1. Linear differential equation

We define the linear form of differential equation as

$$y' + p(x)y = f(x)$$

Liner means the DE is linear in y' and y. Since it is not separable, we imply the method integrating factor r(t) which is to construct a total derivative of $r(t) \cdot y$. We want a r(x) satisfying

$$y' \cdot r(x) + y \cdot r(x)p(x) = f(x)r(t)$$

where r(x)p(x) = r'(x). Then for convenience, we consider p(x) = p instead, we can get

$$r(t) = e^{\int p \ dt}$$

then the DE becomes

$$\frac{d}{dx}[r(x)y(x)] = f(x) \cdot r(x) \implies r(x)y(x) = \int f(x) \cdot r(x) \ dx$$

which is solvable.

2. Non-linear exact differential equation

Let form of deferential equation to be

$$M(x,y) dx + N(x,y) dy = 0 \implies M(x,y) + N(x,y) \frac{dy}{dx} = 0$$

Definition 1. Exact deferential equation A DE is called exact if there is a potential function $\phi(x,y)$ s.t. $M = \phi_x$ and $N = \phi_y$.

Theorem 1. If $M_y = N_x$, then near any point (x_0, y_0) (locally) there is a function $\phi(x, y)$ so that $\phi_x = M$ and $\phi_y = N$.

which generate the way to check whether a DE is exact of not. Notice this does not works globally.

(a) Solving the exact DE

- 1 Applying theorem 1 to check the exact-ability of the DE.
- 2 Because of the existence of the potential function, let

$$\phi(x,y) = \int M(x,y) dx = Q(x,y) + h(y)$$

since M is generated from the partial diri. of ϕ , so the integral is w.r.t x and the constant term may include y.

(3) we get ϕ so far. Then we have

$$\phi_y(x,y) = \frac{d}{dy}[Q(x,y) + h(y)] = Q_y(x,y) + h'(y) = N(x,y)$$

then h'(y) = N(x,y) - Q_y . Then we know both Q(x,y) and h(y) which gives implicit form of $\phi(x,y)$.

(b) Case for inexact differential equation

Similar to the linear DE, we want to find an integration factor $\mu(x, y)$ to construct an exact DE and consequently solve is by process form (a). The DE becomes

$$\mu M(x,y) + \mu N(x,y) \frac{dy}{dx} = 0$$

and in order to make it exact, we need

$$(\mu M)_y = (\mu N)_x \implies \mu_y M + \mu M_y = \mu_x N + \mu N_x$$

which is a PDE, difficult to solve and not aim for this course. So we try $\mu = \mu(x)$ and $\mu = \mu(y)$ which makes several terms above diminishes. Q: Why we care about PDE? What we care about is whether they are equal or not? A: Since we want to use this DE to solve μ .

3. Autonomous Equation

Definition 2. Let x = x(t) and $\frac{dx}{dt} = f$. If f is independent from from t, which is f = f(x), then we call $\frac{dx}{dt} = f(x)$ autonomous equation. If $f(x_0) = 0$, then x_0 is a fixed point, and then $x(t) = x_0$ is a constant/equilibrium solution.

Again, remember the solution of the DE is a function x w.r.t t. So here the equilibrium solution is a constant function.

Not finished yet

4. Second order linear ODE

The second order ODE is in form of

$$A(x)y'' + B(x)y' + c(x)y = F(x) \longrightarrow cy'' + p(x)y' + q(x)y = f(x)$$

it is called homogeneous if f(x) = 0 and non-homo if $f(x) \neq 0$. Linear means the equation involved the linear combination of $y^{(n)}$.

Theorem 2. Principle of superposition for homogeneous equations

If $y_1(x)$ and $y_2(x)$ are solutions of the homogeneous equation

$$y'' + p(x)y' + q(x)y = 0$$

then so is $y(x) = c_1y_1(x) + c_2y_2(x)$, which is also the **general solution** of the ODE. proof needed to be made up which is in the notes

Theorem 3. Unique existence Suppose p,q and f are continuous function on the interval I and $x_0 \in I$. Let $y_1, y_0 \in \mathcal{R}$. Then the Second order liner ODE (both homo and non-homo) with initial conditions

$$y(x_0) = y_0 \& y'(x_0) = y_1$$

has a unique solution y(x) on the entire interval I.

What need to be notice is that we need k initial conditions for kth order differential equations.

(a) The method fo Redution of Order

If a solution $y_1(x)$ is known for th homo. ODE, then we can find a second solution $y_2(x)$ by proposing

$$y_2(x) = y_1(x) \cdot v(x)$$

It can be shown that w = v' satisfies a first order linear equation which we can solve. This method is general. It can be shown with the coefficient all as function of x. Need to be made up.

(b) Constant coefficient 2nd linear ODE

The form of this constant one is simply

$$ay'' + by' + cy = 0$$

where a, b and c are all constant. Here we are motivated by

$$y'' - k^2 y = 0 \longrightarrow y(x) = e^{2x}$$

So we try $y(x) = e^{rx}$. Then the DE becomes

$$(ar^2 + br + c)e^{rx} = 0.$$

which indicates

$$ar^2 + br + c = 0$$

which is called the **characteristic equation**.

Since the char. eq is quadratic so we can use the common method to solve for the roots. It also have three cases for solutions: $b^2 - 4ac > <= 0$.

For the case $b^2 - 4ac > 0$ it is quite simple. Combining with the theorem above we can find the two solution y_1 and y_2 and consequently the general solution. Finally with the given initial conditions, we find c_1 and c_2 .

For the case $b^2 - 4ac = 0$, two roots are the same. Then the general solution become

$$y(x) = c_1 e^{rx} + c_2 \cdot x e^{rx}$$

Then repeat the similar process as above.

For the case $b^2 - 4ac < 0$, we should expect the complex solution which indeed is. No here we need some knowledge of complex number. By the solution of quadratic equations, we have the solution

$$r_1, r_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

since $b^2 - 4ac < 0$, then we have

$$=\frac{-b\pm\sqrt{4ac-b^2}\cdot i}{2a}=\frac{-b}{2a}\pm\frac{\sqrt{4ac-b^2}}{2a}i=\lambda\pm i\mu$$

just use the greek letter for a simpler format. Then by the same reason that

$$y_0, y_1 = e^{(\lambda \pm i\mu)x}$$

are solutions for DE, but we prefer real value solutions. So for $y_0 = e^{(\lambda + i\mu)x}$ we have

$$y_a = Re \ y_o = Re \left(e^{\lambda x} \cdot e^{i\mu \cdot x}\right) = Re\left[e^{\lambda x}(\cos(\mu x) + i \cdot \sin(\mu x))\right] = e^{\lambda x}\cos(\mu x)$$

$$y_b = Im y_0 = Im(...) = e^{\lambda x} \sin(\mu x)$$

Also for the case $y_1 = e^{(\lambda - i\mu)x}$. The result is

$$\bar{y}_a = e^{\lambda x} \cos(\mu x) = y_a$$

$$\bar{y}_b = ce^{\lambda x}\sin(\mu x) = -y_b$$

so the general solution become

$$y(x) = c_1 \cdot e^{\lambda x} \cos(\mu x) + c_2 \cdot e^{\lambda x} \sin(\mu x)$$

解释: 从向量空间角度理解, y(x) 是 DE 的解, 即

$$\mathcal{L}y = ay'' + by' + cy = 0$$

即, \mathcal{L} 作为一个 operator 使得该 DE 等于零。为此,解的实部和虚部必须同时等于零。所以,令 y_{α} 是 DE 的一个解且 a,b 和 c 都是常数,则

$$\mathcal{L}y_{\alpha} = ay_{\alpha}'' + by_{\alpha}' + cy_{\alpha} = 0$$

$$\implies (Re \ \mathcal{L}y_{\alpha} = 0) \land (Im \ \mathcal{L}y_{\alpha} = 0)$$

$$\implies (\mathcal{L}(Re \ y_{\alpha}) = 0) \land (\mathcal{L}(Im \ y_{\alpha}) = 0)$$

$$\implies \mathcal{L}(y_{1}) = 0 \land \mathcal{L}(y_{2}) = 0$$

Complex number relative in this course

(a) Euler's equation

The formula for Euler's equation is

$$e^{it} = \cos(t) + i\sin(t)$$

the proof is using Tyler's expansion, omit here make up later. The Euler's identity is where $t = \pi$, then

$$e^{i\pi} = -1$$

another property for complex number used here is

$$e^{a+bi} = e^a \cdot e^{ib} = e^a [\cos(b) + i\sin(b)]$$

An application for Euler's equation is to prove the double angle formula.

5. Mechanical Vibration: Spring-Mass system

情境介绍: 一个质量为 m 的物块被一弹簧链接,固定在左侧墙体上。记起始位置为 0,并以力向右侧抻直一定的距离。则令 x(t) 是一有正负的值,表示相对于起始位置 0 点的距离。对其进行受力分析之后,根据牛顿第二定律可得,

$$(ma =)mx'' = F_{Spring} + F_{Damping} + F_{ExternalForce}$$

here we do not consider external force and ① $F_{Spring} = kx$ ② $F_{Damping} = -cx'$ which is simply the air resistance ③ $F_{ext} = 0$. Then we have

$$F_{Total} = mx'' + cx' + kx$$

本质上是模拟了拉伸后松手时一刻及以后的运动模型。注意 $m, k > 0, c \ge 0$ 。

(a) Undamped case: c = 0

Consider F = 0, What does it means for F=0?. The equation becomes

$$mx'' + kx = 0$$

char. eq is $mr^2 + k = 0$, then $r = \pm \omega_0 i$, where $\omega_0 = \sqrt{\frac{k}{m}}$. Then the general solution becomes

$$x(t) = c_1 cos(\omega_0 t) + c_2 sin(\omega_0 t)$$

since $e^0 = 1$. x 的表达式可以通过配方变成另一种形式,即

$$A\cos\omega t + B\sin\omega t = R \cdot \cos(\omega t + \delta)$$

where $R = \sqrt{A^2 + B^2}$ and $\cos(\delta) = \frac{A}{R}.\sin(\delta) = \frac{B}{R}$. Then R is called the amplitude and δ is called the 'phase shift'. 这个被用来计算 amplitude 和 period (Period = $2\pi/\omega$).

(b) Damped case: c > 0

Still here let F_{Total} equals zero. Then the equation becomes

$$mx'' + cx' + kx = 0$$

Our expect (truth): ① 由于能量损失, 最后会回到原点。所以 $\lim_{t\to\infty} x(t) = 0$ ②For 0 < c << 1, small damping, thus slow decaying, solution still oscillates ③ For c >> 1, large damping, thus fast decay, solution does not oscillates.

Then if we solve this equation, depending on Δ there are three cases. For $\Delta > 0$ and $\Delta = 0$ it is exactly same as others with the solution

$$y_{\Delta > 0} = c_1 \cdot e^{r_1 t} + c_2 \cdot e^{r_2 t}$$

$$y_{\Delta=0} = c_1 \cdot e^{rt} + c_2 \cdot x \cdot e^{rt}$$

and for this two cases the solution does not oscillate (since not trig. terms). For the case $\Delta < 0$, we have

$$y_{\Delta < 0} = c_1 \cdot e^{-\frac{c}{2m}} \cos(\omega t) + c_2 \cdot e^{-\frac{c}{2m}} \sin(\omega t)$$

So the cases become: $(1)\Delta < 0$ under damping $(2)\Delta = 0$ critical damping $(3)\Delta > 0$ overdamping. 注意当 $\Delta = 0$ 即 $c^2 - 4mk = 0$ 时,解出的 x(t) 没有虚部。因此也没有 trig. terms,因此不会 oscillating.

(c) Non-homogeneous 2nd linear ODE The form of non-homo 2nd linear ODE is

$$\mathcal{L}y = A(t)y'' + B(t)y' + C(t)y = f(x)$$

Theorem 4.

$$y(t) = y_p(t) + y_c(t)$$

where $y_c = c_1 y_1(t) + c_2 y_2(t)$ is the general solution of $\mathcal{L}y = 0$, which is the solution of its homo. ODE, we call it the complementary homo. solution.

6. Method of Undetermined Coefficients

This is the first method to solve y_p for a large class of $\mathcal{L} y = f$ where

$$\mathcal{L}y = ay'' + by' + cy = \sum_{n=1}^{N} p_n(t) \cdot e^{\alpha t} (c_1 cos(\beta t) + c_2 sin(\beta t)) = f(t)$$

where $p_n(t)$ is the polynomial w.r.t t. The the solution y_p (the particular solution) should be in the similar form. So we divides the condition if f(t) into different cases to see how to solve for $y_p(t)$ and then combine with its complementary homo. to get the general solution.

上述'in the similar form' 指, 比如 f(t) 是 poly. 和 trig. 的乘积,则 y_p 也应该是是 poly. 和 trig. 的乘积;如果 f(t) 是 exp. 和 pol. 的乘积,则 y_p 也应该是 poly. 和 trig. 的乘积。

注意, 当有 poly 的时候, 假设的 y_p 应当是从其最高次到最低次的 linear combination; 当涉及到 trig. function 时, 可能需要是 sin 和 cos 的 linear combination.未完待续

7. Forced oscillation and resonance

In this section we consider the 2nd ODE as

$$mx'' + cx' + kx = f(t) = F_0 \cos(\omega t)$$

which we specify the force in periodic form. Similar as before, we discuss in two cases – damped and undamped.

(a) Undamped case: c = 0

The ODE becomes

$$m''x + kx = F_0 \cos(\omega t)$$

then we get the $x_c(t)$ is

$$x_c(t) = c_1 cos(\omega_0 t) + c_2 sin(\omega_0 t)$$

where $\omega_0 = \sqrt{\frac{k}{m}}$ is the natural frequency. Then for the particular solution $x_p(t)$ we have

$$x_p(t) = A\cos(\omega t) + B\sin(\omega t)$$

then if $\omega \neq \omega_0$, then it is the particular solution with the give I.C solving A and B; if $\omega = \omega_0$, then

$$x_p(t) = At\cos(\omega_0 t) + Bt\sin(\omega_0 t)$$

Combine those two cases together we can see

- when $\omega \neq \omega_0$, amplitude = Bt which is growing in t
- when $\omega = \omega_0$, amplitude $= \frac{F_0}{m|\omega_0^2 \omega^2|}$, which does not grow in t but get larger and larger as $\omega \to \omega_0$.

This is a phenomenon of resonance (共振).

(b) Damped case: c > 0

The ODE becomes

$$mx'' + cx' + kx = F_0 cos(\omega t)$$

Then we figure out the case for $x_c(t)$ is one of the following:

• when $\Delta > 0$

$$x_c(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$$

• when $\Delta = 0$

$$x_c(t) = Ae^{-\frac{c}{2m}t} + Bte^{-\frac{c}{2m}t}$$

• when $\Delta < 0$

$$x_c(t) = ae^{-\frac{c}{2m}t}\cos(\mu t) + be^{-\frac{c}{2m}t}\sin(\mu t)$$

where $\mu = \frac{1}{2m}\sqrt{4mk - c^2}$.

Then the form of a particular solution is

$$x_p(t) = A\cos(\omega t) + B\sin(\omega t)$$

NO OVERLAP WITH $x_c(t)$ AT ALL, hence valid. Then combine those two cases together we have

$$x_g(t) = \underbrace{x_c(t)}_{Exp.decay} + \underbrace{x_p(t)}_{Peri.persistent}$$

so as $t \to \infty$ x_c is negligible as the transient part and $x_p(t)$ still exists as the periodic part. 注意, the long time behaviour = steady periodic part 是由于 the given periodic forcing, 与 initial condition 无关。Notice some times we may use matrix to solve the parameter A and B.

8. Laplace transform

Definition 3. For a given function f(t) defined for t > 0, its Laplace transform is another function $\mathcal{L}\{(s)$ defined by

$$\mathcal{L}f(x) = \int_0^\infty f(t)e^{-st} \, ds$$

where s is a real parameter in the improrper integral.

Recall the definition for a convergence in improper integral, which is the limit for

$$\int_{a}^{\infty} g(t) dt = \lim_{A \to \infty} \int_{a}^{A} g(t) dt$$

exists for all A, otherwise it diverges.

Remark 1. If $|g(t)| \leq h(t)$ and $\int_0^\infty h(t) dt$ converges, then $\int_0^\infty g(t) dt$ converges.

Notice, for the Laplace transform, the larger the S, the smaller the integrand, the more likely to converge. The domain of $\mathcal{L}f(x)$ is the **set of** s **that makes the integral converges**. It is usually an open interval (a, ∞) for some a.

(a) Properties of Laplace transform

i. It is a linear map (operator) which satisfies

$$\mathcal{L}\{c_1f + c_2g\} = c_1\mathcal{L}f + c_2\mathcal{L}g$$

ii. Not multiplicative, which is

$$\mathcal{L} f \cdot \mathcal{L} g \neq \mathcal{L} \{ fg \}$$

iii. Uniqueness question

(b) Inverse Laplace transform

Simply defined as the inverse of Laplace transform. If $\mathcal{L}\{f(t)\}=F(s)$, then we define

$$\mathcal{L}^{-1}\{F(s)\} = f(t)$$

(c) First shifting property

Definition 4. If $\mathcal{L}{f(t)} = F(s)$, then

$$\mathcal{L}\{e^{-at} \cdot f(t)\} = F(s+a)$$

Proof.

$$\mathcal{L}\{e^{-at}f(t)\} = \int_0^\infty f(t)e^{-at} \cdot e^{-st} \, dt = \int_0^\infty f(t)e^{-t(s+a)} dt = F(s+a)$$

Also, the inverse also satisfy s.t $\mathcal{L}^{-1}\{F(s+a)\}=e^{-at}f(t)$.

(d) Laplace transform of derivatives and ODEs

Lemma 1.

$$\mathcal{L}\{f'\} = s \cdot \mathcal{L}\{f\} - f(0)$$

and for f'', consequently we have

$$\mathcal{L}\{f''\} = s^2 \mathcal{L}\{f\} - sf(0) - f'(0)$$

This lemma can be used to solve the ODE.

Lemma 2. (The second shifting law)

Let $a \geq 0$. Then

$$\mathcal{L}\{u(t-a)f(t-a)\} = e^{-as} \cdot \mathcal{L}\{f(t)\}$$

The proof is simply using integral by substitution.

(e) Heaviside Function 单位阶跃函数

Definition 5. The Heaviside function is defined as

$$H(x) = \begin{cases} 0 , x < 0 \\ 1 , x > 0 \end{cases}$$

The middle point at x = 0 is not important. 单位跃阶函数用来计算有断点的 step function 的拉普拉斯变换 (piecewise continuous function).

Example: Find the L.T of the u(t-a) and f(t)=1 if $x\in(a,b)$ and 0 otherwise.

Answer:

$$\mathcal{L}\{u(t-a)\} = \int_0^\infty u(t-a)e^{-st} \, dt = \int_a^\infty e^{-st} \, dt = -\frac{e^{-st}}{s} \Big|_a^\infty = \frac{e^{-sa}}{s}$$

Then for f(t) we can rewrite the function into f(t) = u(t-a) - u(t-b) then

$$\mathcal{L}{f(t)} = \mathcal{L}{u(t-a)} - \mathcal{L}{u(t-b)} = \frac{e^{-sa} - e^{-sb}}{s}$$

Example:

Answer:

9. Convolution 卷积

Definition 6. The convolution of the function f and g is defined as

$$f * g = \int_{-\infty}^{\infty} f(t - \tau)g(\tau) d\tau$$

which is equivalent to

$$f * g = \int_{-\infty}^{\infty} g(t - \tau) f(\tau) d\tau$$

which is commutativity which can be proved by change of variable. In 215 we assume the function f and g supports only on $[0, \infty)$, so the integral above supports only on [0, t] which is

$$f * g = \int_0^t f(t - \tau)g(\tau) d\tau$$

The convolution has following properties: (1)f * g = g * f(2)(cf) * g = c(f * g) = f * cg(3)(f * g) * h = f * (g * h).

Theorem 5.

$$\mathcal{L}\{f * g\} = F(s) \cdot G(s)$$

The proof simply involves double integral and using the change of variable.

10. Dirac delta function and Impulse response

The somewhat formal definition is

$$\delta(t) = \lim_{\epsilon \to 0} d_{\epsilon}(t) \equiv \delta(t) = \begin{cases} \infty, t = 0 \\ 0, t \neq 0 \end{cases}$$

and it should satisfy

$$\int_{-\infty}^{\infty} \delta(t)dt = 1$$

此处应该指出的是,如果给定区间内包含 0,则积分结果等于 1;如果区间不包含零则积分结果为 0。另外,对于任意的连续函数 f(t),delta 函数满足

$$\int_{a}^{b} f(t)\delta(t) dt = f(0)$$

we can define $\delta(t)$ rigorously as the linear map: $f(t) \mapsto f(0)$ question. Translate the rectangle to $d_{\epsilon}(t-a) \to \delta(t-a)$. 未完,先记住结论

$$\delta(t-a) = \frac{d}{dt}u(t-a)$$

then the laplace transform is

$$\mathcal{L}\{\delta(t-a)\} = e^{-as}$$

11. First order systems of DE

The general form of a fist order DE system is

$$\frac{d}{dt}\overrightarrow{x} = P(t)\overrightarrow{x} + \overrightarrow{g}(t)$$

where P(t) is a matrix. The system is said to be linear in x if

$$F_j(t, x_1, ..., x_n) = g_j(t) + p_{j1}(t)x_1 + p_{j2}(t)x_2 + ... + p_{jn}(t)x_n, \quad j \in [1, n]$$

where j is the index of the jth equation and n is the nth variable x.

(a) Solution Space

Let V be the set of all solution of a homogeneous system $\overrightarrow{x}' = P(t)\overrightarrow{x}$. Then the solution space is

$$V = {\overrightarrow{x}(t) : \overrightarrow{x}' = P(t)\overrightarrow{x}, t \in (a, b)}$$

As a vector space which consisting of all x(t)s' satisfying the equation, any linear combination of elements in it is also a solution.

Now consider the non-homo system.

Theorem 6. If $\overrightarrow{x}_p(t)$ is a particular solution of

$$\frac{d}{dt}\overrightarrow{x}(t) = P(t)\overrightarrow{x}(t) + \overrightarrow{g}(t)$$

then every solution can be written as

$$\overrightarrow{x}(t) = \overrightarrow{x}_c(t) + \overrightarrow{x}_p(t)$$

(b) Fundamental matrix

For homogeneous system, let $\overrightarrow{x}_1(t)$, $\overrightarrow{x}_2(t)$ be two linearly independent solution to the system. Then we define the matrix

$$\overline{\underline{X}} = \left(\begin{array}{cc} a_1 & a_2 \\ b_1 & b_2 \end{array}\right)$$

as fundamental matrix consisting of the column vector as \overrightarrow{x}_1 and \overrightarrow{x}_2 .

12. Eigenvalue Method for Homo. Constant coefficient system

Still consider the sysytem $\frac{d}{dt}\overrightarrow{x}=Ax$ where A is constant real n by n matrix. The solution space is a n-dimensional vector space. We want to find a simple basis of V. We try $\overrightarrow{x}=e^{\lambda t}\overrightarrow{v}$, where \overrightarrow{v} is a constant vector. We find

$$\lambda e^{\lambda t} \overrightarrow{v} = A e^{\lambda t} \overrightarrow{v} \implies \lambda \overrightarrow{v} = A \overrightarrow{v}$$

hence \overrightarrow{v} is a eigenvector of A with eigenvalue λ . So our strategy is to find all possible eigenvalues: real and distinct, repeated, complex. 仍然通过之前的方法找到 ODE 的解, 然后 transfer 到 matrix 中。

(a) Complex eignvalue

Lemma 3. If a real matrix A has an eigenvalue λ with eigenvector v, then it also have a eigenvalue $\bar{\lambda}$ with corresponding eigenvector \bar{v} which is simply the conjugate of v.

Lemma 4. If $\overrightarrow{x} = y(t) + iz(t)$ is a complex valued solution to $\frac{d}{dt}\overrightarrow{x}$ where A is real. Then y(t) and z(t) are also real valued solutions.

(b) Repeated Eigenvalues

Algebraic multiplicity of an eigenvalue is power m of λ in the char. equation $(\lambda - \lambda_n)^m$; and the geometric multiplicity is the maximum number of linearly independent eigenvector of λ_n . Notice, the geo.multi is always less than or equal to the algb.multi.

Remark 2. In general, if λ_1 is a repeated eigenvalue(alg. multiplicity greater than 1) of matrix A with only one eigenvector v_1 , in addition to $\overrightarrow{x}(t) = e^{\lambda_1 t} \overrightarrow{v}_1$, the second solution is in form of

$$\overrightarrow{x}_2(t) = e^{\lambda_1 t} (t \overrightarrow{v}_1 + \overrightarrow{v}_2)$$

since we need

$$\overrightarrow{x}_{2}' = A \overrightarrow{x}_{2}$$

we can get

$$(A - \lambda_1 I)\overrightarrow{v}_2 = \overrightarrow{v}_1$$

use this to find \overrightarrow{v}_2 . For example, we have already known A has two egi. value $\lambda_1, lambda_2$ and λ_2 is repeated. Then

$$\overrightarrow{x}_c(t) = c_1 e^{\lambda_1 t} \overrightarrow{v}_1 + c_2 e^{\lambda_2 t} \overrightarrow{v}_2 + c_3 e^{\lambda_2 t} (t \overrightarrow{v}_1 + \overrightarrow{v}_2)$$

13. Phase portrait for 2D linear system

Consider $\overrightarrow{x}(t) \in \mathcal{R}^2$ and $A \in M(2 \times 2, \mathcal{R})$. Each solution to $\overrightarrow{x}' = A\overrightarrow{x}$ form a trajectory in \mathcal{R}^2 . Notice the trajectory of $y(t) = \overrightarrow{x}(t_C)$ is the same as $\overrightarrow{x}(t)$. In phase portrait we consider all trajectory in \mathcal{R}^2 . We have 3 cases: $\lambda_1 < \lambda_2$ real unique, $\lambda_1 = \overline{\lambda_2}$ complex conjugate and $\lambda_1 = \lambda_2$ repeated.

Case1(a): $\lambda_1 < \lambda_2 < 0 \text{ (sink)}$

Case 1(b): $0 < \lambda_1 < \lambda_2$ (source)

Case1(a): $\lambda_1 < 0 < \lambda_2$ (saddle)

Case2(b): $\lambda_1, \lambda_2 = a + bi, 0 < a < b$ (spiral source)

Case2(c): $\lambda_1, \lambda_2 = a + bi, a < 0 < b \text{ (spiral sink)}$

Case 3: $\lambda_1 = \lambda_2 \neq 0$ (hard to draw)

14. Nonhomo. System

The form is simply

$$\frac{d}{dt}\overrightarrow{x} = P(t)\overrightarrow{x} + \overrightarrow{f}(t)$$

recall fundamental matrix, it satisfies

$$\overline{\underline{X}}' = P\overline{\underline{X}}$$

(a) Variation of Parameter method

$$\overrightarrow{x}_t = \int_0^t \overline{X}^{-1}(s)f(s) ds$$

this is the most general method to solve the solution, even though the matrix is time dependent.

(b) Undetermined coefficient

Exactly the same as the previous case. We first solve the homo case and guess the particular solution corresponding to the term \overrightarrow{f} and also check whether it is overlapping with the homo solution.

15. Non linear system

Here we just talk about the autonomous non linear system, which is

$$\frac{d}{dt}\overrightarrow{x} = \overrightarrow{F}(x,y)$$

where F does not depends on t containing just x and y. Notice $\overrightarrow{x} = (x, y)^T$. Critical point = equilibrium = fixed point and it means, let \overrightarrow{x}_0 is a fixed point then

$$\overrightarrow{F}(\overrightarrow{x}_0) = 0$$

(a) Linearization in two dimensional case

We focus one the behavior around the fixed point, so we find the linearization by Taylor expansion (two dimension). Let $p_0 = (x_0, y_0)$ be the fixed point then

$$f(x,y) = f(x_0, y_0) + f_x(p)(x - x_0) + f_y(p)(y - y_0) + h.o.t$$

$$g(x,y) = f(x_0, y_0) + g_x(p)(x - x_0) + g_y(p)(y - y_0) + h.o.t$$

hot means higher order term. Then we use the jacobin matrix

$$\frac{d}{dt} \begin{bmatrix} u \\ v \end{bmatrix} = \frac{d}{dt} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} f_x & f_y \\ g_x & g_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} + h.o.t$$

in short

$$\frac{d}{dt} \begin{bmatrix} u \\ v \end{bmatrix} = J(p) \begin{bmatrix} u \\ v \end{bmatrix}$$

where $u = x - x_0$ and $v = y - y_0$.