Podstawy mechaniki CW

Wykładowca:

Skryba: Szymon Cedrowski

Spis treści

Wykład 1: Ćwiczenia 1

15 paź 2020

Zadanie 2 Dany jest wektor \vec{A} w układzie określonym przez wersory $e_i, i \in \{1, 2, 3\}$. \vec{A} ma postać $\vec{A} = 3\vec{e}_1 + 4\vec{e}_2 + 5\vec{e}_3$.

 $Dow \acute{o}d.$ • długość wektora \vec{A} :

$$A^2 = \vec{A} \cdot \vec{A} = 9 + 16 + 25 = 50$$

 $A = \sqrt{50} = 5\sqrt{2}$

• Wersor w kierunku \vec{A} :

$$\vec{t} = \frac{\vec{A}}{A} = \frac{(3,4,5)}{5\sqrt{2}}$$

• Długość rzutu \vec{A} na płaszczyznę xy: Nazwijmy ten rzut przez A_{xy} .

$$\vec{A}_{xy} = \left(\vec{A} \cdot e_x, \vec{A} \cdot e_y, 0\right) = (3, 4, 0)$$

$$\vec{A}_{xy} = 5$$

 \bullet Wektor prostopadły do \vec{A}_{xy} i leżący na tej płaszczyźnie :

$$\vec{B} \cdot \vec{A}_{xy} = 0$$

 $3x + 4y = 0$
 $\vec{B} = \left(x, -\frac{4}{3}x, 0\right)$, dla dowolnego $x \neq 0$

Zadanie 3 Wektor $A\cdot$ rozłożyć na składową prostopadłą \vec{A}_{\perp} i równoległą \vec{A}_{\parallel} do wektora \vec{t} . Znaleźć składowe tych wektorów dla $\vec{A}=(5,3,-4)$ oraz $\vec{t}=\frac{1}{\sqrt{2}}(1,1,0)$.

 $Dow \acute{o}d.$ W naszym przypadku \vec{t} jest wersorem, zatem:

$$\begin{split} A_{\parallel} &= \vec{A} \cdot \vec{t} = \frac{8}{\sqrt{2}} = 4\sqrt{2} \\ \vec{A}_{\parallel} &= (4,4,0) \\ \vec{A}_{\perp} &= \vec{A} - \vec{A}_{\parallel} = (1,-1,-4) \end{split}$$

Możemy sprawdzić, że

$$\vec{A}_{\perp} \cdot \vec{A}_{\parallel} = 0$$

SPIS TREŚCI

Zadanie 4 Liczymy $\vec{C} = \vec{A} \times \vec{B}$ dla $\vec{A} = (1, 2, 3), \ \vec{B} = (4, 0, 0).$

Dowód.

$$\vec{C} = \vec{A} \times \vec{B} = \begin{vmatrix} e_x & e_y & e_z \\ 1 & 2 & 3 \\ 4 & 0 & 0 \end{vmatrix} = (0, 12, -8)$$

Sprawdzamy czy \vec{C} jest prostopadły do \vec{A} , \vec{B} .

$$\vec{C} \cdot \vec{A} = 24 - 24 = 0$$

$$\vec{C} \cdot \vec{B} = 0$$

Dygresja Symbol (tensor) Levi-Civity:

$$\hat{e}_i \times \hat{e}_j = \varepsilon_{ijk} \hat{e}_k$$

$$\varepsilon_{ijk} = \begin{cases} 0 & \text{dowolne 2 indeksy takie same} \\ 1 & \text{permutacja parzysta} \\ -1 & \text{permutacja nieparzysta} \end{cases}$$

Oczywiście jest to antysymetryczny tensor typu (0,3).

SPIS TREŚCI