Analisis Regresi Beserta Metode Evaluasinya

Kuliah 2 - STA1382 Teknik Pembelajaran Mesin

Septian Rahardiantoro

Outline

- Pengantar Pemodelan Statistika
- Regresi linier beserta metode evaluasinya
- Regresi logistik beserta metode evaluasinya

Pengantar Pemodelan Statistika

$$y = f(x_1, x_2, \dots, x_p) + \varepsilon$$

- Membangun miniatur dari dunia nyata
 - dinyatakan dalam satu atau beberapa fungsi matematis

- Menyederhanakan fenomena nyata sehingga mudah memahami pola umum yang ada
 - memberikan penjelasan terhadap perubahan
 - memberikan penjelasan tentang perbedaan yang terjadi
 - menemukan faktor yang menyebabkan perubahan dan perbedaan

Pemodelan

Tujuan/Manfaat:

- Sering digunakan untuk meng-explore dataset yang dimiliki
- Digunakan untuk melakukan prediksi berdasarkan informasi dari variabel prediktor
- Digunakan untuk mengkaji dan memahami bagaimana suatu variabel berhubungan dengan variabel yang lain

Are not perfect

"All models are wrong, but some are useful" (GEP Box)

Beberapa Model Statistika yang Populer

Jenis Variabel Target	Model Statistika
Numerik	Regresi Linier
Kategorik	Regresi Logistik Pohon Klasifikasi (Classification Tree)

Regresi Linier

- Syarat Utama: Variabel output (Y) bersifat numerik
- Variabel prediktor (X)
 - numerik OK, kategorik OK
 - satu OK, lebih dari satu OK
- Bentuk model

$$Y = \beta_0 + \beta_1 X_1 + \epsilon$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_p X_p + \epsilon$$

- Analisis Regresi digunakan untuk:
 - Menjelaskan dampak perubahan peubah prediktor terhadap peubah respon
 - Memprediksi nilai dari peubah respon berdasarkan nilai dari setidaknya sebuah peubah prediktor

Peubah Respon (peubah tak bebas, peubah terikat, dependent variable): peubah yang ingin kita jelaskan

Peubah Prediktor (peubah bebas, independent variable): peubah yang digunakan untuk menjelaskan peubah respon

Regresi Linier Sederhana

- ${f \cdot}$ Suatu pendekatan untuk memprediksi peubah respon kuantitatif Y berdasarkan sebuah peubah prediktor X
- ullet Pendekatan ini mengasumsikan bahwa ada hubungan linier antara X dan Y

- Pendugaan koefisien
 - Misalkan $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ adalah prediksi untuk Y berdasarkan nilai ke-i peubah X (dengan $i=1,2,3\ldots,n$)
 - Maka residual ke-i didefinisikan oleh:

$$e_i = y_i - \hat{y}_i \rightarrow e_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i$$

• JKG (Jumlah Kuadrat Galat) didefinisikan oleh:

$$JKG = e_1^2 + e_2^2 + \dots + e_n^2$$

$$JKG = (y_1 - \hat{\beta}_0 - \hat{\beta}_1 x_1)^2 + \dots + (y_n - \hat{\beta}_0 - \hat{\beta}_1 x_n)^2$$

• Penduga MKT (Metode Kuadrat Terkecil), memilih $\hat{\beta}_0$ dan $\hat{\beta}_1$ yang meminimumkan JKG. Dengan perhitungan kalkulus diperoleh:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}; \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Ilustrasi kontur dan plot 3D pada JKG (RSS) untuk model dengan Y = sales dan X = TV

FIGURE 3.2. Contour and three-dimensional plots of the RSS on the Advertising data, using sales as the response and TV as the predictor. The red dots correspond to the least squares estimates $\hat{\beta}_0$ and $\hat{\beta}_1$, given by (3.4).

Menilai Akurasi Penduga Koefisien

Simulasi.

Kiri: Garis merah mewakili hubungan sebenarnya, f(X) = 2 + 3X, yang dikenal sebagai garis regresi populasi. Garis biru adalah garis kuadrat terkecil (MKT); yang merupakan dugaan kuadrat terkecil untuk f(X) berdasarkan data yang diamati, ditampilkan dalam warna hitam.

Kanan: Garis regresi populasi ditampilkan lagi dengan warna merah, dan garis kuadrat terkecil berwarna biru tua. Dengan warna biru muda, sepuluh garis kuadrat terkecil ditampilkan, masing-masing dihitung berdasarkan kumpulan pengamatan acak yang terpisah. Setiap garis kuadrat terkecil berbeda, tetapi rata-rata garis kuadrat terkecil cukup dekat dengan garis regresi populasi.

- Sekilas, perbedaan antara garis regresi populasi dan garis kuadrat terkecil mungkin tampak halus dan membingungkan.
- Dalam kasus ini, diketahui satu kumpulan data, namun terdapat banyak garis berbeda menggambarkan hubungan antara prediktor dan respons?
- Sehingga, muncul pertanyaan seberapa dekat penduga \hat{eta}_0 dan \hat{eta}_1 terhadap eta_0 dan eta_1
 - Hal ini dapat diselidiki dengan standar error (galat baku) \hat{eta}_0 dan \hat{eta}_1

$$SE(\hat{\beta}_0)^2 = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right]; SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

- Secara kasar, galat baku memberi tahu kita jumlah rata-rata perkiraan pendugaan berbeda dari nilai parameter aktualnya
- Selang kepercayaan bagi β_0 dan β_1 (taraf nyata 95%)

$$\hat{\beta}_0 \pm 2 \times SE(\hat{\beta}_0); \ \hat{\beta}_1 \pm 2 \times SE(\hat{\beta}_1)$$

• Uji hipotesis $\beta_1 \to H_0$: $\beta_1 = 0$; H_1 : $\beta_1 \neq 0$ dengan statistik uji $t = \frac{\beta_1 - 0}{SE(\widehat{\beta}_1)}$

Menilai Akurasi Model

• Kualitas kecocokan regresi linier biasanya dinilai menggunakan dua besaran terkait: Galat Baku Residual (residual standard error) dan statistik \mathbb{R}^2

Galat Baku Residual

• Galat Baku Residual merupakan dugaan simpangan baku dari residual, yakni jumlah rata-rata respon yang akan menyimpang dari garis regresi yang sebenarnya.

Galat Baku Residual =
$$\sqrt{\frac{1}{n-2}JKG} = \sqrt{\frac{1}{n-2}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}$$

- Galat Baku Residual dianggap sebagai ukuran kecocokan model dengan data.
 - Jika prediksi yang diperoleh dengan menggunakan model sangat dekat dengan nilai hasil sebenarnya—yaitu, jika $\hat{y}_i \approx y_i$ untuk $i=1,\ldots,n$ —maka Galat Baku Residual akan menjadi kecil, dan kita dapat menyimpulkan bahwa model tersebut sangat cocok dengan data.
 - Di sisi lain, jika \hat{y}_i sangat jauh dari y_i untuk satu atau lebih pengamatan, maka Galat Baku Residual mungkin cukup besar, menunjukkan bahwa model tidak sesuai dengan data dengan baik.

• Statistik R²

- Galat Baku Residual memberikan ukuran mutlak ketidaksesuaian model dengan data.
- Tetapi karena diukur dalam satuan Y, tidak selalu jelas apa yang dimaksud dengan Galat Baku Residual yang baik.
- Statistik R^2 memberikan alternatif ukuran kecocokan model.
- Bentuknya berupa proporsi (proporsi ragam yang dijelaskan) sehingga selalu mengambil nilai antara 0 dan 1, dan tidak bergantung pada skala Y.

$$R^{2} = \frac{JKT - JKG}{JKT} = 1 - \frac{JKG}{JKT} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y}_{i})^{2}}$$

• \mathbb{R}^2 mengukur proporsi keragaman dalam Y yang dapat dijelaskan dengan menggunakan X.

Regresi Linier Berganda

- Analisis regresi linear berganda:
 - Secara umum, kita memodelkan peubah respon Y sebagai fungsi linier dari k peubah prediktor (X) sebagai:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k + \varepsilon$$

- Atau dalam notasi matriks $y = X\beta + \varepsilon$
- Jika kita memiliki dua variabel X, model dapat diilustrasikan sebagai berikut

- Pendugaan koefisien regresi:
 - Pendugaan koefisien regresi diperoleh dengan meminimumkan jumlah kuadrat galat (residual) → OLS (Ordinary Least Square) atau MKT (Metode Kuadrat Terkecil)
 - Dalam hal ini dicari dugaan dari β_j , $j=0,1,2\ldots,k$ yang meminimumkan $\sum_i \varepsilon^2$, dengan $\varepsilon=Y-\widehat{Y}$, yang dalam notasi matriks diperoleh

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}$$

Asumsi model regresi linear

Nilai mean dari peubah *Y* dimodelkan secara akurat oleh fungsi linier dari peubah-peubah *X*

Menilai Akurasi Model

- Dua ukuran numerik yang paling umum untuk mengidentifikasi kecocokan model adalah Galat Baku Residual dan \mathbb{R}^2 .
- Nilai-nilai ini dihitung dan ditafsirkan dengan cara yang sama seperti untuk regresi linier sederhana.

Galat Baku Residual =
$$\sqrt{\frac{1}{n-p-1}}JKG = \sqrt{\frac{1}{n-p-1}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2}$$

Menilai Akurasi Prediksi

- Pemodelan prediktif merupakan masalah pengembangan model menggunakan data historis untuk membuat prediksi pada data baru yang belum dimiliki jawabannya.
- Berikut ini beberapa ukuran evaluasi dalam konteks prediksi untuk model regresi
 - 1. Selang Kepercayaan Prediksi (Confidence Interval)

$$\hat{y}_h \pm t_{\left(1 - \frac{\alpha}{2}; n - 2\right)} \times \sqrt{KTG\left(\frac{1}{n} + \frac{(x_h - \bar{x})^2}{\sum (x_i - \bar{x})^2}\right)}$$

2. Selang Prediksi (Prediction Interval)

$$\hat{y}_h \pm t_{\left(1 - \frac{\alpha}{2}; n - 2\right)} \times \sqrt{KTG\left(1 + \frac{1}{n} + \frac{(x_h - \bar{x})^2}{\sum (x_i - \bar{x})^2}\right)} >$$

3. MSE (Mean Squared Error) atau KTG

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

4. RMSE (Root Mean Squared Error)

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

5. MAE (Mean Absolute Error)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

Contoh 1

```
#simulasi analisis regresi
beta <- c(3,5,7)
set.seed(123456)
Xa <- matrix(rnorm(200,5,1),100,2)
X <- cbind(1,Xa)
e <- rnorm(100,0,4)
y <- X%*%beta+e
data1 <-
data.frame(y=y,X1=Xa[,1],X2=Xa[,2])
##model regresi
mod1 <- lm(y~X1+X2,data=data1)
summary(mod1)</pre>
```

```
> summary(mod1)
Call:
lm(formula = y \sim X1 + X2, data = data1)
Residuals:
            10 Median
   Min
                           30
                                  Max
-9.8883 -2.4990 0.0499 2.3688 10.2160
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
            2.2994 3.2282 0.712 0.478
(Intercept)
             4.9915 0.4102 12.168 <2e-16 ***
X1
X2
            7.2377 0.4142 17.473 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.961 on 97 degrees of freedom
Multiple R-squared: 0.7965, Adjusted R-squared: 0.7923
F-statistic: 189.8 on 2 and 97 DF, p-value: < 2.2e-16
```

```
plot(data1$X1,data1$y,pch=20,col="orange", cex=2)
library(DescTools)
mod2 <- lm(y~X1,data=data1)
lines(mod2,col="red") #conf interval
lines(mod2,col="steelblue", pred.level=0.95) #pred interval</pre>
```



```
##evaluasi
yduga <- fitted.values(mod1)</pre>
MSE <- mean((data1$y-yduga)^2)</pre>
RMSE <- sqrt(MSE)</pre>
MAE <- mean(abs(data1$y-yduga))</pre>
> MSE
[1] 15.21544
> RMSE
[1] 3.900697
> MAE
[1] 3.029892
```

Regresi Logistik

ullet Model regresi yang diterapkan untuk peubah respon Y dengan skala kategorik

• Peubah respon Y dapat terdiri dari 2 kategori (biner), maupun lebih dari 2 kategori (multinomial) yang dapat urutan (ordinal) maupun tidak (nominal)

 \bullet Daripada memodelkan respon Y ini secara langsung, regresi logistik memodelkan peluang bahwa Y termasuk dalam kategori tertentu

FIGURE 4.2. Classification using the Default data. Left: Estimated probability of default using linear regression. Some estimated probabilities are negative! The orange ticks indicate the 0/1 values coded for default (No or Yes). Right: Predicted probabilities of default using logistic regression. All probabilities lie between 0 and 1.

Model Logistik

• Model hubungan antara p(X) = P(Y = 1|X) dan X, dalam hal ini digunakan kode 0 atau 1 untuk kategori peubah respon

$$p(X) = \beta_0 + \beta_1 X$$

Dengan fungsi logistik:

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}} \to \frac{p(X)}{1 - p(X)} = e^{\beta_0 + \beta_1 X}$$

- Nilai $\frac{p(X)}{1-p(X)}$ disebut dengan odds, berkisar dari 0 s.d ∞
- Dengan menerapkan logaritma natural, maka diperoleh persamaan log-odds atau logit

$$\ln\left(\frac{p(X)}{1 - p(X)}\right) = \beta_0 + \beta_1 X$$

• Dalam model regresi logistik, meningkatkan X sebesar satu unit mengubah log-odds sebesar β_1 , atau setara dengan mengalikan odds dengan e^{β_1}

- $\beta > 0$ maka kurva akan naik
- $\beta < 0$ maka kurva akan turun
- Jika $\beta=0$ maka nilai berapapun nilai p(X) konstan, berapapun nilai $X \to \infty$ kurva akan menjadi garis horizontal

$$\ln\left(\frac{p(X)}{1 - p(X)}\right) = \beta_0 + \beta_1 X$$

Interpretasi nilai β_1

- 1 kenaikan X akan meningkatkan $\ln\left(\frac{p(X)}{1-p(X)}\right)$ sebesar β_1 satuan
- Dengan kata lain, 1 kenaikan X akan meningkatkan $\left(\frac{p(X)}{1-p(X)}\right)$ sebesar e^{β_1} satuan
- $\left(\frac{p(X)}{1-p(X)}\right)$ disebut dengan odds \rightarrow peluang dari kejadian terjadi dibagi dengan peluang dari kejadian tidak terjadi
- Artinya odds akan meningkat secara sebesar e^{eta_1} untuk setiap kenaikan 1 unit X
- e^{β_1} : odds ratio (*OR*)

$$OR = e^{\beta_1} = \frac{odds(X = x + 1)}{odds(X = x)}$$

 Odds Ratio menunjukkan seberapa besar kemungkinan, sehubungan dengan peluang, suatu peristiwa tertentu terjadi dalam satu kelompok dibandingkan dengan kejadiannya di kelompok lain.

- Pendugaan koefisien regresi logistik
 - Menggunakan metode maksimum likelihood, dengan fungsi likelihood:

$$\ell(\beta_0, \beta_1) = \prod_{i: y_i = 1} p(x_i) \prod_{i': y_{i'} = 1} \left(1 - p(x_{i'}) \right)$$

- Sehingga, dugaan \hat{eta}_0 dan \hat{eta}_1 dipilih yang memaksimumkan nilai fungsi likelihood
- Prediksi
 - Peluang p(X) dapat diprediksi dengan:

$$\hat{p}(X) = \frac{e^{\widehat{\beta}_0 + \widehat{\beta}_1 X}}{1 + e^{\widehat{\beta}_0 + \widehat{\beta}_1 X}}$$

- Pada umumnya, jika $\hat{p}(X) \geq 0.5 \rightarrow \hat{y} = 1$ dan sebaliknya
- Model regresi logistik untuk lebih dari satu prediktor

$$\ln\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p \to p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

Evaluasi Prediksi

Confusion Matrix

TN FP FN TP True Negative False Positive False Negative True Positive

TN+FP

Accuracy
$$= \frac{TN+TP}{TN+FP+FN+TP}$$
Precision
$$= \frac{TP}{FP+TP}$$
Sensitivity
$$= \frac{TP}{TP+FN}$$
Specificity
$$= \frac{TN}{TN+FP}$$

Receiver operating characteristic (ROC)

ROC CURVE EXAMPLES

1 - Specificity

AUC = Area A + Area B

Gini Coefficient = 2 x AUC - 1

Receiver operating characteristic (ROC)

	Sick	Healthy
Treating as sick	True Positive	False Positive
Treating as healthy	False Negative	True Negative

$$\begin{array}{ll} {\rm Power} & = & \frac{TP}{TP+FN} = 1-\beta \\ \\ {\rm False\ Positive\ Rate} & = & \frac{FP}{FP+TN} = \alpha \end{array}$$

ROC Curve

Contoh 2: Latihan dengan R

German Credit Data Set

The German Credit Data contains data on 20 variables and the classification whether an applicant is considered a Good or a Bad credit risk for 1000 loan applicants.

The data contains 1000 observations (700 good loans, 300 bad loans)

A predictive model developed on this data is expected to provide a bank manager guidance for making a decision whether to approve a loan to a prospective applicant based on his/her profiles.

```
> str(german.credit)
'data.frame': 1000 obs. of 21 variables:
 $ Account status : Factor w/ 4 levels "< 0 DM", ">= 200 DM", ...: 1 3 4 $
 $ Duration
                       : num 6 48 12 42 24 36 24 36 12 30 ...
 $ Credit history : Factor w/ 5 levels "all credits at this bank paid $
                  : Factor w/ 10 levels "business", "car (new) ",..: 8 8$
 $ Purpose
 $ Credit_amount : num 1169 5951 2096 7882 4870 ...
 $ Savings bonds : Factor w/ 5 levels "< 100 DM", ">= 1000 DM", ... 5 1$
 $ Present employment since: Factor w/ 5 levels "< 1 year", ">= 7 years", ...: 2 3$
 $ Installment rate
                       : num 4 2 2 2 3 2 3 2 2 4 ...
 $ Other debtors guarantors: Factor w/ 3 levels "co-applicant", ..: 3 3 3 2 3 3 $
 $ Resident since : num 4 2 3 4 4 4 4 2 4 2 ...
 $ Property : Factor w/ 4 levels "building society savings agree$
 $ Age
                         : num 67 22 49 45 53 35 53 35 61 28 ...
 $ Other installment plans : Factor w/ 3 levels "bank", "none", ..: 2 2 2 2 2 2 2 2
 $ Housing
                          : Factor w/ 3 levels "rent", "own", "for free": 2 2 2 $
 $ Existing credits
                       : num 2 1 1 1 2 1 1 1 1 2 ...
                          : Factor w/ 4 levels "management / self-employed / h$
 $ Job
 $ People maintenance for : num 1 1 2 2 2 2 1 1 1 1 ...
 $ Telephone
                         : Factor w/ 2 levels "none", "yes": 2 1 1 1 1 2 1 2 1$
 $ Foreign worker : Factor w/ 2 levels "no", "yes": 2 2 2 2 2 2 2 2 2 2 2 3
                 : Factor w/ 2 levels "BAD", "GOOD": 2 1 2 2 1 2 2 2 2 $
 $ Credit risk
                         : Factor w/ 2 levels "Female", "Male": 1 2 1 1 1 1 1 $
 $ Gender
```

Peubah:

- 1. Account status: a factor with four levels representing the amount of money in the account or "no chcking account".
- 2. Duration: a continuous variable, the duration in months.
- 3. Credit_history: a factor with five levels representing possible credit history backgrounds.
- 4. Purpose: a factor with ten levels representing possible reasons for taking out a loan.
- 5. Credit_amount: a continuous variable.
- 6. Savings_bonds: a factor with five levels representing amount of money available in savings and bonds or "unknown / no savings account".
- 7. Present_employment_since: a factor with five levels representing the length of tenure in the current employment or "unemployed".
- 8. Installment_rate: a continuous variable, the installment rate in percentage of disposable income.
- 9. Other_debtors_guarantors: a factor with levels "none", "co-applicant" and "guarantor".
- 10. Resident since: a continuous variable, number of years in the current residence.
- 11. Property: a factor with four levels describing the type of property to be bought or "unknown / no property".
- 12. Age: a continuous variable, the age in years.
- 13. Other installment plans: a factor with levels "bank", "none" and "stores".
- 14. Housing: a factor with levels "rent", "own" and "for free".
- 15. Existing_credits: a continuous variable, the number of existing credit lines at this bank.
- 16. Job: a factor with four levels for different job descriptions.
- 17. People_maintenance_for: a continuous variable, the number of people being liable to provide maintenance for.
- 18. Telephone: a factor with levels "none" and "yes".
- 19. Foreign_worker: a factor with levels "no" and "yes".
- 20. Credit_risk: a factor with levels "BAD" and "GOOD". Response variable
- 21. Gender: a factor with levels "Male" and "Female".

```
##Konstruksi model dengan data training 80%, dan data testing 20%
library(caret)
set.seed(12420246)
in.train <- createDataPartition(as.factor(german.credit$Credit risk), p=0.8, list=FALSE)
german.credit.train <- german.credit[in.train,]</pre>
german.credit.test <- german.credit[-in.train,]</pre>
credit.glm0 <- glm(Credit risk ~ ., family = binomial, german.credit.train)</pre>
credit.glm.step <- step(credit.glm0)</pre>
credit.glm.step$anova
summary(credit.glm.step)
Step: AIC=776.26
                                                                > credit.glm.step$anova
Credit risk ~ Account status + Duration + Credit history + Purpose +
   Credit amount + Savings bonds + Present employment since +
                                                                                    Step Df Deviance Resid. Df Resid. Dev
   Installment rate + Other debtors guarantors + Other installment plans +
                                                                                                         753 697.4557 791.4557
                                                                              - Property 3 1.2504839
   Housing + Foreign worker + Gender
                                                                                                         756 698.7062 786.7062
                                                                                   - Job 3 2.2388200
                                                                                                         759 700.9450 782.9450
                    Df Deviance
                              AIC
                                                                             - Telephone 1 0.4198912
                                                                                                         760 701.3649 781.3649
<none>
                        704.26 776.26
                                                                                                         761 701.8817 779.8817
                                                                5 - People maintenance for 1 0.5168207
- Gender
                     1 706.37 776.37
- Other debtors guarantors 2 709.13 777.13
                                                                         - Resident since 1 0.5915425
                                                                                                         762 702.4732 778.4732
- Housing
                     2 709.65 777.65
                                                                                   - Age 1 0.8074193
                                                                                                         763 703.2807 777.2807
                   1 708.79 778.79

    Credit amount

                                                                       - Existing credits 1 0.9775937
                                                                                                         764 704.2583 776.2583
- Other installment plans 2 712.36 780.36
                     1 711.15 781.15
- Foreign worker
- Present employment since 4 717.36 781.36

    Installment rate

                   1 711.82 781.82
- Duration
                     1 714.48 784.48
- Credit history
                   4 726.07 790.07
```

- Savings bonds

- Account status

- Purpose

4 726.68 790.68

3 758.74 824.74

9 738.98 792.98

Null deviance: 977.38 on 799 degrees of freedom

Residual deviance: 704.26 on 764 degrees of freedom

Number of Fisher Scoring iterations: 5

AIC: 776.26

```
###Evaluation
#ConfusionMatrix
fit.final <- fitted.values(credit.glm.final)</pre>
pred.final <- ifelse(fit.final>=0.5, "GOOD", "BAD")
tab <- table(german.credit.train$Credit risk,pred.final, dnn = c("Truth", "Predicted"))
tab
acc <- sum(diag(tab))/sum(tab)</pre>
acc
> tab
                     > acc
      Predicted
                      [1] 0.795
Truth BAD GOOD
  BAD 132 108
  GOOD 56 504
install.packages("ROCR")
library (ROCR)
pred<-
prediction(predict.glm(credit.glm.final,german.credit.test),german.credit.test$Credit risk)
perf <- performance(pred, "tpr", "fpr")</pre>
plot(perf)
```


AUC.final<-performance(pred, measure = "auc")@y.values[[1]]
AUC.final
[1] 0.7552381

Latihan 1 (B/S)

- 1. Jika \hat{y}_i sangat jauh dari y_i untuk satu atau lebih pengamatan, maka Galat Baku Residual akan bernilai kecil yang menunjukkan bahwa model sesuai dengan data dengan baik.
- 2. Jika selisih \hat{y}_i terhadap y_i besar untuk banyak pengamatan, maka R^2 akan bernilai besar.
- 3. Sensitivity merupakan perbandingan dari True Positive dengan True Negative yang dijumlahkan dengan False Positive.
- 4. Semakin besar nilai AUC maka semakin kecil nilai Gini.
- 5. Presisi merupakan rasio dari True Positive dengan total dari pengamatan.

Latihan 2 (Isian Singkat)

Diketahui tabel kontingensi:

Status Kelulusan	Laki-laki	Perempuan	Total
Tidak Lulus	35	40	75
Lulus	15	10	25
Total	50	50	100

- 1. Tentukan nilai odds laki-laki yang lulus
- 2. Tentukan nilai odds perempuan yang lulus
- 3. Tentukan nilai odds ratio yang lulus untuk perempuan terhadap laki-laki

Form Penyetaraan Kegiatan ke MK TPM

https://ipb.link/penyetaraan-tpm

Terima kasih ©