

Дисперсионный анализ

Однофакторный и двухфакторный дисперсионный анализ. Post hoc тест

План курса

Что будет на уроке сегодня

- 📌 Однофакторный дисперсионный анализ
- Двухфакторный дисперсионный анализ
- 🖈 Условия применимости дисперсионного анализа

Дисперсионный анализ

Дисперсионный анализ используется для исследования влияния одного или нескольких качественных показателей на количественный показатель.

Однофакторный дисперсионный анализ

В однофакторном дисперсионном анализе на одну количественную переменную Y влияет один фактор (один качественный показатель), наблюдаемый на k уровнях, т.е. имеет k выборок для переменной Y.

Идея дисперсионного анализа

Если одна из альтернативных гипотез верна, то обнаружено влияние профессии на заработную плату.

Проблема множественных сравнений

Более 2 групп – критерий Фишера F

$$\overline{\alpha} = 1 - (1 - \alpha)^m$$

2 группы – критерий Стьюдента t

С увеличением числа сравнений m растет вероятность ошибки I рода для множественных сравнений $(\bar{\alpha})$. Т.е. $\bar{\alpha}$ является истинным уровнем значимости многократно примененного критерия

$$m = 1$$
, $\bar{\alpha} = 1 - (1 - 0.05)^1 = 0.05$, $m = 3$, $\bar{\alpha} = 1 - (1 - 0.05)^3 = 0.14$

Распределение Фишера

$$F_{\rm H}=\frac{\sigma_{\rm \phi}^2}{\sigma_{
m ocr}^2}$$

Факторная и остаточная дисперсия

Если бы все значения были взяты из одной генеральной совокупности, в которой профессия не оказывала бы влияния на заработную плату, то разброс внутри группы и межгрупповой были бы приблизительно одинаковыми. И в этом случае H_0 не отвергалась бы.

$$F_{\mathrm{H}} = \frac{\sigma_{\mathrm{\phi}}^2}{\sigma_{\mathrm{oct}}^2}$$

post hoc tests

Дисперсионный анализ не отвечает на вопрос, между какими именно группами найдены статистически значимые различия. Если влияние фактора обнаружено и есть необходимость определить между какими группами есть статистически значимые различия, используют post hoc тесты для парных сравнений.

- Ньюмена-Кейлса
- ✓ Тест Тьюки
- Поправка Бонферрони (не использовать, когда более 8 сравнений)

Задача

Даны заработные платы юристов, программистов и бухгалтеров. Определить, влияет ли профессия на заработную плату.

$$F_{ ext{H}} = rac{\sigma_{\Phi}^2}{\sigma_{ ext{OCT}}^2}$$
 $\sigma_{\Phi}^2 = rac{S_{\Phi}^2}{k-1}$, где $k=3$ $\sigma_{ ext{OCT}}^2 = rac{S_{ ext{OCT}}^2}{n-k}$, где $n=21$

```
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
y1 = np.array([70, 50, 65, 60, 75, 67, 74])
y2 = np.array([80, 74, 90, 70, 75, 65, 85])
y3 = np.array([148, 142, 140, 150, 160, 170, 155])
k=3
n = 21
y_mean_1 = np.mean(y1)
y_mean_1
65.85714285714286
y_{mean_2} = np.mean(y2)
y_mean_2
77.0
```


$$S_{
m o 6 m}^2 = \sum (y_{ij} - \overline{Y})^2 \approx 32400$$
 .

$$S_{\Phi}^2 = \sum_{i=1}^k (\overline{y_i} - \overline{Y})^2 * n_i \approx 30836.95$$

$$S_{\text{oct}}^2 = \sum_{i=1}^k \sum_{j=1}^{n_i} (y_{ij} - \overline{y_i})^2 \approx 1563,71$$
 .

```
Сумма квадратов отклонений наблюдений от общего среднего
 np.sum((total - 98.33)**2) # отложим это значение
 32400.6669
 Сумма квадратов отклонений средних групповых значений от общего среднего
 S_f = np.sum((y_mean_1 - 98.33)**2) * 7 + np.sum((y_mean_2 - 98.
np.sum((y_mean_3 - 98.33)**2) * 7 # S f
 S f
 30836.952614285707
 Остаточная сумма квадратов отклонений
 S_{ost} = np.sum((y1-y_mean_1)**2) + np.sum((y2-y_mean_2)**2) + np.sum((y3-y_mean_2)**2) + np.sum((y
 y_mean_3)**2) # S_ost
 S_ost
 1563.7142857142858
 30836.952614285707 + 1563.7142857142858
32400.666899999993
```


$$F_{ ext{H}} = rac{\sigma_{\Phi}^2}{\sigma_{ ext{OCT}}^2}$$
 $\sigma_{\Phi}^2 = rac{S_{\Phi}^2}{k-1}$, где $k=3$ $\sigma_{ ext{OCT}}^2 = rac{S_{ ext{OCT}}^2}{n-k}$, где $n=21$


```
D_f = S_f / (k - 1)
D_f
15418.476307142853
D_{ost} = S_{ost} / (n - k)
D_ost
86.87301587301587
F_n = 15418.476307142853 / 86.87301587301587
F_n
177.48291747670376
  = stats.f_oneway(y1, y2, y3)
F_onewayResult(statistic=177.48291613374704,
               pvalue=1.420466900107174e-12)
```

Продолжение решения задачи

F_n = 15418.476307142853 / 86.87301587301587 F_n 177.48291747670376

k_1	1	2	3	4	5
1	161,45	199,50	215,72	224,57	230,17
2	18,51	19,00	19,16	19,25	19,30
3	10,13	9,55	9,28	9,12	9,01
4	7,71	6,94	6,59	6,39	6,26
5	6,61	5,79	5,41	5,19	5,05
6	5,99	5,14	4.76	4,53	4,39
7	5,59	4.74	4,35	4.12	3,97
8	5,32	4.46	4,07	3,84	3,69
9	5,12	4,26	3,86	3,63	3,48
10	4,96	4,10	3,71	3,48	3,33
11	4,84	3,98	3,59	3,36	3,20
12	4,75	3,88	3,49	3,26	3,11
13	4,67	3,80	3.41	3,18	3,02
14	4,60	3,74	3,34	3,11	2,96
15	4,54	3,68	3,29	3,06	2,90
16	4,49	3.63	3,24	3,01	2,85
17	4,45	3,59	3,20	2,96	2,81
18	4,41	3,55	3.16	2,93	2,77
19	4,38	3,52	3,13	2,90	2,74

Post hoc test Tukey

```
from statsmodels.stats.multicomp import pairwise_tukeyhsd
import pandas as pd
df = pd.DataFrame({'score': [ 70, 50, 65, 60, 75, 67, 74,
                            80, 74, 90, 70, 75, 65, 85,
                            148, 142, 140, 150, 160, 170, 155],
                  'group': np.repeat(['accountant', 'lawyer', 'programmer'], repeats=7)})
tukey = pairwise tukeyhsd(endog=df['score'],
                         groups=df['group'],
                         alpha=0.05)
print(tukey)
   Multiple Comparison of Means - Tukey HSD, FWER=0.05
 group1    group2    meandiff p-adj    lower    upper reject
accountant lawyer 11.1429 0.0917 -1.5675 23.8532 False
accountant programmer 86.2857 0.001 73.5754 98.996 True
   lawyer programmer 75.1429 0.001 62.4325 87.8532 True
```


Двухфакторный дисперсионный анализ

$$y_{ijk} = M + A_i + B_j + AB + E_{ijk}$$

$$y_{ijk} - M = A_i + B_j + AB + E_{ijk}$$

$$SS_T = SS_A + SS_B + SS_{AB} + SS_E$$

$$F_{\mathrm{H}A} _F_{\mathrm{Kp}.A}$$
 $F_{\mathrm{H}B} _F_{\mathrm{Kp}.B}$
 $F_{\mathrm{H}.AB} _F_{\mathrm{Kp}.AB}$

Создаем данные в Python

```
y111= 57
y112 = 59
58.0
y121 = 56
                                              52.0
                                                                                                   ٠.
y122 = 58
                                              Ycp81 = (y11+y21)/2
                                                                                                   A,
                                                                                                  Фактор
57.0
y212 = 34
                                              64.0
                                              Ycp = np.mean( YcpA1 + YcpA2 + YcpB1 + YcpB2)/4
33.0
                                              Ycp
54.75
y222 = 71
y22
71.0
```

Фактор В Ј

Теперь будем производить расчеты и заносить их в ANOVA таблицу.

```
SSt = sum((yijk)**2) - a*b*n*(Ycp**2) = 57**2 + 59**2+ ... + 71**2 - 2*2*2*
(54.75)**2 = 1511.5
SSA = a*n* sum ((YcpA)**2) - a*b*n* (Ycp)**2 = 2*2*((57.5)**2 + (52)**2) - 8*
(54.75)**2 = 60.5
SSB = b*n* sum ((YcpB)**2) - a*b*n* (Ycp)**2 = 2*2* ((45.5)**2 + (64)**2) =
684.5
SSAB = n* (sum((vij_cp)**2)) - a*b*n* Ycp - SSa - SSB = 2* ((58)**2+ (57)**2 +
(33)**2 + (71)**2 - 8*(54.75)**2 - 60.5 - 684.5 = 760.5
SSE = SSt - SSA - SSB - SSAB = 1511.5 - 60.5 - 684.5 - 760.5 = 6
```


Рассчитаем теперь степени свободы и сумму квадратов отклонений в расчете на одну степень свободы.

```
а = 2 # 2 уровня фактора а
b = 2 # 2 уровня фактора b
n = k = 2 # число повторных измерений
dfA = 2-1 = 1 \# (a - 1)
dfB = 2-1 = 1 \# (b - 1)
dfAB = (a - 1) * (b - 1) = (2 - 1) * (2 - 1) = 1
dfE = a*b*(n-1) = 2*2*(2-1) = 4
MSA = SSA / dfA = 60.5 / 1 = 60.5
MSB = SSB / dfB = 684.5 / 1 = 684.5
MSAB = SSAB / dfAB = 760.5 / 1 = 760.5
MSE = SSE / dfE = 6/4 = 1.5
```


Рассчитаем критерий Фишера и построим ANOVA таблицу, где последний столбец - это расчетный критерий Фишера.

• • •
FA = MSA / MSE = 60.5 / 1.5 = 40.33
FB = MSB / MSE = 684.5 / 1.5 = 456.33
FAB = MSAB / MSE = 760.5 / 1.5 = 507
F_t = 7.71

	SS	df	MS	F
A	60,5	1	60,5	40,33
В	684,5	1	684,5	456,33
AB	760,5	1	760,5	507
Er	6	4	1.5	

Двухфакторный дисперсионный анализ в Python

```
import statsmodels.api as sm
from statsmodels.formula.api import ols
fA = np.array(["low", "low", "low", "low", "high", "high", "high", "high"])
fA
array(['low', 'low', 'low', 'high', 'high', 'high', 'high'],
      dtvpe='<U4')
fB = np.array(["low", "low", "high", "high", "low", "low", "high", "high"])
array(['low', 'low', 'high', 'high', 'low', 'low', 'high', 'high'],
      dtype='<U4')
values = np.array([57, 59, 56, 58, 32, 34, 71, 71])
values
array([57, 59, 56, 58, 32, 34, 71, 71])
```


Создадим данные в Python

	Φ	актор В Ј	
	1 уровень	2 уровень	Yijk
1 уровень	57; 59 58	56;58 5 7	57.5
2 уровень	32; 34 33	71;71 . 71	52
	45.5	64	54.75

Строим ANOVA- таблицу в Python

```
# строим модель с помощью метода ols
lm_model = ols('values ~ C(fA) * C (fB)', data = df).fit()
# строим ANOVA таблицу
table = sm.stats.anova_lm (lm_model, typ=2)
table
                 sum_sq
                                                 PR(>F)
C(fA)
                   60.5
                           1.0
                                  40.333333
                                                0.003150
C(fB)
                  684.5
                           1.0
                                  456.333333
                                               0.000028
C(fA):C(fB)
                  760.5
                           1.0
                                  507.000000
                                               0.000023
Residual
                    6.0
                           4.0
                                         NaN
                                                    NaN
```

	ss	df	MS	F
A	60,5	1	60,5	MSA/MSEr= 60,5/1,5 =40,333
В	684,5	1	684,5	456,333
AB	760,5	1	760,5	507
Er	6	4	1.5	

Условия применимости дисперсионного анализа

- ✓ Независимость измерений
- ✓ Значения групп должны следовать нормальному распределению
- ✓ Однородность (равенство) дисперсий

Если размеры выборок одинаковые, то неоднородность дисперсий слабо влияет на результат.

Что изучили в этом курсе?

- ✓ Случайные события. Формула Байеса
- ✓ Дискретные распределения
- ✓ Описательная статистика. EDA
- ✓ Нормальное распределение. ЦПТ
- ✓ Тестирование гипотез. Z и t критерии
- ✓ Доверительные интервалы
- ✓ Работа с долями
- ✓ Непараметрические тесты
- ✓ Корреляционный анализ
- ✓ Линейная регрессия
- ✓ Дисперсионный анализ

Конец