Amendments to the Claims:

The following listing of claims will replace all prior versions, and listing of claims in the application. For the Examiner's convenience a complete listing of all claims incorporating the amendments made herein is attached as Appendix A.

Listing of Claims:

1. (Currently Amended) A method of treating a disease state in a mammal that is alleviable by treatment with an agent capable of increasing ABCA-1 expression, comprising administering to a mammal in need thereof a therapeutically effective dose of a compound of the Formula I:

$$R^3$$
 $(Y^1)_m$
 $(Y^2)_p$
 X^3
 Z
 R^4

Formula I

wherein:

m, n and p are independently 0 or 1;

A is $-C(Z^1)$ -, $-C(Z^1)$ -NH-, SO₂, or a covalent bond;

where Z^1 is oxygen or sulfur:

R¹ is hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

R² is hydrogen, alkyl, or cycloalkyl; or

R¹, R² and A when taken together with the nitrogen atom to which they are attached form a nitrogen bearing heterocycle;

R³ is optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

R⁴ is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

T is -O-,
$$-S(O)_q$$
, or $-NR^5$ -;
in which q is 0, 1, or $2\frac{1}{2}$; and

R⁵ is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

 X^1 , X^2 , and X^3 are nitrogen;

Y¹ is lower alkylene or carbonyl;

Y² is lower alkylene or oxygen; and

Z is sulfur, oxygen, or -NR5-

with the proviso that when A is a covalent bond and R^2 is hydrogen then R^1 cannot be phenyl; and

when A is a covalent bond, R^1 and R^2 are hydrogen, Y^2 is alkylene, T is oxygen, m-is-zero, R^3 is halogen or trifluoromethyl substituted phenyl, and R^4 is 2-phenylethylene, then Z cannot be NR^5 .

- 2. (Cancelled)
- 3. (Currently Amended) The method of claim 1, wherein R^2 is hydrogen, and R^4 is optionally substituted alkyl and Z is sulfur.
- 4. (Original) The method of claim 3, wherein R³ is optionally substituted aryl or optionally substituted heteroaryl.
 - 5. (Original) The method of claim 4, wherein m is 0, n is 1, and p is 1.
- 6. (Original) The method of claim 5, wherein A is a covalent bond, and R¹ is hydrogen.

- 7. (Original) The method of claim 6, wherein R^3 is optionally substituted phenyl and Y^2 is methylene.
- 8. (Original) The method of claim 7, wherein R⁴ is alkyl of 1-8 carbon atoms and T is oxygen.
- 9. (Previously presented) The method of claim 8, wherein R^3 is 4-t-butylphenyl and R^4 is methyl, namely 6-{[4-(tert-butyl)phenoxy]methyl}-4-methylthio-1,3,5-triazine-2-ylamine.
- 10. (Original) The method of claim 8, wherein R³ is 4-t-butylphenyl and R⁴ is in-pentyl, namely 6-{[4-(tert-butyl)phenoxy]methyl}-4-pentylthio-1,3,5-triazine-2-ylamine.
- 11. (Original) The method of claim 7, wherein \mathbb{R}^4 is alkyl of 1-8 carbon atoms and T is oxygen.
- 12. (Original) The method of claim 11, wherein R³ is 3-chlorophenyl, R⁴ is methyl, and R⁵ is hydrogen, namely 4-[(3-chlorophenylamino)methyl]-6-methylthio-[1,3,5]triazin-2-ylamine.
- 13. (Original) The method of claim 11, wherein R³ is 2,4-dimethoxyphenyl, R⁴ is methyl, and R⁵ is hydrogen, namely N-{[(3,5-dimethoxyphenyl]aminomethyl}-4-methylthio-1,3,5-triazine-2-ylamine;

Claims 14-27 (Cancelled)

28. (Currently Amended) A method for treating a disease or condition in a mammal that can be usefully treated with a compound that elevates serum levels of HDL cholesterol, comprising administering to a mammal in need thereof a therapeutically effective dose of a compound of Formula I.

$$R^{3}$$
 $(Y^{1})_{m}$
 $(Y^{2})_{p}$
 X^{3}
 Z
 R^{4}

Formula I

wherein:

m, n and p are independently 0 or 1;

A is $-C(Z^1)$ -, $-C(Z^1)$ -NH-, SO_2 , or a covalent bond;

where Z¹ is oxygen or sulfur;

R¹ is hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

R² is hydrogen, alkyl, or cycloalkyl; or

R¹, R² and A when taken together with the nitrogen atom to which they are attached form a nitrogen bearing heterocycle;

R³ is optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

R⁴ is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

T is -O-, $-S(O)_q$, or -NR⁵-; in which q is 0, 1, or 2; and R⁵ is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

 X^1 , X^2 , and X^3 are nitrogen;

Y¹ is lower alkylene or carbonyl;

Y² is lower alkylene or oxygen; and

Z is sulfur, oxygen, or NR⁵...

with the proviso that when A is a covalent bond and R^2 is hydrogen then R^1 cannot be phenyl; and

when A is a covalent bond, R¹ and R² are hydrogen, Y² is alkylene, T is oxygen, m is zero, R³ is halogen or trifluoromethyl substituted phenyl, and R⁴ is 2-phenylethylene, then Z cannot be NR⁵.

- 29. (Original) The method of claim 28, wherein the disease state or condition is coronary artery disease or atherosclerosis.
- 30. (Currently Amended) A method for treating a disease or condition in a mammal related to low HDL cholesterol levels, comprising administering to a mammal in need thereof a therapeutically effective dose of a compound of Formula I:

$$R^3$$
 $(Y^1)_m$
 $(Y^2)_p$
 X^3
 Z
 R^4

Formula 1

wherein:

m, n and p are independently 0 or 1;

A is $-C(Z^1)$ -, $-C(Z^1)$ -NH-, SO_2 , or a covalent bond;

where Z¹ is oxygen or sulfur;

R¹ is hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

R² is hydrogen, alkyl, or cycloalkyl; or

R¹, R² and A when taken together with the nitrogen atom to which they are attached form a nitrogen bearing heterocycle;

R³ is optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

R⁴ is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

T is -O-, $-S(O)_q$, or $-NR^5$ -; in which q is 0, 1, or 2π and

R⁵ is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

 X^1 , X^2 , and X^3 are nitrogen;

Y¹ is lower alkylene or carbonyl;

Y² is lower alkylene or oxygen; and

Z is sulfur, oxygen, or -NR⁵-

with the proviso that when A is a covalent bond and R^2 is hydrogen then R^1 cannot be phenyl; and

when A is a covalent bond, R¹ and R² are hydrogen, Y² is alkylene, T is oxygen, m is zero, R³ is halogen or trifluoromethyl substituted phenyl, and R⁴ is 2-phenylethylene, then Z cannot be NR⁵.

31. (Original) The method of claim 30, wherein the disease state or condition is coronary artery disease or atherosclerosis.

32. (Currently Amended) A method for treating a disease or condition in a mammal that can be usefully treated with a compound that promotes cholesterol efflux from cells, comprising administering to a mammal in need thereof a therapeutically effective dose of a compound of Formula I.

$$R^{3}$$
 $(Y^{1})_{m}$
 $(Y^{2})_{p}$
 X^{3}
 Z
 R^{4}

Formula I

wherein:

m, n and p are independently 0 or 1;

A is $-C(Z^1)$ -, $-C(Z^1)$ -NH-, SO₂, or a covalent bond;

where Z^1 is oxygen or sulfur;

R¹ is hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

R² is hydrogen, alkyl, or cycloalkyl; or

R¹, R² and A when taken together with the nitrogen atom to which they are attached form a nitrogen bearing heterocycle;

R³ is optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

R⁴ is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

T is -O-, $-S(O)_q$, or $-NR^5$ -; in which q is 0, 1, or 2; and R⁵ is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

 X^1 , X^2 , and X^3 are nitrogen;

Y¹ is lower alkylene or carbonyl;

Y² is lower alkylene or oxygen; and

Z is sulfur, oxygen, or NR⁵...

with the proviso that when A is a covalent bond and R^2 is hydrogen then R^1 cannot be phenyl; and

when A is a covalent bond, R⁴ and R² are hydrogen, Y² is alkylene, T is oxygen, m is zero, R³ is halogen or trifluoromethyl substituted phenyl, and R⁴ is 2-phenylethylene, then Z cannot be NR⁵.

- 33. (Original) The method of claim 32, wherein the disease state or condition is coronary artery disease or atherosclerosis.
- 34. (Currently Amended) A method for treating a condition related to coronary artery disease in a mammal that can be usefully treated with a combination of a compound that elevates serum levels of HDL cholesterol and a compound that lowers LDL cholesterol, comprising administering to a mammal in need thereof a therapeutically effective dose of a compound of Formula I

$$R^{3} \xrightarrow{(Y^{1})_{m}} (T)_{n} \xrightarrow{(Y^{2})_{p}} X^{3} \xrightarrow{Z} R^{4}$$

Formula I

wherein:

m, n and p are independently 0 or 1;

A is $-C(Z^1)$ -, $-C(Z^1)$ -NH-, SO₂, or a covalent bond;

where Z¹ is oxygen or sulfur;

R¹ is hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

R² is hydrogen, alkyl, or cycloalkyl; or

R¹, R² and A when taken together with the nitrogen atom to which they are attached form a nitrogen bearing heterocycle;

R³ is optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

R⁴ is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

T is -O-, $-S(O)_q$, or $-NR^5$ -;

in which q is 0, 1, or 2; and

R⁵ is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

 X^1 , X^2 , and X^3 are nitrogen;

Y is lower alkylene or carbonyl;

Y² is lower alkylene or oxygen; and

Z is sulfur, oxygen, or NR⁵...

with the proviso that when A is a covalent bond and R^2 is hydrogen then R^1 cannot be phenyl; and

when A is a covalent bond, R¹ and R² are hydrogen, Y² is alkylene, T is oxygen, m is zero, R³ is halogen or trifluoromethyl substituted phenyl, and R⁴ is 2-phenylethylene, then Z cannot be NR⁵;

and a compound that lowers LDL cholesterol.

- 35. (Original) The method of claim 34, wherein the LDL cholesterol lowering compound is chosen from clofibrate, gemfibrozil, and fenofibrate, nicotinic acid, mevinolin, mevastatin, pravastatin, simvastatin, fluvastatin, lovastatin, cholestyrine, colestipol and probucol.
 - 36. (Currently Amended) A compound of the Formula I:

$$R^{3} \xrightarrow{(Y^{1})_{m}} (T)_{n} \xrightarrow{(Y^{2})_{p}} X^{3} \xrightarrow{Z} R^{4}$$

Formula I

wherein:

m, n and p are independently 0 or 1;

A is $-C(Z^1)$ -, $-C(Z^1)$ -NH-, SO₂, or a covalent bond;

where Z¹ is oxygen or sulfur;

R¹ is hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

R² is hydrogen, alkyl, or cycloalkyl; or

R¹, R² and A when taken together with the nitrogen atom to which they are attached form a nitrogen bearing heterocycle;

R³ is optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

R⁴ is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

T is -O-,
$$-S(O)_q$$
, or $-NR^5$ -;

in which q is 0, 1, or 2, and R⁵ is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

 X^1 , X^2 , and X^3 are nitrogen.

Y¹ is lower alkylene or carbonyl;

Y² is lower alkylene or oxygen; and

Z is sulfur, oxygen, or NR⁵...

with the proviso that

when A is a covalent bond, R¹ and R² are both hydrogen, and Z is NH, m, n, and p cannot all be 0; and

when m is 0, Y^2 is methylene, and Z is NH-, R^3 cannot be lower alkyl; and

when Z is NH-, R4-cannot be phenylethyl; and

when A is a covalent bond, R^1 and R^2 are both hydrogen, Y^2 is methylene, and R^4 is methyl or ethyl, R^3 cannot be lower alkyl or unsubstituted phenyl; <u>and</u>

when A is a covalent bond, R^4 -and R^2 -are both hydrogen, T is oxygen, Z is nitrogen, and Y^2 is methylene, R^4 -cannot be cycloalkyl or unsubstituted phenyl; and.

when A is a covalent bond and R^1 and R^2 are hydrogen and Z is NR^5 , R^5 is hydrogen or optionally substituted alkyl, R^4 is hydrogen or optionally substituted alkyl and $(Y_2)_p$ is alkylene then T cannot be $S(O)_q$, where q is 0; and when A is a covalent bond, R^1 cannot be substituted phenyl.

37. (Cancelled)

- 38. (Currently Amended) The compound of claim 36, wherein R² is hydrogen, and R⁴ is optionally substituted alkyl and Z is sulfur.
- 39. (Currently Amended) The compound of claim 38, wherein R³ is optionally substituted aryl or optionally substituted heteroaryl₇.

- 40. (Original) The compound of claim 39, wherein m is 0, n is 1, and p is 1.
- 41. (Original) The compound of claim 40, wherein A is a covalent bond, and R¹ is hydrogen.
- 42. (Original) The compound of claim 41, wherein R^3 is optionally substituted phenyl and Y^2 is methylene.
- 43. (Original) The compound of claim 42, wherein R⁴ is alkyl of 1-8 carbon atoms and T is oxygen.
- 44. (Original) The compound of claim 43, wherein R^3 is 4-t-butylphenyl and R^4 is methyl, namely 6-{[4-(tert-butyl)phenoxy]methyl}-4-pentylthio-1,3,5-triazine-2-ylamine.
- 45. (Original) The compound of claim 43, wherein R³ is 4-t-butylphenyl and R⁴ is n-pentyl, namely 6-{[4-(tert-butyl)phenoxy]methyl}-4-pentylthio-1,3,5-triazine-2-ylamine.
- 46. (Original) The compound of claim 43, wherein R³ is 3-chlorophenyl, R⁴ is methyl, and R⁵ is hydrogen, namely 4-[(3-chlorophenylamino)methyl]-6-methylthio-[1,3,5]triazin-2-ylamine.
- 47. (Original) The compound of claim 43, wherein R³ is 2,4-dimethoxyphenyl, R⁴ is methyl, and R⁵ is hydrogen, namely N-{[(3,5-dimethoxyphenyl]aminomethyl}-4-methylthio-1,3,5-triazine-2-ylamine.

Claims 48-62. (Cancelled)

Response to July 14, 2003 Office Action Application No. 10/005,064 Attorney's Docket No. 00-1257-B Page 14

63. (Previously Presented) A pharmaceutical composition comprising at least one pharmaceutically acceptable excipient and a therapeutically effective amount of a compound of claim 36.