ЛЕКЦИЯ 9

План лекции:

- 1. Построение и применение стохастических грамматик.
- 2. Оценка вероятностей стохастических грамматик.

9.1 Статистический анализ в задачах распознавания

Для определения и описания переменных, представляющих случайную среду должны быть привлечены статистические понятия и методология. В распознавании образов случайность появляется в основном в результате воздействия двух принципиальных факторов: шума, возникающего при измерении характеристик объекта, и неполноты информации о характеристиках классов образов.

Для получения статистического аппарата, используемого в ходе решения задач распознавания, выполняется обобщение основной модели формальной грамматики G распространением ее на случаи статистического характера.

Для придания статистического характера рассмотренным моделям грамматик используют следующий прием: считают недетерминированными правила подстановки и ставят в соответствие каждому из них некоторую вероятностную меру. Исходя из этого, стохастическую грамматику определяют так:

$$G=(Vn,Vt,P,Q,S),$$

где все ее составляющие определяются по-прежнему, а Q — это множество вероятностных мер, заданных на множестве правил подстановки P.

Рассмотрим процесс порождения терминальной цепочки x,

начинающейся с S: $S \Rightarrow \alpha_1 \Rightarrow \alpha_2 \Rightarrow ... \Rightarrow \alpha_m = x$, где $(r_1, r_2, ... r_m)$ представляют любые m правил подстановки из множества P и $\alpha_1, \alpha_2, ... \alpha_{m-1}$ - промежуточные цепочки. Пусть различные правила подстановки применяются с вероятностями р (r_1) , $p(r_2)$,... $p(r_m)$. Тогда вероятность порождения цепочки х определяется как

$$p(x) = p(r_1)p(r_2 \mid r_1)p(r_2 \mid r_1r_2)...p(r_m \mid r_1r_2...r_{m-1}), \quad \text{rge} \quad p(r_j \mid r_1r_2...r_{j-1})$$

условная вероятность, поставленная в соответствие правилу r_j при предварительном применении правил $r_1 r_2 ... r_{j-1}$.

Если $p(r_j \mid r_1 r_2 ... r_{j-1}) = p(r_j)$, распределение вероятностей, поставленных в соответствие правилу r_j , называется *неограниченным*, множество Q неограниченно, если все составляющие его распределения вероятностей неограниченны. Стохастическую грамматику называют *неоднозначной*, если существует п различных путей порождения цепочки x, характеризующихся

вероятностями $p_1(x), p_2(x)...p_{(x)}, n > 1$. Т.о., вероятность порождения цепочки x неоднозначной стохастической грамматикой определяется как

$$p(x) = \sum_{i=1}^{n} p_i(x)$$
.
$$\sum_{i=1}^{n} p(x) = 1$$
. Множество O совместно, если $x \in L(G)$

i=1 Множество Q совместно, если $x \in \overline{L(G)}$ Стохастический язык L(G) – это язык, порожденный стохастической грамматикой G. Каждая терминальная цепочка x языка L(G) должна обладать вероятностью p(x) порождения данной цепочки. Стохастический язык, порожденный стохастической грамматикой G, формально можно определить так:

$$L(G) = \left\{ [x, p(x)] \mid x \in V_T^+, S \stackrel{*}{\Rightarrow} x, p(x) = \sum_{i=1}^n p_i(x) \right\} (1),$$
 где V_T^+ - множество всех

терминальных цепочек, исключая пустую, порожденных грамматикой G;

обозначение $S \Rightarrow x$ используется для обозначения выводимости цепочки x из начального символа S посредством соответствующего применения правил подстановки из множества P. T.e. выражение (1) означает, что стохастический язык — это множество всех терминальных цепочек, каждой из которых поставлена в соответствие вероятность ее порождения, причем все цепочки выводимы из начального символа S. Вероятность порождения p(x) задается суммированием вероятностей всех различных способов порождения цепочки x. При n>1 стохастический язык становится неоднозначным.

Пример. Рассмотрим стохастическую грамматику G=(Vn,Vt,P,Q,S), где

$$V_t = (a,b), V_n = (S), P,Q: S \xrightarrow{p} aSb, S \xrightarrow{1-p} ab.$$

Каждому правилу подстановки поставлена в соответствие вероятность его применения. Дважды применив первое правило, а затем один раз второе, получим последовательность S->aSb->aaSbb->aabbb. Обозначив терминальную цепочку аааbbb через x и используя (1), имеем $p(x)=(p)(p)(1-p)=p^2(1-p)$. Язык, порожденный грамматикой G, задается в данном случае следующим образом:

 $L(G) = \{[a^tb^t, p^{t-1}(1-p)]|t>=1\}$. Где каждая цепочку имеет связанную с ней вероятность. Эта стохастическая грамматика не является неоднозначной, так как существует всего одна последовательность правил подстановки, ведущая к каждой терминальной цепочке.

В стохастических языках используются те же методы грамматического разбора, что и в других грамматиках. Однако для облегчения процесса разбора могут привлекаться знания о вероятности применения правил подстановки. Предположим, например, что на определенном шаге процедуры восходящего грамматического разбора имеется несколько правил-кандидатов, одно из которых следует выбрать и применить. Очевидно, что для успешного разбора, следует начинать с того правила, которое имеет большую вероятность

применения для порождения анализируемой терминальной цепочки. Вероятности применения грамматических правил должны использоваться в грамматическом разборе для увеличения скорости распознавания стохастических систем.

9.2 Оценка вероятностей правил подстановки на основе процедур обучения

При необходимости использовать стохастические грамматики требуется располагать механизмом оценки вероятностей, присутствующих в стохастических грамматиках.

Рассмотрим задачу разделения M классов, характеризующуюся стохастическими грамматиками

$$G_q = (V_{N_q}, V_{T_q}, P_q, Q_q, S_q), q = 1, 2, M$$
 (1).

Предполагается, что V_{N_q} , V_{T_q} , P_q , Q_q , S_q известны и грамматики однозначны. Требуется оценить вероятности правил подстановки Q_q , q=1,2..M, при помощи множества выборочных терминальных цепочек $T=\{x1,\ x2,...xm\}$, где каждая цепочка принадлежит языку, порожденному одной из стохастических грамматик.

Собрав все цепочки, перенумеруем их и обозначим через $n(x_h)$ количество появлений цепочки x_h . Каждая цепочка подвергается также разбору с помощью каждой грамматики и число $N_{qij}(x_h)$ обозначает, сколько раз при грамматическом разборе цепочки x_h применялось правило подстановки $A_i > b_j$ грамматики G_q . Хотя вероятности правил подстановки грамматик (1) не известны, предполагается, что сами правила подстановки известны. Поэтому грамматический разбор возможен.

Математическое ожидание n_{qij} числа вхождений правила подстановки A_i -> b_j грамматики G_q в грамматический разбор данной цепочки можно аппроксимировать следующим выражением:

$$n_{qij} = \sum_{x_h \in T} n(x_h) p(G_q \mid x_h) N_{qij}(x_h),$$
 где $p(G_q \mid x_h)$ — вероятность порождения данной цепочки x_h грамматикой G_q . В процессе обучения эта вероятность должна быть определена для каждой цепочки. Вероятность p_{qij} применения правила подстановки A_{i} -> b_{j} в грамматике G_q может быть аппроксимирована

соотношением
$$\hat{p}_{qij} = \frac{n_{qij}}{\sum\limits_{k} n_{qik}}$$
, где \hat{p}_{qij} - оценка вероятности p , а суммирование

в знаменателе выполняется по всем правилам подстановки грамматики G_q , имеющим вид A_i -> b_k , т.е. для всех правил подстановки грамматики G_q с одинаковой нетерминальной левой частью A_i .

По мере приближения числа цепочек в T к бесконечности оценка вероятности \hat{p}_{qij} приближается к истинной вероятности правила подстановки

 p_{qij} при выполнении следующих условий:

1. Множество T — репрезентативное подмножество языков $L(G_q)$, q=1,2,...M, в том смысле, что T->L, где L — объединение языков, т.е. $L=\bigcup_{i=1}^{M}L(G_q)$.

2.Оценка вероятности появления цепочки x_h в множестве T, определяемая соотношением $\hat{p}(x_h) = \frac{n(x_h)}{\sum n(x_k)}$, приближается к истинной $x_h \in L$

вероятности $p(x_h)$.

3. В процессе обучения для каждой цепочки x_h может быть определена вероятность $p(G_q/x_h)$.

Вероятность $p(G_q/x_h)$ того, что данная цепочка x_h принадлежит классу c_q , обычно без проблем может быть установлена в обучающей фазе. Если точно известно, что данная цепочка принадлежит исключительно классу c_q , то $p(G_q/x_h)=1$. Аналогично, если известно, что x_h не может принадлежать c_q , то $p(G_q/x_h)=0$. Однако некоторые цепочки могут принадлежать более чем одному классу. В этом случае оценку вероятности $p(G_q/x_h)$, q=1,2,...M для этих цепочек можно получить, фиксируя относительную частоту, с которой они

$$\sum_{h=0}^{M} p(G_q \mid x_h) = 1.$$

встречаются в каждом классе. При этом необходимо, чтобы q=1 Когда невозможно определить относительную встречаемость неоднозначных цепочек в каком-либо определенном классе, наиболее оправданным для них считается допущение $p(G_q/x_h)=1/M$.