References where the mathematical symbols are defined:

The fragment molecular orbital method: practical applications to large molecular systems, D. G. Fedorov, K. Kitaura, Eds., CRC Press (2009), in press, chapter 1, **or** D. G. Fedorov, K. Kitaura, J. Phys. Chem. A 111 (2007) 6904-6914

One-body FMO properties.

```
E E'_I DX DY DZ 1(frg00001,L1) -76.368024057 -1.66667 0.62299 1.39538 2(frg00002,L1) -76.368062948 1.20960 1.04212 -1.58706 3(frg00003,L1) -76.368034599 0.35547 -1.98746 -0.99232
```

Total energy of the molecule: Euncorr(1)= -229.104121604Dipole moment D(xyz),DA(1)= -0.1015993 -0.3223615 -1.1839952 1.2312936

Energy gradient (hartree/bohr), no BSSE: G(1)

ATOM#	FRG#	Z	Ε'X	E'Y	E'Z
1	1	8.0	-0.004458002	0.009078649	0.016153082
2	1	1.0	0.006669925	0.002414628	-0.001125262
3	1	1.0	-0.002007016	-0.011533281	-0.014309482
4	2	8.0	0.008904604	-0.001985700	-0.018161402
5	2	1.0	-0.001314770	-0.006772807	0.002149070
6	2	1.0	-0.007738170	0.008626191	0.015110441
7	3	8.0	-0.004659212	-0.012024374	-0.014849716
8	3	1.0	-0.005265765	0.005099492	0.000260966
9	3	1.0	0.009868405	0.007097202	0.014772303

(1) MAXIMUM GRADIENT = 0.0181614 RMS GRADIENT = 0.0094106

Two-body FMO properties.

DL: D=C dynamically correlated (MP2,CI), D=N not dynamically correlated (RHF,DFT). D=S separated dimer: semiclassical interaction (ES), D=M MCSCF. L stands for layer, Z is the monomer charge product, R is the interfragment distance relative to van-der-Waals radii (-1.00 is printed if distances are not computed). dDIJ*VIJ is the density polarisation contribution. Q(I->J) is the charge transfer amount, printed as zero if not available. Positive values correspond to I in IJ having extra negative charge.

1	J DL	Z	R	Q(I->J)	Е	EIJ-EI-EJ	dDIJ*VIJ	tot
			R_{IJ}	ΔQ_{IJ}		$\Delta E_{IJ}'$	$Tr(\Delta \mathbf{D}^{IJ} \mathbf{V}^{IJ})$	$\Delta E_{IJ}^{\rm int}$
2	1 N1	0	0.76	0.0529	-152.749614468	-0.01352746	 -0.00114287	-9.206
3	1 N1	0	0.76	-0.0510	-152.749513638			-9.135
3	2 N1	0	0.77	0.0480	-152.748428743	-0.01233120	-0.00105509	-8.400

Total energy of the molecule: Euncorr(2)= -229.146735861 $E^{\text{FMO2-DFT}}$ Dipole moment D(xyz), DA(2)= -0.1328073 -0.2992231 -1.1875491 1.2318462 $D^{\text{FMO2-RHF}}$

Charge transfer for each fragment:

```
IFG QFG DeltaQ and its contributions from JFG, Q(JFG->IFG).

1 0 0.0018 = 2-> 0.0529 3-> -0.0510
2 0 -0.0049 = 1-> -0.0529 3-> 0.0480
3 0 0.0030 = 1-> 0.0510 2-> -0.0480
```

Total absolute monomer transf. charge = $0.009705 \frac{\Delta Q}{\Delta Q}$ Total amount of absolute transf. charge = $0.151896 \frac{\Delta Q}{\Delta Q}$

Energy gradient (hartree/bohr), no BSSE: G(2) $\nabla E^{ ext{FMO2-DFT}}$

ATOM#	FRG#	Z	E'X	E'Y	E'Z
1	1	8.0	-0.019488799	0.008990668	0.018466806
2	1	1.0	0.021271212	0.010289003	-0.002489306
3	1	1.0	-0.001319172	-0.013411622	-0.016198217
4	2	8.0	0.015231132	0.010942236	-0.021159206
5	2	1.0	-0.001515458	-0.023418078	0.004023099
6	2	1.0	-0.009188179	0.008992434	0.016733342
7	3	8.0	0.002955748	-0.024473418	-0.014059464
8	3	1.0	-0.019183837	0.013621367	-0.000778414
9	3	1.0	0.011237352	0.008467410	0.015461361

(2) MAXIMUM GRADIENT = 0.0244734 RMS GRADIENT = 0.0141661

DFT exchange+correlation energy= -22.620105871 Total electron number = 30.000119697

n-body Mulliken atomic charges Q(n)

IAT	IFG	Z	Q(1)	Q(2)	Q(3)
1	1	8.0	-0.854992	-0.831642	
2	1	1.0	0.445786	0.428840	
3	1	1.0	0.409205	0.404644	
4	2	8.0	-0.852980	-0.833508	
5	2	1.0	0.445705	0.426979	
6	2	1.0	0.407275	0.401676	
7	3	8.0	-0.853967	-0.829733	
8	3	1.0	0.446459	0.430035	
9	3	1.0	0.407508	0.402709	