## Chapter 6

# Inner product spaces

| $\boldsymbol{\alpha}$  |    |    | 1 - |
|------------------------|----|----|-----|
| $\mathbf{C}\mathbf{c}$ | mt | en | ГS  |
|                        |    |    |     |

| 6A Inner Pro | ducts and | Norms | <br> | <br> |  | <br>3  |
|--------------|-----------|-------|------|------|--|--------|
|              | 1         |       | <br> | <br> |  | <br>3  |
|              | 2         |       | <br> | <br> |  | <br>4  |
|              | 3         |       | <br> | <br> |  | <br>4  |
|              | 4         |       | <br> | <br> |  | <br>5  |
|              | 5         |       | <br> | <br> |  | <br>5  |
|              | 6         |       | <br> | <br> |  | <br>6  |
|              | 7         |       | <br> | <br> |  | <br>7  |
|              | 8         |       | <br> | <br> |  | <br>7  |
|              | 9         |       | <br> | <br> |  | <br>7  |
|              | 10        |       | <br> | <br> |  | <br>8  |
|              | 11        |       | <br> | <br> |  | <br>8  |
|              | 12        |       | <br> | <br> |  | <br>8  |
|              | 13        |       | <br> | <br> |  | <br>9  |
|              | 14        |       | <br> | <br> |  | <br>10 |
|              | 15        |       | <br> | <br> |  | <br>10 |
|              | 16        |       | <br> | <br> |  | <br>11 |
|              | 17        |       | <br> | <br> |  | <br>12 |
|              | 18        |       | <br> | <br> |  | <br>12 |
|              | 19        |       | <br> | <br> |  | <br>14 |
|              | 20        |       | <br> | <br> |  | <br>14 |
|              | 21        |       |      |      |  | 15     |

|           |           | 22   |     |     |   |  |  |       |  |  |   |       |  |  |   |  |   | 15        |
|-----------|-----------|------|-----|-----|---|--|--|-------|--|--|---|-------|--|--|---|--|---|-----------|
|           |           | 23   |     |     |   |  |  |       |  |  |   |       |  |  |   |  |   | 16        |
|           |           | 24   |     |     |   |  |  |       |  |  |   |       |  |  |   |  |   | 16        |
|           |           | 25   |     |     |   |  |  |       |  |  |   |       |  |  |   |  |   | 17        |
|           |           | 26   |     |     |   |  |  |       |  |  |   |       |  |  |   |  |   | 17        |
|           |           | 27   |     |     |   |  |  |       |  |  |   |       |  |  |   |  |   | 18        |
|           |           | 28   |     |     |   |  |  |       |  |  |   |       |  |  |   |  |   | 18        |
|           |           | 29   |     |     |   |  |  |       |  |  |   |       |  |  |   |  |   | 19        |
|           |           | 30   |     |     |   |  |  |       |  |  |   |       |  |  |   |  |   | 19        |
|           |           | 31   |     |     |   |  |  |       |  |  |   |       |  |  |   |  |   | 21        |
|           |           | 32   |     |     |   |  |  |       |  |  |   |       |  |  |   |  |   | 22        |
|           |           | 33   |     |     |   |  |  |       |  |  |   |       |  |  |   |  |   | 22        |
|           |           | 34   |     |     |   |  |  |       |  |  |   |       |  |  |   |  |   | 23        |
|           |           | 35   |     |     |   |  |  |       |  |  |   |       |  |  |   |  |   | 24        |
| <b>6B</b> | Orthonorm | al E | Bas | ses | 8 |  |  | <br>• |  |  | • |       |  |  |   |  | • | <b>25</b> |
|           |           | 1    |     |     |   |  |  |       |  |  |   |       |  |  |   |  |   | 25        |
|           |           | 2    |     |     |   |  |  |       |  |  |   |       |  |  |   |  |   | 25        |
|           |           | 3    |     |     |   |  |  |       |  |  |   |       |  |  | • |  |   | 27        |
|           |           | 4    |     |     |   |  |  |       |  |  |   | <br>• |  |  |   |  |   | 27        |
|           |           | 5    |     |     |   |  |  |       |  |  |   | <br>• |  |  |   |  |   | 28        |
|           |           | 6    |     |     |   |  |  |       |  |  |   |       |  |  |   |  |   | 29        |
|           |           | 7    |     |     |   |  |  |       |  |  |   | <br>• |  |  |   |  |   | 31        |
|           |           | 8    |     |     |   |  |  |       |  |  |   | <br>• |  |  |   |  |   | 31        |
|           |           | 9    |     |     |   |  |  |       |  |  |   |       |  |  | • |  |   | 33        |
|           |           | 10   |     |     |   |  |  |       |  |  |   | <br>• |  |  |   |  | • | 33        |
|           |           | 11   |     |     |   |  |  |       |  |  |   | <br>• |  |  |   |  | • | 34        |
|           |           | 12   |     |     |   |  |  |       |  |  | • |       |  |  |   |  |   | 34        |
|           |           | 13   |     |     |   |  |  |       |  |  |   |       |  |  | • |  |   | 35        |
|           |           | 14   |     |     |   |  |  |       |  |  | • |       |  |  |   |  |   | 35        |
|           |           | 15   |     |     |   |  |  |       |  |  |   |       |  |  | • |  |   | 36        |
|           |           | 16   |     |     |   |  |  |       |  |  |   |       |  |  | • |  |   | 36        |
|           |           | 17   |     |     |   |  |  |       |  |  |   |       |  |  | • |  |   | 37        |
|           |           | 18   |     |     |   |  |  |       |  |  |   |       |  |  | • |  |   | 37        |
|           |           | 19   |     |     |   |  |  |       |  |  |   |       |  |  |   |  |   | 38        |
|           |           | 20   |     |     |   |  |  |       |  |  |   |       |  |  |   |  |   | 38        |
|           |           | 21   |     |     |   |  |  |       |  |  |   | <br>• |  |  |   |  |   | 39        |
|           |           | 22   |     |     |   |  |  |       |  |  |   |       |  |  |   |  |   | 40        |

| 6C Orthogonal Complements and Minimization Problems | 41 |
|-----------------------------------------------------|----|
| 1                                                   | 41 |
| 2                                                   | 41 |
| 3                                                   | 42 |
| 4                                                   | 43 |
| 5                                                   | 44 |
| 6                                                   | 44 |
| 7                                                   | 45 |
| 8                                                   | 45 |
| 9                                                   | 46 |
| 10                                                  | 46 |
| 11                                                  | 47 |
| 12                                                  | 47 |
| 13                                                  | 48 |
| 14                                                  | 48 |
| 15                                                  | 49 |
| 16                                                  | 49 |
|                                                     |    |
| 17                                                  | 50 |
| 18                                                  | 51 |
| 19                                                  | 55 |
| $20 \ldots \ldots \ldots \ldots \ldots \ldots$      | 55 |
| 21                                                  | 56 |
| 22                                                  | 58 |
| 23                                                  | 58 |

## 6A Inner Products and Norms

1 Prove or give a counterexample: If  $v_1, \ldots, v_m \in V$ , then

$$\sum_{j=1}^{m} \sum_{k=1}^{m} \langle v_j, v_k \rangle \ge 0.$$

#### **Solution:**

We can use additivity in both slots of the inner product to show that the sum in question is a squared norm of a vector:

$$\sum_{j=1}^{m} \sum_{k=1}^{m} \langle v_j, v_k \rangle = \sum_{j=1}^{m} \langle v_j, \sum_{k=1}^{m} v_k \rangle = \left\langle \sum_{j=1}^{m} v_j, \sum_{k=1}^{m} v_k \right\rangle = \left\| \sum_{j=1}^{m} v_j \right\|^2 \ge 0 \quad \Box$$

**2** Suppose  $S \in \mathcal{L}(V)$ . Define  $\langle \cdot, \cdot \rangle_1$  by

$$\langle u, v \rangle_1 = \langle Su, Sv \rangle$$

for  $u, v \in V$ . Show that  $\langle \cdot, \cdot \rangle_1$  is an inner product on V if and only if S is injective.

## Solution:

 $\longrightarrow$  Suppose  $\langle \cdot, \cdot \rangle_1$  is an inner product. Then let  $v \in V$  be a vector such that Sv = 0. Then examine the following:

$$\langle v, v \rangle_1 = \langle Sv, Sv \rangle = \langle 0, 0 \rangle = 0$$

By the definiteness of the inner product,  $\langle v, v \rangle_1 = 0$  if and only if v = 0. This requires that null  $S = \{0\}$ , which is equivalent to S being injective.

 $\leftarrow$  Suppose S is injective. Positivity and definiteness of  $\langle \cdot, \cdot \rangle_1$  arise directly from fact that  $\langle \cdot, \cdot \rangle$  is positive and definite:

 $\langle Su, Su \rangle = 0$  if and only if Su = 0; S is injective, hence  $Su = 0 \Leftrightarrow u = 0$ . Additivity in the first slot:

$$\langle u + v, w \rangle_1 = \langle S(u + v), Sw \rangle = \langle Su + Sv, Sw \rangle$$
$$= \langle Su, Sw \rangle + \langle Sv, Sw \rangle = \langle u, w \rangle_1 + \langle v, w \rangle_1$$

Homogeneity in the first slot:

$$\langle \lambda u, v \rangle_1 = \langle S(\lambda u), Sv \rangle = \langle \lambda Su, Sv \rangle = \lambda \langle Su, Sv \rangle = \lambda \langle u, v \rangle_1$$

Conjugate symmetry:

$$\langle u, v \rangle_1 = \langle Su, Sv \rangle = \overline{\langle Sv, Su \rangle} = \overline{\langle v, u \rangle_1}$$

Thus,  $\langle \cdot, \cdot \rangle_1$  is an inner product.  $\square$ 

- **3** (a) Show that the function taking an ordered pair  $((x_1, x_2), (y_1, y_2))$  of elements of  $\mathbb{R}^2$  to  $|x_1y_1| + |x_2y_2|$  is not an inner product on  $\mathbb{R}^2$ .
- (b) Show that the function taking an ordered pair  $((x_1, x_2, x_3), (y_1, y_2, y_3))$  of elements of  $\mathbb{R}^3$  to  $x_1y_1 + x_3y_3$  is not an inner product on  $\mathbb{R}^3$ .

#### Solution:

(a) Let us test the "additivity in first slot" property:

$$\langle (x_1 + y_1, x_2 + y_2), (z_1, z_2) \rangle = |(x_1 + y_1)z_1| + |(x_2 + y_2)z_2|$$
  
=  $|x_1z_1 + y_1z_1| + |x_2z_2 + y_2z_2|$  (6.1)

$$\langle (x_1, x_2), (z_1, z_2) \rangle + \langle (y_1, y_2), (z_1, z_2) \rangle = |x_1 z_1| + |y_1 z_1| + |x_2 z_2| + |y_2 z_2|$$
 (6.2)

For a given function to be an inner product, the right hand sides of equations (1) and (2) must be equal. In fact, they aren't equal in general case, as only  $inequality |a+b| \le |a| + |b|$  holds.  $\square$ 

- (b) Note that ((0,1,0),(0,1,0)) maps to zero. Hence, the definiteness property is not satisfied and this function is not an inner product.  $\square$
- 4 Suppose  $T \in \mathcal{L}(V)$  is such that  $||Tv|| \leq ||v||$  for every  $v \in V$ . Prove that  $T \sqrt{2}I$  is injective.

## Solution:

$$\begin{split} \|Tv\| &\leqslant \|v\| = \sqrt{\langle v,v\rangle} < \sqrt{2}\sqrt{\langle v,v\rangle} = \sqrt{2\langle v,v\rangle} = \sqrt{\langle \sqrt{2}v,\sqrt{2},v\rangle} = \|\sqrt{2}v\| \\ &\text{Hence } \|Tv\| < \|\sqrt{2}v\| \\ &\text{Suppose } T - \sqrt{2}I \text{ is not invertible Then } \exists v \in V, \, v \neq 0 \text{ such that : } \\ &(T - \sqrt{2}I)v = 0 \Rightarrow Tv = \sqrt{2}v \text{ which must mean } \|Tv\| = \|\sqrt{2}v\| \\ &\text{which is not true, as we have shown earlier.} \\ &\text{Thus } T - \sqrt{2}I \text{ is invertible and hence is injective. } \Box \end{split}$$

- 5 Suppose V is a real inner product space.
  - (a) Show that  $\langle u+v, u-v \rangle = ||u||^2 ||v||^2$  for every  $u, v \in V$ .
  - (b) Show that if  $u, v \in V$  have the same norm, then u + v is orthogonal to u v.
  - (c) Use part (b) to show that the diagonals of a rhombus are perpendicular to each other.

## Solution:

(a) 
$$\langle u+v, u-v \rangle = \langle u, u \rangle - \langle u, v \rangle + \langle v, u \rangle - \langle v, v \rangle$$
  
=  $\{\langle v, u \rangle = \langle u, v \rangle \text{ for real inner product spaces}\}$   
=  $\langle u, u \rangle - \langle v, v \rangle = ||u||^2 - ||v||^2$ 

- (b) If ||u|| = ||v||, then  $\langle u+v, u-v \rangle = ||u||^2 ||v||^2 = 0$ , so u+v is orthogonal to u-v.
- (c) Rhombus is a parralelogram with equal sides. If vectors v and  $u \in \mathbb{R}^2$  define sides of rhombus, then diagonals are defined by v+u and v-u. From (b) follows that v+u and v-u are orthogonal, i.e. diagonals of rhombus are perpendicular.  $\square$

**6** Suppose  $u, v \in V$ . Prove that  $\langle u, v \rangle = 0 \Leftrightarrow ||u|| \leq ||u + av||$  for all  $a \in \mathbb{F}$ . Solution:

$$\langle u + av, u + av \rangle = \langle u, u \rangle + \langle u, av \rangle + \langle av, u \rangle + |a|^2 \langle v, v \rangle$$

$$\longrightarrow \text{If } \langle v, u \rangle = 0:$$

$$\langle u+av,u+av\rangle=\langle u,u\rangle+\bar{a}\overline{\langle v,u\rangle}+a\langle v,u\rangle+|a|^2\langle v,u\rangle=\langle u,u\rangle+|a|^2\langle v,v\rangle\geq\langle u,u\rangle$$

Hence  $||u + av|| \ge ||u||$ 

 $\leftarrow$  If  $||u|| \le ||u + av||$ 

Let  $a = \varepsilon$   $(\varepsilon \in \mathbb{R}, \varepsilon > 0)$ . Then:

$$\begin{split} \langle u + av, u + av \rangle &= \langle u, u \rangle + \varepsilon \overline{\langle v, u \rangle} + \varepsilon \langle v, u \rangle + \varepsilon^2 \langle v, v \rangle \\ 2\varepsilon \Re \langle v, u \rangle &= \langle u + av, u + av \rangle - \langle u, u \rangle - \varepsilon^2 \langle v, v \rangle \geq -\varepsilon^2 \langle v, v \rangle \\ \Re \langle v, u \rangle &\geq -\frac{\varepsilon}{2} \langle v, v \rangle \end{split} \tag{6.1}$$

Let  $a = -\varepsilon$ . Then:

$$2\varepsilon \Re(\langle v, u \rangle) = \langle u, u \rangle + \varepsilon^2 \langle v, v \rangle - \langle u + av, u + av \rangle \le \varepsilon^2 \langle v, v \rangle$$

$$\Re \langle v, u \rangle \le \frac{\varepsilon}{2} \langle v, v \rangle \tag{6.2}$$

Note, that  $\langle v, v \rangle$  and  $\varepsilon$  are greater than zero. Both (1) and (2) can hold simultaneously only if  $\Re \langle v, u \rangle = 0$ .

Let  $a = i\varepsilon$ . Then:

$$\langle u + av, u + av \rangle = \langle u, u \rangle - i\varepsilon \overline{\langle v, u \rangle} + i\varepsilon \langle v, u \rangle + \varepsilon^2 \langle v, v \rangle$$

$$= \langle u, u \rangle + \varepsilon^2 \langle v, v \rangle - 2\varepsilon \Im \langle v, u \rangle$$

$$2\varepsilon \Im \langle v, u \rangle = \langle u, u \rangle - \langle u + av, u + av \rangle + \varepsilon^2 \langle v, v \rangle \le \varepsilon^2 \langle v, v \rangle$$

$$\Im \langle v, u \rangle \le \frac{\varepsilon}{2} \langle v, v \rangle$$
(6.3)

Let  $a = -i\varepsilon$ . Then:

$$\langle u + av, u + av \rangle = \langle u, u \rangle + \varepsilon^{2} \langle v, v \rangle + 2\varepsilon \Im \langle v, u \rangle$$

$$2\varepsilon \Im \langle v, u \rangle = \langle u + av, u + av \rangle - \langle u, u \rangle - \varepsilon^{2} \langle v, v \rangle \ge -\varepsilon^{2} \langle v, v \rangle$$

$$\Im \langle v, u \rangle \ge -\frac{\varepsilon}{2} \langle v, v \rangle$$
(6.4)

As before, (3) and (4) must be valid for all  $\varepsilon$ , thus we conclude  $\Im\langle v,u\rangle=0$ . That means  $\langle v,u\rangle=0$ , as desired.  $\square$ 

7 Suppose  $u, v \in V$ . Prove that ||au + bv|| = ||bu + av|| for all  $a, b \in \mathbb{R}$  if and only if ||u|| = ||v||.

#### **Solution:**

$$\langle au+bv,au+bv\rangle = a^2\langle u,u\rangle + b^2\langle v,v\rangle + ab\left(\langle v,u\rangle + \langle u,v\rangle\right)$$

$$\longleftarrow \text{ If } \|u\| = \|v\|, \text{ then } \langle u,u\rangle = \langle v,v\rangle$$

$$\|au+bv\|^2 = a^2\langle u,u\rangle + b^2\langle v,v\rangle + ab\left(\langle v,u\rangle + \langle u,v\rangle\right) =$$

$$a^2\langle v,v\rangle + 2ab\,\Re\langle v,u\rangle + b^2\langle u,u\rangle = \langle av+bu,av+bu\rangle$$

$$\text{Hence } \|au+bv\| = \|bu+av\| \text{ for all } a,b\in\mathbb{R}$$

$$\longrightarrow \text{ If } \|au+bu\| = \|bu+av\| \text{ for all } a,b\in\mathbb{R}$$

$$\|bu+av\|^2 = b^2\langle u,u\rangle + 2ab\,\Re\langle v,u\rangle + a^2\langle v,v\rangle$$

$$\|au+bv\|^2 - \|bu+av\|^2 = 0 = \left(a^2-b^2\right)\langle u,u\rangle + \left(b^2-a^2\right)\langle v,v\rangle$$

The last equation is valid for all  $a,b\in\mathbb{R}$ . That means  $\|u\|^2-\|v\|^2=0\Rightarrow \|u\|=\|v\|$ 

 $= (a^2 - b^2) (||u||^2 - ||v||^2)$ 

**8** Suppose  $a,b,c,x,y\in\mathbb{R}$  and  $a^2+b^2+c^2+x^2+y^2\leq 1$ . Prove that  $a+b+c+4x+9y\leq 10$ .

## Solution:

Let  $v, u \in \mathbb{R}^5$ : v = (a, b, c, x, y) and u = (1, 1, 1, 4, 9). Then:

$$||v||^2 = a^2 + b^2 + c^2 + x^2 + y^2 \le 1$$
 and  $||u||^2 = 1^2 + 1^2 + 1^2 + 4^2 + 9^2 = 100$ 

Now we use Cauchy-Schwarz inequality:

$$a + b + c + 4x + 9y = \langle v, u \rangle \le ||v|| ||u|| \le 1 \cdot 10 = 10$$

9 Suppose  $u, v \in V$  and ||u|| = ||v|| = 1 and  $\langle u, v \rangle = 1$ . Prove that u = v.

#### Solution:

Note, that  $\langle u, v \rangle = 1 = ||u|| \cdot ||v||$ . By the Cauchy-Schwarz inequality u is a scalar multiple of v:  $u = \alpha v$ .

$$1 = \langle u, v \rangle = \langle \alpha v, v \rangle = \alpha \langle v, v \rangle = \alpha \|v\|^2 = \alpha \cdot 1 = \alpha \quad \Rightarrow \quad \alpha = 1$$

Hence, v = u as desired  $\square$ 

10 Suppose  $u, v \in V$  and  $||u|| \le 1$  and  $||v|| \le 1$ . Prove that

$$\sqrt{1 - \|u\|^2} \sqrt{1 - \|v\|^2} \le 1 - |\langle u, v \rangle|$$

Solution:

$$(1 - ||u||^2)(1 - ||v||^2) = (1 - ||u||)(1 - ||u||)(1 - ||v||)(1 - ||v||)$$

$$= (1 - ||u|| + ||v|| - ||u||||v||)(1 + ||u|| - ||v|| - ||u||||v||)$$

$$= (1 - ||u|||v||)^2 - (||u|| - ||v||)^2 \le (1 - ||u||||v||)^2$$

Taking the square root on both sides we get:

$$\sqrt{1 - \|u\|^2} \sqrt{1 - \|v\|^2} \le 1 - \|u\| \cdot \|v\| \le 1 - |\langle u, v \rangle| \quad \Box$$

11 Find vectors  $u, v \in \mathbb{R}^2$  such that u is a scalar multiple of (1,3), v is orthogonal to (1,3), and (1,2) = u + v.

#### Solution:

This problem is an orthogonal decomposition problem. Let  $v = \lambda \cdot (1,3)$ , then:

$$(1,2) = \lambda \cdot (1,3) + v$$

Thus we can find  $\lambda$  as:

$$\lambda = \frac{\langle (1,2), (1,3) \rangle}{\langle (1,3), (1,3) \rangle} = \frac{1 \cdot 1 + 2 \cdot 3}{1 \cdot 1 + 3 \cdot 3} = \frac{7}{10} = 0.7$$

and v as:

$$v = (1, 2) - 0.7 \cdot (1, 3) = (0.3, -0.1)$$

The answer is:

$$u = (0.7, 2.1), \qquad v = (0.3, -0.1)$$

- **12** Suppose a, b, c, d are positive numbers.
  - (a) Prove that  $(a + b + c + d) \left( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} \right) \ge 16$ .
  - (b) For which positive numbers a, b, c, d is the inequality above an equality?

## Solution:

(a) As a, b, c, d are all positive we can represent sums in both brackets as squared norms of vectors  $v = (\sqrt{a}, \sqrt{b}, \sqrt{c}, \sqrt{d})$  and  $u = (\frac{1}{\sqrt{a}}, \frac{1}{\sqrt{b}}, \frac{1}{\sqrt{c}}, \frac{1}{\sqrt{d}})$ .

$$a + b + c + d = ||v||^2$$
  $1/a + 1/b + 1/c + 1/d = ||u||^2$ 

By the Cauchy-Schwarz inequality:

$$||v||^2 ||u||^2 \ge |\langle v, u \rangle|^2 = \left| \sqrt{a} \cdot \frac{1}{\sqrt{a}} + \sqrt{b} \cdot \frac{1}{\sqrt{b}} + \sqrt{c} \cdot \frac{1}{\sqrt{c}} + \sqrt{d} \cdot \frac{1}{\sqrt{d}} \right|^2 =$$

$$= |1 + 1 + 1 + 1|^2 = 16$$

Thus indeed:

$$16 \le (a+b+c+d)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}\right) \quad \Box$$

- (b) The inequality becomes equality when a = b = c = d = 1.
- 13 Show that the square of an average is less than or equal to the average of the squares. More precisely, show that if  $a_1, \ldots, a_n \in \mathbb{R}$ , then the square of the average of  $a_1, \ldots, a_n$  is less than or equal to the average of  $a_1^2, \ldots, a_n^2$ .

#### Solution:

We need to prove the inequality:

$$\left(\frac{1}{n}(a_1 + a_2 + \dots + a_n)\right)^2 \le \frac{1}{n}(a_1^2 + \dots + a_n^2)$$

which can be rearranged into:

$$(a_1 + a_2 + \dots + a_n)^2 \le n(a_1^2 + \dots + a_n^2)$$

thus we will try to derive the last inequality.

Note that:

$$a_1^2 + \dots a_n^2 = \|(a_1, \dots, a_n)\|^2,$$
  
 $n = \|(1, \dots, 1)\|^2$ 

for  $(a_1, \ldots, a_n), (1, \ldots, 1) \in \mathbb{R}^n$  with euclidean inner product. Also, note that:

$$a_1 + \dots + a_n = \langle (1, \dots, 1), (a_1, \dots, a_n) \rangle$$

Setting  $v_1 = (a_1, \ldots, a_n)$  and  $v_2 = (1, \ldots, 1)$  and using the Cauchy-Schwarz inequality, we get:

$$|\langle v_1, v_2 \rangle| \le ||v_1|| \cdot ||v_2||$$
 or  $|\langle v_1, v_2 \rangle|^2 \le ||v_1||^2 \cdot ||v_2||^2$ 

Substituting  $v_1$  and  $v_2$  back we get:

$$(a_1 + \dots + a_n)^2 \le n(a_1^2 + \dots + a_n^2) \quad \square$$

**14** Suppose  $v \in V$  and  $v \neq 0$ . Prove that  $v/\|v\|$  is the unique closest element on the unit sphere of V to v. More precisely, prove that if  $u \in V$  and  $\|u\| = 1$ , then

$$\left\|v - \frac{v}{\|v\|}\right\| \le \|v - u\|,$$

with equality only if u = v/||v||.

#### Solution:

Firstly, we calculate the value of the supposed "least norm":

$$\left\| v - \frac{v}{\|v\|} \right\| = \left| 1 - \frac{1}{\|v\|} \right| \|v\| = |\|v\| - 1|$$

Now, let us examine any u on the unit sphere of V.

$$||v - u||^2 = ||v||^2 + ||u||^2 - 2\Re\langle v, u \rangle \ge ||v||^2 - 2||u|| ||v|| + ||u||^2$$
$$= ||v||^2 - 2||v|| + 1 = (||v|| - 1)^2$$

Where we used Cauchy-Schwarz inequality. The sign is *greater than* because the inner product has minus sign in front of it. Thus indeed

$$||v - u|| \ge \left| \left| v - \frac{v}{\|v\|} \right| \right|$$

The uniqueness is also guaranteed by the Cauchy-Schwarz inequality, as it becomes equality only when one of the vectors is a scalar multiple of the other. Here, there are two options: it is either  $v/\|v\|$  or  $-v/\|v\|$ . For the second option the "distance" is obviously greater:

$$\left\| v + \frac{v}{\|v\|} \right\| = |1 + \|v\|| > |\|v\| - 1|$$

 $QED \square$ 

**15** Suppose u, v are nonzero vectors in  $\mathbb{R}^2$ . Prove that

$$\langle u, v \rangle = ||u|| ||v|| \cos \theta$$

where  $\theta$  is the angle between u and v (thinking of u and v as arrows with initial point at the origin.



Figure 6.1: Illustration for  $Prob-lem\ 6A.15$ .

Let us write the law of cosines on the triangle shown in figure in the left part of the page:

$$||u - v||^2 = ||u||^2 + ||v||^2 - 2||u|| ||v|| \cos \theta$$

At the same time:

$$||u - v||^2 = \langle u - v, u - v \rangle$$
$$= \langle u, u \rangle + \langle v, v \rangle - 2\langle u, v \rangle$$
$$= ||u||^2 + ||v||^2 - 2\langle u, v \rangle$$

Comparing right sides of these two expressions we conclude that:

$$\langle u, v \rangle = ||u|| ||v|| \cos \theta \quad \Box$$

16 The angle between two vectors (thought of as arrows with initial point at the origin) in  $\mathbb{R}^2$  or  $\mathbb{R}^3$  can be defined geometrically. However, geometry is not as clear in  $\mathbb{R}^n$  for n > 3. Thus the angle between two nonzero vectors  $x, y \in \mathbb{R}^n$  is defined to be

$$\arccos \frac{\langle x, y \rangle}{\|x\| \|y\|},$$

where the motivation for this definition comes from the previous exercise. Explain why the Cauchy-Schwarz inequality is needed to show that this definition makes sense.

#### Solution:

Note that  $\arccos x$  is defined for  $x \in [-1, 1]$ . So for the definition above to make sense, it must always produce expression under inverse cosine function that lies within this range. Cauchy-Schwarz inequality does exactly that:

$$|\langle u, v \rangle| \le ||u|| ||v||$$

for any  $u, v \in V$ . So the expression:

$$\frac{|\langle u, v \rangle|}{\|u\| \|v\|}$$

is always less than or equal to 1.  $\square$ 

## 17 Prove that

$$\left(\sum_{k=1}^{n} a_k b_k\right)^2 \le \left(\sum_{k=1}^{n} k a_k^2\right) \left(\sum_{k=1}^{n} \frac{b_k^2}{k}\right)$$

for all real numbers  $a_1, \ldots, a_n$  and  $b_1, \ldots, b_n$ .

## Solution:

Consider vectors  $v_1,v_2\in\mathbb{R}^n$  with Euclidean inner-product :

$$v_1 = (a_1, \sqrt{2}a_2, \cdots, \sqrt{n}a_n)$$
 with some  $a_1, \dots, a_n$   
 $v_2 = (b_1, \frac{b_2}{\sqrt{2}}, \cdots, \frac{b_n}{\sqrt{n}})$  and  $b_1, \dots, b_n \in \mathbb{R}$ 

By Cauchy-Schwarz inequality

$$(\langle v_1, v_2 \rangle)^2 \leqslant ||v_1||^2 ||v_2||^2$$

$$||v_1||^2 = a_1^2 + 2a_2^2 + \dots + na_n^2 = \sum_{j=1}^n ja_j^2$$

$$||v_2||^2 = b_1^2 + \frac{b_2^2}{2} + \dots + \frac{b_n^2}{n} = \sum_{j=1}^n \frac{b_j^2}{j}$$

$$\langle v_1, v_2 \rangle = a_1b_1 + \sqrt{2}a_2 \cdot \frac{b_2}{\sqrt{2}} + \dots + \sqrt{n}a_n \cdot \frac{b_n}{\sqrt{n}}$$

$$= a_1b_1 + \dots + a_nb_n = \sum_{j=1}^n a_jb_j$$

Thus  $\left(\sum_{i=1}^{n} a_{i} b_{j}\right)^{2} \leqslant \left(\sum_{i=1}^{n} j a_{i}\right) \left(\sum_{j=1}^{n} \frac{b_{j}}{j}\right) \square$ 

(a) Suppose  $f:[1,\infty)\to[0,\infty)$  is continuous. Show that

$$\left(\int_{1}^{\infty} f\right)^{2} \leq \int_{1}^{\infty} x^{2} \left(f(x)\right)^{2} dx.$$

(b) For which continuous function  $f:[1,\infty)\to [0,\infty)$  is the inequality in (a) an equality with both sides finite?

## Solution:

18

(a) To show that the inequality in this problem is true, we will first define an inner product on space V of continuous functions  $f: [1, \infty) \to [0, \infty)$ :

$$\langle f, g \rangle = \int_{1}^{\infty} x^2 f(x) g(x) dx$$

Indeed, this definition satisfies all properties of an inner product:

- Positivity: f(x) and  $g(x) \ge 0$  by definition and  $x^2 > 0$ , hence the integral is non-negative.  $\checkmark$
- Definiteness: the non-negativity of the expression under integral sign guarantees that the integral equals zero if and only if this expression is always zero.  $\checkmark$
- Additivity in first slot: this is guaranteed by the properties of intergral

$$\langle f + h, g \rangle = \int_{1}^{\infty} x^{2} (f(x) + h(x)) g(x) dx$$

$$= \int_{1}^{\infty} x^{2} f(x) g(x) dx + \int_{1}^{\infty} x^{2} h(x) g(x) dx = \langle f, g \rangle + \langle h, g \rangle \quad \checkmark$$

Homogeneity in first slot:

$$\langle \lambda f, g \rangle = \int_{1}^{\infty} x^2 \lambda f(x) g(x) dx = \lambda \int_{1}^{\infty} x^2 f(x) g(x) dx = \lambda \langle f, g \rangle$$
  $\checkmark$ 

• Conjugate symmetry is guaranteed by the fact the functions in question are real-valued.  $\checkmark$ 

Now we note that

$$\int_{1}^{\infty} f dx = \int_{1}^{\infty} x^{2} f(x) \frac{1}{x^{2}} dx = \langle f, \frac{1}{x^{2}} \rangle$$

Then we can use Cauchy-Schwarz inequality:

$$\langle f, \frac{1}{x^2} \rangle^2 \le \langle f, f \rangle \cdot \langle \frac{1}{x^2}, \frac{1}{x^2} \rangle = \int_1^\infty x^2 \left( f(x) \right)^2 dx \cdot \int_1^\infty x^2 \left( \frac{1}{x^2} \right)^2 dx$$

Using the fact that

$$\int_{1}^{\infty} \frac{1}{x^2} dx = 1$$

we arrive at the conclusion that:

$$\left(\int_{1}^{\infty} f dx\right)^{2} \le \int_{1}^{\infty} x^{2} \left(f(x)\right)^{2} dx \quad \Box$$

(b) The inequality becomes equality for  $f(x) = 1/x^2$ .

**19** Suppose  $v_1, \ldots, v_n$  is a basis of V and  $T \in \mathcal{L}(V)$ . Prove that if  $\lambda$  is an eigenvalue of T, then

$$|\lambda|^2 \le \sum_{j=1}^n \sum_{k=1}^n |\mathcal{M}(T)_{j,k}|^2,$$

where  $\mathcal{M}(T)_{j,k}$  denotes the entry in row j, column k of the matrix of T with respect to the basis  $v_1, \ldots, v_n$ .

## Solution:

For a given basis  $v_1, \ldots, v_n$  of V we will define an isomorphic space  $\mathbb{C}^n$  such that if  $v \in V$  and  $v = a_1v_1 + \cdots + a_nv_n$  then the isomorphism is defined as:

$$x = S(v) = (a_1, \dots, a_n) \in \mathbb{C}^n$$

For  $\mathbb{C}^n$  we will use a Euclidean inner product.

Now let  $v \in V$  be an eigenvector of T with eigenvalue  $\lambda$  and such that the corresponding vector  $x \in \mathbb{C}^n$  has norm ||x|| = 1. A vector in  $\mathbb{C}^n$  corresponding to Tv is  $(\sum_{j=1}^{n} a_j \mathcal{M}(T)_{j,1}, \ldots, \sum_{j=1}^{n} a_j \mathcal{M}(T)_{j,n})$ .

 $\langle S(Tv), S(Tv) \rangle = \langle \lambda x, \lambda x \rangle = |\lambda|^2$ 

Then we have:

$$\langle S(Tv), S(Tv) \rangle = \sum_{k}^{n} \left| \sum_{j=1}^{n} a_{j} \mathcal{M}(T)_{j,k} \right|^{2} = \sum_{k=1}^{n} \left| \langle x, (\mathcal{M}(T)_{1,k}, \dots, \mathcal{M}(T)_{n,k}) \rangle \right|^{2}$$

$$\leq \sum_{k=1}^{n} \|x\|^{2} \cdot \|(\mathcal{M}(T)_{1,k}, \dots, \mathcal{M}(T)_{n,k})\|^{2}$$

$$= \sum_{k=1}^{n} \sum_{j=1}^{n} |\mathcal{M}(T)_{j,k}|^{2}$$

where we used Cauchy-Schwarz inequality. Thus

$$|\lambda|^2 \le \sum_{j=1}^n \sum_{k=1}^n |\mathcal{M}(T)_{j,k}|^2 \quad \Box$$

**20** Prove that if  $u, v \in V$ , then  $||u|| - ||v||| \le ||u - v||$ .

$$||u - v||^{2} = \langle u - v, u - v \rangle$$

$$= \langle u, u \rangle + \langle v, v \rangle - 2\Re \langle u, v \rangle$$

$$\geq ||u||^{2} + ||v||^{2} - 2|\langle u, v \rangle|$$

$$\geq ||u||^{2} + ||v||^{2} - 2||u|| ||v||$$

$$= (||u|| - ||v||)^{2}$$

Thus

$$|||u|| - ||v||| \le ||u - v||$$

**21** Suppose  $u, v \in V$  are such that

$$||u|| = 3$$
,  $||u + v|| = 4$ ,  $||u - v|| = 6$ 

What number does ||v|| equal?

## Solution:

By parallelogram equality:

$$||u+v||^2 + ||u-v||^2 = 2||u||^2 + 2||v||^2$$

$$||v|| = +\left(\frac{1}{2}\left(||u+v||^2 + ||u-v||^2\right) - ||u||^2\right)^{\frac{1}{2}} =$$

$$=\left(\frac{1}{2}(16+36) - 9\right)^{1/2} = (8+18-9)^{1/2} = (8+9)^{1/2} = \sqrt{17}$$

**22** Show that if  $u, v \in V$ , then

$$||u+v|||u-v|| \le ||u||^2 + ||v||^2.$$

Solution:

$$\begin{aligned} \|u+v\|^2 \|u-v\|^2 &= \langle u+v, u+v \rangle \langle u-v, u-v \rangle \\ &= \left( \|u\|^2 + \langle u, v \rangle + \langle v, u \rangle + \|v\|^2 \right) \left( \|u\|^2 - \langle u, v \rangle - \langle v, u \rangle + \|v\|^2 \right) \\ &= \|u\|^4 - \langle u, v \rangle \|u\|^2 - \langle v, u \rangle \|u\|^2 + \|u\|^2 \|v\|^2 \\ &+ \langle u, v \rangle \|u\|^2 - \langle u, v \rangle^2 - \langle u, v \rangle \langle v, u \rangle + \langle u, v \rangle \|v\|^2 \\ &+ \langle v, u \rangle \|u\|^2 - \langle v, u \rangle \langle u, v \rangle - \langle v, u \rangle^2 + \langle v, u \rangle \|v\|^2 \\ &+ \|u\|^2 \|v\|^2 - \langle u, v \rangle \|v\|^2 - \langle v, u \rangle \|v\|^2 + \|v\|^4 \\ &= \|u\|^4 + 2\|u\|^2 \|v\|^2 + \|v\|^4 - \langle u, v \rangle^2 - 2\langle u, v \rangle \langle v, u \rangle - \langle v, u \rangle^2 \\ &= \|u\|^4 + 2\|u\|^2 \|v\|^2 + \|v\|^4 - (\langle u, v \rangle + \langle v, u \rangle)^2 \end{aligned}$$

$$= ||u||^4 + 2||u||^2||v||^2 + ||v||^4 - (\Re\langle u, v\rangle)^2$$
  
 
$$\geq ||u||^4 + 2||u||^2||v||^2 + ||v||^4 = (||u||^2 + ||v||^2)^2$$

Thus

$$||u+v|||u-v|| \le ||u||^2 + ||v||^2 \quad \Box$$

**23** Suppose  $v_1, \ldots, v_m \in V$  are such that  $||v_k|| \le 1$  for each  $k = 1, \ldots, m$ . Show that there exist  $a_1, \ldots, a_m \in \{1, -1\}$  such that

$$||a_1v_1 + \dots + a_mv_m|| \le \sqrt{m}.$$

#### Solution:

The solution to this problem is by induction:

Base case: If m = 1, then we take  $a_1 = 1$  and have  $v_1 \le \sqrt{1} = 1 \checkmark$ .

Hypothesis: If m = k then there exist  $a_1, \ldots, a_m \in \{1, -1\}$  such that  $||a_1v_1 + \cdots + a_kv_k|| \leq \sqrt{k}$ .

Inductive step: Let m = k + 1, then let  $w = a_1v_1 + \cdots + a_kv_k$ .

Choose  $a_{k+1} = 1$  if

$$||w + v_{k+1}|| \le ||w - v_{k+1}||$$

otherwise choose  $a_{k+1} = -1$ . Then we use the parallelogram equality:

$$||w + a_{k+1}v_{k+1}||^2 + ||w - a_{k+1}v_{k+1}||^2 = 2||w||^2 + 2||a_{k+1}v_{k+1}||^2 \le 2k + 2 \quad (6.1)$$

But also:

$$||w + a_{k+1}v_{k+1}||^2 + ||w - a_{k+1}v_{k+1}||^2 \ge 2||w + a_{k+1}v_{k+1}||^2$$
(6.2)

Combining (6.1) and (6.2), we arrive at:

$$||w + a_{k+1}v_{k+1}|| \le \sqrt{k+1}$$

**24** Prove or give a counterexample: If  $\|\cdot\|$  is the norm associated with an inner product on  $\mathbb{R}^2$ , then there exists  $(x,y) \in \mathbb{R}^2$  such that  $\|(x,y)\| \neq \max\{x,y\}$ .

## Solution:

In order to prove this we will try to disprove the negation of "then"-part of the statement above. The negation is that: for all pairs  $(x, y) \in \mathbb{R}^2$  it is true that  $||(x, y)|| = \max\{x, y\}$ .

Let x = -1 = y, then

$$||(x,x)|| = ||(-1,-1)|| = \max\{-1,-1\} = -1$$

But  $||(x,x)|| = \sqrt{\langle (x,x),(x,x)\rangle} = -1$ . So  $\langle \vec{x},\vec{x}\rangle = \pm i$  which contradicts positivity of the inner-product. Thus  $||(x,y)|| \neq \max\{x,y\}$ .  $\square$ 

**25** Suppose p > 0. Prove that there is an inner product on  $\mathbb{R}^2$  such that the associated norm is given by

$$||(x,y)|| = (x^p + y^p)^{1/p}$$

for all  $(x, y) \in \mathbb{R}^2$  if and only if p = 2.

#### Solution:

 $\longleftarrow$  If p=2 then the inner product clearly exists, it's the Euclidean inner product.

 $\longrightarrow$  If such inner product exists for some p. Note, that p>0, otherwise norm is not defined. Later we discuss p>0.

$$\langle (x,y),(x,y)\rangle = ||(x,y)||^2 = (x^p + y^p)^{2/p}$$

For (x, y) = (1, -1):

$$||(1,-1)|| = (1^p + (-1)^p)^{1/p} = (1 + (-1)^p)^{1/p}$$

Note that this norm cannot be equal to zero and thus is defined only for even p. So  $p=2k, k\in\mathbb{N}$ 

$$||(x,y)|| = (x^{2k} + y^{2k})^{1/2k}$$
.

Now we use parallelogram equality on vectors (0,1) and (1,0):

$$\begin{aligned} &\|(1,0)\|^2 = \left(\left(1^{2k} + 0\right)^{1/2k}\right)^2 = 1 = \|(0,1)\|^2 \\ &\|(1,1)\|^2 = \left(1^{2k} + 1^{2k}\right)^{1/k} = 2^{1/k} \\ &\|(1,-1)\|^2 = 2^{1/k} \end{aligned}$$

$$\begin{aligned} &\|(1,1)\|^2 + \|(1,-1)\|^2 = 2\left(\|(1,0)\|^2 + \|(0,1)\|^2\right) \\ &2^{1/k} + 2^{1/k} = 2 \cdot (1+1) \\ &2^{1/k} = 2 \Rightarrow k = 1 \Rightarrow p = 2 \quad \Box \end{aligned}$$

**26** Suppose V is a real inner product space. Prove that

$$\langle u, v \rangle = \frac{\|u + v\|^2 - \|u - v\|^2}{4}$$

for all  $u, v \in V$ .

$$||u+v||^2 - ||u-v||^2 = \langle u+v, u+v \rangle - \langle u-v, u-v \rangle =$$

$$= \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle - (\langle u, u \rangle - \langle u, v \rangle)$$

$$- \langle v, u \rangle + \langle v, v \rangle) = 2\langle u, v \rangle + 2\langle v, u \rangle = 4\langle u, v \rangle$$

Thus

$$\langle u, v \rangle = \frac{\|u + v\|^2 - \|u - v\|^2}{4}$$
 for all  $u, v \in V$ 

27 Suppose V is a complex inner product space. Prove that

$$\langle u, v \rangle = \frac{\|u + v\|^2 - \|u - v\|^2 + \|u + iv\|^2 i - \|u - iv\|^2 i}{4}$$

for all  $u, v \in V$ .

## Solution:

$$||u + v||^{2} = ||u||^{2} + ||v||^{2} + \langle u, v \rangle + \langle v, u \rangle$$

$$||u - v||^{2} = ||u||^{2} + ||v||^{2} - \langle u, v \rangle - \langle v, u \rangle$$

$$i \cdot ||u + iv||^{2} = i \left( ||u||^{2} - i\langle u, v \rangle + i\langle v, u \rangle + ||v||^{2} \right)$$

$$i \cdot ||u - iv||^{2} = i \left( ||u||^{2} + ||v||^{2} + i\langle u, v \rangle - i\langle v, u \rangle \right)$$

Combining these we get:

$$\begin{split} &\|u+v\|^2 - \|u-v\|^2 + i\|u+iv\|^2 - i\|u-iv\|^2 = 2\langle u,v\rangle + 2\langle v,u\rangle + \\ &+ \langle u,v\rangle - \langle v,u\rangle - (-\langle u,v\rangle) - \langle v,u\rangle = 4\langle u,v\rangle \end{split}$$

Thus

$$\langle u, v \rangle = \frac{\|u + v\|^2 - \|u - v\|^2 + \|u + iv\|^2 i - \|u - iv\|^2 i}{4}$$
 for all  $u, v \in V$ 

**28** A norm on a vector space U is a function

$$\|\cdot\|:U\to[0,\infty)$$

such that ||u|| = 0 if and only if u = 0,  $||\alpha u|| = |\alpha|||u||$  for all  $\alpha \in \mathbb{F}$  and all  $u \in U$ , and  $||u+v|| \le ||u|| + ||v||$  for all  $u, v \in U$ . Prove that a norm satisfying the parallelogram equality comes from an inner product (in other words, show that if  $||\cdot||$  is a norm on U satisfying the parallelogram equality, then there is an inner product  $\langle \cdot, \cdot \rangle$  on U such that  $||u|| = \langle u, u \rangle^{1/2}$  for all  $u \in U$ ).

29 Suppose  $V_1, \ldots, V_m$  are inner product spaces. Show that the equation

$$\langle (u_1,\ldots,u_m),(v_1,\ldots,v_m)\rangle = \langle u_1,v_1\rangle + \cdots + \langle u_m,v_m\rangle$$

defines an inner product on  $V_1 \times \cdots \times V_m$ .

#### Solution:

Positivity:  $\langle (u_1, \ldots, u_m), (u_1, \ldots, u_m) \rangle \geq 0$ 

Each  $\langle u_i, a_i \rangle \geq 0$  for all  $u_i \in V_i$ , hence their sum is also non-negative.  $\checkmark$ 

Definiteness:  $\langle (u_1, \ldots, u_m), (u_1, \ldots, u_m) \rangle = 0 \Leftrightarrow u_1, \ldots, u_m = 0$ 

 $\langle u_i, u_i \rangle$  are all nonegative, hence their sum can be zero only if each  $\langle u_i, u_i \rangle = 0$  which in turn means every  $u_i = 0$ .

Additivity in first shot:

$$\langle (u_1, \dots, u_m) + (v_1, \dots, v_m), (w_1, \dots, w_m) \rangle$$

$$= \langle (u_1 + v_1, \dots, u_m + v_m), (w_1, \dots, w_m) \rangle$$

$$= \langle u_1 + v_1, w_1 \rangle + \dots + \langle u_m + v_m, w_m \rangle$$

$$= \langle u_1, w_1 \rangle + \dots + \langle u_m, w_m \rangle + \langle v_1, w_1 \rangle + \dots + \langle v_m, w_m \rangle$$

$$= \langle (u_1, \dots, u_m), (w_1, \dots, w_m) \rangle + \langle (v_1, \dots, v_m), (\omega_1, \dots, \omega_m) \rangle \quad \checkmark$$

Homogeneity in first slot:

$$\langle \lambda (u_1, \dots, u_m), (v_1, \dots, v_m) \rangle = \langle (\lambda u_1, \dots, \lambda u_m), (v_1, \dots, v_m) \rangle$$

$$= \langle \lambda u_1, v_1 \rangle + \dots + \langle \lambda u_n, v_n \rangle = \lambda \langle u_1, v_1 \rangle + \dots + \lambda \langle u_m, v_m \rangle$$

$$= \lambda (\langle u_1, v_1 \rangle + \dots + \langle u_m, v_m \rangle) = \lambda \langle (u_1, \dots, u_m), (v_1, \dots, v_m) \rangle \quad \checkmark$$

Conjugate symmetry:

$$\langle (u_1, \dots, u_m), (v_1, \dots, v_m) \rangle = \langle u_1, v_1 \rangle + \dots + \langle u_m, v_m \rangle = \overline{\langle v_1, u_1 \rangle} + \dots + \overline{\langle v_m, u_m \rangle} = \overline{\langle v_1, u_1 \rangle} + \dots + \overline{\langle u_m, u_m \rangle} = \overline{\langle v_1, u_1 \rangle} + \dots + \overline{\langle u_m, u_m \rangle} = \overline{\langle u_1, \dots, u_m \rangle}, (v_1, \dots, v_m) \rangle \quad \checkmark$$

Thus the inner product is indeed well-defined.  $\Box$ 

**30** Suppose V is a real inner product space. For  $u, v, w, x \in V$ , define

$$\langle u + iv, w + ix \rangle_{\mathbb{C}} = \langle u, w \rangle + \langle v, x \rangle + (\langle v, w \rangle - \langle u, x \rangle)i.$$

- (a) Show that  $\langle \cdot, \cdot \rangle_{\mathbb{C}}$  makes  $V_{\mathbb{C}}$  into a complex inner product space.
- (b) Show that if  $u, v \in V$ , then

$$\langle u, v \rangle_{\mathbb{C}} = \langle u, v \rangle$$
 and  $||u + iv||_{\mathbb{C}}^2 = ||u||^2 + ||v||^2$ .

We check the properties of an inner product:

Positivity:

$$\langle u + iv, u + iv \rangle_{\mathbb{C}} = \langle u, u \rangle + \langle v, v \rangle + (\langle v, u \rangle - \langle u, v \rangle)i = \langle u, u \rangle + \langle v, v \rangle \ge 0$$

the last equality sign is because for real inner-product spaces  $\langle u, v \rangle = \langle v, u \rangle$ , and the inequality is because of positivity of the inner product.

Definiteness:

Here we can use the expression above. The sum  $\langle u, u \langle + \langle v, v \rangle$  can equal zero only if both terms equal zero (because of positivity). They, in turn, can be zero if and only if u = 0 and v = 0. Thus we have:

$$\langle u + iv, u + iv \rangle_{\mathbb{C}} = 0 \Leftrightarrow u + iv = 0 \quad \checkmark$$

Additivity in first slot:

Let  $u, v, w, x, y, z \in V$ .

$$\begin{split} \langle (u+iv) + (w+ix), y+iz \rangle_{\mathbb{C}} &= \langle (u+w) + i(v+x), y+iz \rangle_{\mathbb{C}} \\ &= \langle u+w, y \rangle + \langle v+x, z \rangle + (\langle v+x, y \rangle - \langle u+w, z \rangle) \, i \\ &= \langle u, y \rangle + \langle v, z \rangle + (\langle v, y \rangle - \langle u, z \rangle) i + \langle w, y \rangle + \langle x, z \rangle + (\langle x, y \rangle - \langle w, z \rangle) i \\ &= \langle u+iv, y+iz \rangle_{\mathbb{C}} + \langle w+ix, y+iz \rangle_{\mathbb{C}} \quad \checkmark \end{split}$$

Homogeneity in first slot:

Let  $\lambda = \alpha + i\beta \in \mathbb{C}$ .

$$\begin{split} \langle \lambda(u+iv), w+ix \rangle_{\mathbb{C}} &= \langle (\alpha u - \beta v) + i(\alpha v + \beta u), w+ix \rangle_{\mathbb{C}} \\ &= \langle \alpha u + i\alpha v, w+ix \rangle_{\mathbb{C}} + \langle -\beta v + i\beta u, w+ix \rangle_{\mathbb{C}} \\ \langle \alpha u + i\alpha v, w+ix \rangle_{\mathbb{C}} &= \langle \alpha u, w \rangle + \langle \alpha v, x \rangle + (\langle \alpha v, w \rangle - \langle \alpha u, x \rangle) i \\ &= \alpha \left( \langle v, x \rangle + (\langle v, w \rangle - \langle u, x \rangle) i \right) \\ &= \alpha \langle u+iv, w+ix \rangle_{\mathbb{C}} \\ \langle -\beta v + i\beta u, w+ix \rangle_{\mathbb{C}} &= \langle -\beta v, w \rangle + \langle \beta u, x \rangle + (\langle \beta u, w \rangle - \langle -\beta v, x \rangle) i \\ &= i\beta \left[ \langle u, w \rangle + \langle v, x \rangle + (\langle v, w \rangle - \langle u, x \rangle) i \right] \\ &= i\beta \langle u+iv, w+ix \rangle_{\mathbb{C}} \end{split}$$

Hence:

$$\langle \lambda(u+iv), w+ix \rangle_{\mathbb{C}} = \alpha \langle u+iv, w+ix \rangle_{\mathbb{C}} + i\beta \langle u+iv, w+ix \rangle_{\mathbb{C}}$$
$$= \lambda \langle u+iv, w+ix \rangle_{\mathbb{C}} \quad \checkmark$$

Conjugate symmetry:

$$\begin{split} \langle u+iv,w+ix\rangle_{\mathbb{C}} &= \langle u,w\rangle + \langle v,x\rangle + (\langle v,w\rangle - \langle u,x\rangle)i\\ &= \overline{\langle u,w\rangle + \langle v,x\rangle - (\langle v,w\rangle - \langle u,x\rangle)i}\\ &= \overline{\langle w,u\rangle + \langle x,v\rangle + (\langle x,u\rangle - \langle w,v\rangle)i}\\ &= \overline{\langle w+ix,u+iv\rangle_{\mathbb{C}}} \quad \checkmark \end{split}$$

Here we exchanged the order in real-valued inner products.

Thus,  $\langle \cdot, \cdot \rangle_{\mathbb{C}}$  makes  $V_{\mathbb{C}}$  into a complex inner product space.  $\square$ 

(b) First equation:

$$\langle u, v \rangle_{\mathbb{C}} = \langle u, v \rangle + \langle 0, 0 \rangle + (\langle 0, v \rangle - \langle u, 0 \rangle)i = \langle u, v \rangle \quad \checkmark$$

Second equation:

$$||u+iv||_{\mathbb{C}}^2 = \langle u+iv, u+iv \rangle_{\mathbb{C}} = \langle u, u \rangle + \langle v, v \rangle = ||u||^2 + ||v||^2 \quad \checkmark$$

**31** Suppose  $u, v, w \in V$ . Prove that

$$\left\| w - \frac{1}{2}(u+v) \right\|^2 = \frac{\|w - u\|^2 + \|w - v\|^2}{2} - \frac{\|u - v\|^2}{4}.$$

Solution:

$$\begin{split} \left\| \omega - \frac{1}{2}(u+v) \right\|^2 &= \left\langle w - \frac{u+v}{2}, \omega - \frac{u+v}{2} \right\rangle \\ &= \left\langle w, w \right\rangle - \left\langle w, \frac{u+v}{2} \right\rangle - \left\langle \frac{u+v}{2}, w \right\rangle + \frac{1}{4} \langle u+v, u+v \rangle \\ &= \left\langle w, w \right\rangle - \frac{1}{2} \langle w, u \right\rangle - \frac{1}{2} \langle w, v \rangle - \frac{1}{2} \langle u, w \rangle - \frac{1}{2} \langle v, w \rangle \\ &+ \frac{1}{2} \langle u, u \rangle + \frac{1}{2} \langle v, v \rangle - \frac{1}{4} \|u-v\|^2 \\ &= \frac{1}{2} \left( \langle w, w \rangle - \langle w, u \rangle - \langle u, w \rangle + \langle u, u \rangle \right) \\ &+ \frac{1}{2} \left( \langle w, w \rangle - \langle w, v \rangle - \langle v, w \rangle + \langle v, v \rangle \right) - \frac{1}{4} \|u-v\|^2 \\ &= \frac{\|w-u\|^2 + \|w-v\|^2}{2} - \frac{\|u-v\|^2}{4} \quad \Box \end{split}$$

**32** Suppose E is a subset of V with the property that  $u, v \in E$  implies  $\frac{1}{2}(u+v) \in E$ . Let  $w \in V$ . Show that there is at most one point in E that is closest to w. In other words, show that there is at most one  $u \in C$  such that

$$||w - u|| \le ||w - x||$$

for all  $x \in E$ .

#### Solution:

From the previous problem we know that:

$$\left\|\omega - \frac{1}{2}(u+v)^2\right\|^2 = \frac{\|\omega - u\|^2 + \|\omega - v\|^2}{2} - \frac{\|u - v\|^2}{4}$$
$$\|\omega - u\|^2 = \frac{1}{2}\|u - v\|^2 + 2\left\|w - \frac{1}{2}(u+v)\right\|^2 - \|\omega - v\|^2$$

Suppose u is one of the closests points in E. Then suppose v is another closest point in E, so that ||w - u|| = ||w - v|| and  $u \neq v$ . Then  $\frac{1}{2} (||w - u||^2 + ||w - v||^2) = ||w - u||^2$ . Now notice:

$$\|w - u\|^2 = \left\|w - \frac{1}{2}(u + v)\right\|^2 + \frac{1}{4}\|u - v\|^2 > \left\|w - \frac{1}{2}(u + v)\right\|^2$$

where the last inequality is true because  $||u-v|| \ge 0$  for  $u \ne v$ .

But  $\frac{1}{2}(u+v) \in E$  and  $\|w-\frac{1}{2}(u+v)\| < \|w-u\| = \|w-v\|$ . That means u and v cannot be even in the set of closest points to w. Thus it can be at most one closest point.  $\square$ 

- **33** Suppose f, g are differentiable functions from  $\mathbb{R}$  to  $\mathbb{R}^n$ .
  - (a) Show that

$$\langle f(t), g(t) \rangle' = \langle f'(t), g(t) \rangle + \langle f(t), g'(t) \rangle.$$

- (b) Suppose c is a positive number and ||f(t)|| = c for every  $t \in \mathbb{R}$ . Show that  $\langle f'(t), f(t) \rangle = 0$  for every  $t \in \mathbb{R}$ .
- (c) Interpret the result in (b) geometrically in terms of the tangent vector to a curve lying on a sphere in  $\mathbb{R}^n$  centered at the origin.

(a)

$$\langle f(t), g(t) \rangle' = \lim_{\Delta t \to 0} \frac{\langle f(t + \Delta t), g(t + \Delta t) \rangle - \langle f(t), g(t) \rangle}{\Delta t}$$

$$= \lim_{\Delta t \to 0} \frac{\langle f(t + \Delta t), g(t + \Delta t) \rangle - \langle f(t), g(t) \rangle + \langle f(t), g(t + \Delta t) \rangle - \langle f(t), g(t + \Delta t) \rangle}{\Delta t}$$

$$= \lim_{\Delta t \to 0} \frac{\langle f(t + \Delta t) - f(t), g(t + \Delta t) \rangle}{\Delta t} + \lim_{\Delta t \to 0} \frac{\langle f(t), g(t + \Delta t) - g(t) \rangle}{\Delta t}$$

$$= \left\langle \lim_{\Delta t \to 0} \frac{f(t + \Delta t) - f(t)}{\Delta t}, g(t) \right\rangle + \left\langle f(t), \lim_{\Delta t \to 0} \frac{g(t + \Delta t) - g(t)}{\Delta t} \right\rangle$$

$$= \left\langle f'(t), g(t) \right\rangle + \left\langle f(t), g'(t) \right\rangle \quad \Box$$

(b) 
$$||f(t)|| = c \Rightarrow \langle f(t), f(t) \rangle = c^{2}$$
$$\langle f'(t), f(t) \rangle = \langle f(t), f(t) \rangle' - \underbrace{\langle f(t), f'(t) \rangle}_{=\langle f'(t), f(t) \rangle}$$

Hence  $\langle f'(t), f(t) \rangle = \frac{1}{2} \langle f(t), f(t) \rangle' = \frac{1}{2} \cdot \frac{d}{dt} c^2 \equiv 0.$ 

(c) Assume for some  $\tilde{f}(t)$ :  $\langle f(t), f(t) \rangle = f_1^2(t) + \ldots + f_n^2(t) = c^2$ Thus, one can see that f(t) describes a family of parametric curves on an

*n*-dimensional sphere. Tangent to a curve is given by f'(t).  $\langle f'(t), f(t) \rangle = 0$  for all  $t \in \mathbb{R}$  means tangent vector is always orthogonal to a curve on the sphere.

**34** Use inner products to prove Apollonius's identity: In a triangle with sides of length a, b, and c, let d be the length of the line segment from the midpoint of the side of length c to the opposite vertex. Then

$$a^2 + b^2 = \frac{1}{2}c^2 + 2d^2.$$

## Solution:

Note that  $\vec{c} = \vec{a} - \vec{b}$ ,  $\frac{1}{2}\vec{c} = \vec{d} - \vec{b}$  and  $\frac{1}{2}\vec{c} = \vec{a} - \vec{d}$ . Hence

$$0 = \vec{d} - \vec{b} - \vec{a} + \vec{d} \Rightarrow \vec{d} = \frac{1}{2}(\vec{a} + \vec{b})$$

$$a^{2} + b^{2} = \|\vec{a}\|^{2} + \|\vec{b}\|^{2} = \frac{1}{2} \left( \|\vec{a} - \vec{b}\|^{2} + \|\vec{a} + \vec{b}\|^{2} \right)$$

$$= \frac{1}{2} \|c\|^{2} + \frac{1}{2} \|\vec{a} + \vec{b}\|^{2} = \frac{1}{2} \|\vec{c}\|^{2} + \frac{1}{2} \|2\vec{d}\|^{2} = \frac{1}{2} c^{2} + 2d^{2} \quad \Box$$

**35** Fix a positive integer n. The Laplacian  $\Delta p$  of a twice differentiable real-valued function p on  $\mathbb{R}^n$  is the function on  $\mathbb{R}^n$  defined by

$$\Delta p = \frac{\partial^2 p}{\partial x_1^2} + \dots + \frac{\partial^2 p}{\partial x_n^2}$$

The function p is called harmonic if  $\Delta p = 0$ .

A polynomial on  $\mathbb{R}^n$  is a linear combination of functions of the form  $x_1^{m_1} \cdots x_n^{m_n}$ , where  $m_1, \ldots, m_n$  are nonnegative integers.

Suppose q is a polynomial on  $\mathbb{R}^n$ . Prove that there exists a harmonic polynomial p on  $\mathbb{R}^n$  such that p(x) = q(x) for every  $x \in \mathbb{R}^n$  with ||x|| = 1.

## Solution:

Suppose q is a polynomial of degree  $m = \max\{m_1, \ldots, m_n\}$ . If m < 2, then q is harmonic automatically. Otherwise, let us define an operator T on the vector space of polynomials on  $\mathbb{R}^n$  of degree m:

$$Tr = \Delta \left( (1 - \|x\|^2)r \right)$$

for every polynomial r in this vector space.

Suppose  $\xi \in \text{null } T$ .

$$T\xi = \Delta ((1 - ||x||^2)\xi) = 0$$

That means,  $(1 - \|x\|^2)\xi$  is harmonic. Also,  $(1 - \|x\|^2)\xi = 0$  for all  $x \in \mathbb{R}^n$  with  $\|x\| = 1$ . Hence,  $(1 - \|x\|^2)\xi = 0$  for all  $x \in \mathbb{R}^n$ .  $1 - \|x\|^2 \neq 0$  for all possible x, thus  $\xi$  must equal zero. That means, T is injective and, because vector space is finite dimensional, is invertible.

Now define

$$p = q + (1 - ||x||^2)r$$

Obviously, p=q for every  $x\in\mathbb{R}^n$  with  $\|x\|=1$ . We wish for p to be harmonic:

$$\Delta p = 0 = \Delta q + \Delta \left( (1 - ||x||^2)r \right) = \Delta q + Tr \quad \Rightarrow \quad Tr = -\Delta q$$

As T is invertible, we can always choose r such that:

$$r = T^{-1}(\Delta q)$$

Thus, the desired polynomial p is:

$$p = q + (1 - ||x||^2) \cdot T^{-1}(\Delta q)$$

## 6B Orthonormal Bases

1 Suppose  $e_1, \ldots, e_m$  is a list of vectors in V such that

$$||a_1e_1 + \dots + a_me_m||^2 = |a_1|^2 + \dots + |a_m|^2$$

for all  $a_1, \ldots, a_m \in \mathbb{F}$ . Show that  $e_1, \ldots, e_m$  is an orthonormal list.

## Solution:

Take some  $k \in \{1, ..., m\}$  and choose  $a_k = 1$  and  $a_j = 0$  for all  $j \neq k$ . Then:

$$||a_k e_k||^2 = |a_k|^2 ||e_k||^2$$
 and  $||a_k e_k||^2 = |a_k|^2$ 

Hence,  $||e_k|| = 1$ . Repeating this process for every possibile value of k, we conclude that  $||e_i|| = 1$  for every vector in  $e_1, \ldots, e_m$ .

Now we want to show that these vectors are all orthogonal to each other. Take any  $j, k \in \{1, ..., m\}$  such that  $j \neq k$  and choose  $a_j = a_k = 1$ , with all other coefficients being zero.

$$||e_j + e_k||^2 = ||e_j||^2 + ||e_k||^2 + 2\Re\langle e_j, e_k\rangle$$

But also  $||e_j + e_k||^2 = 2$ . Therefore,  $\Re \langle e_j, e_k \rangle = 0$ . If  $\mathbb{F} = \mathbb{R}$ , then we can stop here.

If  $\mathfrak{F} = \mathbb{C}$ , then for the same pair j, k we choose  $a_j = 1$  and  $a_k = i$ .

$$||e_j + i \cdot e_k||^2 = ||e_j||^2 + ||e_k||^2 + 2\Im\langle e_j, e_k \rangle$$

And also  $||e_j + i \cdot e_k||^2 = 2$ . Therefore,  $\Im \langle e_j, e_k \rangle = 0$ .

Thus, we have shown that  $\langle e_j, e_k \rangle = 0$ . As this conclusion is true for every pair of distinct  $e_j$  and  $e_k$ , the list  $e_1, \ldots, e_m$  is orthonormal.  $\square$ 

**2** (a) Suppose  $\theta \in \mathbb{R}$ . Show that both

$$(\cos \theta, \sin \theta), (-\sin \theta, \cos \theta)$$
 and  $(\cos \theta, \sin \theta), (\sin \theta, -\cos \theta)$ 

are orthonormal bases of  $\mathbb{R}^2$ .

(b) Show that each orthonormal basis of  $\mathbb{R}^2$  is of the form given by one of the two possibilities of part (a).

## Solution:

(a) Firstly, we check the norm of the first list of vectors:

$$\|(\cos \theta, \sin \theta)\| = (\cos^2 \theta + \sin^2 \theta)^{1/2} = \sqrt{1} = 1$$
$$\|(-\sin \theta, \cos \theta)\| = ((-\sin \theta)^2 + \cos^2 \theta)^{1/2} = \sqrt{1} = 1$$

Then, we check orthogonality:

$$\langle (\cos \theta, \sin \theta), (-\sin \theta, \cos \theta) \rangle = \cos \theta \cdot (-\sin \theta) + \sin \theta \cdot \cos \theta = 0$$

Thus,  $(\cos \theta, \sin \theta)$ ,  $(-\sin \theta, \cos \theta)$  is an orthonormal basis of  $\mathbb{R}^2$ . In the same way we examine the second list of vectors:

$$\|(\sin \theta, -\cos \theta)\| = (\sin^2 \theta + (-\cos \theta)^2)^{1/2} = \sqrt{1} = 1$$
$$\langle(\cos \theta, \sin \theta), (\sin \theta, -\cos \theta)\rangle = \cos \theta \cdot \sin \theta + \sin \theta \cdot (-\cos \theta) = 0$$

Thus,  $(\cos \theta, \sin \theta)$ ,  $(\sin \theta, -\cos \theta)$  is also an orthonormal basis of  $\mathbb{R}^2$ .

(b) Suppose  $(x_1, y_1)$ ,  $(x_2, y_2)$  is some orthonormal basis of  $\mathbb{R}^2$ . Then the following equations must hold:

$$\begin{cases} x_1^2 + y_1^2 = 1\\ x_2^2 + y_2^2 = 1\\ x_1 x_2 + y_1 y_2 = 0 \end{cases}$$

Because of the first two equations in the system, we can parameterize the variables in the following way.

$$x_1 = \cos \theta$$
,  $y_1 = \sin \theta$   
 $x_2 = \sin \theta$ ,  $y_2 = \cos \theta$ 

Then checking the orthogonality:

$$\cos\theta\sin\phi + \sin\theta\cos\phi = 0$$

The sum in the left-hand side folds into a sine of a sum:

$$\sin(\theta + \phi) = 0 \implies \theta + \phi = \pi n$$

If n is even, then  $\phi = 2k\pi - \theta$  and:

$$(x_1, y_1) = (\cos \theta, \sin \theta)$$
  

$$(x_2, y_2) = (\sin 2k\pi - \theta, \cos 2k\pi - \theta) = (-\sin \theta, \cos \theta)$$

that is the first possibility from (a).

If n is odd, then  $\phi = (2k+1)\pi - \theta$  and:

$$(x_1, y_1) = (\cos \theta, \sin \theta)$$
  
 $(x_2, y_2) = (\sin (2k+1)\pi - \theta, \cos (2k+1)\pi - \theta) = (\sin \theta, -\cos \theta)$ 

that is the second possibility from (a).  $\square$ 

**3** Suppose  $e_1, \ldots, e_m$  is an orthonormal list of vectors in V and  $v \in V$ . Prove that

$$||v||^2 = |\langle v, e_1 \rangle|^2 + \dots + |\langle v, e_m \rangle|^2 \iff v \in \operatorname{span}(e_1, \dots, e_m)$$

## Solution:

 $\leftarrow$  If  $v \in \text{span}(e_1, \dots, e_m)$ , then we can regard span of a given list of orthonormal vectors as a subspace U of V with the given list as basis and  $v \in U$ , then the desired equation on the left is true.

$$\longrightarrow$$
 If  $v \in V$  and  $||v||^2 = |\langle v, e_1 \rangle|^2 + \cdots + |\langle v, e_m \rangle|^2$ .

Suppose  $v \notin \text{span}(e_1, \ldots, e_m)$ . We can construct new subspace by extending the given span to  $\text{span}(e_1, \ldots, e_m, v)$ . Applying the Gram-Schmidt procedure to it, we get vector  $e_{m+1}$  orthogonal to all other  $e_i$ :

$$e_{m+1} = \frac{v - \langle v, e_1 \rangle e_1 - \dots - \langle v, e_m \rangle e_m}{\|v - \langle v, e_1 \rangle e_1 - \dots - \langle v, e_m \rangle e_m\|}$$

Then we take inner product with v:

$$\langle v, e_{m+1} \rangle = \frac{\langle v, v \rangle - |\langle v, e_1 \rangle|^2 - \dots - |\langle v, e_m \rangle|^2}{\|v - \langle v, e_1 \rangle e_1 - \dots - \langle v, e_m \rangle e_m\|} = 0$$

Hence the list  $e_1, \ldots, e_m$  is sufficient to span v.  $\square$ 

4 Suppose n is a positive integer. Prove that

$$\frac{1}{\sqrt{2\pi}}, \frac{\cos x}{\sqrt{\pi}}, \frac{\cos 2x}{\sqrt{\pi}}, \dots, \frac{\cos nx}{\sqrt{\pi}}, \frac{\sin x}{\sqrt{\pi}}, \frac{\sin 2x}{\sqrt{\pi}}, \dots, \frac{\sin nx}{\sqrt{\pi}}$$

is an orthonormal list of vectors in  $C[-\pi, \pi]$ , the vector space of continuous real-valued functions on  $[-\pi, \pi]$  with inner product

$$\langle f, g \rangle = \int_{-\pi}^{\pi} fg$$

#### Solution:

First, we check norms:

$$\langle \frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{2\pi}} \rangle = \int_{-\pi}^{\pi} \frac{1}{2\pi} dx = \frac{1}{2\pi} (\pi - (-\pi)) = 1$$

$$\langle \frac{\cos kx}{\sqrt{\pi}}, \frac{\cos kx}{\sqrt{\pi}} \rangle = \int_{-\pi}^{\pi} \frac{\cos kx \cdot \cos kx}{\pi} dx = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos^2(kx) dx = \frac{1}{\pi} \pi = 1$$

$$\langle \frac{\sin kx}{\sqrt{\pi}}, \frac{\sin kx}{\sqrt{\pi}} \rangle = \int_{-\pi}^{\pi} \frac{\sin kx \cdot \sin kx}{\pi} dx = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin^2(kx) dx = \frac{1}{\pi} \pi = 1$$

Then we check orthogonality:

$$\left\langle \frac{1}{\sqrt{2\pi}}, \frac{\cos kx}{\sqrt{\pi}} \right\rangle = \int_{-\pi}^{\pi} \frac{1}{\sqrt{2\pi}} \cdot \frac{\cos kx}{\sqrt{\pi}} dx = \frac{1}{k\pi\sqrt{2}} \cdot \sin kx \Big|_{-\pi}^{\pi} = \frac{\sin \pi k + \sin \pi k}{k\pi\sqrt{2}} = 0$$

$$\left\langle \frac{1}{\sqrt{2\pi}}, \frac{\sin kx}{\sqrt{\pi}} \right\rangle = \int_{-\pi}^{\pi} \frac{1}{\sqrt{2\pi}} \cdot \frac{\sin kx}{\sqrt{\pi}} dx = -\frac{1}{k\pi\sqrt{2}} \cdot \cos kx \Big|_{-\pi}^{\pi} = -\frac{\cos \pi k - \cos \pi k}{k\pi\sqrt{2}} = 0$$

$$\langle \frac{\cos kx}{\sqrt{2\pi}}, \frac{\cos mx}{\sqrt{2\pi}} \rangle = \int_{-\pi}^{\pi} \frac{\cos(kx)\cos(mx)}{\pi} dx = \frac{1}{2\pi} \left( \int_{-\pi}^{\pi} \cos((k+m)x) dx + \int_{-\pi}^{\pi} \cos((k-m)x) dx \right) = 0$$

$$\langle \frac{\sin kx}{\sqrt{2\pi}}, \frac{\sin mx}{\sqrt{2\pi}} \rangle = \int_{-\pi}^{\pi} \frac{\sin (kx) \sin (mx)}{\pi} dx = \frac{1}{2\pi} \left( \int_{-\pi}^{\pi} \cos ((k+m)x) dx - \int_{-\pi}^{\pi} \cos ((k-m)x) dx \right) = 0$$

$$\langle \frac{\cos kx}{\sqrt{2\pi}}, \frac{\sin mx}{\sqrt{2\pi}} \rangle = \int_{-\pi}^{\pi} \frac{\cos(kx)\sin(mx)}{\pi} dx = \frac{1}{2\pi} \left( \int_{-\pi}^{\pi} \sin((k+m)x) dx - \int_{-\pi}^{\pi} \sin((k-m)x) dx \right) = 0$$

Thus, the list in question is indeed orthonormal.  $\Box$ 

5 Suppose  $f:[-\pi,\pi]\to\mathbb{R}$  is continuous. For each nonnegative integer k, define

$$a_k = \frac{1}{\sqrt{\pi}} \int_{-\pi}^{\pi} f(x) \cos(kx) dx$$
 and  $b_k = \frac{1}{\sqrt{\pi}} \int_{-\pi}^{\pi} f(x) \sin(kx) dx$ 

Prove that

$$\frac{a_0^2}{2} + \sum_{k=1}^{\infty} (a_k^2 + b_k^2) \le \int_{-\pi}^{\pi} f^2.$$

As the vector space of continuous functions is infinite dimensional, we can extend the list from Problem 4 to any arbitrarily large n. Using the Bessel's inequality, we get:

$$\left| \langle f, \frac{1}{\sqrt{2\pi}} \rangle \right|^2 + \sum_{k=1}^{\infty} \left( \left| \langle f, \frac{\cos kx}{\sqrt{\pi}} \rangle \right|^2 + \left| \langle f, \frac{\sin kx}{\sqrt{\pi}} \rangle \right|^2 \right) \le \langle f, f \rangle \tag{6.1}$$

Note, that

$$\langle f, \frac{1}{\sqrt{2\pi}} \rangle = \int_{-\pi}^{\pi} f(x) \frac{1}{\sqrt{2\pi}} dx = \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{\pi}} \int_{-\pi}^{\pi} f(x) \cos(0 \cdot x) dx = a_0$$

$$\langle f, \frac{\cos kx}{\sqrt{\pi}} \rangle = \frac{1}{\sqrt{\pi}} \int_{-\pi}^{\pi} f(x) \cos(kx) dx = a_k$$

$$\langle f, \frac{\sin kx}{\sqrt{\pi}} \rangle = \frac{1}{\sqrt{\pi}} \int_{-\pi}^{\pi} f(x) \sin(kx) dx = b_k$$

$$\langle f, f \rangle = \int_{-\pi}^{\pi} f(x)^2 dx$$

Inserting it into (6.1), we get:

$$\frac{a_0^2}{2} + \sum_{k=1}^{\infty} (a_k^2 + b_k^2) \le \int_{-\pi}^{\pi} f^2$$

as desired.  $\square$ 

- **6** Suppose  $e_1, \ldots, e_n$  is an orthonormal basis of V.
  - (a) Prove that if  $v_1, \ldots, v_n$  are vectors in V such that

$$||e_k - v_k|| < \frac{1}{\sqrt{n}}$$

for each k, then  $v_1, \ldots, v_n$  is a basis of V.

(b) Show that there exist  $v_1, \ldots, v_n \in V$  such that

$$||e_k - v_k|| \le \frac{1}{\sqrt{n}}$$

for each k, but  $v_1, \ldots, v_n$  is not linearly independent.

(a) V is finite-dimension, so we are left to show that  $v_1, \ldots, v_n$  is linearly independent. Suppose it is not, so that there exist such  $a_1, \ldots, a_n$  such that  $a_1v_1 + \cdots + a_nv_n = 0$ . Let us examine the following sum:

$$\sum_{i=1}^{n} ||a_{i}(e_{i} - v_{i})|| = \sum_{i=1}^{n} |a_{i}| ||e_{i} - v_{i}|| < \frac{\sum_{i=1}^{n} |a_{i}|}{\sqrt{n}}$$

On the other hand, the triangle inequality gives:

$$\sum_{i=1}^{n} \|a_{i}(e_{i} - v_{i})\| \ge \|\sum_{i=1}^{n} a_{i}(e_{i} - v_{i})\| = \|\sum_{i=1}^{n} a_{i}e_{i} - \sum_{i=1}^{n} a_{i}v_{i}\| = \|\sum_{i=1}^{n} a_{i}e_{i}\|$$

Thus, we have:

$$\|\sum_{i=1}^{n} a_i e_i\| < \frac{\sum_{i=1}^{n} |a_i|}{\sqrt{n}}$$

Squaring both sides of the inequality, we get:

$$\|\sum_{i=1}^{n} a_{i}e_{i}\|^{2} = \sum_{i=1}^{n} |a_{i}|^{2} < \frac{\left(\sum_{i=1}^{n} |a_{i}|\right)^{2}}{n}$$

We know from Problem 6A.13 that:

$$n\sum_{i=1}^{n}|a_{i}|^{2}\geq\left(\sum_{i=1}^{n}|a_{i}|\right)^{2}$$

Thus we have contradiction and our assumption that  $v_1, \ldots, v_n$  could be not linearly independent is wrong. Hence,  $v_1, \ldots, v_n$  is a basis of V indeed.  $\square$ 

(b) Let  $V = \mathbb{R}^2$  with Euclidean norm and  $e_1 = (1,0)$ ,  $e_2 = (0,1)$ . Then choose  $v_1 = (\frac{1}{2}, -\frac{1}{2})$  and  $v_2 = (-\frac{1}{2}, \frac{1}{2})$ . Clearly,  $v_1 = -v_2$ , so the list  $v_1, v_2$  is not linearly independent. Meanwhile:

$$||e_1 - v_1|| = \sqrt{(1 - \frac{1}{2})^2 + (0 + \frac{1}{2})^2} = \sqrt{\frac{1}{4} + \frac{1}{4}} = \frac{1}{\sqrt{2}}$$

$$||e_2 - v_2|| = \sqrt{(0 + \frac{1}{2})^2 + (1 - \frac{1}{2})^2} = \sqrt{\frac{1}{4} + \frac{1}{4}} = \frac{1}{\sqrt{2}}$$

7 Suppose  $T \in \mathcal{L}(\mathbb{R}^3)$  has an upper-triangular matrix with respect to the basis (1,0,0),(1,1,1),(1,1,2). Find an orthonormal basis of  $\mathbb{R}^3$  with respect to which T has an upper-triangular matrix.

## Solution:

To find such basis, we have to apply the Gram-Schmidt procedure to the given basis, as it guarantees that T will have an upper-triangular matrix with respect to the produced orthonormal basis.

Let  $v_1 = (1, 0, 0)$ ,  $v_2 = (1, 1, 1)$ ,  $v_3 = (1, 1, 2)$ .  $v_1$  is already normalized, so we can choose  $e_1 = v_1 = (1, 0, 0)$ .

$$\langle v_2, e_1 \rangle = 1$$
  
 $f_2 = v_2 - \langle v_2, e_1 \rangle e_1 = (1, 1, 1) - (1, 0, 0) = (0, 1, 1)$   
 $||f_2|| = \sqrt{0^2 + 1^2 + 1^2} = \sqrt{2}$ 

Hence  $e_2 = (0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}).$ 

$$\begin{aligned} \langle v_3, e_1 \rangle &= 1 \\ \langle v_3, e_2 \rangle &= 0 + \frac{1}{\sqrt{2}} + 2 \cdot \frac{1}{\sqrt{2}} = \frac{3}{\sqrt{2}} \\ f_3 &= v_3 - \langle v_3, e_1 \rangle e_1 - \langle v_3, e_2 \rangle e_2 \\ &= (1, 1, 2) - (1, 0, 0) - \frac{3}{\sqrt{2}} (0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) = (0, -\frac{1}{2}, \frac{1}{2}) \\ \|f_3\| &= \sqrt{\left(-\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \frac{1}{\sqrt{2}} \end{aligned}$$

Hence  $e_3=(0,-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$ , and the required orthonormal basis is (1,0,0),  $(0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}), (0,-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$ .

- 8 Make  $\mathcal{P}_2(\mathbb{R})$  into an inner product space by defining  $\langle p,q\rangle=\int_0^1 pq$  for all  $p,q\in\mathcal{P}_2(\mathbb{R})$ .
- (a) Apply the Gram-Schmidt procedure to the basis  $1, x, x^2$  to produce an orthonormal basis of  $\mathcal{P}_2(\mathbb{R})$ .
- (b) The differentiation operator (the operator that takes p to p') on  $\mathcal{P}_2(\mathbb{R})$  has an upper-triangular matrix with respect to the basis  $1, x, x^2$ , which is not an orthonormal basis. Find the matrix of the differentiation operator on  $\mathcal{P}_2(\mathbb{R})$  with respect to the orthonormal basis produced in (a) and verify that this matrix is upper triangular, as expected from the proof of 6.37.

(a) Let  $p_1 = 1$ ,  $p_2 = x$ ,  $p_3 = x^2$ .  $||p_1|| = 1$ , so we can take  $e_1 = 1$ .

$$\begin{split} \langle p_2, e_1 \rangle &= \int_0^1 x \cdot 1 dx = \frac{x^2}{2} \Big|_0^1 = \frac{1}{2} \\ q_2 &= p_2 - \langle p_2, e_1 \rangle e_1 = x - \frac{1}{2} \\ \|q_2\|^2 &= \int_0^1 (x - \frac{1}{2})^2 dx = \frac{(x - 1/2)^3}{3} \Big|_0^1 = \frac{1}{12} \\ e_2 &= q_2 / \|q_2\| = \sqrt{3}(2x - 1) \end{split}$$

$$\begin{split} \langle p_3, e_1 \rangle &= \int_0^1 x^2 \cdot 1 dx = \frac{x^3}{3} \Big|_0^1 = \frac{1}{3} \\ \langle p_3, e_2 \rangle &= \int_0^1 x^2 \sqrt{3} (2x - 1) dx = \sqrt{3} \int_0^1 (2x^3 - x^2) dx \\ &= \sqrt{3} \left( 2\frac{x^4}{4} - \frac{x^3}{3} \right) \Big|_0^1 = \frac{1}{2\sqrt{3}} \\ q_3 &= p_3 - \langle p_3, e_1 \rangle e_1 - \langle p_3, e_2 \rangle e_2 = x^2 - \frac{1}{3} - \frac{1}{2\sqrt{3}} \sqrt{3} (2x - 1) = x^2 - x - \frac{1}{6} \\ \|q_3\|^2 &= \int_0^1 (x^2 - x - \frac{1}{6})^2 dx = \int_0^1 \left( x^4 - 2x^3 + \frac{4}{3}x^2 - \frac{1}{3}x + \frac{1}{36} \right) dx \\ &= \left( \frac{x^5}{5} - \frac{x^4}{2} + \frac{4x^3}{9} - \frac{x^2}{6} + \frac{x}{36} \right) \Big|_0^1 = \frac{1}{180} \\ e_3 &= q_3 / \|q_3\| = 6\sqrt{5} \left( x^2 - x + \frac{1}{6} \right) \end{split}$$

Thus, the required orthonormal basis is:  $1, \sqrt{3}(2x-1), 6\sqrt{5}(x^2-x+\frac{1}{6})$ .

(b) We examine how the differentiation operator acts on the basis in order to construct the matrix of this operator.

$$D(e_1) = 1' = 0$$

$$D(e_2) = \left(\sqrt{3}(2x - 1)\right)' = \sqrt{3} \cdot 2 = 2\sqrt{3}e_1$$

$$D(e_3) = \left(6\sqrt{5}(x^2 - x + \frac{1}{6})\right)' = 6\sqrt{5}(2x - 1) = \frac{6\sqrt{5}}{\sqrt{3}}e_2$$

So the matrix is:

$$\mathcal{M}(D) = \begin{pmatrix} 0 & 2\sqrt{3} & 0\\ 0 & 0 & \frac{6\sqrt{5}}{\sqrt{3}}\\ 0 & 0 & 0 \end{pmatrix}$$

upper-triangular indeed.

**9** Suppose  $e_1, \ldots, e_m$  is the result of applying the Gram-Schmidt procedure to a linearly independent list  $v_1, \ldots, v_m$  in V. Prove that  $\langle v_k, e_k \rangle > 0$  for each  $k = 1, \ldots, m$ .

#### Solution:

In the Gram-Schmidt procedure every vector  $e_k$  is written as  $f_k/\|f_k\|$  where  $f_k$  is:

$$f_k = v_k - \langle v_k, e_1 \rangle e_1 - \dots - \langle v_k, e_{k-1} \rangle e_{k-1}$$

Take the inner product of  $f_k$  with  $v_k$ :

$$\langle f_k, v_k \rangle = \langle v_k, v_k \rangle - |\langle v_k, e_1 \rangle|^2 - \dots - |\langle v_k, e_{k-1} \rangle|^2 > 0$$

where we used Bessel's inequality in the end. Here the sign is *greater*, because equality can be only if  $v_k \in \text{span}(e_1, \dots, e_{k-1})$ , which is not the case.

Thus, 
$$\langle f_k, v_k \rangle > 0$$
, so  $\langle v_k, e_k \rangle > 0$  as well.  $\square$ 

10 Suppose  $v_1, \ldots, v_m$  is a linearly independent list in V. Explain why the orthonormal list produced by the formulas of the Gram-Schmidt procedure is the only orthonormal list  $e_1, \ldots, e_m$  in V such the  $\langle v_k, e_k \rangle > 0$  and  $\mathrm{span}(v_1, \ldots, v_k) = \mathrm{span}(e_1, \ldots, e_k)$  for each  $k = 1, \ldots, m$ .

#### Solution:

If we choose  $e'_k = -e_k$  for some  $k \in \{1, \dots, m\}$ , then

$$\langle v_k, e_k' \rangle = -\langle v_k, e_k \rangle < 0$$

Any other option will fail the condition on spans.

The fist vector must always be either  $v_1/||v_1||$ , otherwise spans will be different. Then if we take some  $e'_2$  not generated by the Gram-Schmidt procedure, then it must be a linear combination of "Gram-Schmidt"-vectors, so  $\operatorname{span}(e_1, e'_2) \neq \operatorname{span}(e_1, e_2) = \operatorname{span}(v_1, v_2)$ . The same logic can be applied at any step of choosing some  $e_k$ .

Thus, the only option for both conditions to hold is the list generated by the Gram-Schmidt procedure.  $\Box$ 

# 11 Find a polynomial $q \in \mathcal{P}_2(\mathbb{R})$ such that $p(\frac{1}{2}) = \int_0^1 pq$ for every $p \in \mathcal{P}_2(\mathbb{R})$ . Solution:

Here we have a linear functional:  $\varphi(p) = p(\frac{1}{2})$ ; and we need to find a polynomial such that the inner product  $\langle p,q\rangle$  represents this linear functional. We already know the orthonormal basis from the *Problem 6B.8*, so we only need to compute the coefficients in the representation.

$$\varphi(e_1) = e_1(\frac{1}{2}) = 1$$

$$\varphi(e_2) = e_2(\frac{1}{2}) = \sqrt{3}(2 \cdot \frac{1}{2} - 1) = 0$$

$$\varphi(e_3) = e_3(\frac{1}{2}) = 6\sqrt{5}(\frac{1}{4} - \frac{1}{2} + \frac{1}{6}) = -\frac{\sqrt{5}}{2}$$

$$q = \overline{\varphi(e_1)e_1} + \overline{\varphi(e_2)e_2} + \overline{\varphi(e_3)e_3} = 1 + \left(-\frac{\sqrt{5}}{2}\right) \cdot 6\sqrt{5}\left(x^2 - x + \frac{1}{6}\right)$$

Thus,  $q = -15x^2 + 15x - \frac{3}{2}$ .

**12** Find a polynomial  $q \in \mathcal{P}_2(\mathbb{R})$  such that

$$\int_0^1 p(x)\cos(\pi x)dx = \int_0^1 pq$$

for every  $p \in \mathcal{P}_2(\mathbb{R})$ .

#### Solution:

Once again we will use the basis from Problem 8.

$$\varphi(e_1) = \int_0^1 \cos(\pi x) dx = 0$$

$$\varphi(e_2) = \int_0^1 \sqrt{3} (2x - 1) \cos(\pi x) dx = \frac{-4\sqrt{3}}{\pi^2}$$

$$\varphi(e_3) = \int_0^1 6\sqrt{5} (x^2 - x + \frac{1}{6}) \cos(\pi x) dx = 0$$

Hence:

$$q(x) = -\frac{12}{\pi^2}(2x - 1)$$

13 Show that a list  $v_1, \ldots, v_m$  of vectors in V is linearly dependent if and only if the Gram-Schmidt formula in 6.32 produces  $f_k = 0$  for some  $k \in \{1, \ldots, m\}$ .

## Solution:

 $\leftarrow$  Suppose  $f_k = 0$  for some k. Then:

$$0 = v_k - \frac{\langle v_k, f_1 \rangle}{\|f_1\|^2} f_1 - \dots - \frac{\langle v_k, f_{k-1} \rangle}{\|f_{k-1}\|^2} f_{k-1}$$

or

$$v_k = \frac{\langle v_k, f_1 \rangle}{\|f_1\|^2} f_1 + \dots + \frac{\langle v_k, f_{k-1} \rangle}{\|f_{k-1}\|^2} f_{k-1}$$

every  $f_j$  in this sum is a linear combination of vectors  $v_1, \ldots, v_{k-1}$ , hence  $v_k$  is a linear combination of vectors  $v_1, \ldots, v_{k-1}$  too. It means the list  $v_1, \ldots, v_k$  is linearly dependent and hence  $v_1, \ldots, v_m$  is also linearly dependent.

 $\longrightarrow$  Suppose  $v_1,\ldots,v_m$  is linearly dependent. It means, there is  $k\in\{1,\ldots,m\}$  such that  $v_k\in\operatorname{span}(v_1,\ldots,v_{k-1})$ . Because  $\operatorname{span}(v_1,\ldots,v_{k-1})=\operatorname{span}(e_1,\ldots,e_{k-1}),\ v_k\in\operatorname{span}(e_1,\ldots,e_{k-1})$ . The span of orthonormal list  $e_1,\ldots,e_{k-1}$  is a subspace and we can regard this list as a basis of this subspace. Then, the vector  $v_k$  can be expressed as follows:

$$v_k = \langle v_k, e_1 \rangle + \dots + \langle v_k, e_{k-1} \rangle$$

Now, let us examine the vector  $f_k$  of the Gram-Schmidt procedure:

$$f_k = v_k - \frac{\langle v_k, f_1 \rangle}{\|f_1\|^2} f_1 - \dots - \frac{\langle v_k, f_{k-1} \rangle}{\|f_{k-1}\|^2} f_{k-1}$$
$$= v_k - \langle v_k, e_1 \rangle e_1 - \dots - \langle v_k, e_{k-1} \rangle e_{k-1} = 0 \quad \Box$$

14 Suppose V is a real inner product space and  $v_1, \ldots, v_m$  is a linearly independent list of vectors in V. Prove that there exist exactly  $2^m$  orthonormal lists  $e_1, \ldots, e_m$  of vectors in V such that

$$\operatorname{span}(v_1,\ldots,v_k) = \operatorname{span}(e_1,\ldots,e_k)$$

for all  $k \in \{1, ..., m\}$ .

#### Solution:

Gram-Schmidt procedure gives a list  $e_1, \ldots, e_m$  such that  $\mathrm{span}(v_1, \ldots, v_k) = \mathrm{span}(e_1, \ldots, e_k)$  for all  $k \in \{1, \ldots, m\}$ . We can get other orthonormal lists by modifying the list of Gram-Schmidt procedure. Take some  $e_k$  and multiply it by -1. This operation does not change the span of the list, but changes the list itself.

Other options, as we have seen in  $Problem\ 6B.10$ , change span, so they cannot be taken.

Therefore we have two options for every vector  $e_k$ , making the total number of possible lists equal  $2^m$ .  $\square$ 

**15** Suppose  $\langle \cdot, \cdot \rangle_1$  and  $\langle \cdot, \cdot \rangle_2$  are inner products on V such that  $\langle u, v \rangle_1 = 0$  if and only if  $\langle u, v \rangle_2 = 0$ . Prove that there is a positive number c such that  $\langle u, v \rangle_1 = c \langle u, v \rangle_2$  for every  $u, v \in V$ .

**Solution:** Suppose v and w are arbitrary non-orthogonal vectors in V, so none of them is zero. Then write as follows:

$$\begin{split} 0 &= \langle v, w \rangle_1 - \langle v, w \rangle_1 \cdot \frac{\langle v, v \rangle_1}{\langle v, v \rangle_1} = \langle v, w \rangle_1 - \langle v, \frac{\overline{\langle v, w \rangle_1}}{\langle v, v \rangle_1} v \rangle_1 \\ &= \langle v, w - \frac{\langle w, v \rangle_1}{\langle v, v \rangle_1} v \rangle_1 = 0 = \langle v, w - \frac{\langle w, v \rangle_1}{\langle v, v \rangle_1} v \rangle_2 \\ &= \langle v, w \rangle_2 - \langle v, v \rangle_2 \cdot \frac{\langle v, w \rangle_1}{\langle v, v \rangle_1} \quad \Longrightarrow \quad \langle v, w \rangle_2 = \frac{\|v\|_2^2}{\|v\|_1^2} \langle v, w \rangle_1 \end{split}$$

In a similar way we can write:

$$\begin{split} 0 &= \langle v, w \rangle_1 - \langle v, w \rangle_1 \cdot \frac{\langle w, w \rangle_1}{\langle w, w \rangle_1} = \langle v, w \rangle_1 - \langle \frac{\langle v, w \rangle_1}{\langle w, w \rangle_1} w, w \rangle_1 \\ &= \langle v - \frac{\langle v, w \rangle_1}{\langle w, w \rangle_1} w, w \rangle_1 = 0 = \langle v - \frac{\langle v, w \rangle_1}{\langle w, w \rangle_1} w, w \rangle_2 \\ &= \langle v, w \rangle_2 - \langle w, w \rangle_2 \cdot \frac{\langle v, w \rangle_1}{\langle w, w \rangle_1} \implies \langle v, w \rangle_2 = \frac{\|w\|_2^2}{\|w\|_1^2} \langle v, w \rangle_1 \end{split}$$

We see that  $\langle v,v\rangle_2/\langle v,v\rangle_1=\langle w,w\rangle_2/\langle w,w\rangle_1$ . But as we took arbitrary non-zero vectors, it follows that the ratio  $\langle u,u\rangle_2/\langle u,u\rangle_1$  is the same for any  $u\in V,\ u\neq 0$ . This ratio is a positive number, as both numerator and denumenator are positive. Thus, there is a positive number c such that  $\langle u,v\rangle_1=c\langle u,v\rangle_2$  for every  $u,v\in V$ .  $\square$ 

**16** Suppose V is finite-dimensional. Suppose  $\langle \cdot, \cdot \rangle_1$  and  $\langle \cdot, \cdot \rangle_2$  are inner products on V with corresponding norms  $\| \cdot \|_1$  and  $\| \cdot \|_2$ . Prove that there exists a positive number c such that  $\|v\|_1 \leq c\|v\|_2$  for every  $v \in V$ .

#### Solution:

We know from previous problem that there is a positive number k such that  $\langle u, v \rangle_1 = k \langle u, v \rangle_2$  for every  $u, v \in V$ . Let u = v. Then we get  $\langle v, v \rangle_1 = c \langle v, v \rangle_2$ 

for every  $v \in V$ . As k is positive, we can take square root on both sides and get:

$$||v||_1 = \sqrt{k}||v||_2$$

Choose any  $c > \sqrt{k}$  to get the desired inequality  $||v||_1 \le c||v||_2$ .  $\square$ 

17 Suppose  $\mathbb{F} = \mathbb{C}$  and V is finite-dimensional. Prove that if T is an operator on V such that 1 is the only eigenvalue of T and  $||Tv|| \leq ||v||$  for all  $v \in V$ , then T is the identity operator.

#### Solution:

Let  $e_1, \ldots, e_n$  be an orthonormal basis of V such that matrix of T with respect to this basis is upper-triangular. Using 5.41, we conclude that all diagonal entries in the matrix equal 1.

T acts on some basis vector  $e_k$  like:

$$Te_k = e_k + \sum_{j=1}^{k-1} A_{j,k} e_j$$

Using the property of T we get:

$$||Te_k|| \le ||e_k|| = 1$$

At the same time:

$$\|Te_k\| = \sqrt{\|e_k + \sum_{j=1}^{k-1} A_{j,k} e_j\|^2} = \sqrt{1 + \sum_{j=1}^{k-1} |A_{j,k}|^2}$$

Thus,  $\sqrt{1 + \sum_{j=1}^{k-1} |A_{j,k}|^2} \le 1$ , which is possible only if  $\sum_{j=1}^{k-1} |A_{j,k}|^2 = 0$ .

As it is true for any  $e_k$ , we conclude that the only non-zero matrix elements are diagonal elements, which are equal to 1. It means, that T is the identity operator.  $\square$ 

**18** Suppose  $u_1, \ldots, u_m$  is a linearly independent list in V. Show that there exists  $v \in V$  such that  $\langle u_k, v \rangle = 1$  for all  $k \in \{1, \ldots, m\}$ .

# Solution:

Let  $U = \operatorname{span}(u_1, \dots, u_m)$ . For a  $w \in U$ :  $w = a_1u_1 + \dots + a_mu_m$ , define a linear functional  $\varphi(w) = a_1 + \dots + a_m$ . By the Riesz representation theorem there is a unique  $v \in V$  such that  $\varphi(w) = \langle w, v \rangle$ .

Now note that for every  $k \in \{1, ..., m\}$  the value of the linear functional is  $\varphi(u_k) = 1$ . Thus  $\langle u_k, v \rangle = 1$ , as desired.  $\square$ 

**19** Suppose  $v_1, \ldots, v_n$  is a basis of V. Prove that there exists a basis  $u_1, \ldots, u_n$  of V such that

$$\langle v_j, u_k \rangle = \begin{cases} 0 & \text{if } j \neq k, \\ 1 & \text{if } j = k. \end{cases}$$

#### Solution:

Take the dual basis  $\varphi_1, \ldots, \varphi_n$  of the given basis  $v_1, \ldots, v_n$ . Every linear functional in this dual basis is defined as:

$$\varphi_k(v_j) = \begin{cases} 1 & \text{if } j = k, \\ 0 & \text{if } j \neq k. \end{cases}$$

By the Riesz representation theorem there exist such vectors  $u_1, \ldots, u_n$  such that  $\langle v_j, u_k \rangle = \varphi_k(v_j)$ . That gives the desired values of the inner products. Now we need to show that  $u_1, \ldots, u_n$  is also a basis of V. Let  $a_1, \ldots, a_n \in \mathbb{F}$  be such that:

$$a_1u_1\cdots a_nu_n=0$$

Take the inner product of this linear combination with some  $v_k$  from the old basis:

$$\langle a_1 u_1 + \dots + a_n u_n, v_k \rangle = a_k \langle u_k, v_k \rangle = a_k$$

At the same time:

$$\langle a_1 u_1 + \dots + a_n u_n, v_k \rangle = \langle 0, v_k \rangle = 0$$

We conclude from it that  $a_k = 0$  for any  $k \in \{1, ..., n\}$ . So  $u_1, ..., u_n$  is linearly independent and hence is a basis of V.  $\square$ 

**20** Suppose  $\mathbb{F} = \mathbb{C}$ , V is finite-dimensional, and  $\mathcal{E} \subset \mathcal{L}(V)$  is such that

$$ST = TS$$

for all  $S, T \in \mathcal{E}$ . Prove that there is an orthonormal basis of V with respect to which every element of  $\mathcal{E}$  has an upper-triangular matrix.

#### Solution:

TS = ST for every  $S, T \in \mathcal{E}$ , hence all elements of  $\mathcal{E}$  have an upper-triangular matrix with respect to the same basis  $v_1, \ldots, v_n$  (Proposition 5.80 applied to every pair of elements). Apply Gram-Schmidt procedure to this basis. As span  $(e_1, \ldots, e_k) = \operatorname{span}(v_1, \ldots, v_k)$  for every  $k \in \{1, \ldots, n\}$ , span  $(e_1, \ldots, e_k)$  is invariant under every  $T \in \mathcal{E}$  for every  $k \in \{1, \ldots, n\}$ . Thus,  $e_1, \ldots, e_n$  is an orthonormal basis, such that every element of  $\mathcal{E}$  has an upper-triangular matrix with respect to it.  $\square$ 

**21** Suppose  $\mathbb{F} = \mathbb{C}$ , V is finite-dimensional,  $T \in \mathcal{L}(V)$ , and all eigenvalues of T have absolute value less than 1. Let  $\epsilon > 0$ . Prove that there exists a positive integer m such that  $||T^m v|| \le \epsilon ||v||$  for every  $v \in V$ .

#### Solution:

By the Schur's theorem, there is some orthonormal basis  $e_1, \ldots, e_n$  such that the matrix of T with respect to this basis is upper-triangular.

Note, that is we change all entries in the matrix of the operator to their absolute values, the norm ||Tv|| is greater or equal to the norm of the original Tv. Also, we can change all diagonal entries (eigenvalues of T) to the maximum eigenvalue. Thus we have constructed an operator A such that:

$$\mathcal{M}(A)_{i,j} = |\mathcal{M}(T)| \quad \text{if } i \neq j;$$
  
 $\mathcal{M}(A)_{i,i} = \max\{|\lambda_k|\}$ 

For this operator,  $||Tv|| \le ||Av||$  and hence  $||T^mv|| \le ||A^mv||$ .

Let us denote the value of diagonal elements of  $\mathcal{M}(A)$  as  $\lambda$ . Then we can write:

$$A = \lambda I + N$$

where the matrix of N with respect to the basis  $e_1, \ldots, e_n$  has all diagonal elements equal to zero.

By 5.27, the minimal polynomial of N is  $(z-0)^n=0$  hence  $N^n=0$ . Take any  $m\geq n$ , then

$$A^{m} = (\lambda I + N)^{m} = \lambda^{m} I + m\lambda^{m-1} N + \dots + \frac{m!}{(m-n+1)!(n-1)!} \lambda^{m-n+1} N^{n-1}$$

The coefficients in the expansion of A in the limit of  $m \to \infty$  are:

$$\lim_{m \to \infty} \frac{m!}{(m-k)!k!} \lambda^{m-k} = \lim_{m \to \infty} \frac{\lambda^m}{k!} = 0 \quad (\text{as } \lambda < 0)$$

Thus, taking m sufficiently large we can make every coefficient in this sum as small as we wish. This sum is finite, so we can make every entry of  $A^m$  as small as we wish. Take m such that  $\mathcal{M}(A)_{j,k} \leq \epsilon/\sqrt{n}$  for every j and k. Then:

$$||A^m e_k||^2 = \left\| \sum_{j=1}^n \mathcal{M}(A)_{j,k} e_j \right\|^2 = \sum_{j=1}^n |\mathcal{M}(A)_{j,k}|^2 \le \sum_{j=1}^n \frac{\epsilon^2}{n} = \epsilon^2$$

$$||A^{m}v|| = ||A^{m}(a_{1}e_{1}\cdots a_{n}e_{n})||^{2} = |a_{1}|^{2}||A^{m}e_{1}||^{2} + \cdots + |a_{n}|^{2}||A^{m}e_{n}||^{2}$$

$$\leq |a_{1}|^{2}\epsilon^{2} + \cdots + |a_{n}|^{2}\epsilon^{2} = \epsilon^{2}(|a_{1}|^{2} + \cdots + |a_{n}|^{2}) = \epsilon^{2}||v||^{2}$$

Thus,  $||T^m v|| \le ||A^m v|| \le \epsilon ||v||$  as desired.  $\square$ 

**22** Suppose C[-1,1] is the vector space of continuous real-valued functions on the interval [-1,1] with inner product given by

$$\langle f, g \rangle = \int_{-1}^{1} fg$$

for all  $f, g \in \mathcal{C}[-1, 1]$ . Let  $\varphi$  be the linear functional on  $\mathcal{C}[-1, 1]$  defined by  $\varphi(f) = f(0)$ . Show that there does not exist  $g \in \mathcal{C}[-1, 1]$  such that

$$\varphi(f) = \langle f, g \rangle$$

for every  $f \in \mathcal{C}[-1,1]$ .

# Solution:



Figure 6.2: Illustration for  $Problem\ 6B.22$ 

Take two continous functions defined on the interval [-1,1]:  $f(x) = x^2$  and  $h(x) = \sin(\pi x/2)$ . The linear functional defined in the problem should give in both cases:  $\varphi(f) = f(0) = 0$  and  $\varphi(h) = h(0) = 0$ . Suppose there exists  $g \in \mathcal{C}[-1,1]$  such that it represents the given linear functional. Thus we need that both inner products equal zero:

$$\int_{-1}^{1} x^{2} g(x) dx = 0$$
$$\int_{-1}^{1} \sin(\pi x/2) g(x) dx = 0$$

The only function that can make both of these integrals equal zero is g(x) = 0. But

then such g(x) won't give the correct value of functional of functions such as  $p(x) = x^2 + 1$ . Hence, there does not exist such g(x).  $\square$ 

# 6C Orthogonal Complements and Minimization Problems

**1** Suppose  $v_1, \ldots, v_m \in V$ . Prove that

$$\{v_1,\ldots,v_m\}^{\perp}=(\operatorname{span}(v_1,\ldots,v_m))^{\perp}$$

#### Solution:

Suppose  $u \in \{v_1, \ldots, v_m\}^{\perp}$ . Examine the inner product of u with a vector from span $(v_1, \ldots, v_m)$ :

$$\langle a_1 v_1 + \dots + a_m v_m, u \rangle = a_1 \langle v_1, u \rangle + \dots + a_m \langle v_m, u \rangle = 0$$

where the last equal sign is there because  $u \in \{v_1, \dots, v_m\}^{\perp}$ .

Hence  $\{v_1, \ldots, v_m\}^{\perp} \subseteq (\operatorname{span}(v_1, \ldots, v_m))^{\perp}$ .

Then, note that  $\{v_1, \ldots, v_m\} \subset \operatorname{span}(v_1, \ldots, v_m)$ . Therefore, by 6.48e,  $(\operatorname{span}(v_1, \ldots, v_m))^{\perp} \subseteq \{v_1, \ldots, v_m\}^{\perp}$ .

Thus we have shown inclusion on both sides, hence  $\{v_1, \ldots, v_m\}^{\perp} = (\operatorname{span}(v_1, \ldots, v_m))^{\perp}$ .  $\square$ 

**2** Suppose U is a subspace of V with basis  $u_1, \ldots, u_m$  and

$$u_1,\ldots,u_m,v_1,\ldots,v_n$$

is a basis of V. Prove that if the Gram-Schmidt procedure is applied to the basis of V above, producing a list  $e_1, \ldots, e_m, f_1, \ldots, f_n$ , then  $e_1, \ldots, e_m$  is an orthonormal basis of U and  $f_1, \ldots, f_n$  is an orthonormal basis of  $U^{\perp}$ .

# Solution:

The Gram-Schmidt procedure does not change span of the successive lists of vectors. Thus,  $\operatorname{span}(e_1, \ldots e_m) = \operatorname{span}(u_1, \ldots, u_m) = U$ , so  $e_1, \ldots, e_m$  is an orthonormal basis of U.

As the basis produced by the Gram-Schmidt procedure is orthonormal, we can see that any  $w = b_1 f_1 + \cdots + b_n f_n$  is orthogonal to any vector in U:

$$\langle w, u \rangle = \langle b_1 f_1 + \cdots b_n f_n, a_1 e_1 + \cdots a_m e_m \rangle = \sum_{i=1}^n \sum_{j=1}^m b_i \overline{a_j} \langle f_i, e_j \rangle = 0$$

So, any such vector w is in  $U^{\perp}$ .

V is finite-dimensional, as is U, with  $\dim V = n + m$  and  $\dim U = m$ . Hence, by 6.51,  $\dim U^{\perp} = n$ . Note, that  $f_1, \ldots, f_n$  is linearly independent list with length of n and all its vector are in  $U^{\perp}$ , hence it must be a basis of  $U^{\perp}$ . This list is orthonormal, thus we have shown that  $f_1, \ldots, f_n$  is an orthonormal basis of  $U^{\perp}$ .  $\square$ 

**3** Suppose U is the subspace of  $\mathbb{R}^4$  defined by

$$U = \text{span}((1, 2, 3, -4), (-5, 4, 3, 2)).$$

Find an orthonormal basis of U and an orthonormal basis of  $U^{\perp}$ .

# Solution:

Firstly, we find an orthonormal basis of U. To do that, apply the Gram-Schmidt procedure to the given (linearly independent) list:

$$||(1,2,3,-4)|| = \sqrt{1+2^2+3^3+(-4)^2} = \sqrt{30}$$

$$e_1 = (1,2,3,-4)/||(1,2,3,-4)|| = (\frac{1}{\sqrt{30}}, \frac{2}{\sqrt{30}}, \frac{3}{\sqrt{30}}, -\frac{4}{\sqrt{30}})$$

$$\begin{split} u_2 &= (-5,4,3,2) - \langle (-5,4,3,2), e_1 \rangle e_1 \\ \langle (-5,4,3,2), e_1 \rangle &= -5 \cdot \frac{1}{\sqrt{30}} + 4 \cdot \frac{2}{\sqrt{30}} + 3 \cdot \frac{3}{\sqrt{30}} - 2 \cdot \frac{4}{\sqrt{30}} = \frac{4}{\sqrt{30}} \\ u_2 &= (-5,4,3,2) - \frac{4}{\sqrt{30}} (\frac{1}{\sqrt{30}}, \frac{2}{\sqrt{30}}, \frac{3}{\sqrt{30}}, -\frac{4}{\sqrt{30}}) \\ &= (-5 - \frac{4}{30}, 4 - \frac{8}{30}, 3 - \frac{12}{30}, 2 + \frac{16}{30}) = \left( -\frac{77}{15}, \frac{56}{15}, \frac{13}{5}, \frac{38}{15} \right) \\ \|u_2\| &= \left[ \left( -\frac{77}{15} \right)^2 + \left( \frac{56}{15} \right)^2 + \left( \frac{13}{5} \right)^2 + \left( \frac{38}{15} \right)^2 \right]^{1/2} = \sqrt{\frac{802}{15}} = \frac{\sqrt{12030}}{15} \\ e_2 &= u_2 / \|u_2\| = \left( -\frac{77}{\sqrt{12030}}, \frac{56}{\sqrt{12030}}, \frac{39}{\sqrt{12030}}, \frac{38}{\sqrt{12030}} \right) \end{split}$$

Secondly, we find an orthonormal basis of  $U^{\perp}$ . To do that, we extend the given list to a basis: (1,2,3,-4), (-5,4,3,2), (1,0,0,0), (0,1,0,0). Then we continue to apply the Gram-Schmidt procedure in order to get orthonormal vectors  $f_1, f_2$ , which will be a basis of  $U^{\perp}$ .

$$\begin{split} w_1 &= (1,0,0,0) - \langle (1,0,0,0), e_1 \rangle e_1 - \langle (1,0,0,0), e_2 \rangle e_2 \\ \langle (1,0,0,0), e_1 \rangle &= \frac{1}{\sqrt{30}} \\ \langle (1,0,0,0), e_2 \rangle &= -\frac{77}{\sqrt{12030}} \end{split}$$

$$\begin{split} w_1 &= \left(1 - \frac{1}{30} - \frac{5929}{12030}, -\frac{2}{30} + \frac{4312}{12030}, -\frac{3}{30} + \frac{3003}{12030}, \frac{4}{30} + \frac{2926}{123030}\right) \\ &= \left(\frac{190}{401}, \frac{117}{401}, \frac{60}{401}, \frac{151}{401}\right) \\ \|w_1\| &= \sqrt{\frac{190}{401}} \\ f_1 &= \left(\sqrt{\frac{190}{401}}, \frac{117}{\sqrt{76190}}, \frac{60}{\sqrt{76190}}, \frac{151}{\sqrt{76190}}\right) \\ w_2 &= (0, 1, 0, 0) - \langle (0, 1, 0, 0), e_1 \rangle e_1 - \langle (0, 1, 0, 0), e_2 \rangle e_2 - \langle (0, 1, 0, 0), f_1 \rangle f_1 \\ \langle (0, 1, 0, 0), e_1 \rangle &= \frac{2}{\sqrt{30}} \\ \langle (0, 1, 0, 0), e_2 \rangle &= \frac{56}{\sqrt{12030}} \\ \langle (0, 1, 0, 0), f_1 \rangle &= \frac{117}{\sqrt{76190}} \\ w_2 &= \left(-\frac{2}{30} + \frac{4312}{12030} - \frac{22230}{76190}, 1 - \frac{4}{30} - \frac{3136}{12030} - \frac{13689}{76190}, \cdot \cdot \cdot \right. \\ &- \frac{6}{30} - \frac{2184}{12030} - \frac{7020}{76190}, \frac{8}{30} - \frac{2128}{12030} - \frac{17669}{76190} \right) \\ &= \left(0, \frac{81}{190}, -\frac{9}{19}, -\frac{27}{190}\right) \\ \|w_2\| &= \frac{9\sqrt{190}}{190} \\ f_2 &= \left(0, \frac{9\sqrt{190}}{190}, -\frac{\sqrt{190}}{19}, -\frac{3\sqrt{190}}{190}\right) \end{split}$$

**4** Suppose  $e_1, \ldots, e_n$  is a list of vectors in V with  $||e_k|| = 1$  for each  $k = 1, \ldots, n$  and

$$||v||^2 = |\langle v, e_1 \rangle|^2 + \dots + |\langle v, e_n \rangle|^2$$

for all  $v \in V$ . Prove that  $e_1, \ldots, e_n$  is an orthonormal basis of V.

# Solution:

At the first step, we will show that  $e_1, \ldots, e_n$  is an orthonormal list of vectors. Consider  $e_1$ . Its squared norm is:  $||e_1||^2 = 1$ . At the same time:

$$||e_1||^2 = |\langle e_1, e_1 \rangle|^2 + |\langle e_1, e_2 \rangle|^2 + \dots + |\langle e_1, e_n \rangle|^2 = ||e_1||^2 + |\langle e_1, e_2 \rangle|^2 + \dots + |\langle e_1, e_n \rangle|^2$$

Hence,  $|\langle e_1, e_2 \rangle|^2 + \cdots + |\langle e_1, e_n \rangle|^2 = 0$ . As it is a sum of non-negative terms, we must conclude that  $\langle e_1, e_k \rangle = 0$  for every  $k \neq 1$ .

The same logic can be applied to any  $e_j$  in the given list. Thus we have shown that the vectors in the list  $e_1, \ldots, e_n$  are mutually orthogonal. As the norm of every vector in this list equals 1, it is the orthonormal list.

Now we will show that the list  $e_1, \ldots, e_n$  spans the whole V. Let  $U = \operatorname{span}(e_1, \ldots, e_n) \subseteq V$ .  $e_1, \ldots, e_n$  is a basis of U, because it is linearly independent list that spans U. Suppose  $w \in V$  is such a vector that  $w \in U^{\perp}$ , then

$$||w|| = |\langle v, e_1 \rangle|^2 + \dots + |\langle v, e_n \rangle|^2 = 0 + \dots + 0 = 0$$

where we used the definition of orthogonal complement to write  $\langle w, e_k \rangle = 0$ . By the definiteness property of inner products, w = 0. Hence,  $U^{\perp} = \{0\}$  and by 6.54, U = V.

Thus,  $e_1, \ldots, e_n$  is an orthonormal basis of V.  $\square$ 

**5** Suppose that V is finite-dimensional and U is a subspace of V. Show that  $P_{U^{\perp}} = I - P_U$ , where I is the identity operator on V.

### Solution:

By 6.49, every  $v \in V$  can be represented as:

$$v = u + w$$

where  $u \in U$  and  $w \in U^{\perp}$ . Write w as:

$$w = v - u = Iv - P_U v = (I - P_U)v$$

So, we see that  $P_{U^{\perp}} = I - P_U$ .  $\square$ 

**6** Suppose V is finite-dimensional and  $T \in \mathcal{L}(V, W)$ . Show that

$$T = TP_{(\text{null }T)^{\perp}} = P_{\text{range }T}T.$$

#### Solution:

First, note that  $Tv \in \operatorname{range} T$ , hence  $P_{\operatorname{range} T} Tv = Tv$  for every  $v \in V$ . Thus we have shown that  $T = P_{\operatorname{range} T} T$ .

Then, note that because null T is a subspace of V, by 6.49 every  $v \in V$  can be represented as:

$$v = u + w$$

where  $u \in \text{null } T$  and  $w \in (\text{null } T)^{\perp}$ . Then apply T on v:

$$Tv = T(u + w) = Tu + Tw = 0 + Tw = Tw = T(P_{(\text{null } T)^{\perp}}v) = TP_{(\text{null } T)^{\perp}}v$$

for every  $v \in V$ . Thus, we have shown that  $T = TP_{(\text{null } T)^{\perp}}$ .  $\square$ 

**7** Suppose that X and Y are finite-dimensional subspaces of V. Prove that  $P_X P_Y = 0$  if and only if  $\langle x, y \rangle = 0$  for all  $x \in X$  and all  $y \in Y$ .

# **Solution:**

 $\longrightarrow$  Suppose  $P_X P_Y = 0$ . Consider a vector  $v \in V$ :

$$P_X P_Y v = 0$$

If  $P_Y v = 0$  for all  $v \in V$ , then  $Y = \{0\}$ , and the conclusion  $\langle x, y \rangle = 0$  follows immediately. Let  $Y \neq \{0\}$ . Then,  $P_Y v$  can be represented as:

$$P_Y v = u + w$$

where  $u \in X$ ,  $w \in X^{\perp}$ . Then

$$P_X(P_Y v) = P_X(u + w) = P_X u + P_X w = u + 0 = 0$$

Hence, u=0 for any choice of  $v \in V$ . Thus,  $P_Y v \in X^{\perp}$ . At the same time  $P_y v \in \text{range } P_Y$  and range  $P_Y = Y$ . Therefore,  $Y \subseteq X^{\perp}$ . The last statement means that  $\langle x, y \rangle = 0$  for all  $x \in X$  and all  $y \in Y$ .

 $\leftarrow$  Suppose  $\langle x, y \rangle = 0$  for all x and y.

Then we can state that  $Y \subseteq X^{\perp}$ . As  $Y = \text{range } P_Y$ , it immediately follows that  $P_X P_Y v = P_X (P_Y v) = 0$  for any  $v \in V$  (see property 6.57c).  $\square$ 

**8** Suppose U is a finite-dimensional subspace of V and  $v \in V$ . Define a linear functional  $\varphi: U \to \mathbb{F}$  by

$$\varphi(u) = \langle u, v \rangle$$

for all  $u \in U$ . By the Riesz representation theorem as applied to the inner product space U, there exists a unique vector  $w \in U$  such that

$$\varphi(u) = \langle u, w \rangle$$

for all  $u \in U$ . Show that  $w = P_U v$ .

#### Solution:

By 6.49,  $V=U\oplus U^{\perp}$ . Hence, we can uniquely write  $v=w+\xi,$  where  $w\in U$  and  $\xi\in U^{\perp}.$  Then:

$$\varphi(u) = \langle u, v \rangle = \langle u, w + \xi \rangle = \langle u, w \rangle + \langle u, \xi \rangle = \langle u, w \rangle + 0 = \langle u, w \rangle \quad \Box$$

**9** Suppose V is finite-dimensional and  $P \in \mathcal{L}(V)$  is such that  $P^2 = P$  and every vector in null P is orthogonal to every vector in range P. Prove that there exists a subspace U of V such that  $P = P_U$ .

## Solution:

Because every vector in null P is orthogonal to every vector in range P, null P is a subspace of  $(\operatorname{range} P)^{\perp}$ . By the Fundamental Theorem of linear maps:  $\dim V = \dim \operatorname{null} P + \dim \operatorname{range} P$ . Hence  $\operatorname{null} P = (\operatorname{range} P)^{\perp}$  and:

$$V = \operatorname{null} P \oplus \operatorname{range} P$$

Take  $U = \operatorname{range} P$ , then  $U^{\perp} = \operatorname{null} P$ . Suppose  $u \in U$ , then:

$$P^2u = Pu$$
 and also  $P^2u = P(Pu)$ 

Thus, P(Pu-u)=0, which means  $(Pu-u)\in \text{null } P=U^{\perp}$ . At the same time,  $u\in U$  and  $Pu\in U$ , which means  $(Pu-u)\in U$ . Therefore,  $(Pu-u)\in U\cap U^{\perp}=\{0\}$ . Thus we have shown, that

$$Pu = u$$

for all  $u \in U$ .

Now take arbitrary  $v \in V$ . It can be uniquely represented as v = u + w, where  $u \in U$  and  $w \in U^{\perp}$ . Then:

$$Pv = P(u+w) = Pu + Pw = Pu + 0 = Pu$$

where we used the fact that  $U^{\perp} = \text{null } P$ .

Thus, U is the required subspace of V.  $\square$ 

10 Suppose V is finite-dimensional and  $P \in \mathcal{L}(V)$  is such that  $P^2 = P$  and

$$||Pv|| \le ||v||$$

for every  $v \in V$ . Prove that there exists a subspace U of V such that  $P = P_U$ . Solution:

By Problem 3B.27,  $V = \text{null } P \oplus \text{range } P$ .

Let  $U = \operatorname{range} P, \ u \in U$  and  $v \in V$  such that u = Pv. Using  $P^2 = P$  we see that:

$$P^2v = Pv \Rightarrow Pu = u$$

Now we will show that null  $P = U^{\perp}$ . Take  $u \in U$  and  $w \in \text{null } P$ . Then write:

$$||P(u + \lambda w)|| \le ||u + \lambda w||$$
  
 $||P(u + \lambda w)|| = ||Pu + \lambda Pw|| = ||Pu|| = ||u||$ 

Hence,  $||u|| \leq ||u + \lambda w||$  for all  $\lambda \in \mathbb{F}$ . From *Problem 6A.6*, we deduce that  $\langle u, w \rangle = 0$ . As we took arbitrary u and w, it means null  $P = U^{\perp}$ .

Hence,  $U = \operatorname{range} P$  is the required subspace.  $\square$ 

11 Suppose  $T \in \mathcal{L}(V)$  and U is a finite-dimensional subspace of V. Prove that U is invariant under T if and only if  $P_U T P_U = T P_U$ .

#### Solution:

Suppose  $u \in U$ . Then we can write:

$$P_U T P_U u = P_U T u$$
$$T P_U u = T u$$

U is invariant under T if and only if  $Tu \in U$ , and hence if and only if  $P_U Tu = Tu$ . Thus we have shown that  $P_U TP_U = TP_U$  for every  $u \in U$ .

Now suppose  $w \in U^{\perp}$ , then  $P_U w = 0$  and:

$$P_U T P_U w = P_U T(0) = 0$$
$$T P_U w = T(0) = 0$$

Thus U is invariant under T if and only if  $P_UTP_U = TP_U$  for every  $v \in V$ .  $\square$ 

12 Suppose V is finite-dimensional,  $T \in \mathcal{L}(V)$ , and U is a subspace of V. Prove that U and  $U^{\perp}$  are both invariant under T if and only if  $P_U T = T P_U$ .

#### Solution:

 $\longrightarrow$  Suppose U and  $U^{\perp}$  are invariant under T. Take  $u\in U.$  Then,  $Tu\in U$  and:

$$P_U T u = P_U (T u) = T u$$
 and  $T P_U u = T u$ 

so  $P_UT = TP_U$  for all  $u \in U$ .

Then take  $w \in U^{\perp}$ .  $U^{\perp}$  is invariant under T means that  $Tw \in U^{\perp}$ . Hence:

$$P_U T w = P_U (T w) = 0$$
 and  $T P_U w = T(0) = 0$ 

so  $P_UT = TP_U$  for all  $w \in U^{\perp}$ . As  $V = U \oplus U^{\perp}$ , any  $v \in V$  can be uniquely written as v = u + w with some  $u \in U$  and  $w \in U^{\perp}$ . So we have:

$$P_U T v = P_U T (u+w) = P_U T u + P_U T w = T P_U u + T P_U w = T P_U (u+w) = T P_U v$$
  
Thus,  $P_U T = T P_U$  for every  $v \in V$ .

 $\leftarrow$  Suppose  $P_UT = TP_U$  for every  $v \in V$ .

Take  $u \in U$ . Notice, that  $TP_Uu = Tu$  and  $TP_Uu = P_UTu \in U$ . So,  $Tu \in U$  and hence U is invariant under T.

Take  $w \in U^{\perp}$ .  $TP_Uw = T(0) = 0$  and  $TP_Uw = P_UTw = 0$ . Therefore, it must be that  $Tw \in U^{\perp}$ , so  $U^{\perp}$  is also invariant under T.  $\square$ 

13 Suppose  $\mathbb{F} = \mathbb{R}$  and V is finite-dimensional. For each  $v \in V$ , let  $\varphi_v$  denote the linear functional on V defined by

$$\varphi_v(u) = \langle u, v \rangle$$

for all  $u \in V$ .

- (a) Show that  $v \mapsto \varphi_v$  is an injective linear map from V to V'.
- (b) Use (a) and a dimension-counting argument to show that  $v \mapsto \varphi_v$  is an isomorphism from V onto V'.

# Solution:

(a) We will show that a linear map  $S: v \mapsto \varphi_v$  is injective by showing that its null space contains only 0. Suppose  $w \in \text{null } S$ . Then  $\langle u, w \rangle = 0$  for every  $u \in V$ . Take  $u = \lambda w$ , where  $\lambda \neq 0$ , then

$$\langle \lambda w, w \rangle = \lambda \langle w, w \rangle = 0$$

Therefore, by the definiteness property of inner products, w=0. Hence, S is injective.

(b) By the Fundamental theorem of linear maps:

$$\dim V = \dim \operatorname{null} S + \dim \operatorname{range} S$$

As null  $S = \{0\}$ , we conclude that dim range  $S = \dim V$ .

Moreover, by 3.111 dim  $V' = \dim V$ . Hence, S is also surjective and thus it is an invertible linear map from V to V', *i.e.* isomorphism.  $\square$ 

14 Suppose that  $e_1, \ldots, e_n$  is an orthonormal basis of V. Explain why the dual basis of  $e_1, \ldots, e_n$  is  $\varphi_{e_1}, \ldots, \varphi_{e_n}$  under the identification of V' with V profided by the Riesz representation theorem.

#### Solution:

From the notion of  $\varphi_v$  of the Riesz representation theorem, we can write:

$$\varphi_{e_j}(e_k) = \langle e_k, e_j \rangle$$

The inner product  $\langle e_k, e_j \rangle$  equals 1 only if j = k, and otherwise equals 0. Thus, the list  $\varphi_{e_1}, \ldots, \varphi_{e_n}$  satisfies the definition of a dual basis (3.112).

15 In  $\mathbb{R}^4$ , let

$$U = \text{span}((1, 1, 0, 0), (1, 1, 1, 2)).$$

Find  $u \in U$  such that ||u - (1, 2, 3, 4)|| is as small as possible.

#### Solution:

To find the desired u, we first apply the Gram-Schmidt procedure to the given spanning list of U.

$$e_{1} = (1, 1, 0, 0) / \| (1, 1, 0, 0) \| = \left( \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0 \right)$$

$$f_{2} = (1, 1, 1, 2) - \langle (1, 1, 1, 2), e_{1} \rangle e_{1}$$

$$\langle (1, 1, 1, 2), e_{1} \rangle = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \sqrt{2}$$

$$f_{2} = (1, 1, 1, 2) - \sqrt{2} \cdot \left( \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0 \right) = (0, 0, 1, 2)$$

$$\| f_{2} \| = \sqrt{1 + 2^{2}} = \sqrt{5}$$

$$e_{2} = f_{2} / \| f_{2} \| = \left( 0, 0, \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \right)$$

Let us use v for (1, 2, 3, 4). The desired u is:

$$u = P_U v = \langle v, e_1 \rangle e_1 + \langle v, e_2 \rangle e_2$$

The inner products are:

$$\langle v, e_1 \rangle = \frac{1}{\sqrt{2}} + 2 \cdot \frac{1}{\sqrt{2}} = \frac{3\sqrt{2}}{2}$$
  
 $\langle v, e_2 \rangle = 2 \cdot \frac{1}{\sqrt{5}} + 4 \cdot \frac{2}{\sqrt{5}} = 2\sqrt{5}$ 

Hence:

$$u = \frac{3\sqrt{2}}{2} \cdot \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0\right) + 2\sqrt{5} \cdot \left(0, 0, \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right) = \left(\frac{3}{2}, \frac{3}{2}, 2, 4\right)$$

**16** Suppose C[-1,1] is the vector space of continuous real-valued functions on the interval [-1,1] with inner product given by

$$\langle f, g \rangle = \int_{-1}^{1} fg$$

for all  $f, g \in \mathcal{C}[-1, 1]$ . Let U be the subspace of  $\mathcal{C}[-1, 1]$  defined by

$$U = \{ f \in \mathcal{C}[-1, 1] : f(0) = 0 \}.$$

- (a) Show that  $U^{\perp} = \{0\}.$
- (b) Show that 6.49 and 6.52 do not hold without the finite-dimensional hypothesis.

# Solution:

- (a) See Fig. 6.2. Both  $\sin x$  and  $x^2$  are in U, while the only continuous function that is orthogonal to both of them is g(x) = 0. So,  $U^{\perp} = \{0\}$ .
- (b) 6.49 states that  $V = U \oplus U^{\perp}$ . Here clearly  $U \neq \mathcal{C}$ , so  $\mathcal{C}$  cannot be a direct sum of U and  $\{0\}$ .
  - 6.52 states that  $U = (U^{\perp})^{\perp}$ . In this case,  $(U^{\perp})^{\perp} = \mathcal{C} \neq U$ .
- 17 Find  $p \in \mathcal{P}_3(\mathbb{R})$  such that p(0) = 0, p'(0) = 0, and  $\int_0^1 |2 + 3x p(x)|^2 dx$  is as small as possible.

#### Solution:

A general polynomial in  $\mathcal{P}_3(\mathbb{R})$  can be written as:

$$q(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

The conditions p(0) = 0 and p'(0) = 0 mean that  $a_0 = 0$  and  $a_1 = 0$  for such polynomials. Thus, the polynomials of interested can be written as:

$$p(x) = ax^2 + bx^3$$

and they form a two-dimensional subspace of  $\mathcal{P}_3(\mathbb{R})$ . Given the integral in the problem, we will define the inner product on  $\mathcal{P}_3(\mathbb{R})$  as:

$$\langle p, q \rangle = \int_0^1 pq$$

Apply the Gram-Schmidt procedure to this subspace.

$$f_1 = x^2$$

$$||f_1||^2 = \int_0^1 (x^2)^2 dx = \frac{x^5}{5} \Big|_0^1 = \frac{1}{5}$$

$$e_1 = \sqrt{5}x^2$$

$$f_2 = x^3 - \langle x^3, e_1 \rangle e_1$$

$$\langle x^3, e_1 \rangle = \int_0^1 x^3 \cdot \sqrt{5}x^2 dx = \sqrt{5} \frac{x^6}{6} \Big|_0^1 = \frac{\sqrt{5}}{6}$$

$$f_2 = x^3 - \frac{\sqrt{5}}{6} \cdot \sqrt{5}x^2 = x^3 - \frac{5}{6}x^2$$

$$||f_2||^2 = \int_0^1 (x^3 - \frac{5}{6}x^2)^2 dx = \frac{1}{252}$$

$$e_2 = 6\sqrt{7}x^3 - 5\sqrt{7}x^2$$

The desired polynomial p(x) is:

$$p(x) = \langle 2 + 3x, e_1 \rangle e_1 + \langle 2 + 3x, e_2 \rangle e_2$$

The inner products are:

$$\langle 2+3x, e_1 \rangle = \int_0^1 (2+3x) \cdot \sqrt{5}x^2 dx = \frac{17\sqrt{5}}{12}$$
$$\langle 2+3x, e_2 \rangle = \int_0^1 (2+3x)(6\sqrt{7}x^3 - 5\sqrt{7}x^2) dx = -\frac{29\sqrt{7}}{60}$$

Hence:

$$p(x) = \frac{17\sqrt{5}}{12} \cdot \sqrt{5}x^3 - \frac{29\sqrt{7}}{60}6\sqrt{7}x^3 + \frac{29\sqrt{7}}{60} \cdot 5\sqrt{7}x^2 = -\frac{793}{60}x^3 + \frac{1015}{60}x^2$$

**18** Find  $p \in \mathcal{P}_5(\mathbb{R})$  that makes  $\int_{-\pi}^{\pi} |\sin x - p(x)|^2 dx$  as small as possible.

# Solution:

Firstly, we will find an orthonormal basis of  $\mathcal{P}_5(\mathbb{R})$  with the inner product given by:

$$\langle p, q \rangle = \int_{-\pi}^{\pi} pq$$
 $f_1 = 1, \qquad ||f_1|| = \sqrt{2\pi}$ 
 $e_1 = f_1/||f_1|| = 1/\sqrt{2\pi}$ 

$$f_{2} = x - \langle x, e_{1} \rangle e_{1}$$

$$\langle x, e_{1} \rangle = \int_{-\pi}^{\pi} \frac{x}{\sqrt{2\pi}} dx = 0$$

$$\|f_{2}\|^{2} = \int_{-\pi}^{\pi} x^{2} dx = \frac{2\pi^{3}}{3}$$

$$e_{2} = f_{2} / \|f_{2}\| = \sqrt{\frac{3}{2\pi^{3}}} x$$

$$f_{3} = x^{2} - \langle x^{2}, e_{1} \rangle e_{1} - \langle x^{2}, e_{2} \rangle e_{2}$$

$$\langle x^{2}, e_{1} \rangle = \int_{-\pi}^{\pi} \frac{x^{2}}{\sqrt{2\pi}} dx = \frac{\sqrt{2\pi^{5}}}{3}$$

$$\langle x^{2}, e_{2} \rangle = \int_{-\pi}^{\pi} \sqrt{\frac{3}{2\pi^{3}}} x^{3} dx = 0$$

$$f_{3} = x^{2} - \frac{\sqrt{2\pi^{5}}}{3} \cdot \frac{1}{\sqrt{2\pi}} = x^{2} - \frac{\pi^{2}}{3}$$

$$\|f_{3}\|^{2} = \int_{-\pi}^{\pi} \left(x^{2} - \frac{\pi^{2}}{3}\right)^{2} dx = \frac{8\pi^{5}}{45}$$

$$e_{3} = f_{3} / \|f_{3}\| = \frac{3\sqrt{5}}{\sqrt{8\pi^{5}}} \left(x^{2} - \frac{\pi^{2}}{3}\right)$$

$$f_{4} = x^{3} - \langle x^{3}, e_{1} \rangle e_{1} - \langle x^{3}, e_{2} \rangle e_{2} - \langle x^{3}, e_{3} \rangle e_{3}$$

$$\langle x^{3}, e_{1} \rangle = \int_{-\pi}^{\pi} \frac{x^{3}}{\sqrt{2\pi}} dx = 0$$

$$\langle x^{3}, e_{2} \rangle = \int_{-\pi}^{\pi} x^{4} \sqrt{\frac{3}{2\pi^{3}}} dx = \frac{\sqrt{6\pi^{7}}}{5}$$

$$\langle x^{3}, e_{3} \rangle = \int_{-\pi}^{\pi} x^{3} \frac{3\sqrt{5}}{\sqrt{8\pi^{5}}} \left(x^{2} - \frac{\pi^{2}}{3}\right) dx = 0$$

$$f_{4} = x^{3} - \frac{\sqrt{6\pi^{7}}}{5} \cdot \sqrt{\frac{3}{2\pi^{3}}} x = x^{3} - \frac{3\pi^{2}}{5} x$$

$$\|f_{4}\|^{2} = \int_{-\pi}^{\pi} \left(x^{3} - \frac{3\pi^{2}}{5} x\right)^{2} dx = \frac{8\pi^{7}}{175}$$

$$e_{4} = f_{4} / \|f_{4}\| = \frac{5\sqrt{7}}{2\sqrt{2\pi^{7}}} \left(x^{3} - \frac{3\pi^{2}}{5} x\right)$$

$$\begin{split} f_5 &= x^4 - \langle x^4, e_1 \rangle e_1 - \langle x^4, e_2 \rangle e_2 - \langle x^4, e_3 \rangle e_3 - \langle x^4, e_4 \rangle e_4 \\ &\langle x^4, e_1 \rangle = \int_{-\pi}^{\pi} \frac{x^4}{\sqrt{2\pi}} dx = \frac{\sqrt{2\pi^9}}{5} \\ &\langle x^4, e_2 \rangle = \int_{-\pi}^{\pi} x^4 \sqrt{\frac{3}{2\pi^3}} x dx = 0 \\ &\langle x^4, e_3 \rangle = \int_{-\pi}^{\pi} x^4 \frac{3\sqrt{5}}{\sqrt{8\pi^5}} \left( x^2 - \frac{\pi^2}{3} \right) dx = \frac{4\sqrt{2\pi^9}}{7\sqrt{5}} \\ &\langle x^4, e_4 \rangle = \int_{-\pi}^{\pi} x^4 \frac{5\sqrt{7}}{2\sqrt{2\pi^7}} \left( x^3 - \frac{3\pi^2}{5} x \right) dx = 0 \\ &f_5 = x^4 - \frac{\sqrt{2\pi^9}}{5} \cdot \frac{1}{\sqrt{2\pi}} - \frac{4\sqrt{2\pi^9}}{7\sqrt{5}} \cdot \frac{3\sqrt{5}}{\sqrt{8\pi^5}} \left( x^2 - \frac{\pi^2}{3} \right) \\ &= x^4 - \frac{6\pi^2}{7} x^2 + \frac{3\pi^4}{35} \\ &\|f_5\|^2 = \int_{-\pi}^{\pi} \left( x^4 - \frac{6\pi^2}{7} x^2 + \frac{3\pi^4}{35} \right)^2 dx = \frac{128\pi^9}{11025} \\ &e_5 = f_5 / \|f_5\| = \frac{105}{8\pi^4 \sqrt{2\pi}} \left( x^4 - \frac{6\pi^2}{7} x^2 + \frac{3\pi^4}{35} \right) \\ &f_6 = x^5 - \langle x^5, e_1 \rangle e_1 - \langle x^5, e_2 \rangle e_2 - \langle x^5, e_3 \rangle e_3 - \langle x^5, e_4 \rangle e_4 - \langle x^5, e_5 \rangle e_5 \\ &\langle x^5, e_1 \rangle = \int_{-\pi}^{\pi} \frac{x^5}{\sqrt{2\pi}} dx = 0 \\ &\langle x^5, e_2 \rangle = \int_{-\pi}^{\pi} x^5 \frac{3\sqrt{5}}{\sqrt{8\pi^5}} \left( x^2 - \frac{\pi^2}{3} \right) dx = 0 \\ &\langle x^5, e_4 \rangle = \int_{-\pi}^{\pi} x^5 \frac{3\sqrt{5}}{\sqrt{22\pi^7}} \left( x^3 - \frac{3\pi^2}{5} x \right) dx = \frac{4\pi^5 \sqrt{2\pi}}{9\sqrt{7}} \\ &\langle x^5, e_5 \rangle = \int_{-\pi}^{\pi} x^5 \frac{105}{8\pi^4 \sqrt{2\pi}} \left( x^4 - \frac{6\pi^2}{7} x^2 + \frac{3\pi^4}{35} \right) dx = 0 \end{split}$$

$$f_{6} = x^{5} - \frac{\pi^{5}\sqrt{6\pi}}{7} \cdot \sqrt{\frac{3}{2\pi^{3}}}x - \frac{4\pi^{5}\sqrt{2\pi}}{9\sqrt{7}} \cdot \frac{5\sqrt{7}}{2\sqrt{2\pi^{7}}} \left(x^{3} - \frac{3\pi^{2}}{5}x\right)$$

$$= x^{5} - \frac{10\pi^{2}}{9}x^{3} + \frac{5\pi^{4}}{21}x$$

$$||f_{6}||^{2} = \int_{-\pi}^{\pi} \left(x^{5} - \frac{10\pi^{2}}{9}x^{3} + \frac{5\pi^{4}}{21}x\right)^{2} dx = \frac{128\pi^{1}1}{43659}$$

$$e_{6} = f_{6}/||f_{6}|| = \frac{2\sqrt{11}}{16\pi^{5}\sqrt{2\pi}} \left(63x^{5} - 70\pi^{2}x^{3} + 15\pi^{4}x\right)$$

The desired polynomial p(x) is given by the orthogonal projection:

$$p(x) = \langle \sin x, e_1 \rangle e_1 + \langle \sin x, e_2 \rangle e_2 + \langle \sin x, e_3 \rangle e_3 + \langle \sin x, e_4 \rangle e_4$$
$$+ \langle \sin x, e_5 \rangle e_5 + \langle \sin x, e_6 \rangle e_6$$

We calculate the inner products:

$$\langle \sin x, e_1 \rangle = \int_{-\pi}^{\pi} \sin x \cdot \frac{1}{\sqrt{2\pi}} dx = 0$$

$$\langle \sin x, e_2 \rangle = \int_{-\pi}^{\pi} \sin x \cdot \sqrt{\frac{3}{2\pi^3}} x dx = \sqrt{\frac{6}{\pi}}$$

$$\langle \sin x, e_3 \rangle = \int_{-\pi}^{\pi} \sin x \cdot \frac{3\sqrt{5}}{\sqrt{8\pi^5}} \left( x^2 - \frac{\pi^2}{3} \right) dx = 0$$

$$\langle \sin x, e_4 \rangle = \int_{-\pi}^{\pi} \sin x \cdot \frac{5\sqrt{7}}{2\sqrt{2\pi^7}} \left( x^3 - \frac{3\pi^2}{5} x \right) dx = \sqrt{\frac{14}{\pi^5}} (\pi^2 - 15)$$

$$\langle \sin x, e_5 \rangle = \int_{-\pi}^{\pi} \sin x \cdot \frac{105}{8\pi^4 \sqrt{2\pi}} \left( x^4 - \frac{6\pi^2}{7} x^2 + \frac{3\pi^4}{35} \right) dx = 0$$

$$\langle \sin x, e_6 \rangle = \int_{-\pi}^{\pi} \sin x \cdot \frac{2\sqrt{11}}{16\pi^5 \sqrt{2\pi}} \left( 63x^5 - 70\pi^2 x^3 + 15\pi^4 x \right) dx$$

$$= \sqrt{\frac{22}{\pi^9}} \left( \pi^4 - 105\pi^2 + 945 \right)$$

Then we get:

$$p(x) = \frac{693}{8\pi^{10}} (\pi^4 - 105\pi^2 + 945)x^5 - \frac{315}{4\pi^8} (\pi^4 - 125\pi^2 + 1155) x^3 + \frac{105}{8\pi^6} (\pi^4 - 153\pi^2 + 1485) x$$

# Sine and its closest polynomial in $\mathcal{P}_5(\mathbb{R})$



Figure 6.3: Illustration for *Problem 6C.18*. Maximal difference is  $\approx 0.016$ .

**19** Suppose V is finite-dimensional and  $P \in \mathcal{L}(V)$  is an orthogonal projection of V onto some subspace of V. Prove that  $P^{\dagger} = P$ .

#### Solution:

Let us denote a subspace, for which P is an orthogonal projection, as U. Suppose  $v \in V$ . We can write it as: v = u + w, where  $u \in U$  and  $w \in U^{\perp}$ .

By the definition of a pseudoinverse,  $P^{\dagger}v = (P|_{(\text{null }P)^{\perp}})^{-1}P_{\text{range }P}v$ . Note that range P = U and  $(\text{null }P)^{\perp} = \text{range }P = U$ , so  $P_{\text{range }P} = P$  and  $P|_{(\text{null }P)^{\perp}} = P|_{U}$ .

$$P^{\dagger}v = P^{\dagger}(u+w) = P^{\dagger}u + P^{\dagger}w$$

$$P^{\dagger}w = (P|_{U})^{-1}Pw = (P|_{U})^{-1}(0) = 0$$

$$P^{\dagger}u = (P|_{U})^{-1}Pu = (P|_{U})^{-1}u = u$$

The last equality is due to the fact, that P sends vectors of U to themselves. Hence, we get

$$P^{\dagger}v = u + 0 = u$$

for all  $v \in V$ . So,  $P^{\dagger} = P$ .  $\square$ 

**20** Suppose V is finite-dimensional and  $T \in \mathcal{L}(V, W)$ . Show that

$$\operatorname{null} T^\dagger = (\operatorname{range} T)^\perp \quad \text{and} \quad \operatorname{range} T^\dagger = (\operatorname{null} T)^\perp.$$

# Solution:

 $T|_{(\operatorname{null} T)^{\perp}}$  is invertible, so if  $v \in \operatorname{null} T^{\dagger}$  and  $v \neq 0$ , then  $v \in \operatorname{null} P_{\operatorname{range} T}$ . So

$$\operatorname{null} T^{\dagger} = \operatorname{null} P_{\operatorname{range} T} = (\operatorname{range} P_{\operatorname{range} T})^{\perp} = (\operatorname{range} T)^{\perp}$$

From the properties of operators and definition of pseudoinverse it is clear, that range  $T^{\dagger} \subseteq \operatorname{range}(T|_{(\operatorname{null} T)^{\perp}})^{-1}$ . At the same time,  $(T|_{(\operatorname{null} T)^{\perp}})^{-1}$  is a linear map from range T to  $(\operatorname{null} T)^{\perp}$ . The range T is wholly covered by the  $P_{\operatorname{range} T}$ , hence we must conclude that  $\operatorname{range} T^{\dagger} = \operatorname{range}(T|_{(\operatorname{null} T)^{\perp}})^{-1}$ . The last of what we need is that  $\operatorname{range}(T|_{(\operatorname{null} T)^{\perp}})^{-1} = (\operatorname{null} T)^{\perp}$ . Indeed,  $(T|_{(\operatorname{null} T)^{\perp}})^{-1}$  is an invertible map, so the desired conclusion follows immediately. Thus,

$$\operatorname{range} T^{\dagger} = (\operatorname{null} T)^{\perp} \quad \Box$$

**21** Suppose  $T \in \mathcal{L}(\mathbb{F}^3, \mathbb{F}^2)$  is defined by

$$T(a, b, c) = (a + b + c, 2b + 3c).$$

- (a) For  $(x,y) \in \mathbb{F}^2$ , find a formula for  $T^{\dagger}(x,y)$ .
- (b) Verify that the equation  $TT^{\dagger} = P_{\text{range }T}$  from 6.69(b) holds with the formula for  $T^{\dagger}$  obtained in (a).
- (c) Verify that the equation  $T^{\dagger}T = P_{(\text{null }T)^{\perp}}$  from 6.69(c) holds with the formula for  $T^{\dagger}$  obtained in (a).

## Solution:

(a) Note that range  $T = \mathbb{F}^2$  and null  $T = \{(a, b, c) \in \mathbb{F}^3 : a + b + c = 0 \text{ and } 2b + 3c = 0\}$ . The list of one vector (1, -3, 2) spans null T, and we can take it as a basis of null T.

Now suppose  $(x, y) \in \mathbb{F}^2$ . Then:

$$T^{\dagger}(x,y) = (T|_{(\text{null }T)^{\perp}})^{-1} P_{\text{range }T}(x,y) = (T|_{(\text{null }T)^{\perp}})^{-1}(x,y)$$

The right side of the equation is a vector  $(a,b,c) \in \mathbb{F}^3$  such that T(a,b,c) = (x,y) and  $(a,b,c) \in (\operatorname{null} T)^{\perp}$ . In other words:

$$a+b+c=x$$
$$2b+3c=y$$
$$a-3b+2c=0$$

The first two equations are equivalent to T(a, b, c) = (x, y) and the third equation is the condition on orthogonality to (1, -3, 2). Solving this system of equations, we get:

$$a = \frac{1}{14}(11x - 5y); \quad b = \frac{1}{14}(3x + y); \quad c = \frac{1}{14}(-2x + 4y)$$

Hence

$$T^{\dagger}(x,y) = \frac{1}{14}(13x - 5y, 3x + y, -2x + 4y)$$

(b) Indeed:

$$TT^{\dagger}(x,y) = T(\frac{1}{14}(11x - 5y, 3x + y, -2x + 4y))$$

$$= \frac{1}{14}(13x - 5y + 3x + y - 2x + 4y, 2(3x + y) + 3(-2x + 4y))$$

$$= \frac{1}{14}(14x, 14y) = (x, y) = P_{\text{range } T}(x, y) \quad \checkmark$$

(c) First, we will decompose (a, b, c) into  $v \in \text{null } T$  and  $u \in (\text{null } T)^{\perp}$ .

$$\begin{split} v &= \frac{\langle (a,b,c), (1,-3,2) \rangle}{\|(1,-3,2)\|^2} (1,-3,2) \\ \langle (a,b,c), (1,-3,2) \rangle &= a - 3b + 2c \\ \|(1,-3,2)\|^2 &= 1 + 9 + 4 = 14 \\ v &= \frac{a - 3b + 2c}{14} (1,-3,2) \\ u &= (a,b,c) - v = \frac{1}{14} (13a + 3v - 2c, 3a + 5b + 6c, -2a + 6b - 10c) \end{split}$$

Hence  $P_{(\text{null }T)^{\perp}}(a,b,c)=\frac{1}{14}(13a+3v-2c,3a+5b+6c,-2a+6b-10c).$  Now we calculate  $T^{\dagger}T(a,b,c)$ :

$$\begin{split} T^{\dagger}T(a,b,c) &= T^{\dagger}(a+b+c,2b+3c) \\ &= \frac{1}{14} \left( 13(a+b+c) - 5(2b+3c), 3(a+b+c) + 2b + 3c, \\ &- 2(a+b+c) + 4(2b+3c) \right) \\ &= \frac{1}{14} \left( 13a + 3b - 2c, 3a + 5b + 6c, -2a + 6b + 10c \right) \\ &= P_{(\text{null }T)^{\perp}}(a,b,c) \quad \checkmark \end{split}$$

**22** Suppose V is finite-dimensional and  $T \in \mathcal{L}(V, W)$ . Prove that

$$TT^{\dagger}T = T$$
 and  $T^{\dagger}TT^{\dagger} = T^{\dagger}$ .

#### Solution:

Property 6.69b tells that  $TT^{\dagger}=P_{\mathrm{range}\,T}.$  For any  $v\in V,\,Tv\in\mathrm{range}\,T,$  hence

$$TT^{\dagger}Tv = P_{\text{range }T}(Tv) = Tv$$

which shows that  $TT^{\dagger}T = T$ .

Note that range  $T^\dagger=(\text{null}\,T)^\perp$  (*Problem 6C.20*) and by property 6.69c,  $T^\dagger T=P_{(\text{null}\,T)^\perp}.$  Then:

$$T^{\dagger}TT^{\dagger}w = P_{(\text{null }T)^{\perp}}(T^{\dagger}w) = T^{\dagger}w$$

for all  $w \in W$ . Hence,  $T^{\dagger}TT^{\dagger} = T^{\dagger}$ .  $\square$ 

**23** Suppose V and W are finite-dimensional and  $T \in \mathcal{L}(V,W)$ . Prove that

$$(T^{\dagger})^{\dagger} = T.$$

# Solution:

First, we use definition of pseudoinverse to write:

$$\begin{split} &(T^\dagger)^\dagger = (T^\dagger|_{(\text{null }T^\dagger)^\perp})^{-1} P_{\text{range }T^\dagger} = (T^\dagger|_{\text{range }T})^{-1} P_{(\text{null }T)^\perp} \\ &T^\dagger|_{\text{range }T} = \left( (T|_{(\text{null }T)^\perp})^{-1} P_{\text{range }T} \right)|_{\text{range }T} = (T|_{(\text{null }T)^\perp})^{-1} (P_{\text{range }T})|_{\text{range }T} \\ &(T^\dagger)^\dagger = (P_{\text{range }T})|_{\text{range }T} T|_{(\text{null }T)^\perp} P_{(\text{null }T)^\perp} = T|_{(\text{null }T)^\perp} P_{(\text{null }T)^\perp} \end{split}$$

Suppose  $v \in V$  and v = u + w such that  $u \in (\operatorname{null} T)^{\perp}$  and  $w \in \operatorname{null} T$ . Then:

$$\begin{split} (T^\dagger)^\dagger v &= (T^\dagger)^\dagger u + (T^\dagger)^\dagger w = T|_{(\operatorname{null} T)^\perp} P_{(\operatorname{null} T)^\perp} u + T|_{(\operatorname{null} T)^\perp} P_{(\operatorname{null} T)^\perp} w \\ &= T|_{(\operatorname{null} T)^\perp} P_{(\operatorname{null} T)^\perp} u = Tu = Tu + Tw = T(u+w) = Tv \end{split}$$

for all  $v \in V$ . Thus,  $(T^{\dagger})^{\dagger} = T$ .  $\square$