0	ead() red acidity volatile 7.0	acidity citric acid residu	al sugar chlorides free sulfu 20.7 0.045	r dioxide total sulfu 45.0	Quality.csv" , sep=';') fur dioxide density pH sulphates alcohol quality 170.0 1.0010 3.00 0.45 8.8 6	
<class< td=""><td>eIndex: 4898 er columns (total</td><td></td><td>1.6 0.049 6.9 0.050 8.5 0.058 8.5 0.058</td><td>14.0 30.0 47.0 47.0</td><td>132.0 0.9940 3.30 0.49 9.5 6 97.0 0.9951 3.26 0.44 10.1 6 186.0 0.9956 3.19 0.40 9.9 6 186.0 0.9956 3.19 0.40 9.9 6</td><td></td></class<>	eIndex: 4898 er columns (total		1.6 0.049 6.9 0.050 8.5 0.058 8.5 0.058	14.0 30.0 47.0 47.0	132.0 0.9940 3.30 0.49 9.5 6 97.0 0.9951 3.26 0.44 10.1 6 186.0 0.9956 3.19 0.40 9.9 6 186.0 0.9956 3.19 0.40 9.9 6	
1 2 3 4 5 6 7 8 9 10 11	Column fixed acidity volatile acidicitric acid residual sugar chlorides free sulfur di total sulfur density pH sulphates alcohol quality es: float64(11)	4898 non-nul 4898 non-nul 4898 non-nul .oxide 4898 non-nul 4898 non-nul 4898 non-nul 4898 non-nul 4898 non-nul 4898 non-nul	1 float64 1 float64 1 float64 1 float64 1 float64 1 float64 1 float64 1 float64 1 float64 1 float64			
memori df.dd df.dd mean std min 25%	ry usage: 459.3 escribe() fixed acidity vol : 4898.000000 6.854788 0.843868 3.800000 6.300000 6.800000	atile acidity citric acid 4898.000000 0.278241 0.334192 0.100795 0.121020 0.080000 0.210000 0.270000 0.260000 0.320000	4898.000000 4898.000000 6.391415 0.045772 5.072058 0.021848 0.600000 0.009000 1.700000 0.036000 5.200000 0.043000	4898.000000 35.308085 17.007137 2.000000 23.000000 34.000000	total sulfur dioxide density pH sulphates alcohol quality 4898.000000 4898.000000 4898.000000 4898.000000 4898.000000 138.360657 0.994027 3.188267 0.489847 10.514267 5.877909 42.498065 0.002991 0.151001 0.114126 1.230621 0.885639 9.000000 0.987110 2.720000 0.220000 8.000000 3.000000 108.000000 0.991723 3.090000 0.410000 9.500000 5.000000 134.000000 0.993740 3.180000 0.470000 10.400000 6.000000	
Index	olumns x(['fixed acidi 'chlorides', 'pH', 'sulph dtype='object	free sulfur dioxid' nates', 'alcohol', 'd	9.900000 0.050000 65.800000 0.346000 ty', 'citric acid', 're e', 'total sulfur dioxi uality'],	46.000000 289.000000 sidual sugar', de', 'density',	167.000000 0.996100 3.280000 0.550000 11.400000 6.000000 440.000000 1.038980 3.820000 1.080000 14.200000 9.000000	
6 5 7 8 4 3 9 Name	quality'].value 2198 1457 880 175 163 20 5 : quality, dtyp	pe: int64				
quality	fixed acidity vo		6.392500 0.054300 4.628221 0.050098 7.334969 0.051546 6.441606 0.045217 5.186477 0.038191 5.671429 0.038314	sulfur dioxide total 53.325000 23.358896 36.432052 35.650591 34.125568 36.720000	Al sulfur dioxide density pH sulphates alcohol 170.600000 0.994884 3.187500 0.474500 10.345000 125.279141 0.994277 3.182883 0.476135 10.152454 150.904598 0.995263 3.168833 0.482203 9.808840 137.047316 0.993961 3.188599 0.491106 10.575372 125.114773 0.992452 3.213898 0.503102 11.367936 126.165714 0.992236 3.218686 0.486229 11.636000	
		0.298000 0.386000	4.120000 0.027400	33.400000	116.000000 0.991460 3.308000 0.466000 12.180000	
	6 6 6 6 5 6 7 6: quality, Leng	'free sulfur dioxid	64 y', 'citric acid', 'res e', 'total sulfur dioxi			
5]: X = 0 6]: X.sha 6]: (4898 7]: X	df.drop(['quali ape 8, 11)		idual sugar chlorides free su 20.7 0.045	ulfur dioxide total so	sulfur dioxide density pH sulphates alcohol 170.0 1.00100 3.00 0.45 8.8	
1 2 3 4 4893 4894 4895	6.3 8.1 7.2 7.2 6.2 6.6 6.5	0.30	1.6 0.049 6.9 0.050 8.5 0.058 8.5 0.058 1.6 0.039 8.0 0.047 1.2 0.041	14.0 30.0 47.0 47.0 24.0 57.0 30.0	132.0 0.99400 3.30 0.49 9.5 97.0 0.99510 3.26 0.44 10.1 186.0 0.99560 3.19 0.40 9.9 186.0 0.99560 3.19 0.40 9.9 92.0 0.99114 3.27 0.50 11.2 168.0 0.99490 3.15 0.46 9.6 111.0 0.99254 2.99 0.46 9.4	
8]: from 9]: ss =	5.5 6.0 rows × 11 columns sklearn.prepro StandardScaler ss.fit_transfor	ocessing import Stand	1.1 0.022 0.8 0.020	20.0	110.0 0.98869 3.34 0.38 12.8 98.0 0.98941 3.26 0.32 11.8	
1]: X	y([[1.72096961 -1.24692128 [-6.57501128 7.40028646 [1.47575116 4.75101984 , [-4.20473102	Le-01, -8.17699008e-6 Be+00, -3.49184257e-6 Be-01, 2.15895632e-6 De-01, 1.34184656e-6 De+00, 1.74519434e-6 Be-01, -4.36815783e-6	2, 2.13280202e-01, 1, -1.39315246e+00], 1, 4.80011213e-02, 3, -8.24275678e-01], 2, 5.43838363e-01, 1, -3.36667007e-01], 1, -1.19159198e+00, 1, -9.05543789e-01],	,		
3]: X_tra 4]: X_tra	1.00495536 [-1.01304317 4.75101984 sklearn.model_ ain, X_test, y_ ain.shape, X_te	0e+00, -9.62604939e-0 7e+00, -6.77100966e-0 8e-01, -1.48839409e+0 _selection import tra	n_test_split(X, y, test ape, y_test.shape	,	ratify = y , random_state = 72529)	
5]: from 6]: svc :	sklearn.svm in = SVC() fit(X_train, y_	n port SVC				
9]: y_pro 9]: (1470 0]: y_pro	0,) ed	ct(X_test) , 6, 6, 5], dtype=ir	t64)			
2]: prin	t(confusion_mat 0 0 1 4 0 2 31 16 0 1 257 177 0 0 121 500 0 0 8 181 0 0 1 40	rix(y_test, y_pred); 1 0 0] 0 0 0] 2 0 0] 39 0 0] 75 0 0]	atrix, classification_r	eport		
3]: prin	preci 3 4 5 6 7 8	0.00 0.00 0.67 0.04 0.61 0.59 0.54 0.76 0.58 0.28 0.00 0.00	ored)) core support 0.00 6 0.08 49 0.60 437 0.63 660 0.38 264 0.00 53 0.00 1			
maweigh c:\us efine _wa c:\us efine _wa c:\us efine	sers\d g ranjit ed and being se arn_prf(average sers\d g ranjit ed and being se arn_prf(average sers\d g ranjit	0.34 0.24 0.55 0.57 The kumar\appdata\local et to 0.0 in labels we check the compact of the com	<pre>ith no predicted sample t, len(result)) l\programs\python\pytho ith no predicted sample t, len(result)) l\programs\python\pytho</pre>	s. Use `zero_di n39\lib\site-pa s. Use `zero_di n39\lib\site-pa	ackages\sklearn\metrics_classification.py:1327: UndefinedMetricWarning: Precision and F-scor ivision` parameter to control this behavior. ackages\sklearn\metrics_classification.py:1327: UndefinedMetricWarning: Precision and F-scor ivision` parameter to control this behavior. ackages\sklearn\metrics_classification.py:1327: UndefinedMetricWarning: Precision and F-scor ivision` parameter to control this behavior.	re are
wa 44]: y = 0 45]: y.va: 55]: 1 0 Name:	arn_prf(average df['quality'].a lue_counts() 3258 1640 : quality, dtyp	e, modifier, msg_star apply(lambda y_value	t, len(result)) : 1 if y_value >=6 else			
8]: X_tra	ain.shape, X_te 28, 11), (1470, sklearn.svm i n	est.shape, y_train.sh 11), (3428,), (1476	ape, y_test.shape	_size= 0.3, str	ratify = y , random_state = 72529)	
1]: v svc(svc(2]: y_pro	ed = svc.prediced.shape					
5]: from	ed y([1, 1, 1, sklearn.metric	, 1, 1, 1], dtype=ir cs import confusion_n crix(y_test, y_pred)	atrix, classification_r	eport		
[103	preci 0 1 accuracy	0.74 0.58 0.81 0.89	ored)) core support 0.65 492 0.85 978 0.79 1470 0.75 1470			
weigh	hted avg ew = df.sample(0.79 0.79	0.78 1470	ulfur dioxide total so	sulfur dioxide density pH sulphates alcohol quality 134.0 0.99234 3.25 0.26 12.3 7	
(1, 1): X_net			: 1)			
4]: y_pro 4]: array	ed_new y([1], dtype=ir	nt64)				
]:						