

## ANÁLISIS MATEMÁTICO

GRADO EN CC. MATEMÁTICAS, 2018-2019

## Ejercicios 27 a 33

**27.** Dada  $\mathbf{X} \in \mathbb{R}^{n \times n}$ , consideramos la sucesión de sumas parciales cuyo término general es

$$\mathbf{S}_{N} = \sum_{n=0}^{N} \frac{1}{n!} \mathbf{X}^{n}.$$

1. Demostrar que esta sucesión  $\left\{\mathbf{S}_{N}\right\}_{N}$  es una sucesión de CAUCHY. Su límite permite definir la función exponencial de la matriz  $\mathbf{X}$ ,

(7) 
$$\exp \mathbf{X} = \sum_{n=0}^{\infty} \frac{1}{n!} \mathbf{X}^n.$$

- 2. Calcular  $\exp 0$  y  $\exp I$ .
- 3. Demostrar que toda norma de matrices verifica

$$\|\exp \mathbf{X}\| \le e^{\|\mathbf{X}\|}$$

4. Demostrar

$$\exp(\mathbf{I} + \mathbf{X}) = \exp \mathbf{I} \cdot \exp \mathbf{X}$$

5. Calcular  $(d \exp)_{\mathbf{I}}$ , esto es, la diferencial en  $\mathbf{I}$  de la función que lleva  $\mathbf{X}$  a  $\exp \mathbf{X}$ . Calcular también  $(d \exp)_{\mathbf{0}}$ .



$$f: \mathbb{R}^{k \times k} \longrightarrow \mathbb{R}^{k \times k}$$

es diferenciable en todo  $\mathbf{A} \in \mathbb{R}^{k \times k}$ . Calcular  $(dg)_{\mathbf{A}}$ , siendo  $g(\mathbf{X}) = \mathbf{X} f(\mathbf{X})$ .

B. Utilizar el Principio de Inducción y el apartado anterior para calcular  $(df)_{\mathtt{A}}$  cuando

$$f(\mathbf{X}) = \mathbf{X}^n$$
,

siendo  $n \in \mathbb{N}$ .

- $\sf C.$  Calcular una expresión para  $(d\exp)_{\sf A} {\bf X}$ . ¡Atención! no se pide el estudio de la convergencia de las series que intervienen en el cálculo.
  - D. Comprobar que AX = XA implica

$$e^{\mathbf{A} + \mathbf{X}} = e^{\mathbf{A}} e^{\mathbf{X}}$$

$$(d \exp)_{\mathbf{A}} \mathbf{X} = e^{\mathbf{A}} \mathbf{X} = \mathbf{X} e^{\mathbf{A}}.$$

en la expresión obtenida en el apartado anterior.

**29.** Considérese la función f(x) definida en los  $x = (x_1, x_2) \in \mathbb{R}^2$  mediante

$$f(x) = \begin{cases} x_1 + x_2 + \frac{x_1^3 x_2}{x_1^4 + x_2^2}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

Demostrar que f es continua en todo punto  $x \in$ 

1. Demostrar que para todo vector  $\mathbf{u}$  de  $\mathbb{R}^2$  existe  $D_{\mathbf{u}}f(0)$ , la derivada В. en 0 de f según  $\mathbf{u}$ , y calcularla. Demostrar que la función

$$\mathbf{u} \longrightarrow D_{\mathbf{u}} f(0)$$

2. Demostrar que f no es diferenciable en 0. C. Demostrar que f es diferenciable en todo  $a \in \mathbb{R}^2$  ,  $a \neq 0$  . Calcular  $(df)_a$  , cada  $D_{\mathbf{u}}f(a)$  y la matriz jacobiana Df(a).

**30.** Considérese la función 
$$f(x)$$
 definida en los  $x=(x_1\,,x_2)\in\mathbb{R}^2$  mediante 
$$f(x)=\left\{\begin{array}{ll} (x_1^2+x_2^2)\sin\frac{1}{\sqrt{x_1^2+x_2^2}}\,,&x\neq 0\,,\\ 0\,,&x=0\,. \end{array}\right.$$

A. Demostrar que f es continua en todo punto  $x \in \mathbb{R}^2$ .



2. Estudiar la continuidad de estas dos funciones en 0 .

1. Demostrar que f es diferenciable en 0.

2. Demostrar que f es diferenciable en todo  $x \in \mathbb{R}^2$ .

**31.** Dada una función continua  $\varphi: \mathbb{R}^2 \longrightarrow \mathbb{R}$ , considérese la función

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

definida

$$f(x) = \varphi(x) \sin x_1, \qquad x = (x_1, x_2).$$

- 1. Demostrar que f es diferenciable en 0, incluso si  $\varphi$  no lo es.
- Calcular, para cada vector  $\mathbf{u} \in \mathbb{R}^2$ , el valor de  $(df)_{\scriptscriptstyle 0} \mathbf{u}$ .
- 32. Demostrar que en cada uno de los casos siguientes la función f es de clase  $C^1$ . Calcular su diferencial en cada  $(x, y) \in \mathbb{R}^2$ .
  - 1. Dadas  $g\,:\,\mathbb{R}^2\longrightarrow\mathbb{R}$  continua y  $h\,:\,\mathbb{R}^2\longrightarrow\mathbb{R}$  de clase  $C^1$  , se define f

$$f(x,y) = \int_0^x g(t,0) dt + \int_0^y h(x,t) dt.$$

2. Dados  $a \in \mathbb{R}$  y  $g : \mathbb{R} \longrightarrow \mathbb{R}$  continua,

$$f(x,y) = \int_{a}^{x+y} g(t) dt.$$

3. Con a y g como en el apartado anterior,

$$f(x,y) = \int_{a}^{x \sin y} g(t) dt.$$

33. El Teorema de Euler para funciones homogéneas. Sea f una función definida en un abierto  $\Omega$  de  $\mathbb{R}^n$ . Se dice que f es homogénea de grado p en  $\Omega$ cuando

$$f(\lambda x) = \lambda^p f(x)$$

- $f(\lambda\,x)=\lambda^p\,f(x)$  se verifica para todos los  $\lambda\in\mathbb{R}$  y  $x\in\Omega$  tales que  $\lambda\,x\in\Omega$  .
  - 1. Demostrar que si f es homogénea de grado p en  $\Omega$  y es diferenciable en xentonces

(8) 
$$\langle x, \nabla f(x) \rangle = p f(x).$$

Demostrar que si f es diferenciable en  $\Omega$  y satisface (8) en todo  $x \in \Omega$ entonces fes homogénea de grado p en  $\Omega\,.$