x	1	2	3	4
$f_X(x)$	0.19	0.32	0.31	0.18
$f_{X Y}(x 1)$	10/19	5/19	2/19	2/19

y	1	2	3	4
$f_Y(y)$	0.19	0.32	0.31	0.18
$f_{Y X}(y 1)$	10/19	5/19	2/19	2/19

Table 1: Information for question 2.

Homework 2

Aiden Kenny STAT GR5203: Prophability Columbia University October 12, 2020

Question 1 Let X have a pdf of $f(x) = cx^2$ for $0 \le x \le 1$ and f(x) = 0 elsewhere.

(a) For this to be a valid pdf, it must integrate to 1 over the support. So

$$\int_{0}^{1} cx^{2} dx = \frac{cx^{3}}{3} \Big|_{0}^{1} = \frac{c}{3} \stackrel{\text{set}}{=} 1,$$

which leads to c = 3. So $f(x) = 3x^2$ for $0 \le x \le 1$.

(b) The cdf is given by

$$F(x) = \int_{-\infty}^{x} f(t) dt = \int_{0}^{x} 3t^{2} dt = t^{3} \Big|_{0}^{x} = x^{3}$$

for $0 \le x \le 1$. We also have F(x) = 0 when x < 0 and F(x) = 1 when x > 1.

(c) We have

$$\Pr\left(\frac{1}{10} \le X \le \frac{1}{2}\right) = F\left(\frac{1}{2}\right) - F\left(\frac{1}{10}\right) = \frac{1}{2^3} - \frac{1}{10^3} = \frac{31}{250}.$$

Question 2 Two discrete random variables X and Y are jointly distributed.

- (a) The marginal pmf for X is obtained by summing over every value of Y for each value of X. For example, to find the marginal probability that X = 1, we have $f_X(x) = 0.10 + 0.05 + 0.02 + 0.02 = 0.19$. The other values are obtained in the same way. Finding the marginal pmf for Y is done the exact same way, and it turns out that $f_X(j) = f_Y(j)$ for $j = \{1, 2, 3, 4\}$; they are both found in Table 1.
- (b) X and Y are not independent. For two random variables to be independent, we need $f(x,y) = f_X(x) \cdot f_Y(y)$ for all possible (x,y) pairs. Here we have f(1,1) = 0.10 and $f_X(1) \cdot f_Y(1) = 0.19^2 \neq f(1,1)$, meaning X and Y are dependent.
- (c) To find the conditional pmf of X given that Y = 1, we take each value of f(x, 1) and divide by $f_Y(1)$, i.e. $f_{X|Y}(x|1) = f(x,1)/f_Y(1)$. For example, we have $f_{X|Y}(1|1) = 0.10/0.19 = 10/19$. Finding the conditional pmf for Y given that X = 1 is done in a similar way, and again they are the same. Both pmfs can be found in be found in Table 1.