

Applied Machine Learning

Dr. Harikrishnan N B Computer Science and Information Systems

SE ZG568 / SS ZG568, Applied Machine Learning Lecture No. 8 [09- March-2025]

Learning - Function Approximation

Problem Setting

- Set of possible instances X.
- Unknown target function f: X—> Y
- Set of function hypotheses $H = \{h | h: X \longrightarrow Y\}$

Input

Training Examples of unknown target function f.

Output

Hypothesis $h \in H$ that best approximates target function f.

Decision Tree Learning is a method for approximating the target function (Y), in which the **learned functions** (h) is represented by a **decision tree**.

- ID3 (Iterative Dichotomiser 3)- 1986 Ross Quinlan
- C4.5 is the successor to ID3 and removed the restriction that features must be categorical by dynamically defining a discrete attribute (based on numerical variables) that partitions the continuous attribute value into a discrete set of intervals.
- **C5.0** is Quinlan's latest version release under a proprietary license. It uses less memory and builds smaller rulesets than C4.5 while being more accurate.
- CART Classification and Regression Trees s very similar to C4.5, but it differs in that it supports numerical target variables (regression) and does not compute rule sets. CART constructs binary trees using the feature and threshold that yield the largest information gain at each node.

scikit-learn uses an optimized version of the CART algorithm; however, the scikit-learn implementation does not support categorical variables for now.

Play Tennis or Not?

Day	outlook	temperature	humidity	wind	Decision
1	sunny	hot	high	weak	No
2	sunny	hot	high	strong	No
3	overcast	hot	high	weak	Yes
4	rainfall	mild	high	weak	Yes
5	rainfall	cool	normal	weak	Yes
6	rainfall	cool	normal	strong	No
7	overcast	cool	normal	wtrong	Yes
8	sunny	mild	high	weak	No
9	sunny	cool	normal	weak	Yes
10	rainfall	mild	normal	weak	Yes
11	sunny	mild	normal	strong	Yes
12	overcast	mild	high	strong	Yes
13	overcast	hot	normal	weak	Yes
14	rainfall	mild	high	strong	No

ID3- Decision Tree algorithm for classification

Step 1: Select an attribute to place on the root node and make one branch

for each possible value of the attribute.

Day	outlook	temperature	humidity	wind	Decision
1	sunny	hot	high	weak	No
2	sunny	hot	high	strong	No
3	overcast	hot	high	weak	Yes
4	rainfall	mild	high	weak	Yes
5	rainfall	cool	normal	weak	Yes
6	rainfall	cool	normal	strong	No
7	overcast	cool	normal	wtrong	Yes
8	sunny	mild	high	weak	No
9	sunny	cool	normal	weak	Yes
10	rainfall	mild	normal	weak	Yes
11	sunny	mild	normal	strong	Yes
12	overcast	mild	high	strong	Yes
13	overcast	hot	normal	weak	Yes
14	rainfall	mild	high	strong	No

Step 2: Make an assessment of the quality of the split

Day	outlook	temperature	humidity	wind	Decision
1	sunny	hot	high	weak	No
2	sunny	hot	high	strong	No
3	overcast	hot	high	weak	Yes
4	rainfall	mild	high	weak	Yes
5	rainfall	cool	normal	weak	Yes
6	rainfall	cool	normal	strong	No
7	overcast	cool	normal	wtrong	Yes
8	sunny	mild	high	weak	No
9	sunny	cool	normal	weak	Yes
10	rainfall	mild	normal	weak	Yes
11	sunny	mild	normal	strong	Yes
12	overcast	mild	high	strong	Yes
13	overcast	hot	normal	weak	Yes
14	rainfall	mild	high	strong	No

HOW DO YOU MEASURE THE QUALITY?

Step 3: Repeat Step 1 and Step 2 for all other attributes

Day	outlook	temperature	humidity	wind	Decision
1	sunny	hot	high	weak	No
2	sunny	hot	high	strong	No
3	overcast	hot	high	weak	Yes
4	rainfall	mild	high	weak	Yes
5	rainfall	cool	normal	weak	Yes
6	rainfall	cool	normal	strong	No
7	overcast	cool	normal	wtrong	Yes
8	sunny	mild	high	weak	No
9	sunny	cool	normal	weak	Yes
10	rainfall	mild	normal	weak	Yes
11	sunny	mild	normal	strong	Yes
12	overcast	mild	high	strong	Yes
13	overcast	hot	normal	weak	Yes
14	rainfall	mild	high	strong	No

Step 3: Repeat Step 1 and Step 2 for all other attributes

Day	outlook	temperature	humidity	wind	Decision
1	sunny	hot	high	weak	No
2	sunny	hot	high	strong	No
3	overcast	hot	high	weak	Yes
4	rainfall	mild	high	weak	Yes
5	rainfall	cool	normal	weak	Yes
6	rainfall	cool	normal	strong	No
7	overcast	cool	normal	wtrong	Yes
8	sunny	mild	high	weak	No
9	sunny	cool	normal	weak	Yes
10	rainfall	mild	normal	weak	Yes
11	sunny	mild	normal	strong	Yes
12	overcast	mild	high	strong	Yes
13	overcast	hot	normal	weak	Yes
14	rainfall	mild	high	strong	No

Step 3: Repeat Step 1 and Step 2 for all other attributes

Day	outlook	temperature	humidity	wind	Decision
1	sunny	hot	high	weak	No
2	sunny	hot	high	strong	No
3	overcast	hot	high	weak	Yes
4	rainfall	mild	high	weak	Yes
5	rainfall	cool	normal	weak	Yes
6	rainfall	cool	normal	strong	No
7	overcast	cool	normal	wtrong	Yes
8	sunny	mild	high	weak	No
9	sunny	cool	normal	weak	Yes
10	rainfall	mild	normal	weak	Yes
11	sunny	mild	normal	strong	Yes
12	overcast	mild	high	strong	Yes
13	overcast	hot	normal	weak	Yes
14	rainfall	mild	high	strong	No

Step 4: Depending on the QUALITY of the Partial Tree, we select one partial

Day	outlook	temperature	humidity	wind	Decision
1	sunny	hot	high	weak	No
2	sunny	hot	high	strong	No
3	overcast	hot	high	weak	Yes
4	rainfall	mild	high	weak	Yes
5	rainfall	cool	normal	weak	Yes
6	rainfall	cool	normal	strong	No
7	overcast	cool	normal	wtrong	Yes
8	sunny	mild	high	weak	No
9	sunny	cool	normal	weak	Yes
10	rainfall	mild	normal	weak	Yes
11	sunny	mild	normal	strong	Yes
12	overcast	mild	high	strong	Yes
13	overcast	hot	normal	weak	Yes
14	rainfall	mild	high	strong	No

Step 5: Repeat steps 1 to 4 for each daughter nodes of the selected partial

Day	outlook	temperature	humidity	wind	Decision
1	sunny	hot	high	weak	No
2	sunny	hot	high	strong	No
3	overcast	hot	high	weak	Yes
4	rainfall	mild	high	weak	Yes
5	rainfall	cool	normal	weak	Yes
6	rainfall	cool	normal	strong	No
7	overcast	cool	normal	wtrong	Yes
8	sunny	mild	high	weak	No
9	sunny	cool	normal	weak	Yes
10	rainfall	mild	normal	weak	Yes
11	sunny	mild	normal	strong	Yes
12	overcast	mild	high	strong	Yes
13	overcast	hot	normal	weak	Yes
14	rainfall	mild	high	strong	No

Step 5: Repeat steps 1 to 4 for each daughter nodes of the selected partial

Day	outlook	temperature	humidity	wind	Decision
1	sunny	hot	high	weak	No
2	sunny	hot	high	strong	No
3	overcast	hot	high	weak	Yes
4	rainfall	mild	high	weak	Yes
5	rainfall	cool	normal	weak	Yes
6	rainfall	cool	normal	strong	No
7	overcast	cool	normal	wtrong	Yes
8	sunny	mild	high	weak	No
9	sunny	cool	normal	weak	Yes
10	rainfall	mild	normal	weak	Yes
11	sunny	mild	normal	strong	Yes
12	overcast	mild	high	strong	Yes
13	overcast	hot	normal	weak	Yes
14	rainfall	mild	high	strong	No

Step 5: Repeat steps 1 to 4 for each daughter nodes of the selected partial

Day	outlook	temperature	humidity	wind	Decision
1	sunny	hot	high	weak	No
2	sunny	hot	high	strong	No
3	overcast	hot	high	weak	Yes
4	rainfall	mild	high	weak	Yes
5	rainfall	cool	normal	weak	Yes
6	rainfall	cool	normal	strong	No
7	overcast	cool	normal	wtrong	Yes
8	sunny	mild	high	weak	No
9	sunny	cool	normal	weak	Yes
10	rainfall	mild	normal	weak	Yes
11	sunny	mild	normal	strong	Yes
12	overcast	mild	high	strong	Yes
13	overcast	hot	normal	weak	Yes
14	rainfall	mild	high	strong	No

Step 5: Repeat steps 1 to 4 for each daughter nodes of the selected partial

Day	outlook	temperature	humidity	wind	Decision
1	sunny	hot	high	weak	No
2	sunny	hot	high	strong	No
3	overcast	hot	high	weak	Yes
4	rainfall	mild	high	weak	Yes
5	rainfall	cool	normal	weak	Yes
6	rainfall	cool	normal	strong	No
7	overcast	cool	normal	wtrong	Yes
8	sunny	mild	high	weak	No
9	sunny	cool	normal	weak	Yes
10	rainfall	mild	normal	weak	Yes
11	sunny	mild	normal	strong	Yes
12	overcast	mild	high	strong	Yes
13	overcast	hot	normal	weak	Yes
14	rainfall	mild	high	strong	No

Entropy and Information Gain

on Gain

P(tree-lample) = 3/2

P(-re sample) = 3/2

Suppose S is a set of class labels containing both positive (+) and negative (-) instances. For example,

$$S = \{+, +, -, -, +, -, -, +, -\}.$$

The entropy of S, denoted as H(S), is a measure of uncertainty in the class distribution and is defined as:

$$H(S) = -p_{+} \log_{2} p_{+} - p_{-} \log_{2} p_{-},$$

where p_+ and p_- represent the proportions of positive and negative labels in S, respectively. The entropy is measured in bits.

r_{t-1}

Image Source: https://blog.quantinsti.com/gini-index/

Find the Entropy of the Decision Variable?

Day	outlook	temperature	humidity	wind	Decision
1	sunny	hot	high	weak	No
2	sunny	hot	high	strong	No
3	overcast	hot	high	weak	Yes
4	rainfall	mild	high	weak	Yes
5	rainfall	cool	normal	weak	Yes
6	rainfall	cool	normal	strong	No
7	overcast	cool	normal	wtrong	Yes
8	sunny	mild	high	weak	No
9	sunny	cool	normal	weak	Yes
10	rainfall	mild	normal	weak	Yes
11	sunny	mild	normal	strong	Yes
12	overcast	mild	high	strong	Yes
13	overcast	hot	normal	weak	Yes
14	rainfall	mild	high	strong	No

Information Gain

Information Gain measures how well a given attribute separates the training examples according to their target classification.

					S	
Day	outlook	temperature	humidity	wind	Decision	
1	sunny	hot	high	weak	No ~	$Gain(S,A) = H(S) - \sum_{ S } \frac{ S_v }{ S } H(S_v)$
2	sunny	hot	high	strong	No 💄	$Saim(S, H) = H(S) / \sum_{ S } H(Sv) / \sum_{ S } S$
3	overcast	hot	high	weak	Yes	$v \in Values(A)$ $ S $
4	rainfall	mild	high	weak	Yes	$\psi \in Values(A)$
5	rainfall	cool	normal	weak	Yes	S={Nd, N, Y, Y, Y, N, Y, N, Y, Y, Y, Y, Y, N}
6	rainfall	cool	normal	strong	No -	
7	overcast	cool	normal	wtrong	Yes	Λ
8	sunny	mild	high	weak	No ·	Jlu J
9	sunny	cool	normal	weak	Yes	
10	rainfall	mild	normal	weak	Yes	
11	sunny	mild	normal	strong	Yes	$H(S) = -\frac{5}{10} \log_2 \left(\frac{5}{10}\right) - \frac{9}{10} \log_2 \left(\frac{9}{10}\right)$
12	overcast	mild	high	strong	Yes	$\frac{1}{14}$
13	overcast	hot	normal	weak	Yes	
14	rainfall	mild	high	strong	No	- 1 · · · · · · · · · · · · · · · · · ·
						- 0:651 0.94 1; /kg

Information Gain for A = Outlook

Information Gain measures how well a given attribute separates the training

examples according to their target classification.

				4	4
Day	outlook	temperature	humidity	wind	Decision
1	sunny	hot	high	weak	No
2	sunny	hot	high	strong	No
3	overcast	hot	high	weak	Yes
4	rainfall	mild	high	weak	Yes
5	rainfall	cool	normal	weak	Yes
6	rainfall	cool	normal	strong	No
7	overcast	cool	normal	wtrong	Yes
8	sunny	mild	high	weak	No
9	sunny	cool	normal	weak	Yes
10	rainfall	mild	normal	weak	Yes
11	sunny	mild	normal	strong	Yes
12	overcast	mild	high	strong	Yes
13	overcast	hot	normal	weak	Yes
14	rainfall	mild	high	strong	No

$$\begin{array}{c|c} & & & & \\ & & \\ & & & \\ & &$$

H(S)

A=0 ittook, Hour Ladaction in H(S) is possible)

A= 0 ittook, How mult reduction in h(S) is possible)

A = Temp, how mult

Day	outlook	temperature	humidity	wind	Decision
1	sunny	hot	high	weak	No
2	sunny	hot	high	strong	No
3	overcast	hot	high	weak	Yes
4	rainfall	mild	high	weak	Yes
5	rainfall	cool	normal	weak	Yes
6	rainfall	cool	normal	strong	No
7	overcast	cool	normal	wtrong	Yes
8	sunny	mild	high	weak	No
9	sunny	cool	normal	weak	Yes
10	rainfall	mild	normal	weak	Yes
11	sunny	mild	normal	strong	Yes
12	overcast	mild	high	strong	Yes
13	overcast	hot	normal	weak	Yes
14	rainfall	mild	high	strong	No

3	overcast	hot	high	weak	
4	rainfall	mild	high	weak	
5	rainfall	cool	normal	weak	
6	rainfall	cool	normal	strong	
7	overcast	cool	normal	wtrong	
8	sunny	mild	high	weak	
9	sunny	cool	normal	weak	

mild

mild

mild

hot

mild

hot

hot

sunny

sunny

10 rainfall

12 overcast

13 overcast

14 rainfall

sunny

Day outlook temperature humidity wind Decision

high

high

normal

normal

high

normal

high

weak

strong

weak

strong

strong

weak

strong

No

No

Yes

Yes

Yes

No

Yes

No

Yes

Yes

Yes

Yes

Yes

No

H(S) S={|, 2, 3, 4, 5} IS |= 5

Day	outlook	temperature	humidity	wind	Decision
1	sunny	hot	high	weak	No 🔖
2	sanny	hot	high	strong	No 👆
3	overcast	hot	high	weak	Yes
4	rainfall	mild	high	weak	Yes
5	rainfall	cool	normal	weak	Yes
6	rainfall	cool	normal	strong	No
7	overcast	cool	normal	wtrong	Yes
8	sunny	mild	high	weak	No
9	sunny	cool	normal	weak	Yes
10	rainfall	mild	normal	weak	Yes
11	sunny	mild	normal	strong	Yes
12	overcast	mild	high	strong	Yes
13	overcast	hot	normal	weak	Yes
14	rainfall	mild	high	strong	No

To he => 5 Outlook Rainfull Rainfull 3 No 24

Information Gain for A = Outlook

$$Gain(S, A = Outlook) = H(S) - \sum_{v \in Values(Outlook)} \frac{|S_v|}{|S|} H(S_v)$$

Day	outlook	temperature	humidity	wind	Decision
1	sunny	hot	high	weak	No
2	sunny	hot	high	strong	No
3	overcast	hot	high	weak	Yes
4	rainfall	mild	high	weak	Yes
5	rainfall	cool	normal	weak	Yes
6	rainfall	cool	normal	strong	No
7	overcast	cool	normal	wtrong	Yes
8	sunny	mild	high	weak	No
9	sunny	cool	normal	weak	Yes
10	rainfall	mild	normal	weak	Yes
11	sunny	mild	normal	strong	Yes
12	overcast	mild	high	strong	Yes
13	overcast	hot	normal	weak	Yes
14	rainfall	mild	high	strong	No

1. Entropy of "Outlook"

Outlook	Subset Count	Play Yes	Play=No	Entropy
Sunny	5 —)	2	3 🗸	$H(S_{ ext{sunny}}) = -\left(rac{2}{5}\log_2rac{2}{5} ight) - \left(rac{3}{5}\log_2rac{3}{5} ight) pprox 0.971$
Overcast	4	4	0 🗸	$H(S_{ m overcast}) = 0$ 🗸
Rainy	5	3 🗸	2	$H(S_{ ext{rainy}}) = -\left(rac{3}{5}\log_2rac{3}{5} ight) - \left(rac{2}{5}\log_2rac{2}{5} ight) pprox 0.971$

$$H(S_{
m Outlook}) = rac{5}{14}(0.971) + rac{4}{14}(0) + rac{5}{14}(0.971) pprox 0.693$$

$$IG({
m Outlook}) = H(S) - H(S_{
m Outlook}) = 0.94 - 0.693 = 0.247$$

Information Gain for A = Temperature

$$Gain(S,A) = H(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} H(S_v)$$

Day	outlook	temperature	humidity	wind	Decision	
1	sunny	hot 🗸	high	weak	No	
2	sunny	hot 🌙	high	strong	No	
3	overcast	hot 🗸	high	weak	Yes	
4	rainfall	mild 🕳	high	weak	Yes	
5	rainfall	(cool \	normal	weak	Yes 🕳	~
6	rainfall	cool	normal	strong	No	
7	overcast	cool	normal	wtrong	Yes 4	一)
8	sunny	mild	high	weak	No	
9	sunny	(cool 7	normal	weak	Yes	- >
10	rainfall	mild_	normal	∕ weak	Yes	
11	sunny	mild 👅	normal	strong	Yes	
12	overcast	mild -	high	strong	Yes	
13	overcast	hot 🗸	normal	weak	Yes	
14	rainfall	mild —	high	strong	No	

S _v	• S _v	Pyes	P _{No}	H(S _v)
S _{HOT}	4	2	2	1
S _{MILD}	6	4	2	0.92
S _{COOL}	4	23	1	0.89

Information Gain for A = Temperature

$$Gain(S, A) = H(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} H(S_v)$$

Day	outlook	temperature	humidity	wind	Decision
1	sunny	hot	high	weak	No
2	sunny	hot	high	strong	No
3	overcast	hot	high	weak	Yes
4	rainfall	mild	high	weak	Yes
5	rainfall	cool	normal	weak	Yes
6	rainfall	cool	normal	strong	No
7	overcast	cool	normal	wtrong	Yes
8	sunny	mild	high	weak	No
9	sunny	cool	normal	weak	Yes
10	rainfall	mild	normal	weak	Yes
11	sunny	mild	normal	strong	Yes
12	overcast	mild	high	strong	Yes
13	overcast	hot	normal	weak	Yes
14	rainfall	mild	high	strong	No

2. Entropy of "Temperature"

Temperature	Subset Count	Play=Yes	Play=No	Entropy
Hot	4	2	2	$H(S_{ m hot})=1.0$
Mild	6	4	2	$H(S_{ m mild})=0.918$
Cool	4	3	1	$H(S_{ m cool}) = 0.811$

$$H(S_{ ext{Temperature}}) = \boxed{rac{4}{14}(1.0) + rac{6}{14}(0.918) + rac{4}{14}(0.811) pprox 0.911}$$

$$IG(\mathrm{Temperature}) = H(\overline{S}) - H(S_{\mathrm{Temperature}}) = 0.94 - 0.911 = 0.029$$

Information Gain for A = Humidity

$$Gain(S, A) = H(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} H(S_v)$$

Day	outlook	temperature	humidity	wind	Decision
1	sunny	hot	high 7	weak	No
2	sunny	hot	high	strong	No
3	overcast	hot	high	weak	Yes _
4	rainfall	mild	high	weak	Yes -
5	rainfall	cool	normal	weak	Yes
6	rainfall	cool	normal	strong	No
7	overcast	cool	normal	wtrong	Yes
8	sunny	mild	high.	weak	No
9	sunny	cool	normal	weak	Yes
10	rainfall	mild	normal	weak	Yes
11	sunny	mild	normal	strong	Yes
12	overcast	mild	high 1	strong	Yes -
13	overcast	hot	normal	weak	Yes
14	rainfall	mild	high	strong	No

S _v	S _v	P _{yes}	P _{No}	H(S _v)
S _{HIGH}	7	3	4	0.985
S _{NORMAL}	7	6	1	0.591

Information Gain for A = Humidity

$$Gain(S, A) = H(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} H(S_v)$$

Day	outlook	temperature	humidity	wind	Decision
1	sunny	hot	high	weak	No
2	sunny	hot	high	strong	No
3	overcast	hot	high	weak	Yes
4	rainfall	mild	high	weak	Yes
5	rainfall	cool	normal	weak	Yes
6	rainfall	cool	normal	strong	No
7	overcast	cool	normal	wtrong	Yes
8	sunny	mild	high	weak	No
9	sunny	cool	normal	weak	Yes
10	rainfall	mild	normal	weak	Yes
11	sunny	mild	normal	strong	Yes
12	overcast	mild	high	strong	Yes
13	overcast	hot	normal	weak	Yes
14	rainfall	mild	high	strong	No

3. Entropy of "Humidity"

Humidity	Subset Count	Play=Yes	Play=No	Entropy
High	7	3	4	$H(S_{ m high})=0.985$
Normal	7	6	1	$H(S_{ m normal}) = 0.592$

$$H(S_{
m Humidity}) = rac{7}{14}(0.985) + rac{7}{14}(0.592) pprox 0.789$$

$$IG(\mathrm{Humidity}) = H(S) - H(S_{\mathrm{Humidity}}) = 0.94 - 0.789 = 0.151$$

Information Gain for A = Wind

$$Gain(S, A) = H(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} H(S_v)$$

Day	outlook	temperature	humidity	wind	Decision
1	sunny	hot	high	weak	No
2	sunny	hot	high	strong	No
3	overcast	hot	high	weak	Yes
4	rainfall	mild	high	weak	Yes
5	rainfall	cool	normal	weak	Yes
6	rainfall	cool	normal	strong	No
7	overcast	cool	normal	wtrong	Yes
8	sunny	mild	high	weak	No
9	sunny	cool	normal	weak	Yes
10	rainfall	mild	normal	weak	Yes
11	sunny	mild	normal	strong	Yes
12	overcast	mild	high	strong	Yes
13	overcast	hot	normal	weak	Yes
14	rainfall	mild	high	strong	No

S _v	S _v	P _{yes}	P _{No}	H(S _v)
S _{Weak}				
S _{Strong}				

Information Gain for A = Wind

$$Gain(S, A) = H(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} H(S_v)$$

Day	outlook	temperature	humidity	wind	Decision
1	sunny	hot	high	weak	No
2	sunny	hot	high	strong	No
3	overcast	hot	high	weak	Yes
4	rainfall	mild	high	weak	Yes
5	rainfall	cool	normal	weak	Yes
6	rainfall	cool	normal	strong	No
7	overcast	cool	normal	wtrong	Yes
8	sunny	mild	high	weak	No
9	sunny	cool	normal	weak	Yes
10	rainfall	mild	normal	weak	Yes
11	sunny	mild	normal	strong	Yes
12	overcast	mild	high	strong	Yes
13	overcast	hot	normal	weak	Yes
14	rainfall	mild	high	strong	No

4. Entropy of "Wind"

Wind	Subset Count	Play=Yes	Play=No	Entropy
Weak	8	6	2	$H(S_{ m weak})=0.811$
Strong	6	3	3	$H(S_{ m strong})=1.0$

$$H(S_{
m Wind}) = rac{8}{14}(0.811) + rac{6}{14}(1.0) pprox 0.892$$

$$IG(Wind) = H(S) - H(S_{Wind}) = 0.94 - 0.892 = 0.048$$

Summary of First Split

Step 3: Information Gain Summary Table

Attribute	Entropy	Information Gain
Outlook	0.693	0.247
Temperature	0.911	0.029
Humidity	0.789	0.151
Wind	0.892	0.048

Step 4: Choosing the Best Split

Since **Outlook** has the highest Information Gain (0.247), it is chosen as the root node for the decision tree.

Decision Tree

$$S = S_{outlook}$$
, Find H(S)?

Day	outlook	temperature	humidity	wind	Decision
1	sunny	hot	high	weak	No 1
2	sunny	hot	high	strong	No J
3	overcast	hot	high	weak	Yes
4	rainfall	mild	high	weak	Yes
5	rainfall	cool	normal	weak	Yes
6	rainfall	cool	normal	strong	No
7	overcast	cool	normal	wtrong	Yes
8	sunny	mild	high	weak	No —
9	sunny	cool	normal	weak	Yes
10	rainfall	mild	normal	weak	Yes
11	sunny	mild	normal	strong	Yes
12	overcast	mild	high	strong	Yes
13	overcast	hot	normal	weak	Yes
14	rainfall	mild	high	strong	No

$S = S_{outlook}$, Find H(S)?

١	Day	outlook	temperature	humidity	wind	Decision
_1	[1	sunny	hot .	high	weak	No
رحہ	2	sunny	hot	high	strong	No
	3	overcast	hot	high	weak	Yes
	4	rainfall	mild	high	weak	Yes
	5	rainfall	cool	normal	weak	Yes
	6	rainfall	cool	normal	strong	No
	7	overcast	cool	norma	wtrong	Yes
7	8	sunny	mild 🗸	high	weak •	✓ No
シ	9	sunny	cool	🗕 normal 🗸	weak •	✓ Yes
	10	rainfall	mild	normal	weak	Yes
>	11	sunny	mild	normal	strong	Yes
	12	overcast	mild	high	strong	Yes
	13	overcast	hot	normal	weak	Yes
	14	rainfall	mild	high	strong	No

Subset for Outlook = Sunny

	Temperature	Humidity	Wind	Play Tennis
\rightarrow	Hot	High	Weak	No
	Hot	High	Strong	No
	Mild	High	Weak	No
	Cool	Normal	Weak	Yes
	Mild	Normal	Strong	Yes

The entropy for this subset is:

with
$$H(S_{
m Sunny}) = -\left(rac{2}{5}\log_2rac{2}{5}
ight) - \left(rac{3}{5}\log_2rac{3}{5}
ight) = -\left(0.4 imes(-1.322)
ight) - \left(0.6 imes(-0.737)
ight)$$

$$= 0.971$$

$S = S_{\text{outlook}}$, A = Temperature

	Day	outlook	temperature	humidity	wind	Decision
	1	sunny	hot 🗸	high	weak	No
Ĺ	_ 2	sunny	hot 🗸	high	strong	No
	3	overcast	hot	high	weak	Yes
	4	rainfall	mild	high	weak	Yes
	5	rainfall	cool	normal	weak	Yes
	6	rainfall	cool	normal	strong	No
	7	overcast	cool	normal	wtrong	Yes
(8	sunny	mild	high	weak	No
1	_9	sunny	cool	normal	weak	Yes
	10	rainfall	mild	normal	weak	Yes
\mathcal{C}	.11	sunny	mild	normal	strong	Yes
	12	overcast	mild	high	strong	Yes
	13	overcast	hot	normal	weak	Yes
	14	rainfall	mild	high	strong	No

$S = S_{outlook}$, A = Temperature

Day	outlook	temperature	humidity	wind	Decision
1	sunny	hot	high	weak	No
2	sunny	hot	high	strong	No
3	overcast	hot	high	weak	Yes
4	rainfall	mild	high	weak	Yes
5	rainfall	cool	normal	weak	Yes
6	rainfall	cool	normal	strong	No
7	overcast	cool	normal	wtrong	Yes
8	sunny	mild	high	weak	No
9	sunny	cool	normal	weak	Yes
10	rainfall	mild	normal	weak	Yes
11	sunny	mild	normal	strong	Yes
12	overcast	mild	high	strong	Yes
13	overcast	hot	normal	weak	Yes
14	rainfall	mild	high	strong	No

Compute Information Gain for Each Attribute

1. Temperature

Temperature	Play Yes	Play No	Entropy
Hot	0	2	0
Mild	1	1	1.0
Cool	1	0	0

$$egin{aligned} H(S_{ ext{Temperature}}) &= rac{2}{5}(0) + rac{2}{5}(1.0) + rac{1}{5}(0) \ &= 0 + 0.4 + 0 = 0.4 \ IG(ext{Temperature}) = 0.971 - 0.4 = 0.571 \end{aligned}$$

$S = S_{outlook}$, A = Humidity

	Day	outlook	temperature	humidity	wind	Decision
ſ	1	sunny	hot	high •	weak	No
L	_2	sunny	hot	high.	strong	No
	3	overcast	hot	high	weak	Yes
	4	rainfall	mild	high	weak	Yes
	5	rainfall	cool	normal	weak	Yes
	6	rainfall	cool	normal	strong	No
	7	overcast	cool	normal	wtrong	Yes
٢	8	sunny	mild	high,	weak	No
l	9	sunny	cool	normal	weak	Yes
	10	rainfall	mild	normal	weak	Yes
ſ	11	sunny	mild	normal	strong	Yes
٦	12	overcast	mild	high	strong	Yes
	13	overcast	hot	normal	weak	Yes
	14	rainfall	mild	high	strong	No

S _v	S _v	P _{yes}	P _{No}	H(S _v)
S _{HIGH}	3	0	3	0
S _{NORMAL}	2/	2	D	0

$S = S_{outlook}$, A = Humidity

Day	outlook	temperature	humidity	wind	Decision
1	sunny	hot	high	weak	No
2	sunny	hot	high	strong	No
3	overcast	hot	high	weak	Yes
4	rainfall	mild	high	weak	Yes
5	rainfall	cool	normal	weak	Yes
6	rainfall	cool	normal	strong	No
7	overcast	cool	normal	wtrong	Yes
8	sunny	mild	high	weak	No
9	sunny	cool	normal	weak	Yes
10	rainfall	mild	normal	weak	Yes
11	sunny	mild	normal	strong	Yes
12	overcast	mild	high	strong	Yes
13	overcast	hot	normal	weak	Yes
14	rainfall	mild	high	strong	No

2. Humidity

Humidity	Play Yes	Play No	Entropy
High	0	3	0
Normal	2	0	0

$$H(S_{\mathrm{Humidity}})=rac{3}{5}(0)+rac{2}{5}(0)=0$$
 $IG(\mathrm{Humidity})=0.971-0=0.971$

I G wax

$S = S_{outlook}$, A = Wind

	Day	outlook	temperature	humidity	wind	Decision
۲.	1	sunny	hot	high	weak -	No
L	2	sunny	hot	high	strong-	- No
	3	overcast	hot	high	weak	Yes
	4	rainfall	mild	high	weak	Yes
	5	rainfall	cool	normal	weak	Yes
	6	rainfall	cool	normal	strong	No
	7	overcast	cool	normal	wtrong	Yes
1	8	sunny	mild	high	weak-	→ No
1	9	sunny	cool	normal	weak	Yes
٠	10	rainfall	mild	normal	weak	Yes
1	11	sunny	mild	normal	strong	Yes
١	12	overcast	mild	high	strong	Yes
	13	overcast	hot	normal	weak	Yes
	14	rainfall	mild	high	strong	No

S _v	S _v	P _{yes}	P _{No}	H(S _v)
S _{Weak}	3	1	2	
S _{Strong}	2	1	1	

$S = S_{outlook}$, A = Wind

Day	outlook	temperature	humidity	wind	Decision
1	sunny	hot	high	weak	No
2	sunny	hot	high	strong	No
3	overcast	hot	high	weak	Yes
4	rainfall	mild	high	weak	Yes
5	rainfall	cool	normal	weak	Yes
6	rainfall	cool	normal	strong	No
7	overcast	cool	normal	wtrong	Yes
8	sunny	mild	high	weak	No
9	sunny	cool	normal	weak	Yes
10	rainfall	mild	normal	weak	Yes
11	sunny	mild	normal	strong	Yes
12	overcast	mild	high	strong	Yes
13	overcast	hot	normal	weak	Yes
14	rainfall	mild	high	strong	No

3. Wind

Wind	Play Yes	Play No	Entropy
Weak	1	2	0.918
Strong	1	1	1.0

$$H(S_{
m Wind}) = rac{3}{5}(0.918) + rac{2}{5}(1.0) \ = 0.5508 + 0.4 = 0.9508 \ IG(
m Wind) = 0.971 - 0.9508 = 0.020$$

Summary of the Split

Information Gain Summary for Sunny Subset

Attribute	Entropy	Information Gain
Temperature	0.4	0.571
Hymidity	0	0.971
Wind	0.9508	0.020

Since **Humidity has the highest Information Gain (0.971)**, it is the best attribute to split on.

Decision Tree

 $S = S_{rainfall}$, A = Temperature

 $S = S_{rainfall}$, A = Humidity

 $S = S_{rainfall}$, A = Wind

Summary of the Split

Information Gain Summary for Rainy Subset

Attribute	Entropy	Information Gain
Temperature	0.9508	0.020
Humidity	0.9508	0.020
Wind	0	0.97

Since Wind has the highest Information Gain (0.971), it is the best attribute to split on.

Decision Tree

Decision Tree for Continuous Variables

Decision Tree Splits

Hyperparameters in Decision Tree

criterion{"gini", "entropy", "log_loss"}, default="gini"

max_depth int, default=None

min_samples_split : int or float, default=2

The minimum number of samples required to split an internal node:

- for crice dep la sy lit for max dep la sy lit alles nal node: for max sample la si If int, then consider min_samples_split as the minimum number.
- If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are the minimum number of samples for each split.

min samples leafint or float, default=1

The minimum number of samples required to be at a leaf node. A split point at any depth will only be considered if it leaves at least min_samples_leaf training samples in each of the left and right branches. This may have the effect of smoothing the model, especially in regression.

- If int, then consider min_samples_leaf as the minimum number.
- If float, then min_samples_leaf is a fraction and ceil(min_samples_leaf * n_samples) are the minimum number of samples for each node.

max_features : int, float or {"sqrt", "log2"}, default=None

- 1 min_samples_split (Controls When to Split a Node)
- Defines the minimum number of samples required to split an internal node.
- If a node has **fewer** than <code>min_samples_split</code> samples, it **won't split** further.
- Helps **prevent overfitting** by stopping unnecessary splits.

Examples

- min_samples_split=5 → A node must have at least 5 samples to split.
- $min_samples_split=0.2 \rightarrow A node must have at least 20% of total samples to split.$
- Key Effect: Controls the tree's depth by stopping premature splits.

- min_samples_leaf (Controls Minimum Leaf Size)
- Defines the minimum number of samples required in a leaf node (final node after splitting).
- Prevents the tree from creating tiny, unstable leaf nodes.
- Useful for smoothing predictions in regression.

Examples

- min_samples_leaf=2 → Each leaf node must have at least 2 samples.
- min_samples_leaf=0.1 → Each leaf must contain at least 10% of total samples.
- Key Effect: Prevents small leaves and ensures meaningful splits.

HW

3 Statue

Task:

Using the **Breast Cancer Wisconsin Dataset**, perform **Principal Component Analysis (PCA)** to reduce the feature dimensions to **2**. Then, conduct **hyperparameter tuning** using **3-fold cross-validation** to optimize the values of:

- max_depth (maximum depth of the tree)
- min_samples_split (minimum samples required to split a node)
- min_samples_leaf (minimum samples required in a leaf node)

Once the best hyperparameters are identified, evaluate the model's performance on the **test dataset**.

Report Accordy, Berson, Real, FJ-5 one.