This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19)日本国特許庁(JP)

(12)公開特許公報(A) (11)特許出願公開番号

特開平9-12756

(43)公開日 平成9年(1997)1月14日

(51) Int. C1.	;	識別記号	庁内整理番号	FΙ				技術表示	卡箇所
C08J	9/00	CES		C 0 8 J	9/00	CES	Α		
// C08L	23/02	LCD		C 0 8 L	23/02	LCD			
		LDB				LDB			
C 0 8 L	23:02								
· · · · · · · · · · · · · · · · · · ·	審査請求	未請求 請求	t項の数 2 F I)		(全6	6 頁) 		
(21)出願番号	特	顏平7-186339		(71)出願人	000221	627			
			•		東燃化	学株式会	社		
(22)出願日	平)	成7年 (1995) 6月	39日		東京都	中央区築	地4丁目1	番1号	
				(72)発明者	河野	公一			
					神奈川	県川崎市	川崎区千	鳥町3番1号	東炫
					化学棋	式会社技	術開発セ	ンター内	
				(72)発明者	滝田	耕太郎			
								·鳥町3番1号	東燃
						式会社技		ンター内	
				(74)代理人	、弁理士	: 久保田	耕平		
				1					

(54) 【発明の名称】ポリオレフィン微多孔膜及びその製造方法

(57)【要約】

【目的】 熱収縮しにくいポリオレフィン微多孔 膜及びその製造方法を提供する。

【構成】 超高分子量ポリオレフィンを含有し、 分子量分布が広い (Mw/Mnが大きい) ポリオレフィ ンからなるゲル状成形物を、特定の温度で延伸し、残存 溶媒を除去した後、特定の温度で熱固定処理してなるポ リオレフィン微多孔膜及びその製造方法。

【特許請求の範囲】

【請求項1】 重量平均分子量が 7×10⁵ 以上の 超高分子量ポリオレフィンを1重量%以上含有し、重量 平均分子量/数平均分子量が10~300のポリオレフ ィンからなり、微多孔膜の縦方向の熱収縮率が20%以 下であり、横方向の熱収縮率が15%以下であることを 特徴とするポリオレフィン微多孔膜。

【請求項2】 重量平均分子量7×10⁵ 以上の超 高分子量ポリオレフィンを1重量%以上含有し、重量平 均分子量/数平均分子量が10~300のポリオレフィ 10 ン10~50重量%と、溶媒50~90重量%とからな る溶液を調製し、前記溶液をダイより押出し、冷却する ことによりゲル状成形物を形成し、前記ポリオレフィン の融点-20℃以上融点+10℃以下の温度で前記ゲル 状成形物を延伸し、残存溶媒を除去し、しかる後、前記 ポリオレフィンの結晶分散温度+10℃以上融点以下の 温度で熱固定処理することを特徴とするポリオレフィン 微多孔膜の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、超高分子量ポリオレフ ィンを含有するポリオレフィン組成物の微多孔膜及びそ の製造方法に関し、特に、熱収縮しにくいポリオレフィ ン微多孔膜及びその製造方法に関する。

[0002]

【従来の技術】微多孔膜は、電池用セパレーター、電解 コンデンサー用隔膜、各種フィルター、透湿防水衣料、 逆浸透濾過膜、限外濾過膜、精密濾過膜等の各種用途に 用いられている。

し得る超高分子量ポリオレフィンを用いた高強度の微多 孔膜が種々提案されている。例えば、重量平均分子量 が、5×105以上の超高分子量ポリオレフィンを溶媒 中で加熱溶解した溶液からゲル状シートを形成し、前記 ゲル状シート中の溶媒量を脱溶媒処理により調整し、次 いで加熱延伸した後、残留溶媒を除去することにより、 超高分子量ポリオレフィンの微多孔膜を製造する方法が 種々提案されている(特開昭60-242035号、特 開昭61-495132号、特開昭61-195133 号、特開昭63-39602号、特開昭63-2736 40

【0004】しかしながら、上記超高分子量ポリオレフ ィン微多孔膜の製造方法は、いずれも超高分子量ポリオ レフィンを2軸延伸するために、ポリオレフィンのある 程度稀薄な溶液を調製する必要があり、このため得られ た溶液は、シート成形するダイス出口でスウェルやネッ クインが大きく、シート成形が困難であり、さらにシー ト中には溶媒が過剰に含まれているため、そのまま延伸 しても目的の微多孔膜は得られないので脱溶媒処理して いて問題があった。

【0005】このような問題を解決する方法として、本 発明者らが、超高分子量ポリオレフィンを含有し、重量 平均分子量/数平均分子量(以下「Mw/Mn」とい う)が特定の範囲内にある組成物を用いたポリオレフィ ン微多孔膜及びその製造方法を提案した(特開平3-6 4334号)。この方法により、延伸性が良好で、高濃 度溶液とすることが可能なポリオレフィンからポリオレ フィン微多孔膜を製造することが可能となった。

2

【0006】しかしながら、上記のいずれの方法による ポリオレフィン微多孔膜も熱収縮率の小さいことが要求 される分野においては必ずしも十分ではなかった。この ような熱収縮しやすい微多孔膜を、例えば、電池、コン デンサーのセパレーターとして用いると、高温にさらさ れたときに、縦方向の熱収縮によりピンホール、横方向 の熱収縮により極板露出を生じ、内部短絡の原因となる 恐れがある。この場合、特に横方向の熱収縮が問題にな っている。

[0007]

【発明が解決しようとする課題】従って、本発明の目的 は、熱収縮しにくいポリオレフィン微多孔膜を提供する ことである。

【0008】又、本発明のもう一つの目的は、上記ポリ オレフィン微多孔膜の製造方法を提供することである。 [0009]

【課題を解決するための手段】上記目的に鑑み鋭意研究 の結果、本発明者らは、超高分子量ポリオレフィンを含 有し、分子量分布が広い(Mw/Mnが大きい)ポリオ レフィンからなるゲル状成形物を、特定の温度で延伸 【0003】最近、高強度及び高弾性のフィルムに成形 30 し、残存溶媒を除去した後、特定の温度で熱固定処理す ることにより得られる微多孔膜は、熱収縮しにくいこと を見出し、本発明に想到した。

> 【0010】すなわち、本発明のポリオレフィン微多孔 膜は、重量平均分子量が7×105以上の超高分子量ポ リオレフィンを1重量%以上含有し、Mw/Mnが10 ~300のポリオレフィンからなり、微多孔膜の縦方向 の熱収縮率(以下「Sm」という)が20%以下であ り、横方向の熱収縮率(以下「St」という)が15% 以下であることを特徴とする。

【0011】上記ポリオレフィン微多孔膜を製造する本 発明の方法は、重量平均分子量が7×10⁵ 以上の超高 分子量ポリオレフィンを1重量%以上含有し、Mw/M nが10~300のポリオレフィン10~50重量% と、溶媒50~90重量%とからなる溶液を調製し、前 記溶液をダイより押出し、冷却することによりゲル状成 形物を形成し、前記ポリオレフィンの融点(以下「T m」という) - 20℃以上Tm+10℃以下の温度で前 記ゲル状成形物を延伸し、残存溶媒を除去し、しかる後 前記ポリオレフィンの結晶分散温度(以下「Τα」とい シート中の溶媒盘を調整する必要がある等、生産性にお 50 う) + 1 0 ℃以上 T m以下の温度で熱固定処理すること

を特徴とする。

【0012】本発明を以下詳細に説明する。

【0013】本発明のポリオレフィン微多孔膜は、重量 平均分子量7×10°以上の超高分子量ポリオレフィン を1重量%以上含有し、Mw / Mn が10~300のポ リオレフィンからなる。

【0014】上記ポリオレフィンのMw /Mn は10~ 300、好ましくは12~250である。Mw /Mn が 10未満では、平均分子鎖長が大きく、溶解時の分子鎖 同士の絡み合い密度が高くなるため、高濃度溶液の調製 10 て、成形性に劣る。 が困難である。又、Mw /Mn が300を超えると、延 伸時に低分子量成分の破断が起こり膜全体の強度が低下 する。

【0015】尚、Mw /Mn は、分子量分布の尺度とし て用いられているものであり、この分子量の比が大きく なるほど分子量分布の幅は拡大する。すなわち重量平均 分子量の異なるポリオレフィンからなる組成物の場合、 組成物の分子量の比が大きいほど、配合するポリオレフ ィンの重量平均分子量の差が大きく、又、逆に組成物の **量平均分子量の差が小さいことを示している。又、単独** のポリオレフィンの場合、分子量の比はその分布の広が りを示し、その値が大きいほど分子量分布が広がってい ることを示している。

【0016】本発明においては、ポリオレフィンのMw /Mn を10~300と、通常の超高分子量ポリオレフ ィン自身のMw /Mn (通常6程度) よりも大きく設定 している。この結果、分子量分布は低分子量側へと広が りをみせるため、高濃度のポリオレフィン溶液の調製が 可能となる。

【0017】又、上記ポリオレフィン中に分子量7×1 05 以上の成分が1重量%未満では、延伸性の向上に寄 与する超高分子量ポリオレフィンの分子鎖の絡み合いが ほとんど形成されず、高強度の微多孔膜を得ることがで きない。一方、超高分子量の含有率の上限は特に限定的 ではないが、90重量%を超えると目的とするポリオレ フィン溶液の高濃度化の達成が困難となるため好ましく ない。

【0018】このポリオレフィンは、上記分子量及び分 子量分布を有していれば、単独のポリオレフィン(混合 40 物でないもの)か、2種以上のポリオレフィンからなる 組成物のどちらでもよい。

【0019】単独のポリオレフィンの場合、例えば重量 平均分子量7×10⁵ 以上の超高分子量ポリオレフィン を1重量%以上含有し、Mw /Mn が10~300とな るように多段重合することにより製造することができ る。多段重合としては、二段重合により高分子量部分と 低分子量部分とを製造するのが好ましい。

【0020】又、ポリオレフィン組成物(混合物)の場 合、重量平均分子量7×10⁵ 以上の超高分子量ポリオ 50 【0029】加熱溶解は、ポリオレフィンが溶媒中で完

レフィンと、重量平均分子量7×10⁵ 未満のポリオレ フィンとをMw /Mn が上記範囲となるように適量混合 することによって得ることができる。

【0021】組成物の場合、超高分子量ポリオレフィン は、重量平均分子量7×10⁵ 以上、好ましくは1×1 0° から15×10° のものである。重量平均分子量が 7×10⁵ 未満では、最大延伸率が低く、目的の微多孔 膜が得られない。一方、上限は特に限定的ではないが1 5×10°を超えるものは、ゲル状成形物の形成におい

【0022】このような超高分子量ポリオレフィンとし ては、エチレン、プロピレン、1-ブテン、4-メチル -1-ペンテン、1-ヘキセン等を重合した結晶性の単 独重合体、又は共重合体及びこれらのブレンド物等が挙 げられる。これらのうち超髙分子量ポリエチレン、特に 高密度の超高分子量ポリエチレンが好ましい。

【0023】又、ポリオレフィン組成物中の超高分子量 ポリオレフィン以外のポリオレフィンは、重量平均分子 量 7×10⁵ 未満のものであるが、分子量の下限として 分子量の比は小さいほど、配合するポリオレフィンの重 20 は1×10⁴以上のものが好ましい。重量平均分子量が 1×10°未満のポリオレフィンを用いると、延伸時に 破断が起こりやすく、目的の微多孔膜が得られないので 好ましくない。特に、重量平均分子量が1×105以上 7×10⁵ 未満のポリオレフィンを超高分子量ポリオレ フィンに配合するのが好ましい。

> 【0024】このようなポリオレフィンとしては、エチ レン、プロピレン、1-ブテン、4-メチル-1-ペン テン、1-ヘキセン等を重合した結晶性の単独重合体、 又は共重合体及びこれらのブレンド物等が挙げられる。 30 特に、エチレンを主体とする重合体である高密度ポリエ チレンが好ましい。

【0025】尚、上述したようなポリオレフィンには、 必要に応じて、酸化防止剤、紫外線吸収剤、滑剤、アン チブロック剤、顔料、染料、無機充填剤等の各種添加剤 を本発明の目的を損なわない範囲で添加することができ

【0026】次に、上述したようなポリオレフィンか ら、ポリオレフィン微多孔膜を製造する本発明の方法に ついて以下説明する。

【0027】本発明において、原料となるポリオレフィ ンの高濃度溶液は、上述のポリオレフィンを溶媒に加熱 溶解することにより調製する。

【0028】この溶媒としては、ポリオレフィンを十分 に溶解できるものであれば特に限定されない。例えば、 ノナン、デカン、ウンデカン、ドデカン、流動パラフィ ン等の脂肪族又は環式の炭化水素、あるいは沸点がこれ らに対応する鉱油留分等が挙げられるが、溶媒含有量が 安定なゲル状成形物を得るためには流動パラフィンのよ うな不揮発性の溶媒が好ましい。

全に溶解する温度で攪拌しながら行う。その温度は使用 する重合体及び溶媒により異なるが、例えば、ポリエチ レンの場合には140~250℃の範囲である。又、ポ リオレフィン溶液の濃度は、10~50重量%、好まし くは10~40重量%である。濃度が10重量%未満で は、使用する溶媒量が多く経済的でないばかりか、シー ト状に成形する際に、ダイス入り口でスウェルやネック インが大きくシートの成形が困難となる。一方、濃度が 50重量%を超えると、均一な溶液の調製が困難とな る。尚、加熱溶解にあたってはポリオレフィンの酸化を 10 防止するために酸化防止剤を添加するのが好ましい。

【0030】次に、このポリオレフィンの加熱溶液をダ イスから押し出して成形する。ダイスは、通常長方形の 口金形状をしたシートダイスが用いられるが、2重円筒 状のインフレーションダイス等も用いることができる。 シートダイスを用いた場合のダイスギャップは通常 0. 1~5mmであり、押し出し成形温度は140~250 ℃である。この際押し出し速度は、通常20~30cm /分及至2~3m/分である。

液は、冷却することによりゲル状成形物に成形される。 冷却は少なくともゲル化温度以下までは50℃/分以上 の速度で行うのが好ましい。一般に冷却速度が速いと、 得られるゲル状成形物の高次構造が密となり、それを形 成する疑似細胞単位も小さなものとなるが、冷却速度が 遅いと、粗な細胞単位となる。冷却速度が50℃/分未 満では、結晶化度が上昇し、延伸に適したゲル状成形物 となりにくい。従って、冷却速度を調整することによ り、得られる微多孔膜の孔径を変化させることができ

【0032】冷却方法としては、冷風、冷却水、その他 の冷却媒体に直接接触させる方法、冷媒で冷却したロー ルに接触させる方法等を用いることができる。尚、ダイ スから押し出された溶液は、冷却前あるいは冷却中に、 1~10好ましくは1~5の引取比で引き取ってもよ い。引取比が10以上になるとネックインが大きくな り、又、延伸時に破断を起こしやすくなり好ましくな

【0033】次に、このゲル状成形物に対して延伸を行 う。延伸は、ゲル状成形物を加熱し、通常のテンター 法、ロール法、インフレーション法、圧延法もしくはこ れらの方法の組み合わせによって所定の倍率で行う。延 伸は1軸延伸でも2軸延伸でもよいが、2軸延伸が好ま しい。又、2軸延伸の場合、縦横同時延伸又は遂次延伸 のいずれでもよい。

【0034】延伸温度は、Tm-20℃以上Tm+10 ℃以下の温度範囲である。好ましくは、Tm-20℃以 上Tm以下の温度範囲である。例えば、超髙分子量ポリ オレフィン含有ポリエチレンの場合は110~140℃

る。延伸温度がTm+10℃を超えると、樹脂の溶融に より延伸による分子鎖の配向が出来ない。又、延伸温度 がTm−20℃未満では、樹脂の軟化が不十分で、延伸 において破膜し易くて高倍率の延伸ができず、熱収縮率 が大きい。

【0035】ここで、Tmとはポリオレフィンが結晶状 態から液体状態へ転移する温度で、示差走査熱量計によ り測定する。

【0036】延伸倍率は原反の厚さによって異なるが、 1軸延伸では2倍以上、好ましくは3~30倍である。 2軸延伸では、面倍率で10倍以上、好ましくは15~ 400倍である。面倍率が10倍未満では延伸が不十分 で高弾性、高強度の微多孔膜が得られない。一方、面倍 率が400倍を超えると、延伸装置、延伸操作等の点で 制約が生じる。

【0037】得られた延伸成形物は、溶剤で洗浄し残留 する溶媒を除去する。洗浄溶剤としては、ペンタン、へ キサン、ヘプタン等の炭化水素、塩化メチレン、四塩化 炭素等の塩素化炭化水素、三フッ化エタン等のフッ化炭 【0031】このようにしてダイスから押し出された溶 20 化水素、ジエチルエーテル、ジオキサン等のエーテル類 等の易揮発性のものを用いることができる。これらの溶 媒はポリオレフィンの溶解に用いた溶媒に応じて適宜選 択し、単独もしくは混合して用いる。洗浄方法は、溶剤 に浸漬し抽出する方法、溶剤をシャワーする方法、又 は、これらの組み合わせによる方法等により行うことが できる。

> 【0038】上述のような洗浄は、延伸成形物中の残留 溶媒が1重量%未満になるまで行う。その後洗浄溶剤を 乾燥するが、洗浄溶剤の乾燥方法は、加熱乾燥、熱風に 30 よる風燥、加熱ロールに接触させる、加熱媒体に浸漬す る等の方法で行うことができる。

> 【0039】乾燥した延伸成形物は、Tα+10℃以上 Tm以下の温度範囲で、熱固定処理する。好ましくは、 Tα+15℃以上Tm以下の温度範囲である。例えば、 超髙分子量ポリオレフィン含有ポリエチレンの場合は1 00~130℃の温度範囲で、好ましくは、105~1 30℃である。熱固定温度がTmを超えると、樹脂が溶 融してしまう。又、熱固定温度がTα+10℃未満で は、熱収縮率が大きい、又、熱固定処理の時間は、熱固 40 定温度により異なるが、10秒間~10分間行うのが好

【OO40】ここで、Taとは、結晶内の分子鎖のミク ロブラウン運動が活発になる温度で、動的粘弾性測定に より測定する。又、「動的粘弾性」とは、粘弾性体に定 常的な正弦波の歪みを与えて正弦波の応力を測定した り、逆に、応力に対する歪みを測定して求める。

【0041】以上のようにして製造したポリオレフィン 微多孔膜は、透気度が200~2000秒/100c c、空孔率が35~90%、引張破断強度が200kg の温度範囲であり、好ましくは、1 1 0 ~ 1 3 0 ℃であ 50 / c m² 以上である。 さらに、熱収縮率は小さく、 S m は20%以下であり、Stも15%以下である。好まし くは、Smを15%以下、Stを12%以下にすること ができる。

【0042】又、本発明の方法により製造したポリオレ フィン微多孔膜の厚さは、用途に応じて適宜選択しうる が、一般に $0.1\sim50\mu$ mであり、好ましくは $2\sim4$ $0 \mu m \tau \delta \delta$.

【0043】以上のような方法により得られる本発明の ポリオレフィン微多孔膜には、必要に応じて、プラズマ ることができる。

[0044]

【作用】本発明においては、超高分子量ポリオレフィン を含有し、分子量分布が広い(Mw/Mnが大きい)ポ リオレフィンからなるゲル状成形物を特定の温度で延伸 し、残存溶媒を除去した後、特定の温度で熱固定処理す ることによりポリオレフィン微多孔膜を製造している。 このようにして得られる微多孔膜は、熱収縮しにくい。 【0045】このような効果が得られる理由については 必ずしも明らかではないが、本発明の方法においては、 延伸工程においてTm-20℃以上Tm+10%以下の 延伸温度で延伸を行い、残存溶媒を除去した後、Τα+ 10℃以上Tm以下の熱固定温度で熱固定処理を行うこ とにより、ポリオレフィン微多孔膜において十分に熱緩 和が施され、熱収縮しにくくなるためであると考えられ る。

[0046]

【実施例】以下に本発明の実施例を示す。また、実施例 における試験方法は次の通りである。なお、本発明は以 下の実施例によって限定されるものではない。

- (1) 分子量及び分子量分布:ウォーターズ(株) 製の GPC装置を用い、カラムに東ソー(株)製GMH-6、溶媒に0-ジクロルベンゼンを使用し、温度135 ℃、流量1.0 ml/分にて、ゲルパーミエーションク ロマトグラフィー (GPC) 法により測定。
- (2) フィルムの厚さ:断面を走査型電子顕微鏡により 測定。
- (3) 透気度: JISP8117に準拠して測定。
- (4) 空孔率:水銀ポロシメータにより測定。
- 強度をASTM D882に準拠して測定。
- (6) 熱収縮率:10cm四方のサンプルを、105℃ で8時間無張力の状態で静置した後、SmとStを各々 測定。

*実施例1

重量平均分子量 (Mw) が2. 5×10⁶ の超高分子量 ポリエチレン3重量部と、重量平均分子量(Mw) 6. 8×10⁵ の高密度ポリエチレン14重量部とを混合し たMw/Mn 1 8. 2の原料樹脂 (Tm=135℃、T a=90℃)と、流動パラフィン(64cst/40 ℃) 83重量部とを混合し、ポリエチレン組成物の溶液 を調製した。次に、このポリエチレン組成物の溶液10 0重量部に、酸化防止剤 0.375重量部を混合した。 照射、界面活性剤含浸、表面グラフト等で親水化処理す 10 この混合液を攪拌機付きのオートクレーブに充填して2 00℃で90分間攪拌し、均一な溶液を得た。

8

【0047】この溶液を直径45mmの押出機により、 200℃のTダイから押し出し、20℃に冷却した冷却 ロールで引き取りながら厚さ1.8mmのゲル状シート を形成した。

【0048】得られたシートを二軸延伸機にセットし、 温度115℃、製膜速度5m/分で5×5倍に同時二軸 延伸を行った。得られた延伸膜を塩化メチレンで洗浄し て残留する流動パラフィンを抽出除去した、室温で乾燥 20 した後、120℃で30秒間熱固定処理して厚さ25µ mのポリエチレン微多孔膜を得た。このポリエチレン微 多孔膜の透気度、空孔率、引張破断強度及び熱収縮率の 測定を行った。その結果を第1表に示す。

実施例1において、延伸温度を120℃、熱固定温度を 115℃にした以外は同様にして、厚さ25 µ mのポリ エチレン微多孔膜を製造した。その結果を第1表に示 す。

実施例3

30 実施例1において、延伸温度を125℃、熱固定温度を 110℃にした以外は同様にして、厚さ25 µ mのポリ エチレン微多孔膜を製造した。その結果を第1表に示 す。

比較例1

実施例1において、延伸温度を115℃、熱固定温度を 90℃にした以外は同様にして、厚さ25μmのポリエ チレン微多孔膜を製造した。その結果を第1表に示す。 比較例2

実施例1において、延伸温度を105℃、熱固定温度を (5) 引張破断強度:幅15mmの短冊状試験片の破断 40 90℃にした以外は同様にして、厚25μmのポリエチ レン微多孔膜を製造した。その結果を第1表に示す。

[0049]

【表1】

第1表

例	No.	lo. 延伸温度		熱固定温度		透気度 空孔率		空孔率	引張破断強度			熱収縮率		
									縦方向	横方向	S	m	St	
			(℃)	(℃)	(秒/100cc) (%)		(kg/	kg/cm ²)		(%)			
実加	包例	1	115	1	20	5	70	45	1120	960		9	6	
実加	回例	2	120	1	15	6	50	42	1250	1030	1	3	10	

9			10					
実施例 3	125	110	530	47	1090	920	10	8
比較例 1	115	90	410	49	950	870	21	16
比較例 2	105	90	1290	34	1570	1240	25	19

[0050]

【発明の効果】以上詳述したように、本発明のポリオレフィン微多孔膜は、超高分子量ポリオレフィンを含有し、分子量分布が広い(Mw / Mn が大きい)ポリオレフィンからなるゲル状成形物を、特定の温度で延伸し、残存溶媒を除去した後、特定の温度で熱固定処理するこ

とにより製造しているので、得られる微多孔膜は熱収縮 しにくい。

【0051】このような本発明のポリオレフィン微多孔 膜は、電池用セパレーター、電解コンデンサー用隔膜、 超精密濾過膜、限界濾過膜、各種フィルター、透湿防水 衣料用多孔質膜等の各種用途に好適である。