Задание 6. Бинарные соединения свинца

Три бинарных* соединения свинца (**A**, **B** и **C**) имеют одинаковый качественный состав, но отличаются количественно. С веществами **A** и **B** провели следующий эксперимент. Собрали установку, как показано на рисунке.

В колбу Вюрца (на рис. показана цифрой 1) поместили порошок вещества **A**. Из капельной воронки (2) в колбу приливали концентрированную соляную кислоту и аккуратно нагревали. Из колбы выделялся газ жёлто-зелёного цвета с резким запахом. Этот газ пропускали в пробирку (3). В этой пробирке находилась тонкая суспензия** вещества **B** в растворе гидроксида натрия. Постепенно в пробирке (3) выделялся осадок вещества **A** тёмно-коричневого цвета.

Некоторые сведения о веществах А, В и С приведены в таблице.

Вещество	Массовая доля свинца, %	Способы получения
A	86,61	Способ 1 описан в условии выше. Вещество A образуется в пробирке (3). Способ 2. Вещество C обрабатывают азотной кислотой. После отделения раствора в осадке остаётся вещество A
В	92,83	Способ 1. Прокаливание свинца на воздухе при 650–700°С. Способ 2. Прокаливание гидроксида свинца (II) при 750–800°С
C	90,66	Способ 1. Прокаливание тонкого порошка В на воздухе при 450–500°C. Способ 2. Нагревание вещества А при 380–400°C.

- 1. Определите вещества **A**, **B** и **C**. Ответ подтвердите расчётом.
- 2. Напишите уравнение реакции, которая протекает в колбе (1) при действии концентрированной соляной кислоты на вещество \mathbf{A} .
- 3. Проиллюстрируйте уравнениями химических реакций все способы получения веществ **A**, **B** и **C**, описанные в таблице выше.

Задание 6. Бинарные соединения свинца

Решение и система оценивания:

1. Из описания способов получения вещества ${\bf B}$ следует, что в условии задачи речь идёт об оксидах свинца. Таким образом, все вещества, ${\bf A}$, ${\bf B}$ и ${\bf C}$, являются оксидами свинца.

$$\mathbf{A} - Pb_xO_y$$
 $x: y = \frac{86,61}{207}: \frac{13,39}{16} = 0,418:0,837 = 1:2$

 $\mathbf{A} - \text{PbO}_2$

B - Pb_xO_y
$$x: y = \frac{92,83}{207}: \frac{7,17}{16} = 0,448:0,448 = 1:1$$

 $\mathbf{B} - PbO$

$$\mathbf{C} - \mathbf{Pb}_x \mathbf{O}_y \quad x: y = \frac{90,66}{207} : \frac{9,34}{16} = 0,438:0,584 = 1:1,333 = 3:4$$

 $C - Pb_3O_4$

По 1 баллу за каждое вещество, всего 3 балла

2. $PbO_2 + 4HCl = PbCl_2 + 2H_2O + Cl_2 \uparrow$ 1

балл

3. Получение вещества **A**, PbO₂.

Способ 1

$$PbO + 2NaOH + Cl_2 = PbO_2 + 2NaCl + H_2O$$

Способ 2

$$Pb_3O_4 + 4HNO_3 = 2Pb(NO_3)_2 + PbO_2 + 2H_2O$$

Получение вещества **B**, PbO.

Способ 1

$$2Pb + O_2 = 2PbO$$

Способ 2

$$Pb(OH)_2 = PbO + H_2O$$

Получение вещества C, Pb₃O₄.

Способ 1

$$6PbO + O_2 = 2Pb_3O_4$$

Способ 2

$$3PbO_2 = Pb_3O_4 + O_2$$

По 1 баллу за каждое верное уравнение реакции, всего 6 баллов. Всего за задачу – 10 баллов