ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

PROF ME MARCO IKURO HISATOMI

Conteúdo Programático

Unidade 2 - Componentes básicos de um computador

- Unidade central de processamento (CPU)
 - Processadores: conceitos, evolução, tipos e funcionamento
- Memória principal e memória cache
- Memória secundária
- Dispositivos de entrada e saída

Situação Geradora de Aprendizagem

FÁBRICA DE COMPONENTES – CIDADE INTELIGENTE

Contextualizando

- Vamos analisar a situação em que se encontra uma <u>fábrica de</u> <u>componentes</u> de computadores de altíssima tecnologia.
- Nesse contexto, vamos considerar o setor de pesquisa e desenvolvimento que está sempre em busca de mecanismos e formas de aprimorar e melhorar esses componentes: de microprocessadores, placas de memória, disco rígido e vários outros até a entrega de equipamentos completos.
- Você será um dos integrantes do time de pesquisa e desenvolvimento dessa empresa e poderá aprimorar esse desenvolvimento e melhorar esses componentes.

Contextualizando

- ▶ Uma das tendências identificadas pela empresa de fabricação de microprocessadores é a integração de operações básicas de controle, serviços e oferta de segurança para se ampliar a qualidade de vida da população que se pretende inserir com as "cidades inteligentes".
- Ex.: disponibilizar ao cidadão a identificação de locais que têm vagas de estacionamento disponíveis, pontos da cidade em obras e/ou congestionados, disponibilidade de agenda para serviços de saúde e uma infinidade de situações que possam exigir integração, comunicação, etc.

Aluno: seu desafio enquanto especialista

Consiste em identificar memórias com as mais modernas tecnologias aplicadas, capacidade de armazenamento; e quais melhorias elas apresentam em relação a tecnologias anteriores

Para resolvermos o **armazenamento das informações das câmeras** para nossa cidade inteligente

MEMÓRIA PRINCIPAL

Memória

Fonte: Shutterstock

- Para que um computador possa funcionar e o processador possa executar
 - o processamento dos dados e instruções recebidos é

necessário tenha memória

- Na arquitetura de Von Neumann, se nos computadores existisse apenas um tipo de memória, esta deveria ter a mesma velocidade da CPU, esperando por dados que estivessem sendo transferidos para processamento
- Na prática, em um computador que processa um dado em 5ns (nano segundos), a memória transfere o dado em 60ns (PATTERSON, 2005).

Memória

- A memória onde é executado o processamento dos dados é de um tipo diferente da memória de armazenamento onde os dados são guardados em um computador
- A velocidade dos processadores, de suas CPUs e de suas estruturas requerem que existam vários tipos de memórias, cada qual com sua função específica (FÁVERO, 2011).
- ► Estas memórias são classificadas em Memória Principal e Memória Secundária. Além destes dois tipos de memória, ainda temos a Memória Cache e os registradores da CPU (MONTEIRO, 2007).

Memória

As memórias de um computador variam:

- ► Tecnologia, Capacidade de armazenamento, Velocidade e Custo
- ► Elas são interligadas de forma estruturada, compondo um subsistema de memória; organizada em diversos tipos de memória hierarquicamente em ordem decrescente de acordo com a velocidade destas memórias, sendo os registradores as memórias mais rápidas e as secundárias as que apresentam as menores velocidades (FÁVERO, 2011).

Memórias - Hierarquia

Registradores

- Os registradores são memórias de alta velocidade e baixa capacidade utilizadas nas operações da unidade lógica aritmética da UCP.
- Os registradores também armazenam endereços de instruções a serem executadas e em execução. Nesse sentido, os registradores têm a função de armazenar dados, instruções e endereços de dados que serão processados ou estão em execução pela UCP.
- Essas memórias têm o maior custo por bit. Os registradores estão localizados na unidade central de processamento (processador)

Características básicas dos tipos de memória

- ► Volátil = Se perde com falta de energia
- ► Não volátil = Fica armazenado permanentemente

Características básicas dos tipos de memória						
MEMÓRIA	Localização/ É volátil?		VELOCIDADE	CAPACIDADE DE ARMAZENAMENTO	CUSTO	
Registrador	Processador	Sim	Muito alta (opera na velocidade do operador)	Muito baixa (bytes)	Muito alto	
Cache	Processador	Sim	Alta (opera na velocidade do operador)	Baixa (KB)	Alto	
Principal	Placa-mãe	RAM - sim ROM - não	Depende do tipo de memória instalada	Média (GB)	Médio (tem caído muito)	
Secundária Fonte: Santos, 20	HD, CDs, etc. 20,p.80	Não	Baixa (lenta)	Alta (GB)	Baixo (tem caído muito)	

Memória Cache

 Memória especial de armazenamento, menor e mais rápida que a memória

Fonte: Shutterstock

- principal, usada apenas para a cópia de instruções ou dados da memória principal mais prováveis de ser requeridos pelo processador em um futuro próximo; essas instruções e dados são obtidos automaticamente da memória principal .
- Como a velocidade dos processadores é, em geral, muito maior do que a velocidade das memórias, gera-se uma fila de espera entre os dados encontrados na memória e o processador na hora da execução do processamento (FÁVERO, 2011).

Memória Cache

processamento.

- denominada de memória cache.
 Ela tem a função de criar condições que aumentem a velocidade de comunicação entre a memória principal e o processador, aumentando a velocidade final do
- Este tipo de memória também é volátil e apaga-se quando o computador é desligado (PATTERSON, 2014).

Memória Cache

✓ A memória cache é uma memória dita "estática", pois, uma vez colocado, o

Fonte: Shutterstock

- dado permanece enquanto a memória for alimentada. Este tipo de memória é baseado em circuitos do tipo flip-flop.
- ✓ A memória cache é uma memória com menor capacidade que a RAM, porém, possui velocidades mais altas.
- ✓ A memória cache é uma memória intermediária entre a RAM e o processador.
- ✓ O custo desta memória muito alto. (PATTERSON, 2014).

MEMORIA CACHE

Cache

MEMÓRIA PRINCIPAL

- RAM

Memória Principal (RAM)

Fonte: Santos, 2020, p.84

- ✓ Memória endereçável por programa, a partir dos dados e instruções podem ser diretamente carregados nos registradores, para subsequente processamento ou execução.
- ✓ Faz o armazenamento dos dados inseridos no computador, dados dos programas e os próprios programas.
- ✓ Permite ao processador ter acesso às memórias secundárias, disponibilizando os dados gravados nestas memórias e processá-los (PATTERSON, 2014).

DRAM (Dynamic RAM)- RAM Dinâmica

- ▶ É considerada dinâmica porque ela tem a necessidade de refrescamento de memória, um recurso que realimenta de energia as memórias e mantém os dados armazenados enquanto o computador estiver ligado, pois sem este recurso a memória ficaria sem energia e seus dados seriam perdidos.
- lsso ocorre porque as memórias dinâmicas, ao contrário das memórias estáticas, são feitas com capacitores.
- ➤ O ponto a favor é que, por ser baseada em capacitores, seu custo torna-se menor.

DRAM (Dynamic RAM)- RAM Dinâmica

- ▶ Por serem constantemente refrescadas, as memórias DRAM consomem muitos ciclos de processamento e muito mais energia que outros tipos de memória, o que as tornam mais lentas, mas, em contrapartida, tem seu custo menor e uma maior capacidade de armazenamento de dados (MONTEIRO, 2007)
- Existem diferentes modelos de módulos de memória
 DIMM Módulo de Memória em Linha Dupla, usados nas memórias do tipo DDR (Double Data Rate)

Fonte: Shutterstock

- Memória apenas de leitura, onde seu conteúdo é gravado apenas uma vez e não é alterado
- Memória semicondutora cujo o conteúdo não pode ser alterado, exceto pela distribuição da unidade de memória
- Memória não apagável. São três os principais programas gravados em uma memória ROM:
 - BIOS
 - POST
 - SETUP

- ▶ POST (Power On Self Test): programa de autoteste que faz a verificação e teste quando o computador é ligado, realizando diversas ações sobre o hardware, reconhecendo e contando a quantidade de memória, os dispositivos de entrada e saída conectados, entre outros.
- ► SETUP: programa que altera os parâmetros armazenados na memória de configuração (CMOS).

Fonte: Shutterstock

- ▶ PROM (*Programmable Read-Only Memory*): A gravação de dados neste tipo é feita uma única vez e os dados gravados na memória PROM não podem ser apagados ou alterados.
- ► EPROM (Erasable Programmable Read-Only Memory): Estas memórias permitem a regravação de dados.
- ► EEPROM (Electrically-Erasable Programmable Read-Only Memory): Permite a regravação de dados, feitos eletricamente, não sendo necessário mover o dispositivo para que a regravação ocorra.

- EAROM (Electrically-Alterable Programmable Read-Only Memory): Os dados gravados nesta Fonte: Shutterstock memória ROM podem ser alterados aos poucos, razão pela qual esse tipo é geralmente utilizado em aplicações que exigem apenas reescrita parcial de informações.
- ► Flash-ROM: as memórias Flash-ROM também podem ser vistas como um tipo de EE-PROM; no entanto, o processo de gravação e regravação é muito mais rápido. Neste tipo de memória, os dados têm que ser totalmente apagados e não permite a gravação parcial de dados.

- Em uma memória ROM, o processo de gravação é lento e os dados gravados são
- Fonte: Shutterstock
- basicamente *Firmwares* ou programas que executam determinadas funções.
- Importa destacar que qualquer tipo de memória possui dois tipos de operação a serem realizados, sendo eles: operações de leitura e escrita.
- A operação de leitura consiste na recuperação dos dados armazenados na memória, enquanto que a operação de escrita consiste no armazenamento, em si, (a gravação dos dados) na memória.

Fonte: Shutterstock

- ► A operação de leitura é considerada não destrutiva, uma vez que ela apenas copia as informações de uma célula da memória principal para a UCP;
- ► A operação de escrita permite a gravação da informação na memória principal, sendo, assim, uma operação destrutiva, pois o conteúdo anteriormente na memória é sobrescrito.

MEMÓRIAS

No site UserBenchmark podemos ter acesso à listagem de memórias e seus tamanhos. Como sugestão, é possível considerar um quadro de classificação de uso de quantidade de memória:

Requisitos de Memória (Ideal)	Usuário frequente	Jogador	Usuário Profissional
DESKTOP	8 GB+ (WINDOWS e MAC_OS)	16 GB+ (WIN- DOWS)	16 GB+ (WINDOWS e MAC_OS)
NOTEBOOK	8 GB+ (WINDOWS e MAC_OS)	16 GB+ (WIN- DOWS)	16 GB+ (MAC_OS)
Uso			
	Email, Internet	A maioria dos jogos atuais exige 8-16 GB de RAM	Design Gráfico, Modelagem 3D
	Baixar e organizar fotos músicas, filmes e TV		Suíte completa Pro- dutos Office
		Alto desempenho em Jogo	
			Software Corporativo
	Suite completa Office		CRM, Produção etc.
	Word, Excel, Power Point etc.		
			Programação de Softwares
	Software Corpo- rativo		Engenharia de Som
	CRM, Produção etc.		Design
			Páginas WEB avan- çadas
			Desenvolvimento de Banco de Dados

Fonte: Santos, 2020,p.89

Desenvolvendo

- ► Faça a descrição detalhada da capacidade de processamento desta máquina, capacidade de memória, velocidade de taxa de transferência de dados destas memórias e demais capacidades técnicas deste computador e que ele possa atender melhor aos requisitos dos sistemas
- propostos na Situação Real, como o cruzamento de dados obtidos pelas câmeras de segurança.
- Pesquisar sobre DDR4 de 16Gb....

Desenvolvendo

DDR3 - DDR4 -

- ► As diferenças estão na velocidade de transferência DDR3 (2133 MTps) e DDR4 (3200 MTps)
- ► Na eficiência energética (1,5 v para 1,2v)
- ▶ No layout, usa conector de 240 para 288 pinos
- ▶ O Column Access Strobe Latency (quando é maior, a velocidade de transferência pode ser menor)

RECAPITULANDO

Memórias

CPU

CPU

Cache L1

Cache L1

Cache L2

Cache L2

Cache L3

RAM

HD / SSD

NIC

Conteúdo Programático

Unidade 2 - Componentes básicos de um computador

- Unidade central de processamento (CPU)
 - Processadores: conceitos, evolução, tipos e funcionamento
- Memória principal e memória cache
- Memória secundária
- Dispositivos de entrada e saída

