Fondamenti dell'Informatica

1 semestre

Prova scritta di esame del 9-2-2018

Prof. Giorgio Gambosi

a.a. 2017-2018

Ad ogni quesito proposto è associato il numero di punti ottenuti in caso di risposta corretta ed esaustiva. Risposte parziali possono portare all'attribuzione di una frazione di tale punteggio. Spiegare in modo chiaro ed esauriente i passaggi effettuati.

Il punteggio finale della prova risulta come somma dei punteggi acquisiti per i vari quesiti.

Quesito 1 (7 punti): Sia L il linguaggio riconosciuto dal seguente ASFD,

derivare una espressione regolare che descriva L.

Soluzione: Una possibile soluzione prevede la derivazione della grammatica regolare equivalente

$$\begin{array}{ccc} A_0 & \to & 0A_0|1A_1 \\ A_1 & \to & 0A_1|1A_2|1 \\ A_2 & \to & 0A_0|1A_1 \end{array}$$

E da questa, manipolando il sistema di espressioni corrispondente, l'espressione regolare cercata.

$$\begin{cases} A_0 = 0A_0 + 1A_1 \\ A_1 = 0A_1 + 1A_2 + 1 \\ A_2 = 0A_0 + 1A_1 \end{cases}$$

$$\begin{cases} A_0 = 0A_0 + 1A_1 \\ A_1 = 0A_1 + 1A_0 + 1 \\ A_2 = A_0 \end{cases}$$

$$\begin{cases} A_0 = 0^*1A_1 \\ A_1 = 0A_1 + 10^*1A_1 + 1 \\ A_2 = A_0 \end{cases}$$

$$\begin{cases} A_0 = 0^*1A_1 \\ A_1 = (0 + 10^*1)A_1 + 1 \\ A_2 = A_0 \end{cases}$$

$$\begin{cases} A_0 = 0^*1A_1 \\ A_1 = (0 + 10^*1)^*1 \\ A_2 = A_0 \end{cases}$$

$$\begin{cases} A_0 = 0^*1A_1 \\ A_1 = (0 + 10^*1)^*1 \\ A_2 = A_0 \end{cases}$$

$$\begin{cases} A_0 = 0^*1(0 + 10^*1)^*1 \\ A_1 = (0 + 10^*1)^*1 \\ A_2 = A_0 \end{cases}$$

L è descritto dall'espressione associata all'assioma, e quindi da $0^*1(0+10^*1)^*1$.

Quesito 2 (7 punti): Si consideri il linguaggio $L = \{a^h b^k | k > h > 0\}$. Dimostrare se L è regolare o meno.

Soluzione: Il linguaggio non è regolare. Per dimostrarlo, utilizziamo il pumping lemma nel modo seguente. Fissato n>0, consideriamo la stringa $\sigma=a^nb^{n+1}$. Qualsiasi decomposizione $\sigma=uvw$ con $|uv|\leq n$ e $|v|\geq 1$ avrà necessariamente $uv=a^r$ e $w=a^{n-r}b^{n+1}$ con $r\leq n$, e quindi $v=a^s$, $u=a^{r-s}$ per un qualche valore $0< s\leq r$. Scegliendo ad esempio i=2 abbiamo allora che $uv^2w=a^{r-s}v^sv^su^{n-r}b^{n+1}=a^{n+s}b^{n+1}\not\in L$.

Quesito 3 (7 punti): Si consideri l'espressione regolare $r = a(bb^* + a)^*ab$. Derivare un ASFD che riconosce L(r).

Soluzione: Deriviamo da r un ASFND con ε -transizioni che riconosca L(r). Possiamo osservare che la sotto-espressione regolare $(bb^*+a)^*$ è accettata per costruzione dall'ASFND con ε -transizioni

Eliminando le ε -transizioni, si ottiene l'ASFND

Da cui immediatamente l'ASFND per L(r)

e da questo l'ASFD

In alternativa, si potrebbe osservare che $(bb^*+a)^*$ comprende tutte le stringhe sull'alfabeto $\{a,b\}$, che sono riconosciute da

e da questo l'ASFD

Quesito 4 (6 punti): Definire una grammatica CF che generi il linguaggio $L = \{w \in \{a,b\} | w \text{ contiene almeno } 4b\}$

Soluzione: Osserviamo che possiamo risolvere il problema derivando una grammatica regolare che generi L. A tal fine, definiamo un ASFD che riconosca L.

	a	b
q_0	q_0	q_1
q_1	q_1	q_2
q_2	q_2	q_3
q_3	q_3	q_4
q_4	q_4	q_4
$con\ F = \{q_4\}.$		

La grammatica deriva immediatamente come

Quesito 5 (6 punti): Ridurre la grammatica seguente in GNF

$$\begin{array}{cccc} S & \rightarrow & aEb \mid aaC \mid AA \\ A & \rightarrow & BC \mid bS \mid b \\ B & \rightarrow & aB \mid \varepsilon \\ C & \rightarrow & Ca \mid Cb \\ D & \rightarrow & a \mid c \end{array}$$

3

Soluzione: Per portare la grammatica in forma ridotta eliminiamo l' ε -produzione, ottenendo

Eliminiamo quindi la produzione unitaria

$$\begin{array}{lll} S & \rightarrow & aEb \mid aaC \mid AA \\ A & \rightarrow & BC \mid Ca \mid Cb \mid bS \mid b \\ B & \rightarrow & aB \mid a \\ C & \rightarrow & Ca \mid Cb \\ D & \rightarrow & a \mid c \end{array}$$

Osserviamo ora che C e E sono simboli non fecondi, per cui eliminandoli otteniamo

$$\begin{array}{ccc} S & \rightarrow & AA \\ A & \rightarrow & bS \mid b \\ B & \rightarrow & aB \mid a \\ D & \rightarrow & a \mid c \end{array}$$

a questo punto, eliminando i simboli non raggiungibili B e D, otteniamo la grammatica equivalente in forma ridotta

$$\begin{array}{ccc} S & \rightarrow & AA \\ A & \rightarrow & bS \mid b \end{array}$$

La corrispondente grammatica in CNF è

$$\begin{array}{ccc}
S & \to & AA \\
A & \to & BS \mid b \\
B & \to & b
\end{array}$$

e da questa la grammatica in GNF

$$\begin{array}{ccc} S & \rightarrow & bSA \mid bA \\ A & \rightarrow & bS \mid b \\ B & \rightarrow & b \end{array}$$