สาระการเรียนรู้

- 1. สมการลอจิก
- 2. ตารางค่าความจริง
- 3. ลอจิกเกต
- 4. การเขียนสมการพีชคณิตจากวงจรลอจิก
- 5. การเขียนวงจรลอจิกจากสมการพีชคณิต
- 6. การสร้างตารางค่าความจริงเพื่อหาเอาต์พูตของสมการลอจิก
- 7. วงจรเชิงจัดหมู่

1. สมการลอจิก (logic expression)

การทำงานของระบบดิจิตอล สามารถอธิบายได้โดยใช้สมการพีชคณิตลอจิก (logic equation) ซึ่ง ประกอบด้วย ตัวแปรลอจิก (logic variable) เป็นตัวแปรที่รับค่าเพียงสองค่า หรือเรียกอีกอย่างหนึ่งว่า ตัว แปรสองสถานะ (Bi-State variable) โดยมีข้อกำหนดคือ สามารถมีสถานะได้เพียงสองสถานะเท่านั้น และ จะอยู่ในสถานะใดสถานะหนึ่งเท่านั้น จะอยู่พร้อมกันทั้งสองสถานะในเวลาเดียวกันไม่ได้ สถานะดังกล่าว อาจแทนความหมายต่าง ๆ เช่น เปิด-ปิด, สูง-ต่ำ, หนึ่ง-ศูนย์ เป็นต้น

ตัวกระทำทางลอจิก (logic operators) เป็นตัวรับเอาตัวแปรลอจิกมาดำเนินการเพื่อให้ได้ผลลัพธ์ โดยผลลัพธ์ที่ได้ขึ้นอยู่กับชนิดของตัวกระทำและสถานะของตัวแปรลอจิกที่ถูกกระทำ เขียนแทนด้วย ไดอะแกรมได้ดังภาพ

ภาพที่ 1 บล็อกไดอะแกรมของตัวกระทำทางลอจิก

ตัวแปรอินพุท 1 ตัว สามารถทำให้เกิดสถานะที่แตกต่างกันได้ 2 กรณี เช่น ตัวแปร A มีสถานะที่ แตกต่างกันได้ 2 กรณี คือ A=0 หรือ A=1 เมื่อเพิ่มจำนวนตัวแปรอินพุทเป็น 2 ตัว เช่น A และ B สถานะที่แตกต่างกันจะเพิ่มเป็น 4 กรณี หรือ 2^2 กรณี คือ A=0, B=0 หรือ A=0, B=1 หรือ A=1, B=0 และ A=1, B=1

ดังนั้นถ้ามีตัวแปรอินพุทจำนวน n ตัว จะสถานะที่แตกต่างกันทั้งหมด 2^n กรณี ตัวกระทำทางลอจิก พื้นฐานได้แก่ AND, OR, NOT, NAND, NOR, XOR และ XNOR

2. ตารางค่าความจริง

เป็นตารางที่แสดงความสัมพันธ์ระหว่างตัวแปรลอจิกอินพุทและเอาท์พุทที่เป็นไปได้ทั้งหมดที่เกิดจาก สมการลอจิก ตารางค่าความจริงจะประกอบด้วย ค่าสถานะของตัวแปรลอจิกทางด้านอินพุทที่เป็นไปได้ ทั้งหมด ซึ่งมีค่าเท่ากับ 2ⁿ กรณี เมื่อ n คือ จำนวนตัวแปรลอจิกด้านอินพุท และสถานะของตัวแปรลอจิก ด้านเอาท์พุทที่เกิดจากการกระทำทางลอจิกระหว่างตัวแปรทางด้านอินพุทค่าต่างๆ

Truth table สำหรับตัวแปรอินพุท 2 ตัว ซึ่งแสดงความสัมพันธ์ระหว่างตัวแปรอินพุท A, B และ เอาท์พุท Y ดังแสดงในตัวอย่างที่ 1

ตัวอย่างที่ 1 ให้เขียนตารางค่าความจริงของสมการลอจิกที่มีตัวแปรอินพุต 1, 2 และ 3 ตัวแปรตามลำดับ

Inp	Output	
А	В	Y = f(A,B)
0	0	Y = f(A,B) = f(0,0)
0	1	Y = f(A,B) = f(0,1)
1	0	Y = f(A,B) = f(1,0)
1	1	Y = f(A,B) = f(1,1)

เช่น สมการลอจิก Y = \overline{AB} + \overline{AB} เขียนแทนด้วย truth table ได้ดังนี้

Inp	Output	
Α	В	Y = f(A,B)
0	0	f(A,B) = f(0,0) = 0
0	1	f(A,B) = f(0,1) = 1
1	0	f(A,B) = f(1,0) = 0
1	1	f(A,B) = f(1,1) = 1

3. ลอจิกเกต (Logic Gate)

คืออุปกรณ์อิเล็กทรอนิกส์ที่มีการทำงานเหมือนสวิตช์ (switch) นั่นคือ มีสถานะ เปลี่ยนแปลงไปมาได้เพียง 2 สถานะ โดยใช้ระดับแรงดันไฟฟ้าในการแทนสถานะของตัวแปรลอจิก โดย แรงดันไฟฟ้าสูง (High : H) และแรงดันไฟฟ้าต่ำ (Low : L) ลอจิกเกตพื้นฐานที่ควรศึกษาได้แก่

3.1 AND Gate

การกระทำ AND จะให้เอาท์พุทออกมาเป็นลอจิก 1 หรือแรงดัน H เมื่อตัวแปรอินพุทมีสถานะเป็น ลอจิก 1 หรือมีแรงดัน H ทั้งหมด การ AND แสดงด้วยสัญลักษณ์ • ระหว่างตัวแปรลอจิก การ AND ระหว่างตัวแปร A และ B แสดงด้วยสมการลอจิกเป็น

$$Y = f(A, B) = A \cdot B$$

เมื่อ Y คือ เอาท์พุทที่ได้จากการ AND และการกระทำ AND แสดงได้ดังบล็อกไดอะแกรม (ภาพที่ 2)

Input		Output	
Α	В	$f(A,B) = A \cdot B$	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

ภาพที่ 2 บล็อกไดอะแกรมของการกระทำ AND

3.2 OR Gate

การกระทำ OR จะให้เอาท์พุทออกมาเป็นลอจิก 0 หรือแรงดัน L เมื่อตัวแปรอินพุทมีสถานะเป็น ลอจิก 0 หรือมีแรงดัน L ทั้งหมด

การกระทำ OR แสดงด้วยสัญลักษณ์ + ระหว่างตัวแปรลอจิก การ OR ระหว่างตัวแปร A และ B แสดงด้วยสมการลอจิกเป็น

$$Y = f(A, B) = A+B$$

เมื่อ Y คือ เอาท์พุทที่ได้จากการ OR และการกระทำ OR แสดงได้ดังบล็อกไดอะแกรม (ภาพที่ 3)

ภาพที่ 3 บล็อกไดอะแกรมของการกระทำ OR

3.3 NOT Gate (Inverters)

การกระทำ NOT จะให้เอาท์พุทออกมาเป็นลอจิกที่มีสถานะตรงข้ามกับสถานะลอจิกของตัวแปร อินพุทการ NOT แสดงด้วยสัญลักษณ์ — เหนือตัวแปรลอจิกอินพุท เรียกว่าเครื่องหมาย complement หรือ Bar

การกระทำ NOT ของตัวแปร A แสดงด้วยสมการลอจิกเป็น

$$Y = f(A) = \overline{A}$$

เมื่อ Y คือ เอาท์พุทที่ได้จากการ NOT และ การกระทำ NOT แสดงได้ดังบล็อกไดอะแกรม (ภาพที่ 4)

ภาพที่ 4 บล็อกไดอะแกรมของการกระทำ NOT

3.4 NAND Gate

การกระทำ NAND เกิดจากการนำตัวแปรด้านเอาท์พุทที่ได้จากการกระทำ AND มาผ่านการ กระทำ NOT ทำให้ผลลัพธ์ของตัวแปรที่ได้จากการกระทำ NAND มีสถานะตรงข้ามกับการกระทำ AND นั่นคือ การกระทำ NAND จะทำให้ตัวแปรลอจิกทางด้านเอาท์พุทมีสถานะเป็น 0 เมื่อตัวแปรลอจิกทางด้าน อินพุทที่เข้าสู่การกระทำ NAND มีสถานะเป็น 1 ทั้งหมด เราสามารถอธิบายการกระทำ NAND โดยใช้ สมการลอจิกดังนี้

$$Y = f(A,B) = A \cdot B$$

เมื่อ A·B คือ ผลลัพธ์ที่ได้จากการกระทำ AND และ การกระทำ NAND แสดงได้ดัง บล็อกไดอะแกรม (ภาพที่ 5)

ภาพที่ 5 บล็อกไดอะแกรมของการกระทำ NAND

3.5 NOR Gate

เกิดจากการนำ inverter มาต่อกับเกต "AND" ทำให้ค่าผลลัพธ์ที่ได้จากเกตชนิดนี้มีค่าตรงกันข้าม กับเกต "AND" และการกระทำ NOR Gate แสดงได้ดังบล็อกไดอะแกรม (ภาพที่ 6)

ตารางค่าความจริง

Inp	out	Output
Α	В	$f(A,B) = \overline{A+B}$
0	0	1
0	1	0
1	0	0
1	1	0

ภาพที่ 6 บล็อกไดอะแกรมของการกระทำ NOR Gate

3.6 Exclusive - OR Gate

เป็นการนำเกตพื้นฐานมาประยุกต์ใช้งาน จะให้ผลลัพธ์เป็น "1" เมื่ออินพุตมีค่าตรงกันข้ามกัน และการกระทำ OR Gate แสดงได้ดังบล็อกไดอะแกรม (ภาพที่ 7)

ภาพที่ 7 บล็อกไดอะแกรมของการกระทำ OR Gate

3.7 Exclusive - NOR Gate (XNOR Gate)

เกิดจากการนำ Inverter มาต่อกับ XOR Gate ทำให้ค่าผลลัพธ์ที่ได้เกตชนิดนี้ มีค่าตรงกันข้ามกับ XOR Gate ทันที ดังนั้น เกตชนิดนี้จึงมีชื่อเรียกอีกอย่างหนึ่งว่า "Comparator" และการกระทำ OR Gate แสดงได้ดังบล็อกไดอะแกรม (ภาพที่ 8)

ภาพที่ 8 บล็อกไดอะแกรมของการกระทำ XOR Gate

4. การเขียนสมการพีชคณิตจากวงจรลอจิก

การเขียนสมการพืชณิตจากวงจรลอจิกจะใช้หลักการพิจารณารูปวงจรลอจิกทีละส่วน โดยเริ่มจาก ด้านอินพุต แล้วพิจารณาไปทางเอาต์พุตตามลำดับ แล้วนำสมการในแต่ละเกตมารวมกันตามคุณสมบัติของ เกตนั้น ๆ ดังตัวอย่าง

ตัวอย่างที่ 2 ให้เขียนสมการพีชคณิตของวงจรลอจิกต่อไปนี้

$$Y = AB + \overline{AB}$$
 Ans

$$Y = \overline{A(A+B)} + B(A+B)$$
.....Ans.

$$Y = (A + BC)(\overline{B} + \overline{C})$$
Ans

5. การเขียนวงจรลอจิกจากสมการพีชคณิต

การเขียนวงจรลอจิกจากสมการพีชคณิตนั้นต้องพิจารณาถึงสมการเป็นส่วน ๆ โดยเขียนจาก ส่วนย่อยไปหาส่วนใหญ่ (ตัวอย่างที่ 3)

ตัวอย่างที่ 3 ให้เขียนวงจรลอจิกจากสมการพีชคณิตต่อไปนี้

$$Y = \underline{f}(A,B) = \overline{A \oplus B} = (A \cdot B) + (\overline{A} \cdot \overline{B})$$

$$Y = \underline{f}(A) = A \oplus B = (A \cdot \overline{B}) + (\overline{A} \cdot B)$$

$$Y = f(A) = A \oplus B = (A + B) \cdot \overline{(A \cdot B)}$$

6. การสร้างตารางค่าความจริงเพื่อหาเอาต์พุตของสมการลอจิก

การเขียนตารางค่าความจริงของสมการลอจิกนั้น ต้องพิจารณาจำนวนตัวแปรอินพุต โดยกำหนด สถานะของอินพุตเพียง 2 สถานะเท่านั้น คือ "0" และ "1" ดังนั้น ตารางค่าความจริงจะมีจำนวนเอาต์พุต เป็นเท่าใด ขึ้นอยู่กับจำนวนอินพุต คือ จะได้ทั้งหมด 2ⁿ เมื่อ n คือ จำนวนอินพุต

ตัวอย่างที่ 4 ให้เขียนตารางค่าความจริงของสมการพีชคณิตต่อไปนี้ (1) $Y = \overline{AB} + \overline{AB}$ โดยที่มีตัวแปรอินพุต 2 ตัว ดังนั้น จึงมีเอาต์พุตทั้งหมด 2 = 4 กรณี

A	В	\overline{A}	\overline{B}	ĀB	$A\overline{B}$	$Y = \overline{A}B + A\overline{B}$
0	0	1	1	0	0	0
0	1	1	0	1	0	1
1	0	0	1	0	1	1
1	1	0	0	0	0	0

(2) Y = AB + \overline{C} มีตัวแปรอินพุต 3 ตัว ดังนั้น จึงมีเอาต์พุตทั้งหมด 2^3 = 8 กรณี

Α	В	С	AB	\overline{C}	$Y = AB + \overline{C}$
0	0	0	0	1	0
0	0	1	0	0	0
0	1	0	0	1	0
0	1	1	0	0	0
1	0	0	0	1	0
1	0	1	0	0	0
1	1	0	1	1	1
1	1	1	1	0	0

(3) Y = $\overline{B(A}$ + B) $\overline{(A}$ + \overline{C}) มีตัวแปรอินพุต 3 ตัว ดังนั้น จึงมีเอาต์พุตทั้งหมด 2^3 = 8 กรณี

Α	В	С	$\overline{\overline{A}}$	\overline{B}	\overline{C}	$(\overline{A} + B)$	$(\overline{A} + \overline{C})$	$Y = \overline{B}(\overline{A} + B)(\overline{A} + \overline{C})$
0	0	0	1	1	1	1	1	1
0	0	1	1	1	0	1	1	1
0	1	0	1	0	1	1	1	0
0	1	1	1	0	0	1	1	0
1	0	0	0	1	1	0	1	0
1	0	1	0	1	0	0	0	0
1	1	0	0	0	1	1	1	0
1	1	1	0	0	0	1	0	0

(4) Y = (A+ \overline{B} C)C มีตัวแปรอินพุต 3 ตัว ดังนั้น จึงมีเอาต์พุตทั้งหมด 2^3 = 8 กรณี

Α	В	С	\overline{B}	$\overline{B}C$	$A + \overline{BC}$	$Y = (A + \overline{B}C)C$
0	0	0	1	0	0	0
0	0	1	1	1	1	1
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	1	0	1	0
1	0	1	1	1	1	1
1	1	0	0	0	1	0
1	1	1	0	0	1	1

(5) Y = $\overline{AB + CD}$ มีตัวแปรอินพุต 3 ตัว ดังนั้น จึงมีเอาต์พุตทั้งหมด $2^4 = 16$ กรณี

Α	В	С	D	AB	CD	AB+CD	$Y = \overline{AB + CD}$
0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	1
0	0	1	0	0	0	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	0	0	1
0	1	0	1	0	0	0	1
0	1	1	0	0	0	0	1
0	1	1	1	0	1	1	0
1	0	0	0	0	0	0	1
1	0	0	1	0	0	0	1
1	0	1	0	0	0	0	1
1	0	1	1	0	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	0
1	1	1	0	1	0	1	0
1	1	1	1	1	1	1	0

7. วงจรเชิงจัดหมู่

วงจรดิจิตอลจะประกอบด้วยการนำเกตต่าง ๆ มาต่อรวมกันให้สามารถทำงานได้ตามข้อมูลที่เข้า ไปทางอินพุต โดยทั่วไปแล้วจะมีสองประเภท คือ

- 1. วงจรเชิงจัดหมู่ (combination logic circuits) เป็นวงจรที่สถานะทางเอาต์พุตขึ้นอยู่กับสถานะ ทางอินพุตหรือวงจรคอมไบเนชัน
- 2. วงจรเชิงลำดับ (sequential logic circuits) วงจรที่เอาต์พุตจะขึ้นอยู่กับสัญญาณนาฬิกาทาง อินพุตด้วย

สมการลอจิกเกตและวงจรลอจิกเกตของวงจรแบบ combination logic มีจำนวนลอจิกเกตที่ต่อ อยู่ในวงจรเป็นจำนวนมาก ส่งผลให้วงจรที่สร้างได้มีขนาดใหญ่ ทำ ให้ยุ่งยากต่อการสร้างและทำ ให้ต้นทุน ในการผลิตสูง นอกจากนี้ยังทำ ให้การวิเคราะห์วงจรเป็นไปอย่างยากลำบาก การลดรูปสมการลอจิกเกตให้ มีรูปแบบที่ง่ายและประหยัด (minimization) จึงเป็นวิธีที่ใช้ในการแก้ปัญหาดังกล่าว ซึ่งจะส่งผลให้ วงจรลอจิกที่สร้างได้มีจำนวนลอจิกเกตลดลง ลดต้นทุนในการผลิต และทำให้การวิเคราะห์ง่ายขึ้น ในส่วนนี้จะกล่าวถึงวิธีในการลดรูปวงจรลอจิกเกตที่สำคัญก่อน 2 วิธี ได้แก่ การลดรูปโดยใช้พีชคณิต (boolean algebra) และการใช้แผนผัง Kanaugh (Kanaugh Map หรือ K's Map)

7.1 Boolean Algebra Method

เป็นพีชคณิตที่ใช้อธิบายความสัมพันธ์ของตัวแปรแบบลอจิก โดยอาศัยตัวดำเนินการทางลอจิกต่าง ๆ ค้นพบ โดยนักคณิตศาสตร์ชาวอังกฤษ จอร์ช บลู (George Boole, 1815-1864) กฎของพีชคณิตบูลีน (Law of Boolean Algebra) ที่สำคัญได้แก่

1. กฎการตรงกันข้าม (Complement Law)

$$A \cdot \overline{A} = 0$$
 $A + \overline{A} = 1$

2. คุณสมบัติของศูนย์

$$0 \cdot A = 0$$
 $0 + A = A$

3. คุณสมบัติของหนึ่ง

$$1 \cdot A = 1$$
 $1 + A = 1$

4. กฎการสลับที่ (Commutative Laws)

$$A + B = B + A$$
 $AB = BA$

5. กฎการจัดหมู่ (Associative Laws)

$$A + (B + C) = (A + B) + C$$
$$A(BC) = (AB)C$$

6. กฎการกระจาย (Distributive Law)

$$A(B + C) = AB + AC$$
$$A + (BC) = (A + B)(A + C)$$

7. กฎของเอกลักษณ์ (Identify Law)

$$A + A + \dots = A$$
 $AA \dots = A$

8. กฎการลบล้าง (Negation)

$$\overline{A} = \overline{A}$$
 $\overline{A} = A$

9. กฎการลดทอน (Redundancy Law)

$$A + AB = A$$
 $A + \overline{AB} = A + B$
 $A(A + B) = A$ $A(\overline{A} + B) = AB$

10. ทฤษฎีของดีมอร์แกน (Demorgan's Theorems)

$$\overline{A+B} = \overline{AB}$$
 $\overline{AB} = \overline{A} + \overline{B}$

จากกฎพื้นฐานของพีชคณิตเหล่านี้ เราสามารถนำไปช่วยในการลดรูปของสมการลอจิกได้ ทำให้ วงจรลอจิกที่ได้มีขนาดเล็กลง และต้นทุนในการผลิตต่ำ ทั้งยังส่งผลให้สามารถทำงานได้รวดเร็วขึ้น เนื่องจากสัญญาณอินพุตผ่านลอจิกเกตจำนวนน้อยก่อนการเกิดเป็นสัญญาณเอาท์พุต

ตัวอย่างการใช้ Boolean Algebra เพื่อหาวงจรไฟฟ้าที่เหมือนกัน แต่ใช้จำนวนเกตน้อยกว่า พิจารณาตารางค่าความจริงสำหรับสมการลอจิก *AB + BC* ในภาพ a และสมการลอจิก *A(B + C)* ในภาพ b ซึ่งได้จากการลดรูปสมการลอกจิกโดยใช้ Boolean Algebra (ภาพที่ 9)

A(B+C)

B+C

A(B+C)

ภาพที่ 9 การลดรูปสมการลอกจิกโดยใช้ Boolean Algebra

1 0 1

ตัวอย่างที่ 5 ให้ลดรูปสมการพีชคณิตลอจิกต่อไปนี้

1 0

$$Y = A(B+C)\overline{A}+D$$

$$Y = A(B+C)\overline{A}+D$$

$$= A\overline{A}(B+C)+D$$

$$= 0 (B+C)+D$$

$$= 0 +D$$

$$= D$$

$$= D$$

$$= D$$

$$= \overline{A+B+C}$$

$$= \overline{(A+B)\cdot C}$$

$$= \overline{(A+B)\cdot C}$$

$$= \overline{AB\cdot C}$$

$$= \overline{(A+B)\cdot C}$$

$$=$$

7.2 รูปแบบมาตรฐานของสมการลอจิก (standard form of logic expression)

สมการลอจิก มีรูปแบบมาตรฐาน 2 แบบคือ ผลรวมของผลคูณ (Sum of Products Equation, SOP) และ ผลคูณของผลรวม (Product of Sum Equation, POS)

7.2.1 สมการลอจิกแบบผลรวมของผลคูณ (Sum of Products Equation, SOP) เป็นการแสดงค่าผลคูณของพีชคณิตลอจิกของตัวแปรตั้งแต่สองตัวขึ้นไปด้วยฟังก์ชัน AND (เรียกได้ว่าเป็น "Product Term") แล้วนำผลคูณแต่ละส่วนมารวมกันโดยใช้ฟังก์ชัน OR เช่น

$$Y = f(A, B, C, D) = AB + ABC + A\overline{BCD}$$
 (a)

Product Term ที่เกิดจาการ AND กันของตัวแปรทุกตัวแปรที่เกี่ยวข้องในสมการ เรียกว่า "Minterm"

สมการที่มีทุกเทอมเป็น Minterm เรียกสมการนี้ว่า "Canonical Sum" สมการ (a) ประกอบด้วย Minterm เพียงเทอมเดียวคือ ABCD ส่วนอีก 2 เทอม คือ AB และ ABC ไม่เป็น Minterm เนื่องจากมีตัวแปรไม่ครบ ดังนั้น สมการ (a) จึงไม่เป็น Canonical Sum ตัวอย่างเช่น สมการลอจิกของ 3 ตัวแปรแบบ SOP ที่เป็น Canonical Sum ได้แก่ สมการ (b)

$$y = f(A, B, C) = \overline{ABC} + A\overline{B}C \overline{A}BC + ABC$$
 (b)

สมการลอจิกจะประกอบด้วย Minterm กี่เทอมก็ได้ โดยที่จำนวน Minterm สูงสุด = 2ⁿ เมื่อ n คือ จำนวนตัวแปรทั้งหมดของสมการ

สมการลอจิกที่อยู่ในรูป Canonical Sum สามารถเขียนแทนด้วยเลขฐานสอง (Binary Code) โดยมีข้อตกลงดังนี้

Uncomplement Variable เช่น *A, B, C,...* เขียนแทนด้วย 1 Complement Variable เช่น *A, B, C,...* เขียนแทนด้วย 0

นอกจากนี้ ยังสามารถเขียน Minterm ในรูปของ Minterm Number โดยแทนด้วยตัวอักษรย่อ mi เมื่อ i คือ เลขฐานสิบที่มีค่าเท่ากับ Binary Code ของ Minterm นั้น จากสมการ (b) เราสามารถเขียน Minterm ในรูปแบบต่าง ๆ ได้ดังตาราง

Minterm	Binary Code	Minterm Number
$A\overline{BC}$	100	$\mathrm{m_{_4}}$
$A\overline{B}C$	101	m ₅
ABC	011	m ₃
ABC	111	m ₇

ดังนั้น สมการลอจิกของ 3 ตัวแปร เขียนได้เป็น f(A,B,C)=011+100+101+111 หรือ $f(A,B,C)=\sum_{m}(3,4,5,7)$ และสามารถเขียนตารางค่าความจริงของสมการลอจิกแบบ SOP ข้างต้น ได้ดังนี้

m		Inpu	t	m ₃	m ₄	m ₅	m ₇	Output
m _i	Α	В	O	\overline{ABC}	$A\overline{BC}$	$A\overline{B}C$	ABC	f(A,B,C)
m _o	0	0	0	0	0	0	0	0
m ₁	0	0	1	0	0	0	0	0
m ₂	0	1	0	0	0	0	0	0
m ₃	0	1	1	1	0	0	0	1
m ₄	1	0	0	0	1	0	0	1
m ₅	1	0	1	0	0	1	0	1
m ₆	1	1	0	0	0	0	0	0
m ₇	1	1	1	0	0	0	1	1

จากตารางค่าความจริง จะเห็นว่า Minterm ที่ให้ผลลัพธ์เป็นลอจิก 1 คือ Minterm ที่เกี่ยวข้องใน สมการลอจิก ดังนั้น เราสามารถเขียนสมการลอจิกแบบ SOP ของ Minterm ได้จากการรวม Minterm ที่ ให้ผลลัพธ์เป็นลอจิก 1 จากตารางค่าความจริง

สมการลอจิกแบบ SOP ที่จะเป็นสมการแบบ Canonical sum นั้น ต้องเป็นสมการลอจิกที่ในแต่ ละเทอมมีตัวแปรครบทุกตัวเท่านั้นการเปลี่ยนสมการ SOP ทั่วไปเป็นสมการมาตรฐาน ทำได้โดย "คูณ เทอมที่ตัวแปรยังไม่ครบด้วยตัวแปรที่ขาดหายไป และมีค่าลอจิกเป็น 1 เช่น (A+ A)"

ตัวอย่างที่ 6 สมการใดต่อไปนี้เป็นสมการ SOP แบบ Canonical sum

(1)
$$y = f(A,B,C) = A\overline{BC} + A\overline{BC} + \overline{ABC} + \overline{ABC} + ABC$$
สมการนี้เป็นสมการ SOP แบบ Canonical Sum เนื่องจากทุกเทอมมีตัวแปรครบทุกตัว
(2) $y = f(A,B,C,D) = AB + ABC + AB\overline{CD}$

สมการนี้ไม่เป็นสมการ SOP แบบ Canonical Sum เนื่องจากในเทอมที่ 1 ไม่มีตัวแปร C,D และเทอมที่ 2 ไม่มีตัวแปร D ดังนั้น จึงต้องคุณเทอมดังกล่าวด้วย $C+\overline{C}$ และ $D+\overline{D}$ ตามลำดับ

$$\begin{split} f(A,B,C,D) &= AB + ABC + AB\overline{CD} \\ &= AB + ABC(D + \overline{D}) + AB\overline{CD} \\ &= AB + ABCD + ABC\overline{D} + AB\overline{CD} \\ &= AB(C + \overline{C}) + ABCD + ABC\overline{D} + AB\overline{CD} \\ &= ABC + AB\overline{C} + ABCD + ABC\overline{D} + AB\overline{CD} \\ &= ABC(D + \overline{D}) + AB\overline{C}(D + \overline{D}) + ABC\overline{D} + ABC\overline{D} \\ &= ABCD + ABC\overline{D} + AB\overline{CD} + ABC\overline{D} + ABC\overline{D} + ABC\overline{D} \\ &= ABCD + ABC\overline{D} + AB\overline{CD} + AB\overline{CD} + ABC\overline{D} + AB\overline{CD} \\ &= ABCD + ABC\overline{D} + AB\overline{CD} + AB\overline{CD} + AB\overline{CD} \end{split}$$

(3)
$$y = f(A, B, C) = AB + ABC + BC$$

สมการนี้ไม่เป็นสมการ SOP แบบ Canonical Sum เนื่องจากในเทอมที่ 1 ไม่มีตัวแปร C และเทอมที่ 3 ไม่มี ตัวแปร A ดังนั้น จึงต้องคูณเทอมดังกล่าวด้วย $A+\overline{A}$ และ $C+\overline{C}$ ตามลำดับ

$$f(A,B,C,D) = A\overline{B} + ABC + \overline{B}C$$

$$= A\overline{B}(C + \overline{C}) + ABC + (A + \overline{A})\overline{B}C$$

$$= A\overline{B}C + A\overline{B}C + ABC + A\overline{B}C + A\overline{B}C$$

$$= A\overline{B}C + A\overline{B}C + ABC + \overline{A}\overline{B}C \qquad Ans.$$

7.2.2 สมการลอจิกแบบผลคูณของผลรวม (Product of Sum Equation, POS)

เป็นการแสดงค่าผลรวมของพี่ชคณิตลอจิกของตัวแปรตั้งแต่สองตัวขึ้นไปด้วยฟังก์ชัน OR (เรียกได้ ว่าเป็น "Sum Term") แล้วนำผลคูณแต่ละส่วนมาคูณกันโดยใช้ฟังก์ชัน AND ดัง สมการ (c)

$$y = f(A,B,C) = (A + B)(A + B + C)$$
 (c)

Sum Term ที่เกิดจาการ OR กันของตัวแปรทุกตัวแปรที่เกี่ยวข้องในสมการ เรียกว่า "Maxterm" สมการที่มีทุกเทอมเป็น Maxterm เรียกว่า "Canonical Product"

สมการ (c) ประกอบด้วย Maxterm เพียงเทอมเดียวคือ (A + B + C) ส่วนอีกเทอม คือ (A + B) ไม่เป็น Maxterm เนื่องจากมีตัวแปรไม่ครบ ดังนั้น สมการ (c) จึงไม่เป็น Canonical Product ตัวอย่างเช่น สมการลอจิกของ 3 ตัวแปรแบบ POS ของ Maxterm แสดงได้เป็น\

$$y = f(A, B, C) = (A + \overline{B} + \overline{C})(A + \overline{B} + C)(\overline{A} + B + C)(A + B + C)$$
 (d)

สมการลอจิกจะประกอบด้วย Maxterm กี่เทอมก็ได้ โดยที่จำนวน Maxterm สูงสุด = 2ⁿ เมื่อ n คือ จำนวนตัวแปรทั้งหมดของสมการ

สมการลอจิกที่อยู่ในรูป Canonical Prodict สามารถเขียนแทนด้วยเลขฐานสอง (Binary Code) โดยมีข้อตกลงดังนี้

> Uncomplement Variable เช่น *A, B, C,...* เขียนแทนด้วย 1 Complement Variable เช่น *A, B, C,...* เขียนแทนด้วย 0

นอกจากนี้ ยังสามารถเขียน Maxterm ในรูปของ Maxterm number โดยแทนด้วยตัวอักษรย่อ Mi เมื่อ i คือ เลขฐานสิบที่มีค่าเท่ากับ binary code ของ Maxterm นั้น และจากสมการ (d) เราสามารถ เขียน Maxterm ในรูปแบบต่าง ๆ ได้ดังตาราง

Minterm	Binary Code	Maxterm Number
$\left(A + \overline{B} + \overline{C}\right)$	011	M ₃
$\left(A + \overline{B} + C\right)$	010	M_2
$(\overline{A} + B + C)$	100	M_4
(A+B+C)	000	M _o

ดังนั้น สมการลอจิกของ 3 ตัวแปร เขียนได้เป็น

$$f(A, B, C) = (000)(010)(011)(100)$$

หรือ

$$f(A, B, C) = \Pi M(0,2,3,4)$$

และสามารถเขียนตารางค่าความจริงของสมการลอจิกแบบ POS ข้างต้น ได้ดังนี้

Mi	Input			M_{o}	M ₂	M ₃	M_4	Output
IVII	Α	В	С	(A+B+C)	$\left(A + \overline{B} + C\right)$	$\left(A + \overline{B} + \overline{C}\right)$	$(\overline{A} + B + C)$	f(A, B, C)
M _o	0	0	0	0	1	1	1	0
M ₁	0	0	1	1	1	1	1	1
M ₂	0	1	0	1	0	1	1	0
M ₃	0	1	1	1	1	0	1	0
M ₄	1	0	0	1	1	1	0	0
M ₅	1	0	1	1	1	1	1	1
M ₆	1	1	0	1	1	1	1	1
M ₇	1	1	1	1	1	1	1	1

จากตารางค่าความจริงจะเห็นว่า Maxterm ที่ให้ผลลัพธ์เป็นลอจิก 0 คือ Maxterm ที่เกี่ยวข้องใน สมการลอจิก ดังนั้นสามารถเขียนสมการลอจิกแบบ POS ของ Maxterm ได้จากการรวม Maxterm ที่ให้ ผลลัพธ์เป็นลอจิก 0 จากตารางค่าความจริง

สมการลอจิกแบบ POS ที่จะเป็นสมการในรูปแบบมาตรฐานนั้น ต้องเป็นสมการลอจิกที่ในแต่ละ เทอมมีตัวแปรครบทุกตัวเท่านั้นการเปลี่ยนสมการ POS ทั่วไปเป็นสมการมาตรฐาน ทำได้โดย "บวกเทอม ที่ตัวแปรยังไม่ครบด้วยตัวแปรที่ขาดหายไป และมีค่าลอจิกเป็น 0 เช่น (AA) โดยจัดรูปแบบด้วยคุณสมบัติ

$$A + BC = (A+B)(A+C)$$

ตัวอย่างที่ 7 สมการใดต่อไปนี้เป็นสมการ POS แบบ Canonical product

$$(1) \ y = f(A,B,C) = \left(A+B+C\right)\left(A+\overline{B}+C\right)(\overline{A}+\overline{B}+\overline{C})$$

สมการนี้เป็นสมการ POS แบบ Canonical Product เนื่องจากทุกเทอมมีตัวแปรครบทุกตัว

(2)
$$y = f(A, B, C) = (A + B)(A + \overline{B} + C)$$

สมการนี้ไม่เป็นสมการ POS แบบ Canonical Product เนื่องจากในเทอมที่ 1 ไม่มีตัวแปร C ดังนั้น จึงต้อง บวกเทอมดังกล่าวด้วย $C\overline{C}$

$$f(A,B,C) = (A+B)(A+\overline{B}+C)$$

$$= (A+B+C\overline{C})(A+\overline{B}+C)$$

$$= ((A+B)+C\overline{C})(A+\overline{B}+C)$$

$$= (((A+B)+C)((A+B)+\overline{C}))(A+\overline{B}+C)$$

$$= (A+B+C)(A+B+\overline{C})(A+B+C)$$

$$= (A+B+C)(A+B+\overline{C})(A+B+C)$$

$$= (A+B+C)(A+B+\overline{C})(A+B+C)$$

(3)
$$y = f(A, B, C) = (A + \overline{B})(A + B + C)(\overline{B} + C)$$

สมการนี้ไม่เป็นสมการ POS แบบ Canonical Product เนื่องจากในเทอมที่ 1 ไม่มีตัวแปร C และเทอมที่ 3 ไม่มีตัวแปร A ดังนั้น จึงต้องบวกเทอมดังกล่าวด้วย $C\overline{C}$ และ $A\overline{A}$.

$$f(A,B,C,D) = (A+\overline{B})(A+B+C)(\overline{B}+C)$$

$$= (A+\overline{B}+C\overline{C})(A+B+C)(\overline{B}+C)$$

$$= (A+\overline{B}+C)(A+\overline{B}+\overline{C})(A+B+C)(\overline{B}+C)$$

$$= (A+\overline{B}+C)(A+\overline{B}+\overline{C})(A+B+C)(A+\overline{B}+C)$$

$$= (A+\overline{B}+C)(A+\overline{B}+\overline{C})(A+B+C)(A+\overline{B}+C)$$

$$= (A+\overline{B}+C)(A+\overline{B}+\overline{C})(A+B+C)(A+\overline{B}+C)(A+\overline{B}+C)$$

$$= (A+\overline{B}+C)(A+\overline{B}+\overline{C})(A+B+C)(A+\overline{B}+C)$$

$$= (A+\overline{B}+C)(A+\overline{B}+\overline{C})(A+B+C)(A+\overline{B}+C)$$

$$= (A+\overline{B}+C)(A+\overline{B}+\overline{C})(A+B+C)(A+\overline{B}+C)$$

$$= (A+\overline{B}+C)(A+\overline{B}+\overline{C})(A+B+C)(A+\overline{B}+C)$$

ตัวอย่างที่ 8 ให้เขียนฟังก์ชันและตารางค่าความจริงของสมการต่อไปนี้

(1)
$$f(A, B, C)$$
 = $\sum m(0,1,4,5,6)$
= $000 + 001 + 100 + 101 + 110$
= $\overline{ABC} + AB\overline{C} + \overline{ABC} + \overline{ABC} + \overline{ABC}$

	Input		m_0	m_1	m_4	m_5	m_6	Output
Α	В	O	\overline{ABC}	$AB\overline{C}$	$\overline{A}BC$	\overline{ABC}	\overline{ABC}	f(A,B,C)
0	0	0	1	0	0	0	0	1
0	0	1	0	0	0	0	1	1
0	1	0	0	0	0	1	0	1
0	1	1	0	0	1	0	0	1
1	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0
1	1	0	0	1	0	0	0	1
1	1	1	0	0	0	0	0	0

$$(2) \ f(A,B,C) = \prod M(0,1,4)$$

$$= (000)(001)(100)$$

$$= (A+B+C)(A+B+\overline{C})(\overline{A}+B+C)$$

	Input		M_0	M_{I}	M_4	Output
Α	В	С	$(A+B+C)$ $(A+B+\overline{C})$ $(\overline{A}+B+C)$		$(\overline{A} + B + C)$	f(A,B,C)
0	0	0	0	1	1	0
0	0	1	1	0	1	0
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	1	1	0	0
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

อ.ดร.พัฒนพงษ์ วันจันทึก

$$(3) \ f(A,B,C,D) = \sum m(0,3,5,13)$$

$$= 0000 + 0011 + 0101 + 1101$$

$$= \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$
 เอกสารประกอบการสอนวิชาความรู้พื้นฐานทางวิทยาการคอมพิวเตอร์

	Input			m_0	m_3	m_5	m_{13}	Output
Α	В	O	D	\overline{ABCD}	ABCD	ABCD	\overline{ABCD}	f(A,B,C,D)
0	0	0	0	1	0	0	0	1
0	0	0	1	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	0	1	1	0	1	0	0	1
0	1	0	0	0	0	0	0	0
0	1	0	1	0	0	1	0	1
0	1	1	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0
1	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0
1	0	1	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0
1	1	0	0	0	0	0	0	0
1	1	0	1	0	0	0	1	1
1	1	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0

(4)
$$f(A, B, C, D) = \prod M(2,4,8,15)$$

= $(0010)(0100)(1000)(1111)$
= $(A+B+\overline{C}+D)(A+\overline{B}+C+D)(\overline{A}+B+C+D)(\overline{A}+\overline{B}+\overline{C}+\overline{D})$

	Input			M_2	M_4	M_{8}	M_{15}	Output
Α	В	O	D	$(A+B+\overline{C}+D)$	$(A+\overline{B}+C+D)$	(A+B+C+D)	$(\overline{A} + \overline{B} + \overline{C} + \overline{D})$	f(A,B,C,D)
0	0	0	0	1	1	1	1	1
0	0	0	1	1	1	1	1	1
0	0	1	0	0	1	1	1	0
0	0	1	1	1	1	1	1	1
0	1	0	0	1	0	1	1	0
0	1	0	1	1	1	1	1	1
0	1	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1	1
1	0	0	0	1	1	0	1	0
1	0	0	1	1	1	1	1	1
1	0	1	0	1	1	1	1	1
1	0	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1	1

	Input			M_2	M_4 M_8		M_{15}	Output
Α	В	C	۵	$(A+B+\overline{C}+D)$	$(A+\overline{B}+C+D)$	$\overline{(A+B+C+D)}$	$(\overline{A} + \overline{B} + \overline{C} + \overline{D})$	f(A,B,C,D)
1	1	0	1	1	1	1	1	1
1	1	1	0	1	1	1	1	1
1	1	1	1	1	1	1	0	0

7.2.3 การแปลงรูประหว่าง SOP และ POS

การแปลงรูประหว่าง SOP และ POS สามารถทำได้โดยอาศัยกฎของพีชคณิตบูลีน

ดังต่อไปนี้

SOP
$$\rightarrow$$
POS A+BC = (A+B)(A+C)
POS \rightarrow SOP A(B+C) = AB+AC

ตัวอย่างที่ 9 สมการลอจิกใดเป็นสมการแบบ SOP หรือ POS โดยมีเงื่อนไข คือ หากเป็นแบบ SOP ให้ แปลงเป็น POS และหากเป็น POS ให้แปลงเป็น SOP

(1)
$$f(A,B,C) = (A+\overline{B})(A+B+C)(\overline{B}+C)$$
สมการข้างต้นเป็นสมการแบบ POS
$$f(A,B,C) = (A+\overline{B})(A+B+C)(\overline{B}+C)$$

$$= ((A+\overline{B})(A+B+C))(\overline{B}+C)$$

$$= (AA+AB+AC+A\overline{B}+B\overline{B}+B\overline{C})(\overline{B}+C)$$

$$= (A+AB+AC+A\overline{B}+B\overline{C})(\overline{B}+C)$$

$$= (A+AB+AC+A\overline{B}+B\overline{C})(\overline{B}+C)$$

$$= (A+AB+B\overline{C})(\overline{B}+C)$$

$$= (A+AB+B\overline{C})(\overline{B}+C)$$

$$= (A+B\overline{C})(\overline{B}+C)$$

$$= (A+B\overline{C})(\overline{B}+C)$$

$$= (A+B\overline{C})(\overline{B}+C)$$

$$= (A+B\overline{C})(\overline{B}+C)$$

$$= AB+AC+BCB+BC$$

$$= AB+AC+BCB-AC$$
Ans.

(2)
$$f(A, B, C) = A\overline{B} + ABC + \overline{B}C$$

สมการข้างต้นเป็นสมการแบบ SOP

$$f(A, B, C) = A\overline{B} + ABC + \overline{B}C$$

$$= A\overline{B} + ABC + AC + \overline{B}C$$

$$= (A\overline{B} + AC) + \overline{B}C$$

$$= A(\overline{B} + C) + \overline{B}C$$

$$= (A + \overline{B}C)((\overline{B} + C) + \overline{B}C)$$

$$= (A + \overline{B})(A + C)((\overline{B} + C) + \overline{B}C)$$

$$= (A + \overline{B})(A + C)((\overline{B} + C + \overline{B})(\overline{B} + C + C)$$

$$= (A + \overline{B})(A + C)((\overline{B} + C) + \overline{B}C)$$

$$= (A + \overline{B})(A + C)((\overline{B} + C) + \overline{B}C)$$

$$= (A + \overline{B})(A + C)((\overline{B} + C) + \overline{B}C)$$
Ans.

จากตัวอย่างข้างต้นจะเห็นว่า วิธีการนี้เป็นวิธีการที่ยุ่งยากและไม่เหมาะสมกับสมการที่มีความ ซับซ้อน วิธีการที่นิยมนำมาใช้ในการแปลงรูปสมการ คือ การขยายสมการลอจิกให้เป็น Canonical sum หรือ Canonical product ก่อน จึงทำการแปลงรูปตามขั้นตอนดังต่อไปนี้

- 1. สมการลอจิกต้องอยู่ในรูป Canonical sum หรือ Canonical product เท่านั้น
- 2. หาจำนวนเทอมสูงสุดของสมการลอจิก จำนวนเทอมสูงสุดของสมการลอจิก = 2ⁿ เมื่อ n คือจำนวนตัวแปรของสมการ
- 3. แปลงรูประหว่าง Maxterm และ Minterm โดยตรง โดยเขียนเฉพาะเทอมที่ไม่มีในอีก รูปแบบหนึ่งเท่านั้น ทั้งนี้จำนวนเทอมทั้งหมดจะต้องไม่เกินจำนวนเทอมในข้อที่ 2

ตัวอย่างที่ 10 สมการลอจิกใดต่อไปนี้เป็นสมการแบบ SOP หรือ POS โดยมีเงื่อนไข คือ หากเป็นแบบ SOP ให้แปลงเป็น POS และหากเป็น POS ให้แปลงเป็น SOP

(1)
$$f(A, B, C) = (A + \overline{B})(A + B + C)(\overline{B} + C)$$

ขยายสมการให้เป็น Canonical Product

$$f(A, B, C) = (A + \overline{B})(A + B + C)(\overline{B} + C)$$

$$= (A + \overline{B} + C\overline{C})(A + B + C)(A\overline{A} + \overline{B} + C)$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + B + C)(A + \overline{B} + C)(\overline{A} + \overline{B} + C)$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + B + C)(\overline{A} + \overline{B} + C)$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + B + C)(\overline{A} + \overline{B} + C)$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + B + C)(\overline{A} + \overline{B} + C)$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + B + C)(\overline{A} + \overline{B} + C)$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + B + C)(\overline{A} + \overline{B} + C)$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + B + C)(\overline{A} + \overline{B} + C)$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + B + C)(\overline{A} + \overline{B} + C)$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + B + C)(\overline{A} + \overline{B} + C)$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + B + C)(\overline{A} + \overline{B} + C)$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + B + C)(\overline{A} + \overline{B} + C)$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + \overline{B} + C)(\overline{A} + \overline{B} + C)$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + \overline{B} + C)(\overline{A} + \overline{B} + C)$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + \overline{B} + C)(\overline{A} + \overline{B} + C)$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + \overline{B} + C)(\overline{A} + \overline{B} + C)$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + \overline{B} + C)(\overline{A} + \overline{B} + C)$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + \overline{B} + C)(\overline{A} + \overline{B} + C)$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + \overline{B} + C)(\overline{A} + \overline{B} + C)$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + \overline{B} + C)(\overline{A} + \overline{B} + C)$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + \overline{B} + C)(\overline{A} + \overline{B} + C)$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + \overline{B} + C)(\overline{A} + \overline{B} + C)$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + \overline{B} + C)(\overline{A} + \overline{B} + C)$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + \overline{B} + C)$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + \overline{B} + C)$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + \overline{B} + C)$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + \overline{B} + \overline{C})$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + \overline{B} + \overline{C})$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + \overline{B} + \overline{C})$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + \overline{B} + \overline{C})$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + \overline{B} + \overline{C})$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + \overline{B} + \overline{C})$$

$$= (A + \overline{B} + C)(A + \overline$$

จำนวนเทอมสูงสุด = 2³

= 8 เทอม

$$f(A, B, C) = \overline{\prod M(0,2,3,6)}$$

= $\sum m(1,4,5,7)$ Ans.

(2) f(A, B, C) = AB + ABC + BC

$$f(A, B, C) = A\overline{B} + ABC + \overline{B}C$$

$$= A\overline{B}(C + \overline{C}) + ABC + (A + \overline{A})\overline{B}C$$

$$= A\overline{B}C + A\overline{B}C + ABC + A\overline{B}C + \overline{A}BC$$

$$= A\overline{B}C + A\overline{B}C + ABC + \overline{A}BC$$

$$= (101) + (100) + (111) + (001)$$

$$= \sum m(1,4,5,7)$$

จำนวนเทอมสูงสุด = 2³

แบบฝึกหัด

1. จงเขียนตารางค่าความจริงและลอจิกเกต (Logic Gate)

$$1.1 X = (AB) + (CA)$$

$$1.2 X = [A + (B + C)]B$$

$$1.3 X = A(B+C) + \overline{B}(A+\overline{C})$$

2. ลดทอนรูปสมการต่อไปนี้ โดยใช้ทฤษฎีบูลีน

$$2.1 Y = ABC[AB+C(BC+AC)]$$

$$2.2 Y = AB + BC(B + C)$$

$$2.3 \text{ Y} = (B+BC)(B+\overline{B}C)(B+D)$$

- 3. พิสูจน์สมการต่อไปนี้และเขียนตารางค่าความจริงของ A + B(A + C) + AC = A + BC
- 4. จงลดทอนสมการต่อไปนี้ 6 คะแนน

$$4.1 \text{ f(A,B,C)} = \overline{AB + CD}$$

4.2
$$f(A,B,C) = \overline{A}\overline{B}\overline{C} + \overline{A}C + \overline{A}B\overline{C}$$

4.3
$$f(A,B,C) = \overline{A+BC} + A\overline{B}$$

5. จงเขียนตารางค่าความจริงและลอจิกเกต (Logic Gate) 20 คะแนน

$$5.1 \text{ Y} = ABC[AB+\overline{C}(BC+AC)]$$

$$5.2 Y = AB + BC(B + C)$$

$$5.3 Y = (A+BC)(B+\overline{D})$$

$$5.4 \text{ Y} = \overline{R}(\overline{PQ} + PR)$$

$$5.5 \text{ Y} = \overline{C}(A+C) + \{\overline{BC}(A+B)\}$$