# CLEVELAND STATE UNIVERSITY CIS 606 – ANALYSIS OF ALGORITHMS FINAL EXAM



Name: Prudhvi Reddy Araga

Login id: praraga

#### Question – 1 (a)

**Answer: True** 

Given 
$$f(n) = O(g(n))$$

 $O(g(n)) = \{ f(n): \text{ there exists positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le c.g(n) \text{ for } n_0 \le n \}$ Let us consider the following:

$$f(n) = 2n^2 + n$$

$$g(n) = n^2$$

→ 
$$2n^2+n = O(n^2)$$

$$2n^2+n \le c. n^2$$

Let us assume the constant value c = 3

$$2n^2+n \le 3. n^2$$

$$n \leq n^2$$

 $1 \le n$  (where 1 is the value of  $n_0$ )

Hence, f(n) = O(g(n)) is true.

### Question -1 (b)

#### **Answer: True**

If the search goes right => x.left.max < i.low



Search going right means i.low > x.left.max (highest endpoint in the left subtree).

If there is no overlap in right => no overlap in left.

# Question 1 (c)

|     | i              | 1   | 1              | 2        | 3              | 4   | 5              | (              | 5              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8              | 9              | 10              | 0               | 11   | :        |
|-----|----------------|-----|----------------|----------|----------------|-----|----------------|----------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|-----------------|-----------------|------|----------|
| -   | s <sub>i</sub> | 1   | :              | 3        | 0              | 5   | 3              |                | 5              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8              | 8              | 2               | 2               | 12   | _        |
|     | fi             | 4   |                | 5        | 6              | 7   | 9              | !              | 9              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11             | 1 12           | 2 1             | 4               | 14   |          |
| tim |                | ) 1 |                | 2 :      | 3 4            | 1 5 | 5 6            | 5              | 7              | 8 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9 1            | 0 1            | 1 1             | 2 1             | 3 14 | <u>'</u> |
|     |                |     | <sup>a</sup> 1 |          | a <sub>2</sub> | a3  |                |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                |                 |                 |      |          |
|     |                | _   |                | $\vdash$ | $\vdash$       | ٠,  | a <sub>4</sub> |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                |                 |                 |      |          |
|     |                |     |                |          | L              |     |                | <sup>a</sup> 5 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                |                 |                 |      |          |
|     |                |     |                |          |                |     |                |                | <sup>а</sup> б |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                |                 |                 |      |          |
|     |                |     |                |          |                |     |                |                |                | <b>a</b> <sub>7</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                |                 |                 |      |          |
|     |                |     |                |          |                |     |                |                |                | $ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ld}}}}}}$ | <sup>a</sup> 8 |                |                 |                 |      |          |
|     |                |     |                |          |                |     |                |                |                | $ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ld}}}}}}$ |                | а <sub>9</sub> |                 | ļ               |      |          |
|     |                |     |                | L        |                |     |                |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                | <sup>a</sup> 10 |                 |      |          |
|     |                |     |                |          |                |     |                |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                |                 | <sup>a</sup> 11 |      |          |
|     |                |     |                |          |                |     |                |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                | '               |                 |      |          |

Solution  $1 = \{a_1, a_4, a_8, a_{11}\}$ Solution  $2 = \{a_2, a_4, a_9, a_{11}\}$ 

As per the given question, we need to select the activity with least duration then the solution with maximum subset of compatible activities are  $\{a_2, a_8, a_{11}\}$ .

The  $\{a_2, a_8, a_{11}\}$  solution doesn't produce maximum subset of all activities, because the  $\{a_2, a_4, a_9, a_{11}\}$  and  $\{a_2, a_4, a_9, a_{11}\}$  are the optimal solutions.

## Question 1 (d)

#### **Answer: False**

If any instance of X reduces to Y in polynomial time and Y is NP-Complete, it implies that X is almost as hard as Y.

 $X \leq_p Y \Rightarrow Y$  is harder than X i.e., if we can solve Y in polynomial time, then we can solve X in polynomial time. If we can't solve X in polynomial time X is incomplete, then Y is NP Complete and not vice versa.



Transpose of the Graph G is as follows

Start considering the nodes with highest finished time from Graph G.





Simple Connected Components are

$$SCC1 = \{c,d,e,i\}$$

$$SCC2 = {j}$$

$$SCC3 = \{a,b\}$$

$$SCC4 = \{g,h\}$$

$$SCC5 = \{f\}$$



Start with s, there are two nodes a,c. But for edge(s,c), f(u,v) = c(u,v).

So, we are left with one edge (s,a).

Now, "a" is our current node and we have only one outgoing edge (a,b).

From "b", we have only one outgoing edge (b,t)

Now, we have reached from  $s \rightarrow t$ .

There is only one path which we can consider:

 $s \rightarrow a \rightarrow b \rightarrow t$ 

Max residual capacity is the min of all

$$\Rightarrow$$
 c(u,v) – t(u,v) i.e..,

$$\Rightarrow$$
 min(15-3, 14-7, 9-4)

$$\Rightarrow$$
 min(12, 7, 5)

Hence, we could increase the flow in this path by "5".



Other Paths,

• 
$$s \rightarrow c \rightarrow d \rightarrow t$$

We have residual capacity from  $s \rightarrow c$  as 0.

So, this could not be considered.

• 
$$s \rightarrow a \rightarrow b \rightarrow c \rightarrow d \rightarrow t$$

We cannot consider this residual capacity from  $b \rightarrow c$  which is 0.

So, we are left with only one  $s \rightarrow a \rightarrow b \rightarrow t$ .

Maxflow is sum of f(u, v) is from  $b \rightarrow t$  and  $d \rightarrow t$ , i.e.,

$$9 + 3 = 12$$

**Question - 4** 

Given 
$$X = 0011001$$
  
 $Y = 1010010$ 

From Equation 15.9 (in the textbook),

$$C[i,j] = 0$$
 if  $i = 0$  or  $j = 0$ 

$$C\;[\;i\;,j]=c[\;i\text{-}1,j\text{-}1]+1\quad if\;i\;,j>0\;\text{and}\;x_i\!=\!y_j$$

$$C \ [\ i\ ,j] = max(\ c[\ i,j\text{-}1],\ c[\ i\text{-}1,j]) \quad if\ i,j > 0 \ and\ x_i \neq y$$

|   |   |   |   |   |   |   |   | , |
|---|---|---|---|---|---|---|---|---|
|   | Y | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
| X | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 0 | 0 | 1 | 1 | 2 | 2 | 2 | 2 |
| 1 | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3 |
| 1 | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3 |
| 0 | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 4 |
| 0 | 0 | 1 | 2 | 2 | 3 | 4 | 4 | 4 |
| 1 | 0 | 1 | 2 | 3 | 3 | 4 | 5 | 5 |

LCS(X,Y) = 5

The sequence of LCS is found by encountering the symbol " " in entry b[i,j] which implies  $x_i = y_i$  is an element of LCS.

 $LCS = 0 \ 1 \ 0 \ 0 \ 1$ 

As per the above diagram, the LCS length for given sequence = 5

## **Question 5**

Given array of devices d[1...n], for each d[i],  $1 \le i \le n$ , d[i].low and d[i].high represent its left and right signal reachable endpoints.

Using the Activity selection problem, we need to consider the high and low endpoints.

The shaded networking devices are a group of 5.