

An Improved Neural Network Algorithm to Efficiently Track Various Trajectories of Robot Manipulator Arms

MAHMOUD ELSISI1,2, KARAR MAHMOUD 3,4, MATTI LEHTONEN 3, AND MOHAMED M.F. DARWISH 2,3 Received December 25, 2020, accepted January 11, 2021, date of publication January 14, 2021, date of current version January 22, 2021. Digital Object Identifier 10.1109/ACCESS.2021.3051807

Advisor: Ching-Hung Lee

Presenter: Shi-Xian Yang

Date: 2023/1/3

Outlines

- Recap
- NNA Algorithm
- System modeling
- Experiment and Result
 - > Comparison
 - > Performance index
 - > Robustness Experiment

Recap

- A new polynomial mutation is applied to promote the exploration manner of the original NNA without initial parameters.
- The new algorithm is introduced to obtain the optimal gains of the robot manipulator controller instead of conventional procedures of designer expertise.
- A new performance index is created to guarantee the decreasing of the settling time and the overshoot at the same time.
- The progress of the inspired procedure is confirmed against various trajectories and system parameter variations.

Recap

Neural Network algorithm

4 ICALAB

NNA Algorithm

Pseudocode of whole process

- 1: Start MNNA
- 2: Simulate the manipulator including the chosen controller
- 3: Determine the performance function (J)
- 4: Select the best solution and the best weights
- 5: While t<Max iteration
- 6: Carry out the steps of MNNA
- 7: Simulate the manipulator including the chosen controller
- 8: Obtain the performance function J
- 9: Select the best fitness
- 10: END While
- 11: **Stop**

System modeling

System modeling

Lagrange mechanics:

$$\tau = M(q)\ddot{q} + C(q, \dot{q}) + G(q)$$

Where

 τ : Torque vector M(q): Inertia matrix

 $C(q, \dot{q})$: Centrifugal and Coriolis effect

G(q): Gravity

• Dynamic formulation:

$$\begin{split} \tau_1 &= m_2 l_2^{\ 2} \big(\ddot{\theta}_1 + \ddot{\theta}_2 \big) + m_2 l_1 l_2 c_2 \big(2 \ddot{\theta}_1 + \ddot{\theta}_2 \big) \\ &+ (m_1 + m_2) l_2^{\ 2} \ddot{\theta}_1 - m_2 l_1 l_2 s_2 \dot{\theta}_2^{\ 2} \\ &- 2 m_2 l_1 l_2 s_2 \dot{\theta}_1 \dot{\theta}_2 + m_2 l_2 g c_{12} \\ &+ (m_1 + m_2) l_1 g c_1 \\ \tau_2 &= m_2 l_2^{\ 2} \big(\ddot{\theta}_1 + \ddot{\theta}_2 \big) + m_2 l_1 l_2 c_2 \big(\ddot{\theta}_1 \big) \\ &+ m_2 l_1 l_2 c_2 \dot{\theta}_1^{\ 2} + m_2 l_1 g c_{12} \end{split}$$

System modeling

Lagrange mechanics:

$$\tau_i = M(q_i)\ddot{q}_i + C(q_i,\dot{q}_i) + G(q_i)$$

• Challenge of tuning controller for robotic manipulator:

→ Joints coupling

$$M(q_i) = \begin{bmatrix} m_2 l_2^2 + (m_1 + m_2) l_2^2 + 2m_2 l_1 l_2 c_2 & m_2 l_2^2 + m_2 l_1 l_2 c_2 \\ m_2 l_2^2 + m_2 l_1 l_2 c_2 & m_2 l_2^2 \end{bmatrix}$$

$$C(q_i, \dot{q}_i) = \begin{bmatrix} -2m_2l_1l_2s_2\dot{q}_1\dot{q}_2 - m_2l_1l_2s_2\dot{q}_2^2 \\ m_2l_1l_2c_2\dot{q}_1^2 \end{bmatrix}$$

$$G(q_i) = \begin{bmatrix} m_2 l_2 g c_{12} + (m_1 + m_2) l_1 g c_1 \\ m_2 l_1 g c_{12} \end{bmatrix}$$

Control signal of the PID control

$$\tau_i = K_{p,i}e_i + K_{I,i} \int e_i \cdot dt + K_{D,i} \frac{de_i}{dt}, \qquad i = 1,2$$

$$e_i = q_{d,i} - q_i$$

System modeling

step1:
$$\tau[k] = K_p e[k] + K_d \left(\frac{e[k] - e[k-1]}{dt} \right) + K_i \sum_{j=0}^{k} e[j] \cdot dt$$

step2:
$$\ddot{q}[k] = M^{-1}(q[k-1])(\tau[k] - C(q[k-1], \dot{q}[k-1]) - G(q[k-1]))$$

step3:
$$\dot{q}[k] = \dot{q}[k-1] + \ddot{q}[k] \cdot dt$$

$$step4: q[k] = q[k-1] + \dot{q}[k] \cdot dt$$

Experiment and Result

➤ Robotic dynamic Parameter:

$$m_1 = m_2 = 0.1kg$$

 $l_1 = 0.8m$ $l_2 = 0.4m$
 $g = 9.81m/s^2$

> Max iteration: 100

> Population size: 50

- > Compare subjects
 - GA-PID
 - PSO-PID
 - MNNA-PID

Controller gain limit:

	Link1		Link2	
	min	max	min	max
K_p	0	250	0	250
K_I	0	1	0	1
K_D	0	20	0	10

	Factors number	Tuning factor
GA-PID	4	Population size, iteration Crossover, mutation
PSO-PID	5	Population size, iteration C1,c2, w
MNNA-PID	2	Population size, iteration

1896

NNA result

Tunning factor setting:

Max iteration: 100

Population size:50

Run: 1 Error: 0.055614 Elapsed_Time: 24.6562

=====optimal solution=======

Link1 Link2

Kp1:250 Kp2:250

Ki1:0.41475 Ki2:0.59791

Kd1:13.4205 Kd2:8.8604

NNA result

VARIOUS TRAJECTORIES

GA result

Tunning factor setting:

Max iteration: 100 Population size:50

Crossover: 0.8

Mutation: 0.1

Error: 0.058121 Elapsed Time: 23.9588

=====optimal solution======

Link1 Link2

Kp1:193.8595 Kp2:223.0862

Ki1:1 Ki2:0.020764

Kd1:11.7447 Kd2:8.6229

GA result

• VARIOUS TRAJECTORIES

PSO result

Tunning factor setting:

Max iteration: 100

Population size:50

Personal Learning Coefficient(c1): 1.5

Global Learning Coefficient(c2): 0.12

Inertia Weight Damping Ratio(w): 0.99

Error: 0.062151 Elapsed Time: 23.7006

======optimal solution======

Link1 Link2

Kp1:218.4591 Kp2:161.4128

Ki1:1 Ki2:0.94015

Kd1:12.492 Kd2:6.4216

PSO result

VARIOUS TRAJECTORIES

Comparison

		GA-PID	PSO-PID	NNA-PID
		$K_P = 193.86$	$K_P = 218.45$	$K_P = 250$
	Link1	$K_I = 1$	$K_I = 1$	$K_I = 0.414$
Controller		$K_D = 11.74$	$K_D = 12.492$	$K_D=13.42$
Parameters		$K_P = 223.08$	$K_P = 161.41$	$K_P = 250$
	Link2	$K_I = 0.02$	$K_I = 0.94$	$K_I = 0.59791$
		$K_D = 8.62$	$K_D = 6.42$	$K_D = 8.8604$
J		0.05812	0.062151	0.055614

Figure 2 Link1 step response

Figure 1 Link2 step response

Comparison

		GA-PID	PSO-PID	NNA-PID
		$K_P = 494.94$	$K_P = 415.52$	$K_P = 497.45$
	Link1	$K_I = 0.995$	$K_I = 0.297$	$K_I = 0.0057$
Controller		$K_D = 19.25$	$K_D = 18.02$	$K_D = 18.99$
Parameters		$K_P = 212.34$	$K_P = 112.80$	$K_P = 379.07$
	Link2	$K_I = 0.017$	$K_I = 0.187$	$K_I = 0.0307$
		$K_D = 6.58$	$K_D = 4.34$	$K_D = 10$
J		0.041568	0.050615	0.038131

Comparison

• VARIOUS TRAJECTORIES

Performance index

Performance index

Goal: decrease settling time ' t_s ' and maximum overshoot ' M_p '

$$J = \sum_{i=1}^{2} (1 - e^{-\psi}) (M_{P,i} + E_{SS,i}) + e^{-\psi} (t_{S,i} - t_{r,i})$$

 $M_{P,i}$ Overshoot $E_{SS,i}$ Steady-state error $t_{S,i}$ settling time $t_{r,i}$ rise time $\psi(=0.7)$ weight constant

 $\psi = 1 \text{ loss: } 0.028892$

Performance index

	$\psi=0$		$\psi=1$	
	Link1	Link2	Link1	Link2
RiseTime	0.0409	0.0328	0.0550	0.0541
SettlingTime	0.0662	0.0462	0.0962	0.0865
Overshoot	2.035%	1.939%	0.021%	0.052%
Steady-state error	0.0013	0.0006	0.0012	0.0009
Total loss	0.03989		0.0289	

Performance index

• Performance index ($let \psi = 0$)

Goal: decrease settling time ' t_s ' and maximum overshoot ' M_p ' $J = \sum_{i=1}^2 (t_{s,i} \mp t_{r,i})$

	$\left(t_{s,i}-t_{r,i} ight)$		$(t_{s,i}+t_{r,i})$		
	Link1	Link2	Link1	Link2	
RiseTime	0.0409	0.0328	0.0518	0.0091	Why
SettlingTime	0.0662	0.0462	0.0883	0.0779	
Overshoot	2.035%	1.939%	1.995% Why	^y ? 19.751%	
Steady-state error	0.0013	0.0006	0.0025	0.0013	

Robustness Experiment

• Making uncertainty in masses and lengths of the robotic arms by $\pm 20\%$

Thanks for Your Listening