Healthy Lifestyle

In [68]: import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

Out[69]:

	Age	Gender	Commitment to healthy lifestyle	Vegetables	Fruits	Millets/ Grains	Junk Foods	Caffeinated beverages	Alcohol	Ph Ex
0	20- 30	2	2	1	2	1	2	3	4	
1	20 - 30	2	2	1	3	1	3	4	4	
2	20 - 30	1	1	1	3	1	1	2	4	
3	20- 30	2	2	1	1	1	3	1	4	
4	20 - 30	1	2	2	2	1	3	1	3	
			***	•••						
386	30 - 40	1	2	1	2	1	3	1	2	
387	30 - 40	1	2	1	3	1	3	1	3	
388	30 - 40	1	2	1	1	1	4	1	4	
389	20 - 30	2	3	1	1	1	3	2	4	
390	20 - 30	1	2	1	2	1	2	1	4	

391 rows × 19 columns

In [70]: print(data.shape)
print(data.info())

(391, 19)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 391 entries, 0 to 390

Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	Age	391 non-null	object
1	Gender	391 non-null	int64
2	Commitment to healthy lifestyle	391 non-null	int64
3	Vegetables	391 non-null	int64
4	Fruits	391 non-null	int64
5	Millets/ Grains	391 non-null	int64
6	Junk Foods	391 non-null	int64
7	Caffeinated beverages	391 non-null	int64
8	Alcohol	391 non-null	int64
9	Physical Exercise	391 non-null	int64
10	Yoga/ Meditation	391 non-null	int64
11	Sleep hours	391 non-null	int64
12	Work hours	391 non-null	int64
1 3	stress level	391 non-null	int64
14	Illness	391 non-null	int64
15	Screen time	391 non-null	int64
16	Self grooming/ Hobbies	391 non-null	int64
17	Socialize	391 non-null	int64
18	Connection with nature	391 non-null	int64

dtypes: int64(18), object(1)
memory usage: 58.2+ KB

None

The independent variables are-

- 1. Age
- 2. Vegetables
- 3. Fruits
- 4. Millets/ Grains
- 5. Junk Foods
- 6. Caffeinated beverages
- 7. Alcohol
- 8. Physical Excercise
- 9. Yoga/Meditation
- 10. Sleep hours
- 11. Work hours
- 12. stress level
- 13. Illness
- 14. Screen time
- 15. Self grooming/Hobbies
- 16. Socialize
- 17. Connection with nature

Data Cleaning

In [71]:

print(data.describe())

In [72]: #Missing Values print(data.isnull().sum())

Age	0				
Gender	0				
Commitment to healthy lifestyle	0				
Vegetables	0				
Fruits	0				
Millets/ Grains	0				
Junk Foods	0				
Caffeinated beverages	0				
Alcohol	0				
Physical Exercise					
Yoga/ Meditation	0				
Sleep hours	0				
Work hours	0				
stress level	0				
Illness	0				
Screen time	0				
Self grooming/ Hobbies					
Socialize					
Connection with nature dtype: int64	0				

5 \		es Fr	uits	Millets/	Grains	Junk	Foods	Caffeinat	ed beverage
s \ 0		1	2		1		2		
3 1		1	3		1		3		
4 2		1	3		1		1		
2 3		1	1		1		3		
1 4		2	2		1		3		
1		•	• • •						
 386		1	2		1		3		
1 387		1	3		1		3		
1 388		1	1		1		4		
1 389		1	1		1		3		
2 390		1	2		1		2		
1									
\	Alcohol	Physi	.cal E	xercise	Yoga/ M	editat	ion Sl	eep hours	Work hours
0	4			1			1	3	3
1	4			1			1	2	1
2	4			1			1	3	1
3 4	4 3			1 1			1 1	2 3	2 1
	3			1			1	3	т
 386	2			4			4	2	4
387	3			4			4	2	2
388	4			4			4	3	4
389	4			4			2	2	2
390	4			1			4	2	3
\	stress le	evel	Illne	ss Scree	n time	Self	groomin	g/ Hobbies	Socialize
ò		2		3	2			2	3
1		3		3	1			1	4
2		2		3	3			2	2
3		2		3	1			1	3
4		2		3	2			1	1
 386		1	•	 3	4			4	1
387		2		2	4			4	4
388		2		3	4			1	4
389		3		2	2			1	4
390		2		2	4			1	1
	Connectio	n wit	h nati	ure					
0	55.11166616	****		1					
1				3					
2				1					
3				3					
4				1					
 386				 2					
٥٥٥				4					

```
      387
      2

      388
      2

      389
      1

      390
      2
```

[391 rows x 16 columns]

```
In [74]: plt.figure(figsize=(12, 6))
    sns.boxplot(data=data)
    plt.xticks(rotation=45) # Rotate x-axis labels for better readability
    plt.title('Boxplot for Outlier Detection')
    plt.xlabel('Variables')
    plt.ylabel('Values')
    plt.show()
```



```
In [75]: from sklearn.preprocessing import StandardScaler
# Initialize StandardScaler

scaler = StandardScaler()

# Fit and transform the ordinal data
ordinal_data_standardized = scaler.fit_transform(data)

# Convert the standardized data back to a DataFrame
ordinal_data_standardized = pd.DataFrame(ordinal_data_standardized, columns:

# Print the standardized ordinal data
print(ordinal_data_standardized)
```

	Vegetables	Fruits	Millets/ Grair	ıs Junk Fo	ods Caffeina	ted bevera	
ges 0	\ -0.451154 @	.406743	-0.51084	7 -0.447	761	1.203	
289 1	-0.451154 1	1.826713	-0.51084	7 0.930	778	2.210	
753 2	-0.451154 1	1.826713	-0.51084	∤7 -1. 826	300	0.195	
824 3	-0.451154 -1	L.013227	-0.51084	17 0.930	778	-0.811	
640 4	1.466250 0	.406743	-0.51084	17 0.930	778	-0.811	
640 ••	•••	• • •			•••		
 386	-0.451154 6	.406743	-0.51084	17 0.930	778	-0.811	
640 387	-0.451154 1	L.826713	-0.51084	17 0.930	778	-0.811	
640 388	-0.451154 -1		-0.51084			-0.811 0.195 -0.811	
640 389	-0.451154 -1		-0.51084				
824 390	-0.451154 6		-0.51084				
640							
s \	-	/sical Exe	ercise Yoga/ N	leditation	Sleep hours	Work hour	
9	0.641938	-0.6	517299	-0.872353	0.806253	0.89431	
1 6	0.641938	-0.6	517299	-0.872353	-0.449703	-1.30490	
2 6	0.641938	-0.6	517299	-0.872353	0.806253	-1.30490	
3	0.641938	-0.6	517299	-0.872353	-0.449703	-0.20529	
8 4 6	-0.907431 -		517299	-0.872353	0.806253	-1.30490	
••	•••		•••		•••		
386 9	-2.456799	1.7	72442	1.190691	-0.449703	1.99391	
_	-0.907431	1.7	72442	1.190691	-0.449703	-0.20529	
-	0.641938	1.7	772442	1.190691	0.806253	1.99391	
389	0.641938	1.7	772442	-0.184672	-0.449703	-0.20529	
8 390	0.641938	-0.6	517299	1.190691	-0.449703	0.89431	
0	strong lovel	Tllmaga	. Camaan tima	Colf anon	mina/ Habbiaa	Contalia	
e \ 0 4 1 2			Screen time	Selt groo	_		
	-0.086303					0.74362	
		0.753296			-0.716407		
2 4	-0.086303				0.156226		
3 4	-0.086303					0.74362	
4	-0.086303	0.753296	-0.471389		-0.716407	-1.05117	

```
2
. .
386
        -1.553452 0.753296
                                  1.353494
                                                            1.901492
                                                                       -1.05117
2
387
        -0.086303 -0.690521
                                  1.353494
                                                            1.901492
                                                                        1.64102
2
388
        -0.086303 0.753296
                                  1.353494
                                                           -0.716407
                                                                        1.64102
2
389
         1.380846 -0.690521
                                 -0.471389
                                                           -0.716407
                                                                        1.64102
2
390
        -0.086303 -0.690521
                                  1.353494
                                                           -0.716407
                                                                      -1.05117
2
     Connection with nature
0
                   -1.186941
1
                    1.608806
2
                   -1.186941
3
                    1.608806
4
                   -1.186941
                    0.210932
386
387
                    0.210932
388
                    0.210932
389
                   -1.186941
390
                    0.210932
```

[391 rows x 16 columns]

```
In [76]: plt.figure(figsize=(12, 6))
    sns.histplot(data=data, x='Alcohol', kde=True, color='blue')
    plt.xlabel('Density', fontsize=12)
    plt.ylabel('Frequency', fontsize=12)
    plt.title('Distribution of Density', fontsize=14)
    plt.show()
```



```
In [79]: from sklearn.decomposition import PCA
import numpy as np
```

```
In [80]: # Calculate similarity matrix (e.g., using rank correlation)
# Here, Spearman's rank correlation is used as an example
similarity_matrix = np.corrcoef(data, rowvar=False)

# Compute eigenvalues and eigenvectors
eigenvalues, eigenvectors = np.linalg.eig(similarity_matrix)

# Print eigenvalues
print("Eigenvalues:", eigenvalues)
```

Eigenvalues: [2.04440097 1.52582626 1.37706209 1.29342654 0.48752547 1.150 91784 0.6093436 1.03233519 0.67029317 0.70895603 0.72929996 0.9777568 0.79882799 0.81491896 0.90609291 0.8730162]

```
In [91]:
         # Standardize the data
         scaler = StandardScaler()
         ordinal_data_standardized = scaler.fit_transform(data)
         # Perform PCA
         pca = PCA()
         pc=pca.fit(data)
         # Get the eigenvalues
         eigenvalues = pca.explained_variance_
         # Plot the scree plot
         plt.figure(figsize=(8, 6))
         plt.plot(range(1, len(eigenvalues) + 1), eigenvalues, marker='o', linestyle
         plt.title('Scree Plot for PCA')
         plt.xlabel('Principal Components')
         plt.ylabel('Eigenvalue')
         plt.grid(True)
         plt.show()
```


Therefore, based on this scree plot, it's reasonable to consider retaining the first 2 or 3 principal components for further analysis.

```
In [105]: pc_transformed = pc.transform(data)
          fig = plt.figure(figsize=(8, 6))
          ax = fig.add_subplot(111, projection='3d')
          # Plot points
          ax.scatter(pc_transformed[:, 0], pc_transformed[:, 1], pc_transformed[:, 2],
          # Plot lines connecting points
          for i in range(len(pc_transformed)):
              ax.plot([0, pc_transformed[i, 0]], [0, pc_transformed[i, 1]], [0, pc_tra
          ax.set_xlabel('Principal Component 1')
          ax.set_ylabel('Principal Component 2')
          ax.set_zlabel('Principal Component 3')
          ax.set_title('Dimension Reduction Plot with Lines for PCA (3 Components)')
          plt.show()
                                                                              3
                                                                                Principal Component
                                                                              2
                                                                              1
                                                                ioal Component
                       Princina
 In [ ]:
```