NYC Subway Ridership Analysis

May 3, 2015

1 Do more people ride with the NYC Subway if it is raining?

Author: Michael Lichtsinn

Date: 03.05.2015, Darmstadt, Germany

1.1 About this analysis

This is a data analysis performed during the Data Analyst Nanodegree by Udacity.com. The questions to be answered in this project is wheater or not more people in New York use the Subway when it is raining in New York.

1.2 Data

variables.pdf

This analysis uses NYC Subway ridership data and the weather data for New York. The ridership data and the weather data were previously merged by Udacity. They also provided an improved data set with extra data points and variables. The latter is the data set that was used to perform the following data analysis. The dataset can be found here: https://www.dropbox.com/s/1lpoeh2w6px4diu/improved-dataset.zip?dl=0 A description of the variables of the data set can be found here: https://s3.amazonaws.com/uploads.hipchat.com/23756/665149/05bgLZqSsMycnkg/turnstile-weather-

```
In [4]: #load the packages
        import pandas
        from ggplot import *
        import scipy.stats
        import statsmodels
        import numpy
        import datetime
        %matplotlib inline
        #ignore warnings to make it more pleasant for the reader
        import warnings
        warnings.filterwarnings('ignore')
In [6]: #path to the csv file
        path = 'D:/Udacity/P1 - NYC Subway data/improved-dataset/turnstile_weather_v2.csv'
        #read csv and save as a data frame called "data"
        data = pandas.io.parsers.read_csv(path, index_col=False)
        #split into two data frames, one with rainy days and the other without
        rain = data['ENTRIESn_hourly'][data['rain']==1]
        norain = data['ENTRIESn_hourly'][data['rain']==0]
```

#get a summary of the ENTRIESn_hourly by rain
data[['rain', 'ENTRIESn_hourly']].groupby('rain').describe()

Out[6]:		ENTRIESn_	hourly				
	rain						
	0 со	unt 33064.	000000				
	me	an 1845.	539439				
	st	d 2878.	770848				
	mi	n 0.	000000				
	25	% 269.	000000				
	50	% 893.	000000				
	75	% 2197.	000000				
	ma	x 32814.	000000				
	1 co	unt 9585.	000000				
	me	an 2028.	196035				
	st	d 3189.	433373				
	mi	n 0.	000000				
	25	% 295.	000000				
	50	% 939.	000000				
	75	% 2424.	000000				
	ma	x 32289.	000000				
- 5:-5							
In [17]:	_	summary of th	e whole datase	:t			
	data.d	escribe()					
Out[17]:		ENTD TEC~	EVITO	ENTRIECT hours	le EVITCE hour	-1 \	
out[17]:		ENTRIESn 4.264900e+04	EXITSn 4.264900e+04	42649.0000	ly EXITSn_hour	• (
	count						
	mean	2.812486e+07	1.986993e+07	1886.5899			
	std	3.043607e+07	2.028986e+07	2952.3855			
	min	0.000000e+00	0.000000e+00	0.0000			
	25%	1.039762e+07	7.613712e+06	274.0000			
	50%	1.818389e+07	1.331609e+07	905.0000			
	75%	3.263049e+07	2.393771e+07	2255.0000			
	max	2.357746e+08	1.493782e+08	32814.0000	00 34828.000	000	
		hour	day_week	weekday	latitude	longitude	\
	count	42649.000000	42649.000000	42649.000000	42649.000000	42649.000000	`
	mean	10.046754	2.905719	0.714436	40.724647	-73.940364	
	std	6.938928	2.079231	0.451688	0.071650	0.059713	
	min	0.000000	0.000000	0.000000	40.576152	-74.073622	
	25%	4.000000	1.000000	0.000000	40.677107	-73.987342	
	50%	12.000000	3.000000	1.000000	40.717241	-73.953459	
	75%	16.000000	5.000000	1.000000	40.759123	-73.907733	
	max	20.000000	6.000000	1.000000	40.889185	-73.755383	
		fog		pressurei	rain	tempi	\
	count	42649.000000		42649.000000	42649.000000	42649.000000	
	mean	0.009824		29.971096	0.224741	63.103780	
	std	0.098631		0.137942	0.417417	8.455597	
	min	0.000000		29.550000	0.000000	46.900000	
	25%	0.000000		29.890000	0.000000	57.000000	
	50%	0.000000		29.960000	0.000000	61.000000	
	75%	0.000000		30.060000	0.000000	69.100000	

30.320000

1.000000

86.000000

1.000000

max

	wspdi	meanprecipi	meanpressurei	${\tt meantempi}$	meanwspdi	\
count	42649.000000	42649.000000	42649.000000	42649.000000	42649.000000	
mean	6.927872	0.004618	29.971096	63.103780	6.927872	
std	4.510178	0.016344	0.131158	6.939011	3.179832	
min	0.000000	0.000000	29.590000	49.400000	0.000000	
25%	4.600000	0.000000	29.913333	58.283333	4.816667	
50%	6.900000	0.000000	29.958000	60.950000	6.166667	
75%	9.200000	0.000000	30.060000	67.466667	8.850000	
max	23.000000	0.157500	30.293333	79.800000	17.083333	
	$weather_lat$	${\tt weather_lon}$				
count	42649.000000	42649.000000				
mean	40.728555	-73.938693				
std	0.065420	0.059582				
min	40.600204	-74.014870				
25%	40.688591	-73.985130				
50%	40.720570	-73.949150				
75%	40.755226	-73.912033				
max	40.862064	-73.694176				

[8 rows x 21 columns]

2 Statistical Test

To determine which statistical test is appropriate for the analysis, we have to have a look at the data first. The most interesting variable are the hourly entries. A histogramm will give us a high level look at the distribution of the number of people that are entering the subway.

Out[8]: <ggplot: (12761906)>

This histogram doesn't look like a bell curve. The distribution does not seem normal. To be really sure, we could use the Shapiro-Wilk-Test to test if the sample is drawn from a normal distributed population. But the Shapiro-Wilk-Test may be inaccurate for N > 5000 and since we have a N = 42649 we do not know if the results are accurate.

Therefore we do not assume anything about the distribution. This also means, we cannot use the Welch-T-Test to test the difference, because this test assumes normal distribution. Since we do not assume anything about the distribution, we have to run a test that does not assume a particular distribution. This will be the Mann-Whitney-U-Test.

3 Mann-Whitney-U-Test

To test if more people ride the subay when it's raining, we will perform a Mann-Whitney-U-Test.

Under the null-hypothesis, the distribution of both groups - rainy and non-rainy- are equal. If we reject the null-hypothesis based on the results, that means that the distribution of both samples are different.

3.1 Interpreting the p-value

How to interpret the p-value of the Mann-Whitney-U-Test? Let's have a look:

"If the groups are sampled from populations with identical distributions, what is the chance that random sampling would result in the mean ranks being as far apart (or more so) as observed in this experiment?"

 $Source: http://graphpad.com/guides/prism/6/statistics/index.htm?how_the_mann-whitney_test_works.htm$

If the p-value is small, we can conclude that the populations are distinct because the chance to get a difference in the observed means rank is small and highly unlikely.

```
In [11]: #perform mann-whitney-u-test on the rainy and non-rainy group
      [U, p] = scipy.stats.mannwhitneyu(rain,norain)
      print(U,p)
```

153635120.5 nan

3.2 Possible Bug with scipy, compute the p-value with R

The NaN (Not a Number) in the results seems to be a bug, since this is also reported by other students in the forum. Oliva from Udacity postet an answer:

Anyways, it seems from that post that the problem is likely with your OS or architecture. Are you using Windows, by any chance? It's a known issue that some students are receiving different values using scipy's Mann-Whitney U test on Windows, whether 32 bit or 64 bit. It's possible that receiving NaN is due to similar reasons.

Olivia on the udacity forums

http://discussions.udacity.com/t/mann-whitney-test-what-does-nan-mean/16373/4

Therefore I computed the p-value for the Mann-Whitney-U test using R with the following results:

Wilcoxon rank sum test with continuity correction

data: ENTRIESn_hourly by rain W=153635121, p-value = 5.482e-06 alternative hypothesis: true location shift is not equal to 0

```
The means for rainy and non-rainy days are the following: mean_norain = 1845.539439 mean_rain = 2028.196035
```

On average there are 183 more people riding the subway on rainy days in those samples.

3.3 Rejecting the null-hypothesis: distributions are statistically different

We have a significance level of alpha = 0.05 and a p-value of 0.000005482. Because we do a two-sided test we have to split the alpha in half (one for each side) to get our p-critical value. If the p-value is smaller than the p-critical-value, this means it is highly unlikely that the two samples are drawn from the same population, thus they differ in their distribution.

Since 0.000005482 is smaller than 0.025 we reject the null-hypothesis and can conclude that the samples from rainy days differ in their distribution compared to the sample from non-rainy days.

4 Linear Regression

We want to predict the number of hourly entries and use the a linear regression to achieve this. Linear regression means that there we assume a linear relationship between the independent variable of hourly entries and the dependent variables. For example, if rain has a positive linear relationship with the ridership as hinted in the statistical test above, then more rainy days will result in more people taking the subway. Based on the models learnt so far in the Intro to Data Science course I have choosen to implement Ordinary-Least-Squars (OLS) models using statsmodels. This model is easy to interpret though other models may explain more of the variance. For the learning purpose of this project, it will be sufficient.

4.1 Variables to chose

Rather than dumping all available variables into the model, I will choose those who have the highest probability of a linear relationship based on logical conclusions. To get an idea which variables are there to choose for our regression, let's think about the data first.

This is data about the New York City Subway Ridership. New York City is a city in the United States of America with 8.406 million people. The subway is a public transportation which is for use by the general public. Other forms of transportation include trams, taxis, carpooling, buses for the general public plus walking, cycling or driving with your own car as a private form of transportation.

4.2 Reasons to take the subway

Reasons to take the subway are basically the same as using any form of public transportation:

Need for transportation * e.g. commuting to work Convenience * Faster * Cheaper * Weatherconditions

4.3 Chosen variables

The variables I chose to include are those who will represent convienence and need for transportation. For example, if it is raining, it is more convienent to take the subway then to walk or go by bike.

Need for transportation * weekday - on weekdays most people need to go to work, thus have a need for transportation * hour - normally people commute to work in the morning and back in the evening

Weatherconditions * fog - indicates if it was foggy that day * rain - indictaes if it was raining that day * tempi - temperature at the time and location * conds - weather condition for time and location

I have also included UNIT, the turnstile units installed on subway station that collected the information, as it greatly increased the \mathbb{R}^2 of my model.

'UNIT', 'weekday' and 'conds' as modeled as dummy variables, because they are categorical variables and represent qualitative data, not quantitative data. Once modeled as dummy variable we can use them in a quantitative model.

```
In [26]: #Turn UNIT into a dummy variable
         dummy_weekday = pandas.get_dummies(data['weekday'],prefix='weekday')
         dummy_conds = pandas.get_dummies(data['conds'],prefix='conds')
         dummy_unit = pandas.get_dummies(data['UNIT'],prefix='UNIT')
         #defining the dependent and independent variables
         y = data['ENTRIESn_hourly']
         x = data[['hour']]
         x = x.join(dummy_weekday)
         x = x.join(dummy\_conds)
         x = x.join(dummy_unit)
         #tempi, fog, precipi didn't improve the R^2 at all
         #fitting the model
         model = statsmodels.regression.linear_model.OLS(y,x)
         results = model.fit()
         parameter = results.params
         results.summary()
Out[26]: <class 'statsmodels.iolib.summary.Summary'>
                                     OLS Regression Results
         Dep. Variable:
                               ENTRIESn_hourly
                                                 R-squared:
                                                                                   0.484
```

Model: OLS Adj. R-squared: 0.481 Method: Least Squares F-statistic: 158.1 Date: Sat, 02 May 2015 Prob (F-statistic): 0.00 Time: 22:12:52 Log-Likelihood: -3.8717e+05 No. Observations: 42649 AIC: 7.748e+05 Df Residuals: 42396 BIC: 7.770e+05

Df Model: 252 Covariance Type: nonrobust

=======================================	========		========		
	coef	std err	t	P> t	[95.0% Conf. Int.]
hour	123.6972	1.501	82.424	0.000	120.756 126.639
weekday_0	-162.8296	45.353	-3.590	0.000	-251.722 -73.938
weekday_1	785.2381	43.575	18.020	0.000	699.831 870.646
conds_Clear	137.2742	46.110	2.977	0.003	46.898 227.650
conds_Fog	227.2959	291.423	0.780	0.435	-343.899 798.491
conds_Haze	45.1580	68.465	0.660	0.510	-89.034 179.350
conds_Heavy Rain	-514.1154	123.715	-4.156	0.000	-756.599 -271.632
conds_Light Drizzle	-346.7095	116.200	-2.984	0.003	-574.465 -118.954
conds_Light Rain	510.8856	61.765	8.271	0.000	389.825 631.946
conds_Mist	678.0639	405.120	1.674	0.094	-115.979 1472.107
conds_Mostly Cloudy	-70.3318	48.133	-1.461	0.144	-164.674 24.011
conds_Overcast	45.6196	45.398	1.005	0.315	-43.362 134.601
conds_Partly Cloudy	82.8562	58.870	1.407	0.159	-32.530 198.242
conds_Rain	-455.2409	76.134	-5.980	0.000	-604.464 -306.018
conds_Scattered Clouds	281.6526	53.620	5.253	0.000	176.556 386.749
UNIT_R003	-1637.9655	163.884	-9.995	0.000	-1959.182 -1316.749
UNIT_R004	-1286.8453	160.704	-8.008	0.000	-1601.829 -971.862
UNIT_R005	-1278.2940	162.095	-7.886	0.000	-1596.004 -960.584
UNIT_R006	-1162.4226	158.482	-7.335	0.000	-1473.051 -851.794
UNIT_RO07	-1452.6219	163.028	-8.910	0.000	-1772.160 -1133.084
UNIT_R008	-1446.5845	163.513	-8.847	0.000	-1767.073 -1126.096
UNIT_R009	-1492.7518	160.684	-9.290	0.000	-1807.697 -1177.807
UNIT_RO11	5528.5381	156.508	35.324	0.000	5221.778 5835.298
UNIT_R012	6871.9603	155.670	44.144	0.000	6566.844 7177.077
UNIT_R013	770.4012	155.670	4.949	0.000	465.285 1075.518
UNIT_R016	-1040.6920	156.506	-6.650	0.000	-1347.448 -733.936
UNIT_R017	2385.3958	155.670	15.323	0.000	2080.279 2690.512
UNIT_R018	5973.8049	156.245	38.234	0.000	5667.561 6280.049
UNIT_R019	1459.0273	155.915	9.358	0.000	1153.431 1764.624
UNIT_R020	4561.4926	155.670	29.302	0.000	4256.376 4866.609
UNIT_R021	2882.1545	156.511	18.415	0.000	2575.390 3188.919
UNIT_R022	7705.8851	155.670	49.501	0.000	7400.768 8011.002
UNIT_R023	4341.0625	155.670	27.886	0.000	4035.946 4646.179
UNIT_R024	1424.7166	156.330	9.114	0.000	1118.307 1731.126
UNIT_R025	3555.9198	155.915	22.807	0.000	3250.323 3861.516
UNIT_R027	1155.4980	155.670	7.423	0.000	850.381 1460.615
UNIT_R029	5417.4711	155.670	34.801	0.000	5112.354 5722.588
UNIT_R030	1287.6646	155.670	8.272	0.000	982.548 1592.781
UNIT_R031	2539.4334	155.670	16.313	0.000	2234.317 2844.550
UNIT_R032	2638.7228	156.087	16.905	0.000	2332.790 2944.656
UNIT_R033	6422.4442	155.670	41.257	0.000	6117.328 6727.561
UNIT_R034	-636.2188	162.799	-3.908	0.000	-955.308 -317.130
UNIT_R035	994.0471	156.506	6.351	0.000	687.291 1300.803

UNIT_R036	-1038.7339	159.706	-6.504	0.000	-1351.761	-725.707
UNIT_R037	-955.5769	157.095	-6.083	0.000	-1263.486	-647.668
UNIT_R038	-1589.5399	160.616	-9.897	0.000	-1904.350	-1274.730
UNIT_R039	-1027.1959	164.870	-6.230	0.000	-1350.344	-704.048
UNIT_R040	-551.1925	156.665	-3.518	0.000	-858.260	-244.125
UNIT_RO41	1287.4764	155.670	8.271	0.000	982.360	1592.593
UNIT_R042	-1197.9319	158.225	-7.571	0.000	-1508.056	-887.808
UNIT_R043	1074.6109	155.670	6.903	0.000	769.494	1379.727
UNIT_R044	2866.0195	155.670	18.411	0.000	2560.903	3171.136
UNIT_R046	6532.4711	155.670	41.964	0.000	6227.354	6837.588
UNIT_R049	960.2829	155.670	6.169	0.000	655.166	1265.399
UNIT_R050	2212.0838	156.510	14.134	0.000	1905.320	2518.847
UNIT_R051	3322.0248	155.670	21.340	0.000	3016.908	3627.141
UNIT_R052	-551.9929	162.017	-3.407	0.001	-869.550	-234.436
UNIT_R053	1373.3071	156.666	8.766	0.000	1066.240	1680.375
UNIT_R054	-343.7477	156.511	-2.196	0.028	-650.512	-36.984
UNIT_R055	6528.4006	155.832	41.894	0.000	6222.968	6833.833
UNIT_R056	-358.3967	156.508	-2.290	0.022	-665.156	-51.637
UNIT_R057	3070.4119	155.670	19.724	0.000	2765.295	3375.529
UNIT_R058	-1168.9341	156.088	-7.489	0.000	-1474.871	-862.998
UNIT_R059	-602.6159	159.565	-3.777	0.000	-915.367	-289.865
UNIT_R060	-995.3806	158.228	-6.291	0.000	-1305.511	-685.251
UNIT_R061	-1167.0231	164.243	-7.105	0.000	-1488.943	-845.103
UNIT_R062	924.2721	155.670	5.937	0.000	619.156	1229.389
UNIT_R063	-599.1354	163.757	-3.659	0.000	-920.102	-278.169
UNIT_R064	-948.2477	160.005	-5.926	0.000	-1261.860	-634.635
UNIT_R065	-925.8623	161.846	-5.721	0.000	-1243.083	-608.641
UNIT_R066	-1506.0832	162.787	-9.252	0.000	-1825.149	-1187.018
UNIT_R067	-891.2027	164.396	-5.421	0.000	-1213.423	-568.982
UNIT_R068	-1294.5733	164.403	-7.874	0.000	-1616.806	-972.341
UNIT_R069	-834.2241	161.536	-5.164	0.000	-1150.837	-517.611
UNIT_R070	-24.7494	155.670	-0.159	0.874	-329.866	280.367
UNIT_R080	1799.5786	155.670	11.560	0.000	1494.462	2104.695
UNIT_R081	1752.1834	156.507	11.196	0.000	1445.427	2058.939
UNIT_R082	-299.7230	156.510	-1.915	0.055	-606.486	7.040
UNIT_R083	1313.9872	155.670	8.441	0.000	1008.871	1619.104
UNIT_R084	8218.2614	155.670	52.793	0.000	7913.145	8523.378
UNIT_R085	806.5853	156.511	5.154	0.000	499.821	1113.350
UNIT_R086	787.5786	155.670	5.059	0.000	482.462	1092.695
UNIT_R087	-567.1675	157.363	-3.604	0.000	-875.603	-258.732
UNIT_R089	-1286.9040	156.506	-8.223	0.000	-1593.660	-980.148
UNIT_R090	-1341.8939	164.408	-8.162	0.000	-1664.136	
UNIT_RO91	-644.1590	162.951	-3.953	0.000	-963.547	-324.771
UNIT_R092	217.7250	160.183	1.359	0.174	-96.236	531.686
UNIT_R093	253.1256	161.085	1.571	0.116	-62.605	568.856
UNIT_R094	-27.2503	156.669	-0.174	0.862	-334.325	279.825
UNIT_R095	388.8047	157.952	2.462	0.014	79.215	698.394
UNIT_R096	559.6432	156.248	3.582	0.000	253.394	865.892
UNIT_R097	1182.8428	156.245	7.570	0.000	876.599	1489.087
UNIT_R098	22.1377	155.670	0.142	0.887	-282.979	327.254
UNIT_R099	579.1646	155.670	3.720	0.000	274.048	884.281
UNIT_R100	-1229.8273	157.531	-7.807	0.000	-1538.590	-921.064
UNIT_R101	1013.5571	155.670	6.511	0.000	708.441	1318.674
UNIT_R102	1902.3958	155.670	12.221	0.000	1597.279	2207.512
O11 T T T/T OZ	1302.3300	100.070	12.221	0.000	1031.219	2201.012

UNIT_R103	-356.1450	161.997	-2.198	0.028	-673.662	-38.628
UNIT_R104	-439.9872	156.672	-2.808	0.005	-747.067	-132.908
UNIT_R105	1552.0947	155.670	9.970	0.000	1246.978	1857.211
UNIT_R106	-637.2247	164.392	-3.876	0.000	-959.436	-315.013
UNIT_R107	-1230.2332	164.885	-7.461	0.000	-1553.410	-907.056
UNIT_R108	3441.2614	155.670	22.106	0.000	3136.145	3746.378
UNIT_R111	1438.3851	155.670	9.240	0.000	1133.268	1743.502
UNIT_R112	-98.6703	156.248	-0.631	0.528	-404.919	207.578
UNIT_R114	-871.3224	156.330	-5.574	0.000	-1177.732	-564.913
UNIT_R115	-493.4834	155.915	-3.165	0.002	-799.080	-187.887
UNIT_R116	1417.5302	155.670	9.106	0.000	1112.414	1722.647
UNIT_R117	-846.8785	163.902	-5.167	0.000	-1168.130	-525.627
UNIT_R119	101.8474	158.812	0.641	0.521	-209.427	413.122
UNIT_R120	-240.9131	161.068	-1.496	0.135	-556.610	74.784
UNIT_R121	-278.9752	160.007	-1.744	0.081	-592.591	34.641
UNIT_R122	806.9208	157.955	5.109	0.000	497.326	1116.516
UNIT_R123	-132.9485	158.228	-0.840	0.401	-443.078	177.181
UNIT_R124	-1082.3844	162.318	-6.668	0.000	-1400.531	-764.238
UNIT_R126	79.4388	155.670	0.510	0.610	-225.678	384.555
UNIT_R127	3020.1485	155.670	19.401	0.000	2715.032	3325.265
UNIT_R137	674.3092	155.832	4.327	0.000	368.876	979.742
UNIT_R139	760.2467	156.087	4.871	0.000	454.314	1066.179
UNIT_R163	1555.8851	155.670	9.995	0.000	1250.768	1861.002
UNIT_R172	121.9227	155.670	0.783	0.434	-183.194	427.039
UNIT_R179	5002.6969	155.670	32.137	0.000	4697.580	5307.813
UNIT_R181	13.9020	158.671	0.088	0.930	-297.096	324.900
UNIT_R183	-939.5923	164.894	-5.698	0.000	-1262.787	-616.397
UNIT_R184	-716.2871	162.793	-4.400	0.000	-1035.365	-397.210
UNIT_R186	-674.7405	157.798	-4.276	0.000	-984.027	-365.454
UNIT_R188	560.4255	156.087	3.590	0.000	254.492	866.358
UNIT_R189	-345.8153	159.559	-2.167	0.030	-658.555	-33.076
UNIT_R194	247.8730	158.665	1.562	0.118	-63.114	558.859
UNIT_R196	-432.5871	156.937	-2.756	0.006	-740.186	-124.988
UNIT_R198	348.6257	156.511	2.227	0.026	41.861	655.391
UNIT_R199	-1030.5757	158.665	-6.495	0.000	-1341.563	-719.588
UNIT_R200	-679.1048	157.604	-4.309	0.000	-988.011	-370.198
UNIT_R202	461.7249	156.663	2.947	0.003	154.663	768.787
UNIT_R203	21.0812	160.463	0.131	0.895	-293.429	335.592
UNIT_R204	-316.5773	155.670	-2.034	0.042	-621.694	-11.461
UNIT_R205	-249.2621	157.515	-1.582	0.114	-557.995	59.470
UNIT_R207	236.6168	156.091	1.516	0.130	-69.326	542.559
UNIT_R208	763.2296	157.519	4.845	0.000	454.489	1071.970
UNIT_R209	-915.3482	163.754	-5.590	0.000	-1236.310	-594.386
UNIT_R210	-1199.3259	159.560	-7.516	0.000	-1512.068	-886.584
UNIT_R211	640.8528	155.670	4.117	0.000	335.736	945.969
UNIT_R212	-72.7965	156.087	-0.466	0.641	-378.729	233.136
UNIT_R213	-578.5329	159.115	-3.636	0.000	-890.401	-266.665
UNIT_R214	-1039.0609	164.246	-6.326	0.000	-1360.986	-717.136
UNIT_R215	-161.4205	156.511	-1.031	0.302	-468.185	145.344
UNIT_R216	-990.7873	156.509	-6.331	0.000	-1297.547	-684.027
UNIT_R217	-709.9897	163.745	-4.336	0.000	-1030.934	-389.045
UNIT_R218	224.7727	156.252	1.439	0.150	-81.484	531.030
UNIT_R219	-489.6692	156.665	-3.126	0.002	-796.736	-182.602
UNIT_R220	-284.4214	155.670	-1.827	0.068	-589.538	20.695

UNIT_R221	-306.8964	164.244	-1.869	0.062	-628.817	15.024
UNIT_R223	363.5892	156.248	2.327	0.020	57.340	669.838
UNIT_R224	-1001.7153	160.008	-6.260	0.000	-1315.335	-688.095
UNIT_R225	-1176.8079	157.798	-7.458	0.000	-1486.095	-867.521
UNIT_R226	-977.1947	162.950	-5.997	0.000	-1296.580	-657.809
UNIT_R227	-665.1580	155.670	-4.273	0.000	-970.275	-360.041
UNIT_R228	-620.4966	163.271	-3.800	0.000	-940.511	-300.483
UNIT_R229	-1145.6076	162.317	-7.058	0.000	-1463.751	-827.464
UNIT_R230	-1204.2141	160.466	-7.504	0.000	-1518.730	-889.698
UNIT_R231	-777.9833	157.796	-4.930	0.000	-1087.267	-468.700
UNIT_R232	-694.7519	161.849	-4.293	0.000	-1011.979	-377.525
UNIT_R233	-597.6667	165.229	-3.617	0.000	-921.518	-273.815
UNIT_R234	-1388.2906	163.755	-8.478	0.000	-1709.253	-1067.328
UNIT_R235	809.1686	156.088	5.184	0.000	503.232	1115.105
UNIT_R236	-219.9724	157.509	-1.397	0.163	-528.693	88.749
UNIT_R237	-1056.0775	163.423	-6.462	0.000	-1376.390	-735.765
UNIT_R238	347.1199	156.248	2.222	0.026	40.870	653.370
UNIT_R239	-867.9967	155.670	-5.576	0.000	-1173.113	-562.880
UNIT_R240	906.2410	156.936	5.775	0.000	598.643	1213.839
UNIT_R242	-1185.8108	159.107	-7.453	0.000	-1497.664	-873.958
UNIT_R243	-349.5289	161.532	-2.164	0.030	-666.135	-32.923
UNIT_R244	-152.4518	161.529	-0.944	0.345	-469.051	164.147
UNIT_R246	-1038.2968	163.286	-6.359	0.000	-1358.340	-718.253
UNIT_R247	-1554.6611	166.234	-9.352	0.000	-1880.482	-1228.840
UNIT_R248	1342.5764	156.087	8.601	0.000	1036.644	1648.509
UNIT_R249	-382.1344	158.227	-2.415	0.016	-692.262	-72.007
UNIT_R250	-766.8243	159.114	-4.819	0.000	-1078.691	-454.957
UNIT_R251	-478.8563	156.931	-3.051	0.002	-786.444	-171.269
UNIT_R252	-798.2883	156.510	-5.101	0.000	-1105.051	-491.525
UNIT_R253	-1040.5868	161.995	-6.424	0.000	-1358.101	-723.073
UNIT_R254	824.9967	156.256	5.280	0.000	518.732	1131.261
UNIT_R255	-958.2259	157.601	-6.080	0.000	-1267.128	-649.324
UNIT_R256	-704.8519	156.513	-4.503	0.000	-1011.621	-398.083
UNIT_R257	119.1754	155.670	0.766	0.444	-185.941	424.292
UNIT_R258	-237.4648	156.935	-1.513	0.130	-545.061	70.131
UNIT_R259	-817.5787	158.235	-5.167	0.000	-1127.722	-507.436
UNIT_R260	-646.2816	169.899	-3.804	0.000	-979.287	-313.276
UNIT_R261	-169.8427	159.706	-1.063	0.288	-482.869	143.184
UNIT_R262	-1231.9400	166.237	-7.411	0.000	-1557.769	-906.111
UNIT_R263	-1621.7817	159.121	-10.192	0.000	-1933.662	-1309.901
UNIT_R264	-1297.7682	156.093	-8.314	0.000	-1603.713	-991.824
UNIT_R265	-841.4118	162.315	-5.184	0.000	-1159.553	-523.270
UNIT_R266	-854.1027	156.248	-5.466	0.000	-1160.351	-547.854
UNIT_R269	-876.1129	156.508	-5.598	0.000	-1182.873	-569.353
UNIT_R270	-1247.1577	163.280	-7.638	0.000	-1567.189	-927.126
UNIT_R271	-1361.2598	162.799	-8.362	0.000	-1680.350	-1042.170
UNIT_R273	-424.3398	163.772	-2.591	0.010	-745.337	-103.343
UNIT_R274	-784.8426	161.852	-4.849	0.000	-1102.076	-467.610
UNIT_R275	-849.7514	159.724	-5.320	0.000	-1162.815	-536.688
UNIT_R276	-358.2870	155.670	-2.302	0.021	-663.404	-53.170
UNIT_R277	-1246.0191	167.774	-7.427	0.000	-1574.860	-917.178
UNIT_R278	-1361.5246	162.318	-8.388	0.000	-1679.672	
UNIT_R279	-978.1753	158.821	-6.159	0.000	-1289.468	-666.883
UNIT_R280	-1085.7043	166.752	-6.511	0.000	-1412.542	-758.867

UNIT_R281	-476.8797	158.229	-3.014	0.003	-787.011	-166.749
UNIT_R282	-179.9558	156.511	-1.150	0.250	-486.721	126.809
UNIT_R284	-989.8915	156.510	-6.325	0.000	-1296.655	-683.128
UNIT_R285	-1130.5629	164.523	-6.872	0.000	-1453.031	-808.094
UNIT_R287	-1152.6667	164.737	-6.997	0.000	-1475.554	-829.780
UNIT_R291	34.9442	155.670	0.224	0.822	-270.172	340.061
UNIT_R294	-803.2795	159.561	-5.034	0.000	-1116.021	-490.537
UNIT_R295	-1163.4263	180.775	-6.436	0.000	-1517.749	-809.103
UNIT_R300	444.0087	155.670	2.852	0.004	138.892	749.125
UNIT_R303	-521.3082	158.227	-3.295	0.001	-831.436	-211.180
UNIT_R304	-691.1363	156.511	-4.416	0.000	-997.901	-384.371
UNIT_R307	-1381.9928	164.900	-8.381	0.000	-1705.199	-1058.786
UNIT_R308	-951.8084	161.546	-5.892	0.000	-1268.442	
UNIT_R309	-947.1338	161.063	-5.881	0.000	-1262.820	-631.447
UNIT_R310	-436.8201	162.958	-2.681	0.007	-756.220	-117.420
UNIT_R311	-1360.4581	160.463	-8.478	0.000	-1674.969	
UNIT_R312	-1433.7632	156.934	-9.136	0.000	-1741.356	
UNIT_R313	-1671.4447	165.375	-10.107	0.000	-1995.583	
UNIT_R318	-1224.7900	157.360	-7.783	0.000	-1533.219	
UNIT_R319	-409.7415	158.664	-2.582	0.010	-720.727	-98.756
UNIT_R321	-693.3945	155.670	-4.454	0.000	-998.511	-388.278
UNIT_R322	5.5385	158.667	0.035	0.972	-305.452	316.529
UNIT_R323	-478.4487	161.843	-2.956	0.003	-795.665	-161.233
UNIT_R325	-1412.6329	160.622	-8.795	0.000	-1727.455	-1097.811
UNIT_R330	-776.4219	159.557	-4.866	0.000	-1089.157	-463.687
UNIT_R335	-1328.5186	165.976	-8.004	0.000	-1653.835	
UNIT_R336	-1703.8013	165.944	-10.267	0.000	-2029.054	
UNIT_R337	-1659.6367	164.019	-10.119	0.000	-1981.118	
UNIT_R338	-1806.7732	161.171	-11.210	0.000	-2122.672	
UNIT_R341	-1249.9935	157.182	-7.953	0.000	-1558.072	-941.915
UNIT_R344	-1287.5925	165.744	-7.769	0.000	-1612.454	-962.731
UNIT_R345	-1290.9794	160.467	-8.045	0.000	-1605.498	-976.461
UNIT_R346	-514.6591	160.925	-3.198	0.001	-830.076	-199.243
UNIT_R348	-1622.1590	161.062	-10.072	0.000	-1937.844	
UNIT_R354	-1537.1902	164.498	-9.345	0.000	-1859.609	
UNIT_R356	-675.0145	160.272	-4.212	0.000	-989.151	-360.878
UNIT_R358	-1503.8433	164.496	-9.142	0.000	-1826.258	
UNIT_R370	-1285.0821	160.002	-8.032	0.000	-1598.690	-971.474
UNIT_R371	-1069.7195	161.847	-6.609	0.000	-1386.943	-752.496
UNIT_R372	-1055.2353	163.270	-6.463	0.000	-1375.248	-735.222
UNIT_R373	-1133.0518	163.770	-6.919	0.000	-1454.045	-812.059
UNIT_R382	-841.8163	159.797	-5.268	0.000	-1155.022	-528.610
UNIT_R424	-1396.2345	165.231	-8.450	0.000		-1072.378
UNIT_R429	-782.9658	157.099	-4.984	0.000	-1090.883	-475.048
UNIT_R453	3.0551	166.753	0.018	0.985	-323.785	329.895
UNIT_R454	-1652.7769	164.237	-10.063	0.000	-1974.684	
UNIT_R455	-1697.5658	163.775	-10.365	0.000	-2018.568	
UNIT_R456	-1558.2146	159.564	-9.765	0.000	-1870.962	
UNIT_R459	-1798.7634	226.109	-7.955	0.000	-2241.941	
UNIT_R464	-1853.4070	163.501	-11.336	0.000	-2173.871	-1532.943
===========		========	-========	:========	=======	

 Omnibus:
 27485.974
 Durbin-Watson:
 1.609

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 821188.592

 Skew:
 2.642
 Prob(JB):
 0.00

Kurtosis: 23.837 Cond. No. 1.44e+16

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 3.09e-26. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

4.4 Interpretation

Suprisingly 'tempi', 'fog', 'precipi' didn't improve the R² at all, so I did not include them in my final model. The specific weather condtion for the time and location improves the R² more than the variable rain. Since both measure the same and 'conds' is more specific and a much better predictor, I dropped 'rain' from the model.

The weekday variable have expected outcomes since the coefficent is negative on weekend and positive during weekdays when people usually go to work. Some weather conditions in the 'conds' variable are insignificant, like fog, haze, mist, mostly cloudy, overcast and partly cloudy. Suprisingly, the coefficient for the different rain types differ in their direction. While light rain has a positive coefficient, light drizzle, rain and heavy rain have a negative coefficient.

 R^2 is 0.484 and adjusted R^2 is 0.481. The adjusted R^2 of 0.481 means, that the independent variables in OLS model can predict 48,1% of the variation of the dependent variable of hourly entries. That's nearly half of the variance. Other models than linear may yield a better R^2 , but the advantage of a linear model is the interpretability. A linear relationship keeps the model simple and understandable whereas more complex models need more interpretation.

Further examinations with more complex models should be conducted to improve the R², if needed.

5 Visualization

```
In [9]: #add a new coloum with labeled rain for use in the histogram
    data['labeled_rain'] = None
    data['labeled_rain'] [data['rain'] == 1] = 'rain'
    data['labeled_rain'] [data['rain'] == 0] = 'no rain'

#plot the histograms by the coloum labeled_rain with the same scale on the y-axis to make it ea
    ggplot(data,aes('ENTRIESn_hourly')) + \
        geom_histogram(binwidth = 1000) + \
        facet_wrap('labeled_rain') + \
        ylim(0,20000) + \
        ylab('Frequency') + \
        ggtitle("Histograms of hourly entries grouped by rain / no rain")
```

Histograms of hourly entries grouped by rain / no rain

Out[58]: <ggplot: (-9223372036833922044)>

6 Conclusion

There is a statistically difference between the amount of riderships on rainy days and those on non-rainy days. The Mann-Whitney-U-Test showed that both samples are not from the same population and therfore have different distributions. The compared means show that on average there are 183 more people riding the subway on rainy days in those samples. Based on those results, people do ride the NYC subway more when it is raining.

The linear regression though showed a more complex relationship between specific weather conditions and ridership. Suprisingly, the coefficient for the different rain types differ in their direction. While light rain has a positive coefficient, light drizzle, rain and heavy rain have a negative coefficient, meaning in this model less people are riding the subway during those weather conditions. With a adjusted R^2 of 0.481 the Oridnary-Least-Squares model used here can predict 48,1% of the variation of the dependent variable of hourly entries, leaving 51,9% of the variance unexplained due to other factors like unkown variables. Further examinations with more complex models than the OLS should be conducted to improve the R^2 .

7 Reflection

The data consists only of one month in may 2011. Predictions may be not accurate for colder months. For example, those rainy conditions that had a negative coefficient could turn positive in winter months. The weekday variable had a significant impact. I strongly suggest to include additional information on public holidays in New York City, as they may have a similar effect since people don't need to go to work.

Given the adjusted R^2 of 48,1%, there is room for improvement because more than half of the variance is not explained by the variables. A possible solution could be the use of non-linear models. They might not be as easy to interpret, but may explain more of the variance left.

8 Supplementary Materials

8.1 References

This is the complete reference list used for writing and perfoming the data analysi above.

Importing csv files:

http://wesmckinney.com/blog/update-on-upcoming-pandas-v0-10-new-file-parser-other-performance-wins/

Installing iPython Notebook and Pandas:

http://twiecki.github.io/blog/2014/11/18/python-for-data-science/

Check for normal distribution with the Shapiro-Wilk-Test:

http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.stats.shapiro.html

Mann-Whitney-U-Test:

http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.mannwhitneyu.html

More Explanations on the Mann-Whitney-U-Test:

http://forums.udacity.com/questions/100153716/if-the-mann-whitney-u-test-returns-a-one-sided-p-value-what-is-the-null-hypothesis

Mann-Whitney-U-test with R:

http://www.statmethods.net/stats/nonparametric.html

Performing t-tests:

http://statistics.berkeley.edu/computing/r-t-tests

Performing linear regression OLS with stats model:

http://statsmodels.sourceforge.net/0.5.0/generated/statsmodels.regression.linear_model.OLS.html Histogram with ggplot and how to do it inline:

http://stackoverflow.com/questions/19377371/how-to-make-a-histogram-in-ipython-notebook-using-ggplot2-for-python