APPLICATION CERTIFICATION On Behalf of Shenzhen Waikin Electronic Co., Ltd.

Car Radio Bluetooth Model No.: 87752824

FCC ID: YJ6-87752824

Prepared for Shenzhen Waikin Electronic Co., Ltd. Address Wu Tong Shan Village, Shenzhen, China

Prepared by ACCURATE TECHNOLOGY CO. LTD

Address F1, Bldg. A, Changyuan New Material Port, Keyuan Rd. Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number ATE20101270-1 Date of Test : June 21-26, 2010 Date of Report June 30, 2010

TABLE OF CONTENTS

Description	Page
1	\mathcal{C}

Test Report	Certification
-------------	---------------

1. (GENERAL INFORMATION	5
1.1.	. Description of Device (EUT)	5
1.2.	*	
1.3.	· · · · · · · · · · · · · · · · · · ·	
2. I	MEASURING DEVICE AND TEST EQUIPMENT	
3. (OPERATION OF EUT DURING TESTING	
3.1.	. Operating Mode	8
3.2.		
	TEST PROCEDURES AND RESULTS	
	20DB BANDWIDTH TEST	
5.1. 5.2.		
5.2. 5.3.	•	
5.3. 5.4.	e e e e e e e e e e e e e e e e e e e	
5. 5 .	1 &	
5.6.		
	CARRIER FREQUENCY SEPARATION TEST	
6.1.		
6.2.	1	
6.3.	\mathcal{E}	
6.4. 6.5.	1 &	
6.6.		
	NUMBER OF HOPPING FREQUENCY TEST	
7.1.		
7.1. 7.2.		
7.2.	•	
7.3. 7.4.	e e e e e e e e e e e e e e e e e e e	
7. - . 7.5.		
7.6.		
	DWELL TIME TEST	
8.1.		
8.2.		
8.3.	•	
8.4.		
8.5.	. Test Procedure	26
8.6.	. Test Result	26
9. N	MAXIMUM PEAK OUTPUT POWER TEST	30
9.1.	. Block Diagram of Test Setup	30
9.2.		
9.3.	. EUT Configuration on Measurement	30
9.4.	. Operating Condition of EUT	30
9.5.	. Test Procedure	31

Test Result	31
AND EDGE COMPLIANCE TEST	35
Block Diagram of Test Setup	35
Operating Condition of EUT	36
Test Procedure	36
Test Result	37
ADIATED SPURIOUS EMISSION TEST	42
Block Diagram of Test Setup.	42
Restricted bands of operation	43
Configuration of EUT on Measurement	44
Operating Condition of EUT	44
The Field Strength of Radiation Emission Measurement Results	45
NTENNA REQUIREMENT	66
•	
	Block Diagram of Test Setup The Requirement For Section 15.247(d) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result ADIATED SPURIOUS EMISSION TEST Block Diagram of Test Setup The Limit For Section 15.247(d) Restricted bands of operation Configuration of EUT on Measurement Operating Condition of EUT Test Procedure Test Procedure The Field Strength of Radiation Emission Measurement Results

Test Report Certification

Applicant : Shenzhen Waikin Electronic Co., Ltd.

Manufacturer : Shenzhen Waikin Electronic Co., Ltd.

EUT Description : Car Radio Bluetooth

(A) MODEL NO.: 87752824

(B) SERIAL NO.: N/A

(C) POWER SUPPLY: DC 12V

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.4: 2003

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test:	June 21-26, 2010	
Prepared by :	Joe	
	(Engineer)	
Approved & Authorized Signer :	Searle)	
	(Manager)	

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : Car Radio Bluetooth

Model Number : 87752824

Frequency Band : 2402MHz-2480MHz

Number of Channels : 79

Antenna Gain 0dBi

Power Supply : DC 12V

Applicant : Shenzhen Waikin Electronic Co., Ltd.

Address : Wu Tong Shan Village, Shenzhen, China

ManufacturerShenzhen Waikin Electronic Co., Ltd.AddressWu Tong Shan Village, Shenzhen, China

Date of sample received: June 9, 2010

Date of Test : June 21-26, 2010

1.2.Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

1.3. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Type	S/N	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 9, 2011
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 9, 2011
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 9, 2011
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 9, 2011
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 9, 2011
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 9, 2011
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 9, 2011
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 9, 2011
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 9, 2011
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 9, 2011

3. OPERATION OF EUT DURING TESTING

3.1. Operating Mode

The mode is used: Transmitting mode

Low Channel: 2402MHz Middle Channel: 2441MHz High Channel: 2480MHz

Hopping

3.2. Configuration and peripherals

Setup: Transmitting mode

(EUT: Car Radio Bluetooth)

4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.247(a)(1)	20dB Bandwidth Test	Compliant
Section 15.247(a)(1)	Carrier Frequency Separation Test	Compliant
Section 15.247(a)(1)(iii)	Number Of Hopping Frequency Test	Compliant
Section 15.247(a)(1)(iii)	Dwell Time Test	Compliant
Section 15.247(b)(1)	Maximum Peak Output Power Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.247(d) Section 15.209	Radiated Spurious Emission Test	Compliant
Section 15.203	Antenna Requirement	Compliant

5. 20DB BANDWIDTH TEST

5.1.Block Diagram of Test Setup

(EUT: Car Radio Bluetooth)

5.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

5.3.EUT Configuration on Measurement

The following equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.3.1.Car Radio Bluetooth (EUT)

Model Number : 87752824 Serial Number : N/A

Manufacturer : Shenzhen Waikin Electronic Co., Ltd.

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in TX(Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, 2480MHz TX frequency to transmit.

- 5.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 5.5.2.Set RBW of spectrum analyzer to 30kHz and VBW to 100kHz.
- 5.5.3. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

5.6.Test Result

PASS.

Date of Test:June 23, 2010Temperature:25°CEUT:Car Radio BluetoothHumidity:50%Model No.:87752824Power Supply:DC 12VTest Mode:TXTest Engineer:Joe

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Limit (MHz)
Low	2402	0.978	
Middle	2441	0.960	
High	2480	0.972	

6. CARRIER FREQUENCY SEPARATION TEST

6.1.Block Diagram of Test Setup

(EUT: Car Radio Bluetooth)

6.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

6.3.EUT Configuration on Measurement

The following equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.3.1.Car Radio Bluetooth (EUT)

Model Number : 87752824 Serial Number : N/A

Manufacturer : Shenzhen Waikin Electronic Co., Ltd.

- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, 2480MHz TX frequency to transmit.

- 6.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 6.5.2.Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz. Adjust Span to 3 MHz.
- 6.5.3. Set the adjacent channel of the EUT maxhold another trace.
- 6.5.4.Measurement the channel separation

6.6.Test Result

PASS.

Date of Test:June 23, 2010Temperature:25°CEUT:Car Radio BluetoothHumidity:50%Model No.:87752824Power Supply:DC 12VTest Mode:HoppingTest Engineer:Joe

	Channel Frequency	Channel separation	
Channel			Limit
	(MHz)	(MHz)	
Low	2402	1.002	> the 20dB Bandwidth or 25kHz
Low	2 4 02	1.002	(whichever is greater)
Middle	2441	1.002	> the 20dB Bandwidth or 25kHz
Middle	2 44 1	1.002	(whichever is greater)
Lligh	2480	1.002	> the 20dB Bandwidth or 25kHz
High	∠ 4 6U	1.002	(whichever is greater)

7. NUMBER OF HOPPING FREQUENCY TEST

7.1.Block Diagram of Test Setup

(EUT: Car Radio Bluetooth)

7.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

7.3.EUT Configuration on Measurement

The following equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.3.1.Car Radio Bluetooth (EUT)

Model Number : 87752824 Serial Number : N/A

Manufacturer : Shenzhen Waikin Electronic Co., Ltd.

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX (Hopping on) modes measure it.

- 7.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set the spectrum analyzer as Span=30MHz, RBW=300kHz, VBW=300kHz.
- 7.5.3.Max hold, view and count how many channel in the band.

7.6.Test Result

PASS.

Date of Test:June 23, 2010Temperature:25°CEUT:Car Radio BluetoothHumidity:50%Model No.:87752824Power Supply:DC 12VTest Mode:HoppingTest Engineer:Joe

Total number of	Measurement result (CH)	Limit (CH)
hopping channel	79	>15

8. DWELL TIME TEST

8.1.Block Diagram of Test Setup

(EUT: Car Radio Bluetooth)

8.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

8.3.EUT Configuration on Measurement

The following equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.3.1.Car Radio Bluetooth (EUT)

Model Number : 87752824 Serial Number : N/A

Manufacturer : Shenzhen Waikin Electronic Co., Ltd.

- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, 2480MHz TX frequency to transmit.

- 8.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2.Set center frequency of spectrum analyzer = operating frequency.
- 8.5.3.Set the spectrum analyzer as RBW=100kHz, VBW=300kHz, Span=0Hz, Adjust Sweep=1s. Get the burst (in 1 sec.).
- 8.5.4.Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Span=0Hz, Adjust Sweep=2ms. Get the pulse time.
- 8.5.5.Repeat above procedures until all frequency measured were complete.

8.6.Test Result

PASS.

Date of Test:June 23, 2010Temperature:25°CEUT:Car Radio BluetoothHumidity:50%Model No.:87752824Power Supply:DC 12VTest Mode:HoppingTest Engineer:Joe

A period transr	A period transmit time = $0.4 \times 79 = 31.6$				
Dwell time = p	ulse time × burst (in 1	sec.)×31.6			
Channel	Channel Frequency	Pulse Time	Burst	Dwell Time	Limit
	(MHz)	(ms)	(in 1 sec.)	(ms)	(ms)
Low	2402	0.384	10	121.3	400
Middle	2441	0.384	10	121.3	400
High	2480	0.384	10	121.3	400

9. MAXIMUM PEAK OUTPUT POWER TEST

9.1.Block Diagram of Test Setup

(EUT: Car Radio Bluetooth)

9.2. The Requirement For Section 15.247(b)(1)

Section 15.247(b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

9.3.EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.3.1.Car Radio Bluetooth (EUT)

Model Number : 87752824

Serial Number : N/A

Manufacturer : Shenzhen Waikin Electronic Co., Ltd.

- 9.4.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2. Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, 2480MHz TX frequency to transmit.

- 9.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 9.5.2.Set RBW of spectrum analyzer to 1MHz and VBW to 3MHz.
- 9.5.3. Measurement the maximum peak output power.

9.6.Test Result

PASS.

Date of Test:June 23, 2010Temperature:25°CEUT:Car Radio BluetoothHumidity:50%Model No.:87752824Power Supply:DC 12VTest Mode:TXTest Engineer:Joe

Channel	Frequency (MHz)	Peak Output Power (dBm)	Peak Output Power (mW)	Limits dBm / W
Low	2402	-3.02	0.499	30 dBm / 1 W
Middle	2441	-3.21	0.478	30 dBm / 1 W
High	2480	-3.47	0.450	30 dBm / 1 W

10.BAND EDGE COMPLIANCE TEST

10.1.Block Diagram of Test Setup

(EUT: Car Radio Bluetooth)

10.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

10.3.EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

10.3.1.Car Radio Bluetooth (EUT)

Model Number : 87752824 Serial Number : N/A

Manufacturer : Shenzhen Waikin Electronic Co., Ltd.

10.4. Operating Condition of EUT

- 10.4.1. Setup the EUT and simulator as shown as Section 10.1.
- 10.4.2. Turn on the power of all equipment.
- 10.4.3.Let the EUT work in TX (Hopping off, Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

10.5.Test Procedure

- 10.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 10.5.2.Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz.
- 10.5.3. The band edges was measured and recorded.

10.6.Test Result

Pass

Date of Test:June 23, 2010Temperature:25°CEUT:Car Radio BluetoothHumidity:50%Model No.:87752824Power Supply:DC 12VTest Mode:TX (Hopping off)Test Engineer:Joe

Conducted test

Frequency	Result of Band Edge (dBc)	Limit of Band Edge (dBc)
(MHz)		
2402	37.41	> 20dBc
2480	42.53	> 20dBc

Date of Test:June 23, 2010Temperature:25°CEUT:Car Radio BluetoothHumidity:50%Model No.:87752824Power Supply:DC 12VTest Mode:TX (Hopping on)Test Engineer:Joe

Conducted test

Frequency	Result of Band Edge (dBc)	Limit of Band Edge (dBc)			
(MHz)		` ,			
2402	38.63	> 20dBc			
2480	43.41	> 20dBc			

11. RADIATED SPURIOUS EMISSION TEST

11.1.Block Diagram of Test Setup

11.1.1.Block diagram of connection between the EUT and simulators

Setup: Transmitting mode

(EUT: Car Radio Bluetooth)

11.1.2.Semi-Anechoic Chamber Test Setup Diagram

(EUT: Car Radio Bluetooth)

GROUND PLANE

11.2.The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

11.3.Restricted bands of operation

11.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$(^2)$
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

²Above 38.6

11.4.Configuration of EUT on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

11.4.1.Car Radio Bluetooth (EUT)

Model Number : 87752824 Serial Number : N/A

Manufacturer : Shenzhen Waikin Electronic Co., Ltd.

11.5. Operating Condition of EUT

- 11.5.1.Setup the EUT and simulator as shown as Section 11.1.
- 11.5.2. Turn on the power of all equipment.
- 11.5.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, 2480MHz TX frequency to transmit.

11.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2003 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The bandwidth of test receiver (R&S ESI26) is set at 120kHz in 30-1000MHz. and set at 1MHz in above 1000MHz.

The frequency range from 30MHz to 25000MHz is checked.

The final measurement in band 9-90kHz, 110-490kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

The field strength is calculated by adding the antenna factor, and cable loss, and subtracting the amplifier gain from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

11.7. The Field Strength of Radiation Emission Measurement Results **PASS.**

Date of Test: June 21, 2010

EUT: Car Radio Bluetooth

Model No.: 87752824

Test Mode: TX (2402MHz)

Temperature: 25°C

Humidity: 50%

Power Supply: DC 12V

Test Engineer: Joe

For 30MHz-1000MHz

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

Confected 1 detor	Time Tuestor Time Tuestor Cuore 2000 Time Time Cuin										
Frequency	Reading	Factor	Result	Limit	Margin	Polarization					
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)						
	QP	(dB)	QP	QP	QP						
-	-	-	-	-	-	Vertical					
-	-	-	-	-	-	Horizontal					

For 1GHz-25GHz

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

Frequenc	Reading	(dBµV/m)	Factor	Result(c	Result(dBµV/m) Limit(dB		BμV/m) Margin(d		dBμV/m)	Polarizati
у	AV	PEAK	Corr. (dB)	AV	PEAK	AV	PEAK	AV	PEAK	on
(MHz)										
2400.00	37.83	43.87	-7.46	30.37	36.41	54	74	-23.63	-37.59	Vertical
2402.010	102.37	108.40	-7.45	94.92	100.95	-	-	-	-	Vertical
*4804.016	49.12	55.15	-0.30	48.82	54.85	54	74	-5.18	-19.15	Vertical
2400.00	38.76	44.81	-7.46	31.30	37.35	54	74	-22.70	-36.65	Horizontal
2402.010	102.91	108.95	-7.45	95.46	101.50	-	-	-	-	Horizontal
*4804.016	49.64	55.65	-0.30	49.34	55.35	54	74	-4.66	-18.65	Horizontal

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. *: Denotes restricted band of operation.

Date of Test:	June 21, 2010	Temperature:	25°C
EUT:	Car Radio Bluetooth	Humidity:	50%
Model No.:	87752824	Power Supply:	DC 12V
Test Mode:	TX (2441MHz)	Test Engineer:	Joe

For 30MHz-1000MHz

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

Frequency	Reading	Factor	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP	(dB)	QP	QP	QP	
-	-	1	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

For 1GHz-25GHz

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

Frequenc	Reading	(dBµV/m)	Factor	Factor Result(dB\(\mu\)V/m)		Limit(d	BμV/m)	Margin(Polarizati	
у	AV	PEAK	Corr. (dB)	AV	PEAK	AV	PEAK	AV	PEAK	on
(MHz)										
2441.010	102.47	108.51	-7.35	95.12	101.16	-	-	-	-	Vertical
*4882.018	48.38	54.40	0.14	48.52	54.54	54	74	-5.48	-19.46	Vertical
2441.010	102.75	108.79	-7.35	95.40	101.44	-	-	-	-	Horizontal
*4882.018	49.04	55.08	0.14	49.18	55.22	54	74	-4.82	-18.78	Horizontal

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. *: Denotes restricted band of operation.

Date of Test:	June 21, 2010	Temperature:	25°C
EUT:	Car Radio Bluetooth	Humidity:	50%
Model No.:	87752824	Power Supply:	DC 12V
Test Mode:	TX (2480MHz)	Test Engineer:	Joe

For 30MHz-1000MHz

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

Frequency	Reading	Factor	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP	(dB)	QP	QP	QP	
-	-	1	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

For 1GHz-25GHz

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

Frequency (MHz)	Reading(dBµV/m		Factor Corr. (dB)	Result(c	lBμV/m)	Limit(dBµV/m)		Margin(dBμV/m)		Polarizati on
(IVIII)	AV	PEAK		AV	PEAK	AV	PEAK	AV	PEAK	
2480.009	103.02	109.08	-7.37	95.65	101.71	-	-	-	-	Vertical
2483.500	37.79	43.82	-7.37	30.42	36.45	54	74	-23.58	-37.55	Vertical
4960.015	48.28	54.32	0.52	48.80	54.84	54	74	-5.20	-19.16	Vertical
2480.009	103.50	109.56	-7.37	96.13	102.19	1	-	-	-	Horizontal
2483.500	38.20	44.22	-7.37	30.83	36.85	54	74	-23.17	-37.15	Horizontal
4960.015	49.10	55.13	0.52	49.62	55.65	54	74	-4.38	-18.35	Horizontal

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. *: Denotes restricted band of operation.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RTTE #5206

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 % EUT: Car Radio Bluetooth

Mode: TX 2402MHz

Model: 87752824

Manufacturer: Shenzhen Waikin Electronic Co., Ltd.

Note: Sample No.:101459 Report No.:ATE20101270

Polarization: Horizontal Power Source: DC 12V

Date: 2010/06/21 Time: 9:06:19

Engineer Signature: Joe

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RTTE #5207

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 % EUT: Car Radio Bluetooth

Mode: TX 2402MHz Model: 87752824

Manufacturer: Shenzhen Waikin Electronic Co., Ltd.

Note: Sample No.:101459 Report No.:ATE20101270

Polarization: Vertical Power Source: DC 12V

Date: 2010/06/21 Time: 9:09:52

Engineer Signature: Joe

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RTTE #5214

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Car Radio Bluetooth

Mode: TX 2402MHz

Model: 87752824

Manufacturer: Shenzhen Waikin Electronic Co., Ltd.

Note: Sample No.:101459 Report No.:ATE20101270

-7.46

-7.45

-7.45

-0.30

-0.30

31.30

101.50

95.46

55.35

49.34

54.00

74.00

54.00

-22.70

-

-18.65

-4.66

AVG

peak

AVG

peak

AVG

Date: 2010/06/21 Time: 9:37:25

Engineer Signature: Joe

Distance: 3m

2

3

4

5

6

2400.000

2402.010

2402.010

4804.016

4804.016

38.76

108.95

102.91

55.65

49.64

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RTTE #5215

Standard: FCC Class B 3M Radiated

Test item: Radiation Test
Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Car Radio Bluetooth

Mode: TX 2402MHz Model: 87752824

Manufacturer: Shenzhen Waikin Electronic Co., Ltd.

Note: Sample No.:101459 Report No.:ATE20101270

Polarization: Vertical
Power Source: DC 12V

Date: 2010/06/21 Time: 9:41:36

Engineer Signature: Joe

No.	Freq. (MHz)	(dBuV/m)	Factor (dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2400.000	43.87	-7.46	36.41	74.00	-37.59	peak				
2	2400.000	37.83	-7.46	30.37	54.00	-23.63	AVG				
3	2402.010	108.40	-7.45	100.95	2	2	peak				
4	2402.010	102.37	-7.45	94.92	2	2	AVG				
5	4804.016	55.15	-0.30	54.85	74.00	-19.15	peak		2.		
6	4804.016	49.12	-0.30	48.82	54.00	-5.18	AVG				

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Polarization:

Date: 2010/06/21

Time: 10:06:38

Power Source: DC 12V

Horizontal

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RTTE #5220

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Car Radio Bluetooth

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Polarization:

Date: 2010/06/21

Time: 10:10:42

Distance: 3m

Power Source: DC 12V

Engineer Signature: Joe

Vertical

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RTTE #5221

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Car Radio Bluetooth

Mode: TX 2402MHz

Model: 87752824

Manufacturer: Shenzhen Waikin Electronic Co., Ltd.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RTTE #5209

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 % EUT: Car Radio Bluetooth

Mode: TX 2441MHz

Model: 87752824

Manufacturer: Shenzhen Waikin Electronic Co., Ltd.

Note: Sample No.:101459 Report No.:ATE20101270

Polarization: Horizontal Power Source: DC 12V Date: 2010/06/21

Date: 2010/06/21 Time: 9:17:59

Engineer Signature: Joe

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RTTE #5208

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 % EUT: Car Radio Bluetooth

Mode: TX 2441MHz Model: 87752824

Manufacturer: Shenzhen Waikin Electronic Co., Ltd.

Note: Sample No.:101459 Report No.:ATE20101270

Polarization: Vertical Power Source: DC 12V

Date: 2010/06/21 Time: 9:14:26

Engineer Signature: Joe

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RTTE #5217 Standard: FCC Class B 3M Radiated

Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 50 % EUT: Car Radio Bluetooth

TX 2441MHz Mode: Model: 87752824

Manufacturer: Shenzhen Waikin Electronic Co., Ltd.

Sample No.:101459 Report No.:ATE20101270 Note:

Polarization: Horizontal Power Source: DC 12V

Date: 2010/06/21 Time: 9:50:20

Engineer Signature: Joe

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RTTE #5216

Standard: FCC Class B 3M Radiated

Test item: Radiation Test
Temp.(C)/Hum.(%) 25 C / 50 %
EUT: Car Radio Bluetooth

Mode: TX 2441MHz Model: 87752824

Manufacturer: Shenzhen Waikin Electronic Co., Ltd.

Note: Sample No.:101459 Report No.:ATE20101270

Polarization: Vertical Power Source: DC 12V

Date: 2010/06/21 Time: 9:46:11

Engineer Signature: Joe

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RTTE #5223

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Car Radio Bluetooth

Mode: TX 2441MHz Model: 87752824

Manufacturer: Shenzhen Waikin Electronic Co., Ltd.

Note: Sample No.:101459 Report No.:ATE20101270

Polarization: Horizontal Power Source: DC 12V

Date: 2010/06/21 Time: 10:19:33

Engineer Signature: Joe

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RTTE #5222

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Car Radio Bluetooth

Mode: TX 2441MHz Model: 87752824

Manufacturer: Shenzhen Waikin Electronic Co., Ltd.

Note: Sample No.:101459 Report No.:ATE20101270

Polarization: Vertical Power Source: DC 12V

Date: 2010/06/21 Time: 10:15:30

Engineer Signature: Joe

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RTTE #5210

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 % EUT: Car Radio Bluetooth

Mode: TX 2480MHz

Model: 87752824

Manufacturer: Shenzhen Waikin Electronic Co., Ltd.

Note: Sample No.:101459 Report No.:ATE20101270

Time: 9:22:30 Engineer Signature: Joe

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RTTE #5211 Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 % EUT: Car Radio Bluetooth

Mode: TX 2480MHz Model: 87752824

Manufacturer: Shenzhen Waikin Electronic Co., Ltd.

Note: Sample No.:101459 Report No.:ATE20101270

Polarization: Vertical Power Source: DC 12V Date: 2010/06/21

Time: 9:26:04 Engineer Signature: Joe

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RTTE #5218

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Car Radio Bluetooth

Mode: TX 2480MHz Model: 87752824

Manufacturer: Shenzhen Waikin Electronic Co., Ltd.

Note: Sample No.:101459 Report No.:ATE20101270

Polarization: Horizontal Power Source: DC 12V

Date: 2010/06/21 Time: 9:54:58

Engineer Signature: Joe

		1					limit1: —
100							
90							
80				.ļļ.			
70							
60			<u> </u>	5			
50							
40		haldranagashini colop de se assertantino de se	Makanaka man Makanaka	A Marchardon	participation of the same of t	MANAMORA	manifest of the party of the second of
30	physical and property of the standard of the s	Phylytethery and what the house and a					
20							
10.0							

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2480.009	109.56	-7.37	102.19	-	-	peak			
2	2480.009	103.50	-7.37	96.13	-	-	AVG			
3	2483.500	44.22	-7.37	36.85	74.00	-37.15	peak			
4	2483.500	38.20	-7.37	30.83	54.00	-23.17	AVG			
5	4960.015	55.13	0.52	55.65	74.00	-18.35	peak			
6	4960.015	49.10	0.52	49.62	54.00	-4.38	AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RTTE #5219

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Car Radio Bluetooth

Mode: TX 2480MHz

Model: 87752824

Manufacturer: Shenzhen Waikin Electronic Co., Ltd.

Note: Sample No.:101459 Report No.:ATE20101270

Polarization: Vertical Power Source: DC 12V

> Date: 2010/06/21 Time: 9:59:07

Engineer Signature: Joe

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2480.009	109.08	-7.37	101.71	-	<u> </u>	peak			
2	2480.009	103.02	-7.37	95.65	-	-	AVG			
3	2483.500	43.82	-7.37	36.45	74.00	-37.55	peak			
4	2483.500	37.79	-7.37	30.42	54.00	-23.58	AVG			
5	4960.015	54.32	0.52	54.84	74.00	-19.16	peak			
6	4960.015	48.28	0.52	48.80	54.00	-5.20	AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Polarization:

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Horizontal

Job No.: RTTE #5224

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RTTE #5225

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Car Radio Bluetooth

Mode: TX 2480MHz Model: 87752824

Manufacturer: Shenzhen Waikin Electronic Co., Ltd.

Note: Sample No.:101459 Report No.:ATE20101270

Polarization: Vertical Power Source: DC 12V

Date: 2010/06/21 Time: 10:28:25

Engineer Signature: Joe

12.ANTENNA REQUIREMENT

12.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

12.2.Antenna Construction

Device is equipped with unique antenna connector. Therefore, the equipment complies with the antenna requirement of Section 15.203.

FCC ID: YJ6-87752824