MILP-Based Algorithm for the Global Solution of Dynamic Economic Dispatch with Valve-Point Effects

Loïc Van Hoorebeeck, Anthony Papavasiliou, P.-A. Absil

August 28, 2020

- 1. **Introduction** On the use of gas energy in today's and tomorrow's power mix.
- 2. Problem statement Economic Dispatch with Valve Point Effect.
- 3. **Description of the algorithm** An Adaptive Piecewise-Linear Approximation.
- 4. **Study case** A 10-units dispatch over 24 hours.
- 5. Further work.

On the place of gas energy in today's power mix

On the place of gas energy in today's power mix

European plan on climate change consists in the 20-20-20 targets: By 2020...

- ▶ Reduce by 20% the emissions of greenhouse gases (GHB) compared to 1990 levels;
- ► Reach 20% of renewables energy;
- ▶ Increase by 20% the energy efficiency.

On the place of gas energy in today's power mix

European plan on climate change consists in the 20-20-20 targets: By 2020...

- √ Reduce by 20% the emissions of greenhouse gases (GHB) compared to 1990 levels; OK since 2016
- ▶ Reach 20% of renewables energy; Still on track: 17.52 % in 2017
- X Increase by 20% the energy efficiency. Not on track: 4 % above objective in 2016

On the place of gas energy in tomorrow's power mix

European targets for 2030 and 2050

"Natural gas will continue to play a key role in the EU's energy mix in the coming years and gas can gain importance as the *back-up fuel* for variable electricity generation." (European Commission's Communication Energy 2020)

Source: Energy roadmap 2050

2. Problem statement - Economic Dispatch with Valve Point Effect.

Data

Decision variables

Production: p_{it} $i \in I, t \in T$ Reserve: s_{it} $i \in I, t \in T$

Problem

How to optimally dispatch the power between producers ?

Valve-Point Effect

Fuel cost,

The VPE is a natural characteristic of a gas turbine. Operating off a valve point increases the throttling losses, therefore rising the heat rate.

$$f(p) = a p^2 + b p + c + d \left| \sin e(p - P^{\min}) \right|$$
--- without valve- point effect
with valve- point effect

Power output, MW

Proposed approach

Adaptive Piecewise-Linear Under-Approximation

♀ Idea: a sequence of piecewise approximations.

We could use an uniform grid ...

... but there are too many integer variables !

Power Output, MW

3. Description of the algorithm - An Adaptive Piecewise-Linear Approximation.

Adaptive Piecewise-Linear Under-Approximation

 $\mathbf{\hat{V}}$ Idea: a sequence of piecewise approximations.

We could use an uniform grid ...

Fuel cost

... but there are too much integer variables !

Proposed approach

Piecewise linearization of objective

First model: binary variables

$$g(\rho, \boldsymbol{\xi}, \boldsymbol{\eta}) := \begin{cases} \sum_{j=1}^{n^{\mathsf{knot}}-1} \alpha_{j} \xi_{j} + \eta_{j} \beta_{j} \,, \\ & \mathsf{with} \ \sum_{j=1}^{n^{\mathsf{knot}}-1} \xi_{j} = \rho \,, \\ & \sum_{j=1}^{n^{\mathsf{knot}}-1} \eta_{j} = 1 \,, \\ & X_{j} \, \eta_{j} \leq \xi_{j} \leq X_{j+1} \, \eta_{j} \,, \\ & \eta_{j} \ \mathsf{binary} \,. \end{cases}$$

 $\alpha_2 p + \beta_2$

Optimality gap

Solver tolerance error Optimality gap $|f(\mathbf{p}^*) - \mathbf{f}(\mathbf{p}^k)| \leq \delta^k + \gamma^k + \epsilon^k$

Over-approximation error

What about the convergence ?

- γ^k is bounded below by $\gamma f(\mathbf{p}^*)$;
- ϵ^k is virtually negligible since the "convex zones" are smaller than 0.1% of the domain ;
- δ^k converges to zero.

A practical example

What about the convergence ?

Theorem

$$\lim_{k\to\infty}\delta^k=0$$

Proof (sketch).

- f_i is L-continuous: $|f_i(p+\Delta) f_i(p)| \le (2a_i P_i^{\mathsf{max}} + b_i + d_i e_i) \Delta$
- ▶ $f = \sum_{i=1}^{n} f_i$ is L-continuous with constant $K := \sum_{i=1}^{n} K_i$
- ▶ g is also Lipschitz continuous with same constant

$$\begin{split} 0 & \leq \delta^k = \min_{l \in 1 \dots k} f(\mathbf{p}^l) - g^k(\mathbf{p}^k) \\ & \leq f(\mathbf{p}^k) - g^k(\mathbf{p}^k) \\ & = f(\mathbf{p}^k) - g^k(\mathbf{p}^{k-1}) + g^k(\mathbf{p}^{k-1}) - g^k(\mathbf{p}^k) \quad \text{(trick: } +1 -1) \\ & = f(\mathbf{p}^k) - f(\mathbf{p}^{k-1}) + g^k(\mathbf{p}^{k-1}) - g^k(\mathbf{p}^k) \quad \text{(knot updating)} \\ & \leq 2K \left| \left| \mathbf{p}^k - \mathbf{p}^{k-1} \right| \right| \quad \text{(Lipschitz continuity)} \end{split}$$

4. Study case - A 10-units dispatch over 24 hours

Spinning reserves set at 5% of the demand. 10 units with valve-point loading effect.

Results table Previous results

And our approach?

TABLE III
SUMMARY RESULTS FOR THE 10-UNIT SYSTEM WITHOUT LOSS

Method		generation c		S-time(min)
Method	Minimum	Average	Maximum	S-unc(min)
SQP [3]	1051163	NA	NA	0.42
EP 3	1048638	NA	NA	15.05
CDE [16]	1036756	1040586	1452558	0.20
GA [12]	1033481	1038014	1042606	3.59
EP-SQP [3]	1031746	1035748	NA	7.26
AIS-SQP 28	1029900	NA	NA	NA
MHEP-SQP[27]	1028924	1031179	NA	21.23
DGPSO [4]	1028835	1030183	NA	4.81
PSO [12]	1027679	1031716	1034340	3.85
SOA 29	1023946	1026289	1029213	NA
IPSO 8	1023807	1026863	NA	0.05
CSDE [17]	1023432	1026475	1027634	0.3
CE [14]	1022702	1024024	NA	0.33
ECE [14]	1022272	1023334	NA	0.33
AIS [13]	1021980	1023156	1024973	25.35
ABC 12	1021576	1022686	1024316	3.47
CDBCO [23]	1021500	1024300	NA	0.73
SOA-SQP[29]	1021460	1023841	1026852	NA
AHDE 10	1020082	1022474	1024484	1.10
CDE 16	1019123	1020870	1023115	0.32
HHS [15]	1019091	NA	NA	10.19
ICPSO 9	1019072	1020027	NA	0.35
CSAPSO[III	1018767	1019874	NA	0.350
EAPSO [18]	1018510	1018701	1019302	0.63
HIGA [30]	1018473	1019328	1022284	4.41
ICA [20]	1018467	1019291	1021796	NA
TVAC-IPSO 19	1018217	1018965	1020418	2.72
HBPSO[31]	1018159	1019850	1021813	3.09
CSO [25]	1017660	1018120	1019286	0.90
EBSO [21]	1017147	1017526	1017891	0.15
MILP	1016316			0.94
MILP-IPM	1016311			1.02

NA denotes that the value was not available in the literature.

Pan, Jian, and Yang, "A hybrid MILP and IPM approach for dynamic economic dispatch with valve-point effects", 2018.

Results table Previous results

TABLE III SUMMARY RESULTS FOR THE 10-unit system without loss

Method		generation c		S-time(min)
	Minimum	Average	Maximum	
SQP [3]	1051163	NA	NA	0.42
EP [3]	1048638	NA	NA	15.05
CDE [16]	1036756	1040586	1452558	0.20
GA [12]	1033481	1038014	1042606	3.59
EP-SQP [3]	1031746	1035748	NA	7.26
AIS-SQP[28]	1029900	NA	NA	NA
MHEP-SQP 27	1028924	1031179	NA	21.23
DGPSO [4]	1028835	1030183	NA	4.81
PSO [12]	1027679	1031716	1034340	3.85
SOA [29]	1023946	1026289	1029213	NA
IPSO 8	1023807	1026863	NA	0.05
CSDE [17]	1023432	1026475	1027634	0.3
CE [14]	1022702	1024024	NA	0.33
ECE [14]	1022272	1023334	NA	0.33
AIS 13	1021980	1023156	1024973	25.35
ABC 12	1021576	1022686	1024316	3.47
CDBCO [23]	1021500	1024300	NA	0.73
SOA-SQP[29]	1021460	1023841	1026852	NA
AHDE 10	1020082	1022474	1024484	1.10
CDE 16	1019123	1020870	1023115	0.32
HHS [15]	1019091	NA	NA	10.19
ICPSO 9	1019072	1020027	NA	0.35
CSAPSO[II]	1018767	1019874	NA	0.350
EAPSO [18]	1018510	1018701	1019302	0.63
HIGA [30]	1018473	1019328	1022284	4.41
ICA [20]	1018467	1019291	1021796	NA
TVAC-IPSO 19	1018217	1018965	1020418	2.72
HBPSO[31]	1018159	1019850	1021813	3.09
CSO [25]	1017660	1018120	1019286	0.90
EBSO [21]	1017147	1017526	1017891	0.15
MILP	1016316			0.94
MILP-IPM	1016311			1.02

And our approach?

APLUA 1016276\$ 15(min) APLUA 1016207\$ 1.5(min) + Local Heuristic			
+ Local	APLUA	1016276\$	15(min)
	+ Local	1016207\$	1.5(min)

NA denotes that the value was not available in the literature

Pan, Jian, and Yang, "A hybrid MILP and IPM approach for dynamic economic dispatch with valve-point effects", 2018.

5. Further work

Important condition of the proof: Under-approximation

 \Rightarrow The proof is not valid for convex functions (e.g. without valve point effect)

Important condition of the proof: **Under**-approximation

- ▶ Possible to prove that $g^{k+1} \ge g^k$ and that we cannot do better with that number of points
- Number of integer variables rises linearly (\sim factor 2)

Further Work: power losses and network constraints

(Revisited) demand constraints

Network constraints

$$\sum_{i=1}^n \rho_{it} = D_t + \rho^L(\mathbf{p}_t)$$

 $p^L(\mathbf{p}_t)$ models the transmission losses computed as

$$\rho^L(\mathbf{p}_t) = \mathbf{p}_t^T \mathbf{B} \mathbf{p}_t + \mathbf{B}_0 \mathbf{p}_t + \mathbf{B}_{00}$$

with **B** symmetric matrix.

Conclusion

- ► APLUA manages to find a good candidate ...
- ▶ ... it takes more time but same range number ...
- ... and we are limited by the solver tolerance gap.
- ? How to take the quadratic transmission lost into account?

Conclusion

- ► APLUA manages to find a good candidate ...
- ... it takes more time but same range number ...
- ... and we are limited by the solver tolerance gap.
- ? How to take the quadratic transmission lost into account?

Contact

- https://perso.uclouvain.be/loic.vanhoorebeeck