Улучшение робастности динамической системы в продольном канале управления с применением обратной динамики

А.Е. Пащенко

Московский авиационный институт

Цель дипломной работы

Цель дипломной работы

Задачи

- Расчет ЛТХ, ВПХ, а также характеристик маневренностик
- Синтез системы автоматического управления
- Рассмотреть один из основных способов улучшения робастности динамической системы с применением обратной динамики при помощи PI-котроллера.

Цель дипломной работы

Задачи

- Расчет ЛТХ, ВПХ, а также характеристик маневренностик
- Синтез системы автоматического управления
- Рассмотреть один из основных способов улучшения робастности динамической системы с применением обратной динамики при помощи PI-котроллера.

Фишечки

- Все расчеты проводились при помощи языков программирования MATLAB, Python.
- Работа с моделью САУ и её анализ проводились при помощи «Simulink».
- Отчёт оформлен с применением языка разметки Latex.

Объект исследования

В расчёт ЛТХ входит

В расчёт ЛТХ входит

• Расчёт области возможных полётов

В расчёт ЛТХ входит

- Расчёт области возможных полётов
- 2 Расчёт траектории полёта

В расчёт ЛТХ входит

- Расчёт области возможных полётов
- Расчёт траектории полёта
- 3 Расчёт транспортных возможностей самолёта

Расчёт области возможных полётов

Основные ограничения

- ullet Ограничение по $M_{min\ P}$
- ullet Ограничение по $M_{max\ P}$

Дополнительные ограничения

- ullet Ограничение по C_y доп
- ullet Ограничение по $M_{
 m nped}$
- ullet Ограничение по q_{maxs}

Расчёт области возможных полётов

Расчёт области возможных полётов

Определение области

- $M_{min} = \max\{M_{min\ p},\ M_{C_{y\ pon}}\}$
- $M_{max} = \\ \min\{M_{max\ P},\ M_{\rm npeg},\ M_{q_{max}}\}$

Потолки

Расчёт теоретического и практического потолка производится по $V_{y_{max}}^{st}$

Потолки

Расчёт теоретического и практического потолка производится по $V_{y_{max}}^*$ $H_{\rm T}=19.8$ км

Потолки

Расчёт теоретического и практического потолка производится по $V_{y_{max}}^{st}$

$$H_{\scriptscriptstyle T}=19,8$$
 км

$$H_{\mathsf{np}} = 19,5$$
 км

Расчёт траектории полёта

Траектория

Расчёт траектории полёта

Траектория

Траеткорию полёта принято разделять на три этапа

- Набор высоты
- Крейсерский полёт
- Снижение

Расчёт траектории набора

Выбор начальных параметров

Начальные значения H и M определяются следующим образом $H_0=0$ км $M_0=1,2\cdot M_{min\ don}$, а конечные значения выбираются из условия минимума километрового расходатоплива в установившемся горизонтальном полете. Высота и число Маха, при которых километровый расход топлива принимает наименьшее значение, определены в предыдущих слайдах

Расчёт траектории набор

Расчёт траектории набора

Результаты рассчётов

Параметр	начение	Единицы	
$m_{T_{Ha6}}$	7225,6	КГ	
L _{наб}	278,04	KM	
Тнаб	20,06	мин	

Расчёт крейсерского полёта

Выбор начальных параметров

 $ar{m}_{T_{
m Ha6}}=0,5$ — относительная масса пустого снаряженного самолета $ar{m}_{
m ЦH}=0,15$ — относительная масса целевой нагрузки $ar{m}_{
m CHR}=0,015$ — относительная масса топлива расходуемая при снижении и посадке $ar{m}_{T_{
m Ha6}}$ — относительная масса топлива, расходуемая при наборе высоты

Расчёт крейсерского полёта

Выбор начальных параметров

 $ar{m}_{T_{
m Ha6}} = 0,5$ — относительная масса пустого снаряженного самолета $ar{m}_{
m ЦH} = 0,15$ — относительная масса целевой нагрузки

 $ar{m}_{\text{снп}} = 0.015$ — относительная масса топлива расходуемая при снижении и посадке

 $ar{m}_{T_{\mathsf{Ha6}}}$ — относительная масса топлива, расходуемая при наборе высоты

Результаты расчётов характеристик крейсерского полёта

Параметр	Значение	Единицы	
Н _{к кр}	19.3	KM	
L_{kp}	7610,74	КГ	
$T_{\kappa p}$	403,43	мин	

Расчёт траектории спуска

Расчёт траектории спуска

Результаты расчётов

Параметр	Значение	Единицы	
$m_{T_{\rm cnyck}}$	756,936	КГ	
L _{cпуск}	314,16	KM	
Тспусе	41,929	мин	

Расчёт траектории полёта

Основные положения

Расчёт ведётся для трёх режимов

Основные положения

Расчёт ведётся для трёх режимов

• Полет с максимальной коммерческой нагрузкой

Основные положения

Расчёт ведётся для трёх режимов

- Полет с максимальной коммерческой нагрузкой
- Полёт с максимальным запасом топлива

Основные положения

Расчёт ведётся для трёх режимов

- Полет с максимальной коммерческой нагрузкой
- Полёт с максимальным запасом топлива
- Полёт без коммерческой нагрузки ($m_{
 m цн}=0$) с максимальным запасом топлива

Диаграмма транспортных возможностей самолёта

Расчет взлетно-посадочных характеристик самолета

Результаты расчётов

$V_{\text{отр}}$, м/с	<i>L</i> _p , м	<i>L</i> _{вд} , м	$V_{\rm кас}$, м/с	<i>L</i> _{проб} , м	<i>L</i> _{пд} , м
88,85	1125,37	1392	64,58	576	1200,78

Расчёт характеристик манёвренности

Основные положения

Для неманёвренного самолёта характеристики предельного правильного виража рассчитываются для высоты H= 6км. Характеристики маневренности рассчитываются при 50%-ом выгорании топлива для массы самолета:

$$\bar{m}_c = 1 - 0, 5\bar{m}_{\scriptscriptstyle T}$$

Расчёт характеристик манёвренности

Синтез системы автоматического управления

Синтез системы автоматического управления

Задачи раздела

Расчет коэффициентов и моделирование системы стабилизации вертикальной скорости самолета для Concorde:

- Выбор параметров привода
- Расчет и оценка коэффициентов обратных связей и коэффициентов стабилизации системы
- Частотный анализ контуров системы
- Моделирование и анализ линейной и нелинейной САУ

Исследуемая модель

$$\begin{cases} \dot{\alpha} = \omega_{z} - \bar{Y}^{\alpha} \alpha \\ \dot{\omega}_{z} = \bar{M}_{z}^{\alpha} \alpha + \bar{M}_{z}^{\omega_{z}} \omega_{z} + \bar{M}_{z}^{\dot{\alpha}} \dot{\alpha} + \bar{M}_{z}^{\delta_{\mathrm{B}}} \delta_{\mathrm{B}} \\ \dot{V}_{y} = V \cdot \bar{Y}^{\alpha} \alpha \end{cases}$$

$$A = \begin{pmatrix} -Y^{\alpha} & 1 & 0 \\ \bar{M}_{z}^{\alpha} & \bar{M}_{z}^{\omega_{z}} & 0 \\ V \cdot \bar{Y}^{\alpha} & 0 & 0 \end{pmatrix}; \ B = \begin{pmatrix} 0 \\ \bar{M}_{z}^{\delta_{9}} \\ 0 \end{pmatrix}; \ C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}; \ D = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Структурная схема системы стабилизации вертикальной скорости самолета

Выбор параметров привода

Выбор параметров привода

Передаточная функция привода

При решении задачи синтеза сервопривод описывается передаточной функций колебательного звена:

$$W_{n} = \frac{1}{T_{n}^{2} p^{2} + 2\xi_{n} T_{n} p + 1}$$
 (1)

Значение постоянной времени $T_{\rm n}$ сервопривода, от которой зависит его полоса пропускания, определяется следующим образом: Устанавливается максимальное значение собственной частоты недемпфированных колебаний $\omega_0=\frac{1}{T_{\rm c}}$ в варианте управлении продольным движением самолета, и исходя из этих значений, определяется потребная ширина полосы пропускания сервопривода (см. формула 1):

Выбор параметров привода

Вывод

- Максимальное значение ω_0 находится у поверхности земли со значением M=1 ($\omega_{0\,max}=5,74~\frac{1}{c}$).
- $\omega_{\rm n} = 37,19 \frac{1}{c} => T_{\rm n} = 0.0269 c$
- Из данного ряда чисел [0,02; 0,025; 0,003; 0,035; 0,04; 0,045; 0,05] 0,0269 более близко к 0,025, следовательно, данное число мы и примем за постоянную времени привода. Исходя из вышесказанного, получаем $\omega_{\rm n}=40~\frac{1}{c}$, $T_{\rm n}=0.025~c,\xi=0,5$.

Расчёт коэффициентов стабилизации системы

Расчёт коэффициентов стабилизации системы

Расчёт коэффициентов стабилизации системы

Вывод

Полученные значения коэффициентов обратных связей были успешно найдены и применены на модели рассматриваемой системы стабилизации вертикальной скорости в системе «Simulink». Моделирование показало, что коэффициенты найдены верно, так как заданная вертикальная скорость равена вертикальной скорости на выходе из системы. Более подробно будут показаны результаты моделирования и сама модель в разделе «Нелинейное моделирование».

Моделирование и анализ линейной и нелинейной САУ

Моделирование и анализ линейной и нелинейной САУ

Основные положения

Целью частотного анализа является построение логарифмических амплитудных и фазовых частотных характеристик (ЛАФЧХ) разомкнутых и замкнутых контуров управления до синтеза и после синтеза и проведение их сравнительного анализа.

Моделирование и анализ линейной и нелинейной САУ

Основные положения

Целью частотного анализа является построение логарифмических амплитудных и фазовых частотных характеристик (ЛАФЧХ) разомкнутых и замкнутых контуров управления до синтеза и после синтеза и проведение их сравнительного анализа.

Примечание

В данной призентации будет приведены частотные характеристики только для крейсерского полёта, для остальных режимов всё аналогично.

Частотный аналез крейсерского режима полёта

Моделирование линейной и нелинейной САУ

Общие положения

В данном разделе проводится анализ линейной и нелинейной САУ. В Simulink реализуется система управления на крейсерском режиме полета. Крейсерскому режиму полета для самолета-прототипа Concorde соответствуют M=0.982 и H=17 км.

Благодарность

Спасибо за внимание

