Remind chapter 4

Question 1: how moving charges/electric current behave in a given magnetic field (permanent magnets)?

Magnetic Field \vec{B} A magnetic field \vec{B} is defined in terms of the force \vec{F}_B acting on a test particle with charge q moving through the field with velocity \vec{v} :

$$\vec{F}_B = q\vec{v} \times \vec{B}. \tag{28-2}$$

The SI unit for \vec{B} is the **tesla** (T): 1 T = 1 N/(A·m) = 10^4 gauss.

Magnetic Force on a Current-Carrying Wire A straight wire carrying a current i in a uniform magnetic field experiences a sideways force

$$\vec{F}_B = i\vec{L} \times \vec{B}. \tag{28-26}$$

The force acting on a current element $i d\vec{L}$ in a magnetic field is

$$d\vec{F}_B = i \, d\vec{L} \times \vec{B}. \tag{28-28}$$

The direction of the length vector \vec{L} or $d\vec{L}$ is that of the current i.

A Charged Particle Circulating in a Magnetic Field A

charged particle with mass m and charge magnitude |q| moving with velocity \vec{v} perpendicular to a uniform magnetic field \vec{B} will travel in a circle. Applying Newton's second law to the circular motion yields

$$|q|vB = \frac{mv^2}{r},\tag{28-15}$$

from which we find the radius r of the circle to be

$$r = \frac{mv}{|q|B}. (28-16)$$

The frequency of revolution f, the angular frequency ω , and the period of the motion T are given by

$$f = \frac{\omega}{2\pi} = \frac{1}{T} = \frac{|q|B}{2\pi m}.$$
 (28-19, 28-18, 28-17)

Torque on a Current-Carrying Coil A coil (of area A and N turns, carrying current i) in a uniform magnetic field \vec{B} will experience a torque $\vec{\tau}$ given by

$$\vec{\tau} = \vec{\mu} \times \vec{B}. \tag{28-37}$$

Here $\vec{\mu}$ is the **magnetic dipole moment** of the coil, with magnitude $\mu = NiA$ and direction given by the right-hand rule.

Orientation Energy of a Magnetic Dipole The orientation energy of a magnetic dipole in a magnetic field is

$$U(\theta) = -\vec{\mu} \cdot \vec{B}. \tag{28-38}$$

If an external agent rotates a magnetic dipole from an initial orientation θ_i to some other orientation θ_f and the dipole is stationary both initially and finally, the work W_a done on the dipole by the agent is

$$W_a = \Delta U = U_f - U_i. {(28-39)}$$

Question 2: how moving charges/electric current create magnetic field?

The Biot-Savart Law The magnetic field set up by a current-carrying conductor can be found from the $Biot-Savart \ law$. This law asserts that the contribution $d\vec{B}$ to the field produced by a current-length element $i \ d\vec{s}$ at a point P located a distance r from the current element is

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{i\,d\vec{s} \times \hat{\mathbf{r}}}{r^2} \quad \text{(Biot-Savart law)}. \tag{29-3}$$

Here $\hat{\mathbf{r}}$ is a unit vector that points from the element toward P. The quantity μ_0 , called the permeability constant, has the value

$$4\pi \times 10^{-7} \,\mathrm{T \cdot m/A} \approx 1.26 \times 10^{-6} \,\mathrm{T \cdot m/A}$$
.

Magnetic Field of a Long Straight Wire For a long straight wire carrying a current *i*, the Biot–Savart law gives, for the magnitude of the magnetic field at a perpendicular distance *R* from the wire,

$$B = \frac{\mu_0 i}{2\pi R}$$
 (long straight wire). (29-4)

Magnetic Field of a Circular Arc The magnitude of the magnetic field at the center of a circular arc, of radius R and central angle ϕ (in radians), carrying current i, is

$$B = \frac{\mu_0 i \phi}{4\pi R}$$
 (at center of circular arc). (29-9)

Force Between Parallel Currents Parallel wires carrying currents in the same direction attract each other, whereas parallel wires carrying currents in opposite directions repel each other. The magnitude of the force on a length L of either wire is

$$F_{ba} = i_b L B_a \sin 90^\circ = \frac{\mu_0 L i_a i_b}{2\pi d},$$
 (29-13)

where d is the wire separation, and i_a and i_b are the currents in the wires.

Ampere's Law Ampere's law states that

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 i_{\text{enc}} \quad \text{(Ampere's law)}. \tag{29-14}$$

The line integral in this equation is evaluated around a closed loop called an *Amperian loop*. The current *i* on the right side is the *net* current encircled by the loop. For some current distributions, Eq. 29-14 is easier to use than Eq. 29-3 to calculate the magnetic field due to the currents.

Fields of a Solenoid and a Toroid Inside a *long solenoid* carrying current *i*, at points not near its ends, the magnitude *B* of the magnetic field is

$$B = \mu_0 in$$
 (ideal solenoid), (29-23)

where n is the number of turns per unit length. Thus the internal magnetic field is uniform. Outside the solenoid, the magnetic field is approximately zero.

At a point inside a *toroid*, the magnitude *B* of the magnetic field is

$$B = \frac{\mu_0 iN}{2\pi} \frac{1}{r} \quad \text{(toroid)},\tag{29-24}$$

where *r* is the distance from the center of the toroid to the point.

Field of a Magnetic Dipole The magnetic field produced by a current-carrying coil, which is a *magnetic dipole*, at a point *P* located a distance *z* along the coil's perpendicular central axis is parallel to the axis and is given by

$$\vec{B}(z) = \frac{\mu_0}{2\pi} \frac{\vec{\mu}}{z^3},\tag{29-27}$$

where $\vec{\mu}$ is the dipole moment of the coil. This equation applies only when z is much greater than the dimensions of the coil.

