Background

- "robust-yet-fragile" property of financial system can serve at the same time as shock-absorbers and shock-amplifiers to the financial sector (Haldane 2009).
- ► This makes the system robust, when the magnitude of shock is relatively small, but fragile, when the shock is large.
- ➤ A seminal paper by Acemoglu, Ozdaglar, and Tahbaz-Salehi 2015, provides a formal model, in which an extent of financial contagion exhibits a form of regime transition.
 - ▶ When the shocks are small, the damages are dissipated through large number of financial institutions.
 - ▶ When the shock is above some threshold, the properties of the system changes markedly. The damages are amplified through the network.

Research design

- ▶ aim is to provide empirical evidence for the regime-dependent effect of connectedness on financial stability, i.e.:
 - Stable markets regime: Higher connectedness -> less volatility
 - High shock regime: Higher connectedness -> more volatility
- In a following steps:
 - Based on stock prices of the biggest banks in EU and USA, I calculate the connectedness (e.g. correlation) measure in a rolling window basis.
 - This time series measure is then used as an explanatory variable in a Markov switching ARCH model.

Connectedness measures

- Average correlation: $\frac{\sum_{i\neq i}^{N}\sum_{j\neq j}^{N}\rho_{i,j}(R)}{N^{2}-N}$, with $\rho(\cdot)$ being the Ledoit-Wolf estimator of the covariance matrix (Ledoit and Wolf 2003).
- $ightharpoonup \frac{\sum_{i=1}^{k} \lambda_{i}}{\sum_{i=1}^{N} \lambda_{i}}$, with λ being an eigenvalue of the covariance matrix.
- ► (Granger 1969) based measure of connectedness:
 - For each of stock pair estimate: $r_{i,t+1} = \beta_0 + \beta_1 r_{m,t} + \beta_2 r_{j,t}$
 - ► The "causality" matrix is set as:

As with before we calculate average connectedness: $\sum_{\substack{i\neq j: \sum_{j\neq i}^{N} G_{i,j} \\ N \times (N-1)}}^{N} G_{i,j}$

Last two measures are as described in Billio et al. 2012

Connectedness measures results

Figure: Standardized time series of connectedness measures for a rolling window of 63 trading days (quarter)

Modeling the regime-dependent effect of connectedness

Mean specification of the model:

$$\mu_{i,t} = \beta_0 + \underbrace{\beta_1 r_{b,t-1}}_{\text{Banking index}} + \underbrace{\beta_1 r_{m,t-1}}_{\text{Broad market index}} + \epsilon_t$$

The Markov-switching ARCH specification is:

$$\sqrt{\epsilon_t^2} = \alpha_{0,s} + \underbrace{\alpha_{1,s}\kappa_{t-1}}_{\text{connectedness}} + \underbrace{\sum_{i=1}^p \alpha_{i+1}\sqrt{\epsilon_{t-i}^2}}_{\text{Lag controls}}$$

With regime changes according to Markov process:

$$P(S_t = i | S_{t-1} = j) = \begin{bmatrix} \pi_1 & 1 - \pi_2 \\ 1 - \pi_1 & \pi_2 \end{bmatrix}$$

Estimation results

EU banking sector and 252 trading days (year) rolling window

$\begin{array}{c} \alpha_0 \\ \alpha_1 \\ \eta \end{array}$	0.466* 0.017	S.E. 0.019 0.009	Estimate 1.988*	S.E. 0.06
α_1			1.988*	0.06
-	0.017	0.000		0.00
η		0.009	0.22*	0.043
	0.435	0.009	1.4	0.012
$\pi_{i,i}$	78.6%		52%	
α_0	0.458*	0.018	1.975*	0.061
α_1	-0.002	0.008	0.052	0.048
η	0.435	0.009	1.42	0.012
$\pi_{i,i}$	90%		67.2%	
α_0	0.468*	0.018	1.984*	0.059
α_1	0.018*	0.008	0.276*	0.05
η	0.433	0.009	1.394	0.013
$\pi_{i,i}$ 78.5%		%	52.5%	
	$ \frac{\pi_{i,i}}{\alpha_0} $ $ \frac{\alpha_0}{\alpha_1} $ $ \frac{\pi_{i,i}}{\alpha_0} $ $ \frac{\alpha_1}{\alpha_1} $ $ \frac{\alpha_1}{\alpha_1} $ $ \frac{\pi_{i,i}}{\alpha_1} $	$egin{array}{lll} \pi_{i,i} & 78.6^{\circ} \\ lpha_{0} & 0.458^{*} \\ lpha_{1} & -0.002 \\ \eta & 0.435 \\ \pi_{i,i} & 90\% \\ lpha_{0} & 0.468^{*} \\ lpha_{1} & 0.018^{*} \\ \eta & 0.433 \end{array}$	$\pi_{i,i}$ 78.6% α_0 0.458* 0.018 α_1 -0.002 0.008 η 0.435 0.009 $\pi_{i,i}$ 90% α_0 0.468* 0.018 α_1 0.018* 0.008 η 0.433 0.009 $\pi_{i,i}$ 78.5%	$\pi_{i,i}$ 78.6% 52% α_0 0.458* 0.018 1.975* α_1 -0.002 0.008 0.052 η 0.435 0.009 1.42 $\pi_{i,i}$ 90% 67.29 α_0 0.468* 0.018 1.984* α_1 0.018* 0.008 0.276* η 0.433 0.009 1.394 $\pi_{i,i}$ 78.5% 52.59

US banking sector and 63 trading days (year) rolling window

Connectedness measure		Regime 1		Regime 2			
		Estimate	S.E.	Estimate	S.E.		
Correlation-based	α_{0}	0.402*	0.013	1.517*	0.054		
	α_1	0.027*	0.007	0.239*	0.044		
	η	0.373	0.007	1.268	0.017		
	$\pi_{i,i}$	89.4%		67%			
Eigenvalue-based	α_0	0.416*	0.014	1.554*	0.057		
	α_1	0.041*	0.007	0.194*	0.046		
	η	0.38	0.006	1.304	0.016		
	$\pi_{i,i}$	90%		67.2%			
Granger-based	α_0	0.379*	0.013	1.472*	0.047		
	α_1	0.009	0.007	0.205*	0.032		
	η	0.356	0.006	1.161	0.013		
	$\pi_{i,i}$	87.4%		65%			
* coefficient with 5% statistical significance							

^{*} coefficient with 5% statistical significance

References I

Acemoglu, Daron, Asuman Ozdaglar, and Alireza Tahbaz-Salehi (Feb. 2015). "Systemic Risk and Stability in Financial

DOI: 10.1257/aer.20130456. URL: https:

Networks". In: American Economic Review 105.2, pp. 564-608.

References II

```
Haldane, Andrew G. (Apr. 2009). Rethinking the financial network.
Speech delivered at the Financial Student Association,
Amsterdam. URL: https:
//www.bankofengland.co.uk/speech/2009/rethinking-the-financial-network.
```

Ledoit, Olivier and Michael Wolf (2003). "Honey, I shrunk the sample covariance matrix". In: *UPF economics and business working paper* 691.