- 16. Demuestre que si una matriz real A de 2×2 tiene vectores característicos ortogonales, entonces A es simétrica.
- 17. Sea A una matriz real antisimétrica $(A^{\top} = -A)$. Demuestre que todo valor característico de A es de la forma $i\alpha$, donde $\alpha \in \mathbb{R}$ e $i = \sqrt{-1}$. Es decir, demuestre que todo valor característico de A es un número **imaginario**.
- *18. Demuestre que los valores característicos de una matriz hermitiana compleja de $n \times n$ son reales. [Sugerencia: Utilice el hecho de que en $\mathbb{C}^n \langle A\mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, A^*\mathbf{y} \rangle$.]
- *19. Si A es una matriz hermitiana de $n \times n$, demuestre que los vectores característicos correspondientes a valores característicos distintos son ortogonales.
- **20. Repitiendo la demostración del teorema 8.4.3, pero sustituyendo $\bar{\mathbf{v}}_i^{\mathsf{T}}$ por $\mathbf{v}_i^{\mathsf{T}}$ donde sea adecuado, demuestre que cualquier matriz hermitiana de $n \times n$ tiene n vectores característicos ortonormales.
 - **21.** Encuentre una matriz unitaria U tal que U*AU es diagonal, donde $A = \begin{pmatrix} 0 & 3-2i \\ 3+2i & 0 \end{pmatrix}$.
 - 22. Haga lo mismo que en el problema 21 para $A = \begin{pmatrix} -1 & 2+i \\ 1-2i & 2 \end{pmatrix}$.
 - 23. Demuestre que el determinante de una matriz hermitiana es real.

EJERCICIOS CON MATLAB 8.4

- 1. a) (Lápiz y papel) Si A es una matriz simétrica aleatoria de n x n, entonces se espera que A tenga valores característicos distintos y que los vectores característicos asociados sean ortogonales. Explique por qué se puede decir que se espera que exista una base ortonormal para Rⁿ que consiste en vectores característicos de A.
 - b) Genere cinco matrices simétricas aleatorias A (no todas del mismo tamaño) generando matrices reales aleatorias B y después formando A = triu(B) + triu(B). Para cada matriz A generada, verifique lo que se espera según el inciso a). Verifique que existe una matriz Q y una matriz diagonal D tales que $A = QDQ^T$.
- 2. Si A es una matriz de valores complejos, entonces A* se puede encontrar como A' con MAT-LAB. Genere una matriz A aleatoria de valores complejos de 4 × 4 (use A = B + i*C, donde B y C son matrices aleatorias de valores reales encontradas con el comando rand). Genere la matriz H = triu (A) + triu (A) '.
 - a) Verifique que H es hermitiana. Encuentre los valores característicos de H. Aun cuando H es de valores complejos, ¿qué observa sobre los valores característicos?
 - b) Repita las instrucciones del problema l de esta sección de MATLAB pero cambie la palabra simétrica por hermitiana, cambie \mathbb{R}^n por \mathbb{C}^n y cambie Q^T por Q^* .
- 3. Geometría Suponga que A es una matriz real simétrica de 2×2 . Entonces existe una matriz diagonal D y una matriz ortogonal Q tales que $A = QDQ^T$.
 - a) (Lápiz y papel) Como Q es ortogonal, se tiene que $\det(Q)$ es +1 o bien -1. ¿Por qué? Se sabe que si $\det(Q) = -1$, al multiplicar una columna de Q por -1 se produce una nueva Q que todavía es ortogonal pero que tiene $\det(Q) = 1$. ¿Por qué? Explique por qué la nueva Q todavía contiene una base ortonormal de vectores característicos que están en correspondencia correcta con los valores característicos de D de manera que $A = QDQ^T$ para la nueva Q.
 - b) (Lápiz y papel) Usando los hechos de que Q es ortogonal, que det (Q) = 1 y que un vector de longitud 1 se puede escribir como $(\cos(\theta) \sin(\theta))$ para algún ángulo θ , explique por qué se puede escribir