Álgebra e Geometria com Aplicações na Computação Gráfica

Csaba Schneider

Conteúdo

Capítulo 1. Transformações lineares	5
1. Coordenadas	5
2. A matriz de uma transformação linear	5
3. Mudança de base	6
4. Transformações lineares e mudança de base	7
5. Um exemplo detalhado: As reflexões	8
Capítulo 2. Isometrias do espaço	9
1. Transformações	9
2. Grupos	9
3. Isometrias de \mathbb{R}^n	11
4. O grupo ortogonal	12
Capítulo 3. Transformações ortogonais em 2D e 3D	15
1. O plano (2D)	15
2. O espaço 3D	17
Capítulo 4. Os quatérnios e as rotações em \mathbb{R}^3	23
1. A álgebra dos quatérnios	23
Capítulo 5. Espaços afins e projetivos	33
1. Espaços afins e transformações afins	33
2. Planos projetivos	35

CAPíTULO 1

Transformações lineares

1. Coordenadas

Seja V um espaço vetorial de dimensão finita. Seja $B = \{b_1, \ldots, b_n\}$ uma base de V e seja $v \in V$. Então v pode ser escrito unicamente como

$$v = \alpha_1 b_1 + \dots + \alpha_n b_n.$$

O vetor $[v]_B = (\alpha_1, \dots, \alpha_n)$ chama se o vetor das coordenadas de v na base B.

EXEMPLO 1.1. Seja $V = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$ e seja $B = \{b_1 = (1, 0, -1), b_2 = (1, -1, 0)\}$ (verifique que V é espaço vetorial com base B). Ponha v = (3, 2, -5). Então

$$v = 5b_1 - 2b_2$$

e assim $[v]_B = (5, -2)$.

EXERCÍCIO 1.2. Verifique que a aplicação $V \to \mathbb{R}^n$ definida por $v \mapsto [v]_B$ é um isomorfismo linear (ou seja, uma aplicação linear injetiva e sobrejetiva)

2. A matriz de uma transformação linear

Seja $T:V\to W$ uma transformação linear entre dois espaços vetoriais de dimensão finita. Assuma que $B=\{b_1,\ldots,b_n\}$ é uma base de V, enquanto $C=\{c_1,\ldots,c_m\}$ é uma base de W. Como $T(b_i)\in W$, o vetor $T(b_i)$ pode ser escrito como

$$T(b_i) = \alpha_{i,1}c_1 + \ldots + \alpha_{i,m}c_m$$

com $\alpha_{i,j} \in \mathbb{R}$. Nós definimos a matriz de T relativa às bases B e C como

$$[T]_C^B = \begin{pmatrix} \alpha_{1,1} & \cdots & \alpha_{n,1} \\ \vdots & \ddots & \vdots \\ \alpha_{1,m} & \cdots & \alpha_{n,m} \end{pmatrix} = ([T(b_1)]_C, \dots, [T(b_n)]_C).$$

Ou seja, a matriz $[T]_C^B$ contém os vetores $[T(b_i)]_C$ nas suas colunas. A matriz $[T]_C^B$ é uma matriz $m \times n$.

EXEMPLO 1.3. Considere a transformação $T: \mathbb{R}^3 \to V$, T(x, y, z) = (x - y, y - z, z - x) onde V é o mesmo espaço que no exemplo anterior. Seja B a base canônica de \mathbb{R}^3 e

$$C = \{c_1 = (1, 0, -1), c_2 = (0, 1, -1)\}$$
. Então temos que
$$T(1, 0, 0) = (1, 0, -1) = c_1$$

$$T(0, 1, 0) = (-1, 1, 0) = -c_1 + c_2$$

$$T(0, 0, 1) = (0, -1, 1) = -c_2.$$

Logo

$$[T]_C^B = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$

lem:matr

Lema 1.4. Usando a notação no parágrafo anterior, temos que

$$[T(v)]_C = [T]_C^B \cdot [v]_B.$$

Note que no lado direito da equação no Lema 1.4, o vetor $[v]_B$ é visto como vetor coluna para a multiplicação fazer sentido. Isso poderia ser denotado por $[v]_B^t$, mas nós escolhemos a notação mais simples.

DEMONSTRAÇÃO. Primeiro assuma que $v = b_i \in B$. Então $[T(b_i)]_C$ é justamente a i-ésima coluna de $[T]_C^B$ e $[b_i]_B$ é o i-ésimo vetor na base canônica de \mathbb{R}^m . Logo temos obviamente que $[T(b_i)]_C = [T]_C^B \cdot [b_i]_B$. Quando $v \in V$ é arbitrário, escreva que

$$v = \beta_1 b_1 + \dots + \beta_n b_n;$$

ou seja, $[v]_B = (\beta_1, \ldots, \beta_n)$. Ora,

$$[T(v)]_C = [T(\beta_1 b_1 + \dots + \beta_n b_n)]_C$$

= $\beta_1 [T(b_1)]_C + \dots + \beta_n [T(b_n)]_C$
= $\beta_1 [T]_C^B \cdot e_1 + \dots + \beta_n [T]_C^B \cdot e_n$
= $[T]_C^B \cdot [v]_B$

onde e_1, \ldots, e_n são os vetores (colunas) da base canônica de \mathbb{R}^n .

3. Mudança de base

Seja V um espaço vetorial com duas bases $B = \{b_1, \ldots, b_n\}$ e $C = \{c_1, \ldots, c_n\}$. A transformação id : $V \to V$, id (v) = v é linear e podemos considerar a sua matriz [id] $_B^C$. Pelo que fizemos nas seções anteriores

$$[id]_B^C = \begin{pmatrix} \alpha_{1,1} & \cdots & \alpha_{n,1} \\ \vdots & \ddots & \vdots \\ \alpha_{1,m} & \cdots & \alpha_{n,m} \end{pmatrix} = ([c_1]_B, \dots, [c_n]_B)$$

onde os coeficientes estão determinados pelas equações

$$c_i = \alpha_{i,1}b_1 + \dots + \alpha_{i,n}b_n.$$

A matriz [id] $_{B}^{C}$ chama-se matriz mudança de base (de B para C).

Lema 1.5. Usando a notação no parágrafo anterior, temos que

$$[v]_B = [id]_B^C \cdot [v]_C.$$

Demonstração. Segue do Lema 1.4.

Exercício 1.6. Demonstre que $[id]_C^B = ([id]_B^C)^{-1}$.

EXEMPLO 1.7. Seja $V = \mathbb{R}^2$, $B = \{e_1, e_2\}$ (a base canônica), e $C = \{c_1 = (1, 1), c_2 = (1, -1)\}$. Logo

$$[\mathrm{id}\,]_B^C = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
 e $[\mathrm{id}\,]_C^B = ([\mathrm{id}\,]_B^C)^{-1} = \frac{1}{2}[\mathrm{id}\,]_B^C.$

Seja v = (-1, 2). Então $[v]_B = (-1, 2)$ e

$$[v]_C = [id]_C^B [v]_B = (1/2, -3/2).$$

De fato $v = (1/2)c_1 - (3/2)c_2$.

ex:comp

EXERCÍCIO 1.8. Sejam $T_1: V \to U$ e $T_2: U \to W$ transformações lineares, e sejam B, C, e D bases de V, U, e W, respetivamente. Mostre que

$$[T_2 \circ T_1]_D^B = [T_2]_D^C \cdot [T_1]_C^B.$$

4. Transformações lineares e mudança de base

Seja $T:V\to W$ uma transformação linear entre os espaços V e W de dimensão finita. Sejam $B,\,B'$ bases de V e $C,\,C'$ bases de W.

Lema 1.9. Temos que

$$[T]_{C'}^{B'} = [id_W]_{C'}^C \cdot [T]_C^B \cdot [id_V]_B^{B'}.$$

Demonstração. Aplique o Exercício $\stackrel{\tt ex:comp}{\tt I.8.}$

Quando $T:V\to V$ é um endomorfismo, nós geralmente calculamos a matriz $[T]_B^B$. Se $B\in C$ são duas bases de T, então temos que

$$[T]_C^C = [\operatorname{id}]_C^B \cdot [T]_B^B \cdot [\operatorname{id}]_C^C = [\operatorname{id}]_C^B \cdot [T]_B^B \cdot ([\operatorname{id}]_C^B)^{-1}.$$

Note que se Y é uma matriz e X é uma matriz invertível $n \times n$, então diz-se que a matriz XYX^{-1} é um conjugada de Y.

Exercício 1.10. Sejam Y_1 e Y_2 matrizes conjugadas. Demonstre as seguintes afirmações.

- (1) $\det Y_1 = \det Y_2$.
- (2) Y_1 e Y_2 têm os mesmos autovalores.
- (3) $Seja \ Y_2 = XY_1X^{-1} \ e \ seja \ v \in \mathbb{R}^n$. Então $v \ \acute{e} \ um \ autovetor \ de \ Y_1 \ se \ e \ somente se <math>Xv \ \acute{e} \ autovetor \ de \ Y_2$. Além disso $v \ e \ Xv \ correspondem \ ao \ mesmo \ autovalor$.

5. Um exemplo detalhado: As reflexões

Assuma que $t=(a,b)\in\mathbb{R}^2$ é um vetor com $||t||=\sqrt{a^2+b^2}=1$. Define $R_t:\mathbb{R}^2\to\mathbb{R}^2,\quad R_t(v)=v-2(v\cdot t)t$

onde $v \cdot t$ denota o produto escalar entre v e t. É fácil verificar que R_t é linear. Seja t' = (b, -a) um vetor normal (ortoginal) ao vetor t. Então temos que $t \cdot t = 1$ e $t \cdot t' = 0$ e assim

$$R_t(t) = -t$$
 enquanto $R_t(t') = t'$.

Como vetores t e t' formam uma base C, faz sentido perguntar a matriz de R_t nesta base. De fato

$$[R_t]_C^C = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Seja B a base canônica de \mathbb{R}^2 . Então temos que

$$[\mathrm{id}\,]_B^C = \begin{pmatrix} a & b \\ b & -a \end{pmatrix}.$$

Além disso, $[id]_B^C$ é uma matriz ortogonal simêtrica, e assim $[id]_C^B = ([id]_B^C)^{-1} = [id]_B^C$. Logo

$$[R_t]_B^B = [\operatorname{id}]_B^C \cdot [R_t]_C^C \cdot [\operatorname{id}]_C^B = \begin{pmatrix} a & b \\ b & -a \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ b & -a \end{pmatrix} = \begin{pmatrix} -a^2 + b^2 & -2ab \\ -2ab & a^2 - b^2 \end{pmatrix}.$$

Alternativamente, podemos verificar com conta direta que

$$R_t(1,0) = (1 - 2a^2, -2ab)$$
 e $R_t(0,1) = (-2ab, 1 - 2b^2)$

e que

$$[R_t]_B^B = \begin{pmatrix} 1 - 2a^2 & -2ab \\ -2ab & 1 - 2b^2 \end{pmatrix}.$$

Como $a^2 + b^2 = 1$ as duas matrizes que obtivemos para $[R_t]_B^B$ são de fato iguais.

Usando que $a^2+b^2=1$, podemos escrever $a=\cos\alpha$ e $\bar{b}=\sin\alpha$ com algum ângulo $\alpha\in[0,2\pi]$. Assim obtemos que

$$[R_t]_B^B = \begin{pmatrix} -\cos^2\alpha + \sin^2\alpha & -2\cos\alpha \cdot \sin\alpha \\ -2\cos\alpha \cdot \sin\alpha & \cos^2\alpha - \sin^2\alpha \end{pmatrix} = \begin{pmatrix} -\cos(2\alpha) & -\sin(2\alpha) \\ -\sin(2\alpha) & \cos(2\alpha) \end{pmatrix}.$$

Seja $\alpha = \alpha' + \pi/2$. Com α' podemos escrever $[R_t]_B^B$ na forma ainda mais simples como

$$[R_t]_B^B = \begin{pmatrix} \cos(2\alpha') & \sin(2\alpha') \\ \sin(2\alpha') & -\cos(2\alpha'). \end{pmatrix}$$

CAPíTULO 2

Isometrias do espaço

1. Transformações

Seja Ω um conjunto. Uma aplicação $f:\Omega\to\Omega$ chama-se uma transformação de Ω . A transformação f é dita injetiva se f(v)=f(w) implica v=w para todo $v,w\in\Omega$; f chama-se sobrejetiva se para todo $w\in\Omega$ existe $v\in\Omega$ tal que f(v)=w. A transformação f chama-se bijetiva ou invertível se ela é injetiva e sobrejetiva. Se f é uma transformação invertível, então existe a sua inversa $f^{-1}:\Omega\to\Omega$ definida pela regra que f(v)=w se e somente se $f^{-1}(w)=v$ para todo $v,w\in\Omega$.

As transformações de Ω podem ser compostas. Se $f, g: \Omega \to \Omega$ então $f \circ g: \Omega \to \Omega$ é definida como $(f \circ g)(v) = f(g(v))$ para todo $v \in \Omega$. A composição de transformações é associativa no sentido que $(f \circ g) \circ h = f \circ (g \circ h)$ para todo $f, g, h: \Omega \to \Omega$.

Nós vamos estudar principalmente as transformações do plano \mathbb{R}^2 e o espaço \mathbb{R}^3 .

EXEMPLO 2.1. Todo conjunto Ω tem a transformação identidade id Ω : $\Omega \to \Omega$, $v \mapsto v$ para todo $v \in \Omega$. Se $f: \Omega \to \Omega$ é uma transformação invertível, então $f \circ f^{-1} = f^{-1} \circ f = \mathrm{id}_{\Omega}$.

EXEMPLO 2.2. Seja $\Omega=\mathbb{R}^n$ com $n\geq 1$. Uma transformação $T:\mathbb{R}^n\to\mathbb{R}^n$ é dita linear se

$$T(\alpha v + \beta w) = \alpha T(v) + \beta T(w)$$

para todo $v, w \in \mathbb{R}^n$ e $\alpha, \beta \in \mathbb{R}$. Transformações lineares são estudadas em álgebra linear. Uma transformação linear $T : \mathbb{R}^n \to \mathbb{R}^n$ é invertível se e somente se

$$\ker T = \{ v \in \mathbb{R}^n \mid T(v) = 0 \} = \{ 0 \}.$$

Exemplo 2.3. Seja $t \in \mathbb{R}^n$ e considere a transformação $T_t : \mathbb{R}^n \to \mathbb{R}^n$ definido como

$$T_t(v) = v + t.$$

A transformação T_t é chamado a translação de \mathbb{R}^n pelo vetor t. Note que se $t \neq 0$, então T_t não é linear, pois $T_t(0) = t \neq 0$. A transformação T_t é invertível e $T_t^{-1} = T_{-t}$.

2. Grupos

Seja G um conjunto não vazio com uma operação que pode ser denotada por \cdot (ou por +, ou simplesmente por concatenação). Isso quer dizer que com cada par de elementos $a,b \in G$ associamos um elemento $a \cdot b \in G$. O conjunto G considerado com a operação \cdot é dito grupo se as seguintes propriedades estão válidas para todo $a,b,c \in G$.

- (1) A operação \cdot é associativa; ou seja $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- (2) Existe identidade $1 \in G$ tal que $1 \cdot a = a \cdot 1 = a$.
- (3) Todo elemento $a \in G$ possui inverso a^{-1} que satisfaz $a \cdot a^{-1} = a^{-1}a = 1$.

Um grupo G é dito abeliano ou comutativo se ab = ba para todo $a, b \in G$.

EXEMPLO 2.4. O conjunto \mathbb{Z} dos inteiros é um grupo abeliano com a operação de adição. A mesma coisa vale para \mathbb{Q} , \mathbb{R} , \mathbb{C} . Se V é um espaço vetorial, então V é um grupo abeliano com a operação de adição.

Nós vamos considerar dois tipos de grupos, nomeadamente grupos de transformações e grupos de matrizes.

EXEMPLO 2.5. Seja $n \geq 1$, e seja G um conjunto não vazio de matrizes invertíveis $n \times n$ tal que G é fechado para multiplicação e se $X \in G$, então $X^{-1} \in G$. Então G é um grupo com a multiplicação matricial. Um tal grupo G é chamado um grupo de matrizes ou grupo matricial. Os primeiros exemplos de grupos matriciails são

$$GL_n = \{X \text{ \'e matriz } n \times n \mid X \text{ \'e invert\'evel}\}$$

 $SL_n = \{X \in GL_n \mid \det X = 1\}.$

Os conjuntos GL_n e SL_n são grupos. É óbvio que $SL_n \subseteq GL_n$ e neste caso dizemos que SL_n é um subgrupo de GL_n e escrevemos que $SL_n \le GL_n$.

EXEMPLO 2.6. Seja G um conjunto de transformações invertíveis de um conjunto Ω tal que G é fechado para a composição e $T^{-1} \in G$ sempre quando $T \in G$. Neste caso G é um grupo. Tal grupo chama-se um grupo de transformações. Por exemplo seja $\Omega = V$ um espaço vetorial de dimensão finita e considere

$$\operatorname{Sym}(V) = \{ f : V \to V \mid f \text{ \'e invert\'eel} \}$$

$$\operatorname{GL}(V) = \{ T \in \operatorname{Sym}(V) \mid T \text{ \'e linear} \}$$

$$\operatorname{SL}(V) = \{ T \in \operatorname{GL}(V) \mid \det T = 1 \}.$$

O conjunto $\mathcal{T}(V) = \{T_t \mid t \in V\}$ de um espaço vetorial V é um grupo pois $T_{t_1} \circ T_{t_2} = T_{t_1+t_2}$ e $T_t^{-1} = T_{-t}$ (ou seja este conjunto é fechado para a composição e para os inversos). Como

$$T_{t_1} \circ T_{t_2} = T_{t_1+t_2} = T_{t_2+t_1} = T_{t_2} \circ T_{t_1},$$

temos que $\mathcal{T}(V)$ é um grupo abeliano.

LEMA 2.7. Seja
$$t \in V$$
 e $X \in GL(V)$. Então $XT_tX^{-1} = T_{X(t)}$.

Demonstração. Seja $v \in V$ e computemos que

$$XT_tX^{-1}(v) = XT_t(X^{-1}(v)) = X(X^{-1}(v) + t) = v + X(t) = T_{X(t)}(v).$$

TEOREMA 2.8. Assuma que G é um subgrupo de transformações de GL(V) e seja \mathcal{T} o grupo de translações. Então o produto $\mathcal{T}G = \{T_tX \mid t \in V, X \in G\}$ é um subgrupo de Sym(V).

DEMONSTRAÇÃO. Seja Y o conjunto de produtos no enunciado do teorema. Precisamos provar que Y é fechado para a composição e para tomar inversos. Sejam $T_{t_1}X_1$ e $T_{t_2}X_2$. Então temos que

 $(T_{t_1}X_1)(T_{t_2}X_2) = T_{t_1}X_1T_{t_2}(X_1^{-1}X_1)X_2 = T_{t_1}(X_1T_{t_2}X_1^{-1})X_1X_2 = (T_{t_1}T_{X_1(t_2)})(X_1X_2) \in Y.$ Além disso, temos que

$$(T_t X)^{-1} = X^{-1} T_t^{-1} = X^{-1} T_{-t} = X^{-1} T_{-t} X X^{-1} = T_{X^{-1}(-t)} X^{-1} \in Y.$$

3. Isometrias de \mathbb{R}^n

Considere o espaço \mathbb{R}^n . Lembre que o produto escalar (ou produto interno) de dois vetores $v = (\alpha_1, \dots, \alpha_n)$ e $w = (\beta_1, \dots, \beta_n)$ é definido como

$$v \cdot w = \alpha_1 \beta_1 + \dots + \alpha_n \beta_n.$$

O produto escalar pode ser escrito usando multiplicação matricial como

$$v \cdot w = vw^t$$
.

Usando o produto escalar, podemos definir a norma ||v|| de um vetor $v \in \mathbb{R}^n$ como

$$||v|| = \sqrt{v \cdot v}$$
.

A distância entre dois vetores $v, w \in \mathbb{R}^n$ pode ser definida como

$$d(v, w) = ||v - w||.$$

Alêm disso, o cosseno do ângulo ϑ entre v e w é definido como

$$\cos \vartheta = \frac{v \cdot w}{\|v\| \|w\|}$$

Dois vetores $v, w \in \mathbb{R}^n$ são ortogonais se e somente se $v \cdot w = 0$.

Da definição da norma fica clara que a norma está determinada pelo produto escalar. De acrodo do lema seguinte, a norma determina o produto escalar.

TEOREMA 2.9 (Identidade de polarização). Sejam $v, w \in \mathbb{R}^n$, então

$$v \cdot w = \frac{1}{2} (\|v + w\| - \|v\| - \|w\|).$$

DEMONSTRAÇÃO. Exercício.

Uma transformação $T: \mathbb{R}^n \to \mathbb{R}^n$ que preserva distância (ou seja d(T(v), T(w)) = d(v, w) para todo $v, w \in \mathbb{R}^n$) chama-se *isometria* de \mathbb{R}^n . Se T é uma isometria e T(v) = T(w), então

$$0 = d(T(v), T(w)) = d(v, w);$$

ou seja v=w. Isso implica que uma isometria é necessáriamente injetiva. Vamos ver que isometrias são também sobrejetivas, mas neste momento esta afirmação não é tão fácil

de provar. Por outro lado, se $T: \mathbb{R}^n \to \mathbb{R}^n$ é uma isometria *linear*, então ela é injetiva e precisa ser sobrejetiva. Logo, as isometrias lineares são invertíveis.

EXEMPLO 2.10. A translação $T_t: \mathbb{R}^n \to \mathbb{R}^n$ é uma isometria para todo $t \in \mathbb{R}^n$. De fato, temos para $v, w \in \mathbb{R}^n$ que

$$d(v+t, w+t) = ||v+t-(w+t)|| = ||v-w|| = d(v, w).$$

4. O grupo ortogonal

TEOREMA 2.11. Seja $T: \mathbb{R}^n \to \mathbb{R}^n$ uma transformação linear. As seguintes são equivalentes para T.

- (1) T preserva o produto escalar; ou seja $T(v) \cdot T(w) = v \cdot w$ para todo $v, w \in \mathbb{R}^n$.
- (2) T preserva a norma; ou seja ||T(v)|| = ||v|| para todo $v \in \mathbb{R}^n$;
- (3) T preserva a distância d(T(v), T(w)) = d(v, w) para todo $v, w \in \mathbb{R}^n$.

DEMONSTRAÇÃO. O fato que (1) implica (2) e que (2) implica (3) segue das definições da norma e da distância. O fato que (3) implica (1) segue dos fatos que ||v|| = d(v, 0), T(0) = 0 (T sendo linear) e da identidade de polarização.

Uma transformação linear $T: \mathbb{R}^n \to \mathbb{R}^n$ chama se ortogonal se T satisfaz uma (e então todas) das propriedades no teorema anterior. Por definição, as transformações ortogonais são exatamente as isometrias lineares do espaço \mathbb{R}^n . Lembre que uma matriz X é dita ortogonal se $X^tX = I$.

Teorema 2.12. As seguintes afirmações são verdadeiras.

- (1) As transformações ortogonais formam um subgrupo de GL(V).
- (2) Uma transformação $T: \mathbb{R}^n \to \mathbb{R}^n$ é ortogonal se e somente se sua matriz na base canônica é ortogonal.
- (3) O determinante de uma transformação ortogonal $\acute{e} \pm 1$.

DEMONSTRAÇÃO. (1) Pode mostrar com uma conta direta que a composição de duas transformações ortogonais é ortogonal e o inverso de uma transformação ortogonal é também ortogonal.

(2) Se $T: \mathbb{R}^n \to \mathbb{R}^n$ é uma isometria linear, então T preserva a norma de vetores e o ângulo entre vetores. Como os vetores e_1, \ldots, e_n na base canônica formam um sistema ortonormal, os vetores $T(e_1), \ldots, T(e_n)$ também formam um sistema ortonormal. Isso quer dizer que $[T]_B^B$ é uma matriz ortogonal.

Assuma agora que $T: \mathbb{R}^n \to \mathbb{R}^n$ é uma transformação linear tal que a sua matriz X na base canônica é ortogonal. Sejam $v, w \in \mathbb{R}^n$. Então

$$v \cdot w = vw^t = vX^tXw^t = (Xv^t)^t(Xw^t) = (Xv) \cdot (Xw) = T(v) \cdot T(w).$$

Ou seja, T preserva produto escalar e T é uma isometria.

(3) Seja $T: \mathbb{R}^n \to \mathbb{R}^n$ uma isometria. Temos que det $T = \det X$ onde X é a matriz de T na base canônica. Como X é uma matriz ortogonal, temos que

$$1 = \det I = \det(X^t X) = \det(X^t) \det X = (\det X)^2$$

e segue que $\det T = \det X = \pm 1$.

O grupo das transformações ortogonais de \mathbb{R}^n é denotado por $O(\mathbb{R}^n)$. O subgrupo das transformações ortogonais com determinante 1 é denotado por $SO(\mathbb{R}^n)$. Os grupos $O(\mathbb{R}^n)$ e $SO(\mathbb{R}^n)$ são chamados grupo ortogonal e grupo especial ortogonal. Os elementos de $SO(\mathbb{R}^n)$ são chamadas de rotações enquanto os demais elementos de $O(\mathbb{R}^n)$ são chamadas de reflexões.

Lema 2.13. Seja $T: \mathbb{R}^n \to \mathbb{R}^n$ uma transformação tal que T(0) = 0. T é uma isometria se e somente se T preserva o produto interno (ou seja, $T(u) \cdot T(v) = u \cdot v$).

DEMONSTRAÇÃO. Assuma primeiro que T é uma isometria. Sejam $u, v \in \mathbb{R}^n$. Então

$$||T(u) - T(v)|| = d(T(u), T(v)) = d(u, v) = ||u - v||.$$

Note que, tomando v = 0, isso implica que

$$||T(u)|| = ||u||,$$

ou seja, T preserva norma. Ora,

$$||T(u) - T(v)||^2 = ||u - v||^2$$

e assim

$$(T(u) - T(v)) \cdot (T(u) - T(v)) = (u - v) \cdot (u - v).$$

Agora segue que

$$||T(u)||^2 + ||T(v)||^2 - 2T(u) \cdot T(v) = ||u||^2 + ||v||^2 - 2(u, v).$$

Considerando que ||T(v)|| = ||v|| e ||T(u)|| = ||u||, obtemos que

$$T(v) \cdot T(u) = u \cdot v.$$

Vice versa, assuma que T preserve a produto interno. Então

$$d(T(u), T(v))^{2} = ||T(u) - T(v)||^{2} = (T(u) - T(v)) \cdot (T(u) - T(v))$$

$$= T(u) \cdot T(u) - 2T(u) \cdot T(v) + T(v) \cdot T(v)$$

$$= u \cdot u - 2u \cdot v + v \cdot v = (u - v) \cdot (u - v) = ||u - v||^{2}$$

$$= d(u, v)^{2}.$$

Logo d(T(u), T(v)) = d(u, v) e d é uma isometria.

COROLÁRIO 2.14. Seja $T: \mathbb{R}^n \to \mathbb{R}^n$ uma isometria tal que T(0) = 0. Então T é linear e consequentemente T é uma transformação ortogonal.

DEMONSTRAÇÃO. Primeiro provaremos que $T(\alpha v) = \alpha T(v)$ para todo $v \in \mathbb{R}^n$. Pelo lema anterior, T preserva o produto interno, e assim

$$||T(\alpha v) - \alpha T(v)||^2 = (T(\alpha v) - \alpha T(v)) \cdot (T(\alpha v) - \alpha T(v))$$

$$= T(\alpha v) \cdot T(\alpha v) - 2\alpha T(\alpha v) \cdot T(v) + \alpha^2 T(v) \cdot T(v)$$

$$= (\alpha v) \cdot (\alpha v) - 2\alpha (\alpha v) \cdot v + \alpha^2 v \cdot v = 0.$$

Ou seja $||T(\alpha v) - \alpha T(v)|| = 0$ que implica que $T(\alpha v) - \alpha T(v) = 0$ e que $T(\alpha v) = \alpha T(v)$. Provaremos agora, para todo $u, v \in \mathbb{R}^n$, que T(u+v) = T(u) + T(v). Usamos um argumento similar e calculamos que

$$||T(u+v) - T(u) - T(v)||^2 = (T(u+v) - T(u) - T(v)) \cdot (T(u+v) - T(u) - T(v))$$

$$= T(u+v) \cdot T(u+v) + T(u) \cdot T(u) + T(v) \cdot T(v)$$

$$- 2T(u+v) \cdot T(u) - 2T(u+v) \cdot T(v) - 2T(u) \cdot T(v)$$

$$= (u+v) \cdot (u+v) + v \cdot v + u \cdot u$$

$$- 2(u+v) \cdot u - 2(u+v) \cdot v - 2u \cdot v$$

$$= ((u+v) - u - v) \cdot ((u+v) - u - v) = 0 \cdot 0 = 0.$$

Logo
$$T(u+v)-T(u)-T(v)=0$$
; ou seja, $T(u+v)=T(u)+T(v)$.

COROLÁRIO 2.15. Assuma que $T : \mathbb{R}^n = \mathbb{R}^n$ é uma isometria. Então $T = T_t \circ X$ onde T é uma translação e $X : \mathbb{R}^n \to \mathbb{R}^n$ é ortogonal (em particular, X é linear).

DEMONSTRAÇÃO. Assuma que T(0) = t. Então $X = T_{-t} \circ T$ é uma isometria tal que X(0) = 0. Pelo corolário anterior, $X : \mathbb{R}^n \to \mathbb{R}^n$ é ortogonal (e linear). Ora notamos que $T = T_t \circ X$.

COROLÁRIO 2.16. Qualquer isometria $T: \mathbb{R}^n \to \mathbb{R}^n$ é invertível.

CAPíTULO 3

Transformações ortogonais em 2D e 3D

1. O plano (2D)

1.1. Realização matricial. Lembre que a matriz da reflexão R_t pelo eixo que tem ângulo α pelo eixo x é

$$\begin{pmatrix} \cos(2\alpha) & \sin(2\alpha) \\ \sin(2\alpha) & -\cos(2\alpha). \end{pmatrix}$$

Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ uma transformação ortogonal e seja e_1, e_2 a base canônica. A matriz de T tem os vetores $f_1 = T(e_1)$ e $f_2 = T(e_2)$ nas colunas. Pela ortogonalidade de T, f_1 e f_2 formam uma base ortonormal de \mathbb{R}^2 . Assuma que $f_1 = (a,b)$ com $||f_1|| = a^2 + b^2 = 1$. Então $f_2 = (-b,a)$ ou $b_2 = (b,-a)$. Escolha um ângulo α tal que $a = \cos \alpha$ e $b = \sin \alpha$. Então a matriz [T] de T tem duas possíveis formas:

Caso I:
$$[T] = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$
 Caso II: $[T] = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix}$.

Seja

Lema 3.1. No primeiro caso T é a rotação Rot_{α} pelo ângulo α . No segundo caso, T é a reflexão $Ref_{\alpha/2}$ pelo eixo que tem ângulo $\alpha/2$ com o eixo x.

Lema 3.2. Temos as seguintes regras para a composição de rotações e reflexões.

- (1) $Rot_{\alpha} \circ Rot_{\beta} = Rot_{\alpha+\beta}$;
- (2) $Ref_{\alpha} \circ Ref_{\beta} = Rot_{2(\alpha-\beta)};$
- (3) $Rot_{\alpha} \circ Ref_{\beta} = Ref_{\beta+\alpha/2};$
- (4) $Ref_{\alpha} \circ Rot_{\beta} = Ref_{\alpha-\beta/2}$.

Demonstração. (1) é exercício. Demonstremos (2). Seja $v \in \mathbb{R}^2$ e calculemos que

$$\begin{aligned} &\operatorname{Ref}_{\alpha} \circ \operatorname{Ref}_{\beta}(v) = \begin{pmatrix} \cos(2\alpha) & \sin(2\alpha) \\ \sin(2\alpha) & -\cos(2\alpha) \end{pmatrix} \cdot \begin{pmatrix} \cos(2\beta) & \sin(2\beta) \\ \sin(2\beta) & -\cos(2\beta) \end{pmatrix} v \\ &= \begin{pmatrix} \cos(2\alpha)\cos(2\beta) + \sin(2\alpha)\sin(2\beta) & \cos(2\alpha)\sin(2\beta) - \sin(2\alpha)\cos(2\beta) \\ \sin(2\alpha)\cos(2\beta) - \cos(2\alpha)\sin(2\beta) & \sin(2\alpha)\sin(2\beta) + \cos(2\alpha)\cos(2\beta) \end{pmatrix} v \\ &= \begin{pmatrix} \cos(2(\alpha - \beta)) & -\sin(2(\alpha - \beta)) \\ \sin(2(\alpha - \beta)) & \cos(2(\alpha - \beta)) \end{pmatrix} v \\ &= \operatorname{Rot}_{2(\alpha - \beta)}(v) \end{aligned}$$

(3) Temos que

$$\operatorname{Ref}_{\beta+\alpha/2} \circ (\operatorname{Ref}_{\beta})^{-1} = \operatorname{Ref}_{\beta+\alpha/2} \circ (\operatorname{Ref}_{\beta}) = \operatorname{Rot}_{2(\beta-\alpha-\beta)} = \operatorname{Rot}_{\alpha}$$

que implica afirmação (3). A demonstração de (4) é similar à demonstração de (3). \Box

EXEMPLO 3.3. Seja $\alpha \in [0, 2\pi)$ e considere $\operatorname{Rot}_{\alpha} : \mathbb{R}^2 \to \mathbb{R}^2$ a rotação por ângulo α ao redor da origem. Os autovalores de $\operatorname{Rot}_{\alpha}$ são raízes do polinômio caraterístico

$$\det(t \cdot \mathrm{id} - \mathrm{Rot}_{\alpha}) = \det\begin{pmatrix} t - \cos \alpha & \sin \alpha \\ - \sin \alpha & t - \cos \alpha \end{pmatrix}$$
$$= (t - \cos \alpha)^2 + \sin^2 \alpha = t^2 - 2t \cos \alpha + \sin^2 \alpha$$
$$= t^2 - 2t \cos \alpha + 1.$$

As raízes deste polinômio são $z=\cos\alpha+i\sin\alpha$ e $\bar{z}=\cos\alpha-i\sin\alpha$. Isso quer dizer que o ângulo da rotação pode ser determinado pelos autovalores da transformação. Mais precisamente o ângulo da rotação é α onde $\cos\alpha=(z+\bar{z})/2$ e sen $\alpha=(z-\bar{z})/(2i)$.

th:recog

TEOREMA 3.4. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ uma transformação ortogonal com dois autovalores z, \bar{z} onde $z \in \mathbb{C}$ e ||z|| = 1. Então T é uma rotação por ângulo α onde $\cos \alpha = (z + \bar{z})/2$ e sen $\alpha = (z - \bar{z})/(2i)$.

DEMONSTRAÇÃO. Note que det $T=z\bar{z}=1$ e pelas considerações anteriores, T é uma rotação. Logo, a matriz de T está na forma

$$\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}.$$

Usando a computação no exemplo anterior, os autovalores z e \bar{z} são $\cos \alpha + i \sin \alpha$ e $\cos \alpha - i \sin \alpha$ e segue a afirmação.

1.2. Realização com números complexos. O vetor $(\alpha, \beta) \in \mathbb{R}^2$ pode ser identificado com o número complexo $\alpha + i\beta$. Cada número complexo z pode ser escrito como $z = \|z\|(\cos\alpha + \sin\alpha)$ onde α é o ângulo (frequentamente chamado de argumento) que corresponde a z e $\alpha \in [0, 2\pi)$. Um número complexo z com $\|z\| = 1$ tem a forma $z = \cos\alpha + \sin\alpha$. Pela fórmula de Euler,

$$\cos \alpha + i \operatorname{sen} \alpha = e^{i\alpha} = \exp(i\alpha)$$

O conjugado de um número $z = \alpha + \beta i$ é $\bar{z} = \alpha - \beta i$.

Lema 3.5. (1) Seja $z_{\alpha} = \cos \alpha + i \sin \alpha$. A aplicação

$$T: \mathbb{C} \to \mathbb{C}, \quad T(z) = z_{\alpha} \cdot z$$

corresponde a rotação Rot_{α} pelo ângulo α (em torno da origem).

(2) Seja T a reflexão pelo eixo que tem ângulo α com o eixo x. Então

$$T(z) = z_{2\alpha} \cdot \bar{z}$$

Demonstração. (1) Seja $z = ||z||(\cos \beta + \sin \beta)$. Então

$$z_{\alpha} \cdot z = ||z||(\cos \alpha + \sin \alpha)(\cos \beta + \sin \beta)$$

= $\cos \alpha \cos \beta - \cos \alpha \cos \beta + i(\cos \alpha \sin \beta + \sin \alpha \cos \beta)$
= $||z||(\cos(\alpha + \beta) + i(\cos \alpha + \beta)).$

(2) Claramente $Ref_0(z) = \bar{z}$. Então

$$T(z) = z_{2\alpha} \cdot \bar{z} = \operatorname{Rot}_{2\alpha} \operatorname{Ref}_0(z) = \operatorname{Ref}_{\alpha}(z).$$

1.3. Os grupos $O(\mathbb{R}^2) = O_2$ e $SO(\mathbb{R}^2) = SO_2$. Considere o circulo $S^1 = \{z \in \mathbb{C} \mid ||z|| = 1\} = \{\exp(i\alpha) \mid \alpha \in [0, 2\pi)\}.$

Temos que S^1 é um grupo para a operação de multiplicação. Considere a aplicação

$$\psi: S^1 \to SO(\mathbb{R}^2), \quad \exp(i\alpha) \mapsto \operatorname{Rot}_{\alpha}.$$

Teorema 3.6. Temos que ψ é uma aplicação invertível e

$$\psi(z_1 \cdot z_2) = \psi(z_1) \circ \psi(z_2).$$

Ou seja, ψ é um isomorfismo entre os grupos S^1 e SO_3 .

DEMONSTRAÇÃO. Se $\psi(\exp(i\alpha)) = \psi(i\beta)$ então $\mathrm{Rot}_{\alpha} = \mathrm{Rot}_{\beta}$ e, como $\alpha \in [0, 2\pi)$, $\alpha = \beta$. Logo ψ é injetivo. Claramente, $\mathrm{Rot}_{\alpha} = \psi(\exp(i\alpha))$ e assim ψ é sobrejetivo. Agora,

$$\psi(\exp(i\alpha)\exp(i\beta)) = \psi(\exp(i(\alpha+\beta))) = \operatorname{Rot}_{\alpha+\beta} = \operatorname{Rot}_{\alpha} \circ \operatorname{Rot}_{\beta}$$
$$= \psi(\exp(i\alpha)) \circ \psi(\exp(i\beta))$$

Note que o grupo SO_3 pode ser identificado também com o grupo $[0,2\pi)$ com a operação de adição feita "módulo 2π ".

Lema 3.7. Seja $T \in O_2$ uma reflexão. Então $O_2 = SO_2 \cup tSO_2$. Além disso qualquer rotação pode ser escrita como uma composição de duas reflexões.

Demonstração. Exercício.

2. O espaço 3D

EXERCÍCIO 3.8. Seja $T: \mathbb{R}^n \to \mathbb{R}^n$ uma transformação ortogonal $e \lambda \in \mathbb{C}$ um autovalor de T. Mostre que $|\lambda| = 1$. Mostre que se v_1 é um autovetor de T com autovalor 1 e u é um autovetor de T com autovalor -1, então u e v são ortogonais ($u \cdot v = 0$).

Seja $T:\mathbb{R}^3\to\mathbb{R}^3$ uma transformação ortogonal. Nós já vimos que det $T=\pm 1$. A transformação T possui três autovalores (possívelmente complexos) não necessáriamente distintos. Além disso, se $z\in\mathbb{C}$ é um autovalor de T, então $\|z\|=1$ e $\bar{z}\in\mathbb{C}$ é também um autovalor de T. As possibilidades para os autovalores são os seguintes.

Caso I:1,1,1; Caso II:1,1,-1; Caso III:1,-1,-1; Caso IV:1, z, \bar{z} com algum $z \in \mathbb{C} \setminus \mathbb{R}$; Caso V:-1,-1,-1; Caso VI:-1, z, \bar{z} com algum $z \in \mathbb{C} \setminus \mathbb{R}$.

Exercício 3.9. Dê exemplos de transformações de todos os tipos.

2.1. Rotações em 3D.

TEOREMA 3.10. Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ transformação ortogonal com det T=1. Então existe uma base v_1, v_2, v_3 ortonormal de \mathbb{R}^3 na qual a matriz de T está na forma

$$[T] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}$$

Logo, a transformação T é a rotação por ângulo α pelo eixo v_1 .

DEMONSTRAÇÃO. Se os autovalores são 1, 1, 1, então a transformação é a identidade e podemos tomar a base canônica e $\alpha = 0$. Se os autovalores são 1, -1, -1 então toma uma base ortonormal de \mathbb{R}^n formada por autovetores e $\alpha = \pi$.

Agora assuma que os autovetores de T são $1, z, \bar{z}$ com algum $z \in \mathbb{C} \setminus \mathbb{R}$. Seja v_1 um autovetor de T com autovalor 1 (ou seja $T(v_1) = v_1$). Como T preserva o subespaço $\langle v_1 \rangle$, T preserva também o subespaço $U = \langle v_1 \rangle^{\perp}$. Note que dim U = 2 e seja v_2, v_3 uma base ortonormal de U. Então v_1, v_2, v_3 é uma base ortonormal de \mathbb{R}^3 . Seja T_1 a restrição de T para U. Então T_1 preserva o produto escalar em U e assiminduz uma transformação ortogonal em U com autovalores z e \bar{z} . Pelo Teorema $3.4, T_1$ é uma rotação com um ângulo α determinado por z e \bar{z} . A matriz de T na base v_1, v_2, v_3 é na forma desejada, e T é a rotação por ângulo α pelo eixo v_1 .

Uma transformação ortogonal $T: \mathbb{R}^3 \to \mathbb{R}^3$ com determinante 1 é uma rotação. Pelas considerações anteriores, as possíveis autovetores de uma rotação são 1, 1, 1 ou 1, -1, -1, ou 1, z, \bar{z} onde $z \in \mathbb{C} \setminus \mathbb{R}$ com ||z|| = 1.

Temos em particular as rotações $\operatorname{Rot}_{\alpha}^{x}$, $\operatorname{Rot}_{\beta}^{y}$ e $\operatorname{Rot}_{\gamma}^{z}$ por ãngulos α , β e γ em torno dos eixos x, y, e z respetivamente. As matrizes destas rotações na base canônica são

$$[\operatorname{Rot}_{\alpha}^{x}] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}$$
$$[\operatorname{Rot}_{\beta}^{y}] = \begin{pmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{pmatrix}$$
$$[\operatorname{Rot}_{\beta}^{y}] = \begin{pmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

2.2. A fórmula de Rodrigues. Seja $k \in \mathbb{R}^3$ um vetor unitário e $\vartheta \in [0, 2\pi)$. Considere a rotação $R = R(k, \vartheta) : \mathbb{R}^3 \to \mathbb{R}^3$ pelo ângulo ϑ ao redor do eixo $k = (k_x, k_y, k_z)$. Seja

$$K = \begin{pmatrix} 0 & -k_z & k_y \\ k_z & 0 & -k_x \\ -k_y & k_x & 0 \end{pmatrix}.$$

Lema 3.11. Seja $v \in \mathbb{R}^3$. Então $k \times v = Kv$. Em particular, Kk = 0.

DEMONSTRAÇÃO. Temos que

$$k \times v = \det \begin{pmatrix} i & j & k \\ k_x & k_y & k_z \\ v_x & v_y & v_z \end{pmatrix} = (k_y v_z - k_z v_y, -k_x v_z + k_z v_x, k_x v_y - k_y v_x)$$

$$= \begin{pmatrix} 0 & -k_z & k_y \\ k_z & 0 & -k_x \\ -k_y & k_x & 0 \end{pmatrix} \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix}.$$

Ora, $Kk = k \times k = 0$.

Lema 3.12. A matriz da rotação $R = R(k, \vartheta)$ na base canônica é

$$[R] = I + (\operatorname{sen} \vartheta)K + (1 - \cos \vartheta)K^2 = I + (\operatorname{sen} \vartheta)K + (1 - \cos \vartheta)k^t k$$

DEMONSTRAÇÃO. Escolha uma base ortonormal de \mathbb{R}^3 na forma k,u,v em tal forma que $k\times u=v,\,u\times v=k$ e $v\times k=u$ e seja $X=I+(\operatorname{sen}\vartheta)K+(1-\cos\vartheta)K^2$. Como $Kk=K^2k=0$, temos que

$$Xk = (I + (\operatorname{sen} \theta)K + (1 - \cos \theta)K^{2})k = Ik = k.$$

Agora

$$Xu = (I + (\operatorname{sen} \vartheta)K + (1 - \cos \vartheta)K^{2})u = u + (\operatorname{sen} \vartheta)v - (1 - \cos \vartheta)u$$
$$= (\cos \vartheta)u + (\operatorname{sen} \vartheta)v$$

20

e

$$Xv = (I + (\operatorname{sen} \vartheta)K + (1 - \cos \vartheta)K^{2})v = v - (\operatorname{sen} \vartheta)u - (1 - \cos \vartheta)v$$
$$= -(\operatorname{sen} \vartheta)u + (\cos \vartheta)v$$

Logo a matriz de R na base k, u, v é

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \vartheta & -\sin \vartheta \\ 0 & \sin \vartheta & \cos \vartheta \end{pmatrix}.$$

Portanto [R]=X. Para provar a segunda igualdade do lema, note que $\|k\|=k_x^2+k_y^2+k_z^2=1$ e assim

$$K^{2} = \begin{pmatrix} 0 & -k_{z} & k_{y} \\ k_{z} & 0 & -k_{x} \\ -k_{y} & k_{x} & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & -k_{z} & k_{y} \\ k_{z} & 0 & -k_{x} \\ -k_{y} & k_{x} & 0 \end{pmatrix}$$
$$= \begin{pmatrix} -k_{z}^{2} - k_{y}^{2} & k_{y}k_{x} & k_{z}k_{x} \\ k_{x}k_{y} & -k_{z}^{2} - k_{x}^{2} & k_{z}k_{y} \\ k_{x}k_{z} & k_{y}k_{z} & -k_{y}^{2} - k_{x}^{2} \end{pmatrix} = k^{t} \cdot k - I$$

Logo a matriz de R é

$$X = I + (\operatorname{sen} \vartheta)K + (1 - \cos)K^2 = I + (\operatorname{sen} \vartheta)K + (1 - \cos \vartheta)(k^t \cdot k - I)$$
$$= (\cos \vartheta)I + (\operatorname{sen} \vartheta)K + (1 - \cos \vartheta)k^t \cdot k$$

Corolário 3.13. A matriz de $R(k, \vartheta)$ é

$$\begin{pmatrix} (1-\cos\vartheta)k_x^2+\cos\vartheta & (1-\cos\vartheta)k_xk_y-k_z\sin\vartheta & (1-\cos\vartheta)k_xk_z+k_y\sin\vartheta \\ (1-\cos\vartheta)k_xk_y+k_z\sin\vartheta & (1-\cos\vartheta)k_y^2+\cos\vartheta & (1-\cos\vartheta)k_yk_z-k_x\sin\vartheta \\ (1-\cos\vartheta)k_xk_z-k_y\sin\vartheta & (1-\cos\vartheta)k_yk_z+k_x\sin\vartheta & (1-\cos\vartheta)k_z^2+\cos\vartheta \end{pmatrix}.$$

Demonstração. Apenas escreva a matriz $(\cos \vartheta)I + (\sin \vartheta)K + (1-\cos \vartheta)k^t \cdot k$. \square

COROLÁRIO 3.14. Dada a matriz X da rotação $R(k, \vartheta) : \mathbb{R}^3 \to \mathbb{R}^3$. Temos que

$$\vartheta = \arccos \frac{X_{11} + X_{22} + X_{33} - 1}{2}$$

$$k_x = \frac{X_{32} - X_{23}}{2 \operatorname{sen} \vartheta};$$

$$k_y = \frac{X_{13} - X_{31}}{2 \operatorname{sen} \vartheta};$$

$$k_z = \frac{X_{21} - X_{12}}{2 \operatorname{sen} \vartheta}.$$

2.3. A decomposição ZXZ. Dada uma rotação $R = R(k, \alpha)$, ela pode ser escrita como produto de rotações elementares. Uma decomposição comum é escrever R na forma $R(z, \psi)R(y, \vartheta)R(x, \varphi)$. Escrevendo o produto matricial, obtemos que a matriz da composição $R(z, \psi)R(y, \vartheta)R(x, \varphi)$ é

```
\begin{pmatrix}
\cos\vartheta\cos\psi & -\cos\varphi\sin\psi + \sin\varphi\sin\vartheta\cos\psi & \sin\varphi\sin\psi + \cos\varphi\sin\vartheta\cos\psi \\
\cos\vartheta\sin\psi & \cos\varphi\cos\psi + \sin\varphi\sin\vartheta\sin\psi & -\sin\varphi\cos\psi + \cos\varphi\sin\vartheta\sin\psi \\
-\sin\vartheta & \sin\varphi\cos\vartheta & \cos\varphi\cos\vartheta
\end{pmatrix}
```

Se temos a matriz $X_{i,j}$ de R, então os ãngulos φ , ϑ , ψ podem ser obtidos.

2.4. A decomposição ZXZ. Uma outra decomposição comum de R é escrever R na forma $R=R(z,\psi)R(x,\vartheta)R(z,\varphi)$. Multiplicando as matrizes, obtemos que a matriz desta composição é

$$\begin{pmatrix}
\cos\psi\cos\varphi - \sin\psi\cos\vartheta & \sin\varphi & -\cos\psi\sin\varphi - \sin\psi\cos\vartheta\cos\varphi & \sin\psi\sin\vartheta \\
\cos\psi\cos\vartheta & \sin\varphi + \sin\psi\cos\varphi & \cos\psi\cos\vartheta\cos\varphi - \sin\psi\sin\varphi & -\cos\psi\sin\vartheta \\
& \sin\vartheta\sin\varphi & & \sin\theta\cos\varphi & & \cos\vartheta
\end{pmatrix}$$

CAPíTULO 4

Os quatérnios e as rotações em \mathbb{R}^3

1. A álgebra dos quatérnios

Seja \mathbb{H} o espaço vetorial de dimensão 4 gerado por 1, i, j, k. Introduzimos uma multiplicação em \mathbb{H} com a seguinte tabela de multiplicação:

	1	i	j	k
1	1	i	j	k
i	i	-1	k	-j
j	j	-k	-1	i
k	k	j	-i	-1

Note que o conjunto $\{1, -1, i, -i, j, -j, k, -k\}$ é um grupo para esta multiplicação. A multiplicação entre os elementos 1, i, j, k será estendida com a regra distributiva. Um elemento de $\mathbb H$ chama-se um quatérnio e e conjunto $\mathbb H$ chama-se a álgebra dos quatérnios. A seguinte lema é fácil de verificar por conta direta.

Lema 4.1. A álgebra dos quatérnios é um espaço vetorial de dimensão 4 com uma multiplicação bem definida. Além disso, a multiplicação é associativa, possui elemento neutro (o elemento 1), mas não é comutativa. A estrutura satisfaz a lei distributiva:

$$q_1(q_2+q_3) = q_1q_2 + q_1q_3$$
 e $(q_1+q_2)q_3 = q_1q_3 + q_2q_3$.

Todo quatérnio $q \in \mathbb{H}$ pode ser escrito unicamente na forma $q = \alpha_q + v_q$ onde $\alpha_q \in \mathbb{R}$ e $v_q \in \langle i, j, k \rangle$. Um quatérnio com $v_q = 0$ chama-se escalar, enquanto um quatérnio com $\alpha_q = 0$ chama-se quatérnio puro. Pode-se definir o produto escalar entre quatérnios como no espaço \mathbb{R}^3 pela regra

$$(p,q) = \alpha_p \alpha_q + \beta_p \beta_q + \gamma_p \gamma_q + \delta_p \delta_q$$

para todo $p = \alpha_p + \beta_p i + \gamma_p j + \delta_p k$ e $q = \alpha_q + \beta_q i + \gamma_q j + \delta_q k$. (O produto escalar será denotado por (\cdot, \cdot) para não confundir com a multiplicação.) Em relação com este produto escalar, os elementos 1, i, j, e k formam uma base ortonormal de \mathbb{H} . A norma de um quatérnio na forma $q = \alpha + \beta i + \gamma j + \delta k$ é definida como

$$||q|| = \sqrt{(q,q)} = \sqrt{\alpha^2 + \beta^2 + \gamma^2 + \delta^2},$$

enquanto o conjugado \bar{q} está definido como

$$\bar{q} = \alpha - \beta i - \gamma j - \delta.$$

A norma e o conjugado entre quatérnios satisfaz propriedades similares que a norma e o conjugado para números complexos.

Lema 4.2. As seguintes afirmações são verdadeiras para $q \in \mathbb{H}$.

- (1) $\alpha_q = (q + \bar{q})/2;$
- (2) $v_q = (q \bar{q})/2;$
- (3) $\overline{q_1 + q_2} = \overline{q}_1 + \overline{q}_2$ $e \overline{q_1}\overline{q_2} = \overline{q}_2 \cdot \overline{q}_1$ (note a troca na ordem!);
- (4) ||q|| = 0 se e somente se q = 0;
- (5) $||q_1 + q_2|| \le ||q_1|| + ||q_2||$;
- (6) $||q_1 \cdot q_2|| = ||q_1|| ||q_2||;$
- (7) $\|\alpha q\| = |\alpha| \|q\|$ para $\alpha \in \mathbb{R}$;
- (8) $||q||^2 = q \cdot \bar{q}$.

Demonstração. Deixamos a maioria destas afirmações para exercício. Para (8), calculemos que

$$q \cdot \bar{q} = (\alpha + \beta i + \gamma j + \delta k)(\alpha - \beta i - \gamma j - \delta k)$$
$$= \alpha^2 + \beta^2 + \gamma^2 + \delta^2 = ||q||^2.$$

COROLÁRIO 4.3. Seja $q=\alpha_q+v_q=\alpha+\beta i+\gamma j+\delta k\in\mathbb{H}\setminus\{0\}$. Então q possui inverso multiplicativo e

$$q^{-1} = \frac{\bar{q}}{\|q\|^2} = \frac{\alpha - \beta i - \gamma j - \delta k}{\alpha^2 + \beta^2 + \gamma^2 + \delta^2}.$$

Em outras palávras, $\mathbb{H} \setminus \{0\}$ é grupo para a multiplicação.

Demonstração. Segue da afirmação (8) do lema anterior que

$$q \cdot \frac{\bar{q}}{\|q\|^2} = \frac{\|q\|^2}{\|q\|^2} = 1.$$

Um quatérnio $q \in \mathbb{H}$ chama-se unitário se ||u|| = 1.

LEMA 4.4. O elemento $1 \in \mathbb{H}$ é unitário, e se $q \in \mathbb{H}$ é unitário, então q^{-1} é unitário. Logo, os quatérnios unitários formam um grupo para a multiplicação. Além disso, se $q \in \mathbb{H}$ é unitário, então $q^{-1} = \bar{q}$.

Para $q_1, q_2 \in \mathbb{H}$, defina o comutador

$$[q_1, q_2] = \frac{1}{2}(q_1q_2 - q_2q_1).$$

Lema 4.5. O comutador satisfaz as seguintes propriedades para todo $q_1, q_2, q_3 \in \mathbb{H}$:

- (1) $[q_1 + q_2, q_3] = [q_1, q_3] + [q_2, q_3] e [q_1, q_2 + q_3] = [q_1, q_2] + [q_1, q_3]$ (distributividade);
- (2) $[q_1, q_1] = 0$ $e[q_1, q_2] = -[q_2, q_1]$ (anti-comutatividade);
- (3) $[[q_1, q_2], q_3] + [[q_2, q_3], q_1] + [[q_3, q_1], q_2] = 0$ (identidade de Jacobi).

As identidades no lema anterior implicam que a estrutura $(\mathbb{H}, +, [\cdot, \cdot])$ é uma álgebra de Lie. Seja Q o espaço dos quatérnios puros. Então Q é um espaço vetorial de dimensão 3 gerado por i, j, e k. Note que Q não é fechado para o produto \cdot entre os quatérnios (por exemplo $i \cdot i = i^2 = -1 \notin Q$), mas ele é fechado para o comutador. De fato, temos que [i, j] = k, [j, k] = i e [k, i] = j. Ou seja, o comutador no espaço k comporta-se exatamente como o produto vetorial \times sobre \mathbb{R}^3 . Além disso, [1, q] = 0 para todo $q \in \mathbb{H}$.

Lema 4.6. As seguintes propriedades são válidas para $q = \alpha_q + v_q$ e $p = \alpha_p + v_p$:

- (1) $[p,q] = [v_p, v_q];$
- $(2) p \cdot q = \alpha_p \alpha_q (v_p, v_q) + \alpha_p v_q + \alpha_q v_p + v_p \times v_q = \alpha_p \alpha_q (v_p, v_q) + \alpha_p v_q + \alpha_q v_p + [p, q];$
- (3) Se p e q são quatérnios puros, então $p \cdot q = -(p,q) + p \times q = -(p,q) + [p,q]$.
- (4) Se p e q são quatérnios puros ortogonais, então $p \cdot q = p \times q$.
- (5) Se p é puro unitário, então $p^2 = -1$.

DEMONSTRAÇÃO. (1)–(4) Uma conta usando as definições. Para provar (5), note que item (3) implica que

$$v^{2} = -(v, v) + v \times v = -(v, v) = -\|v\|^{2} = -1.$$

Se $q = \alpha_q + v_q \in \mathbb{H}$ com $v_q \neq 0$, então

$$q = \alpha_q + \|v_q\| \frac{v_q}{\|v_q\|} = \alpha_q + \beta_q u_q$$

onde u_q é um quatérnio puro unitário. Além disso, se ||q|| = 1, como $\alpha_q \perp v_q$,

$$1 = ||q|| = \alpha_q^2 + \beta_q^2$$

então

$$q = \cos \vartheta_q + \sin \vartheta_q u_q$$

com algum ângulo $\vartheta \in [0, 2\pi)$.

Teorema 4.7. Todo quatérnio $q \in \mathbb{H}$ unitário pode ser escrito na forma

$$\cos\vartheta + (\sin\vartheta)u$$

onde u é um quatérnio puro unitário. Além disso, se $q \neq 1$, então esta expressão é única.

Demonstração. If $v_q \neq 0$, então siga o processo antes do enunciado. Se $v_q = 0$, então toma $\vartheta = 0$ ou $\vartheta = \pi$ e u arbitrário.

Lema 4.8. Seja $u \in \mathbb{H}$ um quatérnio unitário. Então as aplicações

$$L_u: \mathbb{H} \to \mathbb{H}, \ L_u(q) = uq \quad e \quad R_u: \mathbb{H} \to \mathbb{H}, \ R_u(q) = qu^{-1} = q\bar{u}$$

são transformações ortogonais de \mathbb{H} com determinante 1; ou seja, L_u e R_u são rotações de $\mathbb{H} \cong \mathbb{R}^4$.

Demonstração. Pela distributividade da multiplicação, temos que L_u e R_u são transformações lineares. Além disso

$$||L_u(q)|| = ||uq|| = ||u|||q|| = ||q||$$

e obtém-se similarmente que $||R_u(q)|| = ||q||$; ou seja L_u e R_u preservam a norma. Nós já provamos que para uma transformação linear isso é equivalente a ser ortogonal. Precisamos ainda provar que det $L_u = \det R_u = 1$. Escreva $u = \cos \vartheta + \sin \vartheta u_0$ onde u_0 é quatérnio puro unitário. Neste caso $1 \perp u_0$ e escolha um quatérnio puro unitário v tal que $u_0 \perp v$ e seja $w = [u_0, v] = u_0 \times v$. Então temos que a matriz de L_u na base $1, u_0, v, w$ é

$$[L_{u_0}] = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

e a matriz de $L_u = (\cos \vartheta)I + (\sin \vartheta)L_{u_0} \in$

$$[L_u] = \begin{pmatrix} \cos \vartheta & -\sin \vartheta & 0 & 0\\ \sin \vartheta & \cos \vartheta & 0 & 0\\ 0 & 0 & \cos \vartheta & -\sin \vartheta\\ 0 & 0 & \sin \vartheta & \cos \vartheta \end{pmatrix}.$$

Segue que L_u pode ser realizada como a composição de duas rotações: a primeira no plano $\langle 1, u \rangle$ e a segunda no plano $\langle v, w \rangle$ com ângulo ϑ . Temos que det $L_u = (\cos^2 \vartheta + \sin^2 \vartheta)^2 = 1$. A computação para R_u é similar. Note que $u^{-1} = \bar{u} = \cos \vartheta - \sin \vartheta u_0$ e a matriz de R_u na mesma base será

$$[R_u] = \begin{pmatrix} \cos \vartheta & \sin \vartheta & 0 & 0 \\ -\sin \vartheta & \cos \vartheta & 0 & 0 \\ 0 & 0 & \cos \vartheta & -\sin \vartheta \\ 0 & 0 & \sin \vartheta & \cos \vartheta \end{pmatrix}$$

Ou seja, R_u faz uma rotação no plano $\langle 1, u \rangle$ com ângulo $-\vartheta$ e uma rotação no plano $\langle v, w \rangle$ por ângulo ϑ .

TEOREMA 4.9. Seja $u = \cos \vartheta + (\sin \vartheta)u_0 \in \mathbb{H}$ um quatérnio unitário. Defina

$$T_u: \mathbb{H} \to \mathbb{H}, \quad T_u(q) = uqu^{-1} = (L_u \circ R_u)(q).$$

Então $T_u(1) = 1$ e T_u induz uma rotação do espaço $\mathbb{R}^3 \cong \langle i, j, k \rangle$. O eixo desta rotação é u_0 e o seu ângulo é 2ϑ .

Demonstração. Primeiro

$$T_u(1) = u \cdot 1 \cdot u^{-1} = u \cdot u^{-1} = 1.$$

Além disso, T_u é uma composição de duas transformações ortogonais, e ela é ortigonal e temos ainda que det $T_u = \det L_u \cdot \det R_u = 1$. Logo T_u é uma rotação de \mathbb{H} . Consequentemente, T_u preserva $Q = \langle i, j, k \rangle = \langle 1 \rangle^{\perp}$. Além disso, T_u preserva a norma em Q e assim a

restrição de T_u para Q é uma transformação ortogonal com determinante 1. Portanto T_u induz uma rotação em $\langle i, j, k \rangle$. O eixo desta rotação pode ser calculado por determinar um autovetor de T_u em $\langle i, j, k \rangle$ que corresponde ao autovalor 1. Mas note que

$$uu_0 = (\cos \vartheta + (\sin \vartheta)u_0)u_0 = u_0(\cos \vartheta + (\sin \vartheta)u_0) = (\cos \vartheta)u_0 - \sin \vartheta = u_0u$$

e assim

$$T_u(u_0) = uu_0u^{-1} = u_0uu^{-1} = u_0$$

e obtemos que o eixo de T_u em $\langle i, j, k \rangle$ é u.

Finalmente, temos que verificar a afirmação sobre o ângulo. Escreva $u = \cos \vartheta + (\sin \vartheta)u_0$ onde u_0 é puro e unitário. Como na demonstração anterior, considere a base $1, u_0, v, w$ onde $v \in Q$ unitário ortogonal a u e $w = u \times v$. Como T_u é a composição de L_u e R_u , temos que a matriz de T_u nesta base é o produto das matrizes de L_u e R_u e assim

$$[T_u] = \begin{pmatrix} \cos \vartheta & -\sin \vartheta & 0 & 0 \\ \sin \vartheta & \cos \vartheta & 0 & 0 \\ 0 & 0 & \cos \vartheta & -\sin \vartheta \\ 0 & 0 & \sin \vartheta & \cos \vartheta \end{pmatrix} \begin{pmatrix} \cos \vartheta & \sin \vartheta & 0 & 0 \\ -\sin \vartheta & \cos \vartheta & 0 & 0 \\ 0 & 0 & \cos \vartheta & -\sin \vartheta \\ 0 & 0 & \sin \vartheta & \cos \vartheta \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos(2\vartheta) & -\sin(2\vartheta) \\ 0 & 0 & \sin(2\vartheta) & \cos(2\vartheta) \end{pmatrix}.$$

COROLÁRIO 4.10. Toda rotação T de $\mathbb{R}^3 = \langle i, j, k \rangle$ pode ser realizado como T_u com algum $u \in \mathbb{H}$ unitário. Além disso, se $u, v \in \mathbb{H}$ são unitários, então $T_u = T_v$ se e somente se $u = \pm v$.

Demonstração. Seja u_0 o eixo de T e ϑ o ângulo da rotação. Toma

$$u = \cos(\vartheta/2) + (\sin(\vartheta/2))u_0.$$

Pelo teorema anterior, $T = T_u$.

Para provar a segunda afirmação, primeiro provaremos que $T_u=\operatorname{id}$ se e somente se $u=\pm 1$. Primeiro, se $u=\pm 1$, então $T_u=\operatorname{id}$. Assuma que $T_u=\operatorname{id}$. Assuma que $u,v\in\mathbb{H}$ são unitários e escreva $u=\cos\alpha+\sin\alpha u_0$. O ângulo da rotação é 2α . Temos que $T_u=\operatorname{id}$ se e somente se 2α é um múltiplo de 2π , ou seja $\alpha=0$ ou $\alpha=\pi$. Obtemos nos dois casos que u=1 ou u=-1. Assuma agora que $T_u=T_v$ com $u,v\in\mathbb{H}$ unitários. Temos que

$$id = T_u T_v^{-1} = T_u T_{\bar{v}} = T_{u\bar{v}}.$$

Pelo afirmação anterior, $u\bar{v}=\pm 1$ e assim $u=\pm v$.

COROLÁRIO 4.11. O grupo $SO(\mathbb{R}^3)$ das rotações de \mathbb{R}^3 pode ser identificado com a meia esfera $S^3 \subseteq \mathbb{R}^4$. Dois elementos $u,v \in S^3$ representam a mesma rotação se e somente se $u=\pm v$.

1.1. A composição de rotações. Sejam $u = \cos \vartheta + (\sin \vartheta)u_0$ e $v = \cos \beta + (\sin \beta)v_0$ quatérnios unitários. Note, para todo $x \in \mathbb{H}$ que

$$T_{uv}(x) = uvx(uv)^{-1} = uvxv^{-1}u^{-1} = T_u \circ T_v(x).$$

Logo,

$$T_{uv} = T_u \circ T_v$$
.

Além disso, uv é quatérnio unitário e

 $= \cos \theta \cos \beta - \sin \theta \sin \beta (u_0, v_0) + w$

$$uv = (\cos \vartheta + (\sin \vartheta)u_0)(\cos \beta + (\sin \beta)v_0)$$

$$= \cos \vartheta \cos \beta + (\cos \vartheta \sin \beta)v_0 + (\cos \beta \sin \vartheta)u_0 + \sin \vartheta \sin \beta u_0v_0$$

$$= \cos \vartheta \cos \beta + (\cos \vartheta \sin \beta)v_0 + (\cos \beta \sin \vartheta)u_0 + \sin \vartheta \sin \beta(-(u_0, v_0) + u_0 \times v_0)$$

$$= \cos \vartheta \cos \beta - \sin \vartheta \sin \beta(u_0, v_0) + (\cos \vartheta \sin \beta)v_0 + (\cos \beta \sin \vartheta)u_0 + (\sin \vartheta \sin \beta)u_0 \times w_0$$

com w puro (na útlima equação usamos que u_0 , v_0 são puros e unitários). A parte constante de uv é $\cos \vartheta \cos \beta - \sin \vartheta \sin \beta (u_0, v_0)$. Para escrever uv na forma $\cos \alpha + (\sin \alpha)w_0$, precisamos calcular ||w||. Usando que u_0 e v_0 são ambos ortogonais a $u_0 \times v_0$, e que u_0 , v_0 e $u_0 \times v_0$ são unitários, obtemos que

$$||w||^{2} = ||(\cos\vartheta \operatorname{sen}\beta)v_{0} + (\cos\beta \operatorname{sen}\vartheta)u_{0} + (\operatorname{sen}\vartheta \operatorname{sen}\beta)u_{0} \times v_{0}||^{2}$$

$$= ((\cos\vartheta \operatorname{sen}\beta)v_{0} + (\cos\beta \operatorname{sen}\vartheta)u_{0} + (\operatorname{sen}\vartheta \operatorname{sen}\beta)u_{0} \times v_{0},$$

$$= (\cos\vartheta \operatorname{sen}\beta)v_{0} + (\cos\beta \operatorname{sen}\vartheta)u_{0} + (\operatorname{sen}\vartheta \operatorname{sen}\beta)u_{0} \times v_{0})$$

$$= \operatorname{sen}^{2}\vartheta \operatorname{sen}^{2}\beta \operatorname{sen}^{2}\varphi + \cos^{2}\vartheta \operatorname{sen}^{2}\beta + \cos^{2}\beta \operatorname{sen}^{2}\vartheta + 2\cos\vartheta \operatorname{sen}\beta \cos\beta \operatorname{sen}\vartheta \cos\varphi$$

$$= \operatorname{sen}^{2}\vartheta \operatorname{sen}^{2}\beta \operatorname{sen}^{2}\varphi + (\cos\vartheta \operatorname{sen}\beta + \cos\beta \operatorname{sen}\vartheta)^{2} + 2\cos\vartheta \operatorname{sen}\beta \cos\beta \operatorname{sen}\vartheta (\cos\varphi - 1)$$

$$= \operatorname{sen}^{2}\vartheta \operatorname{sen}^{2}\beta \operatorname{sen}^{2}\varphi + \operatorname{sen}^{2}(\vartheta + \beta) + \frac{\cos^{2}(\vartheta - \beta) - \cos^{2}(\vartheta + \beta)}{2}(\cos\varphi - 1)$$

Então temos que

$$uv = w = \alpha_w + \beta_w w_0$$

onde

$$\alpha_w = \cos \vartheta \cos \beta - \sin \vartheta \sin \beta (u_0, v_0) = \cos \vartheta \cos \beta - \sin \vartheta \sin \beta \cos \varphi$$

$$\beta_w = \left(\sin^2 \vartheta \sin^2 \beta \sin^2 \varphi + \sin^2 (\vartheta + \beta) + \frac{\cos^2 (\vartheta - \beta) - \cos^2 (\vartheta + \beta)}{2} (\cos \varphi - 1) \right)^{1/2}$$

$$w_0 = \frac{(\cos \vartheta \sin \beta) v_0 + (\cos \beta \sin \vartheta) u_0 + (\sin \vartheta \sin \beta) u_0 \times v_0}{\beta_w}.$$

onde $w_0 = w/\|w\|$ é um quatérnio unitário puro.

TEOREMA 4.12. Sejam $R_1 = R(k_1, \vartheta_1)$ e $R_2 = R(k_2, \vartheta_2)$ rotações de \mathbb{R}^3 e assuma que $||k_1|| = ||k_2|| = 1$ e que φ é o ângulo entre k_1 e k_2 (ou seja, $\cos \varphi = (k_1, k_2)$). Então a composição $R = R_1 \circ R_2$ é uma rotação. O eixo de R é

$$k = (\cos \theta_1 \sin \theta_2)k_2 + (\cos \theta_2 \sin \theta_1)k_1 + (\sin \theta_1 \sin \theta_2)k_1 \times k_2$$

e o ângulo de R \acute{e} o ângulo ϑ que satisfaz

$$\begin{aligned} \cos(\vartheta/2) &= \cos(\vartheta_1/2)\cos(\vartheta_2/2) - \sin(\vartheta_1/2)\sin(\vartheta_2/2)\cos\varphi \\ &\sin(\vartheta/2) = ||k|| \\ &= \left(\sin^2(\vartheta_1/2)\sin^2(\vartheta_2/2)\sin^2(\varphi) + \sin^2((\vartheta_1\vartheta_2)/2) + \frac{\cos^2((\vartheta_1 - \vartheta_2)/2)) - \cos^2((\vartheta_1 + \vartheta_2)/2)}{2}(\cos\varphi - 1)\right)^{1/2} \end{aligned}$$

1.2. O mapa exponencial. Lembre que para um número real $\alpha \in \mathbb{R}$ (ou complexo $\alpha \in \mathbb{C}$), temos as seguintes séries de Taylor:

$$e^{\alpha} = \exp \alpha = \sum_{n=0}^{\infty} \frac{\alpha^n}{n!}$$

$$\operatorname{sen} \alpha = \sum_{n=0}^{\infty} \frac{(-1)^n \alpha^{2n+1}}{(2n+1)!}$$

$$\cos \alpha = \sum_{n=0}^{\infty} \frac{(-1)^n \alpha^{2n}}{(2n)!}.$$

Seja $v \in \mathbb{R}^3 \setminus \{0\}$ e considere v um quatérnio puro de \mathbb{H} . Pondo $\alpha = ||v||$, podemos escrever $v = \alpha v_0$ onde v_0 é um quatérnio puro unitário. Lembrando que $v_0^2 = -1$, temos que

$$v_0^0 = 1, \ v_0^1 = v_0, \ v_0^2 = -1, \ v_0^3 = -v_0, \ v_0^4 = 1, \ v_0^5 = v_0, \dots \text{etc.}$$

Mais precisamente temos que

$$v_0^k = \begin{cases} 1 & \text{se } k \equiv 0 \pmod{4}; \\ v_0 & \text{se } k \equiv 1 \pmod{4}; \\ -1 & \text{se } k \equiv 2 \pmod{4}; \\ -v_0 & \text{se } k \equiv 3 \pmod{4}; \end{cases}$$

Assim podemos escrever que

$$\exp(v) = \exp(\alpha v_0) = \sum_{n=0}^{\infty} \frac{\alpha^n v_0^n}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^n \alpha^{2n}}{(2n)!} + \left(\sum_{n=0}^{\infty} \frac{(-1)^n \alpha^{2n+1}}{(2n+1)!}\right) v_0 = \cos \alpha + (\sin \alpha) v_0.$$

Em outras palávras, $\exp(v)$ é um quatérnio unitário. Assim obtemos um mapa

$$\exp: \mathbb{H} \to \{u \in \mathbb{H} \mid ||u|| = 1\}, \quad v \mapsto \exp(v).$$

Note que o mapa exp é sobrejetiva, mas não é injetiva, pois $\exp(\alpha v_0) = \exp((\alpha + 2\pi)v_0)$, mas podemos definir para $q = \cos \alpha + (\sin \alpha)v_0$ o seu logaritmo como

$$\log q = \alpha v_0$$

e assim temos que

$$\exp(\log q) = q$$

para todo $q \in \mathbb{H}$ unitário.

O exponencial e logaritmo nos permite definir para um quatérnio puro q e para um $t \in \mathbb{R},$ o exponencial q^t como

$$q^t = e^{\log q \cdot t} = \exp(t \log q).$$

1.3. Interpolação geodésica. Dados $R_1, R_2 \in SO_3$, queremos obter um caminho suave composto por rotações em SO_3 entre R_1 e R_2 com a propriedade que a "velocidade do caminho" é constante. Matematicamente, nós queremos obter uma curva suave

$$\varphi: [0,1] \to SO_3, \quad \varphi(0) = R_0 \quad \text{e} \quad \varphi(1) = R_1$$

com $(d/dt)\varphi(t)$ constante.

Sejam R_1 e R_2 representadas por quatérnions

$$p = \cos \alpha + (\sin \alpha)p_0$$
 e $q = \cos \beta + (\sin \beta)q_0$

onde $\alpha, \beta \in [0, 2\pi)$ e $p_0, q_0 \in \mathbb{H}$ são quatérnios unitários. Representando os quatérnios nesse jeito, o nosso problema pode ser visto como o problema de achar uma curva suave

$$\varphi: [0,1] \to \{v \in \mathbb{H} \mid ||v|| = 1\}$$

com $\varphi(0) = p \in \varphi(1) = q$ tal que $d\varphi/dt$ constante.

Assuma primeiro que p = 1. Neste caso defina

$$\varphi: [0,1] \to SO_3, \quad \varphi(t) = \cos(t\beta) + \sin(t\beta)q_0 = \exp(t\beta q_0) = \exp(t\log q) = q^t.$$

Claramente, $\varphi(0) = 1$ e $\varphi(1) = q$. Além disso

$$\frac{d}{dt}\varphi(t) = -\sin(t\beta)\beta + \cos(t\beta)\beta q_0$$

e assim

$$\|\frac{d}{dt}\varphi(t)\| = |\beta|.$$

Assim, $(d/dt)\varphi(t)$ é constante e assim a curva φ pode ser vista como uma curva de velocidade constante. Pode ainda verificar que φ é uma curva ao longo de uma geodésica.

Sejam agora $p, q \in \mathbb{H}$ unitários e escreva

$$p = \cos \alpha + (\sin \alpha)p_0$$
 e $q = \cos \beta + (\sin \beta)q_0$

Considere a curva

$$\varphi_0: [0,1] \to SO_3, \quad \varphi(t) = (qp^{-1})^t.$$

Ora a curva φ desejada será obtida como o produto $\varphi_0(t)p$:

$$\varphi(t) = (qp^{-1})^t p.$$

Claramente, $\varphi(0) = p$, $\varphi(1) = q$ e $|(d/dt)\varphi(t)| = |\beta|$ é constante (onde β é o ângulo entre $p \in q$).

Lema 4.13. Seja φ como em cima e assuma que β é o ângulo entre p e q ($\cos \beta = (p,q)$). Então

$$\varphi(t) = \frac{\sin(1-t)\beta}{\sin\beta}p + \frac{\sin(t\beta)}{\sin\beta}q$$

DEMONSTRAÇÃO. Assuma primeiro que p=1. Escrevendo $q=\cos\beta+(\sin\beta)q_0$, a fórmula em cima dá que

$$\varphi(t) = \cos(t\beta) + (\sin(t\beta))q_0.$$

Precisamos provar apenas que

$$\cos(t\beta) = \frac{\sin(1-t)\beta}{\sin\beta} + \frac{\cos\beta\sin(t\beta)}{\sin\beta}$$
$$\sin(t\beta) = \frac{\sin\beta\sin(t\beta)}{\sin\beta}.$$

A segunda afirmação está óbvia, a primeira pode ser verificada usando as identidades trigonomêtricas.

Assuma agora que q é arbitrário. Como multiplicação por q preserva ângulo, o ângulo entre p e q é o mesmo que entre 1 e pq^{-1} . Logo a interpolação esférica entre 1 e pq^{-1} está dada por

$$\varphi_0(t) = \frac{\sin(1-t)\beta}{\sin\beta} + \frac{\sin(t\beta)}{\sin\beta}pq^{-1}.$$

Multplicando $\varphi_0(t)$ por q, obtemos a interpolação esférica entre p e q como

$$\varphi(t) = \frac{\sin(1-t)\beta}{\sin\beta}p + \frac{\sin(t\beta)}{\sin\beta}q.$$

CAPíTULO 5

Espaços afins e projetivos

1. Espaços afins e transformações afins

Considere o espaço \mathbb{R}^n mergulhado em \mathbb{R}^{n+1} com a inclusão:

$$v = (\alpha_1, \dots, \alpha_n) \mapsto \overline{v} = (\alpha_1, \dots, \alpha_n, 1)$$

Lembre que o grupo AGL_n é o grupo de transformações que podemos obter pela composição de uma transformação linear de \mathbb{R}^n e uma translação em \mathbb{R}^n . Seja $L: \mathbb{R}^n \to \mathbb{R}^n$ uma transformação linear com matriz X = [L] na base canônica. Seja \bar{X} a matriz

$$\bar{X} = \begin{pmatrix} X & \underline{0}^t \\ \underline{0} & 1 \end{pmatrix}$$

onde $\underline{0}$ denota o vector nulo em \mathbb{R}^n . assum \bar{X} é uma matriz $(n+1) \times (n+1)$. A matriz \bar{X} chama-se matriz aumentada. É fácil verificar que L(v) = w se e somente se $\bar{X}\bar{v} = \bar{w}$.

EXEMPLO 5.1. Assuma que $L: \mathbb{R}^2 \to \mathbb{R}^2$ é a rotação por $\pi/4$ (por volta da origem). Então a sua matriz na base canônica é

$$X = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}.$$

A matriz aumentada que corresponde a T é

$$\bar{X} = \begin{pmatrix} \sqrt{2}/2 & -\sqrt{2}/2 & 0\\ \sqrt{2}/2 & \sqrt{2}/2 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Agora seja $b \in \mathbb{R}^n$ e defina a matriz

$$X_b = \begin{pmatrix} I & b^t \\ \underline{0} & 1 \end{pmatrix}.$$

Considere $v \in \mathbb{R}^n$. Temos que

$$X_b \bar{v} = \overline{v + b} = \overline{T_b(v)};$$

ou seja, multiplicação por X_b corresponde a translação pelo vetor b.

Exemplo 5.2. Seja $b = (-1, 2) \in \mathbb{R}^2$. Então

$$X_b = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}.$$

Se $v = (\alpha, \beta) \in \mathbb{R}^2$, então $\bar{v} = (\alpha, \beta, 1)$ e

$$X_b \overline{v} = X_b = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ \beta \\ 1 \end{pmatrix} = \begin{pmatrix} \alpha - 1 \\ \beta + 2 \\ 1 \end{pmatrix} = \overline{T_b(v)}.$$

Finalmente, se $L:\mathbb{R}^n\to\mathbb{R}^n$ é uma transformação linear com matriz X (na base canônica) e $b\in\mathbb{R}^n$, então defina

$$X_{L,b} = \begin{pmatrix} X & b^t \\ \underline{0} & 1 \end{pmatrix}.$$

É fácil verificar que

$$X_{L,b}\overline{v} = \overline{L(v) + b}.$$

Ou seja, multiplicação pela matriz $X_{L,b}$ corresponde a composição $T_b \circ L$ em AGL_n .

Exemplo 5.3. Assuma que b=(-1,2) e seja $L:\mathbb{R}^2\to\mathbb{R}^2$ a rotação por $\pi/4$ como no exemplo anterior. Então a matriz

$$X_{L,b} = \begin{pmatrix} \sqrt{2}/2 & -\sqrt{2}/2 & -1\\ \sqrt{2}/2 & \sqrt{2}/2 & 2\\ 0 & 0 & 1 \end{pmatrix}$$

Seja $v = (\alpha, \beta) \in \mathbb{R}^2$. Então $\bar{v} = (\alpha, \beta, 1)$ e

$$\begin{pmatrix} \sqrt{2}/2 & -\sqrt{2}/2 & -1 \\ \sqrt{2}/2 & \sqrt{2}/2 & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ 1 \end{pmatrix} = \overline{L(v) + b}.$$

Sejam $b_1, b_2 \in \mathbb{R}^n$, $L_1, L_2 \in GL_n$ e $v \in \mathbb{R}^n$. Então

$$(T_{b_1} \circ L_1) \circ (T_{b_2} \circ L_2)v = L_1L_2v + L_1b_2 + b_1 = T_{L_1b_2+b_1} \circ (L_1 \circ L_2).$$

Pode verificar que

$$X_{L_1,b_1}X_{L_2,b_2} = X_{L_1L_2,L_1b_2+b_1}$$

Teorema 5.4. O grupo AGL_n é isomorfo ao grupo de matrizes na forma

$$\{X_{L,b} \mid L \in GL_n \ e \ b \in \mathbb{R}^n\}.$$

O isomorfismo está dado por $T_b \circ L \mapsto X_{L,b}$.

35

2. Planos projetivos

DEFINIÇÃO 5.5. A reta projetiva $\mathbb{P}^1\mathbb{F}$ sobre um corpo \mathbb{F} é o conjunto das retas em \mathbb{F}^2 que passam pela origem. Uma reta $L_{a,b} = \{(x,y) \in \mathbb{F}^2 \mid ax + by = 0\} \subseteq \mathbb{F}^2$ é chamado de ponto na reta projetiva $\mathbb{P}^1\mathbb{F}$. Este ponto de $\mathbb{P}^1\mathbb{F}$ pode ser representato com as coordenadas [a,b] Estes coordenadas são chamadas de coordenadas homgêneas. Note que [a,b] representa um ponto em $\mathbb{P}^1\mathbb{F}$ se e somente se $(a,b) \neq (0,0)$ e $[\alpha a,\alpha b]$ representa a mesmo ponto que [a,b] para todo $\alpha \in \mathbb{F} \setminus \{0\}$. Assim, todo ponto de $\mathbb{P}^1\mathbb{F}$ pode ser representado com as coordenadas

$$[1, b]$$
 ou $[0, 1]$

com algum $b \in \mathbb{F}$. O ponto [0,1] é frequentamente chamado de ponto em infinito e assim obtemos que $\mathbb{P}^1\mathbb{F}$ pode ser identificado com $\mathbb{F} \cup \{P_\infty\}$ onde $P_\infty = [0,1]$ é o ponto em infinito.

DEFINIÇÃO 5.6. Um plano projetivo Π consiste de um conjunto \mathcal{P} de pontos, um conjunto \mathcal{L} de linhas (ou retas) e uma relação de incidência $\mathcal{I} \subseteq \mathcal{P} \times \mathcal{I}$ tal que

- (1) Se $P_1, P_2 \in \mathcal{P}$ distintos, então existe uma linha única linha $L \in \mathcal{I}$ tal que $P_1 \in L$, $P_2 \in L$.
- (2) Se $L_1, L_2 \in \mathcal{L}$, então existe um único ponto $P \in \mathcal{P}$ tal que $P \in L_1$ e $P \in L_2$.
- (3) Existem quatro pontos que nenhuma linha é incidente com mais que dois destes pontos.

EXEMPLO 5.7 (Plano Euclediano Estendido). Considere o plano \mathbb{R}^2 com os pontos e linhas usuais. (Ou seja, os pontos são $P=(x,y)\in\mathbb{R}^2$ e as linhas são conjuntos $\{(x,y)\mid ax+by=c\}$ com $(a,b,c)\neq(0,0,0)$.) Considere a relação de equivalência \sim entre linhas onde $L_1\sim L_2$ se e somente se L_1 e L_2 são paralelas. Seja [L] a classe de equivalência da linha L.

- (1) Para cada classe $\ell = [L]$ introduza um novo ponto P_{ℓ} (ponto no infinito) e extenda a incidência em tal modo que $P_{\ell} \in L$ se e somente se $L \in \ell$.
- (2) Introduza uma nova linha L_{∞} em tal modo que L_{∞} contem precisamente os pontos no infinito. A linha L_{∞} chama-se a linha em infinito.

A geometria obtida por este processo chama-se *Plano Euclediano Estendido* e é denotado por $E\mathbb{R}^2$. Deixamos para o leitor a verificação que $E\mathbb{R}^2$ é um plano projetivo.

EXEMPLO 5.8. Seja \mathbb{F} um corpo qualquer (pode tomar por exemplo, $\mathbb{F} = \mathbb{Q}$, $\mathbb{F} = \mathbb{R}$, $\mathbb{F} = \mathbb{C}$, ou $\mathbb{F} = \mathbb{F}_p$), e considere o espaço \mathbb{F}^3 . Seja \mathcal{P} o conjunto das retas que passam pela origem, e seja \mathcal{L} o conjunto dos planos que passam pela origem. Um ponto P é incidente com uma reta L, se $P \subseteq L$. É fácil verificar que $\mathbb{P}^3_{\mathbb{F}} = (\mathcal{P}, \mathcal{L}, \mathcal{I})$ é um plano projetivo. Nós geralmente vamos considerar o plano $\mathbb{P}^3 = \mathbb{P}^3_{\mathbb{R}}$.

2.1. Coordenadas homogêneas. Considere o plano $E\mathbb{R}^2$ estendido. Introduzimos coordenadas homogêneas para pontos e retas.

- (1) Seja $p = (x, y) \in \mathbb{R}^2$. A tripla $[\lambda x, \lambda y, \lambda]$ é coordenada homogênea para p com $\lambda \in \mathbb{R} \setminus \{0\}$.
- (2) Seja p um ponto em infinito que corresponde a uma classe paralela de linhas ax + by + c = 0 com $a, b \in \mathbb{R}$ fixados. A tripla $[\lambda a, \lambda b, 0]$ é coordenada homogênea de p com qualquer $\lambda \in \mathbb{R} \setminus \{0\}$.
- (3) Seja ℓ uma reta a equação ax + by + c = 0. Então a tripla [a, b, c] é coordenada homegênea para ℓ .
- (4) Seja ℓ a reta no infnito. Então $[0,0,\lambda]$ é coordenada homogênea de ℓ para qualquer $\lambda \in \mathbb{R} \setminus \{0\}$.

LEMA 5.9. Todo ponto e toda reta em $E\mathbb{R}^2$ possui coordenadas homogêneas. Além disso $[\alpha_1, \alpha_2, \alpha_3]$ e $[\beta_1, \beta_2, \beta_3]$ representam o mesmo ponto/reta se e somente se existe $\lambda \in \mathbb{R} \setminus \{0\}$ tal que $\beta_i = \lambda \alpha_i$ para todo $i \in \{1, 2, 3\}$.

Demonstração. Segue as definições.

Lema 5.10. Seja p um ponto e ℓ uma reta representados pelas coordenadas [a, b, c] e [u, v, w]. Temos que $p \in \ell$ se e somente se $[a, b, c] \cdot [u, v, w] = 0$. (produto escalar)

Demonstração. Segue as definições.

LEMA 5.11. Assuma que $[u_1, v_1, w_1]$ e $[u_2, v_2, w_2]$ são retas distintas em \mathbb{ER}^2 . Temos que as coordenadas homegeneas do único ponto na interseção das duas retas são dadas pelo produto vetorial $[u_1, v_1, w_1] \times [u_2, v_2, w_2]$.

Demonstração. Note que o produto misto

$$[u_1, v_1, w_1] \cdot ([u_1, v_1, w_1] \times [u_2, v_2, w_2]) = \det \begin{pmatrix} u_1 & u_1 & u_2 \\ v_1 & v_1 & v_2 \\ w_1 & w_1 & w_2 \end{pmatrix} = 0.$$

Uma conta similar mostra que $[u_2, v_2, w_2] \cdot ([u_1, v_1, w_1] \times [u_2, v_2, w_2]) = 0$. Então o ponto com coordenadas homogêneas $[u_1, v_1, w_1] \times [u_2, v_2, w_2]$ está nas duas linhas. Pelos axiomas do plano projetivo, este é o único ponto nas duas retas.

Note que $[u_1, v_1, w_1] \times [u_2, v_2, w_2] \neq [0, 0, 0]$ são retas distintas, e assim $[u_1, v_1, w_1]$ e $[u_2, v_2, w_2] \neq [0, 0, 0]$.

Lema 5.12. Assuma que $[a_1, b_1, c_1]$ e $[a_2, b_2, c_2]$ são pontos distintos em \mathbb{ER}^2 . Temos que as coordenadas homegeneas da única reta que passa por estes dois pontos são dadas pelo produto vetorial $[a_1, b_1, c_1] \times [a_2, b_2, c_2]$.

Demonstração. Igual ao lema anterior.

LEMA 5.13. Assuma que $p_1 = [a_1, b_1, c_1]$, $p_2 = [a_2, b_2, c_2]$ e $p_3 = [a_3, b_3, c_3]$ são pontos em $E\mathbb{R}^2$. Os pontos p_1, p_2, p_3 são collineares se e somente se

$$\det \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} = 0.$$

DEMONSTRAÇÃO. Se $p_2 = p_3$, então os três pontos são collineares e o determinante no teorema é também igual a zero. Assuma que $p_2 \neq p_3$. Os pontos p_1 , p_2 , e p_3 são collineares se e somente se o ponto p_1 está na reta determinada por p_2 e p_3 . Isso occorre se e somente se

$$0 = p_1 \cdot (p_2 \times p_3) = \det \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}.$$

Lema 5.14. Assuma que $\ell_1 = [u_1, v_1, w_1]$, $\ell_2 = [u_2, v_2, w_2]$ e $\ell_3 = [u_3, v_3, w_3]$ são retas em $E\mathbb{R}^2$. As retas ℓ_1, ℓ_2, ℓ_3 são concorrentes se e somente se

$$\det \begin{pmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{pmatrix} = 0.$$

2.2. Espaço estendido $E\mathbb{R}^3$. Considere \mathbb{R}^3 . Para cada classe C de retas paralelas, introduza um ponto em infinito P_C e $P_C \in \ell$ para todo $\ell \in C$. Para classe D de planos paralelos, introduza uma reta ℓ_D em infinito tal que $\ell_D \in \Pi$ para todo $\Pi \in D$ e ℓ_D contém os pontos em infinito que são contidos nas retas de Π . Finalmente, introduza um plano Π_{∞} em infinito que contém as retas em infinito.

As coordenadas homogêneas dos pontos $(a, b, c) \in \mathbb{R}^3$ são $[\lambda a, \lambda b, \lambda c, \lambda]$ com $\lambda \in \mathbb{R} \setminus \{0\}$. Se C é uma classe de retas paralelas, paralelo ao vetor (v_1, v_2, v_3) , então as coordenadas homogêneas do ponto correspondente são $[v_1, v_2, v_3, 0]$. Um plano definida pela equação ax + by + cz + d = 0 tem coordenadas homogêneas [a, b, c, d], enquanto o plano em infinito tem coordenadas homogêneas $[0, 0, 0, \lambda]$ com $\lambda \in \mathbb{R} \setminus \{0\}$.

LEMA 5.15. Sejam $p_1 = [a_1, b_1, c_1, d_1], p_2 = [a_2, b_2, c_2, d_2], p_3 = [a_2, b_2, c_2, d_2]$ pontos em $E\mathbb{R}^3$. Os pontos p_1, p_2, p_3 são collineares se e somente se os vetores são linearmente dependentes.

Se $p_1 = [a_1, b_1, c_1, d_1]$, $p_2 = [a_2, b_2, c_2, d_2]$ são pontos distintos em $E\mathbb{R}^3$, então os pontos da reta determinada por p_1 e p_2 são os pontos com coordenadas [a, b, c, d] tal que [a, b, c, d] é uma combinação linear de $[a_1, b_1, c_1, d_1]$ e $[a_2, b_2, c_2, d_2]$. Assim a reta que passa pelos pontos p_1 e p_2 pode ser representada pela seguinte representação paramétrica:

$$\alpha[a_1, b_1, c_1, d_1] + \beta[a_2, b_2, c_2, d_2]$$
 onde $\alpha, \beta \in \mathbb{R}$ com $(\alpha, \beta) \neq (0, 0)$.

2.3. Coordenadas de Plücker. Seja $p_1 = [x_1, x_2, x_3, x_4]$ e $p_2 = [y_1, y_2, y_3, y_4]$ dois pontos em $E\mathbb{R}^3$. Para $i, j \in \{1, \dots, 4\}$, ponha

$$p_{i,j} = \det \begin{pmatrix} x_i & y_i \\ x_j & y_j \end{pmatrix}$$

As coordenadas de Plücker da reta que passa pelos pontos p_1 e p_2 são definidas como

$$[p_{1,2}, p_{1,3}, p_{1,4}, p_{3,4}, p_{4,2}, p_{2,3}].$$

LEMA 5.16. As coordenadas de Plücker de uma reta são independentes da escolha dos pontos. Além disso, as entradas de uma 6-upla $(a,b,c,d,e,f) \in \mathbb{R}^6$ são coordenadas de Plücker de uma reta de \mathbb{ER}^3 se e somente se

$$ad + be + df = 0.$$

DEMONSTRAÇÃO. Sejam $p_1 = [a_1, b_1, c_1, d_1]$ e $p_2 = [a_2, b_2, c_2, d_2]$ pontos em uma reta. Seja $q = \alpha[a_1.b_1, c_1, d_1] + \beta[a_2, b_2, c_2, d_2]$ um outro ponto na reta. Calclando as coordenadas $p_{i,j}$ usando os pontos p_1 e q obtemos que

$$p_{i,j} = \det \begin{pmatrix} a_i & \alpha a_i + \beta b_i \\ a_j & \alpha a_i + \beta b_i \end{pmatrix} = \det \begin{pmatrix} a_i & \beta b_i \\ a_j & \beta b_i \end{pmatrix}$$

que é β vezes a coordenada calculando usando os pontos p_1 e p_2 .

Considere os pontos $p_1 = [a_1, a_2, a_3, a_4]$ e $p_2 = [b_1, b_2, b_3, b_4]$. Sejam $(p_{1,2}, p_{1,3}, p_{1,4}, p_{3,4}, p_{4,2}, p_{2,3})$ as coordenadas de Plücker como em cima. Temos que

$$p_{1,2}p_{3,4} + p_{1,3}p_{4,2} + p_{1,4}p_{2,3} =$$

$$(a_{1}b_{2} - a_{2}b_{1}) \det \begin{pmatrix} a_{3} & b_{3} \\ a_{4} & b_{4} \end{pmatrix} + (a_{1}b_{3} - a_{3}b_{1}) \det \begin{pmatrix} a_{4} & b_{4} \\ a_{2} & b_{2} \end{pmatrix} + (a_{1}b_{4} - a_{4}b_{1}) \det \begin{pmatrix} a_{2} & b_{2} \\ a_{3} & b_{3} \end{pmatrix} = a_{1} \begin{pmatrix} b_{2} \det \begin{pmatrix} a_{3} & b_{3} \\ a_{4} & b_{4} \end{pmatrix} + b_{3} \det \begin{pmatrix} a_{4} & b_{4} \\ a_{2} & b_{2} \end{pmatrix} + b_{4} \det \begin{pmatrix} a_{2} & b_{2} \\ a_{3} & b_{3} \end{pmatrix} - b_{1} \begin{pmatrix} a_{2} \det \begin{pmatrix} a_{4} & b_{4} \\ a_{2} & b_{2} \end{pmatrix} + a_{4} \det \begin{pmatrix} a_{2} & b_{2} \\ a_{3} & b_{3} \end{pmatrix} + a_{4} \det \begin{pmatrix} a_{2} & b_{2} \\ a_{3} & b_{3} \end{pmatrix} + a_{4} \det \begin{pmatrix} a_{2} & b_{2} \\ a_{3} & b_{3} \end{pmatrix} + a_{4} \det \begin{pmatrix} a_{2} & a_{2} & b_{2} \\ a_{3} & a_{3} & b_{3} \\ a_{4} & b_{4} & b_{4} \end{pmatrix} - b_{1} \det \begin{pmatrix} a_{2} & a_{2} & b_{2} \\ a_{3} & a_{3} & b_{3} \\ a_{4} & a_{4} & b_{4} \end{pmatrix} = 0$$

Agora assuma que $[a, b, c, d, e, f] \in \mathbb{R}^6$ such that ad+bf+cg=0. Sejam $p_1=[0, a, b, c]$, $p_2=[-a,0,f,-e]$, $p_3=[-b,-f,0,d]$, e $p_4=[-c,e,-d,0]$. Note que, em pelo menos dois casos $p_i\neq [0,0,0,0]$. Afirmanos, que as coordenadas de Plücker da reta que passa pelos pontos p_i com $i\in\{1,\ldots,4\}$ são [a,b,c,d]. Vamos verificar para p_1 e p_2 , deixamos o resto para o leitor. De fato as coordenadas de Plücker da reta que passa pelos pontos p_1 e p_2 são

$$[a^2, ba, da, -be - fc, af, ag] = a[a, b, c, d, e, f, g].$$

2.4. A reta dual. Assuma que $R = [p_{1,2}, p_{1,3}, p_{1,4}, p_{3,4}, p_{4,2}, p_{2,3}]$ é uma reta dada com coordenadas Plücker. A reta dual está dada por

$$R' = [p_{3,4}, p_{4,2}, p_{2,3}, p_{1,2}, p_{1,3}, p_{1,4}].$$

Lema 5.17. Assuma que $P_1 = [a_1, a_2, a_3, a_4]$ e $P_2 = [b_1, b_2, b_3, b_4]$ são dois planos em $E\mathbb{R}^3$. As coordenadas de Plücker da reta na interseção de P_1 e P_2 são $[p_{3,4}, p_{4,2}, p_{2,3}, p_{1,2}, p_{1,3}, p_{1,4}]$.

As coordenadas de Plücker são escritas frequentamente como [m,d] onde $m=[p_{1,2},p_{1,3},p_{1,4}]$ e $d=[p_{3,4},p_{4,2},p_{2,3}]$ usando as coordenadas de Plücker, dá para fazer várias contas geométricas com pontos, retas, e planos.

Lema 5.18. As seguintes afirmações são válidas.

- (1) Duas retas $R_1 = [m, d]$ e $R_2 = [m', p']$ são coplanares se e somente se dm' + d'm = 0.
- (2) Caso as retas R₁ e R₂ são coplanares e distintos, a equação do plano que passa por elas é

$$(m \cdot d)x_0 + (d \times d') \cdot (x_1, x_2, x_3) = 0$$

- (3) Caso R_1 e R_2 são coplanares e distintos, o ponto de interseção delas é $[d \cdot m', m \times m']$.
- (4) Seja \mathcal{P} um plano com coordenadas $[a_0, a_1, a_1, a_3] = [a_0, a]$. O ponto de interseção de P e R_1 é $[a \cdot d, a \times m a_0 d]$.
- (5) Se $P = [a_0, a]$ é um ponto, então as coordenadas homogêneas do plano que passa por P é R_1 são $[(y \cdot m)x_0 + (y \times x y_0m)]$. As coordenadas deste plano podem ser escritas também como $[b_1, b_2, b_3, b_4]$ onde

$$b_i = \sum a_i p_{i,j}.$$