MATH 512 - Project 3

Kanav Malhotra, Longzhe Yang

Wasif Ahmed, Haoxiang Deng, Jacob Fein-Ashley,

Question 1 Overview

- Let W_t be a standard Wiener process, with drift parameter zero and variance parameter $\sigma^2 = 1$.
- We divide the interval [0, 2] into L subintervals $[t_i, t_{i+1}]$, where $t_i = i\delta t$ and $\delta t = 2/L$.
- Let $W_i = W(t_i)$ and $\delta W_i = W_{i+1} W_i$.
- We verify numerically that:

 - $\sum_{\substack{i=0\\i=0}}^{L-1} |\delta W_i|$ is unbounded as δt goes to zero. $\sum_{\substack{i=0\\i=0}}^{L-1} \delta W_i^2$ converges to 2 in probability as δt goes to zero.

Question 1 Response

Refer to Figure 1

Figure: Stochastic Plots

Notice that as the *L* parameter increases, the $|\delta W_i|$ term is unbounded while δW_i^2 converges to 2 in probability.

Question 2a

Figure: 2a

Question 2b

Figure: 2b

Question 2c

Figure: 2c

Question 2d

Figure: 2d

Question 2e

Figure: 2e

Question 2f

Figure: 2f

Question 3: Weak and Strong Order of Convergence for EM Method

Objective: Analyze the weak and strong order of convergence of the Euler-Maruyama method for solving the given Stochastic Differential Equation (SDE):

$$dX(t) = \mu X(t)dt + \sigma X(t)dW(t)$$
, $X(0) = 3$, $\mu = 2$, $\sigma = 0.10$

- Weak order of convergence equal to 1, indicating that the error in the expected value of the solution does not converge with the decrease of time step size, Δt .
- Strong order of convergence equal to 0.5:, meaning that the expected value of the absolute error between the numerical and exact solutions decreases with the square root of the time step size.

Weak Order of Convergence Results

Findings: Through MATLAB simulations over various Δt , we observed:

• A plot of the error versus Δt for the weak order of convergence of 1.

Strong Order of Convergence Results

Findings: For the strong order of convergence:

• A strong order of convergence of 0.5.

Figure: Weak Order of Convergence

Figure: Strong Order of Convergence

Note: These results show the Euler-Maruyama method has a weak order of convergence equal to 0.5 and a strong order of convergence equal to 1.

Question 4

We consider the following SDE:

$$dX(t) = \mu X(t) dt + \sigma X(t) dW(t)$$
, $X(o) = 3$, $\mu = 2$, $\sigma = 0.10$

• Simulate this stochastic process over the interval [0, 20] using an implicit method of the form:

$$X_{n+1} = X_n + (1-\theta)\Delta t f(X_n) + \theta \Delta t f(X_{n+1}) + \sqrt{\Delta t} \alpha_n g(X_n)$$

- We use $\theta = 0.5$ and $\alpha_n = \sigma X_n$.
- We plot the results for $\Delta t = 0.01$ and $\Delta t = 0.001$.

Question 4 Continued

We plot the explicit and implicit methods for $\Delta t = 0.01$ and $\Delta t = 0.001$:

Figure: Implicit Euler Method

Question 4 Continued

Figure: Explicit Euler Method

Question 4 Continued

We determine the values of μ and σ for which the SDE is mean-square stable:

Figure: Mean-Square Stability

and we find that the SDE is not mean square stable for any values of θ .

Question 5

An algorithm to simulate exit times for the SDE:

```
1: Choose a step size \Delta t
2: Choose a number of paths, M
 3: for s = 1 to M do
         Set t_n = 0 and X_n = X_0
 4:
         while X_n > a and X_n < b do
 5:
              Compute a N(0,1) sample \xi_n
 6:
              Replace X_n by X_n + \Delta t f(X_n) + \sqrt{\Delta t} \xi_n g(X_n)
 7:
              Replace t_n by t_n + \Delta t
 8:
         end while
 9:
         Set T_s^{exit} = t_n - 1/2\Delta t
10:
11: end for
12: Set a_M = \frac{1}{M} \sum_{s=1}^{M} T_s^{exit}
13: Set b_M^2 = \frac{1}{M-1} \sum_{s=1}^{M} (T_s^{exit} - a_M)^2
```

Question 5 Continued

Figure: 5

Question 5 Continued

Figure: 5

