1 Let A be a commutative ring. Let M be a module, and N a submodule. Let $N = Q_1 \cap ... \cap Q_r$ be a primary decomposition of N. Let $\bar{Q}_i = Q_1/N$. Show that $0 = \bar{Q}_1 \cap ... \bar{Q}_r$ is a primary decomposition of 0 in M/N. State and prove the converse.

Firstly, let's take a concrete example, $A = \mathbb{Z}$, $M = \mathbb{Z}$, $N = 12\mathbb{Z}$.

One primary decomposition (the one that is in some sense minimal) of $12\mathbb{Z}$ is $4\mathbb{Z}$, $3\mathbb{Z}$.

 $N=12\mathbb{Z}$ itself is not primary since $3_{\mathbb{Z}_{12}}$ is neither injective (it sends both 0 and 4 to 0) nor nilpotent (no power of the homomorphism brings 1 to 0, that is to say $3^n \mod 12 \neq 0$).

So now $\bar{Q}_1 = 4\mathbb{Z}/12\mathbb{Z} \cong \mathbb{Z}_3$ and $\bar{Q}_2 = 3\mathbb{Z}/12\mathbb{Z} \cong \mathbb{Z}_4$. Since $M/N = \mathbb{Z}_12$, \mathbb{Z}_4 and \mathbb{Z}_3 are in fact primary decompositions with an intersection at 0.

2 Let \mathfrak{p} be a prime ideal and \mathfrak{a} , \mathfrak{b} be ideals of A. If $\mathfrak{ab} \subset \mathfrak{p}$, show that $\mathfrak{a} \subset \mathfrak{p}$ or $\mathfrak{b} \subset \mathfrak{p}$.

Take a_i to be an arbitrary member of \mathfrak{a} and b_i to be an arbitrary member of \mathfrak{b} . If a_ib_i is in \mathfrak{p} , then, since \mathfrak{p} is prime, either a_i is in \mathfrak{p} or b_i is.

Say a_i is. Now we have to show that all of \mathfrak{a} is thus in \mathfrak{p} .

3 Let \mathfrak{q} be a primary ideal. Let \mathfrak{a} , \mathfrak{b} be ideals, and assume $\mathfrak{a}\mathfrak{b} \subset \mathfrak{q}$. Assume that \mathfrak{b} is finitely generated. Show that $\mathfrak{a} \subset \mathfrak{q}$ or there exists some positive integer n such that $\mathfrak{b}^n \subset \mathfrak{q}$.

Same argument as above, just replacing prime for prime powers.

4 Let A be Noetherian and let \mathfrak{q} be a \mathfrak{p} -primary ideal. Show that there exists some $n \geq 1$ such that $\mathfrak{p}^n \subset \mathfrak{q}$

I'm having trouble understanding what it means to be p-primary.