Analyse en Composantes Principales (ACP)

Rachid EL MAAZOUZ

Août 2018

Approche géométrique 1

1.1

L'intérêt de centrer et réduire les données de chaque variable est d'étudier leurs variations par rapport a une valeur de référence (Moyennes et variances).

Soit $A = (a_{ij})_{1 \leq i \leq n, 1 \leq j \leq p} \in \mathbb{R}^{n \times p}$ la matrice des données où la *i*-ème ligne représente les données du *i*-ème pays pour chaque $1 \leq i \leq n$.

On définit la matrice identité I_n de $\mathbb{R}^{n \times n}$ et la matrice $J_n \in \mathbb{R}^{n \times n}$ comme suit:

$$J = \begin{pmatrix} 1/n & 1/n & \dots & 1/n \\ 1/n & 1/n & \dots & 1/n \\ \vdots & \vdots & \ddots & \vdots \\ 1/n & 1/n & \dots & 1/n \end{pmatrix}$$

L'idée est de centrer et réduire chaque colonne de la matrice A. Pour ce faire un ensemble de transformations seront appliquées sur la matrice de données A.

Soit I la matrice identité de taille n : $I = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$, l'idée et de centrer les valeurs de

chaque variable (colonne) autour de la moyenne des valeurs de cette variable, pour cela on doit calculer une matrice T qui comprend les moyennes de chaque variable sur la colonne qui lui correspond.

Soit J la matrice de taille n dont tous les coefficients sont 1/n: $J = \begin{pmatrix} 1/n & 1/n & \dots & 1/n \\ 1/n & 1/n & \dots & 1/n \\ \vdots & \vdots & \ddots & \vdots \\ 1/n & 1/n & \dots & 1/n \end{pmatrix}$ La matrice J permet de calculer les movempes our sharm.

La matrice J permet de calculer les moyennes sur chaque colonne. En effet, la matri

$$\mathbf{J}^*\mathbf{A} = \begin{pmatrix} 1/n & 1/n & \dots & 1/n \\ 1/n & 1/n & \dots & 1/n \\ \vdots & \vdots & \vdots & \vdots \\ 1/n & 1/n & \dots & 1/n \end{pmatrix} * \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & \dots & a_{np} \end{pmatrix} = \begin{pmatrix} \sum_{k=1}^n a_{k1}/n & \sum_{k=1}^n a_{k2}/n & \dots & \sum_{k=1}^n a_{kp}/n \\ \sum_{k=1}^n a_{k1}/n & \sum_{k=1}^n a_{k2}/n & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{k=1}^n a_{k1}/n & \sum_{k=1}^n a_{k2}/n & \dots & \sum_{k=1}^n a_{kp}/n \end{pmatrix}$$

de A).

La nouvelle matrice centrée à considérer M = A - J * A = (I - J) * A

Maintenant procédons à la réduction de la nouvelle matrice M. Il suffit de deviser ses valeurs par l'écart type calculé sur chaque colonne.

Soit N la matrice carrée de taille d, définie par: $N = \binom{n,p}{(e_{ij})}$ tel que: $e_{ii} = 1/\sqrt{\sum_{k=1}^n m_{ii}^2}$, 0 sinon

Calculons le produit X = M * N:

$$X = M * N = \begin{pmatrix} m_{11} & m_{12} & \dots & m_{1d} \\ m_{21} & m_{22} & \dots & & \\ \vdots & \vdots & \ddots & \vdots \\ m_{n1} & \dots & \dots & m_{nd} \end{pmatrix} * \begin{pmatrix} e_{11} & 0 & \dots & 0 \\ 0 & e_{22} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & e_{dd} \end{pmatrix} = \begin{pmatrix} m_{11} * e_{11} & m_{12} * e_{22} & \dots & m_{1d} * e_{dd} \\ m_{21} * e_{11} & m_{22} * e_{22} & \dots & \dots \\ \vdots & \vdots & \vdots & \vdots \\ m_{n1} * e_{11} & m_{n2} * e_{22} & \dots & m_{nd} * e_{dd} \end{pmatrix}$$

Au final, les colonnes de la matrice X sont les colonnes de la matrice M divisées par l'écart type calculé sur chaque colonne correspondante. X est la matrice centrée réduite de la matrice originale A.

1.2

Calculons $I_{D_u}(X) = \sum_{k=1}^{n} \|\vec{p}_{D_u}(x_i)\|^2$

$$I_{D_{u}}(X) = \sum_{k=1}^{n} \|\vec{p}_{D_{u}}(x_{i})\|^{2}$$

$$= \sum_{k=1}^{n} \langle x_{i}, u \rangle^{2}$$

$$= \sum_{k=1}^{n} (u^{t}.x_{i})^{2}$$

$$= \sum_{k=1}^{n} (u^{t}.x_{i})(u^{t}.x_{i})$$

$$= \sum_{k=1}^{n} (u^{t}.x_{i})(x_{i}^{t}.u)$$

$$= \sum_{k=1}^{n} u^{t}.(x_{i}.x_{i}^{t}).u$$

$$= u^{t}.[\sum_{k=1}^{n} (x_{i}.x_{i}^{t})].u$$

$$(1)$$

Avec la matrice $\Sigma = \sum_{k=1}^n (x_i.x_i^t)$, l'équation (1) peut s'écrire comme suit: $I_{D_u}(X) = u^t.\Sigma.u$

L'intérêt de calcul de la projection $I_{D_u}(X)$ est de savoir les valeurs de u qui permettent de maximiser $I_{D_u}(X)$.

Considérons le Lagrangien $L(\lambda, u) = I_{D_u}(X) - \lambda \cdot (u^t \cdot u - 1)$, avec la condition $u^t \cdot u = 1$.

Soit $L(\lambda, u) = u^{t} \cdot \Sigma \cdot u - \lambda \cdot (u^{t} \cdot u - 1)$:

$$\begin{split} \frac{\partial L(\lambda, u)}{\partial u} &= 0 \Rightarrow 2.\Sigma.u - 2.\lambda.u = 0 \\ &\Rightarrow \Sigma.u = \lambda.u \end{split}$$

Donc la valeur maximale sous contrainte $u^{t}.u = 1$ de $I_{Du}(X)$ est atteinte sur les vecteurs propres de la matrice Σ puisque diagonalisable et ses valeurs propres sont positives ou nulles(matrice symétrique et définie positive donc). Ces vecteurs propres correspondent aux valeurs propres λ_{i} de la matrice Σ .

Pour visualiser les points dans un plan R^3 , on prend les 3 premières projections qui correspondent aux 3 grandes valeurs propres de la matrice Σ .

Figure 1: Représentation en base PCA

Figure 2: Représentation en base canonique de \mathbf{R}^3

La dispersion des points sur la base canonique est plus forte que sur celle de base générée par les 3 premiers vecteurs propres de la matrice Σ , e qui confirme le principe de la méthode PCA: visualiser le maximum de points dans un espace minimal.