Introduction of our theoretical framework

N. Gavrielov

(Dated: July 21, 2017)

INTRODUCTION

We investigate the structural changes of the $^{18-28}O$ isotopes, both even and odd isotopes, by examining the energies of their low-lying states. This is done by developing our own shell model program and comparing the energies it generates to the NushellX@MSU program [1]. We use ¹⁶O as a closed core, leaving 8 protons and 8 neutron at the sp-shell $(0s_{1/2}, 0p_{3/2}, 0p_{1/2})$. More neutrons are then excited in the sd-shell $(0d_{5/2}, 1s_{1/2}, 0d_{3/2})$, which serves as our model space. The Hamiltonian (1), which incorporates the pair breaking interaction (3), is used. The two-body matrix elements (TBME) of Eq. (3) (define them as in [2]) uses those of the USDB interaction [2] (given there in Tables I and II, in J-scheme, for T =1,0 respectively) where the single particle energies (SPE) $(1s_{1/2},0d_{3/2},0d_{5/2})$ are (-3.2079,2.1117,-3.9257). We work in M-scheme, where the SPE are ordered as given in Table I. Using the single particle states (SPS) we construct the appropriate slater determinants, $|\psi\rangle$, according to number of particles which we place in the sd-shell.

TABLE I. Single particle energies of the sd-shell in the M-scheme basis with their corresponding quantum numbers (N, ℓ, J, M_j) .

index	N	ℓ	J	M_{j}	SPE
1	1	0	1	-1/2	-3.20790
2	1	0	1	+1/2	-3.20790
3	0	2	3	-3/2	2.11170
4	0	2	3	-1/2	2.11170
5	0	2	3	+1/2	2.11170
6	0	2	3	+3/2	2.11170
7	0	2	5	-5/2	-3.92570
8	0	2	5	-3/2	-3.92570
9	0	2	5	-1/2	-3.92570
10	0	2	5	+1/2	-3.92570
11	0	2	5	+3/2	-3.92570
12	0	2	5	+5/2	-3.92570

MY TOC

Background

- 1. The 1s0d-shell model space.
- 2. Description for the Oxygen isotopes.

3. Pairing Hamiltonian and pair breaking Hamiltonian (We use second quantization. Is this only in m-scheme?).

$$\hat{H} = \hat{H}_0 + \hat{V} \tag{1}$$

$$\hat{H}_0 = \xi \sum_{p,\sigma} (p-1)\hat{a}_{p\sigma}^{\dagger} \hat{a}_{p\sigma}, \qquad (2)$$

$$\hat{V} = \sum_{p < q} \langle p|V|q\rangle \,\hat{P}_p^+ \hat{P}_q^-, \tag{3}$$

$$\hat{P}_p^+ = \sum_{\sigma_p, \geq 0} \hat{a}_{p,\sigma_p}^{\dagger} \hat{a}_{p,-\sigma_p}^{\dagger}, \qquad \hat{P}_p^- = \sum_{\sigma_p, \geq 0} \hat{a}_{p,-\sigma_p} \hat{a}_{p,\sigma_p}.$$

$$(4)$$

4. Many-body Schrodinger eq.

Introduction of our theoretical framework

- 1. Description for the Oxygen isotopes the physical phenomenon we investigate.
- 2. Describe the sd-shell which serves as our model space.
- 3. Many-body Schrodinger eq.
- 4. The Hamiltonian we are using
- 5. sps. coupling to M_{tot}
- 6. matrix elements in m-scheme.
 - (a) Translate Eq. (19) in [2] to M-scheme?
 - (b) The USD Hamiltonian is defined by 63 sd-shell two-body matrix elements (TBME) and three single-particle energies (SPE) given in Table I of [1]. This is converted to the *M*-scheme and was given to us by Morten in the sdshellint.dat file. To this we added the refinement of Eq. (19) in [2].
- 7. Slater determinants.
- 8. The different NushellX interactions:

(a) USD (the original, by Winldenthal)

(e)

- (b) USDB.
- (c) USDA.
- (d) CCEI (Gustav's).

- [1] B. A. Brown and W. Rae, Nucl. Data Sheets **120**, 115 (2014).
- [2] B. A. Brown and W. A. Richter, Phys. Rev. C 74, 034315 (2006).