B. Wind Turbine Loads

1. Primary Loads

OTHER IMPORTANT LONDS

M_{TILT} - MOMENT ON ROTOR SHAP TRYING TO LIFE THE NAZERLE OUTL THE TUNCH

Myon - Moment ON NATHUE THYING TO THAN IT ON THE TI WORL

TOWOR MOMENTS
MUNICIPAL

TRYING TO TIP OVER

OF TWIST THE TOWER

Wind Turbine Mechanics To GLAVIN

B. Wind Turbine Loads

2. Sources of Load

INERED AL LADING

Gravitational Loads

GREAVITY CONTINUALLY WAS THE BLADES

Compression-

Tension -

Tension-

Compression

. DIRECTION VALLES

BLADE ROOT IN COMPRESSION !

BLACK POOTLE IN

BLADE ROOT TE IN TOUSION

Tension

Compression

Tension

- B. Wind Turbine Loads
 - 2. Sources of Load
 - b. Inertial Loads

THO INEXT AL LOADS TO CONSIDER

- . CEWNURUCAL POLCE
- · ACCESTRATION / DESCRIPTION

CLUMITICA Fonce

FINCE REQUIRED TO KEED BLADES ROMANNO IN A-CIEULE

BINDE IS IN

RIMONE (DEDINATE

- B. Wind Turbine Loads
 - 2. Sources of Load
 - b. Inertial Loads

COWING IS USED TO TAKE ADVANIMENT OF CENTRIFICAL FORCE

MOST BENEFICIAL ON DOWNWIND WIND
TURBINES - MONES BLADES AWAY
U
FROM TOWER

CENTURICAL FUNCÉ ARTS L TO ROMANIMO ARIS

CONTINUT NORM BLASE FE, = FE COSE COM

Fin = Fishous

FC, N ACTS IN A DIRECTION OFFICE TO FN -> ACOUD YNAMIC NURMAL

- B. Wind Turbine Loads
 - 2. Sources of Load

c. Aerodynamic Loading

CLASSIFY AEVLUDYNAMIC LOADS

WIND = MEAN + SHEAR + TURBUCHKE

ME/ESE 4470 – Wind & Tidal Power

WT Mechanics - 11

B. Wind Turbine Loads

2. Sources of Load

