

SOFTWARE ENGINEER

43757 Excelso Drive, Fremont, CA 94539

□ (510) 493-8123 | **☑** brian@brianhsu.me | **⋒** brianhsu.me | **回** brianhsu98 | **ा** brianhsu98

Work Experience _____

LiveRamp San Francisco, California

SOFTWARE ENGINEERING INTERN, DATA MANAGEMENT BACKEND

May 2019 - Aug 2019

- Worked with a variety of big data systems, helping add to, segment, and process petabytes of customer data to enable data-driven marketing.
- Developed and owned a backend service, including a **new big data pipeline**, for a new product. Worked under and met a tight deadline to meet client demands, unlocking \$12 million in at-risk revenue.
- Containerized applications using Docker and Kubernetes, increasing development velocity, enabling scalability, and improving fault tolerance.
- Optimized performance of mission-critical applications, and increased visibility into errors by adding fault-detection logic.
- · Collaborated across teams, implementing new endpoints to enable easier access to my team's systems.

Algorithms for Computing and Education (ACE) Lab

Berkeley, California

RESEARCH ASSISTANT, UC BERKELEY

May 2018 - Present

- Worked with PhD student Nate Weinman, under Professor Armando Fox, to **research and develop novel computer science practice problems** to make computer science more accessible and easier-to-learn for beginning and intermediate students.
- Collaboratively designed and implemented an interactive web application to solve Parsons Problems, enabling a 80+ student research study.
- Developed a system for automatically grading student submissions at scale safely and efficiently, parallelized using multiple workers.

Education

University of California, Berkeley

Berkeley, CA

B.A. IN COMPUTER SCIENCE, MINOR IN ENGLISH

Aug. 2016 - Dec. 2019 (Expected)

- Major GPA: 3.78, Cumulative GPA: 3.63
- Selected Coursework:

Introduction to Database Systems Computer Security

Structure & Interpretation of Computer Programs

Principles & Techniques of Data Science

Efficient Algorithms and Intractable Problems Introduction to Artificial Intelligence

Machine Structures

Concepts in Computing with Data

Operating Systems
Data Structures

Discrete Math & Probability Theory

Skills

Programming: Java, Python, JavaScript, C, Go, SQL, R, HTML/CSS, RISC-V Assembly

Technologies: Docker, Kubernetes, Hadoop MapReduce, Google Cloud Platform, Pub/Sub, React, Terraform, Git, jQuery, Flask, UNIX

Languages: Fluent in both English and Chinese

Projects _____

bDocs

- · A single-page web application for collaborative, real-time, in-browser rich text and code editing.
- Supports synchronized text editing across multiple users, along with importing text documents, synchronized settings (language, font size) and titles, and displaying recently accessed documents.
- Built using **React** and **Semantic UI**. Backed by a **Firebase** Realtime Database.

PaperJS Parsons

- A web application used as an interface to solve practice Parsons Problems. Used to help teach students Paper.js, a graphics scripting library.
- Allows users to run and see the effects of their code, and displays interactive examples for users to compare the results of their submissions with.
- Developed collaboratively as part of a preliminary stage of research into the efficacy of Parsons Problems, a new type of practice problem introduced to improve computer science education.
- Written in **HTML** and **JavaScript**, using the Bootstrap, jQuery, and Paper.js libraries.