(S124 lecture 14 RSA and Crypto!

Message x $d(\tau(X)) = X$ Alsic Encoding e(x) e(X) Bob Devoding d(e(x))

Information-Theoretic Approach - One Time Pad

O := XDK

message X 110101

@ 011001 101100

random string r

encoding e(X) = X & Y

decoding $A(\tau(x)) = \tau(x) \oplus Y$

 $= (X \oplus r) \oplus r = X$

EVE SIES E(X). DOTS SM gain any intormation about X? Pr(message is x 1 ecx)

= Pr(mmage is x) < original gress

VSING ONE-time pad multiple times gives into about r! T(X) T(X) @ T(y) Tly) = XOY D y DY

= X & y

RSA-Public Key Cryptography	
Based on comprational hardness	
-> It Eve could break RSA scineme,	men sne'd know
how to some a very hard class of prote	
,	
Needs:	
· General big prime numbers (prima	viry tast)
Falt Exponentiation (repeated sq	
· Evelid 's Algo + Expended Evelid's	
	V
EUCIIA'S AIGO	
breakst Common Divisor	
ged (a,b) = largn 1+ in+ d, d divides	a ana b
= d a, d b	
poly logarithmic	360,84
gcd-Euclid (a,b) Litim proportional to	. 84,24
if b==0 return a	24,12
rerurn god-Euclid (b, a mod b)	12,0
gcd(L, a modb) = gcd(a,b)	O(loga) romas
	O (loga) romas Must at Mast half Trem round
b = a/2: then in one round cut by	
42	7 at most
b> a/2: a mod b = a-b 2a/2	2 x logz a by 1/2 rounds
Min in two wounds decreases	by 1/2) winds

EXMUNICA EVOLIA'S g(d(a,b)=1 ec (a1b) Jed (1, p)-1 $nhinp \times a$ $a \times = 1 \mod p$ viturns d = gcd (a,b) and inngers X, y ax-1by-d ax-1 pg=1 migned to find multiplicative inverses nx = 1 mod p RSA Protovol Bob - prolic Key Bob chooses p, g primes [privan into] lot roughly equal langton) Bob compins n=pxq and finds random int e s.t. [t = 3] gcd ((p-1), (2-1), c) = 1 & (h, e) is Bob's Bob's private into is public kuy d = e - mod (-p-1)(q-1) Alin tam C by exhaud Every Algo message is a number mod n 1(X)= X mod n = by fast 1x pountiation To ducade, Bob Inku d(1(x)) = (1(x)) mod n (laim. d(1(x)) = x mod n

Pf. d(1(X)) = X = mod n

e and I are multaplicative inverter mod (p-1)(q-1)
$d(I(X)) = X^{1+k(p-1)(g-1)} \mod u$
Show: $X^{1+k(p-1)(g-1)} = X \mod p = X \mod p$ $X^{p-1} = 1 \mod p \text{ by Fermal's Lister Thm}$ $C \text{ if } X! = 0 \mod p$
$C_{i} + X_{i} = 0$ mandage
$X^{(p-1)(q-1)} = 1 \mod p$
How novid Eve dirock?
Factor n into prq and composed