Qiyang ChenAddress: 205 N Mathews Ave, Urbana, IL 61801
Phone: +412-709-8588 E-mail: qiyangc2@illinois.edu

EDUCATION

decision-making support

EDUCATION University of Illinois at Unbarra Champaign	Chamaian II
University of Illinois at Urbana-Champaign Doctor of Philosophy in Construction Management	Champaign, IL Aug. 2019-present
University of Illinois at Urbana-Champaign	Champaign, IL
Master of Science in Computer Science	Dec.2021-Dec.2022
Carnegie Mellon University	Pittsburgh, PA
Master of Science in Advanced Infrastructure System	Jan. 2018-May. 2019
ngji University Shang	
Bachelor of Engineering	Sep. 2013-Jun. 2013
RELEVANT COURSEWORK	. D . M
Machine Learning, Deep Learning, Natural Language Processing, Reinforcement Learning, Data Mana Information Retrieval, Text Information Systems, Numerical Method, Statistics and Probability LEADERSHIP	agement, Data Mining
Captain of the swimming team in Tongji University	Sep. 2013-Jun. 201
SKILLS	~ · · · · · · · · · · · · · · · · · · ·
Languages: Python, R, Matlab, SQL, JavaScript, C++, Java	
Libraries: PyTorch, TensorFlow, NLTK, OpenCV, PIL, OpenGL, CUDA, Scikit-Learn, NumPy, Pandas	
Tools: Ubuntu, Linux, AWS	
PROJECTS	
Natural language process (NLP)	
Enzyme assigning based on Graph Neural Network for MUTAG dataset	202
Developed graph embedding for further training	
 Developed a Graph Neural Network to assign each enzyme to one of the 6 top-level classification. 	asses with
Movie review sentiment analysis	202
Building word vocabulary and using Lasso regression to prune it to less than 1k words	
 Developed a logistic regression to predict sentiments and achieved 97.36% AUC score dataset 	on testing
Movies recommendation systems app	202
 Developed the user-based filter system to recommend movies based on user's ratings on movies. 	les
 Developed the UI pages for this app 	
Designed front-end website and implemented by using shinyapp	
Relational visual-text attention network for Memex question answering	201
 Led a team of four to propose a Visual Question Answering (VQA) model to answer textual 	questions
related on time-series images • Contributed to visual-text attention and relational network in the VQA model, which achi	aved 71%
accuracy in choosing from 20 choices and beat the state-of-the-art method with 11% accuracy	
Computer vision (CV)	
Pneumonia Disease Prediction based on CNN model	202
 Using data augmentation techniques to process the raw images 	
 Developed custom CNN based model to classify the Pneumonia disease with 85.98% accurac 	•
Image generation with generative adversarial networks (GANs)	201
• Implemented local binary features (LBF) algorithm for face alignment and used data aug	gmentation
techniques including shift, flip rotation and etc. on each image in created makeup dataset Generated high-resolution natural images by Wasserstein GAN	
Machine learning (ML)	
Prediction of the housing prices in Ames	202
Preprocessed raw data including simulating missing values, feature engineering and encoding simulating missing values.	
data	8
• Implemented prediction models XGBoost model to predict TB prices with 0.102 RMSE on	the testing
data	
Signal processing	
Forecasting temperature and humility based on sensor network	202
Using KNN and Linear interpolation methods to simulate missing data Proposed an anomalist LSTM models and best the baseline model SARIMAY 4.1 and	12.57 on
 Proposed an ensembled LSTM models and beat the baseline model SARIMAX 4.1 and temperature and humility respectively 	13.37 OII
Monitoring subterranean utility pole damage state using structural vibrations	201
• Set up the physical scaled utility pole model and collected raw data from vibrator sensors,	
frequency feature from fast Fourier transform and continuous wavelet transform in feature lev	
inequency reaction rate to the continuous wavelet transform and continuous wavelet transform in reaction to	
• Proposed a support machine learning algorithm (SVM) to classify the damage state with 92%	accuracy

Extract bridge-related information from bridge-related textual reports using natural processing techniques

including name entity recognition (NER) and relation extraction (RE), Published paper in I3CE conference and was chosen as top 10% papers