Input DNA

Desire:

- 1. Clean
- 2. Good yield
- 3. High molecular weight (HMW)

Why?

Assessments?

Input DNA

Bacteria:

Precipitation-based kits (Promega Wizard kit) HMW extraction kits (Monarch, others) column methods shear DNA, not good

Eukarya:

gentle/old school methods Phenol/Chloroform Shepherd's crook Qiagen genomic tip, HMW kits

post extraction size selection:

Needle shear ultra-long DNA first then 0.4X SPRI bead clean up

or Blue Pippin size selection (generally not needed for Bacteria)

Clean DNA

Protein

Why clean DNA?

- 1. Chemicals impact downstream manipulations (library prep)
- 2. Chemicals or co-precipitated protein may impact proteins on flowcell

Nanopores are proteins

Why?
Goal is to have pores constantly sequencing DNA

Small DNA = preferentially sequenced, but better overall yield Too (HMW) DNA = ultralong DNA clogs pores quickly

underloaded/little DNA = pores open longer, degrade faster If HMW DNA, can fragment

Too much DNA = generally not a big problem, can help with yield

No "one size fits all solution"

Depends on genome size and amount of repeats

Depends on use of genome sequence

But

Can always dilute sample or make HMW smaller, but not the opposite

Methods for assessing DNA

Nanodrop

 $260/280 \ge 1.8$ $260/230 \ge 2.0$

Gel

~Size, ~yield, ~quality

Flongle

Qubit

Bioanalyzer

Size

Yield

~Size, ~yield, ~quality

Library preparation: ligation kit

- +: generally highest yield (>100-150 Gb on PromethION)
 - -: need other kits (end-repair & nick repair); cost; time
- +/-: generally high seq length, but does not get ultralong reads

Library preparation: rapid kit

- +: faster, easier, and cheaper
 - -: generally lower yield (~50-80 GB on P2);
 - -: less control in fragmenting DNA, not good for amplicons if whole length is needed
- +/-: generally long reads, can get ultralong reads

Overview of ligation kit

Polish ends

AMPure beads (size selection)

(Ligate Barcodes)

AMPure beads (size selection)

Ligate sequence adapters

Overview of rapid kit

B Simplified transposon

C End sequences

OE: CTGACTCTTATACACAAGT
IE: CTGTCTCTTGATCAGATCT
ME: CTGTCTCTTATACACATCT

Quality control

What is the end goal?

- 1. Infer taxonomic identity
- 2. Functional genomics
- 3. Genome evolution (structure & variation)
- 4. MGEs
- 5. Population genomics

What do you know about the genome(s) of interest?

- 1. Size
- 2. Complexity (repeat number and size)
- 3. Segmental duplications
- 4. Ploidy

Can't do much w/ bad reads

Findings based on genome analyses should be framed on the quality of assemblies

Three important properties of reads

Tools to generate summary statistics

QUAST: quality assessment tool for genome assemblies

Alexey Gurevich^{1,*}, Vladislav Saveliev¹, Nikolay Vyahhi¹ and Glenn Tesler²

MultiQC: summarize analysis results for multiple tools and samples in a single report

Philip Ewels^{1,*}, Måns Magnusson², Sverker Lundin³ and Max Käller³

QUAST: helps assess quality of genome assembly

MultiQC: gathers, summarizes, and visualizes stats on reads &/or assemblies

Equipment and computing needs

Magnetic rack for bead cleanup (cheapest to 3D print or order from (Sergi Lab Supply)

Magnetic rack for microtubes

https://3d.nih.gov/entries/3DPX-013579

https://www.kjmagnetics.com/proddetail.asp?prod=BZZ082 Qubit not required but <u>highly recommended</u>

Linux computer with GPU for running the sequencer GPU is the most important part, needed for basecalling NVIDIA RTX 4090 (or better) is good enough for P2 solo System76 makes good computers with Linux pre-installed

ONT all-in-one devices (MinIT, Mk1c, P2i...) are convenient but tend to get outdated quickly...

