Supervised Learning requires 3 ingredients:

1. Training data -

$$\mathcal{D} := \left\{ \langle \vec{x}_1, y_1 \rangle, \langle \vec{x}_2, y_2 \rangle, \dots, \langle \vec{x}_n, y_n \rangle \right\}$$

There are historical input-output examples. \vec{x}_1 may be Bill's characteristics where $y_1 = 1$ (he paid his loan); \vec{x}_2 may be Jill's characteristics where $y_1 = 1$, etc. There are n examples. Note: \mathcal{D} is denoted using vector and matrix notation.

$$\mathcal{D} = \langle X, \vec{Y} \rangle$$

where $X \in \mathcal{X}^n$ if $\dim n \times p$ and $\vec{y} \in \mathcal{Y}^n = \left\{0, 1\right\}^n$.

- 2. $\mathcal{H} = \{$ all candidate functions h that can approximate $f \}$ This is needed because f may be a very complicated function that can never be learned. So pick a large set of candidate functions that can approximate it.
- 3. A- an algorithm that takes in \mathcal{D}, \mathcal{H} and selects one best candidate function g

$$g = \mathcal{A}(\mathcal{D}, \mathcal{H})$$

Review:

$$y = t(z_1, \ldots, z_t)$$

where y is the phenomenon you wish to explain so you can predict in the future, t is the true relationship that produces the phenomenon and z_1, \ldots, z_t is the causal attributes about the object that will produce the phenomenon.

 z_1, \ldots, z_t are unobservable but x_1, \ldots, x_p are observable.

$$t = f(x_1, \dots, x_p) + \delta$$

where

$$\delta = t(\vec{z}) - f(\vec{x})$$

f is the best possible relationship given attributes you can measure and δ is the difference between the true relationship and the "best we can do" (error due to ignorance).

Goal: Estimate f.

You happen to have historical data \mathcal{D} consisting of a prior examples. You have a finite space \mathcal{H} of functions to approximate f and an algorithm \mathcal{A} . You now use \mathcal{A} to produce g. If $f \in \mathcal{H}$,

$$y = g(x_1, x_2, \dots, x_p) + \underbrace{(t(\vec{z}) - f(\vec{x}))}_{\text{error due to ignorance}} + \underbrace{(f(\vec{x}) - g(\vec{x}))}_{\text{parameter estimator error}}$$

The usual case: $f \notin \mathcal{H}$; this means there is a "closest" function $h* \in \mathcal{H}$ but due to random chance, we pick g instead.

$$y = g(\vec{x}) + \underbrace{(t(\vec{z}) - f(\vec{x}))}_{\text{error due to ignorance}} + \underbrace{(f(\vec{x} - h^*(\vec{x})) + \underbrace{(h^*(\vec{x}) - g(\vec{x}))}_{\text{f} \notin \mathcal{H}}}_{\text{model misprediction}} + \underbrace{(h^*(\vec{x}) - g(\vec{x}))}_{\text{garameter estimator error}}$$

There are 3 sources of error.