ÖVEGES JÓZSEF Fizikaverseny

II. forduló: megyei szakasz

2022. március 9.

Öveges József (1895-1979) a jeles kísérletező fizikatanár, természettudományos kultúránk igaz ápolója.

VIII. osztály

Az ábrákon fizikai fogalmak képrejtvényei láthatók. A megfejtéseket írd az ábrák alatti mezőbe! Az azonos pontszámot elért tanulók esetén számíthat a helyes megfejtés!

1. feladat. Karikázd be a helyes választ! (Minden helyes válasz 1 pontot ér.)

a) Milyen anyagoknál megy végbe a leggyorsabban a diffúzió?	szilárd	folyadék	gáz
b) A részecskék milyen jellegű mozgását igazolja a Brown-féle mozgás?	rendezett	szabályos	kaotikus
c) Melyik a hőmérő legfontosabb része?	skála	hőérzékelő	tok
d) Melyik az összefüggés a Celsius- és a Kelvin- skála között?	$t(^{\circ}C) = T(K) + 273,15$	$t(^{\circ}C) = T(K) - 273,15$	$T(K) = t(^{\circ}C) - 273,15$
e) Milyen formában terjed a hő fémekben?	vezetés	áramlás	sugárzás
f) A hőerőgép által végzett munka értéke:	$L = Q_1 + Q_2 $	$L = Q_1 - Q_2 $	$L = Q_1 = Q_2 $
g) A hőerőgép hatásfoka a valóságban:	$\eta = L/Q_1 = 1$	$\eta = L/Q_1 < 1$	$\eta = L/Q_1 > 1$
h) A hőkapacitás képlete:	$C = Q/m \cdot \Delta t$	$Q = m \cdot c \cdot \Delta t$	$C = Q/\Delta t$
i) A hármaspont értéke:	273,15K	0,1°C	273,16K
j) A fűtőérték mértékegysége:	J/K	J/kg	J/mol

2. feladat

Egy akvárium hosszúsága L = 80cm, szélessége l = 30cm, magassága h = 50cm.

Elhanyagolható térfogatú rövid szállal az akvárium aljához rögzítünk egy a = 20*cm* oldalélű 0°C-os jégkockát, majd 0°C-os vizet töltünk rá. Ekkor a jégkockát teljesen belepi a víz, és az akvárium éppen félig lesz. Számítsuk ki:

a) Hány literes az akvárium? (2p)

b) Mekkora a beletöltött víz térfogata? (3p)

c) Melegítés során a jégkocka teljesen elolvad. Hány cm³ víz lesz ekkor az akváriumban? (3p)

d) Mekkora hőmennyiség szükséges a jégkocka teljes elolvasztásához? (2p)

Adottak: a víz sűrűsége $\rho_{\text{víz}} = 1.000 kg/m^3$; a jég sűrűsége $\rho_{\text{jég}} = 920 kg/m^3$; a jég fajlagos olvadási rejtett hője $\lambda_0 = 330~000 J/kg$.

3. feladat

Egy elhanyagolható hőkapacitású kaloriméterben $m_1=2kg$ tömegű és $t_1=5^{\circ}$ C hőmérsékletű víz található. A vízbe $m_2=5kg$ tömegű és $t_2=-40^{\circ}$ C hőmérsékletű jégdarabot helyeznek. Határozd meg egyensúlyi állapotban az edényben a hőmérséletet és az anyag térfogatát. (7p) Ismert víz sűrűsége $\rho_v=1000~kg/m^3$, a jég sűrűsége $\rho_{j\acute{e}g}=917~kg/m^3$, a víz fajhője $c_{v\acute{l}z}=4181~J/kg\cdot K$, a jég fajhője $c_{j\acute{e}g}=2090~J/kg\cdot K$ és a jég fajlagos latens olvadáshője $\lambda_{j\acute{e}g}=340000~J/kg$.

Hivatalból jár 3 pont.