Notes Section 1.1 - Numbers, Data, and Problem Solving

Lesson Objectives

- 1. Classify real numbers
- 2. Convert a number from standard notation to scientific notation
- 3. Convert a number from scientific notation to standard notation
- 4. Use a calculator for computations involving scientific notation
- 5. Calculate Percent Change

A. Classifying Real Numbers

- 1. Natural numbers the counting numbers $\{1, 2, 3, ..., \infty\}$
 - Includes any number that can simplify to a natural number
 - Examples: $\frac{4}{2}$, $\sqrt{9}$, $\frac{25}{5}$, $\sqrt{49}$, etc.
- 2. Whole numbers include zero and the natural numbers $\{0, 1, 2, 3, ..., \infty\}$
 - Think "wh0le" write the "o" in the word "whole" with a zero instead
 - Includes any number that can **simplify** to a whole number
- 3. Integers whole numbers and opposites (negatives) $\{-\infty, ..., -3, -2, -1, 0, 1, 2, 3, ..., \infty\}$
 - Sort of like "mile markers" on a number line; often used for reference in graphing
 - Includes any number that can simplify to an integer
 - Examples: $-\sqrt{4}$, $-\frac{33}{11}$, $-\sqrt{121}$, $-\frac{48}{6}$, etc., or examples from **natural** numbers
 - CAUTION! Just because a number is negative doesn't necessarily mean it's an integer!
 - They're "pretty" numbers. With integers, remember "ahh!," not "eww!"
- 4. Rational numbers can be written as a ratio (fraction, denominator not zero)
 - Includes all integers
 - Includes some (not all!) of the numbers in between the integers
 - Includes all forms of fractions (that don't contain irrational numbers), positive or negative
 - o Proper fraction (smaller/larger) Examples: $-\frac{4}{7}$, $\frac{2}{5}$, etc.
 - o Improper fraction (larger/smaller) Examples: $-\frac{123}{6}$, $\frac{1245}{1108}$, etc.
 - Mixed number Examples: $-7\frac{3}{11}$, $29\frac{17}{67}$, etc.
 - Includes some (not all) types of decimal numbers, positive or negative
 - o All terminating decimals they stop eventually
 - Examples: -12.93, -6.1, -0.4556, 0.23, 4.51, 67.88421, etc.
 - o All repeating decimals go on forever, but in a repeatable pattern
 - Examples: $-0.\overline{4}$, $-0.\overline{26}$, $-0.14\overline{67}$, $0.\overline{43}$, $2.\overline{7}$, etc.

Notes Section 1.1 – Numbers, Data, and Problem Solving

- 5. **Irrational** numbers number that is **not** rational (can't be written as a fraction)
 - Includes any root that doesn't "work," or simplify to a rational number, positive or negative
 - Examples: $-\sqrt{88}$, $-\sqrt{50}$, $-6\sqrt{20}$, $-\sqrt[3]{12}$, $\sqrt[4]{2}$, $\sqrt{15}$, $3\sqrt{62}$, etc.
 - Includes other numbers, like π , e the golden ratio (called "phi" or φ), and anything that includes them, positive or negative.
 - Examples: $-\frac{\pi}{2}$, $\frac{3\pi}{4}$, e^2 , $100e^{-0.02293}$, etc.
 - Includes decimals that are both non-terminating AND non-repeating, positive or negative
 - Examples: 0.1010010001..., or 0.101101110..., etc.

A Real number has more than one "nested" category:

Natural-Whole-Integer-Rational-Real

Whole-Integer-Rational-Real

Integer-Rational-Real

Rational-Real

Irrational-Real

• **EXAMPLE:** Classify each real number as one or more of the following: natural number, whole number, integer, rational number, or irrational number. [1.1.7] $\frac{6}{1}$, $-\frac{6}{7}$, $\sqrt{11}$, $0.\overline{25}$, π

Let's go through this list of numbers one at a time, considering all the categories.

<u>Number</u>	Does it Simplify?	Categories of Numbers it's Classified
$\frac{6}{1}$	simplifies to 6	Natural, whole, integer, rational, real
$-\frac{6}{7}$	doesn't simplify	Fraction = rational, real
$\sqrt{11}$	doesn't simplify	Root that doesn't simplify = irrational, real
$0.\overline{25}$	doesn't simplify	Repeating decimal = rational, real
π	doesn't simplify	Has π = irrational, real

Notes Section 1.1 – Numbers, Data, and Problem Solving

- **EXAMPLE:** Choose to which group of sets the following number belongs. Be sure to account for ALL sets. $-\frac{1}{2}$ Choose the correct answer below. [1.1.1]
 - A. real numbers, rational numbers
 - B. real numbers, irrational numbers
 - C. real numbers, rational numbers, natural numbers
 - D. rational numbers, natural numbers, integers
 - E. irrational numbers, natural numbers

Common error: "Since $-\frac{1}{3}$ is negative, then it is an integer." (INCORRECT)

Remember that an integer can be either positive or negative, but they are "pretty" numbers, not fractions like this one. So, Answer D is incorrect.

Notice that Answers C and E include natural numbers, but those are just the basic counting numbers 1, 2, 3, But $-\frac{1}{3}$ is definitely not a counting number! Since $-\frac{1}{3}$ is a simplified fraction, it MUST be a *rational* number.

B. Scientific Notation

- 1. Format for scientific notation: $c \times 10^n$ ("stem" times "power of 10")
 - For the "stem," c is somewhere between 1 (included) and 10 (excluded).
 - Written more simply: $1 \le c < 10$
 - For the "power of 10", n is an integer.
- 2. Convert standard notation ("regular" number) to scientific notation
- **EXAMPLE:** Write the following number in scientific notation 276,000 [1.1.29]
 - Step 1. Start with all the leading nonzero digits; ignore trailing zeros: 276
 - Step 2. Insert a decimal point to create a stem between 1 and 10: 2.76
 - o Step 3. Move from the stem decimal location to the actual decimal location.
 - Count the number of positions moved: 5 places
 - Note the **direction** moved: to the RIGHT (positive)
 - \circ Step 4. Value of *n* (exponent on base 10) comes from Step 3: n = +5 or just 5
 - \circ Step 5. Write the number in scientific notation: 2.76×10^5
- **EXAMPLE:** Convert to scientific notation 0.000000051 [1.1.31]
 - o Follow the same steps in a similar fashion as previous example.
 - o Stem: 5.1; move 8 places LEFT to get to actual decimal point. (ignore zero to left of decimal)
 - \circ In scientific notation: 5.1×10^{-8}

Notes Section 1.1 – Numbers, Data, and Problem Solving

- 3. Convert scientific notation to standard notation ("regular" number)
- **EXAMPLE:** The distance from the planet Drendal to its moon Kronotor is about 9×10^5 meters. Express this distance in standard form. [1.1.43]
 - o Step 1. Write down just the "stem" number. 9
 - \circ Step 2. Use *n* (the "power of 10") to move (or "hop") the corresponding direction (positive RIGHT, negative LEFT) and number of decimal places. "hop" 5 places to the RIGHT
 - Step 3. Drop a decimal point after completing Step 2.
 - Step 4. Fill in any vacant place values with a zero.
 - O Step 5. Remove ("kill") the decimal point from the original stem.
 - o In standard notation: 900,000.
- **EXAMPLE:** Write the number in standard form.

 7.902×10^{-6}

[1.1-25]

- o Follow the same steps in a similar fashion as previous example.
- o From decimal point between 7 and 9, move 6 places to the LEFT, then fill with zeros.
- In standard notation: 0.000007902
 (note that the zero to the left of decimal point is a matter of visual clarity only)
- 4. Calculator computations involving scientific notation
- **EXAMPLE:** Use a calculator to approximate the expression. Write the result in scientific notation.

$$\frac{8.747 \times 10^9}{0.00094} (4.5 \times 10^6)$$

(Round to two decimal places as needed. Use scientific notation. Use the multiplication symbol in the math palette as needed.) [1.1.61]

TI-84 has fraction feature: press ALPHA, Y=, ENTER

 TI-83 should use extra parentheses with fraction. Best to use separate ones for numerator, for denominator, and for entire fraction itself, so BE CAREFUL!

((8.747*10^9)/(0 .00094))(4.5*10^ 6) 4.187393617e19

- The short capital letter E with 18 at end is the power of 10, so "E19" means "× 10¹⁹"
- o Rounded to two decimal places: 4.19×10^{19}

Notes Section 1.1 - Numbers, Data, and Problem Solving

Percent Change =
$$\left(\frac{new-old}{old}\right) \times 100\%$$

• Example: Find the percent change if a quantity changes from P₁ to P₂.

$$P_1 = 1.4$$
 and $P_2 = 0.74$ (re

[App.D.3]

- \circ Since from P₁ to P₂ is **decreasing**, we expect the percent change to be NEGATIVE.
- Use formula:

Percent Change =
$$\left(\frac{P_2 - P_1}{P_1}\right) \times 100 = \left(\frac{0.74 - 1.4}{1.4}\right) \times 100$$

O Use calculator:

o Rounded to the nearest tenth (one decimal place): -47.1 %

Sources used:

- 1. Pearson MyMathLab College Algebra with Modeling and Visualization, 6th Edition, Rockswold
- 2. Wabbitemu calculator emulator version 1.9.5.21 by Revolution Software, BootFree ©2006-2014 Ben Moody, Rom8x ©2005-2014 Andree Chea. Website https://archive.codeplex.com/?p=wabbit