Lecture 10 Optimization Day 2

Ryan McWay[†]

† Applied Economics, University of Minnesota

Mathematics Review Course, Summer 2023 University of Minnesota $August\ 18th,\ 2023$

1/29

LAST LECTURE REVIEW

- ► Unconstrained Optimization:
 - ► First Order Conditions
 - ► Second Order Conditions
- ► (Equality) Constrained Optimization:
 - ► Lagrangian Method
 - ► Bordered Hessian

REVIEW ASSIGNMENT

- 1. Problem Set 09 solutions are available on Github.
- 2. Any issues or problems **You** would like to discuss?

DAILY ICEBREAKER

- ► Attendance via prompt:
 - ► Name
 - ► Program and track
 - ▶ Daily icebreaker subject...

(Inequality) Constrained Optimization

- ► General background
 - ▶ Optimization of a function considering a constraint from other function(s).
 - ► Leads to a potential 'corner solution'.
- ▶ Why do economists' care?
 - ► This is the most typical case for optimization.
- ► Application in this career
 - ▶ Used throughout microeconomics.

- ► General background
 - ▶ Optimization of a function considering a constraint from other function(s).
 - ► Leads to a potential 'corner solution'.
- ▶ Why do economists' care?
 - ► This is the most typical case for optimization.
- ► Application in this career
 - ▶ Used throughout microeconomics.

- ► General background
 - ▶ Optimization of a function considering a constraint from other function(s).
 - ▶ Leads to a potential 'corner solution'.
- ▶ Why do economists' care?
 - ► This is the most typical case for optimization.
- ► Application in this career
 - ▶ Used throughout microeconomics.

OVERVIEW

- 1. Minimization
- 2. Maximization
- 3. Kuhn Tucker Conditions
- 4. Corner Solutions
- 5. Quasiconcavity and Optimization

INEQUALITY

8/29

1. MINIMIZATION

- ▶ Necessary conditions for optimal in real-valued functions subject to non-negative constraints:
 - ightharpoonup Let f(x) be continuously differentiable.
 - ▶ If x^* minimizes f(x) subject to $x \ge 0$, then x^* satisfies:

1.
$$\frac{\partial f(x)}{\partial x_i} \ge 0 \forall i = 1, \dots, n$$
.

2.
$$x_i^*\left(\frac{\partial f(x)}{\partial x_i}\right) = 0 \forall i = 1, \dots, n.$$

3.
$$x_i^* \ge 0 \forall i = 1, \dots, n$$
.

9/29

2. MAXIMIZATION

- ► Necessary conditions for optimal in real-valued functions subject to non-negative constraints:
 - \blacktriangleright Let f(x) be continuously differentiable.
 - ▶ If x^* maximizes f(x) subject to $x \ge 0$, then x^* satisfies:

1.
$$\frac{\partial f(x)}{\partial x_i} \leq 0 \forall i = 1, \dots, n$$
.

2.
$$x_i^*\left(\frac{\partial f(x)}{\partial x_i}\right) = 0 \forall i = 1, \dots, n.$$

3.
$$x_i^* \ge 0 \forall i = 1, \dots, n$$
.

3. KUHN TUCKER CONDITIONS

$$\max_{x \in \mathbb{R}_+^n} f(x) \text{ s.t. } g(x) \le b, x \ge 0$$

$$L = f(x) - \lambda_1 [g_1(x) - b_1] - \dots - \lambda_k [g_k(x) - b_k]$$

- ► The constraints are 'binding' if at the optimum $g(x^*, y^*) = c$, and is said to 'slack' otherwise.
- ► The three "Kuhn-Tucker" necessary conditions (FOC) are...
- $\begin{array}{lll} \text{1.} & \frac{\partial L}{\partial x_i^*} \leq 0 & \frac{\partial L}{\partial \lambda_j^*} \geq 0, & \text{Restates constraints} \\ \text{2.} & x_i^* \frac{\partial L}{\partial x_i^*} = 0, & \lambda_j^* \frac{\partial L}{\partial \lambda_i^*} = 0, & \text{Complimentary slackness} \end{array}$
- $3. \quad x_i^* \ge 0, \qquad \qquad \lambda_i^* \ge 0,$ Non-negative condition $\forall i = 1, \ldots, n \quad \forall j = 1, \ldots, k$

3. KUHN TUCKER CONDITIONS

- ▶ $\lambda_j^* \frac{\partial L}{\partial \lambda_j^*} = 0$ implies that **at least one** of the λ_j^* and $\frac{\partial L}{\partial \lambda_j^*}$ must be zero.
- ▶ If the constraint is non-binding, then $\lambda_j^* = 0$ and we give to weight to that constraint (i.e., unconstrained).

$$\frac{\partial L}{\partial \lambda_j^*} \equiv = b_j - g_j(x) > 0$$

▶ If $\lambda_j^* > 0$ then the constraint must be binding (i.e., constrained).

$$b_j = g_j(x)$$

- ► Kuhn-Tucker determine allows **any** problem to be solved as constrained or unconstrained.
- ► Hence, you check **both cases**.

McWau

4. CORNER SOLUTIONS

4. CORNER SOLUTIONS

ightharpoonup Quasilinear preferences (A strong preference for x_2)

5. CONCAVITY, CONVEXITY, AND OPTIMIZATION

- ► Convex Maximization Problem: With convex constraint sets and concave objective functions, the FOC are **both necessary and sufficient** to identify global maxima.
- ► Convex Minimization Problem: With convex constraint sets and convex objective functions, the FOC are **both** necessary and sufficient to identify global maxima.
- ▶ Both provide 'uniqueness' in the solution.
- ► So, for optimization we need:
 - ► Continuity on the domain.
 - ▶ Differentiablity
 - ightharpoonup Concavity/convexity of the C^2 function is completely characterized by the second derivative.
- ► Quasi-concavity does **not** imply continuity...

PRACTICE: (INEQUALITY) CONSTRAINED OPTIMIZATION

1

Comparative Statics & Envelope Theorem

- ► General background
 - ▶ Allows you determine how an optimum changes are the parameters values change.
- ▶ Why do economists' care?
 - Used primarily in macroeconomics, but in microeconomics as well.
- ► Application in this career
 - Used to measure policy alternatives but changing the initial conditions

► General background

- ▶ Allows you determine how an optimum changes are the parameters values change.
- ▶ Why do economists' care?
 - Used primarily in macroeconomics, but in microeconomics as well.
- ► Application in this career
 - ▶ Used to measure policy alternatives but changing the initial conditions

- ► General background
 - ▶ Allows you determine how an optimum changes are the parameters values change.
- ▶ Why do economists' care?
 - Used primarily in macroeconomics, but in microeconomics as well.
- ► Application in this career
 - ▶ Used to measure policy alternatives but changing the initial conditions.

OVERVIEW

- 1. The Multiplier
- 2. Comparative Statics
- 3. Unconstrained Envelope Theorem
- 4. Constrained Envelope Theorem

1. The Multiplier

► Consider the maximization problem:

$$\max f(x, y)$$
 s.t. $h(x, y) = a$

- ▶ Let the solution be $(x^*(a), y^*(a))$ with the corresponding multiplier $\mu^*(a)$.
- ▶ Suppose x^* , y^* , and μ^* are C^1 functions of a. Then, $\mu^*(a) = \frac{d}{da} f(x^*(a), y^*(a))$
- lackbox Or, for multiple variables (n) and multiple constraints (m)

$$\mu_j^*(a_1,\cdots,a_m) = \frac{\partial}{\partial a_i} f(x_1^*(a_1,\cdots,a_m),\ldots,x_n^*(a_1,\cdots,a_m)) \forall j=1,\ldots,m$$

▶ So μ_j^* measures the sensitivity of the objective function to the constraint.

2. COMPARATIVE STATICS

- \triangleright Examining the change in optimization after changing an 'exogenous' parameter (a).
- ▶ In essence, the difference in two equilibrium states.
- ▶ We can use the implicit function theorem to determine a comparative static derivative.
- ▶ Adding constraints, we can apply the Envelope Theorem to generalize the following formula.

$$f(x,a) = 0$$

$$Bdx + Cda = 0$$

$$\frac{dx}{da} = -B^{-1}C$$

2. Comparative Statics

- ▶ Let f(x, a) be a C^1 function of $x \in \mathbb{R}^n$ with scalar a.
- \triangleright For each possible parameter a, consider the **unconstrained** optimization problem:

$$\max f(x, a)$$
 w.r.t. x

- \blacktriangleright Let $x^*(a)$ be the solution.
- ▶ Suppose that $x^*(a)$ is a C^1 function of a.
- ► Then,

$$\frac{d}{da}f(x^*(a),a) = \frac{\partial}{\partial a}f(x^*(a),a)$$

3. Unconstrained Envelope Theorem

► Intuition

4. Constrained Envelope Theorem

- ▶ Let $f, h_1, ..., h_m : \mathbb{R}^n \times \mathbb{R}^1 \to \mathbb{R}^1$ be C^1 functions.
- ▶ Let $x^*(a) = (x_1^*(a), \dots, x_n^*(a))$ be the solution maximizing f(x, a) with respect to x given the constraint set...

$$h_1(x,a)=0,\ldots,h_m(x,a)=0$$

- ▶ Suppose that $x^*(a)$ and the Lagrange multipliers $\mu_1(a), \ldots, \mu_m(a)$ are C^1 functions of a.
- ► Then,

$$\frac{d}{da}f(x^*(a),a) = \frac{\partial L}{\partial a}f(x^*,\mu(a),a)$$

► The Lagrange multiplier is a **special case** of the envelope theorem.

Lecture Review

1

(INEQUALITY) CONSTRAINED OPTIMIZATION

- 1. Minimization
- 2. Maximization
- 3. Kuhn Tucker Conditions
- 4. Corner Solutions
- 5. Quasiconcavity and Optimization

COMPARATIVE STATICS & ENVELOPE THEOREM

- 1. The Multiplier
- 2. Comparative Statics
- 3. Unconstrained Envelope Theorem
- 4. Constrained Envelope Theorem

- ▶ Readings on Probability before Lecture 11:
- ► Assignment:
 - ► Problem Set 10 (PS10)
 - ► Solution set will be available following end of Lecture 11
- ► Struggling?
 - 1. Read the 'Encouraged Reading'
 - 2. Review 'Supplementary material'
 - 3. Reach out directly