Теоретические основы численных методов

Шокуров

18 марта 2025 г.

Постановка задачи о наилучшем приближении

В нормированном пространстве **B** фиксируем некоторое непустое подмножество M. Пусть $\|x\|$ обозначает норму элемента x в нормированном пространстве **B**.

Определение

Число $\varepsilon(x,M)=\inf_{y\in M}\|x-y\|$ называется наилучшим приближением элемента $x\in \mathbf{B}$ на множестве M. Элемент $y_*\in M$ называется наименее уклоняющимся от x, или элементом наилучшего приближения на множестве M, если $\|x-y_*\|=\varepsilon(x,M)$.

Теорема Бореля

Предложение

(Э.Борель)

- 1. Пусть $M \subset \mathbf{B}$ конечномерное подпространство нормированного пространства \mathbf{B} . Тогда для любого элемента $x \in \mathbf{B}$ существует хотя бы один наименее уклоняющийся элемент $y \in M$.
- 2. Пусть $M \subset \mathbf{B}$ выпуклое замкнутое подмножество. Тогда множество наименее уклоняющихся от х элементов выпукло и замкнуто.

Теорема Бореля

Доказательство.

1. Поскольку M конечномерно, оно замкнуто в ${\bf B}$. Для заданного $x\in {\bf B}$ рассмотрим неотрицательную непрерывную функцию $\varphi: {\bf B} \to \mathbb{R}$, заданную формулой $\varphi(y) = \|y-x\|$. Фиксируем $y_0 \in M$ и рассмотрим множество $P = \{y \in M | \quad \|y-x\| \le \|y_0-x\|\} = M \bigcap \{y \in {\bf B} \quad | \quad \varphi(y) \le \varphi(y_0)\}.$

Множество P замкнуто, поскольку является пересечением двух замкнутых множеств. Пусть $y \in P$, тогда

$$||y|| = ||y - x + x|| \le ||y - x|| + ||x|| \le ||y_0 - x|| + ||x||.$$

Следовательно, множество P ограничено. Поэтому, множество P компактно и, следовательно, по теореме Вейерштрасса функция $\varphi(y)$ достигает наименьшего значения на этом множестве. Этот элемент и является наименее уклоняющимся элементом.

Теорема Бореля

Доказательство.

имеем

2. Пусть y_1 и y_2 — два наименее уклоняющиеся элемента от $x \in \mathbf{B}$, т.е. $\varepsilon(x,M) = \|x-y_1\| = \|x-y_2\|$. Тогда для произвольного $0 \le \alpha \le 1$

$$\|\mathbf{x} - (\alpha \, \mathbf{y}_1 + (1 - \alpha) \, \mathbf{y}_2)\| = \|\alpha \, \mathbf{x} + (1 - \alpha) \, \mathbf{x} - (\alpha \, \mathbf{y}_1 + (1 - \alpha) \, \mathbf{y}_2)\|$$

$$= \|\alpha \, (\mathbf{x} - \mathbf{y}_1) + (1 - \alpha) \, (\mathbf{x} - \mathbf{y}_2)\|$$

$$\leq \alpha \, \|(\mathbf{x} - \mathbf{y}_1)\| + (1 - \alpha) \, \|(\mathbf{x} - \mathbf{y}_2)\|$$

$$= \alpha \, \varepsilon(\mathbf{x}, \mathbf{M}) + (1 - \alpha) \, \varepsilon(\mathbf{x}, \mathbf{M})$$

$$= \varepsilon(\mathbf{x}, \mathbf{M}).\Box$$

Обозначим для $M \subset \mathbf{B}$ через P_M множество всех тех элементов $x \in \mathbf{B}$, для которых существует и единственен элемент наилучшего приближения в M. Очевидно, $M \subset P_M$ и определено отображение $\pi: P_M \to M$, где $\pi(x)$ определяется как элемент, наименее уклоняющийся от $x \in P_M$.

Предложение

- 1. Для любого $\mathbf{M} \subset \mathbf{B}$ функция $\varepsilon(\mathbf{x},\mathbf{M})$ равномерно непрерывна по \mathbf{x} .
- 2. Если $M\subset \mathbf{B}$ подпространство, то :
 - ullet (a) $arepsilon(lpha\,\mathsf{x},\mathsf{M})=|lpha|\,arepsilon(\mathsf{x},\mathsf{M})$ для любых $\mathsf{x}\in\mathbf{B}$ и $lpha\in\mathbb{R}.$
 - ullet (б) $arepsilon(\mathbf{x}_1+\mathbf{x}_2,\mathbf{M})\leq arepsilon(\mathbf{x}_1,\mathbf{M})+arepsilon(\mathbf{x}_2,\mathbf{M})$ для любых $\mathbf{x}_1,\mathbf{x}_2\in\mathbf{B}.$
 - ullet (в) $arepsilon(x,M)\leq \|x\|$ для любого $x\in \mathbf{B}$.
- 3. Пусть $M \subset \mathbf{B}$ конечномерное линейное многообразие. Тогда отображение $\pi: P_M \to M$ непрерывно.

Доказательство.

2. Утверждения п.2 (а)-(в) очевидны.

Доказательство.

1. Докажем неравенство

$$|\varepsilon(\mathbf{x}_1, \mathbf{M}) - \varepsilon(\mathbf{x}_2, \mathbf{M})| \le ||\mathbf{x}_1 - \mathbf{x}_2||.$$

Для произвольного $y \in M$ имеем

$$arepsilon(x_1,M) \leq \|x_1-y\| \leq \|x_1-x_2\| + \|x_2-y\|$$
. Поэтому,

 $arepsilon(x_1,M) \leq \|x_1-y\| \leq \|x_1-x_2\|+\|x_2-y\|$. Поэтому, $arepsilon(x_1,M)-\|x_1-x_2\| \leq \|x_2-y\|$. Ввиду произвольности $y \in M$ получим

$$arepsilon(x_1,M) - \|x_1 - x_2\| \leq arepsilon(x_2,M).$$
 Поэтому, выполняется неравенство

$$\varepsilon(\mathbf{x}_1,\mathbf{M})-\varepsilon(\mathbf{x}_2,\mathbf{M})\leq \|\mathbf{x}_1-\mathbf{x}_2\|.$$

Аналогично доказывается неравенство

$$\varepsilon(\mathbf{x}_2, \mathbf{M}) - \varepsilon(\mathbf{x}_1, \mathbf{M}) \le \|\mathbf{x}_2 - \mathbf{x}_1\|.$$

Следовательно,

$$|\varepsilon(\mathbf{x}_1, \mathbf{M}) - \varepsilon(\mathbf{x}_2, \mathbf{M})| \le ||\mathbf{x}_1 - \mathbf{x}_2||.$$

Доказательство.

3. Рассмотрим сходящуюся в P_M последовательность x_n и пусть

$$\lim_{n\to\infty}x_n=x_0.$$

Докажем сначала, что последовательность $\pi(x_n)$ ограничена. Действительно,

$$\|\pi(x_{n})\| = \|\pi(x_{n}) - x_{n} + x_{n}\|$$

$$\leq \|\pi(x_{n}) - x_{n}\| + \|x_{n}\|$$

$$= \varepsilon(x_{n}, M) + \|x_{n}\|$$

$$= \varepsilon(x_{n}, M) - \varepsilon(x_{0}, M) + \varepsilon(x_{0}, M) + \|x_{n}\|$$

$$\leq |\varepsilon(x_{n}, M) - \varepsilon(x_{0}, M)| + \varepsilon(x_{0}, M) + \|x_{n}\|$$

$$\leq |x_{n} - x_{0}| + \varepsilon(x_{0}, M) + \|x_{n}\|.$$

Последнее неравенство доказано в п. 1). Поскольку последовательность x_n сходится, все слагаемые последней суммы ограничены. Следовательно, последовательность $\pi(x_n)$ ограничена.

Доказательство.

Необходимо доказать, что последовательность $\pi(x_n)$ сходится к $\pi(x_0)$. Пусть это не так. Тогда существуют такие $\varepsilon>0$ и подпоследовательность x_{n_k} , для которых выполняется неравенство

$$|\pi(\mathbf{x}_{n_k}) - \pi(\mathbf{x}_0)| > \varepsilon.$$

Без ограничения общности можно считать, что подпоследовательность x_{n_k} совпадает со всей последовательностью x_n . Поскольку последовательность $\pi(x_n)$ ограничена, а подпространство M конечномерно, из нее можно выбрать сходящуюся подпоследовательность.

Доказательство.

Опять без ограничения общности будем считать, что этой подпоследовательностью является сама последовательность $\pi(x_n)$ и $\lim_{n \to \infty} \pi(x_n) = y_0$. Тогда переходя к пределам в неравенствах

$$\|\pi(\mathbf{x}_n) - \pi(\mathbf{x}_0)\| > \varepsilon,$$

получаем

$$\|\mathbf{y}_0 - \pi(\mathbf{x}_0)\| \ge \varepsilon > 0.$$

Согласно определению проекции π выполнены равенства

$$\|\pi(\mathbf{x}_n) - \mathbf{x}_n\| = \varepsilon(\mathbf{x}_n, \mathbf{M}).$$

Доказательство.

Переходя к пределу, получим ввиду непрерывности функции $\varepsilon(\mathbf{x},\mathbf{M})$ равенство

$$\|\mathbf{y}_0 - \mathbf{x}_0\| = \varepsilon(\mathbf{x}_0, \mathbf{M}).$$

Следовательно, y_0 наименее уклоняющийся от x_0 элемент пространства M. Тогда по определению пространства P_M выполняется равенство $y_0=\pi(x_0)$, что противоречит полученному выше неравенству.

Строго нормированные пространства

Определение

Линейное нормированное пространство ${\bf B}$ называется строго нормированным, если для любых ${\bf x}, {\bf y} \in {\bf B}$ из ${\bf x} \neq 0, {\bf y} \neq 0, \|{\bf x} + {\bf y}\| = \|{\bf x}\| + \|{\bf y}\|$ всегда ${\bf x} = \lambda$ у, при некотором $\lambda > 0$.

Предложение

Банахово пространство строго нормировано тогда и только тогда, когда для любых различных элементов $\mathbf{x} \neq \mathbf{y}$ единичной сферы и $0 < \alpha < 1$ выполнено неравенство

$$\|\alpha \mathbf{x} + (1 - \alpha) \mathbf{y}\| < 1.$$

Строго нормированное пространство

Из предыдущего предложения следует

Предложение

Пусть ${f B}$ — линейное строго нормированное пространство, $x\in {f B}$. Тогда

1. если $M \subset \mathbf{B}$ выпуклое: то существует не более одного элемента из M наименее уклоняющегося от x,

2. если $M \subset \mathbf{B}$ – конечномерное линейное многообразие, то существует и притом единственный элемент из M, наименее уклоняющийся от \mathbf{x} .

Доказательство.

1. Согласно теореме Боореля, если $y_1, y_2 \in M$ наименее уклоняющиеся от x элементы, то и

 $\|x - \alpha y_1 + (1 - \alpha)y_2\| = \varepsilon(x, M)$. Тогда $\alpha(x - y_1) + (1 - \alpha)(x - y_2)\| = \varepsilon(x, M)$, что противоречит

строгой выпуклости В.

2. Следует из теоремы Бореля и п.1.

Примеры

Пример 1. Пусть ${\bf B}-$ гильбертово пространство со скалярным произведением (x,y), где $(x,y)\in {\bf B}.$ Тогда пространство ${\bf B}$ является строго нормированным относительно нормы $\|x\|=\sqrt{(x,x)}.$ **Пример 2.** Пусть ${\bf B}=L_p(D,\mu)$, где $D\subset \mathbb{R}^n$ открыто, а μ мера Лебега в \mathbb{R}^n . Элементами пространства ${\bf B}$ являются классы эквивалентных, измеримых по Лебегу функций $f:D\to \mathbb{R}$, для которых функция f^p является μ -суммируемой по D, а две функции эквивалентны, если их разность равна нулю почти всюду в D. Норма в ${\bf B}$ задается равенством:

$$||f|| = \left(\int\limits_{\Omega} |f|^p d\mu\right)^{\frac{1}{p}}.$$

Тогда пространство **B** является строго нормированным относительно введенной нормы. Это утверждение следует из неравенства Минковского и условий при которых оно превращается в равенство.

Задачи

Задача 1. Доказать, что банахово пространство строго нормировано тогда и только тогда, когда для любых различных элементов $x \neq y$ единичной сферы и $0 < \alpha < 1$ выполнено неравенство

$$\|\alpha \mathbf{x} + (1 - \alpha) \mathbf{y}\| < 1.$$

Задача 2. Доказать, что банахово пространство $\mathbf{B} = \mathbf{C}[0,1]$ с нормой $\|f\| = \max_{\mathbf{x} \in [0,1]} |f(\mathbf{x})|$ не является строго нормированным.

Задача 3. Доказать, что банахово пространство классов интегрируемых по Лебегу функций $\mathcal{L}_1[0,1]$ с нормой $\|f\|=\int\limits_0^1|f(x)|\,d\mu$ не является строго нормированным.

Задачи

Задача 4. Пусть **H** — гильбертово пространство и \mathbf{H}_n — его n-мерное подпространство. Пусть отображение $\pi=\pi_n:\mathbf{H}\to\mathbf{H}$ сопоставляет элементу $x\in\mathbf{H}$ наименее уклоняющийся элемент из \mathbf{H}_n . Доказать, что

$$\pi(\mathbf{x}) = \sum_{k=1}^{n} (\mathbf{x}, \mathbf{e}_k) \, \mathbf{e}_k$$

И

$$\varepsilon(\mathbf{x}, \mathbf{H}_n) = \left(\|\mathbf{x}\|^2 - \sum_{k=1}^n (\mathbf{x}, e_k)^2 \right)^{\frac{1}{2}},$$

где $e_1, \ \dots e_n$ — произвольный ортонормированный базис в $\mathbf{H_n}$. Задача 5. Пусть $M \subset \mathbf{B}$ подпространство и $\lambda \in \mathbb{R}$ и $x, \ \lambda \, x \in P_M$. Доказать, что тогда выполнено равенство $\pi(\lambda \, x) = \lambda \, \pi(x)$.

Пусть C[D] — пространство вещественных непрерывных функций на замкнутом ограниченном множестве $D\subset\mathbb{R}^m,\ m\geq 1$, состоящем из бесконечного числа точек, с нормой максимум модуля $\|f\|=\sup_{x\in D}|f(x)|.$ Особо выделим два случая: D=[a,b] при m=1 и $D=\mathbf{S}^1=\{(x,y)\in\mathbb{R}^2\ |\ x^2+y^2=1\}=\{z\in\mathbb{C}\ |\ |z|=1\}$ при m=2.

Определение 1. Подпространство $L \subset C[D]$ называется чебышевским, если любая ненулевая функция $f \in L$ имеет не более n-1 корня на отрезке [a,b], где $\dim L=n$.

Согласно теореме Бореля для любой функции $f \in C[D]$ существует наилучшее приближение некоторым элементом из L. Согласно теореме Хаара такое приближение единственно, если пространство L чебышевское. Рассмотрим примеры чебышевских подпространств.

Примеры чебышевских пространств

Пример 1. Пусть функция f_0 не обращается в нуль на компакте D. Тогда пространство $L=[f_0]=\{\alpha f_0 \mid \alpha \in \mathbb{R}\}$ является одномерным чебышевским подпространством.

Пример 2. Пусть $\emph{I}=[a,b]$ и $\emph{L}=\mathcal{P}_n\subset \emph{C}[\emph{I}]$ — пространство многочленов на \emph{D} степени меньшей чем n>0. Из основной теоремы алгебры следует, что пространство \mathcal{P}_n чебышевское.

Пример 3. Пусть $D={\bf S^1}$. Отождествим пространство $C[{\bf S^1}]$ при помощи экспоненциального отображения $\exp:\mathbb{R}\to{\bf S^1}$ с пространством 2π -периодических функций на \mathbb{R} . Пусть $\mathcal{T}_{2n-1},\ n\geq 1$ — пространство тригонометрических многочленов вида

$$T(x) = a_0 + \sum_{k=1}^{n-1} (a_k \cdot \cos kx + b_k \cdot \sin kx).$$

Это пространство чебышевское, $\dim \mathcal{T}_{2n-1} = 2n - 1$.

Примеры чебышевских пространств

Действительно, пусть $z=e^{ikx}$. Тогда представим тригонометрический многочлен через переменную $z\in \mathbf{S}^1$. Имеем

$$\cos kx = \frac{z^k + z^{-k}}{2}$$
 u $\sin kx = \frac{z^k - z^{-k}}{2i}$.

Тогда

$$T(x) = Q(z) = a_0 + \sum_{\substack{k=1\\2n-2}}^{n-1} \left(a_k \cdot \frac{z^k + z^{-k}}{2} + b_k \cdot \frac{z^k - z^{-k}}{2i} \right)$$
$$= z^{1-n} \sum_{k=0}^{n-1} c_k z^k.$$

Следовательно, $\mathit{T}(\mathit{x}) \neq 0$ имеет на полуинтервале $[0,2\pi)$ не более $2\mathit{n}-2$ корней.

Примеры чебышевских пространств

Приведенные примеры показывают:

- существование 1-мерных пространств Чебышева в произвольных пространствах функций,
- существование пространств Чебышева произвольной размерности в пространстве непрерывных на отрезке функций,
- существование пространств Чебышева нечетной размерности в пространстве непрерывных на окружности функций, или эквивалентно в пространстве 2π -периодических функций на прямой.

Далее будет доказано, что в пространстве непрерывных на окружности функций не существует пространства Чебышева четной размерности. Сформулируем теперь две теоремы, которые будут доказаны в частных случаях. Именно эти частные случаи будут использоваться в дальнейшем.

Теорема 1. Пусть $L \subset C[I]$ — чебышевское подпространство, $n=\dim L \geq 1$ и $f \in C[I]$ — произвольная функция. Тогда функция $p \in L$ наименее уклоняется от f тогда и только тогда, когда найдутся n+1 различные точки $a \leq x_1 < x_2 < \ldots < x_{n+1} \leq b$, для которых разность r(x)=f(x)-p(x) удовлетворяет следующим условиям:

1.
$$|r(x_i)| = ||r|| = \sup_{x \in I} |r(x)|$$
 при $1 \le i \le n+1$,

2.
$$r(x_1) = -r(x_2) = r(x_3) = \ldots = (-1)^n \cdot r(x_{n+1}).$$

Теорема 2. Пусть $L \subset C[\mathbf{S^1}]$ — чебышевское подпространство,

 $2n-1=\dim L\geq 1$ и $f\in {\it C}[{\bf S^1}]$ — произвольная функция. Тогда функция $p\in L$ наименее уклоняется от f тогда и только тогда, когда найдутся 2n различные точки $0\leq x_1< x_2<\ldots< x_{2n}< 2\pi$, для которых разность r(x)=f(x)-p(x) удовлетворяет следующим условиям:

1.
$$|r(x_i)| = ||r|| = \sup_{\mathbf{x} \in S^1} |r(\mathbf{x})|$$
 при $1 \le i \le 2n$,

2.
$$r(x_1) = -r(x_2) = r(x_3) = \ldots = -r(x_{2n}).$$

Теорема 1 в частном случае $L=P_n$ была доказана Чебышевым. Доказательства теоремы 2 и обобщения теоремы 1 незначительно отличаются от доказательства Чебышева. Поэтому эти теоремы обычно называют теоремами Чебышева.

Определение 2. Пусть $g \in C[I]$. Точки $a \le x_1 < x_2 < \ldots < x_m \le b$ называются альтернансом m-го порядка для функции g(x), если $|g(x_i)| = \|g\|, 1 \le i \le m$ и $(-1)^i g(x_i) = const.$

Определение 3. Пусть $g \in C[\mathbf{S^1}]$. Точки $0 \le x_1 < x_2 < \ldots < x_m < 2\pi$ называются альтернансом m-го порядка для функции g(x), если $|g(x_i)| = \|g\|, 1 \le i \le m$ и $(-1)^i g(x_i) = const = g(x_m)$. В силу определения, очевидно, любая ненулевая функция $g \in C[\mathbf{S^1}]$ не имеет альтернанса нечетного порядка. Теоремы 1 и 2 можно переформулировать теперь как одну теорему.

Теорема 3. Пусть $L\subset C[D]$ — чебышевское подпространство причем $\dim L\geq 1$ и $f\in C[D]$ — произвольная функция. Тогда функция $p\in L$ наименее уклоняется от f тогда и только тогда, когда разность r(x)=f(x)-p(x) имеет альтернанс порядка $\dim L+1$.

Определение 4. Элементы чебышевского подпространства L в пространстве функций будем называть чебышевскими L-полиномами или просто чебышевскими полиномами. Пусть $f_1, \ldots, f_n \in \mathit{C}[\mathit{D}]$ и $x_1, \ldots, x_n \in \mathit{D}$. Тогда введем обозначение

$$\Delta_{\mathbf{f}}(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}) = \det \begin{pmatrix} f_{1}(\mathbf{x}_{1}) & f_{2}(\mathbf{x}_{1}) & \cdots & f_{n}(\mathbf{x}_{1}) \\ f_{1}(\mathbf{x}_{2}) & f_{2}(\mathbf{x}_{2}) & \cdots & f_{n}(\mathbf{x}_{2}) \\ \cdots & \cdots & \cdots & \cdots \\ f_{1}(\mathbf{x}_{n}) & f_{2}(\mathbf{x}_{n}) & \cdots & f_{n}(\mathbf{x}_{n}) \end{pmatrix},$$

где $\mathbf{f}=(\mathbf{f_1},\mathbf{f_2},\;\ldots,\mathbf{f_n}).$

Предложение 1. Пусть $L \subset \mathit{C}[D]$ — чебышевское подпространство и $\dim L = n$. Тогда

- 1. элементы $e_1, \ldots, e_n \in L$ линейно независимы тогда и только тогда, когда $\Delta_{\mathbf{e}}(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n) \neq 0$ для любых попарно различных точек $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n \in \mathcal{D}$,
- 2. для любых попарно различных точек $x_1, x_2, \ldots, x_n \in D$ и любых n чисел c_1, c_2, \ldots, c_n существует и притом единственный интерполяционный чебышевский многочлен $p \in L$, для которого $p(x_i) = c_i$ при $1 \le i \le n$,
- 3. для любых n-1 попарно различных точек пространство чебышевских многочленов, обращающихся в этих точках в нуль, имеет размерность 1.

Доказательство. 1) Если $e_1, \ldots, e_n \in L$ линейно зависимы, то найдутся такие числа $\alpha_i \in \mathbb{R}, \ 1 \leq i \leq n$, не все равные нулю, для которых выполнено равенство $\sum\limits_{i=1} lpha_{j} \pmb{e}_{j}(\pmb{x}) = 0.$ Тогда для любой последовательности точек $x_1, x_2, \ldots, x_n \in D$ линейная однородная система уравнений $A\mathbf{y} = 0$, где $A = \|\mathbf{e}_i(\mathbf{x}_i)\|_{1 \le i, i \le n}$ имеет ненулевое решение $\mathbf{y} = (\alpha_1, \dots, \alpha_n)^T$. Следовательно, определитель системы равен нулю. Но $\det A = \Delta_{\mathbf{e}}(x_1, x_2, \dots, x_n)$. Поэтому $\Delta_{\mathbf{e}}(x_1, x_2, \dots, x_n) = 0$ для любой последовательности точек $x_1, x_2, \ldots, x_n \in D$ и, в частности, для любых попарно различных точек $x_1, x_2, \ldots, x_n \in D.$

Обратно, пусть $e_1, \ldots, e_n \in L$ и существуют n различных точек $x_1, x_2, \ldots, x_n \in D$, для которых выполнено равенство $\Delta_{\bf e}({\bf x}_1,{\bf x}_2,\ \dots,{\bf x}_n)=0$. Тогда $\det {\bf A}=0$ и, следовательно, столбцы матрицы А линейно зависимы. Поэтому существуют такие числа $\alpha_i \in \mathbb{R}, \ 1 \leq i \leq n$, не все равные нулю, для которых выполнено равенство $\sum\limits_{i=1}^{n} \alpha_{i} \pmb{e}_{j}(\pmb{x}_{i}) = 0$ при всех $1 \leq i \leq n$. Это означает, что функция $\sum\limits_{i=1}^{n} lpha_{j} \pmb{e}_{j}(\pmb{x}) \in \pmb{L}$ имеет \pmb{n} различных корней. Поскольку подпространство L чебышевское, то отсюда вытекает, что $\sum\limits_{j=1} lpha_j \pmb{e}_j(\pmb{x}) = 0.$ Следовательно, вектора $e_1, \ldots, e_n \in L$ линейно зависимы.

- 2) Пусть e_1, \ldots, e_n базис в чебышевском пространстве L и c_1, c_2, \ldots, c_n произвольные n чисел. Тогда согласно уже доказанному определитель системы линейных уравнений $A\mathbf{y}=\mathbf{c}$, где $A=\|e_j(\mathbf{x}_i)\|_{1\leq i,j\leq n}$, не равен нулю, и, следовательно, эта система имеет ненулевое решение $\mathbf{y}^T=(y_1,\ldots,y_n)$. Тогда
- $p(x) = \sum_{k=1}^{n} y_k e_k(x)$ определяет искомый интерполяционный многочлен Чебышева.
- 3) Пусть даны n различных точек x_0, \ldots, x_{n-1} . Согласно 2) существует единственный чебышевский многочлен $p_0(x)$, обращающийся в 0 в точках x_1, \ldots, x_{n-1} и равный 1 в точке x_0 . Тогда согласно 2) для любого чебышевского многочлена q(x), обращающегося в 0 в точках x_1, \ldots, x_{n-1} , выполнено равенство $q(x) = q(x_0)p_0(x)$.

Предложение 2. Пусть $L \subset C[D]$ — чебышевское подпространство и $\dim L = n$.

- 1. Пусть $x_1, x_2, \ldots, x_n \in D$ и $y_1, y_2, \ldots, y_n \in D$ две системы попарно различных точек и для всех $1 \leq i \leq n$ существуют непрерывные функции $\xi_i : [0,1] \to D$, удовлетворяющие условиям: а) $\xi_i(0) = x_i, \xi_i(1) = y_i$ при $1 \leq i \leq n$, б) для любого t точки $\xi_1(t), \xi_2(t), \ldots, \xi_n(t)$ попарно различные. Тогда для любого базиса $\mathbf{e} = (e_1, e_2, \ldots, e_n)$ знаки определителей $\Delta_{\mathbf{e}}(x_1, x_2, \ldots, x_n)$ и $\Delta_{\mathbf{e}}(y_1, y_2, \ldots, y_n)$ совпадают.
- 2. Пусть D=[a,b] или $D=\mathbf{S}^1$, а $x_1,x_2,\ldots,x_{n-1}\in D$ попарно различные нули ненулевого элемента $p\in L$. Тогда p(x) не имеет других нулей в D и меняет знак при прохождении x через каждый нуль $x_i,1\leq i\leq n-1$, отличный от концов a,b в случае отрезка D=[a,b].

Доказательство. 1) Рассмотрим функцию

$$f(t) = \Delta_{\mathbf{e}}(\xi_1(t), \xi_2(t), \ldots, \xi_n(t)).$$

Согласно условию эта функция непрерывна. Поскольку по условию при любом t все точки $\xi_1(t), \xi_2(t), \ldots, \xi_n(t)$ различны, то согласно предложению 1 функция f(t) не обращается в нуль. Следовательно, f(0) и f(1) имеют одинаковые знаки.

2) Пусть $x_1 < x_2 < \ldots < x_{n-1} \in D$ — различные корни чебышевского многочлена p(x) и пусть между точками $u, v \in D$ имеется единственный корень x_k ($u, v \neq x_k$). Рассмотрим n непрерывных на [0,1] функций

$$\xi_1(t) = x_1$$

$$\cdots$$

$$\xi_k(t) = (1 - t)u + tx_k$$

$$\xi_{k+1}(t) = (1 - t)x_k + tv$$

$$\xi_{k+2}(t) = x_{k+1}$$

$$\cdots$$

$$\xi_n(t) = x_{n-1}.$$

Тогда согласно уже доказанному утверждению 1) знаки определителей $\Delta_{\mathbf{e}}(u, x_1, \ldots, x_{n-1})$ и $\Delta_{\mathbf{e}}(x_k, x_1, \dots, x_{k-1}, \nu, x_{k+1}, \dots, x_{n-1})$ совпадают. Согласно предложению 1 для некоторого $\lambda \in \mathbb{R}$ выполнено равенство $p(x) = \lambda \Delta_{\mathbf{e}}(x, x_1, \dots, x_{n-1})$. Кроме того из свойств определителей следует равенство $\Delta_{\mathbf{e}}(x_k, x_1, \ldots, x_{k-1}, v, x_{k+1}, \ldots, x_{n-1}) = -\Delta_{\mathbf{e}}(v, x_1, \ldots, x_{n-1}).$ Следовательно, числа p(u) и p(v) имеют противоположные знаки. **Задача.** В $C[\mathbf{S}^1]$ не существует четномерных Чебышевских подпространств.