电磁场理论试卷23秋回忆版

by ustcerxyz

一、简答题

1.说明 $\frac{\vec{r}}{r^3}$ 的散度不恒等于零的原因,**定性说明**。

- 2.判断对错:
- (1) 接地导体,一定不带电。
- (2) 带电导体, 电位一定不为零。
- (3) 导体带电荷量不变,则电位不变。
- 3.恒定电流场达到稳定状态的表现, 弛豫时间公式。
- 4.给出柱坐标下, θ 方向其次且无界, ρ 方向齐次,z 方向非齐次的特征函数,z 方向的特征值 k_z 由哪一个方向确定。
- 5.介质交界面 $(\vec{B} \setminus \vec{D} \setminus \vec{E} \setminus \vec{H})$ 边界条件 (连续性条件) 。
- 6.电荷和电偶极矩的镜像。

7.给出有损介质的介电常数 ε_k 表达式, $k=\beta-j\alpha$ 中 β , α 物理含义。

二、计算题

求给定边界条件的矩形区域的电位。

$$egin{aligned} x &= 0, arphi = -V_0 sin(rac{\pi y}{2b}); \ y &= 0, arphi = 0; \ x &= a, rac{\partial arphi}{\partial x} = 0; \ y &= b, rac{\partial arphi}{\partial y} = 0. \end{aligned}$$

三、证明题

其中内导体半径为a,外导体半径为b,导体均为理想导体,内外导体之间为理想介质,外导体外面也是理想介质。 1.求各区域能流密度。

- 2.求传输功率。
- 3.能量在哪里传输,解释导体的作用。

四、推导题

- 1.推导 \vec{B} 、 \vec{E} 由 φ 和 \vec{A} 表示的公式。
- 2.推导微分矢量坡印廷定理,并解释各项物理含义。

五、应用题

$$ec{E} = E_{zm} sin(wt - k_i z + arphi_0) \hat{x} - E_{ym} cos(wt - k_i z + arphi_0) \hat{y}$$

其中:

- 垂直入射介质1: μ_0 、 ε_1 , 介质2: μ_0 、 ε_2 ; $E_{zm}>0$, $E_{ym}>0$.
- 1.入射波极化方式。
- 2.给出入射波磁场复数表达形式。
- 3.给出反射波和折射波的电场和磁场的复数表达形式和矢量形式。
- 4.反射波和折射波的极化方式。
- 5.反射波为线极化波的入射条件。

六、电磁场的辐射

$$ec{H}=\hat{\phi}jwH_0sin heta(rac{1}{r^2}+rac{k_0}{r})e^{-jk_0r}$$

- 1.给出辐射场电场公式。
- 2.辐射场一周期内平均能流密度。
- 3.辐射场一周期内平均功率密度。

$$\int_0^\pi sin^3 heta d heta = rac{4}{3}$$