Tabular data analysis

Leo Lahti

Recap of Day 1

- Data: SummarizedExperiment: rowData, colData, assays
- Methods: subsetting, transformations

SummarizedExperiment

Day 1: Basic data wrangling

- reproducible data science workflow
- data import
- data containers
- data manipulation (subsetting, transformations)

Today's learning goals

Expanding multi-assay analyses:

${\bf Tree Summarized Experiment}$

- augmenting the data (add diversities)
- data agglomeration & alternative experiments
- tree information: rowTree, colTree

Today's program

Morning: data wrangling

Afternoon: data visualizations

Data enrichment

Visualizing colData

Task: visualize the abundance of a specific microbial Species against the measurement Site

Alpha diversity task

Use the available tools to assess and visualize alpha diversity, and augment colData

- Exercises 17.5.1-17.5.2
- Add Shannon diversity in colData
- Visualize diversity differences between sample groups

Alpha diversity & aging

Healthy & normal obese subjects.

Alpha diversity and diet

Am J Clin Nutr. 2021 Aug; 114(2): 605–616. Published online 2021 May 21. doi: 10.1093/ajcn/nqab077

Associations of healthy food choices with gut microbiota profiles

Kari K Koponen, Aaro Salosensaari, Matti O Ruuskanen, Aki S Havulinna, Satu Männistö, Pekka Jousilahti, Joonatan Palmu, Rodolfo Salido, Karenina Sanders, Caitriona Brennan, Gregory C Humphrey, Jon G Sanders, Guillaume Meric, Susan Cheng, Michael Inouye, Mohit Jain, Teemu J Niiranen, Liisa M Valsta, Rob Knight, and Veikko V Salomaa

PMCID: PMC8326043

PMID: 34020448

Alpha diversity

- How many types?
- Distribution of types?
- Dominance of types?

Alpha diversity

- How many types?
- Distribution of types?
- Dominance of types?

Alpha diversity indices

Richness

- number of types
- Eetimates of true richness based on finite sample sizes (Howard Sanders 1968); see e.g. Chao1

Evenness

• distribution of sizes (even or uneven?)

Diversity

Dominance

 $Figure~1:~https://github.com/mblstamps/stamps2019/blob/master/STAMPS2019_overview_Pop.pdf$

Finite sampling

Resource Open Access Published: 20 July 2020

A unified catalog of 204,938 reference genomes from the human gut microbiome

Alexandre Almeida \boxtimes , Stephen Nayfach, Miguel Boland, Francesco Strozzi, Martin Beracochea, Zhou

Jason Shi, Katherine S. Pollard, Ekaterina Sakharova, Donovan H. Parks, Philip Hugenholtz, Nicola Segata,

Nikos C. Kyrpides & Robert D. Finn \boxtimes

Nature Biotechnology 39, 105-114 (2021) | Cite this article 51k Accesses | 153 Citations | 680 Altmetric | Metrics

High-quality reference genomes are required for functional characterization and taxonomic assignment of the human gut microbiota.

Unified Human Gastrointestinal Genome (UHGG):

- 4,644 gut prokaryotes (>70% lack cultured representatives)
- 204,938 nonredundant genomes
- Encode >170 million protein sequences, collated into Unified Human Gastrointestinal Protein (UHGP) catalog.

UHGP more than doubles the number of gut proteins in comparison to those present in the Integrated Gene Catalog.

- 40% of the UHGP lack functional annotations
- Intraspecies genomic variation analyses revealed a large reservoir of accessory genes and single-nucleotide variants, many of which are specific to individual human populations.

The UHGG and UHGP collections enable studies linking genotypes to phenotypes in the human gut microbiome.

Estimating species content

Figure 2: Copyright © Claudia Zirion, Diego Garfias, Vanessa Arellano, Aaron Jaime, Abel Lovaco, Daniel Díaz, Abraham Avelar, Nelly Sélem https://carpentries-incubator.github.io/metagenomics-workshop/)

nature methods

Published: 27 August 2018

A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life

Donovan H Parks, Maria Chuvochina, David W Waite, Christian Rinke, Adam Skarshewski, Pierre-Alain Chaumeil & Philip Hugenholtz ⊡

Nature Biotechnology 36, 996-1004(2018) | Cite this article
32k Accesses | 728 Citations | 520 Altmetric | Metrics

Correcting index databases improves metagenomic studies

Guillaume Méric,
 Ryan R. Wick, Stephen C. Watts,
 Kathryn E. Holt,
 Michael Inouye

doi: https://doi.org/10.1101/712166

Legend:						
Index name	Taxonomic definitions	# genomes		Index name	Taxonomic definitions	# genomes
NCBI_r86	Default NCBI RefSeq r86	8,674	=	GTDB_r86_noMAGs	GTDB_r86 without MAGs	25,660
GTDB_r86_8.6k	NCBI_r86 with GTDB definitions	8,674	•	GTDB_r86	Representative genomes from GTDE	28,560
NCBI_r88	Default NCBI RefSeq r88	10,089		GTDB_r86_46k	GTDB_r86 + more genomes / taxon	46,006
	NCBI_r88 + 70 corrected human associated genera	16,908				

Common alpha diversity indices

Phylogenetically neutral diversities:

- Richness (observed, Chao1, ACE)
- Evenness (Pielou's evenness)
- Diversity (inverse Simpson, Shannon)

Phylogeny-aware diversities:

• Faith diversity index

Phylogenetic diversity indices

A guide to phylogenetic metrics for conservation, community ecology and macroecology

Caroline M. Tucker ★, Marc W. Cadotte, Silvia B. Carvalho, T. Jonathan Davies, Simon Ferrier, Susanne A. Fritz, Rich Grenyer, Matthew R. Helmus, Lanna S. Jin ... See all authors ∨

First published: 20 January 2016 | https://doi.org/10.1111/brv.12252 | Cited by: 147

Inverse Simpson

$$DI = \frac{N(N-1)}{\sum n(n-1)}$$

$$EXY$$

$$N = \text{Total number of individuals collected}$$

$$n_i = \text{Number of individuals of a species}$$

$$DI = \text{Simpson Diversity Index}$$

How likely it is to pick two members of the same species at random?

Inverse Simpson

Beware the variants:

- Simpson (λ)
- reciprocal Simpson $(1-\lambda)$
- inverse Simpson $(\frac{1}{\lambda})$

Shannon diversity

Shannon Index:

$$H' = -\sum_{i=1}^{S} p_i \ln p_i$$

True Richness:

True diversity, or the effective number of types, refers to the number of equally abundant types needed for the average proportional abundance of the types to equal what is observed in the dataset of interest.

Evenness

H / ln(S)

- H: Shannon diversity
- S: Species richness

Hill's Diversity as a unifying concept

$${}^{q}D = (\sum_{i}^{R} p_{i}^{q})^{\frac{1}{1-q}} \tag{1}$$

Hill's alpha diversities

R: richness (number of distinct types)

pi: proportion of type I

Order of diversity:

• q = 0: Species Richness

• q = 1: Shannon diversity

• q = 2: (Inverse) Simpson diversity

• q 1 : Renyi entropy

Hill's Diversity as a unifying concept

Hill's alpha diversities

- Richness
- inverse Simpson
- Shannon

Data wrangling

Basic data operations

• Transform

- Subset
- Merge
- Aggregate
- Split

Subsetting

Load example data set:

```
library(mia)
```

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Loading required package: GenomeInfoDb

Loading required package: Biobase

```
Welcome to Bioconductor
    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.
Attaching package: 'Biobase'
The following object is masked from 'package:MatrixGenerics':
    rowMedians
The following objects are masked from 'package:matrixStats':
    anyMissing, rowMedians
Loading required package: SingleCellExperiment
Loading required package: TreeSummarizedExperiment
Loading required package: Biostrings
Loading required package: XVector
Attaching package: 'Biostrings'
The following object is masked from 'package:base':
    strsplit
Loading required package: MultiAssayExperiment
```

Check dimension:

data(GlobalPatterns)
tse <- GlobalPatterns</pre>

```
dim(tse)
```

[1] 19216 26

Check dimension for a subset:

```
dim(tse[1:10, 1:3])
```

[1] 10 3

Transformations

- Presence/absence
- Compositional (percentages)
- Log_{10}
- ullet CLR and other Aitchison transformations
- Phylogenetic transformations (e.g. philr)
- Custom transformations

Transformations

Task: Alternative assays

- visualize transformed data; histograms, boxplots
- compare different transformations (scatterplot?)

Agglomeration

- taxonomic units
- TreeSE objects

Agglomeration

Agglomerate microbiota data to higher taxonomic levels:

- chapter 6.3
- agglomerateByRank
- compare diversity or prevalent features between levels

Alternative experiments

Alternative assays vs. alternative experiments?

Store agglomerated data: altExp
Do all levels at once: splitByRanks

Splits

Splitting by:

• taxonomic units

• sample or feature groups

Taxonomic ranks & altExp

The alternative experiments (altExp) mechanism allows us to include multiple abundance tables at different taxonomic levels.

Option	Rows (features)	Cols (samples)	Recommendation
assays altExp MultiAssay		match match free (mapping)	Data transformations Alternative experiments Multi-omic experiments

Alternative experiments and assays?

- Pick clr assay from Genus-level data table?
- Compare Shannon diversity from Genus and Species levels?

TreeSummarizedExperiment

Huang et al. F1000, 2021

Visualization

Ordination

- Visualize example data with PCoA using Bray-Curtis dissimilarity
- Visualize example data with PCA using Aitchison distance (CLR + Euclid)

Heatmaps

• Visualize abundance variation for selected taxa on a heatmap

Trees

• Visualize phylogenetic tree using the examples