

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours Part-III Examination, 2022

MATHEMATICS

PAPER: MTMA-VIII-A

Time Allotted: 2 Hours Full Marks: 50

The figures in the margin indicate full marks.

Candidates should answer in their own words and adhere to the word limit as practicable.

All symbols are of usual significance.

GROUP-A

SECTION-I (LINEAR ALGEBRA)

Answer any one question from the following

 $10 \times 1 = 10$

1. (a) If V and W are two finite dimensional vector spaces and $T:V\to W$ is a linear transformation, then show that

 $\dim V = \text{Nullity of } T + \text{Rank of } T$

(b) A linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ is defined by

3

3

4

5

3

$$T(x_1, x_2, x_3) = (2x_1 + x_2 - x_3, x_2 + 4x_3, x_1 - x_2 + 3x_3), (x_1, x_2, x_3) \in \mathbb{R}^3$$

Find the matrix of T relative to the ordered bases (0, 1, 1), (1, 0, 1), (1, 1, 0) of \mathbb{R}^3 .

(c) Let V be the vector space of all real polynomials of degree ≤ 3 and $T: V \to V$ be defined by $T(p(x)) = p'(x) + x^2 p''(x)$ (where p'(x) and p''(x) denote the first and second order derivatives of p(x) respectively).

Show that T is a linear transformation. Find the matrix of T with respect to the ordered basis $\{1, x, x^2, x^3\}$.

2. (a) Let $T: V \to U$ and $S: U \to W$ be linear maps where, V, U, W are finite dimensional vector spaces over a field F. Then relative to a choice of ordered bases, show that $m(S \cdot T) = m(S) \cdot m(T)$ [where m(T) stands for the matrix of T with respect to the chosen basis].

(b) For a positive integer n, P_n denotes the vector space of polynomials of degree $\leq n$, over the field of real numbers. Let $T: P_2 \to P_3$ be a linear transformation defined by

$$T(f(x)) = 2f'(x) + \int_{0}^{x} 3f(t) dt$$
, for all $f(x) \in P_2$

Prove that *T* is injective.

3082 Turn Over

(c) The matrix representation of a linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ is $\begin{pmatrix} 1 & 1 & 2 \\ -1 & 2 & 1 \\ 0 & 1 & 3 \end{pmatrix}$ relative to the standard basis of \mathbb{R}^3 . Find the explicit representation of T.

SECTION-II (MODERN ALGEBRA)

Answer any one question from the following

 $8 \times 1 = 8$

3

- 3. (a) If H be a subgroup of a commutative group G then prove that the quotient group G/H is commutative. Is the converse true? Justify with example.
 - (b) In a group G, let H, K be subgroups such that K is normal in G. Prove that $KH = \{kh \mid k \in K, h \in H\}$ is a subgroup of G.
- 4. (a) If (H, \circ) is a normal subgroup of a group (G, \circ) , then prove that the quotient group (G/H, *) is Abelian if and only if

$$x \circ y \circ x^{-1} \circ y^{-1} \in H \quad \forall x, y \in G$$

(b) If G is a commutative group and $\phi: G \to G'$ is an epimorphism from G to any group G', then show that G' is also commutative. Is the converse true? Justify.

SECTION-III (BOOLEAN ALGEBRA)

Answer any one question from the following

 $7 \times 1 = 7$

- 5. (a) In a Boolean algebra B, prove that $a \lor x = a \lor y$ and $a' \lor x = a' \lor y$ implies x = y. Write the dual of the statement.
 - (b) Simplify the circuits.

3

- 6. (a) Express the Boolean expression (x+y)(x+y')(x'+z) in DNF in the variable x, z and also express it in DNF in the variables x, y, z.
 - (b) If x, y, z are three switches, then draw a switching circuit representing [zx + x(y + z')](z + x)(z + y).

GROUP-B (DIFFERENTIAL EQUATION-III)

Answer any one question from the following

 $15 \times 1 = 15$

7. (a) Find the power series solution of y'' + (x-3)y' + y = 0 near x = 2.

3082

B.Sc./Part-III/Hons./MTMA-VIII-A/2022

- (b) If $L\{F(t)\} = f(s)$, and $G(t) = \begin{cases} F(t-a) & t > a \\ 0 & t < a \end{cases}$, then prove $L\{G(t)\} = e^{-as}f(s)$. 5

 Where L denotes Laplace transform.
- (c) Use the convolution theorem to find $L^{-1}\left\{\frac{s^2}{(s^2+4)^2}\right\}$, where L^{-1} denotes inverse Laplace transform.
- 8. (a) Applying power series method, solve $\frac{d^2y}{dx^2} y = x$.

(b) If
$$F(s) = \frac{1}{(s^2 + a^2)(s^2 + b^2)} (a \neq b)$$
, then find $f(t)$, where $f(t) = L^{-1}{F(s)}$.

(c) Using first shifting property of Laplace transform evaluate

$$L^{-1}\left(\frac{s-10}{s^2-4s+20}\right)$$

GROUP-C (TENSOR CALCULUS)

Answer any *one* question from the following

 $10 \times 1 = 10$

5

9. (a) Prove that Kronecker delta δ_i^i is a mixed tensor of type (1, 1).

3

(b) Define the null vector. The line element in V_4 -space is given by

1+3

$$ds^{2} = -(dx^{1})^{2} - (dx^{2})^{2} - (dx^{3})^{2} + c^{2} (dx^{4})^{2}$$

Verify whether $\left(-1, 0, 0, \frac{1}{c}\right)$ is the null vector in V_4 .

(c) Prove that all Christoffel symbols are zero in the Euclidean space.

3

10.(a) Line element of two neighboring points $P(x^i)$ and $Q(x^i + dx^i)$ in a 3-dimensional space is given by

$$ds^{2} = (dx^{1})^{2} + 2(dx^{2})^{2} + 3(dx^{3})^{2} - 2dx^{1}dx^{2} + 4dx^{2}dx^{3}$$

By this line element, does the above space form a Riemannian space? Justify it.

(b) Show that $g_{ik,j} = 0$ and $\delta_{k,j}^i = 0$.

2+1

- (c) Show that $g_{ij} dx^i dx^j$ is an invariant, where g_{ij} is the fundamental metric tensor.
- 3
- **N.B.:** Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

____×___

3082