

Identification of turbine dynamics using PMUs

Sigurd Hofsmo Jakobsen¹, Xavier Bombois², Kjetil Uhlen¹

¹Norwegian university of technology and science Department of electrical engineering

²Ecole Centrale de Lyon Laboratoire Ampère June 25, 2018

Outline

Background

Previous work

Validation of the approach

Results

Conclusions and further work

Frequency quality in the Nordics

- From 2008 the time the frequency has been outside its allowed band has increased
- The performance of hydro turbine governors play an important role

New requirements on FCR due to frequency quality

- Nordic TSOs are developing new requirements on FCR
- This includes offline testing and verification of performance

Idea on monitoring the FCR online

Less intrusive

Idea on monitoring the FCR online

- Less intrusive
- The system is dynamic

- Towards 100% renewable electricity generation
 - Larger variability
 - More uncertainty
 - Increasing complexity

Figure: Present and future energy mix[Statnett]

- Towards 100% renewable electricity generation
 - Larger variability
 - More uncertainty
 - · Increasing complexity
- · More dynamics

Figure: Present and future energy mix[Statnett]

- Towards 100% renewable electricity generation
 - · Larger variability
 - More uncertainty
 - · Increasing complexity
- More dynamics
- Less time for actions

Figure: Present and future energy mix[Statnett]

- Towards 100% renewable electricity generation
 - Larger variability
 - More uncertainty
 - · Increasing complexity
- More dynamics
- Less time for actions
- Hydropower is the main resource for balancing

Figure: Present and future energy mix[Statnett]

Research question

1. Do the transmission system operator (TSO) know whether or not the hydropower plants deliver the FCR they are supposed to?

Research question

- 1. Do the transmission system operator (TSO) know whether or not the hydropower plants deliver the FCR they are supposed to?
- 2. Can the TSO measure it online?

Outline

Background

Previous work

Validation of the approach

Results

Conclusions and further work

Previous articles

 Governor dynamics were identified using the ARX model structure

Frequency (rad/s)

Previous articles

- Governor dynamics were identified using the ARX model structure
- Governor dynamics were identified using time domain vector fitting

Previous articles

- Governor dynamics were identified using the ARX model structure
- Governor dynamics were identified using time domain vector fitting
- There are also other papers in the literature using other methods for online identification, however, mostly relying on data from disturbance recordings.

 Why do we get different results?

- Why do we get different results?
- The signals we use are corrupted by noise.

- Why do we get different results?
- The signals we use are corrupted by noise.
- From system identification we have that the error will be asymptotic normally distributed

$$\sqrt{N}(\hat{ heta}_n - heta^*) \in \textit{AsN}(0, P_{ heta})$$

- Why do we get different results?
- The signals we use are corrupted by noise.
- From system identification we have that the error will be asymptotic normally distributed
- However, first we need to prove the identifiability of the system

True system: S
x: unbiased
x: biased

Outline

Background

Previous work

Validation of the approach

Results

Conclusions and further work

System identification basic

- Assume that a data set
 Z^N = {u[n], y[n]|n = 1...N}
 has been collected.
- The dataset Z^N is assumed generated by

$$S: y[n] = G_0(z, \theta_0)u[n] + H_0(z, \theta_0)e[n]$$
(1)

 Using the data set Z^N we want to find the parameter vector θ^N minimizing

$$\hat{\theta}_N = \arg\min_{\theta} \frac{1}{N} \sum_{n=1}^{N} \epsilon^2(n, \theta)$$
(2)

 The system we are identifying

- The system we are identifying
- We use a small power system

- The system we are identifying
- We use a small power system
- We use a dc power flow

- The system we are identifying
- We use a small power system
- We use a dc power flow
- This results in the following block diagram

Outline

Background

Previous work

Validation of the approach

Results

Conclusions and further work

 A consistent estimate of the closed loop transfer function of the turbine and electromechanical dynamics can be obtained by using:

- A consistent estimate of the closed loop transfer function of the turbine and electromechanical dynamics can be obtained by using:
 - Measured PMU frequency as the output u[n]

- A consistent estimate of the closed loop transfer function of the turbine and electromechanical dynamics can be obtained by using:
 - Measured PMU frequency as the output u[n]
 - Measured PMU power as the input y[n]

- A consistent estimate of the closed loop transfer function of the turbine and electromechanical dynamics can be obtained by using:
 - Measured PMU frequency as the output u[n]
 - Measured PMU power as the input y[n]
- The proof was done with the following assumptions.
 - The system is excited by a load acting as a filtered white noise process
 - The measurement error of the electrical power is negligible.
 - The measured frequency is a good estimate of the generator speed.

Comparison of bode plots from simulation

Bode Diagram

Model obtained using PMU data

Whiteness test on model identified using PMU data

Outline

Background

Previous work

Validation of the approach

Results

Conclusions and further work

Conclusions and further work

- It is indeed possible to identify the turbine dynamics(closed loop with electromechanical dynamics) using PMU measurements.
- The results from real life measurements seem reasonable and have low variance, however, they should be further validated.
- The assumptions should be further investigated

Thanks for your attention.