Specyfikacja argumentów (danych)

Reprezentacja zewnętrzna (języki programowania):

- format łatwo rozpoznawalny przez człowieka:
 - o zapis pozycyjny dziesiętny ze znakiem
 - o zapis naukowy/inżynierski
 - o zapis znakowy (tekst)

Reprezentacja wewnętrzna (kod maszynowy):

- uporządkowany ciąg bitów (ciąg zero-jedynkowy)
- słowo maszynowe uporządkowany ciąg bitów o długości 2^k bitów (8,16,32,...)

Interpretacja ciągu bitów zależy od:

- specyfikacji (sposobu wykonania) działania elementarnego
- definicji funkcji

Deklaracja zmiennej:

- nie narzuca interpretacji
- określa rozmiar zmiennej w przestrzeni logicznej/ pamięci ope
- ułatwia kontrolę poprawności wyników działań

Argumenty działań

Argumenty działań

Cechy działań (1)

kopiowanie

- niszczące, nieodwracalne
- kopiowanie bloków ryzyko zniszczenia źródła (kolejność przesłań)
- wymiana (*exchange*) (także przestawianie (*swap*)) odwracalne

zmiana formatu

- przemieszczenie pól (rekordów) przestawienie (*swap*)
- systematyczne przemieszczenie bitów
 - o zwykłe przesunięcie arytmetyczne lub logiczne
 - o cykliczne rotacja prosta i rozszerzona
- rozszerzanie kodów liczb
- rozpakowanie i upakowanie kodu
- konwersje formatów zmiennoprzecinkowych

(zmiana kodu)

- konwersje typów liczb (zmiennoprzecinkowy ↔ stałoprzecinkowy)
- przekodowanie przez tablicę

Cechy działań (2)

logiczne

- równoległe na parach bitów
- nieodwracalne AND / OR albo ANDN (iloczyn z zanegowanym operandem)
- odwracalne XOR

arytmetyczne

- syndromy wyniku (kody warunkowe)
- stałoprzecinkowe
 - o odwracalne
 - o mnożenie pełne lub częściowe
 - o dzielenie pełne lub skrócone
- zmiennoprzecinkowe
 - o nieodwracalne (zaokrąglanie, brak łączności dodawania)
 - o obsługa kodów specjalnych (nie-liczby i nieskończoności)

wektorowe

• wyniki formowane w rekordach, zawsze w zakresie (nasycanie lub obcięcie)

Typy i formaty danych

- kody rozkazów (op-codes)
 - regularny format i stały rozmiar (architektura RISC)
 - nieregularny format i zmienny rozmiar (architektura CISC)
- dane użytkowe (user data)
 - ciągi bajtów o znaczeniu interpretowanym przez procesor
 - umowy i standardy
 - o kody znaków (ISO-5 \rightarrow ISO-7 \rightarrow ASCII)
 - o liczby naturalne (kod NB) i całkowite (kod U2)
 - o liczby pseudorzeczywiste (standard IEEE 754-2008)
- dane systemowe (system data)
 - dynamiczne tworzone podczas wywołania funkcji lub procedury
 - statyczne tworzone podczas kreacji procesów (zadań)

Kody rozkazów (RISC)

<u>kody rozkazów</u> – dane użytkowe – dane systemowe

a)	OP	RD	RA	DISP / IMM
----	----	----	----	------------

Jednolita struktura słów kodu maszynowego procesora RISC (architektura L/S)

- a) transfery (load/store), b,c) działania arytmetyczne i logiczne,
 - d) skok bezwarunkowy, e,f) rozgałęzienia warunkowe

Zmienna struktura kodu rozkazów (CISC)

Struktura kodu procesorów Intel x86

- (prefiks blokady magistrali **lock**)
- przedrostek rozmiaru adresu (default address size) [80386+]
- przedrostek rozmiaru operandu (default operand size) [80386+]
- przedrostek zmiany segmentu (*segment override prefix*) | (lub **rep**)
- kod rozkazu (opcode)
- rozszerzenie kodu (opcode extension)
- bajt trybu adresowania (addressing mode byte)
- bajt rozszerzenia adresu (address extension) [80386+]
- bajty przemieszczenia (displacement) 0, 1, 2 lub 4 [80386+]
- bajty argumentu bezpośredniego (immediate data) 0, 1, 2 lub 4 [80386+]

Dane systemowe

kody rozkazów – dane użytkowe – <u>dane systemowe</u>

Organizacja stosu: a) działania, b) przepełnienie, c) wyczerpanie

Organizacja kolejki (T – wskaźnik końca, H – wskaźnik czoła)

Dane użytkowe - interpretacje

kody rozkazów – <u>dane użytkowe</u> – dane systemowe

Typy skalarne:

- identyfikatory (enumeration) kody informacji nieliczbowej, cechy (attribute)
 - logiczne (boolean), znakowe (character), opisowe (descriptive);
- dyskretne (discrete), w szczególności:
 - całkowite (integer) i porządkowe (cardinals), inaczej naturalne (natural),
- pseudo-rzeczywiste (non-discrete), w szczególności:
 - stałoprzecinkowe (fixed-point) interpretowane całkowite,
 - zmiennoprzecinkowe (*floating-point*).

Typy strukturalne – zbiory danych skalarnych lub strukturalnych i obejmują:

- zestawy (sets) nieuporządkowane zbiory danych,
- wektory (vectors) i tablice (arrays) uporządkowane zbiory danych,
 - łańcuchy (strings), uporządkowane ciągi (wektory) znaków,
- rekordy (*records*), regularne struktury danych dowolnych typów.

Typy wskaźnikowe (access) – identyfikują lokalizację (adres) obiektu

Kod ASCII (American Standard Code for Information Interchange)

Kod ASCII (część międzynarodowa) = 0 | | ISO-7 (CCITT No 5)

H L	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	SO	SI
0001	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
0010	SP	!	"	#	\$	%	&	1	()	*	+	,	_		/
0011	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
0100	@	A	В	C	D	Е	F	G	Н	Ι	J	K	L	M	N	O
0101	Р	Q	R	S	T	U	V	W	X	Y	Z	[\]	^	_
0110	`	a	b	С	d	e	f	g	h	i	j	k	1	m	n	o
0111	p	q	r	s	t	u	V	w	X	y	Z	{	1	}	~	DEL

NUL nullify	SOH – start of header	STX – start of text	ETX – end of text
EOT – end of transfer	ENQ – enquire	ACK – acknowledge	BEL – bell
BS – backspace	HT – horizontal tab	LF – line feed	VT – vertical tab
FF – form feed	CR – carriage return	SO / SI – shift out i in	DLE – data link ESC
DC1,4 – data control	NAK – negative ACK	SYN – synchronize	ETB – end of text block
CAN – cancel	EM – end of medium	SUB – substitute	ESC – escape
FS – file separator	GS – group separator	RS – record separator	US – unit separator

UNICODE – kod 16/32-bitowy, obejmujący znaki diaktryczne większości języków

Kod ASCII - regularności

Konwencje asemblerowe:

```
'znak' – kod ASCII (1bajt) znaku alfanumerycznego (litery, cyfry, +, -, =,...)

"tekst" – ciąg kodów ASCII kolejnych znaków tekstu (konwencja BE)

zapis znaków specjalnych w tekście ciągłym – \♠ # znak specjalny ♠ (np. \\, \", \"), w szczególności
```

```
\ddd # kod ósemkowy ddd \xDD # kod szesnastkowy DD \n # (\x0A=\012) LF,NL, new line \0 # (\x00=\000) NUL, koniec rekordu \b # (\x08=\010) BS, backspace \t # (\x09=\011) HT,TAB, tabulation \f # (\x0C=\014) FF, form feed \r # (\x0D=\015) CR, carriage return
```

kody cyfr dziesiętnych (Z₁₆ = bbbb₂ – wartość cyfry):

 $3\#_{16}$ – w notacji szesnastkowej ('7' = 0x37)

0011 bbbb – w notacji dwójkowej ('3' = 0b0011 0011)

wartość cyfry X: 'X'-'0' lub 'X'- 0x3016 lub 'X' AND 0x0F16

kody liter (bbbbb – 5-bitowy nr litery w porządku alfabetu łacińskiego):

dużych: 010 bbbbb ('A' = 0b010 00001 = $0x41=41_{16}$),

małych: 011 bbbbb ('z' = 0b011 11010 = $0x7A = 7A_{16}$)

nr litery w porządku alfabetu: – 'X' AND 0x1F16

zamiana "duża" \leftrightarrow "mała": – 'X' XOR $0x20_{16}$

Reprezentacje liczb

Jednostka stałoprzecinkowa (Integer Unit)

łańcuch bitów odzwierciedlający zapis pozycyjny lub pokrewne

- dwoista interpretacja (IA-32, Motorola 68K): naturalna lub uzupełnieniowa
 - o weryfikacja wyniku na podstawie tworzonych kodów warunkowych
- interpretacja przypisana działaniu (PowerPC)
 - o weryfikacja wyniku przypisana interpretacji (>/=/</nadmiar)

Jednostka zmiennoprzecinkowa (Floating-Point Unit)

złożenie łańcuchów bitów reprezentujących liczbę

- reprezentacje standardowe (IEEE 754-2008)
 - o format wykładniczy liczby: znak wykładnik mnożnik (mantysa)
 - kody specjalne: nie-liczby (NaN) i nieskończoności
 - o zaokrąglenia
 - o wyjątki
- reprezentacje niestandardowe
 - o specyficzne dla architektury (DSP)

System dwójkowy

kod naturalny dwójkowy (NB, natural binary)

$$X = \sum b_i 2^i$$

notacja szesnastkowa (b_i – bity, d_i – cyfry reprezentacji szesnastkowej)

$$\sum d_i \cdot 16^i = \sum (b_{4i+3} 2^3 + b_{4i+2} 2^2 + b_{4i+1} 2^1 + b_{4i} 2^0) \cdot 2^{4i}$$

...

$$d_1$$
 d_0
 d_{-1}
 ...

 ...
 b_7
 b_6
 b_5
 b_4
 b_3
 b_2
 b_1
 b_0
 b_{-1}
 b_{-2}
 b_{-3}
 b_{-4}
 ...

0	1	2	3	4	5	6	7	8	9	A	В	C	D	Ε	F
0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111

Kodowanie liczb dziesiętnych

- zapis pozycyjny $N = \sum d_i \beta^i$
- binarne zakodowanie jednej cyfry wymaga [log2β] bitów
 - → potrzebne 4 bity (tetrada) na każdą cyfrę dziesiętną
 - → nadmiar w przestrzeni kodowej → wiele sposobów kodowania

Kod BCD (Binary Coded Decimal)

0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0	1	2	3	4	5	6	7	8	9	1	_	_	_	1	1

Kod BCD+3 i jego dopełnienie (9-d)

_	_		0	1	2	3	4	5	6	7	8	9	_	ı	-
0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
1111	1110	1101	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001	0000
_	_	1	9–0	9–1	9–2	9–3	9–4	9–5	9–6	9–7	9–8	9_9	_	1	_

Liczby stałoprzecinkowe

zapis pozycyjny / uzupełnieniowy

skalowanie: liczba stałoprzecinkowa = liczba całkowita \times b^{S}

kodowanie arytmetyczne (następna: +1, poprzednia: -1):

- uzupełnianie liczba ujemna = 0 liczba przeciwna (dodatnia)
- polaryzacja wartość = wartość naturalna stała (tylko liczby całkowite)

kodowanie umowne (wyjątkowo):

- znak-moduł "znak" | wartość bezwzględna liczby
- dopełnianie liczba ujemna = dopełnienie cyfr liczby przeciwnej dodatniej

właściwości

- uzupełnianie łatwa arytmetyka (pozycyjna), porównanie i skalowanie
- polaryzacja łatwe porównanie, dodawanie i odejmowanie, bez skalowania
- znak-moduł skomplikowane dodawanie, odejmowanie i skalowanie
- dopełnianie skomplikowana arytmetyka, porównanie i skalowanie

Reprezentacja uzupełnieniowa

Reprezentacją liczby przeciwnej do danej jest wynik jej pozycyjnego odejmowania od 0: $-X \approx 0-X$

Dwójkowy kod uzupełnieniowy

wartość liczby reprezentowanej przez $\{x_{k-1}x_{k-2}...x_1x_0\}$ to

$$-x_{k-1}2^{k-1} + \sum_{i=0}^{k-2} x_i 2^i = -2^{k-1} + (1-x_{k-1})2^{k-1} + \sum_{i=0}^{k-2} x_i 2^i$$

Reprezentacja spolaryzowana dodatnio

$$X = \sum_{i=0}^{k-1} b_i 2^i - (2^{k-1} - 1)$$

- porządek liczb zgodny z porządkiem kodów
- łatwa konwersja na kod U2 i odwrotnie:

$$\left|\left\{x_{k-1}, x_{k-2}, \dots, x_0\right\}_{2^{k-1}-1}\right| = -\left|\left\{x_{k-1}, (1-x_{k-2}), \dots, (1-x_0)\right\}_{U2}\right|$$

Reprezentacje zmiennoprzecinkowe

notacja wykładnicza (naukowa / inżynierska):

 $warto\acute{s}\acute{c} = \pm mno\acute{z}nik \times podstawa$ wykładnik

w notacji odręcznej najczęściej:

- podstawa = 10
- mnożnik ma 1 cyfrę części całkowitej i dowolną liczbę pozycji ułamka

w komputerach

- podstawa = 2
- spełnienie postulatu:

porządek kodów zgodny z porządkiem liczb naturalnych

- kodowanie wykładnika w kodzie z obciążeniem "+N"
- mnożnik ze znakiem w kodzie "znak-moduł"
- mnożnik (mantysa) postaci $\pm(1+f)$, gdzie f jest dodatnim ułamkiem dwójkowym, zapewnia unikatowe kodowanie każdej reprezentowalnej liczby

Standard zmiennoprzecinkowy IEEE 754-2008 (1)

Standard IEEE754-2008

- kod wykładnika k-bitowy " $+2^{k-1}-1$ ", zakres wykładnika:

$$E_{\text{min}} = -2^{k-1} + 2 \text{ (kod } 0...001), \qquad E_{\text{max}} = 2^{k-1} - 1 \text{ (kod } 1...110)$$

$$E_{\text{max}} = 2^{k-1} - 1 \text{ (kod 1...110)}$$

- normalizacja - unikatowe kodowanie liczby

liczba znormalizowana (ukryty bit "1")

$$F = (-1)^s 2^E (1+f), \quad 0 \le f < 1$$

gdzie $f = 0,b_1 b_2 b_3 \dots b_m$ jest m-bitowym ułamkiem dwójkowym

nie istnieje znormalizowana reprezentacja zera!!

liczba zdenormalizowana (ukryty bit "0") – także zero

$$F = (-1)^s 2^{E_{\min}} (0+f), \quad 0 \le f < 1$$

Standard zmiennoprzecinkowy IEEE 754-2008 (2)

Wzorce kodów obiektów binarnych standardu IEEE 754-2008

Wykładnik	Ułamek	Kod binarny	Wielkość
$E \min \le E \le E \max$	f	s eee bbb	$F = (-1)^s 2^{E+1} (1+f)$
111	f=0	s 111 000	$\pm \infty$
111	<i>f</i> ≠0	s 111 bbb	NaN
000	f≠0	s 000 bbb	$\pm F_{\min} = (-1)^s 2^{E_{\min}} (0+f)$
000	f=001	s 000 001	$\pm F_{\min} = (-1)^s 2^{E_{\min}} 2^{-m}$
$E = E_{\text{max}}$	f=111	s 110 111	$\pm F_{\text{max}} = (-1)^{s} 2^{E_{\text{max}}+1} (1 - 2^{-m-1})$

formaty:

32b (SINGLE) –
$$[s_{31} | E_{30:23} | f_{22:0}]$$

64b (**DOUBLE**) – [
$$s_{63} \mid E_{62:52} \mid f_{51:0}$$
] 128b (QUAD) – [$s_{127} \mid E_{126:112} \mid f_{111:0}$]

$$128b (QUAD) - [s_{127} | E_{126:112} | f_{111:0}]$$

format rozszerzony

 $n \times 32$ bity ($n \ge 8$), w tym co najmniej 16 bitów wykładnika

Wyjątki zmiennoprzecinkowe (IEEE 754-2008)

- dzielenie przez 0
- nadmiar wykładnika
- niedomiar wykładnika
- utrata dokładności (katastroficzna)
- niedozwolona operacja
- nie-liczba

Arytmetyka i zaokrąglanie

- do najbliższej (parzystej)
- do zera
- do nieskończoności

```
Bity ochronne: G (ang. guard) – "strażnik",
R (ang. round) – "zaokrąglanie",
S (ang. sticky) – "lepki"
```

Wektory i rekordy

wektor – uporządkowany zestaw argumentów jednakowego typu interpretacji:
 wektory stałoprzecinkowe
 wektory zmiennoprzecinkowe

działania specyficzne

rekord – uporządkowany zestaw argumentów różnego typu / o różnej interpretacji działania zdefiniowane określone osobno w poszczególnych polach