

CORALE User Manual

Comprehensive Oral Cancer Explorer (CORALE):
A user-friendly web-based oral cancer data analysis portal

Introduction

- CORALE is a useful resource to perform secondary-analyses in harmonized multiomics oral cancer data sets.
- CORALE is publicly available at http://corale.moffitt.org
- CORALE provides,
 - Survival Analysis
 - Comparative Analysis
 - Clustering Analysis
 - Correlation Analysis
 - Gene Set Enrichment Analysis
 - Harmonized Dataset Download

CORALE Home Page

Download CORALE
Datasets

Survival Analysis

Survival Analysis

CORALE

Corale

Survival Analysis - Data selection

You will see this Survival Analysis screen.

Select any dataset that you want to use for Survival Analysis

Survival Analysis

Perform overall survival analysis of a selected gene or tumor immune cell types in a selected cohort.

Select Dataset:

Cohort	N Samples	Title
✓ CPTAC	110	CPTAC
E-MTAB-5200	42	The International Cancer Genome project: Pan-Cancer Analysis of Whole Genomes (PCAWG)
	32	Transcriptional profiling by array of human head and neck squamous cell carcinoma to study the corr
E-MTAB-850		elation between galectin-1 upregulation and the presence of SMA positive cancer-associated fibrobla
		sts
GSE10300	44	head and neck squamous cell carcinoma samples
GSE117973	77	Global gene expression analysis of primary head and neck cancer cases
GSE42743	103	Oral Cavity Cancer Compared to Adjacent "Normal" Tissue [Validation Set]
GSE65858	270	Gene expression patterns and TP53 mutations are associated with HPV RNA status, lymph node meta
G2E03838		stasis, and survival in head and neck cancer
ORCA-IN	40	ORCA-IN
TCGA-HNSC	523	Head and Neck Squamous Cell Carcinoma (TCGA, PanCancer Atlas)

Survival Analysis – Filter Features (optional)

This "filter features" option can let you filter out and select only the subset of the samples that you are interested in for your analysis.

"Filter Features" is optional. If you don't select anything, the analysis will be done with all the samples that are available in the data-set.

Click "Filter Features" to open features list.

Cohort	N Samples	Title
CPTAC	110	CPTAC
E-MTAB-5200	42	The International Cancer Genome project: Pan-Cancer Analysis of Whole Genomes (PCAWG)
E-MTAB-850	32	Transcriptional profiling by array of human head and neck squamous cell carcinoma to study the correlation between gar ectin-1 upregulation and the presence of SMA positive cancer-associated fibroblasts
GSE10300	44	head and neck squamous cell carcinoma samples
GSE117973	77	Global gene expression analysis of primary head and neck cancer cases
GSE42743	103	Oral Cavity Cancer Compared to Adjacent "Normal" Tissue [Validation Set]
GSE65858	270	Gene expression patterns and TP53 mutations are associated with HPV RNA status, lymph node metastasis, and survival in head and neck cancer
ORCA-IN	40	ORCA-IN
TCGA-HNSC	523	Head and Neck Squamous Cell Carcinoma (TCGA, PanCancer Atlas)

Grouping Features:

Filter Features

Clinical Features: Expand Selections 🕶

Survival Analysis – Filter Features (optional)

Choose sample selection criteria to use the subset of the samples in the dataset

This is an example of selecting only the samples with

- 1) Samples with the patients of 50 or older and
 - 2) Samples with Grade 3 and
 - 4) Samples from Current smokers

Survival Analysis - Grouping Features

Scroll further down and you can see the "Grouping features' part. This step lets you separate the samples in this data-set into multiple groups so that you can see the survival differences between groups. This grouping feature selection is mandatory in this analysis.

In this example, "Sex" is selected as the grouping feature, and the survival analysis will be performed for Male and Female group

Grouping Features:				
Clinical Features: Collapse Selections				
Alcohol:	O Yes	No		
Recurrent:	O Yes	No		
Grade:	O Yes	No		
Sex:	Yes	O No		
Smoking:	O Yes	No		
Stage M:	O Yes	No		
Stage N:	O Yes	No		
Stage T:	O Yes	No		
- Or -				
Select Gene:				
- Or -				
TME Method: Choose TME method ➤				
Submit				

Survival Analysis - Grouping Features

Instead of selecting a clinical feature, you can also input a gene name or select a TME method. In that case, the samples in the dataset will be divided into high/low group based on the value of the selected feature (Gene or TME), using the median value as the cut point.

In the select gene window here, type the gene name, and select the right gene name from the top-down menu. By selecting a gene name, the data-set will be divided into two groups that are EGFR is highly expressed and lowly expressed using the median value of EGFR expression value as the threshold.

Grouping Features:				
Clinical Features:	Collapse Selections \Lambda			
Alcohol:	○ Yes ● No			
Recurrent:	○ Yes ● No			
Grade:	○ Yes ● No			
Sex:	○ Yes ● No			
Smoking:	○ Yes ● No			
Stage M:	○ Yes ● No			
Stage N:	○ Yes ● No			
Stage T:	○ Yes ● No			
- Or	-			
Select Gene: EGI	FR			
	EGFR EGFR-AS1			
- Or -				
TME Method: Choose TME method ▼				
Some of the samples might be removed because the essential values for this analysis are missing.				
Submit				

Survival Analysis – Grouping Features

When you are done selecting the features, click "Submit" to run Survival Analysis

Grouping F	eatures:
Clinical Feature	es: Collapse Selections 🔨
Alcohol:	○ Yes No
Recurrent:	○ Yes ● No
Grade:	○ Yes No
Sex:	○ Yes No
Smoking:	○ Yes ● No
Stage M:	○ Yes ● No
Stage N:	○ Yes No
Stage T:	○ Yes No
-	Or -
Select Gene:	EGFR
	EGFR EGFR-AS1 Or -
	Choose TME method ▼
Some of the sai	mples might be removed because the essential values for this analysis are missing.
Submit	

Survival Analysis - Results

You will see the survival analysis plot on the bottom of the page in several seconds.

Image control panel (e.g., save the image, zoom in/out)

Comparative Analysis

Comparative Analysis

Comparative Analysis - Data selection

You will see this Comparative Analysis screen.

Select any dataset that you want to use for Comparative Analysis

Comparative Analysis – Filter Features (optional)

Grouping Features:

Clinical Features: Expand Selections V

To select subset of samples in the dataset, scroll down the screen and click "Filter Features" to open features list.

Comparative Analysis – Filter Features (optional)

Choose sample selection criteria to use the subset of the samples in the dataset

This is an example of selecting only the samples with

- 1) Samples with the patients of 50 or older and
 - 2) Samples with Grade 3 and
 - 4) Samples from Current smokers

Comparative Analysis – Grouping Features

For the comparative analysis, grouping the samples into groups is necessary. Select any feature you want to use for separating the samples into groups.

In this example, "Sex" is selected as the grouping feature, and the analysis will be performed for Male and Female group

Comparative Analysis – Grouping Features

Instead of selecting a clinical feature, you can also input a gene name or select a TME method.

In this case, the samples in the dataset will be divided into high/low group based on the value of the selected feature (Gene or TME), using the median value as the cut point.

Grouping Featu	ires:			
Clinical Features: Co	ollapse Selections 🔥			
Alcohol:		O Yes	No	
Recurrent:		O Yes	No	
Grade:		O Yes	No	
Sex:		O Yes	No	
Smoking:		O Yes	No	
Stage M:		O Yes	No	
Stage N:		O Yes	No	
Stage T:		O Yes	No	
	- Or -			
Select Gene: EGFR				
				7
	EGFR AS1			
	EGFR-AS1			
	- Or -			
TME Method: Choo	ose TME method 🗸			
Some of the samples i	might be removed because	the esser	ntial valu	es for this analysis are r
Submit				
Jubilit	_			

Comparative Analysis – Target Features

Scroll down to the page and you will see "Target Features" section

For Comparative Analysis, selecting "Target Features" is necessary

In the select gene window here, type the gene name, and select the right gene name from the top-down menu. By selecting a gene name, the data-set will be divided into two groups that are EGFR is highly expressed and lowly expressed using the median value of EGFR expression value as the threshold.

Comparative Analysis – Target Features

When you are done with these feature selections, press - "submit" button on the bottom to run the analysis

Comparative Analysis – Results

Image control panel (e.g., save the image, zoom in/out)

You will see the comparative analysis plot on the bottom of

the page in several seconds.

Press 'Reset' to perform the survival analysis again with different settings

You can switch it to violin plot by selecting "violin' here

P-value and the number of samples in each group

Clustering Analysis

Clustering Analysis

You can plot heatmaps and perform clustering perform on selected gene expression values, tumor immune cell types, or clinical features. This analysis is based on Pearson's correlation method.

To run clustering analysis, click "Clustering Analysis" button on the homepage

Clustering Analysis - Gene Entry

You need to input gene names or tumor immune cell types for this analysis. For gene list input, there are two different ways.

First one is uploading a gene list file. You can make a gene list file using your text editor and save it somewhere. (a single gene symbol in each line in the text file.)

Press "Browse" button and find the gene list file that you saved on your computer. And the gene list will be uploaded.

Clustering Analysis - Gene Entry

Alternatively, you can also manually type the gene names manually.

To do that, press "Manual Entry" in "Gene entry" section, and the gene name input window will show up. In the window, type gene names separated by semicolon.

Instead of gene names, you can also use tumor immune cell subtypes for this analysis, too.

Clustering Analysis - Data selection

The metric for clustering method can be changed here.

The default option is

"Correlation".

Linkage method can be changed here, the default option is "average".

Select dataset for the analysis

Clustering Analysis – Filter Features (optional)

To select subset of samples in the dataset, scroll down the screen and click "Filter Features" to open features list.

Clustering Analysis – Filter Features (optional)

Choose sample selection criteria to use the subset of the samples in the dataset

This is an example of selecting only the samples with

- 1) Samples with the patients of 50 or older and
 - 2) Samples with Grade 3 and
 - 4) Samples from Current smokers

Clustering Analysis – Additional Features (optional)

In the clustering analysis results, additional clinical feature can be displayed together.

In this example, "Smoking" is selected, and the smoking status of each samples will be shown in the analysis results.

Press "Submit" button to plot the clustering analysis results.

	Filter Fe	atures	
	Display addition	nal clinical fea	ture: Collapse Selections 🔨
	Alcohol:	O Yes	No
	Recurrent:	○ Yes	No
	Grade:	○ Yes	No
	Sex:	○ Yes	No
	Smoking:	Yes	○ No
	Stage M:	○ Yes	No
	Stage N:	○ Yes	No
	Stage T:	○ Yes	No
1	Submit		

Clustering Analysis – Results

Correlation Analysis

Correlation Analysis

Correlation Analysis - Data selection

You will see this Correlation Analysis screen.

Select any dataset that you want to use for Correlation Analysis

Correlation Analysis

Visualize the correlation between selected gene expression / TME value.

Select Dataset:

Cohort	N Samples	Title
✓ CPTAC	110	CPTAC
E-MTAB-1328	64	Methylome, transcriptome and miRNome profiling by array and high throughput sequencing of 8 9 patients with head and neck squamous cell carcinoma
☐ E-MTAB-5200	42	The International Cancer Genome project: Pan-Cancer Analysis of Whole Genomes (PCAWG)
E-MTAB-6364	54	Transcription profiling by array of head and neck squamous cell carcinoma samples with focus on extracellular matrix components in stroma
E-MTAB-6448	86	Whole exome sequencing and transcription profiling of a patient cohort of oral cavity squamous c ell carcinomas
E-MTAB-850	32	Transcriptional profiling by array of human head and neck squamous cell carcinoma to study the correlation between galectin-1 upregulation and the presence of SMA positive cancer-associated fibroblasts
GSE101491	19	Activity of afatinib in a window pre-operative EORTC study in patients with squamous cell carcino ma of the head and neck (HNSCC)
GSE102995	25	Gene expression associated with panitumumab efficacy in squamous cell carcinoma of head and n eck
GSE10300	44	head and neck squamous cell carcinoma samples
GSE109756	34	Gene expression profiling after cetuximab treatment of HNSCC tumors
GSE112026	76	A Novel Functional Splice Variant of AKT3 Defined by Analysis of Alternative Splice Expression in H PV-Positive Oropharyngeal Cancers (RNA-Seq)
GSE117973	77	Global gene expression analysis of primary head and neck cancer cases
GSE127165	114	Whole transcriptome sequencing of 57 laryngeal squamous cell carcinoma and paired adjacent no rmal tissues

Correlation Analysis – Filter Features (optional)

CPTAC

N Samples

42

Select Dataset: Cohort

Correlation Analysis – Filter Features (optional)

Choose sample selection criteria to use the subset of the samples in the dataset

This is an example of selecting only the samples with

- 1) Samples with the patients of 50 or older and
 - 2) Samples with Grade 3 and
 - 4) Samples from Current smokers

Correlation Analysis - Selecting Features

For performing correlation analysis, it is required to select two features from gene expression values or TME values.

In this example, "EGFR" gene expression value is selected as X-axis feature, and "KRAS" as Y-axis feature.

Press Submit to start the analysis.

Correlation Analysis - Results

Image control panel (e.g., save the image, zoom in/out)

You will see the scatter plot on the bottom of the page in several seconds.

P-value and the number of samples in each group

Press 'Reset' to perform the survival analysis again with different settings

Gene Set Analysis

Gene Set Analysis

To start gene set analysis, click "Gene set analysis" on the homepage.

Gene Set Analysis - Data selection

You will see this gene set analysis screen.

Select any dataset that you want to use for Survival Analysis

You can retrieve your previous gene set analysis results through this link

Gene Set Analysis – Filter Features (optional)

To select subset of samples in the dataset, scroll down the screen and click "Filter Features" to open features list.

	N Samples	Title		
✓ CPTAC	110	CPTAC		
☐ E-MTAB-5200	42	The International Cancer Genome project: Pan-Cancer Analysis of Whole Genomes (PCAWG)		
	32	Transcriptional profiling by array of human head and neck squamous cell carcinoma to study the correlation between g		
E-MTAB-850		ectin-1 upregulation and the presence of SMA positive cancer-associated fibroblasts		
GSE10300	44	head and neck squamous cell carcinoma samples		
GSE117973	77	Global gene expression analysis of primary head and neck cancer cases		
GSE42743	103	Oral Cavity Cancer Compared to Adjacent "Normal" Tissue [Validation Set]		
GSE65858	270	Gene expression patterns and TP53 mutations are associated with HPV RNA status, lymph node metastasis, and survivin head and neck cancer		
ORCA-IN	40	ORCA-IN		
TCGA-HNSC	523	Head and Neck Squamous Cell Carcinoma (TCGA, PanCancer Atlas)		
Filter Fe	atures	ı		
rouping Fe	atures: Expand Selection	ons 🗸		
rouping Fea	atures: Expand Selection	ons 🗸		
rouping Fea Clinical Features: - Or Select Gene: - Or	Expand Selection			
rouping Fea Clinical Features: - Or Select Gene: - Or	atures: Expand Selection			

Gene Set Analysis - Filter Features (optional)

Choose sample selection criteria to use the subset of the samples in the dataset

This is an example of selecting only the samples with

- 1) Samples with the patients of 50 or older and
 - 2) Samples with Grade 3 and
 - 4) Samples from Current smokers

Gene Set Analysis – Grouping Features

Same as the "survival analysis" or "comparative analysis", selecting "grouping features" is mandatory here. Select features to separate the samples into two groups.

Notice that for gene set enrichment analysis, you can only separate the samples into only two groups.

In this example, "Sex" is selected as the grouping feature, and the survival analysis will be performed for Male and Female group

Grouping Features:	
Clinical Features: Collapse Selections	
Alcohol:	○ Yes No
Recurrent:	○ Yes No
Grade:	○ Yes No
Sex:	Yes ○ No
Smoking:	○ Yes No
Stage M:	○ Yes No
Stage N:	○ Yes No
Stage T:	○ Yes ® No
- Or -	
Select Gene:	
- Or -	
TME Method: Choose TME method ➤	
Submit	

Gene Set Analysis - Grouping Features

Instead of selecting a clinical feature, you can also input a gene name or select a TME method.

In this case, the samples in the dataset will be divided into high/low group based on the value of the selected feature (Gene or TME), using the median value as the cut point.

You can use either hallmark or KEGG geneset. To know the details of these genesets, please visit MSigDB and you can get more information.

Press 'Submit' to start GSEA

Gene Set Analysis - Running GSEA

After you press 'Submit' button, you will see the progress of the submitted job with its Job ID.

If you want to retrieve the results later, this Job ID can be used.

Gene set enrichment analysis takes time. Depending on the data-sets, it may take more than 10 minutes. You can see the status information on the bottom. By pressing refresh button, you can see the updates of the progress.

Gene Set Analysis - Results

When the analysis is done, the results will be displayed after pressing 'Refresh' button.

Class: high Class: low Positive NES: term es HALLMARK_E2F_TARGETS 0.5362 HALLMARK_G2M_CHECKPOINT 0.5087 HALLMARK_MYC_TARGETS_V1 0.4183 HALLMARK_MYC_TARGETS_V2 0.4763 HALLMARK_MITOTIC_SPINDLE 0.3605 HALLMARK_MITOTIC_SPINDLE 0.2688 HALLMARK_MITOTIC_SIGNALING 0.2465 HALLMARK_MITOTIC_SIGNALING 0.2699 HALLMARK_ANGIOGENESIS 0.3106 HALLMARK_TIFA_SIGNALING_VIA_NFKB 0.2253 HALLMARK_DNA_REPAIR 0.2315 HALLMARK_APICAL_JUNCTION 0.2109	Feature I nes 1.7823 1.7013 1.4164 1.3378 1.2869 1.2126 0.9121 0.8361 0.8244 0.7806	Positive Class Negative Class pval 0.0000 0.0000 0.0135 0.0746 0.0308 0.0669 0.7269 0.9310 0.8553 0.0776	0.0042 0.0105 0.1549 0.2444 0.2943 0.4428 1.0000 1.0000	geneset_size 200 200 200 58 200 199 200 200 97
Class: low Positive NES: term	1.7823 1.7013 1.4164 1.3378 1.2869 1.2126 0.9121 0.8361 0.8244	pval 0.0000 0.0000 0.0135 0.0746 0.0308 0.0669 0.7269 0.9310	0.0042 0.0105 0.1549 0.2444 0.2943 0.4428 1.0000	200 200 200 58 200 199 200
Class: low Positive NES: erm	1.7823 1.7013 1.4164 1.3378 1.2869 1.2126 0.9121 0.8361 0.8244	pval 0.0000 0.0000 0.0135 0.0746 0.0308 0.0669 0.7269 0.9310	0.0042 0.0105 0.1549 0.2444 0.2943 0.4428 1.0000	200 200 200 58 200 199 200
POSITIVE NES: erm es HALLMARK_E2F_TARGETS 0.5362 HALLMARK_G2M_CHECKPOINT 0.5087 HALLMARK_MYC_TARGETS_V1 0.4183 HALLMARK_MYC_TARGETS_V2 0.4763 HALLMARK_MITOTIC_SPINDLE 0.3605 HALLMARK_MITOTIC_SPINDLE 0.3605 HALLMARK_HYPOXIA 0.2688 HALLMARK_MTORC1_SIGNALING 0.2465 HALLMARK_MTORC1_SIGNALING 0.2669 HALLMARK_INTERFERON_ALPHA_RESPONSE 0.2699 HALLMARK_ANGIOGENESIS 0.3106 HALLMARK_ANGIOGENESIS 0.3253 HALLMARK_TNFA_SIGNALING_VIA_NFKB 0.2253 HALLMARK_TNFA_SIGNALING_VIA_NFKB 0.2253	1.7823 1.7013 1.4164 1.3378 1.2869 1.2126 0.9121 0.8361 0.8244	pval 0.0000 0.0000 0.0135 0.0746 0.0308 0.0669 0.7269 0.9310	0.0042 0.0105 0.1549 0.2444 0.2943 0.4428 1.0000	200 200 200 58 200 199 200
Positive NES: erm es HALLMARK_E2F_TARGETS 0.5362 HALLMARK_MYC_TARGETS_V1 0.4183 HALLMARK_MYC_TARGETS_V2 0.4763 HALLMARK_MYC_TARGETS_V2 0.4763 HALLMARK_MITOTIC_SPINDLE 0.3605 HALLMARK_MITOTIC_SPINDLE 0.2688 HALLMARK_HYPOXIA 0.2688 HALLMARK_MTORC1_SIGNALING 0.2465 HALLMARK_MTORC1_SIGNALING 0.2669 HALLMARK_INTERFERON_ALPHA_RESPONSE 0.2699 HALLMARK_ANGIOGENESIS 0.3106 HALLMARK_ANGIOGENESIS 0.2253 HALLMARK_TNFA_SIGNALING_VIA_NFKB 0.2253 HALLMARK_TNFA_SIGNALING_VIA_NFKB 0.2253	1.7823 1.7013 1.4164 1.3378 1.2869 1.2126 0.9121 0.8361 0.8244 0.7806	0.0000 0.0000 0.0135 0.0746 0.0308 0.0669 0.7269 0.9310 0.8553	0.0042 0.0105 0.1549 0.2444 0.2943 0.4428 1.0000	200 200 200 58 200 199 200
erm es HALLMARK_E2F_TARGETS 0.5362 HALLMARK_G2M_CHECKPOINT 0.5087 HALLMARK_MYC_TARGETS_V1 0.4183 HALLMARK_MYC_TARGETS_V2 0.4763 HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITI 0.3890 HALLMARK_MITOTIC_SPINDLE 0.3605 HALLMARK_MITOTIC_SIGNALING 0.2688 HALLMARK_MTORC1_SIGNALING 0.2465 HALLMARK_INTERFERON_ALPHA_RESPONSE 0.2699 HALLMARK_ANGIOGENESIS 0.3106 HALLMARK_TNFA_SIGNALING_VIA_NFKB 0.2253 HALLMARK_TNFA_SIGNALING_VIA_NFKB 0.2253 HALLMARK_DNA_REPAIR 0.2315	1.7823 1.7013 1.4164 1.3378 1.2869 1.2126 0.9121 0.8361 0.8244 0.7806	0.0000 0.0000 0.0135 0.0746 0.0308 0.0669 0.7269 0.9310 0.8553	0.0042 0.0105 0.1549 0.2444 0.2943 0.4428 1.0000	200 200 200 58 200 199 200
IALLMARK_EZF_TARGETS 0.5362 IALLMARK_GZM_CHECKPOINT 0.5087 IALLMARK_MYC_TARGETS_V1 0.4183 IALLMARK_MYC_TARGETS_V2 0.4763 IALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITI 0.3890 IALLMARK_MITOTIC_SPINDLE 0.3605 IALLMARK_HYPOXIA 0.2688 IALLMARK_MTORC1_SIGNALING 0.2465 IALLMARK_INTERFERON_ALPHA_RESPONSE 0.2699 IALLMARK_ANGIOGENESIS 0.3106 IALLMARK_TNFA_SIGNALING_VIA_NFKB 0.2253 IALLMARK_TNPA_SIGNALING_VIA_NFKB 0.2315	1.7823 1.7013 1.4164 1.3378 1.2869 1.2126 0.9121 0.8361 0.8244 0.7806	0.0000 0.0000 0.0135 0.0746 0.0308 0.0669 0.7269 0.9310 0.8553	0.0042 0.0105 0.1549 0.2444 0.2943 0.4428 1.0000	200 200 200 58 200 199 200
HALLMARK_GZM_CHECKPOINT 0.5087 HALLMARK_MYC_TARGETS_V1 0.4183 HALLMARK_MYC_TARGETS_V2 0.4763 HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITI 0.3890 HALLMARK_MITOTIC_SPINDLE 0.3605 HALLMARK_HYPOXIA 0.2688 HALLMARK_MTORC1_SIGNALING 0.2465 HALLMARK_INTERFERON_ALPHA_RESPONSE 0.2699 HALLMARK_ANGIOGENESIS 0.3106 HALLMARK_TNFA_SIGNALING_VIA_NFKB 0.2253 HALLMARK_TNFA_SIGNALING_VIA_NFKB 0.2315	1.7013 1.4164 1.3378 1.2869 1.2126 0.9121 0.8361 0.8244 0.7806	0.0000 0.0135 0.0746 0.0308 0.0669 0.7269 0.9310	0.0105 0.1549 0.2444 0.2943 0.4428 1.0000	200 200 58 200 199 200 200
IALLMARK_MYC_TARGETS_V1 0.4183 IALLMARK_MYC_TARGETS_V2 0.4763 IALLMARK_MYC_TARGETS_V2 0.3890 IALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITI 0.3890 IALLMARK_MITOTIC_SPINDLE 0.3605 IALLMARK_HYPOXIA 0.2688 IALLMARK_MTORC1_SIGNALING 0.2465 IALLMARK_INTERFERON_ALPHA_RESPONSE 0.2699 IALLMARK_ANGIOGENESIS 0.3106 IALLMARK_TNFA_SIGNALING_VIA_NFKB 0.2253 IALLMARK_DNA_REPAIR 0.2315	1,4164 1,3378 1,2869 1,2126 0,9121 0,8361 0,8244 0,7806	0.0135 0.0746 0.0308 0.0669 0.7269 0.9310	0.1549 0.2444 0.2943 0.4428 1.0000	200 58 200 199 200 200
IALLMARK_MYC_TARGETS_V2 0.4763 IALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITI 0.3890 IALLMARK_MITOTIC_SPINDLE 0.3605 IALLMARK_HYPOXIA 0.2688 IALLMARK_MTORC1_SIGNALING 0.2465 IALLMARK_INTERFERON_ALPHA_RESPONSE 0.2699 IALLMARK_ANGIOGENESIS 0.3106 IALLMARK_TNFA_SIGNALING_VIA_NFKB 0.2253 IALLMARK_DNA_REPAIR 0.2315	1.3378 1.2869 1.2126 0.9121 0.8361 0.8244 0.7806	0.0746 0.0308 0.0669 0.7269 0.9310 0.8553	0.2444 0.2943 0.4428 1.0000	58 200 199 200 200
ALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITI 0.3890 IALLMARK_MITOTIC_SPINDLE 0.3605 IALLMARK_HYPOXIA 0.2688 IALLMARK_HYPOXIA 0.2465 IALLMARK_MTORC1_SIGNALING 0.2465 IALLMARK_INTERFERON_ALPHA_RESPONSE 0.2699 IALLMARK_ANGIOGENESIS 0.3106 IALLMARK_TNFA_SIGNALING_VIA_NFKB 0.2253 IALLMARK_TNFA_SIGNALING_VIA_NFKB 0.2315	1,2869 1,2126 0,9121 0,8361 0,8244 0,7806	0.0308 0.0669 0.7269 0.9310 0.8553	0.2943 0.4428 1.0000	200 199 200 200
IALLMARK_MITOTIC_SPINDLE 0.3605 IALLMARK_HYPOXIA 0.2688 IALLMARK_MTORC1_SIGNALING 0.2465 IALLMARK_INTERFERON_ALPHA_RESPONSE 0.2699 IALLMARK_ANGIOGENESIS 0.3106 IALLMARK_TNFA_SIGNALING_VIA_NFKB 0.2253 IALLMARK_DNA_REPAIR 0.2315	1.2126 0.9121 0.8361 0.8244 0.7806	0.0669 0.7269 0.9310 0.8553	0.4428 1.0000 1.0000	199 200 200
IALLMARK_HYPOXIA 0.2688 IALLMARK_MTORC1_SIGNALING 0.2465 IALLMARK_INTERFERON_ALPHA_RESPONSE 0.2699 IALLMARK_ANGIOGENESIS 0.3106 IALLMARK_TNFA_SIGNALING_VIA_NFKB 0.2253 IALLMARK_DNA_REPAIR 0.2315	0.9121 0.8361 0.8244 0.7806	0.7269 0.9310 0.8553	1.0000 1.0000	200 200
ALLMARK_MTORC1_SIGNALING 0.2465 IALLMARK_INTERFERON_ALPHA_RESPONSE 0.2699 IALLMARK_ANGIOGENESIS 0.3106 IALLMARK_TNFA_SIGNALING_VIA_NFKB 0.2253 IALLMARK_DNA_REPAIR 0.2315	0.8361 0.8244 0.7806	0.9310 0.8553	1.0000	200
ALLMARK_INTERFERON_ALPHA_RESPONSE 0.2699 IALLMARK_ANGIOGENESIS 0.3106 IALLMARK_TNFA_SIGNALING_VIA_NFKB 0.2253 IALLMARK_DNA_REPAIR 0.2315	0.8244 0.7806	0.8553		
IALLMARK_ANGIOGENESIS 0.3106 IALLMARK_TNFA_SIGNALING_VIA_NFKB 0.2253 IALLMARK_DNA_REPAIR 0.2315	0.7806		1.0000	97
IALLMARK_TNFA_SIGNALING_VIA_NFKB 0.2253 IALLMARK_DNA_REPAIR 0.2315				
IALLMARK_DNA_REPAIR 0.2315		0.8171	1.0000	36
	0.7645	0.9955	1.0000	200
ALLMARK_APICAL_JUNCTION 0.2109	0.7577	0.9796	1.0000	150
	0.6959	1.0000	1.0000	200
ALLMARK_GLYCOLYSIS 0.1964	0.6625	1.0000	1.0000	200
ALLMARK_UNFOLDED_PROTEIN_RESPONSE 0.2010	0.6258	1.0000	1.0000	113
ALLMARK_NOTCH_SIGNALING 0.2286	0.5766	0.9878	1.0000	32
ALLMARK_INFLAMMATORY_RESPONSE 0.1571	0.5320	1.0000	1.0000	200
ALLMARK_WNT_BETA_CATENIN_SIGNALING 0.1945	0.5276	1.0000	1.0000	42
ALLMARK_TGF_BETA_SIGNALING 0.1804	0.4993	1.0000	1.0000	54
ALLMARK_IL6_JAK_STAT3_SIGNALING 0.1669	0.4964	1.0000	1.0000	87
ALLMARK_INTERFERON_GAMMA_RESPONSE 0.1397	0.4684	1.0000	1.0000	200
HALLMARK_APOPTOSIS 0.1349	0.4399	1.0000	1.0000	161

Gene Set Analysis - Retrieving Results

You can also copy these Job ID to retrieve your results anytime later. To do that, scroll up the page and find "GSEA Results Lookup" button on top right side of the "Gene set analysis" page.

Gene Set Analysis - Retrieving Results

Paste the Job ID that you copied from the previous screen and you can see the results when the analysis is finished.

The raw results files can be downloaded by clicking this "Download GSEA Archive" button

You can see that what feature was used to separate the samples, and what features were selected for each class.

Also you see the enriched gene sets on the bottom. You can click the gene set names and you can see the detailed gene set enrichment analysis graph on the bottom of the page.

Gene Set Analysis - Retrieving Results

You can click the gene set names and you can see the detailed gene set enrichment analysis graph on the bottom of the page.

Download datasets / Retrieve the details of the datasets

Download datasets

The CORALE data-set is downloadable on the Download page.

You can see the detailed information of each data-set, and the features that are included.

Download datasets

Press Download button and you can easily download the data-set containing transcriptomics data with clinical features, and the data-set's meta information.

OTHER INFO

OTHER INFO

Please cite CORALE

• Kyubum Lee, Mengyu Xie, Scott D. Cukras, John H. Lockhart, Rodrigo Carvajal, Elsa R. Flores, Christine H. Chung, and Aik-Choon Tan, Comprehensive Oral Cancer Explorer (CORALE): A user-friendly web-based oral cancer data analysis portal. [Under Review] (2021)

Please contact us

- Aik Choon Tan, PhD: AikChoon.Tan@moffitt.org
- Kyubum Lee, PhD: Kyubum.Lee@moffitt.org

Thank you for using CORALE