Казваме, че списъкът от цели числа $[x_1,x_2,x_3,\ldots,x_n]$ е специален, ако за всяко k, такова че $1\leqslant k\leqslant n/2$ е изпълнено, че:

- 1. $x_{2k} = x_{x_{k+2}}$, ако $1 \le k+2 \le n$ и $1 \le x_{k+2} \le n$
- 2. $x_{2k} = 2x_k + 2$, иначе.

Да се дефинира на пролог едноаргументен претикат, който проверява дали даден списък от цели числа е специален.

Казваме, че списъкът от цели числа $[x_1,x_2,x_3,\ldots,x_n]$ е специален, ако за всяко k, такова че $1\leqslant k\leqslant n/2$ е изпълнено, че:

- 1. $x_{2k}=x_{x_k+2}$, ако $1\leqslant x_k+2\leqslant n$ и $1\leqslant x_k\leqslant k$
- 2. $x_{2k} = 2x_{n-k} + 2$, иначе.

Да се дефинира на пролог едноаргументен претикат, който проверява дали даден списък от цели числа е специален.

Казваме, че списъкът от цели числа $[x_1,x_2,x_3,\dots,x_n]$ е специален, ако за всяко k, такова че $1\leqslant k\leqslant n/5$ е изпълнено, че:

- 1. $x_{5k} = x_{x_{k+2}}$, ако $1 \le k+2 \le n$ и $1 \le x_{k+2} \le n$
- 2. $x_{5k} = 2x_k + 2$, иначе.

Да се дефинира на пролог едноаргументен претикат, който проверява дали даден списък от цели числа е специален.

Казваме, че списъкът от цели числа $[x_1, x_2, x_3, \dots, x_n]$ е специален, ако за всяко k, такова че $1 \leqslant k \leqslant n/5$ е изпълнено, че:

- 1. $x_{5k} = x_{x_k+2}$, ако $1 \leqslant x_k + 2 \leqslant n$ и $1 \leqslant x_k \leqslant k$
- 2. $x_{5k} = 2x_{n-k} + 2$, иначе.

Да се дефинира на пролог едноаргументен претикат, който проверява дали даден списък от цели числа е специален.

Казваме, че списъкът от цели числа $[x_1, x_2, x_3, \dots, x_n]$ е специален, ако за всяко k, такова че $1 \leqslant k \leqslant n/2$ е изпълнено, че:

- 1. $x_{2k}=x_{x_{k+2}},$ ако $1\leqslant k+2\leqslant n$ и $1\leqslant x_{k+2}\leqslant n$
- 2. $x_{2k} = 2x_k 5$, иначе.

Да се дефинира на пролог едноаргументен претикат, който проверява дали даден списък от цели числа е специален.

Казваме, че списъкът от цели числа $[x_1, x_2, x_3, \dots, x_n]$ е специален, ако за всяко k, такова че $1 \le k \le n/2$ е изпълнено, че:

- 1. $x_{2k} = x_{x_k+2}$, ако $1 \le x_k + 2 \le n$ и $1 \le x_k \le k$
- 2. $x_{2k} = 2x_{n-k} 5$, иначе.

Казваме, че списъкът от цели числа $[x_1,x_2,x_3,\ldots,x_n]$ е специален, ако за всяко k, такова че $1\leqslant k\leqslant n/5$ е изпълнено, че:

- 1. $x_{5k} = x_{x_{k+2}}$, ако $1 \le k+2 \le n$ и $1 \le x_{k+2} \le n$
- 2. $x_{5k} = 2x_k 5$, иначе.

Да се дефинира на пролог едноаргументен претикат, който проверява дали даден списък от цели числа е специален.

Казваме, че списъкът от цели числа $[x_1,x_2,x_3,\ldots,x_n]$ е специален, ако за всяко k, такова че $1\leqslant k\leqslant n/5$ е изпълнено, че:

- 1. $x_{5k}=x_{x_k+2},$ ако $1\leqslant x_k+2\leqslant n$ и $1\leqslant x_k\leqslant k$
- 2. $x_{5k} = 2x_{n-k} 5$, иначе.

Да се дефинира на пролог едноаргументен претикат, който проверява дали даден списък от цели числа е специален.

Казваме, че списъкът от цели числа $[x_1, x_2, x_3, \dots, x_n]$ е специален, ако за всяко k, такова че $1 \leqslant k \leqslant n/2$ е изпълнено, че:

- 1. $x_{2k} = x_{x_{k+2}}$, ако $1 \le k+2 \le n$ и $1 \le x_{k+2} \le n$
- 2. $x_{2k} = 5x_k + 2$, иначе.

Да се дефинира на пролог едноаргументен претикат, който проверява дали даден списък от цели числа е специален.

Казваме, че списъкът от цели числа $[x_1, x_2, x_3, \dots, x_n]$ е специален, ако за всяко k, такова че $1 \leqslant k \leqslant n/2$ е изпълнено, че:

- 1. $x_{2k} = x_{x_k+2}$, ако $1 \leqslant x_k + 2 \leqslant n$ и $1 \leqslant x_k \leqslant k$
- 2. $x_{2k} = 5x_{n-k} + 2$, иначе.

Да се дефинира на пролог едноаргументен претикат, който проверява дали даден списък от цели числа е специален.

Казваме, че списъкът от цели числа $[x_1, x_2, x_3, \dots, x_n]$ е специален, ако за всяко k, такова че $1 \leqslant k \leqslant n/5$ е изпълнено, че:

- 1. $x_{5k}=x_{x_{k+2}},$ ако $1\leqslant k+2\leqslant n$ и $1\leqslant x_{k+2}\leqslant n$
- 2. $x_{5k} = 5x_k + 2$, иначе.

Да се дефинира на пролог едноаргументен претикат, който проверява дали даден списък от цели числа е специален.

Казваме, че списъкът от цели числа $[x_1, x_2, x_3, \dots, x_n]$ е специален, ако за всяко k, такова че $1 \le k \le n/5$ е изпълнено, че:

- 1. $x_{5k} = x_{x_k+2}$, ако $1 \le x_k + 2 \le n$ и $1 \le x_k \le k$
- 2. $x_{5k} = 5x_{n-k} + 2$, иначе.

Казваме, че списъкът от цели числа $[x_1,x_2,x_3,\ldots,x_n]$ е специален, ако за всяко k, такова че $1\leqslant k\leqslant n/2$ е изпълнено, че:

- 1. $x_{2k} = x_{x_{k+2}}$, ако $1 \le k+2 \le n$ и $1 \le x_{k+2} \le n$
- 2. $x_{2k} = 5x_k 5$, иначе.

Да се дефинира на пролог едноаргументен претикат, който проверява дали даден списък от цели числа е специален.

Казваме, че списъкът от цели числа $[x_1,x_2,x_3,\ldots,x_n]$ е специален, ако за всяко k, такова че $1\leqslant k\leqslant n/2$ е изпълнено, че:

- 1. $x_{2k}=x_{x_k+2}$, ако $1\leqslant x_k+2\leqslant n$ и $1\leqslant x_k\leqslant k$
- 2. $x_{2k} = 5x_{n-k} 5$, иначе.

Да се дефинира на пролог едноаргументен претикат, който проверява дали даден списък от цели числа е специален.

Казваме, че списъкът от цели числа $[x_1, x_2, x_3, \dots, x_n]$ е специален, ако за всяко k, такова че $1 \leqslant k \leqslant n/5$ е изпълнено, че:

- 1. $x_{5k} = x_{x_{k+2}}$, ако $1 \le k+2 \le n$ и $1 \le x_{k+2} \le n$
- 2. $x_{5k} = 5x_k 5$, иначе.

Да се дефинира на пролог едноаргументен претикат, който проверява дали даден списък от цели числа е специален.

Казваме, че списъкът от цели числа $[x_1, x_2, x_3, \dots, x_n]$ е специален, ако за всяко k, такова че $1 \leqslant k \leqslant n/5$ е изпълнено, че:

- 1. $x_{5k} = x_{x_k+2}$, ако $1 \leqslant x_k + 2 \leqslant n$ и $1 \leqslant x_k \leqslant k$
- 2. $x_{5k} = 5x_{n-k} 5$, иначе.

Да се дефинира на пролог едноаргументен претикат, който проверява дали даден списък от цели числа е специален.

Казваме, че списъкът от цели числа $[x_1, x_2, x_3, \dots, x_n]$ е специален, ако за всяко k, такова че $1 \leqslant k \leqslant n/2$ е изпълнено, че:

- 1. $x_{2k}=x_{x_{k+5}},$ ако $1\leqslant k+5\leqslant n$ и $1\leqslant x_{k+5}\leqslant n$
- 2. $x_{2k} = 2x_k + 2$, иначе.

Да се дефинира на пролог едноаргументен претикат, който проверява дали даден списък от цели числа е специален.

Казваме, че списъкът от цели числа $[x_1, x_2, x_3, \dots, x_n]$ е специален, ако за всяко k, такова че $1 \le k \le n/2$ е изпълнено, че:

- 1. $x_{2k} = x_{x_k+5}$, ако $1 \le x_k + 5 \le n$ и $1 \le x_k \le k$
- 2. $x_{2k} = 2x_{n-k} + 2$, иначе.

Казваме, че списъкът от цели числа $[x_1,x_2,x_3,\ldots,x_n]$ е специален, ако за всяко k, такова че $1\leqslant k\leqslant n/5$ е изпълнено, че:

- 1. $x_{5k} = x_{x_{k+5}}$, ако $1 \le k+5 \le n$ и $1 \le x_{k+5} \le n$
- 2. $x_{5k} = 2x_k + 2$, иначе.

Да се дефинира на пролог едноаргументен претикат, който проверява дали даден списък от цели числа е специален.

Казваме, че списъкът от цели числа $[x_1,x_2,x_3,\ldots,x_n]$ е специален, ако за всяко k, такова че $1\leqslant k\leqslant n/5$ е изпълнено, че:

- 1. $x_{5k}=x_{x_k+5},$ ако $1\leqslant x_k+5\leqslant n$ и $1\leqslant x_k\leqslant k$
- 2. $x_{5k} = 2x_{n-k} + 2$, иначе.

Да се дефинира на пролог едноаргументен претикат, който проверява дали даден списък от цели числа е специален.

Казваме, че списъкът от цели числа $[x_1,x_2,x_3,\ldots,x_n]$ е специален, ако за всяко k, такова че $1\leqslant k\leqslant n/2$ е изпълнено, че:

- 1. $x_{2k} = x_{x_{k+5}}$, ако $1 \leqslant k+5 \leqslant n$ и $1 \leqslant x_{k+5} \leqslant n$
- 2. $x_{2k} = 2x_k 5$, иначе.

Да се дефинира на пролог едноаргументен претикат, който проверява дали даден списък от цели числа е специален.

Казваме, че списъкът от цели числа $[x_1, x_2, x_3, \dots, x_n]$ е специален, ако за всяко k, такова че $1 \leqslant k \leqslant n/2$ е изпълнено, че:

- 1. $x_{2k} = x_{x_k+5}$, ако $1 \leqslant x_k + 5 \leqslant n$ и $1 \leqslant x_k \leqslant k$
- 2. $x_{2k} = 2x_{n-k} 5$, иначе.

Да се дефинира на пролог едноаргументен претикат, който проверява дали даден списък от цели числа е специален.

Казваме, че списъкът от цели числа $[x_1, x_2, x_3, \dots, x_n]$ е специален, ако за всяко k, такова че $1 \leqslant k \leqslant n/5$ е изпълнено, че:

- 1. $x_{5k}=x_{x_{k+5}},$ ако $1\leqslant k+5\leqslant n$ и $1\leqslant x_{k+5}\leqslant n$
- 2. $x_{5k} = 2x_k 5$, иначе.

Да се дефинира на пролог едноаргументен претикат, който проверява дали даден списък от цели числа е специален.

Казваме, че списъкът от цели числа $[x_1, x_2, x_3, \dots, x_n]$ е специален, ако за всяко k, такова че $1 \le k \le n/5$ е изпълнено, че:

- 1. $x_{5k} = x_{x_k+5}$, ако $1 \le x_k + 5 \le n$ и $1 \le x_k \le k$
- 2. $x_{5k} = 2x_{n-k} 5$, иначе.

Казваме, че списъкът от цели числа $[x_1,x_2,x_3,\ldots,x_n]$ е специален, ако за всяко k, такова че $1\leqslant k\leqslant n/2$ е изпълнено, че:

- 1. $x_{2k} = x_{x_{k+5}}$, ако $1 \le k+5 \le n$ и $1 \le x_{k+5} \le n$
- 2. $x_{2k} = 5x_k + 2$, иначе.

Да се дефинира на пролог едноаргументен претикат, който проверява дали даден списък от цели числа е специален.

Казваме, че списъкът от цели числа $[x_1,x_2,x_3,\ldots,x_n]$ е специален, ако за всяко k, такова че $1\leqslant k\leqslant n/2$ е изпълнено, че:

- 1. $x_{2k} = x_{x_k+5}$, ако $1 \le x_k + 5 \le n$ и $1 \le x_k \le k$
- 2. $x_{2k} = 5x_{n-k} + 2$, иначе.

Да се дефинира на пролог едноаргументен претикат, който проверява дали даден списък от цели числа е специален.

Казваме, че списъкът от цели числа $[x_1, x_2, x_3, \dots, x_n]$ е специален, ако за всяко k, такова че $1 \le k \le n/5$ е изпълнено, че:

- 1. $x_{5k} = x_{x_{k+5}}$, ако $1 \leqslant k+5 \leqslant n$ и $1 \leqslant x_{k+5} \leqslant n$
- 2. $x_{5k} = 5x_k + 2$, иначе.

Да се дефинира на пролог едноаргументен претикат, който проверява дали даден списък от цели числа е специален.

Казваме, че списъкът от цели числа $[x_1, x_2, x_3, \dots, x_n]$ е специален, ако за всяко k, такова че $1 \leqslant k \leqslant n/5$ е изпълнено, че:

- 1. $x_{5k} = x_{x_k+5}$, ако $1 \leqslant x_k + 5 \leqslant n$ и $1 \leqslant x_k \leqslant k$
- 2. $x_{5k} = 5x_{n-k} + 2$, иначе.

Да се дефинира на пролог едноаргументен претикат, който проверява дали даден списък от цели числа е специален.

Казваме, че списъкът от цели числа $[x_1, x_2, x_3, \dots, x_n]$ е специален, ако за всяко k, такова че $1 \leqslant k \leqslant n/2$ е изпълнено, че:

- 1. $x_{2k}=x_{x_{k+5}},$ ако $1\leqslant k+5\leqslant n$ и $1\leqslant x_{k+5}\leqslant n$
- 2. $x_{2k} = 5x_k 5$, иначе.

Да се дефинира на пролог едноаргументен претикат, който проверява дали даден списък от цели числа е специален.

Казваме, че списъкът от цели числа $[x_1, x_2, x_3, \dots, x_n]$ е специален, ако за всяко k, такова че $1 \le k \le n/2$ е изпълнено, че:

- 1. $x_{2k} = x_{x_k+5}$, ако $1 \le x_k + 5 \le n$ и $1 \le x_k \le k$
- 2. $x_{2k} = 5x_{n-k} 5$, иначе.

Казваме, че списъкът от цели числа $[x_1,x_2,x_3,\dots,x_n]$ е специален, ако за всяко k, такова че $1\leqslant k\leqslant n/5$ е изпълнено, че:

- 1. $x_{5k} = x_{x_{k+5}}$, ако $1 \le k+5 \le n$ и $1 \le x_{k+5} \le n$
- 2. $x_{5k} = 5x_k 5$, иначе.

Да се дефинира на пролог едноаргументен претикат, който проверява дали даден списък от цели числа е специален.

Казваме, че списъкът от цели числа $[x_1,x_2,x_3,\dots,x_n]$ е специален, ако за всяко k, такова че $1\leqslant k\leqslant n/5$ е изпълнено, че:

- 1. $x_{5k}=x_{x_k+5},$ ако $1\leqslant x_k+5\leqslant n$ и $1\leqslant x_k\leqslant k$
- 2. $x_{5k} = 5x_{n-k} 5$, иначе.