

Algebraic Expressions and Identities Ex 6.3 Q22

Answer:

To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., $a^m \times a^n = a^{m+n}$.

We have:

$$(-8x^{2}y^{6}) \times (-20xy)$$
= $\{(-8) \times (-20)\} \times (x^{2} \times x) \times (y^{6} \times y)$
= $\{(-8) \times (-20)\} \times (x^{2+1}) \times (y^{6+1})$
= $-160x^{3}y^{7}$
 $\therefore (-8x^{2}y^{6}) \times (-20xy) = -160x^{3}y^{7}$

 $(-8x^2y^2) \times (-20xy) = -100x^2y^2$

Substituting x = 2.5 and y = 1 in LHS, we get:

LHS =
$$(-8x^2y^6) \times (-20xy)$$

= $\{-8(2.5)^2(1)^6\} \times \{-20(2.5)(1)\}$
= $\{-8(6.25)(1)\} \times \{-20(2.5)(1)\}$
= $(-50) \times (-50)$
= 2500

Substituting x = 2.5 and y = 1 in RHS, we get:

RHS =
$$-160x^3y^7$$

= $-160(2.5)^3(1)^7$
= $-160(15.625) \times 1$
= -2500

Because LHS is equal to RHS, the result is correct.

Thus, the answer is $-160x^3y^7$.

Algebraic Expressions and Identities Ex 6.3 Q23

Answer:

To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., $a^m \times a^n = a^{m+n}$.

We have:

$$\begin{array}{l} \left(3.\ 2x^6y^3\right) \times \left(2.\ 1x^2y^2\right) \\ = \left(3.\ 2 \times 2.\ 1\right) \times \left(x^6 \times x^2\right) \times \left(y^3 \times y^2\right) \\ = \left(3.\ 2 \times 2.\ 1\right) \times \left(x^{6+2}\right) \times \left(y^{3+2}\right) \\ = 6.\ 72x^8y^5 \end{array}$$

$$(3.2x^6y^3) \times (2.1x^2y^2) = 6.72x^8y^5$$

Substituting x = 1 and y = 0.5 in the result, we get:

$$6.72x^{8}y^{5}$$
= $6.72(1)^{8}(0.5)^{5}$
= $6.72 \times 1 \times 0.03125$
= 0.21

Thus, the answer is 0.21.

Algebraic Expressions and Identities Ex 6.3 Q24

Answer:

To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., $a^m \times a^n = a^{m+n}$.

We have:

$$\begin{array}{l} \left(5x^{6}\right) \times \left(-1.5x^{2}y^{3}\right) \times \left(-12xy^{2}\right) \\ = \left\{5 \times (-1.5) \times (-12)\right\} \times \left(x^{6} \times x^{2} \times x\right) \times \left(y^{3} \times y^{2}\right) \\ = \left\{5 \times (-1.5) \times (-12)\right\} \times \left(x^{6+2+1}\right) \times \left(y^{3+2}\right) \\ = 90x^{9}y^{5} \end{array}$$

$$(5x^6) \times (-1.5x^2y^3) \times (-12xy^2) = 90x^9y^5$$

Substituting x = 1 and y = 0.5 in the result, we get:

$$90x^{9}y^{5}$$
= 90(1)⁹(0.5)⁵
= 90 × 1 × 0.03125
= 2.8125

Thus, the answer is 2.8125.

********** END ********