## **ELECTRA: PRE-TRAINING TEXT ENCODERS** AS DISCRIMINATORS RATHER THAN **GENERATORS**

**Kevin Clark** 

**Stanford University** 

kevclark@cs.stanford.edu

**Minh-Thang Luong** 

Google Brain

thangluong@google.com

Quoc V. Le

Google Brain

qvl@qoogle.com

**Christopher D. Manning** 

Stanford University & CIFAR Fellow

manning@cs.stanford.edu

Fakanov Pavel, AMI 171 **HSE Research Seminar** November 2020



#### Overview

- Replaced Token Detection
- Model architecture
- Training
- Experiment results
- Efficiency Analysis

# Replaced Token Detection

## Problem with Masked Language Modeling

Predicts only 15% of the tokens

Solution: Predicting all inputs

#### Replaced Token Detection



### Replaced Token Detection

- Learns from all input tokens (instead of 15%)
- More parameter-efficient
- More compute-efficient
- Improves downstream task performance

## Model Architecture

#### Generator

It outputs a probability for a particular token x\_t

$$p_G(x_t|\boldsymbol{x}) = \exp\left(e(x_t)^T h_G(\boldsymbol{x})_t\right) / \sum_{x'} \exp\left(e(x')^T h_G(\boldsymbol{x})_t\right)$$

#### Discriminator

Given a position t, it predicts whether the token x\_t is real

$$D(\boldsymbol{x},t) = \operatorname{sigmoid}(w^T h_D(\boldsymbol{x})_t)$$

# Training

## Steps

MLM selects a random set of positions to mask out m = [m1, m2, ..., mk]

The generator predicts original words of the masked out tokens

The discriminator distinguishes tokens replaced by the generator

#### Combined Loss

$$\min_{\theta_G, \theta_D} \sum_{m{x} \in \mathcal{X}} \mathcal{L}_{ ext{MLM}}(m{x}, heta_G) + \lambda \mathcal{L}_{ ext{Disc}}(m{x}, heta_D)$$

#### Difference from GANs

- If the generator generates the original token, is is considered real
- The generator is trained with MLM
- The generator is not trained to fool the discriminator
- We use discriminator on downstream tasks
- No noise vector

# Experiments

#### Datasets

- GLUE (General Language Understanding Evaluation)
- (sentiment, textual similarity, entailment)
- Metrics on 9 tasks, the result is the average

#### Datasets

- SQuAD (Stanford Question Answering Dataset)
- Question Answering
- Exact-Match and F1 scores

## Weight sharing

- No weight sharing: 83.6
- Embedding weight sharing: 84.3
- All weight sharing: 84.4 (needs to type the model sizes)

## Which generator size works best?



## Training algorithms



## ELECTRA Small Compared to BERT

Sequence length: 512 -> 128

Word embedding size: 768 -> 128

▶ Hidden dimension size: 768 -> 256

## ELECTRA Small Compared to BERT

| Model               | Train / Infer FLOPs | Speedup      | Params       | Train Time + Hardware  | GLUE |
|---------------------|---------------------|--------------|--------------|------------------------|------|
| ELMo                | 3.3e18 / 2.6e10     | 19x / 1.2x   | 96M          | 14d on 3 GTX 1080 GPUs | 71.2 |
| GPT                 | 4.0e19 / 3.0e10     | 1.6x / 0.97x | 117 <b>M</b> | 25d on 8 P6000 GPUs    | 78.8 |
| <b>BERT-Small</b>   | 1.4e18 / 3.7e9      | 45x / 8x     | 14M          | 4d on 1 V100 GPU       | 75.1 |
| BERT-Base           | 6.4e19 / 2.9e10     | 1x / 1x      | 110 <b>M</b> | 4d on 16 TPUv3s        | 82.2 |
| ELECTRA-Small       | 1.4e18 / 3.7e9      | 45x / 8x     | 14 <b>M</b>  | 4d on 1 V100 GPU       | 79.9 |
| 50% trained         | 7.1e17 / 3.7e9      | 90x / 8x     | 14 <b>M</b>  | 2d on 1 V100 GPU       | 79.0 |
| 25% trained         | 3.6e17 / 3.7e9      | 181x / 8x    | 14M          | 1d on 1 V100 GPU       | 77.7 |
| 12.5% trained       | 1.8e17 / 3.7e9      | 361x / 8x    | 14 <b>M</b>  | 12h on 1 V100 GPU      | 76.0 |
| 6.25% trained       | 8.9e16 / 3.7e9      | 722x / 8x    | 14M          | 6h on 1 V100 GPU       | 74.1 |
| <b>ELECTRA-Base</b> | 6.4e19 / 2.9e10     | 1x / 1x      | 110 <b>M</b> | 4d on 16 TPUv3s        | 85.1 |

#### **ELECTRA Large**

- The same size as BERT-Large
- ▶ ELECTRA-400k: ¼ the pre-training compute of RoBERTa
- ▶ ELECTRA-1.75m: similar compute to RoBERTa

#### GLUE Dev Set

| Model                                         | Train FLOPs                                                        | Params               | CoLA                         | SST  | MRPC                 | STS          | QQP                                | MNLI                         | QNLI                         | RTE                          | Avg.                        |
|-----------------------------------------------|--------------------------------------------------------------------|----------------------|------------------------------|------|----------------------|--------------|------------------------------------|------------------------------|------------------------------|------------------------------|-----------------------------|
| BERT<br>RoBERTa-100K<br>RoBERTa-500K<br>XLNet | 1.9e20 (0.27x)<br>6.4e20 (0.90x)<br>3.2e21 (4.5x)<br>3.9e21 (5.4x) |                      | 60.6<br>66.1<br>68.0<br>69.0 | 95.6 | 90.9                 | 92.2<br>92.1 | 91.3<br>92.0<br>92.2<br>92.3       | 86.6<br>89.3<br>90.2<br>90.8 | 92.3<br>94.0<br>94.7<br>94.9 | 70.4<br>82.7<br>86.6<br>85.9 |                             |
| BERT (ours)<br>ELECTRA-400K<br>ELECTRA-1.75M  | 7.1e20 (1x)<br>7.1e20 (1x)<br>3.1e21 (4.4x)                        | 335M<br>335M<br>335M | 67.0<br><b>69.3</b><br>69.1  |      | 89.1<br>90.6<br>90.8 | 92.1         | 91.5<br><b>92.4</b><br><b>92.4</b> | 89.6<br>90.5<br><b>90.9</b>  | 93.5<br>94.5<br><b>95.0</b>  |                              | 87.2<br>89.0<br><b>89.5</b> |

#### **GLUE Test Set**

| Model         | Train FLOPs    | CoLA | SST         | MRPC | STS  | QQP  | MNLI | QNLI | RTE  | WNLI | Avg.* | Score |
|---------------|----------------|------|-------------|------|------|------|------|------|------|------|-------|-------|
| BERT          | 1.9e20 (0.06x) | 60.5 | 94.9        | 85.4 | 86.5 | 89.3 | 86.7 | 92.7 | 70.1 | 65.1 | 79.8  | 80.5  |
| RoBERTa       | 3.2e21 (1.02x) | 67.8 | 96.7        | 89.8 | 91.9 | 90.2 | 90.8 | 95.4 | 88.2 | 89.0 | 88.1  | 88.1  |
| <b>ALBERT</b> | 3.1e22(10x)    | 69.1 | <b>97.1</b> | 91.2 | 92.0 | 90.5 | 91.3 | _    | 89.2 | 91.8 | 89.0  | _     |
| XLNet         | 3.9e21 (1.26x) | 70.2 | <b>97.1</b> | 90.5 | 92.6 | 90.4 | 90.9 | _    | 88.5 | 92.5 | 89.1  | _     |
| ELECTRA       | 3.1e21 (1x)    | 71.7 | 97.1        | 90.7 | 92.5 | 90.8 | 91.3 | 95.8 | 89.8 | 92.5 | 89.5  | 89.4  |

#### SQUAD

| Model               | Train FLOPs    | Params       | <b>SQuA</b><br>EM | <b>D 1.1 dev</b><br>F1 | SQuA<br>EM | D 2.0 dev<br>F1 | SQuA<br>EM | <b>D 2.0 test</b> F1 |
|---------------------|----------------|--------------|-------------------|------------------------|------------|-----------------|------------|----------------------|
| BERT-Base           | 6.4e19 (0.09x) | 110M         | 80.8              | 88.5                   | _          | _               | _          | _                    |
| BERT                | 1.9e20(0.27x)  | 335M         | 84.1              | 90.9                   | 79.0       | 81.8            | 80.0       | 83.0                 |
| SpanBERT            | 7.1e20(1x)     | 335M         | 88.8              | 94.6                   | 85.7       | 88.7            | 85.7       | 88.7                 |
| XLNet-Base          | 6.6e19(0.09x)  | 11 <b>7M</b> | 81.3              | _                      | 78.5       | _               | _          | _                    |
| XLNet               | 3.9e21(5.4x)   | 360M         | 89.7              | <b>95.1</b>            | 87.9       | 90.6            | 87.9       | 90.7                 |
| RoBERTa-100K        | 6.4e20 (0.90x) | 356M         | _                 | 94.0                   | _          | 87.7            | _          | _                    |
| RoBERTa-500K        | 3.2e21(4.5x)   | 356M         | 88.9              | 94.6                   | 86.5       | 89.4            | 86.8       | 89.8                 |
| ALBERT              | 3.1e22 (44x)   | 235M         | 89.3              | 94.8                   | 87.4       | 90.2            | 88.1       | 90.9                 |
| BERT (ours)         | 7.1e20 (1x)    | 335M         | 88.0              | 93.7                   | 84.7       | 87.5            | _          | _                    |
| <b>ELECTRA-Base</b> | 6.4e19(0.09x)  | 110 <b>M</b> | 84.5              | 90.8                   | 80.5       | 83.3            | -          | _                    |
| ELECTRA-400K        | 7.1e20(1x)     | 335M         | 88.7              | 94.2                   | 86.9       | 89.6            | _          | _                    |
| ELECTRA-1.75M       | 3.1e21 (4.4x)  | 335M         | <b>89.7</b>       | 94.9                   | 88.0       | 90.6            | 88.7       | 91.4                 |

# Efficiency Analysis

▶ ELECTRA 15%: Loss only from the 15% of the tokens that are masked

- Replace MLM: Used generated tokens for masked tokens instead of [MASK]

  To solve discrepancy between pre-training and fine-tuning
- All-Tokens MLM: Predicts the replaced tokens and other tokens
   Models tend to copy inputs for for non-masked tokens

Input: The chef cooked the meal

Replace MLM: [The] chef [ate] the meal

All-Tokens MLM: [The] chef [ate] the meal

| Model      | ELECTRA | All-Tokens MLM | Replace MLM | ELECTRA 15% | BERT |
|------------|---------|----------------|-------------|-------------|------|
| GLUE score | 85.0    | 84.3           | 82.4        | 82.4        | 82.2 |

| Model      | ELECTRA | All-Tokens MLM | Replace MLM | ELECTRA 15% | BERT |
|------------|---------|----------------|-------------|-------------|------|
| GLUE score | 85.0    | 84.3           | 82.4        | 82.4        | 82.2 |

- Loss over all inputs is key (most of improvement is from here)
- Removing the pre-train fine-tune mismatch is not that helpful

#### Gains vs. Model sizes







# Conclusion

## Summary

Loss over all inputs is key

Discriminator predicts predicts original/replacement tokens

Better compute and parameter efficiency

#### Questions

Describe replaced token detection pre-training task

What loss is used in ELECTRA model?

Describe another training objective authors experimented with (1 of 3)

#### References

Clark, K., Luong, M.-T., Le, Q. V., and Manning, C. D. ELECTRA:
 Pre-training text encoders as discriminators rather than generators.
 In International Conference on Learning Representations, 2020.

Deep Learning Explainer