1 Degree Distribution

Poisson Distribution

Formula: $P(k) \sim \frac{\lambda^k e^{-\lambda}}{k!}$

Parameter: λ is the mean degree $\langle k \rangle$ **Examples** G(n,p) model with large n and fixed $np \Rightarrow \lambda =$

Zipf (Zeta) Distribution

It is one of the discrete power law probability distribution.

Formula $P(k) = \frac{k^{-\gamma}}{\zeta(\gamma)}$

Parameters

 $-\zeta(\gamma) = \sum_{i} i^{-\gamma}, (\gamma > 1)$

- γ : increase, $\zeta(\gamma) \to 0$, the left (peak) of Zeta distribution goes higher and the tail goes thin-

Examples scale-free network.

Moments of Zeta distribution $\langle k^m \rangle = \frac{\zeta(\gamma - m)}{\zeta(\gamma)}$

- $\langle k \rangle$ (m=1): finite for $\gamma > 2$
- $-\langle k^m \rangle = \frac{\zeta(\gamma m)}{\zeta(\gamma)}$: finite for $\gamma > 1 + m$
- $-\gamma \in (2,3)$: the generated scale-free network is super robust against random failure.

Broad Distribution

It is one of the heavy tail distribution. The heavy tail distribution means compared to exponential distribution(normal distribution), its tail is heavier.

Examples power-law distribution, log-normal distribution. (These two are very similar, but not exactly the same.)

Power law: scale-free network shows power law pattern.

Normal Distribution

Example ER model with large *n* and fixed *p*

(Order from the top-left to the bottomright)1. Poisson. 2. Power-law. 3. Log-normal. 4. Zipf(Zeta). 5. Normal. 6. Comparison between log-normal and zipf in log-log plot. 7. Set relations among those distribution.

2 Models and Metrics Comparison

idea, algorithms, parameters, properties, applications

G(n,m) model

Parameters: *n*: the number of nodes. *m*: the number of edges

Algorithm:

1.generate *n* nodes.

2. randomly choose *m* edges from : $\frac{n(n-1)}{2}$ (without self-loop, undirected), or $\frac{n(n+1)}{2}$ (with selfloop, undirected), or n(n-1) (without self-loop, directed) or n^2 (with self-loop, directed) edges. **Properties**

- Micro-canonical ensemble: all the micro- 2 for each node i generate d_i "link stubs"

states have the same probability.

G(n,p) model

¹ **Parameters**: *n*: the number of nodes. *p*: the probability of one node linking to any node **Algorithm**: (directed, with self-loop)

1.generate *n* nodes.

2.for each node *i*:

— 2.1 for $j = 1, \dots, n$:

——- generate a uniformly random number q, if q < p, add an edge (i, j)

Properties

- Limiting degree distribution:when $n \to \infty$, if p is fixed, the degree distribution approximates to normal distribution, with $\mu = np$, $\sigma^2 =$

if *np* is fixed, it approximates to Poisson distribution, with $\lambda = np$.

- Emergence of giant connected component

$$2 = \frac{\langle k^2 \rangle}{\langle k \rangle} = 1 + np \Leftrightarrow np = 1 \Leftrightarrow p = \frac{1}{n}$$
- Critical failure rate $np(1 - q_c) = 1 \Leftrightarrow q_c = 1$

Ring lattice

Parameters: *n*: the number of nodes. *d*: dimension. *s*: distance, the llinked neighbors are 2*s*.

Watts Strogatz

Parameters: *n*: the number of nodes. *d*: dimension. s: distance, the llinked neighbors are 2s. p: rewire probability.

Algorithm:

1. construct a ring lattice (d, n, s)

2. rewire source of each link to random node with probability p.

Small world regime

Molloy Reed (Configuration Model) Algorithm:

1. create empty network with *n* nodes

3 draw pairs of link stubs uniformly at random and connect them until no stubs are left.

Properties

- Micro-canonical ensemble **ERGM**

Idea

- maximize entropy: this will be the system with the largest remaining uncertainty, and by choosing it you're making sure you're not adding any extra biases or uncalled for assumptions into your analysis. $\max_{P} H(\Omega, P) :=$ $-\sum_{g\in\Omega} P(g)\log(P(g))$

- preserve the expected properties. $\langle f_i(\Omega) \rangle :=$ $\sum_{g \in \Omega} f_i(g) P(g) = f(G_e)$

Parameters: θ : how big and which direction of the corresponding property's effect.

Algorithm to estimate parameters (MCM-

1. choose the initial value Θ_0

2. generate enough microstates by $P(\Theta_0)$ (Ran-

3. compute the likelihood of the expected properties $P_{\Theta_0}(f_e)$

3. define $\Theta_1 = \Theta_0 + \epsilon$

4. generate microstates and compute $P_{\Theta_1}(f_3)$

5. compare P_{Θ_1} and P_{Θ_0} and take the one with bigger likelihood.

6. repeat for enough iterations.

Key Formulas $\frac{\partial}{\partial P(G)} \{ H + \alpha (1 - \sum_{G} P(G)) + \alpha (1 - \sum_{G} P(G)) \}$

 $\sum_{i} \theta_{i}(\langle f_{i} \rangle - \sum_{G} f_{i}(G)P(G))\} = 0$ $- P(G) = \frac{\exp(-\sum_{i} \theta_{i} f_{i}(G))}{7}$

 $-Z = \sum_{G} \exp(-\sum_{i} \theta_{i} f_{i}(G))$

Stochastic Block Model

Parameters

- M: stochastic block property matrix. M_{kl} : the probability of edges between block k and block *l* (or within the block, if k = l).

- G: the network.

- *z*: the block assignment vector.

- *E*: the actual count matrix of edge numbers between two blocks (or within)

- N: the maximum number of edges between two blocks (or within one)

- using *M* and *z*, we can generate new *G*. - using *G* and *z*, we can find the MLE *M*.

Formula:

 $L(M, \vec{z}) = \sum_{1 \le k \le l \le B} M_{kl}^{E_{kl}} (1 - M_{kl})^{N_{kl} - E_{kl}}$

MLE $M := \hat{M}$, with $\hat{M}_{kl} = \frac{E_{kl}}{N_{kl}}$

Microstate canonical version M, instead of being the probability matrix, becomes the count matrix. M_{kl} : the number of edges bet- - in laplacian matrix: $|\lambda_1 - \lambda_2| = |\lambda_2|$.

ween block k and l. Their comparisons are listed in the table1. 3 Minimal Discription length Principle VS Ma-

MDL This is a principle, which guides to find the

 $\lambda(\vec{z}) = H(\vec{z}) + \Delta \vec{z}$ However, this is just a general definition. It can have different concrete definitions under different frameworks. MapEquation

optimal (number of) parameters. **Definition**

pEquation

Definition $L(\vec{z}_k) = Q_i H(Q_i) + \sum_{i=1}^k P_i H(P_i)$ This is a flow-based approach to realize the MDL principle. MapEquation tutorial 4 Matices and Diffusion Adjacency Matrix: A

Definition $A_{ij}: d_{ij}$ the (weighted) number of

edges from n_i to n_i . **Transition Matrix: T**

Definition $T = A \cdot D^{-1}$, $T_{ij} : \frac{d_{ij}}{\sum_i d_{ij}}$, the normalized degree from n_i to n_i , by the outdegree.

Laplacian Matrix: L

Properties: $-\sum_{i} t_{ij} = 1$

Definition L = D - A, D: a diagonal matrix with the $d_i i = d_{out}(i)$. **Meaning**: It origins from Laplacian operator.

 $\frac{dx^{(t)}}{dt} = C(A-D)x^{(t)} = -CLx^{(t)}, C > 0$ **Properties:** $\sum_{i} \vec{L}_{ij} = 0$

Diffusion Distribution

- total variation distance convergence time t: $t \propto \frac{\log \epsilon}{\log |\lambda_2|}$: the smaller, the larger $|\log \lambda_2|$, the

smaller *t* is, the faster of the diffusion.

- spectral gap: $1 - \lambda_2$: the larger the gap, the faster the diffusion. Continuous time model (Laplacian matrix)

 $\begin{array}{l} \frac{dx^{(t)}}{dt} = -C \cdot L \cdot x^{(t)} \Rightarrow x^{(t)} = \sum_{i=1}^n a_i e^{-C\lambda_i} \vec{v_i} \simeq \\ a_i e^{-C\lambda_2} \vec{v_2} \end{array}$ - L determines the change rate. Larger λ_2 ,

faster change, faster diffusion. - $\lambda_2 = 0 \Leftrightarrow$ the network is disconnected. Capture how well connected the network is.

Summary No matter using transition matrix Modularity: or laplacian matrix, there is one point in common: the larger eigenvalue gap $|\lambda_1 - \lambda_2|$ is, the faster the diffusion will be. - in transition matrix: $|\lambda_1 - \lambda_2| = |1 - \lambda_2|$.

5 Random Walk Model **Diffusion process**

plus Markov property to generate the transiti-**Community detection: Flow Compression**

using random walk to generate a series of walk history for code compression. **ERGM**

Like application in diffusion process, generate the transition matrix and simulate numerous times to approximate the stationary distributi-**6 Key Concepts** Eigenvalue gap

: the gap between two largest eigenvalues of

a matrix. Applied in Transition matrix, it is $1-\lambda_2$. 7 Formulas network diameter

 $diam(G) = \max_{(v,w) \in V \times V} dist(v,w)$

average shortest path length

 $G' \Leftarrow \frac{|G'|}{|G|} \simeq 1$

 $\langle l \rangle = \frac{1}{|v|^2} \sum_{v \in V} \operatorname{dist}(v, w)$

giant connnected components

powers of adjacency matrix A_{ij}^k : the number of paths with length k between i and j.

partition quality $Q(G,C) = \frac{1}{2m} \sum_{(i,j)} (A_{ij} - \frac{d_i d_j}{2m}) \delta(C_i, C_j)$

theoretical maximum of partition quality

 $Q_{\max}(G,C) = \frac{1}{2m} \sum_{(i,j)} (1 - \frac{d_i d_j}{2m}) \delta(C_i, C_j)$

 $Q_{\text{opt}}(G) = \max_{C} Q(G, C)$

C is the one selected by modularity.

betweenness centrality:

community assortativity coefficient:

 $C_B(i) = \sum_{s \neq i, t \neq i} n_i(s, t)$ $n_i(s,t)$: the number of shortest path from s to t passing *i* or (normalized)

 $C_B(i) = \sum_{s,t} \frac{n_i(s,t)}{N_{s,t}}$ $N_{s,t}$: the number of shortest path from s to t

closeness centrality: $C_C(i) = \frac{n-1}{\sum_{j} \operatorname{dist}(i,j)}$

degree assortativity coefficient: $r = \frac{\sum_{i,j} A_{ij} d_i d_j - \frac{1}{2|E|} \sum_{i,j} (d_i d_j)^2}{\sum_{i,j} d_i^3 - \frac{1}{2|E|} \sum_{i,j} (d_i d_j)^2}$

local clustering coefficient: $C_i = \frac{2 \cdot k(i)}{d_i(d_i - 1)} = \frac{k(i)}{\ell^{d_i}}$

or for directed network: $C_i = \frac{k(i)}{d_{m+1}(i)(d_{m+1}(i)-1)}$

global clustering coefficient:

 $C = \frac{1}{n} \sum_{i} C_{i}$

Generating functions:

 $\left[\frac{1}{k!}\frac{d^k}{dx^k}G_0(x)\right]_{x=0} = P(k)$

Poisson distribution:

 $G_1'(x)_{x=1} = \frac{\langle k^2 \rangle}{\langle k \rangle} - 1$

P(x = k + 1)

 $P(\sum_{i=1}^{X} Y_i = k).$

tribution

 $x \cdot G_1(x)$

Mean neighbor degree

Friendship paradox:

to be others' neighbor.):

 $[(x\frac{d}{dx})^m G_0(x)]_{x=1} = \langle k^m \rangle$

 $G_0(G_1(X)) = \sum_k P(k)[G_1(x)]^k$

 $P_1(k) \propto k P_0(k) = \frac{k P_0(k)}{\langle k \rangle}$

 $G_1(x)$ not including the "father"link.

 $G_1(x) = \frac{1}{x} \sum_{i} P_1(x) x^k = \frac{G'_0(x)}{G'_0(1)}$

Generating function of neighbour degree dis-

 $G_z(x) = G_X(x)G_Y(x)$ generates the distribution

of the sum of two random independent varia-

 $xG_0(x)$ generates distribution of P(x+1=k)=

 $\frac{1}{x}G_0(x)$ generates distribution of P(x-1=k)=

 $[G_0(x)]^m$ generates distribution for the sum of

m independent realizations of random variable

The degree distribution of a node's neighbor

(intuition: If a node has degree *k*, it has *k* times

generates

node's neighbor.

 $G_1(x) = \frac{G'_0(x)}{G'_0(1)} = G_0(x)$

 $\langle k_n \rangle = 1 + G_1'(1) = \frac{\langle k^2 \rangle}{\langle k \rangle} = \langle k \rangle + \frac{Var(X)}{\langle k \rangle}$

 $\Rightarrow \langle k_n \rangle = G_1'(1) + 1 = G_0'(1) + 1 = \langle k \rangle + 1$

Component size: $H_1(x)$: as the generating function of the com-

ponent size that includes a node as some other

 $G_0'(x)_{x=1} = \langle k \rangle$

 $H_0(x)$: as the generating function of the com- PageRank: ponent size that includes a random node.

$$H_1(x) = xG_1(H_1(x))$$

$$\Rightarrow H_1'(1) = \frac{1}{1 - G_1'(1)}$$

$$H_0(x) = xG_0(H_1(x))$$

$$\langle s \rangle = H_0'(1) = 1 + G_0'(1) H_1'(1)$$

$$\Rightarrow \langle s \rangle = 1 + \frac{G_0'(1)}{1 - G_1'(1)} = 1 + \frac{G_0'(1)}{2 - \frac{\langle k^2 \rangle}{\langle k \rangle}}$$

Molloy-Reed criterion: the critical point of the emergence of giant connected component:

$$\frac{\langle k^2 \rangle}{\langle k \rangle} > 2$$

Surviving network:

$$F_0(x) = (1 - q)G_0(x)$$

$$F_1(x) = (1 - q)G_1(x)$$

$$H_1(x) = q + x F_1(H_1(x)) = q + (1-q)x G_1(H_1(x))$$

$$H_0(x) = 1 + x F_0(H_1(x)) = q + (1-q)x G_0(H_1(x))$$

$$\langle s \rangle = H'_0(1) = (1 - q)[1 + \frac{(1 - q)\langle k \rangle}{1 - (1 - q)G'_1(1)}]$$

$$(1-q)G_1'(1) \to 1 \Leftrightarrow q_c = 1 - (\frac{\langle k^2 \rangle}{\langle k \rangle} - 1)^{-1}$$

Random walk: visitation probability:

$$\pi^{(t)} = \pi^{(0)} \cdot T^t$$

stationary distribution (Feedback centrality):

$$\pi = \pi \cdot T$$

Eigenvector centrality:

$$\alpha x = x \cdot A$$

$$\alpha x = x \cdot T + \vec{1}$$

total variation distance:

$$\delta(\pi,\pi') = \frac{1}{2} \sum_{i} |\pi_i - \pi_i'| \simeq \frac{1}{2} ||\lambda_2 a_2 \vec{v_2}||_1$$

Approximating diffusion speed:

$$t \propto \frac{\log(\epsilon)}{\log(|\lambda_2|)}$$

Laplacian matrix of a network:

$$\frac{dx^{(t)}}{dt} = -C \cdot L \cdot x^{(t)}$$

$$\Rightarrow x^{(t)} = \sum_{i=1}^{n} a_i e^{-C\lambda_i} \vec{v_i} \simeq a_i e^{-C\lambda_2} \vec{v_2}$$

Shannon Entropy:

$$H(X) = -\sum_{i} P(X = i) \log P(X = i)$$

MapEquation:

Maximum time difference
$$\delta$$
:
$$L(\hat{z}) = qH(Q) + \sum_{i=1}^{k} p_i H(P_i), q + \sum_{i=1}^{k} p_i = 1 \qquad \forall i = 0, 1, \dots, l | t_{i+1} - t_i | \leq \delta$$

EGRM:

$$(1-q)G_1'(1) \rightarrow 1 \Leftrightarrow q_c = 1 - (\frac{\langle k^2 \rangle}{\langle k \rangle} - 1)^{-1} \qquad \frac{\partial}{\partial P(G)} \{H + \alpha (1 - \sum_G P(G)) + \sum_i \theta_i (\langle f_i \rangle - \sum_G f_i(G)P(G))\} \ \underline{I}^v(S;D) = \sum_{s,d} P_{sd}^v \log_2 (\frac{P_{sd}^v}{P^v(S=s)P^v(D=d)}) + \sum_i \theta_i (\langle f_i \rangle - \sum_G f_i(G)P(G))\} \ \underline{I}^v(S;D) = \sum_{s,d} P_{sd}^v \log_2 (\frac{P_{sd}^v}{P^v(S=s)P^v(D=d)}) + \sum_i \theta_i (\langle f_i \rangle - \sum_G f_i(G)P(G))\} \ \underline{I}^v(S;D) = \sum_{s,d} P_{sd}^v \log_2 (\frac{P_{sd}^v}{P^v(S=s)P^v(D=d)}) + \sum_i \theta_i (\langle f_i \rangle - \sum_G f_i(G)P(G))\} \ \underline{I}^v(S;D) = \sum_{s,d} P_{sd}^v \log_2 (\frac{P_{sd}^v}{P^v(S=s)P^v(D=d)}) + \sum_i \theta_i (\langle f_i \rangle - \sum_G f_i(G)P(G))\} \ \underline{I}^v(S;D) = \sum_{s,d} P_{sd}^v \log_2 (\frac{P_{sd}^v}{P^v(S=s)P^v(D=d)}) + \sum_i \theta_i (\langle f_i \rangle - \sum_G f_i(G)P(G))\} \ \underline{I}^v(S;D) = \sum_{s,d} P_{sd}^v \log_2 (\frac{P_{sd}^v}{P^v(S=s)P^v(D=d)}) + \sum_i \theta_i (\langle f_i \rangle - \sum_G f_i(G)P(G))\} \ \underline{I}^v(S;D) = \sum_{s,d} P_{sd}^v \log_2 (\frac{P_{sd}^v}{P^v(S=s)P^v(D=d)}) + \sum_i \theta_i (\langle f_i \rangle - \sum_G f_i(G)P(G))\} \ \underline{I}^v(S;D) = \sum_{s,d} P_{sd}^v \log_2 (\frac{P_{sd}^v}{P^v(S=s)P^v(D=d)}) + \sum_{s,d} P_{sd}^v \log_2 (\frac{P_{sd}^v}{P^v(S=s)P^v($$

$$P(G) = \frac{\exp(-\sum_{i} \theta_{i} f_{i}(G))}{Z}$$

$$Z = \sum_{G} \exp(-\sum_{i} \theta_{i} f_{i}(G))$$

$$\langle f_i \rangle = -\frac{1}{Z} \frac{\partial Z}{\partial \theta_i}$$

Master equation for time-dependent degree:

$$P(k, s, t+1) = \frac{1}{t}P(k-1, s, t) + (1 - \frac{1}{t})P(k, s, t)$$
 Lecture 07

- initial condition: $P(k, 1, 1) = \delta_{k,0}$

- boundary condition: $P(k, t, t) = \delta_{k,1}$

Time-dependent degree distribution:

$$P(k,t) = \frac{1}{t} \sum_{s=1}^{t} P(k,s,t)$$

$$\Rightarrow (t+1)P(k,t+1)-(t-1)P(k,t) = P(k-1,t)+\delta_{k,1}$$

Limiting (stationary) degree distribution:

$$P(k) = \frac{1}{2}[P(k-1) + \delta_{k,1}] \Rightarrow P(k) = 2^{-k}$$

Preferential attachment:

$$P(v_i) = \frac{k_i(t)}{\sum_j k_j(t)}$$

$$\frac{dk_i(t)}{dt} = \frac{k_i(t)}{2t}$$

$$\Rightarrow k_i(t) = m(\frac{t}{t_i})^{\frac{1}{2}}$$

Stationary degree distribution:

$$P(k) = 2m^2k^{-3} \propto k^{-3}$$

Maximum time difference δ :

$$\forall i = 0, 1, \cdots, l |t_{i+1} - t_i| \le \delta$$

Betweenness preference of node v

$$P(G)$$
 $\{ E^v(S; D) = \sum_{s,d} P^v_{sd} \log_2(\frac{P^v_{sd}}{P^v(S=s)P^v(D=d)}) \}$

- P_{sd}^v : the joint probabilities of S and D. - $P^v(S)$, $P^v(D)$: the marginal probability of source and destination.

null model:

$$\hat{P}_{sd}^{v} = \frac{w(s,v)}{\sum_{s'} w(s',v)} \cdot \frac{w(v,d)}{\sum_{d'} w(v,d')}$$

8 Algorithms

Analyzing a social network using ERGMs. Lec-

	G(n,p)*	G(n,m)*	Watts-strogatz	Ring lattice	Scale free	Stochastic Block Model
V	n1	n	n			
E	$p \cdot \binom{n+1}{2}$ $2^{\binom{n+1}{2}}$	m (m.1)	sn			
Number of microstates	$2^{\binom{n+1}{2}}$	$\binom{\binom{n+1}{2}}{m}$				
Probability of microstates	With edges m_G :					
	$p^{m_G} \cdot (1-p)^{\binom{n+1}{2}-m_G}$					
Diameter $D \simeq \frac{\log n}{\log \langle k \rangle}$		$\frac{n}{2s}$	$\frac{\log n}{\log(np)}$		$D \simeq \frac{\log \log(n)}{\log(\gamma - 2)}$	
Degree distribution	$P(k) = \binom{n}{k} p^k (1 - p)^{n-k}$		(P(k=2s)=1)		338(7 = 7	
Average degree	np	$\frac{2m}{n}$	2s			
Variance of degree	np(1-p)					
Average shortest path length						
Clustering coefficient	$(n \to \infty)$ with p			$\frac{3s-3}{4s-2}$		
	$(n \to \infty)$ with p fixed: $C \simeq p$, with np fixed, $C \to 0$			45-2		
Diffusion speed $t \propto \frac{\log(\epsilon)}{\log \lambda_2 }$						
MLE Estimate	$\hat{p} = \frac{\langle k \rangle}{n}$					$\hat{M}_{kl} = \frac{E_{kl}}{N_{kl}}$
Entropy	$-\sum_{m=0}^{\binom{n+1}{2}} {\binom{n+1}{2} \choose m} P(n, n)$	$n)\log\binom{\binom{n+1}{2}}{2} =$				$\sum_{k \le l} \log \binom{N_{kl}}{M_{kl}}$
Entropy	$\log P(n,m), \text{ whe-}$	$\log Z(n,m)$				$\angle \kappa \leq l^{10}8(M_{kl})$
	re $P(n,m) =$					
	$p^m \cdot (1-p)^{\binom{n+1}{2}-m}$					
Generating function	$G_1(x) = G_0(x)$				7(2)	
Molloy-Reed criterion	np > 1				$\frac{\zeta(\gamma-2)}{\zeta(\gamma-1)} > 2$	
$\left \frac{\langle k^2 \rangle}{\langle k \rangle} > 2\right $. ,	
Critical failure ratio $q_c =$	$1-\frac{1}{nn}$			$q_c = 1 - \frac{1}{2s-1}$	$q_c = 1 - \left(\frac{\zeta(\gamma - 2)}{\zeta(\gamma - 1)} - \frac{\zeta(\gamma - 2)}{\zeta(\gamma - 1)}\right)$	
$1 - (\frac{\langle k^2 \rangle}{\langle k \rangle} - 1)^{-1} = 1 - \frac{1}{G_1'(1)}$	np			23-1	$\begin{array}{ c } 1 & & & \downarrow \zeta(\gamma-1) \\ \hline & 1)^{-1}, q_c \rightarrow 1 & & & \end{array}$	

Tabelle 1: Model and metrics comparisons

Matrix	A: adjacency	T: transition	L: Laplacian
Applicable types of network	directed/undirected/weighted	directed/undirected/weighted	undirected, directed: more compli-
			cated
Eigenvalues		$ 1 = \lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_n $	$0 = \lambda_1 \le \lambda_2 \le \dots \le \lambda_n$
		Proof. If the T is aperiodic and irreducible, $\forall i > 1, \lambda_i < 1$	Algebraic connectivity: λ_2 . $\lambda_2 = 0 \Leftrightarrow$ network is disconnected.
		spectral gap: $1 - \lambda_2$	0 ⇔ fletwork is disconflected.
Eigenvalue Sort Ordering	Descending	Descending	Ascending
Eigenvectors	8	The eigenvector of λ_1 : stationary	Fiedler vector: the eigenvector of
		distribution	λ_2 : bisect the clusters. Detect communities by iterations.
Centrality	Eigenvector $\alpha x = x \cdot A$, usually not	Feedback $\pi = \pi \cdot T$,
	necessarily take the eigenvector of	PageRank: 1-unit bonus. $\alpha x = x \cdot T +$	
	the largest eigenvalue.	$ \vec{1} $	
Applications	$D: D_{ii} = d_{\text{out}}(i)$	Stationary distribution (Feedback	Algebraic connectivity, Fiedler vec-
		centrality)	tor.
		Total variation distance: $\delta(\pi, \pi^{(t)}) \simeq$	
		$\frac{1}{2}\sum_{j} \lambda_{2}a_{2}\vec{v_{2}_{j}} $, that is $t \propto \frac{\log(\epsilon)}{\log \lambda_{2} }$	

Tabelle 2: Matrices Comparison