BST 140.752

Problem Set 4

Due: December 14, 2017

1 Linear Mixed Model

- 1. Let $y_{ij}=\mu+u_i+\epsilon_{ij}$ for $i=1,\ldots 4$, $j=1,\ldots 3$, $u_i\sim N(0,\sigma_u^2)$ and $\epsilon_{ij}\sim N(0,\sigma^2)$.
 - (a) Write the model in general linear mixed model format, i.e. $y = X\beta + Zu + \varepsilon$. Specify each component of the model.
 - (b) Calculate the Best Linear Unbiased Predictor (BLUP) for u_i
 - (c) Find the best linear unbiased estimate (BLUE) for μ .
- 2. Let $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\mathbf{u} + \boldsymbol{\varepsilon}$ for $u \sim N(0, \Sigma_u)$ and $\epsilon \sim N(0, \sigma^2 I)$.
 - (a) Show that the BLUP is given by $E(\mathbf{u}|\mathbf{y})$.
 - (b) Calculate the general form of the BLUP for ${\bf u}$, denoted $\hat{\bf u}$.
 - (c) Find $var(\hat{\mathbf{u}})$.
 - (d) Find $var(\hat{\mathbf{u}} \mathbf{u})$.
- 3. Recall that using REML we obtained a set of m+1 estimating equations for $\sigma_0^2,\ldots\sigma_m^2$ given by

$$\mathrm{tr}\bigg((\mathbf{K}\mathbf{V}\mathbf{K}')^{-1}\mathbf{K}\mathbf{Z}_{(l)}\mathbf{Z}'_{(l)}\mathbf{K}'\bigg) = \mathbf{y}'\mathbf{K}'(\mathbf{K}\mathbf{V}\mathbf{K}')^{-1}\mathbf{K}\mathbf{Z}_{(l)}\mathbf{Z}'_{(l)}\mathbf{K}'(\mathbf{K}\mathbf{V}\mathbf{K}')^{-1}\mathbf{K}\mathbf{y}$$

where $\mathbf{K} = \mathbf{C}(\mathbf{I} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}')$. Show that the expected value of the quadratic form on the right side of the equation is given by the left side.

2 Coding

- 1. Load the Rail data set in R from the package nmle. Use the function help(Rail) to familiarize yourself with its format.
 - (a) Fit a fixed effect model of the form $y_{ij} = \mu + u_i + \epsilon_{ij}$ with $\epsilon_{ij} \sim (0, \sigma^2)$.
 - (b) Fit a mixed model of the form $y_{ij} = \mu + u_i + \epsilon_{ij}$ with $u_i \sim (0, \sigma_u^2)$ and $\epsilon_{ij} \sim (0, \sigma^2)$.
 - (c) Compute the BLUPs for the model above and compare them with the corresponding fixed effect estimate for the u_i .
- 2. Load the Pixel data set in R from the package nmle. Use the function help (Pixel) to familiarize yourself with its format.

- (a) Visualize the data using some informative plots.
- (b) Fit a linear mixed effect model where you have $y_{ijk} = \beta_0 + \beta_1 x_k + \beta_1 x_k^2 + u_i + u_{ij} + \epsilon_{ijk}$ where y_{ijk} represents pixel intensity, i is dog, j is side and k is day index and x_k is day. Note that sides of a dog are nested within the dog. Interpret the results.