

Ranking de Música de Spotify

Predicción de popularidad de canciones utilizando modelos de Deep Learning

Integrantes:

- 1. Isidora Jara Muñoz
- 2. Néstor Manríquez Figueroa
- 3. Daniel Reyes Arias

Profesor:

Francisco Plaza Vega

Índice

Implementación

Entrenamiento

Validación

Conclusiones

Objetivos

General:

Desarrollar un modelo de Deep Learning para predecir qué canciones serán las más populares en la plataforma de streaming de Spotify.

Específicos:

- 1. Recopilar y preparar los datos.
- 2. Realizar un análisis exploratorio de los datos.
- 3. Desarrollar y entrenar un modelo de Deep Learning.
- 4. Evaluar el modelo.

Descripción de datos

Variable	Descripción			
País	Indica si la canción es global o de uno de los 34 países donde Spotify opera.			
Popularidad	Puntuación basada en días en el Top 200 y su posición diaria.			
Top_Max	Posición más alta alcanzada en el top en 1401 días de datos.			
Título	Nombre de la canción.			
Artista	Nombre del artista. (Artistas Agrupados)			
Formato	Publicada como sencillo o parte de un álbum.			
Explícito	Indica si tiene advertencia de contenido explícito.			
Bailable	Adecuación para bailar (0.0 a 1.0).			
Energía	Intensidad y actividad de la canción (0.0 a 1.0).			
Tono	Tono general de la pista (0 = Do, 1 = Do#, etc.).			
Volumen	Sonoridad en decibelios (dB).			
Modo	Modalidad (1 = mayor, 0 = menor).			
Hablado	Presencia de palabras habladas (0.0 a 1.0).			
Acústico	Confianza en si la pista es acústica (0.0 a 1.0).			
Instrumental	Probabilidad de que la pista sea instrumental (0.0 a 1.0).			
Valencia	Positividad musical de la pista (0.0 a 1.0).			
ВРМ	Tempo en pulsos por minuto.			
Duración_ms	Duración de la pista en milisegundos.			
Género	Género predominante del artista.			
Días_Lanzamiento	Días desde el lanzamiento hasta la fecha de referencia.			
Continente	Nombre del continente al cual pertenece el país.			

Implementación

General

Conjunto de datos Preprocesados

Plataforma	GPU	Procesador	RAM
Rstudio	No	Ryzen 5	12 GB

Entrenamiento Modelo 1.12

BPM, Valencia, Género, Popularidad

```
build_and_compile_model12 <- function(norm) {</pre>
 model <- keras_model_sequential() %>%
    norm() %>%
    layer_dense(64, activation = 'relu') %>% #Capa oculta 1
    layer_dense(64, activation = 'relu') %>% #Capa oculta 2
    layer_dense(16, activation = 'relu') %>% #Capa oculta 3
    layer_dense(1) #Una capa Dense lineal de salida única.
  model %>% compile( #compile configura el procedimiento de entrenamiento
    loss = 'mean_absolute_error', #función de pérdida
   optimizer = optimizer_adam(0.001), #optimizador
    metrics = c('mean_squared_error') #agrego métricas
  mode1
tiempo_entrenamiento12 <- system.time({</pre>
  history12 <- modelo12 %>% fit(
    as.matrix(entrenamiento_x3),
    as.matrix(entrenamiento_y3),
    validation_split = 0.2,
    epochs = 100
```


Modelo 1.12

Layer (type)	Output Shape	Param #	Trainable
normalization (Normalization) dense_3 (Dense) dense_2 (Dense) dense_1 (Dense) dense (Dense)	(None, 11) (None, 64) (None, 64) (None, 16) (None, 1)	23 768 4160 1040 17	Y Y Y Y

Modelo12 loss 0.014364036 mean_squared_error 0.001423892

> Modelo12.elapsed 17.83383

Total params: 6008 (23.47 KB)
Trainable params: 5985 (23.38 KB)
Non-trainable params: 23 (96.00 Byte)

Entrenamiento Modelo 2.13

Top_Max, Artista, País, Explícito, Formato,

BPM, Valencia, Género, Popularidad

```
build_and_compile_model13 <- function(norm) {</pre>
  model <- keras_model_sequential() %>%
   norm() %>%
    layer_dense(64, activation = 'relu') %>% #Capa oculta 1
    layer_dense(64, activation = 'relu') %>% #Capa oculta 2
    layer_dense(64, activation = 'relu') %>% #Capa oculta 3
    layer_dense(1) #Una capa Dense lineal de salida única.
  model %>% compile( #compile configura el procedimiento de entrenamiento
    loss = 'mean_absolute_error', #función de pérdida
    optimizer = optimizer_adam(0.001), #optimizador
    metrics = c('mean_squared_error') #agrego métricas
  model
tiempo_entrenamiento13 <- system.time({</pre>
 history13 <- modelo13 %>% fit(
   as.matrix(entrenamiento_x3),
   as.matrix(entrenamiento_y3),
   validation_split = 0.2,
    epochs = 300
 )})
```


Modelo 2.13

Layer (type)	Output Shape	Param #	Trainable
normalization (Normalization)	(None, 11)	23	Y
dense_7 (Dense)	(None, 64)	768	Υ
dense_6 (Dense)	(None, 64)	4160	Y
dense_5 (Dense)	(None, 64)	4160	Υ
dense_4 (Dense)	(None, 1)	65	Υ

Modelo13 loss 0.01424418 mean_squared_error 0.00143131

Modelo13.elapsed 60.11383

Total params: 9176 (35.85 KB)
Trainable params: 9153 (35.75 KB)
Non-trainable params: 23 (96.00 Byte)

Modelo 3.10

Top_Max,Bailable,Energía,Tono,Volumen,Modo,Hablado, Acústico,Instrumental,Valencia,BPM,Duración_ms,Formato, Días_Lanzamiento,Artista,Continente,País,Género,Explícito

```
build_and_compile_model10 <- function(norm) {</pre>
  model <- keras_model_sequential() %>%
    norm() %>%
    layer_dense(64, activation = 'relu') %>% #Capa oculta 1
    layer_dense(64, activation = 'relu') %>% #Capa oculta 2
    layer_dense(30, activation = 'relu') %>% #Capa oculta 3
    layer_dense(64, activation = 'relu') %>% #Capa oculta 4
    layer_dense(1) #Una capa Dense lineal de salida única.
  model %>% compile( #compile configura el procedimiento de entrenamiento
    loss = 'mean_absolute_error', #función de pérdida
    optimizer = optimizer_adam(0.001), #optimizador
    metrics = c('mean_squared_error') #agrego métricas
  model
tiempo_entrenamiento10 <- system.time({</pre>
history10 <- modelo10 %>% fit(
  as.matrix(entrenamiento_x),
  as.matrix(entrenamiento_y),
  validation_split = 0.2,
  epochs = 300
```


Modelo 3.10

Layer (type)	Output Shape	Param #	Trainable
normalization_1 (Normalization)	(None, 22)	45	Y
dense_17 (Dense)	(None, 64)	1472	Υ
dense_16 (Dense)	(None, 64)	4160	Y
dense_15 (Dense)	(None, 30)	1950	Y
dense_14 (Dense)	(None, 64)	1984	Y
dense_13 (Dense)	(None, 1)	65	Υ

Modelo10 loss 0.012071264 mean_squared_error 0.001072746

> Modelo10.elapsed 64.63467

Total params: 9676 (37.80 KB)
Trainable params: 9631 (37.62 KB)
Non-trainable params: 45 (184.00 Byte)

Modelo 4.11

Top_Max,Bailable,Energía,Tono,Volumen,Modo,Hablado, Acústico,Instrumental,Valencia,BPM,Duración_ms,Formato, Días_Lanzamiento,Artista,Continente,País,Género,Explícito

```
build_and_compile_model11 <- function(norm) {</pre>
  model <- keras_model_sequential() %>%
    norm() %>%
    layer_dense(128, activation = 'relu') %>% #Capa oculta 1
    layer_dense(128, activation = 'relu') %>% #Capa oculta 2
    layer_dense(60, activation = 'relu') %>% #Capa oculta 3
    layer_dense(128, activation = 'relu') %>% #Capa oculta 4
    layer_dense(1) #Una capa Dense lineal de salida única.
  model %>% compile( #compile configura el procedimiento de entrenamiento
    loss = 'mean_absolute_error', #función de pérdida
    optimizer = optimizer_adam(0.001), #optimizador
    metrics = c('mean_squared_error') #agrego métricas
  model
tiempo_entrenamiento11 <- system.time({</pre>
history11 <- modelo11 %>% fit(
  as.matrix(entrenamiento_x),
  as.matrix(entrenamiento_v),
  validation_split = 0.2,
  epochs = 300
```


Modelo 4.11

Layer (type)	Output	Shape	Param #	Trainable
normalization_1 (Normalization)	(None,	22)	45	Υ
dense_22 (Dense)	(None,	128)	2944	Υ
dense_21 (Dense)	(None,	128)	16512	Υ
dense_20 (Dense)	(None,	60)	7740	Υ
dense_19 (Dense)	(None,	128)	7808	Υ
dense_18 (Dense)	(None,	1)	129	Y

Modelo11 loss 0.0113630416 mean_squared_error 0.0009511932

Modelo11.elapsed 65.77617

Total params: 35178 (137.42 KB)
Trainable params: 35133 (137.24 KB)
Non-trainable params: 45 (184.00 Byte)

Validación

Modelo	Error Absoluto Medio	Error Cuadrático Medio	Tiempo de Computo (min)	Épocas
1.12	0.01436	0.00142	17.83	100
2.13	0.01424	0.00143	60.11	300
3.10	0.01207	0.00107	64.63	300
4.11	0.01136	0.00095	65.77	300

Conclusiones

- Ampliación del Dataset: Incluir más datos, en lo posible en tiempo real, así como tendencias en redes sociales, letras de canciones (NLP), colaboraciones entre artistas, etc.
- Optimización y Regularización: Experimentar con diferentes técnicas de regularización, como dropout, y optimizadores avanzados como AdamW.
- De igual forma, se podría visualizar el modelo al utilizar más capas ocultas y/o épocas para ver si mejora la predicción de la popularidad.

Letras

El Fin. Muchas gracias por su atención.