1

Random Vector Assignment

Jay Vikrant EE22BTECH11025

Consider a triangle with vertices,

$$\mathbf{A} = \begin{pmatrix} 1 \\ -5 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} -4 \\ 5 \end{pmatrix} \quad \mathbf{C} = \begin{pmatrix} -1 \\ 0 \end{pmatrix} \tag{1}$$

I. Vectors

Parameter	Value	Description
Tarameter		Description
m _{AB}	$\begin{pmatrix} -5 \\ 10 \end{pmatrix}$	Direction vec of AB
m _{BC}	$\begin{pmatrix} 3 \\ -5 \end{pmatrix}$	Direction vec of BC
m _{CA}	$\begin{pmatrix} 2 \\ -5 \end{pmatrix}$	Direction vec of CA
$ \mathbf{A} - \mathbf{B} $	11.180	Lenght of AB
$ \mathbf{B} - \mathbf{C} $	5.831	Lenght of BC
$\ \mathbf{C} - \mathbf{A}\ $	5.835	Lenght of CA
$rank \begin{pmatrix} 1 & 1 & 1 \\ A & B & C \end{pmatrix}$	3	non-collinear
n _{AB}	$\begin{pmatrix} 0 \\ 5 \end{pmatrix}$	Normal vec of AB
c _{AB}	25	Constant in AB
n _{BC}	$\begin{pmatrix} -5 \\ -3 \end{pmatrix}$	Normal vec of BC
c_{BC}	5	Constant in BC
n _{CA}	$\begin{pmatrix} 5 \\ -2 \end{pmatrix}$	Normal vec of CA
c _{CA}	-5	Constant in CA
Area	12.5	Area of $\triangle ABC$
cos(A)	0.3713	cosine of ∠A
cos(B)	0.5145	cosine of ∠ B
cos(C)	0.6051	cosine of ∠C

TABLE I Triangle

Fig. I. Triangle generated using python

II. MEDIAN

Parameter	Value	Description
D	$\begin{pmatrix} -2.5\\ 2.5 \end{pmatrix}$	Midpoint AB
Е	$\begin{pmatrix} 0.0 \\ 2.5 \end{pmatrix}$	Midpoint BC
F	$\begin{pmatrix} -1.5 \\ -5.0 \end{pmatrix}$	Midpoint CA
n _{AD}	$\begin{pmatrix} -2.5\\ 3.5 \end{pmatrix}$	Normal vec of AD
c _{AD}	15	Constant of AD
n _{BE}	$\begin{pmatrix} -2.5 \\ -4.0 \end{pmatrix}$	Normal vec of BE
c _{BE}	-10	Constant of BE
n _{CF}	$\begin{pmatrix} -5.0 \\ 0.5 \end{pmatrix}$	Normal vec of CF
c _{CF}	-5	Constant of CF
G	$\begin{pmatrix} -1.333 \\ 3.333 \end{pmatrix}$	Centroid
BG GE		Ratio of BG and GE
CG GF	2	Ratio of CG and GF
$\frac{CG}{GF}$		Ratio of CG and GF
$\operatorname{rank} \begin{pmatrix} 1 & 1 & 1 \\ A & D & G \end{pmatrix}$	2	A, D, G collinear
A - F	(2.5)	Direction vec of AF
$\mathbf{E} - \mathbf{D}$	$ \left[\left[\left[0.0 \right] \right] \right] $	Direction vec of ED

Fig. II. Medians generated using python

III. ALTITUDE

Parameter	Value	Description
$\mathbf{D_1}$	$\begin{pmatrix} -2.676 \\ 2.794 \end{pmatrix}$	altitude foot from A
$\mathbf{E_1}$	$\binom{0.310}{3.276}$	altitude foot from B
F ₁	$\begin{pmatrix} -1 \\ 5 \end{pmatrix}$	altitude foot from C
$n_{\mathrm{AD_1}}$	$\begin{pmatrix} 3 \\ -5 \end{pmatrix}$	Normal vec of AD_1
c_{AD_1}	-22	Constant of AD_1
n_{BE_1}	$\begin{pmatrix} 2 \\ 5 \end{pmatrix}$	Normal vec of BE_1
c_{BE_1}	17	Constant of BE_1
n_{CF_1}	$\begin{pmatrix} -5 \\ 0 \end{pmatrix}$	Normal vec of CF_1
$\mathbf{c}_{\mathrm{CF}_1}$	5	Constant of CF_1
Н	$\begin{pmatrix} -1 \\ 3.8 \end{pmatrix}$	Orthocenter

TABLE III ORTHOCENTER

Fig. III. Altitudes generated using python

IV. PERPENDICULAR BISECTOR

Parameter	Value	Description
n _{OA}	$\begin{pmatrix} 2.5 \\ 1.9 \end{pmatrix}$	Direction vec of OA
n _{OB}	$\begin{pmatrix} -2.5\\1.9 \end{pmatrix}$	Direction vec of OB
n _{OC}	$\begin{pmatrix} 0.5 \\ -3.1 \end{pmatrix}$	Direction vec of OC
О	$\begin{pmatrix} -1.5\\ 3.1 \end{pmatrix}$	Circumcenter
n _{OD}	$\begin{pmatrix} 5 \\ 0 \end{pmatrix}$	Normal vec of OD
c _{OD}	-7.5	Constant of OD
n _{OE}	$\begin{pmatrix} -3 \\ 5 \end{pmatrix}$	Normal vec of OE
c _{OE}	20	Constant of OE
n _{OF}	$\begin{pmatrix} -2 \\ -5 \end{pmatrix}$	Normal vec of OF
c _{OF}	-12.5	Constant of OF
$ \mathbf{A} - \mathbf{O} $		Norm of OA
$ \mathbf{B} - \mathbf{O} $		Norm of OB
$\ \mathbf{C} - \mathbf{O}\ $	3.140	Norm of OC
R		Circumradius
∠BAC	68.1986°	Angle ∠BAC
∠BOC	136.3972°	Angle ∠BOC

V. ANGULAR BISECTOR

Parameter	Value	Description
n_{IA}	$\begin{pmatrix} -0.928 \\ 1.371 \end{pmatrix}$	Normal vec of IA
c _{IA}	5.928	Constant vec of IA
n_{IB}	$\begin{pmatrix} 0.857 \\ 1.514 \end{pmatrix}$	Normal vec of IB
c_{IB}	4.142	Constant vec of IB
$n_{\rm IC}$	$\begin{pmatrix} -1.786 \\ -0.143 \end{pmatrix}$	Normal vec of IC
c _{IC}	1.786	Constant vec of IC
I	$\begin{pmatrix} -1.277 \\ 3.458 \end{pmatrix}$	Incenter
\mathbf{D}_3	$\begin{pmatrix} -2.599 \\ 2.665 \end{pmatrix}$	POC with AB
E ₃	$\binom{0.154}{2.886}$	POC with BC
F ₃	$\begin{pmatrix} -1.277 \\ 5.000 \end{pmatrix}$	POC with CA
$ \mathbf{D_3} - \mathbf{O} $		Norm of OD ₃
$\ \mathbf{E_3} - \mathbf{O}\ $]	Norm of OE_3
$ \mathbf{F_3} - \mathbf{O} $	1.542	Norm of OF_3
r		Inradius
∠BAI		Angle ∠BAI
∠CAI	34.1°	Angle ∠CAI

TABLE V Incircle

CIRCUMCENTER

Fig. IV. Perpendicular bisectors generated using python

Fig. V. Incircle generated using python