Знакоположительные ряды. Свойства сходящихся рядов

4.09.24, 18.09.24

Опр. 1. Ряд

Сумма членов бесонечной последовательности $\{a_n\}_{n=1}^{\infty}$ называется рядом и равна пределу последовательности его частичной суммы:

$$a_1 + a_2 + a_3 \dots = \sum_{n=1}^{\infty} U_n = \lim_{n \to \infty} \sum_{k=1}^{n} U_k$$
 (1)

При этом a_n называется **общим членом ряда**

Опр. 2. Остаток ряда r_n - сумма ряда, остающаяся после отбрасывания частичной суммы ряда.

1 Исследование сходимости ряда

Опр. 3.

существует и конечен
$$\lim_{n \to \infty} \sum_{k=1}^n U_k \implies pяд$$
 сходится
$$uначе \implies pяд \ pасходится$$
 (2)

1.1 Признаки сходимости для знакоположительных рядов

Признак 1.1.1. Мажорантный признак

Для рядов $\sum_{n=1}^{\infty}a_n$ и $\sum_{n=1}^{\infty}b_n: \forall n: a_n\leq b_n$

$$\sum_{n=1}^{\infty} a_n \ pacxodumcя \implies \sum_{n=1}^{\infty} b_n \ moже \ pacxodumcя$$

$$\sum_{n=1}^{\infty} b_n \ cxodumcя \implies \sum_{n=1}^{\infty} a_n \ moже \ cxodumcя.$$
 (3)

Proof. TODO ■

Признак 1.1.2. Предельный признак

$$\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n : \exists \lim_{n \to \infty} \frac{a_n}{b_n} = L,$$
(4)

Тогда ряды одновременно сходятся или расходятся

Proof. TODO

Признак 1.1.3. Признак Д'Аламбера

Признак 1.1.4. Радикальный признак Коши

Признак 1.1.5. Интегральный признак Коши

Свойства сходящихся рядов

Свойство 1.2.1. Необходимое условие сходимости ряда

$$\sum_{n=1}^{\infty} a_n \operatorname{cxodumcs} \implies \lim_{n \to \infty} a_n = 0$$
 (5)

NB:. свойство не работает в обратную сторону.

Пример - гармонический ряд (расходится):

$$1 + \underbrace{\frac{1}{2}}_{1} + \underbrace{\frac{1}{3} + \frac{1}{4}}_{1} + \underbrace{\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}}_{1} + \dots + \underbrace{\frac{1}{n}}_{n} = S_{n}$$

$$1 + \underbrace{\frac{1}{2}}_{1} + \underbrace{\frac{1}{4}}_{1} + \underbrace{\frac{1}{4}}_{1} + \underbrace{\frac{1}{8}}_{1} + \underbrace{\frac{1}{8}}_{1} + \underbrace{\frac{1}{8}}_{1} + \dots + \underbrace{\frac{1}{n}}_{n} = S_{n}'$$

$$S'_{n} \leq S_{n}$$

$$S'_{1} = 1$$

$$S'_{2} = 1 + \frac{1}{2}$$

$$S'_{4} = 1 + \frac{1}{2} \cdot 2$$

$$S'_{8} = 1 + \frac{1}{2} \cdot 3$$
...
$$S'_{2k} = 1 + \frac{1}{2} \cdot 2^{k} \rightarrow \infty \text{ IDM } k \rightarrow \infty$$

 $S_{2^k}^{'}=1+rac{1}{2}\cdot 2^k
ightarrow\infty$ при $k
ightarrow\infty$

Если сумма $S_n^{'}$ меньшего ряда расходится, то сумма S_n также расходится (по мажорантному признаку). При этом общий член стремится к нулю: $rac{1}{n} o \infty$ при $n o \infty$

Свойство 1.2.2. Достаточное условие расходимости ряда

$$\lim_{n \to \infty} a_n \nrightarrow 0 \implies pяд pасходится$$
 (7)

Proof. Предположим, что сходится. Тогда $\lim_{n \to \infty} a_n = 0$ по св-ву 1.2.1, противоречие

Свойство 1.2.3. Линейность.

- сходящиеся ряды можно почленно складывать, сходимость рез-та не изменится
- при умножении всех членов ряда на число сходимость не меняется (а сумма ряда изменится в это число раз)
- сходимость не меняется для частичной суммы/остатка ряда