

การลดรูป Boolean expression หรือ Switching function ให้สั้นที่สุดนั้น เราสามารถทำได้โดยใช้ ทฤษฎีของ Boolean ดังได้กล่าวมาแล้วในบทที่ 3 แต่ดูเหมือนจะเป็นการ<u>ยาก</u>ในกรณีที่<mark>มีตัวแปรหลาย ๆ ตัว</mark> การใช้แผนผังคาร์โนห์ (Karnaugh Map) หรือบางที่เรียกว่า เค-แมป (K-Map) ช่วยในการแก้ปัญหาจะเป็นการง่ายกว่า และจะมีข้อผิดพลาดน้อยกว่า

4.1 แผนผังคาร์โนห์ ชนิด 2 ตัวแปร (2-Variable Karnaugh Map)

Karnaugh Map ชนิด 2 ตัวแปร ประกอบด้วยช่องซึ่งแทนด้วยค่าของตัวแปรนั้น ๆ จำนวน $\mathbf{2}^2 = \mathbf{4}$ ช่อง (ค่ายกกำลัง คือ จำนานของตัวแปร) แสดงได้ดังรูปที่ 4.1

A			A			
В	0	1	В	0	1	
0	0	2	A_0 D_0	00	10 🗲	A=1, B=0
1	1	3	A=0, B=11	01	11 🛨	A=1, B=1

(ก) Karnaugh Map ชนิด 2 ตัวแปร

(ข) แสดงค่าของตัวแปรในแต่ละช่อง

รูปที่ 4.1 Karnaugh map ชนิด 2 ตัวแปร

จากรูปที่ 4.1

ช่องที่ 0 A=0, B=0 แสดงค่าของ Minterm ได้เป็น \overline{AB} และ Maxterm คือ A+B ช่องที่ 1 A=0, B=1 แสดงค่าของ Minterm ได้เป็น \overline{AB} และ Maxterm คือ $A+\overline{B}$ ช่องที่ 2 A=1, B=0 แสดงค่าของ Minterm ได้เป็น $A\overline{B}$ และ Maxterm คือ $\overline{A}+B$ ช่องที่ 3 A=1, B=1 แสดงค่าของ Minterm ได้เป็น AB และ Maxterm คือ $\overline{A}+\overline{B}$

จึงใส่ค่าของตัวแปรในแต่ละช่องของ Karnaugh Map ดังรูปที่ 4.2

A		
B	0	1
0	A + B	$\overline{A} + B$
1	$A + \overline{B}$	$\overline{A} + \overline{B}$

- (ก) ค่าของตัวแปรในรูปของ Minterm
- (ข) ค่าของตัวแปรในรูปของ Maxterm

รูปที่ 4.2 แสดงค่าของตัวแปร 2 ตัว ใน Karnaugh Map

4.2 แผนผังคาร์โนห์ชนิด 3 ตัวแปร (3-Variable Karnaugh Map)

Karnaugh Map ชนิด 3 ตัวแปร ประกอบด้วยช่องซึ่งแทนด้วยค่าของตัวแปรนั้น ๆ จำนวน ${f 2}^3={f 8}$ ช่อง แสดงได้ดังรูปที่ 4.3

A=0, B=0, C=0								
AB	i N							
c	\ 00	01	10	11				
0	000	010	100	110				
1	001	011	101	111				
A=0, B=	=1, C=1							

(ก) Karnaugh Map ชนิด 3 ตัวแปร

(ข) แสดงค่าของตัวแปรในแต่ละช่อง

AB				
C	00	01	10	11
0	\overline{ABC}	$\overline{A}B\overline{C}$	$A\overline{B}\overline{C}$	$AB\overline{C}$
1	\overline{ABC}	_ ABC	$A\overline{B}C$	ABC

(ค) แสดงค่าของตัวแปรในรูปของ Minterm รูปที่ 4.3 Karnaugh Map ชนิด 3 ตัวแปร

4.3 แผนผังคาร์โนห์ชนิด 4 ตัวแปร (4-Variable Karnaugh Map)

Karnaugh map ชนิด 4 ตัวแปร ประกอบด้วยช่องซึ่งแทนด้วยค่าของตัวแปรนั้น ๆ จำนวน $\mathbf{2}^4 = \mathbf{16}$ แสดงได้ดังรูปที่ $\mathbf{4.4}$

AB			_	-,
CD	00	01	10	11
00	0	4	8	12
01	1	5	9	13
10	2	6	10	14
11	3	7	11	15

AB				
CD	00	01	10	11
00	0000	0100	1000	1100
01	0001	0101	1001	1101
10	0010	0110	1010	1110
11	0011	0111	1011	1111

(ก) Karnaugh Map ชนิด 4 ตัวแปร

(ข) แสดงค่าของตัวแปรในแต่ละช่อง

รูปที่ 4.4 Karnaugh Map ชนิด 4 ตัวแปร

4.4 การลดรูป Boolean expression หรือ Switching function โดยใช้ Karnargh map

การลดรูป Boolean expression หรือ Switching function โดยใช้ Karnargh map มีหลายวิธีดังนี้

- **4.4.1**ใส่ **Minterm** (Logical 1) หรือ **Maxterm** (Logical 0) ลงใน Kanaugh map ตามช่องของค่า ของมัน
- **4.4.2** <u>จับคู่ตัวที่อยู่ติดกัน</u> โดยมีเกณฑ์อยู่ว่า จับได้ครั้งละ **2**" ตัว คือ 1 ตัว หรือ 2 ตัว หรือ 4 ตัว หรือ 8 ตัว หรือ 16 ตัว...
- **4.4.3** การจับคู่จะต้องจับคู่ให้ได้มากที่สุด เช่น ถ้าจับคู่ได้ 8 ตัว ก็อย่าไปจับคู่แบบ 4 ตัว 2 ครั้ง เพราะจะทำให้ผลลัพธ์ที่ได้มีค่าไม่น้อยที่สุด
 - 4.4.4 ตัวที่ถูกจับคู่ไปแล้ว ก็สามารถนำมาจับคู่กับตัวอื่นอีกก็ได้ถ้าจำเป็น
- 4.4.5 เมื่อจับคู่ได้แล้วก็ดำเนินการหาผลลัพธ์ วิธีการหาผลลัพธ์หาได้โดย นำตัวที่ถูกจับคู่นั้น มองดูค่าของด้านบนและด้านข้าง ค่าที่ซ้ำกันคือผลลัพธ์ที่ต้องการ

เพื่อความเข้าใจยิ่งขึ้นลองศึกษาจากตัวอย่างต่อไปนี้

ตัวอย่างที่ 4.1 จงลดรูป Switching function ต่อไปนี้ โดยใช้ Kanaugh map

(f)
$$f(A,B) = \overline{AB} + \overline{AB}$$

(v)
$$f(A,B) = A\overline{B} + AB$$

(A)
$$f(A,B) = \overline{AB} + A\overline{B}$$

(4)
$$f(A,B) = \overline{AB} + AB$$

(a)
$$f(A,B) = \overline{AB} + A\overline{B} + AB$$

(a)
$$f(A,B) = A\overline{B} + AB + \overline{AB}$$

(v)
$$f(A,B) = \overline{AB} + \overline{AB} + AB$$

(v)
$$f(A,B) = \overline{AB} + A\overline{B} + \overline{AB} + AB$$

<u>วิธีทำ</u>

(ก)

A	В	\overline{A}	\overline{B}	$\overline{A}\overline{B}$	$\overline{A}B$	$\overline{AB} + \overline{AB}$
0	0	1	1	1	0	1
0	1	1	0	0	1	1
1	0	0	1	0	0	0
1	1	0	0	0	0	0

Minterm ที่ช่อง 0 และ 1 เมื่อมองทางด้านบน เห็น $m{0}$ ทั้งคู่ ซึ่ง 0 คือค่าของ \overline{A} และเมื่อมองทาง ด้านข้างจะเห็น $m{0}$ และ $m{1}$ ซึ่งไม่ซ้ำกันจึงตัดทิ้งไป

ดังนั้น
$$f(A,B) = \overline{AB} + \overline{AB}$$

= \overline{A}

(ប)

ดังนั้น
$$f(A,B) = A\overline{B} + AB$$

= A

ดังนั้น
$$f(A,B) = \overline{A}\overline{B} + A\overline{B}$$

= \overline{B}

(1)

ดังนั้น
$$f(A,B) = \overline{A}B + AB$$

$$= B$$

(จ)

A	В	\overline{A}	\overline{B}	\overline{AB}	$A\overline{B}$	AB	$\overline{AB} + A\overline{B} + AB$
0	0	1	1	1	0	0	1
0	1	1	0	0	0	0	0
1	0	0	1	0	1	0	1
1	1	0	0	0	0	1	1

$A + \overline{B}$
1
0
1
1

A	0	.1	
B 0	1	1	← <i>B</i>
1		1	A

ดังนั้น
$$f(A,B) = \overline{AB} + A\overline{B} + AB$$

= $A + \overline{B}$

(ນ)

ดังนั้น
$$f(A,B) = A\overline{B} + AB + \overline{AB}$$

= $A + B$

(ช)

ดังนั้น
$$f(A,B) = \overline{AB} + \overline{AB} + AB$$

= $\overline{A} + B$

(മ)

A	В	\overline{A}	\overline{B}	$\overline{A}\overline{B}$	$A\overline{B}$	$\overline{A}B$	AB	$\overline{AB} + A\overline{B} + \overline{AB} + AB$
0	0	1	1	1.	0	0	0	1
0	1	1	0	0	0	1	0	1
1	0	0	1	0	1	0	0	1
1	1_	0	0	0	0	0	1	1

ดังนั้น
$$f(A,B) = \overline{AB} + A\overline{B} + \overline{AB} + AB$$

= 1

ตัวอย่างที่ 4.2 จงลดรูป Switching Function ต่อไปนี้ โดยใช้ Kanaugh map

(n)
$$f(A,B) = (A+B)(\overline{A}+B)$$

(2)
$$f(A,B) = (A + \overline{B})(\overline{A} + \overline{B})$$

(A)
$$f(A,B) = (A+B)(A+\overline{B})$$

(4)
$$f(A,B) = (\overline{A} + B)(\overline{A} + \overline{B})$$

(a)
$$f(A,B) = (A+B)(\overline{A}+B)(\overline{A}+\overline{B})$$

(a)
$$f(A,B) = (\overline{A} + B)(\overline{A} + \overline{B})(A + \overline{B})$$

(v)
$$f(A,B) = (\overline{A} + \overline{B})(A + \overline{B})(A + B)$$

(a)
$$f(A,B) = (A+B)(A+\overline{B})(\overline{A}+B)(\overline{A}+\overline{B})$$

<u>วิธีทำ</u>

(n)

A	В	\overline{A}	(A+B)	$(\overline{A} + B)$	$(A+B)(\overline{A}+B)$
0	0	1	0	1	0
0	1	1	1	1	1
1	0	0	1	0	0
1	1	0	1	1/	1

Maxterm ที่ช่อง 0 และ 2 เมื่อมองจากด้านบนลงมาเห็น 0 และ 1 ซึ่งไม่ซ้ำกัน ก็ตัดทิ้งไป และเมื่อ มองด้านข้างเห็น 0 ทั้งคู่ ซึ่ง 0 คือค่าของ B

ดังนั้น
$$f(A,B) = (A+B)(\overline{A}+B)$$

(1)

ดังนั้น
$$f(A,B) = (A + \overline{B})(\overline{A} + \overline{B})$$

= \overline{B}

(ค)

ดังนั้น
$$f(A,B) = (A+B)(A+\overline{B})$$

= A

(1)

ดังนั้น
$$f(A,B) = (\overline{A} + B)(\overline{A} + \overline{B})$$

= \overline{A}

(จ)

A	В	\overline{A}	\overline{B}	(A+B)	$(\overline{A} + B)$	$(\overline{A} + \overline{B})$	$(A+B)(\overline{A}+B)(\overline{A}+\overline{B})$
0	0	1	1	0	1	1	0
0	1	1	0	1	1	1	1
1	0	0	1	1	0	1	0
1	1	0	0	1	1	0	0

$\overline{A}B$
0
1
0
0

ดังนั้น
$$f(A,B) = (A+B)(\overline{A}+B)(\overline{A}+\overline{B})$$

= $\overline{A}B$

(ນ)

ดังนั้น
$$f(A,B) = (\overline{A} + B)(\overline{A} + \overline{B})(A + \overline{B})$$

= \overline{AB}

(ช)

ดังนั้น
$$f(A,B) = (\overline{A} + \overline{B})(A + \overline{B})(A + B)$$

= $A\overline{B}$

(മ)

A	В	\overline{A}	\overline{B}	(A+B)	$(A + \overline{B})$	$(\overline{A}+B)$	$(\overline{A} + \overline{B})$	$(A+B)(A+\overline{B})(\overline{A}+B)(\overline{A}+\overline{B})$
0	0	1	1	0	1	1	1	0
0	1	1	0	1	0	1	1	0
1	0	0	1	1	1	0	1	0
1	1	0	0	1	1	1	0	0

ดังนั้น
$$f(A,B) = (A+B)(A+\overline{B})(\overline{A}+B)(\overline{A}+\overline{B})$$

= 0

ตัวอย่างที่ 4.3 จงลดรูป Switching Function ต่อไปนี้

(f)
$$f(A,B,C) = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + AB\overline{C} + AB\overline{C}$$

(1)
$$f(A,B,C) = \overline{ABC} + \overline{ABC} + A\overline{BC} + A\overline{BC} + AB\overline{C} + AB\overline{C} + AB\overline{C}$$

(A)
$$f(A,B,C) = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

(4)
$$f(A,B,C) = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

(9)
$$f(A,B,C) = \overline{ABC} + \overline{ABC} + A\overline{BC} + AB\overline{C} + AB\overline{C} + ABC$$

(a)
$$f(A,B,C) = \overline{ABC} + \overline{ABC} + AB\overline{C} + ABC$$

(a)
$$f(A,B,C) = \overline{ABC} + \overline{ABC} + AB\overline{C} + AB\overline{C} + ABC$$

(v)
$$f(A,B,C) = \overline{ABC} + \overline{ABC} + A\overline{BC} + A\overline{BC} + A\overline{BC} + ABC$$

<u>วิธีทำ</u>

(ก)

A	В	C	\overline{A}	\overline{B}	\overline{C}	\overline{ABC}	\overline{ABC}	$\overline{A}B\overline{C}$	_ ABC	$AB\overline{C}$	ABC
0	0	0	1	1	1	1	0	0	0	0	0
0	0	1	1	1	0	0	1	0	0	0	0
0	1	0	1	0	1	0	0	1	0	0	0
0	1	1	1	0	0	0	0	0	1	0	0
1	0	0	0	1	1	0	0	0	0	0	0
1	0	1	0	1	0	0	0	0	0	0	0
1	1	0	0	0	1	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	0	1

$\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + ABC + ABC$
1
1
1
1
0
0
1
1

$\overline{A} + B$
1
1
1
1
0
0
1
1

ดังนั้น
$$f(A,B,C) = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}B\overline{C} + \overline{A}BC + AB\overline{C} + AB\overline{C} + ABC$$

= $\overline{A} + AB$
= $\overline{A} + B$

(ប)

ดังนั้น
$$f(A,B,C) = \overline{ABC} + \overline{ABC} + A\overline{BC} + A\overline{BC} + A\overline{BC} + AB\overline{C} + AB\overline{C}$$

= $A + C$

(ค)

ดังนั้น
$$f(A,B,C) = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + A\overline{B}\overline{C} + A\overline{B}C + AB\overline{C}$$

 $= A\overline{C} + A\overline{B} + \overline{A}\overline{B}$
 $= A\overline{C} + \overline{B}(A + \overline{A})$
 $= A\overline{C} + \overline{B}$

(1)

ดังนั้น
$$f(A,B,C) = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + A\overline{BC} + A\overline{BC}$$

 $= \overline{A} + A\overline{B}$
 $= \overline{A} + \overline{B}$

(จ)

ดังนั้น
$$f(A,B,C) = \overline{ABC} + \overline{ABC} + A\overline{BC} + AB\overline{C} + AB\overline{C} + ABC$$

 $= AB + \overline{AB} + A\overline{C}$
 $= (A + \overline{A})(B + \overline{B}) + A\overline{C}$
 $= A\overline{C}$

(ລ)

ดังนั้น
$$f(A,B,C) = \overline{ABC} + \overline{ABC} + AB\overline{C} + ABC$$

 $= AB + \overline{ABC} + \overline{C}$
 $= AB + \overline{AB} + \overline{C}$
 $= B(A + \overline{A}) + \overline{C}$
 $= B + \overline{C}$

(13)

ดังนั้น
$$f(A,B,C) = \overline{ABC} + \overline{ABC} + AB\overline{C} + AB\overline{C} + ABC$$

= $AB + \overline{AC}$

(ช)

ดังนั้น
$$f(A,B,C) = \overline{ABC} + \overline{ABC} + A\overline{BC} + A\overline{BC} + A\overline{BC} + ABC$$

 $= A\overline{B} + AC + \overline{AC}$
 $= A\overline{B} + (AC + \overline{AC})$
 $= A\overline{B}$

ตัวอย่างที่ 4.4 จงลดรูป Switching Function ต่อไปนี้

(n)
$$f(A,B,C) = \sum m(1,3,4,5)$$

(v)
$$f(A,B,C) = \sum m(0,2,3,4,6,7)$$

(A)
$$f(A,B,C) = \sum m(0,3,5,6,7)$$

(4)
$$f(A,B,C) = \sum m(0,4,6,7)$$

(a)
$$f(A, B, C) = \pi M(0, 2, 3, 4, 6)$$

(a)
$$f(A,B,C) = \pi M(0,1,2,3,6)$$

(v)
$$f(A, B, C) = \pi M(0, 2, 5, 6, 7)$$

(v)
$$f(A,B,C) = \pi M(1,2,5,6)$$

<u>วิธีทำ</u>

(ก)

ดังนั้น
$$f(A,B,C) = \sum_{A} m(1,3,4,5)$$

= $AB + \overline{A}C$

(ប)

ดังนั้น
$$f(A,B,C) = \sum m(0,2,3,4,6,7)$$

= $\overline{A}B + AB + \overline{C}$
= $B(\overline{A} + A) + \overline{C}$
= $B + \overline{C}$

- (ค) ให้นักศึกษาลองฝึกทำด้วยตนเอง
- (ง) ให้นักศึกษาลองฝึกทำด้วยตนเอง

(১)

ดังนั้น
$$f(A,B,C) = \pi M(0,2,3,4,6)$$

= $C(A+\overline{B})$

(ລ)

ดังนั้น
$$f(A,B,C) = \pi M(0,1,2,3,6)$$

$$= AC$$

- (ช) ให้นักศึกษาลองฝึกทำด้วยตนเอง
- (ซ) ให้นักศึกษาลองฝึกทำด้วยตนเอง

ตัวอย่างที่ 4.5 จงลดรูป Switching Function ต่อไปนี้

$$(\widehat{\mathbf{n}}) \quad f(A,B,C,D) = \overline{ABCD} + \overline{ABCD} +$$

$$\overline{ABCD} + A\overline{BCD} + AB\overline{CD}$$

(1)
$$f(A,B,C,D) = \overline{ABCD} + \overline{ABCD}$$

$$\overrightarrow{ABCD} + \overrightarrow{ABCD} + \overrightarrow{ABCD}$$

(A)
$$f(A,B,C,D) = \overline{ABCD} + \overline{ABCD}$$

$$A\overline{BCD} + A\overline{BCD} + A\overline{BCD}$$

(4)
$$f(A,B,C,D) = \overline{ABCD} + \overline{ABCD}$$

$$AB\overline{C}\overline{D} + ABCD$$

<u>วิธีทำ</u>

(ก)

ดังนั้น
$$f(A,B,C,D) = \overline{ABCD} + \overline{$$

(ប)

ดังนั้น $f(A,B,C,D) = \overline{AB}C\overline{D} + \overline{AB}C\overline{D} + A\overline{B}\overline{C}D + A\overline{B}\overline{C}D + A\overline{B}C\overline{D} + A\overline{B}C\overline$

(ค)

ดังนั้น $f(A,B,C,D) = \overline{ABCD} + \overline{$

(1)

ดังนั้น
$$f(A,B,C,D) = \overline{ABCD} + \overline{$$

ตัวอย่างที่ 4.6 จงลดรูป Switching Function ต่อไปนี้

(n)
$$f(A,B,C,D) = \sum m(0,1,2,3,4,6,8,10,12,14)$$

(1)
$$f(A,B,C,D) = \sum m(2,3,4,8,14,15)$$

(a)
$$f(A,B,C,D) = \sum m(0,3,4,5,6,7,13,14)$$

(a)
$$f(A,B,C,D) = \sum m(1,2,6,7,8,9,12,13)$$

(a)
$$f(A,B,C,D) = \sum m(1,8,10,12,13,14,15)$$

(a)
$$f(A,B,C,D) = \sum m(0,2,4,6,8,10)$$

<u>วิธีทำ</u>

(ก)

$$f(A,B,C,D) = \sum m(0,1,2,3,4,6,8,10,12,14)$$
$$= \overline{AB} + \overline{CD} + C\overline{D}$$
$$= \overline{AB} + \overline{D}(\overline{C} + C)$$
$$= \overline{AB} + \overline{D}$$

(ប)

$$f(A,B,C,D) = \sum m(2,3,4,8,14,15)$$

= $C + \overline{CD}$

(ค)

$$f(A,B,C,D) = \sum_{n=0}^{\infty} m(0,3,4,5,6,7,13,14)$$
$$= \overline{A} + B$$

(1)

$$f(A,B,C,D) = \sum_{m} m(1,2,6,7,8,9,12,13)$$

= $\overline{AB} + \overline{ABC} + A\overline{C}$

- (จ) ให้นักศึกษาลองฝึกทำด้วยตนเอง
- (ฉ) ให้นักศึกษาลองฝึกทำด้วยตนเอง

ตัวอย่างที่ 4.7 จงลดรูป Switching Function ต่อไปนี้

(n)
$$f(A,B,C,D) = \pi M(3,7,8,9,10,11,12,13,14,15)$$

(1)
$$f(A,B,C,D) = \pi M(0,1,2,3,4,7)$$

(n)
$$f(A,B,C,D) = \pi M(2,3,9,10,13,14,15)$$

(a)
$$f(A,B,C,D) = \pi M(1,3,5,7,9,10,11,13,14,15)$$

(
$$\mathfrak{d}$$
) $f(A,B,C,D) = \pi M(0,1,2,5,7,8,10)$

(a)
$$f(A,B,C,D) = \pi M(0,1,2,4,6,8,9)$$

<u>วิธีทำ</u>

(ก)

AB			•	1	
CD	00	01	10	11	
00			0	0	\overline{A}
01			0	0	
10			0	0	4
11	0	0	0	0	$\overline{C} + \overline{D}$

$$f(A,B,C,D) = \pi M(3,7,8,9,10,11,12,13,14,15)$$
$$= \overline{A}(\overline{C} + \overline{D})$$

(11)

$$f(A,B,C,D) = \pi M(0,1,2,3,4,7)$$

= $A(A+B)$

(ค)

$$f(A,B,C,D) = \pi M(2,3,9,10,13,14,15)$$
$$= \overline{AC}$$

- (ง) ให้นักศึกษาลองฝึกทำด้วยตนเอง
- (จ) ให้นักศึกษาลองฝึกทำด้วยตนเอง
- (ฉ) ให้นักศึกษาลองฝึกทำด้วยตนเอง

ตัวอย่างที่ 4.8 จงออกแบบวงจร Logic จาก Truth table ต่อไปนี้โดย

- (ก)ใช้ NAND gate อย่างเดียว
- (ข)ใช้ NOR gate อย่างเดียว

		Inj	Output		
	A	В	C	D	Y
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	1

วิธีทำ

(ก) วงจร Logic ที่ใช้ NAND gate เพียงอย่างเดียว เราต้องหา Function ของ Output จาก Minterm

$$f(A,B,C,D) = \sum m(5,7,8,10,12,13,14,15)$$

$$= AB + \overline{CD} + \overline{ABCD} + \overline{ABCD} + AC\overline{D}$$

$$= AB + \overline{CD} + \overline{ABD}(\overline{C} + C) + AC\overline{D}$$

$$= AB + \overline{CD} + \overline{ABD} + AC\overline{D}$$

$$= AB + \overline{CD} + \overline{ABD} + AC\overline{D}$$

$$= B(A + \overline{AD}) + \overline{D}(\overline{C} + AC)$$

$$= B(A + D) + \overline{D}(\overline{C} + A)$$

$$= BA + BD + \overline{DC} + \overline{DA}$$

$$= \overline{BA} + \overline{BD} + \overline{DC} + \overline{DA}$$

$$= \overline{BA} + \overline{BD} + \overline{DC} + \overline{DA}$$

$$= \overline{BA} + \overline{BD} + \overline{DC} + \overline{DA}$$

ให้นักศึกษาลองวาครูปวงจรจากผลลัพธ์ที่ได้

(ข) วงจร Logic ที่ใช้ NOR gate เพียงอย่างเดียว เราต้องหา Function ของ Output จาก Maxterm

ให้นักศึกษาลองฝึกทำด้วยตนเอง