$1^{ m st}$ Bocconi PRIN Workshop in Crypto and Quantitative Finance

A Sea of Coins

F. Tarantelli

Main Concepts

Token Creation Dataset

Positive Profits for:

 Token Security

2. Sandwich

3. Physical time

Conclusions

A Sea of Coins: The Cryptocurrencies Proliferation in UniswapV2

Manuel Naviglio¹, **Francesco Tarantelli**², Fabrizio Lillo^{1,2}

¹Scuola Normale Superiore, Pisa, Italy,

²Dipartimento di Matematica, Università di Bologna, Bologna, Italy

francesco.tarantell3@unibo.it

Introduction

A Sea of Coins

F.Tarantelli

Main Concepts

Token Creation

Positive Positive

Profits for:

- 1. Token Security
- 2. Sandwich
- 3. Physical time

Conclusions

• The rise of DEXs like Uniswap has enabled the creation and trading of a huge number of new cryptocoins, revolutionizing how assets are exchanged globally.

 We analyze financial properties (e.g., returns, liquidity) and security challenges (e.g., smart contract risks, transaction vulnerabilities) to understand the dynamics of these tokens.

PRTN

Blockchain

A Sea of Coins

F. Tarantelli

ain oncept

Token Creation Dataset

Positive Profits for

Profits for:

1. Token

Security
2. Sandwich

3. Physical time

Conclusions

A blockchain is a distributed ledger maintained by a network of computers (nodes).

Key Properties: Decentralization, immutability, and transparency.

Each block holds a batch of transactions and a reference (hash) to the previous block.

Figure 1: Blockchain

DEX

A Sea of Coins

F. Tarantelli

Main Concept

Token Creation

Positive Profits for:

 Token Security

2. Sandwich

3. Physical time

Conclusions

What is a Decentralized Exchange (DEX)?

A peer-to-peer marketplace where crypto traders transact directly, eliminating the need for a central intermediary.

Smart Contracts – The Backbone of DEXs:

Automated code programs that facilitate trades, handle funds, and ensure trustless transactions. These self-executing contracts operate based on predefined rules coded into them.

AMM & Mempool

A Sea of Coins

F. Tarantelli

Main Concepts

Token Creation Dataset

Positive Profits for:

1. Token Security

2. Sandwich

3. Physical time

Conclusions

Automated Market Makers (AMMs): A type of DEX that uses a mathematical formula to price assets (**Constant Product Formula**);

A mempool is a node's "waiting room" for unconfirmed transactions before they're added to a block.

Miners or validators typically pick transactions offering higher gas fees first (in many blockchains). During high activity, the mempool grows, increasing gas fees and wait times.

UniswapV2

A Sea of Coins

F.Tarantelli

Main Concepts

Token Creation

Dataset Returns

Positive Profits for:

1. Token Security

2. Sandwich

3. Physical time

Conclusions

- Automated Market Maker (AMM) using the formula between the quantity of Token A x and of Token B y in the reserves: $x \cdot y = k$.
- **Pool Pair**: Smart contract holding two tokens (e.g., Token A, Token B).

Token Creation

A Sea of Coins

F. Tarantelli

Main Concepts

Token Creation

Dataset

Positive Profits for:

 Token Security

2. Sandwich

3. Physical time

Conclusions

- Smart Contract Code: Written in a language (e.g., Solidity).
- **Deploy to Blockchain**: The contract is published (deployed) on an EVM-compatible chain (e.g., Ethereum).
- **Minting**: Upon deployment or via a function call, the token supply is created (minted).
- Token Standard (e.g., ERC-20): Defines functions like totalSupply(), balanceOf(), transfer(), etc.
- Ownership & Distribution: Deployer or specified addresses receive the initial tokens.

Token Creation Smart Contract

```
contract DOPE is Context, IERC20, Ownable {
A Sea of Coins
                      mapping (address => uint256) private _balances;
F. Tarantelli
                      address payable private _taxWallet;
                      uint8 private constant _decimals = 9;
Main
                      uint256 private constant _tTotal = 10000000000 * 10**_decimals;
Concepts
                      string private constant _name = unicode'Decentralization obligatory, practicality
                      string private constant _symbol = unicode'DOPE';
                      // ... other variables ...
                      constructor () {
Positive
Profits for:
                          _taxWallet = payable(_msgSender());
                          _balances[_msgSender()] = _tTotal;
1 Token
                         emit Transfer(address(0), _msgSender(), _tTotal);
Security
2. Sandwich
                      function symbol() public pure returns (string memory) {  return _symbol;}
3. Physical
                      function totalSupply() public pure override returns (uint256) { return _tTotal;}
time
                      // ... other functions ...
Conclusions
                      function transfer(address from, address to, uint256 amount) private {
                          // Swap Rule function
```

Dataset Description

A Sea of Coins

F. Tarantelli

Main Concepts

Token Creation

Dataset

Positive Profits for:

1. Token Security

2. Sandwich

3. Physical time

Conclusions

Retrieve information on:

- $\bullet \ \, \text{Newly created pairs (pair contract address, token0, token1)} \leftrightarrow \text{Token creation}$
- ullet Swaps (amount swapped in/out) o Price behavior
- ullet Mints and Burns (amount minted/burned, liquidity tokens) o Liquidity behavior

Approach:

- Onnect to an Ethereum Node: Use a node or an RPC provider (e.g., Infura, Alchemy) via web3.
- **2 Data:** Use 17194 new coins created between the 10th October 2024 and the 2nd of December 2024.

Number of New Tokens Created

A Sea of Coins

F. Tarantelli

Main Concepts

Token Creation

Dataset

Positive Profits for:

1. Token Security

2. Sandwich

3. Physical time

Conclusions

(a) Number of tokens created in a day for 2 months

(b) Distribution of the new token number in one hour.

We focused on the cases in which one of the two pairs of the pool was WETH.

Positive Returns

A Sea of Coins

F.Tarantelli

Main Concepts

Token Creation

Dataset Returns

Positive Profits for:

1. Token Security

2. Sandwich

3. Physical time

Conclusions

(a) Histogram of lagged log returns after 100 swaps.

(b) Histogram of lagged log returns after 1000 swaps.

Figure 3: Histograms of the lagged log returns of the new tokens after different number of swaps. We stress that we have a medium percent returns value $\langle \eta \rangle = 10^5\%$.

Profit distribution for a simple Buy & Hold strategy

A Sea of Coins

F. Tarantelli

Main Concepts

Token Creation Dataset

Returns

Positive Profits for:

1. Token Security

2. Sandwich

3. Physical time

Conclusions

We do not have considered:

- Are the purchased tokens secure?
- 2 Presence of sandwich attacks
- 3 Swap time instead Physical time

PRIN

Profit distribution for a simple Buy & Hold strategy

F. Tarantelli

Main Concepts

Token Creation

Dataset Returns

Positive Profits for:

1. Token Security

2. Sandwich

3. Physical time

Conclusions

We do not have considered:

- 1 Are the purchased tokens secure?
- 2 Presence of sandwich attacks
- 3 Swap time instead Physical time

Not All Tokens Are Sellable: Honeypots

A Sea of Coins F. Tarantelli

Main Concepts

Token Creation

Positive Profits for:

3. Physical time

2. Sandwich Conclusions

will be able to retrieve them 1

Possible Scam Honeypot Elements: - Ownership & Renouncement

- Liquidity Addition

Definition 1 (Honeypot)

- Minting & Burning

- Slippage Tax Modifiable

- Blacklist/Whitelist

A honeypot is a smart contract that pretends to leak its funds to an arbitrary user

(victim), provided that the user sends additional funds to it. However, the funds provided by the user will be trapped and at most the honeypot creator (attacker)

- Token Supply - Swapping Mechanism

- Taxes & Fees

- Liquidity Burned/Locked

¹Christof Ferreira Torres, Mathis Steichen, and Radu State. The art of the scam: Demystifying honeypots in ethereum smart contracts, USENIX Security 19, pages 1591-1607. 14/31

Token Classification: Sellable vs. Honeypot

A Sea of Coins

F. Tarantelli

Main Concepts

Token Creation Dataset Returns

Positive Profits for:

1. Token Security

2. Sandwich

3. Physical time

Conclusions

Motivation: Not all tokens remain sellable throughout their lifecycle. Some evolve into honeypot contracts, making them effectively unsellable.

Our Approach:

- Time-Based Analysis: Observe each token over its entire history.
- Security Detector Queries: Use external security checks from:
 - honeypot.is Honeypot detection service;
 - GoPlus Labs Token security scoring;
- **Final Categorization:** At the end of its observed lifetime, each token is classified as:
 - **Sellable**: No honeypot behavior detected ~ 2080 tokens $\simeq 12\%$ of the total;
 - Honeypot: Displays locked or blocked selling ~ 15114 tokens $\simeq 88\%$ of the total.

Net Traded Values

A Sea of Coins F. Tarantelli

Main

Concepts

Token Creation

Positive

Profits for:

2. Sandwich

3. Physical time Conclusions

The Net Traded Values (NTV) of the token i is given by:

$$NTV_t^i = \left(\sum_{t=1}^{N_t} v_t^i\right) \cdot p^i(t = N_t) \tag{1}$$

where:

- v_i^t represents the signed token amount exchanged in the t-th swap for the i-th token:
- N_t is the number of swaps considered:
- $p^i(t=N_t)$ is the token price recorded at the N_t -th swap for the i-th token.

We are interested in the amount of money circulating around these new tokens.

NTV Distribution

A Sea of Coins

F. Tarantelli

Main Concepts

Token Creation

Positive Profits for:

1. Token Security

2. Sandwich

3. Physical time

Conclusions

(b) Histogram of NTV after 1000 swaps.

Figure 4: Histograms of the NTV of the new tokens after different number of swaps.

Total NTV

A Sea of Coins

F.Tarantelli

Main Concepts

Token Creation

Positive Profits for:

1. Token

2. Sandwich

3. Physical time

Conclusions

We define the total new coins market value at fixed swap number N_t as the sum of all the Net Traded Values (NTVs) of the new coins at that time, namely

$$\mathsf{NTV}_{\mathsf{tot}}(N_t) = \sum_{i} \mathsf{NTV}^i(N_t). \tag{2}$$

$\overline{N_t}$	honeypot NTV _{tot} (ETH)	sellable NTV _{tot} (ETH)
10	16857.19 (94%)	1059.91 (6%)
100	170150.11 (86%)	27450.66 (14%)
1000	25485.46 (55%)	20867.45 (45%)

Table 1: NTV values of honeypots and sellable tokens at different swap thresholds.

NTV Property

F. Tarantelli

A Sea of Coins

Main Concepts

Token Creation

Positive Profits for:

2. Sandwich

3. Physical

time Conclusions NTV is also an indicator of a sudden lack of liquidity in the market that is artificially triggered.

Figure 5: Scatter plot between the maximum value of NTV in the lifetime of all new tokens and the corresponding value of Liquidity in that time. 19/31

Honeypot Returns

A Sea of Coins

F. Tarantelli

Main Concepts

Token Creation

Returns

Positive Profits for:

1. Token Security

2. Sandwich

3. Physical time

Conclusions

(a) Histogram of lagged log returns after 100 swaps.

(b) Histogram of lagged log returns after 1000 swaps.

Figure 6: Histograms of the lagged log returns of new sellable and honey tokens.

PRIN

Profit distribution for a simple Buy & Hold strategy

F. Tarantelli

Main Concepts

Token Creation

Dataset Returns

Positive Profits for:

1. Token Security

2. Sandwich

3. Physical time

Conclusions

We do not have considered:

- 1 Are the purchased tokens secure?
- Presence of sandwich attacks
- 3 Swap time instead Physical time

Sandwich Strategy Overview

A Sea of Coins

F. Tarantelli

Main Concepts

Token Creation

Dataset Returns

Positive Profits for:

 Token Security

2. Sandwich

3. Physical time

Conclusions

High Profit for the presence of sandwich whose Txs are deployed in the same blocknumber.

- **Mempool Monitoring:** Identify a pending swap transaction (buying token y for some ETH x).
- \bullet Front-Run Attack: Submit a transaction with higher gas to buy token y first.
- **Victim's Purchase:** The original, slower transaction then occurs, pushing the price up.
- ullet Back-Run Attack: Finally, sell the token y at the new higher price, capturing profit.

Optimal Sandwich

With a initial reserve x of the ETH in the pair liquidity position: F. Tarantelli

Token Creation

Positive Profits for:

Main Concepts

A Sea of Coins

1. Token Security

3. Physical

time Conclusions • The first swap of the front-run attack sells Δx_a ETH; • The swap of the slower trader sells Δx_{ϵ} ETH; • The second swap of the back-run attack sells all of his tokens bought and

obtains Δx_{tot} ETH.

The maximum of the gain $s = \Delta x_{tot} - \Delta x_a$, with a pair pool fee r = 1 - f

 $(f = 0.3\% \ll 1)$ and in the approx $f\Delta x_a \simeq O(\Delta x_{\epsilon})$:

 $\Delta x_a^{\text{max}} = \frac{\Delta x_{\epsilon}}{f} - x \; ;$

 $s_{\max} = \frac{(\Delta x_{\epsilon} - fx)^2}{\Delta x} ,$

(3)(4)

23/31

Optimal Sandwich - Example

A Sea of Coins

F. Tarantelli

Main Concepts

Token Creation

Dataset Returns

Positive Profits for:

1. Token Security

2. Sandwich

3. Physical time

Conclusions

Figure 7: Visualization of the gain s as a function of the attacker input amount Δx_a . The plot is generated using the parameter values $x=1,\ r=0.997,$ and $\Delta x_\epsilon=0.1.$ The red vertical line corresponds to the estimated maximum point.

PRIN

Profit distribution for a simple Buy & Hold strategy

F. Tarantelli

Main Concepts

Token Creation

Dataset Returns

Positive Profits for:

1. Token Security

2. Sandwich

Conclusions

We do not have considered:

- 1 Are the purchased tokens secure?
- 2 Presence of sandwich attacks
- 3 Swap time instead Physical time

PRIN

Clustering in swap time

A Sea of Coins

F. Tarantelli

Main Concepts

Token Creation Dataset

Positive Profits for:

1. Token Security

2. Sandwich

3. Physical time

Conclusions

The k-means algorithm partitions the trajectories into k distinct clusters by minimizing the within-cluster variance, thereby grouping similar trajectories based on their features.

(a) Clustering resulting trajectories for k=3.

(b) Clustering resulting trajectories for $k=2\,$

Figure 8: The figures show the mean and the one standard deviation bands of the trajectories of length 10^3 resulting from the clustering, with k=2 and k=3.

Clustering in swap time of Honeypots and Sellable Tokens

A Sea of Coins

F. Tarantelli

Main Concepts

Token Creation Dataset Returns

Positive Profits for:

1. Token Security

2. Sandwich

Physical time

Conclusions

In the Table, we show the distribution of the honeypots and sellable tokens.

Cluster	Honeypots	Sellable	
0	24%	19%	
1	46%	11%	

Figure 9: Clustering resulting trajectories with k=2 for 100 swaps.

We clearly observe a dominant presence of honeypots in cluster 1. This is expected, as honeypot tokens prevent selling, leading to a characteristic initial price behavior.

PRIN

Clustering in physical time

A Sea of Coins

F.Tarantelli

Main Concepts Token Creation

Positive
Profits for:

1. Token Security

Sandwich
 Physical

Conclusions

T.

Figure 10: At left, the Honeypot Tokens; instead, at right, the Safe Tokens.

The initial pick is associated with the BOT presence.

28/31

Conclusions

A Sea of Coins

F. Tarantelli

Main Concepts

Token Creation

Dataset Returns

Positive Profits for:

 Token Security

2. Sandwich

3. Physical time

Conclusions

• The positive profits of new token returns suggest it may be convenient to trade in this currency.

- However, traders must consider:
 - The presence of honeypots.
 - The risk of sandwich attacks.
 - The necessity of a physical time strategy.

 The emergence of BOT activity significantly reduces potential profits, making careful strategic planning essential.

Optimal Sandwich: Example

A Sea of Coins

F. Tarantelli

Δx	Δy	x_{new}	$y_{ m new}$	New Price	Old Price	Liquidity
25.0000	-268464000	28.3199	35758537	7.920e-07	1.091e-08	31823
0.0500	-62833	28.3699	35695704	7.948e-07	7.920e-07	31823
-25.0316	268463996	3.3382	304159700	1.098e-08	7.948e-07	31865

In this case, $\Delta x_a^{\rm max}=10$ ETH and $s_{\rm max}=0.032$ ETH, with an initial reserve x=3.32 ETH.

Sandwich on the token AIDLE in the pair WETH/AIDLE executed in the block number 21560868.

A Sea of Coins

