Department: Computers Eng. And A.I.

Subject: System Programming

Spec.: 4th computers

Term: First A/C Year: 2023 -2024

Practical Projects

Project #1 Compiler

Objective:

Design and implement a simulator to a Compiler module that simulate the Compiler job in the following two phases Using VC++, C#, Java, or any other computer programming language:

- Assume the lexical and syntax analysis phases for a part of c-language code(<u>variable declaration</u>, <u>Arithmetic</u> <u>Expression</u>, <u>and if ... statement</u>).
- You have to write the CFG that represent a C-language code (variable declaration, Arithmetic Expression, and if ... statement)
- 1- Lexical analyzer (scanner phase)

Input: program text (file)

Output: sequence of tokens / Symbol Table

2- Syntax analyzer (parser phase using **Left Most Derivation** Method).

Input: input string (stream of tokens that output from scanner phase) and the CFG for (variable declaration, Arithmetic Expression, and if ... statement)

Output : steps of <u>LMD</u> to show if the input string is legal or illegal using the CFG

- 1. All your source files and executable file.
- 2. A report in which you discuss the details important to your solution.
- 3. Test inputs and outputs should also be appended to your report.

Department: Computers Eng. And A.I.

Subject: System Programming

Spec.: 4th computers

Term: First A/C Year: 2023 -2024

Practical Projects

Project #2 Compiler

Objective:

Design and implement a simulator to a Compiler module that simulate the Compiler job in the following two phases Using VC++, C#, Java, or any other computer programming language:

- Assume the lexical and syntax analysis phases for a part of c-language code(<u>variable declaration</u>, <u>Arithmetic</u> <u>Expression</u>, <u>and if ... statement</u>).
- You have to write the CFG that represent a C-language code (<u>variable declaration</u>, <u>Arithmetic Expression</u>, <u>and if ... statement</u>)
- 1- Lexical analyzer (scanner phase)

Input: program text (file)
Output: sequence of tokens

2- Syntax analyzer (parser phase using **<u>Right Most Derivation</u>** Method)

Input: input string (stream of tokens that output from scanner phase) and the CFG for (<u>variable declaration</u>, <u>Arithmetic Expression</u>, <u>and if ... statement</u>)

Output : steps of $\underline{\mathbf{RMD}}$ to show if the input string is legal or illegal using the CFG

- 1. All your source files and executable file.
- 2. A report in which you discuss the details important to your solution.
- 3. Test inputs and outputs should also be appended to your report.

Department: Computers Eng. And A.I.

Subject: System Programming

Spec.: 4th computers Term: First

A/C Year: 2023 -2024

Practical Projects

Project #3 Compiler

Objective:

Design and implement a simulator to a Compiler module that simulate the Compiler job in the following two phases Using VC++, C#, Java, or any other computer programming language:

- Assume the lexical and syntax analysis phases for a part of c-language code(<u>variable declaration</u>, <u>Arithmetic</u> <u>Expression</u>, <u>and if ... statement</u>).
- You have to write the CFG that represent a C-language code (variable declaration, Arithmetic Expression, and if ... statement)
- 1- Lexical analyzer (scanner phase)

Input: program text (file)
Output: sequence of tokens

2- Syntax analyzer (parser phase using **Parse Tree** Method)

Input: input string (stream of tokens that output from scanner phase) and the CFG for (<u>variable declaration</u>, <u>Arithmetic</u> Expression, and if ... statement)

Output: steps to draw <u>parse tree</u> to show if the input string is legal or illegal using the CFG

- 1. All your source files and executable file.
- 2. A report in which you discuss the details important to your solution.
- 3. Test inputs and outputs should also be appended to your report.

Department: Computers Eng. And A.I.

Subject: System Programming

Spec.: 4th computers Term: First

A/C Year: 2023 -2024

Practical Projects

Project #4 Compiler

Objective:

Design and implement a simulator to a Compiler module that simulate the Compiler job in the following two phases Using VC++, C#, Java, or any other computer programming language:

- Assume the lexical and syntax analysis phases for a part of c-language code(<u>variable declaration</u>, <u>Arithmetic</u> <u>Expression</u>, <u>and if ... statement</u>).
- You have to write the CFG that represent a C-language code (variable declaration, Arithmetic Expression, and if ... statement)
- 1- Lexical analyzer (scanner phase)

Input: program text (file)
Output: sequence of tokens

2- Syntax analyzer (parser phase using **Top Down (LL) parser** Method)

Input: input string (stream of tokens that output from scanner phase) and the CFG for (<u>variable declaration</u>, <u>Arithmetic Expression</u>, <u>and if ... statement</u>)

Output: steps of <u>LL parser</u> to show if the input string is legal or illegal using the CFG

- 1. All your source files and executable file.
- 2. A report in which you discuss the details important to your solution.
- 3. Test inputs and outputs should also be appended to your report.

Department: Computers Eng. And A.I.

Subject: System Programming

Spec.: 4th computers Term: First

A/C Year: 2023 -2024

Practical Projects

Project #5 Compiler

Objective:

Design and implement a simulator to a Compiler module that simulate the Compiler job in the following two phases Using VC++, C#, Java, or any other computer programming language:

- Assume the lexical and syntax analysis phases for a part of c-language code(<u>variable declaration</u>, <u>Arithmetic</u> <u>Expression</u>, <u>and if ... statement</u>).
- You have to write the CFG that represent a C-language code (variable declaration, Arithmetic Expression, and if ... statement)
- 1- Lexical analyzer (scanner phase)

Input: program text (file)
Output: sequence of tokens

2- Syntax analyzer (parser phase using **Bottom Up (LR) parser** Method)

Input: input string (stream of tokens that output from scanner phase) and the CFG for (variable declaration, Arithmetic Expression, and if ... statement)

Output: steps of <u>LR parser</u> to show if the input string is legal or illegal using the CFG

- 1. All your source files and executable file.
- 2. A report in which you discuss the details important to your solution.
- 3. Test inputs and outputs should also be appended to your report.

Department: Computers Eng. And A.I.

Subject: System Programming

Spec.: 4th computers Term: First

A/C Year: 2023 -2024

Practical Projects

Project #6 Compiler

Objective:

Design and implement a simulator to a Compiler module that simulate the Compiler job in the following two phases Using VC++, C#, Java, or any other computer programming language:

- Assume the lexical and syntax analysis phases for a part of c-language code(<u>variable declaration</u>, <u>Arithmetic</u> <u>Expression</u>, <u>and for... statement</u>).
- You have to write the CFG that represent a C-language code (<u>variable declaration</u>, <u>Arithmetic Expression</u>, <u>and for ... statement</u>)
- 1- Lexical analyzer (scanner phase)

Input : program text (file)
Output : sequence of tokens

2- Syntax analyzer (parser phase using **Left Most Derivation** Method)

Input: input string (stream of tokens that output from scanner phase) and the CFG for (<u>variable declaration</u>, <u>Arithmetic</u> Expression, and for ... statement)

Output: steps of <u>LMD</u> to show if the input string is legal or illegal using the CFG

- 1. All your source files and executable file.
- 2. A report in which you discuss the details important to your solution.
- 3. Test inputs and outputs should also be appended to your report.

Department: Computers Eng. And A.I.

Subject: System Programming

Spec.: 4th computers Term: First

A/C Year: 2023 -2024

Practical Projects

Project #7 Compiler

Objective:

Design and implement a simulator to a Compiler module that simulate the Compiler job in the following two phases Using VC++, C#, Java, or any other computer programming language:

- Assume the lexical and syntax analysis phases for a part of c-language code(<u>variable declaration</u>, <u>Arithmetic</u> <u>Expression</u>, <u>and for... statement</u>).
- You have to write the CFG that represent a C-language code (variable declaration, Arithmetic Expression, and for ... statement)
- 1- Lexical analyzer (scanner phase)

Input: program text (file)
Output: sequence of tokens

2- Syntax analyzer (parser phase using **Right Most Derivation** Method)

Input: input string (stream of tokens that output from scanner phase) and the CFG for (variable declaration, Arithmetic Expression, and for ... statement)

Output: steps of **RMD** to show if the input string is legal or illegal using the CFG

- 1. All your source files and executable file.
- 2. A report in which you discuss the details important to your solution.
- 3. Test inputs and outputs should also be appended to your report.

Department: Computers Eng. And A.I.

Subject: System Programming

Spec.: 4th computers Term: First

A/C Year: 2023 -2024

Practical Projects

Project #8 Compiler

Objective:

Design and implement a simulator to a Compiler module that simulate the Compiler job in the following two phases of Using VC++, C#, Java, or any other computer programming language:

- Assume the lexical and syntax analysis phases for a part of c-language code(<u>variable declaration</u>, <u>Arithmetic</u> <u>Expression</u>, <u>and for... statement</u>).
- You have to write the CFG that represent a C-language code (<u>variable declaration</u>, <u>Arithmetic Expression</u>, <u>and for ... statement</u>)
- 1- Lexical analyzer (scanner phase)

Input: program text (file)
Output: sequence of tokens

2- Syntax analyzer (parser phase using **Parse Tree** Method)

Input: input string (stream of tokens that output from scanner phase) and the CFG for (<u>variable declaration</u>, <u>Arithmetic Expression</u>, <u>and for ... statement</u>)

Output : steps to draw <u>parse tree</u> to show if the input string is legal or illegal using the CFG

- 1. All your source files and executable file.
- 2. A report in which you discuss the details important to your solution.
- 3. Test inputs and outputs should also be appended to your report.

Department: Computers Eng. And A.I.

Subject: System Programming

Spec.: 4th computers Term: First

A/C Year: 2023 -2024

Practical Projects

Project #9 Compiler

Objective:

Design and implement a simulator to a Compiler module that simulate the Compiler job in the following two phases Using VC++, C#, Java, or any other computer programming language:

- Assume the lexical and syntax analysis phases for a part of c-language code(<u>variable declaration</u>, <u>Arithmetic</u> <u>Expression</u>, <u>and for... statement</u>).
- You have to write the CFG that represent a C-language code (variable declaration, Arithmetic Expression, and for ... statement)
- 1- Lexical analyzer (scanner phase)

Input: program text (file)
Output: sequence of tokens

2- Syntax analyzer (parser phase using **Top Down (LL) parser** Method)

Input: input string (stream of tokens that output from scanner phase) and the CFG for (<u>variable declaration</u>,

<u>Arithmetic Expression</u>, and for ... statement)

Output: steps of <u>LLparser</u> to show if the input string is legal or illegal using the CFG

- 1. All your source files and executable file.
- 2. A report in which you discuss the details important to your solution.
- 3. Test inputs and outputs should also be appended to your report.

Department: Computers Eng. And A.I.

Subject: System Programming

Spec.: 4th computers Term: First

A/C Year: 2023 -2024

Practical Projects

Project #10 Compiler

Objective:

Design and implement a simulator to a Compiler module that simulate the Compiler job in the following two phases Using VC++, C#, Java, or any other computer programming language:

- Assume the lexical and syntax analysis phases for a part of c-language code(<u>variable declaration</u>, <u>Arithmetic</u> <u>Expression</u>, <u>and for... statement</u>).
- You have to write the CFG that represent a C-language code (variable declaration, Arithmetic Expression, and for ... statement)
- 1- Lexical analyzer (scanner phase)

Input: program text (file)
Output: sequence of tokens

2- Syntax analyzer (parser phase using **Bottom Up (LR) parser** Method)

Input: input string (stream of tokens that output from scanner phase) and the CFG for (<u>variable declaration</u>, <u>Arithmetic Expression</u>, <u>and for ... statement</u>)

Output: steps of <u>LR parser</u> to show if the input string is legal or illegal using the CFG

- 1. All your source files and executable file.
- 2. A report in which you discuss the details important to your solution.
- 3. Test inputs and outputs should also be appended to your report.

Department: Computers Eng. And A.I.

Subject: System Programming

Spec.: 4th computers Term: First

A/C Year: 2023 -2024

Practical Projects

Project #11 Compiler

Objective:

Design and implement a simulator to a Compiler module that simulate the Compiler job in the following two phases Using VC++, C#, Java, or any other computer programming language:

- Assume the lexical and syntax analysis phases for a part of c-language code(<u>variable declaration</u>, <u>Arithmetic</u> <u>Expression</u>, <u>and whilestatement</u>).
- You have to write the CFG that represent a C-language code (<u>variable declaration</u>, <u>Arithmetic Expression</u>, <u>and whilestatement</u>)
- 1- Lexical analyzer (scanner phase)

Input: program text (file)
Output: sequence of tokens

2- Syntax analyzer (parser phase using **Left Most derivation** Method)

Input: input string (stream of tokens that output from scanner phase) and the CFG for (variable declaration, Arithmetic Expression, and whilestatement)

Output: steps of <u>LMD</u> to show if the input string is legal or illegal using the CFG

- 1. All your source files and executable file.
- 2. A report in which you discuss the details important to your solution.
- 3. Test inputs and outputs should also be appended to your report.

Department: Computers Eng. And A.I.

Subject: System Programming

Spec.: 4th computers Term: First

A/C Year: 2023 -2024

Practical Projects

Project #12 Compiler

Objective:

Design and implement a simulator to a Compiler module that simulate the Compiler job in the following two phases Using VC++, C#, Java, or any other computer programming language:

- Assume the lexical and syntax analysis phases for a part of c-language code(<u>variable declaration</u>, <u>Arithmetic</u> <u>Expression</u>, <u>and whilestatement</u>).
- You have to write the CFG that represent a C-language code (variable declaration, Arithmetic Expression, and whilestatement)
- 1- Lexical analyzer (scanner phase)

Input: program text (file)
Output: sequence of tokens

2- Syntax analyzer (parser phase using **Right Most Derivation** Method)

Input: input string (stream of tokens that output from scanner phase) and the CFG for (<u>variable declaration</u>, <u>Arithmetic</u> Expression, and whilestatement)

Output : steps of \underline{RMD} to show if the input string is legal or illegal using the CFG

- 1. All your source files and executable file.
- 2. A report in which you discuss the details important to your solution.
- 3. Test inputs and outputs should also be appended to your report.

Department: Computers Eng. And A.I.

Subject: System Programming

Spec.: 4th computers Term: First

A/C Year: 2023 -2024

Practical Projects

Project #13 Compiler

Objective:

Design and implement a simulator to a Compiler module that simulate the Compiler job in the following two phases Using VC++, C#, Java, or any other computer programming language:

- Assume the lexical and syntax analysis phases for a part of c-language code(<u>variable declaration</u>, <u>Arithmetic</u> <u>Expression</u>, <u>and while</u>....statement).
- You have to write the CFG that represent a C-language code (<u>variable declaration</u>, <u>Arithmetic Expression</u>, and <u>whilestatement</u>)
- 1- Lexical analyzer (scanner phase)

Input : program text (file)
Output : sequence of tokens

2- Syntax analyzer (parser phase using **parse tree Method**)

Input: input string (stream of tokens that output from scanner phase) and the CFG for (variable declaration, Arithmetic Expression, and whilestatement)

Output: steps to draw <u>parse tree</u> to show if the input string is legal or illegal using the CFG

- 1. All your source files and executable file.
- 2. A report in which you discuss the details important to your solution.
- 3. Test inputs and outputs should also be appended to your report.

Department: Computers Eng. And A.I.

Subject: System Programming

Spec.: 4th computers Term: First

A/C Year: 2023 -2024

Practical Projects

Project #14 Compiler

Objective:

Design and implement a simulator to a Compiler module that simulate the Compiler job in the following two phases Using VC++, C#, Java, or any other computer programming language:

- Assume the lexical and syntax analysis phases for a part of c-language code(<u>variable declaration</u>, <u>Arithmetic</u> <u>Expression</u>, <u>and while</u>statement).
- You have to write the CFG that represent a C-language code (variable declaration, Arithmetic Expression, and whilestatement)
- 1- Lexical analyzer (scanner phase)

Input: program text (file)
Output: sequence of tokens

2- Syntax analyzer (parser phase using **Top down (LL) parser** Method)

Input: input string (stream of tokens that output from scanner phase) and the CFG for (variable declaration, Arithmetic Expression, and whilestatement)

Output: steps of <u>LL parser</u> to show if the input string is legal or illegal using the CFG

- 1. All your source files and executable file.
- 2. A report in which you discuss the details important to your solution.
- 3. Test inputs and outputs should also be appended to your report.

Department: Computers Eng. And A.I.

Subject: System Programming

Spec.: 4th computers

Term: First A/C Year: 2023 -2024

Practical Projects

Project #15 Compiler

Objective:

Design and implement a simulator to a Compiler module that simulate the Compiler job in the following two phases Using VC++, C#, Java, or any other computer programming language:

- Assume the lexical and syntax analysis phases for a part of c-language code (<u>variable declaration</u>, <u>Arithmetic</u> <u>Expression</u>, <u>and whilestatement</u>).
- You have to write the CFG that represent a C-language code (variable declaration, Arithmetic Expression, and whilestatement)
- 1- Lexical analyzer (scanner phase)

Input: program text (file)
Output: sequence of tokens

2- Syntax analyzer (parser phase using **Bottom Up (LR) parser** Method)

Input: input string (stream of tokens that output from scanner phase) and the CFG for (<u>variable declaration</u>, <u>Arithmetic Expression</u>, <u>and whilestatement</u>)

Output: steps of <u>LR parser</u> to show if the input string is legal or illegal using the CFG

- 1. All your source files and executable file.
- 2. A report in which you discuss the details important to your solution.
- 3. Test inputs and outputs should also be appended to your report.

Department: Computers Eng. And A.I.

Subject: System Programming

Spec.: 4th computers

Term: First A/C Year: 2023 -2024

Practical Projects

Project #16 Compiler

Objective:

Design and implement a simulator to a Compiler module that simulate the Compiler job in the following two phases Using VC++, C#, Java, or any other computer programming language:

- Assume the lexical and syntax analysis phases for a part of c-language code(<u>variable declaration</u>, <u>Arithmetic</u> <u>Expression</u>, <u>and Do ...whilestatement</u>).
- You have to write the CFG that represent a C-language code (variable declaration, Arithmetic Expression, and Do ...whilestatement)
- 1- Lexical analyzer (scanner phase)

Input: program text (file)
Output: sequence of tokens

2- Syntax analyzer (parser phase using **Left Most Derivation** Method)

Input: input string (stream of tokens that output from scanner phase) and the CFG for (<u>variable declaration</u>, <u>Arithmetic Expression</u>, and <u>Do ...whilestatement</u>)

Output: steps of <u>LMD parser</u> to show if the input string is legal or illegal using the CFG

- 1. All your source files and executable file.
- 2. A report in which you discuss the details important to your solution.
- 3. Test inputs and outputs should also be appended to your report.

Department: Computers Eng. And A.I.

Subject: System Programming

Spec.: 4th computers

Term: First A/C Year: 2023 -2024

Practical Projects

Project #17 Compiler

Objective:

Design and implement a simulator to a Compiler module that simulate the Compiler job in the following two phases Using VC++, C#, Java, or any other computer programming language:

- Assume the lexical and syntax analysis phases for a part of c-language code(<u>variable declaration</u>, <u>Arithmetic</u> <u>Expression</u>, <u>and Do ...whilestatement</u>).
- You have to write the CFG that represent a C-language code (variable declaration, Arithmetic Expression, and Do ...whilestatement)
- 1- Lexical analyzer (scanner phase)

Input : program text (file)
Output : sequence of tokens

2- Syntax analyzer (parser phase using **Right most derivation** Method)

Input: input string (stream of tokens that output from scanner phase) and the CFG for (<u>variable declaration, Arithmetic Expression, and Do ...whilestatement</u>)

Output: steps of **RMD** to show if the input string is legal or illegal using the CFG

- 1. All your source files and executable file.
- 2. A report in which you discuss the details important to your solution.
- 3. Test inputs and outputs should also be appended to your report.

Department: Computers Eng. And A.I.

Subject: System Programming

Spec.: 4th computers Term: First

A/C Year: 2023 -2024

Practical Projects

Project #18 Compiler

Objective:

Design and implement a simulator to a Compiler module that simulate the Compiler job in the following two phases Using VC++, C#, Java, or any other computer programming language:

- Assume the lexical and syntax analysis phases for a part of c-language code(<u>variable declaration</u>, <u>Arithmetic</u> <u>Expression</u>, <u>and Do ...whilestatement</u>).
- You have to write the CFG that represent a C-language code (variable declaration, Arithmetic Expression, and Do ...whilestatement)
- 1- Lexical analyzer (scanner phase)

Input: program text (file)
Output: sequence of tokens

2- Syntax analyzer (parser phase using **parse tree Method**)

Input: input string (stream of tokens that output from scanner phase) and the CFG for (variable declaration, Arithmetic Expression, and Do ...whilestatement)

Output: steps to draw **parse tree** to show if the input string is legal or illegal using the CFG

- 1. All your source files and executable file.
- 2. A report in which you discuss the details important to your solution.
- 3. Test inputs and outputs should also be appended to your report.

Department: Computers Eng. And A.I.

Subject: System Programming

Spec.: 4th computers Term: First

A/C Year: 2023 -2024

Practical Projects

Project #19 Compiler

Objective:

Design and implement a simulator to a Compiler module that simulate the Compiler job in the following two phases Using VC++, C#, Java, or any other computer programming language:

- Assume the lexical and syntax analysis phases for a part of c-language code(<u>variable declaration</u>, <u>Arithmetic</u> <u>Expression</u>, <u>and Do ...whilestatement</u>).
- You have to write the CFG that represent a C-language code (variable declaration, Arithmetic Expression, and Do ...whilestatement)
- 1- Lexical analyzer (scanner phase)

Input: program text (file)
Output: sequence of tokens

2- Syntax analyzer (parser phase using **Top down (LL) parser** Method)

Input: input string (stream of tokens that output from scanner phase) and the CFG for (variable declaration, Arithmetic Expression, and Do ...whilestatement)

Output: steps of <u>LL parser</u> to show if the input string is legal or illegal using the CFG

- 1. All your source files and executable file.
- 2. A report in which you discuss the details important to your solution.
- 3. Test inputs and outputs should also be appended to your report.

Department: Computers Eng. And A.I.

Subject: System Programming

Spec.: 4th computers

Term: First A/C Year: 2023 -2024

Practical Projects

Project #20 Compiler

Objective:

Design and implement a simulator to a Compiler module that simulate the Compiler job in the following two phases Using VC++, C#, Java, or any other computer programming language:

- Assume the lexical and syntax analysis phases for a part of c-language code (<u>variable declaration</u>, <u>Arithmetic</u> <u>Expression</u>, <u>and Do ...whilestatement</u>).
- You have to write the CFG that represent a C-language code (variable declaration, Arithmetic Expression, and Do ...whilestatement)
- 1- Lexical analyzer (scanner phase)

Input: program text (file)
Output: sequence of tokens

2- Syntax analyzer (parser phase using **Bottom Up (LR) parser** Method)

Input: input string (stream of tokens that output from scanner phase) and the CFG for (variable declaration, Arithmetic Expression, and Do ...whilestatement)

Output: steps of <u>LR parser</u> to show if the input string is legal or illegal using the CFG

- 1. All your source files and executable file.
- 2. A report in which you discuss the details important to your solution.
- 3. Test inputs and outputs should also be appended to your report.

Department: Computers Eng. And A.I.

Subject: System Programming

Spec.: 4th computers Term: First

A/C Year: 2023 -2024

Practical Projects

Project #21 Compiler

Objective:

Design and implement a simulator to a Compiler module that simulate the Compiler job in the following two phases Using VC++, C#, Java, or any other computer programming language:

- Assume the lexical and syntax analysis phases for a part of c-language code(<u>variable declaration</u>, <u>Arithmetic</u> <u>Expression</u>, <u>and switch...casestatement</u>).
- You have to write the CFG that represent a C-language code (variable declaration, Arithmetic Expression, and switch...casestatement)
- 3- Lexical analyzer (scanner phase)

Input : program text (file)
Output : sequence of tokens

4- Syntax analyzer (parser phase using **Left Most Derivation** Method)

Input: input string (stream of tokens that output from scanner phase) and the CFG for (<u>variable declaration</u>, <u>Arithmetic Expression</u>, and <u>switch....casestatement</u>).

Output : steps of <u>LMD parser</u> to show if the input string is legal or illegal using the CFG

- 4. All your source files and executable file.
- 5. A report in which you discuss the details important to your solution.
- 6. Test inputs and outputs should also be appended to your report.

Department: Computers Eng. And A.I.

Subject: System Programming

Spec.: 4th computers

Term: First A/C Year: 2023 -2024

Practical Projects

Project #22 Compiler

Objective:

Design and implement a simulator to a Compiler module that simulate the Compiler job in the following two phases Using VC++, C#, Java, or any other computer programming language:

- Assume the lexical and syntax analysis phases for a part of c-language code(<u>variable declaration</u>, <u>Arithmetic</u> <u>Expression</u>, <u>and switch....casestatement</u>).
- You have to write the CFG that represent a C-language code (variable declaration, Arithmetic Expression, and switch...casestatement)
- 2- Lexical analyzer (scanner phase)

Input : program text (file)
Output : sequence of tokens

3- Syntax analyzer (parser phase using **Right most derivation** Method)

Input: input string (stream of tokens that output from scanner phase) and the CFG for (<u>variable declaration</u>, <u>Arithmetic</u> Expression, and switch....casestatement).

Output: steps of **RMD** to show if the input string is legal or illegal using the CFG

- 4. All your source files and executable file.
- 5. A report in which you discuss the details important to your solution.
- 6. Test inputs and outputs should also be appended to your report.

Department: Computers Eng. And A.I.

Subject: System Programming

Spec.: 4th computers

Term: First A/C Year: 2023 -2024

Practical Projects

Project #23 Compiler

Objective:

Design and implement a simulator to a Compiler module that simulate the Compiler job in the following two phases Using VC++, C#, Java, or any other computer programming language:

- Assume the lexical and syntax analysis phases for a part of c-language code(<u>variable declaration</u>, <u>Arithmetic</u> <u>Expression</u>, <u>and switch...casestatement</u>).
- You have to write the CFG that represent a C-language code (variable declaration, Arithmetic Expression, and switch...casestatement)
- 2- Lexical analyzer (scanner phase)

Input : program text (file)
Output : sequence of tokens

3- Syntax analyzer (parser phase using **parse tree Method**)

Input: input string (stream of tokens that output from scanner phase) and the CFG for (variable declaration, Arithmetic Expression, and switch...casestatement).

Output: steps to draw **parse tree** to show if the input string is legal or illegal using the CFG

- 4. All your source files and executable file.
- 5. A report in which you discuss the details important to your solution.
- 6. Test inputs and outputs should also be appended to your report.

Department: Computers Eng. And A.I.

Subject: System Programming

Spec.: 4th computers

Term: First A/C Year: 2023 -2024

Practical Projects

Project #24 Compiler

Objective:

Design and implement a simulator to a Compiler module that simulate the Compiler job in the following two phases Using VC++, C#, Java, or any other computer programming language:

- Assume the lexical and syntax analysis phases for a part of c-language code(<u>variable declaration</u>, <u>Arithmetic</u> <u>Expression</u>, <u>and switch...casestatement</u>).
- You have to write the CFG that represent a C-language code (<u>variable declaration</u>, <u>Arithmetic Expression</u>, <u>and switch...casestatement</u>)
- 2- Lexical analyzer (scanner phase)

Input: program text (file)
Output: sequence of tokens

3- Syntax analyzer (parser phase using **Top down (LL) parser** Method)

Input: input string (stream of tokens that output from scanner phase) and the CFG for (<u>variable declaration</u>, <u>Arithmetic Expression</u>, <u>and switch...casestatement</u>).

Output: steps of <u>LL parser</u> to show if the input string is legal or illegal using the CFG

- 4. All your source files and executable file.
- 5. A report in which you discuss the details important to your solution.
- 6. Test inputs and outputs should also be appended to your report.

Department: Computers Eng. And A.I.

Subject: System Programming

Spec.: 4th computers

Term: First A/C Year: 2023 -2024

Practical Projects

Project #25 Compiler

Objective:

Design and implement a simulator to a Compiler module that simulate the Compiler job in the following two phases Using VC++, C#, Java, or any other computer programming language:

- Assume the lexical and syntax analysis phases for a part of c-language code (<u>variable declaration</u>, <u>Arithmetic</u> <u>Expression</u>, <u>and switch...casestatement</u>).
- You have to write the CFG that represent a C-language code (variable declaration, Arithmetic Expression, and switch...casestatement)
- 2- Lexical analyzer (scanner phase)

Input: program text (file)
Output: sequence of tokens

3- Syntax analyzer (parser phase using **Bottom Up (LR) parser** Method)

Input: input string (stream of tokens that output from scanner phase) and the CFG for (<u>variable declaration</u>, <u>Arithmetic Expression</u>, and <u>switch...casestatement</u>).

Output: steps of <u>LR parser</u> to show if the input string is legal or illegal using the CFG

- 4. All your source files and executable file.
- 5. A report in which you discuss the details important to your solution.
- 6. Test inputs and outputs should also be appended to your report.

Department: Computers Eng. And A.I.

Subject: System Programming

Spec.: 4th computers Term: First

A/C Year: 2023 -2024

Practical Projects

Project #26

Assembler

Objective:

Design and implement a simulator to an assembler that simulate sub set of an assembler job using VC++ or C# programming language

The program should be able to read an assembly program from a text file and the output will be as follows:

- a) The contents of the **symbol table**, memory map of **data section**, and the memory map of the **code section**. Assume that both Code and Data sections start at offset **0000h**
- b) The **code size and data size** (in Bytes) needed to load and execute the code?

- 1. A CD containing all your source files and executable file.
- 2. A report in which you discuss the details important to your solution.
- 3. Test inputs and outputs should also be appended to your report.

Department: Computers Eng. And A.I.

Subject: System Programming

Spec.: 4th computers

Term: First

A/C Year: 2023 -2024

Project #27

Linker

Objective:

Design and implement a simulator to a Linker module that simulate the Linker job using VC++ or C# programming language.

The program should be able to read the section tables of a set of object files and the output will be as follows:

- a) The Combined Section Table (CST)
- b) The public definition table (PDT)

- 1. A CD containing all your source files and executable file.
- 2. A report in which you discuss the details important to your solution.
- 3. Test inputs and outputs should also be appended to your report.