1983 FG7.3 2010 FI3.2

若 $a+\frac{1}{a}=3$, 求 $a^3+\frac{1}{a^3}$ 的值。Given that $a+\frac{1}{a}=3$. Evaluate $a^3+\frac{1}{a^3}$. 若 $x+\frac{1}{x}=8$, 求 $x^3+\frac{1}{x^3}$ 的值。If $x+\frac{1}{x}=8$, find the value of $x^3+\frac{1}{x^3}$.

1984 FG10.2 1998 HG1

若
$$a + \frac{1}{a} = 2$$
,及 $S = a^3 + \frac{1}{a^3}$,求 S 的值。

If $a + \frac{1}{a} = 2$, and $S = a^3 + \frac{1}{a^3}$, find the value of S.

1985 FI1.2 1990 HI12

若
$$\left(r+\frac{1}{r}\right)^2=3$$
 且 $r^3+\frac{1}{r^3}=b$, 求 b 的 值 。

If $\left(r + \frac{1}{r}\right)^2 = 3$ and $r^3 + \frac{1}{r^3} = b$, find the value of b.

1987 FG8.2

若
$$x + \frac{1}{x} = 4$$
,且 $x^3 + \frac{1}{x^3} = B$,求 B 的值。

If $x + \frac{1}{x} = 4$, and $x^3 + \frac{1}{x^3} = B$, find the value of B.

1989 HI1 1997 HG7

已知
$$x + \frac{1}{x} = 3$$
 , 求 $x^2 + \frac{1}{x^2}$ 的值。

Given that $x + \frac{1}{r} = 3$, find the value of $x^2 + \frac{1}{r^2}$.

1989 FI4.2

$$k$$
 是實數,且 $k^4 + \frac{1}{k^4} = 14$,設 $s = k^2 + \frac{1}{k^2}$ 。求 s 的值。

k is a real number such that $k^4 + \frac{1}{L^4} = 14$, and $s = k^2 + \frac{1}{L^2}$. Find the value of s.

1990 FI2.2 2009 FI2.3

若
$$x-\frac{1}{x}=3$$
,且 $x^3-\frac{1}{x^3}=q$,求 q 的值。

If $x - \frac{1}{x} = 3$ and $x^3 - \frac{1}{x^3} = q$, find the value of q.

1991 HI3 2018 FI1.4

1991 FI4.1

已知
$$x - \frac{1}{x} = 3$$
。若 $a = x^2 + \frac{1}{x^2}$,求 a 的值。

Given $x - \frac{1}{x} = 3$. If $a = x^2 + \frac{1}{x^2}$, find the value of a.

1992 FI4.3 2011 FIS.4

已知
$$x + \frac{1}{x} = 6 \circ 若 C = x^3 + \frac{1}{x^3}$$
 , 求 C 的值。

Given $x + \frac{1}{x} = 6$. If $C = x^3 + \frac{1}{x^3}$, find the value of C.

1996 FI1.2 1998 FG5.2

若
$$5^x + 5^{-x} = 3$$
 和 $5^{3x} + 5^{-3x} = b$ 求 b 的值。

If $5^x + 5^{-x} = 3$ and $5^{3x} + 5^{-3x} = b$, find the value of b.

1997 FI4.4

若
$$x + \frac{1}{x} = 8$$
 和 $x^2 + \frac{1}{x^2} = d$,求 d 的值。

If $x + \frac{1}{x} = 8$ and $x^2 + \frac{1}{x^2} = d$, find the value of d.

1998 FG3.2

已知
$$x + \frac{1}{x} = \sqrt{2}$$
, $\frac{x^2}{x^4 + x^2 + 1} = b$, 求 b 的值。

Given that $x + \frac{1}{x} = \sqrt{2}$, $\frac{x^2}{x^4 + x^2 + 1} = b$, find the value of b.

1999 FG2.1

若
$$a = x^4 + x^{-4}$$
 及 $x^2 + x + 1 = 0$, 求 a 之值。

If $a = x^4 + x^{-4}$ and $x^2 + x + 1 = 0$, find the value of a.

2000 FI3.2

已知
$$x + \frac{1}{x} = 1$$
 。如果 $x^6 + \frac{1}{x^6} = Q$,求 Q 的值。

Given that $x + \frac{1}{x} = 1$. If $x^6 + \frac{1}{x^6} = Q$, find the value of Q.

 $x + \frac{1}{x}$ (HKMO Classified Questions by topics)

2002 HI10

已知
$$f\left(x+\frac{1}{x}\right)=x^2+\frac{1}{x^2}$$
 , 求 $f(5)$ 的值。

Given $f\left(x+\frac{1}{x}\right)=x^2+\frac{1}{x^2}$, find the value of f(5).

2002 FI3.2

已知
$$6(4^x + 4^{-x}) - 35(2^x + 2^{-x}) + 62 = 0$$
。

若 Q 是此方程的正整數解,求 Q 的值。

If Q is the positive integral solution of the equation

 $6(4^x + 4^{-x}) - 35(2^x + 2^{-x}) + 62 = 0$, find the value of Q.

2002 FG2.2

已知
$$f\left(x+\frac{1}{x}\right)=x^3+\frac{1}{x^3}$$
。若 $f(4)=b$,求 b 的值。

Given that $f\left(x+\frac{1}{x}\right)=x^3+\frac{1}{x^3}$ and f(4)=b, find the value of b.

2003 HG2

若
$$x > 1$$
 , $y > 0$, 且 $x^{y} + x^{-y} = 2\sqrt{2}$ 及 $x^{y} - x^{-y} = k$, 求 k 的值。

Suppose $x^{y} + x^{-y} = 2\sqrt{2}$ and $x^{y} - x^{-y} = k$, where x > 1 and y > 0, find the value of k. **2003 FG3.2**

若
$$x^{\frac{1}{2}} + x^{-\frac{1}{2}} = 3$$
, $b = \frac{x^{\frac{3}{2}} + x^{-\frac{3}{2}} - 3}{x^2 + x^{-2} - 2}$,求 b 的值。

Suppose $x^{\frac{1}{2}} + x^{-\frac{1}{2}} = 3$, $b = \frac{x^{\frac{3}{2}} + x^{-\frac{3}{2}} - 3}{x^2 + x^{-2} - 2}$, find the value of b.

2005 FG1.4

設
$$r$$
和 s 是方程 $2\left(x^2 + \frac{1}{x^2}\right) - 3\left(x + \frac{1}{x}\right) = 1$ 的兩個不同的實數根。

若 d=r+s , 求 d 的值。

Let r and s be the two distinct real roots of the equation

$$2\left(x^2 + \frac{1}{x^2}\right) - 3\left(x + \frac{1}{x}\right) = 1$$
. If $d = r + s$, find the value of d .

2008 FGS.2

若
$$x - \frac{1}{x} = \sqrt{2007}$$
 ,求 $x^4 + \frac{1}{x^4}$ 的值 。 If $x - \frac{1}{x} = \sqrt{2007}$, find the value of $x^4 + \frac{1}{x^4}$.

2015 FG4.3

若 $x + \frac{1}{x} = 1$,求 $x^5 + \frac{1}{x^5}$ 的值。If $x + \frac{1}{x} = 1$, determine the value of $x^5 + \frac{1}{x^5}$.

2017 HI12

已知
$$\frac{x}{x^2-5x+1} = \frac{1}{2}$$
 , 求 $\frac{x^2}{x^4-5x^2+1}$ 的值。

Given $\frac{x}{x^2 - 5x + 1} = \frac{1}{2}$, find the value of $\frac{x^2}{x^4 - 5x^2 + 1}$.

2017 FI1.4

若正實數
$$x$$
 满足方程 $x^2 + \frac{1}{x^2} = 7$,求 $d = x^3 + \frac{1}{x^3}$ 。

If a positive real number x satisfies $x^2 + \frac{1}{x^2} = 7$,

determine the value of $d = x^3 + \frac{1}{x^3}$.

2017 FG1.4

若實數
$$x$$
 滿足 $x-\frac{1}{x}=3$, 求 $d=x^5-\frac{1}{x^5}$ 的值。

If a real number x satisfies $x - \frac{1}{x} = 3$, determine the value of $d = x^5 - \frac{1}{x^5}$.

2022 P1Q10

已知
$$a^2 + \frac{1}{a^2} = 7$$
 , 其中 $a > 0$ 。若 $b = a^5 + \frac{1}{a^5}$, 求 b 的值。

Given that $a^2 + \frac{1}{a^2} = 7$, where a > 0. If $b = a^5 + \frac{1}{a^5}$, find the value of b.

2023 HI4

設
$$a$$
 為一正實數。若 $a^2 + \frac{1}{a^2} = 14$,求 $a^3 + \frac{1}{a^3}$ 的值。

Let a be a positive real number. If $a^2 + \frac{1}{a^2} = 14$, find the value of $a^3 + \frac{1}{a^3}$.

Answer

TAIISVICI				
1983 FG7.3 2010 FI3.2 18	1984FG10.2 1998HG10.1 2	1985FI1.2 1990HI12 О	1987 FG8.2 52	1989HI1 1997HG7 7
1989 FI4.2 4	1990 FI2.2 2009 FI2.3 36	1991 HI3 2018 FI1.4 488	1991 FI4.1 11	1992 FI4.3 2011 FIS.4 198
1996FI1.2 1998FG5.2 18	1997 FI4.4 62	1998 FG3.2 1	1999 FG2.1 -1	2000 FI3.2 2
2002 HI10 23	2002 FI3.2 1	2002 FG2.2 52	2003 HG2 2	$\begin{array}{c c} 2003 \text{ FG3.2} \\ \frac{1}{3} \end{array}$
$ \begin{array}{c c} 2005 \text{ FG1.4} \\ & \frac{5}{2} \end{array} $	2008 FGS.2 4036079	2015 FG4.3 1	$\frac{2017 \text{ HI12}}{\frac{1}{42}}$	2017 FI1.4 18
2017 FG1.4 393	2022 P1Q10 123	2023 HI4 52		