

BA: What Can(not) Be Perfectly Rerouted Locally

- Critical network infrastructure has high availability requirements
- Hard real-time requirements on packet routing
 - ⇒ How to provide dependability guarantee despite edge failures in networks?
 - ⇒ Possible without communication between nodes?

Prior work: Impossible in general [PODC 2012, Feigenbaum et al.]

Model

- Network is a connected undirected graph G = (V, E)
- Forwarding at node v may only match on:
 - 1. Destination t
 - 2. Incident edge failures $F \cap E(v)$
 - 3. Incoming port from $E(v) \cup \{\bot\}$
- No packet (header) changes allowed, no communication
- Static routing tables, deterministic behavior
- Goal: Install rules *ahead of time* to reach destination t under any edge failures F (if connected)

Perfect Resiliency on Non-Planar Graphs? Impossible!

- Perfect resiliency on Graph G -> **Any subgraph** G' of G also allows for perfect resiliency
 - ∘ Idea: Take routing on *G*, fail edges to create *G′*, routing must still work ©
- Contracting works as well, by a simulation argument

- Essentially: Take perfectly resilient routing function, show that we can make it work after contraction
- Combined: Perfect resiliency on Graph G -> Any minor G' of G as well
 - Definition: G' is minor of G if can be obtained by contracting/subgraphing
- We show K_5 , $K_{3,3}$ no perfect resilience -> non-planar graphs do not allow for perfect resilience

BA: What Can(not) Be Perfectly Rerouted Locally

- Perfect resiliency impossible:
 - On some planar graphs [already with just 7 nodes] and on all non-planar graphs
- Perfect resiliency possible:
 - On some planar graphs and on all outerplanar graphs
- In the extended version (link in paper):
 - Results on more powerful routing models, on rule space size, further open questions

Full version also appears at SIAM Symposium on Algorithmic Principles of Computer Systems [APOCS'21]