

Carlingford High School

2021 YEAR 11 ASSESSMENT TASK 2

Mathematics Advanced

	STUDEN	IT NUMBER:		
Teacher: (Please	Circle)			
11MAA_A (Ms Ta	ng)	11MAA_B (Ms Blakeley)	11MAA_C (Mr Wilson)	11MAA_D (Mr Gong)
11MAA_1 (Ms Str	rilakos)	11MAA_2 (Ms Bennett)	11MAA_3 (Mr Cheng)	11MAA_4 (Mr Fardouly)
General Instructions	WC:	Yorking time - 50 minutes Yrite using black pen alculators approved by NE reference sheet is provided	•	r

TOPIC	MARKS	
Functions Questions: 1 – 7	/22	
Trigonometry Questions: 8 – 14	/20	
TOTAL	/42	%

42 marks

Attempt Questions 1 - 14

- Answer the questions in the spaces provided. These spaces provide guidance for the expected length of response.
- Your responses should include relevant mathematical reasoning and/or calculations.

Que	Question 1 (4 marks)		
Solv	e:		
(a)	$x^2 + 9x - 36 = 0$	1	
(b)	$6x^2 = 24x$	1	
(c)	$6x^2 + 13x - 8 = 0$	2	

	Question	2 (3	marks
--	----------	------	-------

	ve $3x^2 + x = 5$ by completing the square, giving answers correct to 3 significant figures.	
•		
•		
•		
•		
•		
	estion 3 (3 marks)	
ĉ	festion 3 (3 marks) farmer bought 240m of fencing to construct three equal rectangular fields. No fencing is requirely of the barn. BARN	ed along the
fa	farmer bought 240m of fencing to construct three equal rectangular fields. No fencing is requir le of the barn. BARN x	ed along the
ie Ie	farmer bought 240m of fencing to construct three equal rectangular fields. No fencing is requir le of the barn. BARN	ed along the
fa	Farmer bought 240m of fencing to construct three equal rectangular fields. No fencing is requirely le of the barn. BARN x y	ed along the
fa de	Farmer bought 240m of fencing to construct three equal rectangular fields. No fencing is requirely le of the barn.	ed along the
fa de	Farmer bought 240m of fencing to construct three equal rectangular fields. No fencing is requirely le of the barn.	
fa de	farmer bought 240m of fencing to construct three equal rectangular fields. No fencing is requirely of the barn.	
fa de	farmer bought 240m of fencing to construct three equal rectangular fields. No fencing is requirely of the barn.	
fa de	farmer bought 240m of fencing to construct three equal rectangular fields. No fencing is requirely of the barn.	

Question 4 (5 marks)

A ball is thrown into the air from a balcony that is 30 metres above the ground. The function that models the height, h(t) in metres above the ground, of the ball overtime, t in seconds, is $h(t) = 30 + 12t - 5t^2$.

What is th	e height of the ball above the ground after 2 seconds?	
When doe	s the ball hit the ground? Answer correct to the nearest second.	
What is tholace.	e maximum height above the ground reached by the ball? Answer correct to one decimal	

Question 5 (2 marks) Prove the quadratic expression $7x^2 + 4x + 1$ is positive definite for all values of x. Question 6 (3 marks) For what values of m does the equation $x^2 - 2mx + 8m - 15 = 0$ have two roots? Question 7 (2 marks) Prove the line y = 6x + 1 is a tangent to the curve with equation $y = x^2 + 4x + 2$.

Question 8 (4 marks)

	tan 30°
(b)	sin 300° 1
(c)	cot(-30°)
(4)	cosec 150°
(u)	
	stion 9 (2 marks)
	$ au$ sin $ heta=rac{3}{7}$ and $\cos heta<0$, find the exact value of $ au$ $ heta$.

Question 10 (2 marks)
Show that $tan(90^{\circ} + \theta) = -\cot\theta$
Question 11 (2 marks)
Find all values of x , $0^{\circ} \le x \le 360^{\circ}$ for which $2\cos^2 x - 1 = 0$.
Question 12 (2 marks)
In triangle ABC , $\angle B=53^\circ$, $AC=7.6$ cm and $BC=9.5$ cm. A Find $\angle A$ to the nearest degree.
7.6 cm
9.5 cm C

Question 13 (4 marks)

The bearings of a yacht and a boat from a lighthouse are 110° and 255° respectively. The yacht is 3.2km and the boat 4.2 km from the lighthouse.

(a)	Find the distance between the yacht and the boat. Answer correct to one decimal place.	2
(b)	Find the true bearing of the yacht from the boat. Answer correct to the nearest degree.	2

Question 14 (4 marks)

From a point A due south of a flagpole, the angle of elevation of the top of the pole P, is 38° . From another point B, on a bearing of 117° from the pole, the angle of elevation of P is 36° . The distance AB is 110 metres. Let B be the height of the flagpole in metres.

(a) $OA = \frac{h}{\tan 38^{\circ}}$. Show that $OB = \frac{h}{\tan 36^{\circ}}$.

.....

1

3

(b)	Hence find, correct to one decimal place, the height of the flagpole.

Extra writing space If you use this space, clearly indicate which question you are answering.