BIOS 755: Linear Mixed Models I

Alexander McLain

January 31, 2023

1

Framingham study Cholesterol Data

- ▶ In the Framingham study, each of 2634 participants was examined every 2 years for a 10 year period for his/her cholesterol level.
- Study objectives:
 - ▶ How does cholesterol level change over time on average as people get older?
 - ▶ How is the change of cholesterol level associated with sex and baseline age?
- ▶ A subset of 200 subjects' data is used for illustrative purpose.

Introduction to Linear Mixed Models

- ▶ In the General Linear Model we focused our conceptual model on the covariance and correlation of the error terms.
- In linear mixed models, the conceptual model is based on thinking about individual behavior first.
- ► The possibilities for how this is represented and how the variation in the population is represented, are very flexible.
- As we'll see, linear mixed models can incorporate heterogeneity and different correlation structures (even though we don't think about them that way).

Linear Mixed (Effects) Models

▶ The linear mixed model can be expressed as

$$\mathbf{Y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{Z}_i \mathbf{b}_i + \mathbf{e}_i$$

where

- \triangleright $X_i n_i \times p$ matrix of fixed effect covariates
- \triangleright $\beta k \times 1$ vector of regression coefficients (fixed effects).
- ▶ $Z_i n_i \times q$ matrix of random effect covariates.
- ▶ $\boldsymbol{b}_i q \times 1$ vector of random effects, $\boldsymbol{b}_i \sim N(0, \boldsymbol{G})$,
- ▶ $e_i n_i \times 1$ vector of errors and $e_i \sim N(0, \mathbf{R}_i)$.

Random intercept and slope model

The random intercept and slope model:

$$\mathbf{Y}_i = \beta_0 + b_{0i} + (\beta_1 + b_{1i})\mathbf{t}_i + \mathbf{e}_i$$

where $t'_{i} = \{t_{i1}, t_{i2}, \dots, t_{in_{i}}\}$

- \triangleright β_0 is the average intercept and b_{0i} are the deviations from the average intercept.
- ▶ β_1 is the average slope and b_{1i} are the deviations from the average slope.
- ▶ We could add other fixed effects to this model (sex, smoking, etc.).

Random intercept and slope model

The random intercept and slope model:

$$\mathbf{Y}_{i} = \beta_{0} + b_{0i} + (\beta_{1} + b_{1i})\mathbf{t}_{i} + \mathbf{e}_{i}$$

- $ightharpoonup R_i = var(e_i)$ describes the covariance of the residuals
- ▶ In the models we've been running in the previous weeks, this is the covariance of the *i*th subject's deviations from $\beta_0 + \beta_1 t_i$ (i.e., the overall trend)
- Now it's the covariance of the *i*th subject's deviations from $\beta_0 + b_{0i} + (\beta_1 + b_{1i})\mathbf{t}_i$ (i.e., their individual trend)
 - Usually, it is assumed that $\mathbf{R}_i = \sigma^2 I$, which is the "conditional independence assumption."

7

Linear Mixed (Effects) Models

$$\boldsymbol{Y}_i = \boldsymbol{X}_i \boldsymbol{\beta} + \boldsymbol{Z}_i \boldsymbol{b}_i + \boldsymbol{e}_i$$

The vector of regression parameters β are the fixed effects, which are assumed to be the same for all individuals.

- Fixed effects are constant across individuals, and random effects vary.
- For example, in a growth study, a model with random intercepts $\beta_0 + b_{0i}$ and fixed slope β_1 corresponds to parallel lines for different individuals i, or the model $Y_{ij} = \beta_0 + b_{0i} + \beta_1 t_{ij} + e_{ij}$

8

Conditional vs marginal mean

▶ The **conditional** mean of Y_i , given b_i , is

$$E(\mathbf{Y}_i|\mathbf{b}_i) = \mathbf{X}_i\boldsymbol{\beta} + \mathbf{Z}_i\mathbf{b}_i$$

ightharpoonup The marginal or population-averaged mean of Y_i is

$$E(\boldsymbol{Y}_i) = \boldsymbol{X}_i \boldsymbol{\beta}$$

- ▶ In contrast to β , the vector \boldsymbol{b}_i is comprised of subject-specific regression coefficients.
- ▶ All covariates in **Z** will be in **X**, and it's rare to consider more than 2 variables in **Z**.

g

Conditional vs marginal variance

▶ In the mixed model

$$oldsymbol{Y}_i = oldsymbol{X}_ioldsymbol{eta}_i + oldsymbol{Z}_ioldsymbol{b}_i + oldsymbol{e}_i$$

We have the following conditional and marginal expectations

$$E(\boldsymbol{Y}_i|\boldsymbol{b}_i) = \boldsymbol{X}_i\boldsymbol{\beta} + \boldsymbol{Z}_i\boldsymbol{b}_i, \quad E(\boldsymbol{Y}_i) = \boldsymbol{X}_i\boldsymbol{\beta}$$

along with the following conditional and marginal variances

$$var(\mathbf{Y}_i|\mathbf{b}_i) = var(\mathbf{e}_i) = \mathbf{R}_i$$
, and
 $var(\mathbf{Y}_i) = var(\mathbf{Z}_i\mathbf{b}_i) + var(\mathbf{e}_i)$
 $= \mathbf{Z}_i\mathbf{G}\mathbf{Z}_i' + \mathbf{R}_i$

Linear Mixed (Effects) Models

- \triangleright The introduction of random effects induces correlation among the Y_i .
- ▶ $Var(Y_i)$ is described in terms of a set of covariance parameters, some defining G and some defining R_i .
- ► Linear mixed models are really just another type of covariance matrix, which can lead to some strange results.
- They are the model of choice when the data are unbalanced.