Ejercicios corte II

Prof. Jhon Fredy Tavera Bucurú

Universidad del Tolima

1. Divisibilidad, MCD

- 1. Probar que si $a \mid b \ y \ c \mid d$ entonces $ac \mid bd$.
- 2. Probar que el producto de tres enteros consecutivos es divisible por 6. Si además el primero es par, el producto es múltiplo de 24.
- 3. Probar que $100 \mid (11^{10} 1)$.
- 4. Probar que para todo $n \ge 1$, $30 \mid (n^5 n)$.
- 5. Probar que si n = rs con r > 0 y s > 0 entonces $(r!)^s \mid n!$.
- 6. Sean n y m enteros positivos y a > 1. Probar que

$$(a^n - 1) \mid (a^m - 1)$$
 si y sólo si $n \mid m$.

- 7. Probar que todo cuadrado perfecto es de la forma 4k o 4k+1 para algún entero k.
- 8. Probar que si $a ext{ y } b$ son impares entonces $a^2 + b^2$ no es un cuadrado perfecto.
- 9. Hallar el MCD de cada par de números y expresarlo como combinación lineal de ellos:

$$(382, 26), (-275, 726), (1137, 419), (-2947, -3997).$$

10. Usar el algoritmo extendido de Euclides para encontrar enteros x, y tales que:

$$1426x + 343y = 3,$$
 $630x + 132y = 12,$ $936x + 666y = 18,$ $4001x + 2689y = 4.$

- 11. Probar que si (a,b) = c entonces $(a^2, b^2) = c^2$.
- 12. Probar que si (a, b) = 1 entonces (a + b, ab) = 1.
- 13. Probar que si (a, b) = 1 y $c \mid b$ entonces (a, c) = 1.
- 14. Probar que si (a, b) = 1 entonces (2a + b, a + 2b) = 1 o 3.
- 15. Probar que si (b, c) = 1 entonces (a, bc) = (a, b)(a, c).
- 16. Probar que si (a,b)=1 entonces, para todo $n,m\in\mathbb{Z}_{>0},$ se tiene $(a^m,\,b^n)=1.$
- 17. Probar que si $d \mid nm$ y (n,m) = 1 entonces existen d_1, d_2 tales que

$$d = d_1 d_2,$$
 $d_1 \mid m,$ $d_2 \mid n,$ $(d_1, d_2) = 1.$

1

18. Probar que no existen enteros x, y tales que

$$x + y = 200$$
 y $(x, y) = 7$.

19. Probar que existe un número infinito de pares de enteros x, y que satisfacen

$$x + y = 203$$
 y $(x, y) = 7$.

20. Probar que si $ad - bc = \pm 1$ entonces la fracción

$$\frac{a+b}{c+d}$$

es irreducible.

- 21. Evaluar (ab, p^4) y $(a + b, p^4)$ si p es primo, $(a, p^2) = p$ y $(b, p^3) = p^2$.
- 22. Sea p un primo impar y (a,b)=1. Probar que

$$\left(a+b, \ \frac{a^p+b^p}{a+b}\right) = 1 \text{ o } p.$$

Definición (números de Fibonacci). La sucesión de Fibonacci $(f_n)_{n\geq 0}$ se define por

$$f_0 = 0,$$
 $f_1 = 1,$ $f_{n+1} = f_n + f_{n-1}$ para $n \ge 1.$

23. Probar que para todo entero positivo n se cumple

$$(f_{n+3}, f_n) \in \{1, 2\}.$$

24. Probar que si m = qn + r entonces

$$(f_m, f_n) = (f_r, f_n).$$

25. Probar que para todo par de enteros positivos n, m,

$$(f_n, f_m) = f_{(n,m)}.$$

26. Probar que para todo par de enteros positivos m, n,

$$f_n \mid f_m \iff n \mid m.$$

27. Sean a, m, n enteros positivos con $n \neq m$. Probar que

$$(a^{2^n} + 1, a^{2^m} + 1) = \begin{cases} 1, & \text{si } a \text{ es par,} \\ 2, & \text{si } a \text{ es impar.} \end{cases}$$

28. (IMO 1959). Mostrar que la fracción $\frac{21n+4}{14n+3}$ es irreducible para todo n natural.

2

29. Encontrar todos los enteros positivos tales que:

a)
$$n+1 \mid n^3-1$$
.

- b) $2n-1 \mid n^3+1$.
- $c) \ \frac{1}{n} + \frac{1}{m} = \frac{1}{143}.$
- d) $2n^3 + 5 \mid n^4 + n + 1$.
- 30. Demuestre:
 - a) Si $m \mid a b$, entonces $m \mid a^k b^k$ para todo natural k.
 - b) Si f(x) es un polinomio con coeficientes enteros y a, b son enteros cualesquiera, entonces $a b \mid f(a) f(b)$.
 - c) Si k es un natural impar, entonces $a + b \mid a^k + b^k$.
- 31. Mostrar que:
 - a) $2^{15} 1 \text{ y } 2^{10} + 1 \text{ son primos entre si.}$
 - b) $2^{32} + 1$ y $2^{24} + 1$ son primos entre sí.
- 32. Demostrar que $(n-1)^2 \mid n^k 1$ si y sólo si $n-1 \mid k$.
- 33. (IMO 1992). Encontrar todos los enteros a, b, c con 1 < a < b < c tales que (a-1)(b-1)(c-1) es divisor de abc-1.

Sugerencia. Mostrar primero que $a \le 4$ y considerar los posibles casos.

34. Sea $S := 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$ con n > 1. Probar que S no es un entero.

Sugerencia. Sea k el mayor entero tal que $2^k \le n$ y sea P el producto de todos los números impares $\le n$. Probar que

$$2^{k-1} \cdot P \cdot S$$

es una suma cuyos términos, a excepción de $2^{k-1} \cdot P \cdot \frac{1}{2^k}$, son enteros.

2. MCD y mcm

- 35. Probar que $a \mid b$ si y sólo si [a, b] = |b|.
- 36. Probar que si [a, b] = (a, b) y a > 0, b > 0 entonces a = b.
- 37. Probar que (a, b) = (a + b, [a, b]).
- 38. Probar que [ka, kb] = |k| [a, b], con $k \neq 0$.
- 39. Si k es un múltiplo común de a y b, probar que

$$\left| \frac{k}{\left(\frac{k}{a}, \frac{k}{b}\right)} \right| = [a, b].$$

40. Sea d un entero positivo tal que $d\mid a$ y $d\mid b.$ Probar que

$$\left[\frac{a}{d},\,\frac{b}{d}\right] = \frac{[a,b]}{d}.$$

3

- 41. Sean d y g enteros positivos. Probar que existen enteros a y b tales que (a,b)=d y [a,b]=g si y sólo si $d\mid g$.
- 42. Probar que la ecuación ax + by = c tiene soluciones enteras x, y si y sólo si $(a, b) \mid c$.
- 43. Probar que (a, b) = (a, b, ax + by) para todo $x, y \in \mathbb{Z}$.
- 44. Hallar enteros a y b tales que a + b = 216 y [a, b] = 480.
- 45. Hallar todos los números a y b que satisfacen (a, b) = 24 y [a, b] = 1440.
- 46. Hallar $(20n^2 + 19n + 4, 4n + 3)$ y $[20n^2 + 19n + 4, 4n + 3]$, donde n es un entero positivo.
- 47. Calcular (4410, 1404, 8712) y expresarlo como combinación lineal de los números dados.
- 48. Hallar (112, 240, 192, 760) y expresarlo como combinación lineal de los números dados.
- 49. Hallar enteros x, y, z, w tales que

$$75x + 111y + 87z + 120w = 6.$$

- 50. Si p y q son primos impares diferentes y n=pq, ¿cuántos enteros en el conjunto $2,3,\ldots,n$ no son primos relativos con n?
- 51. Probar que |abc| = (ab, ac, bc)[a, b, c].
- 52. Probar que $|abc| \ge (a, b, c) [a, b, c]$.
- 53. Dar un ejemplo para ilustrar que (a, b, c) [a, b, c] no siempre es abc.

3. primos

- 54. Probar que todo primo diferente de 2 o 3 es de la forma 6k + 1 o 6k 1.
- 55. Probar que todo entero de la forma 3k + 2 tiene un factor primo de la misma forma.
- 56. Probar que todo entero de la forma 4k + 3 tiene un factor primo de la misma forma.
- 57. Demostrar que existen infinitos primos de la forma 4k + 3.
- 58. Si p, q son primos tales que $p \ge q \ge 5$, probar que 24 | $(p^2 q^2)$.
- 59. Demostrar que 3, 5, 7 son los *únicos* primos triples (es decir, los únicos tales que p, p + 2 y p + 4 son todos primos).
- 60. Si $2^n 1$ es primo, probar que n es primo.
- 61. Si 2^n+1 es primo, probar que n es una potencia de dos. Sugerencia: si k es impar, entonces $(x+1) \mid (x^k+1)$.
- 62. Sean $p ext{ y } q$ primos diferentes de 2 y 3. Probar que si p-q es una potencia de dos, entonces p+q es divisible por 3.
- 63. Hallar una sucesión de veinte enteros consecutivos y compuestos.

Referencias

- [1] Luis R. Jiménez B., Jorge E. Gordillo A., y Gustavo N. Rubiano O. *Teoría de números [para principiantes]*. 2. ed. Bogotá, D. C.: Universidad Nacional de Colombia, Facultad de Ciencias, 2004. ISBN 958-701-372-7. Disponible en línea: PDF. [Ejercicios 2.1 pp. 37] [Ejercicios 2.2 pp. 45] [Ejercicios 2.3 pp. 50] [Ejercicios 2.4 pp. 57].
- [2] Fabio E. Brochero Martinez, Carlos Gustavo T. de A. Moreira, Nicolau C. Saldanha, y Eduardo Tengan. *Teoria dos Números: um passeio com primos e outros números familiares pelo mundo inteiro*. 3. ed. Rio de Janeiro: IMPA. Disponible en línea: PDF. [pp. 31–34].