INFO-F-203 - Rapport

Projet 1

Yahya Bakkali

Matricule: 445166

Maxime Hauwaert

Matricule: 461714

Date: Novembre 2018

Table des matières

1	Introduction générale	2
2		2 2 2 2 3
3	Les hypergraphes et hypertrees 3.1 Introduction	
4	Librairies utilisées 4.1 Numpy	6 6 6
5	Conclusion	6

1 Introduction générale

Ce projet a pour but de mettre en pratique des concepts sur les graphes vus au cours d'algorithmique 2 pour une meilleure compréhension et maîtrise de ceux-ci.

2 Sous-arbre de poids maximum

2.1 Introduction

Dans ce problème nous manipulons des arbres constitués de nœuds ayant un poids. Le problème consiste à transformer un arbre T = (V, E) en arbre T' = (V', E') de façon à maximiser la fonction

$$w(V') = \sum_{v \in V'} w(v)$$

2.2 Choix d'implémentation

Nous avons décidé de ne pas modifier l'arbre de départ mais de créer une liste qui contiendra le nom de tous les nœuds à désactiver, pour qu'à l'affichage on puisse voir l'arbre de départ avec les nœuds activés (en rouge) ainsi que ceux désactivés (en gris).

2.3 Algorithme

```
Algorithme 1 maxContribution

Require: liste nœuds_à_désactiver

1: poids_total = nœud.poids
2: for chaque enfant du nœud do
3: if enfant.maxContribution()<= 0 then
4: Ajouter enfant à nœuds_à_désactiver
5: else
6: Ajouter enfant.maxContribution() à poids_total
7: end if
8: end for
9: return poids_total
```

La complexité de cet algorithme est de O(n) car il parcourt chaque nœud de l'arbre, O(n) et à chaque nœud on additionne deux valeurs en O(1), on compare deux valeurs en O(1) et on ajoute à chaque fois¹ le nom du noeud dans une liste donc O(1). Donc la complexité finale est de O(n).

2.4 Arbres aléatoires

Cette génération aléatoire d'arbres a une très bonne distribution. Tous les arbres sont possibles. Il y a de 1 à n nœuds qui composeront l'arbre, 'n' étant 15 dans ce projet. Chaque nœud choisira tout simplement de qui il veut être l'enfant parmi les nœuds déja placés.

3 Les hypergraphes et hypertrees

- 3.1 Introduction
- 3.2 Choix d'implémentation
- 3.3 Algorithmes

```
Algorithme 2 find_cliques
```

```
Require: R: {nœuds d'une clique maximale}, P: {nœuds possibles dans une
    clique maximale, X: {nœuds exclus}
 1: if P et X sont vides then
      if la clique R est de taille \geq 2 then
         Ajouter R a la liste des cliques
 3:
      end if
 4:
 5: else
      pivot = élement aléatoire de l'ensemble P \cup X
 6:
      for chaque sommet S dans l'ensemble P \ {sommets liés au pivot} do
 7:
 8:
        newP = P \cap \{sommets \ liés \ à \ S\}
        newR = R \cup \{S\}
 9:
        newX = X \cap \{sommets \ liés \ à S\}
10:
        find_cliques(newP,newR,newX)
11:
12:
        P = P \setminus \{S\}
        X = X \cup \{S\}
13:
14:
      end for
15: end if
```

[1] Tout graphe à n sommets a au maximum $3^{n/3}$ cliques maximales, et le temps d'exécution le plus défavorable de l'algorithme de Bron-Kerbosch (avec une stratégie pivot qui minimise le nombre

¹Au pire des cas

d'appels récursifs effectués à chaque étape) est $O(3^{n/3})$, correspondant à cette limite.

```
Algorithme 3 is_chordal
```

```
1: unnumbered = ensemble des sommets du graphe
2: s = sommet choisi aléatoirement dans unnumbered
3: unnumbered = unnumbered \setminus \{s\}
4: numbered = \{s\}
5: while unnumbered ! = \{\emptyset\} do
     Vertex = le sommet de unumbered qui a le plus de connections aux som-
     mets de numbered
     unnumbered = unnumbered - Vertex
7:
     numbered = numbered + Vertex
8:
     clique\_wanna\_be = {sommets liés à Vertex} \cap numbered
9:
     subGraph = Un sous-graphe induit des sommets appartenant à
10:
     clique_wanna_be
     if le subGraph n'est pas complet then
11:
       return False
12:
     end if
13:
14: end while
15: return True
```

[2] Au debut, nous créons I O(N), choisissons un sommet arbitraire I O(N), enlevons ce sommet du I O(1), créons II contenant ce sommet O(1). Ensuite, tant que I n'est pas vide O(N) nous chercherons un sommet "Vertex" dans I qui a plus de connexions aux sommets dans II $O(S*N*W) = O(N^2)$ parce qu'on toujours la cardinalite de l'ensemble S+W egale a N, après nous supprimons ce sommet du I en l'ajoutant au II O(1) puis créons un ensemble contiendra l'intersection entre II et III $O(\min(W, len(III)))$ et le sousgraphe induit a partir de cet ensemble $O(N*\min(W, len(III)))*\min(V, len(III))$. Ce qui fait en final une complexite de $O(N*\max(N^2, \min(W, len(III))), N*\min(W, len(III))*\min(N, len(III)))$ = $O(N^2*\min(W, len(III))*\min(N, len(III)))$

Statique:

III : ensemble des sommets liés au sommet "Vertex"

N: nombre de sommets du graphe

Dynamique:

I : ensemble des sommets du graphe "unnumbered"

II: ensemble des sommets "numbered"

S : nombre de sommets dans "unnumbered" W : nombre de sommets dans "numbered"

Algorithme 4 Algorithm_X

```
Require: Matrice
 1: Faire une copie de la matrice et exécuter l'algorithme sur cette matrice
 2: Choisir la colonne C contenant un minimum de 1
 3: L = L'ensemble des lignes tel que Matrice_{l,c} = 1, \forall l \in L
 4: for chaque ligne l de L do
      columnslist = []
 5:
      rowslist = []
 6:
      Ajouter la ligne à la solution partielle
 7:
      for chaque colonne j de la matrice do
 8:
        if Matrice_{l,i} = 1 then
 9:
10:
           for chaque ligne i de la matrice do
             if Matrice_{i,j} = 1 then
11:
                Ajouter la ligne i à rowlist
12:
             end if
13:
           end for
14:
           Ajouter la colonne j de la matrice à columnslist
15:
        end if
16:
      end for
17:
      Supprimer les lignes et les colonnes de la matrice présentes dans rowslist
18:
      et columnslist
      if la matrice n'est pas vide then
19:
        if toutes les colonnes de la matrice ont au moins un 1 then
20:
           Répéter cet algorithme de façon récursive sur la matrice réduite
21:
22:
        end if
      else
23:
         Ajouter la solution à l'ensemble des solutions
24:
25:
26:
      Supprimer la ligne de la solution partielle
      Réutiliser la matrice de départ
27:
28: end for
```

[3]

References

[1] Bron-Kerbosch algorithm https://en.wikipedia.org/wiki/Bron%E2%80%93Kerbosch_algorithm

- [2] networkx.algorithms.chordal https://networkx.github.io/documentation/stable/ _modules/networkx/algorithms/chordal.html
- [3] Knuth's Algorithm X
 https://en.wikipedia.org/wiki/Knuth%27s_Algorithm_X
 NP (complexity)
 https://en.wikipedia.org/wiki/NP_(complexity)

3.4 Hypergraphes aléatoires

4 Librairies utilisées

4.1 Numpy

C'est une librairie très utile dans ce projet pour l'utilisation d'opérations mathématiques telles que les fonctions sinus/cosinus, etc ainsi que dans la manipulation de l'aléatoire.

4.2 Matplotlib

C'est une librairie assez utile dans ce projet pour l'affichage d'objets mathématiques en 2D tels que des cercles, des lignes, etc.

4.3 Copy

C'est une librairie contenant la fonction "deepcopy" permettant de copier l'intégralité d'un objet sans qu'il n'y ait de liens entre l'ancien et le nouvel objet.

5 Conclusion

En plus de la simple mise en pratique de certains concepts sur les graphes, ce projet nous a permis de développer nos compétences de travail en groupe.