IN THE CLAIMS

Claims 10-20 have been amended. All pending claims are reproduced below.

	1-9 (Canceled).
<u>l</u>	10. (Currently Amended) A computer-implemented method for array shape
2	inferencing com	aprising the steps of:
3	C	determining an input shape-tuple for each operand of a program expression of
4	[an] <u>a hi</u>	gh-level array-based language wherein the size of at least one operand is
5	unknow	$\underline{\mathbf{n}}$;
5	<u> </u>	automatically analyzing the use of each operand in the program expression; and
7	(determining prior to run-time a resulting shape-tuple of the program expression
8	[using a	n algebraic framework].
1	11. ((Currently Amended) The computer-implemented method of claim 10, wherein
2	the high-level a	rray based language is MATLAB.
1	12.	(Currently Amended) The computer implemented method of claim 10, wherein
2		or to run-time a resulting shape-tuple of the program expression [using an
3		ework] comprises the steps of:
4		determining a rank of the resulting shape-tuple; and,
5	1	promoting the input shape-tuple[s] for each operand to an appropriate rank.
	•	
1	13.	(Currently Amended) The computer implemented method of claim 12, wherein
2	determining the	e rank of the resulting shape-tuple comprises the steps of:

3	[determining] identifying a [the] rank of [each] the input [operand] shape-tuple for each	
4	operand;	
5	identifying [an operator corresponding to the input operands] a built-in function in the	
6	program expression; and,	
7	[ascertaining] determining the rank of the resulting shape-tuple according to the	
8	[operator] built-in function and the rank[s] of the input shape-tuple for each operand.	
1	14. (Currently Amended) The <u>computer-implemented</u> method of claim 12, wherein	
2	promoting the input shape-tuple[s] for each operand to an appropriate rank comprises the steps	
3	of:	
4	[identifying] comparing the rank of the resulting shape-tuple to the rank of the input	
5	shape-tuple for each operand;	
6	responsive to the rank of the resulting shape-tuple being greater than the rank of the input	
7	shape-tuple for an operand, expanding the input shape-tuple[s] for the operand to correspond	
8	with the rank of the resulting shape-tuple; and,	
9	appending trailing extents of the expanded input shape-tuple[s] for the operand with an	
10	appropriate value.	
1	15. (Currently Amended) The computer-implemented method of claim [10] 13,	
2	further comprising the steps of:	
3	[identifying a built-in function in the program expression;]	
4	determining a shape-tuple operator for the built-in function; and,	
5	applying the [operand] input shape-tuple[s] of each operand to the shape-tuple operator	
6	for the built-in function.	

1	16. (Currently Amended) The <u>computer-implemented</u> method of claim 15, wherein	
2	determining a shape-tuple operator for the built-in function comprises the step of:	
3	[identifying a shape-tuple expression corresponding to the built-in function; and[,]	
4	assigning the shape-tuple expression as the shape-tuple operator.]	
5	looking up, in a table, a shape-tuple operator corresponding to the built-in function.	
1	17. (Currently Amended) The <u>computer-implemented</u> method of claim [16] <u>15</u> ,	
2	further comprising the step of [assigning] calculating a shape predicate [to] for the resulting	
3	shape-tuple.	
1	18. (Currently Amended) The <u>computer-implemented</u> method of claim 10, further	
2	comprising the steps of:	
3	performing an array conformability check at run-time for a first statement;	
4 .	and	
5	applying a result of the conformability check to a second statement.	
1	19. (Currently Amended) The <u>computer-implemented</u> method of claim 18, further	
2	comprising the step of:	
3	determining a relationship among the first statement and the second statement.	
1	20. (Currently Amended) [In the] The computer-implemented method of claim [18]	
2	10, further comprising the step of:	
3	preallocating [a] storage for each operand whose size is statistically unknown,	
4	based upon the input shape-tuple for each operand [shape to the variable of the statement	
5	in a loop execution].	

21. (New) The computer-implemented method of claim 14, further comprising:

responsive to the rank of the resulting shape-tuple being less than the rank of the input shape-tuple for an operand, truncating the input shape-tuple[s] for the operand to correspond with the rank of the resulting shape-tuple.

1

2

3

. 4