Algoritmos de Classificação

Árvores de Decisão

Árvores de Decisão

- Conhecimento adquirido pode ser representado em *linguagens* de alto nível
 - De forma legível e interpretável por humanos
- Motivações
 - Compreender um problema (mais do que obter modelos precisos)
 - Justificar decisões
 - Incorporar novo conhecimento

Árvores de Decisão

- Ampla classe de algoritmos de aprendizado
 - Exemplo: ID3, C4.5, CART,...

 Conhecimento representado em uma árvore de decisão, em geral, na linguagem da lógica de atributos

Árvores de Decisão

- Cada nó interno (não-terminal) contém um teste sobre os valores de um dado atributo
- Folhas da árvore (nós terminais)
 são associadas às classes
 - Comumente, acompanhadas com graus de confiança
- Novas instâncias classificadas percorrendo a árvore a partir da raiz até as folhas

Árvores de Decisão - Construção

- Árvore de decisão construída de forma recursiva da raiz para as folhas (top-down)
 - A cada nó, é escolhido um teste que separe melhor os exemplos de classes diferentes
 - Maximização de critério de separação
 - Nós terminais são criados ao atingir um critério de parada
 - Ex.: todos os exemplos do nó pertencem à uma só classe

Árvores de Decisão - Construção

- AD(Exemplos:D; Atributos:A; Alvo:C)
 - Crie nó_raiz
 - SE Critério_de_Parada
 ENTÃO Crie nó terminal associada à classe mais frequente
 - SENÃO Encontre atributo aj cujo teste de decisão maximize a separação dos exemplos que atingem o nó
 - PARA CADA *valor v* do teste adicione nova subárvore
 - Sub_arvore = $AD(D[a_j = v], A, C)$

Árvores de Decisão – Critérios de Separação

- Ganho de Informação (Information Gain)
 - Impureza ou incerteza de um nó pode ser medida através da Entropia

$$Ent(C, D) = -\sum_{c_i} \frac{|D_{[C=c_i]}|}{|D|} * \log_2 \frac{|D_{[C=c_i]}|}{|D|}$$

– Propriedades da Entropia:

 Se todos os exemplos de D são da mesma classe então entropia assume valor mínimo

$$-$$
 Ent(C,D) = 0

 Se todos as classes têm o mesmo número de exemplos em D então entropia assume valor máximo

Árvores de Decisão – Critérios de Separação

- Ganho de Informação (Information Gain)
 - O ganho de um atributo/teste é definido pela redução de Entropia proporcionada após a separação dos exemplos do nó

$$InfoGain(a,C,D) = Ent(C,D) - \sum_{v_i} \frac{\left|D_{[a=v_i]}\right|}{\left|D\right|} * Ent(C,D_{[a=v_i]})$$
 Entropia do nó pai Entropia do nó filho ponderada pelo número de exemplos do nó

Árvores de Decisão – Critérios de Parada

- Totalidade (ou alternativamente, a maioria) do exemplos do nó pertencem a mesma classe
- Profundidade máxima para o nó
- Número mínimo de exemplos no nó
- Ganho pouco significativo no critério de separação
 - Obs.: valores definidos como parâmetros do aprendizado

•	Day	Outlook	Temp.	Humit.	Wind	Play
	D1	Sunny	Hot	High	Weak	No
	D2	Sunny	Hot	High	Strong	No
	D3	Overcast	Hot	High	Weak	Yes
	D4	Rain	Mild	High	Weak	Yes
	D5	Rain	Cool	Normal	Weak	Yes
	D6	Rain	Cool	Normal	Strong	No
	D7	Overcast	Cool	Normal	Strong	Yes
	D8	Sunny	Mild	High	Weak	No
	D9	Sunny	Cool	Normal	Weak	Yes
	D10	Rain	Mild	Normal	Weak	Yes
	D11	Sunny	Mild	Normal	Strong	Yes
	D12	Overcast	Mild	High	Strong	Yes
	D13	Overcast	Hot	Normal	Weak	Yes
	D14	Rain	Mild	High	Strong	No

- Raíz: [9+; 5-]
 - Entropia = $-9/14*\log_2(9/14) 5/14*\log_2(5/14) = 0.940$
- Considerando teste com atributo Outlook
 - Outlook = Sunny: [2+;3-]
 - Entropia = $-2/5*\log_2(2/5) 3/5*\log_2(3/5) = 0.971$
 - Outlook = Overcast: [4+;0-]
 - Entropia = $-4/4*\log_2(4/4) 0/4*\log_2(0/4) = 0.0$
 - Outlook = Rain: [3+;2-]
 - Entropia = $-3/5*\log_2(3/5) 2/5*\log_2(2/5) = 0.971$
 - Média: 5/14*0.971 + 4/14*0.0 + 5/14*0.971 = 0.694
 - Ganho de Informação: 0.940 0.694 = 0.246

- Considerando os outros atributos:
 - Ganho(Outlook, D) = 0.246
 - Ganho(Humit., D) = 0.151
 - Ganho(Wind, D) = 0.048
 - Ganho(Temp., D) = 0.029
 - Atributo Outlook é o escolhido na raíz

Outro exemplo: Iris Dataset

WEKA J48 com número mínimo de instâncias por nó terminal igual a 10

WEKA J48 com número mínimo de instâncias por nó terminal igual a 5

WEKA J48 com número mínimo de instâncias por nó terminal igual a 3

Árvores de Decisão - Discussão

Vantagens:

- Geram modelos dos dados (i.e., método eager)
- Conhecimento interpretável
- Pouca sensibilidade a atributos irrelevantes
 - Uma vez que implementam seleção de atributos

Desvantagens:

- Em geral, menos precisos comparados com algoritmos como redes neurais e SVMs
- Superfícies muito simples de decisão

Árvores de Decisão em R

Vários pacotes: Rpart, Party,...

Exemplo: Party

```
> library(party)
> data(iris)
> model = ctree(Species~ Petal.Length + Petal.Width,
data = iris)
> plot(model)
```


Árvores de Decisão em R

Arguments (Parâmetros): ctree_control

```
> model = ctree(Species~., data = iris,
controls = ctree_control(minsplit = 10,maxdepth=1))
> plot(model)
```


Random Forests

 Variação de árvores de decisões muito mais poderosa

- Comitê de árvores de decisão é treinado
 - Pequenas árvores geradas com conjuntos de atributos e conjuntos de exemplos diferentes

Random Forests - Treinamento

- Construa N árvores de decisão:
 - Passo 1: Selecione aleatoriamente um subconjunto pequeno de atributos
 - Passo 2: Faça uma amostragem bootstrap do conjunto de treinamento
 - I.e.: reamostragem com reposição
 - Passo 3: Gerar árvore de decisão
- Resultado: N árvores de decisão (o comitê)
 - Em geral bem fracas globalmente

Random Forests - Uso

- Dado um exemplo de teste
 - Colete as respostas das N árvores de decisão
 - Contar os votos dados a cada classe

- Resposta final:
 - Classe majoritária entre as respostas do comitê

Ver RandomForest no WFKA

Referências

- T. Mitchell, Machine Learning, Cap. 3, 1997.
- I. Witten, E. Frank, 2000. Data Mining Practical Machine Learning Tools and Techniques with Java Implementations.
- M. Monard, J. Baranauskas, Indução de Regras e Árvores de Decisão, Sistemas Inteligentes, Cap. 5, 2005.
- J. R. Quinlan, Induction of Decision Trees, *Machine Learning*, Vol.1, N.1, 1986.