MATH 612 HOMEWORK 6

HIDENORI SHINOHARA

Exercise. (Exercise 3.3.8) Let $y \in B$ and x_i denote the point in B_i such that $f(x_i) = y$ for each i. Let μ_i denote the local orientation at x_i induced by the orientation of M. For each i, we have the following diagrams using excisions, exact sequences of pairs and maps induced by f, inclusions and projections:

using the idea for the proof of Proposition 2.30.

 $H_n(B_i, B_i - x_i) \to H_n(M, M - x_i)$, $H_n(B, B - y) \to H_n(N, N - y)$ and $H_n(N) \to H_n(N, N - y)$ are all isomorphisms. Since this diagram commutes for each i, $H_n(M, M - f^{-1}(y)) = \bigoplus_i H_n(B_i, B_i - x_i) = \bigoplus_i \mathbb{Z}$. Since 1 = [M] gets mapped to 1 in $H_n(M, M - x_i)$, $j([M]) = \sum_i k_i(\mu_i)$ where k_i is the map $H_n(B_i, B_i - x_i) \to H_n(M, M - f^{-1}(y))$. Furthermore, $f_*(\mu_i) = \epsilon_i$, so $f_*(k_i(\mu_i)) = \epsilon_i$. Therefore, $f_*([M]) = f_*(\sum_i k_i(\mu_i)) = \sum_i f_*(k_i(\mu_i)) = \sum_i \epsilon_i$.