Reinforcement Learning

By Prof(Dr) Premanand P Ghadekar

Reinforcement Learning

Reinforcement Learning is a type of Machine learning where an Agent learns to behave in a environment by performing actions and seeing the results.

Reinforcement Learning includes training of the algorithms using a system of reward and punishment.

Reinforcement learning

Reinforcement learning focuses on teaching agents through trial and error

Reinforcement learning

Related to learning which is best action to perform situation by situation in order to maximize aggregate reward

RL agent has to learn policy without domain expert.

Agent has to choose between

- Exploiting its current knowledge of the environment (perform an action already tried previously in that situation) or
- Exploring actions never tried before in that situation.

- Agent
- Environment

- Agent
- Environment

- Agent
- Environment

- Agent
- Environment

- Agent
- Environment

- Agent
- Environment

- Agent
- Environment

Reinforcement learning Set up

Concepts

Agent :

- The actor operating within the environment
- It is usually governed by a policy (a rule that decides what actions to take)

Environment:

The world in which the agent can operate in

Action:

 The agent can do something within the environment known as action

Agent Environment Rewards + Observations

Action

Rewards and Observations

 In return to the action agent receives reward and a view of what the environment looks like after acting on it

- Let's take the game of PacMan where the goal of the agent(PacMan) is to eat the food in the grid while avoiding the ghosts on its way.
- In this case, the grid world is the interactive environment for the agent where it acts. Agent receives a reward for eating food and punishment if it gets killed by the ghost (loses the game).
- The states are the location of the agent in the grid world and the total cumulative reward is the agent winning the game.

Reinforcement Learning

Counter Strike Example

- The RL Agent (Player1) collects state S^o from the environment
- Based on the state S⁰, the RL agent takes an action A⁰, initially the action is random
- 3. The environment is now in a new state S1
- 4. RL agent now gets a reward R¹ from the environment
- The RL loop goes on until the RL agent is dead or reaches the destination

Reinforcement Learning Definition

Agent: The RL algorithm that learns from trial and error

Environment: The world through which the agent moves

Action (A): All the possible steps that the agent can take

State (S): Current condition returned by the environment

Reinforcement Learning Definition

Reward (R): An instant return from the environment to appraise the last action

Policy (π): The approach that the agent uses to determine the next action based on the current state

Value (V): The expected long-term return with discount, as opposed to the short-term reward R

Action-value (Q): This similar to Value, except, it takes an extra parameter, the current action (A)

Reinforcement Learning Concept-Reward Maximization

Reward maximization theory states that, a RL agent must be trained in such a way that, he takes the best action so that the reward is maximum.

Exploitation and Exploration

Exploitation is about using the already known exploited information to heighten the rewards

Exploration is about exploring and capturing more information about an environment

RL Representation-Markov Decision Process

The mathematical approach for mapping a solution in reinforcement learning is called Markov Decision Process (MDP)

The following parameters are used to attain a solution:

- Set of actions, A
- Set of states, S
- Reward, R
- Policy, π
- Value, V

Markov Decision Process-Shortest Path Problem

Goal: Find the shortest path between A and D with minimum possible cost

In this problem,

- · Set of states are denoted by nodes i.e. {A, B, C, D}
- Action is to traverse from one node to another {A -> B, C -> D}
- Reward is the cost represented by each edge
- Policy is the path taken to reach the destination {A -> C -> D}

RL Representation

Markov Decision Process (MDP)

The mathematical appaorach for mapping a solution in RL is called MDP Markov Assumption: s_{t+1} and r_{t+1} depend only on st and at but not on anything that happened before time t

RL represenation as MDP

Parameters used

- o states : $S = \{s_1, s_2,s_{|S|}\}$
- o Actions: $A = \{a_1, ..., a_{|A|}\}$
- o Transition probabilities: $T(s, a, s_i) = Pr(s_i | s, a)$
- \circ Rewards: R: SXAXS > R
- \circ Policy: $\pi: S- > A$, π is the set of all policies Value function:
- $V^{\pi}(s) = E[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + ... | s0 = s, π]$ where γ is a discount factor

MDP

Policy: Complete mapping of state action, from initial to final state How many possibilities?

Three policies are possible

$$0 - 1 - 3 - 5$$

$$0 - 1 - 5$$

$$• 0 - > 2 - > 4 - > 5$$

MDP

Value: Expected long term reward returned with discount factor Values of three policies

$$\Box$$
 0-> 1-> 3-> 5 = 1 + 1 + 1 = 3

$$\bigcirc$$
 0-> 1-> 4-> 5 = 1 + 1 + 10 = 12

$$\Box$$
 0-> 2-> 4-> 5 = 2-1000 + 10 = -988

Value Functions with Policies

Associating a value with each state For a fixed policy

- \circ How good is it to run policy π
- State value function, V

Value Functions with State Action: Q Value

Value without specifying the policy

- ☐ Specify the value of taking an action *a* from state *s* and then performing optimally
- State-action value function, Q

Q-Learning

Q-Learning-Problem Statement

Q-Learning-Problem Statement

Q-Learning-Problem Statement

Q-Learning-Action

Q-Learning-Action

Q-Learning-The Rewards

LIST OF STATES

$$S = 0, 1, 2, 3, 4, 5, 6, 7, 8$$

SET OF ACTIONS

$$A = 0, 1, 2, 3, 4, 5, 6, 7, 8$$

Q-Learning-Reward Table

	L1	L2	L3	L4	L5	L6	L7	L8	L9
L1	0	1	0	0	0	0	0	0	0
L2	1	0	1	0	0	0	0	0	0
L3	0	1	0	0	0	1	0	0	0
L4	0	0	0	0	0	0	1	0	0
L5	0	1	0	0	0	0	0	1	0
L6	0	0	1	0	0	0	0	0	0
L7	0	0	0	1	0	0	0	1	0
L8	0	0	0	0	1	0	1	0	1
L9	0	0	0	0	0	0	0	1	0

Q-Learning-Action

Q-Learning-Reward Table

	L1	L2	L3	L4	L5	L6	L7	L8	L9
L1	0	1	0	0	0	0	0	0	0
L2	1	0	1	0	0	0	0	0	0
L3	0	1	0	0	0	1	0	0	0
L4	0	0	0	0	0	0	1	0	0
L5	0	1	0	0	0	0	0	1	0
L6	0	0	1	0	0	999	0	0	0
L7	0	0	0	1	0	0	0	1	0
L8	0	0	0	0	1	0	1	0	1
L9	0	0	0	0	0	0	0	1	0

Place an agent in any one of the rooms (0,1,2,3,4) and the goal is to reach outside the building (room 5)

- 5 rooms in a building connected by doors
- each room is numbered 0 through 4
- The outside of the building can be thought of as one big room (5)
- Doors 1 and 4 lead into the building from room 5 (outside)

Let's represent the rooms on a graph, each room as a node, and each door as a link

Next step is to associate a reward value to each door:

- doors that lead directly to the goal have a reward of 100
- Doors not directly connected to the target room have zero reward
- Because doors are two-way, two arrows are assigned to each room
- · Each arrow contains an instant reward value

The terminology in Q-Learning includes the terms state and action:

- Room (including room 5) represents a state
- · agent's movement from one room to another represents an action
- In the figure, a state is depicted as a node, while "action" is represented by the arrows

Example (Agent traverse from room 2 to room5):

- Initial state = state 2
- 2. State 2 -> state 3
- 3. State 3 -> state (2, 1, 4)
- 4. State 4 -> state 5

We can put the state diagram and the instant reward values into a reward table, matrix R.

State
$$\begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 0 & -1 & -1 & -1 & -1 & 0 & -1 \\ 1 & -1 & -1 & -1 & 0 & -1 & 100 \\ R = \begin{bmatrix} 2 & -1 & -1 & -1 & 0 & -1 & -1 \\ 3 & -1 & 0 & 0 & -1 & 0 & -1 \\ 4 & 0 & -1 & -1 & 0 & -1 & 100 \\ 5 & -1 & 0 & -1 & -1 & 0 & 100 \end{bmatrix}$$

The -1's in the table represent null values

Add another matrix Q, representing the memory of what the agent has learned through experience.

- The rows of matrix Q represent the current state of the agent
- columns represent the possible actions leading to the next state
- Formula to calculate the Q matrix:

Q(state, action) = R(state, action) + Gamma * Max [Q(next state, all actions)]

Note

The Gamma parameter has a range of 0 to 1 (0 \leq Gamma > 1).

- If Gamma is closer to zero, the agent will tend to consider only immediate rewards.
- If Gamma is closer to one, the agent will consider future rewards with greater weight

Q-Learning Algorithm

- Set the gamma parameter, and environment rewards in matrix R
 - 2 Initialize matrix Q to zero
 - Select a random initial state
 - A Set initial state = current state
 - Select one among all possible actions for the current state
 - 6 Using this possible action, consider going to the next state
 - Get maximum Q value for this next state based on all possible actions
 - (8) Compute: Q(state, action) = R(state, action) + Gamma * Max[Q(next state, all actions)]
- Repeat above steps until current state = goal state

First step is to set the value of the learning parameter Gamma = 0.8, and the initial state as Room 1.

Next, initialize matrix Q as a zero matrix:

- From room 1 you can either go to room 3 or 5, let's select room 5.
- From room 5, calculate maximum Q value for this next state based on all possible actions: Q(state, action) = R(state, action) + Gamma * Max[Q(next state, all actions)]

$$Q(1,5) = R(1,5) + 0.8 * Max[Q(5,1), Q(5,4), Q(5,5)] = 100 + 0.8 * 0 = 100$$

		0	1	2	3	4	5
	0	0	0	0	0	0	0
	1	0	0	0	0	0	0
Ω-	2	0	0	0	0	0	0
Q =	3	0	0	0	0	0	0
	4	0	0	0	0	0	0
	5	0	0	0	0	0	0

				A	Action			
Sta	ate	0	1	2	3	4	5	
	0	-1	-1	-1	-1	0	-1	
	1	-1	-1	-1	0	-1	100	
_	2	-1	-1	-1	0	-1	-1	
<i>R</i> =	3	-1	0	0	-1	0	-1	
	4	0	-1	-1	0	-1	100	
	5	-1	0	-1	-1	0	100	

First step is to set the value of the learning parameter Gamma = 0.8, and the initial state as Room 1.

Next, initialize matrix Q as a zero matrix:

- From room 1 you can either go to room 3 or 5, let's select room 5.
- From room 5, calculate maximum Q value for this next state based on all possible actions Q(state, action) = R(state, action) + Gamma * Max[Q(next state, all actions)]

$$Q(1,5) = R(1,5) + 0.8 * Max[Q(5,1), Q(5,4), Q(5,5)] = 100 + 0.8 * 0 = 100$$

		0	1	2	3	4	5
	0	0	0	0	0	0	0
	1	0	0	0	0	0	100
^	2	0	0	0	0	0	0
Q=	3	0	0	0	0	0	0
	4	0	0	0	0	0	0
	5	0	0	0	0	0	0

				A	Action		
Sta	ate	0	1	2	3	4	5
	0	-1	-1	-1	-1	0	-1
	1	-1	-1	-1	0	-1	100
_	2	-1	-1	-1	0	-1	-1
K =	3	-1	0	0	-1	0	-1
	4	0	-1	-1	0	-1	100
	5	-1	0	-1	-1	0	100

For the next episode, we start with a randomly chosen initial state, i.e. state 3

- From room 3 you can either go to room 1,2 or 4, let's select room 1.
- From room 1, calculate maximum Q value for this next state based on all possible actions: Q(state, action) = R(state, action) + Gamma * Max[Q(next state, all actions)]

$$Q(3,1) = R(3,1) + 0.8 * Max[Q(1,3), Q(1,5)] = 0 + 0.8 * [0, 100] = 80$$

The matrix Q get's updated

T	he r	matri	ix Q g	et's up	odated	i									(3)
		0	1	2	3	4	5				-	Action			
		_		-	9		_	Ctata	0	1	2	3	4	5	
	0	0	0	0	0	0	0	State 0	-1	-1	-1	-1	0	-1	(1)
	1	0	0	0	0	0	100	1	-1	-1	-1	0	-1	100	
Q =	2	0	0	0	0	0	0	_ 2	-1	-1	-1	0	-1	₋₁ 3	2
Q -	3	0	80	0	0	0	0	$R = \frac{3}{3}$	-1	0	0	-1	0	-1	
	4	0	0	0	0	0	0	4	0	-1	-1	0	-1	100	4
	5	_0	0	0	0	0	0 _	5	-1	0	-1	-1	0	100	

For the next episode, the next state, 1, now becomes the current state. We repeat the inner loop of the Q learning algorithm because state 1 is not the goal state.

- From room 1 you can either go to room 3 or 5, let's select room 5.
- From room 5, calculate maximum Q value for this next state based on all possible actions: Q(state, action) = R(state, action) + Gamma * Max[Q(next state, all actions)]

Q(1,5) = R(1,5) + 0.8 * Max[Q(5,1), Q(5,4), Q(5,5)] = 100 + 0.8 * 0 = 100The matrix Q remains the same since, Q(1,5) is already fed to the agent

		0	4	2	3	1	5				P	Action		
		U	1	2	0	7	3		0	1	2	3	4	5
	0	0	0	0	0	0	0	State 0	-1	-1	-1	-1	0	-1
	1	0	0	0	0	0	100	1	-1	-1	-1	0	-1	100
Q =	2	0	0	0	0	0	0	2	-1	-1	-1	0	-1	-1
	3	0	80	0	0	0	0	$R = \frac{3}{3}$	-1	0	0	-1	0	-1
	4	0	0	0	0	0	0	4	0	-1	-1	0	-1	100
	5	_0	0	0	0	0	0 _	5	1	0	-1	-1	0	100

$$V(s) = \max_{a} \left(R(s,a) + \gamma V\left(s'
ight)
ight)$$

s = a particular state (room)

a = action

s' = state to which the robot goes from s

γ = discount factor

R(s, a) = a reward function which takes a state s and action a and outputs a reward value

V(s) = value of being in a particular state

$$V(s) = \max_{a} (R(s, a) + \gamma V(s'))$$

Discount Factor = 0.9

$$V(s) = \max_{a}(0 + 0.9 * 1) = 0.9$$

Applications

- Self Driving Cars
- Industry

Automation

Trading and

Finance

- NLP: Text stigmatization. question answering and Language translation
- RL in Healthcare : Dynamic treatment regimes(DTRs)

