Amendments to the Claims

		l.	(Previously Presented)	A method of scheduling data for
2	transı	mission	over a communication link b	ased on priorities assigned to the data,
	comp	rising:		
4		recei	ving multiple descriptors at a	communication interface device, each of said
	descr	iptors d	lescribing a data portion havir	ng an associated priority;
6		storin	ng said descriptors in a plurali	ty of memories on said communication
	interf	ace dev	vice, wherein each of said men	mories is configured to store one or more of
8	said o	descript	ors describing data associated	l with a predetermined priority;
		main	taining a dynamic weight for	each of said plurality of memories, wherein
0	each	said dy	namic weight corresponds to	a threshold amount of data associated with said
	prede	etermine	ed priority; and	
12		servi	cing said plurality of memoric	es, wherein each said servicing of one of said
	plura	lity of r	nemories comprises:	
4	(a)		receiving a descriptor from	said serviced memory;
	(b)		retrieving data described by	y said received descriptor, wherein the amount
16		of re	trieved data may exceed said	threshold amount;
	(c)		scheduling said data for tra	insmission via the communication link;
8	(d)		determining whether an am	nount of data scheduled during said servicing
		for tr	ansmission via said communi	cation link exceeds said threshold amount of
20		data	corresponding to said dynami	c weight for said serviced memory;
	(e)		repeating states (a) through	(d) for a next descriptor in said serviced
22		mem	ory if said amount of data sch	neduled for transmission during said servicing is
		less t	than said threshold amount of	data; and
24	(f)		if said amount of data sche	duled for transmission exceeds said threshold
		amoi	unt of data, decreasing said th	reshold for a next servicing of said serviced
26		mem	ory.	
		2.	(Previously Presented)	The method of claim 1, wherein said
2	servi	cing fu	rther comprises:	

- (g) determining if said serviced memory contains a descriptor.
- 3. (Previously Presented) The method of claim 1, wherein said 2 servicing further comprises:
- (g) determining whether a dynamic weight for one of said plurality of
 memories has changed.
 - 4. (Cancelled)
- 5. (Previously Presented) The method of claim 1, further comprising:
 2 if any of said dynamic weights changes prior to said next servicing, reinstating the pre-decreased threshold for said next servicing.
- 6. (Original) The method of claim 1, wherein said receiving multiple descriptors comprises:
- determining if a first memory of said plurality of memories contains less than a

 4 predetermined number of descriptors, wherein said first memory is configured to store
 one or more descriptors describing data associated with a first priority;
- issuing a request to a host computer, said request identifying said first memory; receiving a first descriptor describing a first set of data having said first priority.
- 7. (Original) The method of claim 6, wherein said first descriptor 2 comprises one or more of:
- an identifier of a storage area on said host computer containing said first set of data;
- an indicator configured to indicate whether said first set of data is a starting 6 portion of data for a packet; and
- an indicator configured to indicate whether said first set of data is an ending portion of data for a packet.
 - 8. (Original) The method of claim 1, further comprising transmitting

3

2	said data scheduled for transmission via said communication link before the entire				
	contents of a packet comprising said scheduled data are scheduled for transmission.				
	9. (Original) The method of claim 1, wherein each of said dynamic				
2	weights is dynamically modifiable to adjust said threshold amounts of data.				
	10. (Original) The method of claim 1, wherein the communication				
2	interface device is a network interface circuit and the communication link is a network.				
	11. (Previously Presented) A method of scheduling data for				
2	transmission over a communication link by servicing, in turn, multiple memories				
	associated with data having different priorities, comprising:				
4	storing in a first memory a first set of descriptors associated with data having a				
	first priority, wherein said first memory has a first dynamic weight corresponding to a				
6	first threshold amount of data;				
	storing in a second memory a second set of descriptors associated with data				
8	having a second priority, wherein said second memory has a second dynamic weight				
	corresponding to a second threshold amount of data;				
10	in a first servicing turn of said first memory:				
	determining whether one of said first weight and said second weight has				
12	changed;				
	receiving a first descriptor from said first memory;				
14	parsing said first descriptor to identify a first data portion having said first				
	priority;				
16	retrieving said first data portion from a host computer memory;				
	scheduling said first data portion for transmission onto the communication				
18	link; and				
••	determining whether an amount of first priority data exceeding said first				
20	threshold has, during said first servicing turn, been scheduled for transmission;				
	and				

22

if said first threshold has been exceeded, maintaining a first deficit to determine

- how much less than said first threshold of data may be scheduled during a subsequent servicing turn of said first memory, wherein said first deficit is initially proportional to said excess.
- 12. (Previously Presented) The method of claim 11, further comprising,
 2 if said amount of first priority data scheduled for transmission during said first servicing turn exceeds said first threshold: decreasing said first threshold for a subsequent servicing
 4 of said first memory.
- 13. (Previously Presented) The method of claim 11, wherein said first deficit is set to zero if one of said first weight and said second weight has changed.
- 14. (Original) The method of claim 11, wherein said first servicing turn further comprises: determining whether said first memory is empty.
- 15. (Original) The method of claim 14, wherein said first servicing turn is
 terminated if, during said first servicing turn, either said first memory is determined to be empty or said amount of first priority data scheduled for transmission exceeds said first
 threshold.
- 16. (Original) The method of claim 11, wherein said determining 2 comprises:
- incrementing a data counter for each unit of first priority data scheduled during said first servicing turn; and

comparing said data counter to said first threshold.

- 17. (Original) The method of claim 16, wherein said data unit is a byte.
- 18. (Original) The method of claim 11, further comprising servicing said second memory in a second turn, wherein said servicing said second memory comprises: until at least one of:

4	said second memory is determined to be empty;
	one of said first weight and said second weight change; and
6	an amount of data scheduled during said second turn for transmission over
	the communication link exceeds the lesser of said second threshold and said
8	second threshold minus a second deficit, wherein said second deficit corresponds
	to an amount of data by which said second threshold was exceeded in one or more
10	earlier servicing turns of said second memory;
	repeatedly:
12	receiving from said second memory a second descriptor describing a
	second set of data having said second priority;
14	retrieving said second set of data;
	scheduling said second set of data for transmission via the communication
16	link; and
	tracking an amount of data scheduled during said second turn by adding

19. (Original) The method of claim 18, wherein:

during said second turn.

18

- said first memory corresponds to data having a highest priority; and if one of said first servicing turn and said second servicing turn terminates
- 4 because one of said first dynamic weight and said second dynamic weight change, said first memory is the next memory serviced.

the size of said second set of data to a measure of data previously scheduled

- 20. (Original) The method of claim 11, wherein the method is performed in a network interface circuit and the communication link is a network.
 - 21. (Original) The method of claim 11, wherein said first dynamic weight 2 is approximately equal to a maximum packet size of the communication link.
 - 22. (Original) The method of claim 11, wherein said second dynamic weight is approximately equal to one.

23. (Cancelled)

	24.	(Previously Presented)	A computer readable storage medium
2	storing instruc	ctions that, when executed b	y a computer, cause the computer to perform a
	method of sch	eduling data for transmissio	n over a communication link by servicing, in
4	turn, multiple	memories associated with d	ata having different priorities, the method
	comprising:		
6	storing	g in a first memory a first set	t of descriptors associated with data having a
	first priority,	wherein said first memory h	as a first dynamic weight corresponding to a
8	first threshold	amount of data;	
	storing	g in a second memory a seco	and set of descriptors associated with data
0	having a secon	nd priority, wherein said sec	ond memory has a second dynamic weight
	corresponding	g to a second threshold amou	int of data;
12	in a fir	rst servicing turn of said firs	t memory:
		determining whether one o	f said first weight and said second weight has
14	change	ed;	
		receiving a first descriptor	from said first memory;
16		parsing said first descriptor	r to identify a first data portion having said first
	priorit	y;	
18		retrieving said first data po	ortion from a host computer memory;
		scheduling said first data p	ortion for transmission onto the communication
20	link; a		
			nount of first priority data exceeding said first
22		old has, during said first ser	vicing turn, been scheduled for transmission;
	and		
24			eeded, maintaining a first deficit to determine
			f data may be scheduled during a subsequent
26	,	of said first memory, where	ein said first deficit is initially proportional to
	said excess.		

	25. (Previously Presented) A communication interface device for
2	transmitting prioritized data over a communication link, comprising:
	a first memory configured to store a descriptor corresponding to a first packet
4	having a first priority, said first memory being associated with a first weight, wherein
	said first weight corresponds to a first preferred amount of data to be scheduled, during a
6	first servicing turn of said first memory, for transmission over a communication link;
	a second memory configured to store a descriptor corresponding to a second
8	packet having a second priority, said second memory being associated with a second
	weight, wherein said second weight corresponds to a second preferred amount of data to
0	be scheduled, during a first servicing turn of said second memory, for transmission over
	said communication link;
12	a transmission queue into which one of said first packet and said second packet is
	placed for transmission over said communication link; and
14	an arbiter configured to:
	monitor a first amount of data retrieved during said first servicing turn of
16	said first memory and a second amount of data retrieved during said first
	servicing turn of said second memory;
18	if said amount of data retrieved during said first servicing turn of said first
	memory exceeds said first preferred amount of data, decrease said first preferred
20	amount of data by a deficit between said amount of data and said first preferred
	amount of data; and
22	if said amount of data retrieved during said first servicing turn of said
	second memory exceeds said second preferred amount of data, decrease said
24	second preferred amount of data by a deficit between said amount of data and said
	second preferred amount of data;
26	wherein said first weight and said second weight are dynamically adjustable; and
	wherein during said first servicing turn, more than said preferred amounts of data
28	may be retrieved.

comprising a loader configured to retrieve said first packet for placing in said

26.

2

(Original)

SUN-P3992 09/510,905 8

The communication interface device of claim 25, further

transmission queue during said servicing turn of said first memory.

- 27. (Original) The communication interface device of claim 26, wherein
 2 said loader is further configured to load a next descriptor for storage in one of said first memory and said second memory.
- 28. (Original) The communication interface device of claim 25, wherein said arbiter is further configured to determine whether an amount of data placed in said transmission queue during said first servicing turn of said first memory exceeds said first
- 4 preferred amount of data to be placed in said transmission queue during said first servicing turn of said first memory.

29. (Cancelled)

- 30. (Previously Presented) The communication interface device of claim 25, wherein said deficit corresponds to an amount of data, beyond said preferred amount of data, that is placed in said transmission queue during said first servicing turn.
- 31. (Original) The communication interface device of claim 26, further
 comprising a multiplexer configured to pass said descriptor corresponding to said first packet to said arbiter and said loader during said first servicing turn of one of said first
 memory and said second memory.
- 32. (Previously Presented) A computer readable storage medium

 storing instructions that, when executed by a computer, cause the computer to perform a method of scheduling data for transmission over a communication link based on priorities assigned to the data, the method comprising:
- receiving multiple descriptors at a communication interface device, each of said descriptors describing a data portion having an associated priority;
- storing said descriptors in a plurality of memories on said communication

 8 interface device, wherein each of said memories is configured to store one or more of

	said (descriptors describing data associated with a predetermined priority;	
10	maintaining a dynamic weight for each of said plurality of memories, wherein		
	each	said dynamic weight corresponds to a threshold amount of data associated with said	
12	predetermined priority; and		
		servicing said plurality of memories, wherein each said servicing of one of said	
14	plurality of memories comprises:		
	(a)	receiving a descriptor from said serviced memory;	
16	(b)	retrieving data described by said received descriptor, wherein the amount	
		of retrieved data may exceed said threshold amount;	
18	(c)	scheduling said data for transmission via the communication link;	
	(d)	determining whether an amount of data scheduled during said servicing	
20		for transmission via said communication link exceeds said threshold amount of	
		data corresponding to said dynamic weight for said serviced memory;	
22	(e)	repeating states (a) through (d) for a next descriptor in said serviced	
		memory if said amount of data scheduled for transmission during said servicing is	
24		less than said threshold amount of data; and	

(f)

memory.

26

if said amount of data scheduled for transmission exceeds said threshold

amount of data, decreasing said threshold for a next servicing of said serviced