ADS LAB ASSIGNMENT 2

Name - Khushbu Jain Rou Number - 23115047

Q.1 Computer scientists have defined several eategories of algorithm efficiency as shown below:

Any measure of efficiency presumes that a sufficiently large sample is being considered. If you are dealing with only 10 elements & the time required its a fraction of a second, there is no meaning ful difference between two algorithms. The table above depicts the estimate of the time needed to so the the problem given different efficiencies, for e.g., if we are using a computer that executes a million linstructions per second & the Iloop contains 10 instructions, then 0.0001 second spent for each iteration for of the loop.

Table: Measures of Efficiency for n = 10000

1			00	U		
efficiency	Big -0	Herations	Estimated	Best	Average	Name of related
Logarithmic	O(logn)	14	microsecond	0(1)	O (logn)	Name of related Algorithm Binary search
Linear	0(n)	10,000	seconds	0(1)	0 (n)	Linear Search or Traversal in Array
Linear Logarithmic	o(nlogn)	140,000	seconds	0(n)	O(nlogn)	Menge sort, Heap Sort
Quadratic	0(n²)	10,0002	minutes	O(nlogn)	0(n2)	Bubble Sort, Insertion
Polynomial	0(n ^k)	10,000 K	howis	O(n2)	0(n3)	Matrix Multiplication, Floyd Warshall
Exponential	O(cn)		9ntractable		0(2 ⁿ)	Subset Sum, Travelling Salesman
Factorial	0(n!)	10,000!	9ntractable	0(n!)	0(n!)	Brute Force Permutations

9.2 The definition for recursive factorial algorithm is $factorial(n) = \begin{cases} 1 & n = 0 \\ n * factorial(n-1), n > 0 \end{cases}$

List down the recursive definition of alleast more than fine different problems?

701 ->

1) fibonacci sequence

fibonacci $(n) = \begin{cases} 0 \\ 1 \end{cases}$, if (n = 0)fibonacci (n-1) + fibonacci(n-2), if n > 1

The fibonaaci sequence is defined by adding the previous two terms.

2) Sum of first n Natural Numbers

Sum (n) = $\begin{cases}
0, & \text{if } n=0 \\
\text{n+ sum}(n-1), & \text{if } n>0
\end{cases}$

3) Power function (x^n) power $(x,n) = \begin{cases} 1 & \text{if } n = 0 \\ x^n \text{ power}(x,n-1), & \text{if } m > 0 \end{cases}$

4) GCD (Greatest Common Divisor) $gcd(a,b) = \begin{cases} a & \text{if } b=0 \\ gcd(b,a...b), & \text{if } b \neq 0 \end{cases}$

5) Check palindrome String

is Palindrome (ctr, start, end) =

false

is Palindrome (str, start) = str[end]

is Palindrome (str, start), end-1), other wise