Karp-Rabin fingerprinting on strings

Given a string $S=S[0\dots n-1]$, and two positions $0\leq i< j\leq n-1$, the longest common extension $lce_S(i,j)$ is the length of the maximal run of matching characters from those positions, namely: if S[i]!=S[j] then $lce_S(i,j)=0$; otherwise, $lce_S(i,j)=max\{l\geq 1: S[i\dots i+l-1]=S[j\dots j+l-1]\}$. For example, if S=abracadabra, then $lce_S(1,2)=0$, $lce_S(0,3)=1$, and $lce_S(0,7)=4$. Given S in advance for preprocessing, build a data structure for S based on the Karp-Rabin fingerprinting, in O(n log n) time, so that it supports subsequent online queries of the following two types:

- $lce_S(i,j)$: it computes the longest common extension at positions i and j in O(log n) time.
- equal S(i, j, l): it checks if $S[i \dots i + l 1] = S[j \dots j + l 1]$ in constant time.

Analyze the cost and the error probability. The space occupied by the data structure can be $O(n \log n)$ but it is possible to use O(n) space. [Note: in this exercise, a onetime preprocessing is performed, and then many online queries are to be answered on the fly.¹]

SOLUTION

The proposed data structure that maintain a series of trees. At each level we encode power of two elements (THIS IS IMPOSSIBLE TO EXPLAIN... LOOK THE CODE). The space occupied by this data structure is O(nlog(n)) where n is the length of the input array.

```
function CreateTree(S,n,p)
      A \leftarrow NEW \ Array[log_2(n) + 1]
      TEMP \leftarrow NEW \ Array[n]
      for i \ IN \ (0, n) do
          TEMP[i] \leftarrow S[i] \bmod p
      end for
      A[0] \leftarrow TEMP
      for i \ IN \ (1, log_2(n)) do
          TEMP \leftarrow NEW \ Array[n-i]
          for j \ IN \ (0, n-i) \ do
              TEMP[j] \leftarrow A[i-1][j] + A[i-1][j+2^{i-1}] \mod p
          end for
          A[i] \leftarrow TEMP
      end for
      return A
  end function
Now to have lce_S(i,j) we build the implement the following procedure, where h = \lfloor loq_2(n-j) \rfloor
  function LCE(i,j,h)
      if A[h][i] == A[h][j] then
          return 2^h
      else
          if h \neq 0 then
              return 0
              return LCE(i, j, h-1)+LCE(i + 2^{h-1}, j + 2^{h-1}, h-1)
          end if
      end if
  end function
```

Notice that, this procedure work in O(log(n)) since the array is length is at most log(n) and we are doing two recursive call with an array one unit smaller each time. Finally to obtain equalS(i,j,l) in cost O(1) we simply check whether $A[\lceil log_2(l) \rceil) |[i] == A[\lceil log_2(l) \rceil] |[j]$ is true.

Notice that all this algorithm work for arrays in which their length n is a power of two. If we have an array that is not of the latter length, we are doing the following: create the same data structure as before but the part of the array that is not in the tree, that it's at most long $2^{i+1}-2^i-1$ where $i=\lfloor log_2(n)\rfloor$, is store in simple array. In this case whether we need to check if $A[\lfloor log_2(n-j)\rfloor][i]==A[\lfloor log_2(n-j)\rfloor][j]$, i.e. the longest possible string, we need also to check, manually, whether there is a matching in the array. Last but not least, the calculation of the error probability is exactly the same to the one analysed during the course.

¹GROSSI LINK1