LUNDS TEKNISKA HÖGSKOLA MATEMATIK

SVAR LINJÄR ALGEBRA 2015-03-16

- 1. Fallet a = 3 ger $(x, y, z) = t(-7, 1, 4), \ t \in \mathbb{R}$, och a = 2 ger $(x, y, z) = t(-1, 0, 1), \ t \in \mathbb{R}$. Då $a \neq 3$ och $a \neq 2$ blir lösningen (x, y, z) = (0, 0, 0).
- 2. a) En ekvation är 2x + 2y z 3 = 0.
 - **b)** Punkten (0, -1, -5).
 - c) Avståndet är $\frac{1}{2}\sqrt{30}$.
- 3. a) a) Egenvektorer $X=t(1,1),\ t\neq 0$, till egenvärdet $\lambda=3$, och egenvektorer $X=t(1,-2),\ t\neq 0$, till egenvärdet $\lambda=-3$.
 - **b)** Exempelvis $S = \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix}$, $D = \begin{pmatrix} 3 & 0 \\ 0 & -3 \end{pmatrix}$.
 - c) Kan visas på följande sätt:

$$B \text{ har egenvärdet } \lambda \quad \Leftrightarrow \quad BX = \lambda X \quad (X \neq \mathbf{0}) \quad \Leftrightarrow \quad B^{-1}BX = B^{-1}\lambda X \quad \Leftrightarrow \\ X = \lambda B^{-1}X \quad \Leftrightarrow \quad B^{-1}X = \frac{1}{\lambda}X \quad \Leftrightarrow \quad B^{-1} \text{ har egenvärdet } 1/\lambda.$$

- 4. Man kan välja $\hat{\mathbf{e}}_1 = \frac{1}{3}(2,2,1)$, $\hat{\mathbf{e}}_2 = \frac{1}{3}(1,-2,2)$ och $\hat{\mathbf{e}}_3 = \frac{1}{3}(2,-1,-2)$. Vektorn får då (de gamla) koordinaterna (11,2,1). (Har du valt motsatt tecken på $\hat{\mathbf{e}}_2$ och $\hat{\mathbf{e}}_3$ så får vektorn istället koordinaterna (1,10,5).)
- 5. a) Avbildningsmatrisen för F blir

$$A = \left(\begin{array}{ccc} 1 & 1 & -2 \\ 2 & -3 & 2 \\ 0 & 3 & -4 \end{array}\right)$$

och avbildningsmatrisen för G blir

$$B = \left(\begin{array}{rrr} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

Matrisen för den sammansatta avbildningen H blir således

$$C = BA = \begin{pmatrix} -1 & -1 & 2 \\ 2 & -3 & 2 \\ 0 & 3 & -4 \end{pmatrix}.$$

b) Eftersom $|\det C|=2>1$ så följer det, enligt determinantens tolkning som volymskala, att en parallellepiped får större volym då vi tillämpar H på den.

- 6. a) Eftersom avbildningen är en rotation så är värdemängden hela rummet, dvs. av dimension 3. Vi får därför rangA = 3, oavsett θ .
 - b) En rotation påverkar inte volymen av en kropp, och eftersom inte heller orienteringen ändras så är $\det A = 1$, oavsett θ .
 - c) För alla θ så gäller det att den angivna linjen avbildas på sig själv, så vektorerna $(\neq 0)$ på denna linje blir egenvektorer med egenvärdet $\lambda = 1$. Om $\theta = \pi \ (+k \cdot 2\pi)$ så vrider vi ett halvt varv, och då blir alla vektorer $(\neq 0)$ ortogonala mot linjen (dvs. i planet 402x 512y + 267z = 0) egenvektorer med egenvärdet $\lambda = -1$. Om vi vrider hela varv $(\theta = k \cdot 2\pi)$ så blir alla vektorer $(\neq 0)$ egenvektorer med egenvärdet $\lambda = 1$. Inga andra vridningar ger egenvektorer utöver vridningsaxeln.
 - d) Matrisen A är diagonaliserbar precis då vi kan välja 3 linjärt oberoende egenvektorer. Enligt resonomanget i b) så ser vi att detta är möjligt endast då $\theta = \pi + k \cdot 2\pi$ och då $\theta = k \cdot 2\pi$, eller sammantaget, då $\theta = k \cdot \pi$.

Svar: a) rang A=3. b) $\det A=1$. c) Vinkeln $\theta=\pi+k\cdot 2\pi,\ k\in\mathbb{Z},\ \mathrm{ger}\ \lambda=1$ och $\lambda=-1$. Övriga θ ger endast $\lambda=1$. d) Diagonaliserbar endast då $\theta=k\cdot \pi,\ k\in\mathbb{Z}.$