1. 例 1 求
$$\theta$$
, 使复数 $z = \cos 2\theta + (\tan^2 \theta - \tan \theta - 2)i$ 是: (1) 实数. (2) 纯虚数. (3) 零. 解 (1) 由 $\tan^2 \theta - \tan \theta - 2 = 0$, 得 $\tan \theta = -1$, $\tan \theta = 2$, $\theta = k\pi - \frac{\pi}{4}$, $\theta = k\pi + \arctan 2(k \in \mathbf{Z})$. (2) 由
$$\begin{cases} \cos 2\theta = 0, \\ (\tan \theta - 2)(\tan \theta + 1) \neq 0, \end{cases}$$

得
$$\begin{cases} \cos^2 \theta - \sin^2 \theta = 0, \\ (\tan \theta - 2)(\tan \theta + 1) \neq 0, \end{cases}$$
 即
$$\begin{cases} \tan \theta = \pm 1, \\ (\tan \theta - 2)(\tan \theta + 1) \neq 0, \end{cases}$$
 即
$$\begin{cases} \tan \theta = \pm 1, \\ (\tan \theta - 2)(\tan \theta + 1) \neq 0, \end{cases}$$
 即
$$\begin{cases} \tan \theta = \pm 1, \\ (\tan \theta - 2)(\tan \theta + 1) \neq 0, \end{cases}$$
 即
$$\begin{cases} \tan \theta = \pm 1, \\ (\tan \theta - 2)(\tan \theta + 1) = 0, \end{cases}$$
 即
$$\tan \theta = -1, \quad \theta = k\pi - \frac{\pi}{4}(k \in \mathbf{Z}).$$
 (3)

- 2. 复数和几何意义. 引进了"复平面"的概念以后, 复数 $z = a + bi(a, b \in \mathbf{R})$ 有两个几何意义: (1) 复数 $z = a + bi(a, b \in R)$ 与复平面上的点 (a, b) 以一一对应. (2) 非零复数 $z = a + bi(a, b \in \mathbf{R}, a^2 + b^2 \neq 0)$ 与复 平面上自原点出发, 以点 Z(a,b) 为终点的向量 \overrightarrow{OZ} ——对应. 需要特别说明的是, 非零复数和复平面上的向 量并不是一一对应的, 这是因为向量具有"可平移性", 这就是说, 两个方向一致、长度相等的向量是相等的.
- 3. 两个复数相等的条件. 两个复数 $z_1 = a + bi(a, b \in R)$ 和 $z_2 = c + di(c, d \in R)$, 我们规定: $z_1 = z_2 \Leftrightarrow \begin{cases} a = c, \\ b = d. \end{cases}$

特别地, 有 $a + bi = 0 \Leftrightarrow \begin{cases} a = 0, \\ b = 0 \end{cases}$ $(a, b \in \mathbf{R}).$

4. 已知实数 a, x, y 满足 $a^2 + (2+i)a + 2xy + (x-y)i = 0$, 则点 (x, y) 的轨迹是 ().

A. 直线

解将题设之式整理得 $a^2+2a+2xy+(a+x-y)i=0.$ $\begin{cases} a^2+2a+2xy=0, \\ a+x-y=0. \end{cases}$ 由②,得 a=y-x, 代入①,得 $(y-x)^2+2(y-x)+2xy=0$ 即 $x^2+y^2-2x+2y=0, (x-1)^2+(y+1)^2=2.$ 故应选 (C).

代入① , 得 $(y-x)^2 + 2(y-x) + 2xy = 0$ 即 $x^2 + y^2 - 2x + 2y$

【训练题】

5. 若 $x, y \in \mathbf{R}$, 则 "x = 0" 是 "x + yi 为纯虚数"的 (

A. 充分不必要条件

- B. 必要不充分条件
- C. 充要条件
- D. 既不充分也不必要条

6. 复数 $a + bi(a, b \in R)$ 在复平面内的对应点在虚轴上的一个充要条件是(

A. a = 0

B. $b \neq 0$

C. ab = 0

7. 下列结论中, 正确的是(

	与虚轴的公共点	是实数,虚数的共轭复数	所有向量所组成的集合是	
		一定是虚数	一一对应的. (1)) 若使得	
			实数 x 对应于纯虚数 xi,	
			则实数集 R 与纯虚数集	
			是一一对应的.	
		8	. 复平面内, 若复数 z =	
			$m^2(1 + i) - m(4 + i) -$	
			6i 所对应的点在第二象	
			限,则实数 m 的取值范	
			围是 (). (A)(0, 3).	
			(B)(-2.0). (C)(3, 4)	
9. 由方程 $ z ^2 - 8 z + 15 = 0$ 所确定的复数在复平面内对应点的轨迹是 ().				
	A. 四个点	B. 四条直线	C. 一个圆	D. 两个圆
10.	已知集合 $M = \{1, 2, (m^2 - 3)\}$	$(3m-1) + (m^2 - 5m + 6)i, r$	$n \in \mathbf{R}$ }, $N = \{-1, 3\}$ 满足 I	$M \cap N \neq \emptyset$, 则 m 等于
	().			
	A. 0 或 3	B1 或 3	C1 或 6	D. 3
11.	若复数 $z = 2m^2 - 3m - 2 +$	$(m^2 - 3m + 2)$ i 是纯虚数, J	则实数 m 的值为 ().	
	A. 1 或 2	B. $-\frac{1}{2}$ 或 2	C. $-\frac{1}{2}$	D. 2
12.	复平面内, 正方形的三个顶点	以对应的复数分别是 $1+2i$, 0	, -2 + i, 则第四个顶 点所对	应的复数为 ().
	A. $3 + i$	B. $3 - i$	C. $1 - 3i$	D. $-1 + 3i$
13.	判断下列命题的真假: (1)x1	$+y_1i = x_2 + y_2i$ 的充要条件	是 $x_1 = x_2$,且 $y_1 = y_2$.). (2) 任意两个复数都
	不能比较大小.(). (3) 若	$x, y \in \mathbf{R}$, 且 $x = y$, 则 $(x - y)$	y) + (x + y)i 是纯虚数.().
14.	(1) 已知复数 $z = \frac{a^2 + a - 2a^2}{a - 3a^2}$	$\frac{2}{a^2} + (a^2 - 4a + 3)i(a \in R).$	① 若 $z \in \mathbf{R}$, 则 $a = $; ② 若 z 是纯虚数,
	则 $a=3$ 则 $a=$			
	纯虚数, 则 $\theta =$ (3) 已知复数 $z = (\tan^2 \theta + \tan \theta - 2) + \mathrm{i}(\cos^2 \theta - \sin^2 \theta)$. ① 当 $\theta =$			
	时, z 为实数; ② 当 θ =	时, z 为纯虚数; ③	当 $\theta =$ 时, $z = 0$. (4) 复平面内, 若复数
	$z = (m^2 - m - 2) + (m^2 - 3)$	m+2)i 所对应的点在虚轴上	二 , 则实数 <i>m</i> 的值等于	(5) 复平面内, 若
	复数 $(m^2 - 8m + 15) + (m^2$	- 5m - 14)i 所对应的点位 ⁻	于第四象限, 则实数 m 的取 $f m$	直范围是
15.	(1) 满足 $ \log_3 x + 4i = 5$ 自	的实数 x 的值是	. (2) 复平面内, 已知复数 z	$x = x - \frac{1}{2}$ i 所对应的点
	都在单位圆内, 则实数 x 的			
			2	

A. 复平面内, 原点是实轴 B. 实数的共轭复数一定 C. 复数集 C 与复平面内 D. $(-\infty, -2)$

是_______. (4) 若复数 z = (x-1) + (2x-1)i 的模小于 $\sqrt{10}$ 可, 则实数 x 的取值范围是_______. (5) 若复数 $z = \cos \alpha + i(1 - \sin \alpha)$, 则 |z| 的取值范围是

- 16. (1) 若复数 $z_1 = 1 \mathrm{i} r \sin \alpha$ 与 $z_2 = r \cos \alpha \sqrt{3} \mathrm{i} (r > 0)$ 相等, 则 $z_1 =$ _____. (2) 已知 $z_1 = \sin 2\theta + i \cos \theta$, $z_2 = \cos \theta - \sqrt{3} \sin \theta (0 \le \theta < \pi)$. ① 若 $z_1 = z_2$, 则 $\theta =$ _______; ② 若 $z_1 = \overline{z_2}$, 则 $\theta =$ ______.
- 17. 根据下列条件, 求复数 z: $(1)z + |\overline{z}| = 2 + i$. (2)z 2|z| = -7 + 4i.
- 18. 已知复数 $z = \frac{x^2 3x + 2}{x + 3} + (x^2 + 2x 3)$ i, 求实数 x, 使: (1)z 是实数. (2)z 是虚数. (3)z 是纯虚数.
- 19. 若 $\cos 2\theta + i(1 \tan \theta)$ 是纯虚数, 则 θ 的值取 ().

A.
$$k\pi - \frac{\pi}{4}(k \in \mathbf{Z})$$

B.
$$k\pi + \frac{\pi}{4}(k \in \mathbf{Z})$$

C.
$$k\pi \pm \frac{\pi}{4} (k \in \mathbf{Z})$$

A.
$$k\pi - \frac{\pi}{4}(k \in \mathbf{Z})$$
 B. $k\pi + \frac{\pi}{4}(k \in \mathbf{Z})$ C. $k\pi \pm \frac{\pi}{4}(k \in \mathbf{Z})$ D. $\frac{k\pi}{2} + \frac{\pi}{4}(k \in \mathbf{Z})$

20. 方程 3z + |z| = 1 - 3i 的解是 ().

B.
$$-i$$

C.
$$\frac{3}{4} - 6$$

D.
$$-i$$
 和 $\frac{3}{4} - i$

21. 若虚数 $(x-2)+yi(x,y\in\mathbf{R})$ 的模为 $\sqrt{3}$, 则 $\frac{y}{x}$ 的最大值是 ().

A.
$$\frac{\sqrt{3}}{2}$$

B.
$$\frac{\sqrt{3}}{3}$$

C.
$$\frac{1}{2}$$

D.
$$\sqrt{3}$$

- 22. 设复数 $z = \log_2(\cos\alpha + \frac{1}{2}) + i\log_2(\sin\alpha + \frac{1}{2})$,求 α ,使: (1)z 为实数. (2)z 为纯虚数. (3)z 在复平面内的对 应点在第二象限. (4)z 的实部与虚部相等.
- 23. 根据条件, 在复平面内画出复数对应点的集合所表示的图形: $(1)1 \le |R(z)| \le 2(R(z))$ 表示 Z 的实部). $(2)1 \le$ $|z| \le 2$ 且 I(z) < 0(I(z) 表示 z 的虚部).
- 24. 已知两个复数集 $M = \{z | z = t + (1 t^2)i, t \in R\}$ 及 $N = \{z | z = 2\cos\theta + (\lambda + 3\sin\theta)i, \lambda \in R, \theta \in R\}$ 的 交集为非空集合, 求 λ 的取值范围. 二、复数的运算【典型题型和解题技巧】高中数学中, 复数的综合性特别 强, 它把代数、三角和几何自然地揉合在一起. 本单元中, 解有关的复数问题主要有以下几类:
- 25. 应用复数的代数形式解题. 复数 $z=x+y\mathrm{i}(x,y\in R)$ 称为复数的代数形式, 利用复数的代数形式是解复数问 题最基本的方法, 因此也是最重要的方法.
- 26. 已知 $\frac{z}{z-1}$ 是纯虚数, 求复数 z 在复平面内对应点的轨迹的普通方程. 解设 $z=x+yi(x,y\in\mathbf{R})$, 则 $\frac{z}{z-1}=\frac{x+yi}{(x-1)+yi}=\frac{(x+yi)[(x-1)-yi]}{(x-1)^2+y^2}=\frac{x(x-1)+y^2+[y(x-1)-xy]i}{(x-1)^2+y^2}$ _____= $\frac{x(x-1)+y^2-yi}{(x-1)^2+y^2}$. $\frac{z}{z-1}$ 是纯虚数, $\begin{cases} x(x-1)+y^2=0, \\ y\neq 0. \end{cases}$ 即复数 z 在复平面内对应点的轨迹方程是圆 (除两点), $(x-\frac{1}{2})^2+(x-1)^2=0$ $y^2 = \frac{1}{4}(y \neq 0).$
- 27. 应用复数运算的几何意义解题. (1) 应用 $|z_1-z_2|$ 的几何意义. 设复数 z, z_1, z_2 在复平面内的对应点分别为 $P, P_1, P_2,$ 则 $|z_1 - z_2|$ 表示两点 P_1, P_2 间的距离, 特别地, |z| 表示点 P 和原点的距离.

28. 若 |z+1-i|=1, 求 |z-3+4i| 的最大值和最小值. 解由条件 |z-(-1+i)|=1, 知复数 Z 的对应点 A 在以 (-1,1) 为圆心、1 为半径的圆上运动,而 |z-3+4i|=|z-(3-4i)|, 它表示点 A 和点 B(3,-4) 的距离 (如图 1), 显然, $|BE| \leq |AB| \leq |BD|$, |z-3+4i| 的最大值和最小值分别是 $\sqrt{41}+1$ 和 $\sqrt{41}-1$.

注意设复数 z_0, z_1, z_2 在复平面内的对应点分别为 $Z_0, Z_1, Z_2,$ 则: ① $|z-z_1|=|z-z_2|$ 表示线段 Z_1Z_2 的中垂线; ② $|z-z_0|=R(R>0)$ 表示以 Z_0 为圆心, R 为半径的圆; ③ $|z-z_1|+|z-z_2|=2a(2a>|Z_1Z_2|)$ 表示以 Z_1, Z_2 为焦点, a 为半长轴的椭圆; ④ $||z-z_1|-|z-z_2||=2a(0<2a<|Z_1Z_2|)$ 表示以 Z_1, Z_2 为焦点, z_1, z_2 为焦点, z_2, z_3 为生实轴长的双曲线.

29. 已知 $|z_1| = |z_2| = 1$, $z_1 + z_2 = \frac{1}{2} + \frac{\sqrt{3}}{2}$ i, 求复数 z_1 , z_2 . 解如图,

 $z_1+z_2=rac{1}{2}+rac{\sqrt{3}}{2}i,\ z_1+z_2$ 对应于向量 \overrightarrow{OC} ,其中 $\angle COA=60^\circ$.设 \overrightarrow{OA} 对应于复数 z_1 , \overrightarrow{OB} 对应于复数 z_2 ,则四边形 AOBC 是菱形,且 $\triangle AOC$ 和 $\triangle BOC$ 都是等边三角形,于是 $z_1=1,\ z_2=-rac{1}{2}+rac{\sqrt{3}}{3}i$ 或 $z_1=-rac{1}{2}+rac{\sqrt{3}}{3}i,\ z_2=1$.注意复平面内,若非零复数 $z_1,\ z_2$ 分别对应于点 $A,\ B,\ z_1+z_2$ 对应于点 $C,\ O$ 为原 点,则:① OACB 是平行四边形;② 若 $|z_1|=|z_2|$,则 OACB 是菱形;③ 若 $|z_1+z_2|=|z_1-z_2|$,则 OACB 是矩形;④ 若 $|z_1|=|z_2|$ 且 $|z_1+z_2|=|z_1-z_2|$,则 OACB 是正方形.

- 30. 应用乘法公式解题. 应用下列两组乘法公式,将会给计算带来便利: $(1)(1+i)^2=2i, \ (1-i)^2=-2i.$ (2) 记 $\omega=-\frac{1}{2}\pm\frac{\sqrt{3}}{2}i, \ \omega_1=-\frac{1}{2}+\frac{\sqrt{3}}{2}i, \ \omega_2=-\frac{1}{2}-\frac{\sqrt{3}}{2}i, \ \text{则}\ \omega^3=1, \ \omega^2+\omega+1=0, \ \omega+\frac{1}{\omega}=-1, \ \omega_1\omega_2=1, \ \omega_1^2=\omega_2, \ \omega_2^2=\omega_1.$
- 31. 求值: $(1)(1+i)^{10} (1-i)^{10}$. $(1)\frac{(2+2i)^5}{(-1+\sqrt{3}i)^4}$. 解 (1) 原式 = $[(1+i)^2]^5 [(1-i)^2]^5 = (2i)^5 (-2i)^5 = 2^5i + 2^5i = 64i$. (2) 原式 = $\frac{(2+2i)(1+i)^4}{(-\frac{1}{2}+\frac{\sqrt{3}}{2}i)} = \frac{(2+2i)(2i)^2}{-\frac{1}{2}+\frac{\sqrt{3}}{2}i} = \frac{-8(1+i)(-\frac{1}{2}-\frac{\sqrt{3}}{2}i)}{(-\frac{1}{2}+\frac{\sqrt{3}}{2}i)(-\frac{1}{2}-\frac{\sqrt{3}}{2}i)} = 4(1+i)(1+\sqrt{3}i) = 4(1-\sqrt{3}) + 4(1+\sqrt{3})i$.
- 32. 应用复数模的运算法则解题. 容易证明, 复数模的运算有以下法则: $(1)|z|=|\overline{z}|, |z_1\cdot z_2|=|z_1|\cdot |z_2|, |\frac{z_1}{z_2}|=|\frac{z_1}{z_2}|(z_2\neq 0), |z^n|=|z|^n.$ $(2)|z|^2=z\cdot \overline{z}.$
- 33. 求复数 $z = \frac{\left(3-4\mathrm{i}\right)^3}{\left(\frac{\sqrt{3}}{2}-\frac{1}{2}\mathrm{i}\right)\cdot\left(\sqrt{3}+\sqrt{2}\mathrm{i}\right)^4}$ 的模. 解 $|z| = \frac{\left|3-4i\right|^3}{\left|\frac{\sqrt{3}}{2}-\frac{1}{2}i\right|\cdot\left|\sqrt{3}+\sqrt{2}i\right|^4} = \frac{5^3}{\left(\sqrt{5}\right)^4} = 5.$
- 34. 已知 $|z| \le 1$, $|\omega| \le 1$, 求证: $|z + \omega| \le |1 + \overline{z}\omega|$. 证明 $|z + \omega|^2 |1 + \overline{z}\omega|^2 = (z + \omega)(\overline{z} + \overline{\omega}) (1 + \overline{z}\omega)(1 + z\overline{\omega})$ $= z\overline{z} + \omega\overline{\omega} 1 z\overline{z}\omega\overline{\omega} = |z|^2 + |\omega|^2 1 |z|^2 \cdot |\omega|^2 = (|z|^2 1)(1 |\omega|^2) \le 0$. $|z + \omega|^2 \le |1 + \overline{z}\omega|^2$, 于是 $|z + \omega| \le |1 + \overline{z}\omega|$.
- 35. 应用 $z \in \mathbb{R}$ 的充要条件解题. 复数 $z \in \mathbb{R}$ 的充要条件是 $z = \overline{z}$.
- 36. 若复数 z 满足 $z+\frac{4}{z}\in \mathbf{R}$, 且 |z-2|=2, 求 z. 解 $z+\frac{4}{z}\in \mathbf{R}$, $z+\frac{4}{z}=\overline{z}+\frac{4}{\overline{z}}$, 整理得 $z^2\overline{z}+4\overline{z}=z\overline{z^2}+4z$, 即 $z|z|^2-|z|^2\cdot\overline{z}-4(z-\overline{z})=0$,即 $(z-\overline{z})(|z|^2-4)=0$. (1) 若 |z|=2,结合已知条件,|z-2|=2,得 $z=1\pm\sqrt{3}i$. (2) 若 $z-\overline{z}=0$,结合 |z-2|=2,得 z=0(舍去) 和 z=4. 综合 (1) 与 (2),得 $z=1\pm\sqrt{3}i$ 或 z=4.
- 37. 应用不等式 $||z_1| |z_2|| \le |z_1 + z_2| \le |z_1| + |z_2|$ 解题.
- 38. 求函数 $y = \sqrt{4a^2 + x^2} + \sqrt{(x-a)^2 + a^2}(a > 0)$ 的最值. 解令 $z_1 = x + 2ai, z_2 = a x + ai, 则 y = |z_1| + |z_2| \ge |z_1 + z_2| = |a + 3ai| = \sqrt{10}a.$ 当 $\frac{a-x}{x} = \frac{a}{2a}$,即 $x = \frac{2a}{3}$ 时,函数 y 有最小值 $\sqrt{10}a$.

 $|z| \le \frac{1}{2}$. 注意在应用不等式 $||z_1| - |z_2|| \le |z_1| + |z_2| \le |z_1| + |z_2|$ 求函数的最大值、最小值时,需留意取"="的条件. 当 $\overrightarrow{OZ_1}$ 与 $\overrightarrow{OZ_2}$ 同向时, $|z_1 + z_2| = |z_1| + |z_2|$; 当 $\overrightarrow{OZ_1}$ 与 $\overrightarrow{OZ_2}$ 异向时, $|z_1 + z_2| = ||z_1| - |z_2||$.

【训练题】(一) 复数的加法与减法

- 40. 两个共轭虚数的差一定是().
 - A. 非零实数
- B. 零

- C. 纯虚数
- D. 非纯虚数

(2) 设 $z \in \mathbb{C}$, 则方程 $ z+2 + z-2 =6$ 对应的曲线的普通方程是 (3) 以 $(\pm 3,0)$ 为两焦长半轴长为 5 的椭圆方程的复数形式是 (4) 已知复数 z 满足 $ z-(1+i) - z-(1-i) =0$	41.	复平面内,已知复数 2 – i 和	3+4i 分別对于点 $M,N,$ 则	向量 MN 对应的复数是().	
$A. \ (-2\sqrt{2},2\sqrt{2}) \qquad B. \ (-2,2) \qquad C. \ (-1,1) \qquad D. \ (-\sqrt{3},\sqrt{3})$ 43. 若复数 z 满足 $ z+3-4i =2$, 则 $ z $ 的最小值和最大值分别是(A. $5 + 3i$	B. $-1 - 5i$	C. $1 + 5i$	D. $1 - 5i$	
43. 若复数 z 满足 $ z+3-4i =2$. 则 $ z $ 的最小值和最大值分别是(). A. 1 和 9 B. 4 和 10 C. 5 和 11 D. 3 和 7 44. (1) 若 $ z-25i \le 15$, $z \in \mathbb{C}$. 则 $ z $ 最小时的 $z=$	42.	若复数 $z=3+a$ i 满足条件 $ z-2 <2$, 则实数 a 的取值范围是 ().				
$A.\ 1\ an\ 9 \qquad B.\ 4\ an\ 10 \qquad C.\ 5\ an\ 11 \qquad D.\ 3\ an\ 7 \qquad 44. \ (1)\ \ \ \ \ \ \ \ \ \ \ \ \ $		A. $(-2\sqrt{2}, 2\sqrt{2})$	B. (-2, 2)	C. (-1, 1)	D. $(-\sqrt{3}, \sqrt{3})$	
44. (1) 若 $ z-25i \le 15$, $z \in \mathbb{C}$, 则 $ z $ 最小时的 $z =$	43.	若复数 z 满足 $ z+3-4\mathrm{i} =2,$ 则 $ z $ 的最小值和最大值分别是 ().				
是 $ z =3$, 则 $ z-1+\sqrt{3}i $ 的最小值是		A. 1 和 9	B. 4 和 10	C. 5 和 11	D. 3 和 7	
边形 $ABDC$, 求点 D 对应的复数 z_4 及 AD 的长. 46. 若 $f(\overline{z+i})=2z+\overline{z}+i$,则 $f(i)$ 等于(). A. 1 B. -1 C. i D. $-i$ 47. 若复数 z 满足 $ z+1 ^2- z+i ^2=1$,则 z 在复平面内的对应点所表示的图形是(). A. 直线 B. 圆 C. 椭圆 D. 双曲线 48. 若复数 z 满足 $ z-1 + z+1 =2$,则 z 在复平面内的对应点所表示的图形是(). A. 圆 B. 椭圆 C. 双曲线 D. 线段 49. 若 z_1, z_2 都是虚数,则 " $z_1=\overline{z}_2$ " 的一个必要不充分条件是(). A. $ z_1-\overline{z}_2 =0$ B. $\overline{z}_1=z_2$ C. $z_1=z_2$ D. $ z_1 = z_2 $ 50. 复平面内,曲线 $ z-1+i =1$ 关于直线 $y=x$ 的对称曲线方程为(). A. $ z-1-i =1$ B. $ \overline{z}-1-i =1$ C. $ z+1+i =1$ D. $ \overline{z}+1+i =1$ 51. 若 $ z =1$,则 $ z+i + z-6 $ 的最小值等于(). A. 7 B. $\sqrt{37}$ C. 6 D. 5 52. (1) 若复平面内的点 A , B 分别对应于复数 z	44.	足 $ z =3$,则 $ z-1+\sqrt{3}{ m i} $ 自	的最小值是 (3) 君	吉如数 z 满足 $ z-3 =5$, 则	z - (1 + 4i) 的最大值	
A. 1 B1 C. i D. $-i$ 47. 若复数 z 满足 $ z+1 ^2 - z+i ^2 = 1$,则 z 在复平面内的对应点所表示的图形是(). A. 直线 B. 圆 C. 椭圆 D. 双曲线 48. 若复数 z 满足 $ z-1 + z+1 = 2$,则 z 在复平面内的对应点所表示的图形是(). A. 圆 B. 椭圆 C. 双曲线 D. 线段 49. 若 z_1, z_2 都是虚数,则 " $z_1 = \overline{z_2}$ " 的一个必要不充分条件是(). A. $ z_1 - \overline{z_2} = 0$ B. $\overline{z_1} = z_2$ C. $z_1 = z_2$ D. $ z_1 = z_2 $ 50. 复平面内,曲线 $ z-1+i = 1$ 关于直线 $y = x$ 的对称曲线方程为(). A. $ z_1 - \overline{z_2} = 1$ D. $ z_1 = z_2 $ D. $ z_2 = z_2 $ D. $ z_1 = z_2 $ D. $ z_2 = z_2 $ D. $ z_2 = z_2 $ D. $ z_1 = z_2 $ D. $ z_2 = z$	45.			$= 5 + i, z_3 = 3 + 3i, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	AC 为邻边作一平行四	
47. 若复数 z 满足 $ z+1 ^2- z+i ^2=1$,则 z 在复平面内的对应点所表示的图形是(). A. 直线 B. 圆 C. 椭圆 D. 双曲线 48. 若复数 z 满足 $ z-1 + z+1 =2$,则 z 在复平面内的对应点所表示的图形是(). A. 圆 B. 椭圆 C. 双曲线 D. 线段 49. 若 z_1, z_2 都是虚数,则 " $z_1=\overline{z_2}$ "的一个必要不充分条件是(). A. $ z_1-\overline{z_2} =0$ B. $\overline{z_1}=z_2$ C. $z_1=z_2$ D. $ z_1 = z_2 $ 50. 复平面内,曲线 $ z-1+i =1$ 关于直线 $y=x$ 的对称曲线方程为(). A. $ z-1-i =1$ B. $ \overline{z}-1-i =1$ C. $ z+1+i =1$ D. $ \overline{z}+1+i =1$ 51. 若 $ z =1$,则 $ z+i + z-6 $ 的最小值等于(). A. $z=1$ A. $z=1$ B. $z=1$ B. $z=1$ C. $z=1$ B. $z=1$ B. $z=1$ C. $z=1$ B. $z=1$ D. $z=1$ B. $z=1$ D. $z=1$	46.	若 $f(\overline{z+i}) = 2z + \overline{z} + i$, 则	f(i) 等于 ().			
A. 直线 B. 圆 C. 椭圆 D. 双曲线 48. 若复数 z 满足 $ z-1 + z+1 =2$,则 z 在复平面内的对应点所表示的图形是(). A. 圆 B. 椭圆 C. 双曲线 D. 线段 49. 若 z_1, z_2 都是虚数,则 " $z_1=\overline{z}_2$ "的一个必要不充分条件是(). A. $ z_1-\overline{z}_2 =0$ B. $\overline{z}_1=z_2$ C. $z_1=z_2$ D. $ z_1 = z_2 $ 50. 复平面内,曲线 $ z-1+i =1$ 关于直线 $y=x$ 的对称曲线方程为(). A. $ z-1-i =1$ B. $ \overline{z}-1-i =1$ C. $ z+1+i =1$ D. $ \overline{z}+1+i =1$ 51. 若 $ z =1$,则 $ z+i + z-6 $ 的最小值等于(). A. 7 B. $\sqrt{37}$ C. 6 D. 5 52. (1) 若复平面内的点 A,B 分别对应于复数 $2+i$ 和 $1-i$,则线段 AB 的中垂线方程的复数形式是		A. 1	B1	C. <i>i</i>	D. $-i$	
48. 若复数 z 满足 $ z-1 + z+1 =2$,则 z 在复平面内的对应点所表示的图形是(). A. 圆 B. 椭圆 C. 双曲线 D. 线段 49. 若 z_1, z_2 都是虚数,则 " $z_1=\overline{z}_2$ "的一个必要不充分条件是(). A. $ z_1-\overline{z}_2 =0$ B. $\overline{z}_1=z_2$ C. $z_1=z_2$ D. $ z_1 = z_2 $ 50. 复平面内,曲线 $ z-1+i =1$ 关于直线 $y=x$ 的对称曲线方程为(). A. $ z-1-i =1$ B. $ \overline{z}-1-i =1$ C. $ z+1+i =1$ D. $ \overline{z}+1+i =1$ 51. 若 $ z =1$,则 $ z+i + z-6 $ 的最小值等于(). A. 7 B. $\sqrt{37}$ C. 6 D. 5 52. (1) 若复平面内的点 A,B 分别对应于复数 $2+i$ 和 $1-i$,则线段 AB 的中垂线方程的复数形式是	47.	若复数 z 满足 $ z+1 ^2- z+\mathrm{i} ^2=1$,则 z 在复平面内的对应点所表示的图形是 ().				
A. 圆 B. 椭圆 C. 双曲线 D. 线段 49. 若 z_1, z_2 都是虚数,则 " $z_1 = \overline{z}_2$ " 的一个必要不充分条件是(). A. $ z_1 - \overline{z}_2 = 0$ B. $\overline{z}_1 = z_2$ C. $z_1 = z_2$ D. $ z_1 = z_2 $ 50. 复平面内,曲线 $ z - 1 + i = 1$ 关于直线 $y = x$ 的对称曲线方程为(). A. $ z - 1 - i = 1$ B. $ \overline{z} - 1 - i = 1$ C. $ z + 1 + i = 1$ D. $ \overline{z} + 1 + i = 1$ 51. 若 $ z = 1$, 则 $ z + i + z - 6 $ 的最小值等于(). A. 7 B. $\sqrt{37}$ C. 6 D. 5 52. (1) 若复平面内的点 A, B 分别对应于复数 $2 + i$ 和 $1 - i$,则线段 AB 的中垂线方程的复数形式是		A. 直线	В. 圆	C. 椭圆	D. 双曲线	
49. 若 z ₁ , z ₂ 都是虚数, 则 "z ₁ = z̄ ₂ " 的一个必要不充分条件是(). A. z ₁ - z̄ ₂ = 0 B. z̄ ₁ = z ₂ C. z ₁ = z ₂ D. z ₁ = z ₂ 50. 复平面内, 曲线 z - 1 + i = 1 关于直线 y = x 的对称曲线方程为(). A. z - 1 - i = 1 B. z̄ - 1 - i = 1 C. z + 1 + i = 1 D. z̄ + 1 + i = 1 51. 若 z = 1, 则 z + i + z - 6 的最小值等于(). A. 7 B. √37 C. 6 D. 5 52. (1) 若复平面内的点 A, B 分别对应于复数 2 + i 和 1 - i, 则线段 AB 的中垂线方程的复数形式是	48.	若复数 z 满足 z - 1 + z +	1 =2, 则 z 在复平面内的对	寸应点所表示的图形是 ().	
A. $ z_1 - \overline{z}_2 = 0$ B. $\overline{z}_1 = z_2$ C. $z_1 = z_2$ D. $ z_1 = z_2 $ 50. 复平面内,曲线 $ z - 1 + i = 1$ 关于直线 $y = x$ 的对称曲线方程为(). A. $ z - 1 - i = 1$ B. $ \overline{z} - 1 - i = 1$ C. $ z + 1 + i = 1$ D. $ \overline{z} + 1 + i = 1$ 51. 若 $ z = 1$, 则 $ z + i + z - 6 $ 的最小值等于(). A. 7 B. $\sqrt{37}$ C. 6 D. 5 52. (1) 若复平面内的点 A, B 分别对应于复数 $2 + i$ 和 $1 - i$,则线段 AB 的中垂线方程的复数形式是		A. 圆	B. 椭圆	C. 双曲线	D. 线段	
 50. 复平面内, 曲线 z-1+i = 1 关于直线 y = x 的对称曲线方程为 (). A. z-1-i = 1 B. z-1-i = 1 C. z+1+i = 1 D. z+1+i = 1 51. 若 z = 1, 则 z+i + z-6 的最小值等于 (). A. 7 B. √37 C. 6 D. 5 52. (1) 若复平面内的点 A, B 分别对应于复数 2+i 和 1-i, 则线段 AB 的中垂线方程的复数形式是	49.	若 z ₁ , z ₂ 都是虚数, 则 "z ₁ =	≅2"的一个必要不充分条件。	是 ().		
A. $ z-1-i =1$ B. $ \overline{z}-1-i =1$ C. $ z+1+i =1$ D. $ \overline{z}+1+i =51$. 若 $ z =1$, 则 $ z+i + z-6 $ 的最小值等于(). A. 7 B. $\sqrt{37}$ C. 6 D. 5 52. (1) 若复平面内的点 A,B 分别对应于复数 $2+i$ 和 $1-i$, 则线段 AB 的中垂线方程的复数形式是		$A. z_1 - \overline{z}_2 = 0$	B. $\overline{z}_1 = z_2$	C. $z_1 = z_2$	D. $ z_1 = z_2 $	
 51. 若 z = 1, 则 z + i + z - 6 的最小值等于(). A. 7 B. √37 C. 6 D. 5 52. (1) 若复平面内的点 A, B 分别对应于复数 2+i 和 1-i, 则线段 AB 的中垂线方程的复数形式是	50.	复平面内,曲线 $ z-1+i =1$ 关于直线 $y=x$ 的对称曲线方程为 ().				
A. 7 B. $\sqrt{37}$ C. 6 D. 5 52. (1) 若复平面内的点 A,B 分别对应于复数 $2+i$ 和 $1-i$, 则线段 AB 的中垂线方程的复数形式是		A. $ z - 1 - i = 1$	B. $ \bar{z} - 1 - i = 1$	C. $ z+1+i =1$	D. $ \bar{z} + 1 + i = 1$	
 52. (1) 若复平面内的点 A, B 分别对应于复数 2+i 和 1-i, 则线段 AB 的中垂线方程的复数形式是	51.	若 $ z = 1$, 则 $ z + i + z - 6 $	6 的最小值等于 ().			
(2) 设 $z \in \mathbb{C}$, 则方程 $ z+2 + z-2 =6$ 对应的曲线的普通方程是 (3) 以 $(\pm 3,0)$ 为两焦长半轴长为 5 的椭圆方程的复数形式是 (4) 已知复数 z 满足 $ z-(1+i) - z-(1-i) =$ 复平面内 z 的对应点的轨迹是 (5) 若 $ z-3 + z+3 =10$, 且 $ z-5i - z+5i =8$,		A. 7	B. $\sqrt{37}$	C. 6	D. 5	
$z =$. (6) 若 $ z - 2 = \sqrt{17}$, $ z - 3 = 4$, 则复数 $z =$.	52.	(1) 若复平面内的点 A,B 分别对应于复数 $2+i$ 和 $1-i$, 则线段 AB 的中垂线方程的复数形式是				
		z = (6) 若 $ z - z $	$ z = \sqrt{17}, z - 3 = 4,$ 则复数	$ t z = \underline{\hspace{1cm}}. $		

53. (1) $\mathfrak{P}_{|z_1|} = 3$, $|z_2| = 5$, $|z_1 + z_2| = 6$, $\mathfrak{P}_{|z_1|} = 2$. (2) $\mathfrak{P}_{|z_1|} = 3$, $|z_1 + z_2| = 5$, $|z_1 - z_2| = 7$, $\mathfrak{P}_{|z_2|} = 2$.

54.	. (1) 已知两个复数集合 $A = \{z z-2 \le 2\}, \ B = \{z z = \frac{z_1}{2} \mathrm{i} + b, z_1 \in A, b \in R\}.$ ① 当 $b = 0$ 时,求集合 B 所对应的区域; ② 当 $A \cap B = \emptyset$ 时,求 b 的取值范围. (2) 若复数 $z_1 = 1 + 2a\mathrm{i}, \ z_2 = a + \mathrm{i}(a \in R)$,集合 $A = \{z z-z_1 \le \sqrt{2}\}, \ B = \{z z-z_2 \le 2\sqrt{2}\}$ 满足 $A \cap B = \emptyset$,求 a 的取值范围.				
55.	(1) 已知复数 z_1, z_2 满足 $ z_1 =1, z_2 =1,$ 且 $z_1+z_2=\frac{1}{2}+\frac{\sqrt{3}}{2}i,$ 求 $z_1, z_2.$ (2) 复平面内三点 A,B,C 依次 对应于复数 $1+z,$ $1+2z,$ $1+3z,$ 其中 $ z =2,$ O 为原点,若 $S_{\triangle AOB}+S_{\triangle BOC}=2,$ 求复数 $z.$ (二) 复数的乘法与除法				
56.	若复数 $z = (1+i)^2$, 则 $z \cdot \overline{z}$	的值为 ().			
	A. $-4i$	B. 4 <i>i</i>	C. 4	D. 8	
57.	计算 $(\frac{\sqrt{2}i}{1+i})^{100}$ 的结果是 ().			
	A. <i>i</i>	Bi	C. 1	D1	
58.	当 n 取遍正整数时, $i^n + i^{-n}$	"表示不同值的个数是 ().		
	A. 1	B. 2	C. 3	D. 4	
59.	使 $(\frac{1+i}{1-i})^n$ 为实数的最小自	然数 n 是 ().			
	A. 2	B. 4	C. 6	D. 8	
60.	" z_1 和 z_2 为共轭复数"是" z_2	$z_1+z_2\in R$ 且 $z_1\cdot z_2\in R$ " 自	均 ().		
	A. 充分不必要条件	B. 必要不充分条件	C. 充要条件	D. 既不充分也不必要条	
				件	
61.	若 $(z-1)^2 = z-1 ^2$, 则 z	一定是 ().			
	A. 纯虚数	B. 实数	C. 虚数	D. 零	
62.	设 $z=1+ki(k\in\mathbf{R})$, 则 z^2	对应点的轨迹是().			
	A. 圆	B. 椭圆	C. 抛物线	D. 双曲线	
63.	若都是 z, z ₁ , z ₂ 复数, 判断	下列命题的真假: $(1) z ^2 = z$	z^2 .(). $(2) z ^2 \neq z^2$.($ z = z ^2. $ (3)	
	$(4) z \le 1 \Leftrightarrow -1 \le z \le 1. (). (5)\sqrt{ z ^2} = z . (). (6) $				
	实数.(). $(8)z - \overline{z}$ 是纯虚数.(). $(9)z^2 \ge 0$.(). (10) 若 $ z = 1$, 则 $\overline{z} = \frac{1}{z}$.(). $(11)z = \overline{z} \Leftrightarrow z \in \mathbb{Z}$				
	R .(). (12) 若 $z_1^2 + z_2^2 =$, , , ,			
64.	$(1)(i-rac{1}{i})^6$ 的虚部是	(2) 计算 $(1+i)^{20}-(1-i)$	$^{20} =$ (3) 计算 $\frac{(1)}{1}$	$\frac{(1-i)^5}{(1-i)^5} + \frac{(1-i)^5}{(1+i)^5} = \underline{\hspace{1cm}}$	
	(4) 若 $z = 1 + i$, 则 $\frac{5}{1 + z^2}$	$=$ (5) 计算 $\frac{-2\sqrt{1+1}}{1+1}$	$\frac{\sqrt{3}+i}{2\sqrt{3}i} + (\frac{\sqrt{2}}{1+i})^{3996} =$	(6) 若 $a \in \mathbf{R}$, 且	
	$\frac{a+2i}{3+i} \in \mathbf{R}$,则 $\frac{a+2i}{3+i} =$		• • • • • • • • • • • • • • • • • • • •		

- 65. (1) 已知 $\omega = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$,则: ① $\omega^2 + \frac{1}{\omega^2} = ______;$ ② $\omega^3 + \frac{1}{\omega^3} = ______.$ ③ $\omega^{14} + \frac{1}{\omega^{14}} = _____;$ (2) 若 $f(x) = 2x^4 11x^3 7x^2 9x + 4$,则 $f(-\frac{1}{2} + \frac{\sqrt{3}}{2}i) = _____.$
- 66. 计算下列各题: $(1)(i-\frac{1}{i})^{10} =$ ______. $(2)\frac{(1+i)^3-(1-i)^3}{(1+i)^2-(1-i)^2} =$ _____. $(3)i\cdot i^2\cdot i^3\cdots i^{1997} =$ _____. $(4)i+i^2+i^3+\cdots+i^{1997} =$ _____. $(5)(\frac{1+i}{\sqrt{2}})^{1997}+(\frac{1-i}{\sqrt{2}})^{1997} =$ _____.
- 67. 已知 $i^{3m} = i^n(m, n \in \mathbf{Z})$, 则 i^{m+n} 的值为 ().
 - A. 1

 \mathbf{R}^{-i}

C. -i

D. -1

- 68. 若 $x + \frac{1}{x} = -1$, 则 $x^{17} + x^{-17}$ 的值等于 ().
 - A. (

B. -1

C. 1

- D. 2
- 69. (1) 计算: $1+2i+3i^2+4i^3+\cdots+10i^9$. (2) 计算: $i+2i^2+3i^3+\cdots+359i^{359}$. (3) 求首项为 i, 公比为 $1+\frac{1}{i}$ 的等比数列的第七项.
- 70. (1) 计算: ① $(\frac{-1+i}{1+\sqrt{3}i})^3$; ② $\frac{\left(\sqrt{3}+i\right)^5}{-1+\sqrt{3}i}$. (2) 求下列复数的模: ① $(3+4i)(-\frac{1}{2}+\frac{\sqrt{3}}{2}i)$; ② $\frac{5-12i}{-8+15i}$; ③ $\frac{(1+i)^3}{(1-i)^2(9+40i)}$; ④ $\frac{1-t^2}{1+t^2}+\frac{2t}{1+t^2}i(t\in\mathbf{R})$; ⑤ $\frac{(1-i)^{10}(3-4i)^4}{\left(-\sqrt{3}+i\right)^8}$; $\frac{(\sqrt{6}+i)(1+i)^2}{(-1+\sqrt{6}i)(-\frac{1}{3}+\frac{2\sqrt{2}}{3}i)(\sqrt{3}i)}$.
- 71. 已知 z = 1 + i, 且 $\frac{z^2 + az + b}{z^2 z + 1} = 1 i$, 求实数 a, b 的值.
- 72. 已知 a>0, 且 $a\neq 1$, 若 $(\log_a x+i)z=1+i\log_a x$, 问: x 为何值时, z 为: (1) 实数. (2) 虚数. (3) 纯虚数. (4) 模等于 1 的复数.
- 73. (1) 已知 $z = |\frac{\sqrt{2}i(3+i)^2}{(\sqrt{3}+\sqrt{7}i)^2}| + 2i$, 求 |z|. (2) 已知复数 $z = \frac{(1+i)^3(a-1)^2}{\sqrt{2}(a-3i)^2}$ 满足 $|z| = \frac{2}{3}$, 求实数 a 的值. (3) 已知复数 z 满足 |z| = 5, 且 (3+4i)z 是纯虚数, 求 z. (4) 已知 $z = \frac{\sqrt{3}\sin\theta + i\cos\theta}{\sin\theta i\sqrt{3}\cos\theta}$, 求 z 的最大值. (5) 已知复数 z 满足 $|z + \frac{1}{z}| = 1$, 求 |z| 的取值范围.
- 74. (1) 已知复数 z 满足 $z+\frac{4}{z}\in \mathbf{R},\ |z-2|=2,\ \bar{\mathbf{x}}\ z.$ (2) 已知复数 z 满足 $|z-4|=|z-4\mathrm{i}|,\ z+\frac{14-z}{z-1}\in R,\ \bar{\mathbf{x}}$ z. (3) 已知 $|\frac{z-12}{z-8\mathrm{i}}|=\frac{5}{3},\ |\frac{z-4}{z-8}|=1,\ \bar{\mathbf{x}}$ 复数 z.
- 75. 根据条件, 求复数 z 在复平面内的对应点轨迹的普通方程: $(1)z^2+\frac{9}{z^2}\in\mathbf{R}$. $(2)\frac{z}{z-1}$ 为纯虚数. $(3)z\cdot\overline{z}+az+\overline{z}=0(a\in\mathbf{R})$.
- 76. 已知非零夏数 z_1, z_2 满足 $|z_1+z_2|=|z_1-z_2|$, 求证: $(\frac{z_1}{z_2})^2$ 一定是负数.
- 77. (1) 已知 P,Q 两点分别对应于复数 z_1 和 $2z_1+3-4i$,若点 P 在曲线 |z|=2 上移动,求点 Q 的轨迹. (2) 已 知复数 z 满足 |z|=2,求复数 $\omega=\frac{z+1}{z}$ 在复平面内的对应点的轨迹. (3) 复平面内两动点 P_1,P_2 所对应的 复数 z_1,z_2 满足 $z_1=z_2i+3$,又点 P_2 沿着曲线 |z-5|-|z+5|=6 运动,试求点 P_1 的轨迹方程,并指出

它表示何种曲线. (4) 复平面内, 线段 AB 上的点 P 对应的复数为 z, 其中 A, B 点分别对应于复数 $z_A=1$, $z_B=i$, 求 z^2 的对应点轨迹的普通方程, 并画出图形. (5) 已知点 Q(u,v) 在 O(0,0), A(1,0), B(1,1) 为顶点的 $\triangle OAB$ 的边界上移动, 求 $z=(u+2vi)^2+2+3i$ 所对应的点 P 的轨迹, 并画出草图.

- 78. 求证: (1) 复数 z 可以表示为 $\frac{1+t{\rm i}}{1-t{\rm i}}(t\in R)$ 的充要条件是 |z|=1 且 $z\neq -1$. (2) $\frac{z-1}{z+1}$ 为纯虚数的充要条件是 |z|=1 且 $z\neq \pm 1$.
- 79. 利用 $||z_1| |z_2|| \le |z_1 + z_2| \le |z_2| + |z_2|$ 解下列各题: (1) 求函数 $y = \sqrt{x^2 + 4} + \sqrt{x^2 8x + 17}$ 的最小值及相应的 x. (2) 求函数 $y = \sqrt{x^2 + 9} \sqrt{x^2 2x + 5}$ 的最大值及相应的 x. (3) 求证: $\sqrt{x^2 + y^2} + \sqrt{(x-2)^2 + y^2} + \sqrt{x^2 + (y-2)^2} + \sqrt{(x-2)^2 + (y-2)^2} \ge 4\sqrt{2}$.
- 80. 利用 $|z|^2 = z \cdot \overline{z}$ 解下列各题: . (1) 若 |z| = 1, 求证 $|\frac{a-z}{1-a\overline{z}}| = 1$. (2) 若 $|1-z_1z_2| = |z_1-\overline{z}_2|$, 求证: $|z_1|$, $|z_2|$ 中至少有一个为 1. (3) 若 $|z_1| \le 1$, $|z_2| \le 1$, 求证: $|\frac{z_1-z_2}{1-\overline{z}_1z_2}| \le 1$. (4) 若复数 z_i 满足 $|z_i| = 1$ (i=1,2,3), 求 $|\frac{z_1z_2+z_2z_3+z_3z_1}{z_1+z_2+z_3}|$ 的值. (5) 已知复数 $A=z_1\overline{z}_2+z_2\overline{z}_1$, $B=z_1\overline{z}_1+z_2\overline{z}_2$, 其中 z_1,z_2 是非零复数,问: A,B 可不可以比较大小?并证明之.
- 81. (1) 已知 |z|=1, $|z_2|=\sqrt{2}$, 求证: $|\frac{2z_1+(1+3i)z_2^2}{3+4i}|\leq \frac{12}{5}$. (2) 已知 $z=\frac{\sin\alpha+i\sqrt{2}\cos\alpha}{\sqrt{2}\sin\alpha-i\cos\alpha}$, 求证: $\frac{\sqrt{2}}{2}\leq |z|\leq \sqrt{2}$. (3) 复平面内三点 A,B,C 分别对应于复数 z_1,z_2,z_3 , 若 $\frac{z_2-z_1}{z_3-z_1}=1+\frac{4}{3}$ i, 试求 $\triangle ABC$ 的三边之比.
- 82. 已知 |z|=1, 求下列各式的最大值和最小值: $(1)|z^2-z+1|$. $(2)|z^2-z+2|$. $(3)|z^3-3z-2|$. 三、复数的三角形式【典型题型和解题技巧】
- 83. 复数的三角形式. (1)"伪三角形式" 化为三角形式. 复数的三角形式是 $r(\cos\theta+i\sin\theta)(r\geq0)$, 读者需能熟练地将下列各"伪三角形式, 化为三角形式 (r>0): $r(\cos\theta-i\sin\theta)=[\cos(-\theta)+i\sin(-\theta)]$, $r(-\cos\theta+i\sin\theta)=[\cos(\pi-\theta)+i\sin(\pi-\theta)]$, $r(\sin\theta+i\cos\theta)=r[\cos(\frac{\pi}{2}-\theta)+i\sin(\frac{\pi}{2}-\theta)]$.
- 84. 将下列复数化为三角形式: $(1)2(\cos\frac{\pi}{5}-i\sin\frac{\pi}{5})$. $(2)2(-\cos\frac{\pi}{5}+i\sin\frac{\pi}{5})$. $(3)-2(\cos\frac{\pi}{5}+i\sin\frac{\pi}{5})$. $(4)2(\sin\frac{\pi}{5}+i\cos\frac{\pi}{5})$. $(4)2(\sin\frac{\pi}{5}+i\cos\frac{\pi}{5})$. $(4)2(\sin\frac{\pi}{5}+i\sin\frac{\pi}{5})$. $(4)2(\sin\frac{\pi}{5}+i\sin\frac{\pi}{5})$. $(4)2(\sin\frac{\pi}{5}+i\sin\frac{\pi}{5})$. $(4)2(\sin\frac{\pi}{5}+i\sin\frac{\pi}{5})$. $(4)2(\cos\frac{\pi}{5}+i\sin\frac{\pi}{5})$. $(4)2(\sin\frac{\pi}{5}+i\cos\frac{\pi}{5})$. $(4)2(\sin\frac{\pi}{5}+i\cos\frac{\pi}{5})$. $(4)2(\sin\frac{\pi}{5}+i\cos\frac{\pi}{5})$. $(4)2(\sin\frac{\pi}{5}+i\cos\frac{\pi}{5})$. $(4)2(\sin\frac{\pi}{5}+i\cos\frac{\pi}{5})$. $(4)2(\sin\frac{\pi}{5}+i\sin\frac{\pi}{5})$. $(4)2(\sin\frac{$
- 85. 将下列复数化成三角形式: $(1)z = -\sqrt{3} + i$. (2)5 12i. 解 (1) 如下图, r = 2, $\cos \theta = -\frac{\sqrt{3}}{2}$, $\theta = \frac{5\pi}{6}$, $-\sqrt{3} + i = 2(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6})$.

- (2) 如上图,r=13, $\cos\theta=\frac{5}{13}$, $\theta=2\pi-\arccos\frac{5}{13}$, $5-12i=13[\cos(-\arccos\frac{5}{13})+i\sin(-\arccos\frac{5}{13})]$.
 ______(1)_______(2) (图 4) (3) 复数的辐角、辐角主值 $\arg z$. 需要时时记住的是复数 z 的辐角主值 的取值范围是 $[0,2\pi)$, $\arg z\in[0,2\pi)$.
- 86. 若复数 $z = \frac{1}{2} + i \sin \alpha (\alpha \in R)$, 且 $|z| \le 1$, 求 $\arg z$ 和 α 的取值范围. 解 $|z| \le 1$, $\frac{1}{4} + \sin^2 \alpha \le 1$, $-\frac{\sqrt{3}}{2} \le \sin \alpha \le \frac{\sqrt{3}}{2}$ 如图, z 的对应点 P 应在线段 AB 上运动, 当点 P 在 MA 上时, $\arg z \in [0, \frac{\pi}{3}]$, 当点 P 在 BM 上时, $\arg z \in [\frac{5\pi}{3}, 2\pi)$.

 $\arg z \in [0, \frac{\pi}{3}] \cup [\frac{5\pi}{3}, 2\pi). \ \ a \in [k\pi - \frac{\pi}{3}, k\pi + \frac{\pi}{3}](k \in \mathbf{Z}).$

87. 已知 $z + \frac{1}{z} = \cos x (x \in \mathbf{R})$, 且 $|z| \le 1$, 求 $\arg z$ 的取值范围. 解先设 |z| < 1, 则如图所示, 此时 $z + \frac{1}{z}$ 所对应的向量不在 x 轴上,

- 88. 应用复数的三角形式解题. 若题目给出了 |z|=r(r>0) 的条件, 一般来说, 复数的三角形式当是解题的最佳选择了, 即可令 $z=r(\cos\theta+i\sin\theta)$. 特别地, 若 |z|=1, 则可令 $z=\cos\theta+i\sin\theta$.
- 89. 已知非零复数 z 满足 $|z-{\rm i}|=1$, 且 $\arg z=\theta$, 求: $(1)\theta$ 的取值范围. (2) 复数 z 的模. (3) 复数 z^2-zi 的辐角. 解 (1)|z-i|=1, z 的对应点 P 在以 (0,1) 为圆心,半径为 1 的圆上(如下图左), θ 的取值范围是 $0<\theta<\pi$. (2) 如下图中,在 ${\rm Rt}\triangle AOP$ 中, $|OP|=2\sin\theta$,故 $|z|=2\sin\theta$. (3) 由 |z-i|=1,故可令 $z-i=\cos\varphi+i\sin\varphi(\varphi\in{\bf R})$,于是 $z^2-zi=z(z-i)=2\sin\theta(\cos\theta+i\sin\theta)\cdot(\cos\varphi+i\sin\varphi)=2\sin\theta[\cos(\theta+\varphi)+i2\sin(\theta+\varphi)]$. 又 $\cos\varphi+i\sin\varphi=z-i=2\sin\theta(\cos\theta+i\sin\theta)-i=2\sin\theta\cos\theta+i(2\sin^2\theta-1)=\sin2\theta-i\cos2\theta=\cos(2\theta-\frac{\pi}{2})+i\sin(2\theta-\frac{\pi}{2})$, $\varphi=2k\pi+2\theta-\frac{\pi}{2}(k\in{\bf Z})$, $\theta+\varphi=2k\pi+3\theta-\frac{\pi}{2}(k\in{\bf Z})$. 即 $\arg(z^2-zi)=2k\pi+3\theta-\frac{\pi}{2}(k\in{\bf Z})$.

- 第 (3) 题有另一种解法: 如上图右, z-i 和向量 \overrightarrow{MP} 对应, 而 $\angle OMP = 2\theta$, 则 z-i 的一个辐角为 $2\theta \frac{\pi}{2}$, 由 $z^2 zi = z(z-i)$ 知, $z^2 zi$ 的辐角等于 z 的辐角和 z-i 的辅角之和, 即 $2k\pi + 3\theta \frac{\pi}{2}(k \in \mathbf{Z})$. 注意需要掌握的是对于已知 |z| = r(r>0) 的有关问题, 可以从以下四个方面去思考; (1) 令 $z = r(\cos\theta + i\sin\theta)$. (2) 令 $z = a + bi(a, b \in \mathbf{R})$, 且 $a^2 + b^2 = r^2$. (3) 由 $|z|^2 = r^2$, 得 $z\overline{z} = r^2$, $z = \frac{r^2}{\overline{z}}$, $\overline{z} = \frac{r^2}{z}$. (4) z 在复平面内的对应点在以原点为圆心, r 为半径的圆上. 有时候, 并不一定以三角形式为最佳.
- 90. 运用复数乘法、除法的几何意义解题. 若 $u=z\cdot r(\cos\theta+i\sin\theta)$, 则只需将 $\overrightarrow{OP}(P$ 为 z 在复平面内的对应点) 绕原点逆转 θ 角, 并将 $|\overrightarrow{OP}|$ 扩大到原来的 r 倍, 即得复数 u 的对应向量 \overrightarrow{OU} . 若 $u=\frac{z}{r(\cos\theta+i\sin\theta)}$, 则只需将 \overrightarrow{OP} 前绕原点顺转 θ 角, 并将 \overrightarrow{OP} 缩小到原来的 r 倍, 即得 u 的对应向量 \overrightarrow{OU} .
- 91. 已知等边 $\triangle ABC$ 的两个顶点坐标是 $A(2,\,1),\,B(3,\,2),\,$ 求顶点 C 的对应坐标. 解记 A,B,C 的对应复数为 $z_A=2+\mathrm{i},\,z_B=3+2\mathrm{i},\,z_C.$ 由 $z_C=z_A+(z_B-z_A)[\cos 60^\circ\pm i\sin 60^\circ],\,$ 得 $z_C=(2+i)+(1+i)(\frac{1}{2}\pm\frac{\sqrt{3}}{2}i)=\frac{5\mp\sqrt{3}}{2}+\frac{3\pm\sqrt{3}}{2}i,\,$ 即点 C 坐标是 $(\frac{5-\sqrt{3}}{2}+\frac{3+\sqrt{3}}{2})$ 或 $(\frac{5+\sqrt{3}}{2}+\frac{3-\sqrt{3}}{2}).$
- 92. 复平面内, 两点 A, B 分別对应于复数 α, β , 且 $\beta + (1+i)\alpha = 0$, $|\alpha 2 + i| = 1$, 求 $\triangle AOB$ 面积的最大值 和最小值. 解 $|\alpha (2-i)| = 1$, A 是以 C(2,-1) 为圆心, 1 为半径的圆上的动点. 而 $\beta = (-1-i)\alpha = \sqrt{2}(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4})\alpha$, 故线段 OB 的长是 OA 长的 $\sqrt{2}$ 倍, 且由 OA 绕原点按逆时针方向旋转 $\frac{5\pi}{4}$ 而得 (如图).

故 $S_{\triangle AOB} = \frac{1}{2}|OA| \cdot |OB| \cdot \sin \frac{3\pi}{4} = \frac{1}{2}\sqrt{2} \cdot |OA|^2 \cdot \frac{\sqrt{2}}{2} = \frac{1}{2}|OA|^2$. 连接 OC 并延长,与圆交于点 A_1, A_2 ,则 $|OA_1| = \sqrt{5} - 1$, $|OA_2| = \sqrt{5} + 1$,因此 $\triangle AOB$ 面积的最大值和最小值分别为 $\frac{1}{2}(\sqrt{5} + 1)^2$ 和 $\frac{1}{2}(\sqrt{5} - 1)^2$,即 $3 + \sqrt{5}$ 和 $3 - \sqrt{5}$.

93. 已知定点 A(-2,0) 和圆 $x^2+y^2=1$ 的动点 B, 点 A,B,C 接逆时针方向排列, 且 |AB|:|BC|:|CA|=3:4:5 (如图 12), 求点 C 的轨迹方程. 解设点 C,B 分别对应复数 z,z_0 , 则 $z=z_0+(-2-z_0)(-\frac{4}{3}i)=z_0+\frac{4}{3}iz_0+\frac{8}{3}i$, 于是 $(1+\frac{4}{3}i)z_0=z-\frac{8}{3}i$, 两边取模得 $|1+\frac{4}{3}i|\cdot|z_0|=|z-\frac{8}{3}i|$. 又 $|z_0|=1,\ |z-\frac{8}{3}i|=\frac{5}{3}$, 即点 C 的轨迹是以 $(0,\frac{8}{3})$ 为圆心, $\frac{5}{3}$ 为半径的圆.

注意 (1) 用复数知识求点的轨迹,主要用于求从动点的轨迹问题,常用"转移法". (2) 本例解法中,设主动点对应于复数 z_0 ,从动点对应于复数 z,有时,则需设主动点对应于复数 x_0+y_0i ,从动点对应于复数 $x+y_0i$,从动点对应于复数 $x+y_0i$,从动点对应于复数 $x+y_0i$

- 94. 复数在三角中的应用.
- 95. 求值: $arc\cot\frac{1}{3} + arc\sin\frac{1}{\sqrt{26}} + arc\cos\frac{7}{\sqrt{50}} + arc\cot 8$. 解 $arc\sin\frac{1}{\sqrt{26}} = arc\cot\frac{1}{5}$, $arccos\frac{1}{\sqrt{50}} = arccot\frac{1}{7}$, $arccot8 = arccot\frac{1}{8}$, \diamondsuit $z_1 = 3 + i = r_1(\cos\alpha + i\sin\alpha)$, $z_2 = 5 + i = r_2(\cos\beta + i\sin\beta)$, $z_3 = 7 + i = r_3(\cos\gamma + i\sin\gamma)$, $z_4 = 8 + i = r_4(\cos\delta + i\sin\delta)$, 其中 $0 < \alpha$, β , γ , $\delta < \frac{\pi}{4}$, $z_1 \cdot z_2 \cdot z_3 \cdot z_4 = (3 + i)(5 + i)(7 + i)(8 + i) = 650(1 + i) = 650\sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})$. 又 $z_1 \cdot z_2 \cdot z_3 \cdot z_4 = r_1r_2r_3r_4[\cos(\alpha + \beta + \gamma + \delta) + i\sin(\alpha + \beta + \gamma + \delta)]$, 而 $0 < \alpha + \beta + \gamma + \delta < \pi$, $\alpha + \beta + \gamma + \delta = \frac{\pi}{4}$, 即所求之值为 $\frac{\pi}{4}$.

96. 浞
$$A = \cos\frac{\pi}{11} + \cos\frac{3\pi}{11} + \cos\frac{5\pi}{11} + \cos\frac{7\pi}{11} + \cos\frac{9\pi}{11}, B = \sin\frac{\pi}{11} + \sin\frac{3\pi}{11} + \sin\frac{5\pi}{11} + \sin\frac{7\pi}{11} + \sin\frac{9\pi}{11},$$
 求证: $A = \frac{1}{2}$,
$$B = \frac{1}{2}\cot\frac{\pi}{22}.$$
 证明设 $z = \cos\frac{\pi}{11} + i\sin\frac{\pi}{11},$ 则
$$\begin{cases} A + Bi = z + z^3 + z^5 + z^7 + z^9 = \frac{z(1-z^{10})}{1-z^2} = \frac{z-z^{11}}{1-z^2} = \frac{z-(\cos\pi+iz)}{1-z^2} = \frac{1-\cos\frac{\pi}{11} + i\sin\frac{\pi}{11}}{2-(z+\overline{z})} = \frac{1-\cos\frac{\pi}{11} + i\sin\frac{\pi}{11}}{2(1-\cos\frac{\pi}{11})} = \frac{1}{2} + \frac{1}{2} \cdot \frac{\sin\frac{\pi}{11}}{1-\cos\frac{\pi}{11}} = \frac{1}{2} + i \cdot \frac{1}{2} \cdot \cot\frac{\pi}{22},$$

 $A=rac{1}{2},\,B=rac{1}{2}\cotrac{\pi}{22}.$ 【训练题】(一) 复数的三角形式

- 97. 复数 $z = -\sin 100^{\circ} + i \cos 100^{\circ}$ 的轴角主值是 (

C. 190°

- D. 260°
- 98. 复数 $z = -2(\sin 220^{\circ} i\cos 220^{\circ})$ 在复平面内的对应点所在的象限是 ().
- B. 第二象限
- C. 第三角限
- D. 第四象限

- 99. 若 $\frac{3\pi}{2} < \theta < 2\pi$, 则 $-\sin \theta + i\cos \theta$ 的辐角主值等于 (

- D. $\theta \frac{\pi}{2}$

- 100. 复数 $z=1+\sin\theta+\mathrm{i}\cos\theta(0<\theta<\frac{\pi}{2})$ 的辐角主值是 (

- C. $\frac{\pi}{2} \theta$
- D. $\frac{\pi}{4} \frac{\theta}{2}$
- 101. 若复数 $z=a+b\mathrm{i}(a,b\in R)$ 所对应的点在第四象限, 则 $\arg z$ 等于 ().

A.
$$\arcsin \frac{b}{\sqrt{a^2 + b^2}}$$
 B. $\arcsin \frac{a}{\sqrt{a^2 + b^2}}$ C. $\operatorname{arc} \cot \frac{b}{a}$

B.
$$\arcsin \frac{a}{\sqrt{a^2+b^2}}$$

C.
$$arc \cot \frac{b}{-}$$

D. $2\pi + \arctan \frac{b}{a}$

102. 若复数 z 满足 $|z + 3i| \le 2$, 则 $\arg z$ 的最大值为 ().

A.
$$\arcsin \frac{2}{3}$$
 B. $\arccos \frac{2}{3}$

B.
$$\arccos \frac{2}{3}$$

C.
$$\pi - \arcsin \frac{2}{3}$$

D. $2\pi - \arccos \frac{2}{3}$

103. 复数 $z = 1 + \cos \theta + i \sin \theta (\pi < \theta < 2\pi)$ 的模是 ().

B.
$$1 + \cos \theta$$

C.
$$2\cos\frac{\theta}{2}$$

D.
$$-2\cos\frac{\theta}{2}$$

104. 若复数 z 的辐角主值是 $\frac{5\pi}{6}$, 实部是 $-2\sqrt{3}$, 则 z 的代数形式是 ().

A.
$$-2\sqrt{3} - 2i$$

B.
$$-2\sqrt{3} + 2i$$

C.
$$-2\sqrt{3} + 2\sqrt{3}i$$

D.
$$-2\sqrt{3} - 2\sqrt{3}i$$

105. 若 $\arg z = \alpha(0 < \alpha < \frac{\pi}{2})$, 则 $\arg \overline{z}$ 等于 ().

A.
$$-\alpha$$

B.
$$\pi - \epsilon$$

C.
$$\pi + \alpha$$

D.
$$2\pi - \alpha$$

- 106. 满足 $|z-2+2\mathrm{i}|=\sqrt{2}$ 的复数 z 的辐角主值的最小值是 ().
 - A. 105°

B. 265°

C. 285°

D. 315°

107. 复数 z = -1 - 2i 的辐角主值是(D. $(2k + 1)\pi +$ A. arctan 2 $C. - \arctan 2$ B. $\pi + \arctan 2$ $\arctan 2(k \in \mathbf{Z})$ 108. 若复数 z 满足 $z=(a+\mathrm{i})^2,$ 且 $\arg z=\frac{7}{4}\pi,$ 则实数 a 的值为 (C. $-1 \pm \sqrt{2}$ D. $-1 - \sqrt{2}$ 109. 将下列复数化为三角形式: $(1)2(\cos\frac{\pi}{5}-i\sin\frac{\pi}{5})=$ _____. $(2)2(\sin\frac{\pi}{5}+i\cos\frac{\pi}{5})=$ ____. $(3)2(-\cos\frac{\pi}{5}+i\sin\frac{\pi}{5})=$ ___. $i\sin\frac{\pi}{5}$) = ______. (4) - 2($\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}$) = ______. (5) $|\cos\theta| + i|\sin\theta|$ = ______($\frac{\pi}{2} < \theta < \pi$). 110. 若复数 z 满足 $\arg(z+4)=\frac{\pi}{6},$ 则 |z| 的最小值为 (C. $2\sqrt{3}$ D. $3\sqrt{2}$ A. 1 111. 若复数 z 满足 $|z| \leq \frac{1}{2}$, 则 $\arg(z+1)$ 的取值范围是 (C. $[0, \frac{\pi}{6}] \cup [\frac{11\pi}{6}, 2\pi)$ D. $[\frac{\pi}{6}, \frac{11\pi}{6}]$ A. $[0, \frac{\pi}{c}]$ B. $\left[-\frac{\pi}{c}, \frac{\pi}{c}\right]$ 112. 若非零复数 z 的辐角主值为 $\frac{7\pi}{4}$, 则复数 z+i 的辐角主值的取值范围是 (D. $[0, \frac{\pi}{2}) \cup (\frac{7\pi}{4}, 2\pi)$ B. $(\frac{7\pi}{4}, 2\pi)$ C. $[0, \frac{\pi}{2})$ A. $(-\frac{\pi}{4}, \frac{\pi}{2})$ 113. 若 7+3i 的辐角主值为 θ , 则 6-14i 的辐角主值为 (C. $\frac{3\pi}{2} - \theta$ D. $\frac{3\pi}{2} + \theta$ A. $\frac{\pi}{2} + \theta$ B. $\frac{\pi}{2} - \theta$ 114. (1) 复数 $\cot 20^{\circ}$ — i 的模是_______,辐角的主值是______. (2) 若 $a,b \in \{-2,-1,1,2\}$,且 $a \neq 0$ b, 则 arg(a+bi) 的最大值是______. (3) 若复数 $z=a+bi(a,b\in R)$ 的对应点在第四象限,则 $\arg z =$ _______. (4) 若 $z_1 = 1 + \cos \theta + i \sin \theta$, $z_2 = 1 - \cos \theta + i \sin \theta$ ($\pi < \theta < 2\pi$), 则 z_1, z_2 的辐 角主值之和等于______. (5) 若 $\pi < \theta < \frac{3\pi}{2}$,则 $\arg(|\cos \theta| + i|\sin \theta|) =$ ______. (6) 若 $|z| \le 1$,则

- 115. (1) 已知 $|z+1|=\sqrt{10}$, $\arg(z-3\overline{z})=\frac{5\pi}{4}$, 求复数 z. (2) 已知复数 z 满足 $|\frac{1}{z}-1|=\frac{1}{2}$, $\arg\frac{z-1}{z}=\frac{\pi}{3}$, 求 z 的值. (3) 已知复数 z 满足 $|\frac{z-\mathrm{i}}{2z}|=2$, $\arg\frac{1+\mathrm{i}z}{z}=\frac{\pi}{2}$, 求 z.
- 116. (1) 已知 $\omega = z + ai$, 其中 $a \in \mathbf{R}$, $z = \frac{(1+4i)(1+i)+2+4i}{3+4i}$. 且 $|\omega| \leq \sqrt{2}$, 求 ω 的辐角主值 θ 的取值范围. (2) 已知 $f(z) = |1+z| \overline{z}$, $f(-\overline{z}i) = 10+3i$, 求 $\frac{z+3}{z-2}$ 的模及辐角主值. (3) 已知复数 $1-\cos\theta+i\sin\theta(-\pi < \theta < \pi)$.① 求 |z| 及 $\arg z$; ② 要使 $1 \leq |z| \leq \sqrt{2}$, 求 θ 的取值范围. (4) 求复数 $z = \frac{1+i}{1+\cos\theta+i\sin\theta}$ 的模和辐角,其中 $\theta \in [0,2\pi)$, $\theta \neq \pi$.
- 117. 已知复数 $z = \sqrt{|\cos t|} + \mathrm{i} \sqrt{|\sin t|}$. 求: (1)|z| 的取值范围. (2)t 的范围, 使 $0 \le \arg z \le \frac{\pi}{4}$.

- 118. (1) 复平面内,根据要求作出复数 z 的对应点所构成的图形: ① $\begin{cases} |z| \le 1, \\ \arg z \in [\frac{\pi}{6}, \frac{2\pi}{3}]; \end{cases}$ ② $\arg(z+2) = \frac{\pi}{4};$ ③
 - $\begin{cases} 0 \leq \arg(z-1) \leq \frac{\pi}{4}, & \text{④} \\ R(z) \leq 2; & \text{④} \end{cases} |z| = 1, \\ \frac{\pi}{4} < \arg(z+i) < \frac{\pi}{2}. \end{cases} (2)$ 已知 $A = \{z | |z-1| \leq 1, z \in \mathbf{C}\}, B = \{z | \arg z \geq 1\}, B = \{z |$

求 z 所对应区域的面积. (二) 复数三角形式的运算

- 119. 若复数 $z_1=\cos\frac{2\pi}{3}+\mathrm{i}\sin\frac{2\pi}{3},\ z_2=\cos\frac{11\pi}{6}+\mathrm{i}\sin\frac{11\pi}{6},\$ 则 $\frac{2z_1^2}{z_2}$ 的辐角主值是 ().

- B. $\frac{5\pi}{6}$ C. $\frac{3\pi}{2}$
- 120. 复平面内有 A, B, C, D, E 五点分别在单位圆内部和外部 (如图), 其中有一点对应的复数是点 A 对应复数的 倒数,则此点是(

- A. 点 B
- B. 点 C

C. 点 D

- D. 点 E
- 121. 把复数 $a+b\mathrm{i}(a,b\in R)$ 在复平间内的对应向量绕原点 O 顺时针方向旋转 90° 后, 所得向量对应的复数为 ().
- B. -a + bi
- C. b ai
- 122. 复平面内, 向量 \overrightarrow{OA} , \overrightarrow{OB} 分别对应于非零复数 z_1 , z_2 , 若 $\overrightarrow{OA} \perp \overrightarrow{OB}$, 则 $\frac{z_2}{z_1}$ 一定是 ().
 - A. 非负数
- B. 纯虚数
- C. 正实数
- D. 非纯虚数

- 123. 复数 $z = (\sin 25^{\circ} + i \cos 25^{\circ})^{3}$ 的三角形式为 ().

- A. $\sin 75^{\circ} + i \cos 75^{\circ}$ B. $\cos 15^{\circ} + i \sin 15^{\circ}$ C. $\cos 75^{\circ} + i \sin 75^{\circ}$ D. $\cos 195^{\circ} + i \sin 195^{\circ}$
- 124. $(1-\sqrt{3}i)^2$ 的辐角主值为 ().
 - A. $\frac{10\pi}{3}$ B. $\frac{7\pi}{3}$
- C. $\frac{4}{3}\pi$

- 125. (1) 若 α, β, γ 是一个三角形的三个内角,则 $(\cos \alpha + i \sin \alpha)(\cos \beta + i \sin \beta)(\cos \gamma + i \sin \gamma) =$

是纯虚数,则 △ABC 是_____ 三角形.

126.	计算下列各题: $(1)\frac{[2(\cos 45)]}{(\sin 80^{\circ})}$ $i\sin 60^{\circ}) = (4)(60^{\circ})$				
127.	(1) 若 $z = (\sqrt{3}-i)^5$, 则 $\arg z$ (3) 若 $\arg z = \theta$, 则 $\arg z^2 =$				
	5. (1) 复平面内,将 $1 + \sqrt{3}$ i 所对应的向量绕原点按逆时针方向旋转 θ 角,所得向量对应的复数是 -2 i,则 θ 的最小正值为				
129.	若 $\arg z_1 = \alpha$, $\arg z_2 = \beta$, 且	$\alpha < \beta$, 则 $\arg \frac{z_1}{z_2}$ 等于 ().		
	A. $\beta - \alpha$	B. $\alpha - \beta$	C. $2\pi + \alpha - \beta$	D. $\pi + \beta - \alpha$	
130.	若 $ z =1$, $\arg z=\theta(\theta\neq 0)$,	则 $rac{z+\overline{z}}{1+z^2}$ 的辐角主值为 ().		
	A. $\frac{\theta}{2}$	B. θ	C. $\pi - \theta$	D. $2\pi - \theta$	
131.	若 $z_1 = 1 + \cos 2\theta + i \sin 2\theta$,	$z_2 = 1 - \cos 2\theta + i \sin \theta, \ \mathbf{M}^-$	下列各式中必为定值的是 ().	
	A. $z_1 \cdot z_2$	B. $\frac{z_1}{z_2}$	C. $ z_1 + z_2 $	D. $ z_1 ^2 + z_2 ^2$	
132.	若复数 -2 + i 和 3 - i 的辐射	角主值分别为 $lpha$ 和 eta , 则 $lpha$ +	+ β 等于 ().		
	A. $\frac{3\pi}{4}$	B. $\frac{5\pi}{4}$	C. $\frac{7\pi}{4}$	D. $\frac{11\pi}{4}$	
	$\frac{4}{100}$. 复平面内, 已知点 P_1 , P_2 分别对应于复数 $3-2i$, $7+4i$, 线段 P_1P_2 绕点 P_1 按逆时针方向旋转 $\frac{5}{6}\pi$ 到				
	P_1P_3 的位置, 则点 P_3 对应的复数为 $($ $)$.				
	A. $2\sqrt{3} + 3\sqrt{3}i$	B. $2\sqrt{3} - 3\sqrt{3}i$	C. $-2\sqrt{3} + 3\sqrt{3}i$	D. $-2\sqrt{3} - 3\sqrt{3}i$	
133.	复平面内, 点 P_1 的对应复数	是 $z_1 = -2\sqrt{3} + 4i$, 将向量 $\overline{0}$	$\overrightarrow{OP_1}(O$ 为原点) 旋转一个锐角	自 $ heta$ 后得到新向量 $\overrightarrow{OP_2},$	
	且点 P_2 的对应复数是 $z_2 = \sqrt{3} + 5i$, 则 ().				
	A. θ = 60°, 且接逆时针	B. $\theta = 60^{\circ}$, 且接顺时针旋	$C. \theta = 30^{\circ},$ 且接逆时针旋	D. $\theta = 30^{\circ}$, 且按顺时针	
	旋转	转	转	旋转	
134.	已知 $z_A=a+b\mathrm{i}(a,b\in R,$ 且 $ab\neq 0),$ 复平面内, 把 z_A 对应的向量 \overrightarrow{OA} 绕原点分别按逆、顺时针方向旋转 $\frac{2\pi}{3}$, 得向量 $\overrightarrow{OB},$ $\overrightarrow{OC},$ 则 $\overrightarrow{OA},$ $\overrightarrow{OB},$ \overrightarrow{OC} 所对应的复数之和等于 ().				
	A. $-a-bi$ $103. $	$\mathrm{B.} - rac{1}{2} + rac{\sqrt{3}}{2}i$ $\mathrm{g}(-rac{1}{zi})$ 的取值范围是()	C. $a - bi$. $(4)[\frac{3\pi}{4}, \frac{5\pi}{4}]$. $(B)[\frac{5\pi}{4}, \frac{7\pi}{4}]$.	D. 0 (C) $\left[\frac{\pi}{4}, \frac{7\pi}{4}\right]$. (D) $\left[0, \frac{\pi}{4}\right]$ \cup	

135. 若数列 $\{a_n\}$ 的通项公式为 $a_n = (\cos \theta + i \sin \theta)^n (\theta \neq 2k\pi, k \in \mathbf{Z}), 则 <math>\{a_n\}$ ().

136. 若 $(-\sqrt{3}+i)^n \in \mathbf{R}^+$, 则最小的自然数 n 的值是 ().

A. 6 B. 8 C. 10 D. 12

137. 已知非纯虚数 z 满足 $\arg z = \arg[(z+1)i]$, 则 z 在复平面内的对应点所表示的图形为 ().

138. 复平面内, 已知 $\triangle ABC$ 的三个顶点分别对应于复数 $z, \overline{z}, \frac{1}{z}$, 且 |z|=3, 点 A 的位置如图所示

- (1) 试在图上画出点 B,C 的大概位置;
- (2) 求 △*ABC* 面积的最大值.
- 139. (1) 已知 $|z_1|=3$, $|z_2|=5$, $|z_1-z_2|=7$, 求 $\frac{z_1}{z_2}$. (2) 已知复数 z 满足 |z|=5, 且 $(3+4\mathrm{i})z$ 为纯虚数, 求 z. (3) 若 |z|=1, 求 $|z^2-z+1|$ 的最大值和最小值. (4) 已知 $z_1,z_2\in\mathbf{C}$, 且 $|z_1|=|z_2|=1$, $z_1+z_2=\frac{4}{5}+\frac{3}{5}i$, 求 $\tan(\arg z_1+\arg z_2)$. (5) 已知复数 z_1 和 z_2 满足 $|z_1|=|z_2|=1$, 且 $z_1-z_2=\frac{1}{2}-\frac{1}{3}\mathrm{i}$, 设 θ 是 $z_1\cdot z_2$ 的辐角, 求 $\sin\theta$ 的值.
- 140. (1) 已知复数 z_1, z_2, z_3 的辐角主值依次成公差为 $\frac{2\pi}{3}$ 的等差数列,且 $|z_1| = |z_2| = |z_3| = 1$,求证: $z_1 + z_2 + z_3 = 0$. (2) 若复数 z_1, z_2, z_3 满足 $z_1 + z_2 + z_3 = 0$,且 $|z_1| = |z_2| = |z_3| = 1$,求证: 复平面内以 z_1, z_2, z_3 所对应的点为顶点的三角形是内接于单位圆的正三角形. (3) 已知非零实数 x, y, z 满足了 x + y + z = 0,复数 α, β, γ 满足 $|\alpha| = |\beta| = |\gamma| \neq 0$,且 $x\alpha + y\beta + z\gamma = 0$,求证: $\alpha = \beta = \gamma$.
- 141. (1) 计算: $\arg(i+2) + \arg(i+3)$. (2) 若 $\arg(-2-i) = \alpha$, $\arg(-3-i) = \beta$, 求 $\alpha + \beta$.
- 142. 复平面内,两点 A,B 分别对应于非零复数 α,β ,试根据下列条件判断 $\triangle OAB$ 的形状 (O 为原点): $(1)\alpha=\beta(\cos\theta+i\sin\theta)(0<\theta<\pi)$. $(2)\alpha=\pm\beta i.$ $(3)\frac{\alpha}{\beta}=\pm\sqrt{3}i.$ $(4)\frac{\alpha}{\beta}=\frac{1+\sqrt{3}i}{2}.$ $(5)\frac{\alpha}{\beta}=1+i.$
- 143. (1) 已知复数 z_1, z_2 满足 $4z_1^2 2z_1z_2 + z_2^2 = 0$,且 $|z_2| = 4$, z_1, z_2 ,0 所对应的点分别为 A, B, O,求 $\triangle AOB$ 的面积. (2) 复平面内,点 A, B 分别对应于复数 ωz 和 $\omega + z$,其中 $\omega = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$,若 $\triangle AOB$ 是以原点 O 为直角顶点的等腰直角三角形. 求: ① 复数 z. ② $\triangle AOB$ 的面积.

- 144. (1) 已知等边三角形的两个顶点 A, B 对应的复数分别为 $z_A = 2 + i$, $z_B = 3 + 2i$, 求第三个顶点 C 所对应的复数. (2) 复平面内, 等边三角形的一个顶点在原点, 中心 P 所对应的复数是 1 + i, 求其他两个顶点所对应的复数. (3) 复平而内, 矩形 OMNP 的相邻两边之比是 $|OM|:|OP|=1:\sqrt{3}$, 且点 O, M 的对应复数分别是 0, -1 + 2i, 求点 N 对应的复数. (4) 已知等腰 $Rt\triangle ABC$ 的斜边 AB 的两个端点的坐标分别为 A(-1,2), B(2,3), 求顶点 C 的坐标. (5) 若等边 $\triangle ABC$ 的一个顶点为 A(0,5), 中心 M 的坐标是 M(2,3), 求其他两个顶点 B, C 的坐标.
- 145. 已知复数 $z_1 = 1 + (2 \sqrt{3})$ i, $z_3 = (2 + \sqrt{3}) + i$, 又复数 z_1 , z_2 , z_3 , z_4 在复平面内的对应点依逆时针方向排列足一个正方形的四个顶点. (1) 求 z_2 , z_4 . (2) 求证: z_2 , z_4 , 0 的对应点是一个等边三角形的三个顶点.
- 146. 复平面内, 已知 $\triangle AOB$ 的顶点 A,B 所对应的复数 α,β 满足 $\beta+(1-\mathrm{i})\alpha=0$, 且 $\triangle AOB(O$ 为原点) 面积 的最大值和最小值分别是 8 和 2, 求 $|\alpha|$ 与 $|\beta|$ 的取值范围.
- 147. (1) 已知复数 z_1, z_2, z_3 满足 $\frac{z_2-z_1}{z_3-z_1}=1+\sqrt{3}i$, 试判断复平面内的 z_1, z_2, z_3 的对应点为顶点的三角形的形状, 并求其各内角的值. (2) 复平面内,已知 A, B, C 三点对应的复数 z_1, z_2, z_3 满足 $\frac{z_2-z_1}{z_3-z_1}=1+\frac{3}{4}i$, 试求这个三角形三边长之比.
- 148. (1)—个三角形的底边 BC 的两端所表水的复数是 $z_B=a$, $z_C=-a$, 顶点 A 的位置不定, 以两边 AB, AC 为腰, 分别以 B, C 为直角的顶点, 在 $\triangle ABC$ 外作等腰直角三角形 ABD, ACE, 求证: DE 的中点 M 为定点, (2) 已知 B 是半圆 $x^2+y^2=1(y\geq 0)$ 上的动点, A(2,0) 是 x 轴上的一个定点, 以 A 为直角顶点作等腰直角 $\triangle ABC$ (字母按顺时针排列), 求 |OC| 的最大值及其相应的点 B 的坐标 (O 为坐标原点).
- 149. (1) 复平面内, 已知 Rt $\triangle ABC$ 的三个顶点 A, B, C 分别对应于复数 $z, z^2, z^3,$ 且 $|z|=2, \angle BAC=90^\circ,$ 求 复数 z. (2) 已知复数 z_1 满足 $\arg z_1=\frac{5\pi}{12}, |z_1-z_0|=\sqrt{2}, z_0-(1+i)z_1=0$. ① 求 z_1 和 z_0 ; ② 求证: 在满足 $|z_1-z_0|=\sqrt{2}$ 条件的所有复数 z 中, z_1 的辐角主值最小.
- 150. 已知复数 $z = [\cos(\pi + \alpha) + i\sin(\pi + \alpha)] \cdot [\sin(\frac{3}{2}\pi + \beta) + i\cos(\frac{3}{2}\pi + \beta)], \ 0 < \beta < \alpha < \frac{\pi}{2}, \ \text{且} \sin(\alpha + \beta) = 4\cos\alpha\sin\beta, \ 求 \arg z$ 的最大值.
- 151. 已知 |z-1-i|=2, 求复数 z^2 虚部的取值范围.
- 152. 已知复数 z=x+yi 满足 $|z+\frac{1}{z}|=1(x,y\in\mathbf{R})$. 求证: $(1)(x^2+y^2)^2+x^2-3y^2+1=0$. $(2)k\pi+\frac{\pi}{3}\leq\arg z\leq k\pi+\frac{2\pi}{3}(k\in\mathbf{Z})$. $(3)\frac{\sqrt{5}-1}{2}\leq|z|\leq\frac{\sqrt{5}+1}{2}$.
- 153. $\forall n \in \mathbb{N}, k \in \mathbb{N}, \ \forall \tilde{\mathbf{n}} \in \mathbb{N}, \ \vec{\mathbf{x}} = (1)(\frac{1+i}{\sqrt{2}})^n + (\frac{1-i}{\sqrt{2}})^n = 2\cos\frac{n\pi}{4}. \ (2)(1+\cos\alpha+i\sin\alpha)^n = 2^n\cos^n(\frac{\alpha}{2})(\cos\frac{n\alpha}{2}+i\sin\frac{n\alpha}{2}). \ (3)(\frac{1+i\tan\alpha}{1-i\tan\alpha})^n = \frac{1+i\tan n\alpha}{1-i\tan n\alpha}. \ (4)(\frac{1-\cos\theta+i\sin\theta}{1-\cos\theta-i\sin\theta})^n = \cos n(\pi+\theta)-i\sin n(\pi+\theta)(\theta\neq 2k\pi).$
- 154. (1) 若 $(1+\sqrt{3}i)^n$ 是一个实数, 求自然数 n 的值. (2) 已知复数 $z=\frac{(1+\mathrm{i})^3}{\sqrt{2}(a+\mathrm{i})^2}(a>0)$ 满足 $|z|=\frac{1}{2}$. 求: ① a 的值; ② 使 z^n 为实数的最小自然数 n.
- 155. 已知数列 $\{a_n\}$ 的通项 $a_n = \frac{1}{(1+\sqrt{3}i)^n}$, 当 n 取 1, 2, 3, …时, 依次得到的实数记为 b_1 , b_2 , b_3 , …, 求数列 $\{b_n\}$ 的所有项之和.

- 156. (1) 已知复数 $z=\cos 20^{\circ}+i\sin 20^{\circ}$,求 $|z-z^2+z^3-z^4+z^5-z^6+z^7-z^8+z^9-z^{10}|$. (2) 设 $z=\cos 40^{\circ}+i\sin 40^{\circ}$,求 $|z+z^2+\cdots+z^{100}|$. (3) 已知 $z=\cos \frac{2\pi}{5}+i\sin \frac{2\pi}{5}$,求 $(1+z^8)(1+z^4)(1+z^2)(1+z)$. (4) 已知 $z=\cos \frac{\pi}{3}+i\sin \frac{\pi}{3}$,求 $|z+2z^2+3z^3+\cdots+12z^{12}|$.
- 157. 已知 $z_n = (\frac{1+i}{2})^n (n \in \mathbf{N})$. (1) 记 $a_n = |z_{n+1}| |z_n| (n \in \mathbf{N})$, 求数列 $\{a_n\}$ 所有项之和. (2) 记 $b_n = |z_{n+2} z_n| (n \in \mathbf{N})$, 求数列 $\{b_n\}$ 所有项之和.
- 158. 设复数 $z = \cos \theta + i \sin \theta (0 < \theta < \pi), \ \omega = \frac{1 (\overline{z})^4}{1 + z^4}, \ \exists L \ |\omega| = \frac{\sqrt{3}}{3}, \arg \omega < \frac{\pi}{2}, \ \vec{x} \ \theta.$
- 159. 已知复数 $z=\cos\theta+i\sin\theta(0<\theta<2\pi),\,\omega=\frac{1-z^3}{1-z}.$ 求: (1) 满足 $|\omega|=1$ 的复数 z. $(2)\omega$ 的辐角 (用 θ 表示). 四、复数方程【典型题型和解题技巧】复数方程主要有以下几种类型: 1, —次方程 $az=b(a,b\in\mathbf{C},a\neq0)$. 此类方程的解是 $z=\frac{b}{a}$.
- 160. 解方程 3z + i = 2iz + 1. 解由已知,得 (3-2i)z = 1-i, $z = \frac{1-i}{3-2i} = \frac{(1-i)(3+2i)}{13} = \frac{5}{13} \frac{1}{13}i$. 注意关于 z 的一次方程,若令 $z = a + bi(a, b \in \mathbf{R})$ 也可获解,但显然不妥.
- 161. 二次方程 $az^2 + bz + c = 0(a, b, c \in \mathbf{C}, \ a \neq 0)$. 对于这类方程需强调两点: 韦达定理仍可沿用——若 α , β 是上述方程的两根,则 $\begin{cases} \alpha + \beta = -\frac{b}{a}, & \text{反之亦真; 若 } a, b, c \text{ 不全是实数, 则 } \triangle = b^2 4ac \text{ 不能用来判断方程 } \\ \alpha\beta = \frac{c}{a}, & \text{反之亦真; 若 } a, b, c \text{ 不全是实数, 则 } \triangle = b^2 4ac \text{ 不能用来判断方程 } \\ \text{有无实根. (1) 二次方程 } az^2 + bz + c = 0(a, b, c \in \mathbf{C}, \ a \neq 0), \text{ 这就是通常所说的 "实系数—元二次方程. 解此 类方程可分为两步: 第一步,先算 <math>\triangle = b^2 4ac$; 第二步,若 $\triangle \geq 0$,则方程的解是 $z = \frac{-b \pm \sqrt{\triangle}}{2a}$;若 $\triangle < 0$,则方程的解是 $z = \frac{-b \pm \sqrt{-\triangle}i}{2a}$.显然,此类方程的 $\triangle = b^2 4ac$ 可以用来判断此方程有无实根,若方程有虚根,则虚根一定"成对出现",即若 $p + qi(p \cdot q \in \mathbf{R})$ 是上述方程的根,则 p qi 也是此方程的根.
- 162. 设 x 是模不为 1 的虚数,记 $y = x + \frac{1}{x}$,求满足 $y^2 + ay + 1 = 0$ 的实数 a 的取值范围. 解由题意可设 $x = r(\cos\theta + i\sin\theta)(r > 0, \ r \neq 1, \ \theta \neq k\pi)$,则 $y = x + \frac{1}{x} = r(\cos\theta + i\sin\theta) + \frac{1}{r}(\cos\theta i\sin\theta) = (r + \frac{1}{r})\cos\theta + i(r \frac{1}{r})\sin\theta$. $\theta \neq k\pi$, r > 0,且 $r \neq 1$, $(r \frac{1}{r})\sin\theta \neq 0$. 故 y 是虚数,即方程 $y^2 + ay + 1 = 0$ 有虚数根, $\triangle = a^2 a < 0$,故实数 a 的取值范围是 -2 < a < 2.

- (2) 齐二次方程 $az_1^2 + bz_1z_2 + cz_2^2 = 0(a,b,c \in \mathbf{R},\ a \neq 0)$. 此类方程称为关于 $z_1,\ z_2$ 的齐二次方程,在 $z_2 \neq 0$ 的前提下,方程可变形为 $a(\frac{z_1}{z_2})^2 + b \cdot \frac{z_1}{z_2} + c = 0$. 若令 $t = \frac{z_1}{z_2}$, 则有 $at^2 + bt + c = 0$. 因此,就实质而言,它也是实系数的二次方程.
- 164. 若非零复数 z_1, z_2 在复平面内的对应点分别为 A, B, 且满足 $|z_2|=2, z_1^2-2z_1z_2+4z_2^2=0.$ (1) 试判断 $\triangle AOB(O$ 为原点) 的形状. (2) 求 $\triangle AOB$ 的面积. 解 (1) 由 $z_1^2-2z_1z_2+4z_2^2=0,$ 得 $z_1=\frac{2z_2\pm2\sqrt{3}iz_2}{2},$ 即 $z_1=(1\pm\sqrt{3}i)z_2,$ 即 $z_1=2(\cos\frac{\pi}{3}\pm i\sin\frac{\pi}{3})z_2.$ 由此得 $\triangle AOB$ 是直角三舟形,且 $\angle AOB=60^\circ.$ (2) $S_{\triangle AOB}=\frac{1}{2}|AO|\cdot|BO|\sin\frac{\pi}{3}=\frac{\sqrt{3}}{4}\cdot2\cdot|BO|^2=2\sqrt{3}.$ (3) 二次方程 $az^2+bz+c=0(a,b,c$ 不全为实数, $a\neq 0$). 此类方程布些超过教科书的要求,它的解法可按以下步骤进行: 先计算 $\triangle=b^2-4ac$,再把 \triangle 化成一个复数 u 的平方,即 $\triangle=u^2$,然后用公式 $z=\frac{-b\pm u}{2a}$.
- 165. 解方程 $x^2 (3-2i)x + 5 5i = 0$. 解 $\triangle = (3-2i)^2 4(5-5i) = -15 + 8i = (1+4i)^2$, $x = \frac{3-2i \pm (1+4i)}{2}$. 故 $x_1 = 2+i$, $x_2 = 1-3i$.
- 166. —元高次方程. 本单元出现的一元高次方程的系数均为实数, 即 $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 = 0$, 其中 $a_k \in \mathbf{R}(k=0,1,2,3,\cdots n)$. 解实系数的高次方程主要有下面两种方法. (1) 分解因式法.
- 167. 解方程 $x^3+8=0$. 解原方程即为 $(x+2)(x^2-2x+4)=0$. 由 x+2=0, 得 x=-2. 由 $x^2-2x+4=0$, 得 $x=1\pm\sqrt{3}i$. 原方程的解为 $x_1=-2$, $x_2=1+\sqrt{3}i$, $x_3=1-\sqrt{3}i$. (2) 公式法. 所谓公式法, 即对于 "n 次方程" $z^n=a$ (常数 $a\in {\bf C}$), 可利用公式求解. 先将 a 化成三角形式, 即 $a=r(\cos\theta+i\sin\theta)(r>0)$. 再用公式 $z=\sqrt[n]{r}(\cos\frac{2k\pi+\theta}{n}+i\sin\frac{2k\pi+\theta}{n})(k=0,1,2,\cdots n-1)$.
- 168. 解方程 $(1+z)^n (1-z)^n = 0$. 解由已知,得 $(1+z)^n = (1-z)^n$,显然 $(1-z)^n \neq 0$,故有 $(\frac{1+z}{1-z})^n = 1$. $\frac{1+z}{1-z} = \cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n}(k=0,1,2,\cdots n-1).$ 由合分比定理得 $z = \frac{\cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n} 1}{\cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n} + 1} = \frac{\sin\frac{k\pi}{n}(-\sin\frac{k\pi}{n} + i\cos\frac{k\pi}{n})}{\cos\frac{k\pi}{n}(\cos\frac{k\pi}{n} + i\sin\frac{k\pi}{n})} = \tan\frac{k\pi}{n} \cdot \frac{(\cos\frac{k\pi}{n} + i\sin\frac{k\pi}{n})i}{(\cos\frac{k\pi}{n} + i\sin\frac{k\pi}{n})} = -i\tan\frac{k\pi}{n}(n=0,1,2,\cdots,n-1).$
- 169. 方程 $f(z,\overline{z},|z|)=0$. 这是一类比较特殊的方程, 方程中含有 z,\overline{z} 和 |z|. 解此类方程通常有以下两种方法. (1) 代数式法. 所谓代数式法, 即令 $z=x+yi(x,y\in\mathbf{R})$ 代入方程求解.
- 170. 解方程 $(\overline{z})^2 = z$. 解令 $z = x + yi(x, y \in \mathbf{R})$, 则有 $(x yi)^2 = x + yi$, 即 $x^2 y^2 2xyi = x + yi$, 于是

 $\begin{cases} x^2 - y^2 = x, \\ -2xy = y. \end{cases}$ 若 y = 0, 则 $x^2 = x$, 得 x = 0 或 x = 1, $z_1 = 0$, $z_2 = 1$. 若 $y \neq 0$, 则 $x = -\frac{1}{2}$, $y = \pm \frac{\sqrt{3}}{2}$, $z_3 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i, \ z_4 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i.$ 方程的解为 $0, 1, -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i.$ (2) 定性法. 有一类方程, 可以通过初步观 察, 对方程的根先"定性", 从而为求解带来一定的方便, 171. 解方程 $z^2 - 4|z| + 3 = 0$. 解由已知, $z^2 = -3 + 4|z|$, 故 z^2 必是实数, 因此, z 是实数或纯虚数. (1)z 是实 数时, 原方程即为 $|z|^2 - 4|z| + 3 = 0$, (|z| - 1)(|z| - 3) = 0, 于是得 $z = \pm 1$ 或 $z = \pm 3$. (2)z 是纯虚数时, 可令 $z = ti(t \in \mathbf{R}, t \neq 0)$, 则原方程即为 $(ti)^2 - 4|ti| + 3 = 0$, 即 $-t^2 - 4|t| + 3 = 0$, 即 $|t|^2 + 4|t| - 3 = 0$, $|t| = -2 + \sqrt{7}$, 故 $z = \pm (-2 + \sqrt{7})i$. 方程的解为 $\pm 1, \pm 3, \pm (2 - \sqrt{7})i$ 【训练题】 172. 若 $z \in \mathbb{C}$, 则方程 $|z|^2 - |z| = 0$ 解的个数是 (). A. 2 B. 3 C. 5 D. 无穷多 173. 方程 $z^2 = \overline{z}$ 的解的个数是 (). A. 2 B. 3 C. 4 D. 5 174. 二次方程 $x^2 - 2xi - 5 = 0$ 的根的情况是 (). B. 有一个实根和一个虚 C. 有一对共轭的虚根 A. 有两个不等的实根 D. 有两个不共轭的虚根 根 175. 满足 $z + |\overline{z}| = 2 + i$ 的复数 z 等于 (). A. $-\frac{3}{4} + i$ B. $\frac{3}{4} - i$ C. $-\frac{3}{4} - i$ D. $\frac{3}{4} + i$ 176. 若关于 x 的方程 $x^2+x+p=0$ 的两个虚根 α , β 满足 $|\alpha-\beta|=3$, 则实数 p 的值为 (). B. $-\frac{1}{2}$ C. $\frac{5}{2}$ A. -2 D. 1 177. 若 a > 1, α , β 是关于 x 的方程 $x^2 + 2x + a = 0$ 的两根, 则 $|\alpha| + |\beta|$ 的值为 (). C. $2\sqrt{a-1}$ D. $2\sqrt{1-a}$ A. 2 B. $2\sqrt{a}$ 178. (1) 若关于 x 的实系数二次方程 $x^2 + ax + b = 0$ 的一个根是 2 + i, 则 $a = _____, b = _____.$ (2) 若实系数的一元二次方程的一个根是 $\frac{1}{3}-\frac{4\sqrt{5}}{3}i$,则这个方程为______. 179. 1 的 5 次方根的五个复数的辐角主值之和是(). A. 2π B. 4π C. 6π D. 8π 180. 若 ω 是 $x^5 - 1 = 0$ 的一个虚根, 则 $\omega(1 + \omega)(1 + \omega^2)$ 的值是 ().

181. 复平面内,两点 M, N 所对应的非零复数是 $\alpha, \beta(O$ 是原点). (1) 若 $\alpha^2 + \beta^2 = 0$,则 $\triangle OMN$ 是_____ 三角形. (2) 若 $2\alpha^2 - 2\alpha\beta + \beta^2 = 0$,则 $\triangle OMN$ 是_____ 三角形.

C. i

B. -1

A. 1

D. $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$

- 182. 在复数范围内解方程: $(1)z \cdot \overline{z} 3i\overline{z} = 1 + 3i$. $(2)z^2 5|z| + 6 = 0$. (3)2z + |z| = 2 + 6i. $(4)z|z| + az + i = 0 (a \ge 0)$. $(5)|z|^2 2zi + 2a(1+i) = 0 (a \in \mathbf{R})$.
- 183. (1) 已知关于 x 的方程 $x^2 + (k+2i)x + 2 + ki = 0$ 有一个实根, 求实数 k 的值. (2) 已知关于 x 的方程 $x^2 ix m + 4ni = 0$ 有实根, 求点 (m,n) 应满足的方程. (3) 已知关于 x 的方程 $x^2 zx + 4 + 3i = 0$ 有实根, 求复数 z 的模的最小值和此时的 z 值.
- 184. (1) 已知方程 $x^2 + ix + 6 = 2i + 5x$ 有一个实数解, 试在复数范围内解此方程. (2) 已知关于 x 的方程 $x^2 + 2px + 1 = 0$ 的两根 α , β 在复平面内的对应点和原点恰是一个等边三角形的三个顶点, 求实数 p 的值. (3) 已知 $p, q \in \mathbf{R}$, 方程 $x^2 + px + q = 0$ 有两虚根 α , β , 方程 $x^2 px + q = 0$ 有两虚根 α^2 , β^2 , 求 α , β , p, q 的值. (4) 已知 a, b 是实数, 关于 x 的方程 $x^2 + (2a bi)x + a bi = 0$ 的两个非零复数根的辐角分別为 $\frac{2\pi}{3}$ 及 π , 求 a, b 的值.
- 185. (1) 求 5+12i 的平方根. (2) 解方程: ① $z^2-i=0$. ② $z^2-2zi-5=0$.
- 186. 复平面内, 已知非零复数 z_1 , z_2 对应于点 A 和 B, 复数 $z_1 a$ 与 $z_1 + a$ 所对应的两个向量相互垂直且模不相等, 又 $z_1^2 4z_1z_2 + 6z_2^2 = 0$. (1) 求 z_1 与 z_2 的模. (2)O 为复平面上的坐标原点, 求 $\triangle AOB$ 的面积.
- 187. 非零复数 α , β 分别对应于点 A, B(O 是原点), 已知 $4\alpha^2 2\alpha\beta + \beta^2 = 0$. (1) 求证: $\triangle AOB$ 是直角三角形. (2) 若 $|\alpha| = 1$, 求 $\triangle AOB$ 的面积. (3) 若 $|\alpha| = t > 0$, 求 $|\beta|^2 \alpha\overline{\beta} \overline{\alpha}\beta$ 的值.
- 188. 设 α , β 是实系数一元二次方程 $ax^2+bx+c=0$ 的两根, α 为虚数, 而 $\frac{\alpha^2}{\beta}$ 为实数, 求复数 $\frac{\alpha}{\beta}$ 的值.
- 189. 已知: $x + \frac{1}{x} = 2\cos\varphi$. 求证: $(1)x = \cos\varphi \pm i\sin\varphi$. $(2)x^n + \frac{1}{x^n} = 2\cos n\varphi (n \in \mathbf{N})$.
- 190. (1) 要使关于 x 的方程 $(1-i)x^2 + 2mix (1+i) = 0$ 有实根, 求实数 m 的值. (2) 若关于 x 的实系数方程 $2x^2 + 3ax + a^2 a = 0$ 至少布一个模为 1 的根, 求实数 a 的值. (3) 若关于 x 的方程 $x^2 + (2+i)x + 4mn + (2m-n)i = 0(m,n \in \mathbf{R})$ 有实根, 求点 (m,n) 的轨迹方程. (4) 已知 α , β 是方程 $x^2 2x + 2 = 0$ 的两根, p, q 是关于 x 的方程 $x^2 + 2mx 1 = 0(m \in \mathbf{R})$ 的两根, 且 α , β , p, q 在复平面内的对应点共圆, 求 m 的值. (5) 已知关于 x 的方程 $3x^2 6(m-1)x + m^2 + 1 = 0$ 的两根 x_1, x_2 满足 $|x_1| + |x_2| = 2$, 求实数 m 的值.
- 191. (1) 实系数方程 $x^4-4x^3+9x^2-ax+b=0$ 的一个根是 1+i, 求 a, b 的值, 并解此方程. (2) 已知关于 x 的 实系数方程 $x^4+ax^3+bx^2+cx+d=0$ 有一个纯虚根, 求证: $a^2d+c^2-abc=0$. (3) 已知模为 2, 辐角为 $\frac{\pi}{6}$ 的复数是方程 $x^5+a=0$ 的一个根, 求 a. (4) 已知复数 $z=\frac{1}{2}+\frac{\sqrt{3}}{2}i$ 满足 $z^n=\overline{z}$, 求整数 n 的一般形式.
- 192. 利用复数乘法、除法的几何意义,求证: (1) $\arctan 1 + \arctan 2 + \arctan 3 = \pi$. (2) $\arctan \frac{\sqrt{10}}{10} + \arccos \frac{7\sqrt{2}}{10} + \arctan \frac{7}{31} + arc\cot 10 = \frac{\pi}{4}$. (3) $\arctan(3 + 2\sqrt{2}) \arctan \frac{\sqrt{2}}{2} = \frac{\pi}{4}$. (4) $\arctan \frac{1}{7} + 2\arcsin \frac{1}{\sqrt{10}} = \frac{\pi}{4}$.
- 193. (1) 复平面内, 已知动点 A, B 所对应的复数 z_1 , z_2 的一个辐角为定值 θ 和 $-\theta(0 < \theta < \frac{\pi}{2})$, 且 $\triangle AOB$ 的面积为定值 S(O 为坐标原点〉,求 $\triangle AOB$ 的重心 M 所对应复数 z 的模的最小值. (2) 复数 z_1 , z_2 , z_3 的辐角主值分别为 α , β , γ , 模分别为 1, k 和 2-k, 且 $z_1+z_2+z_3=0$, 求 k, 使 $\cos(\beta-\alpha)$ 分别取到最大值和最小值,并求出大值和最小值.

- 194. 已知复数 $z=\cos\theta+\mathrm{i}\sin\theta$. (1) 当实数 k 和 θ 分别为何值时, $z^3+k\overline{z}^3$ 是纯虚数? (2) 求 $|z^3+k\overline{z}^3|$ 的最大值与最小值.
- 195. (1) 已知复数 z_1, z_2, z_3 满足 $|z_1| = |z_2| = |z_3| = 1$, 求证: $|z_1z_2 + z_2z_3 + z_3z_1| = |z_1 + z_2 + z_3|$. (2) 已知复数 α, β, γ 满足 $|\alpha| = |\beta| = |\gamma| \neq 0$, 求证: $\frac{(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha)}{\alpha\beta\gamma}$ 是实数.
- 196. 设 A, B, C 分别是复数 z_1 , z_2 , z_3 (z_1 , z_2 , z_3 互不相等) 在复平面内所对应的点, 求证: $\triangle ABC$ 为等边三角形的充要条件是 $z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1$.
- 197. 利用复数知识证明: $\cos 3\alpha = 4\cos^3 \alpha 3\cos \alpha$, $\sin 3\alpha = 3\sin \alpha 4\sin^3 \alpha$.
- 198. (1) 求证: $\cos\frac{\pi}{2n+1} + \cos\frac{3\pi}{2n+1} + \cos\frac{5\pi}{2n+1} + \cdots + \cos\frac{2n-1}{2n+1}\pi = \frac{1}{2}(n \in \mathbb{N})$. (2) 已知 $\cos\alpha + \cos\beta + \cos\gamma = 0$, $\sin\alpha + \sin\beta + \sin\gamma = 0$. 求证: ① $\cos3\alpha + \cos3\beta + \cos3\gamma = 3\cos(\alpha + \beta + \gamma)$, $\sin3\alpha + \sin3\beta + \sin3\gamma = 3\sin(\alpha + \beta + \gamma)$; ② $\cos3k\alpha = \cos3k\beta = \cos3k\gamma = \cos k(\alpha + \beta + \gamma)$, $\sin3k\alpha = \sin3k\beta = \sin3k\gamma = \sin k(\alpha + \beta + \gamma)(k \in \mathbb{N})$.
- 199. (1) 若 |z|=1, 求复数 $u=3z^2+\frac{1}{z^2}$ 在复平面内的对应点的轨迹. (2) 求复数 $z=\frac{1}{1-bi}(b\in\mathbf{R}\perp b\neq 0)$ 在 复平面内对应点的轨迹方程. (3) 复平面内,若复数 z 对应的点在连接复数 z + i 和 z i 对应点的线段上移动,求 z^2 对应点的轨迹方程.
- 200. 根据条件, 求复数 $z+\frac{1}{z}$ 在复平面内的对应点轨迹的普通方程: (1)|z|=1. $(2)|z|=r(r>0, r\neq 1)$. $(3)|z|\neq 0$, 且 $\arg z=\theta$.
- 201. (1) 在等腰 $Rt\triangle ABC$ 中,已知 $\angle C=90^\circ$,|AC|=a. 若点 A 在 x 轴上移动,点 B 在抛物线上移动,且点 A, B, C 按逆时针方向排列,求顶点 C 的轨迹方程. (2) 设 P 是抛物线 $y=x^2$ 上任意一点,以线段 OP 为边,按逆时针方向作正方形 OPQR(如图),利用复数知识求点 R 的轨迹方程.

- 202. 一动点从原点出发, 开始沿x 轴的正半轴运动, 每运动一个长度单位, 就向左转 θ 角, 求此动点运动 n 个长度单位时与原点的距离.
- 203. (1) 复平面内, 复数 α 的对应点在连接 1+i 和 1-i 的对应两点的线段上运动, 复数 β 的对应点在以原点为 圆心, 半径为 1 的圆周上运动, 试求: ① 复数 $\alpha+\beta$ 的对应点运动范围的面积; ② 复数 $\alpha\beta$ 的对应点运动范

围的面积. (2) 已知半径为 1 的定圆 O 的内接正 n 边形的顶点为 $P_k(k=1,2,\cdots n),$ P 为该圆周上任意一点,求证: $|PP_1|^2+|PP_2|^2+\cdots+|PP_n|^2$ 为一定值.