

Product Summary

V _{(BR)DSS}	R _{DS(on)TYP}	l _D
100V	1.9mΩ@10V	245A

Feature

- Fast Switching
- Low Gate Charge and Rdson
- Advanced Split Gate Trench Technology
- 100% Single Pulse avalanche energy Test

Applications

- PWM Application
- Hard switched and high frequency circuits
- Power Management

Package

Circuit diagram

Marking

SP010N02LGHTO :Product code
** :Week code

Order Information

Device	Package	Unit/Tape
SP010N02LGHTO	TOLL	2000

100V N-Channel Power MOSFET

Absolute maximum ratings (Ta=25°C,unless otherwise noted)

Parameter	Symbol	Rating	Unit
Drain-Source Voltage	V _{DS}	100	V
Gate-Source Voltage	V _{GS}	±20	V
Continuous Drain Current (Tc=25°C)	I _D	245	Α
Continuous Drain Current (Tc=100°C)	I _D	165	Α
Pulsed Drain Current	I _{DM}	980	Α
Single Pulse Avalanche Energy ¹	Eas	1296	mJ
Power Dissipation (Tc=25°C)	P _D	255	W
Thermal Resistance Junction-to-Case	R _{θJC}	0.49	°C/W
Storage Temperature Range	T _{STG}	-55 to 150	$^{\circ}$
Operating Junction Temperature Range	TJ	-55 to 150	$^{\circ}$

Electrical characteristics (Ta=25°C, unless otherwise noted)

Characteristics	Symbol	Test Condition	Min	Тур	Max	Unit
Static Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	ID = 250μA, VGS = 0V	100	110	-	V
Drain Cut-Off Current	I _{DSS}	VDS = 80V, VGS = 0V	-	-	1	
Gate Leakage Current	I _{GSS}	VGS = ±20V, VDS = 0V	-	-	±0.1	μA
Gate Threshold Voltage	$V_{GS(th)}$	VDS = VGS, ID = 250µA	2.0	3.0	4.0	V
Drain-Source ON Resistance	R _{DS(ON)}	VGS = 10V, ID = 20A	-	1.9	2.3	mΩ
Dynamic Characteristics						
Input Capacitance	Ciss		-	8516	-	
Output Capacitance	Coss	VDS =50V, VGS = 0V, f = 1.0MHz	-	1356	-	pF
Reverse Transfer Capacitance	C _{rss}		-	46	-	
Total Gate Charge	Qg		-	130	-	
Gate-Source Charge	Q _{gs}	VDS=50V , VGS=10V , ID=20A	-	56	-	nC
Gate-Drain Charge	Q _{gd}		-	37	-	
Switching Characteristics			•			
Turn-On Delay Time	t _{d(on)}		-	42	-	
Rise Time	tr	VGS = 10V, VDS = 50V, RL=2.5Ω	-	63	-	
Turn-Off Delay Time	t _{d(off)}	$RG = 6.0\Omega$	-	137	-	nS
Fall Time	t _f		-	76	-	
Drain-Source Body Diode Characteris	stics					
Source-Drain Diode Forward Voltage	V _{SD}	I _S = 1A, VGS = 0V	-	-	1.2	V
Maximum Body-Diode Continuous Current	Is		-	-	245	Α
Reverse Recovery Time	Trr	L-204 di/dt-1004/up TI-25°C	-	107	-	nS
Reverse Recovery Charge	Qrr	I _S =20A, di/dt=100A/us, TJ=25℃	-	318	-	nC

Note:

1. The test condition is VDD=50V,VGS=10V,L=0.5mH,RG=25 Ω

Typical Characteristics

 $R_{DS(ON)}$ vs. Drain Current

 $R_{DS(ON)}$ vs. Junction Temperature

 $V_{\text{GS(th)}}$ vs. Junction Temperature

 $V_{\text{BR}(\text{DSS})}$ vs. Junction Temperature

Body-Diode Characteristics

Capacitance Characteristics

Current De-rating

Power De-rating

Maximum Safe Operating Area

Single Pulse Power Rating, Junction-to-Case

100V N-Channel Power MOSFET

Normalized Maximum Transient Thermal Impedance

TOLL Package Information

Symbol	Dimensions In Millimeters		
	Min.	Nom.	Max.
А	2.20	2.30	2.40
b	0.65	0.75	0.85
С	0.508 REF		
D	10.25	10.40	10.55
D1	2.85	3.00	3.15
E	9.75	9.90	10.05
E1	9.65	9.80	9.95
E2	8.95	9.10	9.25
E3	7.25	7.40	7.55
е	1.20 BSC		
F	1.05	1.20	1.35
Н	11.55	11.70	11.85
H1	6.03	6.18	6.33
H2	6.85	7.00	7.15
Н3	3.00 BSC		
L	1.55	1.70	1.85
L1	0.55	0.7	0.85
L2	0.45	0.6	0.75
М	0.08 REF.		
β	8°	10°	12°
К	4.25	4.40	4.55