Wroclaw University of Science and Technology

GENERAL PHYSICS LABORATORY REPORT

Theme of class: DETERMINATION OF SOLID

STATE DENSITY

Students: Date of class: 2023-03-14

Ivan Melnyk 275510
 Egemen Goncu 276829

Submission Date: 2023-03-07

Lab assistant: dr inz. Janusz Bozym

Contents

1	Introduction	2		
	1.1 Theory	2		
2	Experiment			
	2.1 Determination of capacitance C of the capacitor component(RC circuit)	3		
	2.2 Determination of the inductance L of the inductor component (RL circuit) .			
	2.3 Verification of the Ohm's Law for the alternation current (RLC circuit)	5		
3	Conclusion	7		

1 Introduction

1.1 Theory

2 Experiment

$\begin{tabular}{lll} \bf 2.1 & Determination of capacitance C of the capacitor component (RC circuit) \\ \end{tabular}$

dfsdlkfj

Figure 1: RC circuit measurements

V	UV	$I{ m mA}$
0	0	0
100	1.017	1.74
200	2.034	3.53
300	3.051	5.25
400	4.1	7.04
500	5.12	8.79
600	6.15	10.54
700	7.16	12.24
800	8.16	13.95
900	9.18	15.72
1000	10.15	17.34

Table 1: RC circuit. f = 300 Hz ${\rm R} = 220\,\Omega\;Z_c = 1.71\,{\rm k}\Omega$

Calculations

$$C = \frac{1}{2\pi f \sqrt{(Z_c^2 - R^2)}} = \frac{1}{2\pi 300 \sqrt{(1.71^2 - 220^2)}} = 0.000000411562347 \tag{1}$$

2.2 Determination of the inductance L of the inductor component (RL circuit)

Figure 2: RC circuit measurements

Vrsm	UV	$I{ m mA}$
0	0	0
100	6.61	1.016
200	13.14	2.032
300	19.7	3.048
400	26.24	4.01
500	32.77	5.12
600	39.25	6.14
700	49.25	7.15
800	52.1	8.15
900	56.6	9.17
1000	64.7	10.12

Table 2: RL circuit.f = 300 Hz R = 220
$$\Omega~R_l = 0.6~\Omega~Z_c = 6.37\,\mathrm{k}\Omega$$

Calculations

$$L = \frac{\sqrt{Z_L^2 - (R + R_L)^2}}{2\pi f} = \frac{\sqrt{6370^2 - (220 + 0.6)^2}}{2\pi 300} = 1.333838664$$
 (2)

2.3 Verification of the Ohm's Law for the alternation current (RLC circuit)

Figure 3: RC circuit measurements

U	Ι
0	0
1.8	1.017
3.5	2.034
5.24	3.51
7.03	4.1
8.75	5.12
10.53	6.14
12.24	7.16
13.98	8.16
13.71	9.18
17.35	10.15
	0 1.8 3.5 5.24 7.03 8.75 10.53 12.24 13.98 13.71

Table 3: RCL circuit.f = 300 Hz R = 220 Ω $R_l = 0.6 \, \Omega$ $Z_{cl} = 1.65 \, \mathrm{k}\Omega$

Calculations

$$Z_{2} = \sqrt{(R + R_{L})^{2} + \left((2\pi f L) - \left(\frac{1}{2\pi f C}\right)\right)^{2}} = \sqrt{(220 + 0.6)^{2} + \left((2\pi 300 \times 1.333838664) - \left(\frac{1}{2\pi 300 \times 0.000000411562347}\right)\right)^{2}} = 1244.89743 \quad (3)$$

Formulas used in the calculations

$$C = \frac{1}{2\pi f \sqrt{(Z_c^2 - R^2)}} \tag{4}$$

$$L = \frac{\sqrt{Z_L^2 - (R + R_L)^2}}{2\pi f} \tag{5}$$

$$L = \frac{\sqrt{Z_L^2 - (R + R_L)^2}}{2\pi f}$$

$$Z_2 = \sqrt{(R + R_L)^2 + \left((2\pi f L) - \left(\frac{1}{2\pi f C}\right)\right)^2}$$
(6)

3 Conclusion