	Lósica Proposicional: Sindaxis
	Sintaxis
DEFINICION 1	A = VAR () [(,)] () Connections = all-fabeto de la logica proposicional
	• VAR = {Pn/neN} = {Po, P1,,Pn} es el conjunto de variables
	· Conections = [∧, v, ⇒, ¬] = [conjuncion, disjuncion, implication, negation]
DEFINICION Z	Se denomina formula de la L.P. a una expre° q cumple la siguiente:
	I. VAR SFORM =F = CONJ. de formulas
	Z. Si α € F → ¬ α ≗ F
	3. S1 α, β ∈ F ⇒ (αΛβ), (α νβ), (α ⇒β) ∈ F
	4. Cualquier expre° q se obtenga aplicando un nro finito de pasas 1, z y 3 cs una formula
	Obs: El lenguaje de la L.P. es FORM y FORM 9 A*
EJEHPLOS	I. Di E F
	Z. 7p₁ € F
	3. (7pi) & F pues tiene parentesis
	4. ((p, ∧ p₂) ≠ ¬p₃) € F
	5. 7p. ∧ pz & F pues faltan las parentesis de afuera
DEFINICION 3	Una codena de formación (CF) es una suceº finita de elimtos de A*: xi, xz,,xn tal q coda Xi (1 s i s n) ver
	Xie VAR ó 3 j < i / Xi = 7 xj ó 3 j, k < i / Xi = (xj * Xi) siendo * e [x, v, \bar{1} = conectivos binomos (1 \le i, j, k \le n)
	Obs: cada Xi se denomina eslabon de la CF
EZENPLOS	X = P1, X2 = P3, X3 = 7X4
	Z. Xi = ρi, Xz = 1Xi, Xs = ρz, Xu = ρs, Xs = (xs → xu), Xε = 1Xs, Xa = 1Xe es uno CF
	3. Xi = ρi, χε = ρa, χa = ((χi κχε) -> χi) NO es uno CF
ca es no sacar del medio	Obs: Si Xi, Xz,,Xn co uno CF D Xi, Xz,, Xj/j fn co uno CF
TEORENA 1	$\alpha \in FORN \Leftrightarrow \exists x_1, x_2,, x_n = \alpha CF = codeno de formo de \alpha$
DEMOSTRACION	D) Por induccion en long(a)
	<u>Coso base:</u>
	Si lang(a) = 1. Sea xi una CF → como no hay antenores, Xi = pj € VAR ⊆ FORM
	Paso recursivo:
	H) of € FORM/ long(or) = k ≤n ⇒ 3 x1, x2,, xk = or CF Le. 3 uno CF cco
	T) & EFORN/ long(a) = n+1 => 3 x1, x2,, xj = a CF 1.e. 3 uno CF de a
	Sea a EFORM / long(a) = n+1>0
	1. of = Dj € VAR D defino xi = Dj es CF de of
	Z. α = 7 β c/ βEFORM, long(w) = n+1 = 1 + long(β) => long(β) = n. Por H), 3 x1,, xk = β cf.
	Defino y1 = X1, y2 = X2,, yk = Xk, yk+1 = 7yk = of CF
3 xq vendrian a ser {(,), *}	3. α= (β1 « β2)/ *€ [n, v, →] y β1, β2 GFORH → long(α) = n+1= long(β1) + long(β2) + 3 → long(β1) + long(β2) = n-2
	⇒ long (β) <n-z (βz)="" <n="" <n-z="" <n.<="" long="" td="" y=""></n-z>
	Por H), 3x1,, xk = β1 CF y 3 y1,, yt = β2 CF. Defino Z1=x1,, Zk=xk, Zk+1=y1,, Zk+t= yt, Zk+t+1=(Zk *Zk+t):
	Sea X1,, Yn CF ⇒ proebo x induc° en n q Xj GFORH, 1≤j≤n
	Coso base:
	N=1 → XI CO UND CF → XI EVAR → XI EFORM
	Paso recursivo:
	Hì Sea Xi,, Yn CF → Xje FORH, 1 € j € n
	T) Sea X1,, Yn, Yn+1 CF → Xj EFORM, 1 &j €n+1
	Par H), salbamos q Xj €FORM → Palta probar q Xn+1 €FORM
	1. Si Xinhi EVAR ⇒ Xinhi GFORM
	 Sea x₀₊₁ = ¬x₃ (j ≤ n). Como x₁,, y_n es una CF ⇒ por H), x₃ ∈ FORH (ι ε j ≤ n).

2		3. Sea Yn+1= (Xj * Xk) / j,k ≤n y * €[x, v, ⇒]. Como Xj,,Xk == CF y Xi,,Xj == CF → por H), Xj y Xk ∈ FORM.
		luego, por defini de formula, (X) + Xk) E FORM.
(F3)	ENPLO	Conclusion: el teoremo nos dice a « es una formula, si y solo si, 3 una CF de lamisma
E.J.	ENPLO	E = (mpa) E FORM?
		Sup q EGFORN → 3 x1,, Xn = E CF. Como Xn = E empicesa di parentecia, entonoca x defini [®] de CF, 3 j, k ≤n - 1/E=(xj = x)
		Cl ± € [A, V, →] ABS! pues E no trene conectivos binorios
Deer	TALTOTON IN	Concusion: E no ca formula
	INICION 4	Dado XI,, XIn CF, De define XXX, XXX, Dubcadena Di Cumple:
	F y xxxx colobonco	I. Xia,, Xik co CF
	al socortos tiene q	Z. Xik = Xn . L.C. podina sacor colabones a no contribuyen a la formación de Xn
eguir siendo un		3.1(11(iz((ik=n
	SEMPLOS	1. Seα χ₁=ρ₁, χ₂=ρ₂, χ₃=τχ₂, χ₂=(χ₂ → χ₃) una CF → NO es minimal
	olle sto constaccelus o	$y = p_s$, $y = y_s$, $y_s = (y_s = y_s)$ as $y = y_s$ as subcosens $y = y_s$ and $y = y_s$ and $y = y_s$ are subcosens $y = y_s$ and $y = y_s$ and $y = y_s$ are subcosens $y = y_s$ and $y = y_s$ are subcosens $y = y_s$ and $y = y_s$ are subcosens $y = y_s$.
UDMO		los a postemos quitar de una CF el a esta deje de ser CF.
		Z. XI = ρ_1 , $\chi_2 = \rho_2$, $\chi_3 = (\chi_1 \wedge \chi_2)$ and CF PERO 10 unition has a subcondation of them are also minimal
	INICION 5	Uno cres minimal si la unica subcadena a tiene es ella misma.
DCO X UN CONJUM		Hinimal = un climto es minimal si no hay elimbos + chicos q el 1.6. m es minimal si a ex/a <m< td=""></m<>
	rte seæfine maximal	Hinimol = un elimto es minimo si todos los elimtos del conj son mayores q dicho elimto i.e. in es minimo si m &b, V b ex
maximo		Relacion of orden: Sean A,B of → ARB si A es Subcadena de B
	DETRACION	I. Toda CF es subcoccno de si misma → ARA → es referiva
)bs: tener en cu	iento quina subcoorcino	Z. Si ARB A BRA DA CO DUDOCOCOTO OC B y B CO DUDOCOCOTO OC A VIVIER, XIEB A VXIEB, XIEB A VXIEB, XIEB DA Y B HONC
nantiene el ordan i	relativo de la CF	los mismos eslabones → A = B → es antisimetrico
		3. SI ARB & BRC DA CO SUBCOCOTO OC B y B CO SUBCOCOTO OC C I.E. VXIEA, XIEB & VXIEB, XIEC D VXIEA, XIEC
		A ca aubcodeno de C i.e. ARC do ea tronsitivo
		Obs: NO code orden total. Sea A: XI = p, , XE = pe, XS = (XI AXE) y B: YI = pB, YE = 7YI - ARB y BRA.
DEFI	INICION 6	Sea E EA*. Se define complexidad de E como la cont de conectivos 9 aparecen en E y 10 notomos C(E)
DEF	INICION 7	Se define complejidad binana de E como la cont de conectivos binanos a aparecen en E y la notamas Co(E)
DEFI	NICION 8	Sea EEA*. Se offine peso of E como la cont de parentesio q abren menos la cont de parentesio q cierror
		y io notomos p(E).
E2E	NPLOS	1. Sea E=1) A +> P A P≥ => C(E) = Cb(E) = 3 y p(E) = 0
		Z. Sco α = ¬(P1Λ P2) => C(E) = Z, Cb(E) = 1 y ρ(E) =0 Obs: α € FORH
		3. Sea E = (PIAPE))) => PB => C(E) = Cb(E) = Z y p(E) = -Z
		4. Seo α = ((P ₁ = P ₂) v P ₃) → C(E) = Cb(E) = 2 y D(E) = 0
	EMA 1	Seo WEF.
		• S₁ C(α) = O ⇒ α = p₁ e var
		• Sι C(α) >O → α=7β (βεF) Ó α= (β1 *β2) C β1,β2 € F y * € [Λ.V. =>]
DENO	OSTRACION	Sι α ε F → 3 x1,, xn C F y x y ε F, 4 ε j ε n
		1. Si C(a) = O, Octino a = x1 y x1 ∈ VAR ⇒ a = p3 ∈ VAR
		2. Si C(a) > O:
		Por ocf oc CF, 3 16j <k &="" 6n="" ocfino="" x="xk=1Xj/xjeF</td" xk="1xj"></k>
		Por ocf oc CF, ∃ ≤ j, k < t ≤ n / x = (xj * x k) → ocf no α = x = (xj * x k) / (xj, x k ∈ F y * ∈ [Λ, ν, ⇒)]
DEFI	NICION 8	Sea $\alpha \in F/C(\alpha) = n$. Decimos q β as subformula d α si cumple of la sig definition recursiva:
, α= ((p, x ρε) v	рз)	1. Si n=0 le «=Pj, entonces & Esubfla) (a=B l.e. subfla) = [Pj]
> anpt(a) = [a] n a	oubf(1P1 vB3) () subf(P3)	Z. Si n>O → α= τσ (σεF) ο α= (σι * σε) (σι, σε ε F y * = εν, Λ, →)
> Jubf((P1 x P2)) = ([(P, ^ Pz)] U [P;] U [Pz]	• Si α= τ σ (σεF), cotonoco βε Subf(α) Φ β = α ό βε συσρίσ) ι ε. συσρία) = (α) υ συσρίσ)
Jubf(P3) = [P3]		• Si α = (ʊi * ʊz) (ʊi, ʊz eF y *=[v, Λ, Φ]), cntonce βε subf(α) Φ β = α ο βε subf(ω) ο βε subf(ω)
> subf(a) = [a,(P,	AP2), P1, P2, P3]	i.e. συρξ(α) = [α] υ συρξ(σι) υ συρξ(σε)
TE	ORENA Z	Sea of G.F. Entonces:
Saju (PIAPa	ะไปโลไปโลไ	L D(x) = 0
)bs: Onteceder	nte > consecuente	Z. Si · co un conectivo binario q aparece en « → la expre° E a la iEg ac · en « verifico q p(E)>0
		E_{J} $\alpha = (P_{I} \Rightarrow (P_{Z} \vee P_{S}))$ $y \in E = (P_{I} \Rightarrow (P_{Z} \Rightarrow P_{I}(\alpha) = O y P_{I}(E) = Z$

Ро		Coso bose:
	r inducation en C(a)	Sea a∈F/cla)=0 => a=Pj ∈ VAR >> p(a)=0-0=0 y Z. es cierto pues el antecedente es folso i.e. no houj
		Conectivo binario en a
		Poso recursivo:
		P(n) = S=0 x(EF/C(x)=n
		l. p(a)=0 defino bien la propasi
		Z. Si • co un conect binano en a d la exp E a la 180 de • en a verifica a plE)>0
		H) P(k), Ken
		T) P (n+1)
		Sap & F/C(a) = n+1>0
	Coso 1	$\alpha = \neg \beta$ ci $\beta \in F \Rightarrow C(\alpha) = 1 + C(\beta) = n + 1 \Rightarrow C(\beta) = n$.
	C430 I	
		Por H), p(β) = 0. Lucgo, p(α) = p(¬)+p(β) = 0+0=0
		Z. Jaa · un conact binario en α » · aparece en β. Por H), la exp E a la rea de · en β tiene p(E) >0. Jaa
		la αρ E' = TE α la ιξα α • en α, entonces ρ(E') = ρ(T) + ρ(E) = O+ ρ(E) = ρ(E) > O
	Caso z	α = (β1 * β2)/β1, β2 €F, * € [Λ, V, →] → C(α) = 1 + C(β1) + C(β2) = n+1 → C(β1) + C(β2) = n → O € C(β1) € n y O € C(β2) €1
		Por H , ρ(β ₁) = ρ(β ₂) = 0 = ρ(α) = 1+ρ(β ₁) +ρ(≱) + ρ(β ₂) -1 = 1-1 = 0 = 0 ρ(α) = 0
		Z. Seo • un conect binario a apprece en a.
		i. Si • Oporece en Bi, la exp E a la 184 de • en Bi es tal a, por H), ple) >0. Sea E' la exp a la 189 de • a
		$\alpha \Rightarrow E' = (E \Rightarrow D(E') = D(f) + D(E) = 1 + D(E) > 0$
		ii. 31 • = *, 10 exp a la 1₹q de • co E = (β1 = ρ(Ε) = ρ(1) + ρ(β1) = 1+0=1>0
		iii. Si · aporece en βε, la exp E a la ιεα σε · en β co tal a, por H), p(E) >0. Sea E' la exp a la ιεα σε
		cnα → E' = (β1 * E → ρ(E') = ρ(()+ ρ(β)+ρ(*) + ρ(Ε) = 1+0+0+ρ(Ε)>0
COROLARI	0: "Unicidad de cocritu	,
	DEMOSTRACION	COSO 1: DUP α=7βι Λ α=7βε, βι,βε€F \$\rightarrow\$ 1βι=7βε \$\rightarrow\$ βι=βε
DEMOS IRACJON		COOO 2: συρ α=(β± * βz) Λ α=(δι • δε), *. • € [Λ.ν. →] y βι,βε,δι,δε ∈ Ε → (βι* βε) = (δι • δε) → βι* βε = δι • δε
		1. Sup q long(β) = long(β≥). Como β, * β≥ = τι · τ≥ = β, = τι , * = • y β≥ = τ≥
		Z Sup q long(β1) > long(σ1) = Σ H'/β1 = σ1H'. Notamos q long(H') ≥ 1 y ampicæo c/ · Luego, como β1∈F, en
		Ces, aplicando el teorema z, la exp E a la rea de • en βi tiene ple)>0 → como E=vi, ple) = plvi)>0 A65! p(vi) =
		3. Sup a long(B1) < long(v1). Como B1 * Bz = v1 · v2 = 3 H'/ v1 = B1 H' dnat long(H') >1 y cmpic=a c1 *. Lucgo, como v
		entances, aplicando el teorema e. la exp E a la iea de * en ju tiene p(E)>0. Como E=,β1 → p(E) = p(β1)>0 A651 p(β1)
		CO30 3: 3UD α= 7β Λ α= (5, # 82) dnd β, δ, δε (F y * = (V, Λ, τ) → τβ = (δι * δε) ABS! NO completeen of all mismo
		Olodmic Olodmic Olombic Olombi
		SIMPOIO
		Jampolo Jampol
		SIMBOIO SIMBOI
		Jambolo Jambol