Análisis numérico

Clase 10: Matrices y solución de ecuaciones lineales

Joaquin Cavieres

Instituto de Estadística, Universidad de Valparaíso

Outline

Matrices y solución de ecuaciones lineales

Factorización de Matrices

Producto de AA^T

- Si A de dimensión $m \times n$ $(A = (a_{ij}))$ entonces el producto AA^T y A^TA , así ambos resultados son matrices cuadradas $m \times m$ y $n \times n$ respectivamente.
- Ambas son simétricas (por ejemplo $(AA^T)^T = (A^T)^T A$).
- Si las columnas de A son a_j entonces $AA^T = \sum_j a_j a_j^T$. (Recordar que el producto entre dos matrices $AB = \sum_j a_j b_j^T$, donde b_j^T son las filas de B). AA^T es conocido como el cross-product de A, y más generalmente, AB^T es el cross-product de A y B.

El cross-product $(A \times B)$ esta definido como un vector C que es perpendicular (ortogonal) a A y a B.

Factorización de Matrices

Matrices ortogonales

- ullet Una matriz A de dimensión p imes p es ortogonal si $A^TA=AA^T=I_p$
- Para una matriz cuadrada $A^TA = \mathbf{I}_p$ y con A no singular (A^T) , que posee una inversa $(A^T)^{-1}$), entonces necesariamente tenemos $AA^T = \mathbf{I}_p$ ya que si $A^TA = \mathbf{I}_p$ entonces $(A^T)^{-1}A^TAA^T = (A^T)^{-1}\mathbf{I}_pA^T = \mathbf{I}_p$. También, si $A^{-1} = A^T$ y si A es ortogonal, entonces A^T también es ortogonal.

Factorización de Matrices

Matrices ortogonales

- Si A y B son matrices ortogonales y ambas de dimensión $p \times p$, entonces AB es ortogonal por que $(AB)^TAB = B^TA^TAB = B^T\mathbf{I}_pB = B^TB = \mathbf{I}_p$
- Es posible tener una matriz B de dimensión $m \times n$ tal que $B^T B = \mathbf{I}_n$ pero $BB^T \neq \mathbf{I}_m$.

Factorización de Matrices

Matrices Normales

• Si A es una matriz de dimensión $p \times p$, entonces esta es una matriz normal si $AA^T = A^TA$. Claramente, todas las matrices simetricas y ortogonales son normales

Matrices Idempotentes

Si A es una matriz de dimensión p×p, esta es una matriz idempotente si A² = A. Claramente, Ip y Op×p son idempotentes, así xx^T con x^Tx = 1. Las matrices idempotentes juegan un rol clave en la estadística por que ellas pueden consideradas como proyecciones. [3] dice que una matriz P es una proyección ortogonal, si y solo si, esta es idempotente y simétrica.

Descomposición QR

Descomposición QR

Definición

Si A es una matriz $m \times n$ de rango completo $(\rho(A) = n, n \le m)$ y si A puede ser factorizaro en A = QR, con Q una matrix de columnas ortonormales y dimensión $m \times n$, y R una matriz triangular superior $n \times n$, entonces QR se dice la descomposición de A y es única.

Descomposición QR

Definición

Si A es una matriz $m \times n$ de rango completo $(\rho(A) = n, n \le m)$ y si A puede ser factorizaro en A = QR, con Q una matrix de columnas ortonormales y dimensión $m \times n$, y R una matriz triangular superior $n \times n$, entonces QR se dice la descomposición de A y es única.

¿Matriz triangular superior?

Descomposición QR

Matriz triangular

Podemos definir matrices triangulares inferior y superior por la ocupación de su estructura, por ejemplo:

$$U = \begin{pmatrix} * & \dots & * & * \\ & \ddots & \vdots & \vdots \\ & & * & * \end{pmatrix}$$

Los elementos en blanco son "ceros" y los "*" son elementos arbitrarios de los números en los cuales se entá trabajando.

Descomposición QR

Definición

Si A es una matriz $m \times n$ de rango completo $(\rho(A) = n, n \le m)$ y si A puede ser factorizaro en A = QR, con Q una matrix de columnas ortonormales y dimensión $m \times n$, y R una matriz triangular superior $n \times n$, entonces QR se dice la descomposición de A y es única.

Ya que $n=
ho(X)=
ho(QR)\leq \min(
ho(Q),
ho(R))\leq n$, tenemos que ho(Q)=
ho(R)=n.

Descomposición QR

Ejemplo:

Si $A \in \mathbb{R}^{m \times n}$ tiene columnas linealmente independientes, entonces A puede ser factorizada como:

$$A = \begin{pmatrix} q_1 & q_2 & \dots & q_n \end{pmatrix} egin{pmatrix} R_{11} & R_{12} & \dots & R_{1n} \\ 0 & R_{22} & \dots & R_{2n} \\ \vdots & 0 & \ddots & \vdots \\ 0 & 0 & \dots & R_{nn} \end{pmatrix}$$

Los vectores q₁, ..., q_n son m-vectores ortonormales.

$$||q_i|| = 1$$
, $q_i^T q_i = 0$, si $i \neq j$

- Los elementos diagonales de R no son ceros.
- Si $R_{ii} < 0$, podemos cambiar los signos de $R_{ii}, ..., R_{in}$, y el vector q_i .
- La mayoría de las veces se requiere $R_{ii}>0$, esto hace que Q y R sean únicos.

Descomposición QR

Dado lo anterior entonces podemos factorizar a A como:

$$A = QR$$

- Q es de dimensión $m \times n$ con columnas ortonormales $(Q^T Q = I)$
- Si A es una matriz cuadrada, entonces Q es ortogonal ($Q^TQ = QQ^T = I$).
- R es una matrix triangular superior de dimensión $n \times n$ y elementos no ceros en la diagonal.
- R es no singular (los elementos de la diagonal no son ceros).

Descomposición QR

Existen diversos métodos para realizar la factorización QR, como por ejemplo el método de Gram-Schmidt, reflexiones de Householder y rotaciones de Givens. Nosotros nos vamos a centrar en el primero.

Descomposición QR

Método de Gram-Schmidt

El método de Gram-Schmidt es un proceso que nos ayuda a encontrar bases ortogonales desde bases no ortogonales. Las bases ortogonales tienen muchas propiedades que son deseables para realizar calculos y expansiones. Como recordamos, una matrix ortogonal tiene vectores filas y columnas de largo unitario:

$$||a_n|| = \sqrt{a_n \cdot a_n} = \sqrt{a_n^\mathsf{T} a_n} = 1,$$

donde a_n es una columna linealmente independiente de una matriz y los vectores también son perpendiculares en forma ortogonal.

Método de Gram-Schmidt

El método de Gram-Schmidt encuentra proyeccions ortogonales q_n para cada vector columna a_n y así luego resta estas proyecciones de la anterior (q_j) . El vector resultante es dividido por el largo de ese vector para producir un vector unitario.

Descomposición QR

Considere una matriz A con n columnas tal que:

$$A = [a_1|a_2|\cdots|a_n]$$

El método encuentra la proyección ortogonal del primer vector columna a_1 , esto es:

$$v_1 = a_1, \qquad q_1 = \frac{v_1}{||v_1||}$$

Ya que a_1 es el primer vector columna, no existen proyecciones previas para restar. La segunda columna a_2 es restada por la proyección previa del vector columna:

$$v_2 = a_2 - proj_{v_1}(a_2) = a_2 - (a_2 \cdot q_1)q_1, \qquad q_2 = \frac{v_2}{||v_2||},$$

y así el proceso continua hasta los n vectores columna, donde cada paso incrementado k+1 se calcula como:

$$v_{k+1} = a_{k+1} - (a_{k+1} \cdot q_1)q_1 - \dots - (a_{k+1} \cdot q_k)q_k, \qquad q_{k+1} = \frac{u_{k+1}}{||u_{k+1}||}$$

Descomposición QR

La expresión $||\cdot||$ es la norma L_2 que esta definida como $\sqrt{\sum_{j=1}^m v_k^2}$. Finalmente, la descomposición (factorización) QR es:

$$A = [a_1|a_2|\cdots|a_n] = [q_1|q_2|\cdots|q_n] \begin{bmatrix} a_1 \cdot q_1 & a_2 \cdot q_1 & \cdots & a_n \cdot q_1 \\ 0 & a_2 \cdot q_2 & \cdots & a_n \cdot q_2 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_n \cdot e_n \end{bmatrix} = QR$$

- 🖥 Burden, R. L., & Faires, J. D. (2011). Numerical analysis.
- Howard, J. P. (2017). Computational Methods for Numerical Analysis with R. CRC Press.
- Banerjee, S., & Roy, A. (2014). Linear algebra and matrix analysis for statistics. Crc Pr
- Kiusalaas, J. (2013). Numerical methods in engineering with python (2nd ed.). New York: Cambridge University Press.