

École Mines-Télécom

Texture synthesis From Pseudo Optimizer (PO) to Optimal Transport (OT)

Group 1 - Topic 4:
DI MARIA, Franco Martin
PISTONE WATHELET, Sofia

Index

1. Pseudo Optimizer (PO)

- 1.1. Installation problems
- 1.2. Preliminary results

2. Optimal Transport (OT)

- 2.1. Algorithm
- 2.2. Histogram matching

3. Experiments

4. Conclusions

1. Fast Texture Synthesis via Pseudo Optimizer (PO)

Wu Shi, Yu Qiao Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 5498-5507

1. Pseudo Optimizer (PO)

2.1. Installation problems

1. Pseudo Optimizer (PO)

2.2. Preliminary results

Pseudo optimizer: improved_model.py

Train size = 38 (flower images) | Epochs = 10 | Iterations = 100

2. Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport

Eric Risser arXiv:2010.14702 [cs.GR]

2. Optimal Transport (OT)

2.1. Algorithm

2. Optimal Transport (OT)

2.1. Algorithm

2. Optimal Transport (OT)

2.2 Histogram matching

Accelerate this process by applying

- . PCA,
- . Cholesky decomposition,
- . **or Symmetric eigenvalues** on the covariance matrix of the histogram

3.1. Optimal Transport (OT)

passes parameter

Number of times to loop over each of the 5 layers in VGG-19

3.1. Optimal Transport (OT)

Total number of iterations

Total number of iterations to optimize.

3.1. Optimal Transport (OT)

Histogram model

Histogram matching strategy.

3.2. Pseudo Optimizer (PO)

Before: Train size = 38 (flower images) | Epochs = 10 | Iterations = 100

After: Train size = 38 (flower images) | Epochs = 100 | Iterations = 500

3.2. Pseudo Optimizer (PO)

Before

<u>After</u>

3. Conclusions

4. Conclusions

PO vs OT

4.1. Comparison

PO vs OT

4.1. Comparison

For the images that were challenging for the PO:

Thanks for your attention! Any questions?

