МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 4.2.5

Когерентность света

Б03-102 Куланов Александр

- Цель работы: измерить радиус когерентности и ширину спектра источника света
- **В работе используются:** лазер, галогенная лампа с блоком питания, объектив, оптические щели, микроскоп или видеокамера с РС

1 Описание и теория

Когерентность - характеристика в оптике, определяющая способность света к интерференции. Обычные тепловые источники света являются генераторами случайных полей, поэтому возникает проблема согласованности световых колебаний в разных точках простанства в разное время. В работе ограничимся частным случаем: исследуем согласованность в точках с координатами r_1 и r_2 в моменты времени t_1 и t_2 . Колебания будем считать квазимонохроматическими с центральной частотой ω_0 . Поле считаем скалярным. Поле в точке r в момент t удобно записать в виде $A(r,t)e^{i\omega_0t}$. Амплитуда A мало меняется за период колебаний, равный порядка 10^{-15} с.

За меру когерентности светового поля в точках r_1 и r_2 в моменты t_1 и t_2 принимают нормированное среднее произведений амплитуд полей.

$$\gamma = \frac{\overline{A(r_1, t_1) e^{i\omega_0 t_1} A^*(r_2, t_2) e^{-i\omega_0 t_2}}}{\sqrt{\overline{|A(r_1, t_1)|^2 \cdot |A(r_2, t_2)|^2}}}$$
(1)

Черта означает усреднение по времени. Поле стационарно и время T регистрации интенсивности полей много больше периода колебаний световых волн и длительности биений для любых комбинаций частот в спектре:

$$\overline{A(r_1, t_1) A^*(r_2, t_2)} \approx \frac{1}{T} \int_0^T A(r_1, t_1 + t) A^*(r_2, t_2 + t) dt$$
 (2)

Нас интересует частный случай, в котором исследуется согласованность колебаний в точках, лежащих в одной плоскости. Если световое поле является однородным в пространстве и его статистические характеристики не зависят от времени, то функция когерентности γ не зависит от r_1, r_2 и t_1, t_2 , а зависит только от разности $\rho = |r_1 - r_2|$ и $\tau = t_2 - t_1$.

Входящая в (1) величина $\overline{|A(r,t)|^2}$ пропорциональная интенсивности света. Для выбранной пары точек интенсивность света будем считать постоянной и обозначим $\overline{|A|^2}$. Тогда перепишем:

$$\gamma(\rho,\tau) = e^{-i\omega_0\tau} \frac{\overline{A(\mathbf{r},t)A^*(\mathbf{r}+\rho,t+\tau)}}{|A|^2}$$
(3)

2 Экспериментальная установка

Рис. 1: Схема установки