A weighted string is a string of lowercase English letters where each letter has a *weight*. Character weights are $\bf 1$ to $\bf 26$ from $\bf a$ to $\bf z$ as shown below:

a	1					8
b	2		k	11	S	19
С	3		T ₁	12	t	20
d	4		m	13	u	21
е	5		n	14	V	22
f	6		o	15	w	23
g	7		р	16	х	24
h	8		q	17	у	25
i	9		r	18	z	26
j	10	'				

We define the following terms:

• The *weight of a string* is the sum of the weights of all the string's characters. For example:

apple	1 + 16 + 16 + 12 + 5 = 50			
hack	8 + 1 + 3 + 11 = 23			
watch	23 + 1 + 20 + 3 + 8 = 53			
ccccc	3+3+3+3+3=15			
aaa	1 + 1 + 1 = 3			
ZZZZ	26 + 26 + 26 + 26 = 104			

• A *uniform string* consists of a single character repeated zero or more times. For example, ccc and a are uniform strings, but bcb and cd are not.

Given a string, s, let U be the set of weights for all possible uniform contiguous <u>substrings</u> of string s. You have to answer n queries, where each query i consists of a single integer, x[i]. For each query, print Yes on a new line if $x[i] \in U$; otherwise, print No instead.

Note: The \in symbol denotes that $\pmb{x}[\pmb{i}]$ is an <u>element of</u> set \pmb{U} .

Function Description

Complete the *weightedUniformStrings* function in the editor below. It should return an array of strings, either Yes or No, one for each query.

weightedUniformStrings has the following parameter(s):

- *s*: a string
- queries: an array of integers

Input Format

The first line contains a string \boldsymbol{s} , the original string.

The second line contains an integer n, the number of queries.

Each of the next n lines contains an integer x[i], the weight of a uniform subtring of s that may or may not exist.

Constraints

• $1 \le |s|, n \le 10^5$

- $1 \leq x[i] \leq 10^7$
- s will only contain lowercase English letters, ascii[a-z].

Output Format

Print n lines. For each query, print Yes on a new line if $x[i] \in U$. Otherwise, print No.

Sample Input 0

Sample Output 0

Yes Yes Yes Yes No

Explanation 0

The weights of every possible *uniform substring* in the string abccddde are shown below:

We print Yes on the first four lines because the first four queries match weights of uniform substrings of \boldsymbol{s} . We print No for the last two queries because there are no uniform substrings in \boldsymbol{s} that have those weights.

Note that while de is a substring of \boldsymbol{s} that would have a weight of $\boldsymbol{9}$, it is not a uniform substring.

Note that we are only dealing with contiguous substrings. So ccc is not a substring of the string ccxxc.

Sample Input 1

Sample Output 1

Yes No Yes Yes No