Importing library

```
import pandas as pd
import numpy as np
```

Choose Dataset from directory

```
from google.colab import files
uploaded = files.upload()

Choose Files data.csv
```

• data.csv(text/csv) - 125141 bytes, last modified: 3/28/2023 - 100% done Saving control contr

Load Dataset

```
dataset = pd.read_csv('data.csv')
dataset
```

→
_

	id	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	con
0	842302	17.99	10.38	122.80	1001.0	0.11840	
1	842517	20.57	17.77	132.90	1326.0	0.08474	
2	84300903	19.69	21.25	130.00	1203.0	0.10960	
3	84348301	11.42	20.38	77.58	386.1	0.14250	
4	84358402	20.29	14.34	135.10	1297.0	0.10030	
564	926424	21.56	22.39	142.00	1479.0	0.11100	
565	926682	20.13	28.25	131.20	1261.0	0.09780	
566	926954	16.60	28.08	108.30	858.1	0.08455	
567	927241	20.60	29.33	140.10	1265.0	0.11780	
568	92751	7.76	24.54	47.92	181.0	0.05263	
569 rows × 32 columns							
7.							

Summarize Dataset

print(dataset.shape)
print(dataset.head(5))

(5	69, 32)								
	id	radius_	mean	texture_mea	n perimeter	_mean	area_mean	\	
0	842302	1	7.99	10.3	8 1	22.80	1001.0		
1	842517	20	0.57	17.7	7 1	32.90	1326.0		
2	84300903	19	9.69	21.2	5 1	30.00	1203.0		
3	84348301	1:	1.42	20.3	8	77.58	386.1		
4	84358402	20	0.29	14.3	4 1	35.10	1297.0		
		_	compac	_	concavity_m		concave poir	nts_mean	\
0	0	.11840		0.27760	0.3	001		0.14710	
1	0	.08474		0.07864	0.0	869		0.07017	
2	0	.10960		0.15990	0.1	974		0.12790	
3	0	.14250		0.28390	0.2	414		0.10520	
4	0	.10030		0.13280	0.1	980		0.10430	
								,	
	, , , –			_	perimeter_w		_	\	
0		2419	•	17.33		4.60	2019.0		
1	0.	1812		23.41	15	8.80	1956.0		
2	0.	2069		25.53	15	2.50	1709.0		
3	0.	2597		26.50	9	8.87	567.7		
4	0.	1809		16.67	15	2.20	1575.0		

```
smoothness_worst compactness_worst concavity_worst concave points_worst \
0
             0.1622
                                0.6656
                                                 0.7119
                                                                       0.2654
             0.1238
                                0.1866
                                                 0.2416
                                                                       0.1860
1
2
            0.1444
                                0.4245
                                                 0.4504
                                                                       0.2430
3
            0 2098
                                0.8663
                                                 0 6869
                                                                       0 2575
4
            0.1374
                                0.2050
                                                 0.4000
                                                                       0.1625
   symmetry_worst fractal_dimension_worst diagnosis
0
           0.4601
                                   0.11890
1
          0.2750
                                   0.08902
                                                    М
2
          0.3613
                                   0.08758
                                   0.17300
           0.6638
                                                    М
3
4
           0.2364
                                   0.07678
                                                    Μ
[5 rows x 32 columns]
```

Mapping Salary Data to Binary Value

```
diagnosis_set = set(dataset['diagnosis'])
dataset['diagnosis'] = dataset['diagnosis'].map({'M':0, 'B':1}).astype(int)
print(dataset.head(5))
              id radius_mean texture_mean perimeter_mean area_mean \
    0
         842302
                      _
17.99
         842517
                        20.57
    1
                                      17.77
                                                     132.90
                                                                1326.0
    2
       84300903
                       19.69
                                      21,25
                                                     130.00
                                                                1203.0
    3
       84348301
                        11.42
                                      20.38
                                                      77.58
                                                                 386.1
       84358402
                        20.29
                                      14.34
                                                     135.10
                                                                1297.0
        smoothness_mean compactness_mean concavity_mean concave points_mean \
    0
                0.11840
                                  0.27760
                                                   0.3001
                0.08474
    1
                                  0.07864
                                                   0.0869
               0.10960
                                                   0.1974
    2
                                  0.15990
                                                                       0.12790
    3
               0.14250
                                  0.28390
                                                   0.2414
                                                                       0.10520
    4
                0.10030
                                  0.13280
                                                   0.1980
                                                                       0.10430
        symmetry\_mean \ \dots \ texture\_worst \ perimeter\_worst \ area\_worst \ \setminus
    0
               0.2419 ...
                                    17.33
                                                    184,60
                                                                2019.0
               0.1812 ...
    1
                                    23.41
                                                    158.80
                                                                1956.0
               0.2069 ...
    2
                                    25.53
                                                    152,50
                                                                1709.0
              0.2597 ...
                                                    98.87
                                                                 567.7
    3
                                    26.50
    4
               0.1809 ...
                                    16.67
                                                    152.20
                                                                1575.0
        smoothness_worst compactness_worst concavity_worst concave points_worst
    0
                                     0.6656
                                                      0.7119
                 0.1622
                                                                            0.2654
                                     0.1866
    1
                 0.1238
                                                      0.2416
                                                                            0.1860
    2
                 0.1444
                                     0.4245
                                                      0.4504
                                                                            0.2430
    3
                  0.2098
                                     0.8663
                                                      0.6869
                                                                            0.2575
    4
                 0.1374
                                     0.2050
                                                      0.4000
                                                                            0.1625
        symmetry_worst fractal_dimension_worst diagnosis
    0
    1
               0.2750
                                        0.08902
                                                         a
                                        0.08758
    2
                0.3613
                                                         a
    3
                0.6638
                                        0.17300
                                                         0
    4
                0.2364
                                        0.07678
     [5 rows x 32 columns]
```

Segregate Dataset into X & Y

```
Y = dataset.iloc[:, -1].values
Y
```

```
0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0,
     1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0,
     1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1,
     1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0,
     0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
     1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1,
     1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0,
     0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0,
     1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1,
     1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1,
     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1,
     1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0,
     0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
     0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0,
     1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1,
     1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0,
     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1,
     1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
     1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1,
     1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1,
     1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1])
```

Splitting Dataset into Train & Test

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.25, random_state = 0)
```

Feature Scaling

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
X_train
     array([[-0.23086619, -0.65079907, -0.43057322, ..., -0.36433881,
              0.32349851, -0.7578486 ],
            [-0.23082222, -0.82835341, 0.15226547, ..., -1.45036679,
              0.62563098, -1.03071387],
            [-0.23058288, 1.68277234, 2.18977235, ..., 0.72504581,
             -0.51329768, -0.96601386],
            [7.05970021, -1.33114223, -0.22172269, ..., -0.98806491,
             -0.69995543, -0.12266325],
            [-0.23100067, -1.25110186, -0.24600763, ..., -1.75887319,
             -1.56206114, -1.00989735],
            [-0.23059415, -0.74662205, 1.14066273, ..., -0.2860679]
             -1.24094654, 0.2126516 ]])
```

Finding the Best K-Value

```
error = []
from sklearn.neighbors import KNeighborsClassifier #alg.
import matplotlib.pyplot as plt #Data Visualisation

#Calculating error for K values between 1 and 40

for i in range(1, 40):
    model = KNeighborsClassifier(n_neighbors=1)
    model.fit(X_train, y_train)
    pred_i = model.predict(X_test)
    error.append(np.mean(pred_i != y_test))

plt.figure(figsize=(12,6))
plt.plot(range(1, 40), error, color='red', linestyle='dashed', marker='o', markerfacecolor='blue', markersize=10)
plt.title('Error Rate K Value')
plt.xlabel('k Value')
plt.ylabel('Mean Error')
```


Training

```
from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2)
model.fit(X_train, y_train)

> KNeighborsClassifier
```

Predicting for all Test Data

```
y_pred = model.predict(X_test)
```

Evaluating Model - CONFUSION MATRIX

Accuracy of the Model: 95.1048951048951%

```
from sklearn.metrics import confusion_matrix, accuracy_score
cm = confusion_matrix(y_test, y_pred)

print("Confusion Matrix: ")
print(cm)

print("Accuracy of the Model: {0}%".format(accuracy_score(y_test, y_pred)*100))

Confusion Matrix:
[[47 6]
[ 1 89]]
```