HiggsBoson_DNN_models

November 17, 2023

- 1 Classification of a Signal that Produces Higgs Boson Particles and background signals
- 2 Convolutional Neural Network
- 2.0.1 Matthew Boyer and Jonah Goldfine

```
[]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     from sklearn.preprocessing import StandardScaler
     from sklearn.model_selection import train_test_split, RandomizedSearchCV
     from sklearn.metrics import classification report, accuracy_score, roc_curve,_
      ⇒auc, confusion_matrix
     from sklearn.base import BaseEstimator, ClassifierMixin
     import torch
     import torch.nn as nn
     import torch.optim as optim
     from torch.utils.data import DataLoader, TensorDataset
     from tqdm import tqdm
     from skorch import NeuralNetBinaryClassifier
     from skorch import callbacks as cb
     import pickle
```

Loading best model from pickle file from the Optuna hyperparameter tuning.

```
[]: studies_file='study.pkl'
best_model_file='best_model.pkl'
with open(studies_file,'rb') as file:
    studies=pickle.load(file)
```

```
c:\Python39\lib\site-packages\tqdm\auto.py:21: TqdmWarning: IProgress not found.
Please update jupyter and ipywidgets. See
https://ipywidgets.readthedocs.io/en/stable/user_install.html
from .autonotebook import tqdm as notebook_tqdm
```

```
[]: studies_df=studies.trials_dataframe().sort_values(by='value',ascending=False).
      \hookrightarrowhead(1)
     best_trial = studies_df.iloc[0]
     best trial
[]: number
    value
                                             0.759064
     datetime_start
                           2023-11-13 08:06:15.778856
     datetime complete
                           2023-11-13 10:42:27.524985
     duration
                               0 days 02:36:11.746129
     params_activation
                                            LeakyReLU
    params_batch_size
                                                   200
    params_layer_sizes
                                       112_56_28_14_7
    params_lr
                                                0.0001
    params_max_epochs
                                                   250
     state
                                             COMPLETE
     Name: 4, dtype: object
[]: name_dtype=np.array([['class_label', np.float32], ['jet_1_b-tag', np.float64],
                 ['jet_1_eta', np.float64], ['jet_1_phi', np.float64],
                 ['jet_1_pt', np.float64], ['jet_2_b-tag', np.float64],
                 ['jet_2_eta', np.float64], ['jet_2_phi', np.float64],
                 ['jet_2_pt', np.float64], ['jet_3_b-tag', np.float64],
                 ['jet_3_eta', np.float64], ['jet_3_phi', np.float64],
                 ['jet_3_pt', np.float64], ['jet_4_b-tag', np.float64],
                 ['jet 4 eta', np.float64], ['jet 4 phi', np.float64],
                 ['jet_4_pt', np.float64], ['lepton_eta', np.float64],
                 ['lepton pT', np.float64], ['lepton phi', np.float64],
                 ['m_bb', np.float64], ['m_jj', np.float64],
                 ['m_jjj', np.float64], ['m_jlv', np.float64],
                 ['m_lv', np.float64], ['m_wbb', np.float64],
                 ['m_wwbb', np.float64], ['missing_energy_magnitude', np.float64],
                 ['missing_energy_phi', np.float64]])
     fullData=pd.read_csv('HIGGS.csv',header=None,names=name_dtype[:,0])
     unscaled_X=fullData.drop(['class_label'],axis=1)
[]: categ_features = ['jet_3_b-tag', 'jet_4_b-tag', 'lepton_eta', 'm_jj']
     num_features = unscaled_X.columns[~unscaled_X.columns.isin(categ_features)]
     unscaled_X[['jet_3_b-tag', 'jet_4_b-tag', 'lepton_eta', 'm_jj']]
[]:
               jet_3_b-tag jet_4_b-tag lepton_eta
                                                          m_{jj}
     0
                  0.000000
                               1.107436
                                           0.000000 3.101961
     1
                  2.173076
                               2.214872
                                           0.000000 0.000000
     2
                  0.000000
                               2.214872
                                           2.548224 0.000000
     3
                  0.000000
                               2.214872
                                           0.000000 0.000000
     4
                  0.000000
                               2.214872
                                           0.000000 0.000000
```

```
10999995
            0.000000
                          0.000000
                                      0.000000 3.101961
             2.173076
                          0.000000
                                      0.000000 3.101961
10999996
10999997
             2.173076
                          2.214872
                                      0.000000 0.000000
10999998
            0.000000
                          2.214872
                                      0.000000 0.000000
10999999
             2.173076
                          2.214872
                                      0.000000 0.000000
```

[11000000 rows x 4 columns]

These column seem to be categorical as they only have 3 different numbers for each column across the entire dataset. Then using Yeo-Johnson transformation, as it can normalize positive and negative numbers.

```
[]: import scipy.stats as stats
for column in num_features:
    unscaled_X[column], fitted_lambda = stats.yeojohnson(unscaled_X[column])
```



```
[]: scaler=StandardScaler()
     norm_col = scaler.fit_transform(unscaled_X[num_features])
     one_hot = pd.get_dummies(unscaled_X[categ_features].astype(str))
     df = pd.DataFrame(norm_col, columns=num_features)
     df = pd.concat([one_hot, df], axis=1)
     df.head(5)
[]:
        jet_3_b-tag_0.0 jet_3_b-tag_1.0865380764007568
     0
                       1
                                                        0
     1
                       0
     2
                                                        0
     3
                                                        0
     4
                                                        0
        jet_3_b-tag_2.1730761528015137
                                         jet_4_b-tag_0.0
     0
                                      0
                                                        0
     1
                                      1
                                                        0
     2
                                      0
                                                        0
     3
                                      0
                                                        0
     4
                                                        0
        jet_4_b-tag_1.1074360609054563
                                         jet_4_b-tag_2.2148721218109126
     0
                                                                        0
                                      0
     1
                                                                        1
     2
                                      0
                                                                        1
     3
                                      0
     4
                                      0
        lepton_eta_0.0 lepton_eta_1.2741122245788574
     0
                      1
                                                      0
                      1
                                                      0
     1
     2
                      0
                                                      0
     3
                      1
                                                      0
     4
                                                      0
        lepton_eta_2.548224449157715
                                       m_jj_0.0
                                                  ... lepton_pT lepton_phi \
     0
                                    0
                                               0
                                                  ... -0.634425
                                                                 -0.010358
                                    0
                                                  ... -1.743290
                                                                 -1.130232
     1
                                               1
     2
                                               1
                                                      0.811105
                                                                  1.120230
                                    1
     3
                                               1
                                                  ... -0.348277
                                    0
                                                                  -0.673188
     4
                                                  ... -1.345102
                                                                  -0.370698
            m_bb
                                           m_lv
                                                     m_wbb
                     m_{jjj}
                                m_jlv
                                                              m_wwbb \
     0 -0.045404 1.064561 0.126241 -0.534207 -0.013868 -0.402035
     1 -0.000740 -3.402916 -0.611616 -0.446915 0.190051 -0.240768
```

```
2 0.894760 0.019234 0.620455 -0.446999 0.098544 -0.178249
     3 -1.351842 0.133202 0.329243 -0.302941 -0.853484 -0.010873
     4 0.112398 -0.533463 1.311710 -0.436624 -0.337931 0.561024
       missing_energy_magnitude missing_energy_phi
     0
                        0.122774
                                           -0.061638
                                           -0.482431
     1
                        0.136117
     2
                      -0.385904
                                          -0.591754
     3
                        0.259354
                                           0.303283
                       -0.356921
                                           -0.423574
     [5 rows x 36 columns]
[]: full_y=fullData['class_label']
     X_train_df, X_test_df, y_train_df, y_test_df=train_test_split(df, full_y, test_size=0.
      →8, random state=0)
[]: from sklearn.neighbors import KNeighborsClassifier
     knn = KNeighborsClassifier(n_neighbors=2)
     knn.fit(X_train_df, y_train_df)
     knn_predict = knn.predict(X_test_df)
     knn_predict_train = knn.predict(X_train_df)
    knn_score_train = accuracy_score(y_train_df, knn_predict_train)
     print(f'Train KNN accuracy: {knn_score_train:.3f}')
     knn_score = accuracy_score(y_test_df, knn_predict)
     print(f'Test KNN accuracy: {knn_score:.3f}')
    c:\Python39\lib\site-packages\sklearn\neighbors\_classification.py:237:
    FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the
    default behavior of `mode` typically preserves the axis it acts along. In SciPy
    1.11.0, this behavior will change: the default value of `keepdims` will become
    False, the `axis` over which the statistic is taken will be eliminated, and the
    value None will no longer be accepted. Set `keepdims` to True or False to avoid
    this warning.
      mode, _ = stats.mode(_y[neigh_ind, k], axis=1)
    c:\Python39\lib\site-packages\sklearn\neighbors\_classification.py:237:
    FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the
    default behavior of `mode` typically preserves the axis it acts along. In SciPy
    1.11.0, this behavior will change: the default value of `keepdims` will become
    False, the `axis` over which the statistic is taken will be eliminated, and the
    value None will no longer be accepted. Set `keepdims` to True or False to avoid
    this warning.
      mode, _ = stats.mode(_y[neigh_ind, k], axis=1)
    Train KNN accuracy: 0.823
```



```
fpr,tpr,_=roc_curve(y_test_df,knn_predict)
auc_sc=auc(fpr,tpr)

plt.figure(figsize=(9.26,5.62))
plt.plot(fpr,tpr,color='darkorange',label=f'ROC curve (Area={auc_sc:.2f})')
plt.plot([0,1],[0,1],color='navy',linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('KNN - ROC Curve')
plt.legend(loc='lower right')
plt.show()
```



```
[]: X_train=torch.tensor(X_train_df.values).float()
    X_test=torch.tensor(X_test_df.values).float()
    y_train=torch.tensor(y_train_df.values).float()
    y_test=torch.tensor(y_test_df.values).float()
[]: nn.ModuleList()
```

[]: ModuleList()

2.1 DNNs

Training 3 different DNN models. One with Dropout and LeakyReLu activation, one without Dropout and LeakyReLu activation, and one with Dropout and Tanh activation.

```
[]: class DNN_Drop(nn.Module):
    def __init__(self, layer_sizes):
        super(DNN_Drop, self).__init__()
        self.layers=nn.ModuleList()
        activation = nn.LeakyReLU()
        # This is here because in Optuna you can only send lists of strings,
        onot lists of lists. So we split the string to get the layer sizes.
        if layer_sizes == 'empty':
            layer_sizes = []
        else:
```

```
layer_sizes = [int(size) for size in layer_sizes.split('_')]
    if len(layer_sizes)==0:
        self.layers.append(nn.Linear(36,1))
        self.layers.append(nn.Sigmoid())
    else:
        for i, hidden_size in enumerate(layer_sizes):
            if i==0:
                self.layers.append(nn.Linear(36,hidden_size))
                self.layers.append(nn.Dropout(p=0.25))
                self.layers.append(activation)
                input_size=hidden_size
            else:
                self.layers.append(nn.Linear(input_size,hidden_size))
                self.layers.append(activation)
                input_size=hidden_size
        self.layers.append(nn.Linear(input_size,1))
        self.layers.append(nn.Sigmoid())
def forward(self, x):
    for layer in self.layers:
        x = layer(x)
    return x.squeeze()
```

[]: DNN_Drop_model.fit(X_train, y_train)

```
epoch accuracy train_loss valid_acc valid_loss dur

1 0.6728 0.6006 0.7100

0.5603 48.4227

2 0.7061 0.5643 0.7214
```

0 5420	48.4777		
		0.5504	0 7079
	48.1945	0.5504	0.1210
		0.5408	0.7324
	48.3131	0.0200	37.321
	0.7257	0.5349	0.7353
	48.2053		
6	0.7285	0.5306	0.7377
	48.2286		
	0.7304	0.5278	0.7392
	48.0651		
		0.5253	0.7411
	48.2584	0 5007	0.7400
	0.7328 47.9619	0.5237	0.7423
	0.7346	0 5210	0.7432
	48.0726	0.5219	0.7452
	0.7353	0.5202	0.7440
	48.5125		
		0.5191	0.7446
0.5064	48.3082		
13	0.7370	0.5181	0.7451
0.5054	48.0660		
	0.7375	0.5170	0.7462
	48.3366		
	0.7383	0.5160	0.7467
	47.9059	0.5153	0.7470
	48.1920	0.5155	0.7470
	0.7395	0.5144	0.7476
	48.1372	0.0111	0.7170
		0.5138	0.7481
0.5009	47.9737		
19	0.7404	0.5132	0.7482
	48.0771		
	0.7409	0.5126	0.7490
	47.9229		
	0.7412	0.5120	0.7491
	48.1849 0.7414	0 5115	0.7400
	48.2667	0.5115	0.7499
	0.7422	0.5109	0.7499
	48.0748	0.0109	0.1400
	0.7421	0.5106	0.7503
	48.3967		
25	0.7427	0.5101	0.7508
0.4971	48.2489		
26	0.7428	0.5096	0.7509

0.4970	48.2112			
		0.5093	0.7512	
	48.4004		01.012	
28	0.7435	0.5089	0.7514	
0.4961	48.0681			
29	0.7437	0.5086	0.7518	
0.4959	48.0919			
30	0.7439	0.5083	0.7521	
	48.2233			
		0.5080	0.7521	
	48.2627			
		0.5077	0.7528	
	48.0408			
		0.5075	0.7524	
	48.4197	0 5074	0.7504	
		0.5071	0.7531	
	48.0764	0.5070	0.7530	
		0.5070	0.7530	
	49.9575	0.5067	0 7520	
	49.9159	0.5067	0.7552	
		0.5065	0 753/	
	48.4978	0.3003	0.7554	
		0.5066	0 7535	0 4937
48.2909		0.0000	0.1000	0.1001
		0.5062	0.7534	
	48.1046	0.000	01.001	
		0.5062	0.7536	
	47.9791			
41	0.7457	0.5057	0.7537	
0.4930	48.9385			
42	0.7457	0.5056	0.7542	
0.4930	48.3790			
43	0.7459	0.5054	0.7542	
0.4927	47.7411			
44	0.7460	0.5053	0.7539	0.4927
48.0944				
45	0.7465	0.5050	0.7544	
	48.4828			
46		0.5048	0.7542	0.4924
47.7073				
	0.7466	0.5048	0.7544	
	47.8189	2 5245	0 5546	0.4005
48	0.7463	0.5047	0.7543	0.4922
48.6789	0 7404	0 5040	0.7540	0 4000
	0.7464	0.5046	0.7546	0.4922
47.6177 50	0.7465	0.5044	0.7547	
50	0.7405	0.5044	0.7547	

0.4921	48.4262				
		0.5045	0.7547		
	48.2150				
	0.7469	0.5041	0.7546		
0.4917	48.1870				
	0.7471	0.5040	0.7550		
0.4919	47.9419				
54	0.7471	0.5040	0.7549	0.4917	49.1582
55	0.7472	0.5038	0.7549		
0.4915	48.5975				
56	0.7472	0.5038	0.7551		
0.4914	48.2914				
57	0.7469	0.5037	0.7550	0.4915	48.7191
58	0.7474	0.5035	0.7550	0.4915	
48.4158					
59	0.7476	0.5035	0.7552		
0.4914	49.7014				
60	0.7476	0.5032	0.7554		
0.4912	48.1276				
61	0.7477	0.5029	0.7553		
	48.6496				
62	0.7473	0.5030	0.7555	0.4909	
47.8554					
63		0.5030	0.7557	0.4912	
48.4411					
64			0.7555		48.2693
65		0.5029	0.7556	0.4909	48.2603
66		0.5029	0.7559		
	47.9031				
67		0.5024			48.7829
68		0.5025	0.7554		48.6833
69			0.7558		48.5834
70		0.5024	0.7560	0.4905	
48.3614		0 5000	0.7504		
71		0.5022	0.7561		
	48.3955	0 5005	0.7560	0 4000	
48.4094	0.7478	0.5025	0.7562	0.4902	
73		0.5021	0.7558	0.4902	48.4374
73 74			0.7564	0.4902	40.4374
	47.7880	0.3021	0.7504		
75		0.5020	0.7562	0.4901	
48.9583		0.0020	0.1002	0.4301	
76		0.5018	0.7562	0.4903	
48.2743		3.0010	0.1002	0.1000	
77		0.5018	0.7561	0.4899	
49.6647				3.1230	
78		0.5017	0.7561	0.4901	

48.0292					
79	0.7483	0.5020	0.7563	0.4899	48.3542
80	0.7483	0.5016	0.7560	0.4899	
48.2573					
81	0.7484	0.5018	0.7562	0.4896	48.6606
82	0.7487	0.5017	0.7563	0.4898	47.6241
83	0.7488	0.5013	0.7562	0.4898	
48.1400					
84	0.7487	0.5014	0.7562	0.4898	48.0016
85	0.7486	0.5013	0.7562	0.4897	47.7484
86	0.7487	0.5013	0.7564	0.4897	46.5854
87	0.7487	0.5012	0.7564	0.4896	46.2540
88	0.7489	0.5014	0.7567		
0.4894	47.0573				
89	0.7485	0.5012	0.7565	0.4895	49.4235
90	0.7487	0.5010	0.7560	0.4895	50.2959
91	0.7490	0.5008	0.7562	0.4894	
50.4395					
92	0.7487	0.5010	0.7565	0.4892	50.1285
93	0.7489	0.5010	0.7564	0.4894	50.5362
94	0.7491	0.5010	0.7566	0.4891	
51.1843					
95	0.7494	0.5006	0.7567		
0.4891	50.6748				
96	0.7490	0.5009	0.7565	0.4893	49.9694
97	0.7493	0.5004	0.7563	0.4894	49.8709
98	0.7491	0.5006	0.7566	0.4890	50.3997
99	0.7491	0.5006	0.7567	0.4890	
49.9507					
100	0.7491	0.5006	0.7570	0.4886	
50.0739					
101	0.7494	0.5005	0.7566	0.4891	49.5839
102	0.7491	0.5006	0.7568	0.4889	49.6666
103	0.7495	0.5005	0.7568	0.4887	49.4509
104	0.7496	0.5002	0.7567	0.4890	
50.5542					
105	0.7496	0.5001	0.7569	0.4889	
50.1863					
106	0.7494	0.5000	0.7567	0.4886	
49.5485					
107	0.7494	0.5000	0.7569	0.4886	49.6887
108	0.7496	0.5001	0.7571	0.4883	
49.2847					
109	0.7495	0.5001	0.7568	0.4886	49.6883
110	0.7494	0.5001	0.7573	0.4884	49.4078
111	0.7495	0.5000	0.7573	0.4883	49.3279
112	0.7490	0.5001	0.7573	0.4885	49.4928
113	0.7493	0.5001	0.7571	0.4886	49.3026

114	0.7496	0.5000	0.7570	0.4884	49.1140
115	0.7497	0.4998	0.7570	0.4884	
49.4470					
116	0.7495	0.4999	0.7573	0.4884	48.9390
117	0.7497	0.5000	0.7571	0.4883	
49.0322					
118	0.7498	0.4998	0.7572		
0.4882	49.1637				
119	0.7498	0.4996	0.7572	0.4884	49.3495
120	0.7497	0.4997	0.7574	0.4882	49.3651
121	0.7497	0.4999	0.7571	0.4883	49.7677
122	0.7498	0.4995	0.7571	0.4882	49.2925
123	0.7498	0.4995	0.7571	0.4885	49.5195
124	0.7499	0.4995	0.7574	0.4881	
49.3702					
125	0.7499	0.4994	0.7573	0.4881	
49.6248					
126	0.7501	0.4994	0.7574		
0.4881	49.4429				
127	0.7501	0.4994	0.7575		
0.4880	49.6613				
128	0.7499	0.4994	0.7573	0.4878	49.3856
129	0.7501	0.4993	0.7575	0.4879	49.2393
130	0.7500	0.4991	0.7573	0.4880	49.2137
131	0.7497	0.4991	0.7574	0.4882	48.9471
132	0.7501	0.4992	0.7574	0.4881	49.0937
133	0.7502	0.4991	0.7573	0.4878	49.0062
134	0.7501	0.4992	0.7575	0.4877	49.2667
135	0.7502	0.4989	0.7574	0.4879	49.0341
136	0.7502	0.4990	0.7573	0.4881	49.1147
137	0.7501	0.4989	0.7575	0.4876	49.2338
138	0.7503	0.4989	0.7574	0.4881	48.8492
139	0.7506	0.4988	0.7575	0.4878	
49.7324					
140	0.7501	0.4990	0.7575	0.4880	49.1874
141	0.7507	0.4987	0.7576		
0.4879	49.2416				
142	0.7503	0.4987	0.7574	0.4880	49.1171
143	0.7505	0.4988	0.7572	0.4880	49.2611
144	0.7506	0.4986	0.7573	0.4878	49.0985
145	0.7503	0.4988	0.7576	0.4881	49.4248
146	0.7506	0.4986	0.7577	0.4878	
49.4869		_	<u>.</u>		

Stopping since valid_loss has not improved in the last 10 epochs.

```
(0): Linear(in_features=36, out_features=112, bias=True)
           (1): Dropout(p=0.25, inplace=False)
           (2): LeakyReLU(negative_slope=0.01)
           (3): Linear(in_features=112, out_features=56, bias=True)
           (4): LeakyReLU(negative_slope=0.01)
           (5): Linear(in_features=56, out_features=28, bias=True)
           (6): LeakyReLU(negative_slope=0.01)
           (7): Linear(in features=28, out features=14, bias=True)
           (8): LeakyReLU(negative_slope=0.01)
           (9): Linear(in_features=14, out_features=7, bias=True)
           (10): LeakyReLU(negative_slope=0.01)
           (11): Linear(in_features=7, out_features=1, bias=True)
           (12): Sigmoid()
         )
      ),
     )
[]: class DNN_No_Drop(nn.Module):
         def __init__(self, layer_sizes):
             super(DNN_No_Drop, self).__init__()
             self.layers=nn.ModuleList()
             activation = nn.LeakyReLU()
             if layer_sizes == 'empty':
                 layer_sizes = []
             else:
                 layer_sizes = [int(size) for size in layer_sizes.split('_')]
             if len(layer_sizes)==0:
                 self.layers.append(nn.Linear(36,1))
                 self.layers.append(nn.Sigmoid())
             else:
                 for i, hidden_size in enumerate(layer_sizes):
                     if i==0:
                         self.layers.append(nn.Linear(36,hidden_size))
                         self.layers.append(activation)
                         input_size=hidden_size
                     else:
                         self.layers.append(nn.Linear(input_size,hidden_size))
                         self.layers.append(activation)
                         input size=hidden size
                 self.layers.append(nn.Linear(input_size,1))
                 self.layers.append(nn.Sigmoid())
         def forward(self, x):
             for layer in self.layers:
                 x = layer(x)
```

(layers): ModuleList(

return x.squeeze()

[]: DNN_No_Drop_model.fit(X_train, y_train)

epoch	accuracy	train_loss	valid_acc	valid_loss	dur
1	0.6889	0.5825	0.7131		
0.5540	45.9063				
2	0.7182	0.5468	0.7230		
0.5385	46.3394				
3	0.7259	0.5343	0.7288		
0.5288	46.3844				
4	0.7312	0.5259	0.7329		
0.5221	46.2294				
5	0.7350	0.5204	0.7359		
0.5178	46.1934				
6	0.7374	0.5166	0.7382		
0.5147	46.1024				
7	0.7395	0.5138	0.7394		
	46.4174				
8	0.7411	0.5113	0.7408		
	46.4164				
		0.5091	0.7421		
	46.1504				
		0.5072	0.7432		
	46.6415				
	0.7450	0.5056	0.7443		
	46.0674				
		0.5042	0.7451		
	46.4184				
13	0.7469	0.5030	0.7460		

0 5007	46.6985		
		0.5019	0 7/60
	46.2984	0.5019	0.7409
	0.7483	0.5008	0.7477
	46.4094		00.7.2.7.
16	0.7490	0.4998	0.7481
0.5001	46.5595		
17	0.7498	0.4989	0.7490
	46.4714		
	0.7505	0.4980	0.7495
	46.7955	0.4070	0.7500
	0.7511 46.5595	0.4972	0.7502
20		0.4965	0.7504
	46.6305	0.4303	0.7504
	0.7521	0.4958	0.7507
	46.8215		
22	0.7524	0.4951	0.7511
0.4962	46.7295		
	0.7528	0.4945	0.7512
	46.9756	0.4040	0. 7540
24		0.4940	0.7513
	46.9681 0.7536	0.4934	0.7517
	46.8605	0.4934	0.7517
26		0.4929	0.7517
	46.8335		
27	0.7541	0.4925	0.7519
	46.8815		
	0.7544	0.4920	0.7522
	46.9296	0.4044	0.7500
	0.7547 47.1586	0.4916	0.7523
30		0.4912	0 7526
	47.0926	0.4312	0.7020
	0.7552	0.4908	0.7528
0.4927	47.1066		
32	0.7554	0.4904	0.7530
	47.2886		
	0.7557	0.4901	0.7531
	47.1676	0.4007	0.7500
	0.7559 47.0256	0.4897	0.7532
	0.7562	0.4894	0.7533
	46.9666	0.4001	0.1000
		0.4891	0.7537
	47.1516		
37	0.7566	0.4888	0.7537

0 4010	47.0086		
		0.4885	0 7536
	47.0446	0.4000	0.7000
	0.7569	0.4883	0.7537
	47.4397		
40	0.7570	0.4880	0.7540
0.4906	45.5163		
	0.7572	0.4877	0.7540
	45.0421		
	0.7574	0.4875	0.7541
	45.3262 0.7576	0.4872	0.7540
	44.9361	0.4072	0.7540
44		0.4870	0.7542
	44.9451		
45	0.7579	0.4867	0.7539
	45.1401		
46		0.4865	0.7540
	45.0831		
	0.7583	0.4863	0.7542
0.4894	45.1452 0.7585	0.4860	0.7543
	45.4512	0.4860	0.7543
	0.7587	0.4858	0.7545
	45.2442	0.1000	0.7010
50	0.7588	0.4856	0.7546
0.4888	45.2892		
	0.7589	0.4854	0.7544
	45.1497		
	0.7590	0.4852	0.7546
	45.1782	0.4850	0.7545
	0.7591 45.0441	0.4850	0.7545
54		0.4847	0 7548
	45.1351	0.1011	0.7010
	0.7594	0.4845	0.7551
0.4880	45.1091		
56	0.7595	0.4844	0.7552
	44.9951		
	0.7597	0.4842	0.7555
	45.0781	0.4040	0.7550
	0.7598 45.0501	0.4840	0.7556
	0.7599	0.4838	0.7559
	45.3322	0.4030	0.1009
	0.7600	0.4836	0.7559
	45.1141		
61	0.7601	0.4835	0.7560

0 4070	45 0001		
	45.0901	0 4000	0.7500
	45.1186	0.4833	0.7563
		0.4831	0.7564
	45.2142	0.4031	0.7564
	0.7604	0.4830	0.7565
	45.1622	0.4030	0.7505
	0.7605	0.4828	0.7566
	44.9431	0.4020	0.7000
	0.7605	0.4827	0.7568
	45.4112		
	0.7607	0.4826	0.7568
	45.2932		
68	0.7608	0.4824	0.7569
0.4864	45.3932		
69	0.7608	0.4823	0.7570
0.4863	45.5332		
70	0.7609	0.4822	0.7569
	45.2102		
	0.7609	0.4820	0.7569
	45.3812	0 4040	0.7574
	0.7610	0.4819	0.7571
	45.4062 0.7611	0.4818	0.7570
	45.2532	0.4010	0.7570
74		0.4817	0.7570
	45.3392	0.1011	0.7070
	0.7614	0.4815	0.7571
0.4858	45.5762		
76	0.7614	0.4814	0.7575
0.4857	45.0921		
	0.7616	0.4813	0.7573
0.4856	45.3502		
78		0.4812	0.7575
	45.3492		
	0.7618	0.4811	0.7576
	45.0481 0.7619	0.4810	0.7577
	45.2202	0.4010	0.7577
	0.7619	0.4809	0.7577
	45.3112	0.2000	
	0.7620	0.4808	0.7578
	45.2822		
83	0.7621	0.4806	0.7580
	45.3052		
		0.4805	0.7580
	45.3802		
85	0.7623	0.4804	0.7583

```
0.7623
                                0.4803
                                             0.7583
                                                           0.4847
         86
    45.5032
         87
                 0.7623
                                0.4802
                                             0.7585
    0.4846 45.3282
         88
                 0.7624
                                0.4801
                                             0.7585
    0.4845 45.2192
                                0.4800
                                             0.7585
                 0.7625
    0.4844 45.2102
         90
                 0.7625
                                0.4799
                                             0.7587
    0.4844 45.1391
                 0.7625
                                0.4798
                                             0.7586
         91
    0.4843 45.0781
                 0.7626
                                0.4797
                                             0.7587
         92
    0.4842 45.1391
                 0.7626
                                0.4797
                                             0.7588
    0.4842 45.3437
                                0.4796
                                             0.7588
         94
                 0.7627
    0.4841 45.1922
         95
                 0.7627
                                0.4795
                                             0.7589
    0.4841 45.4912
         96
                 0.7628
                                0.4794
                                             0.7590
    0.4840 45.6948
[]: class DNN_Drop_Tanh(nn.Module):
         def __init__(self, layer_sizes):
             super(DNN_Drop_Tanh, self).__init__()
             self.layers=nn.ModuleList()
             activation = nn.Tanh()
             if layer_sizes == 'empty':
                 layer_sizes = []
             else:
                 layer_sizes = [int(size) for size in layer_sizes.split('_')]
             if len(layer_sizes)==0:
                 self.layers.append(nn.Linear(36,1))
                 self.layers.append(nn.Sigmoid())
             else:
                 for i, hidden_size in enumerate(layer_sizes):
                     if i==0:
                         self.layers.append(nn.Linear(36,hidden_size))
                         self.layers.append(nn.Dropout(p=0.25))
                         self.layers.append(activation)
                         input_size=hidden_size
                     else:
                         self.layers.append(nn.Linear(input_size,hidden_size))
                         self.layers.append(activation)
```

0.4847 45.2342

```
input_size=hidden_size
    self.layers.append(nn.Linear(input_size,1))
    self.layers.append(nn.Sigmoid())

def forward(self, x):
    for layer in self.layers:
        x = layer(x)
    return x.squeeze()
```

epoch	accuracy	train_loss	valid_acc	valid_loss	dur
1	0.6524	0.6200	0.6901		
0.5828	43.2982				
2	0.6934	0.5791	0.7079		
0.5610	43.2725				
3	0.7058	0.5634	0.7171		
0.5486	42.5536				
4	0.7136	0.5528	0.7224		
0.5404	42.4893				
5	0.7191	0.5456	0.7276		
0.5334	43.0775				
6	0.7234	0.5396	0.7309		
0.5282	43.8563				
7	0.7268	0.5355	0.7335		
0.5248	43.2018				
8	0.7285	0.5326	0.7349		
0.5223	43.5530				
9	0.7300	0.5302	0.7363		
0.5202	42.9380				
10	0.7310	0.5286	0.7375		

0 5192	42.5984		
	0.7322	0 5267	0 7381
	42.9491	0.0201	0.7001
	0.7333	0.5251	0.7398
	43.2430		
13	0.7342	0.5236	0.7403
0.5137	42.7973		
14	0.7346	0.5226	0.7411
	42.6485		
	0.7357	0.5215	0.7415
	42.5059		
	0.7360	0.5207	0.7421
	42.6686 0.7368	0 E106	0.7400
	42.4930	0.5196	0.7420
	0.7371	0.5188	0.7433
	42.4885	0.0100	0.7100
	0.7376	0.5181	0.7439
	42.4193		
20	0.7381	0.5173	0.7447
0.5074	42.4184		
	0.7387	0.5167	0.7448
	42.4961		
	0.7390	0.5162	0.7453
	42.7414	0.5450	0 5455
	0.7392	0.5159	0.7457
	42.5305 0.7398	0.5151	0.7450
	42.4510	0.5151	0.7459
	0.7403	0.5147	0.7460
	42.6189		
		0.5141	0.7469
0.5043	42.8022		
27	0.7406	0.5138	0.7470
0.5038	43.2285		
	0.7408	0.5131	0.7472
	42.2659	0 5400	0.7474
	0.7410	0.5128	0.7474
	42.4795 0.7412	0.5123	0 7477
	42.4452	0.5125	0.1411
	0.7422	0.5118	0.7480
	42.7119	0.0220	200
		0.5117	0.7482
0.5019	43.1154		
33	0.7419	0.5114	0.7484
	43.2237		
34	0.7422	0.5112	0.7483

0.5014

43.3152					
35	0.7426	0.5108	0.7487		
0.5010	43.2194				
36	0.7428	0.5103	0.7488		
0.5006	44.4180				
37	0.7426	0.5103	0.7489		
0.5003	43.5290				
38	0.7433	0.5099	0.7494		
0.4998	44.4049				
39	0.7431	0.5096	0.7495		
0.4996	43.6038				
40	0.7435	0.5094	0.7498		
0.4994	42.9270				
41	0.7439	0.5090	0.7500		
	43.6573				
42	0.7437	0.5089	0.7498	0.4989	
42.7483					
43	0.7440	0.5085	0.7500		
	43.2458				
44	0.7443	0.5082	0.7503		
	43.5870				
		0.5084		0.4982	42.8102
46	0.7446	0.5079	0.7508		
	42.6699				
47	0.7444	0.5077	0.7506	0.4979	
42.8752					
48	0.7445	0.5076	0.7506	0.4978	
42.7987					
		0.5073	0.7509		
	43.0043				
		0.5072	0.7509		
	43.3505				
51	0.7453	0.5069	0.7511		
	42.5483				
		0.5069	0.7512	0.4971	
42.6313					
	0.7452	0.5068	0.7518		
	44.9462				
		0.5065	0.7516		
	43.0898				
	0.7453	0.5064	0.7517		
	43.2977				
		0.5063	0.7520		
	43.1852				
	0.7455	0.5061	0.7520		
	44 1020				
0.4959					
58		0.5059 0.5057	0.7517 0.7521	0.4962	43.5132

0.4960	43.5272				
60	0.7461	0.5057	0.7520	0.4958	
43.6358					
		0.5056	0.7522		
	43.1271				
		0.5053	0.7523		
	44.1329	0 5050	0.7505		
		0.5053	0.7525		
	43.6123	0.5051	0.7526	0.4954	
44.2579		0.5051	0.7520	0.4904	
65		0.5050	0 7526	0.4953	
42.6788		0.0000	0.1020	0.4300	
66		0.5049	0.7524	0.4953	
43.2345					
67	0.7462	0.5049	0.7528		
0.4950	42.9500				
68	0.7465	0.5047	0.7527		
0.4949	42.7918				
69	0.7466	0.5045	0.7528		
0.4948	42.8446				
70	0.7470	0.5045	0.7528		
	43.6839				
		0.5044	0.7532		
	44.0765				
		0.5044		0.4947	43.4981
		0.5042	0.7530		
	44.2225	0 5040	0.7520		
	44.1198	0.5040	0.7532		
		0.5041	0.7530	0 4043	13 3805
		0.5041			42.7456
	0.7471	0.5040			43.4948
78		0.5038	0.7535	0.1012	10.1010
	42.9358				
79	0.7477	0.5037	0.7533	0.4939	
42.8748					
80	0.7475	0.5035	0.7531	0.4939	43.3929
81	0.7474	0.5035	0.7534	0.4937	43.3228
82	0.7473	0.5035	0.7535	0.4937	43.2774
83	0.7475	0.5033	0.7537		
0.4934	43.4167				
84		0.5033	0.7536	0.4933	
43.6219					
85		0.5034	0.7537	0.4935	43.7797
86	0.7475	0.5032	0.7537		
	43.0335	0.5000	0 8505		
87	0.7478	0.5030	0.7537		

0.4932	43.1658				
88	0.7477	0.5030	0.7538		
0.4931	44.4393				
89	0.7476	0.5030	0.7536	0.4933	42.4962
90	0.7480	0.5027	0.7538		
0.4931	43.4481				
91	0.7478	0.5027	0.7538		
0.4930	43.9287				
92	0.7480	0.5027	0.7540	0.4929	
44.2013					
93	0.7480	0.5027	0.7540	0.4928	
45.1403					
94		0.5027	0.7539	0.4929	44.3651
95		0.5025	0.7541		
	44.3250				
96		0.5024	0.7540	0.4927	
44.8951		0.0021	01.020	0.102.	
97		0.5024	0.7540	0.4928	
44.3049		0.0021	0.7010	0.1020	
98		0.5025	0.7543		
	44.0652	0.0020	0.7040		
99		0.5022	0.7540	0.4927	
43.6367		0.0022	0.7040	0.4021	
100		0.5022	0.7543	0.4924	
42.9681		0.5022	0.7545	0.4324	
101		0.5022	0.7543	0.4922	
44.5033		0.3022	0.7545	0.4322	
102		0.5020	0.7542	0 4004	44.4209
102			0.7542		44.4209
		0.5021			44.5269
104		0.5020	0.7543 0.7542		44.5920
105		0.5020	0.7542	0.4924	
44.3873		0 5047	0 7545		
106		0.5017	0.7545		
	44.6575	0 5046	0.7545		
107		0.5016	0.7545		
	44.5618	0. 5016	0.7540		
108		0.5016	0.7548		
0.4919		0.5017	0.7540	0 4040	
109		0.5017	0.7549	0.4918	
46.7542		0.5044	0 7547	0 4001	44 5400
110		0.5014	0.7547	0.4921	44.5132
111		0.5015	0.7546	0.4920	44.6486
112		0.5014	0.7547	0.4918	
44.5033		0.5016	0 8546	0 1015	
113		0.5013	0.7546	0.4918	
44.4598		0.5041	0 7545	0 4045	44 5000
114		0.5014	0.7546	0.4918	44.5609
115	0.7486	0.5014	0.7546	0.4918	44.5493

116	0.7490	0.5012	0.7549		
0.4915	44.4801				
117	0.7488	0.5013	0.7549	0.4917	44.4623
118	0.7490	0.5013	0.7548	0.4914	44.5682
119	0.7493	0.5010	0.7550		
0.4914					
120	0.7492	0.5011	0.7548		44.3527
121	0.7488	0.5012	0.7550	0.4912	
44.8006					
122	0.7492	0.5008	0.7551		
0.4911	44.6229				
123	0.7492	0.5008	0.7553	0.4912	
44.4321					
124	0.7495	0.5009	0.7553	0.4912	
44.7144	0.7405	0 5007	0 7550		
125	0.7495	0.5007	0.7552		
0.4910		0 5000	0.7554	0 4012	44 4700
126	0.7491	0.5009	0.7551	0.4913	44.4789
127	0.7494	0.5007	0.7552	0.4910	
44.5431 128	0.7402	0.5007	0.7549	0 4010	44.5794
129	0.7493 0.7495	0.5007	0.7551	0.4912	44.5794
0.4910		0.5006	0.7551		
130	0.7493	0.5008	0.7552	0.4909	44.7336
131	0.7497	0.5004	0.7552	0.4909	44.7330
44.0059	0.1431	0.5004	0.7552	0.4310	
132	0.7497	0.5002	0.7551	0.4909	42.6645
133	0.7497	0.5002	0.7551	0.4908	43.1390
134	0.7492	0.5002	0.7551	0.4909	42.6266
135	0.7494	0.5003	0.7553	0.4908	12.0200
42.8311	011 20 2	0.000	011000	0.12000	
136	0.7496	0.5002	0.7552	0.4906	43.4964
137	0.7498	0.5002	0.7553	0.4907	43.8874
138	0.7497	0.4999	0.7554		
139	0.7498	0.5001	0.7551	0.4909	43.0796
140	0.7496	0.5000	0.7554	0.4906	43.5637
141	0.7498	0.5000	0.7554	0.4905	42.7243
142	0.7501	0.4999	0.7558		
0.4904	43.2660				
143	0.7500	0.4999	0.7555	0.4907	42.9106
144	0.7495	0.4999	0.7553	0.4905	44.2487
145	0.7501	0.4998	0.7553	0.4906	
47.8477					
146	0.7499	0.4997	0.7558	0.4903	
45.0960					
147	0.7499	0.4999	0.7554	0.4905	46.3724
148	0.7501	0.4999	0.7553	0.4906	44.9240

149	0.7499	0.4999	0.7554	0.4903	44.5038
150	0.7500	0.4998	0.7558	0.4903	45.1150
151	0.7500	0.4998	0.7554	0.4904	45.1867
152	0.7502	0.4996	0.7555	0.4903	
45.4927					
153	0.7501	0.4996	0.7555	0.4903	45.1948
154	0.7502	0.4996	0.7553	0.4903	45.0105
155	0.7504	0.4993	0.7555	0.4904	
46.1276					
156	0.7503	0.4995	0.7557	0.4900	45.2210
157	0.7500	0.4996	0.7555	0.4903	45.6175
158	0.7502	0.4995	0.7556	0.4900	45.7368
159	0.7504	0.4995	0.7555	0.4902	45.3041
160	0.7502	0.4994	0.7555	0.4900	45.5294
161	0.7504	0.4992	0.7556	0.4901	
45.6349					
162	0.7502	0.4993	0.7557	0.4898	45.4821
163		0.4993	0.7555	0.4901	45.6908
164		0.4993	0.7557	0.4900	45.6885
165	0.7503	0.4992	0.7557	0.4901	45.8940
166		0.4991	0.7558	0.4900	10.0010
45.7771	011000	0.1001	0.1000	0.1000	
167	0.7505	0.4991	0.7560		
0.4898	45.6850	0.1001	0.1000		
168	0.7505	0.4991	0.7560		
0.4897	45.7727	0.1001	0.1000		
169	0.7505	0.4991	0.7559	0.4899	45.7290
170	0.7504	0.4990	0.7559	0.4898	45.7597
171	0.7505	0.4990	0.7560	0.4000	10.7007
0.4896	45.6226	0.4000	0.7000		
172	0.7504	0.4990	0.7559	0.4898	45.7963
173		0.4990	0.7560	0.4897	46.0728
174		0.4990	0.7559	0.4896	10.0720
45.8314		0.4000	0.7005	0.4000	
175		0.4987	0.7560	0.4897	
45.9546		0.4301	0.7500	0.4031	
176		0.4987	0.7560	0.4895	
46.1266		0.4501	0.7500	0.4030	
177		0.4989	0.7560	0.4895	
46.1029		0.4303	0.7500	0.4090	
178		0.4988	0.7561	0.4897	
47.0093		0.4300	0.7301	0.4031	
		0 4006	0.7564		
179		0.4986	0.7564		
	47.8346	0 4007	0.7562	0 4004	17 0166
180		0.4987	0.7563	0.4894	41.2400
181		0.4988	0.7564	0.4893	
47.5830		0 4007	0.7560	0 4000	16 0674
182	0.7510	0.4987	0.7562	0.4896	46.0674

183	0.7507	0.4988	0.7563	0.4895	45.9285		
184	0.7512	0.4985	0.7564				
0.4893	45.6782						
185	0.7508	0.4986	0.7563	0.4893	46.0549		
186	0.7508	0.4987	0.7564	0.4893	45.7432		
187	0.7511	0.4985	0.7566	0.4893			
45.2855							
188	0.7509	0.4984	0.7563	0.4893	45.2488		
189	0.7510	0.4984	0.7564	0.4893	45.2753		
190	0.7512	0.4983	0.7564	0.4893			
45.1482							
191	0.7509	0.4985	0.7564	0.4892	45.5951		
192	0.7509	0.4984	0.7565	0.4892	45.1829		
193	0.7507	0.4984	0.7564	0.4892	45.5710		
194	0.7515	0.4982	0.7566	0.1002	10.0710		
0.4891	45.5560	0.4302	0.7000				
195	0.7509	0.4983	0.7566	0.4890			
45.4165	0.7303	0.4905	0.7500	0.4090			
196	0.7512	0.4983	0.7565	0.4890	46.1503		
190	0.7512	0.4983			45.5400		
			0.7567	0.4891	45.5400		
198	0.7512	0.4982	0.7567	0.4890			
46.1405	0.7510	0 4000	0.7500	0 4000			
199	0.7512	0.4983	0.7568	0.4889			
47.9292	0.7540	0 4000	0.7504	0 4004	40 0000		
200	0.7512	0.4983	0.7564	0.4891	48.2998		
201	0.7511	0.4982	0.7566	0.4889			
48.4889							
202	0.7513	0.4981	0.7567	0.4889	48.3059		
203	0.7512	0.4981	0.7566	0.4891	48.5652		
204	0.7512	0.4980	0.7569				
0.4889	48.3063						
205	0.7510	0.4982	0.7569	0.4889	48.7938		
206	0.7512	0.4982	0.7568	0.4888	48.6477		
207	0.7512	0.4980	0.7568		48.5303		
208	0.7514	0.4979	0.7567	0.4890	48.9834		
209	0.7512	0.4980	0.7568	0.4888	49.4000		
210	0.7511	0.4981	0.7570	0.4886			
48.4729							
211	0.7515	0.4978	0.7569	0.4888			
48.3141							
212	0.7511	0.4980	0.7570	0.4889	49.2851		
213	0.7513	0.4978	0.7572	0.4887			
49.2781							
214	0.7513	0.4980	0.7570	0.4887	48.7440		
215	0.7517	0.4976	0.7569				
0.4886 48.5652							
216	0.7516	0.4977	0.7571	0.4886	48.6107		
217	0.7512	0.4977	0.7569	0.4888	48.5872		

```
218
                 0.7513
                                0.4977
                                             0.7571
                                                           0.4886 48.6941
                                0.4978
                                             0.7570
        219
                 0.7513
                                                            0.4887 48.8698
    Stopping since valid_loss has not improved in the last 10 epochs.
[]: <class 'skorch.classifier.NeuralNetBinaryClassifier'>[initialized](
      module_=DNN_Drop_Tanh(
         (layers): ModuleList(
           (0): Linear(in_features=28, out_features=112, bias=True)
           (1): Dropout(p=0.25, inplace=False)
           (2): Tanh()
           (3): Linear(in_features=112, out_features=56, bias=True)
           (4): Tanh()
           (5): Linear(in features=56, out features=28, bias=True)
           (6): Tanh()
           (7): Linear(in_features=28, out_features=14, bias=True)
           (8): Tanh()
           (9): Linear(in_features=14, out_features=7, bias=True)
           (10): Tanh()
           (11): Linear(in_features=7, out_features=1, bias=True)
           (12): Sigmoid()
         )
      ),
[ ]: |y_pred_tanh = DNN_Drop_Tanh_model.predict(X_test)
    Using prediction to calculate class-wise accuracy.
[]: from sklearn.metrics import confusion_matrix
     cm = confusion_matrix(y_test, y_pred_tanh)
     tn, fp, fn, tp = cm.ravel()
     # Class-wise accuracy
     accuracy_0_tanh = tn / (tn + fp)
     accuracy_1_tanh = tp / (tp + fn)
     print("Accuracy for class 0:", accuracy_0_tanh)
     print("Accuracy for class 1:", accuracy_1_tanh)
    Accuracy for class 0: 0.73659102203081
    Accuracy for class 1: 0.7750671807454141
[]: y_pred_drop = DNN_Drop_model.predict(X_test)
     cm = confusion_matrix(y_test, y_pred_drop)
     tn, fp, fn, tp = cm.ravel()
     # Class-wise accuracy
```

```
accuracy_0_drop = tn / (tn + fp)
accuracy_1_drop = tp / (tp + fn)

print("Accuracy for class 0:", accuracy_0_drop)
print("Accuracy for class 1:", accuracy_1_drop)
```

Accuracy for class 0: 0.7181775643870101 Accuracy for class 1: 0.7920073403070538

```
[]: y_pred_nodrop = DNN_No_Drop_model.predict(X_test)
    cm = confusion_matrix(y_test, y_pred_nodrop)
    tn, fp, fn, tp = cm.ravel()

# Class-wise accuracy
    accuracy_0_nodrop = tn / (tn + fp)
    accuracy_1_nodrop = tp / (tp + fn)

print("Accuracy for class 0:", accuracy_0_nodrop)
    print("Accuracy for class 1:", accuracy_1_nodrop)
```

Accuracy for class 0: 0.7665877937632773 Accuracy for class 1: 0.7570540586602867

```
[ ]: y_proba_drop = DNN_Drop_model.predict_proba(X_test)[:, 1]
```

```
[]: y_proba_nodrop = DNN_No_Drop_model.predict_proba(X_test)[:, 1]
y_proba_tanh = DNN_Drop_Tanh_model.predict_proba(X_test)[:, 1]
```

This section is purely for creating csvs for graph creation.

```
[ ]: def Get_Metrics(model_name,model_history):
         epoch_training_losses = model_history[:, 'train_loss']
         epoch_validation_losses = model_history[:, 'valid_loss']
         epoch training accuracies = model history[:, 'accuracy']
         epoch_validation_accuracies = model_history[:, 'valid_acc']
         epochs = model_history[:, 'epoch']
         # Models sometimes have one less accuracy
         if model name == 'Tanh w/ Drop' or model name == 'LeakyReLu w/ Drop':
             epoch_training_accuracies.insert(0,0)
         return pd.DataFrame({
         'epoch': epochs,
         'model': [model_name for _ in epoch_training_losses],
         'training_loss': epoch_training_losses,
         'validation_loss': epoch_validation_losses,
         'training_accuracy': epoch_training_accuracies,
         'validation_accuracy': epoch_validation_accuracies
         })
```

```
# Create a DataFrame for aggregated epoch metrics
             metrics_df = Get_Metrics('LeakyReLu w/ Drop', DNN_Drop_model.history)
             \#metrics\_df = pd.concat([metrics\_df, Get\_Metrics('Tanh w/ Drop', Unit of the content of the co
                →DNN_Drop_Tanh_model.history)])
[]: class_wise_acc = pd.DataFrame({
                        'model': 'LeakyReLu w/ Drop',
                        'accuracy0': [accuracy_0_drop],
                        'accuracy1': [accuracy_1_drop],
             })
             #class_wise_acc = pd.concat([class_wise_acc, pd.DataFrame({
                           'model': 'LeakyReLu w/o Drop',
                             'accuracy0': [accuracy_0_nodrop],
                              'accuracy1': [accuracy_1_nodrop]
             # })])
             # class_wise_acc = pd.concat([class_wise_acc, pd.DataFrame({
                              'model': 'Tanh w/ Drop',
                              'accuracy0': [accuracy_0_tanh],
                             'accuracy1': [accuracy_1_tanh]
             # })])
[]: results_df = pd.DataFrame({'model': 'LeakyReLu w/ Drop', 'y_test': y_test,__
               #results_df = pd.concat([results_df, pd.DataFrame({'model': 'LeakyReLu w/o_
               ⇔Drop', 'y_test': y_test, 'y_predictions': y_pred_nodrop, 'y_proba':⊔
               \hookrightarrow y_proba_nodrop\})])
             \#results\_df = pd.concat([results\_df, pd.DataFrame({'model': 'Tanh w/} \ )
                →Drop', 'y_test': y_test, 'y_predictions': y_pred_tanh, 'y_proba':
               \rightarrow y_proba_tanh\})])
             # Exporting results
             results_df.to_csv('drop_results.csv', index=False)
             # Exporting metrics
```

```
[]: # Exporting class accuracies class_wise_acc.to_csv('drop_class_acc.csv', index=False)
```

metrics_df.to_csv('drop_metrics.csv', index=False)