DM 6 - Correction

Exercice 1 (Très classique). Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par

$$\begin{cases} u_0 = 1 \\ u_{n+1} = \sin(u_n) \end{cases}$$

- 1. Montrer que pour tout $n \in \mathbb{N}$, $0 < u_n < \frac{\pi}{2}$.
- 2. On note $f(x) = \sin(x) x$. Montrer que pour tout $x \in \mathbb{R}_+^*$, f(x) < 0.
- 3. En déduire le sens de variation de $(u_n)_{n\in\mathbb{N}}$.
- 4. En déduire que $(u_n)_{n\in\mathbb{N}}$ converge vers $\ell\in\mathbb{R}$
- 5. Montrer que $f(x) = 0 \iff x = 0$.
- 6. Déterminer la valeur de ℓ .

Correction.

1. On fait une récurrence. Soit P(n) la propriété définie par : " $0 < u_n < \frac{\pi}{2}$ " Par définition $u_0 = 1$, et on a bien $0 < 1 < \frac{\pi}{2}$ (car $\pi > 3$) Donc La propriété P est vraie au rang 0.

On suppose qu'il existe $n_0 \in \mathbb{N}$ tel que P_{n_0} soit vraie et on va montrer que ceci implique P_{n_0+1}

En effet, pour tout $x \in]0, \frac{\pi}{2}[$, $\sin(x) \in]0, 1[$. Donc si P_{n_0} est vraie, c'est à dire $u_{n_0} \in]0, \frac{\pi}{2}[$, on a alors $u_{n_0+1} = \sin(u_{n_0}) \in]0, 1[$. De nouveau comme $1 < \frac{\pi}{2}$ ceci implique P_{n_0+1} .

Par récurrence, la propriété P(n) est vraie pour tout $n \in \mathbb{N}$.

- 2. La fonction f est dérivable sur \mathbb{R} et $f'(x) = cos(x) 1 \le 0$. Donc f est décroissante et f(0) = 0. Donc pour tout $x \in \mathbb{R}_+^*$, f(x) < 0.
- 3. $u_{n+1} u_n = sin(u_n) u_n = f(u_n)$ Comme pour tout $n \in \mathbb{N}$, $u_n > 0$ d'après la question 1, on a donc $f(u_n) < 0$ d'après la question 2. Ainsi pour tout $n \in \mathbb{N}$

$$u_{n+1} \le u_n$$

ce qui assure que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.

- 4. La suite $(u_n)_{n\in\mathbb{N}}$ est minorée (par 0) d'après la question 1 et décroissante d'après la question précédente. Par théorème de la limite monotone, la suite converge vers $\ell \geq 0$
- 5. L'étude de f a montré que f(x) < 0 sur \mathbb{R}_+^* et f(x) < 0 sur \mathbb{R}_-^* . Ainsi $f(x) = 0 \Longrightarrow x = 0$. Réciproquement, si x = 0, $f(0) = \sin(0) 0 = 0$. L'équivalence est bien montrée.
- 6. Comme $(u_n)_{n\in\mathbb{N}}$ converge vers $\ell\in\mathbb{R}$ on a aussi $\lim u_{n+1}=\ell$. De plus, comme la fonction sinus est continue sur \mathbb{R} on a $\lim \sin(u_n)=\sin(\lim u_n)$. Ainsi la limite ℓ satisfait $\ell=\sin(\ell)$. Ce qui d'après la question précédente implique $\ell=0$.

Finalement

$$\lim u_n = 0$$

Exercice 2. On reprend les notations de l'exercice précédent.

- 1. Ecrire une fonction qui prend en paramètre $n \in \mathbb{N}$ et qui retourne la valeur de u_n . (Pour ceux qui n'ont pas encore vu les fonctions, vous pouvez écrire un script qui demande à l'utilisateur la valeur de n souhaité et qui retourne la valeur de u_n sans les fonctions, mais bon c'est pas si différent...)
- 2. Ecrire une fonction qui prend en paramètre $e \in \mathbb{R}^+$ et qui retourne la valeur du premier terme $n_0 \in \mathbb{N}$ telle que $|u_{n_0} \ell| \le e$ et la valeur de u_{n_0} . (même remarque)

Correction.

```
1 def u(n):
          #valeur de u0
    x=1
    for i in range(n):
                  #relation de recurrence que l'on applique n fois avec range(n)
       x=\sin(x)
    return(x)
7 from math import abs
  def limite(e):
     L=0 #valeur de la limite
     n=0 #on met en place un compteur
     val=u(n) #valeur de u0
11
     while abs(val-L)>e: #tant que la valeur de |u(n)-L| est plus grande que e
13
        n+=1 #on incremente la valeur du compteur de 1
        val =u(n) #on actualise la valeur de u(n)
     return(n, u(n))
17
```

Exercice 3. Soit $(I_n)_{n\in\mathbb{N}}$ la suite définie par $I_0=1$ et pour tout $n\in\mathbb{N}$, $I_{n+1}=(2n+1)I_n$. Exprimer I_n en fonction de n à l'aide uniquement de factorielle et puissance.

Correction. Pour tout $n \in \mathbb{N}$ on a $I_{n+1} = (2n+1)I_n$. Donc on a $I_n = (2(n-1)+1)I_{n-1}$ et $I_{n-1} = (2(n-2)+1)I_{n-2}$ et ainsi de suite jusqu'a $I_2 = (2\times 1+1)I_1 = 3I_1$ et $I_1 = (2\times 0+1)I_0 = I_0$. Ceci donne

$$I_n = \left(\prod_{k=0}^{n-1} (2k+1)\right) I_0$$

(on peut vérifier la formule par récurrence si l'on veut être sûr)

Ici il s'agit maintenant de simplifier le produit. $\prod_{k=0}^{n-1} (2k+1)$ correspond au produit sur les nombres impairs de 1 à 2n-1. Le produit sur les pairs de 2 à 2n vaut

$$\prod_{k=1}^{n} (2k) = 2^{n} \prod_{k=1}^{n} (k) = 2^{n} \times n!$$

et le produit sur tous les nombres de 1 à 2n vaut

$$\prod_{k=1}^{2n} (k) = (2n)!$$

Ainsi

$$\prod_{k=0}^{n-1} (2k+1) = \frac{(2n)!}{2^n \times n!}$$

Exercice 4. 1. Montrer que pour tout $n \in \mathbb{N}^*$ l'équation $x^3 + nx = 1$ admet une unique solution dans \mathbb{R}^+ . On la note x_n .

- 2. Montrer que $x_{n+1}^3 + nx_{n+1} 1 < 0$.
- 3. En déduite que la suite $(x_n)_{n\in\mathbb{N}}$ est décroissante.
- 4. Justifier que la suite est minorée par 0 et majorée par 1.
- 5. En déduire que $(x_n)_{n\in\mathbb{N}}$ converge.
- 6. A l'aide d'un raisonement par l'absurde justifier que cette limite vaut 0.

2

1. Soit $n \in \mathbb{N}$. Pour tout $x \in \mathbb{R}$, on note $f_n(x) = x^3 + nx - 1$. C'est un polynome de degré 3, il est dérivable sur \mathbb{R} et on a

$$f'(x) = 3x^2 + n$$

Comme $n \ge 0$, la dérivée est strictement positive sur \mathbb{R} et ainsi la fonction f_n est strictement croissante. On a par ailleurs $f_n(0) = -1$ et $f_n(1) = n \ge 1$. Comme f_n est continue sur [0,1] et strictement croissante on peut appliquer le théorème de la bijection pour la valeur $0 \in [f_n(0), f_n(1)] = [-1, 1]$. Ce théorème assure qu'il existe $x_n \in [0, 1]$ tel que $f_n(x_n) = 0$.

2. On calcule $f_n(x_{n+1}) = x_{n+1}^3 + nx_{n+1} - 1$, on va montrer que $f_n(x_{n+1}) < 0$. Or par définition de x_{n+1} on a $f_{n+1}(x_{n+1}) = 0$ ce qui donne :

$$x_{n+1}^3 + (n+1)x_{n+1} - 1 = 0$$

Donc $xx_{n+1}^3 + nx_{n+1} - 1 = -x_{n+1}$

Finalement en remplaçant dans la première égalité on obtient :

$$f_n(x_{n+1}) = -x_{n+1}$$

Comme pour tout $n \in \mathbb{N}$, $x_n \geq 0$ d'après la première question, on a bien

$$f_n(x_{n+1}) < 0$$

3. Comme pour tout $n \in \mathbb{N}$, f_n est strictement croissante, et $f_n(x_{n+1}) \leq f_n(x_n) = 0$ on a

$$x_{n+1} \le x_n$$

Ainsi, $(x_n)_{n\in\mathbb{N}}$ est décroissante.

- 4. Le raisonement effectué à la question 1 montre que la suite $(x_n)_{n\in\mathbb{N}}$ est minorée par 0 et majorée par 1.
- 5. La suite $(x_n)_{n\in\mathbb{N}}$ est décroissante et minorée. Le théorème de la limite monotone assure que $(x_n)_{n\in\mathbb{N}}$ converge. Notons $\ell\in\mathbb{R}$ cette limite.
- 6. Comme $x_n \ge 0$ pour tout $n \in \mathbb{N}$, on a $\lim x_n \ge 0$.. Supposons par l'absurde que $\ell > 0$. On a alors d'une par $f_n(x_n) = 0$ donc $\lim x_n^3 + nx_n - 1 = 0$. Par ailleurs, $\lim x_n^3 - 1 = \ell^3 - 1$ et $\lim nx_n = +\infty$. Donc $\lim x_n^3 + nx_n - 1 = +\infty$. Comme $0 \ne +\infty$ et que la limite est unique, c'est une contradiction. Ainsi $\ell = 0$.