ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

▶ Recall the definition of convergence:

- ► Recall the definition of convergence:
- ▶ Definition 15.2: A sequence of real numbers $\{a_n\}_{n\in\mathbb{N}}$ is said to be convergent if there exists a real number x, where for every $\epsilon>0$, there exists a natural number K (depending upon ϵ) such that

$$|a_n-x|<\epsilon, \quad \forall n\geq K.$$

In such a case, $\{a_n\}_{n\in\mathbb{N}}$ is said to converge to x, and x is said to be the limit of $\{a_n\}_{n\in\mathbb{N}}$.

▶ Notation: If $\{a_n\}_{n\in\mathbb{N}}$ converges to x, we write

$$\lim_{n\to\infty}a_n=x.$$

- Recall the definition of convergence:
- ▶ Definition 15.2: A sequence of real numbers $\{a_n\}_{n\in\mathbb{N}}$ is said to be convergent if there exists a real number x, where for every $\epsilon > 0$, there exists a natural number K (depending upon ϵ) such that

$$|a_n - x| < \epsilon, \quad \forall n \ge K.$$

In such a case, $\{a_n\}_{n\in\mathbb{N}}$ is said to converge to x, and x is said to be the limit of $\{a_n\}_{n\in\mathbb{N}}$.

Notation: If $\{a_n\}_{n\in\mathbb{N}}$ converges to x, we write

$$\lim_{n\to\infty}a_n=x.$$

A sequence $\{a_n\}_{n\in\mathbb{N}}$ is said to be bounded if there exists positive real number M such that

$$|a_n| \leq M, \ \forall n \in \mathbb{N}.$$

- Recall the definition of convergence:
- ▶ Definition 15.2: A sequence of real numbers $\{a_n\}_{n\in\mathbb{N}}$ is said to be convergent if there exists a real number x, where for every $\epsilon > 0$, there exists a natural number K (depending upon ϵ) such that

$$|a_n - x| < \epsilon, \quad \forall n \ge K.$$

In such a case, $\{a_n\}_{n\in\mathbb{N}}$ is said to converge to x, and x is said to be the limit of $\{a_n\}_{n\in\mathbb{N}}$.

▶ Notation: If $\{a_n\}_{n\in\mathbb{N}}$ converges to x, we write

$$\lim_{n\to\infty}a_n=x.$$

A sequence $\{a_n\}_{n\in\mathbb{N}}$ is said to be bounded if there exists positive real number M such that

$$|a_n| \leq M, \ \forall n \in \mathbb{N}.$$

► We have seen that every convergent sequence is bounded but the converse is not true.

▶ Theorem 16.1: Suppose $\{a_n\}_{n\in\mathbb{N}}$ is a sequence converging to 0 and $\{b_n\}_{n\in\mathbb{N}}$ is a bounded sequence then $\{a_nb_n\}_{n\in\mathbb{N}}$ converges to 0.

- ▶ Theorem 16.1: Suppose $\{a_n\}_{n\in\mathbb{N}}$ is a sequence converging to 0 and $\{b_n\}_{n\in\mathbb{N}}$ is a bounded sequence then $\{a_nb_n\}_{n\in\mathbb{N}}$ converges to 0.
- ▶ Proof: As $\{b_n\}_{n\in\mathbb{N}}$ is bounded, there exists M>0 such that

$$|b_n| \leq M, \quad \forall n \in \mathbb{N}.$$

- ▶ Theorem 16.1: Suppose $\{a_n\}_{n\in\mathbb{N}}$ is a sequence converging to 0 and $\{b_n\}_{n\in\mathbb{N}}$ is a bounded sequence then $\{a_nb_n\}_{n\in\mathbb{N}}$ converges to 0.
- ▶ Proof: As $\{b_n\}_{n\in\mathbb{N}}$ is bounded, there exists M>0 such that

$$|b_n| \leq M, \quad \forall n \in \mathbb{N}.$$

▶ For $\epsilon > 0$, take $\epsilon' = \frac{\epsilon}{M}$.

- ▶ Theorem 16.1: Suppose $\{a_n\}_{n\in\mathbb{N}}$ is a sequence converging to 0 and $\{b_n\}_{n\in\mathbb{N}}$ is a bounded sequence then $\{a_nb_n\}_{n\in\mathbb{N}}$ converges to 0.
- ▶ Proof: As $\{b_n\}_{n\in\mathbb{N}}$ is bounded, there exists M>0 such that

$$|b_n| \leq M, \quad \forall n \in \mathbb{N}.$$

- ▶ For $\epsilon > 0$, take $\epsilon' = \frac{\epsilon}{M}$.
- As $\epsilon' > 0$, and $\{a_n\}_{n \in \mathbb{N}}$ converges to 0, there exists a natural number K such that

$$|a_n - 0| < \epsilon', \quad \forall n \ge K.$$

- ▶ Theorem 16.1: Suppose $\{a_n\}_{n\in\mathbb{N}}$ is a sequence converging to 0 and $\{b_n\}_{n\in\mathbb{N}}$ is a bounded sequence then $\{a_nb_n\}_{n\in\mathbb{N}}$ converges to 0.
- ▶ Proof: As $\{b_n\}_{n\in\mathbb{N}}$ is bounded, there exists M>0 such that

$$|b_n| \leq M, \quad \forall n \in \mathbb{N}.$$

- ▶ For $\epsilon > 0$, take $\epsilon' = \frac{\epsilon}{M}$.
- As $\epsilon' > 0$, and $\{a_n\}_{n \in \mathbb{N}}$ converges to 0, there exists a natural number K such that

$$|a_n-0|<\epsilon', \ \forall n\geq K.$$

Now for $n \geq K$,

$$|a_nb_n-0|=|a_nb_n|=|a_n||b_n|\leq |a_n|M<\epsilon'.M=\epsilon.$$

- ▶ Theorem 16.1: Suppose $\{a_n\}_{n\in\mathbb{N}}$ is a sequence converging to 0 and $\{b_n\}_{n\in\mathbb{N}}$ is a bounded sequence then $\{a_nb_n\}_{n\in\mathbb{N}}$ converges to 0.
- ▶ Proof: As $\{b_n\}_{n\in\mathbb{N}}$ is bounded, there exists M>0 such that

$$|b_n| \leq M, \quad \forall n \in \mathbb{N}.$$

- ▶ For $\epsilon > 0$, take $\epsilon' = \frac{\epsilon}{M}$.
- As $\epsilon' > 0$, and $\{a_n\}_{n \in \mathbb{N}}$ converges to 0, there exists a natural number K such that

$$|a_n-0|<\epsilon', \ \forall n\geq K.$$

▶ Now for $n \ge K$,

$$|a_nb_n-0|=|a_nb_n|=|a_n||b_n|\leq |a_n|M<\epsilon'.M=\epsilon.$$

▶ Hence $\{a_nb_n\}_{n\in\mathbb{N}}$ converges to 0.

- ▶ Theorem 16.1: Suppose $\{a_n\}_{n\in\mathbb{N}}$ is a sequence converging to 0 and $\{b_n\}_{n\in\mathbb{N}}$ is a bounded sequence then $\{a_nb_n\}_{n\in\mathbb{N}}$ converges to 0.
- ▶ Proof: As $\{b_n\}_{n\in\mathbb{N}}$ is bounded, there exists M>0 such that

$$|b_n| \leq M, \quad \forall n \in \mathbb{N}.$$

- ▶ For $\epsilon > 0$, take $\epsilon' = \frac{\epsilon}{M}$.
- As $\epsilon' > 0$, and $\{a_n\}_{n \in \mathbb{N}}$ converges to 0, there exists a natural number K such that

$$|a_n-0|<\epsilon', \ \forall n\geq K.$$

▶ Now for $n \ge K$,

$$|a_nb_n-0|=|a_nb_n|=|a_n||b_n|\leq |a_n|M<\epsilon'.M=\epsilon.$$

- ▶ Hence $\{a_nb_n\}_{n\in\mathbb{N}}$ converges to 0.
- ▶ Taking $a_n = \frac{1}{n}$ and $b_n = n$, we see that the result may not be true when $\{b_n\}_{n \in \mathbb{N}}$ is not bounded.

▶ Theorem 16.2: Suppose $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ are sequences converging to x, y respectively.

- ▶ Theorem 16.2: Suppose $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ are sequences converging to x, y respectively.
- ▶ (a) For $c \in \mathbb{R}$, $\{ca_n\}_{n \in \mathbb{N}}$ converges to cx.

- ► Theorem 16.2: Suppose $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ are sequences converging to x,y respectively.
- ▶ (a) For $c \in \mathbb{R}$, $\{ca_n\}_{n \in \mathbb{N}}$ converges to cx.
- ▶ (b) $\{a_n + b_n\}_{n \in \mathbb{N}}$ converges to x + y.

- ► Theorem 16.2: Suppose $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ are sequences converging to x,y respectively.
- ▶ (a) For $c \in \mathbb{R}$, $\{ca_n\}_{n \in \mathbb{N}}$ converges to cx.
- ▶ (b) $\{a_n + b_n\}_{n \in \mathbb{N}}$ converges to x + y.
- ▶ (c) For $c, d \in \mathbb{R}$, $\{ca_n + db_n\}_{n \in \mathbb{N}}$ converges to cx + dy.
- ▶ (d) $\{a_nb_n\}_{n\in\mathbb{N}}$ converges to xy.

- ▶ Theorem 16.2: Suppose $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ are sequences converging to x, y respectively.
- ▶ (a) For $c \in \mathbb{R}$, $\{ca_n\}_{n \in \mathbb{N}}$ converges to cx.
- ▶ (b) $\{a_n + b_n\}_{n \in \mathbb{N}}$ converges to x + y.
- ▶ (c) For $c, d \in \mathbb{R}$, $\{ca_n + db_n\}_{n \in \mathbb{N}}$ converges to cx + dy.
- ▶ (d) $\{a_nb_n\}_{n\in\mathbb{N}}$ converges to xy.
- ▶ (e) If $b_n \neq 0$ for every $n \in \mathbb{N}$ and $y \neq 0$ then $\{\frac{a_n}{b_n}\}_{n \in \mathbb{N}}$ converges to $\frac{x}{y}$.

Proof: (a) Clearly the result is true if c=0. So assume that $c \neq 0$.

- Proof: (a) Clearly the result is true if c=0. So assume that $c \neq 0$.
- ▶ Now for $\epsilon > 0$, take $\epsilon' = \frac{\epsilon}{|c|} > 0$.

- Proof: (a) Clearly the result is true if c = 0. So assume that $c \neq 0$.
- Now for $\epsilon > 0$, take $\epsilon' = \frac{\epsilon}{|c|} > 0$.
- ▶ As $\{a_n\}_{n\in\mathbb{N}}$ converges to x, there exists $K \in \mathbb{N}$ such that

$$|a_n-x|<\epsilon', \ \forall n\geq K.$$

- Proof: (a) Clearly the result is true if c = 0. So assume that $c \neq 0$.
- Now for $\epsilon > 0$, take $\epsilon' = \frac{\epsilon}{|c|} > 0$.
- ▶ As $\{a_n\}_{n\in\mathbb{N}}$ converges to x, there exists $K \in \mathbb{N}$ such that

$$|a_n-x|<\epsilon', \ \forall n\geq K.$$

▶ Then for $n \ge K$,

$$|ca_n - cx| = |c||a_n - x| < |c|\epsilon' = \epsilon.$$

- Proof: (a) Clearly the result is true if c = 0. So assume that $c \neq 0$.
- Now for $\epsilon > 0$, take $\epsilon' = \frac{\epsilon}{|c|} > 0$.
- ▶ As $\{a_n\}_{n\in\mathbb{N}}$ converges to x, there exists $K \in \mathbb{N}$ such that

$$|a_n-x|<\epsilon', \ \forall n\geq K.$$

▶ Then for $n \ge K$,

$$|ca_n - cx| = |c||a_n - x| < |c|\epsilon' = \epsilon.$$

▶ Hence $\{ca_n\}_{n\in\mathbb{N}}$ converges to cx.

▶ For $\epsilon > 0$, we have $\frac{\epsilon}{2} > 0$. Choose K_1 such that

$$|a_n-x|<rac{\epsilon}{2},\ \forall n\geq K_1.$$

▶ For $\epsilon > 0$, we have $\frac{\epsilon}{2} > 0$. Choose K_1 such that

$$|a_n-x|<rac{\epsilon}{2},\ \ \forall n\geq K_1.$$

► Choose K₂ such that

$$|b_n-y|<\frac{\epsilon}{2},\ \forall n\geq K_2.$$

▶ For $\epsilon > 0$, we have $\frac{\epsilon}{2} > 0$. Choose K_1 such that

$$|a_n-x|<rac{\epsilon}{2},\ \ \forall n\geq K_1.$$

ightharpoonup Choose K_2 such that

$$|b_n-y|<rac{\epsilon}{2},\ \ \forall n\geq K_2.$$

► Take $K = \max\{K_1, K_2\}$.

▶ For $\epsilon > 0$, we have $\frac{\epsilon}{2} > 0$. Choose K_1 such that

$$|a_n-x|<\frac{\epsilon}{2},\ \forall n\geq K_1.$$

ightharpoonup Choose K_2 such that

$$|b_n-y|<rac{\epsilon}{2},\ \ \forall n\geq K_2.$$

- ▶ Take $K = \max\{K_1, K_2\}$.
- ▶ Then for $n \ge K$,

$$|(a_n+b_n)-(x+y)|\leq |a_n-x|+|b_n-y|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon.$$

▶ For $\epsilon > 0$, we have $\frac{\epsilon}{2} > 0$. Choose K_1 such that

$$|a_n-x|<\frac{\epsilon}{2},\ \forall n\geq K_1.$$

ightharpoonup Choose K_2 such that

$$|b_n-y|<rac{\epsilon}{2},\ \ \forall n\geq K_2.$$

- ▶ Take $K = \max\{K_1, K_2\}$.
- ▶ Then for $n \ge K$,

$$|(a_n+b_n)-(x+y)|\leq |a_n-x|+|b_n-y|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon.$$

▶ Hence $\{a_n + b_n\}_{n \in \mathbb{N}}$ converges to x + y.

▶ For $\epsilon > 0$, we have $\frac{\epsilon}{2} > 0$. Choose K_1 such that

$$|a_n-x|<rac{\epsilon}{2}, \ \forall n\geq K_1.$$

ightharpoonup Choose K_2 such that

$$|b_n-y|<\frac{\epsilon}{2}, \ \forall n\geq K_2.$$

- ▶ Then for $n \ge K$,

$$|(a_n+b_n)-(x+y)|\leq |a_n-x|+|b_n-y|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon.$$

- ▶ Hence $\{a_n + b_n\}_{n \in \mathbb{N}}$ converges to x + y.
- Clearly (c) follows from (a) and (b).

Now we need to estimate $|a_nb_n - xy|$.

- Now we need to estimate $|a_nb_n xy|$.
- By triangle inequality,

$$|a_nb_n - xy| \leq |a_nb_n - xb_n + xb_n - xy|$$

$$\leq |(a_n - x)b_n| + |x(b_n - y)|$$

$$\leq |a_n - x||b_n| + |x||b_n - y|.$$

- Now we need to estimate $|a_nb_n xy|$.
- By triangle inequality,

$$|a_nb_n - xy| \leq |a_nb_n - xb_n + xb_n - xy|$$

$$\leq |(a_n - x)b_n| + |x(b_n - y)|$$

$$\leq |a_n - x||b_n| + |x||b_n - y|.$$

As $\{b_n\}_{n\in\mathbb{N}}$ is convergent it is a bounded sequence. Hence there exists M>0 such that $|b_n|\leq M$ for all n.

- Now we need to estimate $|a_nb_n xy|$.
- By triangle inequality,

$$|a_nb_n - xy| \leq |a_nb_n - xb_n + xb_n - xy|$$

$$\leq |(a_n - x)b_n| + |x(b_n - y)|$$

$$\leq |a_n - x||b_n| + |x||b_n - y|.$$

- As $\{b_n\}_{n\in\mathbb{N}}$ is convergent it is a bounded sequence. Hence there exists M>0 such that $|b_n|\leq M$ for all n.
- ▶ For $\epsilon > 0$, choose $K_1 \in \mathbb{N}$ such that

$$|a_n-x|<rac{\epsilon}{2M},\ \ \forall n\geq K_1.$$

- Now we need to estimate $|a_nb_n xy|$.
- By triangle inequality,

$$|a_nb_n - xy| \leq |a_nb_n - xb_n + xb_n - xy|$$

$$\leq |(a_n - x)b_n| + |x(b_n - y)|$$

$$\leq |a_n - x||b_n| + |x||b_n - y|.$$

- As $\{b_n\}_{n\in\mathbb{N}}$ is convergent it is a bounded sequence. Hence there exists M>0 such that $|b_n|\leq M$ for all n.
- ▶ For $\epsilon > 0$, choose $K_1 \in \mathbb{N}$ such that

$$|a_n-x|<rac{\epsilon}{2M},\ \ \forall n\geq K_1.$$

▶ Choose $K_2 \in \mathbb{N}$ such that

$$|x||b_n-y|<rac{\epsilon}{2}, \ \forall n\geq K_2.$$

- Now we need to estimate $|a_nb_n xy|$.
- By triangle inequality,

$$|a_nb_n - xy| \leq |a_nb_n - xb_n + xb_n - xy|$$

$$\leq |(a_n - x)b_n| + |x(b_n - y)|$$

$$\leq |a_n - x||b_n| + |x||b_n - y|.$$

- As $\{b_n\}_{n\in\mathbb{N}}$ is convergent it is a bounded sequence. Hence there exists M>0 such that $|b_n|\leq M$ for all n.
- ▶ For $\epsilon > 0$, choose $K_1 \in \mathbb{N}$ such that

$$|a_n-x|<rac{\epsilon}{2M}, \ \forall n\geq K_1.$$

ightharpoonup Choose $K_2 \in \mathbb{N}$ such that

$$|x||b_n-y|<rac{\epsilon}{2}, \ \forall n\geq K_2.$$

If $x \neq 0$, this can be done by taking $\epsilon' = \frac{\epsilon}{2|x|}$, and using convergence of $\{b_n\}$. If x = 0, the inequality is trivially true and we can simply take $K_2 = 1$.

Continuation

Now for $n \ge \max\{K_1, K_2\}$

$$|a_nb_n - xy| \leq |a_n - x||b_n| + |x||b_n - y|$$

$$< \frac{\epsilon}{2M} \cdot M + \frac{\epsilon}{2}$$

$$= \epsilon.$$

Continuation

Now for $n \ge \max\{K_1, K_2\}$

$$|a_nb_n - xy| \le |a_n - x||b_n| + |x||b_n - y|$$

 $< \frac{\epsilon}{2M} \cdot M + \frac{\epsilon}{2}$
 $= \epsilon.$

▶ Hence $\{a_nb_n\}_{n\in\mathbb{N}}$ converges to xy.

▶ Clearly (e) follows from (d) if we show that $\frac{1}{b_n}$ converges to $\frac{1}{y}$. (Note that here we are assuming that $b_n \neq 0$ for every n and $y \neq 0$.)

- ▶ Clearly (e) follows from (d) if we show that $\frac{1}{b_n}$ converges to $\frac{1}{y}$. (Note that here we are assuming that $b_n \neq 0$ for every n and $y \neq 0$.)
- Now we need to estimate,

$$\left|\frac{1}{b_n} - \frac{1}{y}\right| = \left|\frac{y - b_n}{b_n y}\right| = \frac{|y - b_n|}{|b_n y|}.$$

- ► Clearly (e) follows from (d) if we show that $\frac{1}{b_n}$ converges to $\frac{1}{y}$. (Note that here we are assuming that $b_n \neq 0$ for every n and $y \neq 0$.)
- Now we need to estimate,

$$\left|\frac{1}{b_n} - \frac{1}{y}\right| = \left|\frac{y - b_n}{b_n y}\right| = \frac{|y - b_n|}{|b_n y|}.$$

▶ Claim: There exists M > 0 such that $\frac{1}{|b_n|} \le M$ for all $n \in \mathbb{N}$.

- ▶ Clearly (e) follows from (d) if we show that $\frac{1}{b_n}$ converges to $\frac{1}{y}$. (Note that here we are assuming that $b_n \neq 0$ for every n and $y \neq 0$.)
- ► Now we need to estimate,

$$\left|\frac{1}{b_n} - \frac{1}{y}\right| = \left|\frac{y - b_n}{b_n y}\right| = \frac{|y - b_n|}{|b_n y|}.$$

- ▶ Claim: There exists M > 0 such that $\frac{1}{|b_n|} \le M$ for all $n \in \mathbb{N}$.
- ▶ Once we prove this claim, for $\epsilon > 0$, take $\epsilon' = \frac{\epsilon |y|}{M}$, and choose $K \in \mathbb{N}$ such that

$$|b_n - y| < \epsilon', \quad \forall n \ge K.$$

- ► Clearly (e) follows from (d) if we show that $\frac{1}{b_n}$ converges to $\frac{1}{y}$. (Note that here we are assuming that $b_n \neq 0$ for every n and $y \neq 0$.)
- Now we need to estimate,

$$\left|\frac{1}{b_n} - \frac{1}{y}\right| = \left|\frac{y - b_n}{b_n y}\right| = \frac{|y - b_n|}{|b_n y|}.$$

- ▶ Claim: There exists M > 0 such that $\frac{1}{|b_n|} \le M$ for all $n \in \mathbb{N}$.
- ▶ Once we prove this claim, for $\epsilon > 0$, take $\epsilon' = \frac{\epsilon |y|}{M}$, and choose $K \in \mathbb{N}$ such that

$$|b_n - y| < \epsilon', \quad \forall n \geq K.$$

▶ Then for $n \ge K$,

$$\left|\frac{1}{b_n} - \frac{1}{y}\right| = \frac{|y - b_n|}{|b_n y|} < \frac{\epsilon'}{|b_n||y|} \le \frac{\epsilon}{M|b_n|} \le \epsilon.$$

- ▶ Clearly (e) follows from (d) if we show that $\frac{1}{b_n}$ converges to $\frac{1}{y}$. (Note that here we are assuming that $b_n \neq 0$ for every n and $y \neq 0$.)
- Now we need to estimate,

$$\left|\frac{1}{b_n} - \frac{1}{y}\right| = \left|\frac{y - b_n}{b_n y}\right| = \frac{|y - b_n|}{|b_n y|}.$$

- ▶ Claim: There exists M > 0 such that $\frac{1}{|b_n|} \le M$ for all $n \in \mathbb{N}$.
- ▶ Once we prove this claim, for $\epsilon > 0$, take $\epsilon' = \frac{\epsilon |y|}{M}$, and choose $K \in \mathbb{N}$ such that

$$|b_n - y| < \epsilon', \quad \forall n \geq K.$$

▶ Then for $n \ge K$,

$$\left|\frac{1}{b_n} - \frac{1}{y}\right| = \frac{|y - b_n|}{|b_n y|} < \frac{\epsilon'}{|b_n||y|} \le \frac{\epsilon}{M|b_n|} \le \epsilon.$$

► This shows that $\frac{1}{b_0}$ converges to $\frac{1}{v}$.

▶ Claim: There exists M > 0 such that $\frac{1}{|b_n|} \leq M$ for all $n \in \mathbb{N}$.

- ▶ Claim: There exists M > 0 such that $\frac{1}{|b_n|} \le M$ for all $n \in \mathbb{N}$.
- ▶ Proof of claim: Recall that $\lim_{n\to\infty} b_n = y$ and $y \neq 0$.

- ▶ Claim: There exists M > 0 such that $\frac{1}{|b_n|} \le M$ for all $n \in \mathbb{N}$.
- ▶ Proof of claim: Recall that $\lim_{n\to\infty} b_n = y$ and $y \neq 0$.

- ▶ Claim: There exists M > 0 such that $\frac{1}{|b_n|} \le M$ for all $n \in \mathbb{N}$.
- ▶ Proof of claim: Recall that $\lim_{n\to\infty} b_n = y$ and $y \neq 0$.
- Now there exists natural number K such that

$$|b_n-y|<\frac{|y|}{2}, \ \forall n\geq K.$$

- ▶ Claim: There exists M > 0 such that $\frac{1}{|b_n|} \le M$ for all $n \in \mathbb{N}$.
- ▶ Proof of claim: Recall that $\lim_{n\to\infty} b_n = y$ and $y \neq 0$.
- Now there exists natural number K such that

$$|b_n-y|<\frac{|y|}{2}, \ \forall n\geq K.$$

▶ This implies that $|b_n| \ge \frac{|y|}{2}$ for $n \ge K$. (Why?)

- ▶ Claim: There exists M > 0 such that $\frac{1}{|b_n|} \le M$ for all $n \in \mathbb{N}$.
- ▶ Proof of claim: Recall that $\lim_{n\to\infty} b_n = y$ and $y \neq 0$.
- Now there exists natural number K such that

$$|b_n-y|<\frac{|y|}{2}, \ \forall n\geq K.$$

- ▶ This implies that $|b_n| \ge \frac{|y|}{2}$ for $n \ge K$. (Why?)
- ▶ Therefore $\frac{1}{|b_n|} \le \frac{2}{|v|}$ for $n \ge K$.

- ▶ Claim: There exists M > 0 such that $\frac{1}{|b_n|} \le M$ for all $n \in \mathbb{N}$.
- ▶ Proof of claim: Recall that $\lim_{n\to\infty} b_n = y$ and $y \neq 0$.
- Now there exists natural number K such that

$$|b_n-y|<\frac{|y|}{2}, \ \forall n\geq K.$$

- ▶ This implies that $|b_n| \ge \frac{|y|}{2}$ for $n \ge K$. (Why?)
- ▶ Therefore $\frac{1}{|b_n|} \le \frac{2}{|v|}$ for $n \ge K$.
- Take

$$M = \max\{\frac{1}{|b_1|}, \frac{1}{|b_2|}, \dots, \frac{1}{|b_{K-1}|}, \frac{2}{|y|}\}.$$

- ▶ Claim: There exists M > 0 such that $\frac{1}{|b_n|} \le M$ for all $n \in \mathbb{N}$.
- ▶ Proof of claim: Recall that $\lim_{n\to\infty} b_n = y$ and $y \neq 0$.
- ▶ Now there exists natural number K such that

$$|b_n-y|<\frac{|y|}{2}, \ \forall n\geq K.$$

- ▶ This implies that $|b_n| \ge \frac{|y|}{2}$ for $n \ge K$. (Why?)
- ▶ Therefore $\frac{1}{|b_n|} \le \frac{2}{|v|}$ for $n \ge K$.
- Take

$$M = \max\{\frac{1}{|b_1|}, \frac{1}{|b_2|}, \dots, \frac{1}{|b_{K-1}|}, \frac{2}{|y|}\}.$$

- Note that M is well-defined as $b_n \neq 0$ for every n.
- Now we have $\frac{1}{|b_n|} \leq M$ for every $n \in \mathbb{N}$.

- ▶ Claim: There exists M > 0 such that $\frac{1}{|b_n|} \le M$ for all $n \in \mathbb{N}$.
- ▶ Proof of claim: Recall that $\lim_{n\to\infty} b_n = y$ and $y \neq 0$.
- ▶ Now there exists natural number K such that

$$|b_n-y|<\frac{|y|}{2}, \ \forall n\geq K.$$

- ▶ This implies that $|b_n| \ge \frac{|y|}{2}$ for $n \ge K$. (Why?)
- ▶ Therefore $\frac{1}{|b_n|} \le \frac{2}{|v|}$ for $n \ge K$.
- Take

$$M = \max\{\frac{1}{|b_1|}, \frac{1}{|b_2|}, \dots, \frac{1}{|b_{K-1}|}, \frac{2}{|y|}\}.$$

- Note that M is well-defined as $b_n \neq 0$ for every n.
- Now we have $\frac{1}{|b_n|} \leq M$ for every $n \in \mathbb{N}$.
- ► END OF LECTURE 16.

