Figure la

Gln 1	Val	Gln	Leu	Val 5	GAG Glu	TCT	GGG Gly	GGA Gly	GGC Gly 10	GTT Val	GTG Val	CAG Gln	Pro	GGA GLY 15	AGG AIG	48
TCC Ser	CTG Leu	AGA Arg	CTC Leu 20	TCC Ser	TGT:	GCA 'Ala	GCC Ala	TCT Ser 25	GGA Gly	TTC Phe	ACC Thr	TTC Phe	AGT Ser 30	AGC Se:	TAT Tyr	96
GAC Asp	ATG Met	TCT Ser 35	TGG Trp	GTT Val	CGC Arg	CAG Gln	GCT Ala 40	CCG Pro	GGC Gly	AAG Lys	GGT Gly	CTG Leu 45	GAG Glu	TGG Tzş	GTC Val	144
GCA Ala	AAA Lys 50	GTT Val	AGT Ser	AGT Ser	GGT Gly	GGT Gly 55	GGT Gly	AGC Ser	ACC Thr	TAC Tyr	TAT Tyr 60	TTA Leu	GAC Asp	ACT Thr	GTG Val	192
CAG Gln 65	GGC Gly	CGA AFG	TTC Phe	ACC Thr	ATC Ile 70	TCC Ser	AGA Arg	GAC Asp	TAA neA	AGT Ser 75	AAG Lys	OAA neA	ACC Thr	CTA Leu	TAC Tyr 80	240
CTG Leu	CAA Gln	ATG Met	AAC Asn	TCT Ser 85	CTG Leu	AGA Arg	GCC Ala	GAG Glu	GAC Asp 90	ACA Thr	GCC Ala	GTG Val	TAT Tyr	TAC TYT 95	TGT Cys	288
GCA Ala	AGA Arg	CAT	AAC Asn 100	TAC Tyr	GGC	AGT Ser	TTT Phe	GCT Ala 105	TAC TYI	TGG Trp	GGC Gly	CAA Gln	GGG Gly 110	ACT Thr	ACA Thr	336
	ACT Thr															351

Figure 1b

					ACC Thr 10					÷ 3
					AGC Ser					95
					CAA Gln				ATC Ile	144
					ATC Ile				GGC	192
					act Thr					243
			Tyr		CAG Gln 90	Ser				285
		GLy			ATT					321

Figure 2a

GAA GLu 1	GTG Val	CAG Gln	CTG Leu	GTG Val S	GAG Glu	TCT Ser	GGG Gly	GGA Gly	GGC Gly 10	TTA Leu	GTG Val	AAG Lys	CCT Pro	GGA Gly 15	agg Arg	48
									GGA Gly							96
									GAG Glu							144
									ACC Thr							192
CAG Gln 85	GGC Gly	CGA Arg	TTC Phe	ACC Thr	ATC Ile 70	TCC Ser	AGA Arg	GAC Asp	AAT Asn	GCC Ala 75	AAG Lys	AAC Asn	ACC Thr	CTA	TAC Tyr 80	240
CTG Leu	CAA Gln	ATG Het	AGC Ser	AGT Ser 85	CTG Leu	AAC Asn	TCT	GAG Glu	GAC Asp 90	ACA Thr	GCC Ala	ATG Met	TAT Tyr	TAC Ty: 95	TGT Cys	288
GCA Ala	AGA Arg	CAT His	AAC Asn 100	TAC Tyr	GGC Gly	AGT Ser	TTT Phe	GCT Ala 105	TAC Tyr	TGG	GGC Gly	CAA Gln	GGG Gly 110	ACT Th:	CTG Leu	336
	ACT Thr			_												351

Figure 2b

	CTA								48
	AGT Ser 20								96
	TAT Tyr								144
	TCC Ser								192
	GGG Gly								240
	GGA Gly								288
	GGG Gly 100	Gly			Ile				321

LM609 Competition Assay

Figure 3

Figure 4B

Cross reactivity of Vilexia to other integrine

LM609/Vitaxia Competition for Blading to Av83

Figure 5B

Figure 6C

Figure 7

							CTC Leu			48
							ATT			96
							AGG Arg 45			144
							GCC Ala 60			192
							AGT Ser			240
						Ser	AGC Ser			288
		GGG			ATT					321

FIGURE 8

FIGURE 9

FIGURE 10

FIGURE 11