Question One

An advantage that a more flexible approach has is that it provides the opportunity to have a low variance and low bias in the model, compared to a more flexible model.

The disadvantage to a more flexible approach is that overfitting of the training data (low training error) can occur which can cause a higher level of testing error if the data has a greater error.

A less flexible approach is preferred when the model is more linear as a flexible approach will add more unnecessary complexity (principle of parsimony). This makes it also harder to explain to someone that does not understand statistics as well.

Question Two

a)

Conditional densities multiplied by prior probabilities

b)
$$f_0(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$$

 $\pi_0(x) = 0.69$

$$f_1(x) = \frac{1}{\sqrt{\pi}} e^{(-(x-1)^2)}$$
$$\pi_1(x) = 0.31$$

Bayes decision boundary:

$$f_0(x) * \pi_0(x) = f_1(x) * \pi_1(x)$$

$$\frac{0.69}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2} = \frac{0.31}{\sqrt{\pi}}e^{(-(x-1)^2)}$$

$$= \frac{0.69}{\sqrt{2}}e^{-\frac{1}{2}x^2} = 0.31e^{(-(x-1)^2)}$$

$$=\frac{0.69}{0.31\sqrt{2}}e^{-\frac{1}{2}x^2}=e^{(-(x-1)^2)}$$

$$= \ln \left(\frac{0.69}{0.31\sqrt{2}} \right) - \frac{1}{2} \chi^2 = -(\chi - 1)^2$$

$$= \ln \left(\frac{0.69}{0.31\sqrt{2}} \right) = \frac{1}{2} x^2 - (x - 1)^2$$

$$= \ln\left(\frac{0.69}{0.31\sqrt{2}}\right) = \frac{1}{2}x^2 - (x^2 - 2x + 1)$$

$$= \ln\left(\frac{0.69}{0.31\sqrt{2}}\right) = \frac{1}{2}x^2 - x^2 + 2x - 1$$

$$= \ln \left(\frac{0.69}{0.31\sqrt{2}} \right) = -\frac{x^2}{2} + 2x - 1$$

$$= -\frac{x^2}{2} + 2x - 1 - \ln\left(\frac{0.69}{0.31\sqrt{2}}\right) = 0$$

$$= x = 0.955$$
 or $x = 3.045$ (3 d.p)

c)
$$\frac{f_0(x)*\pi_0(x)}{f_0(x)*\pi_0(x)+f_1(x)*\pi_1(x)}$$
 and $X=3$

$$=\frac{\frac{0.69}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}}{\frac{0.69}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}+\frac{0.31}{\sqrt{\pi}}e^{(-(x-1)^2)}}$$

Class
$$0 = \frac{\frac{0.69}{\sqrt{2\pi}}e^{-\frac{1}{2}*3^2}}{\frac{0.69}{\sqrt{2\pi}}e^{-\frac{1}{2}*3^2} + \frac{0.31}{\sqrt{\pi}}e^{(-(3-1)^2)}} = 0.4884$$

$$\frac{f_1(x) * \pi_1(x)}{f_0(x) * \pi_0(x) + f_1(x) * \pi_1(x)}$$

Class 1 =
$$\frac{\frac{0.31}{\sqrt{\pi}}e^{(-(3-1)^2)}}{\frac{0.69}{\sqrt{2\pi}}e^{-\frac{1}{2}*3^2} + \frac{0.31}{\sqrt{\pi}}e^{(-(3-1)^2)}} = 0.5116$$

I would choose Class 1 as it has the higher probability of being in that class, with probability = 0.5116.

Also, looking at the graph in 2a, it is within the Bayes Decision Boundary which confirms its class.

d) Class 1 =
$$\frac{\frac{0.31}{\sqrt{\pi}}e^{(-(2-1)^2)}}{\frac{0.69}{\sqrt{2\pi}}e^{-\frac{1}{2}*2^2} + \frac{0.31}{\sqrt{\pi}}e^{(-(2-1)^2)}} = 0.5498$$

Question 3

- a) R-Code is at the end.
- b)

TestMSE2

22.86349

TestMSE5

19.56322

TestMSE10

18.62914

TestMSE20

17.31858

TestMSE30

17.93018

TestMSE50

19.57374

TestMSE100

26.31542

TestMSE100

26.31542

K = 20 performed the best as it had the lowest MSE for the testing data set with MSE = 17.31858

c)

Training data = Blue, Testing data = Red, kNN20 = Green

d) Increasing the level of flexibility (1/K) by reducing the number of K neighbours will decrease the bias of the function however it will also increase the variance. In the example above, low levels of K had high levels of variance however low amounts of bias and by increasing the value of K we reduced our MSE until we reached the optimum amount at K=20. Above K=20, we saw the bias begin to increase faster than the reduction in variance, causing the MSE to increase.

R-Code:

```
## Normal plots
x = seq(-4,5,length=100)
plot(x,
0.7*dnorm(x, 0, sqrt(1)),
    pch=21,
    col="blue",
    cex=0.6,
    lwd = 4,
type="1"
    xlab = "x",
ylab = "pi_k*f_k",
main = "Conditional densities multiplied by prior probabilities")
points(x,
      0.30*dnorm(x,1,sqrt(0.5)),
      pch=21,
      col="red",
      cex=0.6,
      1wd = 4
      type="1")
col = c("blue","red"),
      lwd = 4,
text.col = "black",
      horiz = FALSE)
points(c(0.955,0.955),
      c(-0.1,0.3),
      1wd = 8,
      col = "black",
      type="1")
points(c(3.045,3.045),
      c(-0.1,0.3),
      1wd = 8,
      col = "black".
      type="1")
library(ggplot2)
data = read.csv('AutoTrain.csv')
data2 = read.csv('AutoTest.csv')
## STAT318/462 kNN regression function
knn <- function(k,x.train,y.train,x.pred) {</pre>
  ## This is kNN regression function for problems with
  ## 1 predictor
 ## INPUTS
           = number of observations in nieghbourhood
  # x.train = vector of training predictor values
  # y.train = vector of training response values
  # x.pred = vector of predictor inputs with unknown
             response values
  #
```

```
## OUTPUT
  # y.pred = predicted response values for x.pred
  ## Initialize:
                                     y.pred <- numeric(n.pred)</pre>
  n.pred <- length(x.pred);</pre>
  ## Main Loop
  for (i in 1:n.pred){
  d <- abs(x.train - x.pred[i])</pre>
    dstar = d[order(d)[k]]
    y.pred[i] <- mean(y.train[d <= dstar])</pre>
  ## Return the vector of predictions
  invisible(y.pred)
kNN2<-kNN(2, data$horsepower, data$mpg, data2$horsepower)
TrainMSE2 = mean((data\$mpg - kNN2)^2)
TestMSE2 = mean((data2\$mpg - kNN2)^2)
TrainMSE2
TestMSE2
kNN5<-kNN(5, data$horsepower, data$mpg, data2$horsepower)
TrainMSE5 = mean((data\$mpg - kNN5)^2)
TestMSE5 = mean((data2\$mpg - kNN5)^2)
TrainMSE5
TestMSE5
kNN10<-kNN(10, data$horsepower, data$mpg, data2$horsepower)
TrainMSE10 = mean((data\$mpg - kNN10)^2)
TestMSE10 = mean((data2mpg - kNN10)^2)
TrainMSE10
TestMSE10
kNN20<-kNN(20, data$horsepower, data$mpg, data2$horsepower)
TrainMSE20 = mean((datampg - knn20)^2)
TestMSE20 = mean((data2mpg - kNN20)^2)
TrainMSE20
TestMSE20
kNN30<-kNN(30, data$horsepower, data$mpg, data2$horsepower)
TrainMSE30 = mean((datampg - knn30)^2)
TestMSE30 = mean((data2mpg - kNN30)^2)
TrainMSE30
TestMSE30
kNN50<-kNN(50, data$horsepower, data$mpg, data2$horsepower)
TrainMSE50 = mean((data\$mpg - kNN50)^2)
TestMSE50 = mean((data2\$mpg - kNN50)^2)
TrainMSE50
TestMSE50
kNN100<-kNN(100, data$horsepower, data$mpg, data2$horsepower)
TrainMSE100 = mean((data\$mpg - kNN100)^2)
TestMSE100 = mean((data2\$mpg - kNN100)^2)
TrainMSE100
```

TestMSE100

```
TestMSE2
TestMSE5
TestMSE10
TestMSE20
TestMSE30
TestMSE50
TestMSE50
TestMSE100
```

knn20

```
x_sample = seq(-5, 300, length=10000)
knnx <- kNN(20, data$horsepower, data$mpg, x_sample)
knnx
k<-data.frame(x_sample, knnx)

ggplot() +
    geom_point(data = data, aes(x = horsepower, y = mpg), color = 'blue') +
    geom_point(data = data2, aes(x = horsepower, y = mpg), color = 'red') +
    xlab('Horsepower') + ylab('MPG') +
    geom_line(data = k, aes(x = k[,1], y = k[,2]), color = "green", lwd=2) +
    scale_color_manual(values=c('Training Data' = 'blue', 'Testing
Data'='red', 'kNN20' = 'Green')) +
    labs(caption = 'Training data = Blue, Testing data = Red, kNN20 =
Green')</pre>
```