Ecole Supérieure de la statistique et de l'analyse de l'information de Tunis

Examen pratique du logiciel Statistique SAS

Enseignant: Wajdi Ben Saad

Niveau : 1^{ère} Année || Année : 2015-2016 Durée de l'épreuve : 45 minutes

Le Rendu doit être : cette feuille remplie et le code SAS complet, enregistré dans un dossier sur le bureau du PC et nommé :

EXAM_SAS_Nom_Prenom_Groupe, le fichier du code SAS doit être nommé : Code_Nom_Prenom_Groupe

Le code rendu doit être commenté en expliquant chaque commande utilisée.

Votre nom, prénom et groupe doivent être mentionnés dans la première ligne du code SAS en commentaire.

Questions: Tester le code suivant :

%let lib_name = 'C:/'; %let library_name = &lib_name; libname DATA_lib &library_name;

1. Quelle sera l'emplacement de la librairie Data_lib?

L'emplacement est : 'C:/' . 0.5 pt

2. Ajouter la table suivante à la librairie *Data_lib* déclarée avec le code utilisé ci-dessus.

Product	Sales	Туре	Revenu
PC	95,418,000	electric	\$469952
CAR	18,624,000	mecanic	\$568508
мото	97,670,000	mecanic	\$112551
BOAT	204 ,109,000	mecanic	\$214063
CAMERA	111,541,000	electric	\$352817
TRAIN	120,554,000	mecanic	\$122548

```
Data Data_lib.Exam_SAS_Data;
informat
                                                                                 1 pt
Product $char12.
Sales Comma10.
Type $char10.
Revenu Dollar10.
               $ Sales Type $ Revenu;
input Product
Datalines;
                                                                                  1 pt
PC 95,418,000 electric $469952
CAR 18,624,000 mecanic $568508
MOTO 97,670,000 mecanic $112551
BOAT 204,109,000 mecanic $214063
CAMERA 111,541,000 electric $352817
TRAIN 120,554,000 mecanic $122548
run;
```

3. Quels sont les informats utilisés pour saisir cette table dans SAS?

4. Changer les *formats* de la variable *Type* tels que :

```
Proc format;
value $type_format 'electric' = 'E'
    'mecanic' = 'M';
run;

Data Data_lib.Exam_SAS_Data_1;
Set Data_lib.Exam_SAS_Data;
format Type $type_format.;
run;
```

5. Donner une macro SAS qui calcule la fonction de répartition de la loi normale de la variable carré du Revenu sur 100 000 (New_Revenu = Revenu²/100 000) pour le type 'M' et donner les valeurs trouvées (La table finale sera composée de : Product, Type, New_Revenu, Normal_Curve) (Remplir cette table ci-dessous)

Product	Туре	Revenu	New_Revenu	Normal_Curve
CAR	М	568508	3232013.46	.000000087
МОТО	М	112551	126677.28	.000000225
BOAT	M	214063	458229.68	.000000250
TRAIN	М	122548	150180.12	.000000227

(Indication : utiliser la fonction ci-dessous. La constante π doit être remplacée par la valeur **3.14** dans l'équation, la fonction exponentiel de SAS peut être utilisée : $e^{x} = \exp(x)$).

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

```
Data Data lib.Exam SAS Data 2;
Set Data_lib.Exam_SAS_Data_1;
New_Revenu = (Revenu*Revenu)/100000;
                                                                                        2 pts
where Type = "mecanic";
run;
Proc means data= Data_lib.Exam_SAS_Data_2;
var New Revenu;
                                                                                         2 pts
/*******************/
                                                                                         2 pts
%let m = 1236741.29;
%let stan_div = 1260517.63 ;
/*****************************
%macro Loi_Normale (m,stan_div);
Data Data lib.Normal Dist 3;
Set Data_lib.Exam_SAS_Data_2;
keep Product Type Revenu New_Revenu normal_curve;
                                                                                         j 3 pts
normal curve = (1/(\$stan \ div *(2*3.14)**0.5))*exp(-0.5*((New Revenu - \$m)/\$stan \ div)**2);
                                                                                               1 pt
Proc print data=Data_lib.Normal_Dist_3;
run
%mend;
%loi_normale(&m, &stan_div);
+ 1 pt si le code : avec commentaires et fonctionne sans messages d'erreurs
```