

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: A61K 48/00, 35/12, 39/00 C12N 15/19, 15/24, 15/25 C12N 15/26, 15/90, 15/63

(11) International Publication Number:

WO 93/07906

(43) International Publication Date:

29 April 1993 (29.04.93)

(21) International Application Number:

PCT/US92/08999

(22) International Filing Date:

23 October 1992 (23.10.92)

(74) Agents: CAMPBELL, Cathryn et al.; Campbell & Flores, 4370 La Jolla Village Drive, Suite 700, San Diego, CA

92122 (US).

(30) Priority data:

781,356 863,641

US 25 October 1991 (25.10.91) US

3 April 1992 (03.04.92)

(81) Designated States: CA, JP, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, SE).

(71) Applicant: SAN DIEGO REGIONAL CANCER CEN-TER [US/US]; 3099 Science Park Road, Suite 200, San

Diego, CA 92121 (US).

(72) Inventors: SOBOL, Robert, E.; 5673 La Jolla Hermosa Avenue, La Jolla, CA 92037 (US). FRED, H., Gage; 8388 Caminito Helecho, La Jolla, CA 92037 (US). ROYSTON, Ivor; 1515 El Camino del Teatro, La Jolla, CA 92037 (US). FRIEDMAN, Theodore; 9470 La Jolla Shores Drive, La Jolla, CA 92037 (US). FAKHRAI, Hatilore Drive, La Jolla, CA 92037 (US). FAKHRAI, Hatilore Drive, La Jolla, CA 92037 (US). bib; 1538 Avenida Andante, Oceanside, CA 92056 (US).

Published

With international search report.

(54) Title: LYMPHOKINE GENE THERAPY OF CANCER

(57) Abstract

A novel method of tumor immunotherapy is described comprising the genetic modification of cells resulting in the secretion of cytokine gene products to stimulate a patient's immune response to tumor antigens. In one embodiment, autologous fibroblasts genetically modified to secrete at least one cytokine gene product are utilized to immunize the patient in a formulation with tumor antigens at a site other than an active tumor site. In another embodiment, cells genetically modified to express at least one tumor antigen product and to secrete at least one cytokine gene product are utilized in a formulation to immunize the patient at a site other than an active tumor site.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gabon	MW	Malawi
BB	Barbados	GB	United Kingdom	NĿ	Netherlands
BE	Belgium	GN	Guinea	NO	Norway
BF	Burkina Faso	GR	Greece	NZ	New Zealand
BG	Bulgaria	HU	Hungary	PL	Poland
B.J:	Benin	ΙE	Ireland	PT	Portugal
BR	Brazil	IT	Italy	RO	Romania
CA	Canada	J₽	Japan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SK	Slovak Republic
CI	Côte d'ivoire	LI	Liechtenstein	SN	Senegal
CM	Cameroon	LK	Sri Lanka	SU	Soviet Union
cs	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	MC	Monaco	TG	Togo
DE	Germany	MG	Madagascar	UA	Ukraine
DK	Denmark	ML	Mali	us	United States of America
ES	Spain	MN	Mongolia	VN	Viet Nam
FI	Finland		• •		

WO 93/07906 PCT/US92/08999

Lymphokine Gene Therapy of Cancer

BACKGROUND

This application is a continuation-in-part of United States Patent Application Serial No. 07/781,356, filed on October 25, 1991, which is a continuation-in-part of United States Patent Application Serial No. 07/720,872, filed on June 25, 1991, both of which are incorporated herein in their entirety.

Recent advances in our understanding of the 10 biology the immune system have lead to identification of important modulators of immune responses, called cytokines (1-3). Immune system modulators produced by lymphocytes are termed lymphokines, a subset of the These agents mediate many of the immune responses involved in anti-tumor immunity. 15 these cytokines have been produced by recombinant DNA methodology and evaluated for their anti-tumor effects. administration of lymphokines and immunomodulators has resulted in objective tumor responses 20 in patients with various types of neoplasms (4-7). However, current modes of cytokine administration are frequently associated with toxicities that limit the therapeutic value of these agents.

For example, interleukin-2 (IL-2) is an important 25 lymphokine in the generation of anti-tumor immunity (4). In response to tumor antiqens, a subset of lymphocytes termed helper T-cells secrete small quantities of IL-2. This IL-2 acts locally at the site of tumor antigen stimulation to activate cytotoxic T-cells and natural 30 killer cells which mediate systemic tumor cell destruction. Intravenous, intralymphatic and intralesional administration of IL-2 has resulted in clinically significant responses in some cancer patients (4-6). However, severe toxicities (hypotension and adema) limit 35 the dose and efficacy of intravenous and intralymphatic IL-

2 administration (5-7). The toxicity of systemically administered lymphokines is not surprising as these agents mediate local cellular interactions and they are normally secreted in only very small quantities.

Additionally, other cytokines, such as interleukin-4 (IL-4), alpha interferon (α -INF) and gamma interferon (γ -INF) have been used to stimulate immune responses to tumor cells. Like IL-2, the current modes of administration have adverse side effects.

To circumvent the toxicity of systemic cytokine administration, several investigators have examined intralesional injection of IL-2. This approach eliminates the toxicity associated with systemic IL-2 administration (8,9,10). However, multiple intralesional injections are required to optimize therapeutic efficacy (9,10). Hence, these injections are impractical for many patients, particularly when tumor sites are not accessible for injection without potential morbidity.

An alternative approach, involving cytokine gene 20 transfer into tumor cells, has resulted in significant anti-tumor immune responses in several animal tumor models (11-14). In these studies, the expression of cytokine gene products following cytokine gene transfer into tumor cells has abrogated the tumorigenicity of the cytokine-secreting 25 tumor cells when implanted into syngeneic hosts. (13)or transfer of genes for IL-2 (11,12) γ -INF significantly reduced (IL-4)(14)interleukin-4 eliminated the growth of several different histological types of murine tumors. In the studies employing IL-2 gene 30 transfer, the treated animals also developed systemic antitumor immunity and were protected against subsequent tumor challenges with the unmodified parental tumor (11,12). Similar inhibition f tumor growth and prot ctive immunity was also demonstrated when immunizations were performed WO 93/07906 PCT/US92/08999

3

with a mixture of unmodified parental tumor cells and genetically modified tumor cells engineered to express the IL-2 gene. No toxicity associates with localized lymphokine transgene expression was reported in these animal tumor studies (11-14).

while the above gene-transfer procedure has been shown to provide anti-tumor immunity, it still retains practical difficulties. This approach is limited by the inability to transfer functional cytokine genes into many patients' tumor cells, as most patients' tumors cannot be established to grown in vitro and methods for human in vivo gene transfer are not available.

SUMMARY OF THE INVENTION

The present invention demonstrates a novel, more practical method of cytokine cancer immunotherapy. approach, selected cells from a patient, such fibroblasts, obtained, for example, from a routine skin biopsy, are genetically modified to express one or more cytokines. Alternatively, patient cells which may normally 20 serve as antigen presenting cells in the immune system such as macrophages, monocytes, and lymphocytes may also be genetically modified to express one or more cytokines. These modified cells are hereafter called cytokineexpressing cells, ore CE cells. The CE cells are then 25 mixed with the patient's tumor antigens, for example in the form of irradiated tumor cells, or alternatively in the form of purified natural or recombinant tumor antigen, and employed in immunizations, for example subcutaneously, to induce systemic anti-tumor immunity.

The cytokines are locally expressed at levels sufficient to induce or augment systemic anti-tumor immune responses via local immunization at sites other than active tumor sites. Systemic toxicity related to cytokine

administration should not occur because the levels of cytokin secr ted by the CE cells should not significantly affect systemic cytokine concentrations.

As the amount of cytokine secreted by the CE 5 cells is sufficient to induce anti-tumor immunity but is too low to produce substantial systemic toxicity, this local cytokine of provides benefit the approach In addition, this novel method obviates administration. the need for intralesional injections, which may produce morbidity. Furthermore, the continuous local expression of cytokine(s) at the sites of immunization may also augment immune responses compared to intermittent anti-tumor This method also provides the cytokine injections. advantage of local immunization with the CE cells, as 15 opposed to cumbersome intravenous infusions. This method also eliminates the need for establishing tumor cell lines in vitro as well as transfer of genes into these tumor cells.

This invention also provides an alternative means 20 of localized expression of cytokines to induce and/or increase immune responses to a patient's tumor through genetic modification of cellular expression of both In this embodiment, cytokine(s) and tumor antigen(s). selected cells from a patient are isolated and transduced 25 with cytokine gene(s) as well as gene(s) coding for tumor The transduced cells are called "carrier antigen(s). Carrier cells can include fibroblasts and cells which may normally serve as antigen presenting cells in the monocytes, such as macrophages, system 30 lymphocytes. Transduced carrier cells actively expressing both the cytokine(s) and the tumor antigen(s) are selected and utilized in local immunizations at a site other than active tumor sites to induce anti-tumor immune responses. As with the CE cells, these carrier cells should not 35 produce substantial systemic toxicities, as the lev ls of

WO 93/07906 PCT/US92/08999

5

cytokine(s) secreted by the carrier cells should not significantly affect systemic cytokine concentrations. This alternate embodiment is advantageous because it obviates the need to obtain samples of the tumor, which is sometimes difficult. However, carrier cells can be utilized in local immunizations in conjunction with tumor cells, tumor cell homogenates, purified tumor antigens, or recombinant tumor antigens to enhance anti-tumor immunity.

Additionally, this second embodiment retains the 10 same advantages as the first embodiment in that the level of cytokine released by the carrier cells is sufficient to induce anti-tumor immunity but is too low to produce substantial systemic toxicity. In addition, as with the first embodiment, this method obviates the need for 15 intralesional injections, and allows for continuous expression of cytokine(s). This method also eliminates the need for establishing continuous cultures in vitro of tumor cells as well as transfer of genes into these tumor cells, and provides the advantage of local immunization with the 20 carrier cells, as opposed to cumbersome lengthy intravenous infusions.

These approaches may also find application in inducing or augmenting immune responses to other antigens of clinical significance in other areas of medical practice.

25

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows schematic diagrams of retroviral vectors DC/TKIL2, LXSN-IL2, and LNCX-IL2.

Figure 2 shows a mean IL-2 concentration of 30 triplicate supernatant samples measured by ELISA. Supernatants were harvested from overnight cultures of approximately 1.5 x 106 semi-confluent fibroblasts.

Figure 3 shows biological activity of the IL-2 secreted by the transduced fibroblasts was d monstrated by measuring mean ³H-TdR incorporation of an IL-2 dependent T-cell line incubated with triplicate samples of supernatants. Supernatants were harvested from overnight cultures of approximately 1.5 x 10⁶ semi-confluent fibroblasts.

Figure 4 shows comparisons between animals injected with 10⁵ CT26 tumor cells alone ([]); 10⁵ CT26 tumor cells and 2 x 10⁶ unmodified BALB/C fibroblasts ([]); 10⁵ CT26 tumor cells and 2 x 10⁶ IL-2 transduced BALB/C fibroblasts (()); and 10⁵ CT26 tumor cells and 1 x 10⁶ transduced BALB/C fibroblasts (0). Tumor measurements are the mean products of the cross-sectional diameter of the tumors from four animals in each treatment group. The (*) indicates statistically significant difference (P < 0.05) in tumor growth curves.

Figure 5 shows PCR analysis of neomycin phosphotransferase DNA sequences. Lane 1 - positive control pLXSN-RI-IL2. Lanes 2 through 4 tests genomic DNA; Lanes 5 and 6 ovary genomic DNA; Lane 7 negative control, no DNA. Identical results were obtained with liver, spleen and lung genomic DNA (data not shown).

Figure 6 shows the effect of IL-2 modified 25 fibroblasts on tumor establishment and development using 2 x 10^6 fibroblasts mixed with 5 x 10^4 CT26 tumor cells concentrating on the rate of tumor growth.

Figure 7 shows the effect of IL-2 modified fibroblasts on tumor establishment and development using 2 30 x 10⁶ fibroblasts mixed with 5 x 10⁴ CT26 tumor cells concentrating on the time of tumor onset for the individual animal in ach treatment group.

Figur 8 shows the effect of IL-2 modified fibroblasts on tumor establishment and development using 2 x 10^6 fibroblasts mixed with 1 x 10^5 CT26 tumor cells concentrating on the rate of tumor growth.

- Figure 9 shows the effect of IL-2 modified fibroblasts on tumor establishment and development using 2 x 10⁶ fibroblasts mixed with 1 x 10⁵ CT26 tumor cells concentrating on the time of tumor onset for the individual animal in each treatment group.
- 10 Figure 10 shows the effect of IL-2 modified cells on tumor establishment and development using 2 x 10⁶ DCTK-IL2-modified CT26 tumor cells mixed with 1 x 10⁵ unmodified CT26 compared to 2 x 10⁶ DCTK-IL2-modified fibroblasts mixed with 1 x 10⁵ CT26 concentrating on the rate of tumor growth.
- 15 Figure 11 shows the effect of IL-2 modified cells on tumor establishment and development using 2 x 10⁶ DCTK-IL2-modified CT26 tumor cells mixed with 1 x 10⁵ unmodified CT26 compared to 2 x 10⁶ DCTK-IL2-modified fibroblasts mixed with 1 x 10⁵ CT26 concentrating on the time of tumor onset 20 for the individual animal in each treatment group.

Figure 12 shows the effect of IL-2 modified fibroblasts on induction of systemic anti-tumor immunity and the rate of tumor growth. Mice were immunized with 2 x 10^6 fibroblasts mixed with 2.5 x 10^5 irradiated CT26 tumor cells 7 days prior to challenge with 5 x 10^4 fresh tumor cells.

Figure 13 shows the effect of IL-2 modified fibroblasts on induction of systemic anti-tumor immunity and the time of tumor onset for the individual animal in each treatment group. Mice were immunized with 2 x 10⁶ fibroblasts mixed with 2.5 x 10⁵ irradiated CT26 tumor cells 7 days prior to challenge with 5 x 10⁴ fr sh tumor cells.

Figure 14 shows the effect of IL-2 modified fibroblasts on induction of systemic anti-tumor immunity and the rate of tumor growth. Mice were immunized with 2 x 10⁶ fibroblasts mixed with 2.5 x 10⁵ irradiated CT26 tumor cells 14 days prior to challenge with 5 x 10⁴ fresh tumor cells.

Figure 15 shows the effect of IL-2 modified fibroblasts on induction of systemic anti-tumor immunity and the time of tumor onset for the individual animal in each treatment group. Mice were immunized with 2 x 10⁶ fibroblasts mixed with 2.5 x 10⁵ irradiated CT26 tumor cells 14 days prior to challenge with 5 x 10⁴ fresh tumor cells.

DETAILED DESCRIPTION

immunotherapy A novel method of tumor 15 described comprising the genetic modification of cells resulting in the secretion of cytokine gene products to stimulate a patient's immune response to tumor antigens. "Gene" is defined herein to be a nucleotide sequence one embodiment, encoding the desired protein. In autologous fibroblasts genetically modified to secrete at least one cytokine gene product are utilized to immunize the patient in a formulation with tumor antigens at a site In another embodiment, other than an active tumor site. cells genetically modified to express at least one tumor 25 antigen gene product and to secrete at least one cytokine gene product are utilized in formulation to immunize the patient at a site other than an active tumor site. which are preferably expressed in cells Cytokines efficiently secrete these proteins into the surrounding fibroblasts are an example of such cells. 30 milieu. Fibroblasts or other cells can be genetically modified to express and secrete one or more cytokines, as described later in this specification.

Tumor antigens can be provided by m thods, including, but not limited to the following: 1) CE cells can be transduced with gene(s) coding for tumor These "carrier cells" are then utilized in patient immunizations. 2) Cloned gene sequences coding for appropriate tumor antigens can be transferred into cells such as fibroblasts or antigen-presenting cells. cells are then mixed with CE or carrier cells to immunize the patient. 3) Tumor antiques can be cloned in bacteria 10 or other types of cells by recombinant procudures. antigens are then purified and employed an immunization with CE and/or carrier cells. 4) Tumor antigens can be purified from tumor cells and used, along with CE or carrier cells, to immunize the patient. 5) Tumor cells may 15 be irradiated or mechanically disrupted and mixed with CE and/or carrier cells for patient immunizations.

This invention encompasses the following steps: (A) isolation of appropriate cells for generation of CE cells or carrier cells; (B) isolation of cytokine genes or 20 isolation of cytokine genes and tumor antigen genes, as well as appropriate marker and/or suicide genes; (C) transfer of the genes from (B) to produce the CE cells or carrier cells; (D) preparation of immunological samples of the patient's tumor antiqens or other suitable tumor 25 antigens for immunization with CE or carrier cells; (E) inactivation of the malignant potential of tumor cells if of are used as a source tumor antigens for immunization; and (F) preparation of samples for immunization. Following are several embodiments 30 contemplated by the inventors. However, it is understood that any means known by those in the art to accomplish these steps will be usable in this invention.

(A) <u>Isolation of Cells to Generate CE and</u> <u>Carrier Cells</u>

Cells to be utilized as CE cells and carrier cells can be selected from a variety of locations in the patient's body. For example, skin punch biopsies provide a readily available source of fibroblasts for use in generating CE cells, with a minimal amount of intrusion to the patient. alternatively, these fibroblasts can be obtained from the tumor sample itself. Cells of hematopoietic origin may be obtained by venipuncture, bone marrow aspiration, lymph node biopsies, or from tumor samples. Other appropriate cells for the generation of CE or carrier cells can be isolated by means known in the art. Non-autologous cells similarly selected and processed can also be used.

(B) Isolation of Genes

Numerous cytokine genes have been cloned and are available for use in this protocol. The genes for IL-2, γ -INF and other cytokines are readily available (1-5, 11-14). Cloned genes of the appropriate tumor antigens are isolated according to means known in the art.

Selectable marker genes such as neomycin resistance (Neo^R) are readily available. Incofporation of a selectable marker gene(s) allows for the selection of cells that have successfully received and express the desired genes. Other selectable markers known to those in the art of gene transfer may also be utilized to generate CE cells or carrier cells expressing the desired transgenes.

30 "Suicide" genes can be incorporated into the CE cells or carrier cells to allow for selective inducible killing aft r stimulation of the immune response. A gene

such as the herpes simplex virus thymidine kinase gene (TK) can be used to create an inducible destruction of the CE cells or carrier cells. When the CE cells or carrier cells are no longer useful, a drug such as acyclovir or 5 gancyclovir can be administered. Either of these drugs will selectively kill cells expressing TK, thus eliminating the implanted transduced cells. Additionally, a suicide gene may be a gene coding for a non-secreted cytotoxic polypeptide attached to an inducible promoter. 10 destruction of the CE or carrier cells is desired, the appropriate inducer of the promoter is administered so that suicide gene is induced to produce cytotoxic polypeptide which subsequently kills the CE or carrier cell. However, destruction of the CE or carrier cells may not be required.

Genes coding for tumor antigen(s) of interest can be cloned by recombinant methods. The coding sequence of an antigen expressed by multiple tumors may be utilized for many individual patients.

20 Transfer of Genes (C)

15

30

Numerous methods are available for transferring into cultured cells (15). For example, appropriate genes can be inserted into vectors such as plasmids or retroviruses and transferred into the cells. 25 Electroporation, lipofection and a variety of other methods are known in the field and can be implemented.

One method for gene transfer is a method similar to that employed in previous human gene transfer studies, where tumor infiltrating lymphocytes (TILs) were modified by retroviral gene transduction and administered to cancer patients (16). In this Phase I safety study of retroviral mediated gene transfer, TILs were genetically modified to express the N omycin resistance (NeoR) gene. Following

intravenous infusion, polymerase chain reaction analyses consistently found genetically modified cells in the circulation for as long as two months after administration. No infectious retroviruses were identified in these patients and no side effects due to gene transfer were noted in any patients (16). These retroviral vectors have been altered to prevent viral replication by the deletion of viral gag, pol and env genes.

When retroviruses are used for gene transfer, theoretically 10 replication competent retroviruses may develop by recombination between the retroviral vector and viral gene sequences in the packaging cell line utilized to produce the retroviral vector. We will use packaging cell lines in which the production of replication competent 15 virus by recombination has been reduced or eliminated. Hence, all retroviral vector supernatants used to infect patient cells will be screened for replication competent virus by standard assays such as PCR and reverse Furthermore, exposure to transcriptase assays (16). 20 replication competent virus may not be harmful. In studies of subhuman primates injected with a large inoculum of replication competent murine retrovirus, the retrovirus was cleared by the primate immune system (17). No clinical illnesses or sequelae resulting from replication competent 25 virus have been observed three years after exposure. summary, it is not expected that patients will be exposed to replication competent murine retrovirus and it appears that such exposure may not be deleterious (17).

(D) <u>Preparation of Immunological Samples of the</u>

<u>Patient's Tumor Antigens or Purified</u>

<u>Recombinant Tumor Antigens</u>

Tumor cells bearing tumor associated antigens are isolated from the patient. These cells can derive either from solid tumors or from 1 ukemic tumors. For solid

tumors, singl -c ll suspensions can be made by mechanical separation and washing of biopsy tissue (18).

Hematopoietic tumors may be isolated from peripheral blood or bone marrow by standard methods (19).

A second variant is the use of homogenates of tumor cells. Such homogenates would contain tumor antigens available for recognition by the patient's immune system upon stimulation by this invention. Either unfractionated cell homogenates, made, for example, by mechanical disruption or by freezing and thawing the cells, or fractions of homogenates preferably with concentrated levels of tumor antigens, can be used.

Likewise, purified tumor antigens, obtained for example by immunoprecipitation or recombinant DNA methods, could be used. Purified antigens would then be utilized for immunizations together with the CE cells and/or carrier cells described above to induce or enhance the patient's immune response to these antigens.

In the embodiments employing carrier cells, tumor

20 antigens are available through their expression by the
carrier cells. These carrier cells can be injected alone
or in conjunction with other tumor antigen preparations or
CE cells. Likewise, when CE cells are used, purified
recombinant tumor antigen, produced by methods known in the

25 art, can be used.

If autologous tumor cells are not readily available, heterologous tumor cells, their homogenates, their purified antigens, or carrier cells expressing such antigens could be used.

(E) Inactivation of Tumor Cells

when viable tumor cells are utilized in immunizations as a source of tumor antigens, the tumor cells can be inactivated so that they do not grow in the patient. Inactivation can be accomplished by several methods. the cells can be irradiated prior to immunization (18). This irradiation will be at a level which will prevent their replication. Such viable calls can then present their tumor antigens to the patient's immune system, but cannot multiply to create new tumors.

Alternatively, tumor cells that can be cultured may be transduced with a suicide gene. As described above, a gene such as the herpes simplex thymidine kinase (TK) gene can be transferred into tumor cells to induce their destruction by administration of acyclovir or gancyclovir. After immunization, the TK expressing tumor cells can capable present their tumor antigens, and are After a period of time during which the proliferation. patients's immune response is stimulated, the cells can be This approach might allow longer 20 selectively killed. viability of the tumor cells utilized for immunizations, which may be advantageous in the induction or augmentation of anti-tumor immunity.

(F) Preparation of Samples for Immunization

25 CE cells and/or carrier cells and tumor cells, and/or homogenates of tumor cells and/or purified tumor antigen(s), are combined for patient immunization. Approximately 10⁷ tumor cells will be required. If homogenates of tumor cells or purified or non-purified fractions of tumor antigens are used, the tumor dose can be adjusted based on the normal number of tumor antigens usually pres nt on 10⁷ intact tumor cells. The tumor preparation should be mixed with numbers of CE or carrier

WO 93/07906

20

cells sufficient to secrete cytokin levels that induce anti-tumor immunity (11-12) without producing substantial systemic toxicity which would interfere with therapy.

The cytokines should be produced by the CE cells or the carrier cells at levels sufficient to induce or augment immune response but low enough to avoid substantial systemic toxicity. This prevents side effects created by previous methods' administration of greater than physiological levels of the cytokines.

These mixtures, as well as carrier cells that are utilized alone, will be formulated for injection in any manner known in the art acceptable for immunization. Because it is important that at least the CE cells and carrier cells remain viable, the formulations must be compatible with cell survival. Formulations can be injected subcutaneously, intramuscularly, or in any manner acceptable for immunization.

Contaminants in the preparation which may focus the immune response on undesired antigens should be removed prior to the immunizations.

The following examples are provided for illustration of several embodiments of the invention and should not be interpreted as limiting the scope of the invention.

EXAMPLE I

IMMUNIZATION WITH FIBROBLASTS EXPRESSING IL-2 MIXED WITH IRRADIATED TUMOR CELLS

1) Isolation of Autologous Fibroblasts for Use in Generating IL-2 Secreting CE Cells

Skin punch biopsies will be obtained from each patient under sterile conditions. The biopsy tissue will be minced and placed in RPMI 1640 media containing 10% fetal calf serum (or similar media) to establish growth of the skin fibroblasts in culture. The cultured fibroblasts will be utilized to generate IL-2 secreting CE cells by retroviral mediated IL-2 gene transfer.

2) Retroviral Vector Preparation and Generation of IL-2 Secreting CE Cells

The cultured skin fibroblasts will then be 15 infected with a retroviral vector containing the IL-2 and Neomycin resistance (NeoR) genes. An N2 vector containing the NeoR gene will be used, and has been previously utilized by a number of investigators for in vitro and in vivo work, 20 including investigations with human subjects (16). The IL-2 vector will be generated from an N2-derived vector, LLRNL, developed and described by Friedmann and his colleagues (20). It will be made by replacement of the luciferase gene of LLRNL with a full-length cDNA encoding Retroviral vector free of contaminating 25 human IL-2. replication-competent virus is produced by transfection of vector plasmid constructions into the helper-free packaging cell line PA317. Before infection of patients' cells, the vector will have been shown to be free of helper virus. In 30 the event that helper virus is detected, the vector will be produced in the GP + envAM12 packaging cell line in which

the viral gag and pol genes ar separated from th env, further reducing th lik lihood of helper virus production.

3) Transduction Protocol

The cultured primary fibroblasts will 5 incubated with supernatant from the packaging cell line as described (20). Supernatant from these cells will be tested for adventitious agents and replication competent virus as described (16) and outlined in Table 1. fibroblasts are washed and then grown in culture media 10 containing G418, (a neomycin analogue) to select for transduced cells expressing the NeoR gene. The G418resistant cells will be tested for expression of the IL-2 gene by measuring the concentration of IL-2 in the culture supernatant by an enzyme linked immunosorbent assay (ELISA) 15 (12). G418-resilient cells expressing IL-2 will be stored until required for subsequent use immunizations.

Table 1

Adventitious Agents and Safety Testing 20 1. Sterility 2. Mycoplasma 3. General Safety 4. Viral Testing LCM Virus 25 Thymic agent S+/L- eco S+/L-xeno S+/L- ampho 3T3 amplification 30 MRC-5/Vero

4) Preparation of Irradiated Tumor Cells

obtained form clinically indicated Tumors surgical resections or from superficial lymph node or skin metastases will be minced into 2-3 mm pieces and treated 5 with collagenase and DNAse to facilitate separation of the tumor into a single cell suspension. The collected cells will be centrifuged and washed in RPMI 1640 media and then cryopreserved in a solution containing 10% dimethyl sulphoxide and 50% fetal calf serum in RPMI 1640 media. 10 The cells will be stored in liquid nitrogen until the time Prior to their use in subcutaneous of administration. immunizations, the cells will be thawed, washed in media free of immunogenic contaminants, and irradiated with 4,000 rads per minute for a total of 20,000 rads in a cesium 15 irradiator.

5) Patient Selection

Patients will have a histologically confirmed diagnosis of cancer. Patients with tumors that must be resected for therapeutic purposes or with tumors readily accessible for biopsy are most appropriate for this embodiment of the invention.

6) Pretreatment Evaluation

The following pretreatment evaluations will be performed:

25 1) History and physical examination including a description and quantification of disease activity.

WO 93/07906 PCT/US92/08999

19

- 2) Performance Status Assessment
 - 0 = Normal, no symptoms
 - 1 = Restricted, but ambulatory
 - 2 = Up greater than 50% of waking hours, capable of self-care
 - 3 = Greater than 50% of waking hours
 confined to bed or chair, limited
 self-care
 - 4 = Bedridden
- 10 3) Pretreatment Laboratory:

CBC with differential, platelet count, PT, PTT, glucose, BUN, creatinine, electrolytes, SGOT, SGPT, LDH, alkaline phosphatase, bilirubin, uric acid, calcium, total protein albumin.

15 4) Other Analyses: Urinalysis

5

 CH_{50} , C_3 and C_4 serum complement levels Immunophenotyping of peripheral blood B cell and T cell subsets

Assays for detectable replication-competent virus in peripheral blood cells

PCR assays of peripheral blood leukocytes for Neo^R, IL-2 and viral env

- 5) Other Pretreatment Evaluation:
- Chest X-ray and other diagnostic studies including computerized tomography (CT), magnetic resonance imaging (MRI) or radionuclide scans may be performed to document and quantify the extent of disease activity.
- Follow-up evaluations of these assessments at 30 regular intervals during the course of therapy (approximately every 1 to 3 months) will be useful in determining response to therapy and potential toxicity,

WO 93/07906 PCT/US92/08999

20

permitting adjustments in the number of immunizations administered.

7) Restrictions on Concurrent Therapy

For optimal effects of this treatment, patients should receive no concurrent therapy which is known to suppress the immune system.

8) Final Formulation

immunizations with a mixture if irradiated tumor cells and autologous fibroblast CE cells genetically modified to secrete IL-2. Approximately 10⁷ tumor cells will be mixed with 10⁷ fibroblasts known to secrete at least 20 units/ml of IL-2 in tissue culture when semi-confluent (12). The irradiated tumor cells and genetically modified fibroblasts will be placed in a final volume of 0.2 ml normal saline for immunization.

9) Dose Adjustments

At least two subcutaneous immunizations will be administered, two weeks apart, with irradiated tumor cells and autologous fibroblasts genetically modified to secrete IL-2. If no toxicity is observed, subsequent booster immunizations may be administered periodically (at least one week apart) to optimize the anti-tumor immune response.

J) Treatment of Potential Toxicity

25 Toxic side effects are not expected to result from these immunizations. However, potential side effects of these immunizations are treatable in the following manner:

If massive tumor cell lysis results, any resulting uric acid nephropathy, adult respiratory distress syndrome, disseminated intravascular coagulation or hyperkalemia will be treated using standard methods.

5 Local toxicity at the sites of immunization will be treated with either topical steroids and/or surgical excision of the injection site as deemed appropriate.

Hypersensitivity reactions such as chills, fever and/or rash will be treated symptomatically with antipyretics and antihistamines. Patients should not be treated prophylactically. Should arthralgias, lymphadenopathy or renal dysfunction occur, treatment with corticosteroids and/or antihistamines will be instituted. Anaphylaxis will be treated by standard means such as administration of epinephrine, fluids, and steroids.

EXAMPLE II

A. Retroviral IL-2 Gene Transfer and Expression in Fibroblasts

Retroviral vectors were employed to transfer and 20 express IL-2 and neomycin phosphotransferase genes in murine and primary human fibroblasts. The retroviral vector DC/TKIL2 produced by Gilboa and (Gansbacher, et al., J. Exp. Med. 172:1217-1223, 1990, which is incorporated herein by reference) was utilized to 25 transduce murine fibroblasts for application in an animal tumor model (see Section B below). Human fibroblasts were transduced with the retroviral vector LXSN-RI-IL2. Schematic diagrams of the structure of these retroviral vectors are provided in Figure 1. A more complete 30 description of the LXSN-RI-IL2 vector, including its nucleotide sequence, is provided in Example III and in Tables 2, 3 and 4.

Following infection with the described vectors and selection for 2-3 we ks in growth media containing the neomycin analogue G418, Balb/c and human embryonic fibroblast culture supernatants were harvested and tested for IL-2 by an enzyme-linked immunosorbent assay (ELISA). Figure 2 depicts the levels of IL-2 secreted by the transduced fibroblasts.

These results can be confirmed using negative control fibroblasts infected with an N2-derived retroviral vector expressing an irrelevant gene such as luciferase or ß-galactosidase and studies with adult human fibroblasts.

Biological activity of the IL-2 expressed by the transduced human fibroblasts was confirmed by a cell proliferation bioassay employing an IL-2 dependent T cell line. In this assay, supernatant from the transduced fibroblasts and control unmodified fibroblasts were incubated with the IL-2 dependent T cell line CTLL-2. Incorporation of ³H-thymidine was measured as an indicator of cell proliferation and IL-2 activity (Figure 3).

20 B. <u>Efficacy of Transduced Fibroblasts in an Animal</u> <u>Tumor Model</u>

The efficacy of fibroblasts genetically modified to secrete IL-2 was tested in an animal model of colorectal carcinoma. In these studies, the Balb/c CT26 tumor cell line was injected subcutaneously with Balb/c fibroblasts transduced to express IL-2. Control groups included animals injected with 1) a mixture of CT26 tumor cells and unmodified fibroblasts; 2) CT26 tumor cells without fibroblasts and 3) transduced fibroblasts alone. No tumors were detected in 3/8 animals treated with transduced fibroblasts and CT26 cells. In contrast, all untreated control animals (8/8) injected with CT26 tumor cells developed palpable tumors. No tumors were detected in the

animals inoculat d with transduced fibroblasts without CT26 The mean CT26 tumor size in Balb/c mice tumor cells. injected with the IL-2 secreting fibroblasts considerably smaller compared to the control groups (Figure A multivariate non-parametric statistical procedure (Koziol, et al., Biometries 37:383-390, 1981 and Koziol, et al., Computer Prog. Biomed. 19:69-74, 1984, which is incorporated herein by reference) was utilized to evaluate differences in tumor growth among the treatment groups. The tumor growth curves for the four treatment groups presented in Figure 4 were significantly different (p=0.048). Subsequent comparisons between treatment groups revealed a significant difference (p < 0.05) in tumor growth between animals injected with CT26 tumor cells alone 15 and animals treated with 2 x 10° transduced fibroblasts and CT26 tumor cells (Figure 4).

EXAMPLE III

A. Project Overview

Lymphokine gene therapy of cancer will 20 evaluated in cancer patients who have failed conventional An N2-derived vector containing the neomycin phosphotransferase gene will be used. This vector has been employed by a number of investigators for in vitro and in vivo studies including recently approved investigations 25 with human subjects (Rosenberg et al., N. Eng. J. Med., 323:570-578, 1990). The lymphokine vectors used in this investigation will be generated from the N2-derived vector, LXSN, developed and described by Miller et al., Mol. Cell Biol. 6:2895, 1986 and Miller et al., BioTechniques 7:980, 1989, which are incorporated herein by reference. vector LXSN-RI-IL2 contains human IL-2 cDNA under the control of the retroviral 5' LTR promoter and the neomycin phosphotransferase gene under the control of the SV40 promoter (see Figure 1). The normal human IL-2 leader

sequence has b en replaced with a chimeric sequence containing rat insulin and human IL-2 leader sequences (see Tables 2, 3 and 4). This chimeric leader sequence enhances IL-2 gene expression.

LXSN-RI-IL2 vector, construct the bacterial plasmid pBC12/CMV/IL2 (Cullen, B.R., DNA 7:645-650, 1988, which is incorporated herein by reference) containing the full-length IL-2 cDNA and chimeric leader sequence was digested with HindIII and the ends were CDNA was IL-2 Klenow polymerase. 10 blunted using subsequently released from the plasmid by digestion with The IL-2 fragment was purified by electrophoresis in a 1% agarose gel and the appropriate band was extracted utilizing a glass powder method. Briefly, the gel slice 15 was dissolved in 4M NaI at 55°. After cooling to room temperature, 4 μ l of oxidized silica solution (BIO-101, La Jolla, CA) was added to adsorb the DNA. The silica was ythen washed with a cold solution of 50% ethanol containing The DNA was eluted from the 0.1 M NaCl in TE buffer. 20 silica by heating at 55° in distilled H_2O . The purified IL-2 cDNA was then directionally ligated into the HpaI-BamHI A more complete cloning sites of the pLXSN vector. description of the pLXSN-RI-IL2 vector and its partial nucleotide sequence are provided in Tables 2, 3, 4, 5 and 25 6.

Table 2

Description of the LXSN-RI-IL2 from position 1 to 6365

Bases	Description
1-589	Moloney murine sarcoma virus 5' LTR
659-1458	The sequence of the extended packaging signal
1469-2151	IL-2 cDNA with chimeric leader sequence
1469-1718	IL-2 chimeric leader sequence
1647-1718	coding region of the signal peptide
1719-2151	Mature IL-2 coding sequence
2158-2159	Mo mu sarcoma virus end/SV 40 start
2159-2503	Simian virus 40 early promoter
2521-2522	Simian virus DNA end/Tn5 DNA start
2557-3351	Neomycin phosphotransferase
3370-3371	TnS DNA end/Moloney murine leukemia virus start
3411-4004	Moloney murine leukemia virus 3' LTR
4073-4074	Moloney murine leukemia DNA end/pBR322 DNA start
4074-6365	Plasmid backbone

Table 3

	Enzyme	[# Cut	s] P	osition	(s)		
Aat1	[2]	1961,	2481			
Aat2	[2]	811,	6295			
Accl	E -	1]	4252				
Acc2	[2751, 4186,	19] 3052, 4527,	392, , 3084 , 5108	394, , 3807 , 5438	445, , 3809 , 5931	969, , 4081, , 6263	971, 1193, 4083,
Acy1	E	5]	808,	2685,	3860,	5910,	6292
Afl1	[3201,	13] 3676,	260, 3689	273, , 3744	328, , 4041,	626, 5511,	756, 1277, 5733
Afl2	Ε	4]	34,	1064,	1955,	3446	
Afl3	[2]	1592,	4480			
Ahal	789.	2689.	2849-	3578.	3653,	474, 3888, , 5556,	602, 644, 3889, 5907
Aha2	τ	5]	808,	2685,	3860,	5910,	6292
Aha3	C	3]	5239,	5258,	5950		
Alul	734	742	1470	1486	1751.	1935.	411, 654, 2003, 2446, 3607, 4738,
Alw1	[2529, 5127,	20] 2553, 5129,	1110, 2864, 5225,	1414, 2929, 5226,	1665, 3110, 5689	2018, , 4027, , 6006,	2147, 2160, 5041, 6010
AlwN1	[4]	231,	3572,	3647,	4896	
Aocl		2]	847,	1076			
Aoc2	[2631, 3841,	2724,	2798,	2988,	, 3050,	597, , 3739, , 6044	1583, 1721, 3828,
Aos1	Į	2]	2787,	559 ⁻ 5			
ApaL1	ľ	4]	1717,	4296,	4794,	6040	

Apy1	[1275, 2196, 4629,	22] 1295 2251 4642	315, , 1325 , 2268	623, , 1526 , 3072	801, , 1536 , 3731	814, , 1558, , 4038	1227, , 1630 , 4508	1252, ,
Aqu1	[6]	241,	472,	1998,	3821,	3854,	3887
Asel	1	2]	1801,	5545				
Asp700	[1]	5972					
Asp718	[2]	476,	3891				
AspA1	[1]	1145					
Asul	626, 1532, 3676,	756, 1649,	826, , 3201,	839, 3541,	1043, , 3586,	1254, , 3616,	273, 1277, , 3661, , 5511,	,
Ava1	[6]	241,	472,	1998,	3821,	3854,	3887
Ava2	3201,	13] 3676,	260, 3689,	273, 3744,	328, 4041,	626, 5511,	756, 5733	1277,
Ava3	[2]	2232,	2304				
Avr2	ſ	2]	1962,	2482		•		
Bal1	[3]	658,	1169,	2767			
BamH1	[1]	2152					
Ban1	[3859,	9] 3891,	318, 5321	476,	1200,	2684,	2719,	3734,
Ban2	38 4 1,	8] 4012	413,	426,	597,	1583,	3050,	3828,
Bbe1	[2]	2688,	3863				
Bbv1	2800,	4 330,	2909,	3321,	4060.	4131.	2632, 4228, 5411,	-
Bcl1	[1]	2526					
Bgl1	[2]	2435,	5493				
Bsp12861	[2631, 3841,	19] 2724, 4012,	323, 2798, 4300,	413, 2988, 4798,	426, 3050, 5959,	597, 3739, 6044	1583, 3828,	1721,

```
6313
BspH1
                 [
                          3 ]
                                  5200,
                                              6208,
                                              2500,
                                                         2572,
                                                                     2953
                                  1501,
                 Г
                          41
BspM1
                                                                     3807
                                               443,
                                                         3082,
                                   392,
BssH2
                 Γ
                          41
                                  1145
BstE2
                 ſ
                          1]
              [ 22] 315, 623, 801, 814, 1227, 1252, 1275, 1295, 1325, 1526, 1536, 1558, 1630, 2196, 2251, 2268, 3072, 3731, 4038, 4508,
BstN1
                        4642
              4629,
              [ 19] 392, 394, 445, 969, 971, 1193, 2751, 3052, 3084, 3807, 3809, 4081, 4083, 4186, 4527, 5108, 5438, 5931, 6263
BstU1
                                 2060
                         1]
BstX1
                 I
              [ 11] 2010, 2152, 2521, 2856, 3102, 5121, 5132, 5218, 5230, 5998, 6015
BstY1
                                   847, 1076
Bsu36I
                 1
                         2]
                                 1998
Ccrl
                 ſ
                         1]
                       31] 394, 396, 445, 447, 714,
2687, 2751, 2788, 3054, 3084, 3086,
3809, 3811, 3862, 4083, 4186, 4216,
4390, 4660, 4727, 4827, 5001, 5110,
                                                                                            971,
Cfo1
             2679,
             3314,
              4357,
                         5596, 5933, 6265
              5503,
                                              790, 1167, 1188, 2591, 2765,
             [ 9] 656,
3156, 3183, 5761
Cfrl
                                 3004, 3185, 5453
Cfr10I
               Γ
                         3]
                         29] 169, 200, 245, 260, 273, 756, 826, 839, 1043, 1254, 1277, 1649, 3201, 3541, 3586, 3616, 3661, 3689, 3744, 4041, 5415, 5494, 5511,
                                                                                  273<u>.</u>
                                                                                              328,
                       29 J
Cfr13I
             626,
                        756,
             1532,
             3676,
             5733,
                         6349
Cvn1
                                   847, 1076
                Ľ
                         2]
             [ 23] 75, 165, 191, 282, 553, 1076, 1348, 1692, 2442, 3348, 3487, 3582, 3657, 3698, 3879, 3967, 4290, 4755, 5164,
                                                                                           847,
Dde1
             5330, 5870,
                                    6296
             [ 30] 95, 1104, 1236, 1421, 1659, 2012, 2154, 2523, 2528, 2547, 2858, 2936, 3017, 3026, 3104, 3507, 4021, 5048, 5123, 5134, 5142, 5220, 5232, 5337, 5678, 5696, 5742,
Dpn1
             6000, 6017, 6053
```

```
Dral
             [
                   3]
                        5239,
                                5258,
                                         5950
 Dra2
             I
                   4]
                          328,
                                 1277,
                                         3744,
                                                 6349
 Eae1
                          656,
                                  790,
                                         1167,
                                                 1188,
                                                         2591, 2765,
          3156,
                  3183, 5761
 Eagl
             [
                  2]
                         790,
                                2591
 Eco47I
                         260, 273, 328, 626, 756, 1277,
                 131
          3201,
                  3676.
                         3689, 3744, 4041, 5511, 5733
 Eco52I
             ſ
                  21
                         790,
                                2591
 Eco81I
             [
                  2]
                         847,
                                1076
EcoN1
             ٢
                  2]
                         850,
                                1450
Eco01091
            ſ
                         328,
                  4]
                                1277, 3744,
                                                 6349
EcoR1
            [
                  1]
                        1460
          [ 14] 938, 1037, 1460, 1798, 1805, 1928, 2064, 2121, 2236, 2308, 2400, 5240, 5546,
EcoR1*
          5801
EcoR2
                  22] 313, 621, 799, 812, 1225,
1293, 1323, 1524, 1534, 1556, 1628,
                 22]
                                                 812, 1225, 1250,
          1273,
                  2249,
          2194,
                          2266,
                                 3070, 3729, 4036, 4506,
          4627,
                  4640
EcoR5
            ſ
                  4]
                         137,
                                 213, 3554, 3629
EcoT22I
                  21
            Γ
                        2232,
                                2304
Fdi2
            Γ
                  21
                        2787,
                               5595
                         793, 967, 983, 986, 1191, 1752, 2594, 2646, 2657, 2747, 2752,
Fnu4H1
                41]
         2430,
                  2507,
         2789,
                 2830,
                          2917,
                                 2920, 2923, 3159,
                                                           3255,
         3296,
                 3310,
                         4074, 4120, 4217, 4270,
                                                          4386,
         4404,
                 4407,
                         4525, 4680, 4823, 4888, 4891,
         5097,
                 5425,
                          5614, 5764, 5791, 5886,
                                                          6115
         [ 19] 392, 394, 445, 969, 971, 2751, 3052, 3084, 3807, 3809, 4081, 4083, 4186, 4527, 5108, 5438, 5931, 6263
FnuD2
                                                         971, 1193,
Fok1
                 3] 498, 1198, 1358, 1679, 2333, 2552, 3034, 3912, 4168, 5339, 5520, 5807
         3009,
Fsp1
                       2787,
           [
                 2]
                               5595
Hae2
                       2688, 3863, 4358, 4728
           [
                 4]
```

```
792,
                                                                828,
                                        247,
                                                658,
                        171,
 Ha 3
                35]
                                202,
                                                        1650,
          840,
                1045, 1169, 1190, 1255, 1
1961, 2423, 2429, 2438,
                                                1534,
          1866,
                                                 2481, 2593,
                                3543,
                                                 3618,
                                                         3663,
                 3158, 3185,
                                         3588,
          2767,
          4495,
                                         5416, 5496,
                 4506,
                         4524,
                                 4958,
          6350
                               237,
                                               601,
                                                       643,
                                                               789,
                                        473,
                30]
                        161,
Hap2
         2590, 2667, 2689, 2717, 2848, 2938, 3005,
                                         4016,
                                                         4126,
         3186,
                 3578, 3653, 3888,
                                               4058,
                 4687, 4834,
                                 4860,
                                         5050,
                                                5454,
         4160,
                         5907
         5555,
                 5665,
                        455, 707, 960, 1580, 4175,
                                                              4591,
Hgal
                 81
         5169,
                5899
                               1721, 2798, 2988,
                                                      3828,
                                                              4300,
                        413,
HqiAl
         4798, 5959, 6044
         [ 31] 394, 396, 445, 447, 714, 2679, 2687, 2751, 2788, 3054, 3084, 3086,
Hhal
                         3811,
                                                4186,
                                                         4216,
                                 3862, 4083,
         3314, 3809,
                        4660,
                                4727,
                                        4827,
                                                5001,
                                                         5110,
         4357,
                4390,
                5596,
                        5933,
                                 6265
         5503,
                                                       712,
                                       443,
                                                               969,
                                               445,
HinP1
                        392,
                                394,
                31]
         2677,
                 2685, 2749, 2786, 3052, 3082,
                                                       3084,
         3312,
                                       4081,
                                                        4214,
                 3807, 3809,
                                 3860,
                                               4184,
         4355,
                 4388, 4658, 4725,
                                        4825, 4999,
                                                        5108,
         5501,
                 5594, 5931,
                                 6263
Hinc2
           [
                 1]
                      5914
Hind2
           L
                 1]
                      5914
Hind3
           Ľ
                 1}
                      2498
         [ 14] 298, 517, 857, 868, 1553, 1814, 3170, 3304, 3356, 3881, 4380, 4455, 4851,
Hinfl
         5368
               30] 161, 237, 473, 601, 643, 2667, 2689, 2717, 2848, 2938, 3005, 3578, 3653, 3888, 4016, 4058, 4126,
                                                              789,
Hpa2
         2590,
         3186,
                                4860, 5050, 5454, 5488,
               4687,
                       4834,
         4160,
         5555,
               5665,
                        5907
         [ 11] 1214, 1240, 1817, 2863, 4102, 4111, 5216, 5443, 5859, 6065, 6100
Hphl
                       480, 3895
Kpn1
                2]
           E
                        30, 293, 689, 727, 739, 1452, 1963, 2483, 3442, 3709, 4975,
Mael
         1606, 1893,
         5228, 5563
```

Mae2	[4233,	11] 5183,	808, 5599	1139, , 5972,	1180, 6292	1987,	2801,	2988,
Mae3	[1706, 4899,	20] 2805, 5015,	38, 3111 5298	1052, , 3450, , 5629,	1080, 4134, 5687,	1145, 4229, 5840,	1289, 4836, 6028	1478,
Mbol	[2152, 3024, 5140, 5998,	30] 2521, 3102, 5218, 6015,	93, 2526 3505 5230 6051	1102, , 2545, , 4019, , 5335,	1234, 2856, 5046, 5676,	1419, 2934, 5121, 5694,	1657, 3015, 5132, 5740,	2010,
Mbo2	1911,	3046,	3256	1145, , 3336, , 6351	4351,	1575, 5142,	1617, 5213,	1908,
Mn11	841, 1378, 1620, 2455, 3092, 3974,	939, 1408, 1909, 2458, 3286, 4054,	1227, 1411, 1921, 2470, 3707, 4087,	444, 1330, 1426, 2412, 2508, 3859, 4117, 5540,	1363, 1433, 2418, 2535, 3878, 4379,	1369, 1449, 2443, 2599, 3923, 4587,	1372, 1559, 2449, 2735, 3948, 4662,	
Msel	[1843, 5186, 5949,	22] 1956, 5238, 6321	35, 1971, 5243,	1065, , 2124, , 5257,	1177, 2139, 5310,	1207, 3447, 5545,	1231, 4261, 5584,	1801,
Mspl	[2590, 3186, 4160, 5555,	30] 2667, 3578, 4687, 5665,	161, 2689, 3653, 4834, 5907	237, 2717, 3888, 4860,	473, 2848, 4016, 5050,	601, 2938, 4058, 5454,	643, 3005, 4126, 5488,	789,
Mst1	[2] 2	2787,	5595				
Mst2	[2]	847,	1076				
Mval	1275,	1295, 2251,	1325,	623, 1526, 3072,	1536,	1558,	1630,	
Nael	[1] 3	187					
Narl	[2] 2	685,	3860				
Ncil	789,	2689,	2849,	237, 3578, 4161,	3653,	3888,	3889,	644,
Nco1	Ţ	2] 2	389,	3117			•	

Nde1								
Nde2	[2152, 3024, 5140, 5998,	30] 2521, 3102, 5218, 6015,	93, 2526, 3505, 5230, 6051	1102, 2545, 4019, 5335,	1234, , 2856, , 5046, , 5676,	1419, , 2934, , 5121, , 5694,	1657, , 3015, , 5132, , 5740,	2010,
Nhe1	[3]	29,	1605,	3441			
Nla3	[2030, 3121, 5695,	26] 2230, 3147, 5705,	61, 2302, 3473, 5783,	1263, 2393, 4119, 5819	1596, , 2559, , 4224, , 6212,	1649, , 2904, , 4484, , 6317	1835, , 3090, , 5204,	1856,
Nla4	[758, 2272, 4042, 6259	28] 827, 2686, 4512,	153, 959, 2721, 4551,	246, 1202, 3678, 5323,	262, 1279, , 3736, , 5417,	320, 2154, 3861, 5458,	478, 2200, 3893, 5669,	627,
Nsil	[2]	2232,	2304				
Nsp (752	4)1[4119,	8] 4484	1596,	1835,	1856,	2230,	2302,	3090,
Nsp(752	4)2[2631, 3841,	19] 2724, 4012,	323, 2798, 4300,	413, 2988, 4798,	426, , 3050, , 5959,	597, 3739, 6044	1583, , 3828,	1721,
NspB2	[3607,	12] 3989,	119, 4192,	190, 4822,	1751, , 5067,	2158, 6008	2791,	3532,
NspH1	[4119,	8] 4484	1596,	1835,	1856,	2230,	2302,	3090,
PaeR7I	Į	1]	1998					
Pal1	[840, 1866, 2767, 4495, 6350	35] 1045, 1961, 3158, 4506,	171, 1169, 2423, 3185, 4524,	202, 1190, 2429, 3543, 4958,	247, 1255, , 2438, , 3588, , 5416,	658, 1534, 2481, 3618, 5496,	792, 1650, 2593, 3663, 5763,	828,
Ple1	[5362	7]	865,	1547,	3350,	3889,	4374,	4859,
PpuMl	E	3]	328,	1277,	3744	•		
Pssl	£	4]	331,	1280,	3747,	6352		
Pst1	[6]	987 _r	1163,	1888,	2511,	2738,	5618
Pvul	Ε	1]	5743					

```
Pvu2
           [
                 6]
                       119,
                               190,
                                     1751,
                                             2791,
                                                    3532,
                                                            3607
                       347,
 Rsa1
                10]
                               478,
                                      725,
                                             1342,
                                                    1519,
                                                            1597,
         2991,
                 3893, 4288,
                              5853
 Rsr2
                      3201
           [
                 1]
 Sacl
           [
                 21
                       413,
                              3828
 Saul
                             1076
           [
                 2]
                       847,
                        93, 1102, 1234, 1419, 1657, 2010, 2526, 2545, 2856, 2934, 3015,
 Sau3A1
                30]
         2152,
                2521,
         3024,
                3102,
                        3505,
                               4019, 5046, 5121,
                                                     5132,
         5140,
                5218,
                               5335, 5676, 5694, 5740,
                        5230,
                6015,
                        6051
         5998,
Sau96I
               29]
                       169,
                              200,
                                      245,
                                             260,
                                                     273,
                                                             328,
         626,
                756,
                               839,
                      826,
                                      1043,
                                             1254,
                                                     1277,
         1532,
                1649,
                        3201,
                               3541, 3586, 3616,
                                                     3661,
                3689,
         3676,
                        3744, 4041,
                                     5415,
                                             5494,
         5733.
                6349
Sca1
           [
                1]
                     5853
ScrF1
                       161,
                              237,
                                      315,
                                             473,
               42]
                                                     474,
        623,
                644,
                       789,
                               801,
                                      814, 1227, 1252,
         1295,
                1325,
                                      1558,
                        1526,
                               1536,
                                              1630,
                                                      2196,
                2268,
         2251,
                       2689,
                               2849,
                                      3072,
                                              3578,
                3888,
                               4017,
         3731,
                                              4059,
                       3889,
                                       4038,
                                                      4126,
        4161,
                4508,
                       4629,
                               4642,
                                       4860,
                                              5556,
                                                      5907
        [
2631,
               19] 323,
2724, 2798,
Sdu1
                              413,
                                     426,
                                             597, 1583, 1721,
                               2988, 3050, 3739,
                                                     3828,
        3841,
                4012,
                       4300,
                                      5959,
                               4798,
                                              6044
               38]
622,
Sec1
                      159,
                              235,
                                                     472,
                                     314,
                                             324,
                                                            536,
        62Ī,
                                                         1225,
                       760,
                               799,
                                     800,
                                             812,
                                                    813,
        1294,
                1303,
                       1323,
                               1324,
                                     1525,
                                             1557,
                                                     1962,
        2194,
                2266,
                               2424,
                       2389,
                                     2433, 2482,
                                                    2848,
                3576,
        3117,
                       3651,
                               3730, 3740,
                                            3887,
        4036,
                4037,
                       4640
SfaN1
                      258,
               23]
                              520, 997, 1657, 2107, 2239,
        2311,
                2643,
                       2898, 2984, 3048, 3114, 3323,
                3934,
                       4146,
        3674,
                              4281, 4317, 4357, 4577,
        5629,
                5820,
                       6069
Sfi1
          1
                1]
                     2435
Sma1
          [
                2]
                      474,
                             3889
Spel
          ſ
                1]
                      726
Sph1
          [
                4]
                     1835,
                            2230,
                                    2302.
                                           3090
```

Ssp1	[1]	6177					
Sst1	[2]	413,	3828				
Stul	[2]	1961,	2481				
Sty1	3117,	9] 3740	324, , 3950	536,	1303,	1962,	2389,	2482,
Taq1	2514,	15] 2798 6024	860, , 2954,	1096, , 2978,	1407, , 3014	1418, , 3176	1660, , 3367	1999, ,
Thal	2751,	3052	392, , 3084, , 5108,	, 3807,	, 3809,	, 4081	, 4083	1193,
Tth111I	[6]	465,	877,	1275,	2803,	3880,	4227
Xba1	[2]	1892,	3708				
Xho1	1	1]	1998		•			
Xho2	[5132,	11] 5218,	2010, 5230,	2152, 5998,	2521, 6015	2856,	3102,	5121,
Xma1	[2]	472,	3887				
Xma3	[2]	790,	2591				
Xmn1	-	1}	5972					
	Ĺ	T]	J J 1 L					

Table 4

Enzymes which do not cut LXSNRII.L2:

Acc3	Bgl2	Cla1	Hpa1	Nru1
SnaBl Apal Spll	Bsm1	Dra3	Mlu1	PflM1
Asu2 Sst2	BspM2	Eco47III	Mro1	Sac2
Ban3	BstB1	Esp1	Not1	Sal1

---1---1-2-+--23--31---+--3-----+1-----1

Asp700 Asp718 AspA1

ApaL1

Apyl Agul Asel

_--+[---------

Table 5

----1000+-----5000+----3000+----3000+----4000+----5000+----5000+-----5000+-----211-1--12--+----2--1--2--1-1-2---1-+--1-112--1-+12--1--12--+1-----111--+-------11-+----11--2112-----1-+----1 +--------------.---12+-2------1--+2----2-+21---1 -11--2-2-1-+-----+ ---3---11--+---1-----From 1 to 6365. Numbered from position 1. ---------21----2--1 LXSNRII.L2 Mo-MuSV 5' long ter neomycin phosphotra Mo-MuLV 3' long ter 1 to 683 of RIIL2 signal Alwn1 Af13 Aha1 Aha2 Aha3 Aha3 Acyl Afil Afil Aoc2 Aat2 Acc 2 Alwi Aoc1 Aos1 Acc1 - [Split]

SUBSTITUTE SHEET

	+
11	
-++++7+++++++++++++++++++++++++++++++++	 - - -
)
	! ! ! !
241 -21111 -11111 -1-1111	
11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	!
-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
•	
Asul Aval Aval Ava2 Ava3 Avr2 Ball Ball Ban1 Ban1 Ban2 Bbc1 Bsc11 Bspl1 Bspl1 Bspl1 Bspl1 Bspl1 Bspl1 Bspl1 Ccr1 Ccr1 Ccr1 Ccr1 Ccr1 Ccr1 Ccr1 Cfr1 Ccr1 Cfr1 Bstv1 Ccr1 Ccr1 Ccr1 Ccr1 Ccr1 Bra1 Bra1 Bra1 Bstv1 Bstv1 Bstv1 Bstv1 Bstv1 Bstv1 Bstv1 Bstv1 Bstv1 Bstv1 Bstv1 Bstv1 Bstv1 Bstv1 Bstv1 Bstv1 Bstv1 Bstv1 Bstv1 Ccr1 Ccr1 Ccr1 Ccr1 Dra1 Bra1 Ecr1 Bra1 Ccr1 Bra1 Ecr1 Bra1 Ecr1 Bra1 Ecr1 Bra1 Ecr1 Bra1 Ecr1 Bra1 Ecr1 Bra1 Ecr1 Bra1 Ecr1 Bra1 Ecr1 Bra1 Ecr1 Bra1 Ecr1 Bra1 Ecr1 Bra1 Ecr1 Bra1 Ecr1 Bra1 Ecr1 Bra1 Ecr1 Bra1 Ecr1 Bra1 Ecr1 Ecr1 Ecr1 Ecr1 Ecr1 Ecr1 Ecr1 Ecr	

111-1+ 111-1+	111141
31-1-2	
11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1111
11111	-2112111-1
1+111	+1-3
	-111-2-1
ECO811 ECO811 ECON1 ECON1 ECON1 ECOR1* ECOR2 ECO	Msel Mspl Mstl

39
+++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++++
<u> </u>
2-1-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
4 4
Mval Narl Narl Ncil Ncol Ndel Ndel Nhel Nhel Nsil Nsp82 Nsp82 Nsp81 Pall Pall Pall Pall Pall Pall Saul Saul Saul Saul Saul Saul Saul S
Myal Naci Naci Naci Naci Naci Naci Naci Naci

		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		+ + + + + + + + + + + + + + + + + + + +	+	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
					+112		
			-+211				
			22				
11+;	+ + · · · · · · · · · · · · · · · · · ·				11		+
1							
			1				
	-11-		21 T				

Sphi Sspli Sstli Stul Stul Tagil Thall Thall Xhol Xhol Xmal Xmal

from 1 to 6365. Numbered from position 1.

16	1	212-11111111	11-2-2-1	211-1-12	
-Kufy 5° long ter- [\$plit.] [to 683 (RIII.2 momy in phosphotra -Kuly 3° long ter	olgnal Aati Aat2				April May 1

aple

------1201-1-1-1-1---11--Į ------111-3----13-1-----111-----2-2-1 Ť 7 Table 5 (Cont'd) A ----------111-11--1-1121+----1----11---11-1-1-1 ---11--+---1---+-------X-+-----from 1 to 6365. Mumbered from position 1. 1-7---1-1-1 ---111-1-----Kusy 8" long ter -----1-11-1 -----LESHALIL2 nemerals phesphotes -Half 3' long ter to 603 of artea Dep1266I Asp718 olgnel Aspa1 Bepair Age 1 3 2 Ave 1 AVE 375 200 Para Cara Z Boll Poll (spite)

Table 5 (Cont'd)

from 1 to 6365. Numbered from position 1.

r1000+6000+3000+4000+5000+6000+								2211		33112-+1-1111+		1111-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	-1		[
LISERIELS - Yufy & long ter	[split] to 603 of Alila nacmy is phosphote -Hully 3' long to	elgnel	8 of #2	Betul	Detx1	19Cneg	เมอ	G (6)	Cfr10f	Cfell	Cas	Dde1	opel Orel	Dra2	# # F	Eco471	2co521	Ecolii Ecolii	Eco01091	RCON1	Ecor1.	Ic as	· ·

from 1 to 6365. Mumbered from position 1.

1000+	40000000000000000000000000000000000000				 		2311			-111-2-1-4		 	1	 1-131312+262-1411	1	
-Nufy S' long ter (Split)	mayola phosphotra -Halv 3' long ter	elgnel Reot221	75643	2 C - C - C - C - C - C - C - C - C - C		-		# (24)#			Kpal		Ī	Ĭ	Keek	

Table 5 (Cont'd)

from 1 to 6365. Numbered from position 1.

10001	Net
ELISHRILL FULV S. long ter	Kotl Kotl Krai Krai Krai Krai Krai Hrai

from 1 to 6365. Numbered from position 1.

1000+5000+5000+5000+5000+		11-11-1-111-11-1-1	-111-2-3-3-42331443111-2112-1-2-121-412-12-12-12-5-412-12-12-12-5-4		1-
LISHRIIL2 -MuSV S' long ter [Split] [t 603 of AIIL2 nacey is phosphotra -MuLV 3' long ter	algnal Real Rerz	8 to 1 8 to 1 8 to 1 8 to 1 8 to 1 9 to 1		tes 1981 1981 1981 111114	The State of

from 1 t 6365. Numbered from positi n 1.

•				
>Nhe1	>Af12			
Duse_DHA_end/HO-HUSV_DHA_start_[Split]	•			
	l			
10 20 jo	1 4	0 sc	60	70
TTTGAAAGAC CCCACCCCTA GGTGGGAAGC	TAGCTTAAG	• • · · ·	•	•
AMACTITUTE COGTOGGCAT CCACCOTTOS	ATOCAATTC	A TTGCCGTGAA	ACCITECTA	CCTTTTATE
		>Pvu	2	
		>Nep	B2	>EcoRS
80 90 100	110	120	130	1140
ATAACTGAGA ATAGGAAACE COLORON	• •	• ••		1140
ATAACTGAGA ATAGGAAAGT TCAGATCAAG G TATTGACTCT TATCCTTTCA AGTCTAGTTC G	AGTOCTTGT	TTCTTTCTCC	ACTTATOGIT T	CAGGATATC CTCCTATAG
		>Pv4	2	
		>Nep	82 .	
150 160 170	180	•	•••	
		190	200	210
ACACCATTOS CCAAGGAOSE GGCOGAGTOS G	ccayeyycy ccayeyycy	GATGAGACAG (CTACTCTGTC (CTCACTCATG GO GACTCACTAC CO	CCAAACAG CCCAAACAG
>244	al			
>EcoRS >Alwai >Aqu				
230 240	250	260	270	280
GATATOTOTO GTANGCAGTT COTGCCCCCG CT	NOGGGGGGG I	 	200001010	• •
CTATAGACAC CATTOGTCAA GGACGGGGGC GA	SCCCCCCCT :	CTTGTCTAG C	ACCEPTANT CO	CCYCCLCC
		>Pputtl		
		>Dra2		
		>8cc01091		
•	>Banl			
•••		>5ty1 >P	••1	>Rsal
290 300 310	320	1 330 [340	350
CCTCACCACT TTCTACTCAA TCATCACATO TTT	DOCAGOGE O	** * *	•	• • •
GENETOGICA ANGRICACIT ACTACTOTAC AND	MOGTOCCA C	GCGGTTCCT CA	TURKARATO ACC	CTCTACE
	_			~~~

Table 6 (Cont'd)

>Ban2
>Sac1
>Sac1
>Set1
>Set1
>BeeH2
>Rgial

360 370 380 390 400 410 420
TTATTGAAC TAACCAATCA GTTGGCTTCT CGCTTCTGTT CGCGGGCTTC CGCTCTCGA GCTCAATAAA
AATAAACTTG ATTGGTTAGT CAAGGGAAGA GCGAAGACAA GCGGGCCCAAG GCCACAGGCT CGAGTTATTT

>Styl

500 510 520 530 | 540 550 560

AATAAAGCCT CTTGCTGTTT GCATCCGAAT CGTGGTCTCG CTGTTCCTTG GGAGGGTCTC CTCTGAGTGA
TTATTTCGGA GAACGACAAA CGTAGGCTTA GCACCAGAGC GACAAGGAAC CCTCCCAGAG GAGACTCACT

\$70 580 590 600 610 620 630
TTGACTACCC ACCACCACC TCTTTCATTT GGGGGGTGGT CCGGGATTTG GAGACCCCTG CCCAGGGACC
AACTGATGGG TGCTGCCCCC AGAAGTAAA CCCCCCAGG GGCCCTAAAC CTCTGGGGAC GGGTCCCTGG

>Ball

WO 93/07906

Table 6 (Cont'd)

PCT/US92/08999

**Rable 6 (Cont'd)

>Beu36I >Aoc1 >Sau1 >Eco81I

PCT/US92/08999

WO 93/07906 Table 6 (Cont'd) >Cvn1 >Xst2 >2101 >Tth1111 [880 • • CCCGACCTCA GCAAGGGAGT CCATCTGGAA TCCGACCCCC TCAGGATATG TGGTTCTGGT AGGAGACGAG GGGCTGGACT CCTTCCCTCA GCTACACCTT AGGCTGGGGC AGTCCTATAC ACCAAGACCA TCCTCTGCTC >Hgal 960 980 940 AACCTARAC ACTICCOCC TOOCICICAA ITTITGCTTT CGGTTTGGAA COCAAGCOCC GOCTCTTGTC TTGGATTITG TCAAGGGCGG AGGCAGACTT AAAAACGAAA GCCAAAACCTT GGCTTCGGCG CGCAGAACAG >Pst1 1020 • • • • TOCTOCAGEA TOCTTOTOG TTOTCTOTO CTCACTOTOT TTCTGTATTT GTCTGAAAAT TAGGGCCAGA ACCACCTCCT ACCAAGACAC AACAGAGACA GACTGACACA AAGACATAAA CAGACTTTTA ATCCCGGTCT

>Actional Temperature Character Tethanger Goethgoers Tetiggican

>AspA1

>Cfr1 >Ea 1

>Zael

Table 6 (Cont'd)

			DIE 0 (CON	c · a)		
	>Kee2	>8etE2	•	>Pot1 >Ba	11 >X40	2 >Cfr1
1130	1140	1150	1160	1 1170	1180	1190
•	• 4•	• •	• •	· • • •	• •	• •
CCATCTACAG	TTCTTCTCTG	CANCCCANTG	CTTCTGCTCT GAAGAŒAGA	GCAGAATGGC CGTCTTACCC	CAACCTTTAA GTTGGAAATT	CCACCCTACC
>Ba	n1	>Hph1		>Пр	h1	
1200	1210	1220	1230	1240	1250	1260
• •	•	44 •	• •	• •	• •	• •
eccentrec eccentrec	CICCULIT	GCCTCTGGAG	atcaccass Tagtosotcc	TTANGATCAA AATTCTAGTT	CCAGAAAAGT	DCTGGCCCC FGACCCGCCC
	` >P#	1				
	>Dra2					
	>20001091					
	>PouX1				,	
	>7th]]]]			>Sty1	•	
1270	1 1280	1290	1300	1 1310	1320	1330
• •	• 🔻 •	• •	• •	* •		•
**************************************	TCTCGTCCAG	CCCTACATOS : CCCATCTAGC ;	NGACCTGGGA ACTGGACCCT	AGCCTTGGCT TGGGAACGGA	TTTGACCCCC C	TCCCTGGGT AGGGACCCA
>	Real					
1340	1 2350	1360	1370	1380	1190	1400

1340 | 1350 1360 1370 1380 1390 1400
CARGCCCTTT GTACACCCTA AGCCTCCGCC TCCTCTTCCT CCATCCGCCC CCTCCTCCC CCTTCAACCT
GTTCGCGAAA CATGTGCGAT TCCGAGGCCC AGGAGAAGGA GGTAGGCCCG GCAGAGAGGG GGAACTTGGA

>ECON1 >ECON1

1410 1420 1430 1440 1450 1460 1470

CCTCGTTCCA CCCCCCTCC ATCCTCCCTT TATCCACCCC TCACTCCTTC TCTACCCCCC AATTCCTTAC

CCACCAACCT GCCCCCCACC TAGCAGGGAA ATACCTCCCC AGTCACGAAG AGATCCCCCC TTAACCAATC

***************************************	, ,			_			
			Table 6 (Co	nt'd)			
			BepH1		>Real		
1480	1496	1500	1510		1520	1530	1546
CTTGGTAAGT	GACCAGCTAG	AGTOGGAAAC	CATCAGCAAG	CAGGTA	TGTA CTC	TOCAGO	TOGGCCTGG
GAACCATTCA	CTGGTCCATC	TCAGCCTITG	GTACTCGTTC	GTCCAT	ACAT GAG	AGGTCCC	S VCCCCCVCC
						>Rsal	
					•	*	
					;	IBQBH<	
				>Ban2	>Ne	P(7524)	1
>P1e1			> E g	12 j	>\f1	· []	>Nhe1
1550	1560	1570	1580		1590	1600	1610
• • •	110101010	e e	GACCETETES	A .	* * **** *}C!	YY •	TTTTCCTACC
AAGGGGTCAG	TTCTCAGGIC	CCTAAACTCC	CTGCGACACC	CGAGAAG	AGA ATG	IACATGG	AMACCATOS
1620		1640		1	660	1670	1680
TCAACCCTG	ACTATCTTCC	-	TCCAACATGG	CCCTGTG	CAT CCAC	ACCATE	CAACTCCTGT
GAGTTGGGAC	TGATAGAAGG	TCCAGTAACA	AGGTTGTACC	GGGACAC	CTA GCTG	TCCTAC	GTTGAGGACA
			\ \$	ig ia i			
			~	· ·			
			>Apal1				
1690	1700	1710	1720	1	730	1740	1750
• •	• •	• •	CANACAGTGC	* .	e TCN AGTT	CTACAA	• • •
			etttetevæ				
ru2					•		
ep32					>Asel		>Bph1
•	1770	. 1300	1344	•		1810	•
1760	1770	1780	1790	• 1		• •	1830
			ACAGATGATT TGTCTACTAA				
	0,000,000,00	ROSAGOING					
	>sph1						
>	Nap(7524)1		>NepH1				
	>Xep#1		 >Nep(7524)1				>Pst1
	•		•				•
1830	1840	1850	11860	20	870	1880	1890

AAACTCACCC GCATGCTCAC ATTTAAGTTT TACATGCCCA AGAAGGCCAC AGAACTGAAA CATCTGCAGT TTTCAGTGGG CGTACCAGTG TARATTCARA ATGTACCGGT TCTTCCCGTG TCTTCACTTT GTAGACGTCA

Table 6 (Cont'd)

>Tbal							>A113
•			1000			1950	1 1960
1 190	90	1910	1920	1930	1940	1730	. 1 1300
					TTTAGCTCAA AAATOGAGTT		TICACITAG AAGTGAAITC
				>\va1			
>\ve2				>xqu1			
>styl				>Cerl			
>\$tul				>Pan27	I >Xhe	- 2	
>241			>Hae2	>Xhol	>840	tY1	
197	10	1980	1990	2000	2010	2020	.2030
** •	•	• •	• • •	• • •	• •	•	• •
					CTCGATTTCC		
			> Bo	er:		·	
200	00	2050	2060	2070	2080	2090	2100
					ACTTGTCTAC		
					:	BanH1	
					3	BetT1	
					>1	tho2 >Nep	82 .
					>simia:		errla bromoter
				>1	Ko-XuSV_DKA	ond/elmian	_virus_40_DXA_sta
31:	10	2120	2130	2140	2150		2170
•	•	• •			• •	• •	
					ANACATATC		
						>	Bc o7 22°

PCT/US92/08999 WO 93/07906 Table 6 (Cont'd) >Kep(7524)1 • >KepHi 2200 2210 2330 2230 • • • • • • TGTCAGTTAG GGTGTGGAAA GTCCCCAGGG TCCCCAGCAG GCAGAAGTAT GCAAAGCATG CATCTCAATT

ACAGICANIC CCACACCITI CAGGGGICGS AGGGGICGTC CCICTICATA CCITICGIAC GIAGAGTIAA

>N=11 >Ava3 >EcoT22I >Nep(7524)1 • >Kep#1 >Sph1 2270 2280 2300 • • . . • • • AGTCAGCAAC CAGGTGTGGA AAGTCCCCAG GCTCCCCAGC AGGCAGAAGT ATGCAAAGCA TGCATCTCAA TEASTESTIC STEELACKST TICKSSSSIC SEASSSSICS TESSTETTER TASSITION ASSIMBLED 3330 2340 2350 2360 2380 • • • • • TTAGTCAGCA ACCATAGTCC COCCCTAAC TCCCCCCATC CCCCCCTAA CTCCCCCAG TTCCCCCCAT MATCAGTOGT TOGTATCAGE GOOGGGATTE ACCORDETAG GCGCGCGATT GAGGGGGGTC AACCORDETA >Mcol >8(11 >Styl >3911 2390 * . • . TCTCCCCCC ATGGCTGACT AATITITITI ATTTATGCAG AGGCCCAGGC CGCCTCGGCC TCTCAGCTAT AGAGGGGGG TACCGACTGA TTAXAAAAA TAAATACGTC TCCGGCTCCC GCGGAGCCCG AGACTCGATA

> >\$ty1 >\$vz2 >\$tu1 >8epH1

55

Table 6 (Cont'd)

>Aat1 >Hind3 >Fet1

2460 2470 2480 | 2490 2500 2510 | 2520

TCCAGAAGTA GTGAGGAGGG TTTTTTGGAG GCCTAGGGTT TTGCAAAAAG CTTGGGGTGC AGGTCGAGGGC AGGTCTTCAT CACTCCTCCC AMMACCTT CGGATCGAA AACGTTTTTC GAACCCGAGG TCCAGCTCCC

>Betyl

| Septyl | Se

> >Hae2 >Bbe1 >Har1 >Acy1 >Aha2

56

Table 6 (Cont'd)

>Ban1

2660

2670

2680

2690

2710

2710

GAT GCC GCC GTG TTC CGG CTG TCA GCG CAG GGG CGC CGG GTT CTT TTT GTC AAG ACC GAC CTG CTA CGG CGG CAC AAG GCC GAC AGT CGC GTC GCC GGC CAA GAA AAA CAG TTC TGG CTG GAC CTA CGG CGG CAC AAG GCC GAC AGT CGC GTC GCC GCG GGC CAA GAA AAA CAG TTC TGG CTG GAC CTA CGA CAA AAA CAG TTC TGG CTG GAC CTA CGA AAA VAl Pha Arg Leu Ser Ala Gln Gly Arg Pro Val Leu Phe Val Lys Thr Asp Leu>

>Bett1

>Xho2 >Hph1

2850 | 2860 | 2870 | 2880 | 2890 | 2900

GAA TO CCC GGC CAG GAI CTC CTG TCA TCT CA CTT GCT CCC GAG AAA GTA TCC ATC ATC
CTT CAC GGC CCC GTC CTA GAG GAC AGT AGA GTG GAA CGA GGA CCG CTC TTT CAT AGG TAG TAC
14 Val Pr Gly Gla Asp Leu Leu Ser Ser His Leu Als Pro Ala Glu Lys Val Ser Il Het>

>Ball

Table 6 (Cont'd)

2910	2920	2	930		:				
		•		• •					•
GCT GAT GCA CGA CTA CGT Ala Asp Ala	ATG CGG CG	C GAC GT	TGC GAA	CTA GGC C	ia tog ac	.c	AAG	CIC CIC (iti cec

							>R=	a l												
						>Hg:													-	
					-	>Ka	ł			3000	>C:	2210: - 	30:	10		3(20		,	3030
2970			29	10		2	1066		•	3000		<u>.</u> .		•	•		•		•	•
•		•		•	•	~	•4					•					-	-	-	
AAA	CAT	CCC	ATC	CYC	œλ	CCY	∞ T	ACT	cca	YIC	CYY	ecc	CCI	CIT	CIC	CAT	CAG	CAT	CAT	C10
-		~~	230	CTC	CCT	CCT	CCA	TCA	ccc	TAC	CIT	œ	CCA	CYY	CYC	CIY	CIC	CTA	CIX	GX
Lys	Ris	Arg	Ile	Glu	Arg	Ala	Arg	The	yrd	Het	Cla	Ala	ejà	Leu	Val	yeb	Gln	yeb	yeb	Leu>

Sphi

SHep(7524)1

Sheek2 Sheek2 Sheek1

J040 J050 J060 J070 J080 | J090

GAC GAA GAG CAT CAG GCC GCC GCC GCC GAA CTG TTC GCC AGG CTC AAG GCC GCC ATG CCC
CTG CTT CTC GTA GTC CCC GAG CGC GGT CGC CTT GAC AAG GCG TCC GAG TTC CGC GCG TAC GGG
Asp Glu Glu His Gln Gly Leu Ala Pro Ala Glu Leu Phe Ala Arg Leu Lye Ala Arg Het Pr >

>Xho2 >Xco1 >Cfr1

>Bet11 >Styl >Styl >Bael

3100 | 3110 | 3120 3130 3140 3150 |

EAC GGC GAG GAT CTC GTC GTC ACC CAT GGC GAT GCC TGC TTO CCC AAT ATC ATC GTC GAA AAT

CTO CCQ CTC CTA GAG CAC CAC TGO GTA CCC CTA CGC ACC AAC GGC TTA TAC TAC CAC CTT TTA

Asp Gly Glu Asp Leu Yal Yal The Rie Gly Asp Ala Cys Leu Pro Asm Ile Net Yal Glu Asm>

58 WO 93/07906

Table 6 (Cont'd)

IOIrloc >C(r) >Rer2 >Hael 3210 3200 3180 3170 3160 GGC CGC TIT TOT GGA TTC ATC GAC TGT GGC CGG CTG GGT GTG GGG GAC CGC TAT CAG GAC ATA COG GOG ANA AGA COT ANG THE CTO ACA COG GOC GAC CCA CAC GGC GTG GOC ATA GTC CTG TAT Gly Arg Phe Ser Gly Phe Ile Asp Cys Gly Arg Lou Gly Val Ala Asp Arg Tyr Gln Asp 11e> 3280 3270

3260 3250 3240 3230 3220 GOG TTG GCT ACC CCT GAT ATT GCT GAA GAG CTT GGC GGC GAA TGG GCT GAC CCC TTC CTC GTG COC AND COCA TOO GOA CTA TAN COCA CTT CTC GAA CCC CCC CTT ACC CCA CTC GCC AND GAG CAC Ala Leu Ala Thr Arg Asp Ile Ala Glu Glu Leu Gly Gly Gle Trp Ala Asp Arg Phe Lou Val>

3340 3330 3320 3310 3300 3290 CTT TAC GGT ATC GGC GGT GGC GAT TGG CAG GGC ATC GCC TTC TAT GGC GTT GTT GAC GAG TTC GAN ATG CCA TAG CCG CCA GCG CTA AGG GTC GCG TAG CCG AAG ATA GCG GAA GAA CTG CTC AAG Leu Tyr Gly Ile Ala Pro Asp Ser Gla Arg Ile Ala Phe Tyr Arg Leu Leu Asp Glu Phe>

>2101 >TnS_DNA_end/_No-MuLV_DNA_etart 3420 3410 3370 3350 TTC TGA GCCCGACTC TCCCGTTCCA TAAAATAAAA GATTTTATTT AGTCTCCAGA AAAAGGCCGG AATGAAAGAC ANG ACT COCCCTCNG ACCCCUNGCT ATTITATITE CTANALTANA TCAGAGGICT TITICCCCCC TEACHTTCTC Phe End>

>4113 >Khel 3420 3470 1460 COCACCTOTA GETTTGGCAA GETAGETTAA GTAACGCCAT TITGCAAGGC ATGGALLAT ACATAACTGA GGGTGGACAT CCALACCOTT CCATCCAATT CATTGCGGTA AAACCTTCCC TACCTTTTA TCTATTGACT

>NepB2 >ZcoRS >Pvu2 3530 3520 GRATAGAGAA GITCAGATCA AGGICAGGAA CAGATGGAAC AGGIGAATAT GGGCCAAACA GCATATCTGT CITATOTOTT CAAGTOTAGT TOCAGTOCTT GTCTACCTTG TOCACTTATA CCOCCTTGT CCTATAGACA

Table 6 (Cont'd) WO 93/07906 PCT/US92/08999 >Nap82 >Alwn1 >Ec RS 3600 3610 3630 • GGTAAGCAGT TCCTGCCCCC GCTCAGGGCC AAGAACAGAT GGAACAGCTG AATATGGGCC AAACAGGATA CCATTCGTCA AGGACGGGG CGAGTCCCGG TTCTTGTCTA CCTTGTCGAC TTATACCCGG TTTGTCCTAT >YIAKI 3650 3670 3700 • • TOTOTOGTAN GCAGTTCCTG CCCCCCCTCA GGGCCAAGAA CAGATGGTCC CCAGATGCGG TCCAGCCCTC AGACACCATT OCTCAAGGAC GGGGCCGAGT CCCGGTTCTT GTCTACCAGG GGTCTACGCC AGGTCCGCAG >Pssl >Ecc01091 >Ppuk1 >Xbal >Banl 3710 • AGCAGITTCT AGAGAACCAT CAGATGITTC CAGGGTGCCC CAAGGACCTG AAATGACCCT GTGCCTTATT TOGTCHAAGA TOTOTTGGTA GTOTACHAAG GTOCCACGGG GTTCCTGGAC TTTACTGGGA CACGGAATAA >Sac1 **LAI**ph< >Aqu1 >5et1 >Aval 3830 TGAACTAACC AATCAGTTCG CTTCTCCCTT CTCTTCCCCC CCCCACCTCA ATAAAAGACC ACTICATICS TRACTCAAGE CAACACCCAA CACAACCCC CCAACACCAC GGCCTCCACT TATTTTCTCC >Banl >Bae2 >Xsp718 >Bbel

>Tthilli

>Kae2

>Acc1

WO 93/07906 PCT/US92/08999

Table 6 (Cont'd)

4200 4210 4220 4230 4240 4250 4260

AGCGGGTGTT GGCGGGTGTC GGGGGGAGC CATGACCCAG TCACGTAGCG ATAGCGGAGT GTATACTGGC
TCGCCCACAA CCGCCCACAG CCCCCGTCG GTACTGGGTC AGTGCATCGC TATCGCCTCA CATATGACCG

>Hgla1

>Rea1 >Apal1 >Nde1

4270 4280 4290 | 4300 | 4310 4320 4330

TTANCTATEC GCCATCAGAG CAGATTGTAC TGAGAGTGCA CCATATGCGG TGTGAAATAC CGCACAGATG
AATTGATACG CCCTAGTCTC GTCTAACATG ACTCTCACGT GGTATACGCC ACACTTTATG GCGTGTCTAC

PRESZ >PIE1

4340 4350 4360 4370 | 4380 4390 4400

CGTANGGAGA ANATACOGCA TCAGGGGGTC TTCCGCTTCC TCCGCTCACTG ACTCGCTGCC CTCGGTCGTT

GCATTCCTCT TITATGGCGT AGTCCGCGAG ANGGCGAAGG AGCCAGTGAC TCAGGGGACGC GAGCCAGCAA

CEGETGEGGE GAGGGGTATE AGETCACTEA AAGGCGGTAA TACGGTTATE CACAGAATCA GGGGATAACG GCCGACGCCG CTCGCCATAG TCGAGTGAGT TTCCGCCATT ATGCCAATAG GTGTCTTAGT CCCCTATIGC

>Hep(7524)1

>MepR1

>Af13

4480 4490 4500 4510 4520 4530 4540

CACGAAAGAA CATGTGACCA AAACGCCAGC AAAACGCCAG GAACCGTAAA AAGGCCCGGT TCCTGGCGTT

GTCCTTTCTT GTACACTCGT TTTCCCGTCC TTTTCCGGTC CTTGGCATTT TTCCGGCCCA ACGACCGCAA

>Hgal 4550 4560 4570 4580 4590 4600 4610

Table 6 (Cont'd) TTTCCATAGG CTCCCCCCCC CTCACGAGCA TCACAAAAT CCACGCTCAA GTCAGAGGTG GCCAAACCCC AAACGTATCC CACCCCCCC CACTCCTCCT AGTGTTTTTA CTGCCAGTT CAGTCTCCAC CCCTTTCGGC 4650 • • . ACAGGACTAT ALAGATACCA GGCCTTTCCC CCTGGAAGCT CCCTCCTCCC CTCTCCTGTT CCGACCCTGC TOTOCTOATA TITOTATOST COCCAAAGGG GGACCTTOGA GGGAGCACGG GAGAGGACAA GGCTGCGACC >Hae2 OSCITACOSS ATACTICIOS SCITITCIOS CITOSOSAAS OSTIGOCOSTI TOTCATAGOT CACCOTICIAS SCHANTEGE TATEGREAGE CEGALAGAGE GAAGECETTE GEACCECGAA AGAGTATOGA GTGCCACATE >HgLA1 >Apall STATETEAST TESSITETASS TESTITESCIE CAASCIGGGE TETETECAES AACCCCCCT TEAGECCCAE CATAGAGTCA AGCCACATOE AGCAAGCGAG GTTCGACCGG ACACACCTGC TTGGGGGGGA AGTCGGGCTG >NepB2 >P1e1 . ESCIPCECCI TATOSSIAA CIAISSICII GAGICCAACC CGGIAAGACA GEACITATOS CCACTGGCAG COCACCCCA ATACCCCATT GATACCACAA CTCACCTTCG CCCATTCTCT CCTCAATACC CCTCACCCTC CAGCCACTEG TAACAGGATT AGCAGAGGCA GGTATGTAGG CGGTGCTACA GAGTTCTTCA AGTGGTGGCC etagetera fittetatur taetatasat eartrates eccrasitet etarenat taracross 5000 5030 • . . • TAACTACCCC TACACTAGAA GGACAGTATT TGGTATCTGC GCTCTGCTGA AGCCAGTTAC CTTCGGAALA

ATTENTIGEDE ATETENTETT CETETENTAN ACCATAGNOS CENGACIACT TOUSTCHATE GANGCETTIT

WO 93/07906		Tab	le 6 (Gont	'd)	PCT/U	S92/08999
5040	5056			508	509	5100
ACAGTTGGTA		. ~	- •	.	• •	T TCCAAGCAGE
						A ACCITOCICE
	>	Xho2	>8atY1			•
	>	BetYl	>Xho2			. >Нда1
5110	5120	5130	5140	5150	5160	. 5170
• •	• •	•	•	•	•	• ••
						: TOCCACTCACTS
				>BetY	1	
				>Xho2	>Be	tYl >Dral
	>Hae2	>8:		>Hph1	> X h	o3 >Nha3
5180	- 5190	_		15220		
• •	* •	• •	• •	• • •	• •	• •
				TCAAAAAGGA AGTTTTTCCT		
			***************************************		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	>Dral					
	>Aha3					
	•					
5250	5260	\$270	\$280	\$290	5300	\$310
AATTAAAAT	GAAGTTTTAA	ATCAATCTAA		AGTAAACTTG	GTCTGACAGT	TACCAATGCT
TTAATTTTA	CTTCALLATT	TAGTTAGATT	TCATATATAC	TCATTTGAAC	CAGACTGTCA	ATGGTTAGGA
>8	anl		•	:	P1-1	
5320	5330	5340	5350	5360	5370	5380
• •	• •	• •	• •	• •	• •	• •
TAATCAGTGA ATTAGTCACT						
					,	,
. *						>Bpb1
5390	5400	5410	5420	5430	5440	5450
GTAGATAACT						
CATCTATTGA	TGCTATGCCC	TOCCOLATES	TAGACCGGG	TCACCACCTT	ACTATGGCGC	TCTCCGTCCC
						•
>Cfr101				>8911		
5460	5470	5480	5490	5500	5510	5520
Y • •	• •	• •	• •	•	•	• •
AGTGGCGGAG						

Table 6 (Cont'd)

		>>sol				
5530	5540	5550	5560	5570	5580	5590
CTITATCCCC GAAATAGGCC	CTCCATCCAG GAGGTAGGTC	TCTATTAXTT AGATAATTAA	CYYCCCCC	AGCTAGAGTA TCGATCTCAT	AGTAGTTOGG TCATCAAGCG	CAGTTAATAG GTCAATTATC
>Hae	2					
>Aos1						
>Fep1	,					
>Fd12						
>Hetl		>Patl	·			
5600	5610	5620	5630	5640	5650	5660
* **	GTTGTTGCCA	TTGCTGCAGG	CATOSTOSTS	TCACCTCCT	COTTICGTAT	GGCTTCATTC
AAACCCTTC	CAACAACCET	AACCACCTCC	GTAGCACCAC	AGTGCGAGCA	GCAAACCATA	COGAAGTAAG
						4000
5670	5680	5690	\$700	\$710	5720	5730
AGCTCCGGTT TCGAGGCCAA	CCCAACGATC GGGTTGCTAG	AAGGCGAGTT TTCCGCTCAA	ACATGATCCC TGTACTAGGG	CCATGTTGTG GGTACAACAC	CHANANAGES	GTTAGCTCCT CAATCGAGGA
	>Pvul	>1	taél			
	>Ior2	×	- Cfrl			
5740	£ 5750	5760	1 5770	5780	5790	5800
• •		• •		-	• •	• •
TOGGTCCTCC AGCCAGGAGG	CINCCPYCYC	TCTTCATTCA AGAAGTAAGT	ACCCCCACACT	CAATAGTGAG	TACCAATACC	GTCGTGACGT
					>Rsal	
		•		>	Scal >Hph	12
5810	5820				5860	-
TAATTCTCTT ATTAAGAGAA	ACTGTCATGC	CATCCGTAAG	ATGCTTTTCT	GTCACTCGTG	AGTACTCAAC TCATCAGTTG	CAAGTCATTC GTTCAGTAAG

Table 6 (Cont'd)

>Hind2

>Hogal >Acy1

>Hgal >Aha2

5880 5890 5900 5910 5920 5930 5940

TGAGAATAGT GTATGGGGG ACGGAGTTGG TCTTGCGGG CGTCAACAGG GGATAATAGG GGGCGACATA
ACTCTTATCA CATAGGGGGG TGGCTCAACG AGAACGGGC GCAGTTGTGG CCTATTATGG GGGGGTGTAT

>Aha3 >Kaa2 >Baty1

>Dra1 >HgLA1 >Inn1 >Xho2 >Nap82

5950 5960 5970 5980 5990 6000 6010

GCAGAACTIT ALAGIGCTC ATCATIGGAA AACGITCTTC GGGGCGALAA CTCTCAAGGA TCTTACCGCT CGTCTTGAAA TTTTCAAGAA TAGTAACCTT TTGCAAGAAG CCCCGCTTTT GAGAGTTCCT AGAATGGCGA

>Hold

>Bettl

>Apall

| 6020 | 6030 | 6040 | 6050 | 6060 | 6070 | 6080

GTTGAGATCC AGTTGGATOT AACCCACTCO TGCACCCAAC TGATCTTCAG CATCTTTTAG TTTCACCAGC
CAACTCTAGG TCAAGCTACA TTGGGTGAGC ACGTGGGTTG ACTAGAAGTC GTAGAAAATG AAAGTGGTGG

>Bph1

6090 6100 6110 6120 6130 6140 6150

GTITCTGGT GAGGAAAAA AGGAAGGGAA AATGCCGGAA AAAAGGGAAT AAGGGCGACA CGGAAATGTT
CAAAGACCCA CTCGTTTTG TCCTTCCGTT TTACCGCGTT TTTTCCCTTA TTCCCGCTGT GCCTTTACAA

>5ep1 >BepH1 6160 6170 6180 6190 6200 6210 6220

Table 6 (Cont'd)

GRATACTCAT ACTOTTCCTT TITCAATATT ATTGAAGCAT TIATCAGGGT TATTGTCTCA TGAGGGGATA CITATGAGTA TGAGAAGGAA AAAGTTATAA TAACTTCGTA AATAGTCCCA ATAACAGAGT ACTCGCCTAT

6230 6240 6250 6260 6270 6280 6290
CATATTICAA TGTATTIAGA AAATAAACA AATAGGGGTT CCGCGCACAT TTCCCCGAAA AGTGCCACCT
GTATAAACTT ACATAAATCT TITTATTIGT TTATCCCCAA GGGGGGTGTA AAGGGGGTTT TCACGGTGGA

TTCAA AAGTT

symmes which do not cut LISHRIIL2 :

1cc3	Bg12	Clal	Mpal	Messa	SnaB1
\pel	Benl	Dra3	Mlul.	PflX1	5pl1
rans.	BapK2	Bco47III	Mro1	Sac2	Set2
San3	Bet81	Esp1	Not1	5411	

To generate th LXSN-RI-IL2 retroviral vector, 10 micrograms of pLXSN-RI-IL2 DNA was transfected into the ecotropic packaging cell line PE501 by standard calcium phosphate precipitation methods (Miller et al., Mol. Cell Biol. 6:2895, 1986). The transfected PE501 cell line was grown in DMEM medium with 10% FCS. The medium was changed after 24 hours and supernatant harvested 24 hours later to infect the amphotropic packaging cell line PA317 as described (Miller et al., Mol. Cell Biol. 6:2895, 1986 and Miller et al., BioTechniques 7:980, 1989). The infected PA317 cells were harvested by trypsinization 24 hours later and replated 1:20 in DMEM containing 10% FCS and the neomycin analogue G418 (400 μ g/ml). The cells were grown at 37°C in 7% CO2 atmosphere. The selection medium was changed every 5 days until colonies appeared. On day 14, twenty colonies were selected, expanded and tested for viral production by standard methods (Xu et al., Virology 171:331-341, 1989). Briefly, supernatants were harvested from confluent culture dishes, passed through a .45 μm 20 filter, diluted with DMEM with 10% FCS and utilized to infect NIH 3T3 cells in the presence of 8 μ g/ml polybrene. After 24 hours, the infected NIH 3T3 cells were grown in culture medium that contained the neomycin analogue G418. After 12-14 days, the colonies were stained, counted and 25 the viral titer calculated as described (Xu et al., Virology 171:331-341, 1989).

Colonies with the highest viral titers (>10° infectious units/ml) were tested for IL-2 expression by Northern blot analyses. Colonies with the highest viral titers and documented IL-2 expression were cryopreserved and will be utilized as stock cultures to produce the LXSN-RI-IL2 retroviral vector trial.

EXAMPLE IV

RETROVIRAL VECTOR CONSTRUCTION AND CYTOKINE EXPRESSION

lines, vectors were used containing different promoters to drive IL-2 expression, and a human IL-2 cDNA was directionally sub-cloned into the insulin secretory signal peptide (17). The IL-2 cDNA was directionally sub-cloned into the parental plasmids of the LXSN (LTR promoter) and LNCX (CMV promoter) vectors (gifts of Dr. A.D. Miller) (18). The newly constructed vectors (Figure 1), designated as LXSN-IL2 and LNCX-IL2, were packaged in the PA317 cell line for production of retroviral supernatant. As a control, the high level expressing, double copy vector DC/TKIL-2 vector (thymidine kinase promoter) (a gift of Dr. 15 E. Gilboa) was used for comparison.

These vectors were used to transduce a number of murine and human, primary and established cell lines. Pools of transduced cells were selected and expanded in DMEM medium, containing 10% fetal bovine serum (FBS) and 20 400 µg/ml of active G-418, a neomycin analogue. The results of expression studies in the MCR9 and Balb/c 3T3 cell lines are presented in Table 7.

Table 7

Comparison of	IL-2	expression by	y fibroblasts
transduced	with	different IL	-2 vectors.

5		······································			
	Fibroblast	Vector		<u>IL-2</u> 10 ⁶ cel	<u>Units IL-2</u> ls per day
	Murine	LNCX (Contro	1) 0.4	±50%	<1
0		LNCX-IL2	33.7	±11%	67
		LXSN-IL2	6.6	± 6%	13
		DC/TKIL-2	1.9	± 5%	4
	Human	LXSN (Contro	1) 0.7	±29%	1
		LNCX-IL2	159.5	±17%	319
5		LXSN-IL2	25.5	±15%	51
		DC/TKIL-2	3.0	±10%	6

EXAMPLE V

FIBROBLAST CULTURE AND CONDITIONS FOR RETROVIRAL TRANSDUCTION

The culture conditions for the growth of primary fibroblasts retroviral transduction were optimized. Primary fibroblasts were successfully cultured. The optimal conditions enable the growth of approximately 3-4 x 10⁶ primary fibroblasts from a 12 mm² skin biopsy in approximately 4-6 weeks. Retroviral infection, G418 selection, and expansion of the genetically modified fibroblasts takes an additional 4-6 weeks.

Exploring the conditions for genetic modification of primary fibroblasts suggests that optimal transduction may be obtained by the following procedure: The fibroblasts are synchronized in GI phase by serum starvation, followed by stimulation with medium containing 15% fetal bovine serum 15 hours prior to transduction. The cells are then subjected to 2 cycles of retrovirus infection, each cycle lasting approximately 3 hours. The cells are refed with fresh media overnight, and then selection in G418 is initiated the next day. This method is capable of transducing 5-15% of the fibroblasts in a culture, depending on the multiplicity of infection.

This procedure was used to transduce a large 25 number of primary and established fibroblasts. As an example, Table 8 compares the expression levels of IL-2 in fibroblast lines transduced with LXSN-IL2.

71
Table 8

	Expression of	E IL-2 by fi	broblasts tran	sduced with L	XSN-IL2.
5	Fibroblast Line	Species		ng IL-2 Units r 10° cells p	
	Balb/c 3T3	Murine	Transformed	6.6 ± 6%	13
	MCR9	Human	Embryonic	25.5 ±15%	51
10	NHDF 313	Human	Skin	25.0 ±10%	50
	GT1	Human	Skin	15.0 ± 5%	30

These results indicate that the IL-2 expression levels in established, embryonic, and primary fibroblast cultures are similar. Comparison of these data with Table 7 suggest that IL-2 expression is affected more by factors such as different promoters than by the fibroblast line used. Similarly, changes in culture conditions can have important effects on IL-2 expression. Table 9 shows that transduced GTl cells, a primary human fibroblast culture expressed 15-fold more IL-2 under 100 μg/ml G418 selection than under 25 μg/ml G418 selection. Several other primary fibroblast lines have also been transduced with our vectors and are currently growing under G418 selection.

15

Table 9

	Effect of G418 concentration cells transduced					n by e
•	Selection dose	ng	II		secré	eted
	of G418	per 10	6	ce.	lls pe	r day
-	25 μg/ml	1.0	-	±	10%	
	50 μg/ml	3.0		±	6%	
	100 μ g/ml	15.0		±	5%	
	After three weeks of G418 sele	ction.				

EXAMPLE VI

COMPARISON OF IL-2 EXPRESSION LEVELS INDUCED PERIPHERAL BLOOD LYMPHOCYTES AND GENETICALLY MODIFIED FIBROBLASTS

In order to compare the production of IL-2 by genetically modified fibroblasts to that achieved by 20 stimulating normal human peripheral blood lymphocytes (nPBL) in vitro, nPBL were isolated by Ficol-Paque density centrifugation, and cultured in the presence of allogeneic nPBL (mixed lymphocyte culture, MLC) or 2 μ M calcium ionophore (CI) (A23187) free acid) plus 17 nM phorbol 12-13-acetate (PMA). The results this 25 myristate experiment, present in Table 10, indicate that the level of IL-2 expression in the PMA/CI stimulated normal T cell population was 2 ng/10° cells/24 hours. This is equivalent to IL-2 expression by Balb/c 3T3 fibroblasts transduced 30 with DC/TKIL-2 (Table 7), our least productive vector. The level of IL-2 expression in the MLC was 130 pg/106 cells/24 hours. This was lower than the PMA/CI stimulated culture, pr sumably b cause PMA/CI induced a nonspecific response

while MLC resulted in specific Th stimulation. When the estimated p rc ntage of antigen-sp cific Th in the MLC-stimulated population is taken into consideration, the level of IL-2 expression per stimulated T cell becomes equivalent for both methods.

Table 10
Levels of IL-2 secretion by different cells.

10	Cells	pg IL- per 10° c			
:	Lymphocytes:				
	Control (non-activated)	5	±	50%	
	PMA + Calcium Ionophore	2,000	±	6%	
.5	Mixed lymphocyte culture	130	±	90%	
•	Transduced fibroblasts:				
	MCR9-LXSN-IL2	24,000	±	5%	
	MCR9-LNCX-IL2	162,000	±	20%	
	MCR9-DC/TKIL-2	10,000	±	6%	
0 _					

EXAMPLE VII

FIBROBLAST MEDIATED CYTOKINE GENE THERAPY IN MURINE TUMOR MODELS

25 efficacy of fibroblast-mediated cytokine gene therapy on induction of anti-tumor immunity. The first protocol was designed to test the effects of genetically modified fibroblasts on tumor implantation, while the second protocol was designed to induce a systemic anti-tumor immunity. The results of each experiment are presented with two figures and one table. In the first figure, the rate of tumor growth for each treatment group is pr sented

as the mean tumor size in the group over time. second figure, a Kaplan-Meier curve pres nts the time of tumor onset for the individual animals in each treatment group. The number of animals, the number and percentage of 5 tumor free animals, and the tumor size distribution patterns for each experiment are presented in a table.

EXAMPLE VII(a)

EFFECT OF FIBROBLAST MEDIATED CYTOKINE GENE THERAPY ON TUMOR IMPLANTATION

Mice were injected subcutaneously with mixtures 10 of 5 x 104 CT26 cells and 2 x 106 fibroblasts genetically modified by different retroviral vectors to express IL-2. In the control arms injected with tumor cells only, or with tumor cells mixed with unmodified fibroblasts, 31 of 33 15 animals (94%) developed tumors by 4 weeks (Figures 6 and 7, In contrast, 22 out of the 34 animals (65%) receiving fibroblast mediated cytokine gene therapy were tumor free at 3 weeks, and 5 animals (18%) remain tumor Those animals that received free after 12 weeks. 20 fibroblast mediated IL-2 therapy and developed tumor were characterized by a delayed onset and rate of tumor growth.

Table 11

Effect of IL-2 modified fibroblasts on tumor establishment and development. 2 X 106 fibroblasts mixed with 5 X 104 CT26 tumor cells at time of injection.

	₹	nima Nu	nber						
Fibroblasts mixed with tumor cells	Total	Tumor- free	Tumor- bearing	Tumor- Tumor- Percent Total free bearing Tumor-free	25-100	Tumor Si 101-200	Tumor Size (mm²) 101-200 201-300	>301	Median Tumor Size (mm²)
After 12 Weeks:*							•		
Control (no fibroblasts)	=	0	11	%0		0	-	6	420 ± 145
Unmodified fibroblasts**	13	7	11	15%	-	0	-	1	388 ± 265
DCTK-IL2 fibroblasts	13	0	13	80	-	m	ν,	4	267 ± 168
LNCX-IL2 fibroblasts	13	S	80	39%	ĸ	7	0	_	72 ± 90

* Mean tumor size is for 4 weeks, the last timepoint at which tumors were measured.

Two mice in this arm developed intraperitoneal tumors which were not measurable.

After 3 w eks the mean tumor size (measured as the product of the longest and widest tumor axes) in the control group of mice was 128 mm2, compared to 68 and 7 mm2 in groups of mice injected with tumor cells mixed with 5 fibroblasts transduced with DC/TKIL-2 or LNCX-IL2, This resulted in a highly significant respectively. difference (corrected $x^2 = 18.69$, p = 0.001) between the IL-2 treated animals compared to the mice treated with CT26 alone or CT26 mixed with unmodified fibroblasts. 10 four weeks the equivalent measurements were 373,300 and 72 mm² (Table 11). It is notable that LNCX-IL2, the highest expressing vector caused substantially greater inhibition of tumorigenicity than the lower expressing vector DC/TKIL-A multivariate non-parametric statistical procedure (19,20), utilized to evaluate differences in tumor growth, demonstrated that after 4 weeks the differences between the growth curves for the four groups presented in Figure 2 highly significant (p < 0.001).comparisons between the control arm and animals that 20 received tumor cells mixed with IL-2 transduced fibroblasts revealed a significant difference (P < 0.05). differences between the animals injected with tumor cells alone, and those injected with tumor cells plus unmodified fibroblasts were not significant, while the differences 25 between animals receiving low IL-2 expressing fibroblast, and those receiving high IL-2 expressing fibroblasts was significant (P = 0.05).

When mice were injected with 2 x 10⁵ modified fibroblasts mixed with 1 x 10⁵ live tumor cells the results became more striking (see Figures 8 and 9, and Table 12). All the control animals developed tumors after 4 weeks whereas 33% and 27% of the animals treated with fibroblasts modified with the DCTK-IL2 or LXSN-IL2 vectors (respectively) remain tumor free after 7 weeks (the experiment is ongoing). More dramatically, 75% of the animals treated with fibroblasts modified with the high st

WO 93/07906

IL-2 producing vector, LNCX-IL2, remain tumor free after 7 weeks. These data clearly demonstrat the importance of an initial high dose of IL-2 to prevent tumor establishment.

Table 12

Effect of IL-2 modified fibroblasts on tumor establishment and development, 2 X 106 fibroblasts mixed with 1 X 105 CT26 tumor cells at time of injection.

	A	Animal Number	iper									
Fibroblasts mixed with tumor cells	Total	amor- free	Tumor- bearing	Percent Tumor-free	25-100		Tumor Size (mm²) 101-200 201-300	>301	Mean		Mean Tumor Size (mm²)	
After 6 Weeks:*							•					
Control (no fibroblasts)**	13	0	13	%0	0	'n	7	S	315	H	161	
Unmodified fibroblasts**	20	0	70	%0	0	7	m	41	350	#	<u>8</u>	
DCTK-IL2 fibroblasts	12	4	eo;	33%	0	-	₹	m	185	#	141	
LXSN-IL2 fibroblasts***	15	. 4	=	27%	0	S	-	7	135	#	121	
LNCX-IL2 fibroblasts	∞ .	9	7	75%	2	0	0	0	∞	#1	7	

Mean tumor size is for 4 weeks, the last timepoint at which tumors were measured.

*** Three mice in this arm developed intraperitoneal tumors which were not measurable.

One mouse in each of these arms developed an intraperitoneal tumor which was not measurable.

As an additional control, mice were injected with CT26 cells genetically modified to express IL-2 (results Injection of up to 1 x 106 IL-2 expressing tumor cells into Balb/c mice failed to produce tumors. Injection of higher numbers however, resulted in some animals developing tumors with delayed onset. These data confirm the results reported in the literature (1). order to compare the efficacy of IL-2 producing fibroblasts to IL-2 producing tumor cells, we mixed 2 x 106 CT26 tumor cells modified with the DCTK-IL2 vector with 1 \times 10⁵ unmodified tumor cells. Figures 10 and 11, and Table 13 show that DCTK-IL2 modified tumor cells are somewhat effective in preventing tumor development. Four weeks after injection, the mean tumor size for the treatment arm 15 is 303 mm², compared to 620 mm² for the control arm. After 22 weeks, one animal (10%) remains tumor free, compared to none in the control arms. Data for animals treated under the same conditions with DCTK-IL2 modified fibroblasts in a separate experiment are included for comparison purposes. 20 This comparison suggests that DCTK-IL2 modified tumor cells have an effect on tumor establishment similar to that of DCTK-IL2 modified fibroblasts.

Table 13

Effect of IL-2 modified cells on tumor establishment and development.

2 X 106 DCTK-IL2-modified CT26 tumor cells mixed with 1 X 105 CT26 cells compared to 2 X 106 DCTK-IL2-modified fibroblasts mixed with 1 X 105

	. ₹	Animal Number	nber							•
Cells mixed with tumor cells	Total	Tumor- Total free	Tumor- bearing	Tumor- Tumor- Percent free bearing Tumor-free	25-100	Tumor S 101-200	Tumor Size (mm²) 101-200 201-300 >301	>301	Mean Tumor Size (mm²)	
After 22 Weeks: *							•			-
Control (no fibroblasts)	5	0	S	% 0	0	0	0	\$	620 ± 190	
Unmodified fibroblasts	S	٥.	'n	%0	0	0	0	S	587 ± 69	
DCTK-IL2-modifed CT26 cells	9	-	Φ.	10%	-	0	8	S	303 ± 179	
DCTK-IL2-modified fibroblasts	60	73	v	25%	0	1	7	3	214 ± 158	

Mean tumor size is for 4 weeks, the last timepoint at which tumors were measured.

EXAMPLE VII(b)

EFFECT OF FIBROBLAST MEDIATE CYTOKINE GENE THERAPY ON SYSTEMIC ANTI-TUMOR IMMUNITY

Groups of Balb/c mice were immunized with 2.5 x 10⁵ irradiated tumor cells either alone or mixed with 2 x 10⁶ transduced or unmodified fibroblasts, and challenged one week later with 5 x 10⁴ live tumor cells in the opposite flank. These results (Figures 12 and 13, and Table 14) demonstrate that immunization with irradiated tumor cells and transduced fibroblasts protect some animals against a live tumor challenge, but that the protection is only slightly better than that achieved by immunization with irradiated tumor cells alone or irradiated tumor cells mixed with unmodified fibroblasts.

Table 14

Effect of IL-2 modified fibroblasts on induction of sytemic anti-tumor immunity.

Mice immunized with 2 X 106 fibroblasts mixed with 2.5 X 105 irradiated CT26 tumor cells 7 days prior to challenge with 5 X 104 fresh tumor cells.

	Ā	Animal Number	jagi						
Fibroblasts mixed with irradiated tumor cells	Total	Tumor- otal free	Tumor- bearing	Tumor- Tumor- Percent free bearing Tumor-free	25-100	Tumor Size (mm²) 101-200 201-300	201-300	>301	Mean Tumor Size (mm²)
After 22 Weeks: *									
Control (saline)	8	0	8	80	0	0		19	S74 ± 160
Irradiated CT26 only**	16	8	=	318	61	-	7	٠,	250 ± 277
Irradiated CT26 mixed with unmodified fibroblasts	15	4	=	27%	•	-	6	7	266 ± 199
DCTK-IL2 fibroblasts**	X	9	15.	40%	4	-	-	•	172 ± 194

Mean tumor size is for 4 weeks, the last timepoint at which tumors were measured.

One mouse in each of these arms developed an intraperitoneal tumor which was not measurable.

In a second protocol similar to the one described above, animals were chall nged with fresh tumor cells two weeks following immunization with irradiated tumor cells mixed with fibroblasts. The results, shown in Figures 14 5 and 15, and in Table 15, demonstrate that DCTK-IL2 modified fibroblasts mixed with irradiated tumor cells confers superior protection to subsequent tumor challenge than irradiated tumor cells alone, irradiated tumor cells mixed with unmodified fibroblasts, or irradiated tumor cells 10 mixed with LNCX-modified fibroblasts. After 7 weeks, seven of ten animals (70%) treated with DCTK-IL2 modified fibroblasts remain tumor free compared to only one third of the control animals. At four weeks, the mean tumor size of this group was 41 mm², compared to 180, 170, and 140 mm² for 15 the three control groups. Animals treated with LNCX-IL2 modified fibroblasts were also protected against subsequent tumor challenge, but the results were less striking. this group, 54% of the animals remain tumor free and the mean tumor size for the group at four weeks was 86 mm². The number of tumor free animals in the group treated with LXSN-IL2 modified fibroblasts was similar to the control groups, although the tumors were slightly delayed in their onset. A multivariate non-parametric statistical procedure (19, 20), utilized to evaluate differences in tumor onset, demonstrated that the differences for the presented in Figure 15 were significant (p = 0.012). further showed that the saline control arm and the arms that received irradiated tumor cells alone or mixed with unmodified or LNCX vector modified fibroblasts formed a statistical group. 30 A second, distinct statistical group was formed by the three arms that received IL-2 vector modified fibroblasts mixed with irradiated tumor cells. Subsequent comparisons between the saline injected control arm and animals that received tumor cells mixed with IL2 transduced fibroblasts revealed a significant difference for all vectors (p < 0.05).

Table 15

Effect of IL-2 modified fibroblasts on induction of sytemic anti-tumor jumunity.

Mice immunized with 2 X 106 fibroblasts mixed with 2.5 X 105 irradiated CT26 tumor cells 14 days prior to challenge with 5 X 104 fresh tumor cells.

Immunization by	₽.	Animal Number	nber						
fibroblasts mixed with irradiated tumor cells	Tumos Total free	Tumor- free	, -	Tumor-Percent bearing Tumor-free	25-100	Tumor Si 101-200	Tumor Size (mm²) 101-200 201-300	> 301	Mean Tumor Size (mm²)
After 7 Weeks: *									
Control (saline)**	œ	-	1	13%	0	6 4	•	en.	245 ± 173
Irradiated CT26 only	01	m	7	30%	0	2	4	-	
Irradiated CT26 mixed with unmodified fibroblasts	•	8	4	33%	0		-	-	ı +
Irradiated CT26 mixed with LNCX-modified fibroblasts	9	60	7	30%	m	0	-	m	ı +
Irradiated CT26 mixed with LNCX-IL2-modified fibroblasts	13	7	9	54%	•	е.	_	-	t: -f+
Irradiated CT26 mixed with LXSN-IL2-modified fibroblasts	2	4	80	33%	v s	0	7	-	
Irradiated CT26 mixed with DCTK-IL2-modified fibroblasts	01	7	m	802	-	7	0	0	. 44

Mean tumor size is for 4 weeks, the last timepoint at which tumors were measured.

One mouse in this arm developed an intraperitoneal tumor which was not measurable.

These results demonstrate the feasibility of using g netically modified fibroblasts as a means of delivering cytokine gene therapy. In all experiments, the LNCX-L2 vector proved superior in preventing tumor establishment while the DCTK-IL2 vector was better in the induction of systemic protection against subsequent tumor challenges. These contrasting effects, although somewhat surprising, can be explained by the observation that the CMV promoter is turned off in vivo five days after implantation while the TK promoter remains active for a longer period of time. The implication of this finding is that to apply this method of gene therapy successfully we have to use promoters that result in high level, sustained expression of IL-2 in vivo in the transduced fibroblasts.

The data obtained from this research effort has important implications for all cytokines that have either direct or indirect anti-tumor effects. Furthermore, this data suggests that anti-tumor efficacy is IL-2 dose dependent. Hence, construction of vectors which result in higher levels of cytokine secretion will be a significant advance toward the application of this method of gene therapy.

Reference numbers in parenthesis in the above examples correspond to the following list of references and are incorporated herein by reference.

References

- 1. Gabrilove, J.L. et al., Monogr. J. Natl. Cancer
 Inst. 10:73-7 (1990).
- 5 2. Kelso, A., Current Opinion in Immunology, 2:215-25 (1989).
 - 3. Borden, E.C. et al., Cancer, 65:800-14 (1990).
 - 4. Rosenberg, S.A. et al., Ann. Intern. Med., 108:853-864 (1988).
- 10 5. Lotze, M.T. et al., JAMA, 256:3117-3124 (1986).
 - 6. Pizza, G. et al., Lymphokine Research, 7:45-8 (1988).
 - 7. Sarna, G. et al., Journal of Biological Response Modifiers, 9:81-6 (1990).
- 15 8. Gandolfi, L. et al., Hepato-Gastroenterology, 36:352-6 (1989).
 - 9. Bubenik, J. et al., Immunol. Letters, <u>19</u>:279-82 (1988).
- 10. Bubenik et al., Immunol. Letters, <u>23</u>:287-292 20 (1990).
 - 11. Fearon, E.R. et al., Cell, 60:387-403 (1990).
 - 12. Gansbacher, B. et al., J. Exp. Med., <u>172</u>:1217-1224 (1990).
- 13. Watanabe, Y. et al., Proc. Natl. Acad. Sci., 86:9456-9460 (1989).

- 14. Tepper, R.I. et al., Cell, <u>57</u>:503-512 (1989).
- 15. Kriegler, M., Gene Transfer and Expression: A Laboratory Manual, Stockton Press (1990).
- 16. Rosenberg, S.A. et al., N. Eng. J. Med., 370 (1990).
 - 17. Cornetta, K. et al., Prog. Nucl. Acid Res. Mol. Biol., <u>36</u>:311-22 (1989).
 - 18. Hoover, H.C. et al., Cancer Res., <u>44</u>:1671-76 (1984).
- 10 19. Sobol et al. New Eng. J. Med. <u>316</u>:1111-1117 (1987).
 - 20. Li Xu, et al., Virology, <u>171</u>:331-341 (1989).

Although the inv ntion has been described with reference to the pr sently-preferred embodiment, it should be understood that various modifications can be made without departing from the spirit of the invention.

5 Accordingly, the invention is limited only by the following claims.

WE CLAIM:

- 1. A method of treating cancer in a patient comprising the stimulation of that patient's immune response against the cancer by immunizing said patient at a site other than an active tumor site with a formulation comprising tumor antigens and CE cells genetically modified to express at least one cytokine gene product.
 - 2. The method of claim 1 wherein tumor cells previously isolated from said patient provide the tumor antigens.
 - 3. The method of claim 1 wherein the cytokine gene is selected from the group consisting of interleukin-1, interleukin-2, interleukin-3, interleukin-4, interleukin-5, interleukin-6, and gamma-interferon.
 - 4. The method of claim 3 wherein one cytokin gene is interleukin-2.
 - 5. The method of claim 1 wherein at least one cytokine gene is transferred into cells to generate CE cells by recombinant methods.
 - 6. The method of claim 5 wherein the cytokine gene is present in an expression vector.
 - 7. The method of claim 6 wherein said expression vector additional contains a suicide gene.
 - 8. The method of claim 5 wherein the CE cells are generated from fibroblasts and antigen-presenting cells.

PCT/US92/08999

5

10

15

20

- 9. A method for enhancing a patient's immune response to a cancer comprising:
 - a) isolating fibroblasts from said patient;
 - b) culturing said fibroblasts in vitro;
 - c) transducing said fibroblasts with a retroviral expression vector containing the gene coding for IL-2 and a gene coding for a tumor antigen in a retroviral expression vector, to express said tumor antigen and to express and secrete said IL-2 by said fibroblasts; and
 - d) immunizing said patient with said fibroblasts that express IL-2 at a level sufficient to enhance an immune response but low enough to avoid substantial systemic toxicity and that express said tumor antigen, at a site other than an active tumor site.
- 10. The method of claim 9 wherein said fibroblasts are further modified to express a suicide gene.
- 11. A composition for increasing a patient's immune response to tumor antigens comprising tumor antigens and CE cells genetically modified to express at least one cytokine gene product.
- 12. The composition of claim 11 wherein the cytokine gene is selected from the group consisting of interleukin-1, interleukin-2, interleukin-3, interleukin-4, interleukin-5, interleukin-6, and gamma interferon.
- 13. The composition of claim 12 wherein one cytokin gene is interleukin-2.

- 14. The composition of claim 11 wherein each cytokine gene is expressed at a level suffici nt to stimulate the immune response but low enough to avoid substantial systemic toxicities.
- 15. The method of claim 9 wherein in said transducing step said retroviral expression vector has a promotor causing sustained secretion of IL-2.
- 16. The method of claim 15 wherein said retroviral expression vector causes the secretion of at least four units of IL-2 per day for a period of ten days or longer.

UNMODIFIED CELLS IL-2 TRANSDUCED CELLS

FIG. 2

FIG. 3

SUBSTITUTE SHEET

1234567

FIG. 5

SUBSTITUTE SHEET

SUBSTITUTE SHEET

DUDSTITUTE SHEET

SUBSTITUTE SHEET

SUBSTITUTE SHEET

SUBSTITUTE SHEET

SUBSTITUTE SHEET

INTERNATIONAL SEARCH REPORT

Int....ational application No.
PCT/US92/08999

A. CL	ASSIFICATION OF SUBJECT MATTER		
IPC(5)	:Picase See Extra Sheet.		
	:Picase See Extra Sheet.		
	to International Patent Classification (IPC) or to bot LDS SEARCHED	n nacional classification and IPC	•
			·
	documentation searched (classification system follow	•	•
U.S. :	424/93B, 93U, 89; 435/240.2, 320.1, 69.5, 69.51,	69.52; 935/65, 32, 12, 57, 70, 71	
Documenta	tion searched other than minimum documentation to t	he extent that such documents are included	in the fields searched
			2. 4.0 1.0,40 002,0,,00
Electronic	data base consulted during the international search (name of data base and, where practicable	, search terms used)
BIOSIS, I	MEDLINE, APS		
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT		
			•
Category*	Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.
			, , , , , , , , , , , , , , , , , , , ,
<u>X</u> Y	Journal of Experimental Medicine, Volume 172,	issued October 1990, Gansbacher et al,	<u>1-8. 11-14</u>
Y	"Interleukin 2 Gene Transfer into Tumor Cells		9, 10, 15, 16
	Protective Immunity", pages 1217-1224, see the e	nure document.	• ••
X	Cell, Volume 57, issued 05 May 1989, Tepper et a	l, "Murine Interleukin-4 Displays Potent	1-3.5.6. 8.11.12.14
Y	Anti-Tumor Activity In Vivo", pages 503-512, see	e the entire document.	4, 13
X Y	Cell, Volume 60, issued 09 February 1990, Fear	ron et al., "Interleukin-2 Production by	1.3-5.8. 11-13
Y	Tumor Cells Bypasses T Helper Function in the	Generation of an Antitumor Response",	2, 6, 7, 14-16
:	pages 397-403, see the entire document.		
Y	Cancer Research, Volume 50, issued 15 August	1990, Ogura et al., "Implantation of	1-16
	Genetically Manipulated Fibroblasts into Mice as	Antitumor &-Interferon Therapy", pages	
	5102-5106, see the entire document.	·	
į			
			<u> </u>
X Furth	er documents are listed in the continuation of Box (C. See patent family annex.	·····
	cial categories of cited documents; rement defining the general state of the art which is not considered.	"T" later document published after the into date and not in conflict with the applies	tion but cited to understand the
to b	e part of particular relevance	principle or theory underlying the inventor. "X" document of particular relevance; the	
	lier document published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be consider when the document is taken along	
cite	ument which may throw doubts on priority claim(s) or which is d to establish the publication date of another citation or other cial reason (as specified)	"Y" document of particular relevance; the	claimed invention cannot be
•	ument referring to an oral disclosure, use, exhibition or other	considered to involve an inventive combined with one or more other such	step when the document is
mei	106	being obvious to a person skilled in th	c art
	ument published prior to the international filing date but later than priority date claimed	"&" document member of the same patent	family /
Date of the	actual completion of the international search	Date of mailing of the international sea	rch report
11 January	, 1993	26 JAN IS	130/
	uailing address f the ISA/ ser of Patents and Trademarks	Authorized officer	Marco /
Box PCT	, D.C. 20231	JACQUELINE STONE	Lynn 1-
-	D. NOT APPLICABLE	Telephone No. (703) 308-0196	U 7-

INTERNATIONAL SEARCH REPORT

Inte. ational application No.
PCT/US92/08999

Category*	Citation of document, with indication, where appropriate, f the relevant passages	Relevant to claim No
	Cancer Research, Volume 50, issued 15 December 1990, Gansbacher et al., "Retroviral Vector-mediated Interferon Gene Transfer into Tumor Cells Generates Potent and Long Lasting Antitumor Immunity", pages 7820-7825, see the entire document.	1. 3. 5. 6. 8.11.12.14 2,7
	•	
	·	
		•
	·	
		·
ı		
		•
	·	
:		
	•	
ļ		

INTERNALIONAL SEARCH REPORT

International application No. PCT/US92/08999

A.	CLASSIFICATION	OF	SUBJECT	MAT	TER:

IPC (5):

A61K 48/00, 35/12, 39/00; C12N 15/19, 15/24, 15/25, 15/26, 15/90, 15/63

A. CLASSIFICATION OF SUBJECT MATTER:

US CL :

424/93B, 93U, 89; 435/240.2, 320.1, 69.5, 69.51, 69.52; 935/65, 32, 12, 57, 70, 71

Form PCT/ISA/210 (extra sheet)(July 1992)★