第二章 矩阵的分解

2.5 谱分解

1. 正规矩阵的谱分解

设A是正规矩阵,则 $\exists U \in U^{n \times n}$,满足: A = Udiag $\{\lambda_1, ..., \lambda_n\}U^H$,若令 $U = (\alpha_1, ..., \alpha_n)$,则

$$A = (\alpha_1, ..., \alpha_n) \operatorname{diag}\{\lambda_1, ..., \lambda_n\} \begin{pmatrix} \alpha_1^H \\ \alpha_2^H \\ \vdots \\ \alpha_n^H \end{pmatrix}$$
$$= \lambda_1 \alpha_1 \alpha_1^H + ... + \lambda_n \alpha_n \alpha_n^H$$
(1)

其中 α_i 是矩阵A的特征值 λ_i 所对应的单位特征向量, $\alpha_i\alpha_i^H$ 是n阶矩阵,(1)式称为A的谱分解. 由于 λ_i 可能是重根,所以上式可以化简.

设正规矩阵A有r个互异特征值 λ_1 , ..., λ_r , 特征值 λ_i 对应的代数重数是 n_i , 则 λ_i 所对应的 n_i 个单位特征 向量记为 α_i^1 , ..., $\alpha_i^{n_i}$, 则A的谱分解可写成

$$A = \sum_{j=1}^{r} \lambda_j \sum_{i=1}^{n_j} \alpha_j^i (\alpha_j^i)^H = \sum_{j=1}^{r} \lambda_j E_j,$$

其中
$$E_{j} = \sum_{i=1}^{n_{j}} \alpha_{j}^{i} (\alpha_{j}^{i})^{H}$$
, 显然, $E_{j}^{H} = E_{j} = (E_{j})^{2}$, $E_{j}E_{i} = 0$ ($i \neq j$)
$$E_{1} = \alpha_{1}\alpha_{1}^{H} + \alpha_{2}\alpha_{2}^{H}$$
,
$$E_{1}^{2} = (\alpha_{1}\alpha_{1}^{H} + \alpha_{2}\alpha_{2}^{H})(\alpha_{1}\alpha_{1}^{H} + \alpha_{2}\alpha_{2}^{H})$$

$$= \alpha_{1}\alpha_{1}^{H}\alpha_{1}\alpha_{1}^{H} + \alpha_{1}\alpha_{1}^{H}\alpha_{2}\alpha_{2}^{H} + \alpha_{2}\alpha_{2}^{H}\alpha_{1}\alpha_{1}^{H} + \alpha_{2}\alpha_{2}^{H}\alpha_{2}\alpha_{2}^{H} = \alpha_{1}\alpha_{1}^{H} + \alpha_{2}\alpha_{2}^{H} = E_{1}$$
,
$$E_{2} = \alpha_{3}\alpha_{3}^{H} + \alpha_{4}\alpha_{4}^{H} + \alpha_{5}\alpha_{5}^{H}$$
,
$$E_{1}E_{2} = (\alpha_{1}\alpha_{1}^{H} + \alpha_{2}\alpha_{2}^{H})(\alpha_{3}\alpha_{3}^{H} + \alpha_{4}\alpha_{4}^{H} + \alpha_{5}\alpha_{5}^{H}) = 0$$
.

定理1: 设n阶矩阵A有r个互异特征值 λ_1 , ..., λ_r , 特征值 λ_i 的代数重数是 n_i , 则A为正规矩阵 \Leftrightarrow 存在r个n阶矩阵 E_1 , ..., E_r , 满足:

1)
$$A = \sum_{j=1}^{r} \lambda_j E_j$$
; 2) $E_j^H = E_j = (E_j)^2$; 3) $E_j E_i =$

$$0(i \neq j); 4) \sum_{j=1}^{r} E_j = I; 5)$$
满足上述性质的 E_j 唯一;

$$6) r(E_j) = n_j.$$

证明: ⇒ :1),2),3)已证.

$$4$$
) 令 $U_j = (\alpha_j^1, ..., \alpha_j^{n_j})$, 则 $E_j = U_j U_j^H$.

于是
$$E_1 + E_2 + ... + E_r = U_1 U_1^H + U_2 U_2^H + ... +$$

$$U_r U_r^H = (U_1, U_2, ..., U_r) \begin{pmatrix} U_1^H \\ U_2^H \\ \vdots \\ U_r^H \end{pmatrix} = U U^H = I.$$

5) 现证 E_j 是唯一的. 不难证明 $E_jA = \lambda_j E_j = AE_j$, 又 若 G_j 满足1)-4), 故 G_j 满足 $G_jA = \lambda_j G_j = AG_j$, 因此 $(\lambda_i - \lambda_j)E_jG_i = \lambda_i E_jG_i - \lambda_j E_jG_i$

$$= E_j(\lambda_i G_i) - (\lambda_j E_j)G_i = E_j AG_i - E_j AG_i = 0, 因为$$

$$\lambda_i - \lambda_j \neq 0, 所以E_j G_i = 0, 于是:$$

$$E_j = E_j I = E_j \sum_{i=1}^r G_i = E_j G_j = (\sum_{i=1}^r E_i) G_j = G_j.$$

6) 因为 $E_j = U_j U_j^H$, 由上节引理知 $r(E_j) = r(U_j) = n_j$.

$$\Leftarrow : AA^{H} = \left(\sum_{j=1}^{r} \lambda_{j} E_{j}\right) \left(\sum_{j=1}^{r} \overline{\lambda_{j}} E_{j}^{H}\right) =$$

$$\sum_{i=1}^{r} \lambda_{i} \overline{\lambda_{i}} E_{i} E_{i}^{H} = \sum_{i=1}^{r} \lambda_{i} \overline{\lambda_{i}} E_{i}, \, \underline{\mathbb{I}} A^{H} A = \sum_{i=1}^{r} \lambda_{i} \overline{\lambda_{i}} E_{i},$$
所以 $AA^{H} = A^{H} A$.

正规矩阵谱分解步骤:

- 1. 求A的r个互异特征值 $\lambda_1,...,\lambda_r$;
- 2. 对每个 λ_i , 求特征子空间 $E(\lambda_i)$ 的一组标准正交基 $\alpha_i^1, ..., \alpha_i^{n_i}$,
- 3. $\diamondsuit E_i = \sum_{j=1}^{n_j} \alpha_i^j (\alpha_i^j)^H$, $\square A = \sum_{i=1}^r \lambda_i E_i$.

例: 设
$$A = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \\ -2 & 0 & 4 \end{pmatrix}$$
, 求 A 的谱分解,并求

 $\sum_{i=1}^{100} A^i$.(课本例题)

解:因A为对称阵,故正规,由 $|\lambda I - A| = \lambda^2(\lambda - A)$

5) = 0得 $\lambda_1 = 0$, (二重) $\lambda_2 = 5$.

取
$$E(0)$$
的标基为 $x_1 = \left(\frac{2}{\sqrt{5}}, 0, \frac{1}{\sqrt{5}}\right)^T, x_2 = (0,1,0)^T,$

取
$$E(5)$$
的标基为 $x_3 = \left(\frac{1}{\sqrt{5}}, 0, \frac{-2}{\sqrt{5}}\right)^T$,

$$\iiint E_1 = x_1 x_1^T + x_2 x_2^T = \begin{pmatrix} \frac{4}{5} & 0 & \frac{2}{5} \\ 0 & 1 & 0 \\ \frac{2}{5} & 0 & \frac{1}{5} \end{pmatrix}, E_2 = x_3 x_3^T =$$

$$\begin{pmatrix} \frac{1}{5} & 0 & \frac{-2}{5} \\ 0 & 0 & 0 \\ \frac{-2}{5} & 0 & \frac{4}{5} \end{pmatrix}, 所以 $A = \lambda_1 E_1 + \lambda_2 E_2$, 从而$$

$$\sum_{i=1}^{100} A^i = \left(\sum_{i=1}^{100} \lambda_1^i\right) E_1 + \left(\sum_{i=1}^{100} \lambda_2^i\right) E_2 = \left(\sum_{i=1}^{100} 5^i\right) E_2$$

$$= \frac{5^{101} - 5}{4} \begin{pmatrix} \frac{1}{5} & 0 & \frac{-2}{5} \\ 0 & 0 & 0 \\ \frac{-2}{5} & 0 & \frac{4}{5} \end{pmatrix}$$

第二章 矩阵的分解——谱分解

$$=\frac{5^{100}-1}{4}\begin{pmatrix}1&0&-2\\0&0&0\\-2&0&4\end{pmatrix}.$$

例:
$$A = \begin{pmatrix} -2i & 4 & -2 \\ -4 & -2i & -2i \\ 2 & -2i & -5i \end{pmatrix}$$
, 验证 A 是正规矩阵, 写出

A的谱分解.

解: 由于
$$A^H = \begin{pmatrix} 2i & -4 & 2 \\ 4 & 2i & 2i \\ -2 & 2i & 5i \end{pmatrix} = -A$$
, 所以 A 为反

Hermite阵, A正规.

$$|\lambda I - A| = \begin{vmatrix} \lambda + 2i & -4 & 2 \\ 4 & \lambda + 2i & 2i \\ -2 & -2i & -5i \end{vmatrix} = (\lambda + 6i)^2 (\lambda - 3i), 所以 \lambda_1 = -6i, (二重) \lambda_2 = 3i, 取 E(-6i) 的标基$$

$$为 x_1 = \left(0, \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)^T, x_2 = \left(\frac{5i}{3\sqrt{5}}, \frac{4}{3\sqrt{5}}, \frac{-2}{3\sqrt{5}}\right)^T; 取 E(3i) 的$$
标基为 $x_3 = \left(\frac{2}{3}i, -\frac{2}{3}, \frac{1}{3}\right)^T$.

2. 单纯矩阵的谱分解

设A是n阶单纯矩阵(可对角化), 特征值为 λ_1 , ..., λ_n , 对应特征向量为 α_1 , ..., α_n , 若令 $P = (\alpha_1, ..., \alpha_n)$, 则 $A = P \operatorname{diag}\{\lambda_1, ..., \lambda_n\}P^{-1}$

$$= (\alpha_1, ..., \alpha_n) \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \lambda_n \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}$$
$$= \lambda_1 \alpha_1 \beta_1 + ... + \lambda_n \alpha_n \beta_n \qquad (2)$$

其中 β_i 是 P^{-1} 的第i个行向量, $\alpha_i\beta_i$ 是n阶矩阵.

由于 $PP^{-1} = I$, 故 $\alpha_1\beta_1 + ... + \alpha_n\beta_n = I$, 由于 $PP^{-1} = I$, 故 $\beta_i\alpha_j = \delta_{ij}$. 由于 λ_i 可能是重根,所以上式可以化简.

$$A$$

$$= \lambda_1 (\alpha_{11}\beta_{11} + ... + \alpha_{1n_1}\beta_{1n_1})$$

$$+ \lambda_2 (\alpha_{21}\beta_{21} + ... + \alpha_{2n_2}\beta_{2n_2}) + ...$$

$$+ \lambda_r (\alpha_{r1}\beta_{r1} + ... + \alpha_{rn_r}\beta_{rn_r})$$

第二章 矩阵的分解——谱分解

 $= \lambda_1 E_1 + \lambda_2 E_2 + ... + \lambda_r E_r.$ 我们有以下定理: 定理2: 设n阶单纯矩阵A有r个互异特征值 λ_1 , ..., λ_r ,特征值 λ_i 的代数重数是 n_i ,则存在r个n阶矩阵 E_1 , ..., E_r ,满足:

1)
$$A = \sum_{j=1}^{r} \lambda_j E_j$$
; 2) $(E_j)^2 = E_j$; 3) $E_j E_i = 0 (i \neq j)$

4) $\sum_{j=1}^{r} E_j = I$; 5) 满足上述性质的 E_j 唯一;

$$6) r(E_j) = n_j.$$

证明: 略.

单纯矩阵谱分解步骤:

- 1. 求A的r个互异特征值 $\lambda_1,...,\lambda_r$;
- 2. 对每个 λ_i , 求特征子空间 $E(\lambda_i)$ 的一组基 α_i^1 , ..., $\alpha_i^{n_i}$;
- 3. 将所有基组成矩阵P, 求 P^{-1} . 令 P^{-1} 的行向量为 $\beta_1, ..., \beta_n$;
- 4. 按照 λ_i 的重数计算 $E_i = \sum_{j=1}^{n_i} \alpha_i{}^j \beta_i{}^j$,则 $A = \sum_{i=1}^r \lambda_i E_i$.

推论: 在定理2的条件下,设A的谱阵为 E_i , $1 \le i \le r$, 则

1)
$$E_i = \frac{1}{\varphi_i(\lambda_i)} \varphi_i(A)$$
, $i = 1, ..., r$. 其中
$$\varphi_i(\lambda) = \prod_{l=1, l \neq i}^n (\lambda - \lambda_l).$$

2) 若 $f(\lambda)$ 为任一多项式,则 $f(A) = f(\lambda_1)E_1 + f(\lambda_2)E_2 + ... + f(\lambda_r)E_r.$

特别地有 $A = \lambda_1^m E_1 + \lambda_2^m E_2 + ... + \lambda_r^m E_r$.

例:
$$\bar{\mathbf{x}}A = \begin{pmatrix} 1 & 4 & 2 \\ 0 & -3 & 4 \\ 0 & 4 & 3 \end{pmatrix}$$
的谱分解并计算 A^{100} .

解: $f_A(\lambda) = |\lambda I - A| = (\lambda - 1)(\lambda - 5)(\lambda + 5)$, 所以 $\lambda_1 = 1$, $\lambda_2 = 5$, $\lambda_3 = -5$, 特征值互异, 故A单纯. 取 $\lambda_1 = 1$ 的一个特征向量 $a_1 = (1,0,0)^T$, $\lambda_2 = 5$ 的一个特征向量 $a_2 = (2,1,2)^T$, $\lambda_3 = -5$ 的一个特征向量 $a_3 = (1, -2,1)^T$.

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & \frac{1}{5} & \frac{2}{5} \\ 0 & \frac{-2}{5} & \frac{1}{5} \end{pmatrix},$$

$$\Rightarrow \beta_1 = (1,0,-1), \beta_2 = (0,\frac{1}{5},\frac{2}{5}), \beta_3 = (0,\frac{-2}{5},\frac{1}{5}).$$

$$E_{2} = \alpha_{2}\beta_{2} = \begin{pmatrix} 0 & \frac{2}{5} & \frac{4}{5} \\ 0 & \frac{1}{5} & \frac{2}{5} \\ 0 & \frac{2}{5} & \frac{4}{5} \end{pmatrix}, E_{3} = \alpha_{3}\beta_{3} = \begin{pmatrix} 0 & \frac{-2}{5} & \frac{1}{5} \\ 0 & \frac{4}{5} & \frac{-2}{5} \\ 0 & \frac{-2}{5} & \frac{1}{5} \end{pmatrix},$$

所以A的谱分解为 $A = \lambda_1 E_1 + \lambda_2 E_2 + \lambda_3 E_3 = E_1 + 5E_2 - 5E_3$.

第二章 矩阵的分解——谱分解

因此
$$A^{100} = E_1 + 5^{100}E_2 + (-5)^{100}E_3 = E_1 + 5^{100}(E_2 + E_3).$$

命题: $E \in C^{n \times n}$ 为幂等阵, 则

- 1) E为单纯矩阵且其Jordan标准型为 $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$;
- 2) *E*的特征值只能是1或者0;
- 3) r(E) = tr(E);
- 4) $Ex = x \Leftrightarrow x \in R(E)$.

证明: 由 $E^2 = E$, 知 $\varphi(\lambda) = \lambda^2 - \lambda = \lambda(\lambda - 1)$ 将A零化, 故 $m_E(\lambda)|\lambda(\lambda - 1)$, 所以 $m_E(\lambda)$ 无重根, 且其根只能是1或者0, 故存在可逆阵P, 使 $P^{-1}EP =$ diag $\{1, ..., 1, 0, ..., 0\}$. 1)2)3)得证. 对4) x = Ex, 则 $x \in R(E)$. 反之, $x \in R(E)$, 则有x = Ey, 故 $x \in E(Ey) = E^2y = Ey = x$.

第二章 矩阵的分解——谱分解

定义: 设 $C^n = V_1 \oplus V_2$, $\forall x \in C^n$ 可唯一的分解成x = y + z, 其中 $y \in V_1$, $z \in V_2$, 此时称 $y \to x \in V_1$ 上的投影. 令 $E \in L(C^n, C^n)$, Ex = y, 称E为投影变换.

命题: E是投影变换⇔ E是幂等阵.

命题: E是投影变换⇔ E是幂等阵.

证明: \Rightarrow : 若E是投影变换, 则 $\forall x \in C^n$, 由x = y + z, 其中 $y \in V_1, z \in V_2, Ex = y$. 所以 $E^2x = E(Ex) = Ey = y = Ex$, 即 $E^2 = E$.

 \Leftarrow : 若 $E^2 = E$, 令 $V_1 = \{y | y = Ex, x \in C^n\} = R(E)$, $V_2 = \{x | Ex = 0\} = N(E)$, 则只需要证明 $C^n = V_1 \oplus V_2$, 就可以得Ex是x在R(E)上的投影变换. 下证 $C^n = V_1 \oplus V_2$.

任取 $z \in V_1 \cap V_2$, 有z = Ex, $Ez = \theta$, 这里 θ 为原点对应的向量. 则 $\theta = Ez = E^2x = Ex = z$, 所以 $V_1 \cap V_2 = \{\theta\}$,

 $\forall x \in C^n$, 有x = Ex + (I - E)x, 其中 $Ex \in V_1$, $(I - E)x \in V_2$, 所以 $C^n = V_1 \oplus V_2$.

