High Dimensional Vector Spaces as the Architecture of Cognition

Matthew A. Kelly - Penn State
Nipun Arora & Robert L. West - Carleton University
David Reitter - Penn State & Google Research

Common Model of Cognition

A blueprint for realizing a cognitive architecture and associated brain areas (Laird et al., 2017, Steine-Hanson, Koh, & Stocco, 2018; Stocco et al., 2018).

Thesis

The key parts of **cognitive architectures**- **declarative** and **procedural** memory and their key abilities - **learning**, **memory retrieval**, **judgement**, and **decision-making** - can be realized as
algebraic operations on vectors in a highdimensional space.

Types of Models

- **Deep learning** has an impressive ability to process data to find *patterns*, but does not model *high-level cognition* and tends to be inscrutable.
- *Symbolic architectures* can capture the complexities of *high-level cognition* and provide *explainable* theories, but have limited ability to detect *patterns* or *learn*.
- Vector-symbolic architectures, where *symbols* are represented as *vectors*, bridge the gap between approaches.

Holographic Declarative Memory (HDM)

- based on the BEAGLE (Jones & Mewhort, 2007) and DSHM (Rutledge-Taylor et al., 2014)
- candidate for realizing declarative memory and aspects of procedural memory
- can be integrated with deep-learning
- can be integrated with ACT-R
- uses *holographic reduced representations* (Plate, 1995) to instantiate complex concepts in high-dimensional vectors.

Overview

- How does **HDM** work?
- Recency, primacy, decay, and free recall
- Fan effect and interference
- Probability estimation and the conjunction fallacy
- Surprise and learning iterated decision

Vectors

- e environment vector, represents an item, randomly generated.
- m memory vector, constructed from environment vectors to encode associations between items in the environment.
- q cue vector, constructed from environment vectors to encode a question asked of memory.

Similarity

France and Italy are quite similar θ is close to 0° $\cos(\theta) \approx 1$

ball and crocodile are not similar θ is close to 90° $\cos(\theta) \approx 0$

the two vectors are similar but opposite the first one encodes (city - country) while the second one encodes (country - city)

 θ is close to 180° $\cos(\theta) \approx -1$

- Similarity is calculated as the cosine of a pair of vectors.
- Cosine = 1 if there's an angle of 0° and the vectors are identical
- Cosine = 0 if there's an angle of 90° and the vectors are unrelated

Activation (ACT-R DM)

- Activation in ACT-R is a sum of base level activation and spreading $A_i = B_i + \sum_{j=1}^n W_j S_{ji}$ activation.
- Spreading activation estimates the probability of the chunk conditional on the cue. $B_i = \ln(\sum t_i^{-d})$
- **Base level activation** estimates the unconditional probability of the chunk, given the frequency and recency of its occurrence. Decays (*d*) over time (*t*).

Activation (HDM)

• Weight of old memories \mathbf{m}_{i-1} is shrunk by $0 < \alpha < 1$ when a new memory \mathbf{v}_i is added.

$$\mathbf{m}_i = \alpha \mathbf{m}_{i-1} + \mathbf{v}_i$$

• Over time, an amount η of random noise **n** is added to memory **m**.

$$\mathbf{m}_t = \mathbf{m}_{t-1} + \eta \mathbf{n}$$

- Cosine similarity *C* between vectors approximates root probability.
- Activation A estimates the log odds.

$$A = \ln(\frac{C^2}{1 - C^2})$$

Activation

Activation of an item in memory over time in **ACT-R DM** and **HDM** as the item is repeatedly presented to the model.

Free Recall

Participants & models presented 20 words at a rate of 1 word / 2 s.

Participants report back the list in any order.

Noise is added to HDM vectors over time.

10 runs per model.

Human data from Murdock (1962).

Fan Effect

• Anderson & Reder (1999)

• Study Set: a list of object - location pairs (e.g., hippy in park, officer in store)

Test Set:

 participants must
 determine which pairs
 were studied.

Declarative Memory (DM)

Fan Effect

- Effect: participants are slower to judge pairs that contain items that occur in more pairs in the study set (i.e., have a higher fan).
- Theory: availability of an item in memory with respect to a cue is related to the item's probability conditional on the cue.

Declarative Memory (DM)

Vector Space Geometry

- $\mathbf{m}_{\text{hippy}}$ with a fan of 2 (*left*) or 3 (*right*)
- Cosine is the root of the fan.

 Cosine is approximately the root conditional probability of an item in memory given the cue.

cosine = -

 $\frac{v_1^2 + \dots + v_i^2 + \dots + v_n^2}{\sqrt{v_1^2 + \dots + v_i^2 + \dots + v_n^2}}$

Fan Effect

Response time for targets in the fan effect task (*left*).

As distance to q goes up, retrieval of m slows.

Conjunction Fallacy

People read a description of Linda and are asked to judge how likely she is to be:

- a bank teller,
- a feminist,
- **both** a bank teller *and* a feminist.

People say she's most likely **both** (Tversky & Kahneman, 1983), which is *impossible*.

All the Marys in the world

Conjunction Fallacy

- We train HDM on a corpus of novels (Novels; 145 million words) or the British National Corpus (BNC; 100 million words).
- Is Linda (the sum of all words that describe Linda) more similar to bank teller (bank + teller) or bank teller and feminist (bank + teller + feminist)?
- For both models:

$$cosine(\mathbf{m}_{Linda}, \mathbf{m}_{feminist} + \mathbf{m}_{bankteller}) > cosine(\mathbf{m}_{Linda}, \mathbf{m}_{bankteller})$$

• BNC: 0.72 > 0.65, Novels: 0.68 > 0.62

Iterated Decision Task

- Walsh and Anderson (2011)'s iterated binary decision task.
- Participants learn to make choices between arbitrary symbols that stochastically yield positive feedback.

Iterated Decision Task

Iterated Decision Task

HDM learns to make the correct decisions when biased to explore the space using *optimism* and to self-correct using *surprise*.

Conclusion

Our intent is to advance toward a **cognitive architecture** that is capable of modelling humans **at all scales of learning**, from the half-hour lab experiment to skills acquired over a **lifetime**.

By re-implementing ACT-R's declarative memory using distributional semantics, we create a system that can be integrated with modern machine learning techniques in deep learning while retaining long-term memory, single-trial learning, reasoning, decision-making, and other cognitive capacities associated with high-level cognition.

Thanks!