§11.9 Representation of Function as Power Series

In-class Activity 11.9

Dr. Jorge Basilio

gbasilio@pasadena.edu

Activity 1:

Find the **power series representation** of

$$f(x) = \frac{1}{1 + x^7}$$

and include the **interval of convergence**.

Activity 2:

Find the **power series representation** of

$$f(x) = \frac{2x}{1+x}$$

and include the **interval of convergence**.

Activity 3:

Find the **power series representation** of

$$f(x) = \frac{x^2}{4+3x}$$

and include the **interval of convergence**.

Activity 4:

Find the **power series representation** of $f(x) = \frac{2}{(1+x)^2}$ using the PSR of $\frac{2x}{1+x}$ from Activity 2.

Theorem 1: PSR for Natural Log

The power series for the natural logarithm is

$$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1} = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} \quad \text{for} \quad |x| < 1$$

Activity 5:

Approximate $\ln(1.1)$ with an error less than 10^{-5} .

Activity 6:

- (a) Find the **power series representation** of $\arctan(x) = \tan^{-1}(x)$.
- (b) Use part (a), to derive Leibniz' formula given in the Chapter 11 intro:

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$

Activity 7:

Use the series in part (b) of Activity 5 to approximate π by using 5 terms.

Activity 8:

Approximate

$$\int_0^{0.1} \frac{1}{1 + x^7} dx$$

with an error less than 10^{-10} .