Directed Acyclic Word Graphs and Their Efficient Implementations

Shunsuke Inenaga

Department of Computer Science
University of Helsinki

Short CV

Shunsuke Inenaga

March 2003 PhD Kyushu University, Japan

"String Processing Algorithms"

April – Sept. 2003 Posdoc of Japan Science Technology

Agency (JST)

Sept. 2003 - Posdoc of Dep. of Computer Science,

University of Helsinki

Pattern Matching Problem

Input: text string T and pattern string P.

Output: all occurrences of P in T.

When T is fixed

Text Indexing Structures

Text Indexing Structures

Directed Acyclic Word Graphs

The Directed Acyclic Word Graph (DAWG) of string w is the smallest DFA that accepts all suffixes of w.

DAWG = Suffix Automaton

Conversion of Suffix Trie to DAWG

accepting node for suffixes

Conversion to DAWG

DAWG Completed

Equivalence Class on DAWG

substrings x,y of w are recognized by the same node of DAWG(w)

 $EndPos_{w}(x) = EndPos_{w}(y)$

 $EndPos_{w}(x)$: the set of all positions of w where x ends

Equivalence Class on DAWG [Cont.]

$$EndPos_w(aba) = \{3\}$$

 $EndPos_w(ba) = \{3\}$

Equivalence Class on DAWG [Cont.]

$$EndPos_{w}(ab) = \{2,4\}$$

 $EndPos_{w}(b) = \{2,4,6\}$

Equivalence Class on Suffix Tree

ababcb

 $BegPos_w(a) = \{1,2\}$ $BegPos_w(ab) = \{1,2\}$

Size of DAWG

Theorem. (Blumer et al. 1985)

Let n = |w|. If n > 1, DAWG(w) has at most 2n-1 nodes and 3n-3 edges.

If n = 1, DAWG(w) has exactly 2 nodes and 1 edge.

Construction of DAWG

Theorem. (Blumer et al. 1985)

Assume Σ is fixed. For any string w of length n, DAWG(w) can be constructed on-line and in O(n) time and space.

Suffix Links

Suffix Links

Suffix Links

b

a

b

Marking Accepting Nodes

ababcb

Marking Accepting Nodes

ababcb

Marking Accepting Nodes

Search Tree of a Set of Strings

Table Implementation

Table Implementation

Linked List Implementation

Ternary Search Tree

Ternary Directed Acyclic Word Graph

Construction of TDAWG

Theorem. (Miyamoto et al. 2003)

For any string w of length n, TDAWG(w) can be constructed on-line and in $O(n/\Sigma/)$ time and O(n) space.

Ternary Directed Acyclic Word Graph

Using AVL Tree

Node Rotation

AVL DAWG

ababcb

Construction of AVL TDAWG

Theorem. (Miyamoto et al. 2003)

For any string w of length n, $AVL_TDAWG(w)$ can be constructed on-line and in $O(n\log|\Sigma|)$ time and O(n) space.

Complexities

	space	search time	
		average case	worst case
table	$O(w \cdot \Sigma)$	O(p)	O(p)
linked list	<i>O</i> (<i>w</i>)	$O(p \cdot \Sigma)$	$O(p \cdot \Sigma)$
TDAWG	<i>O</i> (<i>w</i>)	$O(p \cdot \log \Sigma)$	$O(p \cdot \Sigma)$
AVL-TDAWG	O(w)	$O(p \cdot \log \Sigma)$	$O(p \cdot \log \Sigma)$

Experiment – Construction Times

English

Japanese

Experiment - Memory Space

English

Japanese

Experiment - Search Times

English

Japanese

Citations

- A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht,
- B. M. Chen, and J. Seiferas.

The smallest automaton recognizing the subwords of a text.

Theoretical Computer Science, 40:31-55, 1985.

M. Crochemore,

Transducers and repetitions.

Theoretical Computer Science, 45(1): 63-86, 1986

S. Miyamoto, S. Inenaga, M. Takeda, and A. Shinohara *Ternary Directed Acyclic Word Graphs.*

8th Int. Conference on Implementation and Application of Automata (CIAA 2003), Springer-Verlag LNCS 2759, pp. 121-130. Also Accepted to Theoretical Computer Science