Horn Antennas

Prof. Girish Kumar

Electrical Engineering Department, IIT Bombay

gkumar@ee.iitb.ac.in (022) 2576 7436

Dual Mode Pyramidal Horn Antenna

 TE_{12}/TM_{12}

Multimode

Dual Mode Conical Horn Antenna

 TM_{11}

Dual Mode

Step-Less Dual Mode Conical Horn

Circular Corrugated Horn Antenna

Corrugated Surface

Typical Values of d, No. of Teeth, w and t:

Depth of the gap (d) = 0.25λ to 0.5λ

No. of Teeth (n) = 4 to 10 per λ

Width of the gap (w) = 0.05λ to 0.2λ

Teeth thickness (t) = 0.02λ to 0.1λ

Corrugated Conical Horn

Multimode Horn Antenna

TE₁₀ and TE₀₁: Excited with Equal Amplitude and Phase in a square waveguide

Circular Waveguide with Flange

Circular waveguide with flange and 4 chokes for wide-beamwidth high-efficiency feed of low F/D parabolic reflectors.

Broadband Exponentially Tapered Horn

Broadband Dual Ridged Horn

Compact Aperture Matched Horn Antenna

Exponential Ridges are used to increase bandwidth.

Aperture matching at the end is done to improve VSWR, reduce scattering and increase the gain.