### HERCULES 2019

# Simulating beamline optics by raytracing using ShadowOui

Manuel Sánchez del Río AAM, ISDD, ESRF 2019 March 27th

## Goals

Calculate main characteristics of synchrotron sources (dipoles and IDs)

Simulating beamline optics by raytracing to obtain main parameters of beam size, energy resolution and flux

Understand basic principles of x-ray optics: Reflective (aberrations, slope errors), Diffractive (dispersion) and Refractive (chromatic aberrations)

A few words (only) about coherence

## The OASYS Project









Manuel Sanchez del Rio

Luca Rebuffi

- ✓ OASYS = OrAnge SYnchrotron Suite
- ✓ A common platform to build synchrotron-oriented User Interfaces *that communicate*
- ✓ The upper layer of the application presented to the user
- ✓ Open Source & Python technology

Luca Rebuffi, Manuel Sanchez del Rio (2017)

OASYS (OrAnge SYnchrotron Suite) : an open-source graphical environment for x-ray virtual experiments

Proc.SPIE 10388: 10388-10388. http://dx.doi.org/10.1117/12.2274263

## Synchrotron Virtual Experiments

Storage Ring (e<sup>-</sup> optics)

Radiation devices (g optics)

Radiation Sample (g-matter interactions)



# Source emission (XOPPY)

- Undulator spectrum power
- Undulator power density
- Wiggler spectrum
- BM



Computer simulation of light sources and optical components is a mandatory step in the design and optimization of synchrotron and FEL radiation beamlines



different codes for numerical simulations are available, implementing different physical approaches



# AT HIGH ENERGIES, WE ARE FAR FROM DIFFRACTION-LIMIT (=FULLY COHERENCE) U17 2m @ 17 keV (K=0.4842) L=2m Coherent Fraction

# THEREFORE, ANY BEAMLINE SIMULATION MUST START WITH RAY TRACING (INCOHERENT BEAMS)



## Oasys+ShadowOui

- Install Oasys+ShadowOui:
  - https://github.com/oasys-kit/oasys-installation-scripts/ wiki
- Today: Use rnice.
- Download Tutorials:
  - export all proxy=http://proxy.esrf.fr:3128/
  - git clone <a href="https://github.com/srio/ShadowOui-Tutorial">https://github.com/srio/ShadowOui-Tutorial</a>
- Start OASYS:
  - oarsub -I -l nodes=1/cpu=1/core=8, walltime=10:00:00
  - /scisoft/XRayOptics/OASYS1 RNICE8/start oasys.sh

### Trace (the beamline)



## Compute e beam sizes

$$\Sigma = \begin{pmatrix} \langle x^2 \rangle & \langle xx' \rangle \\ \langle xx' \rangle & \langle x'^2 \rangle \end{pmatrix} = \begin{pmatrix} \beta_x \varepsilon_x & -\alpha_x \varepsilon_x \\ -\alpha_x \varepsilon_x & \gamma_x \varepsilon_x \end{pmatrix} + \eta^2 \sigma_\delta^2 I_{2x2}$$

With e the emittance (constant), and Twiss parameters:

$$\alpha = -\frac{1}{2} \frac{d\beta}{ds}; \quad \gamma = \frac{1 + \alpha^2}{\beta}$$

At s (any point of the trajectory):

$$\sigma_{x} = \sqrt{\langle x^{2} \rangle} = \sqrt{\beta_{x} \varepsilon_{x}}; \quad \sigma_{x'} = \sqrt{\langle x'^{2} \rangle} = \sqrt{\gamma_{x} \varepsilon_{x}}; \quad \sigma_{x} \sigma_{x'} = \varepsilon_{x} \sqrt{1 + \alpha_{x}^{2}}$$

At waist (zero correlation, r=a=0, b is minimum):

$$\sigma_{x} = \sqrt{\langle x^{2} \rangle} = \sqrt{\beta_{x} \varepsilon_{x}}; \quad \sigma_{x'} = \sqrt{\langle x^{2} \rangle} \Big|_{w} = \sqrt{\frac{\varepsilon_{x}}{\beta_{x}}}; \quad \boxed{\sigma_{x} \sigma_{x'} = \varepsilon_{x}}$$



ShadowOui asks for s and e at waist (plus distance from waist to center of device)

#### ex13\_insertiondevices.ows

#### Onuki & Elleaume Undulators, Wigglers and their applications, CRC press, 2002



78 P. Elleaume

1.2  $\omega = \omega_n (1-1/nN)$ 1.0  $\omega = \omega_n (1+0.4/nN)$ 0.8  $\omega = \omega_n (1+0.4/nN)$ 0.9  $\omega = \omega_n (1+0.4/nN)$ 1.0  $\omega$ 

Figure 3.4 Spectral flux per unit surface in the middle of the undulator for three frequencies close to the on-axis resonant frequency  $\omega_n = n\omega_1(0, 0)$ .

Even on resonance, beam is not fully Gaussian
But for resonance, can be reasonably approximated as Gaussian

$$\sigma_r = \frac{2.704}{4\pi} \sqrt{\lambda L} \approx \sqrt{\frac{\lambda L}{2\pi^2}}$$

$$\sigma_{r'} = 0.69 \sqrt{\frac{\lambda}{L}} \approx \sqrt{\frac{\lambda}{2L}}$$

$$\sigma_r \sigma_{r'} = \frac{1.89 \lambda}{4\pi} \approx \frac{\lambda}{2\pi}$$

- Undulator beams have not Gaussian profiles (even at resonances)
- •BY NOW, WE APPROXIMATE UNDULATORS BY GEOMETRIC SOURCES WITH GAUSSIAN SIZES AND DIVERGENCES

# Photon beam size and divergence is determined by a combination of electron beam and single electron emission

$$\begin{split} \Sigma_{x}^{2} &= \sigma_{x,elec}^{2} + \sigma_{x,photon}^{2} \\ \Sigma_{x'}^{2} &= \sigma_{x',elec}^{2} + \sigma_{x',photon}^{2} \\ \Sigma_{z}^{2} &= \sigma_{z,elec}^{2} + \sigma_{z,photon}^{2} \\ \Sigma_{z'}^{2} &= \sigma_{z',elec}^{2} + \sigma_{z,photon}^{2} \end{split}$$

$$\Sigma_{z'}^{2} = \sigma_{z',elec}^{2} + \sigma_{z',photon}^{2}$$
Courtesy: Boaz Nash

These are at source. A distance D away, beam size become:  $\sum_{x,0}^{2} + \sum_{x',0}^{2} D^{2}$ 

(FOR UNDULATORS, THESE FORMULAS ARE VALID AT THE WAIST, AT THE UNDULATOR RESONANCE, AND SUPOSSING GAUSSIAN EMISSION OF PHOTONS)

ShadowOui performs "numeric convolution" by Monte Carlo sampling of the electron beam [Gaussian] and photon emission [non Gaussian]

## Optical elements

#### For each optics element SHADOW includes:

- Geometrical model: how the direction of the rays are changed (reflected, refracted or diffracted)
- Physical model: how the ray intensity (in fact electric fields) decreases because of the interaction
  - •Structures along the surface =>playing with the direction
  - •Structures in depth => playing with the reflectivity

## **Mirrors**

## Geometrical model

## Physical model

as a function of angle and photon

Fresnel equations give the reflectivity



the critical angle:
$$1 = \left(\frac{n_1}{n_2}\right)^2 \cos^2 \theta_c \quad \Leftrightarrow \quad \sin \theta_c = \sqrt{2\delta - \delta^2} \approx \sqrt{2\delta}$$

energy. As a consequence, one gets



## Mirror shape

- Point to point focusing (ellipsoid)
- Collimating (paraboloid)
- Focalization in two planes
  - Tangential or Meridional (ellipse or parabola)
  - Sagittal (circle)
- Demagnification: M=p/q
- Easier manufactiring:
  - 2D: Ellipsoid => Toroid
  - Only one plane: cylinder Ellipsoid (ellipse)=> cylinder (circle)
  - Sagittal radius: non-linear (ellipsoid) => constant (cylinder) or linear (cone),



$$\frac{1}{p} + \frac{1}{q} = \frac{2}{R \sin \theta}$$
$$\frac{1}{p} + \frac{1}{q} = \frac{2 \sin \theta}{\rho}$$

Aberrations

# Kirkpatrick-Baez



## Crystals

#### **Geometrical model**

like a grating originated by the truncation of the Bragg planes with the crystal surface. Crystals are dispersive elements, except for the most used case of Bragg-Symmetric reflection.

#### Physical model

(crystal reflectivity) is given by the Dynamical Theory of Diffraction and gives the "Darwin width"



BRAGG or reflection

ex17\_sagittalfocusing.ows
OTHER\_EXAMPLES/crystal\_analyzer\_diced.ows
OTHER\_EXAMPLES/crystal\_asymmetric\_backscattering.ows



LAUE or transmission

(ex23\_crystal\_laue.ows)



Theory of the Use of More Than Two Successive X-Ray Crystal Reflections to Obtain Increased Resolving Power J W. M. DuMond Phys. Rev. **52**, 872 – (1937)

http://dx.doi.org/10.1103/PhysRev.52.872



## Other



ex19\_beamline.ows

# LENSE = TWO INTERFACES Geometrical model Physical model

Law of Refraction (Snell's Law)

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

absorption in media  $I/I_0 = \exp(-m t)$ 



(OTHER\_EXAMPLES/lens\_elliptical.ows)
OTHER\_EXAMPLES/CRL\_Snigirev\_1996.ows
ex24\_transfocator.ows

CRL = n identical Lenses TRANSFOCATOR = m different CRLs

#### HYBRID METHOD IN SHADOW (X. Shi et al.)

#### Combining ray tracing and wavefront propagation



X. Shi, R. Reininger, M. Sanchez del Rio, L. Assoufid "J. Synchrotron Rad. (2014) 21, doi:10.1107/S160057751400650X X. Shi, M. Sanchez del Rio and Ruben Reininger Proc. SPIE 9209, 920911 (2014); doi:10.1117/12.2061984

X. Shi, R. Reininger, M. Sánchez del Río, J. Qian and L. Assoufid Proc. SPIE 9209, 920909 (2014); doi:10.1117/12.2061950

