9.2.2 对坐标的曲面积分

基础过关

一、填空题

1.设Σ为平面 $z = 3 \perp x^2 + y^2 \le 1$ 的区域,方向朝下,则

$$\iint_{\Sigma} (z+1) dxdy = \underline{\qquad}, \quad \iint_{\Sigma} (z+1) dydz = \underline{\qquad},$$

$$\iint_{\Sigma} (z+1) dzdx = \underline{\qquad}.$$

2. 设 Σ 为柱面 $x^2+y^2=1$ ($x\geq 0$)被平面z=0,z=1所截得的第一卦限部分的前侧,则

$$\iint_{\Sigma} x dx dy = \underline{\qquad}, \quad \iint_{\Sigma} x dy dz = \underline{\qquad}, \quad \iint_{\Sigma} x dz dx = \underline{\qquad}.$$

3. 设 Σ 为球面 $x^2 + y^2 + z^2 = a^2(a > 0)$ 的外侧,则 $\bigoplus_{\Sigma} (x^2 + y^2 + z^2) dxdy = _____;$

$$\bigoplus_{S} \left(x^2 + y^2 + z^2 \right) dS = \underline{\qquad}.$$

二、计算曲面积分
$$I = \iint_{\Sigma} (x+2) dy dz + z dx dy$$
, 其中

1. Σ 是由A(1,0,0),B(0,1,0),C(0,0,1)为顶点的三角形平面的上侧;

2. Σ为半球面
$$z = \sqrt{4 - x^2 - y^2}$$
 的上侧.

三、设曲面 Σ : $x^2 + y^2 + 4z^2 = 4$, $(z \ge 0)$ 的上侧,求 $I = \iint_{\Sigma} \sqrt{4 - x^2 - 4z^2} dxdy$.

四、流速 $\vec{v}=(x,2xy,-2z)$ 的流体,求其单位时间经过锥面 $z=\sqrt{x^2+y^2}$ (0 $\leq z < h$)的上侧流向下侧的流量.

能力提升

一、设f(u)是连续函数, Σ 是平面2x-2y+z=4上第四卦限部分的上侧,计算曲面积分 $I = \iint_{\Sigma} (x+(y-z)f(xyz)) dydz + (y+(x-z)f(xyz)) dzdx + (z+2(x-y)f(xyz)) dxdy.$

- 二、计算曲面积分 $I = \bigoplus_{\Sigma} \frac{1}{x} dydz + \frac{1}{y} dzdx + \frac{1}{z} dxdy$, 其中
- 1. Σ 为球面 $x^2 + y^2 + z^2 = a^2$ 的外侧;

2. Σ 为椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 的外侧.

延伸探究

一、设Σ为椭球面
$$\frac{x^2}{2} + \frac{y^2}{2} + z^2 = 1$$
($z \ge 0$), $P \in \Sigma$, Π 为Σ 在点 P 处的切平面, $\rho(x, y.z)$ 为

原点到平面
$$\Pi$$
的距离,求 $\iint_{\Sigma} \frac{z}{\rho(x,y,z)} dS$.