

### 2022-CS355FZ-January-Solutions

1

- ▼ (a) Give 5 elements of each following languages
  - **▼** (1(01)\*)<sup>+</sup>

1, 101, 101101, 10101, 1010101

ullet  $(^n)^n:n\in Ns$ 

(), (()), ((())), (((()))), ((((()))))

lackloss (b) Draw the state diagram of the non-deterministic finite automata that recognizes language  $L=\{w|w=ab\cup(\mathrm{ba})^*\}$ 

♀ 防止整体出错,考试答案分步写。



▼ (c) For a nondeterministic finite automata  $M=(Q,\Sigma,\delta,q,F)$ ,  $Q=\{q1,q2,q3\}$ ,  $\Sigma=\{0,1\}$ , q0=q1,  $F=\{q2,q3\}$ , the transition function  $\delta$  is given by

| δ     | 0             | 1              |
|-------|---------------|----------------|
| $q_1$ | $\{q_1\}$     | $\{q_2\}$      |
| $q_2$ | Ø             | $\{q_2, q_3\}$ |
| $q_3$ | $\{q_1,q_3\}$ | $\{q_3\}$      |

Draw its state diagram.



2

lacktriangledown (a) Give a context free grammar for the language  $\{a^mb^m|m\geq 0\}\cup\{b^na^n|n\geq 0\}$ 

$$S o S_1|S_2$$

$$S_1 o 0 S_1 1 ert arepsilon$$

$$S_2 
ightarrow 1 S_2 0 |arepsilon$$

▼ (b) Let  $\Sigma$ ={1,2,3,4}, C = {w|w has equal numbers of 1s and 2s, and equal numbers of 3s and 4s}. Show that C is not context free.

Suppose C is context free and there is a string  $s=1^p3^p2^p4^p\in C$ 

$$s = uvxyz$$

To satisfy  $|vy|\geqslant 0$  and  $|vxy|\leqslant p$ , there are following cases.

- ① vxy include one type of numbers
- $\ \ \mathbf{2}\ vxy$  include two types of numbers

In any above cases,  $uv^ixy^iz$  is not in C for every i.

It is contraditcion and thus,  ${\cal C}$  is not context free

$$s=1^p2^p3^p4^p \times$$

或者取具体的例子:s=13241324 🗸

反正1和2,3和4不要放在一起

**▼** (c) The state diagram of a Turing machine M2 is shown below (on page 2 of this paper). Give the sequence of configuration that Turing machine M2 ( $\Sigma = \{0,1,\#\}$ , and  $\Gamma = \{0,1,\#,x,\_\}$ .) enters when started on the indicated input string 10#11.

$$\rightarrow q_1 10 \# 11$$

$$\to Xq_30\#11$$



- $ightarrow X0q_3\#11$
- $ightarrow X0\#q_511$
- $\rightarrow X0q_6\#X1$
- $ightarrow Xq_70\#X1$
- $ightarrow q_7 X0 \# X1$
- $ightarrow Xq_10\# X1$
- $ightarrow XXq_2\#X1$
- $ightarrow XX\#q_4X1$
- $ightarrow XX\# Xq_41$
- ightarrow XX#X1  $\sqcup$

 $q_{reject}$ 

3

### **▼** (a) Let $D = \{(i,j) | i,j \in N\}$ . Show that D is countable

| (i,j) |       |       |       |  |
|-------|-------|-------|-------|--|
|       | (1,1) | (1,2) | (1,3) |  |
|       | (2,1) | (2,2) | (2,3) |  |
|       | (3,1) | (3,2) | (3,3) |  |
|       |       |       |       |  |

| N | D     |
|---|-------|
| 1 | (1,1) |
| 2 | (2,1) |
| 3 | (2,2) |
| 4 | (1,2) |
|   |       |

There is a one-to-one correspondence, so D has the same size as N and D is countable.

# **▼** Let $E = \{(M3) | M3 \text{ is a Turing machine that accepts } w^R \text{ whenever it accepts } w\}.$ Show that E is undecidable.



Assume that E is decidable by using TM M that decides  $A_{TM}$  .

#### Constrcut another TM M' as follows

M' = "On input x:

- 1. If  $x \neq 01$  and  $x \neq 10$ , reject.
- 2. If x = 01, accept.
- 3. If x = 10 simulate M on w.
  - a. If M accepts w, accept. If M rejects, reject."

Only when M is decidable, M' is decidable.

When M' is decidable,  $L(M') = \{01, 10\} \in L(E)$ , and E is decidable.

Therefore,  $A_{TM} \leq_{m} E$ .

In fact,  $A_{TM}$  is undecidable, so E is undecidable.

#### 法二

Assume that E is decidable and there must exist a TM  $\,T$  that can decide E Constrcut another TM M that decides  $A_{TM}$  as follows

M = "On input  $\langle M_3, w \rangle$ :

- 1. Run T on input  $\langle M_3, w \rangle$
- 2. If T accept, then run T on  $\langle M_3, w^R 
  angle$
- 3. If accpets, then accpet. Otherwise, reject."

Clearly, if T decides E, then M decides  $A_{TM}$ .

Because  $A_{TM}$  is undecidable, T also must be undecidable.

 $A_{TM}$  ={<M,w>| M 是图灵机且接受串 w }

M是否能停机的问题**取决于M\_3**是否能停机,M 本身就是判定 $A_{TM}$ 的 (所以才

用格式 on input  $\langle M_3,w
angle$  )

因为已知 $A_{TM}$ 不可判定,则 $M_3$ 不可判定

另一个角度: $A_{TM} \leqslant_m E$ 

## **▼** Describe P, NP, PSPACE, NPSPACE and EXPTIME, and their conjectured relationships

P: Problems that can be solved in polynomial time

NP: Problems that can be verified in polynomial time

PSPACE: Problems that can be solved by a Turing machine using a polynomial space.

NPSPACE: Problems that can be verified by a Turing machine using a polynomial space.

EXPTIME: Problems that can be solvable by a deterministic Turing machine in exponential time

 $P\subseteq NP\subseteq PSPACE=NPSPACE\subseteq EXPTIME$