

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

РТУ МИРЭА

Методические указания к выполнению практических работ

Моделирование информационно-аналитических систем Практическая работа 4

	(наименование дисциплины (модуля) в соответствии с учебным планом)								
Уровень	специалитет								
	(бакалавриат, магистратура, специалитет)								
Форма обучения	очная								
-	(очная, очно-заочная, заочная)								
Направление(-я)	10.05.04 Информационно-аналитические системы безопасности								
подготовки	специализации:								
, ,	специализация №1 "Автоматизация информационно-аналитической								
	деятельности";								
	специализация №3 "Технологии информационно-аналитического								
	мониторинга».								
	(код(-ы) и наименование(-я))								
Институт	Кибербезопасности и цифровых технологий								
	(полное и краткое наименование)								
Кафедра	Информационно-аналитические системы кибербезопасности (КБ-2)								
	(полное и краткое наименование кафедры, реализующей дисциплину (модуль))								
Лектор	к.т.н., доцент Лебедев Владимир Владимирович								
	(сокращенно – ученая степень, ученое звание; полностью – ФИО)								
Используются в да	анной редакции с учебного года 2022/23								
	(учебный год цифрами)								
Проверено и согла	совано «»20г.								
	(подпись директора Института/Филиала с расшифровкой)								

Москва 20 г.

Практическое занятие №4.

Разработка и исследование прогнозной модели динамического процесса в стохастической системе.

1. Постановка и формализация задачи

Дано: имитационная модель процесса Винера в прогнозных задачах биржевой аналитики.

Модель аддитивного случайного процесса Винера формализовано задана в виде следующей формулы:

$$S = A_0 + A \cdot t + B \cdot S[\sigma \cdot \sum_t N(0,1)],$$
 где

 $S[\sigma \cdot \sum_t N(0,1)]$ - аддитивный процесс броуновского блуждания;

N(0,1) - нормализованные числа, распределённые непрерывно по нормальному закону.

Процесс Винера представляет пример прогнозной модели значений некоторого случайного процесса, который имеет составляющую в виде тренда $A_0 + A \cdot t$ и случайную составляющую $B \cdot S[\sigma \cdot \sum_t N(0,1)]$, которые моделируют случайные факторы, вызывающие эффект отклонения значений прогнозируемого процесса от тренда.

Имитационное моделирование позволяет строить единичные траектории развития процесса за горизонт событий на величину заданного периода:

$$T = 200$$
.

Модельное время представляет дискретную последовательность моментов времени t=0,1,2,3,...,200, когда скачкообразно стохастически меняется состояние системы. Моменты представлены числами натурального ряда чисел, причём момент t=0 представляет текущее предпрогнозное состояние системы.

Состояние системы представляется в модели некоторым случайным значением S, которое в задачах биржевой аналитики может быть интерпретировано как значение курса ценных бумаг, акций или валют.

Нормализованные числа N(0,1) в имитационной модели получают

методом ЦПТ, и используют для вычисления стохастического интеграла Ито $S[\sigma \cdot \sum_t N(\mathbf{0}, \mathbf{1})]$, который воспроизводит эффект накопления отклонений, аналогичный феномену броуновского движения.

2. Разработка имитационной прогнозной модели построения единичных траекторий стохастического процесса

Требуется разработать программу имитационной модели процесса.

Построение единичной траектории осуществляется по численному алгоритму имитационной модели, представленной в виде программы ниже.

Текст программы для построения единичных траекторий процесса:

```
Sub Winn ()
    For j = 1 To 8
        Cells(7, j + 1) = Cells(1, 13)
    For k = 1 To 7
        S = 0
        For i = 1 To 200
            V = 0
            For j = 1 To 12
                Randomize
                V = V + Rnd()
            Next j
        z = v - 6
        S = S + Z
        Cells(7 + i, 1) = i
        Cells(7 + i, k + 2) = Cells(1, 13) + Cells(2, 13) * i + Cells(4, 13) *
Cells(3, 13) * S
        Next i
    Next k
    For i = 1 To 200
        Cells(7 + i, 2) = Cells(1, 13) + Cells(2, 13) * i
    Next i
End Sub
```

Исходные данные, включающие параметры модели, задаются индивидуально с помощью генератора заданий.

Пример результатов моделирования при исходных данных:

$A_0=$	20
A =	0,2
б=	0,1
В=	5

Программа рассчитывает единичные стохастические траектории (7 штук), см. таблицу 1 Результаты.

Таблица 1. Результаты:

Nº	Trend Line	Svba1	Svba2	Svba3	Svba4	Svba5	Svba6	Svba7
0	20	20	20	20	20	20	20	20
1	20,200	19,805	20,086	20,526	19,806	19,756	20,787	20,928
2	20,400	19,846	19,808	21,054	20,350	19,214	20,443	21,225
3	20,600	20,523	19,032	20,453	20,263	18,909	20,203	20,892
4	20,800	20,800 21,305 18,728 20,853 20,546	20,546	18,980	19,840	20,670		
5	21,000	21,088	18,167	21,599	20,205	17,788	19,714	20,716
14	22,800	21,024	19,909	23,481	25,505	16,388	20,323	22,378
15	23,000	21,201	20,395	23,637	25,344	16,008	20,841	21,470
16	23,200	20,381	21,017	23,929	25,892	16,366	20,862	22,640
17	23,400	19,298	21,875	24,824	26,444	16,093	20,753	22,186
18	23,600	19,217	21,970	25,457	26,365	16,564	20,380	22,970
19	23,800	19,880	22,309	25,700	26,764	16,905	19,619	22,888
20	24,000	20,545	22,483	25,446	27,165	16,983	19,860	23,411
21	24,200	20,182	23,159	26,429	26,804	17,329	19,838	23,436
179	55,800	13,489	78,905	70,909	40,869	30,045	9,758	76,246
180	56,000	13,651	79,373	70,658	40,801	30,526	10,135	76,806
181	56,200	13,581	80,077	70,784	40,208	29,852	10,515	78,103
182	56,400	14,248	79,285	71,147	39,986	29,180	10,499	78,110
183	56,600	13,887	79,995	70,880	39,867	29,745	9,859	78,759
184	56,800	13,902	79,676	71,482	38,625	29,820	10,355	79,511
185	57,000	13,787	80,734	72,695	38,120	30,632	10,455	79,267
194	58,800	16,605	83,061	74,423	38,347	29,879	11,901	84,228
195	59,000	16,272	83,292	74,044	39,249	29,206	12,511	85,294
196	59,200	16,294	83,247	73,920	39,648	29,789	12,875	85,687
197	59,400	16,446	82,303	75,393	40,301	30,734	12,102	85,101
198	59,600	16,587	82,480	76,121	41,811	31,642	12,716	84,878
199	59,800	16,223	82,889	76,212	42,449	31,443	12,694	84,878
200	60,000	15,982	83,552	76,156	41,975	31,601	13,126	85,007

Выделенные жёлтым цветом строки представляют данные по значениям случайного процесса в соответствующих сечениях модельного времени, которые указаны в крайнем левом столбце таблицы.

В пункте 3 практического руководства срезы модельного времени принимают следующие: 20, 40, 60, 80, 100, 120, 140, 160, 180, 200.

На рис. 1 представлены графики единичных траекторий.

Рисунок 1. Графики единичных траекторий

3. Разработать модель получения представительных выборок на срезах модельного времени

Задание:

- 1. Доработать модель в коде с целью получения представительных выборок (объём 200) на срезах модельного времени.
- 2. Провести статистические испытания модели (метод Монте-Карло вычислительный эксперимент) с целью определения дисперсий данных на срезах модельного времени.
 - 3. Обработать результаты.
 - 4. Сделать выводы.
 - 5. Составить отчёт.

Временные срезы в модели процесса, в которых мы исследуем дисперсии

распределения случайных значений случайных составляющих исходного процесса, принимаем следующие: 20, 40, 60, 80, 100, 120, 140, 160, 180, 200.

Интерес для статистического исследования представляют характеристики распределений случайных значений процесса в соответствующих сечениях модельного времени, а также исследование зависимости этих характеристик от времени.

Требуется разработать код (доработать код) программы для получения 10-ти выборок объёмом 200 значений на заданных сечениях модельного времени.

Пример текста программы представлен ниже:

```
Sub WinnSt_()
    Dim Arr(1 To 200, 1 To 10) As Variant
'Ввод данных
    Sigma= Cells(3, 13)
    B = Cells(4, 13)
'Расчёт статистики на срезах модельного времени
    For k = 1 To 200
        S = 0
        For i = 1 To 200
            \Lambda = 0
            For j = 1 To 12
                Randomize
                V = V + Rnd()
            Next j
        z = v - 6
        S = S + Z
        Select Case i
        Case 20, 40, 60, 80, 100, 120, 140, 160, 180, 200
            Arr(k, i / 20) = B * Sigma * S
        End Select
        Next i
    Next k
'Вывод данных расчёта
    For i = 1 To 200
       Cells(230 + i, 1) = i
    For j = 1 To 10
        Cells(229, j + 1) = j
        Cells(230, j + 1) = 20 * j
        For i = 1 To 200
            Cells(230 + i, j + 1) = Arr(i, j)
        Next i
    Next j
End Sub
```

Выполняется имитационное прогнозное моделирования 200-от единичных траекторий случайных составляющих стохастического процесса $S = B \cdot S[\sigma \cdot \sum_t N(\mathbf{0}, \mathbf{1})]$ на 200-ах шагах модельного времени (200×200=40000)

значений) и формируются 10 выборок объёмом 200 значений по срезам модельного времени 20, 40, 60, 80, 100, 120, 140, 160, 180 и 200 (всего объём $10\times200=2000$ значений).

Например, в результате моделирования в рассмотренном выше примере получим 10 выборок объёмом 200 значений случайных составляющих процесса $\pmb{S} = \pmb{B} \cdot \pmb{S} [\pmb{\sigma} \cdot \sum_t \pmb{N}(\pmb{0}, \pmb{1})], \text{ см. таблицу 2:}$

Таблица 3. Выборки статистик на срезах модельного времени

	Выборки на сечениях модельного времени:										
	1 2 3 4		5	6	7	8	9	10			
	Сечения модельного времени:										
Nº	20	40	60	80	100	120	140	160	180	200	
1	-3,92	-7,469	-12,63	-18,02	-25,53	-31,9	-37,87	-41,57	-42,31	-43,58	
2	-1,491	-1,181	3,1957	8,849	12,591	16,479	17,385	21,041	23,105	23,089	
3	1,9004	2,9274	4,0053	4,8503	5,7919	6,6518	8,7818	11,078	15,109	16,412	
4	2,9635	4,4494	4,8291	2,5187	-0,004	-1,813	-5,826	-9,828	-14,93	-17,35	
5	-6,895	-13,7	-12,94	-12,35	-11,73	-14,2	-16,65	-21,21	-25,75	-28,36	
6	-4,181	-7,502	-12,03	-16,63	-23,91	-31,7	-38,02	-41,48	-46,04	-47,11	
7	-0,912	-0,679	0,617	0,333	3,5689	7,6485	10,861	16,377	20,446	25,078	
8	5,5502	9,264	9,9027	12,442	14,248	15,483	18,659	19,377	20,905	21,717	
9	1,0714	-0,716	-3,118	-3,595	-6,816	-11,9	-16,53	-19,75	-22,91	-27,1	
192	-0,156	1,302	-0,812	-2,218	-2,282	-2,433	-1,723	-3,11	-2,118	-0,871	
193	-0,224	-1,071	-0,314	-0,179	1,9627	1,4132	0,7948	-0,522	0,4196	1,1798	
194	-1,779	-1,923	-1,791	0,8788	2,3457	3,9278	6,1041	5,7493	6,1097	3,7337	
195	0,2271	0,7601	1,6862	1,7951	1,1208	-0,176	-0,482	0,8675	0,4122	-1,604	
196	2,3535	2,1999	3,2141	4,628	5,021	4,8228	4,5609	6,5066	7,2747	6,7651	
197	-0,68	-0,08	0,4714	0,0542	1,8943	3,0364	2,5215	2,3891	0,6626	1,4038	
198	-2,641	-5,693	-6,93	-7,833	-10,21	-11,8	-13,61	-15,05	-16,36	-20,37	
199	0,4523	0,6366	0,8569	0,6376	2,5537	2,9946	4,5529	6,361	6,4607	4,835	
200	-0,475	-0,118	-0,257	1,8891	1,4168	1,9816	0,4618	1,174	2,6498	4,3121	

Данные выборок обрабатываем статистически, а данные статистических оценок сводим в нижеследующую таблицу 3:

Таблица 3. Подготовка данных к выполнению частотного анализа:

Среднее выбор.		-0,187	-0,287	-0,219	-0,168	-0,329	-0,465	-0,697	-0,968	-1,127	-1,386
Дисперсия выбор.		10,464	38,208	77,509	125,61	181,75	245,68	315,7	389,93	470	503,78
C	СКО выб.	3,2347	6,1813	8,8039	11,207	13,481	15,674	17,768	19,747	21,679	22,445
	Мин.=	-8,839	-14,2	-20,95	-25,65	-29,73	-35,14	-40,48	-42,78	-48,64	-49,04
	Макс.=	6,071	10,163	17,344	23,717	26,486	28,494	32,858	36,136	38,08	39,152
	K=	15	15	15	15	15	15	15	15	15	15
	h=	1,065	1,7401	2,7353	3,5264	4,0152	4,5451	5,2384	5,6366	6,1945	6,2995
	№	Шкала интервалов разбиения									
	1	-8,839	-14,2	-20,95	-25,65	-29,73	-35,14	-40,48	-42,78	-48,64	-49,04
	2	-7,774	-12,46	-18,21	-22,13	-25,71	-30,59	-35,24	-37,14	-42,45	-42,74
	3	-6,709	-10,72	-15,48	-18,6	-21,7	-26,05	-30	-31,5	-36,25	-36,44
	4	-5,644	-8,978	-12,74	-15,07	-17,68	-21,5	-24,76	-25,87	-30,06	-30,14
	5	-4,579	-7,238	-10,01	-11,55	-13,67	-16,96	-19,53	-20,23	-23,87	-23,84
	6	-3,514	-5,497	-7,274	-8,021	-9,65	-12,41	-14,29	-14,59	-17,67	-17,54
	7	-2,449	-3,757	-4,538	-4,494	-5,635	-7,866	-9,049	-8,957	-11,48	-11,24
	8	-1,384	-2,017	-1,803	-0,968	-1,62	-3,321	-3,811	-3,32	-5,282	-4,945
	9	-0,319	-0,277	0,9322	2,5584	2,3955	1,2237	1,4275	2,3166	0,9128	1,3548
	10	0,746	1,4627	3,6675	6,0848	6,4106	5,7688	6,6659	7,9531	7,1073	7,6543
	11	1,811	3,2028	6,4027	9,6112	10,426	10,314	11,904	13,59	13,302	13,954
	12	2,876	4,9428	9,138	13,138	14,441	14,859	17,143	19,226	19,496	20,253
	13	3,941	6,6829	11,873	16,664	18,456	19,404	22,381	24,863	25,691	26,553
	14	5,006	8,4229	14,609	20,191	22,471	23,949	27,62	30,499	31,885	32,852
	15	6,071	10,163	17,344	23,717	26,486	28,494	32,858	36,136	38,08	39,152

Строим гистограммы частотных распределений группировки, рис. 2.

Рисунок 2. Гистограммы частотных распределений по сечениям процесса

По данным статистической обработки устанавливаем факт зависимости дисперсии распределений на срезах модельного времени процесса от времени, см. рис. 3, что свидетельствует об не эргодичности исследуемого процесса. Аппроксимируем зависимость уравнением линейной регрессии, полученной методом наименьших квадратов.

Рисунок 3. Зависимость дисперсий распределений случайных значений процесса на срезах модельного времени от времени

Не эргодические процессы характеризуются в общем случае зависимостью статистических параметров распределений случайных значений от времени.

У них может иметь место зависимость от времени процесса закона условного распределения $P(x_t,t|x_0,t_0;H_{t_0,t})$ от начала наблюдения процесса (x_0,t_0) и истории $H_{t_0,t}$ процесса от (x_0,t_0) до (x_t,t) , а также математического ожидания M(t) и дисперсии D(t) закона распределения значений процесса на каждом временном срезе от времени. Напротив, эргодические процессы характеризуются стабильностью статистических параметров.

Вопросы для самоконтроля:

- 1. Объясните принципы имитационного моделирования.
- 2. Опишите алгоритм имитационного моделирования дискретно распределённых случайных чисел. Приведите пример реализации метода «жребия».
- 3. Опишите алгоритм имитационного моделирования непрерывно распределённых случайных методом обратных функций.
- 4. Опишите алгоритм моделирования непрерывно распределённых случайных чисел методом усечения Неймана.
- 5. Опишите алгоритм имитационного моделирования непрерывно распределённых случайных чисел методом ступенчатой аппроксимации по гистограмме функции.
- 6. Алгоритм ЦПТ имитационного моделирования нормально распределенных чисел.
- 7. Алгоритм Бокса-Мюллера имитационного моделирования нормально-распределённых чисел.
 - 8. Дайте определение формулы случайного процесса.
 - 9. Что такое нормальное распределение?
 - 10. Определение стационарного и нестационарного случайного процесса.
 - 11. Эргодические и неэргодические процессы.
 - 12. Прогнозное имитационное моделирование.

СПИСОК ИСТОЧНИКОВ И ЛИТЕРАТУРЫ

- 1. Дорошенко А.Н. Математическое и имитационное моделирование дискретных процессов и систем [Электронный ресурс]: учебное пособие /А. Н. Дорошенко. М.: МИРЭА, 2018. 151 с. Электрон, опт. диск (ISO)
- 2. В.В. Лозовецкий. Защита автоматизированных систем обработки информации и телекоммуникационных сетей: учебное пособие для вузов/ В.В. Лозовецкий, Е.Г. Комаров, В.В. Лебедев; под редакцией В.В. Лозовецкого. Санкт-Петербург: Лань, 2023, -448 с: ил. Текст: непосредственный.
- 3. Ермакова А.Ю. Моделирование автоматизированных систем в защищённом исполнении [Электронный ресурс]: Учебное пособие, ч.1./ Ермакова А.Ю., Лебедев В.В. М.: МИРЭА Российский технологический университет, 2024. 1 электрон. опт. диск (CD-ROM)..
- 4. Пестриков В.М., Дудкин В.С., Петров Г.А.. Дискретная математика./Уч. пос.. СПб.: СПб ГТУРП, 2013.- 136 с.
- 5. Гельгор А.Л., Горлов А.И., Попов Е.А.. Методы моделирования случайных величин и случайных процессов: уч. пос. СПб.: Изд-во ПГПУ, 2012. 217 с.
- 6. Васильев К.К., Служивый М.Н. Математическое моделирование систем связи: учеб, пособие. УлГТУ, 2008 168 с.
- 7. Карпов Ю.Г. Имитационное моделирование систем. Введение в моделирование с AnyLogic 5. СПб.: БХВ Петербург, 2006. 400 с.
- 8. Полянский Д.И. Оценка защищённости./Уч. пос. Владимир: изд-во Владим. гос. ун-та, 2005. 80 с.
- 9. Шмидт Б. Введение в имитационное моделирование в системе Simplex3 / пер. с нем. Ю.А. Ивашкина. М.: Наука, 2003. 30 с.
- 10.Шмидт Б. Искусство моделирования и имитации. Введение в имитационную систему Simplex3 : пер. с нем.: SCS-Европа BVBA, Гент. Бельгия. 2003. 550 с.

- 11. Харин Ю.С. и др. Основы имитационного и статистического моделирования. Учебное пособие Мн.: Дизайн ПРО, 1997. 288 с.
- 12.Шеннон Р. Имитационное моделирование систем искусство и наука: Пер. с англ. М.: Мир, 1978.