Intercepts of the Quadratic

 $\triangle = \sqrt{b^2 - 4ac}$

∆=64>0 r_{1,2}=-1,-9

Case2: △=0

Example 2.

Example 3.

 $\triangle = -1296 < 0$

z(0) = -75 z-intercept.

z(0) = 9 z-intercept.

Casel: $\Delta > 0$ $r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a} \text{ computes the r-intercepts of multiplicity 1.}$ z(0) = c computes the single z - intercept.

Given a quadratic $z(r) = a r^2 + b r + c$ compute its discriminant \triangle :

Example 1. $z(r) = r^2 + 10 \, r + 9$ compute its discriminant \triangle :

 $r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \, ac}}{2a} = \frac{-b \pm 0}{2a} = \frac{-b}{2a}$ single r-intercept of multiplicity 2.

$$z(r) = -3 r^2 + 30 r - 75$$
 compute its discriminant \triangle : $\triangle = 0$ $r_{1,2} = 5,5$

 $\begin{array}{c} z\\ \hline \\ -10 \\ \hline \\ -5 \\ \hline \\ -400 \\ \hline \\ -800 \\ \hline \end{array}$

z(0) = -405 z-intercept.

 $z(r) = -4 r^2 - 72 r - 405$ compute its discriminant \triangle :