Duração: 1h30

Álgebra Linear e Geometria Analítica

3.ª Prova de Avaliação Discreta - 07/01/2013

Nome:	N.º mecanográfico:
	_

Grupo I	
60	Cotação
60	Cotação

	Grupo II			
Questões	1 (a)	1 (b) (c)	2	Total
Cotação	45	45	50	140
Classificação				

Grupo I

Este grupo é constituído por 5 questões de escolha múltipla. Cada questão tem uma só opção correta que deve assinalar na folha de resposta em anexo e que será recolhida após 45 minutos. Uma resposta correta é cotada com 12 pontos, uma resposta em branco com 0 pontos e uma resposta errada com -3 pontos.

1. Considere

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \qquad e \qquad X = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}.$$

Então

- A. X não é vetor próprio de A;
- B. a matriz A não é simétrica;
- C. 2 não é valor próprio de A;
- D. 0 é um valor próprio de A.
- 2. Seja A uma matriz 3×3 de valores próprios -1, 0 e 1. Então
 - A. não existe uma base de \mathbb{R}^3 de vetores próprios de A;
 - B. o polinómio caraterístico de A é $p(\lambda) = \lambda^3 + \lambda$;
 - C. A é diagonalizável;
 - D. A é invertível.
- 3. A interseção da quádrica definida pela equação $x^2+9y^2-z^2=9\ {\rm com}$ o plano de equação
 - A. x = 3 é um ponto;
 - B. x = 0 é uma elipse;
 - C. y = 0 é uma hipérbole;
 - D. z = 3 é um parábola.
- 4. Existe uma aplicação linear $\mathcal{L}: \mathbb{R}^2 \to \mathbb{R}^2$ tal que $\mathcal{L}(1,0) = (1,2)$ e
 - A. $\mathcal{L}(0,0) = (0,1);$
 - B. $\mathcal{L}(2,0) = (0,0);$
 - C. $\mathcal{L}(1,1) = (0,0);$
 - D. $\mathcal{L}(0,1) = (0,0) \in \mathcal{L}(1,1) = (0,1)$.

- 5. Seja A uma matriz 4×3 de caraterística 3 e $\mathcal{L} : \mathbb{R}^3 \to \mathbb{R}^4$ definida por $\mathcal{L}(X) = AX$ para cada $X \in \mathbb{R}^3$. Então o núcleo de \mathcal{L} tem dimensão
 - A. 0;
 - B. 1;
 - C. 2;
 - D. 3.

Grupo II

Justifique convenientemente todas as suas respostas e indique os cálculos que efetuar.

1. Considere a matriz

$$A = \left[\begin{array}{rrr} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 3 \end{array} \right].$$

- (a) Determine os valores próprios e os subespaços próprios de A.
- (b) Apresente uma matriz P ortogonal tal que P^TAP é uma matriz diagonal.
- (c) Determine uma equação reduzida e identifique a quádrica definida por $2x^2 + 2y^2 + 3z^2 2xy + 6z = 0$.

•

- 2. Seja $L: \mathbb{R}^3 \to \mathbb{R}^2$ uma aplicação linear definida por L(x,y,z) = (y+2z,x+2y).
 - (a) Determine o núcleo de L e indique uma sua base.
 - (b) Indique, justificando, se L é sobrejetiva.
 - (c) Determine a matriz representativa de L relativamente às bases S=((1,0,0),(0,1,0),(1,1,1)) e T=((1,1),(0,1)) de \mathbb{R}^3 e \mathbb{R}^2 , respetivamente.