# **SuperNeuroMAT**

Release 2.0.0

Prasanna Date, Chathika Gunaratne, Shruti Kulkarni, Robert Patto

# **CONTENTS:**

| 1     | Installation       | 3  |
|-------|--------------------|----|
| 2     | Usage              | 5  |
| 3     | Development        | 7  |
| 4     | Cite SuperNeuroMAT | 9  |
| 5     | SuperNeuroMAT      | 11 |
| Ру    | ython Module Index | 17 |
| Index |                    | 19 |

SuperNeuroMAT is a matrix-based simulator for simulating spiking neural networks, which are used in neuromorphic computing. It is one of the fastest, if not the fastest, similators for simulating spiking neural networks.

Some salient features of SuperNeuroMAT are:

- 1. Support for leaky integrate and fire neuron model with the following parameters: neuron threshold, neuron leak, and neuron refractory period
- 2. Support for Spiking-Time-Dependent Plasticity (STDP) synapses with weights and delays
- 3. No restrictions on connectivity of the neurons, all-to-all connections as well as self connections possible
- 4. Constant leak supported
- 5. STDP learning can be configured to turn on/off positive updates and negative updates
- 6. Excessive synaptic delay can slow down the execution of the simulation, so try to avoid as much as possible
- 7. Leak refers to the constant amount by which the internal state (membrane potential) of a neuron changes in each time step of the simulation; therefore, zero leak means the neuron fully retains the value in its internal state, and infinite leak means the neuron never retains the value in its internal state
- 8. STDP implementation is extremely fast
- 9. The model of neuromorphic computing supported in SuperNeuroMAT is Turing-complete
- 10. All underlying computational operations are matrix-based and currently supported on CPUs

CONTENTS: 1

2 CONTENTS:

# **ONE**

# **INSTALLATION**

- 1. Install using pip install superneuromat
- 2. Update/upgrade using pip install superneuromat --upgrade

# **TWO**

# **USAGE**

- 1. In a Python script or on a Python interpreter, do import superneuromat as snm
- 2. The main class can be accessed by model = snm.NeuromorphicModel()
- 3. Refer to docstrings in the source code or on the readthedocs page for the API

6 Chapter 2. Usage

# **THREE**

# **DEVELOPMENT**

- 1. Clone the superneuromat repo: git clone https://github.com/ORNL/superneuromat.git
- 2. Add the path to superneuromat to your \$PYTHONPATH: export PYTHONPATH=\$PYTHONPATH:/path/to/superneuromat.
- 3. You may want to update the \$PYTHONPATH in your .bash\_profile or .bashrc.

# **FOUR**

# **CITE SUPERNEUROMAT**

1. Please cite SuperNeuroMAT using:

```
@inproceedings{date2023superneuro,
   title={SuperNeuro: A fast and scalable simulator for neuromorphic computing},
   author={Date, Prasanna and Gunaratne, Chathika and R. Kulkarni, Shruti and Patton,
   Robert and Coletti, Mark and Potok, Thomas},
   booktitle={Proceedings of the 2023 International Conference on Neuromorphic Systems},
   pages={1--4},
   year={2023}
}
```

# 1. References for SuperNeuroMAT:

- SuperNeuro: A Fast and Scalable Simulator for Neuromorphic Computing
- Neuromorphic Computing is Turing-Complete
- Computational Complexity of Neuromorphic Algorithms

# **FIVE**

# **SUPERNEUROMAT**

### class superneuromat.SNN(backend='cpu', num\_mpi\_ranks=1)

Bases: object

Defines a spiking neural network (SNN) with neurons and synapses

### num\_neurons

Number of neurons in the SNN

Type int

# neuron\_thresholds

List of neuron thresholds

**Type** list

#### neuron leaks

List of neuron leaks, defined as the amount by which the internal states of the neurons are pushed towards the neurons' reset states

Type list

# neuron\_reset\_states

List of neuron reset states

Type list

### neuron\_refractory\_periods

List of neuron refractory periods

**Type** list

### num\_synapses

Number of synapses in the SNN

Type int

### pre\_synaptic\_neuron\_ids

List of pre-synaptic neuron IDs

Type list post\_synaptic\_neuron\_ids

```
List of post-synaptic neuron IDs
         Type
             list
synaptic_weights
     List of synaptic weights
         Type
             list
synaptic_delays
     List of synaptic delays
         Type
             list
enable_stdp
     List of Boolean values denoting whether STDP learning is enabled on each synapse
         Type
             list
input_spikes
     Dictionary of input spikes indexed by time
         Type
             dict
spike_train
     List of spike trains for each time step
         Type
             list
stdp
     Boolean parameter that denotes whether STDP learning has been enabled in the SNN
         Type
             bool
stdp_time_steps
     Number of time steps over which STDP updates are made
         Type
             int
stdp_Apos
     List of STDP parameters per time step for excitatory update of weights
         Type
             list
stdp_Aneg
     List of STDP parameters per time step for inhibitory update of weights
         Type
             list
```

#### create\_neuron()

Creates a neuron in the SNN

#### create\_synapse()

Creates a synapse in the SNN

#### add\_spike()

Add an external spike at a particular time step for a given neuron with a given value

# stdp\_setup()

Setup the STDP parameters

#### setup()

Setup the SNN and prepare for simulation

#### simulate()

Simulate the SNN for a given number of time steps

### print\_spike\_train()

Print the spike train

#### **Caution**

- 1. Delay is implemented by adding a chain of proxy neurons. A delay of 10 between neuron A and neuron B would add 9 proxy neurons between A and B.
- 2. Leak brings the internal state of the neuron back to the reset state. The leak value is the amount by which the internal state of the neuron is pushed towards its reset state.
- 3. Deletion of neurons is not permitted
- 4. Multiple synapses from one neuron to any another neuron are not permitted
- 5. Input spikes can have a value
- 6. All neurons are monitored by default

 $add\_spike(time: int, neuron\_id: int, value: float = 1.0) \rightarrow None$ 

Adds an external spike in the SNN

#### **Parameters**

- time (int) The time step at which the external spike is added
- **neuron\_id** (*int*) The neuron for which the external spike is added
- **value** (*float*) The value of the external spike (default: 1.0)

### Raises

### TypeError if -

1. time is not an int 2. neuron\_id is not an int 3. value is not an int or float

### count\_spikes()

Returns the spike count

 $create_neuron(threshold: float = 0.0, leak: float = inf, reset_state: float = 0.0, refractory_period: int = 0)$   $\rightarrow$  int

Create a neuron

#### **Parameters**

- **threshold** (*float*) Neuron threshold; the neuron spikes if its internal state is strictly greater than the neuron threshold (default: 0.0)
- **leak** (*float*) Neuron leak; the amount by which by which the internal state of the neuron is pushed towards its reset state (default: np.inf)
- **reset\_state** (*float*) Reset state of the neuron; the value assigned to the internal state of the neuron after spiking (default: 0.0)
- **refractory\_period** (*int*) Refractory period of the neuron; the number of time steps for which the neuron remains in a dormant state after spiking

#### Returns

Returns the neuron ID

#### Raises

- TypeError if -
- 1. threshold is not an int or a float 2. leak is not an int or a float 3. reset\_state is not an int or a float 4. refractory\_period is not an int
- ValueError if –
- 1. leak is less than 0.0 2. refractory\_period is less than 0

 $create\_synapse(pre\_id: int, post\_id: int, weight: float = 1.0, delay: int = 1, stdp\_enabled: bool = False) \rightarrow None$ 

Creates a synapse in the SNN from a pre-synaptic neuron to a post-synaptic neuron with a given set of synaptic parameters (weight, delay and enable\_stdp)

#### **Parameters**

- **pre\_id** (int) ID of the pre-synaptic neuron
- **post\_id** (*int*) ID of the post-synaptic neuron
- **weight** (*float*) Synaptic weight; weight is multiplied to the incoming spike (default: 1.0)
- **delay** (*int*) Synaptic delay; number of time steps by which the outgoing signal of the syanpse is delayed by (default: 1)
- **enable\_stdp** (*boo1*) Boolean value that denotes whether or not STDP learning is enabled on the synapse (default: False)

#### Raises

- TypeError if -
- 1. pre\_id is not an int 2. post\_id is not an int 3. weight is not a float 4. delay is not an int 5. enable\_stdp is not a bool
- ValueError if –
- 1. pre\_id is less than 0 2. post\_id is less than 0 3. delay is less than or equal to 0
- RuntimeError if -
- 1. A synapse with the same (pre\_id, post\_id) already exists

### print\_spike\_train()

Prints the spike train

**reset**(internal\_states=True, refractory\_periods=True, internal\_spikes=True, stdp\_enabled\_weights=True, spike\_train=True, spike\_count=True, input\_spikes=True)  $\rightarrow$  None

Resets the state of the simulator

#### **Parameters**

- **internal\_states** (*bool*) Set to True if internal states of neurons should be reset, otherwise False (default: True)
- **refractory\_periods** (*bool*) Set to True if refractory periods of neurons should be reset, otherwise False (default: True)
- **internal\_spikes** (*bool*) Set to True if internal spikes of neurons should be reset, otherwise False (default: True)
- **stdp\_enabled\_weights** (*boo1*) Set to True if STDP enabled synaptic weights should be reset, otherwise False (default: True)
- **spike\_train** (*bool*) Set to True if spike train should be reset, otherwise False (default: True)
- **spike\_count** (*boo1*) Set to True if spike count should be reset, otherwise False (default: True)
- **input\_spikes** (*boo1*) Set to True if input spikes should be reset, otherwise False (default: True)

#### Raises

- TypeError if -
  - 1. internal\_states is not bool 2. refractory\_periods is not bool 3. internal\_spikes is not bool 4. stdp\_enabled\_weights is not bool 5. spike\_train is not bool 6. spike\_count is not bool 7. input spikes is not bool
- Value error if -
- internal\_states is neither True nor False 2. refractory\_periods is neither True nor False
   internal\_spikes is neither True nor False 4. stdp\_enabled\_weights is neither True nor False 5. spike\_train is neither True nor False 6. spike\_count is neither True nor False 7. input\_spikes is neither True nor False

setup(sparse='auto', dtype=64)

Choose the appropriate setup function based on backend

#### **Parameters**

- sparse (bool) If True, forces simulation to use sparse computations (default: "auto")
- **dtype** (*int*) 32 or 64 for single or double precision operation (default: 64)

### Raises

- TypeError if -
  - 1. sparse is not a bool 2. dtype is not an int
- ValueError if -
- 1. dtype is not 32 or 64

 $simulate(time\_steps: int = 1000) \rightarrow None$ 

Simulate the spiking neural network

#### **Parameters**

- time\_steps (int) Number of time steps for which the SNN is to be simulated
- backend (string) Backend is either cpu or frontier

#### Raises

- TypeError if -
- 1. time steps is not an int 2. backend is not a string
- ValueError if -
- 1. time\_steps is less than or equal to zero 2. backend is not one of the following values: cpu, frontier

**stdp\_setup**( $time\_steps: int = 3$ , Apos: list = [1.0, 0.5, 0.25], Aneg: list = [1.0, 0.5, 0.25],  $positive\_update: bool = True$ ,  $negative\_update: bool = True$ )  $\rightarrow$  None

Choose the appropriate STDP setup function based on backend

#### **Parameters**

- time\_steps (int) Number of time steps over which STDP learning occurs (default: 3)
- **Apos** (*1ist*) List of parameters for excitatory STDP updates (default: [1.0, 0.5, 0.25]); number of elements in the list must be equal to time\_steps
- **Aneg** (*1ist*) List of parameters for inhibitory STDP updates (default: [1.0, 0.5, 0.25]); number of elements in the list must be equal to time\_steps
- positive\_update (boo1) Boolean parameter indicating whether excitatory STDP update should be enabled
- **negative\_update** (*boo1*) Boolean parameter indicating whether inhibitory STDP update should be enabled

### **Raises**

- TypeError if -
- 1. time\_steps is not an int 2. Apos is not a list 3. Aneg is not a list 4. positive\_update is not a bool 5. negative\_update is not a bool
- ValueError if -
- 1. time\_steps is less than or equal to zero 2. Number of elements in Apos is not equal to the time\_steps 3. Number of elements in Aneg is not equal to the time\_steps 4. The elements of Apos are not int or float 5. The elements of Aneg are not int or float 6. The elements of Apos are not greater than or equal to 0.0 7. The elements of Apos are not greater than or equal to 0.0
- RuntimeError if -
- 1. enable stdp is not set to True on any of the synapses

# **PYTHON MODULE INDEX**

S

superneuromat, 11

18 Python Module Index

# **INDEX**

| A add_spike() (superneuromat.SNN method), 13 C count_spikes() (superneuromat.SNN method), 13 create_neuron() (superneuromat.SNN method), 12, 13 create_synapse() (superneuromat.SNN method), 13,                                                                                                                  | simulate() (superneuromat.SNN method), 13, 15 SNN (class in superneuromat), 11 spike_train (superneuromat.SNN attribute), 12 stdp (superneuromat.SNN attribute), 12 stdp_Aneg (superneuromat.SNN attribute), 12 stdp_Apos (superneuromat.SNN attribute), 12 stdp_setup() (superneuromat.SNN method), 13, 16 stdp_time_steps (superneuromat.SNN attribute), 12 superneuromat     module, 11 synaptic_delays (superneuromat.SNN attribute), 12 synaptic_weights (superneuromat.SNN attribute), 12 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| inner miles (                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| input_spikes (superneuromat.SNN attribute), 12                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| M                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| module superneuromat, 11                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| N                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| neuron_leaks (superneuromat.SNN attribute), 11 neuron_refractory_periods (superneuromat.SNN attribute), 11 neuron_reset_states (superneuromat.SNN attribute), 11 neuron_thresholds (superneuromat.SNN attribute), 11 num_neurons (superneuromat.SNN attribute), 11 num_synapses (superneuromat.SNN attribute), 11 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| P                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <pre>post_synaptic_neuron_ids (superneuromat.SNN at-</pre>                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| R                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| reset() (superneuromat.SNN method), 14                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| S                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| setup() (superneuromat.SNN method), 13, 15                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |