

Dr. Vishwanath Karad

MIT WORLD PEACE UNIVERSITY PUNE

TECHNOLOGY, RESEARCH, SOCIAL INNOVATION & PARTNERSHIPS

Scheduling

Syllabus

Scheduling: Types of Scheduling, Scheduling Algorithms: FCFS, SJF, Priority, Round Robin.

*

Scheduling

•Maximum CPU utilization obtained with multiprogramming

•CPU–I/O Burst Cycle – Process execution consists of a *cycle* of CPU execution and I/O wait.

Alternating Sequence of CPU And I/O Bursts

CPU / Process Scheduler

•Selects from among the processes in memory that are ready to execute, and allocates the CPU to one of them.

•Scheduling may be *preemptive or nonpreemptive*

Nonpreemptive – If CPU allocated to a process, it keeps the CPU until it releases it by terminating or switching to waiting state

Preemptive - If CPU allocated to a process, it may be released if high priority process needs the CPU

Scheduler

- •CPU scheduling decisions may take place when a process:
 - 1. Switches from running to waiting state
 - 2. Switches from running to ready state
 - 3. Switches from waiting to ready state
 - 4.Terminates
- Scheduling under 1 and 4 is nonpreemptive
- •All other scheduling is *preemptive*

Scheduling Algorithms

They deal with the problem of deciding which of the processes in ready queue is to be allocated the CPU

Algo. compared based on following criteria

CPU utilization – keep the CPU as busy as possible

Throughput – # of processes completed or amount of work done per unit time

Turnaround time – time of submission of a process to the time of completion

Waiting time – amount of time a process has been waiting in the ready queue

Response time – amount of time it takes from when a request was submitted until the first response is produced

Optimization Criteria

Max CPU utilization

Max throughput

Min turnaround time

Min waiting time

Min response time

Types of process schedulers / Scheduling categories

•Scheduling is broken down into three categories:

1. Long term scheduling:

- Is performed when a new process is created.
- •Long-term scheduler (or job scheduler) selects which processes should be brought into the ready queue.
- •Long-term scheduler is invoked very infrequently (seconds, minutes) \Rightarrow (may be slow)
- The long-term scheduler controls the *degree of multiprogramming*.

Types of process schedulers / Scheduling categories

2. Medium term scheduling:

- Part of the swapping function
- •Swapping-in decisions are taken by medium term scheduler
- Based on the need to manage the degree of multiprogramming

3. Short term scheduling:

- •Determines which ready process will be assigned the CPU when it next becomes available and actually assign the CPU to this process.
- •Short-term scheduler (or CPU scheduler) selects which process should be executed next and allocates CPU.
- •Short-term scheduler is invoked very frequently (milliseconds) ⇒ (must be fast).

Types of process schedulers / Scheduling categories

Scheduling Algorithms

- •FCFS (First Come First Serve)
- SJF (Shortest Job First)
- Priority scheduling
- Round Robin scheduling

FCFS Scheduling: Characteristics

Selection Function: max(w), selects the process which is waiting in the ready queue for maximum time.

Decision Mode: Non_preemptive

Throughput: Not emphasized

Response Time: May be high, especially if there is a large variance in the process execution times.

Overhead: Minimum

Effect on Processes: Penalizes short processes

Starvation: No

ProcessBurst TimeP124P23P33

•Suppose that the processes arrive in the order: P1, P2, P3

The Gantt Chart for the schedule is:

Waiting time for P1 = 0; P2 = 24; P3 = 27

Average waiting time: (0 + 24 + 27)/3 = 17

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order: P2, P3, P1

- •Waiting time for P1 = 6; P2 = 0; P3 = 3
- Average waiting time: (6+0+3)/3 = 3

Example-2 of FCFS

Process Arrival Time Burst Time

P1 0.0 7

P2 2.0 4

P3 4.0 1

P4 5.0 4

Example-2 of FCFS

Process Arrival Time Burst Time

P1 0.0 7

P2 2.0 4

P3 4.0 1

P4 5.0 4

Average waiting time = (0 + 5 + 7 + 7)/4 = 4.75Average Turnaround Time = (7+9+8+11)/4=8.75

Shortest-Job-First (SJR) Scheduling

Associate with each process the length of its next CPU burst. Use these lengths to schedule the process with the shortest time

- Two schemes:
 - nonpreemptive once CPU given to the process it cannot be preempted until completes its CPU burst
 - **preemptive** if a new process arrives with CPU burst length less than remaining time of current executing process, preempt. This scheme is know as the **Shortest-Remaining-Time-First (SRTF)**

■SJF is optimal – gives minimum average waiting time for a given set of processes

Example of Non-Preemptive SJF

Process Arrival Time Burst Time

P1 0.0 7

P2 2.0 4

P3 4.0 1

P4 5.0 4

Example of Non-Preemptive SJF

Process Arrival Time Burst Time

P1 0.0 7

P2 2.0 4

P3 4.0 1

P4 5.0 4

Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Shortest Job First Preemptive or Shortest Remaining Time

- It is a preemptive version of SJF. In this policy, scheduler always chooses the process that has the shortest expected remaining processing time.
- When a new process arrives in the ready queue, it may in fact have a shorter remaining time than the currently running process.
- Accordingly, the scheduler may preempt whenever a new process becomes ready.
- Scheduler must have an estimate of processing time to perform the selection function.

Shortest Job First Preemptive or Shortest Remaining Time: characteristics

- **Selection Function**: minimum total service time required by the process, minus time spent in execution so far.
- Decision Mode : Preemptive (At arrival time)
- Throughput: High
- Response Time: Provides good response time
- Overhead: Can be high
- Effect on Processes: Penalizes long processes.
- Starvation: Possible

Example of Preemptive SJF

Process	Arrival Time	Burst Time
$P_{_{1}}$	0.0	7
$P_{2}^{'}$	2.0	4
P,	4.0	1
P_4^3	5.0	4

Example of Preemptive SJF

P P	Process Arrival P_1 0.0 P_2 2.0 P_3 4.0 P_4			ne	Burst 7 4 1 4	Time		
	P ₁	P ₂	P ₃	P ₂		P ₄	P ₁	

- Average waiting time = (9 + 1 + 0 + 2)/4 = 3
- Average turnaround time= (16+5+1+6)/4=7

Priority Scheduling

A priority number (integer) is associated with each process

- The CPU is allocated to the process with the highest priority (smallest integer \equiv highest priority)
 - Preemptive
 - Nonpreemptive

SJF is a priority scheduling where priority is the predicted next CPU burst time

- Solution \equiv Aging as time progresses increase the priority of the process

Round Robin (RR)

• Each process gets a small unit of CPU time (time quantum)

• After this time has elapsed, the process is preempted and added to the end of the ready queue.

If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the CPU time in chunks of at most q time units at once.

No process waits more than (n-1)q time units.

RR: characteristics

- Selection Function: constant
- Decision Mode : Preemptive (At time quantum)
- Throughput: May be low if time quantum is too small
- Response Time: Provides good response time for short processes
- Overhead: Minimum
- Effect on Processes: Fair treatment
- Starvation: No

Example of RR with Time Quantum = 20

Process Burst Time

P1 53

P2 17

P3 68

P4 24

Typically, higher average turnaround than SJF, but better *response*

Example: Round Robin (By Default preemptive: Time Quantum

2)

Process	Arrival Time	Burst Time
$P_{_{1}}$	0.0	7
$P_{2}^{'}$	2.0	4
P_{3}^{r}	4.0	1
$P_{_{A}}^{\circ}$	5.0	4

Example: Round Robin (By Default preemptive: Time Quantum

2)

Process	Arrival Time	Burst Time		
$P_{\scriptscriptstyle 1}$	0.0	7		
$P_{2}^{'}$	2.0	4		
P ,	4.0	1		
P_4°	5.0	4		

P1	P2	P1	P3	P2	P4	P1	P4	P1
								5 16

Average waiting time = (9 + 3 + 2 + 6)/4 = 5Average turnaround time = (16+7+3+10)/4=9

References

- 1. William Stallings, Operating System: Internals and Design Principles, Prentice Hall, ISBN-10: 0-13-380591-3, ISBN-13: 978-0-13-380591-8, 8th Edition
- 2. Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, Operating System Concepts, WILEY, ISBN 978-1-118-06333-0, 9th Edition