

smart grids & e-mobility

lesmodule 3

overzicht

1 schakel- en verdeelinstallaties

2 schakelmateriaal

- 3 oefening: busbartransfer
- 4 opdracht 2: kaartleesoefening

overzicht

1 schakel- en verdeelinstallaties

- 2 schakelmateriaal
- 3 oefening: busbartransfer
- 4 opdracht 2: kaartleesoefening

Voorbeeld: schakelpost van een elektriciteitscentrale

Battersea Power Station https://www.youtube.com/watch?v=VuRNzf9CR4M

Voorbeeld: schakelpost van een elektriciteitscentrale

- onderaan: generator met zijn bekrachtiging
- men meet spanning, stroom en vermogen van de generator (V₁, A₁, W₁)
- transformator T
- opnieuw meting van spanning, stroom en vermogen na de transformator (V₂, A₂, W₂)
- Q₁ is de vermogenschakelaar, Q₉ en Q₁₀ zijn scheiders waardoor de transformator op één van de barenstellen (busbars, verzamelrails) kan geschakeld worden
- Q_k is de koppel(vermogen)schakelaar

Voorbeeld: schakelpost van een elektriciteitscentrale

- uitgaande feeder: opnieuw twee scheiders (Q₅ en Q₆) en één vermogenschakelaar (Q₂)
- opnieuw meting van spanning, stroom en vermogen (V₃, A₃, W₃)
- scheider Q₁₁
- overspanningsbeveiliging P
- H.F.T.: HF-telefonie, onder andere voor aansturen dag/nachttellers

velden in een schakelpost

onderverdeling in **velden**:

- transformatorveld
- velden voor uitgaande leidingen (kabels of luchtlijnen)
- koppelveld
- meetveld

configuratie van een schakelpost

Hoe uitgebreid de installatie is, is afhankelijk van:

- de eisen van het net: de belangrijkheid van het knooppunt, de prioriteiten van de eigenaar, mogelijke splitsing, verschillende feeders, onderhoud, ...
- het aantal en de vermogens van de generatoren, transfo's, aftakkingen, ...
- de grootte van de kortsluitstromen
- ...

De barenstellen zijn cruciaal: zij moeten alle vermogenstromen voeren en verdelen over alle uitgaande feeders.

⚠ Het uitvallen van een barenstel leidt tot het (al dan niet tijdelijk) uitvallen van de feeders die ermee verbonden zijn.

configuratie van een schakelpost

ENKEL BARENSTEL

- enkel barenstel, monorail, enkele busbar, ...
- eenvoudigste manier
- aan beide zijden van vermogenschakelaar een scheider, behalve voor generatortransformatorgroep
- geen redundantie
- indien meerdere feeders, beter barenstel opsplitsen

kabel of

lijn

enkel barenstel

enkel barenstel

enkel barenstel

zelfde configuratie als op vorige slide, maar GIS i.p.v. AIS

configuratie van een schakelpost

ENKEL BARENSTEL, OPGESPLITST

- indien enkel sporadisch schakelen (bijvoorbeeld onderhoud)
 - \rightarrow scheider of lastscheider
- indien automatisch en snel schakelen nodig
 - → vermogenschakelaar

configuratie van een schakelpost

DUBBEL BARENSTEL

- vaak bij centrales
- onderhoud van de barenstellen is eenvoudig
- installatie kan in twee delen gesplitst worden
- groot aantal combinaties generatoren/feeders mogelijk
- door splitsing vermindering van de kortsluitstromen
- bedrijf: eigen elektrische energieproductie volledig scheidbaar van de DNB

dubbel barenstel

configuratie van een schakelpost

DUBBEL BARENSTEL MET KOPPELSCHAKELAAR

- flexibiliteit nog verhogen door koppelschakelaar K (=vermogenschakelaar)
- in geval van defect van een vermogenschakelaar kan de koppelschakelaar tijdelijk diens plaats innemen

configuratie van een schakelpost

DUBBEL BARENSTEL MET KOPPELSCHAKELAAR EN HULPRAIL

- elke feeder kan op de hulprail geschakeld worden
- de hulprail zelf wordt via vermogenschakelaar R op één van de rails geschakeld
- R kan om het even welke vermogenschakelaar vervangen
- R is dus eigenlijk een reserveschakelaar

configuratie van een schakelpost

VERBINDING TUSSEN FEEDER EN DUBBEL BARENSTEL

- A klassiek systeem: één vermogenschakelaar en twee scheiders
 - \rightarrow soms zeer veel schakelacties nodig
- B en C: extra vermogenschakelaar per feeder
 - → makkelijker maar veel duurder

configuratie van een schakelpost

BEPERKINGEN SCHEIDER

∴ Scheiders mogen nooit rechtstreeks een belasting in- of uitschakelen!

- Slechts uitschakelen als er geen stroom door de scheider loopt, tenzij een parallelle verbinding het ontstaan van een boog voorkomt.
- Slechts inschakelen als er geen spanning over de scheider staat.

configuratie van een schakelpost

verbinding feeder en dubbel barenstel bij GIS

- 1 Integrated local control cubicle
- 2 Current transformer
- 3 Busbar II with disconnector and earthing switch
- 4 Interrupter unit of the circuit-breaker
- 5 Busbar I with disconnector and earthing switch

- 6 Stored-energy spring mechanism with circuit-breaker control unit
- 7 Voltage transformer
- 8 High-speed earthing switch
- 9 Outgoing module with disconnector and earthing switch
- 10 Cable sealing end

configuratie van een schakelpost

verbinding feeder en dubbel barenstel bij GIS

overzicht

schakel- en verdeelinstallaties

- 2 schakelmateriaal
- 3 oefening: busbartransfer
- 4 opdracht 2: kaartleesoefening

"schakelaars"

onderdelen van elektrische installaties die

- stromen kunnen onderbreken
- spanningen kunnen isoleren
- energie kunnen verdelen

Er bestaan schakelaars die in één bluskamer meer dan het totale geïnstalleerde vermogen in België (ca. 20 GW) weten uit te schakelen.

classificatie

\rightarrow indeling naar functie

drie mogelijke basistaken:

- stroomvrij schakelen
- nominale stromen onderbreken
- kortsluitstromen onderbreken
- SCHEIDER
- 2 LASTSCHEIDER of LASTSCHAKELAAR
- 3 CONTACTOR
- VERMOGENSCHAKELAAR
- **5** AARDSCHAKELAAR
- 6 SMELTVEILIGHEID

classificatie: indeling naar functie

1. SCHEIDER

- uitsluitend bedoeld om een veilige opening in een net aan te brengen
- opening biedt isolatie tegen elke mogelijke overspanning
- in gesloten toestand in staat om kortsluitstroom een bepaalde tijd te voeren
- openen en sluiten kan enkel in een onbelast net

2. LASTSCHEIDER of LASTSCHAKELAAR

- dezelfde functie als een scheider
- maar met de mogelijkheid om in of uit te schakelen in een net onder normale bedrijfscondities

classificatie: indeling naar functie

3. CONTACTOR

- dezelfde functie als een lastscheider
- maar geconstrueerd voor veelvuldig schakelen
- ook schakelen onder geringe overbelasting

4. VERMOGENSCHAKELAAR

- combinatie van alle voorgaande eisen
- plus mogelijkheid om alle voorkomende stromen (inclusief foutstromen) te onderbreken of daar op in te schakelen
- maar zonder de eis veelvuldig te moeten schakelen

5. AARDSCHAKELAAR

aarden van installaties die reeds onderbroken waren

6. SMELTVEILIGHEID

 kan slechts één keer de kortsluitstroom onderbreken en een veilige isolatieafstand creëren

classificatie

ightarrow indeling naar blusmedium

blusmedium

Het blusmedium is de middenstof waarin de boog ontstaat onmiddellijk na opening van de contacten.

gewenste eigenschappen:

- groot elektrisch isolatievermogen in koude toestand
- uitstekende afvoer van ladingdragers en thermische energie meest voorkomend:
 - LUCHT
 - OLIE
 - **3** SF₆
 - 4 VACUÜM

classificatie: indeling naar blusmedium

1. LUCHT

- reeds langst toegepast
- zowel onder atmosferische als hogere druk
- luide knal
- sterke luchtverplaatsingen

2. OLIE

- begin van de twintigste eeuw
- eerst olie-bad
- later reductie van de hoeveelheid olie in zogenaamde olie-arme schakelaar
- stilaan van de markt verdwenen

classificatie: indeling naar blusmedium

3. SF₆ (zwavelhexafluoride)

- onontvlambaar
- zeer stabiel
- niet giftig
- densiteit 5 maal hoger dan lucht
- veel grotere diëlektrische doorslagvastheid
- warmte wordt vlot afgevoerd
- vooral hoogspanning
- zeer sterk broeikasgas ...

classificatie: indeling naar blusmedium

4. VACUÜM

- boog dooft automatisch bij nuldoorgang
- wel plasma van goed geleidende metaaldampen
- stil, geen gasontsnapping
- schakelaars zijn onderhoudsarm, compact en licht
- groot gedeelte nieuwe schakelaars tot 36 kV

classificatie

→ indeling naar bedieningssysteem

- Manueel schakelen
 - voor kleine MS-schakelaars
 - met behulp van gespannen veersysteem
 ⇒ openingssnelheid onafhankelijk van bediening
- 2 Elektromotorisch schakelsysteem
 - veersysteem wordt gespannen door een elektrische motor
- 3 Hydraulisch schakelsysteem
 - enkel bij de hoogste spanningen, waar benodigde krachten groot zijn

werking van vermogenschakelaars

vanaf hogere nominale stromen (\sim 400 A) of op MS en HS:

- uitschakelbevel wordt gegeven door beveiligingsrelais
- bij LS meestal ingebouwd in vermogenschakelaar
- bij MS en HS extern
- mechanisch of elektronisch

⇒ afschakelgedrag van de vermogenschakelaar is programmeerbaar

(+ aardfoutdetectie, monitoring, storingsmeldingen, datacommunicatie, testfaciliteiten, ...)

werking van vermogenschakelaars

voorbeeld digitaal beveiligingsrelais

werking van vermogenschakelaars

Indeling van beveiligingsrelais

- verbinding van het relais met het net
 - primair relais: netstroom loopt rechtstreeks door relais
 - secundair relais: aansluiting via spannings- en/of stroomtransformatoren
- verbinding van het relais met de schakelaar
 - direct relais: stroom geleverd door relais zelf doorloopt uitschakelspoel van de schakelaar
 - indirect relais: relais sluit contacten, hulprelais levert stroom voor uitschakelspoel

werking van vermogenschakelaars

Indeling van beveiligingsrelais

- werkingsprincipe van het relais
 - elektromechanisch relais (verouderd)
 - analoge (elektronische) relais (verouderd)
 - digitale of numerieke relais
- meetprincipe van het relais
 - overstroomrelais: stromen ingelezen op één plaats
 - afstandsrelais: stromen én spanningen ingelezen zodat de afstand tot de fout kan geschat worden
 - differentieelrelais: meetwaarden op verschillende plaatsen en deze onderling vergelijken

werking van vermogenschakelaars

voorbeeld functionaliteiten van een digitaal relais

overzicht

schakel- en verdeelinstallaties

- 2 schakelmateriaal
- 3 oefening: busbartransfer
- 4 opdracht 2: kaartleesoefening

oefening: busbartransfer

Elk van de vier delen busbar staat onder spanning. Welke schakelacties onderneem je om de meest rechtse feeder op busbar 2 (BB2) te schakelen i.p.v. op busbar 1 (BB1) en voor het overige terug de begintoestand te bekomen?

Beschrijf je strategie en geef een genummerde lijst met schakelacties.

overzicht

schakel- en verdeelinstallaties

- 2 schakelmateriaal
- 3 oefening: busbartransfer
- 4 opdracht 2: kaartleesoefening

opdracht 2: kaartleesoefening [1/2]

- Raadpleeg de kaart van het Belgische hoogspanningsnet (beschikbaar op Toledo) om de vragen op de volgende slide te beantwoorden.
- Dien een pdf-bestand met je antwoorden ("opdracht 2 - voornaam naam.pdf") in via Toledo. Deadline = maandag 14/10 23:59.

opdracht 2: kaartleesoefening [2/2]

- Ga na waar het Belgisch net gekoppeld is met de buurlanden. Noteer land, HS-postnamen, gebruikte spanning. (bijvoorbeeld: (B) Van Eyck – (NL) Maasbracht, 380kV AC)
- Wat is het hoogste spanningsniveau op Belgisch grondgebied?
- 3 Op welke spanningsniveaus vind je lussen terug? Verklaar.
- Op welke spanningsniveaus vind je elektriciteitscentrales? Deel op volgens centraletypes en verklaar.
- Solution
 Noteer drie grote transformatiestations (spanningsniveaus, naam, ligging)?