6 CIRCUITO DE COMUTAÇÃO COM TRANSÍSTOR

6.1 Objetivos

Estudar um circuito simples com um transístor bipolar.

Verificar que o circuito de comutação permite comutar correntes mais elevadas utilizando sinais com pouca energia.

Determinar o ganho em corrente do transístor.

6.2 Execução do trabalho

Recomenda-se a leitura do Apêndice Transístores Bipolares.

Operação

O esquema do circuito a utilizar é o seguinte:

1. Dimensione o circuito da figura utilizando o transístor BC547, BC107 ou equivalente, de forma a obter o funcionamento desejado. Estes transístores têm um ganho de corrente (fator β) de ≈300 quando a temperatura é de 25 °C. Em corte, a corrente do coletor é nula (inferior ao microampére), e na saturação poderá ser fixada, por exemplo, em 10 mA (I_{Cmax}, que deve obviamente ser inferior à corrente suportada pelo transístor). Utilize para V_{CC} a tensão de 5 V. Obtenha a tensão V_{in} a partir de um gerador de tensão, em onda triangular positiva (Use os controlos de amplitude e "offset" para obter a gama de trabalho). Use um frequência de 1 kHz para obter uma boa visualização no osciloscópio.

Para dimensionar as resistências do circuito tenha em consideração os seguintes fatores:

1- A corrente de coletor máxima deverá ser bastante inferior à corrente máxima admissível neste transístor (100 mA). O valor indicado pelo fabricante para a corrente máxima tem que ser enquadrado com a potência máxima que ele dissipa (500 mW), isto quer dizer que o transístor poderá ter 100 mA desde que a diferença de potencial seja inferior a 5 V (o

transístor irá aquecer bastante nesta situação). Neste trabalho vamos obrigar a corrente a ser menor que 10 mA. Neste caso deveremos ter

$$R_C > \frac{V_{CC} - V_{CE_{sat}}}{0.01}$$
 em que $V_{CE_{sat}} \approx 0.2 \text{ V}.$

2- A escolha da resistência de base (R_B) depende da nossa escolha para a zona de transição na saída. Uma transição rápida (i.e. para que uma pequena variação na tensão de entrada passe da zona de corte para a saturação escolheremos uma resistência baixa, para uma transição suave, escolheremos uma resistência maior. Recordemos que a corrente de coletor na zona linear é dada por

$$I_C = \beta I_B$$

e que I_B é dada por

$$I_B = \frac{V_{in} - V_{BE}}{R_B}$$
 se $V_{in} > V_{BE}$ ($V_{BE} \approx 0.7 \text{ V}$)
 $I_B = 0$ se $V_{in} > V_{BE}$.

- 2. Monte o circuito e registe o seu funcionamento.
- 3. Usando a zona de transição, estime o β do transístor para estas condições de funcionamento.
- 4. Repita a análise com outros valores de R_C e R_B .

BC546/547/548/549/550

Switching and Applications

- High Voltage: BC546, V_{CEO}=65V
 Low Noise: BC549, BC550
- · Complement to BC556 ... BC560

NPN Epitaxial Silicon Transistor

Absolute Maximum Ratings Ta=25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CBO}	Collector-Base Voltage : BC546	80	V
	: BC547/550	50	V
	: BC548/549	30	V
V _{CEO}	Collector-Emitter Voltage : BC548	65	V
	: BC547/550	45	V
	: BC548/549	30	V
V _{EBO}	Emitter-Base Voltage : BC546/547	6	V
	: BC548/549/550	5	V
lc	Collector Current (DC)	100	mA
	Collector Power Dissipation	500	mW
Pc T _J	Junction Temperature	150	°C
T _{STG}	Storage Temperature	-65 ~ 150	°C

Electrical Characteristics Ta=25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
ICBO	Collector Cut-off Current	V _{CB} =30V, I _E =0	83	es I	15	nA
h _{FE}	DC Current Gain	V _{CE} =5V, I _C =2mA	110	2	800	
V _{CE} (sat)	Collector-Emitter Saturation Voltage	lc=10mA, l _B =0.5mA lc=100mA, l _B =5mA		90 200	250 600	mV mV
V _{BE} (sat)	Base-Emitter Saturation Voltage	I _C =10mA, I _B =0.5mA I _C =100mA, I _B =5mA	83	700 900	0.00	mV mV
V _{BE} (on)	Base-Emitter On Voltage	V _{CE} =5V, I _C =2mA V _{CE} =5V, I _C =10mA	580	660	700 720	mV mV
f _T	Current Gain Bandwidth Product	V _{CE} =5V, I _C =10mA, f=100MHz		300		MHz
Cob	Output Capacitance	V _{CB} =10V, I _E =0, f=1MHz		3.5	8	pF
CID	Input Capacitance	V _{EB} =0.5V, I _C =0, f=1MHz	7	9		pF
NF	Noise Figure : BC548/547/548 : BC549/550 : BC549 : BC550	V _{CE} =5V, I _C =200μA f=1KHz, R _G =2KΩ V _{CE} =5V, I _C =200μA R _G =2KΩ, f=30~15000MHz		1.2 1.4 1.4	10 4 4 3	dB dB dB

h_{FE} Classification

Classification	Α	В	С
h _{FE}	110 ~ 220	200 ~ 450	420 ~ 800

©2002 Feirchild Semiconductor Corporation

Rev. A2, August 2002

6.3 Introdução teórica

O circuito de comutação, frequentemente designado também por circuito inversor, é um dos elementos básicos da eletrónica. Por um lado permite controlar correntes elevadas com um sinal fraco, por outro lado permite implementar a função lógica "não" de forma simples.

A configuração mais usual encontra-se representada na figura seguinte.

Figura 6-1. Circuito inversor (ou de comutação) utilizando um transístor.

A resistência R_C poderá ser um outro componente (motor, aquecedor, etc.) dependendo da utilização.

De uma forma simples, podemos considerar o transístor bipolar como dois díodos invertidos e com as duas junções suficientemente próximas para a passagem de corrente numa delas influenciar o funcionamento da outra. Isto quer dizer que trocando o coletor com o emissor, o transístor funcionaria da mesma forma (embora com características diferentes, pois as duas junções não são iguais). Podemos dividir o funcionamento do transístor em três regimes: linear, corte e saturação.

Se o transístor estiver a funcionar no modo linear (fora do corte e da saturação), a corrente no coletor (I_C) pode ser considerada como sendo proporcional à corrente de base (I_B) :

$$I_C = \beta I_B. \tag{1}$$

No caso geral, a corrente que passa no coletor do transistor (I_C) será dada por:

$$I_C = 0$$
 se a corrente de base (I_B) for nula (transístor em corte)
$$I_C = \beta I_B$$
 se houver corrente de base $(I_B > 0)$ e o transístor não estiver saturado
$$I_C = \frac{V_{CC} - V_{CE_{Sat}}}{R_C}$$
 se o transístor estiver saturado, i.e. se $I_B > \frac{V_{CC} - V_{CE_{Sat}}}{\beta R_C}$).

Em corte, a tensão aplicada no ramo da base não é suficiente para vencer o potencial do díodo base-emissor, tendo-se $I_B = 0$. Neste caso não há passagem de corrente no coletor e a tensão V_{out} é igual a V_{CC} . Para um transístor de Silício a teremos que vencer 0,6 V.

Em saturação, a corrente de base é suficientemente elevada para toda a tensão de alimentação cair em R_C . A tensão de saída não fica em zero devido a uma queda de tensão entre o coletor e o emissor ($V_{CE_{Sat}}$ normalmente inferior a 0,2 V.

Em funcionamento linear a corrente de base é dada por

$$I_B = \frac{V_{in} - V_{BE}}{R_B}. (2)$$

Como em funcionamento linear temos $I_C = \beta I_B$ e $V_{out} = V_{CC} - R_C I_C$, teremos

$$V_{out} = V_{CC} - \frac{\beta R_C (V_{in} - V_{BE})}{R_B}.$$
 (3)

O 'ganho' deste circuito é $-\beta R_C/R_B$. Se este valor for muito elevado teremos uma transição muito rápida, i.e., o transístor comutará entre a situação de corte $(V_{out} = V_{CC})$ e a de saturação $(V_{out} = V_{BE_{Sat}})$. Se o valor for mais baixo teremos uma transição suave entre estes dois valores¹.

Para uma análise mais completa do funcionamento do transístor bipolar recomenda-se a leitura do apêndice Transístores Bipolares.

 $^{^1}$ Para amplificar sinais AC separa-se, com um condensador o funcionamento DC e o AC. Em DC coloca-se o transístor com a saída aproximadamente em $V_{CC}/2$ e o ganho pretendido em AC.