

Manipulação e Apresentação de Dados - Exercícios

Guilherme Bovi Ambrosano

Exercícios do dplyr

Usando o conjunto de dados agridat::walsh.cottonprice:

- ▶ Obter um conjunto de dados com as colunas year (ano), cotton (cents por libra de algodão), cottonseed (dólares por toneladas de sementes) e combined (cotton + $1857 \times$ cottonseed, em cents por libra)
- ► Sabendo que 1 ton = 2000 pounds e que 1 dólar = 100 cents, converter cottonseed para a mesma unidade de cotton
- ▶ Criar a coluna combined2, com a mesma fórmula da coluna combined
- ► Criar a coluna década a partir da coluna year,

##		year	${\tt cotton}$	${\tt cottonseed}$	${\tt combined}$	${\tt combined2}$	década
##	1	1910	13.52	1.2075	15.76	15.762327	1910
##	2	1911	13.96	1.2995	16.37	16.373172	1910
##	3	1912	9.65	0.8575	11.24	11.242377	1910
##	4	1913	11.50	0.9165	13.20	13.201940	1910
##	5	1914	12.47	1.0950	14.50	14.503415	1910
##	6	1915	7.35	0.7730	8.79	8.785461	1910
##	7	1916	11.22	1.5065	14.02	14.017571	1910

Exercício 1 (continuação)

Usando o conjunto de dados agridat::walsh.cottonprice:

▶ Obter a média e a mediana da coluna combined2 para cada década

```
## # A tibble: 4 \times 3
##
    década média mediana
##
    <chr>
           <dbl>
                   <dbl>
  1 1910
            18.3
                    15.1
##
  2 1920
            24.5
                    23.0
##
            12.2 11.4
## 3 1930
## 4 1940
            16.9
                    16.7
```


Usando o conjunto de dados dplyr::starwars:

Obter um vetor com o número de filmes em que cada personagem

	Obter uni vetor com o m	umero de mimes em que car	aa personagem
	aparece		
##	Luke Skywalker	C-3P0	
##	5	6	
##	Darth Vader	Leia Organa	C
##	4	5	
##	Beru Whitesun Lars	R5-D4	Biggs Dar
##	3	1	
##	Obi-Wan Kenobi	Anakin Skywalker	Wilhuf

##	Darth Vader	Leia Organa	Owen
##	4	5	
##	Beru Whitesun Lars	R5-D4	Biggs Darklig
##	3	1	
##	Obi-Wan Kenobi	Anakin Skywalker	Wilhuff Ta
##	6	3	
##	Chewbacca	Han Solo	Gr

##	5	4	
## Jabba	Desilijic Tiure	Wedge Antilles	Jek Tono Por
##	3	3	
##	Yoda	Palpatine	Boba

IG-88 Bossk Lando Caris

Exercício 2 (continuação)

Usando o conjunto de dados dplyr::starwars:

► Criar uma tibble nova, em que se repitam nas linhas os nomes dos personagens tantas vezes quanto o número de filmes em que aparecem

```
# A tibble: 173 x 1
##
      name
##
      <chr>>
    1 Luke Skywalker
##
##
    2 Luke Skywalker
##
    3 Luke Skywalker
##
    4 Luke Skywalker
    5 Luke Skywalker
##
    6 C-3P0
##
##
    7 C-3P0
    8 C-3PO
##
##
    9 C-3PO
## 10 C-3PO
   # i 163 more rows
```

Exercício 2 (continuação)

Usando o conjunto de dados dplyr::starwars:

Adicionar na tibble criada uma coluna com os nomes dos filmes e um id por filme de cada personagem

```
## # A tibble: 173 x 3
##
                       id films
     name
##
     <chr>
                    <int> <chr>
##
   1 Luke Skywalker 1 A New Hope
   2 Luke Skywalker 2 The Empire Strikes Back
##
   3 Luke Skywalker 3 Return of the Jedi
##
##
   4 Luke Skywalker 4 Revenge of the Sith
##
   5 Luke Skywalker
                        5 The Force Awakens
##
   6 C-3PO
                        1 A New Hope
   7 C-3PO
                        2 The Empire Strikes Back
##
##
   8 C-3PO
                        3 Return of the Jedi
   9 C-3PO
                        4 The Phantom Menace
##
## 10 C-3P0
                        5 Attack of the Clones
## # i 163 more rows
```

pValores <- tibble(

Transformar os objetos criados abaixo na estrutura a seguir.

```
p-valor = c(0.9999, 0.050, 0.0001)

vetor.ex1

## Trat 1-Trat 2 Trat 1-Trat 3 Trat 2-Trat 3

## 0.9999 0.0500 0.0001

str(vetor.ex1)

## Named num [1:3] 1e+00 5e-02 1e-04

## - attr(*, "names")= chr [1:3] "Trat 1-Trat 2" "Trat 1-Trat 3
```


Usando as funções do tidyverse e partindo do data-frame dados presente no arquivo Dados.RData, crie a tabela abaixo:

```
## # A tibble: 4 x 3
## Trat média desvio
## <chr> <dbl> <dbl> <dbl>
## 1 1 15.5 0.521
## 2 2 17.0 0.534
## 3 3 18.2 0.395
## 4 4 21.0 0.906
```


Usando o conjunto de dados presente no site http://www.leb.esalq.usp.br/leb/exceldados/DCE2023.TXT, obter os dias mais quentes do ano:

Usando o conjunto de dados presente no site http://www.leb.esalq.usp.br/leb/exceldados/DCE2023.TXT, obter os dias com precipitação entre 30mm e 40mm:

Transformar os objetos criados abaixo na estrutura a seguir, usando os pacotes do tidyverse.

```
tempo1 <- c(15, 14, 17, 14, 17, 13)
tempo2 <- c(14, 13, 16, 14, 12, 16)
tempo3 <- c(16, 14, 15, 12, 17, 15)
```

```
## # A tibble: 3 x 2
## Tempo Média
## <fct> <dbl>
## 1 1 semana 15
## 2 2 semanas 14.2
## 3 3 semanas 14.8
```


Obter a tabela abaixo partindo do conjunto de dados mtcars, usando os pacotes do tidyverse.

Carros cujos nomes começam com M:

##		carro	mpg	cyl	disp	hp	drat	wt	qsec	٧s	\mathtt{am}	ge
##	1	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	
##	2	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	
##	3	Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	
##	4	Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	
##	5	Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	
##	6	Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	
##	7	Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	
##	8	Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	
##	9	Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	
##	10	Maserati Bora	15.0	8	301.0	335	3.54	3.570	14.60	0	1	

Obter a tabela abaixo partindo do conjunto de dados mtcars, usando os pacotes do tidyverse.

Carros cujos nomes terminam em números:

```
## carro mpg cyl disp hp drat wt qsec vs am gear ca
## 1 Datsun 710 22.8 4 108.0 93 3.85 2.32 18.61 1 1 4
## 2 Duster 360 14.3 8 360.0 245 3.21 3.57 15.84 0 0 3
## 3 Merc 230 22.8 4 140.8 95 3.92 3.15 22.90 1 0 4
## 4 Merc 280 19.2 6 167.6 123 3.92 3.44 18.30 1 0 4
## 5 Fiat 128 32.4 4 78.7 66 4.08 2.20 19.47 1 1 4
```


Usando o conjunto de dados archbold.apple do pacote agridat, obter uma tabela como a Tabela 4 de Archbold, Brown, Cornelius (1987).

https://journals.ashs.org/jashs/view/journals/jashs/112/2/article-p219.xml

library(agridat)

```
## # A tibble: 7 x 4
##
    spacing stock
                     Golden Redspur
##
    <fct>
            <fct>
                      <dbl>
                              <db1>
## 1 1.8 m
            <NA>
                       121.
                               120.
## 2 3.0m
            <NA>
                       151.
                               160.
## 3 4.3 m
            <NA>
                       165.
                               164.
## 4 <NA>
            M0007
                       153.
                               131.
## 5 <NA>
            MM106
                       153.
                               188.
## 6 <NA>
            MM111
                       114.
                               146.
## 7 <NA>
            Seedling
                       159.
                               119.
```


Obter a tabela abaixo partindo do conjunto de dados iris, usando os pacotes do tidyverse.

```
## # A tibble: 8 x 3
##
     Species
                                          value
                     name
     <chr>>
                     <chr>>
                                          <dbl>
##
                                          1.46
##
   1 Iris setosa
                     Petal.Length média
## 2 Iris setosa
                     Petal.Width média
                                          0.246
   3 Tris setosa
                     Petal.Length desvio 0.174
                                          0.105
##
   4 Iris setosa
                     Petal.Width desvio
## 5 Iris versicolor Petal.Length média
                                          4.26
## 6 Iris versicolor Petal.Width média
                                          1.33
## 7 Iris versicolor Petal.Length_desvio 0.470
## 8 Iris versicolor Petal.Width desvio
                                          0.198
```

lista.ex10

Obter a estrutura abaixo partindo do conjunto de dados ${\tt iris}$, usando os pacotes do tidyverse.

```
## $setosa
## Mediana (Petal.Length) Mediana (Petal.Width) Mediana (Sepal.Length)
                      1.5
                                             0.2
                                                                    5.0
##
## Mediana (Sepal.Width)
##
                      3.4
##
## $versicolor
## Mediana (Petal.Length) Mediana (Petal.Width) Mediana (Sepal.Length)
##
                     4.35
                                            1.30
                                                                   5.90
   Mediana (Sepal.Width)
##
##
                     2.80
str(lista.ex10)
## List of 2
                : Named num [1:4] 1.5 0.2 5 3.4
   $ setosa
## ..- attr(*, "names")= chr [1:4] "Mediana (Petal.Length)" "Mediana (Petal.W
   $ versicolor: Named num [1:4] 4.35 1.3 5.9 2.8
     ..- attr(*, "names")= chr [1:4] "Mediana (Petal.Length)" "Mediana (Petal.W
##
```