МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

Мегафакультет трансляционных информационных технологий

Факультет информационных технологий и программирования

Лабораторная работа №1 Реализация симплекс метода

> Сделали: Подколзин Олег М33071 Якимов Даниил М33011 Юрченко Владислав М33031

Задание

Реализуйте симплекс-метод для решения задач линейного программирования. Для тестирования использовать варианты, находящиеся в файле "Линейное программирование варианты.pdf".

Тест 1

```
Точка:
[0, 4.00003, 1e-05, 0]
Значение:
-4.00003
```

Тест 2

```
Точка:
[2.0, 2.0, 0, 0]
Значение:
-6.0
```

Тест 5

```
Точка:
[1.0, 0, 1.0, 0]
Значение:
-4.0
```

Теория

Симплексный метод (метод последовательного улучшения плана) решения задачи линейного программирования основан на переходе от одного опорного плана к другому, при котором значение целевой функции возрастает (убывает) для задачи на max (на min) при условии, что данная задача имеет оптимальный план и каждый ее

опорный план является невырожденным. Указанный переход возможен, если известен какой-нибудь исходный опорный план.

$$Z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n \to \max$$
 (1)

при условиях

$$A_1x_1 + A_2x_2 + \dots + A_mx_m + A_{m+1}x_{m+1} + \dots + A_nx_n = A_0$$
 (2)

$$x_j \ge 0, \quad j = 1, \dots, n \tag{3}$$

где $A_1, A_2, ..., A_m$ - единичные векторы, образующие базис m-мерного пространства.

Теорема 1 (условие оптимальности). Опорный план $X^* = (x^*_1, x^*_2, ..., x^*_m, 0, ..., 0)$ задачи (1) - (3) является оптимальным, если ($\delta \ge 0$ для любого j, j = 1,...,n.

Теорема 2 Если опорный план X_0 задачи (1) - (3) невырожден и δ_{κ} < 0, но среди чисел a_{ik} есть положительные (не все $a_{k} \le 0$), то существует такой опорный план X', что $Z(X') > Z(X_0)$

Теорема 3 Если δ_k < 0 для некоторого j = k и среди чисел $a_{ik}(i = 1, ..., m)$ нет положительных $(a_{ik} < 0)$, то целевая функция (1) задачи (1) - (3) не ограничена на множестве ее планов.

Алгоритм:

- 1. Привести задачу к канонической форме. Для этого перенести свободные члены в правые части (если среди этих свободных членов окажутся отрицательные, то соответствующее уравнение или неравенство умножить на 1) и в каждое ограничение ввести дополнительные переменные (со знаком "плюс", если в исходном неравенстве знак "меньше или равно", и со знаком "минус", если "больше или равно").
- 2. Определяем исходный базис. Если в полученной системе т уравнений, то т переменных принять за основные, выразить основные переменные через неосновные и найти соответствующее базисное решение. Если найденное базисное решение окажется допустимым, перейти к допустимому базисному решению.
- 3. Выразить функцию цели через неосновные переменные допустимого базисного решения и проверить. Если

- отыскивается максимум (минимум) линейной формы и в её выражении нет неосновных переменных с отрицательными (положительными) коэффициентами, то критерий оптимальности выполнен и полученное базисное решение является оптимальным решение окончено. Если при нахождении максимума (минимума) линейной формы в её выражении имеется одна или несколько неосновных переменных с отрицательными (положительными) коэффициентами, перейти к новому базисному решению.
- 4. Новая переменная в базисе. Из неосновных переменных, входящих в линейную форму с отрицательными (положительными) коэффициентами, выбирают ту, которой соответствует наибольший (по модулю) коэффициент, и переводят ее в основные. Повторить шаг 2.

Решение задач

Вывод

- Любая задача линейного программирования может быть приведена к одному из специальных видов: стандартному или каноническому
- Каждой задаче линейного программирования можно поставить в соответствие двойственную задачу. Решения этих задач связаны рядом свойств.

Итоговым ответом должны быть координаты точки симплекса.	