# **Embedded systems**

- Somes French translations :
  - Systèmes embarqués
  - > Systèmes enrobés
  - > Systèmes enfouis



# Embedded systems, definition

There is no formal definition of an *embedded system*, but it is generally accepted to be a type of computer designed to solve a specific problem or task.

This is in contrast to a general-purpose computer such as a PC or workstation.

Embedded systems typically use a **microprocessor** combined with other hardware and software to solve a specific computing problem.

# Embedded systems, definition

Microprocessors range from simple (by today's standards) **8-bit microcontrollers** to the worlds fastest and most sophisticated **64-bits microprocessors** or even more as **multi-core**.

Embedded system **software** ranges from a small executive to a large real-time operating system (RTOS) with a graphical user interface (GUI).

Typically, the embedded system software must respond to events in a deterministic way and should be guaranteed not to crash.

# Embedded systems, definition

The embedded system landscape is as diverse as the world's population :

→ no two systems are the same ←

Embedded systems range from large computers such as an air traffic control system to small computers such as a handheld computer that fits into your pocket.

Jason Andrews



# **Embedded systems**

# Some examples :

- Camera
- Video camera
- > Cars: ABS, ignition, acclimatization, etc...
- ➤ Portables Phones → Smartphones
- ➤ PDA (Personal Digital Assistant) → Tablet
- **>** ...



# Interfaces and peripherals:

# → some embedded systems



http://www.espace-pc.fr/peripheriques.html

# **Processors categories**

- Processors: Softcore vs hardcore
- Reconfigurable Processors (Xtensa, [Tensilica])
- Microcontrollers (8051, HC12, STxx, ...)
- PSOC, Programmable Syst. On Chip (Cypress)
- Embedded controller (68xxx, ColdFire, ARM, PowerPC, ..., 8051, HC12, STxx, ...)
- Processors on FPGA (Altera, Triscend, Xilinx, AVR, ...),
  Softcore (NIOS [Altera], microblaze [Xilinx]) or
  hardcore (ARM, PowerPC, ...)
- DSP (Digital Signal Processor)



# **Processors**



# Some Processors architecture & technology



http://www.altera.com/literature/wp/wp-01173-opencl.pdf



# General Architecture → SOC System On Chip

- A µC (microcontroller) is an integrated circuit with all the elements of a Computer System include on ONE chip:
  - ➤ Processor(s)
  - ➤ Memory (memories)
  - ➤ Programmable Interfaces
- Some µC adds the capability to extend external memories and Progr. Interfaces, they have external Add/Data/Ctrl busses.

# **Some Programmable Interfaces**

- Parallel ports
- Timer
- Analog to Digital Converter (ADC, ATD)
- Digital to Analog Converter (DAC)
- Pulse Width Modulation (PWM)
- Serial Interfaces:
  - UART (Universal Asynchronous Receiver/Transmitter)
  - SPI (Synchronous Peripheral Interface)
  - > 12C
  - > CAN
  - > Ethernet
  - **>** ...
- •



# **Embedded communication**

- Serial:
  - ➤ I2C, SPI, RS-232, IrDa
  - > Ethernet
  - ➤ Wireless (Bluetooth, ZigBee, Wifi 802.11, ...)
  - > USB
  - Firewire, IEEE 1394
  - > SATA
- Parallel:
  - > PCMCIA
  - > PCI



# Baseband Chip





# **Baseband Chip**





# **High Performance Processor, 12 cores**

#### QorlQ AMP Series T4240 Processor



http://www.freescale.com/webapp/sps/site/prod\_summary.jsp?code=T4240

## **Architecture FPGA**



# **Architecture FPGA + Processor + Prog. Interfaces**



http://www.altera.com/devices/fpga/cyclone-v-fpgas/hard-processor-system/cyv-soc-hps.html

# **General computer systems**



Very general architecture



# General System Architecture, µController



# General System Architecture, µController + External bus



# **General Architecture**

 Some circuits does not provides memory, only the processor and some programmable interfaces they are generally named embedded processor.

# Embedded controller, ex. 68331



# Some Very known Families of 8 bits µC

- 8051 based µC (intel → many manufacturer)
- AVR
- 68HC05, HC08, HC11, HC12 (Motorola → Freescale)
- PIC (Microchip)
- •

# Microcontroller, ex. HC12 Architecture

Processor CPU12

32 Kbytes Flash EEPROM

1 Kbytes RAM

768 bytes EEPROM

PORTAD A/D 8 channels 10 bits

PORTT Timer

PORTS Serial SCI, SPI, 2
 I/O

PORTP 4 PWM, 4 I/O

PORTCAN CANBUS, 5 I/O

PORTA Address/Data

PORTB Address/Data

PORTE Control

BDI Debug



# **Models**

- In each of those families it exists a lot of different models :
  - ➤ Size in memories (RAM, ROM, EPROM, Flash,...)
  - > Kind of programmable interfaces
  - ➤ Power consumption (µW..W)
  - ➤ Working frequencies (MHz..GHz)
  - ➤ Type of packages (DIL, SOP, TSSOP, BGA, µBGA,...
  - Number of pins (6..hundred)
  - **>** . . .



# **Memories Models**

2 mains memory models :

- μC can have von Neumann memory model, a unified memory scheme for Program /Data and stack memories
- μC can have separate physical areas for program/data and stack, sometimes with different bus width (ex. PIC), Harvard Architecture

# **Programmable Interfaces Access**

- Depending on the processor family, the access to the programmable interface part is done:
  - ➤ Memory Mapped I/O (ex. 68HC12)
  - ➤ Through specialized instructions (ex. IN/OUT)
  - ➤ Special area pages (ex. 8051 SFR space)
  - ➤ Through specific Pointer/data registers couple (ex. 8051 DPTR register)

## Resume

- General Architecture
- Memories Models
- Programmable Interfaces Access
- Types of Programmable Interfaces



# **Operating Systems**

- Linux, uLinux
- uC/OSII or uC/OSIII
- Android
- eCOS
- uKOS
- RTEMS
- etc...
- Real Time or NOT!?

