

Programa de Pós-Graduação em Engenharia Aeronáutica e Mecânica

Prova de Seleção para Bolsas – 2º semestre de 2013

19 de agosto de 2013

Nome do Candidato

Observações

- 1. Duração da prova: 90 minutos (uma hora e meia)
- 2. Não é permitido o uso de calculadora
- 3. Cada pergunta admite uma única resposta
- 4. Marque a alternativa que considerar correta na tabela abaixo
- 5. Utilize o verso das folhas para a resolução das questões

Questão	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16
Resp.																

Questões em Português

- 1. São dados um octaedro e um tetraedro regulares, ambos com aresta l. Neste caso, razão entre seus volumes será.
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 4
 - (e) 8

Figura 1: Tabuleiro do jogo de xadrez com o rei e seus deslocamentos possíveis em um único movimento.

- 2. No jogo de xadrez, o rei é uma peça que anda uma casa a cada movimento, podendo fazê-lo nas direções horizontal, vertical ou diagonal, conforme mostra a figura 1. Um passeio aleatório consiste em se fazer movimentos randômicos consecutivos da peça, com igual probabilidade para cada direção possível. Considerando a posição inicial indicada na figura, qual a probabilidade do rei voltar para sua posição inicial após 3 movimentos?
 - (a) $\frac{1}{64}$
 - (b) $\frac{1}{32}$
 - (c) $\frac{3}{64}$
 - (d) $\frac{1}{16}$
 - (e) $\frac{5}{64}$
- 3. Na Figura 2, IA, BH, CG e DF são paralelas entre si, assim como BI, CH, DG e EF. Os triângulos ABI e BHI são retângulos e $\angle AIB = 30^{\circ}$. Se AI = 1, quanto vale AI + BH + CG + DF?
 - (a) $\frac{37}{16}$
 - (b) $\frac{175}{64}$
 - (c) $\frac{5}{2}$
 - (d) 3
 - (e) 4

Figura 2: Quatro triângulos retângulos

- 4. A Figura 3 mostra o triângulo ABC, seu círculo inscrito com centro I e seu círculo exinscrito com ponto de tangência D. Dados apenas a área e o perímetro do triângulo ABC, assinale qual grandeza $n\tilde{ao}$ pode ser calculada:
 - (a) Área do triângulo DIC
 - (b) Perímetro do triângulo DIC
 - (c) Raio do círculo inscrito
 - (d) Comprimento DC
 - (e) Podem-se calcular todos os itens anteriores

Figura 3: Triângulo com círculos inscritio e exinscrito

- 5. Um corpo sofre um lançamento oblíquo no ar, onde o atrito é considerado desprezível, enquanto a aceleração da gravidade é $g = 10 \text{ m/s}^2$. Ele cai seis segundos depois, a 240 m do ponto de lançamento. O módulo de sua velocidade inicial é:
 - (a) 50 m/s
 - (b) 120 m/s
 - (c) 130 m/s
 - (d) 150 m/s
 - (e) 170 m/s
- 6. Sejam A e B definidos por

$$A = \lim_{x \to 0} g(x), \quad \text{onde} \quad g(x) = \begin{cases} x, \text{ se } x \in \mathbb{Q} \\ 0, \text{ se } x \notin \mathbb{Q} \end{cases}$$
$$B = \lim_{x \to 0} f(x), \quad \text{onde} \quad f(x) = \sin\left(\frac{1}{x}\right).$$

3

Pode-se afirmar então que

- (a) A = B = 0
- (b) A = 0, B é indefinido
- (c) B = 0, A é indefinido
- (d) A e B são indefinidos
- (e) A = 1 e B = 0

- 7. Colocam-se em uma panela cheia e fechada e isolada três resistências elétricas, que fazem ferver a água contida nesta panela. Duas das resistências são iguais, e quando uma destas está ligada, a panela cheia ferve em 14 minutos. Quando somente a terceira resistência está ligada, a mesma panela cheia ferve em 21 minutos. Assim, quando as três resistências estão ligadas, a panela cheia deve ferver em:
 - (a) 5 minutos
 - (b) 5 minutos e 15 segundos
 - (c) 5 minutos e 30 segundos
 - (d) 5 mintuos e 45 segundos
 - (e) 6 minutos
- 8. As soluções do sistema de equações

$$\begin{cases} \frac{1}{x} + \frac{1}{y} = \frac{5}{6} \\ x \cdot y = 6 \end{cases}$$

são

- (a) 1, -6
- (b) -1, 6
- (c) 2, 3
- (d) -2, 3
- (e) 2, -3

Questões em Inglês

- 9. Figure 4 shows two circles with centers in C and E, tangent to each other in D. This figure also show line AG, tangent to the circles in I and G and a line DH tangent to the circles. Mark the wrong choice, i.e., the choice that is not valid for any two tangent circles:
 - (a) Quadrilateral DEGH is cyclic (i.e., there is always a circle that passes through its vertices).
 - (b) H is always the midpoint of GI.
 - (c) I is always the midpoint of AG
 - (d) $AB \cdot AF = AD^2$
 - (e) $AI \cdot AG = AD^2$

Figure 4: Tangent Circles

10. If the value of the expression

$$\frac{u}{v}\frac{x}{y+3}$$

is doubled by halving exactly one of the four variables, which variable should be halved?

- (a) u
- (b) v
- (c) x
- (d) y
- (e) It is not possible to solve this problem.
- 11. The indefinite integral

$$\int \frac{1}{x^2 - 1} \mathrm{d}x$$

is calculated as

- (a) $\arctan(x)$
- (b) $\frac{x}{\frac{x^3}{3} x}$
- (c) $\ln \sqrt{\frac{x-1}{x+1}}$
- (d) $\ln(x^2 1)$
- (e) $-\frac{1}{x^2-1}$
- 12. Each of the even-numbered terms in a certain sequence are formed by multiplying the preceding term by -1. Each of the odd-numbered terms in the sequence are formed by adding 3 to the preceding term. If the first term in the sequence is 3, then what is the 167^{th} term?
 - (a) -3
 - (b) -1
 - (c) 0
 - (d) 1
 - (e) 3

- 13. Ten men and five women are to be disposed in a queue. If they will arrive in any order, what is the probability that the women stay together, with no man between them?
 - (a) $\frac{5!}{15!}$
 - (b) $\frac{10!}{15!}$
 - (c) $\frac{5! \, 10!}{15!}$
 - (d) $\frac{5! \, 10! \, 10}{15!}$
 - (e) $\frac{5! \, 11!}{15!}$
- 14. The intersection point of the lines drawn in Figure 5 is
 - (a) (10, 9)
 - (b) (9, 10)
 - (c) (8,9)
 - (d) (9,8)
 - (e) It is not possible to determine this intersection (data are insuficient)

Figure 5: Intersection between two lines (drawing not in scale)

- 15. If $\frac{3+p}{2q} = 1$, which of the following could be true?
 - (a) p = -1 and q = 1
 - (b) p = -1 and $q = \frac{1}{2}$
 - (c) p = 1 and q = 0
 - (d) p = 0 and q = 1
 - (e) p = 0 and q = 0
- 16. For positive integers n, which of the following could not be the units digit of 7^n ?
 - (a) 1
 - (b) 3
 - (c) 5
 - (d) 7
 - (e) All of them could be the units digit of 7^n