

Grafos e Algoritmos Computacionais

Aula 3: Terminologia Básica de Grafos

André Britto

Grafo

Um **grafo** G consiste num conjunto VG de elementos chamados **vértices**, num conjunto EG de elementos chamados **arestas**, juntamente com uma **função de incidência** ψ_G que associa a cada aresta dois vértices não necessariamente distintos chamados **extremos** da aresta.

Exemplo:

$$VG = \{ v_1, v_2, v_3, v_4, v_{5}, v_6 \}$$

 $EG = \{ a_1, a_2, a_3, a_4, a_5, a_6, a_7 \}$

$$\Psi_{\mathbf{G}}(\mathbf{a}_1) = \mathbf{v}_1 \mathbf{v}_2 \qquad \qquad \Psi_{\mathbf{G}}(\mathbf{a}_5) = \mathbf{v}_5 \mathbf{v}_6$$

$$\Psi_{\mathbf{G}}(\mathbf{a}_2) = \mathbf{v}_2 \mathbf{v}_3 \qquad \qquad \Psi_{\mathbf{G}}(\mathbf{a}_6) = \mathbf{v}_5 \mathbf{v}_6$$

$$\Psi_{\mathbf{G}}(\mathbf{a}_3) = \mathbf{v}_2 \mathbf{v}_5 \qquad \qquad \Psi_{\mathbf{G}}(\mathbf{a}_7) = \mathbf{v}_6 \mathbf{v}_6$$

$$\Psi_{G}(a_{4}) = V_{4}V_{5}$$

Representação Geométrica

Grafos são nomeados assim pois podem ser representados graficamente e é sua representação gráfica que nos ajuda a entender as suas propriedades.

Representação Geométrica

- vértices → pontos ou círculos
- arestas → linhas
- função de incidência → quais pontos serão ligados pelas linhas
- Exemplo:

Representação geométrica do grafo com função de incidência do exemplo anterior.

Se v_1 e v_2 são extremos de a, então dizemos que v_1 e v_2 são **adjacentes** ou **vizinhos**. Dizemos também que a **incide** em v_1 (e em v_2), ou que a **liga** os vértices v_1 e v_2 .

Notação:
$$a \equiv (v_1, v_2)$$

Arestas adjacentes → arestas com um extremo em comum.

Arestas múltiplas ou paralelas → mesmos extremos.

Laço → extremos idênticos.

Ordem → número de vértices do grafo.

Tamanho → /VG/ + /EG/

Grau \rightarrow notação: $g_G(v)$ – número de arestas que incidem em v (laços contam duas vezes).

Tipos especiais de grafos

- Grafo simples → não contém arestas múltiplas nem laços.
- Multigrafo → possui no mínimo duas arestas paralelas.
- Grafo finito \rightarrow EG e VG ambos finitos.
- Grafo vazio \rightarrow EG e VG ambos vazios.
- Grafo trivial → possui somente um vértice
- **Grafo completo** \rightarrow simples e cada dois vértices distintos são adjacentes. Notação: Grafo completo de ordem $n \rightarrow K_n$

Tipos especiais de grafos

Grafo simples → não contém arestas múltiplas nem laços.

É comum confundir-se um grafo com sua representação geométrica.

Será que podemos ter duas representações geométricas para o mesmo grafo?

Será que podemos ter duas representações geométricas para o mesmo grafo?

Ou seja...

Dados dois grafos G_1 e G_2 , com $|VG_1| = |VG_2|$, existe uma função unívoca $f: VG_1 \rightarrow VG_2$, tal que $(v,w) \in EG_1$ se e somente se $(f(v), f(w)) \in EG_2$, para todo $v,w \in VG_1$?

Se sim, os grafos são ditos isomorfos entre si.

Grafos Isomorfos

Mapeamento da função f:

$$F(v_1) \rightarrow W_1$$

$$F(v_2) \rightarrow W_5$$

$$F(v_3) \rightarrow W_3$$

$$F(v_4) \rightarrow W_2$$

$$F(v_5) \rightarrow W_4$$

$$F(v_6) \rightarrow W_6$$

v₁ é adjacente a v₄, v₅, v₆
w₁ é adjacente a w₂, w₄, w₆
v₂ é adjacente a v₄, v₅, v₆
w₅ é adjacente a w₂, w₄, w₆

...

Grafos isomorfos

Condições necessárias mas não suficientes para isomorfismo

- Mesmo número de vértices
- Mesmo número de arestas
- Mesmos número de componentes
- Mesmo número de vértices com o mesmo grau

Grafos Isomorfos

G1 e G2 não são isomorfos.

Isomorfismo de subgrafos → NP-Completo

Tipos especiais de grafos

Grafo k-regular $\rightarrow g(v) = k$ para todo $v \in VG$

Grafo regular \rightarrow se é grafo k-regular para algum k.

Ex: K_4 é 3-regular, portanto é regular.

Grafo bipartido \rightarrow *VG* pode ser biparticionado em dois conjuntos $X \in Y(X \cup Y = VG, X \cap Y = \emptyset)$ tais que cada aresta tem um extremo em X e outro em Y.

Tipos especiais de grafos

Dizemos assim que (X,Y) é uma **bipartição** de G. Notação bipartido completo: $K_{m,n}$

Tipos especiais de grafos

Complemento de $G \rightarrow Notação: \overline{G}$

$$\overline{VG} = VG$$

vértices adjacentes em G não o são em G

complemento da garra:

complemento do K_3 :

$$\overline{K}$$

Proposição

A soma dos graus dos vértices de um grafo é igual ao dobro do número de arestas do grafo, ou seja,

$$\sum_{v \in VG} g(v) = 2 |aG|$$

Corolário

Num grafo, o número de vértices de grau ímpar é sempre par.

Corolário

Num grafo, o número de vértices de grau ímpar é sempre par.

Ideia da prova:

Dígrafo ou Grafo Orientado

Um **dígrafo** D consiste num conjunto não vazio de vértices VD, de arestas ED e de uma **função de incidência** ψ_D que associa a cada aresta de D um par ordenado de vértices de D, estes não necessariamente distintos. Se uma aresta a liga o vértice u ao vértice v dizemos que u é **vértice origem** de a e v é **vértice destino** de a.

OBS: $(v,u) \not\equiv (u,v)$

- Grau de saída de v quantidade de arestas que divergem (saem) do vértice v. Notação: g_s(v).
- Grau de entrada de v quantidade de arestas que entram no vértice v. Notação: g_e(v).
- Ex: $g_s(v_1) = 2$; $g_e(v_1) = 0$.
- As definições para grafos valem para dígrafos, adaptando-as consistentemente para considerar a orientação.

Exercícios Recomendados

- Bondy e Murty (edição de 1976)
 - **1.2.2, 1.2.3, 1.2.4, 1.2.7**
- 1 Quantos vértices e arestas tem os grafos abaixo? Justifique.
 - a. Kn
 - b. K_{m,n} (grafo bipartido completo)
- 2. Determine o numero de vértices para os seguintes grafos:
 - a. G tem 9 arestas e todos os vértices tem grau 3.
 - b. G simples e regular com 15 arestas.
 - c. G tem 10 arestas com 2 vértices de grau 4 e todos os outros de grau 3
- 3. Se G possui vértices v_1, v_2, \ldots, v_n , a sequência $(d(v_1), d(v_2), \ldots, d(v_n))$ é denominada sequência de graus de G. Existe um grafo simples com cinco vértices com as seguintes sequencias? Se existir, desenhe um possível grafo.
 - a. 3, 3, 3, 3, 2
 - b. 1, 2, 3, 4, 5
 - c. 1, 2, 3, 4, 4
 - d. 3, 4, 3, 4, 3
 - e. 0, 1, 2, 2, 3
 - f. 1, 1, 1, 1, 1

Exercícios Recomendados

- 4. Um grafo com 10 vértices de graus 1,1,2,2,2,3,4,4,4 e 6 pode existir? Justifique.
- 5. Se o grafo simples G tem v vértices e m arestas, quantas arestas tem o complemento de G?
- 6. Quantos vértices tem um grafo regular de grau 4 com 10 arestas?
- 7. Determine se cada um dos grafos abaixo é bipartido e informe a definição da bipartição

Referências

- Seções 2.1, 2.2 do Szwarcfiter, J. L., *Grafos e Algoritmos Computacionais,* Ed. Campus, 1983.
- Capítulo 1 do Bondy J. A. e Murty U. S. R., Graph Theory with Applications, Elsevier, 1976.
- Material de aula do Prof. Antonio Alfredo Ferreira Loureiro
- Adaptado do material de aula da Profa. Leila Silva