 36114 36075 36.99 36773,1324	1.89 1.79 1.73 1.80 1.80/0.08	8	1
4.1(9) 6.4(13) 3.7(14) (vacuum irradiation)	6.4(13) 3.7(14 (vacuum irradiatio	3.7(14)	<b>℃</b> 2	1.6(13)	•	14.6953 14.5378 14.5011 13.7599	0.0119 0.0143 0.0172	40348 40898 40126 49698 42768/4652	1.88 1.92 2.00 1.94 1.94	98	8(-7)
1.4(10) 9.4(14) 1.8(15) (vacuum irradiation)	9.4(14) 1.8(15) (vacuum irradiatio	1.8(15 rradiatio	~G	7.4(13)	•	14.0466 13.5526 14.7077 14.8699	0.0278 0.0252 0.0401 0.0368	40523 43224 39366 3931 40356/238	1.65 2.06 1.96 1.86 1.88/0.17	360	8(-7)
3.1(10) 2.37(14) 7.87(15) (vacuum izzadiation)	2.77(14) 7.87(1! (vacuum izradiatio	7.87(1) rradiatio	ନ୍ତ	1	12	14.8013 12.9719 14.8986 13.7477	-0.1001 -0.0735 -0.1199 -0.1060	31250 35871 28908 31603 31908/3384	1.52 1.54 1.64 1.62 1.53/6.09	8	6(1)
0 0 0 (control specimens)	0 (control specime	o specimen	<u> </u>	· ·	•	r	1	16359 21626 23210 17848 17989 19406/2945	0.94 1.17 1.11 1.10 0.93 1.05/0.10	1	1

TABLE A-19. (Continued)

			1		A-41			
P.essure	Average,	torr				8()	8(-7)	6(-7)
Temperature	Average,	íų •	881	80	88	98	38	200 9(
Ultimate	Elongation,	per cent	0.95 0.89 0.89 1.09 1.07 1.037	1.02	1.16 1.19 1.15 1.12 1.17/0.05	1.19 1.36 1.25 1.25 1.25 1.26 1.27	1.17 1.21 1.21 1.17 1.25 1.29	0.98 1.10 1.14 0.97 1.06/0.07
Ultimate	Tenuile Strength,	psi	17562 17554 21192 2013 26034 2031 2031	19382 20645 19789 18707 19423/870	19737 22795 21080 19788 20739 20739	22243 19912 19073 200438 21229 21299	23946 19199 20392 23196 22348 218.672041	16022 16346 17755 14791 16887 16400/1184
	hange,		ı	•	•	99.5.9.9 99.5.9.9 99.5.9.9 99.5.9	6.072 6.072 6.071 6.071 6.071	0.2362 0.2169 0.2492 0.2492 0.148
Sample		grams	1	•	1	19.8010 13.4341 13.8041 20.3603 20.1233	20.0366 20.3746 20.3654 20.3454 19.9027	20.3202 19.4871 20.4845 20.1397 20.3301
Until	Test,	i ep	*	2	<b>±</b>	<b>.</b>	•	21
		E>8. 1 Mev	1	8.2(13)	•	1.5(13)	7.4(13)	2.09(14)
Exposure	Neutrons (a/cm	mal E>2.9 Mev E>8.1 Mev day	- 1.26(15)	1.9(14) 2.3(15) (alr irradiation)	2.8(14) 6.1(15) (air irradiatim)	_ 3.6(14) (vacuum irradiation)	9.4(14) 1.8(15) (vacuum ırradiation)	3.88(14) 6.62(15) (vacuum irradiation)
Radiation E		Therm	(air i	1.9(14) (alr 1	2.8(14) (air i	_ (vacuum	9.4(14) (vacuum	3.88(14 (vacuum
Radi	Garıma	ergs/gm(C)	(6)0*9	1.07(10)	3.9(10)	3.8(9)	1-4(10)	2.85(10)
	Material	rade Name	DC-2104 (silicone)		•			

TABLE 4-18. (Continued)

		Radiation	Radiation Exposure		Time		letoht	Withite	1) timote	Temperature	Presente
Material Trade Name	Gamma [ergs/gm(C)]	Thermal	ع د کر	cm ² ) E>8-1 Mev	Test, days	Original, Change, grams grams	Change, grams	Tensile Strength; psi	E'ongation; per cent	Average,	Averaye,
Selectron 5003 (polyester)	0	0 (control sp	ر د	0	ı	1	t	45524 45768 50593 45429/3800	1.93 1.52 2.13 2.28 1.99/0.32	•	•
	6.0(9)	(ai: ir:	1.26(15) (ai: irradiation)	1	7	.J.	ı	50444 51102 48217 46217 46602 47805/3629	1.94 2.04 1.63 1.84 1.86/0.18	82	1
	1.07(10)	1.9(14)	(air i:radiation)	A.2(13)	41	1	•	33578 41609 48819 40637 42432 41879/5364	1.43 1.64 2.00 1.78 1.60 1.59/0.25	061	ı
	3.9(10)	2.8(14) (11r ir	(:it irradiation)	2.6(14)	14	1	1	41767 50020 43998 48933 48236 45315/3548	1.86 1.90 1.84 1.62 1.71 1.71	100	1
	7-2(9)	1.29(14) (vacuum 1	1.29(14) 6.55(14) (vacuum irradiation)	2.45(13)	15	1	i	52038 55985 56102 47505 52657/3324	2.02 2.13 2.19 1.62 2.29 2.05/0.29	81	1( -3)

TABLE A-18. (Concluded)

٠-,

		Radiation Exposure	osure			Sample	Weight	Ultimate	Ultimate	Temperature	
Trade Name	Gamma Trade Name ergs/gm(C)	! '	Neutrons (n/cm² Test, Therrul E>2, 9 Mev E>8, 1 Mev days	n² E>8. 1 Mev		Original, grams	riginal, Change, grams grams	Original, Change, Tensil Strength, Elo. gation. grams grams psi per cent	Elo gation. per cent	Average • F	Average, torr
Selectron 5003 [polyester]	(01)50-1	1.32(14) (vacuum ir)	1.32(14) 1.65(15) (vacuum irradiation)	5.90(13) 13	13	ı	1	51918 46924 42609 44120 44130 44130	2.36 2.03 2.09 1.09	951	1(~3)
	2-85(10)	3.68(14) 6.62(15) (vscum rradiation)	6.62(15) radiation)	2.09(14)	12	ı	1	45782 50814 40864 42293 44176 44766	1.95 2.03 1.96 1.96 1.81 1.92/0.09	88	£(7)

Tested under ctmospheric cond tions.

⁽a) Values given as average value/standard deviation on an individual basis.

TEST ENVIRONMENT S AND RESULT OF STATIC TESTS: STRUCTURAL LAMINATES(7) TABLE A-19.

Redistion Exposure Until Neutrons (n/cm²) Test,	Ilme Diff. SEXDOSURE Until Neutrons (n/CRP2) Test,	Time Until (n/cm ² ) Test,	Time Until Test,		0	Compressive Strength at 25% Elongation,	Compressive Elongation, a	Temperature Average,	Pressure Average,
(C)] Thermal E>2.9 Mev E>8.1 Mev days	E>2.9 Mev E>8.1 Mev days	EX8.1 Mev days	.1 Mev days		'	psį	per cent	r.	torr
Control specimens)				1		303 302 376 330 330	438 418 418 427/16	ı	ı
6.0(9) 1.26(15) 23 (air irradia*ion)	, (6	, (6		ន		1	431 494 456 460/37	100	i
1.07(10) 1.9(14) 2.3(15) 8.2(13) 23 (air irrediation)	8.2(13)	8.2(13)		23		•	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	100	•
3.9(10) 2.8(14) 6.1(15) 2.6(14) 23 (air irradiation)	2.6(14)	2.6(14)		53		1	28.23.44.23.54.24.23.45.24.23.45.24.23.45.24.23.25.27.27.27.27.27.27.27.27.27.27.27.27.27.	81	
5.9(9) 1.18(14) 6.56(14) - 23 (vacuum irradiation)	1	1	53	23		280 352 382 305/43 -	424 447 422 431/15	92	1(-3)

TABLE A-19. (Concluded)

		Radiation Exposure	xposure		Time U-itil	Compressive Strength	Compressive	Temperature	Pressur
Material Gainma Neutrons (n/cm² Trade Name ergs/g.n/C) Thermal E>2.9 Mev E>6.1 Mev	Garoma ergs/g.n(C)	Thermal	E>2. 9 Mev 1	n² 5>6. 1 Mev	Test,	Test, at 25% Elongation, Elongation, Average Average days, e.f. for tort	Elongation, per cent	Average •F	Averege torr
Honeycomb 1.0%(10) 1	1.05(10)	1.32(14) (vacuum ir.	1.32(14) 1.65(15) (vacuum ir:adiat.on)	5.9(13)	83	1	456 433	150	1(-3)
(phenolic)	2.85(10)	3.88(14) (vacuum 1ri	3.88(14) 6.62(.5) (vacuum irradiation)	2.09(14)	8	1	483 410 482 458/43	88	(1-1)

Insted under atmospheric conditions.

(a) Values given as average value/standard deviation on an individual basis.

TABLE A-20. FLEXURAL STRENGTH OF LAMINATES AFTER EXPOSURE TO VACUUM AND VARIED INTENSITY (35)

OF ULTRAVIOLET RADIATION 35

Radiation Falling on Specimens, pyrons	Time of Exposure, hours	Average* Ultimate Flexural Strength, psi	Average* Flex iral Modulus x 106, psi
	Polyes	ter P-43 Laminate	
Control	0	59,300	2 4
2	125	61,800	2.6
3	125	64,400	2.8
Ą	25	50,100	2.5
5	3	24,200	-
6	3		-
	Ероху ]	Epon 815 Laminate	
U	O	84,400	3.8
2	125	84,700	3.8
3	125	84,000	3.8
4	25	57,600	3.5
5	3	39,800	•
6	3		-
	Phenolic	CTI91 Laminate	
0	0	63,900	3. ó
2	125	61,700	3.6
 3	125	56,700	3.5
4	25	49,500	3.0
5	3	57,100 -	3.2
6	3		-

^{*} Average of four specimens.

TABLE A-21. COMPRESSIVE STRENGTH OF LAMINATES
AFTER EXPOSURE TO VACUUM AND VARIED
INTENSITY OF ULTRAVIOLET RADIATION 35

Radiation Falling on Specimens, pyrons	Time of Exposure, hours	Average* Compressive Strength, psi	Average* Compressive Modulus x 10 ⁶ psi
	Polyester	P-43 Laminate	
Control	0	40,900	3. 1
2	125	47,300	3.1
3	125	51,900	3. 2.
4	25	40,800	3.1
5	3	39,900	3.1
6	3		-
	Epoxy Epon	815 Laninate	
0	0	53 900	3.5
2	125	48,400	3. 5
3	125	51,300	3.5
4	25	43,800	3.4
5	3	44,200	3 4
6	3		
	Phenolic CT	L-91 Laminate	
0	U	44,800	3.5
2	- 125	39, 400	3.5
3	125	39,300	3.5
4	25	31,500	3.4
5	3	32,600	3.4
6	3	• •	-

^{*} Average of four specimens.

TABLE A-22. LAMINATE PANELS F. PARED WITH ULTRAVIOLET ABSORBERS (19)

Panel	Reinforcement	Resin	Catalyst	Ultraviolet Absorber by Weight Based on Resin	Laminate Thickness	Resin Yellowing Dre to UV Absorber	Appearance of Panel
ī M	12 plies 181-172	Paraplex P-444A	1% B.P.	None added	0.105	None	Opaque
W 11	12 plies 181-172	P-43	1% B.P.	C.5% Cyasorb UV9	0.109	None	Transparent P
UV III	12 plies 181-172	P-43	1% B.P.	0,5% Cyasorb UV24	0.112	Slight	Transparent
VI V	12 plies 181-172	P 43	1% B.P.	Geigy Tunuvin P CH3497 0.5%	\$	Slight	Transparent
v v	12 plies 181-172	P-43	1% B.P.	Dicarboxy- ferrocene 0.1%	0.110	Decided yellowing	Opaque

PERCENTAGE LOSS IN WEIGHT OF POLYESTER LAMINATES CONTAINING ULTRAVIOLET-ABSORBING AGENTS(19) TABLE A-23.

		Uitimate	Flexural Stri	Uitimate Flexural Strength* After Indicated Proposite, psi	ndicated ixpos	Tre, ps1
Panel	Control	2 pyrons 100 hours	2 pyrors 200 hours	3 pyrons 100 hours	3 pyrons 125 hours	6 pyrons 6 hours
UV 1	61,000	10,400	72,500	72,500	72,800	56,700
UV II	78,800	81,400	82,500	79,500	80,500	72,300
UV III	72,400	76,400	90°°300	73,200	67,300	69,300
UV IV	001,11	81,200	81,800	77,500	72,100	71,700
0V V	67,100	79,500	74,300	71,400	74,600	906,09

* Average of five specimens.

SUMMARY OF ULTIMATE FLEXURAL STRENGTHS OF POLY-ESTER LAMINATES CONTAINING ULTRAVIOLET-ABSORBING AGENTS (19) TABLE A-24.

		Weight Loss* £	Weight Loss* for Indicated Exposure, per cent	osuze, per cent	
Pane1	2 pyrons 100 hours 287°F max	2 pyrons 200 hours 292°F max	2 pyrons 100 hours 302 f max	3 pyrons 125 hours 305°F max	6 pyrons 6 hours 428°F max
u i	0.63	0.95	1.38	 	ÚŁ'o
UV II	0.35	0.43	0.57	0.86	7.62
UV III	0.31	0.38	0.57	0.89	7.49
UV IV	0.31	0.40	09.0	0.95	7.49
v v	1.15	1.93	2.16	2.71	8.75
					The second second

* Average of five specimens.

A-51

TABLE A-25. TEST ENVIRONMENT AND RESULTS OF STATIC TEST: POTTING COMPOUNDS(6)

		Badiation Exposure	Fynogure		Sample	Welcht	Ultimate	Temperature	Pressure
Material	Gamma [ergs/gm(C)] Thermal	Thermal	Neutrons (n/cm²) E>2.9 Mev E	n<) E>8.1 Mev	Original Change, gm gm	Change, gm	Compressive Strongth, psi	Average (OF)	Average (torr)
DC R-7521 (silicone)	0	0	O (Control specimens)	o (sua	t	r	23424 22940 23162/429	ړر	700
	6,03(9)	2.3(14) (Vacis	2.3(14) 1.4(15) 5.1(13) (Vacuum irradiation)	5.1(13) en}	8.5021 7.6400 7.7806	+0.0011 +0.0010 +0.0009	24103 20791 17539 20811/3877	711	2(-6)
Epon 824/z (epoxy)	o	0	0 (Contro! specimens)	0 (sus	1	ı	19811 19621 19716/168	7.1	092
	1,0(10)	3.1(14) (Vacur	3.1(14) 1.6(15) 5.8(13) (Vacuum irradiation)	5.8(13) on)	9.8382 9.8654 9.8658	-0.0102 -0.0086 -0.0097	20833 20892 20849 20858/35	116	2(-5

. Chiadran old . Mar San

TEST ENVIRCEMENT AND RESULT : FOR LOW-FORCE DYNAMIC-TOST MATERIALS: POTTING COAL-COMPS(6) TABLE A-26.

					Compressive Strength,	Strength,		
Material and Test	Garma	Neutrons (n/cm	Sample Weight Original, Chan	Metabt Change,	0.02 Inch	At 25 Per Cent	Temperature Averega	Pressure Average (+orr)
Equipment RTV-60	ergs/gm(C) inermal	Increase myses and	š.	<b>5.</b>				
(silicone)								
Instron	0	O 0 0 (Control spe:imens)	•	t	22822	200 200 188 188 188 188	77	A-5 92
					20.9/1.4	202,2/12,5(4)	~	
Low-Force Tester	0	0 0 0 (Control specimens)	1	ı	41	ě	۲۰	094
Low-Force Tester	(6)9*8	1.5(:4) 1.4(15) 5.4(13) (Vacuum irradiation)	1	t	72.5	ì	021	3(-7)
Instron	3,6(9)	1.5(.4) 1.4(15) 5.4(13) (Vacuum irradiation)	11.8049	-0.0715	96	1508	167	3(-7)
					102/9.5	1549/71.8		

(a) Average value/standard deviation on an individual basis.

TABLE A-27. TEST ENVIRONMENT AND RL: "L.F" OF STATIC TESTS: POTTING COMPCUNDS (COMPRESSION BUTTONS)(7)

		Radiation Exposure	l		} }		Temper-	
Tade	m / (C) ms	Neutro (n/cm²) Thermal D2. 5 Mev D8. 1 Mev	Test, Original, Chedays gm	Vield, ps. Load, lo	Compression Strength, psi	Strength At 25 percent Compression, psi	ature Avg F	Avg torr
Scotchosst 212 Epoxy	0	0 0 0 0 (Control specimens)	ı	6,505 2,740 10,441 2,220 10,411 2,920 9787,1144 2637/431	13,955 11,306 15,024 13,123/2196			
	6.8(8)	2.4(13) 1.2(14) 4.9(12) (Air irrediation)	6	9,091450 9,091/x 2850/709	25.41 25.41 25.41 20.6/515.41		×	1
	1.36(9)	1.8(13) 2.5(14) 9.5(12) (Air irradiation)	6	9,473 2,500 9,629 2,435 9,718/331 2,428/69	25.55 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,450 10,		83	1
	3.9(10)	2.8(14), 6.1(15) 5.90(13) (Ar irr-artico)	91	3,010 1,550 3,555 3,555 3,555 1,000 1,5,5,6 7,5,6,7,5	25,336 25,336 25,171 25,273 25,171,51		8	•
	4-7(8)	2.0(13) ( 4(13) 2.4(12) (Yacur. Irradiation)	٨	2,532/387 2,533 2,533 2,532/387 2,532/387	8,533 12,533 12,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,633 18,		8	() <del>,</del>
	9.4(8)	2.8(13)5(14) 5.6(12) (Vacy 1:1 1278d' 5110n)	6	3,422 2,010 3,671 2,750 9,575 2,760 9,473 2,125 9,537/124 2,439/335	26,01 450,44 170,44 170,44 170,151,51		8	(c-) ₃
	2.65(10)	3.88(14) 5 t.15) 2.09(14) [Varums grediation]	8	17, 551 3,120 17, 575 3,270 17, 670 3,160 17, 670 4,370 17, 670 4,370 17, 670 4,370 17, 670 4,370 17, 670 4,370 17, 670 4,370 17, 670 4,770 17, 670 4,770 17	17,851 17,545 17,698 18,557 18,163/977		8	(-1)
Durock D-133	•	0 0 0 0 Coutrol (Coutrol specimens)	ı			21, 390 5, 606* 20, 622 24, 116/3232		
	3.9(10)	2.8(14) 5.1(15) 2.6('1) (41- irradiation)	<b>%</b>			30,429 34,722 33,459 32,670/2035	ક	;

TABLE A-2i. (Continued)

Material Gamina Trade ergs/ Nume gm(C)	Gamina Frgs/, gm(C)L	Radution Exposure Time Until Neutron (n/cm²) Test. Thermal E-2 9 Mev E-8 1 Mev days	on Exposure Neutron (n/cm²)	m²) D8 1 Me	Time Until Test. v days	Time Until Sample We Test, Origina days gm	e and	Compress on Crushing Yield ps: Load, lb		Compression Strengs. ps.	Strength At 25 percent Compression, psi	Temper-	Press Avg .
	(टा)हेंभ-ह	4.07(14) 7.56(15) 2.70(1e) (Vacuuma irradiations)	.56(15) * irred	2.70(14)	₹	21.1843 21.0721 21.1106	6.00 6.00 6.00 6.00 6.00 6.00	I	1	ı	6.313* 17,677 16.624 17,151,622	<b>8</b>	()
RTF-501 Stl1:00e	0	O (Contry	O Control specimens)	0	•						*8 8 8 13 13 13 13 13 13 13 13 13 13 13 13 13	•	ı
	1,5(8)	3.3(12) 3.0(13) 1.1(12) (Ar tradistica)	0(13) Irrediet	1.1(12) 100)	23						**************************************	8	•
	1.35(9)	1.8(13) 2.5(1b) (Vecuaes irred	5(1k) : 1rredia	13) 2.5(14) 9.5(12) (Vacuum irradiation)	21						197.5 165 260 260 260 190 190 190 190 190 190 190 190 190 19	8	
	1.8(8)	8.4(12) 1.85(13) 7.6(11) (Vactum it: wdistion)	95(13) : tr:#di	7.6(11) ttion)	ထ	9.0581 8.9501 9.0108 6.9517	6.6.6.6.9 8.6.6.6.9 8.6.6.8.				346 347 246 246 246 246 246 246 246 246 246 246	8	1.7(-1)
	4.7(3)	2.0(13) 6.4(13) (Tecum irrediation)	.4(13) lation)	2.4(12)	6	9.0269 9.0227 9.0067 8.9408	6.95 6.95 7.75 7.75 7.75 7.75 7.75 8.95 9.95 9.95 9.95 9.95 9.95 9.95 9.9				150.5 150.5 150.5 150.5	8	(L-)4
	9.4(8)	2.6(13) (.5(14) ,Vacums irridiation)	5(14) lation)	5.6(12)	Ŋ	99.89.89 89.89.89 83.89.89 83.89.89	6.6.6.6 8.85.99 8.85.49				180.5 170 170 175 175	8	( <i>L</i> -)*
gcz73 Proprietary	٥	0 0 (Control specimens)	( summer )	o	•						457 457 430 441 441 441 441 441 441 441 441 441 44		

TABLE A-27. (Cancluded)

	Radiation Exposure		1, ime					4	Tomper-	9.00
Material Gamma Trade [ergs/ Name gm(C)	Unch Neutron (n/cm²) Test. Thermal D2. 9 Mev D8. 1 Mev days		Test. days	unni Sample weignts Test, Original, Change, days gm gm	Open E.	Compression Crushing Yield, ps: Load, lb	Strongth.	At 25 percent Compression, per	Avg .	Avg.
1.5(8)	3.3(12) 3.0(13) (Air irradiation)	1.1(12)	ដ					3333	8	1
7-36(9)	1.8(13) 2.5(1b) (Air irredistion)	9.5(12)	ม					23323	8	i
6.0(9)	('Accum lryadistion)	ı	ង					¥ <b>¥</b> ¥	001	
1.8(8)	8.1(12) 1.95(13) (Tecum tradiation)	7.6(11)	•	10.339 10.339 10.355 10.355	+0.0474 +0.0472 +0.0473	<b>4 M 6</b> · · •		183	8	1. ;(-1)
9.4(8)	2.8(13) 1.5(14) 5.6(12) (Vacuum lyrundiation)	5.6(12)	2	3.55 4.63 5.63 5.63 5.63 5.63 5.63 5.63 5.63 5	4.00.00 4.00.00 4.00.00	4 B.MI		3835 le	8.	r/-/1
6.9(9)	1.13(14) 6.52(14)	ı	ង	3333 355 355 355 355 355 355 355 355 35	9995 9995 9996	maun -		23 <b>3</b> 5 7	166	;

Values not included in calculating average and standard deviation.
 Tertod under atmospheric conditions.

TABLE A-28. TEST ENVIRONMEN' FAND RESULTS OF STATIC TEST: SEALS (6.7)

Gamma Radistion Exposure Time Gamma Neturca (a/Gmb) Total grafe Thermal D.2. 4 Nev De 1 Nev days	0 0 0 (control specimens)	8.06(9) 2.6(14) 1.2(15) (vacuum irradiation)	3.2(9) 4.7(14) (air irrediation)	1.1(10) 1.8(15) (air irradiation)	0 0 0 (control specimens)	6.06(9) 2.6(24.) 1.2(15) (vacram 'tradiation)	0 0 C Control specimes)	1.5(8) 3.3(12) 3.0(13) (air irradiation)	1.36(9) 1.8(13) 2.5(14) (alf livadiation)
FE TX	•	4.5(13)	•	•	•	<b>4.</b> 5(13)	•	(21)1-1	(31)×-6
Time Jatil Sample Weight: Tost, Original, Crank days gm gm	1	1.598.1	1	1	1	4.5873 4.9699 4.5546	•	1	1
Weight:	1	90.000	ı	t	1	0.0603 0.0603 0.0603	1	1	1
at 25% Eiongation	ı	8 % p &	i	i	183 199 174 176.5/23.8	25 25 25 25 25 25 27	8232255 823255	641	881. 591 181
Tensile Strength (a) (psi) at 50% at 100% on Elongation Elongation	ı	9:16/ac11	1	ı	80 25 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ı	<b>%</b> % % & & & & & & & & & & & & & & & & &	តីតីតីតីត <u>ី</u>	\$\$\$\$\$\$
th (psi) at 100% Elongation	88888 88888 1899 1899 1899 1899 1899 18	t	636/1.1/3	1951/12/3	200 15 15 15 15 15 15 15 15 15 15 15 15 15	1	######################################	SSE SE	22 <u>8</u> 22
Ultimate	25.55 25.55 25.55 25.55 7.56 7.56	84 86 86 84 84 84 84 84 84 84 84 84 84 84 84 84	1530/3.8/3	*/T'6/LLOE	1337 1331 1350 1360/52.9	1588 1740 1855 1855 1856	855 855 855 855 855 855 855 855 855 855	1358 1359 1359 1359 1359 1359 1359 1359	8851 1551 1551 1551
Ultimate 1 Elonga- tion, percent	\$35 FE	76 78 78 78 78 78 78 78 78 78 78 78 78 78	1530/3.8/3 ^(c) 246/1.8/3	104/13/4	213 258 213 213 213 213 213 213 213 213 213 213	8 8 8 8 8 8 8 8	다. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	163 157 153 153 153 153 153 153 153 153 153 153	<b>ጀ</b> ጀጀጀ
Avg.	ŧ	(a) <i>ह</i> रा	1 m		t t	(q) <i>211</i>	1	&	93
Avg.;	92	9	ì		· <mark>\$</mark>	Ç X	1	1	1

n den betreit der Bereit in der der eine der der Bereit besteit bestellt der der der der der der der der der d

ť

TABLE A-_ Continued)

	Press.	Av torz	7( <del>-</del> 7)	1.7(-7)	k(-7)	<b>§</b> 2.	!	1(-6)	s( <del>-6</del> )
	Temper-	Avg	&	8	8	E	#	tr .	य
	Ultimate T	tion, percent	ಕಪತ್ತಿತ್ತಿತ್ತ <u>ಕ್ಕೆ</u>	25.32.25 21	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	41.65 41.47 41.47 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65 41.65	13/20 FEB 12/20 FE	22/23 E E E E E E E E E E	8 # 8 # 5 %
			200 E	13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55	15,96 15,60 11,70 11,39 15,78	1880 2030 2030 2030 2030 2035 2035 2035 203	2206 1936 2180 2241 2741 2072/213	1950 1997 1997 1976 1975 2005/13	1100 1073 1073 1087/13.1
	(a) (bai)	at 100% Elongation	88 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	######################################	E3 E3 22	1828282	**************************************	22222 21.1.1	1000 1000 1000 1000 1013/41.3
	Trosile Strength(a) (psi)	at 25% at 50% at 100% Elongation Elongation Ultimate	តីតីតីតីតី <u>តី</u>	និស់និសីស <b>់</b> ស្តី	22 22 24 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 2	1888 1888 1888 1888 1888 1888 1888 188	184 181 192 198 189/10.7	25 25 25 25 25 25 25 25 25 25 25 25 25 2	157 215 215 215 500/10.6
	ì	at 25% Elongation	33333	833333 <u>7</u>	22552±17	1 1 8 4 1 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1	233244 7.7	ययद्वय म्ह	27.08
	į	- 28 e-	9885 983 999 999 999 999	68888888888888888888888888888888888888	66.66.66 8.66.66.66 8.66.66.66 8.66.66.66	1	1	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	+0.0001 +0.0007
	Semale V	Original,	1.1744 1.1672 1.1695 1.1731	1,174	1.16% 1.20% 1.18% 1.16% 1.175	1	1	0.9834 0.9838 0.9838 0.9833	0.9977 0.9980 0.9932
	Time	Test,	g	σ.	-	l	1	ı	1
	Radiation Exposure	Neutron (n/cm²) Thermal D2.9 Mev D8.1 Mev	7.5(7) 4.6(12) 5.2(12) 2.35(11) (vacuma irradiation)	1.8(8) 8.4(12) 1.85(13) 7.6(11) (Tricine irrediation)	9.1(8) 2.8(13) 1.6(1k) 6.0(12) (Warden irralation)	Matural () () () () () () () () () () () () ()	(control systams) Ports 19 1763	(vacuum controls) Petruary 1963	9.03(9) 2.9(14) 1.4(15) 5 '(13) (Wacaum irrudiation)
- 1	:	≱ ′ີ ″							

TABLE A-28. (Continued)

Q.	Avg .	<b> </b>	1	1	G .,	t(-1)	3(-1)
Temper-	Avg.	1	8	ಹಿ	8	8	,
Ultimate Flones.	tion, percent	F. 18 12 12 8 12 12 12 12 12 12 12 12 12 12 12 12 12	145 153 178 178 178 178 178 178 178 178 178 178	E SE	HARRING	87.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75 67.75	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Ultimate	11 11 12 12 12 12 12 12 12 12 12 12 12 1	1760 1721 1993 1910 1565 1770/148	1239 1486 1521 1567 1567 1513/227	1655 1765 1780 1780 1733/85	1797 1865 1865 1965 1896 1890 1890	1665 1765 1233 1222 1605 1559/308
(a)(u)	at 100% Elongation Ultimate	2000 00 00 00 00 00 00 00 00 00 00 00 00	#88888 #88888	555 55 550 550 550 550 550 550 550 550 5	## ## ## ## ## ## ## ## ## ## ## ## ##	3 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	ES ES ES ES
Tenaile Symmeth (a) (nai)	at 50% Elongation	35555555555555555555555555555555555555	22222 25222 25222 2522 2522 2522 2522	8388 <del>3</del> 5	157 157 167 167 167	51 52 52 54 54 54 54 54 54 54 54 54 54 54 54 54	38888 <u>8</u>
-	at 25% Elongation	88888888888	នីឌឌឌឌ្ឌ	2223	8428	ERESEE	225. F
e i e i e	Change,	1	1	1	0.0112 0.0108 0.0107 0.0107	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.	0.0000 0.0000 0.0000 0.0000 0.0000
Samule Weighte	Test, Original, Change, days gm gm	1	1	1	1.0262 1.0270 1.0269 1.0194 1.0233	1.0212 1.0198 1.0306 1.0212	1.0267 1.0251 1.0250 1.0256
Time		1	ជ	9	٠	<b>~</b>	ω
ire.	cm³)	0	(ZI)6.4		2.1(12)	(হা)০.9	1.6(13)
Radiation Exposure	Neutron (n/cm²) The:mai D2 9 Mev D8 1 Mev	control specimens)	b(13) 1.2(14) (elf irrediction)	1.26(15) (eir irradiation)	4.45(8) 1.95(13) 5.45(13) (vacum irradiation)	9.1(8) 2.3(13)6(14) 6.0(12) (value i "fiation)	4.1(9) 6.4(13) 3.7(1e) (vecum irradiation)
Radia	he: mai	(control	2.b(13) 1.2(1b) (air irredittio	ri: Tie)	1.95(13) vacum to	2.3(13) vacans to	6.4(13) vecum to
	Frg. (C) T	o	6.8(8)	6.0(9)	,,,5(8) ()	9.1(8)	4.1(9) (6)
		Estural Rubber O-rings RA33860					

TABLE A 9. (Sontinued)

:			Radiation Exposure		Time			F	enaile Stran	th(a)(oai)		Ultimate Elonga	Temper -	
Material Trade Name	) () () () () () () () () () () () () () () (		N. utron (n/cm²) Thermal D2. 9 Mev E>8. 1 Mev	m ³ ) D8.1Me	Teet.	Origina'		at 25%	at 25% at 50% at 100%	at 100% Elongation	Ultimate	tion, percert	Avg.	
Recurence O-rings FREEZITI	0		o opections)	•	1	1	1	######################################	9.65 t 8.86	&&444 <b>%</b>	25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50	######################################	ı	l
	1.5(8)	3.3(12) 3.0(13) (air irrediation)	3.0(13) materios)	(21)1"(	я	1	1	24444 <u>F</u>	\$# <b>\$</b> \$#\$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	28 8 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	**************************************	8	1
	1.36(9	1.36(9) 1.0(13) 2.5(14) (air irr_dation)	2.5(14) dation)	9.5(12)	я	1	1	38838 ⁸	##XX#	%33333 13	# # # # # # # # # # # # # # # # # # #	4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	88	ı
	1.8(6)		8.4(15) 1.85(13) ("score trestation)	7.f(111)	٥	3851 2851 2851 2851 2851 2851 2851 2851 2	0.0037 0.0037 0.0053 0.0053	485495 2	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	88888 8	2000 2000 2000 2000 2000 2000 2000 200	**************************************	3	1.1(-7)
	b.45(8	4.45(8) 1.95(13) 5.45(13) (vecuma irradiation	5.45(13) :redistion,	2 1(12)	<b>-</b>	1111111 2007 111111111111111111111111111	488888 488888 488888	ਖ਼ਫ਼ਜ਼ਖ਼ਖ਼ <mark>ੑੑ</mark>	28222 <u>8</u>	3£824 <u>8</u>	2341 2519 2519 2511 2511 2511 2511/201	188381	8.	P(-1)
	9.1(8)	9.1(8) 2.2(13) 1.6(14) (Tecom ti radiation)		6.0(12)	<b>~</b>	288 288 288 288 288 288 288 288 288 288	2248E 98888 99999	4448 <b>4</b> 5	3855535 5	38889 <u>4</u>	25/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/25/25 26/	388888 388888	8.	h(-7)
Viton B O-rings FRP19007	•	o (numetrol	o specimen	o	ł	t	1	ែក ខ្មែន	8 8 1 8 8 8 1 8 8 8 8 8 8 8 8 8 8 8 8 8	£8 184	2000 1599 1893 1893 1893 1893 1893 1893 1893 18	88888 88888 88888	1	1

TABLE A-20. (Continued)

	Press.	Avg torr	1	ŧ	2.5(-7)	2.5(-1)	;	i	ł
Temper-	ature	Av <b>g</b> .	305	গ্র	99	4	1	10%	195
Meimate	Elonga-	tion, percent	23.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.23.25 20.25 20.25 20.25 20.25 20.25 20.25 20.	323 Z	ដូលិនដង់	WASSER THE	ភពិនិធីនិធីនិធីនិធីនិធីនិធីនិធីនិធីនិធីនិធ	444444 44444	88224 <del>8</del>
		Ultimate	1825 1886 1538 1860 1860 11735/150	813.88	2005 2005 2005 2005 2005 2005 2005 2005	102/1661 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 20 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10 25/10	2000 2000 2000 2000 2000 2000 2000 200	22 22 22 22 22 22 22 22 22 22 22 22 22	25 P. 12 25 25 25 25 25 25 25 25 25 25 25 25 25
	th(a)(pei)	. =		1	22.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25.25 20.25 20.25 20.25 20.25 20.25 20.25 20.25 20.25 20.25 20.25 20.25 20.25 20.25 20.25 20.25 20.	\$\$\$\$\$ <mark>\$</mark>	335333 <u>3</u>	123 123 123 123 123 123 123 123 123 123	18811111
	Tensile Strength (a) (pei)	at 50% at 160% Elongation Elongation	48484 <u>8</u>	1	82484 <u>8</u>	<b>28888</b>	ARARKA R	86488 <u>8</u>	Salar Pros
		at 25% Elungation	888E	188 188 188 188 188 188 188 188 188 188	នននង់	ត់ដង់ង ដែ <u>ង</u>	388884 <u>5</u>	26284£	288 ·   1
		enge.		t	1	t	1		1
	Sample "	Original Johnston	] 1	1	1	1	ı		1
	Time Unul		n	<b>n</b>	φ	nc.	1	ಇ	ä
		19. 1 Mev			1.%(12)	2.77(12)	0		
	Radiation Exposure	Thermal D2 9 Mev D8. 1 Mev	1(9) (estimated) (air irradiation)	) metod) (air irradiatum)	6.98(12) 3.98(13) 1.56(12) (vacum irradiatica)	5.06(8) 8.31(12) 5.96(13) (vacum irradiation)	0 0 (control specimens)	1(9) (ertimted) (air .rrediation)	5(9) (estimbed) (air irradiation)
	Radiat	1 Lame	1 3	n 49	.98(12) score to	(21) 15' 15' 15' 15' 15' 15' 15' 15' 15' 15'	o control	्र भू	( <b>e</b> 17 t
	١	3  7	(6) 1 (7) 1	(9) Hamted)	3.1(8)	.08(8) 5,	•	(9)	(9) timeted)
	1		F 8	(6) (6) (6)	m'	Ň	### 131-10 ### O-TINGS	7 <b>8</b>	<u> </u>
	Majorial	Trade					12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
ļ			1						

The second of th このは ないかい こうしゅう ちんだい

TABLE A 23. (Concluded)

	1		
Press.	ı	2.5(-7)	2.5(•7)
Temper- aturo		8	
Ultimate Elonga - tion,	percent	28384 <u>E</u>	1884
	Ultimate	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
h(a)(pei) at 100%	Elongation	8.28.23 8.	3233 3233 3
Tensile Strength (a) (psi)	Elongation	ESS SE	\$\$\$\$\$ \$\frac{1}{2}\$\$
	Congat	**************************************	88438 3
719	E,	1	i
Sample We P.:	E.	ı	1
Time Until		ω	ъ
	1. 1 Mev	1.56(12)	2.TT(122)
rpoeur (n/cn	Mev E	(13) (13)	
Radiation Exposure	E>2.9	6.98(12) 3.98(13) recent irrelation	8.31(12) 6.98(13) (vacuum irradiation
Radia	Sermal	6.98(12 vacuum	8.31(12 Vacuum
		_	(9)80.9
Garama Fros.	L	]"'	w.
Material	Name		

(a) Values given as: average value/standard deviation on an individual basis.
(b) Estimated value based on similar temperatures of natural rubber.
(c) Average value/standard deviation on an individual basis/number of specimens

Tested under atmospheric conditions.

TABLE A-29. LOW-FORCE DY AMIC TEST RESULTS(6)

		Radiation Exposure		Mehine	*	1000	7. (net)		Untimate	Tempera-	Pressure
Meterial	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Heutrons (n/cm²)	2) ES8.1 Nov	Speed (in./win.)	at 25% Elongation	at 50% at 100% Elongation Elongation	at 100% Florestion	Ultimate	Elongation, per cent	.verage,	Average, turr
Viton 3 (FRP 1900) Instron Tester		o 0 (control specimens) September 1962	o	0.5		्रेह्टकूट्ट इंट्रहेट्ट	18.58.5	1300 1300 1300 1300 1300 1300 1300 1300	109 146 159 157 157 157 157 157 157 157 157 157 157	F	091
Lost Porce Tester	9.0(9)	1.4(14) 1.7(15) (vacum irreliation) September 1962	6.75(13)	ć.	<i>مه (مبر</i>	1	1	1,398	33.5.5 14.15.5	191	3(-1)
Inst. on Tester	9.0(9)	1.4(14) 2.7(15) (vacuum irradiation) Sentember 1962	6.73(15)	6.5	i	ŧ	1	1180 918 1049/144	19.8 17.4 18.5/2.4	192	3(-1)
Instrum Tes er	•	(c. rtrol specimens)	o	50.0	l	1	1	1984/4.5/3	254/3.1/3	1	ı
Instron	1.2(9)	2.3(1½) (air irradiation) Japany 1962		50.0	t	1	ı	2047/8.9/3	2047/8.9/3 141/3.8/3	ı	1
Instron Tester	0	Control specimes) Octol r 1962	0 4	٥٠٠%	ı	1	1	1710 1405 1650 1585 1607/96	183 165 166/13	1	1

(a) Average value/standerd deviation on on individual basis/number of specimens.

TABLE A-30. LOW-FORCE DYNAMIC TEST RESULTS(6)

		Bellation	offation Procure				(1)(1)				
	j	1	12:9 Mer	128.1 Mey	at 25% Elongation	at 505 at 1005 Elongation Elongation	at 1005 Hogestics	utiete(b)	Momentica(b), per cent	Avarage,	Avarage,
1					Num L.	idan I., Amerik 24., 1963	<b>%</b>				
Bos I	1.66(8)	1.7(12) (Monum 11	1.7(12) 1.9(13) (Woman tread ation)	ı	3.5 <mark>/2</mark>	क्षेत्र होते. इ.स.च्या	額			8	2.3(-7)
0.00	1.68(8)	1.7(12) (vacuum 11	1.7(12) 1.9(13) (vacum irradiation)	1	91 (SI	8 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8				<b>6</b> 2	8.3(-1)
						Br. II. June 4, 1963	<b>S</b>				
bes I	5.08(8)	8.;1( 2) (vecum 1:	8.;1(.2) 6.98(13) (vector irradiation)	2.77(12)	397 N	888	7% F			84	(1-)5.3
ontro.	5.06(8)	8.31(12) (vacomen 1:	8.31(12) (98(13) (vecum tive.!! attes)	2.77(12)	185 187 187 187 187 187 187 187 187 187 187	200 kg	88 8 88 88 88			49	2.5(-1)

(a) Values gives se: everage value/standard deviatica on an individual beais.

(b) Not reached in took.

TABLE A-31, EFFECT OF NUCLEAR RATION ON SEALS, STATIC TESTS(6)

Caterory	Trade Name	Gamma Dose Vacuum [ergs/gm(c)] (torr)	Vacuum (torr)	Specimen Configuration	n Messured Property	Change in Measured Property, per cent
Seals	Natural Rubber	O Vacuum Controls	1 × 10-6	0-⊱ings	Ultimate tensilo strangth Ultimate elongation Weight change	001
		9.0 × 10 ⁹	2 × 10-6	O-Rings	Ultimate tensil, strength Ultimate elongation Weight change	850
	Viton B PRP 19007	9.0 × 10 ⁹	3 x 10 ⁻⁷	0-Rings	Ultimate tensilo strength Ultimate elongation	78
	Parker Compound 66–581 (Buna N)	8.1 × 10 ⁹	2 × 10 ⁻⁶	O-Rings	Ultimate shear strength Ultimate elongation Weight change	-37 -85 -1-27
		8.1 × 10 ⁹	2 × 13-6	Tensile (ASTM-D-412- 51f, Die C)	Ultimate tensile strength Ultimate elongation Weight change	+ 25 - 25 - 1.32
		3.2 × 10 ⁹	3.2 x 109 Air Irrad. O-Rings	O-Rings	Ultimate tensilo strength Ultimate elongation	÷ 5
	,	1-1 × 10 ¹⁰	l.1 x $10^{10}$ Air Irrad, O-Rings	O-Rings	Ultimate tensils strength Ultimate elongation	35- -79-5
	Viton B PRP 19007	9.0 × 10 ⁹	3 × 10 ⁻⁷	O-Rings	Ultimate tensile strongth Ultim.te elongation	47

TABLE A-32. EFFECT OF VACUUM AND GAMMA RADIATION ON SEALS⁽³⁵⁾

Specimen No.	Code	Weight Change, percent	Change in Shore Durometer Hardness
lA	Alleghany Plastic	01	-
B	Teflon X	0	
2A	TDXF, 121 No. 72	1.08	-2
B	Acrylonitrile	1.06	-1
3A	50% Teflon	01	-3
B	Loaded XIT351	04	-3
4A	TDXE-35 No. 74	1.16	-i u
B	Acrylonitrile	1.10	-7
5 <b>A</b>	Rubber	85	-9
B	366 YV	85	-4
6A	En-Jay Butyl	09	+ 2
:	XI 351	09	+ 2
'.	Rubber	0	-14
L	524A	0	-7
8A	Linear	0	- 1
B	Copolymer XP-9-13	0	- 1
9A	Parker	1.00	-10
B	B-496-7	1.00	-
10A	Rubber	1.00	+ 2
B	524A	1.00	+ 4
11A	Neoprene	53	0
B	No. 74 Compound	1. 007	0
12A	Neoprene	1.009	0
B	No. 72 Compound	1.007	0
13A	Rubber	86	+1
B	366 YV	79	+2

I. Compression Tests (Federal Test Method 601-33
--------------------------------------------------

Specimen No.	Compressibility, percent	Recovery percent
Control Test	. F-1 00110	percent
1	800.0	94.6
2	590. 0	91.5
3	325.0	95. 4
4	1,150.0	91.3
Average	716.2	92.2
Irradiated Specime	ns	
$[10^9 \operatorname{erg/g(C)}]$		
1	331.8	95. 9
2	657.1	93.5
3	500. 0	95.0
4	940. 0	93. ó
Average	607.2	$\frac{1}{94.5}$

### H Tensile Tests (Strain Rate = 0.1 in./min)

Specimen No.	Elastic Limit, psi	Elongation in l in., percent	Hardness, Shore B	0.2% Offset Yield Strength, psi	Ultimate Stress, psi
Control Test					
1	2,156	2.0	93.0	1,927	2,226
2	1,847	8.0	92.0	1,667	1,964
3	2,053	2.0	92.0	1,681	2,257
4	1,982	6.0	89. 0	1,429	2,300
Average	2,009	4.5	91.5	1,676	2,206
Irradiated Spe 109 erg/g(					
1	<b>4</b> 95	0	86.0	542	554
2	957	2.0	85.0	1,081	1,106
3	1,005	4. C	86. ა	1,130	1,176
, ⁴ (b)	1,058	3.0	გ6. 0	1,128	1,222
Average (D)	1,007	3.0	85.7	1,113	1,168

⁽a) All specimens 0.07-inch thick (nominal).

⁽b) Data from Specimen No. 1 not included in average. Specimen defective.

TABLE A-34. TESTS WITH ELASTOMER SEALS(8)

A-67

Seal Type	Sample No.	Test Duration	Satic Leakage (std cc He/sec)	Dynamic Leakage (std cc He/sec)
Reciprocating Seals	1	Start	0.00	
Neoprene	1	30 min	0.80 2.40	0. 20 1. 00
	2.	Start	0.54	0. 24
		30 min	0. 95	0. 08
	3	Start	0. 22	U. J45
		30 min	0.0095	0.014
Silicone Rubber	1	Start	0.19	0. 38
		30 min	9. 26	0.33
	2	Start	0.87	1.50
		10 min (test stop than 10 std cc/	pped, leakage sec!	rate greate.
	3	Start	2.50	3.40
		30 min	4.90	4.30
Viton A	1	Start	1.40	0.60
		40 min	0.02	0.20
	2	Start	0.35	0. 65
		30 min	0.13	0.17
	3	Start	0.0001	0.20
		35 min	0.50	0.10
Kel-F	1	Start	1.00	0.12
		20 min (seal failu	re)	-
	2	Start	0.31	0.07
		10 min (seal failu	re) -	-
	3	Start	0.10	0. 14
		10 min (seal failu	re) -	-
Buna N	1	Start	0.36	0.03
		30 min .	0.10	0.032

A-68
TABLE A-34. (Continued)

Seal Type	Sample No.	Test Duration	Static Leakage (std cc He/sec)	Dynamic Leakage (std cc He/sec)
Reciprocating Seals				
Buna N	2	Start 30 min	0.55 0.10	0.040 0.15
	3	Start 30 min	0.32 0.10	0.24 0.18
Butyl	1	Start 30 min	0. 80 0. 02	0. 28 ი ი6
	2	Start 30 min	0. 22 0. 038	0. 20 0. 038
	3	Start 30 min	0.004 0.47	C. 03 0. 50
Po'yethyleae	1	Start 30 min	0.0001 0.0001	0.005 0.012
	2	Start 30 min	0.0001 0.002	0.004 0.01
	3	Start 30 min	0.2 0.0001	0.10 0.005
Vinylite	1	Start 30 min	0.0090 0.0040	0. 20 0. 60
	2	Start 30 min	0.0010 0.0010	0. G1 0. O2
	3	Start 30 min	0.0010 0.0010	0.03 0.01
Rotating Seals Kel-F	1	Start 30 min	0.28 0.30	0.50 1.00
	2	Start 30 min (seal de	•	0.48 0.16

TABLE A-34. (Concluded)

Seal Type	Sample No.	Time Duration	Static Leakage (std cc He/sec)	Dynamic Leakage (std cc He/sec)
Rotating Seals Kel-F	3	Start 30 min (seal des by wear and ab		0. 38
Silicone Rubber	1	Start 30 min	0.044 0.35	0. 06 0. 80
	2	Start 30 min	0.15 0.25	0. 26 0. 54
	3	Start 30 min	1.00 0.28	1.00 0 · :
Viton-⊅	1	Start 30 min	0. i4 0. 01	0. 73 0. 02
	2	Start 30 min	0.032 0.016	0.10 0.019
	3	Start 30 min	0.10 0.008	0. 22 0. 02
Kel-F Elastomer	1	Start 30 min	0.28 0.30	0.50 1.0
	2	Start 30 min	0.34 (a)	0. 38 (გ)
	3	Start 30 min	9-26 (a)	0.45 (a)
Teflon	1 & 2	Start 30 min	0.1 (a)	(a) (a)

⁽a) Leakage excessive.



FIGURE A-1. COMBINED PARAMETER :.ATERIALS TESTS(8)



FIGURE A-2. RADIATION EFFECTS ON NARMCO 3135 AND 3M 1469/1968 ADHESIVES(13)



FIGURE A-3. RADIATION ET FECTS ON APCO 1219 AND LIEFTOWELD 109/LM5... ADHESIVES(13)

₽e;

PLOSE DE LE COMPANION DE LA CO



FIGURE A-4. ULTRAVIOLET DEGRADATION IN VACUUM, SPACECRAFT "WHITE" SURFACES⁽¹⁸⁾





FIGURE A-6. RADIATION EFFECTS ON SINEWAVE LAMINATE(13)



FIGURE A-7. RADIATION EFFECTS ON HEXCEL LAMINATE⁽¹³⁾



FIGURE A-8. COMBINED PARAMETER MATERIALS TESTS(8)



FIGURE A-0. COMBINED PARANDONE MATERIALS TESTS(8)

I. THE MATERIAL TESTED WAS THE LISTED RESINS IN A GLASS FABRIC LAMINATE SYSTEM. 2. EACH POINT IS ACTUAL ULTIMATE STRENGTH OF TEST SPECIMEN.

3. TEMPERATURI OF SPECIMEN DURING TEST AL 300 °F



FIGURE A-10. COMBINED PARALGETENS MATERIALS TESTS(8)



FIGURE A-11. COMBINED PARAMETEN MATERIALS TESTS⁽⁸⁾

APPENDIX B

ELASTOMERS

。如何情况这多周期的多数重要强烈,因为自己的情况是有理论的影响。 1990年,1991年,1991年,1991年,1991年,1991年,1991年,1991年,1991年,1991年,1991年,1991年,1991年,1991年,1991年,1991年,1991年,1991年,1

Table B-L COMPOUND FORMULA TIONS (45)

Committee					Parts by	Weight					
Summoduio										276	
Ingredient	8119	S119B	N126	1.128E	M72	M72E	272	Z74F	284	FCT	283
SBR 1500	150	150									
Paracril 18-80			100	100							
Neoprene WRT				)	100	100					
Centhane S					) )	}	001				
Hycar 4021							2	9			
SE33 (methyl vinyl si	iloxane)							3			
Linde W96 (methyl vinyl siloxane)	inyl silox	ane)							100	9	
Viton B	,	•								201	
Zinc Oxide	m	8	'n	ď	ıc	u					100
Stearic Acid	2	~	1.5	1.5	0	ט ני	,				
Magnesium Oxide				) ;	•	) ;	; i 4	4			
Sulfur	1.75	1.75	3.5	<u>ر</u> بر			۲	۲ u			C <b>T</b>
Altax			1.5	1.5				,			
Santocure	1.0	1.0		)							
Trimene Base								~			
Cadox TS Paste								1	77		
Cadox SG Paste										7	
LD 214										o <b>:</b>	·
Neozone D	-	-			2	~					^
Heliozone		7			•	)					
U.O.P. 88		m									
Agerite Rosin D	<b>r4</b>	-									
Di Cup 40 C							4				
NA-22					5	ر بر	r				
SRF Carbon Black					202	502					
MAF Carbon Black			09	94	3	3	30				
MT Carbon Black					30	30	•				20
Hi Sil 303									20		•

Table B-1. (Concluded)

					Parts by	Parts by Weight					
Compounding Ingredient	Si19	1 1	N128	S119B N128 N.28E	M72	M72E	1 1	Z72 Z74F	. 84	Z69 FCT	283
Santocel CS Red Iron Oxide Dioctyl Sebacate Trioctyl Phosphate HAF Carbon Black	:			20		20		30	`	40	
TOTAL PARTS	159.75	159.75 163.75 169.5 189.5	169.5	189.5	158	178	138.2	178 138.2 137.5 151.3 143.6 138	151.3	143.6	138
All compounds wer	were cured for 30 minutes at 307°F except as follows:	fr 30 m	unutes	at 307° F	except	as follo	ws:				
Z69FCT - Pres	Press cured 20 minutes at 307°F; post cured 24 hours at 300°F in air even.	20 miaut	es at 3	07°F; po	st cure	d 24 hou	rs at 3(	0°F in	air ov	e:11.	
Z84 - Press	s cured	cured 10 minutes at 240°F; post cured 24 hours at 480°F in air oven.	es at 2	40°F; pc	st cure	d 24 hou	rs at 48	10°F in	air ov	ដ	
Z83 - Pros	Press cured 30 minutes at 307°F; step cured in oven for one hour each at 212°, 250°, 300°, and 350°F; post cured 24 hours at 400°F in air oven.	30 minut 300°, an	es at 3.	07 F: st	ep cure ured 24	d in oven hours a	for one	e hour e	ach at oven.		

Table B-2. EXPOSURE OF A POLYESTER ELASTONG .: TO HIGH VACUUM AT VARIOUS TEMPERATURES 45

		Exposed to	,					
•		Vacuum of 7.8 × 10-6	400 F	F	300	ļi.	ζδ	F 009
		mm Hg for 5 Days at	Vacuum of 1.9 x 10-5		Vacuum of		Vacuum of	
Property Measured 0	Original	Room Temperature	mm Hg for	Air Oven	mn Hg for	Air Oven	num Hg for	Air Oven
				Hyger 4221 (274E)	ធ្ន		2 800	101 0 104/3
Tensile strength, psi	1420	1610	810					
Modulus, psi at 200 % E.	220	830	1					
Elongation, %	36	310	ଛ	ttle tet				
Hardness, Shore A	8	፠	88	tad (				٠.
Strain, % E. at 400 psi	152	110	Broke	ooT <del>}</del>				
Change in weight, %	1	9.0	ŷ.	-13.5				

Table B-3. EFFECTS OF ACUUM AND OF VACUUM WITH ULTRAVIOLET RADIATION ON ELASTOMERS46*

c	Chunge, per cent	- 6.8	B-	<b>4</b> 9.8	-10.2	-:4.2	-20.1
batic	58	'	1	1	1	7	Ÿ
Breaking Elonoation	<pre>// ftcr Exposure, in./in.</pre>	C.820	C. 845	0.835	2, 790	0.755	0.650
Bre	Before Exposure, in./in.	0.880	0.880	0.830	0.850	0.880	0.880
oth	Change, per cent	+13.0	+ 4.5	+ 5.4	+11.1	+13.4	+17.1
Tensile Strength	Before After Exposure, Exposure, psi psi	2616	2420	2441	2572	2626	2710
a l	Before Exposure, psi	2315	2315	2315	2315	2315	2315
	Weight Change, per cent	+ 0.10	+ 0.22	60°0 +	- 1 59	- 4.04	- 4.04
1	Exposure Time, hour	24	%	312	<b>24</b>	%	312
	Temperature, F	80	80	80	155	155	155
	Type of 1 Material Exposure**	Vacuum	Vacuum	Vacuum	Vacuum and ultraviolet	Vacuum and ultraviolet	Vacuum and ultraviolet
	Material	Butyl					

· Values are averages of two specimens.

** Maximum vacuum pressures or the order of 1 x 10-5 mm Hg.

RECIPES AND CURF SCHEDULES OF THE CHLOROBUTYL, CHLOROBUTYL-POL. CHLOROPRENE BLENDS AND CHLOROPRENES, USEC N THE IRRADIATION STUDIES⁴⁷ Table B-4.

Compound Data - Chlorobutyl, Chlore utyl-Polychloroprene Blends and Chloroprene

	Compound 156-62	Compound 157-62	Compound 158-62	Compound 159-62
		Recipe, parts by veight	by veight	
Chlorobutyl HT-10-66	100	20	25	ı
Reoprene WRT	ł	20	75	100
EAF black	22	ß	20	20
ZmO	1	5	5	\$
Stearic acid	ч	H	т	H
Tetramethyl thiuram dis iliide	н	н	н	l
Benzothiazyl sulfide	1	αı	αı	ł
MgO	0.5	2.5	3.25	8
		Cure Schedule	edule	
Cure time, min.	<b>9</b>	Q _T	O <del>1</del>	O ₄
Cure temperature, F	307	307	307	293

Table B-5. PHYSICAL PROPERTIES OF COMPOUND 156-6247

Base Elastomer-Chlorobutyl, Type HT-10-66

	20 1 + 0.0		C1	m	7	4	ທ	9
-	Weight Change		+	+	1 2	-13	`~ +	6
	derdness	ĥ	+	L -	+	£	-12	-1C
	ا الله الله	62	63	55	63	57	ሜ	52
	Ultimate Elongation	515 X	-51	-63	-45	-67	-67	-72
	) <u> </u>	Š	243	187	273	167	163	140
	100 % Modulus	i di di	89+	430	+39	450	87 +78	-59
	.,96	82	374	267	309	269	582	95
	Tensile Strength	in a	<b>ω</b>	-61	-25	-65	49	-61
	Te Str	1494	1371	582	1127	524	539	128
	Gamma Dose	0	6.4 × 106	6.1 × 10 ⁷	5.7 × 106	5.0 × 107	t 1 x 107	5.0 × 10 ⁷
	ខ្លួ		-	41	<b>:</b>	91	17	18
	Nominal Irradiated	As-cured	1. Y, Vac. 16 hrs., 70 F	2. v, Vac. 100 hrs., 70 F	3. v+ UV, Vac.(2) 16 Frs., 95 F	4. Y, Vac.(3) 100 hrs., 70 F	5. v, Air 100 hrs., 70 F	6. v+ UV, Air(2) 100 hrs., 200 F

## Table B-5. Cancluded)

- (1) From as-cured value,
- (2) Measured temperatures are uncerunn.
- (3) Combined radiation intended.

Time effect: Reaction is predominantly scission as noted by the decrease of hardness with time and of modulus after an initial increase.

The scission seems to be slightly greater than crosslinking in air than in vacuo as indicated by hardness change. Atmosphere effect:

Type irradiation effect: The specimens exposed to the combined radiation conditions did not show the surface decomposition that the straight gamma exposure specimens did.

Observations: Condition l, soft surfaces on speciments.

Condition 2, surface depolymerization to a tacky condition.

smoky discoloration on face toward lamp-tacky free surface. Condition 3,

Condition 4, surface depolymerization to a tacky condition.

Condition 5, surface depolymerization to a tacky condition.

irridescent discoloration on face toward lamp-tacky free surface. Specimens had lost elasticity. Condition 6,

Table B-6. PHYSICAL PROPERTI. S OF COMPOUND 157-6247

Base Elastomer-Chlordany, Polychloroprene Biend Type-Chlorobutyl hT-10-66, Veoprene WRT (50:50)

Nominal Irradiated	Can	Gamma Dose	T S	Tensile Strenath	*	100 % Modulus	E. 5.	Ultimate Elongation	Yard	Yardness	Weight Change	
Condition	Š	'	psi	% Chg.(T)	psi	% Chg.(1)	×	% Chg.(1)	Duro A Chg. (I	Chg.(1)	• Bu:	Rating
As-cured		0	1452		334		433		2			
1. v, Vac. 16 hrs., 70 F	13	6.4 × 106	2058	+42	646	+ 93	223	-49	72	+	, +2	-
2. v, Vac. 100 hrs., 70 F	14	6.1 × 10 ⁷	963	134	ı	+350(3)	9	88	82	412	φ	4
3. v, Vac.(2) 16 hrs., 95 F	15	5.7 × 106	987	-32	1	+102(3)	93	-79	85	+ છ	N i i	۸
4. v, Vac. (4)	16	5.0 × 10 ⁷	820	42	1	+248(3)	23	83	83	+13	<b></b>	(r^
100 hrs., 70 F 5. v, Air 100 hrs., 70 F	17	6.1 × 107	1145	7	١	+411(3)	29	<del>8</del>	81	117	6+	ď,
6. v + UV, Air(2) 100 hrs., 200 F	18	5.0 × 10 ⁷	148	06 <b>-</b>	1	+450(3)	ot	86	98	+16	7	ø
												-

## Table B. (Concluded)

- (1) From as-cured value.
- (2) Measured temperatures are uncertain.
- (3) Value found by extrapolation.
- (4) Combined radiation intended.

Cross-linking is the predominant reaction and is in proportion to the exposure time as was shown by comparison of Conditions 1 and 2. Time effect:

Atmosphere effect: The reactions were similar in air as shown by comparison of the property changes in Conditions 2, 4, and 5.

on effect: Comparison of 1 and 3, and 5 and 6 showed slightly more cross—linking induced by the combined radiation than by straight gamm Type irradiation effect:

Condition 2, tabs of specimens had tacky spots on inotected ends.

Condition 3, smoky brown discoloration of face towerd lamp. Condition 4, tabs of specimens had tacky spots on protected ends. Condition 5, tabs of specimens had tacky spots on protected ends. Condition 6, inidescent discoloration on face toward UV lamp. Slight blistering of specimens. "vo specimens broke before test. Observations:

Table B-7. PHYSICAL PROF. TIES OF COMPOUND 158-6247
Base Elastomer-Chlorobutyl-Polychloroprene Blend
Type-Chlorobutyl HT-10-66, Neoprene WRI (25:75)

Nominal	ဒ္ဓီ	Gamma Dose	i d	Tensile Strength	<u>ו</u> '	100 %	] = ;	Ultimate	:		Weight	
Condition	No.	i	pst	% Chg. (1)	psi	% Chg.(1)	*	K Chg.(I)	Duro A Cha. (T)	Chy. (T)	Change ng	Rating
As-cured		0	2144		420		383		72			
1. v, Vac. 16 hrs., 70 F	13	6.4 × 106	1023	70-	332	- 21	217	43	92	+ 4	÷ 4	_
2. v, Vac. 100 hrs., 70 F	14	6.1 × 10 ⁷	1343	-37	1	+578(3)	47	8	98	<del>1</del>	<del>-</del>	ئ ب
3. v + UV, Vac. (2) 16 hrs., 95 F	컦	5.7 x 106	1415	-34	ł	+350(3)	Ł	e e	} %	4	71.	n (
4. v, Vac. (4) 100 hrs., 70 F	16	5.0 × 10 ⁷	1168	4	í	+340(3)	63	3 %	5 %	· +	y <u>c</u> ⊦ 4	v (
5. v, Air 100 hrs., 70 F	. 17	6.1 × 10 ⁷	1542	87	1	+672(3)	47	£ £	3 %	1 414	£ ‡	ი დ
6. $\gamma$ + UV, Air(2) 10c hrs., 200 F	18	5.0 × 10 ⁷	1052	-51	1	+402(3)	S	87	86	+17	. ო +	, 4

Table B-7. (Concluded)

- (1) From as-cured value.
- (2) Measured temperatures are uncertain.
- (3) Value found by extrapolation.
- (4) Combined radiation intended.

in 100 per cent modulus condition), but this was balanced by cross-linking as shown by the hardness increase and the cross-linking became The compound showed an initial softening due to scission (by decrease predominant as exposure time increased. Time effect:

radiation in vacuo as shown by comparison of Conditions 2, 4, and 5. Radiation in air apporently produced more cross-linking than Atmosphere effect:

straight gamma radiation (Condition 3 vs. 1), but examination of Conditions 5 and 6 revealed maked changes in properties. Ivpe irradiation effect: Combined radiation in vacuo produced more cross-linking than

Resides and chee schedules of the chlorosulfonated polyethylenus used in the irradiation studies  47 Table B-8.

Compound Data - Chlorosulfonated Polyethylenes

8	Compound	Compound	Compound	Compound	Compound
	130-62	131-62	132-62	134-62	136-62
		Rectre	Recips, parts by weight	refeht	
Hypaloz 40	100	100	100	100	100
SRF black	8	8	8	<b>Q</b>	3
Rosin	2.5	2.5	2.5	2.5	2.5
Tstrone A	1.0	1.0	7.0	1.0	1.0
094	30	30	30	30	30
<b>Eydragalnone</b>	1	3.3	3.3	i	콰
		9	Cure Schedule	O	
Cure time, min	2	120	Cr.	O†	120
Oure temperature, F	293	893	883	293	293

Table B-9. PHYSICAL PROPERILE. OF COMPOUND 130-6247

Base Elastomer - Chlorosulfonated Polyet ylene, Type - Hypalon 40

Nominal Irradiated	Can	Garma Dose	<i>'</i>	Tersile Strangth	. ~~		UI	Ultimate Elongation			ىرى دى	
Condition	NO	r.	psi	A cng.	psi	's cud-re	R	¥ Cng•117	Duro & Cng.		· GE	Ka ting
As-cured		0	3235		941		271		<b>8</b> 0			
1. Y, Vac. 16 hrs., 70 F	ო	7.8 × 10 ⁶	3475	÷ 7.4	1373	+ 45	280	+ 1.1	82 +	4	18	.4
2. Y, Vac. 100 hrs., 70 F	4	4.9 × 10 ⁷	2590	8	2267	+141	110	9	+ 85	5	+ 19	ø
3. y + UV Vac.(2) 16 hrs., 190 F	13	6.4 × 10 ⁶	2253	န	1275	+ 36	167	4	÷ +	+	27	ო
4. v + UV Vac. (2) 100 hrs , 250 F	10	6.1 × 10 ⁷	3192	- 1.3	3265	+247	100	-64	<b>+</b>	ۍ +	07	.~
5. Y, Air 100 hrs., 70 F	ω	4.1 × 10 ⁷	3062	- 5.3	2126	+126	130	-53	91 +11		+145	4
6. γ + UV Air ⁽²⁾ ioo hrs., 250 F	6	3.8 × 10 ⁷	2977	8.0	2208	+135	128	-57	÷	ۍ +	98 +	v
7. Y, Air 16 hrs., 70 F	ક્ષ	5.7 × 106	2362	-27	1005	+ 6.8	243	-12	+ %	+	+ 21	-

(1) From as-cured value.

⁽²⁾ Measured temperatures are uncertain.

### Table B-9. (Concluded)

The basic effect was cross-linking, increasing with exposure time Time effect: ect: The modulus increase was greater in vacuo than in air. Tensile changes were mixed as were the changes in ultimate elongation. The specimens gained weight, markedly so in air. The effect of the UV was to increase the vacuum exposure weight gain and decrease the size of the weight gain in air. Atmosphere effect:

and hardness greater, and the effect on elongation the same as for straight Type irradiation effect. After 16 hours the mixed radiation in vacuo showed a greater effect on hardness, ultimate elongation and tensile, and a lesser effect on modulus than straight gamma in vacuo. After 100 hours the mixed radiation effect on tensile was less, the effect on modulus. In air the results were similar for mixed and straight gamma After 16 hours the mixed radiation in vacuo showed a radiation.

Condition 2, specimens broke out of or close to end of reduced section. Condition 3, slight discoloration of face toward UV lamp. Condition 4, very slight discoloration of face toward UV lamp. Condition 7, very slight discoloration of face toward UV lamp. Observations:

Designational Author assessed

Table B-10. PHYSICAL PROPERTER OF COMPOUND 131-6247

Base Elastomer - Chlorosulfonzied Polyethylene, Type - Hypalon 40

Nominal Irradiated	Can	Gamma Dose	S H	Tensile Strength		sniapo:	UI	Ultimate Elongation		Hardness	Weight	
Condition	Se	ŗ.	psi	\$ Chg.(I)	psi	% Chg.(1)	×	% Chg.(1)	- 1	Duro A Chg.(1)	ğ	Rating
As-cured		0	3063		1001		330		84			
1. v, Vac. 16 hrs., 70 r	ש	7.8 × 10 ⁶	3022	-1.3	1404	+ 6	257	-22	98	7	<b>+</b>	0
2. v, Vac. 100 hrs., 70 F	4	4.9 × 10 ⁷	3316	+9.7	2002	+100	305	85	98	+5	+ 14	थ
3. v + UV Vac.(2) 16 hrs., 190 F	12	6.4 x 136	3195	ξ.	1374	+ 37	213	98-	84	N11	& +	ო
4. v + UV Vac.(2) 100 hrs., 250 F	10	6.1 × 10 ⁷	3099	*1.1		141(3)	83	-71	84	N\$ 1	- 7	9
5. Y, Air 100 hrs., 70 F	ω	1.1 × 10 ⁷	2994	6.0	2534	+ 30	127	-62	8	<del>ኔ</del>	+147	4
6. v + UV Air(2) 100 hrs., 250 F	σ	3.8 × 10 ⁷	3849	+26	2867	+104	140	-46	88	7	+ 95	πJ
7. Y, Air 16 hrs., 70 F	3A	5.7 x 506	3151	+2.9	976	- 2.5	363	+10	82	7	& +	~

(1) From as-cured value.

(2) Measured temperatures are uncertain,

(3) Value found by extrapolation.

# Table B-i0. (Concluded)

The radiation effects, essentially cross-linking, grow more severe as the exposure time is increased (Condition 1 vs. 2). Time effect:

in ultimate elongation being greater in vacuo and the increase in tensile strength and hardness being greater in air. Most specimens gained weight Atmosphere effect: Except for elongation change at 100 hours the gamma radiation effects were more severe in vacuo than in air. In combined radiation the effect was mixed, the increase in 100 per cent modulus and decrease markedly in air. The effect of UV was to increase the weight gains in vacuum exposure and decrease the weight gains in air.

Type irradiation effect: The difference between the effects of combined radiation and straight gamma radiation were inconsistent. Condition 4, moderate discoloration on face toward UV lamp. Condition 5, very slight discoloration. Condition 6, very slight discoloration on face toward UV lamp. Condition 7, slight iridescence on face of specimens. Observations:

Table B-11. PHYSICAL PROPERTIES OF COMPOUND 132-6247

こうしょう かいかい はいけいじょう ないない これの はない はない ないない ないかいしょう マラン

Base Elastomer - Chlorosulfonated Po., "vic 16, Type - Hypalon 40

Nomina!	å	Garma	9	Modulus		100 %	5	Ul timate			Weight	
Condition	No.	r	781	X Chq. (1)	BS.	% Ch: (1)		% % Chg. (1)	Duro A Chq.	rdness A Chq.(1)	Change mg.	Rating
As-cured		0	3312		80		330		82			
1. v, Vac. 16 hrs., 70 F	ო	7.8 × 106	3274	- 1.2	1514	+ 72	233	-35	83	7	87	1
2. v, Vac. 100 hrs., 70 F	4	4.9 x 107	3425	+ 3.7	2155	+145	170	48	82	ž.	+18	ო
3. v + UV, Vac.(2) 16 hrs., 190 F	12	6.4 × 106	3112	5.8	1644	+ 87	167	, A	85	£	<b>4</b> 18	8
4. v + UV, Vac.(2) 100 hrs., 250 F	01	6.1 × 10 ⁷	2617	-21	1	+462(3)	53	\$	83	∓	ဗ	9
5. v, Air 100 hrs., 70 F	Φ	4.1 × 107	2558	73	2364	+169	113	99-	91	\$	96+	4
6. v + UV, Air(2) 100 hrs., 250 F	6	3.8 × 10?	3120	ا ت ئ	2677	205،	114	9	82	ę.	+79	c)

(1) From as-cured value.

⁽²⁾ Measured temperatures are uncertain.

⁽³⁾ Value found by extrapolation.

# Table B-11. (Concluded)

Cross-linking in vacuo became more severe as expocure time increased (Conditions I vs. 2 and 3 vs. 4). Time effect:

· Atmosphere effect: Air exposure was more severe than vacuo in gamma radiation but the reverse was true in mixed radiation (Conditions 2 vs. 5 and 3 vs. Most specimens gained weight. The weight gain was markedly more pronounced in air than vacuo and was decreased by the addition of UV radiation and heat.

Iype: .rradiation effect: Mixed radiation produces more cross-linking than gamma
radiation and the effect is more pronounced in vacuo than in air
(Conditions 2 vs. 4 and 5 vs. 6).

Condition 3, discoloration on face toward UV lamp. Condition 4, slight discoloration on face toward UV lamp. Condition 6, discoloration slight discoloration on face toward UV lamp. on face toward UV lamp. Observations:

Table B-12. PHYSICAL PROPEP TES OF COMPOUND 134-6247

Base Elastomer - Chlorosulfor ated Polyeth ane, Type - Hypalon 40

	Dasc	FIGSIONS	3	base Elasionier - Guorosanolarea roryca	10.0							-
Nominal	٢	Gamma	<b>,</b>	Tensile		200 %	UI	Ultimate Elongation	Hard	Hardness	Weight	
Condition	<u> </u>		PSI	X Chg. (1)	1.d	" Che. T	×	X Cha. (1)	Duro A Chq. (I.	Chq. (1)	mG.	Rating
As-cured		O	3190		1567		207		88			
1. v, Vac. 16 hrs., 70 F	ო	7.8 × 10 ⁶	3372	+ 4.1	2567	+ 2	143	8	87	7	+ 18	<b>-</b> -t
2. v, Vac. 100 hrs., 70 F	4	4.9 × 10 ⁷	3414	+ 7.0	1	+150(3)	87	8,	88	<b>!</b> +	+ 15	.c
3. v + UV, Vac.(2) 16 hrs., 190 F	12	6.4 × 10 ⁶	1938	87	ł	(ε)0€ +	95	-54	88	Ni 1	+ 19	7
4. v + UV, Vac.(2) 100 hrs., 250 F	Q.	6.1 × 10 ⁷	3108	- 2.6	1_	+231(3)	8	-71	83	<b>+</b>	<b>9</b> +	7
5. v, Air 100 hrs., 70 F	w	4.1 × 10 ⁷	3553	+11		+183	80	4	46	\$	+117	9
6. v + UV, Air(2) 100 hrs., 250 F	٥	3.8 × 10 ⁷	3692	+16	1	+125(3)	83	-26	91	£	+ 62	4
7. v, Air 16 hrs., 70 F	*	5.7 > 106	8	-72	962	- 48	110	8	88	N i i	+ 19	ო

(1) From as-cured value.

(2) Measured temperatures are uncertain.

(3) Value found by extrapolation.

Table B-12. (Concluded)

不完,可以是这位就是我的情况是我们的自己,但是我们就是是这种的,我们就是是这种的,只是这个一个一个人,也不是

decreased as well as the elongation. This indicated a period of chain The compound when irradiated in vacuo underwent an increase in tensile and modulus and decrease in elongation with time. In air it passed through an initial period which in the modulus and tensile strength scission. Time effect:

severe than that in air. The reaction in vacuo, at all periods, and air, for long periods, seemed to be predominantly cross-linkage although the matcrial irradiated in air underwent an initial chain scission period. the weight changes were greater in air than in vacuo and were decreased by the addition of the UV radiation. Atmosphere effect: The reaction produced by exposure in vacuo was, in general, name

Iype inradiation effect: The difference in effect between combined radiation and gamma radiation was inconsistent. SERVICE SERVICES SERVICES SERVICES

Observations: None

THE PROPERTY OF THE PROPERTY O

Table B-13. PHYSICAL PROPERTIES CT COMPOUND 136-62 Base Elastomer - Chlorosulfonated Polyettylen: Type - Hypalon 4047

Nominal Irradiated Condition	Can No.	Gamma Dose	Tensile Strength psi % Chg.(2)	100 % Modulus psi % Chq.(2)	Ultimate Elongation % % Chg.(2)	Hardness Duro A Chq.(2)	Weight <u>Change</u> mg. Rating
As-cured		0	3400	1785	210		
7. v, Air 16 hrs., 70 F	34	5.7 × 10 ⁶ 1217	1217 –64	789 -56	203 -3.3		+26

Although lack of time permitted exposure of this compound to only one condition, it was included to show the effect of the addition of antirac (to compound 134-62).  $\widehat{\Xi}$ 

(2) From as-cured value.

Table B-14. ELASTOMERS TESTED FOR EFFECTS OF HIGH TEMPERATURES IN A VACUUM⁹

## Elastomers

- Silicone (DC 651, 916, 2071), a polysiloxane high polymer useful over the temperature range of -130°F to 500°F.
- Adiprene ("L" and "C"), a urethane polymer useful over the temperature range of -65°F to 175°F.
- Buna N, an acrylonitrile-butadiene polymer useful over temperature range of -60°F to 200°F.
- Buty! (K-121 and K-1330), an isobutylene isoprene polymer useful over temperature range of -70°F to 250°F.
- Neoprene, a chloroprene polymer useful over the temperature range of -60°F to 200°F.
- Viton A-U-74, a coperamer of vinylidene fluoride and hexafluoropropylene useful over the temperature range of -47°1 to 500°F.
- Silicon sponge, closed cell recommended for use from ~100°F to 480°F.

EFFECT OF LOW PRESSURE AND HIGH TEMPERATURES ON SFACE VEHICLE ELASTOMERS? Table B-15.

			Test Da	6	
Material	Conditions	Sample Size & No.	Property	Result	Coursents
Silicone DC 2071	Temperature 450 F Ultimate pressure 6 x 10 ⁻⁴ Time at pressure 3 hours	3 Standard tensile specimens	a) Tenaile atrength a) b) Hardness c) Elongation c)	a) No significant change in tensile strength b) No change in hardness c) 18-4% Decrease in elenga- tion	The test results for the sill- cone rubbers were very widely scattered and variant deepn- strating a need for large sam- ple lots to indicate more con-
S111cone DC 916	Temperature 450 F Ultimate pressure 1.2 x 10 ⁻⁴ Time at pressure 4-1/2 hours	2 Standard tensile urs specimens	Same as above	a) Test void - results widely variant b) 2% Increase in hardness c) 4.2% Decrease in elongation	clusively any trends in physical—property change. Ditto
Silicone DC 651	Temperature 450 F Ultimate pressure 1.2 x 10-4 Time at pressure 4-1/2 hours	2 Standard tensile urs specimens	Same as above	a) No significant change in tensile strength b) No change in hardness c) 10.2% Decrease in elonga- tion	•
Buna → K	Temperature 300 F Ultimate pressure 1.2 x 10 ⁻³ Time at pressure 5 hours	3 Standard tensile specimens	Same as above	a) Tensile tests inconclusive b) 13.5% Increase in hardness c) 7.8% Decrease in elonga- tion	Mardness and elongation differences consistent tensile data widely scatter of.
Neoprene	Temperature 300 F Ultimate pressure 5 x 10 ⁻⁴ Time at pressure 3 hours	3 Standard tensile specimens	Same as above	a) 30.2% Increase in tensile strength b) 23% Increase in hardness c) 6.8% Decrease in elonga- tion	Tensile, hardness, and alongs— tion changes consistent.
Adiprene	Temperature 200 ' Ultimate pressure 1.1 ' 10-2 Time at pressure 5 hturs	3 Standard tensile specimens	Same as above	a) No significant change in tensile strength b) No change in hardness c) 7-2% Increase in elonga- tion	Poor ultimate pressure ob- tained; rerun of idditional samples necessary.
Silicone Sponge WCI 4546-GR.42	Temperature 450 F Ultimate pressure 8 x 10 ⁻⁵ 42 lime at pressure 3-1/2 hours	3 Specimens a) 2"x2"x3" urs b)	a) Compression deflection b) Water absorption	a) Test results inconclusive	
Adiprene C	Tomperature 300 F Ultimate pressure 9/2 x 10 ⁻⁴ Lime at pressure 6 hours	tensile specimens	a) Tensile strong ~ a! b) Hardness c) Elongation b) c)	a) increase of 37.7% in ten- it strength b) 8.3% Increase in hardness c) No significant change in elongation	Tensil( and haxdness data con- sisten∵.

Table B-15. (Concluded)

ł	1	B-2	4	1
	Comments	Yellowish condensate observed in cold trap. Elongation data consistent tensile strength data scattered.	Insufficient camples for significant 1.501ts.	Elongation dato consistent tensile data scattered.
	Result	6 Standard a) Tensiic strength a) 7.7% Decrease in tensile tensile b) Hardness strength specimens c) Elongation c) 11.9% Increase in elongation tion	a) 12.3% Decrease in tensile strength b) 1.4% Increase in hardness c) 5.5% Decrease in elonga- tion	a) 7.3% Increase in tensile strength b) 7.7% Increase in hardness c) 6.5% Decrease in elonga- tion
Test Data	Property	6 Standard a) Tensiic strength a) tensile b) Hardness specimens c) Elongation b)	Same as above	Same as above
	Size & No.	6 Standard tensile specimens	2 Standard tersile specimens	6 Standard tensile specimens
	Conditions	Temperature 300 F Ultimate pressure 8.4 x 10 ⁻⁴ Time at pressure 5.5 hours	Camperature 400 F Ultimate pressure 5.5 x 10 ⁻⁴ Time c. pressure 6.5 hours	Temperature 250 F Ultimate prussure 2.5 x 10-4 Time at pref A.re 5 hours
	Material	Butyl K-1210	<b>Viton</b> A U-74	Putyl K-1330

Table B-16. EXPOSURE OF VITON-B TO UTH VACUUM AT VARIOUS TEMPERATURES 45

		Exposed to Vacuum of	Oή	400 F	50	500 F	<b>)</b> 9	600 F
Property Measured Original	Original	mm Hg for 5 Days at Room Tempereture	Vacuum of 1.9 x 10 ⁻⁵ mm Hg for 5 Days	Air Oven for 5 Days	Vacuum of 1.4 x 10 ⁻⁵ mm Hg for 5 Days	#1f Oven for 5 Days	Vacuum of: 1.7 x 10 ⁻⁵ mm Hg fox 5 Days	Air Oven for 5 Days
Tensile strength, psi	2610	2630	2280	52:70	2140	029	620	B-2 028
Modulus, psi at 200 per cent elongation	т300	1030	1810	1000	1970	520	, 570	.5 
Elongation, per cent	320	340	240	370	210	014	240	011
Hardness, Shore A	#2	72	75	<del>1</del> 5	75	75	7.7	83
Strain, per cent elongation at 400 psi	107	96	&	125	&	171	123	Broke
Change in weight, per cent	ł	-0.06	-0.07	-1.1	<b>-</b> 2.1	-6.8	-5.5	-18.8

Table B-17. RECIPES AND CURE SCHEDULES OF THE FLUOROELASTOMERS (VITON A) USED IN THE IRRADIATION STUDIES.47

Compound Data - Fluoroelastomer

	Compound 150-62	Compound 151-62	Compound 152-62
	R	ecipe, parts b	y weight
Viton A	100	100	100
MT black	25	60	****
GPF black			60
MgO	15	15	15
HMDAC	1.5	1.5	1.25

Cure Schedule

All compounds were press cured for 30 minutes at 300 F, and post cured for 28 hours at 400 F.

Table B-18, PHYSICAL PROPER IES OF COMPOUND 150-6247
Base Elastomer - Fluorcelestener, A Copolymer of
Vir. E. e. Fluoride and Hexafluoropropylene

		Type .	Type - Viton A	A								
	8 8 8 8	German Doge r.	Ter Str psi	Tensile Strength % Chg.(I)	# <b>*</b>	100 % Modulus \$ Chg. (1)	I I I	Untimate Rlongation % Chg.(1)	Hardness Duro A Chg.(I,	ness (T)	Weight Change mg.	Rating
As-cured		0	1835		3446	1	123		88			
2. v, Vac. 100 hrs., 70 F	1,4	6.1 x 107	1239	& <b>-</b>	ı	+199(3)	30	-76	93	+5	‡	ო
3. v + UV, Vac.(2) 16 hrs., 95 F	15	5.7 x 106	1512	-18	ì	+ 35(3)	Ħ	-37	88	111	N11	н
4. γ, Ψ _C . (4) 100 brs., 70 F	97	5.0 × 107	9461	+ 6.0	1	+ 92(3)	29	911-	ಕ	+3	Nil	a
5. Y, Air 100 Lfs., 70 F	.: ਜ	6.1 x 10 ⁷	1600	-13	1	+381(3)	ສ	<b>18</b> -	88	N£1	45	v
6. v + UV, Air(2) 100 hrs., 200 F	18	5.0 × 10 ⁷	1941	-50	1	+304(3)	25	-72	16	Ψ.	φ	4

(2) Measured temperatures are uncertain.

(3) Value found by extrapolation.

(4) Combined radiation intended.

Table B. 18. Concluded)

The effect: Cross-linking increases with the increase in radiation dosage.

Atmosphere effect: Irradiation in air caused more cross-linking than in vacuo. Weight changes were generally insignificant.

Type irradiation effect: Combined irradiation caused more cross-linking than straight garma radiation.

Condition 3, brownish to smoky grey discoloration on face toward UV lamp. Condition 6, iridescent discoloration of face toward UV lamp. Observations:

Table B-19, PHYSICAL, PRCFERT SOF COMPOUND 151-6247

Base Elastomer - Fluoroclastomer A Copolymer of Vinylidene

Fluoride 20, 1 H 2021fluoropropylene

Type - Viton A

Nowinal ' Irradiated	ខ្លួន	Garmes Dose	Str	Tensile Strength & Chg. (1)	100 % Moduly 100 % 180	(T).	Else	Hicketton	Bard Duro A	chg.(1)	Weight Change mg.	Ruting
As-cured			1 _		9	i	177		78			
1. v, Vac. 16 hrs., 70 F	13	6.4 × 106	1833	- 1.8	1435	+106	113	-36	78	N1.1	<del>.</del>	a
2. Y, Vac. 100 hrs., 70 F	7.7	6.1 × 10 ⁷	2010	+ 7.6	ı	+345(3)	65	-63	₫	Ą	45	5
3. y ~ UV, Vac. (2) 16 hrs., 95 F	15	5.7 × 106	2168	+16	1333	26 +	137	<b>-</b> 53	78	N11	<del>-</del>	ન
4. Y, Vac. (4) 100 hrs., 70 F	3.	5.0 × 10 ⁷	1658	21-	!	+258(3)	<i>L</i> 9	89	85	L+	Nil	æ
5. Y, Air 100 hrs., 70 F	17	6.1 × 107	1977	+ 5.9	ļ	+374(3)	8	99	₹	9+	#	9
6. y + UV, Air(2) 100 hrs., 200 F	ध्य	5. J x 107	1738	- 6.9	1	+235(3)	73	14-	85	L+	7	m

⁽¹⁾ From as-cured value.

⁽²⁾ Measured temperatures are uncertain.

⁽³⁾ Value found by extrapolation.

⁽⁴⁾ Combined rediscion intended.

(Concluded) Tabi Cross-linking starts immediately and becomes more severe as exposure time is increased (Condition 1 %. 2).

Time cffect:

Atmosphere effect: At room temperature the changes produced by air exposure are somewhat greater than those produced by vacuo exposure. The situation is reversed at the elevated termeture of the combined irradiation. The weight gains are not large enough to be significant.

Type irradiation effect: Combined irradiation produces less cross-linking than strai, nu gamma radiation as particularly shown in the 100 per cent modulus figures (Comittion 1 vs. 3 and 5 v.. 6).

Condition 3, brownish discoloration on face toward lamp. Condition 6, iridescent coloration on face toward UV lamp. Observations:

Table B-20, PHYSICAL PROPER IN S OF COMFOUND 152-6247

Base Elastomer - Fluoreclastemer, A Copolymer of Vinylidene
Fluoride and Hazafluoropylene

Type - Viton A

Nowthal		Garma	F	Tensile	1,00 🖈	ULE	Utimate		- 、	Weight	
Irradiated	2 8 2 8	Dose r.	Str ps1	Strength (1)	psi % Cng.(1)	and a	Conception 5 Chg.(I)	Duro A	o A Chg.(1)	i Sanga Mg.	Rating
As-cured		٥	1300			8		95			
1. v, Vac. 16 hrs., 70 F	. £1	6.4 × 10 ⁶	1884	54 +	+146(3)	53	<u> 1</u>	ġ	7	+5	O)
2. v, Vac. 100 hrs., 70 F	ā	6.1 × 10 ⁷	2459	+ 83	+153(3)	ထွ	-67	*	7	9+	W
3. v + uv, vac.(2) 16 hrs., 95 F	15	5.7 × 10 ⁶	1670	98 +	+ 83(3)	63	-30	93	o _l	শ	-
4. v, Vac. (4) 100 hrs., 70 F	শ্ন	5.0 × 10 ⁷	2321	£2 +	+222(3)	ጽ	<b>11</b> 1-	95	LTM	3	<b>:</b>
5. v, Air 100 hrs., 70 F	17	6.1 × 10 ⁷	2593	+100	+495(3)	30	-67	95	KIT	<b>ም</b>	'n
6. v + UV, Air(2) 100 hrb., 200 F	18	5.0 x 107	2048	+ 65	+610(3)	8	e7-8	95	LTN	۳.	9

(1) From as-cured value.

⁽²⁾ Masured temperatures are uncertain.

⁽³⁾ Value found by extrapolation.

⁽⁴⁾ Combined radiation intendai.

## Table B- .0. (Concluded)

The cross-linking effect caused by radiation was increased by increased exposure time. Time effect:

Examination of Condition 2 and 5 reveals that greater cross-linking took place in air rather than in vacuo. Weight changes were small and generally gains. The effect of ultraviolet was to decrease the wright gains or cause small losses (Conditions 3 and 6). Atmosphere effect:

Type irrudiation effect: Combined radiation caused less cross-linking in vacuo as evidenced by the effect on the tensile strength and modulus (Condition 1 vs. 3). The reverse was true in air as shown by changes in modulus and 100 per cent elongation (Condition 5 vc. 2).

Observations: Condition 3, shiny brownish yellow discoloration on face toward UV Lamp. Condition 6, inidescent discoloration with smoky deposit on face toward

IENT AND RESULTS OF UITRILE RUBBER⁶ TES CENVIROR STATIC TEST: Table B-21.

				Carrie Service	3 4.							
	Radiation Exposure		1	(	Canetta Strangera (*)(nat.)	**************************************		Klongs-	Temestature	ı	Pressure	
- d.	Corres/, Meutrons (n/cm2)	Original, Change,		at 2%	ac 505 at 1005 Elbertlen Elongation	at 100% longation U	Ultimate	tion, per cent	Average,	12.03 10.03	(torr)	10.(c)
Rune G O (RA30760)	(control specimens) August 1962			86 E E E	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	170 185 168 173 173	2511 2578 2578 2778 2679 2630/108	680 680 670 670 685/14.64	E	1	96	
1.7(9	1.7(9) 6.5(12) 1.9(13) 7.3(11) (wccum irradiation) August 1962	3.8288 3.8104 3.9848 3.9816	+0.0020 +0.0012 +0.0012	(a = = = = = = = = = = = = = = = = = = =	وا	ام	(a) 1547 2047 2047 2047 2047 2047 2047 2047 20	(a) 044 650 3.11/024	8	2	>(-6)	
7.0(9	7.0(9) 8.1(12) 8.7(13) 3.1(12) (racum irralistica) hugust 1962	3.8052 3.8058 3.8056 3.8906	-0.0006 -0.0006 -0.0006 -0.0006	ន្ត្រីនេខ	3188	8 181 % (%)	25 68 85 65 155 155 155 155 155 155 155 155 155	82 1 82 82/82 82/83/82	8	8	)( <del>-</del> 6)	
٥	0 0 0 (control specimens) Fibriary 1963	ı	!	823 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	183 188 170/171	1 8 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2355 2355 2355	16882	ı	1	1	
•	0 0 0 (wegan controls) February 1963	3.893 3.8763 3.8835 3.8835 3.8835	0.000 0.000 0.000 0.000 0.000 0.000 0.000	1873		ផ្លូងតំនង់ វិត្តិ	253 2730 2730 268/303 268/303	65 635 635 635 635 635 635 635 635 635 6	i	1	1	
0	0 0 0 (control specimens Nay 1962	i	1	109/11/601	_	21/8.6/5	5/964/6542		l	i	i	
1.67	1.87(9) (mir irradiation) May 1962	I	1	159/30/5	220/23/5	348/12/5	21/630/5	391/61/5	ı		<b>)</b> 1	
2.06	2.06(10) (air irradiation) Nay 1962	1	1	123/1711	1117/129/4 1999/52/8 3495/233/4 3512, 206/5 100/4.9/4	3495/233/4	3512, 206/5	100/4.9/4	١			

(a) Average value/standard deviation on an "raividual basis/number of sam". (b) No tensile values were obtained for this specimen. (c) Applies to the original reference.

3

CHANGES IN PROPER TES OF NITRILE RUBBER TRRADIATED IN VACUUM AND IN AIR⁶ Table B-22.

ant red		ก้ผ้	B-34	9	٠ċ
Fer Cent Change in Measured Property	000	-91.5 -34.3 0	84. 4.	-11.6	+43 -84.5
Measured Property	U_timate tensile strength Ultimate elongation Weight change	Ultimate tensile strength Ultimate elongation Weight change	Ultimate tensile strength Ultimate elongation Weight change	Ultimate tensile strength Ultimate elongation	Ultimate tensile strength Ultimate elongation
Specimen Configuration	Tensile (ASTM-D-412-51T, Die C)	Tensile (ASTF-D-412-51T, Die C)	Tensile (ASTN-D-412-51T, Die C)	Tensile (ASTK-D-412-51T, Die C)	Tensile (ASTV-D-412-51T, Die C)
Vacuum (torr)	1 × 10-6	5 x 10-6	5 × 10-6	Air ivra-	Air irradiated
Garmen Doss Trade Mame [ergs/gm(C)]	0 Vacuum Controls	1.7 × 10 ⁹	7.0 × 10 ⁹	1.9 × 1.09	2.1 × 10 ¹⁰
Trade Hene					
Cetegory	Elastomers Bune N (RA 30760)				

a Mile Sallan

EXPOSURE OF NITRILE RUBBER VULCANIZATES TO HIGH VACUUM AT VARIOUS TEMPER "TRES⁴⁵ Table B-23.

- 1718 Think Brind District					Course to Section 1			Commence of the Commence of th
		Exposed to	1.	158 F	212	Er Er	90	300 F
		10-5 mm Hg for 56 Days	Vacuum >. 8 x 1.0-5 mm Ils; for	Air Oven	Vacuum of 7.8 x 13-6 mm Hg for	Air Oven	Vacuum of 2.1 x 10 ⁻⁶ mm Hg for	Atr Oven
Property Measured 0	Original	Temperature		for 7 Days	5 Days	for 5 Days	5 Days	for 5 Days
		(dun)	lasticized (	Unplasticized Compound (N128)	(1)			
Tensile strength, psi	2680	2470	2670	2710	2910	2830	2270	1
Modulus, psi at 200 per cent elongation	1980	1	ł	ŧ	ł	ı	. 1	B-35
Elongation, per cent	260	230	235	255	230	530	ύLT	1
Hardness, Shore A	72	74	75	7.5	72	472	6.	ŀ
Strain, per cent elongation at 400 psi	82	82	72	63	75	70	55	l
Low temperature flexibility, ASTM DLO43, T ₂₀₀ , F	-28	-29	<del>1.</del>	8	i	l	-25	l
Weight change, per cent	ŧ	۶.	-0.5	ì	-2.6	<b>-0.8</b>	-8.8 8.8	-3.5

						-		
Property Measured On	Original	Exposed to Vacuum of 10-5 mm Hg for 56 Days at Room Temmerature	Vacuum ct 8 x 1c ⁻ ; mm Hg for 7 Days	Air Oven for 7 Days	Vacuum of 7.8 × 10 ⁻⁶ mm Hg for 5 Days	Air Oven for 5 Days	Vacuum of 2.1 x 10 ⁵ mm Hg for 5 Days	Air Oven for 5 Days
		BIA	sticized Com	Plasticized Commound (N128g)	<b>)</b> (1)			
Tensile strength, psi	1370	1480	2020	1580	2160	0£9T	1790	Too brittle to test
Modulus, psi at 300 per cent elongation	850	O <del>1</del> 8	1290	950	1870	1460	ı	Too brittle to test घ
Blongation, per cent	110	η30	385	340	330	360	210	To brittle to test
Hardness, Shore A	57	55	%	29	8	Ж	76	Too brittle to test
Strain, per cent elongation at 400 psi	509	88	ፒቲፒ	<b>30</b> 6	ħटा र	116	62	Too brittle to test
Low temperature flexibility, ASTM D1043, T ₂₀₀ , F	95 .	 در-	-36	<del>1</del> 5	i	ı	<del>.</del> 31	Too brittle to test
Weight change, per cent	See Table	+0 A-1	.2 –9.1 <u>for formulation,</u>	1	-9.3	-1.9	-10.2	0.6-
per cent (1) See Table A	e Table	우귀	-9.1 nulation,	- }	-9.3	-1.9	-10.2	-9.0

TABLE B-24. TEST ENVIRONMENT AND RESULT. OF STATIC TEST; NEOPRENE RUBBER

Pressure	Average, Figure (torr) No. (c)		•		co.		G						
A	Ave to	'	92		<u>%</u>		<u>8</u>		ì	ì	I	'	
ature	Average, Figure (F) No.		1		ĭ		ሯ		1	1	i	1	
Temperature	lverage. (F)		F		8		8		1		ı	1	
8			3,32,83 3,03,03	.26/25.6	8888	218/34.0	2828	98/17.0	454/29.6/5	. oceles ele	316/26.2/; 628/46.4/5 2(09/224/7 207/21.7/7	35/6.4/5	
			88888 88888	3134/227	_ከ ያል	•	1844 1844	134/15.5	392/18.9/4 3297/244/5	1, 100/100/1	/> 2(03/22//	203/40/5	
(a) (ps:	at 100%	CT OUR STORY	పెళ్లిస్త్రి	384/36.0	14%	65/3.0	111			4	*.04/88	1	
Tensile Strength (a) (ps:)	at 50%	Flongation	2888	<u>286/5.3</u>	888	S N	5581	12/2	220/3.6/5	•	316/26.2/?	ı	
1	at 25%	Elongation Liongation Liongation Commercial	<b>232</b> 2	139/9.2	ន្ទងង	\$1.5 100 100 100 100 100 100 100 100 100 10	៨និង	45.5 2.5 2.5	११४/हर		186/24.9/5	ı	
1	Original, Change,	E B	1		+0.0093 +0.0100	÷0.01.0	+0.0400 +0.0385 +0.0361	+0.0g76	ı		ı	ı	
	Original, Change	E	t		5.21k7 5.22k7 5.22k8	5.1056	2, 2, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	188.	1		i	1	
	£	E>8. 1 Mev	•		8.0(11)		3.7(12)		•				
Radiation Exposu .e	Neutrons (n/cm2)	rmal E>2. 9 Mev E>8. 1 Mev	(control specimens)		1.9(9) 6.7(12) 2.9(13) (mecum irradiation) Ament 1962		5.4(9) 9.2(12) 9.8(13) (vacum irradiation) lawnet 1962	,	0 0	ट्र इंट देखा	1.87.9) (air irradiation)	o oction tetr trredigation	·
	Gamma Ferge/	Name gm(C) Thermal	` <u>8</u> 8		1.9(9) 6.1 (vac		5.4(9) 9.2		°	5	1.87.9) (4	0 (00)	1 /17/01/2
	Material Gamma	Nama	Keoprade (RAZ4160)										

(a) Average value/standard deviation on an individual basis/number of samples.
(b) No tensile values were obtair of for this specimen.
(c) Applies to the original reference.

changes in properties of elastomers irradiated in vacuum and in  $\text{Air}^{\{6\}}$ TABLE B-25.

Category	Trade Name	Gamma Exposure, ergs g ⁻¹ (c)	Vacuum, torr	Specimen Configuration	. Measured P. operty	Fer Cent Change in Measured Property
Elastomers	Neoprene (RA 24160)	1.9 × 109	5 x 10-6	Tensile (ASTM-D-412-51T, Die C)	Ultimate tensile strength Ultimate elongation Weight change	-94 -49 0
		5.4 × 10 ⁹	5 x 10-6	Tensile (ASTM-D-412-51T, Die C)	Ultimate tensile strength Ultimate elongation Weight change	-90- 0

Table B-26. RECIPES AND CURE SCHEDULES OF THE POLYCHLOROPRENES USED IN THE IRRADIATION STUDIES⁴⁷

Compound Data - Polychloroprenes

	Compound 138-62	Compound 139-62	apound .40-62	Compound 159-62	Compound 161-62
		Recipe.	parts by	veight	
Neoprene WRT	100	1.00	100	100	100
SRF black	35	35	35	-	•
HAF black	****			50	50
:.a. ^	5	5	5	5	5
Stearic acid	1	1	1	1	1
<b>N</b> eo	4	4	4	8	8
Hydroquinone		2.0	5.0		
Tetramethyl thiuram disulfide	-	***		1	1
Benzothiazyl sulfide	***	***	<b>b</b> arra	2	2
		Cu	re Schedul	<u> </u>	
Cure time, min.	40	40	ήO	40	20
Cure temperature, F	293	293	293	293	293

一個名は他のでは、日本のでは、大学の情報を開発を開発している。

Table B-27, PHYSICAL FM., FR IIES OF COMPCUND 138-6247

Base Elastomer - Polycelorop ene, Type - Neoprene WRT

Mondon	٤	Jemme Doge	St. 8	Tensile Strength	7	% O	E C	Ultimate Elongation	Bardness	1008	Weight Change	
Condition	ġ	Ţ.	190	\$ CD 2. (I)	182	(T) CDG: (T)	8	\$ Chg.(1)	Duro A Chg. (1)	(T)	ä	Rating
As-cured		0	2303		187		537		8			
1. v, vac. 16 hrs., 70 F	m	7.8 × 106	2731	+ 39	<del>01</del> /2	+ 189	742	₹.	&	٥٠ +	+10	<b>ત</b>
2. v, Vac. 100 hrs., 70 F	≄	4.9 x 107	टाक	۲ .	Į	+ 1386(3)	11	88 -	<del>ప</del> ే	‡8 <b>‡</b>	ದ+	ī.
3. v + UV, Vac. (2) 16 hrs., 190 F	22	6.4 × 10 ⁶	855	₹ 1	1	+ 408(3)	8	- 83	75	+15	+16	αı
μ. γ + UV, Vac. (2) 100 hrs., 250 F	ន	6.1 × 10 ⁷	1700	- 26	1	+ 2356(3)	37	- 93	88	82+ +	410	9
5. v, Air 100 hrs., 70 F	α	4.1 × 107	579	- 75	,1	+ 1245(3)	83	96 -	88	82 +	19+	#
6. v ~ UV, Air(2) 100 hrs., 250 F	ο,	3.8 × 107	1265	54 -	1	+ 1007(3)	57	68 <del>-</del>	88	×24 +	c5+	3

(2) Measured temperaturos ..re uncertain.

(3) Value found by extrapolation.

Table E-27, (Concluded)

"不是是一种,是我们是我们是我们是我们的人,""是是一个人,

This was shown by the behavior of all properties recket The cross linking began immediately and increased very much with incr (Condition 1 vs. 2 and 3 vs. 4), except the tensile strength. In ex saure time. Time effect:

temperature than at the elevated temperature of the conditions. The modulus change was somewhat wrente in vacuo than air at Atmosphere fifet: Irradiation in air produced a greater change in tens' - strength than radiation in vacuo. The difference in change was first at room room temperatures and very much greater at the el ated temperature of combined radiation. Hardness and elongation chages were mixed. All specimens gained weight, markedly so in air.

severe than the straight gamma radiation. The combined radiation in air was apparently less severe than straight amma radiation. Type irradiation effect: In vacuo the combined radiation frects were markedly more

Condition 5, Condition 4, slight discoloration on factoward UV lamp. Condition of the coloration of specimens, valish deposit on protected tabs. Condition 6, discoloration on face to and UV lamp. Observations:

ţ

MENTERS STATES SELECTION OF STATES

Table B-28. THYSICAL PRC PRINTS OF COMPOUND 139-62.47

e WKT	
Neoprene 7	
•	
Type	
ne,	
Polychiorop.	
٠	
Ele stomer	
Base	

7	8.	State Pre-	- 4	Frantie Strenth	17	(1) - 00 7 - 001 100 (1)	B G	Untimate Elongation & Chg. (1)	Bardnes.		Weight Chance W.	Rating
COME. L.V.		. 0			สี		576		8	/	1	
1. v, Vac., 16 E , 70 P	m	<b>dot =</b> 8.)	2110	£.	ख्	+ 106	8	8	*	4	· •	•. •
2. v, Vac. 100 hr:., 70 F	*	4.9 × 107	1351	% '	933	+ 317	ध्य	- 75	<u>+</u>	. <b>.</b>	#	)" "=
3. v + UV, Vac.(2)	ង	6.4 x 106	1394	- 35	86	+ 16	197	- 67	<b>ب</b>	m	+10	т
100 brs., 250 F	ន	6.1 x 10 ⁷	9.5	- 55	1	+ 978(3)	3	- 93	÷ 52	\$ \$	TI I	B-42 ►
5. v, 'tr, 100 hrs.,	80	4.1 x 10 ⁷	1016	- 53	I	+ 827(3)	9	88	÷ +L	۵,	4	ý
. v + UV, Air(2)	0	3.8 x 10 ⁷	1109	87	I	+ 386(3)	63	88	73 +	N +	₽.	ار. مو
7. v, Air 16 hrs., 70 ?	*	901 × 2-3	2526	4 18	<del>19</del> 5	ह्य •	8	4.4	0;	? <b>\</b> +	+1,3	`**}; <b>⋖</b>
												1

(2) Measured temperatures are uncertain.

(3) Value found by extrapolation.

Table B-23. Gencluded)

the behavior of the 100 per ss changes (1 vs. 2, 3 vs. 4, ure and increased markedly The cross-linking began impediately with exponent as exposure time increased. This was shown becent modulus, ultimate elungation, and hardn Time effect:

h vacue produced greater despress than have more marked as the irradiation had irradiation (Condition h and i), Condition 1 vs. 7), irradiation the physical properties than creases being produced by irradiation if air and my commimed radiation Atmosphere effect: During short periods of irradiation time was increased. However, during come This difference be, the effect was reversed and irradiation in inradiation in air. All conditions sice in air produced slightly greater changes irreliation in vacuo.

s and very slightly larger changes were than the straight gamma radiation (Capitions 1 vs. 3 and 2 vs. 4). In alr the differences were slight but afree changes were produced by straight gamma in tensile strength and modul. sand very slightly liproduced in the sitimate elongation by combined radiation. Type irradiation effect:

Condition 6, slight dismens on face toward ultraviolet lamp. specimens. Condition 4, discoloration of spectordition 5, slight discoloration of coloration of specimens. Observations:

4.

Table B-29, PHYSICAL PraneRTIES OF COMPANND 140-6247

Hominal Irradiated	ខ្លួ	8 8	S W	Section 5	ξ,	N A S	ŖĦ,	Untimate Normation	Hardness A		Helche Chance	d CX
Condition	ġ	  - 	Z								ř	
As-cured		0	1835	<b>.</b>	239		51.7		ц			
1. %, Vac. 16 hrs., 70 F	m	7.8 × 10 ⁶	2330	12+,	164	+ 105	283	94-	ኝ	α 1	+	OI
2. 1, Vac 100 hrs 70 F	4	4.9 × 10 ⁷	1243	gy P	871	+ 263	ध्य	-76	11	9	7	æ
3. · + UV,(2) 16 hrs., 1.0 F	12	6.4 × 10 ⁶	1097	9	<b>%</b>	大1+	163	\$	23	01 +	m +	m
4. v + UV, /ac.(2) 100 hrs., 250 F	97	6.1 × 107	<b>3</b>	×	1	+ 900(3)	37	-93	ęş	412	Ŧ	7
5. v, Air 100 brs., 70 F	α	4.1 × 107	1063/	24	1116(4)	.) +367	(4)86	) -63	&	÷	¢, +	ĸ
6. v + 14, Air(2) 100 hrs., 250 F	7	3.8 x 10 ⁷	45	37	1	+612(3)	53	ጽ	8	<b>o</b>	₹.	•
1. v, Air 16 hrs., 70 F	న	5.7 × 10 ⁶	rzz	₹.	611	<b>98</b>	31.7	-39	ц	HII	21+	ч

(2) Measured temperatures are uncertain.

(3) Value found by extrapolation.

(4) Two specimens had an ultimate Tangation equal to 100 process

Table B- '9 (Cor luded)

The effect of time was to increa. the amount of cross-linking caused by the initial exposures. Even though 16 hours gamma + vacuum (Condition 1) shows a slight hardness drop, the reaction at all times was predominantly cross-linking. Time effect:

so. At the electred temper ours of the combined irradiation (Condition 4 vs. 6), the vacuo ex, sure caused greer rehange than air exposure. Most of the specimens gained weight. The b n in weight was greater in air than ect: The changes caused by sixteen hours posure in vacuo were somewhat greater for the same period in air (Condition 1 vs. 7). By 100 hours expessure (Condition 2 vs. 5), the situal on was reversed and markedly in vace and was decreased by the add Jion of the combined irradiation. Atmospiere effect:

Conition 4, moderate discoloration on face toward ultraviolet lamp. discoloration of specimens. Observ . tions:

B-46

Table B-30, PHYSICAL PROPERTIES OF COMPOUND 159-6247
Base Elastomer - Polychlorogete Type - Neoprene WRI

Nowinel Irradiated	85 28	Garma Dose		Tensile Strength		xvv1us	Ultimate Elopsation		Hardness (1)	Weight Change	Rating
Condition	Q	ř.	782	Cog.	Pen	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2975 R.			ģ	
rs-cured		0	265t		*		387	<del>1</del> 1.			
:											
2.											
3. v + UV, Vac. (2) 16 hrs., 190 F	ង	6.4 × 106	1406	14-	i	+ 155(3)	93 -76	&	9 +	+15	αı
h. v + UV, Vac.(2) 1.00 hrs., 250 F	21	6 i x 107	ध्य	-20	ł	+1768(3)	23 <del>-</del> 94	<del>1</del> 6	+50	() +	2
5. v, Air 100 hrs., 70 F	ဆ	4.1 × 107	8	*	1	+ 570(3)	27 –93	16	1 4:17	474	<i>‡</i>
6. * + UV, Air(2) 100 hrs., 250 F	6	3.8 x 107	1811	-38	I	+ 540(3)	57 -85	8	91+	+36	m
7. v, Air 16 hrs., 70 F	\$	5.7 × 10 ⁶	3055	+15	<b>&amp;</b>	4 78	250 -35	75	+ 1	્રે ફ	ਜ

(2) Measured temperatures are uncertain.

(3) Value found by extrapolation.

Table B. 30. (Concluded)

Increase of exposure markedly increased the effect of cross-linking for all conditious checked (7 vs. 5 and 3 vs. 4). Time effect:

Atmosphere effect: Air exposure at elevated temperature had less effect on all properties (except tensile) checked (Condition 4 vs. 6). All specimens gained weight, more in air than in vacuo, and the effect of the combined radiation was to lessen the weight gain.

Type irradiation effect: Combined radiation in air (Condition 6) produced less cross-linking than straight gamma radiation for the same condition.

Condition 3, slight purplish discoloration on face toward UV lamp. Condition 4, purplish discoloration on face toward UV lamp. Condition 5, alight discoloration of specimens, whitish discoloration of protected ends of tabs. Condition 6, brownish discoloration on face toward UV lamp. Condition 7, slight discoloration of specimens. Observations.

manufacture of the court of the

Table B-31, PHYSICAL PROPERTIES OF COMPOUND 16.-62 INDUCED BY EXPOSURE TO THE DIFFERENT IRRADIT ON CONDITIONS 47

Neoprene WRT
$T_{f}$
ñ
olychloropr
1
1
Elastomer
3a se

Nominal Tendintel	٤	Georgia	Tensile	Tensile	*	200 %	154	Ultimate Elongation	Hardness	8	Weight	
Condition	No.	1	pst	Chg. U	ps1	ps1. * Chg. (I.)	8	\$ Cbg.(I)	Duro A Chg. (I	Bg.(1)	8	Rating
As-cured		0	1691		376		437		22			
1. v, Vac. 15 hrs., 70 F	13	6.4 × 106	3176	+92	723	تا +	277	-37	Ħ	+	ω +	, <b>i</b>
2. v, Vac. 100 hrs., 70 F	7.	6.1 × 10 ⁷	1864	+13	ı	- + 949(3)	<b>L</b> 4	8	75	+19	4	. <del></del>
3. v + UI, Vac. (2) 16 hrs., 95 F	15	5.7 × 10 ⁶	1991	<b>ಫ</b>	1800	1800 + 376	ort	<b>17</b> 2-	&	ω +	α +	O)
h. ν, Vac.(h) 100 hrs., 70 F	97	5.0 x 107	1812	+ 9.7	1	- + 615(3)	29	-85	ಚ	67.+	+18	m
5. v, 44r 100 hrs., 70 F	17	6.1 x 10 [[]	2116	+28	1	- + 956(3)	53	76	8	+18	73+	7
6. v + UV, Adr(2) 10c hrs., 200 F	18	5.0 × 10 ⁷	1950	+18	1	— +1810 ^(.3)	23	₹	85	420	₹7 <b>+</b>	9

(2) Measured temperatures are uncertain.

(3) Value found by extraprlation.

(4) Combined radiation intended.

Table B-31. (concluded)

Cross-linking as evidenced by increase in modulus and hardness and decrease in elongation was initially marked and increased greatly with time (Condition Time erfect:

There were slightly larger increases in air radiation as compared to to vacuo radiation in all properties except turdness (Condition 2 vs. 5). Weight increases were greater in air than in vacuo, and the addition of IV radiation decreased the weight gains. Atmosphere effect:

linking as compared to that produced by straight gamma radiation (Conditions 1 vs. 3 and 5 v3. 6). The compined radiation reduced markedly the amount of cross-Type irradiation effect:

Condition 6, Condition 3, smoky brown discoloration on face toward UV lamp, purplish discoloration on both faces of specimens. Observations:

Table B-32, EFFECTS OF VACU. AD O OF VACUUM WITH ULTRAVIOLET RADIATION ON ELASTO. TRS*(46)

					Tena	Tensile Strength	ngth	Br	Breaking Elongation	ration
Waterical	Type of	Temperature (¥)	Exposure Time (hour)	Weight Change (per cent)	Bafore Exposure (psi)	After Exposure (ps1)	Change (per cent L	Before Exposure (in./in.)	After Exposure (in./in.)	Change (per cent,
Represe Vacuum	Vacuum	8	る	+ 0.04	2268	2378	+ 39	0.515	0.525	+ 1.9
	Vacuan	8	%	- 0.14	2268	2306	+ 0.6	0.515	0 532	+ 3.3
	Yacour	ж	e <del>d</del>	- 0.93	2286	22B6	- 0.1	0.515	9.518	9., -
	Vacuum and ultraviolet	et 155	₹	- 3.27	888	2658	+ 16.2	3.515	877 0	- 16.9
	Vacuum and ultraviolet	et 155	*	- 5.93	2288	2566	+ 12.2	5.515	0.305	- 41.3
	Vacuum and ultraviclet	et 155	312	- 5.95	88 81	2858	+ 25.0	0.515	0.325	- 35.0

Values are averages of two specimens.

4* Maximum vacuum pressures on the order of 1 x 10^5 mm Hg.

B-5

Table B-33, EXPOSURE OF NEC PRENE VULCA, IZATES TO HIGH VACUULA AT VARIOUS FEMPER, TURE (45)

		Expused to					30	300 F	
Property	•	10 ⁻⁵ mm Hg for 50 Days at Room	Vaccount of c	Air Oven	Vacuum of 7.8  x 10 ⁻⁵ mm Hg	Air Oven	Vacuum of 2 x 10-6 mm Hg	Air Oven	
Measured	original original	zemperarme.	Umlanticized Compound (MT2)	CONTRACTOR	1	- C - C - C - C - C - C - C - C - C - C			
Tensile strength, psi	2490	21.60	21.70	2300	2460	2500	1860	;	
Modulus, gsf at 300 per cent clongstion	2010	· 0561	ZII3	2030	2300	5060	i	ı	
Blongation, per cent	350	330	3115	325	310	340	210	1	7
Hardness, Shore A	8	19	63	63	\$	છ	70		3-51
Strain, per cent electrostion at 400 psi	ਜ਼	227	123	£11	109	₹	4 <u>7</u>	1	
Low temperature flex- ibility, ASTM DlO43, T200, F	12-	88	8	89	88	1	12-	ł	
Weight change, per cent	I	+0.2	6.9	ı	-2.1	-1.0	<del>1</del> .3	7.41-	

Table B-33, (C.ncluded'

		Exposed to Vacuus of	e g	<b>a</b>	¶ 919	<u>r</u>	30	300 1
Property Measured	Original	for 56 Days at Room Temperature	Vacuum of 8 x 10 ⁻⁵ mm Hg for 7 Days	Air Oven for 7 Days	Vacuum of 7.8 x 10 ⁻⁵ nm Hg for 5 Days	Air Oven for 5 Days	2 x 10 ⁻⁵ mm Hg for 5 Deys	Air Oven for 5 Days
			Plasticized Compound (MCE)	mound (MZ	7.			
Tensile strength, psi	2010	2010	21.10	2050	2120	21.70	1660	<pre>"oo brittle to test</pre>
Modulus, psi at 300 per cent elongation	7700	1180	1220	0521	0171	1310	1*	Too brittle to test u
Elougation, per cent	8	375	340	340	330	380	388 88	Too brittle to test
Haraness, Shore A	ζζ	₹	<b>£</b>	25	9	ጽ	83	Too bri to to test
Strain, per cont elongation at 400 psi	173	180	160	187	151	911	100	Too brittle to test
Low temperature flax- ibility, ASTM D1043, T200° F	<b>₹</b>	7	-33	₹.	I	I	-30	Too brittle to test
Weight change, per cent	1	7.4-	9.5	1	-8.0	-2.5	<b>8.</b> 6	-18.6

EXPOSURE OF SBR VULCAN. ATES TO HIGH VACUUM AT VARIOUS TEMPERATURES⁴⁵ Table B-34.

3

		Vacuum of			4			4
		mm Hg for 56 Days at Room	Vacuum of 8 x 10 ⁻⁵ mr. H?	Air Oven for	Vacuum of 7.8 x 10-6 mm Hg	Air Ovan for	Vacuum of 2.1 x 10 ⁻⁶ mm Hg	
Property Measured O	Original	Temperature for 7 Days	for 7 Days	7 Days	for 5 Jays	5 Days	for 5 Days	Air Oven for 5 Days
		Cumpo	Compound Containing No Artiozonant (S119)(1	ng No Artic	zonant (S119	000		
Tensile Strength, psi	3590	3440	3180	343	3450	2980	0257	•
Modu us, psi at 300% E	1650	1780	2220	2040	:	;	;	;
Elongation, percent	530	490	380	430	320	390	220	•
Hardness, Shore A	29	29	70	20	73	74	75	:
Strain, percent E at 400 psi	120	116	95	•	169	154	65	;
Low Temperaure Flexibility,								
ASTM D1043, T200, F	-42	-+1	-42	-38	:	;	-38	;
Ozone Resistance, time to first								
crack, 50 pphm, loop specimen	2 hrs	2 h s	2 hrs	2 hrs	2 hrs	2 hrs	2 hrs	;
Weight Change, percent	:	-0.3	-1.4	;	-1.4	-1.1	-3. 1	-1.4
		Con	Compound Containing Antiozonant (S119B)(1)	ining Antio	zouant (\$1191	3)(1)		
Tensile Strength, psi	3240	3040	3250	53.0	3690	3370	2900	Too brittle to test
Modulas, per at 300% E	1220	1380	1930	1650	:	2600	;	Too brittle to tes.
Elongation, percent	605	540	480	540	410	400	260	Too brittle o lust
Hardness, Shore A	9	99	89	89	29	7.5	92	Too brittle to test
Strann, percent E at 400 psi	141	148	122	:	95	89	99	Too brittle to test
Low Temperature Flexability,								
ASTM D1043, T200, F	7	-39	-39	-37	;	;	-36	Too brittle to test
Ozone Resistance, time to first	Š							
crack, 50 pphm, loop specimes	cracks 90 days	2 hrs	l day	l day	2 hrs	2 hrs	2 hrs	Too brittle to test
Wesche Chance nercent		0 0	7 6		G (*	-	-4.2	-2.1

(1) See Table A-1 for formulation.

Table B-35. CURE SCHEDULES OF THE POLYSULFIDES USED IN THE IRRALIATION STUDIES⁴⁷

		Recipe, P	arts
Corapound	Curing Data	Base Compound	Accelerator
146-62	MnO ₂ Cured	100	10
154-62	Dichromate Cured	7.5	1.0
155-62	Pb-peroxide Cured	100	10
167-62	MnO ₂ Cured	100	10

All compounds above were cured at room temperature for cleast one week before exposure.

Table B-36. PHYSICAL PROPERTIES OF COMPOUND 146-62⁴⁷
Base Elastomer - Polysulfide, Type MnO₂ Cured

Northal Irradiated	8	84	"	Temsile Strength	74	100 \$ Kodulus	E G	Attacte Riopention	1	Fardness	<b>3</b> €	Pottne
Condition	ဋ	- 1	ž	(T).800 €	ž	(T): W	2	1			i	
As-cured		0	<b>6</b>		æ		377		8			٠
2. v , Vac. 100 hrs., 70 F	4	4.9 x 10 ⁷	82	ង្	161	- 33	287	42-	8	m I	04-	#
2. v + UV, Vac. (2) 16 hrs., 190 F	2	6.4 x 106	350	Ŋ	161	- 17	8	#	79	ri I	ន្ទ	8
4. γ + UV, Vac.(2) 100 hrs., 250 F	0,	6.1 × 10 ⁷	241	94	ł	+163(3)	3	8	₫	<b>61</b>	8	,
5. Y, Air 100 hrs., 70 F		8 4.1 x 10 ⁷	ξ	-5 <del>4</del>	867	गृर -	883	-25	83	e •	١	٣
6. y + UV, Air(2) 100 hrs., 250 F	0,	5 8 x 10 ⁷	362	-34	287	÷ 25	130	*	ंदै	ณ +	01-	5
7. v, Air 16 hrs., 70 F	*	34 %7 x 10 ⁶ 378	378	-15	8	- 3.0	£443	+17	₫	αι +	۳ ا	4

(2) Measured temperatures are uncertain.

(3) Value found by extrapolation.

## Table 3-36. (Concluded)

increased slightly, and the ultimate elongation dropped markedly as exposure time increased. In straight gamms in air, the four physical properties did greatly by time. The 100 per cent modulus increased markedly, hardness In combined radiation in vacuum, the tensile strength was not affected not vary significantly as exposure time increased. Time effect:

The compound apparently reacted about the same in vacuum and in air. Atmosphere effect: The compound apparently reacted access of combined radiation.
All specimens lost weight, markedly so in the case of combined radiation.

Type irradiation effect: The combined radiation at 100 hours in air and vacuum showed cross-linking and the straight gamma radiation at 100 hours in and and vacuum showed scission.

5, moderate discoloration, (brown) occlusion in break. Condition 6, specimens were more heavily blackened on one end indicating uneven exposure—slight to moderate darkening on back faces. Condition 7, slight darkening (brown Condition 2, slight dark-ning (brown cast). Condition 3, moderate darkening on face toward UV lamp-slight on back face. Condition  $\psi$ , heavy blackening on face toward UV lamp-moderate on other face. Condition cast) soot on specimens. Observations:

Table B-37. PHYSICAL PROPERTIES OF COMPOUND 154-62⁴⁷
Base Elastomer - Polysulfide, Type - Dichromate Cured

.

Rowinel Irrediated	3	Game	8	Tensile Strength	٦٤	100 \$ #0culus	EL CE	Utimate	Bard	Bardness	Weight Opener	
Condition	Š.	'		<b>★</b> Cbg.(1)	ž	ps1 \$ Cbg.(1)	2	\$ CD. (I)	Duro A	Duro A Chg.(I)	¥	Rating
As-cured	į	0	387		8		360		42			
1. v, Vac. 16 hrs., 70 F	13	6.4 x 10 ⁶	<b>\$</b>	12-	397	ಷ +	163	+ 1.9	73	- 1	£4.	(5)4
2. v, Vac. 100 hrs., 70 F	17	6.1 × 10 ⁷	419	+ 8.3	363	+ 10	153	य . य ।	يع	8	-19	1(5)
3. \ + UV, Vac.(2) 3. \ \ + UV, Vac.(2)	77	5.7 × 10 ⁶	155	8	ı	+ 57(3)	દ્ય	헉	65	6 -	12-	~
4, Vac.(4) 100 hrs., 70 F	7.4	5.0 × 13 ⁷	88	3.1	3 <u>\$</u>	4 7.6	730	-19	72	8	αι 1	Q
5. v, Air 103 hrs., 70 F	17	6.1 × 10 ⁷	£23	1 9.3	377	+ 15	143	-10	02	<del>4</del> 1	-15	m
6. v + UV, Air ⁽²⁾ 100 hrs., 20C F	18	5.0 × 10 ⁷	161	'n	ı	+ 54(3)	ឌ	٦.	<b>.</b> 8	-17	5€	<

(1) From as-cured value.

(2) Measured temperatures are uncertain.

(3) Value found by extrapolation.

(+) Combined radiation intended.

st section of Part C, Phase III, (5) The ressons for the apparently reversed ratings are discussed in the Reference 47.

## Table P. 27 (Concluded)

markedly affected by time with the exception of the tensile strength walch was affected to some degree. The initial increase in modulus, followed by decreasing values (from the initial increase), would indicate an initial In vacuum and straight gamma radietion the physical properties were not period of cross-linking, followed by predominant scission Time effect:

in vacuo. All specimens lost weight and the weight loss was greater in the case of combined scission. Atmosphere effect: There was slightly greater reaction caused by radiation in air than

the sharp decrease of elongation and sharp increase of 100 per cent andulus as follows: the compound was probably decomposed by the high temperaturagiving gas formation and charcing which rendered the specimen weak. Irobservations made in the case of irradiation Condition 6 could explain All four physical properties are markedly affected. radiation effects of most conditions indicated scission. Type irradiation effect:

Some swelling Condition 3, marked darkening on both faces. Condition 6, heavy blackening on .ace toward UV lamp. Moderate discoloration on other face. Some swelling on face toward UV lamp. Hardness 55 on one end and 65 on the other end of Observations:

Table B-38, PHYSICAL PROPERTIES OF COMPOUND 155-62⁴⁷
Base Elastomer - Polys ilfide, Type - Lead Peroxide Cured

Kominal. Trradiated	3	Gerra	8	Tensile Streneth	100	× i	E Bat	Utimte	Berda 2	(1) eg	Weight	Rating
Condition	Š	F.	띭	₹ CDG.(1)	100	CD (-1/	^	(T)		1	P	
As-cured		٥	यु		108		8		55			
1. v, 7ac. 16 hrs , 70 F	ដ	13 6.4 x 10 ⁶ 314	444	₹ <mark>i</mark>	133	ส ,	510	- 1.9	æ	۳ ۱	6	<b>ત</b>
100 :rs., 70 F	at .	6.1 x 10 ⁷	8,	8	131	ম •	% %	-30	×	۳	٠	m
3. v + UV, Vac. (2)	35	5. 7 x 30 ⁶ 101	101	91-	i	+501(3)	ន	86	æ	e -	-159	<b>‡</b>
1. v, Vac. (4)	91	5.0 x 10 ⁷	ă	-27	<del>1</del> 51	- 8.2	310	9	55	M£1	<b>n</b> •	a
j. γ, Air 100 hrs., 70 ₽	17	701 × 1.0	163	-\$ <del>-</del>	155	7.7 -	303	գ	<del></del>	۲ -	m I	ю
6 v + UV, ALT ⁽²⁾ 100 hrs., 200 F	81	701 x 0.0	ı	1	1	i	ł	ı	1	ı	1	5

(1) From a reured value.

⁽²⁾ Measured temperatures are uncertain.

⁽³⁾ Value found by extrapt our

⁽⁴⁾ Compined radiation intendec.

## Table B-38, (Concluded)

In Conditions 1 and 2 the over-all physical properties were not affected greatly by time. Both conditions indicated scission. Time effect:

in physical properties. All specimens lost weight and in the one case of combined radiation where the specimens were weightable, the loss was quite merked. Atmosphere effect:

Type irreligition effect: The combined radiations, with elevated temperatures, weakened the compyand which apparently underwent scission. Straight gamma also showed scission but no temperature effect.

Committed 1, slight greying on specimens. Less residual "set" after tensila test them unaged. Condition 2, moderate greying of specimens. Still less residual set after tensile test. Condition 3, specimens bly-kened and shriveled. Condition 4, bleaching of specimens. Condition 5, specimens markedly "greyed". Condition 6, specimens decomposed and charred. Observations:

Table B-39. PHYSICAL PROPERTIES OF COMPOUND 167-62⁴⁷
Base Elastomer - Polysulfide, Type - MnO₂ Cured

Kordnal		GC		Partle		100 \$	ğ	Utimate	,		Weight	
Irradiated	9 8 1	Pose T.	N R	Streeth (T)	Ħ	\$ Cbg. (1)	1 ×	K Chg.(1)	1	Duro A Chg.(1)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Rating
As-cured		0	62.7		<b>4</b>		1483		85			
1. v , Vac. 16 hrs., 70 F	13	6.4 × 10 ⁶	¥53	- 3.3	8	6.8	8	+ 1.5	23	લ	9 -	ત
2. v, Vac. 100 hrs., 70 F	<b>†</b> †	6.1 × 10 ⁷	\$	-15	148	8.	8	+ 7.7	đ.	ş.	1	OI.
3. v + UV, Vac. (2) 16 ars., 95 F	15	2.7 × 1.06	335	-30	153	- 17	365	-25	82	។	-15	ν.
4. γ, Vac. (4) 100 hrs., 70 F	97	5.0 × 10 ⁷	<b>3</b> 6	-25	342	<b>ম</b>	<del>6</del> 64	+ 2.1	₹	<b>1</b>	ង្	m
5. ", Adr 100 hrs., 70 F	17	6.1 × 107	<b>6</b> 3	-15	145	8	88	ನ್	55	7	1	#
6. v + UV, Adr 100 hrs., 200 F	93	5.0 × 10 ⁷	153	\$	t	+748(3)	ot	86	8	7	**	A)

(1) From assemmed value.

(2) Measured temperatures are uncertain.

(3) Value found by extrrpolation.

(4) Combined radiation intended.

Table B-39. (Cuncluded)

ともつをなる こうりんごうし

Time in conditions 1 and 2 did not affect appreciably the physical properties. Time effect:

Atmosphere effect: Conditions 2 and 5 showed no marked change in physical properties.
All specimens lost weight, more so in the case of the combine' radiations.

3 and 1 indicated scission and combined radiation, with the high temperature. Conditions 3 and 1 indicated ecission and combined radiation, with the help of a high temperature, weakened the compound even further as indicated by a marked decrease of the tensile strength, 100 per cent modulus, and clougation. Type irradiation effect: Conditions 5 and 6 underwent scission, but apparently the data for Condition 6 were mainly affected by the high temperature. Conditions

Condition 2, specimens bonded to case and to one another. Condition 3, smully brown discoloration on face of specimen. Condition 6, surface browning and hardening, large amount of blistering on two specimens. Observations:

ELASTOMERS - TENSILE PROPER MES^(a) OF THIOKOL ST VERSUS POSTIRRADIATION STORAGE TIME⁽⁴⁸⁾ TABLE B-40.

Days Tested       At 25%       At 50%       At 100%         After Irradiation       Elongation       Elongation       Elongation         1       131/15       /4       193/10       /7       334/5.8/7         3       144/7.5/8       204/6.5/8       339/5.3/8         10       132/4.9/9       183/7.8/9       314/1.7/9         34       141/7/10       210//10       /10       315/5.4/10         1       95/12       /5       157/12       /5       346/6.6/5         3       120/14       /5       186/18       /5       353/9.4/5         10       143/7.2/5       245/8.3/5       391/3.3/5         10       143/7.2/5       231/9.8/5       439/11/5	Integrated Neutron Flux (N), n cm ⁻² (b) (E > 2.9 Mev)(b)			Modulus ^(c) , psi		•	Ultimate
131/15 /4 193/10 /7 334/ 5.8/7 3 144/ 7.5/8 204/ 6.5/8 339/ 5.3/8 10 132/ 4.9/9 183/ 7.8/9 314/ 1.7/9 34 141/ 7 /10 210/ /10 315/ 5.4/10 1 95/12 /5 157/12 /5 346/ 6.6/5 3 120/14 /5 186/18 /5 353/ 9.4/5 10 143/ 7.9/5 245/ 8.3/5 391/ 3.3/5 4 147/ 7.2/5 231/ 9.8/5 439/11 /5	Gamma Exposure (G), ergs g ⁻¹ (C) ^(b)	Day After	]	At 50% Elengation		Ultimate ^(C) , psi	Elongation(c),
3 144/ 7.5/8 204/ 6.5/8 339/ 5.3/8 10 132/ 4.9/9 183/ 7.8/9 314/ 1.7/9 34 141/ 7 /10 210/ /10 315/ 5.4/10 1 95/12 /5 157/12 /5 346/ 6.6/5 3 120/14 /5 186/18 /5 353/ 9.4/5 10 143/ 7.9/5 245/ 8.3/5 391/ 3.3/5 447/ 7.2/5 231/ 9.8/5 439/11 /5	Control		131/15 /4	193/10 /7	334/ 5.8/7	1,42/6.2/7	281/ 6.6/7
10 132/ 4.9/9 183/ 7.8/9 314/ 1.7/9 34 141/ 7 /10 210/ /10 315/ 5.4/10  1 95/12 /5 157/12 /5 346/ 6.6/5 3 120/14 /5 186/18 /5 353/ 9.4/5 10 143/ 7.9/5 245/ 8.3/5 391/ 3.3/5 439/11 /5		· "	144/ 7.5/8	204/ 6.5/8	339/ 5.3/8	916/2.4/8	275/ 5.7/8
34 141/ 7 /10 210/ /10 315/ 5.4/10  1 95/12 /5 157/12 /5 346/ 6.6/5 3 120/14 /5 186/18 /5 353/ 9.4/5 10 143/ 7.9/5 245/ 8.3/5 391/ 3.3/5 439/11 /5		01	132/ 4.9/9	183/ 7.8/9	314/ 1.7/9	800/7.3/9	313/21 /9
1 95/12 /5 157/12 /5 346/ 6.6/5 3 120/14 /5 186/18 /5 353/ 9.4/5 10 143/ 7.9/5 245/ 8.3/5 391/ 3.3/5 4 147/ 7.2/5 231/ 9.8/5 439/11 /5		34	141/7 /10	210/ /10	315/ 5.4/10	825/9.3/10	265/13 /10
1 95/12 /5 157/12 /5 346/ 6.6/5 3 120/14 /5 186/18 /5 353/ 9.4/5 10 143/ 7.9/5 245/ 8.3/5 391/ 3.3/5 4 147/ 7.2/5 231/ 9.8/5 439/11 /5	N 1.5 × 10 ¹⁵						
120/14 /5 186/18 /5 · 353/ 9.4/5 143/ 7.9/5 245/ 8.3/5 391/ 3.3/5 147/ 7.2/5 231/ 9.8/5 439/11 /5	) ; ;	1	95/12 /5	157/12 /5	346/ 6.6/5	472/8.6/5	138/ 7.7/5
143/ 7.9/5 245/ 8.3/5 391/ 3.3/5 147/ 7.2/5 231/ 9.8/5 439/11 /5		ю	120/14 /5	186/18 /5	. 353/ 9.4/5	498/3.6/5	146,'11 /5
147/ 7.2/5 231/ 9.8/5 439/11 /5		0,1	143/ 7.9/5	245/8.3/5	391/ 3.3/5	508/1.3/5	128/13 /5
		4,	147/ 7.2/5	231/ 9.8/5	439/11 /5	624/6.1/5	138/ 7.7/5

(a) Data are given as X/S. D. /n, where X a : "erage value, S.D. = standard deviation of individual observation estimated from the range, and r a number of specimens used in calculating X and S. D. in calculating x and S.D.

(b) Irrao... n and storage temperature 75 F.

(c) Test temperature 75 F.

ELASTOMERS - TENSILE PROPERTIES(a) OF PU 3109B AND PU 6865 VERSUS POSTIRRADIATION STORAGE TIME(48) TABLE B-41.

Gamma Exposure (G), Day, ergs g ⁻¹ (C) ^(b) After		i	odu.us(c), psi		(0)	Ultimate
<b>,</b>	Days Tested fter Irradiation	At 25% Elongation	At 50% Elongation	At 100% Elongation	Ultimate'', psi	Elongation'e',
		PU-3	PU-3109B			
Control	-	890/10 /4	1107/5.4/4	1414/12 /4	4296/3.9/4	460/11 /4
	· (r)	944/2.8/8	1199/2.8/8	1550/1.7/8	4276/6.8/8	463/1.8/8
	10	1013/4.5/7	1278/4.5/7	w.	5016/13 /7	450/8.2/7
	34	983/4.4/8	1200/5.4/8	1459/7 /8	4745/12 /8	434/6.4/8
$\frac{N 4.7 \times 10^{15}}{1000000000000000000000000000000000$						
$G = 10 \times 10^{-5}$	·	1220/12 /5	1598/3.4/5	2624/9.6/5	3221/4.9/5	145/21 /5
	<b>J</b> (		1957:4 1/5	2910/6, 3/5	3390/12 /5	125/19 /5
	n <u>s</u>	` .	2415/11 /5	3344/24 /5	3529/13 /5	106/59 /5
	34	1300/6.1/5	1870/4 /5	2823/3,8/5		123/9.5/5
		PU	PU (.865			
1	_	229/15 /8	358/5,7/8	708/2.9/8	7739/8.5/8	696/5.7/8
Control	• "	247/8 6/6	434/5.3/6	754/6 /6	7365/7, 1/6	669/3.4/6
	n <u>c</u>	2/0/13 /7	470/4,6/7		6955/12 /7	666/3.8/7
-	2 **	253/25 /7	409/13 /7	638/3.4/7	7222/5.3/7	
M 2 4 × 1015	•					
G 2.2 × 10 ¹⁰						
	_	309/16 /5	744/25 /5		922/18 /5	39/26 /5
	3	343/5.2/3	858/12 /3		963/8.8/3	58/26 /3
	10	315/8 /5	759/14 /5		973/10 /5	·-
	34		756/13 /5		/668	56/18/5
1		Oite and bed bearing at		servation estimated from the range, and n = number of specimens used	e range, and n = numl	ber of specimens used
(a) Data are given as x/S.D./n, where x = average value, 5.D. = statutate deviation of inverse, in calculating \( \tilde{\lambda} \) and S.D.	# average vame, o.r	/, a Stautuare volumes			<b>.</b>	
temperature 75	F.					
(c) Test temperature 75 F.						

ELASTOMERS - TENSILE PROPERTIES(a) OF PU-GENTHANE-S VERSUS POSTIRRADIATION STORAGE TIME(48) TABLE B-42.

Integrated Neutron Flux (N) n cm ⁻²			3			
(F > 2 9 Mey)(b)		4	Modulus ^(C) , psi		(3)	Utimate 
Gamma Exposure (G), ergs $g^{-1}$ (C)(b)	Days Tested After Irradiation	At 25% Elongation	Lt 50% Elongation	At 100% Elongation	Utimate''', psi	Elongation''', %
	-	108/ /3	163/ /3	345/5.6/8	2499/15 /8	457/8.7/8
Control		C/ /001	1001	0000	3/ 11/7/20	186.16 715
	m	106/3.9/5	148/8.2/5	309/11 /5	C/ TY/01#7	6/1.0/00#
	0	98/12 /7	147/11 /7	297/12 /7	2463/9.1/7	490/9.1//
	34.	101/9.5/8	151/7.9/8	298/6.4/8	2360/4 /8	468/3.6/8
$N 5.7 \times 10^{15}$	,					
$G_{3.7} \times 10^{10}$						
	p=4	136/36 /2	380/38 /2		495/8 /4	\$/ 87/cs
	. "	92/38 /5	246/26 /5		432/16 /5	61/4.3/5
	n <u>s</u>	116/14 /5	287/15 /5		463/18 /5	69/15 /5
	0.7	C/ #1/011	0/ 04/108		11 611706	43112 14
	4,	88/30 /4	264/5 /4		200/13 /*	£ / 71 /CO

(a) Data are given as x/S.D./n, where x m at erage value, S.D. m standard deviation of indiv:dual observation estimated from the range, and n m number of specimens used in caiculating  $\overline{x}$  and S. D.

(b) Irradiation and storage temperature 75 F.

(c) Test temperature 75 F.

ELASTOMERS - TENSILE PROPERTIES  $^{(a)}$  OF PU-4250 VERSUS POSTIRIADIATION STORAGE TIME  $^{(48)}$ TABLE B-43.

; ;

Integrated Neutron Flux (N), n cm ⁻²			Modulus ^(c) , psi		3	Ultimate
Gamma Exposure (G), ergs $g^{-1}$ (C)(b)	Days Tested After Irradiation	At 25% Elongation	At 50% Elongation	At 100% Elongaticn	Ultimate' ^{c'} , psi	Elengation''',
Control N 3, 4 × 10 ¹⁵ G 2, 2 × 10 ¹⁰	1 10 34 1	1184/3.1/5 1219/1.5/5 1125/9.1/8 1088/17 /8	1397/3.6/5 1536/3.6/5 1479/4.1/8 1450/4.1/8	1835/2,7/5 1945/3,8/5 1922/1,6/8 1775/3,5/8	3251/5, 5/5 4657/5, 4/5 4575/3, 6/8 4638/10 /8 2689/1, 9/5 2814/8, 4/5	533/6.8/5 478/3.4/5 549/2.8/8 -83/4.7/6 84/22 /5
	10 34	1226/7.4/5 1226/7.4/5 1489/14 /5	2227/6.7/5 2066/13 /5		2764/5.9/5 2574/3.9/5	79/21 /5 77/14 /5

(a) Data are given as X/S.D./n, where X = average value, S.D. = standard deviation of individual observation estimated from the range, and n = number of specimens used in calculating X and S.D.
 (b) Irradiation and storage temperature 75 F.
 (c) Test temperature 75 F.

POLYURETHANE RUBBERS - TENSILE PROPERTIES^(a) OF DUPONT ADIPRENE L VERSUS TEMPERATURE AND LAT ODATION⁽⁴⁸⁾ TABLE B-44.

Integrated Neutron					
Flux (N), n cm ⁻² (F $< 2$ 9 Mex.)		. f.,dulus(D), psi	b), psi	(4)	Ultimate
Gamma Exposure (G), ergs $g^{-1}$ (C) ^(b)	Irradiation Temp, F	At 100% Elongation	At 200% Elongation	Ultimate ^{vo} ', psi	Elongation''',
Control	80	976/4.3/10	1416/3.1/10	4065/8.4/10	433/13 /10
$N 2.5 \times 10^{13}$ G 5.2 × $10^7$	175	1030/1.3/5	1460/2.4/5	4251/23 /5	404/2.2/5
$N 2.9 \times 10^{13}$ G 6 x 10 ⁷	۲. و	1013/2 /5	1432/5.1/3	4869/6.8/3	420/4.6/4
$N 3.9 \times 10^{13}$ $G 6.5 \times 10^{7}$	-45	1028/2.6/5	1432/1.5/5	4661/8.9/4	433/4.5/4
$N 1 \times 10^{16}$ G 1.4 × $10^{10}$	. 75			1562/6.3/4	142/6.9/4
Control	09;? 08	1282/1.7/10 1182/1.5/10	1798/2.8/10 1623/1.8/10	5346/6.3/9 5542/8.1/10	390/1.7/9 420/3.1/10
$N 1.2 \times 10^{15}$ $G 2 \times 10^{9}$	80	1263/4.3/5	1831/2.5/5	5055/10 /3	393/8.2/5
N 1.8 x $10^{15}$ G 5.4 x $10^9$	260	921/5.7/4	1214/4 /4	1513/1.6/5	299/8.6/5
N 4.5 × $10^{16}$ G 7 × $10^{10}$	80			1679/21 /5	75,26 /5

(a) Data are given as x/S.D./n, where x = a rage value, S D. = standard deviation of individual observation evituated from the range, and n = number of specimens used in calculating x and S.D.
(b) Test temperature 80 F.

. .

(b) Test temperature 80 F.

TABLE 9-45. FOLYURETHANE RUPBERS - TENGILL "TW. PERTIES⁽⁴⁾ OF DUPONT L-167 VERSUS TEMPERATURE AND DRADIAT JN⁽⁴⁸⁾

The same of the same of the same

Integrated Neutron			DuPont L-167(a)(b)	167(a)(b)			DuPont L-167(b)(b)	167(b)(b)	
Flux (N), n cm		Modulus	18		Ultimate	Modulus,			Ultimate
(E > 0.33 McV) Gamma Exposure (G). ergs g ⁻¹ (C)	Irradiation Temp, F	At 100% Elongation	. 1	Ultimate. psi	Elongation, %	At 100% Elongation	At 200% Elongation	Ultimate, psı	Elongation,
Control	80	1777/2.9/10	2514/2.6/10	5414/7.5/10	348/4.8/9	233/6.2/8	300/7.4/9	1825/12 /7	584/4.4/7
$N 2.5 \times 10^{13}$ G 5.2 × $10^7$	175	1713,4.6/5	2534/2.3/5	6492/10 /5	360/3.6/5	248/15 /3	348/15 /3	1696/23 /3	550/14 /3
N 2.9 x 10 ¹³ G 8 x 10 ⁷	75	1685/5.7/5	2560/1.8/5	6433/3.2/5	336/2.6/5	231/1.9/4	312/7.2/4	2864/85 /4	527/1.9/3
$N3.9 \times 10^{13}$ $G.5 \times 10^7$	4	1793/5.5/5	2680/4.9/5	5668/14 /5	366/5.9/5	251/28 /5	284/22 /3	1140/39 /4	527/7.9/3
$N_{1 \times 10^{16}}$ G $1.4 \times 10^{10}$	75	2034/4.4/4		3351/16 /4	217/8.2/3	120/1.2/4	196/15 /4	5/ 81/615	383/14 /5
Control	80 260	2085/1.5/10 2060/2.3/10	3014/3 /9 2903,'2.2/10	5949/8.3/9 6013/11 /10	328/4.1/9 358/5 /10	252/10 /10 219/8.5/10	343/11 /10 303/8.9/10	1002/* /7 1361/13 /10	4%/1.4/7 499/:.2/10
N 1.2 x 10 ¹⁵ G 2 x 10 ⁹	80	2131/0, 2 1/5	3197/1. 6/5	4851/9.3/5	290/8 /5	213/4 /5	305/12 /5	1899/7 /4	480/6.6/4
N 1.8 × 1015 G 5.4 × 10 ⁹	260	1700," 1/5	2160/2.5/5	3111/3.4/5	326/6.3/5	120/6.4/5	173/9.7/5	575/16 /4	465/2.6/4
N 4.5 x 10 ¹⁶ G 7 x 10 ¹⁰	88			3650/6.3/4	63/7.6/4			604/9.4/5	69/9, 4/7

(a) Data are given as x/S.D. /n, where x = average value, S.D. = stant of deviation of ridiv dual of action estimated from the range, and n = number of specimens used in calculating x and S.D.

(b) Test temperature 89 F.

TABLE B-46. POLYURETHANE RUBBERS - TENSILE PROPERTIES(4) OF DISOGRIN 3DSA 6050 AND 3DSA 9047 VERSUS TEMPERATURE AND 18R- J. "1ON 48)

Integrated Neutron Flux (N), n cm ⁻²			li	Disogrin 3DSA 8051(b)			11 1	Disogrin 3DSA 3045(b)	
(E > 0.33 Mev)		Modulus	7		Ultimate	Modulus,	şd		Ultimate
Gamma Exposure (G) ergs g (C)	Irradiation Temp, F	At 100% Elongation	At 200% Eiongation	Unimate, psi	Elongation, %	At 100% Elongation		Ultimate, ps1	Elongation,
Control	8	625/4.9/9	876/6.1/8	5759/1.4/10	588/3.3/10	1446/3.8/9	1790/4.2/3	3597/15 /10	6 3/9.2/8
N 2.5 x 10 ¹³ G 5.2 x.10'	175	602/6.3/5	852/5. 4/5	5129/10 /5	652/3.3/5	1475/4.3/5	18:4,4,2/4	3384/8,2/5	678/5,7/5
$N 2.9 \times 10^{13}$ G 6 x 107	75	629/4. 3/4	888/4. 1/4	5703/3.8/4	580/6.1/3	1838/13 /5	2058/8. 7/5	4058/12 /5	632/2. 7/5
N 3.9 x 10 ¹³ G 6.5 x 10 ⁷	\$	573/4. 1/5	822/1.3/4	5822/8.3/5	614/2. 1/5	1398/3. 1/5	1832/2. 1/5	3872/7,7/5	830/0 4/5
M 1 x 10 ¹⁶ G 1.4 x 10 ¹⁰	7.5	719/8.6/4	1094/9.9/4	2088/10 /4	338/12 /4	1454/8 /5		596/1.1/5	130/9.9/5
Control	80 280	632/2. û/10 621/3. 9/10	890/2. 2/10 862/5. 1/10			1504/2.2/10 1344/2.8/10	1963/3.8/10 1703/3.8/10	3407/7.2/10 2928/6.7/10	598/6.5/10 616/3.4/10
N 5.3 x 10 ¹⁵ G 1.3 x 10 ¹⁰	85	641/2 4/5	836/2.2/4	2861/11 /3	682/2.2/3	1416/5.3/2	1565/ /1	1541/6.9/5	293/31 /4
N 2.7 x 1015 G 1.5 x 10 ¹⁰	8	72 /3.3/5	1130/2.2/5	2537/4.9/4	375/1.3/4	1529/7.2/5	1698/6. 2/5	1929/5, 8/3	348/4.2/3
N 8.5 × 1015 G 1.9 × 1010	260					1495/13 /5	1688/4. 7/3	2071/15 /4	313/3, 8/3
N 4,5 x 1016 G 7 x 1010	80			1075/12 /5	44/15 /5			A72/11 /4	49/20 /4

(a) Data are given as X/S. D. /n, where X = average value, S.D. = standard deviation of individual observation estimated from the range, and n = number of specimens used in calculating X and S.D.

(b) Test temperature 80 F.

TABLE B-47. POLYURETHANE RUBBERS - TENSILE PROPERTIES^(a) OF DISOGRIN 2DSA 3445 AND 2DSA 9840 VERSUS TEMPERATURE AND IRRADI...: '(⁴⁸)

Integrated Neutron			Disogrin 2DSA 8445(b)	: A 8443(b)	ļ			A 9840(b)	
		Modulus	ľ		Citimate	Modulus.			Ultimate
(E > 0.33 mev) Gamma Exposure (G), ergs g ⁻¹ (C)	Irradiation Temp. F	At 100% Flongation	. 1	Ultimate, psi	žlongation, %	At 100% Elongation	At 200% Elongation	Ultímate, psi	Elongation,
Control	08	604/2. 1/10	844/3.2/10	5418/2.8/10	586/3.5/3	1494/8.3/10	1876/7.2/10	5417/9 /10	562/7.8/10
$N 2.5 \times 10^{13}$ G 5.2 × $10^7$	175	576/2. 8/5	P52/3. 8/5	5505/7.5/4	565/3.4/5	1415/7.1/5	1788/6 9/5	5489/5.1/5	542/6 4/5
N 2.9 x 10 ¹³ G 6 x 10 ⁷	ર્ફ	625/3 /5	862/3.9/5	5571/6.3/5	562/6.1/5	1493/8.5,5	1842/3.6/5	5751/12 /5	568/8.6/4
N 3, 3 x 10 ¹³ G 6, 5 x 10 ¹	45	594/3.1/5	836/2.3/5	5198/3.8/5	564/5.3/5	1466/8.2/5	1794/9.6/5	5632/13/5	574/3, 7/5
N 1 7 1013 G 1.4 x 1010	72	808/5 /4	852/25 /3	1951/8.3/4	341/2.9/4	1637/7.6/5	1904/7.4/5	32'14/18 /5	394/9.8/5
Contro!	ي. 280	\$52/4. 2/10 369/1. 4/10	915/3. £/10 786/3. 3/10	5082/ /1	645/3.1/7 555/ /1	1558/5.1/10 1535/5.1/10	1905/3. 4/10 1898/4. 8/9	5661/15 /9 5917/7.3/10	: <b>63/4.</b> 2/9 599/6. 5/0
N 5.3 x 10 ¹⁵ G 1.3 x 10 ¹⁰	9	655/8, 3/5	832/8 /5	2907/9.3/5	612/1.1/5	1509/13 /5	1728/15 /5	3205/17 /5	816/7.7/5
N 6.7 x 10 ¹⁵ G 1.5 x 10 ¹⁰	80	745/4. 3/4	1053/3 /4	2625/22 /5	317/8.6/5	1859/3.7/4	2212/4. 5/4	3416/11 /5	346/7.5/5
N 8.5 x 10 ¹⁵ G 1.9 x 10 ¹⁰	260					1627/29 /5		2524/17 /4	330/14 /5
N 4.5 x 10 ¹⁶ G 7 x 10 ¹⁰	80			1050/35 /5	1,00',			2585/12 /5	56/1.1/5

(a) Data are given as x/S, D. /n, where x̄ = average value, S.D. = standard deviation of individual observation estimated from the range, and n = number of specimens used in calculating x̄ and S.D.
 (b) Test temperature εθ F.

TABLE B-48. POLYURETHANE RUBBERS - TENSILE PROFERTIES⁽⁴⁾ OF DISOGRIM 105A 7560 AND 1DSA 9250 VERSUS TEMPERATURE AND IRRAL. "'ON' 18)

1,20 - 3 - 4

からいけんないないとうもともあるというころう

Integrated Neutron			Disogrim 1DSA 7580 ⁻⁵ )	(4.035L Y			Disogrin 1DSA 9250(b)	A 9250(b)	
(F > 0 33 Mev)		Modulus,	15		Utomate	Modulus,	$\neg$		Ultimate
Gamma Exposure (G), ergs g ⁻¹ (C)	Inadiation Temp, F	At 100% Elongation	At 200% Elongation	Unimate, psi	Elcngation,	At 100% Elongation	At 200% Elongation	Ultimate, psi	Elongation,
Control	80	548/3.1/9	826/12 /3	4749/8.5/9	699,4.3/9	1781/4.3/3	2446/4.4/10	4846/9.1/10	536/8.5/10
N 2, 5 x 10 ¹³ G 5, 2 x 10 ⁷	175	403,8.6/4	826/6.4/5	4743/9.7/2	715/1.2/2	1735/2. 7/5	2478/2.4/5	4691/10 /5	526/15 /5
N 2.9 x 10 ¹³ G 6 x 10 ⁷	75	483/16 /5	820/5.2/5	5292/7.5/2	613/ /1	1734/3.5/5	2384/2.6/5	4809/6.9/4	533/4.6/4
N 3.9 x 10 ¹³ G 6.5 x 10 ⁷	*	546.7.6/5	820/6 /5	4327/20 /5	6/16/019	1780/4.5/5	2410/26 /5	4621/8.3/5	566/14 /5
N 1 x 10 ¹⁵ G 1.4 x 10 ¹⁰	75	745/6.7/5		1133/4,2/5	178/7.3/5	2074/2.4/5		2384/3 /5	178/2.4/5
Control	80 260	523/5.8/10 459/4.5/10	3 <b>64/6.</b> 1/10 778/7. 6/10	5254/11 /7	718/3.4/10	1891/3 /10 1804/3 /10	2464/6 /10 2441/2.7/10	5544/13 , 10 4585/12 /9	573/3, 9/10 566/3, 6/9
l ³ 5.3 x 10 ¹⁵ G 1.3 x 10 ¹⁰	-65	6. 4/8.2/5	921/6.2/5	2411/9.8/5	811/5.1/5	1745/3 /5	2105/3.8/5	2969/14 /4	503/5.1/5
$N 6.7 \times 10^{15}$ G 1.5 × $10^{10}$	80	10.46/17 /2	1415/ /1	1541/13 /5	257/31 /3			2936/7.5/5	164/1.3/5
N 8.5 x 10 ¹⁵ G 1.9 x 10 ¹⁰	260	466/5.3/4		1474/15 /4	362/3.4/4	175/4.9/5		. 2285/5.6/5	247/11 /5
N 4.5 × 10 ¹⁶ G 7 × 10 ¹⁰	80			850/12 /5	، دد/ ۱۱۶ /5			2426/14 /5	21/32 /5

(a) Data are given as \$\overline{x}\sets.D./n, where \$\overline{x}\$ = average value, \$\overline{x}\$ D. = standard deviation of indusidual observation estimated from the range, and n = number of specimens used in calculating \$\overline{x}\$ and \$\overline{x}\$.D.

(b) Test temperature 80 F.

TABLE 8-49. POLYURETHANE RUBBERS - TENSILE PROPURTIES⁽³⁾ OF GENERAL TIRE FOLYURETHANE TYPE R AND DISOGRUN IDSA 8865 VERSUS TEMPERAL... ND "RADIATION⁽⁴⁸⁾

I STATE OF THE STA

Integrated Neutron Flux (N), a cm ⁻²			eneral Tire Polyu	General Tire Polyurethane Tyge L ⁽⁵⁾			Disogrin 1DSA 6865(b)	(q)\$989 <b>Y</b> S	
(F > 0.33 Mev)		M zdul	Modulus, psi		U nate	Modulus,	٦		Ultımate
ournma Exposure (G), ergs g ⁻¹ (C)	Irradiation Temp, F	At 100%, Elong, Jon	At 200% Elongation	Ultimate, psi	Elongation, %	At 100% Elongation	At 200% Flongation	Ultunate, psi	Elongation.
Control	80	301/6.6/10	700/9.5/10	3900/15 /10	557/7.6/10	673/5 /10	1134/7.4/10	5198/19 /9	704/2.4/9
N 2.5 x 10 ¹⁸ G 5.2 x 10 ⁷	175	317/2, 9/5	718/6.6/5	3523/6.1/5	522/4.1/5	658/9.9/5	1078/3 4/5	5216/ /1	
$N 2.9 \times 10^{13}$ $G 6 \times 10^7$	27	338/9.9/5	734/11 /5	3962/6.2/5	582/3.1/5	711/7.7/5	1190/5, 2/5	5261/4.2/5	666/3.2/5
N 3.9 × 10 ¹³ G 6.5 × 10 ⁷	45	319/5, 9/5	744/3.2/5	3469/20 /5	528/13 /5	669/4.8/5	1166/9.4/5	5056/15 /5	708/3.4/:
$N 1 \times 10^{16}$ G 1.4 × $10^{10}$	75	293/8.2/5	880/6.4/5	5,' 01/1811	258/2.4/3	710/7.5/5		1344,11 /5	414/10 /5
Control	80 260	242/11 /8	736/3.8/10 727/9.3/10	+102/7 /10 4160/7.9/10	596/4.4/10 809/6.4/10	683/8.7/10 662/5 /10	1115/9, 1/10	4989/7 /6 4345/18 /7	885/4.3/6 816/9.6/7
N 5.2 x 10 ¹⁵ G 1.3 x 10 ¹⁰	48	190/5. 4/5	462/5.4/5	1741/5.6/5	468/16 /5	173/8.1/5	1132/4. 1/5	2896/13 /5	588/8.4/5
N 6.7 × 10 ¹⁵ G 1.5 × 10 ¹⁹		472/9. 1/5		1265/16 /5	274,3.6/4	1158/7.1/2		1410/4.5/5	140/9.2/5
N 8.5 $\times$ 10 ¹⁵ G 1.9 $\times$ 10 ¹⁰	260	571/8.1/5		992/16 /5	139/17 /5	572/5 7/5	884/3. 1/4	1260/6.2/5	278/3.9/5
N 4, 5 x 1916 G 7 x 10 ¹⁰	08			890/7.8/5	5/2 4/5			830/13 /5	36/24 /5

(a) Data are given as X/S.D./n, where X = average value, S.D. = standard deviation of individual observation estimated from the range, and n = number of specimens used in calculating X and S.D.

(A) Test temperature 80 F.

POLYURETHANE RUBBERS - TENSILE PROPERTIES^(A) OF CENTHANE S-1 AND S-2 VERSUS TEMPERATURE A¹ O RADIATION⁽⁴⁸⁾ TABLE B-50.

- スプ・ノ・森

Integrated Neutron			Genthane S-1 ^(b)	, S-1, ^(b) ,			Genthane S-2(b)	s s -2(b)	
f in (17), ii ciii		Modulus	1		Ultimate	Modulus, psi			Ultimate
Gamma Exposure (G).	Irradiation	At 100%	At 200% Floagation	camate,	Elocyation,	At 100% Elongation	At 200% Elongation	Ultimate, psi	Elongation. %
() - 8 5215	J duna I	FIGHRACTION				,			
Control	80	329/11 /10	810/6.3/10	5740/4 /10	551/2.9/10	328/17 / .0	900/6.6/10	3109/8.4/10	537/4.8/10
$N 2.5 \times 10^{13}$ $G 5.2 \times 10^{7}$	175	320/11 /4	876/5.5/5	5410/6.4/5	550/6.2/4	303/8.4/5	920/6.4/5	2845/6.1/5	526/4. 1/5
N 2.9 x 10 ¹³ G 6 x 10 ⁷	75	315/4 /4	770/9.5/5	5637/16 /5	544/8.1/5	300/8.5/5	840/5 /5	3230/7.3/5	554/3, 9/5
N 3.9 x 10 ¹³ G 6.5 x 10 ⁷	45	327/5 /5	816/4.6/5	5568/1.6/4	565/13 /4	338/4.8/5	936/9.5/5	3023/3.7/5	574/11 /5
N 1 x 10 ¹⁵ G 1.4 x 10 ¹⁰	7.5	251/19 /4	800/10 /4	1830/4. 1/4	320/3 /4	228/6.5/4	546/9.3/4	148/1.9/4	
Control	80 260	330/5. 7/10 294/8. 1/10	818/4.2/10 862/2.8/10	5564/7.4/10 5637/4.4/10	589/5 /10 614/2.7/10	278/9.4/10 263/8.8/10	813/5.9/10 848/5.9/10	2932/5, "/ 10 3008/4, 3/10	538/6 /10 622/3.4/10
N 5.3 × 10 ¹⁵ G 1.3 × 10 ¹⁰	\$9	192/7.4/4	640/6.9/4	2234/14 /5	406/11 /5	305/11 /5	858/4.6/5	1571/′.6/5	359/8.1/4
N 6.7 × 10 ¹⁵ G 1.5 × 10 ¹⁰	80	4 1/6.5/5		1736/16 /5	216/8 /5	307/2.9/5		1068/1.4/5	256/6.7/5
N 8.5 x 10 ¹⁵ G 1.9 x 10 ¹⁰	260	628/6.3/5		1218/14 /5	138/7.2/4	445/10 /5		888/12 /4	165/10 /4
N 4, 5 × 10 ¹⁶ G 7 × 10 ¹⁰	03			908/14 /5	26/9.4/5			692/9.8/5	25/17 /5

0

⁽a) Data are given as \$\tilde{X}\$.D. \$\int n\$, where \$\tilde{x}\$ = average value, \$S.D. = standard deviation of indivarial observation estimated from the range, and \$n\$ = number of apecimens used in calculating \$\tilde{x}\$ and \$S.D.

(b) Test temperature 80 F.

Table B-51. PHYSICAL PROPERTIES C. 1431 JUND 160-62⁴⁷
Base Elastomer - Polyu. hane

Newfinal		1 8	General	15.9	Tens: 14	l ^a ,	Į.	Untimate	Untimate	, and	1	Weight	
Condition		3	1	ps1	\$ CEG.(1)	ps1 % Cag.(I)		a la	\$ CD(1)	Duro A Chg.(L)	Cbg.(1)	ż	Rating
As-cured			0	1802 1802		335		099		38			
1. v, vac. 16 hrs., 70 F	βų	£1	6.4 × 10 ⁶	%	참	373	기 +	lg ₄	-35	73	<del>\$</del>	<b>9</b>	Q
2. Y, Vac. 100 hrs., 70 F	PA C	7	6.1 × 10 ⁷	88	ঝ	365	ъ ъ	340	87	4	÷	01 +	m
3. v + UV, Vac. (2) 15 hrs., 95 F	ac. (2)	15	5.7 × 10 ⁶	98 94 94	<del>የ</del> ቀ	፠፞፞፞፞	+ 4.5	88	<b>%</b> 3	22	0 0 + +	1 1	<b>⊅</b> ₩
b. y, Vec. (3) 100 hrs., 70 F	<b>№</b>	35	5.0 × 107	萸	જ્	88	. 2.1	333	8-	ध्य	‡	۲.	m
5. v, MIr 100 brs., 70 F	R ₁	17	6.1 × 107	1012	4	4	+ 2.7	88	ᅾ	Б	Ŷ	-# +	
6. v + W, AL(2) 100 Frs., 250 F	(8) A (9)	8	5.0 × 107	ı	1	1	i	ı	ı	52	\$	21-	9

(1) Pros as-cured value.

(2) Measured temperatures are tacertain.

(5) Combined radiation intended

ż

Table B-51. (Concluded)

The samples underwent an initial cross-linking period after which chain scission was more predominant (Condition 1 vs. 2). Time effect:

Atmosphere effect: The difference between air and vacuo irradiation appeared very small.
The weight changes were also small, in view of the extensive degradation of some of the specimens. The effect of combined rudiation was very greatly masked by the effect of the heat accompanying the desired ultraviolet radiation. Type irradiation effect:

condition 3, one specimen (upper) was covered with an iridescent discoloration on face toward UV lamp. Two specimens clower) appeared to have partially mailed and rehardened on that face. Condition 6, iridescent discoloration glaze surface with fine cracks on face toward UV lamp. All irradiated specimens exhibited a slight "tacky" condition on their edges and the broken ends. Observations:

Table 8-52. EXPOSURE OF POLYURETHANE VULCANIZATE (272)¹ TO HIGH VACUUM AT VARIOUS TEMPERATURES⁴⁵

		Exposed to	3.5	£8.	ส	212 F	3	300 J?
Property Measured	Original.	10-5 mm 2g for 56 Days at Room Perperature	Vactor of 8 x 10"5 mm Ng for 7 Days	Air Oven for 7 Days	Vacuum of 7.8 × 10 ⁻⁶ ma Ng for 5 Days	Air Oven for 5 Days	Vacuum of 2.1 x 10-6 mm Hg for 5 Days	Adr Oven for 5 Days
Tensile strength, pst	3250	3370	3470	3700	3360	3250	3540	1220
Modulus, pei at 300 per cent elongetion	71.5	967	950	92	925	810	1960	945
Slongstion, per cent	71.5	675	959	(25	61.5	017	385	350
Herdness, Shore A	<b></b>	8	3	83	X.	φ,	8	Ж
Stands, per cent elongation at 400 pad	213	Ř	881	<b>†</b> a	195	275	8	160
low temperature flexibility, ASDA DIO43, T ₂₀₁ , F	9 1	9F	86	-37	t	ł	-28	ŀ
Weight change, per cent	ł	<b>4.0</b> -	6.4-	1	-2.1	-1.5	-2.,	-2.0

10 mm	100	<b>0.</b> :3	44	. ඝ	138.2
Compounding ingredient	Genthane S	Stearic Acid	Magnesium Oxide	MAF Carbon Black	

Magressum Caude DiCup 45 C MAF Carbon Black

TABLE B-53. FLUID SOAK IRRADIATION - EFFECTS ON TENSILE PROPERTIES^(a) OF GEATHANE S-1 AND BUTADIENE-ACRY LONITRILE⁽⁴⁸⁾

Integrated Neutron		AIIL-L-7808(b)			4P3E(b)		Oromte	Oronte 8515(b)
Flux (N), n cm ⁻² (E > 0, 33 Mev)		Nodulus at 100%		38 sulut √. 50%	Modulus at 102%		Modulus at 100%	
Gamma Exposure (G), ergs g ⁻¹ (C)	Irradiation Temp, F	Elongation, psi	Ultimste, pei	E'gation, psi	Elongation, psi	Ultinate, psi	Elongation, pri	Ultimate, psi
			Genthane S-	Genthane S-1 (Polyurethane)(c)				
Control(d)								
N 1.2-1.6 x 10 ¹⁴ G 3.0-3.3 x 10 ⁸	80	131/4 /5	2816/12/5		1,16/9, 8/5	2122/4.5/5		
N 1.3-1.4 $\times$ 10 ¹⁵ G 2.1-2.2 $\times$ 10 ⁹								
	80						217/4 /5	3298/16 /5
N 1.1 x 10 ¹⁵ G 2.8 x 10 ⁹	8			82/11/5		1968/15 /4		
			Nitrile (Butad	Nitrile (Butadiene-Acrylonitrile)(C)	ତ ।			
Control(d)								
N 1.2-1.6 x 10 ¹⁴ G 3 0-3.3 x 10 ⁸	08	251/21/5	3110/12/4		273/10 /5	1570/22 /4	464/11/5	2946/15 /5
N 1.3-1.4 × 10 ¹⁵ G 2. 1-2.2 × 10 ⁹	09						598/14/5	2562/7.3/5
N 1.1 x 10 ¹⁵ G 2.8 x 10 ⁹	80			186/17/5		2036/14 /5		
N 9.3 $\times$ 10 ¹⁵ G 1.3 $\times$ 10 ¹⁰	i d			y/c:.		2/ 21/032		
	900					01 01/600		

(2; Data are given as \$\overline{x}\$/S.D./n, where \$\overline{x}\$ = average value, S.D. = standard deviation of .udividual observation estimated from the range, and n = number of specimens used in calculating \$\overline{x}\$ and S.D.
(b) Immersion n:edia.
(c) Test temperature 80 F.
(d) Control data lost.

*****

}

TABLE B-54. FLUID SCAK IRRADIATION - EFFECT'S ON TENSILE PROPERTIES⁽⁴⁾ OF DISOGRIN. BUT IL RUBBER AND DU FONT V., '41), '(48)

				1			(E)	
Integrated Neutron		IDSA 6865 4P3F(C)	Dicogn	1DSA 22-6, A. c.d 4P3E(c)	d 4P3E(c)	MIL-1-7800(c)	800(c)	Oronite 8515(c)
(E > 0.33 Mev)	Total	Modulus at		Modit.	Ultimate.	Modulus at 100%	oltimate,	Modulus at 106%
camma exposure (c), ergs g ⁻¹ (C)	Temp. F	Elongation, ps.		Elongation, p.	psi	Eiongation, psi	nd.	Elongarion, 9si
Controi(d)								
N 1. 1 × 1014								
	80							199/6 8/4
N 1.2-1.6 $\times$ 10 ¹⁴ G 3.0-5.3 $\times$ 10 ⁸								
	80	781/4.7/5		1850/2.1/4	3513/11/4	18.5/5.2/4	127/15/5	•
					Du Pont Viton 441 Lace	LING.		ļ
		205, 4P3E(C)	(c)		381, 4P3E(C)	(2)	,082,	4082, 4P3E(C)
		Modulus at		Moculus at			Mod 11	
		100%	Ultımate,	50%	3001 3001	Ultimate,		ร้
		Elongation, psi	psı	Elongation, psi	psi Elongation, psı	. psı psı	Elongation, psi	381
Control ^(d)								
N 1, 2-1, 6 × 10 ¹⁴								
0 c 0-0 3 X TO	80	356/2, 1/5	2303/12 /5		1220/5, 2/6	2/8 228 1/5, 2/6	6 1147/5.2/6	1946/4.2/6
N 1.3-1.4 x 10 ¹⁵								
	80	70:/7.5/5	2267/7.4/5					
N 1, 1 × 10 ¹⁵ G 2, 8 × 10 ⁹								
	80			623/10/8		2133/4.6/6	9	

(a) Data are given as X/S. D. /n, where X = average value, S. D. = standard deviation of i.... v. v. bervation estimated from the range, and n = number of specimens used in calculating X and S. D.
(b) Test temperature 80 F.
(c) Immersion media.
(d) Control data not reported.

(d) Control data not reported:

Table D-55. Fillid soak irradiation - evects on tensile properties (a) of genthane 130r, thiokcl st. and wadg-11(48)

--٠,

					1900 (PC)	(8)	(5)	
Integrated Neutron				Centralic	Centralic 1308 (Polymentalic)		(S) 18(C)	(18(0)
Flux (N), n cm-2		MIL-L-7808(c)	)8(c)		4P3E/C)	-	Oronne o	101.1
(E > 0.33 Mev)		Modulus at		Moc. lus at	Modulus at	Heimien	Modulus at	Illtimate
Gamma Exposure (G), ergs g ⁻¹ (C)	Irradiation Temp, F	100% Elongation, p.1	Ultimate. ps1	wrps '-: Jun, pst	Elongation, psi	psi	Elongation, psi	rsd ,
Coetro)(d)								
N 1.2-1.6 x 10 ¹⁴								
G 3.0-3.3 x 108	8	267/9.1/5	2620/9.2/5		225/8.1/5	1192/7.9/5	305/2.9/3	3553/4 /3
N 1,3-1,4 x 1015	3	•						
$G 2.1-2.2 \times 10^9$	;						2d9/6.4/5	2816/2.9/5
	80						`	•
$N_{1.1 \times 10^{15}}$								
G 2.8 x 103	c			71/18/5		1033/1 9/4		
	6							
				Thiokol ST (Polysulfide)(b)	/sulfide)(b)			WADC-11(5)
		MII -L-	MII -L-7808(C)	4P3E(c)	•	Oronite 8515(c)		445 A
		Modulis at 100%	Ultimate.	ก็ด		Modulus at 100%	Ultimate,	Utimate,
	**	Flongation, psi	psi	F.	Eloi	Elongation, psi	hit	
Contro. 1 ^d								
41000								
G 1.7 × 10 ⁸	08	519/2.6/4	938/5,4/5	/5	'n	554/2, 7/4	305/R, 5/5	
N 1.2-1.6 x 1014		•						
G 3.0-3.3 x 108	O	508/3.6/5	780/17 /5	/5 151/16 /3	3 /3			
N 1 3-1 4 x 1015	3		•					
G 2, 102, 2 × 109					•	17 0 17	210 1110	
	. 80				<b>19</b>	628/5.2/5	844/4.3/5	
N 1,1 x 1015								
G 2, 3 x 10 ⁹	80							2038/12/5

(a) Data are given as \$\overline{x}(S.D./n, where \$\overline{x}\$ = average ...ue, \$S.D. = standard deviation of hour vidual observation estimated from the range, and n = number of specimens used in calculating \$\overline{x}\$ and \$S.D.
 (b) Test temperature 80 F.
 (c) Immersion media.
 (d) Control data not reported.

(d) Control data not reported.

table 3-56. Fluid scar irradiation - : ..c.: - in tensile properties (4) of Kirxhill Mil-R-68855 and DU pont LD-2.4(48)

			Karl	Kirkhill MIL-R-63855(b)	(a);		Du Pont 1	Du Pont LD-234(b)
Integrated Neutron		MIT-L-7808(c)			4P3E(C)		4P3	4P3E(c)
Flux (N). n cm ⁻²		Modulus at		N:odulus at	Moduius at		Modulus at	
(E > 0. 33 Mev)  Gamma Exposure (G),  eros o - 1 (C)	Inadiation Temp. F	100% Elongatiot. Dai	Ultimate, tai	50% Elongation, psi	IOU% Eiongation, psi	Ultimate, psi	Elongation, psi	Ultimate, psi
Control(d)				-				
N 1.2-1.6 $\times$ 10 ¹⁴ G 3.0-3.3 $\times$ 10 ⁸								
	80	445/2.5/5	1008/1.5/5		534/20/4	1225/5.7/4		
N 1.3-1.4 × 10 ¹⁵ G 2.1-2.2 x 10 ⁹								
	80 350				223/20/5	485/17 /5	191/2/6	1834/8.6/6
N 1. * x 1015 G 2. 8 x 10 ⁹								
	80			88/12/5		425/9.1/4		
								-

(a) Data are given as X/S D. /n, where X = average value, S.D. = standard deviation of individual observation estimated from the range, and n = number of specimens used an calculating X and S.D.
 (b) Test temperature 80 F.
 (c) Immersion media.
 (d) Control data not reported.

TABLE 6-57. SILICONE PUBBERS - TENSILE PROPERTIES: OF CC-80 VERSUS TEMPERATURE AND "RRADIATICN(48)

Integrated Neutron				DC-8	DC-80 (Methyl Vinyl)			
flux (N), n cm ⁻²		-65 F ⁽⁷⁾	(C) ₃		80 F(D)		300 F(D)	(a):
(E > 0.33 Mev)	Irradiation	Modulus at	Ulrimate	Modulus at	Ditimate.	Ultiniate Elongation,	Modulus at 50%	Ultunate,
ergs g ⁻¹ (C)	Temp, F	Elongation, psi	þst	Elongation, psi	Pat	g _K	Zlongacion, psi	Ρü
Control	84	417/4.3/5	1303/5. 5/5		1155/8.8/5	359/8.8/4		
	8 &			303/2, 8/5	1057/8.1/5	317/10 /5		
	350			321/5. 0/5	1209/3.4/5	325/3 5/5	266/11 ,'8	538/11/8
N 6.2 x 10 ¹³								
	<del>2</del>	410/4 /5	1286/13 /5				277/1.4/5	556/15 /5
N 1.1 x 10 ¹⁴								
G 1.3-1.4 x 10 ³					27	3,0 0,000	170 07010	
	8			278/3.7/5	1066/12 /5	303/9. 2/5	346/2.2/4	17 447 144
	350			341/1 /5	873/14 /5	201/15 /5	342/14 /5	635/16 /5
N 4.7-5.3 x 1014								
G 6.3-8.3 x 10 ³			•				1,000	27 67 67 602
	કરે 8	569/13 /5	1152/13 /5	5/ 6/806	1119/" 3/5	204/4.2/5	363/5,2/5	537/8.675
ļ	8				26	7		•
N 0, 7-1, 0 $\times$ 10 ¹⁵								
	-65	765/5.3/5	1238/5.5/5				589/11 /5	838/17 /5
	350	•	•	524/6 /5	849/1.7/5		557/5.3/5	654/4 /5
$N 1.0-1.3 \times 10^{15}$								
G 1.5/1.7 x 10 ³							90:1/4 9/5	821/5 9/5
	os es				813/8, 4/5	29/37 /5	010:11:07	691/8.8/5
	3							

(a) Data are given as X/S. D. /n, where X = average value, S. D. = standard deviation of individual observation estimated from the range, and n = number of specimens used in calculating X and S. D.
 (b) Tex comperature.

TABLE B-58. SILICONE RUBBERS - TENSILE PROPERTIES(A) . . . . . . . . VERSUS TEMPERATURE AND . . . DIATION (48)

				DC - 15 ()	75 (Methyl Phenyl Vinyl)	lay1)		
Integrated Neutron		-65 F(b)	(q)		ко F(b)		300 F(b)	<b>b</b> )
Finx (iv), n cm =	inadiation	fodulus ac		, (tb t		Ultinate	Modulus at	
(E / 0: :) MICV	and Storage	50%	Ultimate,	20%	Ultimate,	Elongation,	20%	Ultimate,
camma Exposure (O), ergs g ⁻¹ (C)	Temp, F	Elongation, psi	psi	Elongation, psi	psi	الم	Elongation, psi	psı
Control						,		
	şş	322/5.8/5	5/ 8/0601		901/4.8/5	324/15 /5		
	80			212,/5.9/5	392/3.5/5	339/3.9/5		27 1111
	350			288/2.4/5	931/7.8/5	308/1.7/5	212/5.4/10	533/12 / 9
N 6.2 x 10 ¹³								
G 8 x 107			,				3/0 4/4 00	401,13 /5
	<del>-6</del> 5	383/5.4/5	1005/1.8/5				204/ 4. 2/ 3	0 / ct /10±
N 1, 1 x 10 ¹⁴								
G 1.3-1.4 x 108					270 07000	27 0 27 200	5,0 3/000	5/ 61/655
	80			205/12 /5	968/3.8/5	320/03.070	0,007.0.00	5/ 61/05/
	350				703/18 /5	218/11 /4	e /z . 1. /). ZZ	6/11/00%
N 4.7-5.3 x 1914								
G 6.3-8.3 x 103	;	40 0100	3/ 1// 10				293/6,9/5	581,10.4/5
	န္ &	646/ 2. 6/ 3	C/ #1 /#46	287/:1 /5	886/3.5/5	180/8.4/5	287/4 /5	574/11 /5
•	}							
N 0.7-1.0 x 10 ¹³							,	:
	-65	.53/10 /5	1109/6.3/5				547/5.4/5	603/4.4/5
	350	,		334/7.2/5	878/8.4/5	152/9.9/5	376/6.2/5	503/4. 5/4
N 1.0-1.3 x 10 ¹⁵								
G 1.5-1.7 x 10 ⁹				470 07000	2/2 0/000	2/ 01/001	538/7 9/5	575/5 /5
	350			510/0.6/5	93 <b>6</b> /8.7/3 998/10 /5	38/17 /5	o la 11 laco	670/19 /5
	3							

(a) Data are given as \$\tilde{X}\tilde{S}.D. \( \) i. where \$\tilde{x}\$ = average vai. \( \) S.D. = standard deviation of \$\tilde{x} \tilde{x} \ti

TABLE B-59. SILLCONE RUBBERS - TENSILE PROPERTIES⁽⁴⁾ OF DC-916 VERSUS TEMPERATURE AND IRRADIATION⁽⁴⁸⁾

Integrated Neutron				DC-916 (M	OC-916 (Methy! Phenyl Vinyl)	a		
Flux (N), n cm-2		-35	-35 F(b)		80 F(b)		300 F(b)	F(b)
(E > 0.33 Mev) Gamma Exposure (G), ergs g ⁻¹ (C)	Irradiation and Storag: Temp F	Modulus at 50%	Ultím te	First lius at 100%	Ultimate,	Ultiniate Elongation,	Modulus at 50%	=
(2) (2) (2)		and frame Survey		Cronganon, 201	<b>š</b> .	Q.	Elongation, psi	psi
Tonno)	8	145/5.9/5						
	08	•		109/2.8/5	1504/4.3/10	508/3.9/10		
	390			148/11 /5			123/1.4/10	489/15 /10
N 6.2 x 1013								
G 8 × 10'	슗	362/3 /5					139/19 /5	855/7 7/5
		•					0/ 91/001	671 11 1600
M 1.1 x 10 ¹⁴ G 1.3-1.4 x 10 ⁸								
	80			104/13 /4			132/4.2/5	658/7,9/5
	320				1330/3.8/5	584/3 , 5		772/11 /5
14 4.7-5.3 x 1014								
G 6.3-8.3 x 108								
	& 8 &	246/0.6/5	1802/1. 5/5	150/4.6/5	1134/6.1/5	455/3, 3/5	160/6.7/5	517/11 /5
•				•			2 12 13 17 1	01 ** for .
N 0.7-1.0 x 10 ⁴⁵ G 1.1 x 10 ⁹								
	-65	359/1.1/5	1404/4. 7/5				312/9.4/5	449/6.5/5
	350			237/9.3/3	1190/4.0/5	362/3.6/5	226/1.8/5	611/7.0/5
N 1.0-1.3 x 10 ¹⁵ G 1.5-1.7 x 10 ⁹								
	80 350				1182/1.3/5	334/6.5/5		461/16 /5
					is in a loan	0/ 07/04		222/20

(a) Data are given as \$\overline{5}\is.D. \int_n, where \$\overline{8}\$ = average value, S.D. = standard deviation of 1 \tau idual observation estimated from the range, and n = number of speciment used in calculating \$\overline{8}\$ and S.D.

(b) Test temperature,

TABLE 8-60. SILICONE RUBBERS - TENGILE PROPERTIES⁽⁴⁾ OF SE-381 VERSUS TEMPERATURE AND IRRADIATION⁽⁴⁸⁾

Integrated Neutron				≥E-3€	=			
Flux (N), n cm -2		-65 F(b)	6		80 F(D)		300 F(D)	(e)
(E > 0.33 Mev) Gamma Evposure (G). ergs g ⁻¹ (C)	Irradiation and Storage Temp, F	Modulus at 50% Elongation, psi	Ultimate, psi	Alogulus a. Longation, psi	Ultimate, psi	Ultamate Elongation, %	Modulus at 50% Elongation, psi	Ultimate, psf
Control	-65 80 350	231/21 /5	1050/11 /5	269/23 /5 228/18 /5 313/19 /5	950/5.9/5 967/3.1/5 974/6.9/5	136/3, 7/4 126/6, 8/5 126/9, 7/4	261/31 /10	, 481/20 /9
N 6.2 x 10 ¹³ G 8 x 10 ⁷	-65	417/23 /5	1284/6. 4/5				318/24 /5	147/18 /5
N 1.1 x 10 ¹⁴ G 1.3-1.4 x 10 ⁸	80 350			343/19 /5 235/9.3/5	983/10 /5 875/9 /5	109/12 /5 121/7. 8/5	494/8. 1.'5	644/3 /5 571/-3, 5/5
N 4.7-5.3 x 10 ¹⁴ G 6.5-8.3 x 10 ⁸	- <del>6</del> 5	752/19 /5	1239/19 /5	430/28 /5	977/5.6/5	90/9.1/3	380/15 /5 505/13 /5	613/15.9/5 66:/18 /5
N 0.7-1.0 x 10 ¹⁵ G 1.1 x 10 ⁹	-65 350		1354/1, 8/5		349/2 /5		637/18 /5	740/12 /5 723/5.4/5
N 1.0-1.3 x 10 ¹⁵ G 1.5-1.7 x 10 ⁹	80				953/8, 1/5	83/7.8/5 32/40 /E		651/20 /5 711/10 /5

(a) Data are given as X/S.D. /n, where \(\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\ti

TABLE B-61. SILICONE PUBBERS - TENSILE PROPERTIES⁽⁴⁾ OF SE-551 VERSUS TEMFERATURE AND IRRADIATION⁽⁴⁸⁾

Integrated Nontron				SE-55	SE-551 (Methyl Phenyl)			
Flux (N) a cm ⁻²		-65 F(b)	e(b)		80 F(b)		300 F(b)	F(5)
(E > 0.33 Mev)	Irradiation	ä		Modulus at		Ultimate	Modulus at	7110,000
Garrma Exposure (G), ergs g ⁻¹ (C)	znd Storage Temp, F	50% Elongation, psi	Ultimate	elongation, psi	Ultimate, psi	Elongation, %	50% Elongation, psi	Dsi
Courtrol	80 80 83 80 85 80	126/1.5/5	1464/ /1	85/5, 1/5 109/4, 4/5	955/18 /5 976/20 /5 1098/4. 7/5	384/14 /5 431/7.5/5 398/5.4/5	116/17 /8	416/15 /10
N 6.2 x 10 ¹³ G 8 x 10 ⁷	જે	121/12 /5					12:/7.4/5	555/6.9/5
N 1, 1 x 10 ¹⁴ G 1, 3-1, 4 x 10 ⁸	80 350			118/14 /5	948/5.8/5 928/15 /5	460/5.2/5 277/12 /5	147/7.9/5 148/9.1/5	487/11 /5 452/15.8/5
N 4, 7-5, 3 × 10 ¹⁴ G 6, 3-8, 3 × 10 ⁸	85 80	283/1 /5	1515/8.6/5	182/3.8/5	1078/9.2/3	268/12 /5	219/9. <b>6</b> /5 232/22 /5	590/6.°'5 4°8/25 ,
N 0, 7-1, 0 x 13 ¹⁵ G 1. 1 x 10 ⁹	-65 350	535/6.1/5	1253/3. 1/5	229/6.2/5	1086/7.5/5	184/15 /5	398/8.6/5 274/3.9/5	466/17 /5 577/15 /5
N 1.0-1.3 × 10 ¹⁵ G 1.5-1.7 × 10 ⁹	80			245/13 /5	883/8.5. 5 808/10 /5	177/21 /5 75/:3 /4	313/9.2/5	471/13 /5 544/15 /5

(a) Data are given as X/S.D. fn, where X = average value, S.D. = nandard deviation of anc vidual observation entimated from the range, and n ≈ number of specimen used in calculating X and S.D.

(b) Ten temperature.

TABLE B-62. SILICONE RUBBERS - TENSILE PROPERTIES⁽³⁾ y" LS-53 VERSUS TEMPERATURE AND IRRADIATION^(4,6)

Integrated Neutron					rs-23(p)			
Flux (N), n cm ⁻² (E > 0.43 Mev) Gamma Exposure (G), crgs g ⁻¹ (C)	irradiation and Storage Temp, F	Modulus at 50% Elongation, psa	Ultim <b>ate,</b> psi	ا المناهجين منام psi	Ultimate, psi	Ultimate Elongation, %	Modulus at 50% Elongarion, psi	Ultimate, psi
Control	-65 80 350	361/5,5/5	2052,2.4/5	22/3 /5 249/4. 1/5	1324/3.2/5 1229/12 /5 1354/3.4/5	217/5. 4/5 253/8. 5/5 237/0. 9/5	297/14 /10	472/.7 /10
N 6.2 \ 10 ¹³ G 8 x 10 ⁷	ક્ક	436/2. 1/5	2094/3, 1/5				214/17 /5	543/6.1/4
N 1. 1 × 10 ¹⁴ G 1.3-1.4 × 10 ⁸	30 350			233/9, 2/5 263/6, 5/5	1169/1.3/5 853/11 /5	238/1.8/5 174/13 /4	245/9.5/5 263/6.2/5	50"/7.4/5 292/24 /5
N 4, 7-5, 3 × 10 ¹⁴ G 6, 3-8, 3, 10 ⁸	89.	882/6.4/5	1783/6.1,5	333/4 /5	751/6.5/5	120/5.4/5	313/11 /5 318/6.3/2	327,/4.3/5 327/8 4/5
N 0.7-1.0 x 10 ¹⁵ G 1.1 x 10 ⁹	-65 350	8/ 57/III	1076/6. 1/5		626/5.6/4	71/3.5/4	502/11 /2	273/3.7/! 328/27
N 1.0-1.3 × 10 ¹⁵ G 1.5-1.7 × 10 ⁹	80 350				514/13 /5 482/17 /5	74/17 /4 20/32 /5		307/14 /5 243/20 /5

(a) Data are gaven as \$\tilde{X}/S.D. /n, where \$\tilde{X}\$ = average value, S.D. = standard deviation of incivity. Observation estimated from the range, and n = number of specimens used an calculating \$\tilde{X}\$ and \$\tilde{S}\$.P.

(b) Test temperature 80 F.

TABLE B-63. SILICONE RUBBERS - TEAR STRENGTE: ) V. RSUS IRRADIATION AND TEMPERATURE(48)

Integrated Neutron Flux (N). n cm ⁻² (E > 0.33 May)	Irridiation			Tear Strength, ib/in.	gth, ib/in.		
crgs g ⁻¹ (C)	Temp, F	OC-80(p)	DC-675(b)	(q)916-DG	SE 361(b)	SE 551(b)	(q)83-S7
Control	80	161/12 /5	120/20 /5	242/19 /5	27/14 /5	110/18 /5	74/23 /5
N 6.2 x 10 ¹³ G 8 x 10 ⁷	-65	89/11 /5	121/13 /5	204/14 /5	29,14 /5		95/3.8/2
N 6 × 10 ¹³ G 1.3 × 10 ⁸	80 80 80	76/20 /5 67/7.7/5	98/13 /5 78/11 /5	156/15 /5 =/16 /5	24/36 /5 20/8.6/4	75/7. 1/4 67/17 /4	
$N_1 \times 10^{14}$ G 1.3 × 10 ⁸	350	13/30 /4	86/15 /5	158/4 /4	22/27 /5	64/4 /5	59/13 /4
N 1.1 x 10 ¹⁴ , G 1.4 x 10 ⁸	80	92/11 /5	95/1.1/5	179/8.9/5	25 2 /5	86/9.1/4	
N 2.8 × 10 ¹⁴ C 3.5 × 10 ⁸	. <del>6</del> 5	69/8.1/4 66/11 /5	64/11 /5 80/9. 1/5	153/18 /5 166/18 /5	26/35 /5 20/8.6/5	63/1 <b>6</b> /5 50/15 /5	
N 1 × 10 ¹⁵ G 1, 1 × 10 ⁹	<b>9</b> 2	9/19/5		115/11 /4	31/22 /5	53/18 /4	46/27 /3
N 1 × 10 ¹⁵ G 1.5 × 10 ⁹	30	11/24 /5	25/7.8/4	181/12 /5	17/18 /5	10/12 /5	
и 1.3 × 10 ⁹ G 1.7 × 10 ⁹	350	3/43 /5	4/22 /5	38/21 /.	8/1.2/5	21/6.2/5	1/6.9/4

(a) Data are given as \$\overline{X}\$.D. /n, where \$\overline{X}\$ = average value, S.D. = standard deviation in the continuation of the standard from the range, and n = number of specimens used in calculating \$\overline{X}\$ and S.D.
 (b) Test temperature 80 \$\overline{F}\$.

TABLE B-64. SILICONE RUBBERS - TENSILE AND SHEAR PROPERTIES(2) OF DC-916 AND SE-555 VERSUS IRRADIATION(48)

Integrated Neutron		c	V-918 (Methy)	nc-918 (Methy) Phenyl Vinyl)(~)		ī.	E-555 (Methyl F	SE-555 (Methyl Phenyl Vinyl)(c)	ļ
Flux (N), n cm (E > 0.33 Nev)(b) Gamma Exposuce (G). ergs g ⁻¹ (C)(b)	Days Tested After Irradiation	Ultimate.	Ultimate Elongation,	Compression Set,	Tear Strength, lb/in.	Ultimate, psi	Ultimate Elongation %	Compression Set, %	Tear Strength, lb/in.
Control	<b>4</b> 8	1504/4.?/10 1589/7.8/8	508/3. 9/ 10 524/4. 7/ 8	12.9/8.6/6	165 /4.3/10	1840/6 /10 1580/14 /7	631/2.6/10 496/7.5/7	25/4.8/6	265/3.5/9
N 3 × 10 ¹⁵ G 6.5 × 10 ⁹	14	263/9.3/10 311/9.1/4	12/14 /10 19/19 /8	109 /6.2/6	14. 7/27 /10	547/17 /10 557/15 /8	28/12 /10 51/21 /8	113/3. 5/6	20/28 /10
N 5.5 × 1015 G 1.2 × 10 ¹⁶	32	260/13 /10 331/5.7/8	10/ /10	112 /3.9/6	10 /23 /10	482/10 /10 514/9.9/8	32/11 /10 31/21 /8	112/3.2/6	14/24 / 10

(a) Date are given as X/S.D. /n, where X = avorage value, S.D. = standard deviation of individual observation estimated from the range, and n = number of speciments used in calculating X and S.D
 (b) Irradiation temperature 80 F
 (c) Test temperature 80 F.

TABLE B-65. ILASTOMERS - CENSILE PROPERTIFY ( ) JULY 12. 318 VERSUS POSTIRRADIATION STORAGE TIME(48)

Integrated Neutron Flux (N),			DC-910	DC-916 (Methy ! Pheny! Viny!)(c)	inyl)(c)	
n cm ⁻² (E > 0.29 Mev)(b)	Days Tented		Modulus, pat			Ultimate
Gamma Exposure (G), ergs g ⁻¹ (C)	After Irradiation	At 100% Elongation	At 200% Elongation	At 300% Elungacion	Ultimate, pa	Elongation, %
Control	2	184/5.2/8	349/4. 1/8		12.2/7.8/8	494/7 /8
N 7.2 x 1013						
G 4.7 x 10 ⁸	c	97.8 97.80			3/0 3/1001	400.79.075
	s va	218/7 5	450/8,7/5		6/6.6/0701	378/9 9/5
	· #	242/3, 1/4	463/12 /4	196/12 /4	1282/13 /4	391/2,4/4
	30	229/5.1/6	456/6.2/5	788/6 /5	1155/5.8/5	382/8.7/5
N 2, 4 x 10 ¹⁴						
G 1.3 × 10°	8	481/7.8/5			804/2.1/5	183/2,2/7
	· vo	513/8, 6/5			754/5.8/5	146/8,9/5
	11	555/6.3/5			773/7 /5	142/9.2/5
	30	483/14 /5			780/7, 2/5	158/6.7/5

(a) Data are given as X/S. D., u. where X = average value, S. D. = standard deviation of individual observation estimated from the range, and n = number of specimens seed in calculating X and S. D.
 (b) Irradiation and storage to reperature 75 F.
 (c) Test temperature 75 F.

TABLE B-66. NITRILE->ILICONE RUBBER NSR-X5602 - ENGINEERING TEST PROPERTIES^(a) VERSUS IRRADIATION TEMPERATURE AND IMMURSION MEDIA (AIR AND JP4 FUEL)⁽⁴⁸⁾

				ż		: (Nitrie Siffcond):			
Integrated Neutron				, ,,(c)			11	IP 4 Fuel(c)	
Flux (N). n cm 2				111111111111111111111111111111111111111	Lossion Co.	Slope of Load	Modulus at		Ultimate
(E > 0.33 Mcv)  Gamma Exposure (G).	Irraciation Temp F	Modulus at 50% Elongation, psi	Ulti nete. psi	Elongetto:		Deflection Curve, 1b/1n.	50% Elongation, psi	Ultimate, psi	Elongation. %
Control	08	144/2.1/5	978/9.2/5	270/5.9/6	14. 5/9. 1/8	1107/8.6/6	134/11/5	314/11 /5	102/8.4/5
		3/ 01/041	o /7 :: /50c	2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2		•			
N 0,9-1,1 x 10 ¹³ C 1 3-1,6 x 10 ⁸	-65 80 260	182/7. 1/10	1027/7.4/10	231/8.4/10	31. 4/5 /4 27. 7/6. 8/4 53. 9/2. 7/4	1260/1. 5/4 1250/6. 2/4 1690/3. 4/4			
N 7.0-7.7 × 10 ¹⁴ G 8 × 19 ⁸	-65	208/6.4/5	778/9.9/5	184/2. 7/5	65 6 'n. 6/4 62. 1/4. 3/4	2190/3. 6/4 2180/ v/4			
N 1.5 x 10 ¹⁵ G 1.2 x 10 ⁹	260	545/ /1	3/1.8/12	69/3,5/5	99 /2.5/1	5563/1.3/4			
N 5, 0-9, 0 x 10 ¹⁵ G 1, 1-1, 3 x 10 ¹⁰	-65 80 80		545/12 /9 418/13 /9 103/23 /8	16/22 /9 16/22 /8 <\$/	95 /2.1/4 100 /6.3/4 108 /2.7/4	:1, 525/3.4/4 12, 350/12 /4 13, 375/13 /4		220/9.4/8	53/10 /5
N 4.5 × 10 ¹⁸ G 7 × 10 ¹⁰	80		221/14 /7	8/ /\$>					

. ' 'servation estimated from the range, and n = number of sneci-(a) Data are given as X/S.D./n, where X = average value, S D. = standard deviation of i mens used in calculating X and S.D.
(b) Test temperature PD F.
(c) Immersion media.

(c) immersion income.

TABLE B-67. NITRILE-SILICONE RUBBER NAR-X3602 · ENG. RRING TECT PROPERTIES^(a) YERSUS IRRADIATION TEMPERATURE AND INIMERSION MEDIA (ORO)· TE 8516 AND MIL-L-7808/4⁸⁾

からないとうないないないないない とうしゅんしょうない こうしょうしょう

Integrated Neicron				NSR-X5602 (Nittile Silicone)(b)	ile Silicone)(b)		
Flux (N). n cm ⁻²			Oronite 8515(c)			NILL-L-7808(c)	
(E > 0.33 Mev)		Modulus at		Ultimate	Modulus at		Ultimate
Gamma Exposure (G).	Irradiation	20 <b>%</b>	Ultimate.	Elengation,	50%	Ultimate,	Elongat.on,
ergs g ⁻¹ (C)	Temp, F	Elongation, psi	pel.	ge.	Elongation, psi	ısd	ee.
Control							3, 6,
	80	122/9.9/5	541/7.4/5	183/5,9/5	110 /20 /5	390/12/5	153/14 /5
	007	. 91 feet		2/ 27 /21	2/ 22/ 222	2 7 2 2	•
N 0.9-1, 1 x 10 ¹³							
G 1.3-1.6 x 10°	&	156/8, 1/10	449/8 /10	133/6. 1/10	6/1.6/ 08	256/16/10	150/6.5/10
	280	160/16 /9	499/11 /10	138/5, 9/10	16.5/13 /8	278/10/10	151/11 /10
N 7.0-7.7 x 10 ¹⁴							
, or x o o	98	201/4.7/5	506/4.3'5	111/3.7/5	87 /14 /5	134/18/5	122/7.3/3
N 1.3 × 1015							
-01 × c T 5	260	191/18 /5	343/5.7/4	85/6.9/3			
N 5.0-8.3 × 1015			~				
- T-1: 0	08		320/24 /8	23/15 /8			

(a) Data are given as X/S.D./n, where X :: average value, S.D. = standard deviation of individual observation is estimated from the range, and n = number of speciment used in calculating X and S.D.
 (b) Test temperature 80 F.
 (c) Immertion media.

\$B\$-92 Table B-68. Compression cicling of elastomers  $^{(c)}$  during irradiation  48 

Integrated Neutron Flux (N), n cm ⁻² (E > 0.33 Mev)(b)		Noncycled Uncompressed	Noncycle	Compressed	Cycled Co	mpressed(c)
Gamma Exposure (G), erys y ⁻¹ (C) ^(b)	Irradiation Time, h	Load- Deflection, lb/in.	Load. Deflection, lb/in.	Compression Set, %	Load- Deflection, lb/in.	Compression
		<u>N</u>	SR-X5602(4)			
Control		1307/9 /3	1230/4.8/8	16.4/16.4/8	1333/1.8/3	7.2/16 /3
N 2 x 10 ¹⁴						
G 4 x 10 ⁸	1	2000/3.9/4	1470/6.6/4	48.1/11 /4	1627/2.9/3	27.2/18 /3
	3	2040/5.7/4	1410/6.9/4	48.8/4.5 /4	1600/4.4/3	11.9/ /1
		<u> </u>	lycar 1001(d)			
Control		1720/2.8/3	1785/3.3/8	13.3/14 /4	1750/2,1/3	01-14
N 3.8 x 10 ¹⁴						
$G 4.8 \times 10^8$	1	1990/2.9/4	2070/5.4/4	40.1/3.8 /4	1820/7.8/3	13.3/14/2
	3	1890/0 /4	2.60/2.3/4	51.4/9 /4	1930/1 /3	
			DC-916(4)			
C itrol		1544/2,3/4	1663,'4.4/4	24.5/27.6/4	1675/2.7/2	15.3/ .1/2
3 x 10 ¹⁴ G 3.3 x 10 ⁸	1	2056/7.1/4	2431/9 /4	54 /11 /4		
14			, ,			
N 2 8 x $10^{14}$ G $4.2 \times 10^8$	3	1968/6.2/4	2363/6.2/4	51.1/12 /4		
N $4 \times 10^{14}$ G $4.5 \times 10^8$					2275/3,9/2	54.6/1.2/2
N 3.3 x 10 ¹⁴ G 5,3 x 10 ⁸	3				2450/7.3/2	43.3/1.6/2

⁽a) Data are given as x/S.D./n, where x = average value, S.D. = standard deviation of individual observation estimated from the range, and n = number of specimens used in calculating x ≥ 10. f.

⁽c) Number of cycles are as follows:

			Number of	Cycles	
		Before	During	After	
Material	Power Level	Irradiation	Irradiation	Inadiation	Total
	( Control				14,000
NSR-X 5602	3000 kw, 1 hr 1000 kw, 1 hr	8,600	4,460	920	13, 980
	1000 kw, 1 hr	920	11,680	900	11,700
	Control				10,800
Hycar 1001	{ 3000 kw, 1 hr	3,600	3,600	3,600	10,800
•	Control 3000 kw, 1 hr 1000 kw, 3 hr	900	10,800	••	11,700
•	Control				5,400
	3000 kw, 1 hr	900	3,600	900	5,400
DC-916	3000 kw, 1 hr 1000 kw, 3 hr Control	9 900	10,800	900	12,600
	Control				12,600

⁽d) Test temperature, 80 F.

⁽b) Ambient radiation temperature.

PERCENT WEIGHT LOS', FOR SILICONE RUBBER UNDER VACUUM-THERMAL CONDITIONS 31 Table B-69.

			≯	eight L	Weight Loss, percent	cent		
Silicone Rubber	Te	Temperature 105°F	ure 105	٠ اتا	Ten	nperati	Temperature, 300°F	0。压
. =	   	Time	Time, days			Time	Time, days	
Manufacturer	1	4	7	10	1	4	7	10
RTV 891, Dow Corning Corp.	0.50	0.68	0.74		1.49	1.73	1.73 1.80	1
Silicone, Lord Mfg. Co.	0.32	0.40	0.43 0.43	0.43	0.70	0.93	0.93 1.02	1.02
RTV-60, General Electric Co.	•	r	1	1	1.05	1.30	1.30 1.36	1
PR-1930-1/2, Products Research								
Ambient temperature cure Fost cured 6 hours, 300°F	0.79	0.91	0.97	ı I	1.64	1.86	1.86 1.96 1.00 1.12	
Silicone Rubber, Nyi ya Reinforced , Irvington Division, MMM Co.	0.58	0.79	0.86	•	1.48	1.71 1.78	1.78	:

Pressure 10-6

Table B-70. Weight loss in vacuum, pressure 45  $\times$  10-6 mm Hg⁽¹⁷⁾

Material	Composition	Total Wei, it Loss to Station: y State (gre.s/cm²) \$0 C	t Loss y State /cm ² ) 100 C	Tim Stati State 50 C	Time to Stationary State (hours) 50 C ':3 C	Stationary State Weight Loss Rate (grams/cm²/hour) 50 C 100 C	states Rate //hour) 100 C
		Polyolefic					
Irradiated polyolefin Wire insulation (Rayolin N 102E)	Radistion cross-linked polymers with additives	8.5-11 x 10-5		138		4.7-7.3 x 10-8	
Irradiated polyolefin Sbrinkable tubing Type KWP RT 201	Radiation cross-linked polymers with additives	4.6 × 10 ⁻⁵	4.3 × 10 ⁻¹ ;	138	147	6.5 × 10 ⁻⁸	3.8 x 10 ⁻⁷
Irradiated polyolefin Experimental type	Radiation cross-linked polymers with additives	1.1 × 10 ¹	3.5-4.0 x 10-3	138	161	1.7-3.4 × 10-7	8.0-8.3 × 10 6
		Mylen					
Zytel 101 Zytel 31 Zytel 105	Standard grade nylon Electrical grade nylon Carbon black filled 101	2.8 × 10 + 2.2 × 10 + 1.5 × 10 + 10 + 10 + 10 + 10 + 10 + 10 + 10	7.5 × 10 th 6.3 × 10 th 6.3 × 10 th	8844	<b>***</b>	3.4 × 10 ⁻⁷ 3.2 × 10 ⁻⁷ 1.2 × 10 ⁻⁷	1.5 × 10-5 1.8 × 10-6 1.8 × 10-6
		Polyacetal					,
belrin 500 Delrin 507	Standard grade resin Cary, a black filled resin	3.0 x 10 t 3.6 x 10 t	5.3 × 10 ⁻¹ 5.6 × 10 ⁻¹	28 28 28 28	<b>경</b> 경	2.0 × 10 ⁻⁷ 5.0 × 10 ⁻⁷	2.0 × 10 ⁻⁶ 1.6 × 10 ⁻⁶
		Diallyl Pathelate (DAP)	elate (DAP)				
<b>FS-</b> 5	Meta form, short glass fiber filled	2.6 x 10 ⁻¹	6.5 × 10-4	55	88	1.5 × 10-6	3.1 × 10 ⁻⁶
3-2-530	Meta form, long glass fiber filled	1.1 × 10 ⁻⁴	4.2 × 10-4	55	88	6.3 x 10°7	1.2 × 10 ⁻⁶

TABL. (Continued)

		To al Weight Loss to stationary State (grams/cm2)	ght Loss ary State /cm2)	The Stati State	Time to Stationary tate (hours)		tationary State eight Loss Rate (grams/cm²/bour)
Material	Composition	50 03	100 C	ς Σ	50 C 100 C	50 C	100 C
₩-%	Ortho form, short glass	1.3 × 10 ⁻¹	3.1 × 1C-4	55	<b>3</b>	7.3 × 10-7	1.6 × 10 ⁻⁶
1–530	Ortho form, long glass fiber filled	1.0 × 10 ⁴	4.1 × 10-6	55	₫	8.0 × 10 ⁻⁷	1.2 x 10 ⁻⁶
1-503	Ortho form, orlon filled	1.2 x 10 ⁻⁴	5.1 × 10 ⁻⁴	55	88	8.4 x 10-7	1.1 × 10 ⁻⁶
		Front					
Epiall 1288 epoxy molding compound	Lpoxy molding compount, glass fiber filled	3.9 × 10 ⁻⁵	4.2 x 10-4	55	₹	1.6 × 10 ⁻⁷	6.6 x 15 ⁻⁷
Eylall 1459 epoxy molding compound	Spoxy molding compound, mineral filled	3.8 x 10 ⁻⁵	1.5 x 10 ⁻⁴	55	₹	2.6 x 10 ⁻⁷	4.7 × 10 ⁻⁷
Deveon F epoxy (room temperatur:	Aluminum filled (80 per cent by weight) epuxy	7.0 × 10 ⁻¹	1.0 × 10 ⁻³	25	88	9.1 × 10 ⁻⁷	1.8 × 10 ⁻⁰
Armstrong epoxy (room temperature cure)	Unmodified polyandd cured epoxy system	1.8 x 10 ⁻⁴	1.4 x 10 ⁻³	25	8	3.8 × 10 ⁻⁶	6.4 × 10 ⁻⁵
Permacel epoxy type FRH 102 (cured 3 hours at 60 C)	Three parts variable flexibility epoxy	3.2 x 1.0"4	2.3 x 10-3	25	28	6.3 × 10 ⁻⁶	2.9 x 10"5
Permacel epoxy type FR 3935 (room temperature cure)	Modified, polyamid cured epoxy system re)	7.1 % 2.ml	4.0 × 10 ⁻³	25	8	9.8 x 10 ⁻⁶	3.7-4.1 x 10"5
Permecel epoxy (type PRH 102) (room temp- erature cure)	Three parts variable fluxibility epoxy	6.6 x 10 ⁻¹	3.4 × 10 ⁻³	25	88	1.0 x 10 ⁻⁵	3.4 x 10-5

TABLE B-70. (Continued)

		Total h . ght Loss to Statio. Ary State (green, com?)	at Loss ry State	Time to Stationary State (hour	Time to ationary te (hours)	Stationary State Weight Loss Rate (gramm/cm2/hour)	y State ss Rate 2/hour)
Material	Composition	20 C	100 C	S S	50 c 100 c	25	100 C
		Phenolic Lauinates	nates				
Phonolic leminate grade XX natural	Phenolic landnate, paper filler	1.4-1.5 x 10 ⁻³	3.5 × 10 ⁻³	138	191	3.7-4.4 x 10-6	8.9 × 10 ⁻⁶
Phenolic lazinate grade LB 103	Phenolic laminate, cotton fabric MoS ₂ impregnated	3.7-3.8 × 10 ⁻³	5.7-5.8 x 10-3	138	161	3.9-4.2 x 10-6	3.2-3.4 x 10 ⁻⁵
Phenolic laminate grade LBB natural	Phenolic laminate, cotton fabric	2.3-2.3 x 10 ⁻³	4.6-4.8 × 10 ⁻³	138	191	4.8-5.1 × 10 ⁻⁶	3.8-4.3
		Silicone					
Dow RIV 521 silicone rubber (room ten- perature cure)	Cross-linked silicone resins with various fillers (CaCo ₃ , SiO ₂ , ad FeO ₂ )	4.5 × 10 ⁻³		8		1.6 × 10°5	
Dow KiV 503 silicone rubber (room tem- perature cure)	Gross-linked silicone resins with various filliars (GaCo ₂ , SiO ₂ , on FeO ₂ )	4.2 x 10 ⁻³		88		2.3 × 10 ⁻⁵	
CB RIV 40 silicone rubber (room tem- perature cure)	Crof linked silicone retins with various fillers (CaCc ₃ , SiO ₂ , and FeO ₂ )	5.0 × 10 ⁻³		. 88		2.7 × 10 ⁻⁵	
dB RIV 60 silicone rubber (room tem- perature cure)	Cross-linked silicone resins with various fillers $(^{13}CO_3)$ , $^{3}SO_2$ , and $^{16}CO_2$	5.3 × 10° ⁵		8		2.8 × 10 ⁻⁵	

TABLE 5-70 Continued)

Total Weight Loss Time to Stationary State to Stationary State to Stationary State Stationary Weigh. Loss Rate (Grams/cmf) State (huurs) (Grams/cmf) (	. in which various is with various ers (GaCo ₃ , S10 ₂ , 5.8 x 10 ⁻⁵ $58 \times 10^{-5}$	-linked siliconc lns with various (CaCo ₃ , SiO ₂ , $_{\rm h.l.~x~10^{-3}}$ ) $_{\rm h.l.~x~10^{-3}}$ $_{\rm h.h}$ $_{\rm h.l.~x~10^{-3}}$	silicone potting powd $1.2\times10^{-2} \hspace{1cm} \mathrm{hh} \hspace{1cm} 1.0\times10^{-4}$	1.3 with various 1.3 with various 1.7 (CaCo ₃ , S1O ₂ , 4.3 x 10 ⁻² 68 3.8 x 10 ⁻⁴ 1.7 (CaCo ₃ , S1O ₂ , 4.3 x 10 ⁻²
Composition	Gross-linked silicanresins with various fillers (GaCo3, SiO2, and Feb.2)	Cross-linked siliconc resins with various fillers (caCo ₃ , SiO ₂ , and FeO ₂ )	Clear silicone potting compound	Cross-Jinket, silicone resi's with various fillizs (CaCc ₃ , SiO ₂ , and YeO ₂ )
Material	Dow RTV 501 silicone rubber (room tem- perature cure)	GE RTV 11 silicone rubber (roch tem- perature cure)	GE LITY 632 silicone potting carpound (cured 16 hours at 100 c)	Dow RIV 5313-5314 siltone potting coagound (room temperature cure)

EXPOSURE OF SILICONE ELASTOMERS TO HIGH VACUUM AT VARIOUS TEMPERATURES9 Table B-71.

		Exposed to Vacuum of 7.8 x 10-6	400*F	Įs.	98	500*F	) <del>9</del>	600° F	, 2 _c	700*F
		mm Hg for	Vacuum of 1.9 x 10-5	Air Oven	Vacuum of 1.4 x 10-5	Asr Oven	Vacuum of	ALT Oven	Vacuum of	Air Oven
		Room	mm Hg	tot	mm Hg	for	mm Hg	for		for
Property Measured	Original	Temperature	٠,	5 Days	for 5 Days	5 Days	for 5 Days	5 Days	for 5 Days	5 Days
				Silicone SE 33 (284)	(1) (584) (1)					
Tensile Strength, psi	710	740	770	550	069	00 <del>1</del>	200	390	Too brittle	Too brittle
									to test	to test
Modulus, psi at 100% E	110	110	130	390	390	100	240		Too brittle	Too brittle
									to test	to test
Elongation, percent	260	250	230	190	210	190	230	110	Too brittle	Too brittle
	,	•							to test	to test
Hardness, Shore A	8	<b>\$</b>	51	‡	53	24	56	81	Too brittle	Too brittle
		•							to test	t. test
Strain, percent E at 200 pai	3°,	96	69	100	5	110	Broke	Broke	Too brittle	Teo brittle
		1							to test	to te .:
Antage in weight, percen.	•	-0.4	٠١.8	-0. <b>4</b>	-3.2	-2.7	-10.3	-20.3	-45	Too brittle
			ŭ	2070 - mon 313	(H) 12 07 47	1)				to test
Teneria Successible and	•	***		TITCOUR 4 A	Stricone # 90 (4.09 F C.1)	•				
tensue Strength, psi	٠ * *	040	089	099	100	330	909	370	300	Too brittle
Moduline and at 1 100 E	326	•	į	;	į					to test
Description of the second		210	270	440	410	•	360			Too brittle
Elongation narreant	223	01.0		•	;	;				to test
	ì	2	25.	201	691	09	150	0	20	Too brittle
Hardness Shore	ŀ	ţ	ţ	į	i	;				to test
47 P4037 1880 181	-	:	9	90	28	£	*	82	83	Too brittle
Strain neartent E at 200 and	ğ	۶	:	:	;	;				to feet
ייי בייי להייבית יה פי ביי לייי		4	7	11	<u>*</u>	21	<b>‡</b>	•	•	Too brittle
Change in weight nercent		•		•	•					to test
100 mm 10	ì		0.1.	٠٤. ٥	-3.0	٠,٠	۲. ۲.	-14.7	-23	Too brittle
										to test

(1) See Table B-1 for formulation.

Table B-72. PRESS AND POST CURE SCHEDULES OF THE SILICONES USED IN THE IRRADIATION STUDIES 47

Compound	Curing Data
39-62	Conductive silicone; post cure 24 hours at 410°F
56-62	Press cure 10 minutes at 25 J°F; post cure 3 hours at 400°F
58-62	Press cure '0 minutes at 250°F; post cure 24 hours at 480°F
105-62	Press cure 5 minutes at 240°F; post cure 24 hours at 480°F
166-62	Post cure 12 hours at 480°F
107-62	Pos. cure 24 hours a 480°F
109-62	Post cure 4 hours at 400°F
10-0	Post cure 16 hours at 300°F
111-67	Post cure 24 hours at 480°F
120-62	Room temperature vulcanizing silicone
147-62 ^(a)	Room temperature vulcanizing silicone
148-62(5)	Room temperature vulcanizing silicone
149-62 ^(c)	Low-density room-temperature vulcanizing silicone

⁽a) 96 parts compound, 4 parts curing agent

⁽b) 100 parts compound, 0.5 parts Thermolite T-12

⁽c) 100 parts compound, 10 parts accelerator

B-100

Table B-73, PHYSICA PROFERT S OF COMPOUND 105-6247

Base Elastomer - Silicone. Type-Dimethyl

Rating		н	9	m	5	#	7	ત
Weight Change ng.		i	ģ	TY.	7	7	+13	ı
Chg.(1)		<b>‡</b>	6+	۲ 4	φ+	প্র	+3	۲۵ +
Hardness Duro A Chg	83	æ	8	85	ಕ	67	%	85
Untimate Elogration		+13	8	7	91	୍ଷ୍ୟୁ	£.	+16
Unt Flori	જી	6	8	37	تخا	တ္ထ	ä	ઇટ
100 \$ 100 \$. 		- 9.6(3)	+298(3)	+ 65(3)	+250(3)	+205(3)	+350(3)	- 36(3)
Tensile Strength \$ Cng.(I)		+ 2.1	88	- 1.6	+53	914	<b>42</b> +	- 3.1
Pat. Star	81.9	836	1050	98	1250	0121	1012	<b>\$</b>
Georgia Dose r.	, 0	5.7 × 10 ⁶	6.2 × 10 ⁷	6.4 × 10 ⁶	6.1 × 107	3.4 × 107	3.8 × 10 ⁷	(.5 × 10 ⁶
Can Fo		4	a	ជ	2	~	9	ᆏ
Northal Irradiated Condition	As-cured	1. v, Vac. 16 hrs., 70 F	2. v, Vac. 100 hrs., 70 F	3. v, Vac. (4) 16 hrs., 70 F	4. v + UV, Vac.(2) 100 hrs., 335 F	5. '', Air 100 hrs., 70 F	6. v, Air (4) 100 hrs., 70 P	7. v, Afr 16 brs., 70 F

(2) Heasured temperatures are uncertain.

(3) Value found by extrapolation.

(4) Combined radiation intendel.

Table B-73. Concluded)

in Conditions 1 and 7. Cross-linking predominated as exposure time increased. Comparison of Conditions 1 and 7 with 3 showed P possible "threshold This compound showed a slight tendency toward chain scission at 16 hours dose' after which cross-linking becomes predominant. Time effect:

Atmosphere effect: Differences were slight between radiation in air and vacuo. This compound showed initial scission in both air and vacuo at low dosages. Weight changes were not significant.

and the hardness change remained the same in a comparison of Conditions  $\dot{\mathfrak{b}}$  and 2. The 100 per cent modulus and ultimate elongation changes were decreased, Type irradiation effect: The tensile strength was increased by combined irradiation.

Condition 4, grey-brown discoloration on face toward UV lamp. Condition 6, brown stains on specimens. Observations:

Table B-74, PHYSICAL PROPERTIES OF COMPOUND 106-6247

			Base Ela	Base Elastomer - Silic me,	Silic m	e, Type - Dimethyl	Dime	thyl			STATE OF THE PARTY	
Mostnel Irradiated Condition	Cen No.	George Dose r.	Ped. Street	Tensile Stryngth [ \$ Chg.(1)	01,	100 % Modulina & Chg.(II)	E E	Utirate Elmeation \$ Chg.(:)	Eardreas Duro A Chg	Chg. (I)	Weight Change 78.	Rating
As-cured		٥	भुद्धाः		193		387		98			
1. y, yac. 15 hrs., 70 F	\$	5.7 × 10 ⁵	०१टर	<b>ন</b> ন +	180	6.8	०:५	÷ 5.9	₹	<del>1</del>	;	ส
2. v, Vac. 100 hrs., 70 ?	CV.	6.2 x 107	8	Ę,	1	<del>+66μ</del> (3)	171	88	7.	+16	+33	ĸ
3. v, Vac. 15 lirs., 70 F	ជ	6.4 × 10 ⁶	भा	- 8.3	385	+1.00	230	[ <del>1</del>	હ	, +	+ 1	B- m
4. v + UV, Vac. (2) 100 hrs., 335 F	~	6.1 x 10 ⁷	588	-76	ì	(E) ⁴⁶⁸⁺	13	16-	88	+5 <del>,</del>	цк	102 •
5. v, Air 130 hrs., 70 F	5	3.4 × 107	770	0.6 -	1016	924+	821	\$	છ.	Ç 1	01 +	#
5. v, Air(4) 100 hrs., 70 F	9	3.8 × 10 ⁷	<b>9</b> 9	ø	1	+355(3)	53	<b>3</b> 3	78	420	+ 7	#
7. v, Air 16 hrs., 70 F	่ส	7.5 × 10 ⁶	1333	+ 9.6	334	+ 73	980	<del>-</del> 33	61	m ∻	ţ	α
									,			

B-102

(1) From as-cured value.

⁽²⁾ Measured temperatures are uncertain.

⁽³⁾ Value found by extrapolation.

⁽⁴⁾ Combined radiation intended.

Table 1,-74. (Concluded)

i

Time effects were pronounced for all properties. This compound apparently undergoes an initial, period of chain scission in vacue (Committee 1). Time effect:

Atmosphere effect: The cross-linking was more pronounced in vacuo than in air except during the sixteen hour period (Condition 1) where the specimens exposed in vacuo apparently underwent a slight amount of scission. Specimen weight changes were insignificant.

Type irradiation effect: Combined radiation was more severe than straight gamma radiation, as evident from larger changes in all properties.

Observation: Condition 4, discoloration on Jace toward UV lamp.

Table B-75, FHYSICAL PROFERTIES OF COMPOUND 120-6247
Base Elastoner - Silicone, Type - Dimethyl

έġ			B-	104			
Rating		4	#	CV	9	æ	ιΛ
Weight Change ng.		ı	l	ય	φ	ģ	÷
Chgs (1)		ר +	+13	۴ +	<del>1</del> 1+	+10	+13
Harmon Duro A Chg	જી	63	75	65	92	72	75
timate postion costil		-16	10	95	99-	84	₫
Untimate Horsation	747	123	53	103	ß	6	53
100 %		+ 16	+100(3)	+ 16	+139(3)	+ 95(3)	+139(3)
7 20	8	άζ	1	뚌	1	1	1
Resile Strength 7 Che. (I)		- 7.6	-15	7	ដ	+ 2.1	- 5.5
, (a)	₹ <i>19</i>	83	573	<b>8</b> 8	89	<b>88</b>	637
German Dose F.	0	5.7 x 10 ⁶	24 5.0 × 107	6.4 × 1.06	6.1 × 1.07	3.4 × 107	3.8 × 10 ⁷
8 8 2 3		1A 5.	8	ជ	-	'n	9
Mondral Irradiated Condition	As-cured	1. Y, Vac. 16 hrs., 70 F	2. Y, Vac. 100 hrs., 70 F	3. v, vac. (4) 16 hrs., 70 F	4. γ + UV, Vac.(2) 100 hrs., 3.15 F	5. Y, Air 100 hrs., 70 F	6. y, Atr(4) 100 hrs., 70 P

(2) Measured temperatures are uncertain.

(3) Value found by extrapolation.

(4) Contined radiation intended.

Table D-75. Concluded)

The compound does not show the "threshold" effect apparent in other compounds. The cross-linking increased with exposure time. Time offect:

Ect: There was little apparent difference due to atmosphere. The compound showed slight weight gains in air and slight losses in vacuo. Atmosphere effect:

Type irradiation effect: There was little difference in properties produced by combined and straight gamma radiation as evident from comparison of Conditions 2 and 4.

Condition 4, slight darkening on both faces of specimens. Observation:

Table B-76. PHYSICAL PROPERTIES OF COMPOUND 147-62⁴⁷
Base Elastomer - Allicone, Type - Dimethyl

Bordnal	į	Gentra	ľ	Tensile Strength	7.9	100 ≸ Kodulus	ULT.	Untimate Consention	TE	Harr, 2019	Weight Chance	
Condition	ģ	i	뛿	\$ Chg.(1)	7E	(T). Sup (	-	Chg.(I)	Duro A	(T):10	ż	Ruting
As-cured		0	88		203		191		ĸ			
1. v, Vac. 16 hrs., 70 F	ង	14 5.7 × 10 ⁶	88	<del>9</del>	<b>%</b>	¢.	rn3	8	57	9 +	ı	CV.
2. Y, Vac. 100 hrs., 70 F	N	6.2 × 10 ⁷	#	\$	1	+344(3)	8	Ť	73	84	-16	æ
3. y, Vac. (4) 16 hrs., 75 ?	ដ	6.4 × 10 ⁶	350	₹.	33%	8	81	9	61	+10	۵: ا	1
h. v + UV, Vac. (2) 100 hrs., 335 ?	1	6.1 × 10 ⁷	60 <del>.</del>	54+	1	(C) ⁴⁴⁴⁴ +	ઝ	TT-	± €-	+23	-15	2
5. Y, Air 100 hrs., 70 F	۸	3.4 × 10 ⁷	प्र	-25	ł	+352(3)	ଫ	98	8	+17	80	m
6. y + UV, Air(4) 100 hrs., 70 P	9	3.8 × 1c7	<b>6</b> 9	+73	ţ	+323(3)	51	99	ť	450	N 1	ო

(2) Massured temperatures are uncertain.

(3) Value found by extrap_lation.

(4) Combined radiation intended.

Table B-76, (Concluded)

1 1 1

;

÷.

Radiation effects became more severe with increasing exposure. This compound did not show the "threshold" effect apparent in other compounds. Time effect:

Atmosphere effect: The radiation effects were similar in vacuo and air, except for tensile strength curing straight gamma radiation, which showed a marked increase in vacuo versus a marked decrease in air. Straight gamma radiation in vacuo produced slightly greater changes in hardness than in air, and combined radiation in vacuo produced greater changes in modulus, elongation, and insulates than in air. The compound showed a consistent weight loss, and isordness than in air. The greater is vacuo than in air.

The effect of combined radiation appeared to be slightly greater than that of straight gamma radiation. Type irradiation effect:

Condition 4, moderate browning on face toward UV lamp. Observation:

Table B-77. PLYSICAL PROPERTIES OF COMPOUND 148-62 47

	Hardness
Base Elastomer - Silicone, Type - Dimethyl	Ultimate Eloncation
er - Silicone,	100 \$
Base Elastom	Accepte
	George

Nominal	3	German	6	Appendits	2	100 % Wodulus	Elon Elon	Ultimate Flongation	Kell	Hardnoss	Weight Change	
Condition	Ñ.	r.	pst	\$ Œ.	181	<b>€</b> Chg.	er er	₽ GB8.	Duro A Chg.	1963	ģ	RECTUR
As-cureć		0	<b>6</b>		232		143		ま			
1. Y, Vac. 16 hrs., 70 F	4	5.7 × 10 ⁶	347	-15	5 <del>8</del> 8	₹ +	113	ដុ	55	ત ÷	1	а
2. v, Vac. 100 hrs., 70 F	α	6.2 × 10 ⁷	315	£3	ł	÷ 76(3)	11	94	65	11	Q 1	. <del>.</del> †
2. γ, Vac. (μ) 16 hrs., 70 F	ដ	6.4 x 106	331	-19	297	% +	971	ģ	53	ო +	£.	α
h. γ + σν, νας. (2) 100 hrs., 335 F	).	6 1 × 10 ⁷	<u>#</u>	జ్	1	+206(3)	24	-93	68	41.	ł	9
5. Y, Alr 100 hrs., 70 F	2	7.4 × 107	83	Ŗ	1	+ 77(3)	8	7	8	9+	۲.	m
6. y, A1r(4) 100 hrs., 70 F	٥	3.8 × 10 ⁷	ದ್ದ	R ₂	ı	+106(3)	<i>L</i> 9	£.	₫	+10	ရာ	~

(2) Measured temperatures are uncertain.

(3) Value found by extrapolation.

(4) Combined radiation int anded.

(4) Combined radiation intended.

## Table B-77. (Concluded)

The radiation effects became more severe with increasing exposure time. This compound exhibited increasing cross-linking with exposure time. Thre effect:

Atmosphere effect: There was little difference between specimens exposed in air and vacuo. The specimens showed a slight weight loss for all conditions.

Type irradiation effect: The combined radiation was markedly more severe than straight gamma radiation for all properties compared in Conditions 2 and 4.

Condition 4, specimens darkened on face toward larg. Two specimens broke in bandling pricr to test. Observation:

Table B-78. PHYSICAL PROPERTIES OF COMFOUND 149-62⁴⁷

Base Elastomer - Silicone, Type - Dimethyl

Months	5	Germa	8	Tensile Strength	100 ×	2 de 1	BLOS	Untimate Elemention	gent was	C C	Weight Change	Ratifue
Condition	Ko	i	띭	\$ Chg.(1)	ps1 %	(T) 280 (T)	*	क तम्बर १५)	OTH		į	
As-cured		0	<b>%</b>				ይ		₫			
1. v, Vac. 16 hrs., 70 F	ន	14 5.7 × 10 ⁶	508	ដុ	1	- 3.4(3)	73	-19	02	9+	1	H
1, y, Vac. 16 hrs., 70 F	æ	7.8 × 10 ⁶	່ ລ	-18	1	+ 47(3)	Š	7	65	r +	<del>ا</del> ع	ю
2. 7 , Vec. 100 hrs., 70 ?	æ	10.9 x 20.4	388 88	+ 8.3	1	+ 62(3)	8	-33	75	ក្	8	m
3. y + UV, Vac.(b) 16 hrs., 70 F	ជ	6.4 × 10 ⁶	248	- 6.8	1	+ 39(3)	3	-33	70	۰۶ +	1	a
100 pre., 335 F	:-	6.1 × 10 ⁷	136	6q-	ł	+130(3)	80	87 <del>-</del>	82	+15	<b>21-</b>	છ
5. Y , Adr 100 hrs., 70 P	۱,-	3.4 × 10 ⁷	177	ដុ	1	+ 52(3)	<b>L</b> 11	841-	73	6	<b>+18</b>	#
6. v , Air(4) 100 hrs., 70 P	9	3.8 × 10 ⁷	212	+ 2.2	1	+ 84(3)	8	7	22	11+	±+	1, 1

(1) From as-cured velue.

⁽²⁾ Measured temperatures are in ortain.

⁽³⁾ Value found by extrapolation.

⁽⁴⁾ Combined radiation intended.

## Table E is. (Concluded)

Compar_son of these showed the possib!lity of a "threshold" dosage required to start cross-libking since the exposure showing the tendency toward scission (decrease in modulus) had the lowest of the three recorded As the dokage increased, the apparent cross-linking increased. Three canisters in this serves had the same nominal gamma radiation for 16 hours in vacuo. dosages. Time affect:

<u>lect</u>: Examination of the effect of air and vacuo irradiation on mechanical properties did not show sufficient consistent differences to state that one was more secent than the other. The specimens gained weight in air and lost it in vacuo, the loss being greater in combined radiation than in straight gamma. Atmosphere effect:

on effect: Combined radiation produced more cross-linking effects than straight gamma in all properties compared in Conditions 2 and 4. Type irradiation effect:

Condition 4, moderate to heavy browning " both faces of specimens, heaviest on sace toward UV lamp. Observations:

TABLE B-79. PHYSICA & OPERTIES OF COMPOUND 111-62(47)

Base Elastomer - Sil. one, Type - Dimethyl Vinyl

Nominal Jrradisted Condition	Çan Mo.	Garras Doce F.	Ter Str ps1	Tensi Strength % Cng.(1)	10 psi %	o \$ ulus chg.(1)	Ultimate Elopeation % % Chg. (1	mate ation Cbg.(I)	Berdness Duro A Chg	2838 Chg.(1)	Weight Change mg.	Rating
As-cured		o	1029		415		527		73			
1. v, Vac. 16 hrs., 70 F	\$	5.7 × 1.0 ⁶	1056	+ 2.6	츐	Tq +	171	22	ħĹ	н +	ł	н
2. v, Vac. 100 hrs., 70 F	Ø	6.2 × 10 ⁷	816	ង	ı	+318(3)	14	6:-	87	+17+	71+	4
3. v, Vac. (4) 16 brs., 70 F	#	6.4 × 10 ⁶	88	ಸ	637	式 +	130	£4 <del>-</del>	78	+	а +	B-1 m
4. γ + UV, Vac. 100 hrs., 335 F	2	6.1 × 10 ⁱ	82	ղ-	ł	+628(3)	01	-8 <u>-</u>	83	+15	£ +3	12 •
5. Y, Air 100 hrs., 70 F	. <i>r</i> v	3.4 x 1C ⁷	1151	21.+	ł	+340(3)	63	<u>-72</u>	1	+10	<del>1</del>	<b>#</b>
6. v, Air(4) 100 brs., 70 F	Ś	$3.8 \times 10^{7}$	1049	+ 1.9	ì	; +406(3)	8	-78	85	<b>2</b> [+	<b>†</b>	rν
7. v, Air 16 hrs., 70 F	4	7.5 × 10 ⁶	1080	6.4 +	669	<b>8</b>	241	-35	75	ભ +	l	CV

(2) Measured temperatures are uncertain.

(3) Value found by extrapolation.

(4) Combined radiation intended. Note: Continued on next prie.

TABLE E-79. (Co tinued)

The cross-linking effect became more severe as exposure time increased. The threshold effect noted in other compounds was not apparent here. Time effect:

Atmosphere offect: Effect of atmosphere was slight, but cross-linking was more predominant in the air exposures than in the vacuo exposures. A slight weight increase, almost identical for each group, was noted.

Type irradiation effect: Combined radiation produced more cross-linking than gamma radiation alone.

Condition 4, marked discoloration on face toward lamp. Observation:

B-114

S

4

ţ

#

5

-55

63

+164(3)

926 + 7.8

3.4 × 107

'n

5. y, Air 100 hrs., 70 F

Š

7

‡

82

-67

Š

+191(3)

١

4

8

 $3.8 \times 10^{7}$ 

n

6. v, Air^(!4) 100 hrs., 70 F

١

ر +

れ

<del>1</del>

123

£ +

833

+16

1001

7.5 × 10⁶

.4

7. v, Air 16 hrs., 70 F

Weight Change ng. MIL ヸ 42 ł Duro A Chg. (1) \? **∓** о + **41**6 Q + නී 8 8 8 ₫ Elopen, 100, (1) **418** -73 -15 -84 150 ଧ 177 3 127 +162(3) pei % Chg.(1) +213(3) + 8.0 ري ا 565 144 ł ļ 233 Strength ps1 % Chg.(1) - 7.3 932 + 8.5 क्ष 42,-8 655 **57**4 5.1 x 10⁶ 6.4 × 106  $6.1 \times 10^{7}$  $6.2 \times 10^7$ អ

Rating,

Ultimate

100 %

Tensile

Genna

Can

HO.

Irradiated Condition Hominal

0

ጟ

1. y, Vec. 16 brs., 70 F

As-cured

N

2. y, Vac. 100 hrs., 70 F

#

3. v, Vac. (4) 16 hrs., 70 F

7

1. v + UV, Vac. (2)

TABLE B-20, PHTSIC L PROPERTIES OF COMPOUND 107-62(47)

,

vilicone, Type - Dimethyl Vinyl

Base Elast . ..

Q

9

(1) From as-cured value.

Note: Continued on next page.

Note: Continued on next page.

Measured temperatures are uncertain. (S

Value found by extrapolation. (3)

Combined radiation intended. Ē

## TABLL B-80. (Continued)

16 hour radiation period (Condition 1). A comparison of Conditions 1 and 3 showed a possible threshold value for cross-linking. Cross-linking increased as exposure time increased in both air and vacuo. The specimens exposed in vacuo apparently underwent scistion during the Time effect:

Atmosphere effect: After short-term radiatica (16 hour), vacuum exposure shored predominant scission and air atmosphere resulted in cross-linking. After 100 hours, bot, showed predominant cross-linking with the effect more severe in vacuo than in air. Type irradiation effect: The straight gamma radiation produced comparable or slightify greater effects on the properties.

Condition 4, heavy blackening on face toward UV lamp and moderate on back face. Observation:

TABLE 8-81. Pill. AL MOPERTIES OF COMPOUND 39-62(47)

Base Elasiome: - Si cone, Type - Dimethyl Vinyl

Nowthal		Germa	E è	Tensile transite	4 ×	100 \$	Ultimate Elongation	Ultimate longation	Hardness	9890	Weigh. Change	
	8 S	r.	25 ps1	\$ Chg.(1)	psi	<b>E</b>	æ	\$ Chg.(1)	Duro A	CLG-(1)	. gg	Rating
1		0	731		6ग्रन		210		67			
	ო	7.8 × 1.0 ⁶	703	- 3.8	626	6£ +	127	-39	ध्र	+ 5	3	N
	≉	4.9 x 10 ⁷	787	4 7.6	1	+150(3)	63	-70	73	9+	<b></b>	<b>.</b> #
	य	6.4 x 10 ⁶	477	4. 2.	629	L4 +	133	911-	72	<u>L</u> +	q	m
	0,	6.1 × 10 ⁷	1037	24+	ì	+391(3)	<b>L</b> 11	87.1	88	+19	N11	9
	80	4.1 x 10 ⁷	838	+15	i	+196(3)	2.5	63	81	+14	45	<b>4</b>
	O/	3.8 × 107	1027	04+	ł	+332(3)	53	-75	83	+16	<b>‡</b>	ĸ
	ň	5.7 × 10 ⁵	538	-56	455	+ 1.3	325	O ₁ -	9	∾ +	1	H
			•					***************************************				

(2) Wesured temperatures are uncertain.

(3) Value found by extrapolation.

Note: Continued on next page.

# TABLE 3-8!. (C ntinued)

The tensile was not affected greatly by time. The 100 per cent modulus sarkedly increased, hardness increased very slightly, and the ultimate elongation dropped as exposure time increased. Thre effect:

ect: The compound apparently reacted about the same in vacuo and in air. Weight changes were erratic within the groups and the net changes were insignificant. Atmosphere effect:

Type irradiation effect: Cross linking was more severe for the combined irradiation than with the genus radiation alone, as evidenced by the substantially larger increases in modulus, tensile strength, and hardness.

Condition 4, smoky discoloration—pumple and green iridescent surfaces. Condition 6, smoked surfaces on face toward lamp. Condition 7, smoky discoloration in spots—pumple iridescence. Observations.

B-118

TABLE B- 32. PHYSICAL "DPERTIES OF COMPOUND 109-62(47)

Base Elastomer - Sil: one, Type - Methyl Phenyl Vinyl

Hominal Irradisted Condition 5	Sen No.	Germa Dose r.	281	Tensile Strength	01 4 18	100 \$ Modulus \$ Chg.(1.)	A Elon	Ultimete Elopeation % Cng.(I)	Hardness Duro A Chg	Ger (T)	Weight Change EG.	Rating
	ļ	0	1473		8		ğ		શ્ર			
14 5.7	5.	5.7 × 10 ⁶	1591	+ 8.0	255	ជ +	445	11-	8	. <b>∄</b> 	ł	7
2 6.3	9	6.2 x 10 ⁷	71	84-	1	+404(3)	29	. BJ	78	+16	+3	9
1'9 TI	4,5	6,4 x 10 ⁶	1492	+ 1.3	₹ 8	+ 33	£03	.19	57	۱ ب	‡	Ø
7 6.:	9::	6.1 x 10 ⁷	<b>1</b> 8	8	Į	+622(3)	17	-97	88	8	N11	7
5 3.1	3.1	3.4 × 107	8	<b>8</b>	1	+337(3)	8	짫	92	+14	£ +	ત⇒
6 3.E	3.6	3.8 × 10 ⁷	627	-51	ł	+334(3)	63	ģ	11	+1.5	<b>4</b>	2
. 7.	7.	7.5 × 10 ⁶	1514	+ 2.7	347	÷ 25	380	₹6.	8	NAL	ł	ო

(1) From as-cured value.

(2) Measured temperatures are uncertain.

(3) Valun found by extrapolation.

(4) Combined radiation intended. Note: Continued on next page.

Note: Continued on next page.

TABLE B-82. (Continued)

The effects became markedly more severe as the exposure time was increased. and decreases in ultimate elongation, suggesting a balanced cross-linking-scission effect or a "threshold dose". showed a small frop in hardness coupled with slight increases in modulus This was true in both air and vacuo. The short-term exposures in vacuo Time effect:

Atmosphere effect: At 16 hours the effect of gamma radiation in air was somewhat more severe than in vacuo. There were slight increases in weight in air indicating the severe than on oxidation.

Type irradization effect: The combined radiation produced more cross-linking than gamms radiation alone, as evidenced by comparison of Conditions 2 and 4.

Condition 4, specimens blackened on face toward lamp. Darkened on opposite face. Observation:

1'ABLE B-83. PHYSICAL PROPERTIES OF COMPOUND 56-62(47)

Base Elastomei - St. me, Type - Dimethyl Phenyl

North al		GARTIN	Per	Tenaile	10	100 \$	at a	Utimate	To a ch		Weight	
Irradiated	Sen Sen	Dose r.	Stre psi 9	Strenct;	ret fer	Modulius \$ Chg.(1)	\$ \$	Elongation & Chg.(1)	Duro A Chg	Chg.(1,	1 18	Rating
As-cured		0	1169		903		403		20			
1. Y, Vac. 16 hrs., 70 F	\$	5.7 × 10 ⁶	658	-53	285	+ 37	227	77-	55	+ ~	I	ч
2. Y , Vac. 100 hrs., 70 F	a	6.2 x 10 ⁷	099	17-	1	+323(3)	75	କ୍ଷ୍	76	+56	N11	7.
3. v , Vac.(4) 16 hrs., 70 F	я	6.4 × 10 ⁶	938	-50	334	09 +	550	94-	57	L +	(U +	CU
4. v + UV, Vac. (2) 100 hrs., 335 F	7	6.1 × 10 ⁷	270	π-	1	+4¢4(3)	23	<del>1</del> 6 <b>-</b>	8	+30	NALL	٧
5. v, Air 100 hrs., 70 F	īV	3.4 × 10 ⁷	69%	-43	737	+25h	93	11-	19	t- :	9+	e)
6. v, Air (4) 100 hrs., 70 F	9	3.8 x 10 ⁷	<u>&amp;</u>	63	!	+289(3)	23	₽	9/	+56	+17	<i>a</i> †
7. v, Air 16 ms., 70 F	ત	7.5 × 10 ⁶	1069	- 8.6	39.	1.1 +	240	T11-	99	9+	į	81

(2) Measured temperatures are uncertain.

(3) Value found by extrapolation.

(4) Combined radiation intended.

Note: Continued on next pege.

TABLE C-83. (Continue.)

Time effect: All properties were time dependent for a given irradiation condition, with the changes being significant even for the shorter time.

Atmosphere effect: Cross-linking was less in air than in vacuo, but still the predominant effect. Specimens exposed to air gained some weight while those exposed in vacuo showed no change indicating a minor oxidative reaction in the air exposures.

'Type irradibition effect: Combined radiation appeared to be more severe than straight gamen radiation.

Condition 2, tear strength noticeably decreased. Condition  $l_{\nu},$  blackened on face toward UV lamp. Observations:

____

Strategy washing

TITE .

17, 11

James Tensi

Table 8-84. Physical "Off irties of compound 58-62(47)

Base Elastomer - Silicon. Type - Dimethyl Phenyl

ប៉ង	Can No.	Gaurria Doge r.	Tensi's Strength psi % Chg	Tensi' 100 ( Strength Moduli  \$ Chg.(I) psi \$ Cl	Mod Pei	88 (T)	Untimate Elopeation % % Cbg.(1	timate peation % Chg.(1)	Eardness Duro A Chg	H!	Weight Change 1) mg. Rating	Rating
		0	2771		7:17		383		53			
1.5 A1	, <u>, , , , , , , , , , , , , , , , , , </u>	5.7 × 10 ⁶	743	-35	301	o2 +	200	611-	55	α +	l	Ø
	•	6.2 × 107	111	R.	i	+458(3)	75	<b>₽</b>	76	+53	а +	۶,
4. 9	9	6.4 × 10 ⁶	550	-55	350	÷	143	19-	8	. +	<del>1</del> +	B m
9	9	6.1 × 10 ⁷	202	-83	i	+470(3)	80	-95	77	ಸ +	‡	-122 ~
ν. κ	Ŕ	3.4 × 107	742	-35	i	+424(3)	&	8	70	+17	پ +	4
6 3	m	3.8 × 107	635	4.5	i	+465(3)	63	₹	73	02 +	ლ †	9
,	(	7.5 × 10 ⁶	1181	+ 3.0	359	+103	240	66	55	۳ +	1	H

(1) From as-cured value.

(2) Measured temperatures are uncertain.

(3) Value found by extrapolation.

(4) Combined radiation intended.

Note: Continued on next page.

TARLE B-84. (Continued)

Increase in exposure time produced marked effects on modulus, ultimate longation, and hardness, and a somewhat irregular effect on tensile strength in both air and vacuo. Time effect:

Atmosphere effect: Reaction was predominantly cross-linking whether specimens were exposed in air or vacuo. Weight changes were small and erratic.

Type irradiation effect: There was greater loss of tensile strength and slightly greater less of elongation during combined radiation than during straight gamma radiation with other property changes being comparable.

Condition 4, specimens blackened on face toward UV lamp. Observation:

TABLE B-85. PHYSK.AL PR. 2RTIES OF COMPOUND 110-62(47)

Base Elastomer - Silicone, Type - Methyl Trifluoro Propyl

	,			B-14	ંન			
Rating		CV	≉	'n	9	#	ĸ	н
Weight Change mg.		ł	80	<b>₫</b>	ಭ-	ဆ 1	۱ د	1
Chg.(1)		NII	+10	۳ +.	+16	†1;	+12	(V) +
Hardr uro A		62	72	65	78	73	<del>1</del> 2	₹
Untimate Elongwillon 4 4 Cho (1)		-37	-72	₹9	26-	-72	8	-25
ULti Elong	243	1.53	29	87	8	29	33	180
100 % Modulus 7.17		10	+ 54(3)	+ 3(3)	+310(3)	+ 50(3)	+203(3)	& +
21 70	ı	333	1	ł	ł	ł	1	<del>1</del> 51
Tensile Strength	A CHE.	95-	-72	-75	TT-	<b>-</b> 72	-72	-27
E H	1346	591	<b>%</b>	333	స్టే	374	372	88
2 8	i	5.7 × 10 ⁶	6.2 × 10 ⁷	6.4 x 10 ⁶	6.1 x 10 ⁷	4.1 × 10 ⁷	3.8 × 10 ⁷	7.5 × 10 ⁶
	S	ន	a	멐	97	ω	σ	Н
	Condition As-cured	1. y, Vac. 16 hrs., 70 F	2. y, Vac. 100 hrs., 70 F	3. y + UV, Vac.(2) 16 hrs., 190 F	4. y + UV, Vac. (2) 100 hrs., 250 F	5. Y, Air 100 hrs., 70 F	6. y + UV, A1r(2) 105 bre., 250 F	7. <b>v</b> , Air 16 hrs., 70 F

⁽¹⁾ From as-cured value.

Note: Continued on next rage.

⁽²⁾ Measured temperatures are uncertain.

⁽³⁾ Value found by extrapolation.

#### TABLE B-85. (Continued)

The radiation effects increased with exposure time. Short-term radiation in vacuo showed scussion effects. Otherwise the reaction was predominantly cross-linking. Time effect:

Atmosphere effect: As noted above, short-term vacuo exposure showed effect of scission as opposed to cross-linking in air; otherwise, little difference due to atmosphere was noted. The specificers all lost weight and the effect was greatest on the specimens exposed to combined radiation in vacuo.

Type irradiation effect: Combined radiation appeared to cause more cross-linking than straight gamma radiation in the three comparisons: 1 and 3, 2 and 4, and 5 and 6).

Condition 4, blackened on face toward lamp. Darkened on other face. Condition 6, moderate darkening on face toward lamp. Condition 7, serry depoits on specimens. Observations:



Equivalent Hours of Exposure to Solar Ultraviolet

A-46933

FIGURE 6-1. CHANGE IN PERMEABILITY ON EXFGRUIT TO ULTRAVIOLET RADIATION AT VARIOUS TEMPERATURE LEVELS - VITON "A"(4)

Г



Tensile strength and elongation for Polyurethane irradiated in vacuum and in air(18) FIGURE B-2.



FIGURE B-3. STRESS/STRAIN CURVES FOR POLYURETHANE IRRADIATED IN AIR⁽⁵⁰⁾

ern er underskalla eta e fillingin eta e killaginging nigita autiti kalan ippingingi kindaga eti banga bertangan



FIGURE B-4. STRESS/STRAIN CURVES FOR POLYURE HANE IRRADIATED IN VACUUM⁽⁵⁰⁾

.



FIGURE B-5. SWELLING OF IRRADIATED POLYURETERNE SPECIMENS IN BENZENE(50)

THE PROPERTY OF THE PROPERTY O



FIGURE B-6. EFFECTS OF GAMMA RADIATION ON PHYSICAL PROPERTIES OF SILAS' IC 1602(36)



FIGURE B-7. EFFECTS OF GAMMA RADIATION ON ELECTRICAL PROPERTIES OF SILASTIC 1602(36)

\$

APPENDIX C

PLASTICS

TABLE C-1. EFFECT OF ULTRAV OLET ON PLASTICS(55)

	Radiation	Equival∋n: I	~olation,		Wetcht	Onantum	Mass of
Plistics	navezenych Band, A	1300 to 1850 Å	1100 to 1300 Å	Change of Appearance		Yield, n%	Released Material
Butyl Compound B-26	1100-1850	123	3600	None	0.14	0.16	• Fi. N
Epoxy Resin (Epon 828)	1100-1850	31	780	None	0.10	0.15	N.M.
Polyester (Mylar A)	1100-1850	S	565	None	4.00	0.15	28
Polyester (Mylar A)	2000-4000	I	1	None	# e.	1	23
Polyetinlene (Polyfilm 601),	1100-1850	78	1975	None	0	0.27	N. M.
Folymethyl Methacrylate (Plexiglas "G") Rubbed with cotton	1100-1850	204	645	None	0.13	0.12	C-l × ×
Folymethyl Methacrylate (Plexiglas "G") No masking paper	1100-1850	99	186	None	0.04	0	•W•N
Pol methyl Methacrylate	1100-1850	150	2200	None	0.5	0.65	28
(Plexiglas "G") No masking paper	2000-4000	ł	ł	None	0.5	ļ	28
Polystyrene (Trycite-1000)	1100-1850	128	3500	None	0.1±0.1	0	w. N
Polystyrene (Trycite-1000)	1100-1850	56	Ç	None	0.240.2	0	. M. N
Polyvinyl Chloride	1100-1850	130	1000	Yellow dis- col mation	0	0	N.M.
Polyvinyl Chloride	1100-,850	120	2140	Yellow dis- coloration	0	0	Not observed
	11001000	90.	2140	2 to mo ( ( o >	c	c	2
Polyvinyl Chloride	1100-1820	140	C1.40	coloration	>		observed

TABLE C-2. PHYSICAL PROPERTIES OF ACRILAN IRRADIATED IN NITROGEN WITH MONOCHROMATIC LIGHT⁽⁵⁸⁾

Wavelength, mm	Tensile Strength, 10 psi	Young's Modulus, 10 ⁵ psi	Elongation, per cent
-	33•4	3.97	24
369	<b>34.</b> 3	3.18	20
369	36.0	3.37	36
369	34.6	4•49	18
369	33.8	3.06	48
314	34.0	1.12	38
244	36.0	<b>500</b>	33
244	31.5	0.82	30
244	34.6	1.45	11.5
244	18.6	2.83	14
	mη  - 369 369 369 369 314  244 244 244 244	- 33.4  369 34.3 369 36.0 369 34.6 369 33.8  314 34.0  244 36.0 244 31.5 244 34.6	Wavelength, mη     Strength, 10³ psi     Young's Modulus, 10⁵ psi       -     33.4     3.97       369     34.3     3.18       369     36.0     3.37       369     34.6     4.49       369     33.8     3.06       314     34.0     1.12       244     36.0     -       244     31.5     0.82       244     34.6     1.45

TABLE C-3. PHYSICAL PROPERTIES OF ACRILAN IRRADIATED WITH G30T8 LAMP⁽⁵⁸⁾

Tensile Strength, 10 ³ psi	Young's Modulus, 10 ⁵ psi	Elongation, per cent
itrogen		
33.8	3.97	24
35.4	3.51	24
25•4	~	16
23.7	3.85	19
Vacuum		
31.7	2.30	30
29.9	1.92	28
29.0	3.78	18
27.0	4.42	18
	33.8 35.4 25.4 23.7 Vacuum 31.7 29.9 29.0	33.8 3.97 35.4 3.51 25.4 - 23.7 3.85 Vacuum  31.7 2.30 29.9 1.92 29.0 3.78

C-3
Table C-4. SUMMARY OF EQUILIBRIUM WEIGHT LOSS DATA(4)

Material	Temperature (C)	Pressure (torr)	Equilibrium Weight Loss Rate (gm/cm ² /sec x 10 ¹⁰ )
Phenolic	121 121 121 177 177 177 177 204 204 204	760 9.5 x 10 ⁻¹ 2.2 x 10 ⁻² 760 9.5 x 10 ⁻¹ 4 x 10 ⁻² 10 ⁻⁵ 760 9.5 x 10 ⁻¹ 4.6 x 10 ⁻² 1.2 x 10 ⁻⁵	ND 0.4 0.9 56.1 16.0 15.3 15.0 30.1 8.6 6.5
Epoxy	121 121 121 177 177 177 177 204 204 204	760 9.5 x 10 ⁻¹ 7 x 10 ⁻² 760 9.5 x 10 ⁻¹ 4 x 10 ⁻² 10 ⁻⁵ 760 9.5 x 10 ⁻¹ 3.6 x 10 ⁻² 10 ⁻⁵	ND 1.1 1.0 11.4 4.7 5.0 4.3 97 25 20
Tefion	204 204 204	760 760 9.5 x 10 ⁻¹	ND ND 0.2
Diallyl Phthalate	149 149 149 149 177 177 177	760 9.5 x 10 ⁻¹ 2.3 x 10 ⁻² 10 ⁻⁵ 760 9.5 x 10 ⁻¹ 1.6 x 10 ⁻² 10 ⁻⁵	12.1 3.5 2.0 1.1 20.9 0.6 12.1 7.7
Mylar	149 149	760 10 ⁻⁵	ND ND
Silicone	177 177 177 177	760 9.5 x 10 ⁻¹ 10 ⁻⁵	3.9 2 0.9 ND

C-1

TABLE C-4. (Continues)

Material	Temperatur (C)	Pressure (tom)	Equilibrium Weight Loss Rate (gm/cm ² /sec x 10 ¹⁰ )
	204 204 204 204 232 232 232 232	760 9.5 x 10 ⁻¹ 1.6 x 10 ⁻² 10 ⁻⁵ 760 9.5 x 10 ⁻¹ 6.0 x 10 ⁻² 10 ⁻⁵	46.8 9.6 3.5 7.3 74.5 7.2 5.7
Viton A	177	1000	20
Irradiated polyolefin	50	5 : 10 ⁻⁶	0.13-0.20
Wire insulation N)102E	100		18-2.3
Irradiated polyolefin sb	able 50	5 x 10 ⁻⁶	c.18
Tubing type RNF 1 201	100	5 x 10 ⁻⁵	1.1
Nylon (22 EL 105)	50 100	5 x 10 ⁻⁶ 5 x 10-6	5 3 5 3
rpiall 1288 molding	70	5 x 10 ⁻⁶	0.44
Conpound	100	5 x 10 ⁻⁶	18
Irradiated polyolefin	50		0.472
Experimental type	100		22-23
Delrin 500	50 100	5 x 10 ⁻⁶	0.56 5.5
Epiall 1459 epoxy	50	5 x 10 ⁻⁶	0.72
Molding compound	100		1.31
Nylon (ZYTEL 31)	50 100	5 x 10 ⁻⁶	0.89 3.3
Nylon (ZYTEL 101)	50 100		0.94 4.2
Delrin 507	50 100	5 x 10 ⁻⁶	1.4 4.4

C-5
TABLE C-4. (Concluded)

Material	Temperature (C)	'ressure (torr)	Equilibrium Weight Loss Rate (gm/cm ² /sec x 10 ¹⁰
DAP type 3-2-530	50 100	5 x 10 ⁻⁶	1.75 3.34
DAP type 52-01	50 100	5 x 10 ⁻⁶ 5 x 10 ⁻⁶	2 4.4
DAP type 1-530	50 100	5 x 10 ⁻⁶	3.3
DAP type 1-503	50 100	5 x 10 ⁻⁶	2.3 3.06
Devcon F epoxy	50	5 x 10 ⁻⁶	2.5
Room temperature cure	100 50 100		5 4.2 3.1
A metrong opoxy	50		10.6
Room temper sture cure	100		17.8
Phenolic laminate	50		10.3-12.2
Grade XX natural	100		24.8
Phenolic laminate	50	5 x 10 ⁻⁶	10.8-11.7
Grade LB 103	100		8.9-9.5
Phenolic laminate	50		13.3-14.4
Grade LBB natural	100		10.6-12
Epiall 1552	100	5 x 10 ⁻⁶	12.6
Molding compound			

TABLE C-5. WEIGHT LOSS IN VACUUM OF DIALLYL PHTHALATE, PRESSURE  $\le 10^{-6}$  MM Hg⁽¹⁷⁾

		Ē	* *	Tune to	Stationary State	y State
		to Stationary	lotal weight Loss tationary State, g/cm ²	State, hours	g/cm ² /hour	/hour
Material	Co aposition	20 C	50 C 100 C	50 C 100 C	50 C	100 C
F.S-5	ideta form. short-glass- nucr filled	$2.6 \times 10^{-4}$	$6.5 \times 10^{-4}$	55 88	1.5 × 10 ⁻⁶	1.1 × 10 ⁻⁶
3-6-230	Meta form long-glass- fiber filled	1.1 × 10-4	$4.2 \times 10^{-4}$	55 88	$6.3 \times 10^{-7}$	1.2 × 10 ⁻⁶
52-01	Ortho form, short-glass-fiber fit ad	1.3 × 10-4	$3.1 \times 10^{-4}$	55 64	$7.3 \times 10^{-7}$	1.6 × 10 ⁻⁶
1-530	Ortho form, long-glass-fiber, lled	$1.0 \times 10^{-4}$	4.1 × 10-6	55 64	3.0 × 10 ⁻⁷	$1.2 \times 10^{-6}$
1-503	Ortho m, orlon fi led	$1.2 \times 10^{-4}$	$5.1 \times 10^{-4}$	55 88	$8.4 \times 10^{-7}$	$1.1 \times 10^{-6}$

TABLE C-6. FLUOROCARBON PLASTICS - COMPARATIVE PROPERTIES(64)

Property	PTFE	PFEP	PCTFE .
Crystalline Melting Point, C	327	285	220
Specific Gravity	2.13-2.20	2.14-2.17	2.10-2.16
ensile Strength, psi	1500-3000	1500-3000	4500-5500
longation, per cent	150-450	250-330	100-175
ompressive Strength, psi at 0.2% offset at 1.0% offset at 2.0% offset	- 600 -	- 1400	5500 7850 8400
pefficient of Friction against steel	0.04	0.08	0.43
ardness. Shore D	65	55	80
iele cric Coastant	2.10	2.10	2.59
iss_pation Fa_tor (1000 cps)	<0.0002	<0.6002	0.0215
oisture Absorption, per cent	0	0,	0
ater Vapor lransmission Rate O mil film, 100% R.H. at 25 C, ms/100 in ² /24 hrs/mil	<b>.</b>	0.310	0.030
eximum Recommended Service emperature, F	500	400	390
chemical Resistance	Inert to most che solvents with the of alkali metals ted solvents at a tures and pressur some effect.	e exception Halogena- igh tempera-	Impervious to corro- sive chemicals; nighly resistent to most organic solvents. Swelling may occur with some highly halogenated and aromatic compounds.

FLUOROCARBON POLYMERS - TENS: . 'PROPERTIES(a) OF TEFLON 100 FEP AND REIN-FORCED TEFLON VERSUS IRRADIATION AND MIXED ENVIRONMENTS(48) TABLE C-7.

できた。これでは、1980年である。 1980年では、1980年では、1980年では、1980年では、1980年である。 1980年である。 198

Integrated Neutron Flux (N), n cm ⁻²		(5)err # eff. uoffel	(ح)جيون		Reinforced Teflon(c)
(E >0, 33) ^(b)	. 021 In.	Thick	ì	0. 115 In. Thick	. 030 In. Thick
Gamma Exposure (G),	Ultimate,	Ultimate	Ultimate,	Ultimate	Ultimate,
ergs g-1 (C)(b)	psi	Elongation, %	psi	Elongation, %	psi
Controls	2609/8.5/14	328/5.2/9	2144/8 /10	280/7.6/8	25,303/13 /7
$N 6.3 \times 10^{13}$					
G 1 × 10°			1883/6.9/10	235/12 /8	20,458/9.5/8
$N \ge x \cdot 10^{14}$					
$G 2.5 \times 10^{8}$	1839/2.4/10	220/12 /10	1808/3 /10	172/13 /10	20,264/14 /9
z					
G 2.8 x 108					
$N 2.5 \times 10^{14}$					
$G4.8 \times 10^{6}$	1675/0.5/5	Not brittle			
N 1, 1 x 10 ¹⁵					
G 7.4 x 10 ⁶	1662'1,1/5	Not brittle			
$N 7.9 \times 10^{15}$					
G 1.2 x 1010		Brittle		Brittle	10,767/29 /6
	2	Andrew Variables (1975) - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975	And the state of t		

Data are given as \$/S.D./n, where \$\pi average valve, S.D. = standard deviation of individual observation et imated from the range, and n a number of specimens used to calculating \$\pi\$ and S.D. 3

THE THE RESIDENCE FOR THE PARTY OF

Ambient fradiation temperature. Test temperature 80 F.

**ව** ව

FLUCROCARBON POLYMERS - TFVSILE PROPERTIES^(a) OF TEFLON TFE VERSUS IRRADIATION AND MIXED ENVIRONM. "N. 18⁽⁴³⁾ TABLE C-8.

		A STATE OF THE PROPERTY OF THE	Tollon TEE(0)	r'E(b)	
Integrated Neutron		0,010 ln. laick	1 nick	0, 125 Ir	0, 125 In, Thick
Flux (N), n cm.		Air(c)	Oronite 8515(c)	Air(c)	Oronite 8515(c)
Gamma Exposure (G),	Irradiation		Ultimate, psi	Ultimate, psi	Ultimate, Psi
Control	80	2495/12 /20		2545/9.3/10	
N 1.5-1.7 × $10^{14}$ G 1.3-1.4 × $10^8$	4	1481/12 /20			
	80 Ambient 275	1265/3.5/10	1452/5.2/10 1590/6 /10	1217/5.1/5	1229/1. 2/5
N 5.9-6.6 x $10^{14}$ G 0.8-1.0 x $10^9$	80 Ambient	888/15 /5	1396/4, 6/9	1185 · 5, 7/5	1333/1/5
35.9-6.5 x 1015 G 1.3-1.5 x 10.10	80 Ambient	No moscurable strength	1641/6.4/6	832/12 /4	1302/6. 2/5

(a) Dera are given as \$\overline{X}\text{.D. } \hat{h}_1\$, where \$\overline{X}\text{ average value, \$0.0.} a standarddovlation of individual observation estimated from the range, and \$1.0. a precimens used in calculating \$\overline{X}\text{ and \$0.0.}\$.

(b) Test temperature \$80 \overline{F}\text{.}

(c) Invaliation mostla.

-----

A. 204

TABER C-9. FLIXXOCARBON POLYNERS – TINGLE PROFERLITY ** OF TEFLON THE VERSUS IRRADIATION AND HAIXED ENVERONMENTS (48)

integrated Neutron 6 273 12 Thick 0 011 12 Thick 0, 021 In. Thick	o oras le Tolch	0.611	0. 011 lm. Thick	o. 021 In. Tuick	Tufek	0.041 In. Thick	0,115 In. Thick	Thick
Flux (N), n cm ⁻²	(p)v	A (-(d)	Comfre 8515(d)	Atr (3)	Hellum (d)		Air(d)	Helium(d)
Gamma Exposure (G).	Ultimate.	Utimate.	Ultimate,	Uldmate,	Ultimate,		Ultimate,	Ultimate,
123 g ⁻¹ (C)	pg.	ĸ	ja.	76	Pg.	1461	psi	ig.
Control	2717/13/10	2886/4.4/6		5637 N		3040/6.7/10	31 35/8.6/10	
N 2.8 × 10 ¹⁴ G 4.8 × 10 ⁸	9/12/9601	1371/11 /10		1283/4 9,710		1187/2.2/8	3035/4.7/10	
N 4.5 × 10 ¹⁴ G 6.3 × 10 ⁸	917/18/4	1128/16 /4		1171/1.6/19		1226/2.3/16	1356/2,1/19	
N 7 × 10 ¹⁴ G 1.2 × 20 ⁹	Too brittle				1571/1.8/20	797,13 /6	881/12 /8	1545/4 /20
N 1.6 × 10 ¹⁵ G 2.3 × 10 ⁹		9/ 51/9871	1684/4.2/10					
$N \le 7 \times 10^{15}$ G 1.1 \times 10^10		Too brittle		569 /22 /4		591/16 /14	638/20 /10	
N 1 x 10 ²⁶ G 1.7 x 10 ¹⁰	•				1749/2.4/20	•		1311/13/18
N 1.5 x 10 ¹⁶ G 2.1 x 10 ¹⁰			1490/13 /4			-		

(a) Data are given as X/S, D. /n, where X = average value, S. D. = standard deviation of individual observation es imated from the sange, and n = specimens used in calculating X and S. D.

⁽b) Ambient tradiation temperature.(c) Test temperature 80 F.

Table C-10. Tensile properties (*) of polyvinyl fluoride film versus irradiation, tempera ture, and immersion mudia(*8)

* 12 ·

THE REPORT OF THE PROPERTY OF

1 4

		<b>4</b> [5		1 - 415. "	" - sla - b), 4 Mils Thick				
Integrated Neutron		Air(c)		Mil.	(c) ⁸⁰⁸	Oron'se 3515(c)	£15(c)	JP4 Fuel (c)	e1(c)
Flux (N), n cm (E >0.33 Mev) Gamma Exposure (G).	Iradiation Temp. F	Breaking Strength, 1b/in.	Ultimate Elongation,		Ultimate E. gation,	Sreaking Strengih, 1b/in.	Ultimate Elongation, %	Breaking Strength, 1b/in.	Ultima'e Elongation,
Control	80	56.2/5 /10 52.3/5 /9	74 /9.1/9 75.6/8.9/9	5c. 4/1. 3/3 52. 4/4. 3/10	88 /7.7/9 77.2/11/9	53.4/4.4/10 52.8/5.2/8	81/11/9 79/11/6		
N 1.5-1.8 x 10 ¹⁴ G 1.3-1.6 x 10 ⁸	-65 260	45.9/2.4/10 38.7/2.2/10	72.2/8.4/9 70.7/13 /7			49.3/4 /10	76/6.1/9		
N 0.97.1 x 10 ¹⁴ G 1.3-1.5 x 10 ⁸	80 260	48.5/3.4 <i>/</i> 9 51 /4.3/10	80.6/11 /8 73 /5.4/6	46.8/3.3/8	67 /11 /8				
N 7. 0-7.7 × 1014 G 8. 0-9. 0 × 10 ⁸	-65 80 260	44.8/6 /9 43.6/9.1/10	73 /12 /8 75 /21 /6	46.2/2.8/10 43.5/4.7/3	66 /11 /10 55 /6.2 <i>P</i> 9	44.4/2.1/30	01/ 8/89		
F 1.2-1.3 x 10 ¹⁵ G 1.2-1.3 x 10 ⁹	260	34. 8/1. 5/9	°5.6/13 /8			43.8/5.6/9	56/6.6/7		
N 5. 0-8. 9 × 10 ¹⁵ G 1. 0-1. 4 × 10 ¹⁰	-65 80 260	39.0/6.9/10 37.4/7.3/10 27.5/8.8/8	34 /14 /1 36 /9.3/8 23 /32 /1	40. '/10 /10 30 /1.2/9	31 /21 /10 37.8/15 /5	36.7/16 /8 22.1/11 !7	33/12 /6 39/25 /6	40.3/5/8	42/13/8
N4.5×10 ¹⁵ 37×10 ¹⁰	80	17.4/20 /8 Teslar(b),	4/20 /8 <5 / /3 Testat ^(b) , 2 MU Thick	Testar (b)	Testar ^(b) , Laminated 4-Mil Sheet = 6.:00 ln. Thick	1 Shest = 6. :00	la. Thick		
		Adr(c) Breaking Strength, 15 An	Ultimate Elongation,	Ultimate Tenale,	Air(c)  ce Ultimate c, Elongation,	Oronite 85,55,57 Ultimate Ultitate Tensile, Elong	Ultimate Elongation,	•	
Control	88	9.65/1.1/4	230/11 /4	5744/12/15	142/14/14				
N 5.0-8.0 $\times$ 10 ¹⁵ G 1.0-1.4 $\times$ 10 ¹⁰	80 260	4.9/24 /4	10/ /4	4618/18/5	16/54/5	3674/4/12	26/47/11		
N 4 × 10 ¹⁴ G 1 × 1γ ³ 4	Ambient	8.9 / 9.8/4	115/1.1/4		to the state of the second of the second from the second and naturally of	mine uplante	red from the rai	nos, and na n	mber of

(a) Data are given as \$/5. D. /n, where \$\overline{x} = average value, S. D. = standard deviation of individual observation estimated from the range, specimens used in coloulating \$\overline{x}\$ au. 'S. D.

(b) Test temperature 80 F.(c) Innuexion media.

(c) unmersion messa.

TABLE C-11. DESIGN FOR IRRADIATED TEFLON RESINS*(62)

	Radiation Dose,** Elo x 10 ⁸ Ergs g ⁻¹ (C) pe	Elonga un, per ce t	la on, Tensile Strength, ce t	<pre>Sionga on, Tensile Strength, Dielectric Constant per ce t psi (± 0.05)</pre>
Atmosphere	0	165	3000	2.1
Atmosphere	0.1	152	1882	2.1
A tmo sphere	0.5	34	1539	2.1
Atmosphere	1.0	21	1388	2.1
Atmosphere	5.0	ł	1322	2.1
Vacuum (10-6 mm Hg)	1.0	92	2481	2.1
Vacuum (10-6 imm Hg)	5.0	73	1972	2.1
Vacuum (10-, mm Hg)	51.0	88	1462	2.1
Vacuum (10~ mm Hg)	150.0	16	800	2.1

sight improvement in the above characteristics for this material. Radiation source was Co 60 isotope emitting gamma rays at 1.3 x 106 rads/hour. Temperature was 25 C (77 F). Sam le was 0.010-inch film of a Teflon TFE resin. Note that values for tensile stre-gths and elongations are known to be conservative based on <u>current</u> techniques of end-product fax.cation. Actual experimental data even indicate a These data also apply to Teflon FEP resin.

Conversion factors useful for determining performance expectancies for other-than gamma radiation follow: 1 rad = 1.2 roentgens; 1 rad = 1 x  $10^{10}$  thermal neutrons/cm² = 1 x  $10^{10}$  Nvt; 1 rad = 2.8 x  $10^3$  fast neutrons/cm² (2 Mev); 1 rad = 1.4 x  $10^3$  gamma protons/cm² (2 Mev). **

TABLE C-12. TENTATIVE ASSIGNMENTS OF INFRA-RED PEAKS(82)

Irradiatio		Tentative
Vacuurn	Air	Assignment
	3472	соон
<i></i>	3096	соон
	1880 enhanc	ed
	1757	соон
1350	1350	)
981.8	983.7	) Unsaturation?

TABLE C-13. LOW-FORCE DYNAMIC TEST RESULTS: RUN II, June 4, 1963(7)

š

			Radiation	Radiation Exposure		ÎĠ	Tensile Strength ^a (ps1)	ength ^a (E	151)	nsile Strength ^a (psi) Ultimate	Tempera	641199940
Material Trade Name	Test Condi- tion	Gamma [ergs/ gm(C)]	Neu Thermal E	tron (n/c >2.9 %ev	32 536.1 !!ev	25 % 50 % Elonga- Blonga- tion tion	50 ≴ Elonga- t1on	100 % Elonga- tion		tions tion, A tion, A tion, A tion, A tion, A tion tion tion tion tion tion tion tion	Avg. (F)	Avg. (torr)
Teflon TFE Vacuum Film Irradia- 10 mil tion	Vacuum Irradia- tion	5.08(8)	8.31(12)	6.98(13)	5.08(8) 8.31(12) 6.98(13) 2.77(12)	2090 2160 2065 2105/56	2225 2130 2120 2175/62	2575 2350 2320 2415/151	2650 2460 2860 2860 2657/236	2090 2225 2515 2650 109.1 2160 2180 2350 2460 114.2 2065 2120 3320 2860 159.3 2105/56 2175/62 2415/151 2657/236 127.529.7	37	2,5(-7)
						Flexur Maximum Fiber Stress (psi)	Flexural Styenath Maximum Maximum Fiber Fiber Stress Strain Modulus (psi) in./in. (Esi)	Modulus (Esi)				
Kel-F-81	Vacuum Irredia-	5.08(8)	8.31(12)	6.98(13)	5.08(8) 8.31(12) 6.98(13) 2.77(12) 12,278 0.092 9,300 0.076	12,278 9,300	0.092	135,679 137,070		1	1	

(a) Values given as: aver:go value/standald deviation on an individual basis.

TABLE C-14. TEST ENVIRONMENTS AND RESULTS OF STATIC TESTS(6,7)

1	1	Redistion Exposure		Time.	S. T. S. Melehr	iobi		Tenetle Stue	nethe (net)		Ultimate	Temper-	a d
[ergs/ em(C]		Meutron (n/cm²) Thermal D2.9 Mev D3. 1 Mev	5m3		15		at 25% Flongation	at 30% Llongation		Ultimate	tion, percent		Avg.:
	•	(continue the dame)	•	1			3355 1		250 250 250 250 250 250 250 250 250 250		255 250 3 270 3 270 3 270 3 270 3 270 3 270	ı	ı
vi	6.5(7)	3.5(12) 1.4(13) (sir irradiatio	6.0(11)	ជ							85252 <u>8</u> 6	8	i
તં	1.5(8)	3.1'12) 3.0(13) (a.c. irrediation)	1.1(12)	ជ		·	1111		1111	25.00 P. 1.00	32285 2	3	ı
9	6.8(8)	2.4(13) 1.2(14)	(at)e.₄	×				Too tr	Too brittle to test	ų			
~	(T):-T	*.(4(1)) 2.2(12) (**Cum livediation)	2.35(1L)	^		37,588 53888 99999	87.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	\$335 B	<b>33355</b>	#25 # 2 # 2 # 2 # 2 # 2 # 2 # 2 # 2 # 2	:  	8	(1-)
o,	9.1(7)	7 9(12) 1.7(13) (-ac irradiation)	7.0(11)	σ.	22444 82248 34484 3448	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	233436 23436	83E83		8 3 8 8 E E	83.88 5.88 [5]	8	1.7(-7)
ri .	1.68(8)	1.7(12) 1.9(13) (woose irrediation)	1	ន			<b>新春</b>	334		× 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	55 55 55 55 55 55 55 55 55 55 55 55 55	89	2.3(-7)
-i	, , , ,	4.45(8) 1.95(13) (vacua irradiatico)	2.1(12)	ន	79997 78688 26688	888 888 888 99999	84 5 4 19 14 14 14 14 14 14 14 14 14 14 14 14 14		11888	28888 2888 2888 2888 2888 2888 2888 28	823448 823448	*	t ₍₋₇₎
v,	(8)(8)	5.03(8) 8.31(12) 6 96(13) (vacuum irro/iation)	8.TT(12)	σ.		• •	199	333	11:	14.09 1373 14.08 14.00/13.8	38 25. 25.25.	87	2.5 -()

TABLE C-14. (Continued)

1			١.			5		
				1	ł	1.7(-7)	(1	I
	Temper-	Avg. (5)	1	3	ഷ	8	8	1
	Ultimate Temper-	tion, percent	33,52 33,52 33,52			2828	28282	11131222222
	<b>5</b> "	, tate	28 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	200 100 100 100 100 100 100 100 100 100	48 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2017 2017 2017 2017 2017 2017 2017 2017	1773 1772 1830 1816 1798/25	1118 25888888888888888888888888888888888
	(100)	at 100% Elongation U'	22.69 236.4 236.4 237.4 27.7/12.5	1111	1111	1111	11111	22 22 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25
	Tensile Strangibt (nei)	at 25% at 50% at 100% Elungation Elongation Elongation	2108 1971 2270 1971 2478 277/752	1111	11114	1115	1111	9619 6109 6109 6109 6109 6109 6109 6109
	F	at 25% Elungation	400 H 100 H	11111	2 2 1 1 1 1	25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2	।।।।हें-	151 161 161 161 161 161 161 161 161 161
	Yan che					9000 9000 9000 9000 9000 9000	\$8888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$988 \$988 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9888 \$9	
	Seron	Test, Origin				5.856 5.8567 5.8580 5.8583	5.8216 5.7846 5.7846 5.8157 7.7446	
	F. 75	de st.	1	£1	ដ	's	č	1
		The mal D2.9 Mev D8.1 Mev	•	1.1(12)	4.9(12)	(11)0.7	1.7(12)	•
	Radiation Exposure	Neutron (n/c n/). E>2. 9 Mev E>8.	(control specimens)	3.0(13) adiation)	1.2(14) udiation)	9.1(7) 7.6(12) 1.7(13) ('actum irrediation)	1.9(13)	(ocayora apacimens)
	Radiatio	Then mal	o (contro)	1.5(8) 3,3(12) 3.0(13) (air irradiation)	2.40(13) 1.2(14) (eir irrudiation)	7.8(12) (vaccum tr	1.9(13) (vacuum is	(
	e in it	fers./		1.5(8)	ó.5(8)	6.1(7)	3.5(%)	٠
	Matocial Test	Trade Coudi-	Teflon TFE Air (40 mil) Die A specisen	ALF	44	Ą	Ą	Teflor Tip Air (10 mil)

TABLE C-14. Continued)

Press.	Avg (torr)	ı	i	1. ((-1)	1.71-0	(1.1)		:	:
Temper-	Avg (F)	8	51 E		e.	8		&	ឌ
Ultimate Elonge-		250 370 380 240 290/63	220 210 210 210 210 177.5/43.5	25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	 325 335 330 2 349.5/34.2	25.0 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5	355 255 277 277 277 277 277 277 277 277 277	30 30 30 30 30 30 30 30 30 30 30 30 30 3	8/8 8/8 8/8
	Ultimate	24.20 35.50 21.00 21.00 21.00 21.00 21.00	82.83 Kg	280 3780 3780 2570 2570 3780 3780 3780 3780 3780 3780 3780 37	305. 305. 3830 3300 3465/336.	22.30 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50	2330 2383 2641 2747 277 277 277 277 277 277 277 277 27	2022 2022 2022 2022 2022 2022 2022	2276 1928 1913 2003 2004 2001 2001 2001 2001 2001
ngthe (pei)	at 25% at 50% at 100% Elongation Elonyation Elongation	97/677 97/37 97/37 97/37 97/37	2000 2000 1970 1970 1971 1971 1971 1971 1971	200 200 200 200 200 200 200 200 200 200	2153 1950 1950 2017/117.0	2070 2060 2060 2120 2170 2777.57	1930 1931 1931 1932 1932 1932 1933 1933	16.75 16.77 1867 1866/91	2065 1857 1913 1689 1731/101
Tensile Strengthe (psi)	at 50% a Elongation	2000 2000 2000 2000 2000 2000 2000 200	2000 00 00 00 00 00 00 00 00 00 00 00 00	2000 00 00 00 00 00 00 00 00 00 00 00 00	21.55 2070 2150 1870 1850	2 45/000 2000 2000 2000 2000 2000 2000 2000	900000000000000000000000000000000000000	16.7 1835 1816 1836 1839 1839	2089 1928 1913 2105 1937 1994/83
	at 25% Elongation	2002 2002 2003 2003 2003 2003 2003 2003	2000 1950 1950 1950 1950/49	22222 22222 21/8	2000 2100 2100 1800 1800 1800 1940/123	195. 195. 195. 195. 196. 196. 196. 196. 196. 196. 196. 196	88888	2 1768 1768 1792	200 1904 1913 2005 1913 1909 1909 1909 1909 1909 1909 1909
:	Change.			400000 400000 400000 400000 40000 40000 40000 40000 40000 40000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 400 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 400	0.000 0.000 0.0032 0.0017	0.0021 0.0013 0.0013 0.0023	,,		
Sernple	o E			2.156 2.1417 2.1663 2.1663	2.1534 2.1536 2.1576 2.1908 2.1562	2.15 2.15 2.15 2.15 2.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3			
e in	e e	'n	93	٥	6	ន	•	23	97
•	(cm²) v 1>8. 1 Mev	6.0(11)	(₹)6.4	2.35(11)	7.6(.1)	2.1(12)	•	1.1(12)	4.9(12)
Kadiation Exposure	Thermal E-2. 9 Mey E-8. 1 Mey	3.5(12) 1.4(13) (air irradiation)	2.4(13) 1.2(14) (air irradiacion)	7.5(7) 4.8(12) 5.2(12) (vacur irrad 11100)	1.f(2) 8.k(12) 1.85(13) (vacuum irrmédiatior)	4.45(8) 1.95(13) 5.45(13) (vacuum irredisticu)	Cour. 1 specimens)	1.5(8) 3.3(12) 3.0(13) (efr irradiation)	2.4(13) 1.2(14) (air irredist; co)
2	Therm	3.5(22) (a.1.2)	2.4(13) (eff 12)	4.6(12) (vacur	8.4(12)	1.95(13)	contr. 1	3.3(12) efr frm	2.k(13) adr dra
Semme	feren/ fem(C)	6.5(7)	6.8(8)	7.5(7)	1.f(t)	4.45(8)	•	1.5(8)	6.8(8)
į	Condi-	ā	¥	Ą	Air	ž.	AG.	Att	Aft
-	Trade						Neffon Fre (40 mdl) 21e A Specimen		

TABLE C-1'. (Continued)

	9	Av <b>g</b> .	1.7(-)	(2-)	ł	1	ł	ı	1.1(-1)
	Te nper-	Avg .	2	8	1	8	\$	સ્ક	8
	Ultimate Tenper		325 32 3 11/3	8 33 33 8 8 33 33 33 8 8 113	588885 12	* 28 8 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8	8833888 8833888 8833888	# 855 58 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	100 PM
		Ultucate	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2231 2265 2265 2265 2265 2265 2265 2265 226	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	25.77 26.88 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82 26.82	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	22.5 22.5 22.5 22.5 23.5 3.5 4.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	\$84 % E88
	nothe (nei)	at 100% Elongation	1933 1975 1956 1956 1933 1633	1887 1922 1941 1932 1889 1889	4558 1204 1347 1347 1375/138	157 617 617 617 617 617 617 617 617 617 61	21.22.12.23.12.23.12.23.12.23.12.23.12.23.12.23.12.23.12.23.12.23.12.23.12.23.12.23.12.23.12.23.12.23.12.23.12	1923 193	2 1 1 2 2 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	Tensile Strenothe (nei)	1 75% at 50% at 100%	1933 1938 1938 1938 1938	1867 1922 1941 1893 1699 1699	288 288 288 288 288 288 288 288 288 288	1211 1006 1117 1117 1135	4329 4312 4357 4357 4357 4357		
			1986 1998 1998 1998 1884 1884 1986/24	1849 1993 1917 1993 1870 1885/29	1221 1221 1377/239	4176 4022 4022 4133/108	35 E E E E E E E E E E E E E E E E E E E	288 288 277 277 277 277 277 277 277 277	45.55 5.55 5.55 5.55 5.55 5.55 5.55 5.5
	Sample Weignt	day, gm (1)	5.000 5.000 5.000 5.000 5.000 5.000 5.000	25. 25. 25. 25. 25. 25. 25. 25. 25. 25.	Н	Ę	ES.	lw	-0.0037 -0.0034 -0.0019 -0.0019
	Sample	Origina', gm	5.4131 5.4191 5.3382 5.475	5.3837 5.4215 5.4215 5.4641 5.4252					22.2416 22.5782 22.1467 16.6356 23.5746
	Until	Test.	60	<b>-</b>	1	<b>ત્ર</b>	4	ネ	Φ
	•	Neutroa (n/cm²) Thermal E>2. 9 Mev E>8. ' F.vv	7.0(11)	1.7(12!)	0	6.0(11)	1.1(12)	4.9(12)	2.3%11)
Radiation Penganga	200	Neutron (r	7.8(12) 1.7(13)	1.9(13) 4.4(13) (vecture irr idistion)	o o control specimens)	5(12) 1.4(13) air kradiation)	3(12) 3.0(13)	2.4(13) 1.2(14) (eir tressettos)	7.5(7) 4.6(12) 5.2(12) (wouse irrediation)
P. d	)		7.8(12)	1.9(13)	o (cpntrol	3.5(12) (str trz (	3 3(12) , afr tra	2.4(13) (## G.	4.6(12) modern (1
	Camma	Frg./	6.1(7)	3.9(8)	o	6.5(7)	1.5(8)	6.8(8)	7.5(7)
	1001	Condi-	Δr	Ą	AL	¥	77	Ą	¥
	Material Test	Trade			Kel-F.81				

TABLE C-14, (Concluded)

			Redistio	Radiation Exposure		Time							Uttimate Temper	Temper-	
Material	Test	Granine				Until	Sample Weight	Weight	•	Tensile Strength* (psi	ngth* (pei)		Elongs-	ature	Press
Trade	-	-	Z	Neutron (n/cm²)	, E	Teet,	Original,	Change, at 25%	at 25%	at 50%	at 100%		tion,	Avg .	Avg .
Name	tion	(C)	Ther.nel	her nal E2.9 Mev E9	129. 1 Mev	day.	m	ma d	Elongation	Elongation	Elongation Elongation Elongation Ultimate	Ultımate	percent	<u>(a</u>	(torr)
Kel781	Ą	9.1(7)	7.8(13) (mons in	1.7(13) irradiation)	7.0(11)	89	25.25 20.456. 20.456.	-0.000 -0.0007 -0.0007	975 183	\$E.88	\$\$£13	3888	72 F 58 58 58 58 58 58 58 58 58 58 58 58 58	8	1.7(-1)
							85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85.55 85 85 85 85 85 85 85 85 85 85 85 85 8	0.000	120/00		12 N 333				
	Ą	(9)57.7 )	.:.5(8) 7.95(13) 5.45(13) (vacum irrediation	5.45(13) redistion)	£.1(12)	ន	8.8.5 8.8.5 8.8.5 8.8.5	989	15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00	\$25 \$25 \$25	4373 4567	2.5.5.2 2.5.5.2	165 255 27	8	( <i>L-</i> );
							26.76.3 16.76.3 11.23	988 988 988	282	30 30 30 30 30 30 30 30 30 30 30 30 30 3	¥.	žžą	-88 -88		
									4439/130	436571B3	4376/129	5590/125	181/15		

* Values given as: avera to value/standard deviation on an individual basis.

** Data point not used in a verage.

Material Trade Name	Condi-	Tast Garma Condi-[erys/ tion gin(C]	Redia	Redistion Exposure Neutron (s/cm²) Thermal :>2.9 Mev E>6.1 May	/cm³/	Time Test.	originals	Time Until Sample Wanghte Test, Original Cange	25%	Tensile Strength (psi) 25% at 50% at 100% E. vation Elongation Elongatio	Tenaile Strengths (ps) 7. 25% at 50% at 100% 7. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	Ultimate	Ultimate Elonga- tion, percent	Temper.	Press.
Durota 5600 glass- filler filled ferlon	₽ ·	0	0 (control	0 0 (control specimens)	0	1				1,	,	25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3.000	1	
	₹	1.5(8)	3.3(12) (etr tri	1.5(8) 3.3(12) 3.0(13) (efr irredietim)	(21)(17)	2						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		8	, 1
	Ą	6.8(8)	(2,4(13) (atr 117)	6.8(8) 2,4(13) 1.2(14) [air irradiation]	£.9(12)	្ន						\$3255 \$3255 \$3	20.0000 24.00000 24.00000000000000000000	88	}
	Ą	1.36(9)	1.36(9) _{1.8} (13) (alf 117	.6(13) 2.5(14) (air irradiatíon)	9.5(12)	ន្ទ						23 2 25 25 2 2 25 25 2 2 2 2 2 2 2 2 2 2 2	0.34 0.37 0.45 0.39/.06	8	ł
	Agr	1.6(8)	8.4(12) (vacuum 11	1.6(8) 8.4(12) 1.85(13) (vacuum irradiation)	7.6(11)	90	23.33.33.33.33.33.33.33.33.33.33.33.33.3	**************************************				28 25 28 28 28 28 28 28 28 28 28 28 28 28 28	3.5.000 3.5.000 3.5.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000	8	1()
	취	4.2(8)	1.9(13) (vecum s	4.2(8) 1.9(13) 4.5(13) (v.5(8) (v.5(8))	1.6(12)	<b>4</b> 0	22.22.22 22.22.23 22.22.23 23.23.23 23.23.23 23.23.23 23.23.23 23.23.23 23.23.23 23.23.23 23.23.23 23.23.23 23.23.23 23.23.23 23.23.23 23.23.23 23.23.23 23.23.23 23.23.23 23.23.23 23.23.23 23.23.23 23.23.23 23.23.23 23.23.23 23.23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23	566666 666666				385555 385555 385555 385555		8	4.(-7)
	ML	8.8(8)	2.6(13) (vacum 1	8.8(8) 2.6(13) 1.7(14) (vecum irradiation)	(21)4'9	œ	2425 2425 2425 2425 2425 2425 2425 2425	66.66 86.66 7.66 86.66 7.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86 86 86 86 86 86 86 86 86 86 86 86 8				33355 3355 3355 3355 355 355 355 355 35		3	(L-)

TABLE G-15. Continued)

すいとことのないからいということできるとはないとないないないないというないか

	ì		П	R distion Exposur.		T'm'					Otimate	Temper-	
Material Trade Name	Test Condi- tion	Genna (ergs/ em(Cil		Neutron (n/cm²) Thermal D2.916w D8.1Mev	(cm ³ ) Db. 1 Nov	Cantil Gayer,	Until S. " Woights Tont, Original, Change, days gm m	Tensile Strengtho (ps) at 25% at 50% at 100% Flongstion Elongstion Elongstion Ultimate	at 100% longstien	Ultimate	Elonga- tion, percent	- 1 · (5)	Avs.
Zyna:	ā	9	(ocetro)	(control speciment)	0	1				EX 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1000 1000 1000 1000 1000 1000 1000 100	1	1
	Ą	0	(veeda	O O (vendor data)	0	ı				2000	8		
	Ą	6.5(7)	w -	.5(12) 1.1(13) (eff irreflation)	6.0(m)	ន				283357 28337 28337 278 278 278	33~32 27,53	8	ı
	Ą	1.5(8)	1.5(6) 3.3(12) 3.0(13) (air irradiation,		1.1(12)	ង				32222 32222	333~3 <u>%</u> 8.35	8	:
	Ą	1.36(9)	1.8(12) (atr tre	1.8(2) 2.5(1%) (air irradiation)	6.5(12)	<b>a</b> , ,				6367 10 6200 10 6200 10 7133 5 7134 6 6731/942 2/2.74	33 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8	1
	¥	6.2(7)	(vace :: 2:	6.2(7) 4.5'-2) 6.3(12) (vect :: irrecletion)	2.8(12)	٥	1.1733 0.0000 1.583 - 0.0009 1.6500 - 0.0015 1.5500 - 0.005 1.5500 - 0.005			SEE SEE	5550 5 5783 26 5417 15 5417 15 5417 15,25/6.77	3	1.7(-1)
	¥	) )	8,1(12) (vacum ir	8.1(12) 1.85(12) (vocume irredietice)	(.6(E.)	x	1.5468 +0.0019 1.5462 +0.0091 1.5446 +0.0024 1.6016 +0.002 1.5072 +0.007			83,288 88 88,288 88 88,288 88 87	2583 2567 2667 2667 2687 2687 2587 2587 2587 2587 2587 2587 2587 25	8	1.7(-1)
	Ą	9.4(8)	2.6(13) (vacuum 1r.	9.4(6) 2.8(13) 1.7(14) (vacuum irradiation)	5.6(12)	9				\$283 \$38 \$3	3133	8	(L-,+

TABLE C-15 (Concluded)

	Avg (tort)	ı	t	ŀ	1.7(-7)	(L-)	k(-7)
Temper-	Avg	ı	8	ස	8	8	8
Ultimate	tion, porcent	25.5 25.5 25.5 25.5 25.5 25.7 25.7 25.7	25 5 25 25 25 25 25 25 25 25 25 25 25 25	28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28.88 28 28 28 28 28 28 28 28 28 28 28 28 2	3 1888 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12 15 15 15 15 15 15 15 15 15 15 15 15 15	### #################################
	Ultimate	88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88	88888 88888 88888 88888 88888 88888 8888	25. 27. 27. 27. 28. 28. 28. 28. 28. 28. 28. 28. 28. 28	8855 8855 8855 8855 8856 8856 8856 8856	1888 888 487 487 487 487 487 487 487 487	888.5 888.5 888.5 888.5 888.5
	at 100% Elongation	* 1 1 1 1	27.5 27.5 27.5 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.	8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11113	9900 11.1. 12.1. 12.5. 10.5. 10.5.
	ionsite Strengthy (psi) 4 at 50% at 100% 10n Elongation Elongati	21.50 27.50 27.50 20.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	75 55 55 55 55 55 55 55 55 55 55 55 55 5	88888 8	S 1 5 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	188.25 25.25 25.75 25.77 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75	27.50 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00
 	(8) '4 (S)	52.58 57.58 57.58 57.58 57.58 58.00 Lor	25.50 55.00 55.00 55.00 57.7/172	100 00 00 00 00 00 00 00 00 00 00 00 00	88888888888888888888888888888888888888	188 188 188 188 188 188 188 188 188 188	6150 6250 6250 6250 675/170
	Juni Sample Weighty, Test, Original, Chings, days gm pm				40.0000 40.0000 40.0000 40.0000	60000 60000 60000 60000 60000 60000	60000 60000 60000 60000 60000 60000
	Original Em				0.3186 0.3178 0.3178 0.3187 0.3188	0.326 0.3462 0.375 0.3179 0.3179	3.000¢
Time		I	24	អ	QV.	<b>C</b> )	<b>60</b>
9	Neutron (n/cm ⁴ ) The al D2. 9 Mev D8. 1 Niev	o	1.1(12)	9.5(14)	7.0(11)	2.1(12)	\$.6(12)
Radiation Expoture	Neution (r	control specimen)	3.3(12) 3.0(13) (eir irradiatioù)	1.55(9) 1.8(13) 2.5(14) (air irradiation)	7.8(12) 1.7(13) (vacum irradiation)	4.65(8) 1.95(13) 5.45(13) (*edum irradiation)	2.8(13) .5(14) (vacuma ir .d.ation)
Padiat	fber- 18	0 (costrol	3,3(12) (etr tr	1.8 ⁽¹³⁾	7.8(12) vacuus 1	1.95 ⁽¹³⁾	2.8(13) (vecuma 1
	(Sm(C)	0	1.5(8)	1.55(9)	9.1(7)	4.45(8) (	ر _{د.4} (8)
	Condi- tion	al.	¥	At.	Ą	<b>∄</b>	At.
	Marterial Marre	redlar (2 mll) Afr					

C-23
TABLE C-16. VACUUM DATA FROM OTHER WORK⁽⁶³⁾

Mo	1	%	Ca	888	Evo	ved
2120	•	~	~~			. T CU

		Weight of Samples, gm	Temperature, C	F ₂ O	co ⁵	N ₂	02	Volume of Gas, cc/gm
Teflon	TF6#	0.9010	71	12.07		62.51	25.42	0.0067
		0.9010	180	14.10		64.64	21.26	0.0164
		0.9010	200	6.28	1.78	72.88	19.06	0.0172

[#] Pressure at 10-6 mm Hg.

るので、他の音楽を行うというというとは、自然の音楽を見るとの音楽を見る。これを表現を表現を表するとは、これを表現を表現を表現を表現を表現を表現を表現している。これを表現を表現を表現されている。

TABLE C 17. PHYSICAL PROPERTIES OF TEFLON FILMS IRRADIATED WITH MONOCHROMATIC LIGHT (58)

Incident Energy,	Wavelength,	Tensile Strength, 103 psi	Young's Modulus, 10° psi	Elongation
52.3	244	10.4		142
18.5	244	11.36	4.4	178
103.0	244	9•08	4.6	120
252.0	244	6.52	5•6	44
Irradiated with Ni	trogen			
Q	-	4.02	0.0965	1164
5644	369	4.14	0.167	850
649	314	4.40	0.144	950
1180	314	3.68	0.174	745
132	244	3.68	0.0832	725
			0.076	700
300	244	3•48	0.000	100

Each of the observations recorded was an average of two separate measurements, except for the controls, which were averages of 8-10.

X,

TABLE C-18. PHYSICAL PROPERTIES OF TEFLON FILMS IRRADIATED WITH A G30T8 LAMP(58)

	IRRADIATED WAS	IRKADIATED WITH A COUIS LAMENCY	
Irradiation Time, fours	Tansile Strength, Young's 10³ psi	Young's Modulus, 10 ⁵ psi	Elongation, per cent
C. Teflon Lradi	Nitrogen		
0	4.02	0.0965	1164
% ?? & ??	3.50 0.50	0.0972	750
559	3,79	0•0968	770
D. Teflon Trradiated in a Vacuum	ed in a Vacuum		
4	3.80	0.0564	1160
68	3.46	( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )	; "
139	3.04	0.0590	020
1.46	2.85	0.057	ဂ္ဂ ဂ
167	2.59	0.0510	250

TABLE C-19. TEST RESULTS - BE. DES AND AFTER THERMAL IRRADIATION⁽⁶⁸⁾ Mylon 66

, Z

Melting Point, C	254-260	251-255	254-258	255-258	213–260	213-258	251-254	256-258	254-256	254-256
Inherent** Viscosity	0.43355	0.68559	0.68559	0.61482	t	1	0.49848	0.62063	0.52366	0.5020
Relative* Viscosity	2.38	3.94	3.94	3.42	l	1	2.71	3.46	2.85	3.02
Viscosity at 30 C, cp	73.51	121.71	121.41	105.71	Ì	!	83.66	16•901	87.98	93.36
Concentration, g/di	2.00	2.00	2.00	2.00	Insol.	Insol	2.00	2.00	2.8	2.00
Solvent	CaCl In	Ditto			*		:	8		2
r. sical Condition	Transparent flexible	No change	Ditto	t	Fused, dark	Fused, dark	Yellow, slightly brittle	Slight yellowing	Slight yellowing	Slight yellowing
Atzosphere	ì	Vacuum	Vacuum	Vacuum	Vacuum	1 acuum	Vacuum	Vacuum	Vacute	Vacuim
Time of Exposure,	1	ო	7	24	8	8	N	64	4	4
Tempera - ture,		\$	8	8	275	275	8	250	180	8
Sample Desig- Pretreat-	1	1	١	١	2 hr vac at 100	2 hr vac at 150	4 hr vac at 100	4 hr vac at 66	24 hr vac at 89	24 hr vac at 66
Sample Desig-	0	-	. 0	ı m	4	'n	v	7	ω	Φ

Relative viscosity =  $N_{\rm T}$  = viscosity of the solution/viscosity of the solvent. Viscosity of the solvent CaCl2-CH3CH = 30.85 cp.

** Inherent viscosity =  $N_{\rm I}$  =  $l_{\rm I}N_{\rm Z}/c_{\circ}$ 

TABLE C-20. PHYSICAL PROPERTIES OF PLASTIC FILMS IRRADIATED WITH MONOCHROMATIC LIGHT⁽⁵⁸⁾

Joules/cm²	Wavelength, mµ	Tensile Strength, 10 ³ psi	Young's Moduius, 105 psi	Elongation, percent
A. Polyethylene	Irradiated in	Nitrogen		
0	-	5.52	5.90	512
179	369	7.04	2.49	270
2200	369	7.49	4.6	342
3160	369	5.77	4.62	343
475	314	5.59	4.95	290
623	314	6. 28	2. 25	290
1053	314	4.09	4. 92	225
87	244	5.86	5.39	95
290	244	4.05	6. 17	50
400	244	2.07	4.93	16
A Poly: hylene	Irradiated in	a Vacuum		
527	244	7.41	4.09	232
595	244	7.48	5. 51	190
B. Mylar Irradia	ated in Nitroge	21.		
0	-	17.3	2.64	46
1269	369	20. 1	1.32	36
3096	369	7.68	1.36	40
585	314	14.46	1.5	17
921	314	6.30	7.75	18
58	244	16.7	2. 47	47
57	244	15.6	2. 10	28
225	244	12.46	2. 69	7
314	244	12.1	3.02	11
B. Mylar Irradia	ted in a Vacuu	<u>m</u>		
1375	244	6.56	1.42	11

TABLE C-26. (Concluded)

Incident Energy, joules/cm ²	Wavelength, mµ	Tensile Strength, 10 ³ psi	Young's Modulus, 105 psi	Elongation, percent
C. Nylon Irradia	ted in Nitroge	e <u>n</u>	- · · · · · · · · · · · · · · · · · · ·	
<b>O</b>	•	11.32	4.6	153
158.5	369	11.24	4.0	203
376. 1	369	10.28	6.8	157
1234	369	11.6	-	133
2700	369	11.02	6.4	137
89	314	10.8	6.4	140
336	314	11.04	5.4	168
1234. 4	314	11.56	6. 5	133
1450	314	10.82	5.2	182

TABLE C-21. PHYSICAL PROPERTIES OF PLASTIC FILMS IRRADIATED WITH A G30T8 LAMP(58)

Irradiation Time,	Tensile Strength,		Elongation
hour	10³ psi	10 ⁵ psi	percent
A. Polyethylene Is	radiated in Nitroge	<u>n_</u>	
0	5.52	5. 90	512
8	6.24	4.47	550
24	4.32	2. 09	500
47	2.82	5.62	95
72	2.08	4.95	6
154	1.57	3.9	7
B. Polyethylene In	radiated in Vacuum	_	
22	6. 24	5.70	520
48	4.82	5.73	270
68	5. 02	7 13	10:
168	3.28	3.21	*
C. Te lon Irradiat	ed in Nitrogen		
L	4.02	0.0965	1164
92	4.00		1086
120	3.90	0.0972	750
559	3.79	0.0968	770
D. Teflon Irradiat	ed in a Vacuun		
40	3.80	0.0564	1160
68	3.46		
139	3.04	0.0590	520
146	2.85	0.057	500
167	2.59	0.0510	520
E. Nylon Irradiate	ed in Nitrogen		
0	8. 32	2.46	131
42	8.96	3.31	135
78	6. 32	3.08	80
180	3.56	6.17	14

TABLE C-21. (Concluded)

Irradiation Time	, Tensile Strength, 10 ³ psi	Young's Mocrelus, 105 psi	Elongation percent
F. Nylon Irradi	ated in a Vacuum		
8	8. 36	2.2	230
24	1.92	3.75	260
68	7.06	3.75	132
140	7.04	5.73	161
190	6.8	11.03	111
G. Mylar Irrad	iated in Nitrogen		
0	17.3	2.64	46
22	13.5	1.28	21
45	13.6	• •	14
161	10.5	1.98	12
192	9.7	1.37	`2
. Mylar Irrad	iated in a Vacuum		
28	18. G	1.89	54
68	17.5	1.63	58
120	15.6	1.30	30
172	14.0	2.14	11
190	13.8	1.90	14

TABLE C-22. EFFECTS OF FADIATION ON MYLAR(7)

G

	1 '		11	Radiacion Exposure		Time		•				-			
Material		•				Until		Sample Weights		Tensile Strei	agth* (pst)	, -	Ultimate Temper	Temper-	S
Name	tion tion	em(C)	Thermal 1	Neutron (n)	Thermal D2.9 Mev D8.1 Mev	da it		Change,		it 25% at 50% at 100% Elongation Elengation	at 100% Elongation	Ultimate		Avg	Avg . (torr)
My last C	44	•	(control a	(control specimens)		ŧ	1	l I	16, 300 16, 300 16, 300 16, 300 16, 300 16, 300 18, 300	19,500 15,700 17,500 18,500 13,520/31	2, 2, 38 2, 58 33, 58	85,48 82,48 82,48 82,48 82,48 82,48 82,48 82,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48 83,48	81884		;
	ą	0.6(6)	2.4(13) (atr irra	4(13) 1.2(14) (4ir irradiitiom)	h.9(1 ⁻ )	13	1	1-	15,58 15,58 15,580 15,580 15,580	17,500 17,500 17,500 17,500 17,200/1,30	22,000 22,000 20,000 20,000 20,000 20,000	25, 78 16, 78 25, 78 25, 78 27, 421 27, 421	100 S	`}	!
	Ą	1.36(9)	1.36(9) 1.6(13) (air irra	6(13) 2.5(1.) afr irradiation}	9.5(12)	£1	1	1	15,500 15,200 15,700 15,000 15,500 15,500	16,300 17,500 18,000 17,000 17,000 11,500/559	2,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,	89,49 89,49 89,58 89,58 89,58 89,78 89,78	105 105 105 105 105 105 105 105 105 105	83	ł
	Ą	0.0(%)	1.20(15) (air irradiu.ion)	1.20(15) diu.son)	1	97	1	1	25,52	1111	1111	16, 700 18, 100 20, 000 13, 500, 1945	50 F 1/57	3	;
Myler C	Ą	4.45(6)	4.45(6) 1.95(1;) 5.45(13) (vacuum irrudistion)	5.45(13) radietion)	2.1(12)	œ	0.14/0 0.1496 0.1503 0.1462 0.1494	-0.0014 -0.0027 -0.00012 -0.0012	08, 33 08, 34 08, 34 08, 34 14, 44 16, 00, 4, 4, 4 16, 00, 4, 4 16, 00,	18,600 19,000 18,500 20,000 19,250/729	111 22,000 22,000 24,000/x	24,68 27,38 27,38 27,38,225	85 6 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Š,	? .
	Ą	9.1(8)	2-8(13) 1.6(14) (wacum irrediation)	1.6(14) "distion)	£.0(13)	o,	0.1475	0.0016 0.00010 0.0000	16,30	18,500 19,300 19,300 18,615/24	,	24, 50 23, 78 20, 78 23, 785 23, 725, 725, 74	88183	8	Q-4
Mylar A	þ	(6)6.5	5.9(9) 1.8(14) 6.56(14) (Vacuum frradistion)	o.56(14)	1	۲-	1.4112 1.3924 1.3933 1.4003	-0.000 -0.000 -0.000 -0.000 100 11	15,300 15,000 16,000/5ts 1	16, 50 16, 50 16, 70 16, 700 16, 700/129	11:12	17,100 17,500 17,500 17,600 17,600 17,600	86.7.38 30.7.38	160	£ -7)
	Ą	1.05(10)	1.05(10) 1.32(%) 1.05(15) (*acum rradiation)		5.9(13)	~	1.4154 1.4156 1.3376 1.3378	-0.0010 -0.0014 -0.0014 -0.0021	1118	11,8%	1111	16,080 17,080 17,080 17,080 17,080 17,080	4	160	£'-7)

1 1

1.39% -0 0021 15,000

TABLE C-22. (Concluded)

Press.	-		1		( <del>[-</del> }- &
ruper nture Avg.	<u> </u>	1	8.	8	٥
Ultimate Temper Elenga- ture tion, Avg.	ercent	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	465 465 465 465 465 465 465 465 465 465	··· Y	12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13
	Ultimate p	25,52 25,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53 26,53	88.44.49.19 88.44.49.19	388888 388888 388888888888888888888888	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
agth* (psi)	Elongation	00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60 00,60	18,600 19,200 19,200 18,800 18,850/21	16,200	83,51 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63 83,63
Tensile Strength* (psi	Elongation Elongation Elongation Ultimate percent	88888 555555 755555 75555 75555 75555 75555 75555 75555 75555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 7555 755 7555 7555 7555 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755 755	17,800 17,800 17,800 17,300 17,300 17,300	15,700 15,700 15,900 15,900	17, 38 17, 38 17, 38 17, 38 17, 38 17, 38 17, 38 17, 38 17, 38
at 25%	Elongation	2, 25, 33 2, 34, 45, 58 30, 30, 30, 30, 30, 30, 30, 30, 30, 30,	3,3,3,4,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,	333333 38888	i IH
to Werghts		1	1	t	0.0003 0.0005 0.0005 0.0009 0.0009
Original Change,	£	t	ŧ	1	1.4395
Time Until		1	न्न	<b>A</b>	Φ.
11	58. 1 Mev	0	4.9(12)	6.2(13)	2.1(12)
Re detion Exposure	Thermal D2. 9 Mev D8. 1 Mev days	(control specimens)	3) 1.2(14) rradiation)	1.07(10) 1.9(14) 2.3(15) (edr irreddation)	k.45(8) 1.95(13) 5.45(13) (vacum irradiation)
12 tlati	herm	(coatr	1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	) 1.90 (ed. 1)	(*acum
Samme	m(C)	o	6.8(R) 2.4(13) (air irradi	1.07(10	(8)54.4
Toet	Condi-	ā	Ą	Ą	Ą
Material Test	Trade	Aylar A			

e Values given as: </ri>

TABLE C-23. HIGH-VACUUM TESTING OF MYLAR PLASTIC FILM(57)

t s	Test No. of	Mylar Thickness,	Aluminus Coating Thickness,	Aluminum Coating Application	Test Durstion, hours	Temperature,	Ultimate Vacuum, mm H.,	Weight Loss, p. c/sq cm	Renarks
-		3 10 10	None	None	72	Room	30-6	8.6 14 0.0	Apparent decrease in flexibility
8	, ചെല	-	- 8	Coated on one side only	52	Room	100	000	Apparent decrease in flexibility
ო	Same sate ples as	න ග් _{දු}	ងខ្លួន	Coated on one side only	8	90	30-01	438	Warping, wrin'ling, and loss of flexibility
4	000		None Coated Coated	Uncoated One side* Both sides*	2	150	10-6	Results in- velid, des to error in weigh- ing	Warping, wrinkling, and loss of flexibility
so.	909	n	None Costed Cested	Uncoated One side* Both sides*	ቴ	85	100	100.0, 113.0 19, 44 31, 31	Warping, wrinkling, and loss of flexibility

* Thickness not regulated on these samples.

TABLE C-24. EFFECTS OF VACUUM AND OF VACUUM WITH ULTRAVIOLET RADIATION ON FILMS⁽⁴⁶⁾

8 4 ° 0 ° .

0.

					Ten	Tensile Strength	4,	Break El	Break Elongation
Waterial	Type of Exposure*	Temperature, F	Exposure Time, hours	Weight Change, per cent	Before Exposure, psi	Afta: Exposure, psi	Change, per cent	Before Exposure, in./in.	After Exposure, in./in.
Polyethylene	Vacuum	75 to 80	168	-0.02	25,200	23,600	4.4	1.08	96•0
terephtnälate, aluminized	Vacuum	55 to 60	94	<b>6</b> .04	26,200	23,000	-12.2	1.414	1.639
one stoe	gacuum and ultiviolet	85 to 95	770	+0•37	26,200	14,900	43.0	P27-1	0.174
Polyvinyl fluoride,	Vecum	75 % 82	168	Not meas- urable	12,150	12,375	+1+0	1.112	1.135
Type 20, clear	Vacuum	35 to 60	770	+0.29	14,700	13,400	8.8	0.965	0.915
	Vacuum and ultraviolet	85 to 95	770	-1.57	14,700	10,500	-28.7	0.9c5	962.0

* Maximum vacuum pressures on the order of 5  $\times$  10⁻⁶ nm Hg.

EFFECTS OF VACUUM AND F VACUUM WITH ULTRAVIOLET RADIATION ON SEAMED FILMS*(46)

Exposite Tipe of 770 Hours TABLE C-25.

\$0

				Tel	Tensile Strength	£
Material	Nae of Exposure ^{ow}	Taperature, F	Weight re, Change, per cent	Before Exposur psi	After Exposure, psi	Uhange, per cent
Polyethylene terephthalate, 1 mil, aluminized	Vacuum	55 to 60	0.00	22,200	22,100	.0.2
one side, muct scamed with 1/2 in. neat-sealable poly: ster-rusin-wated polyethylene-terephthalate taps	Vacuum and ultraviolet	85 to 95	+0.24	22,200	15,600***	-29.5
Solyethylene terephthalate, 1 mil, aluminized	Vacuum	55 to 60	<b>90°0</b> +	15,000	15,100	40.7
one side, buit settled With 3/4-in, pressire- sensitive, siliconn-adhesive-coated polyethylene- terephthalate tape	Vacuum and ultraviolet	85 to 95	<b>*0.08</b>	15,000	15,800***	+5•3
Folyethylene terepathalate, I mil, al minized	Vacuum	55 to 60	-0.57	15,600	16,900	+8•1
one sice, but-seamed With 1/2-inch polyechles- terephthalate tape and solvent-type adhesive	Vacuum and ultraviolet	85 to 95	-1,13	15,600	8,170	-48.3
Polyethylene te.e. ithalate, I mil, aluminized	\ acuum	55 to 60	0.71	19,500	21,300	4.6+
one side, but, seamed with 1/2-inch polyechtere- terephthalate tape and Pilobond+ solvent-type adhesive	Vacuum and ultraviolet	85 to 95	-5.23	19,500	14,700***	-24.5
Polyvinyl fluoride, 1 mis, clear, 1/16-inch	Vacuum	55 tr, 60	+0.04	6, 400	009'6	+2.1
ינפס נייפסטדעל פֿינפס נייפסטדען.	Vacuum and ultraviolet	85 to 95	-1.48	9,400	00%,6	+5.0

repes applied to non luminized side. All values are the averages of three specimens.

* Maximum vacuum pressures on the order of 5 x 10-6 mm Hg.

*** Specimen failure did not occur in seam.

Goodyear Ilre and Rubber Company adhesive.

TEST ENVIRONYED TO AND RESULTS OF STATIC TESTS: HIGH DENSI'S ? POLYETHYLENE(7) TABLE C-26.

. 0 0

TABLE C-27. STRENGTH PROPERTIES OF NOMEX YARNS FXPOSED TO ELEVATED TEMPERATURE (76)

		Tenacity, grams/deni	ier	Stre	ngth Retain %	ed,
	Natur'.	Int. Orange	Olive Green	Natural	Int. Orange	Olive Gre•n
Original	5,92	5. 85	<b>5.5</b> 8			
Crigmal + 2 Hr at 400 F	5.54	6.03	5.83	93.6	103.07	104.4
Original + 2 Hr at 500 F	5, 09	5.50	4.20	85.9	94.0	75.5
Original + 2 Hr at 000 F	2.13	3.29	2.86	37.0	56.3	51.3

table C-28. Elongation properties of nomex yarns exposed to elevatl .  ${\tt TEMPERATURE(76)}$ 

		Elongatio %	n,	Elong	ation Retai %	ned,
	Natural	Int. Orange	Olive Green	Natural	Int. Orange	Olive Green
Original	14.2	11.2	12.0			
Original + 2 flr at 400 F	12.3	12.6	12.0	86.6	112.5	100.0
Original + 2 Hr at 500 F	10.3	11.6	7.8	72.5	103.5	63.3
Original + 2 Hr at 600 F	2.2	5.5	3.9	15, 5	49.2	32.5

Table C-29. Stren TH properties of nomex yarns exposed to gamma radiation and/or elevated temperature (400 f)  $^{(76)}$ 

		Tenacity,		Stren	gth Retain	ed,
		Int.	Olive		Inc.	Olive
	Natural	Orange	Green	Natural	Orange	Green
Original	5.92	5.85	5.58			
Original + 2 Hr at 400 F	5. 54	6.03	5. 83	93.6	103.07	104.4
Gamma, 7.0 x 10 ^{8(a)}	5,32	5, 95	5.69	89.8	101.7	101.9
Gamina, 7.0 x 10 ⁸ + 2 Hr at 400 F	6.22	6.46	5.70	105.06	110.4	102.1
Gamma, $7.0 \times 10^8 / 400 F(b)$	5.30	5.54	5.81	82.5	94,7	104.1
Gamma, $7.0 \times 10^8 / 400 \text{ F} + 2 \text{ Hr at } 400 \text{ F}^{(b)}$	5.40	5.82	5.51	91.4	99.5	38.8
Gamma, 7.0 x 108/400 F + 2 lir at 500 F	4,41	5.26	2.38	74.5	89.9	42.7
Gamma, 7.0 x 108/400 F + 2 ftr at 600 F	2,56	2.87	2.38(2)	43.3	49.1	42.7
Gamma, $1.4 \times 10^{9(a)}$	5.71	5.75	5.62	96.5	98.3	100.7
Gamma, 1.4 x 10 ⁹ + 2 Hr at 400 F	5.58	5.98	5,58	94.3	102,2	100.0
Gamma, 1.4 x 10 ⁹ /400 F	4.76	5, 54	3,31	80. 5	94.7	59.3
Gamma, 1.4 x 10 ⁹ /400 F + 2 Hr at 400 F	4.02	5, 04	2.98	67.9	86.2	53.4
Gamma, 1.4 x 10 ⁹ /400 F + 2 Hr at 500 F	5.11	4.25	2.38	86,4	1.7	42.7
Gamma, 1.4 x 109/100 F + 2 Hi at 500 F	3,47	3.73	2.93(2)	58,6	63.8	52.5

⁽a) Normal operating temperature, approx. 100 F.

Note Gamma exposure in ergs g⁻¹(C).

TAF: C-30. STRENGTH PROPERTIES OF NOMEX YARNS TYPOSED TO GAMMA RADIATION AND/OR ELEVATED TEMPERATURE (500 F) $^{(76)}$ 

		Tenacity, rams/denie	:r	Stre	ngth Retain %	ed,
	Natural	Int. Orange	Olive Green	Natural	Int. Orange	Olive Green
Original	5, 92	5, 85	5, 58			
Original + 2 Hr at 500 F	5, 09	5, 50	4,20	85.9	94.0	75.5
Gamma, 7.0 x 108	5.32	5, 95	5, 69	89.9	101.7	101.9
Gamma, 7.0 x 108 + 2 Hr at 500 F	4.60	4.74	2.0	77.7	81.9	35.9
Gamma, 7.0 x 108/500 F	4.68	5.0	3.14	79.1	85.5	56.3
Gamma, 7.0 x 108/500 F + 2 Hr at 400 F	4.52	4.9	2.70	76,4	83.8	49.5
Gamma, 7.0 x 108/500 F + 2 Hr at 500 F	4.34	4.8	3.300)	13.4	82.1	60.3
Gamma, 7.0 x 108/500 F + 2 Hr at 600 F	3.43	3.69	3. 13 ^(b)	67.9	63.1	56.1
Gamma, 1,4 x 10 ⁹	5.71	5, 75	5.62	96.5	98.3	100.7
Gamma, 1.4 x 10 ⁹ + 2 Hr at 500 F	4.43	4.33	2.69	74.8	82.6	48.2
Gamma, 1.4 x 10 ⁹ /500 F	3.67	, 4.89	4.52	62.0	83.6	81.1
Gamma, 1.4 x 10 ⁹ /500 F + 2 Hr at 400 F	4.24	4.72	4.06	71.6	80.7	72.8
Gamma, 1.4 x 109/500 F + 2 Hr at 500 F	4.19	4.46	4.20 ^(b)	70.8	76.1	75.3
Gainma, 1.4 x 10 ⁹ /500 F + 2 Hr at 600 F	3,58	3.93 ^(a)	3,55(4)	60.5	67.9	63.7

⁽a) Frayed and brittle.

Note: Gamma exposure in ergs g-1(C).

⁽b) F indicates gamme and temperature simultaneously

⁺ hours at F indicates oven aging.

⁽c) Erayed and brittle.

⁽b) Frayed.

table C-31. Strength properties of nomex yarns exposed to gamma radiation/and/or elevated temperature (300 f)( 76 )

		Tenacity, rains/dente	·	Stre	ngth Retai %	ned,
	Natural	Int. 'Hange	Olive Green	Natural	Int. Crange	Olive Green
Original	5,92	5,85	5.58			
Original + 2 Hr at 600 F	2.18	3,29	2.86	37.0	56.3	51.3
Gam: 3, 7.0 x 10 ⁸	5.32	5,95	5. + 9	89.9	101.7	101.9
Gamma, $7.0 \times 10^8 + 2$ Hr at 600 F	2.93	3.06	2.40	49.5	52.3	43.1
Gamma, 7.0 x 10 ⁸ /600 F	2.77	3.54	2.31	46.8	60.6	41.6
Gamma, 7.0 x 10 ⁸ /600 F + 2 Hr at 400 Γ	2.97	3.71	3.10	50.2	63.5	55.6
Gamma, 7.0 x 138/600 F + 2 Hr at 500 F	2 75	3.12	2.50(b)	46.8	53.4	44.8
Gamma, 7.0 x 108/600 F + 9 17 at 600 F	2.09	3.04	2.65 ^(a)	35.7	51.9	47.6
Gamma, 1.4 x 10 ⁹	5, 71	5.75	5.62	96.5	98. ა	100.7
Gamma, 1.4 x 10 ⁹ + 2 Hr at 600 F	2,74	2.74	2,54	46,2	46.8	45.5
Gamma, 1.4 x 10 ⁹ /600 F	2.13	1.05(a)	1. c (a)	36,0	17.9	18.7
Gamma, 1.4 x 10 ⁹ /600 F + 2 Hr at 400 F	2.07	2,22	1.77(b)	34.3	37.5	31.8
Gamma, 1.4 x $10^9/600$ F + 2 Hr at 500 F	2.30	2.35	2.12(a)	38. 9	40.2	38.0
Gamma, $1.4 \times 10^9 / 600 \text{ F} + 2 \text{ Hr at } 600 \text{ F}$	1.89(a)	2.41 ^(a)	2.15(a)	31.9	.1.0	38.6

⁽a) Frayed and brittle.

D

Note: Gamma exposure in ergs g-1(C).

Table C-32. Elongation properties of nomex yarns exposed to gamma radiation  $i_{\rm c}$ .9/Or elevated temperature (400 f) $^{(76)}$ 

	E	longation,		Elong	ation Retai %	ned,
		Int.	Olive		Tnt.	Olive
	Matural	Orange	Green	Natural	Orange	Green
Original	14.2	11.2	12.0			
Original + 2 Hr at 400 F	12 3	12.6	12.0	86.6	112.5	100.0
Gamm., 7.0 x 10 ⁸	11.5	14.1	13.2	81.0	125.9	110,0
Gamma, 7.0 x 10 ⁸ + 2 Hr at 400 F	16,2	14.9	11.5	114.1	133.0	95.8
Gamma, 7.0 x 10 ⁸ /400 F	11.2	12, 1	12.9	78.9	108.1	107.5
Gamma, $7.0 \times 10^8 / 400 \text{ F} + 2 \text{ Hr}$ at $400 \text{ F}$	11.8	12.2	11,6	83.1	108.9	96.5
Gamma, 7.0 x $10^8/400 \text{ F} + 2 \text{ Hr}$ at 500 F	7.8	10.5	2, 5	54.9	93.7	20.9
Gamma, 7.0 x 10 ⁸ /400 F + 2 Hr at 600 F	3.3	4.2	2.8	23.3	37.5	23,3
Gamma, 1,4 x 10 ⁹	15.0	12.9	13, 7	100.6	115.2	114.1
Gainma, 1.4 x 10 ⁹ + 2 Hr at 400 F	13.5	13,9	13,7	95.1	124.1	114.1
Gamma, 1.4 x 10 ⁹ /400 F	8.5	10.0	4,3	59.9	94.6	35.8
Gamma, 1.4 x 109/400 F + 2 Hr at 400 F	6.3	8.8	3, 4	44.4	87.5	28.4
Gamma, 1.4 x 10 ⁹ /400 F + 2 Hr at 500 F	3, 5	7.3	2,8	24.6	65.2	23.3
Gamma, 1.4 x 10 ⁹ /400 F + 2 Hr at 600 F	6.5	7.1	4.6	45.8	63.4	38.4

Note: Gamma exporure in ergs g-1(C).

⁽b) Frayed.

TABLE C-33. ELONGATION PROPERTIES OF NOMEX YARNS EXPOSED TO GAMMA RADIATION AND/OR ELEVATED REMPERATURE (500 F)⁽⁷⁶⁾

		Elongation %	١,	Elong	ation Retai	ned,
•	Natural	Int. Otatige	Olive Green	Natural	Int. Orange	Olive Green
Original	14.2	11.2	12.0			
Original + 2 Hr at 500 F	10.3	11.6	7.6	72,5	103.5	63.3
Gamma, 7.0 x 10 ⁸	11.5	14.1	13.2	81.C	125.9	110.0
Gamma, $7.0 \times 10^8 + 2$ Hr at 500 F	8.3	8.8	2.4	58.5	78.6	20.0
Gamma, 7.0 x 10 ⁸ /500 F	10.3	10.3	4.2	72,5	93.7	35.0
Gamma, 7.0 x 108/500 F + 2 Hr at 400 F	8.4	8.6	3.6	59.2	76.8	30,0
Gamma, 7.0 x 108/500 F + 2 H ₁ a. 500 F	8.7	10.5	5, 3	61.3	95.1	44.2
Gamma, $7.0 \times 10^8 / 500 \text{ F} + 2 \text{ Hr}$ at $600 \text{ F}$	6.6	7.8	5.3	46.5	69.7	44, 2
Gamma, 1.4 x 10 ⁹	15.0	12.9	13.7	105.6	115.2	114.1
Gamma, 1.4 x 10 ⁹ + 2 Hr at 500 F	8.8	10.5	3.7	61.8	95.1	30.8
Gamma, 1.4 x 10 ⁹ /500 F	6.4	10.8	. 9.6	45.1	96.4	80.8
Gamma, 1.4 x 109/500 F + 2 Hr at 400 F	8.6	11.4	7.7	60.6	101.8	62.2
Gamma, 1.4 x 109/500 F + 2 Hr at 500 F	8.8	9.9	9.6	61.8	87.5	80.8
Gamma, 1.4 x 109/500 F + 2 Hr at 600 F	7.3	11.0	9.0	44.4	98.2	75.0

Note: Gamma exposure in ergs g-1(C).

Table ..-34. Elongation properties of nomex yarns exposed to gamma radiation and/or elevated temperature (600 f)( 76 )

		Elongation %	l <b>,</b>	Elong	ation Retai	ined,
	Hatural	Int. Orange	Olive Green	Natural	Int. Orange	Olive Green
Original	14, 2	11.2	12.0			
Original + & Hr at 600 F	2,2	5. \$	3.9	15.5	49.1	32.5
Gamma, 7.0 x 10 ⁸	11.5	14.1	13,2	81.0	125.9	110.0
Gamma, 7.0 x 108 + 2 Hr at 300 F	5, 1	5.7	3.8	35.9	50.9	31.7
Gamma, 7.0 x 10 ⁶ /600 F	4, 5	6.8	3, 4	31.8	60.7	28.3
Gamma, 7.0 x 108/600 F + 2 Hr at 400 F	5.3	7.6	5.0	37.3	67.8	41.7
Gamma, 7.0 x 108/600 F ÷ 2 Hr at 500 F	4.8	5.2	3.4	33.8	46.4	28.3
Gamma, 7, 7 < 108/600 F + 2 Hr at 600 F	3.1	5.9	5. 2		52.7	43.3
Gamma, 1.4 x 10 ⁹	13.5	12.9	13.7	95.1	115.2	114.1
Gamma, 1.4 x 10 ⁹ + 2 Hr at 600 F	4.3	4.2	3.8	30.3	37.5	31,7
Gamma, 1.4 x 10 ⁹ /600 F	3.2	6.0	1.7	22.5	53.6	14, 2
Gammia, 1.4 x 10 ⁹ /600 F + 2 Hr at 400 F	3.9	3.9	- 2, 6	27.5	34.2	21.7
G'mma, 1.4 x 109/600 F + 2 Hr at 500 F	4.0	4.6	3.6	28.2	41.1	30.0
Gamma, 1.1 x 109/600 F + 2 Hr at 600 F	3.6	5.1	3, 6	26.8	45.5	30.0

Note: Gamma exposure in ergs g⁻¹(C).

The state of the s

TEST ENVIRONMENT AND RESULTS OF STATIC TESTS: PCLYUKETHAN; Tittemal insulation(7) TABLE C~35.

\$ \$ \$ \$ \$ \$ \$ \$ \$

Material Trade Name	Test	Ramma Test Gamma Trade Name Condition lenge / mr. Co.	diation E		posure Neutron (n/cm²)	Until Test,	Sample Original,	Sample Weights Original, Change.	Compressive Strength * at 25%	Temperature Average,	Pressure Average,
CPR-20 Compression Buttons	Air		0 (control						126 95.		
	Air	6.5(7)	3.5(12) (air in	.5(12) ).4(13) (air irradiation)	6.0(11)	91	•	1	102/13 - 123.5	8	•
	Air	1.5(8)	3.2,12) (air ir:	6.2(12) 3.0(13) (air irradiation)	1.1(12)	16	,	ı	88 7-117 88 89	8	1
	Air	1.36(9)	1.8(13) (sir in	1.8(13) 2.5(14) (air irradiation)	9.5(12)	16		,	126 105/19 89 91 91.5	82	;
	Air	7.5(7)	4.6(12) vacuum iy	4.6(12) 5.2(12) (vacuum irradiation)	2.35(11)	۴	0.6394 0.4578 0.4738	0.0010	22/2 20/7 111 82.5 85	8	1.7(-7)
	Air	1.8(8)	8.4(12) vacuum ti	8.4(12) 1.85(13) (vacum irradiation)	7.6(11)	۰ 000	0.4594 0.4724 0.4691	963711 9637 9697 9697	92/14 91.5 91.5 86 103	8	1.7(-7)
	Air	9-1(8)	2.8(13) vacuum i:	2.8(13) 1.6(14)   vacuum irradiation)	6.0(12)	۰ 000		6 888 8 889 9 999	114 79.14 116 79.5	8	4(-7)

TABLE C-35. (Concluded)

V 0 : (60)

		Radiation Exposure	osure		Tim. Until	Sample Weights	Veights	Compressive	6.1	Pressure
Material Test Gamma Trade Name Condition [ergs/gm/	Gamma fergs/gm(C)	nma Neutron (n/cm²) Test, s/gm(C§ Thermal E>2.9 Mev E>8 1 Mev days	Neutron (n/cm²) E>2.9 Mev E>8	m²) D8 1 Mev	- 1	Original, gm	Change, gm	Original, Change, Strength* 2t 25% gm gm Deflection, psi	Average,	Averago. (tort)
OR-1021-2 Compression Buttons	o	0 0 (control specimens)	o (sectizens)	0	1	•		29 25 25 25 25 25 25 25 25 25 25 25 25 25	i	ı
	<b>a</b> nnosa)	1(8) 8.31(12) 6.96(13) 2.77(12) (vacuum irradiation, low force static)	6.98(13) , low force	2.77(12) static)	1	•	•	29.8 31.7 27.8 29.8/2.3	84	2.5(-7)
		Lon-For	er Dynamic	Low-Force Dynamic Lest Assultat, Run II. June 4. 1963	ong 3	AND AND	4			
CFR-20 Coerression Butions	5.08(8)	8.31(12) 6.98(13) (vacuum irradiation)	6.98(13) adiation)	2.77(12)	1	•	•	142.5 120.0 124.5/18.6	£	2.5()
CPR-1021 Compression Buttons	(3)80°\$	8.31(12) 6.98(10) (vacuta irradiation)	6.98(12) ediation)	2.77(12)	1	•	ı	9.06 0.88 0.88	<b>6</b>	2.5(-1)

* Valuen given as: average value/ standard deviation on an individual basis.



Figure C-1. Initial rates of weight loss for organic materials  $\mathtt{TESTED}(61)$ 

30 C



FIGURE C-2. TENSILE PROPERTIES OF IRRADIATED POLYTETRAFLUOROETHYLENE FILM (VACUUM = 10-6 mm Hg)(82)



FIGURE C-3. COEFFICIENT OF FRICTION AND RIDER WEAR FOR VARIOUS POLYTETRAFLUOROETHYLENE COMPOSITIONS SLIDING ON 440-C STAINLESS STEEL IN VACUUM (10⁻⁹ mm Hg)

J



FIGURE C-4. TENSILE STRENGTH OF FLUOROCARBON PLASTICS AT CRYOGENIC TEMPERATURES(64)

京都 一次教教 とうずん シャー 変に 多少



FIGURE C-5. THERMAL LINEAR EXPANSION OF PCTFE AND PTFE AT SUBZERO TEMPERATURES⁽⁶⁴⁾



FIGURE C-6. RADIATION EFFECTS ON KEL-F FILM(13)



FIGURE C-7. EFFECT OF X-RAY IRRADIATION ON TFE-6 (DISSIPATION FACTOR) $^{(63)}$ 



FIGURE C-8. RECOVERY CHARACTERISTICS OF TFE-6 SPECIMENS AFTER X-RAY IRRADIATION(63)



FIGURE C-9. EFFECT OF X-RAY TRRADIATION ON TFE-6 (DIELECTRIC CONSTANT)(63)



FIGURE C-10. EFFECT OF X-RAY IRRADIATION ON FEP-100 (DISSIPATION FACTOR)(63)



FIGURE C-11. EFFECT OF X-RAY IRRADIATION ON FEP-100 (DIELECTRIC CONSTANT) (63)



FIGURE C-12. COMPARISON OF THE EFFECTS OF X-IRRADIATION ON THE DISSIPATION FACTOR OF PTFE-6 IN VACUO (5 x  $10^{-6}$  mm Hg) AND IN AIR(64)

LB



FIGURE C-13. RADIATION EFTTCTS ON MYLAR FILM(13)

. C. - T. C-14. RADIATION EFFECTS ON ALUMINIZED MYLAR FILM(13)



, o . w

FIGURE C-15. RADIATION EFFECTS ON ALUMISEAL FILM(13) (Mylar-Aluminum-Mylar Laminate)



FIGURE C-16. EFFECTS ON TENSILE PROPERTIES OF HT-1 FIBERS BY IRRADIATION IN VARIOUS ENVIRONMENTS WITH 253.7 mm LIGHT(77)



FIGURE C-17. EFFECTS ON TENSILE PROPERTIES OF POLYBENZIMIDAZOLE FIBERS BY IRRADIATION IN VARIOUS ENVIRONMENTS WITH 253.7-mµ LIGHT(77)



FIGURE C-18. EFFECTS ON TENSILE PROPERTIES OF FIBERS OF THIAZOLE POLYMER BY IRRADIATION IN VARIOUS ATMOSPHERES WITH 253, 7-mµ LIGHT (77)

くいし



FIGURE C-19. RAD/ATION EFFECTS ON DUPONT "H" FILM $^{(13)}$ 



FIGURE C-20. COMPARISON OF BREAKDOWN VOLTAGE UNDER DIFFERENT TEST AMBIENTS FOR FILM-COATED WIRES⁽⁷⁸⁾



FIGURE C-21. COMPARISON OF BREAKDOWN VOLTAGE UNDER DIFFERENT TEST AMBIENTS FOR FIBROUS-COATED WIRES⁽⁷⁸⁾



WEIGHT LOSS OF POLYIMIDE IN VOCUUM AS A FUNCTION OF SPECIMEN TEMPERATURE, AMBIENT PRESSURE, 10-7 TO 10-8 MILLIMETER OF VERCURY(65) FIGURE C-22.





FIGURE C-23. COEFFICIENT OF FRICTION AND RIDER WEAR FOR VARIOUS MATERIAL COMBINATIONS IN VACUUM  $(10^{-9} \text{ mm Hg})$ 

Note: Sliding velocity, 390 feet per minute; load, 1000 grams; duration of run, 1 hour; no external specimen heating (65)



COEFFICIENT OF FRICTION AS A FUNCTION OF TIME FOR POLYIMIDE SLIDING ON POLYIMIDE AND ON 440-C STAINLESS STEEL IN VACUUM (10⁻⁹ mm Hg) FIGURE C-24.

Note: Sliding velocity, 390 feet per minut., load, 1000 grams; ambient pressure, 10-7 millimeter of mercury; no external specimen heating, (65)



FIGURE C-25. RADIATION EFFECTS ON MAGNOLIA FOAM(13)



FIGURE C-26. RADIATION EFFECTS ON MARFOAM(13)



FIGURE C-27. RADIATION EFFECTS ON SHEAR AND TENSILE STRENGTHS OF CPR20-3 FOAM(13)



FIGURE C-26. RADIATION EFFECTS ON COMPRESSIVE PROPERTIES OF CPR20-3 FOAM(13)



FIGURE C-29. EFFECTS OF GAMMA RADIATION ON VISCOSITY OF SILICONE FLUIDS (36)



FIGURE C-30. EFFECTS OF CAMMA RADIATION ON ELECTRICAL PROPERTIES OF SILICONE FIJUIDS(36)



FIGURE C-31. EFFECTS OF GAMMA RADIATION ON PENETRATION OF SILICONE COMPOUNDS  $^{(36)}$ 



FIGURE C-32. EFFECTS OF GAMMA RADIATION ON ELECTRICAL PROPERTIES OF SILICONE COMPOUNDS⁽³⁶⁾

•3



いとうなは地方を見れていることからいいのではからないからないのかのからないのではないであるというといろい

FIGURE C-33. EFFECTS OF GAMMA RADIATION ON PHYSICAL PROPERTIES OF SILASTIC 1602⁽³⁶⁾



FIGURE C-34. EFFECTS OF GAMMA RADIATION ON ELECTRICAL PROPERTIES OF SILASTIC  $1602(^{36})$ 



FIGURE C-35. EFFECTS OF GAMMA RADIATION ON BOND STRENGTH OF DOW CORNING 980 VARNISH(36)



FIGURE C-36. EFFECTS OF GAMMA RADIATION ON ELECTRIC STRENGTH OF DOW CORNING 980 VARNISH⁽³⁶⁾



FIGURE C-37. EFFECTS OF GAMMA RADIATION ON ELECTRICAL PROPERTIES OF SYLGARD 182⁽⁵⁶⁾

## LIST OF AVAILABLE REIC PUBLICATIONS

#### Radiation Effects Information Center Batteile Memorial Institute Columbra, Ohio 43201

Requests for unclassified information or unclassified REIC published reports and memoranda should be sent:

Radiation Effects Information Certer Pattelle Memoriai Institute 505 King Avenue Columbus, Ohio 43201 Attention E. N. Wyler



### **Unclassified Reports**

Report Number	Title		
1	The Effect of Nuclear Radiation of Semiconfluctor Materials (December 20, 1957), AD 147399		
1 (First Addendum)	The Effect of Nuclear Radiation on Semiconductor Materials (March 31, 1959), AD 210758		
<b>•</b> 8	A Survey of Current Research and Developments in the Field of Dosimetry (May 31, 1958). 😙 157173		
6 (First 1996 - 40 m)	A Survey of Current Research and Developments in the Field of Dosimetry (March 31, 1973 AD 210766		
10	The Effect of Nuclear Radiation on Semiconductor Devices (April 20, 1980), AD 240433 (Supersedes Memos Nos. 4, 5, 6)		
10 (First Adder.Jum)	The Effect of Nuclear Radiation on Semiconductor Devices (July 16, 1961), AD 262081		
16	Survey of Irradiation Facilities (February 28, 1961), AD 256953		
17	The Effect of Nuclear Radiation on Structural Adhesives (March 1, 1961), AD 258954 (Supersedes Reports Nos. 7 and .1)		
18	The Effect of Nuclear Radiation on Electronic Components (June 1, 1981), AD 280303 (Supersedes Peports Not. 8, 12, 14, and 15 and Memos Nos. 2, 7, 12, 14, and 20)		
19	The Effect of Nuclear Radiation on Lubricants and Hydraulic Fluids (May 31, 1981), AD 281278 (Supersades Report No. 4)		
20	The Effect of Nuclear Radiation on Structural Metals (September 15, 1961), AD 285839 (Supersedes Report No. 5)		
21	The Effect of Nuclear Radiation on Elastomeric and Plastic Components and Materials (September 1, 1981) AD 287880 (Supersedes Reports Nos. 3, 9, and 13 and Memos Nos. 1, 3, 8, 13, and 17)		
23	Proton and Election Damage to Soisr Cells (April 1, 1982)		
21	Radiation Effects Strte of the Art 1961-1962 (June 30, 1962), NASA N62-16454		
25	The Effect of Nuclear Radiation on Transducers (April 19, 1963)		

Out of Print in REIC: Available only from DDC, Defense Documentation Center. Cameron Station, Alexandria, Virginia (Name changed from ASTIA, Armed Services Technical Information Agency).

## Unclassified Reports

Report Number	Title		
26	Transient Radiation Effects on Electronic Components and Semiconductor Devices (April 19, 1963)		
2?	The Effect of Nuclear Rediation on Geranno Fonctor-Fuel Materie's (June 30, 1983)		
28	Radiation-Effects State of the Art 1962-1963 (June 30, 1963)		
29	Effect of Nuclear Radiation on Metallic Fuel Materials (September 30, 1963)		
30	Effect of Nuclear Radiation at Cryogenic Temperature on Semiconductor Materials (September 30, 1963)		
91	Part I. A Survey of Irradiation Facilities (September 30, 1963)		
	Part II. A Survey of Particle Accelerators (September 30, 1963)		
32	Space Radiation Damage to Electronic Components and Materials (September 30, 1983)		
33	Survey of Current Research and Developments in the Field of Dosimetry (September 30, 1963)		

# Classified Reports



## Unclassified Memoranda

Memorandum Number	Title	
<b>◆</b> 9	The Effect of Nuclear Radiation on Glass (November 30, 1958) AD 207701	
10	Format for Reporting Radiation Effects Data (May 15, 1950) AP 218251	
911	The Effect of Nuclear Radiation on Hydrocatoon Fuels (November 30, 1958) AD 207702	

Out of Print in REIC: Available only from DDC, Defense Documentation Center, Cameron Station, Alexandría, Virginia (Name changed from ASTIA, Armed Services Technical Information Agency).

## Unclassified Memetan

Memorandum Number Title			
<b>*1</b> 5	The Effect of Nuclear Radiation on Hoses and Couplings (March 31, 1959) AD 225504		
*16	The Effect of Nuclear Radiation on Refrigerants (Julie 30, 1989) AD 210010		
*18	The Effect of Nuclear Radiation on the Performance of a Hydraulic Flight Control System (June 15, 1959) AD 219512		
21	Space Radiation and Its Effects on Materials (June 30, 1961)		
23	Radiation Dosimetij: An Annotated Bibliography (September 15, 1981)		
24	A Selected Billing aphy of Pulsed Radiation Effects (June 1. 1963)		
25	The Beneficial Uses of Radiation Effects		

## Classified Memoranda



^{*}Out of Print in REIC: Available only from DDC, Defense Documentation Center, Cameron Station, Alexandria, Virginia (Name changed from ASTIA, Armed Services Technical Information Agency)

Security Classification				
	NTROL DATA - R8			
Security -lessification of title body of abstract and index	lug annotation must be o			
1 ORIGINATING ACTIVITY (Corporate author) Radiation Effects Information Center			Unclassified	
Exttelle Memorial Institute	•	SE CHOUS	•	
Columbus, Ohio 43201		Ц		
3. REPORT TITLE  The Effect of Nuclear Radiation on	Flastomeric a	nd Dlage	is Components	
and Materials	Liastomeric a	uu r last	re components	
4. DESCRIPTIVE NOTES #Type of report and inclusive dates)	<del></del>		······································	
State-of-the-Art 1961-1964				
5. AUTHOR(S) (Last name, first name, Initial)				
Broadway, Norman J. and Palincha	ak, Stephen	•		
6. REPORT DATE	74. TOTAL NO. OF F	ACES	7b. NO. OF REFS	
August 31, 1964			81 ?	
Sa. CONTRACT OR GRANT NO.	9. ORIGINATOR'S R	EPORT NUM	BER(S)	
AF 33(615)-1124	1			
& PROJECT NO.	PEIC Panor	+ Nio 21	(Addendum)	
BPSN Nr. 64-6899 7381 738103	l			
64-6399 7634	96. OTHER REPORT	NC(S) (Any	other numbers that may be assi ed	
d		•		
10. A VAIL ABILITY/LIMITATION NOTICES	·		· · · · · · · · · · · · · · · · · · ·	
Defense Documentation Center and	~			
The sort Lam Tinge Hotes	12. SPONSORING MILITARY ACTIVITY			
	USAF, Research and Technology Division and NASA			
13. ABSTRACT	<u></u>		<del></del>	
This report is an addendum to of the art of the effects of nuclear r ponents and waterials from 1961 to	adiation on ela			
The mechanism of radiation denvironments are briefly discussed information on specific components plastics are presented in detail. A indicated. Radiation polymerization report.	. Data summa and on the var reas in which s	rizing tl ious typ dditions	he radiation-effects es of elastomers and il work is needed are	
The report is intended to be s reference guide relative to radiation temperature and vacuum on elastom	n effects under	varying	conditions of	
			•	