JP 63289960 - Japio

2/7/1
DIALOG(R)File 347:JAPIO
(c) 2000 JPO & JAPIO. All rts. reserv.
02673060 **Image available**

FIELD-EFFECT SEMICONDUCTOR DEVICE

PUB. NO.: 63-289960 A]

PUBLISHED: November 28, 1988 (19881128)

INVENTOR(s): ITO TAKASHI

APPLICANT(s): FUJITSU LTD [000522] (A Japanese Company or Corporation), JP

(Japan)

APPL. NO.: 62-125135 [JP 87125135] FILED: May 22, 1987 (19870522)

ABSTRACT

PURPOSE: To obtain a new type of a field effect transistor higher in operational speed and integration as compared with a conventional MOS FET by a method wherein a gate electrode is provided through intermediary of a single crystal silicon carbide film epitaxially grown on a substrate.

CONSTITUTION: A carrier in a silicon substrate adjacent to the interface between a silicon substrate 1 and a silicon carbide film 2 is controlled by applying voltage through the single crystal silicon carbide film 2 which is formed and bonded onto a silicon substrate 1. For instance, an element isolation film 6 is provided on the p-type silicon substrate 1 with a face orientation (100) and an undoped SiC single crystal film 2 is epitaxially grown through the vacuum vapour phase growth on an Si face on which an element is to be formed. Polycrystalline Si is deposited thereon, and then patterning is performed to form a gate electrode structure consisting of the SiC film 2 with a channel 1 .mu.m in length and a gate electrode 3. Next, As(sup +) is ion-implanted through the said electrode 3 as a mask and heat treatment is performed for activation, and thus a source region 4 and a drain region 5 are formed.

JP 63289960 - Derwent

2/7/1

DIALOG(R) File 351: Derwent WPI

(c) 2000 Derwent Info Ltd. All rts. reserv.

007697602 **Image available** WPI Acc No: 1988-331534/198847

Semiconductor field effect transistor - using single crystalline silicon carbide as gate insulating layer for high speed operation

Patent Assignee: FUJITSU LTD (FUIT)

Inventor: ITO T

Number of Countries: 004 Number of Patents: 004

Patent Family:

	' -		_	3 1	' 7	-	** - 1.	
Patent No	Kind	Date	App	olicat No	Kind	Date	Week	
EP 291951	Α	19881123	EP	88107958	A	19880518	198847	В
JP 63289960	Α	19881128	JP	87125135	Α	19870522	198902	
EP 291951	B1	19930804	EP	88107958	Α	19880518	199331	
DE 3882801	G	19930909	DE	3882801	Α	19880518	199337	•
		- "	ΕP	88107958	A	19880518		

Priority Applications (No Type Date): JP 87125135 A 19870522 Cited Patents: 1.Jnl.Ref; A3...9105; GB 1566072; No-SR.Pub

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

EP 291951 A E 10

Designated States (Regional): DE FR GB

EP 291951 B1 E 11 H01L-029/64

Designated States (Regional): DE FR GB

DE 3882801 G H01L-029/64 Based on patent EP 291951

Abstract (Basic): EP 291951 A

An insulated gate field effect transistor (IGFET) is characterised by a single crystalline Si substrate, a gate insulating layer comprising a single crystal SiC layer (2), epitaxially grown on (1) pref. by a vapour phase method; a gate electrode (3) formed on (2) for forming a channel region in surface region of Si substrate (1) and under gate electrode through gate insulating layer; a source region (4) formed in a surface region of (1) and electrically connected with an end of channel region; a drain region (5) formed in a surface region of (1) and electrically connected with other end of channel region. Pref. the surface of the Si substrate has a major surface of (100) or (111) orientation.

USE/ADVANTAGE - An IGFET, smaller and having a higher transconductance and higher operating speed than prior art MOSFET having SiO2 gate insulating layer.

1/2

Abstract (Equivalent): EP 291951 B

An insulated gate field effect transistor (IGFET) comprising a single crystalline silicon substrate (1); a gate insulating layer of single crystal silicon carbide (2) epitaxially grown on the surface of said silicon substrate (1); a gate electrode (3) formed on said gate insulating layer for forming a channel region in the surface region of said silicon substrate (1) and under said gate electrode through said gate insulating layer; a source region (4) formed in the surface region

of said silicon substrate (1) so as to be electrically connected with an end of said channel region; and a drain region (4) formed in the surface region of said silicon substrate (1) so as to be electrically connected with an end of said channel region; and a drain region (5) formed in the surface region of said silicon substrate (1) so as to be electrically connected with the other end of said channel region, characterised in that said silicon substrate (1) has a major surface of (111) orientation.

Dwg.1(a

Derwent Class: L03; U12

International Patent Class (Main): H01L-029/64

International Patent Class (Additional): H01L-029/267; H01L-029/62;

H01L-029/78

⑲ 日本国特許庁(JP)

①特許出願公開

⑩ 公 開 特 許 公 報 (A)

昭63-289960

@Int_Cl_4

 $i \rightarrow 1$

識別記号

庁内整理番号

❸公開 昭和63年(1988)11月28日

H 01 L 29/78

301

G-8422-5F

審査請求 未請求 発明の数 1 (全4頁)

砂発明の名称

電界効果型半導体装置

②特 願 昭62-125135

郊出 願 昭62(1987)5月22日

⑫発 明 者 伊 藤

隆 司

神奈川県川崎市中原区上小田中1015番地 富士通株式会社

内

②出 願 人 富士通株式会社

神奈川県川崎市中原区上小田中1015番地

郊代 理 人 弁理士 井桁 貞一

明 細書

1. 発明の名称

電界効果型半導体装置

2. 特許請求の範囲

シリコン基板(1)上に被着形成された単結晶シリコンカーバイド膜(2)を介して電圧を印加することにより、前記のシリコン基板とシリコンカーバイド膜の界面近傍のシリコン基板内の担体を制御することを特徴とする電界効果型半導体装置。

3. 発明の詳細な説明

(概要)

シリコン基板上にエピタキシャル成長させた単結晶シリコンカーバイド(Sic) 膜を介してゲート電極を設けたことを特徴とする電界効果トランジスタ。

(産業上の利用分野)

本発明は、電界効果トランジスタ(FBT: Field Effect Transistor)に係り、特に集積度の高い半 導体集積回路の能動素子として好適な高負荷駆動 能力を有する新規な FETに関するものである。

(従来の技術)

MOS PET は、そのドレイン電流が近似的に実効チャネル長とゲート絶縁膜厚に反比例するので、高集積化すべく素子を微細化することが、即、素子の高速化に不可欠な電流駆動能力の増大につながるという半導体集積回路用能動素子として好ましい性質があり、高集積化・高速化のためにその微細化が進められた結果、現在、実効ゲート長(Left)が0.25μmで、ゲート絶縁膜の厚さが50人のものが試作されるまでに至っている。

ゲート絶縁膜にSiOzを用いた従来のMOS FET に おいては、その実効チャネル長が1μm以下にま で微細化されゲート絶縁膜のSiOzにキャリヤが注 がされるようになると、素子の特性劣化や信頼性 低下が目立つようになり、その問題の解決が求め られている。

(発明が解決すべき問題点)

従来のMOS FET のゲート絶縁膜として用いられている熱酸化によるSiOzは、単結晶ではなく非晶

ばかりでなく、電気的にも界面準位が形成されるなどして電気的特性が制限され、MOS FET の特性を左右する表面電子移動度がバルクのSiの値に比較して20~40%も低い値になってしまうことも、従来のMOS FET の高速化をはばむ要因の一つであった。

本発明は、このような点に鑑みて創作されたもので、従来のMOS FET に比較して、より高速化・高集積化が可能な、新しい異菌効果トランジスタを提供するものである。

[問題を解決するための手段]

その目的は、従来のNOS FET のSIの熱酸化によるSiOx膜のかわりに、Si上にエピタキシャル成長させたシリコンカーバイド(SiC) 単結晶膜を介してゲート電極を設け、電界効果トランジスタ(PET) 構造を形成することにより達成される。

(作用)

第2図は、本発明の PETの動作原理を示すNチ

質であるので、内部に電子や正孔を崩潰する夫子 リャトラップを数多く含んでいる。たのSio.に前 述のごとくキャリヤが注入されるとその一部がキ ャリヤトラップに捕獲されて表面準位や固定電荷 を発生させて、MOS FET の特性変動をひきおこす。 又、SiO.膜にかかる電界が1×10'V/cm 以上にな るとその絶縁破壊がおこること、更に、SiO.膜が 20人以下にまで薄くなると、SiOz膜を通して直接 トンネル電流が彼れるようになることによって、 SiOzゲート絶縁膜の薄膜化には原理的に限界があ り、素子の微細化による従来のMOS FET の高速化 には限界があった。実際的な面からは、SiOzが紐 密でないため、薄い膜ほどピンホールができ易く、 又、その上につけたゲート電極材料の野袋などが 素子化のプロセス中にSiOz中に拡散し、はなはだ しくはSiOz膜をつきぬけたりすることもSiOz膜の 薄膜化を制限する要因となっている。

また、Si/SiOz 界面の界面特性が良好であるといっても先に述べたようにSiOzが単結晶でなく非晶質であるのでその界面が結晶学的に平坦でない

+ネル FETのエネルギー帯図である。

p型ンリコン基板1にアンドープ高抵抗SiC 膜2とケート電極3を順次形成すると、SiC の禁制帯幅は2.86eV(6H-SiC)又は2.20eV(3C-SiC)とSiのそれにくらべ大きいので、Si/SiC界面には、図に示したようにキャリヤ20としての電子が蓄積される。基板としてn型シリコンを用いれば、同様にpチャネル FETができるのは言うまでもない。

SiC は、波圧下において、 SiC & **。 Si RC & **. Si RC & **。 Si RC & **。 Si RC & **。 Si RC & **. Si RC & **。 Si RC & **. Si

このSiC の比誘電率は約10で、SiOzのそれにくらべ約2.5 倍も大きい。FBT のゲート電極構造にこれを用いるとSiOzを用いたものにくらべてゲートキャパシタの容量が約2.5 倍大きくなるので、チャネルにそれだけ多くのキャリヤを蓄積できるようになり、その結果、FBT のドレイン電流が増大し、高速化に不可欠な電流駆動能力を大きくす

ることができる。

逆に、ドレイン電流が等しいFET をつくるのに必要なSic 膜の厚さは、Sioz膜のそれの約2.5 倍厚くすることができるのでその結果Sic 膜内の電界強度は1/2.5 に小さくなって、それだけ絶縁破壊に強い素子が得られる。

又、SiC は単結晶であるので、非晶質のSiO.にくらベキャリヤトラップとして働く欠陥などが少く、FET が微細化されてSiC 膜にキャリアが注入されるようになっても、単にゲート電流がふえるだけで、SiO.を用いたときのように注入されたキャリヤがキャリヤトラップに捕獲されて表面単位や固定電荷を発生させ素子の特性劣化をひきおこすことが少なくなる。

また、Si/SiC界面は、原理的には1原子層オーダーまで平坦化することができ、界面の欠陥を少くすることができるので表面電子移動度をSi/SiOz界面のそれより大きくすることができ、その結果より高速なFETを作ることができる。

更にSiC は熱伝導率も0.4H/cm · でと大きく、

ールド酸化膜を形成し、ついて素子を形成すべきSi面上に、波圧気相成長により、アンドープSiC単結晶膜をエピタキシャル成長させた。このSiCの成長にあたり、Si 源としてはSi HC ℓ。を、C源としてはC₂H₁を、キャリヤガスとしてはH₂をそれぞれ用い、成長温度1000で、圧力200Pa 、Si HC ℓ。 流量 0.7 ℓ/min、C₂H₀流量38cc/min、H₂流量7 ℓ/minの条件でエピタキシャル成長させたところ、そのシート抵抗が約1000 Ω/□のSiC 単結晶薄膜を得ることができた。

このSiC 単結晶膜の上に、多結晶Siを厚さ3000 Aに公知の手法により堆積させた後、フォトリソ グラフィと反応性イオンエッチングの手法でパタ ーニングし、チャネル長(ゲート長)が1μmの SiC 膜 2 とゲート電極 3 から成るゲート電極 3 を を形成した。ついで、このゲート電極 3 を として、n型不純物となるAs でイオンは入し、領 は4とドレイン領域 5 を形成した。なお、この工 程でソース領域 4、ドレイン領域 5 およびゲート 高温でも安定であり、しかも単結晶SiC は然酸化SiOzにくらべ級密であるので、素子化のプロセス中や長時間動作後に、ゲート電極材料の金属などと反応したり、ピンホールを通してこのゲート電極材料がつきぬけたりして特性劣化をきたすことがない。

(実施例)

本発明の電界効果トランジスタ(FET) の一実施 例の構造を第1図に示す。

図において、1はp型シリコン基板、2はSiC 単結晶膜、3はゲート電極、4はソース領域、5 はドレイン領域、6は素子分離のためのSiOz膜、 7はパッシベーションのSiOz熱酸化膜、8は層間 絶縁膜としてのPSC膜、9はコンタクトホール、 10と11はそれぞれソース電極とドレイン電極である。

この素子の作成は、以下の手順で行った。 まず、面方位(100)のp型シリコン基板上に、 公知の熱酸化法により素子分離膜 6 としてのフィ

電極3の表面が酸化され、熱酸化酸 7 が形成される。このあと、全面に層間絶縁膜として PSC膜を約1μm CVD法により被着形成し、フォトリソグラフィとエッチングの手法によりコンタクトホール9を開口し、これに電極となるべき A & - S i 合金を、あつさ約1μm全面にスパックリングして増積させ、これをパターニングしてソース電極10とドレイン電極11を形成し、FET 素子を完成させた

こうしてつくったチャネル長1μmの FETのドレイン電流は、同じ厚さのSiOzゲート絶縁膜を有することを除いて、他の条件は全く同じにしてつくった従来のMOS FET のそれの平均2倍であった。

なお、本実施例では、イオン注入を用いてソース領域、ドレイン領域を形成する方法を示したが、リン(P)などを拡散することによっても形成することができる。又、ゲート電極も多結晶シリコンにかぎらず、アルミニウムやタングステン、モリプデンなどの金属や高融点金属のシリサイドの更には多結晶シリコンと高融金属のシリサイドの

組みあわせたものなどを用いることができる。

以上、Nチャネル FETについてのみ説明してきたが、本発明の応用はこれにとどまらず、その原理からpチャネル FETにも容易に応用できることは言うまでもない。

(発明の効果)

本発明によれば、微細化可能な高速かつ高電流 駆動能力を有する信頼性の高い電界効果トランジ スタを容易につくることができるので、半導体集 積回路の高集積化・高速化・高信頼化に寄与する ところが極めて大きい。

4. 図面の簡単な説明

第1図は、本発明の電界効果トランジスタの一 実施例の構造を示す図、

第2図は本発明の電界効果トランジスタのエネルキー帯図である。

図において、

1はシリコン基板、2はSiC 膜、

3はゲート電極、4はソース領域、

5 はドレイン領域、 6 は素子分離膜、 7 は然酸化膜、 8 は PSG膜、 9 はコンタクトホール、10はソース電極、 11はドレイン電極、20はキャリヤ である。

MEA #理士 非 桁 貞 一

本発明の電界効果トランジスタの 一実施側の構造 第 1 図

本発明の電界効果トランジスタの エネルギー帯図 第 2 図