

BC60 模块硬件手册

简介

深圳市博实结科技 IOT 事业部是隶属于深圳市博实结科技有限公司的独立运营部门。IOT 事业部致力于为物联网行业提供优质模块以及产品解决方案,主要覆盖 GSM 模块产品线、GNSS 模块产品线、WiFi 模块产品线、蓝牙模块产品线、NB-IOT 模块产品线等,详见下表:

产品线	型号	规格尺寸	
/玄 / J + 本 T -	RC20	20. 0*14. 0*3. 0mm	
	BC25	17. 6*15. 7*3. 0mm	
通讯模块	BC26	17. 7*15. 8*3. 0mm	
	BC28	22. 2*20. 2*3. 0mm	
通讯+定位模块	BC20	18. 7*16. 0*3. 0mm	
西州 *龙型侯状	RC30	17. 6*15. 7*3. 0mm	
	B1612-U	16. 0*12. 2*2. 4mm	
定位模块	B1612-M	16. 0*12. 2*2. 4mm	
	B1612-Z	16. 0*12. 2*2. 4mm	
WiFi 模块	BC30	24. 0*16. 0*3. 0mm	
	BC31	21. 2*18. 0*2. 6mm	
WIFI+蓝牙模块	BC33	25. 5*18. 0*3. 0mm	
NB-IOT 模块	BC60	18. 0*16. 0*3. 0mm	

BSJ-Link

为深圳市博实结科技有限公司 IOT 事业部所持有商标。

注意

由于产品版本升级或其他原因,本文档内容会不定期进行更新。 除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息 和建议均不构成任何明示或暗示的担保。

版本记录

文档版本	更新日期	说明	
V1. 0. 0	2018-03-20	初始版本	
V1. 0. 1	2018-09-04	更正引脚描述	

目录

简介	2
版本记录	3
表格索引	5
图片索引	5
1 引言	6
1.1. 安全须知	6
2 产品概念	7
2. 1. 主要特性	7
2. 2. 功能框图	8
3 应用接口	9
3.1. 引脚定义	9
3. 2. 引脚描述	10
3.3. 工作模式	12
3.4. 电源供电	12
3.4.1. 引脚介绍	12
3.4.2. 供电参考电路	12
3. 5. 开机/关机	13
3. 5. 1. 开机	13
3. 5. 2. 关机	13
3. 5. 3. 复位模块	14
3.6. 省电技术	15
3.7. 串口	15
3. 7. 1. 主串口	16
3.8. I2C 接口	18
3. 9. SPI 接口	18
3.10. USIM 卡接口	19
3. 11. ADC 模数转换	20
4 天线接口	21
4.1.GSM 天线接口	21
4.1.1. 参考设计	21
5 电气性能及可靠性	22
5. 1. 绝对最大值	22
5. 2. 工作温度	22
5. 3. 电源额定值	22
5. 4. 静电防护	22
6 机械尺寸	23
6. 1. 模块机械尺寸	23
6. 2. 推荐封装	24
7 存储、生产和包装	25
7.1. 存储	25
7.2. 生产焊接	25
7. 3. 包装	26

7.3.1. 载带和卷盘包装	26
----------------	----

表格索引

表	₹ 1: 模块主要性能	7
表	₹ 2: I/O 参数定义	10
表	き 3: 引脚描述	10
表	₹ 4: 工作模式	12
表	き 5: VBAT 引脚和地引脚	12
表	분 6: 复位引脚描述	14
表	き 7: 串口逻辑电平	16
表	₹ 8: 串口引脚定义	16
表	き 9:I2C 引脚定义	18
	き 10: SPI 引脚定义	
表	₹ 11: SIM 卡接口引脚定义	19
表	き 12: ADC 引脚定义	20
表	き 13: ADC 特性	20
表	₹ 14: GSM 天线引脚定义	21
	₹ 15 : 绝对最大值	
	₹ 16: BC60 模块工作温度	
表	き 17: GSM 部分电源额定值	22
图片	片索引	
图] 1. 功能框图	8
图	3 2: 引脚定义图	9
图	3: VBAT 输入参考电路	13
图	I 4: 开机时序	13
图	A SE Procede Const.	
图]5: 关机时序	
	3 5: 关机时序 3 6: 复位电路	14
图		14 14
	6: 复位电路	14 14 18
图	6: 复位电路	14 14 18
图图	6: 复位电路	14 18 18
图 图 图	6: 复位电路	14 18 18 19
图 图 图	6: 复位电路	14 18 19 21
图 图 图 图 图	6: 复位电路 7: 串口三线制连接方式示意图 8: 软件升级连线图 9: 6-pin SIM1 卡座参考电路图 10: 射频参考电路 11: BC60 俯视尺寸图(单位:毫米)	14 18 19 21 23
图 图 图 图 图 图	6: 复位电路 7: 串口三线制连接方式示意图 8: 软件升级连线图 9: 6-pin SIM1 卡座参考电路图 10: 射频参考电路 11: BC60 俯视尺寸图(单位:毫米)	141819212323

1引言

本文档定义了 BC60 模块及其硬件接口规范,电气特性和机械规范。通过此文档的帮助,结合我们的应用手册和用户指导书,客户可以快速应用 BC60 模块于无线应用。

1.1. 安全须知

通过遵循以下安全原则,可确保个人安全并有助于保护产品和工作环境免遭潜在损坏。

道路行驶安全第一! 当你开车时,请勿使用手持移动终端设备,即使其有免提功能。请停车,再打电话!

登机前请关闭移动终端设备。移动终端的无线功能在飞机上禁止开启用 以防止对飞机通讯系统的干扰。忽略该提示项可能会导致飞行安全,甚 至触犯法律。

当在医院或健康看护场所,注意是否有移动终端设备使用限制。RF干扰可能会导致医疗设备运行失常,因此可能需要关闭移动终端设备。

移动终端设备并不保障在任何情况下都能进行有效连接,例如在移动终端设备没有话费或 SIM 无效时。当你在紧急情况下遇见以上情况,请记住使用紧急呼叫,同时保证您的设备开机并且处于信号强度足够的区域。

您的移动终端设备在开机时会接收和发射射频信号。当靠近电视、收音 机、电脑或者其他电子设备时都会产生射频干扰。

请将移动终端设备远离易燃气体。当靠近加油站、油库、化工厂或爆炸作业场所时,请关闭移动终端设备。在任何有潜在爆炸危险的场所操作电子设备都有安全隐患。

2 产品概念

BC60 是一款工业级 NB-IOT 无线模块。完全兼容 3GPP Release13,通过软件升级可支持 3GPP Release14。支持 Band1/2/3/4/5/8/12/13/17/18/19/20/25/26/28/66/70/71

BC60 具有 16. 0mm*18. 0mm*3. 0mm 的超小尺寸,几乎能够满足所有物联网应用需求,包括电表、燃气表、水表、烟感、路灯、井盖、消防栓、农业和环境监测等。

BC60 是贴片式模块,40 个管脚,采用 LCC 封装,并通过焊盘内嵌于各类数传产品应用中,提供了模块与客户主板间丰富的硬件接口。

BC60 模块采用了省电技术,电流功耗在省电模式(PSM)下功耗低于 5uA。

2.1. 主要特性

表 1: 模块主要性能

特色	说明			
/#- rh	VBAT 供电电压范围: 3.4V ~ 4.2V			
供电	典型供电电压: 3.8V			
省电	PSM 下最大耗流: 5uA			
发射功率	$23 \text{dBm} \pm 2 \text{dB}$			
温度范围	● 正常温度范围: -25℃~+75℃			
血及化由 	● 存储温度: -40℃~+85℃			
USIM 卡接口	● 支持 1.8/3.0VUSIM 卡			
	主串口:			
	● 全功能串口			
	● 用于 AT 命令传送、GPRS 数据传输			
串口	● 自适应波特率: 从 4800bps 到 115200bps			
甲口	调试串口:			
	仅用于软件调试和下载			
	辅助串口:			
	仅用于 AT 命令			
物理特性	尺寸: 18.0*16.0*3.0mm			
固件升级	通过调试串口升级			
天线接口特征阻抗	50 欧姆			

2.2.功能框图

下图为 BC60 模块的功能框图,阐述了其主要功能

- 电源管理
- 存储器
- GSM 射频部分
- 接口部分
 - 一电源供电
 - 一开关机接口
 - 一串口
 - 一SPI 接口
 - 一120接口
 - 一SIM 卡接口
 - 一ADC 接口
 - -GSM 射频接口

图 1: 功能框图

3 应用接口

BC60 有 40 个贴片引脚。后续章节将详细阐述 BC60 各组接口的功能。

- 电源供电
- 开/关机
- I/0 唤醒
- 串口
- SIM卡接口
- SPI接口
- I2C 接口

3.1. 引脚定义

图 2: 引脚定义图

3.2. 引脚描述

下表详细描述了 BC60 模块的引脚定义。

表 2: I/0 参数定义

类型	描述
10	输入/输出
DI	数字输入
DO	数字输出
PI	电源输入
P0	电源输出
AI	模拟输入
AO	模拟输出

表 3: 引脚描述

引脚名	引脚号	I/0	描述	备注		
电源						
VBAT	1 0	ΡI	模块供电:	电源必须能够提		
VDAT	1, 2	LI	$3.4V^4.2V$	供 0.5A 的电流		
			输入: RTC 时钟供电			
VRTC	7	10	输出:通过该管脚为备份电	不用则悬空		
			池或电容充电			
VDD	32	Р0	输出 2.8V 用于外部供	不用则悬空		
GND	3, 4,		地			
GND	37, 38, 40		16			
开关机						
PWRKEY	10	DI	拉低PWRKEY开机	低电平有效		
1 WKKE1	10		34 KM WIKKE 17/17/6	(>1S)		
复位脚						
RESET	12	DI	复位模块	低电平有效		
KESE I	12	DI	交世快 场	(>1S)		
唤醒脚						
WAKEUP IN	11	DI	唤醒模块	高电平有效		
"MEUI_IN		DΙ		(>1S)		
WAKEUP_OUT	13	DO	唤醒外设			
				10		

→ 曲 □				
主串口	0.0	D.T.	الله الله الله الله الله الله الله الله	
UART1_RXD	30	DI	接收数据	通讯时若只用到
UART1_TXD	31	DO	发送数据	RXD, TXD 和 GND,
UART1_CTS	28	DO	清除发送	建议其他引脚悬
UART1_RTS	29	DI	请求发送	空。
调试串口				
HST_RXD	26	DO	发送数据	
HST_TXD	27	DI	接收数据	
辅助串口				
RXD	14, 6	DO	发送数据	
TXD	15, 5	DI	接收数据	
SIM卡接口				
UCIM VCC	0.1	DO	сти 上 И н н Г	模块自动选择
USIM_VCC	21	P0	SIM卡供电电压	1.8V 或 3.0V
USIM_CLK	19	DO	SIM卡时钟线	
USIM_RST	18	DO	SIM卡复位线	SIM 卡接口建议
USIM_DATA	20	10	SIM卡数据线	使用 TVS 管进行
USIM_DET	17	DI	SIM 检测线	ESD 防护, 布线不
SIM_GND	16		SIM卡专用地	——— 超过 2cm
SPI 接口				
SPI_SCLK	34	DO	SPI 时钟信号	
SPI_SS	36	DO	SPI 使能信号	
SPI_MOSI	35	DI	SPI 数据信号	
SPI_MISO	33	DO	SPI 数据信号	
天线接口				
RF_ANT	39	10	射频天线接口	50 欧姆特性阻抗
I2C 接口				
I2C_SCL	9	DO	I2C 时钟线	
I2C_SDA	8	10	I2C 数据线	
模数转换				
ADC0	22	ΑI		
ADC1	23	ΑI	模数转换	
其他接口				
GPI01	24	10	I/0	

IO I/0	I0 I/0	
--------	--------	--

3.3. 工作模式

下表简要地叙述了模块的各种工作模式。

表 4: 工作模式

模式	功能				
Λ	模块处于活动状态; 所有功能正常可用, 可以进行数据发送和接收;				
Active	模块在此模式下可切换到 Idle 模式或 PSM 模式。				
Idle	模块处于浅睡眠状态,网络保持连接状态,可接收寻呼消息;				
	模块在此模式下可切换至 Active 模式或者 PSM 模式。				
PSM	模块只有 RTC 工作,处于网络非连接状态,不再接收寻呼消息;				
LOM	模块可通过 AT 命令唤醒或者定时器 T3412 超时后唤醒。				

3.4. 电源供电

3.4.1. 引脚介绍

BC60 有 2 个 VBAT 引脚用于连接外部电源。 如下表格描述了模块的 VBAT 引脚和地引脚。

表 5: VBAT 引脚和地引脚

引脚名	引脚号	描述	最小值	典型值	最大值	单位
VBAT	1, 2	模块供电电源	3. 4	3.8	4. 2	V
GND	3, 4	模块电源地				_

3.4.2. 供电参考电路

电源设计对模块的性能至关重要。BC60 模块必须选择至少能够提供 0.5A 电流能力的电源。电源 VBAT 电压输入范围为 $3.4V^24.2V$ 。请确保即使在突发传输中,输入电压也不低于 3.4V。如果电源电压低于 3.4V,模块功能指标将出现异常。

为了确保更好的电源供电性能,在靠近模块 VBAT 输入端,建议并联一个低 ESR(ESR=0.7 Ω) 的 100 μ F 钽电容,以及 100 μ F、10 μ F(0603 封装)和 33 μ F(0603 封装)滤波电容。原则上,VBAT 走线越长,线宽越宽。VBAT 输入端参考电路如下图所示。

图 3: VBAT 输入参考电路

3.5. 开机/关机

3.5.1. 开机

模块 VBAT 上电后,外部控制 PWRKEY 输入保持低电平,即可实现模块自动开机。

3.5.2. 关机

模块可以通过断开 VBAT 供电来实现关机。

图 5: 关机时序

3.5.3. 复位模块

拉低复位引脚一段时间可使模块复位。复位时间如下表所示。

表 6: 复位引脚描述

引脚名	引脚号	描述	复位时间
RESET	12	复位模块,低电平有效	>1s

开机驱动和按键复位参考电路如下图所示。推荐使用开集驱动电路来控制 RESET 引脚。

图 6: 复位电路

3.6. 省电技术

模块在 PSM 下的最大耗流为 5uA。PSM 主要目的是降低模块功耗,延长电池的供电时间。下图显示了模块在不同模式下的功耗。

图 7: PSM 模式

模块进入 PSM 的过程如下:模块在与网络端建立连接或跟踪区更新 (TAU) 时,会在请求消息中申请进入 PSM, 网络端在应答消息中配置 T3324 定时器数值返给模块,并启动可达定时器。当 T3324 定时器超时后,模块进入 PSM。模块在针对紧急业务进行连网或进行公共数据网络初始化时,不能申请进入 PSM。

当模块处于 PSM 模式时,将关闭大部分连网活动,包括停止搜寻小区消息、小区重选等。但是 T3412 定时器(与周期性 TAU 更新相关)仍然继续工作。

可达定时器超时后,网络端将不能寻呼模块,直到下次模块启动连网程序或 TAU 时,才能发起寻呼。

模块有两种方式退出 PSM,一种是 DTE 主动发送上行数据,模块退出 PSM;另一种是当 T3412 定时器超时后,TAU 启动,模块退出 PSM。

3.7. 串口

模块设有 4 组串口(通用异步收发器): 主串口,调试下载串口,辅助串口 2 个。模块称作 DCE,并按照传统的 DCE-DTE 方式连接。模块支持固定波特率和自适应波特率。自适应波特率支持范围为: 4800bps $^{\sim}115200$ bps。

主串口:

- TXD: 发送数据到 DTE 设备的 RXD 端。
- RXD: 从 DTE 设备 TXD 端接收数据。
- RTS: DTE 请求 DCE 发送数据。

● CTS:清除发送。

调试下载串口:

- HST_TXD:发送数据到外设 COM 口
- HST _RXD:从外设 COM 口接收数据

辅助串口:

- TXD: 发送数据到 DTE 设备的 RXD 端。
- RXD:从 DTE 设备 TXD 端接收数据。

串口逻辑电平如下表所示:

表 7: 串口逻辑电平

参数	最小值	最大值	单位
VIL	0	$0.25 \times VDD_EXT$	V
VIH	$0.75 \times VDD_{EXT}$	VDD_EXT +0.2	V
VOL	0	0.15×VDD_EXT	V
VOH	0.85×VDD_EXT	VDD_EXT	V

表 8: 串口引脚定义

接口	名称	引脚	作用
	RXD	30	发送数据
主串口	TXD	31	接收数据
土中口	CTS	28	清除发送
	RTS	29	DTE 请求发送数据
调试下载串口	HST_RXD	26	接收数据
炯风下 致中口	HST_TXD	27	发送数据
辅助串口	RXD	14, 6	接收数据
相 以 甲口	TXD	15, 5	发送数据

3.7.1. 主串口

3.7.1.1. 主串口特点

- 四线UART接口
- 包括数据线TXD和RXD,硬件流控制线RTS和CTS。
- 用于AT命令传送、GPRS数据传输等。串口支持软件多路复用功能。在集成控制模式

中支持NMEA输出和PMTK命令。

- 支持波特率如下: 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200bps。
- 模块默认为自适应波特率模式。自适应波特率模式支持以下波特率: 4800, 9600, 19200, 38400, 57600, 115200bps。

设置固定波特率或自适应波特率后,请在设置后的波特率下发送 AT 字符串。串口准备好以后,模块会回复 OK。

自适应波特率功能默认打开。在此模式下,当模块接收到主控器或者 PC 发送的 AT 或 at 字符串后,将自动检测并识别出主控制器当前的波特率。自适应波特率功能可使主控器 无需知道当前的波特率就能完成与模块的通信。

为了更好的使用自适应波特率功能,用户需注意以下的使用条件:

● DTE 和 DCE 之间的同步:

自适应波特率功能开启的情况下,在 DCE(模块)上电后,建议等 2° 3s 再发送 AT 字符串。当模块回复 0K,表明 DTE 和 DCE 完成了同步。

在自适应波特率模式下,主控器如果需要 URC 信息,必须先进行同步。否则 URC 信息 将会被省略。

● 自适应波特率操作配置:

- 1) 串口需配置为 8 位数据位, 无奇偶校验位, 1 位停止位(出厂配置)。
 - 2) 只有字符串 AT 或者 at 可以被检测到。(At 或者 aT 无法被识别)。
 - 3) 自适应波特率模式下,如果模块开机后没有先同步,URC 信息如 RDY、+CFUN: 1 以及+CPIN: READY 将不会被上报。
 - 4) DTE 在切换到新的波特率时,会先通过 AT 或者 at 命令设置新波特率。在模块 检测并同步新波特率之前,模块会使用之前的波特率发送 URC 信息。因此 DTE 在切 换到新的波特率时,设备有可能会收到无法识别的字符。
 - 5) 不推荐在固定波特率模式下切换到自适应波特率模式。
 - 6) 在自适应波特率模式下,不推荐切换到软件多路复用模式。

3.7.1.2. 串口参考设计

主串口三线制接线方法,请参考下图:

图 7: 串口三线制连接方式示意图

3.7.1.3. 软件升级

模式通过 HST 串口升级软件。

图 8: 软件升级连线图

3.8. I2C 接口

BC60模块包含I2C接口,AT版本固件不支持,仅OpenCPU版本支持

表 9:I2C 引脚定义

名称	引脚	作用
I2C_SCL	9	I2C时钟线
I2C_SDA	8	I2C数据线

3.9. SPI 接口

BC60模块包含SPI接口,AT版本固件不支持,仅OpenCPU版本支持

表 10: SPI 引脚定义

名称	引脚	作用
SPI_SCLK	34	SPI时钟信号
SPI_SS	36	SPI使能信号
SPI_MOSI	35	SPI数据信号
SPI_MISO	33	SPI数据信号

3.10. USIM 卡接口

SIM卡通过模块内部的电源供电,支持1.8V和3.0V工作电压。

表 11: SIM 卡接口引脚定义

引脚名	引脚序号	描述
USIM_VCC	21	SIM1 卡供电电源。自动侦测 SIM 卡工作电压。精度 3.0V±5% 和 1.8V±5%。最大供电电流 10mA。
USIM_CLK	19	SIM1 时钟脚
USIM_DATA	20	SIM1 数据 I/O 脚
USIM_RST	18	SIM1 RESET 脚
USIM_GND	16	SIM 接地脚
USIM_DET	17	SIM 卡检测脚

下图是一个 6-pin SIM 卡座参考电路图:

图 9: 6-pin SIM1 卡座参考电路图

在 SIM 卡接口的电路设计中,为了确保 SIM 卡的良好的性能和不被损坏,在电路设计中建议遵循以下设计原则:

- SIM 卡座靠近模块摆放,尽量保证 SIM 卡信号线布线不超过 200mm。
- SIM 卡信号线布线远离 RF 线和 VBAT 电源线。
- SIM 卡座的地与模块的 SIM_GND 布线要短而粗。SIM_VDD 与 SIM_GND 布线保证不小于 0.5mm,且 SIM VDD 与 GND 之间的旁路电容不超过 1uF,并且靠近 SIM 卡座摆放。
- 为了防止 SIM_CLK 信号与 SIM_DATA 信号相互串扰,两者布线不能太靠近,并且在两条走线之间增加地屏蔽。此外,SIM_RST 信号也需要接地保护。
- 为了确保良好的 ESD 性能,建议 SIM 卡的引脚增加 TVS 管。选择的 TVS 管寄生电容不大于 50pF; ESD 保护器件尽量靠近 SIM 卡卡座摆放, SIM 卡信号走线应先从 SIM 卡卡座连到 ESD 保护器件再从 ESD 保护器件连到模块。在模块和 SIM 卡之间需要串联 22 欧姆的电阻用以抑制杂散 EMI,增强 ESD 防护。SIM 卡的外围器件应尽量靠近 SIM 卡座摆放。
- 在SIM_DATA,SIM_VDD,SIM_CLK和SIM_RST线上并联33pF电容用于滤除射频干扰。

3.11. ADC 模数转换

BC60 模块提供一路外部 ADC 接口,可使用 AT+QADC 命令来读取 ADC 通道上模拟输入的电压值。为保证采集数据的准确性,防止电源和其他射频信号的干扰,建议 ADC 上下左右包地。如需了解更多关于该 AT 命令的信息,请参考文档[1]。

表 12: ADC 引脚定义

引脚名	引脚序号	描述
ADC	22, 23	模数转换

表 13: ADC 特性

项目	最小	典型	最大	单位
电压范围	1.7	2.0	2. 2	V
ADC 分辨率	00	10	11	bits
ADC 精度	1.69	1.84	2. 24	mV

4天线接口

BC60 包含一个 GSM 天线接口。引脚 39 是 GSM 天线输入端。GSM 天线接口具有 50 欧姆特性阻抗。

4.1. GSM 天线接口

BC60 模块提供了 GSM 天线接口引脚 RF_ANT。

表 14: GSM 天线引脚定义

名称	引脚	作用
GND	37, 38, 40	地
RF_ANT	39	GSM 天线接口

4.1.1. 参考设计

对于天线接口的外围电路设计,为了能够更好地调节射频性能,建议预留匹配电路。天 线连接参考电路如下图所示。

图 10: 射频参考电路

BC60 模块提供了一个 RF 焊盘接口供连接外部天线。从该焊盘到天线连接器间射频走线应是共面波导线或微带线,其特性阻抗要控制在 50 欧姆左右。BC60 模块 RF 接口两侧各有两个接地焊盘,以获取更好的接地性能。此外为了更好的调节射频性能,建议预留 π 匹配电路。

为了最小化 RF 走线或者 RF 线缆损耗,必须谨慎设计。建议线损和天线要满足下述两个表格的要求.

5 电气性能及可靠性

5.1. 绝对最大值

下表所示是模块数字和模拟引脚的电源供电电压电流最大耐受值。

表 15: 绝对最大值

参数	最小	最大	单位
VBAT	3. 4	+4.2	V
电源供电峰值电流	0	0. 25	A

5.2. 工作温度

表 16: BC60 模块工作温度

参数	最小	典型	最大	单位
正常工作温度	-25	+25	+75	$^{\circ}$

5.3. 电源额定值

表 17: GSM 部分电源额定值

参数	描述	条件	最小	典型	最大	单位
VBAT	供电电压	电压必须在该范围之内,包	3. 4	2 0	4 9	V
		括电压跌落, 纹波和尖峰时		3. 0	4. 2	V

5.4. 静电防护

在模块应用中,由于人体静电、微电子间带电摩擦等产生的静电等会通过各种途径放电给模块,因此可能会对模块造成一定的损坏,所以对模块的 ESD 防护十分重要。无论是产品研发、生产组装、测试、还是产品设计过程中,都应采取 ESD 防护措施。如:电路设计时,应在接口处或易受 ESD 点增加 ESD 防护;在生产过程中佩戴防静电手套等。

6 机械尺寸

6.1. 模块机械尺寸

图 11: BC60 俯视尺寸图 (单位: 毫米)

图 12: BC60 底部尺寸图 (单位:毫米)

6. 2. 推荐封装

图 13: BC60 推荐封装(单位: 毫米)

7 存储、生产和包装

7.1. 存储

BC60 以真空密封袋的形式包装。模块的存储需遵循如下条件:

- 1、环境温度低于 40 摄氏度,空气湿度小于 90%情况下,模块可在真空密封袋中存放 12 个月。
 - 2、当真空密封袋打开后,若满足以下条件,模块可直接进行回流焊或其它高温流程:
 - 模块环境温度低于 30 摄氏度,空气湿度小于 60%,工厂在 72 小时以内完成贴片。
 - 空气湿度小于 10%。
 - 3、若模块处于如下条件,需要在贴片前进行烘烤:
 - 当环境温度为 23 摄氏度(允许上下 5 摄氏度的波动)时,湿度指示卡显示湿度 大于 10%。
 - 当真空密封袋打开后,模块环境温度低于 30 摄氏度,空气湿度小于 60%,但工厂 未能在 72 小时以内完成贴片。
 - 当真空密封袋打开后,模块存储空气湿度大于10%。
 - 4、如果模块需要烘烤, 请在 125 摄氏度下(允许上下 5 摄氏度的波动)烘烤 48 小时。

备注: 模块的包装无法承受如此高温(125°C), 在模块烘烤之前,请移除模块包装。如果只需要短时间的烘烤,请参考 IP /JEDE J-STD-033 规范。

7.2. 生产焊接

用印刷刮板在网板上印刷锡膏,使锡膏通过网板开口漏印到 PCB 上,印刷刮板力度需调整合适,为保证模块印膏质量,BC60 模块焊盘部分对应的钢网厚度应为 0.2mm。更多细节,请参阅文档 [12]。

建议最大回流温度为 235° C 至 245° C (SnAg3.0Cu0.5 合金)。绝对最大回流温度为 260° C。为避免模块反复受热招致损伤,建议客户在完成 PCB 板第一面回流焊后再贴 BSJ 通信模块。推荐的炉温曲线图如下图所示:

图 14: 推荐炉温曲线

7.3. 包装

BC60 模块用带静电防护的真空密封袋进行封装。直到模块准备焊接时才可打开包装。

7.3.1. 载带和卷盘包装

图 15: 卷盘尺寸(单位:毫米)