0.1 可测集与测度

定义 0.1 (可测集)

设 $E \subset \mathbb{R}^n$. 若对任意的点集 $T \subset \mathbb{R}^n$, 有

$$m^*(T) = m^*(T \cap E) + m^*(T \cap E^c),$$

则称 E 为 Lebesgue 可测集 (或 m^* -可测集) 或 E 可测, 简称为可测集, 其中 T 称为试验集 (这一定义可测集的等式也称为 Carathéodory 条件). 可测集的全体称为可测集类, 简记为 M.

定理 0.1 (集合可测的充要条件)

设 $E \subset \mathbb{R}^n$,则 $E \in \mathcal{M}$ 的充要条件是对任一点集 $T \subset \mathbb{R}^n$ 且 $m^*(T) < +\infty$,都有

$$m^*(T) \ge m^*(T \cap E) + m^*(T \cap E^c) \tag{1}$$

成立.

注 往后经常利用这个定理的充分性来证明一个集合可测. 但这个定理的必要性要弱于可测集的定义. 证明 必要性由可测集的定义立得. 下证充分性. 由外测度的次可加性可得

$$m^*(T) = m^*(T \cap \mathbb{R}^n) = m^*(T \cap (E \cup E^c)) = m^*((T \cap E) \cap (T \cup E^c)) \le m^*(T \cap E) + m^*(T \cap E^c)$$

总是成立的. 又因为在 $m^*(T) = \infty$ 时 (1) 式总成立, 故对任意的点集 $T \subset \mathbb{R}^n$, 都有

$$m^*(T) = m^*(T \cap E) + m^*(T \cap E^c),$$

定义 0.2 (零测集)

外测度为零的点集称为零测集.

注 显然, $ℝ^n$ 中由单个点组成的点集是零测集. 从而根据外测度的次可加性知道 $ℝ^n$ 中的有理点集 $ℚ^n$ 是零测集.

命题 0.1

- 1. 零测集的任一子集是零测集.
- 2. 零测集一定可测, 即若 $m^*(E) = 0$, 则 $E \in \mathcal{M}$.

证明

- 1. 由外测度的单调性立得.
- 2. 事实上, 此时我们有

$$m^*(T \cap E) + m^*(T \cap E^c) \le m^*(E) + m^*(T) = m^*(T).$$

再由定理 0.1立得.

命题 0.2

若 E_1 ⊂ S, E_2 ⊂ S^c , S ∈ \mathcal{M} , 则有

$$m^*(E_1 \cup E_2) = m^*(E_1) + m^*(E_2).$$

注 这个命题表明: 当两个集合由一个可测集分离开时, 其外测度就有可加性.

证明 事实上, 此时取试验集 $T = E_1 \cup E_2$, 从 S 是可测集的定义得

$$m^*(E_1 \cup E_2) = m^*((E_1 \cup E_2) \cap S) + m^*((E_1 \cup E_2) \cap S^c) = m^*(E_1) + m^*(E_2).$$

推论 0.1

当 E_1 与 E_2 是互不相交的可测集时, 对任一集合 T 有

$$m^*(T \cap (E_1 \cup E_2)) = m^*((T \cap E_1) \cup (T \cap E_2)) = m^*(T \cap E_1) + m^*(T \cap E_2).$$

证明 注意到 $T \cap E_1 \in E_1, T \cap E_2 \in E_1^c$, 而 $E_1 \in \mathcal{M}$, 故由集合运算的性质和命题 0.2可知

$$m^*(T \cap (E_1 \cup E_2)) = m^*((T \cap E_1) \cup (T \cap E_2)) = m^*(T \cap E_1) + m^*(T \cap E_2).$$

推论 0.2

当 E_1, E_2, \cdots, E_n 是互不相交的可测集时,对任一集合 T 有

$$m^*\left(T\cap\bigcup_{k=1}^n E_k\right)=m^*\left(\bigcup_{k=1}^n (T\cap E_k)\right)=\sum_{k=1}^n m^*(T\cap E_k).$$

证明 当n=1 时,结论显然成立. 假设当n=m 时结论成立,考虑n=m+1 的情况. 由于 E_1,E_2,\cdots,E_{m+1} 皆互不相交,因此 $\bigcup_{i=1}^{m} E_k$ 和 E_{m+1} 也互不相交. 于是由集合运算的性质和推论 0.1以及归纳假设可得

$$m^* \left(T \cap \bigcup_{k=1}^{m+1} E_k \right) = m^* \left(\bigcup_{k=1}^{m+1} (T \cap E_k) \right) = m^* \left(T \cap \left(\bigcup_{k=1}^m E_k \cup E_{m+1} \right) \right) = m^* \left(\left(T \cap \bigcup_{k=1}^m E_k \right) \cup (T \cap E_{m+1}) \right)$$

$$= m^* \left(T \cap \bigcup_{k=1}^m E_k \right) + m^* (T \cap E_{m+1}) = \sum_{k=1}^m m^* (T \cap E_k) + m^* (T \cap E_{m+1}) = \sum_{k=1}^{m+1} m^* (T \cap E_k).$$

故由数学归纳法可知结论成立.

定理 0.2 (可测集的性质)

- $(1) \varnothing \in \mathscr{M}.$
- (2) 若 $E \in \mathcal{M}$, 则 $E^c \in \mathcal{M}$.
- (3) 若 $E_1 \in \mathcal{M}$, $E_2 \in \mathcal{M}$, 则 $E_1 \cup E_2$, $E_1 \cap E_2$ 以及 $E_1 \setminus E_2$ 皆属于 \mathcal{M} . (由此知, 可测集任何有限次取交、并运算后所得的集皆为可测集.)
- (4) 若 $E_i \in \mathcal{M}$ $(i=1,2,\cdots)$, 则其并集 $\bigcup_{i=1}^{\infty} E_i$ 也属于 \mathcal{M} . 若进一步有 $E_i \cap E_j = \varnothing$ $(i \neq j)$, 则

$$m^*\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} m^*(E_i),$$

即 m^* 在M上满足**可数可加性**(或称为 σ -可加性).

(5) $\dot{a} E_i \in \mathcal{M} (i = 1, 2, \cdots), \text{ MLX}$ $\dot{b} = 1, 2, \cdots), \text{ MLX}$ $\dot{c} \in \mathcal{M} (i = 1, 2, \cdots), \text{ MLX}$ $\dot{c} \in \mathcal{M} (i = 1, 2, \cdots), \text{ MLX}$

证明

- (1) 显然成立.
- (2) 注意到 $(E^c)^c = E$, 从定义可立即得出结论.
- (3) 对于任一集 $T \subset \mathbb{R}^n$, 根据集合分解 (参阅图 1) 与外测度的次可加性, 我们有

$$\begin{split} m^*(T) &\leq m^*(T \cap (E_1 \cup E_2)) + m^*(T \cap (E_1 \cup E_2)^c) \\ &= m^*(T \cap (E_1 \cup E_2)) + m^*((T \cap E_1^c) \cap E_2^c) \\ &\leq m^*((T \cap E_1) \cap E_2) + m^*((T \cap E_1) \cap E_2^c) \\ &+ m^*((T \cap E_1^c) \cap E_2) + m^*((T \cap E_1^c) \cap E_2^c). \end{split}$$

又由 E_1, E_2 的可测性知,上式右端就是

$$m^*(T \cap E_1) + m^*(T \cap E_1^c) = m^*(T).$$

这说明

$$m^*(T) = m^*(T \cap (E_1 \cup E_2)) + m^*(T \cap (E_1 \cup E_2)^c).$$

也就是说 $E_1 \cup E_2$ 是可测集.

为证 $E_1 \cap E_2$ 是可测集, 只需注意 $E_1 \cap E_2 = (E_1^c \cup E_2^c)^c$ 即可. 又由 $E_1 \setminus E_2 = E_1 \cap E_2^c$ 可知, $E_1 \setminus E_2$ 是可测集. (4) 首先, 设 $E_1, E_2, \dots, E_i, \dots$ 皆互不相交, 并令

$$S = \bigcup_{i=1}^{\infty} E_i$$
, $S_k = \bigcup_{i=1}^{k} E_i$, $k = 1, 2, \cdots$.

由(3) 知每个 S_k 都是可测集,从而对任一集T,我们有

$$\begin{split} m^*(T) &= m^*(T \cap S_k) + m^*(T \cap S_k^c) \\ &= m^* \left(\bigcup_{i=1}^k (T \cap E_i) \right) + m^*(T \cap S_k^c) \\ &= \frac{\# \& \ 0.2}{} \sum_{i=1}^k m^*(T \cap E_i) + m^*(T \cap S_k^c). \end{split}$$

由于 $T \cap S_k^c \supset T \cap S^c$, 可知

$$m^*(T) \ge \sum_{i=1}^k m^*(T \cap E_i) + m^*(T \cap S^c).$$

♦ k → ∞, 就有

$$m^*(T) \ge \sum_{i=1}^{\infty} m^*(T \cap E_i) + m^*(T \cap S^c).$$

再由外测度的次可加性可得

$$m^{*}(T) \geqslant \sum_{i=1}^{\infty} m^{*}(T \cap E_{i}) + m^{*}(T \cap S^{c}) \geqslant m^{*}(\bigcup_{i=1}^{\infty} (T \cap E_{i})) + m^{*}(T \cap S^{c})$$
$$= m^{*}(T \cap \bigcup_{i=1}^{\infty} E_{i}) + m^{*}(T \cap S^{c}) = m^{*}(T \cap S) + m^{*}(T \cap S^{c}).$$

这说明 $S \in \mathcal{M}$. 此外, 在公式

$$m^*(T) \ge \sum_{i=1}^{\infty} m^*(T \cap E_i) + m^*(T \cap S^c)$$

中以 $T \cap S$ 替换T,则又可得

$$m^*(T \cap S) \ge \sum_{i=1}^{\infty} m^*(T \cap E_i).$$

又由外测度的次可加性可知反向不等式总是成立的,因而实际上有

$$m^*(T \cap S) = \sum_{i=1}^{\infty} m^*(T \cap E_i).$$

在这里再取T为全空间 \mathbb{R}^n ,就可证明可数可加性质

$$m^*(S) = m^* \left(\bigcup_{i=1}^{\infty} E_i \right) = \sum_{i=1}^{\infty} m^*(E_i).$$

其次,对于一般的可测集列 $\{E_i\}$,我们令

$$S_1 = E_1, \quad S_k = E_k \setminus \left(\bigcup_{i=1}^{k-1} E_i\right), \quad k \ge 2,$$

则 $\{S_k\}$ 是互不相交的可测集列. 而由 $\bigcup_{i=1}^{\infty} E_i = \bigcup_{k=1}^{\infty} S_k$ 可知, $\bigcup_{i=1}^{\infty} E_i$ 是可测集.

(5) 由 (2) 可知 $E_i^c \in \mathcal{M}$, 再由 (4) 可知 $\bigcup_{i=1}^{\infty} E_i^c$. 于是再利用 (2) 和 De Morgan 定律可得

$$\left(\bigcup_{i=1}^{\infty} E_i^c\right)^c = \bigcap_{i=1}^{\infty} E_i \in \mathcal{M}.$$

推论 0.3

M 是 \mathbb{R}^n 上的一个 σ -代数.

证明 由可测集的性质 (1)(2)(4)立得. □

命题 0.3

证明:Cantor 集 C 是可测的, 并且 m(C) = 0.

证明 开区间是可测的. 由开集构造定理, 我们知道 $\mathbb R$ 中的开集是开区间的可数并, 因此也可测. 因此, 闭集也是可测的. 显然, 每个 C_n 都是闭集. 并且

$$C = \bigcap_{n=1}^{\infty} C_n$$

于是C也是闭集. 因此C是可测的.

下面, 我们用两种方法计算康托集的测度.

法一:根据我们的构造, C_{n+1} 的测度刚好是去掉了 1/3 的 C_n 的测度. 换言之,

$$m(C_{n+1}) = \left(1 - \frac{1}{3}\right) m(C_n) = \frac{2}{3} m(C_n)$$

递归地,对任意 $n \in \mathbb{N}$,我们有

$$m(C_n) = \left(\frac{2}{3}\right)^n m(C_0) = \left(\frac{2}{3}\right)^n$$

注意到

$$m(C_0) = 1 < \infty$$

因此由测度的第二单调收敛定理,

$$m(C) = m\left(\bigcap_{n=1}^{\infty} C_n\right) = \lim_{n \to \infty} m(C_n) = \lim_{n \to \infty} \left(\frac{2}{3}\right)^n = 0$$

此即得证.

法二:设 $n \geq 2$. C_n 比 C_{n-1} 减少了 2^{n-1} 个区间,每个区间长度为 $\frac{1}{3^n}$. 因此 C_n 比 C_{n-1} 减少的长度为

$$2^{n-1}\frac{1}{3^n} = \frac{1}{3} \left(\frac{2}{3}\right)^{n-1}$$

总共减少的长度为

$$\sum_{n=1}^{\infty} \frac{1}{3} \left(\frac{2}{3}\right)^{n-1} = \frac{1}{3} \frac{1}{1 - \frac{2}{3}} = \frac{1}{3} \cdot 3 = 1$$

因此

$$m(C) = 1 - 1 = 0.$$

命题 0.4

 \mathcal{M} 的基数是 2^c .

证明 由命题 0.3可知 Cantor 集是零测集, 不难推断 \mathcal{M} 的基数大于或等于 2^c , 但 \mathcal{M} 的基数又不会超过 2^c , 于是 \mathcal{M} 的基数实际上是 2^c .

定义 0.3 (Lebesgue 测度)

对于可测集 E, 其外测度称为**测度**, 记为 m(E). 这就是通常所说的 \mathbb{R}^n 上的 Lebesgue **测度**.

定义 0.4 (测度)

设 X 是非空集合, \mathscr{A} 是 X 的一些子集构成的 σ - 代数. 若 μ 是定义在 \mathscr{A} 上的一个集合函数, 且满足:

- (i) $0 \le \mu(E) \le +\infty (E \in \mathscr{A});$
- (ii) $\mu(\emptyset) = 0$;
- (iii) μ在 ☑ 上是可数可加的,

则称 μ 是 \mathscr{A} 上的 (非负) **测度**. \mathscr{A} 中的元素称为 (μ) **可测集**, 有序组 (X, \mathscr{A} , μ) 称为**测度空间**.

<u>注</u> 由推论 0.3可知 \mathcal{M} 就是 \mathbb{R}^n 上的一个 σ -代数, 故本节所建立的测度空间就是 (\mathbb{R}^n , \mathcal{M} , m).

定理 0.3 (测度的基本性质)

- (1) 非负性: 若 $E \in \mathcal{M}$,则 $m(E) \ge 0$, $m(\emptyset) = 0$;
- (2) 单调性: 若 $E_1, E_2 \in \mathcal{M}$ 且 $E_1 \subset E_2$, 则 $m(E_1) \leq m(E_2)$, 并且 $m(E_2 \setminus E_1) = m(E_1) m(E_2)$;
- (3) 可数可加性: 若 $E_i \in \mathcal{M}$ $(i = 1, 2, \cdots)$ 且 $E_i \cap E_j = \emptyset$ $(i \neq j)$, 则

$$m\left(\bigcup_{i=1}^{\infty}E_i\right)=\sum_{i=1}^{\infty}m(E_i).$$

证明

- (1) 由 \mathbb{R}^n 中点集的外测度性质立得.
- (2) 由 \mathbb{R}^n 中点集的外测度性质可知 $m(E_1) \leq m(E_2)$. 再根据 E_1 可测可知

$$m^*(E_2) = m^*(E_2 \cap E_1) + m^*(E_2 \cap E_1^c) = m^*(E_1) + m^*(E_2 \setminus E_1).$$

又由可测集的性质可知 $E_2 \setminus E_1$ 可测, 又因为 E_1, E_2 可测, 所以上式等价于

$$m(E_2) = m(E_2 \cap E_1) + m(E_2 \cap E_1^c) = m(E_1) + m(E_2 \setminus E_1).$$

(3) 由可测集的性质立得.

定理 0.4 (递增可测集列的测度运算)

若有递增可测集列 $E_1 \subset E_2 \subset \cdots \subset E_k \cdots$, 则

$$m\left(\lim_{k\to\infty} E_k\right) = \lim_{k\to\infty} m(E_k). \tag{2}$$

证明 若存在 k_0 , 使得 $m(E_{k_0}) = +\infty$, 则

$$m^* \left(\lim_{k \to \infty} E_k \right) = m^* \left(\bigcup_{k=1}^{\infty} E_k \right) = \sum_{k=1}^{\infty} m^*(E_k) \geqslant m^*(E_{k_0}).$$

因此 $m^* \left(\lim_{k \to \infty} E_k \right) = +\infty$. 又由 $\{E_k\}_{k=1}^{\infty}$ 递增可知

$$m^*(E_k) \geqslant m^*(E_{k_0}), \quad \forall k \geqslant k_0.$$

因此 $\lim_{k \to \infty} m^*(E_k) = +\infty$. 故此时定理自然成立.

现在假定对一切 k, 有 $m(E_k) < +\infty$. 由假设 $E_k \in \mathcal{M}$ $(k = 1, 2, \cdots)$,故 E_{k-1} 与 $E_k \setminus E_{k-1}$ 是互不相交的可测集. 由测度的可加性知 $m(E_{k-1}) + m(E_k \setminus E_{k-1}) = m(E_k)$. 因为 $m(E_{k-1})$ 是有限的,所以移项得 $m(E_k \setminus E_{k-1}) = m(E_k) - m(E_{k-1})$. 令 $E_0 = \varnothing$,可得 $\lim_{k \to \infty} E_k = \bigcup_{k \to \infty} E_k = \bigcup_{k \to \infty} (E_k \setminus E_{k-1})$. 再应用测度的可数可加性,我们有

$$m\left(\lim_{k\to\infty} E_k\right) = m\left(\bigcup_{k=1}^{\infty} (E_k \setminus E_{k-1})\right) = \sum_{k=1}^{\infty} (m(E_k) - m(E_{k-1}))$$
$$= \lim_{k\to\infty} \sum_{i=1}^{k} (m(E_i) - m(E_{i-1})) = \lim_{k\to\infty} m(E_k).$$

推论 0.4 (递减可测集列的测度运算)

若有递减可测集列 $E_1 \supset E_2 \supset \cdots \supset E_k \supset \cdots$, 且 $m(E_1) < +\infty$, 则

$$m\left(\lim_{k\to\infty} E_k\right) = \lim_{k\to\infty} m(E_k). \tag{3}$$

证明 由可测集的性质 (5)可知 $\lim_{k\to\infty} E_k$ 是可测集,再由测度的单调性可知 $\lim_{k\to\infty} m(E_k) \le m(E_1) < +\infty$. 因为 $E_1 \setminus E_k \in E_1 \setminus E_{k+1}$, $k=2,3,\cdots$, 所以由可测集的性质 (2)可知 $\{E_1 \setminus E_k\}$ 是递增可测集合列. 于是由递增可测集列的测度运

$$m\left(E_1\setminus \lim_{k\to\infty} E_k\right) = m\left(\lim_{k\to\infty} (E_1\setminus E_k)\right) = \lim_{k\to\infty} m(E_1\setminus E_k).$$

由于 $m(E_1) < +\infty$, 故由测度的基本性质 (2)上式可写为 $m(E_1) - m\left(\lim_{k \to \infty} E_k\right) = m(E_1) - \lim_{k \to \infty} m(E_k)$. 消去 $m(E_1)$, 我们有 $m\left(\lim_{k \to \infty} E_k\right) = \lim_{k \to \infty} m(E_k)$.

命题 0.5

1. 若有可测集列 $\{E_k\}$, 且有 $\sum_{k=1}^{\infty} m(E_k) < +\infty$, 则

$$m\left(\overline{\lim}_{k\to\infty}E_k\right)=0.$$

2. 设 $\{E_k\}$ 是可测集列,则

$$m\left(\underbrace{\lim_{k\to\infty}}_{k\to\infty}E_k\right)\leqslant \underbrace{\lim_{k\to\infty}}_{k\to\infty}m(E_k), \quad m\left(\overline{\lim_{k\to\infty}}E_k\right)\geqslant \overline{\lim_{k\to\infty}}m(E_k).$$

注 也称结论

$$m\left(\underline{\lim_{n\to\infty}}E_n\right)\leqslant \underline{\lim_{n\to\infty}}m(E_n), \quad m\left(\overline{\lim_{n\to\infty}}E_n\right)\geqslant \overline{\lim_{n\to\infty}}m(E_n)$$

为测度论中的 Fatou 引理(见第四章)

证明

1.

$$\begin{split} m\left(\overline{\lim}_{k\to\infty}E_k\right) &= m\left(\bigcap_{k=1}^\infty\bigcup_{i=k}^\infty E_i\right) = m\left(\lim_{k\to\infty}\bigcup_{i=k}^\infty E_i\right) \\ &= \frac{\mbox{\colored}{\mbox{\colored}{\tiny{\colored}}}\lim_{k\to\infty}m\left(\bigcup_{i=k}^\infty E_i\right) \\ &= \frac{\mbox{\colored}{\mbox{\colored}}\lim_{k\to\infty}\min_{i=k}m\left(\bigcup_{i=k}^\infty E_i\right) \\ &= \frac{\mbox{\colored}{\mbox{\colored}}\lim_{k\to\infty}\sum_{i=k}^\infty m(E_i) = 0. \end{split}$$

2. 因为
$$\bigcap_{j=k}^{\infty} E_j \subset E_k$$
, $\bigcup_{i=k}^{\infty} E_i \supset E_k$ $(k=1,2,\cdots)$, 所以有
$$m\left(\bigcap_{j=k}^{\infty} E_j\right) \leqslant m(E_k), \quad m\left(\bigcup_{i=k}^{\infty} E_i\right) \geqslant m(E_k) \quad (k=1,2,\cdots).$$
 令 $k \to \infty$, 则得 $\left(\bigcap_{j=k}^{\infty} E_j \text{ it } k \text{ if } k$