Large Memory Layers with Product Keys

Дарья Ничвидюк

HSE

12 марта 2020 г.

Outline

Основные моменты

Standard key-value memory layer

Product Key

Product Key - описание метода

Multi-head Attention

Формула суммарной сложности вычисления слоя

Перплексия

Результаты

Ablation Study

Заключение

Вопросы

Основные моменты

- lacktriangle Определяем функцию $m:\mathbb{R}^d \to \mathbb{R}^m$, она ведет себя как слой в нейронной сети и увеличиваеt ее capacity.
- Небольшие вычислительные затраты, как на трейне, так и на тесте; масштабирование до очень больших размеров при сохранении точного поиска по пространству ключей.
- Product-key ускоряет процесс за счет значительного сокращения пространства поиска.

Standard key-value memory layer $(m: \mathbb{R}^d \to \mathbb{R}^m)$

Рис. 1: x – вход нейронного слоя, который преобразуется сетью в запрос q, который сравнивается со всеми ключами из |K|. Ответом является взвешенная сумма значений, соответствующих самым похожим ключам.

Standard Key

$$I=T_k\left(q(x)^Tk_i
ight)$$
 — Найдем k ближайших соседей $w=\left(q(x^Tk_i)_{i\in I}
ight)$ — Нормализуем топ k $m(x)=\sum_{i\in I}w_iv_i$ — Агрегируем выбранные значения

Иллюстрация для Product Key

Рис. 2: Поделим запрос q пополам на q_1 и q_2 . Найдем для них по k ближайших соседей в каждом множестве подключей. Два множества правых и левых подключей индуцируют все множество ключей |K| внешней памяти. k ближайших соседей запроса q гарантировано попадут в $k \times k$ ключей-кандидатов на ответ.

Product Key

- ▶ C_1 и C_2 множества подключей. Размерность каждого подключа $d_a/2$.
- ▶ Внешнее произведение с конкатенацией C_1 и C_2 это:

$$K = \{(c_1, c_2) | c \in C_1, c_2 \in C_2\}$$

- ightharpoonup Найдем k ближайших соседей для q_1 в C_1 как I_{C_1} и q_2 в C_2 как I_{C_2}
- ▶ В множество $\{(c_{1,i},c_{2,j})|c\in I_{C_1},c_2\in I_{C_2}\}$ гарантировано попадут k самых похожих ключей из K.

Multi-head Attention

- Multi-head Attention делает модель более выразительной.
 Увеличивается использование ключа и повышает производительность.
- Н голов, у каждой есть свой собственный запрос и собственный набор подключей, но с одинаковыми значениями.
- Итоговый ответ –просто сумма

$$m(x) = \sum_{i=1}^{H} m_i(x)$$

- ightharpoonup Отличие от стандартного внимания с несколькими головами: ввод (запрос) не разбит на H голов, вместо этого создается H запросов
- На практике: разные головы обращаются к очень разным ключам и очень разным значениям памяти

Формула суммарной сложности вычисления слоя

Для памяти с K ключами (размера |K|) и d_q – длины скрытого представления (длина вектора на выходе нейронной сети):

- ► Стандартный key-value memory layer:
 - ightharpoonup Каждое вычисление занимает d_q операций
 - $ightharpoonup O(|K| \times d_q)$
- Product-key memory layer:
 - $|C_1| = |C_2| = \sqrt{|K|}$
 - ▶ Поиск $k \times k$ возможных ответов в подмножествах: $2 \times O(\sqrt{|K|} \times d_a/2) = O(\sqrt{|K|} \times d_a)$
 - lacktriangle Поиск лучших среди k imes k возможных ответов: $O(k^2 imes d_q)$
- ▶ Суммарная сложность

$$O\left(\left(\sqrt{|K|}+k^2\right)\times d_q\right)$$

Перплексия

Метрика качества модели в этой статье – Перплексия (чем меньше – тем лучше)

$$PP(S) = \mathbf{P}(w_1 w_2 \dots w_N)^{-\frac{1}{N}} = \prod_{i=1}^{N} \frac{1}{p(w_i | w_1 w_2 \dots w_{i-1})}^{-\frac{1}{N}}$$

Результаты

Ablation Study

- Главным фактором для скорости является количество значений доступной памяти, которое определяется количеством голов памяти h и параметром k, а HE размером памяти.
- Batch-normalization запросов помогает.
- Может быть сложно подобрать место для вставки слоя памяти. Худшая позиция находится на первом слое, сразу после входа; вставлять прямо перед выводом softmax тоже не очень. Лучшая позиция для вставки - промежуточный слой.
- Увеличение h и/или k помогает достичь лучшей производительности и лучшего использования памяти, но есть компромисс между скоростью и производительностью. h=4 и k=32 на практике получается хорошо.
- Лучше, чем стандартных ключей по всех аспектам.

Заключение

12-слойный Трансформер с Product Key Memory превосходит 24-слойный Трансформер и в 2 раза быстрее.

Вопросы

- 1. В чем идея трюка Product Key?
- 2. Для каких задач авторы предлагают использовать PKM слои (Product Key Memory Layers)? Приведите примеры.
- 3. Приведите формулу суммарной сложности вычисления слоя. Поясните все обозначения.