EvaMath groups	Mathematics Exam	Prepared by: Dr. A. Moussawi
ExaMath groups	Section: L.S.	Edited by: H. Ahmad
Number of questions, 2	Sample 02 - 2022	Name:
Number of questions: 3	Duration: 90 min	N°:

- This exam consists of three problems. It is inscribed on two pages, numbered 1 and 2.
- Use of a non-programmable calculator is permitted.

I - (2 points)

In the table below, only one of the answers given to each question is correct. Choose, **with justification**, the correct answer.

\mathbf{N}^o	Question	Suggested answers				
11	Question	A	В	C		
1.	The inequality $\ln(x) + \ln(x+1) \ge \ln(x^2+1)$ is verified in:	[1; +∞[]0;+∞[]1;+∞[
2.	A class contains 12 boys and 4 girls. If we choose three students from the class at random, the probability that all of them are girls is:	$\frac{1}{140}$	$\frac{11}{28}$	$\frac{17}{28}$		
3.	Let f a function defined over $]0; +\infty[$ by: $f(x) = e^{\frac{1}{x}}.$ The derivative of f is:	$e^{-\frac{1}{x^2}}$	$\frac{-e^{\frac{1}{x}}}{x^2}$	$-x^2e^{\frac{1}{x}}$		
4.	$\lim_{x \to -\infty} \frac{\ln(e^x + 1)}{e^x} =$	1	0	+∞		

II - (5 points)

In a school of statistics, after studying the candidates' files, recruitment is done in two ways:

- 10% of candidates are selected on the basis of their application. These candidates must then pass an oral test, after which 60% of them are finally admitted to the school.
- Candidates who have not been selected on the basis of their applications take a written test after which 20% of them are admitted to the school.

Part A

A candidate is randomly chosen for this recruitment competition. Consider:

- D the event: « the candidate was selected on the basis of his application »;
- A the event: « the candidate was admitted to the school »;
- \overline{D} and \overline{A} the contrary events of the events D and A respectively.
- 1) Translate the situation by a weighted probability tree.
- 2) Calculate the probability that the candidate will be selected on the basis of his application and admitted to the school.
- 3) Show that the probability of the event *A* is equal to 0.24.
- 4) A candidate admitted to the school is chosen at random. What is the probability that his application was not selected?

Part B

We consider a sample of three candidates chosen at random, assimilating this choice to a drawing with replacement.

- 1) Calculate the probability that only one of the three randomly selected candidates will be admitted to the school.
- 2) Calculate the probability that at least two of the three randomly selected candidates will be admitted to this school.

III - (11 points)

Let f the function defined over]0; $e[\cup]e$; $+\infty[$ by $f(x) = \frac{1}{x(1-\ln x)}$.

Denote by (C_f) its representative curve in an orthonormal system $(O; \vec{i}; \vec{j})$.

- 1) Calculate the limits: $\lim_{x \to 0^+} f(x)$, $\lim_{x \to e^-} f(x)$ and $\lim_{x \to e^+} f(x)$. Deduce the existence of two asymptotes to (C_f) .
- 2) Calculate $\lim_{x \to +\infty} f(x)$ and interpret graphically the result.
- 3) Show that for every $x \in]0$; $e[\cup]e; +\infty[$, $f'(x) = \frac{\ln x}{x^2(1-\ln x)^2}$.
- 4) Draw the table of variations of f.
- 5) Let g the function defined over]0; $+\infty[$ by $g(x) = 1 x^2(1 \ln x)$. The curve (C_g) below is the representative curve of the function g in an orthonormal system.

The curve (C_g) intersects the x-axis at two points of abscissas 1 and α where α is a real number.

- a) Verify that $2.2 < \alpha < 2.3$.
- b) Show that for every $x \in]0$; $+\infty[$, $f(x) x = \frac{g(x)}{x(1 \ln x)}$.
- c) Deduce the relative position of the curve (C_f) and the line (d) of equation y = x.
- 6) Draw (C_f) and (d).

QI	Answers				
1.	The inequality is defined when $\begin{cases} x > 0 \\ x + 1 > 0 \end{cases}$ so for $x > 0$; $\ln(x) + \ln(x + 1) \ge \ln(x^2 + 1)$; $x^2 + 4 > 0$ $\ln(x^2 + x) \ge \ln(x^2 + 1)$; $x^2 + x \ge x^2 + 1$; $x \ge 1$; The solution set is $[1; +\infty[$; The correct answer is A .	1/2			
2.	$P(3girls) = \frac{C_3^4}{C_3^{16}} = \frac{1}{140};$ The correct answer is A .	1/2			
3.	$f'(x) = -\frac{1}{x^2}e^{\frac{1}{x}};$ The correct answer is B .	1/2			
4.	$\lim_{x \to -\infty} \frac{\ln (e^x + 1)}{e^x} = \lim_{x \to -\infty} \frac{1}{e^x + 1} = 1;$ The correct answer is A .	1/2			

QII	Answers	Grade
A.1.	$ \begin{array}{c} 0.6 \\ \hline 0.4 \\ \hline 0.9 \\ \hline D \end{array} $ $ \begin{array}{c} 0.2 \\ \hline 0.8 \\ \hline A \end{array} $	1
A.2.	$P(D \cap A) = P(D) \times P(A/D) = 0.1 \times 0.6 = 0.06$;	3/4
A.3.	$P(A) = P(D \cap A) + P(\overline{D} \cap A) = 0.06 + 0.18 = 0.24.$	1
A.4.	$P(\overline{D}/A) = \frac{P(A \cap \overline{D})}{P(A)} = \frac{P(\overline{D} \cap A)}{P(A)} = \frac{0.18}{0.24} = \frac{18}{24} = \frac{3}{4} = 0.75.$	3/4
B.1.	Consider the event E: « only one of the three randomly selected candidates is admitted to the school »; $P(E) = P(A) \times P(\overline{A}) \times P(\overline{A}) \times \frac{3!}{2! \times 1!} = 0.24 \times (1 - 0.24)^2 \times 3 = 0.42$	3/4
B.2.	Consider the event F: « At least two of the three randomly selected candidates are admitted to this school »; $P(F) = P(A) \times P(A) \times P(\overline{A}) \times \frac{3!}{2! \times 1!} + P(A) \times P(A) \times P(A) = 0.15.$	3/4

QIII	Answers							Grade	
1.	• $\lim_{x \to 0^+} f(x) = +\infty$; • $\lim_{x \to e^-} f(x) = +\infty$; • $\lim_{x \to e^+} f(x) = -\infty$; The lines with equations $x = 0$ and $x = e$ are two vertical asymptotes to (C_f) .						2		
2.	$\lim_{x \to +\infty} f(x) =$:0;							1
3.	The line with equation $y = 0$ is horizontal asymptote to C_f at $+\infty$. $f'(x) = \frac{\ln x}{x^2(1 - \ln x)^2}.$						1		
4.	Table of variations of f : $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						1½		
5.a.	$g(2.2) \approx -0.02 < 0$ and $g(2.3) \approx 0.12 > 0$; so $2.2 < \alpha < 2.3$.							3/4	
5.b.	$f(x) - x = \frac{g(x)}{x(1 - \ln x)}.$						3/4		
5.c.	• (C_f) is	of $f(x) - x$ $+ + + + + + + + + + + + + + + + + + + $	0	e ; $+\infty$ [;	α 0 0	+ + + +	e + +	+∞	2

