Structural Iterative Rounding for Generalized k-Median Problems

Anupam Gupta, Ben Moseley, **Rudy Zhou**Carnegie Mellon

- *k*-Median
 - *C* = set of Clients

- *k*-Median
 - *C* = set of Clients
 - F = set of Facilities

- *k*-Median
 - *C* = set of Clients
 - F = set of Facilities
 - k = # of Facilities to open

- k-Median
 - *C* = set of Clients
 - F = set of Facilities
 - k = # of Facilities to open

Objective:

minimize: $\sum_{j \in C} dist(j, nearest open facil.)$

• Different constraints on Clients and Facilities.

• Different constraints on Clients and Facilities.

Knapsack Median: open k facils. \Rightarrow open facils. satisfy knapsack constraint

Different constraints on Clients and Facilities.

Knapsack Median: open k facils. \Rightarrow open facils. satisfy knapsack constraint

k-Median with Outliers: serve all clients \Rightarrow choose m clients to serve

• Different constraints on Clients and Facilities.

Knapsack Median: open k facils. \Rightarrow open facils. satisfy knapsack constraint

k-Median with Outliers: serve all clients \Rightarrow choose m clients to serve

Best approx. for both is ~ 7 via Iterative Rounding (KLS, 2018)

Ravishankar Krishnaswamy, Shi Li, Sai Sandeep: Constant approximation for k-median and k-means with outliers via iterative rounding. STOC 2018: 646-659

Improving on KLS: Our Results

- Knapsack Median: ∼6.3
- k-Median with Outliers: ~ 6.9
- k -Median with O(1) Side Constraints: ~ 6.3 (pseudo-approx.)

Improving on KLS: Our Results

- Knapsack Median: ~ 6.3
- k-Median with Outliers: ~ 6.9 This Talk
- k -Median with O(1) Side Constraints: ~ 6.3 (pseudo-approx.)

Basic LP: k-Median with Outliers

$$\min \sum_{i \in F, j \in C} d(i, j) x_{ij}$$

$$x_{ij} \le y_i \forall i \in F, j \in C$$

$$\sum_{i \in F} x_{ij} \le 1 \forall j \in C$$

$$\sum_{i \in F, j \in C} x_{ij} \ge m$$

$$\sum_{i \in F} y_i \le k$$

$$0 \le x, y \le 1$$

Basic LP: k-Median with Outliers

$$\min \sum_{i \in F, j \in C} d(i, j) x_{ij}$$

$$x_{ij} \le y_i \quad \forall i \in F, j \in C$$

$$\sum_{i \in F} x_{ij} \le 1 \qquad \forall j \in C$$

$$\sum_{i \in F, j \in C} x_{ij} \ge m$$

$$\sum_{i \in F} y_i \le k$$

$$0 \le x, y \le 1$$

 $x_{ij} \sim \text{connect client } j \text{ to facil. } i$

 $y_i \sim$ open facil. i

Basic LP: k-Median with Outliers

$$\min \sum_{i \in F, j \in C} d(i, j) x_{ij}$$
$$x_{ij} \le y_i \quad \forall i \in F, j \in C$$

$$\sum_{i \in F} x_{ij} \le 1 \qquad \forall j \in C$$

$$\sum_{i \in F, j \in C} x_{ij} \ge m$$

$$\sum_{i \in F} y_i \le k$$

$$0 \le x, y \le 1$$

 $x_{ij} \sim \text{connect client } j \text{ to facil. } i$

 $y_i \sim$ open facil. i

$$\sum_{i \in F} x_{ij} \le 1 \qquad \forall \, j \in C$$

$$\sum_{i \in Ball_j} y_i \le 1 \qquad \forall \, j \in C$$

 $Ball_j = Client j's allowed connections$

$$\min \sum_{j \in C, i \in Ball_j} d(i, j) y_i$$

$$\sum_{i \in Ball_j} y_i \le 1 \qquad \forall j \in C$$

$$\sum_{j \in C, i \in Ball_j} y_i \ge m$$

$$\sum_{i \in F} y_i \le k$$

$$0 \le y \le 1$$

$$\sum_{i \in F} x_{ij} \le 1 \qquad \forall \, j \in \mathcal{C}$$

$$\sum_{i \in Ball_j} y_i \le 1 \qquad \forall j \in C$$

 $Ball_i = Client j's allowed connections$

$$\min \sum_{j \in C, i \in Ball_j} d(i, j) y_i$$

$$\sum_{i \in Ball_j} y_i \le 1 \qquad \forall j \in C$$

$$\sum_{j \in C, i \in Ball_i} y_i \ge m$$

$$\sum_{i \in F} y_i \le k$$

$$0 \le y \le 1$$

Cover m Balls with k open facils.

Want:

1. Solve LP

$$\min \sum_{j \in C, i \in Ball_j} d(i, j) y_i$$

$$\sum_{i \in Ball_j} y_i \le 1 \qquad \forall j \in C$$

$$\sum_{j \in C, i \in Ball_j} y_i \ge m$$

$$\sum_{i \in F} y_i \le k$$

$$0 \le y \le 1$$

Want:

- 1. Solve LP
- 2. Tight constraints are disjoint balls

$$\min \sum_{j \in C, i \in Ball_j} d(i, j) y_i$$

$$\sum_{i \in Ball_j} y_i \le 1 \qquad \forall j \in C$$

$$\sum_{j \in C, i \in Ball_j} y_i \ge m$$

$$\sum_{i \in F} y_i \le k$$

$$0 \le y \le 1$$

Want:

- 1. Solve LP
- 2. Tight constraints are disjoint balls

$$\rightarrow$$

O(1) frac. vars.

$$\min \sum_{j \in C, i \in Ball_j} d(i, j) y_i$$

$$\sum_{i \in Ball_j} y_i \le 1 \qquad \forall j \in C$$

$$\sum_{j \in C, i \in Ball_j} y_i \ge m$$

$$\sum_{i \in F} y_i \le k$$

$$0 \le y \le 1$$

Want:

- 1. Solve LP
- 2. Tight constraints are disjoint balls

$$O(1)$$
 frac. vars.

$$\min \sum_{j \in C, i \in Ball_j} d(i, j) y_i$$

Main Idea: Control tight balls

$$\sum_{i \in Ball_j} y_i \le 1 \qquad \forall j \in C$$

$$\sum_{j \in C, i \in Ball_i} y_i \ge m$$

$$\sum_{i \in F} y_i \le k$$

$$0 \le y \le 1$$

• KLS:

- Desired Structure = disjoint balls
- Modify = if balls intersect ⇒ delete larger radius one

Framework:

- 1. Solve LP
- 2. Modify tight constraints
- 3. Repeat until tight constraints have desired structure

• KLS:

- Desired Structure = disjoint balls
- Modify = if balls intersect ⇒ delete larger radius one

Framework:

- 1. Solve LP
- 2. Modify tight constraints
- 3. Repeat until tight constraints have desired structure

• KLS:

- Desired Structure = disjoint balls
- Modify = if balls intersect ⇒ delete larger radius one

Framework:

- 1. Solve LP
- 2. Modify tight constraints
- 3. Repeat until tight constraints have desired structure

• KLS:

- Desired Structure = disjoint balls
- Modify = if balls intersect ⇒ delete larger radius one

Framework:

- 1. Solve LP
- 2. Modify tight constraints
- 3. Repeat until tight constraints have desired structure

• KLS:

- Desired Structure = disjoint balls
- Modify = if balls intersect ⇒ delete larger radius one

Framework:

- 1. Solve LP
- **Modify tight constraints**
- 3. Repeat until tight constraints have desired structure

powers of 2

Assume: Radii of balls are distinct

• KLS:

- Desired Structure = disjoint balls
- Modify = if balls intersect ⇒ delete larger radius one

Framework:

- 1. Solve LP
- 2. Modify tight constraints
- 3. Repeat until tight constraints have desired structure

• KLS:

- Desired Structure = disjoint balls
- Modify = if balls intersect ⇒ delete larger radius one

Framework:

- 1. Solve LP
- 2. Modify tight constraints
- 3. Repeat until tight constraints have desired structure

• KLS:

- Desired Structure = disjoint balls
- Modify = if balls intersect ⇒ delete larger radius one

Framework:

- 1. Solve LP
- 2. Modify tight constraints
- 3. Repeat until tight constraints have desired structure

Assume: Radii of balls are distinct powers of 2

Extra dist. halves at each step

$$\Rightarrow cost = O(1) rad$$

• KLS:

- Desired Structure = disjoint balls
- Modify = if balls intersect ⇒ delete larger radius one

Framework:

- 1. Solve LP
- 2. Modify tight constraints
- 3. Repeat until tight constraints have desired structure

Assume: Radii of balls are distinct powers of 2

Extra dist. halves at each step

$$\Rightarrow cost = O(1) rad$$

Assume: Client connection cost = rad

Our Improvement:

- Desired Structure = two sets of disjoint balls
- Modify = if 3 balls intersect ⇒ delete largest radius one

Framework:

- 1. Solve LP
- 2. Modify tight constraints
- 3. Repeat until tight constraints have desired structure

Our Improvement:

- Desired Structure = two sets of disjoint balls
- Modify = if 3 balls intersect ⇒ delete largest radius one

Framework:

- 1. Solve LP
- 2. Modify tight constraints
- 3. Repeat until tight constraints have desired structure

Assume: Radii of balls are distinct powers of 2

Extra dist. quarters at each step

Technical Challenges

• Extra dist. halves ⇒ Extra dist. quarters (Improved approx. ratio)

Technical Challenges

- Extra dist. halves ⇒ Extra dist. quarters (Improved approx. ratio)
- One set of disjoint balls ⇒ two sets of disjoint balls (Unbounded # of frac. vars.)

Technical Challenges

• Extra dist. halves ⇒ Extra dist. quarters (Improved approx. ratio)

One set of disjoint balls ⇒ two sets of disjoint balls (Unbounded # of

frac. vars.)

Remains: Reduce frac. vars. to O(1)

Technical Challenges

• Extra dist. halves ⇒ Extra dist. quarters (Improved approx. ratio)

One set of disjoint balls ⇒ two sets of disjoint balls (Unbounded # of

frac. vars.)

Remains: Reduce frac. vars. to O(1)

Main Technique: Show that extreme points are highly-structured; use structure to further modify balls

Structure of Extreme Points

Theorem (Informal): The two sets of disjoint balls form O(1) disjoint 'chains' (chain decomposition)

Structure of Extreme Points

Theorem (Informal): The two sets of disjoint balls form O(1) disjoint 'chains' (chain decomposition)

Use chains to modify balls

- 1. Solve LP
- 2. Modify tight constraints
- 3. Repeat until tight constraints have desired structure

- 1. Solve LP
- 2. Modify tight constraints
- 3. Repeat until tight constraints have desired structure

- 1. Solve LP
- 2. Modify tight constraints
- 3. Repeat until tight constraints have desired structure
 - ⇒ chain decomposition

- 1. Solve LP
- 2. Modify tight constraints
- 3. Repeat until tight constraints have desired structure
 - ⇒ chain decomposition

Repeat \square Else $\Omega(1)$ frac. vars.

- 1. Solve LP
- 2. Modify tight constraints
- Repeat until tight constraints have desired structure
 - ⇒ chain decomposition

Using Chain Decompositions

• $\Omega(1)$ frac. vars. \Rightarrow some chain is long

Using Chain Decompositions

• $\Omega(1)$ frac. vars. \Rightarrow some chain is long

• ⇒ delete ball in middle with larger radius

Repeat $oxed{\mathsf{Else}\ \Omega(1)\ \mathsf{frac.}\ \mathsf{vars.}}$

Framework:

- 1. Solve LP
- 2. Modify tight constraints
- 3. Repeat until tight constraints have desired structure
 - ⇒ chain decomposition

To do: modify tight constraints in chain decomposition

• Quarter-steps:

Half-steps: ...

• Quarter-steps:

KLS: only half-steps

Half-steps: ...

• Quarter-steps:

KLS: only half-steps

Half-steps: ...

KLS: only half-steps

• Quarter-steps:

Half-steps: ...

• Quarter-steps:

KLS: only half-steps

Half-steps: ...

• Quarter-steps:

KLS: only half-steps

Half-steps: ...

• Quarter-steps:

KLS: only half-steps

Half-steps: ..

• Quarter-steps:

KLS: only half-steps

Half-steps: ...

 Improve approx. ratio of KLS by allowing richer sets of tight constraints

- Improve approx. ratio of KLS by allowing richer sets of tight constraints
 - Knapsack Median: $\sim 7 \Rightarrow \sim 6.3$
 - k-Median with Outliers: $\sim 7 \Rightarrow \sim 6.9$

- Improve approx. ratio of KLS by allowing richer sets of tight constraints
 - Knapsack Median: $\sim 7 \Rightarrow \sim 6.3$
 - k-Median with Outliers: $\sim 7 \Rightarrow \sim 6.9$
- Leverage 'chain decomposition' of extreme points to turn unbounded # of frac. vars. into O(1)-many.

- Improve approx. ratio of KLS by allowing richer sets of tight constraints
 - Knapsack Median: $\sim 7 \Rightarrow \sim 6.3$
 - k-Median with Outliers: $\sim 7 \Rightarrow \sim 6.9$
- Leverage 'chain decomposition' of extreme points to turn unbounded # of frac. vars. into O(1)-many.

Open Questions:

- Can we allow even richer sets of tight constraints?
- Can we approximate k-Median with other side constraints? O(1)-many knapsack/coverage constraints?