F# Workshop

BY JORGE FIORANELLI - @JORGEFIORANELLI

Objectives

- > Understand the basic core principles behind FP
- > Understand the F# syntax
- > Understand the F# structures
- > Get motivation to practice and master F#

Materials

- > Exercises Guide
- > Exercises Source Code
- > F# CheatSheet

fsharpworkshop.com github.com/jorgef/fsharpworkshop

Pre-requisites

> Windows

- > Visual Studio 2015 Community or
- > Xamarin Studio or
- > Atom + F# Compiler + Ionide package or
- Visual Studio Code + F# Compiler + Ionide package

> Linux

- > Atom + Mono + Ionide package or
- > Visual Studio Code + Mono + Ionide package

> Mac

- > Xamarin Studio or
- > Atom + Mono + Ionide package or
- > Visual Studio Code + Mono + Ionide package

Modules

Agenda

Module 1

Bindings | Functions | Tuples | Records

Module 2

High order functions | Pipelining | Partial application | Composition

Module 3

Options | Pattern matching | Discriminated unions | Units of measure

Module 4

Functional lists | Recursion | Object-oriented programming | Type providers

Exercise

Exercise

Module 1

BINDINGS | FUNCTIONS | TUPLES | RECORDS

F# is a mature, open source, cross-platform,

functional-first programming language.

Imperative vs Functional

Conventions

C#

F#

var number = 1;

let number = 1

Functional Core Concepts

Declarative Style

```
var vipCustomers = new List<Customer>();
foreach (var customer in customers)
{
    if (customer.IsVip)
        vipCustomers.Add(customer);
}
```

Declarative ---- var vipCustomers = customers.Where(c => c.IsVip);

Immutability

x <- 2

let mutable x = 1

$$x = x + 1$$

$$let y = x + 1$$

Functions

```
int Add(int x, int y)
{
    return x + y;
}
```


Pure Functions

```
public int Sum(int a, int b)
{
   return a + b;
}
```

```
private int accumulator;

public int Sum(int a, int b)
{
   accumulator++;
   return a + b;
}
```

Expressions

Expressions

Bindings

Tuples

```
Tuple<int, int> Divide(int dividend, int divisor)
{
   var quotient = dividend / divisor;
   var remainder = dividend % divisor;
   return new Tuple<int, int>(quotient, remainder);
}
```

```
let divide dividend divisor =
  let quotient = dividend / divisor
  let remainder = dividend % divisor
  (quotient, remainder)
```

```
var result = Divide(10, 3);
var quotient = result.Item1;
var remainder = result.Item2;
```

let quotient, remainder = divide 10 3

let success, value = Int32.TryParse("42")

Records

```
public class DivisionResult
{
    public int Quotient { get; set; }
    public int Remainder { get; set; }
}
```

```
type DivisionResult =
{ Quotient : int
   Remainder : int }
```

```
public class DivisionResult
  private readonly int quotient;
  private readonly int remainder;
  public DivisionResult(int quotient, int remainder)
    this.quotient = quotient;
    this.remainder = remainder;
  public int Quotient
    get { return quotient; }
  public int Remainder
    get { return remainder; }
```

Records

```
let result = { Quotient = 3; Remainder = 1 }
type DivisionResult =
{ Quotient : int
                                                                    Error: No assignment given
                              let result = { Quotient = 3 }
 Remainder: int }
                                                                    for field 'Remainder' of type
let newResult = { Quotient = result.Quotient; Remainder = 0 }
let newResult = { result with Remainder = 0 }
let result1 = { Quotient = 3; Remainder = 1 }
                                                                        Structural Equality
let result2 = { Quotient = 3; Remainder = 1 }
                                                                        Reference Types
result1 = result2 // true
```

Immutable and Structural Equality

```
var message1 = "hello John Doe";
var message2 = "hello John Doe";
```

```
var result = message1 == message2; // true
```

```
var message3 = message1.Replace("hello", "hi");
```

Demo 1

BINDINGS | FUNCTIONS | TUPLES | RECORDS

Exercise 1

Exercise 1

BINDINGS | FUNCTIONS | TUPLES | RECORDS

Review

- > How do you return a value in a function?
- > How many parameters has tryPromoteToVip?
- > Can you explain this type? string -> int -> object
- > How do you change a Record?
- > Can you explain what is the "it" word in some of the outputs?

Module 2

HIGH ORDER FUNCTIONS | PIPELINING | PARTIAL APPLICATION | COMPOSITION

High Order Functions

```
public int Sum(int a, int b)
{
   return a + b;
}
```

```
public int Execute(int a, int b, Func<int,int,int>operation)
{
   return operation(a, b);
}
```

```
var result = Execute(1, 2, (a,b) \Rightarrow a + b);
```

```
var result = Execute(1, 2, (a,b) => a * b);
```

```
var result = Execute(1, 2, Sum);
```

High Order Functions

```
High Order
Functions

var productNames = products

.Where(p => p.Category == productCategory)
.Select(p => p.Name);
```

```
public Func<int,int,int> GetOperation(Type operationType)
{
  if (operationType == Type.Sum)
    return (a, b) => a + b;
  else
    return (a, b) => a * b;
}

var operation = GetOperation(type);
```

High Order Functions

```
let sum ab = a + b
```

let execute a b op = op a b

```
let getOperation type =
  if type = OperationType.Sum then fun a b -> a + b
  else fun a b -> a * b
```

```
let getOperation type =
  if type = OperationType.Sum then (+)
  else (*)
```

Extension Methods in C#

```
public List<int> Filter(List<int> list, Func<int,bool>condition)
```

```
public static List<int> Filter(this List<int> list, Func<int,bool>condition)
```

```
var filteredNumbers = Filter(numbers, n \Rightarrow n > 1);
```

```
var filteredNumbers = numbers.Filter(n => n > 1);
```

Pipelining Operator

```
public List<int> Filter(List<int> items, Func<int,bool>condition)
```

let filter condition items = // ...

```
let filteredNumbers = filter (fun n \rightarrow n > 1) numbers
```

```
let filteredNumbers = numbers |> filter (fun n -> n > 1)
```

Partial Application

let sum ab = a + b

let result = sum 1 2

Returns int = 3

let result = sum 1

Returns int -> int

let addOne = sum 1

Returns int -> int

let result = addOne 2

Returns int = 3

let result = addOne 3

Returns int = 4

Composition

let addOne a = a + 1

let addTwo a = a + 2

let addThree = addOne >> addTwo

let result = addThree 1

Returns int = 4

Demo 2

HIGH ORDER FUNCTIONS | PIPELINING | PARTIAL APPLICATION | COMPOSITION

Exercise 2

Exercise 2

HIGH ORDER FUNCTIONS | PIPELINING | PARTIAL APPLICATION | COMPOSITION

Review

- > What keyword do you use for lambda expressions?
- > What happens if the function I need is defined after the caller?
- > What happens when a function is called without its last parameter?
- > Why |> is better than the Extension Methods?

Module 3

OPTIONS | PATTERN MATCHING | DISCRIMINATED UNIONS | UNITS OF MEASURE

NullReferenceExceptions

```
var customer = GetCustomerById(42);
```

var isAdult = customer.Age >= 18;

```
if (customer == null)
   throw new Exception("Not found");
var isAdult = customer.Age >= 18;
```

```
if (customer == null)
  // Try something different
else
  var isAdult = customer.Age >= 18;
```

public Customer GetCustomerById(int id)

____ NullReferenceException

NullReferenceExceptions

```
var age = GetCustomerAgeById(42);
```

public int GetCustomerAgeById(int id)

```
var isAdult = age >= 18;
```

Hint: Possible Null

```
var isAdult = age.Value >= 18;
```

public int? GetCustomerAgeById(int id)

```
if (!age.HasValue)
  // Try something different
else
  var isAdult = age.Value >= 18;
```

Options

Options

Options

```
int -> int
let addOne x = x + 1
let addOne (x: int option) =
  if x= None then 0
                                                   int option -> int
  else x.Value + 1
let addOne x =
  if x = None then 0
                                                  int option -> int
  else x.Value + 1
let addOne x =
                                                 int option -> int option
  if x = None then None
```

else Some (x.Value + 1)

Pattern Matching

```
let addOne x =
  if x = None then None
  else Some (x.Value + 1)
```

```
let addOne x =
   match x with
   | None -> None
   | Some n -> Some (n + 1)
```

Discriminated Unions

```
public abstract class DivisionResult
public class DivisionSuccess: DivisionResult
  public int Quotient { get; set; }
  public int Remainder { get; set; }
public class DivisionError : DivisionResult
  public string ErrorMessage { get; set; }
```

```
type DivisionResult =
    | DivisionSuccess of quotient : int * remainder : int
    | DivisionError of message : string
```

Discriminated Unions

```
let result = divide 2 0
match result with
| DivisionSuccess (quotient, remainder) ->
    printfn "Quotient:%i Remainder:%i" quotient remainder
| DivisionError message ->
    printfn "Error: %s" message
```

Units of Measure

```
let distanceInMts = 11580.0
let distanceInKms = 87.34
let totalDistance = distanceInMts + distanceInKms
```

11667.34

```
[<Measure>] type m
[<Measure>] type km

let distanceInMts = 11580.0<m>
let distanceInKms = 87.34<km>
let totalDistance = distanceInMts + distanceInKms
```


Error: The unit of measure 'm' does not match the unit of measure 'km'

Units of Measure

[<Measure>] type km

```
[<Measure>] type h
let time = 2.4 < h >
let distance = 87.34<km>
let speed = distance / time
                                     36.39<km/h>
[<Measure>] type m
let width = 2<m>
let height = 3<m>
let surface = width * height
                                     6<m^2>
```

Units of Measure

```
let distanceInMts = 11580.0<m>
```

let distanceInKms = 87.34<km>

let totalDistance = distanceInMts + distanceInKms

Error: The unit of measure 'm' does not match the unit of measure 'km'

let mts2Kms (m : float) =
$$m / 1.0 < m > / 1000.0 * 1.0 < km >$$

let totalDistance = (mts2Kms distanceInMts) + distanceInKms

Demo 3

OPTIONS | PATTERN MATCHING | DISCRIMINATED UNIONS | UNITS OF MEASURE

Exercise

Exercise 3

OPTIONS | PATTERN MATCHING | DISCRIMINATED UNIONS | UNITS OF MEASURE

Review

- > How do you convert two units of measure?
- > What happens if you multiply the same unit of measure?
- > Why do we use "%i" in the sprintf function?
- > Why do we use "_"?
- > What are the possible types of Option<string>?

Module 4

FUNCTIONAL LISTS | RECURSION | OBJECT-ORIENTED PROGRAMMING | TYPE PROVIDERS

Functional Lists

```
var numbers = new List<int>{2, 3, 4};
numbers.Insert(0, 1);
```

```
numbers.AddRange(new List<int>{5, 6});
```

```
var ns = Enumerable.Range(1, 1000).ToList();
```

```
var empty = new List<int>();
```

```
let numbers = [2; 3; 4]
let newNumbers = 1 :: numbers
```

```
let twoLists = numbers @ [5; 6]
```

```
let ns =[1 .. 1000]
```

```
let empty = []
```

```
let odds =[1 .. 2 .. 1000]
```

```
let gen = [ for n in numbers do
      if n%3 = 0 then
      yield n * n ]
```

Lists vs Arrays vs Sequences

```
List let myList = [1; 2]
```

```
Array let myArray = [|1; 2|]
```

Seq let mySeq = seq { yield 1; yield 2 }

Functional Lists

Processing Lists

```
let numbers = [1..4]
let mutable result = [] : int list
for n in numbers do
if n % 2 = 0 then result <- n :: result
```

```
let rec even ls =
match ls with

Empty List (end)
Non Empty List
| head :: tail when head % 2 = 0 ->head :: even tail
|_ :: tail -> even tail
```

Recursion

```
let rec even ls =
  match ls with
  |[] -> []
  |head :: tail when head % 2 = 0 -> head :: even tail
  |_ :: tail -> even tail
```


Tail Recursion

```
let rec even ls =
  match ls with
  |[] -> []
  |head :: tail when head % 2 = 0 ->head :: even tail
  |_ :: tail -> even tail
```

```
let rec even acc |s =
  match |s with
  |[] -> List.rev acc
  |head :: tail when head % 2 = 0 -> even (head :: acc) tail
  |_ :: tail -> even acc tail
```

List Module

List.filter List.map List.fold List.find List.tryFind List.forall List.exist List.partition List.zip List.rev List.collect List.choose List.pick List.toSeq

.Where .Select .Aggregate .First .FirstOrDefault .All .Any .Zip .Reverse .SelectMany .AsEnumerable List.ofSeq .ToList

Complete list:

http://msdn.microsoft.com/enus/library/ee353738.aspx

List Module

Classes – Immutable Properties

```
public class MyClass
  private readonly int myFiled;
  public MyClass(int myParam)
    myField = myParam;
  public int MyProperty
    get { return myField; }
```

type MyClass(myField: int) =
 member this.MyProperty = myField

Classes – Mutable Properties

```
public class MyClass
{
    public MyClass(int myParam)
    {
        MyProperty = myParam;
    }
    public int MyProperty { get; set; }
}
```

```
type MyClass(myField: int) =
  let mutable myMutableField = myField
  member this.MyProperty
  with get () = myMutableField
  and set(value) = myMutableField <- value</pre>
```

Classes – Public Methods

```
public class MyClass
 private readonly int myFiled;
 public MyClass(int myParam)
    myFiled = myParam;
 public int MyMethod(int methodParam)
    return myFiled + methodParam;
```

type MyClass(myField int) =
 member this.MyMethod methodParam =
 myField + methodParam

Classes – Private Methods

```
public class MyClass
  public int MyMethod(int methodParam)
    return myPrivateMethod(methodParam);
  private int MyPrivateMethod(int methodParam)
    return methodParam + 1;
```

```
type MyClass() =
  let myPrivateFun funParam =
    funParam + 1
  member this.MyMethod methodParam =
    myPrivateFun methodParam
```

Classes – Inheritance

```
public abstract class MyBaseClass
  public abstract int MyMethod(int methodParam);
public class MyClass: MyBaseClass
  public override int MyMethod(int methodParam);
    return methodParam + 1;
```

```
[<AbstractClass>]
type MyBaseClass() =
   abstract member this.MyMethod: int -> int

type MyClass() =
   inherits MyBaseClass ()
   override this.MyMethod methodParam =
      methodParam + 1
```

Classes – Interfaces

```
public interface IMyInterface
  int MyMethod(int methodParam);
public class MyClass: IMyInterface
  public int MyMethod(int methodParam);
    return methodParam + 1;
```

```
type IMyInterface =
  abstract member MyMethod: int -> int

type MyClass() =
  interface IMyInterface with
    member this.MyMethod methodParam =
    methodParam + 1
```

Classes – Object Expressions

```
public interface IMyInterface
  int MyMethod(int methodParam);
public class MyClass: IMyInterface
  public int MyMethod(int methodParam);
    return methodParam + 1;
```

```
type IMyInterface =
   abstract member MyMethod: int -> int

let myInstance =
   { new IMyInterface with
     member this.MyMethod methodParam =
        methodParam + 1 }
```

Type Providers

Type Providers

And many more

CSV Type Provider

```
type Customer = CsvProvider<"sample.csv">
let customers = Customer.Load "real.csv"
```

customers.Rows

|> Seq.iter (fun -> printfn "%s: \$%g" r.Name r.Credit)

sample.csv

Id, Name, Is Vip, Credit 1, Customer 1, false, 0.0

real.csv

Id,Name,IsVip,Credit 1,Customer1,false,0.0 2,Customer2,false,10.0 3,Customer3,false,30.0 4,Customer4,true,50.0

Entity Framework Type Provider

```
[<Literal>]
let cs = "Data Source=.;Initial Catalog=FSharpIntro;Integrated Security=SSPI;"

type EntityConnection = SqlEntityConnection <ConnectionString=cs, Pluralize=true>
let context = EntityConnection.GetDataContext ()
let customers = query { for customer in context.Customers do select customer }
```

Sql Client Type Provider

```
[<Literal>]
let cs = "Data Source=.;Initial Catalog=FSharpIntro;Integrated Security=SSPI;"

type SelectCustomers = SqlCommandProvider<"SELECT Id, IsVip, Credit FROM dbo.Customers", cs>
let cmd = new SelectCustomers ()
let customers = cmd.Execute ()
```

type SelectCustomers = SqlCommandProvider<"SELECT Id(IsV), Credit FROM dbo.Customers", cs>

Demo 4

FUNCTIONAL LISTS | RECURSION | OBJECT-ORIENTED PROGRAMMING | TYPE PROVIDERS

Exercise 4

Exercise 4

FUNCTIONAL LISTS | RECURSION | OBJECT-ORIENTED PROGRAMMING | TYPE PROVIDERS

Review

- > What does List.zip do?
- > Why do we use an accumulator in the recursive Weighted Mean function?
- > Why to we wrap recursiveWeightedMean inside recursiveWeighted?
- > Why do we refer to "Data.json" twice?
- > What happens if I change the name of a column?

Thank you

Resources

fsharp.org / c4fsharp.net

Real-World Functional Programming By Tomas Petricek

tryfsharp.org

Scott Wlaschin fsharpforfunandprofit.com fpbridge.co.uk/why-fsharp.html

Skills Matter: skillsmatter.com (tag: f#)