

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

remarkable circumstance suggests the following question. Is this behaviour common also to the corresponding compounds of arsenic, phosphorus and nitrogen, and can the position of each of the five atoms with which these elements respectively combine be occupied indifferently by an electro-negative or an electro-positive element? This question, so important for the advance of our knowledge of the organic bases and their congeners, cannot now long remain unanswered.

5. "On the Dentate Body of the Cerebellum," By William Brinton, M.D. Communicated by R. B. Todd, M.D., F.R.S. &c. Received May 23, 1852.

The corpus dentatum has generally been described and recognised as a wavy line or lamina of grey matter, which is seen in certain sections of the crus of the cerebellum, and contains fibres apparently derived from the restiform body, and the processus e cerebello ad testes. Reil's account, with some vague and conflicting details, gives it a more definitely tubular form, although he is apparently not certain of the continuity of its upper and lower layers posteriorly.

The author explains these somewhat varying descriptions by the physical characters of the tissues investigated, and by the condition—fresh or hardened in spirit—of the specimens examined by different anatomists.

He deduces the form and situation of the recent corpus dentatum by uniting numerous and successive sections made in the three directions of space*. Its arrangement with respect to the fibres of the cerebellum, cerebrum, medulla oblongata, and medulla spinalis, is chiefly deduced from examinations of specimens hardened in alcohol.

By these two methods he is led to the following conclusions, that each corpus dentatum forms a tubular investment to the extremity of the processus e cerebello ad testem; it is open towards the fourth ventricle, and is connected with the opposite body by a commissure of grey matter in its median line. While its interior exclusively receives the fibres of this cerebro-cerebellar peduncle, its exterior radiates fibres to the various lobes of the cerebellum, which fibres, at the bottom of each lobe-stem, become inseparably mixed with a bundle from the restiform body, and with another from the pons varolii.

Its comparative anatomy in mammalia corresponds with this view; its minute anatomy does not contradict it. And while the physiological import of this arrangement eludes all conjecture, the author has little doubt that its anatomical structure and relations are best comprehended in the formula which he would thus assign to it, viz. that of being the cerebro-cerebellar ganglion.

6. "Proof of a sensible difference between the Mercurial and Air-Thermometers from 0° to 100° C." By J. J. Waterston, Esq.

^{*} Diagrams to this effect accompanied the paper.