richardwu.ca

STAT 331 COURSE NOTES

APPLIED LINEAR MODELS

Peter Balka • Winter 2018 • University of Waterloo

Last Revision: January 18, 2018

Table of Contents

1	Jan	January 4, 2018			
	1.1	Simple linear regression review	1		
2	January 9, 2018				
	2.1	Correlation coefficient and covariance	1		
	2.2	Simple linear regression (SLR) model	2		
	2.3	Methods of least squares	2		
	2.4	Fitted residuals	3		
	2.5	Interpretation of estimated parameters $\hat{\beta}_i$	3		
3	January 16, 2018				
	3.1	Invariants for normal SLR models	4		
	3.2	Estimate of variance	4		
	3.3	Unbiased estimator of $\hat{\beta}_1$	4		
	3.4	Central limit theorem	5		
4	January 18, 2018				
	4.1	Inference for β_1	6		
	4.2	Confidence interval	6		
	4.3	Hypothesis testing	7		
	4.4	Confidence interval vs hypothesis testing	7		
	4.5	Multiple Regression Model	7		

Abstract

These notes are intended as a resource for myself; past, present, or future students of this course, and anyone interested in the material. The goal is to provide an end-to-end resource that covers all material discussed in the course displayed in an organized manner. If you spot any errors or would like to contribute, please contact me directly.

1 January 4, 2018

1.1 Simple linear regression review

In SLRM, there is a single explanatory variate and a response variate.

A good graphical summary for SLRM are **scatterplots**.

A good numerical summary for SLRM is the correlation coefficient defined as

$$r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}$$

where $-1 \le r \le 1$. If $|r| \approx 1$ then the explanatory/response variates have a strong linear relationship.

2 January 9, 2018

2.1 Correlation coefficient and covariance

Note: the measure r is also the covariance divided by the standard deviations or

$$r = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$$

Note that the covariance E[(X - E[X])(Y - E[Y])] can be graphically separated by the means \bar{X} and \bar{Y} .

One can see that the covariance signage is determined by the sum of the magnitudes in the positive and negative quadrants.

2.2 Simple linear regression (SLR) model

An SLR model can be thought of as a line with covariates x and y where

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
 $i = 1, \dots, n$

where ϵ_i is some error term for each i.

Example 2.1. From the dataset

Overhead	Office Size
218955	1589
224513	1912
:	:

Thus we have the SLR model

$$218955 = \beta_0 + \beta_1(1589) + \epsilon_1$$
$$224513 = \beta_0 + \beta_1(1912) + \epsilon_2$$

2.3 Methods of least squares

Find (estimate) the value of β_0 , β_1 (denoted by $\hat{\beta_0}$, $\hat{\beta_1}$, respectively) that minimizes the sum of squares of the errors $\sum_{i=1}^{n} \epsilon_i^2$. That is: we find values of β_0 , β_1 that minimizes the function

$$S(\beta_0, \beta_1) = \sum_{i=1}^n \epsilon_i^2 = \sum_{i=1}^n [y_i - (\beta_0 + \beta_1 x_i)]^2$$

We take the partial derivatives and set to 0 to find the minimum (assuming convexity)

$$\frac{\partial S}{\partial \beta_0} = -2\sum_{i=1}^n y_i - (\beta_0 + \beta_1 x_i) = 0$$
$$\frac{\partial S}{\partial \beta_1} = -2\sum_{i=1}^n x_i [y_i - (\beta_0 + \beta_1 x_i)] = 0$$

which yields (the notation changes to estimates of β assuming we can calculate those)

$$\sum_{n=1}^{n} y_i = n\hat{\beta}_0 + \sum_{n=1}^{n} x_i \hat{\beta}_1$$
$$\sum_{n=1}^{n} x_i y_i = \sum_{i=1}^{n} x_i \hat{\beta}_0 + \sum_{n=1}^{n} x_i^2 \hat{\beta}_1$$

which gives us the estimates

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}
\hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{S_{xy}}{S_{xx}}$$

where the second equation follows from substituting in the first and re-deriving for $\frac{\partial S}{\partial \beta_1}$. The corresponding fitted line is

$$\hat{\mu}_{y|X=x} = \hat{\mu} + \hat{\beta}_0 + \hat{\beta}_1 x$$

For the example with overhead above, we'd have

$$\hat{\mu} = -27877.06 + 126.33x$$

2.4 Fitted residuals

These are the difference between the actual values and our fitted value (distinct from the error terms previously)

$$e_i = (y_i - \hat{\mu}_i) = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)$$

Some **key points** regarding this model

• By estimating two parameters (β_0, β_1) , we have imposed two constraints on our residuals (from our partial derivatives)

$$\sum e_i = 0$$

$$\sum x_i e_i = 0$$

These reduces our number of n independent measures by 2 since we can compute the remaining two residuals from n-2 observations. Thus we have n-2 degrees of freedom (or in general, n-k dfs where k is the number of estimated parameters>).

2.5 Interpretation of estimated parameters $\hat{\beta}_i$

 β_1

$$\hat{\mu} = \hat{\beta}_0 + \hat{\beta}_1 x$$

$$\mu_{x+1} = \hat{\beta}_0 + \hat{\beta}_1 (x+1)$$

$$= \hat{\beta}_0 + \hat{\beta}_1 x + \hat{\beta}_1$$

$$= \hat{\mu} + \hat{\beta}_1$$

thus $\hat{\beta}_1$ can be interpreted as the estimated mean change in the response (y) associated with one unit change of x.

$$\beta_0$$
 For $x = 0$, $\hat{\mu} = \hat{\beta_0}$.

However, in the example with overhead, it's evident that when x = 0 overhead is negative (-27877.06) which is nonsensical.

Never extrapolate results outside the range of the values of the explanatory variate(s).

3 January 16, 2018

3.1 Invariants for normal SLR models

Recall for the normal SLR model we have

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i \quad i = 1, \dots, n$$

where $\epsilon_i \sim N(0, \sigma^2)$ is some error term for each i.

- $\beta_0 + \beta_1 x_i$ is the **deterministic** and ϵ_i is the **random** components of the model.
- $Var(\epsilon_i) = 0$ for all i (constant variance)
- ϵ_i, ϵ_j for $i \neq j$ are independent (otherwise we'd need time series)

3.2 Estimate of variance

Each of our error terms follow a $N(0, \sigma^2)$ distribution. The **unbiased** estimate of σ^2 is

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n e_i^2}{n-2}$$

The residual standard error is $\hat{\sigma}^2 = \sqrt{\frac{\sum e_i^2}{n-2}}$.

3.3 Unbiased estimator of $\hat{\beta}_1$

The **estimator** of β_1 is a random variable that is similar to the estimate but with r.v. Y_i and \bar{Y}

$$\hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(Y_i - \bar{Y})}{\sum (x_i - \bar{x})^2}$$

Note: $\hat{\beta}_1$ can be expressed as a linear combination of response variables Y_i , i = 1, 2, ..., n.

$$\hat{\beta}_1 = \frac{\sum (x_i - \bar{x})Y_i - \bar{Y}\sum (x_i - \bar{x})}{S_{xx}}$$

$$= \frac{\sum (x_i - \bar{x})Y_i}{S_{xx}}$$

$$= \sum_{i=1}^n c_i Y_i$$

$$\sum (x_i - \bar{x}) = 0$$

$$c_i = \frac{(x_i - \bar{x})}{S_{xx}}$$

Remember that

 $\epsilon_i \sim N(0, \sigma^2)$ independent $\Rightarrow Y_i \sim N(\beta_0 + \beta_1 x, \sigma^2)$ independent $\Rightarrow \hat{\beta}_1 \sim \text{Normal (sum of independent normal r.v.'s)}$

Thus we have

$$E(\hat{\beta}_1) = E(\sum c_i Y_i) = \sum c_i E(Y_i)$$

$$= \sum \left(\frac{(x_i - \bar{x})}{S_{xx}}\right) (\beta_0 + \beta_1 x_i)$$

$$= \frac{\beta_0 \sum (x_i - \bar{x}) + \beta_1 \sum x_i (x_i - \bar{x})}{S_{xx}}$$

$$= \frac{\beta_1 \sum x_i (x_i - \bar{x}) - \beta_1 \bar{x} \sum (x_i - \bar{x})}{S_{xx}}$$

$$= \frac{\beta_1 \sum (x_i - \bar{x})(x_i - \bar{x})}{\sum (x_i - \bar{x})^2}$$

$$= \beta_1$$

eliminate and introduce 0 term

Since $E(\hat{\beta}_1) = \beta_1$, then $\hat{\beta}_1$ is an unbiased estimator of β_1 . The variance of our estimator $\hat{\beta}_1$ is

$$Var(\hat{\beta}_1) = Var(\sum c_i Y_i)$$

$$= \sum c_i^2 Var(Y_i)$$

$$= \sum \frac{\sigma^2 (x_i - \bar{x})^2}{S_{xx}^2}$$

$$= \frac{\sigma^2}{S_{xx}}$$

$$= \frac{\sigma^2}{\sum (x_i - \bar{x})^2}$$

 Y_i independent

Since our estimator $\hat{\beta}_1$ follows (from above)

$$\hat{\beta}_1 \sim N(\beta_1, \frac{\sigma^2}{S_{xx}})$$

we have

$$\frac{\hat{\beta}_1 - \beta_1}{\frac{\sigma}{\sqrt{S_{cr}}}} \sim N(0, 1)$$

in terms of the sample variance (or estimate $\hat{\sigma}$ we have the **T-distribution**

$$\frac{\hat{\beta}_1 - \beta_1}{\frac{\hat{\sigma}}{\sqrt{S_{xx}}}} \sim t_{n-2}$$

3.4 Central limit theorem

Recall that the distribution of the sample means follows a normal distribution

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$

so we have

$$\frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$$

$$\frac{\bar{X} - \mu}{\frac{\hat{\sigma}}{\sqrt{n}}} \sim t_{n-1}$$

This follows from

$$SD(X) = \sigma$$

$$SD(\bar{X}) = \frac{\sigma}{\sqrt{n}}$$

$$SE(\bar{X}) = \frac{\hat{\sigma}}{\sqrt{n}}$$

$$\frac{\bar{X} - \mu}{SE(\bar{X})} \sim t_{n-1}$$

$$\frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} \sim t_{n-2}$$

4 January 18, 2018

4.1 Inference for β_1

"Is there a relationship between overhead and office size (for the population of offices)?" There is no (linear) relationship $\iff \beta_1 = 0$. We can statistically check this using two methods

- 1. Confidence interval for β_1
- 2. Hypothesis test for β_1 ($H_0: \beta_1 = 0$)

4.2 Confidence interval

For a given distribution with one parameter μ , we can calculate the $(1-\alpha)100\%$ confidence interval for μ (note: we need only one t value since the T-distribution is symmetric)

$$\hat{\mu} \pm t_{n-1,1-\frac{\alpha}{2}} \cdot SE(\hat{\mu})$$

$$\Rightarrow \bar{x} \pm t_{n-1,1-\frac{\alpha}{2}} \left(\frac{\hat{\sigma}}{\sqrt{n}}\right)$$

The $(1-\alpha)100\%$ confidence interval for β_1 (where the we have n-2 degrees of freedom)

$$\hat{\beta_1} \pm t_{n-2,1-\frac{\alpha}{2}} \cdot SE(\hat{\beta_1})$$

Example 4.1. The 95% C.I. for β_1 for overhead data is

$$\hat{\beta}_1 \pm t_{22,0.975} SE(\hat{\beta}_1)$$
=126.33 \pm 2.074(10.88)
=126.33 \pm 22.57 = (103, 76, 148.90)

where ± 22.57 is the margin of error.

Since $\beta_1 = 0$ is not in the interval, we can conclude that there is a *significant* positive relationship between overhead and office size.

Remark 4.1. An X% confidence interval can be interpreted as: X% of X% confidence intervals established from repeated samples contain the true value.

4.3 Hypothesis testing

We form a **null hypthoesis** H_0 and an alternative hypothesis H_1 , where we assume H_0 unless there is statistical significance rejecting H_0 .

For simple linear regression, we suppose

 $H_0: \beta_1 = 0$ no relationship $H_1: \beta_1 \neq 0$ two-sided alternative

Our **test statistic** t is the distribution

$$t = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} \sim t_{n-2}$$

Example 4.2. Under H_0 we have for our example

$$t = \frac{126.33 - 0}{10.88} = 11.61$$

If we look at our t_{22} distribution, we find the total probability of the pdf at $P(t \le 11.61)$ and $P(t \ge 11.61)$ (the **p-value**).

We see that $P(t_{22} > 2.819) = 0.0005 \Rightarrow P(t_{22} > 11.61) << 0.005$.

Thus the p-value is $2P(t_{22} > 11.61) << 0.01$ (in fact, it is 7.47×10^{-11}), which is lower than **0.05** (the significance level), so we reject the null hypothesis.

Remark 4.2. The p-value of a hypothesis test can be interpreted as: the probability that our sample holds (the observed, or more extreme, results) under the null hypothesis. If it is extremely low (past a certain threshold), then we may reject the null hypothesis as not possible.

4.4 Confidence interval vs hypothesis testing

Deciding which method to use is problem dependent: usually, hypothesis testing is simpler to interpret for many variates and a confidence interval is only relevant for single variates.

A 95% confidence interval corresponds with a hypothesis test with a 0.05 significance level i.e. we will derive an equivalent conclusion.

4.5 Multiple Regression Model

We want to model the following relationship

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip} + \epsilon_i$$

where $\epsilon_i = N(0, \sigma^2)$ and independent.

Note we have p variates and p+1 parameters (the bias term) thus we have n-(p+1) degrees of freedom.

In matrix form, this is represented as

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p} \\ 1 & x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{np} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

which can be written succinctly as

$$Y = X\beta + \epsilon$$

where $\epsilon = N(\vec{0}, \sigma^2 I)$ or $Var(\epsilon) = \sigma^2 I$ (the **covariance matrix**; note that the covariance between $\epsilon_i, \epsilon_j \ i \neq j$ is 0 since they are independent).