STAT 2270 Fill 2020 HWI

1- a) \(\begin{align*} \begin{align*} \text{Mq-vol} \\ \text{Green Acostq} \\

1- a) \(\begin{align*} \begin{align*} \begin{align*} \text{Mq-vol} \\ \text{Green Acostq} \\

1- a) \(\begin{align*} \begin{align*} \begin{align*} \text{Obs.} & \text{Eindapprodent of } \text{X} \\

= \begin{align*} \begin{align*} \begin{align*} \begin{align*} \begin{align*} \text{Obs.} & \text{Eindapprodent of } \text{X} \\

= \begin{align*} \begin{align*} \begin{align*} \begin{align*} \begin{align*} \text{Obs.} & \text{Eindapprodent of } \text{X} \\

= \begin{align*} \begin{ali

 $\mathbb{E}\left[\hat{f}(x) - f(x)\right]^{2} = \mathbb{E}\left[\hat{f}(x) - \mathbb{E}\left[\hat{f}(x)\right] + \mathbb{E}\left[\hat{f}(x)\right] - f(x)\right]^{2}$

= $\mathbb{E}[\widehat{f}(x) - \mathbb{E}[\widehat{f}(x)]]$ + $\mathbb{E}[\widehat{f}(x) - \widehat{\mathcal{E}}[\widehat{f}(x)]]$ ($\mathbb{E}[\widehat{f}(x)] - F(x)$)

+ E[E[F(X)] - F(X)]]

= Vc, (Fix) + Bics (Fix))2

Finelly we can rewrite

E[y-f(x)]2] = Va((f(x)) + Bras (f(x))2 + Va((E)

a) Let P: R -> R be a non- zero function such that p(Xi) =0, ie {1,..., n}. One such function could be P(X) = TT (X-X;) where the Xi's are those from Da Notice P(Xi) = 0, ie {1, n} io Pis O ever {x, xn? Now, consider a Function q: R -> R such that 9 (x) = Y; re{1, n} Now, consider the regression function Fg: R-) R defined as fo(x) = 2 p(x) + 9(x), 2 ER Fixed 1 By construction it follows [[Y; - f(x;)] = = [Y; - (Ap(x;) + g(x;))] = [(Y; - Y;)] = 0 The function f has perfect fit (Zelo loss). Moreover, this holds regardless of AER. If we consider the set of functions F = {fa/aeR} we get an incontable number of resussion functions with parfect fit with asport to Lp loss for any p. b) Consider a non-Zero Function 9:1R -> IR which has countable Zeroes on X. This is q(Xi)=0, i∈N. Consider also a fraction h: IR → IR that satisfies h(X) = Xi, i∈N Now consider the regression function for R -> IR For = 29(x)+h(x), fixed 2 elR once again the regression function obtainetes will have prefect fit w.r.t. Lp loss = [Y: - f(X:)] = = [Y: - (29(X:) + h(X:))] = = [Y: - Y:] = 0 Considering F= {Fa/2ER} we got as uncountable number of regression furtions with

perfect fit with aspect to Lp loss for any p.

F	
Exilcise 2 Con	
C) Let E70	and consider a knowled file > R where
	$\widehat{f}(x) = \begin{cases} f(x) & \text{if } x \neq \{x_1, \dots, x_n\} \\ \vdots & \text{if } x = X; \end{cases}$
Notice the	is regression estimpte files the data perfectly since f(X;) = Y; iefy,, h}. Moreover, by
constructs	son f ditfus from f only on a finite set, i.e., f ditfus from f only over a
Set of	messure zero. From all of the above f is a interpolator and the distance between
Fand	is less than Eusing Laborgue massure.
Righess-on	function behave almost as the time f
	Ten F
	•/.
	f differs from f only on the finite set
	{X1,, Xn}. This set has massive o.
	-
3 We use	Y=BTX+E and five model is Y=BTX+g(Z)+E* The form the user will take
here is	E = 9(7)+ E. In order for our model to be appropriate we need to set ify
E[8] = 0	ER" Vs.(E) = In62. This will impose the conditions:
	IE[9(Z)+ E*] = On the expedded velves should either cancel out or both expedded
_	Volum should be 0. Vol (9(Z)+ E*) = In62 Obs On is a vector in Rh
	X needs to be independent of g(Z) and E*
	If IE[g(z) + E*] = On EIRh : I won't be resourble to assume unbissedness
	If g(Z) non condem Ei mist be uncompleted. If g(Z) candom g(Z); t Ei mist
	be uncorrelated for all i.
	1

- A strong requirement would be g(Z) + Et ~ N(0, I62) : f g(Z) rendom or E* ~ N(0, I62) if g(Z) non-sandom