Practice Problems

MAT 335 - Chaos, Fractals, and Dynamics - Fall 2013

Not to be submitted

Here is a list of problems for practice from the textbook.

2. find polar representation of 1+13i, 2+2i, -7i, 6i.

2. find polar representation of 1+13i, 2+2i, -7i, 6i.

4. what's the quotient of two complex #s in polar representation?

4. what's the quotient of two complex #s in polar representation?

Chapter 15. 1/2/4/55. Let $L_{(Z)} = dZ$, sketch the orbit of 1 in the plane for each of the following.

Chapter 16. 7 (first part), 8 (first part) values of d: $0 = \frac{1}{2}$ $0 = 1+\sqrt{3}i$ $0 = e^{2\pi i/3}$ $0 = e^{2\pi i/3}$ $0 = e^{2\pi i/3}$

- Find complex neutral fixed points of Q_c : Find $z \in \mathbb{C}$ such that $\left|Q_c'(z)\right| = 1$.
- How do K_c and J_c compare?
- Given K_{-1} below

7. Consider complex function $G_{\lambda}(z) = \lambda(z-z^3)$. Show the points $P_{\pm}(\lambda) = \pm \sqrt{\frac{\lambda+1}{\lambda}}$ lie on a cycle of period 2 unless $\lambda = 0$ or -1.

8. $\mathcal{Q}: (z) = z^2 + i$, prove that the orbit of 0 is eventually periodic.

find three points $z_1 = a \in \mathbb{R}$, $z_2 = bi$ with $b \in \mathbb{R}$ and $z_3 = x + iy$, with $x, y \neq 0$ such that the orbit of z_i under Q_{-1} is bounded.

• Find points $z_1, z_2, z_3 \in \mathbb{C}$ of the form of the previous ones such that the orbit of z_i under Q_{-1} is unbounded.

Prove that the Manddort Set is symmetric about the reclaxis.

Hint: show that by proving Q_c is conjugate to Q_c . Show that

your conjugacy takes 0 to 0. Therefore the orbit of 0 has similar faces for both

• For which values of c, there exists $z \in \mathbb{C}$, which is a neutral fixed point of Q_c . Q_c & Q_c . Chapter 17.

- Sketch that set and compare it with the Mandelbrot set \mathcal{M} .
- What happens to the orbit of 0 under Q_{-2} ? Does $-2 \in \mathcal{M}$?
- What happens to the orbit of 0 under Q_i ? Does $i \in \mathcal{M}$?t
- \bullet Given the Mandelbrot set \mathcal{M} below

find complex values of find three points $c_1=a\in\mathbb{R},\,c_2=bi$ with $b\in\mathbb{R}$ and $c_3=x+iy$, with $x,y\neq 0$ such that the orbit of 0 under Q_{c_i} is bounded.

- Find complex values of $c_1, c_2, c_3 \in \mathbb{C}$ of the form of the previous ones for which the orbit of 0 under Q_{c_i} is unbounded.
- If c = -1.8 + 1.8i, is K_c connected or disconnected?

Chis.
$$C #s$$

 $\frac{2}{2}$, $e^{i\theta} = \cos \theta + i \sin \theta$, $e^{i\theta} = -1$
 $\alpha = r \cos \theta = 0$

$$\begin{array}{ccc}
\chi = \gamma & \text{od} & \text{od$$

this is a third complex # with $r_3 = \frac{r_1}{r_2}$, $\theta_3 = \theta_1 - \theta_2$.

$$3. 0 d = \frac{1}{2}$$
 $r = \sqrt{0 + (\frac{1}{2})^2} = \frac{1}{2} = 1; \theta = \frac{\pi}{2}$

Ch16.

孟. Julia Set

$$G_{\lambda}(\sqrt{\frac{\lambda+1}{\lambda}}) = \lambda \cdot \sqrt{\frac{\lambda+1}{\lambda}} (2) - \frac{\lambda+1}{\lambda})$$

$$= \lambda \cdot \sqrt{\frac{\lambda+1}{\lambda}} \cdot \frac{-1}{\lambda}$$

$$= -\sqrt{\frac{\lambda+1}{\lambda}}$$

vice versa.

1/0, and 1/1 (me o.w. it's fixed)

8.
$$Z=0$$

$$Q_{i}(0)=i$$

$$Q_{i}^{2}(0)=-1+i$$

$$Q_{i}^{3}(0)=(-1+i)^{2}+i=|-1-2i+i=-i|$$

$$Q_{i}^{4}(0)=(-i)^{2}+i=-1+i-Q_{i}^{2}(0)$$
eventually periodic.

Chit. Mandelbut set.

3. Note a complex # is symmetric to its conjugate w.n.t. the

Pofre H C>C St. H(Z)= Z real axis

Poffine H
$$Z = \overline{Z}^2 + \overline{C} = \overline{Z}^2 + \overline{C}$$

.: Qc is sopjugate to Qt via H.

in fact
$$Q_{\overline{C}}^{n}(\Xi) = \overline{Q_{c}^{n}(\Xi)}$$