常微分方程 2022 期中考试 (程伟)

Zavalon from TG

2022.11.06

一.(10 分) 解方程:
$$xy' + y = e^x$$
, $y(1) = 0$.
二.(10 分) 求方程 $y' = \frac{2x - y + 1}{x - 2y + 1}$ 的通解.
三.(10 分) 求方程 $y' = y^2 - x^2 + 1$ 的通解.

四.(20) 求曲线族 $xy-cy^2+c^2=0, c\in\mathbb{R}$ 的包络以及以该曲线族为通解 的微分方程,给出必要的理由.

五.(15 分) 设 M(x,y) 和 N(x,y) 均连续可微, 考虑微分方程

$$M(x,y) dx + N(x,y) dy = 0, \quad x,y \in \mathbb{R}$$
 (1)

若方程 (1) 有连续可微的积分因子 $\mu_1(x,y)$ 和 $\mu_2(x,y)$ 且 $\frac{\mu_1}{\mu_2}$ 非常值. 证明 $\frac{\mu_1(x,y)}{\mu_2(x,y)}$ 给出了方程 (1) 的通解.

六.(15 分) 考虑初值问题

$$\begin{cases} y' = \frac{1}{x^2 + y^2} \\ y(0) = y_0 \neq 0 \end{cases}$$

证明该方程的解可延拓至 $(-\infty, +\infty)$ 并且 $\lim_{x \to \pm \infty} y(x)$ 均存在.

七.(20 分) 设 $f:[a,b]\times\mathbb{R}\to\mathbb{R}$ 有界连续. 考虑初值问题

$$y' = f(x, y), \quad y(a) = y_0$$
 (2)

证明该初值问题的解组成的集合 $S \subset C([a,b],\mathbb{R})$ 存在可数稠密子集 (关于 $\|\cdot\|_0$ 模) $\{y_n\}$, 定义函数序列 $\{w_n\}$ 如下:

$$w_1 = y_1, w_{n+1} = \max\{y_n, w_n\}, n = 1, 2, \dots$$

证明 $\{w_n\} \subset S$ 且 w_n 收敛于问题 (2) 的极大解.

注: 考试途中老师说明 $||f||_0 = \max_{[a,b]} |f(x)|$.