Inference for Multiple Regression

Yifan 7hu

Iowa State University

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

Estimating c

Standardized Residuals

Inference for $\beta_0, \beta_1, \dots, \beta_{p-1}$

Responses

Individual mean

esponses Multiple mean

Standardized

Inference for Mean

Multiple Regression: a Review

Inference for

Inference for Mean Responses

Individual mean responses Multiple mean

Multiple Regression: regression on multiple variables:

$$y_i \approx b_0 + b_1 x_{i,1} + b_2 x_{i,2} + b_3 x_{i,3} + \dots + b_{p-1} x_{i,p-1}$$

▶ The p coefficients $b_0, b_1, \ldots, b_{p-1}$ are estimated by minimizing the loss function below using the least squares principle:

$$S(b_0, b_1, \ldots, b_{p-1}) = \sum_{i=1}^n (y_i - b_0 + b_1 x_{i,1} + \cdots + b_{p-1} x_{i,p-1})^2$$

In practice, we make a computer find the coefficients for us. This class uses JMP.

Formalizing the multiple regression model

Now, we'll work with a formal multiple regression model:

$$Y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \dots + \beta_{p-1} x_{p-1,i} + \varepsilon_i$$

▶ Assume $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n \sim \text{iid } N(0, \sigma^2)$.

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

Estimating σ

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses

Individual mean responses

Outline

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

Estimating σ^2

Standardized

Inference for Mean

Estimating σ^2

Now. the residuals are of the form:

$$e_i = y_i - \hat{y}_i$$

= $y_i - (b_0 + b_1 x_{1,i} + \dots + b_{p-1} x_{p-1,i})$

▶ We estimate the variance with the **surface-fitting** sample variance, also called mean squared error (MSE):

$$s_{SF}^2 = \frac{1}{n-p} \sum e_i^2$$

- ▶ The estimated standard deviation is $s_{SF} = \sqrt{s_{SF}^2}$.
- Note: the line fitting sample variance s_{LF}^2 is the special case of s_{SF}^2 for p=2.

Standardized Residuals

 $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses

Individual mean

responses Multiple mean

- Consider a chemical plant that makes nitric acid from ammonia.
- 2. We want to predict stack loss (y, 10 times the % ammonia that escapes from the absorption column) using:
 - ▶ x₁: air flow, the rate of operation of the plant
 - \triangleright x_2 , inlet temperature of the cooling water
 - ▶ x_3 : (% circulating acid 50%)×10

i,		x_{2i} ,	x_{3i} ,	
Observation	x_{1i} ,	Cooling Water	Acid	y_i ,
Number	Air Flow	Inlet Temperature	Concentration	Stack Loss
1	80	27	88	37
2	62	22	87	18
3	62	23	87	18
4	62	24	93	19
5	62	24	93	20
6	58	23	87	15
7	58	18	80	14
8	58	18	89	14
9	58	17	88	13
10	58	18	82	11
11	58	19	93	12
12	50	18	89	8
13	50	18	86	7
14	50	19	72	8
15	50	19	79	8
16	50	20	80	9
17	56	20	82	15

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

Estimating σ^2

tandardized esiduals

 $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Interence tor Mean Responses

Individual mean responses

Multiple mean responses

Standardized Residuals

Inference for Mean

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob>ltl
Intercept	-37.65246	4.732051	-7.96	<.0001*
x1	0.7976856	0.067439	11.83	<.0001*
x2	0.5773405	0.165969	3.48	0.0041*
х3	-0.06706	0.061603	-1.09	0.2961

 $\hat{y}_i = -37.65 + 0.797x_{1,i} + 0.577x_{2,i} - 0.067x_{3,i}$

▶ Effect Tests

Residual by Predicted Plot

- $s_{SF}^2 = 1.569$ ("Mean Square Error", blue)
- $s_{SF} = \sqrt{1.569} = 1.25$, also under "Root Mean Square Error" (red).

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

Estimating σ^2 Standardized

Residuals

 $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses

Individual mean responses

Multiple mean

Standardized

Yifan Zhu

Standardized Residuals

- As with simple linear regression, $Var(e_i)$ is not constant even though $Var(\varepsilon_i) = \sigma^2$.
- ▶ There are some constants $a_1, a_2, ..., a_n$ such that:

$$Var(e_i) = a_i \sigma^2$$

▶ Hence, we compute the standardized residuals as:

$$e_i^* = \frac{e_i}{s_{SF}\sqrt{a_i}}$$

▶ In practice, $a_1, ..., a_n$ are hard to compute. We'll make JMP do all the hard work.

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

Standardized Residuals

nterence for $eta_0,eta_1,\dots,eta_{p-1}$

Inference for Mean Responses

Individual mean responses

Multiple mean responses

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

stimating o

Standardized Residuals

 $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses Individual mean

responses Multiple mean

Distributions

▼ Studentized Resid y

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

Estimating σ

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses

Individual mean responses

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for
$$\beta_0, \beta_1, \dots, \beta_{p-1}$$

Inference for Mean Responses Individual mean responses Multiple mean responses

$$Y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \dots + \beta_{p-1} x_{p-1,i} + \varepsilon_i$$

Our estimated model is:

$$\hat{y}_i = b_0 + b_1 x_{1,i} + b_2 x_{2,i} + \dots + b_{p-1} x_{p-1,i}$$

▶ How close are the estimates to their true values?

Multiple Regression: a Review

Standardized Residuals

Inference for $\beta_0, \beta_1, \dots, \beta_{p-1}$

Inference for Mean Responses

Individual mean responses

Multiple mean responses

Inference for $\beta_0, \beta_1, \dots, \beta_p$

Under our model assumptions:

$$b_I \sim N(\beta_I, d_I \sigma^2)$$

for some positive constant d_l , l = 0, 1, 2, ..., p - 1.

► That means:

$$\frac{b_l - \beta_l}{s_{SF}\sqrt{d_l}} = \frac{b_l - \beta_l}{\widehat{SD}(b_l)} \sim t_{n-p}$$

▶ A test statistic for testing H_0 : $b_l = \#$ is:

$$T = \frac{b_l - \#}{s_{SF}\sqrt{d_l}} = \frac{b_l - \#}{\widehat{SD}(b_l)} \sim t_{n-p}$$

▶ A 2-sided $1 - \alpha$ confidence interval for β_I is:

$$b_l \pm t_{n-p, 1-\alpha/2} \cdot s_{SF} \sqrt{d_l}$$

i.e.,

$$b_l \pm t_{n-p, 1-\alpha/2} \cdot \widehat{SD}(d_l)$$

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

Estimating σ

Standardized Residuals

Inference for $\beta_0, \beta_1, \dots, \beta_{p-1}$

Inference for Mean Responses

Individual mean responses

Inference for

Inference for Mean

Responses

Multiple

Standardized Residuals

 $\beta_0, \beta_1, \ldots, \beta_{n-1}$

- n = 17
- \triangleright x_1 : air flow, the rate of operation of the plant
- x_2 , inlet temperature of the cooling water
- \triangleright x₃: (% circulating acid 50%)×10

▼ Param	Parameter Estimates							
Term	Estimate	Std Error	t Ratio	Prob>ltl				
Intercept	-37.65246	4.732051	-7.96	<.0001*				
x1	0.7976856	0.067439	11.83	<.0001*				
x2	0.5773405	0.165969	3.48	0.0041*				
x3	-0.06706	0.061603	-1.09	0.2961				

- Test $H_0: \beta_1 = 1$ vs. $H_a: \beta_1 < 1$ using $\alpha = 0.1$.
- Test $H_0: \beta_3 = 0$ vs. $H_a: \beta_3 \neq 0$ by hand ($\alpha = 0.05$), and compare your t statistic to the one in the output table.
- 3. Construct and interpret a 2-sided 99% confidence interval for β_3 .
- Construct and interpret a 1-sided lower 90% confidence interval for β_2

- 1. $H_0: \beta_1 = 1, H_a: \beta_1 < 1$
- 2. $\alpha = 0.1$
- 3. I use the test statistic:

$$T = \frac{b_1 - 1}{\widehat{SD}(b_1)}$$

- I assume:
 - $ightharpoonup H_0$ is true.
 - ▶ The model $Y_i = \beta_0 + \beta_1 x_{1,i} + \beta_1 x_{2,i} + \beta_1 x_{3,i} + \varepsilon_i$, with $\varepsilon_1, \dots, \varepsilon_{17} \sim N(0, \sigma^2)$ is correct.
- ▶ Under the assumptions, $T \sim t_{n-p} = t_{17-4} = t_{13}$.
- ▶ I will reject H_0 if $T < t_{13,\alpha} = t_{13,0.1} = -1.35$.

Inference for

Responses

 $\beta_0, \overline{\beta_1, \ldots, \beta_{n-1}}$

4. The observed test statistic:

$$t = \frac{0.7977 - 1}{0.06744} = -3.00$$

- 5. With $t = -3 < -1.35 = t_{13.0.1}$, we reject H_0 and conclude H_a .
- 6. There is enough evidence to conclude that the true slope on airflow is less than 1 unit stack loss / unit airflow. With each unit increase in airflow and all the other covariates held constant, we expect stack loss to increase by less than one unit.

Inference for $\beta_0, \beta_1, \dots, \beta_{p-1}$ Inference for Mean

Responses Individual mean

Individual mean responses Multiple mean

- 1. $H_0: \beta_3 = 0, H_a: \beta_3 \neq 0$
- 2. $\alpha = 0.05$
- 3. I use the test statistic:

$$T=\frac{b_3-0}{\widehat{SD}(b_3)}$$

- I assume:
 - $ightharpoonup H_0$ is true.
 - ▶ The model $Y_i = \beta_0 + \beta_1 x_{1,i} + \beta_1 x_{2,i} + \beta_1 x_{3,i} + \varepsilon_i$, with $\varepsilon_1, \ldots, \varepsilon_{17} \sim N(0, \sigma^2)$ is correct.
- ▶ Under the assumptions, $T \sim t_{n-p} = t_{17-4} = t_{13}$.
- ▶ I will reject H_0 if $|T| > t_{13,1-\alpha/2} = t_{13,0.975} = 2.16$.

$$t = rac{-0.06706 - 0}{0.0616} = -1.089$$
 (agrees with the "t Ratio")

- 5. With |t| = 1.089 < 2.16, we fail to reject H_0 .
- 6. There is not enough evidence to conclude that the true slope on circulating acid (shifted and scaled) is nonzero. With each unit increase acid and all the other covariates held constant, there is no evidence that the stack loss should change.

Multiple Regression: a Review

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses

Individual mean responses Multiple mean

Residuals
Inference for

 $\beta_0, \overline{\beta_1}, \dots, \overline{\beta_{p-1}}$ Inference for Mean Responses

Individual mean responses

Multiple mean responses

► For a confidence level of 99%, $\alpha = 0.01$ and so $t_{n-p,1-\alpha/2} = t_{13,0.995} = 3.012$.

$$(b_3 - t_{n-p,1-\alpha/2} \cdot \widehat{SD}(b_3), \ b_3 + t_{n-p,1-\alpha/2} \cdot \widehat{SD}(b_3))$$

$$= (-0.06706 - 3.012 \cdot 0.0616, \ -0.06706 + 3.012 \cdot 0.0616)$$

$$= (-0.2525, \ 0.1185)$$

▶ We're 99% confident that, for every unit increase in acid with all other covariates held constant, stack loss increases by anywhere from -0.2525 units to 0.1185 units.

$$(b_2 - t_{n-p,1-\alpha/2} \cdot \widehat{SD}(b_2), \ b_2 + t_{n-p,1-\alpha/2} \cdot \widehat{SD}(b_2))$$

$$= (0.5573 - 1.77 \cdot 0.166, \ 0.5573 + 1.77 \cdot 0.166)$$

$$= (0.26348, \ 0.8511)$$

▶ We're 90% confident that, for every 1-degree increase in temperature with all other covariates held constant, stack loss increases by anywhere from 0.26348 units to 0.8511 units.

Multiple Regression: a Review

Standardized

Residuals
Inference for

 $\beta_0, \beta_1, \dots, \beta_{p-1}$

Responses Individual mean

responses Multiple mean responses

Outline

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \dots, \beta_{p-1}$

Inference for Mean Responses Individual mean responses Multiple mean responses Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

Characterist

Standardized Residuals

Inference for $\beta_0, \beta_1, \dots, \beta_{p-1}$

Inference for Mean Responses

Individual mean responses Multiple mean

- We want to estimate the mean response at the set of covariate values, $(x_1, x_2, \dots, x_{p-1})$
- ▶ Under the model assumptions, the estimated mean response, $\widehat{\mu}_{y|x}$, at $\mathbf{x} = (x_1, x_2, \dots, x_{p-1})$ is normally distributed with:

$$E(\widehat{\mu}_{y|x}) = \mu_{y|x} = \beta_0 + \beta_1 x_1 + \dots + \beta_{p-1} x_{p-1}$$
$$Var(\widehat{\mu}_{y|x}) = \sigma^2 A(x)^2$$

for some constant A(x). (different for different x)

Under the model assumptions:

$$Z = \frac{\widehat{\mu}_{y|x} - \mu_{y|x}}{\sigma A(x)} \sim \textit{N}(0,1) \quad T = \frac{\widehat{\mu}_{y|x} - \mu_{y|x}}{\textit{s}_{\textit{SF}} A(x)} \sim \textit{t}_{\textit{n-p}}$$

A test statistic for testing $H_0: \mu_{v|x} = \#$ is:

$$\frac{\widehat{\mu}_{y|x} - \#}{s_{SF}A(x)}$$

which has a t_{n-p} distribution under H_0 .

- A 2-sided, 1α confidence interval for $\mu_{y|x}$ in compact form is $\widehat{\mu}_{y|x} \pm t_{n-p,1-\alpha/2} \cdot s_{SF} \cdot A(x)$.
- Note: $s_{SF}A(\mathbf{x}) = \hat{S}\hat{D}(\hat{\mu}_{\mathbf{y}|\mathbf{x}})$, which you can get directly from JMP output.

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

estimating σ

Standardized Residuals

Interence for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses Individual mean

responses Multiple mean responses

Multiple Regression: a Review

Estimating σ

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses

Individual mean responses

Inference for

Multiple

Individual mean responses

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

LStilliatilig

Standardized Residuals

Inference for $eta_0,eta_1,\ldots,eta_{p-1}$

Inference for Mean Responses

Individual mean responses Multiple mean

◀ ▼						
•	x1	x2	x3	У	Predicted y	StdErr Pred y
1	80	27	88	37	35.849282687	1.0461642094
2	62	22	87	18	18.671300496	0.35771273
3	62	23	87	18	19.248640953	0.417845385
4	62	24	93	19	19.423620349	0.6295687471
5	62	24	93	20	19.423620349	0.6295687471
6	58	23	87	15	16.057898713	0.5204068064
7	58	18	80	14	13.640617664	0.6090546656
8	58	18	89	14	13.037076072	0.5582571612
9	58	17	88	13	12.526795792	0.6739851764
10	58	18	82	11	13.50649731	0.5519432283
11	58	19	93	12	13.346175822	0.6055705716
12	50	18	89	8	6.6555915917	0.5876767248
13	50	18	86	7	6.8567721223	0.4891659484
14	50	19	72	8	8.3729550563	0.8232400377
15	50	19	79	8	7.903533818	0.5302896274
16	50	20	80	9	8.4138140985	0.5769617708
17	56	20	82	15	13.065807105	0.3632418427

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

estimating σ

andardized siduals

nference for $eta_0,eta_1,\ldots,eta_{p-1}$

Inference for Mean Responses Individual mean

responses
Multiple mean

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

Estimating σ Standardized

Residuals
Inference for

Inference for Mean Responses

Individual mean responses Multiple mean

▶ With $t_{n-p,1-\alpha/2} = t_{13,0.975} = 2.16$ the confidence interval is:

$$(\widehat{\mu}_{y|x} - 2.16 \cdot \widehat{SD}(\widehat{\mu}_{y|x}), \ \widehat{\mu}_{y|x} + 2.16 \cdot \widehat{SD}(\widehat{\mu}_{y|x}))$$

= $(19.2486 - 2.16 \cdot 0.4178, \ 19.2486 + 2.16 \cdot 0.4178)$
= $(18.346, \ 20.151)$

▶ We're 95% confident that when the air flow is 62, the temperature is 23 degrees, and the adjusted percentage of circulating acid is 87, the true mean stack loss is anywhere between 18.346 and 20.151 units.

Residuals

Responses

Multiple mean responses

▶ The multiple $1 - \alpha$ confidence interval formula for $\mu_{y|x_1,...,x_{p-1}}$ is:

$$\widehat{\mu}_{y|\mathbf{x}} \pm \sqrt{p \cdot F_{p, n-p, 1-lpha}} \cdot s_{SF} \cdot A(\mathbf{x})$$

- We'll make JMP do all the work for us.
- ▶ First, we'll need to write $\widehat{SD}(\widehat{\mu}_{v|x}) = s_{SF} \cdot A(x)$ and write the interval as:

$$\widehat{\mu}_{y|\mathbf{x}} \pm \sqrt{p \cdot F_{p, n-p, 1-\alpha}} \cdot \widehat{SD}(\widehat{\mu}_{y|\mathbf{x}})$$

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

Standardized

Residuals

Multiple mean responses

- ▶ With p parameters and 95% confidence intervals, $F_{p, n-p, 1-\alpha} = F_{4,13,0.95} = 3.18.$
- ▶ The multiple confidence interval becomes:

$$\widehat{\mu}_{y|\mathbf{x}} \pm \sqrt{4 \cdot 3.18} \cdot \widehat{SD}(\widehat{\mu}_{y|\mathbf{x}})$$

i.e.,

$$\widehat{\mu}_{y|\mathbf{x}} \pm 3.57 \cdot \widehat{SD}(\widehat{\mu}_{y|\mathbf{x}})$$

 $ightharpoonup \widehat{\mu}_{v|x}$ and $\widehat{SD}(\widehat{\mu}_{v|x})$ vary from point to point.

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

LStillating 0

Standardized Residuals

 $\beta_0, \beta_1, \dots, \beta_{p-1}$

Responses

Individual mean

Multiple mean responses

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

Latinating

Standardized Residuals

Interence for $eta_0,eta_1,\ldots,eta_{p-1}$

Inference for Mean Responses

Individual mean

responses Multiple mean responses ► The columns, "Lower bd" and "Upper bd", give the endpoints for the confidence intervals.

			, ,				
x1	x2	х3	у	Predicted y	StdErr Pred y	Lower bd	Upper bd
80	27	88	37	35.849282687	1.0461642094	32.114476459	39.58408891
62	22	87	18	18.671300496	0.35771273	17.39426605	19.94833494
62	23	87	18	19.248640953	0.417845385	17.756932929	20.74034897
62	24	93	19	19.423620349	0.6295687471	17.176059922	21.67118077
62	24	93	20	19.423620349	0.6295687471	17.176059922	21.67118077
58	23	87	15	16.057898713	0.5204068064	14.200046414	17.91575101
58	18	80	14	13.640617664	0.6090546656	11.466292508	15.81494282
58	18	89	14	13.037076072	0.5582571612	11.044098007	15.03005413
58	17	88	13	12.526795792	0.6739851764	10.120668712	14.93292287
58	18	82	11	13.50649731	0.5519432283	11.536059986	15.47693463
58	19	93	12	13.346175822	0.6055705716	11.184288881	15.50806276
50	18	89	8	6.6555915917	0.5876767248	4.557585684	8.753597499
50	18	86	7	6.8567721223	0.4891659484	5.1104496867	8.60309455
50	19	72	8	8.3729550563	0.8232400377	5.4339881219	11.31192199
50	19	79	8	7.903533818	0.5302896274	6.0103998483	9.796667787
50	20	80	9	8.4138140985	0.5769617708	6.3540605768	10.4735676
56	20	82	15	13.065807105	0.3632418427	11.769033727	14.36258048