ANALYSIS OF LIGHT RESPONSES IN SMH 2P

Data obtained by Percival D'Gama at 5dpf. HuC:GCamp6s smh controls (heterozygous and wt) and smh (homozygous) mutants

Codes updated July 2024

Plot Figure 2photon panel D1-F4

```
%%Set path to where your codes are
addpath(genpath('X:\Nathalie\data\github\DGama_et_al_CR_2024'))
```

STEP1 LOAD ALL DATA INTO ONE CELL ARRAY-----

set the path for the 2p data and the number of cell data

```
cfg.pathData='X:\Manuscripts\Dgama etal 2024 smh\data\Figure 3\Panel D1-E1\';
```

load the data into few matrix

```
[ctrlON,ctrlOFF,mutON,mutOFF,time]=nj_load2pdata_v3(cfg);
```

The matrix contain the following information, example for ctrION

column 1: experimental animal

column 2: the DFF trace of cells that are activated by the ON stimulus

column 3: the DFF trace of cells that are inhibited by the ON stimulus

column 4: the position,x,y,z,brain region of cells that are activated by the ON stimulus

column 5: the position,x,y,z,brain region of cells that are inihibited by the ON stimulus

column 6: the DFF traces of all cells

column 7: the position,x,y,z,brain region of all cells

NB: the DFF traces are the average traces for the 5 stimuli

calculate the number of dataset

numMUT = 14

```
numCTRL=size(ctrlOFF,1)-1
numCTRL = 8
numMUT=size(mutOFF,1)-1
```

SET SOME PARAMETERS FOR THE PLOTS

```
close all clear cfg
```

enter some parameters for the plots into one variable called cfg

```
cfg.MutID='SMH' %enter the name of your mutant 'ELIPSA', this is for the title
cfg = struct with fields:
   MutID: 'SMH'
cfg.Mutcolor='m' %enter the color you want for your mutantd display, 'm'= magenta, 'c'=cyan
cfg = struct with fields:
     MutID: 'SMH'
   Mutcolor: 'm'
cfg.numCTRL=numCTRL;
cfg.numMUT=numMUT;
cfg.label=["tel" "OT" "hind" "habenula"];
cfg.brainRegion=char('telencephalon','TeO/thalamus','Hindbrain', 'Habenula');
cfg
cfg = struct with fields:
        MutID: 'SMH'
     Mutcolor: 'm'
      numCTRL: 8
       numMUT: 14
        label: ["tel" "OT"
                              "hind"
                                        "habenula"]
   brainRegion: [4×13 char]
```

PLOT THE AVERAGE RESPONSE FOR ALL CELLS PER FISH

plot all response to all fishes

[averageON_ALL,averageOFF_ALL]=plot_responseALL_perfish(ctrlON,ctrlOFF,mutON,mutOFF,time,cfg);

SMH Amplitude of ALL responses

PLOT THE AVERAGE RESPONSE FOR ALL CELLS FOR ALL FISH

generate panel D1-E1

plot_responseALL_average(averageON_ALL,averageOFF_ALL,time,cfg);

SMH Amplitude of ON and OFF Average ON for all cells in8 ctrl and 14 mut fish

SMH Amplitude of ON and OFF Average ON for all cells in8 ctrl and 14 mut fish

PLOT THE AVERAGE RESPONSE FOR ALL CELLS PER FISH

generate statistics for panel D1-E1

plot_scatterAll(averageON_ALL,averageOFF_ALL,ctrlON,ctrlOFF, mutON, mutOFF, time,cfg)

ans = '0.022228'

SMH Amplitude ALL cells, SEM,from 0.12946s to 9.9660 Fesponse

ans = '0.16176'

CALCULATE % RESPONDING CELLS PER BRAIN REGION

generate panel D3-D4-E3-E4

plot_response_perregion_v2(ctrlON,ctrlOFF,mutON,mutOFF,time,cfg)

CALCULATE AMPLITUDE PER BRAIN REGION

generate panel D2-E2

plot_amplitude_perregion(ctrlON,ctrlOFF,mutON,mutOFF,time,cfg)

CALCULATE % ON RESPONDING CELLS BASED ON location of cells in x,y,z

chose ON dataset for the analysis

```
cfg.data=1;
```

Identify midline, by plotting OT and using ginput

```
% % ONLY NEEDS TO BE DONE ONCE
% identify_midline(ctrlON,ctrlOFF,mutON,mutOFF,time,cfg)
% %
% % [midline_ctrl] = ginput() % select figure of ctrl
% [midline_mut] = ginput() % select figure of ctrl
% % copy values below
cfg.midline ctrl = [352.102803738318
                                         113.584829143338
370.917573872473
                    117.231685264341
456.775700934579
                    117.231685264341
391.951788491446
                    118.941323733066
391.355140186916
                    122.365919655480
369.634525660964
                    118.943096728054
418.118195956454
                    114.838067459285
423.403426791277
                    127.500154046618];
cfg.midline_mut = [376.401869158878
                                        115.065469573066
374.183514774495
                    115.520273800628
444.626168224299
                    113.662232139248
266.757387247278
                    105.866776750983
426.401869158879
                    119.275181874520
393.856920684292
                    121.840388645827
447.429906542056
                    120.372432156119
304.276827371695
                    114.838067459285
422.313084112150
                    117.159232937755
400.388802488336
                    119.746625281139
387.1495
                    119.5109
                    113.437603221977
401.788491446345
377.803738317757
                    123.871136966938
467.573872472784
                    120.372432156118];
```

Location of the responding cells.

High Y axis value is left. In the scatter plots, left is anterior, right is poster, down is left, up is right In teh shaded error bars are shown SEM

```
plot_respondingXYZ(ctrlON,ctrlOFF,mutON,mutOFF,time,cfg);
```

SMH ON scatter of responding cells in

-100

-150

SMH ON scatter of responding cells in OT. -300 -300 100 100 -300 -300 -100 100 -100 -100 -200 -100 h 100 L 100 -100 -150 -200 -100_£ -100 | 0 100 100E -100 -100 -300 -100 -100 0 0 -100 -150 -200 -100 -200 -100 -100 0 o -100 -150 -200 100 100 E -100 -200 -300 -100 b -100 <u>F</u> 0 0 100 L 100 -100 -200 -100 -300 -200 -100 -100 0 100 100 -100 -100 -200 -300 -300 -100 100 -100 -200 -300

SMH ON scatter of responding cells in

-200

-100

SMH ON scatter of responding cells in

CALCULATE % OFF RESPONDING CELLS BASED ON location of cells in x,y,z

Choose OFF dataset fror the analysis

```
cfg.data=2;
```

Location of the responding cells

```
plot_respondingXYZ(ctrlON,ctrlOFF,mutON,mutOFF,time,cfg)
```

NESTED FUNCTIONS

FUNCTION 1 TO PLOT THE AVERAGE DATA FOR ALL CELLS PER ANIMAL FOR ALL ANIMALS ON TOP OF EACH OTHER=========

```
function [averageON_ALL,averageOFF_ALL]=plot_responseALL_perfish(ctrlON,ctrlOFF,mutON,mutOFF,t
figure (30)
clf
set(gcf, 'Position',[100 100 400 700])
str= {[cfg.MutID ' Amplitude of ALL responses black=ctrl']};
annotation('textbox',[0.05 0.95 0.9 0.05],'String',str, 'FontSize',14, 'FontWeight', 'bold', '
% Average response ON
subplot(2,1,1)
for i=2:cfg.numCTRL+1
shadedErrorBar(time,mean(ctrlON{i,6},1),std(ctrlON{i,6},[],1)/sqrt(size(ctrlON{i,6},1)),'linepression
xlabel('time in sec')
ylabel('DFF')
averageON_ALL.ctrl(i-1,:)=mean(ctrlON{i,6},1);
for i=2:cfg.numMUT+1
shadedErrorBar(time, mean(mutON{i,6},1), std(mutON{i,6},[],1)/sqrt(size(mutON{i,6},1)), 'lineprope
xlabel('time in sec')
ylabel('DFF')
averageON_ALL.mut(i-1,:)=mean(mutON{i,6},1);
title(['Average ON response ' num2str(cfg.numCTRL) ' ctrl and ' num2str(cfg.numMUT) ' mut | fish
% Average response OFF
subplot(2,1,2)
for i=2:cfg.numCTRL+1
shadedErrorBar(time, mean(ctrlOFF{i,6},1), std(ctrlOFF{i,6},[],1)/sqrt(size(ctrlOFF{i,6},1)), 'lin'
xlabel('time in sec')
ylabel('DFF')
averageOFF_ALL.ctrl(i-1,:)=mean(ctrlOFF{i,6},1);
end
for i=2:cfg.numMUT+1
shadedErrorBar(time,mean(mutOFF{i,6},1),std(mutOFF{i,6},[],1)/sqrt(size(mutOFF{i,6},1)),'linep
xlabel('time in sec')
ylabel('DFF')
averageOFF ALL.mut(i-1,:)=mean(mutOFF{i,6},1);
title(['Average OFF response ' num2str(cfg.numCTRL) ' ctrl and ' num2str(cfg.numMUT) ' mut fish
```

```
function plot_responseALL_average(averageON_ALL,averageOFF_ALL,time,cfg)
figure (40)
clf
set(gcf, 'Position',[100 100 400 600])
str= {[cfg.MutID ' Amplitude of ON and OFF responses, SEM']};
annotation('textbox',[0.05 0.95 0.9 0.05],'String',str, 'FontSize',14, 'FontWeight', 'bold', '
subplot(2,1,1)
rectangle('Position',[0 -8 60 70], 'FaceColor',[0.99 0.99 0.75], 'EdgeColor',[0.99 0.99 0.75]),
shadedErrorBar(time,mean(averageON_ALL.ctrl,1),std(averageON_ALL.ctrl,[],1)/sqrt(size(averageON_ALL.ctrl,1))
shadedErrorBar(time,mean(averageON_ALL.mut,1),std(averageON_ALL.mut,[],1)/sqrt(size(averageON_ALL.mut,1)
title(['Average ON for all cells in' num2str(cfg.numCTRL) ' ctrl and ' num2str(cfg.numMUT) ' mu
xlim([-120 120])
ylim([-5 30])
xlabel('seconds')
ylabel('dF/F')
subplot(2,1,2)
rectangle('Position',[0 -40 60 80], 'FaceColor',[0.99 0.99 0.75], 'EdgeColor',[0.99 0.99 0.75])
shadedErrorBar(time, mean(averageOFF_ALL.ctrl,1), std(averageOFF_ALL.ctrl,[],1)/sqrt(size(averageOFF_ALL.ctrl,1))
shadedErrorBar(time,mean(averageOFF_ALL.mut,1),std(averageOFF_ALL.mut,[],1)/sqrt(size(averageOFF_ALL.mut,1)
title(['Average OFF for all cells in' num2str(cfg.numCTRL) ' ctrl and ' num2str(cfg.numMUT) ' ı
xlim([-120 120])
ylim([-5 30])
xlabel('seconds')
ylabel('dF/F')
figure (41)
clf
set(gcf, 'Position',[100 100 400 600])
str= {[cfg.MutID ' Amplitude of ON and OFF responses, SEM']};
annotation('textbox',[0.05 0.95 0.9 0.05],'String',str, 'FontSize',14, 'FontWeight', 'bold', '
subplot(2,1,1)
rectangle('Position',[0 -2 60 1], 'FaceColor',[0.99 0.99 0.75], 'EdgeColor',[0.99 0.99 0.75]), I
shadedErrorBar(time,mean(averageON_ALL.ctrl,1),std(averageON_ALL.ctrl,[],1)/sqrt(size(averageON_ALL.ctrl,1)
shadedErrorBar(time, mean(averageON_ALL.mut,1), std(averageON_ALL.mut,[],1)/sqrt(size(averageON_ALL.mut,1)
title(['Average ON for all cells in' num2str(cfg.numCTRL) ' ctrl and ' num2str(cfg.numMUT) ' mu
xlim([-10 60])
ylim([-5 25])
xlabel('seconds')
ylabel('dF/F')
subplot(2,1,2)
```

```
rectangle('Position',[-10 -2 10 1],'FaceColor',[0.99 0.99 0.75], 'EdgeColor',[0.99 0.99 0.75])
shadedErrorBar(time,mean(averageOFF_ALL.ctrl,1),std(averageOFF_ALL.ctrl,[],1)/sqrt(size(averageOFF_ALL.mut,1),std(averageOFF_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_ALL.mut,[],1)/sqrt(size(averageOFT_A
```

FUNCTION3 PLOT AVERAGE AMPLITUDE FOR 10SEC AFTER FOR RESPONDING CELLS

```
function plot_scatterAll(averageON_ALL, averageOFF_ALL, ctrlON, ctrlOFF, mutON, mutOFF, time, cfg)
% enter the frames. this is for 10sec
onset=465;
offset=503;
figure (51)
clf
set(gcf, 'Position',[100 100 300 600])
str= {[cfg.MutID ' Amplitude ALL cells, SEM, from ' num2str(time(onset)) 's to ' num2str(time(o
annotation('textbox',[0.05 0.95 0.9 0.05],'String',str, 'FontSize',10, 'FontWeight', 'bold', '
subplot(2,1,1)
toplotC=averageON_ALL.ctrl(:,onset:offset);
toplotM=averageON ALL.mut(:,onset:offset);
swarmchart(ones(cfg.numCTRL,1), mean(toplotC,2),'k','filled','MarkerFaceAlpha',0.5,'MarkerEdge/
line([0.6 1.4], repmat(mean(mean(toplotC,2)),1,2),'Color','k')
errorbar(1, mean(mean(toplotC,2)), std(mean(toplotC,2)), 'Color', 'k')
swarmchart(2*ones(cfg.numMUT,1), mean(toplotM,2),cfg.Mutcolor,'filled','MarkerFaceAlpha',0.5,'/
line([1.6 2.4], repmat(mean(mean(toplotM,2)),1,2),'Color',cfg.Mutcolor)
errorbar(2,mean(mean(toplotM,2)), std(mean(toplotM,2)), 'Color',cfg.Mutcolor)
xlim([0 3]), ylim([0 Inf])
ylabel('amplitude')
text(0.5,1,['p= '...
    num2str(ranksum(mean(toplotC,2),mean(toplotM,2)),'%.4f')]);
xticks([1 2])
xticklabels({'ctrl','mut'})
title('ON response')
num2str(ranksum(mean(toplotC,2),mean(toplotM,2)))
clear toplotC toplotM
subplot(2,1,2)
toplotC=averageOFF_ALL.ctrl(:,onset:offset);
toplotM=averageOFF_ALL.mut(:,onset:offset);
swarmchart(ones(cfg.numCTRL,1), mean(toplotC,2),'k','filled','MarkerFaceAlpha',0.5,'MarkerEdge/
line([0.6 1.4], repmat(mean(mean(toplotC,2)),1,2),'Color','k')
errorbar(1, mean(mean(toplotC,2)), std(mean(toplotC,2)), 'Color', 'k')
swarmchart(2*ones(cfg.numMUT,1), mean(toplotM,2),cfg.Mutcolor,'filled','MarkerFaceAlpha',0.5,'/
line([1.6 2.4], repmat(mean(mean(toplotM,2)),1,2), 'Color', cfg.Mutcolor)
```

```
errorbar(2,mean(mean(toplotM,2)), std(mean(toplotM,2)),'Color',cfg.Mutcolor)
xlim([0 3]), ylim([0 Inf])
ylabel('amplitude')
text(0.5,1,['p= '...
    num2str(ranksum(mean(toplotC,2),mean(toplotM,2)),'%.4f')]);
xticks([1 2])
xticklabels({'ctrl','mut'})
title('OFF response')

num2str(ranksum(mean(toplotC,2),mean(toplotM,2)))
clear toplotC toplotM
end
```

FUNCTION 4 plots % responding cells per brain region

```
function plot_response_perregion(ctrlON,ctrlOFF,mutON,mutOFF,time,cfg)
close all
%% calculate number of responding cells per region
NumCtrl=[];
NumMut=[];
jj=[1,4,2,3]; %reorder so that Hb is between Tel and OT, added 14.03.2023
% calculate responding cells per brain region
for k=1:cfg.numCTRL
for ik=1:4; %there are four brain region
    j=jj(ik);
NumCtrl.ON.activated(k,ik)=length(find(ctrlON{k+1, 4}(:,4)==j))/sum(ctrlON{k+1, 7}(:,4)==j)*100
NumCtrl.OFF.activated(k,ik)=length(find(ctrlOFF\{k+1, 4\}(:,4\}==j))/sum(ctrlOFF\{k+1, 7\}(:,4\}==j)
NumCtrl.ON.inhibited(k,ik)=length(find(ctrlON{k+1, 5}(:,4)==j))/sum(ctrlON{k+1, 7}(:,4)==j)*100
NumCtrl.OFF.inhibited(k,ik)=length(find(ctrlOFF{k+1, 5}(:,4)==j))/sum(ctrlOFF{k+1, 7}(:,4)==j)
end
end
for k=1:cfg.numMUT
for ik=1:4; %there are four brain region
    j=jj(ik);
NumMut.ON.activated(k,ik)=length(find(mutON{k+1, 4}(:,4)==j))/sum(mutON{k+1, 7}(:,4)==j)*100;
NumMut.OFF.activated(k,ik)=length(find(mutOFF\{k+1, 4\}(:,4\}==j))/sum(mutOFF\{k+1, 7\}(:,4\}==j)*100
NumMut.ON.inhibited(k,ik)=length(find(mutON{k+1, 5}(:,4)==j))/sum(mutON{k+1, 7}(:,4)==j)*100;
NumMut.OFF.inhibited(k,ik)=length(find(mutOFF\{k+1, 5\}(:,4)==j\})/sum(mutOFF\{k+1, 7\}(:,4)==j\}*100
end
end
figure (70),
set(gcf, 'Position',[100 100 800 600])
str= {[cfg.MutID ' % responding cells per brain area black=ctrl']};
annotation('textbox',[0.05 0.95 0.9 0.05],'String',str, 'FontSize',14, 'FontWeight', 'bold', '
subplot(2,2,1)
toplotC=NumCtrl.ON.activated;
```

```
toplotM=NumMut.ON.activated;
swarmchart(repmat([1 2 3 4], cfg.numCTRL,1), toplotC,'k','filled','MarkerFaceAlpha',0.5,'Marker
errorbar(ii,mean(toplotC(:,ii)), std(toplotC(:,ii)),'Color','k', 'Marker',' ')
swarmchart(repmat([1.5 2.5 3.5 4.5], cfg.numMUT,1), toplotM,cfg.Mutcolor,'filled','MarkerFaceA
for ii=1:4
errorbar(ii+0.5, mean(toplotM(:,ii)), std(toplotM(:,ii)), 'Color', cfg. Mutcolor, 'Marker', '_')
xlim([0 5]), ylim([0 80])
ylabel('% of responding cells')
for i=1:4
p(i)=ranksum(toplotC(:,i),toplotM(:,i));
text(0,-5,num2str(['Tel:' sprintf('%.3f',p(1))...
     Hb: 'sprintf('%.3f',p(2)) 'OT: 'sprintf('%.3f',p(3))...
    ' Hind:' sprintf('%.3f',p(4))]))
xticks([1.25 2.25 3.25 4.25])
xticklabels({'Tel', 'Hab','OT', 'Hind'})
title('ON activated')
clear toplotC toplotM p
hold off
subplot(2,2,2)
toplotC=NumCtrl.ON.inhibited;
toplotM=NumMut.ON.inhibited;
swarmchart(repmat([1 2 3 4], cfg.numCTRL,1), toplotC,'k','filled','MarkerFaceAlpha',0.5,'Marker
for ii=1:4
errorbar(ii,mean(toplotC(:,ii)), std(toplotC(:,ii)),'Color','k', 'Marker','_')
swarmchart(repmat([1.5 2.5 3.5 4.5], cfg.numMUT,1), toplotM,cfg.Mutcolor,'filled','MarkerFaceA
for ii=1:4
errorbar(ii+0.5,mean(toplotM(:,ii)), std(toplotM(:,ii)), 'Color',cfg.Mutcolor, 'Marker','_')
end
xlim([0 5]), ylim([-1 10])
ylabel('% of responding cells')
for i=1:4
p(i)=ranksum(toplotC(:,i),toplotM(:,i));
text(0,-5,num2str(['Tel:' sprintf('%.3f',p(1))...
     Hb: 'sprintf('%.3f',p(2)) 'OT: 'sprintf('%.3f',p(3))...
    ' Hind:' sprintf('%.3f',p(4))]))
xticks([1.25 2.25 3.25 4.25])
xticklabels({'Tel', 'Hab','OT', 'Hind'})
title('ON inhibited')
clear toplotC toplotM p
hold off
subplot(2,2,3)
toplotC=NumCtrl.OFF.activated;
toplotM=NumMut.OFF.activated;
swarmchart(repmat([1 2 3 4], cfg.numCTRL,1), toplotC,'k','filled','MarkerFaceAlpha',0.5,'Marker
```

```
for ii=1:4
errorbar(ii,mean(toplotC(:,ii)), std(toplotC(:,ii)),'Color','k', 'Marker','_')
swarmchart(repmat([1.5 2.5 3.5 4.5], cfg.numMUT,1), toplotM,cfg.Mutcolor,'filled','MarkerFaceAl
for ii=1:4
errorbar(ii+0.5, mean(toplotM(:,ii)), std(toplotM(:,ii)), 'Color', cfg.Mutcolor, 'Marker', '_')
end
xlim([0 5]), ylim([0 80])
ylabel('% of responding cells')
for i=1:4
p(i)=ranksum(toplotC(:,i),toplotM(:,i));
end
text(0,-5,num2str(['Tel:' sprintf('%.3f',p(1))...
    ' Hb:' sprintf('%.3f',p(2)) ' OT:' sprintf('%.3f',p(3))...
    ' Hind:' sprintf('%.3f',p(4))]))
xticks([1.25 2.25 3.25 4.25])
xticklabels({'Tel', 'Hab','OT', 'Hind'})
title('OFF activated')
clear toplotC toplotM p
hold off
subplot(2,2,4)
toplotC=NumCtrl.OFF.inhibited;
toplotM=NumMut.OFF.inhibited;
swarmchart(repmat([1 2 3 4], cfg.numCTRL,1), toplotC,'k','filled','MarkerFaceAlpha',0.5,'Marker
errorbar(ii,mean(toplotC(:,ii)), std(toplotC(:,ii)), 'Color', 'k', 'Marker', '_')
swarmchart(repmat([1.5 2.5 3.5 4.5], cfg.numMUT,1), toplotM,cfg.Mutcolor,'filled','MarkerFaceA
for ii=1:4
errorbar(ii+0.5, mean(toplotM(:,ii)), std(toplotM(:,ii)), 'Color', cfg. Mutcolor, 'Marker', '_')
end
xlim([0 5]), ylim([-1 25])
ylabel('% of responding cells')
for i=1:4
p(i)=ranksum(toplotC(:,i),toplotM(:,i));
text(0,-5,num2str(['Tel:' sprintf('%.3f',p(1))...
    Hb: ' sprintf('%.3f',p(2)) ' OT: ' sprintf('%.3f',p(3))...
    ' Hind:' sprintf('%.3f',p(4))]))
xticks([1.25 2.25 3.25 4.25])
xticklabels({'Tel', 'Hab','OT', 'Hind'})
title('OFF inhibited')
clear toplotC toplotM p
hold off
end
```

FUNCTION 5 plots % active cells per region

```
function plot_response_perregion_v2(ctrlON,ctrlOFF,mutON,mutOFF,time,cfg)
%% calculate number of responding cells per region
```

```
%close all
NumCtrl=[];
NumMut=[];
jj=[1,4,2,3]; %reorder so that Hb is between Tel and OT, added 14.03.2023
% calculate responding cells per brain region
for k=1:cfg.numCTRL
for ik=1:4; %there are four brain region
    j=jj(ik);
NumCtrl.ON.activated(k,ik)=length(find(ctrlON{k+1, 4}(:,4)==j))/sum(ctrlON{k+1, 7}(:,4)==j)*100
NumCtrl.OFF.activated(k,ik)=length(find(ctrlOFF{k+1, 4}(:,4)==j))/sum(ctrlOFF{k+1, 7}(:,4)==j)
NumCtrl.ON.inhibited(k,ik)=length(find(ctrlON{k+1, 5}(:,4)==j))/sum(ctrlON{k+1, 7}(:,4)==j)*100
NumCtrl.OFF.inhibited(k,ik)=length(find(ctrlOFF\{k+1, 5\}(:,4)==j\})/sum(ctrlOFF\{k+1, 7\}(:,4)==j\}
end
end
for k=1:cfg.numMUT
for ik=1:4; %there are four brain region
    j=jj(ik);
NumMut.ON.activated(k,ik)=length(find(mutON{k+1, 4}(:,4)==j))/sum(mutON{k+1, 7}(:,4)==j)*100;
NumMut.OFF.activated(k,ik)=length(find(mutOFF\{k+1, 4\}(:,4\}==j))/sum(mutOFF\{k+1, 7\}(:,4\}==j\}*100
NumMut.ON.inhibited(k,ik)=length(find(mutON{k+1, 5}(:,4)==j))/sum(mutON{k+1, 7}(:,4)==j)*100;
NumMut.OFF.inhibited(k,ik) = length(find(mutOFF\{k+1, 5\}(:,4) == j))/sum(mutOFF\{k+1, 7\}(:,4) == j)*1000
end
end
figure (57),
clf
set(gcf, 'Position',[100 100 300 400])
toplotC=NumCtrl.ON.activated;
toplotM=NumMut.ON.activated;
swarmchart(repmat([1 2 3 4], cfg.numCTRL,1), toplotC,80,'k','filled','MarkerFaceAlpha',0.5,'Mar
for ii=1:4
errorbar(ii,mean(toplotC(:,ii)), std(toplotC(:,ii)),'Color','k', 'Marker','_')
swarmchart(repmat([1.5 2.5 3.5 4.5], cfg.numMUT,1), toplotM,80,cfg.Mutcolor,'filled','MarkerFac
for ii=1:4
errorbar(ii+0.5,mean(toplotM(:,ii)), std(toplotM(:,ii)), 'Color', 'k', 'Marker', '_')
xlim([0 5]), ylim([-10 70])
ylabel('% of responding cells')
for i=1:4
p(i)=ranksum(toplotC(:,i),toplotM(:,i));
text(0,-5,num2str(['Tel:' sprintf('%.3f',p(1))...
      Hb: 'sprintf('%.3f',p(2)) 'OT: 'sprintf('%.3f',p(3))...
    ' Hind:' sprintf('%.3f',p(4))]))
xticks([1.25 2.25 3.25 4.25])
xticklabels({'Tel', 'Hab','OT', 'Hind'})
title('ON activated')
clear toplotC toplotM p
hold off
```

```
figure (58)
clf
set(gcf, 'Position',[100 100 300 400])
str= {[cfg.MutID ' % ON inhibited']};
toplotC=NumCtrl.ON.inhibited;
toplotM=NumMut.ON.inhibited;
swarmchart(repmat([1 2 3 4], cfg.numCTRL,1), toplotC,80,'k','filled','MarkerFaceAlpha',0.5,'Mar
for ii=1:4
errorbar(ii,mean(toplotC(:,ii)), std(toplotC(:,ii)),'Color','k', 'Marker',' ')
swarmchart(repmat([1.5 2.5 3.5 4.5], cfg.numMUT,1), toplotM,80,cfg.Mutcolor,'filled','MarkerFac
for ii=1:4
errorbar(ii+0.5,mean(toplotM(:,ii)), std(toplotM(:,ii)), 'Color', 'k', 'Marker', '_')
xlim([0 5]), ylim([-2 10])
ylabel('% of responding cells')
for i=1:4
p(i)=ranksum(toplotC(:,i),toplotM(:,i));
end
text(0,-1,num2str(['Tel:' sprintf('%.3f',p(1))...
     Hb: 'sprintf('%.3f',p(2)) 'OT: 'sprintf('%.3f',p(3))...
    ' Hind: ' sprintf('%.3f',p(4))]))
xticks([1.25 2.25 3.25 4.25])
xticklabels({'Tel', 'Hab','OT', 'Hind'})
title('ON inhibited')
clear toplotC toplotM p
hold off
figure (59)
clf
set(gcf, 'Position',[100 100 300 400])
str= {[cfg.MutID ' % OFF activated']};
toplotC=NumCtrl.OFF.activated;
toplotM=NumMut.OFF.activated;
swarmchart(repmat([1 2 3 4], cfg.numCTRL,1), toplotC,80,'k','filled','MarkerFaceAlpha',0.5,'Mar
for ii=1:4
errorbar(ii,mean(toplotC(:,ii)), std(toplotC(:,ii)), 'Color', 'k', 'Marker', '_')
swarmchart(repmat([1.5 2.5 3.5 4.5], cfg.numMUT,1), toplotM,80,cfg.Mutcolor,'filled','MarkerFac
for ii=1:4
errorbar(ii+0.5, mean(toplotM(:,ii)), std(toplotM(:,ii)), 'Color', 'k', 'Marker',' ')
end
xlim([0 5]), ylim([-10 70])
ylabel('% of responding cells')
for i=1:4
p(i)=ranksum(toplotC(:,i),toplotM(:,i));
end
text(0,-5,num2str(['Tel:' sprintf('%.3f',p(1))...
     Hb: 'sprintf('%.3f',p(2)) 'OT: 'sprintf('%.3f',p(3))...
    ' Hind:' sprintf('%.3f',p(4))]))
xticks([1.25 2.25 3.25 4.25])
xticklabels({'Tel', 'Hab','OT', 'Hind'})
```

```
title('OFF activated')
clear toplotC toplotM p
hold off
figure (60)
clf
set(gcf, 'Position',[100 100 300 400])
str= {[cfg.MutID ' % OFF inhibited']};
toplotC=NumCtrl.OFF.inhibited;
toplotM=NumMut.OFF.inhibited;
swarmchart(repmat([1 2 3 4], cfg.numCTRL,1), toplotC,80,'k','filled','MarkerFaceAlpha',0.5,'Mar
for ii=1:4
errorbar(ii,mean(toplotC(:,ii)), std(toplotC(:,ii)),'Color','k', 'Marker','_')
swarmchart(repmat([1.5 2.5 3.5 4.5], cfg.numMUT,1), toplotM,80,cfg.Mutcolor,'filled','MarkerFac
for ii=1:4
errorbar(ii+0.5, mean(toplotM(:,ii)), std(toplotM(:,ii)), 'Color', 'k', 'Marker',' ')
x\lim([-0 5]), y\lim([-2 25])
ylabel('% of responding cells')
for i=1:4
p(i)=ranksum(toplotC(:,i),toplotM(:,i));
end
text(0,-1,num2str(['Tel:' sprintf('%.3f',p(1))...
     Hb: 'sprintf('%.3f',p(2)) 'OT: 'sprintf('%.3f',p(3))...
    ' Hind: ' sprintf('%.3f',p(4))]))
xticks([1.25 2.25 3.25 4.25])
xticklabels({'Tel', 'Hab','OT', 'Hind'})
title('OFF inhibited')
clear toplotC toplotM p
hold off
end
```

FUNCTION calculate amplitude per brain region

```
function plot_amplitude_perregion(ctrlON,ctrlOFF,mutON,mutOFF,time,cfg)

onset=465;
offset=503;

jj=[1,4,2,3]; %reorder so that Hb is between Tel and OT, added 14.03.2023

figure (61)
clf
for k=1:4
    j=jj(k);
set(gcf, 'Position',[100 100 300 400])
str= {[cfg.MutID ' Amplitude ALL cells ON, from ' num2str(time(onset)) 's to ' num2str(time(off annotation('textbox',[0.05 0.95 0.9 0.05],'String',str, 'FontSize',10, 'FontWeight', 'bold', 'for i=1:cfg.numCTRL
matrixC(i,:)=mean(ctrlON{i+1,6}(ctrlON{i+1,7}(:,4)==j,:),1);
```

```
end
for i=1:cfg.numMUT
matrixM(i,:)=mean(mutON{i+1,6}(mutON{i+1,7}(:,4)==j,:),1);
toplotC=matrixC(:,onset:offset);
toplotM=matrixM(:,onset:offset);
swarmchart((2*k-2)+ones(cfg.numCTRL,1), mean(toplotC,2),80,'k','filled','MarkerFaceAlpha',0.5,
line((2*k-2)+[0.6\ 1.4], repmat(mean(mean(toplotC,2)),1,2), 'Color', 'k')
errorbar((2*k-2)+1,mean(mean(toplotC,2)), std(mean(toplotC,2)), 'Color', 'k')
swarmchart((2*k-2)+2*ones(cfg.numMUT,1), mean(toplotM,2),80,cfg.Mutcolor,'filled','MarkerFaceA
line((2*k-2)+[1.6 2.4], repmat(mean(mean(toplotM,2)),1,2), 'Color', 'k')
errorbar((2*k-2)+2,mean(mean(toplotM,2)), std(mean(toplotM,2)), 'Color', 'k')
%xlim([0 3]),
ylim([-10 40])
ylabel('amplitude')
text((2*k-2)+0.25,-5,['p= '...
    num2str(ranksum(mean(toplotC,2),mean(toplotM,2)),'%.4f')]);
xticks([1.5 3.5 5.5 7.5])
xticklabels({'Tel', 'Hab','OT/Thal', 'Hind'})
%title([cfg.brainRegion(k,:) 'ON response'])
clear toplotC toplotM matrixC matrixM
end
figure (62)
clf
for k=1:4
    j=jj(k);
          'Position',[100 100 300 400])
str= {[cfg.MutID ' Amplitude ALL cells OFF, from ' num2str(time(onset)) 's to ' num2str(time(o
annotation('textbox',[0.05 0.95 0.9 0.05],'String',str, 'FontSize',10, 'FontWeight', 'bold', '
for i=1:cfg.numCTRL
matrixC(i,:)=mean(ctrlOFF{i+1,6}(ctrlOFF{i+1,7}(:,4)==j,:),1);
end
for i=1:cfg.numMUT
matrixM(i,:)=mean(mutOFF{i+1,6}(mutOFF{i+1,7}(:,4)==j,:),1);
toplotC=matrixC(:,onset:offset);
toplotM=matrixM(:,onset:offset);
swarmchart((2*k-2)+ones(cfg.numCTRL,1), mean(toplotC,2),80,'k','filled','MarkerFaceAlpha',0.5,
line((2*k-2)+[0.6 1.4], repmat(mean(mean(toplotC,2)),1,2), 'Color', 'k')
errorbar((2*k-2)+1,mean(mean(toplotC,2)), std(mean(toplotC,2)),'Color','k')
swarmchart((2*k-2)+2*ones(cfg.numMUT,1), mean(toplotM,2),80,cfg.Mutcolor,'filled','MarkerFaceA
line((2*k-2)+[1.6 2.4], repmat(mean(mean(toplotM,2)),1,2), 'Color', 'k')
errorbar((2*k-2)+2,mean(mean(toplotM,2)), std(mean(toplotM,2)), 'Color', 'k')
%xlim([0 3]),
ylim([-10 40])
ylabel('amplitude')
text((2*k-2)+0.25,-5,['p= '...
    num2str(ranksum(mean(toplotC,2),mean(toplotM,2)),'%.4f')]);
xticks([1.5 3.5 5.5 7.5])
xticklabels({'Tel', 'Hab', 'OT/Thal', 'Hind'})
%title([cfg.brainRegion(k,:) 'ON response'])
clear toplotC toplotM matrixC matrixM
```

```
end
%close all
end
```

FUNCTION IDENTIFY MIDLINE USING GINPUT

```
function identify_midline(ctrlON,ctrlOFF,mutON,mutOFF,time,cfg)
%% plot the scatter of the location of all responding cells
j=2; %this is OT only
% figure,
% suptitle('ctrl ON activated')
% for k=1:cfg.numCTRL
% ID=find(ctrlON{k+1, 4}(:,4)==j);
% subplot(ceil(size(ctrlON,1)/2),2,k)
% scatter(ctrlON{k+1, 4}(ID,1),ctrlON{k+1, 4}(ID,2))
% end
figure,
suptitle('mut ON activated')
for k=1:cfg.numMUT
ID=find(mutON\{k+1, 4\}(:,4)==j\};
subplot(ceil(size(mutON,1)/2),2,k)
scatter(mutON\{k+1, 4\}(ID,1),mutON\{k+1, 4\}(ID,2))
end
end
```

FUNCTION PLOT % ACTIVE CELLS ACCORDING TO X,Y,Z

```
function plot respondingXYZ(ctrlON,ctrlOFF,mutON,mutOFF,time,cfg)
% if you want to plot ON response,
if cfg.data==1
mut=mutON;
ctrl=ctrlON;
TEXT='ON';
elseif cfg.data==2
mut=mutOFF;
ctrl=ctrlOFF;
TEXT='OFF';
end
for j=1:4; %this decide on brain region
clear edges N_ctrlN N_mutN N_ctrl N_mut edges_mut edges_ctrl
% plot the scatter of the location of all responding cells
figure,
clf
set(gcf, 'Position',[100 100 600 1200])
for k=1:cfg.numCTRL
```

```
ID=find(ctrl{k+1, 4}(:,4)==j);
subplot(ceil(size(ctrl,1)/2)+ceil(size(mut,1)/2),2,k)
scatter(ctrl{k+1, 4}(ID,1)-max(ctrl{k+1, 4}(ID,1)),ctrl{k+1, 4}(ID,2)-cfg.midline_ctrl(k,2),'k
end
for k=1:cfg.numMUT
ID=find(mut{k+1, 4}(:,4)==j);
subplot(ceil(size(ctrl,1)/2)+ceil(size(mut,1)/2),2,size(ctrl,1)+k)
scatter(mut\{k+1, 4\}(ID,1)-max(mut\{k+1, 4\}(ID,1)), mut\{k+1, 4\}(ID,2)-cfg.midline_mut(k,2), cfg.Mu
end
suptitle([cfg.MutID, TEXT ' scatter of responding cells in ' ,cfg.label(j)])
% calculate the position in the width
edges=[-150:10:150];
for k=1:cfg.numMUT
ID=find(mut{k+1, 4}(:,4)==j);
[N mut(k,:),edges mut(k,:)] = histcounts(mut(k+1, 4)(ID,2)-cfg.midline mut(k,2),edges);%, 'Normal nut(k,2),edges', 'Norm
N_{\text{mutN}(k,:)=100*N_{\text{mut}(k,:)/sum(mut\{k+1, 7\}(:,4)==j)}; % normalize to number of cell per brain re
clear ID
end
for k=1:cfg.numCTRL
ID=find(ctrl{k+1, 4}(:,4)==j);
[N_ctrl(k,:),edges_ctrl(k,:)] = histcounts(ctrl{k+1, 4}(ID,2)-cfg.midline_ctrl(k,2),edges);%,'
N_{ctrlN(k,:)}=100*N_{ctrl(k,:)}/sum(ctrl{k+1, 7}(:,4)==j);% normalize to number of cell per brain
clear ID
end
%
figure,
plot(edges(1:end-1), N_ctrlN.', 'k'), hold on, plot(edges(1:end-1), mean(N_ctrlN,1), 'k', 'LineWidtl
plot(edges(1:end-1), N_mutN.', cfg. Mutcolor), plot(edges(1:end-1), mean(N_mutN, 1), cfg. Mutcolor, 'Lin
xlabel('Y position [\mum]')
ylabel('% responding cells')
title([cfg.MutID, TEXT ' Y position of responding cells in ' ,cfg.label(j)])
figure
shadedErrorBar(edges(1:end-1), mean(N_ctrlN,1), std(N_ctrlN,[],1)/sqrt(size(N_ctrlN,1)), 'linepro'
shadedErrorBar(edges(1:end-1), mean(N_mutN,1), std(N_mutN,[],1)/sqrt(size(N_mutN,1)), 'lineprops'
xlabel('Y position [\mum]')
ylabel('% responding cells')
title([cfg.MutID, TEXT ' Y position of responding cells in ' cfg.label(j)])
end
end
```