

GEANT4/NPTOOL 시뮬레이션 – 2/2

이정우

에제 (Ionization chamber)

lilak update

목표

- 1. Ionization chamber 에서 입자가 잃어버리는 에너지를 재어보자.
- 2. 두가지 입자가 섞였을 때 두 입자를 구분해 보자.

시뮬레이션에서 고려해야 할것

- 1. 원하는 반응에서 나오는 입자들
- 2. 원하는 반응이 아닌 반응에서 나오는 입자들
- 3. 입자의 방향 및 에너지 정확도
- 4. 검출기
- 5. 검출기 위치 및 크기 정확도
- 6. 검출기 프레임 및 환경
- 7. 검출기 입자 검출 과정
- 8. 데이터 전송 과정
- 9. 검출기 분해능

시뮬레이션에서 고려해야 할것

- 1. 원하는 반응에서 나오는 입자들
- 2. 원하는 반응이 아닌 반응에서 나오는 입자들
- 3. 입자의 방향 및 에너지 정확도
- 4. 검출기
- 5. 검출기 위치 및 크기 정확도
- 6. 검출기 프레임 및 환경
- 7. 검출기 입자 검출 과정
- 8. 데이터 전송 과정
- 9. 검출기 분해능

11

13

1

시뮬레이션 설정

- 1. configure_alpha_source.mac : 5.5 MeV ⁴He source (5 deg)
- 2. configure_ranged_e_alpha.mac : 2 8 MeV ⁴He beam (20 deg)
- 3. configure_ranged_e_3He.mac : 2 8 MeV ³He beam (20 deg)

lilak nptool configure_alpha_source.mac

CONFIGURE_ALPHA_SOURCE.MAC

```
#nbeams 10000
#verbose 0
#use_vis false
#dLoss 10
nbeams 1
verbose 1
use_vis true
dLoss 10
CSSUDetectorConstruction/
   GasMaterial
                       CF4 # gas material name.
   GasFraction
   GasPressure
                       30 torr # bar or torr
   GasTemperature
                       295 # kelvin
   WorldSize
                       200., 200., 500. # mm
   GasVolumeSize
                       200., 200., 400. # mm
                       50+{dLoss}, 150-{dLoss}, 150+{dLoss}, 250-{dLoss}, 250+{dLoss}, 350-{dLoss} # mm
   SensitiveRanges
```

CONFIGURE_ALPHA_SOURCE.MAC

```
#nbeams 10000
#verbose 0
#use_vis false
#dLoss 10

nbeams 1
verbose 1
verbose 1
use_vis true
dLoss 10

#USE_vis true
dLoss 10
```

CSSUDetectorConstruction/

SensitiveRanges

GasMaterial CF4 # gas material name.

GasFraction 1

GasPressure 30 torr # bar or torr

GasTemperature 295 # kelvin

WorldSize 200., 200., 500. # mm

GasVolumeSize 200., 200., 400. # mm

#를줄 앞에 붙이면 명령어가 적용이 안됨 (comment out)

50+{dLoss}, 150-{dLoss}, 150+{dLoss}, 250-{dLoss}, 250+{dLoss}, 350-{dLoss} # mm

데이터생성

데이터 생성

- configuration_alpha_source.mac 파일을 열어서
- 그림 + 확인용 명령줄을 comment out 하고 (#을 추가) 데이터 생성용 명령줄을 다시 적용 (# 을 제거) 해보자.
- 시뮬레이션 실행
- lilak nptool configuration_alpha_source.mac
- Is data/cssu_4He_5.5_5.5_5deg_CF4_30torr_d10_10000.info
- Is data/cssu_4He_5.5_5.5_5deg_CF4_30torr_d10_10000.dat

cat data/cssu_4He_5.5_5.5_5deg_CF4_30torr_d10_10000.info

```
n_events
          10000
n_branches 4
branch 0 MCStepSensitiveBlock_60_140
branch 1 MCStepSensitiveBlock_160_240
branch 2 MCStepSensitiveBlock_260_340
branch 3 MCStepSi
event branch_id step_id track_id x y z t e
```

분석 매크로

- 1. analysis_header.h : 기본 설정들
- 2. analysis_1_read_data.C: 각 검출 영역에 대한 에너지 분포
- 3. analysis_2_fit_data.C : 에너지 분포 피팅
- 4. analysis_3_ee.C: 에너지1 vs 에너지2 분포
- 5. analysis_4_pid.C: 에너지1 vs 에너지2 분포 → PID

cat analysis_header.h

```
#ifndef analysis header h
#define analysis_header_h
TString default_file_name1 = "data/cssu_4He_5.5_5.5_5deg_CF4_30torr_d10_10000.dat";
//TString default_file_name1 = "data/cssu_3He_8_3_20deg_CF4_30torr_d10_10000.dat";
//TString default file name1 = "data/cssu 4He 8 3 20deg CF4 30torr d10 10000.dat";
TString default file name2 = "";
//TString default_file_name2 = "data/cssu_3He_8_3_20deg_CF4_30torr_d10_10000.dat";
double energy_resolution = 0.01; // =sigma/mean
#endif
                                // 를 줄 앞에 붙여서 comment out
```

root analysis_1_fit_data.C

root analysis_2_.C

PID (particle Identification)

여러 입자를 섞어보자!

- 1. analysis_header.h : 기본 설정들
- 2. analysis_1_read_data.C: 각 검출 영역에 대한 에너지 분포
- 3. analysis_2_fit_data.C : 에너지 분포 피팅
- 4. analysis_3_ee.C: 에너지1 vs 에너지2 분포
- 5. analysis_4_pid.C: 에너지1 vs 에너지2 분포 → PID

실험을 하는데 두가지의 다른 입자가 나왔다! (4He, 3He)

cat analysis_header.h

```
#ifndef analysis_header_h
#define analysis header h
//TString default_file_name1 = "data/cssu_4He_5.5_5.5_5deg_CF4_30torr_d10_10000.dat";
//TString default_file_name1 = "data/cssu_3He_8_3_20deg_CF4_30torr_d10_10000.dat";
TString default file name1 = "data/cssu 4He 8 3 20deg CF4 30torr d10 10000.dat";
//TString default file name2 = "";
TString default_file_name2 = "data/cssu_3He_8_3_20deg_CF4_30torr_d10_10000.dat";
double energy_resolution = 0.01; // =sigma/mean
#endif
                                // 를 줄 앞에 붙여서 comment out
```

데이터 생성

- lilak nptool configuration_ranged_e_alpha.mac
- lilak nptool configuration_ranged_e_3He.mac

root

```
#ifndef analysis_header_h
#define analysis_header_h
//TString default_file_name1 = "data/cssu_4He_5.5_5.5_5deg_CF4_30torr_d10_10000.dat";
//TString default_file_name1 = "data/cssu_3He_8_3_20deg_CF4_30torr_d10_10000.dat";
TString default file name1 = "data/cssu 4He 8 3 20deg CF4 30torr d10 10000.dat";
//TString default_file_name2 = "";
TString default_file_name2 = "data/cssu_3He_8_3_20deg_CF4_30torr_d10_10000.dat";
double energy_resolution = 0.01; // =sigma/mean
#endif
                                // 를 줄 앞에 붙여서 comment out
```

root analysis_3_ee.C

• ⁴He 와 ³He 가 구분이 되는가?

root analysis_4_fit.C

root analysis_3_ee.C

지금까지 배운 실험의 설계에서 무엇을 개선한다면 다음과 같은 그림을 얻을 수 있을 지생각해보자.

root analysis_4_fit.C

토론

토론

- 1. 시뮬레이션을 수월하게 수행하기 위해서 무엇을 최소화 하였는가?
- 2. 어떻게 시뮬레이션을 개선할 수 있는가?

끝!

