Chapter 4 Pt. 1 ANSWER KEY

Fundamentals of Machine Learning

1)

- Step 1. (B) Defining the problem and assembling a dataset
- Step 2. (D) Choosing a measure of success
- Step 3. (A) Deciding on an evaluation protocol
- Step 4. (E) Preparing your data
- Step 5. (C) Developing a model that does better than a baseline
- Step 6. (G) Scaling up: developing a model that overfits
- Step 7. (F) Regularizing your model and tuning your hyperparameters
- 2) (94) b. Supervised learning
- 3) (94) c. Targets
- 4) (94) d. All the above
- 5) (94) b. Supervised learning
- 6) (94)
 - B. Dimensionality reduction & Clustering → Unsupervised learning
 - A. Classification & Regression → Supervised learning
- 7) (95-96)

Sample or input	j) One data point that goes into your model.
Prediction or output	i) What comes out of your model.
Target	f) The truth. What your model should ideally have predicted, according to an external source of data.
Prediction error or loss value	m) A measure of the distance between your model's prediction and the target.
Classes	h) A set of possible labels to choose from in a classification problem.
Label	d) A specific instance of a class annotation in a classification problem.
Ground-truth or annotations	g) All targets for a dataset, typically collected by humans.
Binary classification	b) A classification task where each input sample should be categorized into two exclusive categories.
Multiclass classification	1) A classification task where each input sample should be categorized into more than two categories.
Multilabel classification	e) A classification task where each input sample can be assigned multiple labels. The number of labels per image is usually variable.

Scalar	k) A task where the target is a continuous scalar value.
regression	
Vector	a) A task where the target is a set of continuous values.
regression	
Mini-batch or	c) A small set of samples (typically between 8 and 128) that
batch	are processed simultaneously by the model. The number of
	samples is often a power of 2, to facilitate memory allocation
	on GPU.

- 8) (97) a. Achieve models that generalize
- 9) (97) c. Training, validation, and test sets
- 10) (97) c. Hyperparameters are the number and size of layers and parameters are the weights
- 11) (97) b. Overfitting
- 12) (97) b. Tuning hyperparameters causes information from the validation data to leak into the model
- 13) (98) d. Simple hold-out validation, K-fold validation, and iterated K-fold validation with shuffling
- 14) (99-100) K-fold cross-validation

```
num validation samples = len(data) // k
np.random.shuffle(data)
                                                    Selects the validation-
validation_scores = []
                                                          data partition
for fold in range(k):
    validation_data = data[num_validation_samples * fold:
     num_validation_samples * (fold + 1)]
    training data = data[:num validation samples * fold] +
     data[num_validation_samples * (fold + 1):] <--
                                                                Uses the remainder of the data
    model = get_model()
                                                                as training data. Note that the
                                                                + operator is list concatenation,
    model.train(training_data)
    validation_score = model.evaluate(validation_data)
                                                              not summation.
    validation_scores.append(validation_score)
                                                              Creates a brand-new instance
                                                              of the model (untrained)
validation_score = np.average(validation_scores)
                                                                          Validation score:
                                                                          average of the
model = get model()
                                                Trains the final
                                                                          validation scores
model.train(data)
                                                model on all non-
                                                                          of the k folds
test_score = model.evaluate(test_data)
                                              test data available
```

15) (98) Simple hold-out (or Hold-out) validation

```
num_validation_samples = 10000
                                            Shuffling the data is
                                          usually appropriate.
np.random.shuffle(data)
                                                                 Defines the
                                                                 validation set
validation_data = data[:num_validation_samples]
data = data[num_validation_samples:]
                                                Defines the training set
training_data = data[:]
                                                           Trains a model on the training
model = get_model()
                                                           data, and evaluates it on the
model.train(training data)
                                                           validation data
validation score = model.evaluate(validation data)
# At this point you can tune your model,
# retrain it, evaluate it, tune it again...
                                                        Once you've tuned your
model = get_model()
                                                        hyperparameters, it's common to
model.train(np.concatenate([training_data,
                                                        train your final model from scratch
                               validation_data]))
                                                        on all non-test data available.
test_score = model.evaluate(test_data)
```