

Probabilistic Method

Name: Chong-kwon Kim

SCONE Lab.

Introduction

 Probabilistic method is a powerful way to prove the existence of certain objects (events)

- Basic Idea
 - If a certain object can be selected with positive probability (can be very small), then this object must exist
- Two techniques
 - Basic counting
 - Expectation

Graph Edge Coloring

- An example of basic counting techniques
- Graph G(V, E)
 - V: Set of vertices (nodes)
 - {a, b, c, d, e}
 - E: Set of edges
 - {(a,b), (a,c), (a,d), (b,c), (b,e), (c,d)}

- Complete graph (Clique)
 - A graph where all node pairs are connected
 - If edges (a,e), (b,d), (c,e), (d,e) are added, then the graph becomes a complete graph
 - # edges in a complete graph of |V| = n
- k-Clique: Kk
 - A clique of k vertices

Graph Edge Coloring

- Assume we color edges with one of two colors
- Kk is monochromatic
 - All $\binom{k}{2}$ edges have the same color
- Theorem
 - If $\binom{n}{\nu} \cdot 2^{-\binom{k}{2}+1} < 1$, then it is possible to color the edges of Kn such that it has no monochromatic Kk subgraphs
- Proof
 - Let S be a sample space of all possible coloring
 - $2^{\binom{n}{2}}$ instances
 - Choose one instance (G) randomly from S
 - Equivalently, color each edge randomly with the equal probability

Graph Edge Coloring

- # Kk subgraphs in Kn
 - $N = \binom{n}{k} K_k$
- Consider i-th Kk subgraph
- Ai: Event that i-th Kk subgraph is monochromatic

•
$$Pr(Ai) = 2 \cdot (\frac{1}{2})^{\binom{k}{2}}$$

- E: Event that no monochromatic K_k subgraph $E \equiv \bar{A}_1 \cap \bar{A}_2 \cap \cdots \cap \bar{A}_N$

-
$$\Pr(E) = \Pr(\overline{A_1 \cup A_2 \cup \dots \cup A_N})$$

= $1 - \Pr(A_1 \cup A_2 \cup \dots \cup A_N)$
 $\geq 1 - \sum_i \Pr(Ai)$
= $1 - \binom{n}{k} \cdot 2^{-\binom{k}{2}+1} > 0$

Example - Graph Edge Coloring

- Consider n=1000, k=20
 - First note that $n < 2^{k/2}$ at n=1000, k=20
 - To show that $\binom{n}{k} \cdot 2^{-\binom{k}{2}+1} < 1$ at n=1000, k=20

$$-\binom{n}{k} \cdot 2^{-\binom{k}{2}+1} \le \frac{n^k}{k!} \cdot 2^{-\binom{k}{2}+1}$$
$$< \frac{2^{k/2}^k}{k!} \cdot 2^{-\binom{k}{2}+1}$$
$$= \frac{2^{\frac{k}{2}+1}}{k!} < 1$$

Note: $n \le 2^{k/2}$ for $k \ge 3$

Monte-Carlo vs. Las Vegas

Las Vegas

Las Vegas will never cheat you

- A random algorithm is called Las Vegas if it always produces the correct answer
- Example
 - Random QuickSort
- Usually, running time depends on random choices

Monte-Carlo

- May give wrong answer sometimes
- Example
 - Testing the equivalence of two polynomials
- Usually, running time is constant
- To convert Monte-Carlo to Las Vegas, need to add a checking procedure
 - If wrong answer probability is p then retry 1/p on average

Probability that random coloring has monochromatic K20

$$\frac{2^{\frac{k}{2}+1}}{k!} < 8.5 \cdot 10^{-16}$$

Expectation Argument

• Lemma:

- Let X be a random variable and $E[X] = \mu$,
- then $Pr(X \ge \mu) > 0$ and $Pr(X \le \mu) > 0$

Proof

- $-\mu = E[X] = \sum x \cdot Pr(X = x)$
- Suppose $\Pr(X \ge \mu) = 0$ $\mu = \sum x \cdot \Pr(X = x) = \sum_{x < \mu} x \cdot \Pr(X = x) < \mu$

Example - Large Cut

• Definitions:

 Cut: A cut is a partition of a graph into two disjoint vertices sets V₁ and V₂

- Size (Value, Capacity) of a cut: Size of a cut (V₁, V₂) is # edges with one end point in V₁ and another in V₂
 - More generally, sum of weights of edges connecting V₁ and V₂
- Max Cut: A cut with maximum size

Max Cut is an NP-Hard problem

NP-Hard problem

- No efficient (polynomial) solution
- Should enumerate all possible combinations

Large Cut

- Assume a graph with n vertices and m edges
 - Obviously, Max Cut \leq m
- How about the *Lower bound of Max Cut*?
- Claim: Lower bound of MaxCut is m/2 More formally, there *must be* a cut whose size is at least m/2
- Proof
 - Construct a random cut (V₁, V₂)

How many random cuts?

- Assign each vertex randomly into V₁ or V₂ with equal probabilities
- Let X be the size of the random cut
- E[X]?

Seoul National University 10

Large Cut

- Proof Cont.
 - Claim E[X] = m/2
 Let Xi = 1, if i-th edge belongs to the cut 0, ow

$$E[Xi] = \frac{1}{2}$$
 (Why ??)
 $E[X] = \sum E[Xi] = m/2$

 \rightarrow From the previous lemma, $Pr(X \ge m/2) > 0$

Large Cut

- Previously, we proved the existence of a cut whose size is at least m/2
- How easy to find such a large cut?
- Again, Let X be the size of a random cut
- Let $p = Pr(X \ge m/2)$

- m/2 = E[X]
=
$$\sum_{x < m/2} x \cdot \Pr(X = x) + \sum_{x \ge m/2} x \cdot \Pr(X = x)$$

 $\le (1-p)(m/2-1) + pm$

$$\rightarrow$$
 Pr(X \geq m/2) = p \geq 1/ (m/2 + 1) On average, (m/2 + 1) trials

- Repeatedly try random cuts until find one whose size is at least m/2
 - → Find a sub-optimal at least half of the optimal

Another Example - MAXSAT

Definitions

- A literal is a Boolean variable or a negated Boolean variable
 - E.g. x, ¬y
- A clause is literals connected with v
 - E.g. (x v ¬y)

 Also called CNF (Conjunctive Normal Form)
- A SAT formula is an expression consists of clauses connected by
 - E.g. $(\neg x \lor y \lor z) \land (x \lor \neg y) \equiv (-x + y + z) \cdot (x + -y)$
- A SAT formula is satisfiable if there is an assignment of variables
 to T/F such that the value of the formula is TRUE

 $(\neg x \lor y \lor z) \land (x \lor \neg y)$ is satisfiable $(\neg x \lor y) \land (\neg x \lor \neg y) \land (x)$ is not satisfiable

MAXSAT

- Determining the satisfiability of a SAT formula is NP Complete
 - Caution: Do not spend too much time to find efficient solutions for the SAT problem
- Maximum Satisfiability (MAXSAT)
 - Maximize the # TRUE clauses
- MAXSAT is NP-Hard also
 - → Finding the optimal solution is generally very time-consuming

- Can we get reasonable good sub-optimal solutions?
- Let m = # clauses in a SAT formula
 - Obviously, MAXSAT ≤ m

MAXSAT

Theorem

Let k = # literals in the smallest clause Then, there is an assignment that satisfies at least $m \cdot (1-1/2^k)$ clauses

Proof

Assume uniformly random assignment of T/F to each literal Let k_i be the number of literals in i-th clause

 $Pr(i-th clause is TRUE) = (1-1/2^{k_i})$ (Why??)

TRUE clauses = $\sum \Pr(i-th \text{ clause is TRUE})$ = $\sum (1-1/2^{k_i}) \ge \text{m} \cdot (1-1/2^k)$