Least Squares

We want to find a line/curve that minimizes the sum of the square of the error caused due to deviation.

The least squares for Ax = b is \hat{x} for which,

$$||b - A\hat{x}|| \le ||b - Ax||$$

for all x

We can use the normal equation to solve for \hat{x}

$$A^T A \hat{x} = A^T \vec{b}$$

Manipulating this we can get this,

$$\hat{x} = (A^TA)^{-1}A^T ec{b}$$

$$R\hat{x} = Q^T ec{b}$$

♦ Proof ∨

$$A^T A \hat{x} = A^T \vec{b}$$
 $(QR)^T QR \hat{x} = (QR)^T \vec{b}$ $R^T Q^T QR \hat{x} = R^T Q^T \vec{b}$ $R^T R \hat{x} = R^T Q^T \vec{b}$ $R \hat{x} = Q^T \vec{b}$

How to solve

Method 1

- 1. Construct **QR Factorization**
- 2. Solve $R\hat{x} = Q^T \vec{b}$

Method 2

1. Solve the normal equation for \hat{x} .

Method 3

1. Use Mean Deviation

Line

Say we want to find a line y = mx + b that is the best fit for the following points:

X	-2	-1	1	1	2
У	-2	-1	1	2	2

We can create a list of linear equations using this:

$$m(-2) + b = -2$$

$$m(-1)+b=-1$$

$$m(1) + b = 1$$

$$m(1) + b = 2$$

$$m(2)+b=2$$

We can turn this in to a matrix equation like so,

$$Aec{x}=ec{b}$$

$$\begin{bmatrix} 1 & -2 \\ 1 & -1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix} = \begin{bmatrix} -2 \\ -1 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$

Compute QR,

$$\begin{bmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{10}} \\ \frac{1}{\sqrt{5}} & -\frac{1}{\sqrt{10}} \\ \frac{1}{\sqrt{5}} & 0 \\ \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{10}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{10}} \end{bmatrix}$$

Now compute $Q^T \vec{b}$,

$$Q^T ec{b} = egin{bmatrix} rac{2}{\sqrt{5}} \ rac{11}{\sqrt{10}} \end{bmatrix}$$

Finally solve $R\hat{x} = Q^T\vec{b}$,

$$\begin{bmatrix} \frac{5}{\sqrt{5}} & 0\\ 0 & \frac{10}{\sqrt{10}} \end{bmatrix} \hat{x} = \begin{bmatrix} \frac{2}{\sqrt{5}}\\ \frac{11}{\sqrt{10}} \end{bmatrix}$$

$$\hat{x} = \begin{bmatrix} \frac{2}{5}\\ \frac{11}{10} \end{bmatrix}$$

So we get
$$y = \frac{2}{5} + \frac{11}{10}x$$

Curves

We can use this method to fit data to a curve using the function,

$$y = c_0 + c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x)$$

Lets take an example, Say we want to modal:

X	-1	0	0	1
у	2	1	0	6

Using
$$y = c_1 x + c_2 x^2$$

$$-c_1 + c_2 = 2$$

 $0c_1 + 0c_2 = 1$
 $0c_1 + 0c_2 = 0$
 $c_1 + c_2 = 6$

Now we can use one of the methods to solve for $c_1 \ \mathrm{and} \ c_2$