Einführung in Visual Computing

186.822

Viewing

Werner Purgathofer

Viewing in the Rendering Pipeline object capture/creation scene objects in object space modeling vertex stage viewing ("vertex shader") projection transformed vertices in clip space clipping + homogenization scene in normalized device coordinates. viewport transformation rasterization pixel stage shading ("fragment shader") raster image in pixel coordinates

From Object Space to Screen Space

Viewport Transformation

From Object Space to Screen Space

Viewport Transformation

- assumption: scene is in clip space!
- clip space = $[-1,1] \times [-1,1] \times [-1,1]$
- orthographic camera looking in -z direction
- lacksquare screen resolution $n_x \times n_y$ pixels

Viewport Transformation

can be done with the matrix

$$\begin{bmatrix} x_{\text{screen}} \\ y_{\text{screen}} \\ 1 \end{bmatrix} = \begin{bmatrix} n_x/2 & 0 & n_x/2 \\ 0 & n_y/2 & n_y/2 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad (-1,-1) \to (0,0) \\ (1,1) \to (n_x,n_y)$$

this ignores the z-coordinate, but...

Projection Transformation

From Object Space to Screen Space

Parallel Projection (Orthographic Projection)

3 parallel-projection views of an object, showing relative proportions from different viewing positions

Parallel vs. Perspective Projection

For Now: Parallel (Orthographic) Projection

Projection Transformation (Orthographic)

- **assumption:** scene in box $[L,R] \times [B,T] \times [F,N]$
- orthographic camera looking in -z direction
- transformation to clip space

$$(L,B,F) \rightarrow (-1,-1,-1)$$

 $(R,T,N) \rightarrow (1,1,1)$

Projection Transformation (Orthographic)

$$(L,B,F) \rightarrow (-1,-1,-1)$$

 $(R,T,N) \rightarrow (1,1,1)$

$$\frac{(L,B,F) \to (-1,-1,-1)}{(R,T,N) \to (1,1,1)} \qquad \frac{2}{R-L} \cdot L + 0 \cdot B + 0 \cdot F - \frac{R+L}{R-L} \cdot 1 = \frac{L-R}{R-L} = -1$$

$$\mathbf{M}_{orth} = \begin{bmatrix} \frac{2}{R-L} & 0 & 0 & -\frac{R+L}{R-L} \\ 0 & \frac{2}{T-B} & 0 & -\frac{T+B}{T-B} \\ 0 & 0 & \frac{2}{N-F} & -\frac{N+F}{N-F} \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} L \\ B \\ F \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ -1 \\ 1 \end{bmatrix}$$

Parallel Projection Types

viewing plane

viewing plane

different orientation of the projection vector -g

Camera Transformation

For Now: Parallel (Orthographic) Projection

Viewing: Projection Plane

coordinate reference for obtaining a selected view of a 3D scene

Viewing: Camera Definition

- similar to taking a photograph
- involves selection of
 - camera position
 - camera direction
 - camera orientation
 - "window" (zoom) of camera

Viewing: Camera Transformation (1)

- view reference point
 - origin of camera coordinate system
 - gaze direction or look-at point

right-handed camera-coordinate system, with axes u, v, w, relative to world-coordinate scene

Viewing: Camera Transformation (2)

e ... eye position

g ... gaze direction (positive w-axis points to the viewer)

t ... view-up vector

$$\mathbf{w} = -\frac{\mathbf{g}}{|\mathbf{g}|}$$

$$\mathbf{u} = \frac{\mathbf{t} \times \mathbf{w}}{|\mathbf{t} \times \mathbf{w}|}$$

$$v = w \times u$$

Viewing: Camera Transformation (2)

e ... eye position

g ... gaze direction (positive w-axis points to the viewer)

t ... view-up vector

$$\mathbf{w} = -\frac{\mathbf{g}}{|\mathbf{g}|}$$

$$\mathbf{u} = \frac{\mathbf{t} \times \mathbf{w}}{|\mathbf{t} \times \mathbf{w}|}$$

$$v = w \times u$$

Viewing: Camera Transformation (3)

$$\mathbf{M}_{cam} = \mathbf{R}_{\mathbf{z}} \cdot \mathbf{R}_{\mathbf{y}} \cdot \mathbf{R}_{\mathbf{x}} \cdot \mathbf{T}$$

aligning viewing system with world-coordinate axes using translate-rotate transformations

For Now: Parallel (Orthographic) Projection

Viewing: Camera + Projection + Viewport

For Now: Parallel (Orthographic) Projection

Perspective Projection

Perspective Projection

perspective projection of equal-sized objects at different distances from the view plane

Parallel vs. Perspective Projection

parallel projection: preserves relative proportions & parallel features (affine transform.)

perspective projection: center of projection, realistic views

Perspective Transform

Perspective Transformation

derivation of perspective transformation

$$y_p = \frac{f}{Z} y$$

f ... focal length

Perspective Transformation

derivation of perspective transformation

$$y_p = \frac{N}{Z} y$$

analogous:

$$x_p = \frac{N}{Z} x$$

$$\begin{vmatrix} \mathbf{N} & 0 & 0 & 0 \\ 0 & \mathbf{N} & 0 & 0 \\ 0 & 0 & \mathbf{N} + \mathbf{F} & -\mathbf{F} \cdot \mathbf{N} \\ 0 & 0 & 1 & 0 \end{vmatrix} = \mathbf{P}$$

Perspective Transformation

$$\mathbf{P} = \begin{bmatrix} \mathbf{N} & 0 & 0 & 0 \\ 0 & \mathbf{N} & 0 & 0 \\ 0 & 0 & \mathbf{N} + \mathbf{F} & -\mathbf{F} \cdot \mathbf{N} \\ 0 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{x} \cdot \mathbf{N} \\ \mathbf{y} \cdot \mathbf{N} \\ \mathbf{z} \cdot (\mathbf{N} + \mathbf{F}) - \mathbf{F} \cdot \mathbf{N} \\ \mathbf{z} \end{bmatrix}$$

derivation of perspective transformation

homogenization: divide by Z

$$y_p = \frac{N}{z} y$$

$$x_p = \frac{N}{z} x$$

$$\frac{N}{Z} y \qquad \qquad \qquad \begin{cases}
x \cdot N/Z \\
y \cdot N/Z \\
(N+F) -F \cdot N/Z \\
1
\end{cases}$$

Example: (Right) Top Near Corner

Example: (Left) Top Far Corner

$$\begin{vmatrix} N & 0 & 0 & 0 \\ 0 & N & 0 & 0 \\ 0 & 0 & N+F-F \\ 0 & 0 & 1 & 0 \end{vmatrix} \cdot \begin{vmatrix} L\cdot F/N \\ T\cdot F/N \\ F \end{vmatrix} = \begin{vmatrix} L\cdot F \\ T\cdot F/N \\ F\cdot (N+F)-F \cdot N \\ F \end{vmatrix} \sim > \begin{vmatrix} L \\ T \\ F \\ 1 \end{vmatrix}$$

Perspective Transform

Nonlinear z-Behaviour

Nonlinear z-Behaviour

From Object Space to Screen Space

Viewing: Camera + Projection + Viewport

From Object Space to Screen Space

z-Values Remain in Order

$$\begin{bmatrix} N & 0 & 0 & 0 \\ 0 & N & 0 & 0 \\ 0 & 0 & N+F-F-N \\ 0 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \sim > \begin{bmatrix} x \cdot N/z \\ y \cdot N/z \\ (N+F)-F \cdot N/z \\ 1 \end{bmatrix}$$

$$z_1, z_2, N, F < 0$$
 $z_1 < z_2$
 $1/z_1 > 1/z_2$
 $| \cdot (-F \cdot N) | (<0)$
 $-F \cdot N/z_1 < -F \cdot N/z_2$
 $| + (N+F) |$
 $(N+F) - F \cdot N/z_1 < (N+F) - F \cdot N/z_2$

Perspective Projection Properties

- \blacksquare parallel lines parallel to view plane \Rightarrow parallel lines
- parallel lines not parallel to view plane ⇒ converging lines (vanishing point)
- lines parallel to coordinate axis ⇒ principal vanishing point (one, two or three)

Principle Vanishing Points

