Supplementary Materials

Strain	Functional		Potential Role in Tryptophan
	Category	Gene	Overproduction
3-4	Global Regulation	pnp	Degrades competing pathway mRNAs
3-4	Global Regulation	trmA	Influences trp operon attenuation
3-4	Precursor Supply	fbp	Increases precursor (E4P) supply by blocking gluconeogenesis
3-4	Precursor Supply	argF	Increases precursor (PEP) supply by reducing arginine synthesis
3-4	Redox Balance (NADPH)	ligA	Increases NADPH availability via enhanced NAD ⁺ cycling
3-4	Redox Balance (NADPH)	gudP	Increases NADPH by altering glutamate transport
3-4	Competing Pathways	dtpA	Increases free amino acid pool by reducing peptide consumption
10-7	Enzyme Activity	trxA	Maintains the activity of tryptophan synthesis enzymes (TrpE/TrpA).
10-7	Competing Pathways	pheT	Alters precursor (chorismate) flux, favoring the tryptophan branch.
10-7	Precursor Supply	ptsP	Reduces PEP consumption for sugar transport, increasing PEP availability.
10-7	Precursor Supply	gapA	Alters glycolytic flux, impacting precursor (PEP) supply.

Supplementary Table 1. Additional candidate genes mutations and their potential roles in tryptophan overproduction.

Supplementary Figure 1. aroG mutant tryptophan yield.

By performing targeted mutations on the aroG gene, the L-tryptophan yield reached 5 g/L, which is 171 times higher than that of the wild-type strain.

Supplementary Figure 2. The standard curve of melatonin.

Supplementary Table 2. Strains and plasmids used in this study.

Strains and plasmids	Description	Source
E. coli DH5α	F ⁻ ΔlacU169(Φ80 lacZ	Invitrogen
	$\Delta M15)$	
	hsdR17 recA1 endA1 supE44	
E. coli BW25113	F-, λ-, E. coli K-12 strain	Invitrogen
	BD792	
	(CGSC6159) lacZ	

E. coli BW∆trpR	BW25113 strain knocked out	This study
E. coli BW∆trpR∆tnaAB	trpR BW25113 strain knocked out	This study
	trpR and tnaAB	
E. coli BW∆trpR∆tnaAB∆ph eA	BW25113 strain knocked out	This study
	trpR, tnaAB, pheA	
E. coli BW∆trpR∆tnaAB∆pts G	BW25113 strain knocked out	This study
	trpR, $tnaAB$, $ptsG$	
E. coli BW∆trpR∆tnaAB∆py kA	trpR, tnaAB, ptsG BW25113 strain knocked out	This study
$BW\Delta trpR\Delta tnaAB\Delta py$	•	This study
$BW\Delta trpR\Delta tnaAB\Delta py$	BW25113 strain knocked out	·
BW∆trpR∆tnaAB∆py kA E. coli BW∆trpR∆tnaAB∆py	BW25113 strain knocked out trpR, tnaAB, pykA	·
BW∆trpR∆tnaAB∆py kA E. coli BW∆trpR∆tnaAB∆py	BW25113 strain knocked out trpR, tnaAB, pykA BW25113 strain knocked out	·
BW∆trpR∆tnaAB∆py kA E. coli BW∆trpR∆tnaAB∆py kF	BW25113 strain knocked out trpR, tnaAB, pykA BW25113 strain knocked out trpR, tnaAB, pykF	This study
BW∆trpR∆tnaAB∆py kA E. coli BW∆trpR∆tnaAB∆py kF E. coli	BW25113 strain knocked out trpR, tnaAB, pykA BW25113 strain knocked out trpR, tnaAB, pykF BW25113 derivative	This study

E. coli BW∆tnaAB∆trpR	BW25113 derivative with tnaA and trpR genes deleted	This study
$E.\ coli$ $BW cys 3. cys 4\ \Delta cys E$	BW25113 derivative with cys3 and cys4 genes expressed	This study
BW\(\Delta\)CysE-PLB1s- Cys3-Cys4	BW25113 $\triangle cysE$ carrying pLB1s plasmid expressing $cys3$ and $cys4$ gen es	This study
Bw $\Delta trpR \Delta tnaAB$ $\Delta pheA$ pBR322-pYB1a- $BH4$ pSB1c- $SgAANAT$ - $CrTDC$	BW25113 $\Delta trpR \Delta tnaAB$ $\Delta pheA$ carrying pBR322, pYB1a-BH4, and pSB1c- SgAANAT- $CrTDC$ plasmids	This study
Bw\(Delta CysE/\text{pYB1a-}\) AtCOMT/\text{pLB1s-Cys3-}\) Cys4	BW25113 $\triangle cysE$ carrying pYB1a- $AtCOMT$ and pLB1s- $Cys3$ - $Cys4$ plasmids	This study

Bw <i>∆CysE</i> /pYB1a-	BW25113 $\Delta cysE$ carrying	This study
-------------------------	--------------------------------	------------

plasmids

Plasmids

pLB1s-VioABCDE Spe/Chl, araC, This study

/pSB1c-VioABCDE VioA, VioB, VioC, VioD,

VioE

pYB1a- hucR-eGFP Amp, araC, hucR,eGFP This study

pYB1a- hucR-CmR Amp, araC, hucR,CmR

Donor-pheA pheA/ptsG/pykA/pykF U500, This study

U500D500 pheA/ptsG/pykA/pykF D500,

SmR

Donor-ptsG U500D500

Donor-pykA

U500D500

Donor-*pykF*

U500D500

pTarget-pheA J23119(SpeI) promoter, This study

pheA/ptsG/pykA/pykF, gRNA
pTarget-ptsG

scaffold, Spe

pTarget-pykA

pTarget-*pykF*

pLB1s-PBAD-tnaC- araC, pir, I2 and I1 region, This study

mCherry-Cmr His tag, tnaC, mCherry,

CmR, TrrnB, oriR6k

pYB1a-P23119- trpE, D, C B, A, TrrnB, This study

trpEDCBA P15A_ORI, AmpR

pYB1a-P23119- trpE^{S40F}, D, C, B, A, TrrnB, This study

 $trpE^{S40F}DCBA$ $P15A_ORI, AmpR$

PBR322-trp^{fbr}EDCBA- TcR, Lac I, trpD, trpC, trpB, 2

 $aroG^{fbr}$ -ser A^{fbr} serA, aroG

MP6-K araC, UGI, PmCDA1, KanR, This study

CloDF13 ori, araBAD

promoter

pYB1a-BH4 Amp, araC, expresses human This study

GTP cyclohydrolase I (BH4

biosynthesis)

pYB1a-ccdB Amp, araC, ccdB negative This study

selection gene

pYB1a-AtCOMT* (pY Amp, araC, This study

B1a- AtCOMT*expresses

AtCOMTC296F/Q310L mutant Arabidopsis

/V314T) thaliana catechol-O-

methyltransferase

(C296F/Q310L/V314T)

pYB1a-AtCOMT Amp, araC, expresses wild This study

-type *Arabidopsis*

thaliana catechol-O-

methyl transferase

pSB1c-SgAANAT- Chl, expresses Streptomyces This study

CrTDC

griseus arylalkylamine N-

acetyltransferase

(SgAANAT)

and Catharanthus

roseus tryptophan

decarboxylase (CrTDC)

pSB1c-SgAANAT

Chl, expresses Streptomyces

This study

griseus arylalkylamine N-

acetyltransferase

(SgAANAT)

PLB1s-Cys3-Cys4

Spe, Chl,

This study

expresses cys3 and cys4 gen

es

PLB1s-P23119-

Spe, Chl, P23119 promoter

This study

AtCOMT-SgAANAT-*

drives expression of mutant

CrTDC

AtCOMT*, SgAANAT, and

CrTDC

PLB1s-AtCOMT*-

Spe, Chl, expresses mutant

This study

SgAANAT-CrTDC

AtCOMT*, SgAANAT, and

CrTDC

PLB1s-P23119- Spe, Chl3, P23119 This study

AtCOMT*-CrTDC promoter drives expression

of mutant AtCOMT* and

CrTDC

Supplementary Table 3. Primers used in this study.

pLB1s-VioABCDE /pSB1c-VioABCDE construction

pLB1s-F TTAGCGAATAAAGATCTGGTACTAGTGGTGAAT

TCG

pLB1s-R GTTGGTCATTTCCTCCTGTTAGCCCAAAAAACG

pSB1c-F TTAGCGAATAAAGATCTGGTACTAGTGGTGAAT

TCG

pSB1c-R GTTGGTCATTTCCTCCTGTTAGCCCAAAAAACG

VioA-F AACAGGAGGAAATGACCAACTACAGTGATATC

VioA-R TG

VioB-F ATGCTCATCTCCTTTATGCACGTTCGGTCAGAC

VioB-R TGCATAAAGGAGATGAGCATCCTGGATTTTCC

VioC-F GTGCATCTCCTTTATGCTTCACGGCTCATTTTAC

VioC-R GAAGCATAAAGGAGATGCACAAGATCATCATC

VioD-F GTTG

VioD-R AGGATCTTCATCTCCTTTAATTCACGCGGCCCA

VioE-F G

VioE-R TTAAAGGAGATGAAGATCCTGGTTATTGGC

TGAGGAGGCATCTCCTTTAACGACCCAGGGCAT

AG

TTAAAGGAGATGCCTCCTCATGCCAC

TACCAGATCTTTATTCGCTAACAACACGCTG

pYB1a- hucR-eGFP construction

pYB1a -F GTATCATTATCCATGCGGGCACTC

pYB1a -R ACAGGGTGTTTAAGGCTCACCTTCACGGGTGG

HucR-F GTGAGCCTTAAACACCCTGTTCCAGACC

HucR-R ATGAGTGCCCGCATGGATAATG

pYB1a- hucR-CmR construction

CmR -F CGCTTTTTATCGCAACTCTC

CmR -R GATCTACCCTCGAGTTACGCCCCGCCCTG

HucR-F GCGTAACTCGAGGGTAGATCTGGTACTAGTGGT

GAATTC

HucR-R

CTCCATCCTCGAGGCTGCCGCG

Donor -pheA U500D500

construction

pheA-U500-F TCCTCGAGGTAAACACATCTGATTAATCCACAT

ATCATTC

pheA-U500-R CACCTTTTCAAGTGTTGCCTTTTTGTTATCAATA

AAAAAG

pheA-D500-F

AGGCAACACTTGAAAAGGTGCCGGATGATGTG

pheA-D500-R

TACTGCAGTACATACCAATGGTTTCTGGAGCAA

ATTC

DO-pheA-F

DO-pheA-R

CCATTGGTATGTACTGCAGTAGTTTTGCTGAAA

TAC

pheA1000-F AGATGTGTTTACCTCGAGGAAAATGTCGTAAAC

pheA1000-R AAACACATCTGATTAATCCACATATCATTC

CATACCAATGGTTTCTGGAGC

Donor -ptsG U500D500

construction

ptsG-U500-F	TCCTCGAGGTATCGGTTACTGGTGGAAACTG
ptsG-U500-R	GTCTTACGGAAATTGAGAGTGCTCCTGAGTATG
ptsG-D500-F	ACTCTCAATTTCCGTAAGACGTTGGGGAGAC
ptsG-D500-R	TACTGCAGTAGTGGATGGGACAGTCAGTAAAG
DO-ptsG-F	GTCCCATCCACTACTGCAGTAGTTTTGCTGAAA TAC
DO-ptsG-R	AGTAACCGATACCTCGAGGAAAATGTCGTAAA C
ptsG1000-F	
ptsG1000-R	ATCGGTTACTGGTGGAAACTGAC
pisO1000-K	GTGGATGGGACAGTCAGTAAAGG
Donor -pykA U500D500 construction	
pykA-U500-F	TCCTCGAGGTACGCATGAGTTGTATGAATTGTA G
pykA-U500-R	GGCAACGTACGTAATACTCCGTTGACTGAAACA ACC
pykA-D500-F	
pykA-D500-R	GGAGTATTACGTACGTTGCCGGATGCGGCGAA AAC
DO-pykA-F	TACTGCAGTAGTACTGGGGATATTATTTACCCG ATCAGG

DO-pykA-R TCCCCAGTACTACTGCAGTAGTTTTGCTGAAAT

AC

pykA1000-F ACTCATGCGTACCTCGAGGAAAATGTCGTAAAC

pykA1000-R ACGCATGAGTTGTATGAATTGTAGC

GTACTGGGGATATTATTTACCCGATCAG

Donor -pykF U500D500 construction

pykF-U500-F TCCTCGAGGTCAAAAATCAAACAAAATCAGAC

AAATAACGC

AAAAGCAATAGACAGTCTTAGTCTTTAAGTTGA

pykF-U500-R GAAGG

pykF-D500-F TAAGACTGTCTATTGCTTTTGTGAATTAATTTGT

ATATCGAAGC

pykF-D500-R TACTGCAGTAGAGCTGCGTCATCTTTAGCAG

DO-pykF-F GACGCAGCTCTACTGCAGTAGTTTTGCTGAAAT

AC

DO-pykF-R

TTGATTTTTGACCTCGAGGAAAATGTCGTAAAC

pykF1000-F

CAAAAATCAAACAAAATCAGACAAATAACGC

pykF1000-R

GAGCTGCGTCATCTTTAGCAG

pTarget -pheA construction

pTarget-pheA-F CTAGTCATACCAGCTTGTCGATTGTGTTTTAGA

GCTAGAAATAGC

pTarget-pheA-R

TAAAACACAATCGACAAGCTGGTATGACTAGT

ATTATACCTAGGAC

pTarget -ptsG construction

pTarget-ptsG-F CTAGTCGGCGACATTCCGCGTTATAGTTTTAGA

GCTAGAAATAGC

pTarget-ptsG-R

TAAAACTATAACGCGGAATGTCGCCGACTAGT

ATTATACCTAGGAC

pTarget -pykA construction

pTarget-pykA-F CTAGTCATCCTCGCCTCTGACGGTTTTAGA

GCTAGAAATAGC

pTarget-pykA-R

TAAAACCGTCAGAGGCGAGGATGATGACTAGT

ATTATACCTAGGAC

pTarget -pykF construction

pTarget-pykF-F CTAGTCGAAGCCTCTGACGGCATCAGTTTTAGA

GCTAGAAATAGC

pTarget-pykF-R

TAAAACTGATGCCGTCAGAGGCTTCGACTAGTA

TTATACCTAGGAC

pLB1s-PBAD-tnaC-mCherry

-Cmr construction

cmr-F AAGTAAAGGAGAGAAAAAAATCACTGGA

TATACC

cmr-R

CTCACCGAATTCACCACTAGTACCTTACGCCCC

GCCCTGCC

D21T--F

CAAAATTGTCACTCACCGCCCTTG

D21T--R

CGGTGAGTGACAATTTTGTTGTCAATATTG

LS-tnaC-F

CGGCCTGGTGCCGCGCGCAGCCTCGAGATGA

ATATCTTACATATATGTGTGACCTC

mcherry-R

TTTCTCCATCTCCTTTACTTGTACAGCTCGTCCA

TGCCG

pYB1a-P23119-trpEDCBA

construction

pybla-F GCGCAGTTAACTCGAGGGTAGATCTGGTACTAG

TGG

pyb1a-R

GTGTTTGCATGGTACCCATGGTTAATTCCTCCT

G

trpE-F

CATGGGTACCATGCAAACACAAAAACCGACTC

TC

JC2

CAAACCGTTCTTGAGGTACTGCG

trpD-R

GTTTGCATCATTTACCCTCGTGCC

trpA-R

 ${\tt TACCCTCGAGTTAACTGCGCGTCGCCGCTTTC}$

MP6-K construction

kana-F CCCATGGCGTTTATAAAAACTCATCGAGCATCA

AATG

GGAAGCTAAAATGAGCCATATTCAACGGGAAA

kana-R

 \mathbf{C}

ZT-F	TATGGCTCATTTTAGCTTCCTTAGCTCCTGAAA ATCTCGATAACTCAAAAAATACGCCC
ZT-R	GTTTTTATAAACGCCATGGGCATGTAGTCAAAA GCC

Sequencing Data Quality Assessment

Whole-genome sequencing (WGS) enables detailed analysis of gene function and genomic loci^{1,2}. WGS of the wild-type strain BW-RT and the two evolved strains (3-4 and 10-7) generates robust data quality, with >94% bases achieving Q30, mean sequencing depths >175×, and unique mapping rates >92%.

Strain	Q30	Mean sequencing depths	Unique mapping rates
BW-RT	94.82%	187.92×	97.53%
3-4	94.78%	190.26×	92.36%
10-7	94.97%	175.8×	92.80%

Supplementary Table 4. Quality metrics for WGS data.

This table summarizes key indicators for the wild-type (BW-RT) and two evolved strains (3-4 and 10-7) derive via directed evolution for tryptophan overproduction. Metrics include: (i) the percentage of bases with Phred quality score ≥30 (Q30), indicating high base-calling accuracy; (ii) mean sequencing depth (×), reflecting coverage reliability; and (iii) unique mapping rate (%) to the reference genome (E. coli K-12 MG1655), ensuring precise variant detection. All values exceed standard thresholds (>94% Q30, >175× depth, >92% mapping), supporting robust downstream genomic variation analysis.

References

1. Priya, V. K., Sarkar, S., & Sinha, S. (2014). Evolution of tryptophan biosynthetic pathway in microbial genomes: a comparative genetic study. *Systems and synthetic biology*, 8(1), 59-72.

DOI: https://doi.org/10.1007/s11693-013-9127-1

2. Hou, M., Gao, S., Wu, J., Chen, S., & Zhang, K. (2025). Metabolic engineering of Escherichia coli to enhance L-tryptophan biosynthesis. *Systems Microbiology and Biomanufacturing*. https://doi.org/10.1007/s43393-025-00338-3