热量 比热容(一)

日期:	时间:	姓名:	
Date:	Time:	Name:	

初露锋芒

中	午	
海水	很凉	
沙子	很烫	

傍晚沙子变凉了海水很暖和

学习目标

- 1. 掌握热传递并能解释生活中常见的热传递的现象
- 2. 掌握热量和比热容的概念,并知道比热容是物质的特性

&

重难点

- 1. 掌握常见热传递现象 (考试要求 B; 出题频率高)
- 2. 理解比热容概念并用比热容解释简单的自然现象 (考试要求 B; 出题频率高)

根深蒂固

一、热传递

1,	热传递:	能量从	的物体传到	的物体,	或者从物体的_	
	o	热传递的特点:具	有。			
热有	专递的条件	·	o			
热作	专递的规律	: 进行到相	司为止。			
热有	专递传递的	是而不是温原	 ·			

- 2、热传递的三种方式:
- (1) 热传导: 热从物体的高温部分 物体传到低温部分的方式;

- (2) 对流: 靠液体或气体的 实现热传递的方式;
- (3) 热辐射: 物体直接向外发射热的现象。

二、热量

三、比热容

2、比热容的特性 (1) 比热容是物质的一种, 不同物质的比热容, 它反映了不同物质吸、放热的强弱, 利用物质的这种性质可以鉴别物质。 (2) 对于同一种物质, 比热容的值还与物质的有关, 同一种物质在同一状态下的比热容是, 但在不同状态下, 比热容是的。 (3) 比热容
3、由同一种物质组成的物体,质量一定时,它吸收的热量仅与
4、实验表明,质量相等的水和煤油吸收相同的热量后,升高的温度,煤油升高的温度
枝繁叶茂 、热传递
知识点一: 热传递
【例1】两个物体紧靠在一起,而没有发生热传递,那么它们一定具有相同的 () A. 热量 B. 温度 C. 比热 D. 质量
【例 2】在烹饪技术中有炒、烤、蒸等方法,那么炒主要是利用进行热传递的;烤主要是利用进行热传递的;而蒸主要是以方式进行热传递的。
方 法 热传递的条件:两个物体或物体的两个部分之间存在温度差; 与 技 三种热传递方式:热传导、对流、热辐射。 巧

二、热量
知识点一: 热量的概念
【例1】关于温度和热量的概念,下列说法中正确的是 ()
A. 温度高的物体放出热量多
B. 温度高的物体具有热量多
C. 两个物体升高相同的温度,吸收热量一定相同
D. 在热传递过程中,物体温度升高时,一定吸收热量
【例2】物体放出热量时,它的温度 ()
A. 一定降低 B. 一定升高
C. 一定不变 D. 可能降低也可能不变
方法 热量在热传递的过程中才有意义,物体含有热量的说法是不正确的,只能说 与 技 物体吸收或放出热量,物体吸收热量,温度不一定升高。 巧
三、比热容
知识点一:比热容概念
【例1】比热容 c=Q/(m·Δt)下列说法正确的是 ()
A. 物质的比热容跟它的质量成反比
B. 物质的比热容跟它的热量成正比
C. 物质的比热容跟它的温度变化成反比
D. 比热是物质的特性之一, 跟热量、质量、温度的变化等因素都无关

【例2】冰的比热容是2.1×10³______, 表示的物理意义是______, 熔化一半

后,剩余冰块的比热容将____。(填"变大"、"变小"或"不变")

知识点二: 比热容应用

【例3】比热容是物质的一种属性,一些物质的比热容见下表。

物质	水	煤油	砂石	干泥土
比热容 c/J•(kg•℃) ⁻¹	4.2×10 ³	2.4×10^{3}	0.92×10^{3}	0.84×10^{3}

1kg 煤油温度升高 1℃,	需吸收	_J 热量。	相同质量水和砂石,	若吸收或放出同样多热量,
温度变化较小的是,	据此可解释沙漠地图	区的昼夜	温差较沿海地区的要	(选填"大或"小")。

【例 4】某同学在六只相同的烧杯中倒入一定质量的水和煤油,用六只相同的酒精灯加热,其液体质量、加热时间和温度变化如下表所示(设液体每分钟吸收的热量相同):

		表一:水		表二: 煤油			
-16	氏見 (士)	升高温度	加热时间	1 111 2-1-	氏見 / 去 \	升高温度	加热时间
水	质量(克)	(\mathbb{C})	(分)	煤油	质量(克)	(\mathbb{C})	(分)
1	50	10	5	4	50	20	5
2	100	10	10	5	100	20	10
3	150	10	15	6	150	20	15

3	130	10	13	0	130	20	13	
(1)	分析表一中的	勺1、2、3(或	表二中的4、	5, 6),	可得出的初	步结论是:_		· ;
(2)	分析表一中的	的3和表二中的	勺6,可得出的	的初步结	论是:			_;
(3) \$	综合分析表一	一及表二,可得	导出的初步结	论是:				
(a) _						;		
(h)								

随堂检测

1	下列过程中不属于通过执传说的是	(١
Ι.		(,

- A. 用酒精灯加热杯里的水
- B. 人晒太阳觉得暖和
- C. 金属小勺在热汤中放一段时间后会烫手
- D. 用打气筒打气, 筒壁会发热
- 2、关于温度、热传递和热量,下列说法中正确的是 ()
 - A. 温度高的物体具有的热量多
 - B. 热量总是从温度高的物体传递给温度低的物体
 - C. 热量总是从内能大的物体传递给内能小的物体
 - D. 热量总是从热量多的物体传递到热量少的物体

	A.	1:1	B. 1:	2	C.	2:1	D. 无法确定	
4、	关于	物质的比热容	,下列访	法中正确	的是	()	
	A.	质量大的物质	比热容一	一定大				
	В.	密度大的物质	比热容-	定大				
	C.	温度高的物质	比热容-	定大				
	D.	各种物质都有	自己的比	比热容,比	热容	是物质的一	一种特性	
5、	水的	比热容是 4.2×	$(10^3 \text{J}/(1$	κg•℃)。∌	き于它	它的含义,	下列说法中正确的是	()
		1kg 的 1℃的7						
	В.	1kg 的水温度	升高到1°	C时,吸收	女的 敖	量是 4.2>	$< 10^{3} \mathrm{J}$	
	C.	1kg 的水温度	升高1℃	时, 吸收的	り热量	是是 4.2×1	0^3 J	
	D.	1kg 的水温度	升高1℃	时,放出的	勺热量	量是 4.2×1	0^3 J	
6、	铝比	铜的比热容大	,这说明					
	A.	铝块一定比铜	块具有的	り热量多				
	В.	铝块一定比铜	块具有的	的内能多				
	C.	铝块的温度一	定比铜均	中的温度高	j			
	D.	质量相等的铜	块和铝均	快升高相等	的温	度时,铝	块比铜块吸收的热量多	
7、		物质的比热容)	
					-		量叫做这种物质的比热	
					. ,		是在数值上等于这种物	
	C.	某种物质吸收	或放出的	的热量越多	:,比	热容也越	大,比热容与热量有关	
	D.	各种物质都有	自己的比	比热容,比	热容	是物质的	持性,只与物质本身有	关
8、		说法正确的是)				
		烧开一满壶水						
		一杯水喝得只		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
						度吸热多的	的物质比热容大	
	D.	水和冰属于同	种物质,	比热容相	同			

3、水的比热容是 $4.2 \times 10^3 \text{J/}$ $(kg \cdot ℃)$,冰的比热容是 $2.1 \times 10^3 \text{J/}$ $(kg \cdot ℂ)$,则 1kg 水与 2kg 冰的比热容之比为

()

9、如图所示,两烧杯中盛有等质量的水和煤油,且用相同的火焰加热:

(1)	若使水和煤油都升高相同温度,	निर्म	需要加热时间长。
$(\ \)$	右伊水和爆洲和开高相间温度,	坝川	盖罗川热时间长。

(2) 这表明	相等的不同物质升高	_温度时,吸收的热量一般是	的,这是由不同
物质的	不同决定的, 它反映了物质的一种		

11、如图甲是用水来冷却热牛奶的示意图。图乙是记录牛奶、水的温度随时间变化的图像,图中表示热奶温度随时间变化的曲线应是_________。

12、小张同学在研究晶体熔化实验过程中想到:质量相同的不同晶体熔化成液体时吸收的热量是否相同呢?他们在相同的烧杯中分别装上了100g的冰和萘,用同样的酒精灯加热,并用表测出它们熔化过程所用的时间,记录的数据如表所示。

物质	熔化时间/min
冰	12
萘	5

(1) 分析实验数据,可以得出结论:质量 的不同晶体熔化成液体时吸收的热量是 的。

____的热量,叫做这种晶体的熔化热。用字母λ表示。

13、某小组为了探究液体吸收热量与哪些因素有关的实验,他们在两只相同的烧杯里放入质量相同的水和煤油,用温度计测出它们的初温,如图 (a) 所示。把它们放在一块铝板上,在距两只烧杯等距离的地方,用酒精灯给铝板加热一段时间后,同时观察两杯液体升高的温度,如图 (b) 所示.接着取下其中一杯液体,对剩下的液体继续加热,如图 (c) 所示。待另一杯液体升高到相同的温度时,停止加热。

- (1) 观察图(a) 和图(b) 中的现象可知
- (2) 观察图(a)、图(b) 和图(c) 中的现象可知

14、为了研究物质的某种特性,某小组同学先做如图所示的实验:在三只完全相同的杯子中分别放入 100 克水、200 克水和 200 克沙子,各插入一支温度计,并在杯口上盖上一薄塑料片,观察到温度计的示数均为 20℃。将三只杯子同时放置在太阳光下,过一段相同时间后,观察到温度计的示数如图(a)、(b)、(c)所示。请根据实验现象及相关条件,归纳得出初步结论。

- (1) 比较图 (a) 和 (b) 两图可得: ______。
- (2) 比较图 (b) 和 (c) 两图可得:

瓜熟蒂落

- 1、热传递实质上是 ()
 - A. 能量从内能大的物体传给内能小的物体
 - B. 能量从热量多的物体传给热量少的物体
 - C. 能量从温度高的物体传给温度低的物体
 - D. 能量从质量大的物体传给质量小的物体
- 2、在日常生活中广泛应用水的比热容较大的特点,下列不属于这一特点应用的是 ()
 - A. 培育水稻秧苗时往稻田里灌水
 - B. 用水来冷却汽车发动机
 - C. 炎热的夏天, 往室内地面上洒水降温
 - D. 冬天供暖时用水作循环液
- 3、质量相等、初温相同的水和酒精,分别用两个相同的加热器加热(不计热量损失),加热过程中温度随时间的变化图线如图所示,关于 a、b 两种液体的鉴别结论正确的是 ()

- B. a 的比热大,是酒精
- C. b 的比热大,是水
- D. b 的比热大, 是酒精

- 4、质量相等的金属块 A 和 B, 放在沸水壶中煮 10min 后取出, 马上分别投入质量相同、温度也相同的两杯水里, 到两杯水的温度不再升高时, 发现放 A 的水温高于放 B 的水温, 则 ()
 - A. 金属块 A 的比热大
- B. 金属块 A 原来的温度较高
- C. 金属块 A 有较多的热量
- D. 金属块 A 有较好的导热性
- 5、已知铜、铁、铝的比热容依次增大,质量相等的铜、铁、铝三块金属块,吸收相等的热量后,则(
 - A. 铜的温度将最高 B. 铁的温度将最高 C. 铝的温度将最高 D. 无法判断
- 6、在相同的加热条件下,对质量为 m_1 、比热容为 c_1 的物体 A 和质量为 m_2 、比热为 c_2 的物体 B 均匀加热;物体 A、B 的温度随加热时间的变化情况如图所示,根据图象分析可推断出正确的结论是(
 - A. 若 c₁=c₂,则 m₁<m₂
- B. 若 c₁>c₂,则 m₁>m₂
- C. 若 m₁=m₂,则 c₁<c₂
- D. 若 $m_1 < m_2$,则 $c_1 > c_2$

7、质量相等的煤油和水,吸收相等的热量,温度升高得快的是煤油,这是因为____。由此推理,质量相等的煤油和水,若升高相等的温度,煤油吸收的热量____水吸收的热量。(选填"大于"、"等于"或"小于")

9、为比较水和煤油的比热容,小亮在家里做了下面的实验:在两个相同的塑料瓶内分别放入质量相等,初温都是室温的水和煤油。如图在瓶口扎上气球,将它们同时浸入热水中。

- (1) 观察到的现象是: 瓶口的气球膨胀得大些。
- (2) 气球膨胀的大小决定于水和煤油。
- (3) 要使两气球膨胀的大小相同,应对加热的时间长些。
- (4) 此实验表明 比 的比热容大些。

10、为了探究物质吸收热量与哪些因素有关,某实验小组同学用相同的酒精灯分别加热质量和初温都相同的液体,实验过程及观察到的现象如图所示。设加热时液体每分钟吸收的热量相等。请根据实验现象及相关条件归纳得出初步结论。

- (1) 分析比较图中(a) 与(b) 与(c) 可得出的初步结论是:
- (2) 分析比较图中(c)与(d)可得出的初步结论是。

11、为了研究物质的某种特性,某小组的同学利用如图所示装置的做了如下实验:他们在两只完全相同的烧杯 中放入100克水和100克煤油,用两只相同酒精灯加热,利用温度计和计时器测量液体的温度随时间的变化情况。 记录数据如表一、表二所示。(已知 $\rho_{x}>\rho_{g_{in}}$)

(1) 甲图烧杯中盛的液体是	_ (选填"水"或"煤油")。实验中,用相同酒精灯加热的目的是:
	。加热时间长短间接反映了。
(2) 分析比较表一和表二中	的数据及相关条件,可得出的初步结论:质量相等的不同

(3) 小组同学进一步综合分析表一、表二数据得出以下结论: 综合分析比较表一或表二中的数据及相关条件 可得:同种物质,吸收热量与质量、升高温度的比值是定值。该结论是 。(选填"正确"、"错误")

物质,升高相同的温度,吸收的热量不相等,水吸收的热量比煤油吸收的热量多。

表一 100 克水					表二 100 克煤油						
加热时间(分)	0	4	8	12	16	加热时间(分)	0	2	4	6	8
温度(℃)	20	22	24	26	28	温度 (℃)	20	22	24	26	28
升高温度(℃)	0	2	4	6	8	升高温度(℃)	0	2	4	6	8

12、为了探究在热传递过程中物体吸收的热量与哪些因素有关,某同学用如图所示的器材进行了三组实验,并 记录有关数据分别如表一、表二、表三所示。实验时,他对加热时间予以控制,每一组加热时间相同,而各组 却不同,第一组加热时间最大,第二组其次,第三组最小。

7	₹—	
	32471	ĭ

实验	液体	液体	升高的				
序号	种类	质量	温度				
1	水	100	30				
2	水	150	20				
3	水	200	15				

实验 沤	凌体	液体	升高的				
序号 和	中类	质量	温度				
4	某油	100	30				
5	某油	150	20				
6	某油	200	15				

表三

实验	液体	液体	升高的
序号	种类	质量	温度
7	水	40	30
8	水	60	20
9	水	80	15

(1) 分析比较实验序号 1 与 4 (或 2 与 5, 或 3 与 6) 的数据,可得出的初步结论是:相同质量的不同物质,

升高相同的温度,吸收的热量。

的数据,可得出的初步结论是:不同质量的同种物质,升 (2) 分析比较实验序号 高相同的温度, 吸收的热量不同, 质量大的, 吸收的热量多。

(3) 分析比较实验序号 1、2、3(或4、5、6,或7、8、9)的数据,可得出的初步结论是:

能力提升

- 1、一大怀冷水的温度为 t_1 ,一小杯热水的温度为 t_2 ,将它们混台后的温度为t,那么下列四个关系中,正确的 是 ()
 - A. $t = (t_1 + t_2) / 2$
- B. $t > (t_1 + t_2) / 2$
- C. $t < (t_1 + t_2) / 2$
- D. $t = (t_2 t_1) / 2$
- 2、星期天,小林同学在父母的协助下,从早上6:00 开始每隔半小时分别对他家附近的气温和一个深水池里的 水温进行测量,并根据记录的数据绘成温度一时刻图线,如图则可以判断 ()

- A. 甲是"气温"图线, 乙是"水温"图线, 因为水的比热容比空气的大
- B. 甲是"气温"图线, 乙是"水温"图线, 因为水的比热容比空气的小
- C. 甲是"水温"图线, 乙是"气温"图线, 因为水的比热容比空气的大
- D. 甲是"水温"图线, 乙是"气温"图线, 因为水的比热容比空气的小
- 3、有一堆从河中捞出的温砂子,测得其比热容为 1.2×10^3 焦/ (千克·℃)。已知干砂子的比热容为 0.9×10^3 焦/ (千克·℃),则按质量说,这堆砂子含水的百分比是多少?

- 4、冷水的质量为 m, 温度为 t₁, 吸收一定热量后, 温度升高到 t; 另有质量为 2m 的热水, 如果先放出同样热 量后温度也降到 t, 那么热水原来的温度应是 ()

- A. $(3t_1-t)/2$ B. $(2t-t_1)/3$ C. $(3t-t_1)/2$ D. $(3t-2t_1)/3$

