10

## Claims

1. A polymer comprising a repeating unit of the formula

 $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$  and  $R^5$  are independently of each other an organic substituent, especially  $C_{2^*}C_{30}$ aryl or a  $C_{2^*}C_{20}$ heteroaryl, which optionally can be substituted,  $X^1$ ,  $X^2$  and  $X^3$  are independently of each other a divalent linking group.

2. A polymer according to claim 1, wherein  $X^1$  and  $X^2$  are independently of each other a

group of the formula 
$$R^{1s}$$
 ,  $R^{1s}$  , or  $R^{1s}$  , in particula

10

15

20

25

n1, n2, n3, n4, n5, n6 and n7 are integers of 1 to 10, in particular 1 to 3,  $\mathbb{R}^6$  and  $\mathbb{R}^7$  are independently of each other H,  $\mathbb{C}_1$ - $\mathbb{C}_{18}$ alkyl,  $\mathbb{C}_1$ - $\mathbb{C}_{18}$ alkyl which is substituted by E and/or interrupted by D,  $\mathbb{C}_5$ - $\mathbb{C}_1$ - $\mathbb{C}_2$ -cycloalkyl,  $\mathbb{C}_5$ - $\mathbb{C}_1$ -cycloalkyl, which is substituted by E,  $\mathbb{C}_8$ - $\mathbb{C}_2$ - $\mathbb{C}_2$ -aryl which is substituted by E,  $\mathbb{C}_2$ - $\mathbb{C}_2$ -beteroaryl which is substituted by E,  $\mathbb{C}_2$ - $\mathbb{C}_1$ -alkonyl,  $\mathbb{C}_2$ - $\mathbb{C}_1$ -alkonyl,  $\mathbb{C}_1$ - $\mathbb{C}_1$ -alkonyl,  $\mathbb{C}_1$ - $\mathbb{C}_1$ -alkonyl,  $\mathbb{C}_1$ - $\mathbb{C}_1$ -alkonyl,  $\mathbb{C}_1$ - $\mathbb{C}_1$ -alkyl, or - $\mathbb{C}_1$ -alkyl which is substituted by E and/or interrupted by D,  $\mathbb{C}_7$ - $\mathbb{C}_2$ -aralkyl, or - $\mathbb{C}_7$ - $\mathbb{C}_7$ -aralkyl, or - $\mathbb{C}_7$ - $\mathbb{C}_7$ -aralkyl,

 $R^{9}$  and  $R^{10}$  are independently of each other  $C_{1}\text{-}C_{18}$  alkyl,  $C_{1}\text{-}C_{18}$  alkyl which is substituted by E and/or interrupted by D,  $C_{9}\text{-}C_{24}$  anyl,  $C_{6}\text{-}C_{24}$  anyl which is substituted by E,  $C_{2}\text{-}C_{20}$  heteroaryl,  $C_{2}\text{-}C_{20}$  heteroaryl which is substituted by E,  $C_{2}\text{-}C_{18}$  alkonyl,  $C_{1}\text{-}C_{18}$  alkonyl,  $C_{1}\text{-}C_{18}$  alkonyl,  $C_{1}\text{-}C_{18}$  and/or interrupted by D, or  $C_{1}\text{-}C_{29}$  aralkyl, or

 $R^9$  and  $R^{10}$  form a ring, especially a five- or six-membered ring, which may optionally be substituted by  $R^6,$ 

 $R^{16}$  and  $R^{16}$  are independently of each other H,  $C_1$ - $C_{18}$ alkyl,  $C_1$ - $C_{18}$ alkyl which is substituted by E and/or interrupted by D,  $C_6$ - $C_{24}$ aryl,  $C_6$ - $C_{24}$ aryl which is substituted by E,  $C_2$ - $C_{20}$ heteroaryl, or  $C_2$ - $C_{20}$ heteroaryl which is substituted by E,

D is -CO-, -COO-, -S-, -SO-, -SO<sub>2</sub>-, -O-, -NR<sup>25</sup>-, -SiR<sup>30</sup>R<sup>31</sup>-, -POR<sup>32</sup>-, -CR<sup>23</sup>=CR<sup>24</sup>-, or -C=C-, and

 $\bar{\epsilon}$  is -OR<sup>29</sup>, -SR<sup>29</sup>, -NR<sup>25</sup>R<sup>28</sup>, -COR<sup>28</sup>, -COOR<sup>27</sup>, -CONR<sup>25</sup>R<sup>26</sup>, -CN, -OCOOR<sup>27</sup>, or halonen, wherein

 $R^{23}$ ,  $R^{24}$ ,  $R^{25}$  and  $R^{28}$  are independently of each other H,  $C_8$ - $C_{19}$ aryl,  $C_6$ - $C_{18}$ aryl which is substituted by  $C_1$ - $C_{18}$ alkyl,  $C_1$ - $C_{18}$ alkyl,  $C_1$ - $C_{18}$ alkyl, or  $C_1$ - $C_{18}$ alkyl which is interrupted by  $-O_7$ , or

10

15

R<sup>25</sup> and R<sup>26</sup> together form a five or six membered ring, in particular

 $R^{27}$  and  $R^{28}$  are independently of each other H,  $C_{\text{e}}\text{-}C_{18}\text{aryl}$  ,  $C_{\text{e}}\text{-}C_{18}\text{aryl}$  which is substituted by  $C_1$ - $C_{18}$ alkyl, or  $C_1$ - $C_{18}$ alkoxy,  $C_1$ - $C_{18}$ alkyl, or  $C_1$ - $C_{18}$ alkyl which is interrupted by -O-,

 $R^{29}$  is H,  $C_6$ - $C_{18}$ aryl,  $C_6$ - $C_{18}$ aryl, which is substituted by  $C_1$ - $C_{18}$ alkyl,  $C_1$ - $C_{18}$ alkoxy,  $C_1$ -C<sub>18</sub>alkyl, or C<sub>1</sub>-C<sub>18</sub>alkyl which is interrupted by -O-.

 $R^{30}$  and  $R^{31}$  are independently of each other  $C_1\text{-}C_{18}alkyl,\,C_6\text{-}C_{18}aryl,\,or\,C_8\text{-}C_{18}aryl,$ which is substituted by C1-C18alkyl, and

 $R^{32}$  is  $C_1$ - $C_{18}$ alkyl,  $C_6$ - $C_{18}$ aryl, or  $C_8$ - $C_{18}$ aryl, which is substituted by  $C_1$ - $C_{18}$ alkyl.

A polymer according claim 1 or 2, wherein R1 and R2 are independently of each other 3. H,  $C_1$ - $C_{18}$ alkyl,  $C_1$ - $C_{18}$ alkyl which is substituted by E and/or interrupted by D,  $C_2$ - $C_{18}$ alkenyl,  $C_2$ - $C_{18}$ alkynyl,  $C_1$ - $C_{18}$ alkoxy,  $C_1$ - $C_{18}$ alkoxy which is substituted by E and/or

interrupted by D.  $C_{20}$ heteroaryl, which optionally can be substituted, especially a group of the formula

wherein m1, m2, m3, m4, m5, m6 and m7 are integers of 1 to 10, in particular 1 to 3,  $X^6$  is H,  $C_1$ - $C_{18}$ alkyl,  $C_1$ - $C_{18}$ alkyl which is substituted by E and/or interrupted by D,  $C_6$ -

C30aryl, which optionally can be substituted, especially

10

10

15

 $C_{18}$ alkoxy,  $C_1$ - $C_{18}$ alkoxy which is substituted by E and/or interrupted by D, or  $C_7$ - $C_{78}$ aralkyl.

 $X^4$  is  $C_1$ - $C_1$ ealkyl,  $C_1$ - $C_1$ ealkyl which is substituted by E and/or interrupted by D,  $C_6$ - $C_2$ earyl, which optionally can be substituted,

 $X^5$  is  $C_1$ - $C_{18}$ alky1,  $C_8$ - $C_{24}$ ary1,  $C_8$ - $C_{24}$ ary1 substituted by - $OC_1$ - $C_{18}$ alky1 or - $OC_8$ - $C_{24}$ ary1,  $R^{11}$ ,  $R^{12}$  and  $R^{13}$  are independently of each other H,  $C_1$ - $C_{18}$  alky1,  $C_1$ - $C_{18}$ alky1 which is substituted by E and/or interrupted by D,  $C_8$ - $C_{24}$ ary1,  $C_8$ - $C_{24}$ ary1 which is substituted by E,  $C_2$ - $C_{18}$ alkyny1,  $C_1$ - $C_{18}$ alkyny1,  $C_1$ - $C_{18}$ alkoxy,  $C_1$ - $C_{18}$ alkoxy which is substituted by E and/or interrupted by D, or  $C_7$ - $C_{25}$ aralky1, and

D, E, R<sup>6</sup>, R<sup>7</sup>, R<sup>8</sup>, R<sup>9</sup>, R<sup>10</sup>, R<sup>14\*</sup> and R<sup>15\*</sup> are as defined in claim 2.

4. A polymer according to any of claims 1 to 3, comprising a co-monomer T which is

 $R^{16}$  is H.  $C_6\text{-}C_{18}$ aryl,  $C_6\text{-}C_{18}$ aryl which is substituted by  $C_1\text{-}C_{18}$ alkyl,  $C_1\text{-}C_{18}$ alkyl,  $C_7\text{-}C_{25}$ aralkyl, or  $C_1\text{-}C_{18}$ alkyl which is interrupted by –O-, p is an integer from 1 to 10, especially 1, 2 or 3,

10

5

10

15

20

25

q is an integer from 1 to 10, especially 1, 2 or 3, s is an integer from 1 to 10, especially 1, 2 or 3, R<sup>6</sup>, R<sup>7</sup>, R<sup>8</sup>, R<sup>9</sup> and R<sup>10</sup> are as defined in claim 2, or R<sup>9</sup> and R<sup>10</sup> together form a five or six membered ring that is substituted by R<sup>6</sup>, R<sup>9</sup> and R<sup>10</sup> together form a group of formula =CR<sup>100</sup>R<sup>101</sup>, wherein R<sup>100</sup> and R<sup>101</sup> are independently of each other H, C<sub>1</sub>-C<sub>16</sub>alkyl, C<sub>1</sub>-C<sub>16</sub>alkyl which is substituted by E and/or interrupted by D, C<sub>8</sub>-C<sub>24</sub>aryl, C<sub>8</sub>-C<sub>24</sub>aryl which is substituted by E, and R<sup>15</sup> are independently of each other H, C<sub>1</sub>-C<sub>16</sub>alkyl, C<sub>1</sub>-C<sub>16</sub>alkyl which is substituted by E and/or interrupted by D, C<sub>8</sub>-C<sub>24</sub>aryl, C<sub>8</sub>-C<sub>24</sub>aryl which is substituted by E and/or interrupted by D, C<sub>8</sub>-C<sub>24</sub>aryl, C<sub>8</sub>-C<sub>24</sub>aryl which is substituted by E, or C<sub>2</sub>-C<sub>20</sub>heteroaryl, C<sub>2</sub>-C<sub>20</sub>heteroaryl which is substituted by E.

 A polymer according to any of claims 1 to 3, comprising repeating units of formula la or lb, wherein R<sup>1</sup> is a group of formula

wherein R2 is H.

 $R^6$  and  $R^7$  are independently of each other H,  $C_1$ - $C_{12}$ alkyl,  $C_5$ - $C_{12}$ cycloalkyl, especially cyclohexyl,  $C_6$ - $C_{24}$ aryl, especially phenyl, naphthyl, or biphenyl, which can be substituted by -O- $C_1$ - $C_{12}$ alkyl, or  $C_1$ - $C_1$ 6alkoxy,

 $R^{8}$  is  $C_{1}\text{-}C_{18}\text{alkyl},\,C_{1}\text{-}C_{18}\text{alkyl}$  interrupted by one or two oxygen atoms, or  $C_{6}\text{-}C_{12}\text{aryl},$  which optionally can be substituted by  $C_{1}\text{-}C_{12}\text{alkyl},\,$  or  $C_{1}\text{-}C_{12}\text{alkoxy},\,$   $R^{9}$  and  $R^{10}$  are independently of each other H,  $C_{1}\text{-}C_{12}\text{alkyl},\,$  or  $C_{1}\text{-}C_{12}\text{alkoxy},\,$   $R^{9}$  and  $R^{10}$  are independently of each other  $C_{1}\text{-}C_{18}\text{alkyl},\,$  especially  $C_{4}\text{-}C_{12}\text{alkyl},\,$  which can be interrupted by one or two oxygen atoms, and  $X^{1}$  and  $X^{2}$  are as defined in claim 1.

 A polymer according to claim 5, comprising a co-monomer T which is selected from the group consisting of

-P8-is C1-C18alkyl,

 $R^9$  and  $R^{10}$  are independently of each other  $C_1\text{-}C_{18}\text{alkyl},$  especially  $C_4\text{-}C_{12}\text{alkyl},$  which can be interrupted by one or two oxygen atoms, or

 $\mbox{\ensuremath{\mbox{R}^9}}$  and  $\mbox{\ensuremath{\mbox{R}^{10}}}$  form a five or six membered carbocyclic ring, which optionally can be substituted by C1-C8alkyl.

10

15

5

A polymer according to claim 1, comprising a repeating unit of formula 7.

$$\begin{array}{c|c}
 & R^1 \\
 & N \\
 & N$$

x.is.in.the range of 0.005 to 1, especially 0.4 to 0.6, and y is in the range of 0.995 to 0, especially 0.6 to 0.4, wherein the sum of x and y is 1,

R1 is a group of formula

especially

5

10

wherein  $X^6$  is H,  $C_1$ - $C_{18}$ alkyl, cyclohexyl, or  $C_1$ - $C_{18}$ alkoxy,  $R^2$  is H.

X1 and X2 are independently of each other a group of formula

T is a group of formula  $R^{9^{\circ}}$   $\hat{R}^{10}$  , wherein s is one or two, and  $R^{9}$  and  $R^{10}$  are independently of each other  $C_1$ - $C_1$ ealkyl, especially  $C_4$ - $C_1$ ealkyl, which can be interrupted by one or two oxygen atoms, and

 $R^6$  and  $R^7$  are independently of each other H,  $C_1\text{-}C_{12}$ alkyl,  $C_6\text{-}C_{12}$ cycloalkyl, such as cyclohexyl,  $C_6\text{-}C_{24}$ aryl, especially phenyl, naphthyl, or biphenyl, which can be substituted by  $-O\text{-}C_1\text{-}C_{12}$ alkyl, or  $C_1\text{-}C_1$ salkoxy.

8. A polymer according to claim 1, comprising a repeating unit having the formula IIa, IIb

15 or IIc, wherein X3 is a group of the formula

, wherein the dotted line represent the bond to the

pyrimidine ring,

5

10

15

20

R3, R4 and R5 are as defined in claim 1,

 $R^{56}$  and  $R^{57}$  are independently of each other H,  $C_1 - C_{16} a \| x_j \|$ ,  $C_1 - C_{16} a \| x_j \|$  which is substituted by E and/or interrupted by D,  $C_3 - C_{12} c y c | c a \| x_j \|$ , which is substituted by E,  $C_6 - C_{24} a r y_j \|$ ,  $C_6 - C_{24} a r y_j \|$  which is substituted by E,  $C_2 - C_{26} a | c a \| x_j \|$  which is substituted by E,  $C_2 - C_{26} a | c a \| x_j \|$ ,  $C_1 - C_{16} a | c a \| x_j \|$ ,  $C_1 - C_{16} a | c a \| x_j \|$ , and/or interrupted by D, or  $C_7 - C_{25} a r a | c a \| x_j \|$ , and/or interrupted by D,  $C_8 - C_{24} a r y_j \|$ , or  $C_7 - C_{25} a r a | c a \| x_j \|$ , or  $C_7 - C_{25} a r a | c a \| x_j \|$ , or  $C_7 - C_{25} a r a | c a \| x_j \|$ , or  $C_7 - C_{25} a r a | c a \| x_j \|$ , or  $C_7 - C_{25} a r a | c a \| x_j \|$ , or  $C_7 - C_{25} a r a | c a \| x_j \|$ , or  $C_7 - C_{25} a r a | c a \| x_j \|$ , or  $C_7 - C_{25} a r a | c a \| x_j \|$ , or  $C_7 - C_{25} a r a | c a \| x_j \|$ .

 $R^{50}$  and  $R^{50}$  are independently of each other H,  $C_1$ - $C_{16}$  alkyl,  $C_1$ - $C_{16}$ alkyl which is substituted by E and/or interrupted by D,  $C_6$ - $C_{24}$ aryl,  $C_6$ - $C_{24}$ aryl which is substituted by E,  $C_2$ - $C_{20}$ heteroaryl,  $C_2$ - $C_{20}$ heteroaryl which is substituted by E,  $C_2$ - $C_{16}$ alkenyl,  $C_2$ - $C_{16}$ alkoxy,  $C_1$ - $C_{16}$ alkoxy which is substituted by E and/or interrupted by D, or  $C_7$ - $C_{26}$ aralkyl, or

 $R^{59}$  and  $R^{50}$  form a ring, especially a five- or six-membered ring,  $R^{71}$  is H, C<sub>1</sub>-C<sub>18</sub>alkyl, -C=N, -CONR<sup>25</sup>R<sup>28</sup> or -COOR<sup>27</sup>.

D is -CO-; -COO-; -OCOO-; -S-; -SO-; -SO<sub>2</sub>; -O-; -NR<sup>25</sup>-; -SiR<sup>30</sup>R<sup>31</sup>-; -POR<sup>32</sup>-; -CR<sup>22</sup>=CR<sup>24</sup>-; or -C≡C-; and

E is -OR<sup>28</sup>; -SR<sup>28</sup>; -NR<sup>25</sup>R<sup>26</sup>; -COR<sup>28</sup>; -COOR<sup>27</sup>; -CONR<sup>25</sup>R<sup>26</sup>; -CN; -OCOOR<sup>27</sup>; or halogen; wherein

 $R^{23}$ ,  $R^{24}$ ,  $R^{25}$  and  $R^{26}$  are independently of each other H;  $C_6$ - $C_{16}$ aryl;  $C_6$ - $C_{16}$ aryl which is substituted by  $C_1$ - $C_{16}$ alkyl,  $C_1$ - $C_{16}$ alkoxy;  $C_1$ - $C_{16}$ alkyl; or  $C_1$ - $C_{16}$ alkyl which is interrupted by  $-C_7$ : or

25 R<sup>25</sup> and R<sup>26</sup> together form a five or six membered ring, in particular

15

 $R^{27}$  and  $R^{28}$  are independently of each other H;  $C_6{\cdot}C_{18}$ aryl;  $C_9{\cdot}C_{18}$ aryl which is substituted by  $C_1{\cdot}C_{18}$ alkyl, or  $C_1{\cdot}C_{18}$ alkyl; or  $C_1{\cdot}C_{18}$ alkyl; or  $C_1{\cdot}C_{18}$ alkyl; which is interrupted by  $-C_1$ , and

 $R^{29}$  is H;  $C_6$ -C<sub>18</sub>aryl;  $C_6$ -C<sub>18</sub>aryl which is substituted by C<sub>1</sub>-C<sub>18</sub>alkyl, C<sub>1</sub>-C<sub>18</sub>alkoxy; C<sub>1</sub>-C<sub>18</sub>alkyl; or C<sub>1</sub>-C<sub>18</sub>alkyl which is interrupted by –O-,  $R^{30} \text{ and } R^{31} \text{ are independently of each other C}_1$ -C<sub>18</sub>alkyl,  $C_6$ -C<sub>18</sub>aryl, or C<sub>6</sub>-C<sub>18</sub>aryl,

which is substituted by C1-C18alkyl, and

 $R^{32} \text{ is } C_1\text{-}C_{18}\text{alkyl}, \, C_8\text{-}C_{18}\text{aryl}, \, \text{or } C_8\text{-}C_{18}\text{aryl}, \, \text{which is substituted by } C_1\text{-}C_{18}\text{alkyl}.$ 

4 A polymer according to claim 8, wherein R³, R⁴ and R⁵ are independently of each other H, C₁-C₁<sub>8</sub> alkyl, C₁-C₁<sub>8</sub> alkyl which is substituted by E and/or interrupted by D, C₂-C₁<sub>8</sub> alkenyl, C₂-C₁<sub>8</sub> alkonyl, C₁-C₁<sub>8</sub> alkoxy, C₁-C₁<sub>8</sub> alkoxy which is substituted by E and/or

interrupted by D, 
$$R^{65}$$
,  $X^4$ ,  $X^4$ ,  $R^{65}$ ,  $R^$ 

R<sup>57</sup> m1 X<sup>6</sup>

R<sup>57</sup> R<sup>57</sup> R<sup>57</sup> X<sup>6</sup>

, especially

10

15

m1, m2, m3, m4, m5, m6 and m7 are integers of 1 to 10, in particular 1 to 3,  $X^6$  is H,  $C_1$ - $C_{18}$ alkyl,  $C_1$ - $C_{18}$ alkyl,  $C_1$ - $C_{18}$ alkyl which is substituted by E and/or interrupted by D,  $C_6$ - $C_{24}$ aryl, which can optionally be substituted,

R<sup>50</sup> R<sup>71</sup>

N C<sub>2</sub>-C<sub>18</sub>alkenyl, C<sub>2</sub>-C<sub>18</sub>alkynyl, C<sub>1</sub>-C<sub>18</sub>alkoxy, C<sub>1</sub>-C<sub>18</sub>alkoxy which is

substituted by E and/or interrupted by D, or  $C_7$ - $C_{25}$ aralkyl,  $X^4$  is  $C_1$ - $C_{16}$ alkyl,  $C_1$ - $C_{16}$ alkyl which is substituted by E and/or interrupted by D,  $C_6$ - $C_{24}$  aryl, or  $C_2$ - $C_{20}$ heteroaryl, which can optionally be substituted,  $X^{(1)}$  in  $C_2$ - $C_{20}$  betteroaryl, which can optionally be substituted by

 $\label{eq:X5} \textbf{X}^5 \textbf{is C}_1\textbf{-C}_{18}\textbf{alkyl}, \textbf{C}_6\textbf{-C}_{24}\textbf{aryl}, \text{ or } \textbf{C}_2\textbf{-C}_{20} \textbf{heteroaryl}, \text{ which can optionally be substituted by } \textbf{-OC}_1\textbf{-C}_{18}\textbf{alkyl} \text{ or } \textbf{-OC}_6\textbf{-C}_{24}\textbf{aryl},$ 

15

 $R^{s_1}$ ,  $R^{s_2}$  and  $R^{s_3}$  are independently of each other H,  $C_1$ - $C_1$ salkyl,  $C_1$ - $C_1$ salkyl which is substituted by E and/or interrupted by D,  $C_6$ - $C_2$ 4aryl,  $C_6$ - $C_2$ 4aryl which is substituted by E,  $C_2$ - $C_1$ salkenyl,  $C_2$ - $C_1$ salkynyl,  $C_1$ - $C_1$ salkoxy,  $C_1$ - $C_1$ salkoxy which is substituted by E and/or interrupted by D, or  $C_7$ - $C_2$ saralkyl,

 $R^{sa}$  and  $R^{ss}$  are independently of each other H,  $C_1 \cdot C_{18}$  alkyl,  $C_1 \cdot C_{18}$  alkyl which is substituted by E and/or interrupted by D,  $C_6 \cdot C_{24}$  anyl,  $C_6 \cdot C_{24}$  anyl which is substituted by E, or  $C_2 \cdot C_{20}$  heteroaryl,  $C_2 \cdot C_{20}$  heteroaryl which is substituted by E, and D, E,  $R^{ss}$ ,  $R^{ss}$ ,  $R^{ss}$  and  $R^{so}$  are as defined in claim 8.

10 10. A polymer according to claim 8 or 9, comprising a co-monomer T which is selected

10

wherein p is an integer from 1 to 10, especially 1, 2 or 3, q is an integer from 1 to 10, especially 1, 2 or 3, s is an integer from 1 to 10, especially 1, 2 or 3,

s is an integer from 1 to 10, especially 1, 2 to 3,  $R^{72} \text{ is H, C}_6\text{-C}_{18}\text{aryl, C}_6\text{-C}_{18}\text{aryl, which is .substituted by C}_1\text{-C}_{18}\text{alkyl, or C}_1\text{-C}_{18}\text{alkyl, or C}_{17}\text{-C}_{18}\text{alkyl, or$ 

 $R^{100}$  and  $R^{101}$  are independently of each other H,  $C_1$ - $C_1$ ealkyl,  $C_1$ - $C_1$ ealkyl which is substituted by E and/or interrupted by D,  $C_6$ - $C_2$ 4aryl,  $C_6$ - $C_2$ 4aryl which is substituted by E, or  $C_2$ - $C_2$ 0heteroaryl, or  $C_2$ - $C_2$ 0heteroaryl which is substituted by E, wherein E and D are defined as in claim 8.

5

10

15

 A polymer according to any of claims 8 to 10, comprising a repeating unit of formula Ilb, especially a repeating unit of formula Ila, or Ilc, and a co-monomer T, wherein

 $X^3$  is a group of the formula , wherein the dotted line represent the bond to the pyrimidine ring and  $R^{71}$  is H, alkyl, -C=N, or -COOR $^{27}$ , wherein  $R^{27}$  is H, or C<sub>1</sub>-C<sub>18</sub>alkyl; which optionally can be interrupted by one or more oxygen atoms, especially  $C_4$ -C<sub>18</sub>alkyl, which can be interrupted by one or two oxygen atoms,

R3, R4, and R5 are independently of each other H,

T is a group of formula

, wherein R59 and R60 are independently of

each other  $C_1$ - $C_{16}$ alkyl, especially  $C_4$ - $C_{12}$ alkyl, which can be interrupted by one or two

- An optical device or a component therefore, comprising a substrate and a polymer according to any of claims 1 to 11.
- 5 13. An optical device according to claim 12, wherein the optical device comprises an electroluminescent device.
  - An optical device according to claim 13, wherein the electroluminescent device comprises
- (a) a charge injecting layer for injecting positive charge carriers,
  - (b) a charge injecting layer for injecting negative charge carriers,
  - (c) a light-emissive layer located between the layers (a) and (b) comprising a polymer according to any of claims 1 to 11.
- 15 15. A monomer of the formula

$$X^{1}$$
 $X^{2}$ 
 $X^{1}$ 
 $X^{2}$ 
 $X^{2}$ 
 $X^{1}$ 
 $X^{2}$ 
 $X^{2}$ 
 $X^{1}$ 
 $X^{2}$ 
 $X^{2}$ 
 $X^{1}$ 
 $X^{2}$ 
 $X^{2$ 



wherein

5

10

R¹, R², R³, R⁴ and R⁵ are independently of each other an organic substituent, especially C₂-C₃₀aryl or a C₂-C₂₀heteroaryl, which optionally can be substituted, X¹, X², and X³ are independently of each other a divalent linking group, and X¹¹ is independently in each occurrence a halogen atom, or -B(OH)₂, -B(OY¹)₂ or

 $-B \underset{Q}{\overset{Q}{\searrow}}^{2} \underset{\text{, wherein Y}^{1} \text{ is independently in each occurrence a $C_{1}\text{-}C_{10}\text{alkyl}$ group and $Y^{2}$ is independently in each occurrence a $C_{2}\text{-}C_{10}\text{alkylene}$ group, such as <math display="block">-CY^{3}Y^{4}.CY^{5}Y^{6}, \text{ or } -CY^{7}Y^{8}.CY^{8}Y^{10}.CY^{11}Y^{12}, \text{ wherein Y}^{3}, Y^{4}, Y^{5}, Y^{6}, Y^{7}, Y^{8}, Y^{9}, Y^{10}, Y^{11}\text{ and } Y^{12}$ are independently of each other hydrogen, or a $C_{1}\text{-}C_{10}\text{alkyl}$ group, especially <math display="block">-C(CH_{3})_{2}C(CH_{3})_{2}, \text{ or } -C(CH_{3})_{2}CH_{2}C(CH_{3})_{2}\text{- with the proviso that 2-phenyl-4,6-bis(p-bromophenyl)pyrimidine and 2.4,6-tris(p-bromophenyl)pyrimidine are excluded.}$