

| Created By                         |                         |
|------------------------------------|-------------------------|
| Stakeholders                       |                         |
| Status                             |                         |
| • Туре                             | Technical Spec          |
| <ul><li>Created</li></ul>          | @June 29, 2022 10:02 AM |
| <ul><li>Last Edited Time</li></ul> | @July 1, 2022 6:16 PM   |
| ▲ Last Edited By                   |                         |

#### 1. 项目的目标

1.1. 目标综述

6月目标

7月目标

1.2. 计划简述

#### 2. 阶段性结果

- 2.1. 目前进度
- 2.2. 流程
- 2.3. 典型结果

2019年1月 - 相关性

2019年1月-2021年12月:等长时间序列北京市,按月统计的指标,离散度高>0.5

北京市,差了3个月的时间序列对比 2019年1月-2019年12月,2019年4月-2020年3月

2.4. 存在的问题

2.5. 下一步

#### 3. 支撑内容

- 3.1. 功能函数
- 3.2. 参数管理工具

任务管理

文件管理

结果可视化

数据的历史轨迹可视化

批量执行任务

- 3.3. 代码细节
- 4. 【附录】总体计划

目标:

特征之间的关联性:

关联性定义:

交付内容:

注意事项:

# 1. 项目的目标

### 1.1. 目标综述

开发出一套<mark>通用的工具</mark>,可以针对一组样本集合和一组特征集合,提取出在该样本集合下相关联的特征组/对,并且输出每组/对关联性的强弱。

• 筛选条件偏向苛刻,宁可结果数量少,也要保证输出的关联性是真实的。

### 6月目标

- 相关性上的关联性
- 排序名次上的关联性
- 等长时间序列上的关联性

#### 7月目标

- 不等长时间序列上的关联性
- 随机变量分布上的关联性
- 分箱同时出现频次上的关联性

### 1.2. 计划简述

- 使用经典方法挖掘关联性。
- 手动查看结果(列表、画图),提出对于我们的数据的特殊洞察,再特殊处理部分数据。
- 开发一个具备前端、后端、数据库的数据处理与挖掘框架,以更快、更清晰准确 地执行任务。
- 继承已经写好的类,以快速地开发更高级的挖掘方法。

## 2. 阶段性结果

### 2.1. 目前进度

- 指标集:
  - 。 daas\_index\_list中的5116个指标
  - 。 宏观指标
- 样本:
  - 。 全部gov\_id
  - 。 关注:"区县"+"省辖县"(区县级)
- 关联性挖掘方法
  - 。 Pearson相关性
  - 。 Spearman相关性 排序名次
  - 。 等长的时间序列的相似性
    - 同时
    - 错开X个月

### 2.2. 流程

- 1. 固定一个时间点(时间序列则固定一个地区)
- 2. 筛选出"区县级"的样本(时间序列则选择一个时间段)
- 3. 对指标进行分类,按照指标类型处理数据
- 4. 去除离群值

- 5. 去除质量过低的列(指标)
- 6. 去除质量过低的行(地区)
- 7. 计算关联性
- 8. 筛选关联性强的指标对
- 9. 用去除质量过低的行(地区)的结果计算离散度
- 10. 合并:关联性结果、离散度、指标类型、指标其他信息
- 11. 最后在Excel中按照关联性、离散度、type、sub\_type等信息筛选

### 2.3. 典型结果

### 2019年1月 - 相关性

| index_id1 | index_id2 | value       | index_name1                | index_name2        |
|-----------|-----------|-------------|----------------------------|--------------------|
| 91787     | 40        | 0.705906467 | 机构专利申请量<br>(年度)            | 高新技术企业数<br>量       |
| 91785     | 40        | 0.701502325 | 专利申请总量(年<br>度)             | 高新技术企业数<br>量       |
| 91791     | 40        | 0.692721321 | 专利授权总量(年<br>度)             | 高新技术企业数<br>量       |
| 91793     | 40        | 0.691710227 | 机构专利授权量<br>(年度)            | 高新技术企业数<br>量       |
| 91788     | 40        | 0.595312821 | ICT专利授权量<br>(年度)           | 高新技术企业数<br>量       |
| 91794     | 40        | 0.58818517  | ICT专利申请量<br>(年度)           | 高新技术企业数<br>量       |
| 91785     | 57188     | 0.532236703 | 专利申请总量(年<br>度)             | 电气机械和器材<br>制造业企业数量 |
| 40        | 57188     | 0.5227335   | 高新技术企业数<br>量               | 电气机械和器材<br>制造业企业数量 |
| 91785     | 57378     | 0.519863098 | 专利申请总量(年<br>度)             | 印刷和记录媒介<br>复制业企业数量 |
| 149710    | 107512    | 0.509286179 | 每万人房地产业<br>个体工商户数量<br>(大类) | 每万人中介机构<br>相关兴趣点数量 |

| index_id1 | index_id2 | value       | index_name1                  | index_name2                  |
|-----------|-----------|-------------|------------------------------|------------------------------|
| 91785     | 57190     | 0.508759881 | 专利申请总量(年<br>度)               | 计算机、通信和<br>其他电子设备制<br>造业企业数量 |
| 91791     | 57188     | 0.508459229 | 专利授权总量(年<br>度)               | 电气机械和器材<br>制造业企业数量           |
| 91787     | 57188     | 0.508136387 | 机构专利申请量<br>(年度)              | 电气机械和器材<br>制造业企业数量           |
| 70577     | 62467     | 0.505779712 | 近2年信息传输、软件和信息技术服务业企业数量增长(大类) | 近2年信息技术<br>产业企业数量增<br>长(大类)  |
| 141252    | 60864     | 0.503633327 | 本年度新增注册<br>专业技术服务业<br>企业数量   | 软硬件技术产业<br>企业数量              |
| 91787     | 57394     | 0.501225415 | 机构专利申请量<br>(年度)              | 专用设备制造业<br>企业数量              |
| 91785     | 57394     | 0.500651556 | 专利申请总量(年<br>度)               | 专用设备制造业<br>企业数量              |



# 2019年1月-2021年12月:等长时间序列 北京市,按月统计的指标,离散度高>0.5

| index_id1 | index_id2 | value       | index_name1        | index_name2                  |
|-----------|-----------|-------------|--------------------|------------------------------|
| 107639    | 65605     | 0.853642763 | 每万人财务公司<br>相关兴趣点数量 | 过去12个月全国<br>级社会安全事件<br>影响力   |
| 107639    | 65607     | 0.855535523 | 每万人财务公司<br>相关兴趣点数量 | 过去12个月全国<br>级社会安全事件<br>负面影响力 |
| 107639    | 65618     | 0.63967565  | 每万人财务公司<br>相关兴趣点数量 | 省域级社会安全<br>事件影响力             |
| 107639    | 65604     | 0.635171343 | 每万人财务公司<br>相关兴趣点数量 | 省域级社会安全<br>事件数               |
| 107639    | 65627     | 0.615564107 | 每万人财务公司<br>相关兴趣点数量 | 区域级社会安全<br>事件影响力             |
| 107639    | 65615     | 0.527171758 | 每万人财务公司<br>相关兴趣点数量 | 区域级社会安全<br>事件负面影响力           |
| 107639    | 65617     | 0.854418923 | 每万人财务公司<br>相关兴趣点数量 | 过去12个月省域<br>级社会安全事件<br>数     |
| 107639    | 65619     | 0.85535821  | 每万人财务公司<br>相关兴趣点数量 | 过去12个月省域<br>级社会安全事件<br>影响力   |
| 107639    | 65625     | 0.607691401 | 每万人财务公司<br>相关兴趣点数量 | 区域级社会安全<br>事件数               |
| 107639    | 65628     | 0.836660208 | 每万人财务公司<br>相关兴趣点数量 | 过去12个月区域<br>级社会安全事件<br>影响力   |
| 107639    | 65626     | 0.831542836 | 每万人财务公司<br>相关兴趣点数量 | 过去12个月区域<br>级社会安全事件<br>数     |
| 107639    | 65623     | 0.862125737 | 每万人财务公司<br>相关兴趣点数量 | 过去12个月全国<br>级社会安全事件<br>数     |





北京市,差了3个月的时间序列对比 2019年1月-2019年12月,2019年4月-2020年3月

|  | 1 | 2 | value | index_name1 | index_name2 |
|--|---|---|-------|-------------|-------------|
|--|---|---|-------|-------------|-------------|

| 1             | 2      | value        | index_name1             | index_name2             |
|---------------|--------|--------------|-------------------------|-------------------------|
| 157618 future | 45     | 0.730435176  | 空气质量同比改<br>善率           | 官媒空气污染治<br>理网络热度指数      |
| 157618 future | 54     | 0.730435176  | 空气质量同比改<br>善率           | 民众空气污染抱<br>怨网络热度指数      |
| 157618 future | 101    | 0.644030536  | 空气质量同比改善                | 重特大食品安全<br>事故网络热度指<br>数 |
| 157618 future | 14     | 0.597673664  | 空气质量同比改<br>善率           | 重特大环境污染<br>事故网络热度指<br>数 |
| 54 future     | 157618 | -0.500834527 | 民众空气污染抱<br>怨网络热度指数      | 空气质量同比改<br>善率           |
| 45 future     | 157618 | -0.500834527 | 官媒空气污染治<br>理网络热度指数      | 空气质量同比改<br>善率           |
| 14 future     | 157618 | -0.505417972 | 重特大环境污染<br>事故网络热度指<br>数 | 空气质量同比改善率               |
| 101 future    | 157618 | -0.509558551 | 重特大食品安全<br>事故网络热度指<br>数 | 空气质量同比改善率               |





### 2.4. 存在的问题

- 某些type的指标(如POI)结果不理想
- 参数选择依赖经验,不一定是最佳的值
- 样本的选择可以更细致(如东部地区、人口大于100万)

### 2.5. 下一步

- □ 进一步针对部分指标进行特殊处理
- □ 调参
- □ 多线程
- □ 开发更高级的关联性挖掘(<u>7月目标</u>)

# 3. 支撑内容

### 3.1. 功能函数

• 去除离群值

```
def remove_outliers_series_with_median_deviation(
    series: pd.Series, outlier_sd_threshold: float
) -> pd.Series:
    dropped_na = series.dropna()
    deviation = np.abs(dropped_na - np.median(dropped_na))
    median_dev = np.median(deviation)
    scaled_dev = (deviation / median_dev) if median_dev else None

result = (
    dropped_na[scaled_dev < outlier_sd_threshold]
    if scaled_dev is not None
    else pd.Series(index=series.index, dtype=np.float64)
)

return result</pre>
```

#### • 相关性

- pearson (相关性)
- kendall
- 。 spearman (时间序列)

#### • 离散度

- Standard deviation
- Interquartile range
- Coefficient of variation
- 【目前使用】Quartile coefficient of dispersion

$$\mathrm{QCD} = \frac{\mathrm{Q3} - \mathrm{Q1}}{\mathrm{Q1} + \mathrm{Q3}}$$

### 3.2. 参数管理工具

- 数据处理与挖掘的任务管理:查看进度、查看参数、添加、修改、删除
- 文件管理:最终输出、中间结果(缓存、方便内部开发)
- 结果可视化:相关性、排序名次、时间序列
- 数据的历史轨迹(原始数据、方法、参数、中间结果)可视化
- 批量执行任务:多线程、读取缓存

#### 任务管理



#### 文件管理



### 结果可视化

• 图表类型



#### • 时间序列



#### • 排序名次



#### • 相关性



### 数据的历史轨迹可视化



### 批量执行任务





### 3.3. 代码细节

- 按照指标类型,处理数据
  - 1. 数量 → 除以人口
  - 2. 比例 → 不变

- 3. 增量 → 除以人口
- 4. 增幅 → 不变
- 5. 分数 → 不变
- 6. 人均数量 → 不变
- 7. 价格 → 不变
- 8. 全国占比 → 除以人口
- 去除离群值(deviation\_threshold=5)
- 去除质量过低的列(min\_quality\_for\_col=0.75)
- 去除质量过低的行 (min quality for row=0.9)
- 筛选相关性强的指标对(func=ABS, min\_value=0.5)

|x| > 0.5

- 最后在Excel中筛选:
  - $\circ$  correlation > 0.6
  - 。 两个指标都:dispersion > 0.4
  - 。两个指标的type不同
  - 。 两个指标的sub\_type不同
  - 。 两个指标的类型(按照指标类型,处理数据) 一致

# 4. 【附录】总体计划

#### 目标:

开发出一套<mark>通用的工具</mark>,可以针对一组样本集合和一组特征集合,提取出在该样本集合下相关联的特征组/对,并且输出每组/对关联性的强弱。

### 特征之间的关联性:

#### 关联性定义:

样本集合下的特征关联性,即在样本集合中,两组或多组特征的值在以下几个方面相似,且均存在正相关、负相关,以及对应关联性强弱的结果:

- 1. **排序名次上**:基于不同的特征的值进行样本排序,样本在排序结果的名次上一致性高的特征组/对。容易解读。
- 2. 相关性上:线性相关、指数相关等。容易解读。
- 3. **时间序列上**:在同一个样本的不同特征之间,给定时间窗口下(这个时间窗口不一定要一样,甚至不一定要一样长),不同特征的取值上是否存在相似性。考虑周期性。
  - a. 在等长窗口上,可以直接用相似度来量化,方法有很多。容易解读。
  - b. 不等长窗口上用动态规划来做。不容易解读,到时候再看怎么描述。
- 4. **分布上**:将样本集合在一项特征上的取值看做一个变量的分布,看不同变量分布 之间的散度(评估方法有很多)。散度用于量化两个随机变量之间的<u>独立性</u>和<u>相</u> 关性。不容易解读,到时候再看怎么描述好。

#### 独立性检验

假设检验(Test of Hypothesis)又称为显著性检验(Test of Ststistical Significance)。 在抽样研究中,由于样本所来自的总体其参数是未知的,只能根据样本统计量对其所来自总





#### 相关性检验--Spearman秩相关系数和皮尔森相关系数

本文给出两种相关系数,系数越大说明越相关。你可能会参考另一篇博客独立性检验。 皮尔森相关系数 皮尔森相关系数 (Pearson correlation coefficient) 也叫皮尔森积差相关系数

A http://www.cnblogs.com/zhangchaoyang/articles/263190 7.html



5. **出现频次上**:将不同特征的值进行分箱操作后,得到样本集合在特征上的分类, 分析不同特征组的分类在样本集合上同时出现的频次,同时出现次数多的即相 似。(典型的关联规则挖掘,算法复杂度高)。容易解读。

#### 交付内容:

- 1. 一个工具(程序):
  - 特征间关联性挖掘:输入为一组样本在一组特征上的数据,输出为若干组关 联特征组和每组相应的关联性强弱量化(值域在-1~1之间)。
  - 时间序列关联性挖掘:输入为一个样本在一组连续版本上的一组特征数据, 输出为若干组关联特征和每组关联特征对应的时间窗口,以及关联性强弱量 化(值域在-1~1之间)。

• 每种关联性定义下的输出结果都要保留。

#### 注意事项:

- 1. 以上定义1、2、3.a项作为6月交付的目标;
- 2. 以上定义3.b、4、5作为7月的交付目标;
- 3. 关联分析中,极可能存在找到大量的关联性强的特征组,但是其中的绝大多数对于应用场景来讲是没有价值的,所以需要过滤步骤。过滤步骤的解决思路后面补。
- 4. 针对不同类型关联性的解读文字,能够直接用到产品中,后面补。