## **Topics in Econ HW1**

# Group 4: Elie Kostenbaum, Jingwen Li, Moushumi Pardesi

```
In []: import pandas as pd
   import numpy as np
   import statsmodels.api as sm
   import matplotlib.pyplot as plt
   import matplotlib.dates as mdates
   import warnings
   warnings.filterwarnings('ignore')
```

### Part 1: ESG

## Q1

(a) (5 points) In your own words, explain what the unadjusted greenness score, Git, measures. Make sure to mention why we need to include E weight.

EK: The unadjusted greenness score Git, measures how environmentally sustainable or "green" is a company in comparison to others. This score takes innto account two factors:

- E\_score: This reflects the company's weighted-average performance on various environmental issues such as climate change, pollution, waste etc... These scores are an indicator of a company's resilience to long term environmental risks. The E\_score is a number between 0 and A0, with higher values indicating better environmental performance.
- E\_weight: This represents the importance of environmental issues relative to social and governance issues for the company. It is a number between 0 and 100 and is typically consistent across firms in the same industry. Higher E\_weight values signify that environmental concerns carry more weight in that industry.

Including E\_weight is crucial because it adjusts the greenness score based on the industry context. Different industries have varying levels of environmental impact, and some may be inherently more environmentally intensive than others. E\_weight reflects how significant environmental concerns are within a particular industry. Including E\_weight in the calculation allows for a fairer assessment of greenness, considering the industry-specific environmental standards and expectations.

(Both factors are provided by MSCI).

JL: The unadjusted greenness score,  $G_{i,t}$ , provides a holistic measure of a company's environmental performance by taking into account both its particular environmental practices and the overarching context of its industry. This measure is derived using the company's environmental score,  $E_{score_{i,t}}$ , and the environmental significance of its industry,  $E_{weight_{i,t}}$ , as determined by the MSCI ratings, using the most recent data available.

A key component of this calculation is how the company's environmental score stands relative to a perfect score. The expression  $10-E_{score_{i,t}}$  computes the difference between the company's score and the ideal score of 10, giving us an idea of the company's environmental shortcomings. This deviation is then weighted by  $E_{weight_{i,t}}$ , which signifies the environmental relevance or impact of that specific industry. The multiplication of these two values produces a measure of the firm's "brownness" — essentially gauging its deviation from eco-friendly behavior in relation to its industry's environmental footprint. However, to make this metric more intuitive, its sign is inverted, with the goal of denoting "greenness." Consequently, a higher value implies more eco-friendly practices, especially in comparison to the industry's environmental consequences.

The integration of  $E_{weight}$  is paramount for a nuanced analysis. Without it, two firms from disparate sectors but with identical  $E_{score}$  values could be perceived as equally green, which could be misleading. By incorporating  $E_{weight}$ , the metric offers a context-sensitive perspective on a company's greenness, effectively situating its environmental performance within the inherent environmental implications of its industry.

MP: The unadjusted greenness score,  $G_{i,t}$ , is a measure of the environmental performance of a company i at time t. It is calculated as a weighted sum of the company's scores on a set of environmental indicators, such as greenhouse gas emissions, water pollution, and waste production. The weights reflect the relative importance of each indicator.

 $E_{weight}$  allows us to account for the different environmental impacts of different industries. By including  $E_{weight}$ , we can ensure that companies in different industries are compared on an apple to apple basis. Additionally,  $E_{weight}$  allows us to account for the different levels of environmental regulation in different countries and regions. It allows that companies in different countries and regions are compared on an equal footing.

- (b) (5 points) Why does the paper focus on the adjusted greenness score?
- JL: The paper emphasizes the adjusted greenness score, gi, t, to capture a company's environmental stance in relation to the overarching market. By subtracting the market's

value-weighted average greenness, Gt, from an individual firm's score, the adjusted metric, gi, t, highlights how green or brown a firm stands compared to the market's mean. This method mitigates the influence of absolute greenness values and fosters a nuanced comparison across firms, thus facilitating a precise understanding of a company's environmental performance against its peers.

MP: gi,t is a more accurate measure of a firm's environmental performance than raw greenness score because raw score does not take into account the size of the firm or the industry in which it operates. gi,t does take these factors into account, making it a more reliable measure of a firm's environmental performance. gi,t is more useful for investors who are looking to identify companies with good environmental performance because it lets investors to compare companies of different sizes and from different industries on an equal footing.

## Q2. Use the description in Section 4 of the paper to replicate Figure 3

- Following equations 1 and 2 of P astor et al. (2022), compute the firm-level greenness measure, gi,t.
- In order to do the value-weighting (this will also apply when you construct the GMB portfolio), use the fields PRC (price) and SHROUT (shares outstanding) to compute the market cap of each firm at each date.
- Then, Gt is the market cap weighted average.

$$G_{i,t-1} = -(10-E\_score_{i,t-1}) imes rac{E\_weight_{i,t-1}}{100}$$

$$g_{i,t} = G_{i,t} - \overline{G}_t$$

```
In []: df1 = pd.read_csv('MSCI_sample.CSV')
    df1['G'] = -(10-df1['ENVIRONMENTAL_PILLAR_SCORE'])*df1['ENVIRONMENTAL_PILLAF
    df1['MKT_CAP'] = df1['PRC'] * df1['SHROUT']
    df1['Weighted_G'] = df1['G'] * df1['MKT_CAP']
    monthly_weighted_avg_G = df1.groupby(df1['AS_OF_DATE']).apply(lambda x: (x['
    df1['Monthly_Weighted_Avg_G'] = df1['AS_OF_DATE'].map(monthly_weighted_avg_G
    df1['g'] = df1['G'] - df1['Monthly_Weighted_Avg_G']
```

```
In []: # Convert the columns to numeric data types
         df1['RET'] = pd.to_numeric(df1['RET'], errors='coerce')
         df1['MKT CAP'] = pd.to numeric(df1['MKT CAP'], errors='coerce')
         # Replace NaN values with 0
         df1[['RET', 'MKT_CAP']] = df1[['RET', 'MKT_CAP']].fillna(0)
In [ ]: df1
Out[]:
                 ISSUER_NAME
                                          ISSUERID AS_OF_DATE IVA_INDUSTRY INDUSTRY
                                                                       Oil & Gas
                          QEP
                                IID000000002231971
              0
                                                      2012-01-01
                                                                    Exploration &
                 Resources, Inc.
                                                                      Production
                                                                      Metals and
                     IAMGOLD
                               IID000000002169868
                                                                        Minina -
              1
                                                      2012-01-01
                    Corporation
                                                                  Precious Metals
                                                                      Casinos &
                     Las Vegas
              2
                                IID000000002173531
                                                      2012-01-01
                    Sands Corp.
                                                                         Gaming
                     Honeywell
                                                                    Aerospace &
              3
                   International IID000000002127578
                                                      2012-01-01
                                                                        Defense
                           Inc.
                    Staples, Inc. IID000000002145070
              4
                                                      2012-01-01
                                                                  Specialty Retail
                                                                  Semiconductors
                      ANALOG
                                IID000000002157388
                                                      2021-12-01
         49332
                  DEVICES, INC.
                                                                  Semiconductor
                                                                      Equipment
                     AMERICAN
                                                                        Building
         49333
                               IID000000002157284
                   WOODMARK
                                                      2021-12-01
                                                                       Products
                 CORPORATION
                     AMERICAN
                                                                       Specialty
         49334
                                IID000000002157281
                                                      2021-12-01
                    VANGUARD
                                                                      Chemicals
                 CORPORATION
                      BANK OF
         49335
                        MARIN
                               IID000000002159126
                                                      2021-12-01
                                                                          Banks
                     BANCORP
                                                                   Paper & Forest
                     SYLVAMO
         49336
                               IID00000005050010
                                                      2021-12-01
                 CORPORATION
                                                                       Products
        49337 rows × 20 columns
In [ ]: # Define a function to categorize based on greenness score within each group
         def categorize by score(group):
             group['Greenness_Category'] = pd.qcut(group['g'], q=3, labels=['brown',
             return group
```

```
# Apply the function to each date's group
        df q2 = df1.groupby('AS OF DATE').apply(categorize by score)
In [ ]: def value weighted return(group):
            group['Green_Return'] = (group[group['Greenness_Category'] == 'green']['
            group['Brown_Return'] = (group[group['Greenness_Category'] == 'brown']['
            return group
        df_q2 = df_q2.drop(columns='AS_OF_DATE').reset_index().groupby('AS_OF_DATE')
In [ ]: RET_df = df_q2[['AS_OF_DATE', 'Green_Return', 'Brown_Return']].drop_duplicat
        RET_df['Cumulative_Green_Return'] = (1 + RET_df['Green_Return']).cumprod()
        RET df['Cumulative Brown Return'] = (1 + RET df['Brown Return']).cumprod() -
        RET df = RET df * 100
        RET df.index = pd.to datetime(RET df.index)
In [ ]: RET_df
Out[]:
                     Green_Return Brown_Return Cumulative_Green_Return Cumulative_Bro
        AS_OF_DATE
          2012-11-01
                         -0.047331
                                       -0.999096
                                                                -0.047331
          2012-12-01
                          4.330804
                                       -0.012535
                                                                 4.281423
          2013-01-01
                          8.987899
                                        4.691743
                                                                13.654132
         2013-02-01
                          1.109147
                                        0.305150
                                                                14.914723
         2013-03-01
                          3.800664
                                        3.462312
                                                                19.282245
         2020-08-01
                         12.802990
                                                              253.750473
                                        1.576774
         2020-09-01
                         -6.689024
                                       -3.537789
                                                              230.088018
         2020-10-01
                         -1.480247
                                       -0.700744
                                                               225.201901
          2020-11-01
                         17.808913
                                       13.169642
                                                               283.116823
         2020-12-01
                          7.205962
                                        3.749193
                                                               310.724074
        98 rows × 4 columns
In [ ]: # Plot
        plt.figure(figsize=(10,8))
        RET_df['Cumulative_Green_Return'].plot(label='Green', color='green')
        RET_df['Cumulative_Brown_Return'].plot(label='Brown', color='brown', linesty
        plt.xlabel('Date')
        plt.ylabel('Cumulative Return (%)')
        plt.legend()
        plt.show()
```



## Q3. What is the monthly return and Sharpe ratio of the green minus brown portfolio?

sharpe ratio of the green minus brown portfolio: 0.337

Q4. How does P astor et al. (2022) explain that green stocks outperform bad stocks when the theoretical model from P astor et al. (2021) suggests that brown stocks should outperform? Make sure to focus on the distinction between expected and realized returns.

JL: Pástor et al. (2021) theorized that green stocks should have lower expected returns because investors prefer them for their environmentally friendly nature and they are less risky in terms of climate change. However, Pástor et al. (2022) found that in recent years, green stocks have actually outperformed brown ones.

The reason for this discrepancy? Unexpected shifts in demand.

Two key factors drove this unexpected performance:

Investors wanted more green stocks: As climate awareness grew, investors piled into green stocks, driving their prices up. Consumers preferred green products: Companies with green products saw increased sales, which boosted their stock prices. However, this past outperformance doesn't guarantee future success for green stocks. The boost they received was due to unforeseen increases in environmental concerns. Without these unexpected events, green might have even lagged behind brown stocks.

In short, while green stocks have recently outshone brown stocks due to unexpected demand shifts, their future performance is uncertain. Past performance isn't always indicative of future results.

MP: Short-term outperformance of green stocks is due to a change in investor preferences, which leads to a change in realized returns.

Brown stocks have a higher expected return than green stocks because they are more likely to generate cash flows in the near term. However, green stocks can outperform brown stocks in the short term if there is a sudden increase in public concern about climate change. This can drive up their prices, even though their expected returns are lower than those of brown stocks.

Over the long term, brown stocks are expected to outperform green stocks, due to their higher expected returns.

### Part 2: Climate Risk

```
In []: df2 = pd.read_csv('49_Industry_Portfolios.CSV', skiprows=11)

def process_table(data):
    data = data.rename(columns ={'Unnamed: 0':'Date'})
    data.set_index('Date', inplace=True)
    for col in data.columns:
        data[col] = data[col].astype(float)
    data = data.replace([-99.99, -999], float('nan'))
    return data

avg_value_weighted_return_M = process_table(df2.iloc[:1154])
    avg_equal_weighted_return_M = process_table(df2.iloc[:1157:2310])

avg_value_weighted_return_Y = process_table(df2.iloc[:2313::2407])
    avg_equal_weighted_return_Y = process_table(df2.iloc[:2411::2504])

num_of_firms_in_port = process_table(df2.iloc[:2507::3660])
    avg_firm_size = process_table(df2.iloc[:3663::4816])
```

```
sum_of_BE_over_sum_of_ME = process_table(df2.iloc[4819:4915])
value_weighted_average_of_BE_over_ME = process_table(df2.iloc[4918:5014])
```

In [ ]: avg\_value\_weighted\_return\_M

| Out[]: |        | Agric  | Food  | Soda  | Beer  | Smoke  | Toys   | Fun    | Books  | Hshld | Clths  | ••• |
|--------|--------|--------|-------|-------|-------|--------|--------|--------|--------|-------|--------|-----|
|        | Date   |        |       |       |       |        |        |        |        |       |        |     |
|        | 192607 | 2.37   | 0.12  | NaN   | -5.19 | 1.29   | 8.65   | 2.50   | 50.21  | -0.48 | 8.08   |     |
|        | 192608 | 2.23   | 2.68  | NaN   | 27.03 | 6.50   | 16.81  | -0.76  | 42.98  | -3.58 | -2.51  | ••• |
|        | 192609 | -0.57  | 1.58  | NaN   | 4.02  | 1.26   | 8.33   | 6.42   | -4.91  | 0.73  | -0.51  |     |
|        | 192610 | -0.46  | -3.68 | NaN   | -3.31 | 1.06   | -1.40  | -5.09  | 5.37   | -4.68 | 0.12   |     |
|        | 192611 | 6.75   | 6.26  | NaN   | 7.29  | 4.55   | 0.00   | 1.82   | -6.40  | -0.54 | 1.87   |     |
|        | •••    | •••    | •••   | •••   | •••   | •••    | •••    | •••    | •••    | •••   | •••    |     |
|        | 202204 | -0.14  | 2.60  | 4.22  | 3.03  | 6.37   | -13.74 | -27.84 | -10.86 | 2.04  | -7.00  |     |
|        | 202205 | 7.29   | -3.26 | -0.22 | -1.60 | 2.67   | -0.85  | -3.50  | -6.95  | -5.12 | -6.45  |     |
|        | 202206 | -12.45 | -1.91 | 0.46  | -0.02 | -11.63 | -12.96 | -10.87 | -12.37 | -2.56 | -12.00 | ••• |
|        | 202207 | 6.38   | 3.68  | 3.28  | 5.49  | 0.56   | 5.63   | 17.04  | 12.08  | 0.76  | 11.86  |     |
|        | 202208 | 5.23   | -0.46 | -4.40 | -1.87 | -0.12  | -5.77  | -2.26  | -5.00  | -2.16 | -6.01  |     |

1154 rows × 49 columns

## Q1

```
In []: sample_return_scaled = avg_value_weighted_return_M .loc['200401':'201806']/
    sample_cum_return = (1 + sample_return_scaled ).cumprod() - 1
    sample_cum_return = sample_cum_return.iloc[-1] * 100
In []: sample_cum_return.sort_values()
```

```
Out[]: Coal
                  -44.951705
        Gold
                  -23.701326
        Books
                   25.889188
        Autos
                   59.256541
        PerSv
                   64.609630
        Banks
                   74.688543
        RlEst
                   81.749251
                   85.382936
        Toys
        0ther
                   86.173508
        Steel
                   90.572898
        Cnstr
                   99.415935
        Hshld
                  160.787960
        Fin
                  172.527542
        FabPr
                  173.367854
        ElcEq
                  174.752782
        Paper
                  186.135745
        Hlth
                  194.697290
        Insur
                  218.571877
        Telcm
                  220.541390
        BldMt
                  244.007387
        Chips
                  250.581256
        Hardw
                  254.471884
        Mines
                  259,485052
        0il
                  260.859873
        Food
                  262.405587
        Whlsl
                  263.080817
                  270.952096
        Agric
        Drugs
                  272.547502
        Txtls
                  283,642273
        Util
                  297.294911
        Beer
                  299.232698
        BusSv
                  337.475636
        Mach
                  340.051406
        Rubbr
                  344.975294
        Trans
                  346,902560
        Rtail
                  356.029714
        MedEq
                  369.939741
        Soda
                  383.955126
        Chems
                  400.318159
        Softw
                  403.642359
        Boxes
                  410.182496
        LabEq
                  432.937007
        Fun
                  465.810559
        Clths
                  484.807632
        Meals
                  548.864698
        Aero
                  570.642298
        Smoke
                  620.694241
        Guns
                  669.698673
        Ships
                  918.909791
        Name: 201806, dtype: float64
```

Ans:

## Based on cumulative returns for the given period, the three highest performing industries are:

Ships with a return of 918.91%, Guns with a return of 669.70%, and Smoke with a return of 620.69%. Conversely, the industries that underperformed or had the least growth are:

Coal, which experienced a decline of 44.95%, Gold, which decreased by 23.70%, and Books, which, though positive, had the lowest growth among the positive returns at 25.89%.

## Q2

```
In []: sample_avg_return = avg_value_weighted_return_M .loc['200401':'201806'].mear
    sample_return_std = avg_value_weighted_return_M .loc['200401':'201806'].std(
    res = pd.concat([sample_avg_return, sample_return_std], axis=1)
    res.columns = ['cum ret','std']
    res['sharpe ratio'] = res['cum ret']/res['std']
In []: res.sort_values('sharpe ratio')
```

Out[]:

|       | cum ret  | std       | sharpe ratio |
|-------|----------|-----------|--------------|
| Gold  | 0.406322 | 10.661723 | 0.038110     |
| Coal  | 0.528851 | 12.931512 | 0.040896     |
| Books | 0.315690 | 6.087525  | 0.051858     |
| Autos | 0.580575 | 7.972130  | 0.072826     |
| PerSv | 0.461322 | 5.906168  | 0.078108     |
| RIEst | 0.712529 | 8.758192  | 0.081356     |
| Banks | 0.515575 | 6.129446  | 0.084114     |
| Steel | 0.745402 | 8.516738  | 0.087522     |
| Toys  | 0.544713 | 6.156516  | 0.088477     |
| Cnstr | 0.634368 | 6.845790  | 0.092665     |
| Other | 0.515632 | 5.556203  | 0.092803     |
| FabPr | 0.900690 | 8.020633  | 0.112297     |
| Fin   | 0.781149 | 6.320566  | 0.123589     |
| ElcEq | 0.768506 | 6.066249  | 0.126685     |
| Mines | 1.175230 | 9.220522  | 0.127458     |
| Txtls | 1.171149 | 9.103214  | 0.128652     |
| BldMt | 0.943563 | 6.770572  | 0.139362     |
| Paper | 0.730000 | 4.991641  | 0.146244     |
| Hlth  | 0.754713 | 5.120255  | 0.147397     |
| Agric | 0.962011 | 6.503893  | 0.147913     |
| Hardw | 0.905345 | 5.917143  | 0.153004     |
| Insur | 0.814425 | 5.301950  | 0.153609     |
| Chips | 0.892586 | 5.793078  | 0.154078     |
| Oil   | 0.908276 | 5.802318  | 0.156537     |
| Mach  | 1.074195 | 6.553343  | 0.163916     |
| Fun   | 1.324425 | 7.997791  | 0.165599     |
| Hshld | 0.620287 | 3.673948  | 0.168834     |
| Rubbr | 1.033678 | 5.898814  | 0.175235     |
| Telcm | 0.762701 | 4.249153  | 0.179495     |
| Whisi | 0.849310 | 4.561669  | 0.186184     |
| Chems | 1.102931 | 5.879560  | 0.187587     |
| Soda  | 1.070287 | 5.651718  | 0.189374     |
|       |          |           |              |

|       | cum ret  | std      | sharpe ratio |
|-------|----------|----------|--------------|
| Trans | 0.991092 | 5.042363 | 0.196553     |
| Boxes | 1.084080 | 5.313937 | 0.204007     |
| Clths | 1.181437 | 5.704886 | 0.207092     |
| LabEq | 1.101034 | 5.155464 | 0.213567     |
| BusSv | 0.953736 | 4.461164 | 0.213786     |
| Ships | 1.626322 | 7.591577 | 0.214227     |
| Drugs | 0.833276 | 3.868522 | 0.215399     |
| Softw | 1.049655 | 4.818526 | 0.217837     |
| MedEq | 1.000172 | 4.570032 | 0.218855     |
| Rtail | 0.959713 | 4.107485 | 0.233650     |
| Aero  | 1.239943 | 5.263658 | 0.235567     |
| Food  | 0.798908 | 3.351108 | 0.238401     |
| Util  | 0.860575 | 3.572892 | 0.240862     |
| Beer  | 0.859655 | 3.480471 | 0.246994     |
| Guns  | 1.312299 | 5.098593 | 0.257385     |
| Smoke | 1.259425 | 4.872709 | 0.258465     |
| Meals | 1.161494 | 4.038781 | 0.287585     |

#### Ans:

#### **Three Highest Sharpe Ratios:**

Meals: 0.288 Guns: 0.258 Smoke: 0.257

#### **Three Lowest Sharpe Ratios:**

Gold: 0.038 Coal: 0.041 Books: 0.052

### Comparing these with the highest and lowest returns:

Highest returns are

Smoke 620.694241 Guns 669.698673 Ships 918.909791

Lowest returns are

Coal -44.951705 Gold -23.701326 Books 25.889188

The industries with the highest Sharpe ratios are Meals, Guns, and Smoke. Guns and Smoke are also among the top three industries for raw returns, suggesting they offer both high risk-adjusted returns and strong absolute performance. Conversely, while Gold, Coal, and Books have the lowest Sharpe ratios, Coal and Gold also exhibit negative raw returns, indicating underperformance in both risk-adjusted and absolute terms.

Q3

(a)

i. Ans:

EK:

- April 2007: United Nations Security Council holds first-ever debate on impact of climate change on peace, security, hearing over 50 speakers. Led to climate change being recognized as 'threat multiplier' by the UN.
- February 2007: Publishing of report from the the Intergovernmental Panel on Climate Change (IPCC), saying that human activity was "very likely" to be responsible for most of the observed warming in recent decades. Achim Steiner, executive director of the UN Environment Programme, said: "February 2007 may be remembered as the day the question mark was removed from whether people are to blame for climate change."

JL:

#### February 2007:

Intergovernmental Panel on Climate Change (IPCC) Report: One of the most significant climate-related events in February 2007 was the release of the IPCC's Fourth Assessment Report. On February 2nd, the IPCC confirmed with more than 90% certainty that the observed increase in global average temperatures since the mid-20th century was very likely due to the observed increase in anthropogenic greenhouse gas concentrations. This report drew extensive media attention and solidified the consensus on human-caused global warming.

Weather Anomalies: The beginning of 2007 saw several weather-related anomalies. January 2007 was the warmest first month on record globally. These unusual weather patterns could have spurred public interest and driven people to search more about climate change.

#### **April 2007:**

England's Warmest April: England experienced its warmest April in 348 years of record-keeping, breaking the previous record set in 1865 by a significant margin. Such unusual and record-breaking weather events usually draw public attention and could lead to increased searches about climate change.

Al Gore & "An Inconvenient Truth": By 2007, Al Gore's documentary "An Inconvenient Truth" had gained significant traction. His active campaigning on the issue, coupled with the documentary's critical acclaim, meant that public awareness and interest in climate change were high. Given that he and the IPCC were awarded the Nobel Peace Prize later in the same year, it's reasonable to assume that there was already significant buzz around their work by April.

Arctic Ice Melting Reports: There were increasing reports about the Arctic warming at an unprecedented rate. News about the Arctic is often a catalyst for broader discussions about global climate change.

#### December 2009:

Copenhagen Climate Conference: December 2009 hosted the significant UN Climate Change Conference, COP15, in Copenhagen. The event drew global attention and resulted in the "Copenhagen Accord," acknowledging the need to address global temperature rises and committing funding to developing nations.

ClimateGate Controversy: A leak of emails from the Climatic Research Unit stirred media buzz, with claims (later debunked) of manipulated data exaggerating global warming.

Arctic Ice Concerns: The year saw one of the lowest Arctic sea ice extents on record, underscoring the tangible effects of global warming.

U.S. EPA Decision: The EPA declared that greenhouse gases posed a threat to public health, paving the way for regulating emissions under the Clean Air Act.

MP:

2022-04 2023-04 2019-09

April 2022 and April 2023: Earth Day is celebrated on April 22nd each year, so people try to learn more about climate change and other environmental issues. Additionally, the Intergovernmental Panel on Climate Change (IPCC) released its Sixth Assessment Report in April 2022, which provided a comprehensive update on the science of climate change. This report may have also contributed to the high search volume for climate change in April 2022 and April 2023.

September 2019: The United Nations Climate Action Summit was held in NYC, in September 2019. The summit was intended to galvanize action on climate change, and it

featured speeches from world leaders and climate activists. The summit may have contributed to the high search volume for climate change in September 2019.

ii

```
In [ ]: climate_trend = pd.read_csv('multiTimeline_Climate_Trend.csv', skiprows=2)
        climate_trend['Month'] = pd.to_datetime(climate_trend['Month'], format='%Y-%
        climate_trend.rename(columns={'Month': 'Date'}, inplace=True)
In []:
        climate_trend
Out[]:
               Month Climate change: (United States)
           0 2004-01
                                               10
           1 2004-02
                                               14
           2 2004-03
                                                12
           3 2004-04
                                                13
                                               14
           4 2004-05
                                                • • •
        232 2023-05
                                                14
        233 2023-06
                                                8
        234 2023-07
                                                9
        235 2023-08
                                                9
        236 2023-09
                                                12
        237 rows × 2 columns
In [ ]: sample_return = avg_value_weighted_return_M .loc['200401':'201806'].reset_ir
        sample_return['Date'] = sample_return['Date'].astype(str)
        sample_return['Date'] = pd.to_datetime(sample_return['Date'], format='%Y%m')
```

```
file:///Users/jingwen/Downloads/HW1_Group4_R.html
```

In [ ]: sample\_return

| Out[]: |     | Date           | Agric | Food  | Soda  | Beer  | Smoke  | Toys  | Fun   | Books | Hshld | ••• | Boxes |
|--------|-----|----------------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-----|-------|
|        | 0   | 2004-<br>01-01 | -2.82 | 0.94  | 5.57  | -2.90 | 2.05   | -0.11 | 0.31  | 1.10  | 2.19  |     | -1.09 |
|        | 1   | 2004-<br>02-01 | 2.10  | 6.15  | 5.79  | 2.59  | 3.82   | 3.42  | 0.81  | 1.06  | 2.99  |     | 6.51  |
|        | 2   | 2004-<br>03-01 | 4.05  | 0.74  | 4.01  | -0.21 | -4.03  | -3.63 | 2.27  | -0.22 | 1.56  |     | -0.12 |
|        | 3   | 2004-<br>04-01 | -0.21 | 3.05  | 4.66  | 0.38  | 1.91   | -5.81 | -1.81 | 0.04  | 2.22  |     | -2.34 |
|        | 4   | 2004-<br>05-01 | 1.21  | -2.49 | 2.13  | 2.25  | -12.61 | 2.89  | 0.46  | 0.37  | 1.52  |     | 4.96  |
|        | ••• |                |       |       |       |       |        |       |       |       |       |     |       |
|        | 169 | 2018-<br>02-01 | 1.20  | -6.77 | -8.39 | -6.76 | -6.62  | 0.70  | 1.12  | -3.50 | -6.27 |     | -3.76 |
|        | 170 | 2018-<br>03-01 | -4.92 | -2.25 | -0.41 | 1.27  | -1.65  | -9.23 | 0.52  | -0.19 | 2.13  |     | -1.54 |
|        | 171 | 2018-<br>04-01 | 7.99  | -3.51 | -0.79 | -4.29 | -14.16 | 6.42  | 3.09  | -0.46 | -5.35 |     | -1.39 |
|        | 172 | 2018-<br>05-01 | 1.93  | -0.86 | -1.30 | -1.19 | -1.87  | 0.81  | 9.61  | 0.70  | -0.25 |     | -3.09 |
|        | 173 | 2018-<br>06-01 | -3.07 | 6.04  | 4.45  | 4.42  | 3.07   | 5.68  | 4.91  | 2.33  | 3.59  |     | -2.51 |

174 rows × 50 columns

```
In [ ]: def industry_regression(sample_return, factor_df, factor):
            # Merge the dataframes
            merged_df = pd.merge(sample_return, factor_df, on='Date', how='inner')
            industries = sample_return.columns.drop(['Date'])
            results = []
            # Run regressions for each industry
            for industry in industries:
                Y = merged_df[industry]
                X = merged df[factor]
                X = sm.add_constant(X)
                model = sm.OLS(Y, X, missing='drop').fit()
                coefficient = model.params[factor]
                p_value = model.pvalues[factor]
                results.append([industry, coefficient, p_value])
            # Create results dataframe
            trend_df = pd.DataFrame(results, columns=['Industry', 'Coefficient', 'P-
```

```
return trend_df

# Usage:
    factor = 'Climate change: (United States)'
    climate_trend_df = industry_regression(sample_return, climate_trend, factor)

In []: climate_trend_df.sort_values('Coefficient')
```

| Out[]: |    | Industry | Coefficient | P-Value  |
|--------|----|----------|-------------|----------|
|        | 6  | Fun      | -0.088852   | 0.205598 |
|        | 44 | Banks    | -0.069811   | 0.194354 |
|        | 48 | Other    | -0.056930   | 0.243218 |
|        | 7  | Books    | -0.043041   | 0.421145 |
|        | 45 | Insur    | -0.041463   | 0.373496 |
|        | 17 | Cnstr    | -0.035283   | 0.557783 |
|        | 8  | Hshld    | -0.032415   | 0.315205 |
|        | 25 | Guns     | -0.030119   | 0.501632 |
|        | 12 | Drugs    | -0.029972   | 0.377967 |
|        | 11 | MedEq    | -0.027710   | 0.490387 |
|        | 42 | Rtail    | -0.027398   | 0.447948 |
|        | 47 | Fin      | -0.026516   | 0.633344 |
|        | 9  | Clths    | -0.021583   | 0.667079 |
|        | 14 | Rubbr    | -0.021160   | 0.683382 |
|        | 33 | BusSv    | -0.019928   | 0.611486 |
|        | 4  | Smoke    | -0.012235   | 0.775300 |
|        | 31 | Telcm    | -0.011742   | 0.753406 |
|        | 1  | Food     | -0.011209   | 0.703732 |
|        | 35 | Softw    | -0.010480   | 0.804718 |
|        | 36 | Chips    | -0.009562   | 0.851168 |
|        | 24 | Ships    | -0.009115   | 0.891442 |
|        | 26 | Gold     | -0.004580   | 0.961052 |
|        | 3  | Beer     | -0.004161   | 0.891904 |
|        | 16 | BldMt    | -0.003411   | 0.954331 |
|        | 38 | Paper    | -0.002287   | 0.958462 |
|        | 5  | Toys     | 0.001766    | 0.973994 |
|        | 37 | LabEq    | 0.002410    | 0.957619 |
|        | 43 | Meals    | 0.003535    | 0.920749 |
|        | 30 | Util     | 0.005056    | 0.872208 |
|        | 10 | Hlth     | 0.006053    | 0.893102 |
|        | 23 | Aero     | 0.006402    | 0.890037 |
|        | 46 | RIEst    | 0.007573    | 0.921700 |

|    | Industry | Coefficient | P-Value  |
|----|----------|-------------|----------|
| 34 | Hardw    | 0.008213    | 0.874629 |
| 41 | Whisi    | 0.008398    | 0.834229 |
| 2  | Soda     | 0.009164    | 0.853759 |
| 40 | Trans    | 0.016750    | 0.705673 |
| 32 | PerSv    | 0.023914    | 0.645235 |
| 15 | Txtls    | 0.030408    | 0.704113 |
| 29 | Oil      | 0.033161    | 0.515671 |
| 13 | Chems    | 0.036453    | 0.480656 |
| 19 | FabPr    | 0.038227    | 0.587833 |
| 22 | Autos    | 0.041024    | 0.558397 |
| 20 | Mach     | 0.043311    | 0.452136 |
| 21 | ElcEq    | 0.051646    | 0.332513 |
| 39 | Boxes    | 0.052983    | 0.256180 |
| 0  | Agric    | 0.077237    | 0.175905 |
| 18 | Steel    | 0.112616    | 0.131553 |
| 27 | Mines    | 0.115841    | 0.152050 |
| 28 | Coal     | 0.238858    | 0.034579 |

#### iii. Ans:

The regression results provide fascinating insights. At the forefront, the coal industry stands out with its robust positive coefficient, which indicates a pronounced relationship with climate change concerns. What's more, the p-value for coal is notably below the conventional 0.05 threshold, adding statistical confidence to this observation.

While the agriculture sector does show a positive correlation, contrary to some expectations, it does not rank highest. This suggests that while agriculture might be impacted by climate change concerns, other industries, like coal, are more directly associated.

On the negative side of the spectrum, industries such as "Fun" (presumably funds or entertainment), banks, and insurance have negative coefficients. The negative value for insurance intuitively aligns with the presumption that as concerns about climate change intensify, potential risks and liabilities for insurers might escalate. Similarly, the negative trend in banks could indicate shifts in lending or investment priorities due to heightened climate change awareness.

However, a critical observation is the p-values associated with these coefficients. Many industries, even those with more pronounced coefficients, have p-values that exceed the conventional 0.05 significance level. This calls for caution when interpreting the results. For instance, while the agriculture industry has a positive coefficient, its p-value is above 0.05, indicating that its relationship might not be statistically significant.

In summary, the results provide a nuanced perspective on how different industries might respond to escalating climate change concerns. While certain trends are evident, the statistical significance of many of these relationships remains uncertain, urging a careful and considered interpretation.

i۷.

1. Physical Risk: Drought

3 Peaks

#### October 2007:

Australia's "Millennium Drought": By 2007, Australia was deep into one of the most prolonged and severe droughts it had ever experienced, often referred to as the "Millennium Drought". October marked a time when the drought's effects were especially severe, impacting both urban areas and agriculture.

Southern U.S. Drought: States like Georgia and Alabama were facing severe drought conditions, with Georgia's Governor declaring a state of emergency in 85 counties.

#### July 2012:

U.S. Midwest Drought: The U.S. experienced one of its most extensive droughts with over 60% of the lower 48 states facing some form of drought. July was particularly hard-hit, with crops being severely affected, leading to spikes in food prices and concerns over food security.

India's Late Monsoon: India, reliant on its monsoon for agriculture, experienced a delayed monsoon in 2012. By July, there were increasing concerns about drought in many parts of the country.

#### **April 2015:**

California's Historic Drought: California was in the midst of one of its worst droughts on record. By April 2015, Governor Jerry Brown mandated a 25% reduction in urban water use, marking the state's first-ever mandatory water restrictions.

Sao Paulo Water Crisis: Brazil's most populous city, Sao Paulo, was grappling with its worst drought in decades, with reservoirs reaching critically low levels and water rationing becoming a common occurrence.

East Africa Dry Spell: Countries like Kenya, Ethiopia, and Somalia were experiencing a prolonged dry spell, impacting food and water availability and leading to concerns about famine in some areas.

```
In [ ]: drought = pd.read_csv('multiTimeline_Drought.csv', skiprows=2)
        drought['Month'] = pd.to_datetime(drought['Month'], format='%Y-%m')
        drought.rename(columns={'Month': 'Date'}, inplace=True)
In [ ]: drought
Out[]:
               Month Drought: (United States)
           0 2004-01
                                         16
           1 2004-02
                                         19
           2 2004-03
                                         24
           3 2004-04
                                         27
           4 2004-05
                                         30
        232 2023-05
                                         45
        233 2023-06
                                         49
        234 2023-07
                                         34
```

237 rows × 2 columns

**235** 2023-08

**236** 2023-09

```
In []: factor = 'Drought: (United States)'
    drought_df = industry_regression(sample_return, drought, factor)
In []: drought_df.sort_values('Coefficient')
```

42

38

| ).55 / <b>IIVI</b> |    |          |             |          |
|--------------------|----|----------|-------------|----------|
| Out[]:             |    | Industry | Coefficient | P-Value  |
|                    | 28 | Coal     | -0.109186   | 0.113227 |
|                    | 46 | RIEst    | -0.068214   | 0.144228 |
|                    | 6  | Fun      | -0.050256   | 0.239273 |
|                    | 19 | FabPr    | -0.049752   | 0.245389 |
|                    | 14 | Rubbr    | -0.047831   | 0.128358 |
|                    | 24 | Ships    | -0.044607   | 0.271265 |
|                    | 7  | Books    | -0.041616   | 0.200271 |
|                    | 29 | Oil      | -0.040568   | 0.190187 |
|                    | 23 | Aero     | -0.040536   | 0.148821 |
|                    | 32 | PerSv    | -0.037615   | 0.232951 |
|                    | 18 | Steel    | -0.036708   | 0.420052 |
|                    | 41 | Whisi    | -0.036533   | 0.133161 |
|                    | 22 | Autos    | -0.034025   | 0.424621 |
|                    | 38 | Paper    | -0.033339   | 0.210881 |
|                    | 40 | Trans    | -0.031415   | 0.243316 |
|                    | 17 | Cnstr    | -0.030587   | 0.403204 |
|                    | 9  | Clths    | -0.030506   | 0.316883 |
|                    | 27 | Mines    | -0.027434   | 0.577984 |
|                    | 39 | Boxes    | -0.026500   | 0.350693 |
|                    | 16 | BldMt    | -0.026376   | 0.466195 |
|                    | 33 | BusSv    | -0.025204   | 0.290210 |
|                    | 31 | Telcm    | -0.023030   | 0.310332 |
|                    | 47 | Fin      | -0.022769   | 0.500488 |
|                    | 21 | ElcEq    | -0.022675   | 0.484474 |
|                    | 11 | MedEq    | -0.021104   | 0.387565 |
|                    | 20 | Mach     | -0.020767   | 0.553471 |
|                    | 13 | Chems    | -0.020607   | 0.512162 |
|                    | 42 | Rtail    | -0.019847   | 0.365913 |
|                    | 43 | Meals    | -0.019724   | 0.360785 |
|                    | 45 | Insur    | -0.019436   | 0.492957 |
|                    | 15 | Txtls    | -0.019126   | 0.694494 |
|                    | 2  | Soda     | -0.018422   | 0.542160 |

|    | Industry | Coefficient | P-Value  |
|----|----------|-------------|----------|
| 5  | Toys     | -0.018205   | 0.580321 |
| 44 | Banks    | -0.018197   | 0.578811 |
| 48 | Other    | -0.017898   | 0.546935 |
| 1  | Food     | -0.015238   | 0.394893 |
| 37 | LabEq    | -0.014993   | 0.586604 |
| 10 | Hlth     | -0.013932   | 0.610921 |
| 36 | Chips    | -0.010289   | 0.739879 |
| 8  | Hshld    | -0.009554   | 0.626832 |
| 30 | Util     | -0.006430   | 0.736550 |
| 12 | Drugs    | -0.002645   | 0.898323 |
| 25 | Guns     | 0.001036    | 0.969706 |
| 3  | Beer     | 0.006121    | 0.742327 |
| 35 | Softw    | 0.009638    | 0.708454 |
| 34 | Hardw    | 0.011758    | 0.710290 |
| 0  | Agric    | 0.012179    | 0.726296 |
| 4  | Smoke    | 0.015066    | 0.563148 |
| 26 | Gold     | 0.035005    | 0.539234 |

#### Ranking Discussion:

Drought: Top 3 negatively impacted industries (based on Coefficient) under the influence of drought:

Coal RIEst Fun These industries showcase the highest negative coefficients, which might indicate that they are most negatively influenced by drought conditions. However, it's crucial to note the p-values associated with each. For instance, while Coal has the highest negative coefficient, its p-value of 0.113227 is above the standard 0.05 threshold, suggesting caution in inferring a significant relationship.

Least 3 negatively impacted industries (or those that might be positively impacted or least affected) under the influence of drought:

Gold Smoke Agric Although these industries have positive or minimal negative coefficients, suggesting a potential positive relationship or limited impact from drought, the associated p-values indicate that these relationships may not be statistically significant. For example, Gold, which has the highest positive coefficient, has a p-value of 0.539234, indicating that its correlation might not be strong.

#### Conclusion:

The disparities in how industries react to drought versus climate change underscore the intricacies of these environmental concerns. Drought, with its direct implications on water availability, can have immediate effects on industries reliant on water resources. In contrast, climate change might exert more diffuse, long-term influences shaped by policy changes, societal awareness, and market dynamics.

Furthermore, it's essential to acknowledge the geographical dimension to these impacts. An industry's reaction to drought in one region might differ dramatically from its response in another, owing to regional climatic, economic, and social differences. While the presented data offers an overarching perspective, diving deeper with a more detailed analysis—factoring in regional variations, specific industry segments, and other external determinants—would yield a more comprehensive understanding.

Moreover, the importance of considering the p-values in these regressions can't be overstated. They indicate the level of confidence we can have in these relationships, and many of the observed relationships in this data set don't meet the typical 0.05 threshold for statistical significance.

2. Transition Risk: Carbon Tax

3 Peaks

#### November 2012:

U.S. Presidential Election: The 2012 U.S. presidential election took place in November. While carbon tax was not a central issue, there was growing discussion around climate change policies and potential solutions like a carbon tax.

Hurricane Sandy: In late October 2012, the U.S. East Coast was hit by Hurricane Sandy, one of the deadliest and costliest hurricanes in U.S. history. The aftermath led to increased discussions on climate change and potential policy solutions, including a carbon tax.

#### Feburary 2016:

Carbon Pricing Leadership Coalition: In early 2016, the World Bank's Carbon Pricing Leadership Coalition gained momentum, and several countries and companies showed interest in joining. Discussions around carbon pricing mechanisms, including carbon taxes, became more prominent in international media.

U.S. Presidential Primaries: The U.S. presidential primaries were in full swing in February 2016. Some candidates, especially on the Democratic side, were vocal about climate change and mentioned mechanisms like a carbon tax as a potential solution.

#### November 2016:

U.S. Presidential Election: The 2016 U.S. presidential election saw significant debate around climate change and environmental policies. The potential for a carbon tax was discussed as a means to combat climate change.

Carbon Tax Proposals: Around this time, certain jurisdictions globally were discussing or implementing carbon pricing mechanisms. For instance, in Canada, the federal government was working on a plan to impose a national carbon price.

International Climate Agreements: The Paris Agreement was in the news during this period, with countries beginning to ratify it in late 2016. As countries looked for ways to meet their commitments, mechanisms like carbon taxes were often in the discussion.

```
In [ ]: carbon_tax = pd.read_csv('multiTimeline_Carbon_Tax.csv', skiprows=2)
        carbon tax['Month'] = pd.to datetime(carbon tax['Month'], format='%Y-%m')
        carbon_tax.rename(columns={'Month': 'Date'}, inplace=True)
In []:
        carbon tax
Out[]:
               Month Carbon tax: (United States)
           0 2004-01
                                            0
           1 2004-02
                                            0
           2 2004-03
                                            0
           3 2004-04
                                             6
           4 2004-05
                                            6
        232 2023-05
                                            17
        233 2023-06
                                            12
        234 2023-07
                                            13
        235 2023-08
                                            14
        236 2023-09
                                            21
        237 rows × 2 columns
In [ ]: factor = 'Carbon tax: (United States)'
```

carbon\_tax\_df = industry\_regression(sample\_return, carbon\_tax, factor)

In [ ]: carbon\_tax\_df.sort\_values('Coefficient')

| Out[]: |    | Industry | Coefficient | P-Value  |
|--------|----|----------|-------------|----------|
| Out[]: | 44 | Banks    | -0.036333   | 0.330254 |
|        | 29 | Oil      | -0.035068   | 0.320835 |
|        | 6  | Fun      | -0.024892   | 0.609574 |
|        | 17 | Cnstr    | -0.024068   | 0.563987 |
|        | 47 | Fin      | -0.022574   | 0.557810 |
|        | 25 | Guns     | -0.020940   | 0.500262 |
|        | 46 | RIEst    | -0.020870   | 0.695847 |
|        | 45 | Insur    | -0.019602   | 0.544017 |
|        | 8  | Hshld    | -0.019399   | 0.385924 |
|        | 12 | Drugs    | -0.018604   | 0.429809 |
|        | 4  | Smoke    | -0.017725   | 0.550531 |
|        | 42 | Rtail    | -0.015595   | 0.533216 |
|        | 1  | Food     | -0.015594   | 0.444930 |
|        | 2  | Soda     | -0.015410   | 0.654621 |
|        | 9  | Clths    | -0.015173   | 0.662573 |
|        | 3  | Beer     | -0.014856   | 0.483559 |
|        | 48 | Other    | -0.014828   | 0.661500 |
|        | 39 | Boxes    | -0.013943   | 0.666846 |
|        | 11 | MedEq    | -0.013208   | 0.635350 |
|        | 30 | Util     | -0.011630   | 0.593250 |
|        | 35 | Softw    | -0.011610   | 0.692627 |
|        | 32 | PerSv    | -0.008711   | 0.808822 |
|        | 37 | LabEq    | -0.008052   | 0.797796 |
|        | 31 | Telcm    | -0.006189   | 0.811172 |
|        | 24 | Ships    | -0.005270   | 0.909353 |
|        | 33 | BusSv    | -0.005146   | 0.849939 |
|        | 23 | Aero     | -0.004845   | 0.879978 |
|        | 43 | Meals    | -0.004819   | 0.844826 |
|        | 7  | Books    | -0.004124   | 0.911520 |
|        | 10 | Hlth     | -0.004094   | 0.895659 |
|        | 14 | Rubbr    | -0.003465   | 0.923245 |
|        | 0  | Agric    | -0.001333   | 0.973188 |

|    | Industry | Coefficient | P-Value  |
|----|----------|-------------|----------|
| 41 | Whisi    | 0.000323    | 0.990744 |
| 16 | BldMt    | 0.005796    | 0.888329 |
| 36 | Chips    | 0.014128    | 0.689068 |
| 21 | ElcEq    | 0.017032    | 0.645034 |
| 34 | Hardw    | 0.023938    | 0.506694 |
| 38 | Paper    | 0.024851    | 0.413701 |
| 40 | Trans    | 0.026933    | 0.380436 |
| 15 | Txtls    | 0.028996    | 0.601215 |
| 27 | Mines    | 0.029519    | 0.599365 |
| 20 | Mach     | 0.032347    | 0.417719 |
| 13 | Chems    | 0.032563    | 0.363076 |
| 18 | Steel    | 0.038441    | 0.458746 |
| 5  | Toys     | 0.047184    | 0.207671 |
| 22 | Autos    | 0.051232    | 0.291068 |
| 28 | Coal     | 0.056221    | 0.475456 |
| 26 | Gold     | 0.083088    | 0.200087 |
| 19 | FabPr    | 0.083935    | 0.084722 |

#### Carbon Tax:

The industries most negatively influenced by the carbon tax are Banks, Oil, and Fun (possibly standing for Funds). These industries have the highest negative coefficients, suggesting that they may experience significant declines in returns or value if a carbon tax is imposed. Notably, their associated p-values, all being above 0.05, imply that these results might lack statistical significance.

Gold, FabPr, Coal, and Autos exhibit positive coefficients, hinting that they may either benefit or face less severe negative consequences due to the carbon tax. This outcome is particularly intriguing for Coal and Autos, conventionally viewed as carbon-intensive sectors. Yet, the relatively high p-values linked with these sectors cast doubts on the results' statistical reliability.

Highlighting Agriculture (Agric), it exhibits an almost negligible negative coefficient, combined with a p-value nearing 1. This suggests that agriculture might either be scarcely impacted by the transition risk linked with a carbon tax or that the observed effect isn't statistically compelling.

In the broader picture, many industries in this dataset possess p-values exceeding 0.05, questioning the statistical significance of the observed coefficients. In standard practice, a p-value below 0.05 is typically considered to highlight that the coefficient is meaningfully different from zero. This dataset, however, doesn't present numerous coefficients where this can be asserted with confidence.

#### Comparison to Previous Results:

Coal Industry: Coal displayed a negative influence under drought conditions but reflected a positive impact concerning carbon tax. This might suggest that while environmental adversities could negatively impact the coal sector, transition risks such as carbon taxes might be less detrimental. Alternatively, some factors in the transition could even be advantageous for the industry.

Funds (Fun): This industry seemingly remains vulnerable to a range of external factors: drought, climate change, and now the carbon tax. It portrays an industry sensitive to diverse external perturbations.

Agriculture (Agric): Consistent with previous observations, Agriculture appears to be resilient, enduring minor negative influences across varying external factors.

#### Conclusion:

The implications of a carbon tax bring forth a distinct set of industry responses when compared to environmental factors like drought and climate change. Interestingly, certain sectors traditionally viewed as susceptible to a carbon tax, such as Coal, seem to potentially benefit from it. The overarching high p-values, however, imply caution when interpreting these findings.

Further insights could be garnered by examining the methodologies and data sources behind the regression, providing clarity on the underpinnings of these outcomes.

Transition risks, interwoven with overarching economic, technological, and societal transitions, present a complex landscape, making predictions inherently challenging.

## (b)

```
In [ ]: SSRN = pd.read_excel('Sentometrics_US_Media_Climate_Change_Index.xlsx', skip
In [ ]: SSRN['Date'] = pd.to_datetime(SSRN['Date'], format='%Y-%m')
In [ ]: SSRN
```

Out[]:

|     | Date           | Aggregate | cluster_Business<br>Impact | cluster_Environmental<br>Impact | cluster_Societal<br>Debate | clu |
|-----|----------------|-----------|----------------------------|---------------------------------|----------------------------|-----|
| 0   | 2003-<br>01-01 | 0.670882  | 0.724689                   | 0.634144                        | 0.522989                   |     |
| 1   | 2003-<br>02-01 | 0.599651  | 0.681383                   | 0.575126                        | 0.358989                   |     |
| 2   | 2003-<br>03-01 | 0.405426  | 0.374329                   | 0.454074                        | 0.402151                   |     |
| 3   | 2003-<br>04-01 | 0.438446  | 0.436445                   | 0.328511                        | 0.457464                   |     |
| 4   | 2003-<br>05-01 | 0.375706  | 0.414676                   | 0.294991                        | 0.344434                   |     |
| ••• |                |           |                            |                                 |                            |     |
| 231 | 2022-<br>04-01 | 2.294735  | 2.090171                   | 2.192912                        | 2.254390                   |     |
| 232 | 2022-<br>05-01 | 2.017803  | 1.566174                   | 2.342731                        | 1.936339                   |     |
| 233 | 2022-<br>06-01 | 1.766793  | 1.534178                   | 1.924679                        | 1.734123                   |     |
| 234 | 2022-<br>07-01 | 2.092065  | 1.769291                   | 2.316253                        | 1.977382                   |     |
| 235 | 2022-<br>08-01 | 2.280971  | 1.811330                   | 2.636083                        | 2.092284                   |     |

236 rows × 36 columns

```
In []: factor = 'Aggregate'
SSRN_Agg_df = industry_regression(sample_return, SSRN, factor)
```

In [ ]: SSRN\_Agg\_df

| Out[]: |    | Industry | Coefficient | P-Value  |
|--------|----|----------|-------------|----------|
|        | 0  | Agric    | 1.991740    | 0.177603 |
|        | 1  | Food     | -0.041114   | 0.957039 |
|        | 2  | Soda     | 0.788615    | 0.539878 |
|        | 3  | Beer     | 1.005327    | 0.203643 |
|        | 4  | Smoke    | -0.781538   | 0.480971 |
|        | 5  | Toys     | 0.121200    | 0.931118 |
|        | 6  | Fun      | 0.793441    | 0.663045 |
|        | 7  | Books    | 1.844820    | 0.182184 |
|        | 8  | Hshld    | 0.274569    | 0.742770 |
|        | 9  | Clths    | 0.419246    | 0.746908 |
|        | 10 | Hlth     | 0.612182    | 0.599465 |
|        | 11 | MedEq    | 2.040968    | 0.048607 |
|        | 12 | Drugs    | 0.995873    | 0.257459 |
|        | 13 | Chems    | 1.422099    | 0.287445 |
|        | 14 | Rubbr    | 0.557610    | 0.678028 |
|        | 15 | Txtls    | 2.253854    | 0.276165 |
|        | 16 | BldMt    | 0.842443    | 0.584679 |
|        | 17 | Cnstr    | 0.562348    | 0.718290 |
|        | 18 | Steel    | 1.988146    | 0.304635 |
|        | 19 | FabPr    | 0.322880    | 0.859696 |
|        | 20 | Mach     | 1.736509    | 0.243710 |
|        | 21 | ElcEq    | 1.410384    | 0.306598 |
|        | 22 | Autos    | 2.838710    | 0.116633 |
|        | 23 | Aero     | 1.527779    | 0.201446 |
|        | 24 | Ships    | 0.229439    | 0.894428 |
|        | 25 | Guns     | 0.534744    | 0.645054 |
|        | 26 | Gold     | -0.389890   | 0.872431 |
|        | 27 | Mines    | 0.629554    | 0.764309 |
|        | 28 | Coal     | -0.029474   | 0.992015 |
|        | 29 | Oil      | -0.407794   | 0.757604 |
|        | 30 | Util     | -0.383432   | 0.637389 |
|        | 31 | Telcm    | 0.483742    | 0.617046 |

|    | Industry | Coefficient | P-Value  |
|----|----------|-------------|----------|
| 32 | PerSv    | 1.295418    | 0.334877 |
| 33 | BusSv    | 1.366933    | 0.177362 |
| 34 | Hardw    | 0.839856    | 0.532920 |
| 35 | Softw    | 1.533526    | 0.161101 |
| 36 | Chips    | 2.030434    | 0.122522 |
| 37 | LabEq    | 1.606304    | 0.170130 |
| 38 | Paper    | 1.443992    | 0.202961 |
| 39 | Boxes    | 1.135077    | 0.347689 |
| 40 | Trans    | 0.956276    | 0.404541 |
| 41 | Whisi    | 0.504386    | 0.627214 |
| 42 | Rtail    | 0.688876    | 0.461146 |
| 43 | Meals    | 0.151626    | 0.869066 |
| 44 | Banks    | 1.514526    | 0.277137 |
| 45 | Insur    | 1.712373    | 0.154951 |
| 46 | RIEst    | 0.862084    | 0.665520 |
| 47 | Fin      | 1.383425    | 0.335886 |
| 48 | Other    | 0.784472    | 0.535081 |

#### **Compare SSRN Aggregate factor with Climate Change factor from Google Trend:**

When comparing the regression results of Google Trends on climate change against stock returns with the results from the SSRN aggregated climate change factors against the same portfolio of stock returns, there are some noteworthy observations:

#### Coefficient Comparison:

In the Climate Change (Google Trend) data, the "Fun" industry displays the highest negative coefficient, suggesting a strong negative relationship, whereas the "Coal" industry shows the highest positive coefficient. Contrasting this with the SSRN\_Agg data, "Smoke" represents the highest negative coefficient, while "Autos" has the highest positive coefficient. The ranking of industries from the most negative to the most positive coefficient shows differences between the two datasets, meaning the industries that are most negatively or positively affected in one dataset don't necessarily hold the same position in the other. P-Value Examination:

Typically, a p-value below 0.05 is deemed statistically significant. For the Climate Change data, only the "Coal" industry is significant at this level. In the SSRN\_Agg dataset, "MedEq" stands out as the only industry that's statistically significant just

below the 0.05 threshold. This shows a variation in which industries are statistically significant between the two datasets. Overall: The comparison of coefficients and p-values across the two datasets highlights that there's variability in the rankings of industries based on their relationship (either positive or negative) with climate change awareness and their statistical significance. This could suggest that the source or methodology of each dataset influences the perceived impact of climate change awareness on different industries.

| Out[]: |    | Industry | Coefficient | P-Value  |
|--------|----|----------|-------------|----------|
|        | 0  | Agric    | 3.436771    | 0.015435 |
|        | 1  | Food     | -0.123028   | 0.867489 |
|        | 2  | Soda     | -0.335171   | 0.787513 |
|        | 3  | Beer     | 0.842883    | 0.270230 |
|        | 4  | Smoke    | -0.929216   | 0.385618 |
|        | 5  | Toys     | -0.397365   | 0.769246 |
|        | 6  | Fun      | 1.418841    | 0.419672 |
|        | 7  | Books    | 1.220410    | 0.361670 |
|        | 8  | Hshld    | 0.103388    | 0.898236 |
|        | 9  | Clths    | 0.010200    | 0.993517 |
|        | 10 | Hlth     | 0.472804    | 0.674666 |
|        | 11 | MedEq    | 1.965413    | 0.049358 |
|        | 12 | Drugs    | 1.206656    | 0.155112 |
|        | 13 | Chems    | 1.966811    | 0.127161 |
|        | 14 | Rubbr    | -0.008990   | 0.994474 |
|        | 15 | Txtls    | 0.561819    | 0.779088 |
|        | 16 | BldMt    | 1.308686    | 0.379178 |
|        | 17 | Cnstr    | 0.640120    | 0.670797 |
|        | 18 | Steel    | 2.546459    | 0.173046 |
|        | 19 | FabPr    | 2.671883    | 0.128760 |
|        | 20 | Mach     | 2.586242    | 0.071547 |
|        | 21 | ElcEq    | 2.160566    | 0.104197 |
|        | 22 | Autos    | 2.398843    | 0.170304 |
|        | 23 | Aero     | 1.890029    | 0.101377 |
|        | 24 | Ships    | 0.099011    | 0.952736 |
|        | 25 | Guns     | 1.178958    | 0.292548 |
|        | 26 | Gold     | 0.017125    | 0.994176 |
|        | 27 | Mines    | 1.292984    | 0.523697 |
|        | 28 | Coal     | 2.106018    | 0.458865 |
|        | 29 | Oil      | 0.911522    | 0.474940 |
|        | 30 | Util     | 0.060154    | 0.939010 |
|        | 31 | Telcm    | 0.162125    | 0.862334 |

|    | Industry | Coefficient | P-Value  |
|----|----------|-------------|----------|
| 32 | PerSv    | 1.019764    | 0.432234 |
| 33 | BusSv    | 1.649886    | 0.091465 |
| 34 | Hardw    | 2.240828    | 0.083892 |
| 35 | Softw    | 1.189425    | 0.261069 |
| 36 | Chips    | 2.398891    | 0.058529 |
| 37 | LabEq    | 1.389021    | 0.219778 |
| 38 | Paper    | 1.679431    | 0.124964 |
| 39 | Boxes    | 1.164379    | 0.318648 |
| 40 | Trans    | 0.749402    | 0.499124 |
| 41 | Whisi    | 0.284617    | 0.776730 |
| 42 | Rtail    | 0.709593    | 0.431980 |
| 43 | Meals    | -0.331287   | 0.709260 |
| 44 | Banks    | 1.472370    | 0.274145 |
| 45 | Insur    | 1.370099    | 0.239294 |
| 46 | RIEst    | 0.667907    | 0.728867 |
| 47 | Fin      | 1.037699    | 0.455229 |
| 48 | Other    | 1.667757    | 0.171366 |

#### **Compare SSRN Water/Drought factor with Drought factor from Google Trend:**

Upon analyzing the regression results for the "Drought" factor against stock returns, derived from Google Trends and SSRN datasets, we observe the following:

#### Coefficient Comparison:

Google Trends Dataset (Drought): The "Coal" industry showcases the highest negative coefficient, suggesting that an increase in drought concerns from this data source negatively affects this industry the most. Conversely, the "Gold" industry displays the highest positive coefficient. SSRN Dataset (SSN\_Drought): Here, the "Smoke" industry possesses the most pronounced negative coefficient, while "Agric" emerges with the highest positive coefficient. Evidently, the industries most affected (either positively or negatively) by drought concerns aren't consistently ranked between the two datasets. P-Value Examination:

In scientific research, a p-value less than 0.05 generally indicates statistical significance. From the Google Trends data on drought, the "Coal" industry is the closest to this threshold, suggesting a trend towards significance. Within the SSRN Dataset, "Agric" stands out with a p-value just over 0.015, marking it as statistically significant at the 5%

level. Ranking Similarity: When examining the overall ranking based on coefficients, the two datasets display considerable variation in how industries are ranked in terms of sensitivity to drought concerns. Few industries consistently appear towards the top or bottom in both datasets, suggesting that while there may be underlying themes, the exact quantification of impact varies based on data source.

Broad Perspective: There exists variability between the datasets concerning which industries are most influenced by the drought factor. Such a discrepancy underlines that data sources and methodologies can shape the perceived impact of drought awareness on different sectors. This information is crucial for stakeholders to make informed decisions, considering the weight and reliability of the data source.

| Out[]: |    | Industry | Coefficient | P-Value  |
|--------|----|----------|-------------|----------|
|        | 0  | Agric    | 0.781232    | 0.634136 |
|        | 1  | Food     | 0.554557    | 0.511917 |
|        | 2  | Soda     | 0.366976    | 0.797021 |
|        | 3  | Beer     | 1.328799    | 0.129205 |
|        | 4  | Smoke    | -0.492190   | 0.689033 |
|        | 5  | Toys     | 1.196655    | 0.440987 |
|        | 6  | Fun      | -0.145782   | 0.942446 |
|        | 7  | Books    | 1.298431    | 0.397728 |
|        | 8  | Hshld    | 0.209564    | 0.821248 |
|        | 9  | Clths    | 0.467590    | 0.745419 |
|        | 10 | Hlth     | 0.174389    | 0.892690 |
|        | 11 | MedEq    | 1.422128    | 0.216728 |
|        | 12 | Drugs    | 1.189132    | 0.222416 |
|        | 13 | Chems    | 1.869678    | 0.206792 |
|        | 14 | Rubbr    | 0.236533    | 0.873806 |
|        | 15 | Txtls    | 3.260363    | 0.154807 |
|        | 16 | BldMt    | 0.206269    | 0.903953 |
|        | 17 | Cnstr    | -0.978260   | 0.571220 |
|        | 18 | Steel    | 1.229734    | 0.567208 |
|        | 19 | FabPr    | 0.600687    | 0.766718 |
|        | 20 | Mach     | 1.554929    | 0.346708 |
|        | 21 | ElcEq    | 1.406378    | 0.357896 |
|        | 22 | Autos    | 2.159585    | 0.282489 |
|        | 23 | Aero     | 0.934478    | 0.481634 |
|        | 24 | Ships    | -0.203766   | 0.915334 |
|        | 25 | Guns     | -0.336073   | 0.794017 |
|        | 26 | Gold     | 0.748760    | 0.780866 |
|        | 27 | Mines    | 1.242802    | 0.593287 |
|        | 28 | Coal     | -1.033327   | 0.751592 |
|        | 29 | Oil      | -0.252386   | 0.863209 |
|        | 30 | Util     | -0.460055   | 0.609917 |
|        | 31 | Telcm    | 0.187484    | 0.861263 |

|    | Industry | Coefficient | P-Value  |
|----|----------|-------------|----------|
| 32 | PerSv    | 0.217623    | 0.883964 |
| 33 | BusSv    | 0.844702    | 0.452912 |
| 34 | Hardw    | 0.672926    | 0.652300 |
| 35 | Softw    | 1.425724    | 0.240282 |
| 36 | Chips    | 1.189200    | 0.415732 |
| 37 | LabEq    | 1.322234    | 0.308983 |
| 38 | Paper    | 1.420025    | 0.258959 |
| 39 | Boxes    | 0.604422    | 0.652248 |
| 40 | Trans    | 0.248796    | 0.845049 |
| 41 | Whisi    | 0.202672    | 0.860308 |
| 42 | Rtail    | 0.486767    | 0.638691 |
| 43 | Meals    | -0.209098   | 0.837517 |
| 44 | Banks    | 0.432728    | 0.779742 |
| 45 | Insur    | 0.876478    | 0.512357 |
| 46 | RIEst    | -0.069432   | 0.974951 |
| 47 | Fin      | 0.770548    | 0.629078 |
| 48 | Other    | -0.130292   | 0.925998 |

## **Compare SSRN Carbon Tax factor with Carbon Tax factor from Google Trend:**

Upon reviewing the regression results for the "Carbon\_tax" factor against stock returns, derived from Google Trends and the SSRN datasets, the following patterns emerge:

## Coefficient Comparison:

Google Trends Dataset (Carbon\_tax): The "Banks" and "Oil" industries both possess the highest negative coefficients. This implies that heightened concerns about carbon taxes (as indicated by search trends) tend to negatively affect these industries the most. In contrast, the "Gold" and "FabPr" industries demonstrate the most substantial positive coefficients.

SSRN Dataset (SSN\_Carbon\_Tax): The "Coal" and "Cnstr" industries exhibit the highest negative coefficients, suggesting that increased concerns about carbon taxes sourced from SSRN impact these sectors the most. The "Txtls" and "Autos" industries, conversely, present the strongest positive coefficients.

It's notable that the industries affected most markedly (be it positively or negatively) by carbon tax concerns are not consistent between the two datasets.

P-Value Examination:

A p-value below 0.05 is commonly used to determine statistical significance.

From the Google Trends dataset, "FabPr" approaches this threshold, hinting at potential statistical significance.

In the SSRN Dataset, "Beer" and "MedEq" come close to this benchmark. Notably, "Txtls" from the SSRN dataset is statistically significant, with a p-value just above 0.15.

Ranking Similarity: A holistic view of the rankings based on coefficients reveals considerable disparities between the datasets. The two sources differ on which industries are most impacted by carbon tax concerns. Only a handful of industries maintain a similar position in both datasets' rankings, illustrating that the exact quantification of impact is contingent upon the data source.

Broad Perspective: There's clear variability between the datasets in terms of which industries are most influenced by carbon tax concerns. This disparity accentuates the influence of data source and methodologies on perceptions of how carbon tax awareness affects different sectors. This differential is essential for stakeholders, as they need to weigh the significance and reliability of each data source when making informed decisions.

## **Overall Comparison**

Based on the three sets of regression analyses comparing Google Trends and SSRN datasets for various environmental concerns against stock returns, we can draw the following general observations:

Variability in Coefficient Magnitudes:

The two datasets, Google Trends and SSRN, often show variations in the magnitude and direction of coefficients for the same industries. This underscores that the impact of environmental concerns on stock returns can be perceived differently depending on the data source or methodology. P-Value Distributions:

P-values, which indicate the statistical significance of coefficients, vary between the two datasets. While certain industries may appear significant in one dataset, they might not be in the other. This suggests that while the concerns (like climate change or carbon tax) are universally acknowledged, their quantified effects on specific industries might be more nuanced and context-dependent. Ranking Disparities:

There's a clear distinction in the rankings of industries based on the coefficients across the two datasets. Few industries maintain consistent rankings, illustrating the importance of cross-referencing multiple sources when trying to understand the impact of external concerns on stock returns. Source Characteristics:

Google Trends captures real-time interest from the broader public, potentially reflecting immediate sentiments and concerns. In contrast, SSRN, an academic repository, might reflect more studied and deliberate perspectives. This could explain the differences, as public sentiment can be volatile, while academic views might be based on more extended historical data or detailed analyses. Broad Implications:

For stakeholders and decision-makers, the disparity between the two datasets emphasizes the need for a comprehensive approach. Relying on a single data source might lead to skewed perceptions. A holistic analysis that considers multiple datasets and methodologies will yield a more rounded understanding. Consistency in Certain Sectors:

Although there are discrepancies, some industries consistently show sensitivity (either positive or negative) to environmental concerns across both datasets. This implies that certain sectors might inherently be more susceptible to these external factors, regardless of the data source. In summary, while both Google Trends and SSRN offer valuable insights into the relationship between environmental concerns and stock returns, they present different angles. This difference is likely due to the nature of the data they represent: immediate public sentiment versus academic perspectives. For a balanced view, it's crucial to consider multiple sources and recognize the inherent strengths and limitations of each.

```
In []: # Align dataframes by index
    all_dfs = [climate_trend_df, SSRN_Agg_df, drought_df, SSRN_drought_df, carbo
    aligned_dfs = [df.set_index(climate_trend_df.index) for df in all_dfs] # As
    # Concatenate side by side
    result_df = pd.concat(aligned_dfs, axis=1)
In []: with pd.ExcelWriter('climate_risk_output.xlsx') as writer:
    result_df.to_excel(writer, sheet_name='Comparison')
```

 Another member of the group chose to focus on Earthquakes as physical risk and Carbon neutrality as transition risk. See below for information

ΕK

```
In []: df = pd.read_csv('49_Industry_Portfolios.CSV', skiprows=11)

def process_table(data):
    data = data.rename(columns ={'Unnamed: 0':'Date'})
    data.set_index('Date', inplace=True)
    for col in data.columns:
        data[col] = data[col].astype(float)
    data = data.replace([-99.99, -999], float('nan'))
    return data

avg_value_weighted_return_M = process_table(df.iloc[:1154])
```

```
avg_equal_weighted_return_M = process_table(df.iloc[1157:2310])
        avg value weighted return Y = process table(df.iloc[2313:2407])
        avg_equal_weighted_return_Y = process_table(df.iloc[2411:2504])
        num of firms in port = process table(df.iloc[2507:3660])
        avg firm size = process table(df.iloc[3663:4816])
        sum_of_BE_over_sum_of_ME = process_table(df.iloc[4819:4915])
        value weighted average of BE over ME = process table(df.iloc[4918:5014])
In [ ]: avg value weighted return M.index = pd.to datetime(avg value weighted return
        start date = pd.to datetime('200401', format='%Y%m')
        end_date = pd.to_datetime('201806', format='%Y%m')
        industry returns = avg value weighted return M.loc[(avg value weighted retur
        industry returns=industry returns/100
In [ ]: cumulative_returns = industry_returns.apply(lambda x: (1 + x).cumprod() - 1)
        final cumulative returns = cumulative returns.iloc[-1]*100
        sorted_industries = final_cumulative_returns.sort_values()
        lowest performing = sorted industries.head(3)
        highest performing = sorted industries.tail(3)
In []: climate change trend=pd.read csv('multiTimeline.CSV')
        climate change trend.columns = climate change trend.iloc[0]
        climate change trend = climate change trend.iloc[1:]
        climate_change_trend = climate_change_trend.rename(columns={climate_change_t
        climate change trend['Climate Change'] = pd.to numeric(climate change trend[
        climate change trend.index = pd.to datetime(climate change trend.index, form
In [ ]: industry_returns=industry_returns*100
        merged df = industry returns.merge(climate change trend, left index=True, ri
```

# Related to physical risk - Earthquake

```
In []: earthquake_trend=pd.read_csv('multiTimeline2.CSV')
    earthquake_trend.columns = earthquake_trend.iloc[0]
    earthquake_trend = earthquake_trend.iloc[1:]
    earthquake_trend = earthquake_trend.rename(columns={earthquake_trend['Earthquake'] = pd.to_numeric(earthquake_trend['Earthquake'] earthquake_trend.index = pd.to_datetime(earthquake_trend.index, format='%Y-%
In []: highest_values = earthquake_trend.nlargest(5, earthquake_trend.columns[0])
    lowest_values = earthquake_trend.nsmallest(5, earthquake_trend.columns[0])
    print(" Highest Values:")
    print(highest_values)
```

```
print(" Lowest Values:")
 print(lowest_values)
Highest Values:
Mois
            Earthquake
2011-03-01
                   100
2019-07-01
                    91
2011-08-01
                    73
                    71
2010-01-01
                    59
2017-09-01
Lowest Values:
            Earthquake
Mois
2004-08-01
                     5
                     5
2006-07-01
                     5
2007-06-01
2013-07-01
                     5
2022-08-01
                     5
```

- July 2019: Ridgecrest earthquakes, classified as "violent" with an estimated 20 million people who experienced the foreshock and 30 million the mainshock. Total damage estimated around 5.3 billion dollars.
- August 2011: Colorado and Virginia earthquakes, classified as "very strong" and "severe". The latter was felt across more than a dozen states and in several Canadian provinces, more than any other quake in US history.
- January 2010: Eureka earthquake in California.

results\_df = results\_df.sort\_values(by='Coefficient', ascending=False)
results\_df

| Out[]: |    | Industry | Coefficient | P-Value  |
|--------|----|----------|-------------|----------|
|        | 24 | Ships    | 8.393297    | 0.077291 |
|        | 26 | Gold     | 7.321646    | 0.273853 |
|        | 5  | Toys     | 3.744013    | 0.332720 |
|        | 2  | Soda     | 3.242719    | 0.360848 |
|        | 6  | Fun      | 3.090442    | 0.538569 |
|        | 16 | BldMt    | 2.969922    | 0.485034 |
|        | 4  | Smoke    | 2.889265    | 0.344970 |
|        | 20 | Mach     | 2.603538    | 0.527190 |
|        | 41 | Whisi    | 2.511577    | 0.380618 |
|        | 19 | FabPr    | 2.398755    | 0.634165 |
|        | 14 | Rubbr    | 2.388645    | 0.519254 |
|        | 43 | Meals    | 2.269230    | 0.370917 |
|        | 1  | Food     | 2.253877    | 0.283893 |
|        | 48 | Other    | 2.237240    | 0.521612 |
|        | 28 | Coal     | 2.060370    | 0.799914 |
|        | 21 | ElcEq    | 1.953978    | 0.608267 |
|        | 22 | Autos    | 1.832644    | 0.714568 |
|        | 17 | Cnstr    | 1.697749    | 0.693164 |
|        | 40 | Trans    | 1.437365    | 0.650147 |
|        | 23 | Aero     | 1.401804    | 0.671767 |
|        | 46 | RIEst    | 1.266074    | 0.818125 |
|        | 44 | Banks    | 1.006210    | 0.793981 |
|        | 13 | Chems    | 1.005443    | 0.785593 |
|        | 29 | Oil      | 0.993410    | 0.785345 |
|        | 45 | Insur    | 0.987536    | 0.766995 |
|        | 7  | Books    | 0.652655    | 0.864584 |
|        | 8  | Hshld    | 0.445792    | 0.846946 |
|        | 42 | Rtail    | 0.111524    | 0.965552 |
|        | 12 | Drugs    | 0.057111    | 0.981265 |
|        | 3  | Beer     | 0.027804    | 0.989862 |
|        | 25 | Guns     | -0.095869   | 0.976140 |
|        | 37 | LabEq    | -0.168161   | 0.958621 |

|    | Industry | Coefficient | P-Value  |
|----|----------|-------------|----------|
| 38 | Paper    | -0.210718   | 0.946464 |
| 34 | Hardw    | -0.241793   | 0.948175 |
| 30 | Util     | -0.257724   | 0.908652 |
| 15 | Txtls    | -0.396688   | 0.944739 |
| 33 | BusSv    | -0.758417   | 0.786819 |
| 11 | MedEq    | -0.807404   | 0.778668 |
| 10 | Hlth     | -0.962772   | 0.764842 |
| 31 | Telcm    | -1.133154   | 0.671349 |
| 9  | Clths    | -1.145812   | 0.749331 |
| 32 | PerSv    | -1.448937   | 0.696307 |
| 47 | Fin      | -2.541714   | 0.522153 |
| 39 | Boxes    | -3.093262   | 0.353888 |
| 36 | Chips    | -3.212334   | 0.377221 |
| 18 | Steel    | -3.469138   | 0.516783 |
| 35 | Softw    | -3.517526   | 0.244645 |
| 27 | Mines    | -4.657361   | 0.421282 |
| 0  | Agric    | -5.930478   | 0.145704 |

## Ranking Discussion:

Earthquakes: Top 3 negatively impacted industries (based on Coefficient):

## Agric Mines Softw

These industries showcase the highest negative coefficients, which might indicate that they are most negatively influenced by earthquakes. However, it's crucial to note the p-values associated with each. For instance, while Agricultural sector has the highest negative coefficient, its p-value of 0.1457 is above the standard 0.05 threshold, suggesting caution in inferring a significant relationship.

Top 3 positively impacted industries:

## Ships Gold Toys

Although these industries have positive coefficients, suggesting a potential positive relationship or limited impact from earthquakes, the associated p-values indicate that these relationships may not be statistically significant. However, for Shipping iindustry, we see a p-value of 0.0773, which while above 0.05 threshold is still close enough to infer a potiental relationship.

#### Conclusion:

Having the agricultural and lining industry suffering the most from earthquakes is conceptually very logical as both activities depend on earth quality and health. On the other hand, shipping industry does not depend on land, and it is logical to assume that if land routes/airports were to be damaged by earthquakes then maritime routes would appear as most attractive. The same can be though of gold which is often seen as a refuge commodity.

## Related to transition risk - Carbon Neutrality

```
In [ ]: carbon_neutrality_trend=pd.read_csv('multiTimeline3.CSV')
        carbon_neutrality_trend.columns = carbon_neutrality_trend.iloc[0]
        carbon neutrality trend = carbon neutrality trend.iloc[1:]
        carbon_neutrality_trend = carbon_neutrality_trend.rename(columns={carbon_neutrality_trend.rename(columns=
        carbon_neutrality_trend['Carbon Neutrality'] = pd.to_numeric(carbon_neutrali
        carbon neutrality trend.index = pd.to datetime(carbon neutrality trend.index
In [ ]: highest_values = carbon_neutrality_trend.nlargest(5, carbon_neutrality_trend
        lowest_values = carbon_neutrality_trend.nsmallest(5, carbon_neutrality_trend
        print(" Highest Values:")
        print(highest_values)
        print(" Lowest Values:")
        print(lowest_values)
        Highest Values:
       Mois
                   Carbon Neutrality
       2004-01-01
                                  100
       2005-07-01
                                   84
       2004-07-01
                                   82
       2004-12-01
                                   76
       2004-10-01
        Lowest Values:
       Mois
                   Carbon Neutrality
       2018-07-01
                                    6
       2017-06-01
       2017-07-01
                                    6
       2017-09-01
                                    6
       2018-06-01
In [ ]: merged_df = industry_returns.merge(carbon_neutrality_trend, left_index=True,
        industry_names = industry_returns.columns
In [ ]:
        results_df = pd.DataFrame(columns=['Industry', 'Coefficient', 'P-Value'])
        for industry_name in industry_names:
            industry_data = pd.DataFrame({'Returns': industry_returns[industry_name]
                                            'Carbon neutrality topic score': carbon_ne
```

```
industry_data = industry_data.dropna()

X = sm.add_constant(industry_data['Carbon neutrality topic score'])
y = industry_data['Returns']
model = sm.OLS(y, X).fit()

coefficient = model.params['Carbon neutrality topic score']
p_value = model.pvalues['Carbon neutrality topic score']

results_df = results_df.append({'Industry': industry_name, 'Coefficient'}

results_df = results_df.sort_values(by='Coefficient', ascending=False)

results_df
```

| Out[]: |    | Industry | Coefficient | P-Value  |
|--------|----|----------|-------------|----------|
|        | 28 | Coal     | 6.550335    | 0.163909 |
|        | 29 | Oil      | 2.446433    | 0.246990 |
|        | 27 | Mines    | 2.432351    | 0.469397 |
|        | 0  | Agric    | 1.187312    | 0.616757 |
|        | 18 | Steel    | 1.138987    | 0.713949 |
|        | 30 | Util     | 1.109309    | 0.394362 |
|        | 39 | Boxes    | 0.557214    | 0.773814 |
|        | 4  | Smoke    | 0.198374    | 0.911167 |
|        | 19 | FabPr    | -0.090373   | 0.975367 |
|        | 17 | Cnstr    | -0.395606   | 0.874167 |
|        | 8  | Hshld    | -0.451789   | 0.736083 |
|        | 46 | RIEst    | -0.501009   | 0.875427 |
|        | 21 | ElcEq    | -0.717261   | 0.745887 |
|        | 1  | Food     | -0.753144   | 0.537743 |
|        | 43 | Meals    | -0.853299   | 0.562412 |
|        | 47 | Fin      | -0.947914   | 0.681010 |
|        | 41 | Whisi    | -1.060974   | 0.523636 |
|        | 32 | PerSv    | -1.132054   | 0.599256 |
|        | 48 | Other    | -1.183931   | 0.559072 |
|        | 26 | Gold     | -1.218399   | 0.754121 |
|        | 16 | BldMt    | -1.227581   | 0.619159 |
|        | 10 | Hlth     | -1.270446   | 0.496245 |
|        | 20 | Mach     | -1.275201   | 0.593710 |
|        | 2  | Soda     | -1.352206   | 0.511782 |
|        | 13 | Chems    | -1.380414   | 0.519716 |
|        | 25 | Guns     | -1.519623   | 0.413607 |
|        | 31 | Telcm    | -1.593881   | 0.303233 |
|        | 40 | Trans    | -1.750939   | 0.340667 |
|        | 37 | LabEq    | -1.782373   | 0.342791 |
|        | 23 | Aero     | -1.814934   | 0.344081 |
|        | 5  | Toys     | -1.844305   | 0.411221 |
|        | 9  | Clths    | -1.931901   | 0.352799 |

|    | Industry | Coefficient | P-Value  |
|----|----------|-------------|----------|
| 11 | MedEq    | -1.984668   | 0.233041 |
| 34 | Hardw    | -1.991919   | 0.355663 |
| 24 | Ships    | -2.075570   | 0.453346 |
| 42 | Rtail    | -2.106324   | 0.158732 |
| 12 | Drugs    | -2.191311   | 0.119285 |
| 45 | Insur    | -2.194587   | 0.255772 |
| 14 | Rubbr    | -2.194866   | 0.307154 |
| 3  | Beer     | -2.242241   | 0.076136 |
| 33 | BusSv    | -2.266846   | 0.162584 |
| 15 | Txtls    | -2.349995   | 0.478977 |
| 35 | Softw    | -2.550925   | 0.145602 |
| 44 | Banks    | -2.701995   | 0.226046 |
| 38 | Paper    | -2.755675   | 0.129029 |
| 36 | Chips    | -3.606141   | 0.086680 |
| 7  | Books    | -3.812097   | 0.084796 |
| 22 | Autos    | -4.000754   | 0.167876 |
| 6  | Fun      | -4.389828   | 0.131262 |

## Ranking Discussion:

Carbon neutrality: Top 3 negatively impacted industries (based on Coefficient):

### Fun Autos Books

These industries showcase the highest negative coefficients, which might indicate that they are most negatively influenced by carbon nautrality and transition risks. However, it's crucial to note the p-values associated with each. For instance, while the Fun sector has the highest negative coefficient, its p-value of 0.1312 is above the standard 0.05 threshold, suggesting caution in inferring a significant relationship.

Top 3 positively impacted industries:

### Coal Oil Mines

Although these industries have positive coefficients, suggesting a potential positive relationship or limited impact from earthquakes, the associated p-values indicate that these relationships may not be statistically significant.

## Conclusion:

While we find logical result that the automobile sector is one of the most negatively impacted despite high p-value, we also find contradictory results with coal, mining and oil industry being positively impacted by carbon neutrality. This might suggest that these industries are not really impacted by transition risks.

In [ ]: