Pokročilé číslicové systémy, FIT, VUT Brno

Teoretický projekt

David Mihola

xmihol00

15. Prosinec 2023

1 Konstrukce AIG

AIG graf zkonstruujeme v následující posloupnosti kroků:

1. Vytvoření vstupů

- (a) create_input(a) = a_i
- (b) create_input(b) = b_in
- (c) create_input(c) = c_in
- (d) create_input(d) = d_in

2. Vytvoření hradla AND 1

(a) create_and2(b_in, c_in) = AND_1

3. Vytvoření hradla AND 2

(a) create_and2(b_in, d_in) = AND_2

4. Vytvoření hradla OR 3

- (a) create_inverter(c_in) = not_c_in
- (b) create_inverter(d_in) = not_d_in
- (c) create_and2(not_c_in, not_d_in) = NAND_3
- (d) create_inverter(NAND_3) = OR_3

5. Vytvoření hradla OR 4

- (a) create_inverter(AND_1) = not_AND_1
- (b) create_inverter(AND_2) = not_AND_2
- (c) create_and2(not_AND_1, not_AND_2) = NAND_4
- (d) create_inverter(NAND_4) = OR_4

6. Vytvoření hradla AND 5

(a) create_and2(b_in, OR_3) = AND_5

7. Vytvoření hradla AND 6

(a) create_and2(a_in, OR_4) = AND_6

8. Vytvoření hradla AND 7

(a) create_and2(a_in, AND_5) = AND_7

9. Vytvoření hradla AND 8

- (a) create_and2(AND_1, AND_ 6^1) = AND_1_6
- (b) create_and2(AND_1_6, AND_5) = AND_8

10. Vytvoření hradla XOR 9

- (a) create_and2(AND_2, AND_7) = AND_2_7
- (b) create_inverter(AND_7) = not_AND_7
- (c) create_and2(not_AND_22, not_AND_7) = NAND_2_7
- (d) create_inverter(AND_2_7) = not_AND_2_7
- (e) create_inverter(NAND_2_7) = OR_2_7
- (f) create_and2(not_AND_2_7, OR_2_7) = XOR_9

Výstup x získáme jako výstup and uzlu AND_8 a výstup y získáme jako výstup and uzlu XOR_9. Je dobré zmínit, že při konstrukci zadaného obvodu nedošlo k situaci, kde by se uplatnila propagace konstant nebo strukturní hashování.

Graficky je výsledný AIG graf zobrazen na obrázku 1.

¹Zde neuvažujeme aplikování funkce rank mezi AND_5 a AND_6, protože jsou na vstupech jiných funkcí create_and2.

²Hodnota již vytvořena v bodě 5.

Obrázek 1: AIG graf (pojmenování uzlů je pouze orientační, při interpretaci je nutné uvažovat i výstupní hrany, viz obrázek 4)

2 Resubstituce

Resubstituci and uzlů odpovídajících hradlům AND 6 a AND 7 provedeme v následujících podkrocích.

2.1 Vyhodnocení MFFC

- MFFC(AND_6) = $\{AND_6, OR_4\}$
- MFFC(AND_7) = $\{OR_3\}$

2.2 Výpočet rekonvergencí řízených řezů

• C(AND_6) = ReconvergenceDrivenCut(AND_6, 4) = {a_in, b_in, c_in, d_in}:

i	Leaves _i	$oxed{ t Visited}_i$	M_{i+1}	$ Leaves_i + LeafCost(M_{i+1}, Visited_i) $
0	{AND_6}	{AND_6}	AND_6	2
1	$\{a_in, OR_4\}$	$\{AND_6, a_in, OR_4\}$	OR_4	3
2	$\{a_in, AND_1, AND_2\}$	$\{ AND_{-}6, a_{-}in, OR_{-}4, AND_{-}1, AND_{-}2 \}$	AND_1	4
3	$\{a_in, AND_2, b_in, c_in\}$	{AND_6, a_in, OR_4, AND_1, AND_2, b_in, c_in}	AND_2	4
4	$\{a_in, b_in, c_in, d_in\}$	{AND_6, a_in, OR_4, AND_1, AND_2, b_in, c_in, d_in}	_	_

Tabulka 1: Průběh výpočtu funkce ReconvergenceDrivenCut pro uzel AND_6

• C(AND_7) = ReconvergenceDrivenCut(AND_7, 4) = {a_in, b_in, c_in, d_in}:

i	Leaves _i	$oxed{ ext{Visited}_i}$	M_{i+1}	$ Leaves_i + LeafCost(M_{i+1}, Visited_i)$
0	{AND_7}	{AND_7}	AND_7	2
1	$\{a_in, AND_5\}$	$\{AND_7, a_in, AND_5\}$	OR_5	3
2	$\{a_in, b_in, OR_3\}$	{AND_7, a_in, AND_5, b_in, OR_3}	OR_3	4
3	$\{a_in, b_in, c_in d_in\}$	{AND_7, a_in, AND_5, b_in, OR_3, c_in, d_in}	_	_

Tabulka 2: Průběh výpočtu funkce ReconvergenceDrivenCut pro uzel AND_7

2.3 Vyhodnocení TFO bez MFFC – vyhodnocení množin D(n)

- D(AND_6) = CollectNodesTFOChanged({a_in, b_in, c_in, d_in}, 3, 10) = {a_in, b_in, c_in, d_in AND_1, AND_2, OR_3, AND_5, AND_7}
- D(AND_7) = CollectNodesTFOChanged({a_in, b_in, c_in, d_in}, 3, 10) = {a_in, b_in, c_in, d_in AND_1, AND_2, OR_3, OR_4, AND_5, AND_6}

2.4 Vypočtení logických funkcí uzlů z množin D(n)

- Funkce pro D(AND_6):
 - $f_{a
 in}(a, b, c, d) = a$
 - $f_{b_in}(a, b, c, d) = b$
 - $f_{c in}(a, b, c, d) = c$
 - $f_{d,in}(a,b,c,d) = d$
 - $f_{AND_{-1}}(a, b, c, d) = bc$
 - $-f_{AND,2}(a,b,c,d) = bd$
 - $f_{OR 3}(a, b, c, d)^3 = c'd'$
 - $f_{AND_5}(a, b, c, d) = b(c'd')' = bc + bd$
 - $-\ f_{AND_7}(a,b,c,d) = a(b(c'd')') = a(b(c+d)) = abc + abd$
- Funkce pro D(AND_7):
 - $f_{a,in}(a,b,c,d) = a$
 - $f_{b,in}(a,b,c,d) = b$
 - $f_{c in}(a, b, c, d) = c$
 - $f_{d \perp in}(a, b, c, d) = d$
 - $f_{AND,1}(a,b,c,d) = bc$
 - $f_{AND 2}(a, b, c, d) = bd$
 - $f_{OR 3}(a, b, c, d)^3 = c'd'$
 - $f_{OR 4}(a, b, c, d)^3 = (bc)'(bd)'$
 - $f_{AND_{-5}}(a, b, c, d) = b(c'd')' = b(c+d) = bc + bd$
 - $-f_{AND_{-}6}(a,b,c,d) = a((bc)'(bd)')' = a(bc+bd) = abc+abd$

³Pozor, uzel samotný implementuje funkci NAND, funkce OR lze získat znegováním jeho hodnoty.

2.5 Resubstituce uzlu odpovídajícího hradlu AND 6

Z výsledků v předcházející sekci je zřejmé, že že uzel AND_6 odpovídající hradlu **AND** 6 lze resubstiuovat uzlem AND_7 odpovídající hradlu **AND** 7. Hodnota false parametru UseZeroCost výsledek resubstituce v tomto případě neovlivní.

Optimalizovaný AIG po resubstituci je zobrazen na obrázku 2.

2.6 Resubstituce uzlu odpovídajícího hradlu AND 7

Po provedené resubstituci v předcházející sekci již tento uzel nelze resubstiuovat.

3 Diskuse k resubstituci

Při aktuálně zvolených hodnotách CutSizeLimit, DivisorLimit⁴ a UseZeroCost by resubstituce uzlů v opačném pořadí vedla na resubstituování uzlu odpovídajícího hradlu **AND 7** za uzel odpovídající uzlu **AND 6**.

4 Tradiční mapování

Tradiční mapování realizujeme v následujících podkrocích.

4.1 Sestavení množin C(n) optimalizovaného AIG

Pro čtyřvstupové LUT se bude jednat o *K-feasible* řezy bez dominovaných řezů, kde K = 4. Následuje výčet *4-feasible* řezů, kde dominované řezy jsou přeškrtnuté⁵ a reprezentativní řezy jsou označeny tučně:

- $C(a_in) = \{\{a_in\}\}$
- $C(b_{in}) = \{\{b_{in}\}\}$
- $C(c_{in}) = \{\{c_{in}\}\}$
- $C(d_in) = \{\{d_in\}\}$
- $C(AND_{-}1) = \{\{AND_{-}1\}, \{b_{-}in, c_{-}in\}\}$
- C(AND₋₂) = $\{\{AND_{-2}\}, \{b_{-in}, d_{-in}\}\}$
- $C(OR_3) = \{\{OR_3\}, \{c_in, d_in\}\}$

⁴Pokud by ale byl zvolen DivisorLimit pouze na 9 a ostatní parametry by zůstaly stejné, již by k resubstituci došlo pouze v prvním případě, protože množina D(AND_7) by neobsahovala uzel AND_6.

⁵Tzn., že do výsledných množin nepatří.

Obrázek 2: Optimalizovaný AIG graf (pojmenování uzlů je pouze orientační, při interpretaci je nutné uvažovat i výstupní hrany, viz obrázek 5)

- C(AND_5) = {{AND_5}, {b_in, OR_3}, {b_in, c_in, d_in}}
- C(AND_7) = {{AND_7}, {a_in, AND_5}, {a_in, b_in, OR_3}, {a_in, b_in, c_in, d_in}}
- C(AND_1_6) = {{AND_1_6}, {AND_1, AND_7}, {b_in, c_in, AND_7}, {AND_1, a_in, AND_5}, {b_in, c_in, a_in, AND_5}, {a_in, b_in, 0R_3}, {c_in, a_in, b_in, 0R_3}, {a_in, b_in, c_in, d_in}}
- C(AND_2_7) = {{AND_2_7}, {AND_2, AND_7}, {b_in, d_in, AND_7}, {AND_2, a_in, AND_5}, {b_in, d_in, a_in, AND_5}, {AND_2, a_in, b_in, OR_3}, {d_in, a_in, b_in, d_in}}
- C(OR_2_7) = {{OR_2_7}, {AND_2, AND_7}, {b_in, d_in, AND_7}, {AND_2, a_in, AND_5}, {b_in, d_in, a_in, AND_5}, {AND_2, a_in, b_in, OR_3}, {d_in, a_in, b_in, OR_3}, {a_in, b_in, c_in, d_in}}
- C(AND_8) = {{AND_8}, {AND_5, AND_1_6}, {b_in, OR_3, AND_1_6}, {b_in, c_in, d_in, AND_1_6}, {AND_5, AND_1, AND_7}, {b_in, OR_3, AND_1, AND_7}, {AND_5, b_in, c_in, AND_7}, {OR_3, b_in, c_in, AND_7}, {d_in, b_in, c_in, AND_7}, {AND_1, a_in, AND_5}, {b_in, c_in, a_in, AND_5}, {AND_1, a_in, b_in, OR_3}, {c_in, a_in, b_in, c_in, d_in}}

4.2 Vyhodnocení funkce fastMapDeriveFinalNetwork

i	M_i	$\mid \mathbf{F}_i \mid$
0	{}	{AND_8, XOR_9}
1	{AND_8}	$\{XOR_9, a_{in}, b_{in}, c_{in}, d_{in}\}$
2	{AND_8, XOR_9}	{a_in, b_in, c_in, d_in}
3	$\{AND_8, XOR_9, a_{in}\}$	{b_in, c_in, d_in}
4	{AND_8, XOR_9, a_in, b_in}	{c_in, d_in}
5	{AND_8, XOR_9, a_in, b_in, c_in}	{d_in}
6	{AND_8, XOR_9, a_in, b_in, c_in, d_in}	{}

Tabulka 3: Průběh výpočtu funkce fastMapDeriveFinalNetwork

Množina uzlů použitá pro mapování tedy je {AND_8, XOR_9, a_in, b_in, c_in, d_in}.

5 Arrival Time a Required Time

Arrival Time vstupních uzlů, tj. uzlů a_in, b_in, c_in a d_in, bude roven 0. Reprezentativní řezy ostatních uzlů v optimalizovaném AIG pak obsahují pouze vstupní uzly, tzn., že Arrival Time ostatních uzlů bude roven 1.

Z toho plyne, že *Required Time* výstupních uzlů, tj. uzlů AND_8 a XOR_9, je roven 1. Reprezentativní řez obou výstupních uzlů obsahuje pouze vstupní uzly, tzn., že *Required Time* všech výstupních uzlů bude 0. Ostatní uzly, tj. AND_1, OR_3, AND_2, AND_5, AND_7, AND_1_6, AND_2_7 a OR_2_7, nejsou obsaženy v žádném reprezentativním řezu, takže jejich *Required Time* zůstane nekonečný.

6 Realizace obvodu čtyřvstupovými LUT

Nejdříve spočteme logické funkce uzlů, které ještě nejsou vypočteny v sekci 2.4:

- $f_{AND_{-1.6}}(a, b, c, d) = (abc + abd)bc = abc + abcd = abc(d + 1) = abc$
- $f_{OR_2}(a, b, c, d) = (abc + abd)'(bd)'$
- $f_{AND,2,7}(a,b,c,d) = (abc + abd)(bd) = abcd + abd = abd(c+1) = abd$
- $f_{AND_8}(a, b, c, d) = abc(bc + bd) = abc + abcd = abc(d + 1) = abc$
- $f_{XOR.9}(a, b, c, d) = ((abc + abd)'(bd)')'(abd)' = (abc + abd + bd)(a' + b' + d') = (abc + bd)(a' + b' + d') = abca' + abcb' + abcd' + bda' + bdb' + bdd' = 0bc + 0ac + abcd' + a'bd + 0d + 0b = abcd' + a'bd$

A následně na obrázku 3 sestavíme čtyřvstupové LUT na základě výsledků tradičního mapování. Pro úplnost pak ještě uvedeme na obrázcích 4 a 5 AIG a optimilazovaný AIG grafy doplněné o logické funkce.

Obrázek 3: Čtyřvstupové LUT realizující zadaný obvod

7 AIG grafy vygenerované nástrojem ABC

Na obrázku 6 je zobrazen neoptimalizovaný AIG graf a na obrázku 7 je zobrazen plně optimalizovaný AIG graf, oba vygenerované pomocí nástroje ABC. Zajímavé je pozorovat, že se AIG grafy z obrázků 1 a 6, ačkoliv jsou funkčně ekvivalentní, liší ve způsobu implementace hradel **AND 8** a **XOR 9**. Dále lze srovnáním AIG grafů z obrázků 2 a 7 vyvodit, že resubstitucí pouze uzlů reprezentující hradla **AND 6** a **AND 7** ještě nezískáme optimální AIG graf.

Obrázek 4: AIG graf s popisem hran vyjadřující jejich logickou funkci

Obrázek 5: Optimalizovaný AIG graf s popisem hran vyjadřující jejich logickou funkci

Obrázek 6: AIG graf vygenerovaný nástrojem ABC

Obrázek 7: AIG graf optimalizovaný a vygenerovaný nástrojem ABC