# SERVICE MANUAL 1571 DISK DRIVE

**Preliminary** 

OCTOBER 1986 PN-314002-04

## Commodore Business Machines, Inc.

1200 Wilson Drive, West Chester, Pennsylvania 19380 U.S.A.

Commodore makes no expressed or implied warranties with regard to the information contained herein. The information is made available solely on an as is basis, and the entire risk as to quality and accuracy is with the user. Commodore shall not be liable for any consequential or incidental damages in connection with the use of the information contained herein. The listing of any available replacement part herein does not constitute in any case a recommendation, warranty or guaranty as to quality or suitability of such replacement part. Reproduction or use without expressed permission, of editorial or pictorial content, in any matter is prohibited.

This manual contains copyrighted and proprietary information. No part of this publication may be reproduced, stored in a retrieval system, or transimitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of Commodore Electronics Limited.

Copyright © 1986 by Commodore Electronics Limited. All rights reserved.

## TABLE OF CONTENTS

| TITLE                     | PAGE |
|---------------------------|------|
| SPECIFICATIONS            | 1    |
| PRODUCT PARTS LIST        | 2    |
| MEMORY MAP                | 3    |
| GATE ARRAY CIRCUIT THEORY | 4    |
| GATE ARRAY BLOCK DIAGRAM  | 6    |
| IC PIN ASSIGNMENTS        | 8    |
| DETAIL PARTS LIST         | 17   |
| BOARD LAYOUT              | 18   |
| SCHEMATIC                 | 19   |

## COMMODORE 1571 DISK DRIVE SPECIFICATIONS

#### **GENERAL FEATURES**

- 5-1/4" Floppy Disk Drive
- Supports Fast Data Transfer Rates
- Two Serial Ports for Adding Peripherals
- Software Disk Format Selectable
- Comes with Serial and Power Cables Compatible with Commodore 128, Commodore 64, and Plus/4 Computers

#### SYSTEM FEATURES

- Built-in 6502 Microprocessor
- 2K RAM
- 32K ROM
- Built-in DOS
- Program Load Transfer Rates
  - 300 cps under C64 Control
  - 5200 cps Max under C128 Control (Burst Rate)
  - 5200 cps Max under CP/M® Control (Burst Rate)

## MEDIA CHARACTERISTICS

- Commodore Standard (GCR)
- Double Sided/Single Density
- 350K Storage Capacity (Formatted)
- Compatible with 1541 Disk Drive
- Supports Program, Sequential, Relative and User Files
- CP/M Compatible (MFM)
- Single or Double Sided/Double Density Formats
- Up to 410K Storage Capacity (Formatted)
- Read/Write Compatible with Kaypro®, Osborne®, IBM®, CP/M® 86, Epson® QX-10 and Numerous Other Formats
- Supports Most CP/M® Files

#### **INPUTS/OUTPUTS**

- Two Serial Ports
- Power Connector

#### **POWER REQUIREMENTS**

• 117 Volts AC, 60Hz, Less than 25 Watts

Specifications subject to change without notice.

CP/M is a registered trademark of Digital Research, Inc.

KayPro is a registered trademark of Kaypro, Inc.

Osborne is a registered trademark of Osborne Computer Corporation.

IBM is a registered trademark of International Business Machines Corp.

Epson is a registered trademark of Epson Corporation.

## PARTS LIST 1571

PLEASE NOTE: Commodore part numbers are provided for reference only and do not indicate the availability of parts from Commodore. Industry standard parts (Resistors, Capacitors, Connectors) should be secured locally. Approved cross-references for TTL-chips, Transistors, etc. are available in manual form through the Service Department. Unique or non-standard parts will be stocked by Commodore and are indicated on the parts list by a "C".

#### **TOP CASE ASSY**

| Top Case | $\mathbf{C}$ | 3 | 1( | )5 | 0 | 8- | 0 | 1 |
|----------|--------------|---|----|----|---|----|---|---|
|          |              |   |    |    |   |    |   |   |

#### **BOTTOM CASE ASSY**

| Bottom Case                 | C 310509-01 |
|-----------------------------|-------------|
| PCB Assembly                | C 310420-01 |
| Power Supply Assembly       | C 250772-01 |
| Drive Assembly - Newtronics | C 252083-01 |
| Drive Assembly - Alps       | C 252092-01 |
| PCB Shield                  | C 252069-01 |
| PCB Insulation Sheet        | C 252070-01 |

#### **FRONT CASE ASSY**

| Front Bezel - Alps       | C 252086-01 |
|--------------------------|-------------|
| Front Bezel - Newtronics | C 310507-01 |
| Disk Eject Lever         | C 252050-01 |
| LED Assembly             | C 250754-04 |
| LED Clip                 | C 252013-01 |
| Nameplate                | C 310411-01 |

#### **ACCESSORIES**

| Users Manual    | C 252095-01      |
|-----------------|------------------|
| Demo Disk       | C 252093-01      |
| Power Cord      | C 252164-01 sub: |
|                 | C 903508-04      |
| 6-Pin Din Cable | C 252159-01 sub: |
|                 | C 1540027-01     |

## **MEMORY MAP**



<sup>\*</sup> ONLY 2K OF RAM SPACE AVAILABLE IN THE 1571 ADDRESS DECODING IS ACCOMPLISHED BY THE 64H157 GATE ARRAY.

## 20 PIN GATE ARRAY 1541B AND 1571

The 20 pin gate array used in the 1541B and 1571 disk drives is designed to work in conjunction with the 40/42 pin gate array also used in these drives. As illustrated in the block diagram, this I.C. controls 3 operations:

#### 1. ADDRESS SELECTOR

The function of the address selector is to produce ROM, RAM and I/O chip select signals by decoding the addresses A10, A12, A13, A14 and A15. The system clocks are not gated with the address lines in this I.C. All chip select outputs are ACTIVE LOW.

| Address | Decode | Map: | RAME | 0000 | <br>07FF |
|---------|--------|------|------|------|----------|
|         |        |      | IO1  | 1800 | <br>1BFF |
|         |        |      | IO2  | 1C00 | <br>1FFF |
|         |        |      | CS1  | 2000 | <br>3FFF |
|         |        |      | CS2  | 4000 | <br>7FFF |
|         |        |      | ROME | C000 | <br>FFFF |

#### 2. SADDLE CANCELER

This correction signal is generated during the period that the data pattern is two consecutive zeros. With the Commodore GCR type recording format, a problem occurs in the waveform of the read signal. In the worst case pattern of 1001, a saddle condition will occur as illustrated below.



The worst case saddle will occur in tracks 31 to 35 and if not compensated for, will result in a read error. In the original 1541 drives, a one-shot was used to correct the condition; however, in this gate array it is corrected digitally.

The data output line, pin 19, of the R/W Hybrid's data comparitor is fed to the data input line, pin 3, of this gate array.

The data is then compared with the last data value which has been latched by the gate array, 2.6 usec after the rising or falling edge of the data line. If the current data value differs from the previous data value, the clear line is set to a high level for a duration of 63 nsec. If the values are the same, the clear line is not set.



## 20 PIN GATE ARRAY (continued)

It takes 2.56 to 2.62 usec to cancel the saddle. If the saddle should be longer than this length of time, the saddle can not be corrected and will result in a read error. Also, if the time for correcting the saddle is set for a longer time interval, the clear signal will not be set when the data is equal to 11. Therefore, approximately 2.6 usec the most suitable time setting for saddle correction.

Note: The minimum bit rate for tracks 1 - 17 is equal to 2.6 usec. If this time should become less due to motor speed, the SYNC signal cannot be recognized on the outer tracks resulting in error.

#### 3. MOTOR SPEED COMPENSATOR (PLL)

This gate array detects the motor speed and generates an internal data sampling clock signal that matches with the motor speed (see below).



When the SYNC signal goes to the low level, the LOCK signal goes false and the sampling clock is switched to the internal clock signal of the gate array. Once the PLL has sampled the data one's, the LOCK signal will go high to indicate that the output of the PLL is valid. If the PLL cannot lock on, the internal clock signal will be used and the LOCK signal will remain at the low level. This can occur when the stepper is still moving or the spindle motor is not up to speed yet. In short, this allows the reading of data independent of motor speed within the lock on limits of the PLL.



The 1571 runs on the SYSTEM CLOCK and does not implement the LOCK signal.

## 251829 BLOCK DIAGRAM 20 PIN GATE ARRAY FOR 1541B/1571



## 251828 BLOCK DIAGRAM 40/42 PIN GATE ARRAY FOR 1541B/1571



#### **40/42 PIN GATE ARRAY**



| <b>40 PIN</b> | <b>42 PIN</b> | DESC      | FUNCTION                                                                     |
|---------------|---------------|-----------|------------------------------------------------------------------------------|
| 1             | 1             | TEST      | Input used in design verification.                                           |
| 2-9           | 2-9           | YB0-YB7   | Data input/output lines for read/write operation.                            |
| 10            | 10            | Vss       | Ground.                                                                      |
| 11,12         | 11,12         | STP0,STP1 | Input to stepper driver.                                                     |
| 13            | 13            | MTR       | Control line used to activate the stepper motor.                             |
| 14            | 14            | A         | Write protect input. Indicates disk is write protected.                      |
| 15,16         | 15,16         | DS0,DS1   | Inputs used to produce the binary count for the frequency divide ratio.      |
| 17            | 17            | SYNC      | Sync output.                                                                 |
| 18            | 18            | TED       | A low input clears the BYTE line in 2 MHz mode. A high sets 1541 mode.       |
| 19            | 19            | OE        | Input to read/write block to set mode. 0 for Write, 1 for Read.              |
| 20            | 20            | ACCL      | Input select line for the CPU clock. 0 for 1541 - 1 MHz, 1 for 1571 - 2 MHz. |
| XX            | 21,22         |           | N/C                                                                          |
| 21            | 23            | OSC       | 16 MHz clock input.                                                          |
| 22            | 24            | ATNA      | Attention acknowledge input.                                                 |
| 23            | 25            | ATNI      | Attention line input from serial bus.                                        |
| 24            | 26            | ATN       | Attention data input from serial bus.                                        |
| 25-28         | 27-30         | Y0-Y3     | Control output lines for the 4 phases of the stepper motor.                  |

| 29    | 31    | XRW  | RAM write enable output.                                           |
|-------|-------|------|--------------------------------------------------------------------|
| 30    | 32    | Vcc  | +5VDC.                                                             |
| 31    | 33    | CLR  | High input when the read data is logical 1.                        |
| 32    | 34    | PLL  | Input from the 20 pin gate array. Clock compensation.              |
| 33    | 35    | LOCK | Indicates the PLL LOCK status. When logical 1, PLL is locked. When |
|       |       |      | 0, the internal clock is used for sampling data.                   |
| 34    | 36    | R/W  | R/W select input.                                                  |
| 35,36 | 37,38 | Q,Qx | Write pulse outputs.                                               |
| 37    | 39    | CK   | Clock select output - 1 or 2 MHz.                                  |
| 38    | 40    | В    | Write enable output.                                               |
| 39    | 41    | SOE  | Enable byte input.                                                 |
| 40    | 42    | BYTE | Data latched output.                                               |

## WD 1770/1772 FLOPPY DISK CONTROLLER/FORMATTER

| PIN ASSIGNMENT |                                                                   |                                                                            |                                                                        |  |  |  |
|----------------|-------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------|--|--|--|
| CS             | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13 | 28<br>27<br>26<br>25<br>24<br>23<br>22<br>21<br>20<br>19<br>18<br>17<br>16 | INTRQ DRQ DDEN IP TROO WB MB MB MC |  |  |  |
| •              |                                                                   |                                                                            | •                                                                      |  |  |  |

| PIN | DESC  | DESC        | FUNCTION                                                               |
|-----|-------|-------------|------------------------------------------------------------------------|
| 1   | CS    | CHIP SELECT | A logic low on this input selects the chip and enable Host             |
|     |       |             | communication with the device.                                         |
| 2   | R/W   | READ/WRITE  | EA logic high on this input controls the placement of data on the      |
|     |       |             | D0-D7 lines from a selected register, while a logic low causes a write |
|     |       |             | operation to a selected register.                                      |
| 3,4 | A0,A1 | ADDRESS 0,1 | These two inputs select a register to Read/Write data:                 |

| CS | A1 | A0 | R/W=1      | R/W=0       |
|----|----|----|------------|-------------|
| 0  | 0  | 0  | Status Reg | Command Reg |
| 0  | 0  | 1  | Track Reg  | Track Reg   |
| 0  | 1  | 0  | Sector Reg | Sector Reg  |
| 0  | 1  | 1  | Data Reg   | Data Reg    |

| 5-12 | DAL0-DAL7 | DATA ACCESS LINES 0 THRU 7 | Eight bit bidirectional bus used for transfer of data, control, or status. This bus is enabled by CS and R/W. Each line will drive one TTL load. |
|------|-----------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 13   | MR        | MASTER<br>RESET            | A logic low pulse on this line resets the device and initializes the status register (internal pull-up).                                         |
| 14   | GND       | GROUND                     | Ground.                                                                                                                                          |
| 15   | Vcc       | POWER<br>SUPPLY            | $+5V \pm 5\%$ power supply input.                                                                                                                |
| 16   | STEP      | STEP                       | The STEP output contains a pulse for each step of the drive's R/W head. The WD 1770 and WD1772 offer different step rates.                       |
| 17   | DIRC      | DIRECTION                  | The DIRECTION output is high when stepping in towards the center of the diskette, and low when stepping out.                                     |

| 18 | CLK   | CLOCK                       | This input requires a free-running 50% duty cycle clock (for internal timing) at 8MHz $\pm$ 1%.                                                        |
|----|-------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19 | RD    | READ DATA                   | This active low input is the raw data line containing both clock and data pulses from the drive.                                                       |
| 20 | MO    | MOTOR ON                    | Active high output used to enable the spindle motor prior to read, write or stepping operations.                                                       |
| 21 | WG    | WRITE GATE                  | E This output is made valid prior to writing on the diskette.                                                                                          |
| 22 | WD    | WRITE DATA                  | AFM or MFM clock and data pulses are placed on this line to be written on the diskette.                                                                |
| 23 | TR00  | TRACK00                     | This active low input informs the WD1770 that the drive's R/W heads are positioned over Track Zero (internal pull-up).                                 |
| 24 | IP    | INDEX<br>PULSE              | This active low input informs the WD1770 when the physical Index Hole has been encountered on the diskette (internal pull-up).                         |
| 25 | WPRT  | WRITE<br>PROTECT            | This input is sampled whenever a Write Command is received. A logic low on this line will prevent any Write Command from executing (internal pull-up). |
| 26 | DDEN  | DOUBLE<br>DENSITY<br>ENABLE | This input pin selects either single (FM) or double (MFM) density. When DDEN = 0, double density is selected (internal pull-up).                       |
| 27 | DRQ   | DATA<br>REQUEST             | This active high output indicates that the data register is full (on a READ) or empty (on a Write operation).                                          |
| 28 | INTRQ | INTERRUPT<br>REQUEST        | This active high output is set at the completion of any command or reset or read of the status register.                                               |

## 6502 MICROPROCESSOR



| PIN        | DESC   | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1,21       | Vss    | Ground.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2          | RDY    | Ready. TTL level input, used to DMA the 6502. The processor operates normally while RDY is high. When RDY makes a transition to the low state, the processor will finish the operation it is an, and any subsequent operation if it is a write cycle. On the next occurrence of read cycle the processor will halt, making it possible to tri-state the processor to gain complete access to the system bus.                                                                                                                                                                                                              |
| 3          | Phi1   | Phase 1 clock output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4          | IRQ    | The Interrupt Request input is a request that the processor initiate an interrupt sequence. The processar will complete execution of the current instruction before recognizing the request. At that time, the interrupt mask in the Status Code Register will be examined. If the Interrupt Mask is not set, the processor will begin an interrupt sequence. The Program Counter and the Processor Status Register will be stored on the stack and the interrupt disable flag is set so that no other interrupts can occur. The processor will then load the Program Counter from the memory location \$FFFE and \$FFFF. |
| 6          | NMI    | The Non-Maskable Interrupt Request is a negative-edge sensitive request that the processor initiate an interrupt sequence. The processor will complete execution of the current instruction before recognizing the request.                                                                                                                                                                                                                                                                                                                                                                                               |
| 7          | SYNC   | The SYNC output is used in conjunction with RDY to allow single instruction execution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8          | Vcc    | +5VDC input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 9-20,22-25 | A0-A15 | Address bus outputs. Unidirectional bus used to address memory and I/O devices.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| 26-33 | D0-D7 | Bi-directional bus for transferring data to and from the device and the peripherals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 34    | R/W   | The read/write line is a TTL level output from the processor to control the direction of data transfer between the processor and memory, peripherals, etc. This line is high for reading memory and low for writing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 37    | Phi0  | Phase 0 clock input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 38    | S.O.  | Set Overflow flag. A negative going edge sets the overflow bit in the status code register.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 39    | Phi2  | Phase 2 clock output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 40    | RES   | The Reset input is used to reset or start the microprocessor from a power down condition. During the time that this line is held low, writing to or from the microprocessor is inhibited. When a positive edge is detected on the input, the microprocessor will immediately begin the reset sequence. After a system initialization time af 6 cycles, the mask interrupt flag will be set and the processor will load the program counter from the contents of the memory location \$FFFC and \$FFFD. This is the start location for program control. After $V_{cc}$ reaches 4.75 volts in a power up routine, reset must be held low for at least 2 cycles. At this time the R/W line will become valid. |

6522 VERSATILE INTERFACE ADAPTOR (VIA)

| PIN | ASSIGNME                                                                                                                | NT                                                              |
|-----|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Vss | 35<br>36<br>37<br>36<br>35<br>34<br>33<br>0 6522 31<br>1 VIA 30<br>2 25<br>3 26<br>4 27<br>5 26<br>6 25<br>7 24<br>8 23 | CA2 RS0 RS1 RS2 RS3 RES D0 RS1 D2 D1 D2 D3 D4 RS2 CS1 CS2 RV RV |

| PIN   | DESC    | FUNCTION                    |
|-------|---------|-----------------------------|
| 1     | Vss     | Ground.                     |
| 2-9   | PA0-PA7 | Peripheral I/O Port A.      |
| 10-17 | PB0-PB7 | Peripheral I/O Port B.      |
| 18,19 | CB1,CB2 | Peripheral B Control Lines. |
| 20    | Vcc     | +5VDC.                      |
| 21    | IRQ     | Interrupt Request.          |
| 22    | R/W     | Read/Write.                 |
| 23,24 | CS1,CS2 | Chip Select.                |
| 25    | 02      | Phase 2 Internal Clock.     |
| 26-33 | D0-D7   | Data Bus.                   |
| 34    | RES     | Reset Input, Low Active.    |
| 35-38 | RS0-RS3 | Register Select Inputs.     |
| 39,40 | CA1,CA2 | Peripheral A Control Lines  |

T520 VOLTAGE DETECTOR I.C.



## 6526/8520 COMPLEX INTERFACE ADAPTOR (CIA)

| Vss 1 40 CNT<br>PA0 2 39 SP | ]   |
|-----------------------------|-----|
| PA1                         | PA0 |

| PIN   | DESC    | FUNCTION                                                                    |
|-------|---------|-----------------------------------------------------------------------------|
| 1     | Vss     | Ground.                                                                     |
| 2-9   | PA0-PA7 | Parallel port A signals. Bi-directional parallel port.                      |
| 10-17 | PB0-PB7 | Parallel port B signals. Bi-directional parallel port.                      |
| 18    | PC      | Handshake output. A low pulse is generated after a read or write on port B. |
| 19    | TOD     | Time of day clock input. Programmable 50Hz or 60Hz input.                   |
|       |         |                                                                             |

| 20    | Vcc     | 5V DC input.                                                                          |
|-------|---------|---------------------------------------------------------------------------------------|
| 21    | IRQ     | Interrupt output to microprocessor.                                                   |
| 22    | R/W     | READ/WRITE input from microprocessor's R/W output.                                    |
| 23    | CS      | Chip select input. A low pulse will activate CIA.                                     |
| 24    | FLAG    | Negative-edge sensitive interrupt input. Can be used as a handshake line for either   |
|       |         | parallel port.                                                                        |
| 25    | Phi2    | Phase 2 clock input.                                                                  |
| 26-33 | DB0-DB7 | Bi-directional data bus.                                                              |
| 34    | RES     | Low active reset input. Initializes CIA.                                              |
| 35-38 | RS0-RS3 | Register select inputs. Used to select all internal registers for communications with |
|       |         | the parallel ports, time of day clock, and serial port (SP).                          |
| 39    | SP      | Serial Port bi-directional connection. An internal shift register converts            |
|       |         | microprocessor parallel data into serial data, and visa-versa.                        |
| 40    | CNT     | Count input. Internal timers can count pulses applied to this input. It is used for   |
|       |         | frequency dependent operations.                                                       |

## 23256 32K x 8 ROM



## 2016 2K x 8 STATIC RAM

| PI            | N AS     | 1912S | MEI      | NT            |              |             |                                 |
|---------------|----------|-------|----------|---------------|--------------|-------------|---------------------------------|
|               |          |       |          | l             | PIN          | <b>DESC</b> | FUNCTION                        |
| A7 🗆          | 1<br>2   |       | 24<br>23 | □ Vcc<br>□ A8 | 1-8,19,22,23 | A0-A10      | Address Bus Inputs.             |
| A5            | 3        |       | 22       |               | 9-11,13-17   | D0-D7       | Common Data Input/Output Lines. |
| A4 □          | 4        |       | 21       | □ <u>we</u>   | 12           | Vss         | Ground.                         |
| A3 🗆<br>A2 🗆  | 5<br>6   |       | 20<br>19 | D 0E<br>D 610 | 18           | CS          | Chip Select Enable, Low Active. |
| H2            | 7        | RAM   | 18       | E Es          | 20           | OE          | Output Enable,                  |
| A0 🗀          | 8        |       | 17       | □ D7          |              |             | Low Active.                     |
| D0 🗆          | 9        |       | 16       | □ D6          | 21           | WE          | Write (Input) Enable,           |
| D1 🗆          | 10       |       | 15       | ₽D5           |              |             | Low Active.                     |
| D2 🗆<br>Vss 🗖 | 11<br>12 |       | 14<br>13 | □ D4<br>□ D3  | 24           | Vcc         | 5V DC Input.                    |
|               |          |       |          | l             |              |             |                                 |

#### FUNCTIONAL DIAGRAM



## COMMON I.C.'S PIN ASSIGNMENTS AND LOGIC

7406 HEX INVERTER BUFFER/DRIVER (OPEN COLLECTOR)



| INPUT | OUTPUT |
|-------|--------|
| A     | Y      |
| Н     | L      |
| L     | Н      |

TRUTH TABLE

7407 HEX BUFFER/DRIVER (OPEN COLLECTOR)





| INPUT | OUTPUT |
|-------|--------|
| A     | Y      |
| Н     | Н      |
| L     | L      |

**TRUTH TABLE** 

7414 • 74LS14 • 74F14 HEX INVERTER SCHMITT TRIGGER

PIN ASSIGNMENT

LOGIC DIAGRAM

**TRUTH TABLE** 

| INPUT | OUTPUT |
|-------|--------|
| A     | Y      |



| 1-   | A   | >∞ <u>Y</u> 2  |
|------|-----|----------------|
| 3 —  | A   | >∞ <u>Y</u> 4  |
| 5 —  | A   | >∞ <u>Y</u> 6  |
| 9 —  | A   | >∞ <u>Y</u> 8  |
| 11 — | A   | >∞ <u>Y</u> 10 |
| 13 — | A D | >∞ <u>Y</u> 12 |

| L | Н |
|---|---|
| Н | L |

## COMMON I.C.'S PIN ASSIGNMENTS AND LOGIC

7432 • 74S32 • 74LS32 • 74F32 QUAD 2-INPUT OR GATE

#### PIN ASSIGNMENT



#### **LOGIC DIAGRAM**



#### TRUTH TABLE

| INP | OUTPUT |   |
|-----|--------|---|
| A   | В      | Y |
| L   | L      | L |
| L   | Н      | Н |
| Н   | L      | Н |
| Н   | Н      | Н |

H = HIGH voltage level L = LOW voltage level

7474 • 74S74 • 74LS74 • 74F74 DUAL D-TYPE FLIP-FLOP (POSITIVE EDGE TRIGGERED)

#### PIN ASSIGNMENT



#### TRUTH TABLE

|                     |                               | INPUTS                      |          |   |   | OUTPUTS |  |
|---------------------|-------------------------------|-----------------------------|----------|---|---|---------|--|
| OPERATING MODE      | $ar{\mathbf{S}_{\mathbf{D}}}$ | $ar{	extbf{R}_{	extbf{D}}}$ | СР       | D | Q | Q       |  |
| Asyn. Set           | L                             | Н                           | X        | X | Н | L       |  |
| Asyn. Reset (Clear) | Н                             | L                           | X        | X | L | Н       |  |
| Undetermined (a)    | L                             | L                           | X        | X | Н | L       |  |
| Load "1" (Set)      | H                             | Н                           | <b>↑</b> | h | Н | L       |  |
| Load "0" (Reset)    | H                             | Н                           | 1        | 1 | L | Н       |  |

#### LOGIC DIAGRAM



H = HIGH voltage level steady state.

h = HIGH voltage level one setup time prior to the LOW-to-HIGH clock transition.

L = LOW voltage level steady state.

l = LOW voltage level one setup time prior to the LOW-to-HIGH clock transition.

X = don't care.

 $\uparrow$  = LOW-to-HIGH clock transition.

#### NOTE

(a) Both outputs will be HIGH while both SD and RD are LOW.

But the output states are unpredictable if SpandRpgo HIGH simultaneously.

#### 74123 • 74LS123

#### DUAL RETRIGGERABLE MONOSTABLE MULTIVIBRATOR

#### PIN ASSIGNMENT



#### LOGIC DIAGRAM



#### TRUTH TABLE

| INPUTS                      |   |   | OUTPUTS  |     |  |
|-----------------------------|---|---|----------|-----|--|
| $ar{	extbf{R}_{	extbf{D}}}$ | Ā | В | Q        | Q   |  |
| L                           | X | X | L        | Н   |  |
| X                           | Н | X | L        | Н   |  |
| X                           | X | L | L        | Н   |  |
| Н                           | L | 1 | Т        | 工   |  |
| Н                           | 1 | H | $\Gamma$ | 1.5 |  |
| <b>↑</b>                    | L | H | L        |     |  |

H = HIGH voltage level

L = LOW voltage level

X = Don't care

 $\uparrow$  = LOW-to-HIGH transition

 $\downarrow$  = HIGH-to-LOW transition

□ = One HIGH-level pulse

∟ = One LOW-level pulse

## COMMON I.C.'S PIN ASSIGNMENTS AND LOGIC

## 74175 • 74LS175 • 74F175 QUAD D-TYPE FLIP-FLOP





#### **TRUTH TABLE**

| OPERATING     | IN | PUT      | ſS | OUTPUTS |                               |
|---------------|----|----------|----|---------|-------------------------------|
| MODE          | MR | CP       | Dn | Qn      | $ar{\mathbf{Q}}_{\mathbf{n}}$ |
| Reset (clear) | L  | X        | X  | L       | Н                             |
| Load "1"      | Н  | <b>↑</b> | h  | Н       | L                             |
| Load "0"      | Н  | 1        | 1  | L       | Н                             |

H = HIGH voltage level steady state.

h = HIGH voltage level one setup time prior to the LOW-to-HIGH clock transition.

L = LOW voltage level steady state.

l = LOW voltage level one setup time prior to the LOW-to-HIGH clock transition.

 $\uparrow$  = LOW-to-HIGH clock transition.

X = don't care.

## 74LS241 • 74F241 OCTAL BUFFER, TRI-STATE

PIN ASSIGNMENT

**LOGIC DIAGRAM** 

#### TRUTH TABLE

| INPUTS            |    |                 |                | OUT | PUTS |
|-------------------|----|-----------------|----------------|-----|------|
| $\overline{OE}_a$ | Ia | OE <sub>b</sub> | I <sub>b</sub> | Ya  | Yb   |
| L                 | L  | Н               | L              | L   | L    |
| L                 | Н  | Н               | Н              | Н   | Н    |
| Н                 | X  | L               | X              | (Z) | (Z)  |

H = HIGH voltage level L = LOW voltage level



| 2        | Ia             | <b>-</b>         | <mark>Уа</mark> 18 |
|----------|----------------|------------------|--------------------|
| 4        | Ia             | $\triangleright$ | Y <sub>a</sub> 16  |
| 6        | I <sub>a</sub> |                  | Υ <sub>а</sub> 14  |
| 8        | I <sub>a</sub> |                  | Υ <sub>а</sub> 12  |
| 9        | <u>ŌĒ</u> a_o  |                  |                    |
|          |                |                  |                    |
| 17       | I <sub>b</sub> | <b>~</b><br>┣─   | <mark>У</mark> Ь 3 |
| 17<br>15 | I <sub>b</sub> |                  | Υ <sub>Ь</sub> 3   |
|          |                |                  |                    |
| 15       | Iь             |                  | <mark>У</mark> Ь 5 |

X = Don't care (Z) = HIGH impedance (off) state

## 74LS266 QUAD 2-INPUT EXCLUSIVE NOR GATE (OPEN COLLECTOR)





#### TRUTH TABLE

| INP | OUTPUT |   |
|-----|--------|---|
| A   | В      | Y |
| L   | L      | Н |
| L   | Н      | L |
| Н   | L      | L |
| Н   | Н      | Н |

H = HIGH voltage level L = LOW voltage level

## PARTS LIST PCB ASSEMBLY #310420

Commodore part numbers are provided for reference only and do not indicate the availability of parts from Commodore. Industry standard parts (Resistors, Capacitors, Connectors) should be secured locally. Approved cross-references for TTL-chips, Transistors, etc. are available in manual form through the Service Department, order part #314000-01. Unique or non-standard parts will be stocked by Commodore and are indicated on the parts list by a "C". Vendor Name and part number have been provided for your convenience in ordering custom or unique parts.

C24

C27

C28

**NPO** 

Ceramic

Electrolytic

| U1  | 6502 CPU                 | C 901435-01      |
|-----|--------------------------|------------------|
| U2  | 23256 ROM                | C 310654-03      |
| U3  | 2016 RAM 200 NS          |                  |
| U4  | 65C22A VIA 2MHZ          | C 310653-01      |
| U5  | Gate Array 20 Pin        | C 251829-01      |
| U6  | Gate Array 40 Pin        | C 251828-01      |
| U7  | R/W Hybrid               | C 251853-01      |
| U8  | 7406                     |                  |
| U9  | 65C22A VIA 2MHZ          | C 310653-01      |
| U10 | 74LS74                   |                  |
| U11 | WD 1770 Disk Control     | C 310651-01 sub: |
|     | WD 1772 Disk Control     | C 310651-02      |
| U12 | 74F32                    |                  |
| U13 | 74LS266                  |                  |
| U14 | 7407                     |                  |
| U15 | 74LS14                   |                  |
| U16 | 7406                     |                  |
| U17 | 74LS14                   |                  |
| U18 | 74LS175                  |                  |
| U19 | 74LS241                  |                  |
| U20 | 6526 CIA 2MHZ            | C 906108-02 sub: |
|     | 8520 CIA 2MHZ            | C 318029-02      |
| U21 | PST 520C/D Volt Detector | or C 252034-02   |
| U22 | 74LS123                  |                  |
| TRA | ANSISTORS                |                  |
| Q1  | MPSU51 PNP               |                  |

#### **RESISTORS** (Continued) R14,15 2.7k R16,17 4.7k R18,19 47 R20 20k R21 4.7k R22 1k R23 390 R24 47 R25-28 2k R29 4.7k R30 15k R31 2kR32 4.7kR33-35 2.7k R36-381k R39 43k R40 4.7k **CAPACITORS** C1-20 Ceramic .1 μF 16V Electrolytic 10 C21 μF C22,23 Ceramic .1 μF 16V

 $50V \pm 5\%$ 

10V +50%/-10%

рF

.1 μF 16V

Q2,3,7 2SC1815 NPN
Q4 2SA673 PNP
Q5 2SC945 NPN sub:
2SC1685 R,S
Q7 2SC1815 NPN

#### **DIODES**

CR3-8 Signal 1N914 CR10 Signal 1N4002 CR11 Zener 3.3V

# **RESISTORS** - All are carbon 1/4 watt, 5% unless noted otherwise

R1-3 47 R4 4.7k R5 390 1/2W ±5% R6 1.2k R7,8 1k R9-11 47k R12 150 R13 390

| C29 | Electrolytic $\frac{10}{\mu F}$ | 25V            |
|-----|---------------------------------|----------------|
| C31 | Electrolytic 1 μF               | 16V            |
| C32 | Ceramic $\frac{.01}{\mu F}$     | 50V            |
| C33 | Tantalium 1 μF                  | $35V \pm 10\%$ |

## **MISCELLANEOUS**

| EMI<br>1-4 | Ferrite Bead            |             |
|------------|-------------------------|-------------|
| FB 1-7     | Ferrite Bead            |             |
| L1         | Coil Inductor 2.2 µH    |             |
| L3         | Coil Inductor 100 µH    |             |
| RP1        | Resistor Pack 1k, 10Pin |             |
| SW1        | 4 Pos Dip Switch        | C 252144-02 |
| <b>Y</b> 1 | Crystal Module 16MHZ    | C 325566-01 |

## CONNECTORS

| CN1   | Header Assy, 4Pin (Molex 3022-04A, AMP 640098-4)    |
|-------|-----------------------------------------------------|
| CN2   | Header Assy, Dual RT Angle 10Pin                    |
| CN3   | Header Assy, 3Pin (Molex 3022-03A, AMP 640098-3)    |
| CN4   | Header Assy, 10Pin (Molex 3022-10A, AMP 1-640098-0) |
| CN5   | Header Assy, 6Pin (Molex 3022-06A, AMP 640098-6)    |
| CN6,8 | Connector, 6Pin Din, Shielded C252166-01            |
| CN7   | Header Assy, 3Pin (Molex 3022-03A, AMP 640098-3)    |
|       |                                                     |

## PCB ASSEMBLY #310420 BOARD LAYOUT







PCB ASSEMBLY #310420 SCHEMATIC