

Semester: January 2023- May 2023 Maximum Marks:30 **Examination: In-Semester Examination** Duration:1hr 15 min Programme code: 01 Semester: IV (SVU Class: SY Programme: Computer Engineering 2020) Name of the Constituent College: Name of the department: K. J. Somaiya College of Engineering COMP/ETRX/EXTC/IT/MECH 116001 (404 Course Code: Name of the Course: TACD

Questi on No.	Sp. Bp	Max. Marks	СО	ВТ
Q1	Construct DFA for the language on $\{a,b\}$ in which $n_a(w)$ mod $3==0$ and $n_b(w)$ mod $3==1$. Show the simulation of the Automata.	10 mark	CO1	AP
	The second secon	OR		
	OR op Sp	10 mark		
	Convert the given NFA with ε moves into NFA without ε moves and then DFA. (Final states = $\{2 \text{ and } 3\}$)	ðp	CO1	AP
	o op			
	0 0 0 0 0			
Q2	Attempt any two:			
Q2	a) Construct NFA with epsilon for the given Regular Expression:	5	CO1	AP
Q2	a) Construct NFA with epsilon for the given Regular	5	CO1	AP

une minte	automaton given b	elow.	ESOS vienti	al mareanis			CO1
	Present State	Next	State	l :noixeninix		beks:30 e code: 0	
	(2020)	0	1	gorie		er Coasta Leno D	
HOAN	→ qo	q1	q5	guito)			
	q1	q6	q2				
	*q2	q0	q2				
100	q3	q2	q6	ge on (a,c)		(W) ₆ 27 10	
	q4	q1	q5				
	q5	q2	q6	90			
100	q6	q6	q4	aevom 3			
	q7	q6	q2				
b) Fi following	nd a regular ex	expression of		g to the	5		CO1
	91						The base of the same