TI Übungsstunde 04

Marcel Schmid

marcesch@student.ethz.ch

14.10.2020

1 Korrekturen

- Sehr gut gelöst, eine der wichtigsten Serien
- λ nicht als Eingabe vergessen
- Kl[q] für alle Klassen, keine vergessen
- Kl[mühsamster Zustand] = $\Sigma^* \setminus \bigcup_{q \in Q, q \neq \text{mühsamster Zst}}$
- Nennt Zustände sinnvoll
- \Rightarrow am besten etwas wie q_i , nicht einfach eine Zahl
- ein einzlener Abfallstate/Sink verwenden, das erspart Schreibarbeit und ist eleganter
- $x^k = \underbrace{xxx\dots x}_{k \text{ times}}$
- \Rightarrow ganz ähnlich wie bei Zahlen: $\{n^k \mid n \in \mathbb{N}\}$ sind auch nur Zahlen von der Form $n \cdot n \cdots n$
- \Rightarrow Verwechslung stammt von Sprachen wie bspw. $\{01, 11\}^k$.
- Bin(n) beginnt mit einer "1" (Ausnahme 0...), so wie unsere Darstellung von Zahlen nie mit 0 beginnt
 - ⇒ niemand schreibt 007 statt 7 im "richtigen" Leben
- K. Kompl. vs. Länge von Programmen vs. Binärdarstellung von Zahlen nicht verwechseln!

2 Theorie/Repetition

2.1 Pumping Lemma / L3.4

Das Pumping Lemma ist eines der besten Tools, um die Nichtregularität einer Sprache zu zeigen. Die Beweise laufen immer nach dem gleichen Schema ab:

- 1. "Wir führen einen Widerspruchsbeweis und nehmen an, dass es einen EA A gibt, der ..."
- \Rightarrow deswegen gibt es ein $n_0 \in \mathbb{N}$ mit den Eigenschaften aus dem Lemma
- 2. Wir wählen ein Wort w in Abhängigkeit von n_0 (meistens so, dass w in der Sprache ist)
- 3. Zeige, dass $|w| \ge n_0$ ist
- 4. Zeige für alle möglichen Zerlegungen, dass (1), (2) und (3) nicht gleichzeitig erfüllt werden können.
- 5. Normalerweise so:
 - (a) Finde alle Zerlegungen, welche (1) und (2) erfüllen
 - (b) Zeige, dass für alle diese Zerlegungen (3) nicht gelten kann
 - \Rightarrow deswegen kann es sicherlich keine Zerlegung geben, die alle drei Bedingungen erfüllt
- 6. Widerspruch gefunden, deswegen Assumption dass es EA gibt falsch.
- \Rightarrow Tipp: Manchmal ist es einfach, wenn man ein "langes" Wort nimmt, z.B. $0^{2 \cdot n_0}$; die Länge muss nicht gleich sein wie n_0 .

2.2 Kolmogorov-Methode / S3.1

• Recht "kompliziert", der Schlüssel ist es, die Präfixsprachen zu Verstehen:

$$L_x = \{ y \in \Sigma^* \mid xy \in L \}$$

sprich alle "Ergänzungen"/Suffixe, so dass xy in L ist.

- In den Übungen/Anwendungen gibt das meistens unendlich viele solcher Sprachen mit je unendlich vielen Wörtern drin.
- Schauen wir uns beispielsweise die Sprache $L = \{0^n 1^n \mid n \in \mathbb{N}\}$ an. Definiere $L_0 = \{y \in \{0, 1\}^* \mid 0y \in L\}$
- \Rightarrow Welche Wörter sind in L_0 ?

$$L_0 = \{1, 011, 00111, \dots, 0^i 1^{i+1}, \dots \}$$

• Sei $L_{00} = \{y \in \{0,1\}^* \mid 00y \in L\}$. Welche Sprachen sind da drin?

$$L_{00} = \{11, 0111, 001111, \dots, 0^{i}1^{i+2}, \dots\}$$

- Wie sieht das dann mit L_{0^m} aus?
- $\Rightarrow L_{0^m} = \{1^m, 01^{m+1}, \dots, 0^i 1^{m+i}, \dots\}$
- Wir wissen wegen S3.1, dass für eine beliebige solcher Präfixsprachen L_x gilt, dass das j-te Wort x_j eine K.Kompl. $K(x_j) \leq \lceil \log(j+1) \rceil + c$ haben.
- Das heisst also bspw., dass für all unsere Sprachen $\{L_{0^i} | i \in \mathbb{N}\}$ gilt, dass das zweite Wort eine K-Kompl. $\leq \log(3) + c$ hat
- Wie sehen, für alle diese Sprahcen, die zweiten Wörter jeweils aus?
- \Rightarrow Alle sind von der Form $01^m + 1$ (wobei m die Länge des Präfixes ist)
- Damit haben wir aber unendlich viele Wörter gefunden, welche jeweils eine K. Komplexität kleiner als $\lceil \log 3 \rceil + c$ haben \Rightarrow Widerspruch.

3 Übungen

S19/11b) (Lemma 3.3.)

Sei $L = \{u \# v \mid u, v \in \{0, 1\}^+ \text{ und Nummer}(u) = |v|\}$. Zeige anhand von L3.3, dass diese Sprache nicht regulär ist.

- 1. Wir gehen genau gleich wie letzte Woche vor: Angenommen, L sei regulär, dann gibt es einen EA $A = (Q, \Sigma, \delta, q_0, F)$ mit L(A) = L..
- 2. Wir wählen wieder viele Wörter, zum Beispiel die Wörter $10^i \#$ für $i \in \{1, \dots, |Q| + 1\}$.
- 3. Aus dem Pigeonhole Principle (da dies mehr Wörter sind als Zustände) folgt, dass es ein i < j gibt so dass

$$\hat{\delta}(q_0, 10^i \#) = \hat{\delta}(q_0, 10^j \#)$$

4. Da L regulär ist (nach Annahme), gilt L3.3 und deswegen gilt auch für alle $z \in \Sigma$, dass

$$10^i \# z \in L \iff 10^j \# z \in L$$

- 5. Da das für alle möglichen $z \in \Sigma^*$ gilt, gilt das auch für $z = 1^{2^i}$. Das führ nämlich zu einem Widerspruch: Durch "#" ist der String $10^x \# z$ eindeutig "aufgeteilt" in zwei Teile $u, v \in \{0, 1\}^+$. Wir haben aber:
 - $10^i \# z \in L$, da Nummer $(10^i) = 2^i$ ist und $|z| = |1^{2^i}| = 2^i$ gilt
 - $10^{j} \# z \notin L$, da Nummer $(10^{j}) = 2^{j} > 2^{i}$ und somit ungleich |z|
- 6. Somit haben wir einen Widerspruch zu unserer Annahme, dass L regulär sei.

Midterm 19, 2b) (Pumping Lemma)

Sei $L = \{w \in \{a,b\}^* \mid w = aub \text{ für } u \in \{a,b\}^* \text{ und } |w|_a||w|_b\}$. Zeige mit L3.4, dass diese Sprache nicht regulär ist.

- 1. Widerspruchsbeweis: Wir nehmen an, L sei regulär. Dann gibt es einen EA $A=(Q,\Sigma,\delta,q_0,F$ mit L(A)=L. Weiter muss das L3.4 halten. Sei $n_0\in\mathbb{N}$ wie aus dem Lemma.
- 2. Wir wählen uns daher ein "intelligentes", langes Wort, zum Beispiel

$$w = aub, \ u = a^{n_0}b^{n_0}$$

- 3. Aus dem Lemma wissen wir, dass es eine Zerteilung von w in 3 Teile gibt so dass w = yxz gilt. Weiter gelten alle 3 Bedingungen an die Verteilung aus dem Lemma.
- 4. Wir schränken jetzt so quasi die Menge an mölichen Verteilungen ein, indem wir Schritt für Schritt nur solche Aufteilungen weiter betrachten, die auch die entsprechenden Bedingungen im Lemma erfüllen:
 - (1) Aus (1) wissen wir, dass $|yx| \le n_0$. In unserem Fall muss also $y = a^l$ und $x = a^m$ sein, wobei $l + m \le n_0$.
 - \Rightarrow Wie sieht dann z aus? $z = a^n b^{n_0+1}$ wobei $l + m + n = n_0 + 1$
 - (2) Aus (2) wissen wir, dass $m \ge 1$ ist.
 - (3) Wir zeigen jetzt, dass keines der Wörter, die (1) und (2) erfüllen, auch (3) erfüllen kann, um zu einem Widerspruch zu gelangen: Wir wissen, dass $yxz = a^{n_0+1}b^{n_0+1} \in L$ ist, da $|w|_a = |w|_b$ und somit trivialerweise $|w|_a |w|_b$.

Aber: für k=2 gilt $yx^kz=yx^2z=a^{l+2m+n}b^{n_0+1}\notin L$. Warum? Da $|w|_a>|w|_b$ ist, da m>0 und $l+m+n=n_0+1$ ist. Somit kann $|w|_a$ nicht $|w|_b$ teilen.

5. Da keine Aufteilung dieses Wortes alle drei Bedingungen gleichzeitig erfüllen kann, haben wir einen Widerspruch und unsere Annahme, dass L regulär sei, ist falsch.

Midterm 14, 4a)

Sei $L = \{0^{n!} | n \in \mathbb{N}\}$. Zeige anhand von Satz 3.1/Methode der K. Komplexität, dass diese Sprache nicht regulär ist.

- 1. Angenommen L ist regulär, dann gilt S3.1 für L.
- 2. Wir betrachten die Sprache

$$L_{0^{m!}} = \{ y \in \{0\}^* \mid 0^{m!} y \in L \}$$

3. Wir betrachten uns die ersten paar Wörter aus $L_{0^{m!}}$:

$$L_{0^{m!}} = \{\lambda, 0^{m \cdot m!}, 0^{(m+2)! - m!}, \dots\}$$

- 4. Zu zeigen: $0^{m \cdot m!}$ ist immer das zweite Wort aus $L_{0^{m!}}$ (mit λ kriegen wir $0^{m!}$ und das nächste Wort in L ist wegen Monotonie von "!" $0^{(m+1)!}$, was genau das ist, was wir mit $0^{m \cdot m!}$ kriegen)
- 5. Nach Satz 3.1 ist deswegen für ein beliebiges m:

$$K(0^{m \cdot m!}) \le \lceil \log(2+1) \rceil + c = c'$$

für c konstant

- 6. \Rightarrow Widerspruch! Es gibt unendlich viele Wörter von der Form $0^{m \cdot m!}$, aber nur endlich viele Wörter haben eine Kolmogorov-Komplexität von höchstens c'.
- \Rightarrow Unsere Annahme, dass L regulär ist, kann nicht stimmen.

4 Neue Serie

- Jede endliche Sprache ist regulär
- Am besten versucht ihr, über möglichst "schöne", klassische nicht-reguläre Sprachen zu argumentieren.
- \bullet Am besten auf triviale Cases (bspw. $\emptyset)$ zurückführen