Nonholonomic Vehicle Routing and the Dubins TSP

RSS Workshop on Robotic Sensor Networks Atlanta, Georgia, June 2007

Francesco Bullo

Department of Mechanical Engineering Center for Control, Dynamical Sys. and Comp. University of California, Santa Barbara

Acknowledgements: Ketan Savla, Emilio Frazzoli (MIT)

Emergent Unmanned Aerial Vehicle (UAV) technology

Advantages

- surveillance
- data acquisition
- communication relays
- disaster and emergency management

Key scientific challenges

- scalability in performance and robustness
- sensor models and dynamics
- how to integrate control, sensing, communication

Vehicle Routing

Service dynamically arriving targets via target assignment + path planning

vehicle routing by Frazzoli and Bullo, 2004

Vehicle Routing

Service dynamically arriving targets via target assignment + path planning

vehicle routing by Frazzoli and Bullo, 2004

Problem setup: Dynamic Traveling Repairperson Problem (DTRP)

- m vehicles with unit speed single integrator or Dubins nonholonomic
- random targets with time intensity: $\lambda > 0$ spatial density: uniform

Objective: a stabilizing policy with minimum system time

Key requirement for stability

Suppse n=# outstanding targets:

$$\frac{\lambda}{\text{target generation rate}} - \underbrace{\frac{n}{\text{TSPlength(n)}}}_{\text{target service rate}} = \text{target growth rate}$$

If $\mathsf{TSPlength}(n)$ depends on n strictly sub-linearly, then growth rate becomes negative

Euclidean TSP and Dubins TSP

Euclidean TSP (ETSP)

- NP-hard
- effective heuristics available
- length(ETSP) $\in O(\sqrt{n})$ (Supowit et. al. '83)

Dubins TSP (DTSP)

Given a set of points find the shortest tour with bounded curvature

- not a finite dimensional problem
- no prior algorithms or results
- length(DTSP) sub-linear in n ?

Stochastic DTSP

Problem Statement

Given a set of n independently and uniformly distributed points, design algorithms with smallest expected DTSP tour length

Lower bound

For n iid uniformly distributed points:

$$E[DTSP] \in \Omega(n^{2/3})$$

Bead Tiling of the plane

 $\rho \colon$ minimum turning radius, $\ell \colon$ length

Key properties of the bead

- Beads tile the plane
- Approaching and leaving a bead horizontally, Dubins can service a target anywhere in the bead (while remaining inside it)

Recursive Bead Tiling Algorithm (RecBTA)

Pick ℓ so that #beads = n

Recursive Bead Tiling Algorithm (RecBTA)

Pick ℓ so that # beads = n

Analysis of RecBTA

- **1** path length to execute all phases of RecBTA $\in O(n^{2/3})$
- ② # targets remaining after all phases $\in O(\log n)$ with high probability (occupancy problem, stochastic analysis)
- Mence, RecBTA is an asymptotic constant factor approximation whp

DTRP algorithms

Single vehicle case

BEAD TILING ALGORITHM (BTA)

- 1: Tile with appropriate resolution
- 2: Traverse all non-empty beads once, visiting one target per bead
- 3: Repeat step 2

Multiple vehicle case

STRIP TILING ALGORITHM (STA)

- 1: Divide the plane into m equal strips along the height
- 2: Each vehicle executes BEAD TILING $\operatorname{ALGORITHM}$ in its strip

Summary of prior and novel results

	Simple vehicle	Double integrator	Dubins vehicle
Length of	$\Theta(n^{\frac{1}{2}})$	$\Omega(n^{\frac{1}{2}})$	$\Theta(n)$
TSP tour		$O(n^{\frac{3}{4}})$	
(worst-case)			
Exp. Length of	$\Theta(n^{\frac{1}{2}})$	$\Theta(n^{\frac{2}{3}})$	$\Theta(n^{\frac{2}{3}})$
TSP tour		w.h.p.	w.h.p.
(stochastic)			
System time	$\Theta(\frac{\lambda}{m^2})$	$\Theta(\frac{\lambda^2}{m^3})$	$\Theta(\frac{\lambda^2}{m^3})$
for DTRP			

The upper bounds are constructive

References

- K. Savla, E. Frazzoli, and F. Bullo. On the point-to-point and traveling salesperson problems for Dubins' vehicle. In American Control Conference, pages 786–791, Portland, OR, June 2005
- K. Savla, E. Frazzoli, and F. Bullo. Asymptotic constant-factor approximation algorithms for the traveling salesperson problem for Dubins' vehicle, March 2006. Available electronically at http://arxiv.org/abs/cs/0603010
- K. Savla, E. Frazzoli, and F. Bullo. Traveling Salesperson Problems for the Dubins vehicle. IEEE Transactions on Automatic Control, 53(6):1378–1391, 2008
- K. Savla. Multi UAV Systems with Motion and Communication Constraints. PhD thesis, Electrical and Computer Engineering Department, University of California at Santa Barbara, Santa Barbara, August 2007. Available electronically at http://ccdc.mee.ucsb.edu

Emerging discipline: motion-enabled networks

- network modeling
 network, ctrl+comm algorithm, task, complexity
- coordination algorithm
 deployment, task allocation, boundary estimation

Papers available at http://motion.mee.ucsb.edu