CapECL 2e année 2023-2024

Devoir surveillé 10 - 30/04/24

Exercice 1: (Questions indépendantes)

- 1. Démontrer qu'une matrice symétrique définie positive est inversible.
- 2. Déterminer toutes les matrices de $\mathcal{O}_2(\mathbb{R}) \cap \mathcal{S}_2(\mathbb{R})$.
- 3. Soit $A \in \mathcal{S}_n(\mathbb{R})$
 - (a) Soit $P \in \mathcal{O}_n(\mathbb{R})$, on pose $B = P^{-1}AP$, démontrer que ||A|| = ||B|| en notant ||.|| la norme canonique sur $\mathcal{M}_n(\mathbb{R})$.
 - (b) En déduire que la somme des carrés des valeurs propres de A est égale à la somme des carrés de ses coefficients.

Exercice 2: Soit $M \in \mathcal{GL}_n(\mathbb{R})$ telle que $M^2 + M^T = I_n$

- 1. Démontrer que $X^4 2X^2 + X$ est annulateur de M.
- 2. Montrer que M est diagonalisable et déterminer $a, b \in \mathbb{R}$ tels que $Sp_{\mathbb{R}}(M) \subset \{1, a, b\}$.
- 3. Montrer que $M I_n$ est inversible.
- 4. Montrer que M est symétrique.
- 5. Réciproquement, démontrer que toute matrice A symétrique réelle telle que $Sp(A) \subset \{a,b\}$ est inversibles et vérifie $A^2 + A^T = I_n$.

Exercice 3: (Questions indépendantes)

- 1. Montrer que $\mathcal{S}_n^+(\mathbb{R})$ est fermé.
- 2. Montrer que $\mathcal{S}_n^+(\mathbb{R})$ est convexe.
- 3. Soit $A \in \mathcal{S}_n^+(\mathbb{R})$,
 - (a) Montrer qu'il existe $B \in \mathcal{S}_n^+(\mathbb{R})$ telle que $A = B^2$.
 - (b) Si $B \in \mathcal{S}_n^+(\mathbb{R})$ vérifie $A = B^2$, démontrer que pour tout $\lambda \in Sp(A), Ker(B \sqrt{\lambda}I_n) = Ker(A \lambda I_n)$.
 - (c) En déduire qu'il existe une unique $B \in \mathcal{S}_n^+(\mathbb{R})$ telle que $A = B^2$.