WHAT IS CLAIMED IS:

3	1.	A method for hydroprocessing a hydrocarbon feedstock, said method
4	•	employing multiple hydroprocessing zones within a single reaction loop
5		each zone having one or more catalyst beds, comprising the following
6		steps:

- (a) passing a hydrocarbonaceous feedstock to a first hydroprocessing zone having one or more beds containing hydroprocessing catalyst, the hydroprocessing zone being maintained at hydroprocessing conditions, wherein the feedstock is contacted with catalyst and hydrogen;
- (b) passing the effluent of step (a) directly to a hot high pressure separator, wherein the effluent is contacted with a hot, hydrogenrich stripping gas to produce a vapor stream comprising hydrogen, hydrocarbonaceous compounds boiling at a temperature below the boiling range of the hydrocarbonaceous feedstock, hydrogen sulfide and ammonia and a liquid stream comprising hydrocarbonaceous compounds boiling approximately in the range of said hydrocarbonaceous feedstock;
- (c) passing the vapor stream of step (b) after cooling and partial condensation, to a hot hydrogen stripper containing at least one bed of hydrotreating catalyst, where it is contacted countercurrently with hydrogen, while the liquid stream of step (b) is passed to fractionation;
- (d) passing the overhead vapor stream from the hot hydrogen stripper/reactor of step (c), after cooling and contact with water, the overhead vapor stream comprising hydrogen, ammonia, and hydrogen sulfide, along with light gases and naphtha to a cold high pressure separator, where hydrogen, hydrogen sulfide, and light

1			hydrocarbonaceous gases are removed overhead, ammonia is
2			removed from the cold high pressure separator as ammonium
3			bisulfide in the sour water stripper, and naphtha and middle
4			distillates are passed to fractionation;
5			
6		(e)	passing the liquid stream from the hot hydrogen stripper/reactor of
7			step (c) to a second hydroprocessing zone, the second
8			hydroprocessing zone containing at least one bed of
9			hydroprocessing catalyst suitable for aromatic saturation and ring
10			opening, wherein the liquid is contacted under hydroprocessing
11			conditions with the hydroprocessing catalyst, in the presence of
12			hydrogen;
13			
14		(f)	passing the overhead from the cold high pressure separator of
15			step (d) to an absorber, where hydrogen sulfide is removed before
16			hydrogen is compressed and recycled to hydroprocessing vessels
17			within the loop; and
18			
19		(g)	passing the effluent of step (e) to the cold high pressure separator
20			of step (d).
21			
22	2.	The p	process of claim 1, wherein the hydroprocessing conditions of
23		step 1	1(a) comprise a reaction temperature of from 400°F-950°F
24		(204°	C-510°C), a reaction pressure in the range from 500 to 5000 psig
25		(3.5-3	34.5 MPa), an LHSV in the range from 0.1 to 15 hr ⁻¹ (v/v), and
26		hydro	gen consumption in the range from 500 to 2500 scf per barrel of
27		liquid	hydrocarbon feed (89.1-445 m ³ H ₂ /m ³ feed).
28			
29	3.	The p	rocess of claim 2, wherein the hydroprocessing conditions of
30			(a) preferably comprise a temperature in the range from
31		650°F	-850°F (343°C-454°C), reaction pressure in the range from
32		1500-	3500 psig (10.4-24.2 MPa), LHSV in the range from 0.25 to

1		2.5 hr ⁻¹ , and hydrogen consumption in the range from 500 to 2500 scf
2 .	. •	per barrel of liquid hydrocarbon feed (89.1-445 m ³ H ₂ /m ³ feed).
3		
4	4.	The process of claim 1, wherein the hydroprocessing conditions of
5		step 1(e) comprise a reaction temperature of from 400°F-950°F
6		(204°C-510°C), a reaction pressure in the range from 500 to 5000 psig
7		(3.5-34.5 MPa), an LHSV in the range from 0.1 to 15 hr ⁻¹ (v/v), and
8		hydrogen consumption in the range from 500 to 2500 scf per barrel of
9		liquid hydrocarbon feed (89.1-445 m³ H₂/m³ feed).
10		
11	5.	The process of claim 4, wherein the hydroprocessing conditions of
12		step 1(e) preferably comprise a temperature in the range from
13		650°F-850°F (343°C-454°C), reaction pressure in the range from
14		1500-3500 psig (10.4-24.2 MPa), LHSV in the range from 0.25 to
15		2.5 hr ⁻¹ , and hydrogen consumption in the range from 500 to 2500 scf
16		per barrel of liquid hydrocarbon feed (89.1-445 m ³ H ₂ /m ³ feed).
17		
18	6.	The process of claim 1, wherein the feed to step 1(a) comprises
19		hydrocarbons boiling in the range from 500°F to 1500°F.
20	1	
21	8.	The process of claim 1, wherein the feed is selected from the group
22		consisting of vacuum gas oil, heavy atmospheric gas oil, delayed coker
23		gas oil, visbreaker gas oil, FCC light cycle oil, and deasphalted oil.
24	Y	
25	9 .	The process of claim 1, wherein the cetane number improvement
26		occurring in step 1(e) ranges from 2 to 15.
27	•	
28	10.	The process of claim 1, wherein the hydroprocessing catalyst comprises
29		both a cracking component and a hydrogenation component.
	10	٩
30	Ň.	The process of claim 10, wherein the hydrogenation component is
31		selected from the group consisting of Ni, Mo, W, Pt and Pd or
32		combinations thereof.

