DISPERSION OF EFFLUENT IN DELAWARE RIVER FROM NEW JERSEY ZINC COMPANY PLANT

Hydraulic Model Investigation

TECHNICAL REPORT NO. 2-457

June 1957

U. S. Army Engineer Waterways Experiment Station CORPS OF ENGINEERS

Vicksburg, Mississippi

ARMY-MRC VICKSBURG, MISS.

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number	ion of information Send comments arters Services, Directorate for Info	regarding this burden estimate or regarding this burden estimate or regarding the rega	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE JUN 1957		2. REPORT TYPE		3. DATES COVE 00-00-195 7	red 7 to 00-00-1957
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER
Dispersion of Efflu Plant: Hydraulic M	ent in Delaware Riv	er from New Jerse	y Zinc Company	5b. GRANT NUM	MBER
Plant: Hydraunc N	iodei mvesugadon			5c. PROGRAM E	ELEMENT NUMBER
6. AUTHOR(S)				5d. PROJECT NU	JMBER
				5e. TASK NUME	BER
				5f. WORK UNIT	NUMBER
	ZATION NAME(S) AND AE of Engineers,Watervourg,MS,39180	` '	tion,3903 Halls	8. PERFORMING REPORT NUMB	G ORGANIZATION ER
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	ND ADDRESS(ES)		10. SPONSOR/M	ONITOR'S ACRONYM(S)
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT
12. DISTRIBUTION/AVAIL Approved for publ	ABILITY STATEMENT ic release; distributi	on unlimited			
13. SUPPLEMENTARY NO	OTES				
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	ATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
a REPORT unclassified	b ABSTRACT unclassified	c THIS PAGE unclassified	Same as Report (SAR)	40	

Report Documentation Page

Form Approved OMB No. 0704-0188

PREFACE

The New Jersey Zinc Company, 160 Front Street, New York 38, New York, requested the U. S. Army Engineer Waterways Experiment Station to conduct the studies reported herein in a letter dated 7 December 1956. The studies were conducted in the existing Delaware River model, authority to perform the tests having been granted by the U. S. Army Engineer District, Philadelphia, CE, and by the Office, Chief of Engineers. The New Jersey Zinc Company paid all costs in connection with the model study and with the preparation and publication of this report.

The study was conducted in the Estuaries Section of the Hydraulics Division of the Waterways Experiment Station during the period 14 December 1956 to 9 January 1957. Engineers of the Waterways Experiment Station actively connected with the study were: Messrs. E. P. Fortson, Jr., Chief, Hydraulics Division; G. B. Fenwick, Chief, Rivers and Harbors Branch; H. B. Simmons, Chief, Estuaries Section; W. H. Bobb, Project Chief; and C. J. Huval. The New Jersey Zinc Company was represented by Messrs. Blan W. Hale and Bradford C. Hafford, company employees; Mr. F. S. Friel of Albright and Friel, Inc., Consulting Engineers; and Prof. L. J. Hooper of Worcester Polytechnic Institute. These company representatives inspected the model before the testing program was begun, and several of them returned to the Waterways Experiment Station while the tests were in progress to observe the techniques and procedures employed, review the results of model tests, and plan additional tests.

CONTENTS

																													Page
PREFA	CE		•	•			•			•			•	•			•		•	•									iii
SUMMAI	RY		•																						•,				vii
PART :	I:	IN	TRC)DU(CTI	ON	•	•	•	•			•			•								•					1
	Sc	e P ope	of	. Te	est	s		•	•	•	•		•	•	•	•	•	•	•	•		•	•	•	•	•		÷	1 2 2
		e M ndi																											2
PART :	II:	Τ	ESI	¹ PI	ROC	ED	URE	2 A	ND	D	AT.	A O	BTA	II	ED)			•						•	•		•	5
		st ta																											5 7
PART	III	:	MOI	EL	TE	ST	S A	IND	R	ES	UL	TS																	10
	Ef Ef Ef	jec fec fec fec fec xim	ts ts ts ts	of of of of	Ri Mc Lo Do	.ve: de ca ub	r I of tic lir	is F F In	ch la of Pl	ar nt ' C	ge D ut	isc fal Dis	har 1 cha	ge	· ·	•		•	•	•	•	•	•		:	•	•	•	10 10 13 14 15 16
PART TABLE: PLATE	s 1	<u>-</u> 4	ONC	LU	SIC	NS	•	. •	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	ě	•	18

SUMMARY

An existing model of the Delaware River was used to study plans for improving the dispersion of effluent in the Delaware River from the Gloucester City plant of the New Jersey Zinc Co. The present method of discharging plant waste into an abandoned slip with a low bulkhead at its riverward end has resulted in higher concentrations of plant effluent in small embayments and pockets along the New Jersey shore in the vicinity of the plant than in the channel proper. Proposed means for improving effluent dispersion are construction of a pipeline to transport the effluent to an outfall located on the bottom of the river between the navigation channel and the shore. The purpose of the model tests was to determine whether more rapid dispersion of the effluent and elimination of areas of high concentration could be expected from the proposed changes and the effects of these changes on effluent concentrations throughout the estuary as a whole. Of primary interest was determination of the upstream limit of intrusion of plant effluent for various conditions of river discharge, rate of plant discharge, and location of pipeline outfall.

It is believed that the following general conclusions can be drawn from the results of the model tests:

- a. River discharge appears to be the dominant factor controlling effluent concentrations and extent of upstream intrusion.
- b. Reductions in maximum effluent concentrations in areas near the plant site can probably be effected by location of the outfall so as to promote rapid mixing of the effluent with the river water. An accurate determination of the extent of such reductions will require work in a larger model. The exact location of the outfall would have little if any effect on effluent concentrations throughout the river as a whole or on the extent of upstream intrusion of the effluent.
- c. Intermittent rather than continuous release of effluent would not significantly reduce concentrations or the extent of upstream intrusion of the effluent.
- d. An increase in plant effluent discharge from 6 to 12 mgd would essentially double effluent concentrations at equivalent locations along the river, all other conditions being equal, but the increased effluent discharge would not cause a significant increase in the extent of upstream intrusion of the effluent.

DISPERSION OF EFFLUENT IN DELAWARE RIVER FROM NEW JERSEY ZINC COMPANY PLANT

Hydraulic Model Investigation

PART I: INTRODUCTION

The Problem and Purpose of Tests

- 1. The Gloucester City Plant of the New Jersey Zinc Company, located on the New Jersey shore of the Delaware River east of Philadelphia, is presently discharging plant waste into an abandoned slip adjacent to the plant site (outfall A on plate 2). A bulkhead constructed to el +2.0 ft mlw across the river end of the slip creates a partial retention basin. Most of the waste, which is heavier than river water, passes from the slip into the river during the ebb portion of the tidal cycle, but the bulkhead has deteriorated to such extent that a considerable part of the effluent escapes throughout the remainder of the tidal cycle. Current velocities adjacent to the shore line in the vicinity of the slip are low, and the plant effluent is not being rapidly dispersed throughout the cross section of the river. As a result, concentrations of plant effluent in small embayments and pockets along the New Jersey shore in the vicinity of the plant are somewhat higher than concentrations in the channel proper.
- 2. The New Jersey Zinc Company is studying means for improving effluent dispersion by constructing a pipeline to transport the effluent to an outfall located on the bottom of the river between the navigation channel and the shore. The purpose of the model tests was to determine whether more rapid dispersion of the effluent and elimination of areas of high concentration could be expected from the proposed changes, and the effects of the proposed changes on effluent concentrations throughout the estuary as a whole. Of primary interest was the determination of the upstream limit of intrusion of plant effluent for various conditions of river discharge, rate of plant discharge, and location of pipeline outfall.

Scope of Tests

3. It was agreed at the initiation of the investigation that the existing Delaware River model offered the best means for determining the effects of the various schemes being considered on effluent concentrations throughout the estuary as a whole, while study in a large-scale model will probably be required for detailed analysis of dispersion of the effluent in the immediate vicinity of the plant site and for design of the outfall system. It is contemplated that the large-scale model for this latter portion of the study will be constructed at the Worcester Polytechnic Institute.

The Model

4. The area reproduced in the Delaware River model is shown on plate 1. A description of the model and appurtenances, and details of the model adjustment and verification are presented in Waterways Experiment Station Technical Memorandum No. 2-337, Delaware River Model Study, Report No. 1, dated May 1956, and are not included in this report. The above-mentioned report also discusses the model-to-prototype scale relationships for time, velocity, discharge, etc., which are derived by the Froudian relationships from the horizontal scale of 1:1000 and the vertical scale of 1:100. The scale relationship for concentration and specific gravity of the effluent, applicable to the results of tests reported herein, is 1:1.

Conditions Tested

5. The New Jersey Zinc Company plant effluent has an average specific gravity of about 1.003, an average concentration of the order of 6800 parts per million, and is presently discharged continuously into the abandoned slip (outfall A, plate 2) at the rate of about 6 mgd. Mean tide heights vary from +0.5 to +6.5 ft mlw in the adjacent reach of the Delaware River, and the major portion of the effluent flows from the

slip when the water-surface elevation in the river falls below +2.0 mlw, the height of the bulkhead at the slip entrance. However, as stated earlier, because of the deterioration of this sheet piling bulkhead, and the difference in density of the effluent and river water, some of the effluent is discharged into the river throughout the tidal cycle.

- 6. The proposed pipeline is to extend from the edge of the slip toward the navigation channel along an alignment perpendicular to the slip bulkhead. Proposed outfall B is located 350 ft from the bulkhead, and proposed outfall C is located on the edge of the Gloucester Anchorage 700 ft from the bulkhead (see plate 2). The depth at outfall B is approximately 17 ft below mlw, and that at outfall C is approximately 24 ft below mlw.
- 7. Tests were made for river discharges of 12,000, 8000, 3400, and 2400 cfs in order to determine the effects of river discharge on effluent dispersion. The river discharges for all previously reported tests in the Delaware River model have been expressed in terms of cubic feet per second at and including the Schuylkill River. The New Jersey Zinc Company is located upstream from the mouth of the Schuylkill; therefore, the river discharges referred to herein represent only the Delaware discharge at Trenton. The maximum flow tested (12,000 cfs) is approximately equal to the mean Delaware discharge at Trenton. The 8000-cfs flow is an arbitrary intermediate value, while the two lower flows represent minimum controlled discharges at Trenton with the Incodel Plan completed to stages with and without the Wallpack Bend or Tocks Island Reservoirs. Only flows equal to or less than mean were tested since it was desired to determine the extent of plant effluent intrusion and degree of dispersion upstream from the outfall and it was known that maximum upstream intrusion would occur for the lower river discharges.
- 8. The effects of increasing the plant effluent discharge rate from 6 to 12 mgd were also investigated. The effects of such an increase were determined for river discharges of 8000 and 3400 cfs, since the increase in effluent discharge rate is not contemplated until completion of Wallpack Bend Dam or the Tocks Island Dam along the main branch of the Delaware River, either of which will increase the minimum flow at

Trenton from 2400 cfs to 3400 cfs. An intermittent type of effluent release, or release only within a certain portion of the tidal cycle, was also investigated to determine if any benefits could be derived from that type release. The portion of the tidal cycle during which the effluent was released was of six hours duration and included the last hour of flood current at the plant site and the subsequent five hours of ebb current.

9. Because of the proximity of Big Timber Creek (see location map, plate 2), it was considered necessary to reproduce its fresh-water discharge. The mean fresh-water discharge of Big Timber Creek was computed to be 82 cfs, from data supplied by Mr. F. S. Friel, and this discharge was reproduced during all tests reported herein. Certain model shore line features along both sides of the river in the vicinity of the plant were also altered to bring shore line conditions up to date, since it was felt that such features might affect the rate of dispersion of the plant effluent.

PART II: TEST PROCEDURE AND DATA OBTAINED

Test Procedure

Selection of tracer

- of the plant effluent throughout the course of the model tests. The average concentration (6800 ppm) and the average specific gravity (1.003) of the plant effluent were both known, and consideration of these and other physical characteristics of the effluent showed that its concentration could be simulated in the model by means of methylene blue chloride dye, and that the specific gravity of the model effluent could be adjusted to that of the prototype by addition of sodium chloride. Since concentrations of methylene blue chloride can be determined photometrically, and concentrations of sodium chloride can be determined by titration with silver nitrate, either or both of these materials could be used as tracers to detect the effluent accurately throughout the course of model tests.
- 11. The use of sodium chloride as a tracer required that the model be operated with fresh water throughout, instead of with salt water in Delaware Bay and the lower Delaware River as is used in normal operation, to insure that sodium chloride detected at any point in the model came from the plant effluent and not from the lower reaches of the model. Operation with fresh water throughout the model also improves the accuracy of photometric determination of dye concentrations, since the model water remains clean for a considerable period of time (which it does not do when salt water is used), thus eliminating the need for taking spectrophotometer readings of all samples at three wave lengths in order to compute light extinction attributable to foreign matter in the samples. Use of fresh water throughout the model was considered permissible since no measurable effects of density on current velocities and current distributions occur in the region of the river adjacent to and upstream from the plant site, even for conditions that permit salt-water intrusion into this part of the estuary.
 - 12. Accordingly the model was filled with only fresh water and an

exploratory test was made in which the concentration of the effluent was simulated by a 6800-ppm concentration of methylene blue chloride and the specific gravity of the effluent was adjusted to 1.003 at 20 C by addition of sodium chloride. The effluent was released in the slip at a rate equivalent to 6 mgd in the prototype to simulate the existing method of disposal, and samples were obtained from the model at numerous points and analyzed for dye concentration by means of a Beckman model DU spectrophotometer and for sodium chloride concentration by titration.

13. The results of the exploratory test showed that the amount of sodium chloride being introduced was insufficient to permit accurate measurement at distances greater than three or four miles upstream or downstream from the plant site. Since it was not possible to increase the amount of sodium chloride introduced into the model without increasing the specific gravity of the plant effluent, which would probably have resulted in an erroneous dispersion rate in the vicinity of the outfall, it was decided that sodium chloride could not be used as a tracer. the other hand, concentrations of methylene blue chloride contained in samples obtained from the model were much greater than necessary for accurate measurement by means of the spectrophotometer; in fact, the sample concentrations were so great that most samples had to be diluted with distilled water prior to analysis. It was decided that methylene blue chloride would be used as the tracer; however, since dilution of numerous samples is very time consuming, it was also decided that dye concentrations for all formal tests would be fixed at about one-tenth of the prototype concentration (about 680 ppm instead of 6800 ppm) so that the samples could be analyzed without dilution. It is interesting that the results of dye analyses (expressed in per cent of initial concentration) made during the exploratory tests, which involved an initial concentration of 6800 ppm, were in almost exact agreement with the results of the first formal test which involved an initial concentration of 680 ppm, or about one-tenth the prototype concentration.

Preparation and injection of effluent

14. The effluent for each test was prepared a day in advance by adding the weighed amount of dye required to provide the desired

concentration to the quantity of water needed for the test. Some difficulties were encountered in getting all of the dye into solution; therefore, samples were obtained from the effluent container prior to and at regular intervals throughout each test, and the initial concentration of the effluent was assumed to be equal to the average of these samples. The specific gravity of the effluent was adjusted to 1.003 after addition and mixing of the dye, since the dye tends to go into solution at a faster rate in fresh water than in water containing sodium chloride. Operation of model

15. The model was operated for conditions of mean tide for all tests reported herein. After operation of the tide generator was started, the inflow weirs were adjusted to introduce the upland discharges of the Delaware River and all tributaries as prescribed for the particular test involved. Operation of the model was continued for several tidal cycles prior to release of the effluent to permit checking of weir settings and to eliminate the possibility of any minor errors associated with the beginning of operation. Each test was assumed to start at the time injection of effluent was started, and its duration is expressed in tidal cycles after start of effluent injection.

Data Obtained

Continuous samples

depth at several selected mid-channel stations at intervals of one to five tidal cycles and at the time of local high- or low-water slack of the current. A running plot of these data was maintained to show variations in effluent concentration with time. It was known from previous tests of a similar nature that effluent concentrations at any station would increase at a steadily decreasing rate until a stable concentration was reached for the conditions being tested; it was also known that the effluent would migrate upstream at a steadily decreasing rate until a stable length of intrusion would obtain for the conditions being tested. Therefore, the purpose of the continuous sampling during the transitory

period of effluent concentration and upstream migration was to determine the length of time required for stability to be reached for each test condition.

Detailed sampling

- 17. When the results of the continuous sampling described above indicated that stability of effluent concentrations and intrusion had been reached,* samples were obtained at numerous stations at both highand low-water slack of the current to show the exact extent of intrusion of the effluent as well as the concentrations along the channel. These samples were obtained at 5000-ft intervals from about the plant site (channel station 40+000) to the upstream limit of intrusion, at 10,000ft intervals from about the plant site downstream to station 80+000, and at channel stations 100+000, 120+000, 140+000, and 180+000. tions of all sampling stations are shown on plate 1. In addition to the samples from these mid-channel stations, samples were obtained at five local stations (stations 1-5, plate 2) near the plant site during the same sampling operation in which the high-water slack samples were obtained. Although it was recognized that local concentrations of effluent could not be considered accurate in a quantitative sense, it was felt that such samples would provide a qualitative indication of the relative effluent concentrations to be expected locally for each of the conditions tested. Presentation of test data
- 18. All test data relative to effluent concentrations presented in this report are expressed in terms of per cent of the initial concentration of the effluent being injected. As described in paragraph 14, the initial concentration of effluent for each test was determined by averaging the results of analyses of samples obtained from the effluent container prior to and at regular intervals throughout each test. The concentrations of all samples obtained during each test were divided by the initial concentration to determine their values in terms of per cent of

^{*} Certain of the tests were not continued to stability, as will be discussed later in this report, since the testing time required for stability to be reached for extremely low flows made such tests appear unreasonable.

initial concentration. Although the initial concentrations were not exactly the same for all tests (see table 1), expression of the results in terms of per cent of initial concentration makes the results of all tests directly comparable to each other.

PART III: MODEL TESTS AND RESULTS

Objectives of Model Tests

19. A total of nine tests were made in the model, and the conditions for each are summarized in table 1. The tests were designed to provide the following information: (a) the effects of river discharge on effluent concentrations and extent of upstream intrusion, especially in the critical reach of the river at and upstream from the plant site (tests 1-4); (b) the benefits, if any, that would be derived from changing the existing continuous release of effluent to an intermittent release during certain prescribed hours of the tidal cycle (tests 3 and 8); (c) the relative merits of proposed outfall locations B and C (plate 2) as compared to the existing method for disposal of the effluent (tests 3, 4, 7, and 9); (d) the effects of doubling the plant output (increase in effluent discharge from 6 to 12 mgd) on effluent concentrations and extent of upstream intrusion (tests 2, 3, 5, and 6); and (e) the maximum effluent concentrations and extent of upstream intrusion that would occur for conditions of the lowest possible river discharge. The detailed results of all model tests are presented in tables 2, 3, and 4.

Effects of River Discharge

- 20. The test conditions for tests 1-4, conducted to determine the effects of river discharge on effluent concentrations and extent of upstream intrusion, were identical except that the river discharge at Trenton was varied: 12,000 cfs for test 1,8000 cfs for test 2,3400 cfs for test 3, and 2400 cfs for test 4. (The discharges of all major tributaries were also varied in accordance with variations in the Trenton discharge.) Outfall C (plate 2) was used for this series of tests, since it was believed that this outfall would provide the best possible conditions in the vicinity of the plant.
- 21. The results of the continuous sampling during tests 1-4 are presented on plate 3, and the results of detailed sampling to show final

effluent concentrations and extent of intrusion are presented on plate 4. The curves presented on these plates were initially prepared on work sheets on which the exact values of all samples obtained from the model were plotted, and these curves represent the best fit to all plotted points. To avoid confusion, the points were omitted from plates included in this report; however, the values of all samples used in construction of the smooth curves are contained in tables 2 and 3 and the reader may plot them on the plates if he wishes.

- 22. Examination of the results of continuous sampling during tests 1 and 2 (plate 3) indicates that effluent concentrations were stable by the end of the tests at and upstream from the plant site. Similar data for test 3 (plate 3) indicate that stability of effluent concentration was almost attained at station -35+000, but that concentrations were still increasing at all other sampling stations. Data for test 4 (plate 3) show that stability was essentially reached at station -60+000, but that concentrations were still increasing at a fairly rapid rate at all other sampling stations. Tests 3 and 4 were terminated at the end of 120 tidal cycles (equivalent to about two months in nature) because of the improbability of the continuation of such low flows for a longer period of time, and also because of the difficulties and cost of continuing the model tests for a greater period of time (the actual duration of a 120-cycle test was about 15 hours, not including time required to start the model and analyze the final samples).
- 23. Effluent concentrations observed on the channel center line at high- and low-water slack of the current at the end of tests 1-4 are presented on the bottom portion of plate 4. These data indicate that the maximum effluent concentration was located about 20,000 ft upstream from the plant site at high-water slack and about 20,000 ft downstream at low-water slack, the maximum concentrations at these times being approximately equal. The maximum effluent concentration for test 1 was 0.050 per cent of the initial concentration, that for test 2 was 0.075 per cent, that for test 3 was 0.165 per cent, and that for test 4 was 0.200 per cent. It is interesting to note that maximum effluent concentrations observed near the plant site for these tests are in fair

agreement with those computed by the ratio of plant effluent discharge to river discharge, assuming complete mixing of the effluent. Computed maximum concentrations for conditions of the model tests are 0.077 per cent for test 1, 0.116 per cent for test 2, 0.270 per cent for test 3, and 0.386 per cent for test 4. The observed and computed maximum concentrations for tests 1 and 2 were in fairly good agreement, since the model tests were continued until stability of effluent concentrations was essentially reached. The computed maximum concentrations for conditions of tests 3 and 4 were appreciably greater than those observed; however, concentrations in the model were increasing steadily at the termination of these tests, and it seems likely that they would have approached the computed maxima if the tests had been continued to stability.

- The extent of upstream intrusion of an effluent concentration equal to 0.01 per cent of the initial concentration at high-water slack was to about station -10+000 for test 1, station -22+000 for test 2, station -60+000 for test 3, and station -80+000 for test 4. Concentrations at low-water slack for all tests were 30,000 to 35,000 ft downstream from the location of equivalent concentrations at high-water slack, which provides a rough index to the tidal excursion length in this region of the river. The shapes of the curves presented on plate 4, as well as the results of continuous sampling presented on plate 3, indicate that stable effluent concentrations were not attained downstream from the plant site for conditions of any of the model tests, although downstream stability was almost attained for test 1. From a theoretical viewpoint, average concentrations at all channel stations downstream from the plant site should be equal to those at the plant site at the time of stability, provided that no additional fresh water entered the system at one or more downstream points to further dilute the effluent. Actually, the Schuylkill River discharges into the Delaware River at about station 60, so that additional fresh water was available for further dilution of the effluent. From a practical viewpoint, it appears that downstream stability was essentially attained for test 1, almost attained for test 2, and far from attained for tests 3 and 4 as would be expected.
 - 25. The results of sampling at the five local stations (stations

1-5, plate 2) for tests 1-4 are presented in table 4. These samples were obtained during the high-water slack sampling operation mentioned in paragraph 23. It will be noted that effluent concentrations at the local stations vary inversely with river discharge, the highest concentrations having been noted for test 4. The observed concentrations for tests 1 and 2 are probably representative of the maxima that could be expected for the river discharges reproduced for these tests, but the observed concentrations for tests 3 and 4 would have increased if these tests had been continued to stability.

Effects of Mode of Plant Discharge

- 26. The effects of a continuous versus an intermittent release of the plant effluent on effluent concentrations and extent of upstream intrusion can be determined by comparison of the results of tests 3 and 8. Both tests involved outfall C and a river discharge of 3400 cfs. The plant effluent was discharged continuously during test 3, but during test 8 it was discharged only during the 6-hr period between hours 1 and 7 of the tidal cycle; this period encompasses the last hour of flood current and the first five hours of ebb current at the plant site.
- 27. The results of continuous sampling during test 8 are presented on plate 5 and should be compared directly to similar data for test 3 on plate 3. Such comparison indicates no significant differences between the two tests except that effluent concentrations at the end of test 8 were slightly higher at stations located downstream from the plant site and slightly lower at stations located upstream. This effect may be seen more clearly on the upper portion of plate 4, which presents a comparison of the final samples obtained at termination of the two tests. It will be noted that the effluent concentration curves for test 8 are displaced slightly in a downstream direction from those of test 3.
- 28. A comparison of the effluent concentrations of samples obtained at the five local stations for tests 3 and 8 is presented in table 4. No significant difference in effluent concentrations at the local stations is apparent between continuous and intermittent release

conditions. Concentrations at stations 1, 2, and 4 were slightly greater for test 3, while concentrations at stations 3 and 5 were slightly greater for test 8.

Effects of Location of Outfall

- 29. The three outfall locations investigated (A, B, and C) are shown on plate 2 and are described in paragraphs 5 and 6. The effects of the outfall locations on effluent concentrations and extent of upstream intrusion can be determined from comparison of the results of the following tests: tests 3 and 9 were identical except that test 3 involved outfall C and test 9 involved outfall B; tests 4 and 7 were identical except that test 4 involved outfall C and test 7 involved outfall A (test 7 was run for 240 tidal cycles, but data were obtained at a few stations at the end of cycle 120 for comparison with the results of test 4).
- 30. The results of continuous sampling for tests 9 and 7 are presented on plates 5 and 6, respectively, and should be compared directly to similar data on plate 3 for tests 3 and 4. Such comparison indicates no appreciable differences between the results of tests 3 and 9 and tests 4 and 7 with respect to rate of increase of effluent concentration at the various stations. For example, effluent concentrations at tidal cycle 120 of test 7 were almost identical with those at the end of test 4 at all stations.
- 31. Comparisons of detailed measurements of effluent concentration along the channel center line at the termination of tests 3 and 9 and tests 4 and 7 are presented on plate 7. Data presented for test 7 include observations made at the end of tidal cycle 120, for comparison with the results of test 4, as well as observations made at the termination of the test (tidal cycle 240). The curves presented on this plate show no appreciable differences in effluent concentrations or extent of upstream intrusion resulting from release of the effluent at the various outfall locations.
- 32. The results of samples obtained at local stations 1-5 (table 4) indicate that, in general, outfall C resulted in lesser concentrations

than did outfalls B and A (test 3 compared to test 9 and test 4 compared to test 7). It is pointed out that observed concentrations at the five local stations for tests 4 and 7 are not directly comparable, since data presented in table 4 for test 7 were obtained at tidal cycle 240 instead of tidal cycle 120. Through an oversight, no samples were obtained at these stations during tidal cycle 120 of test 7.

Effects of Doubling Plant Discharge

- 33. The effects of doubling the plant discharge of effluent (increase from 6 to 12 mgd) on effluent concentrations and extent of upstream intrusion may be determined from comparisons of the results of tests 2 and 5 and tests 3 and 6. River discharges at Trenton were 8000 cfs for tests 2 and 5 and 3400 cfs for tests 3 and 6. Tests 2 and 3 involved an effluent discharge of 6 mgd, while tests 5 and 6 involved an effluent discharge of 12 mgd. A continuous discharge of effluent from outfall C was used for all tests in this series.
- 34. The results of continuous sampling for tests 5 and 6 are presented on plate 5 and should be compared directly to similar data for tests 2 and 3 on plate 3. Such comparisons indicate that effluent concentrations at all stations for tests 5 and 6 were approximately double the equivalent concentrations for tests 2 and 3. In evaluating the maximum effluent concentrations observed during these tests, it should be remembered that the results of tests 2 and 5 represent essentially stable conditions at and upstream from the plant site at termination of these tests, while effluent concentrations had not reached stability at any stations at the termination of tests 3 and 6.
- 35. Comparisons of final sampling at the termination of tests 2 and 5 and tests 3 and 6 are presented on plate 8. These comparisons indicate that doubling the effluent discharge essentially doubled effluent concentrations throughout the region of the river in which samples were obtained. However, the effluent distribution curves presented on plate 8 show that the extent of upstream intrusion of the effluent would not be increased appreciably, if at all, as a result of increasing the plant

- output. It appears that the river discharge is the dominant factor in the control of the upstream limit of intrusion, and while effluent concentrations would be essentially doubled at all points between the upstream limit of intrusion and the plant site, the limit of intrusion would not be changed appreciably.
- 36. Comparisons of samples obtained at the five local stations for tests 2 and 5 and tests 3 and 6 are presented in table 4. These data also indicate that effluent concentrations for test 5 were essentially double those of test 2, while effluent concentrations for test 6 were about double those of test 3. Effluent concentrations for tests 2 and 5 are considered representative of stable conditions, while those for tests 3 and 6 do not represent stable conditions since concentrations were still increasing at the termination of these tests.

Maximum Concentrations of Effluent

- 37. The conditions of test 7, which included the existing method for disposal of the plant effluent and which represented the worst possible condition of river discharge to be expected in nature (a sustained flow of 2400 cfs for a 4-month period), were used to determine maximum effluent concentrations and extent of upstream intrusion that might be expected if such a discharge condition should occur. The results of continuous sampling for this test are presented on plate 6 and the results of final sampling (tidal cycle 240) are presented on the upper portion of plate 7.
- 38. Plate 6 indicates that the 4-month period covered by the test was not sufficient to permit effluent concentrations at and upstream from the plant site to stabilize. Effluent concentrations appear to have been approaching stability at stations -85+000, -60+000, and -35+000; however, concentrations at stations farther downstream were still increasing steadily at termination of the test. The curves on plate 7 indicate that the maximum concentration of effluent near the plant site was about 0.25 per cent of the initial concentration, as compared to a computed maximum (based on ratio of plant discharge to river discharge) of 0.386 per cent

of the initial concentration. Although effluent concentrations would have increased at most stations if the test had been continued, the probable occurrence of a sustained low flow of the magnitude and duration of that used for the test is very remote. It therefore appears that the final results of test 7 are representative of the extreme concentrations and extent of upstream influence attributable to present operation of this plant.

PART IV: CONCLUSIONS

- 39. No attempt is made in this report to evaluate the results of model tests in terms of their effects in the prototype, since such evaluation will involve the chemical as well as the physical properties of the effluent, the constituents of the river water with which the effluent is mixed, and many other factors. Instead, the results of the model tests are expressed in terms that can be readily employed by those concerned with subsequent application of model data to the prototype problems involved.
- 40. It is believed that the following general conclusions can be drawn from the results of model tests reported herein:
 - River discharge appears to be the dominant factor controlling effluent concentrations and extent of upstream intrusion, since both effluent concentrations at given points and the upstream extent of effluent intrusion varied inversely with river discharge.
 - b. Reductions in maximum effluent concentrations in areas near the plant site can probably be effected by location of the outfall so as to promote rapid mixing of the effluent with the river water. An accurate determination of the extent of such reductions will require work in a larger model. The exact location of the outfall would have little if any effect on effluent concentrations throughout the river as a whole or on the extent of upstream intrusion of the effluent.
 - c. Intermittent rather than continuous release of effluent would not significantly reduce concentrations or the extent of upstream intrusion of the effluent.
 - d. An increase in plant effluent discharge from 6 to 12 mgd would essentially double effluent concentrations at equivalent locations along the river, all other conditions being equal, but the increased effluent discharge would not cause a significant increase in the extent of upstream intrusion of the effluent.
 - e. The results of test 7 are probably representative of the highest possible effluent concentrations that can result from the present method and rate of discharge into the Delaware River from the Gloucester Plant of the New Jersey Zinc Co.

Table 1
Summary of Test Conditions

Test Number	River Discharge cfs	Outfall Point	Efflue mgd	nt Discharge* cfs	Dye in Effluent ppm
1.	12,000	C	6	9.28	493
2	8,000	C	6	9.28	685
3	3,400	C	6	9.28	654
14	2,400	C	6	9.28	637
5	8,000	C	12	18.56	723
6	3,400	C	12	18.56	692
7	2,400	A	6	9.28	663
8	3,400	G -	6	18.56	743
9	3,400	В	, 6	9.28	880

Note: See plate 2 for location of outfall points.

^{*} Plant effluent was discharged at a continuous rate for all tests except test 8 in which it was discharged during that portion of the tidal cycle between hours 1 and 7 (see paragraph 26).

Table 2

Results of Continuous Observations

Dye Concentrations in Per Cent of Plant Effluent Concentration

		Yar				 				T 07-					
Table She Sh						_									
Test 100 100 20	Tidal		Sta				Sta		Tidal		Sta				Sta
0.035		100		20											
10				Test	1							Test	; 3		
11 0.032 0.056					0.000										
13 0.092 0.093 0.095	11	0.032	0.005		0.000				1.1.	0.025	0.002	0.053	0.016		
1. 0.046															
17 0.039 0.027 0.035	14	0.048	0.013						14	0.031	0.005	0.064	0.020		
17 0.039 0.027 0.035									15 16			0.064	0.027		
19	17	0.039	0.027	0.035					17	0.040	0.007	0.062	0.027		
22 0.0Å2 0.0Ã3 0.0Ã9 0.0									19	0.043	0.007	0.069	0.029		
22 0.04 0.069 0.031 0.034															
28 0.048 0.031 0.003	22	0.043	0.029	0.031					22	0.048	0.005	0.082	0.044	0.007	
25 0.086 0.032 0.033 0.005 25 0.058 0.028 0.074 0.030 0.099 27 0.086 0.039 0.039 0.005 0.0	23 24														
87 0.046 0.035 0.037 0.005 27 0.051 0.015 0.041 0.007 28 0.049 0.038 0.037 0.002 28 0.059 0.037 0.022 0.084 0.048 0.048 0.003 29 0.059 0.037 0.093 0.049 0.040 0.010 33 0.046 0.035 0.035 0.005 0.005 33 0.046 0.035 0.035 0.005 0.005 33 0.046 0.035 0.035 0.005 0.005 33 0.046 0.024 0.092 0.046 0.000 33 0.046 0.024 0.092 0.046 0.000 33 0.046 0.024 0.092 0.046 0.000 33 0.046 0.024 0.092 0.046 0.000 33 0.046 0.024 0.092 0.046 0.000 33 0.046 0.024 0.092 0.046 0.000 0.041 0.031 0.031 0.032 0.003 33 0.066 0.024 0.092 0.044 0.034 0.035 0.033 0.032 0.033 0.032 0.033 0.032 0.033 0.032 0.033 0.032 0.033 0.032 0.033 0.032 0.033 0.032 0.034 0.035 0.037 0.034 0.035 0.037 0.034 0.034 0.035 0.03		0.048	0.032	0.033	0.005					0.054	0.024	0.074	0.038	0.009	
88 0.042 0.098 0.097 0.002 288 0.095 0.022 0.084 0.048 0.010 299 0.010 0.037 0.044 0.033 0.049 0.011 1 0.029 0.037 0.095 0.005 0.005 330 0.061 0.022 0.092 0.046 0.000 1 0.011 1 0.022 0.037 0.095 0.005 330 0.061 0.022 0.092 0.046 0.000 1 0.011 1 0.022 0.005 0.005 331 0.007 0.022 0.095 0.047 0.015 1 0.022 0.097 0.047 0.015 1 0.022 0.097 0.047 0.015 1 0.022 0.095 0.046 0.095 0.046 0.095 0.046 0.095 0.046 0.095 0.046 0.005 0.046 0.005 0.046 0.005 0.046 0.005 0.046 0.005 0.046 0.005 0.046 0.005 0.046 0.005 0.046 0.005 0.046 0.005 0.046 0.005 0.046 0.005 0.046 0.005 0.046 0.005 0.046 0.005 0.046 0.005 0.007 0.005 0.046 0.005 0.007 0.005 0.046 0.005 0.007 0.005 0.046 0.005 0.007 0.005 0.046 0.005 0.007 0.005 0.005 0.006 0.005 0.0										0.051	0.015				
30 0.046 0.035 0.035 0.035 0.005 30 0.066 0.022 0.092 0.046 0.000 31 0.072 0.024 0.097 0.047 0.015 32 0.046 0.037 0.060 0.050 0.050 32 0.066 0.024 0.098 0.050 0.051 33 0.052 0.038 0.039 0.052 0.039 33 0.066 0.024 0.098 0.050 0.051 0.014 33 0.050 0.048 0.006 0.050 0.051 0.014 33 0.050 0.048 0.006 0.050 0.051 0.014 33 0.050 0.048 0.006 0.050 0.051 0.014 33 0.050 0.048 0.006 0.050 0.051 0.014 33 0.056 0.048 0.006 0.050 0.051 0.014 33 0.056 0.048 0.008 0.050 0.051 0.014 33 0.056 0.048 0.048 0.056 0.048 0.056 0.048 0.056 0.048 0.056 0.048 0.056 0.048 0.056 0.048 0.056 0.048 0.056 0.048 0.056 0.048 0.056 0.048 0.056 0.048 0.056 0.048 0.056 0.048 0.056 0.048 0.056 0.048 0.056 0.048 0.056 0.048 0.056 0.056 0.057 0.059 0.013 0.058 0.048 0.056 0.048 0.056 0.048 0.056 0.048 0.056 0.048 0.056 0.048 0.056 0.056 0.053 0.058 0.059	28	0.042	0.038	0.037	0.002				28	0.056	0.022	0.084	0.048	0.010	
31 0.048 0.047 0.032 0.033 31 0.057 0.024 0.097 0.047 0.015 32 0.048 0.037 0.060 0.055 0.051 0.015 33 0.052 0.053 0.032 0.033 33 0.056 0.024 0.068 0.050 0.051 0.014 33 0.052 0.045 0.041 0.001 34 0.050 0.055 0.045 0.041 0.001 34 0.070 0.027 0.090 0.052 0.051 0.014 35 0.050 0.045 0.041 0.001 34 0.070 0.027 0.090 0.052 0.051 0.014 35 0.050 0.045 0.046 0.033 0.007 0.035 0.007 0.0		0.049	0.037							0.059	0.022				
33 0.095 0.045 0.045 0.037 0.003 33 0.066 0.024 0.096 0.050 0.014 135 0.095 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.046 0.045 0.046 0.045 0.046 0.					0.003				31						
35 0.050 0.044 0.043 35 0.072 0.031 0.099 0.092 0.014 36 0.046 0.045 0.046 0.040 37 0.033 0.100 0.058 0.011 37 0.048 0.046 0.040 0.040 0.005 0.007 38 0.047 0.043 0.042 0.006 38 0.047 0.043 0.038 0.033 39 0.050 0.046 0.035 0.003 39 0.050 0.046 0.035 0.005 40 0.050 0.046 0.035 0.003 40 0.050 0.046 0.035 0.005 40 0.050 0.046 0.035 0.006 40 0.050 0.046 0.035 0.006 40 0.050 0.046 0.035 0.006 40 0.050 0.046 0.035 0.006 40 0.050 0.046 0.035 0.006 41 0.050 0.038 0.039 0.040 0.006 42 0.050 0.038 0.039 0.040 0.006 43 0.050 0.039 0.040 0.006 44 0.050 0.037 0.040 0.006 45 0.050 0.037 0.001 46 0.080 0.037 0.001 47 0.084 0.050 0.038 0.001 48 0.082 0.047 0.110 0.055 0.014 49 0.091 0.080 0.039 0.015 49 0.092 0.093 0.005 0.005 40 0.094 0.001 0.006 40 0.094 0.001 0.006 40 0.007 0.008 0.005 40 0.008 0.009 0.008 0.000 40 0.008 0.009 0.008 0.000 40 0.009 0.009 0.001 0.002 40 0.001 0.002 0.009 0.016 40 0.009 0.009 0.001 0.002 40 0.001 0.002 0.009 0.016 40 0.004 0.001 0.002 0.005 0.016 40 0.005 0.009 0.005 0.015 40 0.004 0.001 0.002 0.005 0.015 40 0.004 0.001 0.002 0.005 0.015 40 0.004 0.001 0.002 0.005 0.015 40 0.005 0.009 0.005 0.015 40 0.005 0.009 0.005 0.015 40 0.005 0.009 0.005 0.015 40 0.005 0.009 0.005 0.015 40 0.005 0.009 0.005 0.015 40 0.005 0.009 0.005 0.015 40 0.005 0.009 0.005 0.015 40 0.009 0.005 0.005 0.015 40 0.009 0.005 0.005 0.015 40 0.009 0.005 0.005 0.015 40 0.009 0.005 0.005 0.015 40 0.009 0.005 0.005 0.015 40 0.009 0.005 0.005 0.005 0.015 40 0.009 0.005 0.005 0.015 40 0.009 0.005 0.005 0.005 0.015 40 0.009 0.005 0.005 0.015 40 0.009 0.005 0.005 0.005 0.015 40 0.009 0.005 0.005 0.015 40 0.009 0.005 0.005 0.005 0.005 40 0.009 0.005 0.005 0.005 0.005 40 0.009 0.005 0.005 0.005 0.005 40 0.009 0.005 0.005 0.005 0.005 40 0.009 0.005 0.005 0.005 0.005 0.005 40 0.009 0.005 0.005 0.005 0.005 0.005 40 0.009 0.005 0.005 0.005 0.005 0.005 0.005 40 0.009 0.005 0.005 0.005 0.005 0.005 0.0	33	0.052	0.043	0.032	0.003				33	0.066	0.024	0.098	0.050	0.014	
36	34 35								34 35	0.070	0.027	0.090	0.051	0.014	
39 0.060 0.043 0.035 0.003 39 0.007 0.029 0.107 0.059 0.031 40 0.050 0.046 0.035 0.005 40 0.081 0.035 0.077 0.054 0.031 41 0.082 0.031 0.106 0.077 0.031 0.051 0.031 0.052 0.033 0.031 0.052 0.033 0.032 0.007 0.034 0.033 0.032 0.007 0.035 0.033 0.032 0.007 0.035 0.033 0.032 0.007 0.035 0.033 0.032 0.007 0.035 0.033 0.032 0.007 0.036 0.033 0.006 0.038 0.003 0.052 0.001 0.002 0.006 0.001 0.002 0.005 0.001 0.002 0.005 0.001 0.002 0.005 0.001 0.002 0.005 0.001 0.002 0.005 0.001 0.002 0.005 0.001 0.002 0.005 0.001 0.002 0.005 0.001 0.002 0.005 0.001 0.002 0.005 0.001 0.002 0.005 0.001 0.002 0.005 0.005 0.0	36	0.048	0.044	0.036	0.007				36	0.076	0.029	0.101	0.058	0.011	
39 0.060 0.043 0.035 0.003 39 0.007 0.029 0.107 0.059 0.031 40 0.050 0.046 0.035 0.005 40 0.081 0.035 0.077 0.054 0.031 41 0.082 0.031 0.106 0.077 0.031 0.051 0.031 0.052 0.033 0.031 0.052 0.033 0.032 0.007 0.034 0.033 0.032 0.007 0.035 0.033 0.032 0.007 0.035 0.033 0.032 0.007 0.035 0.033 0.032 0.007 0.035 0.033 0.032 0.007 0.036 0.033 0.006 0.038 0.003 0.052 0.001 0.002 0.006 0.001 0.002 0.005 0.001 0.002 0.005 0.001 0.002 0.005 0.001 0.002 0.005 0.001 0.002 0.005 0.001 0.002 0.005 0.001 0.002 0.005 0.001 0.002 0.005 0.001 0.002 0.005 0.001 0.002 0.005 0.001 0.002 0.005 0.001 0.002 0.005 0.005 0.0	37 38								3 7 38	0.081	0.033				
Test 2	39	0.060	0.043	0.038	0.003				39	0.077	0.029	0.107	0.059	0.013	
Test 2	40	0.050	0.046	0.035	0.005					0.081	0.033				
10 0.022 0.009 0.040 0.006 0.006 0.006 0.001 0.006 0.001 0.006 0.001 0.002 0.006 0.001 0.002 0.006 0.0015 0.001 0.002 0.007 0.0016 0.0015 0.002 0.007 0.0010 0.008 0.009 0.007 0.0010 0.008 0.009 0.0010 0.008 0.009 0.0010 0.008 0.009 0.0010 0.008 0.009 0.0010 0.008 0.009 0.0010 0.008 0.009 0.0010 0.008 0.009 0.0010 0.008 0.009 0.0010 0.008 0.009 0.0010 0.008 0.009 0.0010 0.008 0.009 0.0010 0.008 0.009 0.0010 0.008 0.009 0.0010 0.009 0.0010 0.009 0.0010 0.009 0.0010 0.009 0.0010 0.0010 0.009 0.0010				Test	2					0.085	0.035	0.103	0.052	0.013	
11 0.032 0.007 0.048 0.010				0.000	0.006				7474	0.091	0.040	0.102	0.061	0.011	
12 0.035 0.010 0.036 0.009 0.008 0.009 48 0.080 0.050 0.116 0.067 0.011 13 0.035 0.010 0.008 0.094 0.000 48 0.009 48 0.087 0.052 0.077 0.101 0.058 0.012 15 0.041 0.017 0.053 0.015 50 0.006 0.057 0.102 0.057 0.011 16 0.042 0.011 0.052 0.006 50 0.006 50 0.007 0.007 0.007 0.001 17 0.045 0.019 0.059 0.006 50 0.006 51 0.078 0.045 0.104 0.062 0.017 18 0.044 0.019 0.058 0.012 52 0.006 0.059 0.010 18 0.044 0.019 0.058 0.012 53 0.003 0.050 0.112 0.061 0.017 20 0.050 0.022 0.052 0.015 54 0.094 0.047 0.111 0.056 0.017 21 0.022 0.047 0.010 55 0.098 0.057 0.112 0.061 0.007 22 0.040 0.019 0.059 0.015 56 0.098 0.057 0.122 0.064 0.095 23 0.053 0.022 0.052 0.007 55 0.098 0.057 0.122 0.064 0.095 24 0.049 0.029 0.051 0.012 55 0.008 0.057 0.122 0.064 0.019 25 0.046 0.031 0.054 0.033 60 0.02 0.055 0.129 0.064 0.019 25 0.046 0.031 0.054 0.033 60 0.02 0.055 0.129 0.064 0.019 26 0.050 0.027 0.017 61 0.060 0.057 0.128 0.068 0.057 27 0.053 0.032 0.014 0.013 60 0.012 60 0.055 0.128 0.068 0.025 29 0.055 0.030 0.032 0.017 0.011 62 0.055 0.128 0.068 0.025 29 0.055 0.030 0.032 0.017 0.011 62 0.064 0.129 0.055 0.128 0.068 0.025 29 0.055 0.030 0.031 0.012 66 0.010 0.064 0.130 0.052 0.023 29 0.055 0.030 0.031 0.012 66 0.104 0.068 0.130 0.062 0.023 29 0.055 0.030 0.031 0.013 67 0.110 0.064 0.129 0.077 0.023 31 0.056 0.033 0.048 0.013 69 0.115 0.064 0.130 0.077 0.023 33 0.059 0.035 0.051 0.012 66 0.107 0.061 0.129 0.077 0.024 31 0.056 0.038 0.048 0.011 66 0.110 0.064 0.130 0.077 0.025 31 0.059 0.038 0.048 0.017 66 0.107 0.061 0.129 0.077 0.025 31 0.059 0.038 0.049 0.017 67 0.011 60 0.110 0.064 0.130 0.077 0.025 31 0.056 0.040 0.051 0.013 67 0.111 0.064 0.130 0.077 0.025 31 0.056 0.040 0.051 0.013 67 0.111 0.064 0.130 0.077 0.025 31 0.056 0.040 0.051 0.013 67 0.111 0.064 0.130 0.077 0.025 31 0.056 0.040 0.051 0.017 67 0.011 60 0.011 0.064 0.130 0.077 0.025 31 0.056 0.040 0.051 0.013 67 0.011 0.064 0.130 0.077 0.025 31 0.056 0.040 0.051 0.015 77 0.011 0.064 0.130 0.077 0.025 31 0.059 0.040 0.050 0.051 0.013 79 0.014 0.006 0.050 0.077 0.025	11	0.032	0.007	0.048	0.010				45 46						
14 0.040 0.008 0.054 0.010									47	0.084	0.050	0.116	0.067	0.014	
10 0.042 0.011 0.052 0.016 0.052 0.016 0.052 0.017 0.045 0.019 0.059 0.010 0.052 0.017 0.045 0.019 0.059 0.012 0.051 0.052 0.015 0.052 0.015 0.052 0.017 0.051 0.020 0.052 0.015 0.017 0.051 0.020 0.052 0.017 0.051 0.020 0.052 0.017 0.051 0.020 0.052 0.017 0.051 0.020 0.052 0.017 0.051 0.052 0.017 0.051 0.052 0.017 0.051 0.055 0.019 0.057 0.015 0.052 0.017 0.051 0.055 0.019 0.052	1.4	0.040	0.008	0.054	0.010										
17 0.045 0.019 0.059 0.010 51 0.050 0.012 0.051 0.012 0.051 0.022 0.017 0.051 0.025 0.012 0.051 0.025 0.017 0.051 0.050 0.017 0.051 0.055 0.019 0.057 0.017 0.051 0.055 0.019 0.057 0.051 0.025 0.017 0.051 0.055 0.019 0.057 0.051 0.025 0.017 0.051 0.055 0.059 0.057 0.118 0.064 0.025 0.019 0.057 0.053 0.022 0.052 0.052 0.059 0.055 0.059 0.057 0.122 0.064 0.019 0.059 0.053 0.022 0.056 0.019 0.059 0.051 0.002 0.059 0.051 0.002 0.059 0.051 0.002 0.059 0.051 0.002 0.059 0.051 0.002 0.055 0.004 0.003 0.025 0.055 0.002 0.002 0.055 0.002 0.	15 16								50	0.090	0.046	0.119	0.057	0.014	
10	17	0.045	0.019	0.059	0.010				52 52						
20									53	0.103	0.050	0.117	0.061		
22									55 55			0.118	0.056	0.019	
24 0.049 0.029 0.051 0.012 58 0.102 0.056 0.129 0.064 0.019 25 0.046 0.031 0.054 0.013 59 0.104 0.055 0.128 0.068 0.025 26 0.050 0.027 0.017 61 0.108 0.055 0.128 0.068 0.025 27 0.053 0.032 0.047 0.011 62 0.104 0.068 0.130 0.062 0.023 28 0.054 0.033 0.048 0.013 62 0.013 62 0.108 0.060 0.128 0.071 0.023 29 0.055 0.038 0.048 0.011 64 0.110 0.064 0.130 0.072 0.024 31 0.056 0.036 0.052 0.017 66 0.109 0.062 0.124 0.075 0.024 31 0.056 0.036 0.055 0.013 66 0.103 67 0.114 0.064 0.129 0.070 0.025 33 0.064 0.038 0.048 0.017 66 0.107 0.061 0.129 0.070 0.025 33 0.064 0.038 0.048 0.017 68 0.111 0.063 0.110 0.065 0.134 0.077 0.025 35 0.055 0.041 0.051 0.017 68 0.111 0.063 0.134 0.077 0.025 36 0.059 0.040 0.051 0.015 70 0.015 70 0.015 70 0.021 70 0.022 70 0.02		0.044	0.019	0.059	0.015	•									
25	23								58	0.102	0.056	0.129	0.064	0.019	
27 0.053 0.032 0.047 0.011 28 0.054 0.033 0.048 0.013 29 0.055 0.038 0.048 0.013 30 0.055 0.038 0.048 0.011 31 0.056 0.035 0.051 0.012 32 0.065 0.040 0.051 0.012 32 0.065 0.040 0.051 0.017 33 0.064 0.038 0.048 0.017 34 0.047 0.036 0.054 0.013 35 0.055 0.041 0.057 0.013 36 0.055 0.040 0.051 0.017 37 0.058 0.059 0.040 0.051 0.015 38 0.057 0.056 0.013 39 0.052 0.047 0.056 0.013 39 0.052 0.044 0.057 0.013 39 0.052 0.044 0.057 0.013 39 0.056 0.049 0.051 0.015 39 0.050 0.040 0.051 0.015 39 0.050 0.040 0.051 0.015 39 0.050 0.040 0.051 0.015 39 0.050 0.040 0.051 0.015 39 0.050 0.040 0.051 0.015 39 0.050 0.040 0.051 0.015 39 0.050 0.040 0.051 0.015 39 0.050 0.040 0.051 0.013 39 0.050 0.040 0.051 0.013 39 0.050 0.040 0.051 0.013 39 0.050 0.040 0.051 0.013 39 0.050 0.040 0.051 0.013 39 0.050 0.040 0.051 0.013 39 0.050 0.040 0.051 0.015 39 0.050 0.045 0.059 0.016 30 0.050 0.047 0.056 0.013 30 0.050 0.047 0.056 0.013 30 0.050 0.047 0.056 0.013 30 0.050 0.047 0.056 0.013 30 0.050 0.049 0.051 0.017 30 0.050 0.049 0.051 0.017 30 0.050 0.049 0.061 0.017 30 0.050 0.049 0.061 0.017 30 0.050 0.049 0.061 0.017 30 0.050 0.049 0.061 0.017 30 0.050 0.049 0.061 0.017 30 0.050 0.049 0.061 0.017 30 0.050 0.049 0.061 0.017 30 0.050 0.049 0.061 0.017 30 0.050 0.049 0.061 0.017 30 0.050 0.049 0.061 0.017 30 0.050 0.049 0.061 0.017 30 0.050 0.049 0.061 0.017 30 0.050 0.049 0.061 0.016 30 0.050 0.049 0.061 0.016 31 0.112 0.075 0.130 0.076 0.025 32 0.050 0.049 0.061 0.016 32 0.050 0.049 0.061 0.017 33 0.050 0.049 0.061 0.017 34 0.050 0.049 0.061 0.016 35 0.040 0.050 0.047 0.061 0.016 36 0.050 0.047 0.061 0.016 37 0.050 0.049 0.061 0.017 38 0.050 0.049 0.061 0.017 30 0.050 0.049 0.061 0.017 30 0.050 0.049 0.061 0.017 30 0.050 0.049 0.061 0.017 30 0.050 0.049 0.061 0.017 30 0.050 0.049 0.061 0.017 30 0.050 0.049 0.061 0.017 30 0.050 0.049 0.061 0.016 31 0.112 0.075 0.140 0.079 0.029 31 0.060 0.050 0.047 0.061 0.016	25	0.046	0.031	0.054	0.013				59 60			0.125	0.074	0.018	
28 0.05h 0.033 0.0h8 0.013 63 0.104 0.060 0.128 0.071 0.023 29 0.055 0.038 0.048 0.011 63 0.108 0.060 0.128 0.071 0.023 30 0.059 0.035 0.051 0.012 64 0.110 0.064 0.130 0.072 0.024 31 0.056 0.036 0.052 0.017 66 0.100 0.062 0.124 0.075 0.024 32 0.065 0.0h0 0.061 0.013 67 0.114 0.064 0.129 0.070 0.025 33 0.064 0.038 0.048 0.017 66 0.107 0.061 0.129 0.070 0.025 33 0.064 0.038 0.048 0.017 68 0.111 0.063 0.130 0.075 0.027 34 0.0h7 0.036 0.054 0.013 69 0.115 0.063 0.130 0.075 0.027 35 0.055 0.0h1 0.051 0.015 70 0.114 0.064 0.134 0.077 0.025 36 0.059 0.040 0.051 0.015 70 0.114 0.064 0.134 0.074 0.027 37 0.058 0.042 0.051 0.013 71 0.101 0.076 0.128 0.077 0.021 38 0.057 0.056 0.013 72 0.102 0.064 0.119 0.072 0.025 39 0.052 0.047 0.056 0.013 72 0.102 0.064 0.119 0.072 0.025 40 0.057 0.045 0.059 0.016 74 0.114 0.064 0.135 0.076 0.028 41 0.059 0.044 0.057 0.017 75 0.117 0.072 0.133 0.075 0.028 41 0.056 0.046 0.057 0.017 76 0.112 0.064 0.139 0.076 0.025 42 0.056 0.046 0.057 0.017 76 0.112 0.064 0.139 0.076 0.025 43 0.058 0.043 0.065 0.018 78 0.110 0.070 0.123 0.077 0.025 45 0.056 0.046 0.055 0.018 78 0.110 0.070 0.123 0.077 0.025 45 0.061 0.047 0.061 0.016 81 0.112 0.075 0.140 0.084 0.025 46 0.061 0.047 0.061 0.016 81 0.112 0.075 0.140 0.072 0.031 47 0.061 0.046 0.064 0.016 81 0.112 0.075 0.140 0.072 0.031 48 0.060 0.051 0.047 0.061 0.017 83 0.142 0.084 0.142 0.084 0.025 50 0.059 0.043 0.062 0.017 80 0.118 0.071 0.142 0.084 0.025 0.014 0.006 0.058 0.015 0.017 80 0.118 0.071 0.142 0.084 0.025 0.031 0.007 0.014 0.006 0.018 0.007 0.014 0.0070 0.013 0.0070 0.029 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.001									61	0.108	0.055	0.118	0.074	0.015	
64 0.110 0.064 0.130 0.072 0.024 30 0.059 0.035 0.051 0.012 31 0.056 0.036 0.052 0.017 32 0.065 0.040 0.061 0.013 33 0.064 0.038 0.048 0.017 34 0.047 0.036 0.054 0.013 35 0.055 0.041 0.051 0.017 36 0.055 0.041 0.051 0.017 37 0.059 0.040 0.051 0.015 38 0.059 0.040 0.051 0.015 39 0.052 0.047 0.056 0.033 39 0.052 0.047 0.056 0.013 39 0.052 0.047 0.056 0.013 39 0.052 0.047 0.056 0.013 39 0.052 0.047 0.056 0.013 39 0.052 0.047 0.056 0.013 39 0.050 0.040 0.051 0.017 39 0.050 0.040 0.051 0.051 39 0.050 0.040 0.051 0.051 39 0.050 0.040 0.055 0.0016 39 0.050 0.040 0.055 0.059 0.0016 40 0.057 0.045 0.059 0.016 41 0.059 0.044 0.057 0.017 42 0.114 0.064 0.135 0.076 0.028 41 0.056 0.045 0.059 0.016 42 0.056 0.046 0.058 0.017 43 0.056 0.046 0.057 0.017 44 0.114 0.078 0.140 0.084 0.025 44 0.056 0.049 0.061 0.017 45 0.112 0.064 0.139 0.076 0.025 46 0.056 0.049 0.061 0.017 47 0.114 0.078 0.140 0.084 0.025 48 0.056 0.049 0.061 0.017 48 0.110 0.070 0.123 0.077 0.029 44 0.056 0.046 0.056 0.018 45 0.056 0.046 0.057 0.017 46 0.061 0.047 0.061 0.016 47 0.061 0.047 0.061 0.016 48 0.060 0.051 0.047 0.061 0.016 49 0.059 0.047 0.061 0.016 50 0.059 0.047 0.061 0.017 50 0.059 0.047 0.061 0.017 50 0.059 0.047 0.061 0.017 50 0.059 0.047 0.061 0.016 51 0.056 0.048 0.062 0.017 51 0.065 0.046 0.058 0.015	28	0.054	0.033	0.048	0.013										
31 0.056 0.036 0.052 0.017				0.051	0.012				64	0.110	0.064	0.130	0.072	0.024	
33	31			0.052	0.017				66	0.107	0.061				
34 0.047 0.036 0.051 0.051 0.017 69 0.115 0.063 0.134 0.077 0.025 35 0.055 0.041 0.051 0.015 0.017 70 0.114 0.064 0.134 0.074 0.027 37 0.058 0.042 0.051 0.015 71 0.101 0.076 0.128 0.077 0.021 38 0.057 0.056 0.013 72 0.102 0.064 0.119 0.072 0.025 39 0.052 0.047 0.056 0.013 73 0.103 0.066 0.144 0.073 0.023 40 0.057 0.045 0.059 0.016 74 0.114 0.064 0.135 0.076 0.026 41 0.059 0.044 0.057 0.017 75 0.114 0.064 0.135 0.076 0.028 41 0.059 0.044 0.057 0.017 75 0.114 0.064 0.139 0.076 0.028 42 0.056 0.049 0.061 0.017 76 0.112 0.064 0.139 0.076 0.025 43 0.056 0.049 0.061 0.058 0.015 77 0.114 0.078 0.140 0.084 0.025 44 0.058 0.043 0.065 0.018 79 0.110 0.070 0.123 0.077 0.029 44 0.058 0.043 0.065 0.018 79 0.110 0.070 0.123 0.077 0.029 45 0.065 0.046 0.064 0.065 0.016 80 0.118 0.071 0.148 0.076 0.031 46 0.061 0.047 0.061 0.016 80 0.118 0.071 0.148 0.076 0.031 47 0.061 0.046 0.064 0.061 0.017 80 0.118 0.071 0.148 0.076 0.031 48 0.060 0.051 0.047 0.061 0.016 81 0.112 0.075 0.140 0.072 0.030 48 0.059 0.047 0.061 0.017 82 0.137 0.029 50 0.059 0.043 0.062 0.017 84 0.137 0.029 50 0.059 0.043 0.062 0.017 84 0.137 0.029 51 0.065 0.046 0.058 0.015	33	0.064	0.038	0.048	0.017				67 68						
36 0.059 0.040 0.051 0.015 71 0.011 0.076 0.128 0.077 0.021 37 0.058 0.042 0.051 0.013 72 0.102 0.064 0.119 0.072 0.025 38 0.057 0.056 0.013 72 0.102 0.064 0.119 0.072 0.025 39 0.052 0.047 0.056 0.013 73 0.103 0.066 0.144 0.073 0.023 40 0.057 0.045 0.059 0.016 74 0.114 0.064 0.135 0.076 0.026 41 0.059 0.044 0.057 0.017 75 0.117 0.072 0.133 0.075 0.028 41 0.059 0.046 0.058 0.015 77 0.114 0.078 0.140 0.084 0.025 42 0.056 0.049 0.061 0.017 77 0.114 0.078 0.140 0.084 0.025 43 0.056 0.043 0.065 0.018 78 0.110 0.070 0.123 0.077 0.029 44 0.058 0.043 0.065 0.018 78 0.110 0.070 0.123 0.077 0.029 45 0.061 0.064 0.061 0.017 80 0.118 0.071 0.148 0.076 0.031 46 0.061 0.047 0.061 0.016 81 0.112 0.075 0.140 0.072 0.030 48 0.061 0.046 0.054 0.061 0.047 0.061 0.046 0.054 0.016 81 0.112 0.075 0.140 0.072 0.030 48 0.060 0.051 0.047 0.061 0.047 0.061 0.047 0.061 0.047 0.061 0.046 0.051 0.047 0.017 82 0.068 0.139 0.084 0.059 0.047 0.061 0.047 0.061 0.047 0.061 0.047 0.061 0.047 0.061 0.047 0.061 0.047 0.061 0.047 0.061 0.047 0.061 0.047 0.061 0.047 0.061 0.047 0.061 0.047 0.061 0.047 0.061 0.047 0.061 0.047 0.061 0.047 0.061 0.047 0.061 0.046 0.054 0.061 0.047 0.061 0.047 0.061 0.047 0.061 0.046 0.054 0.061 0.047 0.061 0.0	34 35								69	0.115	0.063	0.134	0.077	0.025	
38 0.057 0.056 0.013 72 0.102 0.064 0.119 0.072 0.025 39 0.052 0.047 0.056 0.013 73 0.103 0.066 0.114 0.073 0.023 40 0.057 0.045 0.059 0.016 74 0.114 0.064 0.135 0.076 0.026 41 0.059 0.044 0.057 0.017 75 0.117 0.072 0.133 0.075 0.028 41 0.056 0.046 0.058 0.015 77 0.114 0.078 0.140 0.084 0.025 42 0.056 0.049 0.061 0.017 77 0.114 0.078 0.140 0.084 0.025 43 0.056 0.049 0.065 0.018 78 0.110 0.070 0.123 0.077 0.029 44 0.058 0.043 0.065 0.018 78 0.110 0.070 0.123 0.077 0.029 45 0.065 0.048 0.065 0.017 80 0.118 0.071 0.148 0.078 0.031 46 0.061 0.047 0.061 0.016 81 0.112 0.075 0.140 0.072 0.030 47 0.061 0.046 0.064 0.016 81 0.112 0.075 0.140 0.072 0.030 48 0.060 0.051 0.047 0.061 0.017 82 0.068 0.139 49 0.059 0.047 0.061 0.047 0.061 82 0.068 0.139 50 0.059 0.043 0.062 0.017 84 0.137 0.029 51 0.065 0.046 0.058 0.015	36	0.059	0.040	0.051	0.015										
39 0.052 0.047 0.056 0.013 714 0.056 0.135 0.076 0.026 40 0.057 0.045 0.059 0.016 75 0.117 0.072 0.133 0.075 0.028 41 0.059 0.044 0.057 0.017 75 0.112 0.064 0.139 0.076 0.028 42 0.056 0.046 0.058 0.015 77 0.114 0.078 0.140 0.084 0.025 43 0.056 0.043 0.065 0.017 77 0.114 0.078 0.140 0.084 0.025 45 0.058 0.043 0.065 0.018 78 0.110 0.070 0.123 0.077 0.029 45 0.065 0.048 0.065 0.017 80 0.118 0.071 0.148 0.076 0.031 46 0.061 0.047 0.061 0.016 81 0.112 0.075 0.140 0.072 0.031 47 0.061 0.046 0.054 0.064 0.016 81 0.112 0.075 0.140 0.072 0.030 48 0.060 0.051 0.047 0.017 82 0.068 0.139 49 0.059 0.047 0.061 0.017 84 0.068 0.139 50 0.059 0.043 0.062 0.017 84 0.137 0.029 51 0.065 0.046 0.058 0.015	37 38								72	0.102	0.064	0.119	0.072	0.025	
41 0.059 0.044 0.057 0.017 76 0.112 0.064 0.139 0.076 0.025	39	0.052	0.047	0.056	0.013				73 74						
42 0.056 0.046 0.058 0.015 77 0.114 0.078 0.140 0.084 0.025 43 0.056 0.049 0.061 0.017 78 0.110 0.070 0.123 0.077 0.029 45 0.058 0.048 0.065 0.017 80 0.118 0.071 0.118 0.071 0.118 0.076 0.031 46 0.061 0.047 0.061 0.018 0.071 0.118 0.075 0.140 0.072 0.031 47 0.061 0.046 0.064 0.064 0.016 81 0.112 0.075 0.140 0.072 0.030 48 0.060 0.051 0.047 0.017 82 0.068 0.139 0.084 49 0.059 0.047 0.061 0.017 83 0.142 0.084 50 0.059 0.043 0.062 0.017 84 0.137 0.029 51 <									75	0.117	0.072	0.133	0.075	0.028	
43 0.056 0.043 0.065 0.018 78 0.110 0.070 0.123 0.077 0.029 44 0.058 0.043 0.065 0.017 80 0.112 0.073 0.136 0.082 0.023 45 0.065 0.048 0.065 0.017 80 0.118 0.071 0.148 0.076 0.031 46 0.061 0.047 0.061 0.016 81 0.112 0.075 0.140 0.072 0.030 47 0.061 0.046 0.064 0.016 82 0.068 0.139 48 0.060 0.051 0.047 0.017 82 0.142 0.084 50 0.059 0.047 0.061 0.017 84 0.137 0.029 50 0.059 0.043 0.062 0.017 84 0.137 0.029 51 0.065 0.046 0.058 0.015	42	0.056	0.046	0.058	0.015					0.114	0.078	0.140	0.084	0.025	
45 0.065 0.048 0.065 0.017	1414	0.058	0.043	0.065					78	0.110	0.070	0.123	0.077	0.029	
47 0.061 0.046 0.064 0.016 82 0.068 0.139 0.068 0.139 0.007 83 0.142 0.084 0.068 0.139 0.007 83 0.142 0.084 0.068 0.007 84 0.137 0.029 51 0.065 0.046 0.058 0.015		0.065	0.048	0.065	0.017				80						
48 0.060 0.051 0.047 0.017 83 0.142 0.084 49 0.059 0.047 0.061 0.017 84 0.137 0.029 50 0.059 0.043 0.062 0.017 85 0.123 0.133 0.133	47	0.061	0.046	0.064	0.016					0.112	0.075	0.140	0.072	0.030	
50 0.059 0.043 0.062 0.017 85 0.123 0.133 0.137									83			0.142	0.084		
51 0.005 0.040 0.050 0.015	50	0.059	0.043	0.062	0.017									0.029	
	51	0.065	0.046	0.058	0.015			(Continued)							

	Low-										Low-						
	water Slack			High-wa	ter Sla	ck					water Slack			High-wa	ter Sla	ck	
Tidal Cycle	Sta 100	Sta 100	Sta 20		Sta -35	Sta -60	Sta -85	•		Tidal Cycle	Sta 100	Sta 100	Sta 20	Sta -10	Sta -35	Sta -60	Sta -85
03010				tinued)				•		0,000				ntinued			
86			0.144							51			0.139	0.096	<u></u>		
87			0.139	0.085						52			0.135		0.022		
88 89	0.129		0.132 0.136		0.035					53 54		0.041	0.141				
90		0.076								55			0.150	0.087			
91 92			0.132	0.085	0.028					56	0.105		0.146		0.039		
93			0.144		0.020					57 58			0.143				
94		0.087								59			0.135	0.087			
95 96			0.122	0.090	0.029					60 61	0.113		0.147 0.141		0.038		
97	0.112		0.141							62		0.057	0.148				
98 99		0.085	0.142	0.089						63 64			0.153	0.097	0.038		
100			0.144		0.033					65			0.146			0.010	
101	0.134	0.091	0.134							66 67	0.119	0.056	0.156				
102 103		0.084	0.143	0.090						68		0.056	0.159 0.148	0.105			
104			0.159		_					69			0.155		0.043		
105 106	0.136	0.092	0.145							70 71	0.117		0.150 0.157			0.007	
107			0.149	0.094						72		0.069	0.161				
108	0.300		0.158		0.032					73			0.163	0.106	0.01.0		
109 110	0.139	0.099	0.152							74 75			0.160 0.165		0.049	0.014	
111			0.166	0.094						76	0.122		0.152				
112 113	0.138		0.150		0.033					77 78		0.073	0.162	0.113			
114										79			0.160		0.047		
115			0.147	5.7	0.000					80	0.100		0.166			0.017	
116 117	0.139		0.149	/-	0.029					81 82	0.133	0.070	0.165				
118		0.104	0.169							83			0.161	0.114			
119 120	0.139	0.098	0.155	0.095 0.096	0.032					84 85			0.168		0.058	0.012	
120	رويد	0.0,0	0.1)	0.000	0.001					86	0.136		0.174			0.012	
			Test	4						87 88		0.082	0.178	0.100			
9	0.025									89			0.174 0.174	0.122	0.058		
10 11	0.021	0.002	0.049 0.056	0.021						90			0.172			0.017	
12	0.030	0.008	0.056	0.030						91 92	0.142	0.082	0.171 0.183				
13 14	0.030	0.003	0.063	0.038						93			0.170	0.126			
15				0.043						94	0.31.5		0.179		0.060	0.016	
16	0.01.3		0.073		0.010					95 96	0.145	0.084	0.180				
17 18	0.041	0.010	0.078 0.082							97			0.184	0.137		0.023	
19			0.077	0.049						98 99			0.172 0.184		0.054	0.019 0.024	
20 21	0.049		0.089		0.014					100	0.146		0.178			0.023	
22		0.016	0.087							101		0.089	0.180	0.705			
23			0.097	0.056						102 103			0.181	0.135			
24 25										104			0.189			0.023	
26		0.016	0.095							105 106	0.159	0.093	0.198				
27 28					0.016					107			0.192	0.137			
29										108			~		-	0.000	
30		0.038								109 110	0.148					0.020	
31 32				0.071	0.022					111		0.097	0.198				
33	0.072									112 113			0.195 0.201		0.069		
33 34 35 36 37 38				0.071						114			0.196				
36					0.011					115 116		0.000					
37		0.020								117		0.099					
30 39		0.032	0.117							118			0.196		0.070		
39 40	~		0.117		0.023					119 120		0.104			0.062		
41 42		0.038										54104	0.100	▽• ± + /	0.002	0.023	
43				0.081									Test	<u>5</u>			
<u>1414</u> .					0.030					.9	0.048	0.015	0.000	0.005			
45 46		0.034								10 11		0.015					
47			0.134	0.093						12		0.021					
48 49					0.031					13 14							
50			0.137							15		0.032					
								(Conti	nued)								
									•								

	Low-									Low-						
	water Slack			High-wa	ter Sla	ck				water Slack			High-wa	ter Sla	ck	
Tidal	Sta 100	Sta 1.00	Sta	Sta	Sta	Sta -60	Sta -85		Tidal	Sta 100	Sta 100	Sta 20	Sta -10	Sta -35	Sta -60	Sta -85
Cycle	100		20 5 (Con		<u>-35</u>				Cycle	100			ntinued			
16			0.074	0.019					42		0.089					
17	0.079	0.000	0.075						43 44	0.191		0.215	0.131	0.041		
18 19		0.044	0.091	0.025					45	0.191		0.256 0.260		0.041		
20 21	0.082	0.048	0.082		0.004				46 47			0.255 0.244	0.140	0.041		
22			0.085	.0.033					48	0.198		0.265			0.010	
23 24	0.088	0.054	0.136		0.008				49 50		0.108	0.247	0.149			
25	0.100		0.118	0.036	0.010				51 52	0.010		0.240		0.057	0.015	
26 27	0.102	0.068	0.119		0.013				53	0.210	0.106	0.238 0.230			0.015	
28 29	0.117		0.120	0.042	0.006				54 55			0.230 0.215	0.142	0.051		
30		0.070	0.119						56	0.214		0.234			0.010	
31 32	0.109		0.114	0.037	0.008				57 58		0.120	0.229 0.226	0.141			
33		0.082	0.136	0.050					59 60	0.216		0.224		0.056	0.008	
34 35	0.129		0.137 0.126	0.050	0.013				61	0.210	0.136	0.229				
36 37			0.134						62 63			0.241	0.137	0.054		
38	0.140		0.146		0.010				64	0.220		0.245			0.013	
39 40		0.092	0.137 0.148	0.040					65 66		0.147	0.267 0.259	0.158			
41	0.147	0.705	0.145		0.013				67 68	0.000		0.256		0.059	0.013	
42 43		0.105	0.135 0.131	0.045					69	0.230	0.150	0.253 0.253			0.013	
44 45	0.136	0.113			0,008				70 71			0.248	0.159	0.058		
46			0.137	0.049					72	0.232		0.245			0.013	
47 48	0.151	0.118	0.149 0.146		0.013				73 7 4		0.156	0.246 0.243	0.159			
49	-		0.154	0.014					75			0.244		0.065	0.015	
50 51		0.126	0.176						76 77	0.230	0.162	0.247			0.017	
52 53	0.160		0.148	0.052	0.015				- 78 79			0.2½7 0.222	0.149	0.056		
53 54		0.136	0.143						80	0.235		0.232			0.011	
55 56	0.156		0.157 0.148	0.051	0.009				81 82		0.172	0.238 0.250	0.145			
57		0.137	0.142						83	0.027		0.260		0.058		
58 59	0.158		0.139	0.046	0.013				84 85	0.237	0.171	0.313			0.016	
60	0.155	0.142	0.128	0.044	0.008				86 87			0.299	0.177	0.053		
			Test	6					88			0.299			0.019	
9	0.040								89 90			0.272	0.179			
10 11	0.048	0.006	0.116	0.048 0.065	0.006				91	0.066		0.285		0.071		
12		0.015	0.115	0.076					92 93	0.266	0.204	0.284			0.021	
13 14				0.076	0.015				94 95			0.279	0.182	0.066		
15 16		0.024		0.078					96	0.275		0.274			0.015	
17	0.080		0.158		0.018				97 98		0.194	0.268				
18 19		0.015	0.151	0.082					99	0.066		0.267		0.080	0.000	
20 21	0.097	0.000			0.022				100 101	0.266	0.203	0.287			0.022	
22		0.029		0.095					1 0 2 103			0.264 0.296	0.185	0.074		
23 24	0.128	0.041	0.153		0.017				104	0.277		0.304			0.016	
25			0.160						105 106		0.208	0.322	0.192			
26 27	0.129	0.037			0.013				107			0.323				
28	0.140		0.199	0.120	0.025				108 109	0.277	0.212	0.313 0.314			0.026	
29 30		0.055			0.035				110 111			0.312	0.209	0.082		
31 32	0.154			0.123	0.035				112	0.287		0.305			0.017	
33		0.063	0.198						113 114		0.223		0.203			
34 35	0.171			0.130	0.039				115			0.287		0.091		
3 ⁴ 35 36 37 38		0.085	0.210						116 117		0.226	0.285 0.296			0.029	
37 38	0.176		0.199		0.036				118			0.289	0.198			
39 40		0.086	0.203						119 120	0.284	0.223			0.086 0.080		
41					0.041											
							((Continued)								

-	Low- water Slack		т	igh-wet	er Slac	k	· · · · · · · · · · · · · · · · · · ·			Low- water Slack		Ti	igh-wat	er Slac	k	
Tidal	Sta	Sta	Sta	Sta	Sta	Sta	Sta		idal	Sta	Sta	Sta	Sta	Sta	Sta	Sta
Cycle	1.00	100	20	-10	<u>-35</u>	<u>-60</u>	<u>-85</u>	<u>c</u>	ycle	100	100	20	<u>-10</u>	35_	- 60	<u>-85</u>
0	0.026		Test						90	0.146	Tes	0.187	ntinued	_	0.014	
9 10	0.014	0.003	0.049	0.027	0.005				91	0.140	0.092	0.177				
11 12		0.005	0.047	0.031					92 93			0.187 0.185	0.144	0.059		
13			0.058	0.042					94	0.157		0.177			0.016	
14 15	0.022		0.065 0.069		0.011				95 96		0.086	0.197	0.143			
16		0.009	0.075						97			0.191		0.067		
17 18			0.077	0.053	0.012				98 99	0.156	0.092	0.191			0.015	
19		0.013	0.079 0.083						100		0.092	0.191	0.157			
20 21	0.043		0.076 0.083	0.058	0.013				101 102	0.159		0.187		0.066	0.019	
55		0.014	0.087		0.013				103	0.199	0.091	0.201				
23	0.000		0.089	0.057	0.015				104			0.195	0.149	0.060		
24 25	0.049	0.012	0.096 0.094		0.015				105 106	0.160		0.189		0.069	0.016	
26			0.095	0.070					107			0.193				
27 28	0.055	0.029	0.096		0.018				108 109			0.189	0.153	0.063		
29			0.101	0.075					110	0.166		0,201			0.021	
30 31	0.059	0.018	0.103		0.015				111 112		0.094	0.200	0.141			
32			0.109	0.076	~~~~				113			0.201		0.069		
33 34	0.067	0.032	0.106						114 115	0.171	0.120	0.197			0.021	
35			0.109	0.083					116			0.203	0.158			
36 37	0.069	0.027	0.118		0.026				117 118	0.176		0.188		0.067	0.010	
37 38		0.037	0.115	0.079					119		0.115	0.200			0.019	
39	0.079	0.006	0.119		0.024				120			0.203	0.158	0.000		
40 41		0.036	0.120	0.088					121 122	0.169		0.222		0.063	0.021	
42	0.080		0.106		0.021				123		0.127	0.207				
43 44			0.111	0.086					124 125			0.203	0.161	0.070		
45	0.084		0.121		0.032				126	0.171		0.198			0.013	
46 47		0.041	0.132	0.097					127 128		0.116	0.209	0.164			
48	0.091		0.133		0.028				129			0.207		0.073		
49 50		0.045	0.123	0.092					130 131	0.171	0.121	0.213			0.022	
51	0.091		0.138		0.032				132			0.187	0.165			
52		0.044	0.139	0.100					133	0.185		0.210		0.071	0.001	
53 54			0.137 0.144	0.103	0.038				134 135		0.129	0.206			0.021	
55	0.100	0.010	0.143						136			0.220	0.162			
56 57		0.049	0.141 0.141	0.103					137 138	0.185		0.216		0.076	0.024	
58	0.101	0.057	0.128		0.038				139		0.129	0.221				
59 60		0.051	0.124	0.109		~~~~			140 141			0.212	0.165	0.078		
61			0.161		0.038				142	0.190		0.218			0.021	
62 63	0.111	0.053	0.202		~~~~	0.011			143 144		0.132	0.224	0.162			
64			0.157	0.115					145			0.214		0.080		
65 66	0.116		0.157		0.044	0.011			146 147		0.129	0.222			0.026 0.026	
67			0.157						148			0.225	0.179			
68 69			0.156 0.149	0.113	0.000	~			149 150	0.191		0.220		0.078	0.024	
70	0.120		0.160			0.009			151		0.143	0.222			0.024	
71		0.066	0.162	0.310		~~~~			152			0.205	0.176			
72 73			0.162	0.112	0.048				153 154	0.195		0.221		0.000	0.026	
73 74	0.127		0.167						155			0.213	0.707			
75 76 77 78		0.071	0.169	0.133					156 157			0.218	0.181	0.077		
$\dot{7}$			0.169						158	0.199		0.219			0.027	
78 79	0.133	0.066	0.183			0.013			159 160		0.155	0.232	0.167		,	
79 80			0.176	0.134					161			0.228		0.086		
81 82	0.135		0.185		0.059	0.026			162 163	0.199	0.156	0.236 0.224			0.028	
83			0.171						164				0.173			
84 85			0.193	0.139	0.055				165 166	0.207				0.082	0.027	
86	0.148		0.185		0.055				167	0.207	0.149				0.037	
87 88		0.079	0.181	0.331					168			0.230				
89			0.176 0.178		0.056				169 170					0.095		
		•			-			ontinued)		-		, ,			3 -	

	Low- water Slack			igh-wat	er Slea	k				Low- water		11	i gh+	er glaa	k	
Tidal Cycle	Stack Sta 100	Sta 100	Sta 20	Sta -10	Sta	Sta -60	Sta -85		Tidal Cycle	Slack Sta 100	Sta 100	Sta 20	igh-wat Sta -10	Sta -35	Sta -60	Sta -85
chete	100			tinued)	<u>-35</u>				Cycle	100			ntinued			05_
171		0.144	0.226						17	0.050		0:069		_		
172			0.229	0.177			-		18		0.019	0.064				
173 174	0.209		0.220		0.081	0.030			19 20	0.063		0.074	0.031	0.005		
175		0.149	0.242						21		0.021	0.079				
176			0.231	0.183	0.00%				22 23	0.061		0.081	.0.0314	0.011		
177 178	0.212		0.236 0.231		0.094	0.024			24 24	0.061	0.027	0.074		0.011		
179		0.150	0.228						25			0.086	0.038			
180 181			0.234 0.228	0.186	0.083				26 27	0.063	0.030	0.086		0.020		
182	0.216		0.226			0.028			28			0.085	0.038			
183		0.157	0.228					-	29	0.078	0.00%	0.090		0.012		
. 184 185			0.217	0.177	0.090				30 31		0.034	0.090	0.043			
186	0.203		0.228			0.024			32	0.085		0.092		0.014		
187 188		0.156	0.236	0.170					33		0.041	0.100	0.000			
189			0.242	0.179	0.079				34 35	0.085		0.100	0.049	0.015		
190			0.240			0.029		1	36		0.048	0.105				
191 192	0.212	0.170	0.250			0.034			37 38	0.094		0.102	0.048	0.015		
192		0.170	0.255	0.198					39	0.094	0.054	0.120		0.015		
194			0.246		0.076				40			0.106	0.047			
195 196	0.214	0.166	0.234			0.028			41 42	0.102	0.055	0.117		0.018		
197			0.227	0.191					43			0.117	0.054			
198	0.019		0.231		0.086				1414 1. C	0.104	0.060	0.120		0.019		
199 200	0.218	0.160	0.243			0.033			45 46		0.062	0.102	0.058			
201			0.239	0.179					47	0.109		0.117		0.018		
202 203	0.000		0.247		0.087	0.009			48 49		0.070	0.111	0.057			
204	0.222		0.238			0.028			50	0.114		0.115	0.057	0.019		
205		0.176	0.222	0.181					51		0.078	0.114				
206 207	0.209		0.232		0.086	0.036			52 53	0.126		0.119	0.061	0.020		
208		0.169	0.237						54		0.072					
209			0.238	0.183					55 56	0.10		0.120	0.069			
210 211	0.225		0.244		0.086	0.021			50 57	0.134	0.087	0.123				
212		0.176	0.242						58			0.122	0.064			
213 214			0.243	0.187	0.084		0.003		59 60	0.124	0.078	0.126		0.026		
215	0.218		0.248			0.022	0.005		61		0.078	0.128	0.062			
216		0.172	0.251						62	0.125		0.122		0.025		
217 218			0.245		0.082		0.007		63 64		0.082	0.134	0.066			
219	0.222		0.241			0.034	0.016		65	0.130		0.124		0.022		
220		0.168	0.246						66		0.084	0.131				
221 222			0.248 0.241	0.184	0.088		0.004		67 68	0.133		0.131	0.066	0.025		
223	0.219		0.249			0.025	0.015		69		0.084					
224 225			0.239	0.300			0.030		70	0.134	0.088					
225			0.251 0.234	0.194	0.095				71 72		0.088	0.150 0.132	0.068			
227	0.220		0.245			0.028	0.011		73	0.136		0.134		0.028		
228 229		0.174	0.241	0.189					74 75		0.104	0.135	0.067			
230			0.253		0.096				76							
231		0.170				0.025			77		0.095	0.143	0.079			
232 233		0.179		0.196			0.014		78 79	0.143		0.140	0.078	0.031		
234			0.249		0.094				80		0.103	0.141				
235 236		0.183				0.031			81 82	0.173			0.077	0.029		
237		0.103		0.192					83		0.097			0.029		
238									84			0.129	0.069			
239 240		0-171		0.193		0.035			85 86		0.101			0.027		
_ 10	J JU	0.414		_	J. UJT	0.03)	0.014		87		0.101		0.080			
			Test	8					88	0.137		0.150				
9	0.037								89 90		0.115	0.142	0.082			
10 11				0.021 0.016					91	0.146		0.138		0.034		
12		0.017							92		0.107		0.082			
13			0.056	0.012					93 94				0.082			
14 15		0.017			0.009				95	0.151		0.149			0.010	
16				0.022					96		0.118	0.148				
							(Continued)						•		

-	Low- water			id odb '	om C1-:	1e			Low- water				on 63.5	le.	
Tidal	Slack Sta	Sta	Sta	igh-wat Sta	er Stac Sta	Sta.	Sta	Tidal	Slack Sta	Sta	Sta	Sta	er Slac Sta	Sta	Sta
Cycle	100	100	20	-10	- 35	<u>-60</u>	-85	Cycle	100	100	20	-10	<u>-35</u>	<u>-60</u>	<u>-85</u>
		· —	8 (Con					50				ntinued			
97 98			0.146	0.079	0.028			52 53			0.094	0.057	0.025		
99	0.150					0.011		54	0.083		0.098			0.007	
100		0.110	0.151	ó.082				55 56		0.050	0.106	0.058			
101 102			0.148	0.002	0.032			57			0.102		0.021		
103	0.150		0.157			0.010		58	0.088		0.100			0.009	
104 105		0.116	0.152	0.081				59 60		0.052	0.097 0.095	0.063			
106			0.148		0.032			61			0.097		0.024		
107	0.153	0.710	0.147			0.012		62 63	0.087	0.055	0.105			0.005	
108 109		0.118	0.150	0.076				63 . 64		0.055	0.099 0.104	0.065			
110			0.142		0.031			65			0.106		0.024		
111 112	0.154	0.118	0.145			0.008	•	66 67	0.089	0.066	0.114			0.010	
113		0.110	0.153	0.080				68			0.135	0.075			
114			0.150		0.031			69			0.110		0.022		
115 116	0.155	0.126	0.143			0.005		70 71	0.090	0.058	0.121 0.146			0.007	
117			0.151	0.085				72			0.128	0.081			
118	0.160		0.151		0.033	0.006		73	0.705		0.122		0.023	0.007	
119 120	0.163	0.118	0.155 0.147	0.085	0.031	0.006		74 75	0.105		0.134 0.134			0.007	
					J			76				0.080			
			Test	<u>9</u>				77 78	0.112		0.130 0.137		0.026	0.010	
9	0.024	0.011	0.052	0.000				79	0.112	0.074	0.136			0.010	
10 11	0.030	0.011	0.053	0.020	0.009			80			0.136	0.085			
12		0.011	0.051					81 82	0.119		0.142		0.042	0.009	
13 14	0.046		0.055	0.036	0.008			83		0.076	0.125				
15		0,008	0.065					84 85			0.130	0.083	2 020		
16			0.063	0.029				86	0.117		0.122		0.032	0.008	
17 18	0.041	0.014	0.060		0.010			87		0.083	0.124				
19			0.053	0.032				88 89			0.123	0.076	0.029		
20	0.043	0.017	0.051		0.016			90	0.112		0.122		0.029	0.010	
21 22		0.017	0.058	0.030				91		0.079	0.132				
23	0.044		0.072		0.013			92 93			0.126 0.135	0.071	0.029		
24 25		0.016	0.080	0.033				94	0.116		0.137			0.009	
26	0.050		0.073		0.015			95 96		0.081	0.132				
27		0.025	0.069	~				96 97			0.144	0.090	0.032		
·28 29	0.045		0.066	0.048	0.009			98	0.127		0.152			0.017	
30		0.031	0.065					99 100		0.086	0.135	0.086			
31 32	0.059		0.066	0.040	0.008			101			0.133		0.042		
33		0.026	0.085		0.008			102	0.133	0.000	0.142			0.009	
34			0.078	0.039				103 104		0.090	0.147	0.086			
35 36	0.057	0.031	0.087		0.013			105			0.142		0.033		
37			0.085	0.053	~			106 107	0.137						
38								108		0.099					
39 40		0.031		0.048				109			0.156		0.035		
41	0.068		0.090		0.015			110 111		0.105					
42 43		0.038	0.087					112			0.154	0.101			
44	0.069		0.089		0.015			113	0.128		0.148		0.038		
45 1.6		0.034	0.090					114 115		0.099					
46 47					0.013			116			0.158	0.094			
48		0.046	0.097	~				117 118					0.048		
49 50			0.087		0.000			119							
50 51								120					0.042		
			, ,												

Table 3 Results of Final Midchannel Observations Dye Concentrations in Per Cent of Plant Effluent Concentration

1000-	Tes	st 1																~			Tes	st 7
ft	Prelin	ninary	Tes	t l		st 2	Tes	st 3		st 4		st 5		st 6	Te	st 7	Te	st 8	Tes	st 9	Cycle	120**
_Sta*	HW	IW	HW	LW	HW	LW	HW	LW	HW	LW	HW	LW	HW	LW	HW	LW	HW	IW	HW	LW	HW	LW
180		0.035	0.019	0.025	0.015	0 021	0 000	0.051	0.000	0.054	0.050	0.100	0.066	0.143	0.055	0 115	0.006	0.000		2 266		
140		0.044	0.019	0.035 0.043	0.015	0.031 0.052	0.022 0.056	0.051 0.091	0.023	0.119	0.050 0.097	0.100 0.158	0.141	0.238	0.055 0.115	0.115 0.189	0.036 0.075		0.027 0.063	0.066	0.019	0.056
120	0.041	0.048	0.035	0.043	0.034	0.060	0.077	0.128	0.069	0.148	0.118	0.148	0.141		0.146	0.109	0.100	0.132 0.146	0.088	0.108 0.122	0.053	
100	0.041	0.048	0.046	0.050	0.052	0.057	0.098	0.120	0.104	0.140	0.143	0.155	0.223	0.284	0.171	0.230	0.100	0.148	0.104		0.084	
80	0.047	0.037	0.041	0.060	0.058	0.074	0.118	0.159	0.134	0.201	0.143	0.154	0.256	0.306	0.203	0.230	0.110	0.181	0.130	0.150		0.169
70		0.037	0.031	0.044	0.064	0.068	0.129	0.163	0.153	0.187	0.145	0.136	0.272	0.285	0.212	0.251	0.155	0.167	0.130	0.161 0.162		
60	0.046	0.056	0.050	0.038	0.064	0.064	0.141	0.169	0.170	0.194	0.146	0.130	0.282	0.203		0.245	0.157	0.158	0.148	0.155	0.373	0.224
50	0.040	0.055	0.046	0.030	0.068	0.054	0.147	0.139	0.159	0.194	0.145	0.095	0.287	0.264	0.226	0.245	0.162	0.147	0.140		0.171	
40	0.040	0.039	0.049	0.012	0.079	0.030	0.158	0.139	0.183	0.170	0.143	0.095	0.207	0.222	0.235	0.249	0.162	0.092	0.149	0.143		
35	0.040	0.039	0.042	0.012	0.079	0.030	0.150	0.097	0.103	0.151	0.143	0.076	0.295	0.208	0.237	0.220	0.167	0.092	0.165	0.120 0.104		
30	0.045	0.011	0.043	0.005	0.070	0.029	0.162	0.090	0.203	0.146	0.123	0.049	0.284	0.177	0.234	0.179	0.165	0.092	0.111		0.187	
25		0.011	0.043	0.001	0.072	0.019	0.158	0.090	0.194	0.131	0.123	0.049	0.204	0.166	0.234	0.173	0.161	0.001	0.158	0.103 0.098	•	0.146
20	0.043		0.035	0.001	0.065	0.012	0.155	0.065	0.194	0.131	0.119	0.040	0.273	0.152	0.253	0.173	0.101	0.063	0.150		0.000	
15		0.005	0.037	0.005	0.070	0.005	0.152	0.057	0.188	0.100	0.123	0.021	0.284	0.134	0.245	0.129		0.052		0.069	0.203	
10			0.027	0.003	0.054	0.003	0.150	0.050		0.091	0.119	0.021	0.258	0.134	0.245	0.129	0.157	0.052	0.157 0.152	0.065		
			0.020		0.054	0.002	0.150	0.039	0.100	0.068	0.084		0.242	0.090			0.139			0.061		
. 5			0.014	0.003	0.052				0.190 0.181	0.058	0.081	0.015			0.239	0.105	0.124	0.034	0.137	0.048	0.000	
-			_	-		0.005	0.134	0.025				0.007	0.245	0.059	0.235	0.079	0.099	0.022	0.130	0.025	0.206	0.001
- 5	0.006		0.010		0.027	0.001	0.102	0.019	0.169	0.045	0.055	0.006	0.211	0.049	0.220	0.066	0.102	0.018	0.118	0.024		
-10	0.006		0.005		0.030	0.002	0.096	0.017	0.145	0.043	0.044	0.013	0.182	0.040	0.193	0.056	0.085	0.014	0.100	0.018	**-/-	
-15			0.004		0.010	0.001	0.088	0.013	0.138	0.030	0.033	0.006	0.162	0.040	0.183	0.041	0.076	0.012	0.087	0.015		
-20	0.003		0.007		0.007	0.003	0.070	0.009	0.115	0.023	0.034	0,006	0.139	0.034	0.159	0.033	0.066	0.009	0.080	0.014	0.127	
-25			0.003		0.009		0.063	0.013	0.095	0.023	0.018		0.125	0.023	0.135	0.033	0.058	0.010	0.073	0.011		
-30					0.006		0.049	0.009	0.082	0.019	0.013		0.099	0.012	0.120	0.021	0.043	0.006	0.067	0.006		
- 35							0.032	0.005	0.062	0.021	0.008		0.080		0.094	0.022	0.031	0.003	0.042	0.007	0.063	
-40							0.027	0.011	0.056	0.015	0.008		0.069	0.010	0.071	0.014	0.026	0.003	0.028	0.009		0.009
-45							0.024	0.003	0.045	0.011	0.004		0.049		0.062	0.013	0.020	0.006	0.020	0.008		
- 50							0.018	0.007	0.038	0.007	0.010		0.041.		0.050	0.007	0.015	0.003	0.020	0.008		
-55							0.010	0.003	0.029	0.009	0.005		0.025		0.041	0.011	0.012	0.003	0.013	0.010		
-60							0.010		0.023	0.007	0.003		0.020		0.035	0.007	0.010		0.014			0.003
- 65							0.008		0.014	0.008			0.017		0.023	0.008	0.007		0.005			
-70							0.009		0.016				0.013		0.018		0.005	-	0.008			
-75							0.007		0.017				0.013		0.011	0.004	0.004		0.005			
-80									0.014				0.005		0.008							
- 85									0.007				0.006		0.014							
-90									0.009				0.010		0.009							
- 95													0.003		0.007							
-100													0.001		0.008							
-105															0.005							
-110															0.010							
-115															0.009							
-120															0.005							

^{*} Stations are channel stations and refer to Allegheny Ave., Philadelphia, located on plate 1. Observations were made at times of local high- or low-water slack (HW or LW).

** Test 7, cycle 120, observations included for comparison with results of test 4.

Table 4

Results of Final Local Observations

Dye Concentrations in Per Cent of Plant Effluent Concentration

				······································	Tests				
<u>Sta</u>	1	2	3	4	5	6	7	8	9
1	0.036	0.075	0.144	0.189	0.122	0.302	0.248	0.129	0.114
2	0.028	0.099	0.168	0.198	0.165	0.301	0.250	0.163	0.179
3	0.033	0.077	0.161	0.194	0.162	0.294	0.369	0.162	0.244
14	0.019	0.083	0.181	0.207	0.177	0.310	0.290	0.167	0.209
5	0.030	0.084	0.170	0.205	0.178	0.315	0.265	0.180	0.192

PLATE

DATA FOR CURVES ARE PRESENTED IN TABLE 3.

LOCATION OF CHANNEL STATIONS IS SHOWN ON PLATE I AND LOCATION OF OUTFALLS ON PLATE 2.

OBSERVATIONS WERE MADE AT TIME OF LOCAL HIGH OR LOW-WATER SLACK ALONG CHANNEL CENTER LINE AT APPROXIMATE MIDDEPTH.

CURVES PRESENTED ABOVE ARE BASED ON SAMPLES OBTAINED AT 5000-FT INTERVALS UPSTREAM FROM STATION 40+000, AT 10,000-FT INTERVAL'S BETWEEN STATIONS 40+000 AND 80+000, AND AT GREATER INTERVAL'S DOWNSTREAM FROM STATION 80+000. EFFECT OF MODE OF PLANT DISCHARGE AND EFFECT OF RIVER DISCHARGE ON EFFLUENT DISTRIBUTION

NOTE: SEE PLATE I FOR LOCATION OF CHANNEL STATIONS.

OBSERVATIONS WERE MADE AT TIME OF LOCAL HIGHOR LOW-WATER SLACK ALONG CHANNEL CENTER LINE
AT APPROXIMATE MIDDEPTH.

DATA FOR THESE CURVES ARE PRESENTED IN TABLE 2.
SEE TABLE I FOR TEST CONDITIONS.

CONTINUOUS OBSERVATIONS
TEST 7

LOCATION OF CHANNEL STATIONS IS SHOWN ON PLATE I AND LOCATION OF OUTFALLS ON PLATE 2.

OBSERVATIONS WERE MADE AT TIME OF LOCAL HIGH OR LOW-WATER SLACK ALONG CHANNEL CENTER LINE AT APPROXIMATE MIDDEPTH.

CURVES PRESENTED ABOVE ARE BASED ON SAMPLES OBTAINED AT 5000-FT INTERVALS UPSTREAM FROM STATION 40+000, AT 10,000-FT INTERVALS BETWEEN STATIONS 40+000 AND 80+000, AND AT GREATER INTERVALS DOWNSTREAM FROM STATION 80+000. EFFECT OF LOCATION OF OUTFALL ON EFFLUENT DISTRIBUTION

DATA FOR CURVES ARE PRESENTED IN TABLE 3.
LOCATION OF CHANNEL STATIONS IS SHOWN ON PLATE 1 AND LOCATION OF OUTFALLS ON PLATE 2.
OBSERVATIONS WERE MADE AT TIME OF LOCAL HIGH OR LOW-WATER SLACK ALONG CHANNEL CENTER LINE AT APPROXIMATE MIDDEPTH.

CHANNEL CENTER LINE AT APPROXIMATE MIDDEPTH.

CURVES PRESENTED ABOVE ARE BASED ON SAMPLES OBTAINED AT 5000-FT INTERVALS
UPSTREAM FROM STATION 40+000, AT 10,000-FT INTERVALS BETWEEN STATIONS 40+000
AND 80+000, AND AT GREATER INTERVALS DOWNSTREAM FROM STATION 80+000.

EFFECT OF DOUBLING PLANT DISCHARGE ON EFFLUENT DISTRIBUTION