Wavelet Transform

Presented by Imane Hafnaoui

Fourrier Transform Limitations

FT shows what frequencies exist in a signal.

Stationary

FT is not good with non-stationary signals

Stationary

0.0-0.4: 2 Hz + 0.4-0.7: 10 Hz + 0.7-1.0: 20Hz

Non-Stationary

 FT only shows how much of each frequency is present but not at what time it occurs.

Same in Frequency Domain

Problem

 Time – Frequency representation is needed.

Solution

Wavelet Transform

An introduction to Wavelet Transform

Introduction

• Why Wavelet Transform?

Ans: Analysis signals which is a function of time and frequency

Examples
 Scores, images, economical data, etc.

Introduction

Conventional Fourier
Transform
V.S.
Wavelet Transform

Conventional Fourier Transform

$$x(t) = \begin{cases} \sin(2\pi 100t) & 0 \le t < 0.5 \\ \sin(2\pi 200t) & 0.5 \le t < 1 \\ \sin(2\pi 400t) & 1 \le t < 1.5 \end{cases}$$

Wavelet Transform

$$x(t) = \begin{cases} \sin(2\pi 100t) & 0 \le t < 0.5 \\ \sin(2\pi 200t) & 0.5 \le t < 1 \\ \sin(2\pi 400t) & 1 \le t < 1.5 \end{cases}$$

Background

- Image pyramids
- Subband coding

Image pyramids

Fig. 1 a J-level image pyramid[1]

Image pyramids

Fig. 2 Block diagram for creating image pyramids[1]

Subband coding

Fig. 3 Two-band filter bank for one-dimensional subband coding and decoding system and the corresponding spectrum of the two bandpass filters[1]

An Animated Introduction to the Discrete Wavelet Transform

Revised Lecture Notes New Delhi December 2001

Arne Jensen

Aalborg University

Reference

This is a tutorial introduction to the discrete wavelet transform. It is based on the book

A. Jensen and A. la Cour-Harbo:

Ripples in Mathematics

The Discrete Wavelet Transform

Springer-Verlag 2001.

A signal with 8 samples:

56, 40, 8, 24, 48, 48, 40, 16

We compute a transform as shown here:

56	40	8	24	48	48	40	16
48	16	48	28	8	-8	0	12
32	38	16	10	8	-8	0	12
35	-3	16	10	8	-8	0	12

To interpretation

56	40	8	24	48	48	40	16

56	40	8	24	48	48	40	16
48	16			8	-8		

56	40	8	24	48	48	40	16
48	16	48		8	-8	0	

56	40	8	24	48	48	40	16
48	16	48	28	8	-8	0	12

56	40	8	24	48	48	40	16
48	16	48	28	8	-8	0	12
				8	-8	0	12

56	40	8	24	48	48	40	16
48	16	48	28	8	-8	0	12
32		16		8	-8	0	12

56	40	8	24	48	48	40	16
48	16	48	28	8	-8	0	12
32	38	16	10	8	-8	0	12

56	40	8	24	48	48	40	16
48	16	48	28	8	-8	0	12
32	38	16	10	8	-8	0	12
		16	10	8	-8	0	12

56	40	8	24	48	48	40	16
48	16	48	28	8	-8	0	12
32	38	16	10	8	-8	0	12
35	-3	16	10	8	-8	0	12

35	-3	16	10	8	-8	0	12

32	38						
35	-3	16	10	8	-8	0	12

32	38	16	10	8	-8	0	12
35	-3	16	10	8	-8	0	12

48	16	48	28				
32	38	16	10	8	-8	0	12
35	-3	16	10	8	-8	0	12

48	16	48	28	8	-8	0	12
32	38	16	10	8	-8	0	12
35	-3	16	10	8	-8	0	12

56	40	8	24	48	48	40	16
48	16	48	28	8	-8	0	12
32	38	16	10	8	-8	0	12
35	-3	16	10	8	-8	0	12

Lifting 1

We now look at the transform in the first example. The direct transform $(a,b) \rightarrow (d,s)$ is given by

$$s = \frac{a+b}{2},$$
$$d = a-s.$$

and the inverse $(d,s) \rightarrow (a,b)$ by

$$a = s + d;,$$

$$b = s - d$$
.

DWT 2

A DWT over four scales

DWT 2

A DWT over four scales

A DWT over four scales

The inverse DWT over four scales

DWT 2

A DWT over four scales

The inverse DWT over four scales

