SOLUTION KEY

Produced by: Kyle Dahlin

Problems:

Chapter 5: 11, 24

Chapter 6: 24

Chapter 7: 1, 2, 6, 8, 18, 30, 42

Problem 5.11. Determine whether the following permutations are even or odd.

- a. (135)
- b. (1356)
- c. (13567)
- d. (12)(134)(152)
- e. (1243)(3521)

Solution:

- a. (135) = (15)(13) is even.
- b. (1356) = (16)(15)(13) is odd.
- c. (13567) = (17)(16)(15)(13) is even.
- d. (12)(134)(152) = (15)(234) = (15)(24)(23) is odd.
- e. (1243)(3521) = (1)(2)(354) = (34)(35) is even.

Problem 5.24. Suppose that H is a subgroup of S_n of odd order. Prove that H is a subgroup of A_n .

Solution:

Let $\alpha \in H$. Then since $|\alpha|$ divides |H|, which is odd, α must have odd order. By Exercise 5.71, α must be an even permutation. Hence $\alpha \in A_n$ and thus $H \leq A_n$.

Problem 6.24. Suppose that $\phi: Z_{20} \to Z_{20}$ is an automorphism and $\phi(5) = 5$. What are the possibilities for $\phi(x)$?

Solution:

Since $5\phi(1) = \phi(5) = 5$, and $\phi(1)$ must be a generator of Z_{20} , the possible automorphisms are defined by where they send 1. The possibilities are $\phi(1) \in \{1, 9, 13, 17\}$ so that the automorphisms are given by $x \mapsto x$, $x \mapsto 9x$, $x \mapsto 13x$ and $x \mapsto 17x$.

Problem 7.1. Let $H = \{(1), (12)(34), (13)(24), (14)(23)\}$. Find the left cosets of H in A_4 (see Table 5.1 on page 111).

Produced by: Kyle Dahlin

Solution:

By the Lemma on page 145,
$$\alpha_1 H = \alpha_2 H = \alpha_3 = \alpha_4 H = H$$
, $\alpha_5 H = \alpha_6 H = \alpha_7 H = \alpha_8 H = \{(123), (243), (142), (134)\}$, and $\alpha_9 H = \alpha_{10} H = \alpha_{11} H = \alpha_{12} H = \{(132), (143), (234), (124)\}$.

Problem 7.2. Let H be as in Exercise 1. How many left cosets of H in S_4 are there? (Determine this without listing them.)

Solution:

The number of left cosets of H in S_4 is $[S_4:H] = |S_4|/|H| = 24/4 = 6$.

Problem 7.6. Let n be a positive integer. Let $H = \{0, \pm n, \pm 2n, \pm 3n, \ldots\}$. Find all left cosets of H in \mathbb{Z} . How many are there?

Solution:

The left cosets are given by $a+H=\{a,a\pm n,a\pm 2n,a\pm 3n,\ldots\}$. Suppose that a+H=b+H. Then there exist $j,k\in\mathbb{Z}$ such that a+jn=b+kn and thus a-b=(k-j)n. Hence a+H=b+H if and only if $a \mod n=b \mod n$. Thus there are n cosets of H, corresponding to $H,1+H,2+H,\ldots,(n-1)+H$.

Problem 7.8. Suppose that a has order 15. Find all of the left cosets of $\langle a^5 \rangle$ in $\langle a \rangle$.

Solution:

$$\begin{array}{l} a \, \langle a^5 \rangle = a^6 \, \langle a^5 \rangle = a^{11} \, \langle a^5 \rangle = \{a, a^6, a^{11}\}, \\ a^2 \, \langle a^5 \rangle = a^7 \, \langle a^5 \rangle = a^{12} \, \langle a^5 \rangle = \{a^2, a^7, a^{12}\}, \\ a^3 \, \langle a^5 \rangle = a^8 \, \langle a^5 \rangle = a^{13} \, \langle a^5 \rangle = \{a^3, a^8, a^{13}\}, \\ a^4 \, \langle a^5 \rangle = a^9 \, \langle a^5 \rangle = a^{14} \, \langle a^5 \rangle = \{a^4, a^9, a^{14}\}, \\ a^5 \, \langle a^5 \rangle = \langle a^5 \rangle = a^{10} \, \langle a^5 \rangle = \langle a^5 \rangle. \end{array}$$

Problem 7.18. Recall that, for any integer n greater than 1, $\phi(n)$ denotes the number of positive integers less than n relatively prime to n. Prove that if a is any integer relatively prime to n, then $a^{\phi(n)} \mod n = 1$.

Solution:

Let $b = a \mod n$. Then, b is relatively prime to n and less than n, hence $b \in U(n)$. Since $|U(n)| = \phi(n)$, $b^{\phi(n)} = 1$. By Exercise 0.9, $a^{\phi(n)} \mod n = b^{\phi(n)} = 1$.

Problem 7.30. Let |G| = 8. Show that G must have an element of order 2.

Solution:

By Corollary 2 to Lagrange's Theorem, elements of G may have orders of 1, 2, 4, or 8. Let $a \in G$ with $a \neq e$. If |a| = 8, then $|a^4| = 8/4 = 2$. If |a| = 4, then $|a^2| = 4/2 = 2$. Hence there must always be an element of order 2.

Problem 7.42. Let G be a group of order n and k be any integer relatively prime to n. Show that the mapping from G to G given by $g \mapsto g^k$ is one-to-one. If G is also Abelian, show that the mapping given by $g \mapsto g^k$ is an automorphism of G.

SOLUTION KEY

Produced by: Kyle Dahlin

Solution:

Since gcd(k, n) = 1, there exist $s, t \in \mathbb{Z}$ such that ks + nt = 1.

Define $\phi(g) = g^k$. Suppose that $\phi(g_1) = \phi(g_2)$.

$$g_{1}^{k} = g_{2}^{k}$$

$$g_{1}^{ks} = g_{2}^{ks}$$

$$g_{1}^{ks+nt} = g_{2}^{ks+nt}$$

$$g_{1} = g_{2}$$

since for any $g \in G$, $g^{nt} = e$. Hence ϕ is one-to-one.

Now suppose that G is Abelian. We know already that ϕ is one-to-one. Since G is finite and ϕ is a one-to-one self-map, it must also be onto.

It remains to show that ϕ is a homomorphism. Let $g, h \in G$ be arbitrary. Then $\phi(gh) = (gh)^k = g^k h^k = \phi(g)\phi(h)$, since G is Abelian. Hence ϕ is an automorphism.