Intelligent Systems - Final Exam (Block 2): Test (1.75 points)

ETSINF, Universitat Politècnica de València, January 16th, 2024

Group, surname(s) and name: 1,

Tick only one choice among the given options. Score: $\max(0, (\text{correct_answers-wrong_answers}/3) \cdot 1.75/9)$.

In a problem of probabilistic reasoning corresponding to flu diagnosis, the random variables of interest are: Flu (F):{positive (POS), negative (NEG)}; Ventilation (V):{high (HIG), low (LOW)}; Activity (A):{silence (SIL), talking (TAL), exercise (EXE)}. The joint probability of the three random variables is provided by the following table: P = 0.03

	HIG			LOW		
P(f, v, a)	SIL	TAL	EXE	SIL	TAL	EXE
POS	0.01	0.01	0.02	0.01	0.03	0.05
$\overline{\text{NEG}}$	0.29	0.20	0.10	0.14	0.09	0.05

The conditional probability $P(G = POS \mid V = HIG, A = SIL)$ is:

- A) $P \le 0.25$
- B) $0.25 < P \le 0.50$
- C) $0.50 < P \le 0.75$
- D) $0.75 < P \le 1.0$

2 D Let \mathbf{x} be a object that we want to classify in one among C classes. Which expression is *not* a minimum error (error risk) classifier (or choose the last option if the first three are minimum error classifiers)?

A)
$$c(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{arg\,min}} - \log p(c \mid \mathbf{x})$$

B)
$$c(\mathbf{x}) = \underset{c=1}{\operatorname{arg max}} e^{p(c|\mathbf{x})}$$

C)
$$c(\mathbf{x}) = \underset{c=1}{\operatorname{arg max}} e^{p(\mathbf{x},c)} - e^{p(\mathbf{x})}$$

D) All three are minimum error classifiers.

3 C For a three-class classification problem of objects of type $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, we have the probability distributions shown in the table. Show the interval of the probability of error of the classifier $c(\mathbf{x})$ provided in the table, ε :

A)
$$\varepsilon < 0.25$$
.

B)
$$0.25 \le \varepsilon < 0.50$$
.

C)
$$0.50 \le \varepsilon < 0.75$$
.

D)
$$0.75 \le \varepsilon$$
.

	\mathbf{x}	$P(c \mid \mathbf{x})$				
Ī	$x_1 x_2$	$c=1 \ c=2 \ c=3$	$P(\mathbf{x})$	$c(\mathbf{x})$		
Ī	0 0	0.5 0.4 0.1	0.2	2		
	0 1	0.1 0.8 0.1	0.2	3		
	1 0	0.3 0.6 0.1	0.2	2		
	1 1	0.5 0.4 0.1	0.4	3		
0.74						

 $\varepsilon = 0.74$

- 4 B Let's suppose that we are applying the Perceptron algorithm, with learning rate $\alpha = 1$ and margin b = 0.1, to a set of 3 bidimensional learning samples for a problem of 2 classes. After processing the first 2 samples, the weight vectors $\mathbf{w}_1 = (0, 0, -2)^t$, $\mathbf{w}_2 = (0, 0, 2)^t$ were obtained. Next, the last sample (\mathbf{x}_3, c_3) is processed and the following weight vectors $\mathbf{w}_1 = (1, 1, -1)^t$, $\mathbf{w}_2 = (-1, -1, 1)^t$ are obtained, which of the following samples is that last sample?
 - A) $((2,3)^t,1)$
 - B) $((1,1)^t,1)$
 - C) $((2,1)^t,2)$
 - D) $((2,5)^t,2)$
- 5 D Given a classifier for 2 classes defined by their weight vectors $\mathbf{w}_1 = (-1, 3, 1, -3)^t$, $\mathbf{w}_2 = (-3, -2, 2, 2)^t$ in homogeneous notation, which of the following weight vectors do **not** define a classifier equivalent to the one given?
 - A) $\mathbf{w}_1 = (0, 3, 1, -3)^t, \mathbf{w}_2 = (-2, -2, 2, 2)^t$
 - B) $\mathbf{w}_1 = (-2, 9, 3, -9)^t, \mathbf{w}_2 = (-8, -6, 6, 6)^t$
 - C) $\mathbf{w}_1 = (-3, 9, 3, -9)^t, \mathbf{w}_2 = (-9, -6, 6, 6)^t$
 - D) $\mathbf{w}_1 = (2, -6, -2, 6)^t, \mathbf{w}_2 = (6, 4, -4, -4)^t$
- 6 D Which of the following statements about logistic regression is *incorrect* (or choose the last option if the first three are correct)?:
 - A) Logistic regression is a classification probabilistic model based on the softmax function
 - B) Being a a classification probabilistic model, logistic regression allows the application of decision rules more general than the MAP (maximum a posteriori) rule
 - C) Being a a classification probabilistic model, logistic regression allows stating its learning statistically, using standard criteria such as maximum likelihood
 - D) All three previous statements are correct

7 C Given the two-class (o and •) samples of the figure on the right, which of the following classification trees is coherent with the partition of the figure?

- 8 C Suppose we apply the classification tree algorithm for a 3-class problem c=1,2,3. The algorithm reaches a node t that is split into a left node with 2 samples of class 1, 0 samples of class 2 and 3 samples of class 3; and a right node with 0 samples of class 1, 1 sample of class 2 and 0 samples of class 3. Which impurity reduction is achieved with this split? $\Delta \mathcal{I} = 0.65$
 - A) $0.00 \le \Delta \mathcal{I} < 0.25$.
 - B) $0.25 \le \Delta \mathcal{I} < 0.50$.
 - C) $0.50 \le \Delta \mathcal{I} < 0.75$.
 - D) $0.75 \le \Delta \mathcal{I}$.
- 9 D We have a partition of a set of 3-dimensional data points into a given number of clusters, $C \geq 2$. Consider the transfer of the data point $\mathbf{x} = (4,3,5)^t$ from a cluster i to another one $j, j \neq i$. We know that cluster i contains 4 data points (including \mathbf{x}) and cluster j 3. We also know that the centroid (mean) of cluster i is $\mathbf{m}_i = (3,8,8)^t$, while that of cluster j is $\mathbf{m}_j = (10,9,10)^t$. If the transfer is carried out, an increase of the sum of square errors, ΔJ , will be produced such that: $\Delta J = 26.1$
 - A) $\Delta J < -70$
 - B) $-70 \le \Delta J < -30$
 - C) $-30 \le \Delta J < 0$
 - D) $\Delta J \ge 0$

Intelligent Systems - Final Exam (Block 2): Problem (2 points)

ETSINF, Universitat Politècnica de València, January 16th, 2024

Group, surname(s) and name: 1,

Problem: Logistic regression

The following table shows a training set of 2 samples with 2 dimensions that belong to 2 classes:

$$\begin{array}{c|ccccc} n & x_{n1} & x_{n2} & c_n \\ \hline 1 & 1 & 1 & 2 \\ 2 & 0 & 1 & 1 \end{array}$$

In addition, the following table represents an initial weight matrix with the weights of each class per columns:

$$\begin{array}{c|cc} \mathbf{w}_1 & \mathbf{w}_2 \\ \hline 0. & 0. \\ -0.25 & 0.25 \\ 0. & 0. \\ \end{array}$$

Answer the following questions:

- 1. (0.5 points) Compute the vector of logits for each training sample.
- 2. (0.25 points) Apply the softmax function to the vector of logits for each training sample.
- 3. (0.25 points) Classify every training sample. In case of a tie, choose any class.
- 4. (0.5 points) Compute the gradient of the function NLL at the point of the initial weight matrix.
- 5. (0.5 points) Update the initial weight matrix applying gradient descent with learning rate $\eta = 1.0$.

Solution:

1. Vector of logits for each training sample:

n	a_{n1}	a_{n2}
1	-0.25	0.25
2	0.	0.

2. Applying the softmax function:

$$\begin{array}{c|cccc} n & \mu_{n1} & \mu_{n2} \\ \hline 1 & 0.38 & 0.62 \\ 2 & 0.5 & 0.5 \end{array}$$

3. Classification of every sample:

$$\begin{array}{c|c} n & \hat{c}(x_n) \\ \hline 1 & 2 \\ 2 & 1 \end{array}$$

4. Gradient:

5. Updated weight matrix:

$$\begin{array}{c|cc} \mathbf{W}_1 & \mathbf{W}_2 \\ \hline 0.06 & -0.06 \\ -0.44 & 0.44 \\ 0.06 & -0.06 \\ \end{array}$$