

Machine Learning

Math operations are same as C++ Logic operations are same as C++ Semicolon supresses the print output disp() for printing sprintf() for string printing like printf in C Matrices: A = [x1,x2,x3; y1,y2,y3] ==> 3*2 Matrix & semicolon for row separation

Vector: $A = [x1;x2;x3] ==> 3d \ vector$

Octave Tutorial

Basic operations

v = 1:0.1:2 ==> starting from 1 & incrementing by 0.1 till reaching 2

v = 1:6 ==> starting from 1 to 6

ones(n,m) ==> generates matrix of ones(n:rows *m:cols)

also zeros(n,m)

rand(n,m) ==> generates matrix of random no.s between 0 & 1

randn(n,m) ==> generates matrix of gaussian distribution(Normal) with u=0 & stdDeviation = 1

hist(var,no. of pins) ==> draws histogram of var

eye(n) ==> generates n*n identity matrix

help command

Octave Tutorial

Moving data around

Octave Tutorial

Computing on data

Octave Tutorial Plotting data

Machine Learning

Octave Tutorial

Control statements: for, while, if statements

Octave Tutorial

Vectorial implementation

Vectorization example.

$$h_{\theta}(x) = \sum_{j=\theta}^{n} \theta_{j} x_{j}$$
$$= \theta^{T} x$$

Unvectorized implementation

Vectorized implementation

```
prediction = theta' * x;
```

Vectorization example.

$$h_{\theta}(x) = \sum_{j=\theta}^{n} \theta_{j} x_{j}$$
$$= \theta^{T} x$$

Unvectorized implementation

```
double prediction = 0.0;
for (int j = 0; j < n; j++)
  prediction += theta[j] * x[y];</pre>
```

Vectorized implementation

Gradient descent

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

(for all j)

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

$$(n = 2)$$

$$u(j) = 2v(j) + 5w(j)$$
 (for all j)
 $u(j) = 2v + 5w$