Logik-Arbeitsbuch – Teil 2: Logik mit ICs

Dieses Laborheft baut auf Teil 1 (Transistorlogik) auf und führt dich in die Arbeit mit integrierten Logik-ICs ein. Du Iernst die klassischen 74xx- und HC-Bausteine kennen, übst Schaltpläne, Simulationen, Aufbauten und Messungen. Das Ziel ist, aus einzelnen Chips einen einfachen Digitalcomputer aufzubauen.

Inhaltsverzeichnis

Kapitel	Thema
0	Einführung: TTL vs. CMOS, Versorgung, Fan-In/Fan-Out
1	Basisgatter mit 74xx (NAND, NOT, AND, OR)
2	XOR und Schmitt-Trigger (74LS86, 74HC14)
3	Universalgatter: NAND/NOR als Grundlage
4	Decoder 74HC138 / 74LS138
5	Schieberegister (74HC595, 74HC164, 74HC165)
6	Bustreiber (74LS245)
7	Zähler (74LS90) mit 555 als Taktquelle
8	Anzeige mit 74LS47 und 7-Segment
9	Treiber und Isolation (ULN2003/2803, PC817)
10	Abschlussprojekt: Kleiner Digitalcomputer

Kapitel 0 – Einführung: TTL vs. CMOS, Versorgung, Fan-In/Fan-Out

Ziel: Verständnis der Unterschiede zwischen TTL (LS-Serie) und CMOS (HC-Serie).

Aufgaben:

- 1. Lies die Datenblätter von 74LS00 und 74HC00.
- 2. Notiere Versorgungsspannungen: TTL meist 5 V fix, CMOS 2-6 V.
- 3. Vergleiche Eingangswiderstände und Fan-Out (wie viele Eingänge ein Ausgang treiben kann).
- 4. Skizziere Unterschiede in Ruhestrom und Geschwindigkeit.

Hinweis: Fan-In/Fan-Out ist entscheidend beim Computeraufbau, um zu wissen, wie viele Bausteine miteinander verbunden werden können.

Kapitel 1 – Basisgatter mit 74xx (NAND, NOT, AND, OR)

Ziel: Mit Standard-ICs grundlegende Logikgatter aufbauen.

Aufgaben:

- 1. Zeichne die Wahrheitstabellen für NAND, NOT, AND, OR.
- 2. Suche im Datenblatt die Pinbelegung von 74LS00 (NAND) und 74LS04 (NOT).
- 3. Zeichne die Schaltung per Hand: Eingangstaster + LED als Ausgang.
- 4. Erstelle den Schaltplan in KiCad und beschrifte die Pins.
- 5. Simuliere (falls möglich) mit SPICE-Äquivalent.
- 6. Baue auf Breadboard auf und teste mit Tastern.
- 7. Messe Ausgangspegel mit Multimeter/Oszi.

Fehlerexperimente: Eingang offen lassen \rightarrow undefiniert.