```
# Assignment 3
# Shrish Pundir
```

```
import pandas as pd
df=pd.read_csv('/content/penguins_size.csv')
df
```

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex	
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	MALE	th
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	FEMALE	
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	FEMALE	
3	Adelie	Torgersen	NaN	NaN	NaN	NaN	NaN	
4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	FEMALE	
339	Gentoo	Biscoe	NaN	NaN	NaN	NaN	NaN	
340	Gentoo	Biscoe	46.8	14.3	215.0	4850.0	FEMALE	
341	Gentoo	Biscoe	50.4	15.7	222.0	5750.0	MALE	
342	Gentoo	Biscoe	45.2	14.8	212.0	5200.0	FEMALE	
343	Gentoo	Biscoe	49.9	16.1	213.0	5400.0	MALE	

344 rows × 7 columns

```
# Univariate Analysis
# a) Pie Chart
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(4,4))
condition=df['sex']=='MALE'
plt.pie(condition)
plt.show()
```



```
# Distribution Plot
plt.figure(figsize=(4,4))
sns.distplot(df['body_mass_g'])
plt.show()
```

^{# 21}BCT0125

<ipython-input-15-918725f44299>:3: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see $\underline{\text{https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751}}$


```
# Bivariate Anaysis
# a) Scatter graph
plt.figure(figsize=(4,4))
plt.scatter(df['culmen_length_mm'], df['culmen_depth_mm'])
plt.show()
```



```
# b) Bar graph
plt.figure(figsize=(4,4))
plt.bar(df['flipper_length_mm'], df['body_mass_g'])
plt.show()
```


c) Jointplot
sns.jointplot(x='culmen_length_mm', y='body_mass_g',data=df)

<seaborn.axisgrid.JointGrid at 0x7c6b499b6410>

Multivariate Analysis
a) Heatmap
sns.heatmap(df.corr())

b) Pairplot
sns.pairplot(df)

 $\ensuremath{\mathtt{\#}}$ Perform descriptive statistics on the dataset. df.describe()

	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	
count	342.000000	342.000000	342.000000	342.000000	ıl.
mean	43.921930	17.151170	200.915205	4201.754386	
std	5.459584	1.974793	14.061714	801.954536	
min	32.100000	13.100000	172.000000	2700.000000	
25%	39.225000	15.600000	190.000000	3550.000000	
50%	44.450000	17.300000	197.000000	4050.000000	
75%	48.500000	18.700000	213.000000	4750.000000	
max	59.600000	21.500000	231.000000	6300.000000	

 $[\]mbox{\#}$ Check for Missing values and deal with them. df.isnull().any()

```
species
                         False
    island
                         False
    culmen length mm
                          True
    culmen depth mm
                          True
    flipper length mm
                          True
    body_mass_g
                          True
    sex
                          True
    dtype: bool
df.sex.value counts ()
    MALE
              168
    FEMALE
              165
    Name: sex, dtype: int64
df['sex']=df['sex'].replace(".", "MALE")
df.sex. value_counts ()
    MALE
              169
    FEMALE
            165
    Name: sex, dtype: int64
df['sex']=df['sex'].fillna ("MALE")
df.median ()
    <ipython-input-83-4c9e34f27443>:1: FutureWarning: The default value of numeric only in DataFrame.median is deprecated. I
      df.median ()
    culmen_length_mm
                            44.45
    culmen_depth_mm
                           17.30
    flipper_length_mm
                         197.00
    body mass g
                         4050.00
    dtype: float64
df=df.fillna(df.median ( ))
df.isnull ().sum()
    <ipython-input-84-fea379c4db1f>:1: FutureWarning: The default value of numeric_only in DataFrame.median is deprecated. I
      df=df.fillna(df.median ( ))
    species
                        0
    island
                       0 0 0
    culmen length mm
    culmen depth mm
    flipper_length_mm
    body_mass_g
    sex
                         0
    dtype: int64
df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 344 entries, 0 to 343
    Data columns (total 7 columns):
    # Column Non-Null Count
                           Non-Null Count Dtype
     0 species 344 non-null object
     1
         island
                            344 non-null
                                             object
        culmen_length_mm 344 non-null float64
culmen_depth_mm 344 non-null float64
flipper_length_mm 344 non-null float64
     3
         body_mass_g 344 non-null
                                             float64
         sex
                            344 non-null
                                           object
    dtypes: float64(4), object(3)
    memory usage: 18.9+ KB
```

Find the outliers and replace them outliers
plt.figure(figsize=(4,4))
sns.boxplot(df.culmen_length_mm)

plt.figure(figsize=(4,4))
sns.boxplot(df.culmen_depth_mm)

plt.figure(figsize=(4,4))
sns.boxplot(df.flipper_length_mm)


```
plt.figure(figsize=(4,4))
sns.boxplot(df.body_mass_g)
```

```
<Axes: >

6000 -

5500 -

5000 -

4500 -

4000 -

3500 -

3000 -
```

no outliers

Check for Categorical columns and perform encoding.
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 344 entries, 0 to 343
Data columns (total 7 columns):

	#	Column	Non-Null Count	Dtype
-				
	0	species	344 non-null	object
	1	island	344 non-null	object
	2	culmen_length_mm	344 non-null	float64
	3	culmen_depth_mm	344 non-null	float64
	4	flipper_length_mm	344 non-null	float64
	5	body_mass_g	344 non-null	float64
	6	sex	344 non-null	object

dtypes: float64(4), object(3)
memory usage: 18.9+ KB

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['sex'] = le.fit_transform(df['sex'])
df['species'] = le.fit_transform(df['species'])
df['island'] = le.fit_transform(df['island'])
df.head()

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex	
0	0	2	39.10	18.7	181.0	3750.0	1	th
1	0	2	39.50	17.4	186.0	3800.0	0	
2	0	2	40.30	18.0	195.0	3250.0	0	
3	0	2	44.45	17.3	197.0	4050.0	1	
4	0	2	36.70	19.3	193.0	3450.0	0	

Check the correlation of independent variables with the target
df.corr().species.sort_values(ascending=False)

```
      species
      1.000000

      flipper_length_mm
      0.850819

      body_mass_g
      0.747547

      culmen_length_mm
      0.728706

      sex
      0.010240

      island
      -0.635659

      culmen_depth_mm
      -0.741282

      Name: species, dtype: float64
```

Split the data into dependent and independent variables x=df.drop(columns=['species'], axis=1) y=df.species x.head()

	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex	
0	2	39.10	18.7	181.0	3750.0	1	th
1	2	39.50	17.4	186.0	3800.0	0	
2	2	40.30	18.0	195.0	3250.0	0	
3	2	44.45	17.3	197.0	4050.0	1	

y.head()

4 0

Name: species, dtype: int64

Scaling the data

 ${\tt from \ sklearn.preprocessing \ import \ MinMaxScaler}$

scale=MinMaxScaler()

x_s=pd.DataFrame(scale.fit_transform(x),columns=x.columns)

x_s.head()

	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex	
0	1.0	0.254545	0.666667	0.152542	0.291667	1.0	th
1	1.0	0.269091	0.511905	0.237288	0.305556	0.0	
2	1.0	0.298182	0.583333	0.389831	0.152778	0.0	
3	1.0	0.449091	0.500000	0.423729	0.375000	1.0	
4	1.0	0.167273	0.738095	0.355932	0.208333	0.0	

```
\ensuremath{\mbox{\#}} Split the data into training and testing
```

from sklearn.model selection import train test split

x_train,x_test,y_train,y_test = train_test_split(x_s,y,test_size=0.2,random_state=0)

 $\ensuremath{\text{\#}}$ check the training and testing data shape.

 $x_{train.shape}$

(275, 6)

x_test.shape

(69, 6)

y_train.shape

(275,)

y_test.shape

(69,)

✓ 2s completed at 19:51

• ×