Hugepage

工程实践与科技创新III-D虚拟化与云计算 EI313

李子龙 518070910095 2021 年 11 月 13 日

目录

1	要求	1
2	配置大内存页。	1
3	创建对照虚拟机。	2
4	运行测试 · · · · · · · · · · · · · · · · · · ·	2
5	解释 · · · · · · · · · · · · · · · · · · ·	3
	要求 Prepare 2MB or 1GB hugepages on your host server. Present your hugepage configure (e.g	ζ.
	/proc/meminfo).	
(2	Create a QEMU KVM virtual machine using hugepages on the host.	
(3	Create another QEMU KVM VM without hugepages.	
(4	Run memory instensive benchmark (e.g. sysbench memory test) on two VMs and record	d
	the performance.	

2 配置大内存页

向 /etc/sysctl.conf 中输入 vm.nr_hugepages = 100,然后重启系统,如图 1 所示。 然后显示大内存页的配置信息如图 2 所示:显示有 2MB 大内存页 100 个。

(5) Compare the result and try to give some explanation.

```
logcreative@ubuntu: ~
                                                                                                                            文件(F) 编辑(E) 查看(V) 搜索(S) 终端(T) 帮助(H)
                                                                                                                           logcreative@ubuntu:~$ grep Huge /proc/meminfo
AnonHugePages: 0 kB
ShmemHugePages: 0 kB
                                                                                                                          Logcreative@ubunt
AnonHugePages:
ShmemHugePages:
FileHugePages:
HugePages_Total:
HugePages_Rsvd:
HugePages_Rsvd:
HugePages_Surp:
Hugepagesize:
Hugetlb:
   gic system request Key
gic system request Key
Hisable, 1=enable all
Jian kernels have this set to 0 (disable the key)
• https://www.kernel.org/doc/Documentation/sysrq.txt
* what other values do
hel.sysrq=1
     0 kB
                                                                                                                                                                           100
                                                                                                                                                                           100
2048 kB
 rotects against creating or following links under certain conditions ebian kernels have both set to 1 (restricted) ee https://www.kernel.org/doc/Documentation/sysctl/fs.txt .protected_hard(links=0 .protected_symlinks=0
                                                                                                                                                                    204800 kB
                                                                                                                             .ogcreative@ubuntu:~$
 nr hugepages=100
```

图 1: 配置大页

图 2: 显示配置

3 创建对照虚拟机

在 virt-manager 中克隆虚拟机,并在其中一个虚拟机中按照上述的方法配置大内存页。 两种虚拟机都使用了 QEMU KVM。

图 3: 两种虚拟机

运行测试

为了保证公平,测试仅运行于一个虚拟机开启的情况下。测试使用 sysbench。

Listing 1: benchmark.sh

sysbench memory --memory-block-size=2M --memory-total-size=2G run

测试结果分别如图 4 和图 5 所示。

图 4: 含有大内存页

图 5: 不含有大内存页

5 解释

图 6: 总时间比较

图 7: 延迟比较

由图 6 可见,对于 2G 内存(2MB 块大小)写入测试上,开启了大内存页的 VM1 确实更占 优势(降低了约56%),且在图7的延迟比较上也占上风(总延迟降低了54%)。

在虚拟内存管理中,内核维护一个将虚拟内存地址映射到物理地址的表,对于每个页面操 作,内核都需要加载相关的映射。如果你的内存页很小,那么你需要加载的页就会很多,导致内 核会加载更多的映射表。而这会降低性能。使用"大内存页",意味着所需要的页变少了。从而 大大减少由内核加载的映射表的数量。这提高了内核级别的性能最终有利于应用程序的性能。从 而减少访问的开销。^[1]

而使用的大内存页都是 2M 的,并排布了 100 个,至少可以有效减少一部分内存页的访问开销,从而减少访问时间和延迟。

参考文献

[1] LAVHATE S. Linux 中的"大内存页"(hugepage) 是个什么? [EB/OL]. 2018. https://linux.cn/article-9450-1.html.