Bios 661: 1-5; Bios 673: 2-6.

- 1. C&B 7.40
- 2. C&B 7.44
- 3. C&B 8.5(a)(b) [This is a two-parameter case in LRT, using the same principal.]
- 4. An epidemiologist gathers data (x_i, Y_i) on each of n randomly chosen noncontiguous cities in the United States, where x_i (i = 1, ..., n) is the known population size (in millions of people) in city i, and where Y_i is the random variable denoting the number of people in city i with liver cancer. It is reasonable to assume that Y_i (i = 1, ..., n) has a Poisson distribution with mean $E(Y_i) = \theta x_i$, where $\theta > 0$ is an unknown parameter, and that $Y_1, ..., Y_n$ constitute a set of mutually independent random variables.
 - (a) Find the explicit expression for the MLE $\hat{\theta}$ of θ . Also, find the explicit expressions for $E(\hat{\theta})$ and $Var(\hat{\theta})$.

Solution: The maximum likelihood estimator $\hat{\theta} = \sum_{i=1}^{n} Y_i / \sum_{i=1}^{n} x_i$. We have

$$E(\hat{\theta}) = \sum_{i=1}^{n} E(Y_i) / \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} \theta x_i / \sum_{i=1}^{n} x_i = \theta,$$

and

$$Var(\hat{\theta}) = \sum_{i=1}^{n} Var(Y_i) / (\sum_{i=1}^{n} x_i)^2 = \sum_{i=1}^{n} \theta x_i / (\sum_{i=1}^{n} x_i)^2 = \theta / \sum_{i=1}^{n} x_i.$$

(b) Show that $\hat{\theta}$ is the UMVUE of θ .

Solution: Sine the joint pdf (likelihood function) can be written as

$$L(\theta) = h(y)c(\theta) \exp\left(\log \theta \sum_{i=1}^{n} y_i\right),$$

we can claim the distribution belongs to exponential family with $\sum_{i=1}^{n} Y_i$ as a complete and sufficient statistic for θ . Since $\hat{\theta}$ is an unbiased estimator and function of $\sum_{i=1}^{n} Y_i$, we can claim $\hat{\theta}$ is an UMVUE.

(c) Find the explicit expression for the CRLB for the variance of any unbiased estimator of θ . Comment on if $Var(\hat{\theta})$ achieves the lower bound.

Solution: The denominator of the CRLB is

$$-E\left\{\frac{\partial^2 \ell(\theta)}{\partial \theta^2}\right\} = -E\left(\frac{\sum_{i=1}^n y_i}{\theta^2}\right) = \frac{\sum_{i=1}^n x_i}{\theta}.$$

The CRLB is $\theta / \sum_{i=1}^{n} x_i$, which is achieved by $\hat{\theta}$.

5. Let X_1, \dots, X_n be a random sample from an exponential distribution with pdf

$$f(x|\theta) = \begin{cases} e^{-(x-\theta)} & x \ge \theta \\ 0 & x < \theta, \end{cases}$$

where $-\infty < \theta < \infty$. Consider testing $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$, where θ_0 is a value specified by the researcher.

(a) Using the definition of likelihood ratio test, find the test statistic $\lambda(x)$.

Solution: The maximum of $L(\theta|x)$ under overall parameter space is

$$L(x_{(1)}|\mathbf{x}) = e^{-\sum x_i + nx_{(1)}},$$

while the maximum of $L(\theta|x)$ under the null space is

$$L(\theta_0|\mathbf{x}) = e^{-\sum x_i + n\theta_0} I(x_{(1)} \ge \theta_0),$$

which makes

$$\lambda(\mathbf{x}) = e^{n\theta_0 - nx_{(1)}} I(x_{(1)} \ge \theta_0).$$

(b) The rejection region of the likelihood ratio test is $R = \{x : \lambda(x) \le c\}$ with some constant cutoff c. Show that this region is equivalent to $R^* = \{x : x_{(1)} \ge c^* \text{ or } x_{(1)} < \theta_0\}$ with another cutoff constant c^* .

Solution: If we draw a graph between $\lambda(\boldsymbol{x})$ and $x_{(1)}$, we have $\lambda(\boldsymbol{x}) = 0$ when $x_{(1)} < \theta_0$ and $\lambda(\boldsymbol{x})$ as a decreasing function of $x_{(1)}$ when $x_{(1)} \ge \theta_0$. Hence, the equivalent region of $R = \{\boldsymbol{x} : \lambda(\boldsymbol{x}) \le c\}$ is $R^* = \{\boldsymbol{x} : x_{(1)} \ge c^* \text{ or } x_{(1)} < \theta_0\}$.

(c) Find c^* specifically, using the definition of test size:

$$\alpha = \sup_{\theta \in \Theta_0} P(\boldsymbol{X} \in R^* | H_0).$$

Solution: Using the definition, we have

$$\alpha = \sup_{\theta \in \Theta_0} P(X_{(1)} \ge c^* \text{ or } X_{(1)} < \theta_0 | H_0)$$

$$= P(X_{(1)} \ge c^* \text{ or } X_{(1)} < \theta_0 | \theta = \theta_0)$$

$$= P(X_{(1)} \ge c^* | \theta = \theta_0)$$

$$= 1 - F_{X_{(1)}}(c^* | \theta = \theta_0)$$

$$= e^{-n(c^* - \theta_0)}.$$

The cumulative density function of $X_{(1)}$ is

$$F_{X_{(1)}}(y) = P(X_{(1)} \le y) = 1 - \{P(X_1 \ge y)\}^n = 1 - e^{-n(y-\theta)},$$

where

$$P(X_1 \ge y) = 1 - P(X_1 \le y) = 1 - \int_{\theta}^{y} e^{-(x-\theta)} dx = e^{-(y-\theta)}.$$

Hence, $c^* = \theta_0 - \log \alpha / n$.

(d) Based on the rejection region R^* , draw the power function over the parameter space $-\infty < \theta < \infty$.

Solution: The power function, by definition, is

$$\beta(\theta) = P(X_{(1)} \ge \theta_0 - \log \alpha / n \text{ or } X_{(1)} < \theta_0 | \theta \in \Theta)$$
$$= P(X_{(1)} \ge \theta_0 - \log \alpha / n | \theta \in \Theta) + P(X_{(1)} < \theta_0 | \theta \in \Theta).$$

For $\theta = \theta_0$, we know $\beta(\theta_0) = \alpha$. For $\theta > \theta_0$, we know $P(X_{(1)} < \theta_0 | \theta > \theta_0) = 0$ and

$$P(X_{(1)} \ge \theta_0 - \log \alpha / n | \theta > \theta_0) = e^{-n(\theta_0 - \log \alpha / n - \theta)},$$

which is an increasing function of θ . When $\theta < \theta_0$, we have

$$P(X_{(1)} \ge \theta_0 - \log \alpha / n | \theta < \theta_0) = e^{-n(\theta_0 - \log \alpha / n - \theta)},$$

and

$$P(X_{(1)} < \theta_0 | \theta < \theta_0) = 1 - e^{-n(\theta_0 - \theta)}.$$

Therefore, when $\theta < \theta_0$,

$$\beta(\theta) = e^{-n(\theta_0 - \log \alpha/n - \theta)} + 1 - e^{-n(\theta_0 - \theta)}$$

= $-e^{-n(\theta_0 - \theta)}(1 - \alpha) + 1$,

which is a decreasing function of θ . Overall, the power function $\beta(\theta)$ in this test looks like a convex function of θ with $\theta = \theta_0$ at the minimum.

- 6. Let X_1, \ldots, X_n be a random sample from $N(\mu_x, \sigma^2)$ and let Y_1, \ldots, Y_m be a random sample from $N(\mu_y, \sigma^2)$. Assume that two samples are mutually independent and σ^2 is *unknown*. To test the hypothesis $H_0: \mu_x = \mu_y$ versus $H_1: \mu_x \neq \mu_y$: [This is a two-sample case in LRT, resulting in classic two-sample *t*-test.]
 - (a) Derive the likelihood ratio test $\lambda(x,y)$.

Solution: Under the null parameter space, letting $\mu_0 = \mu_x = \mu_y$, the likelihood function is

$$L(\mu_0, \sigma^2) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left\{-\frac{\sum_{i=1}^n (x_i - \mu_0)^2}{2\sigma^2}\right\} \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^m \exp\left\{-\frac{\sum_{i=1}^m (y_i - \mu_0)^2}{2\sigma^2}\right\}.$$

Given σ^2 , one can solve for the MLE of μ as $\hat{\mu} = \frac{1}{n+m} (\sum_{i=1}^n X_i + \sum_{i=1}^m Y_m)$. Plugging $\hat{\mu}$ back into $L(\mu, \sigma^2)$ and solving for the MLE of σ^2 by maximizing $L(\hat{\mu}, \sigma^2)$, we can have

$$\hat{\sigma}_0^2 = \frac{1}{n+m} \left\{ \sum_{i=1}^n (X_i - \hat{\mu}_0)^2 + \sum_{i=1}^m (Y_i - \hat{\mu}_0)^2 \right\}.$$

That makes

$$L(\hat{\mu}_0, \hat{\sigma}_0^2) = \left(\frac{1}{\sqrt{2\pi\hat{\sigma}_0^2}}\right)^{n+m} \exp\left(-\frac{n+m}{2}\right).$$

One the other hand, under the overall parameter space, the likelihood function is

$$L(\mu_x, \mu_y, \sigma^2) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left\{-\frac{\sum_{i=1}^n (x_i - \mu_x)^2}{2\sigma^2}\right\} \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^m \exp\left\{-\frac{\sum_{i=1}^m (y_i - \mu_y)^2}{2\sigma^2}\right\}.$$

By regular derivations of MLE, we can obtain $\hat{\mu}_x = \bar{X}$, $\hat{\mu}_y = \bar{Y}$, and

$$\hat{\sigma}^2 = \frac{1}{n+m} \left\{ \sum_{i=1}^n (X_i - \bar{X})^2 + \sum_{i=1}^m (Y_i - \bar{Y})^2 \right\}.$$

That makes

$$L(\hat{\mu}_x, \hat{\mu}_y, \hat{\sigma}^2) = \left(\frac{1}{\sqrt{2\pi\hat{\sigma}^2}}\right)^{n+m} \exp\left(-\frac{n+m}{2}\right).$$

The likelihood ratio test statistic is

$$\lambda(\boldsymbol{x}, \boldsymbol{y}) = \frac{L(\hat{\mu}_0, \hat{\sigma}_0^2)}{L(\hat{\mu}_x, \hat{\mu}_y, \hat{\sigma}^2)}$$

$$= \left(\frac{\hat{\sigma}_0^2}{\hat{\sigma}^2}\right)^{-\frac{n+m}{2}}$$

$$= \left\{1 + \frac{n(\bar{x} - \hat{\mu}_0)^2 + m(\bar{y} - \hat{\mu}_0)^2}{\sum_{i=1}^n (x_i - \bar{x})^2 + \sum_{i=1}^m (y_i - \bar{y})^2}\right\}^{-\frac{n+m}{2}}$$

$$= \left[1 + \frac{1}{m+n-2} \frac{\frac{mn}{m+n} (\bar{x} - \bar{y})^2}{\{\sum_{i=1}^n (x_i - \bar{x})^2 + \sum_{i=1}^m (y_i - \bar{y})^2\}/(m+n-2)}\right]^{-\frac{n+m}{2}}.$$

(b) Show that the rejection region $\lambda(x,y) \leq c$ is equivalent to $|t| \geq c^*$, where

$$t = \frac{\bar{x} - \bar{y}}{\sqrt{(\frac{1}{m} + \frac{1}{n})s_p^2}} \text{ and } s_p^2 = \frac{1}{m + n - 2} \left\{ \sum_{i=1}^n (x_i - \bar{x})^2 + \sum_{i=1}^n (y_i - \bar{y})^2 \right\}.$$

Solution: Following $\lambda(x, y)$ in (a), we have

$$\lambda(\boldsymbol{x}, \boldsymbol{y}) = \left(1 + \frac{1}{n+m-2}t^2\right)^{-\frac{n+m}{2}}.$$

That means having $\lambda(x,y) \leq c$ is equivalent to $|t| \geq c^*$ since $\lambda(\boldsymbol{x},\boldsymbol{y})$ is a concave function of t.

(c) Find the explicit c^* when $\alpha = 0.05$.

Solution: By the definition of α , we have $\alpha = P(|T| \geq c^*|H_0)$. Since T follows a t distribution with degree of freedom n + m - 2. One can choose $c^* = t_{n+m-2,1-\alpha/2}$.

(d) Given that $n=14,\ m=9,\ \bar{x}=1249.9,\ \bar{y}=1261.3,\ s_x^2=n^{-1}\sum_{i=1}^n(x_i-\bar{x})^2=549.1,$ and $s_y^2=156.6,$ should one reject the null hypothesis at $\alpha=0.05$?

Solution: Using previous results, we have $c^* = t_{14+9-2,0.975} = 2.08$, $s_p^2 = 433.14$ and t = -1.28. There is not enough evidence to reject the null hypothesis since |t| < 2.08.

7. [Bios 673/740 class discussion, C&B 7.37] Let X_1, \ldots, X_{n+1} be iid Bernoulli(p), and define the function h(p) by

$$h(p) = P\left(\sum_{i=1}^{n} X_i > X_{n+1}|p\right),\,$$

which is the probability that the first n observations exceed the (n+1)st.

(a) Show that

$$T(X_1, \dots, X_{n+1}) = \begin{cases} 1 & \text{if } \sum_{i=1}^n X_i > X_{n+1} \\ 0 & \text{otherwise} \end{cases}$$

is an unbiased estimator of h(p).

- (b) Find the best unbiased estimator of h(p).
- 8. [Bios 673 class discussion] Suppose X_1, \ldots, X_n is a random sample from $N(\mu, \sigma^2)$.
 - (a) If (μ, σ^2) is unknown, find the UMVUE of the 95th percentile.

Solution: The 95th percentile η shall satisfy

$$0.95 = P(X < \eta) = P\left(\frac{X - \mu}{\sigma} < \frac{\eta - \mu}{\sigma}\right).$$

Hence, one can express $\eta=\mu+1.64\sigma$. Since the normal distribution belongs to the exponential family, one can show $(\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2)$ is a complete sufficient statistic. If one can find $E\{\phi_1(\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2)\}=\mu$ and $E\{\phi_2(\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2)\}=\sigma$, then one can use Rao-Blackwell-Lehmann-Scheffe theorem to claim the UMVUE as $\hat{\eta}=\hat{\mu}+1.64\hat{\sigma}$, where $\hat{\mu}=\phi_1(\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2)$ and $\hat{\sigma}=\phi_2(\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2)$. It is not hard to see that $\phi_1(\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2)=\sum_{i=1}^n X_i/n=\bar{X}$. As to ϕ_2 , one may choose $\phi_2(\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2)=cS$, where $S^2=\sum_{i=1}^n (X_i-\bar{X})^2/(n-1)$, and see if we can find the constant c. Since we know that $(n-1)S^2/\sigma^2$ follows a χ_{n-1}^2 distribution, we may write

$$E\left(\sqrt{\frac{(n-1)S^2}{\sigma^2}}\right) = \int_0^\infty \sqrt{w} \frac{1}{\Gamma((n-1)/2)2^{(n-1)/2}} w^{(n-1)/2-1} \exp(-w/2) dw$$
$$= \frac{\Gamma(n/2)2^{1/2}}{\Gamma((n-1)/2)}.$$

Hence, the unbiased estimator of σ is cS, where

$$c = \sqrt{\frac{n-1}{2}} \frac{\Gamma((n-1)/2)}{\Gamma(n/2)}.$$

The UMVUE of η is $\hat{\eta} = \bar{X} + 1.96cS$.

(b) If σ^2 is given but μ is unknown, find the UMVUE of $P(X_1 < 1)$.

Solution: The nature unbiased estimator of $P(X_1 < 1)$ is $I(X_1 < 1)$. Now since the σ^2 is given, one can easily see that $\sum_{i=1}^n X_i$ is a complete sufficient statistic. To find the UMVUE, one may apply Lehmann-Scheffe theorem, where the UMVUE of $P(X_1 < 1)$ is

$$\phi\left(\sum_{i=1}^{n} X_i\right) = E\left(I(X_1 < 1) | \sum_{i=1}^{n} X_i\right).$$

To find the expectation, one may need to derive the conditional distribution of X_1 given that $\sum_{i=1}^n X_i = t$. Since both X_1 and $\sum_{i=1}^n X_i$ are normally distributed, one may derive the joint distribution first and then derive the conditional distribution based on the property of normality. The joint distribution of $(X_1, \sum_{i=1}^n X_i)$ is

$$\begin{pmatrix} X_1 \\ \sum_{i=1}^n X_i \end{pmatrix} \sim N \begin{pmatrix} \mu \\ n\mu \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & n \end{pmatrix} \sigma^2 \end{pmatrix}.$$

That gives the conditional distribution of X_1 given $\sum_{i=1}^n X_i = t$ as

$$X_1 | \sum_{i=1}^n X_i = t \sim N\left(\frac{t}{n}, \left(1 - \frac{1}{n}\right)\sigma^2\right),$$

using the fact that the conditional normality of X|Y=y from the joint normality (X,Y) is

$$X|Y = y \sim N\left(\mu_x + \frac{\sigma_x}{\sigma_y}(y - \mu_x), (1 - \rho^2)\sigma_1^2\right).$$

One hence can know that the UMVUE of $P(X_1 < 1)$ is

$$\phi\left(\sum_{i=1}^{n} X_i\right) = E\left(I(X_1 < 1) | \sum_{i=1}^{n} X_i\right)$$
$$= P\left(X_1 < 1 | \sum_{i=1}^{n} X_i\right)$$
$$= \Phi\left(\frac{1 - \sum_{i=1}^{n} X_i / n}{\sqrt{(1 - 1/n)\sigma^2}}\right),$$

where $\Phi(\cdot)$ is the cumulative function of the standard normal distribution.