Noncommutative geometry

Ikhan Choi

February 8, 2024

Contents

Ι	Noncommutative topology	2
1	Kasparov category	3
	1.1	3
II	Spectral triples	4
2	Index theory	5
	2.1 Dirac operators	5
	2.2 Fredholm theory of Mishchenko and Fomenko	5
3	Quantum metric spaces	6
4	Coarse geometry	7
	4.1 Quantum Hall effect	7
5	Infinite dimensional manifolds	8
	5.1	8

Part I Noncommutative topology

Kasparov category

1.1

- **1.1** (Pro-C*-algebras). A pro-C*-algebra is a complete topological *-algebra whose topology is generated by C*-semi-norms. We adopt the convention that a homomorphism between pro-C*-algebras means a continuous *-homomorphism.
 - (a) A topological *-algebra is a pro-C*-algebra if and only if it is an inverse limit of unital C*-algebras.

Proof. (a) Let A be a pro- C^* -algebra. The set of continuous C^* -seminorms on A is a directed set. Construct an inverse system... Since every C^* -algebra is a maximal ideal of a unital C^* -algebra of codimension one, we may assume that the objects in this inverse system is unital... Also, elements of A are represented by coherent sequences.

Part II Spectral triples

Index theory

- 2.1 Dirac operators
- 2.2 Fredholm theory of Mishchenko and Fomenko

Quantum metric spaces

Coarse geometry

4.1 Quantum Hall effect

A wave function is a section ψ of a U(1)-line bundle $\mathcal{L} \to M$, more generally, a section ψ of a Hermitian G-vector bundle $\mathcal{V} \to M$. Galilean invariant momentum operator? We fix a connection ∇ on \mathcal{V} , which can be forgotten if M is contractible and no magnetic fields are considered. A U(N)-gauge fixing is just a choice of a local field of orthonormal frames on the intersection of two charts of M, making \mathcal{V} locally trivially \mathbb{C}^N with the standard basis. After gauge fixing, the covariant derivative is represented locally as $\nabla_i \psi = (\partial_i - iA_i)\psi$, where $A = \sum_i A_i dx^i$ is a $\mathbb{R} = -i\mathfrak{u}(1)$ -valued one-form.

The connection ∇ is independent If M has non-trivial holonomy (the Aharonov-Bohm flux), then it comes into play.

On $M=\mathbb{R}^2$ with a connection ∇ such that the curvature form is $\mathcal{F}^{\nabla}=b\cdot \mathrm{vol}_M$ for some $b\in\mathbb{R}\setminus\{0\}$, then the *Landau operator*, which is a free Hamiltonian defined by the connection Laplacian or the Bochner Laplacian $H:=\nabla^*\nabla=-\mathrm{tr}(\nabla^2)\geq 0$, its spectrum is known to be $\sigma(H)=(2\mathbb{N}+1)|b|$. This discreteness of the spectrum is called the *Landau quantization*.

We consider a spin manifold M with the spinor bundle S, and the sections of $S \otimes V \to M$ represent the space of wave functions. curvature of a spin connection the Laplacians

Infinite dimensional manifolds

5.1

Loop spaces, Loop groups