ES 208 Mechanics

Tutorial 11

All problems are taken from Beer and Johnston's book

PROBLEM 10.5

A spring of constant 15 kN/m connects Points C and F of the linkage shown. Neglecting the weight of the spring and linkage, determine the force in the spring and the vertical motion of Point G when a vertical downward 120-N force is applied (a) at point C, (b) at Points C and H.

PROBLEM 10.51

Denoting by μ_s the coefficient of static friction between the block attached to rod ACE and the horizontal surface, derive expressions in terms of P, μ_s , and θ for the largest and smallest magnitude of the force \mathbf{Q} for which equilibrium is maintained.

PROBLEM 10.88

Collar A can slide freely on the semicircular rod shown. Knowing that the constant of the spring is k and that the unstretched length of the spring is equal to the radius r, determine the value of θ corresponding to equilibrium when W = 200 N, r = 180 mm, and k = 3 kN/m

PROBLEM 10.67

Show that equilibrium is neutral in Problem 10.1.

PROBLEM 10.1 Determine the vertical force **P** that must be applied at *C* to maintain the equilibrium of the linkage.