This supplementary material contains the simplification of the Dome test under standardization conditions. We refer the interested readers to the paper - Xiang et.al. 2016: screening tests for lasso problems - for detailed description of the Dome test.

The lasso model is defined as the following optimization problem

$$\widehat{\boldsymbol{\beta}}(\lambda) = \operatorname*{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^p} \frac{1}{2n} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \|\boldsymbol{\beta}\|_1, \tag{1}$$

where \mathbf{y} is the $n \times 1$ response vector, $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_p)$ is the $n \times p$ feature matrix, $\boldsymbol{\beta} \in \mathbb{R}^p$ is the coefficient vector, and $\lambda \geq 0$ is a regularization parameter. $\|\cdot\|$ and $\|\cdot\|_1$ respectively denote the Euclidean (ℓ_2) norm and ℓ_1 norm.

The dual formulation of the lasso problem (1):

$$\widehat{\boldsymbol{\theta}}(\lambda) = \underset{\boldsymbol{\theta} \in \mathbb{R}^n}{\operatorname{argmax}} \frac{1}{2n} \|\mathbf{y}\|^2 - \frac{n\lambda^2}{2} \|\boldsymbol{\theta} - \frac{\mathbf{y}}{n\lambda}\|^2$$
 (2)

subject to
$$|\mathbf{x}_i^T \boldsymbol{\theta}| \le 1, \quad \forall j = 1, \cdots, p,$$
 (3)

where $\widehat{\boldsymbol{\theta}}(\lambda)$ is the dual optimal solution of Problem (1) under the constraints (3).

First, since $\frac{\mathbf{y}}{n\lambda_{max}}$ (where $\lambda_{max} = |\frac{1}{n}\mathbf{x}_{*}^{T}\mathbf{y}|$) is a feasible solution to the dual problem of the lasso, the *default spherical bound* (based on Eq. 22 of the paper Xiang et. al. 2016) is, $\|\boldsymbol{\theta} - \frac{\mathbf{y}}{n\lambda}\| \leq \frac{\|\mathbf{y}\|}{n} (\frac{1}{\lambda} - \frac{1}{\lambda_{max}})$. We then have the following dome region (for non-negative lasso problem) based on notations in Section 4.3,

$$D(\mathbf{q}, r; \mathbf{n}, c) = \left\{ \boldsymbol{\theta} : \|\boldsymbol{\theta} - \frac{\mathbf{y}}{n\lambda}\| \le \frac{\|\mathbf{y}\|}{n} (\frac{1}{\lambda} - \frac{1}{\lambda_{max}}), \frac{1}{\sqrt{n}} \mathbf{x}_*^T \boldsymbol{\theta} \le \frac{1}{\sqrt{n}} \right\}$$

with center $\mathbf{q} = \frac{\mathbf{y}}{n\lambda}$ and radius $r = \frac{\|\mathbf{y}\|}{n} (\frac{1}{\lambda} - \frac{1}{\lambda_{max}})$. $\mathbf{n} = \frac{1}{\sqrt{n}} \mathbf{x}_*$ is the unit norm to the half-space $\{\mathbf{x}_*^T \boldsymbol{\theta} \leq 1\}$, and $c = \frac{1}{\sqrt{n}}$.

Eqs. (24) - (26) in Section 4.3 become the following,

$$\psi_d = (\mathbf{n}^T \mathbf{q} - c)/r = \frac{1}{\sqrt{n}} (\frac{\lambda_{max}}{\lambda} - 1)/r$$

$$\mathbf{q}_d = \mathbf{q} - \psi_d r \mathbf{n} = \frac{\mathbf{y}}{n\lambda} - \frac{1}{n} (\frac{\lambda_{max}}{\lambda} - 1) \mathbf{x}_*$$

$$r_d = r \sqrt{1 - \psi_d^2} = \frac{\lambda_{max} - \lambda}{n\lambda} \sqrt{\frac{\|\mathbf{y}\|^2}{\lambda_{max}^2} - n}$$

According to **Theorem 3**, the screening test for a nondegenerate dome $D(\mathbf{q}, r; \mathbf{n}, c)$ at jth feature \mathbf{x}_i :

$$T_{D(\mathbf{q},r;\mathbf{n},c)}(\mathbf{x}_j) = \begin{cases} 1; & \text{if } V_l(\frac{1}{\sqrt{n}}\mathbf{x}_*^T\mathbf{x}_j, \|\mathbf{x}_j\|) < \frac{\mathbf{y}^T}{n\lambda}\mathbf{x}_j < V_u(\frac{1}{\sqrt{n}}\mathbf{x}_*^T\mathbf{x}_j, \|\mathbf{x}_j\|); \\ 0; & \text{otherwise}; \end{cases}$$
(4)

The Dome test rejects \mathbf{x}_j if $T_{D(\mathbf{q},r;\mathbf{n},c)}(\mathbf{x}_j) = 1$.

For the lasso problem, $V_u(t_1, t_2) = 1 - M_1(t_1, t_2)$ and $V_l(t_1, t_2) = -V_u(-t_1, t_2) = -1 + M_1(-t_1, t_2)$. $M_1(t_1, t_2)$ is given by the following definition with $|\psi_d| \leq 1$.

$$M_1(t_1, t_2) = \begin{cases} rt_2, & \text{if } t_1 < -\psi_d t_2; \\ -\psi_d rt_1 + r\sqrt{t_2^2 - t_1^2}\sqrt{1 - \psi_d^2}, & \text{if } t_1 \ge -\psi_d t_2. \end{cases}$$

Let $t_1 = \frac{1}{\sqrt{n}} \mathbf{x}_*^T \mathbf{x}_j, t_2 = ||\mathbf{x}_j|| = \sqrt{n}$ (due to standardization). With some algebra, $t_1 < -\psi_d t_2$ implies $\mathbf{x}_*^T \mathbf{x}_j < -\frac{n\lambda_{max}}{||\mathbf{y}||}$. $M_1(t_1, t_2), V_l(t_1, t_2), V_u(t_1, t_2)$ can be rewritten as,

$$M_1(\frac{1}{\sqrt{n}}\mathbf{x}_*^T\mathbf{x}_j, \|\mathbf{x}_j\|) = \begin{cases} \frac{\|\mathbf{y}\|}{\sqrt{n}}(\frac{1}{\lambda} - \frac{1}{\lambda_{max}}), & \text{if } \mathbf{x}_*^T\mathbf{x}_j < -\frac{n\lambda_{max}}{\|\mathbf{y}\|}; \\ -\frac{\lambda_{max} - \lambda}{n\lambda}\mathbf{x}_*^T\mathbf{x}_j + \frac{\lambda_{max} - \lambda}{n\lambda}\sqrt{n - \frac{1}{n}}(\mathbf{x}_*^T\mathbf{x}_j)^2}\sqrt{\frac{\|\mathbf{y}\|^2}{\lambda_{max}^2} - n}, & \text{if } \mathbf{x}_*^T\mathbf{x}_j \ge -\frac{n\lambda_{max}}{\|\mathbf{y}\|}; \end{cases}$$

$$V_{u}(\frac{1}{\sqrt{n}}\mathbf{x}_{*}^{T}\mathbf{x}_{j}, \|\mathbf{x}_{j}\|) = \begin{cases} 1 - \frac{\|\mathbf{y}\|}{\sqrt{n}}(\frac{1}{\lambda} - \frac{1}{\lambda_{max}}), & \text{if } \mathbf{x}_{*}^{T}\mathbf{x}_{j} < -\frac{n\lambda_{max}}{\|\mathbf{y}\|}; \\ 1 + \frac{\lambda_{max} - \lambda}{n\lambda}\mathbf{x}_{*}^{T}\mathbf{x}_{j} - \frac{\lambda_{max} - \lambda}{n\lambda}\sqrt{n - \frac{1}{n}}(\mathbf{x}_{*}^{T}\mathbf{x}_{j})^{2}\sqrt{\frac{\|\mathbf{y}\|^{2}}{\lambda_{max}^{2}} - n}, & \text{if } \mathbf{x}_{*}^{T}\mathbf{x}_{j} \geq -\frac{n\lambda_{max}}{\|\mathbf{y}\|}; \end{cases}$$

$$V_l(\frac{1}{\sqrt{n}}\mathbf{x}_*^T\mathbf{x}_j, \|\mathbf{x}_j\|) = \begin{cases} -1 + \frac{\|\mathbf{y}\|}{\sqrt{n}}(\frac{1}{\lambda} - \frac{1}{\lambda_{max}}), & \text{if } \mathbf{x}_*^T\mathbf{x}_j > \frac{n\lambda_{max}}{\|\mathbf{y}\|}; \\ -1 + \frac{\lambda_{max} - \lambda}{n\lambda}\mathbf{x}_*^T\mathbf{x}_j + \frac{\lambda_{max} - \lambda}{n\lambda}\sqrt{n - \frac{1}{n}(\mathbf{x}_*^T\mathbf{x}_j)^2}\sqrt{\frac{\|\mathbf{y}\|^2}{\lambda_{max}^2} - n}, & \text{if } \mathbf{x}_*^T\mathbf{x}_j \leq \frac{n\lambda_{max}}{\|\mathbf{y}\|}; \end{cases}$$

Plugging these terms into (4) with some algebra yields to the Dome test in three cases:

• If $\mathbf{x}_*^T \mathbf{x}_j < -\frac{n\lambda_{max}}{\|\mathbf{y}\|}$, the Dome test (4) rejects \mathbf{x}_j if,

$$-n\lambda + (\lambda_{max} - \lambda)\mathbf{x}_{*}^{T}\mathbf{x}_{j} + (\lambda_{max} - \lambda)\sqrt{n - \frac{1}{n}(\mathbf{x}_{*}^{T}\mathbf{x}_{j})^{2}}\sqrt{\frac{\|\mathbf{y}\|^{2}}{\lambda_{max}^{2}} - n} < \mathbf{y}^{T}\mathbf{x}_{j} < n\lambda - \sqrt{n}\|\mathbf{y}\|\frac{\lambda_{max} - \lambda}{\lambda_{max}}$$

• If $\mathbf{x}_*^T \mathbf{x}_j > \frac{n\lambda_{max}}{\|\mathbf{y}\|}$, the Dome test (4) rejects \mathbf{x}_j if,

$$-n\lambda + \sqrt{n} \|\mathbf{y}\| \frac{\lambda_{max} - \lambda}{\lambda_{max}} < \mathbf{y}^T \mathbf{x}_j < n\lambda + (\lambda_{max} - \lambda) \mathbf{x}_*^T \mathbf{x}_j - (\lambda_{max} - \lambda) \sqrt{n - \frac{1}{n} (\mathbf{x}_*^T \mathbf{x}_j)^2} \sqrt{\frac{\|\mathbf{y}\|^2}{\lambda_{max}^2} - n}$$

• If $-\frac{n\lambda_{max}}{\|\mathbf{y}\|} \leq \mathbf{x}_*^T \mathbf{x}_j \leq \frac{n\lambda_{max}}{\|\mathbf{y}\|}$, the Dome test (4) rejects \mathbf{x}_j if,

$$-n\lambda + (\lambda_{max} - \lambda)\mathbf{x}_{*}^{T}\mathbf{x}_{j} + (\lambda_{max} - \lambda)\sqrt{n - \frac{1}{n}(\mathbf{x}_{*}^{T}\mathbf{x}_{j})^{2}}\sqrt{\frac{\|\mathbf{y}\|^{2}}{\lambda_{max}^{2}} - n}$$

$$< \mathbf{y}^{T}\mathbf{x}_{j}$$

$$< n\lambda + (\lambda_{max} - \lambda)\mathbf{x}_{*}^{T}\mathbf{x}_{j} - (\lambda_{max} - \lambda)\sqrt{n - \frac{1}{n}(\mathbf{x}_{*}^{T}\mathbf{x}_{j})^{2}}\sqrt{\frac{\|\mathbf{y}\|^{2}}{\lambda_{max}^{2}} - n}$$