Name of Department:- Computer Science and Engineering

1.	Subject Code:	TCS 502		Course Title:	Operating Systems
2.	Contact Hours:	L: 3	T:	P:	

Semester: V

4. Pre-requisite: TCS 301, TCS 403, TCS 404

- 5. Course Outcomes: After completion of the course students will be able to
 - 1. Understand the concept and design issues associated with an operating system
 - 2. Identify the problems related to process management and synchronization and apply learned methods to solve basic problems
 - 3. Explain the basics of memory management and the use of virtual memory in modern operating systems.
 - 4. Understand the concept deadlock avoidance, prevention and detections techniques.
 - 5. Implementation of process management, memory management and file management using system calls.
 - 6. Analyze the data structures and algorithms used for developing an operating systems

6. Detailed Syllabus

UNIT	CONTENTS	
Unit – I	Introduction to Operating Systems, UNIX: What operating systems do; Operating System structure; Operating System Services; User - Operating System interface; System calls; Types of system calls; System programs; Operating System structure; Unix command: Command Structure, Internal and External commands, filters; vi editor.	8
Unit - II	Process Management: Process concept; Process scheduling; Operations on processes; Multi-Threaded Programming: Overview; Multithreading models; Threading issues. Process Scheduling: Basic concepts; Scheduling criteria; Scheduling algorithms; Multiple-Processor scheduling; Thread scheduling. Process Synchronization: Inter-process communication; Synchronization: The Critical section problem; Peterson's solution; Synchronization hardware; Semaphores; Classical problems of synchronization.	10
Unit – III	Deadlocks: Deadlocks: System model; Deadlock characterization; Methods for handling deadlocks; Deadlock prevention; Deadlock avoidance; Deadlock detection and recovery from deadlock. Memory Management: Memory Management Strategies: Background; Swapping; Contiguous memory allocation; Paging; Structure of page table; Segmentation. Virtual Memory Management: Background; Demand paging; Page replacement; Allocation of frames; Thrashing.	10

Unit – V
Unit – IV

Text Books:

- 1. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne:" Operating System Principles", 7th edition, Wiley India, 2006.
- 2. William Stallings: "Operating Systems: Internals and Design Principles", 6th edition, Pearson, 2009
- 3. Sumitabha Das ,"Unix concepts and applications"

Reference Books:

- 1. Andrew S Tanenbaum: "Operating Systems: Design and Implementation", 3rd edition, Prentice Hall, 2006
- 2. Stuart E. "Madnick, John Donovan: Operating Systems", Tata McGraw Hill, 2008