Note to other teachers and users of these slides. Andrew would be delighted if you found this source material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. PowerPoint originals are available. If you make use of a significant portion of these slides in your own lecture, please include this message, or the following link to the source repository of Andrew's tutorials: http://www.cs.cmu.edu/~awm/tutorials. Comments and corrections gratefully received.

Decision Trees

Andrew W. Moore
Professor
School of Computer Science
Carnegie Mellon University

www.cs.cmu.edu/~awm awm@cs.cmu.edu 412-268-7599

Machine Learning Datasets

What is Classification?

Contingency Tables

OLAP (Online Analytical Processing)

What is Data Mining?

Searching for High Information Gain

Learning an unpruned decision tree recursively

Training Set Error

Test Set Error

Overfitting

Avoiding Overfitting

Information Gain of a real valued input

Building Decision Trees with real Valued Inputs

Andrew's homebrewed hack: Binary Categorical Splits

Example Decision Trees

Here is a dataset

age	employme	education	edun	marital		job	relation	race	gender	hour	country		wealth
30	State_gov	Rachelors	13	Never_mar		Adm cleric	Not_in_fan	White	Male	40	United	Sta	noor
	Self emp			Married		Exec_man		White	Male		United_	_	•
	Private	HS_grad		Divorced			Not_in_fan		Male		United_	_	
	Private	11th		Married		Handlers (Black	Male		United_	_	•
	Private	Bachelors		Married		Prof speci		Black	Female		Cuba		poor
	Private	Masters		Married		Exec man		White	Female		United	Sta	poor
50	Private	9th	5	Married_sr			Not_in_fan	Black	Female		Jamaica	_	poor
52	Self_emp_	HS_grad		Married		Exec_man		White	Male	45	United_	Sta	rich
31	Private	Masters	14	Never_mar		Prof_speci	Not_in_fan	White	Female		United_		
42	Private	Bachelors	13	Married		Exec_man	Husband	White	Male	40	United_	Sta	rich
37	Private	Some_coll	10	Married		Exec_man	Husband	Black	Male	80	United_	Sta	rich
30	State_gov	Bachelors	13	Married		Prof_speci	Husband	Asian	Male	40	India		rich
24	Private	Bachelors	13	Never_mar		Adm_cleric	Own_child	White	Female	30	United_	Sta	poor
33	Private	Assoc_acc	12	Never_mar		Sales	Not_in_fan	Black	Male	50	United_	Sta	poor
41	Private	Assoc_voc	11	Married		Craft_repai	Husband	Asian	Male	40	*Missin	gV∤	rich
34	Private	7th_8th	4	Married		Transport_	Husband	Amer_India	Male	45	Mexico		poor
26	Self_emp_	HS_grad	9	Never_mar		Farming_fi	Own_child	White	Male	35	United_	Sta	poor
33	Private	HS_grad	9	Never_mar		Machine_c	Unmarried	White	Male	40	United_	Sta	poor
38	Private	11th	7	Married		Sales	Husband	White	Male	50	United_	Sta	poor
	Self_emp_	Masters		Divorced			Unmarried	White	Female		United_		
41	Private	Doctorate	16	Married		Prof_speci	Husband	White	Male	60	United_	Sta	rich
:	:	:	:	:	:	:	:	:	:	:	:		:

48,000 records, 16 attributes [Kohavi 1995]

Machine Learning Datasets

Contingency Tables

OLAP (Online Analytical Processing)

What is Data Mining?

Searching for High Information Gain

Learning an unpruned decision tree recursively

Training Set Error

Test Set Error

Overfitting

Avoiding Overfitting

Information Gain of a real valued input

Building Decision Trees with real Valued Inputs

Andrew's homebrewed hack: Binary Categorical Splits

Example Decision Trees

Classification

- A Major Data Mining Operation
- Give one attribute (e.g wealth), try to predict the value of new people's wealths by means of some of the other available attributes.
- Applies to categorical outputs
 - Categorical attribute: an attribute which takes on two or more discrete values. Also known as a symbolic attribute.
 - Real attribute: a column of real numbers

Today's lecture

- Information Gain for measuring association between inputs and outputs
- Learning a decision tree classifier from data

About this dataset

- It is a tiny subset of the 1990 US Census.
- It is publicly available online from the UCI Machine Learning Datasets repository

```
age edunum race hours_worked employment marital gender country taxweighting job capitalgain wealth education relation capitalloss agegroup
```

This color = Real-valued This color = Symbol-valued

Successfully loaded a new dataset from the file \tadult.fds. It has 16 attributes and 48842 records.

What can you do with a dataset?

Well, you can look at histograms...

Marital Status

Machine Learning Datasets

What is Classification?

Contingency Tables

OLAP (Online Analytical Processing)

What is Data Mining?

Searching for High Information Gain

Learning an unpruned decision tree recursively

Training Set Error

Test Set Error

Overfitting

Avoiding Overfitting

Information Gain of a real valued input

Building Decision Trees with real Valued Inputs

Andrew's homebrewed hack: Binary Categorical Splits

Example Decision Trees

Contingency Tables

- A better name for a histogram:
 - A One-dimensional Contingency Table
- Recipe for making a k-dimensional contingency table:
 - 1. Pick k attributes from your dataset. Call them $a_1, a_2, ... a_k$.
 - 2. For every possible combination of values, $a_1,=x_1, a_2,=x_2,... a_k,=x_k$, record how frequently that combination occurs

Fun fact: A database person would call this a "k-dimensional datacube"

A 2-d Contingency Table

wealth val	ues:	poor ri	ch
agegroup	10s	2507	3
	20s	11262	743
	30s	9468	3461
	40s	6738	3986
	50s	4110	2509
	60s	2245	809
	70s	668	147
	80s	115	16
	90s	42	13

 For each pair of values for attributes (agegroup, wealth) we can see how many records match.

A 2-d Contingency Table

Easier to appreciate graphically

A 2-d Contingency Table

Easier to see
 "interesting"
 things if we
 stretch out the
 histogram bars

A bigger 2-d contingency table

job valu	es: Adm_clerical	Craft_	repair		Farm	ning_fis	hing	Ma	chine_	op_ins	oct	Priv_h	ouse_	serv	Prote	ctive_s	serv Tech_support
Missing	gValue Armed_Forces	Exec_	manag	eria	l Hand	dlers_c	leane	rs Otl	ner_sei	rvice		Prof_s	pecial	ty	Sales		Transport_moving
marital	Divorced	270	1192	0	679	890	90	197	434	762		795	121	664	239	254	
	Married_AF_spouse	5	6	0	4	3	1	1	1	5		4	1	5	0	1	
	Married	928	1495	7	3818	3600	869	724	1469	1088		3182	583	2491	609	1489	
	Married_spouse_absent	45	84	0	77	52	35	32	37	92		64	7	55	9	30	
	Never_married	1242	2360	8	1301	1260	434	1029	872	2442		1849	237	1992	506	486	
	Separated	97	224	0	160	126	23	63	123	275		145	23	146	48	56	
	Widowed	222	250	0	73	155	38	26	86	259		133	11	151	35	39	

3-d contingency tables

These are harder to look at!

Machine Learning Datasets

What is Classification?

Contingency Tables

OLAP (Online Analytical Processing)

What is Data Mining?

Searching for High Information Gain

Learning an unpruned decision tree recursively

Training Set Error

Test Set Error

Overfitting

Avoiding Overfitting

Information Gain of a real valued input

Building Decision Trees with real Valued Inputs

Andrew's homebrewed hack: Binary Categorical Splits

Example Decision Trees

On-Line Analytical Processing (OLAP)

- Software packages and database add-ons to do this are known as OLAP tools
- They usually include point and click navigation to view slices and aggregates of contingency tables
- They usually include nice histogram visualization

Time to stop and think

 Why would people want to look at contingency tables?

Let's continue to think

- With 16 attributes, how many 1-d contingency tables are there?
- How many 2-d contingency tables?
- How many 3-d tables?
- With 100 attributes how many 3-d tables are there?

Let's continue to think

- With 16 attributes, how many 1-d contingency tables are there? 16
- How many 2-d contingency tables? 16choose-2 = 16 * 15 / 2 = 120
- How many 3-d tables? 560
- With 100 attributes how many 3-d tables are there? 161,700

Manually looking at contingency tables

- Looking at one contingency table: can be as much fun as reading an interesting book
- Looking at ten tables: as much fun as watching CNN
- Looking at 100 tables: as much fun as watching an infomercial
- Looking at 100,000 tables: as much fun as a three-week November vacation in Duluth with a dying weasel.

Machine Learning Datasets

What is Classification?

Contingency Tables

OLAP (Online Analytical Processing)

What is Data Mining?

Searching for High Information Gain

Learning an unpruned decision tree recursively

Training Set Error

Test Set Error

Overfitting

Avoiding Overfitting

Information Gain of a real valued input

Building Decision Trees with real Valued Inputs

Andrew's homebrewed hack: Binary Categorical Splits

Example Decision Trees

Data Mining

 Data Mining is all about automating the process of searching for patterns in the data.

Which patterns are interesting? Which might be mere illusions?

And how can they be exploited?

Data Mining

 Data Mining is all about automating the process of searching for patterns in the data.

Which patterns are interesting? Which might be mere illusions? And how can they be exploited?

That's what we'll look at right now.

And the answer will turn out to be the

engine that drives decision

troo

Deciding whether a pattern is interesting

- We will use information theory
- A very large topic, originally used for compressing signals
- But more recently used for data mining...

Deciding whether a pattern is interesting

- We will use information theory
- A very large topic, originally used for compressing signals
- But more recently used for data mining...

(The topic of Information Gain will now be discussed, but you will find it in a separate Andrew Handout)

Machine Learning Datasets

What is Classification?

Contingency Tables

OLAP (Online Analytical Processing)

What is Data Mining?

Searching for High Information Gain

Learning an unpruned decision tree recursively

Training Set Error

Test Set Error

Overfitting

Avoiding Overfitting

Information Gain of a real valued input

Building Decision Trees with real Valued Inputs

Andrew's homebrewed hack: Binary Categorical Splits

Example Decision Trees

Searching for High Info Gains

 Given something (e.g. wealth) you are trying to predict, it is easy to ask the computer to find which attribute has highest information gain for it.

Machine Learning Datasets

What is Classification?

Contingency Tables

OLAP (Online Analytical Processing)

What is Data Mining?

Searching for High Information Gain

Learning an unpruned decision tree recursively

Training Set Error

Test Set Error

Overfitting

Avoiding Overfitting

Information Gain of a real valued input

Building Decision Trees with real Valued Inputs

Andrew's homebrewed hack: Binary Categorical Splits

Example Decision Trees

Learning Decision Trees

- A Decision Tree is a tree-structured plan of a set of attributes to test in order to predict the output.
- To decide which attribute should be tested first, simply find the one with the highest information gain.
- Then recurse...

A small dataset: Miles Per Gallon

40 Records

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

From the UCI repository (thanks to Ross Quinlan)

Suppose we want to predict MPG.

Look at all the information gains...

A Decision Stump

Recursion Step

Recursion Step

Second level of tree

Recursively build a tree from the seven records in which there are four cylinders and the maker was based in Asia

(Similar recursion in the other cases)

Base Cases

- Base Case One: If all records in current data subset have the same output then don't recurse
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse

Base Cases: An idea

- Base Case One: If all records in current data subset have the same output then don't recurse
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse

•Is this a good idea?

The problem with Base Case 3

а	b	У
О	О	0
О	1	1
1	О	1
1	1	0

$$y = a XOR b$$

The information gains:

The resulting decision tree:

If we omit Base Case 3:

а	b	У
О	О	0
0	1	1
1	0	1
1	1	0

$$y = a XOR b$$

The resulting decision tree:

Basic Decision Tree Building Summarized

BuildTree(DataSet,Output)

- If all output values are the same in DataSet, return a leaf node that says "predict this unique output"
- If all input values are the same, return a leaf node that says "predict the majority output"
- Else find attribute X with highest Info Gain
- Suppose X has n_X distinct values (i.e. X has arity n_X).
 - Create and return a non-leaf node with n_x children.
 - The i'th child should be built by calling BuildTree(DS_i,Output)

Where DS_i built consists of all those records in DataSet for which X = ith distinct value of X.

Machine Learning Datasets

What is Classification?

Contingency Tables

OLAP (Online Analytical Processing)

What is Data Mining?

Searching for High Information Gain

Learning an unpruned decision tree recursively

Training Set Error

Test Set Error

Overfitting

Avoiding Overfitting

Information Gain of a real valued input

Building Decision Trees with real Valued Inputs

Andrew's homebrewed hack: Binary Categorical Splits

Example Decision Trees

Training Set Error

- For each record, follow the decision tree to see what it would predict
 - For what number of records does the decision tree's prediction disagree with the true value in the database?
- This quantity is called the training set error.
 The smaller the better.

Stop and reflect: Why are we doing this learning anyway?

• It is not usually in order to predict the training data's output on data we have already seen.

Stop and reflect: Why are we doing this learning anyway?

- It is not usually in order to predict the training data's output on data we have already seen.
- It is more commonly in order to predict the output value for future data we have not yet seen.

Stop and reflect: Why are we doing this learning anyway?

- It is not usually in order to predict the training data's output on data we have already seen.
- It is more commonly in order to predict the output value for future data we have not yet seen.

Warning: A common data mining misperception is that the above two bullets are the only possible reasons for learning. There are at least a dozen others.

Machine Learning Datasets

What is Classification?

Contingency Tables

OLAP (Online Analytical Processing)

What is Data Mining?

Searching for High Information Gain

Learning an unpruned decision tree recursively

Training Set Error

Test Set Error

Overfitting

Avoiding Overfitting

Information Gain of a real valued input

Building Decision Trees with real Valued Inputs

Andrew's homebrewed hack: Binary Categorical Splits

Example Decision Trees

Test Set Error

- Suppose we are forward thinking.
- We hide some data away when we learn the decision tree.
- But once learned, we see how well the tree predicts that data.
- This is a good simulation of what happens when we try to predict future data.
- And it is called Test Set Error.

Machine Learning Datasets

What is Classification?

Contingency Tables

OLAP (Online Analytical Processing)

What is Data Mining?

Searching for High Information Gain

Learning an unpruned decision tree recursively

Training Set Error

Test Set Error

Overfitting

Avoiding Overfitting

Information Gain of a real valued input

Building Decision Trees with real Valued Inputs

Andrew's homebrewed hack: Binary Categorical Splits

Example Decision Trees

An artificial example

We'll create a training dataset

Five inputs, all bits, are generated in all 32 possible combinations

Output y = copy of e, Except a random 25% of the records have y set to the opposite of e

	_						1
		a	b	С	d	е	у
		0	0	0	0	0	0
qs		0	0	0	0	1	0
32 records		0	0	0	1	0	0
ē)		0	0	0	1	1	1
32		0	0	1	0	0	1
		:	:	:	:	:	:
'		1	1	1	1	1	1

In our artificial example

- Suppose someone generates a test set according to the same method.
- The test set is identical, except that some of the y's will be different.
- Some y's that were corrupted in the training set will be uncorrupted in the testing set.
- Some y's that were uncorrupted in the training set will be corrupted in the test set.

Building a tree with the artificial training set

Suppose we build a full tree (we always split until base case 2)

25% of these leaf node labels will be corrupted

Training set error for our artificial tree

All the leaf nodes contain exactly one record and so...

We would have a training set error of zero

Testing the tree with the test set

	1/4 of the tree nodes are corrupted	3/4 are fine
1/4 of the test set records are corrupted	1/16 of the test set will be correctly predicted for the wrong reasons	3/16 of the test set will be wrongly predicted because the test record is corrupted
3/4 are fine	3/16 of the test predictions will be wrong because the tree node is corrupted	9/16 of the test predictions will be fine

In total, we expect to be wrong on 3/8 of the test set predictions

What's this example shown us?

- This explains the discrepancy between training and test set error
- But more importantly... ...it indicates there's something we should do about it if we want to predict well on future data.

Suppose we had less data

Let's not look at the irrelevant bits

What decision tree would we learn now?

Without access to the irrelevant bits...

Without access to the irrelevant bits...

In about 12 of the 16 records in this node the output will be 0 In about 12 of the 16 records in this node the output will be 1

So this will almost certainly predict 0

So this will almost certainly predict 1

Without access to the irrelevant bits...

	almost certainly none of the tree nodes are corrupted	almost certainly all are fine
1/4 of the test set records are corrupted	n/a	1/4 of the test set will be wrongly predicted because the test record is corrupted
3/4 are fine	n/a	3/4 of the test predictions will be fine

In total, we expect to be wrong on only 1/4 of the test set predictions

Overfitting

- Definition: If your machine learning algorithm fits noise (i.e. pays attention to parts of the data that are irrelevant) it is overfitting.
- Fact (theoretical and empirical): If your machine learning algorithm is overfitting then it may perform less well on test set data.

Machine Learning Datasets

What is Classification?

Contingency Tables

OLAP (Online Analytical Processing)

What is Data Mining?

Searching for High Information Gain

Learning an unpruned decision tree recursively

Training Set Error

Test Set Error

Overfitting

Avoiding Overfitting

Information Gain of a real valued input

Building Decision Trees with real Valued Inputs

Andrew's homebrewed hack: Binary Categorical Splits

Example Decision Trees

Avoiding overfitting

- Usually we do not know in advance which are the irrelevant variables
- ...and it may depend on the context
 For example, if y = a AND b then b is an irrelevant variable only in the portion of the tree in which a=0

But we can use simple statistics to warn us that we might be overfitting.

A chi-squared test

- Suppose that mpg was completely uncorrelated with maker.
- What is the chance we'd have seen data of at least this apparent level of association anyway?

A chi-squared test

- Suppose that mpg was completely uncorrelated with maker.
- What is the chance we'd have seen data of at least this apparent level of association anyway?

By using a particular kind of chi-squared test, the answer is 13.5%.

Using Chi-squared to avoid overfitting

- Build the full decision tree as before.
- But when you can grow it no more, start to prune:
 - Beginning at the bottom of the tree, delete splits in which p_{chance} > MaxPchance.
 - Continue working you way up until there are no more prunable nodes.

MaxPchance is a magic parameter you must specify to the decision tree, indicating your willingness to risk fitting noise.

Pruning example

 With MaxPchance = 0.1, you will see the following MPG decision tree:

Note the improved test set accuracy compared with the unpruned tree

	Num Errors	Set Size	Percent Wrong
Training Set	5	40	12.50
Test Set	56	352	15.91

MaxPchance

- Good news: The decision tree can automatically adjust its pruning decisions according to the amount of apparent noise and data.
- Bad news: The user must come up with a good value of MaxPchance. (Note, Andrew usually uses 0.05, which is his favorite value for any magic parameter).
- Good news: But with extra work, the best MaxPchance value can be estimated automatically by a technique called cross-validation.

MaxPchance

Technical note (dealt with in other lectures):
 MaxPchance is a regularization parameter.

The simplest tree

- Note that this pruning is heuristically trying to find
 - The simplest tree structure for which all within-leafnode disagreements can be explained by chance
- This is not the same as saying "the simplest classification scheme for which..."
- Decision trees are biased to prefer classifiers that can be expressed as trees.

Expressiveness of Decision Trees

- Assume all inputs are Boolean and all outputs are Boolean.
- What is the class of Boolean functions that are possible to represent by decision trees?
- Answer: All Boolean functions.

Simple proof:

- 1. Take any Boolean function
- Convert it into a truth table
- 3. Construct a decision tree in which each row of the truth table corresponds to one path through the decision tree.

Machine Learning Datasets

What is Classification?

Contingency Tables

OLAP (Online Analytical Processing)

What is Data Mining?

Searching for High Information Gain

Learning an unpruned decision tree recursively

Training Set Error

Test Set Error

Overfitting

Avoiding Overfitting

Information Gain of a real valued input Building Decision Trees with real Valued Inputs Andrew's homebrewed hack: Binary Categorical Splits

Example Decision Trees

Real-Valued inputs

 What should we do if some of the inputs are real-valued?

mpg	cylinders	displacemen	horsepower	weight	acceleration	modelyear	maker
good	4	97	75	2265	18.2	77	asia
bad	6	199	90	2648	15	70	america
bad	4	121	110	2600	12.8	77	europe
bad	8	350	175	4100	13	73	america
bad	6	198	95	3102	16.5	74	america
bad	4	108	94	2379	16.5	73	asia
bad	4	113	95	2228	14	71	asia
bad	8	302	139	3570	12.8	78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
good	4	120	79	2625	18.6	82	america
bad	8	455	225	4425	10	70	america
good	4	107	86	2464	15.5	76	europe
bad	5	131	103	2830	15.9	78	europe

Idea One: Branch on each possible real value

"One branch for each numeric value" idea:

Hopeless: with such high branching factor will shatter the dataset and over fit

Note pchance is 0.222 in the above...if MaxPchance was 0.05 that would end up pruning away to a single root node.

A better idea: thresholded splits

- Suppose X is real valued.
- Define IG(Y|X:t) as H(Y) H(Y|X:t)
- Define H(Y|X:t) =
 H(Y|X < t) P(X < t) + H(Y|X >= t) P(X >= t)
 - IG(Y|X:t) is the information gain for predicting Y if all you know is whether X is greater than or less than t
- Then define $IG^*(Y|X) = max_t IG(Y|X:t)$
- For each real-valued attribute, use IG*(Y|X) for assessing its suitability as a split

Computational Issues

You can compute IG*(Y|X) in time
 R log R + 2 R n_y

Where

R is the number of records in the node under consideration n_v is the arity (number of distinct values of) Y

How?

Sort records according to increasing values of X. Then create a $2xn_y$ contingency table corresponding to computation of $IG(Y|X:x_{min})$. Then iterate through the records, testing for each threshold between adjacent values of X, incrementally updating the contingency table as you go. For a minor additional speedup, only test between values of Y that differ.

Example with MPG

Unpruned tree using reals

Pruned tree using reals

	Num Errors	Set Size	Percent Wrong
Training Set	1	40	2.50
Test Set	53	352	15.06

```
LearnUnprunedTree(X,Y)
```

Input: X a matrix of R rows and M columns where X_{ij} = the value of the j'th attribute in the i'th input datapoint. Each column consists of either all real values or all categorical values.

Input: Y a vector of R elements, where Y_i = the output class of the i'th datapoint. The Y_i values are categorical.

Output: An Unpruned decision tree

If all records in X have identical values in all their attributes (this includes the case where R<2), return a Leaf Node predicting the majority output, breaking ties randomly. This case also includes

If all values in Y are the same, return a Leaf Node predicting this value as the output Else

```
For j = 1 ... M
       If j'th attribute is categorical
               IG_i = IG(Y|X_i)
       Else (j'th attribute is real-valued)
               IG_i = IG*(Y|X_i) from about four slides back
Let j^* = \operatorname{argmax}_i \operatorname{IG}_i (this is the splitting attribute we'll use)
If j* is categorical then
       For each value v of the j'th attribute
               Let X^v = subset of rows of X in which X_{ij} = v. Let Y^v = corresponding subset of Y
               Let Child<sup>v</sup> = LearnUnprunedTree(X<sup>v</sup>,Y<sup>v</sup>)
       Return a decision tree node, splitting on j'th attribute. The number of children equals the number of
           values of the j'th attribute, and the v'th child is Childv
Else j* is real-valued and let t be the best split threshold
       Let X^{LO} = subset of rows of X in which X_{ii} <= t. Let Y^{LO} = corresponding subset of Y
       Let ChildLO = LearnUnprunedTree(XLO,YLO)
       Let X^{HI} = subset of rows of X in which X_{ii} > t. Let Y^{HI} = corresponding subset of Y
       Let ChildHI = LearnUnprunedTree(XHI,YHI)
       Return a decision tree node, splitting on j'th attribute. It has two children corresponding to whether the
           i'th attribute is above or below the given threshold.
```

LearnUnprunedTree(X,Y)

Input: X a matrix of R rows and M columns where X_{ii} = the value of the j'th attribute in the i'th input datapoint. Each alues or all categorical values. column consists of either

Input: Y a vector of R elemen Things to note:

Output: An Unpruned decision

If all values in Y are the san Else

> For j = 1 ... MIf i'th attribute $IG_i = I$ Else (j'th attri

Let j* = argmax, IG

If i* is categorical t

Let $X^{LO} = si$

Let ChildLO

i'th attr

Below the root node, there is no point If all records in X have ident testing categorical attributes that have already been split upon further up the tree. This is because all the values of that attribute will be the same and IG must therefore be zero.

> But it's worth retesting real-valued attributes, since they may have different values below the binary split, and may For each value benefit from splitting further.

Let Cl To achieve the above optimization, you Return a ded should pass down through the recursion a Else j* is real-value Current active set of attributes.

Pedantic detail: a third termination Let XHI = st condition should occur if the best split Let ChildHI attribute puts all its records in exactly one child (note that this means it and all other attributes have IG=0).

R<2), return a Leaf Node

The Y values are categorical.

subset of Y

dren equals the number of

ubset of Y

bset of Y

corresponding to whether the

Machine Learning Datasets

What is Classification?

Contingency Tables

OLAP (Online Analytical Processing)

What is Data Mining?

Searching for High Information Gain

Learning an unpruned decision tree recursively

Training Set Error

Test Set Error

Overfitting

Avoiding Overfitting

Information Gain of a real valued input

Building Decision Trees with real Valued Inputs

Andrew's homebrewed hack: Binary Categorical Splits

Example Decision Trees

Binary categorical splits

 One of Andrew's favorite tricks

Allow splits of the following form

Example:

Machine Learning Datasets

What is Classification?

Contingency Tables

OLAP (Online Analytical Processing)

What is Data Mining?

Searching for High Information Gain

Learning an unpruned decision tree recursively

Training Set Error

Test Set Error

Overfitting

Avoiding Overfitting

Information Gain of a real valued input

Building Decision Trees with real valued Inputs

Andrew's homebrewed hack: Binary Categorical Splits

Example Decision Trees

Predicting age from census

Predicting wealth from census

Predicting gender from census

Conclusions

- Decision trees are the single most popular data mining tool
 - Easy to understand
 - Easy to implement
 - Easy to use
 - Computationally cheap
- It's possible to get in trouble with overfitting
- They do classification: predict a categorical output from categorical and/or real inputs

What you should know

- What's a contingency table?
- What's information gain, and why we use it
- The recursive algorithm for building an unpruned decision tree
- What are training and test set errors
- Why test set errors can be bigger than training set
- Why pruning can reduce test set error
- How to exploit real-valued inputs

What we haven't discussed

- It's easy to have real-valued outputs too---these are called Regression Trees*
- Bayesian Decision Trees can take a different approach to preventing overfitting
- Computational complexity (straightforward and cheap) *
- Alternatives to Information Gain for splitting nodes
- How to choose MaxPchance automatically *
- The details of Chi-Squared testing *
- Boosting---a simple way to improve accuracy *

* = discussed in other Andrew

lectures

For more information

Two nice books

- L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees. Wadsworth, Belmont, CA, 1984.
- C4.5: Programs for Machine Learning (Morgan Kaufmann Series in Machine Learning) by J. Ross Quinlan

Dozens of nice papers, including

- Learning Classification Trees, Wray Buntine, Statistics and Computation (1992), Vol 2, pages 63-73
- Kearns and Mansour, On the Boosting Ability of Top-Down Decision Tree Learning Algorithms, STOC: ACM Symposium on Theory of Computing, 1996"
- Dozens of software implementations available on the web for free and commercially for prices ranging between \$50 - \$300,000

Discussion

- Instead of using information gain, why not choose the splitting attribute to be the one with the highest prediction accuracy?
- Instead of greedily, heuristically, building the tree, why not do a combinatorial search for the optimal tree?
- If you build a decision tree to predict wealth, and marital status, age and gender are chosen as attributes near the top of the tree, is it reasonable to conclude that those three inputs are the major causes of wealth?
- ..would it be reasonable to assume that attributes not mentioned in the tree are not causes of wealth?
- ..would it be reasonable to assume that attributes not mentioned in the tree are not correlated with wealth?