Rime[®] LoRaWAN

锐米 LoRaWAN 技术白皮书

1 背景概述

无线通信技术在物联网应用中大致分为三大阵营,它们的特征如下表所示:

无线技术	市场份额	适合场景	不适合
2G/3G/4G	15%	长距离, 高速率	电池供电, 低价格
WiFi/ZigBee/BT	40%	短距离,室内通信	电池供电,长距离
LoRa 等	45%	长距离,低价格,低功耗	高速率

LoRa 以其"一长三低"(长距离,低功耗,低成本,低速率)的特点,特别适合大量的物联网需求:表计集抄、资产管理、环境监测等。

LoRaWAN 以其明显的优势:大容量、全球统一的标准、免费频段、低成本与灵活性,和 WiFi 一样,成为"私有物联网"的首要选择(NB-IoT,和 GPRS 一样,是"公有物联网"的方案)。

锐米 LoRaWAN 系统实现"端管云"三个层次的产品系列,便捷地将 Sensor(Actuator)接入 Internet,实现"低成本,高可靠"的物联网解决方案,主要应用如下:

主要功能	应用场景
采集数据	能源表计、工业测量、环境监测、资产管理
远程控制	开关、灯光、电机、阀门、门禁等

LoRaWAN 简介

如上图所示,LoRaWAN 定义了: Node、Gateway 和 Server,共3个实体;同时,定义了实体之间的通信接口;为保证全球厂商产品的"互联互通",公开了LoRaWAN协议(目前,最新版本为 V1.0.2)和各国家(地区)频段。

LoRaWAN 以其"标准、开放、免费和安全",已经成为物联网的行业标准之一;相信,它会像 30 年前的 IP 协议一样成功。

了解 LoRaWAN 更多知识,请链接: http://www.rimelink.com/col.jsp?id=107

2 系统优点

2.1 支持并发通信

网关基于 SX1301 数字基带芯片,它具备 8 个通道(对应 8 个频点),可以对 49 个 LoRa 信号解码;支持 ADR (Adaptive Data Rate,速率自适应)技术,单网关可以容纳 10,000 个终端。

2.2 超长通信距离

空旷环境可覆盖半径 5km 的区域, 抗干扰和链路稳定性远优于 FSK 技术。

2.3 超低功耗

基于超低功耗设计,终端休眠功耗低至 1.6uA,特别适合电池供电的产品。典型的抄表应用中,2 节 5 号电池可以有效工作 10 年。

2.4 兼容性

支持 LoRaWAN V1.0.2 标准协议,能与其他厂商的设备 "互联互通"。

2.5 扩展性

当需要提高"实时性"或"网络容量"时,仅增加 LoRaWAN 网关,即可满足 网络的扩展性。

2.6 健壮性

内嵌多种无线通信健壮性技术,智能解决:通信碰撞、微弱信号、外界干扰、断 网继连等挑战,提供一个长期稳定运营的物联网系统。

3 产品架构

锐米 LoRaWAN 系统提供"端管云"整体解决方案,将 Sensor(Actuator)接入 Internet。为此,提供如表 3-1 的产品;为帮助用户使用该系统,提供表 3-2 的资源;系统整体架构如图 3-1 所示。

表 3-1 提供产品

产品	接口	提供文档		
锐米LoRaWAN网关 Ethernet		说明书		
锐米 LoRaWAN 终端	UART	说明书、评估软件、测试套装		

表 3-2 提供资源

产品	资源	用途		
云服务器	测试云平台、开发源代码、接口协议	方便网关接入云服务器		
DEMO	DEMO 板、软件源代码、原理图/PCB/BOM	方便用户系统接入终端		

图 3-1 锐米 LoRaWAN 系统整体架构

4 应用场景

4.1 采集数据

如图 4-1 所示:电/水/燃气表计、温湿度、烟雾、PM2.5 和红外线的传感器数据都需要接入 Internet,即 WSN(Wireless Sensor Network)无线传感器网络。一般而言,传感器数据具备:采集量少、间隔均匀、主动上报的特点,锐米 LoRaWAN 系统满足此应用需求。

图 4-1 采集数据

锐米LoRaWAN采集系统拓扑图

4.2 远程控制

现实应用中,需要远程控制设备:路灯、广告灯、空调、电机、阀门、门禁和开关等。这种通信拓扑如图 4-2 所示,需要支持唤醒下发,即:平时 LoRaWAN 终端处于休眠节能状态,远程控制时,唤醒该终端并通信。

图 4-2 远程控制

锐米LoRaWAN远程控制拓扑图

4.3 采集+控制

如图 4-3 所示,有这样一类设备: 电/水/燃气表计、精密机床、中央空调、农业灌溉、智能路灯等,它们既需要"主动上报"传感器数据,又需要"唤醒下发"实现远程控制;锐米 LoRaWAN 系统支持这 2 种通信需求。

图 4-3 采集+控制

锐米LoRaWAN采集+控制系统拓扑图

5 性能指标

5.1 空中速率档位

如下表所示,网关支持 6 种通信速率。速率越高,有效通信距离越近,速率越低,有效通信距离越远。

DataRate	Configuration	Indicative physical bit rate [bit/sec]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa:SF7 / 125 kHz	5470

为简化使用,通信速率由服务器动态设置,它的规律是: 离网关近,信号好的终端,采用高速率; 离网关远,信号弱的终端,采用低速率。这称之为 ADR(Adaptive Data Rate, 速率自适应) 技术。

5.2 速率与接收灵敏度

SF	Data rate (bit/sec)	Sensitivity (dBm)		
7	5469	-130.0		
8	3125	-132.5		
9	1758	-135.0		
10	977	-137.5		
11	537	-140.0		
12	293	-142.5		

5.3 通信频率

网关工作在以下 8 个通道,这是 CN470-510 最佳频段,详情请参考《中国部署 LoRaWAN 最佳频段》 http://www.rimelink.com/nd.jsp?id=48#_np=107_316

CN490_80_87_Bands								
信道	信道 1 2 3 4 5 6 7 8							
上行信道	486.3	486.5	486.7	486.9	487.1	487.3	487.5	487.7
下行信道	506.7	506.9	507.1	507.3	507.5	507.7	507.9	508.1

附录: RX2 窗口固定通过 505.3Mhz / DR0 下发。

LoRaWAN Class A: RX1 和 RX2 时序,如下图所示。

LoRaWAN Class C: RX1 和 RX2 时序,如下图所示。

5.4 终端功耗

对于电池供电的无线通信设备,功耗是极为重要的指标。锐米 LoRaWAN 终端基于超低功耗设计,在硬件选型和软件节能上做足功夫。

5.4.1 终端工作模式与功耗:

工作模式	测试条件	最大值	典型值	最小值	单位
低功耗模式	射频关闭,MCU 休眠		1.6		μA
接收模式	射频接收,MCU 运行	17.3	13	12.7	mA
发送模式	射频发送,MCU 运行	92.3	88	87.7	mA

5.4.2 终端动态功耗

注 1: AppDelay 为空闲时间,由集成 LoRaWAN node 的应用产品决定注 2: 如果在 RX1 窗口,Node 接收到 Downlink; 那么,在 RX2 窗口,Node 将直接进入 Sleep

上图显示了终端的动态功耗,其中: Tjoin-requet, Tjoin-accept 的时长依赖"通信速率"; Ttx, Trx1, Trx2 的时长依赖"通信速率"和"数据长度"。

这些典型值如下表所示

SF	Tjoin-request	Tjoin-accept	Ttx(ms) (FRMPayload= N bytes)			Trx1(ms)
	(ms)	(ms)	N = 12	N = 25	N = 50	
SF7	71.94	46.34	61.7	82.18	118.02	41.22
SF8	113.15	92.67	113.15	143.87	215.55	72.19
SF9	205.82	164.86	205.82	267.26	390.14	144.38
SF10	370.69	329.73	411.65	493.57	698.37	288.77
SF11	823.3	659.46	823.3	1069.06	1478.66	577.54
SF12	1482.75	1155.07	1482.75	1974.27	2793.47	991.23

6 使用导航

尽管我们最大可能地降低使用 LoRaWAN 系统的复杂度,毕竟它是一个物联网系统,具备一些评估和开发工作量。一般而言,一种无线网络只适应某些通信需求,因此,我们建议用户按"三步走"方法规划物联网。

第一步: 规划以下需求: **距离,规模,带宽,功耗,拓扑,成本**。 详情请参考《如何选择 LoRa 产品》 http://www.rimelink.com/nd.jsp?id=44#_np=105_315

第二步: 采购 1 套锐米 LoRaWAN 系统,评估是否满足需要建设的物联网;详情请参阅《如何建设 LoRaWAN 物联网》
http://www.rimelink.com/nd.jsp?id=44#_np=105_315

第三步:将 Sensor(Actuator)(Sersor or Actuator)连接锐米 LoRa 终端,将 App 连接锐米 LoRaWAN Server,组建一个物联网系统。

Rime® LoRaWAN

销售与服务

公司名称:长沙市锐米通信科技有限公司

公司网站: www.rimelink.com

产品销售: <u>sales@rimelink.com</u> 0731-82231246 技术支持: <u>support@rimelink.com</u> 0731-82236164

公司地址:长沙市普瑞大道 278 号 36 座 1403