A Level Maths - C4 Sam Robbins 13SE

Binomial Expansion

Introduction to Binomial expansion 1

Expansion can be done using the $(1+x)^n$ expansion, including with $(1+ax)^n$

2 Negative powers

Example To expand $\frac{1}{1+x}$ turn it into $(1+x)^{-1}$ an use the formula from the book.

$$1 - x + x^2 - x^3 + x^4 - x^5 \dots$$

As n is not a positive integer there will be no x coefficient equalling zero, meaning the expansion is infinite and convergent.

This gives valid values when |x| < 1

3 Fractional powers

 $\sqrt{1-3x}$

Simplify

 $(1-3x)^{\frac{1}{2}}$

Find n and x

$$n = \frac{1}{2}$$
$$x = -3x$$

Substitute into the formula
$$1+\tfrac{1}{2}\times -3x+\tfrac{\tfrac{1}{2}(\tfrac{1}{2}-1)}{1\times 2}\times (-3x)^2$$

Simplify

$$1 - \frac{3}{2}x - \frac{9}{8}x^2$$

Write conclusion

Convergent and infinite when: $|3x| < 1 |x| < \frac{1}{3}$

Applying $(1+x)^n$ to $(a \pm bx)^n$

 $(a \pm bx)^n$ can be rewritten as $a^n(1 \pm \frac{b}{a}x)^n$

4.1 Example

Expand $\sqrt{4+x}$ to the x^3 term

Turn square root into power

 $(4-x)^{\frac{1}{2}}$

Rewrite with a 1 in the bracket

$$4^{\frac{1}{2}}(1+\frac{1}{4}x)^{\frac{1}{2}}$$

Find n and x

$$n = \frac{1}{2}$$

$$x = \frac{1}{4}x$$

Substitute into the formula

$$2\left[1+\frac{1}{2}\times\frac{1}{4}x+\frac{\frac{1}{2}(\frac{1}{2}-1)}{2!}\left(\frac{1}{4}x\right)^2+\frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)}{3!}\left(\frac{1}{4}x\right)^3\right]$$

Simplify

$$2\left[1 + \frac{x}{8} - \frac{x^2}{128} + \frac{x^3}{1024}\right]$$
$$2 + \frac{x}{4} - \frac{x^2}{64} + \frac{x^3}{512}$$

Write conclusion

Valid if $\left|\frac{x}{4}\right| < 1$ so valid if |x| < 4

Unknown coefficient type

 $(a+bx)^{-2}$ can be approximated by $a(1+\frac{b}{a}x)^{-2}$ $\frac{1}{a^2}(1-2\frac{b}{a}x)$

Fractional type

Expand up to
$$x^3 \frac{1+x}{2+x}$$

Re-Write using powers

$$(1+x)(2+x)^{-1}$$

Ensure there is only a 1 in the bracket

$$2(1+\frac{1}{2}x)^{-1}$$

Find n and x

$$n = -1$$
$$x = \frac{1}{2}x$$

Substitute into the formula
$$\frac{1}{2} \left(1 + -1 \times \frac{1}{2} x \right) + \frac{-1(-1-1)}{2!} \left(\frac{1}{2} (x)^2 \right)^2 + \frac{-1(-1-1)(-1-2}{3!} \left(\frac{1}{2} x \right)^3$$

$$(1+x)\left(\frac{1}{2} - \frac{1}{4}x + \frac{1}{8}x^2 - \frac{1}{16}x^3\right)$$
$$\frac{1}{2} + \frac{1}{4}x - \frac{1}{8}x^2 + \frac{1}{16}x^3$$

Write conclusion

Valid if $x \neq 2$

A Level Maths - C4 Sam Robbins 13SE

Approximating roots

Find the expansion of $\sqrt{1-2x}$ up to x^3

Re-Write using powers

$$(1-2x)^{\frac{1}{2}}$$

Find n and x
$$n = \frac{1}{2}$$
 $x = -2x$

Substitute into the formula
$$1 + \left(\frac{1}{2} \times -2x\right) + \frac{\frac{1}{2}(\frac{1}{2} - 1)}{2!} \times (-2x)^2 + \frac{\frac{1}{2}(\frac{1}{2} - 1)(\frac{1}{2} - 2)}{3!} \times (-2x)^3$$

Simplify
$$1 - x + \frac{1}{2}x^2 - \frac{1}{3}x^3$$

By substituting x = 0.01, find a suitable approximation of $\sqrt{2}$

Substitute values

$$\sqrt{1 - \frac{2}{100}} = 1 - \frac{1}{100} - \frac{(\frac{1}{100})^2}{2} - \frac{(\frac{1}{100})^3}{2}$$

Simplify

$$\sqrt{\frac{98}{100}} = \frac{\sqrt{98}}{10} = \frac{7\sqrt{2}}{10}$$

Rearrange

$$\sqrt{2} \approx \frac{10}{7} \left(1 - \frac{1}{100} - \frac{\left(\frac{1}{100}\right)^2}{2} - \frac{\left(\frac{1}{100}\right)^3}{2} \right)$$

$$\sqrt{2} = 1.414213571$$