LING/C SC 581:

Advanced Computational Linguistics

Lecture 10

Administriva

- Lectures 6-9 are canceled. Sorry.
- Let's reboot the course with some syntactic analysis ...
- Quick Homework 4 (do it before next time)

Universal Dependencies

- We have seen some examples from 538 last semester (see also next slide).
- Stanford Dependencies (SD) (de Marneffe and Manning, 2008, rev. 2016)
 - https://downloads.cs.stanford.edu/nlp/software/dependencies manual.pdf
 - still used by Google Natural Language
- Universal Stanford Dependencies (de Marneffe et al., 2014)
 - https://nlp.stanford.edu/pubs/USD_LREC14_paper_camera_ready.pdf
- Universal Dependencies (UD) v2
 - https://universaldependencies.org/u/dep/index.html
 - "Universal Dependencies (UD) is a project that is developing cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective."

- pg145-146 in LSLT (Chomsky 1955/1975)
- https://cloud.google.com/natural-language/

sequence ADJ ADJ NOUN VERB ADV is grammatical

• There's no notion of **grammaticalness**, Google Natural Language doesn't rate its inputs (produces top parse only)

(de Marneffe et al., 2014)

SD v2.0.0	SD v3.3.0	GSD	TSD	USD	Notes
nsubj	nsubj	nsubj	nsubj	nsubj	\checkmark
csubj	csubj	csubj	csubj	csubj	\checkmark
nsubjpass	nsubjpass	nsubjpass	nsubjpass	nsubjpass	\checkmark
csubjpass	csubjpass	csubjpass	csubjpass	csubjpass	\checkmark
dobj	dobj	dobj	dobj	dobj	\checkmark
iobj	iobj	iobj	iobj	iobj	\checkmark (TSD also has <i>gobj</i> for genitive object)
ccomp	ccomp	ccomp	ccomp	ccomp	USD & TSD define as clause with internal subject, not finite
xcomp	xcomp	xcomp	xcomp	xcomp	USD & TSD define as clause with external subject, not nonfinite
acomp	acomp	acomp	acomp	_	acomp can be generalized into xcomp
attr	-	attr	_	-	attr removed: wh- is head or xcomp (with copula head option)

xcomp: open clausal complement

- Chomsky (p.c.): (11) is no longer an ideal example to use (as it has been well-discussed over the last half century or so), suggesting, instead, that substituting orange for green would reset the bigram statistics
 - 11 colorless green ideas sleep furiously
 - 12 furiously sleep ideas green colorless

- 11 colorless green ideas sleep furiously
- 12 furiously sleep ideas green colorless

can you parse this?

-	-	-		-
advmod	amod	nn	root	amod
furiously	sleep	ideas	orange	colorless
		idea		
ADV	VERB	NOUN	NOUN	ADJ

-				-
advmod	amod	nsubj	root	acomp
furiously	sleep	ideas	black	colorless
		idea		
ADV	VERB	NOUN	VERB	ADJ

- We get 3 different sequences:
 - 1. ADV VERB NOUN ADJ ADJ
 - 2. ADV VERB NOUN NOUN ADJ
 - 3. ADV VERB NOUN VERB ADJ
- Question: are these grammatical sequences?
 - Quick Homework 4 (do it before next time)
 - Come up with grammatical examples of these three sequences (in English), or explain why you think they're not.
 - Email to me (usual rules)

Universal Dependencies

- Publicly available dependency treebanks
- Produced by parsers or by human experts or some combination thereof?
- Lots of training data for machine learning

Structural Probes

- Paper (Hewitt & Manning, 2019)
 - https://nlp.stanford.edu/pubs/hewitt2019structural.pdf
- Blog entry:
 - https://nlp.stanford.edu//~johnhew//structural-probe.html
- Idea:
- use contextual word embeddings (ELMo or BERT)
- 2. No dependency treebank
- 3. "We'll present a method for finding tree structures in these vector spaces, and show the surprising extent to which ELMo and BERT encode human-like parse trees."

Structural Probes

- You'll install this code on your computer
 - Python 3 required, plus some modules

[demoing]: 1it [00:00, 1.26it/s]

- https://github.com/john-hewitt/structural-probes
- We'll discuss the installation and Homework 5 next lecture.
- Example:

```
"The chef that went to the stores was out of food" | python structural-probes/run_demo.py example/demo-bert.yaml

Constructing new results directory at example/results/BERT-disk-demo-2022-1-28-14-40-51-39486/

The pre-trained model you are loading is a cased model but you have not set 'do lower case' to False. We are setting 'do_lower_case=False' for you but you may want to Theck This behavior.

100%| 213450/213450 [00:00<00:00, 2492466.95B/s]

100%| 21342874899/1242874899 [08:11<00:00, 2530392.20B/s]

Constructing TwoWordPSDProbe

Constructing OneWordPSDProbe
```

Structural Probes

colorless green ideas sleep furiously

furiously sleep ideas green colorless