UNIVERSIDADE FEDERAL DO PARANÁ CURSO DE ESTATÍSTICA

Andressa Luiza Cordeiro GRR:20160218 Jayme Gomes dos Santos Junior GRR:20160210 Luciana Helena Kowalski GRR:20160231

MODELAGEM DE BANK MARKETING POR REGRESSÃO LOGÍSTICA

CURITIBA

2019

1 Resumo

2 Introdução

3 Material e Métodos

A base de dados Bank Marketing utilizada no estudo foi extraída do site "https://www.mldata.io/datasets/.". Com as seguintes variáveis: age - idade do cliente(numérico inteiro); job - emprego do cliente = admin., blue-collar, entrepreneur, housemaid, management, retired, self-employed, services, student, technician, unemployed, unknown(fator); marital - estado civil do cliente = divorced, married, single, unknown(fator); education - nível educacional do cliente = primary, secondary, tertiary, unknown(fator); default - cliente possui crédito = no, yes, unknown(fator); balance- balanço anual médio do cliente em euro(numérico); housing - cliente possui empréstimo habitacional = no, yes, unknown(fator); loan - cliente possui empréstimo pessoal = no, yes, unknown(fator); contact - forma de contato com o cliente = unknown, telephone, cellular(fator); day - dia do mês(inteiro entre 1 e 31); month - mês do ano = jan, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec(fator); duration - duração do último contato com o cliente(numérico em segundos); campaing - número de contatos feitos com o cliente(numérico inteiro); pdays - número de dias desde o último contato feito com o cliente em uma campanha passada(numérico inteiro onde -1 significa que não houve contato prévio); y - variável resposta = yes, no(fator).

As análises estatísticas foram realizadas através do software R.

Para realizar o ajuste do modelo foi utilizado GLM(Generalized Linear Models) da família binomial para resposta binária com as funções de ligação logito, probito, complemento log-log (clog-log) e cauchit.

A base de dados foi separada em duas, sendo uma para ajustar o modelo(com 80% das observações) e a outra para validação do ajuste(com os 20% restantes). Este procedimento foi realizado de forma aleatória.

Inicialmente, foram selecionada as covariáveis descritas anteriormente. Foram utilizados os método forwar, backward e stepwise para seleção de covariáveis, selecionando o modelo através do critério de informação de Akaike (AIC), utilizando o que produziu o menor valor (AIC).

Posteriormente foi avaliada a predição do modelo através de pontos de corte, estabelidos como 0,5(de maneira intuitiva) e 0,89(baseado na proporção da variável resposta). Então, foram comparadas a sensibilidade e especificidade nos dois pontos de corte. Após, foi utilizada a curva ROC para representar a relação entre sensibilidade e especificidade e a matriz de confusão para avaliar outros indicadores do modelo.

4 Resultado e Discussões

Após realizada a seleção das covariáveis, foi escolhido o modelo ajustado pelo algorítmo stepwise com o menor AIC.

Tabela 1: Modelos Binomiais, Suas Funções de Ligação e Valores AIC.

Função de Ligação	AIC	N° de Parâmetros
Probito	1821.418	34
Logito	1833.575	34
Cauchit	1941.460	23
Clog-log	1967.442	35

Muito embora o modelo **Binomial(probito)** tenha sido selecionado pelo menor AIC, todos os modelos candidatos se mostraram muito complicados(número grande de parametros) devido a covariáveis do tipo fator com muitos níveis(Tabela 1).

Para tentar lidar com este problema, será usado um método do pacote GAMLSS de combinar níveis parecidos e assim gerar novos níveis para variáveis do tipo fator baseado nas idéias de Tutz(2013) que, diferente de outros métodos que encolhem a diferença entre as estimativas dos níveis do fator em torno da média geral, ele classifica níveis em blocos de estimativas parecidas através de um valor λ reduzindo a quantidade de níveis.

4.1 Reagrupamento de Níveis

Figura 1: Gráfico de Reagrupamento de Níveis da variável month

Figura 2: Gráfico de Reagrupamento de Níveis da variável job

É possível verificar que conforme o λ existe uma semelhança entre os níveis das variáveis month(Figura 1) e job(Figura 2).

O algorítmo de agrupamento retorna um coeficiente para cada nível da variável e coeficientes iguais indicam os niveis em cada novo agrupamento.

Tabela 2: Coeficientes Para Reagrupamentos dos Níveis da Variável month.

T_2

A variável month ficou agrupada em 5 novos níveis (Tabela 2):

- $1. \ may;$
- $2.\ jan,\, jun,\, jul\,\, {\rm e}\,\, nov;$
- 3. *aug*;
- 4. feb e apr;
- 5. mar, sep e dec.

Niveis	Coeficientes
may	-0.28
jan	-0.03
jun	-0.03
jul	-0.03
nov	-0.03
aug	0.09
feb	0.29
apr	0.29
mar	0.91
sep	0.91
dec	0.91
oct	1.12

Tabela 3: Coeficientes Para Reagrupamentos dos Níveis da Variável job.

T_3

Niveis	Coeficientes
blue-collar	-0.31
entrepreneur	-0.06
services	-0.06
technician	-0.06
admin.	0.10
housemaid	0.10
management	0.10
self-employed	0.10
unemployed	0.10
unknown	0.10
retired	0.44
student	0.56

E para a variável job, o novo agrupamento ficou dividido em 5 novos níveis (Tabela 3).

- 1. blue-collar;
- $2.\ entrepreneur,\ sevices\ e\ tehnician;$
- $3.\ admin,\ housemaid,\ management,\ self-employed,\ unemployed\ e\ unknow;$
- 4. retired;
- 5. student.

4.2 Ajuste de Modelos com Níveis Reagrupados

Tabela 4: Comparação Entre o Modelo Selecionado(*) e os com Níveis Reagrupados.

Ao analisar os modelos com níveis reagrupados em relação ao selecionado anteriormente (Tabela 4), é notório que o menor (AIC) ainda é o do primeiro modelo escolhido, mas em virtude da redução em 17 parâmetros o modelo selecionado para continuar a análise foi o **Binomial** com função de ligação **probito** e AIC = 1863.186, pois um acréscimo em 41.768 em AIC é razoável por uma simplicidade maior no modelo.

Função de Ligação	AIC	N° de Parâmetros
Probito *	1821.418	34
Probito	1863.186	17
Logito	1872.035	21
Cauchit	1985.838	20
Complemento log-log	2012.095	18

Tabela 5: Coeficientes do Modelo Ajustado e Seus Erros Padrões.

	Estimativa	Erro Padrão
(Intercept)	-1.895	0.200
duration	0.002	0.000
monthmonth2	0.156	0.101
monthmonth3	0.446	0.124
monthmonth4	0.402	0.119
monthmonth5	1.096	0.169
contacttelephone	0.054	0.131
contactunknown	-0.424	0.107
jobjob2	0.166	0.209
jobjob3	0.338	0.108
jobjob4	0.764	0.167
jobjob5	0.339	0.104
pdays	0.001	0.000
housingyes	-0.290	0.076
campaign	-0.051	0.016
loanyes	-0.339	0.107
age	-0.007	0.004

Modelo ajustado(Tabela 5) e sua equação.

$$\Phi^{-1}(\pi_i) = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_3 + \hat{\beta}_4 x_4 + \hat{\beta}_5 x_5 + \hat{\beta}_6 x_6 + \hat{\beta}_7 x_7 + \hat{\beta}_8 x_8 + \hat{\beta}_9 x_9 + \hat{\beta}_{10} x_{10} + \hat{\beta}_{11} x_{11} + \hat{\beta}_{12} x_{12} + \hat{\beta}_{13} x_{13} + \hat{\beta}_{14} x_{14} + \hat{\beta}_{15} x_{15} + \hat{\beta}_{16} x_{16} + \hat{\beta}_{17} x_{17}$$

4.3 Gráficos de Efeito do Preditor

Como o modelo selecionado temo função de ligação **probito**, uma forma de interpretar os parâmetros é através de gráficos de efeito(Figura 3 e Figura 4).

Figura 3: Gráficos de Efeito para $\mathit{duration},\ \mathit{month},\ \mathit{job}$ e pdays

Figura 4: Gráficos de Efeito para housing, campaign, loan e age

4.4 Predição

A comparação entre as predições do modelo e os valores observados é feita através de tabelas de classificação, onde as predições são baseadas em pontos de corte.

Os pontos de corte escolhidos para o estudo foram o tradicional **0.5**(Tabela 6), **0.89**(Tabela 7) baseado na proporção de sucessos observados e **0.3**(Tabela 8) como um valor mais baixo para comparação.

Tabela 6: Tabela de classificação com ponto de corte 0.5.

	no	yes
no	17	18
yes	772	97

Tabela 7: Tabela de classificação com ponto de corte 0.89.

	no	yes
no	4	2
yes	785	113

Tabela 8: Tabela de classificação com ponto de corte **0.3**.

Pelas tabelas de classificação é possível perceber que, de modo geral, o modelo gera muitas prediçoes de *yes*, quando na realidade são *no*. Isso fica ainda mais claro na tabela comparando sensibilidade e especificidade

	no	yes
no	52	46
yes	737	69

para cada ponto de corte (Tabela 9). Evidenciando uma alta especificidade e uma baixís sima sensibilidade do modelo.

Tabela 9: Tabela de classificação com ponto de corte **0.3**.

	Sensibilidade	Especificidade
pc=0.89	0.0050697	0.9826087
pc=0,5	0.0215463	0.8434783
pc=0,3	0.0659062	0.6000000

4.5 Curva ROC

Usamos a curva ROC para comparar especificidade e sensibilidade ao longo dos pontos de corte(Figura 5).

Figura 5:

4.6 Regra de Decisão Incorporando Custos

Vamos supor que o custo de classificar um falço não seja 1.5 vezes o de classificar um falso sim (C(S|N) = 1.5 * C(N|S)). Assim, para uma regra de classificação com probabilidades de classificação incorretas P(S|N) e P(N|S), o custo esperado de má classificação (ECMC) fica dado por:

$$ECMC = C(S|N) * P(S|N) * P(N) + C(N|S) * P(N|S) * P(S)$$

Como existe 11% de respostas sim na base, P(S) = 0.11; P(N) = 0.89.

Assim, ECMC =
$$0.89 * P(S|N) + 0.165 * P(N|S)$$

Custo de Classificação

Figura 6: Gráfico de Custo de Classificação

O gráfico mostra que um ponto de corte em torno de 0.4 gera o menor custo de classificação(Figura 6).