Evolutionary Computation and Learning

Genetic Programming 2: Automatic Algorithm/Heuristic Design

Represented By: DR. Vahid Ghasemi

Outline

- ➤ GA to GP
 - Representation
 - Evolutionary operators
- > Genetic Programming
 - o Terminal set
 - o Function set
 - Fitness function
 - GP Parameters
 - Stopping criterion
- GP for regression
- GP for classification

- ➤GP for automatic heuristic design
 - o Design steps
 - o Packing
 - o Scheduling
- Project 1

Clustering

- Clustering is an unsupervised learning task
 - Group the data points/objects without the class label
 - Many different clustering algorithms

K-means Clustering: Algorithm

- 1. Initialise k initial "means" randomly from the data set
- 2. Create k clusters by assigning every instance to the nearest cluster: based on the nearest mean according to the distance measure
- 3. Replace the old means with the centroid (mean) of each cluster
- 4. Repeat the above two steps until convergence (no change in each cluster centroid).
- Centroid is not an instance

Clustering

- Clustering methods need similarity/distance measure
 - Remove redundant features
 - Normalise features with different scales
- Euclidean/Manhattan distance measures are not flexible enough
- Use GP to learn similarity/distance measure
 - How to evaluate a GP individual (similarity measure)?
 - How to cluster data using a GP individual?

GP for Clustering

- Fitness evaluation: similar to wrapper-based feature selection
 - Use a clustering method based on the similarity/distance measure to cluster the training data

```
Input: a GP individual (similarity measure) X, number of neighbours k
Output: Clusters

Edges = {}
for each point I in training data do
   Get the k nearest neighbour of I in training data based on Euclidean distance Get the nearest neighbour N(I) of I from the k nearest neighbours based on X;
   Add an edge (I, N(I)) into Edges
Do clustering of the graph based on Edges
return Clusters
```

- Use a cluster quality metric as the fitness
 - Compactness, Separability, ...
 - A combination of them

 e.g., smaller distance between instances
 in the same cluster, larger distance between clusters)

Automatic Algorithm/Heuristic Design

- GP evolves programs, and programs are essentially algorithms
- The whole algorithm is too complex to evolve, GP can evolve a part of the algorithm (heuristic)
 - The algorithm becomes a template
 - A part can be replaced by GP individuals
 - Like wrapper-based approach
- Key issue:
 - Fitness evaluation (how good a heuristic is)
- The process of evolving heuristics is called hyper-heuristic
 - Search in the heuristic space rather than solution space
 - knapsack problem, solution: specific items heuristic: the rule to choose item, e.g., higher value first


```
while b ≠ 0
  if a > b
    a := a - b
  else
    b := b - a
  return a
```

- Hyper-heuristic: search in the heuristic space rather than solution space
- Fitness evaluation:
 - Given a set of training instances/cases, and a GP individual (heuristic)
 - Replace the part in the algorithm template with the GP individual
 - Run the resultant algorithm on each training instance, to get solutions
 - Fitness is set to the aggregated solution quality

Example 1: Clustering

- Heuristic: similarity measure
- Training instance: a training dataset to be clustered
- Wrapper approach/template: A clustering method
- Solution: obtained clusters
- Solution quality: cluster quality

Steps of GP Hyper-heuristic

- Examine currently used heuristics
 - Understand how human designed and used existing heuristics
- A framework for the heuristics to operate in
 - Commonalities among the existing heuristics
 - Summarise into a template
 - Can be a simulation/decision making process
- Decide on the terminal set
 - Which features/attributes are useful for the heuristics?
- Decide on the function set
 - How to combine the features/attributes?
- Identify a fitness function
 - Training instances (consider generalisation)
 - How to aggregate a single fitness from multiple training instances?
- Run the GP

- Example 2: Online Packing heuristic
- The items come over time, and the robot decides where to place each incoming item (which existing bin, or create a new empty bin)
- Existing manual heuristics: (NOT good enough)
 - Best-Fit: put to the fullest bin that can accommodate it
 - Worst-Fit: put to the empties bin that can accommodate it
 - Next-Fit: put in the last available bin
- GP to evolve bin packing heuristic
 - Heuristic: bin packing heuristic
 - Training instance: a packing problem: a sequence of items and bins
 - Wrapper approach/template: The process of placing items into bins
 - Solution: obtained packing plan
 - Solution quality:
 - Wasted space of the packing plan
 - Average over all packing problems

- Example 2: Online Packing heuristic
- Terminals: (Designed based on domain knowledge)
 - Load Ratio of the bin (LR)
 - Index of the bin (ID)
 - Predicted next item size?
 - Regret (how much worse if not put here)?
 - ...
- Functions: {+, -, *, / (protected), max, min, ...}
- Manual heuristics can be represented by the terminals

How about Worst-Fit?

- Example 3: Scheduling rules (dispatching rules)
- Dynamic Scheduling: process a set of jobs by a set of machines
 - Decide the start time of each job on each machine
 - Resource and precedence constraints
 - A job is unknown before it arrives (e.g., job 4 arrives at time 2)
- Existing manual dispatching rules: (NOT good enough)
 - First come first serve
 - Shortest processing time
 - Earliest due date

- Example 3: Scheduling rules (dispatching rules)
- GP to evolve dispatching rules
 - Heuristic: dispatching rule (priority function)
 - Training instance: a scheduling problem: job arriving over time, a set of machines
 - Wrapper approach/template: The process of schedule the jobs to the machines
 - When a machine becomes idle, use the dispatching rule to calculate the priority value of each job in its queue
 - Process the job with the highest priority next
 - Solution: obtained schedule
 - Solution quality: makespan/tardiness of the obtained schedule, average over all scheduling problems

- Example 3: Scheduling rules (dispatching rules)
- Terminals:
 - Processing Time of the operation (PT)
 - Due date of the job (DD)
 - Workload in the machine's queue (WIQ)
 - ...
- Functions: {+, -, *, /, max, min, ...}
- What are these rules?
 - Can we make them simpler?

A. Shortest processing time

B. Earliest due date

Scheduling Heuristics for Dynamic Flexible Job Shop Scheduling

- Aggregating multiple results into a single fitness
 - Training scheduling instance 1: 10 jobs, 10 machines, makespan ranges from 100~500
 - Training scheduling instance 2: 100 jobs, 20 machines, makespan ranges from 2000~10000
 - How to aggregate? Normalise for each instance:
 - $fit = mean_{inst}(q_{norm}(inst))$, $q_{norm}(inst) = \frac{q_{orig}(inst)}{q_{ref}(inst)}$
 - q_{ref} can be the lower bound, or obtained by a reference rule (e.g., Min-Max normalization)
- Training can be time consuming
 - Use a lot of rules to generate a lot of solutions (simulations)
 - Speed up training
 - Batch learning (a small number of training instances per generation, and change the subset for each generation)
 - Surrogate: learn a fast approximate model for the evaluation

Summary

- GP can evolve heuristics
 - GP Hyper-heuristic
- GPHH for automatic heuristic design
 - Packing heuristic
 - Dispatching rule for scheduling
- Key:
 - Terminal and function sets (include the manual rules as special individuals)
 - Template/Framework for heuristics to work in
 - Simulation
 - Solution construction procedure
 - Fitness function
 - Training set
 - Normalisation
- Next Lecture: advanced GP
 - Gradient Descent in GP
 - Strongly Typed GP
 - Grammar-based GP