П.2. Свойства сходящихся рядов

- 1) Если $\sum_{n=1}^\infty a_n$ сходится, то для любого $\lambda \in R$ ряд $\sum_{n=1}^\infty \lambda a_n$ сходится, и если
- $\sum_{n=1}^{\infty}a_n=S$, то $\sum_{n=1}^{\infty}\lambda a_n=\lambda S$. 2) Если $\sum_{n=1}^{\infty}a_n=A$ и $\sum_{n=1}^{\infty}b_n=B$ сходятся, то сходится и ряд $\sum_{n=1}^{\infty}a_n+b_n=B$ A+B.
- 3) Если у сходящегося ряда отбросить или приписать конечное число членов, то сходимость ряда не изменится.

3амечание. $\sum_{k=n+1}^{\infty} a_k$ – остаток (хвост) ряда.

П.З. Гармонический ряд

Гармонический ряд $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots$ — расходящийся, несмотря на то, что $\lim_{n \to \infty} \frac{1}{n} = 0$. Второй замечательный предел: $\left(1 + \frac{1}{n}\right)^n \uparrow e$. Следовательно, $\left(1 + \frac{1}{n}\right)^n \uparrow e$ $\left(\frac{1}{n}\right)^n < e, n \ln \left(1 + \frac{1}{n}\right) < 1, \ln \frac{n+1}{n} < \frac{1}{n}$. Если выписать члены данного ряда, получим: $\ln 2 - \ln 1 < 1, \ln 3 - \ln 2 < \frac{1}{2}, \dots, \ln (n+1) - \ln n < \frac{1}{n}$. Если расписать сумму ряда, сократятся многие члены, останется только $\ln(n+1) < 1 + \frac{1}{2} + \dots + \frac{1}{n}$. Но $\lim_{n \to \infty} \ln(n+1)$ 1) = ∞ . Тогда ряд расходится по определению.

<u>Замечание.</u> Ряд $\sum_{n=1}^{\infty} \frac{1}{n^{lpha'}}$ где lpha>0, называется обобщенным гармоническим рядом. Он расходится при $0 < \alpha \le 1$ и сходится $\alpha > 1$.

П.4. Критерий Коши сходимости ряда

Теорема 2. Ряд $\sum_{n=1}^{\infty} a_n$ сходится тогда и только тогда, когда для любого $\varepsilon > 0$ существует такое N, что для любого n>N и p>0 справедливо неравенство $\left| a_n + a_{n+1} + \dots + a_{n+p} \right| < \varepsilon.$

Доказательство. Критерий Коши сходимости ряда сводится к критерию Коши сходимости последовательности частичных сумм $(a_n + a_{n+1} + \cdots + a_{n+p} =$ $S_{n+p}-S_n$).

§2. Ряды с положительными членами

П.1. Лемма о сходимости ряда с положительными членами

<u>Лемма.</u> Если последовательность S_n ряда ограничена, то ряд сходится.

<u>Доказательство.</u> $S_{n+1} = S_n + a_{n+1}$. Но $a_{n+1} > 0$. Следовательно, $S_n \uparrow$. Также, S_n ограничена сверху. Следовательно, существует предел $\lim_{n o \infty} S_n$. А значит ряд сходится по определению.

П.2. Признаки сравнения

Теорема 3 (Первый признак сравнения). Пусть есть ряды с положительными членами $\sum_{n=0}^{\infty}a_n$, $\sum_{n=0}^{\infty}b_n$.

- 1) Если, начиная с некоторого места, $a_n \leq b_n$ и ряд $\sum_{n=0}^\infty b_n$ сходится, то и ряд $\sum_{n=0}^{\infty} a_n$ сходится.
- 2) Если, начиная с некоторого места, $a_n \leq b_n$ и ряд $\sum_{n=0}^{\infty} a_n$ расходится, то и ряд $\sum_{n=0}^{\infty}b_n$ расходится.

Доказательство.

- 1) Не умоляя общности, скажем, что для любого n выполняется $a_n \leq b_n$. Пусть $B_n = \sum_{k=0}^n b_k$; $A_n = \sum_{k=0}^n a_k$. Тогда $A_n \leq B_n$. Но B_n ограничена. Следовательно, A_n возрастает и ограничена. Следовательно, существует предел $\lim_{n \to \infty} A_n$. Следовательно, ряд сходится по определению.
- 2) От противного.

<u>Теорема 4 (Второй признак сравнения).</u> Пусть есть ряды с положительными членами $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$, и, начиная с некоторого места, $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$.

- 1) Если сходится ряд с большим отношением, то сходится и ряд с меньшим.
- 2) Если расходится ряд с меньшим отношением, то расходится и ряд с большим.

Доказательство. Не умоляя общности, скажем, что для любого n выполняется $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$. Распишем это для каждого n: $\frac{a_2}{a_1} \leq \frac{b_2}{b_1}, \frac{a_3}{a_2} \leq \frac{b_3}{b_2}, \dots, \frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$. Если мы перемножим все полученные неравенства, сократятся почти все члены, останется только $\frac{a_{n+1}}{a_1} \leq \frac{b_{n+1}}{b_1}$, откуда можно выразить $a_{n+1} \leq \frac{a_1b_{n+1}}{b_1} = \lambda b_{n+1}$. Применив теорему 3, доказательство очевидно.

Теорема 5. Пусть есть ряды с положительными членами $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$, и, если существует предел $\lim_{n\to\infty} \frac{a_n}{b_n} = A>0$, то оба ряда либо одновременно сходятся, либо одновременно расходятся.

Доказательство. Пусть существует предел $\lim_{n\to\infty}\frac{a_n}{b_n}=A>0$, то для любого $\varepsilon>0$ существует такое N, что для любого n>N выполняется неравенство $\left|\frac{a_n}{b_n}-A\right|<\varepsilon$. Следовательно, $A-\varepsilon<\frac{a_n}{b_n}< A+\varepsilon$, откуда $a_n<(A+\varepsilon)b_n$. Получается, что по теореме 3 эти ряды ведут себя одинаково. Если A=1, то они являются эквивалентными бесконечно малыми.

<u>Пример.</u> $\sum_{n=1}^{\infty} \sin \frac{1}{n} \sim \sum_{n=1}^{\infty} \frac{1}{n}$. Второй ряд расходится. Значит, исходный ряд расходится.

П.З. Признаки Даламбера

Теорема 6. Пусть есть ряд с положительными членами $\sum_{n=0}^{\infty} a_n$ и если существует предел $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}=l$, то при l>1 ряд расходится, при l<1 ряд сходится, при l=1 неизвестно, требуется дополнительное исследование.

Доказательство. Пусть существует предел $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = l$. Тогда для любого $\varepsilon > 0$ существует такое N, что для любого n > N выполняется неравенство $\left| \frac{a_{n+1}}{a_n} - l \right| < \varepsilon$. Тогда $l - \varepsilon < \frac{a_{n+1}}{a_n} < l + \varepsilon$.

Пусть l<1. Тогда $l+\varepsilon=q<1$. Тогда $\frac{a_{n+1}}{a_n}< q$ и $\sum_{n=0}^{\infty}q^n$ сходится. Следовательно, по теореме 4 ряд сходится.

Пусть l>1. Тогда $l-\varepsilon=q>1$. Тогда $\frac{a_{n+1}}{a_n}>q$ и $\sum_{n=0}^{\infty}q^n$ расходится. Следовательно, по теореме 4 ряд расходится.

П.4. Радикальный признак Коши

Теорема 7. Если существует предел $\lim_{n \to \infty} \sqrt[a]{a_n} = l$, то при l > 1 ряд расходится, при l < 1 ряд сходится, при l = 1 требуется дополнительное исследование.

Доказательство. Пусть существует предел $\lim_{n\to\infty} \sqrt[n]{a_n} = l$. Тогда для любого $\varepsilon > 0$ существует такое N, что для любого n > N выполняется неравенство $\left|\sqrt[n]{a_n} - l\right| < \varepsilon$. Тогда $l - \varepsilon < \sqrt[n]{a_n} < l + \varepsilon$.

Пусть l<1. Тогда $l+\varepsilon=q<1$. Тогда $a_n< q^n$ и $\sum_{n=0}^{\infty}q^n$ сходится. Следовательно, по теореме 3 ряд сходится.

Пусть l>1. Тогда $l-\varepsilon=q>1$. Тогда $a_n>q^n$ и $\sum_{n=0}^\infty q^n$ расходится. Следовательно, по теореме 3 ряд расходится.

<u>Пример.</u> $\sum_{n=1}^{\infty} \frac{\left(1+\frac{1}{n}\right)^{n^2}}{3^n}$. Тогда $\frac{\sqrt{\left(1+\frac{1}{n}\right)^{n^2}}}{3} = \frac{\left(1+\frac{1}{n}\right)^n}{3} \uparrow \frac{e}{3} < 1$. Следовательно, интеграл сходится.

П.4. Интегральный признак Коши

Пусть есть ряд с положительными членами $\sum_{n=1}^{\infty} a_n$ и задана монотонно убывающая функция f(x) на $[1;+\infty)$ и $f(1)=a_1$, $f(n)=a_n$.

Теорема 8.

- $\overbrace{1) \int_{1}^{+\infty} f(x) dx}$ сходится тогда и только тогда, когда $\sum_{n=1}^{\infty} a_n$ сходится.
- 2) $\int_1^{+\infty} f(x) dx$ расходится тогда и только тогда, когда $\sum_{n=1}^{\infty} a_n$ расходится.

Доказательство. Площадь ступенчатая фигура – сумма ряда, площадь криволинейной трапеции – несобственный интеграл. Если ряд больше и сходится, то и интеграл тоже. С другой стороны, вписанный ряд (без первого члена) будет меньше криволинейной трапеции, и если сходится интеграл, то сходится и ряд.

 $a_2+a_3+\cdots+a_n<\int_1^n f(x)dx< a_1+a_2+\cdots+a_{n-1}.$ Это равносильно $S_n-a_1<\frac{f(n+1)}{n-1}$ о существует предел S_{n-1} , то существует и интеграл, если существует интеграл, то существует и пре-

дел S_{n-1} , то существует и интеграл, если существует интеграл, то существует и предел $S_{n-1}=S_n-a_1$.