Lecture 5: Floating point

September 9, 2019

601.229 Computer System Fundamentals

Floating point numbers

- ► So far, we only dealt with integers
- ▶ But there are other types of numbers

- ► So far, we only dealt with integers
- ▶ But there are other types of numbers
- ► Rational numbers (from ratio ≃ fraction)
 - ightharpoonup 3/4 = 0.75
 - ightharpoonup 10/3 = 3.333333333....

- ► So far, we only dealt with integers
- ▶ But there are other types of numbers
- ▶ Rational numbers (from ratio ≃ fraction)
 - ightharpoonup 3/4 = 0.75
 - \triangleright 10/3 = 3.33333333....
- ► Real numbers
 - $\pi = 3.14159265...$
 - ► e = 2.71828182...

Very Large Numbers

Distance of sun and earth

150,000,000,000 meters

Scientific notation

$$1.5 \times 10^{11}$$
 meters

Another example: number of atoms in 12 gram of carbon-12 (1 mol) $6.022140857 \times 10^{23}$

Binary Numbers in Scientific Notation

ightharpoonup Example binary number (π again)

11.0010010001

Scientific notation

$$1.10010010001 \times 2^{1}$$

▶ General form

$$1.x \times 2^y$$

Representation

- ► IEEE 754 floating point standard
- Uses 4 bytes

	31	30	29		24	23	22	21		1	0
	S	exponent				fraction					
_	1 bit		8 bits			23 bits					

Exponent is offset with a bias of 127

e.g.
$$2^{-6} \rightarrow \text{exponent} = -6 + 127 = 121$$

- $\pi = 3.14159265$
- Number before period: $3_{10} = 11_2$
- ► Conversion of fraction .14159265

- $\pi = 3.14159265$
- Number before period: $3_{10} = 11_2$
- ► Conversion of fraction .14159265

Digit Calculation

 $0.14159265 \times 2 \downarrow$

- $\pi = 3.14159265$
- Number before period: $3_{10} = 11_2$
- ► Conversion of fraction .14159265

Digit Calculation $0.14159265 \times 2 \downarrow 0$ 0.2831853

- $\pi = 3.14159265$
- Number before period: $3_{10} = 11_2$
- ► Conversion of fraction .14159265

	Calculation			
	$0.14159265 \times 2 \downarrow$			
0	$0.2831853 imes 2 \downarrow$			
0	0.5663706			

- $\pi = 3.14159265$
- Number before period: $3_{10} = 11_2$
- ► Conversion of fraction .14159265

Digit	Calculation			
	$0.14159265 \times 2 \downarrow$			
0	$0.2831853 \times 2 \downarrow$			
0	$0.5663706 \times 2 \downarrow$			
1	0.1327412			

- $\pi = 3.14159265$
- Number before period: $3_{10} = 11_2$
- ► Conversion of fraction .14159265

Digit	Calculation	Digit	Calculation
	$0.14159265 \times 2 \downarrow$	1	$0.9817472 \times 2 \downarrow$
0	$0.2831853 \times 2 \downarrow$	1	$0.9634944 \times 2 \downarrow$
0	$0.5663706 \times 2 \downarrow$	1	$0.9269888 \times 2 \downarrow$
1	$0.1327412 \times 2 \downarrow$	1	$0.8539776 \times 2 \downarrow$
0	$0.2654824 \times 2 \downarrow$	1	$0.7079552\times2\downarrow$
0	$0.5309648 \times 2 \downarrow$	1	$0.4159104 \times 2 \downarrow$
1	$0.0619296 \times 2 \downarrow$	0	$0.8318208 \times 2 \downarrow$
0	$0.1238592 \times 2 \downarrow$	1	$0.6636416\times2\downarrow$
0	$0.2477184 \times 2 \downarrow$	1	$0.3272832 \times 2 \downarrow$
0	$0.4954368 \times 2 \downarrow$	0	$0.6545664 \times 2 \downarrow$
0	$0.9908736 \times 2 \rightarrow$	1	0.3091328×2

▶ Binary: 11.001001000011111101101

Encoding into Representation

 $\rightarrow \pi$

$1.1001001000011111101101\times 2^{1}$

Encoding

Sign	Exponent	Fraction
0	10000000	1001001000011111101101

▶ Note: leading 1 in fraction is omitted

Special Cases

► Zero

Special Cases

- ► Zero
- ▶ Infinity (1/0)
- ► Negative infinity (-1/0)

Special Cases

- Zero
- ► Infinity (1/0)
- ▶ Negative infinity (-1/0)
- ▶ Not a number $(0/0 \text{ or } \infty \infty)$

Encoding

Fraction	Object
0	zero
>0	denormalized number
anything	floating point number
0	infinity
>0	NaN (not a number)
	0 >0 anything 0

(denormalized number: $0.x \times 2^{-126}$)

Double Precision

Single precision = 4 bytes
 Sign Exponent Fraction
 1 bit 8 bits 23 bits
 ▶ Double precision = 8 bytes
 Sign Exponent Fraction
 1 bit 11 bits 52 bits

Addition

- ▶ Decimal example, with 4 significant digits in encoding
- ► Example

$$0.1610 + 99.99$$

► In scientific notation

$$1.610 \times 10^{-1} + 9.999 \times 10^{1}$$

- ▶ Decimal example, with 4 significant digits in encoding
- ► Example

$$0.1610 + 99.99$$

► In scientific notation

$$1.610 \times 10^{-1} + 9.999 \times 10^{1}$$

▶ Bring lower number on same exponent as higher number

$$0.01610 \times 10^{1} + 9.999 \times 10^{1}$$

► Round to 4 significant digits

$$0.016 \times 10^1 + 9.999 \times 10^1$$

► Round to 4 significant digits

$$0.016 \times 10^1 + 9.999 \times 10^1$$

► Add fractions

$$0.016 + 9.999 = 10.015$$

► Round to 4 significant digits

$$0.016 \times 10^1 + 9.999 \times 10^1$$

Add fractions

$$0.016 + 9.999 = 10.015$$

Adjust exponent

$$10.015 \times 10^1 = 1.0015 \times 10^2$$

► Round to 4 significant digits

$$0.016 \times 10^1 + 9.999 \times 10^1$$

Add fractions

$$0.016 + 9.999 = 10.015$$

Adjust exponent

$$10.015 \times 10^1 = 1.0015 \times 10^2$$

► Round to 4 significant digits

$$1.002 \times 10^{2}$$

► Numbers

$$0.5_{10} = \frac{1}{2}_{10}$$

$$0.5_{10} = \frac{1}{2}_{10} = \frac{1}{2^1}_{10}$$

$$0.5_{10} = \frac{1}{2}_{10} = \frac{1}{2^1}_{10} = 0.1_2$$

$$0.5_{10} = \frac{1}{2_{10}} = \frac{1}{2_{10}} = 0.1_2 = 1.000_2 \times 2^{-1}$$

$$0.5_{10} = \frac{1}{2}_{10} = \frac{1}{2^{1}}_{10} = 0.1_{2} = 1.000_{2} \times 2^{-1}$$
$$-0.4375_{10} = -\frac{7}{16}_{10}$$

$$0.5_{10} = \frac{1}{2}_{10} = \frac{1}{2^{1}}_{10} = 0.1_{2} = 1.000_{2} \times 2^{-1}$$
$$-0.4375_{10} = -\frac{7}{16}_{10} = -\frac{7}{2^{4}}_{10} = 0.0111_{2}$$

$$0.5_{10} = \frac{1}{2_{10}} = \frac{1}{2_{10}} = 0.1_2 = 1.000_2 \times 2^{-1}$$
$$-0.4375_{10} = -\frac{7}{16_{10}} = -\frac{7}{2_{10}} = 0.0111_2 = -1.110_2 \times 2^{-2}$$

Numbers

$$0.5_{10} = \frac{1}{2}_{10} = \frac{1}{2^{1}}_{10} = 0.1_{2} = 1.000_{2} \times 2^{-1}$$
$$-0.4375_{10} = -\frac{7}{16}_{10} = -\frac{7}{2^{4}}_{10} = 0.0111_{2} = -1.110_{2} \times 2^{-2}$$

▶ Bring lower number on same exponent as higher number

$$-1.110 \times 2^{-2} = -0.111 \times 2^{-1}$$

Numbers

$$0.5_{10} = \frac{1}{2_{10}} = \frac{1}{2_{10}} = 0.1_2 = 1.000_2 \times 2^{-1}$$
$$-0.4375_{10} = -\frac{7}{16_{10}} = -\frac{7}{2_{10}^4} = 0.0111_2 = -1.110_2 \times 2^{-2}$$

▶ Bring lower number on same exponent as higher number

$$-1.110 \times 2^{-2} = -0.111 \times 2^{-1}$$

Add the fractions

$$1.000_2 \times 2^{-1} + (-0.111 \times 2^{-1}) = 0.001 \times 2^{-1}$$

Binary Floating Point Addition

Numbers

$$0.5_{10} = \frac{1}{2_{10}} = \frac{1}{2_{10}} = 0.1_2 = 1.000_2 \times 2^{-1}$$
$$-0.4375_{10} = -\frac{7}{16_{10}} = -\frac{7}{2_{10}^4} = 0.0111_2 = -1.110_2 \times 2^{-2}$$

▶ Bring lower number on same exponent as higher number

$$-1.110 \times 2^{-2} = -0.111 \times 2^{-1}$$

Add the fractions

$$1.000_2 \times 2^{-1} + (-0.111 \times 2^{-1}) = 0.001 \times 2^{-1}$$

Adjust exponent

$$0.001 \times 2^{-1} = 1.000 \times 2^{-4}$$

Flowchart

Multiplication

 \blacktriangleright Example: multiply 1.110 \times 10¹⁰ and 9.200 \times 10⁻⁵

► Example: multiply 1.110×10^{10} and 9.200×10^{-5} $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$

▶ Example: multiply 1.110×10^{10} and 9.200×10^{-5} $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$ $1.110 \times 9.200 \times 10^{-5} \times 10^{10}$

▶ Example: multiply 1.110×10^{10} and 9.200×10^{-5} $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$ $1.110 \times 9.200 \times 10^{-5} \times 10^{10}$ $1.110 \times 9.200 \times 10^{-5+10}$

▶ Example: multiply 1.110×10^{10} and 9.200×10^{-5} $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$ $1.110 \times 9.200 \times 10^{-5} \times 10^{10}$ $1.110 \times 9.200 \times 10^{-5+10}$

► Add exponents

$$-5 + 10 = 5$$

▶ Example: multiply 1.110×10^{10} and 9.200×10^{-5} $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$ $1.110 \times 9.200 \times 10^{-5} \times 10^{10}$ $1.110 \times 9.200 \times 10^{-5+10}$

Add exponents

$$-5 + 10 = 5$$

$$1.110 \times 9.200 = 10.212$$

▶ Example: multiply 1.110×10^{10} and 9.200×10^{-5}

$$1.110 \times 10^{10} \times 9.200 \times 10^{-5}$$

$$1.110\times 9.200\times 10^{-5}\times 10^{10}$$

$$1.110 \times 9.200 \times 10^{-5+10}$$

Add exponents

$$-5 + 10 = 5$$

Multiply fractions

$$1.110 \times 9.200 = 10.212$$

Adjust exponent

$$10.212 \times 10^5 = 1.0212 \times 10^6$$

▶ Example

$$1.000 \times 2^{-1} \ \times \ -1.110 \times 2^{-2}$$

► Example

$$1.000 \times 2^{-1} \times -1.110 \times 2^{-2}$$

► Add exponents

$$-1 + (-2) = -3$$

Example

$$1.000 \times 2^{-1} \times -1.110 \times 2^{-2}$$

► Add exponents

$$-1 + (-2) = -3$$

$$1.000 \times -1.110 = -1.110$$

Example

$$1.000 \times 2^{-1} \times -1.110 \times 2^{-2}$$

► Add exponents

$$-1 + (-2) = -3$$

$$1.000 \times -1.110 = -1.110$$

$$1000 \times 1110 = 1110000$$

Example

$$1.000 \times 2^{-1} \times -1.110 \times 2^{-2}$$

► Add exponents

$$-1 + (-2) = -3$$

$$1.000 \times -1.110 = -1.110$$
 $1000 \times 1110 = 1110000$
 -1.110000

Example

$$1.000 \times 2^{-1} \times -1.110 \times 2^{-2}$$

Add exponents

$$-1 + (-2) = -3$$

Multiply fractions

$$1.000 \times -1.110 = -1.110$$

 $1000 \times 1110 = 1110000$
 -1.110000

Adjust exponent (not needed)

$$-1.110 \times 2^{-3}$$

Flowchart

