

Electromagnetic Noise in Power Electronics

Seminar

2020-07-02

Dr.-Ing. Karl Oberdieck and Jochen Henn

Institute for Power Electronics and Electrical Drives

Table of Contents

Task Description

Overview

Tasks

- 1. Ideal Half Bridge Circuit Model
- 2. Real Component Models
- 3. Conductor Model and Ground Path
- 4. Generic Switch Modeling
- 5. Frequency-Domain Simulation

Task 1: Ideal Half Bridge Circuit Model

- Implement an ideal circuit model of the depicted half-bridge converter in LTspice using the following parameters:
 - □ Input voltage: $V_{\rm in}$ = 30 V
 - □ DC-link capacitance: $C = 33 \,\mu\text{F}$
 - □ Filter inductance: $L_{\text{ext}} = 10.4 \,\text{mH}$
 - □ Load inductance: $R_{load} = 150 \Omega$
 - MOSFET model: BSZ036NE2LS
- Models the high-side (HS) and low-side (LS) gate drivers as shifted square-wave voltages, such that S_1 and S_2 are turned on alternatively and never conduct at the same time.
- Define variables for the duty cycle D and the switching periods T_s , and assign them the following values:
 - D = 0.5
 - \Box $T_{\rm s} = 100 \, \mu s$
- Measure the current ripple at the load.

Task 2: Real Component Models

- Extend the ideal half-bridge model from task 1 by introducing real component models for the passive elements. Assign the following parameters:
 - □ Capacitance *C* (internally):
 - Equivalent Series Resistance (ESR): 1 nΩ
 - Equivalent Series Inductance (ESL): 1 nH
 - □ Inductance L_{exp} (internally):
 - ESR: 1 μΩ
 - Parallel resistance: 1 MΩ
 - Parallel capacitance: 1 nF
 - □ Resistance R_{load} (additional elements):
 - Series inductance: 0.5 nH
 - Parallel capacitance: 1 nF
 - Lead inductance: 3.5 nH
- Implement a parameter sweep over the resistor's parasitic:
 - 1. Series inductance $L_{\rm R}$ with $L_{\rm R}$ = 1 nH, 0.5 μ H, 0.5 mH, 2.5 mH ($C_{\rm R}$ = 1 nH)
 - 2. Parallel capacitances $C_{\rm R}$ with 1 nF, $C_{\rm R}$ = 1 μ F, 10 μ F ($L_{\rm R}$ = 0.5 μ H)
- Plot the output voltage and the load current and interpret the effects.

Task 3: Conductor Model and Ground Path

- Insert a lumped high-frequency conductor model between the input voltage source $V_{\rm in}$ and the dc-link capacitance C, as well as between the external filter inductance $L_{\rm ext}$ and the load.
 - $(L = 7 \text{ nH}, R_S = 1 \mu\Omega, R_P = 1 \text{ M}\Omega, C_P = 1 \text{ nF})$
- Introduce ohmic-capacitive ground path to the model, composed of a ground capacitance $C_{\rm gnd}$ and a parallel resistance $R_{\rm gnd}$.
- Assume equal ground capacitance and resistance values for every ground path:
 - □ Ground capacitance: $C_{\text{gnd}} = 100 \,\text{nF}$
 - \Box Ground resistance: $R_{\rm gnd}$ = 1 M Ω
- Implement a parameter sweep over the ground capacitance $C_{\rm gnd}$ with $C_{\rm gnd}$ = 1 nF, 10 nF, 20 nF. Plot the output voltage and the load current.
- What happens as the ground capacitance value increases?

Task 4: Generic Switch Modeling

- To accelerate the simulation, substitute the switch cell (including the input circuitry) which a voltage source, which generates the following switching signals:
 - $\hfill\Box$ Trapezoidal voltage waveform with rise and fall times $\mathcal{T}_{\rm r}$ and $\mathcal{T}_{\rm f}$ respectively.
 - \blacksquare Parameter sweep: $T_{\rm r}$ = $T_{\rm f}$ = 1 ns, 1 $\mu s, 5~\mu s, 10~\mu s$
 - $exttt{ o}$ Trapezoidal voltage waveform with dead time $T_{
 m delay}$ at turn-on.
 - $T_{\rm r} = 3\,{\rm ns}$
 - $T_{\rm f} = 1\,{\rm ns}$
 - Parameter sweep: $T_{\rm delay}$ = 0 s, 0.5 μ s, 1 μ s
 - $\hfill\Box$ Trapezoidal voltage waveofrm with a damped oscillation at turn-on.
 - $T_{\rm r} = 3 \, \rm ns$
 - $T_{\rm f} = 1\,{\rm ns}$
 - $T_{\rm delay} = 0.2 \, \mu s$
 - Voltage oscillation frequency: 1 MHz
 - Damping factor: 100 000 1/s
 - Parameter sweep: Voltage oscillation amplitude $V_{\rm OSC}$ = 0 V, 1 V, 3 V, 10 V
- Plot the power at the load. Make use of a behavioral voltage source.

Task 5: Frequency-Domain Simulation

■ Plot the frequency response of the circuit for varying cable inductances

$$L_{\rm cap} = 7\,{\rm nH}, 250\,{\rm nH}, 1\,\mu{\rm H}, 10\,\mu{\rm H}, 0.5\,{\rm mH} \tag{1}$$

- Suppress the phase plot.
- Which problems may arise with high cable inductances?
- What measures can be taken to minimize the cable inductance?

Thank you for your kind attention!

Dr.-Ing. Karl Oberdieck and Jochen Henn – post@isea.rwth-aachen.de

RWTH Aachen University Templergraben 55 52056 Aachen

www.isea.rwth-aachen.de

