Rekursja II

- 1. Stosując równanie charakterystyczne wyznacz postać jawną ciągu:
 - (a) s(0) = 2, s(1) = -1 oraz s(n) = -s(n-1) + 6s(n-2) dla $n \ge 2$
 - **(b)** $s(0) = 2 \text{ oraz } s(n) = 5s(n-1) \text{ dla } n \ge 1$
 - (c) s(0) = 1, s(1) = 8 oraz s(n) = 4s(n-1) 4s(n-2) dla $n \ge 2$
- 2. Stosując równanie charakterystyczne wyznacz postać jawną ciągu:
 - (a) a(0) = 1, a(1) = 5, a(2) = 17 a(n+3) = 7a(n+2) 16a(n+1) + 12a(n),
 - **(b)** a(0) = 1, a(1) = 2, a(2) = 4 a(n+3) = a(n+2) + a(n+1) + 2a(n),
 - (c) a(0) = 1, a(1) = 3, a(2) = 9 a(n+3) = 5a(n+2) 8a(n+1) + 4a(n),
 - (d) a(0) = 1, a(1) = 5, a(2) = 22 a(n+3) = 8a(n+2) 21a(n+1) + 18a(n).
- 3. Stosując równanie charakterystyczne wyznacz postać jawną ciągu:
 - (a) a(0) = 0, a(1) = 1, a(n+2) = a(n+1) + a(n) + 1.
 - **(b)** a(0) = 1, a(1) = 1, $a(n+2) = \frac{7}{4}a(n+1) + \frac{1}{2}a(n) + 1$,
 - (c) a(0) = 3, a(1) = 3, a(n+2) = a(n+1) + 2a(n) + 6.
- 4. Wyznacz funkcję tworząca ciągu zdefiniowanego rekurencyjnie i na jej podstawie określ kilka początkowych elementów ciągu oraz jego postać jawną.
 - (a) a(0) = 2, a(1) = 5, a(n+2) = 5a(n+1) 6a(n) dla $n \ge 0$,
 - **(b)** a(0) = 1, a(1) = 2, a(2) = 3, a(3) = 4, ..., a(n) = n + 1.
 - (c) a(0) = 1, a(1) = 2, a(n+2) = a(n+1) a(n) + n + 2 dla $n \ge 0$,
 - (d) a(0) = 1, $a(1) = 2\sqrt{2}$, $a(n) = 2\sqrt{2}a(n-1) 2a(n-2) + \sqrt{2}^n$ dla $n \ge 2$.
- 5. Wyznaczyć liczbę a_n ciągów binarnych długości n, w których żadne dwa zera nie występują obok siebie.
- 6. Na ile sposobów można wciągnąć na *n*-metrowy maszt flagi trzech kolorów, jeśli flagi czerwone mają szerokość dwóch metrów, a pozostałe jednego metra?
- 7. Na ile sposobów można wypełnić prostokat:
 - (a) o wymiarach 2 na n kostkami domino o wymiarach 2 na 1,
 - (b) o wymiarach 3 na 2n tymi samymi kostkami?

Sformułuj odpowiednią zależność rekurencyjną oraz podaj jej rozwiązanie.

- 8. Pewna cząsteczka porusza się w kierunku poziomym i w każdej sekundzie pokonuje odległość równą podwojonej odległości pokonanej w sekundzie poprzedzającej. Niech a(n) oznacza pozycję cząsteczki po n sekundach. Określić a(n), wiedzac, że a(0) = 3 oraz a(3) = 10.
- 9. Pewien rzemieślnik wykonuje trójkątne witraże. Podstawowe witraże jakie produkuje, to witraż rozmiaru W_1 oraz witraż W_2 , każdy z nich wymaga trzech połączeń krawędzi, tzw. lutów zobacz rysunek (a). Witraż W_n , dla n>2, konstruowany jest przez zlutowanie ze sobą, w sześciu punktach, dwóch witraży W_{n-2} i jednego witrażu rozmiaru W_{n-1} zgodnie ze schematem pokazanym na rysunku (b). Koszt pojedynczego lutu wynosi dwa złote. Oblicz, ile kosztuje wykonanie witrażu rozmiaru W_n jeżeli założymy, że koszt produkcji witarżu jest określony kosztem wykonanych lutów. Podaj postać zwartą poszukiwanego rozwiązania wyrażoną względem parametru n.
- 10. Na ile sposobów można ustawić w kolejce po bilety na dworcu PKP n osób? Rozważmy ciąg a(n), gdzie a(n) jest liczbą możliwych ustawień w kolejce n osób. Znajdź zależność rekurencyją opisującą ten ciąg oraz podaj jej rozwiązanie.

- 11. Znajdź liczbę obszarów, na jakie dzieli płaszczyznę n prostych, z których k jest równoległych, a pozostałe przecinają wszystkie proste (żadne trzy proste nie przechodzą przez jeden punkt).
- 12. Rozważmy następujący algorytm Alg(n), gdzie $n \in \mathbb{N}$ oraz Cos(n) jest procedurą, której obliczenie wymaga wykonania f(n) operacji dominujących:

$$Alg(n) = \{if \ n > 0 \ then \ Alg(n-1); \ Cos(n); \ fi\}.$$

Niech dalej T(n) oznacza liczbę operacji dominujących jakie wykona algorytm Alg dla argumentu n. Podaj równanie rekurencyjne definiujące wartość T(n) oraz jego rozwiązanie, gdy:

- (a) f(n) = 2,
- **(b)** $f(n) = n^2 + 2$,
- (c) f(n) = f(n-1) + n, dla n > 0 oraz f(0) = 0,
- (d) $f(n) = T(n-1) + 2^n$,
- (e) f(n) = nT(n-1) + n + 1,
- (f) $f(n) = \sum_{i=0}^{n-1} T(i) + 1$.
- 13. Korzystając z twierdzenia o rekursji uniwersalnej podaj oszacowanie rozwiązania następujących równań rekurencyjnych:
 - (a) $T(n) = 3T(\frac{n}{3}) + n^3 + n$,
 - **(b)** $T(n) = 2T(\frac{n}{\sqrt{2}}) + \sqrt{n}$,
 - (c) $T(n) = 8T(\frac{n}{2}) + \frac{1}{n}$,
 - (d) $T(n) = 9T(\frac{n}{3}) + 3lgn!,$
 - (e) $T(n) = T(\frac{n}{2}) + 1$.
- 14. Rozważmy następujący algorytm Alg(n), gdzie $n \in \mathbb{N}$ oraz $Cos(n) = n^2$ jest procedurą, której obliczenie wymaga wykonania n operacji dominujących.
 - (a) $Alg(n) = \{if \ n > 2 \ then \ Alg(\frac{n}{2}); \ Alg(\frac{n}{2}); \ Cos(n); \ fi\}.$
 - **(b)** $Alg(n) = \{if \ n > 2 \ then \ Alg(\frac{n}{2}); \ Cos(Cos(n)); \ fi\}.$
 - (c) $Alg(n) = \{if \ n > 1 \ then \ Alg(Cos(\frac{\sqrt{n}}{2})); \ Cos(\frac{\sqrt{n}}{2}); \ fi\}.$
 - (d) $Alg(n) = \{if \ n > 1 \ then \ for \ i := 1 \ to \ k^2 \ do \ Alg(\frac{n}{k}); \ od \ Cos(n^2); \ fi \ \}$, gdzie k jest pewną stałą.

Ustal równanie rekurencyjne opisujące liczbę wykonań operacji dominujących w trakcie realziacji algorytmu Alg(n). Następnie w oparciu o twierdzenie o rekursji uniwersalnej podaj oszacowanie rozwiązania owego równania.