

Сбалансированные и специальные деревья

Лекция 5



#### План лекции

- Интерфейс абстракции отображение.
- Деревья поиска.
- Декартовы деревья.
- Сбалансированные деревья поиска.
  - Красно-чёрные деревья.
  - AVL-деревья.
- Описки с пропусками.
- Внешний поиск. В-деревья.

Интерфейс абстракции *отображение*.

# Абстракция отображение

• Абстракция *отображение* устанавливает соответствие между двумя множествами — множеством ключей и множеством данных.



# Абстракция отображение

- Абстракция отображение есть аналог дискретной функции.
- Одно из определений математической функции: **Функция есть** отображение множества D на множество E.



# Отображение как полезная структура данных

- Разновидность отображения таблица символов, словарь
- Цель словаря удобная реализация операций вставки и поиска.
- В обычном словаре ключи словарные входы, данные словарные статьи.
- Банк: ключ номер счёта, данные информация о счёте.

# Абстракция отображение

 Самый удобный способ создать отображение — воспользоваться синтаксисом индексации.

```
map<string,int> m;
m["Shanghai"] = 24150000;
m["Karachi"] = 23500000;
m["Beijing"] = 21150000;
m["Delhi"] = 17830000;
int BeijingPopulation = m["Beijing"];
for (auto x: m) {
  printf("Population of '%s' is %d\n",
     x.first, x.second);
```

# Абстракция отображение

#### Интерфейс абстракции отображение

- insert(key, value) добавить элемент с ключом key и значением value
- Item find(key) найти элемент с ключом key и вернуть его.
- erase(key) удалить элемент с ключом key
- walk получить все ключи (или все пары ключ/значение) в каком-либо порядке.

# Абстракция отображение: С++

## Интерфейс абстракции отображение

```
• insert(key, value) - m[key] = value;
```

- Item find(key) auto val = m[key];
  или auto r = m.find(key); if (r != m.end()) { found }
- erase(key) m.erase(key);
- walk for (auto q: m) { use q.first, q.second; }

# Абстракция отображение

#### Цели:

- Реализовать операции, исполняющиеся минимальное время:
  - Вставки
  - Замены
  - Удаления
  - Поиска
  - Перечисления

В дальнейшем под термином *ключ* мы понимаем пару *ключ+значение*, в которой определена операция сравнения по ключу.

# Связь множества и отображения

- Возможная реализация отображения множество с прикреплёнными данными.
- Каждое представление множества, кроме битовой карты, расширяется на отображение.
- С другой стороны множество есть отображение множества ключей на логическую истину.
- Наиболее универсальное представление и множеств, и отображений — бинарное дерево поиска.

# Деревья поиска

# Деревья: поиск

Использование деревьев для поиска.

#### Задача:

- Вход: последовательность чисел.
- Выход: 2-дерево, в котором все узлы справа от родителя больше родителя, а слева — не больше.

# Деревья: поиск

 $\{10, 5, 35, 7, 3, 23, 94, 2, 5, 7\}$ 



# Деревья: поиск

#### Поиск по дереву после получения элемента с ключом X:

- Делаем текущий узел корневым
- Переходим в текущий узел С.
- **3** Если X = C. *Key* то алгоритм завершён.
- **©** Если X > C. K еу и C имеет потомка справа, то делаем текущим узлом потомка справа. Переходим к п. 2.
- **⑤** Если X < C. Key и C имеет потомка слева, то делаем текущим узлом потомка слева. Переходим к п. 2.
- Ключ не найден. Конец алгоритма.

Наивное построением бинарных деревьев поиска.

$$\{10, 5, 35, 7, 3, 23, 94, 2, 5, 7\}$$



Неплохое дерево

#### Отвратительное дерево



#### Определение:

• Случайное бинарное дерево T размера n — дерево, получающееся из пустого бинарного дерева поиска после добавления в него n узлов с различными ключами в случайном порядке и все n! возможных последовательностей добавления равновероятны.

Определение средней глубины случайного дерева.

- Пусть  $\bar{d}(N+1)$  средняя глубина всех узлов случайного дерева с N+1 узлами.
- Остальные узлы разобьются на группы, каждая из которых начнётся с высоты 1. В левую группу войдут элементы  $\{0,\dots,k-1\}$ , в правую  $\{k+1,\dots,N\}$ .

$$\bar{d}(N+1) = \sum_{k=0}^{N} \frac{1}{N+1} \left( 1 + \frac{k}{N} \cdot \bar{d}(k) + \frac{N-k}{N} \cdot \bar{d}(N-k) \right)$$

$$\bar{d}(N+1) = \frac{2}{N(N+1)} \sum_{k=0}^{N} k \cdot \bar{d}(k)$$

Используя предел

$$\lim_{n \to \infty} \left( \sum_{k=1}^{n} \frac{1}{k} - \ln n \right) = \gamma = 0.57721...$$

получаем

$$\lim_{N\to\infty}(\bar{d}(N)-2\ln N)\to C$$

- Средняя глубина узлов случайного бинарного дерева есть  $O(\log_2 N)$ .
- Средние времена выполнения операций вставки, удаления и поиска в случайном бинарном дереве есть  $O(\log_2 N)$ .

#### Полезные свойства бинарного дерева поиска:

- Наименьший элемент всегда находится в самом низу левого поддерева.
- Наибольший элемент всегда находится в самом низу правого поддерева.

```
tree * minNode(tree *t) {
   if (t == NULL) return NULL;
   while (t->left != NULL) {
      t = t->left;
   }
   return t;
}
```

• Простая процедура поиска

```
tree * searchNode(tree *t, keytype key) {
   tree *p = t;
   while (t != NULL) {
      p = t;
      if (t->key == key) return t;
      t = key > t->key? t->right : t->left;
   }
   return p;
}
```

• Простая процедура вставки

```
tree * insertNode(tree *t, keytype key, valtype value) {
   tree *parent = t;
   while (t != NULL) {
      parent = t;
      if (t->key == key) return; // Already here
      t = \text{key} > t - \text{key}? t - \text{right} : t - \text{left};
   tree *node = new tree(key, value);
   if (key < parent->key) parent->left = node;
   else
                             parent->right = node;
```

- Процедура удаления сложнее, три случая:
  - Нет потомков удаляем узел у родителя.
  - Один потомок переставляем узел у родителя на потомка

- Процедура удаления сложнее, три случая:
  - Нет потомков удаляем узел у родителя.
  - Один потомок переставляем узел у родителя на потомка
  - Два потомка находим самый левый лист в правом поддереве и им замещаем удаляемый

Первый случай: до удаления



#### Первый случай: после удаления



Второй случай: до удаления



Второй случай: после удаления



Третий случай: до удаления



Третий случай: после удаления



| Структура хранилища    | вставка     | удаление    | поиск       |
|------------------------|-------------|-------------|-------------|
| Бинарное дерево поиска |             |             |             |
| (наихудшее)            | O(N)        | O(N)        | O(N)        |
| Бинарное дерево поиска |             |             |             |
| (среднее)              | $O(\log N)$ | $O(\log N)$ | $O(\log N)$ |

# Борьба с дисбалансом

- Сложность всех алгоритмов в бинарных деревьях поиска (BST) определяется средневзвешенной глубиной
- Операции вставки/удаления могут привести к дисбалансу и ухудшению средних показателей
- Для борьбы с дисбалансом применяют рандомизацию и балансировку.

# Борьба с дисбалансом

#### Попытка:

- Предлагается: вставлять новые элементы всегда в корень.
- Последствия: если вставляемый элемент больше корня, то старый корень сделаем левым поддеревом, а его правое поддерево нашим правым поддеревом.
- Аналогично рассуждаем для случая, когда вставляемый элемент меньше корня.
- Упорядоченность может нарушиться в обоих случаях.

# Борьба с дисбалансом

- Чтобы нарушений не происходило, требуется сохранять инвариант упорядоченности.
- Для этого введём понятие поворота, не изменяющего свойства дерева, но меняющего высоту поддеревьев.

#### Перед поворотом



#### После поворота направо



```
void rotateRight(node* &head) {
   node *temp = head->left;
   head->left = temp->right;
   temp->right = head;
   head = temp;
}
void rotateLeft(node* &head) {
   node *temp = head->right;
   head->right = temp->left;
   temp->left = head;
   head = temp;
```

#### После поворота налево



#### Вставка в корневой узел

Рекурсивный алгоритм.

```
void insert(node* &head, item x) {
   if (head == nullptr) {
      head = new node(x);
      return;
   if (x.key < head->item->key) {
      insert(head->left, x);
      rotateRight(head);
   } else {
      insert(head->right, x);
      rotateLeft(head);
```

#### Рандомизированное дерево

- Проблема вырождения дерева при вставке в корень не решена.
- Однако появилась инфраструктура для достижения меньшей сложности.
- C вероятностью  $\frac{1}{N+1}$  вставляем новый узел в корень дерева размером N.
- Свойства любого дерева будут соответствовать свойствам случайного дерева.

### Декартовы деревья

#### Декартовы деревья

- Случайные бинарные деревья поиска близки к идеальным по сложности  $(H = O(\log N))$ .
- Можно внести ещё более серьёзный элемент случайности, добавив второй ключ, генерируемый случайно.
- Декартово дерево есть комбинация бинарного дерева поиска (BST) и бинарной кучи (BH) .
- При поиске информации декартово дерево BST .
- Узлы упорядочиваются по отношениям ВН.

#### Декартовы деревья: свойства

- При вставке в BST можно получить комбинаторное количество различных деревьев, содержащих те же самые элементы.
- При вставке в BST с вторичным упорядочиванием по отношениям ВН получается единственное дерево со свойствами случайного BST.

#### Декартовы деревья: пример



Декартовы деревья: операции

find — Декартово дерево есть BST. ( $\log N$ )

#### Декартовы деревья: операции

#### insert — Декартово дерево есть BST + BH.

- Первичная вставка проводится в ВЅТ. При этом может быть нарушено свойство ВН.
- Если вставленный элемент не нарушает свойства ВН, то вставка завершена.
- Если свойство ВН нарушается, проводится вращение, поднимающее вставленный элемент.
- Подъём происходит до тех пор, пока нарушено свойство ВН.



Элемент вставлен по правилам BST, но он не упорядочен по правилам BH.



Попытка обмена с родителем нарушает свойства BST.



Вращение в сторону родителя не нарушает свойства BST, но свойство ВН ещё нарушено.



Ещё одно вращение в сторону родителя и все свойства восстановлены.



#### Декартовы деревья: операции

remove — Декартово дерево есть BST + BH.

- Так как удаление узлов, отличных от вершин, нетривиально, а удаление вершин — тривиально, задача — сделать удаляемый узел терминальным.
- Для этого на каждом шаге вращаем удаляемый узел с его ребёнком, имеющим наибольшее значение у до тех пор, пока он не станет терминальной вершиной.
- На этапе спуска мы не обращаем внимания на сохранение свойства ВН, нас интересуют только значения *у*.

Попытаемся удалить корневой элемент. (1633,89) имеет наибольшее значение y из детей, вращаем его по направлению к родителю.



Теперь новый объект для вращения — узел (1991,77).



Следующее направление — узел (1821,15).



Последнее направление — узел (1650,2).



Удаляемый узел добрался до вершин и может быть удалён.



Заключительное состояние.



• Задача: реализовать операции с деревьями, имеющие время в худшем  $\Theta(\log N)$ .

$$H < A \cdot \log N + B$$
,

где A и B — некоторые фиксированные константы.

- Решение:
  - использовать сбалансированные деревья;
  - ▶ использовать алгоритмы, не нарушающие сбалансированность.

## Сбалансированные деревья поиска: критерии сбалансированности

Высота дерева  $H_t$  не превосходит  $A \log N + B$ , если в бинарном дереве с N узлами выполнено хотя бы одно из условий:

① для любого узла количество узлов в левом и правом поддереве  $N_I,\ N_r$  отличаются не более, чем на 1

$$N_r \leqslant N_l + 1, \quad N_l \leqslant N_r + 1$$

 для любого узла количество подузлов в левом и правом поддеревьях удовлетворяют условиям

$$N_r \leqslant 2N_l + 1, \quad N_l \leqslant 2N_r + 1$$

ullet для любого узла высоты левого и правого поддеревьев  $H_I, H_r$  удовлетворяют условиям

$$H_r \leqslant H_l + 1, H_l \leqslant H_r + 1$$



Случай 1 — идеально сбалансированное дерево. Пусть  $H_{ideal}(N)$  — максимальная высота идеально сбалансированного дерева.

• N — нечётно и равно 2M+1. Тогда левое и правое поддеревья должны содержать ровно по M вершин.

$$H_{ideal}(2M+1) = 1 + H_{ideal}(M)$$

N — чётно и равно 2M. Тогда

$$H_{ideal}(2M) = 1 + \max(H_{ideal}(M-1), H_{ideal}(M))$$

Так как  $H_{ideal}(M)$  — неубывающая функция, то

$$H_{ideal}(2M) = 1 + H_{ideal}(M)$$

$$H_{ideal}(N) \leqslant \log_2 N$$

Случай 2. Примерная сбалансированность количества узлов. Пусть H(M) — максимальная высота сбалансированного дерева со свойством 2.

- Тогда H(1) = 0, H(2) = H(3) = 1.
- При добавлении узла один из узлов будет корнем, остальные  ${\it N}-1$  распределятся в отношении  ${\it N}_{\it l}$  :  ${\it N}_{\it r}$ , где  ${\it N}_{\it l}+{\it N}_{\it r}={\it N}-1$ .
- Не умаляя общности, предположим, что  $N_r \geqslant N_l$ , тогда  $N_r \leqslant 2N_l + 1$ .

$$H(N) = \max_{N_I, N_r} (1 + \max(H(N_I), H(N_r)))$$



Функция H(N) — неубывающая, поэтому

$$H(N) = 1 + H(\max(N_r, N_l))$$

При ограничениях  $N_r \leqslant 2N_l + 1$  и  $N_l + N_r = N + 1$  получаем

$$H(N) = 1 + H\left(\left\lfloor \frac{2N-1}{3} \right\rfloor\right)$$

$$H(N) > 1 + H\left(\left\lfloor \frac{2N}{3} \right\rfloor\right)$$

$$H(N) > \log_{3/2} N + 1 \approx 1.71 \log_2 N + 1$$

Случай 3. Примерная сбалансированность высот. АВЛ-деревья. Пусть N(H) — минимальное число узлов в АВЛ-дереве с высотой H (минимальное АВЛ-дерево).

- Пусть левое дерево имеет высоту H-1.
- Правое дерево будет иметь высоту H-1 или H-2.
- N(H) неубывающая, для минимального АВЛ-дерева высота правого равна H-2.
- Число узлов в минимальном АВЛ-дереве:

$$N(H) = 1 + N(H-1) + N(H-2)$$

$$\lim_{h\to\infty}\frac{N(h+1)}{N(h)}=\varphi=\frac{\sqrt{5}+1}{2}$$

$$H(N) pprox \log_{\varphi}(N-1) + 1 pprox 1.44 \log_2 N + 1$$

Красно-чёрное дерево это сбалансированное бинарное дерево поиска.

- Вершины разделены на красные и чёрные.
- Каждая вершина хранит поля ключ и значение.
- Каждая вершина имеет указатель left, right, parent
- Отсутствующие указатели помечаются указателями на фиктивный узел nil
- Каждый лист nil чёрный
- Если вершина красная, то её потомки чёрные
- Все пути от корня root к листьям содержат одинаковое число чёрных вершин. Это число называется **чёрной высотой дерева**, black height, bh(root)



Теорема: красно-чёрное дерево с N внутренними листьями имеет высоту не более  $\log_2\left(N+1\right)$ 

- Для листьев чёрная высота равна нулю.
- Докажем, что  $|T_x| >= 2^{bh(x)}$ .
- База индукции: Пусть вершина x является листом. Тогда bh(x)=0 и  $|T(x)|=0<2^{bh(x)}$
- Пусть вершина x не является листом и bh(x)=k. Тогда для обоих потомков  $bh(I)\geqslant k-1$ ,  $bh(r)\geqslant k-1$ , т. к. красный будет иметь высоту k, чёрный k-1.
- ullet По предположению индукции  $|T_I|, |T_r|>=2^{k-1} 
  ightarrow |T_k|=|T_I|+|T_r|>=2^k-1$



- По свойству (3) не менее половины узлов составляют чёрные вершины.
- $bh(t) \geqslant H/2$
- $N \geqslant 2^{H/2} 1$

$$H \leqslant 2 \cdot \log_2 N + 1$$

## Красно-чёрные деревья: операция вставки

- При обычной вставке свойства красно-чёрности могут нарушаться.
- Для изменения структуры применяются операции поворота деревьев.
- Для изменения красно-чёрности применяется корректировка.
- Для удобства полагаем, что для дерева имеется узел nil

# Красно-чёрные деревья: структуры данных

```
struct tree {
   struct tnode *root, *nil;
   tree():
   ~tree() { delete nil; }
};
struct tnode {
   tnode *left, *right, *parent;
   bool black;
   mydata data;
   tnode(tree *t) {
      left = right = parent = t->nil;
};
tree::tree() {
   nil = new tnode(); nil->black = true;
};
```

## Красно-чёрные деревья: повороты

Для поддержания сбалансированности применяется операция вращение или поворот.

Для этого отцепляется поддерево и переносится на другую сторону.



Левый поворот дерева.

#### Красно-чёрные деревья: вставка

- Вставляем почти как в обычное бинарное дерево поиска.
- Красим узел в красный цвет
- Корректируем дерево для сохранения красно-чёрности.

## Красно-чёрные деревья: вставка

```
void tree_insert(tree *t, tnode *z) {
   tree *y = t->nil; tree *x = t->root;
   while (x != t->nil) {
      y = x;
      if (z->key < x->key) x = x->left;
      else
                           x = x->right;
   z->parent = y;
   if (y == t->nil) t->root = z;
   else {
      if (z->key < y->key) y->left = z;
      else
                           y->right = z;
   z->left = z->right = t->nil;
   z->black = false;
   insert_fixup(t, z);
```

# Красно-чёрные деревья: коррекция (фрагмент)

```
void insert_fixup(tree *t, tnode *z) {
  while(!z->parent->black) {
      if (z->parent == z->parent->left) {
         tnode *y = z->parent->right;
         if (!y->black) {
            z->parent->black = true;
            y->black = true;
            z->parent->parent->black = false;
            z = z->parent->parent;
         } else {
             if (z == z-\text{parent-}\text{right}) {
                z = z->parent;
                rotate_left(t, z);
                z->parent->black = true;
                z->parent->parent->black = false;
                rotate_right(t, z->parent->parent);
        } else ... left <-> right
    }
    t->root->black = true;
```

}

# Красно-чёрные деревья

Вставка 4, корректирование



Смена цветов

# Красно-чёрные деревья

#### Поворот

Вставка 4, корректирование



31 марта 2020 г.

# Красно-чёрные деревья

#### Заключительная коррекция



# Красно-чёрные деревья vs АВЛ-деревья

|                        | RB-tree  | AVL-tree  |
|------------------------|----------|-----------|
| Средняя высота         | до 1.38Н | Н         |
| Поиск/вставка          | до 1.38t | t         |
| Поворотов при вставке  | до 2     | до 1      |
| Поворотов при удалении | до 3     | до log N  |
| Дополнительная память  | 1 бит    | 1 счётчик |

Параллельное использование алгоритмов поиска. Списки с пропусками.

- При параллельном программировании к одному элементу данных может обратиться несколько потоков.
- Результат при этом может быть недетерминирован.

```
int a = 0, b = 0;
//thread 1
b = 2;
a = b + 1;
//thread 2
a = 4;
b = a - 3;
```

- Критерий Бернстайна: Поместим объекты, которые читаются в потоке i в множество  $R_i$ , а те, которые пишутся, в множество  $W_i$ .
- ullet Для нашего кода  $R_1=\{b\},\;W_1=\{a,b\},\;R_2=\{a\},\;W_2=\{a,b\}.$
- Критерий гласит, что если все пересечения множеств  $R_1 \cap W_2$ ,  $R_2 \cap W_1$ ,  $W_1 \cap W_2$  пусты, то конфликтов (race conditions) не возникнет.
- В нашем случае:  $R_1 \cap W_2 = \{a\}$ ,  $R_2 \cap W_1 = \{a\}$ ,  $W_1 \cap W_2 = \{a,b\}$ , то есть race conditions возможны.

- Одно из средство избежать race conditions использование атомарных операций.
- Существуют машинные команды типа *Compare-And-Swap*, исполняющиеся атомарно.
- Они позволяют атомарно обменять две ячейки памяти, которые, возможно, содержат указатели.
- При вставке в односвязный список достаточно атомарных операций для замены цепочки указателей.
- Односвязный список идеальная структура данных для параллельного программирования.

- ullet Операция поиска в односвязном списке T(N)=O(N)
- ullet Операции вставки и удаления в односвязном списке  $\mathcal{T}(N) = O(N)$
- Требуется по возможности сохранить свойства операций вставки и удаления в лучшем случае и ускорить операцию поиска.

#### Рассмотрим следующую структуру данных:



- Она представляет из себя несколько списков, организованных в виде списков.
- Каждый следующий список примерно в два раза короче предыдущего и он пропускает примерно половину элементов предыдущего.

• Поиск существующего элемента.



• Поиск несуществующего элемента.



#### • Вставка элемента.



• Удаление элемента. Поиск и пометка столбца.



• Удаление элемента. Удаление из строк.



• Удаление элемента. Заключительное удаление.



ullet Вставка  $10^6$  элементов в структуру данных.

| Укладывание    | Array     | RBTree  | SkipList |
|----------------|-----------|---------|----------|
| Случайно       | 127033 ms | 1020 ms | 1737 ms  |
| По возрастанию | 108 ms    | 457 ms  | 536 ms   |
| По убыванию    | 256337 ms | 358 ms  | 407 ms   |

Амортизационная сложность списков с пропусками:

- Вставка  $T(N) = O(\log N)$
- Поиск  $-T(N) = O(\log N)$
- Удаление  $T(N) = O(\log N)$

Внешний поиск. В-деревья.

## Внешний поиск с использованием В-деревьев

- Основной носитель информации жёсткий диск.
- Информация на жёстком диске располагается в *секторах*, которые логически расположены на *дорожках*.
- Размер сектора типично 512/2048/4096 байт.
- Информация считывается и записывается головками чтения/записи.
- Для чтения/записи информации требуется *подвести* головку чтения записи к нужной дорожке и дождаться подхода нужного сектора.
- Типичные скорости вращения жёстких дисков 5400/7200/10033/15000 оборотов в минуту.
- Один оборот совершается за время от 1/90 до 1/250 секунды.
- Операция перехода на соседнюю дорожку примерно 1/1000 секунды.

#### Работа с внешними носителями

- Внешние сортировки используют многократный последовательный проход по данным, расположенным на носителях информации.
- Последовательное считывание информации с жёсткого диска 100-150 мибибайт в секунду.
- Смена позиции в файле часто требует:
  - ожидания подвода головки на нужную дорожку;
  - ожидания подхода нужного сектора к головкам чтения/записи;
- ullet Операция последовательного чтения 4096 байт занимает  ${4096\over 100 imes 10^6} pprox 40 imes 10^{-6}$  секунд
- Операция случайного чтения 4096 байт занимает не менее  $5-10 imes 10^{-3}$  секунд.

#### Работа с внешними носителями

- Второй популярный носитель SSD диск.
- Информация хранится в энергонезависимой памяти на микросхемах.
- Операции производятся блоками размером 64-1024 кибибайт.
- ullet Время доступа к блоку  $pprox 10^{-6}$  секунд.
- HDD и SSD используют *буферизацию* для ускорения работы.
- Алгоритмы поиска во внешней памяти должны минимизировать число обращений к внешней памяти.

#### Работа с SSD носителями

- На логическом уровне обращения происходят блоками любого размера, кратного 512 байт.
- На физическом уровне всё сложнее.
- Размер физического блока от 64 до 1024 кибибайт.
- Операция частичной записи 512 байт:
  - Считывается полный блок (всегда).
  - Заменяется 512 байт в требуемом месте.
  - Записывается полный блок (всегда).
- Выровненная запись целого блока минимум двукратное ускорение.

## Оценка применимости внешнего поиска

- Пусть имеется бинарное дерево поиска, состоящее из:
  - Данных размером 64 байта.
  - 2 Ключа размером 8 байт.
  - Указателей left и right размером 8 байт.
- Общий размер узла 88 байт.
- ullet В оперативную память размером 16 гибибайт поместится  ${16 imes 2^{30} \over 88} pprox 195 imes 10^6$  узлов.
- Как хранить словарь из  $10^9$  элементов?

## В-деревья

- *В-дерево* сбалансированное дерево поиска, узлы которого хранятся во внешней памяти.
- В оперативной памяти хранится часть узлов.

#### В-деревья: свойства



- Высота дерева не более  $O(\log N)$ , где N— количество узлов.
- Каждый узел может содержать 1 ключ и больше.
- Количество детей узла равно K+1, где K количество ключей в узле.

#### В-деревья: свойства



- Пусть в узле помещается 128 ключей.
- Высота дерева 3
- Тогда общее количество узлов

$$1 + 129 + 129^2 = 16771$$

• Общее количество ключей

$$16771 \times 128 = 2146688$$



## В-деревья: определение

- В-дерево корневое дерево, обладающее свойствами:
  - Каждый узел содержит:
    - ⋆ количество ключей n, хранящихся в узле.
    - ★ индикатор листа final.
    - ⋆ n ключей в порядке возрастания.
    - ★ n+1 указатель на детей, если узел не корневой.
  - 2 Ключи есть границы диапазонов ключей в поддеревьях.
  - Все листья расположены на одинаковой глубине h.

  - ⑤ В корневом узле от 1 до 2t-1 ключей.
  - ⑤ Во внутренних узлах минимум t-1 ключей.
  - О Во внешних узлах максимум 2t-1 ключей.
  - Заполненный узел имеет 2t-1 ключ.

#### В-деревья: высота

- **Теорема**: Высота В-дерева с  $n\geqslant 1$  ключами и минимальной степенью  $t\geqslant 2$  в худшем случае не превышает  $\log_t \frac{n+1}{2}$
- Доказательство. В максимально высоком дереве высоты h в каждом узле, кроме корневого, содержится t-1 ключ. Тогда общее количество ключей в дереве есть

$$1 + 2 + 2t + 2t^{2} + \dots + 2t^{h-1} =$$

$$= 1 + 2(t-1)(1+t+t^{2} + \dots + t^{h-1}) =$$

$$= 1 + 2(t-1)\frac{t^{h} - 1}{t-1}$$

Отсюда

$$h = \log_t \frac{n+1}{2}$$



#### В-деревья: операции

- Используем операции Load и Store.
- Корень сохраняем в оперативной памяти.
- Минимизируем количество операций.

## В-деревья: операция find поиска ключа k

- **①** Операцией бинарного поиска ищем самый левый ключ  $key_i \geqslant k$
- **2** Если  $key_i = k$ , то узел найден.
- Исполняем Load для дочернего узла и рекурсивно повторяем операцию.
- ullet Если final = true, то ключ не найден.

Количество операций  $T_{load} = O(h) = O(\log_t n)$ 

# Добавление ключа

- Операцией find находим узел для вставки.
- Если лист не заполнен, сохраняя упорядоченность вставляем ключ.
- Если лист заполнен (2t-1 ключей), разбиваем его на два листа по t-1 ключу поиском медианы.
- Медиана рекурсивно вставляется в родительский узел.

Сложность в худшем случае: каждый раз разбивается узел на каждом уровне,  $O(t\log_t n)$ 

Количество операций:  $T_{ext} = O(h) = O(\log_t n)$ 

## Разновидности В-деревьев

- В<sup>+</sup>-дерево содержит информацию только в листьях, ключи только во внутренних узлах.
- Используется в файловых системах XFS, JFS, NTFS, Btrfs, HFS, APFS, ...
- Используется для хранения индексов в базах данных Oracle, Microsoft SQL, IBM DB2, Informix, ...

Спасибо за внимание.

Следующая лекция — Обобщённый быстрый поиск.