1. Unloaded system with sinusoid

Multimeter

DCV	ACV	Frequency	Period
-00.0017 V	2.848 V	10.000 kHz	99.999 us

Oscilloscope

Average	Peak to Peak	AC RMS	DC RMS	Frequency	Period
-55.1 mV	8.4 V	2.885 V	2.89 V	10.001 kHz	100 us

P-P calculation:

8 cubes by 1.00 V: 8 * 1 = 8V

Period calculation:

5 blocks for 20 us for one period: 5 * 20 = 100 us

Closeness of DCV² + ACV² to (DC RMS)²:

 $2.89^2 - (0.0017^2 + 2.848^2) = 0.24$

1. Internal resistance of the probes

2. Incomplete contact with the probes

Sources of error: 3. Systematic errors in the machines

2. Loaded system with sinusoid

Multimeter

DCV	ACV	Frequency	Period
-00.001 V	1.406 V	10.001 kHz	99.999 us

Oscilloscope

Average	Peak to Peak	AC RMS	DC RMS	Frequency	Period
-43.3 mV	4.10 V	1.429 V	1.43 V	10.001 kHz	100.43 us

P-P calculation:

500 mV * 8 cubes = 4 V

Period calculation:

20 us * 5 blocs = 100 us

Closeness:

 $1.43^2 - (0.001^2 + 1.406^2) = 0.068$

1. Internal resistance of the wires/resistors/breadboard

Sources of error: 2. Incomplete contact with the probes

3. Systematic errors in the machines

3. 0V offset, 50% duty cycle

Multimeter

DCV	ACV	Frequency	Period
-00.0005 V	1.976 V	10.0001 kHz	99.999 us

Oscilloscope

Average	Peak to Peak	AC RMS	DC RMS	Frequency	Period
-43.5 mV	4.32 V	2.02 V	2.02 V	10.000 kHz	99.999 us

P-P calculation:

4 blocks * 1.0 V = 4 V

Period calculation:

5 blocks * 20 us = 100 us

Closeness of DCV² + ACV² to (DC RMS)²:

 $2.02^2 - (0.0005^2 + 1.976^2) = 0.175$

1. Internal resistance of the wires/resistors/breadboard

Sources of error:

2. Incomplete contact with the probes3. Systematic errors in the machines

4. 2V offset, 50% duty cycle

Multimeter

DCV ACV		Frequency	Period
1.990 V	1.974 V	10.001 kHz	99.999 us

Oscilloscope

Average	Peak to Peak	AC RMS	DC RMS	Frequency	Period
1.95 V	4.32 V	2.017 V	2.80 V	10.000 kHz	99.998 us

P-P calculation:

4 blocks * 1.0 V = 4 V

Period calculation:

5 blocks * 20 us = 100 us

Closeness of DCV2 + ACV2 to (DC RMS)2:

 $2.80^2 - (1.99^2 + 1.974^2) = -0.01$

1. Internal resistance of the wires/resistors/breadboard

Sources of error: 2. Incomplete contact with the probes

3. Systematic errors in the machines

5. 2V offset, 10% duty cycle

Multimeter

DCV	ACV	Frequency	Period
0.4 V	1.174 V	10.001 kHz	99.999 us

Oscilloscope

Average	Peak to Peak	AC RMS	DC RMS	Frequency	Period
356.2 mV	4.30 V	1.211 V	1.263 V	10.000 kHz	99.998 us

P-P calculation:

4 blocks * 1.0 V = 4 V

Period calculation:

5 blocks * 20 us = 100 us

Closeness of DCV² + ACV² to (DC RMS)²:

 $1.263^2 - (0.4^2 + 1.174^2) = 0.056$

Sources of error:

- Internal resistance of the wires/resistors/breadboard
 Incomplete contact with the probes
- 3. Systematic errors in the machines