

SEQUENCE LISTING

<110> Holloway, James L.
Webster, Philippa J.
Thayer, Edward C.

<120> Mammalian Glycoprotein Hormone-1

<130> 00-34D1

<150> US 09/943,388
<150> 2001-08-30

<150> US 09/839,706
<150> 2001-04-20

<150> US 60/199,498
<150> 2000-04-25

<160> 44

<170> FastSEQ for Windows Version 3.0

<210> 1
<211> 390
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (1)...(390)

<400> 1

atg aag ctg gca ttc ctc ttc ctt ggc ccc atg gcc ctc ctc ctt ctg	48
Met Lys Leu Ala Phe Leu Phe Gly Pro Met Ala Leu Leu Leu Leu	
1 5 10 15	

gct ggc tat ggc tgt gtc ctc ggt gcc tcc agt ggg aac ctg cgc acc	96
Ala Gly Tyr Gly Cys Val Leu Gly Ala Ser Ser Gly Asn Leu Arg Thr	
20 25 30	

ttt gtg ggc tgt gcc gtg agg gag ttt act ttc ctg gcc aag aag cca	144
---	-----

Phe Val Gly Cys Ala Val Arg Glu Phe Thr Phe Leu Ala Lys Lys Pro				
35	40	45		
ggc tgc agg ggc ctt cgg atc acc acg gat gcc tgc tgg ggt cgc tgt				192
Gly Cys Arg Gly Leu Arg Ile Thr Thr Asp Ala Cys Trp Gly Arg Cys				
50	55	60		
gag acc tgg gag aaa ccc att ctg gaa ccc ccc tat att gaa gcc cat				240
Glu Thr Trp Glu Lys Pro Ile Leu Glu Pro Pro Tyr Ile Glu Ala His				
65	70	75	80	
cat cga gtc tgt acc tac aac gag acc aaa cag gtg act gtc aag ctg				288
His Arg Val Cys Thr Tyr Asn Glu Thr Lys Gln Val Thr Val Lys Leu				
85	90	95		
ccc aac tgt gcc ccg gga gtc gac ccc ttc tac acc tat ccc gtg gcc				336
Pro Asn Cys Ala Pro Gly Val Asp Pro Phe Tyr Thr Tyr Pro Val Ala				
100	105	110		
atc cgc tgt gac tgc gga gcc tgc tcc act gcc acc acg gag tgt gag				384
Ile Arg Cys Asp Cys Gly Ala Cys Ser Thr Ala Thr Thr Glu Cys Glu				
115	120	125		
acc atc				390
Thr Ile				
130				
<210> 2				
<211> 130				
<212> PRT				
<213> Homo sapiens				
<400> 2				
Met Lys Leu Ala Phe Leu Phe Leu Gly Pro Met Ala Leu Leu Leu				
1	5	10	15	
Ala Gly Tyr Gly Cys Val Leu Gly Ala Ser Ser Gly Asn Leu Arg Thr				
20	25	30		
Phe Val Gly Cys Ala Val Arg Glu Phe Thr Phe Leu Ala Lys Lys Pro				
35	40	45		
Gly Cys Arg Gly Leu Arg Ile Thr Thr Asp Ala Cys Trp Gly Arg Cys				
50	55	60		
Glu Thr Trp Glu Lys Pro Ile Leu Glu Pro Pro Tyr Ile Glu Ala His				
65	70	75	80	

His Arg Val Cys Thr Tyr Asn Glu Thr Lys Gln Val Thr Val Lys Leu
 85 90 95
 Pro Asn Cys Ala Pro Gly Val Asp Pro Phe Tyr Thr Tyr Pro Val Ala
 100 105 110
 Ile Arg Cys Asp Cys Gly Ala Cys Ser Thr Ala Thr Thr Glu Cys Glu
 115 120 125
 Thr Ile
 130

<210> 3
 <211> 5605
 <212> DNA
 <213> Homo sapiens

<400> 3

atgaagctgg cattcctctt ccttggcccc atggccctcc tccttctggc tggctatggc	60
tgtgtcctcg gtgcctccag tgggaacctg cgcaccttg tgggctgtgc cgtgagggag	120
tttactttcc tggccaagaa gccaggctgc agggcccttc ggatcaccac ggatgcctgc	180
tggggtcgt gtgagacctg ggaggtgagt tgctaagttg tgcatatgc agtgtcttct	240
agccagcag cttgggtctg attcttaaga gttcaacttt taaatgatat gaggttagagc	300
tgggacatct gccccttcct gtggacttaa aaaaccaaaa caaaactatg attggcatct	360
tccaaaagtg atttggaaaaa catgatgtt cccctctaac aaagcattga taaggttaag	420
aatttggttt acattgtgtc tatgtatctg ggaatcatct ctggaggtc aagatgtact	480
gttctaccgg ttttacagat gacatggagg gattcaaggg agagtggctg caaagtcacg	540
tagagcgtca gtgtaaagct gggaatcaat ttgtggttca agcttgatgc ccaaactcct	600
ccctatgttt cctcattttg gataaattag ccagtttcca agaaagaggc cctgagctga	660
agggtgagcg ttggtcccag tgaagggtga gacccttca ctgcctcttc tgcagccctt	720
ttccctcctca agtctctggg agccctctgg gtttatcaact gacggatcca ttaagttcct	780
tcatattcaa ttatacctgg cctttttaga gacatttaat ttaaagtgg aataacactc	840
tcaaacaaag ttaaaatcct attgggctaa gaggagctgt ttgagtgatg aagaggaaga	900
gagctattca gcacccccc agatcacatt acgtatgtac tgtggctct tccccctgag	960
gcctgcccac ttggtaacca atgaagtgt gtctctgatc ttgtcaactcc ctggcccaaa	1020
aaccttgaat gtcccacac tactacagat tcaataacta actttcaagg tgctcagcaa	1080
tatggcgtct gcctgcttc ctggagacag cacattttct tactctggcc ttggtaagtg	1140
actttcaaaag gtttatcaa atagcccta tggatctcat tttgttcctt ccctcatatc	1200
ccttctcctt cccatctgtc attatcatat ttattcctga tgcctatctg cagtgccagc	1260
tcccttctg ggccttttt gacttgcagg taagcccttg actatgtct actttcgtc	1320
ttacttcctc cccccaccaca cgcgtgattt aaatttttc aggacagagg ttcattctta	1380
taaccttac acgtttgtc aagatgtcgt gtatgaacaa ggcattcaat acacatttgt	1440
tggttgactg ggttggacact cccctgtggact ctgtatcc tccagcctaa tggaaaggcca	1500
tttagaaatca cacttgcact gtgagtgac actgcccattt ggaaaaatag ccttctctt	1560
ggggacccag aggtaacact gctttgtt aggtacaatt acggccctgt gaatggaaattt	1620
gggtcatagt gatggaaatct ccaaatttggaa tggaaactact ctatcaaagt agtttcttt	1680

tgcctcattc	agggcttga	gccctactag	cccaatgaaa	atcggtttt	gctaagtaga	1740
cttcgcctgt	caattggcag	caaattcacc	tggggcactt	ggcacccct	cctgttcagg	1800
gactggcctg	gcagggcctc	tccctgttcg	catctagtgt	ctggctatt	tgaagccctc	1860
tctgtccaa	atcctcaaac	tcctgcttcc	gttcgattca	gcccatcttc	tcttcttttt	1920
aaaaactgat	aatgtcttt	aattggatca	tggtcaccca	taggaggtca	ggaactgtgc	1980
tctcactgga	aagatggaaa	caccaaaacc	gttaaagaac	aagattctcc	ctgatgttag	2040
ccagctttca	ttcatgtctt	gactgtgtta	tgaaaaggga	ggttacctat	agaaaataaa	2100
taaaagaatg	agattcattt	tcccagcaat	ctgaaagttt	ctgcgtata	aagcacttga	2160
tttttggtg	ggggggatct	taactgaaag	catgtctgaa	aataaggatg	ttcatgtatga	2220
caggctggct	ggatttacat	ttgaaggtt	ttgaaaatag	ctattcctca	taatctgggt	2280
atagagttgc	cagattnagc	aaacaaacaa	acagacaaac	aaaataaaac	aaaaccaatc	2340
ccctccccac	agaaacccaa	actgaaataa	aaccagaaaa	ccaggaagcc	caggtaaatt	2400
tgaatttaag	ataaataata	aataaaattt	tagcataagt	ctgtctgtct	catacagtat	2460
ttggatgac	ttatactaaa	aaattatgt	tctgaaaatg	aaattttatg	gggcgtttgg	2520
tctgcctagg	ttcccagagt	actaatggta	agaggactta	aagcaaatac	gggaaggtag	2580
gagaaaaacag	ttgaggacaa	attcagctt	tctggcttt	gtcaaaggca	aggctggccg	2640
ggcgtggtgg	ctaacacctg	taatctcagc	acttggag	gctgtggtgg	gtggataatg	2700
agtcaggag	ttcgagacca	gcctggccag	tttttagtaa	agaggtgagt	aaaaccctgt	2760
ctctactaaa	aataaaaaaa	ttagccgggc	atggtgttat	gcacctgttag	tcccagctac	2820
ttgggaggct	gaggcagaag	acttgcttga	accaggagg	tggaggttac	agtgagccaa	2880
gatcatgcca	ctatactcca	gcctggcgac	agagtgagac	tccatctcaa	aaaaaaaaaaa	2940
aaaaagaaaaa	aagaaaaaaa	aaaggttaagg	ctgttatttt	catgacattc	atgcaagaac	3000
atcttgagtt	acatatgtat	atatattttt	tttgcctag	aacaaagaag	aaccaaaaag	3060
caaaggtaact	gtcatttgaa	agcttggttat	tatttacatt	actttcttat	aataattgca	3120
ctaataagaa	caatggattt	gctggcgtg	gtggctcagc	cctgtaatcc	cagcactttt	3180
ggaggccgag	gcaggcagat	cacgaggitca	gaaatcgag	accatccctgg	ctaacatgg	3240
gaaaccctgt	ctctactaaa	aataaaaaaa	atgagccagg	cgtgggtgt	ggtcctgt	3300
gtcccccggag	gctgaggcag	gagaatggcg	tgaacccggg	aggcggagat	tgcaatgagc	3360
ttagattgcg	ccactgaact	ccagcctgg	agacagcaag	actccgtctc	aaaaaaaaaaa	3420
aaaaatggat	tgcatttttt	gaacatttac	tttggcttag	acatttgca	ttgcgtatat	3480
catcttacct	tatctctcaa	acaatggtg	gagtagcta	tttggttta	cagaggagga	3540
aacttgagtc	ttcaggaagt	taagtggatt	ttccaaggtc	tccagcaagt	ggcagaacag	3600
ggactcaagc	tccttagttc	tgactgcagg	gctcgagatt	ttaactccag	ctaggtgctg	3660
atatttttc	tgatctgtgt	gttctgttta	tcaaaattgt	cttgaactt	aagatttata	3720
aaaggtgaag	gaaggaaatg	aatctttt	atgatcagaa	cagtgcacag	agtattcggg	3780
aacctgtctt	gtaatgtttt	cttcatgt	ttcaatgaca	aatagttatt	gaaactctcc	3840
cagggtctgt	tttgggtact	tgaggcacag	tggcaaaaa	tctctgtcct	aaaagagctt	3900
actttctaga	gtgggaggaa	tatcacacga	atgaaaggta	gactacgtcg	tgtggattt	3960
atcagtgctg	tggtggaaaa	taaagcaaga	tggggatgg	gaagttctg	ggcatggaga	4020
tggaaatgtt	caattttaaa	tagatggtc	agggaaatgct	tccctgagag	ggtgacattc	4080
taacaaaaac	ccaaggttgg	tgaagagtg	aatcatacgg	gagaagaatg	ttccaggcag	4140
aggaacagt	aagtgcaaag	gccctgagct	gggctgttc	ctgggtggtc	agaggagcaa	4200
taaggagacc	gccgtgagcc	tagtgaggaa	gtcagtgtt	tggaaatgg	tgcaggcatt	4260

tcagaaggta gagttgcaga gaaggtgatg taggtcttga aggtgatcat aaggtcttg	4320
atgtttgttc tgagttagat gggaaatcac tggggcttg ggcagaggag taacatgatc	4380
tgacttaggt ttaaacagga tcactcaggg ccgcgtgtt gcaaataatgtatgttgc	4440
aaaaatggaa gaggggagac cagttagaag gtatttgc aaataatgtatgttgc	4500
ctgactatgc atggagact tgctgtgtc tatggctct cctggagct tagaatatgg	4560
tcttgagtga aatcagcttc ttgcttcag gagttgttt tctactggga gacgacagag	4620
caacaagtaa atcaacgaat aacaagttaa ttctgtatag tgataaatga tactaaaaaa	4680
ctgaaaacaag atcatatgtt ctaatgaatt ctctgtttct atctatggg acagaaaccc	4740
attctggaac ccccctatat tgaagcccat catcgagtct gtacctacaa cgagaccaaa	4800
caggtgactg tcaagctgcc caactgtgcc ccgggagtcg accccttcta cacctatccc	4860
gtggccatcc gctgtgactg cggagcctgc tccactgcca ccacggagtg tgagaccatc	4920
tgaggccgct agctgtctc tgcagaccca cctgtgtgag cagcacatgc agttataactt	4980
cctggatgca agactgttta atttcgacca caccatgga ggaggttacc tgcgcccc	5040
taggtccagc tcaggcaaaa ggcccaatg cagcctactt atgctaaaag ttcaaaacaa	5100
tattcgtgcc ttcaccaaaa taatttctcc agctcacata cctgcaaattt aatttttctt	5160
tgccttgagt cttggAACat aatttgcata tcacaatcct cccccaattt ggacttataa	5220
tatgctaatg atttaaacac atgggatgta attaggatgat ggggctggaa agtctttaaa	5280
ttctcatgtt ctatttaacc tctgatctcc aaccggattt atgattaaag ggctagaaat	5340
gaacaaaacc catgtactag tcttccttac cccagaggaa ttccagctgc aagttctt	5400
aggaaaaatg ctcccttccc cttaactg agcaattatc tacacaagaa ataagactgc	5460
tcagatatac aaagagagta gcttcaatga aaagatgttt ggatttggat aattctttc	5520
cctagcaaaa ttgcgttagct cccttaagag tcttaataaa gaggctacgt tggattaaa	5580
agaaaaaaaaa acagaaataa aatat	5605

<210> 4

<211> 1071

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)...(390)

<400> 4

atg aag ctg gca ttc ctc ttc ctt ggc ccc atg gcc ctc ctc ctt ctg	48
Met Lys Leu Ala Phe Leu Phe Leu Gly Pro Met Ala Leu Leu Leu	
1 5 10 15	

gct ggc tat ggc tgt gtc ctc ggt gcc tcc agt ggg aac ctg cgc acc	96
Ala Gly Tyr Gly Cys Val Leu Gly Ala Ser Ser Gly Asn Leu Arg Thr	
20 25 30	

ttt gtg ggc tgt gcc gtg agg gag ttt act ttc ctg gcc aag aag cca	144
---	-----

Phe Val Gly Cys Ala Val Arg Glu Phe Thr Phe Leu Ala Lys Lys Pro				
35	40	45		
ggc tgc agg ggc ctt cgg atc acc acg gat gcc tgc tgg ggt cgc tgt				192
Gly Cys Arg Gly Leu Arg Ile Thr Thr Asp Ala Cys Trp Gly Arg Cys				
50	55	60		
gag acc tgg gag aaa ccc att ctg gaa ccc ccc tat att gaa gcc cat				240
Glu Thr Trp Glu Lys Pro Ile Leu Glu Pro Pro Tyr Ile Glu Ala His				
65	70	75	80	
cat cga gtc tgt acc tac aac gag acc aaa cag gtg act gtc aag ctg				288
His Arg Val Cys Thr Tyr Asn Glu Thr Lys Gln Val Thr Val Lys Leu				
85	90	95		
ccc aac tgt gcc ccg gga gtc gac ccc ttc tac acc tat ccc gtg gcc				336
Pro Asn Cys Ala Pro Gly Val Asp Pro Phe Tyr Thr Tyr Pro Val Ala				
100	105	110		
atc cgc tgt gac tgc gga gcc tgc tcc act gcc acc acg gag tgt gag				384
Ile Arg Cys Asp Cys Gly Ala Cys Ser Thr Ala Thr Thr Glu Cys Glu				
115	120	125		
acc atc tgaggccgct agctgctctc tgcagaccca cctgtgtgag cagcacatgc				440
Thr Ile				
130				
agttatactt cctggatgca agactgttta atttcgacca cacccatgga ggaggttacc				500
tgtcgcccct taggtccagc tcaggcaaaa gccccaaatg cagcctactt atgctaaaag				560
ttcaaaaaca tattcgtgcc ttcaccaaaa taatttctcc agctcacata cctgcaaatt				620
aatttttctt tgccttgagt cttggaacat aatttgtgta tcacaatcct cccccaattt				680
ggacttataa tatgctaatg atttaaacac atgggatgta attaggatat ggggctggaa				740
agtctttaaa ttctcatggt ctattnaacc tctgatctcc aaccggattt atgattaaag				800
ggctagaaat gaacaaaacc catgtactag tcttccttac cccagaggaa ttccagctgc				860
aagcttcttt agggaaaatg ctcccctccc cttnaactg agcaattatc tacacaagaa				920
ataagactgc tcagatatac aaagagagta gcttcaatga aaagatgttt ggatttgat				980
aattctttc cctagcaaaa ttcgctagct cccttaagag tcttaataaa gaggctacgt				1040
tgggattaaaa agaaaaaaaaa acagaataa a				1071

<210> 5
 <211> 130
 <212> PRT
 <213> Homo sapiens

<400> 5
 Met Lys Leu Ala Phe Leu Phe Leu Gly Pro Met Ala Leu Leu Leu
 1 5 10 15
 Ala Gly Tyr Gly Cys Val Leu Gly Ala Ser Ser Gly Asn Leu Arg Thr
 20 25 30
 Phe Val Gly Cys Ala Val Arg Glu Phe Thr Phe Leu Ala Lys Lys Pro
 35 40 45
 Gly Cys Arg Gly Leu Arg Ile Thr Thr Asp Ala Cys Trp Gly Arg Cys
 50 55 60
 Glu Thr Trp Glu Lys Pro Ile Leu Glu Pro Pro Tyr Ile Glu Ala His
 65 70 75 80
 His Arg Val Cys Thr Tyr Asn Glu Thr Lys Gln Val Thr Val Lys Leu
 85 90 95
 Pro Asn Cys Ala Pro Gly Val Asp Pro Phe Tyr Thr Tyr Pro Val Ala
 100 105 110
 Ile Arg Cys Asp Cys Gly Ala Cys Ser Thr Ala Thr Thr Glu Cys Glu
 115 120 125
 Thr Ile
 130

<210> 6
 <211> 621
 <212> DNA
 <213> Homo sapiens

<220>
 <221> CDS
 <222> (51)...(398)

<400> 6
 cagtaaccgc cctgaacaca tcctgcaaaa agccccagaga aaggagcgcc atg gat 56
 Met Asp
 1

tac tac aga aaa tat gca gct atc ttt ctg gtc aca ttg tcg gtg ttt 104
 Tyr Tyr Arg Lys Tyr Ala Ala Ile Phe Leu Val Thr Leu Ser Val Phe
 5 10 15

ctg cat gtt ctc cat tcc gct cct gat gtg cag gat tgc cca gaa tgc 152
 Leu His Val Leu His Ser Ala Pro Asp Val Gln Asp Cys Pro Glu Cys
 20 25 30

acg cta cag gaa aac cca ttc ttc tcc cag ccg ggt gcc cca ata ctt	200
Thr Leu Gln Glu Asn Pro Phe Phe Ser Gln Pro Gly Ala Pro Ile Leu	
35 40 45 50	
cag tgc atg ggc tgc tgc ttc tct aga gca tat ccc act cca cta agg	248
Gln Cys Met Gly Cys Cys Phe Ser Arg Ala Tyr Pro Thr Pro Leu Arg	
55 60 65	
tcc aag aag acg atg ttg gtc caa aag aac gtc acc tca gag tcc act	296
Ser Lys Lys Thr Met Leu Val Gln Lys Asn Val Thr Ser Glu Ser Thr	
70 75 80	
tgc tgt gta gct aaa tca tat aac agg gtc aca gta atg ggg ggt ttc	344
Cys Cys Val Ala Lys Ser Tyr Asn Arg Val Thr Val Met Gly Gly Phe	
85 90 95	
aaa gtg gag aac cac acg gcg tgc cac tgc agt act tgt tat tat cac	392
Lys Val Glu Asn His Thr Ala Cys His Cys Ser Thr Cys Tyr Tyr His	
100 105 110	
aaa tct taaatgtttt accaagtgct gtcttgatga ctgctgattt tctggaatgg	448
Lys Ser	
115	
aaaattaagt tgtttagtgt ttatggcttt gtgagataaa actctccctt tccttaccat	508
accactttga cacgcttcaa ggatatactg cagcttact gccttcctcc ttatcctaca	568
gtacaatcag cagtctagtt ctttcattt ggaatgaata cagcattaag ctt	621
<210> 7	
<211> 116	
<212> PRT	
<213> Homo sapiens	
<400> 7	
Met Asp Tyr Tyr Arg Lys Tyr Ala Ala Ile Phe Leu Val Thr Leu Ser	
1 5 10 15	
Val Phe Leu His Val Leu His Ser Ala Pro Asp Val Gln Asp Cys Pro	
20 25 30	
Glu Cys Thr Leu Gln Glu Asn Pro Phe Phe Ser Gln Pro Gly Ala Pro	
35 40 45	
Ile Leu Gln Cys Met Gly Cys Cys Phe Ser Arg Ala Tyr Pro Thr Pro	
50 55 60	

Leu Arg Ser Lys Lys Thr Met Leu Val Gln Lys Asn Val Thr Ser Glu
 65 70 75 80
 Ser Thr Cys Cys Val Ala Lys Ser Tyr Asn Arg Val Thr Val Met Gly
 85 90 95
 Gly Phe Lys Val Glu Asn His Thr Ala Cys His Cys Ser Thr Cys Tyr
 100 105 110
 Tyr His Lys Ser
 115

<210> 8
 <211> 92
 <212> PRT
 <213> Homo sapiens

<400> 8
 Ala Pro Asp Val Gln Asp Cys Pro Glu Cys Thr Leu Gln Glu Asn Pro
 1 5 10 15
 Phe Phe Ser Gln Pro Gly Ala Pro Ile Leu Gln Cys Met Gly Cys Cys
 20 25 30
 Phe Ser Arg Ala Tyr Pro Thr Pro Leu Arg Ser Lys Lys Thr Met Leu
 35 40 45
 Val Gln Lys Asn Val Thr Ser Glu Ser Thr Cys Cys Val Ala Lys Ser
 50 55 60
 Tyr Asn Arg Val Thr Val Met Gly Gly Phe Lys Val Glu Asn His Thr
 65 70 75 80
 Ala Cys His Cys Ser Thr Cys Tyr Tyr His Lys Ser
 85 90

<210> 9
 <211> 106
 <212> PRT
 <213> Homo sapiens

<400> 9
 Ala Ser Ser Gly Asn Leu Arg Thr Phe Val Gly Cys Ala Val Arg Glu
 1 5 10 15
 Phe Thr Phe Leu Ala Lys Lys Pro Gly Cys Arg Gly Leu Arg Ile Thr
 20 25 30
 Thr Asp Ala Cys Trp Gly Arg Cys Glu Thr Trp Glu Lys Pro Ile Leu
 35 40 45
 Glu Pro Pro Tyr Ile Glu Ala His His Arg Val Cys Thr Tyr Asn Glu
 50 55 60

Thr Lys Gln Val Thr Val Lys Leu Pro Asn Cys Ala Pro Gly Val Asp
 65 70 75 80
 Pro Phe Tyr Thr Tyr Pro Val Ala Ile Arg Cys Asp Cys Gly Ala Cys
 85 90 95
 Ser Thr Ala Thr Thr Glu Cys Glu Thr Ile
 100 105

<210> 10
 <211> 35
 <212> PRT
 <213> Homo sapiens

<400> 10
 Asn Leu Arg Thr Phe Val Gly Cys Ala Val Arg Glu Phe Thr Phe Leu
 1 5 10 15
 Ala Lys Lys Pro Gly Cys Arg Gly Leu Arg Ile Thr Thr Asp Ala Cys
 20 25 30
 Trp Gly Arg
 35

<210> 11
 <211> 33
 <212> PRT
 <213> Homo sapiens

<400> 11
 Lys Lys Pro Gly Cys Arg Gly Leu Arg Ile Thr Thr Asp Ala Cys Trp
 1 5 10 15
 Gly Arg Cys Glu Thr Trp Glu Lys Pro Ile Leu Glu Pro Pro Tyr Ile
 20 25 30
 Glu

<210> 12
 <211> 52
 <212> PRT
 <213> Homo sapiens

<400> 12
 Glu Thr Trp Glu Lys Pro Ile Leu Glu Pro Pro Tyr Ile Glu Ala His
 1 5 10 15
 His Arg Val Cys Thr Tyr Asn Glu Thr Lys Gln Val Thr Val Lys Leu
 20 25 30

Pro Asn Cys Ala Pro Gly Val Asp Pro Phe Tyr Thr Tyr Pro Val Ala
 35 40 45

Ile Arg Cys Asp
 50

<210> 13
 <211> 30
 <212> PRT
 <213> Homo sapiens

<400> 13

Asn Glu Thr Lys Gln Val Thr Val Lys Leu Pro Asn Cys Ala Pro Gly
 1 5 10 15

Val Asp Pro Phe Tyr Thr Tyr Pro Val Ala Ile Arg Cys Asp
 20 25 30

<210> 14
 <211> 40
 <212> PRT
 <213> Homo sapiens

<400> 14

Arg Glu Phe Thr Phe Leu Ala Lys Lys Pro Gly Cys Arg Gly Leu Arg
 1 5 10 15

Ile Thr Thr Asp Ala Cys Trp Gly Arg Cys Glu Thr Trp Glu Lys Pro
 20 25 30

Ile Leu Glu Pro Pro Tyr Ile Glu
 35 40

<210> 15
 <211> 16
 <212> DNA
 <213> Homo sapiens

<400> 15

ggsgggsgggg sggggs 16

<210> 16
 <211> 25
 <212> DNA
 <213> Homo sapiens

<400> 16

atgaagctgg cattcctctt ccttg	25
<210> 17	
<211> 22	
<212> DNA	
<213> Homo sapiens	
<400> 17	
cttctggctg gctatggctg tg	22
<210> 18	
<211> 23	
<212> DNA	
<213> Homo sapiens	
<400> 18	
acagttgggc agcttgacag tac	23
<210> 19	
<211> 23	
<212> DNA	
<213> Homo sapiens	
<400> 19	
tgctgctcac acaggtgggt ctg	23
<210> 20	
<211> 20	
<212> DNA	
<213> Homo sapiens	
<400> 20	
gaagcccatc atcgagtctg	20
<210> 21	
<211> 21	
<212> DNA	
<213> Homo sapiens	
<400> 21	
cacactccgt ggtggcagtg g	21
<210> 22	

<211> 393
 <212> DNA
 <213> *Mus musculus*

<220>
 <221> CDS
 <222> (1)...(390)

<400> 22					
atg aag ttg gta tac ctt gtc ctt ggt gca gtg gcc ctc ctt ctc ctg					48
Met Lys Leu Val Tyr Leu Val Leu Gly Ala Val Ala Leu Leu Leu Leu					
1	5	10		15	
ggt ggc cct gac tct gtc ctc agc agc tcc agt ggg aac ctg cac act					96
Gly Gly Pro Asp Ser Val Leu Ser Ser Ser Gly Asn Leu His Thr					
20	25		30		
ttt gtg ggc tgt gct gtg agg gaa ttc act ttc atg gcc aag aag cca					144
Phe Val Gly Cys Ala Val Arg Glu Phe Thr Phe Met Ala Lys Pro					
35	40		45		
ggc tgc agg gga ctt cgg atc acc aca gat gcc tgc tgg ggc cgc tgc					192
Gly Cys Arg Gly Leu Arg Ile Thr Thr Asp Ala Cys Trp Gly Arg Cys					
50	55		60		
gag acc tgg gag aaa ccc atc ctg gag cct ccc tac att gaa gcc tat					240
Glu Thr Trp Glu Lys Pro Ile Leu Glu Pro Pro Tyr Ile Glu Ala Tyr					
65	70	75		80	
cat cga gtg tgt aca tac aat gag acc aga cag gtg aca gtg aag ctg					288
His Arg Val Cys Thr Tyr Asn Glu Thr Arg Gln Val Thr Val Lys Leu					
85	90		95		
cct aac tgt gcc cct gga gtc gat cct ttc tac acc tac cct atg gct					336
Pro Asn Cys Ala Pro Gly Val Asp Pro Phe Tyr Thr Tyr Pro Met Ala					
100	105		110		
gtc cga tgt gac tgt ggg gcg tgt tcc act gcc acc act gag tgt gag					384
Val Arg Cys Asp Cys Gly Ala Cys Ser Thr Ala Thr Thr Glu Cys Glu					
115	120		125		
acc atc tga					393

Thr Ile
130

<210> 23
<211> 130
<212> PRT
<213> Mus musculus

<400> 23

Met Lys Leu Val Tyr Leu Val Leu Gly Ala Val Ala Leu Leu Leu
1 5 10 15
Gly Gly Pro Asp Ser Val Leu Ser Ser Ser Gly Asn Leu His Thr
20 25 30
Phe Val Gly Cys Ala Val Arg Glu Phe Thr Phe Met Ala Lys Lys Pro
35 40 45
Gly Cys Arg Gly Leu Arg Ile Thr Thr Asp Ala Cys Trp Gly Arg Cys
50 55 60
Glu Thr Trp Glu Lys Pro Ile Leu Glu Pro Pro Tyr Ile Glu Ala Tyr
65 70 75 80
His Arg Val Cys Thr Tyr Asn Glu Thr Arg Gln Val Thr Val Lys Leu
85 90 95
Pro Asn Cys Ala Pro Gly Val Asp Pro Phe Tyr Thr Tyr Pro Met Ala
100 105 110
Val Arg Cys Asp Cys Gly Ala Cys Ser Thr Ala Thr Thr Glu Cys Glu
115 120 125

Thr Ile
130

<210> 24
<211> 32
<212> DNA
<213> Mus musculus

<400> 24

ggccggccac catgaagttg gtataccttg tc 32

<210> 25
<211> 24
<212> DNA
<213> Mus musculus

<400> 25

ctgcagcctg gcttcttggc catg 24

<210> 26		
<211> 82		
<212> DNA		
<213> <i>Mus musculus</i>		
<400> 26		
agtctgcagg ggacttcgga tcaccacaga tgcctgctgg ggccgctgcg agacctggga	60	
gaaacctccatc ctggagcctc cc	82	
<210> 27		
<211> 33		
<212> DNA		
<213> <i>Mus musculus</i>		
<400> 27		
gatggcgcgc ctcagatggt ctcacactca gtg	33	
<210> 28		
<211> 151		
<212> DNA		
<213> <i>Mus musculus</i>		
<400> 28		
atgaagttgg tatacattgt cttggtgca gtggccctcc ttctcctggg tggccctgac	60	
tctgtcctca gcagctccag tggAACCTG cacacttttg tggctgtgc tgtgaggaa	120	
ttcactttca tggccaagaa gccaggctgc a	151	
<210> 29		
<211> 247		
<212> DNA		
<213> <i>Mus musculus</i>		
<400> 29		
ctgcagggga cttcgatca ccacagatgc ctgctggggc cgctgcgaga cctggagaa	60	
acccatcctg gagcctccct acattgaagc ctatcatcga gtgtgtacat acaatgagac	120	
cagacaggtg acagtgaagc tgcctaactg tgccctggaa gtcgatcctt tctacaccta	180	
ccctatggct gtccgatgtg actgtggggc gtgttccact gccaccactg agtgtgagac	240	
catctga	247	
<210> 30		
<211> 32		
<212> DNA		

<213> Homo sapiens		
<400> 30		
cgtatcgccc ggccaccatg aagctggcat tc	32	
<210> 31		
<211> 32		
<212> DNA		
<213> Homo sapiens		
<400> 31		
cgtatcgcg cgccctcagat ggtctcacac tc	32	
<210> 32		
<211> 20		
<212> DNA		
<213> Homo sapiens		
<400> 32		
cagttggcca gcttgacagt	20	
<210> 33		
<211> 20		
<212> DNA		
<213> Homo sapiens		
<400> 33		
tgtgccgtga gggagttac	20	
<210> 34		
<211> 191		
<212> DNA		
<213> Homo sapiens		
<400> 34		
tgtgccgtga gggagttac tttcctggcc aagaagccag gctgcagggg ctttcggatc	60	
accacggatg cctgctgggg tcgctgtgag acctggaga aaccattct ggaacccccc	120	
tatattgaag cccatcatcg agtctgtacc tacaacgaga ccaaacaggt gactgtcaag	180	
ctgcccact g	191	
<210> 35		
<211> 21		
<212> DNA		

<213> Homo sapiens		
<400> 35		
caagactcaa ggcaaagaaa a	21	
<210> 36		
<211> 20		
<212> DNA		
<213> Homo sapiens		
<400> 36		
ttcctggatg caagactgtt	20	
<210> 37		
<211> 196		
<212> DNA		
<213> Homo sapiens		
<400> 37		
ttcctggatg caagactgtt taatttcgac cacacccatg gaggaggtt cctgtcgccc	60	
cttaggtcca gtcaggcaa aaggccaaa tgtagcctac ttatgctaaa agttcaaaac	120	
aatattcgtg cttcaccaa aataatttct ccagtcaca tacctgcaaa ttaattttc	180	
tttgccttga gtcttg	196	
<210> 38		
<211> 22		
<212> DNA		
<213> Homo sapiens		
<400> 38		
acctgtgttc aagattcaaa aa	22	
<210> 39		
<211> 19		
<212> DNA		
<213> Homo sapiens		
<400> 39		
tagggtaag ggcaaagag	19	
<210> 40		
<211> 221		
<212> DNA		

<213> Homo sapiens	
<400> 40	
acctgtgttc aagattcaaa aactggaagg agtccagcc ctgatggta cttgctatgg	60
aatttttta aataaggga gggttgttcc agtttgcac cttttaaga ttttgtgact	120
gtcacctgag aagagggag tttctgttc ttccctgcct ctgcctggcc cttctaaacc	180
aatcttcat cattttactt ccctcttgc ctttacccct a	221
<210> 41	
<211> 22	
<212> DNA	
<213> Homo sapiens	
<400> 41	
tttctggctg gctatggctg tg	22
<210> 42	
<211> 23	
<212> DNA	
<213> Homo sapiens	
<400> 42	
tgctgctcac acaggtgggt ctg	23
<210> 43	
<211> 32	
<212> DNA	
<213> Homo sapiens	
<400> 43	
cgtatcggcg cgcctcagat ggtctcacac tc	32
<210> 44	
<211> 32	
<212> DNA	
<213> Homo sapiens	
<400> 44	
cgtatcggcc ggccaccatg aagctggcat tc	32