5.3.2 稀疏矩阵(Sparse Matrix)

$$\mathbf{A}_{6\times7} = \begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{22} & \mathbf{0} & \mathbf{0} & \mathbf{15} \\ \mathbf{0} & \mathbf{11} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{17} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & -6 & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{39} & \mathbf{0} \\ \mathbf{91} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{28} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{pmatrix}$$

■ 设矩阵A中有s个非零元素,若s远远小于矩阵元素的 总数(即s<<m×n),则称A为稀疏矩阵。

- 设矩阵A中有s个非零元素。令e=s/(m*n),称e为矩阵的稀疏因子。
- ▶ 通常认为 e≤0.05 时称之为稀疏矩阵。
- 在存储稀疏矩阵时,为节省存储空间,应只存储非零元素。但通常非零元素的分布没有规律,故在存储非零元素时,必须记下它所在的行和列的位置(i,i)。
- 每一个三元组 (*i*, *j*, *a_{ij}*) 唯一确定了矩阵A的一个非零元素。因此,稀疏矩阵可由表示非零元素的一系列三元组及其行列数唯一确定。

1. 三元组顺序表

- 把稀疏矩阵的三元组线性表按顺序存储结构存储,则称为稀疏矩阵的三元组顺序表。
- 在三元组顺序表中,行为主序,所有非零元素的三元组按 行号递增的顺序排列;行号相等的按列号递增的顺序排序。
- 三元组顺序表中三元组的个数记忆在变量tu中,此即矩阵中的非零元素个数。稀疏矩阵的行数和列数分别记忆在mu和nu中。

稀疏矩阵

三元组顺序表

(0)	0	0	22	0	0	15
0	11	0	0	0	17	0
0	0	0	-6	0	0	0
0	0	0	0	0	39	0
91	0	0	0	0	0	0
0	0	28	0	0	0	0

	行	列	值
	(row)	(col)	(value)
[0]	0	3	22
[1]	0	6	15
[2]	1	1	11
[3]	1	1 5	17
[4]	2	3	-6
[5]	3	5	39
[6]	4	0	91
[7]	5	2	28

// ----稀疏矩阵的三元组顺序表存储表示------

```
#define MaxSize 100 //矩阵中非零元素最多个数
typedef int ElemType; //矩阵元素数据类型
typedef struct { //三元组定义
   int i, j; //非零元素行号、列号
                 //非零元素的值
   ElemType e;
} Triple;
typedef struct {
                //稀疏矩阵结构定义
   int mu, nu, tu; //矩阵行、列、非零元素
  Triple data[MaxSize]; //三元组表
} TSMatrix;
```

稀疏矩阵的转置

- 一个 $m \times n$ 的矩阵 A, 它的转置矩阵 B 是一个 $n \times m$ 的矩阵, 且 A[i][j] = B[j][i]。即
 - ◆ 矩阵 A 的行成为矩阵 B 的列
 - ◆ 矩阵 A 的列成为矩阵 B 的行。
- 在稀疏矩阵的三元组表中,非零矩阵元素按行存放。当 行号相同时,按列号递增的顺序存放。
- 如果稀疏矩阵的转置运算基于三元组表,则矩阵的转置 要直接对相应三元组表进行转置。

稀疏矩阵

22	0	0	15
0	0	17	0
-6	0	0	0
0	0	39	0
0	0	0	0
0	0	0	0
	0 -6 0 0	0 0 -6 0 0 0 0 0	22 0 0 0 0 17 -6 0 0 0 0 39 0 0 0 0 0 0

对应三元组表

	行	列	值
[0]	0	3	22
[1]	0	6	15
[2]	1	1	11
[3]	1	5	17
[4]	2	3	-6
[5]	3	5	39
[6]	4	0	91
[7]	5	2	28

转置矩阵

(0)	0	0	0	91	0
0	11	0	0	0	0
0	0	0	0	0	28
22	0	-6	0	0	0
0	0	0	0	0	0
0	17	0	39	0	0
15	0	0	0	0	0

对应三元组表

	行	列	值
[0]	0	4	91
[1]	1	1	11
[2]	2	5	28
[3]	3	0	22
[4]	3	2	-6
[5]	5	1	17
[6]	5	3	39
[7]	6	0	16

原矩阵三元组表

	行	列	值
[0]	0	3	22
[1]	0	6	15
[2]	1	1	11
[3]	1	5	17
[4]	2	3	-6
[5]	3	5	39
[6]	4	0	91
[7]	5	2	28

转置矩阵三元组表

	行	列	值
[0]	0	4	91
[1]	1	1	11
[2]	2	5	28
[3]	3	0	22
[4]	3	2	-6
[5]	5	1	17
[6]	5	3	39
[7]	6	0	16

稀疏矩阵转置算法思想

- 设矩阵列数为 nu,对矩阵三元组表扫描 nu 次。第 k 次检测列号为 k 的项。
- 第 k 次扫描找寻所有列号为 k 的项,将其行号变列 号、列号变行号,连同该元素的值,顺次存于转置矩阵 三元组表。
- 若设矩阵非零元素有 tu 个,则上述二重循环执行的时间复杂性为O(nu×tu)。
- 若矩阵有 200 行, 200 列, 10,000 个非零元素,总 共有 2,000,000 次处理。

稀疏矩阵的转置算法

```
void TransposeSMatrix(TSMatrix M, TSMatrix &T)
{ // 求稀疏矩阵M的转置矩阵T。算法5.1
    int p, q, col;
   T.mu = M.nu;
   T.nu = M.mu;
   T.tu = M.tu;
    if(T.tu) {
        q = 1;
        for(col = 1; col <= M.nu; ++col)</pre>
            for(p = 1; p <= M.tu; ++p)
                if(M.data[p].j == col) {
                    T.data[q].i = M.data[p].j;
                    T.data[q].j = M.data[p].i;
                    T.data[q].e = M.data[p].e;
                    ++q;
```

■ 算法分析:

此算法慢就慢在二重嵌套循环。若能一趟扫描过去就实现转置,运算速度将大大提高。为此,需要事先做点功课。这就是快速转置的想法。

快速转置算法

- 快速转置的想法是:对原矩阵 a 扫描一遍,按 a 中每一元素的列号,立即确定在转置矩阵 b 三元组表中的位置,并装入它。
- 为加速转置速度,建立两个辅助数组 num[col] 和cpot[col]:
 - ◆ num[col] 记录矩阵转置前各列非零元素个数,转置后就 是各行非零元素个数;
 - ◆ cpot[col] 记录转置后各行第一个非零元素在转置三元组 表中开始存放位置。

转置矩阵三元组表

	行	列	值
[0]	0	4	91
[1]	1	1	11
[2]	2	5	28
[3]	3	0	22
[4]	3	2	-6
[5]	5	1 (17
[6]	5	3	39
[7]	6	0	16

num[col]

0	1	2	3	4	5	6
1	1	1	2	0	2	1

cpot[col]

0						
0	1	2	3	5	5	7

■ 扫描一遍三元组表,根据某项 列号j,查 cpot 表,按 cpot[col] 所给位置直接将该项 存入转置矩阵的三元组表中。

	[0]	[1]	[2] [3	3] [4]	[5] [6]			
num	1	1	1	2 0	2	1 矩	i阵 A	各多	刊非
						零	こ元素	个数	t
cpot	0	1	2	3 5	5	7 矩	i阵 B	各行	
	"								
			/		ľ			1	
A三元组	10	0)	(1)	(2)	(3)	(4)	(5)	(6)	\ (7)
行row		0	0	1	1	2	3	4	5
列col		3	16	11	15	3	5	0	2
/ 4 5 5 2									
/ 4 0 0 1									

稀疏矩阵的快速转置算法

```
void FastTransposeSMatrix(TSMatrix M, TSMatrix &T)
   // 快速求稀疏矩阵M的转置矩阵T。算法5.2
   int p, q, t, col, num[MaxSize], cpot[MaxSize];
   T.mu = M.nu; // 给T的行、列数与非零元素个数赋值
   T.nu = M.mu;
   T.tu = M.tu;
   if(T.tu) { // 是非零矩阵
       for(col = 0; col < M.nu; ++col)</pre>
                                  // 计数器初值设为0
          num[col] = 0;
      // 求M中每一列含非零元素个数
       for(t = 0; t < M.tu; ++t)
          ++num[M.data[t].j];
       // T的第0行的第0个非零元在T.data中的下标为0
       cpot[0] = 0;
       for(col = 1; col < M.nu; ++col)</pre>
          cpot[col] = cpot[col - 1] + num[col - 1];
```

- 该算法有 4 个并列单重循环,各自的时间复杂度为O(nu),O(tu),O(nu),O(tu)。总的时间复杂度为O(nu + tu)。
- 若矩阵有 200 行, 200 列, 10,000 个非零元素,总共有 10,000 次处理。

2. 行逻辑链接的顺序表

■ 为了便于随机存取任意一行的非零元,则需知道每一行的第一个非零元在三元组表中的位置。为此,可将指示"行"信息的辅助数组rpos固定在稀疏矩阵的存储结构中。称这种"带行链接信息"的三元组表为行逻辑链接的顺序表。

三元组顺序表

(0)		0	22	0	0	15)
0	11	0	0	0	17	0
0	0		-6	0	0	0
0 91	0	0	0	0	39	0
91	0	0	0	0	0	0
0	0	28	0	0	0	0

	行	列	值				
	(row)	(col)	(value)				
[0]	0	3	22				
[1]	0	6	15				
[2]	1	1	11				
[3]	1	5	17				
[4]	2	3	-6				
[5]	3	5	39				
[6]	4	0	91				
[7]	5	2	28				

mu=6, nu=7, tu=8

3. 十字链表

- 在执行稀疏矩阵 (+、-、*、/) 操作时, 稀疏矩阵的 非零元素会发生动态变化, 这时, 使用三元组表有双重 缺陷:
 - (1) 不能直接访问矩阵元素;
 - (2) 插入或删除时可能发生大量元素移动;
- > 用稀疏矩阵的链接表示可以避免这些情况。

十字链表的存储表示

一个结点除了数据域(i,j,e)之外,还应该用两个方向的指针(right,down),分别指向行和列。

▶ right: 用于链接同一行中的下一个元素;

▶ down: 用于链接同一列中的下一个元素。

- > 整个矩阵构成了一个十字交叉的链表, 因此称十字链表。
- > 每一行和每一列的头指针,用两个一维指针数组来存放。

十字链表的举例

// 稀疏矩阵的十字链表存储表示

```
typedef struct OLNode {
   int i, j; // 该非零元的行和列下标
   ElemType e; // 非零元素值
   // 该非零元所在行表和列表的后继链域
   OLNode *right, *down;
} OLNode *OLink;
struct CrossList {
   OLink *rhead, *chead;
   int mu, nu, tu; //行数、列数和非零元个数
};
```


— END