诚信应考,考试作弊将带来严重后果!

华南理工大学期末考试

《2008 级大学物理(II) 期末试卷 A 卷》试卷

注意事项: 1. 考前请将密封线内各项信息填写清楚:

- 2. 所有答案请直接答在答题纸上;
- 3. 考试形式: 闭卷:
- 4. 本试卷共 25 题,满分 100 分,考试时间 120 分钟。

考试时间: 2010年1月18日9: 00-----11: 00

一、选择题(共30分)

1. (本题 3 分)

在电荷为-Q的点电荷A的静电场中,将另一电荷为q的 点电荷 B 从 a 点移到 b 点. a、b 两点距离点电荷 A 的距离 分别为 r_1 和 r_2 ,如图所示.则移动过程中电场力做的功为

(C)
$$\frac{-qQ}{4\pi\varepsilon_0} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$
. (D) $\frac{-qQ}{4\pi\varepsilon_0(r_2 - r_1)}$

(D)
$$\frac{-qQ}{4\pi\varepsilon_0(r_2-r_1)}$$

2. (本题3分)

一"无限大"均匀带电平面 A, 其附近放一与它平行的有一定厚度的 不带电的"无限大"平面导体板B,如图所示。已知A上的电荷面密度 为 $+\sigma$, 则在导体板 B 的两个表面 1 和 2 上的感生电荷面密度为:

(A)
$$\sigma_1 = -\sigma$$
, $\sigma_2 = +\sigma$.

(B)
$$\sigma_1 = -\frac{1}{2}\sigma$$
, $\sigma_2 = +\frac{1}{2}\sigma$.

(C)
$$\sigma_1 = -\frac{1}{2}\sigma$$
, $\sigma_2 = -\frac{1}{2}\sigma$.

(D)
$$\sigma_1 = -\sigma$$
, $\sigma_2 = 0$.

3. (本题 3 分)

在静电场中,作闭合曲面 S,若有 $\oint \bar{D} \cdot \mathbf{d} \, \bar{S} = 0$ (式中 \bar{D} 为电位移矢量),则 S 面内必定

Г

]

- (A) 既无自由电荷,也无束缚电荷.
- (B) 没有自由电荷.
- (C) 自由电荷和束缚电荷的代数和为零.
- (D) 自由电荷的代数和为零.

4. (本题 3 分)

一个通有电流 I 的导体,厚度为 D,横截面积为 S, 放置在磁感强度为 B 的匀强磁场中, 磁场方向垂直于导 体的侧表面,如图所示. 现测得导体上下两面电势差为V, 则此导体的霍尔系数等于

(B)
$$\frac{IBV}{DS}$$
.

(C)
$$\frac{VS}{IBD}$$
.

(D)
$$\frac{IVS}{RD}$$
.

(E)
$$\frac{VD}{IB}$$
.

5. (本题 3 分)

两个同心圆线圈,大圆半径为R,通有电流 I_1 ;小圆半径为r,通有电 流 I_2 ,方向如图. 若 $r \ll R$ (大线圈在小线圈处产生的磁场近似为均匀磁场), 当它们处在同一平面内时小线圈所受磁力矩的大小为

(A)
$$\frac{\mu_0 \pi I_1 I_2 r^2}{2R}$$
. (B) $\frac{\mu_0 I_1 I_2 r^2}{2R}$. (C) $\frac{\mu_0 \pi I_1 I_2 R^2}{2r}$. (D) 0.

(B)
$$\frac{\mu_0 I_1 I_2 r^2}{2R}$$
.

(C)
$$\frac{\mu_0 \pi I_1 I_2 R^2}{2r}$$

6. (本题 3 分)

如图所示,两个线圈 P和 Q 并联地接到一电动势恒定的电源 上.线圈 P的自感和电阻分别是线圈 Q的两倍,线圈 P和 Q之间的 互感可忽略不计. 当达到稳定状态后,线圈P的磁场能量与Q的磁 场能量的比值是

- (A) 4. (B) 2. (C) 1. (D) $\frac{1}{2}$. [

7. (本题 3 分)

把一个静止质量为 m_0 的粒子,由静止加速到 v = 0.6c (c 为真空中光速) 需作的功等于

(A) $0.18m_0c^2$.

(B) $0.25 m_0 c^2$.

(C) $0.36m_0c^2$.

(D) $1.25 m_0 c^2$.

8. (本题 3 分)

粒子在一维无限深方势阱中运动, 图为粒子处于某一能态上 的波函数 $\psi(x)$ 的曲线. 粒子出现概率最大的位置为

- (A) a/2.
- (B) a/6, 5a/6.
- (C) a/6, a/2, 5a/6.
- (D) 0, a/3, 2a/3, a.

9. (本题 3 分)

在原子的 K 壳层中,电子可能具有的四个量子数 (n, l, m_l, m_s) 是

(1)
$$(1, 1, 0, \frac{1}{2})$$
. (2) $(1, 0, 0, \frac{1}{2})$.

(2)
$$(1, 0, 0, \frac{1}{2}).$$

$$(3)$$
 $(2, 1, 0, -\frac{1}{2})$

(3)
$$(2, 1, 0, -\frac{1}{2})$$
. (4) $(1, 0, 0, -\frac{1}{2})$.

《2008 级大学物理(II)期末试卷 A 卷》试卷第 2 页 共 4 页

 (A) 只有(1)、(3)是正确的. (B) 只有(2)、(4)是正确的. (C) 只有(2)、(3)、(4)是正确的. (D) 全部是正确的. 	Е]
10. (本题 3 分) 根据量子力学原理,氢原子中,电子的轨道角动量 L 的最小值 (A) 0. (B) \hbar . (C) $\hbar/2$. (D) $\sqrt{2}\hbar$.	为 []
二、填空题(共30分)		
11. (本题 3 分) 已知某静电场的电势函数 $U=6x-6x^2y-7y^2$ (SI). 由场强与电(2, 3, 0)处的电场强度 $\vec{E}=$ \vec{i} + \vec{j} +		
12. (本题 3 分) 电荷分别为 q_1 , q_2 , q_3 的三个点电荷分别位于同一圆周的三个点上,如图所示. 设无穷远处为电势零点,圆半径为 R ,则 b 点处的电势 $U=$	q_1	q_2 Q q_3
13. (本题 3 分) 一平行板电容器两极板间电压为 U ,两板间距为 d ,其间充满相对介电常量为 ε 。的各向同性均匀电介质,则电介质中的电场能量密度 $w=$		b
14. (本题 3 分) 一无限长载流直导线,通有电流 <i>I</i> ,弯成如图形状.设各线	> I	<u>a</u>
段皆在纸面内,则 P 点磁感强度 \bar{B} 的大小为	$\overline{\Lambda}_{i}$	• P
15. (本题 3 分) 无限长直通电螺线管的半径为 <i>R</i> ,设其内部的磁场以 d <i>B</i> / d <i>t</i> 的 9 内 部 离 开 轴 线 距 离 为 <i>r</i> (<i>r</i> < <i>R</i>) 处 的 涡 巅		
16. (本题 3 分) 图示一充电后的平行板电容器, A 板带正电, B 板带负电. 当 将开关 K 合上放电时, AB 板之间的电场方向为	A + + + +	$ \begin{array}{c c} B \\ - \\ - \\ R \end{array} $ $ X $
17. (本题 3 分) 在 S 系中的 x 轴上相隔为 Δx 处有两只同步的钟 A 和 B ,读数相也有一只同样的钟 A' ,设 S' 系相对于 S 系的运动速度为 v ,沿 x 转遇时,刚好两钟的读数均为零。那么,当 A' 钟与 B 钟相遇时,是一个,此时在 S' 系中 A' 钟的读数是————————————————————————————————————	油方向,且	.当A' 与A相

以上四种取值中,哪些是正确的?

18. (本题 3 分)

如图所示,一频率为 ν 的入射光子与初始静止的自由电子发生碰撞和散射. 如果散射光子的频率为 ν' ,反冲电子的动量为p,则在与入射光子平行的方向上的动量守恒定律的分量形式为

19. (本题 3 分)

氢原子由定态 l 跃迁到定态 k 可发射一个光子. 已知定态 l 的电离能为 0.85 eV,又知从基态使氢原子激发到定态 k 所需能量为 10.2 eV,则在上述跃迁中氢原子所发射的光子的能量为 eV.

20. (本题 3 分)

在电子单缝衍射实验中,若缝宽为 a=0.1 nm $(1 \text{ nm} = 10^{-9} \text{ m})$,电子束垂直射在单缝面上,则衍射的电子横向动量的最小不确定量 $\Delta p =$ _______N·s. (普朗克常量 $h=6.63\times 10^{-34}$ J·s)

三、计算题(共40分)

21. (本题 10 分)

一个细玻璃棒被弯成半径为R的半圆形,沿其上半部分均匀分布有电荷+Q,沿其下半部分均匀分布有电荷-Q,如图所示.试求圆心Q处的电场强度.

22. (本题 10 分)

一根同轴线由半径为 R_1 的实心长金属导线和套在它外面的半径为 R_3 的同轴导体圆筒组成. R_1 与 R_2 之间充满磁导率为 μ 的各向同性均匀非铁磁介质, R_2 与 R_3 之间真空,如图. 传导电流 I 沿实心导线向上流去,由圆筒向下流回,在它们的截面上电流都是均匀分布的. 求同轴线内外的磁感强度大小 B 的分布.

23. (本题 10 分)

如图所示,一根长为L的金属细杆 ab 绕竖直轴 O_1O_2 以角速度 ω 在水平面内旋转. O_1O_2 在离细杆 a 端 L/5 处. 若已知地磁场在竖直方向的分量为 \bar{B} . 求 ab 两端间的电势差 U_a-U_b .

24. (本题 5 分)

已知 μ 子的静止能量为 105.7 MeV,平均寿命为 2.2 $\times 10^{-8}$ s. 试求动能为 150 MeV 的 μ 子的速度 ν 是多少? 平均寿命 τ 是多少?

25. (本题 5 分)

能量为 15 eV 的光子,被处于基态的氢原子吸收,使氢原子电离发射一个光电子,求此光电子的德布罗意波长.不考虑相对论效应。

(电子的质量 m_e =9.11×10⁻³¹ kg,普朗克常量 h=6.63×10⁻³⁴ J·s,1 eV=1.60×10⁻¹⁹ J) **《2008 级大学物理(II)期末试卷 A 卷》试卷第 4 页 共 4 页**