# Predicting change points in multivariate time series



#### Overview

- Change points (what, why)
- Methods for CPD
- Epilepsy and seizures
- Deep virtual classifiers
- Learning spectrograms with wavelets

## Setting and Motivation

- Predicting pre-seizure transition in patients with epilepsy\*
- Computer network intrusion detection
- Machine failure prediction



# High level problem



- Problem: Only some states labeled.
- Need to assign labels to the time series.



Figure 1. Example of a system generating a multichannel signal transitioning between states. The transition from State B to State C can be easily marked, but the transition from State A to State B cannot be marked. This results in a region of uncertainty about the state of the system.

# Change point detection (CPD)

 Change point detection is determining when the transition occurs.





#### Problem definition

- multivariate time series  $X = \{x_1, x_2, ... x_T\}$ 
  - $x_t \in \mathbb{R}^d$
- Assume X is generated by a process which undergoes a transition from state A to state B,
  - with probability distributions  $P_A$  and  $P_B$  respectively and  $P_A \neq P_B$ .
- A time  $\tau$  is a change point if:

$$\{x_1, x_2, \dots x_{\tau}\} \sim P_A$$
  
 $\{x_{\tau+1}, x_{\tau+2}, \dots x_T\} \sim P_B$ 

#### Related work

- Hypothesis testing: (Kuncheva, 2013)
  - $H_0$   $x_t$  and  $x_{t-1}$  drawn from the same multivariate Gaussian distribution
- CUSUM (Jeske et al., 2009)
  - monitor cumulative sum which measures accrued deviations
- Bayesian change-point detection (Adams and MacKay, 2007)
  - Estimate posterior probability of the "run-time" distribution
  - "run-time": length of time since last change point
- KLIEP (Sugiyama et al., 2007; Kawahara et al. 2012)
  - approximate density ratio to measure change in distribution
- Virtual classifiers (Desobry et al., 2005; Hido et al, 2008, Yamada et al., 2013)
  - measure likelihood of change point using classification accuracy

Unsupervised

Semisupervised

# Deep virtual classifiers for seizure prediction

Khan, H., Marcuse, L., Fields, M., Swann, K., & Yener, B., (2017). Focal onset seizure prediction using convolutional networks. *IEEE Transactions on Biomedical Engineering*.

## What is Epilepsy?

- Epilepsy is a neurological disorder characterized by the unpredictable occurrence of seizures.
  - Affects 65M people in the world, 3.4M in the US
- Symptoms of seizures:
  - Convulsions
  - Auras
  - Forgetfulness



#### Seizure prediction horizon

- Changes occur in the brain prior to seizure onset that make the seizure inevitable.
  - Seizure prediction horizon (PH), preictal state/period
- Central question: When do the preseizure changes occur?

| Assumed<br>pre-ictal<br>period<br>(min) | ,    | False-positive<br>rate (FP/h) | Mean<br>prediction<br>time (min) | Statistical<br>validation of<br>performance |
|-----------------------------------------|------|-------------------------------|----------------------------------|---------------------------------------------|
| 30                                      | 94   | 0                             | 12                               | No                                          |
| 20                                      | 89   | n.a.                          | 3                                | No                                          |
| 20                                      | 83   | n.a.                          | 6                                | No                                          |
| 20                                      | 94   | n.a.                          | 4                                | No                                          |
| n.s.                                    | 100  | 0                             | n.s.                             | No                                          |
| 60                                      | 100  | 0                             | n.s.                             | No                                          |
| 262.5                                   | 100  | n.a.                          | 52                               | No                                          |
| 60                                      | 96   | n.a.                          | 7                                | No                                          |
| Variable                                | 91   | n.s.                          | 49                               | No                                          |
| 180                                     | 90   | 0.12                          | 19                               | No                                          |
| n.s.                                    | 77   | n.s.                          | Several min                      | No                                          |
| n.s.                                    | 47   | 0                             | 19                               | No                                          |
| 60                                      | 95   | 0                             | n.s.                             | No                                          |
| 3                                       | 100  | n.a.                          | 2                                | No                                          |
| 90                                      | 83   | 0.31°                         | 8                                | No                                          |
| Variable                                | 100  | n.s.                          | 83                               | No                                          |
| 240                                     | 86   | 0                             | 86/102 <sup>h</sup>              | Yes                                         |
| 240                                     | 81   | 0                             | 4-221                            | No                                          |
| 60                                      | 0    | n.a.                          | _                                | No                                          |
| 2                                       | 94   | 0.08 <sup>f</sup>             | 5–80 s                           | No                                          |
| 90                                      | n.s. | n.s.                          | >>30                             | No                                          |
| 60                                      | 88   | 0.02                          | 35                               | No                                          |

## Features for seizure prediction

- Seizure prediction horizon (PH)
  - Previous studies assume PH in the range 2 minutes to 262.5 minutes (Mormann et al., 2016)
  - PH reported varies based on features extracted

#### • Features:

- Time/frequency domain features (Karoly et al., 2016)
- Multivariate features (Cho et al., 2017; Dhulekar et al., 2016)
- Model based features (Arabi and He, 2014)



Examples of features extracted for seizure prediction.

#### State of the art

- "Crowdsourcing reproducible seizure forecasting in human and canine epilepsy" (Brinkman et al., 2016)
  - Results of Kaggle competition on seizure prediction
  - Winning submissions used time/frequency domain features extracted from intracranial human and dog EEG
  - PH 60 mins
- "Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: A first-in-man study" (Cook et al., 2013)
  - Implanted seizure prediction device
  - Three energy measures in filtered intracranial EEG as features
  - PH 6 30 minutes (optimized per patient)
- "On the proper selection of preictal period for seizure prediction" (Bandarabadi et al., 2015)
  - Measure common area (C) between preictal and interictal feature histograms
  - Define optimal prediction horizon for a single feature as minimum C

## Evaluating prediction systems

- Sensitivity: percentage of events predicted within prediction horizon
- Specificity: false prediction rate
- Comparison to random predictor (Schelter et al., 2006)



The prediction horizon is a critical parameter for a prediction system as it can be increased arbitrarily to achieve perfect sensitivity.

#### Is a system better than random?

- Analytical model given by (Schelter et al., 2006)
- Predictions are generated with probability  $P \approx \text{FPr} * \text{PH}$
- To perform better than random, sensitivity must be greater than:

$$\sigma > \frac{\max_{k} \left\{ \left( 1 - \left( \sum_{j < k} {K \choose j} P^{j} (1 - P)^{K - j} \right)^{d} \right) > \alpha \right\}}{K}$$

• Where K is the number of analyzed events, d is the dimension of the feature space, and  $\alpha$  is a significance level.

## Virtual classifiers (VC) - Theory

Time series of feature vectors  $\{x_k\}_{k=1}^T$  with state space  $\mathcal{X} = \mathbb{R}^d$ .

Time t defines a split of the time series into disjoint sets:

$$A_t = \{x_1, x_2, ..., x_t\}$$
  

$$B_t = \{x_{t+1}, x_{t+2}, ..., x_T\}$$

Consider change point detection as an optimization problem:

$$\max_{t} D(P(x|A_t), P(x|B_t))$$

• Idea is to approximate  $D(P(x|A_t), P(x|B_t))$  with classification accuracy



Example of a Gaussian noise signal undergoing a mean shift. By splitting the signal into segments and approximating the conditional probability distributions with Gaussians, we see the KL-divergence is maximal when the split matches the change point.

# Approximating KL-divergence with VC

$$\max_{t} D(P(x|A_t), P(x|B_t))$$

• Using the KL-divergence for 
$$D(\cdot, \cdot)$$
 yields: 
$$\max_{t} \sum_{x \in \mathcal{X}} P(x|A_t) \log \left( \frac{P(x|A_t)}{P(x|B_t)} \right)$$
$$\max_{t} \sum_{x \in \mathcal{X}} P(x|A_t) \log P(x|A_t) - \sum_{x \in \mathcal{X}} P(x|A_t) \log P(x|B_t)$$

# Bayes rule to isolate posterior distribution

• Applying Bayes rule to  $P(x|B_t)$  yields:

$$\max_{t} \sum_{x \in \mathcal{X}} P(x|A_t) \log P(x|A_t) - \sum_{x \in \mathcal{X}} P(x|A_t) \log P(x) - \sum_{x \in \mathcal{X}} P(x|A_t) \log P(B_t|x) + \sum_{x \in \mathcal{X}} P(x|A_t) \log P(B_t)$$

$$\max_{t} D(P(x|A_t), P(x)) - \sum_{x \in \mathcal{X}} P(x|A_t) \log P(B_t|x) + \log P(B_t)$$

$$\max_{t} - \sum_{x \in \mathcal{X}} P(x|A_t) \log P(B_t|x)$$

- $D(P(x|A_t), P(x)) \ge 0$
- $P(B_t|x)$  as a classifier f(x)
- $P(x|A_t)$  as set of labels y

$$-\sum_{x \in \mathcal{X}} P(x|A_t) \log P(B_t|x) \approx \frac{1}{T} \sum_{i=1}^{T} y_i \log f(x_i)$$

#### Deep Virtual Classifiers

- Use deep feedforward network instead of a simpler classifier
  - Optimization over feature transform with parameters  $\theta$

$$\max_{t} - \sum_{x \in \mathcal{X}} P(x|A_t) \log P(B_t|x) \approx \min_{t,\theta} -\frac{1}{T} \sum_{i=1}^{T} y_i \log f(x_i;\theta)$$

## Virtual classifiers summary

- Given:
  - a set of candidate change points  $\{\tau_1, \tau_2, ... \tau_m\}$
  - a set of time series  $\{X_i\}_{i=1}^n$
- Construct a set of binary labels  $\{Y_j\}_{j=1}^m$
- Each  $Y_i$  is a vector of length T with:

$$Y_{jk} = \begin{cases} -1 & \text{if } k \le \tau_j \\ 1 & \text{if } k > \tau_j \end{cases} \text{ for } k = 1, 2, \dots T$$

- Copies of each of these label vectors  $Y_j$  are paired with every time series in  $\{X_i\}_{i=1}^n$  forming the pseudo-labeled dataset  $D_j = \{(X_i, Y_j)\}_{i=1}^n$ .
- A classifier is trained on each dataset  $D_j$ , resulting in m classifiers each trained on a different labeling of the data.
- Accuracy on a validation set of each of the classifiers is measured as  $p_1, p_2, ..., p_m$ .

#### CNN for feature extraction

Use CNN to learn features from EEG

Convolution + Max-pooling

3x3 kernel

Convolutions over time and frequency domain via wavelets



Convolutional neural network trained on EEG to predict brain states from wavelet transformed EEG.

# VC for preictal period length

- Candidate preictal lengths were
   5, 10, 15, and 20 mins
- A CNN was trained for each labelling of the data
- Preictal length of 10 mins was chosen based on significant improvement in accuracy

ROC-AUC between interictal and preictal classes for different assumed preictal lengths. Averaged over 10-folds of validation data, error bar shows 1 standard deviation.





## Results and Comparison

- Dataset of 500+ hours of 22-channel EEG with 200+ seizures
- We compared our results to:
  - 2 top performing algorithms from Kaggle (Brinkmann et al., 2016)
  - Algorithm from (Cook et al., 2013)

#### Seizure prediction results

| Method      | PH     | Sensitivity | FPr    | Random pred.                   |
|-------------|--------|-------------|--------|--------------------------------|
|             | (mins) |             | (FP/h) | $\sigma_{low} - \sigma_{high}$ |
| Kaggle1     | 60     | 72.7%       | 0.285  | 15.1% - 27.2%                  |
| Kaggle 2    | 60     | 75.8%       | 0.230  | 12.1% - 24.2%                  |
| Cook et al. | PS*    | 66.7%       | 0.186  | 12.1% - 21.2%                  |
| This work   | 10     | 87.8%       | 0.142  | 9.1% - 15.1%                   |



Prediction times generated by the CNN for all test set recordings with seizures grouped by patient. The spread of the prediction times is large indicating a non-uniform transition time within patients and between patients.

#### Limitations

- VC requires a uniform transition time over all time series
  - Otherwise combinatorial explosion of  $m^n$  occurs
- VC is also very computationally expensive
  - Requires training *m* neural nets multiple times.

# Learning spectral decompositions with wavelets

Khan, H. & Yener B., (2018). Learning filter widths of spectral decompositions with wavelets. *Advances in Neural Information Processing (NeurIPS)* 

#### Spectral decompositions

- Models for time series use a spectral decomposition of signals as input
- Typically use cross validation to pick parameters
- Applications such as automatic speech recognition (Hinton et al., 2012), biological signal analysis (Andreao et al., 2006), and financial time series (Cao et al., 2003)





Top: Linear chirp signal. Bottom: Spectrogram of the linear chirp signal.

#### Wavelet transform

Mother wavelet function

$$\Psi_w(t) = \frac{2}{\sqrt{3w}\pi^{\frac{1}{4}}} \left( 1 - \frac{t^2}{w^2} \right) e^{-\frac{t^2}{2w^2}}$$

 Scale the mother wavelet and convolve with the signal



Wavelet filters.

## Spectral decomposition with wavelets







# Automatically extracting time/frequency domain features

- Combine the wavelet transform and CNN
- Use backpropagation to learn the scale parameters
- learn the "width" of the filters with gradient descent



The wavelet transform applied to a multichannel signal



# Learn scales with backpropagation

The output of the wayelet layer is given by:

$$y_{ij} = \sum_{a=1}^{r} s_{ia} x_{j+a} \ \forall i = 1 \dots M$$

Where the wavelet filter  $s_i \in \mathbb{R}^{1 \times P}$  is the discretized wavelet function over the grid  $k = \left\{-\frac{P-1}{2} \dots \frac{P-1}{2}\right\}$ :

$$s_{ia} = \frac{2}{\sqrt{3w_i}\pi^{\frac{1}{4}}} \left(1 - \frac{k_a^2}{w_i^2}\right) e^{-\frac{k_a^2}{2w_i^2}} \,\forall a = 1 \dots P$$

For backpropagation, we want  $\frac{\delta E}{\delta w_i}$  where E is some error function:

$$\frac{\delta E}{\delta w_i} = \sum_{a=1}^{P} \frac{\delta E}{\delta s_{ia}} \frac{\delta s_{ia}}{\delta w_i} = \sum_{a=1}^{P} \frac{\delta E}{\delta s_{ia}} \left[ A \left( M \frac{\delta G}{\delta w_i} + G \frac{\delta M}{\delta w_i} \right) + MG \frac{\delta A}{\delta w_i} \right]$$
$$\frac{\delta E}{\delta s_{ia}} = \sum_{j=1}^{N} \frac{\delta E}{\delta y_{ij}} \frac{\delta y_{ij}}{\delta s_{ia}} = \sum_{j=1}^{N} \frac{\delta E}{\delta y_{ij}} x_{j+a}$$

$$A = \frac{2}{\pi^{\frac{1}{4}}} (3w_i)^{-\frac{1}{3}}$$

$$M = 1 - \frac{k_a^2}{w_i^2}$$

$$G = e^{-\frac{k_a^2}{2w_i^2}}$$

$$\frac{\delta A}{\delta w_i} = -\frac{6}{\pi^{\frac{1}{4}}} (3w_i)^{-\frac{3}{2}}$$

$$\frac{\delta M}{\delta w_i} = \frac{2k_a^2}{w_i^3}$$

$$\frac{\delta G}{\delta w_i} = \frac{k_a^2}{w_i^3} e^{-\frac{k_a^2}{w_i^2}}$$

#### Results

- TIMIT Phone recognition dataset
- UCR Haptics dataset

Best reported PER on the Timit dataset without context dependence

| Method               | PER (Phone Error Rate) |  |
|----------------------|------------------------|--|
| DNN with ReLU units  | 20.8                   |  |
| CNN                  | 18.9                   |  |
| DNN + RNN            | 18.8                   |  |
| WD + CNN (this work) | 18.1                   |  |
| LSTM RNN             | 17.7                   |  |
| Hierarchical CNN     | 16.5                   |  |

Test error on the Haptics dataset

| Method               | Test Error |
|----------------------|------------|
| DTW                  | 0.623      |
| BOSS                 | 0.536      |
| ResNet               | 0.495      |
| COTE                 | 0.488      |
| FCN                  | 0.449      |
| WD + CNN (this work) | 0.425      |

#### Learned filters

- The learned filters resemble engineered filter banks for ASR
- Learning can be slow with vanilla SGD
  - Use ADAM (Kingma and Ba, 2014)



Left: Learned wavelet filter bank for TIMIT phone recognition task. Right: Parameters of the wavelet transform converge to frequencies used to generate artificial data

# Acknowledgements

- Prof. Bülent Yener
- Dr. Lara Marcuse and Dr. Madeline Fields



