MC01

GROUP E

Sean Gabriel M. Cardeno Jeff Uriel V. Fonte Aurelio Rodolfo F. Garcia Raine Margaux A. Siongco

INTRODUCTION

With tensions of all kinds rising in almost every corner of the world, coupled with significant strides in psychology and neuroscience, the topic of Mental Health has been ubiquitous within the global public discourse.

In particular, as higher education has become more competitive and rigorous, the mental health of students has received notable attention.

Reports from agencies and experts worldwide consistently reach a common conclusion: students are struggling.

With all this in mind, the project aimed to thoroughly examine the available data from various sources and perform various queries to gain a better understanding of this phenomenon.

DATASETS

Featured Content Using this Data			
Mental Health			
External Content			
Data from NCHS' partnership with the U.S. Census Bureau on the Household Pulse Survey			

Contains 14
columns on
age, gender,
mental health
questions,
PHQ-9 scores,
and
depression
level.

Has 18 columns on age, gender, geography, academic performance, sleep quality, and financial status.

Includes 14
columns on
group, US
states, time
periods,
confidence
levels, and their
quartile range.

Has 14 columns on age, gender, country, social media visits, sleep hours, mental health scores, relationship status, academic performance, and addicted scores.

Contains 17
columns on
age, gender,
academic
performance,
work life, sleep
hours, diet,
mental health
questions, and
depression
scores.

Has 23 columns on gender, age, academic performance, income level, sleep quality, and sleep hours.

SCHEMA

OLAP Queries

Database used: MySQL

OLAP Operations Implemented:

- **ROLL-UP:** Summarizes data at multiple levels of aggregation (e.g., average stress by age group and gender).
- **DRILL-DOWN:** Provides more detailed insights by breaking down summarized data (e.g., viewing results from ALL to an age group).
- **SLICE:** Filters the data for a specific dimension (e.g., gender = 'Female').
- **DICE:** Selects subsets of data across multiple dimensions (e.g., specific age groups and stress levels).

Sample Queries

Example 1: Correlation between Sleep and Stress (ROLLUP)

```
gender,
CASE

WHEN age BETWEEN 18 AND 20 THEN '18-20'
WHEN age BETWEEN 21 AND 23 THEN '21-23'
ELSE '24+'
END AS age_group,
ROUND(AVG(avg_sleep_duration), 2) AS avg_sleep,
ROUND(AVG(avg_stress_level), 2) AS avg_stress
FROM student_data
GROUP BY ROLLUP(gender, age_group);
```

Example 2: Slice and Dice

```
SELECT
   age_group,
   ROUND(AVG(avg_cgpa), 2) AS avg_cgpa
FROM student_data
WHERE gender = 'Female' AND age_group IN ('18-20', '21-23')
GROUP BY age_group;
```

OLAP Queries Filters are all set to Gender = ALL, Age Group = ALL

OLAP Filters (Slice / Dice)

Query 1: Correlation Between Sleep and Stress

Query 2: Mental Risk Indicators

2. Mental Risk Indicators

Query 3: Social Media VS Academics

Query 4: Stress by Gender and Age Group

Query 5: Social Media VS Mental Health

Query 6: Stress and Mental Health by Age Group

TESTING

Testing API Endpoints

	gender	age_group	avg_sleep	avg_stress_level
•	Female	18-20	6.52	9.67
	Female	21-23	6.46	5.33
	Female	24+	6.37	3
	Female	NULL	6.39	6.86
	Male	18-20	6.54	7.67
	Male	21-23	6.44	7.33
	Male	24+	6.42	6
	Male	NULL	6.44	7.29
	NULL	NULL	6.42	7.07

1. Correlation between Sleep and Stress

Testing Frontend Using Filters

5.1 Functional Testing

Test Case	Query	Expected output	Actual Result	Statu s
Validate dataset extraction	Load all datasets	All loaded with no file errors	Loaded	Pass
Validate data and preprocess	Apply cleaning pipeline	cleaning renamed		Pass
Validate MySQL load	Write fact and dim tables to olap_dashbo ard	Tables created with Primary Keys	Verified locally in Workbench	Pass
Test API endpoints	Run each endpoints	Returns JSON response with no SQL errors	Returns rows/data	Pass
Test Frontend using filters	Change gender/age filters	Dashboard dynamically updates graphs and summaries	Behavior matched manual SQL validation in Workbench	Pass

Test Script

QUERY PROCESSING, OPTIMIZATION

```
Postprocess fact_student_summary.
 group_cols = ["age", "gender"]
 # (A) Numeric non-onehot aggregation
  numeric_summary = base.groupby(group_cols, as_index=False)[numeric_non_onehot].mean()
  # (B) One-hot aggregation
  if one_hot_cols:
     onehot_summary = base.groupby(group_cols, as_index=False)[one_hot_cols].mean()
     fact_student_summary = pd.merge(numeric_summary, onehot_summary, on=group_cols, how=
     fact_student_summary = numeric_summary
  # Rename numeric aggregates
  rename_map = {c: ("avg_" + c) for c in numeric_non_onehot}
  fact_student_summary.rename(columns=rename_map, inplace=True)
  # Keep valid ages only
  fact_student_summary = fact_student_summary[
    fact_student_summary["age"].between(AGE_MIN, AGE_MAX)
  ].sort_values(["age","gender"]).reset_index(drop=True)
  # Rename aggregates to show they are group-level means
  rename_map = {c: ('avg_' + c) for c in numeric_non_onehot}
  fact_student_summary.rename(columns=rename_map, inplace=True)
  # one-hot columns represent fractions/proportions
  fact_student_summary = fact_student_summary.sort_values(['age','gender']).reset_index(d
  print("Fact student summary shape:", fact_student_summary.shape)
  print(fact_student_summary.head())
```

Field	Туре	Null	Key	Default	Extra
age	int	NO	PRI	NULL	
gender	varchar(16)	NO	PRI	NULL	
avg_academic_pressure	float	YES		NULL	
avg_cgpa	float	YES		NULL	
avg_study_satisfaction	float	YES		NULL	
avg_sleep_duration	float	YES		NULL	
avg_has_suicidal_thoughts	float	YES		NULL	
avg_work_study_hours	float	YES		NULL	
avg_financial_stress	float	YES		NULL	
avg_has_family_mental_illness	float	YES		NULL	
avg_has_depression	float	YES		NULL	
avg_academic_pressure_df3	float	YES		NULL	
avg_cgpa_df3	float	YES		NULL	
avg_study_satisfaction_df3	float	YES		NULL	
avg_has_suicidal_thoughts_df3	float	YES		NULL	
avo work study hours df3	float	YES		NULL	

Primary Keys, fact_student_summary Table

Query Execution Times

0.00035450	SELECT	ROUND(A	/G(avg_stress_level), 2) AS avg_stress,
0.00045075	SELECT	CASE	WHEN age BETWEEN 18 AND 20 THEN '1
0.00059200	SELECT	gender,	ROUND(AVG(avg_stress_level), 2) AS av
0.00041950	SELECT	CASE	WHEN age BETWEEN 18 AND 20 THEN ':
0.00047475	SELECT	CASE	WHEN age BETWEEN 18 AND 20 THEN '1
0.00047550	SELECT	gender,	CASE WHEN age BETWEEN 18 AND :

Query	Execution Time
Sleep-Stress	0.00059300
Mental Health Indicators	0.00040500
Social Media Impact	0.00042275
Gender-Age Comparison of Stress and Mental Health	0.00051650
Ivientai rieaitti	0.00045200
Social Media Addiction and Mental Health	0.00053050

Snippet of the ETL script creating and finalizing the fact_student_summary

Conclusions

The project workflow follows the instructions from the machine specifications, where each member is assigned a major part to distribute the overall workload.

The process of building and maintaining a data warehouse allows developers to analyze and combine datasets. It reveals significant factors, such as, in this case, mental health risk indicators amongst different student groups, such as PHQ-9 ratings, stress levels, and addiction scores.

The datasets used for the project, which had the psychiatric records of collectively thousands of individuals, would be extremely difficult to perform regular SQL Queries on.