로지스틱회귀분석을활용한심장질환주요 변수예측

의료데이터분석 및 활용 실무

정보융합학부 2020204051 김서경

CONTENT

01 프로젝트개요

O2 데이터EDA

O3 ANOVA분석

04 로지스틱회귀분석

O5 Feature Selection

06 기대효과 및 활용방안

01. 프로젝트 개요 데이터 선정 배경

심장 질환 국내 사망원인 2위

			(단위: 인구	10만 명당 명)
순위	사망원인		사망률	'22년 순위 대비
1	악성신생물(암)		166.7	-
2	심장 질환		64.8	-
3	폐렴		57.5	1 (+1)
4	뇌혈관 질환		47.3	1 (+1)
5	고의적 자해(자실	<u>b</u>	27.3	1 (+1)
6	<mark>알츠</mark> 하이머병		21.7	1 (+1)
7	당뇨병		21.6	1 (+1)
8	고혈압성 질환		15.6	1 (+1)
9	패혈증		15.3	1 (+2)
10	코로나19		14.6	↓ (-7)

젊은 층 심장 질환 환자 가파른 증가세

뉴스홈 | 최신기사

심장질환자 4년새 20% 늘었다…20대는 무려 33% 급증

송고시간 | 2023-11-07 17:02

성서호 기자

진료비도 40% 급증해 지난해 2조5천억원 달해 심평원, 최근 5년간 심장질환 진료 분석···환자 수 183만여명

01. 프로젝트 개요 데이터 선정 배경

심장 질환 국내 사망원인 2위

젊은 층 심장 질환 환자 가파른 증가세

kaggle 'Health care: Heart attack possibility' https://www.kaggle.com/datasets/pritsheta/heart-attack

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1
298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	0
299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	0
300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	0
301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	0
302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	0

303 rows × 14 columns

주요 변수 설명

- Age (나이): 환자의 나이를 나타내는 연속형 데이터
- Sex (성별): 환자의 성별을 나타내며, 1은 남성, 2는 여성
- Cp (흉통유형): 환자가 경험한 흉통유형을 네 가지로 구분
 - 0: 전형적인 협심증
 - 1:비전형적인 협심증
- 2:비협심증성통증
- 3:무증상
- Trestbps (휴식시혈압): 병원입원시측정된환자의혈압 (단위: mmHg)
- Chol (콜레스테롤): 혈액 내 총 콜레스테롤 수치 (단위: mg/dL)
- Fbs (공복혈당): 공복시혈당이 120mg/dL를 초과하는지 여부, 1(초과함) / 0(정상)
- Restecg (휴식시심전도결과): 휴식상태에서 측정된심전도결과
- 0:정상
- 1:ST-T파이상
- 2: 좌심실 비대 가능성
- Thalach (최대 심박수): 극한 운동시 도달할 수 있는 최대 심박수 (단위: bpm)
- Exang (운동유발협심증): 운동중협심증발생 여부, 1(있음) / 0(없음)
- Oldpeak (운동으로 유발된 ST 분절 변화) : 운동과 휴식 간 ST 분절의 차이 (단위: mm)
- Slope (ST분절기울기): 운동중ST분절의 기울기를 나타냄
- 0:상승형
- 1:평형형
- 2:하강형
- Ca (주요혈관수): 혈관조영술로관찰된주요혈관의수 (범위: 0~4)
- Thal (핵의학스캔결과):심장상태를 나타냄, 1(질환있음) / 2(가역적결함)
- Target (심장질환여부): 심장질환의유무를 나타냄, 0(질환없음) /1(질환있음)

df.isnull().sum()					
[28]:					
age	0				
sex	0				
ср	0				
trestbps	0				
chol	0				
fbs	0				
restecg	0				
thalach	0				
exang	0				
oldpeak	0				
slope	0				
ca	0				
thal	0				
target	0				
dtvne: int	64				

14개 변수, 결측치 없음

종속 변수 분포 - balanced

변수간상관계수행렬

'target' 과의 주요 관계

양의상관관계

- cp(가슴통증) 0.43
- thalach(최대심박수) 0.42
- slope(ST segment기울기) 0.35

음의상관관계

- exang(운동으로 유발된 협심증) -0.44
- oldpeak(ST 분절기울기) -0.43
- ca(주요혈관수) -0.39

03. ANOVA 분석 연속형 변수 범주화

질병관리청. (n.d.). 일반건강정보. Retrieved December 9, 2024, from https://health.kdca.go.kr/healthinfo/biz/health/gnrlzHealthInfo/gnrlz

03. ANOVA 분석 _{분석 결과}

변수	F값	p-값	유의미 여부 (p < 0.05)
ср	36.7	< 0.001	유의미
restecg	4.73	0.043	유의미
slope	28.0	< 0.001	유의미
ca	24.7	< 0.001	유의미
thal	30.7	0.002	유의미
age_group	4.55	0.021	유의미
trestbps_gro up	2.28	0.084	유의미하지 않음
chol_group	1.88	0.157	유의미하지 않음

범주별심장질환발생비율

04.로지스틱회귀분석 I pre

8:2 RANDOM SAMPLING

Х, у

X=df.drop("target", axis=1)
y=df["target"]

StandardScaler()

로지스틱 회귀는 가중치(weight)에 민감
-> StandardScaler를 사용하여 데이터를 표준화

04. 로지스틱회귀분석 l classification_report(y_test, y_pred)

04.로지스틱회귀분석 I ROC Curve

X

잘못된 양성 예측 비율 (False Positive Rate, FPR)

Y

올바른양성 예측 비율, (True Positive Rate, TPR), 즉 재현율(Recall)

ROC Curve

분류임계값(threshold)을 조정하면서 FPR과 TPR의 관계를 나타낸 곡선

- -> 왼쪽 위로 치우쳐져 있어, FPR이 낮은 상태에서도 높은 TPR을 유지
- ->93%의 확률로 양성과 음성을 올바르게 구분할 수 있음 (AUC=0.93)

04. 로지스틱회귀분석 I Cross-Validation (5-Fold)

교차 검증 정확도: [0.90163934 0.85245902 0.7704918 0.81666667 0.85

평균 정확도: 83.83%

모델의일반화가능성을평가

StratifiedKFold를 사용해 클래스 비율을 유지한 상태로 데이터를 나누고 데이터를 5개의 Fold로 나누어 5번 학습 및 검증을 시행

- ->성능 평균83.83%로 일반화 가능성 높음
- -> 77%~90% 편차 있음

05. Feature Selection Variance Inflation Factor(VIF)

	Variable	VIF
0	const	212.998773
1	age	1.443937
2	sex	1.231356
3	ср	1.397152
4	trestbps	1.180747
5	chol	1.152971
6	fbs	1.087698
7	restecg	1.066721
8	thalach	1.653567
9	exang	1.440147
10	oldpeak	1.744666
11	slope	1.662325
12	ca	1.290729
13	thal	1.191528
14	target	2.072754

다중공선성이 있는 경우, 특정 변수의 계수가 왜곡되거나 작아질 수 있음

VIF>10

다중공선성이 확인됨

모두1에 가까움

다중공선성 거의 없는 데이터

=>컬럼선택불가

=> Logistic Regression Coefficients 확인

05. Feature Selection Logistic Regression Coefficients

모델의 주요 변수식별 계수>0 해당 변수증가->종속 변수 예측 확률증가

계수<0 해당변수증가->종속변수예측확률감소

|계수|클수록 변수 중요도 큼

=> coef 의 통계적 유의성 확인

05. Feature Selection sm.Logit(y_train, X_train_const).fit()

Optimization terminated successfully. Current function value: 0.348242							
Iterations 7							
Logit Regression Results							
Dep. Variable: target No. Observations: 242							
Model:		Logit Df Residuals:				228	
Method:		MLE Df Model:			13		
Date:	Sun	, 08 Dec 20	c 2024 Pseudo R-squ.: 0.4940			0.4940	
Time:				-84.274			
converged:		Tr	ue LL-Nul	1:		-166.55	
Covariance	Type:	nonrobu	ıst LLR p-	value:		2.359e-28	
	=========	========		========		=======	
	coef		z	P> z	[0.025	0.975]	
const	-0.0330				-0.437	0.371	
age	-0.0795	0.228	-0.349	0.727	-0.527	0.368	
sex	-0.8286	0.243	-3.411	0.001	-1.305	-0.352	
ср	0.8862	0.219	4.048	0.000	0.457	1.315	
trestbps	-0.3091	0.205	-1.509	0.131	-0.710	0.092	
chol	-0.1951	0.211	-0.924	0.356	-0.609	0.219	
fbs	0.1047	0.227	0.461	0.645	-0.340	0.550	
restecg	0.3106	0.208	1.493	0.135	-0.097	0.718	
thalach	0.4277	0.277	1.542	0.123	-0.116	0.971	
exang	-0.5434	0.216	-2.513	0.012	-0.967	-0.120	
oldpeak	-0.7639	0.297	-2.576	0.010	-1.345	-0.183	
slope	0.4700	0.243	1.931	0.053	-0.007	0.947	
ca	-0.8753	0.232	-3.773	0.000	-1.330	-0.421	
thal	-0.6156	0.210	-2.928	0.003	-1.028	-0.204	

통계적으로 유의하지 않은 계수를 가진 변수가 다수(P>0.05)

=> RandomForestClassifier

05. Feature Selection RandomForestClassifier

Feature Importances:						
	feature	importance				
9	oldpeak	0.128485				
7	thalach	0.119725				
11	ca	0.115533				
2	ср	0.103792				
12	thal	0.093300				
0	age	0.092811				
3	trestbps	0.077537				
8	exang	0.075809				
4	chol	0.074812				
10	slope	0.051058				
1	sex	0.035658				
6	restecg	0.019782				
5	fbs	0.011698				

 Feature Importance 값의 누적 합을 계산

 => 80% 이상의 중요도를 설명하는 변수까지 선택

 독립 변수 13개 -> 8개

05. Feature Selection ਤੁਨਾਨ ਤਿਸ਼ਾ ਸ਼ਿਲ੍ਹ । ਹਨ।

06. 기대효과 및 활용방안 로지스틱 회귀 분석을 통한 심장 질환 발병 주요 원인 분석 결과

oldpeak

[운동으로 유발된 ST 분절 변화] 운동과 휴식 간 ST 분절의 차이 (mm)

ср

[흉통유형]

환자가 경험한 흥통 유형을 네 가지로 구분

0: 전형적인 협심증

1:비전형적인 협심증

2:비협심증성통증

3:무증상

trestbps

[휴식시혈압] 입원시측정된환자의혈압 (mmHg)

thalach

ca

[최대심박수] 극한운동시도달할수있는최대심박수(bpm)

thal

[핵의학스캔결과]

심장상태를나타냄

1: 질환있음

2: 가역적 결함

exang

[운동유발협심증] 운동중협심증발생여부

1: 있음

0: 없음

[주요혈관수] 혈관조영술로관찰된주요혈관의수 (0~4)

[나이] 환자의 나이를 나타내는 연속형 데이터

06. 기대효과 및 활용방안

심장질환주요변수의정량적분석

- -심장 질환의 위험 요인을 객관적으로 이해하는데 기여
- -특성선택기법으로모델의 단순화와 해석력 강화

의료자원활용의효율성증대

- -고위험군의 <mark>효율적</mark> 선별, 불필요한 검사 및 치료 최소화
- -조기 발견을 통한 치료 성공률 향상 -> 의료비 절감

조기 진단과 예방을 위한 실질적 활용 가능성

- -도출된 주요 변수는 조기 진단, 고위험군 선별에 유용
- -생활습관개선 및 건강 관리 방안 제공으로 발병 예방

공중보건 정책 및 캠페인에의 기여

- -예방캠페인 및 건강교육프로그램 등 공중보건 정책 설계에 활용
- -캠페인의 핵심 메시지, 고위험군 대상 맞춤형 관리 프로그램 개발

감사합니다