BIOS 662 Fall 2018 Count Data

David Couper, Ph.D.

 $david_couper@unc.edu$

or

couper@bios.unc.edu

https://sakai.unc.edu/portal

Outline

- One sample binary outcome
- Two sample binary outcome
- Measures of association
- Confounding Mantel-Haenszel
- Matching McNemar

Binomial Random Variable

- $X_1, \ldots, X_n \sim \text{Bernoulli}(\pi)$
- $Y = \sum_{i=1}^{n} X_i \sim \text{Binomial}(n, \pi)$
- Four key conditions
 - 1. Binary response (0/1)
 - 2. Observed a known number of times n
 - 3. Success probability (π) the same each time
 - 4. Independence between trials
- Example 6.1 in the text: Smoke exposure

Binomial Random Variable

• Hypothesis testing

$$H_0: \pi = \pi_0 \text{ vs. } H_A: \pi \neq \pi_0$$

- \bullet The statistic Y is the count of the successes
- Under the null, $Y \sim \text{Binomial}(n, \pi_0)$
- Need to find $y_{\alpha/2}$ and $y_{1-\alpha/2}$ such that

$$\Pr[Y \le y_{\alpha/2} | H_0] \le \alpha/2$$

and

$$\Pr[Y \ge y_{1-\alpha/2}|H_0] \le \alpha/2$$

Exact Test for Binomial Proportion

• For small samples, compute exact CR using

$$\Pr[Y \le y_{\alpha/2}] = \sum_{i=0}^{y_{\alpha/2}} \binom{n}{i} \pi_0^i (1 - \pi_0)^{n-i}$$

$$\Pr[Y \ge y_{1-\alpha/2}] = \sum_{i=y_{1-\alpha/2}}^{n} \binom{n}{i} \pi_0^i (1-\pi_0)^{n-i}$$

• Binomial probabilities are computed or read from a table; e.g., in R using pbinom or dbinom;

in SAS using CDF('BINOMIAL',m,p,n)

where m is the number of successes

Exact Test for Binomial: Example

• Suppose n = 12, $\pi_0 = 0.4$, $\alpha = 0.05$

y	$\Pr[Y \le y]$	$\Pr[Y \ge y]$
0	0.00218	1.00000
1	0.01959	0.99782
2	0.08344	0.98041
÷	:	
7	0.94269	0.15821
8	0.98473	0.05731
9	0.99719	0.01527
10	0.99968	0.00281
11	0.99998	0.00032
12	1.00000	0.00002

• Thus $y_{0.025} = 1$, $y_{0.975} = 9$, and

$$C_{0.05} = \{Y : Y \le 1 \text{ or } Y \ge 9\}$$

Exact Test for Binomial: Example II

- Suppose it is known that the 1-year death rate for a particular form of cancer is 30%.
- A new therapy designed to decrease the death rate is to be tried on 15 patients

$$H_0: \pi = 0.3$$
 vs. $H_A: \pi < 0.3$

• Then want $C_{\alpha} = \{Y : Y \leq y_{\alpha}\}$ where

$$\sum_{i=0}^{y_{\alpha}} {15 \choose i} 0.3^{i} 0.7^{15-i} \le \alpha$$

• From table or R:

$$C_{0.05} = \{Y : Y \le 1\} = \{Y : Y \in \{0, 1\}\}\$$

Binomial: Large Sample

- \bullet Test of hypothesis for binomial data when n is large
- Normal approximation to binomial
- If $Y \sim \text{Binomial}(n, \pi)$, then for large n the distribution of

$$Z = \frac{Y - n\pi}{\sqrt{n\pi(1 - \pi)}}$$

is approximately N(0,1)

- Approximation improves as $n \to \infty$
- Rule of thumb: $n\pi(1-\pi) \ge 10$

Binomial: Example

- Revisit cancer example: Now suppose we test the new therapy on 150 patients
- Then

$$C_{0.05} = \{z : z < -1.645\}$$

where

$$Z = \frac{Y - 45}{\sqrt{150(0.3)(0.7)}}$$

- Invert the exact test: Find all π_0 such that $H_0: \pi = \pi_0$ would not be rejected
- To get an exact $100(1-\alpha)\%$ CI for π , solve these equations for π_L and π_U :

$$\Pr[Y \ge y | \pi = \pi_L] = \sum_{k=y}^{n} \binom{n}{k} \pi_L^k (1 - \pi_L)^{n-k} = \alpha/2$$

$$\Pr[Y \le y | \pi = \pi_U] = \sum_{k=0}^{y} \binom{n}{k} \pi_U^k (1 - \pi_U)^{n-k} = \alpha/2$$

• Known as the *Clopper-Pearson* interval

• Can show that

$$\pi_L = \frac{y}{y + (n - y + 1) \times F_{2(n - y + 1), 2y, 1 - \alpha/2}}$$
 for $1 \le y \le n$ ($\pi_L = 0$ for $y = 0$); and
$$\pi_U = \frac{y + 1}{y + 1 + (n - y)/F_{2(y + 1), 2(n - y), 1 - \alpha/2}}$$
 for $0 \le y \le n - 1$ ($\pi_U = 1$ for $y = n$)

• This CI can be "extremely conservative"; cf. Wypij (Encyclopedia of Biostatistics, 1998)

- For example, suppose n = 12 and y = 4
- Then

$$\pi_L = \frac{4}{4 + 9 \times F_{18,8,0.975}}$$

• R

```
> 4/(4+9*qf(0.975,18,8))
[1] 0.0992461
```

• SAS

data; x=4/(4+9*quantile('f',0.975,18,8));

• R code

0.0992461 0.6511245

• SAS code

```
data; input event count; datalines;
 0 4
  1 8
proc freq; tables event; exact binomial; weight count; run;
              Binomial Proportion for event = 0
             Proportion (P)
                                          0.3333
             ASE
                                          0.1361
             95% Lower Conf Limit
                                          0.0666
             95% Upper Conf Limit
                                          0.6001
             Exact Conf Limits
             95% Lower Conf Limit
                                          0.0992
             95% Upper Conf Limit
                                          0.6511
```

- Suppose y = 0
- Then $\pi_L = 0$ because

$$\Pr[Y \ge 0 | \pi = \pi_L] = \sum_{k=0}^n \binom{n}{k} \pi_L^k (1 - \pi_L)^{n-k} = 1$$

for any $\pi_L \neq 0$

• For the upper bound

$$\Pr[Y \le 0 | \pi = \pi_U] = \sum_{k=0}^{0} \binom{n}{k} \pi_U^k (1 - \pi_U)^{n-k} = \alpha/2$$

implies
$$\pi_U = 1 - (\alpha/2)^{1/n}$$

- Suppose n = 10, $\alpha = 0.05$, y = 0
- $\pi_L = 0$, $\pi_U = 1 0.025^{1/10} = 0.3085$
- R

> binom.test(0,10)

Exact binomial test

data: 0 and 10

number of successes = 0, number of trials = 10, p-value = 0.001953 alternative hypothesis: true probability of success is not equal to 0.5 95 percent confidence interval:

0.0000000 0.3084971

Binomial: Large Sample CIs

- Let p = Y/n where Y is the number of successes in n trials
- Can think of this as a random sample X_1, X_2, \ldots, X_n in which $X_i = 1$ for a success and 0 otherwise, with $Y = \sum_{i=1}^{n} X_i$, and so $p = \bar{X}$
- If n is sufficiently large,

$$p \sim N\left(\pi, \frac{\pi(1-\pi)}{n}\right)$$

• Thus an approximate $100(1-\alpha)\%$ CI for π is

$$p \pm z_{1-\alpha/2} \sqrt{\frac{p(1-p)}{n}}$$

• Rule of thumb: $np(1-p) \ge 10$

Binomial: Example

- Suppose a random sample of 886 undergrads at a college finds that 321 report binge drinking at least once in the past year
- Then point estimate for π is

$$p = \frac{321}{886} = 0.36$$

• An approximate 95% CI for the proportion of binge drinkers is:

$$0.36 \pm 1.96\sqrt{\frac{(0.36)(0.64)}{886}} = 0.36 \pm 0.03 = (0.33, 0.39)$$

Comparing Two Proportions

- Small sample sizes
 - Fisher's exact test
- Large sample sizes
 - normal approximation to the binomial
 - $-\chi^2$ test

Comparing Two Proportions

• Put the data in a 2×2 table

	Success	Failure	
Sample 1	n_{11}	n_{12}	n_1
Sample 2	n_{21}	n_{22}	n_2
	m_1	m_2	N

- Suppose $n_{11} \sim \text{Binomial}(n_1, \pi_1)$ and $n_{21} \sim \text{Binomial}(n_2, \pi_2)$
- Hypotheses

$$H_0: \pi_1 = \pi_2$$

versus

$$H_A: \pi_1 \neq \pi_2 \text{ or } H_A: \pi_1 < \pi_2$$

Fisher's Exact Test

- Assume the margins m_1, m_2, n_1, n_2 are fixed
- Then once we know n_{11} , the other values n_{12} , n_{21} , and n_{22} are uniquely determined
- Under H_0 , can show

$$\Pr[n_{11} = k | m_1, n_1, n_2] = \frac{\binom{n_1}{k} \binom{n_2}{m_1 - k}}{\binom{N}{m_1}}$$

$$= \frac{n_1! \, n_2! \, m_1! \, m_2!}{N! \, n_{11}! \, n_{12}! \, n_{21}! \, n_{22}!}$$

• This is the *hypergeometric* distribution

Fisher's Exact Test

- For Fisher's exact test, we use the hypergeometric distribution
 - 1. Rearrange the table so that the row with the smaller row total is the first row and the column with the smaller column total is the first column
 - 2. Set $n_{11} = 0$ and compute $Pr[n_{11} = 0]$ using the hypergeometric distribution
 - 3. Construct the next table by increasing n_{11} by 1 and re-compute the probability
 - 4. Repeat step 3 until one of the remaining 3 cells is 0
 - 5. This gives the CDF for n_{11}

Fisher's Exact Test: Example

• A study compared the surgical mortality for patients receiving an emergency coronary bypass with those receiving a non-emergency bypass

	Dead	Alive	
Emergency	1	19	20
Non-emergency	7	369	376
Total	8	388	396

• Null hypothesis

$$H_0$$
: Pr[dead|emergency] = Pr[dead|non-emergency]
 $H_0: \pi_1 = \pi_2$

Fisher's Exact Test: Example cont.

• Set $n_{11} = 0$

	Dead	Alive	
Emergency	0	20	20
Non-emergency	8	368	376
Total	8	388	396

$$Pr[n_{11} = 0 \mid \text{observed margins}] = \frac{20! \ 376! \ 388! \ 8!}{396! \ 0! \ 20! \ 8! \ 368!} = 0.658$$

• Similarly for $Pr[n_{11} = 1]$, $Pr[n_{11} = 2]$, ...

Fisher's Exact Test: Example cont.

a	$\Pr[n_{11} = a]$	$\Pr[n_{11} \le a]$	$\Pr[n_{11} \ge a]$
0	0.658	0.658	1.000
1	0.285	0.943	0.342
2	0.051	0.994	0.057
3	0.005	0.999	0.006
4	< 0.001	>0.999	< 0.001
5	< 0.001	>0.999	< 0.001
6	< 0.001	>0.999	< 0.001
7	< 0.001	>0.999	< 0.001
8	< 0.001	1.000	< 0.001

Fisher's Exact Test: Example cont.

- If $H_A: \pi_1 > \pi_2$, we would reject H_0 for large n_{11}
- For example

$$C_{0.05} = \{n_{11} : n_{11} \ge 3\}$$

• P-value for this study

$$\Pr[n_{11} \ge 1] = 1 - 0.658 = 0.342$$

Fisher's Exact Test: P-values

- To compute p-values, consider all 2×2 tables possible given the observed margins
- ullet One-sided p-value: sum the probabilities of the observed table and all tables more extreme than the observed table in the direction of H_A
- Two-sided p-value: sum the probabilities of tables that are as likely as or less likely than the observed table, given the fixed margins

Fisher's Exact Test: P-values

- Most statistical software packages compute the p-value for Fisher's exact test. The tables in the text are difficult to use.
- SAS:

```
data;
  input surgery $ discharge $ count;
  datalines;
  emergency dead 1
  emergency alive 19
  other dead 7
  other alive 369
;

proc freq order=data;
  tables surgery*discharge / nopct nocol;
  exact fisher;
  weight count;
```

Fisher's Exact Test: SAS Output

surgery	discharge				
Frequency	1				
Row Pct	dead +				Total
emergenc					20
	5.00				
other	+ 7				376
	1.86				
Total	+8		388		396
Fisher's Exact Test					
Cell (1,1) Frequency (F) 1					
Left-sided Pr <= F			(0.9434	
Right-sided Pr >= F			(3419	
Table Probability (P)			(0.2854	
Two-sided Pr <= P			(3419	

Fisher's Exact Test: P-values

• R

```
> fisher.test(matrix(c(1,19,7,369),nrow=2),alternative="greater")
        Fisher's Exact Test for Count Data
      matrix(c(1, 19, 7, 369), nrow = 2)
p-value = 0.3419
alternative hypothesis: true odds ratio is greater than 1
> fisher.test(matrix(c(1,19,7,369),nrow=2))
        Fisher's Exact Test for Count Data
data: matrix(c(1, 19, 7, 369), nrow = 2)
p-value = 0.3419
alternative hypothesis: true odds ratio is not equal to 1
```

Fisher's Exact Test: Example II

• Suppose another study yields

	Dead	Alive	
Emergency	2	23	25
Non-emergency	5	30	35
Total	7	53	60

• Null hypothesis

$$H_0$$
: Pr[dead|emergency] = Pr[dead|non-emergency]
 $H_0: \pi_1 = \pi_2$

Fisher's Exact Test: Example II cont.

• p-value computation

a	$\Pr[n_{11} = a]$	$H_A: \pi_1 > \pi_2$	$H_A:\pi_1<\pi_2$	$H_A:\pi_1\neq\pi_2$
0	0.017		+	+
1	0.105		+	+
2	0.252	+	+	+
3	0.312	+		
4	0.214	+		+
5	0.082	+		+
6	0.016	+		+
7	0.001	+		+

BIOS 662 Fall 2018 32 Count Data

Fisher's Exact Test: Example II cont.

• Critical region for $H_A: \pi_1 > \pi_2$

$$C_{0.10} = \{n_{11} : n_{11} = 5, 6, \text{ or } 7\}$$

• Critical region for $H_A: \pi_1 < \pi_2$

$$C_{0.10} = \{n_{11} : n_{11} = 0\}$$

• Critical region for $H_A: \pi_1 \neq \pi_2$

$$C_{0.10} = \{n_{11} : n_{11} = 0, 6, \text{ or } 7\}$$

Fisher's Exact Test: Comments

- Justification/ramification of conditioning on margins
- Alternative: Barnard's test, more powerful for small sample sizes. Available in StatXact. R?

Comparing Two Proportions: Large Samples

- If n_1 and n_2 are large, we can use the normal distribution
- Let n_{i1} be the number of successes in the i^{th} sample; i = 1, 2
- Estimator of π_i is $p_i = n_{i1}/n_i$
- From the CLT, if n_i is large

$$p_i \sim N\left(\pi_i, \frac{\pi_i(1-\pi_i)}{n_i}\right)$$

Comparing Two Proportions: Large Samples

• If samples are independent and π_i known for i = 1, 2, it follows

$$\frac{p_1 - p_2 - (\pi_1 - \pi_2)}{\sqrt{\frac{\pi_1(1 - \pi_1)}{n_1} + \frac{\pi_2(1 - \pi_2)}{n_2}}} \sim N(0, 1)$$

• This approximation is good if $n_i \pi_i (1 - \pi_i) \ge 10$ for i = 1, 2

Comparing Two Proportions: Large Samples

• If samples are independent and π_i unknown for i = 1, 2, Slutsky/CLT imply

$$\frac{p_1 - p_2 - (\pi_1 - \pi_2)}{\sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}} \sim N(0, 1)$$

for sufficiently large n_1 and n_2 (rule of thumb: $n_i p_i (1 - p_i) \ge 10$ for i = 1, 2)

Comparing Two Proportions: Example

- A case-control study was conducted to investigate the association between oral contraceptive use and myocardial infarction
- Among 234 MI patients, 29 were OC users
- Among 1,742 non-MI patients, 135 were OC users
- Let π_1 denote the probability of OC use given a case (MI) and π_2 denote the probability of OC use given a control (no MI)

Comparing Two Proportions: Example cont.

• Hypotheses

$$H_0: \pi_1 = \pi_2$$
 vs. $H_A: \pi_1 \neq \pi_2$

• Rejection region

$$C_{0.05} = \{|z| > 1.96\}$$

• Point estimates

$$p_1 = 29/234 = 0.124; p_2 = 135/1742 = 0.078$$

• Test statistic

$$z = \frac{0.124 - 0.078 - 0}{\sqrt{\frac{(0.124)(0.876)}{234} + \frac{(0.078)(0.922)}{1742}}} = 2.42$$

• Alternative test of $H_0: \pi_1 = \pi_2$ is the χ^2 test

• Recall 2×2 table

	Success	Failure	
Sample 1	n_{11}	n_{12}	n_1
Sample 2	n_{21}	n_{22}	$\mid n_2 \mid$
	m_1	m_2	N

• It can be shown that under H_0 , the statistic

$$X^{2} = \frac{N(n_{11}n_{22} - n_{12}n_{21})^{2}}{n_{1}n_{2}m_{1}m_{2}} \sim \chi_{1}^{2}$$

• Critical region for $H_A: \pi_1 \neq \pi_2$

$$C_{\alpha} = \{X^2 : X^2 \ge \chi_{1,1-\alpha}^2\}$$

- Also known as the "Pearson" chi-square statistic
- Equivalent form

$$X^{2} = \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{(n_{ij} - E(n_{ij}))^{2}}{E(n_{ij})}$$

where $E(n_{ij}) = n_i m_j / N$

• We will see this again for $r \times c$ tables

• OC-MI example:

	OC Users	Non-users	
MI Cases	29	205	234
Controls	135	1607	1742
	164	1812	1976

- Rejection region: $C_{0.05} = \{X^2 : X^2 > \chi^2_{1,0.95} = 3.84\}$
- Test statistic

$$X^{2} = \frac{1976(29 \times 1607 - 135 \times 205)^{2}}{234 \times 1742 \times 1812 \times 164} = 5.84$$

χ^2 Test Example: SAS

proc freq order=data; tables patient*oc / norow nocol nopercent chisq;

Table of patient by oc

patient oc

Frequenc	ylyes		no			Total
	-+		-+		-+	
mi	1	29	1	205	1	234
	-+		+		+	
non-mi	1	135		1607	1	1742
	-+		-+		-+	
Total		164		1812		1976

Statistics for Table of patient by oc

Statistic	DF	Value	Prob
Chi-Square	1	5.8443	0.0156

χ^2 Test Example: R

> chisq.test(matrix(c(29,205,135,1607),nrow=2),correct=FALSE)

Pearson's Chi-squared test

data: matrix(c(29, 205, 135, 1607), nrow = 2)X-squared = 5.8443, df = 1, p-value = 0.01563

> chisq.test(matrix(c(29,205,135,1607),nrow=2))

Pearson's Chi-squared test with Yates' continuity correction

data: matrix(c(29, 205, 135, 1607), nrow = 2)X-squared = 5.2501, df = 1, p-value = 0.02195

- Note: $\sqrt{5.84} = 2.42$ and $\sqrt{3.84} = 1.96$
- Intuition: If $Z \sim N(0,1)$, then $Z^2 \sim \chi_1^2$
- Indeed, for 2-sided tests, the χ^2 and Z test are approximately equivalent
- In fact, if we use

$$Z = \frac{p_1 - p_2 - (\pi_1 - \pi_2)}{\sqrt{p(1-p)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}},$$

where $p = (n_{11} + n_{21})/N$,

then exactly equivalent for two-sided H_A

Comparing Two Proportions: Summary

- For small samples, use Fisher's exact test
- For large samples and $H_A: \pi_1 \neq \pi_2$, use χ^2 or Z test, i.e.,

$$C_{\alpha} = \{X^2 : X^2 > \chi_{1,1-\alpha}^2\}$$

or $C_{\alpha} = \{z : |z| > z_{1-\alpha/2}\}$

• For large samples and $H_A: \pi_1 < \pi_2$ or $H_A: \pi_1 > \pi_2$, use Z test, i.e.,

$$C_{\alpha} = \{z : z < -z_{1-\alpha}\}$$

or $C_{\alpha} = \{z : z > z_{1-\alpha}\}$

Outline

- One sample binary outcome
- Two sample binary outcome
- Measures of association
 - Risk difference
 - Relative risk (risk ratio)
 - Odds ratio
- Confounding Mantel-Haenszel
- Matching McNemar

• In epidemiologic studies, we often obtain 2×2 tables

	Disease	No disease	
Exposed	n_{11}	n_{12}	n_1
Unexposed	n_{21}	n_{22}	n_2
	m_1	m_2	N

• Source could be a cross-sectional, case-control, or prospective (cohort or clinical trial) study

Measures of Association: Estimands

• Let

$$\pi_1 = \Pr[\text{ disease } | \text{ exposed }]$$

and $\pi_2 = \Pr[\text{ disease } | \text{ not exposed }]$

• Risk difference:

$$RD = \pi_1 - \pi_2$$

• Risk ratio (relative risk):

$$RR = \pi_1/\pi_2$$

• Odds ratio (cross product ratio):

$$OR = \frac{\pi_1/(1-\pi_1)}{\pi_2/(1-\pi_2)}$$

Measures of Association: Estimands

• Independence or no association corresponds to

$$RR = 1$$
 and $OR = 1$

- OR, RR $\in [0, \infty)$
- RR = 4 implies an exposed person is 4 times as likely to have the disease as an unexposed person
- OR = 4 implies the odds of disease in the exposed is 4 times that in the unexposed

Measure of Association: Estimands

• Note

OR/RR =
$$\left[\frac{\pi_1(1-\pi_2)}{\pi_2(1-\pi_1)}\right] / \left[\frac{\pi_1}{\pi_2}\right] = \frac{1-\pi_2}{1-\pi_1}$$

• If disease rare,

$$1-\pi_1 \approx 1-\pi_2 \approx 1$$

- In this case, $OR \approx RR$; this is important in case-control studies
- Rule of thumb:

$$\pi_1, \pi_2 \leq 0.05$$
 (text page 165);
 $\pi_1, \pi_2 \leq 0.10$ (Rosner, 1995, page 368);
requires external knowledge

Measures of Association: Estimators

• Risk difference:

$$\widehat{RD} = p_1 - p_2 = (n_{11}/n_1) - (n_{21}/n_2)$$

• Relative risk:

$$\widehat{RR} = p_1/p_2 = (n_{11}/n_1)/(n_{21}/n_2)$$

• Odds ratio:

$$\widehat{OR} = \frac{p_1/(1-p_1)}{p_2/(1-p_2)} = \frac{n_{11}/n_{12}}{n_{21}/n_{22}} = \frac{n_{11}n_{22}}{n_{21}n_{12}}$$

- In case-control studies, \widehat{RR} should not be used to estimate RR. Why?
- Intuitively, RR describes $\Pr[D^+|E^+]$ and $\Pr[D^+|E^-]$, while case-control studies provide information about $\Pr[E^+|D^+]$ and $\Pr[E^+|D^-]$

• Formally: Suppose the joint distribution of exposure and disease in the population is denoted by

	Disease	No disease	
Exposed	π_{11}	π_{12}	$ \pi_1.$
Unexposed	π_{21}	π_{22}	π_2 .
	π .1	π .2	

BIOS 662 Fall 2018 54 Count Data

- Sample m_1 individuals with disease and m_2 without disease.
- The expected numbers of observations are

	Disease	No disease
Exposed	$\frac{m_1\pi_{11}}{\pi_{\cdot 1}}$	$\frac{m_2\pi_{12}}{\pi_{\cdot 2}}$
Unexposed	$\frac{m_1\pi_{21}}{\pi_{\cdot 1}}$	$rac{m_2\pi_{22}}{\pi_{\cdot 2}}$
	m_1	m_2

• Therefore

$$\widehat{RR} \approx \frac{\left(\frac{m_1\pi_{11}}{\pi_{.1}}\right) / \left(\frac{m_1\pi_{11}}{\pi_{.1}} + \frac{m_2\pi_{12}}{\pi_{.2}}\right)}{\left(\frac{m_1\pi_{21}}{\pi_{.1}}\right) / \left(\frac{m_1\pi_{21}}{\pi_{.1}} + \frac{m_2\pi_{22}}{\pi_{.2}}\right)}$$

$$= \frac{\pi_{11} \times \left(\frac{m_1\pi_{21}}{\pi_{.1}} + \frac{m_2\pi_{22}}{\pi_{.2}}\right)}{\pi_{21} \times \left(\frac{m_1\pi_{11}}{\pi_{.1}} + \frac{m_2\pi_{12}}{\pi_{.2}}\right)}$$

$$= \frac{m_1\pi_{11}\pi_{21}}{\frac{m_1\pi_{11}\pi_{21}}{\pi_{.1}}} + \frac{m_2\pi_{11}\pi_{22}}{\frac{\pi_{.2}}{\pi_{.2}}}$$

$$= \frac{m_1\pi_{11}\pi_{21}}{\frac{m_1\pi_{11}\pi_{21}}{\pi_{.1}}} + \frac{m_2\pi_{12}\pi_{21}}{\frac{\pi_{.2}}{\pi_{.2}}}$$

• This depends on the choice of m_1 and m_2 ; for instance, $\widehat{RR} \to 1$ as $m_1 \to \infty$ for fixed m_2

• On the other hand, we would expect

$$\widehat{OR} \approx \frac{\left(\frac{m_1 \pi_{11}}{\pi_{.1}}\right) / \left(\frac{m_2 \pi_{12}}{\pi_{.2}}\right)}{\left(\frac{m_1 \pi_{21}}{\pi_{.1}}\right) / \left(\frac{m_2 \pi_{22}}{\pi_{.2}}\right)}$$

$$= \frac{\pi_{11} / \pi_{12}}{\pi_{21} / \pi_{22}}$$

• For a rare disease, π_{11} and π_{21} are both small, so

$$\frac{\pi_{11}/\pi_{12}}{\pi_{21}/\pi_{22}} \approx \frac{\pi_{11}/(\pi_{11} + \pi_{12})}{\pi_{21}/(\pi_{21} + \pi_{22})}$$

Thus $\widehat{OR} \approx RR$ in this case.

• Intuitively, why does \widehat{OR} estimate OR in a case-control study?

OR =
$$\frac{\pi_1/(1-\pi_1)}{\pi_2/(1-\pi_2)} = \frac{\pi_{11}/\pi_{12}}{\pi_{21}/\pi_{22}}$$

= $\frac{\pi_{11}/\pi_{21}}{\pi_{12}/\pi_{22}} = \frac{\frac{\pi_{11}}{\pi_{11}+\pi_{21}}/\frac{\pi_{21}}{\pi_{11}+\pi_{21}}}{\frac{\pi_{12}}{\pi_{12}+\pi_{22}}/\frac{\pi_{22}}{\pi_{12}+\pi_{22}}}$
= $\frac{\omega_1/(1-\omega_1)}{\omega_2/(1-\omega_2)}$

where

$$\omega_1 = \pi_{11}/(\pi_{11} + \pi_{21}) = \Pr[E + |D+]$$

$$\omega_2 = \pi_{12}/(\pi_{12} + \pi_{22}) = \Pr[E + |D-]$$

- Similarly, \widehat{RD} should not be used to estimate RD in case-control studies
- For prospective or cross-sectional studies, a $100(1 \alpha)\%$ CI for RD is given by

$$p_1 - p_2 \pm z_{1-\alpha/2} \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$$

when n_1 and n_2 are sufficiently large

• It can be shown that

$$\widehat{\text{Var}}(\log(\widehat{RR})) = \frac{n_{12}}{n_{11}n_1} + \frac{n_{22}}{n_{21}n_2}$$

and

$$\log(\widehat{RR}) \sim N(\log(RR), Var(\log(RR)))$$

• Therefore a $100(1-\alpha)\%$ CI for $\log(RR)$ is

$$\log(p_1/p_2) \pm z_{1-\alpha/2} \sqrt{\frac{n_{12}}{n_{11}n_1} + \frac{n_{22}}{n_{21}n_2}}$$

• Thus

$$CI_{lower} = \frac{p_1}{p_2} \exp\left\{-z_{1-\alpha/2} \sqrt{\frac{n_{12}}{n_{11}n_1} + \frac{n_{22}}{n_{21}n_2}}\right\}$$

$$CI_{upper} = \frac{p_1}{p_2} \exp\left\{z_{1-\alpha/2} \sqrt{\frac{n_{12}}{n_{11}n_1} + \frac{n_{22}}{n_{21}n_2}}\right\}$$

- In a prospective or cross-sectional study, these CIs are recommended when $n_i p_i (1 p_i) \ge 5$ for i = 1, 2 where p_1 and p_2 are the sample proportions with the disease given exposed and unexposed, respectively
- See Rosner (1995) page 364

Measures of Association: Example

• In a study of the relationship between obesity and asthma, a cohort of 3,792 children free of asthma were followed for 5 years

	Asthma	No asthma	
Obese	36	154	190
Not obese	252	3350	3602
	288	3504	3792

Measures of Association: Example cont.

• Null hypothesis

 $H_0: \Pr[\operatorname{asthma} \mid \operatorname{obese}] = \Pr[\operatorname{asthma} \mid \operatorname{not obese}]$

$$H_0: \pi_1 = \pi_2$$

Equivalently:

$$H_0: \pi_1 - \pi_2 = 0$$
 or $H_0: \pi_1/\pi_2 = 1$

• Rejection region

$$C_{0.05} = \{X^2 > 3.84\}$$

• Test statistic

$$X^{2} = \frac{(3792)(36 \times 3350 - 252 \times 154)^{2}}{3602 \times 190 \times 288 \times 3504} = 36.73$$

Measures of Association: Example cont.

• Point estimate of RD

$$\widehat{RD} = p_1 - p_2$$

= $36/190 - 252/3602$
= $0.189 - 0.070$
= 0.12

Interpretation: we estimate that obese children have a 12 percentage point greater chance of developing asthma within 5 years than non-obese children

• 95% CI: (0.063, 0.176)

Measures of Association: Example cont.

• Point estimate of RR

$$\widehat{RR} = 0.189/0.070 = 2.7$$

Interpretation: we estimate that obese children are 2.7 times more likely to develop asthma within 5 years than non-obese children

• 95% CI for RR:

$$2.7 \exp\left\{\pm 1.96\sqrt{\frac{154}{36(190)} + \frac{3350}{252(3602)}}\right\} = (1.97, 3.72)$$

Measures of Association: SAS Code/Output

```
data;
  input asthma $ obese $ count;
  datalines;
  yes yes 36
  yes no 252
  no yes 154
  no no 3350
  ;
proc freq order=data;
  tables obese*asthma / norow nocol nopercent relrisk riskdiff;
  weight count;
```

Table of obese by asthma

obese asthma

Frequency	lyes	no		Total
	+	+	-+	
yes	J 36	154	١	190
	+	-+	-+	
no	252	3350		3602
	+	+	+	
Total	288	3504		3792

Measures of Association: SAS Code/Output

Statistics for Table of obese by asthma

Column 1 Risk Estimates

			(Asymptotic) 95%	
	Risk	ASE	Confidenc	ce Limits
Row 1	0.1895	0.0284	0.1338	0.2452
Row 2	0.0700	0.0043	0.0616	0.0783
Total	0.0759	0.0043	0.0675	0.0844
Difference	0.1195	0.0287	0.0632	0.1759

Estimates of the Relative Risk (Row1/Row2)

Type of Study	Value	95% Confide	nce Limits
Case-Control (Odds Ratio)	3.1076	2.1151	4.5659
Cohort (Col1 Risk)	2.7083	1.9720	3.7195
Cohort (Col2 Risk)	0.8715	0.8131	0.9341

• Can show

$$\widehat{\text{Var}}(\widehat{\text{log}}(\widehat{\text{OR}})) = \frac{1}{n_{11}} + \frac{1}{n_{21}} + \frac{1}{n_{12}} + \frac{1}{n_{22}}$$

and

$$\log(\widehat{OR}) \sim N(\log(OR), Var(\log(OR)))$$

(Woolf, 1955)

• Thus for large n, a $100(1-\alpha)\%$ CI is

$$\widehat{OR} \exp \left\{ \pm z_{1-\alpha/2} \sqrt{\frac{1}{n_{11}} + \frac{1}{n_{21}} + \frac{1}{n_{12}} + \frac{1}{n_{22}}} \right\}$$

• In a prospective or cross-sectional study, Woolf CIs are recommended when

$$n_i p_i (1 - p_i) \ge 5$$

for i = 1, 2 where p_1 and p_2 are the sample proportions with disease given exposed and unexposed, respectively

• In a case-control study, Woolf CIs are recommended when

$$m_i p_i^* (1 - p_i^*) \ge 5$$

for i = 1, 2 where p_1^* and p_2^* are the sample proportions exposed among cases and controls, respectively

• See Rosner (1995) page 369

• Recall the oral contraceptive use and MI example:

	OC Users	Non-users	
MI Cases	29	205	234
Controls	135	1607	1742
	164	1812	1976

• Point estimate

$$\widehat{OR} = \frac{29 \times 1607}{205 \times 135} = 1.68$$

• 95% CI

$$1.684 \exp\left\{\pm 1.96\sqrt{\frac{1}{29} + \frac{1}{205} + \frac{1}{135} + \frac{1}{1607}}\right\} = (1.10, 2.58)$$

• SAS ouput:

Table of patient by oc

patient oc

Frequency	yes	no	1	Total
+		-+	-+	
mi	29	205	1	234
+		+	-+	
non-mi	135	1607	1	1742
+		+	-+	
Total	164	1812		1976

Estimates of the Relative Risk (Row1/Row2)

Type of Study	Value	95% Confider	nce Limits
Case-Control (Odds Ratio)	1.6839	1.0991	2.5800
Cohort (Col1 Risk)	1.5992	1.0967	2.3320
Cohort (Col2 Risk)	0.9497	0.9033	0.9984

• R

Measures of Association: OR

• R

OC

Non-user

User

```
> oddsratio.wald(example)
$data
         ΜI
0C
          Control Case Total
 Non-user
             1607
                   205 1812
            135
                    29
                         164
 User
             1742 234 1976
  Total
$measure
         odds ratio with 95% C.I.
OC
          estimate
                      lower
                               upper
  Non-user 1.000000
                         NA
                                  NA
 User
          1.683939 1.099069 2.580045
$p.value
         two-sided
```

NA

0.02158681

midp.exact fisher.exact chi.square

NA

0.02228029 0.01562785

NA

Confounding

- Confounding: A confounding variable is a variable that is associated with both the disease and the exposure.
- Such a variable may bias the measured association between exposure and disease
- A confounding variable may mask a true disease-exposure association or may cause the observed association to be too large

Confounding: Example

• Malaria and gender (case-control study)

	Malaria	No malaria	
Males	88	68	156
Females	62	82	144
	150	150	300

• Null hypothesis

$$H_0: \pi_1 = \pi_2 \Leftrightarrow H_0: OR = 1$$

•
$$\widehat{OR} = 1.71; \quad X^2 = 5.34 \quad (p = 0.02)$$

• However, men work outdoors more than women

Confounding: Example cont.

• Stratified analysis

• Outdoor occupation $\widehat{OR} = 1.06$

	Malaria	No malaria	
Males	53	15	68
Females	10	3	13
	63	18	81

• Indoor occupation $\widehat{OR} = 1.00$

	Malaria	No malaria	
Males	35	53	88
Females	52	79	131
	87	132	219

- Adjust for possible confounding by stratification and combining 2×2 tables.
- For each stratum, $j = 1, 2, \dots, S$, we have

	Disease	No disease	
Exposed	n_{11j}	n_{12j}	n_{1j}
Unexposed	n_{21j}	n_{22j}	n_{2j}
	$igg m_{1j}$	m_{2j}	$\mid N_j \mid$

• Recall that if the margins $(m_{1j}, m_{2j}, n_{1j}, n_{2j})$ are fixed, n_{11j} follows the hypergeometric distribution

• Thus

$$E(n_{11j}) = \frac{n_{1j}m_{1j}}{N_j}$$

and

$$Var(n_{11j}) = \frac{n_{1j}n_{2j}m_{1j}m_{2j}}{N_j^2(N_j - 1)}$$

• Let

$$O_j = n_{11j}; \ E_j = E(n_{11j}); \ V_j = Var(n_{11j})$$

and

$$O = \sum_{j=1}^{S} O_j; \quad E = \sum_{j=1}^{S} E_j; \quad V = \sum_{j=1}^{S} V_j;$$

• The Mantel-Haenszel statistic is given by

$$X_{\rm MH}^2 = \frac{(|O - E| - 0.5)^2}{V}$$

- Under H_0 : OR = 1 within strata, $X_{\text{MH}}^2 \sim \chi_1^2$ $C_{\alpha} = \{X_{\text{MH}}^2 : X_{\text{MH}}^2 > \chi_{1,1-\alpha}^2\}$
- $X_{\rm MH}$ has power against the alternative hypothesis of consistent patterns of association; it has low power for detecting association in opposite directions. However, it always preserves type I error (Stokes, Davis, Koch 1995)

- Assuming homogeneous OR across strata, we can also use the MH approach to estimate the overall or common OR
- MH estimator of OR

$$\widehat{OR}_{MH} = \frac{\sum_{j=1}^{S} n_{11j} n_{22j}/N_j}{\sum_{j=1}^{S} n_{12j} n_{21j}/N_j}$$

• Let

$$P_j = (n_{11j} + n_{22j})/N_j; \quad Q_j = (n_{12j} + n_{21j})/N_j$$

 $R_j = (n_{11j} n_{22j})/N_j; \quad W_j = (n_{12j} n_{21j})/N_j$

• Then $Var(log(\widehat{OR}_{MH}))$ is

$$\frac{\sum_{j} P_{j} R_{j}}{2(\sum_{j} R_{j})^{2}} + \frac{\sum_{j} (P_{j} W_{j} + Q_{j} R_{j})}{2(\sum_{j} R_{j})(\sum_{j} W_{j})} + \frac{\sum_{j} Q_{j} W_{j}}{2(\sum_{j} W_{j})^{2}}$$

• A $100(1 - \alpha)\%$ CI is

$$\widehat{OR}_{MH} \exp \left\{ \pm z_{1-\alpha/2} \sqrt{\operatorname{Var}(\log(\widehat{OR}_{MH}))} \right\}$$

• Robins, Breslow, Greenland (Biometrics, 1986); See Rosner 1995 p 410

Confounding: Malaria Example Revisited

- Unstratified: $X^2 = 5.34$
- Outdoor $\widehat{OR} = 1.06$; indoor $\widehat{OR} = 1.00$
- Outdoor:

$$O_1 = 53; \quad E_1 = \frac{68 \times 63}{81} = 52.889;$$

$$V_1 = \frac{68 \times 13 \times 63 \times 18}{81^2 \times 80} = 1.9099$$

• Indoor:

$$O_2 = 35; E_2 = 34.9589; V_2 = 12.6620$$

Confounding: Malaria Example cont.

• MH test statistic

$$X_{\text{MH}}^2 = \frac{(|(53+35)-(52.889+34.9589)|-0.5)^2}{1.9099+12.6620}$$

$$= 0.008$$

without continuity correction $X_{\rm MH}^2 = 0.0016$

Confounding: Malaria Example Using SAS

```
** Note that the confounder is the first variable;

** listed in the tables statement;

proc freq order=data;
 tables job*gender*malaria / cmh;
 weight count;
```

Summary Statistics for gender by malaria
Controlling for job

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic	Alternative Hypothesis	DF	Value	Prob
1	Nonzero Correlation	1	0.0016	0.9682
2	Row Mean Scores Differ	1	0.0016	0.9682
3	General Association	1	0.0016	0.9682

Confounding: Malaria Example using R

example \leftarrow array(c(53,10,15,3,35,52,53,79),

```
\dim = c(2, 2, 2).
      dimnames = list(Gender = c("Male", "Female"),
                      Malaria = c("Yes", "No"),
                      Job = c("Outdoors", "Indoors")))
> mantelhaen.test(example)
   Mantel-Haenszel chi-squared test without continuity correction
data: example
Mantel-Haenszel X-squared = 0.0016, df = 1, p-value = 0.9682
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:
0.6041733 1.6902399
sample estimates:
common odds ratio
         1.010543
```

- In some studies, subjects occur naturally in pairs or matches; e.g., twins or a matched case-control design
- If we want to compare binary responses in matched pairs, the assumption of independence is violated
- The data are of the form (Y_{i1}, Y_{i2}) , where $Y_{ij} = 1$ if exposed and = 0 if unexposed; i = 1, 2, ..., n; j = 1, 2

	D		
	$Y_{i1} = 1$	$Y_{i1} = 0$	
$D^- Y_{i2} = 1$	n_{11}	n_{12}	
$Y_{i2} = 0$	n_{21}	n_{22}	
			n

• Note

$$Pr[Y_{i1} = 1] = Pr[Y_{i1} = 1, Y_{i2} = 1] + Pr[Y_{i1} = 1, Y_{i2} = 0]$$

and

$$Pr[Y_{i2} = 1] = Pr[Y_{i1} = 1, Y_{i2} = 1] + Pr[Y_{i1} = 0, Y_{i2} = 1]$$

• Therefore

$$\pi_1 - \pi_2 = \Pr[Y_{i1} = 1] - \Pr[Y_{i2} = 1]$$

$$= \Pr[Y_{i1} = 1, Y_{i2} = 0] - \Pr[Y_{i1} = 0, Y_{i2} = 1]$$

• Hypotheses

$$H_0: \pi_1 = \pi_2$$
 vs. $H_A: \pi_1 \neq \pi_2$

• McNemar's test statistic

$$M = \frac{(n_{12} - n_{21})^2}{n_{12} + n_{21}}$$

• Under H_0 , $M \sim \chi_1^2$ if $n_{12} + n_{21}$ is sufficiently large (i.e. ≥ 30)

$$C_{\alpha} = \{ M : M > \chi_{1,1-\alpha}^2 \}$$
$$p = \Pr[\chi_1^2 \ge m]$$

Matched/Paired Observations: Example

- A case-control study was conducted to investigate the association between cytomegalovirus (CMV) and atherosclerosis
- Study participants with atherosclerosis, as measured by ultrasound of the carotid artery, were matched with persons without atherosclerosis, matching on age, sex, ethnicity, geographic site, and date of ultrasound
- Cytomegalovirus antibodies were measured in each person

Matched/Paired Observations: Example cont.

• McNemar's test statistic

$$M = \frac{(42 - 65)^2}{42 + 65} = 4.94$$

• Reject $H_0: \pi_1 = \pi_2$ for $\alpha = 0.05$;

$$p = \Pr[\chi_1^2 \ge 4.94] = 0.026$$

- The χ^2 approximation for McNemar's test is adequate if $n_{12} + n_{21} \ge 30$
- For smaller samples, can compute the exact p-value
- Key: recognize this as a one sample binomial test
- Let $c = n_{12} + n_{21}$. If $n_{12} < c/2$, then

$$p = 2\sum_{k=0}^{n_{12}} \binom{c}{k} 2^{-c}$$

otherwise

$$p = 2\sum_{k=n_{12}}^{c} {c \choose k} 2^{-c} = 2\sum_{k=0}^{n_{21}} {c \choose k} 2^{-c}$$

Matched/Paired Observations: Example II

- Suppose we want to compare 2 lotions for the treatment of poison ivy
- Persons with poison ivy on both arms are selected for the study
- One arm is randomly assigned to receive lotion 1, while the other is treated with lotion 2

		Lotion 1	
		Relief	No relief
Lotion 2	Relief	11	6
	No relief	10	24

Matched/Paired Observations: Example II cont.

• Let $\pi_i = \Pr(\text{itching relief using lotion } i)$

$$H_0: \pi_1 = \pi_2 \text{ vs. } H_A: \pi_1 \neq \pi_2$$

• Exact p-value

$$p = 2\sum_{k=0}^{6} {16 \choose k} 2^{-16} = 2 \times 0.2272 = 0.4544$$

• Do not reject H_0

$$M = \frac{(n_{12} - n_{21})^2}{n_{12} + n_{21}} = \frac{(6 - 10)^2}{6 + 10} = 1$$

• R: mcnemar.test()

Matched/Paired Observations: Example II cont.

```
proc freq order=data;
  tables lotion2*lotion1 / norow nocol nopercent;
  exact agree; weight count;
```

The FREQ Procedure

Table of lotion2 by lotion1

10+i0m2	lotion1
lotion2	IOTIONI

Frequency	relief	norelie	f Total
	+	-+	-+
relief	11	1 6	17
	+	+	-+
norelief	10	24	34
	·	+	-+
Total	21	30	51

Statistics for Table of lotion2 by lotion1

McNem	ar s	rest	
Statistic (S)		1.0000
DF			1
Asymptotic Pa	r >	S	0.3173
Exact P:	r >=	S	0.4545

McNemar's Test

• Marginal homogeneity

$$H_0: \Pr[Y_{i1} = 1] = \Pr[Y_{i2} = 1]$$

• This is a test of association with a risk factor, not a test for agreement between the members of a pair; consider

for these data: M = 0; p = 1

• We'll look at a measure of agreement (kappa statistic) later in the semester

• Odds ratio for matched data

$$\widehat{OR}_{\mathrm{M}} = n_{21}/n_{12}$$

this is just \widehat{OR}_{MH} with a stratum for each matched pair

• Confidence interval obtained by starting on the log scale

$$\widehat{\text{Var}}(\ln(\widehat{\text{OR}}_{\text{M}})) \approx \frac{1}{n_{12}} + \frac{1}{n_{21}}$$

• For $n_{12} + n_{21} \ge 30$, an approximate $100(1 - \alpha)\%$ CI

$$\exp\left(\ln\left(\widehat{OR}_{\mathrm{M}}\right) \pm z_{1-\alpha/2}\sqrt{\widehat{\mathrm{Var}}\left(\ln\left(\widehat{OR}_{\mathrm{M}}\right)\right)}\right)$$

Matched or Paired Observations: CMV Example

• Odds ratio estimate

$$\widehat{OR}_{M} = 65/42 = 1.55$$

• Corresponding estimate of variance of $\ln(\widehat{OR}_M)$

$$\widehat{\text{Var}}(\ln(\widehat{OR}_{M})) = \frac{1}{65} + \frac{1}{42} = 0.0392$$

• Approximate 95% CI on the log scale

$$\ln(1.55) \pm 1.96 \times \sqrt{0.0392} = (0.0502, 0.8263)$$

• So an approximate 95% CI on the original scale is

$$(e^{0.0502}, e^{0.8263}) = (1.05, 2.28)$$