EGZAMIN WSTĘPNY Z MATEMATYKI

Egzamin składa się z 30 zadań. Zadania 1–10 oceniane będą w skali 0–2 punkty, zadania 11–30 w skali 0–4 punkty. Czas trwania egzaminu — 240 minut.

Powodzenia!

- 1. Rozwiązać nierówność $2^{|x+1|} \leq 0$,(9).
- 2. Obliczyć resztę z dzielenia wielomianu $w(x) = x^{101!} x + 1$ przez dwumian x + 1.
- 3. Wyznaczyć dziedzinę funkcji $f(x) = \log_2 \log_{\frac{1}{2}} x^2$.
- 4. Rozwiązać nierówność $\cos(\pi x) \leq \sin(\frac{\pi}{2} + x)$.
- 5. Obliczyć największą wartość funkcji $f(x) = \frac{1}{x^2 + 6x + 16}$.
- 6. Dany jest ciąg (a_n) , gdzie $a_n = \frac{3-n}{n}\cos n\pi$ dla $n \in N$. Zbadać monotoniczność ciągu (b_n) , w którym $b_n = a_{2n-1}$ dla każdego $n \in N$.
- 7. Trzecim wyrazem ciągu arytmetycznego jest liczba 1. Obliczyć sumę pierwszych pięciu wyrazów tego ciągu.
- 8. Wśród rozpoczynających studia wyższe jest tyle samo mężczyzn co kobiet. Co czwarta kobieta i co drugi mężczyzna z tych, którzy rozpoczęli studia, nie kończy ich. Obliczyć jaki procent liczby wszystkich absolwentów wyższych uczelni stanowi liczba absolwentek tychże uczelni.
- 9. Rys. 1 przedstawia szkic wykresu funkcji y=f(x) dla $x\in \langle 0;4\rangle$. Określić dziedzinę i naszkicować wykres funkcji y=f(-x+3).
- 10. Rozwiązać równanie $x + \frac{x^2}{2} + \frac{x^3}{4} + \frac{x^4}{8} + \ldots = \frac{x+1}{3}$.
- 11. Dla jakich wartości parametru a układ równań $\begin{cases} x-ay=1\\ ax-y=1 \end{cases}$ ma co najmniej jedno rozwiązanie?
- 12. Przedsiębiorstwo proponuje dziesięcioletni kontrakt swojemu pracownikowi. W pierwszym roku pracy pracownik zarobi 15000 PLN, a w każdym następnym roku jego zarobki będą wzrastały o 8%. Ile zarobi pracownik w dziesiątym roku pracy? Ile wyniosą łączne zarobki pracownika za dziesięć lat pracy w przedsiębiorstwie? (W obliczeniach można przyjąć, że (1,08)⁹ = 2.)
- 13. Dla jakich wartości parametru m pierwiastki równania $mx^2-2mx+1=0$ spełniają nierówność $x_1^2+x_2^2<3?$