Loss Function of GAN

- Discriminator: to distinguish actual data from fake data
- Generator: to create fake data to fool the discriminator

Conventions (notations) to understand Loss function

Cross entropy

$$H = \sum_{c=1}^{C} \sum_{i=1}^{n} -y_{c,i} log_2(p_{c,i})$$

 P_{ci} is the probability of the **predicted** ith class, it will never be 0 (softmax output), otherwise a **big** problem. $Y_{c,i}$ is the true class probability (usually, one-hot encoding)

Cross entropy is a measure of how similar two distributions are.

Example

				Model 1					
		Predicted prob.			Actual class (one hot encoding)				
		boy	girl	other	boy	girl	other		
data1	boy	0.4	0.3	0.3	1	0	0		
data2	girl	0.3	0.4	0.3	0	1	0		
data3	boy	0.5	0.2	0.3	1	0	0		
data4	other	0.8	0.1	0.1	0	0	1		
			Error rate= ¼=25% CROSS ENTROPY =6.966						

```
Boy's cross entropy=-(1*log(0.4)+1*log(0.5)) = 2.322 (taking log_2) Girl's cross entropy = -(1*log(0.4))=1.322 Other's cross entropy=-(1*log(0.1))=3.322 Overall cross entropy=6.966
```

				Model 2						
		Predicte	d prob.		Actual class (one hot encoding)					
		boy	girl	other	boy	girl	other			
data1	boy	0.7	0.1	0.2	1	0	0			
data2	girl	0.1	0.8	0.1	0	1	0			
data3	boy	0.9	0.1	0.0	1	0	0			
data4	other	0.4	0.3	0.3	0	0	1			
			Error rate= ¼=25% CROSS ENTROPY =2.725							

=-
$$(1 \times \log(0.7) + 1 \times \log(0.8) + 1 \times \log(0.9) + 1 \times \log(0.3)) = 2.725$$

Total = 2.725

Model 2 is better in terms of cross entropy

- For the binary case here: We have
- real 1
- fake 0
- Loss function for Discriminator:

$$L(\hat{y}, y) = -[y \log \hat{y} + (1 - y) \log(1 - \hat{y})]$$

Where \hat{y} is the predicted value; y is the label

Discriminator loss func.

- For a sample coming from R, y=1 and $\hat{y} = D(x)$ L(D(x), 1) = -log(D(x)) -----(A)
- For a sample coming from the Generator, the label is that y=0, and

```
\hat{y} = D(G(z)), so in this case,

L(D(G(z), 0) = -(1-0)\log(1-D(G(z))

= -\log(1-D(G(z)) -----(B)
```

Loss function for D

- The objective of the discriminator is to correctly classify fake data and real data. For this (A) and (B) should be minimized.
- In other words,
- Objective func.

$$\max \log(D(x)) + \log(1 - D(G(z))$$

Loss function for G

- The generator wants to fool the discriminator, so it wants to push
 D(G(z)) to 1, so it minimizes
- $\log(1-D(G(z)) \text{ so } \rightarrow \min[\log(D(x)) + \log(1-D(G(z))]$

Put together

min max
$$\{\log(D(x)) + \log(1 - D(G(z))\}$$

G D

Goodfollw's equation:

min max
$$V(D,G) = E \left[\log(D(x)) \right] + E[\log(1 - D(G(z))]$$

G D $x \sim P_{data}(x)$ $z \sim P_{z}(z)$

How to train it?

- Take half of the training samples from the real dataset and half from generated fake dataset, and train D for a while.
- Then fix D, and train G to generate samples that fool the current D.
- Repeat the two steps until D cannot tell real apart from fake.

- But does it always converge to the case that D fails to distinguish?
- A big Proof

The math

- Part 1 (Loss function)
- Part 2 (Optimization)
- Part 3 (The GAN training algorithm)
- Part 0 (Introduction)

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k=1, the least expensive option, in our experiments.

for number of training iterations do for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(\boldsymbol{x})$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

