Unique Performance and Characterization of a Crystalline SbRe₂O₆ Catalyst for Selective Ammoxidation of Isobutane

Haichao Liu and Yasuhiro Iwasawa*

Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Received: October 8, 2001; In Final Form: December 10, 2001

The catalytic performances of a new family of crystalline Re-Sb-O compounds SbRe₂O₆, SbOReO₄·2H₂O and Sb₄Re₂O₁₃ in selective ammoxidation of isobutane (i-C₄H₁₀) to methacrylonitrile (MAN) have been studied and compared with those of a mechanical mixture of $Sb_2O_3 + Re_2O_7$, coprecipitated $SbRe_2O_3$, Sb_2O_3 -supported Re₂O₇, bulk Re oxides, and Sb oxides. SbRe₂O₆ efficiently catalyzed the i-C₄H₁₀ ammoxidation to MAN at 673 K with the good selectivity to MAN (44.9%) and to the sum of MAN + i-C₄H₈ (84.3%) at a steady-state conversion of 4.4%, while significantly no MAN activity was observed on the other catalysts. No structural change in the bulk and surface of SbRe₂O₆ after the i-C₄H₁₀ ammoxidation was observed by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and in situ confocal laser Raman microscopic spectroscopy (LRM). The good performance of SbRe₂O₆ may be ascribed to its specific crystal structure composed of alternate octahedral (Re₂O₆)³⁻ and (SbO)⁺ layers. It was found that the presence of NH₃ was prerequisite to the C-H bond breaking of i-C₄H₁₀, and the oxidation/ dehydrogenation of i-C₄H₁₀ never proceeded in the absence of NH₃. The presence of NH₃ was also prerequisite to maintain the crystal structure of SbRe₂O₆ under the reaction conditions. Fourier transformed infrared (FT-IR) spectra showed that NH_x species irreversibly adsorbed on the SbRe₂O₆ catalyst. The i-C₄H₁₀ ammoxidation proceeded on SbRe₂O₆ by a redox mechanism, in which the oxidative dehydrogenation of i-C₄H₁₀ to i-C₄H₈ was the rate-determining step. Increasing reaction temperature and decreasing GHSV did not give rise to increase in the formation of byproducts CO₂ and acetonitrile. Thus the crystalline SbRe₂O₆ compound may be regarded to be a new promising catalyst for the ammoxidation of light alkanes.

1. Introduction

There is increasing economic incentive in petroleum and chemical industries to directly utilize cheap and abundantly available alkanes as feedstocks in stead of the corresponding alkenes in selective oxidation/ammoxidation reactions to produce unsaturated aldehydes and nitriles. A large number of mixedoxide catalysts for these reactions have been investigated to date.^{1–14} However, owing to the inertness of alkanes, very few catalysts have displayed good performances comparable to those for the corresponding alkene processes, despite the extensive scientific studies. The only commercial example of use of alkane so far is *n*-butane oxidation to maleic anhydride on V-P-O catalysts. Recently, propane ammoxidation to acrylonitrile on Sb-V-O and MoVNbTeO_x catalysts has been examined at the exploratory and pilot plant stages, which could lead to industrially promising selective ammoxidation processes. 4,10,12,14 While these results point out the possibility of selective oxyfunctionalization of light alkanes on oxide catalysts, they allow to acknowledge that the controlled oxyfunctionalization of light alkanes is still one of the major challenges in heterogeneous catalysis. It is thus clearly needed to develop new catalytic materials that are efficient for the selective oxidation/ammoxidation of light alkanes.

To achieve this goal, we have been exploring a new family of mixed Re-Sb oxides as selective oxidation catalysts. Our such choice is based on the following facts and considerations.

Re oxides possess redox properties similar to those of V, Mo, and W oxides,15 which have been extensively used as main components in various oxidation catalysts. 1-4,8-20 So Re may also be a key catalytic element capable of activating hydrocarbons for selective oxidation, notwithstanding the fact that it has found hitherto few applications to the oxidation of methanol and ethanol. 17-24 On the other hand, Sb is well-known to constitute a promoter element in various mixed-oxide formulations such as V-Sb-O, Sn-Sb-O, Mo-Sb-O, Fe-Sb-O, and U-Sb-O.1-12,25-30 In these catalysts, Sb oxides are considered to facilitate the abstraction of an allylic hydrogen from hydrocarbon molecules as well as the subsequent oxygen or nitrogen insertion into allylic intermediate species. Our recent results concerning the Pt/SbO_x catalyst for the selective oxidation of isobutane and isobutylene to methacrolein also show that the Sb₆O₁₃ suboxide phase formed under the catalytic oxidation conditions contributes to the oxygen insertion to allylic intermediates in a synergetic manner with Pt particles.^{6–8} Therefore, mixed oxides associated with Re and Sb may be a combination of good choice for development of a new family of catalytic materials for selective ammoxidation of alkanes.

We first employed three crystalline Re—Sb mixed oxides, SbRe₂O₆, SbOReO_{4*}2H₂O, and Sb₄Re₂O₁₃, with different crystal structures as new catalysts for the selective oxidation of i-C₄H₈ and i-C₄H₁₀ to methacrolein (MAL).^{5,31,32} These mixed oxides are the only three crystalline Re—Sb—O compounds known so far.^{24,33,34} It was found that they exhibited promising performances; for example, i-C₄H₁₀ was converted to MAL and i-C₄H₈

^{*} To whom correspondence should be addressed. Fax: 81-3-5800-6892. E-mail: iwasawa@chem.s.u-tokyo.ac.jp

in a high selectivity of 83% on SbRe₂O₆ at 773 K. But a problem encountered under the catalytic oxidation conditions was a partial decomposition of the catalysts, resulting in sublimation and loss of Re oxides. In an effort to overcome the decomposition problem, recently, we have found that i-C₄H₁₀ ammoxidation to methacrylonitrile (MAN) (eq 1)

$$i-C_4H_{10} + NH_3 + 2O_2 \rightarrow MAN + 4H_2O$$
 (1)

efficiently proceeded on the SbRe₂O₆ catalyst at 673 K with good selectivities to MAN (44.9%) and to the sum of MAN and i-C₄H₈ (84.3%), in which no structural change in the SbRe₂O₆ crystal occurred.^{35,36} The presence of NH₃ in the catalytic system played a double role in not only stabilizing the SbRe₂O₆ crystal but also promoting the activity for dehydrogenation of i-C₄H₁₀. In this paper, we report a systematic study on the selective i-C₄H₁₀ ammoxidation catalysis of the three crystalline Re-Sb-O compounds and their characterization by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), insitu confocal laser Raman microscopic spectroscopy (LRM), and Fourier transformed infrared spectroscopy (FT-IR). The study aimed at shedding light on the correlation between the catalytic performances of the Re-Sb-O samples and their structural characteristics, as well as the promoting effect of NH₃ on the selective ammoxidation catalysis.

2. Experimental Section

2.1. Preparation of Catalysts. Three crystalline Re-Sb-O compounds SbOReO₄•2H₂O, SbRe₂O₆, and Sb₄Re₂O₁₃ were synthesized in procedures similar to those reported previously.^{5,24,31-34} Briefly, SbOReO₄•2H₂O was synthesized hydrothermally as follows: 2.8 g of Re₂O₇ (Soekawa Chemicals, purity > 99.99%) was dissolved in deionized water (2 mL) in a Teflon-lined autoclave. To the resultant perrhenic acid solution, 1.7 g of Sb₂O₃ (Soekawa Chemicals, purity > 99.99%) was added under vigorous stirring (Sb/Re atomic ratio = 1:1). Afterward, the autoclave was sealed and maintained at 423 K for 24 h, and then at room temperature for 6 days. By drying the resultant compound under vacuum at 343 K, SbOReO₄. 2H₂O was obtained as white powder. SbRe₂O₆ was synthesized through a solid-state reaction between SbOReO4.2H2O and metallic Re (Soekawa Chemicals, purity > 99.99%) in a 9:5 molar ratio. After the mixture was heated at 773 K for 3 days in a sealed silica tube, the black powder as a main product was formed in the center of the tube, while a small amount of white crystals was formed at its apexes. Then the two compounds were carefully collected separately. The black powder was identified to be SbRe2O6 by XRD and X-ray fluorescence (XRF). The white crystals were Sb₂O₃, which was formed from the excess of Sb in the mixture of precursors. The synthesis of Sb₄Re₂O₁₃ was conducted in a similar way to the case of SbRe₂O₆. A mixture of SbOReO₄•2H₂O and Sb₂O₃ in a 2:1 molar ratio was heated at 773 K for 6 days in an evacuated silica tube to yield gray crystals of Sb₄Re₂O₁₃. The BET surface areas of the three Re-Sb-O compounds were approximately $1 \text{ m}^2 \text{ g}^{-1}$.

For comparison, a mechanical mixture of Re_2O_7 and Sb_2O_3 (denoted hereinafter as mix. $Re_2O_7 \cdot Sb_2O_3$) was prepared by gently grinding 0.3 g of Re_2O_7 and 0.3 g of Sb_2O_3 in an agate mortar in a N_2 -filled glovebox (as Re_2O_7 is highly hygroscopic). An Sb_2O_3 -supported Re_2O_7 catalyst (denoted as Re_2O_7/Sb_2O_3) (Re loading: 10 wt %) was prepared by an impregnation method using an aqueous solution of NH_4ReO_4 (Soekawa Chemicals,

purity > 99.9%). A coprecipitated $SbRe_2O_x$ catalyst (denoted as $copr.SbRe_2O_x$) was also prepared by a coprecipitation method using an ethanol solution of $ReCl_3$ and $SbCl_3$, followed by washing with water to eliminate the residual Cl from the catalyst.

2.2. Catalytic Performances. Catalytic ammoxidation reactions were carried out at atmospheric pressure in a continuousflow fixed-bed glass reactor (6 mm in diameter). The typical composition of reaction feed was 10% i-C₄H₁₀, 15% NH₃, and 25% O₂ balanced with He (mol %). The catalytic performance was conducted typically with 0.3 g of catalyst diluted with 1 g of quartz sand to avoid temperature gradients and hot spots in the reactor. Prior to each run, the catalyst was pretreated in a He flow (40 mL min⁻¹) at 673 K for 1 h. Then the reaction feed was introduced into the reactor at a gas-hourly spacevelocity (GHSV) of 5000 h⁻¹ using digital mass-flow controllers. The reactants and products were analyzed using two online gas chromatographs equipped with three columns of Unibeads C at 423 K for O₂, CO, and CO₂, Gaskuropack 54 at 423 K for methacrylonitrile and other oxygenates, and VZ-10 at 348 K for i-C₄H₁₀, i-C₄H₈ and other hydrocarbons. The steady-state kinetic data were collected after 2 h of time-onstream. Conversions and selectivities were calculated based on the analysis of the reactants and products detected in the reactor effluent. The total amounts were referred to the reactant feed amount. The carbon balance was always found to be better than 98.5%. The conversion of NH₃ to N₂ (main) and NO_x (trace) was $\leq 15\%$ (typically $\sim 10\%$) under the present reaction condi-

A blank test of *i*-C₄H₁₀ ammoxidation at 673 K was conducted in an empty reactor as well, and no *i*-C₄H₁₀ conversion was observed in the homogeneous gas phase under the experimental conditions studied.

- **2.3. Pulse Reactions.** Pulse reactions on the SbRe₂O₆ catalyst were carried out at 673 K in an apparatus where pulse and continuous flow reactions can be alternately operated at atmospheric pressure, and He was used as carrier gas at a flow rate of 30 mL min⁻¹. After the SbRe₂O₆ catalyst (0.45 g) was pretreated at 673 K under He for 1 h, reaction feed was pulsed into the reactor via a six-port gas sampling valve. The volume of each pulse was approximately 1 mL. The products were analyzed using an on-line GC mentioned above.
- 2.4. FT-IR Measurement for NH₃ Adsorption. FT-IR spectra were recorded on a JASCO FT/IR-230 spectrometer equipped with a MCT detector with a resolution of 4 cm⁻¹. SbRe₂O₆ powder was pressed into self-supported thin wafers and placed in a quartz cell with NaCl windows, which was combined with a closed circulating system. To examine the adsorption of NH₃ on the SbRe₂O₆ catalyst, the sample was first heated to 673 K at a ramp rate of 10 K min⁻¹ and then kept at 673 K for 1 h in the quartz IR cell under 26.6 kPa of He, followed by evacuation at 673 K for 1 h. After cooling to room temperature, 3.99 kPa of NH₃ was introduced to the IR cell, followed by evacuation of NH₃ at room temperature, or followed by heating to 673 K under 3.99 kPa of NH₃ and then by evacuation at 673 K. To examine the reactivity of adsorbed NH₃ species, a mixture of i-C₄H₁₀ (2.66 kPa) and O₂ (0.66 kPa) was introduced to the cell at 673 K after exposure to NH₃ and evacuation at 673 K. All the spectra were obtained as difference spectra by subtracting the background spectrum of the sample from the observed spectra.
- **2.5. Characterization of Catalysts.** XRD patterns were measured in air on a Rigaku Miniflex goniometer using Cu K α radiation ($\lambda = 1.5418$ Å) operated at 30 kV and 15 mA. The 2θ angles were scanned from 5° to 60° at a rate of 2° min⁻¹.

TABLE 1: Isobutane Ammoxidation on Different Re-Sb-O Catalysts and Bulk ReO_x and SbO_x at 673 K^a

	conversion (%)	reaction rate (µmol g-cat ⁻¹ h ⁻¹)	selectivity (%)				
			MAN+i-C ₄ H ₈	MAN^b	i-C ₄ H ₈	CH ₃ CN	CO ₂
SbRe ₂ O ₆	4.4	785.6	84.3	44.9	39.4	4.7	10.2
$SbRe_2O_6{}^c$	0	0					
SbOReO ₄ •2H ₂ O	0	0					
$Sb_4Re_2O_{13}$	0	0					
$mix.Re_2O_7 \cdot Sb_2O_3$	0.5	89.3	trace	0	trace	0	~ 100
copr.SbRe ₂ O _x	0.4	71.4	20.6	0	20.6	0	79.4
Re_2O_7/Sb_2O_3	0.1	17.8	0	0	0	0	100
Re_2O_7	11.6	2071.3	0	0	0	0	100
ReO ₃	2.1	374.9	31.5	7.7	23.8	25.7	42.6
ReO_2	5.6	999.9	31.0	9.1	21.9	32.1	36.4
Sb_2O_3	0	0					
Sb_2O_4	0	0					

 a i-C₄H₁₀/NH₃/O₂/He = 10/15/25/50 (mol %); GHSV = 5000 h⁻¹. b MAN: methacrylonitrile. c In the absence of NH₃; i-C₄H₁₀/O₂/He = 10/25/ 65 (mol %); GHSV = 5000 h^{-1} .

TABLE 2: Catalytic Performances of SbRe₂O₆ Pretreated under Different Gas Mixtures at 673 K^a

pretreatment	conversion (%)	selectivity (%)						
		MAN+i-C ₄ H ₈	MAN ^b	i-C ₄ H ₈	CH ₃ CN	CO_2		
Не	4.4	84.3	44.9	39.4	4.7	10.6		
NH ₃ /He	4.1	86.7	42.4	44.3	5.1	8.2		
$i-C_4H_{10}/He$	4.2	85.6	42.7	42.9	4.3	10.7		
reaction feed	4.6	84.4	44.4	40.0	4.9	10.7		
O ₂ /He	0.4	18.5	0	18.5	0	81.5		

 $^{^{}a}$ i-C₄H₁₀/NH₃/O₂/He = 10/15/25/50 (mol %); GHSV = 5000 h⁻¹. b MAN: methacrylonitrile.

SEM micrographs were taken on a Hitachi S-4500 microscope equipped with a field emission gun, which was operated at 15 kV and 10 μ A. Different places of the samples were measured to obtain common features of SEM images.

XPS spectra were collected on a Rigaku XPS 7000 spectrometer using monochromatic Mg Ka radiation (1253.6 eV) at a source power of 200 W. Chamber pressure during the measurement was about 10⁻⁷ Pa. The binding energies were referred to the adventitious C 1s peak at 284.6 eV. To minimize exposure of the samples to ambient air, after pretreatment under He or NH₃/He or after the ammoxidation reaction under a mixture of i-C₄H₁₀/NH₃/O₂/He, the samples were rapidly cooled to room temperature under the gas flow, followed by sealing the reactor. Then, in a N2-filled glovebox, the samples were pressed into disks and attached to XPS sample holders with thin double-sided tape and transferred to the XPS chamber within 1 min. The overlapping Re $4f_{7/2}$ and Re $4f_{5/2}$ peaks were deconvoluted using Gaussian line shapes. Relative peak areas of the former to the latter were fixed at a ratio of 4/3 and the peak separation was also fixed to be 2.4 eV. Full width at halfmaximum height (fwhm) was assumed constant for each of the two peaks of Re $4f_{7/2}$ and Re $4f_{5/2}$ for the same species.

Confocal laser Raman microscopy (LRM) spectra were recorded on a JASCO NRS2100 SA spectrometer equipped with an Ar⁺ laser (514.5 nm) and a liquid N₂-cooled CCD detector. The resolution was 5 cm⁻¹, and the laser power was set to 2 mW. Raman shifts for all the samples were measured in the range 1100~185 cm⁻¹. To evaluate the micron-scale homogeneity of the surface, about 30 spectra were measured at different spots of a sample. The samples were analyzed in situ in a way similar to that described previously.31

3. Results

3.1. Catalytic Performances of Different Re-Sb-O Catalysts. Table 1 presents conversions, reaction rates, and selectivities of three crystalline compounds, SbRe₂O₆, SbOReO₄•2H₂O, and Sb₄Re₂O₁₃, in the i-C₄H₁₀ ammoxidation at 673 K. The performances of mix.Re₂O₇/Sb₂O₃, copr.SbRe₂O_x, Re₂O₇/Sb₂O₃, bulk Re₂O₇, ReO₃, ReO₂, Sb₂O₃, and Sb₂O₄ are also listed for comparison. SbOReO₄•2H₂O, and Sb₄Re₂O₁₃, as well as bulk Sb oxides showed no activity. Bulk Re₂O₇ was active but catalyzed solely the combustion of i-C₄H₁₀ to CO₂. Bulk ReO₃ and ReO2 produced methacrylonitrile (MAN), but the selectivities were as low as 7.7-9.1% and the main product was CO₂ for both Re oxides. Re₂O₇/Sb₂O₃ and mix.Re₂O₇•Sb₂O₃ samples showed almost no activity for the i- C_4H_{10} ammoxidation either. The compound copr.SbRe₂O_x gave a slight activity (0.4%)conversion) in oxidative dehydrogenation of i-C₄H₁₀ to i-C₄H₈ (20.6% selectivity), but no formation of MAN was observed. Isobutane combustion was dominant also with this catalyst. Only the SbRe₂O₆ among these samples was active for the selective ammoxidation of i-C₄H₁₀ to MAN. The selectivities to MAN and to the sum of MAN + i-C₄H₈ at the steady-state i-C₄H₁₀ conversion of 4.4% were 44.9% and 84.3%, respectively. It was also found that in the absence of NH₃ in the reactant feed no reaction including dehydrogenation and combustion occurred, as shown in Table 1, indicating no C-H bond breaking took place in the absence of NH₃.

3.2. Catalytic Properties of SbRe₂O₆. In the selective oxidation of i-C₄H₈ to methacrolein (MAL), the catalytic property of SbRe₂O₆ largely depended on the pretreatment atmospheres.^{5,31,32} To investigate the effect of the pretreatment of $SbRe_2O_6$ on the $i-C_4H_{10}$ ammoxidation, $SbRe_2O_6$ was pretreated at 673 K for 1 h under the following five different atmospheres, i.e., 100% He, 15% NH3 in He (mol %), 10% i-C₄H₁₀ in He, 20% O₂ in He, and a reaction mixture containing 10% i-C₄H₁₀ + 15% NH₃ + 25% O₂ + 50% He. As shown in Table 2, after the pretreatments with He, i-C₄H₁₀/He, NH₃/He and the reaction feed, the i-C₄H₁₀ conversions and MAN selectivities at the steady-state were nearly the same. However, the pretreatment of SbRe₂O₆ with O₂/He led to a drastic decrease in both activity and selectivity; a low activity (0.4% conversion) in the dehydrogenation of i-C₄H₁₀ to i-C₄H₈ (18.5% selectivity) but no activity for the MAN synthesis was observed. Hence,

Figure 1. Reaction profiles of the i-C₄H₁₀ conversion (O) and the selectivities to the sum of MAN +i-C₄H₈ (\square) and to MAN (\triangle) with time-on-stream on SbRe₂O₆ at 673 K under GHSV of 5000 h⁻¹ (a) and 2500 h⁻¹ (b).

the SbRe₂O₆ sample subjected to catalytic performance and characterization in this study was pretreated in the He flow.

Figure 1a shows the catalytic behavior of SbRe₂O₆ in the $i\text{-}\mathrm{C_4H_{10}}$ ammoxidation at 673 K as a function of time-on-stream under GHSV of 5000 h⁻¹. It was found that the conversion of $i\text{-}\mathrm{C_4H_{10}}$ initially increased slightly with time, and then reached a constant value of 4.4%. The selectivities of the MAN and $i\text{-}\mathrm{C_4H_8}$ formation (44.9% and 39.4%, respectively) remained almost constant during the test. Decreasing the GHSV from 5000 h⁻¹ to 2500 h⁻¹ increased the $i\text{-}\mathrm{C_4H_{10}}$ conversion to 7.5%, while the selectivities to MAN (44.2%) and $i\text{-}\mathrm{C_4H_8}$ (38.4%) did not change significantly as shown in Figure 1b.

Figure 2 shows the variation of the conversion and selectivity of the i-C₄H₁₀ ammoxidation with reaction temperature in the range 623-773 K. The i-C₄H₁₀ conversion increased first with increasing temperature and reached a maximum value at 673 K, then the conversion decreased with further increasing temperature. The selectivity to the sum of MAN + i-C₄H₈ remained almost constant (84.3%) over the whole temperature range, while the MAN selectivity showed an initial increase to reach the constant value as the temperature increased from 623 to 658 K, and inversely, the i-C₄H₈ selectivity decreased from 623 to 658 K before it reached the constant value. The apparent activation energy E_a between 623 and 673 K was estimated to be 213.7 kJ mol⁻¹ from the Arrhenius plot for the i-C₄H₁₀ conversion. Interestingly, the formation of byproducts acetonitrile and CO₂ was relatively constant between 623 and 773 K. No MAL was formed under these reaction conditions.

The dependencies of reaction rate and selectivity on the partial pressures of i-C₄H₁₀, O₂ and NH₃ at a constant GHSV of 5000 h^{-1} are shown in Figures 3–5, respectively. The rates of the

Figure 2. Catalytic performances of SbRe₂O₆ in the i-C₄H₁₀ ammoxidation as a function of reaction temperature. ○: i-C₄H₁₀ conversion; □: selectivity to MAN + i-C₄H₈; \triangle : selectivity to MAN; ∇ : selectivity to i-C₄H₈; \otimes : selectivity to CO₂.

Figure 3. The reaction rates (a) and selectivities (b) in the i- C_4H_{10} ammoxidation on SbRe₂O₆ at 673 K as a function of partial pressure of i- C_4H_{10} (15% NH₃, 25% O₂, balanced with He). \square : i- C_4H_{10} conversion; \triangle : MAN formation; \bigcirc : i- C_4H_8 formation.

i-C₄H₁₀ conversion and i-C₄H₈ formation increased monotonically with i-C₄H₁₀ pressure, while the rate of MAN formation increased with more upward curvature than others (Figure 3). The selectivity to the sum of MAN + i-C₄H₈ was independent of the i-C₄H₁₀ pressure (84.3%) except the point at very low i-C₄H₁₀ pressure of 2.6 kPa, while the i-C₄H₈ selectivity linearly increased with increasing i-C₄H₁₀ pressure and the MAN selectivity decreased at the i-C₄H₁₀ pressures higher than 10 kPa. As shown in Figure 4, the reaction rates of i-C₄H₁₀ conversion, and MAN and i-C₄H₈ formations showed similar dependencies to each other on the partial pressure of O₂, namely, they increased first with increasing pressure and then approached to saturation values at high pressures. The selectivity to the sum of MAN + i-C₄H₈ remained almost constant over the whole

Figure 4. The reaction rates (a) and selectivities (b) in the $i-C_4H_{10}$ ammoxidation on SbRe₂O₆ at 673 K as a function of partial pressure of O₂ (10% i-C₄H₁₀, 15% NH₃, balanced with He). \square : i-C₄H₁₀ conversion; \triangle : MAN formation; \bigcirc : i-C₄H₈ formation.

pressure range, while the MAN and i-C₄H₈ selectivities, respectively, increased and decreased a little with increasing O₂ pressure up to 25 kPa, then showed almost constant values at 25-50 kPa (Figure 4). The feature of Figure 5 is different from those in Figures 3 and 4. At low partial pressures of NH₃, the rates of i-C₄H₁₀ conversion, and MAN and i-C₄H₈ formations increased to maximum values with increasing pressure. After passing through the maximum values around 15 kPa, the rates decreased with further increase of the NH₃ pressure. The selectivities were roughly unchanged with the NH₃ pressure though there were slight changes.

The reaction orders for the i-C₄H₁₀ conversion, and the MAN and i-C₄H₈ formations with respect to the partial pressures of i-C₄H₁₀, O₂, and NH₃ at 5-15 kPa were estimated from the data in Figures 3-5, and the reaction rates are given by eqs 2-4.

rate (*i*-C₄H₁₀ conversion) =
$$k(P_{i-\text{C4H10}})^{0.91} (P_{\text{O2}})^{0.73} (P_{\text{NH3}})^{0.75} (2)$$

rate (MAN formation) =
$$k(P_{i-\text{C4H}10})^{0.77} (P_{\text{O2}})^{0.81} (P_{\text{NH}3})^{0.78}$$
(3)

rate (*i*-C₄H₈ formation) =
$$k(P_{i-\text{C4H10}})^{1.05} (P_{\text{O2}})^{0.62} (P_{\text{NH3}})^{0.74}$$
 (4)

3.3. Pulse Reactions. Five types of pulse experiments were conducted on the SbRe₂O₆ catalyst: (i) pulses of a mixture of $i-C_4H_{10}/NH_3/O_2/He$ (10/12/18/70, mol %), (ii) pulses of a mixture of i-C₄H₁₀/NH₃/He (10/12/78), (iii) pulses of a mixture of i-C₄H₁₀/He (10/90) on NH₃-preadsorbed SbRe₂O₆, (iv) pulses of a mixture of i-C₄H₁₀/O₂/He (10/18/72) on NH₃-preadsorbed

Figure 5. The reaction rates (a) and selectivities (b) in the i-C₄H₁₀ ammoxidation on $SbRe_2O_6$ at 673 K as a function of partial pressure of NH₃ (10% i-C₄H₁₀, 25% O₂, balanced with He). \square : i-C₄H₁₀ conversion; \triangle : MAN formation; \bigcirc : i-C₄H₈ formation.

Figure 6. The reaction profile in the pulse experiment on SbRe₂O₆ at 673 K; MAN (○) and i-C₄H₈ (△) yields as a function of the number of the pulses of $i-C_4H_{10}/NH_3/O_2/He$ (= 10/12/18/70, mol %) (a and c), and $i-C_4H_{10}/NH_3/He$ (= 10/12/78) (b).

SbRe₂O₆, and (v) for comparison, pulses of a mixture of i-C₄H₁₀/ He or i-C₄H₁₀/O₂/He on the SbRe₂O₆ catalyst without NH₃ pretreatment.

Figure 6 shows that the pulses of a mixture of i-C₄H₁₀/NH₃/ O₂/He on fresh SbRe₂O₆, similar to the steady-state reaction condition, produced MAN and i-C₄H₈ selectively with the yields of 2.6% and 2.4%, respectively. Then the pulse was switched to the pulse of the i-C₄H₁₀/NH₃/He mixture without O₂. Both MAN and i-C₄H₈ yields in the first pulse were only about 10% of the yields for the i-C₄H₁₀/NH₃/O₂/He pulse. The MAN and i-C₄H₈ formations diminished with further pulses. After the *i*-C₄H₁₀ conversion became negligible, the *i*-C₄H₁₀/NH₃/O₂/He mixture was pulsed into the reactor again, resulting in the recovery of the MAN and i-C₄H₈ yields as shown in Figure 6.

Figure 7. The reaction profiles in the pulse experiments at 673 K; yields of MAN (∇, \Box) and i-C₄H₈ (●, ○) as a function of the numbers of pulses of i-C₄H₁₀ alone (10% in He, mol %) (\Box, \bigcirc) and a mixture of i-C₄H₁₀/O₂/He (10/12/18/70) (∇, \bullet) on an NH₃-preadsorbed SbRe₂O₆ catalyst, and yields of MAL +i-C₄H₈ as a function of the numbers of pulses of i-C₄H₁₀ alone (10% in He) (\times) and a mixture of i-C₄H₁₀/O₂/He (10/12/18/70) (\triangle) on a SbRe₂O₆ catalyst without NH₃ pretreatment.

Figure 8. FT-IR spectra for NH_3 adsorbed on $SbRe_2O_6$ (a) after exposure to NH_3 (3.99 kPa) and evacuation at 298 K; (b) after exposure to NH_3 at 673 K, followed by evacuation at 298 K; (c) after exposure to NH_3 at 673 K, followed by evacuation at 673 K; (d) after exposure of (c) to a mixture of i- C_4H_{10} (2.66 kPa) + O_2 (0.66 kPa) at 673 K for 5 min.

Variation of the MAN and i-C₄H₈ yields with the pulses of a mixture of i-C₄H₁₀/O₂/He on NH₃-preadsorbed SbRe₂O₆ is shown in Figure 7. A fresh SbRe₂O₆ catalyst was pretreated with NH₃ pulses. The NH₃-saturated catalyst was exposed to the i-C₄H₁₀/O₂/He pulses. It was found that the first pulse produced MAN and i-C₄H₈ in high yields, then the yields decreased with increasing pulses eventually to zero. Upon pulsing i-C₄H₁₀ alone (in the absence of O₂) on the NH₃preadsorbed SbRe₂O₆ catalyst, MAN and i-C₄H₈ were also produced, but their yields were 0.35%, which was 1 order of magnitude lower than the steady-state values. It is to be noted that when the SbRe₂O₆ catalyst without NH₃ pretreatment was exposed to pulses of i-C₄H₁₀/He and i-C₄H₁₀/O₂/He, no i-C₄H₁₀ conversion occurred at all, as shown in Figure 7, which is consistent with the results in the steady-state flow reaction without NH₃ in Table 1. The treated NH₃ was incorporated into MAN product. In the absence of NH₃ the i-C₄H₁₀ dehydrogenation to i-C₄H₈ never proceeded.

Figure 9. XRD patterns for SbRe₂O₆ before (a) and after the pretreatments under (b) He and (c) NH₃/He at 673 K for 1 h, and i-C₄H₁₀ ammoxidation (d) at 673 K and (e) at 773 K for 3 h.

Figure 10. XRD patterns for fresh SbOReO₄•2H₂O (a) and Sb₄Re₂O₁₃ (b) and SbOReO₄•2H₂O (c) and Sb₄Re₂O₁₃ (d) after the i-C₄H₁₀ ammoxidation at 673 K for 3 h. The dashed line shows the XRD peak for Sb₂O₃ phase.

3.4. FT-IR Spectra for NH₃ Adsorption. Figure 8 shows the FT-IR spectra of NH₃ adsorbed on the SbRe₂O₆ catalyst. After the admission of NH3 to the system and evacuation at room temperature, two new peaks at 3331 and 3736 cm⁻¹ were observed. After exposure of the fresh catalyst to NH₃ at 673 K for 30 min, followed by evacuation of NH₃ at room temperature, the intensity of the two peaks increased, while there was no significant change in their frequencies. By heating at 673 K in a vacuum, these two peaks still remained, but the peak intensity decreased as shown in Figure 8. Upon NH₃ adsorption at 673 K, followed by exposure to a $i-C_4H_{10}/O_2$ mixture for 5 min at 673 K, the peak at 3331 cm⁻¹ almost diminished, while the peak at 3736 cm⁻¹ did not change significantly. The peaks at 3736 and 3331 cm⁻¹ may be assigned to the stretching vibrations of O-H bond of hydroxyl groups and N-H bond of adsorbed ammonia species, respectively. The bending vibration bands around 1600 cm⁻¹ were not detected because of the very low transmittance of the black SbRe₂O₆ sample.

Figure 11. Re 4f XPS spectra for SbRe₂O₆ before (a) and after the pretreatments under He (b) and NH₃/He (c) at 673 K for 1 h, and the i-C₄H₁₀ ammoxidation at 673 K (d) and 773 K (e) for 3 h.

Figure 12. Re 4f XPS spectra for fresh SbOReO₄·2H₂O (a) and Sb₄Re₂O₁₃ (b), and SbOReO₄·2H₂O (c) and Sb₄Re₂O₁₃ (d) after the i-C₄H₁₀ ammoxidation at 673 K for 3 h.

3.5. Characterization of the Catalysts. 3.5.1. XRD. Figure 9 shows XRD patterns for the SbRe₂O₆ catalyst before and after the pretreatments with He and NH₃/He at 673 K, as well as after the i-C₄H₁₀ ammoxidation reactions at 673 and 773 K for 3 h. It was found that the XRD patterns after these treatments and the i-C₄H₁₀ ammoxidation were identical to that for the fresh sample. The results demonstrated that the SbRe₂O₆ catalyst is stable under the reaction conditions at 673-773 K. Figure 10 shows XRD patterns for Sb₄Re₂O₁₃ and SbOReO₄•2H₂O before and after the i-C₄H₁₀ ammoxidation at 673 K. For Sb₄Re₂O₁₃, the XRD pattern did not change essentially after the i-C₄H₁₀ ammoxidation at 673 K for 3 h, but a new weak peak appeared at 2θ angle of 27.8°. The new peak was attributable to Sb₂O₃. A drastic change in crystal structure was

Figure 13. Re 4f XPS spectra for copr.SbRe₂O_x after pretreatment under He at 673 K for 1 h (a) and after the i-C₄H₁₀ ammoxidation at 673 K for 3 h (b).

Figure 14. In situ confocal laser Raman microscopic spectra for fresh SbRe₂O₆ (a) and SbRe₂O₆ after the pretreatments under He (b) and NH₃/He (c) at 673 K for 1 h, and after the i-C₄H₁₀ ammoxidation at 673 K (d) and 773 K (e) for 3 h.

observed with SbOReO₄•2H₂O after the *i*-C₄H₁₀ ammoxidation at 673 K as shown by the XRD patterns of Figure 10a,c). The XRD pattern of Figure 10c was similar to that for Sb₄Re₂O₁₃ after the ammoxidation (Figure 10d).

3.5.2. XPS Spectra. Figure 11 shows Re 4f XPS spectra for the SbRe₂O₆ catalysts before and after the pretreatments with He and NH₃/He at 673 K, as well as after the i-C₄H₁₀ ammoxidation at 673 and 773 K. In Figure 11a for fresh SbRe₂O₆, three peaks were observed at binding energies of 42.3, 44.8, and 47.7 eV. The peak at 42.3 eV is assigned to Re $4f_{7/2}$ for Re⁴⁺²². The peak at 47.7 eV is assigned to Re 4f_{5/2} probably for Re⁶⁺ as discussed hereinafter.²² Thus the most intense peak around 44.8 eV should be superimposed of Re 4f_{5/2} of Re⁴⁺ and Re $4f_{7/2}$ of Re⁶⁺. We have deconvoluted the XPS spectra as shown in Figure 11. The Re^{4+} $4f_{5/2}$ and Re^{6+} $4f_{7/2}$ peaks were observed at 44.7 and 45.3 eV, respectively. The SbRe₂O₆ sample after the pretreatment under He at 673 K (Figure 11b)

Figure 15. Scanning electron micrographs for fresh $SbRe_2O_6$ (a), and $SbRe_2O_6$ after the NH_3 pretreatment at 673 K for 1 h (b), and the i- C_4H_{10} ammoxidation at 673 K (c) and 773 K (d) for 3 h.

exhibited no significant difference in the XPS spectra from the fresh sample (Figure 11a). After the treatment with NH₃/He at 673 K for 1 h, the intensity of the peaks at 47.7 and 45.3 eV reduced, while the intensity of the peaks at 44.7 and 42.3 eV increased relatively (Figure 11c). The XPS spectra for the samples after the i-C₄H₁₀ ammoxidation at 673 and 773 K for 3 h (Figure 11d,e) were similar to those for the fresh and Hetreated samples (Figure 11a,b). Fresh SbOReO₄·2H₂O and Sb₄Re₂O₁₃ samples with Re⁷⁺ possessed spectra similar to each other, exhibiting two peaks centered at 45.7 and 48.1 eV (Figure 12). The peaks are attributed to the Re $4f_{7/2}$ and Re $4f_{5/2}$ levels of Re⁷⁺ species, respectively. After the ammoxidation reaction at 673 K for 3 h, the spectra changed drastically to show three peaks at 42.3, 44.9, and 47.4 eV. We have deconvoluted the spectra by assuming Re⁶⁺ and Re⁴⁺ species, but the fitting never reproduced the observed spectra. In consequence, the fitting was performed by assuming three different oxidation states of Re. The results are shown in Figure 12c,d. The deconvoluted peaks at 42.3 and 44.7 eV are assigned to Re $4f_{7/2}$ and Re $4f_{5/2}$ peaks for Re⁴⁺, respectively, the peaks at 45.1 and 47.5 eV are assigned to Re $4f_{7/2}$ and Re $4f_{5/2}$ peaks for Re⁶⁺, respectively, and the peaks at 45.8 and 48.2 eV are assigned to Re $4f_{7/2}$ and Re 4f_{5/2} peaks for Re⁷⁺, respectively. Similar to SbRe₂O₆, copr.SbRe₂O_x after the He pretreatment at 673 K also possessed three peaks which appeared at 47.6, 45.0, and 42.3 eV, as shown in Figure 13a. The spectrum was deconvoluted, and four peaks at 47.6, 45.2, 44.7, and 42.3 eV were observed, which are also

assigned to Re $4f_{7/2}$ and Re $4f_{5/2}$ peaks for Re⁶⁺ and Re⁴⁺ species, respectively. After the i-C₄H₁₀ ammoxidation at 673 K for 3 h, the peaks showed the same binding energies, but their intensity changed. The intensity of the peaks at 47.7 and 45.3 eV reduced, while the intensity of the peaks at 44.7 and 42.3 eV increased relatively (Figure 13b). It is to be noted that for the three Re-Sb-O compounds and copr.SbRe₂O_x, Sb 4d and Sb $3d_{3/2}$ binding energies around 34.5 and 539.8 eV, respectively, due to Sb³⁺ were independent of the pretreatments and the reaction.

3.5.3. LRM Spectra. The SbRe₂O₆ catalysts before and after the pretreatments under He and NH₃/He at 673 K, as well as after the i-C₄H₁₀ ammoxidation at 673 and 773 K, were also investigated by in situ LRM. As shown in Figure 14, The SbRe₂O₆ catalysts possessed Raman features at 226 (vs) (most intense peak), 238 (s), 278 (w), 306 (w), 346 (w), 388 (m), 412 (m), 424 (m), 456 (w), 525 (m), 643 (w), and 756 (m) cm⁻¹ in the range 1100-185 cm⁻¹. After the pretreatments under He and NH₃/He, and the i-C₄H₁₀ ammoxidation, the Raman shifts essentially remained unchanged.

3.5.4.~SEM~Images. Figure 15 shows the SEM micrographs for the SbRe₂O₆ catalysts before and after the NH₃ pretreatment at 673 K for 1 h, and the i-C₄H₁₀ ammoxidation at 673 and 773 K. Fresh SbRe₂O₆ was composed of crystals possessing square basal faces with $0.5-3~\mu m$ in dimension and about 100 nm thick. The basal (100) faces were smooth and possessed sharp and regular edges. After the NH₃ pretreatment and the i-C₄H₁₀

Figure 16. (a) SbRe₂O₆ (100) plane as a major exposed plane of SbRe₂O₆ crystal; Re ions are located inside oxygen octahedra and Sb ions are shown with black circles. Small white circles are O ions. (b) Sb₄Re₂O₁₃ (010) plane as a major exposed plane of Sb₄Re₂O₁₃ crystal; Re ions are located inside oxygen tetrahedra and Sb ions are shown with black circles. Small gray circles are O ions.

Sb₄Re₂O₁₃ (010) plane

ammoxidation, the SbRe2O6 crystals exhibited morphology similar to that for the fresh sample.

4. Discussion

4.1. Performances and Structures of the Three Crystalline Re-Sb-O Catalysts in the i-C₄H₁₀ Ammoxidation. It was found that among the catalysts examined in Table 1, only the crystalline SbRe₂O₆ efficiently catalyzed the selective ammoxidation of i-C₄H₁₀ to MAN at 673 K, whereas the other two crystalline Re-Sb-O compounds, SbOReO₄·2H₂O and Sb₄-Re₂O₁₃, and the other samples, including copr.SbRe₂O_x, mix.Re₂O₇·Sb₂O₃, Re₂O₇/Sb₂O₃, bulk Re oxides, and Sb oxides showed no or negligible activity for the MAN formation. The superiority of the SbRe₂O₆ catalyst may provide information on a key structural issue to generate the i-C₄H₁₀ ammoxidation catalysis.

The active SbRe₂O₆ (Re^{4.5+}; Sb³⁺) compound consists of an alternate octahedral (Re₂O₆)³⁻ layer and (SbO)⁺ layer, which are connected with each other along the (100) plane as shown in Figure 16a.³⁴ SbRe₂O₆ crystal grows preferentially along the (100) plane. This crystal structure is maintained under the catalytic ammoxidation conditions as evidenced by XRD (Figure 9), XPS (Figure 11), in-situ LRM (Figure 14), and SEM (Figure 15), which reveal neither change nor modification in the bulk and surface of SbRe₂O₆. Thus the SbRe₂O₆ crystal can work as a new promising catalyst for the i-C₄H₁₀ ammoxidation. However, destruction of the SbRe₂O₆ surface takes place by a partial decomposition of SbRe₂O₆ to Sb₄Re₂O₁₃ and Re₂O₇ under O₂/He at 673 K,^{5,31,32} and as a result the O₂/He-pretreated catalyst is deactivated as shown in Table 2, because Sb₄Re₂O₁₃ and Re₂O₇ are inactive for the MAN synthesis as shown in Table 1.

The crystalline compounds SbOReO₄•2H₂O (Re⁷⁺; Sb³⁺) and Sb₄Re₂O₁₃ (Re⁷⁺; Sb³⁺) are built up from tetrahedral (ReO₄)⁻ anions and cationic (SbO)⁺ layers.^{24,33} Sb₄Re₂O₁₃ crystal grows preferentially along the (010) plane as shown in Figure 16b. In accordance with their formulas, the XPS spectra (Figure 12a,b for Re) reveal the oxidation states of Re and Sb to be 7+ and 3+, respectively. After the i-C₄H₁₀ ammoxidation at 673 K, the XPS spectra for SbOReO₄•2H₂O and Sb₄Re₂O₁₃ dramatically changed, and were reproduced only by the sum of the $4f_{7/2}$ and 4f_{5/2} peaks for Re⁷⁺, Re⁶⁺ and Re⁴⁺ species (Figure 12c,d). In addition, Sb₂O₃ formation was observed by XRD in Figure 10. It is evident that the reduction of Re^{7+} species in the two Re-Sb-O compounds to Re^{6+} and Re^{4+} states occurs under the ammoxidation conditions. Thus the surface layers of SbOReO4. $2H_2O$ and $Sb_4Re_2O_{13}$ with Re species in the 7+ oxidation state are transformed to the similar surfaces to the SbRe₂O₆ catalyst surfaces with Re⁶⁺ and Re⁴⁺ species after the ammoxidation at 673 K. Nevertheless, the SbRe₂O₆ catalyst was much more superior to the SbOReO₄•2H₂O and Sb₄Re₂O₁₃ catalysts. There may be two possibilities for the difference in their performances. A possible idea is to assume that SbOReO₄•2H₂O and Sb₄Re₂O₁₃ may be active but the inactive Sb₂O₃ produced by their decomposition covers the catalyst surfaces, resulting in no activity. To examine this possibility, pulse experiment was conducted on Sb₄Re₂O₁₃ at 673 K, where only a small portion of Sb₄Re₂O₁₃ decomposed by every pulse, but no i-C₄H₁₀ conversion was observed. The case of SbOReO₄•2H₂O was the same. These results indicate that Sb₄Re₂O₁₃ and SbOReO₄•2H₂O are intrinsically inactive for the i-C₄H₁₀ ammoxidation. Therefore, another possibility is more plausible that the difference in the catalytic performances of the three crystalline Re-Sb-O catalysts may be due to the difference in their surface structures rather than the difference in their surface Re oxidation states. This can also account for the incapability of the copr.SbRe₂O_x catalyst for the i-C₄H₁₀ ammoxidation to MAN, which also possesses the Re⁶⁺ and Re⁴⁺ species similar to those in SbRe₂O₆ (Figure 13). This is entirely different from the finding in the selective oxidation of i-C₄H₁₀ and i-C₄H₈ to MAL that the activities of the three crystalline Re-Sb-O compounds are ascribed to a cooperation between Re₂O₇ and Sb₄Re₂O₁₃, both being formed on these Re-Sb-O compounds under the oxidizing conditions.5,31,32

In contrast to these i-C₄H₁₀ ammoxidation results, for the i-C₄H₈ ammoxidation to MAN, all the Re-containing samples listed in Table 1 were more or less active at 673 K, though the SbRe₂O₆ catalyst is much more superior to other samples in both activity and MAN selectivity.³⁷ It is suggested from the comparison with the i-C₄H₈ ammoxidation that the different performances of the Re-Sb-O catalysts in the i-C₄H₁₀ ammoxidation lie in the difference in their activity for the C-H bond activation of i-C₄H₁₀ to form i-C₄H₈. The structural characteristic of the SbRe₂O₆ catalyst mentioned above (Figure 16) may meet the requirement for the i-C₄H₁₀ activation to form i-C₄H₈ and the i-C₄H₈ to allyl species at 673 K. Next, we focus the discussion on this promising SbRe₂O₆ catalyst.

4.2. Role of NH₃ in the i-C₄H₁₀ Ammoxidation on **SbRe₂O₆.** It is to be noted that in the absence of NH₃ SbRe₂O₆ was inactive for both selective and total oxidation of i-C₄H₁₀, whereas it exhibited good performance for the i-C₄H₁₀ ammoxidation in the steady-state flow of a mixture of i-C₄H₁₀/ NH₃/O₂/He at 673 K (Table 1, Figure 7). This is in contrast to the case of i-C₄H₈ ammoxidation, in which the i-C₄H₈ ammoxidation to MAN on SbRe₂O₆ proceeded in the presence of NH₃, and the selective oxidation of i-C₄H₈ to MAL also proceeded efficiently at 673 K in the absence of NH_3 .³⁷ Thus it is evident that NH_3 promotes the C-H bond breaking in i-C₄H₁₀ (dehydrogenation). The pulse experiments in Figure 7 demonstrate that adsorbed NH_3 species are incorporated to the ammoxidation of i-C₄H₁₀ to form MAN. It is also evident that NH_3 not only behaves as a reactant in the i-C₄H₁₀ ammoxidation but also plays a crucial role in enhancing and/or generating the activity of $SbRe_2O_6$ for the dehydrogenation of i-C₄H₁₀ to i-C₄H₈.

The adsorption of NH₃ on the SbRe₂O₆ catalyst at roomtemperature developed the O-H and N-H peaks centered at 3736 and 3331 cm⁻¹, respectively, as shown in Figure 8. The appearance of the OH peak provides an evidence that NH3 dissociatively adsorbs on the catalyst. The intensity of the two peaks increased significantly by exposure to NH3 at 673 K, followed by cooling to room temperature, indicating that the NH₃ dissociation is favored at high temperature. The adsorbed species may be formed through the reaction of NH₃ with the lattice oxygen (O*) of SbRe₂O₆. In combination with the XPS result that the higher oxidation state Re⁶⁺ species was reduced after the pretreatment with NH₃ at 673 K (Figure 11, curve c), it is suggested that NH₃ reacts with the lattice oxygen atoms on Re⁶⁺ to form NH_x (x = 1 or 2) species and OH groups. The subsequent introduction of the i-C₄H₁₀/O₂ mixture at 673 K led to the disappearance of the N-H band at 3331 cm⁻¹, while the O-H band at 3736 cm⁻¹ remained almost unchanged (Figure 8, curve d). Hence, the NH_x species are active species for the i-C₄H₁₀ ammoxidation. Due to the low transmittance of the black sample, unfortunately the absorption bands of the NH_x species in the bending vibration region cannot be observed, so it is difficult to discriminate NH or NH2 for the NHx species. A similar conclusion was claimed by Sokolovskii et al. in propane ammoxidation on Ga-Sb oxides, where NH₂ amide species detected by IR were suggested to be responsible for the reaction.3 Andersson and co-workers also suggested that amidelike species participated in the propane ammoxidation on Sb-V-O catalysts, 12 whereas Centi et al. reported that NH₃ undissociatively adsorbed on the Sb-V-O catalysts. 38,39 The promoting effect of NH₃ on the selective ammoxidation catalyses is more remarkable on the SbRe₂O₆ catalyst than on others. The other mixed-oxides are more or less active for the alkane oxidation in the absence of NH₃, whereas the SbRe₂O₆ catalyst was completely inactive in the absence of NH3. To our knowledge, SbRe₂O₆ is the first oxide among oxide catalytic systems that NH3 transforms an inactive catalyst to an active catalyst for the light alkane activation.

In addition, as discussed above, the crystal structure of SbRe $_2$ O $_6$ does not change after the i-C $_4$ H $_{10}$ ammoxidation at 673 and 773 K, whereas the SbRe $_2$ O $_6$ surface layers decompose to Re $_2$ O $_7$ and Sb $_4$ Re $_2$ O $_{13}$ at 673 K in the absence of NH $_3$. It demonstrates that NH $_3$ also plays an important role in maintaining the crystal structure of SbRe $_2$ O $_6$ under the catalytic reaction conditions.

4.3. Catalytic Properties of SbRe₂O₆ and Mechanism for the Ammoxidation. The *i*-C₄H₁₀ conversion increased with an increase of reaction temperature, passed through a maximum at 673 K, and dropped to a low level above 750 K, as shown in Figure 2. No change in the bulk and at the surface of SbRe₂O₆ occurred after the ammoxidation over the whole temperature range as characterized by XRD (Figure 9), XPS (Figure 11), LRM (Figure 14), and SEM (Figure 15). So the sharp decline in the activity above 673 K is not relevant to any structural change of the catalyst. There may be two possible explanations. Higher temperatures may facilitate the combustion of adsorbed NH₃ species with oxygen on the SbRe₂O₆ surface, resulting in

the low activity of the ammoxidation. But this possibility is excluded by the NH $_3$ and O $_2$ conversions measured during the ammoxidation reaction. It is also excluded by the result of the $i\text{-}\mathrm{C}_4\mathrm{H}_8$ ammoxidation that the activity at 773 K is much higher than that at 673 K. Therefore, it is more plausible that the low activity above 673 K is due to the decrease in the amount of $i\text{-}\mathrm{C}_4\mathrm{H}_{10}$ adsorbed on the catalyst. The temperature dependence profile in Figure 2 may reflect a change in the rate-determining step of the $i\text{-}\mathrm{C}_4\mathrm{H}_{10}$ ammoxidation on SbRe₂O₆. Below 673 K, the reaction rate is limited by the dehydrogenation rate of a C-H bond in $i\text{-}\mathrm{C}_4\mathrm{H}_{10}$, and above 673 K the adsorption of $i\text{-}\mathrm{C}_4\mathrm{H}_{10}$ on the catalyst surface determines the reaction rate.

It is to be noted that the selectivity to MAN remained unchanged at the higher temperatures, that is to say, higher temperatures never increased the formation of byproducts such as acetonitrile and CO_2 as shown in Figure 2. The MAN selectivity did not change significantly when the $i\text{-}C_4H_{10}$ conversion increased so much by decreasing GHSV (Figure 1). This is a unique catalytic property of the new SbRe₂O₆ catalyst.

The i-C₄H₈ formation rate was of first order with respect to the i-C₄H₁₀ partial pressure, while it followed partial order dependencies on the pressures of O₂ and NH₃ (between 5 and 15 kPa) (eq 4). From these results we can assume that the C-H cleavage in C₄H₁₀ to form *i*-C₄H₈ is the rate-determining step in the i-C₄H₁₀ ammoxidation at 673 K. The MAN formation rate follows a partial order rate dependence with respect to the i-C₄H₁₀ pressure, which indicates that MAN is not produced directly from i-C₄H₁₀ but from an intermediate species, probably $i-C_4H_7$ (methallyl) in the successive steps $i-C_4H_{10} \rightarrow i-C_4H_8$ $i-C_4H_7 \rightarrow MAN.^{6-8}$ Thanks to the competitive adsorption of i-C₄H₈ and NH₃ on SbRe₂O₆,³⁷ the concentration of the i-C₄H₈ intermediate in the i-C₄H₁₀ ammoxidation should be much lower than that of reactant NH₃. This explains why the high $i-C_4H_8$ selectivity (\sim 40%) is obtained in the *i*-C₄H₁₀ ammoxidation, although the i-C₄H₈ ammoxidation proceeds faster by a factor of about 5 than the i-C₄H₁₀ ammoxidation. Adsorption of i-C₄H₁₀ is weaker than that of NH₃, so the rates of the MAN and i-C₄H₈ formations decrease through maxima with increasing NH₃ pressure (Figure 5). Similar rate dependencies were observed on V-Sb oxides in propane ammoxidation. 12,38

It is generally accepted that selective oxidation and ammoxidation of hydrocarbons on mixed-metal oxides occur by a Marsvan Krevelen redox. 11,40-42 The important contribution of lattice oxygen to the ammoxidation of i-C₄H₁₀ to MAN on SbRe₂O₆ at 673 K can be seen in Figure 6. Because the lattice oxygen atoms of SbRe₂O₆ are consumed by reaction with NH₃, which is indeed evidenced by the formation of N2 and H2O upon pulsing NH₃, the MAN and i-C₄H₈ yields at the first pulse of the i-C₄H₁₀/NH₃/He mixture on the steady-state SbRe₂O₆ catalyst were as low as 10% of the steady-state values as shown in Figure 6. However, the consumed lattice oxygen atoms were rapidly replenished by pulsing the reaction mixture of i-C₄H₈/NH₃/O₂/ He, and the steady-state activity was recovered (Figure 6). The XPS spectra in Figure 11 also reveal a partial reduction of Re⁶⁺ species to Re⁴⁺ species by pretreatment of SbRe₂O₆ with NH₃/ He at 673 K and the recovery of the original species under the ammoxidation reaction condition. The amount of lattice oxygen atoms consumed in the reactions with NH₃ and with i-C₄H₁₀ was estimated to be approximately 5.1×10^{17} , which corresponds to about 11% of the surface lattice oxygen atoms (ca. 4.5×10^{18}) of the catalyst (0.45 g), assuming the surface oxygen density to be roughly 1019 atoms m-2.43 The replenishment of the surface oxygen atoms by bulk oxygen atoms at 673 K is slow, while the consumed surface oxygen atoms are replenished rapidly by gas-phase oxygen. The gas-phase oxygen does not promote the i-C₄H₁₀ combustion to CO₂ as shown in Figure 4. As suggested by XPS, the active oxygen atoms are bound to the Re⁶⁺ species that are connected with the Sb³⁺-O-Sb³⁺ chains at the SbRe₂O₆ surface.

5. Conclusions

- (1) Among the three crystalline Re-Sb-O compounds, SbRe₂O₆, SbOReO₄·2H₂O, and Sb₄Re₂O₁₃, only SbRe₂O₆ catalyzed the selective ammoxidation of i-C₄H₁₀ to MAN and also the selective dehydrogenation of i-C₄H₁₀ to i-C₄H₈ at 673-773 K with a high selectivity.
- (2) No structural change in the bulk and at the surface of SbRe₂O₆ after the i-C₄H₁₀ ammoxidation was observed by XRD, XPS, LRM, and SEM. The good performance of SbRe₂O₆ may be relevant to its specific crystal structure with alternate octahedral (Re₂O₆)³⁻ and (SbO)⁺ layers connected with each other through Re-O-Sb bonds.
- (3) The presence of NH_3 in the i- C_4H_{10} ammoxidation not only behaved as reactant but also played a crucial role in maintaining the crystal structure of $SbRe_2O_6$ and further generated the activity of the catalyst for breaking the C-H bond in i- C_4H_{10} . In the absence of NH_3 neither oxidation nor dehydrogenation of i- C_4H_{10} proceeded.
- (4) NH_3 reacted with the lattice oxygen of $SbRe_2O_6$ surface to form an NH_x species and oxygen vacancies, which are responsible for the ammoxidation activity of the $SbRe_2O_6$ catalyst.
- (5) The i-C₄H₁₀ ammoxidation on the SbRe₂O₆ catalyst took place by a redox mechanism involving the surface oxygen atoms on Re⁶⁺.
- (6) The activation of the C-H bond in i-C₄H₁₀ to form i-C₄H₈ was the rate-determining step in the i-C₄H₁₀ ammoxidation, followed by further dehydrogenation of i-C₄H₈ to i-C₄H₇ (methallyl) and subsequent insertion of NH $_x$ species to the i-C₄H₇ intermediate to yield MAN.
- (7) The selectivity to MAN and i-C₄H₈ did not decrease by increasing reaction temperature and decreasing GHSV, where undesirable increase in the formation of byproducts such as CO_2 and acetonitrile was not observed, which marks the crystalline $SbRe_2O_6$ as a promising catalyst for alkane ammoxidation.

Acknowledgment. This work has been supported by Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Corporation (JST). The SEM measurements were conducted in the Electron Microbeam Analysis Facility of the Mineralogical Institute, The University of Tokyo.

References and Notes

(1) Grasselli, R. K. Catal. Today 1999, 49, 141.

- (2) Albonetti, S.; Cavani, F.; Trifiro, F. Catal. Rev.—Sci. Eng. 1996, 38, 413.
- (3) Sokolovskii, V. D.; Davydov, A. A.; Ovsitser, O. Yu. *Catal. Rev. Sci. Eng.* **1995**, *37*, 425.
- (4) Nilsson, J.; Land-Canovas, A. R.; Hansen, S.; Andersson, A. J. Catal. 1999, 186, 442.
- (5) Liu, H.; Gaigneaux, E. M.; Imoto, H.; Shido, T.; Iwasawa, Y. Appl. Catal. A: General 2000, 202, 251.
- (6) Inoue, T.; Oyama, S. T.; Imoto, H.; Asakura, K.; Iwasawa, Y. Appl. Catal. A: General 2000, 191, 131.
 - (7) Inoue, T.; Asakura, K.; Iwasawa, Y. J. Catal. 1997, 171, 184.
 - (8) Inoue, T.; Asakura, K.; Iwasawa, Y. J. Catal. 1997, 171, 457.
 - (9) Cassidy, T. J.; Pollastri, M.; Trifiro, F. J. Catal. 1997, 172, 55.
- (10) Ushikubo, T.; Oshima, K.; Kayou, A.; Vaarkamp, M.; Hatano, M. *J. Catal.* **1997**, *169*, 394.
 - (11) Zanthoff, H.-W.; Buchhloz, S. A. Catal. Lett. 1997, 49, 213.
 - (12) . Nilsson, R.; Lindblad, T.; Anderson, A. J. Catal. 1994, 148, 501.
 - (13) Ruth, K.; Kieffer, R.; Burch, R. J. Catal. 1998, 175, 16.
- (14) Asakura, K.; Nakatani, K.; Kubota, T.; Iwasawa, Y. J. Catal. 2000, 194, 309.
- (15) Wachs, I. E.; Deo, G.; Andreini, A.; Vuurman, M. A.; de Boer, M. J. Catal. 1996, 190, 322.
 - (16) Chen, K.; Bell, A. T.; Iglesia, E. J. Phys. Chem. B 2000, 104, 1292.
 - (17) Moro-oka, Y.; Ueda, W. Adv. Catal. 1994, 40, 233.
 - (18) Kung, H. H. Adv. Catal. 1994, 40, 1.
 - (19) Kim, D. S.; Wachs, I. E. J. Catal. 1993, 141, 419.
 - (20) Wang, C.-B.; Cau, Y.; Wachs, I. E. Langmuir 1999, 15, 1223.
 - (21) Yuan, Y.; Shido, T.; Iwasawa, Y. Chem. Commun. 2000, 1421.
- (22) Yuan, Y.; Liu, H.; Imoto, H.; Shido, T.; Iwasawa, Y. J. Catal. 2000, 195, 51.
- (23) Yuan, Y.; Liu, H.; Imoto, H.; Shido, T.; Iwasawa, Y. Chem. Lett. 2000, 674.
- (24) Harrison, W. T. A.; McManus, A. V. P.; Kaminsky, A. P.; Cheetham, A. K. Chem. Mater. **1993**, *5*, 1631.
- (25) Pillep, B.; Behrens, P.; Schubert, U.-A.; Spengler, J.; Knözinger, H. J. Phys. Chem. B **1999**, 103, 9595.
- (26) Allen, M. D.; Poulston, S.; Bithell, E. G.; Goringe, M. J.; Bowker, M. J. Catal. **1996**, 163, 204.
- (27) Poulston, S.; Price, N. J.; Weeks, C.; Allen, M. D.; Parlett, P.; Steinberg, M.; Bowker, M. J. Catal. **1998**, 178, 658.
 - (28) Delmon, B.; Froment, G. F. Catal. Rev. Sci. Eng. 1996, 38, 69.
 - (29) Centi, G.; Trifiro, F. Catal. Rev.-Sci. Eng. 1986, 28, 165.
 - (30) Berry, F. J. Adv. Catal. 1981, 30, 97.
- (31) Liu, H.; Gaigneaux, E. M.; Imoto, H.; Shido, T.; Iwasawa, Y. J. Phys. Chem. B **2000**, 104, 2033.
- (32) Gaigneaux, E. M.; Liu, H.; Imoto, H.; Shido, T.; Iwasawa, Y. *Topics Catal.* **2000**, *11*–*12*, 185.
 - (33) Watanabe, H.; Imoto, H. Inorg. Chem. 1997, 36, 4610.
- (34) Watanabe, H.; Imoto, H.; Tanaka, H. J. Solid State Chem. 1998, 138, 245.
- (35) Liu, H.; Shido, T.; Iwasawa, Y. Shokubai (Catalysts and Catalysis) 2000, 42, 70.
 - (36) Liu, H.; Shido, T.; Iwasawa, Y. Chem. Commun. 2000, 1881.
 - (37) Liu, H.; Imoto, H.; Shido, T.; Iwasawa, Y. J. Catal. 2001, 200, 69.
 - (38) Centi, G.; Perathoner, S. Catal. Rev. Sci. Eng. 1998, 40, 175.
- (39) Centi, G.; Marchi, F.; Perathoner, S. Appl. Catal. A 1997, 149, 225.
 - (40) Mars, P.; van Krevelen, D. W. Chem. Eng. Sci. 1954, 3, 41.
- (41) Knietzni, K. F.; Zanthoff, H. W.; Maier, W. F. J. Catal. 1999, 188, 154.
 - (42) Haber, J.; Turek, W. J. Catal. 2000, 190, 320.
 - (43) Winter, E. R. S. J. Chem. Soc. A 1968, 2889.