

# Algorithmique Répartie

http://homepages.laas.fr/francois/POLYS

François Vernadat INSA-DGEI - LAAS-CNRS





#### **Définitions**

#1 "Un systéme distribué est un système qui s'exécute sur un ensemble de machines sans mémoire partagée, mais que pourtant l'utilisateur voit comme une seule et unique machine." – A. Tanenbaum

#2 "Un système réparti est un système qui vous empêche de travailler quand une machine dont vous n'avez jamais entendu parler tombe en panne" – L. Lamport (ndlc : exemple NFS (Network file system)

#3 "Un système réparti est un système (informatique) dans lequel les ressources (calcul, stockage, utilisateurs) et le **contrôle** *ne sont pas centralisés*" .

#4 "Ensemble d'agents sans mémoire commune coopérant via un système de communication asynchrone "

=> les agents ont des capacités de traitement (processeurs), de stockage (mémoire), de communication avec le monde extérieur (capteurs, actionneurs)

4 / 152

# Introduction (suite)

# Pourquoi répartir

- Besoin de communication et de partage d'informations (système géographiquement réparti)
- Partage de ressources (programmes, données, services)
- Besoin de systèmes à haute disponibilité
- possibilité d'évoluer, critère économique, . . .

# **Exemples type:**

Réseaux (ordinateurs, capteurs/actionneurs), WWW, NFS, Peer to peer, Contrôle aérien, Systèmes bancaires, ...

# Introduction (suite)

#### Remarques

Systèmes souvent dynamiques :

Nombre d'agents et/ou Topologie du graphe de communication Pas de Temps global

Systèmes vs Algorithmes (← terminaison)

# Avantages Escomptés :

Exploitation du //

- ↑ Puissance de Calcul
- ↑ Meilleure utilisation des ressources
- ↑ Fiabilité (redondance)

#### Inconvénient :

Complexité

6 / 152

# Problème de la connaissance mutuelle

#### Caractéristiques

- ◆ Agents sans mémoire commune
   Connaissance sur les autres ← Communication
- 2 Communication Asynchrone
  - communication +/- fiable,
  - délai arbitraire (fini mais non borné)

# Conséquences

- Connaissance d'un Agent sur les autres est toujours sujette à caution (informations possiblement périmées)
- 2 Pas de connaissance a priori de l'état global de son environnement (sa reconstruction est possible mais coûteuse)
  - ⇒ Coopération <u>difficile</u>

# Paradoxe de la connaissance dans un contexte asynchrone

Pour coopérer, les agents doivent avoir une connaissance commune Pour obtenir cette connaissance commune, ils doivent communiquer Toute communication "asynchrone" affaiblit la connaissance commune

#### Nécessité d'un contrôle

Evolution du Système  $\mapsto$  évolution en // des  $\neq$  agents PB : Interdépendances (entre agents, sur des ressources, sur des données) interdisent certaines évolutions

#### Exemples

- Exclusion mutuelle, Lecteurs/Ecrivains
   variable v partagée par deux agents ne peut être écrite et lue simultanément
- Producteur/Consommateur  $NPP-NPC \leq Stockage\_Consommateur$

Pb du choix distant Illustré en TP Systèmes Concurrents (semestre suivant)

8 / 152

# Système distribué/réparti

# Eléments du Système : Agents, Données, Réseau, Contrôle

Agents répartis géographiquement

Données distribuées (dupliquées & réparties) sur les agents

Contrôle lui-aussi distribué entre les agents (à suivre)

# ex #1 : Duplication des données

|               | $S_1$ | $S_2$ | <br>Sn    |
|---------------|-------|-------|-----------|
| n copies de D | $D_1$ | $D_2$ | <br>$D_n$ |

 $\uparrow$  Accès + facile, Tolérance aux pannes

↓ (Donnée Variable) Assurer la cohérence des copies multiples

#### ex # 2 : Répartition des données

|                             | $S_1$ | $S_2$                 | <br>S <sub>n</sub> |
|-----------------------------|-------|-----------------------|--------------------|
| $E = \bigcup_{i \in I} e_i$ | $e_1$ | <i>e</i> <sub>2</sub> | <br>en             |

↑ Meilleure répartition, Confidentialité

 $\Downarrow$  Accès à l'info (reconstitution) Cohérence relative des données  $\sum_{i \in I} e_i = Cste$ 

# Contrôle centralisé Vs distribué

#### Contrôle Centralisé

Un site particulier (défini statiquement) joue le rôle central d'arbitre :

- L'arbitre prend toutes les décisions.
- Il a généralement besoin de connaissances disséminées dans le système.

#### Avantages/Inconvénients

- (+) Trés Simple (modulo le **pb** de connaissance)
- (-) // disparaît, possible goulot d'étranglement, panne de l'arbitre **fatale**
- → Les avantages escomptés de la distribution disparaissent

#### Contrôle Distribué

Pas de chef/arbitre statiquement défini

- Agents égaux en droit et en devoir

Avantages/Inconvénients

- (+) Pannes possibles (→ fonctionnement dégradé), // "maximum"
- (-) Complexe
- → Les avantages escomptés de la distribution persistent

#### Influence de la topologie :

Certaines topologies facilitent la répartition du contrôle (anneaux, arbres, ...)

∃ Algorithmes répartis associés pour se ramener à ces topologies

10 / 152

# Propriétés attendues dans un Système Réparti

# Classification de Leslie Lamport

1 Propriété de sûreté (safety)

Enoncé type : "Rien de mauvais ne peut arriver"

ex : jamais deux agents écrivant simultanément la même ressource

ex : deux philosophes adjacents ne peuvent manger simultanément

2 Propriété de vivacité (liveness)

Enoncé type : "Quelque chose de bon finira par arriver"

ex : un agent en attente pour écrire finira par écrire

ex : absence de famine pour les philosophes

**Propriété**: Toute propriété d'un système réparti peut être exprimée comme une combinaison de propriétés de sûreté et de vivacité.

# Leslie Lamport – Prix Dijkstra 2000, Prix Turing 2013

Chercheur américain spécialiste de l'algorithmique répartie Safety/Liveness, Causalité & Horloges de Lamport (cf chapitre suivant) Algorithmes répartis, Temporal logic of actions (TLA), Latex (!), . . .

# Qualité d'un algorithme réparti

# Caractéristiques

#### Générales

- Simplicité
   structure de données sur chaque site, messages, . . .
- Nombre de messages voir chapitres Mutex et gestion des données distribuées
- Taille des messages
- Résistance aux Pannes,
- Autostabilisant (se dit d'un système/algoritme qui après une défaillance revient de lui-même à un fonctionnement correct)

#### **Spécifiques**

- Exclusion mutuelle : Temps minimum entre deux C.S consécutives
- Diffusion : Temps de propagation
- . . .

12 / 152

# Rapide panorama du cours

# Quelques problèmes classiques

- Election (Tirage au sort),
- Exclusion mutuelle,
- Gestion des données distribuées,
- Détection de la terminaison

# Quelques Outils Génériques

- Temps causal,
- Phases,
- Vagues,
- Consensus, Quorums

# Topologies d'intérêt

- Arbres couvrants (diffusion, terminaison, mutex)
- Anneaux (mutex, équité)

# Introduction

#### **Motivation**

Absence de temps global/physique dans un système réparti (SR)

Temps Logique → Permettre de reconstituer une notion de temps - et l'ordre associé entre les différents événements - dans un SR

# Temps Logique/Causal

Temps logique calculé localement

- → Ordonnancement local des événements
- → Etablir des propriétés entre ceux-ci
- → Simplifier le Contrôle
- → Permettre de représenter graphiquement l'exécution **normalisée** d'un SR via des chronogrammes respectant la causalité/parallélisme (ordonnée = ref du site / abscisse = horloge de Lamport)

15 / 152

# Causalité

#### Modèle d'exécution d'un SR

- Système composé de n sites reliés par des canaux *fiables* (i.e. sans perte) mais avec délai d'acheminement arbitraire
- Exécution d'un système : Ensemble d'événements où
- Evénement : émission, réception, evt interne

# Relation de Causalité (potentielle)

Relation régie par 2 contraintes "physiques"

- $C_1$ : Les événements qui se déroulent sur un site sont totalement ordonnés (même si cet ordre est arbitraire)
- $C_2$ : Pour un message M, l'événement associé à son émission précède l'événement associé à sa réception

# Ordre Causal <>>

#### **Définition de** →

 $A \rightsquigarrow B =_{def}$  "A est possiblement une cause de B" ssi

- $\bigcirc$   $\exists$  un message M tel que :
  - -A corresponde à l'émission de M et
  - − B corresponde à sa réception
- 2 A et B ont eu lieu sur le même site et A avant B
- 3  $\exists C : A \leadsto C \text{ et } C \leadsto B \text{ (transitivité)}$

# Propriétés de ∽

• Relation d' **ordre strict** (i.e., transitif, irréflexif, antisymétrique) **partiel**Par ex pour les vecteurs,  $\leq$  est un ordre partiel.

Ainsi : 
$$\begin{vmatrix} 0 & \not \leq & 1 \\ 1 & \not \geq & 0 \end{vmatrix}$$

#### Indépendance causale (notée ?)

- $A \wr B \text{ ssi } \neg (A \rightsquigarrow B) \land \neg (B \rightsquigarrow A)$
- \ va permettre de rendre compte du parallélisme

17 / 152

# Ordre Causal: Chronogrammes



3 Sites (Agents) : S1, S2, S3

3 événements internes : e21, e31, e34

4 messages : e11-e12, e23-e32, e33-e13, e12-e35

# Ordre Causal : Chronogrammes (suite)

# Causalité



 $e12 \ e34 \ car \ e34 \not \rightarrow e12 \ et \ e12 \not \rightarrow e34$ 

Chemin causal : suite d'événements directement contigus pour →

Exemples: (e11, e12, e13), (e11, e22, e23, e33, e13), (e11, e22, e23, e33, e34, e35), etc

nb : les preuves seront basées sur des récurrences sur la longuer des chemins causaux.

Indépendance causale ≠ Absence de Cause Commune

Ainsi  $e12 \wr e34$  et  $(e11 \rightsquigarrow e34$  et  $e11 \rightsquigarrow e12)$ 

19 / 152

# Horloges Logiques de Lamport (1978)

# Ordre de Lamport $\prec$

 $\prec$  : Ordre calculé de facon répartie par chaque site au fur et à mesure de l'exécution du système

≺ est un ordre total "cohérent" avec l'ordre causal (qui lui est partiel)

cohérence : Si  $A \rightsquigarrow B$  Alors  $A \prec B$ 

# Horloges de Lamport

Chaque site (i) dispose d'une horloge logique  $H_i$  (initialisée à 0)

Tout message envoyé est estampillé par la valeur de l'horloge locale

# Evolution des Horloges

- $R_1$ : Entre 2 événements locaux, un site incrémente son horloge locale de 1  $H_i := H_i + 1$
- $R_2$ : A la réception d'un message estampillé par k, le site i recale son horloge ainsi :  $H_i := Max(H_i, k) + 1$



21 / 152

# Horloges de Lamport



# Ordre de Lamport

#### Définition de ≺

Estampillage de Lamport  $\mathcal{E}: Evt \mapsto \mathbb{N}$  Estampillage de Lamport  $A \mapsto \mathcal{E}(A)$ 

$$\prec (\subset Evt \times Evt) =_{def} A \prec B \operatorname{ssi} \mathcal{E}(A) < \mathcal{E}(B)$$

# Propriété de cohérence

Si  $A \rightsquigarrow B$  Alors  $A \prec B$  preuve par récurrence sur " $| \rightsquigarrow |$ "

#### Corollaire

$$\mathcal{E}(A) = \mathcal{E}(B) \Rightarrow A \wr B$$

$$(\mathsf{car} \ \mathcal{E}(A) \geq \mathcal{E}(B) \Rightarrow \neg (A \leadsto B))$$

#### En résumé

Ordre total strict dynamiquement calculé  $\mapsto$  Résolution distribuée de conflicts

23 / 152

# Application à la résolution distribuée de conflits

# Algorithme (schéma) d'exclusion mutuelle à base de permissions (bloquantes)

- Pour entrer en section critique (SC), un site demande la permissions des autres sites.
- Il entre en section critique lorsqu'il a obtenu toutes les permissions. Il libère tous les sites à sa sortie de section critique.
- Un site oisif accorde sa permission et se bloque en attente d'un message de libération

# Propriétés à garantir

- Respect de l'exclusion mutuelle : un processus, au plus, présent en section critique (SC) (sûreté)
- Un processus en attente de SC, l'obtient en temps fini (vivacité)

# Application à la résolution distribuée de conflits (suite)

#### Quid des requètes concurrentes?



S3 et S1 sont en conflits pour l'accès à la CS

→ "Interblocage" car le protocole ne prévoit rien

S1 attend l'autorisation de S3 tandis que S3 attend l'autorisation de S1

#### Interblocage

L'interblocage se produit lorsque deux (ou plus) processus concurrents s'attendent mutuellement : ici S1 et S3

nb : Un interblocage conduit à un blocage mais tout blocage ne procède pas d'un interblocage.

25 / 152

# Application à la résolution distribuée de conflits (suite)

#### Résolution de l'interblocage par des priorités

#### Priorité statique :

- + Utiliser le nom des sites pour établir une priorité entre ceux-ci
- + Signer les messages émis

Résolution : S1 est plus prioritaire que S3. Il considère la requète de S3 comme sa permission. S3 sait que sa requète est moins prioritaire que celle de S1; il se bloque jusqu'à la réception du message de libération.

Ca fonctionne mais ... mécanisme inégalitaire!

Priorité dynamique (à l'aide de compteurs ou d'horloges de Lamport) les requètes sont estampillées par la valeur de l'Horloge de Lamport ses valeurs sont utilisées pour décréter les priorités des requètes



# Horloges de Lamport (fin)

#### Horloges de Lamport / Compteurs

- + Solution générique et répartie pour résoudre les conflits Alternative par "Tirage au sort" vue plus tard
- Comment borner les compteurs/horloges?
   (Ricart & Aggrawala, Lamport, ....)

#### Lamport Variante

Incrémentation des horloges (inc > 0)

+d dans  $R_1$  où d durée de l'événement associé

+c dans  $R_2$  où c durée de la communication

 $\mapsto h pprox$  temps nécessaire à la réalisation de l'événement associé.

# Bilan provisoire (1979)

→, la relation de causalité est un ordre partiel

≺, l'ordre de Lamport, est total!

Propriété de cohérence :  $A \rightsquigarrow B \Rightarrow A \prec B$ 

Quid de  $\Leftarrow$  ?

27 / 152

# Horloges vectorielles (Fidge & Mattern (88/89)

# Principe

Chaque site est doté d'un vecteur d'horloges  $Vh_i[1 \dots n]$ 

Tout message est estampillé par le vecteur d'horloges de l'émetteur

**Interprétation :**  $Vh_i(j) \approx$  "Connaissance" du site i sur le "comportement" du site j

# Evolutions des Horloges

 $R_1$ : Avant tout événement,  $S_i$  incrémente la composante de son horloge  $Vh_i(i) := Vh_i(i) + 1$ 

 $R_2$ : A la réception d'un message estampillé par VH, le récepteur (i) recale son vecteur d'horloges ainsi :  $\forall j \in [1..n]$  :  $Vh_i(j) := Max(Vh_i(j), VH(j))$ 

# Ordre de Fidge & Mattern (FM) ≺

Estampillage de FM :  $\gamma$  :  $Evt \mapsto \mathbb{N} A \mapsto \gamma(A)$ 

< ( $\subset$  Evt  $\times$  Evt) =<sub>def</sub> A < B ssi  $\gamma(A) < \gamma(B)$  (< est un ordre partiel)

**Propriété Adéquation** :  $A \rightsquigarrow B$  ssi A < B par récurrence sur " $| \rightsquigarrow |$ "

Corollaire :  $\gamma(A) \# \gamma(B) \Leftrightarrow A \wr B$ 

# Horloges vectorielles FM : Exemple



# Rappel $\begin{array}{c|c} e11 \leadsto e22 \ (1) \\ e22 \leadsto e23 \ (2) \ + \ transitivit\'e \ (3) \\ e23 \leadsto e32 \ (1) \\ e12 \wr e34 \ car \ e34 \not \leadsto e12 \ et \ e12 \not \leadsto e34 \end{array}$

Exercice : Que peut-on dire des couples d'événements suivants ? 
$$e21\&e11 \qquad e21\&e32 \qquad e22\&e32 \\ e11\&e32 \ e11\&e23$$

29 / 152

# Comparatif O.G, Lamport F&M (exercice)

# où O.G est un Observateur Global qui voit/note tout



# O.G, Lamport F&M : Renseigner le tableau ci-dessous

|     | e21 | e31 | e22 | e11 | e23 | e24 | e41 | e42 | e43 | e32 | e22 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| L   |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |
| F&M |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |
| O.G |     |     |     |     |     |     |     |     |     |     |     |
| U.G |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |

# Moralité

F&M offre la meilleure observation

Paradoxalement, une vision centrale n'aide pas!!!!

Application de F&M au debbuging réparti

31 / 152

# Comparatif O.G, Lamport F&M (solution)

# où O.G est un Observateur Global qui voit/note tout



# Autre application de F&M : Diffusion causale

# Ordre Causal : Propriété caractérisant la diffusion des messages

# Exemple de violation de l'ordre causal : e22 devrait arriver avant e21



#### Algos de "diffusion causale" basés sur F&M

Solution : e21 est mis en attente et ne sera délivré qu'après e22

Applications : Jeux distribués, Applications militaires

33 / 152

# Synchronisation par phases

#### Définitions de Base

**Synchronisation** : Ens de Règles (mécanismes) permettant de contrôler l'évolution d'un S.R

**Phases** : Concept générique permettant de *résoudre* le contrôle réparti d'une *certaine classe* de calculs répartis.

#### Classe de calculs considérés :

$$P_1$$
  $P_2$  ...  $P_n$   $N$  sites  $d_1$   $d_2$  ...  $d_n$   $N$  données Calcul de  $R_i = F(d_1, d_2, \ldots d_n)$ 

- $R_i = R_j \quad \forall (i,j) \rightsquigarrow \mathsf{PB} \; \mathsf{Election} \; (\mathsf{R\'eunion}, \, \mathsf{N\'egociation})$
- $R_i \neq R_j \longrightarrow$  Tables de Routage (optimaux) Arbres de Recouvrement de poids minimaux

# Algorithme $\mapsto$ Schéma d'algoritme

Gallager 1983 : Calcul de tables de routages dans les réseaux

Konig 1988 : Schéma général d'algorithme à "Phases"

# Algorithmes par phases

# Concept de Phases

- Tous les sites ont le même comportement (symétrie "→" Distribué)
  - a) Envoyer un message à chacun de ses voisins
- Phase :
- b) Recevoir un message de chacun d'eux
- c) Calcul local (en fonction de la connaissance acquise)

# Algorithme par Phases

 $\left[ \begin{array}{ccc} I \end{array} \right] & \text{Initialisation} \\ & II \end{array} & \text{Phases*} & pprox \, "Itération Répartie"} \\ & III \end{array} & \text{Terminaison}$ 

# Remarques

Exécution phasée  $\leadsto$  Couplage) trés fort entre les  $\neq$  sites :  $S_i$  peut commencer la phase k avant  $S_{i+1}$ , mais  $S_i$  ne terminera

pas la phase k sans que  $S_{i+1}$  ne l'ait commencée.

Résoudre la détection répartie de la Terminaison

36 / 152

# Chronogrammes types d'Algorithmes par phases : Graphe Complet



# Chronogrammes d'algorithmes phasés et Topologie exo : Retrouver la topologie à partir d'un chronogramme







38 / 152

# Calcul par phases des Tables de Routages Optimaux (Gallager 1983)

# Hypothèses générales

- Communication fiable
- Sites interconnectés par des canaux (bi-directionnels)
- Chaque site connait "ses" canaux (les ports le reliant à l'extérieur)

# Table de Routage (locale) :

 $Tro: Canaux \mapsto 2^{Sites}$ 

Tro(canal) = S où  $S \subset Sites$ 

#### **Utilisation**

Un site  $S_i$  recevant un message (Mesg, Dest) avec  $dest \neq S_i$  ré-expédie le message (Mesg, Dest) sur un canal c tel que  $Dest \in Tro(c)$  vérifiant : Pour un site  $A, B \in Tro(c)$  ssi c est un canal à emprunter pour joindre B à partir de A en suivant le + court chemin.

# Exemple : Topologie et de Tables de routages associée



| Α | Sites                          |
|---|--------------------------------|
| 1 | $\{B, E, D\}$                  |
| 2 | { <i>C</i> , <u><i>D</i></u> } |

| $\cup$ | Sites                                 |
|--------|---------------------------------------|
| 1      | $\{B, E, D\}$                         |
| 2      | $\{A, \underline{B}, \underline{E}\}$ |

| E | Sites         |
|---|---------------|
| 1 | $\{A,B,C,D\}$ |

| В | Sites                   |
|---|-------------------------|
| 1 | { <i>A</i> , <i>C</i> } |
| 2 | { <u>C</u> , D}         |
| 3 | <i>{E}</i>              |

| D | Sites                   |
|---|-------------------------|
| 1 | { <i>A</i> , <i>C</i> } |
| 2 | { <u>A</u> , B, E}      |

40 / 152

# Algorithme de Calcul des Tables de routages (préliminaires)

# Notations : Pour un site $S_i$

canaux; : canaux du site, routage; : table du site

phi: compteur de phases

*inf<sub>i</sub>*, *new<sub>i</sub>* : Ensemble d'identité de sites

Informations apprises  $new_i$  / connues  $inf_i$ 

# Hypothèse simplificatrice : Chaque site connait le diamètre du graphe

nb : On triche pour simplifier la 1ere version, on lèvera ensuite cette hypothèse.

# Rappels sur les Graphes

- Distance : Sites  $\times$  Sites  $\mapsto \mathbb{N}$ distance = longueur du + court chemin les reliant (+ court = nombre minimum d'arètes)
- Excentricité : Sites  $\mapsto \mathbb{N}$ Distance maximum entre le site et les autres
- Diamètre d'un Réseau :
   Maximum des Excentricités

# Algorithme de Calcul des Tables de routages

# Init:

```
ph_i := 0; new_i := \{i\}; inf_i := \{i\};
```

#### Phases\*

```
Tant que ph_i < diametre faire - - Simplification pour la terminaison ph_i := ph_i + 1; \forall c \in canaux_i : envoyer new_i sur c new_i := \emptyset \forall c \in canaux_i \{ recevoir m sur c Y = m - (inf_i \cup new_i) routage_i(c) := routage_i(c) \cup Y new_i := new_i \cup Y \} inf_i := inf_i \cup new_i fin\_tant\_que
```

# Term : ∅

42 / 152

# Exemple d'exécution sur la topologie suivante $A.1 \leftrightarrow 1.B.2 \leftrightarrow 1.C$

# Phase 1 sur B

$$inf = \{B\}, new = \{B\}$$
**Emissions**
! 1 {B} & ! 2 {B}
 $new \leftarrow \emptyset$ 
**Réceptions**
? 1 {A} (Y = {A})
 routage(1) :=  $\emptyset \cup \{A\}$ 
 $new \leftarrow \emptyset \cup \{A\}$ 
? 2 {C} (Y = {C})
 routage(2) :=  $\emptyset \cup \{C\}$ 
 $new \leftarrow \{A\} \cup \{C\}$ 
 $inf = \{B, A, C\}, new = \{A, C\}$ 

# Phase 1 sur A (Pour C s(A/C))

$$inf = \{A\}, new = \{A\}$$
**Emissions**
! 1 {A}
 $new \leftarrow \emptyset$ 
**Réceptions**
? 1 {B} (Y = {B})
 $routage(1) := \emptyset \cup$ 
{B}
 $new \leftarrow \emptyset \cup \{B\}$ 
 $inf = \{A, B\}$ 
 $new = \{B\}$ 

# Exemple d'exécution (suite) $A.1 \leftrightarrow 1.B.2 \leftrightarrow 1.C$

# Phase 2 sur B

#### **Emissions**

$$! 1 \{A,C\} \& ! 2 \{A,C\}$$

$$new \leftarrow \emptyset$$

#### Réceptions

? 1 {B} (Y = 
$$\emptyset$$
)  
? 2 {B} (Y =  $\emptyset$ )  
 $inf = \{B, A, C\}, new =  $\emptyset$$ 

# Phase 2 sur A (analogue pour C)

#### **Emissions**

$$! 1 \{B\}$$
 $new \leftarrow \emptyset$ 

# Réceptions

? 1 {A,C} (Y = {C})  
routage(1) := {B} 
$$\cup$$
 {C}  
inf = {B, A, C}, new = {C}

# Remarques : Pour cette topologie, Diametre = 2

- B est en position centrale (il est d'excentricité minimale 1)
- B possède toute l'info à l'issue de la 1ère phase
- La seconde phase permet aux sites plus excentrés (A et C) d'obtenir à leur tour cette information

44 / 152

# Terminaison d'un algorithme à phases

# Cas général (sans tricherie)

Pas besoin de connaître le diamètre du graphe

- A l'issue de la  $k^{ieme}$  phase, le site i a tout appris des sites au plus distants de k
- Soit  $new_k$  la valeur de new à l'issue de la  $k^{ieme}$  phase Si  $new_k = \emptyset$  alors  $\forall p \geq k$   $new_p = \emptyset$
- L'algorithme est terminé pour le site i la première fois que new passe à  $\emptyset$
- Pour un site i tq nb phases = Excentricite(i)
   le site i sait tout mais il ne le sait pas
   pour nb phases = Excentricite(i) + 1 alors new = Ø
   le site i apprend qu'il sait tout

# Petit pb à régler

Les sites n'ont pas en général la même excentricité, Ils ne terminent donc pas en même temps.

⇒ un site ne peut arrèter dés qu'il a fini (sinon interblocage)

Il va donc faire une phase en plus pour les autres

# Schéma Général des Algos à Phase (1/2)

# Données

Comme précédemment avec en plus

- fini : message envoyé par un site sachant qu'il a terminé aux sites qui sont plus excentrés que lui
- canaux\_fermes; : ensemble des sites d'excentricité moindre

#### Init:

```
ph_i := 0;
new_i := \{(d_i, i)\};
inf_i := \{(d_i, i)\};
canaux\_fermes_i := \emptyset
```

#### Term:

```
R = canaux_i \setminus canaux\_fermes_i

\forall r \in R : envoyer fini sur r

\forall r \in R : recevoir m sur r
```

46 / 152

# Schéma Général des Algos à Phase (2/2)

#### Phases\*

```
Tant que new_i \neq \emptyset faire ph_i := ph_i + 1; \forall c \in canaux_i : envoyer new_i sur c new_i := \emptyset \forall c \in canaux_i { recevoir m sur c Si m = fini alors canaux\_fermes_i := canaux\_fermes_i \cup \{c\} Sinon new_i := new_i \cup (m \setminus inf_i) "Calcul dépendant de l'algorithme spécifique" } inf_i := inf_i \cup new_i fin_tant_que
```

# Calcul phasé de table de routages sur une clique



48 / 152

# Calcul phasé de table de routages sur un bus



# Synchronisation par Vagues

Second schéma général d'algorithmes

Phases  $\approx$  Itération répartie

 $Vagues \approx Récursion répartie$ 

#### Plan

- Exemple Introductif :
   Construction répartie d'une arborescence couvrante à partir d'un réseau connexe
- Schéma général d'un Algorithme par vagues
- 3 Application à la détection de la terminaison distribuée

# Hypothèses Générales :

- Canaux bidirectionnels fiables,
- Site distingué (racine), un site ne connaît que ses voisins

51 / 152

# Arbres couvrants (1/2)

# Arborescence couvrante (spanning tree)

Partant d'un graphe connexe, on construit un arbre

- contenant tous les sommets du graphe
- les arcs de l'arbre sont des arcs du graphe
   en général plusieurs arbres couvrants pour un même arbe

Un graphe et deux de ses possibles arbres couvrants







# Arbres couvrants (2/2)







# Intérèt de cette topologie

- 1 Diffusion d'un message à tous les sites du réseau
  - -n-1 messages (Optimal)
  - Temps de propagation en  $2 \times p$ ( $p = Log \ n$  pour les arbres équilibrés)
- Exclusion Mutuelle (Quorums en Log n)
   (cf arbres dynamiques Algo de Naimi-Trehel)
- Oétection répartie de la Terminaison

53 / 152

# Construction d'arbre couvrant : Principes (1/2)

#### Racine

Seul processus initialement actif

Elle envoie un message *aller* à chacun de ses voisins (fils) et attend un message *retour* de chacun de ceux-ci

(vu de la racine, on a une **phase** de calcul)

# Vagues

Un site recevant un message aller(k) est atteint par la  $k^{ieme}$  vague,

Un site renvoyant un message retour(k) termine la  $k^{ieme}$  vague

#### Construction de l'arbre

≡ Succession de phases synchronisées par la racine

A l'issue de la Phase  $n \mapsto$  arborescence des + courts chemins d'ordre n

# Construction d'arbre couvrant : Principes (2/2)

#### Notations:

R la racine,

 $P_i$  un site quelconque

 $d_i$  la distance entre R et  $P_i$ 

# Invariants associés à l'algorithme

Pour tout site  $P_i$  et tout entier k (n<sup>0</sup> de vague)

- $d_i > k \rightarrow P_i$  n'est pas atteint par la vague n<sup>0</sup> k
- $d_i = k \rightarrow P_i$  va apprendre qu'il est dans l'arborescence en recevant message aller(k), Il connaitra aussi son père (expéditeur du message) et sa profondeur (k+1).
- $d_i < k \rightarrow P_i$  connaît l'ensemble de ses fils dans l'arborescence

55 / 152

# Construction d'arbre couvrant : Données

# Messages Utilisés :

- aller(k) où k est le  $n^0$  de vague
- retour(resp) où resp  $\in \{Continuer, Termine, Deja_marque\}$

#### Connaissance Initiale:

- $voisins(_lv)$  : Voisins d'un site dans le réseau
- privilege : détenu uniquement par la racine
- non\_marque

# Données d'un Site :

- vague(\_nv) & prof(\_prof)
- marque : vrai si le site est dans l'arborescence  $pere(_p)$  : identité du père du site
- $fils(\_status, \_fils)$ : ensemble des fils d'un site  $(\_status \in \{Prov, Def\})$
- explore(\_nature, \_liste) où

 $\_$ nature  $\in \{wait\_fils, wait\_pere, termine\}$ 

et \_liste sous-ensemble des fils du site

# Construction d'arbre couvrant : algorithme (1/2)

Réception par le site  $P_i$  d'un message aller (k) – émis par  $P_i$ 

# Site $P_i$ , non-marqué

Il entre dans l'arborescence

Il apprend sa profondeur (k+1), son père  $(P_i)$ 

Soit  $Fils = voisins - \{P_i\}.$ 

Si  $Fils = \emptyset$  alors  $P_i$  renvoie à  $P_i$  retour(termine)

Sinon  $P_i$  renvoie à  $P_i$  retour(Continuer)

F est l'ensemble provisoire des fils de  $P_i$ 

# Site $P_i$ , marqué, dont le père est $\neq P_i$

 $P_i$  renvoie à  $P_i$  retour(deja\_marque)

# Site $P_i$ , marqué, dont le père est $P_i$

 $P_i$  le propage à chacun de ses fils et passe en attente

57 / 152

# Construction d'arbre couvrant : algorithme (2/2)

#### Bilan d'une Vague

Site attend  $(explore(wait\_fils, \_w))$  une réponse

retour(resp) de chacun des éléments de \_w

Il recoit ces réponses et les traite  $\mapsto < \_cont, \_term, \_dm >$ 

Si  $\_cont = \emptyset$  c'est fini pour lui.

Si c'est la racine, l'algo est terminé

Sinon, il renvoie à son père *retour*(*termine*)

Sinon

Si c'est la racine, il renvoie à  $\_cont$  aller( $\_Nv$ )

Sinon, il renvoie à son père retour(continuer)

# Gestion de ses Fils (fils(\_status,\_f))

S'il connaissait déja exactement ses fils (\_status = def)

Alors pas de chgt

Sinon (\_status = prov)

 $fils \leftarrow \_term + \_cont$  et  $\_status \leftarrow def$ 

# Exemples d'exécution : Le graphe initial est déjà un arbre!!



59 / 152

# Exemples d'exécution : Un graphe et 2 AC possibles (1/3)







# Exemples d'exécution : une première solution/exécution (2/3)



61 / 152

# Exemples d'exécution : une seconde solution/exécution (3/3)



# Exemples d'exécution : Le graphe est complet $\left(1/2\right)$



63 / 152

# Exemples d'exécution : graphe complet (2/2)



# Schémas généraux d'algorithmes à vagues : Arborescence

# Site Quelconque P; j := 0; Repeter attendre aller(diffuse) recu := diffuse ∀f ∈ Fils : envoyer aller(diffuse) à f res := ∅ ∀f ∈ Fils : attendre retour(collecte) de f res := res ∪ collecte j := j + 1 collecte := collecte ∪ D envoyer retour(collecte) à pere Jusqu'à Condition de terminaison

65 / 152

# Schémas généraux d'algorithmes à vagues : Anneaux

```
Initiateur de la Vague : P_{\alpha}
```

```
diffuse := valeur à diffuser
recu := diffuse; j := 1;
envoyer jeton(diffuse, ∅) à succ
Repeter
  attendre jeton(diffuse, collecte)
  diffuse := F(collecte)
  recu := diffuse; j := j + 1;
  envoyer à succ
  jeton(diffuse, collecte)
Jusqu'à Condition de terminaison
```

# SITE QUELCONQUE $P_i$

```
j := 0;

Repeter

attendre jeton(diffuse, collecte)

recu := diffuse; j := j + 1;

collecte := collecte ∪ D

envoyer à succ

jeton(diffuse, collecte)

Jusqu'à Condition de terminaison
```

# Symétrique

```
Jeton(< D_1, C_1 >, \ldots < D_n, C_n >)
```

# "TD": Calcul des tables de routages optimaux dans une arborescence couvrante

# Hypothèses

Communication bi-directionnelle fiable

Réseau connexe

Arborescence couvrante de ce réseau



#### Enoncé

Proposer un algorithme distribué permettant de construire pour chacun des sites les tables de routage optimaux associés à cette arborescence.

# "TD": Calcul des tables de routages optimaux dans une arborescence couvrante : résultat attendu



| 4 | )    |   |   |
|---|------|---|---|
|   | Site | 3 |   |
|   | 1    | 1 |   |
|   |      | _ | i |

| 3 | Site             | 4           |
|---|------------------|-------------|
| 1 | 1                | 5           |
| 2 | 1<br>2<br>3<br>4 | 5<br>5      |
| 3 | 3                | 5           |
| 1 | 4                | 4           |
| 1 | 5<br>6           | 5           |
| 2 | 6                | 5<br>5<br>5 |
| 2 | 7                | 5           |
|   |                  |             |

|   | Site | 5 |
|---|------|---|
|   | 1    | 1 |
| ſ | 2    | 1 |
|   | 3    | 1 |
|   | 4    | 4 |
|   | 5    | 5 |
|   | 6    | 1 |
| ſ | 7    | 1 |

| Site | 6 | Site | 7 |
|------|---|------|---|
| 1    | 2 | 1    | 2 |
| 2    | 2 | 2    | 2 |
| 3    | 2 | 3    | 2 |
| 4    | 2 | 4    | 2 |
| 5    | 2 | 5    | 2 |
| 6    | 6 | 6    | 2 |
| 7    | 2 | 7    | 7 |
|      |   |      |   |

# "TD" : Calcul des tables de routages optimaux dans une arborescence couvrante : données (1/2)

# Représentation des tables de routage

TR, ensemble de couples  $(x, y) \in Sites \times Sites$  avec la signification suivante :

Pour un site S,  $(x, y) \in TR_S$  ssi le site S pour envoyer un message au site x doit l'envoyer au site y.

#### Initialisation des tables :

Sur chaque site S, ayant pour père PS et possédant un ensemble de fils FS

debut

 $TR \leftarrow \emptyset$ 

Pour chaque  $e \in FS \cup \{S, PS\}$ :

 $TR \leftarrow TR \cup \{(e, e)\}$ 

fin

#### Convention

La racine est son propre père.

9/152

# "TD" : Calcul des tables de routages optimaux dans une arborescence couvrante : données (2/2)

# Connaissance initiale d'un site :

Chaque site connâit son père et ses fils directs dans l'arborescence. i.e la connaissance obtenue à l'issue de la construction de l'A.C

# Quatre états : wait\_pere, wait\_fils, wait\_fin et termine.

Les sites sont initialement dans l'état wait\_pere.

# Messages utilisés : (messages signés par leur Exp)

debut\_calcul déclenche le calcul des tables.

Il est envoyé initialement par la racine à chacun de ses fils et sera propagé vers les feuilles de l'arbre.

Fils(ensemble\_de\_fils) est envoyé par un noeud à son père pour lui indiquer l'ensemble de ses fils (au sens large)

Sites (ensemble\_de\_sites) est envoyé par la racine à tous ses fils pour leur indiquer l'ensemble de tous les sites de l'arborescence.

Ce message sera propagé dans tout l'arbre.

# "TD": Calcul des tables de routages ....:

Schéma Général: Flux

#### Principe

Les tables de routage peuvent être construites en une vague et demi : "1 vague pour que la racine obtienne toute la connaissance + une demi-vague pour que le reste des sites ait aussi cette connaissance."

#### $Flux : Racine \mapsto Feuilles$

- La racine, dans l'état wait\_pere, lance la première vague en envoyant le message debut\_calcul à chacun de ses fils, elle se place en attente de ses fils wait\_fils.
- Une Feuille, dans l'état  $wait\_pere$ , recevant  $debut\_calcul$  renvoie à son père le message  $Fils(\emptyset)$  et passe dans l'état  $wait\_fin$ .
- Un noeud intermédiare, dans l'état wait\_pere, recevant debut\_calcul le propage à chacun de ses fils et passe en wait\_fils

Un noeud S, dans l'état wait\_fils, ayant FS pour fils directs attend un

71 / 152

"TD" : Calcul des tables de routages .... : Schéma Général : Reflux (retour vers la racine)

#### Noeud Intermédiaire :

```
message du type Fils(ensemble\_de\_fils) de chacun de ses fils. A la réception, il exécute le calcul suivant : F \leftarrow \{S\} \cup FS

Pour chaque fils f \in FS : attendre Fils(ensemble\_de\_fils) de f
F \leftarrow F \cup ensemble\_de\_fils
Pour chaque e \in ensemble\_de\_fils:
TR \leftarrow TR \cup \{(e,f)\}
fin

Envoyer Fils(F) à son pere
Passer dans l'état wait\_fin
```

# Racine:

Comportement identique : Par contre, au lieu d'envoyer à son père le message Fils(F), elle renvoie le message Sites(F) à chacun de ses Fils et passe dans l'état termine.

# "TD" : Calcul des tables de routages .... : Schéma Général : Fin de la demi-vague

Comportement d'un site S, dans l'état wait\_fin à la réception du message Sites(ensemble\_de\_sites) venant de son père PS.

#### Noeud intermédiaire

Noeud S ayant PS pour père,

A sa réception, il exécute le calcul suivant :

Pour chaque  $s \in ensemble\_de\_sites$ :

Si 
$$(s,x) \notin TR$$
 Alors  $TR \leftarrow TR \cup \{(s,PS)\}$ 

Il envoie ensuite le message Sites(ensemble\_de\_sites) et passe dans l'état termine.

#### **Feuille**

Même traitement qu'un noeud intermédiaire, par contre passage direct dans l'état *termine*.

73 / 152

"TD" : Calcul des tables de routages .... : Schéma Général : Exécution = 1 phase et demi



# "TD" : Calcul des tables de routages .... : Schéma Général : Exécution coté sites

# Etat des sites à l'issue de la première vague

```
term.1([TR([(1, 1),(2, 3),(3, 3),(4, 5),(5, 5),(6, 3),(7, 3)]),fils([3,5]),pere(1),status(wait)])
term.2([TR([(2, 2),(6, 6),(7, 7)]),fils([6,7]),pere(3),status(wait)])
term.3([TR([(2, 2),(3, 3),(6, 2),(7, 2)]),fils([2]),pere(1),status(wait)])
term.4([TR([(4, 4)]),fils(nil),pere(5),status(wait)])
term.5([TR([(4, 4),(5, 5)]),fils([4]),pere(1),status(wait)])
term.6([TR([(6, 6)]),fils(nil),pere(2),status(wait)])
term.7([TR([(7, 7)]),fils(nil),pere(2),status(wait)])
```

# Etat des sites à l'issue de l'algortihme

```
term.1([TR([(1, 1),(2, 3),(3, 3),(4, 5),(5, 5),(6, 3),(7, 3)]),fils([3,5]),pere(1),status(wait)])

term.2([TR([(1, 3),(2, 2),(3, 3),(4, 3),(5, 3),(6, 6),(7, 7)]),fils([6,7]),pere(3),status(termine)])

term.3([TR([(1, 1),(2, 2),(3, 3),(4, 1),(5, 1),(6, 2),(7, 2)]),fils([2]),pere(1),status(termine)])

term.4([TR([(1, 5),(2, 5),(3, 5),(4, 4),(5, 5),(6, 5),(7, 5)]),fils(nil),pere(5),status(termine)])

term.5([TR([(1, 1),(2, 1),(3, 1),(4, 4),(5, 5),(6, 1),(7, 1)]),fils([4]),pere(1),status(termine)])

term.6([TR([(1, 2),(2, 2),(3, 2),(4, 2),(5, 2),(6, 6),(7, 2)]),fils(nil),pere(2),status(termine)])

term.7([TR([(1, 2),(2, 2),(3, 2),(4, 2),(5, 2),(6, 2),(7, 7)]),fils(nil),pere(2),status(termine)])
```

75 / 152

# Terminaison Répartie : description du problème

# Comportement des sites/agents régit par 3 états

Passif : L'agent attend qu'on lui confie du travail

Actif : L'agent effectue le travail qui lui a été confié

Repos : L'agent a cessé le travail



"Boucle sur Actif" : un agent actif peut se décharger sur ses voisins

#### Problème de la terminaison

Comment un agent peut-il détecter que l'on ne lui confiera plus de travail et qu'il peut se mettre au repos?

# Terminaison Répartie : difficulté du problème

#### Problème de la terminaison (suite)

Comment un agent peut-il détecter qu'il a terminé ...

Pb rencontré dans tous les calculs!

par ex lors du calcul des tables de routage

 $nb : Terminaison \equiv ramasse-miettes$ 

#### A trouver une condition de terminaison ...

Nécessaire et Suffisante et Locale

#### Recherche d'une C.N.S

C1: Tous les agents sont passifs

Nécessaire oui

Suffisant? Non!

C2 : Aucune requète de travail n'est en transit

 $CNS = C1 \wedge C2$ 

C.N.S globale : état des agents et des voies de communication!!

78 / 152

# Terminaison Répartie : $\neq$ cas de figure

#### Bonne terminaison

Un algorithme sera dit bien terminé si l'on atteint **inévitablement** un état global du système où :

- Tous les agents sont au repos
- Il n'y a pas de requète de travail en transit

#### Terminaison non détectée

Le système atteint un état où tous les agents sont passifs alors qu'il n'y a pas de requète en transit

 $\approx$  Interblocage

#### Détection erronée de la terminaison

Le système atteint un état où tous les agents sont au repos alors qu'il y a encore des requètes en transit

 $\approx$  Blocage

# Terminaison Répartie : Algorithme de détection par vagues

#### Principe général

Superposer à l'application – dont on veut assurer la bonne détection de la terminaision – un algorithme de détection de la Terminaison

**Pb**: Veiller à éviter les interférences entre les deux algorithmes.

### Solution par "Vagues"

- Construire une arborescence couvrante
- L'application utilisera la topologie de l'AC
- 3 Lorsque la racine est passive, elle lance une vague de détection

Hypothèses habituelles : Canaux fiables & fifo

80 / 152

# Terminaison Répartie : Algorithme (1/4)

### Etats d' un agent

Passif: site ne fait rien

Actif: site travaille

Wait : site informé qu'une vague de détection de la terminaison est

en cours ; il attend le résultat

**Terminé**: site sachant que la terminaison est détectée

# $Flux : Messages Racine \mapsto Feuilles$

Fini ? : pour initier/propager une vague de détection de la

terminaison

Terminé : pour signifier que la terminaison a été détectée

#### $Reflux : Feuilles \mapsto Racine$

Pas\_Fini: pour signifier la non terminaison

Ok\_Fini: pour signifier la terminaison "locale"

# Terminaison Répartie : Algorithme (2/4)

#### Lancement d'une vague

La racine **passive** lance une vague de détection : elle envoie le message Fini ? à chacun de ses fils et passe dans l'état wait.

#### Terminaison d'un site

Un site passif recevant le message *termine* de son père sait que la terminaison est atteinte, il en informe ses fils et passe à l'état **termine** 

#### Réception d'une vague

Un site reçoit le message **Fini?** de son père Si il est passif alors il le propage à ses fils et passe en attente de ses fils Sinon il reste actif et renvoie le message *pas\_fini* à son père

82 / 152

# Terminaison Répartie : Algorithme (3/4)

# Bilan d'une vague

Un site ayant propagé une vague de terminaison reçoit les réponses de chacun de ses fils  $Mesg \in Messages\_Application \cup \{ok\_fini, pas\_fini\}$  Il les traite  $\mapsto < work, passif, actif >$  Si  $work = \emptyset$  &  $actif = \emptyset$ 

| <b>Alors</b><br>Succès | Si c'est la racine alors l'application est terminée, elle renvoie le message <b>termine</b> à chacun de ses fils et termine elle-même Sinon il renvoie le message <b>ok_fini</b> à son père et attend |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Sinon</b><br>Echec  | Le site repasse en <b>actif</b> ou <b>passif</b> suivant que <b>work</b> est vide ou non Si c'est la racine alors <b>rien</b> Sinon le site renvoie le message pas fini à son père                    |

# Terminaison Répartie : Algorithme (4/4)

### Interférences entre la terminaison et l'application

Croisement entre une requête de travail et une vague de détection Le site 2 ayant lancé une vague reçoit un message de l'application de la part de son fils 6, il recevra **ensuite** la réponse de celui-ci quant à sa propre terminaison; A ce moment la, le site 2 n'est plus dans l'état wait, le message de 6 doit donc être ignoré.



84 / 152

# Terminaison Répartie : Succès



# Terminaison Répartie : Echec (1/2)



86 / 152

# Terminaison Répartie : Echec (2/2)



# Tirage au Sort Réparti

### Mécanisme Distribué pour résoudre des Conflicts

Conflicts sont résolus

de manière équitable

avec un résultat imprédictible

### → façon Symétrique de casser la Symétrie

**Alternative aux** 

Priorités statiques

Messages Datés (Horloges)

89 / 152

# Tirage au Sort Réparti

### Algorithmes Symétriques

- chaque site exécute le même code
- aucun site ne bénéficie d'un privilège connu statiquement
- chaque site est impliqué également dans le résultat final

### Symétrie d'un tirage au sort?

Degré de symétrie évalué en termes de Probabilités

### Propriétés attendues du tirage au sort

- Probabilité pour un site de gagner soit indépendante de ses choix de son identificateur
- Résultat imprédictible

# Tirage au Sort Réparti : 3 Algorithmes

### Algo #1

• Election d'un vainqueur entre les *n* Agents

### Algo #2

Sélection d'un vainquer parmi p compétiteurs dans une configuration globale de n Agents.

- Déterminaison des Compétiteurs
- Election d'un vainqueur entre les compétiteurs

### Algo #3

Obtention d'un Ordre total entre p compétiteurs dans une configuration globale de n Agents.

- Déterminaison des Compétiteurs
- 2 Obtention d'un Ordre total entre les compétiteurs

Pour les 3 algos, chaque site doit connaître le résultat.

91 / 152

# Plan

Hypothèses

Schéma Général

Propriétés Attendues

2 Algorithmes de tirage au sort

Ordre Total

Conclusion

# Hypothèses

#### Communication

 $M_1$ : Chaque site peut communiquer avec les autres

 $M_2$ : Délais de transmission sont finis

 $M_3$ : Médium de transmission est fiable

#### Sites

 $A_1$ : Chaque site connaît tous ses partenaires Soit  $Agents = \{a_1, a_2, ..., a_n\}$ 

 $A_2$ : Chaque site est identifié par un identificateur Soit *Code* la bijection de  $\{a_1, a_2, ..., a_n\}$  sur  $\{1,...,n\}$ 

A<sub>3</sub> : Chaque site connaît un ensemble de valeurs noté Choix

93 / 152

# Schéma général des 3 algorithmes

### Communication réduite à une phase

Chaque site

- choisit aléatoirement une valeur ∈ Choix
- l'envoie à chacun de ses partenaires
- attend leurs réponses

**Complexité** :  $O(n^2)$  messages

### A l'issue de la phase

Un **même** ensemble (**EV**) des *n* valeurs echangées est **connu** par **tous** les sites

#### Calcul Local

Election <-> Vainqueur : Choix<sup>n</sup>  $\mapsto$  Competiteurs

 $EV \mapsto Vainqueur(EV)$ 

Ordre <-> bijection  $B_{EV}: Competiteurs <math>\mapsto \{1,..c\}$ 

 $B_{EV} \mapsto <_{B_{EV}}$ Ordre Canonique

# Propriétés des algorithmes

#### Qualitatives

Terminaison de l'algorithme dans un état consistant

- Un site et un seul gagne, les autres perdent
- Le vainqueur est un compétiteur

Tous les sites connaissent le vainqueur

#### **Probabilistes**

- Equiprobabilité faible de gagner pour chacun des sites :
   Chaque site à la même chance de gagner
   En posant P(I) : probabilité de gain pour le site I
   (P1) ∀I, J ∈ Agents : P(I) = P(J)
- Equiprobabilité forte de gagner pour chacun des sites :
   Chaque site est traité de la même façon : Ses chances de gain sont indépendantes : de son identificateur ou de la valeur choisie
   En posant P(I, v) : probabilité que i gagne avec la valeur v
   (P2) ∀I, J ∈ Agents, ∀v, w ∈ Choix : P(I, v) = P(J, w)

95 / 152

# Une solution avec deux sites

#### Données

$$Agents = \{A, B\}$$
  
 $Choix = \{v1, v2\}$ 

### Détermination du vainqueur

$$Vainqueur: Choix^2 \mapsto Agents$$
 $Vainqueur((x, y)) = \begin{vmatrix} A & \text{iff } x = y \\ B & \text{otherwise} \end{vmatrix}$ 

#### Distribution des valeurs

| $\boxed{\{v1,v2\}^2}$ | Vainqueur |
|-----------------------|-----------|
| (v1,v1)               | А         |
| (v1,v2)               | В         |
| (v2,v1)               | В         |
| (v2,v2)               | Α         |

### PropriétéS d'équiprobabilté satisfaites

$$P(A) = P(B) = 1 / 2$$
  
 $P(A,v1) = P(A,v2) = P(B,v1) = P(B,v2) = 1 / 4$ 

# Algo #1: Tirage au sort d'un vainquer entre n compétiteurs

#### Données

On se donne arbitrairement une Bijection Code

 $\textit{Code}: \textit{Agents} \mapsto \{1,..n\} \quad \textit{(Competiteurs} = \textit{Agents} \textit{)} \; \textit{Choix} = \{1,..n\}$ 

#### Détermination du vainqueur

Calcul annexe

Soit  $w: \{1,..,n\}^n \mapsto \{1,..,n\}$ , l'application

$$w((a_1, \cdots, a_n)) = 1 + [(\sum_{j=1}^{j=n} a_j) \mod (n)]$$

Calcul principal

Soit  $Vainqueur: \{1,..,n\}^n \mapsto Agents$ 

 $Vainqueur((a_1, \dots, a_n)) = A ssi Code(A) = w((a_1, \dots, a_n))$ 

97 / 152

# Algo #1: Cas de deux sites

## Choix de la bijection Code

 $Agents = \{A,B\}$ 

et on pose arbitrairement Code(A) = 1 Code(B) = 2

#### Résultats

| $\{1,2\}^2$ | W | Vainqueur |
|-------------|---|-----------|
| (1,1)       | 1 | А         |
| (1,2)       | 2 | В         |
| (2,1)       | 2 | В         |
| (2,2)       | 1 | A         |

#### Probabilités

$$P(A) = P(B) = 1 / 2$$
  
 $P(A,1) = P(A,2) = P(B,1) = P(B,2) = 1 / 4$ 

Ces probabilités sont bien indépendantes du choix de la bijection Code

# Algo #1 : Eléments de preuve

# Propriété d'Equiprobabilité forte : P(i, v) = P(j, w)

```
Card(Choix) = Card(Agents) = n

Soit A_n^n, l'ensemble de tous les arrangements, on a Card(A_n^n) = n^n

C(i, v): l'ensemble des arrangements où i choisit v et gagne.

P(i, v) = Card(C(i, v))/Card(A_n^n)

Card(C(i, v)) = Card(A_n^{n-2}) = n^{n-2} A montrer!

\Rightarrow P(i, v) = n^{n-2}/n^n = 1/n^2 (indépendant de i et de v)
```

# $Card(C(i, v)) = n^{n-2}$

Lemme : Soit  $(a_1, \cdots, a_{n-1})$ , n-1 valeurs  $\in A_n^{n-1}$  ,  $\forall A \in Agents$ ,  $\exists$  un unique  $a_n \in \{1, \cdots, n\}$  :  $Vainqueur((a_1, \cdots, a_{n-1}, a_n)) = A$ 

preuve : 
$$\mathbf{a_n} = [\mathbf{Code}(\mathbf{A}) - (1 + \sum_{k=1}^{k=n-1} a_k)] \mod (n)$$

Finalement,  $\forall i \in Agents, \forall v \in \{1, \dots, n\}, \forall (a_1, \dots, a_{n-2}) \in A_n^{n-2}$  $\exists$  a unique  $a_n \in \{1, \dots, n\} : Vainqueur((a_1, \dots, a_{n-2}, v, a_n)) = i$ 

99 / 152

# Algo #2 : Tirage au sort parmi c entre n sites (1/2)

## Solution triviale : $2 * n^2$ messages

- On fait une première phase pour connaître les compétiteurs
- On renumérote les compétiteurs et on applique l'algo #1

Défi : résoudre algo #2 au même coût qu'algo #1

### Inchangé

Pour Card(Agents) = n, on dispose de Code bijection de Agents  $\mapsto [1, n]$ 

# 1<sup>ères</sup> Modifications

Choix =  $\{0\} \cup \{1, ..., n!\}$  (n! discuté plus tard)

Ajout de la valeur 0 pour les non compétiteurs

### Déterminaison des Compétiteurs

On note toujours EV, l'ensemble des valeurs échangées

Competiteurs =  $\{A \in Agents : v_A \neq 0\}$ 

On note c = Card(Competiteurs)

# Algo #2 : Tirage au sort parmi c entre n sites (2/2)

### Déterminaison du vainqueur

 $Vainqueur: \{1, \ldots, n!\}^n \mapsto Competiteurs$ 

$$w((a_1, \cdots, a_n)) = 1 + [(\sum_{j=1}^{j=n} a_j) \mod (c)]$$

 $Vainqueur((a_1, \dots, a_n)) = C \text{ iff } \mathbf{Ecode}(\mathbf{C}) = w((a_1, \dots, a_n))$ 

Où *Ecode* : *Competiteurs*  $\mapsto$   $\{1, \dots c\}$ 

 $Ecode(C) = Code(C) - Card(\{P \in Passif : Code(P) < Code(C)\})$ 

# Exemple avec 5 sites dont 3 compétiteurs seulement $EV = <0, 2, 3, 0, 1> \&w=1+(6 \mod 3)=1$

| Agents      | A1  | A2  | A3  | A4  | A5  |
|-------------|-----|-----|-----|-----|-----|
| Code        | 1   | 2   | 3   | 4   | 5   |
| Values      | 0   | 2   | 3   | 0   | 1   |
| Compétiteur | non | oui | oui | non | oui |
| Ecode       | /   | 1   | 2   | /   | 3   |

oui

101 / 152

# Algo #2 : Eléments de preuve

### Propriété d'Equiprobabilité forte

 $Competiteurs = \{c_1, \cdots, c_c\}$  Card(Competiteurs) = c

On note P(Competiteurs, I, V), la probabilité pour que I gagne avec la valeur  $V \in \{1, \cdots, n!\}$ 

 $P(Competiteurs, I, V) = 1/(n! \times c)$ 

#### Choix de n!

Vainqueur

On va compter le nombre d'éléments de  $C_{\uparrow < Competiteurs>}$  de deux façons

- (1)  $Card(C_{\uparrow < Competiteurs>}) = c \times Card(C_{\uparrow < Competiteurs>}(c_i))$  (A cause de la Pté d'équiprobabilité faible)
- (2)  $Card(C_{\uparrow < Competiteurs >}) = B^c \quad (B = Card(Choix))$
- (1) & (2)  $\Rightarrow$   $B^c = c \times Card(C_{\uparrow < Competiteurs >}(c_i))$  ie  $B^c$  doit être un <u>multiple</u> de c pour chaque  $c \in \{1, \dots, n\}$  d'où Card(B) = n! (ou plus généralement Ppcm(1, ..n))

# Algo #3 : Obtention d'un Ordre Total entre les compétiteurs (1/2)

#### Solution triviale

Appliquer 1 fois Algo #2 puis c fois Algo #1 où c est le nombre de compétiteurs

Coût factoriel

#### Solution retenue

### Itérer l'élection avec les mêmes messages échangés

Le premier site dans l'ordre est le site vainqueur (au sens de algo #2) Après cela, les autres compétiteurs le considèrent comme passif. Un nouveau vainqueur est déterminé avec les valeurs restantes pour obtenir le second dans l'odre, etc ...

Coût - en terme de communication - inchangé wrt Algo #2

103 / 152

# Algo #3 : Ordre Total entre les compétiteurs (2/2)

### Principe sur un exemple ....

| Agents         | A1 | A2 | A3 | A4 | A5 |
|----------------|----|----|----|----|----|
| Valeurs        | 0  | 2  | 3  | 0  | 3  |
| $f_2(Valeurs)$ | 0  | 2  | 3  | 0  | 0  |
| $f_3(Valeurs)$ | 0  | 2  | 0  | 0  | 0  |

Ordre associé : A5 < A3 < A2

### ... ou plus formellement

$$B(1) = S_i \text{ ssi } w(v_1, v_2, \cdots, v_n) = Ecode(S_i)$$

$$B(k) = S_i \text{ ssi } w(f_k(v_1), f_k(v_2), \cdots, f_k(v_n)) = Ecode(S_i)$$

où les  $f_k$   $(2 \le k \le c)$  sont définis comme suit :

$$f_k(v_i) = 0$$
 ssi  $v_i = 0$  ou  $\exists p < k$  tel que  $B(p) = S_i$ 

$$f_k(v_i) = v_i \text{ sinon}$$

### Propriétés

B est bijective

On définit  $<_b$  par  $X <_b Y$  ssi b(X) < b(Y)

 $<_b$  est un ordre total strict sur *Competiteurs* 

04 / 152

# Gestion des Donnés Dupliquées

### Données dupliquées

Sites  $S_1$   $S_2$  ...  $S_n$ Donnée D  $D_1$   $D_2$  ...  $D_n$ 

### Objectif

Améliorer les performances en lecture (//)

la résistance aux défaillances

Prix à payer : Assurer la cohérence mutuelle des copies

### Paradigme des lecteurs/écrivains – 2 Opérations : lire(d), ecrire(d)

 $R_1$ : Toute exécution de ecrire(d) exclut toute autre opération

 $R_2$ : Les exécutions de lire(d) peuvent être simultanées

 $R_3$ : La valeur rendue par lire(d) est la dernière valeur produite par ecrire(d)

A suivre : Différents algorithmes permettant de limiter la complexité (message)

6 / 152

# Algo #1 "Write all, Read one"

#### Principe de base

- Tout site lit sa copie de facon indépendante
- Pour écrire un site doit :
  - (a) demander leur permission à tous les autres.
  - (b) leur communiquer ensuite la nouvelle valeur.

### Propriétés

 $R_1, R_2 \& R_3$  sont trivialement satisfaites.

Interblocage possible (← Horloges de Lamport, Tirage au sort, ...)

### Caractéristiques

Intéressant si

- (1) Lecture/Ecriture est grand
- (2) Peu de défaillances

#### défaillance d'un site :

- au minimum interdit toute écriture
- dans le pire des cas, peut être fatale au système

107 / 152

# Algo #2 : Algorithmes par Vote (consensus) (1/2)

### Principe de base

- Un site pour lire doit obtenir la permisson de R sites
- Un site pour écrire doit obtenir la permisson de W sites. Il les libère aprés l'écriture

### Conditions sur R et W pour assurer $R_1$ et $R_2$

 $C_1: R + W > N \& C_2: 2 \times W > N$ où N est le nombre total de sites

#### Pour assurer $R_3$ : $n^o$ de versions

A chaque copie  $D_i$  de D est associée un n° de version  $S_i : D_i \mapsto NV_i(D_i)$ 

La copie "courante" doit être affectée par le plus grand no

NB : Il peut y avoir plusieurs copies ayant le même no

**Invariant**:  $NV_i(D_i) = NV_j(D_j) \Rightarrow D_i = D_j$ 

108 / 152

# Algo #2 : Algorithme (1/2)

### Principe général

**Lecture :** Un site demande la permission et "leur" valeur à R sites

Il prend en compte la valeur associée au plus grand  $n^o$ 

**Ecriture :** Même chose que pour lecture mais à W sites

Il produit la nouvelle valeur D' et son  $n^o N'$ 

Il communique aux W sites (D', N')

#### Données

Etat d'un agent = idle|frozen|wait

Variable : < NV, D >

Messages : reqLecture, reqEcriture, < NV, D >, Lib(D, NV)

#### Autorisation d'un site

Site idle reçoit une requete (lecture/ecriture) Il renvoie  $\langle NV, D \rangle$  et devient frozen

# Algo #2 : Algorithme (2/2)

#### Libération d'un site

Réception de Lib(D', N')

 $D \leftarrow D'$ ;  $NV \leftarrow N'$ . Le site passe de frozen à idle

### Lire(D): Sur un site $S_i$ , choisir un ensemble L de R sites

 $\forall s \in L$ : envoyer à s requete\_lecture

Attendre les R réponses  $< NV_I, D_I >$ 

Soit  $nv_{max} = Max\{NV_l : l \in L\}$  et D' la donnée associée

 $D \leftarrow D'$ ;  $NV \leftarrow nv_{max}$ 

 $\forall s \in L$  : envoyer  $\mathit{Lib}(\mathit{NV}, D)$  à s

### Ecrire(D): Sur un site $S_i$ , choisir un ensemble E de W sites

 $\forall s \in E$ : envoyer à s requete\_ecriture

Attendre les W réponses  $< NV_I, D_I >$ 

Soit  $nv_{max} = Max\{NV_I : I \in L\}$  et D' la donnée associée

 $D \leftarrow F(D')$ ;  $NV \leftarrow nv_{max} + 1$ 

 $\forall s \in W : \text{envoyer } Lib(D, NV) \text{ à } s$ 

110 / 152

# Algo #2 : Exemple d'Exécution

### "Quorums" fixes : on fixe ici arbitrairement les ensembles $Q_R \ \& \ Q_W$

$$S = \{A, B, C, D\}, N = 4$$

On choisit : W = 3, R = 2

| Sites | А       | В       | С           | D       |
|-------|---------|---------|-------------|---------|
| $Q_R$ | {A,B}   | {B,C}   | {C,D}       | {D,A}   |
| $Q_W$ | {A,B,C} | {B,C,D} | $\{C,D,A\}$ | {D,A,B} |

nb : Chaque site appartient à ses quorums de lecture et d'écriture

→ un message économisé

#### **Etat Initial**

|                | Α | В | С | D |
|----------------|---|---|---|---|
| D              | d | d | d | d |
| n <sup>o</sup> | 0 | 0 | 0 | 0 |

# Algo #2 : Exemple d'exécution (suite)

#### A veut écrire

 $\forall s \in \mathit{Q}_{\mathit{w}}(A)$  : envoyer à s requete\_lecture

Attendre les réponses

 $Resp = \{(B, 0, d), (C, 0, d)\} \cup \{(A, 0, d)\}$ 

 $Max(n^o) := 0; Vc(D) := d$ 

d'; = F(d);  $nv := Max(n^o) + 1$ 

 $\forall s \in Q_w(A)$ : envoyer à s Lib(D, d', nv)

# ... Après réception de Lib par les sites $\in Q_w(A)$ :

|                | Α | В | С | D |
|----------------|---|---|---|---|
| D              | ď | ď | ď | d |
| n <sup>o</sup> | 1 | 1 | 1 | 0 |

#### D veut lire

 $Q_R(D) = \{A, D\}$  D s'adresse à A qui possède la valeur courante .../...

112 / 152

# Algo #2 : Exemples de chronogrammes d'exécution

### Exemple avec 6 sites

On choisit R = 3 & W = 4 nb : chaque site appartient implicitement à ses quorums

#### Quorums

| Site | $Q_R$ | $Q_W$       |
|------|-------|-------------|
| 1    | {2,3} | {2,3,4}     |
| 2    | {1,3} | $\{1,3,4\}$ |
| 3    | {1,2} | {1,2,4}     |
| 4    | {5,6} | {3,5,6}     |
| 5    | {4,6} | {3,4,6}     |
| 6    | {4,5} | {3,4,5}     |

#### Chrono 1

2 lectures en //
1 Lecture + 1 Ecriture demandées en //
Lecture puis Ecriture

#### Chrono 2

2 lectures en //1 Lecture + 1 Ecriture demandées en //Ecriture **puis** Lecture

# Algo #2 : Exécution Chrono #1

(2 lectures en //) (demandes // Lecture et Ecriture) (Lecture puis Ecriture)



114 / 152

# Algo #2 : Exécution Chrono #1

(2 lectures en //) (demandes // Lecture et Ecriture) (Ecriture puis Lecture)



# Algo #2 : Schéma de preuve

#### I Accès Simultanés : R<sub>1</sub> & R<sub>2</sub>

$$\left. \begin{array}{l} C_1: R+W>N \\ C_2: 2\times W>N \end{array} \right\} \Rightarrow R_1 \wedge R_2$$

### Il Cohérence Mutuelle des copies : R<sub>3</sub>

**lemme :** Si  $R \subset S : |R| = r$  et  $W \subset S : |W| = w$ Alors  $R + W > n \Rightarrow R \cap W \neq \emptyset$ 

#### preuve:

- Soit W' le dernier quorum d'écriture Tout site  $s \in W'$  possède la version courante et le n° correct
- Pour lire, un site s'adresse <u>nécessairement</u> à un site ayant appartenu au dernier quorum d'écriture.
  - → Lecture de la valeur courante

Idem pour l'écriture

116 / 152

# Algo #3 : Généralisation Algo #2 via des Quorums

### Vers les quorums

Soient 
$$Q_W: S \mapsto 2^S$$
  $Q_R: S \mapsto 2^S$   $s \mapsto Q_W(s)$   $s \mapsto Q_R(s)$  vérifiant  $\forall s, t \in S \left\{ \begin{array}{l} Q_R(s) \cap Q_W(t) \neq \emptyset \\ Q_W(s) \cap Q_W(t) \neq \emptyset \end{array} \right.$ 

# Algo #3

On remplace dans algo #2:

- R sites par  $Q_R(s)$
- W sites par  $Q_W(s)$

preuve : identique à celle d'algo #2

### Apercu des Quorums

- $Q_R$  et  $Q_W$  sont des **quorums sur** SQuorum :  $Q \subset 2^S$   $tq \ \forall e, f \in Q : (e \not\subset f)$  et  $(f \not\subset e)$
- $Q_W$  est une **côterie**  $\forall e, f \in Q_W : e \cap f \neq \emptyset$
- $Q_R$  et  $Q_W$  sont **complémentaires** :  $\forall e \in Q_W, \forall f \in Q_R : e \cap f \neq \emptyset$

17 / 152

# Quorums à Grille $(\sqrt{n})$ – Maekawa 85

### Exemple de quorums complémentaires dont l'un est une côterie

$$Q_R(A) = Q_R(B) = \{A, B\}$$
  
 $Q_R(C) = Q_R(D) = \{C, D\}$   
 $Q_R(E) = \{E\}$ 

$$Q_W(A) = \{A, B, C, E\}$$
  
 $Q_W(B) = \{A, B, D, E\}$ 

$$Q_W(B) = \{A, B, D, E \}$$
  
 $Q_W(E) = \{A, C, E\}$ 

$$Q_W(C) = \{A, C, D, E\}$$

$$Q_W(D) = \{B, C, D, E\}$$

### Propriété des grilles

### Définition de $Q_W$ & $Q_R$

### Grille

| A | В |
|---|---|
| С | D |
| E | Ε |

Definition de  $Q_W \propto Q_R$ 

Site 
$$s \mapsto \left\{ egin{array}{l} Q_R(s) = \mathit{ligne}(s) \ Q_W(s) = \mathit{ligne}(s) \cup \mathit{colonne}(s) \end{array} 
ight.$$

**propriété**:  $\forall s, t : ligne(s) \cap colonne(t) \neq \emptyset$ 

**corollaires** :  $\forall s, t$  :

$$Q_R(s) \cap Q_W(t) \neq \emptyset$$

(complémentarité de  $Q_R$  et  $Q_W$ )

 $Q_W(s) \cap Q_W(t) \neq \emptyset$  ( $Q_W$  est une côterie)

118 / 152

# Quorums (suite)

### Retrouver les protocoles associés aux grilles représentées

A B C D E

A B C D

## Côterie engendrée par un plan projectif



Côterie associée

 $Q_1 = \{1, 2, 4\}$ 

 $Q_2$  {2, 6, 7}

 $Q_3$  {3, 6, 4}

 $Q_4 = \{4, 5, 7\}$ 

 $Q_5 \quad \{5,2,3\}$ 

 $Q_6 \quad \{6,1,5\}$ 

 $Q_7$  {7, 1, 3}

# Fragmentation & Duplication

### Cas général

- 1 Donnée D et n sites de stockages  $S_1, S_2, \ldots S_n$ 
  - Partition de  $D = D_1 \bigoplus D_2 \ldots \bigoplus D_c$  ( c fragments de D)
  - Chaque fragment est dupliqué sur certains sites

#### Matrice de Distribution

- c : nombre de fragments & n : nombre de sites
- $D[1 \dots c, 1 \dots n] : \{0, 1\}$
- D(i,j) = 1 ssi le fragment i est stocké sur le site j

#### Difficultés

Celles de la duplication

+ reconstitution de la donnée avec des fragments cohérents

NB : La matrice de distribution est une donnée globale "inconnue"

121 / 152

# Fragmentation & Duplication Symétrique

### Conditions symétriques

- Fragmentation :  $|D| = c \times |D_i| \quad \forall i \in \{1, \dots c\}$
- Duplication :  $RD_1$  &  $RD_2$

 $RD_1$ : Chaque fragment est stocké sur s sites

(distribution égale pour chaque fragment)

RD<sub>2</sub>: Chaque site stocke le même nombre de fragments (charge équilibrée entre les différents sites)

### Conséquences de la symétrie

•  $RD_1$  &  $RD_2 \Leftrightarrow MD_1$  &  $MD_2$ 

 $MD_1: \forall j: \Sigma_{i\in\{1,\ldots,c\}}D(I,J)=m$ 

Tout site stocke *m* fragments

 $MD_2: \forall i: \Sigma_{j \in \{1, \dots n\}} D(I, J) = s$ 

Tout fragment est stocké sur s sites

122 / 152

# Exemples de Fragmentation/Duplication symétrique

### Rappel

s = nombre de sites de stockage pour un fragment m = nombre total de fragments par site

# 1er Exemple : 3 sites & 3 fragments

|                         | $S_1$ | $S_2$ | $S_3$ |  |  |
|-------------------------|-------|-------|-------|--|--|
| $\overline{D_1}$        | 0     | 1     | 1     |  |  |
| $\overline{D_2}$        | 1     | 0     | 1     |  |  |
| $\overline{D_3}$        | 1     | 1     | 0     |  |  |
| $\rightarrow s = m = 2$ |       |       |       |  |  |

# Sd Exemple : 6 sites & 4 fragments

|                  | $S_1$                     | $S_2$ | <i>S</i> <sub>3</sub> | $S_4$ | $S_5$ | $ S_6 $ |
|------------------|---------------------------|-------|-----------------------|-------|-------|---------|
| $\overline{D_1}$ | 1                         | 0     | 1                     | 0     | 1     | 0       |
| $\overline{D_2}$ | 1                         | 0     | 0                     | 1     | 0     | 1       |
| $\overline{D_3}$ | 0                         | 1     | 1                     | 0     | 0     | 1       |
| $\overline{D_4}$ | 0                         | 1     | 0                     | 1     | 1     | 0       |
| -                | $\rightarrow s=3$ & $m=2$ |       |                       |       |       |         |

#### Remarques

Si c = s = m = n Alors chaque site stocke tous les fragments (inutile) Si c = n et s = m = 1 Alors Fragmentation (pure)

123 / 152

# Fragmentation & Duplication Symétrique (suite)

### Contraintes sur (n, c, m, s) liées à la Symétrie

- $\mapsto$  Compter (*NF*) le nombre total de fragments dans le système c fragments, chaque fragment est sur s sites  $\mapsto$   $NF = c \times s$  n sites et chaque site stocke m fragments  $\mapsto$   $NF = n \times m$ 
  - $\mapsto$  Symétrie possible ssi  $c \times s = n \times m$

### Retour sur les exemples précédents

1er :  $(2 \times 3 = 3 \times 2)$  & Sd :  $(4 \times 3 = 6 \times 2)$ 

## 3<sup>ème</sup> Exemple : 3 sites & 4 fragments

Trouver (les plus petits) m et s tels que  $4 \times s = 3 \times m$ 

$$\mapsto s = 3$$
 et  $m = 4$ 

 $S_2$  $S_1$  $S_3$ 1  $D_1$ 1 1  $D_2$ 1 1 1  $\mapsto$  $D_3$ 1 1 1 1 1 1  $D_4$ 

### **Duplication Pure**

# Intérêt de la Symétrie : Facteur de Reconstitution

#### **Egalitaire**

Chaque site participe de facon égale au stockage

Chaque fragment à le même nombre de "stockeurs"

#### Facteur de Reconstitution (FR)

**Définition :** FR correspond au nombre **minimal** de sites qu'il faut interroger pour reconstituer dans le **pire des cas** la donnée initiale

Symétrie **permet** une expression **analytique** de FR : FR = (n - s) + 1

#### Preuve

Fragment  $f_1$ ,  $Stock(f_1)$  les s sites de stockage de  $f_1$   $U = Sites \setminus Stock(f_1)$ On a |U| = n - s et U ne permet pas d'obtenir  $f_1$ 

2 FR = (n - s) + 1lemme: Si  $A \subset E$  et  $B \subset E$  Alors  $|A| + |B| > |E| \Rightarrow A \cap B \neq \emptyset$ Soit U: |U| = (n - s) + 1 on a  $U \cap Stock(f) \neq \emptyset$   $\forall$  fragment f

125 / 152

# Protocole Associé: Aggrawal et El Abbaddi (1990)

## Lire(x)

- 1) Obtenir les fragments et les numéros de versions de R sites
- 2) Soit vmax le plus grand numéro de version
- 3) Parmi les R sites du quorum, extraire les fragments issus de FR d'entre-eux estampillés par vmax
- 4) Reconstituer x et 5) Libérer le quorum

### Ecrire(x)

- 1) Obtenir les fragments et les numéros de versions de W sites
- 2) Soit *vmax* le plus grand numéro de version
- 3) Parmi les W sites du quorum, extraire les fragments issus de FR d'entre-eux estampillés par vmax
- 4) Reconstituer x, calculez Nx (NV = vmax + 1)
- 5) Fragmenter Nx et envoyer à tout site du quorum "son" fragment et le NV

#### Conditions sur W et R:

 $C_1: FR \leq R \leq n \& FR \leq W \leq n$ 

 $C_2: W+W>n$ 

 $C_3: n + FR < R + W < 2n$ 

126 / 152

# Exemple d'exécution (1/3)

### Configuration

6 sites, 4 fragments – Chaque fragment est stocké sur 3 sites (s=3) FR = (6-3)+1=4, On prend R=5, W=5

|                  | $S_1$     | $S_2$                   | $S_3$                   | $S_4$     | $S_5$     | $S_6$                   |
|------------------|-----------|-------------------------|-------------------------|-----------|-----------|-------------------------|
| $D_1$            | $d_1  0$  |                         | $d_1 \ 0$               |           | $d_1  0$  |                         |
| $\overline{D_2}$ | $d_2 \ 0$ |                         |                         | $d_2 \ 0$ |           | <i>d</i> <sub>2</sub> 0 |
| $D_3$            |           | <i>d</i> <sub>3</sub> 0 | <i>d</i> <sub>3</sub> 0 |           |           | <i>d</i> <sub>3</sub> 0 |
| $D_4$            |           | d <sub>4</sub> 0        |                         | $d_4 \ 0$ | $d_4 \ 0$ |                         |

### Ecriture de $S_2$ : Interrogation de $Q_W(S_2) = S_1, \dots S_5$ )

 $(S_1, (d_1, 0), (d_2, 0))$  Vmax = 0

 $(S_2,(d_3,0),(d_4,0)) D=d_1\bigoplus d_2\bigoplus d_3\bigoplus d_4$ 

 $S_2$ ?  $(S_3, (d_1, 0), (d_3, 0))$  D' = F(D)

 $(S_4,(d_2,0),(d_4,0))$   $D'=d_1' \oplus d_2' \oplus d_3' \oplus d_4'$ 

 $(S_5, (d_1, 0), (d_4, 0))$  NV = 1

127 / 152

# Exemple d'exécution (2/3)

# Ecriture de $S_2$ (suite) : libération de $Q_W(S_2)$

 $S_1:((d_1',1),(d_2',1))$ 

 $S_2:((d_3',1),(d_4',1))$ 

 $S_2!$   $S_3: ((d'_1,1),(d'_3,1))$ 

 $S_4:((d_2',1),(d_4',1))$ 

 $S_5:((d_1',1),(d_4',1))$ 

# Mise à jour après libération du quorum

|                  | $S_1$    | $S_2$    | $S_3$    | $S_4$    | $S_5$    | $S_6$                   |
|------------------|----------|----------|----------|----------|----------|-------------------------|
| $D_1$            | $d_1'$ 1 |          | $d_1'$ 1 |          | $d_1'$ 1 |                         |
| $D_2$            | $d_2' 1$ |          |          | $d_2' 1$ |          | $d_2 \ 0$               |
| $\overline{D_3}$ |          | d'_3 1   | $d_3' 1$ |          |          | <i>d</i> <sub>3</sub> 0 |
| $D_4$            |          | $d_4'$ 1 |          | $d_4'$ 1 | $d_4'$ 1 |                         |

# Exemple d'exécution (3/3)

## Lecture par $S_6$ $(S_2 \dots S_6)$

### Après lecture par $S_6$

|       | $S_1$    | $S_2$    | $S_3$    | $S_4$    | $S_5$    | $S_6$    |
|-------|----------|----------|----------|----------|----------|----------|
| $D_1$ | $d_1'$ 1 |          | $d_1'$ 1 |          | $d_1'$ 1 |          |
| $D_2$ | $d_2' 1$ |          |          | $d_2' 1$ |          | $d_2' 1$ |
| $D_3$ |          | $d_3' 1$ | $d_3' 1$ |          |          | $d_3' 1$ |
| $D_4$ |          | $d_4' 1$ |          | $d_4'$ 1 | $d_4' 1$ |          |

129 / 152

# Schéma de preuve

### Rappel des conditions sur W et R:

 $C_1: FR \leq R \leq n \& FR \leq W \leq n$ 

 $C_2: W + W > n$ 

 $C_3: n+FR \leq R+W \leq 2n$ 

#### preuve

•  $C_1 \mapsto$  Tout quorum de lecture (d'écriture) est **suffisamment grand** pour récupérer **chaque fragment** de la donnée

(!! pas nécessairement le plus récent)

- C<sub>2</sub> → Pas d'écritures simultanées
- $C_{3-}a \mapsto W + R > n$  Lecture et Ecriture sont exclusives
- $C_{3-}b \mapsto W + R \ge n + FR \Rightarrow |W \cap R| \ge FR$ Tout quorun de lecture **intersecte** tout quorum d'écriture sur au moins FR sites
- C₁ et C₃-b → Tout quorum (lecture ou écriture) permet de récupérer l'exemplaire le plus récent de chaque fragment de la donnée

# Exclusion Mutuelle Répartie : taxinomie des algorithmes (M. Raynal 1988)

#### Rappel: Problèmes à résoudre (cf L. Lamport)

Safety: Au plus une CS en cours

Liveness : Tout agent en attente de CS y accèdera en un temps fini.

# Taxinomie des algorithmes d'Exclusion Mutuelle

Algorithmes à base de Jetons (Le Lann 1977)

2 Algorithmes à base de Permissions (Lamport 1978)

#### Remarques sur l'exclusion mutuelle

 Problématique déja rencontrée dans les algos de gestion des données dupliquées et illustration des horloges de Lamport.

Algos déja vus sont à base de permission

≠ variantes en vue de minimiser le nombre de messages

Un des pbs les plus étudiés de l'algorithmique répartie.
 Pas forcément le moins intéressant.

132 / 152

# Algorithmes à base de jeton

### Principe : Droit d'accès en SC est matérialisé par un "Jeton"

Unicité du Jeton ⇔ Exclusion Mutuelle

(safety)

(liveness)

- Accès Equitable au Jeton 

  ⇔ Absence de Famine
  - Mouvement Perpétuel (Jeton bouge spontanément ex :anneaux)
  - 2 Mouvement à la demande (Jeton ne bouge que s'il est demandé) Focus sur Naimi-Trehel 87 Arbre Reconfigurable dynamiquement

### Algo hybride hors classe:

#### Exclusion Mutuelle Centralisée

Jeton (token-asking)

Permission (1 site possède toutes les suffrages)

# Anneau à Jeton Circulant (Token Ring)

#### Le pour et le contre

#### Pour:

- Simplicité
   (simplicité "relative" of tp Systèmes concurrents semestre suivant)
- Taille des messages (0)
- Nombre de Messages (0 ?)
- Panne d'un site "facilement" récupérable

#### Contre:

- Communication Permanente (liée à la circulation du jeton)
- Tous les sites participent même ceux inactifs (intérêt de Naimi-Trehel vu un peu plus loin)
- Temps minimum entre deux C.S consécutives indépendant de l'activité dépend des positions respectives des sites

134 / 152

# Algorithmes à Base de Permissions : rappels

### Principe général (safety)

- Site : oisif, attente, section critique
  - Un site oisif envoie une requête (signée) "aux autres" et passe en attente
  - Un site oisif recevant une requête répond ok et reste oisif
  - Verdict : Si toutes les réponses sont ok -> entrée en SC
     Sinon Conflit et Inter-blocage

### Résolution des conflits (liveness)

nb : solution simple si tous les sites en conflit se connaissent

- Déterminer un ordre sur l'ensemble des sites en conflit
  - Statique (basé sur l'identité des sites)
  - Dynamique (basé sur l'exécution du système)
     cf compteurs de requêtes, Horloges de Lamport
  - Aléatoire (cf tirage au sort)
- Résolution basée sur l'ordre obtenu :  $1^{er}$  dans l'ordre passe en CS ; lorsqu'il sort, il prévient le second dans l'ordre .... etc
  - → Résolution Inter-blocage + Famine

# Algorithmes à Base de Permissions : Panorama

#### Algorithmes

Classiques: Lamport 78, Ricart & Aggrawala 81

Evolutions: Votes (85), Quorums (85.....)

↓ Nombre de Messages

↑ Résolution Inter-blocage & Famine

(Maekawa 85) Complexité  $c \times \sqrt{n}$  messages où  $3 \le c \le 5$ 

& Horloges non bornées

#### Qualités

• Nombre de Messages :  $c \times \sqrt{n}$  à  $2 \times n$ Taille des messages : bornée ou non bornée Simplicité : dépend de la résolution des conflits

- Temps minimum entre deux C.S consécutives :
  - dépend du nombre de messages et de la résolution les conflits
  - indépendant de la position dans la topologie

136 / 152

# Algorithme de Trehel-Naimi (1987) :

Taxinomie : Algo à base de demande de Jeton

### Principe Général

- Arborescence dynamique des sites
- La racine possède le privilège (jeton)
- La position de racine est temporaire
- Chaque site connaît son prédécesseur dans l'arbre (dernier)
- Une demande d'un site  $S_i$  va transiter (via la relation dernier) jusqu'à la **racine** de l'arbre
- L'arbre évolue au fur et à mesure des demandes d'entrée en CS;
- Les sites inactifs se retrouvent progressivement en position de feuille

#### Intérêt de Naimi-Trehel

Résolution Conjointe : Exclusion Mutuelle + Famine

Complexité *moyenne* en log(n)

# Description de l'algorithme de Trehel-Naimi

#### Contexte d'un site

#### Etat d'un site :

Application: oisif, attente, CS (mutuellement exclusifs)

Gestion de l'Arbre : privilege, dernier(\_autre)

(\_autre = *nil* si le site est une racine)

**Communication :** Chaque site a deux files de communication : req

et ack

Sur req réception des requêtes (requêtes "signées")

Sur ack réception de l'autorisation

# Conditions Initiales : Sites $=(S_i)$ $i \in [1..n]$

Tous les sites sont dans l'état oisif

 $S_1$  est la racine initiale

 $S_i \neq S_1 \rightarrow dernier(S_1)$  est vrai, privilège est faux

Pour  $S_1$ , privilège est vrai, dernier(nil) est vrai

 $\mapsto$  Configuration d'étoile centrée en  $S_1$ 

138 / 152

# Description de l'algorithme de Trehel-Naimi : Comportement d'un site (1/2)

# Emission d'une Requête

Un site oisif

n'étant pas la racine (dernier(@ref))

envoie sa requête à son père (@ref)

passe en état d'attente et positionne dernier à nil.

- Il se considère ainsi comme la prochaine racine!

### Entrée en C.S

Un site en attente recevant un message ok entre en CS

#### Sortie de C.S

Un site en CS quitte la CS retourne à l'état oisif Il positionne privilege à vrai

# Description de l'algorithme de Trehel-Naimi : Comportement d'un site (2/2)

### Transit d'une requête via un noeud intermédiaire

Un site oisif ayant pour père Qref (dernier(Qref)) recevant la requête du site i, transmet cette requête à son père (Qref) il reste oisif mais positionne dernier à i

le site de transit "sait" que le site demandeur deviendra la racine;
 il change de père au profit de la prochaine racine

### Réception d'une requête par la racine

La racine (dernier(nil)), oisive recevant la requête du site *i* lui renvoie le message ok reste oisif et positionne dernier à *i* (change de père)

#### Entrée en C.S de la racine

La racine (dernier(nil)) oisive "n'étant pas soumise à une requête " entre en CS

140 / 152

# Description de l'algorithme de Trehel-Naimi : Exemples d'exécution (1/3)

#### Etat initial $S_1$ $S_2$ $S_3$ $S_4$ $S_5$ $S_1$ $S_1$ $S_1$ $S_1$ Dernier nil F F F F **Privilege** V Etat oisif oisif oisif oisif oisif Rea $\emptyset$ $\emptyset$ $\emptyset$ $\emptyset$ $\emptyset$ $\emptyset$ $\emptyset$ Ack



# Description de l'algorithme de Trehel-Naimi : Exemples d'exécution (2/3)

#### Réception par $S_1$ & Envoi d'un ack $S_1$ $S_2$ Dernier $S_2$ nil F Privilege F Etat Oisif Attente Ø Req $\emptyset$ Ack $\emptyset$ [ok]

| Réception | du ack                            | et pas | sage en CS               |
|-----------|-----------------------------------|--------|--------------------------|
|           | $S_1$ $S_2$ $F$ Oisif $\emptyset$ |        | \$3<br>\$1<br>\$4<br>\$5 |

142 / 152

# Description de l'algorithme de Trehel-Naimi : Exemples d'exécution (3/3)



### Quid de la complexité?

Log(n) en moyenne / n dans le pire des cas voir exemple illustratif à la suite

**Variante** Arbre "Equilibré" Helary-Raynal (94) Log(n) "AVL" distribué : la topologie est nettement moins dynamique!

# Modification de la topologie : Illustration du pire cas (1/2)



144 / 152

# Modification de la topologie : Illustration du pire cas (2/2)

Requête de  $S_4$  et Accès en CS



# Exclusion Mutuelle : bilan comparatif

### Complexité

| n     | Ricart & Agrawala | Maekawa     | Trehel |
|-------|-------------------|-------------|--------|
|       | $2 \times (n-1)$  | $3\sqrt{n}$ | Log(n) |
| 100   | 198               | 30          | 5,2    |
| 1000  | 1998              | 93          | 7,5    |
| 10000 | 19998             | 300         | 9.8    |

### Vivacité (absence de Famine)

| Ricart & Agrawala | Maekawa            | Trehel  |
|-------------------|--------------------|---------|
| Compteurs         | Horloges (Lamport) | Intégré |
| (bornés)          | Non-Bornées        |         |

146 / 152

# Rapide bilan

### Quelques Outils Génériques

- Temps causal,
- Phases,
- Vagues,
- Consensus, Quorums, Systèmes de votes, ...

### Quelques problèmes classiques

- Election (Tirage au sort),
- Exclusion mutuelle,
- Gestion des Données Distribuées,
- Calcul d'arbre couvrant
- Calcul de tables de routages
- Détection de la Terminaison
- Diffusion causale
- Etat Global Réparti, ...

# **Bibliographie**

Computer Networks A.S Tannenbaum – Prentice Hall

Elements of Distributed Algorithms:

Modeling and analysis with Petri Nets

W. Reisig – Springer

Concurrent Programming : Algorithms, Principles and Foundations

M. RAYNAL - Springer

Distributed Algorithms for Message-Passing Systems

M. RAYNAL - Springer

Communication et le temps dans les réseaux et les systèmes répartis Synchronisation et état global dans les systèmes répartis

Gestion des données réparties : problémes et protocoles

M. RAYNAL - Collection E.D.F, Eyrolles - 1992

149 / 152

# Table des Matières

| 1 | Intro | oduction                                           |
|---|-------|----------------------------------------------------|
|   | 0     | Terminologie, Exemples                             |
|   | 2     | Le Contrôle : centralisé Vs réparti                |
|   | 3     | Propriétés attendues dans un Système Réparti       |
|   | 4     | Qualité d'un algorithme réparti                    |
|   | 6     | Panorama du cours13                                |
| 2 | Tem   | ps Causal (L. Lamport)                             |
|   | 1     | Motivation                                         |
|   | 2     | Causalité                                          |
|   | 3     | Horloges de Lamport                                |
|   |       | Application à la résolution distribuée de conflits |
|   | 4     | Hologes vectorielles (Fidge & Mattern (88/89)      |
|   |       | Application de F&M                                 |
| 3 | Syn   | chronisation par Phases33                          |
|   | 0     | Algorithmes à phases                               |
|   | 2     | Calcul phasé de tables de routages optimaux        |
|   | 3     | Algorithme de Calcul des Tables de routages        |
|   | 4     | Schéma Général                                     |

# Table des Matières

| 4 | Synchronisation par Vagues                                                      |
|---|---------------------------------------------------------------------------------|
|   | <ul> <li>Construction répartie d'arbres couvrants</li> </ul>                    |
|   | Algorithme de construction d'arbre couvrant                                     |
|   | Semples d'Exécution                                                             |
|   | <ul> <li>Schémas généraux d'algorithmes à vagues</li> </ul>                     |
|   | Exercice : Calcul des tables de routages optimaux dans une                      |
|   | arborescence couvrante                                                          |
| 5 | Terminaison Répartie                                                            |
|   | Description du problème                                                         |
|   | Principe de la solution par "Vagues"                                            |
|   | Schéma d'algorithme                                                             |
|   | Exécutions                                                                      |
| 6 | Tirage au Sort Réparti                                                          |
|   | <ul><li>Introduction</li></ul>                                                  |
|   | ② Algo $\#1$ : Tirage au sort d'un vainquer entre $n$ compétiteurs              |
|   | 3 Algo $\#2$ : Tirage au sort parmi $c$ entre $n$ sites                         |
|   | <ul> <li>Algo #3 : Obtention d'un ordre total entre les compétiteurs</li> </ul> |

151 / 152

# Table des Matières

| 7        | Gestion des Donnés Dupliquées                                            |
|----------|--------------------------------------------------------------------------|
|          | <ul> <li>Paradigme des lecteurs/écrivains</li> </ul>                     |
|          | Protocole de Base : "Write all, Read one"                                |
|          | 3 Algorithmes par Vote (consensus)                                       |
|          | • Généralisation par des Quorums                                         |
| 8        | Fragmentation & Duplication                                              |
|          | <ul><li>Fragmentation &amp; Duplication Symétrique</li></ul>             |
|          | Protocole Associé : Aggrawal et El Abbaddi (1990)                        |
| 9        | Exclusion Mutuelle Répartie : taxinomie des algorithmes 130              |
|          | <ul><li>Algorithme à base de Jeton</li></ul>                             |
|          | Anneau à Jeton Circulant (Token Ring)                                    |
|          | 4 Algorithmes à Base de Permissions                                      |
|          | <ul><li>Algorithme de Trehel-Naimi (1987) : Jeton à la demande</li></ul> |
| <b>1</b> | Epilogue                                                                 |
|          | Onclusion                                                                |
|          | 2 Bibliographie                                                          |
|          | 3 Table des Matières                                                     |