Лабораторная работа №1

Julia. Установка и настройка. Основные принципы.

Александр Эдуардович Аскеров

Содержание

1	Цель работы		5
2	Зад	ание	6
3	Вы	полнение лабораторной работы	7
	3.1	Установите под свою операционную систему Julia, Jupyter	7
	3.2	Используя Jupyter Lab, повторите примеры из раздела 1.3.3	8
	3.3	Задания для самостоятельной работы	10
4	Вы	воды	18
Cı	Список литературы		

Список иллюстраций

3.1	установленные Julia и Jupyter	1
3.2	Определение типа числовой величины	8
3.3	Определение крайних значений диапазонов целочисленных число-	
	вых величин	8
3.4	Преобразование типов разными способами	9
3.5	Определение функций разными способами	9
3.6	Работа с одномерными массивами	10
3.7	Работа с двумерными массивами	10
3.8	Фрагмент документации по функции read	11
3.9	Применение функций read, readline, readdlm	12
3.10	Применение функций print, println, show, write	13
3.11	Документация по функции parse	14
3.12	Примеры использования	14
3.13	Арифметические операции	15
3.14	Арифметические операции (продолжение)	16
3.15	Операции над матрицами	17
3.16	Операции над матрицами (продолжение)	17

Список таблиц

1 Цель работы

Основная цель работы — подготовить рабочее пространство и инструментарий для работы с языком программирования Julia, на простейших примерах познакомиться с основами синтаксиса Julia.

2 Задание

- 1. Установите под свою операционную систему Julia, Jupyter.
- 2. Используя Jupyter Lab, повторите примеры из раздела 1.3.3.
- 3. Выполните задания для самостоятельной работы.

3 Выполнение лабораторной работы

3.1 Установите под свою операционную систему Julia, Jupyter.

Julia и Jupyter установлены [1, 2, 3, 4, 5].

```
aeaskerov@vbox:~$ julia --version
julia version 1.11.6
aeaskerov@vbox:~$ jupyter --version
Selected Jupyter core packages...
IPython
            : 8.5.0
ipykernel : 6.17.0
ipywidgets : 6.0.0
jupyter_client : 7.4.9
jupyter_core : 4.12.0
jupyter_server : not installed
jupyterlab : not installed
               : 0.7.2
nbclient
nbconvert
                : 6.5.3
             : 5.5.0
nbformat
               : 6.4.12
notebook
qtconsole
                : not installed
traitlets : 5.5.0
aeaskerov@vbox:~$
```

Рисунок 3.1: Установленные Julia и Jupyter

3.2 Используя Jupyter Lab, повторите примеры из раздела 1.3.3.

Определение типа числовой величины.

```
In [1]: typeof(3.5)
Out[1]: Float64
```

Рисунок 3.2: Определение типа числовой величины

Определение крайних значений диапазонов целочисленных числовых величин.

Рисунок 3.3: Определение крайних значений диапазонов целочисленных числовых величин

Преобразование типов.

```
In [4]: Int64(2.0)
Out[4]: 2
In [5]: Char{2}
Out[5]: '\x02': ASCII/Unicode U+0002 (category Cc: Other, control)
In [6]: convert(Int64, 2.0)
Out[6]: 2
In [8]: promote(Int8(1), Float16(4.5), Float32(4.1))
Out[8]: (1.0f0, 4.5f0, 4.1f0)
In [9]: typeof(promote(Int8(1), Float16(4.5), Float32(4.1)))
Out[9]: Tuple{Float32, Float32, Float32}
```

Рисунок 3.4: Преобразование типов разными способами

Определение функций.

Рисунок 3.5: Определение функций разными способами

Определение одномерных массивов (вектор-строка и вектор-столбец) и обращение к их вторым элементам.

```
In [12]: a = [4 7 6]
b = [1, 2, 3]
a[2], b[2]
Out[12]: (7, 2)
```

Рисунок 3.6: Работа с одномерными массивами

Определение двумерного массива (матрицы) и операции над массивами, включая транспонирование.

```
In [13]: a = 1; b = 2; c = 3; d = 4
Am = [a b; c d]
Out[13]: 2×2 Matrix{Int64}:
    1    2
    3    4

In [14]: aa = [1 2]
    AA = [1 2; 3 4]
    aa*AA*aa*
Out[14]: 1×1 Matrix{Int64}:
    27
```

Рисунок 3.7: Работа с двумерными массивами

3.3 Задания для самостоятельной работы

3.3.1 Задание 1

Изучите документацию по основным функциям Julia для чтения / записи / вывода информации на экран: read(), readline(), readlines(), readdlm(), print(), println(), show(),

write(). Приведите свои примеры их использования, поясняя особенности их применения.

Фрагмент документации по функции read.

```
In [15]: ?read()
Out[15]: read(io::IO, T)
Read a single value of type T from io , in canonical binary representation.
Note that Julia does not convert the endianness for you. Use ntoh or ltoh for this purpose.
read(io::IO, String)
Read the entirely of io , as a String (see also readchomp).

Examples
julia> io = IOBuffer("Juliatang is a GitHub organization");
julia> read(io, Char)
'J': ASCII/Unicode U+004A (category Lu: Letter, uppercase)
julia> io = IOBuffer("Juliatang is a GitHub organization");
julia> read(io, String)
"Juliatang is a GitHub organization"
```

Рисунок 3.8: Фрагмент документации по функции read

Применение функций read, readline, readdlm.

```
In [16]: read("file.txt")
Out[16]: 17-element Vector(UInt8):
          ex61
          0x62
          0x63
          ex2c
          0x20
          ex64
          6x65
          0x66
          6x9a
          ex67
          6x68
          ex69
          ex2c
          6x26
          6x6a
          6x6p
          0x6c
         readline("file.txt")
In [17]:
Out[17]:
         "abc, def"
         using DelimitedFiles
In [18]:
         readdlm("file.txt", ',')
Out[18]: 2×2 Matrix{Any}:
           "abc" " def"
          "ghi" " jkl"
```

Рисунок 3.9: Применение функций read, readline, readdlm

Применение функций print, println, show, write.

Рисунок 3.10: Применение функций print, println, show, write

3.3.2 Задание 2

Изучите документацию по функции parse(). Приведите свои примеры её использования, поясняя особенности её применения.

Документация по функции parse.

```
In [23]: ?parse()
Out[23]: parse(type, str; base)

Parse a string as a number. For Integer types, a base can be specified (the default is 10).
For floating point types, the string is parsed as a decimal floating point number. Complex types are parsed from decimal strings of the form "R±lim" as a Complex(R,I) of the requested type; "i" or "j" can also be used instead of "im", and "R" or "lim" are also permitted. If the string does not contain a valid number, an error is raised.

I!! compat 'Julia 1.1' parse(Bool, str) requires at least Julia 1.1.

Examples
julia> parse(Int, "1234")
1234

julia> parse(Int, "1234", base = 5)
194
```

Рисунок 3.11: Документация по функции parse

Примеры использования.

```
In [24]: parse(Int, "4153", base = 6)
Out[24]: 933
In [25]: parse(Bool, "1")
Out[25]: true
```

Рисунок 3.12: Примеры использования

3.3.3 Задание 3

Изучите синтаксис Julia для базовых математических операций с разным типом переменных: сложение, вычитание, умножение, деление, возведение в степень, извлечение корня, сравнение, логические операции. Приведите свои примеры с пояснениями по особенностям их применения.

Арифметические операции.

```
In [26]: 1 + 1
Out[26]: 2
In [29]: "hello" * " goodbye"
Out[29]: "hello goodbye"
In [31]: 5 - (-9)
Out[31]: 14
In [32]: 45 * 666.0
Out[32]: 29970.0
In [33]: 6 / 2
Out[33]: 3.0
In [34]: 5^7
Out[34]: 78125
```

Рисунок 3.13: Арифметические операции

```
In [35]: sqrt(81)
Out[35]: 9.0
In [36]: 81^0.5
Out[36]: 9.0
In [39]: 57 > 9
Out[39]: true
In [38]: 99 == 99
Out[38]: true
In [40]: (75 == 75) && (0 != 1) || !(true == false)
Out[40]: true
```

Рисунок 3.14: Арифметические операции (продолжение)

3.3.4 Задание 4

Приведите несколько своих примеров с пояснениями с операциями над матрицами и векторами: сложение, вычитание, скалярное произведение, транспонирование, умножение на скаляр.

Операции над матрицами.

Рисунок 3.15: Операции над матрицами

Рисунок 3.16: Операции над матрицами (продолжение)

4 Выводы

Было подготовлено рабочее пространство и инструментарий для работы с языком программирования Julia, а также на простейших примерах было произведено ознакомление с основами синтаксиса Julia.

Список литературы

- [1] Julia Language Documentation. *Julia 1.5 Documentation*. 2020. URL: https://docs.julia lang.org/en/v1/.
- [2] H. Klok and Y. Nazarathy. Statistics with Julia: Fundamentals for Data Science, Machine Learning and Artificial Intelligence. 2020. URL: https://statisticswithjulia.org/.
- [3] G. Ökten. First Semester in Numerical Analysis with Julia. Florida State University, 2019. DOI: 10.33009/jul.
- [4] В. А. Антонюк. Язык Julia как инструмент исследователя. Физический факультет МГУ им. М. В. Ломоносова, 2019.
- [5] А. В. Шиндин. Язык программирования математических вычислений Julia. Базовое руководство. Нижегородский госуниверситет, 2016.