LUCRAREA Nr. 3

INSTRUCȚIUNI DE PRELUCRARE A DATELOR ȘI INSTRUCȚIUNI DE CONTROL AL PROGRAMULUI (SALTURI PROPRIU-ZISE) PENTRU MICROPROCESOARELE COMPATIBILE INTEL x86 (IA-32) ÎN MODUL REAL

1. Scopul lucrării

Lucrarea de față își propune familiarizarea cu instrucțiunile de prelucrare a datelor precum și cu o parte dintre instrucțiunile de control al programului (salturile propriu-zise, condiționate și necondiționate) specifice microprocesoarelor compatibile Intel (IA-32) funcționând "în modul real".

2. Memoriu de instrucțiuni

Convențiile folosite sunt cele arătate în Lucrarea de laborator nr. 2. Se va acorda o atenție deosebită modului în care sunt afectate fanioanele. La convențiile amintite se adaugă:

nrcel: numărul de celule cu care se poate face deplasarea sau rotația unui operand.

2.1. Instrucțiuni aritmetice

		OF	DF I	IF TF	SF	ZF	AF	PF	CF	
ADD	d,s	Adunare	x			x	x	x	x	x

Descrierea formală a semanticii, în general: $(d) \leftarrow (d) + (s)$.

Operanzi		Exemple	Descrierea formală a semanticii
AL AX, data	ADD	AL,33H	(AL) ← (AL) + 33H
r, data	ADD	СН,10Н	(CH) ← (CH) + 10H
mem, data	ADD	[BP],ALFA	$((SS)^{\uparrow}0H+(BP)) \leftarrow ((SS)^{\uparrow}0H+(BP)) + ALFA$
r ₁ , r ₂	ADD	CL,CH	(CL) ← (CL) + (CH)
r, mem	ADD	SI,[SI+22H]	(SI) ← (SI) + ((DS)↑0H + (SI) + 23H) ↑ ↑ ((DS)↑0H + (SI) + 22H)
mem, r	ADD	[BX],BX	((DS) [↑] 0H+(BX)+1) [↑] ((DS) [↑] 0H+(BX)) ← ← ((DS) [↑] 0H+(BX)+1) [↑] ((DS) [↑] 0H+(BX)) + + (BX)

	Adunare	OF DF IF TF	SF	ZF	AF	PF	CF
ADC d,s	cu transport	x	x	x	x	x	x

Descrierea formală a semanticii, în general: $(d) \leftarrow (d) + (s) + (CF)$.

Operanzi		Exemple	Descrierea formală a semanticii
AL AX, data	ADC	AL,15H	(AL) ← (AL) + 15H + (CF)
r, data	ADC	ВХ,0100Н	(BX) ← (BX) + 100H + (CF)
mem, data	ADC	[DI],1234H	((DS) [↑] 0H+(DI)+1) [↑] ((DS) [↑] 0H+(DI)) ← ← ((DS) [↑] 0H+(DI)+1) [↑] ((DS) [↑] 0H+(DI)) + + 1234H +(CF)
r ₁ , r ₂	ADC	AX,DI	(AX) ← (AX) + (DI) + (CF)
r, mem	ADC	DX,[BX]	$(DX) \leftarrow (DX) + ((DS)^{\uparrow}0H + (BX) + 1)^{\uparrow}$ $\uparrow ((DS)^{\uparrow}0H + (BX)) + (CF)$
mem, r	ADC	[BX+DI+12H],DX	((DS) [↑] 0H + (BX) + (DI) + 13H) [↑]

	Incrementarea	OF DF IF TF SF ZF AF PF CF
INC d	destinației	x

Descrierea formală a semanticii, în general: $(d) \leftarrow (d) + 1$.

Operanzi		Exemple	Descrierea formală a semanticii
r16	INC	BX	(BX) ← (BX) + 1
r8	INC	AL	(AL) ← (AL) + 1
mem	INC	[BP+DI]	$((SS)^{\uparrow}0H + (BP) + (DI)) \leftarrow $ $\leftarrow ((SS)^{\uparrow}0H + (BP) + (DI)) + 1$

AAA	Ajustare ASCII pentru adunare		SF ZF AF PF CF ? ? x ? x
Descrierea form	ală a semanticii: if	(AL) & 0F > (AL) ← (AL) (AH) ← (AH) (AF) ← 1 (CF) ← (AF) (AL) ← (AL)) + 1

DAA	Ajustare zecimală pentru adunare	OF DF IF TF SF ZF AF PF CF ? x x x x x
Descrierea form	ală a semanticii: if	(AL) & 0F > 9 or (AF) = 1 then (AL) ← (AL) + 06H (AF) ← 1
	if	(AL) > 9F or (CF) = 1 then (AL) ← (AL) + 60H

		OF	DF	IF TF	SF	ZF	AF	PF	CF
SUB d,s	Scădere	x			x	x	x	x	x

Descrierea formală a semanticii, în general: $(d) \leftarrow (d) - (s)$

Operanzi		Exemple	Descrierea formală a semanticii
AL AX, data	SUB	AL,20H	(AL) ← (AL) - 20H
r, data	SUB	вх,5566Н	(BX) ← (BX) - 5566H
mem, data	SUB	[ВР+25Н],444Н	((SS) [↑] 0H+(BP)+26H) [↑] ↑ ((SS) [↑] 0H+(BP)+25H) ← ← ((SS) [↑] 0H+(BP)+26H) [↑] ↑ ((SS) [↑] 0H+(BP)+25H) - - 0444H
r ₁ , r ₂	SUB	DX,DI	$(DX) \leftarrow (DX) - (DI)$
r, mem	SUB	SI,[BX+100H]	(SI) ← (SI) - ((DS)↑0H + (BX) + 101H) ↑ ↑ ((DS)↑0H + (BX) + 100H)
mem, r	SUB	[BP+50H],AX	((SS) [↑] 0H + (BP) + 51H) [↑] ↑ ((SS) [↑] 0H + (BP) + 50H) ← ← ((SS) [↑] 0H + (BP) + 51H) [↑] ↑ ((SS) [↑] 0H + (BP) + 50H) - (AX)

		OF	DF	IF	TF	SF	ZF	AF	PF	CF
SBB d,s	Scădere cu împrumut	x				x	x	x	x	x

Descrierea formală a semanticii, în general: (d) \leftarrow (d) - (s) - (CF).

Operanzi	Exemple	Descrierea formală a semanticii
AL AX, data	SBB AX,1000H	(AX) ← (AX) - 1000H - (CF)
r, data	SBB DI,23H	(DI) ← (DI) - 0023H - (CF)
mem, data	SBB [BX+DI],33H	$((DS)^{\uparrow}0H+(BX)+(DI)) \leftarrow ((DS)^{\uparrow}0H+(BX)+(DI))-33H-(CF)$
r ₁ , r ₂	SBB AL,BL	(AL) ← (AL) - (BL) - (CF)
r, mem	SBB AH,[DI+55H]	(AH) ← (AH) - ((DS) [↑] 0H + (DI) + 55H) - (CF)
mem, r	SBB [BX],DL	((DS) [↑] 0H + (BX)) ← ((DS) [↑] 0H + (BX)) - - (DL) - (CF)
DEC d	Decrementarea destinației	OF DF IF TF SF ZF AF PF CF x x x x x

Descrierea formală a semanticii, în general: (d) \leftarrow (d) - 1.

Operanzi		Exemple	Descrierea formală a semanticii
r16	DEC	AX	(AX) ← (AX) - 1
r8	DEC	DH	(DH) ← (DH) - 1
mem	DEC	[BP+12H]	((SS) [↑] 0H + (BP) + 12H) ←
			← ((SS) [↑] 0H + (BP) + 12H) - 1

	Complementare	OF	DF	IF T	F	SF	ZF	AF	PF	CF
NEG d	față de 2	x				x	x	x	x	1*
	a destinației									

Descrierea formală a semanticii, în general: $(d) \leftarrow 0H - (d)$.

Operanzi		Exemple	Descrierea formală a semanticii
r	NEG	AX	$(AX) \leftarrow OH - (AX)$
mem	NEG	[DI]	$((DS)^{\uparrow}0H + (DI)) \leftarrow 0H - ((DS)^{\uparrow}0H + (DI))$

^{* (}CF) = 0 dacă (d) = 0H

		Compararea	OF DF IF TF	SF	ZF	AF	PF	CF
CMP	s1,s2	prin scădere	x	x	x	x	x	x
		a doi operanzi						

Descrierea formală a semanticii, în general: (s₁) - (s₂).

Operanzi		Exemple	Descrierea formală a semanticii
AL AX, data	CMP	AX,OFFFFH	(AX) - FFFFH
r, data	CMP	вх,10н	(BX) - 0010H
mem, data	CMP	[BP+SI+5H],OABH	((SS) [↑] 0H + (BP) + (SI) + 5H) - ABH
r ₁ , r ₂	CMP	AL,CL	(AL) - (CL)
r, mem	CMP	ВН,[100Н]	(BH) - ((DS) [↑] 0H + 100H)
mem, r	CMP	[BX+SI+45H],DX	$((DS)^{\uparrow}0H + (BX) + (SI) + 46H)^{\uparrow}$ $\uparrow ((DS)^{\uparrow}0H + (BX) + (SI) + 45H) - (DX)$
			\uparrow ((DS) \uparrow 0H + (BX) + (SI) + 45H) - (DX)

AAS	Ajustare ASCII pentru scădere		OF DF IF TF SF ZF AF PF CF ? ? x ? x
Descrierea form	ală a semanticii:	if	(AL) & 0F > 9 or (AF) = 1 then (AL) ← (AL) - 6, (AH) ← (AH) - 1 (AF) ← 1 (CF) ← (AF) (AL) ← (AL) & 0F.
DAS	Ajustare zecimală pentru scădere		OF DF IF TF SF ZF AF PF CF ? x x x x x
Descrierea form	ală a semanticii:	if if	(AL) & 0F > 9 or (AF) = 1 then (AL) ← (AL) - 06H (AF) ← 1 (AL) > 9F or (CF) = 1 then (AL) ← (AL) - 60H (CF) ← 1

			OF	DF	IF	TF	SF	ZF	AF	PF	CF
MUL	s	Înmulțire	x				?	?	?	?	x

Descrierea formală a semanticii, în general: pentru operația pe 8 biți:

$$(AX) \leftarrow (AL) * (s) \qquad \text{if} \qquad (AH) = 0 \text{ then} \\ (CF) \leftarrow 0 \\ \text{else} \qquad (CF) \leftarrow 1 \\ (OF) \leftarrow (CF) \text{,} \\ \text{iar pentru operația pe 16 biți:} \\ (DX)^{\uparrow}(AX) \leftarrow (AX) * (s) \qquad \text{if} \qquad (DX) = 0 \text{ then} \\ (CF) \leftarrow 0 \\ \text{else} \qquad (CF) \leftarrow 1 \\ (OF) \leftarrow (CF).$$

Operanzi		Exemple	Descrierea formală a semanticii
r8	MUL	DL	(AX) ← (AL) * (DL)
r16	MUL	BX	(DX) [↑] (AX) ← (AX) * (BX)
mem8	MUL	[BP+DI]	(AX) ← (AL) * ((SS) [↑] 0H + (BP) + (DI))
mem16	MUL	[1268н]	(DX) [↑] (AX) ← (AX) * ((DS) [↑] 0H + 1269H) [↑]
			↑ ((DS)↑0H + 1268H)

			OF	DF	IF	TF	SF	ZF	AF	PF	CF
IMUL	s	Înmulțire cu semn	x				?	?	?	?	x

Descrierea formală a semanticii, în general:

• pentru operația pe 8 biti:

$$(AX) \leftarrow (AL) * (s)$$
 if
$$(AH) = 0 \text{ or } (AH) = FF \text{ then}$$

$$(CF) \leftarrow 0$$
 else
$$(CF) \leftarrow 1$$

$$(OF) \leftarrow (CF),$$

• iar pentru operația pe 16 biți:

$$(DX)^{\uparrow}(AX) \leftarrow (AX)^{*}$$
 (s)
if $(DX) = 0$ or $(DX) = FFFF$ then
 $(CF) \leftarrow 0$
else $(CF) \leftarrow 1$
 $(OF) \leftarrow (CF)$.

Operanzi		Exemple	Descrierea formală a semanticii
r8	IMUL	DL	(AX) ← (AL) * (DL)
r16	IMUL	CX	(DX) [↑] (AX) ← (AX) * (CX)
mem8	IMUL	[OABCDH]	(AX) ← (AL) * ((DS) [↑] 0H + ABCDH)
mem16	IMUL	[BX+550H]	$(DX)^{\uparrow}(AX) \leftarrow (AX) * ((DS)^{\uparrow}0H+(BX)+551H) \uparrow$
			↑ ((DS)↑0H+(BX)+550H)

	Ajustare ASCII		DF	IF	TF	SF	ZF	AF	PF	CF		
AAM	pentru înmulțire		?			x x ? x			x	?		
	(după înmuțire)											

Descrierea formală a semanticii:

$$(AH) \leftarrow (AL) \text{ div } 0A$$

 $(AL) \leftarrow (AL) \text{ mod } 0A$.

			OF	DF	IF	TF	SF	ZF	AF	PF	CF
DIV	s	Împărțire	?				?	?	?	?	?

Descrierea formală a semanticii, în general:

pentru operația pe 8 biți:

if (AX) div (s) > FF then
(SP)
$$\leftarrow$$
 (SP) - 2
((SS) \uparrow 0H + (SP) + 1) \uparrow ((SS) \uparrow 0H + (SP)) \leftarrow (F)
(IF) \leftarrow 0
(SP) \leftarrow (SP) - 2
((SS) \uparrow 0H + (SP) + 1) \uparrow ((SS) \uparrow 0H + (SP)) \leftarrow (CS)
(CS) \leftarrow (00003H) \uparrow (00002H)
(SP) \leftarrow (SP) - 2
((SS) \uparrow 0H + (SP) + 1) \uparrow ((SS) \uparrow 0H + (SP)) \leftarrow (IP)
(IP) \leftarrow (00001H) \uparrow (000000H)

else (AL)
$$\leftarrow$$
 (AX) div (s) (AH) \leftarrow (AX) mod (s),

iar pentru operația pe 16 biți:

if
$$(DX)^{\uparrow}(AX) \text{ div } (s) > FFFF \text{ then } (SP) \leftarrow (SP) - 2$$

 $((SS)^{\uparrow}0H + (SP) + 1)^{\uparrow} ((SS)^{\uparrow}0H + (SP)) \leftarrow (F)$
 $(IF) \leftarrow 0$
 $(TF) \leftarrow 0$
 $(SP) \leftarrow (SP) - 2$
 $((SS)^{\uparrow}0H + (SP) + 1)^{\uparrow} ((SS)^{\uparrow}0H + (SP)) \leftarrow (CS)$
 $(CS) \leftarrow (00003H)^{\uparrow} (00002H)$
 $(SP) \leftarrow (SP) - 2$
 $((SS)^{\uparrow}0H + (SP) + 1)^{\uparrow} ((SS)^{\uparrow}0H + (SP)) \leftarrow (IP)$
 $(IP) \leftarrow (00001H)^{\uparrow} (00000H)$
else $(AX) \leftarrow (DX)^{\uparrow}(AX) \text{ div } (s)$
 $(DX) \leftarrow (DX)^{\uparrow}(AX) \text{ mod } (s)$

Operanzi		Exemple	Descrierea formală a semanticii
r8	DIV	CL	(AL) ← (AX) div (CL)
			(AH) ← (AX) mod (CL)
r16	DIV	BX	(AX) ← (DX) [↑] (AX) div (BX)
			$(DX) \leftarrow (DX)^{\uparrow}(AX) \mod (BX)$
mem8	DIV	[BP+50H]	(AL) ← (AX) div ((SS) [↑] 0H + (BP) + 50H)
			(AH) ← (AX) mod ((SS) [↑] 0H + (BP) + 50H)
mem16	DIV	[DI+41H]	$(AX) \leftarrow (DX)^{\uparrow}(AX) \text{ div } ((DS)^{\uparrow}0H+(DI)+42H) \uparrow$
			↑ ((DS) [↑] 0H+(DI)+41H)
			(DX)←(DX)↑(AX) mod ((DS)↑0H+(DI)+42H) ↑
			↑ ((DS) 10H+(DI)+41H)

		OF	DF	IF	TF	SF	ZF	AF	PF	CF	
IDIV	s	Împărțire cu semn	?				?	?	?	?	?
		• ,									

Descrierea formală a semanticii este similară cu cea de la instrucțiunea precedentă, cu excepția comparației inițiale care, pentru întregii cu semn, este: pentru împărțirea pe 8 biți:

iar pentru împărțirea pe 16 biți:

if
$$(DX)^{\uparrow}(AX)$$
 div (s) > 0 and $(DX)^{\uparrow}(AX)$ div (s) > FFFF or $(DX)^{\uparrow}(AX)$ div (s) < 0 and $(DX)^{\uparrow}(AX)$ div (s) < 0-FFFF-1 then ...

Operanzi	Exemple	Descrierea formală a semanticii
r8	DIV BL	(AL) ← (AX) div (BL)
		$(AH) \leftarrow (AX) \mod (BL)$
r16	DIV CX	(AX) ← (DX) [↑] (AX) div (CX)
		$(DX) \leftarrow (DX)^{\uparrow}(AX) \mod (CX)$
mem8	DIV [BX+SI]	(AL) ← (AX) div ((DS) [↑] 0H + (BX) + (SI))
		$(AH) \leftarrow (AX) \mod ((DS)^{\uparrow}0H + (BX) + (SI))$
mem16	DIV [BP]	$(AX) \leftarrow (DX)^{\uparrow}(AX) \text{ div } ((SS)^{\uparrow}0H + (BP) + 1)^{\uparrow}$
		↑ ((SS)↑0H +(BP))
		$(DX) \leftarrow (DX)^{\uparrow}(AX) \mod ((SS)^{\uparrow}0H + (BP) + 1)^{\uparrow}$
		↑ ((SS)↑0H +(BP))
	Ajustare ASCII pt.	OF DF IF TF SF ZF AF PF CF
AAD	împărțire (înainte	? x x ? x ?
	de îmărțire)	

Descrierea formală a semanticii: $(AL) \leftarrow (AH) * 0AH + (AL)$ $(AH) \leftarrow 0H \ .$

	Extindere (cu semn)	OF DF IF TF SF ZF AF PF CF
CBW	a unui octet la un	
	cuvânt	

Descrierea formală a semanticii: if (AL) < 80H then

(AH) ← **00H**

else (AH) \leftarrow FFH.

	Extindere (cu semn)	OF DF IF TF SF ZF AF PF CF
CWD	a unui cuvânt la un	
	cuvânt dublu	

Descrierea formală a semanticii: if (AX) < 8000H then

 $(DX) \leftarrow 0000H$

else (DX) \leftarrow FFFFH.

2.2. Operații logice

NOT d	Complementare fată de 1	OF DF IF TF SF ZF AF PF CF
	a destinației	

Descrierea formală a semanticii, în general: $(d) \leftarrow FFH - (d)$,

pentru operand pe 8 biţi,

sau $(d) \leftarrow FFFFH - (d)$

pentru operand pe 16 biţi.

Operanzi		Exemple	Descrierea formală a semanticii
r	NOT	AX	(AX) ← FFFFH - (AX)
mem	NOT	[OEEFFH]	((DS) [↑] 0H +EEFFH) ← FFH -
			- ((DS) [↑] 0H+EEFFH)

	OF	DF	IF T	F	SF	ZF	AF	PF	CF	
AND d,s	ŞI logic	0				x	x	?	x	0

Descrierea formală a semanticii, în general: (d) \leftarrow (d) & (s).

2 CSCIICICU ISIIII		mancien, in general.	
Operanzi		Exemple	Descrierea formală a semanticii
AL AX, data	AND	AX,0FFH	(AX) ← (AX) & 0033H
r, data	AND	СХ,10Н	(CX) ← (CX) & 0010H
mem, data	AND	[DI],0AAAAH	$((DS)^{\uparrow}0H + (DI) + 1) \uparrow ((DS)^{\uparrow}0H + (DI)) \leftarrow \\ \leftarrow ((DS)^{\uparrow}0H + (DI) + 1) \uparrow ((DS)^{\uparrow}0H + (DI)) \&$
			& AAAAH
r ₁ , r ₂	AND	CL,DL	(CL) ← (CL) & (DL)
r, mem	AND	DX,[BP]	(DX) ← (DX) & ((SS)↑0H + (BP) + 1H) ↑
			↑ ((SS)↑0H + (BP))
mem, r	AND	[BX+DI],CL	((DS) [↑] 0H+(BX)+(DI)) ←
			← ((DS) [↑] 0H+(BX)+(DI)) & (CL)

			Compararea	OF	DF	IF	TF	SF	ZF	AF	PF	CF
TEST	s1,	s2	prin ŞI logic	0				x	x	?	x	0
			nedistructiv									

Descrierea formală a semanticii, în general: (s₁) & (s₂)

Operanzi		Exemple	Descrierea formală a semanticii
AL AX, data	TEST	AL,55H	(AL) & 55H
r, data	TEST	DI,1234H	(DI) & 1234H
mem, data	TEST	[SI],00101100B	((DS) [↑] 0H + (SI)) & 00101100B
r ₁ , r ₂	TEST	DI,BX	(DI) & (BX)
r, mem	TEST	CL,[SI]	(CL) & ((DS) [↑] 0H + (SI))

		OF	DF	IF	TF	SF	ZF	AF	PF	CF
OR d,s	SAU logic	0				x	x	?	x	0

Descrierea formală a semanticii, în general: (d) \leftarrow (d) \forall (s).

Operanzi		Exemple	Descrierea formală a semanticii
AL AX, data	OR	AL,22H	(AL) ← (AL) ∀ 22H
r, data	OR	DX,1FFFH	(DX) ← (DX) ∀ 1FFFH
mem, data	OR	[BP+SI],1	((SS) [↑] 0H +(BP) + (SI)) ←
			← ((SS)↑0H +(BP) + (SI)) ∀ 01H
r ₁ , r ₂	OR	CL,BL	(CL) ← (CL) ∀ (BL)
r, mem	OR	BX,[SI]	$(BX) \leftarrow (BX) \ \forall \ ((DS)^{\uparrow}0H + (SI) + 1H) \ \uparrow$
			↑ ((DS)↑0H + (SI))
mem, r	OR	[BP+DI],CX	((SS) [↑] 0H +(BP) +(DI) +1) [↑]
			↑ ((SS)↑0H +(BP) +(DI)) ←
			← ((SS)↑0H +(BP) +(DI) +1) ↑
			↑ ((SS)↑0H +(BP) +(DI)) ∀
			∀ (CX)

			OF	DF	IF	TF	SF	ZF	AF	PF	CF
XOR	d,s	SAU exclusiv	0				x	x	?	x	0

Descrierea formală a semanticii, în general: (d) \leftarrow (d) \oplus (s).

Operanzi		Exemple	Descrierea formală a semanticii
AL AX, data	XOR	АХ,333Н	(AX) ← (AX) ⊕ 0333H
r, data	XOR	BP,245H	(BP) ← (BP) ⊕ 0245H
mem, data	XOR	[DI],7788H	((DS) [↑] 0H +(DI) +1H) [↑] ((DS) [↑] 0H +(DI)) ← ← ((DS) [↑] 0H +(DI) +1H) [↑] ((DS) [↑] 0H +(DI)) ⊕ ⊕ 7788H
r ₁ , r ₂	XOR	DX,SI	$(DX) \leftarrow (DX) \oplus (SI)$
r, mem	XOR	CX,[BX+SI]	$(CX) \leftarrow (CX) \oplus ((DS)^{\uparrow}0H + (BX) + (SI) + 1H) \uparrow$ $\uparrow ((DS)^{\uparrow}0H + (BX) + (SI))$
mem, r	XOR	[DI+0AAH],BL	((DS) [↑] 0H +(DI) +AAH) ← ← ((DS) [↑] 0H +(DI) +AAH) ⊕ (BL)

2.3. Deplasări și rotații

	Deplasare stânga	OF DF IF	TF	SF	ZF	AF	PF	CF
SAL SHL	logică sau	x		x	x	?	x	x
s,nrcel	aritmetică							

Descrierea formală a semanticii:

while $\operatorname{nrcel} \neq 0$ do $(\operatorname{CF}) \leftarrow (s)_{\operatorname{msb}}$ $(s) \leftarrow (s) * 2$ $(s)_{\operatorname{lsb}} \leftarrow 0$ $\operatorname{nrcel} \leftarrow \operatorname{nrcel} - 1$ if $\operatorname{nrcel} = 1$ then if $(s)_{\operatorname{msb}} \neq (\operatorname{CF})$ then $(\operatorname{OF}) \leftarrow 1$ else $(\operatorname{OF}) \leftarrow 0$

(OF) nedeterminat.

else

Operanzi	Exemple					
r, 1	SHL	BX,1				
r, CL	SAL	DX,CL				
mem, 1	SHL	[BX+SI],1				
mem, CL	SHL	[DI+10H],CL				

	Deplasare dreapta	OF	DF	IF	TF	SF	ZF	AF	PF	CF
SHR s, nrcel	logică	x				x	x	?	x	x

Descrierea formală a semanticii:

 $\begin{array}{lll} \text{while} & \text{nrcel} \neq \mathbf{0} & \text{do} \\ & (s)_{msb} \leftarrow \mathbf{0} \\ & (s) \leftarrow (s) \, \text{div 2} \\ & (CF) \leftarrow (s)_{lsb} \\ & \text{nrcel} \leftarrow \text{nrcel - 1} \\ & \text{if} & \text{nrcel} = \mathbf{1} & \text{then} \\ & \text{if} & (s)_{msb} \neq (s)_{msb-1} & \text{then} \\ & (OF) \leftarrow \mathbf{1} \\ & \text{else} & (OF) \leftarrow \mathbf{0} \\ & \text{else} & (OF) & \text{nedeterminat} \end{array}$

Operanzi	Exemple						
r, 1	SHR	DL,1					
r, CL	SHR	BX,CL					
mem, 1	SHR	[DI],1					
mem, CL	SHR	[BP+SI+4H],CL					

	Deplasare dreapta	OF	DF	IF	TF	SF	ZF	AF	PF	CF
SAR s, nrcel	aritmetică	x				x	x	?	x	x

Descrierea formală a semanticii este similară cu cea a instrucțiunii precedente (singura deosebire fiind că **msb** trebuie să fie păstrat, iar **OF** este resetat și dacă **nrcel** ≠ **1**).

Operanzi	Exemple					
r, 1	SAR	ВН,1				
r, CL	SAR	AX,CL				
mem, 1	SAR	[BX],1				
mem, CL	SAR	[BP+SI],CL				

	OF DE	F IF TF	SF ZF	AF PF	CF	
ROL s, nrcel Rotație stânga	x				x	

Descrierea formală a semanticii:

while $\operatorname{nrcel} \neq 0$ do

(s) \leftarrow (s) * 2

(CF) \leftarrow (s)msb

(s)lsb \leftarrow (s)msb

nrcel \leftarrow nrcel - 1

if $\operatorname{nrcel} = 1$ then

if (s)msb \neq (CF) then

(OF) \leftarrow 1

else

else

(OF) ← **0**

(OF) nedeterminat.

Operanzi	Exemple						
r, 1	ROL	SI,1					
r, CL	ROL	DX,CL					
mem, 1	ROL	[BX+DI],1					
mem, CL	ROL	[BP+100H],CL					

		OF DF IF TF SF ZF	AF PF CF
ROR s, nrcel Rotație dreapta	x	x	

Descrierea formală a semanticii:

while $\operatorname{nrcel} \neq 0$ do $(s) \leftarrow (s)$ div 2 $(s)_{msb} \leftarrow (s)_{lsb}$ $(CF) \leftarrow (s)_{lsb}$ $\operatorname{nrcel} \leftarrow \operatorname{nrcel} - 1$ if $\operatorname{nrcel} = 1$ then if $(s)_{msb} \neq (s)_{msb-1}$ then $(OF) \leftarrow 1$ else $(OF) \leftarrow 0$

(OF) nedeterminat.

else

Operanzi		Exemple
r, 1	ROR	AX,1
r, CL	ROR	DX,CL
mem, 1	ROR	[BP],1
mem, CL	ROR	[1000H],CL

	Rotație stânga	OF DF IF TF SF ZF AF PF	CF
RCL s, nrcel	cu transport	x	x

Descrierea formală a semanticii este asemănătoare cu rotația stânga simplă.

Operanzi		Exemple
r, 1	RCL	CX,1
r, CL	RCL	AL,CL
mem, 1	RCL	[SI],1
mem, CL	RCL	[BX+DI],CL

RCR s,nrcel	Rotație dreapta	OF DF IF TF SF ZF AF PF CF	
	cu transport	x	x

Descrierea formală a semanticii este asemănătoare cu a celorlalte rotații.

Operanzi		Exemple
r, 1	RCR	AX,1
r, CL	RCR	BX,CL
mem, 1	RCR	[BP+DI],1
mem, CL	RCR	[BX],CL

2.4. Salturi propriu-zise necondiționate

JMP adr	Salt propriu-zis,	OF DF IF TF SF ZF AF PF CF

Descrierea formală a semanticii, în funcție de modul de adresare folosit:

a) Salt cu adresare absolută (directă) intersegment:

JMP adr32; (CS)
$$\leftarrow$$
 adr32_h (IP) \leftarrow adr32_l.

Sau, punând în evidență faptul că adresa completă face parte din formatul instrucțiunii:

(CS)
$$\leftarrow$$
 ((CS) \uparrow 0H+(IP)+4) \uparrow ((CS) \uparrow 0H+(IP)+3)
(IP) \leftarrow ((CS) \uparrow 0H+(IP)+2) \uparrow ((CS) \uparrow 0H+(IP)+1).

b) Salt cu adresare relativă:

JMP disp8|disp16; (IP)
$$\leftarrow$$
 (IP) + disp8|disp16

Deplasamentul face parte din formatul instrucțiunii curente.

c) Salt cu adresare în registru sau indirectă in memorie, intrasegment:

JMP r16 | mem16; (IP)
$$\leftarrow$$
 (r16) | (mem16).

d) Salt cu adresare indirectă în memorie, intersegment:

JMP mem32; (CS)
$$\leftarrow$$
 (mem32)_h (IP) \leftarrow (mem32)_l.

Operanzi		Exemple	Descrierea formală a semanticii
adr32	JMP	ET-IN-ALT-SEG	$(CS)\leftarrow ((CS)^{\uparrow}0H+(IP)+4)^{\uparrow}((CS)^{\uparrow}0H+(IP)+3)$
			$(IP) \leftarrow ((CS)^{\uparrow} 0H + (IP) + 2) \uparrow ((CS)^{\uparrow} 0H + (IP) + 1)$
disp16	JMP	ET-IN-SEG	(IP) ← (IP) +
			+ ((CS) [↑] 0H+(IP)+2) [↑] ((CS) [↑] 0H+(IP)+1)
disp8	JMP	FOARTE-APROAPE	(IP) ← (IP) + ((CS) [↑] 0H+(IP)+1)
r16	JMP	BX	(IP) ← (BX)
mem*	JMP	[BX]	$(IP) \leftarrow ((DS)^{\uparrow} 0H + (BX) + 1) \uparrow ((DS)^{\uparrow} 0H + (BX))$
mem**	JMP	[DI]	$(CS)\leftarrow ((DS)^{\uparrow}0H+(DI)+3)^{\uparrow}((DS)^{\uparrow}0H+(DI)+2)$
			$(IP) \leftarrow ((DS)^{\uparrow} 0H+(DI) + 1) \uparrow ((DS)^{\uparrow} 0H+(DI))$

^{*} salt cu adresare indirectă definit cu directivă de asamblare ca salt intra-segment;

2.5. Salturi condiționate

Salt propriu-zis, neconditionat	OF DF IF TF SF ZF AF PF CF

Descrierea formală a semanticii:

^{**} salt cu adresare indirectă definit cu directivă de asamblare ca salt inter-segment.

if condiție then (IP)
$$\leftarrow$$
 (IP) + disp8, sau, detaliat: (IP) \leftarrow (IP) + ((CS) \uparrow 0H+(IP)+1)

Adunarea se face prin extensie cu semn la un număr de 16 biți.

Mnemonica	Cond. testată	Interpretare
JA JNBE	(CF)sau(ZF)=0	Salt dacă "peste" dacă "nu sub sau egal"
JAE JNB JNC	(CF)=0	Salt dacă "peste sau egal" dacă "nu
		sub" dacă "nu există transport"
JB JNAE JC	(CF)=1	Salt dacă "sub" dacă "nu peste sau egal"
		dacă "există transport"
JBE JNA	(CF)sau(ZF)=1	Salt dacă "sub sau egal" dacă "nu
		peste"
JE JZ	(ZF)=1	Salt dacă "egal" dacă " zero"
JG JNLE	((SF)⊗(OF))sau(ZF)=0	Salt dacă "mai mare" dacă "nu mai mic
		sau egal"
JGE JNL	(SF)⊗(OF)=0	Salt dacă "mai mare sau egal " dacă "nu
		mai mic"
JL JNGE	$(SF)\otimes(OF)=1$	Salt dacă "mai mic" dacă "nu mai mare
		sau egal"
JLE JNG	$((SF)\otimes(OF))sau(ZF)=1$	Salt dacă "mai mic sau egal " dacă "nu
		mai mare "
JNE JNZ	(ZF)=0	Salt dacă "ne-egal" dacă "non-zero"
JNO	(OF)=0	Salt dacă "nu există depăşire"
JNP JPO	(PF)=0	Salt dacă " non- paritate" dacă "impar"
JNS	(SF)=0	Salt dacă "non-semn" dacă "pozitiv"
JO	(OF)=1	Salt dacă "există depaşire"
JP JPE	(PF)=1	Salt dacă "există paritate" dacă "par"
JS	(SF)=1	Salt dacă "exist semn"

NOTĂ: - condițiile care se traduc cu "*mai mare*" sau "*mai mic*" se referă la operații asupra unor **numere cu semn**;

- exprimările "sub" sau "peste" se aplică operațiilor asupra unor **numere** fără semn.

3. Indicații importante cu privire la operațiile aritmetice

Microprocesorul este un automat care execută anumite operații predefinite. Acesta nu poate sa cunoască semnificația operatorilor și rezultatelor; de aceea, dacă programatorul nu controlează foarte strict aceste semnificații, este foarte probabil ca rezultatele obținute să fie eronate. Din acest motiv:

- trebuie să se cunoască modul de reprezentare a numerelor în memorie: întregi cu sau fără semn, ZCB împachetat, ASCII, cu virgulă fixă (pentru reprezentarea numerelor fracționare);
- trebuie să se facă estimarea mărimii rezultatelor și operatorilor, pentru a se putea alege lungimea locațiilor de memorie necesară pentru stocarea lor;
- trebuie să se cunoască foarte bine modul de afectare a fanioanelor în urma unei operații, deoarece salturile condiționate se fac relativ la acestea și, în plus, fanioanele ne pot da indicații asupra corectitudinii execuției.

4. Modul de lucru recomandat

Lucrarea de laborator a fost structurată în două părți. În prima parte sunt date două programe care nu au un scop anume, fiind alcătuite dintr-o înșiruire de instrucțiuni, grupate după anumite criterii, care ilustrează tipul de operații de interes. Primul program se ocupă de instrucțiunile aritmetice și logice, iar al doilea, de salturile condiționate și necondiționate.

Când se editează acest program, se vor ignora comentariile. Acestea vor trebui urmărite când se va face rularea pas cu pas a programelor, deoarece explică semnificația fiecărei instrucțiuni. De asemenea, se indică ce registre și ce zone de memorie se modifică.

A doua parte a lucrării conține două aplicații propriu-zise care își propun să ilustreze rezolvarea unor probleme reale. Aici se va acorda atenție atât algoritmului cât și sintaxei instrucțiunilor.

5. Desfășurarea lucrării

- 5.1. Se lansează turbo-asamblorul TASMB și se editează textul programului 1, fără comentarii
- 5.2. Se salvează programul sursă pe disc, cu un nume oarecare, apoi se activează (**O**) opțiunea **F8 COM FILE ș**i se asamblează.
- 5.3. Se vizualizează lista de simboluri (**\$**) și se notează adresele de memorie ale celor patru operanzi.
- 5.4. Se părăsește TASMB (**Q**) și se lansează AFD. Se încarcă (**L**) programul salvat anterior cu extensia **COM** și se rulează pas cu pas, urmărindu-se, în paralel, indicatiile date în comentarii.
 - 5.6. Se repetă punctele 5.1.-5.4. pentru programele 2, 3 și 4.

Programul 1

Observație: La toate instrucțiunile de prelucrare a datelor, trebuie să se urmărească cum sunt afectate fanioanele și să se verifice aceasta confruntându-le cu explicațiile date în memoriul de instrucțiuni.

	org mov mov	100h ax,cs ds,ax	
conv:	mov mov xor xor cbw	al,opb1 bl,opb2 ah,ah bh,bh	;AH=0 ;BH=0 ;converteste tipul operandului din AL, ;din byte in word, prin extinderea ;bitului de semn
	xchg cbw	ax,bx	April de Belli
compl:	mov neg not	ax,bx bx ax	<pre>;complementare fata de 2 ;negare logica (bit cu bit) ;operatiile NEG si NOT se efectueaza ;asupra aceleasi valori. Diferenta ;intre AX si BX ilustreaza efectul ;diferit al celor doua operatii</pre>
	inc dec	bx opb2	;se urmaresc registrul BX si zona ;de memorie de la adresa "opb2"
comp:	xor cmp test cmp	cx,cx opw2,24h opw2,20h opw2,23h opw2,20h	;CF=0 ;comparare prin scadere: opw2-24h ;comparare prin SI logic: opw2 AND 20h ;in general, dupa instructiunile ;de comparare, urmeaza un salt ;conditionat. De aceea trebuie urmarit ;modul in care sunt afectate fanioanele ;si diferenta dintre CMP si TEST
deplas:	inc mov mov shl shl mov shr sal sar	opb2 dx,opw1 cl,3 dx,1 dx,cl dl,opb1 dl,1 dl,1 dl,1 dl,1	<pre>;deplasare logica stinga cu o pozitie ;si cu 3 pozitii ;deplasare logica dreapta cu o pozitie ;se remarca diferenta intre deplasarile ;aritmetice si cele logice si intre ;deplasarile cu o pozitie si cele ;cu mai multe pozitii folosind CL</pre>
rotatii:	mov inc rol	al,opb2 cl al,1	;se remarca diferenta dintre deplasari ;si rotatii
	ror	al,1	

si,si ;CF=0 xor al,1 rcl ;se remarca diferenta dintre rotatiile rcr al,1 al,cl ; 'simple' si cele prin intermediul lui rcr ;CF op_log: and al,00000010b; mai intii se estimeaza or al,10000000b;rezultatele celor doua operatii ;si apoi se verifica rezultatul adun: mov bx,opw1 ;aceasta secventa simuleaza o adunare add bl,byte ptr opw2 ;pe 16 biti din adunari pe 8 biti adc bh,byte ptr opw2+1 ax,bx ;mai intii se estimeaza rezultatul mov daa ;in cele doua cazuri: operatori priviti ;ca intregi cu semn, si fara semn. ;se observa ca rezultatul obtinut ; inainte de DAA, este eronat daca ; operanzii sunt considerati fara semn ; (apare o depasire), sau este corect ;daca sunt considerati cu semn. scad: mov dx,opw1 ; secventa de instructiuni simuleaza ; o scadere pe 16 biti, sub dl, low opw2 ;din scaderi pe 8 biti. sbb dh, high opw2 mov ax,dx ;se evalueaza rezultatele in cele doua ; cazuri specificate la adunare, das ;apoi se verifica corectitudinea lor, ; inainte de DAS imult: ;se remarca diferenta dintre ax,opw1 mov ;rezultatele obtinute in (DX) | (AX) mul opw2 mov ax,opw1 ;pentru cele doua cazuri de inmultire. imul opw2 ;pentru aceasta, rezultatul obtinut ;dupa prima inmultire trebuie notat aam ;se remarca diferenta dintre cele impart: mov ax,opw1 ;doua tipuri de impartire, observand mov dx,0div ;diferentele intre rezultatele opw2 mov ; obtinute in AH si AL. Este bine ax,opw2 and dx,0;sa se observe necesitatea de a scrie idiv opw1 ;0 in DX, inainte de impartire int 20h opw1: dw 0fffdh ;65533 valoare fara semn ;-3 valoare cu semn ;35 valoare cu sau fara semn opw2: dw 23h opb1: db 0feh ;254 valoare fara semn ;-2 valoare cu semn 23h ;35 valoare cu sau fara semn. opb2: db

Programul 2

Observații:

- În programele scrise în limbaj de asamblare, datele se declară în general la sfârșit. Dacă se fac declarațiile la început, procesorul va interpreta aceste date ca pe niște instrucțiuni. Efectul acestora este greu de prevăzut. Pentru a evita acest lucru este necesar ca programul să înceapă cu un salt necondiționat la prima instrucțiune.
- În programul următor, pentru a uşura rularea pas cu pas, după fiecare salt condiționat se revine la instrucțiunea imediat următoare, cu ajutorul unui salt necondiționat indirect prin **BX**. De aceea, se poate observa în program că, înainte de salturile condiționate, se pregătește registrul **BX**.

```
100h
            org
            jmp
                   start
op1:
            db
                   0feh
                               ; valoare fara semn 253
                               ; valoare cu semn -2
                     3
op2:
            db
start:
            mov
                   ax,cs
                   ds,ax
            mov
                               ; SALTURI CONDITIONATE
            mov
                   al,op1
            lea
                  bx,adr1
            cmp
                   al,op2
                               ; in functie de starea fanioanelor
                               ;dupa CMP se estimeaza, mai intii,
            ja
                   fin
                               ;efectul celor doua instructiuni
                               ;JA si JG, iar apoi se verifica
adr1: jg
            fin
                   al,op2
                               ; in functie de starea fanioanelor
            mov
                  bx,adr2
                               ;dupa CMP se estimeaza, mai intii,
            lea
                   al,op1
                               ;efectul celor doua instructiuni
            cmp
                               ; JB si JL, iar apoi se verifica
            jb
                   fin
adr2: jl
            fin
            lea
                  bx,adr3
            cmp
                   al,op2
            jz
                   fin
adr3: lea
            bx,adr4
                   al,0feh
            and
                   fin
            jnp
adr4: jp
            fin
            jmp
                   ies
                               ; SALT NECONDITIONAT
fin:
            jmp
                  bx
                               ; SALT INDIRECT
ies:
                   20h
            int
            end
```

Programul 3

Programul simulează o înmulțire pe 16 biți din înmulțiri pe 8 biți. Rezultatul, care poate avea maximum 32 de biți, se memorează în cuvintele de memorie '**hrez**' și '**lrez**'.

Algoritmul de calcul este următorul:

• Un număr de 16 biți se poate reprezenta astfel:

```
XYZTh = XY*256 + ZT
```

(**XY** este continutul octetului "high" iar **ZT** este continutul octetului "low").

• Atunci:

ABCDh*XYZTh=AB*XY*256*256 + (AB*ZT+XY*CD)*256 + CD*ZT.

 Operațiile de înmulțire cu puteri ale lui doi se fac prin deplasări. La sfârșitul programului se face direct înmulțirea pe 16 biți a celor doi operanzi, pentru a putea verifica corectitudinea algoritmului.

```
100h
            org
                  al, byte ptr op1+1
start:
            mov
            mul
                  byte ptr [op2+1]
            mov
                  hrez,ax
                  al, byte ptr op1+1
            mov
                  byte ptr op2
            mul
            mov
                  dx,ax
                  cl,8
            mov
            sal
                  ax,cl
                  c1,8
            mov
                  dx,cl
            shr
                  lrez,ax
            add
            adc
                  hrez,0
                  hrez,dx
            add
                  al, byte ptr op2+1
            mul
                  byte ptr op1
                  dx,ax
            mov
                  cl,8
            mov
            shl
                  ax,cl
                  cl,8
            mov
                  dx,cl
            shr
                  lrez,ax
            add
            adc
                  hrez,0
            add
                  hrez, dx
                  al, byte ptr op1
                  byte ptr op2
            mul
            add
                  lrez,ax
                  hrez,0
            adc
                  ax.lrez
            mov
                  dx,hrez
            mov
                  ax,op1
            mov
            mul
                  op2
```

```
int 20h
op1: dw 300
op2: dw 200
lrez: dw ?
hrez: dw ?s
end
```

Programul 4

Se consideră un şir de maximum 16 cuvinte care ar trebui să fie identice între ele şi egale cu o valoare de referință '**ref**'. Algoritmul îşi propune să găsească toate elementele diferite şi să specifice adresa lor.

Zona de memorie de la adresa '**nrdif**' va conține numerele din șir diferite de referință, iar '**poz**' adresele acestor numere.

```
100h
            org
            mov
                   ax,cs
                   ds,ax
            mov
                   di,sir
             lea
            cld
                   bx,0ffffh
            mov
                   ax,ref
            mov
            mov
                   cx,(nrdif-sir)/2
et1:
            repz
                   scasw
                   fin
             jz
             inc
                   bx
                   dx,[di-2]
            mov
                   bx,1
             shl
                   [nrdif+bx],dx
            mov
            mov
                   dx,di
                   dx, 2
             sub
                   [poz+bx],dx
            mov
                   bx,1
             shr
                   et1
             jmp
fin:
             inc
                   bx
                   20h
             int
sir
            dw
                   1,1,2,3,1,1,1,1,4,1,5,1,1,1,4,1
                   16 dup (Offffh)
nrdif
            dw
poz
            dw
                   16 dup (Offffh)
ref
            equ
             end
```