TECHNICAL UNIVERSITY OF MÜNCHEN PROFESSOR DR.-ING. U. SCHLICHTMANN

DISCRETE MATHEMATICS FOR ENGINEERS

Formulary

Lecturer : Prof. Dr.-Ing. U. Schlichtmann

Assistant : Richard Petri

richard.petri@tum.de

Chair's Location : TUM main area, Building 9

Arcisstr. 21, 80333 München

☎ +49 89 289-23666

Internet : http://ce.cit.tum.de/eda

Contents of lecture:

Propositional logic: propositional forms, truth-set, laws of propositional logic, rules of inference, binary decision diagrams;

Predicate logic: predicate logic forms, laws of predicate logic, deduction scheme, induction;

Sets: notation, operation, relations between sets, boolean algebra of subsets;

Relations: binary graphs, properties, closures, order relations, equivalence relations.

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

Contents

1	Pro	positional Logic	3
	1.1	Definitions and Terms	3
	1.2	Logical Operators (Connectives)	4
	1.3	Propositional forms	6
	1.4	Laws and Rules	9
	1.5	Propositional Logic Rules of Inference	18
	1.6	Representation of Propositional Forms	23
2	Pre	dicate Logic 3	37
_	2.1		37
	2.2	(-	40
	2.3		42
	2.4		43
n	O - 4		4 -
3	Set		15 15
	3.1		45
	3.2	1	47
	3.3		50
	3.4	Laws	51
4	Rel	ations	55
	4.1	Definitions	55
	4.2	Binary graphs	58
	4.3	Properties of relations	62
	4.4	Closure operations on relations	67
	4.5	Accessibility in binary graphs	70
	4.6	Order relations	73
	4.7	Equivalence relations	77
5	Fin	te State Machines	31
	5.1	Finite State Machine FSM	81
	5.2		82
	5.3	•	84
	5.4		87

version: November 20, 2023

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

1 Propositional Logic

1.1 Definitions and Terms

Proposition : Statement (assertion) which can be as-

(two-valued) signed the truth value $\mathbf{t}(\text{rue})$ or $\mathbf{f}(\text{alse})$

but not both.

Truth values : $\{ t, f \}$ or $\{ 1, 0 \}$

 $(true-, false-symbol) \qquad \qquad \text{or } \{\, \mathbf{T}, \mathbf{F} \,\}, \quad \{\, \mathbf{tt}, \mathbf{ff} \,\}, \quad \{\, \mathbf{L}, \mathbf{O} \,\}$

Logical operators : e.g. AND; OR; NOT;

(Logical connectives, junctors) IT FOLLOWS THAT;

IF AND ONLY IF; EITHER, OR;

 $\wedge ; \ \lor ; \neg ; \longrightarrow ; \longleftrightarrow ; \longleftrightarrow ;$

Propositional variable : $\mathbf{a}, \mathbf{b}, \mathbf{c}, \dots, \mathbf{x}, \mathbf{y}, \mathbf{z}$

(atomic proposition, atom, Placeholders for propositions

positive literal)

Propositional form (formula) : e.g. $\mathbf{a} \wedge (\mathbf{a} \longrightarrow \mathbf{b})$, e.g. \mathbf{a}

n-ary propositional form : $\mathbf{A}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n) \triangleq \mathbf{A}(\mathbf{x})$

Truth value of the propositional form : $\hat{\mathbf{a}} \in \{\mathbf{t}, \mathbf{f}\}, \hat{\mathbf{A}} \in \{\mathbf{t}, \mathbf{f}\}$

(evaluation, interpretation) $\hat{\mathbf{a}} \triangleq \operatorname{val}(\mathbf{a}) \triangleq \delta(\mathbf{a})$

 $\mathbf{A} (\mathbf{t}, \mathbf{f}, \dots, \mathbf{t}) \triangleq \mathbf{A} (\hat{\mathbf{x}}) \triangleq \hat{\mathbf{A}}$

Value assignment n-tuple : e.g. $\hat{\underline{\mathbf{x}}} = (\mathbf{t}, \mathbf{f}, \dots, \mathbf{t})$

Value pattern of the propositional form : $\mathbf{\underline{\hat{W}}}[\mathbf{A}] = (\mathbf{A}(\mathbf{\underline{\hat{x}}}_0), \dots, \mathbf{A}(\mathbf{\underline{\hat{x}}}_{2^n-1}))$

e.g. $\hat{\mathbf{x}}_5 = (\mathbf{f}, \dots, \mathbf{f}, \mathbf{t}, \mathbf{f}, \mathbf{t})$

On-set : $\mathbf{E}[\mathbf{A}] = \{\hat{\mathbf{x}} \mid \hat{\mathbf{A}} \iff \mathbf{t}\}_{\mathbf{G}}$

(truth-set, solution set;

opposite: off-set, falsity set) $\mathbf{E}\left[\mathbf{A}\right] \subseteq \mathbf{G} = \{\mathbf{t}, \mathbf{f}\}^{n}$

DME/Sch

Propositional Logic(1)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

1.2 Logical Operators (Connectives)

Important Logical Operators (unary, binary)

Expression	Name	Parlance
¬ a	Negation, NOT	it is not true, that a
a ∧ b	Conjunction, AND	${f a}$ and ${f b}$
a ∨ b	Disjunction, OR	a or b
$a \longleftrightarrow b$	Alternative, XOR	either \mathbf{a} or \mathbf{b}
$\mathbf{a} \longrightarrow \mathbf{b}$	Conditional, material implication, subjunction	if \mathbf{a} , then \mathbf{b}
$\mathbf{a} \longleftrightarrow \mathbf{b}$	Biconditional, material equivalence, bijunction	\mathbf{a} if and only if \mathbf{b}

Truth Table

Value assignment		truth values				
a b	¬ a	a ∧ b	a ∨ b	$a \longleftrightarrow b$	$a \longrightarrow b$	$a \longleftrightarrow b$
t t	f	t	t	f	\mathbf{t}	t
t f	f	f	\mathbf{t}	\mathbf{t}	f	f
f t	t	f	t	\mathbf{t}	\mathbf{t}	f
f f	t	f	f	f	\mathbf{t}	t

Strength of operators: $\neg \land \lor \longleftrightarrow \longrightarrow \longleftrightarrow$

DME/Sch

Propositional Logic(2)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

Binary Operators of propositional logic

 $(\neg \ \mathbf{a} : \ \mathrm{unary}, \quad \ \ \mathbf{(f)} \ \ : \ \mathrm{zero-ary})$

a	\mathbf{t}	\mathbf{t}	f	f			
b	t	f	t	f	Expression	Name	Parlance
n=2	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{t}	Tautology	always true
	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{f}	a ∨ b	Disjunction	a or b
$2^{n} \ \rightarrow$	t	\mathbf{t}	\mathbf{f}	\mathbf{t}	$\mathrm{b}\longrightarrow\mathrm{a}$	Conditional	if \mathbf{b} , then \mathbf{a}
	t	\mathbf{t}	\mathbf{f}	\mathbf{f}	a	Projection	a , b arbitrary
$2^{(2^n)}$	t	\mathbf{f}	\mathbf{t}	\mathbf{t}	${f a} \longrightarrow {f b}$	Conditional	if \mathbf{a} , then \mathbf{b}
\downarrow	\mathbf{t}	f	\mathbf{t}	\mathbf{f}	b	Projection	b , a arbitrary
	\mathbf{t}	f	\mathbf{f}	\mathbf{t}	$\mathbf{a} \longleftrightarrow \mathbf{b}$	Biconditional	a if and only if b
	t	f	f	f	a ∧ b	Conjunction	a and b
	f	\mathbf{t}	\mathbf{t}	\mathbf{t}	$\neg (\mathbf{a} \wedge \mathbf{b})$	NAND	not a or not b
	f	\mathbf{t}	\mathbf{t}	\mathbf{f}	$\mathbf{a} \longleftrightarrow \mathbf{b}$	Alternative	either a or b
	f	\mathbf{t}	\mathbf{f}	\mathbf{t}	¬ b	Negation	\mid not b , a arbitrary
	f	\mathbf{t}	\mathbf{f}	\mathbf{f}	a ∧¬b	Inhibition	a and not b
	f	\mathbf{f}	\mathbf{t}	\mathbf{t}	 ¬ a	Negation	not a , b arbitrary
	f	f	\mathbf{t}	\mathbf{f}	$\neg \mathbf{a} \wedge \mathbf{b}$	Inhibition	not \mathbf{a} and \mathbf{b}
	f	\mathbf{f}	\mathbf{f}	\mathbf{t}		NOR	neither a nor b
	f	f	f	f	(f)	Contradiction	always false

$$\left. \begin{array}{c} \text{Transformation} \\ \text{on basis} \\ (\{t,\,f\,\};\,\wedge,\vee,\neg) \end{array} \right\} \qquad \begin{array}{c} \mathbf{a} \longrightarrow \mathbf{b} & \iff \neg \mathbf{a} \,\vee\, \mathbf{b} \\ \mathbf{a} \longleftrightarrow \mathbf{b} & \iff (\mathbf{a} \longrightarrow \mathbf{b}) \,\wedge\, (\mathbf{b} \longrightarrow \mathbf{a}) \\ \mathbf{a} \longleftrightarrow \mathbf{b} & \iff \neg\, (\mathbf{a} \longleftrightarrow \mathbf{b}) \end{array}$$

DME/Sch

Propositional Logic(3)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

1.3Propositional forms

 $\mathbf{A}(\underline{\mathbf{x}}) : \{ \mathbf{t}, \mathbf{f} \}^n \longrightarrow \{ \mathbf{t}, \mathbf{f} \}$ Discrete function (n-ary)

 $: \quad \mathbf{x} = (\mathbf{x}_1, \ldots, \mathbf{x}_n)$ Variable-n-Tuple

 $: \operatorname{set}(\underline{\mathbf{x}}) = \{ \mathbf{x}_1, \ldots, \mathbf{x}_n \}$

Value-assignment-n-tuple $: \hat{\mathbf{x}} = (\hat{\mathbf{x}}_1, \dots, \hat{\mathbf{x}}_n)$

Universal set of the 2^n value-assignment n-tuples : $G = \{ t, f \}^n$

 $= \{ \hat{\underline{\mathbf{x}}}_0, \ldots, \hat{\underline{\mathbf{x}}}_{2^{n-1}} \}$ (Basic set)

 $\begin{array}{ccc} : & D_{\hat{\underline{\mathbf{x}}}}(\underline{\mathbf{x}}) \; : \; \Longleftrightarrow & \bigvee_{\mathbf{x} \; \in \; \mathrm{set}(\underline{\mathbf{x}})} \mathbf{x} \; \longleftrightarrow \hat{\mathbf{x}} \\ & \mathbf{x} \; \longleftrightarrow \; \mathbf{f} \; \Longleftrightarrow \; \mathbf{x} \; ; & \mathbf{x} \; \longleftrightarrow \; \mathbf{t} \; \Longleftrightarrow \; \neg \mathbf{x} \end{array}$ Maxterm (n-ary disjunction of literals)

 $\begin{array}{lll} \overline{\mathbf{E}}\left[\mathbf{D}_{\hat{\underline{\mathbf{X}}}}(\underline{\mathbf{x}})\right] &=& \left\{ \begin{array}{l} \hat{\underline{\mathbf{x}}} \end{array} \right\} \\ \mathbf{E}\left[\mathbf{D}_{\hat{\underline{\mathbf{X}}}}(\underline{\mathbf{x}})\right] &=& \mathbf{G} \end{array} \setminus \left\{ \begin{array}{l} \hat{\underline{\mathbf{x}}} \end{array} \right\} &: \mathbf{D}_{\hat{\underline{\mathbf{X}}}}(\ \hat{\underline{\mathbf{x}}}_i) \\ \end{array} \Leftrightarrow \left\{ \begin{array}{l} \mathbf{f}, & \mathrm{for} \ \hat{\underline{\mathbf{x}}}_i &=& \hat{\underline{\mathbf{x}}} \\ \mathbf{t}, & \mathrm{otherwise} \end{array} \right. \quad i = 0, \dots, 2^n - 1$

 $\begin{array}{ccc} : & \mathbf{C}_{\hat{\underline{\mathbf{x}}}}(\underline{\mathbf{x}}) & : & & \bigwedge & \mathbf{x} \longleftrightarrow \hat{\mathbf{x}} \\ & \mathbf{x} \longleftrightarrow \mathbf{t} \Longleftrightarrow \mathbf{x} & : & \mathbf{x} \longleftrightarrow \mathbf{f} \Longleftrightarrow \neg \mathbf{x} \end{array}$ Minterm (n-ary conjunction of literals)

 $\begin{array}{lll} & \mathbf{E}\left[\mathbf{C}_{\hat{\underline{\mathbf{x}}}}(\underline{\mathbf{x}})\right] & = \left\{ \begin{array}{l} \hat{\underline{\mathbf{x}}} \end{array} \right\} \\ & \overline{\mathbf{E}}\left[\mathbf{C}_{\hat{\underline{\mathbf{x}}}}(\underline{\mathbf{x}})\right] & = \mathbf{G} \, \setminus \left\{ \begin{array}{l} \hat{\underline{\mathbf{x}}} \end{array} \right\} \end{array} \quad ; \, \mathbf{C}_{\hat{\underline{\mathbf{x}}}}(\,\,\hat{\underline{\mathbf{x}}}_i) \iff \left\{ \begin{array}{l} \mathbf{t}, & \mathrm{for} \,\,\hat{\underline{\mathbf{x}}}_i \, = \, \hat{\underline{\mathbf{x}}} \\ \mathbf{f}, & \mathrm{otherwise} \end{array} \right. \quad i = 0, \ldots, 2^n - 1 \end{array}$

Canonical conjunctive normal form CCNF : conjunction of all (Unique description of a propositional form)

Canonical disjunctive normal form CDNF : disjunction of all (Unique description of a propositional form)

 $CCNF[A] \iff \neg CDNF[\neg A]$; CDNF $[A] \iff \neg CCNF [\neg A]$

DME/Sch

Propositional Logic(4)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

Conjunctive normal form CNF : conjunction of disjunctive terms

disjunctive term : disjunction of literals

positive / negative literal : e.g. \mathbf{a} / $\neg \mathbf{a}$

disjunctive normal form DNF : disjunction of conjunctive terms

conjunctive term : conjunction of literals

Clause C_D or C_C : set of literals of a disjunctive

or conjunctive term

Set of clauses of CNF or : $CC[A] = \{C_{D1}, C_{D2}, ...\},$ DNF of A : $CD[A] = \{C_{C1}, C_{C2}, ...\}$

Example:

$$\begin{array}{lll} \mathbf{A}(\mathbf{a},\mathbf{b},\mathbf{c}) & \Longleftrightarrow \mathrm{CCNF}[\mathbf{A}] \iff (\mathbf{a} \vee \mathbf{b} \vee \mathbf{c}) \wedge (\mathbf{a} \vee \mathbf{b} \vee \neg \mathbf{c}) \wedge (\neg \mathbf{a} \vee \neg \mathbf{b} \vee \mathbf{c}) \\ & \iff \mathrm{CNF}[\mathbf{A}] & \iff (\mathbf{a} \vee \mathbf{b}) \wedge (\neg \mathbf{a} \vee \neg \mathbf{b} \vee \mathbf{c}) \\ & \iff \mathrm{DNF}[\mathbf{A}] & \iff (\mathbf{a} \wedge \neg \mathbf{b}) \vee (\neg \mathbf{a} \wedge \mathbf{b}) \vee (\mathbf{a} \wedge \mathbf{c}) \vee (\mathbf{b} \wedge \mathbf{c}) \\ & \iff \mathrm{CDNF}[\mathbf{A}] & \iff (\mathbf{a} \wedge \neg \mathbf{b} \wedge \mathbf{c}) \vee (\mathbf{a} \wedge \neg \mathbf{b} \wedge \neg \mathbf{c}) \vee (\neg \mathbf{a} \wedge \mathbf{b} \wedge \neg \mathbf{c}) \vee \\ & (\neg \mathbf{a} \wedge \mathbf{b} \wedge \neg \mathbf{c}) \vee (\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}) \end{array}$$

$$\begin{array}{lll} \mathbf{CC}\,[\mathbf{A}] &=& \{\,\,\{\mathbf{a},\mathbf{b}\},\{\neg\mathbf{a},\neg\mathbf{b},\mathbf{c}\}\,\,\} &; & \mathbf{CD}\,[\mathbf{A}] &=& \{\,\,\{\mathbf{a},\neg\mathbf{b}\},\{\neg\mathbf{a},\mathbf{b}\},\{\mathbf{a},\mathbf{c}\},\{\mathbf{b},\mathbf{c}\}\} \\ \mathbf{CCC}\,[\mathbf{A}] &=& \{\,\,\{\mathbf{a},\mathbf{b},\mathbf{c}\},\{\mathbf{a},\mathbf{b},\neg\mathbf{c}\},\{\neg\mathbf{a},\neg\mathbf{b},\mathbf{c}\}\,\,\} \end{array}$$

 \mathbf{A} and \mathbf{B} are disjoint $:\iff \mathbf{E}\left[\mathbf{A}\wedge\mathbf{B}\right] = \emptyset$

(pairwise)

A, B and C are complete $: \iff E[A \lor B \lor C] = G$

 $\mathrm{Dual} \ \mathrm{form} \ \mathrm{of} \ \mathbf{A}(\underline{\mathbf{x}}) \\ \hspace{3em} : \hspace{3em} \mathrm{dual}(\mathbf{A}(\underline{\mathbf{x}}))$

 $\operatorname{dual}(\mathbf{A}(\mathbf{a},\mathbf{b},\ldots;\;\mathbf{t},\mathbf{f})) \\ \hspace*{1.5cm} : \iff \neg \mathbf{A}(\neg \mathbf{a},\neg \mathbf{b},\ldots;\;\mathbf{t},\mathbf{f})$

Notation: $\mathbf{A}(\hat{\mathbf{x}}) \Longleftrightarrow \hat{\mathbf{A}} \Longleftrightarrow \mathbf{t}; \qquad \mathbf{A}(\mathbf{x}) \Longleftrightarrow \hat{\mathbf{t}}$

 $\text{Agreement:} \quad \mathbf{A}(\underline{\mathbf{x}}) \Longleftrightarrow \mathbf{t} \quad \triangleq \quad \mathbf{A}(\underline{\mathbf{x}}) \Longleftrightarrow \quad \mathbf{t}$

(t): zero-ary function which continuously yields t

(f): zero-ary function which continuously yields f

DME/Sch

Propositional Logic(5)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

Satisfiable propositional form

 $\hat{\mathbf{x}}$ verifies $\mathbf{A}(\mathbf{x})$

 $\hat{\mathbf{x}}$ falsifies $\mathbf{A}(\mathbf{x})$

 $: \mathbf{E}[\mathbf{A}] \neq \emptyset$

: $\mathbf{A}(\hat{\mathbf{x}}) \iff \mathbf{t}$

: $\mathbf{A}(\hat{\mathbf{x}}) \Longleftrightarrow \mathbf{f}$

 $\emptyset \quad \subset \quad E\left[A\right] \quad \subset \quad G$ Contingency

 $(\mathbf{E}[\mathbf{A}] \neq \emptyset) \wedge (\mathbf{E}[\mathbf{A}] \neq \mathbf{G})$

Contradiction

(Unsatisfiable propositional form)

e.g. $\mathbf{A}(\mathbf{a}) \iff \mathbf{a} \land \neg \mathbf{a} \iff \mathbf{f}$

 $: \mathbf{E}[\mathbf{A}] = \emptyset$

 $\mathbf{A}(\mathbf{x}) \iff \mathbf{f}$

(denial of contradiction)

Tautology

 $: \mathbf{E}[\mathbf{A}] = \mathbf{G}$

 $A(x) \iff t$

e.g. $\mathbf{A}(\mathbf{a}) \iff \mathbf{a} \vee \neg \mathbf{a} \iff \mathbf{t}$

(law / principle of the excluded middle)

(Logic) Equivalence

: **A** ⇔ В

 $\mathbf{B} \iff$

" \mathbf{A} is (logically) equivalent to \mathbf{B} "

" \mathbf{A} is necessary and sufficient for \mathbf{B} "

"B is necessary and sufficient for A"

"Identical value patterns of **A** and **B**"

 $\mathbf{E}[\mathbf{A}] = \mathbf{E}[\mathbf{B}]$

 $\mathbf{E}\left[\mathbf{A}\longleftrightarrow\mathbf{B}\right]=\mathbf{G}$

 $\hat{\mathbf{W}}[\mathbf{A}] = \hat{\mathbf{W}}[\mathbf{B}]$

Implication

 $: A \implies B$

 $\mathbf{A} \longrightarrow \mathbf{B}$

"From **A** follows (logically) **B**"

 $\mathbf{E}\left[\mathbf{A}\longrightarrow\mathbf{B}\right]=\mathbf{G}$

"A implies B"

" \mathbf{A} is sufficient for \mathbf{B} "

 $\mathbf{E}\left[\mathbf{A}\right]$ \subseteq **E**[**B**]

" ${f B}$ is necessary for ${f A}$ "

 $\overline{\mathbf{E}}[\mathbf{B}] \subseteq \overline{\mathbf{E}}[\mathbf{A}]$

DME/Sch

Propositional Logic(6)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

1.4 Laws and Rules

A) Laws (Tautologies, Equivalences)

of Boolean propositional algebra

algebra $\{\{t, f\}; \land, \lor, \neg\}$ Principle of duality:

(1) $\mathbf{a} \wedge \mathbf{b} \iff \mathbf{b} \wedge \mathbf{a}$; $\mathbf{a} \vee \mathbf{b} \iff \mathbf{b} \vee \mathbf{a}$ Commutativity

(2) $(\mathbf{a} \wedge \mathbf{b}) \wedge \mathbf{c} \iff \mathbf{a} \wedge (\mathbf{b} \wedge \mathbf{c})$

Associativity

 $(\mathbf{a} \lor \mathbf{b}) \lor \mathbf{c} \iff \mathbf{a} \lor (\mathbf{b} \lor \mathbf{c})$

- (3) $\mathbf{a} \wedge (\mathbf{b} \vee \mathbf{c}) \iff (\mathbf{a} \wedge \mathbf{b}) \vee (\mathbf{a} \wedge \mathbf{c})$ Distributivity $\mathbf{a} \lor (\mathbf{b} \land \mathbf{c}) \iff (\mathbf{a} \lor \mathbf{b}) \land (\mathbf{a} \lor \mathbf{c})$
- (4) $\mathbf{a} \wedge \mathbf{a} \iff \mathbf{a} \; ; \; \mathbf{a} \vee \mathbf{a} \iff \mathbf{a}$

Idempotence

(5) $\mathbf{a} \wedge (\mathbf{a} \vee \mathbf{b}) \iff \mathbf{a}$ $\mathbf{a} \lor (\mathbf{a} \land \mathbf{b}) \Longleftrightarrow \mathbf{a}$ Absorption

(6) $\mathbf{a} \wedge \mathbf{t} \iff \mathbf{a} \; ; \; \mathbf{a} \vee \mathbf{f} \iff \mathbf{a}$

Neutral element

(7) $\mathbf{a} \wedge \mathbf{f} \iff \mathbf{f}$; $\mathbf{a} \vee \mathbf{t} \iff \mathbf{t}$

Domination

(8) $\mathbf{a} \wedge \neg \mathbf{a} \iff \mathbf{f} ; \mathbf{a} \vee \neg \mathbf{a} \iff \mathbf{t}$

Complementary element

 $\neg (\neg a) \iff a$ (9)

Double negation

(10) \neg ($\mathbf{a} \wedge \mathbf{b}$) $\iff \neg \mathbf{a} \vee \neg \mathbf{b}$ $\neg (a \lor b) \iff \neg a \land \neg b$

De Morgan

DME/Sch

Propositional Logic(7)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

B) Laws (Tautologies, Equivalences) of Alternative
$$(\longleftrightarrow, \oplus)$$

$$\mathbf{a} \longleftrightarrow \mathbf{b} \iff \mathbf{b} \longleftrightarrow \mathbf{a} \qquad \text{Commutativity}$$

(2)
$$(\mathbf{a} \longleftrightarrow \mathbf{b}) \longleftrightarrow \mathbf{c} \iff \mathbf{a} \longleftrightarrow (\mathbf{b} \longleftrightarrow \mathbf{c})$$
 Associativity

(3)
$$\mathbf{a} \wedge (\mathbf{b} \longleftrightarrow \mathbf{c}) \iff \mathbf{a} \wedge \mathbf{b} \longleftrightarrow \mathbf{a} \wedge \mathbf{c}$$
 Distributivity of \wedge over \longleftrightarrow

$$\mathbf{a} \longleftrightarrow \mathbf{f} \iff \mathbf{a} \qquad \qquad \text{Neutral element}$$

(5)
$$\mathbf{a} \longleftrightarrow \mathbf{t} \iff \neg \mathbf{a}$$
 Negation $\neg (\mathbf{a} \longleftrightarrow \mathbf{b}) \iff \mathbf{a} \longleftrightarrow \mathbf{b} \longleftrightarrow \mathbf{t} \iff \neg \mathbf{a} \longleftrightarrow \mathbf{b} \iff \mathbf{a} \longleftrightarrow \neg \mathbf{b}$

(6)
$$\mathbf{a} \longleftrightarrow \neg \mathbf{a} \iff \mathbf{t}$$
 Complementary element $\mathbf{a} \longleftrightarrow \mathbf{a} \iff \mathbf{f}$

$$(7) \qquad \mathbf{a} \longleftrightarrow \mathbf{a} \iff \mathbf{a} \qquad \qquad \text{Idempotence}$$

(8)
$$\mathbf{a} \longleftrightarrow \mathbf{b} \iff \neg \mathbf{a} \longleftrightarrow \neg \mathbf{b}$$
 Contraposition

$$\mathbf{a} \longleftrightarrow \mathbf{b} \iff (\mathbf{a} \land \neg \mathbf{b}) \lor (\neg \mathbf{a} \land \mathbf{b})$$

$$(10) \mathbf{a} \longleftrightarrow \mathbf{b} \iff (\mathbf{a} \lor \mathbf{b}) \land (\neg \mathbf{a} \lor \neg \mathbf{b})$$

$$\mathbf{a} \longleftrightarrow \mathbf{b} \iff \neg (\mathbf{a} \longleftrightarrow \mathbf{b})$$

$$(12) \mathbf{a} \longleftrightarrow \mathbf{b} \iff (\mathbf{a} \longrightarrow \mathbf{b}) \longrightarrow \neg (\mathbf{b} \longrightarrow \mathbf{a})$$

$$(13) a \lor b \iff a \longleftrightarrow b \longleftrightarrow (a \land b)$$

$$(14) a \wedge b \iff a \longleftrightarrow b \longleftrightarrow (a \vee b)$$

DME/Sch Propositional Logic(8) 05/09

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

C) Laws (Tautologies, Equivalences) of **Biconditional** $(\longleftrightarrow,\ominus)$

- (1) $\mathbf{a} \longleftrightarrow \mathbf{b} \iff \mathbf{b} \longleftrightarrow \mathbf{a}$ Commutativity
- (2) $(\mathbf{a} \longleftrightarrow \mathbf{b}) \longleftrightarrow \mathbf{c} \iff \mathbf{a} \longleftrightarrow (\mathbf{b} \longleftrightarrow \mathbf{c})$ Associativity
- (3) $\mathbf{a} \lor (\mathbf{b} \longleftrightarrow \mathbf{c}) \iff \mathbf{a} \lor \mathbf{b} \longleftrightarrow \mathbf{a} \lor \mathbf{c}$ Distributivity of \lor over \longleftrightarrow
- $\mathbf{a} \longleftrightarrow \mathbf{t} \iff \mathbf{a} \qquad \text{Neutral element}$
- (5) $\mathbf{a} \longleftrightarrow \mathbf{f} \iff \neg \mathbf{a}$ Negation $\neg (\mathbf{a} \longleftrightarrow \mathbf{b}) \iff \mathbf{a} \longleftrightarrow \mathbf{b} \longleftrightarrow \mathbf{f} \iff \neg \mathbf{a} \longleftrightarrow \mathbf{b} \iff \mathbf{a} \longleftrightarrow \neg \mathbf{b}$
- (6) $\mathbf{a} \longleftrightarrow \neg \mathbf{a} \iff \mathbf{f}$ Complementary element $\mathbf{a} \longleftrightarrow \mathbf{a} \iff \mathbf{t}$
- $(7) a \longleftrightarrow a \longleftrightarrow a Idempotence$
- (8) $\mathbf{a} \longleftrightarrow \mathbf{b} \iff \neg \mathbf{a} \longleftrightarrow \neg \mathbf{b}$ Contraposition
- $\mathbf{a} \longleftrightarrow \mathbf{b} \iff (\mathbf{a} \land \mathbf{b}) \lor (\neg \mathbf{a} \land \neg \mathbf{b})$
- $(10) \mathbf{a} \longleftrightarrow \mathbf{b} \iff (\mathbf{a} \lor \neg \mathbf{b}) \land (\neg \mathbf{a} \lor \mathbf{b})$
- $(11) \mathbf{a} \longleftrightarrow \mathbf{b} \iff (\mathbf{a} \longrightarrow \mathbf{b}) \land (\mathbf{b} \longrightarrow \mathbf{a})$
- $\mathbf{a} \longleftrightarrow \mathbf{b} \iff \neg (\mathbf{a} \longleftrightarrow \mathbf{b})$
- $(13) \mathbf{a} \vee \mathbf{b} \iff \mathbf{a} \longleftrightarrow \mathbf{b} \longleftrightarrow (\mathbf{a} \wedge \mathbf{b})$
- $(14) a \wedge b \iff a \longleftrightarrow b \longleftrightarrow (a \vee b)$

DME/Sch Propositional Logic(9) 05/09

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

D) Laws (Tautologies, Equivalences) of **Conditional** (antecedent → consequent)

$$\mathbf{a} \longrightarrow \mathbf{b} \iff \neg \mathbf{a} \vee \mathbf{b}$$

(2)
$$\neg (\mathbf{a} \longrightarrow \mathbf{b}) \iff \mathbf{a} \land \neg \mathbf{b}$$
 Negation

(3)
$$\mathbf{a} \longrightarrow \mathbf{b} \iff \neg \mathbf{b} \longrightarrow \neg \mathbf{a}$$
 Contraposition

$$(4) \quad \mathbf{a} \longrightarrow \mathbf{t} \quad \Longleftrightarrow \quad \mathbf{t} \; ; \qquad \qquad \mathbf{f} \longrightarrow \mathbf{a} \quad \Longleftrightarrow \quad \mathbf{t}$$

(5)
$$\mathbf{t} \longrightarrow \mathbf{a} \iff \mathbf{a}$$
; $\mathbf{a} \longrightarrow \mathbf{f} \iff \neg \mathbf{a}$

(6)
$$\mathbf{a} \longrightarrow \mathbf{a} \iff \mathbf{t}$$
; $\neg \mathbf{a} \longrightarrow \mathbf{a} \iff \mathbf{a}$; $\mathbf{a} \longrightarrow \neg \mathbf{a} \iff \neg \mathbf{a}$

(7)
$$\mathbf{a} \longrightarrow (\mathbf{b} \wedge \mathbf{c}) \iff (\mathbf{a} \longrightarrow \mathbf{b}) \wedge (\mathbf{a} \longrightarrow \mathbf{c}) \quad \text{left-sided distributivity}$$

 $(\mathbf{a} \wedge \mathbf{b}) \longrightarrow \mathbf{c} \iff (\mathbf{a} \longrightarrow \mathbf{c}) \vee (\mathbf{b} \longrightarrow \mathbf{c})$

$$(a \wedge b) \wedge c \longleftrightarrow (a \wedge c) \vee (b \wedge c)$$

(8)
$$\mathbf{a} \longrightarrow (\mathbf{b} \lor \mathbf{c}) \iff (\mathbf{a} \longrightarrow \mathbf{b}) \lor (\mathbf{a} \longrightarrow \mathbf{c})$$
 left-sided distributivity of \longrightarrow over \lor $(\mathbf{a} \lor \mathbf{b}) \longrightarrow \mathbf{c} \iff (\mathbf{a} \longrightarrow \mathbf{c}) \land (\mathbf{b} \longrightarrow \mathbf{c})$

(9)
$$\mathbf{a} \longrightarrow (\mathbf{b} \longrightarrow \mathbf{c}) \iff \mathbf{b} \longrightarrow (\mathbf{a} \longrightarrow \mathbf{c})$$
 interchange of premises $\mathbf{a} \longrightarrow (\mathbf{b} \longrightarrow \mathbf{c}) \iff (\mathbf{a} \wedge \mathbf{b}) \longrightarrow \mathbf{c}$ importation and exportation

(10)
$$\mathbf{a} \longrightarrow (\mathbf{a} \longrightarrow \mathbf{b}) \iff \mathbf{a} \longrightarrow \mathbf{b}$$
 reinforcement rule

$$(11) \quad \mathbf{a} \longrightarrow \mathbf{b} \quad \Longleftrightarrow \quad \neg \left(\mathbf{a} \longleftrightarrow (\mathbf{a} \land \mathbf{b}) \right)$$

$$(12) \quad \mathbf{a} \longrightarrow \mathbf{b} \quad \Longleftrightarrow \quad \mathbf{a} \longleftrightarrow (\mathbf{a} \wedge \mathbf{b}) \quad \Longleftrightarrow \quad \mathbf{b} \longleftrightarrow (\mathbf{a} \vee \mathbf{b})$$

$$(13) \quad \mathbf{a} \ \lor \ \mathbf{b} \quad \Longleftrightarrow \quad \neg \ \mathbf{a} \longrightarrow \mathbf{b} \quad \Longleftrightarrow \quad (\mathbf{a} \longrightarrow \mathbf{b}) \longrightarrow \mathbf{b}$$

$$(14) \quad \mathbf{a} \wedge \mathbf{b} \quad \Longleftrightarrow \quad \neg \left(\mathbf{a} \longrightarrow \neg \mathbf{b} \right)$$

DME/Sch

Propositional Logic(10)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

E) Laws (Tautologies) using **Implication** (\Longrightarrow)

 $\mathbf{f} \implies \mathbf{a} \qquad \text{ex falso quodlibet}$

(2) $\mathbf{a} \implies \mathbf{t}$ ex quodlibet verum

 $\mathbf{a} \implies \mathbf{a} \qquad \text{identity law}$

 $\mathbf{a} \wedge \mathbf{b} \implies \mathbf{a} \qquad \text{simplification}$

 $\mathbf{a} \implies \mathbf{a} \lor \mathbf{b} \quad \text{addition}$

(6) $\mathbf{a} \wedge \mathbf{b} \implies \mathbf{a} \vee \mathbf{b}$ conjunction implies disjunction

(7) $\neg \mathbf{a} \implies \mathbf{a} \longrightarrow \mathbf{b}$ denial of the antecedent

(8) $\mathbf{b} \implies \mathbf{a} \longrightarrow \mathbf{b}$ affirmation of the consequent

 $\mathbf{a} \wedge (\mathbf{a} \longrightarrow \mathbf{b}) \quad \Longrightarrow \quad \mathbf{b} \qquad \text{modus ponens}$

 $\mathbf{a} \wedge (\mathbf{a} \vee \mathbf{b} \longrightarrow \mathbf{c}) \implies \mathbf{c}$

(10) $\neg \mathbf{b} \wedge (\mathbf{a} \longrightarrow \mathbf{b}) \implies \neg \mathbf{a} \quad \text{modus tollens}$

 $(11) \hspace{0.5cm} ({\bf a} \longrightarrow {\bf b}) \wedge ({\bf b} \longrightarrow {\bf c}) \hspace{0.5cm} \Longrightarrow \hspace{0.5cm} {\bf a} \longrightarrow {\bf c} \hspace{0.5cm} \text{hypothetical syllogism (modus barbara)}$

 $(\mathbf{a} \longrightarrow \mathbf{b}) \wedge (\mathbf{b} \vee \mathbf{c} \longrightarrow \mathbf{d}) \quad \Longrightarrow \quad \mathbf{a} \longrightarrow \mathbf{d}$

 $(12) \quad (\mathbf{a} \longrightarrow \mathbf{b}) \wedge (\neg \mathbf{a} \longrightarrow \mathbf{b}) \quad \Longrightarrow \quad \mathbf{b} \quad \text{constructive dilemma}$

 $(\mathbf{a} \longrightarrow \mathbf{b}) \wedge (\neg \mathbf{a} \longrightarrow \mathbf{b}) \iff \mathbf{b}$

 $(13) \quad (\mathbf{a} \longrightarrow \mathbf{b}) \wedge (\mathbf{a} \longrightarrow \neg \mathbf{b}) \quad \Longrightarrow \quad \neg \mathbf{a} \qquad \text{destructive dilemma}$

 $(\mathbf{a} \longrightarrow \mathbf{b}) \wedge (\mathbf{a} \longrightarrow \neg \mathbf{b}) \iff \neg \mathbf{a}$ (reductio ad absurdum)

DME/Sch Propositional Logic(11)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

Composition for conjunction:

$$(14) \quad (\mathbf{a} \longrightarrow \mathbf{b}) \ \land \ (\mathbf{c} \longrightarrow \mathbf{d}) \implies (\mathbf{a} \land \mathbf{c}) \longrightarrow \ (\mathbf{b} \land \mathbf{d})$$

$$(\mathbf{a} \longrightarrow \mathbf{b}) \implies (\mathbf{a} \wedge \mathbf{c}) \longrightarrow (\mathbf{b} \wedge \mathbf{c}), \quad \text{for } \mathbf{c} \Longleftrightarrow \mathbf{d}$$

Composition for disjunction:

$$(15) \quad (\mathbf{a} \longrightarrow \mathbf{b}) \ \land \ (\mathbf{c} \longrightarrow \mathbf{d}) \implies (\mathbf{a} \lor \mathbf{c}) \ \longrightarrow \ (\mathbf{b} \lor \mathbf{d})$$

$$(\mathbf{a} \longrightarrow \mathbf{b}) \implies (\mathbf{a} \vee \mathbf{c}) \longrightarrow (\mathbf{b} \vee \mathbf{c}), \quad \text{for } \mathbf{c} \Longleftrightarrow \mathbf{d}$$

Case differentiation:

(16)
$$(\mathbf{a} \lor \mathbf{b}) \land [(\mathbf{a} \longrightarrow \mathbf{c}) \land (\mathbf{b} \longrightarrow \mathbf{c})] \implies \mathbf{c}$$

$$(17) \quad (\mathbf{a} \vee \mathbf{b}) \wedge [(\mathbf{a} \longrightarrow \mathbf{c}) \wedge (\mathbf{b} \longrightarrow \mathbf{d})] \implies \mathbf{c} \vee \mathbf{d}$$

$$(18) \quad (\mathbf{a} \wedge \mathbf{b}) \wedge [(\mathbf{a} \longrightarrow \mathbf{c}) \wedge (\mathbf{b} \longrightarrow \mathbf{d})] \implies \mathbf{c} \wedge \mathbf{d}$$

Frege's chain inference:

$$(19) \quad (\mathbf{a} \longrightarrow \mathbf{b}) \longrightarrow \mathbf{c} \implies \mathbf{a} \longrightarrow (\mathbf{b} \longrightarrow \mathbf{c}) \iff (\mathbf{a} \longrightarrow \mathbf{b}) \longrightarrow (\mathbf{a} \longrightarrow \mathbf{c})$$

(20)
$$\mathbf{a} \longrightarrow \mathbf{b} \implies (\mathbf{b} \longrightarrow \mathbf{c}) \longrightarrow (\mathbf{a} \longrightarrow \mathbf{c})$$

 $\mathbf{a} \longrightarrow \mathbf{b} \implies (\mathbf{c} \longrightarrow \mathbf{a}) \longrightarrow (\mathbf{c} \longrightarrow \mathbf{b})$

Intersection of two conditionals:

(21)
$$(\mathbf{a} \longrightarrow \mathbf{b}) \land (\mathbf{c} \longrightarrow \mathbf{d}) \Longrightarrow \mathbf{a} \longrightarrow ((\mathbf{b} \longrightarrow \mathbf{c}) \longrightarrow \mathbf{d})$$

DME/Sch

Propositional Logic(12)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

RT1) Replacement theorem for tautologies

Let $\mathbf{B}(\underline{\mathbf{z}})$ be an arbitrary propositional form and $\mathbf{x}_i \in \operatorname{set}(\underline{\mathbf{x}})$ of $\mathbf{A}(\underline{\mathbf{x}})$.

Then:

IF
$$\mathbf{A}(\dots, \mathbf{x}_i, \dots) \Longleftrightarrow \mathbf{t}$$
, THEN $\mathbf{A}(\dots, \mathbf{B}(\underline{\mathbf{z}}), \dots) \Longleftrightarrow \mathbf{t}$

e.g. IF
$$\mathbf{a} \wedge (\mathbf{a} \longrightarrow \mathbf{b}) \Longrightarrow \mathbf{b}$$
, THEN $\mathbf{A}(\underline{\mathbf{x}}) \wedge (\mathbf{A}(\underline{\mathbf{x}}) \longrightarrow \mathbf{B}(\underline{\mathbf{x}})) \Longrightarrow \mathbf{B}(\underline{\mathbf{x}})$

e.g. IF
$$\mathbf{A}(\underline{\mathbf{x}}) \iff \mathbf{B}(\underline{\mathbf{x}})$$
, THEN $\operatorname{dual}(\mathbf{A}(\underline{\mathbf{x}})) \iff \operatorname{dual}(\mathbf{B}(\underline{\mathbf{x}}))$

e.g. IF
$$A(\underline{x}) \Longrightarrow B(\underline{x})$$
, THEN $\operatorname{dual}(B(\underline{x})) \Longrightarrow \operatorname{dual}(A(\underline{x}))$

RT2) Replacement theorem for equivalent partial propositional forms

Let $\mathbf{A}(\underline{\mathbf{x}}, \mathbf{B}(\underline{\mathbf{z}}))$ be an arbitrary propositional form and \mathbf{B} a partial form of \mathbf{A} , with $\operatorname{set}(\mathbf{z}) \subseteq \operatorname{set}(\mathbf{x})$. Then:

IF
$$B(\underline{z}) \iff C(\underline{z})$$
, THEN $A(\underline{x}, B(\underline{z})) \iff A(\underline{x}, C(\underline{z}))$

e.g. IF
$$\mathbf{x} \longrightarrow \mathbf{a} \Longleftrightarrow \neg \mathbf{x} \vee \mathbf{a}$$
,

THEN
$$(\mathbf{x} \longrightarrow \mathbf{a}) \land (\neg \mathbf{x} \longrightarrow \mathbf{b}) \iff (\neg \mathbf{x} \lor \mathbf{a}) \land (\neg \mathbf{x} \longrightarrow \mathbf{b})$$

SR) Substitution rule

$$\mathbf{x}_i \wedge \mathbf{A}(\mathbf{x}) \Longleftrightarrow \mathbf{x}_i \wedge \mathbf{A}(\mathbf{x}_i \Leftrightarrow \mathbf{t}); \quad \neg \mathbf{x}_i \wedge \mathbf{A}(\mathbf{x}) \Longleftrightarrow \neg \mathbf{x}_i \wedge \mathbf{A}(\mathbf{x}_i \Leftrightarrow \mathbf{f})$$

$$\mathbf{x}_i \vee \mathbf{A}(\mathbf{x}) \Longleftrightarrow \mathbf{x}_i \vee \mathbf{A}(\mathbf{x}_i \Leftrightarrow \mathbf{f}); \quad \neg \mathbf{x}_i \vee \mathbf{A}(\mathbf{x}) \Longleftrightarrow \neg \mathbf{x}_i \vee \mathbf{A}(\mathbf{x}_i \Leftrightarrow \mathbf{t})$$

ER) Expansion rules for propositional logic functions

Let $\mathbf{A}(\underline{\mathbf{x}})$ be a propositional logic function with $\mathbf{x}_i \in \operatorname{set}(\underline{\mathbf{x}})$.

(1)
$$\mathbf{A}(\underline{\mathbf{x}}) \iff [\mathbf{x}_i \wedge \mathbf{A}(\mathbf{x}_i \Leftrightarrow \mathbf{t})] \vee [\neg \mathbf{x}_i \wedge \mathbf{A}(\mathbf{x}_i \Leftrightarrow \mathbf{f})]$$
 (Shannon) (Boole's fundamental theorem)

$$(2) \mathbf{A}(\mathbf{x}) \iff [\neg \mathbf{x}_i \lor \mathbf{A}(\mathbf{x}_i \Leftrightarrow \mathbf{t})] \land [\mathbf{x}_i \lor \mathbf{A}(\mathbf{x}_i \Leftrightarrow \mathbf{f})]$$

$$(3) \mathbf{A}(\underline{\mathbf{x}}) \Longleftrightarrow [\mathbf{x}_i \longrightarrow \mathbf{A}(\mathbf{x}_i \Leftrightarrow \mathbf{t})] \wedge [\neg \mathbf{x}_i \longrightarrow \mathbf{A}(\mathbf{x}_i \Leftrightarrow \mathbf{f})]$$

$$(4) \mathbf{A}(\mathbf{x}) \iff [\mathbf{x}_{i} \land (\mathbf{A}(\mathbf{x}_{i} \Leftrightarrow \mathbf{t}) \longleftrightarrow \mathbf{A}(\mathbf{x}_{i} \Leftrightarrow \mathbf{f}))] \longleftrightarrow \mathbf{A}(\mathbf{x}_{i} \Leftrightarrow \mathbf{f})$$
(Davio)

RS) Rule of specialization

$$\begin{aligned} \mathbf{A}(\mathbf{x}_i \Leftrightarrow \mathbf{t}) \wedge \mathbf{A}(\mathbf{x}_i \Leftrightarrow \mathbf{f}) &\Longrightarrow \mathbf{A}(\underline{\mathbf{x}}) \Longrightarrow \mathbf{A}(\mathbf{x}_i \Leftrightarrow \mathbf{t}) \vee \mathbf{A}(\mathbf{x}_i \Leftrightarrow \mathbf{f}) \\ \mathbf{x}_i &\in \mathrm{set}(\mathbf{x}) \end{aligned}$$

DME/Sch

Propositional Logic(13)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

RRD) Resolution rule in disjunctive form

$$(\mathbf{x} \wedge \mathbf{a}) \vee (\neg \mathbf{x} \wedge \mathbf{b}) \Longleftrightarrow (\mathbf{x} \wedge \mathbf{a}) \vee (\neg \mathbf{x} \wedge \mathbf{b}) \vee \underbrace{(\mathbf{a} \wedge \mathbf{b})}_{resolvent}$$

$$(\mathbf{x} \wedge \mathbf{a}) \vee (\neg \mathbf{x} \wedge \mathbf{a}) \iff \mathbf{a}$$
 (special case)

$$(\mathbf{a} \wedge \mathbf{b}) \Longrightarrow (\mathbf{x} \wedge \mathbf{a}) \vee (\neg \mathbf{x} \wedge \mathbf{b})$$
 (from RRD)

RRC) Resolution rule in conjunctive form

$$(\neg \mathbf{x} \vee \mathbf{a}) \wedge (\mathbf{x} \vee \mathbf{b}) \Longleftrightarrow (\neg \mathbf{x} \vee \mathbf{a}) \wedge (\mathbf{x} \vee \mathbf{b}) \wedge \underbrace{(\mathbf{a} \vee \mathbf{b})}_{resolvent}$$

$$(\neg \mathbf{x} \vee \mathbf{a}) \wedge (\mathbf{x} \vee \mathbf{a}) \Longleftrightarrow \mathbf{a} \qquad \text{(special case)}$$

$$(\neg \mathbf{x} \lor \mathbf{a}) \land (\mathbf{x} \lor \mathbf{b}) \Longrightarrow \mathbf{a} \lor \mathbf{b}$$
 (from RRC)

RRP) Resolution rule in conditional clause form (premise form)

$$(\mathbf{x} \longrightarrow \mathbf{a}) \wedge (\neg \mathbf{x} \longrightarrow \mathbf{b}) \Longleftrightarrow (\mathbf{x} \longrightarrow \mathbf{a}) \wedge (\neg \mathbf{x} \longrightarrow \mathbf{b}) \wedge \underbrace{(\neg \mathbf{a} \longrightarrow \mathbf{b})}_{\substack{\text{resolvent}}}$$

$$(\mathbf{x} \longrightarrow \mathbf{a}) \wedge (\neg \mathbf{x} \longrightarrow \mathbf{a}) \Longleftrightarrow \mathbf{a}$$
 (special case)

$$(\neg \mathbf{a} \longrightarrow \neg \mathbf{x}) \land (\neg \mathbf{x} \longrightarrow \mathbf{b}) \Longrightarrow (\neg \mathbf{a} \longrightarrow \mathbf{b}) \qquad \text{(from RRP)}$$

FRI) Fundamental rule for implication

Let $\mathbf{A} \Longrightarrow \mathbf{B}$. Then:

IF
$$\mathbf{A} \Longleftrightarrow \mathbf{t}$$
, THEN $\mathbf{B} \Longleftrightarrow \mathbf{t}$

FRE) Fundamental rule for equivalence

Let $\mathbf{A} \iff \mathbf{B}$. Then:

$$\mathbf{A} \Longleftrightarrow \mathbf{t}$$
 IF AND ONLY IF $\mathbf{B} \Longleftrightarrow \mathbf{t}$

FRC) Fundamental rule for tautological conjunction

$$A \land B \Longleftrightarrow t$$
 IF AND ONLY IF $A \Longleftrightarrow t$ AND $B \Longleftrightarrow t$

DME/Sch

Propositional Logic(14)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

RI) Rules of inference (meta rules) for tautologies Equivalence and implication (1) $A \iff B \text{ IF AND ONLY IF } A \implies B \text{ AND } B \implies A$ C11 Contraposition (2) $\mathbf{A} \Longrightarrow \mathbf{B}$ IF AND ONLY IF $\neg \mathbf{B} \Longrightarrow \neg \mathbf{A}$ D3Enhancement rule (3) $\mathbf{A} \Longrightarrow \mathbf{B}$ IF AND ONLY IF $\mathbf{A} \Longleftrightarrow \mathbf{A} \wedge \mathbf{B}$ D12 $\mathbf{A} \Longrightarrow \mathbf{B}$ IF AND ONLY IF $\mathbf{B} \Longleftrightarrow \mathbf{A} \vee \mathbf{B}$ D12 Expansion rule (4) $\mathbf{A}(\underline{\mathbf{x}}) \Longleftrightarrow \mathbf{t}$ IF AND ONLY IF $\mathbf{A}(\mathbf{x}_i \Leftrightarrow \mathbf{t}) \Longleftrightarrow \mathbf{t}$ AND $\mathbf{A}(\mathbf{x}_i \Leftrightarrow \mathbf{f}) \Longleftrightarrow \mathbf{t}$ $\mathbf{x}_i \in \operatorname{set}(\mathbf{x})$ Affirmation of the consequent (5) IF $\mathbf{B} \iff \mathbf{t}$, THEN $\mathbf{A} \Longrightarrow \mathbf{B}$ E8 Modus ponens (6) IF $\mathbf{A} \Longleftrightarrow \mathbf{t}$ AND $\mathbf{A} \Longrightarrow \mathbf{B}$, THEN $\mathbf{B} \Longleftrightarrow \mathbf{t}$ E9 Transitivity (7) IF $A \Longrightarrow B$, AND $B \Longrightarrow C$, THEN $A \Longrightarrow C$ E11 IF $A \iff B$, AND $B \iff C$, THEN $A \iff C$ Compatibility (8) IF $\mathbf{A} \Longrightarrow \mathbf{B}$, THEN $\mathbf{A} \wedge \mathbf{C} \Longrightarrow \mathbf{B} \wedge \mathbf{C}$ E14 IF $A \Longrightarrow B$, THEN $A \lor C \Longrightarrow B \lor C$ E15IF $A \iff B$, THEN $A \land C \iff B \land C$ IF $A \iff B$, THEN $A \lor C \iff B \lor C$

DME/Sch

Propositional Logic(15)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

1.5 Propositional Logic Rules of Inference

Conclusions which are always true (e.g. E1 to E21):

$$egin{array}{cccc} \mathbf{V} &\Longrightarrow & \mathbf{S} \\ \mathbf{V}_1 \wedge \mathbf{V}_2 \wedge \mathbf{V}_3 \wedge \ldots &\Longrightarrow & \mathbf{S} \\ & \mathrm{Premises} & & \mathrm{conclusion} \\ & \mathrm{hypotheses, \ antecedents} & & & \mathrm{consequence} \end{array}$$

Let $V_1 \wedge V_2 \wedge V_3 \Longrightarrow S$ be a valid conclusion. Then:

IF
$$\hat{\mathbf{V}}_1 \wedge \hat{\mathbf{V}}_2 \wedge \hat{\mathbf{V}}_3 \Longleftrightarrow \mathbf{t}$$
, THEN $\hat{\mathbf{S}} \Longleftrightarrow \mathbf{t}$

Especially:

IF
$$V_1 \wedge V_2 \wedge V_3 \iff (t)$$
, THEN $S \iff (t)$

Logically equivalent statements:

(1)
$$\mathbf{V}_1 \wedge \mathbf{V}_2 \wedge \mathbf{V}_3 \longrightarrow \mathbf{S}$$
 \iff \mathbf{t} , tautology

$$(2) \neg \mathbf{V}_1 \vee \neg \mathbf{V}_2 \vee \neg \mathbf{V}_3 \vee \mathbf{S} \qquad \iff \mathbf{t}, \qquad \mathbf{D}\mathbf{1}$$

(3)
$$\neg \mathbf{S} \wedge \mathbf{V}_2 \wedge \mathbf{V}_3 \longrightarrow \neg \mathbf{V}_1 \iff \mathbf{t}$$
, indirect conclusion

$$(4) \neg \mathbf{S} \longrightarrow \neg (\mathbf{V}_1 \wedge \mathbf{V}_2 \wedge \mathbf{V}_3) \qquad \iff \mathbf{t}$$

(5)
$$\mathbf{V}_1 \wedge \mathbf{V}_2 \wedge \mathbf{V}_3 \wedge \neg \mathbf{S}$$
 \iff \mathbf{f} , contradiction

(6)
$$(\mathbf{V}_1 \longrightarrow \mathbf{S}) \vee (\mathbf{V}_2 \longrightarrow \mathbf{S}) \vee (\mathbf{V}_3 \longrightarrow \mathbf{S}) \iff \mathbf{t}$$

$$(7) \neg (\mathbf{V}_1 \wedge \mathbf{V}_2 \wedge \mathbf{V}_3 \wedge \neg \mathbf{S}) \iff \mathbf{t}$$

(8)
$$\mathbf{E}[\mathbf{V}_1 \wedge \mathbf{V}_2 \wedge \mathbf{V}_3] \subseteq \mathbf{E}[\mathbf{S}]$$

$$(9) \quad \mathbf{E}[\mathbf{V}_1] \cap \mathbf{E}[\mathbf{V}_2] \cap \mathbf{E}[\mathbf{V}_3] \qquad \qquad \subseteq \qquad \mathbf{E}[\mathbf{S}]$$

Trivial conclusions:

IF
$$\mathbf{V} \Longleftrightarrow \mathbf{f}$$
, THEN \mathbf{S} ($\hat{\mathbf{W}}[\mathbf{S}]$) arbitrary

IF
$$\mathbf{S} \Longleftrightarrow \mathbf{t}$$
, THEN \mathbf{V} $(\hat{\mathbf{W}}[\mathbf{V}])$ arbitrary

IF
$$\mathbf{S} \Longleftrightarrow \mathbf{t}$$
, THEN \mathbf{V} ($\underline{\hat{\mathbf{W}}}[\mathbf{V}]$) arbitrary
IF $\mathbf{S} \Longleftrightarrow \mathbf{f}$, THEN $\mathbf{V} \Longleftrightarrow \mathbf{f}$; IF $\mathbf{V} \Longleftrightarrow \mathbf{t}$, THEN $\mathbf{S} \Longleftrightarrow \mathbf{t}$

DME/Sch

Propositional Logic(16)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

Equivalent statements in propositional logic and first-order predicate logic:

(1) $\mathbf{V} \longrightarrow \mathbf{S}$ is always true (universality, semantic term)

(2) \mathbf{S} follows from \mathbf{V} (conclusion, semantic term)

S can be derived from V (derivation, syntactic term)

Possible conclusions:

$$\mathbf{V}_1 \wedge \mathbf{V}_2 \wedge \mathbf{V}_3 \wedge \dots \implies \mathbf{S}_{\lambda} ; \qquad \lambda = 1, \dots, l$$

$$\mathbf{V}_1 \wedge \mathbf{V}_2 \wedge \mathbf{V}_3 \wedge \dots \iff \mathbf{D}_1 \wedge \dots \wedge \mathbf{D}_{\mu} \wedge \dots \wedge \mathbf{D}_{m}$$

$$CCNF$$

$$\{\mathbf{S}_1,\ldots,\mathbf{S}_{\lambda},\ldots,\mathbf{S}_l\}=\{\mathbf{D}_1,\mathbf{D}_2,\ldots,\mathbf{D}_1\wedge\mathbf{D}_2,\mathbf{D}_1\wedge\mathbf{D}_3,\ldots\ \ldots,\mathbf{D}_1\wedge\mathbf{D}_2\wedge\mathbf{D}_3,\ldots\}$$

number of possible non-trivial conclusions: $l = \sum_{i=1}^m \binom{m}{i} = 2^m - 1$

Deduction scheme:

(Proof scheme)

(Logic analysis)

1)
$$V_1$$

$$2) \mathbf{V}_2 \Longrightarrow \mathbf{S}$$

3) U_3

$$\begin{array}{ccc} : & : \\ \nu) & \mathbf{U}_{\nu} \\ \vdots & \vdots & & & & \\ & & & & \\ \end{array}$$

 $\begin{array}{cccc} \text{Antecedents:} & \hat{\mathbf{V}}_1 & \Longleftrightarrow & \mathbf{t} \\ & \hat{\mathbf{V}}_2 & \Longleftrightarrow & \mathbf{t} \\ \text{Assertion:} & \hat{\mathbf{S}} & \Longleftrightarrow & \mathbf{t} \end{array}$

Proof: $V_1 \wedge V_2 \longrightarrow S \iff (t)$

$$\mathbf{V}_2 \Longleftrightarrow \mathbf{V}_2 \wedge \mathbf{U}_{\nu}, \quad \mathrm{IF} \quad \mathbf{V}_2 \Longrightarrow \mathbf{U}_{\nu} \quad \mathrm{Enhancement rule}$$
 $(\mathbf{V}_2 \Longleftrightarrow \mathbf{V}_2 \wedge \mathbf{U}_{\nu}, \quad \mathrm{IF} \quad \mathbf{V}_2 \Longleftrightarrow \mathbf{U}_{\nu})$

$$\mathbf{E}[\mathbf{V}_2] = \mathbf{E}[\mathbf{V}_2] \cap \mathbf{E}[\mathbf{U}_{\nu}], \quad \text{IF} \quad \mathbf{E}[\mathbf{V}_2] \subseteq \mathbf{E}[\mathbf{U}_{\nu}]$$

 $(\mathbf{E}[\mathbf{V}_2] = \mathbf{E}[\mathbf{V}_2] \cap \mathbf{E}[\mathbf{U}_{\nu}], \quad \text{IF} \quad \mathbf{E}[\mathbf{V}_2] = \mathbf{E}[\mathbf{U}_{\nu}])$

DME/Sch

Propositional Logic(17)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

Example:

: The worker monitors the machine.

b : He notices that the machine does not work properly.

: He turns the machine off.

: Kevin loves Suzy.

b : Kevin dates Suzy.

: Kevin goes dancing with Linda. \mathbf{c}

$$[\mathbf{a} \longrightarrow (\mathbf{b} \longrightarrow \neg \mathbf{c})] \wedge \mathbf{a} \wedge \mathbf{c} \Longrightarrow \neg \mathbf{b}$$

$$[\mathbf{a} \longrightarrow (\mathbf{b} \longrightarrow \neg \mathbf{c})] \wedge \mathbf{a} \wedge \mathbf{b} \Longrightarrow \neg \mathbf{c}$$

$$[\mathbf{a} \longrightarrow (\mathbf{b} \longrightarrow \neg \mathbf{c})] \wedge \mathbf{b} \wedge \mathbf{c} \Longrightarrow \neg \mathbf{a}$$

Proof scheme:

(indirect)

1)
$$\mathbf{a} \longrightarrow (\mathbf{b} \longrightarrow \neg \mathbf{c})$$

1)
$$\mathbf{a} \longrightarrow (\mathbf{b} \longrightarrow \neg \mathbf{c})$$

$$2) \mathbf{a} \wedge \mathbf{c} \Longrightarrow \neg$$

$$2)$$
 $\mathbf{a} \wedge \mathbf{b}$

$$3) \neg \mathbf{a} \lor \neg \mathbf{b} \lor \neg \mathbf{c}$$

3)
$$\neg \mathbf{a} \lor \neg \mathbf{b} \lor \neg \mathbf{c}$$

3)
$$\neg \mathbf{a} \lor \neg \mathbf{b} \lor \neg \mathbf{c}$$
 1) D1
4) $\mathbf{a} \land \mathbf{c} \longrightarrow \neg \mathbf{b}$ 3) D1

4)
$$\mathbf{a} \wedge \mathbf{b} \longrightarrow \neg \mathbf{c}$$

$$5) \neg \mathbf{b}$$

$$5) \neg \mathbf{c}$$

Necessary and sufficient conditions for a fact (example):

Fact		Condition	Property of conditions
white horse	\Longrightarrow	horse	necessary
white horse	\Leftarrow	white \land ferocious \land horse	sufficient
white horse	\iff	white \land horse	necessary and sufficient

DME/Sch

Propositional Logic(18)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

deduction scheme 1

1)	A	$\implies \mathbf{Z}$
:	:	
$\nu)$	$\wedge {\bf B}$	
:	:	comment
n)	$\wedge \ \mathbf{Z}$	

 $\mathbf{A} \Longleftrightarrow \mathbf{A} \wedge \mathbf{B}$ IF AND ONLY IF $\mathbf{A} \Longrightarrow \mathbf{B}$

special case: $\mathbf{Z} \Longleftrightarrow \mathbf{f}$, $\mathbf{A} \Longleftrightarrow \mathbf{f}$ e.g. $\mathbf{A} \Longleftrightarrow \mathbf{V}_1 \wedge \mathbf{V}_2 \wedge \mathbf{V}_3 \wedge \neg \mathbf{S}$ deduction scheme 2

 $\mathbf{A} \Longleftrightarrow \mathbf{A} \vee \mathbf{B}$
IF AND ONLY IF
 $\mathbf{A} \Longleftrightarrow \mathbf{B}$

special case: $\mathbf{Z} \Longleftrightarrow \mathbf{t}$, $\mathbf{A} \Longleftrightarrow \mathbf{t}$ e.g. $\mathbf{A} \Longleftrightarrow \neg \mathbf{V}_1 \vee \neg \mathbf{V}_2 \vee \neg \mathbf{V}_3 \vee \mathbf{S}$

Resolution method (layer algorithm):

Decidability algorithm for

$$CNF[A] \iff f$$

or

 $\mathrm{DNF}[A] \Longleftrightarrow t$

deduction scheme 1

$CNF[\mathbf{A}]$	layer
	0
$\dots \wedge (\mathbf{a} \vee \mathbf{b}) \wedge \dots$	1
;	•
\wedge f	n

$$(\neg \mathbf{x} \vee \mathbf{a}) \wedge (\mathbf{x} \vee \mathbf{b}) \Longrightarrow (\mathbf{a} \vee \mathbf{b})$$
 RRC

deduction scheme 2

$\mathrm{DNF}[\mathbf{A}]$	layer
$\boxed{ \ldots \lor (x \land a) \lor (\neg x \land b) \lor \ldots}$	0
$\ldots \lor (\mathbf{a} \land \mathbf{b}) \lor \ldots$	1
:	:
\vee t	n

$$(\mathbf{x} \wedge \mathbf{a}) \vee (\neg \mathbf{x} \wedge \mathbf{b}) \longleftarrow (\mathbf{a} \wedge \mathbf{b})$$
RRD

DME/Sch

Propositional Logic(19)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

Example: $[\mathbf{a} \longrightarrow (\mathbf{b} \longrightarrow \neg \mathbf{c})] \wedge \mathbf{a} \wedge \mathbf{b} \Longrightarrow \neg \mathbf{c}$

 $\text{IF AND ONLY IF} \quad [\mathbf{a} \longrightarrow (\mathbf{b} \longrightarrow \neg \mathbf{c})] \wedge \mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c} \quad \Longleftrightarrow \quad \mathbf{f}$ $(\neg \mathbf{a} \lor \neg \mathbf{b} \lor \neg \mathbf{c}) \land \mathbf{a} \land \mathbf{b} \land \mathbf{c} \iff \mathbf{f}$ IF AND ONLY IF $(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}) \vee \neg \mathbf{a} \vee \neg \mathbf{b} \vee \neg \mathbf{c} \iff \mathbf{t}$ IF AND ONLY IF

- 1) $\mathbf{a} \longrightarrow (\mathbf{b} \longrightarrow \neg \mathbf{c})$
- 2) $\mathbf{a} \wedge \mathbf{c}$
- 3) **b**
- $\begin{array}{ccc} 4) & \neg \mathbf{a} \lor \neg \mathbf{b} \lor \neg \mathbf{c} & & 1) \text{ D1} \\ 5) & \mathbf{a} \land \mathbf{c} \longrightarrow \neg \mathbf{b} & & 4) \text{ D1} \end{array}$
- 6) ¬**b**
- 7) **f**

- $\Longrightarrow \mathbf{f}$
- 2) 5) E9
- 3) 6) A8

- 1) $\neg [\mathbf{a} \longrightarrow (\mathbf{b} \longrightarrow \neg \mathbf{c})]$
- 2) $\neg \mathbf{a} \lor \neg \mathbf{c}$
- 3) ¬**b**
- 4) $\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}$
- 5) $\mathbf{a} \wedge \neg \mathbf{b} \wedge \mathbf{c}$
- 6) $\mathbf{a} \wedge \mathbf{c}$
- 7) **t**

- $\Longleftarrow \mathbf{t}$
- 1) D1, A10
- 3) E4
- 4) 5) A3
- 2) 6) A8

$(\neg \mathbf{a} \lor \neg \mathbf{b} \lor \neg \mathbf{c}) \land \mathbf{a} \land \mathbf{b} \land \mathbf{c}$	0
$ \boxed{ (\neg b \lor \neg c) \land (\neg a \lor \neg c) \land (\neg a \lor \neg b) } $	1
$\neg c \wedge \neg b \wedge \neg a$	2
f	3

$(a \land b \land c) \lor \neg a \lor \neg b \lor \neg c$	0
$(\mathbf{b} \wedge \mathbf{c}) \vee (\mathbf{a} \wedge \mathbf{c}) \vee (\mathbf{a} \wedge \mathbf{b})$	1
$\mathbf{c} \lor \mathbf{b} \lor \mathbf{a}$	2
t	3

Example: $(\mathbf{a} \longrightarrow \mathbf{b}) \longrightarrow \mathbf{c} \Longrightarrow \mathbf{a} \longrightarrow (\mathbf{b} \longrightarrow \mathbf{c})$

 $\text{IF AND ONLY IF} \quad (\neg \mathbf{a} \wedge \neg \mathbf{c}) \vee (\mathbf{b} \wedge \neg \mathbf{c}) \vee \neg \mathbf{a} \vee \neg \mathbf{b} \vee \mathbf{c} \quad \Longleftrightarrow \quad \mathbf{t}$ $\text{IF AND ONLY IF} \qquad \quad (\mathbf{a} \lor \mathbf{c}) \land (\neg \mathbf{b} \lor \mathbf{c}) \land \mathbf{a} \land \mathbf{b} \land \neg \mathbf{c} \quad \Longleftrightarrow \quad \mathbf{f}$

$(\mathbf{a} \vee \mathbf{c}) \wedge (\neg \mathbf{b} \vee \mathbf{c}) \wedge \mathbf{a} \wedge \mathbf{b} \wedge \neg \mathbf{c}$	0
$\mathbf{a} \wedge \mathbf{c} \wedge \neg \mathbf{b}$	1
f	2

$\boxed{ (\neg a \land \neg c) \lor (b \land \neg c) \lor \neg a \lor \neg b \lor c}$	0
$\neg a \lor \neg c \lor b$	1
t	2

DME/Sch

Propositional Logic(20)

CHAIR OF ELECTRONIC DESIGN AUTOMATION TECHNICAL UNIVERSITY OF MUNICH

PROFESSOR DR.-ING. U. SCHLICHTMANN

1.6 Representation of Propositional Forms

Bases:

Every propositional logic expression can be represented using the following bases (algebras).

- (1) $(\{\mathbf{t},\mathbf{f}\}; \land, \lor, \neg)$ Boolean algebra
- (2) $(\{\mathbf{t},\mathbf{f}\}; \land, \lor, \rightarrow, \leftrightarrow, \neg)$ Hilbert-Bernays-basis
- (5) $(\{\mathbf{t},\mathbf{f}\}; \wedge, \longleftrightarrow)$ Žegalkin algebra
- (6) $(\{\mathbf{t},\mathbf{f}\}; \vee, \leftrightarrow)$
- (7) $(\{\mathbf{t},\mathbf{f}\}; \to, \neg)$ Frege-Basis
- (8) $(\{\mathbf{t},\mathbf{f}\};\uparrow)$ NAND-basis (Scheffer-basis)
- (9) $(\{\mathbf{t},\mathbf{f}\};\downarrow)$ NOR-basis (Peirce-basis)
- (10) $(\{\mathbf{t},\mathbf{f}\}; \beta(.,.,.))$ β -**t**-**f**-basis

Normal forms

Example: $\mathbf{A}(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) \iff (\mathbf{b} \rightarrow \neg \mathbf{c}) \rightarrow (\mathbf{d} \rightarrow \mathbf{a})$

- a) Disjunctive normal form in $(\{\mathbf{t},\mathbf{f}\}; \land, \lor, \neg)$ e.g. DNF[\mathbf{A}] $\iff \mathbf{a}\lor (\mathbf{b}\land \mathbf{c})\lor \neg \mathbf{d}$
- b) Conjunctive normal form in $(\{\mathbf{t},\mathbf{f}\}; \land, \lor, \neg)$ e.g. $CNF[\mathbf{A}] \iff (\mathbf{a} \lor \mathbf{b} \lor \neg \mathbf{d}) \land (\mathbf{a} \lor \mathbf{c} \lor \neg \mathbf{d})$
- c) Premise normal form in $(\{\mathbf{t},\mathbf{f}\}; \beta)$ PNF[A] $\iff \beta(\mathbf{x},\mathbf{Y},\mathbf{Z})$, recursive expansion using ER Premise position \mathbf{x} is atomic variable; $\mathbf{Y},\mathbf{Z} \in \{\beta,\mathbf{t},\mathbf{f}\}$ e.g. $\mathbf{A} \iff \beta(\mathbf{a},\mathbf{t},[\neg \mathbf{d} \lor (\mathbf{b} \land \mathbf{c})])$ $[\neg \mathbf{d} \lor (\mathbf{b} \land \mathbf{c})] \iff \beta(\mathbf{d},[\mathbf{b} \land \mathbf{c}],\mathbf{t}); \quad [\mathbf{b} \land \mathbf{c}] \iff \beta(\mathbf{b},[\mathbf{c}],\mathbf{f}); \quad [\mathbf{c}] \iff \beta(\mathbf{c},\mathbf{t},\mathbf{f})$ PNF[A] $\iff \beta(\mathbf{a},\mathbf{t},\beta(\mathbf{d},\beta(\mathbf{b},\beta(\mathbf{c},\mathbf{t},\mathbf{f}),\mathbf{f}),\mathbf{t}))$
- d) (Canonical) Ringnormalform in $(\{t,f\}; \land, \longleftrightarrow)$ (Žegalkin polynomial, Muller-Reed expansion)

 RNF[A]: \iff $\mathbf{M}_1 \longleftrightarrow$ $\mathbf{M}_2 \longleftrightarrow$... $\mathbf{M}: \iff$ $\mathbf{a} \land \mathbf{b} \land$... Monom; recursive expansion using ER(4) e.g. $\mathbf{A} \iff$ $\mathbf{d} \land [\mathbf{a} \lor (\mathbf{b} \land \mathbf{c}) \longleftrightarrow \mathbf{t}] \longleftrightarrow \mathbf{t};$ $\mathbf{a} \lor (\mathbf{b} \land \mathbf{c}) \iff$ $\mathbf{a} \land \mathbf{b} \land \mathbf{c} \longleftrightarrow \mathbf{b} \land \mathbf{c} \longleftrightarrow \mathbf{a}$ RNF[A] \iff $\mathbf{a} \land \mathbf{b} \land \mathbf{c} \land \mathbf{d} \longleftrightarrow$ $\mathbf{b} \land \mathbf{c} \land \mathbf{d} \longleftrightarrow$ $\mathbf{d} \longleftrightarrow$ \mathbf{t}

DME/Sch

Propositional Logic(21)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

The β -Operation

$$\begin{array}{ll} \mathbf{y} \Longleftrightarrow \beta(\mathbf{x}, \mathbf{a}, \mathbf{b}) & \Longleftrightarrow & (\mathbf{x} \wedge \mathbf{a}) \vee (\neg \mathbf{x} \wedge \mathbf{b}) \\ & \Longleftrightarrow & (\neg \mathbf{x} \vee \mathbf{a}) \wedge (\mathbf{x} \vee \mathbf{b}) \\ & \Longleftrightarrow & (\mathbf{x} \longrightarrow \mathbf{a}) \wedge (\neg \mathbf{x} \longrightarrow \mathbf{b}) \\ & \Longleftrightarrow & [\mathbf{x} \wedge (\mathbf{a} \longleftrightarrow \mathbf{b})] \longleftrightarrow \mathbf{b} \end{array}$$

X	a	b	$\beta(\mathbf{x}, \mathbf{a}, \mathbf{b})$
t	t	t	t
t	\mathbf{t}	\mathbf{f}	\mathbf{t}
t	\mathbf{f}	\mathbf{t}	f
t	\mathbf{f}	\mathbf{f}	f
f	\mathbf{t}	\mathbf{t}	\mathbf{t}
f	\mathbf{t}	\mathbf{f}	\mathbf{f}
f	\mathbf{f}	\mathbf{t}	\mathbf{t}
f	f	f	f

Notation options:

1) Expansion rules: $\mathbf{A}(\underline{\mathbf{x}}) \iff \beta(\mathbf{x}_i, \mathbf{A}(\mathbf{x}_i \Leftrightarrow \mathbf{t}), \mathbf{A}(\mathbf{x}_i \Leftrightarrow \mathbf{f}))$

$$\begin{array}{lll} \beta(\mathbf{x}_i,\mathbf{A}(\mathbf{x}_i\Leftrightarrow\mathbf{t}),\mathbf{A}(\mathbf{x}_i\Leftrightarrow\mathbf{f})) & \Longleftrightarrow & [\mathbf{x}_i\wedge\mathbf{A}(\mathbf{x}_i\Leftrightarrow\mathbf{t})]\vee[\neg\mathbf{x}_i\wedge\mathbf{A}(\mathbf{x}_i\Leftrightarrow\mathbf{f})]\\ & \Longleftrightarrow & [\neg\mathbf{x}_i\vee\mathbf{A}(\mathbf{x}_i\Leftrightarrow\mathbf{t})]\wedge[\mathbf{x}_i\vee\mathbf{A}(\mathbf{x}_i\Leftrightarrow\mathbf{f})]\\ & \Longleftrightarrow & [\mathbf{x}_i\longrightarrow\mathbf{A}(\mathbf{x}_i\Leftrightarrow\mathbf{t})]\wedge[\neg\mathbf{x}_i\longrightarrow\mathbf{A}(\mathbf{x}_i\Leftrightarrow\mathbf{f})]\\ & \Longleftrightarrow & [\mathbf{x}_i\wedge[\mathbf{A}(\mathbf{x}_i\Leftrightarrow\mathbf{t})\longleftrightarrow\mathbf{A}(\mathbf{x}_i\Leftrightarrow\mathbf{f})]]\\ & \longleftrightarrow & \mathbf{A}(\mathbf{x}_i\Leftrightarrow\mathbf{f}) \end{array}$$

 $\mathbf{x}_i \in \text{set}(\mathbf{x})$: Premise position; $\mathbf{A}(\mathbf{x}_i \Leftrightarrow \mathbf{t}), \mathbf{A}(\mathbf{x}_i \Leftrightarrow \mathbf{f})$: cofactors

2) β -basis:

e.g.
$$\mathbf{x} \uparrow \mathbf{y} \Longleftrightarrow \neg(\mathbf{x} \wedge \mathbf{y}) \Longleftrightarrow \beta(\mathbf{x}, \neg \mathbf{y}, \mathbf{t}) \Longleftrightarrow \beta(\mathbf{x}, \beta(\mathbf{y}, \mathbf{f}, \mathbf{t}), \mathbf{t})$$

3) Resolution rules:

$$\beta(\mathbf{x}, \mathbf{a}, \mathbf{b}) \Longleftrightarrow \beta(\mathbf{x}, \mathbf{a}, \mathbf{b}) \lor (\mathbf{a} \land \mathbf{b}) \Longleftrightarrow \beta(\mathbf{x}, \mathbf{a}, \mathbf{b}) \land (\mathbf{a} \lor \mathbf{b})$$

 $\beta(\mathbf{x}, \mathbf{a}, \mathbf{a}) \Longleftrightarrow a$

4) Case differentiation:

$$\beta(\mathbf{x}, \mathbf{a}, \mathbf{b}) \iff \text{if } x \text{ then } a \text{ else } b \iff \text{ite}(\mathbf{x}, \mathbf{a}, \mathbf{b})$$

5) Multiplexer:

DME/Sch

Propositional Logic(22)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

BB) The $\beta - \mathbf{t} - \mathbf{f}$ -basis

$$(1) \quad \mathbf{a} \iff \beta(\mathbf{a}, \mathbf{t}, \mathbf{f}); \qquad \neg \mathbf{a} \iff \beta(\mathbf{a}, \mathbf{f}, \mathbf{t})$$

$$\iff \beta(\mathbf{a}, \mathbf{a}, \mathbf{f}); \qquad \iff \beta(\mathbf{a}, \neg \mathbf{a}, \mathbf{t})$$

$$\iff \beta(\mathbf{a}, \mathbf{t}, \mathbf{a}); \qquad \iff \beta(\mathbf{a}, \mathbf{f}, \neg \mathbf{a})$$

$$\iff \beta(\mathbf{t}, \mathbf{a}, \mathbf{b}); \qquad \iff \beta(\mathbf{t}, \neg \mathbf{a}, \neg \mathbf{b})$$

$$\iff \beta(\mathbf{f}, \mathbf{b}, \mathbf{a}); \qquad \iff \beta(\mathbf{f}, \neg \mathbf{b}, \neg \mathbf{a})$$

$$\iff \beta(\mathbf{x}, \mathbf{a}, \mathbf{a}); \qquad \iff \beta(\mathbf{x}, \neg \mathbf{a}, \neg \mathbf{a})$$

(2)
$$\mathbf{t} \iff \beta(\mathbf{a}, \mathbf{t}, \mathbf{t});$$
 $\mathbf{f} \iff \beta(\mathbf{a}, \mathbf{f}, \mathbf{f})$ $\iff \beta(\mathbf{a}, \mathbf{a}, \mathbf{t});$ $\iff \beta(\mathbf{a}, \mathbf{a}, \mathbf{a}, \mathbf{f})$ $\iff \beta(\mathbf{a}, \mathbf{a}, \mathbf{a}, \mathbf{a});$ $\iff \beta(\mathbf{a}, \mathbf{t}, \mathbf{a}, \mathbf{a});$ $\iff \beta(\mathbf{a}, \mathbf{f}, \mathbf{a})$

$$(3) \mathbf{a} \wedge \mathbf{b} \iff \beta(\mathbf{a}, \mathbf{b}, \mathbf{f}); \qquad \mathbf{a} \vee \mathbf{b} \iff \beta(\neg \mathbf{a}, \mathbf{b}, \mathbf{t})$$

$$\iff \beta(\mathbf{a}, \mathbf{b}, \mathbf{a}); \qquad \iff \beta(\neg \mathbf{a}, \mathbf{b}, \mathbf{a})$$

$$\iff \beta(\neg \mathbf{a}, \mathbf{f}, \mathbf{b}); \qquad \iff \beta(\mathbf{a}, \mathbf{t}, \mathbf{b})$$

$$\iff \beta(\neg \mathbf{a}, \mathbf{a}, \mathbf{b}); \qquad \iff \beta(\mathbf{a}, \mathbf{a}, \mathbf{b})$$

(4)
$$\mathbf{a} \longrightarrow \mathbf{b} \iff \beta(\mathbf{a}, \mathbf{b}, \mathbf{t}) \iff \beta(\mathbf{b}, \mathbf{t}, \neg \mathbf{a})$$

 $\iff \beta(\neg \mathbf{a}, \mathbf{t}, \mathbf{b}) \iff \beta(\mathbf{a}, \mathbf{b}, \neg \mathbf{a})$

(5)
$$\mathbf{a} \longleftrightarrow \mathbf{b} \iff \beta(\mathbf{a}, \mathbf{b}, \neg \mathbf{b})$$

 $\mathbf{a} \longleftrightarrow \mathbf{b} \iff \beta(\mathbf{a}, \neg \mathbf{b}, \mathbf{b})$

DME/Sch

Propositional Logic(23)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

BO) Laws using the β -operation

(1)
$$\beta(\mathbf{x}, \mathbf{t}, \mathbf{t}) \iff \mathbf{t}; \qquad \beta(\mathbf{x}, \mathbf{f}, \mathbf{f}) \iff \mathbf{f}$$

(2)
$$\beta(\mathbf{x}, \mathbf{t}, \mathbf{f}) \iff \mathbf{x}; \qquad \beta(\mathbf{x}, \mathbf{f}, \mathbf{t}) \iff \neg \mathbf{x}$$

(3)
$$\beta(\mathbf{t}, \mathbf{a}, \mathbf{b}) \iff \mathbf{a}; \qquad \beta(\mathbf{f}, \mathbf{a}, \mathbf{b}) \iff \mathbf{b}$$

(4)
$$\neg \beta(\mathbf{x}, \mathbf{a}, \mathbf{b}) \iff \beta(\mathbf{x}, \neg \mathbf{a}, \neg \mathbf{b})$$

(5)
$$\beta(\neg \mathbf{x}, \mathbf{a}, \mathbf{b}) \iff \beta(\mathbf{x}, \mathbf{b}, \mathbf{a})$$
 laws of duality

(6) dual
$$\beta(\mathbf{x}, \mathbf{a}, \mathbf{b}) \iff \beta(\mathbf{x}, \mathbf{b}, \mathbf{a})$$

(7)
$$\beta(\mathbf{x}, \mathbf{a}, \mathbf{b}) \iff \beta(\mathbf{x}, \mathbf{a}, \mathbf{b}) \lor (\mathbf{a} \land \mathbf{b})$$

(8)
$$\beta(\mathbf{x}, \mathbf{a}, \mathbf{b}) \iff \beta(\mathbf{x}, \mathbf{a}, \mathbf{b}) \land (\mathbf{a} \lor \mathbf{b})$$
 resolution rules

(9)
$$\beta(\mathbf{x}, \mathbf{a}, \mathbf{a}) \iff \mathbf{a}$$

(10)
$$\beta(\mathbf{x}, \mathbf{A}, \mathbf{B}) \iff [\mathbf{x} \wedge (\mathbf{A} \wedge \neg \mathbf{B})] \vee [\neg \mathbf{x} \wedge (\neg \mathbf{A} \wedge \mathbf{B})] \vee (\mathbf{A} \wedge \mathbf{B})$$

 $\mathbf{A} \wedge \neg \mathbf{B}, \ \neg \mathbf{A} \wedge \mathbf{B}, \ \mathbf{A} \wedge \mathbf{B} \text{ are pairwise disjoint}$

$$(11) \quad \beta(\mathbf{x}, \mathbf{A}, \mathbf{B}) \quad \Longleftrightarrow \quad [\neg \mathbf{x} \lor (\mathbf{A} \lor \neg \mathbf{B})] \land [\mathbf{x} \lor (\neg \mathbf{A} \lor \mathbf{B})] \land (\mathbf{A} \lor \mathbf{B})$$

(12)
$$\mathbf{f} \Longrightarrow \mathbf{a} \wedge \mathbf{b} \Longrightarrow \beta(\mathbf{x}, \mathbf{a}, \mathbf{b}) \Longrightarrow \mathbf{a} \vee \mathbf{b} \Longrightarrow \mathbf{t}$$
 enclosure law using $\beta(\mathbf{x}, \mathbf{a}, \mathbf{b})$

(13)
$$\beta(\mathbf{x}, \beta(\mathbf{y}, \mathbf{a}, \mathbf{b}), \beta(\mathbf{y}, \mathbf{c}, \mathbf{d})) \iff \beta(\mathbf{y}, \beta(\mathbf{x}, \mathbf{a}, \mathbf{c}), \beta(\mathbf{x}, \mathbf{b}, \mathbf{d}))$$

DME/Sch

Propositional Logic(24)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

(14)
$$\beta(\mathbf{x}_i, \mathbf{A}(\underline{\mathbf{x}}), \mathbf{B}(\underline{\mathbf{x}})) \Longleftrightarrow \beta(\mathbf{x}_i, \mathbf{A}(\mathbf{x}_i \Leftrightarrow \mathbf{t}), \mathbf{B}(\mathbf{x}_i \Leftrightarrow \mathbf{f}))$$
 $\mathbf{x}_i \in \operatorname{set}(\underline{\mathbf{x}})$ substitution rule

(15)
$$\beta(\mathbf{x}, \beta(\mathbf{x}, \mathbf{a}, \mathbf{b}), \mathbf{c}) \iff \beta(\mathbf{x}, \mathbf{a}, \mathbf{c})$$

(16) $\beta(\mathbf{x}, \mathbf{a}, \beta(\mathbf{x}, \mathbf{b}, \mathbf{c})) \iff \beta(\mathbf{x}, \mathbf{a}, \mathbf{c})$ special cases of substitution rules

(17)
$$\mathbf{A}(\underline{\mathbf{x}}) \Longleftrightarrow \beta(\mathbf{x}_i, \mathbf{A}(\mathbf{x}_i \Leftrightarrow \mathbf{t}), \mathbf{A}(\mathbf{x}_i \Leftrightarrow \mathbf{f}))$$
 $\mathbf{x}_i \in \operatorname{set}(\underline{\mathbf{x}});$ From BO14 with $\mathbf{A}(\underline{\mathbf{x}}) \Longleftrightarrow \mathbf{B}(\underline{\mathbf{x}})$ Expansion rules for propositional logic functions

(18)
$$\beta(\mathbf{A}(\underline{\mathbf{x}}), \mathbf{B}(\underline{\mathbf{x}}), \mathbf{C}(\underline{\mathbf{x}})) \iff \mathbf{A}(\mathbf{t} := \mathbf{B}, \mathbf{f} := \mathbf{C})$$
 composition rule (if \mathbf{A} in PNF)

(19)
$$\beta(\beta(\mathbf{x}, \mathbf{y}, \mathbf{z}), \mathbf{a}, \mathbf{b}) \iff \beta(\mathbf{x}, \beta(\mathbf{y}, \mathbf{a}, \mathbf{b}), \beta(\mathbf{z}, \mathbf{a}, \mathbf{b}))$$
 special case of composition rule

(20)
$$\mathbf{A} \iff \beta(\mathbf{A}, \mathbf{t}, \mathbf{f})$$

(21)
$$\neg \mathbf{A} \iff \beta(\mathbf{A}, \mathbf{f}, \mathbf{t}) \iff \mathbf{A}(\mathbf{t} := \mathbf{f}, \mathbf{f} := \mathbf{t})$$

(22)
$$\mathbf{A} \wedge \mathbf{B} \iff \beta(\mathbf{A}, \mathbf{B}, \mathbf{f}) \iff \mathbf{A}(\mathbf{t} := \mathbf{B})$$

(23)
$$\mathbf{A} \vee \mathbf{B} \iff \beta(\mathbf{A}, \mathbf{t}, \mathbf{B}) \iff \mathbf{A}(\mathbf{f} := \mathbf{B})$$

(24)
$$\mathbf{A} \longrightarrow \mathbf{B} \iff \beta(\mathbf{A}, \mathbf{B}, \mathbf{t}) \iff \mathbf{A}(\mathbf{t} := \mathbf{B}, \mathbf{f} := \mathbf{t})$$

(25)
$$A \longleftrightarrow B \iff \beta(A, B, \neg B) \iff A(t := B, f := \neg B)$$

(26)
$$\mathbf{A} \longleftrightarrow \mathbf{B} \iff \beta(\mathbf{A}, \neg \mathbf{B}, \mathbf{B}) \iff \mathbf{A}(\mathbf{t} := \neg \mathbf{B}, \mathbf{f} := \mathbf{B})$$

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

Decomposition of Boolean Functions

(Concatenation of subfunctions)

z.B.

Simplification:

Boolean network BN

$$\mathbf{A}(\mathbf{a},\!\mathbf{b},\!\mathbf{c},\!\mathbf{d}) \iff (\mathbf{a} \vee \neg \mathbf{d} \vee \mathbf{b}) \ \wedge (\mathbf{a} \vee \neg \mathbf{d} \vee \mathbf{c})$$

Corresponding terms

Boolean function	Boolean network	Circuit netlist
multi-output function	set of terminal vertices	circuit outputs
(atomic) variable	set of root vertices	circuit inputs
subfunction	internal vertices	subcircuit
hierarchical depth	levels	circuit levels
subfunction variable	predecessor vertex	subcircuit inputs
multiply used subfunction	fanout vertex	fanout

DME/Sch

Propositional Logic(26)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

Boolean network BN = (V,S)

of the Boolean function

$$\mathbf{F}(\mathbf{z}) = (\mathbf{F}_1 \mathbf{F}_2)$$

$$set(\underline{\mathbf{z}}) = sup(\mathbf{F}) = \{\mathbf{a}, \mathbf{b}, \mathbf{x}, \mathbf{y}\}\$$

 $\sup(\mathbf{F})$: support of \mathbf{F}

$$V = {\alpha, \gamma, \delta, a, b, x, y}$$

e.g.
$$(\gamma, \alpha) \in \mathbf{S} \iff \gamma \in \sup(\alpha)$$

BN is directed, acyclic graph (dag)

Example:

 \mathbf{BN} of $\mathrm{PNF}[\mathbf{A}]$

BDD of PNF[A] Binary Decision Diagram

DME/Sch

Propositional Logic(27)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

Expansion of Boolean functions using expansion rules ER (1), (2), (3)

Note regarding proof of tautology:

 $\begin{array}{l} \text{IF } \mathbf{A}(\underline{\mathbf{x}}) \Longleftrightarrow \mathbf{t}, \\ \text{THEN all terminal vertices are } \mathbf{t} \end{array}$

Simplification: **BDT** (Binary Decision Tree), **BDD** (Binary Decision Diagram)

 \mathbf{c}

$$\label{eq:pnf} \begin{split} \text{``PNF}[\mathbf{A}]\text{'`} &\iff (\mathbf{a} \longrightarrow \mathbf{t}) \wedge (\neg \mathbf{a} \wedge \neg \mathbf{d} \longrightarrow \mathbf{t}) \wedge \\ & \wedge (\neg \mathbf{a} \wedge \mathbf{d} \wedge \mathbf{b} \wedge \mathbf{c} \longrightarrow \mathbf{t}) \wedge \\ & \wedge (\neg \mathbf{a} \wedge \mathbf{d} \wedge \neg \mathbf{b} \longrightarrow \mathbf{f}) \wedge \\ & \wedge (\neg \mathbf{a} \wedge \mathbf{d} \wedge \mathbf{b} \wedge \neg \mathbf{c} \longrightarrow \mathbf{f}) \end{split}$$

$$\begin{array}{l} \mathrm{DNF}[\mathbf{A}] \Longleftrightarrow \mathbf{a} \vee (\neg \mathbf{a} \wedge \neg \mathbf{d}) \vee \\ \vee (\neg \mathbf{a} \wedge \mathbf{d} \wedge \mathbf{b} \wedge \mathbf{c}) \end{array}$$

$$\begin{array}{c} \mathrm{CNF}[\mathbf{A}] \Longleftrightarrow (\mathbf{a} \ \lor \neg \mathbf{d} \ \lor \mathbf{b}) \ \land \\ \qquad \qquad \land (\mathbf{a} \ \lor \neg \mathbf{d} \ \lor \neg \mathbf{b} \lor \mathbf{c}) \end{array}$$

$$\begin{array}{ccc} \operatorname{CNF}[\mathbf{A}] & \Longleftrightarrow & \operatorname{PNF}[\mathbf{A}] \\ \operatorname{DNF}[\mathbf{A}] & \Longleftrightarrow & \neg \operatorname{PNF}[\neg \mathbf{A}] \end{array}$$

DME/Sch

Propositional Logic(28)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

Elementary Premise Normal Forms (PNF)

- Basic structures of decision trees (BDT)

$$\mathbf{a} \rightarrow \mathbf{b} \iff \beta(\mathbf{a}, \mathbf{b}, \mathbf{t}); \qquad \mathbf{a} \leftrightarrow \mathbf{b} \iff \beta(\mathbf{a}, \mathbf{b}, \neg \mathbf{b})$$
 $\Leftrightarrow \mathbf{a}(\mathbf{t} := \mathbf{b}, \mathbf{f} := \neg \mathbf{b})$

$$PNF[\mathbf{a} \rightarrow \mathbf{b}] \iff \beta(\mathbf{a}, \beta(\mathbf{b}, \mathbf{t}, \mathbf{f}), \mathbf{t}) ; CPNF[\mathbf{a} \leftrightarrow \mathbf{b}] \iff \beta(\mathbf{a}, \beta(\mathbf{b}, \mathbf{t}, \mathbf{f}), \beta(\mathbf{b}, \mathbf{f}, \mathbf{t}))$$

DME/Sch Propositional Logic(29) 05/09

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

e.g. $\mathbf{A}(\mathbf{a}, \mathbf{b}) \iff \beta(\mathbf{a}, \mathbf{A}(\mathbf{t}, \mathbf{b}), \mathbf{A}(\mathbf{f}, \mathbf{b})) \iff \beta(\mathbf{a}, \beta(\mathbf{b}, \mathbf{A}(\mathbf{t}, \mathbf{t}), \mathbf{A}(\mathbf{t}, \mathbf{f})), \beta(\mathbf{b}, \mathbf{A}(\mathbf{f}, \mathbf{t}), \mathbf{A}(\mathbf{f}, \mathbf{f})))$

Composition rule:

Note: Transformation from general β -representation into PNF

DME/Sch Propositional Logic(30) 05/09

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

Resolution rule (simplification rule, SPR2):

 $\beta(\mathbf{x}, \mathbf{B}, \mathbf{B}) \Longleftrightarrow \qquad \mathbf{B}$ \mathbf{t} \mathbf{B} \mathbf{B}

e.g. $\mathbf{A}(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) \iff \mathbf{a} \lor (\mathbf{b} \land \mathbf{c}) \lor \neg \mathbf{d}$

ROBDT: Reduced OBDT

$ROBDT[\mathbf{A}]$

(complete resolution of variables)

 \mathbf{a}

Canonical normal form of $\mathbf{A}(\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d}) \Longleftrightarrow \mathbf{a} \vee (\mathbf{b} \wedge \mathbf{c}) \vee \neg \mathbf{d}$:

DME/Sch

Propositional Logic(33)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

Crosslinking (simplification rule, SPR3):

Crosslinking to equivalent sub-BDTs (merging of equivalent sub-BDTs)

 $\operatorname{BDT} \longrightarrow \operatorname{BDD}$ Binary Decision Diagram

 $\begin{array}{ccc} \text{OBDT} & \longrightarrow & \text{OBDD} \\ \text{ROBDT} & \longrightarrow & \text{ROBDD} \end{array}$

e.g. $\mathbf{A}(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) \iff \mathbf{a} \lor (\mathbf{b} \land \mathbf{c}) \lor \neg \mathbf{d}$

ROBDD[A]

(complete crosslinking)

Theorem:

An ROBDD is a canonical representation, given a defined variable ordering

DME/Sch

Propositional Logic(34)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

2 Predicate Logic

Propositional logic : Elementary

propositions

Propositional logic : $\mathbf{A}(\mathbf{x}, \mathbf{y}, \mathbf{z})$

propositional form $\mathbf{x}, \mathbf{y}, \mathbf{z}$: Propositional variable

A, x, y, z : Placeholder for propositions

Proposition : $A(t, f, t) \in \{t, f\}$

Predicate logic : Propositions in

subject-predicate structure

2.1 Predicate (predicate logic) propositional forms

propositional form Predicate Individual variable

(Unary predicate) (-variable)

Parlance: **x** has property **P**

e.g. $\mathbf{P}\mathbf{x} \iff \mathbf{x} \text{ is a genius}$

 $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\} = \{\text{Einstein, Turing, Suzy}\}$

Proposition : $\mathbf{P}\mathbf{x}_3 \in \{\mathbf{t}, \mathbf{f}\}$

DME/Sch Predicate Logic(1) 05/09

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

Predicates		Parlance				
Px	unary	x has property P e.g. "x is whole"				
Pxy	binary	${f x}$ is related to ${f y}$ by ${f P}$ e.g. " ${f x}<{f y}$ "				
Pxyz	ternary	$\mathbf{x}, \mathbf{y}, \mathbf{z}$ are related by \mathbf{P} e.g. " $\mathbf{x} * \mathbf{y} = \mathbf{z}$ "				
$\mathbf{P}\mathbf{x}_1\ldots\mathbf{x}_n$	n-ary (n-place)	$\mathbf{x}_1,\ldots,\mathbf{x}_n$ are related by \mathbf{P}				

 $\mathbf{P}\mathbf{x}_1\mathbf{x}_2\mathbf{x}_3\ \dots\ \mathbf{x}_n$: String in prefix-notation

Unary predicates : Unary predicates examine their associated

objects for existence of a certain property.

Px : Interpretation as set-building operator

Set-building : $\mathbf{A} = \{ \mathbf{x} \mid \mathbf{P}\mathbf{x} \wedge \mathbf{x} \in \mathbf{G} \}$

Propositional form on basic set **G**.

A is the set of all objects x from G, for which Px holds.

Binary relation : $\mathbf{R}_2 = \{ (\mathbf{x}, \mathbf{y}) \mid \mathbf{P}\mathbf{x}\mathbf{y} \wedge (\mathbf{x}, \mathbf{y}) \in \mathbf{M} \times \mathbf{N} \}$

from set ${\bf M}$ to ${\bf N}$ Propositional form on

product set $\mathbf{M} \times \mathbf{N}$

 $\text{Cartesian product set} \ : \quad \ \mathbf{M} \times \mathbf{N} = \{ \underbrace{(\ \mathbf{x}, \ \mathbf{y})} \mid \mathbf{x} \ \in \ \mathbf{M} \ \land \ \mathbf{y} \ \in \ \mathbf{N} \ \}$

ordered pair (of subjects)

DME/Sch Predicate Logic(2) 05/09

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

Predicate logic propositional form using quantifiers:

Quantifiers	Propositional form	Parlance			
Universal quantifier	$\forall_{\mathbf{x}} \ \mathbf{P}\mathbf{x} \; ; \ \forall \mathbf{x}, \mathbf{P}\mathbf{x}$	$\mathbf{P}\mathbf{x}$ holds for all \mathbf{x}			
Existential quantifier	$\exists_{\mathbf{x}} \ \mathbf{P}\mathbf{x} \; ; \ \exists \mathbf{x}, \mathbf{P}\mathbf{x}$	there exists (such) an \mathbf{x} , that $\mathbf{P}\mathbf{x}$ holds			

Definition and interpretation by logic circuits:

Example: P: is a metal; $\mathbf{x} \in \mathbf{M}$:

Q: conducts current; \mathbf{x} is an element out of the periodic system

 \mathbf{x}_1 : Copper

$$\left[\begin{matrix} \forall \\ \mathbf{x} \in \mathbf{M} \end{matrix} \left(\mathbf{P}\mathbf{x} \longrightarrow \mathbf{Q}\mathbf{x} \right) \right] \wedge \ \mathbf{P}\mathbf{x}_1 \ \implies \ \mathbf{Q}\mathbf{x}_1$$

DME/Sch Predicate Logic(3) 05/09

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

2.2 Laws

F) Logical Equivalence (\iff)

(3)
$$\forall \mathbf{X} \in \mathbf{M} \quad \forall \mathbf{P} \mathbf{x} \mathbf{y} \iff \forall \mathbf{Y} \quad \mathbf{Y} \in \mathbf{N} \quad \mathbf{x} \in \mathbf{M}$$

$$(4) \qquad \qquad \exists \quad \exists \quad \mathbf{Pxy} \quad \Longleftrightarrow \quad \exists \quad \exists \quad \mathbf{Pxy} \\ \mathbf{x} \in \mathbf{M} \quad \mathbf{y} \in \mathbf{N} \quad \mathbf{x} \in \mathbf{M}$$

(5)
$$\forall \mathbf{P} \mathbf{x} \wedge \mathbf{Q} \mathbf{x}) \iff (\forall \mathbf{P} \mathbf{x}) \wedge (\forall \mathbf{Q} \mathbf{x})$$

(6)
$$\exists_{\mathbf{x} \in \mathbf{M}} (\mathbf{P}\mathbf{x} \vee \mathbf{Q}\mathbf{x}) \iff (\exists_{\mathbf{x} \in \mathbf{M}} \mathbf{P}\mathbf{x}) \vee (\exists_{\mathbf{x} \in \mathbf{M}} \mathbf{Q}\mathbf{x})$$

(7)
$$\forall \mathbf{S} \vee \mathbf{Q} \mathbf{x}) \quad \iff \quad \mathbf{S} \vee \forall \mathbf{Q} \mathbf{x}$$

(8)
$$\exists_{\mathbf{x} \in \mathbf{M}} (\mathbf{S} \wedge \mathbf{Q} \mathbf{x}) \iff \mathbf{S} \wedge \exists_{\mathbf{x} \in \mathbf{M}} \mathbf{Q} \mathbf{x}$$

(9)
$$\forall \mathbf{x} \in \mathbf{M} \ \mathbf{y} \in \mathbf{N} \ (\mathbf{P}\mathbf{x} \wedge \mathbf{Q}\mathbf{y}) \quad \Longleftrightarrow \quad \exists \mathbf{y} \in \mathbf{N} \ \mathbf{x} \in \mathbf{M} \ (\mathbf{P}\mathbf{x} \wedge \mathbf{Q}\mathbf{y})$$

$$(10) \qquad \iff (\bigvee_{\mathbf{x} \in \mathbf{M}} \mathbf{P} \mathbf{x}) \wedge (\bigvee_{\mathbf{y} \in \mathbf{N}} \mathbf{Q} \mathbf{y})$$

(11)
$$\forall \begin{array}{c} \exists \\ \mathbf{x} \in \mathbf{M} \ \mathbf{y} \in \mathbf{N} \end{array} (\mathbf{P}\mathbf{x} \vee \mathbf{Q}\mathbf{y}) \quad \Longleftrightarrow \quad \begin{array}{c} \exists \\ \mathbf{y} \in \mathbf{N} \ \mathbf{x} \in \mathbf{M} \end{array} (\mathbf{P}\mathbf{x} \vee \mathbf{Q}\mathbf{y})$$

$$(12) \qquad \iff (\bigvee_{\mathbf{x} \in \mathbf{M}} \mathbf{P} \mathbf{x}) \lor (\bigvee_{\mathbf{y} \in \mathbf{N}} \mathbf{Q} \mathbf{y})$$

(13)
$$\exists_{\mathbf{x} \in \mathbf{M}} (\mathbf{P}\mathbf{x} \longrightarrow \mathbf{Q}\mathbf{x}) \iff (\bigvee_{\mathbf{x} \in \mathbf{M}} \mathbf{P}\mathbf{x}) \longrightarrow (\bigcup_{\mathbf{x} \in \mathbf{M}} \mathbf{Q}\mathbf{x})$$

M, N: Domains (of individual variables) / Universe of discourse Prerequisite: $M \neq \emptyset$, $N \neq \emptyset$

DME/Sch Predicate Logic(4) 05/09

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

G) (Logical) Implication
$$(\Longrightarrow)$$

(1)
$$\forall \mathbf{P}\mathbf{x} \Longrightarrow \mathbf{P}\mathbf{x}_1 , \qquad \mathbf{P}\mathbf{x}_1 \Longrightarrow_{\mathbf{x} \in \mathbf{M}} \mathbf{P}\mathbf{x}, \qquad \mathbf{x}_1 \in \mathbf{M}$$

(2)
$$\forall \mathbf{P} \mathbf{x} \implies \exists \mathbf{P} \mathbf{x} \\ \mathbf{x} \in \mathbf{M}$$

(3)
$$\forall \mathbf{P} \mathbf{x} \vee \mathbf{Q} \mathbf{x}) \implies (\forall \mathbf{P} \mathbf{x}) \vee (\exists \mathbf{Q} \mathbf{x})$$
$$\mathbf{x} \in \mathbf{M}$$

$$(4) \qquad \qquad \exists_{\mathbf{x} \in \mathbf{M}} (\mathbf{P} \mathbf{x} \wedge \mathbf{Q} \mathbf{x}) \quad \Longrightarrow \quad (\exists_{\mathbf{x} \in \mathbf{M}} \mathbf{P} \mathbf{x}) \wedge (\exists_{\mathbf{x} \in \mathbf{M}} \mathbf{Q} \mathbf{x})$$

(5)
$$(\bigvee_{\mathbf{x} \in \mathbf{M}} \mathbf{P} \mathbf{x}) \vee (\bigvee_{\mathbf{x} \in \mathbf{M}} \mathbf{Q} \mathbf{x}) \implies \bigvee_{\mathbf{x} \in \mathbf{M}} (\mathbf{P} \mathbf{x} \vee \mathbf{Q} \mathbf{x})$$

(6)
$$(\bigvee_{\mathbf{x} \in \mathbf{M}} \mathbf{P} \mathbf{x}) \wedge (\bigvee_{\mathbf{x} \in \mathbf{M}} \mathbf{Q} \mathbf{x}) \implies \bigvee_{\mathbf{x} \in \mathbf{M}} (\mathbf{P} \mathbf{x} \wedge \mathbf{Q} \mathbf{x})$$

(7)
$$\forall \mathbf{y} \forall \mathbf{Pxy} \implies \forall \mathbf{Pxx} \\ \mathbf{x} \in \mathbf{M} \ \mathbf{y} \in \mathbf{M}$$

(8)
$$\exists \quad \forall \mathbf{P} \mathbf{x} \mathbf{y} \implies \quad \forall \quad \exists \mathbf{P} \mathbf{x} \mathbf{y} \\ \mathbf{x} \in \mathbf{M} \quad \mathbf{y} \in \mathbf{N} \quad \mathbf{x} \in \mathbf{M}$$

(9)
$$\forall \mathbf{P} \mathbf{x} \longrightarrow \mathbf{Q} \mathbf{x}) \quad \Longrightarrow \quad \forall \mathbf{P} \mathbf{x} \longrightarrow \forall \mathbf{Q} \mathbf{x}$$

(10)
$$\forall \mathbf{P} \mathbf{x} \longrightarrow \mathbf{Q} \mathbf{x}) \implies \exists \mathbf{P} \mathbf{x} \longrightarrow \exists \mathbf{Q} \mathbf{x}$$

$$(11) \quad (\bigvee_{\mathbf{x} \in \mathbf{M}} \mathbf{P} \mathbf{x}) \wedge \bigvee_{\mathbf{x} \in \mathbf{M}} (\mathbf{P} \mathbf{x} \longrightarrow \mathbf{Q} \mathbf{x}) \quad \implies \quad \bigvee_{\mathbf{x} \in \mathbf{M}} \mathbf{Q} \mathbf{x}$$

$$(12) \quad (\underset{\mathbf{x} \in \mathbf{M}}{\exists} \mathbf{P} \mathbf{x}) \land \underset{\mathbf{x} \in \mathbf{M}}{\forall} (\mathbf{P} \mathbf{x} \longrightarrow \mathbf{Q} \mathbf{x}) \quad \Longrightarrow \quad \underset{\mathbf{x} \in \mathbf{M}}{\exists} \mathbf{Q} \mathbf{x}$$

DME/Sch Predicate Logic(5) 05/09

2.3 Deduction scheme

Example:

All Bavarians are Germans, and all Bavarians are Europeans, and there exist Bavarians implies: some Europeans are Germans.

B: is a Bavarian; D: is a German; E: is a European; M: set of all people

1)
$$\forall \mathbf{Bx} \longrightarrow \mathbf{Dx}$$

$$2) \quad \bigvee_{\mathbf{x} \in \mathbf{M}} \left(\mathbf{B} \mathbf{x} \longrightarrow \mathbf{E} \mathbf{x} \right)$$

3)
$$\exists_{\mathbf{x} \in \mathbf{M}} \mathbf{B}\mathbf{x} \Longrightarrow \exists_{\mathbf{x} \in \mathbf{M}} (\mathbf{D}\mathbf{x} \wedge \mathbf{E}\mathbf{x})$$

4)
$$\forall \mathbf{x} \in \mathbf{M} [(\neg \mathbf{B} \mathbf{x} \lor \mathbf{D} \mathbf{x}) \land (\neg \mathbf{B} \mathbf{x} \lor \mathbf{E} \mathbf{x})]$$
 1) 2) D1, F5

5)
$$\forall \mathbf{X} \in \mathbf{M} (\neg \mathbf{B} \mathbf{x} \lor (\mathbf{D} \mathbf{x} \land \mathbf{E} \mathbf{x}))$$
 4) A3

6)
$$\forall \mathbf{B} \mathbf{x} \vee \exists \mathbf{D} \mathbf{x} \wedge \mathbf{E} \mathbf{x}$$
 ($\mathbf{D} \mathbf{x} \wedge \mathbf{E} \mathbf{x}$) 5) G3!

7)
$$\neg \bigvee_{\mathbf{x} \in \mathbf{M}} \neg \mathbf{B} \mathbf{x}$$
 3) F2

8)
$$\neg \forall (\neg \mathbf{B}\mathbf{x}) \land \exists (\mathbf{D}\mathbf{x} \land \mathbf{E}\mathbf{x})$$
 6) 7)

9)
$$\exists_{\mathbf{x} \in \mathbf{M}} (\mathbf{D}\mathbf{x} \wedge \mathbf{E}\mathbf{x})$$
 8) E4

DME/Sch

Predicate Logic(6)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

2.4 (Mathematical) Induction

Using the inductive rule of inference

$$\mathbf{P0} \land \bigvee_{\mathbf{n} \in \mathbb{N}_0} [\mathbf{Pn} \longrightarrow \mathbf{P}(\mathbf{n}+1)] \Longrightarrow \bigvee_{\mathbf{n} \in \mathbb{N}_0} \mathbf{Pn}$$

we have:

FROM P0
$$\iff$$
 t

AND $\forall [\mathbf{Pn} \longrightarrow \mathbf{P(n+1)}] \iff$ t

IT FOLLOWS $\forall \mathbf{Pn} \longrightarrow \mathbf{t}$

FROM basis step
AND induction step
IT FOLLOWS conclusion

In the induction step we must show that

$$\mathbf{Pn} \longrightarrow \mathbf{P}(\mathbf{n}+1) \Longleftrightarrow \mathbf{t}$$
, i.e. $\mathbf{Pn} \Longrightarrow \mathbf{P}(\mathbf{n}+1)$, for all $\mathbf{n} \in \mathbb{N}_0$.

Example: Show that
$$\sum_{\nu=0}^{\mathbf{n}} (2\nu+1) = (\mathbf{n}+1)^2$$
 holds for all $\mathbf{n} \in \mathbb{N}_0$.
 Inductive hypothesis $\mathbf{P}\mathbf{n} \iff \sum_{\nu=0}^{\mathbf{n}} (2\nu+1) = (\mathbf{n}+1)^2$.

Basis step:

$$\mathbf{P0} \iff (2 \cdot 0 + 1) = (0 + 1)^2 \iff \mathbf{t}$$

Induction step:

$$\mathbf{P}(\mathbf{n}+1) \iff \sum_{\substack{\nu=0\\\mathbf{n}}}^{\mathbf{n}+1} (2\nu+1) = (\mathbf{n}+2)^2$$

$$\iff \sum_{\nu=0}^{\mathbf{n}} (2\nu+1) + 2\mathbf{n} + 3 = (\mathbf{n}+1)^2 + 2\mathbf{n} + 3$$

Using $\mathbf{a} = \mathbf{b} \wedge \mathbf{c} = \mathbf{d} \Longrightarrow \mathbf{a} + \mathbf{c} = \mathbf{b} + \mathbf{d}$ we have for all $\mathbf{n} \in \mathbb{N}_0$:

$$(\underbrace{\sum_{\nu=0}^{\mathbf{n}} (2\nu+1) = (\mathbf{n}+1)^2) \wedge (2\mathbf{n}+3 = 2\mathbf{n}+3)}_{\mathbf{P}\mathbf{n}} \Longrightarrow \underbrace{\sum_{\nu=0}^{\mathbf{n}} (2\nu+1) + 2\mathbf{n}+3 = (\mathbf{n}+1)^2 + 2\mathbf{n}+3}_{\mathbf{P}(\mathbf{n}+1)}$$

Conclusion:

$$egin{array}{c}igwedge \mathbf{P}\mathbf{n}&\Longleftrightarrow&\mathbf{t} \ \mathbf{n}\in \mathbf{N}_0 \end{array}$$

Generalization in case of a basis step using an arbitrary $\mathbf{k} \in \mathbb{N}_0$:

DME/Sch Predicate Logic(7) 05/09

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

3 Sets

A set is a collection of objects that is defined precisely enough so that we can in principle determine whether any given object is or is not an object in that set.

$$\mathbf{M} = \{ \mathbf{x} \mid \mathbf{x} \text{ has property } \mathbf{P} \}$$
bound variable (by set-building operator)

Parlance: M is the set of all x, for which P holds.

3.1 Notation

$$\mathbf{M} = \{\mathbf{x} \mid \mathbf{P}\mathbf{x}\}$$

$$\mathbf{M} = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots\}$$

Set-building (describing; implicit)

List (enumerating; explicit)

Set notation

$$\mathbb{N} = \{ \mathbf{x} \mid \mathbf{x} \text{ is a positive integer (without zero)} \} \triangleq \{1, 2, 3, 4, \ldots \}$$

$$\mathbb{N}_0 = \{ \mathbf{x} \mid \mathbf{x} \text{ is a positive integer (including zero)} \} \qquad \triangleq \{0, 1, 2, 3, \ldots \}$$

$$\mathbb{Z} = \{ \mathbf{x} \mid \mathbf{x} \text{ is integer} \}$$
 $\triangleq \{\dots, -2, -1, 0, 1, 2, \dots \}$

$$\begin{aligned} \mathbf{Q} &= \{ \mathbf{x} \mid \mathbf{x} \text{ is rational} \} \\ &= \{ \mathbf{x} \mid \mathbf{x} = \mathbf{p}/\mathbf{q}, \quad \mathbf{p} \in \mathbb{Z} \land \mathbf{q} \in \mathbb{N} \} \end{aligned}$$

$$\mathbb{R} = \{ \mathbf{x} \mid \mathbf{x} \text{ is real} \}$$

$$\mathbb{C} = \{ \mathbf{x} \mid \mathbf{x} \text{ is complex} \}$$

$$\mathbb{N} \subset \mathbb{N}_0 \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$

DME/Sch Sets(1) 05/09

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

The objects of a set are called elements of the set.

Number of elements in \mathbf{M} : $|\mathbf{M}|$ (cardinality)

Empty set : \emptyset , { }, { $\mathbf{x} \mid \mathbf{x} \neq \mathbf{x}$ } No object differs from itself.

Universal set (universe of discourse) : $\mathbf{G}, \Omega, \{\mathbf{x} \mid \mathbf{x} = \mathbf{x}\}$ All objects are equal to themselves.

Power set of set M : $P(M) = \{ X \mid X \subseteq M \}$ $|P(M)| = 2^{|M|}$

The set P(M) of all subsets X of a set M is called power set.

Examples:

Notations for M: $M = \{ \mathbf{x} \mid \mathbf{x} \in \mathbf{G} \land \mathbf{P}\mathbf{x} \}$

 $\mathbf{M} \subseteq \mathbf{G} \iff \mathbf{M} \in \mathbf{P}(\mathbf{G}) \\ \hspace{1cm} = \hspace{1cm} \{ \hspace{1mm} \mathbf{x} \! \in \! \mathbf{G} \hspace{1mm} | \hspace{1mm} \mathbf{P} \mathbf{x} \}$

 \mathbf{M} is the set of all objects \mathbf{x} = $\{\mathbf{x} \mid \mathbf{P}\mathbf{x}\}_{\mathbf{G}}$ out of the universal set \mathbf{G} , for which $\mathbf{P}\mathbf{x}$ holds. = $\{\mathbf{x} \mid \mathbf{x} \in \mathbf{M}\}_{\mathbf{G}}$

 $\mathbf{x} {\in} \mathbf{M} \quad \stackrel{\Longleftrightarrow}{\longleftarrow} \quad \mathbf{P} \mathbf{x} \; ; \qquad \qquad \mathbf{x} {\not\in} \mathbf{M} \quad \stackrel{\Longleftrightarrow}{\longleftarrow} \quad \neg \; (\mathbf{x} {\in} \mathbf{M}) \quad \stackrel{\Longleftrightarrow}{\longleftarrow} \quad \neg \; \mathbf{P} \mathbf{x}$

 $(\mathbf{x} \text{ is element of } \mathbf{M})$ $(\mathbf{x} \text{ is not element of } \mathbf{M})$

Additional notation: $card(\mathbf{M})$ for $|\mathbf{M}|$

DME/Sch Sets(2) 05/11

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

3.2 Operations and Definitions

 $A,B \in P(G)$

Intersection

$$\mathbf{A} \cap \mathbf{B} = \{ \mathbf{x} \in \mathbf{G} \mid \mathbf{x} \in \mathbf{A} \land \mathbf{x} \in \mathbf{B} \}$$
$$\mathbf{x} \in \mathbf{A} \cap \mathbf{B} \Longleftrightarrow \mathbf{x} \in \mathbf{A} \land \mathbf{x} \in \mathbf{B}$$

Union

$$\begin{array}{lll} A \cup B \ = \ \{x{\in}G \ | \ x{\in}A \ \lor \ x{\in}B\} \\ \\ x{\in} \ A \cup B \Longleftrightarrow x{\in}A \ \lor \ x{\in}B \end{array}$$

Symmetric difference (of two sets)

$$\begin{array}{c} \mathbf{A} \bigtriangleup \mathbf{B} = \{\mathbf{x} {\in} \mathbf{G} \,|\, \mathbf{x} {\in} \mathbf{A} \iff \mathbf{x} {\in} \mathbf{B}\} \\ \\ \mathbf{x} {\in} \ \mathbf{A} \bigtriangleup \mathbf{B} \iff \mathbf{x} {\in} \mathbf{A} \iff \mathbf{x} {\in} \mathbf{B} \end{array}$$

Difference of sets (relative complement of **B** w.r.t. **A**) (parlance: **A** without **B**)

Complement

Strength of operators:

- _Λ υ Δ \

DME/Sch Sets(3) 01/12

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

Aggregation of indexed sets:

$$C = \{S_1, \ldots, S_{\nu}, \ldots, S_n\} = \{S \mid S \in C\}_{\Omega}; \qquad \Omega = P(G)$$

Index set:

$$N = \{1, ..., \nu, ..., n\};$$
 $C = \{S_{\nu} \mid \nu \in N\}_{O}$

Union of sets:

$$\bigcup_{\mathbf{S} \in \mathbf{C}} \mathbf{S} = \{ \mathbf{x} \mid \mathbf{\Xi}_{\mathbf{S} \in \mathbf{C}} \ \mathbf{x} \in \mathbf{S} \, \}_{\mathbf{G}}$$

$$\bigcup_{\nu \in \mathbf{N}} \mathbf{S}_{\nu} = \bigcup_{\nu=1}^{n} \mathbf{S}_{\nu} = \bigcup_{1 \le \nu \le n} \mathbf{S}_{\nu} = \{ \mathbf{x} \mid \exists_{\nu \in \mathbf{N}} \mathbf{x} \in \mathbf{S}_{\nu} \}_{\mathbf{G}}$$

Intersection of sets:

$$\bigcap_{\mathbf{S}\in\mathbf{C}}\mathbf{S}=\{\mathbf{x}\mid \bigvee_{\mathbf{S}\in\mathbf{C}}\mathbf{x}\in\mathbf{S}\}_{\mathbf{G}}$$

$$\bigcap_{\nu \in \mathbf{N}} \mathbf{S}_{\nu} = \bigcap_{\nu=1}^{n} \mathbf{S}_{\nu} = \bigcap_{1 \leq \nu \leq n} \mathbf{S}_{\nu} = \{\mathbf{x} \mid \bigvee_{\nu \in \mathbf{N}} \mathbf{x} \in \mathbf{S}_{\nu}\}_{\mathbf{G}}$$

Representation of sets:

Venn diagram

Karnaugh diagram

DME/Sch Sets(4) 05/09

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

Conjunctions of propositional forms and on-sets:

$$\mathbf{E}\left[\mathbf{A}\right] = \{\hat{\underline{\mathbf{x}}} \mid \mathbf{A}(\hat{\underline{\mathbf{x}}})\}_{\mathbf{G}} \;, \quad \mathbf{G} = \{\mathbf{t}, \mathbf{f}\}^n \;, \quad \mathbf{E}\left[\mathbf{A}\right], \; \mathbf{E}\left[\mathbf{B}\right] \in \mathbf{P}(\mathbf{G}) \;, \quad \mathbf{A} : \{\mathbf{t}, \mathbf{f}\}^n \longrightarrow \{\mathbf{t}, \mathbf{f}\}$$

$$\mathbf{E}[\mathbf{A} \wedge \mathbf{B}] = \{\hat{\mathbf{x}} \mid \mathbf{A} \wedge \mathbf{B}\}_{\mathbf{C}} = \mathbf{E}[\mathbf{A}] \cap \mathbf{E}[\mathbf{B}]$$

$$\begin{array}{lll} \mathbf{E}\left[\mathbf{A}\vee\mathbf{B}\right] & & = & \{\hat{\underline{\mathbf{x}}}\,|\,\,\mathbf{A}\vee\mathbf{B}\}_{G} & & = & \mathbf{E}\left[\mathbf{A}\right]\cup\mathbf{E}\left[\mathbf{B}\right] \end{array}$$

$$\mathbf{E} [\neg \mathbf{A}] = \{\hat{\mathbf{x}} \mid \neg \mathbf{A}\}_{\mathbf{G}} = \overline{\mathbf{E}} [\mathbf{A}]$$

$$\mathbf{E}\left[\mathbf{A} \longrightarrow \mathbf{B}\right] \quad = \quad \{\underline{\hat{\mathbf{x}}} \mid \ \mathbf{A} \longrightarrow \mathbf{B}\}_{\mathbf{G}} \quad = \quad \overline{\mathbf{E}}\left[\mathbf{A}\right] \cup \mathbf{E}\left[\mathbf{B}\right]$$

$$\mathbf{E}\left[\mathbf{A} \longleftrightarrow \mathbf{B}\right] \ = \ \{\hat{\underline{\mathbf{x}}} \mid \mathbf{A} \longleftrightarrow \mathbf{B}\}_{G} \ = \ \mathbf{E}\left[\mathbf{A}\right] \triangle \ \mathbf{E}\left[\mathbf{B}\right]$$

$$\mathbf{E}\left[\mathbf{A}\longleftrightarrow\mathbf{B}\right] \ = \ \left\{\underline{\hat{\mathbf{x}}} \mid \mathbf{A}\longleftrightarrow\mathbf{B}\right\}_{\mathbf{G}} \ = \ \mathbf{E}\left[\mathbf{A}\longrightarrow\mathbf{B}\right]\cap\mathbf{E}\left[\mathbf{B}\longrightarrow\mathbf{A}\right]$$

A coding $\mathbf{z} := \hat{\mathbf{x}}$ can be used to represent a set **M** as the on-set $\mathbf{E}[\mathbf{A}]$ of a propositional form $\mathbf{A}(\mathbf{x})$.

$$\mathbf{M} = \{ \mathbf{z} \in \mathbf{G} \mid \mathbf{Pz} \} := \mathbf{E}[\mathbf{A}]; \qquad |\mathbf{G}| = 2^{n}$$

$$\mathbf{A}(\underline{\mathbf{x}}) \;:\; \{\mathbf{t},\mathbf{f}\}^n \longrightarrow \{\mathbf{t},\mathbf{f}\}$$

$$\hat{\underline{\mathbf{x}}} \in \mathbf{M} \iff \mathbf{P}\hat{\underline{\mathbf{x}}} \iff \hat{\underline{\mathbf{x}}} \in \mathbf{E}\left[\mathbf{A}\right] \iff \mathbf{A}(\hat{\underline{\mathbf{x}}})$$

 $\mathbf{A}(\mathbf{x})$: characteristic function of \mathbf{M}

Note: $\mathbf{W}[\mathbf{A}]$ is a vector representation of $\mathbf{E}[\mathbf{A}]$ or \mathbf{M}

Definitions: $\mathbf{A} \subseteq \mathbf{G}$

$${f A} = {f G} \qquad \Longleftrightarrow \quad {\overline{f A}} = {f \emptyset} \; ; \qquad \qquad {f A}
eq {f G}$$

$$\mathbf{A} = \mathbf{\emptyset} \qquad \iff \overline{\mathbf{A}} = \mathbf{G} \; ; \qquad \qquad \mathbf{A} \neq \mathbf{G} \qquad \iff \overline{\mathbf{A}} \neq \mathbf{\emptyset}$$

DME/Sch Sets(5)05/09

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

3.3 Relations between Sets

$$\begin{array}{lll} \mathbf{A} &=& \mathbf{B} &\iff & \bigvee_{\mathbf{x} \in \mathbf{G}} (\mathbf{x} \in \mathbf{A} \iff \mathbf{x} \in \mathbf{B}) &\iff \\ & \bigvee_{\mathbf{x} \in \mathbf{G}} (\mathbf{x} \in \mathbf{A} \iff \mathbf{x} \in \mathbf{B}) &\iff \\ & & \bigvee_{\mathbf{x} \in \mathbf{G}} (\mathbf{x} \in \mathbf{A} \iff \mathbf{x} \in \mathbf{B}) &\iff \\ & & \bigvee_{\mathbf{x} \in \mathbf{G}} \mathbf{x} \not \in \mathbf{A} \triangle \mathbf{B} \iff \mathbf{A} \triangle \mathbf{B} = \mathbf{\emptyset} \end{array}$$

$$\mathbf{A} \subset \mathbf{B} \qquad \Longleftrightarrow \quad (\mathbf{A} \subseteq \mathbf{B}) \, \wedge \, (\mathbf{A} \neq \mathbf{B})$$
 proper subset

$$\mathbf{A} \ \not\subset \ \mathbf{B} \qquad \iff \ (\mathbf{A} \not\subseteq \mathbf{B}) \ \lor \ (\mathbf{A} = \mathbf{B})$$

DME/Sch Sets(6) 05/09

TECHNICAL UNIVERSITY OF MUNICH

PROFESSOR DR.-ING. U. SCHLICHTMANN

3.4 Laws

 $A,\,B,\,C\in P(G)$

H) Set algebra $(\mathbf{P}(\mathbf{G}); \ \cap, \ \cup, \ \overline{\ }; \ \mathbf{G}, \emptyset)$

Principle of duality:

 $(1) \quad \mathbf{A} \cap \mathbf{B} = \mathbf{B} \cap \mathbf{A}$

 $\mathbf{A} \cup \mathbf{B} = \mathbf{B} \cup \mathbf{A}$

Commutativity

(2) $(\mathbf{A} \cap \mathbf{B}) \cap \mathbf{C}$ = $\mathbf{A} \cap (\mathbf{B} \cap \mathbf{C})$

Associativity

 $(\mathbf{A} \cup \mathbf{B}) \cup \mathbf{C}$

 $A \cup (B \cup C)$

 $\mathbf{A} \cap (\mathbf{B} \cup \mathbf{C})$ (3)

 $(\mathbf{A} \cap \mathbf{B}) \cup (\mathbf{A} \cap \mathbf{C})$

Distributivity

 $A \cup (B \cap C)$

 $(\mathbf{A} \cup \mathbf{B}) \cap (\mathbf{A} \cup \mathbf{C})$

 $(4) \quad \mathbf{A} \cap \mathbf{A} = \mathbf{A}$

 $\mathbf{A} \cup \mathbf{A} = \mathbf{A}$

Idempotence

(5) $A \cap (A \cup B)$ \mathbf{A}

Absorption

 $A \cup (A \cap B)$

Α

(6) $\mathbf{A} \cap \mathbf{G} = \mathbf{A}$

; $\mathbf{A} \cup \emptyset = \mathbf{A}$

Neutral element

(7) $\mathbf{A} \cap \mathbf{\emptyset} = \mathbf{\emptyset}$

 $\mathbf{A} \cup \mathbf{G} = \mathbf{G}$;

(8) $\mathbf{A} \cap \overline{\mathbf{A}} = \emptyset$

 $\mathbf{A}\cup\overline{\mathbf{A}}=\mathbf{G}$

Complementary element

(9)

 $(\overline{\overline{\mathbf{A}}})$ \mathbf{A}

Double negation

(10)

 $\overline{\mathbf{A}} \cup \overline{\mathbf{B}}$ $\overline{\mathbf{A} \cap \mathbf{B}}$

De Morgan

 $\overline{\mathbf{A}} \cap \overline{\mathbf{B}}$ $\overline{\mathbf{A} \cup \mathbf{B}}$

DME/Sch

Sets(7)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

J) Set and Subset Relations

$$\mathbf{A} = \mathbf{A}$$

(2)
$$\mathbf{A} \cap \mathbf{B} = \emptyset$$
 disjoint sets (no common elements)

$$\mathbf{A} \setminus \mathbf{B} = \mathbf{A} \cap \overline{\mathbf{B}}$$

(4)
$$\mathbf{A} \setminus \mathbf{\emptyset} = \mathbf{A}$$
; $\mathbf{A} \setminus \mathbf{A} = \mathbf{\emptyset}$; $\mathbf{G} \setminus \mathbf{A} = \overline{\mathbf{A}}$

$$(5) \qquad \mathbf{A} \setminus (\mathbf{B} \cup \mathbf{C}) = (\mathbf{A} \setminus \mathbf{B}) \cap (\mathbf{A} \setminus \mathbf{C})$$

(6)
$$\mathbf{A} \setminus (\mathbf{B} \cap \mathbf{C}) = (\mathbf{A} \setminus \mathbf{B}) \cup (\mathbf{A} \setminus \mathbf{C})$$

$$(7) \qquad \mathbf{A} \cap (\mathbf{B} \setminus \mathbf{A}) = \emptyset$$

(8)
$$\mathbf{A} \triangle \mathbf{B} = (\mathbf{A} \cup \mathbf{B}) \setminus (\mathbf{A} \cap \mathbf{B})$$

$$= (\mathbf{A} \cup \mathbf{B}) \cap (\overline{\mathbf{A} \cap \mathbf{B}})$$

$$(10) \qquad = (\mathbf{A} \setminus \mathbf{B}) \cup (\mathbf{B} \setminus \mathbf{A})$$

$$(11) \qquad \qquad = (\mathbf{A} \cap \overline{\mathbf{B}}) \cup (\overline{\mathbf{A}} \cap \mathbf{B})$$

$$(12) \mathbf{A} \triangle \mathbf{B} = \mathbf{B} \triangle \mathbf{A}$$

$$(13) \quad (\mathbf{A} \triangle \mathbf{B}) \triangle \mathbf{C} = \mathbf{A} \triangle (\mathbf{B} \triangle \mathbf{C})$$

$$(14) \quad \mathbf{A} \cap (\mathbf{B} \triangle \mathbf{C}) = (\mathbf{A} \cap \mathbf{B}) \triangle (\mathbf{A} \cap \mathbf{C})$$

(15)
$$\mathbf{A} \triangle \mathbf{A} = \emptyset; \qquad \mathbf{A} \triangle \emptyset = \mathbf{A}; \qquad \mathbf{G} \triangle \mathbf{A} = \overline{\mathbf{A}}$$

(16)
$$\mathbf{A} \triangle \overline{\mathbf{A}} = \mathbf{G}$$
; $\mathbf{A} \triangle \mathbf{A} \triangle \mathbf{A} = \mathbf{A}$

DME/Sch Sets(8) 05/09

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

$$\mathbf{A} \subseteq \mathbf{A}; \qquad \mathbf{\emptyset} \subseteq \mathbf{A}; \qquad \mathbf{A} \subseteq \mathbf{G}$$

$$\mathbf{A} \subseteq \mathbf{A} \cup \mathbf{B} ; \qquad \mathbf{A} \cap \mathbf{B} \subseteq \mathbf{A}$$

$$(22) \mathbf{A} \cap \mathbf{B} \subseteq \mathbf{A} \cup \mathbf{B}$$

(23)
$$\mathbf{A} \cap (\overline{\mathbf{A}} \cup \mathbf{B}) \subseteq \mathbf{B}$$
 modus ponens

$$(24) A = B \iff B = A$$

(25)
$$\mathbf{A} = \mathbf{B} \iff (\overline{\mathbf{A}} \cup \mathbf{B}) \cap (\mathbf{A} \cup \overline{\mathbf{B}}) = \mathbf{G}$$

$$(26) \qquad \iff (\mathbf{A} \cap \overline{\mathbf{B}}) \cup (\overline{\mathbf{A}} \cap \mathbf{B}) = \emptyset$$

$$(27) \qquad \iff \mathbf{A} \triangle \mathbf{B} = \emptyset$$

$$(28) \mathbf{A} = \mathbf{B} \iff (\mathbf{A} \subseteq \mathbf{B}) \land (\mathbf{B} \subseteq \mathbf{A})$$

(29)
$$\mathbf{A} \subseteq \mathbf{B} \iff \overline{\mathbf{A}} \cup \mathbf{B} = \mathbf{G} \iff \mathbf{A} \cap \overline{\mathbf{B}} = \emptyset$$

$$(30) \qquad \iff \mathbf{A} \cap \mathbf{B} = \mathbf{A} \quad \iff \mathbf{A} \cup \mathbf{B} = \mathbf{B}$$

(31)
$$\mathbf{A} \subseteq \mathbf{B} \iff \overline{\mathbf{B}} \subseteq \overline{\mathbf{A}}; \qquad \mathbf{A} = \mathbf{B} \iff \overline{\mathbf{A}} = \overline{\mathbf{B}}$$

$$(32) \quad \mathbf{A} \subseteq \mathbf{B} \cup \mathbf{C} \quad \Longleftrightarrow \quad \mathbf{A} \cap \overline{\mathbf{B}} \subseteq \mathbf{C}$$

$$(33) \quad (\mathbf{A} = \mathbf{B}) \land (\mathbf{B} = \mathbf{C}) \quad \Longrightarrow \quad \mathbf{A} = \mathbf{C}$$

$$(34) \quad (\mathbf{A} \subseteq \mathbf{B}) \ \land \ (\mathbf{B} \subseteq \mathbf{C}) \quad \Longrightarrow \quad \mathbf{A} \subseteq \mathbf{C}$$

$$(35) \quad (\mathbf{A} \subseteq \mathbf{B}) \land (\mathbf{C} \subseteq \mathbf{D}) \quad \Longrightarrow \quad (\mathbf{A} \cup \mathbf{C}) \subseteq (\mathbf{B} \cup \mathbf{D})$$

$$(36) \quad (\mathbf{A} \subseteq \mathbf{B}) \land (\mathbf{C} \subseteq \mathbf{D}) \implies (\mathbf{A} \cap \mathbf{C}) \subseteq (\mathbf{B} \cap \mathbf{D})$$

$$\mathbf{A} \subset \mathbf{B} \quad \Longrightarrow \quad \mathbf{B} \setminus \mathbf{A} \neq \emptyset$$

DME/Sch Sets(9) 05/09

CHAIR OF ELECTRONIC DESIGN AUTOMATION TECHNICAL UNIVERSITY OF MUNICH

PROFESSOR DR.-ING. U. SCHLICHTMANN

Comparison of notation using unary predicates vs. sets:

$$(\bigvee_{\mathbf{x} \in \mathbf{M}} \mathbf{P} \mathbf{x}) \wedge (\bigvee_{\mathbf{x} \in \mathbf{M}} \mathbf{Q} \mathbf{x}) \stackrel{F5}{\Longleftrightarrow} \bigvee_{\mathbf{x} \in \mathbf{M}} (\mathbf{P} \mathbf{x} \wedge \mathbf{Q} \mathbf{x})$$

$$(\bigvee_{\mathbf{x} \in \mathbf{M}} \mathbf{P} \mathbf{x}) \wedge (\bigcup_{\mathbf{x} \in \mathbf{M}} \mathbf{Q} \mathbf{x}) \stackrel{G6}{\Longrightarrow} \bigcup_{\mathbf{x} \in \mathbf{M}} (\mathbf{P} \mathbf{x} \wedge \mathbf{Q} \mathbf{x}) \stackrel{G4}{\Longrightarrow} (\bigcup_{\mathbf{x} \in \mathbf{M}} \mathbf{P} \mathbf{x}) \wedge (\bigcup_{\mathbf{x} \in \mathbf{M}} \mathbf{Q} \mathbf{x})$$

$$(\bigvee_{\mathbf{x} \in \mathbf{M}} \mathbf{P} \mathbf{x}) \vee (\bigvee_{\mathbf{x} \in \mathbf{M}} \mathbf{Q} \mathbf{x}) \stackrel{G5}{\Longrightarrow} \bigvee_{\mathbf{x} \in \mathbf{M}} (\mathbf{P} \mathbf{x} \vee \mathbf{Q} \mathbf{x}) \stackrel{G3}{\Longrightarrow} (\bigvee_{\mathbf{x} \in \mathbf{M}} \mathbf{P} \mathbf{x}) \vee (\bigcup_{\mathbf{x} \in \mathbf{M}} \mathbf{Q} \mathbf{x})$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow$$

$$\mathbf{P}\mathbf{x} \Longleftrightarrow \mathbf{x} \in \mathbf{A}; \qquad \mathbf{Q}\mathbf{x} \Longleftrightarrow \mathbf{x} \in \mathbf{B}$$

 $\mathbf{A} \subseteq \mathbf{M}; \qquad \mathbf{B} \subseteq \mathbf{M}; \qquad \mathbf{M} \neq \emptyset$

DME/Sch Sets(10) 05/09

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

4 Relations

4.1 Definitions

Ordered pair (\mathbf{x}, \mathbf{y}) ; \mathbf{x} : first component

 $(of \ objects)$ $y: second \ component$

 $\mathbf{x} \neq \mathbf{y}$ \Longrightarrow $(\mathbf{x}, \mathbf{y}) \neq (\mathbf{y}, \mathbf{x})$

Ordered triple : $(\mathbf{x}, \mathbf{y}, \mathbf{z})$ \triangleq $((\mathbf{x}, \mathbf{y}), \mathbf{z})$

Ordered quadruple : $(\mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z})$ \triangleq $((\mathbf{w}, \mathbf{x}, \mathbf{y}), \mathbf{z})$

Ordered n-tuple : $(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n) \triangleq \underline{\mathbf{x}}_{\leq n >}; \underline{\mathbf{x}}$

Cartesian product : $\mathbf{A} \times \mathbf{B} = \{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \in \mathbf{A} \land \mathbf{y} \in \mathbf{B}\}$

(Cross product) $(\mathbf{x}, \mathbf{y}) \in \mathbf{A} \times \mathbf{B} \quad \Longleftrightarrow \quad \mathbf{x} \in \mathbf{A} \wedge \mathbf{y} \in \mathbf{B}$

 $|\mathbf{A} \times \mathbf{B}| = |\mathbf{A}| \cdot |\mathbf{B}|;$

Notation : $\mathbf{A} \times \mathbf{A} = \mathbf{A}^2$

Example: $\mathbf{A} = \{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ $\mathbf{B} = \{1, 2, \mathbf{a}\}$ $\mathbf{A} = \{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ $\mathbf{A} = \{\mathbf{a}, \mathbf{c}, \mathbf{c}\}$

 $\mathbf{c} \qquad \underbrace{(\mathbf{c},1) \quad (\mathbf{c},2) \quad (\mathbf{c},\mathbf{a})}_{\mathbf{A} \rightarrow \mathbf{C} \mathbf{D}}$

 $\mathbf{N} = \{1, \ldots, \nu, \ldots, n\}$

 $| \mathop{\times}_{\nu=1}^n \mathbf{A}_{\nu} | \ = \ \mathop{\prod}_{\nu=1}^n |\mathbf{A}_{\nu}| \, ; \qquad \mathop{\forall}_{\nu \in \mathbf{N}} \left(\mathbf{A}_{\nu} = \mathbf{A} \right) \ \implies \ \mathop{\times}_{\nu=1}^n \mathbf{A}_{\nu} \ = \ \mathbf{A}^n$

DME/Sch Relations(1) 05/09

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

R is a binary relation from set A $\underline{\text{to}} \text{ set } \mathbf{B} (\text{over } \mathbf{A} \times \mathbf{B})$

 $:\iff \mathbf{R}\subseteq \mathbf{A}\times \mathbf{B}$

Heterogeneous relation Inhomogeneous relation

R is a binary relation within the set \mathbf{A} (over \mathbf{A}^2); $\mathbf{A} = \mathbf{B}$

 $:\iff \mathbf{R}\subseteq \mathbf{A}^2$

Homogeneous relation

A: domain

B: codomain

 $\mathbf{R} = \{(\mathbf{x}, \mathbf{y}) \mid (\mathbf{x}, \mathbf{y}) \in \mathbf{R}\}_{\mathbf{A} \times \mathbf{R}} \qquad \triangleq \qquad \{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \mathbf{R} \mathbf{y}\}_{\mathbf{A} \times \mathbf{R}}$

 $(\mathbf{x}, \mathbf{y}) \in \mathbf{R} \iff \mathbf{x} \mathbf{R} \mathbf{y} \iff$

(Parlance:

 \mathbf{x} is related to \mathbf{y})

Empty relation:

Universal relation: $\mathbf{A} \times \mathbf{B}$ or \mathbf{A}^2

 $\text{Identity relation:} \qquad \mathbf{I} = \left\{ (\mathbf{x}, \mathbf{x}) \mid \mathbf{x} \in \mathbf{A} \right\}_{\mathbf{A}^2}; \qquad \mathbf{x} = \mathbf{y} \Longleftrightarrow (\mathbf{x}, \mathbf{y}) \in \mathbf{I} \Longleftrightarrow \mathbf{x} \mathbf{I} \mathbf{y}$

 $\mathbf{x} \neq \mathbf{y} \iff (\mathbf{x}, \mathbf{y}) \notin \mathbf{I} \iff \mathbf{x} \mathbf{\bar{I}} \mathbf{y}$

R is an n-ary relation between the sets $\mathbf{A}_1, \dots, \mathbf{A}_n$ { (over $\underset{\dots \in \mathbf{N}^1}{\times} \mathbf{A}_{\nu}$) (over $\underset{\nu \in \mathbf{N}}{\times} \mathbf{A}_{\nu}$)

 $:\iff \mathbf{R}\ \subseteq igstylengtharpoons \mathbf{A}_
u$

 ${f R}$ is an n-ary relation within the set A (over A^n)

 $: \iff \ \mathbf{R} \ \subseteq \ \mathbf{A}^n$

 $\mathbf{R} = \left\{ (\mathbf{x}_1, \dots, \mathbf{x}_n) \ | \ \mathbf{R} \mathbf{x}_1 \, \dots \, \mathbf{x}_n \right\} \underset{\nu \in \mathbf{N}}{\times} \mathbf{A}_{\nu} \qquad \triangleq \qquad \left\{ \, \underline{\mathbf{x}}_{< n >} \, | \, \underline{\mathbf{x}}_{< n >} \in \mathbf{R} \right\} \underset{\nu \in \mathbf{N}}{\times} \mathbf{A}_{\nu}$

DME/Sch

Relations(2)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

$$\begin{split} \mathbf{R} &= \; \left\{ (\mathbf{x}, \mathbf{y}) \, | \; \mathbf{x} \mathbf{R} \mathbf{y} \right\}_{A \times B}; \qquad \mathbf{R} \subseteq \; \mathbf{A} \times \mathbf{B}; \qquad \mathbf{R} \in \mathbf{P}(\mathbf{A} \times \mathbf{B}) \\ \mathbf{S} &= \; \left\{ (\mathbf{y}, \mathbf{z}) \, | \; \mathbf{y} \mathbf{S} \mathbf{z} \; \right\}_{B \times C}; \qquad \mathbf{S} \subseteq \; \mathbf{B} \times \mathbf{C}; \qquad \mathbf{S} \in \mathbf{P}(\mathbf{B} \times \mathbf{C}) \end{split}$$

Complementary relation $\overline{\mathbf{R}}$ of \mathbf{R} :

$$\overline{\mathbf{R}} = \ \{ (\mathbf{x}, \mathbf{y}) \ | \ (\mathbf{x}, \mathbf{y}) \notin \mathbf{R} \}_{\mathbf{A} \times \mathbf{B}} = \ (\mathbf{A} \times \mathbf{B}) \backslash \mathbf{R}$$

Converse (transposed, reciprocal) relation \mathbb{R}^{-1} of \mathbb{R} :

$$\mathbf{R}^{-1} {=} \ \{ (\mathbf{y}, \mathbf{x}) \mid \ (\mathbf{x}, \mathbf{y}) {\in} \mathbf{R} \}_{\mathbf{B} \times \mathbf{A}}; \qquad \mathbf{R}^{-1} \subseteq \mathbf{B} \times \mathbf{A}$$

Composition of relations \mathbf{R} and \mathbf{S} :

$$\mathbf{xRSz} \Longleftrightarrow \mathop{\exists}\limits_{\mathbf{y} \in \mathbf{B}} \left[\mathbf{xRy} \, \land \, \mathbf{ySz} \right] \, ; \qquad \mathbf{RS} \subseteq \mathbf{A} \times \mathbf{C}$$

Strength of operators: -, $^{-1}$, \circ , \cap , \cup , ...

$$\begin{split} \mathbf{R} &= \{ (\mathbf{x}_1, \mathbf{y}_1), \, (\mathbf{x}_1, \mathbf{y}_2), \, (\mathbf{x}_2, \mathbf{y}_2), \, (\mathbf{x}_3, \mathbf{y}_1) \}; \quad \mathbf{S} = \{ (\mathbf{y}_2, \mathbf{z}_1), \, (\mathbf{y}_2, \mathbf{z}_2), \, (\mathbf{y}_3, \mathbf{z}_1), \, (\mathbf{y}_3, \mathbf{z}_3) \} \\ \mathbf{RS} &= \{ (\mathbf{x}_1, \mathbf{z}_1), \, (\mathbf{x}_1, \mathbf{z}_2), \, (\mathbf{x}_2, \mathbf{z}_1), \, (\mathbf{x}_2, \mathbf{z}_2) \} \end{split}$$

 \mathbf{x} is child of \mathbf{y} \iff $\mathbf{x}\mathbf{R}\mathbf{y}$

 $\mathbf{y} \ \ \mathrm{has} \ \mathrm{a} \ \mathrm{brother} \ \mathbf{z} \quad \Longleftrightarrow \quad \mathbf{ySz}$

 \mathbf{x} has an uncle \mathbf{z} \iff \mathbf{xRSz}

DME/Sch Relations(3) 05/09

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

4.2 Binary graphs

Directed (binary) graph : G = (A, R)

(DAG, Digraph), graph of \mathbf{R} or $\mathbf{G} = (\mathbf{A} \cup \mathbf{B}, \mathbf{R})$

Set of nodes (points, vertices) of G: $A = \{w, x, y, ..., z\}$

Adjacency relation of $\, \mathbf{G} \,$: $\, \mathbf{R} = \{ (\mathbf{x}, \, \mathbf{y}) \, | \, \, \mathbf{x} \mathbf{R} \mathbf{y} \}_{\mathbf{A^2}} \,$

or $\mathbf{R} = \{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \mathbf{R} \mathbf{y}\}_{\mathbf{A} \times \mathbf{B}}$

Order of a graph : |A|

Complement of G: $\overline{G} = (A, \overline{R})$

G is complete $:\iff R = A \times A = A^2$

G is empty $:\iff R=\emptyset$

 $\mathbf{x} \circ \mathbf{y}$

Directed edge (arc, arrow) : (\mathbf{x}, \mathbf{y}) incident with \mathbf{x} and \mathbf{y}

Initial, terminal node : \mathbf{x}, \mathbf{y}

Loop : (\mathbf{x}, \mathbf{x}) ; \mathbf{x}

plain graph : no multiple edges

 \mathbf{x} is predecessor of \mathbf{y} : \iff $(\mathbf{x}, \mathbf{y}) \in \mathbf{R} \iff \mathbf{x} \mathbf{R} \mathbf{y} \iff \mathbf{y} \mathbf{R}^{-1} \mathbf{x}$

(y is successor of x)

Set of successors of \mathbf{x} : $\Gamma^+(\mathbf{x}) = \mathrm{suc}(\mathbf{x}) = \mathbf{R}(\mathbf{x}) = \{\mathbf{y} \mid \mathbf{x} \mathbf{R} \mathbf{y}\}_{\mathbf{A}}$

Set of predecessors of \mathbf{x} : $\Gamma^{-}(\mathbf{x}) = \operatorname{pre}(\mathbf{x}) = \mathbf{R}^{-1}(\mathbf{x}) = \{\mathbf{y} \mid \mathbf{y}\mathbf{R}\mathbf{x}\}_{\mathbf{A}}$

Set of proper successors or : $\Gamma^+(\mathbf{x}) \setminus \{\mathbf{x}\}$ or $\Gamma^-(\mathbf{x}) \setminus \{\mathbf{x}\}$

predecessors of \mathbf{x}

DME/Sch Relations(4) 06/01

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

Degree of node \mathbf{x} : $\mathbf{d}^+(\mathbf{x}) = | \mathbf{\Gamma}^+(\mathbf{x}) |$; $\mathbf{d}^-(\mathbf{x}) = | \mathbf{\Gamma}^-(\mathbf{x}) |$

outdegree indegree

(successor degree) (predecessor degree)

 $(\mathbf{x},\!\mathbf{y}) {\in} \mathbf{R} \quad \Longleftrightarrow \quad \mathbf{y} {\in} \Gamma^+(\mathbf{x})$

 $(\mathbf{y},\!\mathbf{x}){\in}\mathbf{R}\iff (\mathbf{x},\!\mathbf{y}){\in}\mathbf{R}^{-1}\quad\Longleftrightarrow\quad \mathbf{y}{\in}\Gamma^{-}(\mathbf{x})$

 \mathbf{x} has a loop $:\iff (\mathbf{x},\mathbf{x}){\in}\mathbf{R} \iff \mathbf{x}\mathbf{R}\mathbf{x}$

 \mathbf{G} has no loops $:\iff \mathbf{R}\subseteq \overline{\mathbf{I}}$

 \mathbf{x} is initial (source) : $\iff \mathbf{\Gamma}^{-}(\mathbf{x}) = \mathbf{\emptyset} \iff \mathbf{d}^{-}(\mathbf{x}) = 0$

 \mathbf{x} is terminal (sink) : $\iff \Gamma^+(\mathbf{x}) = \emptyset \iff \mathbf{d}^+(\mathbf{x}) = 0$

 \mathbf{x} is functional $:\iff \mathbf{d}^+(\mathbf{x}) \leq 1$

 \mathbf{x} is cofunctional $:\iff \mathbf{d}^{-}(\mathbf{x}) \leq 1$

 \mathbf{x} is branch point $:\iff \mathbf{d}^+(\mathbf{x}) \geq 2$

 \mathbf{x} is reconvergence point $:\iff \mathbf{d}^{-}(\mathbf{x}) \geq 2$

set of successors and : $\bigcup_{\mathbf{x}\in \mathbf{A}'}\Gamma^+(\mathbf{x}) \qquad \text{or} \quad \bigcup_{\mathbf{x}\in \mathbf{A}'}\Gamma^-(\mathbf{x})$

predecessors of $A' \subseteq A$

set of initial and $: \qquad \overline{\bigcup_{\mathbf{x} \in \mathbf{A}} \Gamma^+(\mathbf{x})} \qquad \text{or } \overline{\bigcup_{\mathbf{x} \in \mathbf{A}} \Gamma^-(\mathbf{x})}$

terminal vertices in G

 $\mathrm{partial\ subgraph\ }\mathbf{G}'\ \mathrm{of}\ \mathbf{G}\qquad :\qquad \mathbf{A}'\ \subseteq\ \mathbf{A}\ ;\qquad \mathbf{R}'\ \subseteq\ \mathbf{R}\cap(\mathbf{A}'\times\mathbf{A}')$

(induced) subgraph \mathbf{G}'' of \mathbf{G} : $\mathbf{A}'' \subseteq \mathbf{A}$; $\mathbf{R}'' = \mathbf{R} \cap (\mathbf{A}'' \times \mathbf{A}'')$

spanning subgraph G''' of G: A''' = A; $R''' \subseteq R$

DME/Sch Relations(5) 06/01

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

Representations of G = (A, R)

Example: $\mathbf{A} = \{ \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4 \} \; ; \; \mathbf{R} = \{ (\mathbf{x}_1, \mathbf{x}_2), (\mathbf{x}_2, \mathbf{x}_1), (\mathbf{x}_2, \mathbf{x}_4), (\mathbf{x}_3, \mathbf{x}_1) \}$

$$\begin{array}{c|c}
\mathbf{x} & \mathbf{\Gamma}^{+}(\mathbf{x}) \\
\hline
1 & \{2\}
\end{array}$$

$$\begin{array}{c|c} \mathbf{x} & \mathbf{\Gamma}^{-}(\mathbf{x}) \\ \hline 1 & \{2,3\} \end{array}$$

$$2 \mid \{1,4\}$$

$$(2, 4)$$
 $(3, 1)$

List of

ordered

pairs

 $4 \mid \{2\}$

Arrow-

diagram

Adjacency matrix

Incidencematrix

Cartesian coordinate system

0

i	1	2	3	4	5	6	7	8	
NODE [i]					2	1	4	1	
NEXT [i]	5	6	8	0	0	7	0	0	

4 0

3

Successor table

Chained successor list

Symmetric directed graph

Undirected graph

DME/Sch

Relations(6)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

 $\mathbf{P}_n(\mathbf{z}_0, \mathbf{z}_1, \dots, \mathbf{z}_n)$ is a (directed) path of length n from node \mathbf{z}_0 to \mathbf{z}_n in $\mathbf{G} = (\mathbf{A}, \mathbf{R})$

$$:\iff \bigvee_{1\leq \nu\leq n}\mathbf{z}_{\nu-1}\mathbf{R}\mathbf{z}_{\nu}$$

 $\begin{aligned} \mathbf{V}_n(\mathbf{z}_0,\ \mathbf{z}_1,\ \dots,\mathbf{z}_n) \ \mathrm{is} \\ \mathrm{an} \ \mathrm{undirected} \ \mathrm{path} \\ \mathrm{of} \ \mathrm{length} \ \mathrm{n} \ \mathrm{from} \ \mathrm{node} \ \mathbf{z}_0 \\ \mathrm{to} \ \mathbf{z}_n \ \mathrm{in} \ \mathbf{G} = (\mathbf{A},\mathbf{R}) \end{aligned}$

$$:\iff \forall \mathbf{z}_{\nu \leq n} \left[\mathbf{z}_{\nu-1} \mathbf{R} \mathbf{z}_{\nu} \vee \mathbf{z}_{\nu} \mathbf{R} \mathbf{z}_{\nu-1} \right]$$

Open path : $\mathbf{z}_0 \neq \mathbf{z}_n$

Cycle : $\mathbf{z}_0 = \mathbf{z}_n$

(closed path)

Trivial cycle : $\mathbf{P}_1(\mathbf{z}, \mathbf{z}), \, \mathbf{P}_2(\mathbf{z}, \mathbf{z}, \mathbf{z}), \, \dots$

Proper Cycle : trivial cycles excluded

Elementary (simple) path : $\mathbf{z}_0, \ldots, \mathbf{z}_{n-1}$ and $\mathbf{z}_1, \ldots, \mathbf{z}_n$ differ from each other, respectively

 \mathbf{y} is accessible from \mathbf{x} in \mathbf{G} : \iff $\mathbf{P}(\mathbf{x}, \ldots, \mathbf{y})$ exists in \mathbf{G} (y is descendent of \mathbf{x} in \mathbf{G} , (empty path $\mathbf{P}_0(\mathbf{x})$ included) \mathbf{x} is ancestor of \mathbf{y} in \mathbf{G})

 ${f x}$ and ${f y}$ are mutually ${\bf x} = {\bf P}({f x}, \ldots, {f y}) \ {\rm AND} \ {\bf P}({f y}, \ldots, {f x})$ exist in ${\bf G}$ (cycle through ${f x}$ and ${f y}$)

 ${f x}$ and ${f y}$ can be connected in ${f G}$: \iff ${f V}({f x},\ \dots,{f y})$ exists in ${f G}$ (${f V}_0({f x})$ included)

 $\mathbf{G} = (\mathbf{A}, \mathbf{R}) \text{ is connected} \qquad \qquad : \iff \quad \bigvee_{\mathbf{x}, \mathbf{y} \in \mathbf{A}} \left[\mathbf{V}(\mathbf{x}, \ \dots \ , \mathbf{y}) \text{ exists in } \mathbf{G} \right]$

 $\begin{aligned} \mathbf{G} &= (\mathbf{A}, \mathbf{R}) \text{ is} \\ \text{strongly connected} \end{aligned} &:\iff \begin{matrix} \forall \\ \mathbf{x}, \mathbf{y} \in \mathbf{A} \end{matrix} \left[\mathbf{P}(\mathbf{x}, \ \dots \ , \mathbf{y}) \text{ exists in } \mathbf{G} \right] \end{aligned}$

 $\begin{array}{ll} \mathbf{C} = (\mathbf{A}_C, \mathbf{R}_C) \text{ is a complete} & :\iff & (\mathbf{A}_C \subseteq \mathbf{A}) \wedge (\mathbf{A}_C^2 \subseteq \mathbf{R}) \\ \text{subgraph (clique) of } \mathbf{G} = (\mathbf{A}, \mathbf{R}) & & (\mathbf{R}_C = \mathbf{A}_C^2) \end{array}$

(Note: Literature also uses "walk" instead of "path", and "path" instead of "elementary path".)

DME/Sch Relations(7) 05/09

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

4.3 Properties of relations

$$\mathbf{R} = \; \left\{ \; (\mathbf{x},\mathbf{y}) \, | \; \mathbf{x} \mathbf{R} \mathbf{y} \; \right\}_{\mathbf{A}^2} \; ; \quad \; \; \mathbf{R} \subseteq \mathbf{A}^2 \; \; ;$$

R is reflexive
$$:\iff\bigvee_{\mathbf{x}\in\mathbf{A}}\mathbf{x}\mathbf{R}\mathbf{x}\iff\mathbf{I}\subseteq\mathbf{R}$$

$$\mathbf{R} \text{ is irreflexive } \qquad : \iff \bigvee_{\mathbf{x} \in \mathbf{A}} \neg \mathbf{x} \mathbf{R} \mathbf{x} \qquad \iff \mathbf{I} \subseteq \overline{\mathbf{R}} \qquad \iff \mathbf{R} \subseteq \overline{\mathbf{I}}$$

(anti-reflexive)

$$\mathbf{R} \text{ is symmetric} \qquad :\iff \bigvee_{\mathbf{x},\,\mathbf{y}\in\mathbf{A}}[\mathbf{x}\mathbf{R}\mathbf{y}\longrightarrow\mathbf{y}\mathbf{R}\mathbf{x}] \qquad \iff \mathbf{R}=\mathbf{R}^{-1}$$

$$\begin{array}{lll} \mathbf{R} \ \mathrm{is} \ \mathrm{antisymmetric} & :\iff \bigvee_{\mathbf{x},\,\mathbf{y}\in\mathbf{A}}[\mathbf{x}\mathbf{R}\mathbf{y}\wedge\mathbf{y}\mathbf{R}\mathbf{x}\longrightarrow\mathbf{x}=\mathbf{y}\] &\iff \mathbf{R}\cap\mathbf{R}^{-1}\subseteq\mathbf{I} \\ &\iff \mathbf{R}^{-1}\subset\overline{\mathbf{R}}\cup\mathbf{I} \end{array}$$

R is asymmetric
$$:\iff\bigvee_{\mathbf{x}}[\mathbf{x}\mathbf{R}\mathbf{y}\longrightarrow\neg\mathbf{y}\mathbf{R}\mathbf{x}]$$

$$\iff R \cap R^{-1} = \emptyset \iff R \subseteq (\overline{R})^{-1} \quad \iff R^{-1} \subseteq \overline{R}$$

R is transitive
$$:\iff \bigvee_{\mathbf{x},\,\mathbf{y},\,\mathbf{z}\in\mathbf{A}}[\mathbf{x}\mathbf{R}\mathbf{y}\wedge\mathbf{y}\mathbf{R}\mathbf{z}\longrightarrow\mathbf{x}\mathbf{R}\mathbf{z}]\iff \mathbf{R}^2\subseteq\mathbf{R}$$

$$\mathbf{R} \text{ is intransitive } :\iff \mathbf{y}_{\mathbf{x},\mathbf{y},\mathbf{z}\in\mathbf{A}}[\mathbf{x}\mathbf{R}\mathbf{y}\wedge\mathbf{y}\mathbf{R}\mathbf{z}\longrightarrow\neg\mathbf{x}\mathbf{R}\mathbf{z}] \iff \mathbf{R}^2\subseteq\overline{\mathbf{R}}$$

$$\mathbf{R} \text{ is connex} \qquad \qquad : \Longleftrightarrow \ \, \bigvee_{\mathbf{x},\,\mathbf{y} \in \mathbf{A}} [\mathbf{x} \mathbf{R} \mathbf{y} \vee \mathbf{y} \mathbf{R} \mathbf{x}] \iff \overline{\mathbf{R}} \text{ is asymmetric}$$

(all elements of A are comparable)
$$\iff \overline{\mathbf{R}} \cap (\overline{\mathbf{R}})^{-1} = \emptyset \iff \mathbf{R} \cup \mathbf{R}^{-1} = \mathbf{A}^2$$

$$\mathbf{R} \text{ is semiconnex } :\iff \bigvee_{\mathbf{x},\,\mathbf{y}\in\mathbf{A}}[\,(\mathbf{x}\neq\mathbf{y})\,\longrightarrow\mathbf{x}\mathbf{R}\mathbf{y}\vee\mathbf{y}\mathbf{R}\mathbf{x}]\,\iff\overline{\mathbf{R}} \text{ is antisymmetric}$$

(all elements of A are comparable, but
$$\iff \overline{\mathbf{R}} \cap (\overline{\mathbf{R}})^{-1} \subseteq \mathbf{I} \iff \overline{\mathbf{I}} \subseteq \mathbf{R} \cup \mathbf{R}^{-1} \iff \overline{\mathbf{R}} \subseteq \mathbf{R}^{-1} \cup \mathbf{I}$$
 not necessarily to themselves)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

 $\mathbf{R} \subseteq \mathbf{X} \times \mathbf{Y}$

 $R = \{ (x, y) \in X \times Y \mid xRy \}$

 $G = (X \cup Y, R)$

 $\mathrm{D}_{\mathrm{R}} \, \subset \mathrm{X}$ X: domain;

 $\mathbf{W}_{\mathrm{R}} \subseteq \mathbf{Y}$ (\mathbf{W}_{R} : range) Y: codomain;

 $\mathbf{D}_R = \{ \mathbf{x} \in \mathbf{X} \mid \mathbf{d}^+(\mathbf{x}) \ge 1 \}; \quad \mathbf{W}_R = \{ \mathbf{y} \in \mathbf{Y} \mid \mathbf{d}^-(\mathbf{y}) \ge 1 \};$

 $\mathbf{x} \in \mathbf{D}_{\mathbf{R}} \iff \mathbf{d}^+(\mathbf{x}) > 1; \qquad \mathbf{y} \in \mathbf{W}_{\mathbf{R}} \iff \mathbf{d}^-(\mathbf{y}) > 1;$

"left One": $\mathbf{I}_{\mathrm{X}} \subseteq \mathbf{X}^2$; $\mathbf{I}_{\mathrm{X}} \cup \overline{\mathbf{I}}_{\mathrm{X}} = \mathbf{X}^2$; "right One": $\mathbf{I}_{\mathrm{Y}} \subseteq \mathbf{Y}^2$; $\mathbf{I}_{\mathrm{Y}} \cup \overline{\mathbf{I}}_{\mathrm{Y}} = \mathbf{Y}^2$;

 $\mathbf{I}_X \circ \mathbf{R} = \mathbf{R} \circ \mathbf{I}_Y = \mathbf{R} \ ; \qquad \qquad \mathbf{R}^{-1} \circ \mathbf{I}_X = \mathbf{I}_Y \circ \mathbf{R}^{-1} = \mathbf{R}^{-1};$

 $\begin{array}{lll} : \Longleftrightarrow \bigvee_{\mathbf{x} \in \mathbf{X}} \ \mathbf{d}^+(\mathbf{x}) \geq 1 & \Longleftrightarrow & \mathbf{D}_R = \mathbf{X} & \Longleftrightarrow & \bigvee_{\mathbf{x} \in \mathbf{X}} \ \bigvee_{\mathbf{y} \in \mathbf{Y}} \mathbf{x} \mathbf{R} \mathbf{y} \\ & \Longleftrightarrow & \mathbf{I}_X \subseteq \mathbf{R} \mathbf{R}^{-1} & \Longleftrightarrow & \overline{\mathbf{R}} \subseteq \mathbf{R} \overline{\mathbf{I}}_Y & \Longleftrightarrow & \mathbf{X} \times \mathbf{Y} = \mathbf{R} \cup \mathbf{R} \overline{\mathbf{I}}_Y \end{array}$ ${f R}$ is total

 $\mathbf{R} \text{ is functional } :\iff \bigvee_{\mathbf{x} \in \mathbf{X}} \mathbf{d}^+(\mathbf{x}) \leq 1 \iff \bigvee_{\mathbf{x} \in \mathbf{X}} \bigvee_{\mathbf{y}_1, \mathbf{y}_2 \in \mathbf{Y}} [\mathbf{x} \mathbf{R} \mathbf{y}_1 \wedge \mathbf{x} \mathbf{R} \mathbf{y}_2 \longrightarrow \mathbf{y}_1 = \mathbf{y}_2]$

 $\iff \ \mathbf{R}^{-1}\mathbf{R}\subseteq \mathbf{I}_Y \quad \Longleftrightarrow \ \mathbf{R}\mathbf{\bar{I}}_Y\subseteq \mathbf{\overline{R}} \iff \emptyset = \mathbf{R}\cap \mathbf{R}\mathbf{\bar{I}}_Y$

 ${f R}$ is injective

 $\begin{array}{ll} :\iff \bigvee\limits_{\mathbf{y}\in\mathbf{Y}}\mathbf{d}^{-}(\mathbf{y})\leq 1 \iff \mathbf{R}^{-1} \mathrm{\ is\ functional} \\ \iff \mathbf{R}\mathbf{R}^{-1}\subseteq \mathbf{I}_{X} \iff \bar{\mathbf{I}}_{X}\mathbf{R}\subseteq \overline{\mathbf{R}} \iff \emptyset = \mathbf{R}\cap \overline{\mathbf{I}}_{X}\mathbf{R} \end{array}$

 \mathbf{R} is functional : $\iff \mathbf{G}$ has no branch point

 \mathbf{R} is injective $:\iff \mathbf{G}$ has no reconvergence point

 \mathbf{R} is a total function $:\iff \mathbf{R}$ is total AND functional

 $\iff \bigvee_{\mathbf{x} \in \mathbf{X}} \mathbf{d}^+(\mathbf{x}) = 1 \iff \mathbf{R}\overline{\mathbf{I}}_Y = \overline{\mathbf{R}}$ (mapping)

 $\begin{array}{ll} \mathbf{R} \text{ is bijective} & :\iff & \mathbf{R} \text{ is surjective AND injective} \\ (\mathbf{R}^{-1} \text{ is a mapping}) & \iff & \bigvee_{\mathbf{y} \in \mathbf{Y}} \mathbf{d}^{-}(\mathbf{y}) = 1 \iff \overline{\mathbf{I}}_{X}\mathbf{R} = \overline{\mathbf{R}} \end{array}$

06/01DME/Sch Relations(9)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

 $\mathbf{R} \ \mathrm{is} \ \mathrm{total} \qquad \quad : \Longleftrightarrow \quad \mathbf{D}_R = \mathbf{X} \qquad \quad ; \qquad \mathbf{R} \ \mathrm{is} \ \mathrm{surjective} \quad : \Longleftrightarrow \quad \mathbf{W}_R = \mathbf{Y}$

 \mathbf{R} is functional \Longrightarrow $|\mathbf{W}_{\mathrm{R}}| \leq |\mathbf{D}_{\mathrm{R}}|$; \mathbf{R} is injective \Longrightarrow $|\mathbf{D}_{\mathrm{R}}| \leq |\mathbf{W}_{\mathrm{R}}|$

 \mathbf{R} is a mapping $\implies |\mathbf{W}_{\mathrm{R}}| \leq |\mathbf{X}|$; \mathbf{R} is bijective $\implies |\mathbf{D}_{\mathrm{R}}| \leq |\mathbf{Y}|$

 \mathbf{R} is total AND injective $\Longrightarrow |\mathbf{X}| \leq |\mathbf{Y}|$

R is surjective AND functional \implies $|\mathbf{Y}| \leq |\mathbf{X}|$

 \mathbf{R} is a mapping AND bijective \implies $|\mathbf{X}| = |\mathbf{Y}|$

(bijection or permutation)

$$\left. \begin{array}{l} \mathbf{f} \text{ is a (total)} \\ \text{function (mapping)} \\ \mathbf{f} : \mathbf{X} \longrightarrow \mathbf{Y} \end{array} \right\} \quad : \Longleftrightarrow \quad \left\{ \begin{array}{l} \text{for } \underline{\text{every}} \ \mathbf{x} \in \mathbf{X} \text{ there exists} \\ \text{exactly } \underline{\text{one}} \ \mathbf{y} \in \mathbf{Y}, \\ \text{such that } \mathbf{xfy} \end{array} \right.$$

$$\mathbf{f} = \{\; (\mathbf{x}, \mathbf{y}) \; \mid \; \mathbf{f}(\mathbf{x}) = \mathbf{y}\}_{\mathbf{X} \times \mathbf{Y}} \; ; \quad \mathbf{f}(\mathbf{x}) = \mathbf{y} \Longleftrightarrow (\mathbf{x}, \mathbf{y}) \in \mathbf{f} \Longleftrightarrow \mathbf{x} \mathbf{f} \mathbf{y} \Longleftrightarrow \mathbf{x} \mapsto \mathbf{y}$$

 $\mathbf{X} = \mathbf{D}_f$: domain of \mathbf{f}

 $\mathbf{f}(\mathbf{X}) = \mathbf{W}_f \quad : \quad \mathrm{codomain} \ \mathrm{of} \ \mathbf{f}$

(image of function **f**)

 $\mathbf{f}(\mathbf{X}_0) = \mathbf{Y}_0$: image of \mathbf{X}_0 given by \mathbf{f} ; $\mathbf{X}_0 \subseteq \mathbf{X}, \, \mathbf{Y}_0 \subseteq \mathbf{Y}$

 $\mathbf{x}~:~\mathrm{argument}~\mathrm{of}~\mathrm{function}~\mathbf{f}$

 $\mathbf{y}~:~$ function value, image value of \mathbf{f}

f is surjective function (surjection) $:\iff \bigvee_{\mathbf{x}\in\mathbf{X}}\bigvee_{\mathbf{y}\in\mathbf{Y}}[\mathbf{d}^+(\mathbf{x})=1\land\mathbf{d}^-(\mathbf{y})\geq 1]$

f is injective function (injection) $:\iff \bigvee_{\mathbf{x}\in\mathbf{X}}\bigvee_{\mathbf{y}\in\mathbf{Y}}\left[\mathbf{d}^+(\mathbf{x})=1\land\mathbf{d}^-(\mathbf{y})\leq 1\right]$

f is bijective function (bijection) $:\iff \bigvee_{\mathbf{x}\in\mathbf{X}}\bigvee_{\mathbf{y}\in\mathbf{Y}}[\mathbf{d}^+(\mathbf{x})=1\land\mathbf{d}^-(\mathbf{y})=1]$

 \mathbf{p} is bijection (permutation) $:\iff (\mathbf{p} \circ \mathbf{p}^{-1} = \mathbf{I}_X) \land (\mathbf{p}^{-1} \circ \mathbf{p} = \mathbf{I}_Y)$

 $\mathbf{p}:\mathbf{X}\longrightarrow\mathbf{Y}\,;\quad |\mathbf{X}|=|\mathbf{Y}|\qquad \qquad \mathbf{p}=\{(\mathbf{x}_1,\mathbf{p}(\mathbf{x}_1)),(\mathbf{x}_2,\mathbf{p}(\mathbf{x}_2)),\ldots\}$

DME/Sch Relations(10) 05/09

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

K) Laws for cartesian product

 $(\mathbf{A} \neq \mathbf{B}) \land (\mathbf{A}, \mathbf{B} \neq \emptyset) \implies \mathbf{A} \times \mathbf{B} \neq \mathbf{B} \times \mathbf{A}$

(Commutativity)

 $(1) \quad (\mathbf{A} \times \mathbf{B}) \times \mathbf{C} \qquad = \qquad \mathbf{A} \times (\mathbf{B} \times \mathbf{C})$

Associativity

 $(2) \quad \mathbf{A} \times (\mathbf{B} \cup \mathbf{C}) \qquad = \qquad (\mathbf{A} \times \mathbf{B}) \cup (\mathbf{A} \times \mathbf{C})$

Distributivity

 $(3) \quad \mathbf{A} \times (\mathbf{B} \cap \mathbf{C}) \qquad = \qquad (\mathbf{A} \times \mathbf{B}) \cap (\mathbf{A} \times \mathbf{C})$

of \times over \cup , \cap

 $(4) \quad (\mathbf{A} \cup \mathbf{B}) \times \mathbf{C} \qquad = \qquad (\mathbf{A} \times \mathbf{C}) \cup (\mathbf{B} \times \mathbf{C})$

 $(5) \quad (\mathbf{A} \cap \mathbf{B}) \times \mathbf{C} \qquad = \qquad (\mathbf{A} \times \mathbf{C}) \cap (\mathbf{B} \times \mathbf{C})$

(6) $(\mathbf{A} = \emptyset) \lor (\mathbf{B} = \emptyset) \Longrightarrow \mathbf{A} \times \mathbf{B} = \emptyset$

(7) $(\mathbf{A} \times \mathbf{B}) \circ (\mathbf{B} \times \mathbf{C}) = \mathbf{A} \times \mathbf{C}$, IF $\mathbf{B} \neq \emptyset$

L) Laws for converse relations

 $Q,R \subseteq A \times B$

(1) $(\mathbf{A} \times \mathbf{B})^{-1} = \mathbf{B} \times \mathbf{A}$; $\emptyset^{-1} = \emptyset$; $\mathbf{I}^{-1} = \mathbf{I}$

(2) $(\overline{\mathbf{R}})^{-1} = \overline{(\mathbf{R}^{-1})}; (\mathbf{R}^{-1})^{-1} = \mathbf{R}$

 $(3) \quad (\mathbf{R} \cup \mathbf{Q})^{-1} \qquad = \quad \mathbf{R}^{-1} \cup \mathbf{Q}^{-1}$

 $(4) \quad (\mathbf{R} \cap \mathbf{Q})^{-1} \qquad = \quad \mathbf{R}^{-1} \cap \mathbf{Q}^{-1}$

 $(5) \quad (\mathbf{R} \setminus \mathbf{Q})^{-1} \qquad = \quad \mathbf{R}^{-1} \setminus \mathbf{Q}^{-1}$

(6) $\mathbf{R} \subseteq \mathbf{Q}$ \iff $\mathbf{R}^{-1} \subseteq \mathbf{Q}^{-1}$

M) Laws for composition of relations

 $\mathbf{Q},\,\mathbf{R}\,\subseteq\,\mathbf{A}{\times}\mathbf{B}\,\;;\quad\mathbf{S},\,\mathbf{T}\,\subseteq\,\mathbf{B}{\times}\mathbf{C}\,\;;\quad\mathbf{V}\,\subseteq\,\mathbf{A}{\times}\mathbf{C}\,\;;\quad\mathbf{W}\,\subseteq\,\mathbf{C}{\times}\mathbf{D}$

 $(\mathbf{R} \neq \mathbf{S}) \land (\mathbf{R}, \mathbf{S} \neq \mathbf{I}, \emptyset) \implies \mathbf{R} \circ \mathbf{S} \neq \mathbf{S} \circ \mathbf{R}$ (Commutativity)

 $(1) \quad (\mathbf{R} \circ \mathbf{S}) \circ \mathbf{W} \qquad = \quad \mathbf{R} \circ (\mathbf{S} \circ \mathbf{W}) \qquad \qquad \text{Associativity}$

(2) $\mathbf{R} \circ (\mathbf{S} \cup \mathbf{T}) = \mathbf{R} \circ \mathbf{S} \cup \mathbf{R} \circ \mathbf{T}$ Distributivity of \circ over \cup

 $(3) \quad (\mathbf{S} \cup \mathbf{T}) \circ \mathbf{W} \qquad = \quad \mathbf{S} \circ \mathbf{W} \cup \mathbf{T} \circ \mathbf{W}$

 $(4) \quad \mathbf{R} \circ (\mathbf{S} \cap \mathbf{T}) \qquad \subseteq \qquad \mathbf{R} \circ \mathbf{S} \cap \mathbf{R} \circ \mathbf{T}$

 $(5) \quad (\mathbf{S} \cap \mathbf{T}) \circ \mathbf{W} \qquad \subseteq \qquad \mathbf{S} \circ \mathbf{W} \cap \mathbf{T} \circ \mathbf{W}$

DME/Sch Relations(11) 05/09

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

$$(6) \quad (\mathbf{R} \circ \mathbf{S})^{-1} = \mathbf{S}^{-1} \circ \mathbf{R}^{-1}$$

$$(7) \quad (\mathbf{Q} \subseteq \mathbf{R}) \wedge (\mathbf{S} \subseteq \mathbf{T}) \implies \mathbf{Q} \circ \mathbf{S} \subseteq \mathbf{R} \circ \mathbf{T}$$

Monotony

(8)
$$\mathbf{R} \circ \mathbf{S} \subseteq \mathbf{V} \iff \mathbf{R}^{-1} \circ \overline{\mathbf{V}} \subseteq \overline{\mathbf{S}} \iff \overline{\mathbf{V}} \circ \mathbf{S}^{-1} \subseteq \overline{\mathbf{R}}$$
 Schröder rule $\mathbf{R} \circ \mathbf{S} \subseteq \mathbf{R} \circ \mathbf{S} \iff \mathbf{R}^{-1} \circ \overline{\mathbf{R} \circ \mathbf{S}} \subseteq \overline{\mathbf{S}}$

(9)
$$\mathbf{R} \circ \mathbf{S} \cap \mathbf{V} \subseteq (\mathbf{R} \cap \mathbf{V} \circ \mathbf{S}^{-1}) \circ (\mathbf{S} \cap \mathbf{R}^{-1} \circ \mathbf{V})$$

Dedekind formula

$$\mathbf{R} \subseteq \mathbf{A}^2$$

(10)
$$\mathbf{I} \circ \mathbf{R} = \mathbf{R} \circ \mathbf{I} = \mathbf{R}$$
; $\mathbf{R} \circ \emptyset = \emptyset \circ \mathbf{R} = \emptyset$

(11)
$$\mathbf{R} \neq \emptyset \implies \mathbf{A}^2 \circ \mathbf{R} \circ \mathbf{A}^2 = \mathbf{A}^2$$

(12)
$$\mathbf{R}^{m} \circ \mathbf{R}^{n} = \mathbf{R}^{m+n}$$
 if $\mathbf{R}^{n} = \mathbf{R} \circ \mathbf{R} \circ \dots \circ \mathbf{R}$ (13) $(\mathbf{R}^{m})^{n} = \mathbf{R}^{m \cdot n}$ $\mathbf{R}^{m \cdot n}$

$$\mathbf{R}^0 = \mathbf{I} = \left\{ (\mathbf{x}, \mathbf{x}) \mid \mathbf{x} \in \mathbf{A} \right\}_{\mathbf{A}^2}$$

Identity relation

$$n \in {\rm I\! N} \quad ; \quad \ \, ({\bf x},{\bf y}) \in {\rm \bf R}^n \quad \Longleftrightarrow \quad {\rm \bf P}_n({\bf x},\,\ldots\,{\bf y}) \ {\rm exists \ in} \ {\bf G}$$

Example: $\mathbf{R} \subseteq \mathbf{A}^2$, $\mathbf{G} = (\mathbf{A}, \mathbf{R})$

05/09

$$\mathbf{R}^2, \mathbf{R}^4, \ldots \qquad \mathbf{R}^3, \mathbf{R}^5, \ldots$$

DME/Sch Relations(12)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

4.4 Closure operations on relations

 $\begin{array}{c} \mathbf{t}(\mathbf{R}) \text{ is transitive} \\ \text{closure of } \mathbf{R} \\ \mathbf{R} \subseteq \mathbf{A}^2; \ \mathbf{t}(\mathbf{R}) \subseteq \mathbf{A}^2 \end{array} \right\} \ : \Longleftrightarrow \ \left\{ \begin{array}{c} \mathbf{t}(\mathbf{R}) \text{ is the smallest transitive relation} \\ \text{which contains } \mathbf{R} \\ (\mathbf{R} \subseteq \mathbf{t}(\mathbf{R}) \subseteq \mathbf{A}^2) \end{array} \right.$

 $\mathbf{r}(\mathbf{R})$: reflexive closure of \mathbf{R} $\mathbf{s}(\mathbf{R})$: symmetric closure of \mathbf{R}

 ${f R}$ is reflexive \iff ${f R}={f r}({f R})$ \iff ${f I}\subseteq {f R}$

 $\mathbf{R} \text{ is symmetric} \iff \mathbf{R} = \mathbf{s}(\mathbf{R}) \iff \mathbf{R} = \mathbf{R}^{-1}$ $\mathbf{R} \text{ is transitive} \iff \mathbf{R} = \mathbf{t}(\mathbf{R}) \iff \mathbf{R}^2 \subseteq \mathbf{R}$

$$\mathbf{r}(\mathbf{R}) = \mathbf{R} \cup \mathbf{I} \; \; ; \qquad \mathbf{s}(\mathbf{R}) = \mathbf{R} \cup \mathbf{R}^{-1} \; ; \qquad \mathbf{t}(\mathbf{R}) = \bigcup_{\nu=1}^{\infty} \mathbf{R}^{\nu}$$

 $\begin{array}{cccc} (\mathbf{x},\mathbf{y}) \in \mathbf{t}(\mathbf{R}) & \Longleftrightarrow & \mathbf{P}(\mathbf{x},\ldots,\,\mathbf{y}) \text{ exists in } \mathbf{G} \\ & \Longleftrightarrow & \mathbf{y} \text{ is descendent of } \mathbf{x} \\ & \Longleftrightarrow & \mathbf{x} \text{ is ancestor of } \mathbf{y} \end{array}$

$$(\mathbf{R} \subseteq \mathbf{A}^2) \ \land (\ |\mathbf{A}|\ < \infty\) \implies \mathbf{t}(\mathbf{R}) = \bigcup_{\nu=1}^{|\mathbf{A}|} \mathbf{R}^{\nu}$$

 $n \in \mathbb{N} \; ; \qquad \mathbf{R}^n \subseteq \bigcup_{\nu=1}^{|\mathbf{A}|} \mathbf{R}^{\nu}$

 $(\mathbf{x}, \mathbf{y}) \in \mathbf{t}(\mathbf{R}) \iff \exists_{1 \leq \nu \leq |\mathbf{A}|} [\mathbf{P}_{\nu}(\mathbf{x}, \dots, \mathbf{y}) \text{ exists in } \mathbf{G}] ; \qquad \nu \in \mathbb{N}$

Example: $\mathbf{R} \subseteq \mathbf{A}^2$; $\mathbf{G} = (\mathbf{A}, \mathbf{R})$

06/01DME/Sch Relations(13)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

N) Laws for closures on relations

(1)
$$\mathbf{R} \subseteq \mathbf{r}(\mathbf{R})$$
; $\mathbf{R} \subseteq \mathbf{s}(\mathbf{R})$; $\mathbf{R} \subseteq \mathbf{t}(\mathbf{R})$ Extensity

(2)
$$\mathbf{r}(\mathbf{R}) = \mathbf{r}\mathbf{r}(\mathbf{R})$$
; $\mathbf{s}(\mathbf{R}) = \mathbf{s}\mathbf{s}(\mathbf{R})$; $\mathbf{t}(\mathbf{R}) = \mathbf{t}\mathbf{t}(\mathbf{R})$ Idempotence

(3)
$$\mathbf{R} = \mathbf{r}(\mathbf{R})$$
 \Longrightarrow $\mathbf{s}(\mathbf{R}) = \mathbf{r}\mathbf{s}(\mathbf{R})$ or $\mathbf{t}(\mathbf{R}) = \mathbf{r}\mathbf{t}(\mathbf{R})$

(4)
$$\mathbf{R} = \mathbf{s}(\mathbf{R})$$
 \Longrightarrow $\mathbf{r}(\mathbf{R}) = \mathbf{s}\mathbf{r}(\mathbf{R})$ or $\mathbf{t}(\mathbf{R}) = \mathbf{s}\mathbf{t}(\mathbf{R})$

(5)
$$\mathbf{R} = \mathbf{t}(\mathbf{R}) \implies \mathbf{r}(\mathbf{R}) = \mathbf{tr}(\mathbf{R})$$

(6)
$$rs(R) = sr(R)$$
; $rt(R) = tr(R)$; $st(R) \subseteq ts(R)$

(7)
$$\mathbf{ts}(\mathbf{R}) = \mathbf{sts}(\mathbf{R})$$
; $\mathbf{tr}(\mathbf{R}) = \mathbf{rtr}(\mathbf{R})$

(8)
$$\mathbf{R} = \mathbf{tr}(\mathbf{R}) \iff \mathbf{R} = \mathbf{r}(\mathbf{R}) \land \mathbf{R} = \mathbf{t}(\mathbf{R})$$

(9)
$$\mathbf{R} = \mathbf{sr}(\mathbf{R})$$
 \iff $\mathbf{R} = \mathbf{r}(\mathbf{R}) \land \mathbf{R} = \mathbf{s}(\mathbf{R})$

(10)
$$\mathbf{R} = \mathbf{t}\mathbf{s}(\mathbf{R}) \iff \mathbf{R} = \mathbf{s}(\mathbf{R}) \land \mathbf{R} = \mathbf{t}(\mathbf{R})$$

(11)
$$\mathbf{R} = \mathbf{s}(\mathbf{R}) \wedge \mathbf{R} = \mathbf{t}(\mathbf{R}) \implies \mathbf{R} = \mathbf{s}\mathbf{t}(\mathbf{R})$$

$$(12) \quad \mathbf{R}_2 \subseteq \mathbf{R}_1 \quad \Longrightarrow \quad \mathbf{r}(\mathbf{R}_2) \subseteq \mathbf{r}(\mathbf{R}_1)$$

(13)
$$\mathbf{R}_2 \subseteq \mathbf{R}_1 \implies \mathbf{s}(\mathbf{R}_2) \subseteq \mathbf{s}(\mathbf{R}_1)$$
 Monotony

$$(14) \quad \mathbf{R}_2 \subseteq \mathbf{R}_1 \quad \Longrightarrow \quad \mathbf{t}(\mathbf{R}_2) \subseteq \mathbf{t}(\mathbf{R}_1) \quad \mathbf{J}$$

$$(15) \quad \mathbf{r}(\mathbf{R}_1) \cup \mathbf{r}(\mathbf{R}_2) = \mathbf{r}(\mathbf{R}_1 \cup \mathbf{R}_2)$$

$$(16) \quad \mathbf{s}(\mathbf{R}_1) \cup \mathbf{s}(\mathbf{R}_2) \quad = \quad \mathbf{s}(\mathbf{R}_1 \cup \mathbf{R}_2)$$

$$(17) \quad \mathbf{t}(\mathbf{R}_1) \cup \mathbf{t}(\mathbf{R}_2) \quad \subseteq \quad \mathbf{t}(\mathbf{R}_1 \cup \mathbf{R}_2)$$

(18)
$$\mathbf{r}(\mathbf{R}) = \mathbf{R} \cup \mathbf{I}$$

$$(19) \quad \mathbf{s}(\mathbf{R}) = \mathbf{R} \cup \mathbf{R}^{-1}$$

(20)
$$\mathbf{t}(\mathbf{R}) = \bigcup_{\nu=1}^{\infty} \mathbf{R}^{\nu}$$

DME/Sch Relations(14)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

(21)
$$\mathbf{R}^+ = \mathbf{t}(\mathbf{R}) ; \qquad \mathbf{R}^* = \mathbf{tr}(\mathbf{R})$$

$$(22) tsr(\mathbf{R}) = trs(\mathbf{R}) = (\mathbf{R} \cup \mathbf{R}^{-1})^*$$

$$(23) \qquad \left(\mathbf{R}^{+}\right)^{+} = \mathbf{R}^{+} ; \qquad \left(\mathbf{R}^{*}\right)^{*} = \mathbf{R}^{*}$$

$$(24) \quad (\mathbf{R}^{-1})^{+} = (\mathbf{R}^{+})^{-1}; \quad (\mathbf{R}^{-1})^{*} = (\mathbf{R}^{*})^{-1}$$

$$(25) \mathbf{R}^+ = \mathbf{R}\mathbf{R}^* = \mathbf{R}^* \mathbf{R}$$

$$(26) \mathbf{R}^* = \mathbf{R}^+ \cup \mathbf{I}$$

$$(27) \quad (\mathbf{R} \cup \mathbf{S})^* \quad = \quad (\mathbf{R}^* \, \mathbf{S})^* \, \mathbf{R}^*$$

$$(28) \mathbf{R}^* \mathbf{S}^* \subseteq (\mathbf{R} \cup \mathbf{S})^*$$

$$(29) \quad (\mathbf{R} \cup \mathbf{S})^+ \quad = \quad \mathbf{R}^+ \cup (\mathbf{R}^* \, \mathbf{S})^+ \, \mathbf{R}^*$$

(30)
$$\mathbf{R}^+ = \inf \{ \mathbf{H} \in \mathbf{P}(\mathbf{A}^2) \mid (\mathbf{R} \subseteq \mathbf{H}) \land (\mathbf{H}^2 \subseteq \mathbf{H}) \} = \inf \mathbf{M} = \bigcap_{\mathbf{H} \in \mathbf{M}} \mathbf{H}$$

(31)
$$\mathbf{R}^+ = \sup \{ \mathbf{R}^{\nu} \in \mathbf{P}(\mathbf{A}^2) \mid \nu \ge 1 \} = \bigcup_{\nu=1}^{\infty} \mathbf{R}^{\nu}$$

(32)
$$\mathbf{R}^* = \inf \{ \mathbf{H} \in \mathbf{P}(\mathbf{A}^2) \mid (\mathbf{R} \cup \mathbf{I} \subseteq \mathbf{H}) \land (\mathbf{H}^2 \subseteq \mathbf{H}) \} = \inf \mathbf{M} = \bigcap_{\mathbf{H} \in \mathbf{M}} \mathbf{H}$$

(33)
$$\mathbf{R}^* = \sup \{ \mathbf{R}^{\nu} \in \mathbf{P}(\mathbf{A}^2) \mid \nu \ge 0 \} = \bigcup_{\nu=0}^{\infty} \mathbf{R}^{\nu}$$

Warshall Algorithm to compute \mathbf{R}^+ in $\mathbf{G} = (\mathbf{A}, \mathbf{R})$:

$$\mathbf{G}=(\mathbf{A},\mathbf{R}); \quad \mathbf{R}\subseteq \mathbf{A}^2; \quad \mathbf{x}_i\in \mathbf{A}, \ i=1,\ldots,n; \ n=|\mathbf{A}|$$

$$\mathbf{R}_0 := \mathbf{R}$$

$$\Gamma^{-}(\mathbf{x}_i) := (\mathbf{R}_{i-1})^{-1}(\mathbf{x}_i)$$

$$\Gamma^+(\mathbf{x}_i) \,:=\, \mathbf{R}_{i-1}(\mathbf{x}_i)$$

$$\mathbf{R}_{i} := \mathbf{R}_{i-1} \cup \Gamma^{-}(\mathbf{x}_{i}) \times \Gamma^{+}(\mathbf{x}_{i})$$

$$\mathbf{R}^+ \quad := \, \mathbf{R}_n$$

DME/Sch Relations(15) 05/09

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

4.5 Accessibility in binary graphs

$$\mathbf{R} \subseteq \mathbf{A}^2$$
 ; $\mathbf{G} = (\mathbf{A}, \mathbf{R})$

 \mathbf{x} is ancestor of \mathbf{y} : \iff $(\mathbf{x}, \mathbf{y}) \in \mathbf{R}^+ \iff \mathbf{x}\mathbf{R}^+\mathbf{y} \iff \mathbf{y}(\mathbf{R}^+)^{-1}\mathbf{x}$

(y is descendent of x)

Set of descendents of \mathbf{x} : $\operatorname{des}(\mathbf{x}) = \{\mathbf{y} \mid \mathbf{x}\mathbf{R}^+\mathbf{y}\}_{\mathbf{A}}$

Set of ancestors of \mathbf{x} : $\operatorname{anc}(\mathbf{x}) = \{\mathbf{y} \mid \mathbf{y}\mathbf{R}^+\mathbf{x}\}_{\mathbf{A}}$

 $(\mathbf{x}, \mathbf{y}) \in \mathbf{R}^+ \Longleftrightarrow \mathbf{y} \in \operatorname{des}(\mathbf{x}) \Longleftrightarrow \mathbf{x} \in \operatorname{anc}(\mathbf{y})$

A cycle through \mathbf{x} exists $:\iff (\mathbf{x},\mathbf{x})\in\mathbf{R}^+\iff \mathbf{x}\mathbf{R}^+\mathbf{x}$

G has no cycles $:\iff R^+ \subseteq \overline{I}$

A proper cycle exists G : $\iff \exists (\mathbf{x}, \mathbf{y}) \in \mathbf{A}^2 (\mathbf{x}\mathbf{\bar{I}}\mathbf{y}) \land (\mathbf{x}\mathbf{R}^+\mathbf{y}) \land (\mathbf{y}\mathbf{R}^+\mathbf{x})$

G has no proper cycles $:\iff \mathbf{R}^+ \cap (\mathbf{R}^+)^{-1} \subseteq \mathbf{I}$

 $\mathbf{y} \text{ is accessible from } \mathbf{x} \text{ in } \mathbf{G} \quad : \Longleftrightarrow \quad (\mathbf{x}, \mathbf{y}) \in \mathbf{R}^* \Longleftrightarrow \mathbf{x} \mathbf{R}^* \mathbf{y}$

G is strongly connected $:\iff R^* = A^2$ (every node is accessible from every node)

 \mathbf{x} and \mathbf{y} share (at least) one $:\iff \mathbf{z} \in \mathbf{A}$ $\mathbf{z} \mathbf{R} \mathbf{x} \wedge \mathbf{z} \mathbf{R} \mathbf{y}$

 $\mathbf{x} \text{ and } \mathbf{y} \text{ share a common} \left\{ \begin{array}{ll} \text{successor} & :\iff & (\mathbf{x},\mathbf{y}) \in \mathbf{R} \circ \mathbf{R}^{-1} \\ \text{predecessor} & :\iff & (\mathbf{x},\mathbf{y}) \in \mathbf{R}^{-1} \circ \mathbf{R} \end{array} \right.$

 $\mathbf{x} \text{ and } \mathbf{y} \text{ share a common} \left\{ \begin{array}{ll} \operatorname{descendent} & :\iff & (\mathbf{x},\mathbf{y}) \in \mathbf{R}^+ \circ {(\mathbf{R}^+)}^{-1} \\ & \operatorname{ancestor} & :\iff & (\mathbf{x},\mathbf{y}) \in {(\mathbf{R}^+)}^{-1} \circ \mathbf{R}^+ \end{array} \right.$

 ${f r}$ is root of ${f G}$: $\qquad \qquad \forall {f r},{f x}) \in {f R}^*$ (Every node is accessible from ${f r}$)

Set of all roots in G : $W(G) = \{r \mid \bigvee_{x \in A} rR^*x\}_A$

G has a root $:\iff \mathbf{W}(\mathbf{G}) \neq \emptyset \iff (\mathbf{R}^*)^{-1} \circ \mathbf{R}^* = \mathbf{A}^2$

DME/Sch Relations(16) 10/07

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

Directed distance : $\mathbf{d}(\mathbf{x},\mathbf{y}) = \min\{\, n \mid (\mathbf{x},\mathbf{y}) \in \mathbf{R}^n\}_{\mathbb{N}_0}$ (length of shortest path) from \mathbf{x} to \mathbf{y} in \mathbf{G}

$$\mathbf{d}(\mathbf{x}, \mathbf{x}) = 0 \; ; \qquad (\mathbf{x}, \mathbf{y}) \notin \mathbf{R}^* \implies \mathbf{d}(\mathbf{x}, \mathbf{y}) = \infty$$

 $\mathbf{d}(\mathbf{x}, \mathbf{y}) \le \mathbf{d}(\mathbf{x}, \mathbf{z}) + \mathbf{d}(\mathbf{z}, \mathbf{y})$, Triangle inequality

Degrees of accessibility:

$$xR^*y \wedge yR^*x \implies xR^*y \implies xR^*y \vee yR^*x \implies x(R^*)^{-1} \circ R^*y \implies x(R \cup R^{-1})^*y$$
 x and y are y is accessible x and y are x and x are x and y are x and x

$$\mathbf{R}^* \cap \left(\mathbf{R}^*\right)^{-1} \quad \subseteq \qquad \mathbf{R}^* \qquad \subseteq \quad \mathbf{R}^* \cup \left(\mathbf{R}^*\right)^{-1} \quad \subseteq \quad \left(\mathbf{R}^*\right)^{-1} \circ \mathbf{R}^* \quad \subseteq \quad \left(\mathbf{R} \cup \mathbf{R}^{-1}\right)^*$$

$$(\mathbf{R} \cup \mathbf{R}^{-1})^* = \mathbf{tsr}(\mathbf{R}) = \mathrm{ECL}(\mathbf{R})$$
 Connected components in \mathbf{G} Equivalence closure of \mathbf{R} (equivalence relation)

$$\mathbf{R}^* \cup (\mathbf{R}^*)^{-1} = \mathbf{str}(\mathbf{R})$$

$$\mathbf{R}^* = \mathbf{tr}(\mathbf{R})$$

 $\mathbf{R}^* \cap (\mathbf{R}^*)^{-1} = \text{ECO}(\mathbf{R}^*)$ strongly connected components in \mathbf{G} Equivalence core of \mathbf{R}^* (equivalence relation)

DME/Sch Relations(17) 05/09

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

no cycles

T = (A, R) is a tree

 $:\iff \mathbf{W}(\mathbf{T})\neq\emptyset \ \land \ \mathbf{R}\mathbf{R}^{-1}\subseteq\mathbf{I} \ \land \ \mathbf{R}^+\subseteq\bar{\mathbf{I}}$

 $\mathbf{W}(\mathbf{T}) \neq \emptyset \ \wedge \ \mathbf{R}^+ \subseteq \mathbf{\bar{I}} \quad \implies \ |\mathbf{W}(\mathbf{T})| = 1$

 $:\iff \begin{cases} \mathbf{d}^{-}(\mathbf{r}) = 0 \;, \quad \mathbf{r} \in \mathbf{W}(\mathbf{T}) \\ \forall \; \mathbf{d}^{-}(\mathbf{x}) = 1 \\ \mathbf{x} \in \mathbf{A} \setminus \{\mathbf{r}\} \end{cases} \\ \forall \; [\mathbf{P}(\mathbf{r}, \ldots, \mathbf{x}) \text{ exists in } \mathbf{T}]$ T = (A, R) is a tree

 ${f r}$ is root of ${f T}$ $: \iff \mathbf{d}^{-}(\mathbf{r}) = 0$

 $:\iff \mathbf{d}^+(\mathbf{a}) = 0$ \mathbf{a} is leaf of \mathbf{T}

 $:\iff \mathbf{d}^{-}(\mathbf{x}) = 1 \land \mathbf{d}^{+}(\mathbf{x}) > 1$ \mathbf{x} is interior node of \mathbf{T}

 $:\iff (\mathbf{x},\mathbf{v})\in\mathbf{T}\iff \mathbf{x}\mathbf{T}\mathbf{v}$ \mathbf{x} is father of \mathbf{y}

(y is son of x)

 $\left. \begin{array}{l} \mathrm{subtree} \\ \mathbf{T_s} = (\mathbf{A_s}, \mathbf{R_s}) \ \mathrm{of} \ \mathbf{T} = (\mathbf{A}, \mathbf{R}) \end{array} \right\} \quad : \qquad \left\{ \begin{array}{l} \mathbf{A_s} = \{ \ \mathbf{x} \ | \ \mathbf{s} \mathbf{R}^* \mathbf{x} \}_{\mathbf{A}} \ ; \quad \mathbf{A_s} \subseteq \mathbf{A} \\ \mathbf{R_s} = \mathbf{R} \cap \mathbf{A_s}^2 \ ; \quad \mathbf{s} \in \mathbf{W}(\mathbf{T_s}) \end{array} \right.$

: $\mathbf{d}^+(\mathbf{x}) \le \mathbf{n}$; $(\mathbf{x} \in \mathbf{A})$ n-ary tree

 $\mathbf{d}^+(\mathbf{x}) = \mathbf{n}$ or $\mathbf{d}^+(\mathbf{x}) = 0$ Complete n-ary tree

 $\Gamma^+(\mathbf{x}) = \{ \mathbf{x}_1, \mathbf{x}_2, \dots \}$ Ordered tree

> Height h of T $: \qquad h = \max \{ \mathbf{d}(\mathbf{r}, \mathbf{x}) \mid \mathbf{x} \in \mathbf{A} \}_{\mathbf{N}_0}$

For a binary tree with $|\mathbf{A}| = n$ it holds:

 $h + 1 \le n \le 2^0 + 2^1 + ... + 2^{h-1} + 2^h$

 $h + 1 \le n \le 2^{h+1} - 1$

 $|\log_2 n| < h < n - 1$

05/09DME/Sch Relations(18)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

4.6 Order relations

 \mathbf{R} is a partial order (relation)

 $\left\{ \begin{array}{l} \mathbf{R} \subseteq \mathbf{A}^2 \;,\; \mathbf{R} \; \mathrm{is\; reflexive}, \\ \mathrm{antisymmetric\; and\; transitive} \\ \mathbf{I} \subseteq \mathbf{R} \;,\quad \mathbf{R} \cap \mathbf{R}^{-1} \subseteq \mathbf{I} \;,\quad \mathbf{R}^2 \subseteq \mathbf{R} \end{array} \right.$

 (\mathbf{A},\mathbf{R}) or (\mathbf{A}, \preceq) is a partially ordered set (poset) \mathbf{R} is a strict (quasi) order (relation)

 (\mathbf{A},\mathbf{R}) or (\mathbf{A},\prec) is a strictly ordered set

 ${f R}$ is a total (linear, simple) order (relation)

 (\mathbf{A}, \preceq) is a total ordered set (chain)

 \mathbf{R} is a strict order \implies

 \implies $\mathbf{r}(\mathbf{R}) = \mathbf{R} \cup \mathbf{I}$ is a (not strict) order

 \mathbf{R} is a (not strict) order \implies $\mathbf{R}\backslash\mathbf{I}$ is a strict order

 $\mathbf{R} \text{ is a } \left\{ \begin{array}{c} \text{strict} \\ \text{not strict} \\ \text{total} \end{array} \right\} \text{ order} \implies \mathbf{R}^{-1} \text{ is a } \left\{ \begin{array}{c} \text{strict} \\ \text{not strict} \\ \text{total} \end{array} \right\} \text{ order}$

The order \leq in **A** is a well order (or (\mathbf{A}, \leq)) is a well ordered set

 \preceq is well order in \mathbf{A} \implies \preceq is total order in \mathbf{A}

DME/Sch

Relations(19)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

Bounds and Extrema

Let (\mathbf{A}, \preceq) be a well ordered set and $\mathbf{B} \subseteq \mathbf{A}$

bounds of set B

set of upper bounds:

$$\begin{split} \mathrm{ub}(\mathbf{B}) &= \{\mathbf{a} {\in} \mathbf{A} | \bigvee_{\mathbf{x} \in \mathbf{A}} \mathbf{x} {\in} \mathbf{B} \longrightarrow \mathbf{x} {\preceq} \mathbf{a} \} \\ \mathrm{ub}(\mathbf{B}) &= \bigcap_{\mathbf{x} \in \mathbf{B}} \mathbf{\Gamma}^{+}(\mathbf{x}) \end{split}$$

 $\mathbf{a} \in \mathbf{A}$ is upper bound of set \mathbf{B} IF AND ONLY IF $\mathbf{a} \in \mathrm{ub}(\mathbf{B}) \text{ or } \mathbf{B} \subseteq \mathbf{\Gamma}^{-}(\mathbf{a}).$

set of lower bounds:

$$\mathrm{lb}(\mathbf{B}) \ = \{\mathbf{a} \in \mathbf{A} | \bigvee_{\mathbf{x} \in \mathbf{A}} \mathbf{x} \in \mathbf{B} \longrightarrow \mathbf{a} \underline{\prec} \mathbf{x} \}$$

$$\mathrm{lb}(\mathbf{B}) \ = \bigcap_{\mathbf{x} \in \mathbf{B}} \Gamma^-(\mathbf{x})$$

 $\mathbf{a} \in \mathbf{A}$ is lower bound of set **B** IF AND ONLY IF $\mathbf{a} \in \mathrm{lb}(\mathbf{B}) \text{ or } \mathbf{B} \subseteq \Gamma^+(\mathbf{a}).$

greatest and least elements of set B

set of greatest elements of set **B**:

$$\operatorname{grt}(\mathbf{B}) \ = \{\mathbf{b}^* {\in} \mathbf{B} | \bigvee_{\mathbf{x} \in \mathbf{A}} \mathbf{x} {\in} \mathbf{B} \longrightarrow \mathbf{x} {\preceq} \mathbf{b}^* \}$$

$$grt(\mathbf{B}) = \mathbf{B} \cap ub(\mathbf{B})$$

$$grt(\mathbf{B}) \neq \emptyset \implies |grt(\mathbf{B})| = 1$$

 \mathbf{b}^* is greatest element of \mathbf{B} IF AND ONLY IF

$$\mathbf{b}^* \in \mathbf{B} \text{ AND } \mathbf{b}^* \in \text{ub}(\mathbf{B}) \text{ or } \mathbf{B} \subseteq \Gamma^-(\mathbf{b}^*). \quad \mathbf{b}^* \in \mathbf{B} \text{ AND } \mathbf{b}^* \in \text{lb}(\mathbf{B}) \text{ or } \mathbf{B} \subseteq \Gamma^+(\mathbf{b}^*).$$

set of least elements of set **B**:

$$\bigg| \ \operatorname{lst}(\mathbf{B}) \ = \{ \mathbf{b}^* {\in} \mathbf{B} | \ \bigvee_{\mathbf{x} \in \mathbf{A}} \mathbf{x} {\in} \mathbf{B} \longrightarrow \mathbf{b}^* \underline{\prec} \mathbf{x} \}$$

$$lst(\mathbf{B}) = \mathbf{B} \cap lb(\mathbf{B})$$

$$lst(\mathbf{B}) \neq \emptyset \implies |lst(\mathbf{B})| = 1$$

 \mathbf{b}^* is least element of \mathbf{B} IF AND ONLY IF

$$\mathbf{b}^* \in \mathbf{B} \text{ AND } \mathbf{b}^* \in \mathrm{lb}(\mathbf{B}) \text{ or } \mathbf{B} \subseteq \Gamma^+(\mathbf{b}^*).$$

maximal and minimal elements of B

set of maximal elements of **B**:

$$\max(\mathbf{B}) = \{\mathbf{b} \in \mathbf{B} | \bigvee_{\mathbf{x} \in \mathbf{A}} \mathbf{x} \in \mathbf{B} \rightarrow (\mathbf{b} \preceq \mathbf{x} \rightarrow \mathbf{x} = \mathbf{b})\} \quad \min(\mathbf{B}) = \{\mathbf{b} \in \mathbf{B} | \bigvee_{\mathbf{x} \in \mathbf{A}} \mathbf{x} \in \mathbf{B} \rightarrow (\mathbf{x} \preceq \mathbf{b} \rightarrow \mathbf{x} = \mathbf{b})\}$$

$$\max(\mathbf{B}) = \mathbf{B} \cap [\bigcap_{\mathbf{x} \in \mathbf{B}} \overline{\Gamma^{-}(\mathbf{x}) \backslash \{\mathbf{x}\}} \]$$

b is maximal element of **B**

IF AND ONLY IF

$$\mathbf{b} \in \mathbf{B} \text{ AND } \mathbf{b} \in \bigcap_{\mathbf{c}, \mathbf{D}} \overline{\Gamma^{-}(\mathbf{x}) \setminus \{\mathbf{x}\}}$$

$$\begin{array}{c|c} \mathbf{b} \in \mathbf{B} \ \mathrm{AND} \ \mathbf{b} \in \bigcap \overline{\Gamma^-(\mathbf{x}) \backslash \{\mathbf{x}\}} & \mathbf{b} \in \mathbf{B} \ \mathrm{AND} \ \mathbf{b} \in \bigcap \overline{\Gamma^+(\mathbf{x}) \backslash \{\mathbf{x}\}} \\ \mathrm{or} \ \mathbf{B} \subseteq \overline{\Gamma^+(\mathbf{b}) \backslash \{\mathbf{b}\}} \ \mathrm{or} \ \mathbf{b} \not \in \bigcup_{\mathbf{x} \in \mathbf{B}} \Gamma^-(\mathbf{x}) \backslash \{\mathbf{x}\}. \end{array} \qquad \begin{array}{c|c} \mathbf{b} \in \mathbf{B} \ \mathrm{AND} \ \mathbf{b} \in \bigcap \overline{\Gamma^+(\mathbf{x}) \backslash \{\mathbf{x}\}} \\ \mathrm{or} \ \mathbf{B} \subseteq \overline{\Gamma^-(\mathbf{b}) \backslash \{\mathbf{b}\}} \ \mathrm{or} \ \mathbf{b} \not \in \bigcup_{\mathbf{x} \in \mathbf{B}} \Gamma^+(\mathbf{x}) \backslash \{\mathbf{x}\}. \end{array}$$

set of minimal elements of B:

$$\min(\mathbf{B}) = \{\mathbf{b} \in \mathbf{B} \mid \forall \mathbf{x} \in \mathbf{B} \rightarrow (\mathbf{x} \prec \mathbf{b} \rightarrow \mathbf{x})\}$$

$$\min(\mathbf{B}) = \mathbf{B} \cap [\bigcap_{\mathbf{x} \in \mathbf{B}} \overline{\Gamma^+(\mathbf{x}) \backslash \{\mathbf{x}\}}]$$

b is minimal element of **B**

IF AND ONLY IF

$$\mathbf{b} \in \mathbf{B} \text{ AND } \mathbf{b} \in \bigcap \overline{\Gamma^+(\mathbf{x}) \backslash \{\mathbf{x}\}}$$

$$\mathrm{or}\ \mathbf{B}\subseteq\overline{\Gamma^-(\mathbf{b})\backslash\{\mathbf{b}\}}\ \mathrm{or}\ \mathbf{b}\not\in\bigcup_{\mathbf{x}\in\mathbf{B}}\Gamma^+(\mathbf{x})\backslash\{\mathbf{x}\}.$$

DME/Sch

Relations(20)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

least upper / greatest lower bounds of set B

Set of least upper bounds (suprema) of **B**:

$$lub(\mathbf{B}) = \{\mathbf{a}^* \in ub(\mathbf{B}) | \bigvee_{\mathbf{x} \in \mathbf{A}} \mathbf{x} \in ub(\mathbf{B}) \rightarrow \mathbf{a}^* \preceq \mathbf{x} \}$$

$$lub(\mathbf{B}) = lot(ub(\mathbf{B}))$$

$$lub(\mathbf{B}) = lst(ub(\mathbf{B}))$$

$$lub(\mathbf{B}) = ub(\mathbf{B}) \cap lb(ub(\mathbf{B}))$$

$$lub(\mathbf{B}) \neq \emptyset \implies |lub(\mathbf{B})| = 1$$

 $\mathbf{a}^* \in \text{ub}(\mathbf{B})$ is the least upper bound (supremum) of B IF AND ONLY IF

 $\mathbf{a}^* \in \mathrm{lb}(\mathrm{ub}(\mathbf{B})) \text{ or } \mathrm{ub}(\mathbf{B}) \subseteq \Gamma^+(\mathbf{a}^*).$

Set of greatest <u>l</u>ower <u>b</u>ounds (infima) of **B**:

$$\mathrm{glb}(\mathbf{B}) = \{\mathbf{a}^* {\in} \mathrm{lb}(\mathbf{B}) | \bigvee_{\mathbf{x} \in \mathbf{A}} \mathbf{x} {\in} \mathrm{lb}(\mathbf{B}) {\rightarrow} \mathbf{x} \underline{\prec} \mathbf{a}^* \}$$

$$\mathrm{glb}(\mathbf{B})=\mathrm{grt}(\mathrm{lb}(\mathbf{B}))$$

$$glb(\mathbf{B}) = lb(\mathbf{B}) \cap ub(lb(\mathbf{B}))$$

$$\operatorname{glb}(\mathbf{B}) \neq \emptyset \implies |\operatorname{glb}(\mathbf{B})| = 1$$

 $\mathbf{a}^* \in \mathrm{lb}(\mathbf{B})$ is the greatest lower bound (infimum) of B IF AND ONLY IF

 $\mathbf{a}^* \in \mathrm{ub}(\mathrm{lb}(\mathbf{B})) \text{ or } \mathrm{lb}(\mathbf{B}) \subseteq \Gamma^-(\mathbf{a}^*).$

Representation of ordered sets (example):

strict order

Arrow diagram
$$G = (A, R)$$

 $\mathbf{H} = \mathbf{R} \cap \overline{\mathbf{R}^2}$

$$\mathbf{R} = \mathbf{H}^+$$

Hasse diagram $G_H = (A, H)$

Example regarding bounds and extrema:

Hasse diagram
$$G_H = (A, H)$$

 $\mathbf{B} = \{\mathbf{p}, \mathbf{u}, \mathbf{v}\}$

$$\mathrm{ub}(\mathbf{B}) = \{\mathbf{t}\}$$

$$\mathrm{ub}(\mathbf{B}) \ = \{\mathbf{t}\} \qquad \ \ \mathrm{lb}(\mathbf{B}) \ = \{\mathbf{s}, \mathbf{p}\}$$

$$\operatorname{grt}(\mathbf{B}) = \{\}$$
 $\operatorname{lst}(\mathbf{B}) = \{\mathbf{p}\}$

$$lst(\mathbf{B}) = \{\mathbf{p}\}\$$

$$\max(\mathbf{B}) = \{\mathbf{u}, \mathbf{v}\} \qquad \min(\mathbf{B}) = \{\mathbf{p}\}$$

$$\min(\mathbf{B}) = \{\mathbf{p}\}$$

$$lub(\mathbf{B}) = \{\mathbf{t}\} \qquad glb(\mathbf{B}) = \{\mathbf{p}\}$$

$$glb(\mathbf{B}) = \{\mathbf{p}\}$$

DME/Sch

Relations(21)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

Example — containment order of a power set $(\mathbf{P}(\mathbf{G}), \subseteq)$ is an ordered set

Hasse diagram of $(\mathbf{P}(\mathbf{G}), \subseteq)$; e.g. with $\mathbf{G} = \{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$

Supremum of \mathbf{M} : $\sup_{\mathbf{X} \in \mathbf{M}} \mathbf{M} = \bigcup_{\mathbf{X} \in \mathbf{M}} \mathbf{X}$

 $\mathbf{M} \subseteq \mathbf{P}(\mathbf{G})$

 $(\text{least upper bound}) \quad \text{e.g. } \sup\{A,\!D,\!E\} = A \cup D \cup E = G$

Infimum of M: $\inf M = \bigcap_{X \in M} X$

 $\mathbf{M} \subseteq \mathbf{P}(\mathbf{G})$

(greatest lower bound) e.g. $\inf\{A,D,E\} = A \cap D \cap E = A$

 $(\mathbf{P}(\mathbf{G})\,;\;\cup\,,\;\cap\,,\stackrel{--}{--}\,;\,\emptyset\,,\,\mathbf{G})\;$ is a $2^{|\mathbf{G}|}$ -valued Boolean algebra

$$(\mathbf{P}(\mathbf{G}),\subseteq) \qquad \qquad (\mathbf{P}(\mathbf{M}{\times}\mathbf{N}),\ \subseteq)$$

extension

set algebra — relational algebra

DME/Sch Relations(22) 06/01

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

4.7 Equivalence relations

$$\left. \begin{array}{l} \mathbf{R} \text{ is an} \\ \text{equivalence relation (on } \mathbf{A}) \end{array} \right\} \quad : \Longleftrightarrow \quad \left\{ \begin{array}{l} \mathbf{R} \subseteq \mathbf{A}^2 \;, \quad \mathbf{R} \text{ is reflexive,} \\ \text{symmetric and transitive} \\ \mathbf{I} \subseteq \mathbf{R} \;, \quad \mathbf{R} = \mathbf{R}^{-1} \;, \quad \mathbf{R}^2 \subseteq \mathbf{R} \end{array} \right.$$

$$\begin{array}{ccc} \mathbf{R} \ \ \mathrm{is \ an \ equivalence \ relation} & \iff & \mathbf{R} = \mathbf{tsr}(\mathbf{R}) \\ \mathbf{R} = \mathbf{tsr}(\mathbf{R}) & \iff & \mathbf{R} = \mathbf{r}(\mathbf{R}) \wedge \mathbf{R} = \mathbf{s}(\mathbf{R}) \wedge \mathbf{R} = \mathbf{t}(\mathbf{R}) \end{array}$$

$$\begin{array}{c} \operatorname{ECL}(\mathbf{Q}) \text{ is the} \\ \operatorname{equivalence \ closure \ of \ } \mathbf{Q} \\ \operatorname{(the \ equivalence \ relation} \\ \operatorname{induced \ by \ } \mathbf{Q}) \\ \mathbf{Q} \subseteq \mathbf{A}^2, \ \operatorname{ECL}(\mathbf{Q}) \subseteq \mathbf{A}^2 \\ \end{array} \right\} \ : \Longleftrightarrow \ \begin{cases} \operatorname{ECL}(\mathbf{Q}) \text{ is the smallest \ equivalence} \\ \operatorname{relation \ which \ contains \ } \mathbf{Q} \\ \operatorname{(} \mathbf{Q} \subseteq \operatorname{ECL}(\mathbf{Q}) \subseteq \mathbf{A}^2) \\ \end{array} \\ \operatorname{ECL}(\mathbf{Q}) \ = \ \mathbf{tsr}(\mathbf{Q}) = (\mathbf{Q} \cup \mathbf{Q}^{-1})^* \\ \end{array}$$

$$\begin{array}{c} \mathrm{ECO}(\mathbf{Q}^*) \text{ is the} \\ \mathrm{equivalence \ core \ of} \ \mathbf{Q}^* \\ \mathbf{Q} \subseteq \mathbf{A}^2, \ \mathbf{Q}^* = \mathbf{rt}(\mathbf{Q}) \\ \mathrm{ECO}(\mathbf{Q}^*) \subseteq \mathbf{A}^2 \end{array} \right\} \quad : \iff \quad \begin{cases} \mathrm{ECO}(\mathbf{Q}^*) \text{ is the largest equivalence} \\ \mathrm{relation \ which \ is \ contained \ in} \ \mathbf{Q}^* \\ (\mathrm{ECO}(\mathbf{Q}^*) \subseteq \mathbf{Q}^*) \end{cases}$$

$$= \qquad \qquad \mathbf{Q}^* \cap (\mathbf{Q}^*)^{-1}$$

$$\begin{aligned} \text{Example:} \quad \mathbf{R} &= \left\{ (\mathbf{x}, \mathbf{y}) \mid \mathbf{y} \bmod \mathbf{k} = \mathbf{x} \bmod \mathbf{k} \right\}_{\mathbf{A}^2} \; ; \quad \mathbf{k} \in \mathbb{N}, \; \; \mathbf{x}, \mathbf{y} \in \mathbb{Z} \\ \mathbf{R} &= \mathbf{tsr}(\mathbf{R}) \; ; \; \; \mathbf{y} \bmod \mathbf{k} = \mathbf{x} \bmod \mathbf{k} \; \iff \; \; \underset{\mathbf{n} \in \mathbb{Z}}{\exists} \; (\mathbf{y} = \mathbf{x} + \mathbf{n} \cdot \mathbf{k}) \end{aligned}$$

$$\mathbf{k} = 2$$
 $\mathbf{A} = \{\mathbf{x} \mid -2 \le \mathbf{x} \le +2\}_{\mathbb{Z}}$
 $\mathbf{A} = \{-2, -1, 0, +1, +2\}$
 $\mathbf{G} = (\mathbf{A}, \mathbf{R})$:

DME/Sch

Relations(23)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

$$\left. \begin{array}{l} \left[\mathbf{a} \right]_R \text{ is} \\ \text{equivalence class of } \mathbf{a} \\ \text{with respect to } \mathbf{R} \end{array} \right\} \quad : \iff \left. \begin{array}{l} \mathbf{R} \subseteq \mathbf{A}^2 \,, \quad \mathbf{R} = \mathbf{tsr}(\mathbf{R}) \\ \left[\mathbf{a} \right]_R = \left\{ \mathbf{x} \mid \mathbf{xRa} \right\}_{\mathbf{A}} \\ \mathbf{a} \quad \text{is a representative of} \quad \left[\mathbf{a} \right]_R \end{array} \right.$$

$$\begin{split} [\mathbf{x}]_R &= \{\mathbf{y} \mid \mathbf{y} R \mathbf{x} \wedge \mathbf{R} = \mathbf{t} \mathbf{s} \mathbf{r}(\mathbf{R})\}_{\pmb{A}} \\ &= \Gamma^-(\mathbf{x}) = \Gamma^+(\mathbf{x}) = \Gamma(\mathbf{x}) \\ \\ \mathbf{x} \sim \mathbf{y} \iff \mathbf{y} R \mathbf{x} \iff (\mathbf{x}, \mathbf{y}) \in \mathbf{R} \\ \\ \iff \mathbf{x} \in [\mathbf{y}] \iff \mathbf{y} \in [\mathbf{x}] \iff [\mathbf{x}] = [\mathbf{y}] \\ \\ [\mathbf{x}] \neq [\mathbf{y}] \iff [\mathbf{x}] \cap [\mathbf{y}] = \emptyset \end{split}$$

quotient set: $A/R = \{ [x]_R \mid x \in A \}_{P(A)}$

$$\begin{array}{l} \Pi \ \ \mathrm{is \ partition \ of} \ \ \mathbf{A} \neq \emptyset; \\ \Pi \subseteq \mathbf{P}(\mathbf{A}) \\ \Pi = \{ \ \mathbf{K} \in \mathbf{P}(\mathbf{A}) \mid \mathbf{K} \in \Pi \} \\ (\mathbf{K} \ \mathrm{is \ a \ block} \\ \mathrm{of \ partition} \ \ \Pi) \end{array} \right\} \ : \Longleftrightarrow \ \begin{cases} \begin{array}{l} \forall \ \mathbf{K} \neq \emptyset \\ \mathbf{K} \in \Pi \end{array} \\ \forall \ \mathbf{K} \neq \mathbf{L} \longrightarrow \mathbf{K} \cap \mathbf{L} = \emptyset \end{bmatrix} \\ (\mathbf{K} \ \mathrm{is \ a \ block} \\ \mathrm{of \ partition} \ \ \Pi) \end{array}$$

$$\begin{split} \Pi &= \{\, \mathbf{K} \in \mathbf{P}(\mathbf{A}) \mid \mathbf{K} \in \Pi \} &= \{\, [\mathbf{x}]_{\mathrm{R}} \in \mathbf{P}(\mathbf{A}) \mid \mathbf{x} \in \mathbf{A} \} = \mathbf{A}/\mathbf{R} \\ \\ \mathbf{R} &= \{\, (\mathbf{x},\mathbf{y}) \mid \, \begin{matrix} \exists \\ \mathbf{K} \in \Pi \end{matrix} \, [\mathbf{x} \in \mathbf{K} \wedge \mathbf{y} \in \mathbf{K}] \}_{\mathbf{A}^2} \\ \\ \mathbf{x} \sim \mathbf{y} &\iff \begin{matrix} \exists \\ \mathbf{K} \in \Pi \end{matrix} \, [\mathbf{x} \in \mathbf{K} \wedge \mathbf{y} \in \mathbf{K}] \iff [\mathbf{x}]_{\mathrm{R}} = [\mathbf{y}]_{\mathrm{R}} \end{split}$$

$$\mathbf{R}_1 = \mathbf{R}_2 \iff \mathbf{A}/\mathbf{R}_1 = \mathbf{A}/\mathbf{R}_2 \iff \Pi_1 = \Pi_2$$

 $\operatorname{rank}(\mathbf{R}) = \operatorname{rank}(\mathbf{A}/\mathbf{R}) = \operatorname{rank}(\Pi) = |\Pi|$

DME/Sch Relations(24) 05/09

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

Partition $\Pi' = \mathbf{A}/\mathbf{R}'$ is a refinement of partition $\Pi = \mathbf{A}/\mathbf{R}$; $|\Pi'| \ge |\Pi|$ $\begin{cases} &:\iff \bigvee\limits_{\mathbf{K}'\in\Pi'} \ \mathop{\mathbf{K}}\in\Pi \\ &:\iff \bigvee\limits_{\mathbf{a}\in\mathbf{A}} (\left.\left[\mathbf{a}\right]_{R'} \subseteq \left.\left[\mathbf{a}\right]_{R}) \\ &:\iff \mathbf{R}'\subseteq\mathbf{R}; \ (\left.\left|\left.\mathbf{R}'\right.\right| \le \left.\left|\left.\mathbf{R}\right.\right|) \end{cases} \end{cases}$

coarsest partition of A:

$$\mathbf{R}_{\max} = \mathbf{A}^2; \quad |\mathbf{R}_{\max}| = |\mathbf{A}|^2$$

 $\Pi_{\min} = {\mathbf{A}}; \quad |\Pi_{\min}| = 1$

finest partition of \mathbf{A} : $\mathbf{R}_{\min} = \mathbf{I}$; $|\mathbf{R}_{\min}| = |\mathbf{A}|$ $\Pi_{\max} = \{ \{ \mathbf{a} \} \mid \mathbf{a} \in \mathbf{A} \}; |\Pi_{\max}| = |\mathbf{A}|$

$$\begin{split} \hat{\Pi} &= \mathbf{A}/\hat{\mathbf{R}} \text{ is the coarsest partition,} \\ \text{which is a refinement of} \\ \Pi_1 &= \mathbf{A}/\mathbf{R}_1 \text{ as well as of } \Pi_2 = \mathbf{A}/\mathbf{R}_2 \\ \hat{\Pi} &= \Pi_1 \cdot \Pi_2 \text{ is a product partition} \\ (|\hat{\Pi}| \geq |\Pi_1|; \; |\hat{\Pi}| \geq |\Pi_2|; \; |\hat{\Pi}| \stackrel{!}{=} \min) \end{split}$$

 $: \iff \bigvee_{\mathbf{a} \in \mathbf{A}} ([\mathbf{a}]_{\hat{\mathbf{R}}} \subseteq [\mathbf{a}]_{\mathbf{R}_1} \cap [\mathbf{a}]_{\mathbf{R}_2}),$ $\bigvee_{\mathbf{a} \in \mathbf{A}} ([\mathbf{a}]_{\hat{\mathbf{R}}} \stackrel{!}{=} \max)$ $: \iff \hat{\mathbf{R}} = \mathbf{R}_1 \cap \mathbf{R}_2$

 Π_2 :

$$\begin{split} &\check{\Pi} = \mathbf{A}/\check{\mathbf{R}} \ \, \mathrm{is \ the \ finest \ partition}, \\ &\mathrm{which \ is \ a \ coarsening \ of} \\ &\Pi_1 = \mathbf{A}/\mathbf{R}_1 \ \, \mathrm{as \ well \ as \ of} \ \, \Pi_2 = \mathbf{A}/\mathbf{R}_2 \\ &\check{\Pi} = \Pi_1 + \Pi_2 \ \, \mathrm{is \ a \ sum \ partition} \\ &(|\check{\Pi}| \leq |\Pi_1|; \ |\check{\Pi}| \leq |\Pi_2|; \ |\check{\Pi}| \stackrel{!}{=} \max) \end{split}$$

DME/Sch

Relations(25)

5 Finite State Machines

5.1 Finite State Machine FSM

(Automaton with output)

$$\mathbf{FSM} = (S, I, O, \delta, \lambda, S^0)$$
 6-tuple

1)
$$S = \{\hat{\underline{\mathbf{s}}}_0, \hat{\underline{\mathbf{s}}}_1, \dots, \hat{\underline{\mathbf{s}}}_{2^r-1}\} = \mathbf{B}^r$$
: finite set of states, $0 < |S| < \infty$
= $\{S_0, S_1, \dots, S_{2^r-1}\}$

2)
$$I=\{\hat{\underline{\mathbf{x}}}_0,\hat{\underline{\mathbf{x}}}_1,\ldots,\hat{\underline{\mathbf{x}}}_{2^n-1}\}=\mathbf{B}^n$$
 : set of input patterns
$$=\{X_0,X_1,\ldots,X_{2^n-1}\}$$
 input alphabet

3)
$$O = \{\hat{\underline{\mathbf{y}}}_0, \hat{\underline{\mathbf{y}}}_1, \dots, \hat{\underline{\mathbf{y}}}_{2^m-1}\} = \mathbf{B}^m$$
: set of output patterns
$$= \{Y_0, Y_1, \dots, Y_{2^m-1}\}$$
 output alphabet

4)
$$\delta$$
 : $S \times I \to S$, $(\underline{\mathbf{s}}, \underline{\mathbf{x}}) \to \underline{\mathbf{z}}$: (state-) transition function

5)
$$\lambda : S \times I \to O$$
, $(\underline{\mathbf{s}}, \underline{\mathbf{x}}) \to \underline{\mathbf{y}}$: output function

6)
$$S^0 \in S$$
 : initial state

Types of machines:

$$\begin{array}{lll} \text{Mealy automaton} & \lambda: & S \times I \to O \ , & \underline{\mathbf{y}} = \lambda(\underline{\mathbf{s}},\underline{\mathbf{x}}) \\ \text{Moore automaton} & \lambda: & S & \to O \ , & \underline{\mathbf{y}} = \lambda(\underline{\mathbf{s}}) \end{array}$$

DME/Sch

Finite State Machines(1)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

5.2 General description of FSM

 X_j : Input pattern Y_l : Output pattern

 S_i : State

δ	 X_j	
i	:	
$ S_i $	 S_k	
i	:	

state transition table, state table

 S_k : Next state $i, j, k, l \in \{0, 1, 2, 3, \dots\}$

λ		X_j	• • •
÷		:	
$ S_j $	• • •	Y_l	• • •
		:	

output table

$$\delta : S \times I \to S$$
$$S_k = \delta(S_i, X_i)$$

state transition function, next-state function

$$\lambda : S \times I \to O$$

 $Y_l = \lambda(S_i, X_j)$

output function

μ	 X_{j}	
:	:	
$ S_i $	 (S_k, Y_l)	• • •
:	:	

state output table, state table state diagram

state transition graph STG

DME/Sch

Finite State Machines(2)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

Example (10):
$$I = O = \{0, 1\}, \quad n = m = 1; \quad S = \{S_1, S_2, S_3\}, \quad S^0 = S_1$$

 $(S_j, \hat{\mathbf{y}}) = \mu(S_i, \hat{\mathbf{x}}), \quad i, j = 1, 2, 3$

 \equiv

state output table

$\hat{\mathbf{x}}$	state	next state	$\hat{\mathbf{y}}$
0	S_1	S_1	0
1	S_1	S_2	1
0	S_2	S_1	0
1	S_2	S_3	0
0	S_3	S_3	0
1	S_3	S_1	1

cube table

x	$s_1 s_2$	$z_1 z_2$	y
0	0.0	0.0	0
1	0.0	0.1	1
0	0.1	0.0	0
1	0 1	1 0	0
0	1 0	1 0	0
1	1 0	0 0	1
0	1 1	(1)**(0)	*(0)
1	1 1	(1)**(0)	*(0)

	state				
	coding				
S_1	\triangleq	00	\triangleq	$\overline{s}_1 \cdot \overline{s}_2$	
S_2	$\stackrel{\triangle}{=}$	01	\triangleq	$\overline{s}_1 \cdot s_2$	
S_3	\triangleq	10	\triangleq	$s_1 \cdot \overline{s}_2$	

$$y = x \cdot \overline{s}_{1} \cdot \overline{s}_{2} + x \cdot s_{1} \cdot \overline{s}_{2} = x \cdot \overline{s}_{2}$$

$$z_{2} = x \cdot \overline{s}_{1} \cdot \overline{s}_{2}$$

$$z_{1} = x \cdot \overline{s}_{1} \cdot s_{2} + \overline{x} \cdot s_{1} \cdot \overline{s}_{2}$$

$$+ \overline{x} \cdot s_{1} \cdot s_{2} + x \cdot s_{1} \cdot s_{2}$$
optional
$$z_{1} = x \cdot s_{2} + \overline{x} \cdot s_{1}$$

coded cube table

FSM for example (10):

FSM processes strings (words, concatenation of symbols). Starting with the initial state $S_1 \triangleq 00 \triangleq \overline{s}_1 \cdot \overline{s}_2$, e.g. the string

$$str(x) = x(0) \circ x(1) \circ x(2) \circ x(3) \circ x(4) \circ x(5)
= 110101$$

 \equiv

is transformed into the string

$$str(y) = y(0) \circ y(1) \circ y(2) \circ y(3) \circ y(4) \circ y(5)$$

= 100101

one symbol at a time. The sequential system cycles through a number of system states during this processing.

$$str(S) = S(0) \circ S(1) \circ S(2) \circ S(3) \circ S(4) \circ S(5) \circ S(6)$$

= $S_1 S_2 S_3 S_3 S_1 S_1 S_2$ (see STG)

Remark: State sequences or strings with an initial state describe paths in the state transition graph STG.

DME/Sch

Finite State Machines(3)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

5.3 State Minimization

The first step in state minimization is to eliminate non-reachable states.

Definition: A state S_j is reachable from an initial state S_i , if a directed path from S_i to S_j exists in the state transition graph.

The key task of state minimization is to reduce the number of states by merging equivalent states.

Definition of equivalence of two states S_i and S_j :

$$S_i \sim S_j \iff \lambda(S_i, \operatorname{str}(x)) = \lambda(S_j, \operatorname{str}(x))$$
, for all $\operatorname{str}(x)$
Equivalent (non differentiable) input patterns, originating from S_i and S_j
states

The equivalence relation \sim partitions the state set S into disjoint subsets (equivalence classes). S_i and S_j are elements of an equivalence class K_l of the partition Π of S. $\Pi \subseteq P(S)$

$$\Pi(S) = \{K_1, \dots, K_l, \dots, K_L\} \; ; \quad S_i, S_j \in K_l \; , \quad \bigcup_l K_l = S_l \;$$

Remark: $S_i \not\sim S_j \iff$ there exists a $\operatorname{str}(x)$, such $\operatorname{that}\lambda(S_i,\operatorname{str}(x)) \neq \lambda(S_j,\operatorname{str}(x))$ differentiable states

Definition of k-equivalence of two states S_i , S_j :

$$S_i \stackrel{k}{\sim} S_j \iff \lambda(S_i, \operatorname{str}(x)|_k) = \lambda(S_j, \operatorname{str}(x)|_k) , \quad \text{for all } \operatorname{str}(x)|_k$$
$$\Pi^{(k)}(S) = \{K_1^{(k)}, \dots, K_l^{(k)}, \dots, K_L^{(k)}\} ; \quad S_i, S_j \in K_l^{(k)}$$

$$S_i \stackrel{1}{\sim} S_j \iff \lambda(S_i, x^0) = \lambda(S_j, x^0) , \text{ for all } x^0 \in \{1, 0\}$$

 $S_i \stackrel{1}{\sim} S_j \iff [\lambda(S_i, 0) = \lambda(S_j, 0)] \land [\lambda(S_i, 1) = \lambda(S_j, 1)]$

The iterative computation of k-equivalent (or simply: equivalent) states starts with the computation of the 1-equivalent states, since:

$$S_i \stackrel{k}{\sim} S_j \iff \lambda(S_i, \epsilon) = \lambda(S_j, \epsilon) \iff \epsilon = \epsilon$$
, for all $S_i, S_j \in S$, $\Pi^{(0)} = \{S\}$ coarsest partition of S

DME/Sch

Finite State Machines(4)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

Example (11):
$$I = O = \{0, 1\}, \quad n = m = 1; \quad S = \{S_1, S_2, S_3, S_4\}, \quad S^0 = S_1$$

 $(S_i, \hat{\mathbf{y}}) = \mu(S_i, \hat{\mathbf{x}}), \quad i, j = 1, 2, 3, 4$

From the state output table we obtain the following relations:

$$S_{1} \stackrel{?}{\sim} S_{3} \iff [0 = 0] \land [1 = 1] , \quad S_{1} \stackrel{?}{\sim} S_{4} \quad (S_{3} \stackrel{?}{\sim} S_{4})$$

$$S_{1} \stackrel{?}{\sim} S_{2} \iff [0 = 0] \land [1 = 0] , \quad S_{1} \not\sim S_{2} \quad (S_{3} \not\sim S_{2}, S_{4} \not\sim S_{2})$$

$$\Pi^{(1)} = \left\{ \{S_{1}, S_{3}, S_{4}\}, \{S_{2}\} \right\}$$

$$S_{i} \stackrel{?}{\sim} S_{j} \iff [S_{i} \stackrel{?}{\sim} S_{j}] \land [\delta(S_{i}, 0) \stackrel{?}{\sim} \delta(S_{j}, 0)] \land [\delta(S_{i}, 1) \stackrel{?}{\sim} \delta(S_{j}, 1)]$$
e.g. $S_{1} \stackrel{?}{\sim} S_{4} \iff [S_{1} \stackrel{?}{\sim} S_{4}] \land [S_{4} \stackrel{?}{\sim} S_{1}] \land [S_{2} \stackrel{?}{\sim} S_{2}]$

$$S_{1} \stackrel{?}{\sim} S_{3} \iff [S_{1} \stackrel{?}{\sim} S_{4}] \land [S_{4} \stackrel{?}{\sim} S_{3}] \land [S_{2} \stackrel{?}{\sim} S_{1}], \quad S_{1} \stackrel{?}{\sim} S_{3}$$

$$\Pi^{(2)} = \left\{ \{S_{1}, S_{4}\}, \{S_{3}\}, \{S_{2}\} \right\}$$

$$S_{1} \stackrel{?}{\sim} S_{4} \iff [S_{1} \stackrel{?}{\sim} S_{4}] \land [\delta(S_{1}, 0) \stackrel{?}{\sim} \delta(S_{4}, 0)] \land [\delta(S_{1}, 1) \stackrel{?}{\sim} \delta(S_{4}, 1)] \text{rel}$$

$$\iff [S_{1} \stackrel{?}{\sim} S_{4}] \land [S_{4} \stackrel{?}{\sim} S_{1}] \land [S_{2} \stackrel{?}{\sim} S_{2}]$$

$$\Pi^{(3)} = \Pi^{(2)} = \Pi(S)$$

Result: state S_1 and S_4 are equivalent and can be merged in STG (see example (10)!).

DME/Sch

Finite State Machines(5)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

Iterative checking for equivalent states in an FSM:

$$\begin{array}{lll} S_i \overset{k+1}{\sim} S_j & \Longleftrightarrow & [S_i \overset{k}{\sim} S_j] \wedge [\delta(S_i, x^0) \overset{k}{\sim} \delta(S_j, x^0)] \;, & \text{for all } x^0 \in \{0, 1\} \\ S_i \overset{k+1}{\sim} S_j & \Longleftrightarrow & [S_i \overset{k}{\sim} S_j] \wedge [\delta(S_i, 0) \overset{k}{\sim} \delta(S_j, 0)] \wedge [\delta(S_i, 1) \overset{k}{\sim} \delta(S_j, 1)] \end{array}$$

Comment:
$$S_i \overset{k+1}{\sim} S_i \iff [S_i \overset{1}{\sim} S_i] \wedge [\delta(S_i, 0) \overset{k}{\sim} \delta(S_i, 0)] \wedge [\delta(S_i, 1) \overset{k}{\sim} \delta(S_i, 1)]$$

Determination of equivalent states:

$$\Pi = \Pi^{(k)}$$
, IF $\Pi^{(k+1)} = \Pi^{(k)}$, with $k \le |S| - 1$

Additional remark: $\Pi^{(k)}$ is a refinement of $\Pi^{(k-1)}$; $\Pi^{(k)}, \Pi^{(k-1)}, \dots, \Pi^{(2)}, \Pi^{(1)}$

Because
$$S_i \not\sim S_j \Longrightarrow S_i \not\sim S_j \Longrightarrow \ldots \Longrightarrow S_i \not\sim S_j \Longrightarrow S_i \not\sim S_j$$

 $S_i \sim S_j \Longrightarrow S_i \sim S_j \Longrightarrow S_i \sim S_j \Longrightarrow \ldots \Longrightarrow S_i \sim S_j$

Example (12): Completely specified FSM; $I = O = \{0, 1\}, n = m = 1;$ $S = \{A, B, C, D, E, F, G\}$

$$\begin{array}{|c|c|c|c|c|c|} \hline \mu & x = 0 & x = 1 \\ \hline A & (E,0) & (C,0) \\ \hline D & (G,0) & (A,0) \\ \hline C & (D,0) & (G,0) \\ \hline B & (C,0) & (A,1) \\ \hline C & (B,0) & (G,1) \\ \hline E & (F,1) & (B,0) \\ \hline \end{array} \begin{array}{|c|c|c|c|} \hline S = \{A,B,C,D,E,F,G\} \\ \hline \hline M^{(1)} & = & \{\{A,D,G,F\},\{B,C\},\{E\}\} \\ \hline 00 & 01 & 10 & \hat{\mathbf{y}}\text{-assignmen} \\ \hline M^{(2)} & = & \{\{A\},\{D,G\},\{F\},\{B,C\},\{E\}\} \} \\ \hline e.g. & A \not\sim D \iff [A \stackrel{1}{\sim} D] \land [E \stackrel{1}{\sim} G] \land [C \stackrel{1}{\sim} A] \\ \hline & false & false \\ \hline D \stackrel{2}{\sim} G \iff [D \stackrel{1}{\sim} G] \land [G \stackrel{1}{\sim} D] \land [A \stackrel{1}{\sim} G] \\ \hline \hline M^{(3)} & = & \{\{A\},\{D\},\{G\},\{F\},\{B\},\{C\},\{E\}\} \} \\ \hline & finest decomposition of S \\ \hline \end{array}$$

state output table (appropriately sorted)

Result: All states can be pairwise differentiated by appropriate strings with $k \leq 3$.

Remark: Typically, the state output table will be sorted again after each partitioning step.

DME/Sch

Finite State Machines(6)

TECHNICAL UNIVERSITY OF MUNICH PROFESSOR DR.-ING. U. SCHLICHTMANN

5.4 General comments on machine models

Machine types:

 $\begin{array}{lll} \text{Mealy Automaton} & \lambda: & S \times I \to O \ , & Y_l = \lambda(S_i, X_j) \\ \text{Moore Automaton} & \lambda: & S \to O \ , & Y_l = \lambda(S_i) \\ \text{Medwedew Automaton} & \lambda: & I \to O \ , & Y_l = \lambda(X_j) \end{array}$

Properties of machines:

completely specified – incompletely specified

simplified

minimal

deterministic – non-deterministic

In a non-deterministic machine the state transition is not necessarily unambiguous anymore.

FSM design flow:

DME/Sch

Finite State Machines(7)