4. Vecteur déplacement (voir TP et

Lorsqu'un point se déplace d'une position de départ, notée M, vers une position d'arrivée M', on peut définir le vecteur déplacement MM'.

Ce vecteur a pour caractéristiques :

- Direction: la droite MM'
- Sens: celui du mouvement (de M vers M')
- Valeur (ou module ou norme): la distance séparant les points M et M' (en mètres)
- Point d'application : point M.

II. La vitesse d'un système

1. Vecteur vitesse moyenne

Dans un référentiel donné, un point en mouvement, entre les positions initiale M et finale M', a pour vecteur vitesse moyenne:

vecteur vitesse
$$\overrightarrow{v} = \frac{\overrightarrow{MM'}}{\Delta t}$$
 vecteur déplacement (en m) durée du parcours (en s)

2. <u>Vecteur vitesse instantanée en un point (voir TP et vidéo sur le site)</u>

Le vecteur vitesse en un point de la trajectoire décomposée en une succession de points Mi est assimilé au vecteur vitesse moyenne obtenu pour une durée Δt extrêmement courte. Le vecteur vitesse Vi en un point Mi s'écrit alors :

vecteur vitesse au point
$$M_i$$
 $vecteur déplacement (en m) au point M_i $vecteur deplacement (en m)$$$$$$$$$$$$$$$$$$$$$

Le vecteur vitesse varie au cours du mouvement dès que son sens et/ou sa direction et/ou sa valeur varie. Pour décrire un mouvement, on renseigne également sa vitesse :

- accéléré : norme du vecteur vitesse qui augmente
- décéléré: norme du vecteur vitesse qui diminue
- uniforme: norme du vecteur vitesse constante

3. <u>Caractéristiques du vecteur vitesse instantanée (voir TP et vidéo sur le site)</u>

Le vecteur vitesse au point M_i a pour caractéristiques :

- Direction: la droite Mi-1Mi+1
- Sens: celui du mouvement (de M_{i-1} vers M_{i+1})
- Point d'application : point Mi.

- Valeur (norme):
$$\mathbf{V}_i = \left\| \overrightarrow{\mathbf{V}_i} \right\| = \frac{\left\| \overrightarrow{\mathbf{M}_{i-1}} \overrightarrow{\mathbf{M}_{i+1}} \right\|}{\Delta t} = \frac{\mathbf{M}_{i-1} \mathbf{M}_{i+1}}{\Delta t} = \sqrt{\mathbf{v}_{ix}^2 + \mathbf{v}_{iy}^2}$$
(en m.s⁻¹)