椭圆型

圆筒型

(2) 接转子*啮合与否*(Intermeshing)

相切型,切线型

啮合型, 联锁型

(3)接转子*转速不同*(Rotor Speed)

慢速 以XM-250为例 ≤20rpm

中速 以XM-250为例 30~50rpm

高速 以XM-250为例 ≥60rpm

转速与其它机械相比,属低速范围,但对炼胶 作业来讲却是高速了,因炼胶要消耗大量能量,产 生大量热量,这两点都限制转速范围。 (4) 按转子转速变化与否

(Speed Change or Not)

(5) 接转子*外表面结构*来分 (The Outer Surface of The Structure)

单速 双速 转子具有两个速度 变速

普通型 四棱、两棱 特殊型 { 销钉型转子 螺旋型

(6) 按密炼室结构来分 (Mixing Chamber Structure) 普通型 特殊型 { 销钉密炼室 翻转密炼室

(7) 以*密炼机的容量*来分 (Mixer Capacity) 大容量(规格)密炼机370L 中容量 80-270L 小容量 10-50L 试验用密炼机在10L以下

(8) 接转子速比 (Rotor Speed Ratio) 异步转子 同步转子

§1-3 生产厂家

一、国外

目前世界各国生产密炼机的厂家较多,产量较大,但具有竞争能力的仍是以下三家:

- 1、美国 Farrel Birminghan Co. 法勒尔·伯明翰公司 D型和F型为其首创:
- 2、德国 Werner&Pfleiderer Co. (简称W&P公司) 维尔纳·普弗莱德瑞尔公司, GK-UK和GK-N/GK-E系列为其首创;
- 3、英国 Francis Shaw Co. 弗兰西斯·肖公司, K型属于首创。

此外还有日本的Kobe Steel 神戸制钢所研制的BB型、D型、F型; 意大利Pomini伯米尼公司; 西班牙的Guix Co. 魁克斯公司的挑担式GK和F结合

苏联*布尔什维克厂*PC型、椭圆型;

意大利 Comerio Ercole SPA依·科未里奥公司, MA型密炼机为其独创,1936年生产并取得专利。

二、国内

大连榜塑机械厂:最早生产国产密炼机的厂家,引进苏联图纸。目前国内橡胶厂大部分都是采用的该厂产品,1986年已仿制出F270L密炼机

益阳像机厂:是60年代我国新建的大型橡机厂,也生产了不少密炼机。从德国引进GK型密炼机制造技术,1987年已生产出GK270密炼机。

<u>上海橡机厂</u>(原茶陵机器厂):是生产中型密 炼机的工厂,其产品质量好。

大连橡塑机械厂生产的 规格范围: 25L-650L 的密炼机

益阳橡机厂生产的 GE580密炼机

上海双象生产的密炼机

上海橡机二厂: 生产中小型密炼机 四///亚西机器厂: 生产中小型密炼机, 其特点是用行星减速机

天津橡机厂: 生产中小型密炼机

天津电工机械厂:生产中小型密炼机

桂林橡机厂: 生产中小型密炼机

此外还有不少塑料机械厂、轻工机械厂生产密炼机。

§1-4 规格与技术特征

1、规格

过去采用密炼室的工作容量和主动转子转速表示; 现在采用密炼室的总容量/主动转子的转速表示。

国产密炼机的规格表示法:

XM - 250/20

X表示橡胶, M表示密炼机, 250表示密炼机的总容量, 20表示转子转速

X (S) M-75/35x70

X表示橡胶, S表示塑料, M表示密炼机, 75表示密炼机总容量, 双速(35和70转/分)

美Banbury密炼机:

3D, 9D, 11D, 27D

过去, D型:

现在, F型:

F40, F120, F270, F620 德国W&P密炼机,

160UK

过去, GK-UK: GK-50UK, GK-

现在, GK-N,: GK-90N, GK-

270N,

GK-E : GK-

90E, GK-270E 英Franis Shaw密炼机:

KO K1 K2 K5 K6 K7 K2A K4

2、技术特征

		表 4-1	国产常用的密	常机技术特	征	010 .	((室)	
项	· I	2L	M-25	X(S)M-30	XM-50/X 35×70	XM-140/20	XM-140/40	
密炼室有效容量, 升 密炼室工作容量, 升 转子转速, 转/分		4.3 2 33~100	46 25 50	50 30 42	75 50 35/70	253 140 20	245 140 40	
电动机	功率, 干瓦 转速, 转/分	7.3~22 470~1410	55 980	75 980	110/220 490/980	240	630	
卸料门形式		滑动	滑动。	下落	滑 动	滑动	下落	
外形尺寸	长,米 宽,米 高,米	1.505 1.085 3.037	3.535 1.210 2.973	4.10 1.85 3.15	6.6 4.85 4.14	8.66 3.012 4.685	9 2 5.54	
重量 (包括电动机), 吨		2.5	7.5	11	18	45	50	

2、技术特征(新式)

● 主要技术参数 MAIN TECHNICAL PARAMETERS

했당 Model		X(S)M-50 × 40A	X(S)M-50 × (660)B	X(S)M-75 × 40E	X(S)M-75×35×70E	X(S)M-75 × 40B	X(S)M-75 × 35 × 70B	X(S)M-80 × 40A	X(S)M-80 × (6 60)	X(S)M-110 × 40	X(S)M-110 × (6-60)	
密练宝总容积 L Mixing chamber total volume		50 (二楼) (two wings)		75 (二枚) (two wings)				(two wings) (four wings) (two		二校) vings)		
密炼宝工作容积 L Mixing chamber net volume		30 (填充系数取0.6)(fill factor: 0.6)			Control of the control	系数取0.66) lor: 0.66)		60 (填充系数数0.75) (fill factor: 0.75)	5) 57(填充系数取0.75) 82.5 (填充系数取0. (fill factor: 0.75) (fill factor: 0.75)		E41502500500.00	
后转子转速 r/min Rear rotor speed		40	6~60	40 (前季子) (front rotor)	35×70 (前转子) (front rotor)	40 (前转子) (front rotor)	35×70 (前转子) (front rotor)	40	6-60	40	6-60	
转子速比 Rotor speed ratio		1:1.15		1:1.15				1:1.15		1:1.15		
压缩空气压力 Mpa Compressed air pressure		0.6-0.8		0.6-0.8				0.6-0.8		0.6-0.8		
压缩空气消耗量 m ^N h Compressed air consumption		-20		-40				-35		-60		
冷却木 Cooling water	压力 Pressure	Mpa	0.3-0.4		0.2-0.4				0.3 - 0.4		0.3-0.4	
	耗水量 Waterconsumption	m⊗h	7~10		10~30				25		27-45	
推汽 Steam	压力 pressure	Мра	0.5~0.8			0.4	~ 0.8		0.5-0.8		0.5~0.8	
	消耗量 Consumption	kg/h	200		250~300				300		720	
热油 Hot oil	加热功率 Heating power	kW	60		60				60		150	
	抽泵流量 Oil pump flow	m³/h	30		30				30		30	
主电动机 Main motor	功率 power	kW	95(AC)	132(DC)	155(AC)	110/220(AC)	155(AC)	110/220(AC)	210(AC)	355(DC)	240(AC)	450(DC)
SK.	转速 Speed	r/min	590	990	585	490/980	585	490/980	743	1000	985	1000
外形尺寸(长×変×高) mm Overall dimension(L×W×H)		.5910 × 2510 × 3200	8000 × 3330 × 5260	6510×5100×4000			6965 × 2760 × 4500	7150 × 3100 × 4500	6987 × 2640 × 4392	6807 × 2640 × 4392		
重量(不含电气) t Weight(except electric system)		- 14.85	~ 12.9	~21.5	~ 22.5	~23	~23	~24		-	23	
卸料、镀紧结构特点 Discharge and locking device features		下落式卸料、新板式镀紧 Drop type discharge, locking by latch		推动式卸料、无锁紧 Sliding discharge, no locking				下落式卸料、插板式或曲拐式镀紧 Drop type discharge, looking by latch or toggle type		下落式卸料、插板式或曲拐式镀紧 Drop type discharge, looking by latch or logglie type		
密炼室特点 Mixing chamber features		密炼室钻孔式加热或冷却 Mixing chamber is drilled for heating or cooling		密炼室夹套式加热波冷却 Mixing chamber is of jacket construction for heating or cooling				密線室钻孔式加热或冷却 Mixing chamber is drilled for heating or cooling		密媒室钻孔式加热或冷却 Mixing chamber is drilled for heating or cooling		

1)密炼室空容量,总容量,工作容量的区别。

空容积

总容积

工作容积

- 2) 电机功率。随转子转速不同而异,转速提高 一倍电机功率增加1~4倍;
- 3)转速。小规格转速高,大规格转速低,以便胶料能经受同样的剪切速率与剪切应力。
- 4)冷却消耗量很大。

§1-5 基本结构

整体结构

整 体结 构

系

部分Mixing Feed module ressure ran 部分 Discharge 装置部分Drive

「系统 Heating&

ystempressed Hydraulie Elestric controlle Lubrication

X(S)M-250/40椭圆型密炼机结构图

密炼机

密炼机各部分组装模拟

密炼机组装动画

密炼机

2、每个部分组成及作用

(1) 混炼部分

混炼部分主要有转子(rotor)、密炼室(mixing chamber)、密封装置(sealing device)等组成。

从图上可以看出,混炼部分主要有上、下机壳6、4,上、下密炼室7、5,转子8,密封装置(图上看不见)等组成。

下机壳4用螺栓固定在 机座1上,上机壳6与下 机壳4用螺栓紧固在一起 。上、下机壳内分别固 定有上下密炼室7和5, 上、下密炼室带有夹套 (新型密炼机采用钻孔 冷却,不必带有夹套)

转子两端用双列圆锥滚子轴承安装在 上、下机壳中,两转子通过安装在减 速箱速比齿轮的带动,在环形的密炼 室内做不同转速的相对回转,上、下 密炼室内表面及转子工作部分的突棱 及全部椭圆型外表面均堆焊硬质合金 , 提高硬度, 以增加使用寿命。

密炼机转子

啮合型转子(IntermeshingRotor)

• 剪切型转子 (Shear Rotor)

ZZ2型转子

NR5型转子

前密炼室壁

后密炼室壁

密炼室

◆ 为了防止炼胶时粉料及胶料向外溢出, 转子两端设有反螺纹与端面接触式自动 密封装置(或其它各种型式密封)。密 封装置的摩擦面用油泵强制注入干油进 行润滑(国内这一点较差)。干油泵由 前转子带动,调节油泵摇杆的长度和油 泵活塞的螺钉,可调节油泵的供油量 这一部分是密炼机的核心部分,其主要 作用是对胶料进行混合、剪切、捏炼

外压式端面密封装置

液压式端面密封装置

(2) 加料部分

它主要右加料室和斗形的加料口以及翻板门(加 料门)11组成,加料门(翻板门)的开关由气缸 带动, 安装在密炼室的上机壳6上面, 在加料口 上方安有吸尘罩,使用单位可在吸尘罩上安置管 道和抽风机,以便达到良好的吸尘效果。加料斗 的后壁设有方形孔, 根据操作需要可将方形孔盖 板拿掉,安装辅助加料管道,一般安装炭黑管道 ,自动加入炭黑,在侧面右一小圆孔,以便安装 自动注油管道。

这部分 主要是用于<u>加料和瞬间存料</u>。。

◆ 加料板。

◆ 加料门。

(3) 压料部分

它主要由上顶栓9和推动上顶栓做上、下往复运动的气缸14组成,各种物料从加料口加入后, 关闭翻板门(加料门)由气缸14操纵上顶栓将 物料压入密炼室中,并在炼胶过程中给物料一 定的压力来加速炼胶过程。

它的<u>主要作用</u>:给胶料一定的压力,加速炼胶过程,提高炼胶效果。

如果不加压, 胶料就吃不进去, 等于开炼机一样, 效率较低, 加压后, 使胶料能较顺利进入转子之间进行混炼。

上顶栓与物料接触的表面,堆焊耐磨合金,增加耐磨性,上顶栓内腔通冷却水冷却。

压料部分

(4) 卸料装置部分

主要由安装在密炼室下面的下顶栓3和下顶栓锁紧机构2所组成,下顶栓固定在旋转轴上,而旋转轴由安装在下机壳侧壁上的旋转油缸17带动,使下顶栓以摆动形式开闭。

下顶栓锁紧机构2主要由一旋转轴和锁紧栓所组成(或其他型式)。锁紧栓的动作由往复式油缸16驱动。在下顶栓上装有热电偶,用于测量胶料在炼胶过程中的温度。

所以它的<u>主要作用</u>,就是在炼胶完毕后排出胶料,也就是卸料。下顶栓内可通冷却水冷却,下顶栓与物料接触的''形表面应堆焊耐磨合金,增加其耐磨性。

卸料门动作示意

(5) 传动装置部分

主要有电机22,弹性联轴节21,减速机20和齿形联轴节19等组成。安装在传动底座上,<u>其</u>作用:传递动力,使转子克服工作阻力而转动,从而完成炼胶作业。

(6) 底座

主要由机座而组成,有的分为主机底座和传动底座。

<u>其作用:</u>供密炼机使用,在其上安装主机和传动系统的部件。

(7) 加热冷却系统

作用 ">根据工艺要求,控制炼胶过程中服

采用恒温水循环冷却后,可以发现:

- 1) 消灭"露水",可缩短混炼周期50%;
- 2) 峰值功率降低,能耗节省10—20%;
- 3)减少冷却水消耗可达80%;
- 4) 大大降低设备的热应力,延长机体寿命;
- 5) 改善混炼胶的分散度;
- 6) 增大填充系数:
- 7) 消除许多操作误差;
- 8) 保持每批胶料之间的均匀性;
- 9) 为配方人员提供控制参数的新方法。

(8) 液压系统

主要由一个双联叶片油泵15,旋转油缸17, 往复油缸16,管道和油箱等组成。它是卸料机 构动力供给部分。用于控制下顶栓及下顶栓锁 紧机构的开闭。

(9) 气压系统

主要由气缸14,活塞13,加料门的气缸,气阀,管道和压缩空气等组成。它是加料,压料机构的动力供给部分。用于控制上顶栓的升降,加压及翻板门的开闭。

(10) 电控系统

主要由控制箱,操作机台和各种电气仪表组成,它是整个机台的操作中心。

(11) 润滑系统

主要由<u>油泵</u>,<u>分油器</u>和<u>管道</u>组成,目的是为了使各个转动部分(如旋转轴、轴承、密封装置的密封环摩擦面等)减少摩擦。增加使用寿命,向这些摩擦面注入润滑油。

作用: 向每个转动部位, 注入润滑油, 以致减少运动部件之间的摩擦, 延长其使用寿命。

第二节 工作原理和主要参数

§2-1 工作原理

§ 2-2 主要参数

§ 2-1 工作原理

在密炼室内, 生胶的混炼和混炼胶的混炼过程, 比开炼机的塑炼和混炼要复杂的多。物料加入密 炼室后,就在由两个具有*螺旋棱、有速比、相对* 回转的转子与密炼室壁。上、下顶栓组成的混炼 系统内受到不断变化反复进行的强烈剪切和挤压 作用,使胶料产生剪切变形,进行了强烈的捏炼。 由于转子有螺旋棱,在混炼时胶料反复地进行轴 向往复运动,起到了搅拌作用,致使混炼更为强 烈。

密炼机的炼胶过程是比较复杂的,我们可以从下面的图简单地表示炼胶过程。

混炼

就是使配合剂分散在橡胶中

如何把配合剂分散在生胶中,主要看生胶的湿润能力及表面张力,也要看配合剂是否易被打湿。

工艺上

可增加表面活性剂硬脂酸等,以帮助湿润配合剂

机械上

必须以一定的作用力,以便将配合 剂混入生胶中,并破坏其聚集体

1、细分(break)

基 本 步 骤 2、混入(捏炼) (intermix, blend)

3、分散(微观分散,分散混炼) (Dispersive Mixing)

5、塑化阶段 (Milling Stage)

1、细分(break): 将较大的配合剂团块或聚集体进一步粉碎、分细

使橡胶和配合剂粉碎

2、混入(捏炼) intermix, blend

将粉状或液态物料混入橡胶中形成粘结块(需要较长时间),要使配合剂混入,首先必须使块状橡胶变形,以形成与填充剂接触的新界面.此界面形成的方式,从理论上分析有两种。

A、在低速下拉伸橡胶时,它可像液体一样的流动。被充分拉伸后,填充剂就会粘着在新生的界面上。然后,橡胶收缩将粘着的填充剂包围起来,并形成一个整体,就像把橡胶的棱边拉伸、包卷,再拉伸等,最后在挤压下形成一个整体。

B、在高速下使橡胶变形时,它呈现固体性质,即发生脆性破坏而成粒状。这些新生成的胶粒表面上就布满了填充剂接着就在压力下,结合成一整体,成为块胶料。

由于天然胶强度大,尤其在采用老式慢速密炼机时, 其混入方式显然属于A的形式;而丁苯胶,顺丁胶,乙 丙胶等所谓干酪状橡胶(与天然胶相比),在密炼机 转子转速达到某种程度以上时,即不能发挥其弹性, 就可能出现B的形式。 有人做过实验:充油丁苯与顺丁胶并用进行混炼, 1.3kg胶,在混炼初期竟被分割成1800块,表面 布满炭黑的颗粒,但进一步混炼结合为30块胶料, 再进一步混炼,则成为一个整体了。

由此可见,B的形式简单又有效。故近代的高速密炼机是较理想的混炼设备。

3、分散(微观分散,分散混炼) Dispersive Mixing

在混入阶段,虽然填充剂混入橡胶中,并形成了 一个整体,但填充剂的粒子仍为较大的团聚集体 (二次聚集体)。要使这些由范德华力(附聚集力) 而结合的二次聚集体破坏,则需施加一定外力。 由于混炼胶的粘度和转子转速的影响,在填充剂 粒子中产生了牵引力(即剪切力), 一旦这个力超 过了填充剂二次聚集体的聚集力后,填充剂就逐 渐分散开来,生成的各个粒子(炭黑一次聚集体) 就沿着橡胶滚动的方向而移动。

因此在分散阶段,需要一定的剪应力,以便破坏聚集体,若剪应力小于附聚力,则分散难于进行。

对于非牛顿流体

最大剪切 $\gamma_{\max} = \gamma_t = \frac{\pi D n}{h}$

111一胶料粘度

m一流变常数

yt 一转子棱处剪切速率

D一转子棱回转直径

n一转速

h一间隙

则 $\tau_{\text{max}} = \eta_1 (\pi \text{ Dn/h})^m$

由式可见,增大转子直径、转速,减小间隙,均可提高剪切应力,从而提高分散的速度。

4、简单结合(单纯混合,宏观分散,分布混炼) Simple Binding

将粒子从一点移到另一点,并不改变其物理形状和大小,主要是使物种进一步分散均匀。

均匀化需要使胶料如在开炼机上那样往复捣动(用人工或翻胶装置),在密炼机中则主要靠转子螺旋突棱的作用使其在密炼室中往复运动。当剪切应力一旦超过破碎填充剂二次聚集体的吸附力之后,填充剂的分散就与剪切应力无关,而决定于施加给混炼胶总剪切应变量。

总剪切变形
$$\bar{\gamma} = \gamma_{\max} \cdot t = \frac{\pi D n}{h} t$$

t一混炼时间 D一转子棱回转直径 n-转速 h-间隙

由式可知,剪切速率与混炼时间对剪切应变 量影响很大,若要在相同的混炼时间内达到一 定的,可需增加D、n,减小h。

实际上,在密炼过程中,在密炼机的密炼室 内,以上几个基本过程是同时进行的。

5、塑化阶段 Milling Stage

由于力一化学作用而使高聚物主链断裂,从而使之变化更易变形如弹性较小的状态,即改变物料的流变特性,使之适应于后面各加工过程的需要。

胶料在密炼室中的混炼过程

◆ 生胶和配合剂由加料斗加入,首先落入两 个相对回转的转子上部,在上顶栓的压力 及摩擦力的作用下,被带入两转子之间的 间隙处,受到一定的捏炼作用,然后由下 顶栓的尖棱将胶料分开,进入转子与密炼 室壁的间隙中,在此处经受强烈的剪切捏 炼作用后,被破碎的两股胶料又相会于两 个转子上部,然后再进入两转子间隙处, 如此循环往复。

胶料在密炼室中的混炼过程如下:

二、胶料在密炼室中所受的机械作用

- 1、 转子外表面与密炼室内壁间的捏炼作用
 - (椭圆型转子密炼机尤为明显)

- (A) 密炼机中流线和填充情况示意图
- (B) 局部放大, 转子突棱棱峰处物料流动情况

转子表面与密炼室内壁间形成了一个环形间隙,当 胶料通过此环形间隙时,则受到捏炼作用。

由于转子表面制有螺旋突棱,它与密炼室形成的间 *隙是变化的*(如XM-50密炼机间隙为4-80mm, XM-250 密炼机间隙为2.5-120mm),最小间隙在转子棱峰与 密炼室内壁之间。当胶料通过此最小间隙时,受到 强烈的挤压、剪切、拉伸作用,这种作用与开炼机 两辊距的作用相似,但比开炼机的效果要大的多。 这是由于转动的转子与固定不动的室壁之间胶料的 速度梯度比开炼机大的多,而且,转子突棱与密炼 室壁所形成的透射角尖锐。胶料在转子突棱尖端与 密炼室内壁之间边捏炼,边通过,同时,还受到转 子其余表面的类似滚压作用。

转子棱峰与密炼室内壁间的剪切挤压作用

1-剪切棱; 2-推动棱; 3-转子棱; 4-前面; 5-后面; 6-凸棱 末端; 7-混炼壁; 8-混炼室; 9-末端间隙; 10-溶膜

图 2 双棱 WFT 转子结构

2、两转子之间的混合搅拌、挤压作用(啮合型密炼机尤为明显)

两转子的椭圆形表面各点与转子轴心线的距离不等, 因而具有不同的圆周速度。因此两转子间的间隙和 速比不是一个恒定值,而是处处不同,时时变化的。 速度梯度最大值和最小值相差达几十倍。可使胶料 受到强烈的剪切、挤压、搅拌作用。

$$\gamma = \frac{\pi Dn}{h}$$

又由于两转子转速不同,其相对位置也是时刻变化的,使胶料在两转子间的容量也经常变化,产生强烈的混合、搅拌作用。

两转子之间的混合搅拌

3 、上下顶栓分流、剪切和交换作用

由于上、下顶栓顶部的分流作用,及两转子的转速不同,可使胶料在左右密炼室中进行折卷捣换。其中一侧转子前面的部分胶料(高压区),并随之被挤压到对面密炼室转子后面(低压区),并随之带入料斗中。彼此往复捣换,如两台相邻开炼机连续倒替混炼时相似。

为了有效交换,一个转子必须把胶料直接拨到相对应的转子棱峰后部间隙中。否则,因压力平衡性阻止交换。这就要求两转子转到适当位置进行交换,这取决于速比。

上下顶栓分流作用

4、 转子的轴向往复切割捏炼作用

胶料在转子上不仅会 随转子作圆周运动,同 时转子的螺旋突棱对物 料产生轴向的推移作用, 因此胶料还会沿轴向移 动。由右面的突棱螺旋 的受力分析可以看出, 两突棱螺旋升角的不同 其作用也不同,这样胶 料在转子的轴向往复移 动就形成了切割捏炼的 作用。

胶料所受转子的轴向推动作用

每个转子都有二个方向不同、长短不一的螺旋棱, 当转子旋转时,转子螺旋棱表面对胶料产生一个 垂直作用力P,这个力可分解为轴向力Px和圆周 力Pa。

圆周力Pa</sub>使胶料绕转子轴线转动Pa=Pcos α <u>轴向力Px</u>使胶料沿转子轴线移动Px=Psin α

因为胶料与转子表面的摩擦力T阻止胶料轴向移动,故要使胶料产生轴向移动条件是:

Px>Tx

 $P \cdot \sin \alpha > P \cdot \tan \phi \cdot \cos \alpha$

 $P \cdot \tan \alpha > P \cdot \tan \phi$

tan α >tan φ

 $\alpha > \phi$

0一为胶料与转子金属表面的摩擦角,随胶料 温度变化而变。 从试验得知, 胶料与金属表面的摩擦角 Φ=37°-38°。这样即可得出胶料在转子上的 运动情况为:

在转子长螺旋段。: $\alpha = 30^{\circ}$,: $\alpha < \phi$,即Px < Tx。因此对胶料不会产生轴向移动,仅产生圆周运动。起着送料作用及滚压揉搓作用。

在转子短螺旋段。∵α=45°, ∴α>Φ即Px>Tx。因此胶料使产生轴向移动,对胶料往复切割。

由于一对转子的螺旋长段和短段是相对安装的,从而促使胶料从转子一端移动另一端;而另一端转子又使胶料作相反方向移动。因此,使胶料来回混杂,进行强烈的混炼。

此外。在转子外形的 设计上有将突棱的工 作面的圆弧曲率半径 选的小些, 这样就会 使棱的圆弧面与密炼 室内壁形成的工作区 的容积由大逐渐变小, 胶料通过时,挤压力

增加; 棱的另一面设计成凹形的, 工作区的容积由小变大, 更易流动, 增加了紊流态。即 "S" 转子。

开炼机与密炼机炼胶机理异同点

相同: 都是通过速比和速度梯度

不同点: 1、剪切位置

开炼机——辊筒间隙处

密炼机——除转子之间以外,还有两个转子与整个混炼室之间;更重要的是还有强弱剪切存在,是交替进行。

●对于剪切型转子密炼机来讲:

强剪切是发生在转子突棱棱峰与混炼室之间,其次是两转子之间,转子与上、下顶栓之间,转子突棱非棱峰与混炼室之间。

\<u>_对于啮合型密炼机来讲:</u>

日龄时日华华大亚林了子宫、北岭日林石

开炼机与密炼机炼胶机理异同点

不同点: 2、剪切捏炼效果(速度梯度)

开炼机

在速度不变的情况下,速度梯度是稳定的,但可以通过改变辊距,调整梯度。 $\frac{v_2-v_1}{h}$

密炼机

由于混炼室是不动的 v_1 =0 ,而转子截面形状是变化,在转子旋转一周过程中,其 v_2 和 h 都是变化的,其速度梯度远大于开炼机,故剪切捏炼效果也远好于开炼机。

开炼机与密炼机炼胶机理异同点

不同点: 3、混合效果和均匀性

开炼机:

通过人工割胶和翻胶变为三角包和自动翻胶装置来回移动,实现物料混合,提高均匀性。

\密炼机:

殖地螺旋突梭轴向推动作用和借助上、下

开炼机:

通过控制堆积胶多少实现自动吃料,即β>

a o

密炼机:

三、胶料在转子上的流动情况

胶料的轴向移动情况示意图

GK四棱转子

GK四棱转子展开图

胶料的轴向移动情况示意图

§ 2-2 主要参数

- 一、转子的转速与速比
- 1、转速

转子的转速是密炼机主要性能指标之一。

(1) 转子转速对生产能力的影响

炼胶效率的高低,取决于施加在胶料上的剪切力的大小,而剪切应力受剪切速率的影响。由下式可看出:

$$au = \mu \gamma^m$$

$$\mathbf{r} = \frac{V}{h} = \frac{\pi Dn}{h}$$

- ◆u 一胶料的粘度
- ◆m 一流变常数

提高

n

生产率

为什么?

A、由上面公式知,对于一个 机台来讲,D,h都是固定 的,只有改变n。提高n, 可以提高剪切速率,缩短 t, 从而提高产量;

- B、提高转子转速n,被搅拌的胶料表面交换频繁,这就加速了配合剂在胶料中的混合作用,使t缩短,从而提高产量;
- C、提高 n,胶料对密炼室P 也增大,胶料受到的机械 作用增大,t 缩短,从而提 高产量。

图 4-7 转子转速与混炼时间关系 1一上顶栓压力为5.98公斤/厘米²; 2一上顶栓压 力为4.22公斤/厘米²; 3一上顶栓压力为 2.35 公 斤/厘米²

上图为转子转速与混炼时间关系

(2) 转子转速对电机功率的影响

从公式和图4-14看 ,功率与转子转速 近似成正比。 N=4• η •u²B/h

N----转子单位上的功率消耗; η----胶料的粘度; u----转子棱顶的回转线速度;

B----转子棱顶宽度;

h---- 转子棱顶与密炼室内壁间隙。

(3) 转子转速对排胶温度的影响

混炼时,必须保持胶温在一定限度内,转子转速过快将使物料温度迅速上升,粘度下降,影响剪切效果,同时也降低了胶料的分散度。

在第一段混炼时,一般排胶温度应控制在130~150°C以下,否则除了会引起分散不良外,还容易使胶料发生化学反应,如出现热裂解、凝胶等现象。

最终混炼为防止焦烧,一般排胶温度控制在 100~120°C以下。据此,为了获得最有效的混炼, 也按不同的胶料选择最适宜的转子转速。 目前多速和调速密炼机的应用均被重视。

2、转子速比

密炼机转子的速比通常为1:1.15~1:1.18。近年来,新开发研制的*同步转子密炼机*,其转子速比为 1:1。

二、转子棱顶与密炼室内壁间隙

在流变学分析中已讲到,对胶料起分散作用的主要因素是,在转子棱顶与密炼室内壁间隙h形成的高剪切区内,间隙大小,直接影响胶料的及剪切应力和剪切速率。

生产实

践证明:密炼机在使用若干年后,同等条件下,混炼胶的质量下降。

原因是:密炼机使用时间长了,转子棱与密炼室内壁会产生磨损,使转子棱顶与密炼室内壁间隙h增大,致使剪切应力和剪切速率减小,降低了炼胶效果,使混炼胶的质量下降。

应对措施是:

①补焊; ②增加容量。

转子棱顶与密炼室内壁间隙

(a) D10和 D75型

(b) WD7和 WD55型

图 1 转子的形状及密炼室内产生剪切的区域示意

三、生产能力与填充系数 计算密炼机生产能力,可用下式:

$$G = 60 \frac{V_{\dot{1}} \dot{\gamma}}{t}$$

式中G ----生产能力,公斤/小时; V_1 ----密炼机工作容量,升; γ ----胶料的比重,公斤/升; t ----- 次炼胶时间,分。

工作容量V₁由下式计算.

 $V_1 = V \beta$

:中た

V----密炼室总容量(密炼室总容量减去转子所占体积) β----胶料的填充系数

由此可知,填充系数直接影响密炼机的工作容量大小,即影响生产能力的大小。但填充系数过大或过小均会影响炼胶质量,也影响生产能力。

影响填充系数的因素:

- (1) 转子结构: 转子棱数↑, β↑;
- (2) 转速**↑**, β**↑**;
- (3) 冷却水:采用恒温水, β 1;
- (4) 密炼机型式: 剪切型密炼机, β ↑;
- (5) 速比: 同步转子, β↑;
- (6) 上顶栓压力: P ↑ , β ↑;
- (7) 配方:填料↑, β↓;
- (8) 加料方法:多次加料, β↑;
- (9) 工艺条件。

四、上顶栓对胶料的单位压力 上顶栓对胶料的单位压力是强化炼胶的主要手 段之一。

增加上顶栓对胶料的压力,可以提高胶料中的流体静压力,虽然不直接影响剪切应力,但是由于减少了密炼室内胶料的空隙,使得胶料与密炼室内壁,转子,上、下顶栓等之间,以及胶料内部各种物料之间更加迅速地互相接触和挤压,加速各种物料混入胶料中的过程,从而缩短混炼时间,提高密炼机的功效。

增加上顶栓压力,使物料之间更加迅速地互相接触和挤压,并使物料之间接触面积增大,从而减少了胶料与密炼室内壁及胶料与转子表面的滑动,能间接的导致较高的剪切应力,加速分散过程,从而缩短混炼时间,提高了混炼胶质量。

提高上顶栓压力的方法:

- (1) 提高压缩空气的压力;
- (2) 加长风筒直径;
- (3) 采用液压代替风压。

五、功率

(一) 功率消耗的确定

电动机功率主要消耗在:

胶料捏炼过程中的剪切、搅拌混合和机器各 转动部的摩擦,前者是主要的。

胶料的性质

配方

混炼温度

功率消耗

转子的转速

转子的结构

上顶栓压力

加料方法和顺序

密炼机容量

假定胶料是在粘度不变、等温下捏炼过程, 转子单位长度上的功率消耗表示为:

 $N=4 \cdot \eta \cdot u^2B/h$

N----转子单位上的功率消耗;

η-----胶料的粘度;

u----转子棱顶的回转线速度;

B----转子棱顶宽度;

h----转子棱顶与密炼室内壁间隙 。

但是,橡胶属非牛顿型流体,对一台特定的密炼机来说,其功率消耗表示为:

N=Cuk+1

k -----胶料特性系数, k<1:

u----转子棱顶回转线速度:

C----系数 。

(二)密炼机功率消耗的因素分析

1、功率与密炼机工作容量的关系。

从图4-12知,密炼机工作容量越大,其功

率消耗越多。

图 4-12 密炼机工作容量与功率的关系 1--间隙 2毫米; 2--间隙 4毫米; 3--间隙 6毫米; 4--间隙 8毫米; 5--间隙 14毫米

2、功率与转子棱顶和密炼室内壁间隙的关系,功率消耗与转子棱顶和密炼室内壁间隙(h)成反比。

3、功率与转子转速的关系 从公式和图4-14 看,功率与转子转速近似成正比。

- 4、功率与上顶栓压力的关系 上顶栓压力的增加,会导致功率消耗的 增加。
- 5、功率与转子结构的关系

转子由二个螺旋棱增加至四个螺旋棱、六个螺旋棱时,加剧了胶料在捏炼中的分流和增加了胶料的剪切次数,故增加了功率消耗。

第三节 传动系统

- § 3-1 传动系统的作用
- §3-2 密炼机的传动型式
- §3-3 电机的选择

§3-1 传动系统的作用

传动系统是密炼机重要组成部分之一,用于传递动力,使转子克服工作阻力而转动,从而完成炼胶作业。

密炼机在工作过程中*消耗掉大量的功率*,但是转子的转速并不高(20~60转 / 分),而电机的转速很高(750~1500转 / 分),这就*要求*密炼机的传动系统*具有传递大功率和大的传动比*等特点。

密炼机的两个转子的转速是不同的,且多数密炼机的转子的速比是固定不变的,因此需要*安装速比齿轮*来满足要求。对双速密炼机多采用双速电动机,变速密炼机则多采用直流电动机来驱动(现在的同步转子不再需要速比齿轮,而是双输出)。