Babeş-Bolyai University, Faculty of Mathematics and Computer Science Mathematical Analysis - Lecture Notes Computer Science, Academic Year: 2020/2021

Lecture 10

Directional derivatives

In the following we consider $A \subseteq \mathbb{R}^n$, $A \neq \emptyset$.

Definition 1. Let $f: A \to \mathbb{R}$, $c \in \text{int } A$ and $v \in \mathbb{R}^n$ a unit vector (that is, ||v|| = 1). We say that f is differentiable in the direction v at c if

$$\exists \lim_{t \to 0} \frac{f(c+tv) - f(c)}{t} \in \mathbb{R}.$$

In this case, the above limit is called the directional derivative of f in the direction v at c and is denoted by f'(c; v).

Remark 1. For $v = e^j$, $j \in \{1, ..., n\}$, we obtain the partial derivative of f w.r.t. x_j .

Theorem 1. Let $f: A \to \mathbb{R}$, $c \in \text{int } A$ and suppose that f is C^1 near c. Then $\forall v \in \mathbb{R}^n$ with ||v|| = 1, f is differentiable in the direction v at c and $f'(c; v) = \langle \nabla f(c), v \rangle$.

Example 1. Let
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2} & \text{if } (x,y) \neq 0_2 \\ 0 & \text{if } (x,y) = 0_2. \end{cases}$

Remark 2. Let $f:A\to\mathbb{R}$ and $c\in\operatorname{int} A.$

f differentiable in every direction at c \implies f continuous at c.

The gradient (revisited)

Let $A \subseteq \mathbb{R}^2$, $A \neq \emptyset$, $f: A \to \mathbb{R}$. Take $c \in \text{int } A$ and suppose that f is C^1 near c and that c is not a stationary point for f.

<u>Problem</u>: In which direction should we move away from c to get the maximal increase for f?

Riemann integrals

In the following we consider $a, b \in \mathbb{R}$ with a < b.

Definition 2. A partition of the interval [a,b] is a finite ordered set $P=(x_0,x_1,\ldots,x_n)$ of real numbers such that $a=x_0< x_1<\ldots< x_{n-1}< x_n=b$. The intervals $[x_{i-1},x_i]$ $(i=1,\ldots,n)$ are called subintervals of the partition P.

The norm of P is $||P|| = \max\{x_1 - x_0, x_2 - x_1, \dots, x_n - x_{n-1}\}$ (i.e., the length of the largest subinterval of the partition P).

Suppose that, for each i = 1, ..., n, ξ_i has been chosen in each subinterval $[x_{i-1}, x_i]$ and denote $\xi = (\xi_1, ..., \xi_n)$. Then (P, ξ) is called a *tagged partition* of [a, b].

Definition 3. Let $f:[a,b]\to\mathbb{R}$ and (P,ξ) a tagged partition of [a,b]. Then the sum

$$\sigma(f, P, \xi) = \sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1})$$

is called the *Riemann sum* of f w.r.t. the tagged partition (P, ξ) .

Definition 4. Let $f:[a,b] \to \mathbb{R}$. We say that f is *Riemann integrable* on [a,b] if there exists $I \in \mathbb{R}$ such that

$$\forall \varepsilon > 0, \ \exists \delta = \delta(\varepsilon) > 0 \text{ s.t. } \forall (P, \xi) \text{ tagged partition of } [a, b] \text{ with } \|P\| < \delta, \ |\sigma(f, P, \xi) - I| < \varepsilon. \ (1)$$

The family of all Riemann integrable functions on [a, b] is denoted by $\mathcal{R}[a, b]$.

If $f \in \mathcal{R}[a, b]$, then $I \in \mathbb{R}$ satisfying (1) is uniquely determined and called the *Riemann integral* (or definite integral) of f on [a, b].

definite integral) of
$$f$$
 on $[a, b]$.
Notation:
$$\int_a^b f(x)dx = \int_a^b f = I.$$

Remark 3. (i) If $f:[a,b] \to [0,\infty)$ and $f \in \mathcal{R}[a,b]$, then $\mathcal{A} = \int_a^b f$ is the area under the graph of f (and above the Ox axis).

(ii) If
$$f:[a,b]\to\mathbb{R}$$
 is constantly equal to $M\in\mathbb{R},$ then $f\in\mathcal{R}[a,b]$ and $\int_a^b f=M(b-a).$

- (iii) If $f:[a,b] \to \mathbb{R}$ is continuous, then $f \in \mathcal{R}[a,b]$.
- (iv) If $f:[a,b] \to \mathbb{R}$ is monotone, then $f \in \mathcal{R}[a,b]$.
- (v) If $f \in \mathcal{R}[a, b]$, then f is bounded.

Theorem 2. Let $a, b \in \mathbb{R}$, a < b, $f, g \in \mathcal{R}[a, b]$ and $\alpha \in \mathbb{R}$. Then

(i)
$$f + g \in \mathcal{R}[a, b]$$
 and $\int_{a}^{b} (f + g) = \int_{a}^{b} f + \int_{a}^{b} g$.

(ii)
$$(\alpha f) \in \mathcal{R}[a,b]$$
 and $\int_a^b (\alpha f) = \alpha \int_a^b f$.

- (iii) $(f \cdot g) \in \mathcal{R}[a, b]$.
- (iv) $|f| \in \mathcal{R}[a,b]$.

(v) If
$$f \leq g$$
, then $\int_a^b f \leq \int_a^b g$.

Theorem 3. Let $f:[a,b] \to \mathbb{R}$ and $c \in (a,b)$. Then

$$f \in \mathcal{R}[a,b] \iff f|_{[a,c]} \in \mathcal{R}[a,c] \text{ and } f|_{[c,b]} \in \mathcal{R}[c,b].$$

In this case, $\int_a^b f = \int_a^c f + \int_c^b f$.

Theorem 4 (First Fundamental Theorem of Calculus). Let $f \in \mathcal{R}[a,b]$. Define $F : [a,b] \to \mathbb{R}$,

$$F(t) = \int_{a}^{t} f.$$

Then F is continuous. Moreover, if f is continuous at $c \in [a,b]$, then F is differentiable at c and F'(c) = f(c).

Example 2. Take
$$f: [-1,1] \to \mathbb{R}, \ f(x) = \begin{cases} -1, & \text{if } x \in [-1,0), \\ 0, & \text{if } x = 0, \\ 1, & \text{if } x \in (0,1]. \end{cases}$$

Theorem 5 (Second Fundamental Theorem of Calculus,). Let $f \in \mathcal{R}[a,b]$. If $F : [a,b] \to \mathbb{R}$ is an antiderivative of f (i.e., F'(x) = f(x) for all $x \in [a,b]$), then

$$\int_a^b f = F(b) - F(a) \quad \text{(the Leibniz-Newton formula)}.$$