Le Petit Prince : satellisation d'une pomme

On se place à la surface d'une planète de rayon R et de champ gravitationnel g. On envoie une pomme avec une vitesse v_0 purement horizontale et on négligera les frottements de l'air.

- En supposant la planète localement plane, déterminer la hauteur $\mathrm{d}z$ dont est tombée la pomme après avoir parcouru une longueur $\mathrm{d}x$ dans le plan horizontal.
- Après une distance horizontale dx, de combien le sol de la planète est-il descendu ? On pourra utiliser les formules pour les petits angles : $\tan \theta \simeq \theta$, $\sin \theta \simeq \theta$ et $\cos \theta \simeq 1 \theta^2/2$.
- $\bullet\,$ En déduire qu'il existe une certaine vitesse v_0 pour laquelle la pomme va revenir à son point de départ.

Projectile lancé à la verticale

On tire un petit projectile à la verticale, avec une vitesse initiale v_0 . Le problème est de calculer son altitude z en fonction du temps, en tenant compte de la gravité et de la résistance de l'air. Comme l'objet est petit, on supposera que la résistance de l'air est proportionnelle à la vitesse et que la force de résistance est $m\gamma v$, m étant la masse de l'objet, v sa vitesse et γ une constante. Nous supposerons que la force de gravité est constante (on néglige sa variation en fonction de l'altitude). On adoptera comme origine la position du tir (z=0) et on supposera que le mouvement ne se produit que dans la direction z.

- Soit v(t) la composante en z de la vitesse du projectile. Écrivez l'équation différentielle que doit satisfaire v(t) en fonction du temps, d'après la deuxième loi de Newton.
- Résoudre cette équation différentielle avec la condition initiale $v(0) = v_0$.
- \bullet Exprimer maintenant l'altitude z en fonction du temps.
- Calculer l'altitude maximale atteinte par le projectile (z_{max}) , en fonction des paramètres v_0 , g et γ .
- Exprimer le résultat de la question précédente (z_{max}) dans les limites de très faible résistance $(\gamma \to 0)$ et de très forte résistance $(\gamma \to \infty)$. Quelles modifications mineures devrait-on apporter à l'équation différentielle trouvée première question pour retrouver ces résultats plus simplement ?

Paramètre d'impact

Une météorite arrive depuis l'infini vers la Terre avec une vitesse à l'infini \vec{v}_0 . La Terre a une masse M_T et un rayon R_T . On note b le paramètre d'impact comme indiqué sur la figure ci-dessous. L'objectif de ce problème est de déterminer la valeur minimale de b pour laquelle la météorite évite la collision avec la Terre.

- La météorite n'est soumise qu'à la force gravitationnelle de la Terre. Déterminer la nature de sa trajectoire. Montrer que le mouvement est plan et déterminer une relation entre r et $\dot{\theta}$.
- On note N le point de la trajectoire où la distance qui sépare la météorite de la Terre est la plus petite. Montrer qu'en N, la vitesse est uniquement suivant \vec{u}_{θ} . Déterminer une relation entre v_N au point N, la distance ON, b et v_0 .
- En utilisant la conservation de l'énergie, montrer la relation :

$$0 = r_{\min}^2 v_0^2 + 2GM_T r_{\min} - v_0^2 b^2.$$

• En déduire l'expression minimale b_c du paramètre d'impact telle que pour $b < b_c$, la météorite frappe la Terre et pour $b > b_c$, la météorite évite la Terre. On pourra exprimer le résultat en fonction de la vitesse de libération v_{lib} .

Piège de Penning

A l'aide d'un dispositif approprié, on créé dans une région de l'espace au voisinage d'un point O un champ électrique défini en coordonnées carthésiennes par :

$$\vec{E} = \frac{U_0}{2R^2} \left(-x\vec{e}_x - y\vec{e}_y + 2z\vec{e}_z \right)$$

Un électron de masse m et de charge e se meut dans la région située autour du point O.

 \ominus Montrer que le point O est une position d'équilibre pour l'éléctron. Discuter de la stabilité selon les directions. On introduira $\omega_z^2 = eU_0/mR^2$.

Pour stabiliser la trajectoire de l'électron, on supperpose au champ électrique un champ magnétique uniforme et constant $\vec{B} = B_0 \vec{e}_z$. On définit $\omega_c = eB_0/m$.

- $\ominus\,$ Montrer que le mouvement suivant \vec{e}_z est inchangé.
- \ominus Pour le mouvement dans le plan (xOy), montrer que l'électron n'est piégé que si B_0 est supérieur a une certaine valeur B_c , à déterminer en fonction des données de l'exercice. On utilisera le changement de variable : $\rho = x + iy$.
- \ominus Résoudre l'équation en ρ pour le cas $B_0 \gg B_c$, sans chercher à mettre en évidence les constante d'intégration, mais en mettant en évidence deux pulsations, l'une voisine de ω_c , notée ω_c' , et une autre notée ω_m , appelée pulsation magnétique.