Generalities Positive term series Arbitrary term series Alternating series

Mathematical analysis 2 Chapter 3 : Numerical series

R. KECHKAR

2023/2024

Course outline

- Generalities
 - Convergence of a series
 - Divergence Test
 - Propriétés et opérations sur les séries
- 2 Positive term series
 - Convergence criteria for Positive terms series
- Arbitrary term series
- 4 Alternating series

Generalities

Definition

• Let (u_n) be a sequence of real numbers. The expression $u_0 + u_1 + \cdots + u_n + \cdots$

is called numerical series of general term u_n .

• A series of general term u_n is denoted by $\sum_{n=0}^{+\infty} u_n$, $\sum_{n\geq 0} u_n$ or simply $\sum_{n\geq 0} u_n$.

Definition

• The sum of the n first terms of the series is denoted by S_n and is called partial sum

$$S_n = u_0 + u_1 + \dots + u_n = \sum_{k=0}^n u_k.$$

• The sequence (S_n) is called **sequence of partial sum**.

Course outline

- Generalities
 - Convergence of a series
 - Divergence Test
 - Propriétés et opérations sur les séries
- Positive term series
 - Convergence criteria for Positive terms series
- Arbitrary term series
- 4 Alternating series

Convergence of a series

Definition

• A series of general term u_n is said to be **convergent** to S if the sequence of partial sum (S_n) is convergent. In this case we have

$$S = \lim_{n \to \infty} S_n = \sum_{n=0}^{+\infty} u_n.$$

• S is called the sum of the series and we have

$$\sum u_n$$
 converges to $S \iff \lim_{n \to \infty} S_n = S$

• A series that is not convergent is called divergent.

Remark

The nature of a series is by definition its convergence or divergence.

Geometric series

Example.

Let (u_n) be a geometric series with the first term $u_0 = a \neq 0$ and common ratio q. The general term is given by

$$u_n = aq^n \quad (a \neq 0).$$

The partial sum is given by

$$S_n = \begin{cases} a\left(\frac{1-q^{n+1}}{1-q}\right), & q \neq 1\\ a(n+1), & q = 1 \end{cases}$$

Question. When does a geometric series $\sum_{n=0}^{+\infty} aq^n$ converge?

Geometric series

We have

$$S = \lim_{n \to \infty} S_n = \begin{cases} \frac{a}{1 - q}, & \text{if } |q| < 1 \\ \text{The limit doesn't exist} & \text{if } q \le -1 \\ \infty & \text{if } q \ge 1. \end{cases}$$

Consequently, the geometric series

- Converges if |q| < 1.
- Diverges if $|q| \ge 1$.

Example.

Let $\sum_{n=1}^{+\infty} u_n$ be the series defined by the general term $u_n = \frac{1}{n(n+1)}, n \ge 1.$

$$u_n = \frac{1}{n(n+1)}, \ n \ge 1.$$

Example.

Let $\sum_{n=1}^{+\infty} u_n$ be the series defined by the general term $u_n = \frac{1}{n(n+1)}, n \ge 1.$

By decomposition to simple elements we can write the general term as follows $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}.$

Hence
$$S_n = u_1 + u_2 + \dots + u_n$$

$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= 1 - \frac{1}{n+1}.$$

Then

$$S_n = 1 - \frac{1}{n+1}.$$

And we have

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} (1 - \frac{1}{n+1}) = 1.$$

Therefor the series $\sum_{n\geq 1} \frac{1}{n(n+1)}$ converges to 1.

Example.

Let
$$\sum_{n=1}^{+\infty} u_n$$
 be the series defined by the general term $u_n = \ln(1 + \frac{1}{n}), n \ge 1.$

Example.

Let $\sum_{n=1}^{+\infty} u_n$ be the series defined by the general term $u_n = \ln(1 + \frac{1}{n}), n \ge 1.$

We have

$$\forall n \ge 1$$
: $\ln\left(1 + \frac{1}{n}\right) = \ln(n+1) - \ln(n)$.

Then

$$S_n = (\ln(2) - \ln(1)) + (\ln(3) - \ln(2)) + \dots + (\ln(n+1) - \ln(n)) = \ln(n+1) - \ln(1) = \ln(n+1)$$

The partial sum sequence is divergent then $\sum_{n=1}^{+\infty} \ln(1+\frac{1}{n})$ diverges.

Course outline

- Generalities
 - Convergence of a series
 - Divergence Test
 - Propriétés et opérations sur les séries
- Positive term series
 - Convergence criteria for Positive terms series
- Arbitrary term series
- 4 Alternating series

Divergence Test

Proposition

If $\lim_{n\to\infty} u_n \neq 0$ or $\lim_{n\to\infty} u_n$ doesn't exist, then the series $\sum u_n$ diverges.

Example.

The series
$$\sum_{n\geq 0} \frac{n}{n+1}$$
 is divergent since $\lim_{n\to\infty} \frac{n}{n+1} = 1 \neq 0$

↑ The divergence test provides a way of proving that a series diverges but there exist divergent series witch the general term go to zero.

Example.

Harmonic series
$$\sum_{n=1}^{+\infty} \frac{1}{n}$$
 is divergent but $\lim_{n \to \infty} \frac{1}{n} = 0$.

Course outline

- Generalities
 - Convergence of a series
 - Divergence Test
 - Propriétés et opérations sur les séries
- Positive term series
 - Convergence criteria for Positive terms series
- Arbitrary term series
- 4 Alternating series

Proposition

If the series $\sum u_n$ and $\sum v_n$ differ only for a finite number of terms, then the two series are of the same nature.

Remark

The nature of a series remains unchanged when adding or subtracting a finite number of terms.

Proposition (Operations on series)

Let $\sum u_n$ and $\sum v_n$ be two series convergent respectively to S and L then

1 The series $\sum (u_n + v_n)$ is converent to S + L and we have

$$\sum_{n=0}^{+\infty} (u_n + v_n) = \sum_{n=0}^{+\infty} u_n + \sum_{n=0}^{+\infty} v_n = S + L$$

2) For all $\alpha \in \mathbb{R}$ the series $\sum (\alpha u_n)$ converges to (αS) and we have

$$\sum_{n=0}^{+\infty} (\alpha u_n) = \alpha \sum_{n=0}^{+\infty} u_n = \alpha S.$$

Important remark

Remark

In the cases:

- If $\sum u_n$ is convergent and $\sum v_n$ is divergent then the series $\sum (u_n + v_n)$ is divergent.
- ② If $\sum u_n$ and $\sum v_n$ diverge, their sum $\sum (u_n + v_n)$ is not necessary divergent.

Example.

Study the nature of the series

$$\sum_{n=1}^{+\infty} \left(\frac{3}{2^n} + \frac{2}{n(n+1)} \right)$$

Example.

Study the nature of the series

$$\sum_{n=1}^{+\infty} \left(\frac{3}{2^n} + \frac{2}{n(n+1)} \right)$$

Solution. We have

• $\sum_{n=0}^{+\infty} \frac{1}{2^n}$ is a geometric series with common ratio $q = \frac{1}{2} \in]-1,1[$ then it

converges to
$$\frac{1/2}{1-1/2} = 1.$$

converges to $\frac{1/2}{1-1/2} = 1$. • The series $\sum_{n=1}^{+\infty} \frac{1}{n(n+1)}$ converges to 1.

Therefore

$$\sum_{n=1}^{+\infty} \left(\frac{3}{2^n} + \frac{2}{n(n+1)} \right) = \sum_{n=1}^{+\infty} \frac{3}{2^n} + \sum_{n=1}^{+\infty} \frac{2}{n(n+1)} = 3 \sum_{n=1}^{+\infty} \frac{1}{2^n} + 2 \sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = 3 + 2 = 5.$$

Then the series
$$\sum_{n=1}^{+\infty} \left(\frac{3}{2^n} + \frac{2}{n(n+1)} \right)$$
 is convergent to 5.

Example.

The series $\sum \frac{1}{n(n+1)}$ is **convergent**, even

$$\sum \frac{1}{n(n+1)} = \sum \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

Where $\sum_{n=0}^{\infty} \frac{1}{n}$ diverges and $\sum_{n=0}^{\infty} \frac{1}{n+1}$ diverges also.

Course outline

- Generalities
 - Convergence of a series
 - Divergence Test
 - Propriétés et opérations sur les séries
- 2 Positive term series
 - Convergence criteria for Positive terms series
- Arbitrary term series
- 4 Alternating series

Positive term series

Definition

A series $\sum u_n$ is said to be a positive term series if $u_n \ge 0 \ \forall n \ge n_0$; $n_0 \in \mathbb{N}$

Example.

The series
$$\sum_{n=1}^{+\infty} \frac{n+2}{n^2}$$
 is a positive terms since: $\forall n \ge 1, \frac{n+2}{n^2} \ge 0$

Remark

If a series $\sum u_n$ is a positive term series then the sequence of partial sum $(S_n)_n$ is increasing.

Positive term series

Proposition

Let $\sum u_n$ be a positive term series

 $\sum u_n$ converges \iff (S_n) is upper bounded.

Example.

Let's consider the positive term series $\sum \frac{1}{n(n+1)}$.

Positive term series

Proposition

Let $\sum u_n$ be a positive term series

 $\sum u_n$ converges \iff (S_n) is upper bounded.

Example.

Let's consider the positive term series $\sum \frac{1}{n(n+1)}$. We have

$$S_N = \sum_{n=1}^N \frac{1}{n(n+1)} = 1 - \frac{1}{N+1}.$$

For all $n \ge 1$: $S_n \le 1$ then (S_n) is upper bounded, therefore $\sum \frac{1}{n(n+1)}$ is convergent.

Course outline

- Generalities
 - Convergence of a series
 - Divergence Test
 - Propriétés et opérations sur les séries
- 2 Positive term series
 - Convergence criteria for Positive terms series
- Arbitrary term series
- 4 Alternating series

Theorem

Let $\sum u_n$ et $\sum v_n$ be two positive term series such that for all $n \ge n_0$, $n_0 \in \mathbb{N}$, we have

$$0 \le u_n \le v_n$$

Then

- 2 If $\sum u_n$ diverges $\Longrightarrow \sum v_n$ diverges.

Example.

Study the nature of the series $\sum_{n=0}^{+\infty} \frac{|\cos n|}{5^n}$ using the comparison test.

In one hand $\sum_{n=0}^{+\infty} \frac{|\cos n|}{5^n}$ is a positive term series since

$$\frac{|\cos n|}{5^n} \ge 0 \quad \forall n \in \mathbb{N}$$

In the other hand we have

$$\forall n \in \mathbb{N}, \quad |\cos n| \le 1 \Longrightarrow \frac{|\cos n|}{5^n} \le \frac{1}{5^n}.$$

In this case we choose $v_n = \frac{1}{5^n}$, wich is a convergent geometric series (since $q = 1/5 \in]-1,1[$), Consequently the series $\sum_{n=0}^{+\infty} \frac{|\cos n|}{5^n}$ is convergent.

Example.

Study the nature of the series of general term

$$u_n = \frac{3 + \sin(\ln n)}{n}$$

Example.

Study the nature of the series of general term

$$u_n = \frac{3 + \sin(\ln n)}{n}$$

We have for all $n \ge 1$:

$$-1 \le \sin(\ln n) \le 1$$
$$2 \le 3 + \sin(\ln n) \le 4$$
$$\frac{2}{n} \le \frac{3 + \sin(\ln n)}{n} \le \frac{4}{n}$$

We can see that $\sum_{n=1}^{+\infty} \frac{3 + \sin(\ln n)}{n}$ is a positive term series and $\sum_{n=1}^{+\infty} \frac{2}{n} \le \sum_{n=1}^{+\infty} \frac{3 + \sin(\ln n)}{n}$

$$\sum_{n=1}^{\infty} \frac{2}{n} \le \sum_{n=1}^{\infty} \frac{3 + \sin(\ln n)}{n}$$

Since $\sum_{n=1}^{+\infty} \frac{2}{n}$ is divergent then $\sum_{n=1}^{+\infty} \frac{3 + \sin(\ln n)}{n}$ is divergent.

Theorem

Let $\sum u_n$ and $\sum v_n$ tow positive term series. If $u_n \sim v_n$ or $\lim_{n \to \infty} \frac{u_n}{v_n} = \ell$, $\ell \neq 0$, $\ell \neq +\infty$ then the two series have the same nature.

Example.

Study the nature of the series

$$\sum_{n\geq 0} \frac{n^3 + 1}{n^5 + 2n^3 + 2}$$

Theorem

Let $\sum u_n$ and $\sum v_n$ tow positive term series. If $u_n \sim v_n$ or $\lim_{n \to \infty} \frac{u_n}{v_n} = \ell$, $\ell \neq 0$, $\ell \neq +\infty$ then the two series have the same nature.

Example.

Study the nature of the series

$$\sum_{n\geq 0} \frac{n^3 + 1}{n^5 + 2n^3 + 2}$$

We have for all $n \in \mathbb{N}$, $u_n > 0$ and

$$\frac{n^3+1}{n^5+2n^3+2} \sim \frac{n^3}{n^5} = \frac{1}{n^2}$$

Since $\sum_{n=1}^{+\infty} \frac{1}{n^2}$ is convergent (Riemann Series) then $\sum_{n\geq 0} \frac{n^3+1}{n^5+2n^3+2}$ is convergent.

Example.

Study the nature of the series defined by

$$\sum_{n=0}^{+\infty} \ln\left(1 + \frac{1}{3^n}\right)$$

Example.

Study the nature of the series defined by

$$\sum_{n=0}^{+\infty} \ln\left(1 + \frac{1}{3^n}\right)$$

We know that
$$\ln\left(1+\frac{1}{x}\right) \approx \frac{1}{x}$$
 then $\ln\left(1+\frac{1}{3^n}\right) \approx \frac{1}{3^n}$
Since $\sum_{n=0}^{+\infty} \frac{1}{3^n}$ is a convergent geometric series then $\sum_{n=0}^{+\infty} \ln\left(1+\frac{1}{3^n}\right)$ is convergent.

Example.

Study the nature of the series defined by

$$\sum_{n=0}^{+\infty} \ln\left(1 + \frac{1}{3^n}\right)$$

We know that $\ln\left(1+\frac{1}{x}\right) \approx \frac{1}{x}$ then $\ln\left(1+\frac{1}{3^n}\right) \approx \frac{1}{3^n}$

Since $\sum_{n=0}^{+\infty} \frac{1}{3^n}$ is a convergent geometric series then $\sum_{n=0}^{+\infty} \ln\left(1 + \frac{1}{3^n}\right)$ is convergent.

Example.

The series
$$\sum_{n=1}^{+\infty} \left| \sin \left(\frac{1}{n} \right) \right|$$

Example.

Study the nature of the series defined by

$$\sum_{n=0}^{+\infty} \ln\left(1 + \frac{1}{3^n}\right)$$

We know that
$$\ln\left(1+\frac{1}{x}\right) \approx \frac{1}{x}$$
 then $\ln\left(1+\frac{1}{3^n}\right) \approx \frac{1}{3^n}$

Since $\sum_{n=0}^{+\infty} \frac{1}{3^n}$ is a convergent geometric series then $\sum_{n=0}^{+\infty} \ln\left(1 + \frac{1}{3^n}\right)$ is convergent.

Example.

The series $\sum_{n=1}^{+\infty} \left| \sin \left(\frac{1}{n} \right) \right|$ is divergent since $\left| \sin \left(\frac{1}{n} \right) \right| \approx \frac{1}{n}$ since $(\sin x \approx x)$, and

the series $\sum_{n=1}^{+\infty} \frac{1}{n}$ is divergent.

Integral test

Theorem

Let $f: [a, +\infty[\to \mathbb{R}^+ \text{ be a continuous positive decreasing mapping.}]$ We set $u_n = f(n)$ for all $n \in \mathbb{N}^*$, $(n \ge a)$ Then

$$\sum u_n converges \iff \int_a^{+\infty} f(x) dx \ exist$$

$$\iff \lim_{t \to +\infty} \int_a^t f(x) dx = \ell. \quad (\ell \ finite \).$$

Example. (Harmonic series)

$$\sum_{n=1}^{+\infty} \frac{1}{n}.$$

Example. (Harmonic series)

Study the nature of the series

$$\sum_{n=1}^{+\infty} \frac{1}{n}.$$

We set $f(n) = \frac{1}{n}$ we consider the mapping $f: [1, +\infty[\to \mathbb{R}^+ / x \mapsto f(x) = \frac{1}{x}]$. The mapping f is continuous, positive and decreasing on $[1, +\infty[$

$$\int_{1}^{t} f(x)dx = \int_{1}^{t} \frac{1}{x} = \ln x \Big|_{1}^{t} = \ln t - \ln 1 = \ln t.$$

and

$$\lim_{t \to +\infty} \int_{1}^{t} f(x)dx = \lim_{t \to +\infty} \ln t = +\infty.$$

Then the series $\sum_{n=1}^{+\infty} \frac{1}{n}$ is divergent.

Example.

$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)}$$

Example.

Study the nature of the series $\sum_{n=1}^{+\infty} \frac{1}{n(n+1)}$

$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)}$$

We set
$$f(n) = \frac{1}{n(n+1)}$$
 and consider the mapping
$$f: [1, +\infty[\to \mathbb{R}^+ / x \mapsto f(x) = \frac{1}{x(x+1)}].$$

The mapping
$$f$$
 is continuous, positive and decreasing on $[1, +\infty[$

$$\int_{1}^{t} f(x)dx = \int_{1}^{t} \frac{1}{x(x+1)} = \int_{1}^{t} \frac{1}{x} dx - \int_{1}^{t} \frac{1}{x+1} dx \quad \left(\text{since } \frac{1}{x(x+1)} = \frac{1}{x} - \frac{1}{x+1}\right)$$

$$= \ln x \Big|_{1}^{t} - \ln(x+1)\Big|_{1}^{t} = \ln t - \ln 1 - \ln(t+1) + \ln 2$$

$$= \ln \left(\frac{t}{t+1}\right) + \ln 2.$$

Therefor
$$\lim_{t \to +\infty} \int_{1}^{t} f(x)dx = \lim_{t \to +\infty} \ln \left(\frac{t}{t+1}\right) + \ln 2 = \ln 2.$$

Then the series $\sum_{n=0}^{+\infty} \frac{1}{n(n+1)}$ is convergent.

Definition

Let $\alpha \in \mathbb{R}$, we call Riemann series all series with general term

$$u_n = \frac{1}{n^{\alpha}}, \quad n \ge 1, \quad \alpha \in \mathbb{R}.$$

Proposition

Reimann series $\sum \frac{1}{n^{\alpha}}$, $\alpha \in \mathbb{R}$ converges if and only if $\alpha > 1$ and diverges if $\alpha \leq 1$.

Example.

We have

• The series
$$\sum_{n=1}^{+\infty} \frac{1}{\sqrt{n^3}}$$
 is convergent

since

Example.

We have

- The series $\sum_{n=1}^{+\infty} \frac{1}{\sqrt{n^3}}$ is convergent

 since $\sum \frac{1}{\sqrt{n^3}} = \sum \frac{1}{(n^3)^{1/2}} = \sum \frac{1}{n^{3/2}}$, it is a Riemann series with $\alpha = \frac{3}{2} > 1$ then $\sum \frac{1}{\sqrt{n^3}}$ converges.
- The series $\sum \sqrt{n}$ is divergent since

Example.

We have

- The series $\sum_{n=1}^{+\infty} \frac{1}{\sqrt{n^3}}$ is convergent $since \sum \frac{1}{\sqrt{n^3}} = \sum \frac{1}{(n^3)^{1/2}} = \sum \frac{1}{n^{3/2}}$, it is a Riemann series with $\alpha = \frac{3}{2} > 1$ then $\sum \frac{1}{\sqrt{n^3}}$ converges.
- The series $\sum \sqrt{n}$ is divergent since $\sum \sqrt{n} = \sum n^{1/2} = \sum \frac{1}{n^{-1/2}}$, it is a Riemann series with $\alpha = \frac{-1}{2} \le 1$ then $\sum \sqrt{n}$ diverges.

Proposition

Let $\sum u_n$ a positive term series

- ① If there exist $\alpha > 1$ such that the sequence $(n^{\alpha}u_n)$ is upper bounded by a constant M > 0 then $\sum u_n$ converges.
- ② If there exist $\alpha \le 1$ such that the sequence $(n^{\alpha}u_n)$ is lower bounded by a constant m > 0 then $\sum u_n$ diverges.

Corollaire

Let $\sum u_n$ be a positive term series. We suppose that there exisit $\alpha \in \mathbb{R}$ such that

- If $\lim_{n\to\infty} n^{\alpha} u_n = \ell$, $(\ell \neq 0 \text{ et } \ell \neq +\infty)$ the series $\sum u_n$ and $\sum \frac{1}{n^{\alpha}}$ are of the same nature.
- ② If $\lim_{n \to \infty} n^{\alpha} u_n = 0$ and $\sum \frac{1}{n^{\alpha}}$ converges then $\sum u_n$ converges.

Example.

$$\sum_{n=1}^{+\infty} e^{\frac{3}{n^2}} - 1$$

Example.

Study the nature of the series

$$\sum_{n=1}^{+\infty} e^{\frac{3}{n^2}} - 1$$

we know that

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1 \implies e^x - 1 \sim x$$

Consequently

$$e^{\frac{3}{n^2}} - 1 \sim \frac{3}{n^2}$$
.

Then

$$\lim_{n \to +\infty} n^2 \left(e^{\frac{3}{n^2}} - 1 \right) = \lim_{n \to +\infty} n^2 \left(\frac{3}{n^2} \right) = 3$$

Therefore the series $\sum_{n=1}^{+\infty} e^{\frac{3}{n^2}} - 1$ converges.

Example.

$$\sum_{n\geq 2} \frac{1}{\ln n}$$

Example.

study the nature of the series

$$\sum_{n\geq 2}\frac{1}{\ln n}$$

We have $\lim_{n\to\infty} n \frac{1}{\ln n} = \infty$ and $\sum \frac{1}{n}$ diverges, then $\sum_{n\geq 2} \frac{1}{\ln n}$ diverges.

Example.

$$\sum_{n=0}^{+\infty} e^{-n}$$

Example.

study the nature of the series

$$\sum_{n=0}^{+\infty} e^{-n}$$

We have $\lim_{n \to \infty} n^2 e^{-n} = 0$ and $\sum_{n=0}^{\infty} \frac{1}{n^2}$ converges, then $\sum_{n=0}^{+\infty} e^{-n}$ converges.

Proposition

Let $\sum u_n$ be a series of positive terms. We set

$$\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \ell$$

- If $\ell < 1 \implies \sum u_n$ converges.
- 2 If $\ell > 1 \implies \sum u_n$ diverges.
- **1** If $\ell = 1$ we can't say any thing of the nature of the series.

Example.

$$\sum_{n=0}^{+\infty} \frac{1}{n!}$$

Example.

Study the nature of the series

$$\sum_{n=0}^{+\infty} \frac{1}{n!}$$

We have

$$\frac{u_{n+1}}{u_n} = \frac{1}{(n+1)!} \cdot \frac{n!}{1} = \frac{1}{n+1}$$

and

$$\lim_{n\to +\infty}\frac{u_{n+1}}{u_n}=\lim_{n\to +\infty}\frac{1}{n+1}=0$$

Consequently $\sum_{n=0}^{+\infty} \frac{1}{n!}$ converges.

Example.

$$u_n = \frac{n^n}{n!}, \quad n \ge 0$$

Example.

Study the nature of the series

$$u_n = \frac{n^n}{n!}, \quad n \ge 0$$

$$\forall n \in \mathbb{N}: \ \frac{u_{n+1}}{u_n} = \frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^n} = \frac{(n+1)^n}{n^n} = \left(\frac{n+1}{n}\right)^n = e^{n\ln\left(\frac{n+1}{n}\right)}$$

$$\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} e^{n\ln\left(\frac{n+1}{n}\right)} = \lim_{n \to +\infty} e^{n\left(\frac{1}{n}\right)} = e > 1. \quad (car \ln\left(\frac{n+1}{n}\right) \sim \frac{1}{n})$$

Therefore the series $\sum u_n = \frac{n}{n!}$ diverges.

Example.

$$\sum_{n\geq 1} \frac{2^{2n}e^{-2n}}{n}$$

Example.

Study the nature of the series

$$\sum_{n\geq 1} \frac{2^{2n}e^{-2n}}{n}$$

We have

$$\forall n \in \mathbb{N}: \ \frac{u_{n+1}}{u_n} = \frac{2^{2(n+1)}e^{-2(n+1)}}{n+1} \cdot \frac{n}{2^{2n}e^{-2n}} = 2^2e^{-2}\frac{n}{n+1}$$
$$= \left(\frac{2}{e}\right)^2 \frac{n}{n+1} \to \left(\frac{2}{e}\right)^2 < 1$$

Then the series $\sum_{n>1} \frac{2^{2n}e^{-2n}}{n}$ converges.

Proposition

Let $\sum u_n$ be a positive term series. We set

$$\lim_{n\to+\infty} \sqrt[n]{u_n} = \ell$$

- If $\ell < 1 \implies \sum u_n$ converges.
- ② If $\ell > 1 \implies \sum u_n$ diverges.
- **1** If $\ell = 1$ we can't say any thing on the nature of the series.

Example.

$$\sum_{n=1}^{+\infty} \left(\frac{n+1}{n} \right)^{-n}$$

We have $\forall n \in \mathbb{N}^* \ u_n \ge 0$ and

$$\sqrt[n]{u_n} = \left(\frac{n+1}{n}\right)^{-n} = \left(1 + \frac{1}{n}\right)^{-n}$$

$$\lim_{n \to +\infty} \sqrt[n]{u_n} = \lim_{n \to +\infty} \left(\frac{n+1}{n}\right)^{-n} = \lim_{n \to +\infty} e^{-n\ln\left(1 + \frac{1}{n}\right)} = \lim_{n \to +\infty} e^{-n\left(\frac{1}{n}\right)} = e^{-1} < 1$$

Then the series $\sum_{n=1}^{+\infty} \left(\frac{n+1}{n}\right)^{-n^2}$ converges.

Example.

$$\sum_{n=0}^{+\infty} \left(\frac{n-1}{2n+3} \right)^n$$

Example.

Study the nature of the series

$$\sum_{n=0}^{+\infty} \left(\frac{n-1}{2n+3} \right)^n$$

 $\sum_{n=0}^{+\infty} \left(\frac{n-1}{2n+3} \right)^n$ is a positive term series and we have

$$\lim_{n \to +\infty} \sqrt[n]{u_n} = \lim_{n \to +\infty} \frac{n-1}{2n+3}$$
$$= \frac{1}{2} < 1$$

Then the series $\sum_{n=0}^{+\infty} \left(\frac{n-1}{2n+3}\right)^n$ converges.

Link between D'Alembert ratio test and Cauchy root test

Proposition

Let $\sum u_n$ be a positive term series then

$$\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = l \implies \lim_{n \to +\infty} \sqrt[n]{u_n} = \ell$$

Remark

The converse is false.

Course outline

- Generalities
 - Convergence of a series
 - Divergence Test
 - Propriétés et opérations sur les séries
- 2 Positive term series
 - Convergence criteria for Positive terms series
- Arbitrary term series
- 4 Alternating series

Arbitrary term series

Definition

We call arbitrary term series all series $\sum u_n$ which the general term can take positive or negative values.

Example.

The series

$$\sum \frac{(-1)^n}{n^2}$$
, $\sum \sin\left(n\frac{\pi}{2}\right)$

are arbitrary term series.

Definition

If $\sum |u_n|$ converges we say that the series $\sum u_n$ is absolutely convergent.

Remark

All convergent positive term series is absolutely convergent.

Theorem

Let $\sum u_n$ an arbitrary term series

- If $\sum u_n$ is absolutely convergent then $\sum u_n$ is convergent. That is to say $\sum |u_n|$ converges $\Longrightarrow \sum u_n$ converges.
- The converse is false.
- If $\sum u_n$ diverges then $\sum |u_n|$ diverges.

Example.

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2}$$

Example.

Study the nature of the series

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2}$$

We have

$$|u_n| = \left| \frac{(-1)^n}{n^2} \right| = \frac{1}{n^2}$$

The series $\sum \frac{1}{n^2}$ is convergent then the series $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2}$ is absolutely convergent then it converges.

Example.

$$\sum_{n=1}^{+\infty} \frac{\cos(n\pi)}{n^3}$$

Example.

Study the nature of the series

$$\sum_{n=1}^{+\infty} \frac{\cos(n\pi)}{n^3}$$

We have

$$|u_n| = \left| \frac{\cos(n\pi)}{n^3} \right| \le \frac{1}{n^3}$$

The series $\sum \frac{1}{n^3}$ is convergent then the series $\sum \left| \frac{\cos(n\pi)}{n^3} \right|$ converges

therefore the series $\sum \frac{\cos(n\pi)}{n^3}$ converges.

Conditionally convergent series

Definition

A convergent series but non absolutely convergent is called conditionally convergent series.

Example.

The series
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n}$$
 is conditionally convergent.

Conditionally convergent series

Definition

A convergent series but non absolutely convergent is called conditionally convergent series.

Example.

The series
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n}$$
 is conditionally convergent.

$$|u_n| = \left| \frac{(-1)^n}{n} \right| = \frac{1}{n}$$
 and the series $\sum \frac{1}{n}$ is divergent then the series
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n}$$
 is not absolutely convergent but $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n}$ is convergentthen
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n}$$
 is conditionally convergent.

Abel test

Theorem

Let $\sum u_n$ an arbitrary term series such that $u_n = a_n \cdot b_n$, où a_n et b_n two sequences satisfying

- La suite b_n decreasing and positive.
- $\lim_{n\to+\infty}b_n=0.$
- $\exists M > 0 \text{ such that } \forall n \in \mathbb{N} \colon \left| \sum_{k=0}^{n} a_k \right| \leq M.$

Then $\sum u_n$ is convergent.

Abel test

Example.

Show that the series
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n}$$
 is convergent

Abel test

Example.

Show that the series $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n}$ is convergent

Let
$$a_n = (-1)^n$$
 and $b_n = \frac{1}{n}$, we have

- $\mathbf{0}$ b_n is a positive decreasing sequence.
- $\lim_{n\to+\infty}b_n=\lim_{n\to+\infty}\frac{1}{n}=0.$
- **③** We have $\forall n \ge 1$

$$\sum_{k=0}^{n} a_k = \begin{cases} -1\\0\\1.\end{cases}$$

Then
$$\left|\sum_{k=0}^{n} a_k\right| \le 1$$
, By Abel test $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n}$ is convergent.

Course outline

- Generalities
 - Convergence of a series
 - Divergence Test
 - Propriétés et opérations sur les séries
- Positive term series
 - Convergence criteria for Positive terms series
- Arbitrary term series
- 4 Alternating series

Definition

A series $\sum u_n$ is said to be alternating series if and only if for all $n \ge n_0$, $(n_0 \in \mathbb{N})$ $u_n = (-1)^n v_n$ or $u_n = (-1)^{n+1} v_n$ with $v_n \ge 0$. Then all series of the form $\sum (-1)^n u_n$, $u_n \ge 0$ is said to be alternating series.

Example.

The series
$$\sum \frac{(-1)^n}{n}$$
, $\sum \frac{(-1)^n}{n^2+3}$, $\sum \frac{\cos(n\pi)}{e^n}$ are alternating series.

Definition

A series $\sum u_n$ is said to be alternating series if and only if for all $n \ge n_0$, $(n_0 \in \mathbb{N})$ $u_n = (-1)^n v_n$ or $u_n = (-1)^{n+1} v_n$ with $v_n \ge 0$. Then all series of the form $\sum (-1)^n u_n$, $u_n \ge 0$ is said to be alternating series.

Example.

The series
$$\sum \frac{(-1)^n}{n}$$
, $\sum \frac{(-1)^n}{n^2+3}$, $\sum \frac{\cos(n\pi)}{e^n}$ are alternating series.

Theorem

Let $\sum (-1)^n u_n$ be an alternating series. If (u_n) a positive decreasing convergent sequence to 0 then $\sum (-1)^n u_n$ is convergent.

Example.

$$\sum_{n=1}^{+\infty} (-1)^n \ln(1 + \frac{1}{n})$$

Example.

Study the nature of the series

$$\sum_{n=1}^{+\infty} (-1)^n \ln(1 + \frac{1}{n})$$

The series $\sum_{n=1}^{+\infty} (-1)^n \ln(1+\frac{1}{n})$ is a convergent alternating series, since we have:

- $u_n = \ln(1 + \frac{1}{n}) \ge 0.$
- (u_n) is decreasing since

$$u_n = f(n), f'(n) = \frac{\frac{-1}{n^2}}{1 + \frac{1}{n}} = \frac{-1}{n^2} \cdot \frac{n}{n+1} = \frac{-1}{n(n+1)} < 0.$$

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \ln(1 + \frac{1}{n}) = 0$$

Then by Leibnitz test the series $\sum_{n=1}^{+\infty} (-1)^n \ln(1+\frac{1}{n})$ is convergent.