Análise

— prova escrita 1 — duas horas — 2023'24 —

Justifique, convenientemente, todas as suas respostas

1. (2 valores) Considere o conjunto A definido por

$$A = \{(x, y) \in \mathbb{R}^2 : x = 1 \text{ ou } (x - 1)^2 + y^2 < 4\}.$$

- (a) Faça um esboço do conjunto A;
- (b) Identifique o interior, a aderência e a fronteira do conjunto A.
- 2. (4 valores) Considere a função $f:\mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} \frac{y^3}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}.$$

- (a) Mostre que a função f é contínua em (0,0).
- (b) Calcule, ou justifique que não existem, $\frac{\partial f}{\partial x}(0,0)$ e $\frac{\partial f}{\partial y}(0,0)$.
- (c) Mostre que a função f não é derivável em (0,0).
- 3. (5 valores) Considere a função $f:D\subseteq\mathbb{R}^2\to\mathbb{R}$ definida por

$$f(x,y) = \frac{x}{y} + \cos(xy).$$

- (a) Identifique o domínio da função f;
- (b) Calcule as funções $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$;
- (c) Justifique que f é derivável em $(\pi, \frac{1}{2})$;
- (d) Determine $f'(\pi, \frac{1}{2})$;
- (e) Determine a taxa de variação instantânea da função f no ponto $\left(\pi,\frac{1}{2}\right)$ e na direcção do vector $\vec{u}=(1,1).$
- 4. (3 valores) Considere a seguinte equação de três variáveis reais

$$\ln(xy) + e^{xz} - z = 1. \tag{1}$$

- (a) Mostre que a equação (1) define z como uma função de (x,y) para pontos "próximos" de $(x_0,y_0,z_0)=\left(2,\frac{1}{2},0\right)$;
- (b) Determine $z'\left(2,\frac{1}{2}\right)$, sendo z(x,y) a função implícita cuja existência foi provada no exercício anterior;
- (c) Sendo z=z(x,y) a função implícita cuja existência foi provada na alínea (a), determine uma equação da recta tangente à curva de nível zero da função z(x,y) no ponto $\left(2,\frac{1}{2}\right)$.
- 5. (2 valores) Sejam $f:\mathbb{R}^3 \to \mathbb{R}$ uma função derivável tal que $\nabla f(2,3,0) = (-1,2,3)$ e $g:\mathbb{R}^2 \to \mathbb{R}$ a função definida por $g(x,y) = f\left(yx,x+y,\sin\left(\frac{\pi}{2}y\right)\right)$. Determine:
 - (a) $\frac{\partial g}{\partial x}(1,2)$;
 - (b) $\frac{\partial g}{\partial u}(1,2)$.

Fim