

Spring 2016

BLM2502 Theory of Computation

- » Course Outline
- » Week Content
- » 1 Introduction to Course
- » 2 Computability Theory, Complexity Theory, Automata Theory, Set Theory, Relations, Proofs, Pigeonhole Principle
- » 3 Regular Expressions
- » 4 Finite Automata
- » 5 Deterministic and Nondeterministic Finite Automata
- » 6 Epsilon Transition, Equivalence of Automata
- » 7 Pumping Theorem
- » 8 April 10 14 week is the first midterm week
- » 9 Context Free Grammars, Parse Tree, Ambiguity
- » 10 Pumping Theorem, Normal Forms
- » 11 Pushdown Automata
- **>> 12** Turing Machines, Recognition and Computation, Church-Turing Hypothesis
- » 13 Turing Machines, Recognition and Computation, Church-Turing Hypothesis
- » 14 May 22 27 week is the second midterm week
- » 15 Review
- » 16 Final Exam date will be announced

The Language Hierarchy

Languages accepted by Turing Machines

 $a^nb^nc^n$

WW

Context-Free Languages

 a^nb^n

 WW^{R}

Regular Languages

*a**

*a***b**

A Turing Machine

Tape

Read-Write head

Control Unit

The Tape

No boundaries -- infinite length

Read-Write head

The head moves Left or Right

Read-Write head

The head at each transition (time step):

- 1. Reads a symbol
- 2. Writes a symbol
- 3. Moves Left or Right

Example:

- 1. Reads a
- 2. Writes k
- 3. Moves Left

- 1. Reads b
- 2. Writes *f*
- 3. Moves Right

The Input String

Head starts at the leftmost position of the input string

States & Transitions

Example:

$$q_1$$
 $a \rightarrow b, R$ q_2

$$q_1 \xrightarrow{a \to b, R} q_2$$

Example:

$$q_1$$
 $a \rightarrow b, L$ q_2

Example:

Determinism

Turing Machines are deterministic

Allowed

Not Allowed

No epsilon transitions allowed

Partial Transition Function

Example:

Allowed:

No transition for input symbol *c*

Halting

The machine *halts* in a state if there is no transition to follow

Halting Example 1:

No transition from q_1

Halting Example 2:

No possible transition from q_1 and symbolc

Accepting States

Accepting states have no outgoing transition. The machine halts and accepts

Acceptance

Accept Input string

If machine halts in an accept state

Reject Input string

If machine halts in a non-accept state or If machine enters an *infinite loop*

Observation:

In order to accept an input string, it is not necessary to scan all the symbols in the string

Turing Machine Example

Input alphabet $\Sigma = \{a, b\}$

Accepts the language: a*

$$\begin{array}{c}
a \to a, R \\
\hline
 & & & & \\$$

Rejection Example

No possible Transition

 $a \rightarrow a, R$ Halt & Reject

A simpler machine for same language but for input alphabet $\Sigma = \{a\}$

Accepts the language: a*

Halt & Accept

Not necessary to scan input

Infinite Loop Example

A Turing machine for language a*+b(a+b)*

BLM2502 Theory of Computation – Turing

Time 2

Time 3

Time 4

Because of the infinite loop:

The accepting state cannot be reached

The machine never halts

The input string is rejected

Another Turing Machine Example

Turing machine for the language $\{a^nb^n\}$ $n \ge 1$

Basic Idea:

Match a's with b's:

Repeat:

replace leftmost a with x
find leftmost b and replace it with y
Until there are no more a's or b's

If there is a remaining a or b reject

Halt & Accept

Observation:

If we modify the machine for the language $\{a^nb^n\}$

we can easily construct a machine for the language $\{a^nb^nc^n\}$

Formal Definitions for Turing Machines

Transition Function

$$q_1$$
 $a \rightarrow b, R$ q_2

$$\delta(q_1, a) = (q_2, b, R)$$

Transition Function

$$\begin{array}{c|c}
\hline
q_1 & c \to d, L \\
\hline
\end{array}$$

$$\delta(q_1,c) = (q_2,d,L)$$

Furing Machine:

Configuration

Instantaneous description: $ca q_1 ba$

A Move:

$$q_2 xayb > x q_0 ayb$$

(yields in one mode)

A computation $q_2 \ xayb > x \ q_0 \ ayb > xx \ q_1 \ yb > xxy \ q_1 \ b$

$$q_2 xayb > x q_0 ayb > xx q_1 yb > xxy q_1 b$$

Equivalent notation:
$$q_2 xayb > xxy q_1 b$$

Input string

The Accepted Language

For any Turing Machine $\,M\,$

If a language L is accepted by a Turing machine M then we say that L is:

TuringRecognizable

Other names used:

- Turing Acceptable
- Recursively Enumerable

Computing Functions with Turing Machines

A function

f(w) has:

Result Region: S Domain: D f(w) $f(w) \in S$ $w \in D$

A function may have many parameters:

Example: Addition function

$$f(x,y) = x + y$$

Integer Domain

Decimal: 5

Binary: 101

Unary: 11111

We prefer unary representation:

easier to manipulate with Turing machines

Definition:

A function f is computable if there is a Turing Machine M such that:

Initial configuration

Final configuration

For all $w \in D$ Domain

In other words:

A function f is computable if there is a Turing Machine M such that:

$$q_0 w \stackrel{*}{\succ} q_f f(w)$$
Initial Final
Configuration Configuration

For all $w \in D$ Domain

Example

The function
$$f(x,y) = x + y$$
 is computable

x, *y* are integers

Turing Machine:

Input string: x0y unary

Output string: xy0 unary

The 0 is the delimiter that separates the two numbers

The 0 here helps when we use the result for other operations

Turing machine for function f(x,y) = x + y

Execution Example:

Time 0

$$x = 11$$
 (=2)

$$y = 11$$
 (=2)

Final Result

Another Example

$$f(x) = 2x$$
 is

f(x) = 2x is computable

is integer

Turing Machine:

Input string:

X

unary

Output string:

XX

unary

Start

Furing Machine Pseudocode for f(x) = 2x

- Replace every 1 with \$
 - Repeat:
 - Find rightmost \$, replace it with 1

Go to right end, insert 1

Until no more \$ remain

Turing Machine for f(x) = 2x

Example

Finish

Another Example

The function
$$f(x,y) = \begin{cases} 1 & \text{if } x > y \\ 0 & \text{if } x \leq y \end{cases}$$
 is computable

Input: x0y

Output: 1 or 0

Turing Machine Pseudocode:

Repeat

Match a 1 from X with a 1 from Y

Until all of x or y is matched

• If a 1 from x is not matched erase tape, write 1 (x > y) else

erase tape, write 0

 $(x \leq y)$

Combining Turing Machines

Block Diagram

Example:
$$f(x,y) = \begin{cases} x + y & \text{if } x > y \\ 0 & \text{if } x \le y \end{cases}$$

