SVKM'S NMIMS MUKESH PATEL SCHOOL OF TECHNOLOGY MANAGEMENT & ENGINEERING / SCHOOL OF TECHNOLOGY MANAGEMENT & ENGINEERING

Academic Year: 2021-22

Programme: B. Tech / MBA Tech (Computer)

Year: II

Semester: IV

Subject: Theoretical Computer Science

Marks: 100

Date: 12 April 2022

Time: 10.00 am to 1.00 pm

Durations: 3 (hrs)
No. of Pages: 3

Final Examination

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover of the Answer Book, which is provided for their use.

1) Question No. 1 is compulsory.

2) Out of remaining questions, attempt any 4 questions.

3) In all 5 questions to be attempted.

4) All questions carry equal marks.

5) Answer to each new question to be started on a fresh page.

6) Figures in brackets on the right hand side indicate full marks.

7) Assume Suitable data if necessary.

Q1		Solve the following	1
CO-2; SO-1,2; BL-III	a.	 Identify Formal Language and its class by constructing various derivation trees by considering following grammar G. G: S → aSa bSb € 	[5]
CO-1; SO-1; BL-IV	b.	Distinguish between pushdown automata and deterministic automata	[5]
CO- 2; SO- 1,2; BL-I,II	C.	What are the various closure properties of context-free languages? Explain	[5]
CO-1,2; SO- 1,2; BL-I,II	d.	Define and explain universal Turing machine	[5]
Q2 CO-1,3; SO-1,2; BL-I,VI	a.	What is formal definition of Turing Machine? Construct a Turing machine to create a copy of the input over {a,b}	[10]

CO-1,3; SO-1,2; BL-I,VI	b.	What is formal definition of pushdown automata (PDA)? Design a PDA for accepting a language $L = \{a^n b^{2n} n > = 1\}.$						
Q3 CO-3; · SO-2; BL-VI	a.	Construct DFA in which number of 'a' is divisible by 3 and number of 'b' is divisible by 2, $L=\{n_a(w)=0 \text{ mod } 3 \text{ and } n_b(w)=0 \text{ mod } 2 \}$						
	b	Explain Greibach Normal Form (GNF), Consider the following grammar						
CO-3;		G, apply GNF and construct the equivalent grammar in GNF.						
SO-2;		$S \rightarrow AB$						
BL- II, III		$A \rightarrow BS \mid a$						
* ±		$B \rightarrow SA \mid b$						
Q4 CO-1,3; SO-1,2; BL-I,VI	a.	How Moore machine is different from Mealy machine? Give the Mealy and Moore Machine for the following processes, "For input from (0+1)*, If inputs end in 101, the output is x, if the input ends in 110, the output is y; otherwise the output is z".						
CO-2;	b.							
SO-1,2; BL-II	0.	Differentiate between Type 0, Type 1, Type 2, and Type 3 Grammar.						
CO-2; SO-1,2; BL-I,II	С	What is Halting Problem? Explain						
	a. What is Arden's Theorem? Apply Arden's theorem to convert the							
(4)		following DFA to RE.						
Q5		1	$Q \Sigma$	0	1			
CO-1,2;			$\rightarrow q_0$	-	q1	>	[10]	
SO-1,2; BL-I,III			, q ₁	q2	q1			
			q ₂	q2	q3			
			q ₃ *	q2	q1			
	b	What is Context Free				CFG for the following		
CO-1,3; SO-1,2; BL-I,VI		languages i) $L = (011 + 100) *$ ii) $L = (0*10*10*)$					[5]	

	С	Write the Formal definition of Moore Machine. Convert the given transition						
		table in Moore machine to Mealy machine.						
		28	Q	Σ=0	∑=1	Δ		
CO-1,3;		2	→A	Е	С	€		
SO-1,2;		·	В	E	С	1		[5]
BL-I,III		30	С	В	F	0		[2]
			D	В	F	1	1	
			E	D	В	0		
		P	F	G	Е	0		
			G	G	E ·	1		
Q6		Consider the following Language L. $L = \{WW^R \mid W \in (a, b)^*, \text{ and } W^R \text{ is the reverse of } W\}$						
CO-2,3; SO-1,2; BL-III,VI	a	Design the grammar for language L and identify its class.						
CO-2; SO-1,2; BL-III	b	Using above grammar, For the string 'ababbaba' find the following i) leftmost derivation ii) derivation tree						[5]
CO-3; SO-2; BL-VI	С	Design a Pushdown Automata to recognize language L.						
CO-3; SO-2; BL-VI	d	Construct Turing Machine to recognize language L.						[5]