```
In [2]: # import the data from file
    import pandas as pd
    df = pd.read_csv(r"C:\Users\309962\Desktop\carprices.csv")
    df.head()
```

Out[2]:

	Mileage	Age(yrs)	Sell Price(\$)
0	69000	6	18000
1	35000	3	34000
2	57000	5	26100
3	22500	2	40000
4	46000	4	31500

In [3]: # import matplotlib to plot the data between Mileage vs SellPrice
import matplotlib.pyplot as plt
%matplotlib inline

plt.scatter(df['Mileage'],df['Sell Price(\$)'])

Out[3]: <matplotlib.collections.PathCollection at 0x19bc86616d8>


```
In [4]: # Plot the data between Age vs Sell Price
plt.scatter(df['Age(yrs)'],df['Sell Price($)'])
```

Out[4]: <matplotlib.collections.PathCollection at 0x19bc8bc55c0>


```
In [5]: # Split the Data with Indepdendent variables as age and Mileage and dependent var

X = df[['Mileage','Age(yrs)']]
y = df['Sell Price($)']
```

```
In [6]: # import sklearn to split the data between test and train
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3)
```

In [7]: X_train

Out[7]:

	Mileage	Age(yrs)
10	83000	7
0	69000	6
9	67000	6
1	35000	3
6	52000	5
11	79000	7
14	82450	7
17	69000	5
19	52000	5
15	25400	3
18	87600	8
13	58780	4
16	28000	2
5	59000	5

In [8]: X_test

Out[8]:

	Mileage	Age(yrs)
7	72000	6
4	46000	4
8	91000	8
2	57000	5
12	59000	5
3	22500	2

```
In [9]: y_train
 Out[9]: 10
                18700
                18000
          9
                22000
          1
                34000
          6
                32000
          11
                19500
          14
                19400
          17
                19700
          19
                28200
          15
                35000
          18
                12800
          13
                27500
          16
                35500
          5
                26750
          Name: Sell Price($), dtype: int64
In [10]:
         y_test
Out[10]: 7
                19300
                31500
          8
                12000
          2
                26100
          12
                26000
          3
                40000
          Name: Sell Price($), dtype: int64
In [11]: # now create a linear model
          from sklearn.linear_model import LinearRegression
          clf = LinearRegression()
          clf.fit(X_train, y_train)
Out[11]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
In [12]: X_test
Out[12]:
              Mileage Age(yrs)
            7
                72000
                            6
                46000
            4
                            4
            8
                91000
                            8
            2
                57000
                            5
           12
                59000
                            5
            3
                22500
                            2
```

```
In [13]: | # Predict the sell price now
          clf.predict(X_test)
Out[13]: array([21027.17380314, 29927.68743754, 14378.61246857, 26120.84556315,
                 25477.43062034, 38023.93239343])
In [14]:
          y_test
Out[14]:
                19300
                31500
          8
                12000
          2
                26100
         12
                26000
                40000
         Name: Sell Price($), dtype: int64
In [15]: # Do a comparison with Score(Actual Vs predicted output)
          clf.score(X_test, y_test)
Out[15]: 0.9672523728982899
In [16]:
         X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3,random_stat
          X_test
Out[16]:
              Mileage Age(yrs)
           7
               72000
                            6
          10
               83000
                           7
               59000
                            5
           5
                           5
           6
               52000
           3
                            2
               22500
          18
               87600
                            8
In [ ]:
```