Universidade Federal de Santa Catarina MTM 5161 – Cálculo A

Professor Adriano Né

2ª Lista de Exercícios

1) Uma função f é dada por uma tabela de valores, um gráfico, uma fórmula ou por meio de uma descrição verbal. Determine se f é injetora.

(a)						
Х	1	2	3	4	5	6
f(x)	1,5	2	3,6	5,3	2,8	2

(b)						
Х	1	2	3	4	5	6
f(x)	1	2	4	8	16	32

(e	,

(g)
$$f(x) = \frac{x+5}{2}$$

(h)
$$f(x)=1+4x-x^2$$

(i)
$$g(x) = |x|$$

(j)
$$g(x) = \sqrt{x}$$

- (k) f(t) é a altura de uma bola t segundos após sua chutada.
- (I) f(t) é a sua altura com t anos de sua idade.

- 2) Se f for uma função injetora tal que f(2)=9, quanto é $f^{1}(9)$?
- 3) Se $f(x)=3+x^2+tg\left(\frac{\pi x}{2}\right)$, onde -1 < x < 1.
- (a) Encontre $f^{-1}(3)$.
- (b) Encontre $f(f^{-1}(5))$.
- **4)** Se $g(x)=3+x+e^x$, ache $g^{-1}(4)$.
- 5) É dado o gráfico de f.
- (a) Por que \tilde{f} é injetora?
- (b) Determine o domínio e a imagem para o valor de f^{-1} .
- (c) Qual o valor de $f^{-1}(2)$?

- 6) Encontre o valor exato de cada expressão:
- (a) $\log_5 125$

(e) $\log_2 6 - \log_2 15 + \log_2 20$

(b) $\log_3 \frac{1}{27}$

(f) $\log_3 100 - \log_3 18 - \log_3 50$

(c) $\ln\left(\frac{1}{e}\right)$

(g) $e^{-2\ln 5}$

(d) $\log_{10} \sqrt{10}$

(h) $\ln(\ln e^{e^{10}})$

7) Resolva cada equação em x.

(a)
$$2 \ln x = 1$$

(e)
$$2^{x-5} = 3$$

(b)
$$e^{-x} = 5$$

(f)
$$\ln x + \ln(x-1) = 1$$

(c)
$$e^{2x+3}-7=0$$

(g)
$$\ln(\ln x) = 1$$

(d)
$$ln(5-2x)=-3$$

(h)
$$e^{ax} = Ce^{bx}$$
, onde $a \neq b$

8) Resolva cada inequação em x.

(a)
$$e^x < 10$$

(c)
$$2 < \ln x < 9$$

(b)
$$\ln x > -1$$

(d)
$$e^{2-3x} > 4$$

9) Encontre o valor exato de cada expressão:

(a)
$$arcsen\left(\frac{\sqrt{3}}{2}\right)$$

(g)
$$arccotg(-\sqrt{3})$$

(b)
$$arccos(-1)$$

(h)
$$arccos\left(-\frac{1}{2}\right)$$

(c)
$$arctg\left(\frac{1}{\sqrt{3}}\right)$$

(j)
$$arcsen(sen(\frac{7\pi}{3}))$$

(k)
$$tg(arcsec 4)$$

(f)
$$arcsen\left(\frac{1}{\sqrt{2}}\right)$$

(I)
$$sen\left(2arcsen\left(\frac{3}{5}\right)\right)$$

10) Encontre o valor numérico de cada expressão:

11) Se cosh = $\frac{5}{3}$ e x > 0, encontre os valores das outras funções hiperbólicas.

Respostas: 1) (a)Não é, pois se $x_1 = 2ex_2 = 6 \Rightarrow f(x_1) = f(X_2) = 2$;(b) Sim; (c) Sim; (d) Sim; (e) Não; (f) Não; (g) Sim; (h) Não; (i) Não; (j) Sim; (k) Não; (l) Vamos discutir em sala. **2)** $f^{-1}(9) = 2$. **3)** (a) $f^{-1}(3) = 0$; (b) 5. **4)** $g^{-1}(4) = 0$. **5)** (b) $f^{-1}:(0;2,7) \to [-4,3]$; (c) $f^{-1}(2) = 0$. **6)** (a) 3; (b) -3; (c) -1; (d) $\frac{1}{2}$; (e) 3; (f) -2; (g) $\frac{1}{25}$; (h) 10. **7)** (a) \sqrt{e} ; (b) $\ln \frac{1}{5}$; (c) $\frac{\ln 7 - 3}{2}$; (d) $\frac{5 - e^{-3}}{2}$; (e) $5 + \log_2 3$; (f) $\frac{1 - \sqrt{1 + 4e}}{2}$ ou $\frac{1 + \sqrt{1 + 4e}}{2}$; (g) e^e ; (h) $\frac{\ln C}{a - b}$. **8)** (a) $x < \ln 10$; (b) $x > \frac{1}{e}$; (c) $e^2 < x < e^9$; (d) $x < \frac{2 + \ln 4}{-3}$. **9)** Considere $k \in \mathbb{Z}$. (a) $\frac{\pi}{3} + 2k\pi$ ou $\frac{2\pi}{3} + 2k\pi$; (b) $(2k + 1)\pi$; (c) $\frac{\pi}{6} + k\pi$; (d) $\frac{\pi}{6} + k\pi$; (e) $\frac{\pi}{4} + k\pi$; (f) $\frac{\pi}{4} + 2k\pi$ ou $\frac{3\pi}{4} + 2k\pi$; (g) $\frac{5\pi}{6} + k\pi$; (h) $\frac{2\pi}{3} + 2k\pi$ ou $\frac{4\pi}{3} + 2k\pi$; (i) 10; (j) $\frac{7\pi}{3}$; (k) Observe a resolução:

Vamos utilizar a identidade $\sec^2 \theta = 1 + tq^2 \theta$.

Seja y = arcsec 4 (aplicando a inversa em ambos os lados obteremos) sec y = 4, com $y \in [0, \pi] - \left\{\frac{\pi}{2}\right\}$ (para que haja a inversa)

Utilizando a identidade trigonométrica, abaixo teremos:

$$\sec^2 y = 1 + tg^2 y$$

 $(4)^2 = 1 + tg^2 y$ (ou seja)
 $tg^2 y = 15 \Leftrightarrow tg y = \pm \sqrt{15}$

E como chamamos y = arcsec 4, temos que $tg(\underbrace{arcsec 4}_{y}) = \pm \sqrt{15}$

(l) $\frac{24}{25}$.

10) (a) 0; (b) 1; (c) 0; (d)
$$\frac{e^2-1}{e^2+1}$$
; (e) 3/4; (f) 5/3; (g) 1; (h) 0; (i) $\frac{e^2-1}{2e}$; (j) $\ln(1+\sqrt{2})$. **11)** senh x = 4/3; tgh x = 4/5; cotg x = 5/4; sech x = 3/5; cossech x = 3/4.