ELEC 400M: Machine Learning Fundamentals for Engineers Spring 2022

Lecture Syllabus

Instructor: Prof. Xiaoxiao Li Scribe: Xiaoxiao Li

1 Course Description

- This is a Special Topics course focusing on foundations and concepts of machine learning and its applications to engineering problems. Students are expected to have obtained a solid background in probability and random variables, as demonstrated by successfully completing one of the following courses: ELEC/STAT 321, MATH/STAT 302, MATH 318.
- This course can be applied towards the advanced electives requirement of the BASc in Electrical Engineering program and the BASc in Computer Engineering program.
- Further, credit will be granted for only one of: ELEC 400M, CPSC 330, CPSC 340.

2 Contact Information

• Instructor: Xiaoxiao Li

• Email: xiaoxiao.li@ece.ubc.ca

3 Time and Location

- Class Meets: Tuesday & Thursday (Term 2), 12:30 pm 14:00 pm
- Location:

```
Tue || 12:30 pm – 14:00 pm || Aquatic Ecosystems Research Laboratory || Rm 120 Thu || 12:30 pm – 14:00 pm || Earth Sciences Building || Rm 1012
```

• Zoom participation ID:

https://ubc.zoom.us/j/68414644093?pwd=VFJCTk9uOTNCQzFiSDFBcXF5WkV4dz09

- TA Office Hours: Tue | 10:00 am 11:00 am (Tentative)
 - Yinjia Huo yortka@ece.ubc.ca
 - Sadegh Mahdavi smahdavi@ece.ubc.ca
 - Chun-Yin Huang chunyinhuang17@gmail.com
- Instructor Office Hours: Thursday afternoon (by appointment only)

4 Prerequisites

- Proficiency in Python
 All class assignments will be in Python.
- College Calculus, Linear Algebra
 You should be comfortable taking derivatives and understanding matrix vector operations and notation.
- Basic Probability and Statistics
 You should know basics of probabilities, Gaussian distributions, mean, standard deviation, etc.

5 Course Goals

The course aims to provide an introductory level exposure to machine learning concepts with a balance between practical and theoretical aspects and hands-on experience suitable for engineering students. At the end of the course, students will be able to: apply the concept of learning and machine learning to real-world problems; identify the machine learning tasks and select suitable machine learning models; execute training and validation of models; apply techniques to control overfitting and assess the success of learning; use and modify available software for machine learning models and apply to new problems; realize the ongoing challenges and problems in machine learning; continue with specialized and advance machine learning courses.

6 Computational Resources

GPU computing is required for this class. I strongly recommend to Google Colab or use your own/lab's GPU since that is the most convenient way of writing and testing code with GUI. Click here to try out the Colab tutorial.

7 Course Content

This course will cover the following topics:

- 1. Introduction to Machine Learning (Jan 11)
- 2. Machine Learning Basics
 - Announce Assignment 1 (Jan 15)
 - Linear Regression and Shrinkage(Jan 13 and Jan 18)
 - Logistic Regression and Optimization (Jan 20 and Jan 25)
 - Cross-Validation (Jan 27)
 - Evaluation Metrics (Jan 27)

- Assignment 1 Submission (Jan 25)
- 3. Supervised Learning
 - Announce Assignment 2 (Feb 8)
 - Introduction to Supervised Learning and K-Nearest Neighbors (Feb 1)
 - Support Vector Machines (Feb 3, Feb 8, Feb 10)
 - Decision Tree and Random Forest (Feb 10, Feb 15 and Feb 17)
 - Assignment 2 Submission (Feb 22) ¹
- 4. Unsupervised Learning
 - Announce Assignment 3 (March 1)
 - Clustering (March 1)
 - Principal Components Analysis (March 3)
 - Assignment 3 Submission (March 8)
- 5. Overview of Deep Neural Networks (March 8, March 10, and March 15)
 - Announce Assignment 4 (March 8)
 - Background
 - Introduction to Multilayer Perceptrons
 - Fully Connected Layers
 - Activation Functions
 - Objective Functions
 - Backpropogation
 - Deep Learning Frameworks
 - Assignment 4 Submission (March 25)
- 6. Introduction to Deep Learning Models and their Applications
 - Convolutional Neural Networks (March 17 and March 22)
 - Overview and Motivation
 - * Image Classification
 - * Object Detection
 - * Image Segmentation
 - Layers
 - * Convolutional Layers
 - * Pooling Layers
 - * Batch Normalization and Dropout
 - Popular Architectures
 - * VGG [SZ14] and ResNet [HZRS16] for Image Classification
 - * YOLO [RDGF16] and Mask-RCNN [HGDG17] for Object Detection

 $^{^1\}mathrm{Feb}$ 21-25 UBC Midterm Break

- * UNet [RFB15] for Image Segementation
- Recurrent Neural Networks (March 24)
- Background and Applications
- Architectures
 - Vanilla RNN [She20]
 - LSTM [KKTK16]
- Deep Generative Model (March 29)
 - Background and Applications
 - Architectures
 - * PixleCNN and PixleRNN [VdOKE+16]
 - * Variational Autoencoder [KW13]
 - * Generative Adversarial Network [GPAM⁺14]
- Natural Language Processing (NLP) (April 5)
 - Background
 - NLP Tasks
 - * Sentence/Document Classification
 - * Token-wise Classification
 - * Translation
 - Archietectures
 - * Transformer [VSP+17]
- Overview of ML for Applications in Engineering Fileds (April 7)
- Report Submission (March 31)
- Final Project Report Submission (April 20)

8 Grading, Assignments, and Final Project

- 4 Assignments: 60% = 4*15%
 - Conceptual and practical questions
 - Programming questions
- Article reading and report:15%
 - Comment on the recent AI topics: fairness, privacy, ...
 - Comment on the recent AI products: Alexa, Apple keyboard, ...
 - For Teamwork, no more than 3 people.
- Final project: 25%
 - A machine learning project including data collection, data preprocessing, data analysis using machine learning models. You need to submit codes together with a well structured report (at least 2 pages and no more than 10 pages). **No Teamwork allowed**.
 - Passing the course does on conditional on if you pass the final project
- Late submission will result in *0.8 decay per day. Extension is only accepted via applying for Academic Concession.

9 Suggested Reading Materials

- Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning. Vol. 1. No. 10. New York: Springer series in statistics, 2001.
- Müller, Andreas C., and Sarah Guido. Introduction to machine learning with Python: a guide for data scientists. "O'Reilly Media, Inc.", 2016.
- Goodfellow, Ian, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning. Vol. 1, no. 2. Cambridge: MIT press, 2016.
- Torfi, Amirsina. Deep Learning Roadmap. https://www.machinelearningmindset.com/books/

10 Acknowledgment

- * Our course materials and design are referred to the following resources, thanks for the great work done by the smart people!
 - https://speech.ee.ntu.edu.tw/tlkagk/courses.html
 - http://cs231n.stanford.edu/
 - http://deeplearning.cs.cmu.edu/
 - https://www.deeplearningbook.org/lecture_slides.html
 - https://www.cs.princeton.edu/courses/archive/spring16/cos495/
 - http://ttic.uchicago.edu/ shubhendu/Pages/CMSC35246.html
 - https://www.cc.gatech.edu/classes/AY2018/cs7643_fall
 - http://introtodeeplearning.com/
 - https://hrlblab.github.io/cs3891.html
 - Prof. Lutz Lampe's teaching materials
 - Prof. Qi Dou's teaching materials

References

- [GPAM⁺14] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. arXiv preprint arXiv:1406.2661, 2014.
- [HGDG17] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the IEEE international conference on computer vision, pages 2961–2969, 2017.

- [HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.
- [KKTK16] Jihyun Kim, Jaehyun Kim, Huong Le Thi Thu, and Howon Kim. Long short term memory recurrent neural network classifier for intrusion detection. In 2016 international conference on platform technology and service (PlatCon), pages 1–5. IEEE, 2016.
- [KW13] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.
- [RDGF16] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified, real-time object detection. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 779–788, 2016.
- [RFB15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In *International Conference on Medical image computing and computer-assisted intervention*, pages 234–241. Springer, 2015.
- [She20] Alex Sherstinsky. Fundamentals of recurrent neural network (rnn) and long short-term memory (lstm) network. *Physica D: Nonlinear Phenomena*, 404:132306, 2020.
- [SZ14] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
- [VdOKE⁺16] Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Conditional image generation with pixelcnn decoders. *Advances in neural information processing systems*, 29, 2016.
- [VSP⁺17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.