Mikroişlemci Sistemleri

Dr. Öğr. Üyesi Erkan Uslu 5 YTÜ-CE

Ders-5 Konular

- Paralel Seri Haberleşme
- Seri Haberleşme
- Synchronous/Asynchronous
- Simplex/Duplex
- Baud Rate
- Error Correction
- Yazılımsal Seri Haberleşme
- Transmit

- Receive
- 8251 **USART**
- 8251 Blok Diyagram
- Yazmaçlar
- Mode Word / Command WordC+2+115 Word
 - Status Word

Veri İletişimi: Seri-Paralel

- Seri
- Daha az maliyet
- Daha yavaş
- Paralel
- Daha hızlı
- Kısa mesafeler için

Veri İletişimi: Seri-Paralel

Parallel to serial Conversion

Serial to parallel Conversion

Receiver 0 0 0 0 0 0 Sender

Serial Transmission

Parallel Transmission

Seri lletişim

- Synchronous (Senkron)
- Sender and receiver must synchronize
- Done in hardware using phase locked loops (PLLs)
- Block of data can be sent
- More efficient: Less overhead than asynchronous transmission
- Expensive
- Asynchronous (Asenkron)
- Each byte is encoded for transmission
- Start and stop bits
- No need for sender and receiver synchronization

Seri İletişim

Synchronous transmission

Asynchronous Comm.

Ortak bir CLK veya senkron işaretine ihtiyaç duymaz

Asynchronous Comm.

- Veri bitler halinde gönderilir.
- Alıcı taraf iletişimin başladığını/bittiğini başta ve sonda bulunan START ve STOP bitleri ile anlar.
- Hat boşta iken lojik 1 değerindedir.

Synchronous Comm.

BISYNC: Each block of data has synch characters. The size of block data can be 100 or more bytes. BCC checks for errors.

Serial Data Link Control: Developed by IBM used for computer networking (Token Ring). After Flag byte the network address is sent. Control Byte stores information about sequence of data etc. Data is thousands of bits. 16 bit field is used for error checking.

Simplex/Duplex

- Simplex
- Data are transmitted in one directions
- Example: CPU to printer
- Duplex
- Data flow in both direction
- Half Duplex (Transmission goes on way at a time)
- Full Duplex (Both ways simultaneously)

Simplex/Duplex

Transmission Rate

- Rate at which bits are transmitted (BAUD)
- Number of signal changes per second
- Bit time: how long the Bit stay On or Off
- Printer, Terminal Baud Adjustable (50-9600)
- 1200Baud means: Bit stay for 1/1200=0.83ms

Örnek

- What is the data rate in bits/sec and character rate if the bit time is 3.33 ms (1 start, 8 data, 2 stop)
 - Bit rate = 1/3.33 ms = 300 bits/sec
- $11 \times 3.33 \text{ ms} = 36.63 \text{ ms}$ required to transmit a character so character rate = 1/36.63 ms = 27.3 char/sec
- Modems typically transmit data over the telephone network at 9600, 14400, 28800 or 56K bps.
- If 1 MByte file is to be transmitted to another computer using a modem calculate the transmission time (1 start, 7 data, 1 parity, 1 stop)
- 9600 bps: 1048576x10/9600 bits/sec = 1092 s = 18 minutes and 12 sec
- 28800 bps: 364 s = 6 minutes and 4 sec

Error Check

- Parity Check
- Even parity: When odd numbers of 1 make D7=1
- Send Even number of 1
- Odd parity: When even number of 1 make D7=1
- Send Odd number of 1
- **Check Sum**
- Used for block of data
- Sum of all Bytes without carry and 2's complements
- Total Sum Result should be Zero
- Cyclic Redundancy Code (CRC)
 - Synchronous Communication
- Stream of Data can be represented by Cyclic polynomial that divided by a **constant polynomial**
 - Reminder to set **Bits** and Send out as check for error

Yazılımsal Seri İletişim - Transmit

```
; Function: Serial data transmitter. DELAY
; procedure determines data rate.
; Inputs: Character to be transmitted assumed;
; passed in AL.
; Ouputs: Serial data on bit 0 of DPORT.
```

;Destroys: AL, CX, flags.

EXTRN DELAY:NEAR DPORT EQU 00H

CODE SEGMENT ASSUME CS:CODE

Move to position 0 10 bits/char Transmit bit Do 10 times Start bit Next bit Stop bit ;Wait DPORT, AL CX, 10 DELAY TRANS AL,1 NEAR AL, 1 PROC CALL TOOP OUT STC MOV CLC FIG10_3 TRANS:

FIG10_3 ENDP CODE ENDS

RET

Yazılımsal Seri İletişim - Receive

8251 USART

USART: universal Synchronous/Asynchronous Receiver/Transmitter

8251

8251 Yazmaçlar

Anlam	Data-bus tristate	Data-bus tristate	Status → CPU	Mode, Control, Sync← CPU	Data → CPU	Data CPU
WR	×		T	0		0
RD	×		0		0	\vdash
C/\overline{D}	×	×	T	—	0	0
<u>CS</u>	\vdash	0	0	0	0	0

8251 ilk Ayarlama

Mod Yazmacı

(a) Asynchronous mode

(b) Synchronous mode

Kontrol Yazmacı

Note: In all cases action is taken when the bit is set to 1.

