Практика по предмету Теория Турбомашин

Семакина Елена Юрьевна

Автор конспекта:

Дмитриев Артем Константинович artem020503@gmail.com

СОДЕРЖАНИЕ

1.	КПД турбины	2
2.	Классификация потерь энергии в турбомашинах	4

1. КПД турбины

Адиабатический КПД

Оценивает гидравлическое совершенство турбины:

$$\eta_{\mathrm{a}\mathrm{J}} = \frac{L_{1} - \Delta L_{\mathrm{HA}} - \Delta L_{\mathrm{PK}}}{L_{t}}$$

Окружной КПД - Важнейший

Характеризует эффективность турбины по величине энергии переданной на лопатки РК. Он характеризует совершенство проточной части и учитывает потери с выходной скоростью:

$$\eta_{u} = \frac{L_{u}}{L_{t}} = \frac{u_{1}c_{1u} - u_{2}c_{2u}}{\frac{kR}{k-1}T_{0}^{*}\left[1 - \left(\frac{p_{2}}{p_{0}^{*}}\right)^{\frac{k-1}{k}}\right]}$$

Учитывает потери в НЛ и РЛ и с выходной скоростью:

$$\eta_u = \frac{H_u}{H_0} \approx \frac{H_0 - \Delta H_1 - \Delta H_2 - H_{\mathrm{BC}}}{H_0}$$

Окружной КПД по параметрам торможения характеризует степень гидродинамического совершенства турбинной ступени:

$$\eta_u^* = \frac{H_u}{H_0^*} \approx \frac{H_0 - \Delta H_1 - \Delta H_2 - H_{\mathrm{BC}}}{H_0 - H_{\mathrm{BC}}}$$

Адиабатический КПД также характеризует степень гидродинамического совершенства турбин:

$$\eta_{\mathrm{ag}} = \frac{H}{H_0} \approx \frac{H_0 - \Delta H_1 - \Delta H_2}{H_0}$$

Внутренний КПД (мощностной)

Характеризует эффективность турбины по величине энергии переданной на выходной вал турбины:

$$\eta_{ ext{a} extsf{i}} = rac{L_e}{L_t}$$

2. Классификация потерь энергии в турбомашинах

Потери энергии:

- Внутренние:
 - *Сопровождается изменением состояния* рабочего тела. Связаны с диссипацией энергии и ростом энтропии.
 - 1. Трение о поверхности проточной части;
 - 2. Взаимное влияние слоёв потока;
 - 3. Утечки через зазоры;
 - 4. Волновые потери.
- Внешние:
 - Все потери, которые не могут непосредственно влиять на состояние рабочего тела.
 - 1. Трение в подшипниках;
 - 2. Работа вспомогательных механизмов;
 - 3. Утечки через внешние уполтнения вала.

Количественные характеристики потерь энергии:

• Коэффициент потерь энергии в решётке:

$$\zeta = \frac{\Delta H}{H^*}$$

- Методика осреднения параметров потока:
 - Расходная составляющая скорости:

$$\overline{W_{2z}} = \frac{1}{t} \int_{u_0}^{u_0 + t} w_2 \sin(\beta_2) \, \mathrm{d}u$$

Количество движения:

$$\overline{Gw_2} = \frac{1}{t} \int_{u_0}^{u_0+t} \rho w_{2z} w_2 \,\mathrm{d}u$$

Кинетическая энергия:

$$\frac{1}{2}\overline{Gw_2} = \frac{1}{t} \int_{u_0}^{u_0+t} \rho w_{2z} w_2^2 \, \mathrm{d}u$$

где u_0 - начальная точка по дуге

t - шаг решётки

Связь КПД с силовыми коэффициентами

Потери энергии в решётке

$$\Delta N_1 = N_{t1} - N_1 = tw\,\Delta p$$

Влияние углов поворота в решётке

- Малоизогнутые:
 - Небольшие коэффициенты подъёмной силы C_{y} .
 - Главный фактор, влияющий на потерю энергии относительный шаг t.
- Сильно изогнутые:
 - Коэффициенты профильного сопротивления C_y значительно возрастает по сравнению с полу?
 - Повышенные потери энергии.

Влияние углов поворота и степени конфузорности