Proof by Contradiction (or Indirect Proof)

Given a statement is either true or false. In order to prove a statement is true, one method is to assume the opposite of the statement, then deduce a contradiction to the opposite statement from known or given facts. This means the opposite statement must be false. Therefore the original statement is true. Here are a few examples. (Below we will write $\sim p$ to denote the opposite of a statement p.)

Examples of Proof by Contradiction

(1) Prove that $\sqrt{2}$ is an irrational number.

<u>Solution.</u> Assume $\sim(\sqrt{2} \text{ is irrational})$. Then $\sqrt{2}$ is rational. So there exist $m, n \in \mathbb{N}$ such that $\sqrt{2} = m/n$ and after cancelling common factors, m, n will have no common factor greater than 1.

Squaring both sides and multiplying by n^2 , we have $2n^2=m^2$. Then m^2 is even, hence m is even. Then there exists $k \in \mathbb{N}$ such that m=2k. So $2n^2=(2k)^2=4k^2$. Then $n^2=2k^2$. Again, we see n^2 is even. Then n is also even. As m,n are both even, they have a common factor 2, contradiction (to the underlined statement). Therefore, $\sqrt{2}$ is irrational.

(2) Let $a \in \mathbb{R}$ such that the equation $x^3 + \sqrt{2}x^2 - \sqrt{3}x + a = 0$ have three real roots. Prove that the equation has an irrational root.

<u>Solution.</u> Assume \sim (the equation has an irrational root). Then the equation has no irrational root. Hence all three roots r_1, r_2, r_3 are rational. In that case,

$$x^{3} + \sqrt{2}x^{2} - \sqrt{3}x + a = (x - r_{1})(x - r_{2})(x - r_{3}) = x^{3} - (r_{1} + r_{2} + r_{3})x^{2} + (r_{1}r_{2} + r_{2}r_{3} + r_{3}r_{1})x - r_{1}r_{2}r_{3}.$$

Then $\sqrt{2} = r_1 + r_2 + r_3 \in \mathbb{Q}$, contradiction.

(3) Let $a, b \in \mathbb{Q}$ and a < b. Prove that $\exists c \in \mathbb{R} \setminus \mathbb{Q}$ such that $a \leq c \leq b$.

<u>Solution.</u> Assume $\sim (\exists c \in \mathbb{R} \setminus \mathbb{Q} \text{ such that } a \leq c \leq b)$. Then $\forall c \in \mathbb{R} \setminus \mathbb{Q}$, either c < a or c > b. We are given that $a, b \in \mathbb{Q}$ and a < b, which imply d = (b - a)/2 > 0 and $d \in \mathbb{Q}$.

Since $1 < \sqrt{2} < 2$, we have $d < d\sqrt{2} < 2d$. Adding a to all parts, we get

$$(a+b)/2 = a+d < a+d\sqrt{2} < a+2d = b.$$

Since a < b, we get a + a < a + b and so a < (a + b)/2. Then $a < a + d\sqrt{2} < b$. From the underlined statement, we see $r = a + d\sqrt{2} \in \mathbb{Q}$. Then $\sqrt{2} = (r - a)/d$. Since $r, a, d \in \mathbb{Q}$, we get $(r - a)/d \in \mathbb{Q}$, contradiction (to $\sqrt{2}$ is irrational).

(4) Let A, B, C be sets. Prove that $A \setminus (B \cup C) \subseteq (A \setminus B) \cap (A \setminus C)$.

<u>Solution.</u> Assume $A \setminus (B \cup C) \subseteq (A \setminus B) \cap (A \setminus C)$ is false. Then there exists x such that (i) $x \in A \setminus (B \cup C)$ and (ii) $x \notin (A \setminus B) \cap (A \setminus C)$. Now condition (i) means $x \in A$ and

$$x\not\in B\cup C\ \Big(=\sim (x\in B\cup C)\ =\sim ((x\in B)\ \text{or}\ (x\in C))\ =\ (x\not\in B)\ \text{and}\ (x\not\in C)\Big).$$

Then $x \in A \setminus B$ and $x \in A \setminus C$. So $x \in (A \setminus B) \cap (A \setminus C)$, contradiction (to condition (ii)).

- (5) Let P(n) be a true or false statement. Given P(1) is true. Suppose
 - (*) $\forall n \in \mathbb{N}$, if P(n) is true, then P(n+1) is true.

Prove that $\forall n \in \mathbb{N}, P(n)$ is true.

<u>Solution.</u> Assume $\sim (\forall n \in \mathbb{N}, P(n) \text{ is true})$. Then $\exists n \in \mathbb{N} \text{ such that } P(n) \text{ is false.}$

Examine $P(1), P(2), \ldots, P(n)$ in that order. Since P(n) is false, there is a *smallest* positive integer m (at most equal to n) such that $\underline{P(m)}$ is false. Since P(1) is true, $m \geq 2$. Then $m-1 \geq 1$. Since P(m) is false with m smallest. So P(m-1) is true. By (*), P(m) = P((m-1)+1) is true, contadiction (to underlined statement). Therefore, $\forall n \in \mathbb{N}, P(n)$ is true.

Exercises For the exercises below, do proof by contradiction.

- (1) Let $x \in \mathbb{R}$ and $x^3 + 4x 4 = 0$. Prove that x is irrational. (*Hint*: Assume x = m/n in reduced term. Show m, n are even.)
- (2) A <u>prime</u> number is an integer greater than 1 such that its only positive divisors are 1 and itself. (For example, 2, 3, 5 are prime numbers.) Prove that there are infinitely many prime numbers. (*Hint*: Assume only finitely many of these prime number exists, say in increasing order, they are $p_1 = 2$, $p_2 = 3$, $p_2 = 5$, ..., p_n . Show $M = p_1 p_2 \cdots p_n + 1$ is also a prime number.) How many prime numbers p are there such that p + 1 is divisible by 4?
- (3) Prove that it is $\underline{impossible}$ to order the complex numbers \mathbb{C} so that the following properties all hold:
- (a) for every $x, y \in \mathbb{C}$, exactly one of the following x > y, x = y, y > x is true
- (b) if $x, y \in \mathbb{C}$ and x > y, then for every $z \in \mathbb{C}$, x + z > y + z
- (c) if $x, y \in \mathbb{C}$, x > 0 and y > 0, then xy > 0.

(*Hint*: Assume it is possible. Start with $i \neq 0$. There are two cases, namely i > 0 or 0 > i. In each case, try to show 1 > 0 and 0 > 1 will follow. So both cases will lead to contradiction.)