Lecture 3

Convergence and invariant sets

3 - 1

Convergence and invariant sets

- Review of Lyapunov's direct method
- Convergence analysis using Barbalat's Lemma
- Invariant sets
- Global and local invariant set theorem
- Example

Review of Lyapunov's direct method

Positive definite functions

If

$$V(0) = 0$$

$$V(x) > 0 \quad \text{ for all } x \neq 0$$

then V(x) is positive definite

• If S is a set containing x = 0 and

$$V(0) = 0$$

 $V(x) > 0$ for all $x \neq 0$, $x \in \mathcal{S}$

then V(x) is locally positive definite (within S)

• e.g.

$$V(x) = x^T x$$
 \leftarrow positive definite

$$V(x) = x^T x (1 - x^T x) \qquad \leftarrow \quad \text{locally positive definite} \\ \quad \text{within } \mathcal{S} = \{x \ : \ x^T x < 1\}$$

3 - 3

Review of Lyapunov's direct method

System: $\dot{x} = f(x), \quad f(0) = 0$

Storage function: V(x)

Time-derivative of V: $\dot{V}(x) = \frac{\partial V}{\partial x} \frac{dx}{dt} = \nabla V(x)^T \dot{x} = \nabla V(x)^T f(x)$

If

(i).
$$V(x)$$
 is positive definite (ii). $\dot{V}(x) \leq 0$ for all $x \in \mathcal{S}$

then the equilibrium x=0 is stable

• If $\hbox{(iii). } \dot{V}(x) \text{ is negative definite } \qquad \text{for all } x \in \mathcal{S}$ then the equilibrium x=0 is asymptotically stable

If

(iv).
$$S =$$
entire state space

(v).
$$V(x) \to \infty$$
 as $||x|| \to \infty$

then the equilibrium x=0 is globally asymptotically stable

Convergence analysis

- What can be said about convergence of x(t) to 0 if $\dot{V}(x) \leq 0$ but $\dot{V}(x)$ is not negative definite?
- Revisit m-s-d example:

Equation of motion: $m\ddot{y} + c(\dot{y}) + k(y) = 0$

Storage function: $V={\rm K.E.}+{\rm P.E.}={\textstyle\frac{1}{2}}m\dot{y}^2+\int_0^yk(y)\,dy$ $\dot{V}=-c(\dot{y})\dot{y}$

3 - 5

Convergence analysis

- V is p.d. and $\dot{V} \leq 0$ so: $(y,\dot{y})=(0,0)$ is stable and $V(y,\dot{y})$ tends to a finite limit as $t\to\infty$
- but does (y, \dot{y}) converge to (0, 0)?

‡ equivalent to

can $V(y,\dot{y})$ "get stuck" at $V=V_0\neq 0$ as $t\to\infty$?

L

need to consider motion at points (y,\dot{y}) for which $\dot{V}=0$

Example

Equation of motion: $m\ddot{y} + c(\dot{y}) + k(y) = 0$

Storage function:

$$V = \frac{1}{2}\dot{y}^2 + \int_0^y 5\tan^{-1}(y/5) \, dy$$

$$\dot{V} = -c(\dot{y})\dot{y} \le 0$$

$$\dot{V} = 0 \text{ when } \dot{y} = 0$$
 but $k(y) \ne 0 \implies \ddot{y} \ne 0 \implies \ddot{V} \ne 0$

V continues to decrease until $y=\dot{y}=0$

Convergence analysis

Summary of method:

- 1. show that $\dot{V}(x) \to 0$ as $t \to \infty$
- 2. determine the set \mathcal{R} of points x for which $\dot{V}(x)=0$
- 3. identify the subset $\mathcal M$ of $\mathcal R$ for which $\dot V(x)=0$ at all future times

then x(t) has to converge to $\mathcal M$ as $t \to \infty$

This approach is the basis of the invariant set theorems

Barbalat's Lemma

Barbalat's lemma: For any function $\phi(t)$, if

- (i). $\int_0^t \phi(\tau)\,d\tau$ converges to a finite limit as $t\to\infty$ (ii). $\dot{\phi}(t)$ is finite for all t

then $\lim_{t\to\infty}\phi(t)=0$

- Obvious for the case that $\phi(t) \geq 0$ for all t
- Condition (ii) is needed to ensure that $\phi(t)$ remains continuous for all t

Can construct discontinuous $\phi(t)$ for which $\int_0^t \phi(\tau) d\tau$ converges but $\phi(t) \not\to 0$ as $t \to \infty$

3 - 9

Barbalat's Lemma

Example: pulse train $\phi(t) = \sum_{k=0}^{\infty} e^{-4^k(t-k)^2}$:

From the plots it is clear that

$$\int_0^t \phi(s) \, ds \text{ tends to a finite limit}$$

 $\phi(t) \not\to 0 \text{ as } t \to \infty \quad \text{ because } \dot{\phi}(t) \to \infty \text{ as } t \to \infty$

Barbalat's Lemma contd.

Apply Barbalat's Lemma to $\dot{V}\big(x(t)\big) = \phi(t) \leq 0$:

Integrate:

$$\int_0^t \phi(s) \, ds = V\big(x(t)\big) - V\big(x(0)\big) \qquad \qquad \leftarrow \text{ finite limit as } t \to \infty$$

• Differentiate:

$$\dot{\phi}(t) = \ddot{V}(x(t)) = f^{T}(x) \frac{\partial^{2} V}{\partial x^{2}}(x) f(x) + \nabla V(x) \frac{\partial f}{\partial x}(x) f(x)$$

= finite for all t if f(x) continuous and V(x) continuously differentiable

$$\dot{V}(x)
ightarrow 0$$
 as $t
ightarrow \infty$

The above arguments rely on ||x(t)|| remaining finite for all t, which is implied by:

$$V(x)$$
 positive definite

$$V(x) \leq 0$$

$$V(x) \to \infty$$
 as $||x|| \to \infty$

3 - 11

Convergence analysis

Summary of method:

- 1. show that $\dot{V}(x) \to 0$ as $t \to \infty$
 - \rightarrow true whenever $\dot{V} \leq 0$ & V,f are smooth & $\|x(t)\|$ is bounded

[by Barbalat's Lemma]

- 2. determine the set \mathcal{R} of points x for which $\dot{V}(x) = 0$
 - \rightarrow algebra!
- 3. identify the subset $\mathcal M$ of $\mathcal R$ for which $\dot V(x)=0$ at all future times
 - $\rightarrow \mathcal{M}$ must be invariant

then x(t) has to converge to \mathcal{M} as $t\to\infty$

This approach is the basis of the invariant set theorems

Invariant sets

• A set of points \mathcal{M} in state space is invariant if

$$x(t_0) \in \mathcal{M} \implies x(t) \in \mathcal{M} \quad \text{for all } t > t_0$$

Examples:

- * Equilibrium points
- * Limit cycles
- * Level sets of V(x) \leftarrow i.e. $\{x: V(x) \leq V_0\}$ for constant V_0 provided $\dot{V}(x) \leq 0$
- If $\dot{V}(x) \to 0$ as $t \to \infty$, then

x(t) must converge to an invariant set \mathcal{M} contained within the set of points on which $\dot{V}(x)=0$

as
$$t \to \infty$$

3 - 13

Global invariant set theorem

If there exists a continuously differentiable function $V(\boldsymbol{x})$ such that

$$V(x)$$
 is positive definite $\dot{V}(x) \leq 0$
$$V(x) \rightarrow \infty \text{ as } \|x\| \rightarrow \infty$$

then: (i). $\dot{V}(x) \rightarrow 0$ as $t \rightarrow \infty$

(ii). $x(t) \to \mathcal{M} = \text{the largest invariant set contained in } \mathcal{R}$

- $\dot{V}(x)$ negative definite $\Longrightarrow \mathcal{M} = 0$ (c.f. Lyapunov's direct method)
- ullet Determine ${\mathcal M}$ by considering system dynamics within ${\mathcal R}$

Global invariant set theorem

Revisit m-s-d example (for the last time)

ullet V(x) is positive definite, $V(x) \to \infty$ as $\|x\| \to \infty$, and

$$\dot{V}(y, \dot{y}) = -c(\dot{y})\dot{y} \le 0$$

- therefore $\dot{V} \to 0$, implying $\dot{y} \to 0$ as $t \to \infty$ i.e. $\mathcal{R} = \{(y,\dot{y}) \ : \ \dot{y} = 0\}$
- but $\dot{y} = 0$ implies $\ddot{y} = -k(y)/m$
- therefore $\ddot{y} \neq 0$ unless y=0, so $\dot{y}(t)=0$ for all t only if y(t)=0 i.e. $\mathcal{M}=\{(y,\dot{y})\ :\ (y,\dot{y})=(0,0)\}$

1

 $(y, \dot{y}) = (0, 0)$ is a globally asymptotically stable equilibrium!

3 - 15

Local invariant set theorem

If there exists a continuously differentiable function $V(\boldsymbol{x})$ such that

the level set $\Omega=\{x: V(x)\leq V_0\}$ is bounded for some V_0 and $\dot{V}(x)\leq 0$ whenever $x\in\Omega$

then:

- (i). Ω is an invariant set
- (ii). $x(0) \in \Omega \implies \dot{V}(x) \to 0 \text{ as } t \to \infty$
- (iii). $x(t) \to \mathcal{M} = \text{largest invariant set contained in } \mathcal{R}$

where $\mathcal{R} = \{x : \dot{V}(x) = 0\}$

Local invariant set theorem

- ullet V(x) doesn't have to be positive definite or radially unbounded
- ullet Result is based on Barbalat's Lemma applied to \dot{V}

1

applies here because finite Ω implies $\|x(t)\|$ finite for all t since $x(0)\in\Omega$ and $\dot{V}\leq0$

ullet Ω is a region of attraction for ${\mathcal M}$

3 - 17

Example: local invariant set theorem

- Second order system: $\dot{x}_1 = x_2$ $\dot{x}_2 = -(x_1 1)^2 x_2^3 x_1 + \sin(\pi x_1/2)$
- Equilibrium points: $(x_1, x_2) = (0, 0), (1, 0), (-1, 0)$
- Trial storage function:

$$V(x) = \frac{1}{2}x_2^2 + \int_0^{x_1} (y - \sin(\pi y/2)) dy$$

V is not positive definite but $V(x) \to \infty$ if $x_1 \to \infty$ or $x_2 \to \infty$

level sets of V are finite

Example: local invariant set theorem contd.

- Differentiate: $\dot{V}(x)=-(x_1-1)^2x_2^4\leq 0$ $\dot{V}(x)=0 \iff x\in\mathcal{R}=\{x: x_1=1 \text{ or } x_2=0\}$
- From the system model, $x \in \mathcal{R}$ implies:

$$x_1 = 1 \implies (\dot{x}_1, \dot{x}_2) = (x_2, 0)$$
 and
$$x_2 = 0 \implies (\dot{x}_1, \dot{x}_2) = (0, \sin(\pi x_1/2) - x_1)$$
 therefore
$$\begin{cases} x(t) \text{ remains on line } x_1 = 1 \text{ only if } x_2 = 0 \\ x(t) \text{ remains on line } x_2 = 0 \text{ only if } x_1 = 0, 1 \text{ or } -1 \end{cases}$$

$$\implies \mathcal{M} = \{(0, 0), (1, 0), (-1, 0)\}$$

• Apply local invariant set theorem to any level set $\Omega = \{x : V(x) \leq V_0\}$:

$$\left. \begin{array}{l} \Omega \text{ is finite} \\ \dot{V} \leq 0 \end{array} \right\} \implies \quad x(t) \rightarrow \mathcal{M} = \{(0,0),(1,0),(-1,0)\} \text{ as } t \rightarrow \infty$$

3 - 19

Example: local invariant set theorem contd.

• From any initial condition, x(t) converges asymptotically to (0,0), (1,0) or (-1,0)

but x=(0,0) is unstable (linearized system at (0,0) has poles $\pm \sqrt{\frac{\pi}{2}-1}$ so is unstable)

• Contours of V(x):

Use local invariant set theorem on level sets $\Omega = \{x : V(x) \leq V_0\}$ for $V_0 < 0$

$$x=(1,0), x=(-1,0)$$
 are stable equilibrium points

Summary

- Convergence analysis using Barbalat's lemma
- Invariant sets
- Invariant set methods for convergence: local invariant set theorem
 global invariant set theorem

3 - 21