Exam Seat no.

KADI SARVA VISHWAVIDHYALAYA,

Gandhinagar

Remedial Examination BE Semester-III April - 2014 DIFFERENTIAL EQUATION & INTEGRAL TRANSFORM Mathematics -III (CC301A)

Date: 23/04/2014

Max Marks: 70 Duration: 3 hr.

- Instruction: 1) Answer each section in separate Answer sheet.
 - 2) Use of Scientific calculator is permitted.
 - 3) All questions are compulsory.
 - 4) Indicate clearly, the options you attempt along with its respective question number.
 - 5) Use the last page of main supplementary for rough work.

Section I

- Q.1 (i) Solve following differential equations: [5] $(a)\frac{dy}{dx} = xy + x + y + 1$ $(b) (x^3 + 3xy^2)dx + (y^3 + 3x^2y)dy = 0$
 - (ii) Find Laplace Transform of (a) $f(t) = t \sin 2t$ [5] (b) $f(t) = t^3 e^{-4t}$
 - (iii) Solve the differential equation $\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = x^2 + y^2$. [5]
 - (iii) Find the General solution of $\frac{OR}{d^2y} 4y = \sin 3x + e^{-3x}$. [5]
- Q.2 (i) Solve by the method of undetermined coefficient $y''' 5y'' + 6y' = x^2 + sinx$. [5]
 - (ii) Obtain the Fourier series for $f(x) = 1 x^2$; $-1 \le x \le 1$ [5]
 - (i) Solve by the method of variation of parameter [5] $\frac{d^2y}{dx^2} + 4y = \sec 2x$
 - (ii) Find Z-transform of the function $f(k) = a^k, k \ge 0$ [5] $= b^k, k < 0.$
- Q.3 (i) State Convolution theorem and Using it, find $L^{-1}\left\{\frac{1}{s(s^2+a^2)}\right\}$ [5]
 - (ii) Solve Legendre's differential equation [5] $(3x+2)^2y'' + 3(3x+2)y' 36y = 3x^2 + 4x + 1.$

	(i)	Find the Fourier transform of $f(x) = e^{-ax^2}$	[5]
	(ii)	Form PDE from $Z = f(ax + y) + g(ax - y)$.	[5]
		Section II	
Q.4	(i)	Find the orthogonal trajectories of the family of circles $x^2 + y^2 = a^2$.	[5]
	(ii)	Find Laplace transform of $f(t) = \left[\frac{e^{-bt} - e^{-at}}{t}\right](a \neq b)$.	[5]
	(iii)	Solve the Equation $(D^2 - 6D + 9)y = x^2e^{3x}$.	[5]
	(iii)	If $Z\{f(k)\} = F(z)$, ROC: R then Prove that	[5]
		(i) $Z\{k f(k)\} = -z \frac{d}{dz} F(z)$ (ii) $Z\{f(-k)\} = F\left(\frac{1}{z}\right)$	
Q.5	(i)	Solve by Exactness method $ye^x dx + (2y + e^x) dy = 0$; Where $y(0) = -1$.	[5]
	(ii)	Solve the equation $(D^5 - m^2D^3)y = e^{ax}$. OR	[5]
	(i)	Define Laplace transform and find $L[1]$ and $L[e^{-at}]$.	[5]
	(ii)	Find the Fourier cosine and sine transform of $f(x) = e^{-ax}$, a>0.	[5]
Q.6	(i)	Solve by the general method $y''' - 3y'' + 9y' - 27y = \cos 3x.$	[5]
	(ii)	Find the Fourier series of $(x) = x $; $-\pi < x < \pi$. OR	[5]
	(i)	By the method of separation of variables solve $\frac{\partial u}{\partial x} = 3 \frac{\partial u}{\partial t} + u$ Where $u(x, 0) = 4e^{-3x}$.	[5]
	(ii)	Solve $L^{-1} \left[\frac{s+6}{s^2+6s+13} \right]$	[5]

BEST OF LUCK