Groupe des permutations d'un ensemble fini CIR,

1. Groupe S_n

 S_n est le groupe des permutations (bijections) de l'ensemble $\{1,2,..,n\}$.

Il est isomorphe au groupe des permutations de n'importe quel ensemble à *n* éléments.

Exemples

 S_2 est composé de l'identité et de la bijection $1 \longleftrightarrow 2$

 S_3 est isomorphe au groupe des permutations des sommets d'un triangle équilatéral, et donc aussi au groupe des isométries du plan qui laissent un triangle équilatéral globalement invariant.

 S_n est un groupe d'ordre n!

Une permutation σ peut être notée $\sigma = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \cdots & \sigma(n) \end{pmatrix}$

Cette notation (notation de Gauss) peut être commode pour composer 2 permutations.

pour
$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 3 & 5 & 1 \end{pmatrix}$$

et
$$\sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 5 & 2 \end{pmatrix} \qquad \mathbf{3}$$

on écrit
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 3 & 5 & 1 \\ 4 & 5 & 1 & 2 & 3 \end{pmatrix}$$
 pour voir que $\sigma_2 \circ \sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 1 & 2 & 3 \end{pmatrix}$ et $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 5 & 2 \\ 3 & 5 & 2 & 1 & 4 \end{pmatrix}$ pour voir que $\sigma_1 \circ \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 2 & 1 & 4 \end{pmatrix}$

La composée $\sigma_2 \circ \sigma_1$ se note aussi $\sigma_2 \sigma_1$; $\sigma \circ \sigma \circ ... \circ \sigma = \sigma^k$, $\sigma^0 = id$ (notation multiplicative).

2. Permutations particulières

Orbite d'un élément sous l'action d'une permutation

Soit σ une permutation de $\{1,2,..,n\}$ et $x \in \{1,2,..,n\}$.

<u>L'orbite de x sous l'action de</u> σ est l'ensemble $O(x) = \{x, \sigma(x), \sigma^2(x), ..., \sigma^k(x), ...\}$

Exemple pour σ_1 : $O(1) = \{1, 2, 4, 5\}, O(2) = O(4) = O(5) = O(1)$ et $O(3) = \{3\}$

 \Box O(x) est un ensemble fini.

Pour tout x, il existe un entier $k \le n$ tel que $O(x) = \{x, \sigma(x), \sigma^2(x), ..., \sigma^{k-1}(x)\}$ et $\sigma^k(x) = x$

La relation $y\Re x \Leftrightarrow y \in O(x)$ est une relation d'équivalence. Les orbites sont donc disjointes 2 à 2.

p-cycle

Une permutation σ de $\{1,2,..,n\}$ est un <u>p-cycle</u> (ou cycle d'ordre p) si toutes les orbites sont réduites à un élément, sauf une seule, qui a p éléments.

Dans ce cas, pour tout x élément de cette orbite, $O(x) = \{x, \sigma(x), \sigma^2(x), ..., \sigma^{p-1}(x)\}$

Le *p*-cycle σ est alors noté $(x, \sigma(x), \sigma^2(x), ..., \sigma^{p-1}(x))$

L'ensemble des éléments de l'orbite (sans tenir compte de l'ordre) est appelé le <u>support</u> du cycle.

Exemples σ_1 est un 4-cycle noté (1,2,4,5) ou (2,4,5,1) ou... mais pas (1,4,2,5).

Son support est $\{1,2,4,5\} = \{1,4,2,5\} = ...$

 σ_2 n'est pas un cycle.

Transposition

Une <u>transposition</u> est un 2-cycle.

La transposition (i, j) dans S_n échange i et j et laisse invariant pous les autres éléments de $\{1, 2, ..., n\}$

Remarque:

Pour i, j, k distincts 2 à 2, le produit des transpositions (i, j) et (j, k) est un 3-cycle : (i, j)(j, k) = (i, j, k)

↑°→	id	(1,2)
id	id	(1,2)
(1,2)	(1,2)	id

Table du groupe S_2

↑°→	id	(1,2,3)	(1,3,2)	(1,2)	(2,3)	(1,3)
id	id	(1,2,3)	(1,3,2)	(1,2)	(2,3)	(1,3)
(1,2,3)	(1,2,3)	(1,3,2)	id	(1,3)	(1,2)	(2,3)
(1,3,2)	(1,3,2)	id	(1,2,3)	(2,3)	(1,3)	(1,2)
(1,2)	(1,2)	(2,3)	(1,3)	id	(1,2,3)	(1,3,2)
(2,3)	(2,3)	(1,3)	(1,2)	(1,3,2)	id	(1,2,3)
(1,3)	(1,3)	(1,2)	(2,3)	(1,2,3)	(1,3,2)	id

Table du groupe S_3

3. Décomposition en cycles, en transposititon

Théorème 1:

- □ Toute permutation se décompose en produit de cycles de supports disjoints.
- □ Cette décomposition est unique à l'ordre près.
- □ Tous ces cycles commutent

Théorème 2:

- □ Toute permutation se décompose en produit de transpositions.
- □ Cette décomposition n'est pas unique

Exemple

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 10 & 6 & 4 & 2 & 1 & 7 & 5 & 8 & 9 \end{pmatrix} = (1, 3, 6)(2, 10, 9, 8, 5) = (1, 3)(3, 6)(2, 10)(10, 9)(9, 8)(8, 5)$$

↑° →	id	(1,2,3,4)	(1,3)(2,4)	(1,4,3,2)	(1,2)(3,4)	(1,4)(2,3)	(2,4)	(1,3)
id	id	(1,2,3,4)	(1,3)(2,4)	(1,4,3,2)	(1,2)(3,4)	(1,4)(2,3)	(2,4)	(1,3)
(1,2,3,4)	(1,2,3,4)	(1,3)(2,4)	(1,4,3,2)	id	(1,3)	(2,4)	(1,2)(3,4)	(1,4)(2,3)
(1,3)(2,4)	(1,3)(2,4)	(1,4,3,2)	id	(1,2,3,4)	(1,4)(2,3)	(1,2)(3,4)	(1,3)	(2,4)
(1,4,3,2)	(1,4,3,2)	id	(1,2,3,4)	(1,3)(2,4)	(2,4)	(1,3)	(1,4)(2,3)	(1,2)(3,4)
(1,2)(3,4)	(1,2)(3,4)	(2,4)	(1,4)(2,3)	(1,3)	id	(1,3)(2,4)	(1,2,3,4)	(1,4,3,2)
(1,4)(2,3)	(1,4)(2,3)	(1,3)	(1,2)(3,4)	(2,4)	(1,3)(2,4)	id	(1,4,3,2)	(1,2,3,4)
(2,4)	(2,4)	(1,4)(2,3)	(1,3)	(1,2)(3,4)	(1,4,3,2)	(1,2,3,4)	id	(1,3)(2,4)
(1,3)	(1,3)	(1,2)(3,4)	(2,4)	(1,4)(2,3)	(1,2,3,4)	(1,4,3,2)	(1,3)(2,4)	id

Table du sous-groupe de S_4 engendré par le cycle (1,2,3,4) et la transposition (1,3)

Application:

Pour prouver qu'une expression utilisant *n* variable est <u>symétrique</u>, c'est-à-dire invariante par toute permutation des variables, il suffit de démontrer qu'elle est ne change pas quand on échange 2 des *n* variables.

Exemples:

le polynôme
$$P(X,Y,Z) = (X+Y+Z)^3 - X^2Y - X^2Z - XY^2 - ZY^2 - XZ^2 - YZ^2 + XYZ$$
 est symétrique. le polynôme $Q(X,Y,Z) = X^2(Y^2+Z^2) + Y^2(X^2+Z^2) + XYZ$ ne l'est pas (échanger X et Z).

4. Signature

Pour toute permutation σ de S_n , on détermine le nombre m d'orbites distinctes sous l'action de σ .

On définit alors sa <u>signature</u> $\varepsilon(\sigma)$ comme étant égale à 1 si n-m est pair et -1 sinon : $\varepsilon(\sigma) = (-1)^{n-m}$

- ➤ La signature de l'identité est +1
- \triangleright La signature d'une transposition est -1
- ➤ La signature d'un 3-cycle est +1

Théorème 3:

- \square Pour toute permutation σ de S_n et toute transposition τ , $\varepsilon(\sigma\tau) = -\varepsilon(\sigma)$
- □ Pour toutes permutations σ_1 et σ_2 de S_n , $\varepsilon(\sigma_1\sigma_2) = \varepsilon(\sigma_1)\varepsilon(\sigma_2)$: La fonction $\varepsilon: S_n \longrightarrow \{-1, +1\}$ est un morphisme de groupes
- \Box Si une permutation σ de S_n se décompose en produit de k transpositions, alors $\varepsilon(\sigma) = (-1)^k$

Théorème 4:

Pour toute permutation σ de S_n , sa signature est égale à $\prod_{i < j} \frac{\sigma(i) - \sigma(j)}{i - j}$,

c'est-à-dire à +1 si le nombre de "dérangements" de la liste [1,2,...,n] est pair, et à -1 sinon.

Permutation paire:

<u>Une permutation est paire</u> si et seulement si sa signature est +1. Sinon c'est une permutation impaire. L'ensemble des permutations paires est un sous groupe de S_n . On le nomme groupe alterné A_n .

Il est d'ordre
$$\frac{n!}{2}$$

o	paire	impaire	
paire	paire	impaire	
impaire	impaire	paire	

5. Applications

Ordre d'une permutation

Mélange « américain » d'un jeu de 32 cartes https://youtu.be/hFFx8ImnP2Y?t=143 Ce mélange réalise la permutation σ de $\{1,2,...,32\}$ telle que

$$\sigma(1) = 1$$
, $\sigma(32) = 32$, $\forall n \in \{2, 3, ..., 31\} \sigma(n) = 2n - 1 \mod 31$

 $\sigma\,$ se décompose en produit de 6 cycles de supports disjoints, tous d'ordre 5.

Comme ils commutent, $\sigma^5 = id$.

Le jeu du taquin (jeu des quinze)

Voici le récit de Sam Loyd (extrait de Oh! les Maths de Yakov Perelman Dunod) :

"Les anciens parmi les habitants du royaume de la débrouillardise se rappellent qu'au début des années 70, j'ai amené le monde entier à se casser la tête sur un jeu de carrés mobiles connu sous le nom de "jeu des quinze". Les quinze carrés étaient disposés dans l'ordre à l'intérieur d'un cadre, à l'exception, des pièces 14 et 15, interverties...Le problème consistait à rétablir la disposition initiale, les pièces 14 et 15 étant, cette fois, dans l'ordre.

La prime de 1000 dollars offerte comme récompense au premier qui y parviendrait ne fut décernée à personne, bien que tous se soient acharnés sur le problème...

Nul ne voulait renoncer à ses recherches, chacun étant certain qu'il parviendrait au but."

- \triangleright Déplacer un carré revient à le permuter avec la case vide (notons-la 0) et donc d'effectuer une transposition sur $\{0,1,2,...,15\}$. On cherche à effectuer un certain nombre de transpositions (k,0) dont le produit donne la transposition (14,15), qui est de signature -1.
- Comme la case vide revient à sa place, le nombre de transpositions qui s'appliquent à 0 est pair. Donc la signature du produit est +1.
- > Contradiction

Et en partant de la disposition suivante?

https://fr.wikipedia.org/wiki/Taquin

http://images.math.cnrs.fr/Le-jeu-de-taquin-du-cote-de-chez-Galois