Tutorial - 3

Sudakshina Dutta

IIT Goa

4th March, 2022

We can say that a grammar is not LL(1) or not SLR(1) if their respective tables have 2 entries at any cell.

Question - 1(a)

The grammar is S o 0S1|01 and the input string is 000111

► $S \to 0S1 \to 00S11 \to 000111$

What are the handles here ?

Consider the following grammar

$$S \rightarrow A|a$$
 $A \rightarrow a$

► FIRST(S) = ?, FIRST(A) = ?, FOLLOW(S) = ?, FOLLOW(A) = ?

Consider the following grammar

$$S o A|a$$

 $A o a$

► $FIRST(S) = \{a\}, FIRST(A) = \{a\}, FOLLOW(S) = FOLLOW(A) = \{\$\}$

▶ The predictive parsing table is given below.

	а	\$
5	$S \to A$ $S \to a$	
А	A ightarrow a	

The grammar is not LL(1)

▶ The canonical collection of LR(0) is given below.

$$l_0: S' \to S$$

 $S \to A|.a$
 $A \to .a$
 $l_1: S' \to S$.
 $l_2: S \to a$.
 $A \to a$. 2 reduce actions possible.
 $l_3: S \to A$.

The grammar is not SLR(1)

	action		goto	
	a	\$	S	Α
0	s ₂		1	3
1		Accept		
2		r ₂ /r ₃		
3		<i>r</i> ₁		

► Consider the following grammar

$$E \rightarrow E + E|E * E|id$$

Consider the following grammar

$$E \rightarrow E + E|E * E|id$$

After left recursion elimination, the grammar is the following

$$X \rightarrow +EX|\epsilon$$

$$Y \rightarrow *EY | \epsilon$$

$$FIRST(E) = ?$$
, $FIRST(X) = ?$, $FIRST(Y) = ?$
 $FOLLOW(E) = ?$, $FOLLOW(X) = ?$, $FOLLOW(Y) = ?$

Consider the following grammar

$$E \rightarrow E + E|E * E|id$$

After left recursion elimination, the grammar is the following

- ightharpoonup E
 ightarrow idX
- $\triangleright X \rightarrow +EX|\epsilon$
- ightharpoonup E
 ightarrow idY
- $Y \rightarrow *EY | \epsilon$
- ightharpoonup E
 ightarrow id

	+	*	id	\$
E			E ightarrow idX $E ightarrow idY$ $E ightarrow id$	
х	$X \to +EX$ $X \to \epsilon$	$X o \epsilon$		$X o \epsilon$
Y	$Y o \epsilon$	$\begin{array}{c} Y \to *EY \\ Y \to \epsilon \end{array}$		$Y o \epsilon$

The grammar is not LL(1)

Note that for the same G, to check for SLR Parsing, We need not use the G after Left recursion elimination & Left factoring.. We can use G directly.

▶ The canonical collection of LR(0) is given below.

state	action			goto	
	+	*	id	\$	Е
0			<i>s</i> ₂		1
1	<i>s</i> ₃	<i>S</i> ₄		Accept	
2	r ₄	r ₄		r ₄	
3			s ₂		5
4			<i>s</i> ₂		6
5	s ₃ /r ₁	s_4/r_1		<i>r</i> ₁	
6	s ₃ /r ₂	s_4/r_2		r ₂	