Exerzitien V

Submit your concise solutions in the correct order and no later than 4:10 pm on Oct. 27., in your tutorial.

Reading suggestion: Axler Chapter 3, parts 1 (linear maps) and 2 (null space and range).

Exercise 1. Determine (using row reduction) in each case whether the linear system has solutions, and if so, describe the solution set parametrically. For example, if we have one equation x + y = 3, it certainly has many solutions in \mathbb{R}^2 – one way of describing them all is to let y be any $t \in \mathbb{R}$ and then x = t(-1) + 3. so we would say that the solution set is

$$\{t(-1,1)+(3,0): t \in \mathbb{R}.\}$$

a)
$$x_1 - x_2 + 2x_3 = 1$$
 b) $x_1 - 2x_2 + x_3 + 2x_4 = 1$
 $x_1 + 2x_3 = 1$ $x_1 + x_2 - x_3 + x_4 = 2$
 $x_1 - 3x_2 + 4x_3 = 2$ $x_1 + 7x_2 - 5x_3 - x_4 = 3$

c)
$$x + 2y = -2$$
 d $x_1 + 2x_2 + 6x_3 = -1$
 $x + 2z = -3$ $2x_1 + x_2 + x_3 = 8$
 $y - z = 2$ $3x_1 + x_2 - x_3 = 15$
 $x_1 + 3x_2 + 10x_3 = -5$

Exercise 2. Let $P: V \longrightarrow V$ be a linear operator, and suppose that $P^2 = P$. Let N = Null(P) and R = Range(P), note that these are both subspaces of V. Set $Q = \text{Id}_V - P$, where Id_V is the identity operator on V.

- 1. Show that $Q^2 = Q$.
- 2. Show that PQ = QP = 0.
- 3. Show that $N \cap R = \{0\}$.
- 4. Show that v = Pv + Qv, for any $v \in V$.
- 5. Conclude from the above facts that $V = N \oplus R$.

Exercise 3. Let $(x, y) \in \mathbb{R}^2$ and define the Fibonacci map $F \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$ as follows:

$$F(x,y) = (y, x + y).$$

- 1. Let $v_0=(0,1)$. Prove that the n^{th} number in the Fibonacci sequence $1,1,2,3,5,\ldots$ is given by the first component of $F^n(v_0)\in\mathbb{R}^2$.
- 2. Write the matrix $A = [F]_e^e$ of F using the standard basis e = ((1,0),(0,1)). Compute the matrix powers A^2 , A^3 , A^4 , A^5 .
- 3. Write the matrix $B = [F]_b^b$ of F using a different basis $b = ((1, \frac{1+\sqrt{5}}{2}), (-\frac{1+\sqrt{5}}{2}, 1))$. Now compute B^k explicitly for all $k \in \mathbb{N}$.
- 4. Express v_0 in terms of the basis b and compute $F^n(v_0)$ explicitly for all $n \in \mathbb{N}$. Conclude with a formula for the n^{th} Fibonacci number.