

Pairwise Measures: Four Possibilities for Truth Assignment

- Four possibilities based on the agreement between cluster label and partition label
 - TP: true positive—Two points \mathbf{x}_i and \mathbf{x}_i belong to the same partition T, and they also in the same cluster C

$$TP = |\{(\mathbf{x}_i, \mathbf{x}_j) : y_i = y_j \text{ and } \hat{y}_i = \hat{y}_j\}|$$
 True $\{(\mathbf{x}_i, \mathbf{x}_j) : y_i = y_j \text{ and } \hat{y}_i = \hat{y}_j\}|$

where y_i : the true partition label , and \hat{y}_i : the cluster label for point \mathbf{x}_i

- \square FN: false negative: $FN = |\{(\mathbf{x}_i, \mathbf{x}_j) : y_i = y_j \text{ and } \hat{y}_i \neq \hat{y}_j\}|$ for $\neg \bigvee$ for $\neg \bigvee$ Ground Truth τ_1 τ_2 FP: false positive $FP = |\{(\mathbf{x}_i, \mathbf{x}_i) : y_i \neq y_i \text{ and } \hat{y}_i = \hat{y}_i\}|$ | Partim \forall (abely)
- TN: true negative $TN = |\{(\mathbf{x}_i, \mathbf{x}_i) : y_i \neq y_i \text{ and } \hat{y}_i \neq \hat{y}_i\}|$
- Calculate the four measures: $N = \binom{n}{2}$ Total # of pairs of points $TP = \sum_{i=1}^{r} \sum_{j=1}^{k} \binom{n_{ij}}{2} = \frac{1}{2} ((\sum_{i=1}^{r} \sum_{j=1}^{k} n_{ij}^{-2}) n) \quad FN = \sum_{j=1}^{k} \binom{m_{j}}{2} TP$ $FP = \sum_{i=1}^{r} \binom{n_{i}}{2} TP \quad TN = N (TP + FN + FP) = \frac{1}{2} (n^{2} \sum_{i=1}^{r} n_{i}^{2} \sum_{j=1}^{k} m_{j}^{2} + \sum_{i=1}^{r} \sum_{j=1}^{k} n_{ij}^{2})$ Calculate the four measures:

$$FP = \sum_{i=1}^{r} {n_i \choose n_i} - TP \quad TN = N - (TP + FN + FP) = \frac{1}{2} (n^2 - \sum_{i=1}^{r} n_i^2 - \sum_{i=1}^{k} m_j^2 + \sum_{i=1}^{r} \sum_{i=1}^{k} n_{ij}^2)$$

Pairwise Measures: Jaccard Coefficient and Rand Statistic

- Jaccard coefficient: Fraction of true positive point pairs, but after ignoring the true negatives (thus asymmetric)
 - □ Jaccard = TP/(TP + FN + FP) [i.e., denominator ignores TN]
 - □ Perfect clustering: Jaccard = 1
- Rand Statistic:
 - \square Rand = (TP + TN)/N
 - Symmetric; perfect clustering: Rand = 1
- Fowlkes-Mallow Measure:
 - Geometric mean of precision and recall

$$FM = \sqrt{prec \times recall} = \frac{TP}{\sqrt{(TP + FN)(TP + FP)}}$$

 Using the above formulas, one can calculate all the measures for the green table (leave as an exercise)

$C \setminus T$	T ₁	T ₂	T ₃	Sum
C_1	0	20	30	50
C_2	0	20	5	25
<i>C</i> ₃	25	0	0	25
m_j	25	40	35	100