

TECNOLOGIA E INOVAÇÃO EM PROL DA INDÚSTRIA

Curso Superior Análise e desenvolvimento de sistemas.

Testes e Métricas de Software

Prof: Gelton Cruz

SQA Estatítico e norma ISO 9000

- SQA estatística Garantida da estatística da qualidade.
- Mais métricas de qualidade
- Confiabilidade
- Segurança
- Normas ISO 9000

Garantia estatística de qualidade

- A qualdade é responsabilidade de todos os participantes do desenvolvimento de software.
- Qualidade pode ser obtidade
- Processo eficiente (Analise, Projeto, Codificação e teste)
- RTF (Revisão técnica formal) nos trabalhos intermediários.
- Modificações propostas

Garantia estatística de qualidade

- SQA Estatítisca -> Apoio quatitativo
- Base : Frequência de ocorrência de erros e inconsistencias, ao longo do período de tempo.
- Objetivo: Aprimorar os elementos do processo que promovem erro:

PASSO A PASSO PARA A SQA Estatística

- 1. Coletar informaões sobre os defeitos e catalogar categorias.
 - 1. Alguns defeitos no processo
 - 2. Outros defeitos após entrega
- 2. Rastrear o defeito até encontrar sua causa.
- 3. Considerar: 20% do código tem 80% dos defeitos. Centrar no que importa.
- 4. Corrigir os problemas que originaram os defeitos.

Paretto

Possíveis causas dos defeitos

- 1. Especificações incompletas ou mal formuladas.
- 2. Má interpretação da comunicação com cliente.
- 3. Desvio intencional das especificações.
- 4. Violação dos padrões da programação.
- 5. Erro na representação de dados.
- 6. Inconconsistência na interface de componente.
- 7. Lògica do projeto inconsistente.
- 8. Teste incompleto ou errôneo.
- 9. Documentação imprecisa ou incompleta.
- 10. Erro na tradução do projeto para linguagem.
- 11. Interface Homem máquina ambígua ou inconsistente.
- 12. Diversos

Possíveis causas dos defeitos

ERROS	TOTAL		GRAVE		MODERADO		SIMPLES	
	Qtde	%	Qtde	%	Qlde	1/4	Olde	1/6
I	205	22	34	27	68	18	103	24
II	156	17	12	9	68	18	76	17
III	48	5	1	1	24	6	23	5
IV	25	3	0	0	15	4	10	2
٧	130	14	26	20	68	18	36	8
VI	58	6	9	7	18	5	31	7
VII	45	5	14	11	12	3	19	4
VIII	95	9	12	9	35	9	48	11
IX	36	4	2	2	20	5	14	3
Х	60	6	15	12	19	5	26	6
XI	28	3	3	2	17	4	8	2
XII	56	6	0	0	15	4	41	9
TOTAIS	942	100	128	100	379	100	435	100

O que a tabela diz?

- Os erros, 1, 2 e 5 Poucas causas vitais que correspondem a 53% dos erros (Some a coluna Tota % desses 3 grupos de erros).
- Os erros 1,5,7 e 10 Poucas causas vitais de erros graves (Conluna qtd de Graves)
- Após detecção dos erros vitais -> Ação corretiva -> novos erros aparecerão.

Procedimento - SQA Estatística.

Repetir os passos até que erros sejam sanados.

- 1. Criar lista de possíveis categorias de Causas.
- 2. Quantificar, por um tempo determinado, a incidência de erros.
- 3. Focar nas poucas causas vitais.
 - 1. 20% do projeto/código contem 80% dos erros
- 4. Corrigir as causas vitais -> Corrigir os erros.
- 5. Surgem novos erros (Testes são exaustivos).

Métrica Confiabilidade

Métrica Confiabilidade

Probabilidade de um programa operar sem falhas num ambiente específico, durante determinado tempo específico.

- Considerar número mínimo de falhas ocorrerá na execução
- Alguns softwares precisam de % confibialidade próximo a 100%.

Métrica Confiabilidade

0,98 confiabilidade por 8h de processamento.

"Se o software for executado 100x por um período de 8 horas é provavel que ele funcione corretamente 98x".

Alta Disponibilidade do software.

Métrica Segurança

Sistema de segurança Crítico.

A

- Trata-se uma atividade SQA
 - Detecta e avalia risco em potencial que podem provocar falhas e impactar em desempenho.
 - Quais são as vunerabilidades de meu sistema?
 - Quais são os eventos que podem acontecer ue afetam a vunerabilidade.
 - Quais são os percentual de incidencia de força que esse evento tende a acontecer.
- Identifica e avalia casualidades em potencial que possam exercer impacto negativos e provacar falhar.

Planos para implementação de segurança

Regras princípios de segurança que garantam a ocorrêcia do evento.

Planos para implementação de segurança

- Identificar a presença de risco o mais cedo possível.
- Traçar estratégias no projeto que eliminem ou controlem os riscos em potencial.
- Identificar e avaliar casualidades que podem impactar negativamente.
- Analisar a gravidade e a probalidade de ocorrencia.
- Listar requesitos de segurança para o software.

Técnica Análise de gravidade e probabilidade de ocorrência

NORMAS

International Organization for Standardization

INTERNATIONAL ELECTROTECHNICAL COMMISSION