$12a_{0904} (K12a_{0904})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -6.80736 \times 10^{21} u^{48} + 8.45127 \times 10^{22} u^{47} + \dots + 9.47444 \times 10^{18} b - 6.36777 \times 10^{22}, \\ &- 9.78381 \times 10^{22} u^{48} + 1.20822 \times 10^{24} u^{47} + \dots + 1.42117 \times 10^{20} a - 8.78994 \times 10^{23}, \\ &u^{49} - 14 u^{48} + \dots + 15 u - 15 \rangle \\ I_2^u &= \langle 15 u^{32} + 51 u^{31} + \dots + 4b + 29, \ 29 u^{32} a - 51 u^{32} + \dots + 59 a - 55, \ u^{33} + 4 u^{32} + \dots + 4 u + 1 \rangle \\ I_3^u &= \langle 212 u^{18} + 746 u^{17} + \dots + b - 143, \ 284 u^{18} + 993 u^{17} + \dots + a - 188, \ u^{19} + 5 u^{18} + \dots + 2 u - 1 \rangle \\ I_4^u &= \langle b + 1, \ a^4 + 2 a^3 - a^2 - 2 a + 3, \ u - 1 \rangle \\ I_5^u &= \langle b - 1, \ a^2 - a - 1, \ u - 1 \rangle \end{split}$$

* 6 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 141 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -6.81 \times 10^{21} u^{48} + 8.45 \times 10^{22} u^{47} + \dots + 9.47 \times 10^{18} b - 6.37 \times 10^{22}, -9.78 \times 10^{22} u^{48} + 1.21 \times 10^{24} u^{47} + \dots + 1.42 \times 10^{20} a - 8.79 \times 10^{23}, \ u^{49} - 14 u^{48} + \dots + 15 u - 15 \rangle$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 688.436u^{48} - 8501.60u^{47} + \dots - 2513.66u + 6185.02 \\ 718.497u^{48} - 8920.08u^{47} + \dots - 2579.49u + 6721.00 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 464.635u^{48} - 5815.98u^{47} + \dots - 1526.92u + 4698.07 \\ 105.044u^{48} - 1301.83u^{47} + \dots - 294.460u + 1043.20 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1047.35u^{48} + 13271.5u^{47} + \dots + 2929.33u - 11815.0 \\ -455.203u^{48} + 5771.76u^{47} + \dots + 1265.32u - 5159.50 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -30.0619u^{48} + 418.482u^{47} + \dots + 65.8259u - 535.978 \\ 718.497u^{48} - 8920.08u^{47} + \dots - 2579.49u + 6721.00 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -868.372u^{48} + 10931.9u^{47} + \dots + 2757.74u - 9184.05 \\ -367.877u^{48} + 4676.46u^{47} + \dots + 980.968u - 4262.61 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1011.69u^{48} - 12824.6u^{47} + \dots - 2762.90u + 11491.1 \\ 790.230u^{48} - 10008.2u^{47} + \dots - 2225.63u + 8882.16 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 158.515u^{48} - 2047.43u^{47} + \dots - 269.436u + 2139.17 \\ 1034.37u^{48} - 13113.2u^{47} + \dots - 2833.39u + 11749.5 \end{pmatrix}$$

(ii) Obstruction class = -1

Crossings	u-Polynomials at each crossing
c_1, c_4, c_{12}	$u^{49} - 9u^{48} + \dots - 75u + 15$
c_2, c_{11}	$u^{49} + 2u^{48} + \dots - 12u - 3$
c_{3}, c_{9}	$u^{49} - 6u^{47} + \dots - 35u - 11$
c_{5}, c_{8}	$u^{49} + 4u^{48} + \dots - 3u - 1$
c_6, c_7, c_{10}	$u^{49} + 14u^{48} + \dots + 15u + 15$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_{12}	$y^{49} + 47y^{48} + \dots + 3495y - 225$
c_2, c_{11}	$y^{49} - 6y^{48} + \dots + 120y - 9$
c_{3}, c_{9}	$y^{49} - 12y^{48} + \dots + 1005y - 121$
c_{5}, c_{8}	$y^{49} - 42y^{48} + \dots + 141y - 1$
c_6, c_7, c_{10}	$y^{49} - 54y^{48} + \dots + 1245y - 225$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.433047 + 0.879529I		
a = 0.291430 + 0.391337I	1.03664 - 4.43730I	0
b = 0.597708 - 0.538193I		
u = -0.433047 - 0.879529I		
a = 0.291430 - 0.391337I	1.03664 + 4.43730I	0
b = 0.597708 + 0.538193I		
u = -0.615786 + 0.757323I		
a = -0.367363 + 0.678499I	0.46282 + 9.75261I	0
b = 0.991856 + 0.906798I		
u = -0.615786 - 0.757323I		
a = -0.367363 - 0.678499I	0.46282 - 9.75261I	0
b = 0.991856 - 0.906798I		
u = -0.590062 + 0.843539I		
a = 0.443919 - 0.597588I	6.6188 + 13.7974I	0
b = -0.998349 - 0.951834I		
u = -0.590062 - 0.843539I		
a = 0.443919 + 0.597588I	6.6188 - 13.7974I	0
b = -0.998349 + 0.951834I		
u = -0.584945 + 0.950148I		
a = -0.331095 - 0.287711I	6.74131 - 7.96419I	0
b = -0.601232 + 0.675624I		
u = -0.584945 - 0.950148I		
a = -0.331095 + 0.287711I	6.74131 + 7.96419I	0
b = -0.601232 - 0.675624I		
u = -0.725664 + 0.466170I		
a = 0.696467 + 0.277718I	7.88801 + 1.77959I	0
b = 1.038160 - 0.508456I		
u = -0.725664 - 0.466170I		
a = 0.696467 - 0.277718I	7.88801 - 1.77959I	0
b = 1.038160 + 0.508456I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.570337 + 0.621546I		
a = 0.317455 - 0.880503I	1.36125 + 4.73215I	0 6.17410I
b = -1.009850 - 0.870823I		
u = -0.570337 - 0.621546I		
a = 0.317455 + 0.880503I	1.36125 - 4.73215I	0. + 6.17410I
b = -1.009850 + 0.870823I		
u = 0.289625 + 0.769569I		
a = 0.291612 - 0.422229I	2.10039 - 1.64969I	0. + 3.17462I
b = -0.369416 + 0.242506I		
u = 0.289625 - 0.769569I		
a = 0.291612 + 0.422229I	2.10039 + 1.64969I	0 3.17462I
b = -0.369416 - 0.242506I		
u = 1.242710 + 0.016595I		
a = 1.16528 + 1.29445I	3.15210 + 0.59306I	0
b = 0.319236 + 0.418793I		
u = 1.242710 - 0.016595I		
a = 1.16528 - 1.29445I	3.15210 - 0.59306I	0
b = 0.319236 - 0.418793I		
u = -0.345736 + 0.608967I		
a = -0.681550 + 1.075440I	8.99740 + 2.00742I	3.69703 - 4.15633I
b = 1.043400 + 0.803583I		
u = -0.345736 - 0.608967I		
a = -0.681550 - 1.075440I	8.99740 - 2.00742I	3.69703 + 4.15633I
b = 1.043400 - 0.803583I		
u = 1.346140 + 0.047168I		
a = -0.443611 - 1.201140I	-2.79905 + 0.29382I	0
b = -0.109835 - 0.592401I		
u = 1.346140 - 0.047168I		
a = -0.443611 + 1.201140I	-2.79905 - 0.29382I	0
b = -0.109835 + 0.592401I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.350884 + 0.523383I		
a = -0.515791 - 0.746507I	1.91939 - 0.70956I	1.318828 + 0.280442I
b = -0.768093 + 0.310045I		
u = -0.350884 - 0.523383I		
a = -0.515791 + 0.746507I	1.91939 + 0.70956I	1.318828 - 0.280442I
b = -0.768093 - 0.310045I		
u = -1.42373		
a = -0.459235	-3.37509	0
b = -1.58471		
u = -1.43526 + 0.05673I		
a = 0.470759 - 0.012708I	1.28248 + 0.95897I	0
b = 1.64110 - 0.14774I		
u = -1.43526 - 0.05673I		
a = 0.470759 + 0.012708I	1.28248 - 0.95897I	0
b = 1.64110 + 0.14774I		
u = -1.44574 + 0.13037I		
a = -0.285354 - 0.092403I	-3.51728 + 4.30782I	0
b = -1.051010 - 0.180394I		
u = -1.44574 - 0.13037I		
a = -0.285354 + 0.092403I	-3.51728 - 4.30782I	0
b = -1.051010 + 0.180394I		
u = 1.44985 + 0.18119I		
a = 0.29317 - 2.09746I	3.18263 - 4.79396I	0
b = 0.90354 - 1.19821I		
u = 1.44985 - 0.18119I		
a = 0.29317 + 2.09746I	3.18263 + 4.79396I	0
b = 0.90354 + 1.19821I		
u = 1.47749 + 0.03978I		
a = -0.19780 + 2.30854I	-6.62186 - 2.92931I	0
b = -0.31875 + 1.60961I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.47749 - 0.03978I		
a = -0.19780 - 2.30854I	-6.62186 + 2.92931I	0
b = -0.31875 - 1.60961I		
u = -1.49311		
a = 0.281474	-7.43487	0
b = 1.04778		
u = 0.479702		
a = -1.05468	-0.947319	-10.8700
b = 0.263235		
u = 1.54367 + 0.20987I		
a = -0.37262 + 1.86764I	-5.62131 - 7.81657I	0
b = -1.11448 + 1.32193I		
u = 1.54367 - 0.20987I		
a = -0.37262 - 1.86764I	-5.62131 + 7.81657I	0
b = -1.11448 - 1.32193I		
u = 1.56434 + 0.25553I		
a = 0.27338 - 1.74910I	-6.6890 - 13.4975I	0
b = 1.17492 - 1.28124I		
u = 1.56434 - 0.25553I		
a = 0.27338 + 1.74910I	-6.6890 + 13.4975I	0
b = 1.17492 + 1.28124I		
u = 1.56308 + 0.29110I		
a = -0.17723 + 1.71857I	-0.3997 - 17.9676I	0
b = -1.20463 + 1.25726I		
u = 1.56308 - 0.29110I		
a = -0.17723 - 1.71857I	-0.3997 + 17.9676I	0
b = -1.20463 - 1.25726I		
u = -0.359518 + 0.130940I		
a = 0.10471 - 2.15999I	-0.50334 + 2.29820I	-0.41049 + 7.94845I
b = -0.436809 - 1.042280I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.359518 - 0.130940I		
a = 0.10471 + 2.15999I	-0.50334 - 2.29820I	-0.41049 - 7.94845I
b = -0.436809 + 1.042280I		
u = 1.67836 + 0.27620I		
a = -0.010084 + 0.531761I	-5.86325 - 0.66633I	0
b = -0.356849 + 0.558291I		
u = 1.67836 - 0.27620I		
a = -0.010084 - 0.531761I	-5.86325 + 0.66633I	0
b = -0.356849 - 0.558291I		
u = 1.70957 + 0.15400I		
a = 0.077778 - 0.702600I	-1.46119 + 3.06033I	0
b = 0.354253 - 0.806660I		
u = 1.70957 - 0.15400I		
a = 0.077778 + 0.702600I	-1.46119 - 3.06033I	0
b = 0.354253 + 0.806660I		
u = 1.67687 + 0.48704I		
a = -0.069085 - 0.340576I	-2.14546 - 4.63461I	0
b = 0.328404 - 0.384973I		
u = 1.67687 - 0.48704I		
a = -0.069085 + 0.340576I	-2.14546 + 4.63461I	0
b = 0.328404 + 0.384973I		
u = 0.133847 + 0.185778I		
a = -4.35816 + 3.14536I	6.62641 - 0.11786I	5.86559 - 0.14016I
b = 1.083580 + 0.119708I		
u = 0.133847 - 0.185778I		
a = -4.35816 - 3.14536I	6.62641 + 0.11786I	5.86559 + 0.14016I
b = 1.083580 - 0.119708I		

II.
$$I_2^u = \langle 15u^{32} + 51u^{31} + \dots + 4b + 29, \ 29u^{32}a - 51u^{32} + \dots + 59a - 55, \ u^{33} + 4u^{32} + \dots + 4u + 1 \rangle$$

$$a_{10} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u\\-u^{3}+u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -3.75000u^{32} - 12.7500u^{31} + \cdots - 14.2500u - 7.25000 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2}+1\\-u^{4}+2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{32}+5u^{31}+\cdots+a+4\\-5.75000u^{32}-16.7500u^{31}+\cdots-17.2500u-7.25000 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{15}{4}u^{32}a+7u^{32}+\cdots+\frac{29}{4}a+4\\1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{15}{4}u^{32}a+7u^{32}+\cdots+\frac{29}{4}a+4\\1 \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} \frac{14}{4}u^{32}a+\frac{23}{4}u^{32}+\cdots+\frac{5}{4}a+\frac{13}{4}\\\frac{1}{4}u^{32}a+u^{32}+\cdots+\frac{1}{4}a+\frac{3}{2} \end{pmatrix}$$

$$a_{14} = \begin{pmatrix} \frac{1}{4}u^{32}a+\frac{23}{4}u^{32}+\cdots+\frac{7}{4}a-\frac{19}{4}\\\frac{14}{4}u^{32}a+\frac{31}{4}u^{31}a+\cdots+\frac{13}{4}a-1 \end{pmatrix}$$

$$a_{15} = \begin{pmatrix} \frac{1}{2}u^{31}a+\frac{27}{4}u^{32}+\cdots+\frac{1}{4}a+\frac{13}{4}a-1 \end{pmatrix}$$

$$a_{15} = \begin{pmatrix} \frac{1}{2}u^{31}a+\frac{27}{4}u^{32}+\cdots+\frac{1}{2}a+\frac{13}{4}a-1 \end{pmatrix}$$

$$a_{15} = \begin{pmatrix} \frac{1}{2}u^{31}a+\frac{27}{4}u^{32}+\cdots-\frac{1}{2}a+\frac{15}{4}\\-\frac{5}{4}u^{32}a+\frac{1}{4}u^{32}+\cdots-\frac{1}{2}a+\frac{15}{4} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{183}{4}u^{32} - \frac{515}{4}u^{31} + \dots - \frac{397}{4}u - \frac{289}{4}$$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_{12}	$(u^{33} + 7u^{32} + \dots + 6u + 2)^2$
c_2, c_{11}	$u^{66} - 3u^{65} + \dots - 422u + 59$
c_3, c_9	$u^{66} - 5u^{64} + \dots - 7821u + 1213$
c_5,c_8	$u^{66} + 2u^{65} + \dots - 195u - 107$
c_6, c_7, c_{10}	$(u^{33} - 4u^{32} + \dots + 4u - 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_{12}	$(y^{33} + 33y^{32} + \dots + 84y - 4)^2$
c_2, c_{11}	$y^{66} + 29y^{65} + \dots + 16970y + 3481$
c_{3}, c_{9}	$y^{66} - 10y^{65} + \dots - 30663517y + 1471369$
c_5, c_8	$y^{66} - 2y^{65} + \dots - 846945y + 11449$
c_6, c_7, c_{10}	$(y^{33} - 34y^{32} + \dots + 20y - 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.688220 + 0.730433I		
a = 0.679420 + 0.177115I	1.96145 - 1.06750I	-5.04121 - 0.08113I
b = -0.390156 + 0.737285I		
u = 0.688220 + 0.730433I		
a = 0.070121 - 0.168584I	1.96145 - 1.06750I	-5.04121 - 0.08113I
b = -0.172925 - 0.537570I		
u = 0.688220 - 0.730433I		
a = 0.679420 - 0.177115I	1.96145 + 1.06750I	-5.04121 + 0.08113I
b = -0.390156 - 0.737285I		
u = 0.688220 - 0.730433I		
a = 0.070121 + 0.168584I	1.96145 + 1.06750I	-5.04121 + 0.08113I
b = -0.172925 + 0.537570I		
u = 0.480050 + 0.852324I		
a = 0.708758 + 0.499855I	2.63544 - 4.29581I	-2.69433 + 7.14256I
b = -0.697285 + 0.596564I		
u = 0.480050 + 0.852324I		
a = -0.267358 - 0.076310I	2.63544 - 4.29581I	-2.69433 + 7.14256I
b = 0.280856 - 1.024980I		
u = 0.480050 - 0.852324I		
a = 0.708758 - 0.499855I	2.63544 + 4.29581I	-2.69433 - 7.14256I
b = -0.697285 - 0.596564I		
u = 0.480050 - 0.852324I		
a = -0.267358 + 0.076310I	2.63544 + 4.29581I	-2.69433 - 7.14256I
b = 0.280856 + 1.024980I		
u = 0.554324 + 0.780221I		
a = -0.574660 - 0.354350I	-1.79727 - 2.60552I	-13.6142 + 5.4970I
b = 0.531601 - 0.665036I		
u = 0.554324 + 0.780221I		
a = 0.202674 + 0.210448I	-1.79727 - 2.60552I	-13.6142 + 5.4970I
b = -0.201059 + 0.756653I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.554324 - 0.780221I		
a = -0.574660 + 0.354350I	-1.79727 + 2.60552I	-13.6142 - 5.4970I
b = 0.531601 + 0.665036I		
u = 0.554324 - 0.780221I		
a = 0.202674 - 0.210448I	-1.79727 + 2.60552I	-13.6142 - 5.4970I
b = -0.201059 - 0.756653I		
u = 1.104540 + 0.315968I		
a = 1.345920 + 0.217380I	4.76058 + 1.84769I	-1.10325 - 3.83345I
b = 0.894831 + 0.743190I		
u = 1.104540 + 0.315968I		
a = 0.491156 + 0.257639I	4.76058 + 1.84769I	-1.10325 - 3.83345I
b = -1.047590 - 0.033948I		
u = 1.104540 - 0.315968I		
a = 1.345920 - 0.217380I	4.76058 - 1.84769I	-1.10325 + 3.83345I
b = 0.894831 - 0.743190I		
u = 1.104540 - 0.315968I		
a = 0.491156 - 0.257639I	4.76058 - 1.84769I	-1.10325 + 3.83345I
b = -1.047590 + 0.033948I		
u = 0.790477 + 0.166609I		
a = -0.492307 - 0.049240I	-0.369987 + 0.040866I	-12.86224 - 3.13604I
b = 1.009260 - 0.056854I		
u = 0.790477 + 0.166609I		
a = -1.58891 + 0.20558I	-0.369987 + 0.040866I	-12.86224 - 3.13604I
b = -0.621928 - 0.174825I		
u = 0.790477 - 0.166609I		
a = -0.492307 + 0.049240I	-0.369987 - 0.040866I	-12.86224 + 3.13604I
b = 1.009260 + 0.056854I		
u = 0.790477 - 0.166609I		
a = -1.58891 - 0.20558I	-0.369987 - 0.040866I	-12.86224 + 3.13604I
b = -0.621928 + 0.174825I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.369130 + 0.132853I		
a = -0.09548 - 1.97539I	3.24445 + 7.69327I	0 7.24679I
b = -0.224121 - 0.177252I		
u = -1.369130 + 0.132853I		
a = 0.24344 + 2.54788I	3.24445 + 7.69327I	0 7.24679I
b = 0.98575 + 1.95064I		
u = -1.369130 - 0.132853I		
a = -0.09548 + 1.97539I	3.24445 - 7.69327I	0. + 7.24679I
b = -0.224121 + 0.177252I		
u = -1.369130 - 0.132853I		
a = 0.24344 - 2.54788I	3.24445 - 7.69327I	0. + 7.24679I
b = 0.98575 - 1.95064I		
u = 0.091448 + 0.602007I		
a = -0.482645 - 0.043727I	7.79919 - 5.26371I	6.25290 + 5.11827I
b = 0.96667 - 1.18249I		
u = 0.091448 + 0.602007I		
a = 1.66371 + 1.56662I	7.79919 - 5.26371I	6.25290 + 5.11827I
b = -0.743717 - 0.076925I		
u = 0.091448 - 0.602007I		
a = -0.482645 + 0.043727I	7.79919 + 5.26371I	6.25290 - 5.11827I
b = 0.96667 + 1.18249I		
u = 0.091448 - 0.602007I		
a = 1.66371 - 1.56662I	7.79919 + 5.26371I	6.25290 - 5.11827I
b = -0.743717 + 0.076925I		
u = 0.295713 + 0.495961I		
a = 0.445625 + 0.069876I	1.12370 - 2.92332I	1.70980 + 9.60306I
b = -0.983847 + 0.868746I		
u = 0.295713 + 0.495961I		
a = -0.32255 - 1.99227I	1.12370 - 2.92332I	1.70980 + 9.60306I
b = 0.538393 - 0.020450I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.295713 - 0.495961I		
a = 0.445625 - 0.069876I	1.12370 + 2.92332I	1.70980 - 9.60306I
b = -0.983847 - 0.868746I		
u = 0.295713 - 0.495961I		
a = -0.32255 + 1.99227I	1.12370 + 2.92332I	1.70980 - 9.60306I
b = 0.538393 + 0.020450I		
u = -1.46348 + 0.10101I		
a = 0.44263 + 1.42953I	-4.66470 + 4.86669I	0
b = -0.025005 + 0.390093I		
u = -1.46348 + 0.10101I		
a = -0.82750 - 1.78327I	-4.66470 + 4.86669I	0
b = -1.49894 - 1.50915I		
u = -1.46348 - 0.10101I		
a = 0.44263 - 1.42953I	-4.66470 - 4.86669I	0
b = -0.025005 - 0.390093I		
u = -1.46348 - 0.10101I		
a = -0.82750 + 1.78327I	-4.66470 - 4.86669I	0
b = -1.49894 + 1.50915I		
u = 1.47320 + 0.07823I		
a = -0.53451 - 1.56310I	-0.43816 - 7.73793I	0
b = 0.852179 - 0.743106I		
u = 1.47320 + 0.07823I		
a = -1.21527 - 1.81095I	-0.43816 - 7.73793I	0
b = -1.54751 - 1.85479I		
u = 1.47320 - 0.07823I		
a = -0.53451 + 1.56310I	-0.43816 + 7.73793I	0
b = 0.852179 + 0.743106I		
u = 1.47320 - 0.07823I		
a = -1.21527 + 1.81095I	-0.43816 + 7.73793I	0
b = -1.54751 + 1.85479I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.47653 + 0.02582I		
a = 0.25574 + 2.09823I	-7.05002 - 3.03427I	0
b = -0.519028 + 1.042790I		
u = 1.47653 + 0.02582I		
a = 0.66250 + 2.39252I	-7.05002 - 3.03427I	0
b = 0.93805 + 2.16023I		
u = 1.47653 - 0.02582I		
a = 0.25574 - 2.09823I	-7.05002 + 3.03427I	0
b = -0.519028 - 1.042790I		
u = 1.47653 - 0.02582I		
a = 0.66250 - 2.39252I	-7.05002 + 3.03427I	0
b = 0.93805 - 2.16023I		
u = -1.50178		
a = 1.12928	-7.38654	0
b = 1.75374		
u = -1.50178		
a = -0.528148	-7.38654	0
b = 0.504772		
u = -0.379813 + 0.219018I		
a = 0.941104 + 0.583452I	5.69458 + 6.59044I	-4.79082 - 11.54571I
b = -0.68195 + 1.37498I		
u = -0.379813 + 0.219018I		
a = -3.39928 + 1.92428I	5.69458 + 6.59044I	-4.79082 - 11.54571I
b = 0.478064 + 0.766315I		
u = -0.379813 - 0.219018I		
a = 0.941104 - 0.583452I	5.69458 - 6.59044I	-4.79082 + 11.54571I
b = -0.68195 - 1.37498I		
u = -0.379813 - 0.219018I		
a = -3.39928 - 1.92428I	5.69458 - 6.59044I	-4.79082 + 11.54571I
b = 0.478064 - 0.766315I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.53334 + 0.30744I		
a = 0.112187 - 1.334420I	-3.91413 + 8.53917I	0
b = -0.953189 - 0.799052I		
u = -1.53334 + 0.30744I		
a = -0.25894 + 1.45981I	-3.91413 + 8.53917I	0
b = 0.55378 + 1.45773I		
u = -1.53334 - 0.30744I		
a = 0.112187 + 1.334420I	-3.91413 - 8.53917I	0
b = -0.953189 + 0.799052I		
u = -1.53334 - 0.30744I		
a = -0.25894 - 1.45981I	-3.91413 - 8.53917I	0
b = 0.55378 - 1.45773I		
u = -1.54739 + 0.26541I		
a = -0.039423 + 1.371380I	-8.68011 + 6.44112I	0
b = 0.908815 + 1.009530I		
u = -1.54739 + 0.26541I		
a = 0.158864 - 1.400900I	-8.68011 + 6.44112I	0
b = -0.478500 - 1.253630I		
u = -1.54739 - 0.26541I		
a = -0.039423 - 1.371380I	-8.68011 - 6.44112I	0
b = 0.908815 - 1.009530I		
u = -1.54739 - 0.26541I		
a = 0.158864 + 1.400900I	-8.68011 - 6.44112I	0
b = -0.478500 + 1.253630I		
u = -1.56285 + 0.20190I		
a = -0.071729 + 1.298250I	-5.52357 + 4.35615I	0
b = 0.153519 + 1.034830I		
u = -1.56285 + 0.20190I		
a = -0.137539 - 1.379700I	-5.52357 + 4.35615I	0
b = -1.05103 - 1.18343I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.56285 - 0.20190I		
a = -0.071729 - 1.298250I	-5.52357 - 4.35615I	0
b = 0.153519 - 1.034830I		
u = -1.56285 - 0.20190I		
a = -0.137539 + 1.379700I	-5.52357 - 4.35615I	0
b = -1.05103 + 1.18343I		
u = -0.347602 + 0.080852I		
a = -0.655893 - 1.111460I	-0.95777 + 2.63463I	-16.6257 - 9.2457I
b = 0.36827 - 1.44393I		
u = -0.347602 + 0.080852I		
a = 2.23956 - 3.37366I	-0.95777 + 2.63463I	-16.6257 - 9.2457I
b = -0.251523 - 0.844773I		
u = -0.347602 - 0.080852I		
a = -0.655893 + 1.111460I	-0.95777 - 2.63463I	-16.6257 + 9.2457I
b = 0.36827 + 1.44393I		
u = -0.347602 - 0.080852I		
a = 2.23956 + 3.37366I	-0.95777 - 2.63463I	-16.6257 + 9.2457I
b = -0.251523 + 0.844773I		

III.
$$I_3^u = \langle 212u^{18} + 746u^{17} + \dots + b - 143, \ 284u^{18} + 993u^{17} + \dots + a - 188, \ u^{19} + 5u^{18} + \dots + 2u - 1 \rangle$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^3 + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -284u^{18} - 993u^{17} + \dots - 507u + 188 \\ -212u^{18} - 746u^{17} + \dots - 382u + 143 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^2 + 1 \\ -u^4 + 2u^2 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -125u^{18} - 439u^{17} + \dots - 231u + 84 \\ -121u^{18} - 418u^{17} + \dots - 206u + 78 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -8u^{18} - 28u^{17} + \dots - 9u + 2 \\ -8u^{18} - 27u^{17} + \dots - 13u + 4 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -72u^{18} - 247u^{17} + \dots - 125u + 45 \\ -212u^{18} - 746u^{17} + \dots - 382u + 143 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 113u^{18} + 413u^{17} + \dots + 225u - 85 \\ 42u^{18} + 157u^{17} + \dots + 91u - 33 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -7u^{18} - 28u^{17} + \dots - 14u + 6 \\ -u^{18} - 4u^{17} + \dots + 6u^2 - u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -24u^{18} - 90u^{17} + \dots - 53u + 19 \\ -6u^{18} - 23u^{17} + \dots - 18u + 6 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =

 $\begin{matrix} & \\ 481u^{18} + 1689u^{17} - 2037u^{16} - 11897u^{15} + 396u^{14} + 29834u^{13} + 893u^{12} - 33357u^{11} + 32607u^{10} + \\ & \\ 32616u^9 - 71759u^8 - 37583u^7 + 31476u^6 - 11450u^5 - 17741u^4 + 2407u^3 - 1866u^2 + 897u - 3261u^2 + 2407u^3 - 1866u^2 + 2407u^3 - 1860u^2 + 2407u^3 - 1800u^2 + 2407u^2 + 2407u^3 - 1800u^2 + 2407u^2 + 2407u^$

Crossings	u-Polynomials at each crossing
c_1,c_{12}	$u^{19} - 6u^{18} + \dots + 26u - 5$
c_2,c_{11}	$u^{19} + u^{18} + \dots - u - 1$
c_{3}, c_{9}	$u^{19} - u^{18} + \dots - 2u + 1$
C ₄	$u^{19} + 6u^{18} + \dots + 26u + 5$
c_5, c_8	$u^{19} - 3u^{18} + \dots + 2u - 1$
c_{6}, c_{7}	$u^{19} + 5u^{18} + \dots + 2u - 1$
c_{10}	$u^{19} - 5u^{18} + \dots + 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_{12}	$y^{19} + 18y^{18} + \dots - 274y - 25$
c_2,c_{11}	$y^{19} + 17y^{18} + \dots - y - 1$
c_3, c_9	$y^{19} + 3y^{18} + \dots + 4y - 1$
c_5, c_8	$y^{19} + y^{18} + \dots + 2y^2 - 1$
c_6, c_7, c_{10}	$y^{19} - 23y^{18} + \dots - 4y - 1$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.498057 + 1.043760I		
a = 0.283992 + 0.099100I	1.56873 - 2.00654I	-9.89274 + 9.93240I
b = -0.303973 + 0.557666I		
u = 0.498057 - 1.043760I		
a = 0.283992 - 0.099100I	1.56873 + 2.00654I	-9.89274 - 9.93240I
b = -0.303973 - 0.557666I		
u = 0.451443 + 0.518954I		
a = -0.557415 - 0.674007I	-0.60471 - 2.88406I	-5.24973 + 8.32085I
b = 0.450465 - 0.810572I		
u = 0.451443 - 0.518954I		
a = -0.557415 + 0.674007I	-0.60471 + 2.88406I	-5.24973 - 8.32085I
b = 0.450465 + 0.810572I		
u = -1.401300 + 0.103496I		
a = 0.31694 - 2.44376I	1.85698 + 7.44641I	-5.10787 - 5.92651I
b = -0.28108 - 1.40718I		
u = -1.401300 - 0.103496I		
a = 0.31694 + 2.44376I	1.85698 - 7.44641I	-5.10787 + 5.92651I
b = -0.28108 + 1.40718I		
u = -1.46931 + 0.03702I		
a = 0.02353 + 2.55490I	-6.25421 + 3.36017I	-1.28351 - 7.80982I
b = 0.19956 + 1.75659I		
u = -1.46931 - 0.03702I		
a = 0.02353 - 2.55490I	-6.25421 - 3.36017I	-1.28351 + 7.80982I
b = 0.19956 - 1.75659I		
u = -1.52868 + 0.21520I		
a = 0.01958 + 1.60043I	-7.27853 + 5.82567I	-6.96095 - 4.30133I
b = 0.723515 + 1.210650I		
u = -1.52868 - 0.21520I		
a = 0.01958 - 1.60043I	-7.27853 - 5.82567I	-6.96095 + 4.30133I
b = 0.723515 - 1.210650I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.55777 + 0.32580I		
a = 0.130960 - 1.131790I	-5.16950 + 6.79128I	-6.65966 - 5.16941I
b = -0.680192 - 0.953517I		
u = -1.55777 - 0.32580I		
a = 0.130960 + 1.131790I	-5.16950 - 6.79128I	-6.65966 + 5.16941I
b = -0.680192 + 0.953517I		
u = 1.59297 + 0.30534I		
a = 0.1137980 - 0.0630215I	-1.95391 - 4.34795I	-1.36568 - 2.53861I
b = 0.539987 - 0.108988I		
u = 1.59297 - 0.30534I		
a = 0.1137980 + 0.0630215I	-1.95391 + 4.34795I	-1.36568 + 2.53861I
b = 0.539987 + 0.108988I		
u = -0.141191 + 0.350131I		
a = 1.98607 - 1.57595I	6.39041 - 5.95192I	2.01493 + 4.29419I
b = -0.088324 + 0.883311I		
u = -0.141191 - 0.350131I		
a = 1.98607 + 1.57595I	6.39041 + 5.95192I	2.01493 - 4.29419I
b = -0.088324 - 0.883311I		
u = 1.62979		
a = -0.128710	-5.85643	-10.0770
b = -0.551653		
u = 0.240888 + 0.205962I		
a = -1.75310 - 2.18070I	-0.43147 - 2.68369I	3.04354 + 11.76064I
b = 0.215866 - 1.094370I		
u = 0.240888 - 0.205962I		
a = -1.75310 + 2.18070I	-0.43147 + 2.68369I	3.04354 - 11.76064I
b = 0.215866 + 1.094370I		

IV.
$$I_4^u = \langle b+1, a^4+2a^3-a^2-2a+3, u-1 \rangle$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a \\ -1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a \\ a - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -a - 1 \\ 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} a + 1 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -a^{3} - a^{2} + 2a + 1 \\ -a^{3} + 2a - 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} a^{2} + 2a + 1 \\ -a \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -a^{3} - 2a^{2} - a + 1 \\ a^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_4, c_{12}	$(u^2+2)^2$
c_2, c_6, c_7 c_{11}	$(u-1)^4$
c_3, c_9	$u^4 + 2u^3 - u^2 - 2u + 3$
c_5, c_8	$u^4 - 2u^3 - u^2 + 2u + 3$
c_{10}	$(u+1)^4$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_{12}	$(y+2)^4$
c_2, c_6, c_7 c_{10}, c_{11}	$(y-1)^4$
c_3, c_5, c_8 c_9	$y^4 - 6y^3 + 15y^2 - 10y + 9$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 0.752489 + 0.564561I	4.93480	0
b = -1.00000		
u = 1.00000		
a = 0.752489 - 0.564561I	4.93480	0
b = -1.00000		
u = 1.00000		
a = -1.75249 + 0.56456I	4.93480	0
b = -1.00000		
u = 1.00000		
a = -1.75249 - 0.56456I	4.93480	0
b = -1.00000		

V.
$$I_5^u = \langle b-1, \ a^2-a-1, \ u-1 \rangle$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} a \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} a \\ a+1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a - 1 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} a-1 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} a-1\\1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} a-1\\1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -a+2\\ a \end{pmatrix}$$

$$a_5 = \begin{pmatrix} a \\ a+1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 10

Crossings	u-Polynomials at each crossing
c_1, c_4, c_{12}	u^2
c_2, c_{10}, c_{11}	$(u+1)^2$
c_3, c_5, c_8 c_9	$u^2 - u - 1$
c_6, c_7	$(u-1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_{12}	y^2
$c_2, c_6, c_7 \\ c_{10}, c_{11}$	$(y-1)^2$
c_3, c_5, c_8 c_9	$y^2 - 3y + 1$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -0.618034	0	10.0000
b = 1.00000		
u = 1.00000		
a = 1.61803	0	10.0000
b = 1.00000		

VI.
$$I_1^v = \langle a, \ b+1, \ v-1 \rangle$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

Crossings	u-Polynomials at each crossing
c_1, c_4, c_6 c_7, c_{10}, c_{12}	u
c_2, c_3, c_5 c_8, c_9, c_{11}	u-1

Crossings	Riley Polynomials at each crossing
$c_1, c_4, c_6 \\ c_7, c_{10}, c_{12}$	y
$c_2, c_3, c_5 \\ c_8, c_9, c_{11}$	y-1

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 1.00000		
a = 0	1.64493	6.00000
b = -1.00000		

VII. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_{12}	$u^{3}(u^{2}+2)^{2}(u^{19}-6u^{18}+\cdots+26u-5)(u^{33}+7u^{32}+\cdots+6u+2)^{2}$ $\cdot(u^{49}-9u^{48}+\cdots-75u+15)$
c_2, c_{11}	$((u-1)^5)(u+1)^2(u^{19}+u^{18}+\cdots-u-1)(u^{49}+2u^{48}+\cdots-12u-3)$ $\cdot(u^{66}-3u^{65}+\cdots-422u+59)$
c_3, c_9	$(u-1)(u^{2}-u-1)(u^{4}+2u^{3}+\cdots-2u+3)(u^{19}-u^{18}+\cdots-2u+1)$ $\cdot (u^{49}-6u^{47}+\cdots-35u-11)(u^{66}-5u^{64}+\cdots-7821u+1213)$
c_4	$u^{3}(u^{2}+2)^{2}(u^{19}+6u^{18}+\cdots+26u+5)(u^{33}+7u^{32}+\cdots+6u+2)^{2}$ $\cdot(u^{49}-9u^{48}+\cdots-75u+15)$
c_5, c_8	$(u-1)(u^{2}-u-1)(u^{4}-2u^{3}+\cdots+2u+3)(u^{19}-3u^{18}+\cdots+2u-1)$ $\cdot (u^{49}+4u^{48}+\cdots-3u-1)(u^{66}+2u^{65}+\cdots-195u-107)$
c_6, c_7	$u(u-1)^{6}(u^{19} + 5u^{18} + \dots + 2u - 1)(u^{33} - 4u^{32} + \dots + 4u - 1)^{2}$ $\cdot (u^{49} + 14u^{48} + \dots + 15u + 15)$
c_{10}	$u(u+1)^{6}(u^{19} - 5u^{18} + \dots + 2u + 1)(u^{33} - 4u^{32} + \dots + 4u - 1)^{2}$ $\cdot (u^{49} + 14u^{48} + \dots + 15u + 15)$

VIII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_{12}	$y^{3}(y+2)^{4}(y^{19}+18y^{18}+\cdots-274y-25)$ $\cdot((y^{33}+33y^{32}+\cdots+84y-4)^{2})(y^{49}+47y^{48}+\cdots+3495y-225)$
c_2, c_{11}	$((y-1)^7)(y^{19} + 17y^{18} + \dots - y - 1)(y^{49} - 6y^{48} + \dots + 120y - 9)$ $\cdot (y^{66} + 29y^{65} + \dots + 16970y + 3481)$
c_3, c_9	$(y-1)(y^{2}-3y+1)(y^{4}-6y^{3}+\cdots-10y+9)(y^{19}+3y^{18}+\cdots+4y-1)$ $\cdot (y^{49}-12y^{48}+\cdots+1005y-121)$ $\cdot (y^{66}-10y^{65}+\cdots-30663517y+1471369)$
c_5,c_8	$(y-1)(y^2 - 3y + 1)(y^4 - 6y^3 + \dots - 10y + 9)(y^{19} + y^{18} + \dots + 2y^2 - 1)$ $\cdot (y^{49} - 42y^{48} + \dots + 141y - 1)(y^{66} - 2y^{65} + \dots - 846945y + 11449)$
c_6, c_7, c_{10}	$y(y-1)^{6}(y^{19}-23y^{18}+\cdots-4y-1)(y^{33}-34y^{32}+\cdots+20y-1)^{2}$ $\cdot(y^{49}-54y^{48}+\cdots+1245y-225)$