(Q11)

Proof. Let S be a basis for $W_1 \cap W_2$, where $S = \{u_1, u_2, \dots u_r\}$ and $\dim(W_1 \cap W_2) = r$. Let B_1 be a basis of W_1 and B_2 be a basis of W_2 . By the Replacement Theorem, since $(W_1 \cap W_2) \subseteq W_1$ and $\subseteq W_2$, we can express B_1 and B_2 as follows:

$$B_1 = \{u_1, u_2, \dots, v_1, \dots v_s\} \implies \dim W_1 = r + s$$

 $B_2 = \{u_1, u_2, \dots, w_1, \dots w_t\} \implies \dim W_2 = r + t$

Let $B = B_1 \cup B_2$. Then

$$B = \{u_1, u_2, \dots v_1, \dots v_s, w_1, \dots w_t\}$$

Since $|B| = (r+s) + (r+t) - r = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_0)$, it now remains to prove that B is a basis for V.

To show linear independence, let

$$\sum_{i=1}^{r} a_i u_i + \sum_{j=1}^{s} b_j v_j + \sum_{k=1}^{t} c_k w_k = 0$$

Since u_i and v_j form B_1 we can conclude that $a, b = 0 \ \forall i, j$.

Similarly, since u_i, w_k for B_2 , we can conclude the same for $b, c \ \forall i, j$.

We now prove that B spans $W_1 + W_2$. Let $w \in (W_1 + W_2)$. Then $w = w_1 + w_2$ where $w_1 \in W_1, w_2 \in W_2$.

Then

$$w_{1} = \sum_{i=1}^{r} p_{i}u_{i} + \sum_{j=1}^{s} q_{j}v_{j}$$

$$w_{2} = \sum_{i=1}^{r} g_{i}u_{i} + \sum_{k=1}^{t} h_{k}w_{k}$$

$$w = \sum_{i=1}^{r} (p_{i} + g_{i})u_{i} + \sum_{j=1}^{s} q_{j}v_{j} + \sum_{k=1}^{t} h_{k}w_{k}$$

Which is in span B.