C_D estimation using SI-PINN with multi-frequency sampled data and comparison with Least-Squares

November 26, 2023

Governing Equation

$$\frac{dV}{dt} = -\frac{\bar{q}S}{m}C_D + \frac{T}{m}cos(\alpha) + gsin(\alpha - \theta)$$

$$\frac{dV}{dt} = f(V, \alpha, \theta, C_D)$$

$$C_D = C_{D_0} + C_{D_\alpha} \alpha + C_{D_{\delta_e}} \delta_e$$

Model Schematic

Key Points

MSE loss function is used.

- lacktriangle synthetic data is generated by using smoothed $\delta_{
 m e}$
- V data is sampled at 6.3 Hz (93 points/14.78s) and other state variables at 12.5 Hz (185 points/14.78s)
- V-network is trained with down-sampled V data and CD network is trained with 185 points of other state variables
- ► The results are compared with Least-Squares estimate for same 6.3 Hz data

Results: V prediction down-sampled data

V-network is trained with 93 data points and predicted for the 185 data points blue range. Yellow line is actual 185 data points curve.

Results: prediction graphs

Results: Estimation with down-sampled data points on V

Table: SI-PINN computed values

coefficient	predicted value	actual value	error percentage
CD_0	0.0360884	0.036	0.245
CD_{lpha}	0.0401513	0.041	2.07
CD_{δ_e}	0.0250605	0.026	3.61

Table: Least-Squares computed values

coefficient	predicted value	actual value	error percentage
CD_0	0.0370633	0.036	2.95
CD_{lpha}	0.0292532	0.041	28.65
CD_{δ_e}	0.0114898	0.026	55.80

Observations

➤ SI-PINNs show better estimation with multi-frequency sampled data than least squares

► LS has to be evaluated at the least frequency of available points without pre-processing. But SI-PINN do not need that