MAC-315 - Programação Linear Primeiro semestre de 2008 Prof. Marcelo Queiroz

http://www.ime.usp.br/~mqz

Notas de Aula¹

1 Introdução

1.1 Exemplos de problemas de programação linear

O problema da dieta

Considere n diferentes alimentos e m diferentes nutrientes, e suponha que você possue uma tabela com o conteúdo nutricional de uma unidade ou porção de cada alimento:

	alim. 1	 alim. n
nutr. 1	a_{11}	 a_{1n}
÷	÷	÷
nutr. 1	a_{m1}	 a_{mn}

Note que a j-ésima coluna da matriz representa o conteúdo nutricional do j-ésimo alimento. Seja b_i o requisito nutricional mínimo do nutriente i em uma dieta balanceada. Podemos interpretar um vetor $x \in \mathbb{R}^n_+$ como a especificação de uma dieta que utiliza x_j unidades/porções do alimento j para cada $j=1,\ldots,n$. A dieta x será balanceada se satisfizer $\sum_{j=1}^n a_{ij}x_j \geq b_i$ para cada nutriente i. Se estivermos interessados numa dieta balanceada com uma ingestão mínima de calorias e além disso conhecermos a quantidade de calorias c_j de cada unidade/porção do alimento j, podemos

$$\min \quad c_1x_1 + \dots + c_nx_n$$
 sujeito a
$$a_{11}x_1 + \dots + a_{1n}x_n \ge b_1$$

$$a_{21}x_1 + \dots + a_{2n}x_n \ge b_2$$

$$\vdots$$

$$a_{m1}x_1 + \dots + a_{mn}x_n \ge b_m$$

$$x \ge 0.$$

 $^{^1\}mathrm{Baseadas}$ no livro de Bertsimas & Tsitsiklis: Introduction to Linear Optimization.

Seja $A \in \mathbb{R}^{m \times n}$ a matriz cujas entradas são a_{ij} . O mesmo problema pode ser escrito em notação matricial como

$$min c'x
s.a Ax \ge b
x \ge 0.$$

Variante 1: Se estivermos interessados em obter a dieta balanceada mais barata e soubermos o preço r_j de cada unidade/porção do alimento j, então desejaremos minimizar a expressão r'x.

Variante 2: Se b representar os requisitos exatos de uma dieta "ideal", então x será uma dieta ideal se satisfizer Ax = b, $x \ge 0$. Sob estas restrições poderemos minimizar o conteúdo calórico ou o custo de uma dieta ideal.

Um problema de produção

Uma empresa produz n diferentes produtos usando m diferentes matéria-as-primas. Seja b_i a quantidade disponível da i-ésima matéria-prima, a_{ij} a quantidade de matéria-prima i necessária para a produção do produto j, e c_j o lucro obtido com a venda do produto j. Se a variável x_j representa a quantidade de produto j a ser produzida, então a empresa terá o máximo lucro resolvendo o problema

$$\max c'x$$
s.a $Ax \le b$

$$x \ge 0.$$

O problema do plantão

Um hospital quer fazer a programação semanal dos plantões noturnos de seus enfermeiros. A cada dia da semana a demanda por enfermeiros de plantão é diferente, representada por um inteiro d_j , $j=1,\ldots,7$. Cada enfermeiro sempre trabalha 5 noites seguidas em plantão. O problema é encontrar o número mínimo de enfermeiros que o hospital precisa contratar.

Se tentássemos criar uma variável x_j representando o número de enfermeiros de plantão no dia j não seríamos capazes de escrever a restrição de que cada enfermeiro sempre trabalha 5 noites seguidas (experimente!). Ao invés disso, representamos por x_j o número de enfermeiros que começa a trabalhar no dia j; assim os enfermeiros que começarem

a trabalhar no dia 5 trabalharão nos dias 5, 6, 7, 1 e 2. O problema pode então ser formulado como

Exercício 1.1 Verifique que a solução ótima da relaxação contínua deste problema (sem a restrição $x_j \in \mathbb{Z}$) pode ser obtida através da fórmula

$$x = \frac{1}{5} \begin{bmatrix} 3 & -2 & 3 & -2 & 3 & -2 & -2 \\ -2 & 3 & -2 & 3 & -2 & 3 & -2 \\ -2 & -2 & 3 & -2 & 3 & -2 & 3 \\ 3 & -2 & -2 & 3 & -2 & 3 & -2 \\ -2 & 3 & -2 & -2 & 3 & -2 & 3 \\ 3 & -2 & 3 & -2 & -2 & 3 & -2 \\ -2 & 3 & -2 & 3 & -2 & -2 & 3 \end{bmatrix} d.$$

Este é um problema de programação linear *inteira*. Em algumas situações especiais um problema deste tipo pode ser resolvido como um problema de programação linear (sem a restrição $x_i \in \mathbb{Z}$).

Classificação de padrões

O problema de classificação de padrões corresponde a tentar identificar a classe de um objeto a partir da descrição de algumas de suas propriedades (seu padrão). Consideremos um exemplo bem simples: são dadas várias imagens de maçãs e laranjas, e para cada imagem um vetor $a \in \mathbb{R}^3$ tal que a_1 é a curvatura do objeto representado, a_2 é o comprimento da haste e a_3 é sua cor. O conjunto $\{a^i\}_{i \in S}$ contém padrões de maçãs, e $\{a^i\}_{i \notin S}$ contém padrões de laranjas. Um classificador linear para dintinguir as maçãs e laranjas dadas é um par $(x, y) \in \mathbb{R}^3 \times \mathbb{R}$ que satisfaz

$$(a^i)'x \ge y, \quad i \in S$$

 $(a^i)'x < y, \quad i \notin S.$

Dado um novo padrão \bar{a} de uma imagem desconhecida, o mesmo será declarado pelo classificador uma maçã se satisfizer $\bar{a}'x \geq y$, uma laranja caso contrário.

Ordenação

Este exemplo ilustra a versatilidade de modelos de programação linear, mas não deve ser tomado como uma aplicação real: considere que se queira ordenar os números dados a_1, \ldots, a_n . O valor ótimo do problema abaixo

min
$$a'x$$

s.a $\sum_{i=1}^{n} x_i = 1$
 $x_i \in \{0, 1\}$

é o menor dentre os valores a_1, \ldots, a_n .

Este é um exemplo de problema de programação linear θ -1 que pode ser reformulado como problema de programação linear trocando-se a restrição $x_i \in \{0,1\}$ por $0 \le x_i \le 1$. O método simplex (que veremos em breve) é capaz de encontrar soluções para o problema reformulado que satisfazem $x_i = 0$ ou $x_i = 1$.

Exercício 1.2 Verifique que, trocando-se a restrição $\sum_{i=1}^{n} x_i = 1$ por $\sum_{i=1}^{n} x_i = k$ no problema original obtém-se como solução ótima a soma dos k menores valores dentre a_1, \ldots, a_n .

Exercício 1.3 Use o programa pl_solve para resolver o problema de planejamento de produção da DEC usando como entrada o arquivo abaixo:

max:
$$60x1 + 40x2 + 30x3 + 30x4 + 15x5$$
;

$$x1 + x2 + x3 + x4 + x5 \le 7$$
;
 $4x1 + 2x2 + 2x3 + 2x4 + x5 \le 8$;
 $x2 + x4 \le 3$;
 $x1 \le 1.8$;
 $x1 + x2 + x3 \le 3.8$;
 $x2 + x4 + x5 \le 3.2$;
 $x2 \times 2 \times 3 \times 3$;
 $x3 \times 4 + x5 \times 3.2$;
 $x4 + x5 \times 3.2$;
 $x4 + x5 \times 3.2$;
 $x5 \ge 0.5$;
 $x5 \ge 0.4$;

Troque as restrições do problema original pelas restrições alternativas da modelagem e compare as soluções obtidas.

Resolva o problema do plantão usando o plasolve (invente os valores de d_1, \ldots, d_7) e verifique que a solução obtida corresponde à fórmula do exercício 1.1.

1.2 Representação e solução gráficas

Considere o problema

min
$$-x_1$$
 - x_2
s.a x_1 + $2x_2$ ≤ 3
 $2x_1$ + x_2 ≤ 3
 x_1 , x_2 > 0

O conjunto viável está representado a seguir.

Para encontrar a solução ótima podemos considerar o conjunto dos pontos que têm um mesmo valor de função objetivo, digamos z. Este é uma linha descrita pela equação $-x_1-x_2=z$ e é perpendicular ao vetor $c=\begin{bmatrix} -1\\ -1 \end{bmatrix}$. Para cada valor de z obtemos uma linha paralela diferente:

aumentando z seguimos na direção apontada pelo vetor c, diminuindo z seguimos na direção -c. Para minimizar a função objetivo devemos procurar o ponto viável o mais distante na direção -c: este é o ponto $x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ com valor ótimo z = -2.

Uma prova algébrica de que esta é uma solução ótima é obtida ao notar-se que toda solução viável satisfaz $3x_1 + 3x_2 \le 6$ (soma das duas primeiras restrições), ou equivalentemente, $-x_1 - x_2 \ge -2$. Assim x não só é viável como possui o menor valor possível dentre as soluções viáveis.

Exercício 1.4 Obtenha graficamente a solução ótima do problema abaixo e verifique algebricamente que ela é de fato ótima.

min
$$-x_1 + x_2 - x_3$$

 $s.a$ $0 \le x_1 \le 1$
 $0 \le x_2 \le 1$
 $0 < x_3 < 1$

Considere o exemplo a seguir:

 $\min c_1 x_1$

s.a
$$-x_1 + x_2 \le 1$$

$$x_1, \quad x_2 \ge 0$$

$$c = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$c = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$c = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

1. Se
$$c = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, a única solução ótima é $x = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

- 2. Se $c = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, todo vetor da forma $x = \begin{bmatrix} 0 \\ x_2 \end{bmatrix}$ com $0 \le x_2 \le 1$ é solução ótima (infinitas soluções, conjunto de soluções limitado).
- 3. Se $c = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, todo vetor da forma $x = \begin{bmatrix} x_1 \\ 0 \end{bmatrix}$ com $x_1 \ge 0$ é solução ótima (infinitas soluções, conjunto de soluções ilimitado).
- 4. Se $c = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$, é possível obter uma seqüência de soluções viáveis com valores tendendo a $-\infty$. Dizemos que o problema é ilimitado e que o valor ótimo é $-\infty$ (mas nenhuma solução viável atinge este valor!)
- 5. Se o problema tivesse a restrição adicional $x_1 + x_2 \le -2$, o conjunto viável seria vazio.

1.3 Variantes do problema de programação linear

Um problema de programação linear pode ser expresso da maneira mais geral como

$$\begin{array}{rcl} \min / \max & c'x \\ & \text{s.a} & a_i'x & \geq & b_i, & i \in M_1, \\ & a_i'x & \leq & b_i, & i \in M_2, \\ & a_i'x & = & b_i, & i \in M_3, \\ & x_j & \geq & 0, & j \in N_1, \\ & x_j & \leq & 0, & j \in N_2. \end{array}$$

 x_1, \ldots, x_n são chamadas variáveis de decisão e um vetor x que satisfaz todas as restrições é chamado de solução viável ou ponto viável. O conjunto de soluções viáveis é chamado de conjunto viável ou região viável. Para $j \notin N_1 \cup N_2$ dizemos que x_j é uma variável livre de sinal. A função f(x) = c'x é chamada função objetivo e uma solução viável x^* que minimiza a função objetivo (isto é, que satisfaz $c'x^* \le c'x$ para todo x viável) é chamada de solução ótima do problema de minimização, com o correspondente valor ótimo igual a $c'x^*$ (define-se analogamente solução ótima do problema de maximização). Se, por outro lado, for possível encontrar soluções viáveis com valores de função objetivo tão baixos quanto se queira, diz-se que o valor ótimo é $-\infty$ e que o problema é ilimitado.

Um tal grau de generalidade na formulação é inconveniente e desnecessário do ponto de vista da teoria, que pode ser desenvolvida para x^* é sol. ótima de $\max c'x$ $\downarrow \\ c'x^* \ge c'x \ \forall x \ \text{viável}$ $\downarrow \\ -c'x^* \le -c'x \ \forall x \ \text{viável}$ $\downarrow \\ x^* \text{ é sol. ótima de } \min -c'x.$

moldes mais simples de problemas lineares. Discutimos a seguir algumas reformulações que não tiram expressividade do modelo de programação linear.

Inicialmente note que não é necessário estudar problemas de maximização e de minimização separadamente, pois são equivalentes $\max c'x$ e $\min -c'x$.

Toda restrição de igualdade do tipo $a_i'x = b_i$ é equivalente às duas desigualdades $a_i'x \leq b_i$ e $a_i'x \geq b_i$; além disso qualquer desigualdade do tipo $a_i'x \leq b_i$ pode ser re-escrita como $(-a_i)'x \geq -b_i$. Note ainda que as restrições de sinal $x_j \geq 0$ e $x_j \leq 0$ são casos particulares das restrições do tipo $a_i'x \geq b_i$, onde $a_i = e_j$ e $b_i = 0$.

Através destas equivalências concluimos que qualquer problema de programação linear pode ser escrito na forma compacta que designamos de forma geral de programação linear:

$$min c'x$$
s.a $Ax > b$.

Outra forma muito importante no desenvolvimento de algoritmos de programação linear é a forma canônica (ou padrão) de programação linear:

$$min c'x
s.a Ax = b
x \ge 0.$$

Vimos que a forma canônica é um caso particular da forma geral, ou seja, podemos re-escrever qualquer problema em forma canônica na forma geral. O inverso também é verdade: pode-se transformar qualquer problema de programação linear para a forma canônica. Esta transformação depende de duas operações básicas:

Eliminação de variáveis livres de sinal Dada uma variável x_j livre de sinal, substitui-se todas as ocorrências desta por $x_j^+ - x_j^-$, onde x_j^+, x_j^- são novas variáveis não-negativas, isto é, sujeitas às condições $x_j^+ \geq 0$ e $x_j^- \geq 0$. A idéia é que todo número real pode ser escrito como a diferença de dois números não-negativos.

Eliminação de desigualdades Dada uma desigualdade da forma $a'_i x \le b_i$, introduz-se uma nova variável r_i e as restrições (compatíveis com a forma canônica)

$$a_i'x + r_i = b_i$$
$$r_i \ge 0.$$

A variável r_i é chamada de residual.

Naturalmente uma variável não-positiva $x_j \leq 0$ é substituida por $-x_j$, e uma desigualdade da forma $a_i'x \geq b_i$ é substituida por $a_i'x - r_i = b_i$ e $r_i \geq 0$.

Como exemplo, o problema

min
$$2x_1 - x_2 + 4x_3$$

s.a $x_1 + x_2 + x_4 \le 2$
 $3x_2 - x_3 = 5$
 $x_3 + x_4 \ge 3$
 $x_1 \ge 0$
 $x_3 \le 0$

pode ser re-escrito na forma geral como

min
$$2x_1 - x_2 + 4x_3$$

s.a $-x_1 - x_2 - x_3 \ge 5$
 $3x_2 - x_3 \ge 5$
 $-3x_2 + x_3 \ge -5$
 $x_3 + x_4 \ge 3$
 $x_1 \ge 0$
 $-x_3 \ge 0$

e na forma canônica como

Exercício 1.5 Passe o problema de planejamento da DEC para a forma canônica.

1.4 Pré-requisitos e notação

Conjuntos

Utiliza-se as seguintes notações: |S| denota a cardinalidade do conjunto $S, S \setminus T = \{s \in S \mid s \notin T\}, [a, b] = \{x \in \mathbb{R} \mid a \leq x \leq b\}$ e $(a, b) = \{x \in \mathbb{R} \mid a < x < b\}.$

Vetores e matrizes

 $A \in \mathbb{R}^{m \times n}$ denota uma matriz

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}.$$

 $x \in \mathbb{R}^n$ denota o vetor coluna $x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$; alguns vetores especiais

utilizados são $0 = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$ e e^i o i-ésimo vetor da base canônica.

A' denota a transposta de A, que satisfaz $A'_{ij} = A_{ji}$, $\forall i, j$. Se $x, y \in \mathbb{R}^n$, então $x'y = \sum_{i=1}^n x_i y_i$. Lembre-se que $x \perp y$ (x é ortogonal a y) $\iff x'y = 0$. A norma Euclideana de $x \in \mathbb{R}^n$ é denotada por $||x|| = \sqrt{x'x}$.

Exercício 1.6 Demonstre a desiqualdade de Cauchy-Schwarz:

$$|x'y| \le ||x|| ||y||,$$

e verifique que a igualdade vale se, e somente se, x é múltiplo de y ou vice-versa. Dica: se $x \neq 0$, considere a distância de y à projeção de y sobre x.

Dada uma matriz A denota-se por A^j sua j-ésima coluna, e A_i sua i-ésima linha. O produto de duas matrizes $A \in \mathbb{R}^{m \times n}$ e $B \in \mathbb{R}^n \times k$ é uma matriz em $\mathbb{R}^{m \times k}$ cujas componentes são dadas por $[AB]_{ij} = \sum_{l=1}^n a_{il}b_{lj} = A_iB^j$, ou ainda,

$$AB = \left[\begin{array}{c|c} AB^1 & \cdots & AB^k \end{array} \right] = \left[\begin{array}{c|c} A_1B & \\ \hline \vdots & \\ \hline A_mB & \end{array} \right].$$

O produto de matrizes satisfaz (AB)C = A(BC) e (AB)' = B'A', mas não satisfaz AB = BA em geral (produza um contra-exemplo!) A matriz *identidade* é denotada por I e satisfaz IA = A e BI = B para quaisquer A e B de dimensões compatíveis.

Dados $A \in \mathbb{R}^{m \times n}$ e $x \in \mathbb{R}^n$, valem as identidades $Ae^i = A^i, x = \sum_{i=1}^n x_i e^i$ e

$$Ax = \sum_{i=1}^{n} A^{i}x_{i} = \begin{bmatrix} A_{1}x \\ \vdots \\ A_{m}x \end{bmatrix}.$$

Dado $x \in \mathbb{R}^n$ utiliza-se as notações $x \geq 0 \iff x_i \geq 0 \ \forall i$ e $x > 0 \iff x_i > 0 \ \forall i$; analogamente define-se as desigualdades $A \geq 0$ e A > 0. Estas definições estendem-se naturalmente: $x \geq y \iff x - y \geq 0$ e $x > y \iff x - y > 0$.

Inversão de matrizes

Uma matriz quadrada A é dita $n\tilde{a}o$ -singular ou inversível se existe uma matriz B tal que AB = BA = I; esta matriz é única e denotada por A^{-1} . Se $A, B \in \mathbb{R}^{n \times n}$ são inversíveis então AB é inversível e $(AB)^{-1} = B^{-1}A^{-1}$.

Uma coleção de vetores $x^1, \ldots, x^k \in \mathbb{R}^n$ é dita linearmente dependente se existem a_1, \ldots, a_k reais tais que $a \neq 0$ e $\sum_{i=1}^k a_i x^i = 0$; caso contrário diz-se que os vetores são linearmente independentes. Vale o seguinte resultado

Teorema 1.2 Seja A uma matriz quadrada. As afirmações seguintes são equivalentes:

1. A é inversível;

3.
$$\det(A) \neq 0$$
;

4.
$$A_1, \ldots, A_n$$
 são linearmente independentes;

5.
$$A^1, \ldots, A^n$$
 são linearmente independentes;

6. Existe
$$b$$
 tal que o sistema $Ax = b$ tem uma única solução.

7. Para todo
$$b$$
 o sistema $Ax = b$ tem uma única solução;

$$A'(A^{-1})' = (A^{-1}A)' = I' = I,$$

 $(A^{-1})'A' = (AA^{-1})' = I' = I.$

$$\det(A^{-1})\det(A) = \det(I) = 1.$$

Ax = 0 possui solução única.

Prova.

 $(3 \Longrightarrow 4)$ Suponha que $\sum_{i=1}^{n} \alpha_i A_i = 0$, e considere

$$B = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \cdots & \alpha_n \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}.$$

Então $[BA]_1 = \sum_{i=1}^n \alpha_i A_i = 0 \implies 0 = \det(BA) =$ $det(B) det(A) \Longrightarrow det(B) = \alpha_1 = 0$. Repita o argumento para $\alpha_2, \ldots, \alpha_n$.

- $(4 \Longrightarrow 5)$ Suponha que $A\alpha = \sum_{i=1}^{n} \alpha_i A^i = 0$. Então $A_i\alpha =$ 0, $\forall i$, logo $\alpha = \sum_{i=1}^n \operatorname{proj}_{A_i}(\alpha) = \frac{A_i \alpha}{\|A_i\|^2} A_i = 0$.
- $(6 \Longrightarrow 7)$ Suponha que Ax = b possui uma única solução z e que Ax = b' possui duas soluções x e y. Então A(z + x - y) = Az + A(x - y) = Az + Ax - Ay =b-b'-b'=b, logo z+x-y é solução de Ax=b e portanto x = y.
- $(7 \Longrightarrow 1)$ Defina $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ por $T(b) = x \iff Ax =$ b. Então $AT(b) = b, \ \forall b \in \mathbb{R}^n \ \mathrm{e} \ TA(x) = x, \ \forall x \in \mathbb{R}^n,$ ou seja, $AT \equiv TA \equiv I$ e a matriz que representa T é a inversa de A.

Subespaços e bases

 $\emptyset \neq S \subset \mathbb{R}^n$ é um subespaço de \mathbb{R}^n se $ax + by \in S$ para quaisquer $x,y \in S$ e $a,b \in \mathbb{R}$. O subespaço gerado por x^1,\ldots,x^k é o conjunto de vetores y da forma $y = \sum_{i=1}^k a_i x^i$, onde $a \in \mathbb{R}^k$; y é dito uma $combinação linear de x^1, \dots, x^k.$

Dado um subespaço $\emptyset \neq S \subset \mathbb{R}^n$, uma base de S é uma coleção de vetores linearmente independentes que geram S. Toda base de S tem $A \in \mathbb{R}^{m \times n}$. Seja $x \neq 0$: Ax = 0. o mesmo número de vetores e este número é chamado de dimensão de Então Cx = BAx = B0 = 0, S; em particular dim $(\mathbb{R}^n) = n$ e todo subespaço de \mathbb{R}^n tem dimensão ou seja, C não é LI. menor ou igual a n. Por definição, $\dim(\{0\}) = 0$.

> Se S é um subespaço próprio de \mathbb{R}^n (isto é, diferente de \mathbb{R}^n), então existe um vetor $a \neq 0$ tal que a'x = 0 para todo $x \in S$. Em geral, se $\dim(S) = m < n$, então existem n - m vetores linearmente independentes ortogonais a S.

Se B e C geram S, e n = |C| >|B| = m, então C = BA onde **Teorema 1.3** Suponha que o subespaço S gerado pelos vetores x^1, \ldots, x^k tem dimensão m. Então:

- 1. Existe uma base de S contendo m vetores dentre x^1, \ldots, x^k ;
- 2. Se $l \leq m$ e x^1, \ldots, x^l são linearmente independentes, pode-se formar uma base de S começando com x^1, \ldots, x^l e escolhendo m-l vetores dentre x^{l+1}, \ldots, x^k

Exercício 1.7 Demonstre o teorema acima. Note que a parte 1 é caso particular da parte 2 (com l = 0).

Seja $A \in \mathbb{R}^{m \times n}$. O espaço-coluna gerado por A é o subespaço (de \mathbb{R}^m) gerado pelas colunas de A; analogamente definimos o espaço-linha de A. As dimensões dos espaço-linha e espaço-coluna de A coincidem e este número é denominado posto ou característica de A. A possui posto completo ou característica plena se posto $(A) = \min\{m, n\}$. O conjunto $\{x \in \mathbb{R}^n \mid Ax = 0\}$ é chamado de espaço-nulo de A.

Exercício 1.8 Prove que

- 1. $\dim(nulo(A)) = n \dim(linhas(A)).$
- 2. $\dim(colunas(A)) + \dim(nulo(A)) = n$.

Observe que 1 e 2 implicam $\dim(col(A)) = \dim(lin(A))$.

Subespaços afins

Dado um subespaço linear $S_0 \subset \mathbb{R}^n$ e um vetor $x_0 \in \mathbb{R}^n$, o conjunto $S = S_0 + x_0 = \{x + x_0 \mid x \in S_0\}$ corresponde a uma translação do subespaço S_0 e é denominado subespaço afim. S tem a mesma dimensão de S_0 , por definição.

Como um primeiro exemplo, considere k+1 vetores em \mathbb{R}^n , e o conjunto $S = \{x^0 + \lambda_1 x^1 + \dots + \lambda_k x^k \mid \lambda \in \mathbb{R}^k\}$. S é um subespaço afim obtido a partir da translação do subespaço S_0 gerado pelos vetores x^1, \dots, x^k . Se estes últimos vetores forem linearmente independentes, então tanto S_0 quanto S terão dimensão k.

Outro exemplo é dado pelo conjunto $S = \{x \in \mathbb{R}^n \mid Ax = b\}$ onde $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ e supomos $S \neq \emptyset$. Seja $x^0 \in \mathbb{R}^n$ tal que $Ax^0 = b$; então $x \in S \iff Ax = Ax^0 = b$, ou seja, $x \in S \iff A(x - x^0) = 0 \iff x - x^0 \in S_0 = \{y \mid Ay = 0\}$. Ou seja, $S \in A$ translação do espaço-nulo de A pelo vetor x^0 . Cada restrição $a_i'x = b_i$ define um hiperplano de \mathbb{R}^n (um subespaço de dimensão n - 1), e em princípio diminui em 1 a dimensão do conjunto S: se A possui m linhas linearmente independentes, então $\dim(S) = n - m$.