Integration using Trapezoid and Romberg Method

Figure 1. Calculating the Romberg approximations.

The above stated indices are consistent with the code in which, a matrix has been used , thus , indices begin from 0.

Furthermore, the submitted program is one order higher than what is depicted in the picture.

R(p,0) are equated to T(p) since Trapezoid method is being used to calculate them.

The program finds these values column wise, from left to right

$$R_k^i = \frac{4^i R_k^{i-1} - R_{k-1}^{i-1}}{4^i - 1}$$

This is the formula used to calculate the corrected intergrals of the higher order Romberg Method

The values of R[k][j] are:

R[0:4][0]	R[1:4][1]	R[2:4][2]	R[3:4][3]	R[4][4]
1.518745e-08 1.518757e-08	1.518761e-08			
1.518746e-08 1.518739e-08	1.518742e-08 1.518737e-08	1.518740e-08 1.518736e-08	1.518736e-08	
1.518755e-08	1.518761e-08	1.518762e-08	1.518763e-08	1.518763e-08

Taking steps of 16 units each (INPUT = 1)//Input is the number of substeps taken in a 16 unit Original Step

ROMBERG % Cu time 0.00 0.00	METHOD umulative seconds 0.00 0.00	self seconds 0.00 0.00	calls 5 1	self Ts/call 0.00 0.00	total Ts/call 0.00 0.00	name Trapezoid_Integrate Romberg_Integrate
TRAPEZO: % cu time 100.69 0.00	ID METHOD umulative seconds 0.01 0.01	self seconds 0.01 0.00	calls	self Ts/call 0.00	total Ts/call 0.00	name main Trapezoid_Integrate

Taking steps of 8 units each (INPUT = 2) //Input is the number of substeps taken in a 16 unit Original Step

ROMBERG METHOD					
% cumulative	self		self	total	
time seconds	seconds	calls	ms/call	ms/call	name
100.45 0.01	0.01				main
0.00 0.01	0.00	4	0.00	0.00	Trapezoid_Integrate
0.00 0.01	0.00	1	0.00	0.00	Romberg_Integrate
TRAPEZOID METHOD					
% cumulative	self		self	total	
time seconds	seconds	calls	Ts/call	Ts/call	name
100.71 0.01	0.01				main
0.00 0.01	0.00	1	0.00	0.00	Trapezoid_Integrate

.....

Taking steps of 4 units each (INPUT = 4) //Input is the number of substeps taken in a 16 unit Original Step

ROMBERG METHOD % cumulative time seconds 0.00 0.00 0.00 0.00	self seconds 0.00 0.00	calls 3 1	self Ts/call 0.00 0.00	total Ts/call 0.00 0.00	name Trapezoid_Integrate Romberg_Integrate
TRAPEZOID METHOD % cumulative time seconds 100.69 0.02 0.00 0.02	self seconds 0.02 0.00	calls 1	self Ts/call 0.00	total Ts/call 0.00	name main Trapezoid_Integrate

Taking steps of 2 units each (INPUT = 8) //Input is the number of substeps taken in a 16 unit Original Step

ROMBERG % c	METHOD umulative	self		self	total	
time	seconds	seconds	calls	Ts/call	Ts/call	name
50.22	0.01	0.01				main
0.00	0.01	0.00	1	0.00	10.04	Romberg_Integrate
50.22	0.02	0.01	2	5.02	5.02	Trapezoid_Integrate
	ID METHOD	1.6		1.6		
	umulative	self		self	total	
time	seconds	seconds	calls	Ts/call	Ts/call	name
100.69	0.01	0.01				main
0.00	0.01	0.00	1	0.00	0.00	Trapezoid_Integrate

.....

Taking steps of 1 unit each (INPUT = 16) //Input is the number of substeps taken in a 16 unit Original Step

ROMBERG METHOD % cumulativ time seconds 100.45 0.0 0.00 0.0	s seconds 01 0.01 01 0.00	calls 1 1	self Ts/call 0.00 0.00	total Ts/call 0.00 0.00	name main Romberg_Integrate Trapezoid_Integrate
TRAPEZOID METHO % cumulative time seconds 100.71 0.0 0.00 0.0	ve self s seconds 02 0.02	calls 1	self Ts/call 0.00	total Ts/call 0.00	name main Trapezoid_Integrate

The time taken for the program to run is negligible for such a small dataset (32,768 points).

We can compare the time complexities of the methods in order to get the insight. Taking the domain of integration from 'a' to 'b', and dividing it into 'n' parts, The Time Complexity of Trapezoid Method is O(n).

In case of Romberg Method of Order 'p', The Trapezoid Method is called 'p' times with domain being divided in 'pk' parts 'k'th time

Thus the Time Complexity due to calling of the Trapezoid Method is O(p1+p2+....+pk) The Time Complexity without the Trapezoid Method is O(ln(p)), which is significantly less than that for Trapezoid Method.

In Conclusion,

The Romberg Method is efficient if we do NOT use a high-level Method to calculate the initial integrals R[k][0].

Then the effect of correction by Romberg Method is substantial, with a lower time complexity.