

IIC1253 — Matemáticas Discretas — 1' 2020

PAUTA TAREA 6

Pregunta 2

Pregunta 2.1

Asuma que $f \in o(g)$ y demostraremos que $f \in O(g)$ y $g \notin O(f)$.

1. $f \in O(g)$. Por definición, para que $f \in O(g)$, se debe cumplir que:

$$\exists c > 0. \exists n_0. \forall n \ge n_0. f(n) \le c \cdot g(n)$$

Dado que $f \in o(g)$, si escogemos c = 1, tenemos que $\exists n_0 . \forall n \geq n_0 . f(n) \leq c \cdot g(n)$ dado que $f \in o(g)$ significa que esto se cumple para todo c. Por lo tanto, vemos que se cumple que $f \in O(g)$.

2. $g \notin O(f)$. Sabemos que $f \in o(g)$, esto es, $\forall c > 0. \exists n_0. \forall n \geq n_0. f(n) \leq c \cdot g(n)$. Para demostrar que $g \notin O(f)$, lo haremos por contradicción. Suponga entonces que $g \in O(f)$, esto es:

$$\exists c' > 0. \exists n'_0. \forall n \geq n'_0. \ g(n) \leq c' \cdot f(n).$$

Sean c' y n_0' los números que cumplen la definición anterior, o sea:

$$\forall n \ge n'_0. \ g(n) \le c' \cdot f(n).$$
 (1)

Como $f \in o(g)$ se tiene que para todo c^* :

$$\exists n_0. \forall n \geq n_0. \ f(n) \leq c^* \cdot g(n).$$

Si escogemos $c^* = 1/(c'+1)$, sabemos que hay un n_0^* tal que $f(n) \le c^* \cdot g(n)$ para todo $n \ge n_0^*$. En particular, $(c'+1)f(n) \le g(n)$ (2). Por último, dado que f(n) > 0 se tiene que $c' \cdot f(n) < (c'+1) \cdot f(n)$ para todo g(n) = 0 (3). Juntando todas las piezas g(n) = 0 (1), g(n) = 0 (2), g(n) = 0 (3) concluimos que para todo g(n) = 0 (3).

$$g(n) \leq c' \cdot f(n) < (c'+1) \cdot f(n) \leq g(n)$$

Como g(n) < g(n) es una contradicción, concluimos que $g \notin O(f)$.

Dado lo anterior el puntaje asignado es el siguiente:

- (4 Puntos) Por tener ambas demostraciones correctas.
- (3 Puntos) Por tener al menos una demostración correcta.
- (**0 Puntos**) En otro caso.

Pregunta 2.2

Sea $p(x) = a_k x^k + \ldots + a_1 x + a_0$ y $\epsilon > 0$. Para demostrar que $p(x) \in o(x^{k+\epsilon})$ tomaremos un c > 0 cualquiera, y demostraremos que existe n_0 , tal que para todo $n > n_0$, se cumple que $p(x) \le c \cdot x^{k+\epsilon}$.

Primero, como n^{ε} es una función creciente (tiende a infinito), sabemos que existe $n_c \in \mathbb{N}$ tal que para todo $n \geq n_c$ se tiene que:

$$\frac{1}{c} \cdot \sum_{i=0}^{k} |a_i| \le n^{\varepsilon}$$

Ahora para todo $n \ge max\{n_c, 1\}$, se deduce que:

$$p(n) = a_k n^k + \dots + a_0 \leq |a_k| n^k + |a_{k-1}| n^{k-1} + \dots + |a_0| \\ \leq |a_k| n^k + |a_{k-1}| n^k + \dots + |a_0| n^k \\ = \sum_{i=0}^k |a_i| \cdot n^k \\ \leq c \cdot n^{\varepsilon} \cdot n^k \\ = c \cdot n^{k+\varepsilon}$$

Como esto se cumple para cualquier c > 0, por lo tanto $p(x) \in o(x^{k+\varepsilon})$.

Dado lo anterior el puntaje asignado es el siguiente:

- (4 Puntos) Por tener la demostración correcta.
- (3 Puntos) Por tener la lógica del procedimiento correcta, pero errores menores.
- (**0 Puntos**) En otro caso.