sunt
$$11: \frac{4 \times 6}{5} = \frac{590}{-2}$$
 (sunt proportionale)

$$=$$
 $x = \frac{5\%}{-2}$

imbouiex îm ec. elipsei:
$$4\left(\frac{590}{-2}\right)^2 + 5y^2 = 120$$

imbaurese îm ec.ty >> I. 4x-(-5) + 5y.2 = 120

$$\frac{1}{1}$$
. $4x(5) + 5 \cdot y(-2) = (20)$ $20x - 10y = (20)$ $2x - y = 12$

distanta dintre ele: pot. EI A (6,0)

$$d(A, I) = \frac{|a \times_0 + b y_0 + c|}{\sqrt{a^2 + b^2}} = \frac{|2 \cdot 6 - 1 \cdot 0 + (-12)|}{\sqrt{5}} = + \frac{24}{\sqrt{5}}$$

2.
$$2x^{2} - y^{2} = 362$$

 $(52x - y)(52x + y) = 362$

$$\frac{1}{2} \int_{0}^{2} (\sqrt{2}x - y)^{2} dy$$

$$- \int_{0}^{2} (\sqrt{2}x + y)^{2} dy$$

Imbourn x, y, 2 au 36, 36, 36

$$\frac{1}{2} \int_{-\infty}^{\infty} (36\sqrt{2}x - 36) = 36\mu \iff \frac{1}{2} = \sqrt{2}x - 1 \iff \mu = \lambda(\sqrt{2}x - 1)$$

$$= \int_{-\infty}^{\infty} (36\sqrt{2}x + 36) = 36\mu \iff \frac{1}{2} = \sqrt{2}x - 1 \iff \mu = \lambda(\sqrt{2}x - 1)$$
align $\lambda = 1 \implies \mu = \sqrt{2}x - 1$

scriem draptar în vistem $\int J_{2}x-y=36J_{2}-36$ sol. pl. prima familie $\int (J_{2}-1)(J_{2}x+y)=2$ (prima generatoare)

II
$$\int d(\sqrt{2}x+y) = 36\beta$$
 imbourm $x, y, 2$ cu 36, 36, 36

$$\frac{1}{2} \int d(36\sqrt{2} + 36) = 36\beta$$
 (=) $\frac{\beta}{d} = \sqrt{2} + 1$ (=) $\beta = d(\sqrt{2} + 1)$) $\beta(36\sqrt{2} - 36) = 36d$ align $d = 1 \Rightarrow \beta = \sqrt{2} + 1$

sociem ce am obt. in sistem $\int J_2 x + y = 36J_2 + 36$ $\int (J_2 + 1)(J_2 x - y) = 2$ 3. 2=0 ec. planulei xOy

\[
\begin{align*}
\lambda = 0 \\
\delta = 0 \\

= 2 + 2 + 2 + 2 + 2 + 2 = 0 = 2 + 2 + 2 = 0 = 2 + 2 = 0 = 2 + 2 = 0 = 2 + 2 = 0 = 2 + 2 = 0 = 2 + 2 = 0 = 2 + 2 = 0 = 2 + 2 = 0

inhouim in utima . $x^{2}+y^{2}+2^{2}-1=0$. $\left(\frac{2}{2}+2\right)^{2}+\left(\frac{1}{2}+2\right)^{2}+\mu^{2}-1=0$ inhouim imapoi din primul sis. $\int a=\frac{x}{4}$ $\int ecuatia$ $\int \mu=2$