

BUNDESREPUBLIK
DEUTSCHLAND

OffenlegungsschriftDE 102 43 413 A 1

(5) Int. Cl.⁷: **G 03 F 7/00** B 44 F 1/12

DE 102 43 413 A

DEUTSCHES PATENT- UND MARKENAMT ② Aktenzeichen:② Anmeldetag:④ Offenlegungstag:

102 43 413.1 18. 9. 2002 24. 12. 2003

Innere Priorität:

102 26 112, 1 12, 06, 2002

(7) Anmelder:

Giesecke & Devrient GmbH, 81677 München, DE

② Erfinder:

Kaule, Wittich, Dr., 82275 Emmering, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

(A) Verfahren zur Herstellung von Gitterbildern

Die Erfindung betrifft ein Verfahren zum Erzeugen eines Gittebildes, das wenigstens ein mit bloßem Auge erkennbares Gitterfeld aufweist, in welchem Gitterelemente angeordnet sind, die mittels einer Schreibvorrichtung erzeugt werden. In einem ersten Verfahrensschrift wird wenigstens ein Gitterelement bestimmt, das vollständig innerhalb eines Arbeitsfeldes liegt. Anschließend wird eine Abforge von Arbeitsfeldern Setzleget, in denen die Gitterelemente mittels der Schreibvorrichtung erzeugt werden seinen. Schließlich werden die Arbeitsfelderd netzuch betalte der den die Schreibvorrichtung angelanden die Gitterelemente mit der Schreibvorrichtung innerhalb der jeweiligen Arbeitsfelder in das Substrat eingeschrieben.

Beschreibung

[0001] Die Erfindung betrifft ein Verfahren zum Erzeugen eines Gitterblües mittels einer Scheinbovrichtung, das wenigstens ein mit bloßem Auge erkennbares Gitterfeld aufwetst, in welchen Gitterelement angeordnet sich. Die Erfindung betrifft Ferner eine Vorrichtung zur Vorbereitung und Durchführung dieses Verhahrens sowie ein Gitterbild und ein Sicherheitsdokument mit einem derartigen Gitterbild.

[0002] Optisch variable Elemente, wie Hologramme oder Beugungsgitterbilder werden aufgrund ihrer mit dem Betrachtungswinkel variierenden optischen Eigenschaften häufig als Fälschungs- bzw. Kopierschutz für Wertdokumente, wie Kreditkarten, Banknoten oder dergleichen, aber 15 auch zur Produktsicherung auf beliebigen Produktverpakkungen verwendet. Für die Massenherstellung derartiger Sicherheitselemente ist es üblich, so genannte "Masterstrukturen" herzustellen, welche die jeweiligen Phaseninformationen des optisch variablen Elements in Form einer räumli- 20 chen Reliefstruktur aufweisen. Hierbei handelt es sich üblicherweise um ein Glassubstrat mit einer Photoresistbeschichtung, in der die Beugungsstruktur in Form von Bergen und Tälern konserviert ist. Ausgehend von dieser Masterstruktur werden durch Vervielfältigung und Abformen der 25 Reliefstruktur beliebig geformte Prägewerkzeuge hergestellt, mit deren Hilfe die durch die Reliefstruktur dargestellten Beugungsstrukturen in großer Stückzahl in geeignete Substrate übertragen werden können.

gungsgütters belegten Bildbereichs.
[0004] Die Gütterhorstante entspricht dabei dem Abstand
der Gitterfinien und ist wesentlich für die unter einem bestimmten Berrachtungswinkel erkonnbare Farbe des Bildbereichs im Gitterbild. Der Azimatwinkel beschreibt die Neigung der Gitterfinien bezüglich einer Reiferenzrichtung und
ist für die Sichbarkeit dieser Bildfeder in bestimmten Betrachtungsrichtungen verantwortlich. Das Linierprofil ist
allgemein für die Intensität verantwortlich und spielt bei 45
Gitterbildern aullter Ordnung eine besondere Rolle. Auf der
Grundlage dieser Technik können daber optisch variable
Bilder, z.B. bewegte Bilder oder auch plastisch wirkende
Bilder erzeute werden.

[0005] Die einzelnen Beugungsgitter können dabei entwe- 50 der holographisch oder mittels Elektronenstrahllithographie erzeugt werden. Bei der holographischen Aufzeichnung der Beugungsgitter werden in einem entsprechenden Substrat Lichtstrahlen aus räumlich ausgedehnten, einheitlichen Wellenfeldern überlagert, Hierfür wird üblicherweise Laser- 55 strahlung verwendet. Bei der Elektronenstrahllithographie werden die beugenden Gitterlinien direkt in ein entsprechendes Substrat belichtet, wobei der Belichtungsvorgang auch häufig als Schreibvorgang bezeichnet wird, Als Substrat wird in diesem Verfahren im Allgemeinen eine Glas- 60 platte verwendet, die mit einer für die entsprechende Teilchen- oder Lichtstrahlung empfindlichen Schicht ("Photoresist") beschichtet ist, Für die Belichtung können Substrat und Elektronenstrahl relativ zueinander bewegt werden. Dabei gibt es die Möglichkeit, das Substrat still zu halten und 65 den Elektronenstrahl elektromagnetisch abzulenken. Der Ablenkungsbereich des Elektronenstrahls liegt im Bereich von wenigen Zehntel Millimeter, Bei größeren Ablen-

kungen stören die so genannten "Linsenfehler" der Elektronenoptik, die auch am fertigen Beugungsgitter erkennbar sind. Alternativ kann das Substrat mittels eines x-y-Tisches bewegt werden, während der Elektronenstrahl still gehalten wird. Hierfür ist allerdings eine hoch präzise Tischführung erforderlich.

[0006] Um mithilfe der Elektronenstrahllithographie Gitterbilder der eingangs genannten Art erzeugen zu können. wird das gesamte Gitterbild in eine Vielzahl von kleinen Feldern mit bis zu einigen Zehntel Millimetern Kantenlänge zerlegt. Das Gitterbild wird somit unabhängig vorn dargestellten Motiv in einzelne "Rasterelemente" zerlegt, die mittels des Elektronenstrahls mit Gitterlinien beschriftet werden. Hierbei werden die Gitterlinien in den einzelnen kleinen Feldern über die Ablenkung des Elektronenstrahls eingeschrieben, während die Bewegung von Feld zu Feld durch Tischverschiebung erfolgt. Auf diese Weise können große Flächen beschriftet werden. Diese Art der Elektronenstrahlbelichtung wird im Allgemeinen als "Stitching-Modus" bezeichnet. Diese Vorgehensweise hat jedoch den Nachteil, dass das Bild aus lauter kleinen Flächenstücken zusammengesetzt ist, die bei genauerer Betrachtung visuell erkennbar sind, das Bild vergröbern und zu Farbfehlern führen. Bei größeren Bildflächen, wie z. B. Linien, die unter einem Betrachtungswinkel eine einheitliche Farbe zeigen sollen, wird die Fläche nicht mit einem passenden einheitlichen Beugungsgitter versehen. Vielmehr wird dieses Beugungsgitter aus vielen kleinen Elementen zusammengesetzt. Aufgrund der Toleranzen beim Aneinandersetzen der kleinen Flächenelemente weisen die über die Bildfläche verlaufenden Gitterlinien Knicke oder Lücken auf, die zu sichtbaren Fehlern

[0007] Im "CPC-Modus" (Continuous Path Control, Produkt der Firma Leica Microsystems Ltd.) dagegen ist der Elektronenstrall orstest, wihrend der Tisch entsprechend der zu belichtenden Strukturen bewegt wird. Dieser Modus eignet sich aber weniger für die Erzugung fein sirnklurierter Gitter - bilder, wie beispiels weise Guillochebilder oder in feine Linien zerlegte Bilder oder Mikroschrift, da den eine strukturierten Bilder eine überwiegende Anzahl von kurzen Gitterlinien aufweisen. Daber missen pro Gitterbild bis in den Millionenbersich hineigehende Stopp und Anfahrvorgänge des Tisches erfolgen. Dies belastet die Tischmechanik und kostet sehr viel Zeit.

[0008] Der Erfindung liegt daber die Aufgabe zugrunde, ein Verfahren zu schaffen, das es ermöglicht, fein strukturierte Gitterbilder mithilfe der Elektronenstrahllithographie zu erzeugen und dabei die oben genannten Nachteile vermeidet.

[0009] Die Aufgabe wird durch die Merkmale der unabhängigen Ansprüche gelöst. Weiterbildungen sind Gegenstand der Unteransprüche.

[0010] Die Erfindung beruht auf der Erkenntnis, dass zur Vermeidung von onjeischen Fehlen in Gitterelihern die den 55 optisch variablen Effekt erzeugenden Gitterelemente, die 55 optisch variablen Effekt erzeugenden Gitterelemente, die vorzugsweise als Gitterfeinien ausgestaltet sind, kontinuierlieh in einem Verfahrensschritt erzeugt werden mißsen. Daer werden nach dem erfindungsgemäßen Verfahren nur die Gitterfinien, die über ihre gesamte Länge in der Reichweite oder erlektromagnetischen Ablenkung des Effektromenstrahls liegen, nach diesem Modus belichtet. Um auf diese Art und Weise Gitterbilder zusammensetzen zu k\u00fcnen, werden Arbeitsfelder definiert, die über Bewegung des Tisches angeahren werden k\u00f6nnen. Innerhalb der einzelnen Arbeitsfel-55 der werden die Gitterfinien \u00fcher ihre gesamte L\u00e4nge ein Ablenkung des Eflektromenstrahls in ein einstprechendes

[0011] Nach dem erfindungsgemäßen Verfahren werden

Substrat belichtet,

daher in einem ersten Schritt die Gitterelemente bestimmt, deren Anfangs- und Endpunkte (und gegebenenfalls auch Zwischenpunkte) innerhalb des Bewegungsbereichs der Schreibvorrichtung liegen. Anschließend werden die Arbeitsfelder Festgelegt, in denen die Schreibvorrichtung relativ zu einem Träger, auf dem sich ein zu beschriftendes Substat befindet, bewegt wird. Schließlich wird die Bewegungsbahn des Trägers Festgelegt, so dass die Arbeitsfelder nacheinander durch Bewegung des Trägers angefahren und die im jeweiligen Arbeitsfeld liegenden Gitterelemente er- 10 zeuet werden können.

[0012] Die Bestimmung der Gitterelemente erfolgt dabei vorzugsweise anhand eines Datensatzes, der Informationen über Anfangs- und Endpunkte und gegebenenfalls auch Zwischenpunkte der das Gitterfeld bildenden Gitterele- 15 mente in Form von Ortskoordinaten enthält.

10013] Im Rahmen der Erfindung bedeutet Gitterbild vorzugsweise ein mit bloßem Auge erkennbares Bidmotiv oder eine alphanumerische Information mit lichtbeugenden oder reflektierenden Eftekten. Unter alphanumerischer Informa-20 iton ist auch eine Mikroschrift zu verstehen. Das Gitterbild weist wenigstens ein mit bloßem Auge erkennbares Gitterfield beliebiger Unrisksotutra unf, in dem ein Gittermuster aus beliebig geformten Gitterelmenten angeordnet ist. Verzugsweise bestehen diese Gitterelmenten Gitterflient, 25 die gerade, geschwungen oder in einer beliebigen anderen Gestalt ausseführt sein könnet.

[0014] Die lichtbeugenden Gitterbilder setzen sich vorzugsweise aus unterschiedlichen Beugungsgittern zusammen. Mit dem erfindungsgemäßen Verfahren können jedoch 30 beliebig komplizierte Beugungsstrukturen bis hin zu computererzeugten Hologrammen erzeugt werden.

[0015] Das erfindungsgemäße Verfahren eignet sich vorzugsweise für die Herstellung von fein strukturierten Gitterbildern oder Gitterbildern, die Gitterfelder aufweisen, deren 35 Länge und/oder Breite im Bereich von 5 µm bis 500 µm liegt und vorzugsweise 20 µm bis 100 µm beträgt.

[0016] Die Gitterfelder wiederum sind im Falle von lichtbeugenden Gitterbildern mit Gitterelementen, vorzugsweise Gitterlinien, mit einer Gitterkonstanten von etwa 0,1 bis 40 10 um, vorzugsweise 0,5 bis 2 um versehen.

[0017] Als Schreibvorrichtung wird im erfindungsgemä-Ben Verfahren vorzugsweise ein Teilchenstrahl, insbesondere ein Elektronenstrahl verwendet, da hiermit Auflösungen bis in den Nanometerbereich möglich sind, Sofern Git- 45 terbilder erzeugt werden sollen, die diese hohe Auflösung nicht benötigen, beispielsweise rein auf reflektierenden Effekten beruhende Gitterbilder, so kommen auch andere Lithographieinstrumente infrage, um die Gitterelemente in einem entsprechenden Substrat zu erzeugen. Hierbei kann es 50 sich beispielsweise um einen fokussierenden UV-Laser oder auch eine Präzisionsfräsvorrichtung handeln. Für das Fräsverfahren werden als Substrat vorzugsweise Metallplatten verwendet. Der Begriff "Photoresist" umfasst im Rahmen der Erfindung daher beliebige Substrate, in die eine Infor- 55 mation in Form einer Reliefstruktur eingebracht werden kann.

[9018] Das erfindusgsemiße Prinzip der Aufteitung des Schreibvorganes in einen hoch prüssen, reinen Trunsportvorgang, und einen hoch prüssen Bewegungs- und Schreibvorgang, der hinsieltlich der verwendeten Schreibwordichtung optimiert ist, lässt sich auch hier vorteilunft anwenden, [9019] Gemäß einer ersten Ausführungsform beispielsweise köhnen die Arbeitsielder über einen Tisch angefahren werten, der über eine Hochprüzisionsmechanik, wie ein Hochprüzisionsspindel steuerbar ist. Mit dieser Technik können größere Strecken relativ schnell und sehr prüsze zurückgelegt werden. Für den eigentlichen Schreibvorgang

kann auf dem Tisch ein weiterer kleinerer Tisch angeordnet sein, der beispielsweise piezoelektrisch bewegt wird. Alternativ kann der kleine Tisch auch auf andere Weise, z. B. über Magnetostriktion bewegt werden. Damit können kurze Strecken im Mikrometerbereich schnell und exakt zurückgelegt werden. D. h., während des Schreibvorgangs wird das zu beschriftende Substrat mittels des piezoelektrischen Tisches relativ zur ortsfesten Schreibvorrichtung bewegt bis alle mit dem piezoelektrischen Tisch erreichbaren Elemente des Gesamtmotivs geschrieben sind. Anschließend werden sowohl das Substrat als auch der piezoelektrische Tisch mithilfe des mechanisch verschiebbaren Tisches zum nächsten Arbeitsfeld transportiert, in dessen Bereich das Substrat erneut beschriftet wird. Diese Vorgehensweise eignet sich vorzugsweise für Fräsvorrichtungen, kann aber auch bei allen anderen genannten Schreibvorrichtungen verwendet werden. Bei der Verwendung eines Elektronenstrahls bietet es sich, wie bereits erwähnt, alternativ an, die Arbeitsfelder über eine Bewegung des Tisches anzufahren, während die im Arbeitsfeld liegenden Gitterelemente durch elektromagnetische Ablenkung des Elektronenstrahls erzeugt werden. [0020] Zur Veranschaulichung des erfindungsgemäßen Verfahrens wird von einem Gitterbild ausgegangen, das lediglich aus einem geraden linienförmigen Gitterfeld mit einer Breite im oben genannten Bereich von 0.02 und 0.2 mm besteht. Die Länge der Linie ist beliebig. Dieses linienförmige Gitterfeld weist als Gitterelemente gerade Gitterlinien auf, die über die Breite des Gitterfeldes verlaufen und damit eine Länge aufweisen, die der Breite des Gitterfeldes entspricht. Dieses Gitterbild soll mithilfe eines Elektronenstrahls in einen passenden Photoresist belichtet werden. Der Photoresist befindet sich hierbei auf einem Substrat, vorzugsweise einer Glasplatte, die auf einem beweglich gelagerten x-y-Tisch angeordnet ist.

[0021] Für die Erzeugung dieses Gitterbildes wird ein Datensatz zur Verfügung gestellt, der Informationen über die Anfangs- und Endpunkte der Gitterlinien enthält. Dieser Datensatz kann beispielsweise aus der Entwurfphase des Gitterbildes stammen, insbesondere wenn das Design des Gitterbildes computergestützt mithilfe spezieller Programme erstellt wurde. Anhand dieser Daten wird bestimmt. welche der Gitterlinien im elektromagnetischen Ablenkungsbereich des Elektronenstrahls liegen. Da die Anfangsund Endpunkte aller Gitterlinien in dem Bereich liegen, der über eine elektromagnetische Ablenkung des Elektronenstrahls erreicht werden kann, können alle Gitterlinien kontinuierlich, ohne Unterbrechung über ihre gesamte Länge geschrieben werden. Schließlich wird eine Bewegungsbahn für den Tisch festgelegt, auf dem sich der Photoresist befindet. Nachdem alle für die Steuerung der jeweiligen Vorrichtungen benötigten Daten festgelegt sind, wird das erste Arbeitsfeld durch Bewegung des Tisches angefahren, Innerhalb dieses Arbeitsfeldes werden die Gitterlinien durch Ablenkung des Elektronenstrahls erzeugt. Die einzelnen Gitterlinien werden dabei durch kontinuierliche Ablenkung des Elektronenstrahls erzeugt und weisen keine Unterbrechungen oder unerwünschten Knickstellen auf. Nachdem alle im Bereich des ersten Arbeitsfeldes liegenden Gitterlinien geschrieben wurden, wird der Tisch erneut bewegt und das nächste Arbeitsfeld in Belichtungsposition gebracht. Dieser Vorgang wird solange wiederholt bis das gesamte linienför-

10022] Das erfindungsgemäße Verfahren hat den Vorteil, dass die einzelnen Gitterelemente in möglichst großen Bereichen in sich einheitlich sind und innerhalb dieser Bereiche nicht aus mehreren Teilsegmenten zusammengesetzt sind. Zudem wird durch die Aufteilung des Gitterfeldes in Arbeitsbereiche die Zahl der zeitintensiven Stop- und An-

mige Gitterfeld in den Photoresist belichtet ist,

fahrvorgänge des Tisches auf ein Minimum reduziert.

10023] Wenn die Gitterfelder kompliziertere Unrüsskonturen, wie z. B. Guillochelinien, aufweisen sollen, so kann es vorkommen, dass die Gitterelemente Anfangs- und Endpunkte aufweisen, die außerhalb des Ablenkungsbereichts 5 der Schreibvorrichtung liegen. Diese zu großen Gitterelemente Können entweder -allein durch Bewegung des Substats bei fester Schreibvorrichtung oder durch Zerlegung der Gitterelemente in kleinere für die Schreibvorrichtung erreichbare Stüdeke, die aneinander gesetzt werden, erzougt 10

00024] Die erfindungsgemäße Vorrichtung zur Durchführung des erfindungsgemäße Vorrichtung und das Soubstrat über eine größere Strecke relativ zueimander bei Swegt werden Können, eine Bewegungsstinchtung und das Substrat über eine größere Strecke relativ zueimander bei Swegt werden Können, eine Bewegungsstinchtung, mit der die Schreibvorrichtung und das Substrat während des tatsächlichen Scheibvorgangs relativ zueimander bewegt werden können, sowie Einrichtungen zur Steuerung der vorher Genamten auf. Die Bewegungseinrichtung kann dabei bei 20 spielsweise der bereits erwähnte jürzecklertrische Einch oder eine Vorrichtung zur Ablenkung eines Teilchen- oder Lichtstrahls sein. Die Bewegungseinrichtung ermöglicht eine schnelle und präzise Relativbewegung von Substrat und Schreibvorrichtung im Mikroneterberisch.

[0025] Für den Fall der Elektronenstrahlbelichtung weist die Vorrichtung vorzugsweise einen beweglich gelägerten Tisch für den reinen Transportvorgang sowie eine elektromagnetische Ablenkeinrichtung für den Elektronenstrahl während des Schreibvorgangs auf. Zusätzlich kann die erfingungsmäße Vorrichtung auch eine Recheneinheit enthalten, in der die beschriebenen Bewegungsabläufe der Schreibvorrichtung und des Tiegers berechnet werden.

[9026] Um jedoch willrend des Schreibvorgungs nicht zu viel/Zeit mit Berchunugen verbringen zu müssen, findet die 51 Vorbereitung und die Entscheidung, wie das Gitterbild im Elinzelnen zusammengesetzt, zw. die Berechung der Steuerungstaten für die Schreibvorrichtung und den Träger vorzugsweise in einer Computerstimulation vor dem eigentlichen Schreibvorgang statt. Hier wird entschieden, welche 40 Gitterelmente innerhalb des Ablenkungsbereichs der Schreibvorrichtung liegen, wie die Arbeitsfelder gestaltet werden müssen, welche Gitterelmente in welchem Arbeitsfelder gestaltet bestießteller in krisschaftlicher Weise anfahren zu können, ob 45 und wenn ja, welche Gitterelmente in welche Arbeitsfelder unt wirdschaftlicher Weise sanfahren zu können, ob 45 und wenn ja, welche Gitterelmente nach einem anderen Verfahren erzeut worden sollen.

[0027] Das erfindungsgemäße Verfahren kann selbstverständlich auch für Ginerbilder verwendet werden, die sowohl fein strakturierte als auch prößer flächige Ginterbildanteile aufweisen. In diesem Fall wird im Rahmen der Vorbereitung des Schreibvorgangs festgelegt, welche Anteile des Gitterbildes mit dem erfindungsgemäßen. Verfahren und welche Anteile nach einem anderen Verfahren erzeugt werden sollen. 55

[9028] Die Schreibwege innerhalb der Arbeitsfelder können in verschiehener Weise ausgeführt werden. Beispielsweise kann die Schreibvorriehtung m\u00e4anderf\u00f6rmig oder zielzeackf\u00f6rmig gef\u00fchrt werden. Bei Verwendung eines Elektronenstrahls oder eines Lasers hat die m\u00e4anderf\u00f6rmig e0 F\u00fchraug den Vorteil, dass der Strahl auf den kurzen Verbindungss\u00e4tken inta abgeschaftet werden muss. Im F\u00e4le en nes zielzackf\u00f6rmigen Schreibweges wird der Strahl beim Zur\u00e4\u00fchf\u00e4hren abgeschaftet oder die R\u00fckneyen werden so schnell abgef\u00e4hren, dass keine wesentliebe Betiehtung auffeit.

[0029] Gemäß einer alternativen Verfahrensvariante wird in jedem Arbeitsfeld lediglich eine Linie bzw. ein Gitterelement geschrieben. Das heißt die Schreibvorrichtung erzeugt jeweils ein Gitterelement, das in ihrem Arbeitsbereich liegt, Gleichzeitig bzw. beim Rückweg wird der Trätger schrittweise oder kontinuierlich von Gitterelement zu Gitterelement bewegt. Die einzelnen Gitterelement zu Gitterelement bewegt Die einzelnen Gitterelemente Können dabei geradlinig oder beliebig gekrümmt sein. Im einfachsten Fall abben die aufeinander folgenden Gitterelemente die identische Form. Es können aber auch beliebige Gitterelemente erzeugt werden, wenn die Schreibvorrichtung entsprechend programmiert wird.

[0030] Das nach dem erfindungsgemäßen Verfahren hergestellte Substrat bildet nach einem eventuellen Entwicklungsschritt eine Masterstruktur, die in beliebige Prägewerkzeuge umgesetzt werden kann. Um diese Prägewerkzeuge zu erzeugen, wird beispielsweise die Reliefstruktur des Gitterbildes z. B. durch Aufsprühen einer Metallschicht elektrisch leitend gemacht und anschließend galvanisch in eine Nickelfolie abgeformt, Ausgehend von dieser Nickelfolie werden weitere Nickelfolien abgeformt, die beispielsweise zum Prägen einer großen Anzahl von Nutzen in eine thermoplastische Kunststoffplatte, z. B. Plexiglas benutzt werden. Diese Kunststoffplatte wird ebenfalls galvanisch abgeformt und die abgeformte Metallfolie als Prägeform für eine Vielzahl von Nutzen des ursprünglichen Gitterbildes be-25 nutzt. Die Metallfolie wird hierfür vorzugsweise zu einer zvlindrischen Prägeform verschweißt und auf einen Spann-

zylinder aufgezogen. [10031] Mit diesen Prägewerkzeugen können beliebige Schichten, wie beispielsweise eine thermoplastische Schicht oder eine Lackschicht, insbesondere eine UN-Brinhster Lackschicht geprägt werden. Die prägbare Schicht befindet sich vorzugsweise auf einem Trägermaterial, wie einer Kunsstofffolie. Jeanh Verwendungsweck kann die Kunsstofffolie zusätzliche Schichten oder Sicherheitsmehmale aufweisen. So kann die Kunststofffolie als Sicherheitsfaden oder Sicherheitsf

in Form einer Heißprägefolie ausgestatlet sein, die zum Debertrag einzelner Sicherheitselemente auf zu sichernde Gegenstände dient.

[4032] Die Gitterbilder werden vorzugweise zur Absicherung von Werdokumenten, wie Banknoten, Ausweiskarten, Pässen und dergleichen benutzt. Selbstverständlich können sei auch für andere zu sichernde Waren, wie CDs. Bücher.

> Flaschen etc. eingesetzt werden. [10033] Gemäß der Erifindung ist es auch nicht unbedingt notwendig, das gesamte Gitterbild aus Gitterfelderm zusammenzusetzen. Vielmehr können nur Teile eines Gesambildes in Form von Gitterfelderm, insbesondere erifindungsgemäßen Gitterfeldern ausgeführt sein, während andere Bildanteile mit anderen Verlähren gestaltet werden, wie beispielsweise holographischen Gittern, echten Hologrammen oder Aufdrucken.

[0034] Weitere Vorteile der Erfindung werden anhand der 55 Figuren erläutert. Es zeigen:

[0035] Fig. 1 Design, das nach dem erfindungsgemäßen Verfahren in ein Gitterbild umgesetzt wird.

[0036] Fig. 2 einen Ausschnitt aus dem erfindungsgemäßen Gitterbild gemäß Fig. 1 in starker Vergrößerung,
[0037] Fig. 3a-3c Herstellung eines Gitterfeldes nach

dem erfindungsgemäßen Verfahren, [0038] Fig. 4 ein nach dem Stand der Technik hergestelltes Gitterbild, [0039] Fig. 5 Herstellung eines Gitterfeldes mit langen

5 Gitterelementen, [0040] Fig. 6a-6d Varianten f
ür Schreibwege innerhalb der Arbeitsfelder,

[0041] Fig. 7a-7c Variante des erfindungsgemäßen Ver-

fahrens

[0042] Fig. 8a-8c weitere Variante des erfindungsgemä-Ben Verfahrens.

[0043] Fig. 9 weitere Variante des erfindungsgemäßen

Verfahrens.

[0044] In Fig. 1 ist ein erfindungsgemäßes Gitterbild 1 dargestellt. Im gezeigten Beispiel handelt es sieh um ein fein strukturiertes Gitterbild 1. das aus Guillochelinien 2 zusammengesetzt ist. Bei diesem Guillochebild 1 sind die einzelnen Guillochelinien 2 durch unterschiedliche Beugungs- 10 strukturen, insbesondere Beugungsgitter dargestellt. Die Beugungsgitter können sich hinsichtlich ihrer Gitterkonstanten und/oder dem Azimutwinkel unterscheiden, so dass unter einem bestimmten Betrachtungswinkel lediglich ein Teil der Guillochelinien 2 zu erkennen ist und die sichtbaren 15 Guillochelinien 2 unterschiedliche Farbe zeigen, Beim Ändern des Betrachtungswinkels werden andere Guillochelinien 2 sichtbar und die Farben der einzelnen Guillochelinien 2 ändern sich. Die Beugungsgitter können jedoch auch so ausgestaltet sein, dass alle Guillochelinien 2 unter jedem 20 Betrachtungswinkel erkennbar sind und sich lediglich hinsichtlich ihrer Farbe unterscheiden. In diesem Fall tritt beim Ändern des Betrachtungswinkels lediglich ein Farbwechselspiel auf.

[0045] In Fig. 2 ist der Ausschnitt a in starker Vergröße- 25 rung dargestellt, so dass die einzelnen Beugungsgitterlinien 5, 7 zu erkennen sind. Die gezeigten Guillochelinien bilden hierbei die erfindungsgemäßen Gitterfelder 4, 6, in denen ieweils Gitterelemente 5, 7 angeordnet sind. Wie bereits erwähnt, sind die Gitterelemente 5, 7 im vorliegenden Bei- 30 spiel geradlinig ausgeführt und verlaufen über die gesamte Breite b der Gitterfelder 4, 6. Die Form der Gitterfelder 4, 6 ist allein durch das Rildmotiv 1 bestimmt. Die Breite und Länge der Gitterfelder 4, 6 ist durch das Motiv bestimmt. Im vorliegenden Beispiel einer Guillochelinie liegt die Breite 35 vorzugsweise im Bereich von 0,02 bis 0,2 mm. Die Gitterfelder 4, 6 sind dabei nach dem erfindungsgemäßen Verfahren hergestellt. Das erfindungsgemäße Verfahren wird im Folgenden anhand des Gitterfeldes 4 erläutert.

[0046] Für die Erzeugung des Gitterfeldes 4 wird in einem 40 ersten Schritt ein Datensatz zur Verfügung gestellt, der Informationen über die Form und Lage der Gitterelemente 5 enthält die vorzugsweise als Koordinaten in einem bestimmten Koordinatensystem vorliegen. Falls die Gitterlinien gerade sind, genügen die Koordinaten der Anfangs- und End- 45 punkte der einzelnen Gitterelemente 5. Dies ist in Fig. 3a schematisch skizziert. Jede der Gitterlinien 5 besitzt einen Anfangspunkt A und einen Endpunkt B, deren Koordinaten in einer definierten x-v-Ebene in dem Datensatz gespeichert sind, Aus den Anfangs- und Endpunkten ergibt sich indirekt 50 die Länge L einer jeden Gitterlinie 5 sowie der Abstand der einzelnen Gitterlinien 5 zueinander. Im gezeigten Beispiel ist der Abstand d für alle Gitterlinien 5 des Gitterfeldes 4 konstant. Er kann jedoch beliebig variieren, auch entlang einer Gitterlinie, wenn diese nicht parallel zur nächsten ange- 55 ordnet ist oder die Gitterlinien beispielsweise wellenförmig ausgestaltet sind.

[0047] Sofern die Gitterlinien nicht gerade sind, enthält der Datensatz die Koordinaten vieler eng beieinander liegender Zwischenpunkte, die als Polygonzug die Form der 60 Gitterelemente beschreiben, Alternativ kann die Form der Gitterelemente auch als Bezier-Kurve beschrieben werde, bei welcher lediglich die Koordinaten weniger Zwischenpunkte und zusätzlich eine Tangentialrichtung bezüglich des weiteren Kurvenverlaufs gespeichert werden,

[0048] Die Koordinaten eines Gitterelements können daher lediglich aus den Koordinaten des Anfangs- und Endpunkts des Gitterelements bestehen oder aber die Koordinaten einer bestimmten Anzahl von Zwischenpunkten und gegebenenfalls Richtungsinformationen mitumfassen.

[0049] Anhand der Koordinaten der einzelnen zu erzeugenden Gitterelemente 5 wird festgelegt, welche der Gitterelemente durch Ablenkung eines Elektronenstrahls kontinuierlich geschrieben werden können. Es wird ein Fenster in der Größe des Arbeitsfeldes definiert. Dieses Koordinatenfenster wird ausgehend von einem definierten Startpunkt über die Koordinaten der Gitterelemente gelegt und bestimmt, welche aufeinander folgenden Gitterelemente vollständig im Bereich dieses Koordinatenfensters liegen. Die Koordinaten der Gitterlinien 5, die innerhalb eines Koordinatenfensters liegen, werden nun so sortiert und geordnet. dass Polygonzüge A₁B₁, A₂B₂ und A₃B₃ entstehen, Dieser Verfahrensschritt ist in Fig. 3b dargestellt.

[0050] In Fig. 3c sind zusätzlich zu den Polygonzügen A.B., A.B., A.B. die Arbeitsfelder 8, 9, 10 gezeigt. Bei der Bestimmung der Lage des Arbeitsfeldes 8 wird beispielsweise die y-Koordinate des Koordinatenfensters auf den y-Wert des Anfangspunkts A₁ gesetzt und das Koordinatenfenster in x-Richtung solange verschoben bis der Endpunkt D des ersten Gitterelements vollständig innerhalb des definierten Koordinatenfensters liegt. Nun werden die Koordinaten der folgenden Gitterelemente mit den Koordinaten des Fensters verglichen und überprüft, ob diese vollständig im Bereich des Koordinatenfensters liegen. Dabei kann die Lage des Koordinatenfensters noch optimiert werden. Aus diesem Abgleich der Koordinaten des Fensters und der Gitterelemente ergibt sich schließlich, dass das Gitterelement 100 das letzte Gitterelement ist das vollständig in das bei A₁ beginnende Koordinatenfenster passt. Das Arbeitsfeld 8 endet mit dem Endpunkt B1 des Gitterelements 100.

[0051] Für die Bestimmung des Arbeitsfeldes 9 wird das Koordinatenfenster aufgrund der Neigung des Gitterfeldes 4 in y-Richtung auf den Endpunkt B2 des folgenden Gitterelements 101 gesetzt und erneut solange verschoben bis die maximal mögliche vollständige Zahl an Gitterelementen in dem Koordinatenfenster liegt. Dieser Vorgang wird computergestützt durchgeführt und solange wiederholt, bis alle Gitterelemente einem Arbeitsfeld zugeordnet sind. Wie aus Fig. 3c ersichtlich, können sich die Arbeitsfelder 8, 9, 10 durchaus überlappen.

[0052] Die Größe der Arbeitsfelder 8, 9, 10 entspricht dabei der Größe des elektromagnetischen Ablenkbereichs des Elektronenstrahls, Beim Belichten des Substrats wird nun zunächst der Tisch in eine Position gebracht, in der das Arbeitsfeld 8 unter dem Elektronenstrahl zu liegen kommt. Der Elektronenstrahl wird elektromagnetisch abgelenkt und wird entlang des Polygonzugs A1B1 bewegt, und die entsprechenden Gitterlinien 5 geschrieben. Wie an anderer Stelle noch näher erläutert wird, können dabei die kurzen Verbindungsstücke 11 zwischen den Gitterlinien 5 innerhalb eines Polygonzuges A1B1, A2B2, A3B3 ebenfalls mitbelichtet werden oder nicht. Danach wird der Tisch so verschoben, dass das Arbeitsfeld 9 unter den Elektronenstrahl zu liegen kommt, Der Elektronenstrahl fährt mittels elektromagnetischer Ablenkung den Polygonzug A2B2 und belichtet die entsprechenden Gitterlinien 5 in das Substrat, Analog wird mit dem Arbeitsfeld 10 und dem Polygonzug A3B3 verfahren. Dieser Vorgang wird so lange durchgeführt, bis das gesamte Gitterfeld 4, im vorliegenden Fall die Guillochelinie 2 mithilfe des Elektronenstrahls in das Substrat belichtet wurde, In analoger Weise wird mit den anderen Gitterfeldern des Gitterbildes 1 verfahren,

[0053] In Fig. 4 ist das Gitterfeld 4 dargestellt, für den Fall, dass es nach dem bekannten Stitching-Modus hergestellt wird. Die vom dargestellten Motiv unabhängigen "Rasterelemente" 30, in welchen Teilstücke der Gitterlinien angeordnet sind, sind deutlich zu erkennen. Da die Rasterelemente nicht exakt aneinander gesetzt werden können, weisen die meisten über die Breite des Gitterfeldes verlaufenden Gitterfinien Lücken und/oder Knicke auf, wie in dem markieren Bereich ezu erkennen ist.

10054] Fig. 5 zeigt eine Variante des erfindungsgemäßen Verfahrens, bei dem ein Gitterfeld 20 geschrichen werden soll, das ebenfalls eine linienförmige Umrisskontur aufweist. Die das Gitterfeld 20 darstellenden Gitterlinien bestehen zum Teil aus Gitterfield 20 darstellenden Gitterlinien bestehen zum Teil aus Gitterfield 20 greich deren Darüber hinaus weist das Gitterfeld 20 greiche Gitterelemente auf, deren Koordinaten außerhalb des Ablenkungsbereichs des Elektronenstrahls liegen. Im gezeigten Beispiel handelt es sich bei diesen Gitterelementen ebenfalls um Gitterlinien 13.

[0055] In diesem Fall werden ebenfalls erfindungsgemäße Arbeitsfelder 14, 15, 16, 17, 18 definiert, in welchen die jeweiligen nach dem bereits beschriebenen Verfahren schreibbaren Polygonzüge A₁B₁, A₂B₂, A₄B₄, A₅B₅ und A₆B₆ angeordnet sind. Der Zwischenbereich, bestehend aus dem Po- 20 lygonzug A3B3, alterdings kann nicht nach dem erfindungsgemäßen Verfahren geschrieben werden. Nachdem das Arbeitsfeld 15 nach dem erfindungsgemäßen Verfahren in das Substrat belichtet wurde, wird daher kurzzeitig auf einen anderen Schreibmodus ausgewichen. Im gezeigten Beispiel 25 wird der Polygonzug A3B3 ebenfalls kontinuierlich rein durch Verschiebung des Tisches geschrieben. D. h., der Elektronenstrahl wird nicht abgelenkt und ist ortsfest gelagert, während der Tisch und das darauf befindliche zu belichtende Substrat relativ zum Elektronenstrahl entspre- 30 chend dem Polygonzug A3B3 bewegt wird.

10056] Wie bereits erwähnt, können die in einem Arbeitsfeld liegenden Polygonzilge exakt in dieser Form in das Substrat belichte werden. Es gibt jedoch weitere Mößlichkeiten für die Ausgestaltung der Schreibwege innerhalb der 18 jeweiligen Arbeitstelder. Die verschiedenen Mößlichkeiten zur Führung der Schreibvorrichtung werden stellvertretend anhand eines Polygonzuges, der innerhalb eines Arbeitsfeldess abearbeite wird, beschieben.

[9057] In Fig. 6a ist die Variante dargestellt, bei welcher 19 cheiliglich die Gitterlinien ohne die Verhindungsstücke 11 des Polygonzuges in das Substrat belichtet werden sollen. D. h., nachdem der Elektronenstrahl die Gitterlinie 21 ausgehend wurden Alfangspunkt A.; bis zum Endpunkt B.; in das Substrat geschrieben hat, musse der Elektronenstrahl einen "Leerwege" dazum Anfangspunkt A.; der nächsten Gitterlinie 22 fahren. Die Leerwege auf den Verbindungsstücken II sind daber in Fig. Ga gestrichtel gezeichnet. Auf diesem Leerweg kann der Elektronenstrahl ausgeschaltet oder auf andere Weise an der Bleichtung des Substrats gebindert werden.

[0088] Da das kurzzeitige Abschalten des Elektronenstrahls auf den Verbindungsstüteken II Zeit beamsprucht und den Verfahrensablauf stört, können die Verbindungsstüteke behenfalls mittelbeitet werden, so dass im Substart attasächlich ein mäanderförmiger Polygonzug mit dem Anfangs-sopunkt A und dem Endpunkt By vorliegt. Diese kleinen mitgeschriebenen Randstüteke stören aufgrund ihrer Kürzenicht den optischen Eindruck des gesamten Gitterbildes.

[0059] Die Verbindungsstücke T1 m\u00e4ssen jedoch auch nicht geradlinig ausgef\u00e4hrt sein, sondern k\u00f6nnen abgerundet 60 sein, wodurch die Schreibgeschwindigkeit des Elektronenstrahls noch weiter erh\u00f6nt werden kann. Diese Ausf\u00fchrungsform ist in Fig. 6c dargestellt.

[0060] Die in den Fig. 6a bis 6e gezeigten m\u00e4anderf\u00f6rmigen Schreibwege 6ind sehr n\u00e4zlich, da ste die Schreibwege 6s verk\u00e4rzen, aber sie sind gem\u00e4\u00e4d der Br\u00efindung nicht unbedingt erforderlich. In Fig. 6d ist eine andere M\u00f6glichkeit dargestellt, \u00edes Schreibvorrichtung, insbesondere den Elektragestellt, \u00e4des Schreibvorrichtung, insbesondere den Elektragestellt, \u00e4des Schreibvorrichtung, insbesondere den Elektragestellt, \u00e4des Schreibvorrichtung, insbesondere den Elektragestellt \u00e4des Schreibvorrichtung, insbesondere den Elektragestellt, \u00e4des Schreibvorrichtung, insbesondere den Elektragestellt \u00e4des Schreibvorrichtung \u00e4des

tronenstrahl zwischen den einzelnen Belichtungsvogfängen zu führen. Hierbei wird der Ellektronenstrahl ausgehend vom Anfangspunkt A, der Glüterlinie 21 zum Hadpunkt B, der Glüterlinie 21 geführt und die Glüterlinie 21 in das Substrat belichtet. Anschließend wird der Ellektronenstrahl auf dem Verbindungsstück 23 diagonal zurück zum Anfangspunkt A, der Glüterlinie 22 geführt. Auf dieser diagonalen Verbindungsstrecke 23 findet keine Belichtung des Substrats statt. Ausgehend vom Anfangspunkt A, der Glüterlinie 22 wird ausgehend werbindungstrecke 13 findet keine Belichtung des Substrats statt. Ausgehend vom Anfangspunkt A, der Glüterlinie 22 wird ta anschließen die Glüterlinie 22 bis zum Endpunkt B; in das Substrat belichtet. Dieser Vorgang wird in einer Art Zickzackkurs wiederholt bis alle Glüterlinien des Arbeitsfeldes geschrieben sind. Auf der gestrichtig gezeichneten Verbindungslinie 23 wird der Ellektronenstrahl entweder abgets schaltet oder so schnell bewogt, dass keine Belichtung stattfindet.

[0061] Die Fig. 7a bis 7c zeigen eine spezielle Ausführungsform des erfindungsgemäßen Verfahrens, bei welchem im Arbeitsbereich, d. h. im Ablenkbereich eines Elektronenstrahls lediglich eine Linie geschrieben wird. In Fig. 7a ist eine entsprechende Linie 301 mit dem Anfangspunkt A1 und dem Endpunkt B1 dargestellt. Entlang dieser Linie 301 bewegt sich der Elektronenstrahl in seinem Ablenkbereich, Der Träger bewegt sich entweder schrittweise oder mit einer passenden Geschwindigkeit kontinuierlich entlang der Bewegungsbahn 31. In Fig. 7b ist die Überlagerung der Trägerbewegung 31 mit der Elektronenstrahlbewegung dargestellt. Im gezeigten Verfahrensausschnitt hat der Elektronenstrahl bereits die Gitterlinien 301 bis 309 geschrieben, wobei der Elektronenstrahl auf dem Rückweg zwischen dem Endpunkt der jeweiligen geschriebenen Linie und dem Anfangspunkt der nächsten Linie ausgeschaltet wird. Dies wird durch die gestrichelten Verbindungslinien 32 angedeutet. In Fig. 7c schließlich ist das fertig geschriebene Gitterbild 33 dargestellt, das aus lauter gleich langen Gitterlinien besteht, die entlang der Bewegungsbahn 31 angeordnet sind.

[0062] În Fig. 8a his 8c ist eine ühnliche Variante des eindungsgemäßen Verfahrens dangestellt, bei dem allerdings der Elektroenestrahl in seinem Ablenkungsbereich eine komplizieriere Gluerfnie 401 mit dem Anfangspunkt und B. schreibt. Auch hier wird der Elektroenestrahl auf dem Rückweg 42 abgeschaltet. Aus Gründen der Übersichtlichkeit ist der geradlinige Rückweg 42 in Fig. 8b nicht ein-gezeichnet. Hier sind lediglich die entlang der Bewegneben bahn 41 geschriebenen Glüterflinie 401 his 420 dargestellt.

Das fertige Gituerlinienbild 43 zeigt wiederum Fig. 8c. [0063] Sofern die Ellektronerstrahlbewegun anch jedem Schneibvorgang bzw. nach jedem Zurdeksetzen neu programmiert wich könen auch beitebige Gitterstrakturen ente finge einer Bewegungsbahn des Trägers geschrieben werden. Eine derrartige Varianue ist in Fig. 9 schematisch dargestellt. Im gezeigten bespiel variarteit die Porm der Gitterdinien entlang der Bewegungsbahn 51. Die Gitterfinie 501 ist stark geschwungen. Eintlang der Bewegungsbahn 51 werden die 6 Gitterlinien allmählich länger und ihre Porm mithert sich nimmer mehr der Form einer Geraafen an. Die Gitterfinie 519 ist praktisch geradlinig und weist eine wesentlich größere Länge als die Gitterfinie 501 auch

[0064] Für den Fall, dass die Gitterlinien nicht vollständig D im Ablenkungsbereich des Elektronenstrahls liegen, können sie entweder in kleinere Stücke aufgeteilt werden oder es wird in einen anderen Schreibmodus (z. B. CPC) übergegangen.

Patentansprüche

Verfahren zum Erzeugen eines Gitterbildes, das wenigstens ein Gitterfeld aufweist mit visuell erkennba-

ren, optisch variablen Eigenschaften, in welchem Gitterelemente angeordnet sind, die mittels einer Schreibvorrichtung erzeugt werden, wobei das Verfahren foleende Schritte aufweist:

- a) Bestimmen wenigstens eines Gitterelements, 5 das vollständig innerhalb eines Arbeitsfeldes licet;
- Festlegen einer Abfolge von Arbeitsfeldern, in denen die Gitterelemente mittels der Schreibvorrichtung, erzeugt werden sollen;
- c) Anfahren der Arbeitsfelder durch relative Bewegung eines Trägers, auf dem sich ein zu beschriftendes Substrat befindet, und der Schreibvorrichtung;
- d) Einschreiben des wenigstens einen Gitterele15
 ments in das Substrat mit der Schreibvorrichtung
 innerhalb der jeweiligen Arbeitsfelder.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Bestimmung der Gitterelemente in Schritt
 a) anhand eines Datensatzes erfolgt, der Informationen 20
 über Form und Lage der das Gitterfeld bildenden Gitterelemente enthält.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Datensatz die Koordinaten der Anfangs- und Endpunkte der Gitterelementen enthält.
- Verfahren nach Anspruch 3, dadurch gekennzeichnet, das der Datensatz die Koordinaten mehrerer Zwischenpunkte enthält.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Datensatz die Koordinaten von Bezier-Kurven enthält, die die Form der Gitterelemente beschreiben.
- 6. Verfahren nach wenigstens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass anhand der Koordinaten festgelegt wird, welche Gitterelemente kontinuierlich in einem Schreibvorgang erzeugt werden können.
- Verfahren nach wenigstens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass ein Koordinatenfenster in der Größe des Arbeitsfeldes definiert wird 40 und in Schritt b) über die Koordinaten der Gitterelemente geleet wird.
- Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass ausgehend von einem definierten Startpunkt bestimmt wird, welche aufeinander folgenden Gitterelemente vollständig im Bereich dieses Koordinatenfensters liegen.
- Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Koordinaten der Gitterelemente innerhalb eines Koordinatenfensters so sortiert werden, 50 dass Polygonzüge entstehen.
- Verfahren nach wenigstens einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass alle Arbeitsfelder mithilfe des Koordinatenfensters festgelegt werden.
- Verfahren nach wenigstens einem der Ansprüche 1 55 bis 10, dadurch gekennzeichnet, dass als Schreibvorrichtung ein Licht- oder Teilchenstrahl verwendet wird.
 Verfahren nach wenigstens einem der Ansprüche 1.
- Verfahren nach wenigstens einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass als Schreibvorrichtung ein Elektronenstrahl verwendet wird.
- Verfahren nach wenigstens einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das Einschreiben der Gitterelemente in Schritt d) durch Ablenkung, vorzugsweise elektromagnetische Ablenkung der Schreibvorrichtung erfolgt.
- 14. Verfahren nach wenigstens einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Größe der Arbeitsfelder der Größe des Ablenkungsbereichs der

Schreibvorrichtung entspricht.

15. Verfahren nach wenigstens einem der Ansprüche 1 bis 12, daturch gekennzeichnet, dass beim Einschreiben der Gitterelemente in Schritt d) die Schreibvorrichtung ortsfest gelagert ist und der Träger bewegt wird. 16. Verfahren nach wenigstens einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass als Träger ein beweelich eelaestert Tisch verwendet wird.

- Verfahren nach wenigstens einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die Arbeitsfelder in Schritt e) durch Bewegung des Trägers angefahren werden.
- Verfahren nach wenigstens einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass das Gitterfeld die Form einer Linie aufweist.
- Verfahren nach wenigstens einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass als Gitterelemente Gitterlinien verwendet werden.
- Verfahren nach wenigstens einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass die Gitterlinien zumindest bereichsweise über die Breite des Gitterfeldes verlaufen.
- 21. Verfahren nach wenigstens einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass die Gitterlinien
- geradlinig oder geschwungen ausgeführt werden.

 22. Verfahren nach wenigstens einem der Ansprüche 1
 bis 21, dadurch gekennzeichnet, dass in wenigstens ei-
- nem Arbeitsfeld nur ein Gitterelement erzeugt wird. 23. Verfahren nach Anspruch 22, dadurch gekennzeichnet, dass in jedem Arbeitsfeld nur ein Gitterelement erzeugt wird und die einzelnen Positionen der Gitterelemente entlang einer Bewegungsbahn durch schrittweises oder kontinuterliches Bewegen des Trä-
- gers angefahren werden.

 24. Verfahren nach wenigstens einem der Ansprüche 1
 bis 23, dadurch gekennzeichnet, dass alle Gitterelemente die eleiche Form haben.
- 25. Verfahren nach wenigstens einem der Ansprüche 1 bis 24, dadurch gekennzeichnet, dass die Gitterelemente unterschiedliche Form haben.
- 26. Verfahren nach wenigstens einem der Ansprüche 1 bis 25, dadurch gekennzeichnet, dass das Gitterbild große Gitterelmente aufweist, deren Koordinaten zumindest teilweise außerhalb des Arbeitsfeldes liegen, und dass diese Gitterelemente nach einem anderen Verfahren erzeute werden.
- Verfahren nach Anspruch 26, dadurch gekennzeichnet, dass diese großen Gitterelemente kontinuierlich durch Verschieben des Trägers erzeugt werden.
- zeichnet, dass die Bearbeitungsbereiche druch Verschiebung des Trägers nacheinander angefahren werden und die in jeweitigen Bearbeitungsbereich liegenden Teile der großen Gitterelemene erzeugt werden. 30. Verfahren nach wenigstens einem der Ansprüche I bis 29, dadurch gekennzeichnet, dass bei der Festlegung der Abfolge der Arbeitsfelder auch die Bearbeitungsbereiche berücksichtigt werden.
- 31. Verfahren nach wenigstens einem der Ansprüche 1 bis 30, dadurch gekennzeichnet, dass die großen Gitterelemente lange Gitterlinien sind, deren Koordinaten außerhalb des Ablenkungsbereichs der Schreibvorrichtung liegen.
 - 32. Verfahren nach wenigstens einem der Ansprüche 1

- bis 31, dadurch gekennzeichnet, dass die Schreibwege der Schreibvorrichtung innerhalb der jeweiligen Arbeitsfelder bzw. Bearbeitungsbereiche m\u00e4anderf\u00f6rmig oder ziekzackf\u00f6rmig ausgef\u00fchrt werden.
- 33. Verfahren nach wenigstens einem der Ansprüche 1 5 bis 32. dadurch gekennzeichnet, dass in einer Datenverarbeitungsanlage zuerst alle für die Erzeugung der Gitterelemente notwendigen Koordinaten, fesgelegt werden und die Schreibvorrichtung anschließend anhand dieser Koordinaten die Gitterelemente in dem 10 Substrat erzeuge.
- 34. Verfahren nach wenigstens einem der Ansprüche 1 bis 33, dadurch gekennzeichnet, dass als Substrat ein strahlungsempfindliches Material verwendet wird, in dem die Schreibvorrichtung eine Zustandsänderung er-
- 35. Verfahren nach Anspruch 34, dadurch gekennzeichnet, dass als strahlungsempfindliches Material eine Photoresistschicht verwendet wird.
- 36. Verfahren nach wenigstens einem der Ansprüche 1 20 bis 35, dadurch gekennzeichnet, dass auf das mit den Gitterelementen versehene Substrat eine Metallisierung aufgebracht und davon auf galvanischem Wege eine metallische Abformung erzeugt wirt.
- Verfahren nach Anspruch 36, dadurch gekenn- 25 zeichnet, dass die Abformung als Prägewerkzeug zum Prägen eines Gitterbildes in eine Schicht verwendet wird.
- Verfahren nach wenigstens einem der Ansprüche 1
 bis 37, dadurch gekennzeichnet, dass das Gitterbild 30 mehrere Gitterfelder aufweist.
- 39. Verfahren zur Festlegung der Bewegungskoordinaten einer Schreibvorrichtung und eines Trägers für die Erzeugung eines Gitterbildes, das wenigstens ein mit bloßen Auge erkennbares Gitterfeld aufweist, in 35 welchem Gitterelemente angeordnet sind, wobei das Verfahren folgende Schritte aufweist:
 - Bestimmen der Gitterelemente, deren Koordinaten innerhalb eines vorgegebenen Koordinatenfensters liegen;
 - Festlegen einer Abfolge von Arbeitsfeldern, in denen die Schreibvorrichtung relativ zu einem Träger, auf dem sich ein zu beschriftendes Substrat befindet, bewegt wird.
- 40. Verfahren nach Anspruch 39, dadurch gekenn-45 zeichnet, dass für die Bestimmung der Koordinaten der Gitterelemente eine Umrisslinie des Gitterfeldes festgelegt und die Umrisslinie mit den Gitterelementen gemillt wird.
- 41. Verfahren nach Anspruch 40, dadurch gekenn-50 zeichnet, dass die Gitterelmennet Gitterlinien sind und als Gitterkoordinaten die Schnittpunkte der Gitterlinien mit der Umrässlinie des Gitterfeldes verwendet werden. 42. Verfahren nach weitigstens einem der Ansprüche 39 bis 41, dadurch gekennzeichnet, dass das Verfahren simthiffe einer Datenverarbeitungssnalzee durcheeführt
- 43. Vorrichtung zur Festlegung der Bewegungskoordinaten einer Schreibvorrichtung und eines Tr\u00e4gers f\u00fcr die Erzeugung eines Gitterf\u00e4ldes, das wenigstens ein 60 mit blo\u00e8em Auge erkennbares Gitterf\u00e4d aufweist, in welchem Gitterelemente angeordnet sind, wobei die Vorrichtung folgende Einrichtungen aufweist;

wird.

- eine Einrichtung zur Bestimmung wenigstens eines Gitterelements, das vollständig innerhalb eines Ar- 65 beitsfeldes liegt;
 - eine Einrichtung zur Festlegung einer Abfolge von Arbeitsfeldern, in denen die Gitterelemente

- mittels der Schreibvorrichtung erzeugt werden sollen:
- eine Hinrichtung zur Festlegung der Bewegungsbahn der Schreibvorrichtung und/eder des Trägers, auf dem ein zu beschriftendes Sübstrat angeorthet ist, so dass die Arbeitsfelder nachein-ander angefähren und die im jeweiligen Arbeitsfeld liegenden Gitterelemente erzeugt werden können.
- Vorrichtung nach Anspruch 43, dadurch gekennzeichnet, dass die Vorrichtung eine Einrichtung zur Bestimmung der Koordinaten der Gitterelemente aufweist
- Vorrichtung nach Anspruch 43 oder 44, dadurch gekennzeichnet, dass die Vorrichtung eine Datenverarbeitungsanlage ist.
- 46. Gitterbild, welches wenigstens ein mit bloßem Auge erkennbares Gitterfeld aufweist, in dem Gitterelemente angeordnet sind, wobei ein Großteil der Giterrelemente eine Länge von weniger als 0,2 mm, vor-
- zugsweise 0,05 mm aufweist und kontinuierlich ist.
 47. Gitterbild nach Anspruch 46, dadurch gekennzeichnet, dass die Gitterelemente Gitterlinien sind.
- Gitterbild nach Anspruch 46 oder 47, dadurch gekennzeichnet, dass das Gitterfeld auch lange Gitterlinien mit einer Länge größer 0,02 mm aufweist.
 - Gitterbild nach Anspruch 48, dadurch gekennzeichnet, dass, die langen Gitterlinien aus mehreren Teilstücken zusammengesetzt sind.
- Gitterbild nach wenigstens einem der Ansprüche
 bis 49, dadurch gekennzeichnet, dass das Gitterbild mehrere Gitterfelder aufweist.
- Vorrichtung zur Durchführung des Verfahrens gemäß wenigstens einem der Ansprüche 1 bis 42.
- Gitterbild hergestellt nach wenigstens einem der Ansprüche 1 bis 42.
- Sicherheitselement mit wenigstens einem Gitterbild hergestellt nach wenigstens einem der Ansprüche 1 bis 42.
- 54. Sicherheitselement mit wenigstens einem Gitterbild gemäß wenigstens einem der Ansprüche 46 bis 50. 55. Sicherheitselement nach Anspruch 53 oder 54, dadurch gekennzeichnet, dass das Sicherheitselement ein Sicherheitsfaden, ein Etikett oder ein Transferelement
- 56. Sicherheitspapier mit wenigstens einem Gitterbild hergestellt nach wenigstens einem der Ansprüche 1 bis
- Sicherheitspapier mit wenigstens einem Gitterbild gemäß wenigstens einem der Ansprüche 46 bis 50.
- 58. Sicherheitspapier mit einem Sicherheitselement gemäß wenigstens einem der Ansprüche 53 bis 55.
- Sicherheitsdokument mit wenigstens einem Gitterbild hergestellt nach wenigstens einem der Ansprüche 1 bis 42.
- 60. Sicherheitsdokument mit wenigstens einem Gitterbild gemäß wenigstens einem der Ansprüche 46 bis 50.
 61. Sicherheitsdokument mit einem Sicherheitselement gemäß wenigstens einem der Ansprüche 53 bis
- Sicherheitsdokument mit einem Sicherheitspapier gemäß wenigstens einem der Ansprüche 56 bis 58.
- Transfermaterial, insbesondere Heißprägefolie mit wenigstens einem Gitterbild hergestellt nach wenigstens einem der Ansprüche 1 bis 42.
 - 64. Transfermaterial, insbesondere Heißprägefolie mit wenigstens einem Gitterbild gemäß wenigstens einem der Ansprüche 46 bis 50.

 Prägewerkzeug mit wenigstens einem Gitterbild hergestellt nach wenigstens einem der Ansprüche 1 bis 42.

66. Prägewerkzeug mit wenigstens einem Gitterbild gemäß wenigstens einem der Ansprüche 46 bis 50.

Hierzu 11 Seite(n) Zeichnungen

FIG.3a

FIG. 3b

FIG. 3c

FIG. 4

FIG. 5

DE 102 43 413 A1 G 03 F 7/00 24. Dezember 2003

FIG.6c

FIG.6d

FIG.9