— QUIZ 2 —

AMATH 352: Applied Linear Algebra & Numerical Analysis

© Ryan Creedon, University of Washington

Due to Gradescope February 6, 2023 at 11:59pm PST

This quiz should take ~ 1 hour to complete, but you have all day to turn it in. Follow all directions carefully. Credit will not be given for work that does not follow directions. You are $\underline{\text{not}}$ allowed to work with other students or use your notes, homework assignments, MATLAB, or external sources. Please submit your work to Quiz 2 on Gradescope. Only .pdf files will be accepted.

Good luck!

Name:	Julien Goldstick	
Student ID:	2168956,	

1. (5 points total) Answer the following true-false questions.

For (a)-(b), consider the following matrices:

$$E_1 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 4 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad E_2 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad E_3 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 \end{pmatrix}.$$

(a) (1 point)
$$E_1 E_2 E_3 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 4 & 1 & 0 & 0 & 0 \\ 2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 \end{pmatrix}.$$

True X False

(b) (1 point)
$$(E_1 E_2 E_3)^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & -4 & 1 & 0 & 0 & 0 \\ -2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$
.

That's not how inverses work,

True False X

For (c)-(c), consider the following system:

$$\begin{pmatrix} 1 & 2 & 3 \\ -2 & -1 & 0 \\ -1 & 1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

(c) (1 point) This system has a unique solution.

True False X

(d) (1 point) The coefficient matrix of this system has a LU factorization

False True X

$$U = \begin{pmatrix} 1 & 2 & 3 \\ -2 & -1 & 0 \\ -1 & 1 & 3 \end{pmatrix} + R_1 \quad L = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 6 \\ 0 & 3 & 6 \end{pmatrix} - R_2 \quad L = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

$$U = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 3 & 6 \\ 0 & 3 & 6 \end{pmatrix} \quad L = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

$$U = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 3 & 6 \\ 0 & 0 & 0 \end{pmatrix} \quad L = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 1 & 1 \end{pmatrix}$$

(e) (1 point) The dimension of Span
$$\left\{ \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \\ 3 \end{pmatrix} \right\}$$
 is 3.

True False X

Linearly Dependent so these 3 vectors

So has a dimension less than the number of vectors which is 3.

2. (5 points total) Consider the following matrix:

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 4 & 1 \\ -1 & 1 & 2 & 2 \\ 2 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

$$U = \begin{pmatrix} 1 & 0 & 41 \\ -1 & 1 & 72 \\ 7 & 0 & 01 \\ 1 & 0 & 00 \end{pmatrix} + R_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$U = \begin{pmatrix} 10 & 41 \\ 01 & 63 \\ 00 & -9 & -1 \\ 00 & -4 & -1 \end{pmatrix} - R_3 \qquad L = \begin{pmatrix} 1 & 6 & 0 & 0 \\ -11 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 \end{pmatrix}$$

$$U = \begin{pmatrix} 1041 \\ 0163 \\ 00-8-1 \\ 000-\frac{1}{2} \end{pmatrix} \qquad 1 = \begin{pmatrix} 1600 \\ -1100 \\ 2010 \\ 10\frac{1}{2} \end{pmatrix}$$

$$L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 1 & 0 & \frac{1}{2} & 1 \end{pmatrix}, \quad U = \begin{pmatrix} 1 & 0 & 4 & 1 \\ 0 & 1 & 6 & 3 \\ 0 & 0 & -8 & -1 \\ 0 & 0 & 0 & -\frac{1}{2} \end{pmatrix}$$

(b) (1 point) Based on this LU factorization, is A a full rank matrix? Why or why not? This should be a

one sentence answer.

Yes, A is Sull rank In row echelon sorm, there are Sour pivots, and A has 4 columns.

2. (5 points total) Consider the following matrix:

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 4 & 1 \\ -1 & 1 & 2 & 2 \\ 2 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

(a) (4 points) Obtain the LU factorization of A.

$$U = \begin{pmatrix} 1 & 0 & 4 & 1 \\ -1 & 1 & 72 \\ 7 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} + \begin{bmatrix} 1 & 0 & 0 & 0 \\ -7 & 1 & 1 \\ -7 & 1 & 1 \end{bmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$U = \begin{pmatrix} 10 & 41 \\ 01 & 63 \\ 00 & -4-1 \\ 00 & -4-1 \end{pmatrix} - R_3 \qquad L = \begin{pmatrix} 1 & 6 & 0 \\ -11 & 0 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

$$U = \begin{pmatrix} 1041 \\ 0163 \\ 00-8-1 \\ 000-\frac{1}{2} \end{pmatrix} \qquad L = \begin{pmatrix} 1600 \\ -1100 \\ 2010 \\ 10\frac{1}{2} \end{pmatrix}$$

$$L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ -2 & 0 & 1 & 0 \\ 1 & 0 & \frac{1}{2} & 1 \end{pmatrix}, \quad U = \begin{pmatrix} 1 & 0 & 4 & 1 \\ 0 & 1 & 6 & 3 \\ 0 & 0 & -8 & -1 \\ 0 & 0 & 0 & -\frac{1}{2} \end{pmatrix}$$

(b) (1 point) Based on this LU factorization, is A a full rank matrix? Why or why not? This should be a one sentence answer.

3. (5 points total) Consider the following matrix:

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 2 & 4 & 4 \\ 0 & 1 & -7 & 2 & 3 \\ 1 & 4 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 6 & 2 \end{pmatrix}.$$

(a) (4 points) Obtain the PLU factorization of A. Use partial pivoting to determine whether to exchange rows. Rito Ry Toget;

$$U = \begin{pmatrix} 14 & 1 & 1 & 1 \\ 0 & 1 - 723 \\ 0 & 0 & 244 \\ 0 & 0 & 0 & 20 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 21 & 0 \\ 0 & 0 & 21 & 0 \\ 0 & 0 & 20 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 21 & 0 \\ 0 & 0 & 20 & 1 \end{pmatrix}$$

$$U = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 - 723 \\ 0 & 0 & 244 \\ 0 & 0 & 0 - 20 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0$$

$$RS = R_{5} + 2R_{4}$$

$$U = \begin{pmatrix} 14111 \\ 01 - 723 \\ 00244 \\ 000 - 20 \\ 00000 \end{pmatrix} = \begin{pmatrix} 1000 \\ 0100 \\ 00100 \\ 00110 \\$$

(b) (1 point) Based on this PLU factorization, what is the dimension of the span of A's columns?

4. (5 points total) Consider the system
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
, where $\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

(b) (2 points) Compute
$$A^{-1}$$
 by Gauss-Jordan elimination. Show each elimination step!

(b) (2 points) Compute
$$A^{-1}$$
 by Gauss-Jordan elimination. Show each elimination step!

$$\begin{pmatrix}
1 & 0 & 1 & 1 & 0 & 0 \\
-1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & -1 & 0 & 0 & 1
\end{pmatrix}
+ R_1$$

$$\begin{pmatrix}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & -2 & -1 & 0 & 1
\end{pmatrix}
+ \frac{1}{2}R_3$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & -2 & -1 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & -2 & -1 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & -2 & -1 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & -2 & -1 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & -2 & -1 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & -2 & -1 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & -2 & -1 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & -2 & -1 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & -2 & -1 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & -2 & -1 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & -2 & -1 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & -2 & -1 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & -2 & -1 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & -2 & -1 & 0 & 1
\end{pmatrix}$$

$$\mathbf{A}^{-1} = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}$$

$$A = b \qquad x = A^{-1}b \qquad x = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ \end{pmatrix} = \begin{pmatrix} \frac{1}{2}, 1 + 0, 1 + \frac{1}{2}, 1 \\ -\frac{1}{2}, 1 + 0, 1 + \frac{1}{2}, 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$$

$$\mathbf{x} = \begin{pmatrix} \mathbf{1} \\ \mathbf{7} \\ \mathbf{0} \end{pmatrix}$$

(d) (1 point) For large $n \times n$ matrices, Gauss-Jordan elimination is more expensive than computing the LUdecomposition.

5. (10 points total) Consider the following set:
$$\overline{V_1}$$
 $\overline{V_2}$ $\overline{V_3}$
$$S = \left\{ \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ -3 \\ -1 \end{pmatrix}, \begin{pmatrix} -2 \\ 5 \\ 3 \end{pmatrix} \right\}.$$

(a) (5 points) Is
$$\begin{pmatrix} 0 \\ 4 \\ 4 \end{pmatrix} \in \text{Span}\{S\}$$
? If so, what linear combination of the vectors in S results in $\begin{pmatrix} 0 \\ 4 \\ 4 \end{pmatrix}$?

$$\begin{pmatrix} 7 & 7 & -2 & 0 \\ -1 & -3 & 5 & 4 \\ 1 & -1 & 3 & 4 \end{pmatrix} + \frac{1}{2}R_1 \longrightarrow \begin{pmatrix} 7 & 7 & -2 & 0 \\ 0 & -2 & 4 & 4 \\ 0 & -2 & 4 & 4 \end{pmatrix} \longrightarrow \begin{pmatrix} 7 & 1 & -1 & 0 \\ 0 & -2 & 4 & 4 \\ 0 & -2 & 4 & 4 \end{pmatrix} \longrightarrow \begin{pmatrix} 7 & 1 & -1 & 0 \\ 0 & -2 & 4 & 4 \\ 0 & -2 & 4 & 4 \end{pmatrix} \longrightarrow \begin{pmatrix} 7 & 1 & -1 & 0 \\ 0 & -2 & 4 & 4 \\ 0 & -2 & 4 & 4 \end{pmatrix} \longrightarrow \begin{pmatrix} 7 & 1 & -1 & 2 \\ 0 & -1 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{cases} 7 & 7 & -2 & 0 \\ -1 & -1 & 3 & 4 \\ -1 & 2 & 1 & 2 \\ 0 & -2 & 4 & 4 \\ 0 & -2 & 4 & 4 \\ 0 & -2 & 4 & 4 \\ 0 & -2 & 4 & 4 \\ 0 & -2 & 4 & 4 \\ 0 & -2 & 2 & 2 \\ 0 &$$

(b) (4 points) Are the vectors in S linearly independent? If not, which vector(s) are linearly dependent and which are linearly independent according to row-echelon form?

ware linearly independent according to row-echelon form?
No.
$$\sqrt{3}$$
 is linearly Dependent on $\sqrt{1}$ and $\sqrt{2}$
 $\sqrt{3} = 1 \cdot \sqrt{1} + -2 \cdot \sqrt{2}$

In towerhelon Sorm:

$$\begin{pmatrix}
1 & 0 & 1 \\
0 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\vec{V}_1 \vec{V}_2 \vec{V}_3$$

- (c) (1 point) Which of the following describes $Span\{S\}$ geometrically?
 - Span $\{S\}$ is \mathbb{R}^3 .
 - Span $\{S\}$ is a plane through the origin in \mathbb{R}^3 .
 - Span $\{S\}$ is a line through the origin in \mathbb{R}^3 .