### Graphes

#### 2. Concepts de base

#### Solen Quiniou

 $\verb|solen.quiniou@univ-nantes.fr|\\$ 

IUT de Nantes

Année 2023-2024 – BUT 1 (Semestre 2)

[Mise à jour du 18 janvier 2024]



- Graphes orientés et non orientés
- 2 Sommets adjacents, prédécesseurs et successeurs
- Sommets source et puits
- Degrés des sommets
- Beprésentations des graphes
- 6 Sous-graphes
- Quelques graphes particuliers

## Graphes orientés

### Définition : graphes orientés

#### **Graphe orienté** : couple G = (S, A) avec

- S : ensemble fini d'éléments appelés sommets
  - |S| = n: ordre du graphe
- A : ensemble fini de couples de sommets appelés arcs
  - $A \subseteq S \times S$
  - |A| = m: taille du graphe

#### Définitions : arcs

- Soit  $a = (x, y) \in A$  un arc de G
  - a peut aussi se noter x → y
  - x est le début (ou l'origine) de a
  - y est la fin (ou l'extrémité finale) de a
- a = (x, x) est une boucle

3/32

## Graphes orientés

#### Exemple



- $S = \{1, 2, 3, 4, 5\}$
- $\bullet \ A = \{(1,3), (1,5), (2,1), (3,1), (4,1), \\ (4,4), (5,1), (5,2)\}$
- Sommet 1 : origine de l'arc (1,3)
- Sommet 3 : destination de l'arc (1,3)

4/32

Arc (4,4): boucle

# Graphes non orientés

### Définition : graphes non orientés

**Graphe non orienté** : couple G = (S, A) avec

- S : ensemble fini d'éléments appelés sommets
- A : ensemble fini de paires de sommets appelés arêtes

#### Définitions : arête

• Arête : paire de sommets notée {x, y}

### Remarque : lien entre graphe orienté et non orienté

- G = (S, A): graphe orienté
- $ightarrow \ G' = (S,A')$  : graphe non orienté associé avec
  - S le même ensemble de sommets
  - ► A' l'ensemble d'arêtes vérifiant  $\{x,y\} \in A' \Leftrightarrow (x,y) \in A$  ou  $(y,x) \in A$

# Graphes non orientés

### Exemple



- $S = \{1, 2, 3, 4, 5\}.$
- $\bullet \ A = \\ \{\{1,3\},\{1,5\},\{2,1\},\{4,1\},\{4,4\},\{5,2\}\}.$

- Graphes orientés et non orientés
- 2 Sommets adjacents, prédécesseurs et successeurs
- Sommets source et puits
- Degrés des sommets
- Seprésentations des graphes
- 6 Sous-graphes
- Quelques graphes particuliers

# Sommets adjacents et voisins – graphes non orientés

#### Définition : sommets adjacents et voisins

Soit G = (S, A) un graphe non orienté

• Les sommets s et t sont **adjacents** ou **voisins** dans G si  $\{s, t\}$  est une arête de G

### Exemple



- Sommets 1 et 3 adjacents
- Sommet 5 voisin du sommet 1

# Prédécesseurs et successeurs – graphes orientés

#### Définitions : prédécesseurs, successeurs et voisins

Soit G = (S, A) un graphe orienté

- Le sommet r est le **prédécesseur** du sommet s si (r, s) est un arc de G
- ightarrow Ensemble des prédécesseurs du sommet s :  $\Gamma^{-}(s) = \{r \in S \mid (r,s) \in A\}$
- Le sommet t est le successeur du sommet s si (s, t) est un arc de G
- $\rightarrow$  Ensemble des successeurs du sommet s:  $\Gamma^{+}(s) = \{t \in S \mid (s,t) \in A\}$
- $\rightarrow$  Ensemble des voisins du sommet  $s : \Gamma(s) = \Gamma^+(s) \cup \Gamma^-(s)$

# Prédécesseurs et successeurs – graphes orientés

### Exemple



- Ensemble des successeurs du sommet 1 :  $\Gamma^+(1) = \{3, 5\}$
- Ensemble des prédécesseurs du sommet 1 :  $\Gamma^-(1) = \{2, 3, 4, 5\}$

10/32

- Graphes orientés et non orientés
- Sommets adjacents, prédécesseurs et successeurs
- Sommets source et puits
- Degrés des sommets
- Beprésentations des graphes
- 6 Sous-graphes
- Quelques graphes particuliers

## Sommets source et puits

#### Définitions : sources et puits

Soit G = (S, A) un graphe orienté.

- Source de G : sommet sans prédécesseur
- $\rightarrow$  Ensemble des sources de G:  $sources(G) = \{s \in S \setminus \{s\} \mid d^{-}(s) = 0\}$
- Puits de G : sommet sans successeur
- $\rightarrow$  Ensemble des puits de G:  $puits(G) = \{s \in S \setminus \{s\} \mid d^+(s) = 0\}$

### Exemple



- $sources(G) = \{a, b\}$
- $puits(G) = \{d, g\}$

- Graphes orientés et non orientés
- 2 Sommets adjacents, prédécesseurs et successeurs
- Sommets source et puits
- Degrés des sommets
- Beprésentations des graphes
- 6 Sous-graphes
- Quelques graphes particuliers

# Degré des sommets – graphes non orientés

#### Définitions : degré d'un sommet

Soit G un graphe non orienté

- **Degré** du sommet s, noté d(s): nombre d'arêtes dont l'extrémité est s (en comptant 2 fois les boucles)
- $\rightarrow d(s)$  correspond au nombre de voisins de s

### Exemple



- d(1) = 4
- d(4) = 3

# Degrés des sommets – graphes orientés

### Définitions : degré entrant, degré sortant et degré total

Soit G = (S, A) un graphe orienté

 Degré entrant d'un sommet s, noté d<sup>-</sup>(s): nombre d'arcs dont l'extrémité finale est s ou nombre de prédécesseurs de s

$$\rightarrow d^{-}(s) = |\Gamma^{-}(s)|$$

• **Degré sortant** d'un sommet s, noté  $d^+(s)$ : nombre d'arcs dont l'origine est s ou nombre de successeurs de s

$$\rightarrow d^+(s) = |\Gamma^+(s)|$$

 Degré total d'un sommet s, noté d(s): nombre d'arcs dont l'origine ou l'extrémité finale est s (boucles comptées deux fois) ou nombre de voisins de s

$$\rightarrow d(s) = d^{-}(s) + d^{+}(s)$$

# Degrés des sommets – graphes orientés

### Exemple



• 
$$d^-(1) = 4$$

• 
$$d^-(4) = 1$$

$$d^+(1) = 2$$

$$d^+(4) = 2$$

$$d(1) = 6$$

$$d(4) = 3$$

- Graphes orientés et non orientés
- 2 Sommets adjacents, prédécesseurs et successeurs
- Sommets source et puits
- Degrés des sommets
- Seprésentations des graphes
- 6 Sous-graphes
- Quelques graphes particuliers

# Représentation sagittale

- Représentation sagittale : représentation sous forme de dessin
- → Représentation non unique



 $\rightarrow$  Comment représenter un graphe pour coder efficacement un algorithme ? Le choix dépend de l'algorithme !

# Représentation par matrice d'adjacence

#### Définition : matrice d'adjacence

Soit G = (S, A) un graphe orienté avec les sommets numérotés de 1 à n

• Matrice d'adjacence de G: matrice  $M = (m_{ij})$ , de taille  $n \times n$ , avec

$$m_{ij} = \begin{cases} 1 & si(i,j) \in A, \\ 0 & sinon. \end{cases}$$

#### Exemple



$$M = \left(\begin{array}{ccccc} 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{array}\right)$$

Matrice d'adjacence

→ Définition similaire pour les graphes non orientés

# Représentation par matrice d'adjacence

### **Avantages**

- Facile à utiliser et à construire
- Accès rapide à une arête (ou un arc) particulière (temps constant)

#### Inconvénients

 Occupation de n² cases mémoire quel que soit le nombre d'arêtes (ou d'arcs) du graphe

# Représentation par liste des successeurs

#### Définition : liste des successeurs

Soit G = (S, A) un graphe orienté avec les sommets numérotés de 1 à n

• Liste des successeurs de *G* : liste des successeurs (respectivement voisins, pour les graphes non orientés) de chaque sommet, donnée sous la forme d'une liste chaînée

#### Exemple





Liste des successeurs

21/32

### Représentation par liste des successeurs

### **Avantages**

- Occupation minimale de la mémoire : codage uniquement des arêtes (ou arcs) présentes dans le graphe
- Accès rapide au successeur d'un sommet

#### Inconvénients

- Plus complexe à mettre en œuvre que la matrice d'adjacence
- Accès plus long aux prédécesseurs d'un sommet, par exemple

- Graphes orientés et non orientés
- 2 Sommets adjacents, prédécesseurs et successeurs
- Sommets source et puits
- Degrés des sommets
- Représentations des graphes
- 6 Sous-graphes
- Quelques graphes particuliers

# Sous-graphe

#### Définition : sous-graphe

Soit G = (S, A) un graphe (orienté ou non)

• G' = (S', A') sous-graphe de G si  $S' \subset S$  et  $A' \subset A$ 

### Exemple





Sous-graphe

24/32

### Sous-graphe induit

#### Définition : sous-graphe induit

Soit G = (S, A) un graphe (orienté ou non)

• G' = (S', A') sous-graphe induit par S' si A' est formé de tous les arcs (ou arêtes) de G dont les extrémités sont dans S':

$$\forall x, y \in \mathcal{S}', (x, y) \in \mathcal{A}' \Leftrightarrow (x, y) \in \mathcal{A}$$

#### Exemple





Sous-graphe induit par  $S' = \{1, 3, 4\}$ 

# Sous-graphe couvrant

#### Définition : sous-graphe couvrant

Soit G = (S, A) un graphe (orienté ou non)

• G' = (S', A') sous-graphe couvrant s'il contient tous les sommets de S, c'est-à-dire S' = S

### Exemple





Sous-graphe couvrant

26/32

- Graphes orientés et non orientés
- 2 Sommets adjacents, prédécesseurs et successeurs
- Sommets source et puits
- Degrés des sommets
- Représentations des graphes
- Sous-graphes
- Quelques graphes particuliers

# Graphe simple

### Définition : graphe simple

Soit G = (S, A) un graphe (orienté ou non)

• G graphe simple s'il ne comporte aucune boucle

#### Exemple



28/32

# Graphe complet

#### Définition : graphe complet

- Soit G = (S, A) un graphe orienté G graphe complet si  $A = S \times S$
- Soit G = (S, A) un graphe non orienté
  G graphe complet si toute paire de sommets apparaît dans A
- ightarrow On peut également ne pas tenir compte des boucles sur les sommets

### Exemples



Graphe complet orienté



Graphe complet non-orienté

# Graphe complémentaire

### Définition : graphe complémentaire

Soit G = (S, A) un graphe

•  $\bar{G}$  graphe complémentaire de G : mêmes sommets que G mais deux sommets sont adjacents dans  $\bar{G}$  ssi ils ne le sont pas dans G



# Graphe réciproque et graphe symétrique

#### **Définition**

Soit G = (S, A) un graphe orienté

- $G^{-1} = (S, A^{-1})$  graphe réciproque de G si  $A^{-1} = \{(x, y) \in S \times S | (y, x) \in A\}$
- $G_S = (S, A \cup A^{-1})$  graphe symétrique de G



### Graphe biparti

#### **Définition**

Soit G = (S, A) un graphe

- G graphe biparti si
  - $\sim$  S peut être divisé en deux ensembles disjoints  $S_1$  et  $S_2$
  - ightharpoonup chaque arc (arête) relie un sommet de  $S_1$  et un sommet de  $S_2$  donc
    - $A \subset \{\{s_1, s_2\}, s_1 \in S_1, s_2 \in S_2\}$

### Exemple

