Universidade do Minho (DMA	١)
maio 2019	

Machine Learning:: Fundamental and Application
Teste Modelo

Nome	
Número	_Curso

Seja uma base de dados $D=(x^n,y^n)_{n=1}^N$ onde $x^n=(x_1^n,x_2^n)\in\mathbb{R}^2$ e $y^n\in\{-1,1\}$. Recordamos a notação $\widetilde{x}=(1,x_1,x_2)^T\in\mathbb{R}^3$. O objetivo é realizar classificadores combinandos dois perceptrons

$$\widehat{y}_a(x; \widetilde{a}) = \operatorname{sgn}(\widetilde{a}^T \widetilde{x}), \quad \widehat{y}_b(x; \widetilde{b}) = \operatorname{sgn}(\widetilde{b}^T \widetilde{x}),$$

onde $\widetilde{a},\widetilde{b}\in\mathbb{R}^3$. Notamos por d_a e d_b as retas $\widetilde{a}^T\widetilde{x}=0$ e $\widetilde{b}^T\widetilde{x}=0$ que nos supomos não serem colineares com o ponto de intersecção X.

Parte A.

O primeiro classificador combinado que consideramos nesta parte é apenas o produto

$$\widehat{y}(x; \widetilde{a}, \widetilde{b}) = \widehat{y}_a(x; \widetilde{a})\widehat{y}_b(x; \widetilde{b}).$$

- 1) Seja a base de dados XOR caracterizada pelos pontos ((0,0),-1), ((1,0),1), ((0,1),1), ((1,1),-1). Determinar \widetilde{a} e \widetilde{b} de modo que o classificador $\widehat{y}(x;\widetilde{a},\widetilde{b})$ separe perfeitamente os dados, seja $\widehat{y}(x^n;\widetilde{a},\widetilde{b})=y^n$, $n=1,\cdots,4$.
- 2) Mostar que para qualquer $x \neq X$ e $\lambda \neq 0$.

$$\widehat{y}_a(x;\widetilde{a}) = \operatorname{sgn}(\lambda)\widehat{y}_a\Big(\lambda(x-X);\widetilde{a}\Big), \quad \widehat{y}_b(x;\widetilde{b}) = \operatorname{sgn}(\lambda)\widehat{y}_b\Big(\lambda(x-X);\widetilde{b}\Big).$$

Deduzir que

$$\widehat{y}(x; \widetilde{a}, \widetilde{b}) = \widehat{y}(\lambda(x - X); \widetilde{a}, \widetilde{b})$$

3) Concluir que o classificador $\widehat{y}(x;\widetilde{a},\widetilde{b})$ separa linearmente duas zonas de \mathbb{R}^2

$$P^{-} = \{x \in \mathbb{R}^2; \ \widehat{y}(x; \widetilde{a}, \widetilde{b}) = -1\}, \quad P^{+} = \{x \in \mathbb{R}^2; \ \widehat{y}(x; \widetilde{a}, \widetilde{b}) = +1\},$$

que são simétricas em ordem ao ponto X, limitadas pelas retas d_a e d_b . Exibir com um exemplo.

- 4) Propor dois vetores \widetilde{a} e \widetilde{b} para classificar perfeitamente a base de dados AND caracterizada pelos pontos ((0,0),-1), ((1,0),-1),((0,1),-1),((1,1);1).
- 5) Propor um conjunto de 5 pontos com label, ou seja (x^n, y^n) , $n = 1, \dots, 4$, que não possamos classificar perfeitamente com este classificador.

Parte B.

Nesta parte, supomos que $y^n \in \{-1, 0, 1\}$ e consideramos um classificador com a expressão

$$\widetilde{z}(x; \widetilde{a}, \widetilde{b}) = \frac{1}{2} \Big(\widehat{y}_a(x; \widetilde{a}) + \widehat{y}_b(x; \widetilde{b}) \Big).$$

- 1) Mostar que $\widetilde{z}(x;\widetilde{a},\widetilde{b})\in\{-1,0,1\}$. Propor dois vetores $\widetilde{a},\widetilde{b}$ tais como o predictor $\widetilde{z}(x;\widetilde{a},\widetilde{b})$ classifica perfeitamente o conjunto de pontos: ((0,0),0),((1,1),0),((0,1),-1),((1,0),+1).
- 2) Caracterizar geometricamente os conjuntos

$$P^- = \{x \in \mathbb{R}^2; \widehat{z}(x; \widetilde{a}, \widetilde{b}) = -1\}, \quad P^0 = \{x \in \mathbb{R}^2; \widehat{z}(x; \widetilde{a}, \widetilde{b}) = 0\}, \quad P^+ = \{x \in \mathbb{R}^2; \widehat{z}(x; \widetilde{a}, \widetilde{b}) = +1\}$$

em relação às duas retas e ao ponto X. Visualizar P^-,P^0,P^+ quando $\widetilde{a}=(1,0,1)$ e $\widetilde{b}=(2,-1,1)$.

3) Determinar se o conjunto ((-1,0),0), ((-1/2,0),-1), ((1/2,0),1), ((1,0),0) pode ser perfeitamente separado com este predictor.

Parte C.

De novo supomos que $y^n \in \{-1, 1\}$ e definimos o classificador como

$$\widehat{p}(x; \widetilde{a}, \widetilde{b}, \widetilde{c}) = \operatorname{sgn} \Big(c_0 + c_1 \widehat{y}_a(x; \widetilde{a}) + c_2 \widehat{y}_b(x; \widetilde{b}) \Big),$$

onde
$$\widetilde{c} = (c_1, c_2, c_3)^T \in \mathbb{R}^3$$
.

- 1) Mostrar que o classificador envolve apenas as 4 situações seguintes:
 - caso (1) $p_1 = \operatorname{sgn}(c_0 c_1 c_2);$
 - caso (2) $p_2 = \operatorname{sgn}(c_0 + c_1 c_2);$
 - caso (3) $p_3 = \operatorname{sgn}(c_0 c_1 + c_2);$
 - caso (4) $p_4 = \operatorname{sgn}(c_0 + c_1 + c_2)$;

e notamos por P^1 , P^2 , P^3 e P^4 os quatro subconjuntos correspondentes aos quatro casos a caracterizar em função das retas d_a , d_b e X.

- 2) Determinar \tilde{c} tal como, $p_4 = 1$ e $p_1 = p_2 = p_3 = -1$.
- 3) Propor um classificador (ou seja determinar os vetores \widetilde{a} , \widetilde{b} e \widetilde{c}) tal como o conjunto de dados seguinte seja perfeitamente classificado: ((-1,-1),-1), ((0,0),-1), ((1,0),1), ((0,1),1), ((1,1),1).
- 4) Consideramos o caso particular de duas retas colineares $\widetilde{a}=(1,1,1)$ e $\widetilde{b}=(-1,1,1)$. Determinar as zonas onde \widehat{y}_a e \widehat{y}_b são positivas ou negativas. Notamos Δ a faixa situada entre as duas retas. Determinar \widetilde{c} tal que $\widehat{p}(x;\widetilde{a},\widetilde{b},\widetilde{c})$ seja igual a 1 dentro de Δ e -1 fora de Δ .

Parte A.

1) Seja $\tilde{a} = (-1, 2, 0)$ and $\tilde{b} = (1, 0, -2)$. Temos $\hat{y}_a(x) = 1$ se $x_1 > 1/2$ e $\hat{y}_a(x) = -1$ se $x_1 < 1/2$ enquanto $\hat{y}_b(x) = -1$ se $x_2 > 1/2$ e $\hat{y}_b(x) = 1$ se $x_2 < 1/2$. Logo \hat{y} separa a base de dados XOR.

2) Temos

$$\widetilde{\boldsymbol{a}}^T\widetilde{\boldsymbol{x}} = \widetilde{\boldsymbol{a}}^T(\widetilde{\boldsymbol{x}} - \widetilde{\boldsymbol{X}}) = \frac{1}{\lambda}\widetilde{\boldsymbol{a}}^T\lambda(\widetilde{\boldsymbol{x}} - \widetilde{\boldsymbol{X}})$$

Logo

$$\widehat{y}_a(x;\widetilde{a}) = \mathrm{sgn}\left(\frac{1}{\lambda}\widetilde{a}^T\lambda(\widetilde{x}-\widetilde{X})\right) = \mathrm{sgn}(\lambda)\mathrm{sgn}\left(\widetilde{a}^T\lambda(\widetilde{x}-\widetilde{X})\right) = \mathrm{sgn}(\lambda)\widehat{y}_a\Big(\lambda(x-X);\widetilde{a}\Big).$$

Temos a mesma relação para $\widehat{y}_b(x; \widetilde{b})$ e deduzimos que

$$\widehat{y}(x;\widetilde{a},\widetilde{b}) = \operatorname{sgn}(\lambda)\widehat{y}_a\Big(\lambda(x-X);\widetilde{a}\Big)\operatorname{sgn}(\lambda)\widehat{y}_b\Big(\lambda(x-X);\widetilde{b}\Big) = \widehat{y}_a\Big(\lambda(x-X);\widetilde{a}\Big)\widehat{y}_b\Big(\lambda(x-X);\widetilde{b}\Big) = \widehat{y}\Big(\lambda(x-X);\widetilde{a}\Big)\widehat{y}_b\Big(\lambda(x-X);\widehat{a}\Big)\widehat{y}_b\Big(\lambda(x-X);\widehat{a}\Big)\widehat{y}_b\Big(\lambda(x-X);\widehat{a}\Big)\widehat{y}_b\Big(\lambda(x-X);\widehat{a}\Big)\widehat{y}_b\Big(\lambda(x-X);\widehat{a}\Big)\widehat{y}_b\Big(\lambda(x-X);\widehat{a}\Big)\widehat{y}_b\Big(\lambda(x-X);\widehat{a}\Big)\widehat{y}_b\Big(\lambda(x-X);\widehat{a}\Big)\widehat{y}_b\Big(\lambda(x-X);\widehat{a}\Big)\widehat{y}_b\Big$$

3) Com $\lambda = 1$ e $\lambda = -1$ deduzimos

$$\widehat{y}\Big((x-X); \widetilde{a}, \widetilde{b}\Big) = \widehat{y}\Big((X-x); \widetilde{a}, \widetilde{b}\Big)$$

logo a função é simetrica em ordem ao ponto X e então a propriedade é verdadeira para os conjuntos associados P^+ e P^- . O ponto 1) representa um bom exemplo.

- 4) Separamos a base de dados AND com os vetores $\tilde{a} = (-3/2, 1, 1)$ and $\tilde{b} = (1, 0, 0)$.
- 5) A propriedade de simetria relativemente a um ponto implica que não podemos separa pelo menos 4 pontos alinhados que tem alternativemente -1 e +1. Por exemplo,((0,0),+1) e ((-2,1),-1), ((-1,1),+1), ((+1,1),-1), ((2,1),+1).

Parte B

- 1) Como os valores de \hat{y}_a e \hat{y}_b são $\{-1,1\}$, a soma retorna $\{-2,0,2\}$ logo $\tilde{z} \in \{-1,0,1\}$. Usando $\tilde{a} = \{-1,0,2\}$ e $\tilde{b} = \{+1,-2,0\}$, temos um classificador que separa os quatro indicados.
- 2) Seja X o ponto de intersecção das duas retas. P^- e P^+ são dois cones simetricos de topo X situados entre d_a e d_b enquanto P^0 é a união dos dois outros cones.
- 3) Como $(2,-1,1)^T(1,-1/2,0)>0$ deduzimos que $\widehat{y}_b((1,-1/2);\widetilde{b})=1$ logo $\widehat{z}((-1/2,0);\widetilde{a},\widetilde{b})\neq -1$ e não podemos classificar este conjunto.

Parte C.

- 1) Como os valores de \hat{y}_a e \hat{y}_b são $\{-1,1\}$, temos obviamente os quatro casos.
- 2) $p_4 > 0$ e $p_1, p_2, p_3 < 0$ implica que

$$c_0 - c_1 - c_2 < 0$$
, $c_0 + c_1 - c_2 < 0$, $c_0 - c_1 + c_2 < 0$, $c_0 + c_1 + c_2 > 0$.

De $c_0+c_1-c_2<0$ e $c_0-c_1+c_2<0$, deduzimos que $c_0<0$. Do outro lado, temos $c_0-c_1-c_2<0$ e $-c_0-c_1-c_2<0$ implica $0< c_1+c_2$. Aranjamos uma solução simetrica escolhando $c_0=-1$ e $c_1=c_2=1$.

3)
$$\widetilde{a} = (-1, 2, 0), \widetilde{b} = (-1, 0, 2) e \widetilde{c} = (1, 1, 1).$$

4) \mathbb{R}^2 é dividido em 3 partes. Notamos $P^- = \{1 + x_1 + x_2 < 0\}$, $P^+ = \{-1 + x_1 + x_2 > 0\}$, e $\Delta = \{1 + x_1 + x_2 > 0\}$ a faixa situada entre os dois semi-planos. Temos

$$\widetilde{y}_a(x; \widetilde{a}) = -1, \ \widetilde{y}_b(x; \widetilde{b}) = -1, \text{ se } x \in P^-$$

$$\widetilde{y}_a(x; \widetilde{a}) = +1, \ \widetilde{y}_b(x; \widetilde{b}) = -1, \text{ se } x \in \Delta$$

$$\widetilde{y}_a(x; \widetilde{a}) = +1, \ \widetilde{y}_b(x; \widetilde{b}) = +1, \text{ se } x \in P^+$$

Logo $\widetilde{c} = (-1, 1, -1)$ é a resposta certa.