Package 'ald'

October 12, 2022

Type Package

Title The Asymmetric Laplace Distribution
Version 1.3.1
Date 2021-04-04
Author Christian E. Galarza <cgalarza88@gmail.com> and Victor H. Lachos <hlackneseime.unicamp.br></hlackneseime.unicamp.br></cgalarza88@gmail.com>
Maintainer Christian E. Galarza <cgalarza88@gmail.com></cgalarza88@gmail.com>
Description It provides the density, distribution function, quantile function, random number generator, likelihood function, moments and Maximum Likelihood estimators for a given sample, all this for the three parameter Asymmetric Laplace Distribution defined in Koenker and Machado (1999). This is a special case of the skewed family of distributions available in Galarza et.al. (2017) <doi:10.1002 sta4.140=""> useful for quantile regression.</doi:10.1002>
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2021-04-04 19:10:02 UTC
R topics documented:
ald-package
ALD
likALD
mleALD 7 momentsALD 8
momentsALD
Index 11

2 ald-package

ald-package

The Asymmetric Laplace Distribution

Description

It provides the density, distribution function, quantile function, random number generator, likelihood function, moments and Maximum Likelihood estimators for a given sample, all this for the three parameter Asymmetric Laplace Distribution defined in Koenker and Machado (1999) useful for quantile regression.

Details

Package: ald
Type: Package
Version: 1.0
Date: 2015-01-2

Date: 2015-01-27 License: GPL (>=2)

Author(s)

Christian E. Galarza <<cgalarza88@gmail.com>> and Victor H. Lachos <<hlack-nlachos@ime.unicamp.br>>

References

Koenker, R., Machado, J. (1999). Goodness of fit and related inference processes for quantile regression. J. Amer. Statist. Assoc. 94(3):1296-1309.

Yu, K. & Moyeed, R. (2001). Bayesian quantile regression. Statistics & Probability Letters, 54(4), 437-447.

Yu, K., & Zhang, J. (2005). A three-parameter asymmetric Laplace distribution and its extension. Communications in Statistics-Theory and Methods, 34(9-10), 1867-1879.

See Also

ALD, momentsALD, likALD, mleALD

Examples

```
## Let's plot an Asymmetric Laplace Distribution!
##Density
sseq = seq(-40,80,0.5)
dens = dALD(y=sseq,mu=50,sigma=3,p=0.75)
plot(sseq,dens,type="1",lwd=2,col="red",xlab="x",ylab="f(x)", main="ALD Density function")
```

ALD 3

```
## Distribution Function
df = pALD(q=sseq, mu=50, sigma=3, p=0.75)
plot(sseq,df,type="1",lwd=2,col="blue",xlab="x",ylab="F(x)", main="ALD Distribution function")
abline(h=1,lty=2)
##Inverse Distribution Function
prob = seq(0,1,length.out = 1000)
idf = qALD(prob=prob,mu=50,sigma=3,p=0.75)
plot(prob, idf, type="1", lwd=2, col="gray30", xlab="x", ylab=expression(F^{-1}^(x)))
title(main="ALD Inverse Distribution function")
abline(v=c(0,1),lty=2)
#Random Sample Histogram
sample = rALD(n=10000, mu=50, sigma=3, p=0.75)
hist(sample,breaks = 70,freq = FALSE,ylim=c(0,max(dens)),main="")
title(main="Histogram and True density")
lines(sseq,dens,col="red",lwd=2)
## Let's compute the MLE's
param = c(-323, 40, 0.9)
y = rALD(10000, mu = param[1], sigma = param[2], p = param[3]) #A random sample
res = mleALD(y)
#Comparing
cbind(param, res$par)
#Let's plot
seqq = seq(min(y), max(y), length.out = 1000)
dens = dALD(y=seqq,mu=res$par[1],sigma=res$par[2],p=res$par[3])
hist(y,breaks=50,freq = FALSE,ylim=c(0,max(dens)))
lines(seqq,dens,type="1",lwd=2,col="red",xlab="x",ylab="f(x)", main="ALD Density function")
```

ALD

The Asymmetric Laplace Distribution

Description

Density, distribution function, quantile function and random generation for a Three-Parameter Asymmetric Laplace Distribution defined in Koenker and Machado (1999) useful for quantile regression with location parameter equal to mu, scale parameter sigma and skewness parameter p This is a special case of the skewed family of distributions in Galarza (2016) available in lqr::SKD.

Usage

```
dALD(y, mu = 0, sigma = 1, p = 0.5)

pALD(q, mu = 0, sigma = 1, p = 0.5, lower.tail = TRUE)
```

```
qALD(prob, mu = 0, sigma = 1, p = 0.5, lower.tail = TRUE) rALD(n, mu = 0, sigma = 1, p = 0.5)
```

Arguments

y,q vector of quantiles.

prob vector of probabilities.

n number of observations.

mu location parameter.

sigma scale parameter.

p skewness parameter.

lower.tail logical; if TRUE (default), probabilities are $P[X \le x]$ otherwise, P[X > x].

Details

If mu, sigma or p are not specified they assume the default values of 0, 1 and 0.5, respectively, belonging to the Symmetric Standard Laplace Distribution denoted by ALD(0,1,0.5).

As discussed in Koenker and Machado (1999) and Yu and Moyeed (2001) we say that a random variable Y is distributed as an ALD with location parameter μ , scale parameter $\sigma > 0$ and skewness parameter p in (0,1), if its probability density function (pdf) is given by

$$f(y|\mu, \sigma, p) = \frac{p(1-p)}{\sigma} \exp{-\rho_p(\frac{y-\mu}{\sigma})}$$

where $\rho_p(.)$ is the so called check (or loss) function defined by

$$\rho_p(u) = u(p - I_{u<0})$$

, with I_{\cdot} denoting the usual indicator function. This distribution is denoted by $ALD(\mu, \sigma, p)$ and it's p-th quantile is equal to μ .

The scale parameter sigma must be positive and non zero. The skew parameter p must be between zero and one (0 .

Value

dALD gives the density, pALD gives the distribution function, qALD gives the quantile function, and rALD generates a random sample.

The length of the result is determined by n for rALD, and is the maximum of the lengths of the numerical arguments for the other functions dALD, pALD and qALD.

Note

The numerical arguments other than n are recycled to the length of the result.

Author(s)

Christian E. Galarza <<cgalarza88@gmail.com>> and Victor H. Lachos <<hlack-nlachos@ime.unicamp.br>>

likALD 5

References

Galarza Morales, C., Lachos Davila, V., Barbosa Cabral, C., and Castro Cepero, L. (2017) Robust quantile regression using a generalized class of skewed distributions. Stat,6: 113-130 doi: 10.1002/sta4.140.

Yu, K., & Zhang, J. (2005). A three-parameter asymmetric Laplace distribution and its extension. Communications in Statistics-Theory and Methods, 34(9-10), 1867-1879.

See Also

momentsALD,likALD,mleALD

Examples

```
## Let's plot an Asymmetric Laplace Distribution!
##Density
library(ald)
sseq = seq(-40, 80, 0.5)
dens = dALD(y=sseq, mu=50, sigma=3, p=0.75)
plot(sseq,dens,type = "1",lwd=2,col="red",xlab="x",ylab="f(x)", main="ALD Density function")
#Look that is a special case of the skewed family in Galarza (2017)
# available in lqr package, dSKD(...,sigma = 2*3,dist = "laplace")
## Distribution Function
df = pALD(q=sseq, mu=50, sigma=3, p=0.75)
plot(sseq,df,type="l",lwd=2,col="blue",xlab="x",ylab="F(x)", main="ALD Distribution function")
abline(h=1,lty=2)
##Inverse Distribution Function
prob = seq(0,1,length.out = 1000)
idf = qALD(prob=prob,mu=50,sigma=3,p=0.75)
plot(prob,idf,type="l",lwd=2,col="gray30",xlab="x",ylab=expression(F^{-1}^{-}(x)))
title(main="ALD Inverse Distribution function")
abline(v=c(0,1),lty=2)
#Random Sample Histogram
sample = rALD(n=10000, mu=50, sigma=3, p=0.75)
hist(sample, breaks = 70, freq = FALSE, ylim=c(0, max(dens)), main="")
title(main="Histogram and True density")
lines(sseq,dens,col="red",lwd=2)
```

likALD

Log-Likelihood function for the Asymmetric Laplace Distribution

Description

Log-Likelihood function for the Three-Parameter Asymmetric Laplace Distribution defined in Koenker and Machado (1999) useful for quantile regression with location parameter equal to mu, scale parameter sigma and skewness parameter p.

6 likALD

Usage

$$likALD(y, mu = 0, sigma = 1, p = 0.5, loglik = TRUE)$$

Arguments

y observation vector.

mu location parameter μ .

sigma scale parameter σ .

p skewness parameter p.

loglik logical; if TRUE (default), the Log-likelihood is return, if not just the Likeli-

hood.

Details

If mu, sigma or p are not specified they assume the default values of 0, 1 and 0.5, respectively, belonging to the Symmetric Standard Laplace Distribution denoted by ALD(0, 1, 0.5).

As discussed in Koenker and Machado (1999) and Yu and Moyeed (2001) we say that a random variable Y is distributed as an ALD with location parameter μ , scale parameter $\sigma > 0$ and skewness parameter p in (0,1), if its probability density function (pdf) is given by

$$f(y|\mu, \sigma, p) = \frac{p(1-p)}{\sigma} \exp{-\rho_p(\frac{y-\mu}{\sigma})}$$

where $\rho_p(.)$ is the so called check (or loss) function defined by

$$\rho_p(u) = u(p - I_{u<0})$$

, with I denoting the usual indicator function. Then the Log-likelihood function is given by

$$\sum_{i=1}^{n} log(\frac{p(1-p)}{\sigma} \exp{-\rho_p(\frac{y_i - \mu}{\sigma})})$$

.

The scale parameter sigma must be positive and non zero. The skew parameter p must be between zero and one (0 .

Value

likeALD returns the Log-likelihood by default and just the Likelihood if loglik = FALSE.

Author(s)

Christian E. Galarza <<cgalarza88@gmail.com>> and Victor H. Lachos <<hlack-nlachos@ime.unicamp.br>>

mleALD 7

References

Koenker, R., Machado, J. (1999). Goodness of fit and related inference processes for quantile regression. J. Amer. Statist. Assoc. 94(3):1296-1309.

Yu, K. & Moyeed, R. (2001). Bayesian quantile regression. Statistics & Probability Letters, 54(4), 437-447.

Yu, K., & Zhang, J. (2005). A three-parameter asymmetric Laplace distribution and its extension. Communications in Statistics-Theory and Methods, 34(9-10), 1867-1879.

See Also

ALD, moments ALD, mleALD

Examples

```
## Let's compute the log-likelihood for a given sample
y = rALD(n=1000)
loglik = likALD(y)

#Changing the true parameters the loglik must decrease
loglik2 = likALD(y,mu=10,sigma=2,p=0.3)

loglik;loglik2
if(loglik>loglik2){print("First parameters are Better")}
```

mleALD

Maximum Likelihood Estimators (MLE) for the Asymmetric Laplace Distribution

Description

Maximum Likelihood Estimators (MLE) for the Three-Parameter Asymmetric Laplace Distribution defined in Koenker and Machado (1999) useful for quantile regression with location parameter equal to mu, scale parameter sigma and skewness parameter p.

Usage

```
mleALD(y, initial = NA)
```

Arguments

y observation vector.

initial optional vector of initial values $c(\mu, \sigma, p)$.

Details

The algorithm computes iteratevely the MLE's via the combination of the MLE expressions for μ and σ , and then maximizing with rescreet to p the Log-likelihood function (likALD) using the well known optimize R function. By default the tolerance is 10^-5 for all parameters.

8 momentsALD

Value

The function returns a list with two objects

iter iterations to reach convergence.

par vector of Maximum Likelihood Estimators.

Author(s)

Christian E. Galarza <<cgalarza88@gmail.com>> and Victor H. Lachos <<hlack-nlachos@ime.unicamp.br>>

References

Yu, K., & Zhang, J. (2005). A three-parameter asymmetric Laplace distribution and its extension. Communications in Statistics-Theory and Methods, 34(9-10), 1867-1879.

See Also

```
ALD, moments ALD, likALD
```

Examples

```
## Let's try this function

param = c(-323,40,0.9)
y = rALD(10000,mu = param[1],sigma = param[2],p = param[3]) #A random sample
res = mleALD(y)

#Comparing
cbind(param,res$par)

#Let's plot

seqq = seq(min(y),max(y),length.out = 1000)
dens = dALD(y=seqq,mu=res$par[1],sigma=res$par[2],p=res$par[3])
hist(y,breaks=50,freq = FALSE,ylim=c(0,max(dens)))
lines(seqq,dens,type="l",lwd=2,col="red",xlab="x",ylab="f(x)", main="ALD Density function")
```

momentsALD

Moments for the Asymmetric Laplace Distribution

Description

Mean, variance, skewness, kurtosis, central moments w.r.t mu and first absolute central moment for the Three-Parameter Asymmetric Laplace Distribution defined in Koenker and Machado (1999) useful for quantile regression with location parameter equal to mu, scale parameter sigma and skewness parameter p.

momentsALD 9

Usage

```
meanALD(mu=0,sigma=1,p=0.5)
varALD(mu=0,sigma=1,p=0.5)
skewALD(mu=0,sigma=1,p=0.5)
kurtALD(mu=0,sigma=1,p=0.5)
momentALD(k=1,mu=0,sigma=1,p=0.5)
absALD(sigma=1,p=0.5)
```

Arguments

k moment number. mu location parameter μ . sigma scale parameter σ . p skewness parameter p.

Details

If mu, sigma or p are not specified they assume the default values of 0, 1 and 0.5, respectively, belonging to the Symmetric Standard Laplace Distribution denoted by ALD(0, 1, 0.5).

As discussed in Koenker and Machado (1999) and Yu and Moyeed (2001) we say that a random variable Y is distributed as an ALD with location parameter μ , scale parameter $\sigma > 0$ and skewness parameter p in (0,1), if its probability density function (pdf) is given by

$$f(y|\mu, \sigma, p) = \frac{p(1-p)}{\sigma} \exp{-\rho_p(\frac{y-\mu}{\sigma})}$$

where $\rho_p(.)$ is the so called check (or loss) function defined by

$$\rho_p(u) = u(p - I_{u < 0})$$

, with I_{\cdot} denoting the usual indicator function. This distribution is denoted by $ALD(\mu, \sigma, p)$ and it's pth quantile is equal to μ . The scale parameter sigma must be positive and non zero. The skew parameter p must be between zero and one (0<p<1).

Value

meanALD gives the mean, varALD gives the variance, skewALD gives the skewness, kurtALD gives the kurtosis, momentALD gives the kth central moment, i.e., $E(y-\mu)^k$ and absALD gives the first absolute central moment denoted by $E|y-\mu|$.

Author(s)

Christian E. Galarza <<cgalarza88@gmail.com>> and Victor H. Lachos <<hlack-nlachos@ime.unicamp.br>>

10 momentsALD

References

Koenker, R., Machado, J. (1999). Goodness of fit and related inference processes for quantile regression. J. Amer. Statist. Assoc. 94(3):1296-1309.

Yu, K. & Moyeed, R. (2001). Bayesian quantile regression. Statistics & Probability Letters, 54(4), 437-447.

Yu, K., & Zhang, J. (2005). A three-parameter asymmetric Laplace distribution and its extension. Communications in Statistics-Theory and Methods, 34(9-10), 1867-1879.

See Also

```
ALD, likALD, mleALD
```

Examples

```
## Let's compute some moments for a Symmetric Standard Laplace Distribution.
#Third raw moment
momentALD(k=3,mu=0,sigma=1,p=0.5)

#The well known mean, variance, skewness and kurtosis
meanALD(mu=0,sigma=1,p=0.5)
varALD(mu=0,sigma=1,p=0.5)
skewALD(mu=0,sigma=1,p=0.5)
kurtALD(mu=0,sigma=1,p=0.5)
# and this guy
absALD(sigma=1,p=0.5)
```

Index

* ALD	kurtALD (momentsALD), 8
ALD, 3	
likALD, 5	likALD, 2, 5, 5, 8, 10
mleALD, 7	
momentsALD, 8	meanALD (momentsALD), 8
* Laplace	mleALD, 2, 5, 7, 7, 10
ALD, 3	momentalD (momentsALD), 8
likALD, 5	momentsALD, 2, 5, 7, 8, 8
mleALD, 7	pALD (ALD), 3
momentsALD, 8	F== (==/, ·
* Log-likelihood	qALD (ALD), 3
likALD, 5	
* MLE	rALD (ALD), 3
mleALD, 7	
* Maximum likelihood estimators	skewALD (momentsALD), 8
mleALD, 7	varALD (momentsALD), 8
* asymmetric laplace distribution	var ALD (IIIOIIIETTCSALD), 0
ALD, 3	
likALD, 5	
mleALD, 7	
momentsALD, 8	
* likelihood	
likALD, 5	
* moments	
momentsALD, 8	
* package	
ald-package, 2	
* quantile regression	
ALD, 3	
likALD, 5	
mleALD, 7	
momentsALD, 8	
absALD (momentsALD), 8	
ALD, 2, 3, 7, 8, 10	
ald(ald-package), 2	
ald-package, 2	
dal D (ALD) 3	