International Rectifier

IRLL024N

HEXFET® Power MOSFET

- Surface Mount
- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- Fast Switching
- Fully Avalanche Rated

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The SOT-223 package is designed for surface-mount using vapor phase, infra red, or wave soldering techniques. Its unique package design allows for easy automatic pick-and-place as with other SOT or SOIC packages but has the added advantage of improved thermal performance due to an enlarged tab for heatsinking. Power dissipation of 1.0W is possible in a typical surface mount application.

Absolute Maximum Ratings

	Devementes	May	I Indian	
	Parameter	Max.	Units	
$I_D @ T_A = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V**	4.4		
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V*	3.1	A	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V*	2.5		
I _{DM}	Pulsed Drain Current ①	12		
P _D @T _A = 25°C	Power Dissipation (PCB Mount)**	2.1	W	
P _D @T _A = 25°C	Power Dissipation (PCB Mount)*	1.0	W	
	Linear Derating Factor (PCB Mount)*	8.3	mW/°C	
V_{GS}	Gate-to-Source Voltage	± 16	V	
E _{AS}	Single Pulse Avalanche Energy®	120	mJ	
I _{AR}	Avalanche Current①	3.1	А	
E _{AR}	Repetitive Avalanche Energy①*	0.1	mJ	
dv/dt	Peak Diode Recovery dv/dt ③	5.0	V/ns	
T _{J.} T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Amb. (PCB Mount, steady state)*	90	120	°C/W
$R_{\theta JA}$	Junction-to-Amb. (PCB Mount, steady state)**	50	60	C/VV

^{*} When mounted on FR-4 board using minimum recommended footprint.

^{**} When mounted on 1 inch square copper board, for comparison with other SMD devices.

IRLL024N

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.048		V/°C	Reference to 25°C, I _D = 1mA
				0.065		V _{GS} = 10V, I _D = 3.1A ④
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.080	Ω	V _{GS} = 5.0V, I _D = 2.5A ④
				0.100	1	V _{GS} = 4.0V, I _D = 1.6A ④
V _{GS(th)}	Gate Threshold Voltage	1.0		2.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
g _{fs}	Forward Transconductance	3.3			S	$V_{DS} = 25V, I_{D} = 1.9 A$
1	Drain-to-Source Leakage Current			25	μA	$V_{DS} = 55V, V_{GS} = 0V$
I _{DSS}	Dialii-to-Source Leakage Current			250	μΑ	$V_{DS} = 44V, V_{GS} = 0V, T_{J} = 125$ °C
1	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 16V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	IIA	V _{GS} = -16V
Qg	Total Gate Charge		10.4	15.6		I _D = 1.9A
Q _{gs}	Gate-to-Source Charge		1.5	2.3	nC	$V_{DS} = 44V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		5.5	8.3		V_{GS} = 5.0V, See Fig. 6 and 9 @
t _{d(on)}	Turn-On Delay Time		7.4			$V_{DD} = 28V$
t _r	Rise Time		21		ns	$I_D = 1.9A$
t _{d(off)}	Turn-Off Delay Time		18		113	$R_G = 24 \Omega$
t _f	Fall Time		25			$R_D = 15 \Omega$, See Fig. 10 \oplus
C _{iss}	Input Capacitance		510			$V_{GS} = 0V$
Coss	Output Capacitance		140		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		58			f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current	31	0.4		MOSFET symbol P	
	(Body Diode)			showing the		
I _{SM}	Pulsed Source Current			12	A	integral reverse
	(Body Diode) ①	(Body Diode) ①			'	p-n junction diode.
V _{SD}	Diode Forward Voltage			1.0	V	T _J = 25°C, I _S = 1.9A, V _{GS} = 0V ④
t _{rr}	Reverse Recovery Time		39	58	ns	$T_J = 25$ °C, $I_F = 1.9A$
Q _{rr}	Reverse RecoveryCharge		63	94	nC	di/dt = 100A/μs ④
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $\begin{tabular}{ll} @ Starting $T_J=25^{\circ}$C, $L=25$ mH \\ $R_G=25\Omega,$ $I_{AS}=3.1A.$ (See Figure 12) \\ \end{tabular}$
- $\label{eq:loss} \begin{array}{l} \mbox{ } 3 \mbox{ } I_{SD} \leq 1.9 \mbox{A, di/dt} \leq 270 \mbox{A/\mu s, V}_{DD} \leq V_{(BR)DSS}, \\ \mbox{ } T_{J} \leq 150 \mbox{°C} \end{array}$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

IRLL024N

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

IRLL024N International Rectifier

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

www.irf.com

6

International TOR Rectifier

IRLL024N

Package Outline SOT-223 (TO-261AA) Outline

Part Marking Information

SOT-223 EXAMPLE: THIS IS AN IRFL014

IRLL024N

International IOR Rectifier

Tape & Reel Information

SOT-223 Outline

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541
- 3. EACH Ø330.00 (13.00) REEL CONTAINS 2,500 DEVICES.

NOTES

- OUTLINE COMFORMS TO EIA-418-1.
 CONTROLLING DIMENSION: MILLIMETER...

- DIMENSION MEASURED @ HUB.
 INCLUDES FLANGE DISTORTION @ OUTER EDGE.

International IOR Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936 http://www.irf.com/ Data and specifications subject to change without notice. 6/99