Algorytmy i struktury danych Lista 1

Zadanie 1.

Jaka jest najmniejsza wartość n > 1, dla której algorytm o złożoności $44n^2$ działa (na tej samej maszynie) szybciej od algorytmu o złożoności 2^n ?

Zadanie 2.

Dla każdej funkcji f(n) i czasu t w poniższej tabelce, określ największy rozmiar n danych, dla których algorytm wykona obliczenia w czasie t. Zakładamy, że algorytm rozwiązujący problem potrzebuje f(n) mikrosekund dla danych rozmiaru n.

	1 sek.	1 min.	1 godz.	1 dzień	1 rok	1 wiek
$\log(n)$						
\sqrt{n}						
\overline{n}						
$n \log(n)$						
n^2						
n^3						
2^n						
$\overline{n!}$						

Zadanie 3.

Uporządkuj następujące funkcje rosnąco względem porządku O, czyli f jest w porządku z g wtedy i tylko wtedy, gdy $f \in O(g)$. Rozwiązanie uzasadnij.

- $2n^{\pi}$
- $\sqrt{2\pi n}$
- 13n + 13
- 10^{n}
- 33ⁿ
- $44n^2 \log n$
- e^{π}
- $7(\log n)^7$

Zadanie 4.

Uporządkuj następujące funkcje rosnąco względem porządku O, czyli f jest w porządku z g wtedy i tylko wtedy, gdy $f \in O(g)$. Rozwiązanie uzasadnij.

- $2^{\sqrt{\log n}}$
- 2ⁿ
- n^{4/3}
- $n(\log n)^3$
- $n^{\log n}$
- 2^{2ⁿ}
- 2^{n^2}