CS2100 - L16 - Boolean Algebra

Wee K 9 + 10

16.1 - Basic boolean operations

16.2 - Basic laws

16.3 - Basic theorems

16.4 - Duality

16.5 - Boolean functions

- Complement of functions
 - 2-variable boolean functions

Three Basic Boolean Operations

- Operator Precedence: NOT > AND > OR
- Example of boolean expressions:
 - \Box A + \sim B . C = A + ((\sim B) . C)

[L16 - AY2021S1]

Boolean Algebra Laws

Identity laws				
A + 0 = 0 + A = A	$A \cdot 1 = 1 \cdot A = A$			
Inverse/complement laws				
A + A' = 1	$A \cdot A' = 0$			
Commutative laws				
$A \cdot B = B \cdot A$	A + B = B + A			
Associative laws				
A + (B + C) = (A + B) + C	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$			

Distributive laws

$$A \cdot (B + C) = (A \cdot B) + (A \cdot C) | A + (B \cdot C) = (A + B) \cdot (A + C)$$

[L16 - AY2021S1]

Idempotency			
X + X = X	$X \cdot X = X$		
Zero and One elements			
X + 1 = 1	X · Ø = Ø		
Involution			
(X')' = X			
Absorption			
$X + X \cdot Y = X$	$X \cdot (X + Y) = X$		
Absorption (variant)			
$X + X' \cdot Y = X + Y$	$X \cdot (X' + Y) = X \cdot Y$		

Duality

 If the AND/OR operators and identity elements 0/1 in a Boolean equation are interchanged, it remains valid.

$$a + (b \cdot c) = (a + b) \cdot (a + c)$$

$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$$

- Two-for-one: If you prove one theorem, its dual form is also true!
 - e.g.

$$(x + y + z)' = x' \cdot y' \cdot z'$$
 $(x \cdot y \cdot z)' = x' + y' + z'$
 $x \cdot 1 = x$

[L16 - AY2021S1]

E1(x x 7) - xxx7'

Boolean Functions (Logic Equations)

- Function of the form $f = B^k \to B$
 - Input (i.e. Domain): k number of Boolean variables
 - Output (i.e. Range): Boolean value

F1(X, y, 2) - X·y·2
$\boxed{F2(x,y,z) = x + y' \cdot z}$
$F3(x,y,z)$ = $x'\cdot y'\cdot z + x'\cdot y\cdot z + x\cdot y'$
$F4(x,y,z) = x \cdot y' + x' \cdot z$

x	У	z	F1	F2	F3	F4
0	0	0	0	0	0	0
0	0	1	0	T	ı	T.
0	1	0	0	0	0	0
0	1	1	0	0	1	1
1	0	0	0	1	1	- 1
1	0	1	0	- 1	- 1	(
1	1	0	1	J	0	0
1	1	1	0	1	υ	0

From the truth table, F3 = F4

Try to prove F3 = F4 by using Boolean Algebra?

[L16 - AY2021S1]

Complement of Function

- F', the complement function of F
 - Obtained by interchanging 1 with 0 in the function's output values
- E.g.: $f1(x,y,z) = x\cdot y\cdot z'$
- What is F1'?

F1'	
= (x·y·z')'	
= x' + y' + (z')'	(DeMorgan's)
= (x·y·z')' = x' + y' + (z')' = x' + y' + z	(Involution)

x	у	z	F1	F1'
0	0	0	0	1
0	0	1	0	- 1
0	1	0	0	1
0	1	1	0	ı
1	0	0	0	1
1	0	1	0	- (
1	1	0	1	0
1	1	1	0	1