

QUÍMICA NIVEL SUPERIOR PRUEBA 2

Martes 8 de mayo de 2012 (tarde)

2 horas 15 minutos

Νι	úmer	o de	con	voca	toria	del a	lumr	าด
0	0							

Código del examen

		COC	ngo i	uci	CAUL	11011		
2	2	1	2	-	6	1	2	6

INSTRUCCIONES PARA LOS ALUMNOS

- Escriba su número de convocatoria en las casillas de arriba.
- No abra esta prueba hasta que se lo autoricen.
- Sección A: conteste todas las preguntas.
- Sección B: conteste dos preguntas.
- Escriba sus respuestas en las casillas provistas.
- En esta prueba es necesario usar una calculadora.
- Se necesita una copia sin anotaciones del Cuadernillo de Datos de Química para esta prueba.
- La puntuación máxima para esta prueba de examen es [90 puntos].

SECCIÓN A

Conteste todas las preguntas. Escriba sus respuestas en las casillas provistas.

1. El peróxido de hidrógeno, $H_2O_2(aq)$, libera oxígeno gaseoso, $O_2(g)$, puesto que se descompone de acuerdo con la siguiente ecuación.

$$2H_2O_2(aq) \rightarrow 2H_2O(1) + O_2(g)$$

Se colocaron 50,0 cm³ de solución de peróxido de hidrógeno en un tubo de ebullición, y se añadió una gota de detergente líquido para crear una capa de burbujas en la parte superior de la solución de peróxido de hidrógeno a medida que se liberara el oxígeno gaseoso. El tubo se colocó en un baño de agua a 75 °C y se midió la altura de la capa de burbujas cada treinta segundos. Se representó un gráfico de la altura de la capa de burbujas en función del tiempo.

 	X	_	_		_		_	 	 _	 									 	 	 _	 	_								 					 		_	_	_	_	
													 	 		•		•													•											•
•		•	•	•	•	•	•			•	٠	•	 	 							•		•	٠		•		•		•			•				•				•	

(Pregunta	1.	continu	(ación)
n regama	1.	COMMINI	$u \cup \iota \cup \iota \iota \iota$

(b)		Us a]						0	l	o:	ar	a	C	a	.lc	u	la	ır	ŀ	a	٧	e	lc	С	ic	da	ac		de	е	d	es	sc	Ol	m	p	O:	si	ci	ió	n	C	le	1	pe	er	ÓΣ	κi	do)	de	Э.	hi	id	rć	58	ge	no	0	[3]
		_				 		•		-					_	_		_				_																			_																			
			• •			•	•						•				•	•			•		•	•					٠.						•	•	•	•			•		•	•		٠			•	•	•		•	•	•			٠	•	
						٠							•					-							•							•			•				•		•					•			•	•	•		•	•					•	
																														•								•																•						
																					•																								٠.														-	
<u> </u>	******							_										_																																										-

- La descomposición del peróxido de hidrógeno para formar agua y oxígeno es una (c) reacción rédox.
 - Deduzca los números de oxidación del oxígeno presente en cada una de las especies (i) de abajo.

Especie	Número de oxidación del oxígeno
H_2O_2	
H ₂ O	
O_2	

(ii)	Indique dos semiecuaciones para la descomposición del peróxido de hidrógeno.	[2]
	Oxidación:	
	Reducción:	

[2]

[2]

2.

t)	Indique la ecuación para la reacción entre magnesio y ácido clorhídrico.	[
))	Determine el reactivo limitante.	l
	Calcule el rendimiento teórico del hidrógeno gaseoso: (i) en moles.	
 :)		
··)		

(Pregunta 2: continuación)

	ti Su																	~																~																	e.	
	_	_	_			 _	_	_	_	_	_	_	_	_	_		•	_	_	-	<u> </u>	_	_	_							_	_	_						•		. ,							 •				
				•	•					•	•	•	•																													•										
					•	•					•					•																					•			•		•		•				•	•			
																													_	_						٠													•			

3.

	entalpías de red se pueden determinar experimentalmente usando el ciclo de Born–Haber bricamente usando cálculos basados en principios electrostáticos.	
(a)	Las entalpías de red experimentales de los cloruros de litio, LiCl, sodio, NaCl, potasio, KCl, y rubidio, RbCl, están en la Tabla 13 del Cuadernillo de Datos. Explique qué tendencia presentan esos valores.	[2]
(b)	Explique por qué la entalpía de red del cloruro de magnesio, MgCl ₂ , es mucho mayor que la del cloruro de sodio, NaCl.	[2]

(Pregunta 3: continuación)

(c) (i) Identifique el proceso rotulado a en el ciclo de Born-Haber para la determinación de la entalpía de formación estándar del fluoruro de litio, LiF.

[1]

(ii) La variación de entalpía para el proceso a es +159 kJ mol⁻¹. Calcule la entalpía estándar de formación del fluoruro de litio, LiF, usando éste y otros valores del Cuadernillo de Datos.

[2]

•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	 •	•	٠	•	•	•	•	•	•	٠	٠	•	• •	•	٠	٠	٠	•	• •	•	•	٠	•	•	•	• •	•	•	٠	•	•	•	•	•	•	•	•	•
	•			•	•		•	•	•	•		•					•	•	٠	•	•		•					•			٠		•				•		•		•	•		•		•			•	٠			•	٠		•			•
	•			•			•															 •				•											,				•																		
							•						٠			•						 •	٠																																			•	

4. Dibuje las estructuras de Lewis, prediga la forma y deduzca los ángulos de enlace del tetrafluoruro de xenón y el ion nitrato.

[6]

Especie	Estructura de Lewis	Forma	Ángulo de enlace
XeF₄			
NO ₃ ~			

	El	I es un isótopo radiactivo del yodo.
	(i)	Defina el término isótopo.
	(ii)	Identifique un uso del yodo-131 en medicina y explique por qué es potencialmente peligroso.
	1	
(b)	Disc	euta el uso del carbono-14 en datación.

6.	Indique y explique si las soluciones de cada uno de los siguientes compuestos son ácidas, básicas o neutras.	[4]
	Cr(NO ₃) ₃ :	
	CH ₃ COONH ₄ :	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

SECCIÓN B

Conteste dos preguntas. Escriba sus respuestas en las casillas provistas.

(i)	Distinga entre los términos fórmula empírica y fórmula molecular.	
	Fórmula empírica:	
	Fórmula molecular:	
(ii)	Determine la fórmula empírica de X .	
(iii)	Determine la fórmula molecular de X.	
(iii)	Determine la fórmula molecular de X.	

(Pregunta	7.	continua	ión)	ı
(Pregunia	7:	commuac	uon)	,

(iv)	X es un ácido carboxílico de cadena lineal. Dibuje su fórmula estructural.	[1]
(v)	Dibuje la fórmula estructural de un éster isómero de X .	[1]
		į
(vi)	El ácido carboxílico contiene dos enlaces carbono-oxígeno diferentes. Identifique cuál enlace es más fuerte y cuál enlace es más largo.	[2]
	Enlace más fuerte:	
	Enlace más largo:	

(Pregunta 7: continuación)

	carbono-oxígeno en el CH ₃ CH ₂ COO ⁻ .	
(i)	Indique el significado del término hibridación.	
(ii)	Describa la hibridación del átomo de carbono en el metano y explique cómo se puede usar el concepto de hibridación para explicar la forma de la molécula de metano.	
	······································	

(Pregunta 7: continuación)	(Preg	unta	7:	contin	iuación)
----------------------------	-------	------	----	--------	----------

(iii)	Identifique la hibridación de los átomos de carbono en el diamante y el grafito y explique por qué el grafito es conductor eléctrico.	[3]
(i)	El cloruro de aluminio, Al ₂ Cl ₆ , no conduce la electricidad cuando está fundido pero el óxido de aluminio, Al ₂ O ₃ , lo hace. Explique este hecho en función de la estructura y los enlaces de ambos compuestos.	[4]
	Al ₂ Cl ₆ :	
	Al_2O_3 :	
(ii)	Describa la reacción entre cloruro de aluminio y agua.	[2]

8.	(a)	La ecuación para la reacción entre hidróxido de sodio, NaOH, y ácido nítrico, HNO3,
		se muestra a continuación.

 $NaOH(aq) + HNO_3(aq) \rightarrow NaNO_3(aq) + H_2O(l)$ $\Delta H = -57.6 \text{ kJ mol}^{-1}$

(i)	Esquematice y rotule un diagrama entálpico para esta reacción.	[3]

(ii)		reactivos onamiento	los	productos	son	más	estables	energéticamente,	[1

,		 	 					 			 														 					 ••••		_	
	. ,			•		•	•					•	•		•	 •	•	 •		•	•	 ٠	 •	•		. ,	•	•		 	٠		
																 •							 •							 			

(iii) Calcule la variación de calor, en kJ, cuando se añaden 50,0 cm³ de solución de hidróxido de sodio 2,50 mol dm³ a un exceso de ácido nítrico. [2]

(Pregunta 8: continuación)

	Cuando se añade cloruro de amonio, NH ₄ Cl(aq), a un exceso de carbonato de sodio sólido, Na ₂ CO ₃ (s), se produce una reacción ácido-base. Se desprenden burbujas de gas y la masa del carbonato de sodio sólido disminuye. Indique una diferencia que se observaría si se usara ácido nítrico, HNO ₃ (aq), en lugar de cloruro de amonio.	[1]
(c)	Cuando se añaden 5,35 g de cloruro de amonio, NH ₄ Cl(s), a 100,0 cm ³ de agua, la temperatura del agua disminuye desde 19,30 °C hasta 15,80 °C. Determine la variación de entalpía, en kJ mol ⁻¹ , para la disolución de cloruro de amonio en agua.	[3]

(Pregunta &	3:	continuación,	Ì
-------------	----	---------------	---

(d)	La c	oncentración de una solución de amoníaco es de 0,500 mol dm ⁻³ .	
		ule el pH de la solución de amoníaco usando información de la Tabla 15 del dernillo de Datos. Indique una suposición realizada.	[4]
(e)		obtiene una solución tampón (<i>buffer</i>) usando 25,0 cm³ de ácido nítrico, HNO ₃ (aq), ,500 mol dm⁻³ y 25,0 cm³ de solución de amoníaco, NH ₃ (aq), de 1,00 mol dm⁻³. Indique el significado del término <i>solución tampón (buffer)</i> .	[1]
	(::)		
	(ii)	Calcule las concentraciones de amoníaco e ion amonio en la solución tampón (buffer).	[2]

(Pregunta 8: continuación)

(iii)	Determine el pH de la solución tampón (buffer) a 25 °C.	[2]
(iv)	Explique por qué el pH de la solución tampón (buffer) es diferente del pH de	
	la solución de amoníaco calculado en (d).	[1]
(v)	Explique la acción de la solución tampón (<i>buffer</i>) cuando se le añaden unas gotas de solución de ácido nítrico.	[2]
1		

(Pregunta 8: continuación)

	El verde de bromocresol es un indicador ácido-base. En la Tabla 16 del Cuadernillo de Datos hay información sobre el verde de bromocresol.							
(i)	Identifique la propiedad del verde de bromocresol que lo hace adecuado para su uso como indicador ácido-base.	[1]						
(ii)	Indique y explique la relación entre el rango de pH del verde de bromocresol y su valor de pK_a .	[2						

9.

(i)	Indique la configuración electrónica completa del Fe.
(ii)	Indique la configuración electrónica abreviada de los iones Fe ³⁺ .
(iii)	contiene iones cianuro es el [Fe(CN) ₆] ³⁻ . Identifique la propiedad del ion cianuro
(iii)	contiene iones cianuro es el $[Fe(CN)_6]^{3-}$. Identifique la propiedad del ion cianuro que le permite actuar como ligando, y explique el enlace que se produce el
(iii)	contiene iones cianuro es el [Fe(CN) ₆] ³⁻ . Identifique la propiedad del ion cianuro que le permite actuar como ligando, y explique el enlace que se produce el ion complejo de acuerdo con la teoría ácido-base. Describa la estructura del ion
(iii)	contiene iones cianuro es el [Fe(CN) ₆] ³⁻ . Identifique la propiedad del ion cianuro que le permite actuar como ligando, y explique el enlace que se produce el ion complejo de acuerdo con la teoría ácido-base. Describa la estructura del ion
(iii)	contiene iones cianuro es el $[Fe(CN)_6]^{3-}$. Identifique la propiedad del ion cianuro que le permite actuar como ligando, y explique el enlace que se produce el ion complejo de acuerdo con la teoría ácido—base. Describa la estructura del ion complejo $[Fe(CN)_6]^{3-}$.
(iii)	contiene iones cianuro es el $[Fe(CN)_6]^{3-}$. Identifique la propiedad del ion cianuro que le permite actuar como ligando, y explique el enlace que se produce el ion complejo de acuerdo con la teoría ácido—base. Describa la estructura del ion complejo $[Fe(CN)_6]^{3-}$.
(iii)	contiene iones cianuro es el [Fe(CN) ₆] ³⁻ . Identifique la propiedad del ion cianuro que le permite actuar como ligando, y explique el enlace que se produce el ion complejo de acuerdo con la teoría ácido-base. Describa la estructura del ion complejo [Fe(CN) ₆] ³⁻ .
(iii)	contiene iones cianuro es el [Fe(CN) ₆] ³⁻ . Identifique la propiedad del ion cianuro que le permite actuar como ligando, y explique el enlace que se produce el el ion complejo de acuerdo con la teoría ácido-base. Describa la estructura del ion complejo [Fe(CN) ₆] ³⁻ .
(iii)	contiene iones cianuro es el [Fe(CN) ₆] ³⁻ . Identifique la propiedad del ion cianuro que le permite actuar como ligando, y explique el enlace que se produce el ion complejo de acuerdo con la teoría ácido-base. Describa la estructura del ion complejo [Fe(CN) ₆] ³⁻ .

(Pregunta 9: continuación)

(iv)	Explique por qué los complejos de Fe ³⁺ son coloreados.	[2
En e	I proceso de contacto el $SO_2(g)$ se convierte en $SO_3(g)$ durante la producción sido sulfúrico. La reacción es exotérmica.	
(i)	Indique la ecuación para la producción de $SO_3(g)$ a partir de $SO_2(g)$.	[]
The state of the s		
(ii)	Identifique un catalizador usado en el proceso de contacto.	[]
	To de la la cataliza den cobre la valocidad de la reacción	[2
(iii)	Explique el efecto del catalizador sobre la velocidad de la reacción.	L

(Pregunta 9) :	continuación)
-------------	------------	---------------

Los catalizadores son muy caros. Sugiera dos beneficios económicos del uso de catalizadores para acelerar la reacción en el proceso de contacto.	[2]
Prediga y explique si la entropía aumenta o disminuye durante la formación del SO ₃ .	[2]
Indique y explique si la formación de SO ₃ es más espontánea o menos espontánea a mayor temperatura.	[3]
	Prediga y explique si la entropía aumenta o disminuye durante la formación del SO ₃ . Indique y explique si la formación de SO ₃ es más espontánea o menos espontánea a mayor temperatura.

(Pregunta 9: continuación)

(c) Se estudió la reacción entre monóxido de carbono, CO(g), y dióxido de nitrógeno, $NO_2(g)$, a distintas temperaturas y se representó gráficamente ln k en función de $\frac{1}{T}$. Se halló que la ecuación de la recta de ajuste era:

$$\ln k = -1,60 \times 10^4 \left(\frac{1}{T}\right) + 23,2$$

(Pregunta 9: continuación)

(1)	En la Tabla I del Cuadernillo de Datos està la ecuación de Arrhenius. Identifique los símbolos k y A.	[2]
	k:	
	A:	
(ii)	Calcule la energía de activación, $E_{\rm a}$, para la reacción entre ${\rm CO}({\rm g})$ y ${\rm NO}_{\rm 2}({\rm g})$.	[2]
(iii)	Calcule el valor numérico de A.	[2]
1		

10.

(i)	Indique los nombres de dos compuestos orgánicos necesarios para producir metanoato de etilo e indique las condiciones de reacción adecuadas.	[
(ii)	Deduzca la estructura de la unidad más simple que se repite en el polímero formado por reacción entre 1,6-diaminohexano y ácido 1,6-hexanodioico e indique un uso de este producto.	
(ii)	por reacción entre 1,6-diaminohexano y ácido 1,6-hexanodioico e indique un uso	
(ii)	por reacción entre 1,6-diaminohexano y ácido 1,6-hexanodioico e indique un uso	,
(ii)	por reacción entre 1,6-diaminohexano y ácido 1,6-hexanodioico e indique un uso	
(ii)	por reacción entre 1,6-diaminohexano y ácido 1,6-hexanodioico e indique un uso	
(ii)	por reacción entre 1,6-diaminohexano y ácido 1,6-hexanodioico e indique un uso	
(ii)	por reacción entre 1,6-diaminohexano y ácido 1,6-hexanodioico e indique un uso	
(ii)	por reacción entre 1,6-diaminohexano y ácido 1,6-hexanodioico e indique un uso	
(ii)	por reacción entre 1,6-diaminohexano y ácido 1,6-hexanodioico e indique un uso	

and the second	1 /3		
1 6-24-21-21-21-21	///	MOUTINAL	$\alpha \alpha i \alpha n$
ti itsymmu	117.	COMMINIC	$u \cup u \cap u$
(Pregunta			

(i)	Identifique un catalizador adecuado para esta reacción.
(ii)	El 2-buteno se puede convertir en 2-bromobutano y luego en 2-butanol como sigue:
	$CH_3CH=CHCH_3 \xrightarrow{\hspace{1cm} \textbf{I}} CH_3CH(Br)CH_2CH_3 \xrightarrow{\hspace{1cm} \textbf{II}} CH_3CH(OH)CH_2CH_3$
	Identifique el(los) reactivo(s) y condiciones necesarias para cada una de las etapas I y II.
	Etapa I:
	Etapa II:
(iii)	Indique y explique cómo variaría la velocidad de la etapa II si se usara 2-clorobutano en lugar de 2-bromobutano.
	2 diorectaine en ragar de 2 erenneedaaner

(Pregunta 10: continuación)

Los halógenoalcanos se pueden clasificar como primarios, secundarios o terciarios.					
(i)	Indique el significado del término isómeros.	[1]			
(ii)	Deduzca las fórmulas estructurales del 2-bromobutano y el 1-bromo-2-metilpropano, e identifique cada molécula como primaria, secundaria o terciaria.	[4]			

(Pregunta 10: continuación)

(d) El 1-bromopropano sufre una reacción de sustitución con cianuro de potasio.

- (i) Explique por qué la sustitución se produce en el átomo de carbono señalado como *C.

 [1]
- (ii) Explique el mecanismo de la reacción usando flechas curvas para representar el movimiento de los pares electrónicos durante la sustitución. [4]

(Pregunta 10: continuación)

(iii)	Deduzca el(los) reactivo(s) y catalizador necesarios para convertir el producto de la reacción de sustitución en una amina.	[2]
	-bromopropano reacciona con hidróxido de sodio disuelto en etanol caliente cuando alienta a reflujo. Indique una ecuación para esta reacción.	[2]
		[2]
		[2]
	alienta a reflujo. Indique una ecuación para esta reacción.	[2]
	alienta a reflujo. Indique una ecuación para esta reacción.	[2]

