NCTU-CS Digital System Lab.

Online Test 01

Data Preparation

Extract LAB data from TA's directory.
 tar xvf ~2016dlabtestta05/Online_Test1.tar

Design Description and Examples

Design two mode:

Input:

In:
$$A_0$$
 A_1 B_0 B_1

Mode 0:

Four inputs A₀, A₁, B₀, B₁ which get from **in** port by 4 cycles are 16-bits **signed complex numbers**. For each input, the former 8 bits are the real part of each number and last 8 bits are the image part otherwise. Two parts of this complex number, real part and image part, all are **twos-complement representation**. First two inputs belong to A series, and the last two inputs belong to B series, otherwise.

You should complex conjugate A series first, and convolute with B series then.

$$\overline{A} \circ B = \sum_{k=-\infty}^{\infty} \overline{A}_k * B_{n-k}$$

$$0 \overline{A}_0 \overline{A}_1 \qquad \overline{A}_0 \overline{A}_1 \qquad \overline{A}_0 \overline{A}_1$$

$$\times \times \times \qquad \times \qquad \times$$

$$B_1 B_0 0 \qquad B_1 B_0 \qquad B_1 B_0$$

Mode1:

You should cut each input **a set of 4 bits.** Each set is representing the range of 4bits numbers: 0~15. Find the maximum and minimum set and output sequentially **max, min value** and **max minus(-) min** in 3 continuous cycles:

$$\begin{array}{lll} A_0 \colon 1111_0100_1101_1101 & A_1 \colon 1011_1101_0101_0011 \\ B_0 \colon 1000_0010_1000_0100 & B_1 \colon 0001_1010_0110_1001 \end{array}$$

You should output sequentially in 3 continuous cycles: 15 1 14

Your goal is to compute these operations by above rules and output the correct answer.

Inputs

- 1. Four input data for **in[15:0]** each will be sequentially input in **4 continuous** cycles while **in_valid** is high.
- 2. **in_mode** valid at the *first* input cycle.
- 3. All inputs will be changed at clock *negative* edge.

Input Signals	Bit Width	Description
clk	1	clock
rst_n	1	synchronous active-high reset
in	16	4 of 16 bit inputs
in_valid	1	high when in is valid
in_mode	1	select the operations should be compute
		by two MODE discuss above

Outputs

- Your answer should be output at out[35:0] for only 3 cycle when MODE = 0;
 Whereas, output at out[35:0] for only 3 cycle when MODE = 1.
- 2. For <u>mode 0</u>, out[35:0] is signed complex number, also. The former 18 bits are the real part, and last 18 bits are the image part otherwise.
- 3. For mode 1, out[35:0] is unsigned integer.
- 4. **out_valid** should be low and **out** should be set to zero after initial reset.
- 5. **out_valid** should be set to high when output value is valid.
- 6. All outputs are synchronized at clock *positive* edge.
- 7. Test pattern will check whether your answer is correct or not at clock **negative edge** when **out_valid** is high.

Output Signals	Bit Width	Description
out	36	output result
out_valid	1	high when out is valid

Specifications

- 1. Top module name : **Online_test1** (File name : **Online_test1.v**)
- 2. Input pins: clk, rst_n, in_valid, in[15:0], in_mode.
- 3. Output pins: out_valid, out[35:0].
- 4. **out_valid** should not be raised when **in_valid** is high (when **in** data is transferring).
- 5. It is **active-high synchronous** reset.
- 6. The latency of your design in each pattern should not be larger than 1000 cycles.

Note

- 1. Simulation step:
 - Put your design in 01_RTL
 - Simulation to check design: ./01_run.f
 - Show wave to debug: nWave &
 - Go to folder 02_SYN/ and check synthesis: ./01_run_dc
 - Clear up: ./09_clean_up
- 2. Please add your student ID and name to the file name of .v file before upload file on e3 platform:
 - Online_test1_0556123_陳小明.v
- 3. Sample waveform:

