### M16600 Lecture Notes

Section 6.8: Indeterminate Forms and L'Hospital's Rule

■ Section 6.8 exercises, page: #9, 15, 19, 21, 27, 35, 37, 43, 47, 52, 53, 57, 59, 65. Optional: Practice more problems from #8 to #68.

**GOALS**: Use L'Hospital's Rule to compute the limit of the following *indeterminate* form

• Indeterminate Quotient:  $\frac{0}{0}$ ,  $\frac{\pm \infty}{+\infty}$ 

• Indeterminate Quotient:  $\frac{0}{0}$ ,  $\frac{\pm \infty}{\pm \infty}$ • Indeterminate Product:  $0 \cdot \infty$ ( ) ( )  $\infty$ )  $\longrightarrow$  take one of the fectors in denominator

• Indeterminate Difference:  $\infty - \infty \to$  common denominator

• Indeterminate Power:  $0^0$ ,  $\infty^0$ ,  $1^\infty$   $0^{>0}$ ,  $\infty^0$ ,  $1^\infty$   $0^{>0}$ ,  $\infty^0$ ,  $1^\infty$  both sides

The Intuition of a Limit Statement:  $\lim_{x\to 1}(x^2+2)=3$ . This equation states that as xapproaches 1 (from the left and the right side of 1), the values of  $x^2+2$  approaches \_\_\_\_\_.

## Some Notation:

 $x \to 1^+$  means x approaches 1 from the RIGHT, i.e., x is slightly BIGGER than 1 (e.g., x = 1.01, 1.000012, etc.

 $x \to 1^-$  means x approaches 1 from the LEFT, i.e., x is a little SMALLER than 1 (e.g., x = 0.99, 0.999999, etc.

 $x \to 1$  means x approaches 1 from both directions, left and right (i.e., x can take any values slightly less than or bigger than 1)

Warning:  $1^-$  does NOT mean -1.

Limit Facts about  $e^x$ ,  $\ln x$ , and  $\arctan(x)$ 







$$\lim_{x \to \infty} e^x = \infty$$

$$\lim_{x \to -\infty} e^x = 0$$

$$\lim_{x \to \infty} \ln x = \infty$$

$$\lim_{x \to 0^+} \ln x = -\infty$$

$$\lim_{x \to \infty} \arctan(x) = \frac{\pi}{2}$$

$$\lim_{x \to -\infty} \arctan(x) = -\frac{\pi}{2}$$

Computing Limits: The FIRST step in computing limit is what I call "direct substitution" (D.S.) Keep in mind,  $x \to 1$  means x is very close to 1 but never equal 1.

After we do "direct substitution", we either get a **determinate form** or an **indeterminate form**.

#### Determinate Forms

- A real number  $\rightarrow$  the limit is this real number
- $\frac{\text{a number}}{\pm \infty} = 5$
- a nonzero number = Not Defined

# a nonzero number = ± ∞

## Indeterminate Forms

- $\frac{0}{0}$   $\rightarrow$  in section 1.6, we learn some algebra techniques to find the limit. In this section, we can apply L'Hospital's rule.
- $\frac{\pm \infty}{\pm \infty}$   $\rightarrow$  in section 3.4, we learn a technique to solve this case. In this section, we can apply *L'Hospital's Rule* for this indeterminate form.
- $0 \cdot \infty \to \text{rewrite as indeterminate quotient form then apply } L'Hospital's Rule.$
- $\infty \infty \to \text{rewrite}$  as indeterminate quotient form then apply L'Hospital's Rule.
- $0^0$ ,  $\infty^0$ ,  $1^\infty$  apply the tool of natural log then rewrite into indeterminate quotient form then apply L'Hospital's Rule.

**L'Hosptital's Rule:** Suppose f and g are differentiable and  $g'(x) \neq 0$  on an open interval I that contains a (except possibly at a).

Suppose that  $\lim_{x\to a} \frac{f(x)}{g(x)} \to \frac{0}{0}$  or  $\frac{\pm \infty}{\pm \infty}$ . Then, by **L'Hospital's Rule**, we have

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \tag{1}$$

provide that the limit on the right side of the equation exists or is  $\pm \infty$ .

**Note:** L'Hospital's Rule also applies for  $x \to a^+$ ,  $x \to a^-$ , or  $x \to \pm \infty$ .

Remark: We can apply L'Hospital more than one times if needed.

Examples: Evaluate the following limits. Warning: Don't blindly use L'Hospital's rule for every problem, see if it applies.

(a) 
$$\lim_{x \to 1} \frac{\ln x}{x - 1} = \frac{\ln 1}{1 - 1} = \frac{1}{30}$$
$$= \lim_{x \to 1} \frac{\ln x}{x - 1} = \lim_{x \to 1} \frac{1}{x} =$$

(b) 
$$\lim_{x \to \infty} \frac{\ln x}{\sqrt[3]{x}} = \frac{\infty}{\infty}$$

$$= \lim_{x \to \infty} \frac{1}{x} = \frac{1}{x} =$$

(c) 
$$\lim_{x \to \pi^{-}} \frac{\sin x}{1 - \cos x}$$
  $\frac{\sin x}{1 - \cos x}$   $\frac{\sin x}{1 - \cos x}$   $\frac{\sin x}{1 - \cos x}$   $\frac{\cos x}{1 -$ 

(d) 
$$\lim_{x\to\infty} \sqrt{x}e^{-x/2} \stackrel{\mathbb{N}}{=}$$

(a)  $\lim_{x\to\infty} \sqrt{x}e^{-x/2} \stackrel{\mathbb{N}}{=}$ 

(b)  $\lim_{x\to\infty} \frac{1}{2} = 0$ 

(e)  $\lim_{x\to\infty} x \ln x$ 

(f)  $\lim_{x\to\infty} x \ln x$ 

(g)  $\lim_{x\to\infty} x \ln x$ 

(h)  $\lim_{x\to\infty} x \ln x$ 

(e)  $\lim_{x\to\infty} x \ln x$ 

(f)  $\lim_{x\to\infty} x \ln x$ 

(g)  $\lim_{x\to\infty} x \ln x$ 

(h)  $\lim_{x\to\infty} x \ln x$ 

(g)  $\lim_{x\to\infty} x \ln x$ 

(h)  $\lim$ 

(g) 
$$\lim_{x\to 0} (1+\sin 4x)^{\max}$$
  $\Rightarrow L = \lim_{x\to 0^+} (1+8^{\circ}n 4x)^{\circ}$ 
 $\Rightarrow \ln L = \ln \left( \lim_{x\to 0^+} (1+\sin 4x)^{\circ} \cot x \right) = \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right)$ 
 $\Rightarrow \ln L = \lim_{x\to 0^+} \cot x \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right) = \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right)$ 
 $= \lim_{x\to 0^+} \cot x \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right) = \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right)$ 
 $= \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right) = \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right)$ 
 $= \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right) = \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right)$ 
 $= \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right) = \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right)$ 
 $= \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right) = \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right)$ 
 $= \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right) = \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right)$ 
 $= \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right) = \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right)$ 
 $= \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right) = \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right)$ 
 $= \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right) = \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right)$ 
 $= \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right) = \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right)$ 
 $= \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right) = \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right)$ 
 $= \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right) = \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right)$ 
 $= \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right) = \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right)$ 
 $= \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right) = \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right)$ 
 $= \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right) = \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right)$ 
 $= \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right) = \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right)$ 
 $= \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right) = \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right)$ 
 $= \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right) = \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right)$ 
 $= \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right) = \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right)$ 
 $= \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right) = \lim_{x\to 0^+} \ln \left( (1+8^{\circ}n 4x)^{\circ} \cot x \right)$ 
 $= \lim_{$ 

$$\stackrel{\text{(i)}}{=} \lim_{x \to \frac{\pi}{2}^+} \lim_{x \to \frac{\pi}{2}^+} \left( \frac{x - \pi}{2} \right)^{-\frac{\pi}{2}} = \stackrel{\text{(i)}}{=} \lim_{x \to \frac{\pi}{2}^+} \left( \frac{\pi}{2} - \frac{\pi}{2} \right)^{-\frac{\pi}{2}} = \stackrel{\text{(i)}}{=} \lim_{x \to \frac{\pi}{2}^+} \left( \frac{\pi}{2} - \frac{\pi}{2} \right)^{-\frac{\pi}{2}} = \stackrel{\text{(i)}}{=} \lim_{x \to \frac{\pi}{2}^+} \left( \frac{\pi}{2} - \frac{\pi}{2} \right)^{-\frac{\pi}{2}^-} = \stackrel{\text{(i)}}{=} \lim_{x \to \frac{\pi}{2}^+} \left( \frac{\pi}{2} - \frac{\pi}{2} \right)^{-\frac{\pi}{2}^-} = \stackrel{\text{(i)}}{=} \lim_{x \to \frac{\pi}{2}^+} \left( \frac{\pi}{2} - \frac{\pi}{2} \right)^{-\frac{\pi}{2}^-} = \stackrel{\text{(i)}}{=} \lim_{x \to \frac{\pi}{2}^+} \left( \frac{\pi}{2} - \frac{\pi}{2} \right)^{-\frac{\pi}{2}^-} = \stackrel{\text{(i)}}{=} \lim_{x \to \frac{\pi}{2}^+} \left( \frac{\pi}{2} - \frac{\pi}{2} \right)^{-\frac{\pi}{2}^-} = \stackrel{\text{(i)}}{=} \lim_{x \to \frac{\pi}{2}^+} \left( \frac{\pi}{2} - \frac{\pi}{2} \right)^{-\frac{\pi}{2}^-} = \stackrel{\text{(i)}}{=} \lim_{x \to \infty} \left( \frac{\pi}{2} - \frac{\pi}{2} \right)^{-\frac{\pi}{2}^-} = \stackrel{\text{(i)}}{=} \lim_{x \to \infty} \left( \frac{\pi}{2} - \frac{\pi}{2} \right)^{-\frac{\pi}{2}^-} = \stackrel{\text{(i)}}{=} \lim_{x \to \infty} \left( \frac{\pi}{2} - \frac{\pi}{2} \right)^{-\frac{\pi}{2}^-} = \stackrel{\text{(i)}}{=} \lim_{x \to \infty} \left( \frac{\pi}{2} - \frac{\pi}{2} \right)^{-\frac{\pi}{2}^-} = \stackrel{\text{(i)}}{=} \lim_{x \to \infty} \left( \frac{\pi}{2} - \frac{\pi}{2} \right)^{-\frac{\pi}{2}^-} = \stackrel{\text{(i)}}{=} \lim_{x \to \infty} \left( \frac{\pi}{2} - \frac{\pi}{2} \right)^{-\frac{\pi}{2}^-} = \stackrel{\text{(i)}}{=} \lim_{x \to \infty} \left( \frac{\pi}{2} - \frac{\pi}{2} \right)^{-\frac{\pi}{2}^-} = \stackrel{\text{(i)}}{=} \lim_{x \to \infty} \left( \frac{\pi}{2} - \frac{\pi}{2} \right)^{-\frac{\pi}{2}^-} = \stackrel{\text{(i)}}{=} \lim_{x \to \infty} \left( \frac{\pi}{2} - \frac{\pi}{2} \right)^{-\frac{\pi}{2}^-} = \stackrel{\text{(i)}}{=} \lim_{x \to \infty} \left( \frac{\pi}{2} - \frac{\pi}{2} \right)^{-\frac{\pi}{2}^-} = \stackrel{\text{(i)}}{=} \lim_{x \to \infty} \left( \frac{\pi}{2} - \frac{\pi}{2} \right)^{-\frac{\pi}{2}^-} = \stackrel{\text{(i)}}{=} \lim_{x \to \infty} \left( \frac{\pi}{2} - \frac{\pi}{2} \right)^{-\frac{\pi}{2}^-} = \stackrel{\text{(i)}}{=} \lim_{x \to \infty} \left( \frac{\pi}{2} - \frac{\pi}{2} \right)^{-\frac{\pi}{2}^-} = \stackrel{\text{(i)}}{=} \lim_{x \to \infty} \left( \frac{\pi}{2} - \frac{\pi}{2} \right)^{-\frac{\pi}{2}^-} = \stackrel{\text{(i)}}{=} \lim_{x \to \infty} \left( \frac{\pi}{2} - \frac{\pi}{2} \right)^{-\frac{\pi}{2}^-} = \stackrel{\text{(i)}}{=} \lim_{x \to \infty} \left( \frac{\pi}{2} - \frac{\pi}{2} \right)^{-\frac{\pi}{2}^-} = \stackrel{\text{(i)}}{=} \lim_{x \to \infty} \left( \frac{\pi}{2} - \frac{\pi}{2} \right)^{-\frac{\pi}{2}^-} = \stackrel{\text{(i)}}{=} \lim_{x \to \infty} \left( \frac{\pi}{2} - \frac{\pi}{2} \right)^{-\frac{\pi}{2}^-} = \stackrel{\text{(i)}}{=} \lim_{x \to \infty} \left( \frac{\pi}{2} - \frac{\pi}{2} \right)^{-\frac{\pi}{2}^-} = \stackrel{\text{(i)}}{=} \lim_{x \to \infty} \left( \frac{\pi}{2} - \frac{\pi}{2} \right)^{-\frac{\pi}{2}^-} = \stackrel{\text{(i)}}{=} \lim_{x \to \infty} \left( \frac{\pi}{2} - \frac{\pi}{2} \right)^{-\frac{\pi}{2}^-} = \stackrel{\text{(i)}}{=} \lim_{x \to \infty} \left( \frac{\pi}{2} - \frac{\pi}{2} \right)^{-\frac{\pi}{2}^-} = \stackrel{\text{(i)}}{=} \lim_{x \to \infty} \left( \frac{\pi}{2} - \frac{\pi}{2}$$

$$= \sum_{x \to \pi} \left( x - \frac{\pi}{2} \right)$$

= 
$$\lim_{x \to \pm} \tan x \ln \left(x - \frac{\pi}{2}\right)$$

$$= \lim_{x \to \pi} \text{Tanx} \ln \left(x - \frac{\pi}{2}\right)$$

$$= \lim_{x \to \pi} \left(-\infty\right) \ln \left(\frac{\pi}{2} - \frac{\pi}{2}\right) = \left(-\infty\right) \ln 0^{\frac{1}{2}}$$

$$= \left(-\infty\right) \left(-\infty\right) = \infty$$

$$\Rightarrow$$
  $ln L = \infty$ 

$$\Rightarrow$$
  $L = e^{\infty} = \infty$ 

$$\begin{array}{ccc}
\text{(i)} & \lim_{x \to 0} & \left( \sin x \right) & \text{Tanx} \\
\text{(iii)} & \left( \sin x \right) & = & \left( \to 0 \right)
\end{array}$$

$$\Rightarrow \ln L = \lim_{x \to 0} \ln (8inx)^{Tanx} = \lim_{x \to 0} (Tanx) \ln (8inx)$$

$$= \lim_{x \to 0} (10.5)^{Tanx}$$

$$(\rightarrow 0)$$
  $ln 0^{\dagger} = 0 (-\infty)$ 

$$= \lim_{x \to 0} \frac{\ln(8inx)}{\cot x} = \frac{\ln(8in0)}{\cot 0} = \frac{-\infty}{\infty}$$

$$= \lim_{x \to 0} \frac{1}{8inx} \cos x$$

$$= \lim_{x \to 0} \frac$$

$$\frac{DS}{=} (-1) (coso) (sino)$$
= (-1) (1) (0) = 0