EPREUVES ECRITES

TEXTE DE L'EPREUVE DE MATHEMATIQUES GENERALES

DURÉE: 6 heures

Les dessins demandés dans le texte seront exécutés sur papier millimétrique.

Pour cette épreuve, le problème a été choisi d'une approche assez facile. Les candidats sont prévenus qu'entreront dans l'appréciation des sopies le soin apporté à la présentation, la clarté et la précision de la rédaction. Ils sont en particulier invités :

- d'une part à respecter les notations fixées par le texte;
- d'autre part à assortir leur rédaction de figures soignées, soit qu'elles soient explicitement demandées dans l'énoncé, soit que, les ayant aidés à réaliser une situation, elles leur permettent de s'exprimer plus clairement, étant bien entendu qu'une figure ne saurait se substituer à un raisonnement rigoureux.

Les différentes questions du problème, de difficultés inégales, ont une indépendance relative. Aucun ordre n'est imposé pour les résoudre. A condition de l'indiquer clairement, les candidats pourront utiliser pour la résolution d'une question des résultats fournis par l'énoncé d'une question précédente, même s'ils n'ont pu la résoudre.

PARTIE 0. - Notations et définitions

0.1.

Pour A et B parties d'un même ensemble, on pose

$$A \setminus B = \{a \in A, a \notin B\}$$
.

On note ${\bf Z}$ l'anneau des entiers rationnels, ${\bf R}$ le corps des réels, ${\bf C}$ celui des complexes. Si ${\bf A}$ est une partie minorée de ${\bf R}$, sa borne inférieure est désignée par inf ${\bf A}$.

On considère l'espace métrique \mathbf{R}^2 obtenu en munissant $\mathbf{R} \times \mathbf{R}$ de son produit scalaire canonique noté (. | .), la norme associée étant notée $\| . \|$ et la distance associée d(.,.). Deux vecteurs (ou points) $\xi = (x,y)$ et $\xi' = (x',y')$ ont pour déterminant dans la base canonique le réel xy' - yx' noté $\det(\xi,\xi')$.

La lettre @ désigne le sous-ensemble de R2 défini par :

On convient de noter :

$$0 = (0,0)$$
 $u = (1,0)$ $v = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ $w = (0,1)$.

0.2.

On dira qu'une partie Λ de \mathbf{R}^2 est un *réseau*, s'il existe au moins une base $\{\xi, \eta\}$ de \mathbf{R}^2 telle que l'on ait :

$$\Lambda = \mathbf{Z}\,\xi + \mathbf{Z}\,\eta = \{p\,\xi + q\,\eta; (p,q)\in\mathbf{Z}^2\}.$$

Tout système $\{\xi', \eta'\}$, vérifiant $\Lambda = \mathbf{Z}\xi' + \mathbf{Z}\eta'$, est dit une base du réseau. On note respectivement :

 Λ_e le réseau dont une base est $\{u, v\}$;

 Λ_{c} le réseau dont une base est $\{u, w\}$;

 Λ_r^{θ} le réseau dont une base est $\{u, \theta w\}$ avec $\theta \ge 1$.

Plus généralement un réseau est dit réduit, s'il admet une base de la forme $\{u,j\}$ avec $j \in \mathfrak{Q}$.

Deux réseaux sont dits isométriques (resp. semblables) s'il existe une isométrie (resp. similitude directe ou indirecte) de \mathbf{R}^2 transformant l'un en l'autre. Un réseau semblable à $\Lambda_{\mathbf{e}}$ est dit équilatéral; un réseau semblable à $\Lambda_{\mathbf{c}}$ (resp. à un $\Lambda_{\mathbf{r}}^{\theta}$) est dit carré (resp. rectangulaire).

0.3.

Pour un réseau quelconque Λ on appelle :

- carcan de Λ le nombre réel carc $\Lambda = \inf\{\|\lambda\|; \lambda \in \Lambda \setminus 0\};$
- alvéole fondamental de Λ l'ensemble

$$A_{\lambda}(\Lambda) = \{ \xi \in \mathbf{R}^2 ; \forall \lambda \in \Lambda, d(0, \xi) \leq d(\lambda, \xi) \}.$$

On introduit aussi

$$\mathcal{A}'(\Lambda) = \{ \xi \in \mathbb{R}^2 : \forall \lambda \in \Lambda \setminus 0, d(0, \xi) < d(\lambda, \xi) \}$$

Dans la suite du texte, on écrira en abrégé \mathcal{H} et \mathcal{H}' pour $\mathcal{H}(\Lambda)$ et $\mathcal{H}'(\Lambda)$; on posera aussi, pour tout γ de \mathbb{R}^2 ,

$$\mathcal{A}_{\gamma} = \{\; \xi + \gamma\; ; \quad \xi \in \mathcal{A}\; \} \qquad \text{et} \qquad \mathcal{A}'_{\gamma} = \{\; \xi + \gamma\; ; \quad \xi \in \mathcal{A}'\; \} \quad .$$

0.4.

Le stabilisateur d'un élément x d'un ensemble X, dans lequel opère un groupe G, est : $G_x = \{ g \in G; g(x) = x \}$.

Partie I. — Réseaux, classification

I.1.

Dessiner (1).

Sur des figures séparées :

- dessiner Λ_e ; déterminer et dessiner $\mathcal{A}(\Lambda_e)$; trouver carc Λ_e ;
- dessiner un $\Lambda_{\mathbf{r}^{\theta}}$; déterminer et dessiner $\mathfrak{H}(\Lambda_{\mathbf{r}^{\theta}})$; trouver carc $\Lambda_{\mathbf{r}^{\theta}}$ et carc $\Lambda_{\mathbf{c}}$.

I.2.

Soit \mathfrak{G} et \mathfrak{G}' deux bases d'un réseau Λ . Démontrer que la matrice de passage de \mathfrak{G} à \mathfrak{G}' est une matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ à éléments dans \mathbf{Z} vérifiant |ad - bc| = 1. Énoncer une réciproque. Donner des exemples de telles matrices sans élément nul.

Établir que le réel det \mathfrak{G} dépend seulement du réseau Λ et non du choix de sa base; on le *note* aire Λ . Calculer aire $\Lambda_{\mathfrak{e}}$ et aire $\Lambda_{\mathfrak{e}}$.

Lorsque Λ est réduit, démontrer que, si $\{u, j\}$ et $\{u, j'\}$ sont deux de ses bases avec j et j' éléments de \emptyset , on a nécessairement j = j'; on note $j(\Lambda)$ le vecteur ainsi canoniquement attaché au réseau réduit Λ .

I.3.

Pour tout Λ démontrer que carc Λ est strictement positif et que les points de Λ sont isolés uniformément par des boules de rayon $\frac{\operatorname{carc} \Lambda}{2}$.

Prouver que le nombre $m(\Lambda)$ des éléments λ de Λ satisfaisant à $\|\lambda\| = \operatorname{carc} \Lambda$ est non nul et fini.

I.4.

Soit $\{\alpha, \beta\}$ une base de \mathbb{R}^2 vérifiant les conditions :

(K)
$$\begin{cases} \|\alpha\| \leq \|\beta\| \\ 0 \leq (\alpha |\beta) \leq \frac{1}{2} \|\alpha\|^{2} \end{cases}$$

Démontrer les résultats suivants :

- (i) $\forall (p,q) \in \mathbb{Z}^2 \setminus (0,0), \|p\alpha + q\beta\| \geqslant \alpha$
- (ii) $\forall p \in \mathbf{Z}, \forall q \in \mathbf{Z} \setminus 0, \|p\alpha + q\beta\| \geqslant \|\beta\|$
- (iii) si $p \in \mathbb{Z}$, $q \in \mathbb{Z} \setminus 0$, $(p,q) \neq (0,1)$, $(p,q) \neq (0,-1)$, alors $\|p\alpha + q\beta\|^2 \le \|\alpha\|^2 + \|\beta\|^2$ entraı̂ne $\|p\alpha + q\beta\|^2 = \|\beta \alpha\|^2$

I.5.

Prouver que, si ξ est un vecteur de Λ vérifiant $\|\xi\| = \operatorname{carc} \Lambda$, il existe η tel que $\{\xi, \eta\}$ soit une base de Λ .

Démontrer que tout réseau Λ possède une base $\{\alpha, \beta\}$ vérifiant (K).

I.6.

Établir que tout réseau est semblable à un réseau réduit et à un seul.

A tout réseau Λ on associe canoniquement, et on *note* encore $j(\Lambda)$ le vecteur de \emptyset canoniquement attaché dans **I.2.** au réseau réduit semblable à Λ . Où est $j(\Lambda)$ si Λ est équilatéral, rectangulaire ou carré?

Discuter $m(\Lambda)$ suivant la position de $j(\Lambda)$ dans Ω .

Établir l'inégalité: aire $\Lambda \geqslant \frac{\sqrt{3}}{2}$ (carc Λ)² et discuter le cas de l'égalité.

PARTIE II. - Isométries d'un réseau, tore plat

II.1.

Démontrer :
$$\mathbf{R}^2 = \bigcup_{\lambda \in \Lambda} \mathcal{A}_{\lambda} \qquad \text{(voir } \mathbf{0.34}\text{)}$$

A-t-on une partition?

Prouver que \mathcal{A} est un hexagone convexe, sauf si Λ est rectangulaire, auquel cas \mathcal{A} est un rectangle. Dessiner le cas général. Démontrer que \mathcal{A}' est l'intérieur de \mathcal{A} et que \mathcal{A}' est partout dense dans \mathcal{A} .

II.2.

On note Γ le groupe Isom Λ des isométries de \mathbf{R}^2 conservant globalement Λ , et $T=\mathrm{Trans}\ \Lambda$ le sous-groupe de Γ constitué par le groupe additif Λ opérant sur \mathbf{R}^2 , c'est-à-dire par les translations $\xi \longrightarrow \xi + \lambda$ avec $\lambda \in \Lambda$. Démontrer que Γ est distingué dans Γ . Soit Γ le groupe-quotient Γ/Γ , isomorphe au stabilisateur de Γ dans Γ ; démontrer que Γ 0 est un groupe fini, discuter le nombre de ses éléments et sa structure selon Γ 1. Discuter dans Γ 2 équation Γ 3 e, où Γ 4 est l'élément neutre.

Pour une base $\mathfrak{B}=\{\xi,\eta\}$ de \mathbf{R}^2 , soit $\delta(\mathfrak{B})$ l'ensemble des points de \mathbf{R}^2 de la forme $\rho\xi+\rho'\eta$ avec $(\rho,\rho')\in\mathbf{R}^2$ et $|\rho|+|\rho'|\leqslant\frac{1}{2}$, et $\Delta(\mathfrak{B})$ la réunion des images de $\delta(\mathfrak{B})$ par les translations $p\xi+q\eta$ avec $(p,q)\in\mathbf{Z}^2$ et p+q pair. On choisit $\xi=(1,0)$ et $\eta=(2,1)$, et on note \mathfrak{B} l'ensemble $\Delta(\mathfrak{B})$ correspondant. La base canonique étant figurée orthonormée (unité de longueur de 4 cm environ), représenter \mathfrak{B} par des hachures sur un dessin.

L'ensemble \mathcal{H} est-il stable par le groupe Trans Λ_c ?

II.4.

Étant donné un réseau Λ , on appelle ici tore plat associé à Λ , et on notera Tore Λ , le groupe-quotient \mathbf{R}^2/Λ du groupe additif de \mathbf{R}^2 par le sous-groupe Λ , c'est-à-dire l'ensemble des classes $\Lambda + \xi$ avec $\xi \in \mathbf{R}^2$. La projection canonique $\mathbf{R}^2 \longrightarrow \text{Tore } \Lambda$ sera notée φ .

Démontrer que pour tout γ de \mathbf{R}^2 la restriction de ϕ à \mathcal{H}'_{γ} (voir 0.3.) est injective. On notera $\psi_{\gamma}: \, \phi(\mathcal{H}'_{\gamma}) \longrightarrow \mathcal{H}'_{\gamma}$ l'application inverse de la double restriction de $\phi: \mathcal{H}'_{\gamma} \longrightarrow \phi(\mathcal{H}'_{\gamma})$. Pour $\Lambda = \Lambda_c$ dessiner sur une même figure les deux ensembles $(\psi_{o} \circ \phi) \, (\mathcal{H})$ et $(\psi_{\gamma} \circ \phi) \, (\mathcal{H})$ où ψ_{o} correspond à $\gamma = (0, \, 0)$ et ψ_{γ} à $\gamma = \left(\frac{3}{2} \cdot \frac{1}{2}\right)$.

Partie III. — Dualité, spectre d'un réseau

III.1.

A un réseau Λ on associe la partie Λ^* de ${f R}^2$ définie par :

$$\Lambda^* = \{ \gamma \in \mathbf{R}^2 : \forall \lambda \in \Lambda, (\gamma \mid \lambda) \in \mathbf{Z} \} .$$

Démontrer que A* est aussi un réseau; on l'appelle le dual de A.

Établir : $(\Lambda^*)^* = \Lambda$ et aire Λ . aire $\Lambda^* = 1$.

Dessiner sur une même figure $\Lambda_{\rm o}$ et $\Lambda^*_{\rm o}$, où $\Lambda_{\rm o}$ est le réseau admettant pour base $\left(\frac{4}{5}, 0\right)$. (1, 1)

Démontrer que le dual d'un Λ lui est semblable, c'est-à-dire que l'on a : $j(\Lambda^*) = j(\Lambda)$. La similitude peut-elle toujours être choisie directe?

III.2.

Étant donné un réseau Λ , une fonction $f: \mathbf{R}^2 \longrightarrow \mathbf{C}$ est dite Λ -périodique si, pour tout élément ξ de \mathbf{R}^2 et tout élément λ de Λ , on a

$$f(\xi + \lambda) = f(\xi)$$
.

A tout élément γ de \mathbb{R}^2 , on associe la fonction f_{γ} définie par

$$\xi \longrightarrow f_{\nu}(\xi) = \exp \left[2i\pi \left(\xi \mid \gamma\right)\right] ;$$

 f_{Y} peut-elle être Λ -périodique?

Pour toute fonction $f: \mathbb{R}^2 \to \mathbb{C}$ de classe \mathbb{C}^2 on posc

$$Df = -\frac{\partial^2 f}{\partial x^2} - \frac{\partial^2 f}{\partial y^2} ;$$

établir, quel que soit l'élément γ de ${\bf R}^2$, ${\bf D} f_\gamma = 4 \ \pi^2 \parallel \gamma \parallel^2 f_\gamma$.

III.3.

On appelle valeur propre du réseau Λ tout réel μ non nul, tel qu'il existe $\eta \in \Lambda^*$ satisfaisant à : $\mu = 4 \pi^2 \parallel \eta \parallel^2$. La multiplicité, notée $m(\mu)$, d'une valeur propre μ est par définition le nombre des éléments η de Λ^* solutions de $4\pi^2 \parallel \eta \parallel^2 = \mu$. Démontrer que $m(\mu)$ est pair pour tout Λ et pour tout μ .

On appelle spectre de Λ l'ensemble, noté Spec Λ , des couples $(\mu, m(\mu))$ où μ parcourt l'ensemble des valeurs propres de Λ .

On note $\mu_1(\Lambda)$ la plus petite valeur propre :

$$\mu_{1}(\Lambda) = \inf \left\{ 4 \pi^{2} \| \eta \|^{2}; \ \eta \in \Lambda^{*} \setminus 0 \right\}.$$

Établir : aire Λ . $\mu_1\left(\Lambda\right)\leqslant \frac{8\,\pi^2}{\sqrt{3}}$ et discuter le cas de l'égalité.

III.4.

Déterminer les valeurs propres de Λ_e , Λ_r^{θ} et Λ_c .

Pour A_c, calculer l'ordre de multiplicité de chacune des valeurs propres

$$20 \pi^2$$
, $36 \pi^2$, $100 \pi^2$, $1460 \pi^2$.

Quel est le P.G.C.D. des $m(\mu)$ relatifs à Λ_{ϵ} ?

Pour A_e calculer l'ordre de multiplicité de chacune des valeurs propres

$$\frac{16\pi^2}{3}$$
 , $\frac{112\pi^2}{3}$, $2128\pi^2$.

Que peut-on dire de $m(\mu)$ pour les valeurs propres de Λ_e ?

III.5.

Existe-t-il des réseaux dont toutes les valeurs propres vérifient $m(\mu) = 2$?

III.6.

Démontrer que deux réseaux Λ et Λ' ont le même spectre si, et seulement si, ils sont isométriques.

III.7.

Étant donné un réseau Λ , on range ses valeurs propres par ordre croissant : $0<\mu_1<\mu_2<\mu_3<\ldots$

Démontrer que la série $\sum_{i} m(\mu_{i})e^{-t\mu_{i}}$ est convergente pour tout réel t strictement positif; on note S(t) sa somme.

Il pourra être commode d'introduire des alvéeles relatifs à Λ^* et des intégrales doubles d'une fonction $(x, y) \longrightarrow g_{\tau}(x, y) = e^{-\tau(x^2 + y^2)}$.

III.8.

Démontrer que S(t) est, quand t tend vers 0 par valeurs positives, un infiniment grand équivalent à $\frac{\text{aire }\Lambda}{4\pi t}$. On pourra pour cela faire intervenir des intégrales doubles de deux fonctions g_{τ} .

