MATH 412 - Project 1

Erica Cain, Takiya Eastmond, Makayla Greer, Twymun Safford

February 20th, 2024

Computer Graphics - Project I

Erica Cain, Takiya Eastmond, Makayla Greer, Twymun Safford

February 20th, 2024

Projects 1 - Computer Graphics I

Problem 1

Apply each of the three transformations given in Table 1 to these vertices and sketch the result, to verify that each transformation has the indicated effect. Use c=2 in the expansion matrix and in the shear matrix.

Reflection Matrix

The points of the grey square as depicted below:

Can be expressed as:

$$P = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

The reflection matrix is:

$$T_1 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Acting with matrix T_1 on matrix P yields:

$$P' = T1 \cdot P = \begin{bmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{bmatrix} \cdot \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \end{bmatrix}$$

$$P' = \begin{bmatrix} t_{11}p_{11} + t_{12}p_{21} & t_{11}p_{12} + t_{12}p_{22} & t_{11}p_{13} + t_{12}p_{23} & t_{11}p_{14} + t_{12}p_{24} \\ t_{21}p_{11} + t_{22}p_{21} & t_{21}p_{12} + t_{22}p_{22} & t_{21}p_{13} + t_{22}p_{23} & t_{21}p_{14} + t_{22}p_{24} \end{bmatrix}$$

$$P' = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & -1 \end{bmatrix}$$

Which corresponds to a reflection across the x-axis. This is depicted in graph:

Expansion/Contraction Matrix

The points of the grey square as depicted below:

Can be expressed as:

$$P = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

The expansion matrix is:

$$T_2 = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

Acting with matrix T_2 on matrix P yields:

$$P' = T2 \cdot P = \begin{bmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{bmatrix} \cdot \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \end{bmatrix}$$

$$P' = \begin{bmatrix} t_{11}p_{11} + t_{12}p_{21} & t_{11}p_{12} + t_{12}p_{22} & t_{11}p_{13} + t_{12}p_{23} & t_{11}p_{14} + t_{12}p_{24} \\ t_{21}p_{11} + t_{22}p_{21} & t_{21}p_{12} + t_{22}p_{22} & t_{21}p_{13} + t_{22}p_{23} & t_{21}p_{14} + t_{22}p_{24} \end{bmatrix}$$

$$P' = \begin{bmatrix} 0 & 2 & 2 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Which corresponds to increasing the horizontal dimension of the square by a factor of 2. This is depicted in graph:

Shear Matrix

The points of the grey square as depicted below:

Can be expressed as:

$$P = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

The shear matrix is:

$$T_3 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Acting with matrix T_3 on matrix P yields:

$$P' = T3 \cdot P = \begin{bmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{bmatrix} \cdot \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \end{bmatrix}$$

$$P' = \begin{bmatrix} t_{11}p_{11} + t_{12}p_{21} & t_{11}p_{12} + t_{12}p_{22} & t_{11}p_{13} + t_{12}p_{23} & t_{11}p_{14} + t_{12}p_{24} \\ t_{21}p_{11} + t_{22}p_{21} & t_{21}p_{12} + t_{22}p_{22} & t_{21}p_{13} + t_{22}p_{23} & t_{21}p_{14} + t_{22}p_{24} \end{bmatrix}$$

$$P' = \begin{bmatrix} 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Which corresponds to a shear in the x-direction by a factor of 1. This is depicted in the graph below:

Problem 2

Verify that multiplication by the given matrix has the indicated effect when applied to the gray square in the table. Use c=3 in the expansion matrix and c=1 in the shear matrix.

Reflection Matrix

The points of the grey square as depicted below: Can be expressed as:

$$P = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

The reflection matrix is:

$$T_1 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Acting with matrix T_1 on matrix P yields:

$$P' = T1 \cdot P = \begin{bmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{bmatrix} \cdot \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \end{bmatrix}$$

$$P' = \begin{bmatrix} t_{11}p_{11} + t_{12}p_{21} & t_{11}p_{12} + t_{12}p_{22} & t_{11}p_{13} + t_{12}p_{23} & t_{11}p_{14} + t_{12}p_{24} \\ t_{21}p_{11} + t_{22}p_{21} & t_{21}p_{12} + t_{22}p_{22} & t_{21}p_{13} + t_{22}p_{23} & t_{21}p_{14} + t_{22}p_{24} \end{bmatrix}$$

$$P' = \begin{bmatrix} t_{11}p_{11} + t_{12}p_{21} & t_{11}p_{12} + t_{12}p_{22} & t_{11}p_{13} + t_{12}p_{23} & t_{11}p_{14} + t_{12}p_{24} \\ t_{21}p_{11} + t_{22}p_{21} & t_{21}p_{12} + t_{22}p_{22} & t_{21}p_{13} + t_{22}p_{23} & t_{21}p_{14} + t_{22}p_{24} \end{bmatrix}$$

$$P' = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & -1 \end{bmatrix}$$

Which corresponds to a reflection across the y-axis. This is depicted in graph as the red square (the blue square is the original square):

Expansion/Contraction Matrix

The points of the grey square as depicted below:

Can be expressed as:

$$P = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

The expansion matrix is:

$$T_2 = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$$

Acting with matrix T_2 on matrix P yields:

$$P' = T1 \cdot P = \begin{bmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{bmatrix} \cdot \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \end{bmatrix}$$

$$P' = \begin{bmatrix} t_{11}p_{11} + t_{12}p_{21} & t_{11}p_{12} + t_{12}p_{22} & t_{11}p_{13} + t_{12}p_{23} & t_{11}p_{14} + t_{12}p_{24} \\ t_{21}p_{11} + t_{22}p_{21} & t_{21}p_{12} + t_{22}p_{22} & t_{21}p_{13} + t_{22}p_{23} & t_{21}p_{14} + t_{22}p_{24} \end{bmatrix}$$

$$P' = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 3 & 3 \end{bmatrix}$$

Which corresponds to increasing the height of the square (now rectangle) by a factor of 3. This is represented below:

Shear Matrix

The points of the grey square can be expressed as:

$$P = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

The shear matrix is:

$$T_3 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

Acting with matrix T_3 on matrix P yields:

$$P' = T1 \cdot P = \begin{bmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{bmatrix} \cdot \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \end{bmatrix}$$

$$P' = \begin{bmatrix} t_{11}p_{11} + t_{12}p_{21} & t_{11}p_{12} + t_{12}p_{22} & t_{11}p_{13} + t_{12}p_{23} & t_{11}p_{14} + t_{12}p_{24} \\ t_{21}p_{11} + t_{22}p_{21} & t_{21}p_{12} + t_{22}p_{22} & t_{21}p_{13} + t_{22}p_{23} & t_{21}p_{14} + t_{22}p_{24} \end{bmatrix}$$

$$P' = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 2 & 1 \end{bmatrix}$$

Which corresponds to a shear in the y-direction by 1. This is represented below:

Problem 3

Let

$$T = \begin{bmatrix} 1 & 1.5 \\ 0 & 1 \end{bmatrix}$$

Part a

T does an extreme shear on the grey square, P, - shearing by a factor of 0.5.

$$P' = T \cdot P = \begin{bmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{bmatrix} \cdot \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \end{bmatrix}$$

$$P' = \begin{bmatrix} t_{11}p_{11} + t_{12}p_{21} & t_{11}p_{12} + t_{12}p_{22} & t_{11}p_{13} + t_{12}p_{23} & t_{11}p_{14} + t_{12}p_{24} \\ t_{21}p_{11} + t_{22}p_{21} & t_{21}p_{12} + t_{22}p_{22} & t_{21}p_{13} + t_{22}p_{23} & t_{21}p_{14} + t_{22}p_{24} \end{bmatrix}$$

$$P' = \begin{bmatrix} 0 & 1 & 2.5 & 1.5 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Part b

Given a matrix T, the formula for finding its inverse T^{-1} is:

$$T^{-1} = \frac{1}{\det(T)} \cdot \operatorname{adj}(T)$$

where $\det(T)$ is the determinant of matrix T, and $\operatorname{adj}(T)$ is the adjugate (or adjoint) of T. The $\det(T)$ for a 2 x 2 matrix is (ad-bc). For the matrix T that is (1*1-(1.5*0))=1. The adjoint, $\operatorname{adj}(T)$, is:

$$adj(T) = \begin{bmatrix} 1 & -1.5 \\ 0 & 1 \end{bmatrix}$$

Therefore:

$$T^{-1} = \begin{bmatrix} 1 & -1.5 \\ 0 & 1 \end{bmatrix}$$

Part c

 T^{-1} does an extreme shear on the grey square, but shearing to the negative direction for x.

$$P' = T^{-1} \cdot P = \begin{bmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{bmatrix} \cdot \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \end{bmatrix}$$

$$P' = \begin{bmatrix} t_{11}p_{11} + t_{12}p_{21} & t_{11}p_{12} + t_{12}p_{22} & t_{11}p_{13} + t_{12}p_{23} & t_{11}p_{14} + t_{12}p_{24} \\ t_{21}p_{11} + t_{22}p_{21} & t_{21}p_{12} + t_{22}p_{22} & t_{21}p_{13} + t_{22}p_{23} & t_{21}p_{14} + t_{22}p_{24} \end{bmatrix}$$

$$P' = \begin{bmatrix} 0 & 1 & -0.5 & -1.5 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Part d

Multiplying the matrix T with the matrix T^{-1} should yield the identity matrix:

$$T = \begin{bmatrix} 1 & 1.5 \\ 0 & 1 \end{bmatrix}$$
$$T^{-1} = \begin{bmatrix} 1 & -1.5 \\ 0 & 1 \end{bmatrix}$$

$$T^{-1}T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Therefore, $T^{-1}(T(S))$ should reproduce the same unit square we started with. That is:

Which expressed as a matrix:

$$S = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Problem 4

Part a

Let T be an expansion matrix such that:

Let

$$T = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$$

Acting with this expansion matrix on the unit square, S, yields:

$$P' = T \cdot S = \begin{bmatrix} t_{11}s_{11} + t_{12}s_{21} & t_{11}s_{12} + t_{12}s_{22} & t_{11}s_{13} + t_{12}s_{23} & t_{11}s_{14} + t_{12}s_{24} \\ t_{21}s_{11} + t_{22}s_{21} & t_{21}s_{12} + t_{22}s_{22} & t_{21}s_{13} + t_{22}s_{23} & t_{21}s_{14} + t_{22}s_{24} \end{bmatrix}$$

$$P' = \begin{bmatrix} 0 & 3 & 3 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

This represents an expansion along the horizontal axis for the square by a factor of 3.

Part b

Let S be an expansion matrix such that:

Let

$$S = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

Acting with this expansion matrix on the unit square, G, yields:

$$P' = S \cdot G = \begin{bmatrix} s_{11}g_{11} + s_{12}g_{21} & s_{11}g_{12} + s_{12}g_{22} & s_{11}g_{13} + s_{12}g_{23} & s_{11}g_{14} + s_{12}g_{24} \\ s_{21}g_{11} + s_{22}g_{21} & s_{21}g_{12} + s_{22}g_{22} & s_{21}g_{13} + s_{22}g_{23} & s_{21}g_{14} + s_{22}g_{24} \end{bmatrix}$$

$$P' = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 2 \end{bmatrix}$$

This represents an expansion along the vertical axis for the square by a factor of 2.

Part c

We must act on the unit square (represented by matrix G) with matrix S, then matrix T.

Acting with S on G we have proven yields:

$$P = S \cdot G = \begin{bmatrix} s_{11}g_{11} + s_{12}g_{21} & s_{11}g_{12} + s_{12}g_{22} & s_{11}g_{13} + s_{12}g_{23} & s_{11}g_{14} + s_{12}g_{24} \\ s_{21}g_{11} + s_{22}g_{21} & s_{21}g_{12} + s_{22}g_{22} & s_{21}g_{13} + s_{22}g_{23} & s_{21}g_{14} + s_{22}g_{24} \end{bmatrix}$$

$$P = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 2 \end{bmatrix}$$

Next, if we act with T on P:

$$P' = T \cdot P = \begin{bmatrix} t_{11}p_{11} + t_{12}p_{21} & t_{11}p_{12} + t_{12}p_{22} & t_{11}p_{13} + t_{12}p_{23} & t_{11}p_{14} + t_{12}p_{24} \\ t_{21}p_{11} + t_{22}p_{21} & t_{21}p_{12} + t_{22}p_{22} & t_{21}p_{13} + t_{22}p_{23} & t_{21}p_{14} + t_{22}p_{24} \end{bmatrix}$$

$$P' = \begin{bmatrix} 0 & 3 & 3 & 0 \\ 0 & 0 & 2 & 2 \end{bmatrix}$$

The final result is that the unit square has been expanded by three along the x-axis and expanded by two along the y-axis as depicted.

Part d

Multiplying matrix T and S to produce matrix W yields:

$$W = T \cdot S = \begin{bmatrix} t_{11}s_{11} + t_{12}s_{21} & t_{11}s_{12} + t_{12}s_{22} & t_{11}s_{13} + t_{12}s_{23} & t_{11}s_{14} + t_{12}s_{24} \\ t_{21}s_{11} + t_{22}s_{21} & t_{21}s_{12} + t_{22}s_{22} & t_{21}s_{13} + t_{22}s_{23} & t_{21}s_{14} + t_{22}s_{24} \end{bmatrix}$$

$$W = \begin{bmatrix} 0 & 3 & 3 & 0 \\ 0 & 0 & 2 & 2 \end{bmatrix}$$

Depicted below:

Part e Operating with matrix W as calculated above on the unit square G yields:

$$W' = W \cdot G = \begin{bmatrix} w_{11}g_{11} + w_{12}g_{21} & w_{11}g_{12} + w_{12}g_{22} & w_{11}g_{13} + w_{12}g_{23} & w_{11}g_{14} + w_{12}g_{24} \\ w_{21}g_{11} + w_{22}g_{21} & w_{21}g_{12} + w_{22}g_{22} & w_{21}g_{13} + w_{22}g_{23} & w_{21}g_{14} + w_{22}g_{24} \end{bmatrix}$$

$$W' = \begin{bmatrix} 0 & 3 & 3 & 0 \\ 0 & 0 & 2 & 2 \end{bmatrix}$$

Since G was a unit square this will have the same form as the matrix in problem 4d.

Problem 5

The figure shows three outline versions of the letter F. The second one is obtained from the first by shrinking horizontally by a factor of 0.75, and the third is obtained from the first by shearing horizontally by a factor of 0.25

Part a

The data matrix for the letter F can be expressed using the matrix D:

Depicted below:

Part b

The transformed matrix is F'. This matrix is the result of horizontally shrinking the letter F by a factor of 0.75. This corresponds to the transformed matrix:

This matrix is obtained by multiplying D by a matrix T. This matrix is:

$$T = \begin{bmatrix} 0.75 & 0 \\ 0 & 1 \end{bmatrix}$$

Part c

The transformed matrix is F'. This matrix is the result by shearing the letter F by a factor of 0.25. This shear matrix is:

Shear matrix with a factor of 0.25:

$$S = \left[\begin{array}{cc} 1 & 0.25 \\ 0 & 1 \end{array} \right]$$

Resultant matrix after shear transformation:

Problem 6

$$D = \left[\begin{array}{cccccc} 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 4 & 4 & 0 \end{array} \right]$$

Part a

Part b

T is the matrix:

$$T = \left[\begin{array}{cc} 1 & 1 \\ 0 & -1 \end{array} \right]$$

Acting with this matrix on matrix D produces:

$$TD = \left[\begin{array}{ccccc} 0 & 1 & 4 & 5 & 4 & 0 \\ 0 & 0 & -2 & -4 & -4 & 0 \end{array} \right]$$

This produces a reflection across the x-axis in addition to a shear by 1 towards the positive x-direction as depicted below:

Part c

To express matrix T as the product of a shear matrix and a reflection matrix, we recall that a reflection matrix across the x-axis can be expressed as:

$$R = \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right]$$

While a shear matrix can be expressed for this problem as:

$$S = \left[\begin{array}{cc} 1 & -1 \\ 0 & 1 \end{array} \right]$$

Multiplying these two matrices yields the matrix T:

$$T = SR = \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right]$$

Computer Graphics - Project II

Erica Cain, Takiya Eastmond, Makayla Greer, Twymun Safford

February 20th, 2024

Projects 1 - Computer Graphics II

Problem 1

Use a rotation matrix to find the new coordinates of the given point when it is rotated through the given angle.

Part a

The point P can be represented in vector form as:

$$P = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

The 2D rotation matrix for an angle θ is given by:

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

When $\theta = \frac{\pi}{2}$, this rotation matrix becomes:

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Operating with this rotation matrix on the vector yields:

$$P' = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} * \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

Which yields:

$$P' = \left[\begin{array}{c} -4 \\ 1 \end{array} \right]$$

Part b

The point P can be represented in vector form as:

$$P = \left[\begin{array}{c} -2 \\ 1 \end{array} \right]$$

The 2D rotation matrix for an angle θ is given by:

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

When $\theta = \frac{\pi}{3}$, this rotation matrix becomes:

$$\begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$

Operating with this rotation matrix on the vector yields:

$$P' = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

Which yields:

$$P' = \left[\begin{array}{c} -1 - \frac{\sqrt{3}}{2} \\ \frac{1}{2} - \sqrt{3} \end{array} \right]$$

Part c

The point P can be represented in vector form as:

$$P = \left[\begin{array}{c} -2 \\ -2 \end{array} \right]$$

The 2D rotation matrix for an angle θ is given by:

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

When $\theta = \frac{5\pi}{4}$, this rotation matrix becomes:

$$\begin{bmatrix} -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{bmatrix}$$

Operating with this rotation matrix on the vector yields:

$$P' = \begin{bmatrix} -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} -2 \\ -2 \end{bmatrix}$$

Which yields:

$$P' = \left[\begin{array}{c} 2\sqrt{2} \\ 0 \end{array} \right]$$

Part d

The point P can be represented in vector form as:

$$P = \left[\begin{array}{c} 7 \\ 3 \end{array} \right]$$

The 2D rotation matrix for an angle θ is given by:

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

When the angle is negative, this matrix becomes:

$$\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

When $\theta = -\frac{\pi}{3}$, this rotation matrix becomes:

$$\begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$

Operating with this rotation matrix on the vector yields:

$$P' = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 7 \\ 3 \end{bmatrix}$$

Which yields:

$$P' = \left[\begin{array}{c} \frac{7+3\sqrt{3}}{2} \\ \frac{3-7\sqrt{3}}{2} \end{array} \right]$$

Problem 2

The original shape (arrow) is depicted below:

Part a

The data matrix for this arrow is:

$$D = \left[\begin{array}{ccccccccc} 1 & 2 & 2 & 3 & 2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 2.5 & 4 & 3 & 3 & 2 \end{array} \right]$$

The 2D rotation matrix for an angle θ is given by:

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

When $\theta = \frac{2\pi}{3}$ like in this problem, this rotation matrix becomes:

$$\begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$$

If we act with this rotation matrix on the arrow (based on points), this yields:

$$D' = RD = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 & 3 & 2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 2.5 & 4 & 3 & 3 & 2 \end{bmatrix}$$

Which yields the final shape of our matrix (and our arrow's points after rotation) as:

$$D' = \left[\begin{array}{cccccc} -2.23 & -2.73 & -1.87 & -3.67 & -4.46 & -3.69 & -3.10 & -2.23 \\ -0.13 & 0.73 & 1.23 & 1.35 & -0.27 & 0.23 & -0.63 & -0.13 \end{array} \right]$$

This now looks like:

Problem 3

Sketch the image represented by the data matrix D:

Sketched image is:

The 2D rotation matrix for an angle θ is given by:

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

When $\theta = \frac{\pi}{4}$, this rotation matrix becomes:

$$\begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$$

The transformation matrix that is an expansion by a factor of 2 in the x-direction is:

$$T = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

The matrix RT which results from multiplying matrix T by matrix R yields:

$$RT = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \times \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} \times 2 + (-\frac{\sqrt{2}}{2}) \times 0 & \frac{\sqrt{2}}{2} \times 0 + (-\frac{\sqrt{2}}{2}) \times 1 \\ \frac{\sqrt{2}}{2} \times 2 + \frac{\sqrt{2}}{2} \times 0 & \frac{\sqrt{2}}{2} \times 0 + \frac{\sqrt{2}}{2} \times 1 \end{bmatrix}$$
$$= \begin{bmatrix} \sqrt{2} & -\frac{\sqrt{2}}{2} \\ \sqrt{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$$

Sketch of RT:

While matrix TR which results from multiplying matrix R by matrix T yields:

$$TR = \begin{pmatrix} 2 \times \frac{\sqrt{2}}{2} + 0 \times \frac{\sqrt{2}}{2} & 2 \times (-\frac{\sqrt{2}}{2}) + 0 \times \frac{\sqrt{2}}{2} \\ 0 \times \frac{\sqrt{2}}{2} + 1 \times \frac{\sqrt{2}}{2} & 0 \times (-\frac{\sqrt{2}}{2}) + 1 \times \frac{\sqrt{2}}{2} \end{pmatrix}$$

This simplifies to

$$TR = \begin{pmatrix} \sqrt{2} & -\sqrt{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$$

The matrix product TRD will be:

$$TRD = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} 2 & 3 & 3 & 4 & 4 & 1 & 1 & 2 & 2 \\ 1 & 1 & 3 & 3 & 4 & 4 & 3 & 3 & 1 \end{pmatrix}$$

$$TRD = \begin{pmatrix} \sqrt{2} & -\sqrt{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} 2 & 3 & 3 & 4 & 4 & 1 & 1 & 2 & 2 \\ 1 & 1 & 3 & 3 & 4 & 4 & 3 & 3 & 1 \end{pmatrix}$$

While the matrix product RTD yields:

$$RTD = \begin{bmatrix} \sqrt{2} & -\frac{\sqrt{2}}{2} \\ \sqrt{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{pmatrix} 2 & 3 & 3 & 4 & 4 & 1 & 1 & 2 & 2 \\ 1 & 1 & 3 & 3 & 4 & 4 & 3 & 3 & 1 \end{pmatrix}$$

Problem 4

Let R be the rotation matrix for the angle θ . We want to show that R^{-1} is the rotation matrix for the angle $-\theta$.

The inverse of a rotation matrix is the transpose of the matrix, thus:

$$R^{-1} = R^T$$

To show that R^{-1} is the rotation matrix for the angle $-\theta$, we need to show that $(R^{-1})^T$ represents a rotation of $-\theta$.

$$(R^{-1})^T = (R^T)^T = R$$

Since R is the rotation matrix for the angle θ , R represents a rotation of θ . Therefore, $(R^{-1})^T = R$ represents a rotation of θ , which is the same as the original matrix R.

Thus, R^{-1} is the rotation matrix for the angle $-\theta$.

This can be proven explicitly. Using trig. identities, we know that $cos(-\theta) = cos(\theta)$ and that $sin(-\theta) = -sin(\theta)$ as depicted below:

$$\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

Problem 5

$$(x,y) \leftrightarrow \left[\begin{array}{c} x \\ y \\ 1 \end{array} \right]$$

 $T = \left[\begin{array}{ccc} 1 & 0 & h \\ 0 & 1 & k \\ 0 & 0 & 1 \end{array} \right]$

Problem 5a

Show that matrix T translates the point (x,y) to the point (x+h, y+h) by verifying the following matrix multiplication.

$$P' = \left[\begin{array}{ccc} 1 & 0 & h \\ 0 & 1 & k \\ 0 & 0 & 1 \end{array} \right] \left[\begin{array}{c} x \\ y \\ 1 \end{array} \right]$$

The result is:

$$\begin{bmatrix} 1 \cdot x + 0 \cdot y + h \cdot 1 \\ 0 \cdot x + 1 \cdot y + k \cdot 1 \\ 0 \cdot x + 0 \cdot y + 1 \cdot 1 \end{bmatrix} = \begin{bmatrix} x + h \\ y + k \\ 1 \end{bmatrix}$$

Problem 5b

The inverse of the matrix T is given by:

$$T^{-1} = \left[\begin{array}{ccc} 1 & 0 & -h \\ 0 & 1 & -k \\ 0 & 0 & 1 \end{array} \right]$$

By multiplying this matrix on the original point:

$$\begin{bmatrix} 1 & 0 & -h \\ 0 & 1 & -k \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot x + 0 \cdot y + (-h) \cdot 1 \\ 0 \cdot x + 1 \cdot y + (-k) \cdot 1 \\ 0 \cdot x + 0 \cdot y + 1 \cdot 1 \end{bmatrix} = \begin{bmatrix} x - h \\ y - k \\ 1 \end{bmatrix}$$

We see that this will translate the point from (x,y) to (x-h, y-k).

Problem 5c

$$P = \left[\begin{array}{c} x \\ y \\ 1 \end{array} \right]$$

Reflection in x-axis produces:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ -y \\ 1 \end{bmatrix}$$

Expansion (or contraction) in x-direction produces:

$$\begin{bmatrix} c & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} cx \\ y \\ 1 \end{bmatrix}$$

Shear in x-direction produces:

$$\begin{bmatrix} 1 & c & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + cy \\ y \\ 1 \end{bmatrix}$$

Rotation about the origin by angle θ :

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x \cdot \cos(\theta) - y \cdot \sin(\theta) \\ x \cdot \sin(\theta) + y \cdot \cos(\theta) \\ 1 \end{bmatrix}$$

Problem 5d

Sketch the image represented (in homogeneous coordinates) by this data matrix:

Find a matrix T that translates the image by (-6,-8) and a matrix R that rotates the image by 45° . Sketch the images represented by the data matrices TD, RTD, and $T^{-1}RTD$. Describe how an image is changed when its data matrix is multiplied by T, by RT, and by $T^{-1}RT$

.

The data matrix for the letter F can be expressed using the matrix D:

The matrix that translates the image (based on the data matrix) 6 units left and 8 units down is:

$$\begin{bmatrix} 1 & 0 & -6 \\ 0 & 1 & -8 \\ 0 & 0 & 1 \end{bmatrix}$$

Multiplying the data matrix by the translation matrix produces:

Which produces:

The rotation matrix is:

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix}$$

And for 45 degrees this matrix is:

$$\begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0\\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

The product of this rotation matrix with the prior matrix TD yields:

[-	1.41	0	1.41	2.83	1.41	2.83	1.41	0	-1.41	-2.83	-1.41	-2.83	-1.41
-:	2.83	-1.41	-2.83	-2.83	0	1.41	$2\sqrt{2}$	1.41	2.83	1.41	0	-1.41	-2.83 1
	1	1	1	1	1	1	1	1	1	1	1	1	1

When multiplied by matrix T, an image will be translated 6 points left and 8 points down.

When multiplied by RT, an image will be translated 6 points left and 8 points down and rotated 45 degrees.

When multiplied by $T^{-1}RT$, an image will be translated 6 points left and 8 points down and rotated 45 degrees, but will then be moved back to the original place it started at.

Image Manipulations

Erica Cain, Takiya Eastmond, Makayla Greer, Twymun Safford

February 20th, 2024

Original Image

Code for the image manipulations are in the project subfolder "Matlab codes". Corresponding matrices for manipulation are saved in the subfolder "Matrices".

Image Manipulation - Reflection of Image (x- and y-axis)

y-axis

x-axis

Image Manipulation - Expansion

MATH 412 Project 1

Image Manipulation - Shear of Image (Factor of 0.75)

 $\begin{array}{ll} {\rm Image\ Manipulation\ -\ Rotation\ of\ Image\ (67.36\\ degrees\ counterclockwise)} \end{array}$

