Exercise 1. [20 pts]

Case: $\overline{\operatorname{succ}(\operatorname{pred} t) \to t}$

In this case, the same term can have different canonical terms. For instance, take "succ (pred z)". This can step to either:

- "z" Using the new rule
- "succ z" Using E-SUCC and E-PRED-ZERO

We can immediately recognize that both terms are in normal form and different, which is disastrous.

Case: $\overline{\text{iszero}(\text{succ }t) \to t}$

While the system might be confluent, the system is no longer deterministic. For instance, take "iszero (succ (pred z))". which can step to either:

- "false" using the new rule
- "iszero (succ z)" using E-ISZERO and E-PRED-ZERO

However, we also have that non-sensical terms step to sensical terms. For instance, we have "iszero (succ false)", which is non-sensical, that steps to "false"

Exercise 2. [20 pts]

Theorem 1. If v is a value and $\mathcal{D}: v \to^* v'$, then v = v'.

Proof. By structural induction on \mathcal{D}

Case.
$$\mathcal{D} = \overline{v \to^* v}$$
 refl
$$v' = v$$
 by refl

$$\mathcal{D}_0 = rac{v
ightarrow t}{v
ightarrow^* t} ext{ single}$$

We proceed by induction to show there is no valid on \mathcal{D}_0

Subcase. v = z z cannot step

By exhaustion of the rules

Subcase. $v = \operatorname{succ} nv$

 \mathcal{D}_1 : nv cannot step succ nv cannot step

by i.h. on nv E-SUCC only valid rule and \mathcal{D}_1

Exercise 3. [20 pts]

Lemma 1. Let $\mathcal{D}: t_1 \Rightarrow^* t_2$ and $\mathcal{E}: t_2 \Rightarrow^* t_3$. Then $t_1 \Rightarrow^* t_3$.

Proof. By induction on \mathcal{D}

Case.
$$\mathcal{D} = \overline{t_1 \Rightarrow^* t_1}$$
 m-refl $t_2 = t_1$ $\mathcal{E}: t_1 \Rightarrow^* t_3$

by m-refl by above

by i.h. with \mathcal{D}_2 and \mathcal{E} by m-step with \mathcal{D}_1 and \mathcal{F}

Theorem 2. If $\mathcal{D}: t \to^* s$, then $t \Rightarrow^* s$

Proof. Proof by induction on \mathcal{D} .

Case.
$$\mathcal{D} = \overline{t \rightarrow^* t}$$
 refl
 $t \Rightarrow^* t$

by m-refl

$$\mathbf{Case.} \ \ \mathcal{D} = \frac{ \begin{array}{c} \mathcal{D}_1 & \mathcal{D}_2 \\ t \rightarrow^* r & r \rightarrow^* r \\ \hline t \rightarrow^* s \end{array} }{t \rightarrow^* s} \ \, \mathbf{trans} \\ \mathcal{F}_1 : t \Rightarrow^* r \\ \mathcal{F}_2 : r \Rightarrow^* s \\ s \Rightarrow^* t \end{array}$$

by i.h. on \mathcal{D}_1 by i.h. on \mathcal{D}_2 by lemma with \mathcal{F}_1 and \mathcal{F}_2

Case.
$$\mathcal{D} = \frac{t \to s}{t \to^* s}$$
 single $\mathcal{F}: s \Rightarrow^* s$ $t \Rightarrow^* s$

 $\label{eq:by m-refl} \text{by m-refl} \text{ by m-step with } \mathcal{D}_0 \text{ and } \mathcal{F}$

Theorem 3. If $\mathcal{D}: t \Rightarrow^* s$, then $t \rightarrow^* s$

Proof. Proof by induction on \mathcal{D} .

Case.
$$\mathcal{D} = \overline{t \Rightarrow^* t}$$
 m-refl $t \rightarrow^* t$

by refl

$$\mathbf{Case.} \ \ \mathcal{D} = \frac{ \begin{array}{c} \mathcal{D}_1 & \mathcal{D}_2 \\ t \rightarrow r & r \Rightarrow^* s \\ \hline t \Rightarrow^* s \end{array}}{t \Rightarrow^* s} \ \, \text{m-step} \\ \mathcal{F}_1 : t \rightarrow^* r \\ \mathcal{F}_2 : r \rightarrow^* s \\ t \rightarrow^* s \end{array}$$

by step with \mathcal{D}_1 by i.h. on \mathcal{D}_2 by trans with \mathcal{F}_1 and \mathcal{F}_2

Exercise 4. [40 pts]

1. [5 pts]

2. [16 pts]

Theorem 4. Let $\mathcal{D}: t \to s$ and $\mathcal{E}: t \to r$, then s = r.

Proof. Proof by structural induction on \mathcal{D} .

$$\begin{array}{ll} \textbf{Case.} & \mathcal{D} = \overline{\text{leq} \; z \; nv \to \text{true}} & \textbf{E-LEQ-TRUE} \\ t = \text{leq} \; z \; nv & \text{By} \; \mathcal{D} \\ s = \text{true} & \text{By} \; \mathcal{D} \end{array}$$

Let us now match on \mathcal{E}

$${\bf SubCase.} \quad \mathcal{E} = \overline{{\tt leq} \; z \; nv \to {\tt true}} \; \; {\tt E-LEQ-TRUE}$$

$$s = {\tt true} \qquad \qquad {\tt By} \; \mathcal{E}$$

$$\mathbf{Case.} \quad \mathcal{D} = \overline{\mathsf{leq}\left(\mathsf{succ}\; nv\right)z \to \mathsf{false}} \ \ \mathbf{E}\text{-}\mathsf{LEQ}\text{-}\mathsf{FALSE}$$

$$t = \text{leq succ } nv \ z$$
 By \mathcal{D} $s = false$ By \mathcal{D} Let us now match on \mathcal{E}

$$\begin{array}{ll} \mathbf{SubCase.} & \mathcal{E} = \overline{\mathtt{leq} \; z \; nv' \to \mathtt{true}} \end{array} \; \begin{array}{ll} \mathtt{E-LEQ-TRUE} \\ & \\ \mathbf{Impossible} \end{array} \qquad \qquad \mathbf{This \; would \; imply} \; z = \mathtt{succ} \; nv \end{array}$$

$$\mathbf{SubCase.} \quad \mathcal{E} = \frac{t \to t'}{ \log t \; s \to \log t' \; s } \; \mathbf{E}\text{-LEQ-L}$$

Impossible This would imply $\operatorname{\mathtt{succ}} nv \to t'$, but $\operatorname{\mathtt{succ}} nv$ is in normal form.

$$\mathbf{SubCase.} \quad \mathcal{E} = \frac{t \to t'}{\mathsf{leq} \; nv' \; t \to \mathsf{leq} \; nv' \; t} \; \mathsf{E-LEQ-R}$$

Impossible

This would imply $z \to t'$, but z is in normal form.

$$\textbf{Case.} \quad \mathcal{D} = \overline{\text{leq}\left(\text{succ } nv_1\right)\left(\text{succ } nv_2\right) \rightarrow \text{leq } nv_1 \; nv_2} \;\; \texttt{E-LEQ-SUCC}$$

$$t = ext{leq succ } nv_1 ext{ succ } nv_2$$
 By \mathcal{D} $s = ext{leq } nv_1 ext{ } nv_2$ By \mathcal{D}

Let us now match on $\mathcal E$

SubCase.
$$\mathcal{E} = \frac{t \to t'}{\text{leq } t \ s \to \text{leq } t' \ s}$$
 E-LEQ-L

Impossible This would imply $\operatorname{succ} nv_1 \to t'$, but $\operatorname{succ} nv_1$ is in normal form.

$$\textbf{SubCase.} \quad \mathcal{E} = \frac{t \rightarrow t'}{\text{leq } nv \; t \rightarrow \text{leq } nv \; t} \; \text{E-LEQ-R}$$

Impossible This would imply $\operatorname{succ} nv_2 \to t'$, but $\operatorname{succ} nv_2$ is in normal form.

$$\textbf{Case.} \quad \mathcal{D} = \frac{t \rightarrow t'}{\log t \; s \rightarrow \log t' \; s} \; \textbf{E-LEQ-L}$$

$$t = \text{leq } t s$$
 By \mathcal{D}

 $\mathcal{D}_0:t\to t'$

$$s = \text{leq } t' s$$
 By \mathcal{D}

Let us now match on \mathcal{E}

$${f SubCase.}$$
 ${f \mathcal{E}}=\overline{{f leq}\;z\;nv o{f true}}$ ${f E-LEQ-TRUE}$

Impossible

This would imply $z \to t'$

SubCase.
$$\mathcal{E} = \overline{\operatorname{leq}\left(\operatorname{succ}\,nv\right)z o \operatorname{false}}$$
 E-LEQ-FALSE

Impossible This would imply $\operatorname{succ} nv \to t'$ but $\operatorname{succ} nv$ is in normal form

SubCase. $\mathcal{E} = \overline{\text{leq (succ } nv_1) \text{ (succ } nv_2) \rightarrow \text{leq } nv_1 \text{ } nv_2}}$ E-LEQ-SUCC Impossible This would imply succ $nv_1 \rightarrow t'$ but succ nv_1 is in normal form

$$\begin{array}{ccc} \mathcal{E}_0 \\ t \to t'' \\ \textbf{SubCase.} & \mathcal{E} = \overline{\textbf{leq} \ t \ s \to \textbf{leq} \ t'' \ s} \ \textbf{E-LEQ-L} \\ t' = t'' & \text{By i.h. on } \mathcal{D}_0 \ \text{and} \ \mathcal{E}_0 \ s = \textbf{leq} \ t' \ s & \text{by } \mathcal{E} \ \text{and above} \end{array}$$

SubCase.
$$\mathcal{E} = \frac{r \to r'}{\text{leq } nv \ r \to \text{leq } nv \ r'}$$
 E-LEQ-R Impossible

This would imply $nv \to t'$, but nv is in normal form.

 $\textbf{Case.} \quad \mathcal{D} = \frac{t \rightarrow t'}{\text{leq } nv \; t \rightarrow \text{leq } nv \; t} \; \text{E-LEQ-R}$

$$t = \mathsf{leq}\;t\;s$$
 By $\mathcal D$

 $\mathcal{D}_0:t\to t'$

$$s = \text{leq } t' s$$
 By \mathcal{D}

Let us now match on \mathcal{E}

$${f SubCase.} \quad {\cal E} = \overline{ ext{leq} \; z \; nv o ext{true}} \; { ext{ iny E-LEQ-TRUE}}$$

Impossible This would imply $nv \to t'$ but nv is in normal form

$$\mathbf{SubCase.} \quad \mathcal{E} = \overline{\mathsf{leq}\left(\mathsf{succ}\; nv\right)z \to \mathsf{false}} \ \texttt{E-LEQ-FALSE}$$

Impossible This would imply $z \to t'$ but z is in normal form

 $\textbf{SubCase.} \quad \mathcal{E} = \overline{ \frac{1}{\log \left(\operatorname{succ} \, nv_1 \right) \left(\operatorname{succ} \, nv_2 \right) \to \log \, nv_1 \, nv_2 } } \ \, \text{E-LEQ-SUCC}$ Impossible This would imply $\operatorname{succ} nv_2 \to t'$ bu $\operatorname{succ} nv_2$ is in normal form

 $\mathbf{SubCase.} \quad \mathcal{E} = \frac{r \to r'}{ \log r \; s \to \log r' \; s} \; \mathbf{E}\text{-LEQ-L}$

Impossible

This would imply $nv \to r'$, but nv is in normal form.

By i.h. on \mathcal{D}_0 and \mathcal{E}_0 $s = \text{leq } nv \ t'$

by \mathcal{E} and above

3. [4 pts]

 $\frac{t_1: \mathtt{Nat} \quad t_2: \mathtt{Nat}}{\mathtt{leq} \ t_1 \ t_2: \mathtt{Bool}} \ \mathtt{T-LEQ}$

4. [15 pts]

Theorem 5. If $\mathcal{D}: t \to t'$ and $\mathcal{E}: t: T$, then t': T

Proof. By induction on \mathcal{D}

 $\mathbf{Case.} \quad \mathcal{D} = \overline{\mathtt{leq} \; z \; nv \to \mathtt{true}} \; \, \mathtt{E-LEQ-TRUE}$

leq z nv : Booltrue: Bool

by \mathcal{E} and T - LEQby T - TRUE

 $\textbf{Case.} \quad \mathcal{D} = \overline{ \text{leq} \left(\text{succ} \; nv \right) \; z \to \text{false} } \ \ \textbf{E-LEQ-FALSE}$

by \mathcal{E} and T - LEQ $leq \ succ \ nv \ z : Bool$ false: Bool by T - FALSE

 $\textbf{Case.} \quad \mathcal{D} = \overline{ \frac{1}{\log \left(\operatorname{succ} \, nv_1 \right) \left(\operatorname{succ} \, nv_2 \right) \to \log \, nv_1 \, \, nv_2 } } \, \, \, \texttt{E-LEQ-SUCC}$

leq succ nv_1 succ nv_2 : Bool by \mathcal{E} and T - LEQ

 $\mathtt{succ}\; nv_1 : \mathtt{Nat}$

 $\mathtt{succ}\; nv_2 : \mathtt{Nat}$ by inversion on T - LEQ

 $nv_1: \mathtt{Nat}$

by inversion on T - SUCC $nv_2: \mathtt{Nat}$

by above and T - LEQ $leq nv_1 nv_2 : Bool$

$$\textbf{Case.} \quad \mathcal{D} = \frac{\frac{\mathcal{E}_0}{r \to r'}}{\lg r \ s \to \lg r' \ s} \ \texttt{E-LEQ-L}$$

 $\operatorname{leq} r s : \operatorname{Bool}$ by $\mathcal E$ and T - LEQ

 $r: \mathrm{Nat}$ $s: \mathrm{Nat}$ by inversion on T-LEQ $r': \mathrm{Nat}$ by i.h. on $\mathcal E$ and above $\mathrm{leq}\ r's: \mathrm{Bool}$ by T-LEQ and above

 $\textbf{Case.} \quad \mathcal{D} = \frac{t \to t'}{ \log nv \; t \to \log nv \; t'} \; \texttt{E-LEQ-R}$

leq nv t : Bool by \mathcal{E} and T - LEQ

 $\begin{array}{lll} nv: {\tt Nat} & & & & \\ t: {\tt Nat} & & & & \\ by \ inversion \ on \ T-LEQ \\ t': {\tt Nat} & & & \\ by \ i.h. \ on \ \mathcal{E} \ and \ above \\ {\tt leq} \ nv \ t': {\tt Bool} & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$

8