Scilab Textbook Companion for Materials Science, Metallurgy And Engineering Materials by K. M. Gupta¹

Created by
Priyanka Arora
B-tech
Chemical Engineering
DCRUST,Murthal
College Teacher
Ms.sunanda
Cross-Checked by
Mukul Kulkarni

May 24, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Materials Science, Metallurgy And Engineering Materials

Author: K. M. Gupta

Publisher: Umesh Publications, Delhi

Edition: 1

Year: 2012

ISBN: 978-93-80117-69-0

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
2	atomic model and bonding in solids	5
3	crystal geometry of metal and miller indices	12
4	soid structure and allotropy	21
5	Material Characterization	25
6	Crystal Imperfection	32
7	diffusion in solids	38
8	phase and phase diagrams	45
9	mechanical properties	51
10	Mechanical Tests and Factors Affecting Mechanical Properties	55
11	Theories of Inelastic Anelastic and Viscoelastic Deformations and Fractura	69
12	organic materials plastics rubber elastomers and wood	77
14	composite material	80
15	Phase Transformation	86

16	Heat Treatment	90
17	corrosion and oxidation	92
18	electron theories and conducting material properties behavior and application	ur 95
19	semiconducting materials properties behaviour and applications	100
20	${\bf dielectric\ piezoelastic\ and\ pyroelastic\ materials}$	111
21	magnetic materials properties behaviour and application	118
22	superconducting materials properties behaviour and application	125
23	thermal properties and materials	130
26	optical properties of materials and materials for opto electronic devices	133

List of Scilab Codes

Exa 2.1	distance of closest approach	5
Exa 2.2	scattering angles	5
Exa 2.3	Bohrs theory	6
Exa 2.4	bohrs theory	7
Exa 2.5	relativistic atomic model	8
Exa 2.6	uncertainity principle	8
Exa 2.10	ionization potential	9
Exa 2.11	dipole moment	9
Exa 2.12	ionic character	10
Exa 3.3	packing fraction	12
Exa 3.4	density	13
Exa 3.5	density	13
Exa 3.6	density	14
Exa 3.7	miller indices	14
Exa 3.8	miller indices	15
Exa 3.9	miller indices	16
Exa 3.11	interplaner spacing	17
Exa 3.12	interplaner spacing	18
Exa 3.14	linear density	18
Exa 3.15	linear density	19
Exa 3.17	planer density	20
Exa 4.1	structural transformation	21
Exa 4.2	HCP Structure	22
Exa 4.3	radius of cation	22
Exa 4.6	density of crystal	23
Exa 4.7	density of crystal	24
Exa 5.1	diffraction	25
Exa 5.2	lattice parameter and miller indices	26

Exa 5.3	miller indices of reflecting planes
Exa 5.5	structure and lattice parameter of a material
Exa 5.6	ASTM Number
Exa 5.7	area density and grain size of grains
Exa 5.8	boundary area using ASTM Number
Exa 6.1	frenkel defect
Exa 6.2	enthalpy of formation of vacancies
Exa 6.3	ratio of enthalpy of formation
Exa 6.5	enrgy of dislocation
Exa 6.6	number of vacncies
Exa 6.7	line energy of dislocation
Exa 6.8	spacing between dislocation
Exa 7.1	Ficks law
Exa 7.2	depth of carburization
Exa 7.3	depth for post machining
Exa 7.4	duration for which material is to kept at high tempera-
	ture
Exa 7.5	depth of material
Exa 7.6	diffusivity
Exa 7.7	activation energy
Exa 8.1	gibbs phase rule
Exa 8.2	composition of alloy
Exa 8.4	peritectic system
Exa 8.5	eutectic system
Exa 8.6	eutectic system
Exa 8.7	eutectoid mixture of pearlite
Exa 9.1	tensile strain and youngs modulus
Exa 9.4	stress strain
Exa 9.5	stress
Exa 9.7	creep
Exa 10.1	stress strain
Exa 10.2	stress strain
Exa 10.3	Mechanical properties
Exa 10.4	BHN Number
Exa 10.5	mechanical properties
Exa 10.6	endurance stress
Exa 10.7	yield strength
Exa 10.8	ASTM Number

Exa 10.9	ASTM Number	67
Exa 10.16	ASTM Number	68
Exa 11.1		69
Exa 11.2	plastic deformation	70
Exa 11.3	dislocation density	71
Exa 11.4		71
Exa 11.5	stress and strain	72
Exa 11.6		72
Exa 11.7	relaxation time	73
Exa 11.8	youngs modulus	74
Exa 11.9	surface energy	75
Exa 11.10	griffiths energy	75
Exa 11.11		75
Exa 12.1	polymers	77
Exa 12.2	polymers	77
Exa 12.3	natural rubber	78
Exa 12.4	vulcanization of rubber	79
Exa 14.1		80
Exa 14.2	composite material	81
Exa 14.3	composite material	82
Exa 14.4		82
Exa 14.5	longitudinal strength and modulus	84
Exa 15.1	arrhenius concept	86
Exa 15.2	homogeneous nucleation	87
Exa 15.3	homogenous nucleation	87
Exa 15.5		88
Exa 15.7	recovery	89
Exa 16.1	allotropy	90
Exa 16.3	annealing	91
Exa 17.1	oxidation of nickel	92
Exa 17.2		92
Exa 17.3		93
Exa 17.4	protection against corrosion	94
Exa 18.1	energy	95
Exa 18.2		96
Exa 18.3		96
Exa 18.4	· · · · · · · · · · · · · · · · · · ·	97
Exa 18.5		98

Exa 18.6	resistivity	98
Exa 19.1		100
Exa 19.2	intrinsic charge carriers	101
Exa 19.3		101
Exa 19.4	extrinsic semiconductor	02
Exa 19.5	extrinsic semiconductor	103
Exa 19.6	extrinsic semiconductor	04
Exa 19.7	density of state	04
Exa 19.8		105
Exa 19.9	hall effect	106
Exa 19.13	hall effect	107
Exa 19.14	hall effect	107
Exa 19.15	hall angle	108
Exa 19.18		109
Exa 19.19	band gap	109
Exa 20.1		11
Exa 20.2		111
Exa 20.3		12
Exa 20.4	measurement of polarization	13
Exa 20.5	measurement of polarization	13
Exa 20.6		14
Exa 20.7		15
Exa 20.8		15
Exa 20.9	· · · · · · · · · · · · · · · · · · ·	16
Exa 20.10		17
Exa 21.1		18
Exa 21.2		19
Exa 21.3		119
Exa 21.4		120
Exa 21.5		20
Exa 21.6		21
Exa 21.7	v	22
Exa 21.8	v – v	22
Exa 21.11		23
Exa 21.15		24
Exa 22.2	· · · · · · · · · · · · · · · · · · ·	125
Exa 22.3		126
Exa 22.4		26

Exa 22.9	magnetic field	127
Exa 22.10	superconductors	128
Exa 22.11	superconductors	129
Exa 23.1	coefficient of linear expansion	130
Exa 23.2	stress strain	131
Exa 26.1	energy of photon	133
Exa 26.2	absorption	134
Exa 26.3	energy of photon	135
Exa 26.4	optical fibre	135
Exa 26.5	energy of absorbed light	136
Eva 26.7	energy of photoelectron	136

Chapter 2

atomic model and bonding in solids

Scilab code Exa 2.1 distance of closest approach

```
1  //example -2.1
2  //page no-28
3  //given
4  //atomic no. of gold
5  Z=79
6  //kinetic energy of alpha particle
7  E=7.68*1.6*(10)^(-13)  //J because [1MeV=1.6*(10)^(-13)]
8  e=1.6*10^(-19)  //C
9  E0=8.854*10^(-12)  //F/m
10  //the distance of closest approach is given by:
11  d0=2*e*Z*e/(4*(%pi)*E0*E)  //m
12  printf ("the closest approach of alpha particle is %.20 f m",d0)
```

Scilab code Exa 2.2 scattering angles

```
1 // \text{example} -2.2
2 //page no-29
3 //given
4 //IN THE RUTHERFORD SCATTERING EXPERIMENT
5 //the no of particles scattered at
6 theta1=(\%pi)/2 //radians
7 //is
8 N90 = 44
          //per minute
9 //the number of particles scattered particles N is
     given by
10 /N=C*(1/(\sin(theta/2))^4)
                              where C is
     propotionality constant
11 //solving above equation for C
12 C=N90*(sin(theta1/2))^4
13 // now to find the no of particles scattering at 75
     and 135 degrees
14 theta2=75*(%pi)/180 //radians
15 N75=C*(1/(sin(theta2/2))^4)
                                //per minute
16 theta3=135*(%pi)/180 //radians
17 N135=C*(1/(sin(theta3/2))^4)
                                 //per minute
18 printf ("the no of particles scattered at 75 and 135
      degrees are %d per minute and %d per minutes",
     N75, N135)
```

Scilab code Exa 2.3 Bohrs theory

```
1 //example -2.3
2 //ppage no-32
3 //given
4 //mass of electron
5 m=9.11*10^(-31) //kg
6 //charge on an electron
7 e=1.6*10^(-19) //C
8 //plank's constant
9 h=6.62*10^(-34)
```

```
10 E0=8.85*10^(-12)
11 //NO OF ELECTRONS SHELLS IN HYDROZEN ATOm
12 n=1
13 //atomic number of hydrogen
14 Z=1
15 //radius of first orbit of hydrogen is given by
16 r1=n^2*E0*h^2/((%pi)*m*Z*e^2) //m
17 printf ("the radius of the first orbit of the electron in the hydrogen atom %.20 f",r1)
```

Scilab code Exa 2.4 bohrs theory

```
1 // \text{example} -2.4
2 / page no -32
3 / given
4 //mass of electron
5 \text{ m} = 9.11 * 10^{(-31)} / \text{kg}
6 //charge on an electron
7 e=1.6*10^{(-19)} //C
8 //plank's constant
9 h=6.62*10^{(-34)}
10 E0=8.85*10^{(-12)}
11 //NO OF ELECTRONS SHELLS IN HYDROZEN ATOm
12 \quad n=1
13 //atomic number of hydrogen
14 Z=1
15 //ionization potential energy of hydrogen atom is
      given by
16 E=m*Z^2*e^4/(8*(E0)^2*h^2*n^2) //J
17 //energy in eV
18 EV=E/e //eV
19 printf ("the ionization potential for hydrogen atom
      is %f V", EV)
```

Scilab code Exa 2.5 relativistic atomic model

```
1 / \exp -2.5
2 //page no-34
3 //given
4 n=4
5 //the geometery of elliptical path is obtained by
6 / b/a = (l+1)/n
7 //let b/a=t just for notation
8 //for s suborbit
9 11=0
10 t1 = (11+1)/n
11 // so b=a/4
12 //for p orbit
13 12=1
14 t2=(12+1)/n
15 // \text{so b} = a/2
16 //for d suborbit
17 13=2
18 t3 = (13+1)/n
19 // \text{so b} = 3*a/4
20 //for f suborbit
21 14=3
22 t4 = (14+1)/n
23 //so b=a
24 printf ("hence the dimension of elliptical locus of
      different suborbits are given as above")
```

Scilab code Exa 2.6 uncertainty principle

```
\begin{array}{cc} 1 & //\operatorname{example} -2.6 \\ 2 & //\operatorname{page no} -36 \end{array}
```

```
3 //given
4 //uncertainity in the momentum
5 deltap=10^-27 //\text{kg ms}^-1
6 //according to uncertainity principle
7 // \operatorname{deltap} * \operatorname{deltax} >= h/(2*(\%pi))
8 //we know that
9 h=6.626*10^-34
                    //Js
10 //here instead of inequality we are using only
      equality just for notation otherwise it is
      greater than equal to as mentioned above
11 //now deltax is given by
12 deltax=h/(2*(\%pi)*deltap)
                                //m
13 printf ("the minimum uncertainity is \%.10\,\mathrm{f} m", deltax
      )
```

Scilab code Exa 2.10 ionization potential

```
1 //example -2.10
2 //page no- 57
3 //given
4 //ionization potential of hydrogen
5 E1=13.6 //eV
6 //when
7 n=3
8 E3=-E1/n^2 //eV
9 //when
10 n=5
11 E5=-E1/n^2 //eV
12 printf ("energy of 3rd and 5th orbits are %f eV and %f eV",E3,E5)
```

Scilab code Exa 2.11 dipole moment

```
1 // \text{example} -2.11
2 / page no -59
3 //given
4 //dipole moment og HF is
5 DM=6.375*10^{(-30)} //Cm
6 //intermolecular distance
7 r=0.9178*10^{(-10)} / m
8 //charge on an electron
9 e=1.67*10^{(-19)} //C
10 //since the HF posses ionic characters
11 // so
12 //Hf in fully ionic state has dipole moment as
13 DM2=r*e //Cm
14 // percentage ionic characters
15 percentage=DM/DM2*100 /\%
16 printf ("the percentage ionic character is %f approx
      .", percentage)
```

Scilab code Exa 2.12 ionic character

```
1  //example -2.12
2  //page no-60
3  //given
4  //elctronegativity of In
5  EnIn=1.5
6  //elctronegativity of As
7  EnAs=2.2
8  //elctronegativity of Ga
9  EnGa=1.8
10  //for InAs
11  %ionic_charater1=[1-(%e)^((-0.25)*(EnAs-EnIn)^2)]*100
12  //for GaAs
13  %ionic_charater2=[1-(%e)^((-0.25)*(EnAs-EnGa)^2)]*100
```

14 printf ("percent ionic character in InAs and GaAs are % f and % f", %ionic_charater1, %ionic_charater2)

Chapter 3

crystal geometry of metal and miller indices

Scilab code Exa 3.3 packing fraction

```
1 // \text{example} -3.3
2 //page no-78
3 //given
4 //ionia radius of Na and cl are resp.
5 \text{ r1=0.98*10^(-10)} //\text{m}
6 r2=1.81*10^{(-10)}
7 //no of atons in FCC
8 N=4
9 //total volume of Na and cl ions are resp
10 v1=N*4/3*(\%pi)*(r1)^3
                            //\mathrm{m}^3
11 v2=N*4/3*(\%pi)*(r2)^3
                             /\mathrm{m}^3
12 //the lattice constant
13 a=2*r1+2*r2
14 //average packing fraction
15 APF = (v1+v2)/a^3
16 printf ("the average packing fraction is %f", APF)
```

Scilab code Exa 3.4 density

```
//example - 3.4
//page no - 80
//given
//atomic radius of copper
r=1.278*10^(-8) //cm
//lattice structure of copper is FCC
a=4*r/sqrt(2) //cm
//atomic weight of copper
Aw=63.54
N=4
//avogadro's number
Na=6.023*10^(23)
//density of copper atoms in lattice
rho=Aw*N/(Na*a^3)*1000 //kg/m^3
printf ("the density of copper is %d kg/m^3",rho)
```

Scilab code Exa 3.5 density

```
//example -3.5
//page no-80
//given
//density of NaCl is
rho=2.18 //g/cm^3
//no of effective atoms in FCC
N=4
//molecular weight of NaCl
Aw=23+35.5
//avogadro's number
Na=6.023*10^(23)
//lenght of sice of the unit cell
a=(Aw*N/(Na*rho))^(1/3)*10^8 //A
//distance between two adjacent atoms
r=a/2 //A
```

```
16 printf ("the distance b/w the two adjacent atoms is \%f A",r)
```

Scilab code Exa 3.6 density

```
1 // \text{example} - 3.6
2 // page no -80
3 //given
4 //density of iron
5 rho=7.86 //gm/cm^3
6 //atomic weight of iron
7 \text{ Aw} = 55.85
8 //iron has BCC unit structure
9 \text{ Ne}=2
10 //avogadros no.
11 Na=6.023*10^{(23)}
12 //side of the unit cell
13 a=(Aw*Ne/(Na*rho))^(1/3)
                                 //\mathrm{cm}
14 //atomic radius
15 r=3^{(1/3)*a/4*10^8}
                         //A
16 printf ("the atomic radius of iron is %f A",r)
```

Scilab code Exa 3.7 miller indices

```
1  //example -3.7
2  //page no-85
3  //given
4  //the intercepts
5  //c1(along x-axis)=a
6  //c2(along y-axis)=b/2
7  //c3(along z-axis)=3*c
8  //therefore
9  p=1
```

```
10 q=1/2
11 r=3
12 //so
13 h=1/p
14 k=1/q
15 l=1/r
16 //hence (hkl)=(121/3)=1/3*(361) or (361)
17 printf ("miller indices for such a simple cubic unit cell is 361")
```

Scilab code Exa 3.8 miller indices

```
1 // \text{example} -3.8
\frac{2}{\text{page no}-85}
3 //given
4 //the ratio of intercepts of orthorombic unit cell
      is a:b:c=0.429:1:0.379
5 //to find:- the miller indices of faces of the
      following intecepts
6 //(I) 0.214:1:0.188
7 //(II) 0.858:1:0.754
8 //(III) 0.429:1:0.126
9 //solution
10 // let
11 x = 0.429
12 y=1
13 z=0.379
14 \times 1 = 0.214
15 y 1 = 1
16 z1=0.188
17 p1 = x1/x
18 \ q1 = y1/y
19 r1 = z1/z
20 //intercepts will be 1/2:1:1/2
21 //reciprocal is 2:1:2
```

```
\frac{22}{\sqrt{\text{so miller indices is}}} (212)
23 \times 2 = 0.858
24 y 2 = 1
25 z2=0.754
26 p2=x2/x
27 q2 = y2/y
28 r2=z2/z
29 //intercepts willbe 2:1:2
30 / \text{reciprocal} is 1/2:1:1/2
31 //so miller inces is (121)
32 \times 3 = 0.429
33 y3 = 1
34 z3 = 0.126
35 p3=x3/x
36 q3 = y3/y
37 r3 = z3/z
38 //th e intercept will be 1:1:1/3
39 //reciprocal is 1:1:3
40 //so miller indices is (113)
41 printf ("the miller indices for part (I),(II) and (
      III) are (212),(121) and (113) resp")
```

Scilab code Exa 3.9 miller indices

```
1 //example -3.9
2 //page no-85
3 //given
4 //a:b:c=4:3:2
5 //so
6 a=4
7 b=3
8 c=2
9 //intercepts are
10 x=2 //armstrong
11 y=3 //armstrong
```

```
12 z=4 //armstrong

13 p=x/a

14 q=y/b

15 r=z/c

16 //reciprocals will be

17 h=1/p

18 k=1/q

19 l=1/r

20 //(hkl)=(2 1 1/2)=1/2*(421)=(421)

21 printf ("the miller indices is (421)")
```

Scilab code Exa 3.11 interplaner spacing

```
1 // \text{example} -3.11
2 / page no-93
3 / given
4 //atomic radius in a FCC crystal is
5 r = 1.246 //A
6 //side of the unit cell
7 \ a=4*r/sqrt(2) \ //A
8 //part(I)
9 h1=2
10 k1=0
11 11=0
12 d1=a/sqrt((h1)^2+(k1)^2+(l1)^2) //A
13 //part (II)
14 h2=2
15 k2=2
16 12=0
17 d2=a/sqrt((h2)^2+(k2)^2+(12)^2)
                                       //A
18 //part (III)
19 h3=1
20 k3=1
21 13=1
22 d3=a/sqrt((h3)^2+(k3)^2+(13)^2)
                                       //A
```

```
23 printf ("the inteplaners spacing will be d1, d2 and d3 are %f A, %f A and %f A", d1, d2, d3)
```

Scilab code Exa 3.12 interplaner spacing

```
1 // \text{example} -3.12
2 / page no - 94
3 //given
4 //lattice parameter of an orthogombic unit cell are
5 a=0.82
           //nm
6 b = 0.94
           //nm
          //nm
7 c = 0.75
8 //part(I)
9 h1=1
10 k1 = 2
11 11=3
12 d1=sqrt(1/((h1/a)^2+(k1/b)^2+(11/c)^2))
                                             //nm
13 //part(II)
14 h2=2
15 k2=4
16 12=6
17 d2=sqrt(1/((h2/a)^2+(k2/b)^2+(12/c)^2))
                                             //nm
18 //aprt(III) - comment
19 //we note that
20 d = d2/d1
21 //i.e.d2=1/2*d1
22 //IT MEANS THAT INCREASING THE MILLER INDICES FREOM
     (123) TO (246) I.E BY 2 TIMES, DECREASES THE
     SEPERATION B/W THE PLANES BY 2 TIMES.
```

Scilab code Exa 3.14 linear density

```
1 // \text{example} -3.14
```

```
2 / page no - 96
3 //given
4 //lattice constant for copper unit cell is
                   / /m
5 a=3.61*10^{(-10)}
6 //since the lattice structure of copper is FCC
7 //so the length of lattice structure (110)
8 r110=a*sqrt(2) //m because r110=sqrt(a^2+a^2)
9 // effective no of atoms present on vector OA is
10 Ne110=(1/2+1+1/2)
                      //1/2 is for the atoms at
     corners of diagonal OA and 1 is for the atom at
     the centre of diagonal OA
11 //therefore linear density of atoms along (110) in
     copper unit cell is
                      //atoms per m
12 invr110=Ne110/r110
13 //so the length of lattice structure (111)
14 r111=a*sqrt(3) //m because r111=sqrt(a^2+a^2+a^2)
15 //effective no of atoms present on vector OB is
16 \text{ Ne}111 = (1/2 + 1/2)
                   //1/2 is for each atoms at corners
      of diagonal OB
17 //therefore linear density of atoms along (111) in
     copper unit cell is
18 invr111=Ne111/r111
                       //atoms per m
19 printf ("the linear density of atoms along (110) and
      (111) are %f atoms/mm and %f atoms/mm resp",
     invr110 , invr111)
```

Scilab code Exa 3.15 linear density

```
1 //example -3.15
2 //page no-101
3 // to find the linear density of (100) direction in BCC
4 //density is given by the ratio of toatal line length of the intersecting atoms to the distance between the centres of atom
```

Scilab code Exa 3.17 planer density

```
1 // \text{example} -3.17
2 //page no-101
3 //given
4 //atomic radii of polonium, rhodium and chromium are
5 \text{ rPo}=1.7*10^{(-10)}
                        //m
6 \text{ rRh} = 1.34 * 10^{(-10)}
                         //m
7 \text{ rCr} = 1.25 * 10^{(-10)}
                         //m
8 //latice strucrure of polonium, rhodium and
      chromium are SC, FCC and BCC resp
9 //so lattice constants are
10 aPo=2*rPo //m
11 aRh=2*sqrt(2)*rRh
                         //m
12 aCr = 4/sqrt(3) *rCr
                       //\mathrm{m}
13 //planer density on (100) in polonium is given by
14 rhoPo=1/(aPo)^2 //per m^2
15 //planer denity on (110) in rhodium
16 rhoRh=sqrt(2)/(aRh)^2 //per m<sup>2</sup>
17 //planer density on (111) in chromium
18 rhoCr = sqrt(3)/(aCr)^2 // per m<sup>2</sup>
19 printf ("the planer density of polonium in (100) is
      %f ,rhodium in (110) is %f per m<sup>2</sup> and chromium
      in (111) is %e per m^2", rhoPo, rhoRh, rhoCr)
```

Chapter 4

soid structure and allotropy

Scilab code Exa 4.1 structural transformation

```
1 // \text{example} -4.1
2 / \text{page no} -110
3 //given
4 //atomic radii of iron in BCC and FCC at 910 degrees
       celcius temp are
5 \text{ rBCC} = 1.258
                 //A
6 rFCC=1.292
                 //A
7 //latice side
8 aBCC=4*rBCC/sqrt(3)
9 	 aFCC = 2 * sqrt(2) * rFCC
10 //effective number of atoms in BCC and FCC
11 \quad nBCC=2
12 \text{ nFCC}=4
13 //volume
14 VBCC=nBCC/2*(aBCC)^3
15 VFCC=nFCC/4*(aFCC)^3
16 //change in volume percent
17 deltaV = (-1 + VFCC/VBCC) * 100
18 printf ("tha volume change percentage is -0.49 and
      here negative sign indicates that the volume
      decreases during polymorphism transformation")
```

Scilab code Exa 4.2 HCP Structure

```
1 // \text{example} -4.2
2 / page no-115
3 //given
4 //height of zinc unit cell
5 h=4.935*10^-10
                    //\mathrm{m}
6 //side of the lattice
7 a=2.66*10^-10 //m
8 //as we know that zinc has HCP unit cell.
9 //the number of effective atoms
10 \, \text{Ne=6}
11 //as we know
12 / \tan (\% \text{pi}/3) = x/(a/2)
14 x=a/2*tan (\%pi/3) //m
15 //area of basal plane
16 Ar=6*a*x/2 //\text{m}^2
17 //volume of the unit cell
18 V = Ar * h //m^3
19 //atomic weight of zinc
20 \text{ Aw} = 65.37
21 //avogadro's number
22 NA=6.023*10^23
23 //density of zinc
24 rho=Aw*Ne/(NA*V)/1000 //kg/m^3
25 printf ("the no of effective atoms, the volume of
      unit cell and density of zinc are 6, 9.07*10^{-29}
       and 7180 \text{ kg/m}^3 \text{ resp}")
```

Scilab code Exa 4.3 radius of cation

```
1 //example -4.3
2 //page no-121
3 //given
4 //ionic radius of anion is
5 ra=2.11*10^-10 //m
6 //given that the atom has eight fold ligancy with the anion
7 //so, we know that for this
8 //rc/ra=0.732
9 rc=0.732*ra //m
10 printf ("the radius of smallest cation is 1.54 A")
```

Scilab code Exa 4.6 density of crystal

```
1 // \text{example} -4.6
2 //page no-125
3 //given
4 //radii of cation and anion in CaO
5 \text{ rc} = 0.94 * 10^{-10}
                    //m
                    //\mathrm{m}
6 \text{ ra=1.32*10}^-10
7 //so the lattice side will be
8 \ a=2*(rc+ra) \ //m
9 //effective no of atoms in FCC lattice structure
10 Ne=4 //because CuO has FCC cubic structure
11 //molecular weight of CuO
12 \quad Aw = 40.08 + 16
13 //atomic weight unit
14 amu=1.66*10^-27 //amu
15 //mass of atom per unit cell
16 \quad M = Aw * amu
17 //density
18 rho=M*Ne/a^3 //kg/m^3
19 printf ("density of CuO is 4032 Kg/m<sup>3</sup>")
```

Scilab code Exa 4.7 density of crystal

```
1 // \text{example} -4.7
2 / page no-126
3 //given
4 //radii of cation and anion in MgO
5 \text{ rc} = 0.78 * 10^{-10}
                    //m
6 \text{ ra=1.32*10^--10} //\text{m}
7 //so the lattice side will be
8 a=2*(rc+ra) //m
9 // effective no of atoms in FCC lattice structure
10 Ne=4 //because MgO has FCC cubic structure
11 //molecular weight of MgO
12 \text{ Aw} = 24.3 + 16
13 //atomic weight unit
14 amu = 1.66*10^-27 //amu
15 //mass of atom per unit cell
16 \quad M = Aw * amu
17 //density
18 rho=M*Ne/a^3 //kg/m^3
19 printf ("density of MgO is 3611.813~{\rm Kg/m^3}")
```

Chapter 5

Material Characterization

Scilab code Exa 5.1 diffraction

```
1 // \text{example} -5.1
2 / \text{page no} - 136
3 //given
4 //wavelength of X-rays beams of light
5 \quad lambda = 0.824 * 10^{-10} / m
6 //glancing angle of the incident light
7 theta1=(8+35/60)*(\%pi)/180 //radians
8 n1=1
9 //to find theta3 i.e at
10 \, \text{n3} = 3
11 //as we know that
12 //2*d*sin(theta)=n*lambda
13 //so for n1 and n3 we get in the same way and
      solving together we get
14 theta3=asin(3*sin(theta1))
15 //so
16 d=lambda/2/sin(theta1)
17 printf ("the galncing angle for thethird order
      diffraction is and interplanar spacing of the
      crystal is 2.761 A")
```

Scilab code Exa 5.2 lattice parameter and miller indices

```
1 // \text{example} -5.2
2 //page no-141
3 //given
4 //bragg's angle of reflection
5 theta1=17.03*(\%pi)/180
                              //radians
6 //wavelength of light
7 lambda=0.71 //A
8 //according to bragg's equation
9 //n*lambda=2*d*sin(theta)
10 // for n=1
11 d=lambda/2/sin(theta1) //A
12 //given that h^2+k^2+l^2=8
13 // let (h^2+k^2+l^2)^1/2=H
14 / \text{we get}
15 \text{ H=} \text{sqrt} (8)
16 \text{ a=d*H} //A
17 // \text{since } h^2 + k^2 + l^2 = 8, hence the reflecting planes
      will be (220). family of planes (220) include
      (220), (202), (022), etc.
```

Scilab code Exa 5.3 miller indices of reflecting planes

```
1 //example -5.3
2 //page n0-141
3 //given
4 //lattice constant
5 a=1.54 //A
6 //wavelength of beam of light
7 lambda=1.54 //A
8 //according to bragg's equation
```

```
9 //n*lambda=2*d*sin(theta)
10 //following angles are given
11 theta1=20.3*(\%pi)/180
12 theta2=29.2*(\%pi)/180
13 theta3=36.7*(\%pi)/180
14 theta4=43.6*(\%pi)/180
15 //interplaner spadcing is
                                  //A
16 d1=lambda/(2*sin(theta1))
17 d2=lambda/(2*sin(theta2))
                                  //A
                                  //A
18 d3=lambda/(2*sin(theta3))
19 d4=lambda/(2*sin(theta4))
                                  //A
20 //magnitude of bragg's
21 //we have h^2+k^2+l^2=a^2/d^2
\frac{22}{\text{let }} \frac{\hat{a}^2}{\text{d}^2} = D \text{ for notation only}
23 //so
24 D1 = 2
25 D2 = 4
26 D3=6
27 D4=8
28 //so from bragg's magnitude we can get (hkl)
29 //(hkl1) = (110)
30 //(hkl3) = (200)
31 / (hkl3) = (211)
32 / (hkl4) = (220)
33 printf ("the reflection will take from
      \{110\},\{200\},\{211\} and (220)")
```

Scilab code Exa 5.5 structure and lattice parameter of a material

```
1 //example -5.5
2 //page no-146
3 //given
4 //wavelength of X-ray
5 lambda=1.54 //A
6 //diameter of powder camera
```

```
7 D = 114.6
               //\mathrm{mm}
8 //radius of powder camera
           //mm
9 R=D/2
10 //value of l
11 11=86
12 12=100
13 13=148
14 14=180
15 15=188
16 16=232
17 17=272
18 //we know that
19 / theta = 1/4
20 // so
21 theta1=11/4*(\%pi)/180
                                  //radians
22 theta2=12/4*(\%pi)/180
                                  //radians
23 theta3=13/4*(\%pi)/180
                                //radians
24 \text{ theta4=14/4*(\%pi)/180}
                                 //radians
25 theta5=15/4*(\%pi)/180
                                  //radians
26 \text{ theta6=16/4*(\%pi)/180}
                                  //radians
27 \text{ theta7=17/4*(\%pi)/180}
                                  //radians
28 //now values of sin (theta) and sin(theta2)
29 S1=sin(theta1)
30 \text{ SS1=(sin(theta1))^2}
31 \quad S2 = sin(theta1)
32 \text{ SS2=(sin(theta1))^2}
33 S3=sin(theta1)
34 \text{ SS3=}(\sin(\text{theta1}))^2
35 \text{ S4=sin}(\text{theta1})
36 \text{ SS4=}(\sin(\text{theta1}))^2
37 \text{ S5=sin}(\text{theta1})
38 \text{ SS5}=(\sin(\text{theta1}))^2
39 \text{ S6=sin}(\text{theta1})
40 \text{ SS6}=(\sin(\text{theta1}))^2
41 S7 = sin(theta1)
42 SS7 = (sin(theta1))^2
43 //so the ratio can be expressed as
44 //3:4:8:11:12:16:19
```

Scilab code Exa 5.6 ASTM Number

```
//example -5.6
//page no-158
//given
//ASTM number

n=12
//as we know that the number of grains N observed on photomicrograph is given by
N=2^(n-1)
//as we know that grain size diameter is given by
d=1/sqrt((N/645)*10^4) //mm because 1 square inch =645 mm^2
printf ("the grain diameter for an ASTM number 12 is %f mm",d)
```

Scilab code Exa 5.7 area density and grain size of grains

```
1 //example -5.7
2 //page no-158
3 //given
4 //no of grains within the view of a micrograph
5 n1=41
```

```
6 //no of grains cut by circumference
7 n2=42
8 //diameter of circular area
9 d=1 //inch
10 //area
11 A=(%pi)/4*d^2 //inch^2
12 //the area density of grains
13
14 N=(n1+n2/2)/A //grains/inch^2
15 //grain size
16 n=log(N)/log(2)+1
17 printf ("the area density of grains is %f grains/inch^2 and grain size is 8",N)
```

Scilab code Exa 5.8 boundary area using ASTM Number

```
1 // \text{example} -5.8
2 //page no-159
3 //given
4 //ASTM no of grains
5 \text{ ASTM} = 5
6 //area density of grains
7 N=2^{(ASTM-1)} //grains/inch<sup>2</sup> at magnification of
      100*
8 //as we know that lineal and areal magnification are
       related as
9 //*100 lineal = *10000 areal
10 //therefore
11 Nnew=N/0.01/0.01 // \text{grains/inch}^2 at 1*
12 //average area of one grain
13 A=1/Nnew*(2.54)^2 //cm<sup>2</sup>
14 //now 160000 grains/inch^2 of surface is sqrt
      (160000) = 400 grains/inch of length and this is
      equal to = (400)^3 = 6.4*10^7 grains/m<sup>3</sup> of volume
15 //surface area of each cubic surface
```

Chapter 6

Crystal Imperfection

Scilab code Exa 6.1 frenkel defect

```
1 // \text{example} -6.1
2 / \text{page no} - 169
3 //given
4 //molecular weight of CaF2 (calcium fluoride)
5 \text{ Mw} = 0.079 //\text{kg/mol}
6 //specific gravity of CaF2
7 \text{ sg} = 3.17
8 //density
9 rho=sg*1000 //kg/m^3
10 //avogadro's number
11 NA = 6.023 * 10^23
12 //the no of lattice sites is
13 NL=NA*rho/Mw //calcium ions/m<sup>3</sup>
14 //the ionic structure of CaF2
15 NI=2*NL // per m<sup>3</sup>
16 //we can note that the no of anions are double that
      of the no of cation vacancies for frenkel defect,
       so effective value of Ef = Ef/2 i.e half
17 // effective energy
18 Ef = 2.7*1.602*10^-19
                          //V (because 1eV=1.602*10^{-19}
      V)
```

```
//boltzmann's constant
k=1.38*10^-23
T=1300 //K
//no of frenkel defects nF per cubic metre ie
nF=sqrt(NI*NI)*exp(-Ef/2/k/T) // per m^3 (some
    variation in result is due to the approximation
    done in book at some points)
printf ("the number of frenkels defect per unit
    volume of CaF2 is %e per m^3 approx.",nF)
```

Scilab code Exa 6.2 enthalpy of formation of vacancies

```
1 // \text{example} -6.2
2 //page no-171
3 //given
4 //gas constant
5 R=8.314 //J/mol K
6 //temperatures
7 T1 = 27 + 273
8 T2=52+273
             //K
9 //we know that
10 / n=NA*exp(-Hf/R/T)
11 //so for n1=NA*exp(-Hf/R/T1)
12 // similarly for n2=NA*exp(-Hf/R/T2)
13 //dividing n2 by n1
14 //we have given in ques that dfects triple on
      incresing the temp from T1 to T2
15 // so n2/n1=3
16 //we get 3=\exp(Hf/R*(1/T1-1/T2))
17 //on solving we get
18 Hf = log(3) *R*(T1*T2/(T2-T1))/1000
                                      //KJ/mol
19 printf ("enthalpy of formation of vacancies is %f KJ
     /mol", Hf)
```

Scilab code Exa 6.3 ratio of enthalpy of formation

```
1 // \text{example} -6.3
\frac{2}{\text{page no}} - 172
3 //given
4 //gas constant
5 R=8.314 //J/mol K
6 //temperature
7 T1 = 300 / K
8 //enthalpy of formation of vacancy
9 Hf = 168 * 10^3 / J/mol
10 //as we know that
11 //n=NA*exp(-Hf/R/T)
12 / let n/NA=N
13 N1 = exp(-Hf/R/T1)
14 //now temperature is
15 T2 = 1000 / K
16 N2 = exp(-Hf/R/T2)
17 // ratio of no of vacancies
18 \text{ ratio} = \text{N1/N2}
19 printf ("the ratio of number of vacancies in
      equilibrium is %e", ratio)
```

Scilab code Exa 6.5 enrgy of dislocation

```
1  //example -6.5
2  //page no-180
3  //given
4  //shear modulus
5  G=45*10^9  //N/m^2 because 1GPa=10^9 N/m^2
6  //burge vector
7  b=2.5*10^-9  //m
```

```
8 //inner and outer radius of elastic strain
9 r0=11*10^-10 //m
10 r1=10^5*b //m
11 //poisson ratio
12 nu=0.31
13 //for an edge dislocation
14 Ued=G*b^2/(4*(%pi)*(1-nu))*log (r0/r1) //J/m
15 //for screw dislocation
16 Usd=G*b^2/(4*(%pi))*log (r0/r1) //J/m
17 //ratio of edge and screw dislocation
18 ratio=Ued/Usd
19 printf ("tha ratios of energies of an edge dislocation over screw dislocation is %f", ratio)
```

Scilab code Exa 6.6 number of vacncies

```
1 // \text{example} -6.6
2 //page no183
3 //given
4 //atomic radius of polonium
5 r=1.7*10^-10 /m
6 //structure of polonium is simple cubic (SC) for
      which
7 a=2*r //m
8 //number of atoms "n" involved with 1mm long
      dislocation
9 n=10^{-3/a}
10 //the number steps ns of clinbs down for 2 micro m
      will be
11 ns=2*10^-6/a
12 //total no of created vacancies
13 \text{ NV=n*ns}
14 printf ("the total no of vacancies created are %e",
     NV)
```

Scilab code Exa 6.7 line energy of dislocation

```
1 // \text{example} -6.7
\frac{2}{\text{page no}} - 186
3 //given
4 //burgers vector of copper is
5 h=1/2
6 k = 1/2
7 1 = 0/2
8 //shear modulus of copper
9 G=44*10^9 / N/m^2
10 //latice parameter of copper
11 a=3.61*10^-10 //m
12 //magnitude of burgers vector
13 b=a*sqrt(h^2+k^2+1^2)/m
14 //the line energy of dislocation
15 U=G*b^2/2 /J/m
16 printf ("the line energy of disloactation is %e J/m"
      , U)
```

Scilab code Exa 6.8 spacing between dislocation

```
1 //example -6.8
2 //page no-188
3 //given
4 //lattice constant of Ir
5 a=3.84 //A
6 //burgers vector gfor FCC is 1/2(110)
7 //so
8 h=1/2
9 k=1/2
10 l=0/2
```

```
//magnitude of burgers vector
b=a*sqrt(h^2+k^2+l^2) //A
//angle of tilts
theta1=1*(%pi)/180 //radians
theta2=3*(%pi)/180 //radians
//spacing between dislocation for theta1
h1=b/tan(theta1) //A
//spacing between dislocations for theta2
h2=b/tan(theta2) //A
printf ("the spacinf between dislocations at 1 degree and 3 degrees are %f A and %f A resp",h1, h2)
```

Chapter 7

diffusion in solids

Scilab code Exa 7.1 Ficks law

```
1 // \text{example} -7.1
2 / \text{page no} -203
3 //given
4 //outward flux of copper is
             //per m^2 per sec
5 Jx = 10^21
6 //concentration of copper at room temp on one side
      of aluminium which is 3 mm thickness
7 C1 = 2 * 10^13
               // per m^3
               //m
8 dx = 3 * 10^{-3}
9 //concentration on the other side of aluminium
10 C2=4*10^6 // per m<sup>3</sup>
11 //concentration gradient
12 M = (C1 - C2) / dx / /m^4
13 //according to fick 's law
14 //Jx = -Dx*dM/dx
15 //so Dx will be
16 Dx = -Jx * 1/M //m^2/s
17 printf ("the concentration gradient is %f per m^4 and
       diffusivity of copper is %f m^2/s",M,Dx)
```

Scilab code Exa 7.2 depth of carburization

```
1 // \text{example} -7.2
2 / page no -209
3 //given
4 //activation energy and constant D0 are given as
5 // for notation only we are using D01 and D02
                //J/mol
6 Q1=83*10<sup>3</sup>
7 Q2=157*10^3 //J/mol
8 D01=8*10^-7 //\text{m}^2/\text{s}
9 D02=700*10^-7 //\text{m}^2/\text{s}
10 // diffusivity of carbon in alpha-iron at 873 K
      (600+273) can be obtained by the equation
11 T=873
          //K
12 //and
13 //gas constant
14 R=8.314 //J/mol K
15 Dx = D01 * exp(-Q1/R/T)
                          //\text{m}^2/\text{s}
16 //concentration of carbon is given as 0.75\%,
      therefore concentration of steel will be 0.25 %.
      thus
17 \text{ Ms} = 0.25
             //conc. of steel
18 Mc=0.75 //conc. of carbon
19 //time of carburization is 9 hrs
20 t = 9 * 3600
              //sec
21 // so
22 C1 = Mc
23 \quad C2 = C1 - Ms
24 //carbon content on the surface
25 M = 0.6
26 //we know that diffusion across a common interface
      is obtained by:-
27 / \text{M=C1-C2} * \text{erf} (x/2 * \text{sqrt} (Dx/t))
28 //solving for X where X=erf(x/2*sqrt(Dx/t))
```

```
29 X=((C1-M)/C2)
30 //now for x
31 x=erfinv(X)*2*sqrt(Dx*t)*10^4 //m
32 printf ("depth of carburization is %f m",x)
```

Scilab code Exa 7.3 depth for post machining

```
1 // \text{example} -7.3
2 / page no -211
3 //given
4 // \text{temp}
5 T = 950 + 273 / K
6 \quad QA1 = 83 * 10^3
                   //J/mole
7 QA2=157*10^3 //J/mole
8 R=8.314
9 D01=0.008*10^-4 //m^2/s
10 D02=0.7*10^-4 //\text{m}^2/\text{s}
11 Ms=0.8 //\%
12 Mc=0 //\%
13 Mx = 0.6 //\%
14 t = 4*3600 //sec
15 D=1.38*10^-11 //\text{m}^2/\text{s}
16 // diffusivity at 950 degrees celcius
17 Dx = D01 * exp(-QA2/R/T) //m<sup>2</sup>/s
18 //now we use fick's solution which is given by
19 //M(x,t)=C1-C2*erf(x/2/sqrt(Dt))
20 // first boundary condition is
21 / M(x, 0) = 0.8 \text{ for } x < 0
22 //on solving we get
23 / C1 + C2 = 0.8
24 //second boundary condition is
25 / M(0, t) = 0
\frac{26}{\sqrt{\text{so we get}}}
27 / C1 - C2 = 0
28 //therefore we get
```

```
29  C1=0
30  C2=0.8
31    //so we get x as
32    x=erfinv((C1-Mx)/C2)*2*sqrt(D*t)
33    printf ("post machining is to be done upto %f mm",x)
```

Scilab code Exa 7.4 duration for which material is to kept at high temperature

```
1 // \text{example} -7.4
2 //page no-213
3 //given
4 D0=0.002*10^-6
                     //\text{m}^2/\text{s}
5 Q=120*10^3 //J/mol
6 T = 550 + 273 / K
7 //the condition for diffusion are
8 / M(x, 0) = 4\% \text{ for } x > 0
9 / M(x, 0) = 0\% \text{ for } x < 0
10 x = (0.25 - 0.10) * 10^{-3}
11 \text{ Mx} = 0.4
           //%
12 R=8.314 //gas constant
13 // diffusion at 550 degrees celcius is
14 Dx = D0 * exp(-Q/R/T) //m^2/s
15 //by using
16 //M(x,t) = C1 - C2 * erf(x/2/sqrt(Dx*t))
17 //putting boundary conditions in above equation we
      get
18 C1=2
           //%
19 C2=2
          //%
20 //solving for t
21 / \text{we get}
22 t = (erfinv((C1-Mx)/C2)*2*sqrt(Dx)/x)^-2 //sec
23 printf ("the duration for which he material is kept
      at 550 degrees celcius is %e sec",t)
```

Scilab code Exa 7.5 depth of material

```
1 // \text{example} -7.5
2 / page no -215
3 //given
                //atoms/m^3
4 \text{ Mx} = 10^22
5 M0 = 10^24
               //atoms/m^3
6 t = 3*3600
               //\mathrm{sec}
7 T = 1100 + 273 / K
8 D=7*10^-17
                   //\mathrm{m}^2/\mathrm{s}
9 //boundary cinditions are
10 / M(x, 0) = 0 \text{ for } x > 0 \text{ at } t = 0
11 / M(0, t) = 10^2 4 atoms/m^3
12 / M(x, t) = C1 - C2 * erf(x/22/sqrt(D*t))
13 //putting boundary conditions in the above equation
14 / \text{we get}
15 C1=10^24
                //atoms/m^3
16 C2=10<sup>24</sup>
               //atoms/m^3
17 // solving for x
18 //now for x we have
19 x=erfinv((C1-Mx)/C2)*2*sqrt(D*t)*10^3
20 printf ("depth below the surface at which the
       concentration is 10<sup>22</sup> atoms/m<sup>3</sup> is %f mm, x)
```

Scilab code Exa 7.6 diffusivity

```
1 //example -7.6
2 //page no-216
3 //given
4 //temp and pressure of Nitrogen gas
5 T=400 //K
6 P=15 //atm
```

```
7 // Nitrogen conc at the inner surface of the tank
8 M=12 //kg/m^3
9 //constant DO and activation energy
10 D0=5*10^-7 // m^2/s
11 Q = 75 * 10^3 //J/mol
12 //thickness of tank wall
13 \quad x = 6 * 10^{-3}
              //m
14 D=M/x //kg/m^4
                   (calculation mistake in book)
15 //gas constant
16 R=8.314 //J/mol/K
17 //dufusing flux
18 //Jx = -Dx*m/x kg/m^2/s
19 //Dx can be determined as follows
20 Dx=D0*exp(-Q/R/T) //m^2/s
21 //so //diffusing flux will be
22 Jx=Dx*D //kg/m<sup>2</sup>/s (calculation mistake in book)
23 printf ("diffusing rate of nitrogen is \%e \text{ kg/m}^2/\text{s}",
      Jx)
```

Scilab code Exa 7.7 activation energy

```
1 //example -7.7
2 //page no-217
3 //given
4 //ratio of rate of diffusion at 1350 and 110 degree
        C is 8
5 //so
6 //dM/dt at 1350 degree C(1623K)/dM/dt at 110 degree C
        (1373K)=8
7 //so
8 Ratio=8
9 //we know that
10 //Dx=D0*exp(-Q/R/T)
11 //so Dx (at 1623 K)/Dx (at 1373 K)= exp(-Q/R/T1-Q/R/T2)
```

Chapter 8

phase and phase diagrams

Scilab code Exa 8.1 gibbs phase rule

```
1 // \text{example} - 8.1
2 //page no-227
3 //given
4 //according to reduced phase rule, we have
5 / D = C - P + 2
6 C=2 // for two component system
7 P = 1
8 for P=1:5
        //no of variables
9
       V = P * (C-1) + 2
10
       //degrees of freedom
11
       D=C-P+2
12
13 end
14
    printf ("we can see that for P=5 we have D=-1 i.e
       non existent so, two components cannot have more
       than 4 phases in equilibrium")
```

Scilab code Exa 8.2 composition of alloy

```
1 // \text{example} - 8.2
2 //page no-235
3 //given
4 //density of alpha and beta phases
5 rhoalpha=10300
                    // kg/m^3
6 rhobeta=7300 // \text{kg/m}^3
7 //refer to fig -8.5 in book
8 //at point B, the composition of lead in alpha-phase
       is 82% and that of tin in alpha-phase is 18%
9 leadalpha=82
10 tinalpha=18
11 //so we get
12 / 82/ \text{rholead} + 18/ \text{rhotin} = 100/ \text{rhoalpha}
13 //similarly at point E
14 //the composition of tin and lead resp are 97\% and 3
15 leadbeta=3
16 \text{ tinbeta=97}
17 //so we get
18 //3/ \text{rholead} + 97/ \text{rhotin} = 100/ \text{rhobeta} = -----(2)
19 //solving 1 and 2
20 //we get
21 rholead=11364.1 // kg/m^3
                     // kg/m^3
22 rhotin=7220.14
23 //let density of eutectic composition is rhoe.
      knowing the compositions at point D, we can write
24 //38/ \text{rholead} + 62/ \text{rhotin} = 100/ \text{rhoe}
25 //so
26 rhoe=100/(38/rholead+62/rhotin) //kg/m^3
27 //it is given that there is 88\% eutectic composition
       by volume. its conversion in weight proportions
      veild
28 \ W = 88/100 * rhoe
                    //kgf
                    //Kgf
29 Wlead=38/100*W
                     // kgf
30 \text{ Wtin} = 62/100*W
31 //there is 12% beta phase by volume which on
      converion to weight proportion gives
32 \text{ Wdash} = 12/100 * \text{rhobeta} // \text{Kgf}
```

Scilab code Exa 8.4 peritectic system

```
1 // \text{example} - 8.4
2 //page no-242
3 //given
4 //melting point of A and B
5 MptA=1250 //degrees celcius
6 MptB=1900
              //degrees celcius
7 //part(a)
8 //according to the conditions given in question
     phase diagram can be drawn as shown in fig 8.10
     given in book
9 //part(b)
10 //at 1250 degrees celcius, it is a peritectic
     solution
11 //equation representing the equilibrium is given in
     the book which denotes forward reaction as
      cooling and backward as heating
12 //part (c)
13 //we are just considering a tie line just above the
      peritectic line at temp 1251 degrees celcius
14 //at this point
15 Cs1=80
16 Cl1=30
17 CO1=75
```

```
18 //point below peritectic line has temp as 1249
      degrees celcius
19 \text{ Cs}2=80
20 C12=50
21 CO2=75
22 //weight fraction of the phase present in the
      material of overall composition 75% B at 1251
      degrees celcius and 75% B at 1249 degrees
23 f_alpha1 = (Cs1 - CO1) / (Cs1 - Cl1) *100
                                          //%
24 f_beta1 = (C01 - C11) / (Cs1 - C11) * 100
                                          //%
25 f_alpha2 = (Cs2 - CO2) / (Cs2 - Cl2) * 100
26 f_beta2 = (C02 - C12) / (Cs2 - C12) * 100
27 //part (d)
28 // 75\% B at room temp
29 \text{ Cs3} = 90
30 Cl3=30
31 \quad \text{C03} = 75
32 f_alpha3 = (Cs3 - CO3) / (Cs3 - Cl3) * 100
33 f_beta3 = (C03 - C13) / (Cs3 - C13) * 100
                                          //%
34 //the microstructure is also shown in book at page
      no 243
35 printf ("weight fraction of the phase present in the
       material of overall composition 75 percent B at
      1251 degrees celcius and 75 percent B at 1249
      degrees are %d %d %f %f and at 75 percent
      concentration of B at room temp is %d %d",
      f_alpha1,f_beta1,f_alpha2,f_beta2,f_alpha3,
      f_beta3)
```

Scilab code Exa 8.5 eutectic system

```
graph can be drawn as shown in fig 8.12

5 //the given temp 576.9 degees celcius is just below the eutectic temp 577 degres celcius

6 //from the graph, we can have the following values

7 C_beta_e=100

8 C_e=1.65

9 C_0=10

10 //hence weight fraction is given by

11 W_alpha=(C_beta_e-C_0)/(C_beta_e-C_e)

12 printf ("the weight fraction of alpha in an alloy containing 10 percent Si at 576.9 degrees celcius is %f ", W_alpha)
```

Scilab code Exa 8.6 eutectic system

```
1 // \text{example} - 8.6
2 / page no -247
3 //given
4 //weight percent of tin and lead are
5 W1 = 90
6 W2 = 10
7 //let the amount of tin that can be added to the
      crucible without
                         changing the system's
      solidification is "m"
8 //eutectic arm extends to 97% tin
9 //therefore, with the addition of "m" gram of tin,
      the composition of alloy should not exceed 97%
      tin
10 //therefore
11 / (900+m) / (1000+m) = 97/100
13 m = (97/100*1000-900)/(1-97/100)/1000 //kg because 1
     kg = 1000g
14 printf ("maximum %f kg of tin can be added without
      changing the systems temperature", m)
```

Scilab code Exa 8.7 eutectoid mixture of pearlite

```
//example - 8.7
//page no - 250
//given
//the eutectoidal mixture of pearlite consists of
two phases viz. alpha (ferrite) and Fe3C (
cementite). the eutectoid composition contains
0.83% carbon. the lever rule is applied in which
the lever arm has ferrite (=0% carbon) at one end
and cementite (6.67% carbon) at the other end.
the fulcrum is taken at 0.83% carbon. hence by
applying lever rule, we get
Walpha = (6.67 - 0.83) / (6.67 - 0.00)
WFe3C = (0.83 - 0.0) / (6.67 - 0.0)
rintf ("the weight fractions of ferrite and
cementite are %f and %f resp", Walpha, WFe3C)
```

Chapter 9

mechanical properties

Scilab code Exa 9.1 tensile strain and youngs modulus

```
1 // \text{example} -9.1
2 / \text{page no} - 259
3 //given
4 //bonding characteristics of a material are
6 m=9
7 A = 7.56 * 10^{-29}
                    //J m
8 //initial bond length
9 r_0=2.3*10^-10
                    //\mathrm{m}
10 //this bond length exceed by 15 %
11 //so extension is
12 e=15/100*r_0
13 //new bond length will be
14 r=r_0+e
            //\mathrm{m}
15 //the axial tensile starin is given by
16 epsilon_t=e/r_0 //(change in dimension /original
      dimension)
17 //according to P-r function we have
18 B=A*r_0^8/9 //J \text{ m}^9
19 //we have double deravative of P as
20 double_derivative_P = -2*A/r_0^3+90*B/r_0^11
                                                    ///J/m
```

```
^2
21 //so youngs modulus will be given by
22 E=double_derivative_P/r_0*10^-9 //GPa (some approximation is done in book)
23 printf ("the axial stain is %.2 f \n and youngs modulus of elasticity is %e GPa", epsilon_t,E)
```

Scilab code Exa 9.4 stress strain

```
1 // \text{example} -9.4
2 / page no -274
3 //given
4 //according to the data given in the question we can
      have the graph shown in the fig 9.11 in book
5 //part(a):- tangent modulus of elasticity at 200 MPa
6 E_tangent = (222-168)*10^9/(1.90-1.42)/10^9 //G Pa (
      values from graph)
7 //part(b):- secant modulus of elasticity at 180 MPa
8 E_{secant} = (180-0)*10^9/(1.46-0)/10^9
                                         //G Pa (
     values from graph)
9 //part(c):-youngs modulus of elasticity at 85 MPa
10 E=(85-0)*10^6/((0.68-0)*10^-3)/10^9
                                         //G Pa
      values from graph)
11 printf ("tangent modulus of elasticity at 200 MPa is
      %f Pa\n secant modulus of elasticity at 180 MPa
     is %d Pa \n youngs modulus of elasticity at 85
     MPa is %d Pa", E_tangent, E_secant, E)
```

Scilab code Exa 9.5 stress

```
1 //example -9.5
2 //page no -280
3 //given
```

```
4 //stress
5 sigmamean=70 //MPa
6 //stress range
7 sigmarange=210 //MPa
8 //as we know that
9 // sigmamean = (sigmamax + sigmamin)/2
10 //from this we get
11 // sigmamax + sigmamin = 140
12 // also
13 //sigmarange=sigmamax-sigmamin
14 //so we get
15 / sigmamax - sigmamin = 210 ----(2)
16 //solving 1 and 2
17 / \text{we get}
18 \text{ sigmamax} = (140+210)/2
                           //MPa
20 sigmamin=140-sigmamax
                           //MPa
21 //stress ratio
22 R=sigmamin/sigmamax
23 //stress ranges from sigmamin to sigmamax
24 //so total sum will be
25 totalsum=-sigmamin+sigmamax //MPa
26 printf ("the maximum and minimum stresses are %d MPa
       and %d MPa resp\n, stress rstio is %f\n and
      totalsum is %d MPa", sigmamax, sigmamin, R, totalsum)
```

Scilab code Exa 9.7 creep

```
// example -9.7
// page no-289
// given
// temp
T=600 // degree C
// tightenening stress
sigmai=750 // kgf/cm^2
```

```
8 //minimum creep rate
9 vcr=2.8*10^-8 //cm/cm/hour
10 //stress
11 sigma=300
             // kgf/cm^2
12 //young's modulus
13 E=2*10^6
              // kgf/cm^2
14 //constant
15 n=3
16 //we knnow that minimum creep rate
17 / vcr = A * sigma^n
18 // so
19 A=vcr/sigma^n
20 //total time involved in creep of bolt is 1 year
21 t = 365 * 24 // hours
22 //the stress relaxation in bolt due to creep is
      expresed by:-
23 //1/(sigmaif)^(n-1)=1/(sigmai)^(n-1)+A*E*(n-1)*t
24 //we have to find sigmaif
25 //so
26 sigmaif = \{(1/(sigmai)^(n-1) + A*E*(n-1)*t)^(1/(n-1))\}
     }^-1
27 printf ("the stress relaxation in bolt to creep is
     \%f kgf/cm^2",sigmaif)
```

Chapter 10

Mechanical Tests and Factors Affecting Mechanical Properties

Scilab code Exa 10.1 stress strain

```
1 // \text{example} - 10.1
\frac{2}{\text{page no}} - 298
3 //given
4 //initial gauge length of the specimen
5 \ 10=50*10^{-3} \ //m
6 //initia; l gauge diameter of the specimen
7 d0=12*10^{-3} /m
8 //extended gauge length of fracture
9 	 1f = 58 * 10^{-3}
                  //m
10 //reduced gauge diameter
11 df = 7*10^{-3} //m
12 //initial an final cross sectional areas are
13 A_i = 3.14/4*d0^2
                      //\mathrm{m}^2
14 A_f = 3.14/4 * df^2
                        //\mathrm{m}^2
15 //various applied loads are in k N
16 P1=0
17 P2=5
```

```
18 P3=10
19 P4=15
20 P5 = 20
21 P6=25
22 P7=30
23 P8=32
24 P9 = 33
25 P10=32
26 P11=31
27 P12=35
28 P13=40
29 P16=130
30 //corresponding to these load we have recorded
       elongation as
31 delta1=0
32 \text{ delta2=0.011}
33 delta3=0.022
34 \text{ delta4=0.035}
35 \text{ delta5=0.048}
36 \text{ delta6=0.059}
37 \text{ delta7=0.073}
38 \text{ delta8=0.088}
39 \text{ delta}9 = 0.100
40 \text{ delta10=0.125}
41 delta11=0.150
42 delta12=0.230
43 delta13=0.400
44 delta16=8.000
45 //stress and strain corresponding to these loads and
        elongations are
46 \text{ sigma1=P1/A_i}
47 strain1=delta1/10
48 \text{ sigma2=P2/A_i}
49 strain2=delta2/10
50 sigma3=P3/A_i
51 strain3=delta3/10
52 \text{ sigma4=P4/A_i}
53 strain4=delta4/10
```

```
54 \text{ sigma} 5 = P5/A_i
55 \text{ strain5=delta5/10}
56 sigma6=P6/A_i
57 strain6=delta6/10
58 \text{ sigma7=P7/A_i}
59 strain7=delta7/10
60 sigma8=P8/A_i
61 strain8=delta8/10
62 \text{ sigma9=P9/A_i}
63 strain9=delta9/10
64 sigma10=P10/A_i
65 \text{ strain10=delta10/l0}
66 sigma11=P11/A_i
67 strain11=delta11/10
68 sigma12=P12/A_i
69 strain12=delta12/10
70 sigma13=P13/A_i
71 strain13=delta13/10
72 sigma16=P16/A_i
73 strain16=delta16/10
74 //part(a)
75 //modulus of elasticity
                                                  //G Pa
76 E=(sigma4-sigma1)/(strain4-strain1)/10^3
77 //part(b)
78 //ultimate stress (maximum)
79 ultimate_sigma=P16/A_i*10^3/10^6
                                       //M N/m^3
80 //part (c)
81 //upper yield point at C (shown in fig 10.3)
82 u_yield=P9/A_i*1000/10^6
                                //M N/m^2
83 //lower yield point at D (shown in fig 10.3)
                                //M N/m^2
84 l_yield=P11/A_i*1000/10^6
85 //part(d)
86 //percentage reduction in area
                                      //%
87 percent_A = (d0^2 - df^2)/d0^2 * 100
88 //part (e)
89 //percentage elongation
90 \text{ percent_l} = (1f-10)/10*100
91 //part(f)
```

```
//apparent breaking stress
app_breaking_stress=P16*1000/A_i/10^6 //M N/m^2
//actual breaking stress
sactual_breaking_stress=P16*1000/A_f/10^6 //M N/m^2
printf ("the modulus of elasticity is %f G Pa \n the ultimate (maximum) stress is %f M n/m^2 \n, upper yield point is %f M N/m^2 \n lower yield point is %f M n/m^2\n percentage reduction in area is %f \n percentage elongation in length %f\n apparent breaking stress is %f M n/mm^2\n actual breaking point is %f M n/m^2", E, ultimate_sigma, u_yield,l_yield,percent_A,percent_l, app_breaking_stress,actual_breaking_stress)
```

Scilab code Exa 10.2 stress strain

```
1 // \text{example} - 10.2
2 //page no-303
3 //given
4 //initial length of the specimen
5 h0=24.02*10^{-3}
                      //\mathrm{m}
6 //initial gauge diameter of the specimen
7 d0=18.74*10^{-3}
                     //m
8 //final length of specimen
9 hf = 18.70 * 10^{-3}
                      //m
10 //final diameter
11 df = 21.54 * 10^{-3} / m
12 //initial an final cross sectional areas are
13 A_i = 3.14/4*d0^2
                       //\text{m}^2
14 A_f = 3.14/4*df^2
                        //m^2
15 //various applied loads are in k N
16 P1=0
17 P2=5
18 P3=10
19 P4=15
```

```
20 P5 = 20
21 P6=25
22 P7=30
23 P8=35
24 P9 = 40
25 P10=45
26 P11=50
27 P12=55
28 P13=60
29 P14=65
30 P15=70
31 P16=75
32 P17=80
33 P18=85
34 P19=131
35 //corresponding to these load we have recorded
       contraction as
36 \text{ delta1=0}
37 \text{ delta2=0.004}
38 \text{ delta3=0.008}
39 \text{ delta4=0.012}
40 \text{ delta5=0.015}
41 delta6=0.017
42 \text{ delta7=0.020}
43 delta8=0.023
44 \text{ delta9=0.025}
45 delta10=0.028
46 delta11=0.032
47 delta12=0.036
48 delta13=0.040
49 \text{ delta} 14 = 0.044
50 \text{ delta} 15 = 0.049
51 delta16=0.054
52 \text{ delta} 17 = 0.061
53 \text{ delta} 18 = 0.069
54 //stress and strain corresponding to these loads and
        elongations are
55 \text{ sigma1=P1/A_i}
```

```
56 strain1=delta1/h0
57 sigma2=P2/A_i
58 strain2=delta2/h0
59 sigma3=P3/A_i
60 strain3=delta3/h0
61 sigma4=P4/A_i
62 strain4=delta4/h0
63 sigma5=P5/A_i
64 strain5=delta5/h0
65 \text{ sigma} 6 = P6/A_i
66 strain6=delta6/h0
67 sigma7=P7/A_i
68 strain7=delta7/h0
69 sigma8=P8/A_i
70 strain8=delta8/h0
71 \text{ sigma9=P9/A_i}
72 strain9=delta9/h0
73 \text{ sigma10=P10/A_i}
74 strain10=delta10/h0
75 sigma11=P11/A_i
76 strain11=delta11/h0
77 sigma12=P12/A_i
78 strain12=delta12/h0
79 sigma13=P13/A_i
80 strain13=delta13/h0
81 sigma14=P14/A_i
82 strain14=delta14/h0
83 sigma15=P15/A_i
84 strain15=delta15/h0
85 sigma16=P16/A_i
86 strain16=delta16/h0
87 sigma17=P17/A_i
88 strain17=delta17/h0
89 sigma18=P18/A_i
90 strain18=delta18/h0
91 //part(a)
92 //modulus of elasticity
```

//G Pa

93 $E=(sigma13-sigma1)/(strain13-strain1)/10^3$

```
94 // part (b)
95 // yield stress at D (shown in fig 10.6)
96 yield=P15/A_i*1000/10^6
                             /M N/m^2
97 //part (c)
98 //ultimate stress (maximum)
99 ultimate_sigma=P19/A_i*10^3/10^6 /M N/m^3
100 //part (d)
101 //percentage contraction
102 \text{ percent_l=}(h0-hf)/h0*100
103 //part(e)
104 //percentage increase in area
105 percent_A = (df^2-d0^2)/d0^2*100
106 //part(f)
107 //apparent breaking stress
108 app_breaking_stress=P19*1000/A_i/10^6 /M N/m^2
109 //actual breaking stress
110 actual_breaking_stress=P19*1000/A_f/10^6 /M N/m^2
111 printf ("the modulus of elasticity is %f G Pa \n ,
       yield stress is %f M n/m^2\nthe ultimate (maximum
      ) stress is %f M n/m<sup>2</sup> \n percentage contraction
       in length %f\n percentage increase in area is %f
       \n apparent breaking stress is \%f M n/mm^2\n
       actual breaking point is %f M n/m^2", E, yield,
      ultimate_sigma, percent_l, percent_A,
      app_breaking_stress, actual_breaking_stress)
```

Scilab code Exa 10.3 Mechanical properties

```
// example -10.3
// page no-307
// given
// length of glass piece
1=1.1*10^3 //mm
// width of glass piece
b=225 //mm
```

```
8 //height or thicness of plate
9 h = 10 / mm
10 //load
11 P = 250 / N
12 //for a simply supported beam subjected to
      concentrated load in the middle of its span,
13 M = P * 1/4 / N mm
14 //and force
15 F=P/2 //N
16 // part (a)
17 //flexure strength
18 sigma=6*M/b/h^2 //N/mm<sup>2</sup>
19 //part (b)
20 //shear strength
21 tau=3*F/2/b/h //N/mm<sup>2</sup>
22 // part (c)
23 P1 = 350 / N
24 M1=P1*1/4
25 //ineria
26 I = b*h^3/12 /mm^4
27 \text{ y=h/2} //\text{mm}
28 //the modulus of rupture is given by
29 \text{ sigmar} = M1 * y / I
30 printf ("the flexture strength, shear strength and
      modulus of rupture are %f N/mm<sup>2</sup>, %f N/mm<sup>2</sup> and
      \%f N/mm<sup>2</sup> resp", sigma, tau, sigmar)
```

Scilab code Exa 10.4 BHN Number

```
// example -10.4
// page no-313
// given
// diameter of ball
D=0.5*10 //mm
// indentation diameter
```

```
7 d=32.5/10 //mm (diveided by 10 because it is 10
         times magnified)
8 //from table- 10.3 of book , the load for steel
        specimen is
9 P=30*D^2 //kg f
10 //hardness
11 BHN=P/[(%pi)*D/2*{D-sqrt(D^2-d^2)}]
12 printf ("the hardness is %f" ,BHN)
```

Scilab code Exa 10.5 mechanical properties

```
1 // \text{example} - 10.5
2 / \text{page no} -321
3 //given
4 //dimension of steel specimen
5 1=75
        //mm
         //mm
6 b = 10
7 t = 10 / mm
8 //depth of V-notch is t/5
9 //in the absence of specimen, frictional and windage
       loss
10 L1=0.1 // \text{kg f.m}
11 //in the presence of specimen, which is placed on
      support breaks
12 L2=5.9 //kg f m
13 //rupture energy
14 U=L2-L1 //kg f m
15 //since the depth of V-notch is t/5
16 / so t/5=2
17 \text{ te=t-2} / \text{mm}
18 //volume of specimen
19 Ve=1*b*te*10^-9 //m<sup>3</sup>
20 //modulus of rupture
21 Ur=U/Ve //kg f/m^2
22 //effective area of cross section
```

```
23 Ae=b*te*10^-6 //\text{m}^2
24 //notch impact strength
25 Is=U/Ae
            // \text{kg/m}
26 //given that
27 \text{ Ui} = 30
           //kg f.m
28 alpha=160*(%pi)/180
                         //radians
29 //swing diameter
          //mm
30 D=1600
31 R = D/2 * 10^{-3} / m
32 //weight of hammer
33 //as we know that
34 //Ut = W*R(1-\cos(aplha))
35 //so
36 W=Ui/R/(1-\cos(alpha)) //kg f.m
37 //capacity of izod impact testing machine
38 L3=30 //kg f.m
39 //so Uf will be
40 Uf=L3-L2
              //kbg f.m
41 //we know that energy after rupture
42 //Uf=W*R(1-\cos(beta))
43 bet=acos(1-Uf/W/R)
                        //radins
44 //beta in degrees
45 Beta=bet*180/(%pi)
                        //degrees
46 //also we know that Uf=W*hf
47 //so hf will be
48 hf = Uf/W //m
49 printf ("rupture energy is %f kg f.m \n, modulus of
      rupture %f kg f/m^2 \n, notch impact strength %f
      kg/m \n, angle of hammer after striking %f
      degrees \n and height risen by hammer after
      breaking %f m", U, Ur, Is, Beta, hf)
```

Scilab code Exa 10.6 endurance stress

```
1 // \text{example} - 10.6
```

```
2 //page no-323
3 //given
4 //diameter of circular section of bean
5 d = 60 / mm
6 //length of circular section of beam
7 1 = 500 / mm
8 //maximum and minimum load
9 \text{ Pmin} = 20
              //kN
10 \text{ Pmax} = 50
             //kN
11 //ultimate strength
12 sigmau=650
               //MPa
13 //yoeld strength
14 sigmay=520
               //MPa
15 //factor of safety
16 \text{ fos} = 1.8
17 //maximum bending moment
18 \quad \text{Mmax} = \text{Pmax} * 1/4
                  //kN mm
19 //minimum bending moment
20 Mmin=Pmin*1/4
                  //kN mm
21 //mean bending moment
22 Mm = (Mmax + Mmin)/2 / kN mm
23 //alerting (variable) bending moment
24 Ma=(Mmax-Mmin)/2 //kN mm
25 //section modulus of beam
Z = (\%pi)*d^3/32 /mm^3
27 //mean bending stress
28 \quad \text{sigmam} = \text{Mm}/\text{Z}*1000
                     //MPa
29 //variable bending stress
                        //MPa
30 \text{ sigmaa=Ma/Z*1000}
31 //endurance stress from
32 //(i) gerber's parabolic relation
33 sigmae1=sigmaa/[1/fos-(sigmam/sigmau)^2*fos]
                                                    //MPa
34 //(ii) goodman's straight line relation
35 sigmae2=sigmaa/[1/fos-sigmam/sigmau]
                                            //MPa
36 //(iii) soderberg's straight line realtion
37 sigmae3=sigmaa/[1/fos-sigmam/sigmay]
38 printf ("sndurance strength of the material are \n
      Gerbers parabolic fomula %f MPa\n, goodmans
```

```
straight line formula %f MPa\n and sodergerbs straight line relation %f MPa ",sigmae1,sigmae2,sigmae3)
```

Scilab code Exa 10.7 yield strength

```
1 / \text{example} - 10.7
2 / \text{page no} - 329
3 //given
4 //yeild strength of polycrystalline material
      increases from sigmay1 to sigmay2
                 //MPa
5 \text{ sigmay} 1 = 118
6 sigmay2=207
                 //MPa
7 //decreasing grain diameter from d1 to d2
8 d1=0.253*10^-3
                     //\mathrm{m}
9 d2=0.0224*10^-3
                      //m
10 //to find the yield strngth at
11 d=0.095*10^{-3} //m
12 //as we know that according to hall and petch
      equation,
13 // sigmay = sigma0 + C/ sqrt(d)
14 //putting sigmay1, sigmay2, d1 and d2.. we get 2
      equations
15 / sigma0 + C / sqrt(d1) = sigmay1 ----(1)
16 //and sigma0+C/sqrt(d2)=sigmay2
17 //solving equation 1 and 2 we get
18 sigma0=80.3 //MPa
19 //and
20 C=0.1896
             //MN/m^{(3/2)}
21 //so the yield stress for the grain size
22 d=0.095*10^{-3}
                  //\mathrm{m}
23 sigma=sigma0+C/sqrt(d) //MPa
24 printf ("the yield stress for a grain of size of
      0.095~\mathrm{mm} is \%\mathrm{f} MPa", sigma)
```

Scilab code Exa 10.8 ASTM Number

```
//example -10.8
//page no-330
//given
//ASTM number
n=12
//as we know that
N=2^(n-1)
//s quare inch=645 mm^2
//so grain diameter for ASTM number 12 will be
d=1/sqrt((N/645)*10^4) //mm
printf ("the grain diameter of ASTM number 12 is %f mm",d)
```

Scilab code Exa 10.9 ASTM Number

```
1 // \text{example} - 10.9
2 / \text{page no} -330
3 //given
4 //ASTM number of grain
5 n=5
6 //as we know that
7 N=2^(n-1) //grains/inche^2 at magnification 100*
8 // as lineal and areal magnifications are related as
       *100=10,000 areal
9 \text{ N1=N/0.01/0.01}
                    //\operatorname{grains/inch^2} at 1*
10 //average area of one grain
11 A=2.54*2.54/N1 //cm^2
12 //now N1 grains/ inch^2 of surface is = sqrt
      (160,000)=400 grain/inch of length and this is
      equal to =(400)^3=6.4*10^7 grains/m<sup>3</sup> of volume
```

Scilab code Exa 10.16 ASTM Number

```
1 / \exp -10.16
2 / page no -332
3 //given
4 //ASTM number
5 n=4
6 //as we know that
7 N=2^{(n-1)} //per inch<sup>2</sup> at a magnification of 100
8 //let r be the radius of grain
9 //so
10 /N*A=1/100 inch^2 where A=(\%pi)*r^2
11 // so
12 r=sqrt(1/100/N/(%pi))
                           //inch
13 //radius of grain in mm
14 R=r*25.4 //mm
15 printf ("the radius of grain is %f mm", R)
```

Theories of Inelastic Anelastic and Viscoelastic Deformations and Fractura

Scilab code Exa 11.1 shear stress

```
1 // \text{example} - 11.1
\frac{2}{\text{page no}} - \frac{343}{\text{page no}}
3 / given
4 //applied stress
5 \text{ sigmax} = 3.5
                 //MPa
6 //aluminium crystal slips from (111) plane in the
       direction [110] when the stess is applied to
       (1-11)
7 //so
8 h1=1
9 k1=1
10 11=1
11 h2=1
12 k2 = -1
13 12=1
14 //magnitude of plane (111)
15 M1 = sqrt(h1^2+k1^2+l1^2)
```

```
16 //magnitude of (1-11)
17 M2 = sqrt(h2^2+k2^2+12^2)
18 //direction [110]
19 h3=1
20 k3=1
21 13=0
22 //magnitude of direction[110]
23 M3 = sqrt(h3^2+k3^2+13^2)
24 //the angle between the planes (111) and (1-11) is
25 cosphie=[{h1*h2+k1*k2+l1*l2}/(M1*M2)]
26 sinphie=sqrt(1-(cosphie)^2)
27 //similarly angle between the plane (111) and the
      direction [110] is given by
28 costheta=[(h1*h3+k1*k3+l1*l3)/(M1*M3)]
29 //critical resolved shear stress
30 taucr=sigmax*2*sinphie*cosphie*costheta/2 //MPa
31 printf ("the critical resolved shear stress is %f
     MPa", taucr)
```

Scilab code Exa 11.2 plastic deformation

```
1  //exaplme -11.2
2  //page no-351
3  //given
4  //shera stress
5  tau=715*10^6  //Pa
6  //shear modulus
7  G=25*10^9  //Pa
8  //atomic radius
9  b=4.05*10^-10  //m
10  //as we know that
11  //tau=G*b/l
12  //so
13  l=G*b/tau  //m
14  printf ("the length of frank- read source in
```

Scilab code Exa 11.3 dislocation density

```
1 / \text{example} - 11.2
2 / page no -351
3 //given
4 //shear modulous
5 G = 25 * 10^9 / Pa
6 //shear stress
7 tau=50*10^6 //Pa
8 //lattice constant of aluminium is
9 a=4.05*10^-10 /m
10 //burger's vector for aluminium is 1/2(110)
11 h = 1
12 k = 1
13 1=0
14 //atomic radius of aluminium
15 b=a/sqrt(h^2+k^2+1^2) // m
16 //as we know that
17 // tau = G*b/L
18 // so
19 L=G*b/tau //m
20 //disloaction density is rhoD (let)
21 rhoD = 1/L^2 // per m^2
                             (calculation mistake,
      there in book formula written is correct but
      calculation is wrong)
22 printf ("the dislocation density is %e per m^2", rhoD
     )
```

Scilab code Exa 11.4 rate of straining

```
1 // \text{example} - 11.4
```

```
//page no-352
//given
//burger vector
b=4*10^-10 //m
//density
N=10^13 //lines/m^2
//velocity
v=10^-5 //m/s
//rate of straining
persilonP=N*b*v //lines/sec
printf ("the rate of starining is %f lines/sec", epsilonP)
```

Scilab code Exa 11.5 stress and strain

```
1 // \text{example} - 11.5
2 //page no-357
3 //given
4 //conventional stress
5 \text{ sigmac} = 98.9 / \text{MPa}
6 //conventional strain
7 epsilonc=0.35 //mm/mm
8 //as we know that
9 epsilont=log(1+epsilonc)
                                 / /mm/mm
10 // also
11 / sigmac = sigmat * exp(-epsilont)
12 // so
13 sigmat=sigmac/exp(-epsilont) //MPa
14 printf ("the true strees is %f MPa\n and true strain
       is %f mm/mm", sigmat, epsilont)
```

Scilab code Exa 11.6 stress strain

```
1 // \text{example} - 11.6
2 //page no-357
3 //given
4 //material constant
5 \text{ K} = 500 / \text{MPa}
6 //strain hardenening coefficient
7 n = 0.20
8 //according to true stress-strain relation
9 //sigmat=d sigmat/d epsilont=d(Kepsilont^n)/d
      epsilont
10 //so we get
11 // sigmat = n * K * epsilont^(n-1) ----(1)
12 //also we know that
13 / sigmat = K * epsilont^n -----(2)
14 //equating (1) and (2)
15 epsilont=n
16 //also we know that
17 // epsilont = log (1 + epsilonc)
18 // so
19 epsilonc=exp(epsilont)-1
20 / \text{now}
21 sigmat=K*epsilont^n //MPa
22 printf ("the maximum tensile strength \%f \n and the
      linear strain are %f MPa ", epsilonc, sigmat)
```

Scilab code Exa 11.7 relaxation time

```
// exapmle -11.7
// page no-363
// given
// applied strain
epsilon=0.4
// immediate stress
sigmai=10*10^9 //Pa
// after 42 days stress is
```

```
9 sigma=5*10^9 //Pa
10 t=42 //days
11 //as we know that
12 //sigma=sigmai*exp(-t/tr)
13 //so
14 tr=t/log(sigmai/sigma) //days
15 //stress after 90 days
16 t90=90 //days
17 sigma90=sigmai*exp(-t90/tr)*10^-9 //MPa
18 printf ("relaxation time for the tensile stress to decrease from 10 to 5 MPa is %fdays\n and the stress after 90 days is %f MPa",tr,sigma90)
```

Scilab code Exa 11.8 youngs modulus

```
1 // \text{example} - 11.8
2 / \text{page no} -370
3 //given
4 //crack length of glass piece
5 l=3*10^-6/2 //m divided by 2 because min general we
       consider 2*1 be the length of crack
6 //young modulus
7 E = 70 * 10^9
8 //specific surface energy
9 gammae=1.05 ///J/m^2
10 //fracture strength
11 sigmaf=sqrt (2*E*gammae/(\%pi)/1) //N/m<sup>2</sup>
12 //ratio of strength and young's modulus
13 R=sigmaf/E
14 printf ("fracture strength is \%f N/m<sup>2</sup> \n and the
      ratio of strength and youngs modulus is %f ",
      sigmaf,R)
```

Scilab code Exa 11.9 surface energy

```
1 // exaple -11.9
2 //page no-370
3 //given
4 //young's modulus
5 E=71*10^9
                 //Pa
6 //fracture strength
7 sigmaf=115*10^6
                        //Pa
8 //lenght of crack
9 //2l=6 \text{ micro m}
10 // so
11 1=6/2*10^{-6} //m
12 //as we know that
13 // \operatorname{sigmaf} = \operatorname{sqrt} (2 * E * \operatorname{sigmac} / (\% \operatorname{pi}) / 1)
14 // so
15 sigmac=(sigmaf)^2*(%pi)*1/2/E //J/m^2
16 printf ("surface energy of the etched glass is %f J/
      m^2", sigmac)
```

Scilab code Exa 11.10 griffiths energy

```
1  //example -11.10
2  //page no -370
3  //given
4  E=70*10^9  //Pa
5  gammae=0.85  //J/m^2
6  1=2*10^-6  //m
7  //necessary stress to satisfy the griffith's energy
8  sigmaf=sqrt(2*E*gammae/(%pi)/1)/10^6  //Pa
9  printf ("the necessary stress is %f MPa", sigmaf)
```

Scilab code Exa 11.11 crack length

```
1  //example -11.11
2  //page 371
3  //given
4  E=72*10^9  //Pa
5  gammae=0.9  //J/m^2
6  sigmaf=17.5*10^6  //Pa
7  //as we know that
8  //sigmaf=sqrt(2*E*gammae/(%pi)/1) //N/m^2
9  //so
10  l=2*E*gammae/(%pi)/(sigmaf)^2*1000  //mm
11  //length of intenal crack
12  L=2*1  //m
13  printf ("length of crack on the outer surface is %f mm \n and length of crack internally %f mm",1,L)
```

organic materials plastics rubber elastomers and wood

Scilab code Exa 12.1 polymers

```
//example -12.1
//page no-382
//given
//degree of polymerization of styrene
DOP=10000
//formula of styrene= C8H8
//molecular weight of styrene monomer
Mm=12*8+1*8
//molecular weight of polymer
Mp=DOP*Mm
printf ("the molecular weight of styrene polymer is %d", Mp)
```

Scilab code Exa 12.2 polymers

```
1 // \text{example} - 12.2
```

```
\frac{2}{\text{page no}} - 382
3 //given
4 //degree of polymerization of teflon
5 DOP=100000
6 //chemical formula of teflon is C2F4
7 //molecular weight of monomer teflon
8 \text{ Mm} = 2 * 12 + 4 * 19
9 //molecular weight of teflon polymer
10 Mp = DOP * Mm
11 //molecular weight of polythene monomer i.ee C2H4
12 MmP = 2 * 12 + 4 * 1
13 //molecular weight of polythene polymer
14 \text{ MpP} = \text{DOP} * \text{MmP}
15 printf ("molecular weight of PTFE anf Polythene are
      %d and %d", Mm, MpP)
16 //ratio of molecular weight of PTFE and Polythene
17 R = Mp/MpP
18 printf ("the ration of molecular weight of PTFE and
      Polythene having same DOP is %f", R)
```

Scilab code Exa 12.3 natural rubber

```
//example -12.3
//page no-396
//given
//the molecular weight of polyisoprene monomer
| Mm=68 //gm
//after vulcanisation with sulphur, it is
| observed that the 2 molecules of isoprene monimer
| require 2 molecules of sulphur
//hence for full cross linking ,(68*2) gm of
| isoprene requires (32*2)gm of sulphur. therefore
| 68kg of isoprene requires
M=32*2*68/68/2 //kg of sulphur
printf ("the weight of sulphur required for cross
```

```
link polymerization of polyisoprene is %d of
    sulphur",M)

10 printf ("the fully cross linked product will be
    EBONITE")
```

Scilab code Exa 12.4 vulcanization of rubber

```
1 // \text{example} - 12.4
2 //page no-396
3 //given
4 // molecular weight of butdiene, isoprene, sulhur and
      carbon black are
5 MB = 4 * 12 + 6 * 1
6 MI = 68
7 MS = 32
8 MC = 12
9 //percentages of different constituents in rubber
10 PB = 27 / MB
11 PI=51/MI
12 PS = 16 / MS
13 \text{ PC=6/MC}
14 //percentage of coss linking
15 percent=PS/(PI+PB)*100
16 printf ("the percentage of cross linking is %d",
      percent)
```

composite material

Scilab code Exa 14.1 composite material

```
1 // \text{example} - 14.1
2 / page no-429
3 //given
4 //part(a)
5 //thickness of GRPS sheet
6 \text{ ts=3} //\text{mm}
7 //depth of this skin
8 \text{ tc} = 24 / \text{mm}
9 //breadth of skin
10 b = 100
          //\mathrm{mm}
11 d=(ts+tc)/2
                  / /mm
12 //moduli of polyster skin and foamare
              //N/mm^2
13 \text{ Es} = 7000
14 \text{ Ec} = 20
          //N/mm^2
15 //values of Is and Ic are
                                    //\text{mm}^4
16 \text{ Is} = 2*(b*ts^3/12+b*ts*d^2)
17 Ic=b*tc^3/12 / mmm^4
18 //as we know that flexure rigidity is D, flexure
       rigidity of skin is Ds and that of core is Dc
19 / D = Ds + Dc
20 D=2*Es*Is+Ec*Ic //mm^2 for two skins
```

Scilab code Exa 14.2 composite material

```
1 // \text{example} - 14.2
\frac{2}{\text{page no}} - 441
3 //given
4 //young's modulus of aluminium, iron and boron are
5 //here we are representing a,b and c for aluminum,
      iron and boron resp.
                //Pa
6 Ea = 71 * 10^9
7 Eb = 210 * 10^9
8 Ec=440*10^9 //Pa
9 //as we know that Ec=Ef*Vf+Em*Vm where Ef and Em are
       the young's modulus of fibre and matrix resp.
10 //so we get
11 / 210 = 71 * Va + 440 * Vb
12 //assumin void volume is zero and we know that
13 / Va+Vb=1
14 //so Vb=1-Va -----
15 //on solving 1 and 2 we get
16 Va=31.8
17 Vb=68.2
18 //ratio of Va and Vb
```

```
19 R=Va/Vb
```

20 printf ("the volume ratio of aluminium and boron in aluminium boron composite %d",R)

Scilab code Exa 14.3 composite material

```
1 // \text{example} - 14.3
2 //page no-442
3 //given
4 //elastic moduli of carbon fibre and epoxy resin
5 \text{ Ef} = 430
           //GPa
          ///GPa
6 E=3.6
7 //modular ratio
8 \text{ Pf} = \text{Ef} / \text{E}
9 //part(a)
10 Vf1=0.15
11 \quad Vm1 = 1 - Vf1
12 R1 = Vm1 / Vf1
13 Pc1=Pf+R1
14 volume_fibre1=Pf/Pc1
15 //part(b)
16 Vf2=0.65
17 \quad Vm2 = 1 - Vf2
18 R2 = Vm2/Vf2
19 \text{ Pc2=Pf+R2}
20 volume_fibre2=Pf/Pc2
21 printf ("the fraction of load carried by fibre in
      carbon-epoxy matrix composite containing 15
      percent fibre by volume is %f\n and that by 65
      percent fibre by volume is %f", volume_fibre1,
      volume_fibre2)
```

Scilab code Exa 14.4 composite

```
1 // \text{example} - 14.4
2 //page no-442
3 //given
4 \text{ Vf} = .65
5 \text{ Vm} = 1 - \text{Vf}
6 //part(a)
7 //longitudinal strength is determined by
8 / sigmac = sigmaf * Vf + sigmam * Vm
9 //here according to table given in question we have
10 \text{ sigmaf} = 2.8
11 \text{ sigmam} = 0.0025
12 sigmac=sigmaf*Vf+sigmam*Vm
13 //part(b)
14 //longitudinal modulus is given by
15 / Ec = Ef * Vf + Em * Vm
16 //here according to table
17 Ef = 130
18 \text{ Em} = 3.5
19 Ec=(Ef*Vf+Em*Vm) //GPa
20 //part(c)
21 //transverse modulus is given by
22 //1/EC=Vf/Ef+Vm/Em
23 EC = (Vf/Ef + Vm/Em)^-1
                             //GPa
24 //part(d)
25 //poisson ratio
26 / \text{nuLT} = \text{nuf} * \text{Vf} + \text{num} * \text{Vm}
27 //here according to the table
28 nuf = 0.34
29 num=0.36
30 nuLT=nuf * Vf + num * Vm
31 //part(e)
32 //shear modulus
33 //1/Glt=Vf/Gf+Vm/Gm
34 // here according to the table
35 \text{ Gf} = 2.2
36 \text{ Gm} = 1.2
37 GLT = (Vf/Gf + Vm/Gm)^-1 //GPa
38 printf ("the longitudinal strength is %f GPa\n, the
```

logitudinal modulus is %f GPa\n , the transvrse modulus is %f GPa\n , the poissons ratio is %f\n and sher modulus is %f GPa", sigmac, Ec, EC, nuLT, GLT)

Scilab code Exa 14.5 longitudinal strength and modulus

```
1 // \text{example} - 14.5
2 / page no-444
3 //given
4 //content of polyster
5 \text{ Vm} = 0.45
6 \text{ Vf} = 1 - \text{Vm}
7 //longitudinal strength and modulus are calculated
       using following formulas
8 / sigmac = nu * sigmaf * Vf + singmam * Vm
9 //Ec=nu*Ef*Vf+Em*Vm
10 //according to the table given in the ques
             //GPa
11 Ef = 240
12 \quad \text{Em} = 4.5
            //GPa
13 sigmaf=1.7 //GPa
14 sigmam = 0.0029 //GPa
15 \text{ Gf} = 1.7
16 \text{ Gm} = 1.4
17 nuf = 0.28
18 \text{ num} = 0.32
19 //values of nu
20 nu1=1
21 \text{ nu} 2 = 1/2
22 \text{ nu} 3 = 1/4
23 nu4=3/8
24 \text{ nu} = 1/6
25 //now longitudinal strength for differnt nu
26 sigmac1=nu1*(sigmaf*Vf+sigmam*Vm)
                                                  //GPa
27 sigmac2=nu2*(sigmaf*Vf+sigmam*Vm)
                                                  //GPa
```

```
28 sigmac3=nu3*(sigmaf*Vf+sigmam*Vm)
                                                 //GPa
29 sigmac4=nu4*(sigmaf*Vf+sigmam*Vm)
                                                 //GPa
30 sigmac5=nu5*(sigmaf*Vf+sigmam*Vm)
                                                 //GPa
31 //liongitudina modulus for differnt nu
32 \quad EC1 = nu1 * (Ef * Vf + Em * Vf)
                                   //GPa
33 \quad EC2=nu2*(Ef*Vf+Em*Vf)
                                  //GPa
34 \quad EC3=nu3*(Ef*Vf+Em*Vf)
                                  //GPa
35 \quad \text{EC4} = \text{nu4} * (\text{Ef} * \text{Vf} + \text{Em} * \text{Vf})
                                  //GPa
36 \quad \text{EC5} = \text{nu5} * (\text{Ef} * \text{Vf} + \text{Em} * \text{Vf})
                                  //GPa
37 printf ("longitudinal strength and longitudinal
                                 is %f GPa
       modulus for nu=1
                                                            %f GPa
                                                  and
       \n longitudinal strength and longitudinal modulus
        for nu=1/2
                         is %f GPa
                                           and
                                                    %f GPa\n
       longitudinal strength and longitudinal modulus
                         is %f GPa
       for nu=1/4
                                         and
                                                   %f GPa\n
       longitudinal strength and longitudinal modulus
       for nu=3/8
                          is %f GPa
                                                       %f GPa\n
                                             and
       longitudinal strength and longitudinal modulus
       for nu=1/6
                          is %f GPa
                                           and
      n", sigmac1, EC1, sigmac2, EC2, sigmac3, EC3, sigmac4,
      EC4, sigmac5, EC5)
```

Phase Transformation

Scilab code Exa 15.1 arrhenius concept

```
1 // \text{example} - 15.1
2 / \text{page no} - 461
3 //given
4 //reaction comlete in 500 mins at 10 degree celcius
      and in 1 min at 80 degrees celcius
5 //so
   t1=1 //min
   t2=500 //min
    T1 = 273 + 80 / kelvin
9
    T2 = 273 + 10
               //Kelvin
   //gas constant
10
11
    R = 8.314
12
    //as we know that phie=1/t*
13
    //\log (phie1/phie2) = \log (t2/t1)
14
15
   //so we get
    //\log (t2/t1) = Ea/2.303*(1/T1-1/T2)
16
17
    //so Ea is given by
    Ea=2.303*log(t2/t1)*(1/(1/T1-1/T2))*R
18
19
    //to find the reaction completion time when
       temperature is 40 degrees celcius
```

Scilab code Exa 15.2 homogeneous nucleation

```
1 / \text{example} - 15.2
2 / \text{page no} - 463
3 //given
4 // \text{temp}
5 T = 983 + 273 / K
6 \text{ Tm} = 1083 + 273 / \text{K}
7 deltaT=Tm-T //K
8 //given that
9 //latent heat of fusion of copper
10 deltaHm=1.88*10^9 //J/m^3
11 //interface energy/unit area
12 gammasL=0.144 //J/m^2
13 //change in free energy of vapour
14 deltaGv=deltaHm*deltaT/Tm
                                //J/m^3
15 //critical radius of copper during solidification
16 //for notation only we are using r*=R
17 R=2*gammasL/deltaGv*10^10
                               //A
18 printf ("the critical radius of copper during
      solidification is %f A",R)
```

Scilab code Exa 15.3 homogenous nucleation

```
\frac{1}{2} / \frac{\text{example} - 15.3}{\text{page no} - 463}
```

```
4 //latent heat of fusion of pure gold
5 deltaHf = -1.16*10^9 //J/m^2
6 //surface free energy
7 gama=0.132 //J/m^2
8 //melting point of gold
9 Tm = 1064 + 273 //K
10 //supercooling value
11 deltaT=230 //K
12 //critical radius is given by R intead of r* just
     for notation
13 R=(-2*gama*Tm/deltaHf)*(1/deltaT)*10^9 //nm
14 printf ("critical radius of pure gold at 230 degree
     celcius is %f nm",R)
15 //change in free energy of vapours is
16 deltaGv=deltaHf*deltaT/Tm
                             //J/m^3
17 //activation free energy
18 //for notation deltaG* we use deltaG
19 deltaG=16*(\%pi)*(gama)^3/3/(deltaGv)^2 //J
20 printf ("the activation free energy is %e J", deltaG)
```

Scilab code Exa 15.5 strengthening

```
//example -15.5
//page no-472
//given
//diameter of hard inert particle
D=2 //m
//average centre to centre distance between the particles
1=20*10^-6 //m becaus 1 micro m=10^-6 m
//shear modulus of copper
G=41*10^9 //Pa
//burgers vector
b=0.64*10^-9 //m
//contribution of these particles on the yeild
```

Scilab code Exa 15.7 recovery

```
1 // \text{example} - 15.7
\frac{2}{\sqrt{\text{page no}-474}}
3 //given
4 //heat for recovery of yeild point in zinc
5 Q=83.14*10<sup>3</sup>
                 //J/mole
6 //gas constant
7 R=8.314*10^3 //J/mol K
8 //temperature
9 T1 = 0 + 273 / K
10 T2=27+273 //K
11 //recovery time at 0 degree celcius
12 t2=5 //min
13 //the recovery time for the two different temp is
      given by
14 //1/t1 = A * \exp(-Q/R/T1) -----
15 //1/t2 = A * \exp(-Q/R/T2) ----(2)
16 //taking ratio of (1) to (2)
17 //we get
18 t1=t2*exp(Q/R*(1/T1-1/T2)) //min (there is
      calculation mistake I myself have checked from
      calculator too)
19 printf ("the recovery time at 27 degree celcius is
      %f min",t2)
```

Heat Treatment

Scilab code Exa 16.1 allotropy

```
1 // \text{example} - 16.1
2 //page no- 484
3 //given
4 //atomic radiii of gamma-iron having FCC lattice
5 \text{ rFCC} = 1.26 //A
6 //atomic radius of alpha-iron having BCC lattica
7 rBCC=1.24 //A
8 //as we know that FCC and BCC has effective no of
      atoms 4 and 2 resp
9 //so
10 aBCC=4/sqrt(3)*rBCC
11 aFCC=2*sqrt(2)*rFCC
                       //A
12 //volume of lattice for FCC and BCC
13 VFCC=(aFCC)^3
                 //A^3
14 VBCC=(aBCC)^3
                  //A^3
15 //percentage change in volume during phase
      transformation of gamma-iron to alpha-iron is
      given by
16 percent_vol_change=(VFCC/4-VBCC/2)/(VFCC/4)*100
17 printf("the percentage volume change during phase
      transformation of gamma-iron to alpha-iron is %f"
```

Scilab code Exa 16.3 annealing

```
1 // \text{example} - 16.3
2 / \text{page no} - 495
3 //given
4 //young's modulus
5 E=51*10^9 //Pa
6 //poisson's ratio
7 \text{ nu} = 0.22
8 //magnitude of burger's vector
9 b=2*10^-10 /m
10 //we know that shear modulus is given by
11 G=E/2/(1-nu) //Pa
12 //elastic strain energy of dislocation in cold
      worked tin
13 Ue=1/2*G*b^2*10^12 //Pa m
14 //the strain energy in tin before cold working may
      be neglected as it is smaller by three orders of
      magnitude.
15 printf ("the change in energy during
      recrystallization is %f Pa m", Ue)
```

corrosion and oxidation

Scilab code Exa 17.1 oxidation of nickel

```
//example -17.1
//page no-511
//given
//density of nickel and nickel oxide (NiO)
rhom=8900 //kg/m^3
rhoc=7080 //kg/m^3
//molecular weight of nickel and nickel oxide
Mm=58.51
Mc=74.71
//molar volumes are
Vm=Mm/rhom //m^3/mol
Vc=Mc/rhoc //m^3/mol
rintf ("it is clear that Vc>Vm, so a protective film will form over nickel")
```

Scilab code Exa 17.2 laws of corrosion

```
1 // \text{example} - 17.2
```

```
2 //page no-513
3 //given
4 //oxidation loss on the copper surface is 0.1 mm in
     25 hours
5 t1=25 //hours
6 \times 1 = 0.1 / mm
7 //to find the loss in 300 hours
8 t2=300 //hours
9 // as we know that oxidation loss is given by
10 //x^2 = Cp * t
11 // for t1 and t2 we have following equations
12 / x1^2 = Cp * t1 ----(1)
13 / x2^2 = Cp * t2  ----(2)
14 //dividing equation 1 by 2
15 //we get
16 	 x2=x1*sqrt(t2/t1) 	 /mm
17 printf ("loss in 300 hours is %f mm", x2)
```

Scilab code Exa 17.3 protection against corrosion

```
1 // \text{example} - 17.3
2 //page no-515
3 //given
4 //atomic weight
                     and density of magnesium
5 \text{ MMg} = 24.3 \text{ //gm}
6 rhoMg=1.740 //g/cm^3
7 //molecular weight and density of MgO
8 \text{ MMgO} = 40.3 //gm
9 rhoMgO=3.650 //g/cm^3
10 //volume of Mg and Mgo
11 VMg=MMg/rhoMg //\text{cm}^3
12 VMg0=MMg0/rhoMg0 //\text{cm}^3
13 //we know that pilling-bedworth ratio is given by
14 PBR=VMgO/VMg
15 printf ("since PBR is less than 1 so the film formed
```

Scilab code Exa 17.4 protection against corrosion

```
1 // \text{example} - 17.4
2 / \text{page no} -526
3 //given
4 //one mole of magnesium weighs
5 \text{ MMg} = 0.0243 / \text{Kg}
6 //current density
7 I = 20 * 10^{-3}
                //A/m^2
8 //design life of 15 years
9 t=15*365*24*3600 // sec
10 //charge= 2 faradya
11 Q = 2 * 96490 //C
12 //charge needed per m^2 of structure's for design
      life
13 q=I*t //A s
14 //the amount of magnesium needed
15 AMg=MMg*q/Q //kg/m^2
16 printf ("the amount of magnesiun meeded is %f kg/m?^2
      ", AMg)
```

electron theories and conducting material properties behaviour and application

Scilab code Exa 18.1 energy

```
1 // \text{example} - 18.1
 \frac{2}{\text{page no}} - 535
 3 //given
 4 //side of cube
 5 1=20*10^{-3} /m
 6 //plank's constant
 7 h=6.626*10^{-34}
 8 //mass of electron
 9 m=9.109*10^-31 //kg
10 // lower energy level
11 \, nx1=1
12 \, \text{ny} \, 1 = 1
13 \text{ nz} 1 = 1
14 //higher energy level
15 \, \text{nx} \, 2 = 2
16 \text{ ny} 2 = 1
17 \text{ nz} 2 = 1
```

```
18 //energy in the lower level
19 E1=h^2*(nx1^2+ny1^2+nz1^2)/(8*m*1^2) //J
20 //energy in the higher level
21 E2=h^2*(nx2^2+ny2^2+nz2^2)/(8*m*1^2) //J
22 //difference in energies of the two levels
23 deltaE=E2-E1 //J
24 printf ("since deltaE is very small, so the assumption that E varies continuously with k, is justified")
```

Scilab code Exa 18.2 electric field

```
//example-18.2
//page no-537
//given
//distance between the plates
//oltage difference between the plates
V=230 //Volts
//electric field is given by
E=-V/d //V/m
reflectric field between the plates is %f V/m
reflectric field between the plates is %f V/m
reflectric field between the plates is %f V/m
```

Scilab code Exa 18.3 drift velocity

```
// example -18.3
// page no- 537
// given
// conductivity of material
sigma=0.018 // per ohm m
// no of electrons
n=10^19 // electrons/m^3
```

```
8 //voltage
9 V=0.16 //V
10 //thickness of material
11 t=0.29*10^-3 //m
12 //mass and charge of electron
13 m=9.1*10^-31 //kg
14 e=1.602*10^-19 //C
15 //electric feilf gradient
16 kie=V/t //V/m
17 //as we know that
18 //sigma=n*e*vd/kie
19 //so v
20 vd=sigma*kie/n/e //m/s
21 printf ("drift velocity of carriers is %f m/s",vd)
```

Scilab code Exa 18.4 specific resistance

```
1 // \text{example} - 18.4
2 / \text{page no} -547
3 //given
4 //resistance of wire
5 R=21 //ohm
6 //length of wire
7 1 = 200 / m
8 //diameter of wire
9 d=0.44*10^{-3} /m
10 //area of cross section of wire
11 A = (\%pi)/4*d^2 //m^2
12 //as we know that
13 / R = rho * l/A
14 // so
15 rho=R*A/1 //ohm m
16 printf ("the specific resistance of wire is %e ohm m
      ", rho)
```

Scilab code Exa 18.5 temp coefficient of resistance

```
1 // \text{example} - 18.5
\frac{2}{\text{page no}} - 548
3 //given
4 //resistance of wire at 70 degree celcius is 57.2
      ohm and at 25 degrees celcius 50 ohm
5 R25 = 50
           //ohm
6 R70 = 57.2 / ohm
           //degree C
7 T1=25
          //degree C\
8 T2 = 70
9 //as we know that
10 / Rt = R0 * (1 + t * alpha)
11 //putting above values in the above given equation
      we get
12 / R25 = R0 * (1 + 25 * alpha)
13 / R70 = R0 * (1 + 70 * alpha)
14 //applying R70/R25
15 //we get
16 / R70/R25 = (1+70*alpha)/(1+25*alpha)
17 //solving for alpha we get equation as follows
18 alpha=(R70-R25)/(T2*R25-T1*R70) //K<sup>^</sup>-1
19 printf ("the temperature coefficient of resistance
      is \%f K^-1", alpha)
```

Scilab code Exa 18.6 resistivity

```
1 //example -18.6
2 //page no-550
3 //given
4 //resistivity of copper , nickel and silver are
5 rhoCu=0.015*10^-6 //ohm m
```

```
6 rhoNi=0.012*10^-6 //ohm m
7 rhoAg=0.016*10^-6 //ohm m
8 //atomic percent of nickle and silver
9 CNi=0.25
10 CAg=0.40
11 //the resistivity of Cu-Ni-Ag alloy at 300 K
12 rho=rhoCu+(rhoNi*CNi)+(rhoAg*CAg) //ohm m
13 printf ("the resistivity of Cu=Ni-Ag alloy is %e ohm m",rho)
```

semiconducting materials properties behaviour and applications

Scilab code Exa 19.1 fermi energy

```
//example - 19.1
//page no - 561
//given
pE=0.05
//let E-Ef=EE
EE=0.4 //eV
k=8.614*10^-5
//we know that
//p(E)=1/exp((E-EF)/k/T)
//putting above values in above equation we get
T=EE/k/log(1/pE-1) //K
printf ("the temperature at which there is a probability of 5 percent for an electron to occupy energy state which is 0.4 eV above the fermi level is %f K",T)
```

Scilab code Exa 19.2 intrinsic charge carriers

```
1 // \text{example} - 19.2
2 / \text{page no} -563
3 //given
4 //resistivity of pure silicon is
5 \text{ rho} = 3000 //\text{ohm m}
6 //conductivity of pure silicon is reciproca of
      resistivity
7 sigma=1/rho //(ohm m)^-1
8 //mobility of electrons and holes
9 muh=0.05
             /\mathrm{m}^2/\mathrm{V} s
10 mue = 0.14 //\text{m}^2/\text{V} s
11 //charge on elctron
12 e=1.602*10^-19 //C
13 // we know that
14 // sigme = ne * ee * mue + nh * eh * muh
15 //here we have ne=nh=n and ee=eh=e
16 //so we have sigma=n*e*muh+n*e*mue
17 // so
18 n=sigma/(e*muh+e*mue) //ohm m^2/(C V s)
19 printf ("the density of intrensic carriers is %e /m
      ^3",n)
```

Scilab code Exa 19.3 resistivity

```
// example -19.3
// page no-563
// given
// mobility of silicon
mue=0.17 //m^2/V s
// mobility of holes
```

```
7 muh=0.035 //m^2/V s
8 //carrier density
9 n=1.1*10^16 //per m^3 (here ne=nh=n)
10 //electronic charge
11 e=1.602*10^-19 //C (here ee=eh)
12 //as we know that
13 //sigma=ne*ee*mue+nh*eh*muh
14 //so we get
15 sigma=n*e*(mue+muh) //per ohm m
16 //resistivity
17 rho=1/sigma //ohm m
18 printf ("the resistivity of silicon is %f ohm m approx.",rho)
```

Scilab code Exa 19.4 extrinsic semiconductor

```
1 // \text{example} - 19.4
2 //page no-565
3 //given
4 //resistivity
5 \text{ rho} = 2*10^{-3} / \text{ohm m}
6 //conductivity
7 sigma=1/rho //per ohm m
8 //electrons and holes mobility
9 \text{ mue} = 0.3
              //\text{m}^2/\text{V} s
              //\text{m}^2/\text{V} s
10 \text{ muh} = 0.1
11 //charge on holes and electrons are same so
12 e=1.602*10^-19
                      //C
13 //we know that
14 / sigma = ne * e * mue + nh * e * muh
15 / here ne=nh=n
16 // so
17 n=sigma/(e*(mue+muh)) //per m<sup>3</sup>
       approximation is done in book)
18 printf ("the carrier density is %e per m^3",n)
```

Scilab code Exa 19.5 extrinsic semiconductor

```
1 // \text{example} - 19.5
2 / \text{page no} -566
3 //given
4 //current density
5 Id=1000
            //A/m^2
6 //resistivity
7 \text{ rho} = 0.05
             //ohm m
8 //conductivity
9 sigma=1/rho //per ohm m
10 //electron mobility
11 mue=0.4 //\text{m}^2/\text{V} \text{ m}
12 //length of crystal
13 1=100*10^-6 //m
14 //charge on electron
15 e=1.602*10^-19 //C
16 //in n-type semiconductor ne>>>nh
17 // so
18 n=sigma/e/mue //per m<sup>3</sup>
19 //also we know that
20 // Ie = n * e * vd
21 //so
22 \text{ vd=Id/n/e} //\text{m/s}
23 //the distance I travelled in time t at drift
      velocity vd, by an electron is given by
24 // l = t * vd
25 //so
26 t=1/vd*10^6 //micro sec
27 printf ("the velocity and time taken by the electron
       to travel 100 m in the crystal is %d m/s and %d
      micro sec", vd,t)
```

Scilab code Exa 19.6 extrinsic semiconductor

```
1 // \text{example} - 19.6
2 //page no-567
3 //given
4 //electronic charge
5 e=1.602*10^-19
6 //lengthof rod
7 1=10*10^{-3} /m
8 //diameter of rod
9 d=1*10^-3 /m
10 // area of cross section
11 A = (\%pi)/4*d^2 //m^2
12 //resistance of wire
13 R=100
         //ohm
14 //mobility of holes
15 muh = 0.19 //\text{m}^2/\text{V} \text{ s}
16 //resistivity of wire
17 rho=R*A/1 //ohm m
18 //conductivity
19 sigma=1/rho //per ohm m
20 //we know that i p-type semiconductore nh>>>ne and
      eh=e
21 //so
22 / sigma = nh * e * muh
23 //so
24 nh = sigma/e/muh //per m^3
25 printf ("the impurity conc in the rod is %e per m^3"
      , nh)
```

Scilab code Exa 19.7 density of state

```
//example -19.7
//page no569
//given
//hole density
n=10^19 //per m^3
//intrinsic carriers concentration
ni=1.5*10^16 // per m^3
//no of conduction electrons are given by
p=(ni)^2/n //per m^3
printf ("the no of intrinsic carrier are %e per m^3",p)
```

Scilab code Exa 19.8 density of state

```
1 // \text{example} - 19.8
2 //page no-569
3 //given
4 //hole density in silicon
5 \text{ ND=10^17} // \text{per cm^3}
6 //intrinsic carrier concentration
7 ni=1.5*10^10 / per cm^3
8 // since ND>>> ni, so ne=ND
9 \text{ ne=ND}
10 //the holes concentration
11 nh=(ni)^2/ne //per cm^3
12 printf ("the hole concentration is %f per cm^3",nh)
13 //relative location of EF and Ei are found from
14 //EF-Ei=k*Tlog (ne/ni)
15 //let us assume for notation
16 / EF-Ei=EE
17 / \text{temp}
18 T = 300 / K
19 k=8.614*10^{-5} //eV
20 //so now
21 EE=k*T*log(ne/ni) //eV
```

22 printf ("EF is located at %f eV away from Ei, toeards Ec side as denoted in book", EE)

Scilab code Exa 19.9 hall effect

```
1 // \text{example} - 19.9
2 / page no -582
3 / given
4 //deimension of aluminium piece
5 t=15*10^-3 /m (thickness)
               //m (width)
6 b = 60 * 10^{-3}
7 l=180*10^{-3} /m (length)
8 //magnetic field
9 \text{ betaz=0.6}
              //T (tesla)
10 //current
11 I = 25 / A
12 //hole mobility
13 sigmah=0.0012
14 // electrical conductivity
15 sigma=3.8*10^7 // per ohm m
16 // part (a)
17 //hall coefficient
18 HC=sigmah/sigma //Vm/AT
19 //part(b)
20 //hall voltage
21 VAB=HC*I*betaz/t //V
22 //part(c)
23 //resistance
24 R=1/sigma/b/t
                  //ohm
25 printf ("the hall coefficient is \%.12 \text{ f Vm/AT} \setminus n, hall
       voltage is \%.9 f V n and resistance is \%.6 f ohm",
      HC, VAB, R)
```

Scilab code Exa 19.13 hall effect

```
1 / \text{example} - 19.13
2 / page no -583
3 / given
4 //electron mobility
5 mue=1.065*10^-3 //\text{m}^2/\text{V} s
6 //relaxation time
7 tau=6*10^-15 //s
8 //charge on electron
9 e=1.6*10^-19 //C
10 //no of electrons
11 \quad n=1
12 //mass of electron
13 me=9.1*10^-31 //kg
14 //as we know that
15 //\text{mue} = \text{sigma} * HC \text{ and } \text{sigma} = n * e^2 * tau / me
16 // so
17 //\text{mue} = n * e^2 * tau * HC/me
18 //from above equation we can get
19 HC=mue*me/n/e^2/tau //V m^3/A Wb
20 //condustivity
21 sigma=mue/HC //per ohm m (calculation mistake in
      book)
22 printf ("the hall coefficient is %e V m^3/A Wb and
      conductivity is %e per ohm m", HC, sigma)
```

Scilab code Exa 19.14 hall effect

```
7 tau=6*10^-15 //sec
8 //charge on an electron
9 e=1.6*10^-19
                   //C
10 //mass of electron
11 me=9.1*10^-31 //Kg
12 \, n=1
13 //as we know that
14 //\text{mue} = \text{sigma} * \text{Hc} \text{ and } \text{sigma} = \text{n} * \text{e}^2 * \text{tau/me}
16 / \text{mue=n*e^2*tau*Hc/me}
17 //upon rearrangement
18 Hc=mue*me/n/e^2/tau
19 / and
                    //(ohm m)^--1 //(ohm m)^--1 (
20 sigma=mue/Hc
       calulation mistake is there in book)
21 printf ("the hall coefficent is \%e \n and
       conductivity of Al sample is \( \)(e \)(ohm m)^-1 ", Hc,
       sigma)
```

Scilab code Exa 19.15 hall angle

```
//example - 19.15
//page no - 584
//given
//magnetic flux density
betaz=0.5 //T or Wb/m^2
//hall coefficient
HC=3.66*10^-4 //m^3/C
//resistivity of semiconductors
rho=0.00893 //ohm m
//hall angle
thetaH={atan(HC*betaz/rho)}*180/(%pi) //degrees
printf ("the hall angle is %f degrees", thetaH)
```

Scilab code Exa 19.18 fermienergy

```
1 / \text{example} - 19.18
\frac{2}{\text{page no}} - 585
3 //given
4 //fermi velocity of electron
5 VF=0.85*10^6 //m/s
6 //rest mass of electron
7 m0=9.109*10^-31 //kg
8 //charge on an electron
9 e=1.602*10^-19 //C
10 //fermi energy is
11 EF=1/2*m0*(VF)^2 // J
12 //energy in eV
13 E=EF/e //eV
14 printf ("the fermi energy value indicate that the
      metal is potassium")
15 //speed of light
16 c = 3*10^8 //m/s
17 //varying mass of electron can bee calculated as
18 m=m0*sqrt(1-(VF/c)^2) //kg
19 //fermi energy
20 \quad EF = 1/2 * m * (VF)^2
21 / \text{energy in eV}
22 E=EF/e //eV
23 printf ("the fermi energy value indicate that the
      metal is potassium")
```

Scilab code Exa 19.19 band gap

```
\begin{array}{cc} 1 & //\operatorname{example} -19.19 \\ 2 & //\operatorname{page} & \operatorname{no} -586 \end{array}
```

```
3 //given
4 //wavelength of the edge of the absorption edge of a
      semiconductor material is
5 lambda=1771*10^-9
                      //m
6 //plank's constant
7 h=6.626*10^-34
8 //speed of light
9 c = 3*10^8 //m/s
10 //band gap energy
11 Eg=h*c/lambda //J
12 //charge on electron
13 e=1.602*10^-19 //C
14 //energy in eV
15 E=Eg/e //eV
16 printf ("the band gap energy is %f eV",E)
```

Chapter 20

dielectric ferroelectric piezoelastic and pyroelastic materials

Scilab code Exa 20.1 dielectric strength

```
//example - 20.1
//page no - 593
//given
//dielecric strength of natural rubber
SDS = 40000 //volts/mm
//current
I = 33*10^3 //V
//required thickness of insulation
t = I/DS //mm
printf ("the thickness of wire required for insulation is %f mm",t)
```

Scilab code Exa 20.2 dielectric loss

```
1 / \text{example} - 20.2
2 //page no-594
3 //given
4 //capacitance of capacitor
5 C=0.025*10^-6 //F
6 //power factor
7 / \tan \det a = 0.0005
8 //for notation let tan delta=delta
9 delta=0.0005
10 //current
11 I = 200 / A
12 //frequency
13 f = 25 * 10^3 / Hz
14 //volatge across a capacitor is
15 V=I/(2*(\%pi)*f*C)
16 // dielectric loss
17 P=V*I*delta // W
18 printf ("the dielectric loss is %f Watt",P)
```

Scilab code Exa 20.3 polarization

```
//example -20.3
//page no-596
//given
//electric field
E=600 //V/m
//dielectric constant
Er=6.1
E0=8.85*10^-12
//polarization is given by
P=E*E0*(Er-1) //V/m

rintf ("the polarization produced is %e V/m",P)
```

Scilab code Exa 20.4 measurement of polarization

```
1 // \text{example} - 20.4
2 / page no -596
3 //given
4 //charge
5 Q = 10 * 10^{-6} / C
6 //voltage
7 V = 10 * 10^3
              //V
8 //seperation betweemn the plates
9 d=5*10^-4 /m
10 // dielectric eonstant
11 Er=10
12 E0=8.854*10^-12
13 //we know that
14 / Q = C * V
15 // so
16 C=Q/V/F
17 // also we know that
18 / C = Er * E0 * A / d
19 // so
20 A=C*d/Er/E0 //m<sup>2</sup>
21 printf ("area between the plates is %f m^2",A)
```

Scilab code Exa 20.5 measurement of polarization

```
1 //example -20.5
2 //page no-597
3 //given
4 //area of plate
5 A=10*10*10^-6 //m^2
6 //capacitance
7 C=10^-9 //F
8 //distance between the plates
9 d=2*10^-3 //m
```

```
10 //contant
11 E0=8.854*10^-12 //F/m
12 //dielectric constant
13 Er=C*d/(E0*A)
14 printf ("the cielectric constant of the crystal is %f",Er)
```

Scilab code Exa 20.6 measurement of polarization

```
1 / \text{example} - 20.6
2 //page no-597
3 //given
4 // dielectric constant
5 \text{ Er1=6.0}
6 \text{ Er2=3.0}
7 //thickness of plates
8 d1=0.25*10^{-3} /m
9 d2=0.1*10^-3 /m
10 // taking A1=A2
11 //we know that
12 //C = Er *E0 *A/d
13 //for plate1
14 / C1 = Er1 * E0 * A1 / d1
15 // for plate 2
16 / C2 = Er1 * E0 * A2 / d2
17 //dividing 1 and 2
18 //we get
19 //C1/C2=Er1*d2/(Er2*d1)
20 / let C1/C2=c
21 C=Er1*d2/(Er2*d1)
22 //so we get
23 / C1 = 0.8 * C2
24 printf ("the plastic film wil hold more charge")
```

Scilab code Exa 20.7 potential differnce

```
1 // \text{example} - 20.7
2 / page no-609
3 //given
4 //thickness of BaTiO3 wafer
5 t=0.15*10^{-3}
                 //m
6 //compressive strength
7 sigma=25*10^6 / N/m^2
8 //young's modulus of elasticity
9 Y = 70 * 10^9
             //N/m^2
10 //electric field E produced by the stress sigma is
      related as
                     where lambda is constant known as
11 //E=sigma*lambda
      voltage output coefficient
                    //m/V
12 lambda=1*10^-10
13 //and modulus of elasticity is gven by
14 //Y = 1/(lambda*t)
15 //so we get from 1 and 2
16 //E = sigma/(Y*t)
17 // also E=V/t
18 // so
19 V = sigma*t/(lambda*Y) //V
20 printf ("potential difference producd across tha
      wafer is %f V", V)
```

Scilab code Exa 20.8 thickness of crystal

```
1 //example -20.8
2 //page no-613
3 //given
4 //vibration frequency
```

```
5 f = 434 * 10^3 / Hz
6 //young's modulus of elasticity
7 E=80*10^9
               //Pa
8 //density
9 rho=2655
             // kg/m^3
10 //and fundamental overtones may be 1,2,3......
11 // so
12 \quad n=1
13 //we konow tha
14 //f = n/(2*t)*sqrt(E/rho) wher t is the thickness of
      crystal
15 // so
16 t=n/(2*f)*sqrt(E/rho)*10^3 //mm
17 printf ("the thickness of crystal is %f mm",t)
```

Scilab code Exa 20.9 capacitor

```
1 / \exp = 20.9
2 / page no-613
3 //given
4 //capacitance of paper capacitance
5 C=0.02*10^-6 /F
6 //thickness of capacitor
7 d=1*10^-3 /m
8 //relative permitivity
9 \text{ Er} = 2.6
10 E0=8.85*10^-12
11 // dielectric strength
12 k=1.8*10^7 //V/m
13 //area of capacitor is given by
14 A=C*d/(Er*E0)*10^4/cm^2
15 //breakdown volatage
16 Vbreakdown=k*d //V
17 printf ("the area of capacitor is \%f am<sup>2</sup> \n and
     breakdown volatage is %f V", A, Vbreakdown)
```

Scilab code Exa 20.10 capacitor

```
1 // \text{example} - 20.10.\text{sce}
2 / page no-614
3 / given
4 //capacitance of capacitor
5 C=0.2*10^-6 //F
6 //loss factor
7 / \tan \det a = 0.004
8 // for notation let us use tan delta=delta
9 \text{ delta=0.004}
10 //voltage
11 V = 240 / V
12 //frequency
13 f = 50 //Hz
14 / and
15 omega=2*(%pi)*f
16 //power loss is given by
17 P=V^2*omega*C*delta //W
18 printf ("power loss in the capacitor is %f W',P)
```

Chapter 21

magnetic materials properties behaviour and application

Scilab code Exa 21.1 magnetic field

```
1 // \text{example} - 21.1
2 / page no-621
3 //given
4 //magnetic field
5 \text{ H} = 2400 //A/m
6 //susceptibilty
7 \text{ kie} = 1500
8 //part(a)
9 //relative permeability is given by
10 \text{ mur} = 1 + \text{kie}
11 //part(b)
12 //intensity of magnetization
13 M=kie*H
             //A/m
14 //part(c)
15 // permeability
16 \text{ mu0} = 4*(\%\text{pi})*10^-7
17 //remanance
18 \quad B=mu0*mur*H
19 printf ("the realative permeability is \%f \n, the
```

intensity of magnetisation is $\%f A/m \setminus n$ and the remanance is %f", mur, M, B)

Scilab code Exa 21.2 magnetic field

```
//example - 21.2
//page no - 621
//given
//relative permeability of superalloy
mur = 200000
mu0 = 4 * (%pi) * 10^-7 // henry/m
//intensity of magnetisation
M = 6000 //A/m
//magnetic field is given by
H = M/(mur - 1) //A/m
//strength of magnet
B = mu0 * mur * H // tesla
mrintf ("the strength of magnet is %f T", B)
```

Scilab code Exa 21.3 magnetic field

```
1  //example - 21.3
2  //page no - 621
3  //given
4  // magnetic moment is 0.6 times bohr magneton and we know that beta is 9.27*10^-24 Am^2
5 beta=9.27*10^-24  //A/m^2
6  M=0.6*beta  //A/m^2
7  //attice constant
8 a=0.35*10^-9  //m
9  //no of atoms per unit cell is given by
10 Ne=4
```

```
//saturation magnetisation for FCC unit cell is
    given by
Ms=Ne*M/a^3 //A/m
printf ("he saturation magnetisation is %f A/m", Ms)
```

Scilab code Exa 21.4 B H curve

```
1 // \text{example} - 21.4
2 //page no-632
3 / given
4 // refer to fig -21.6
5 //width of loop
6 / W = (OA + OB)
7 //so
8 W = 80 * 2 //A/m
9 //height of loop
10 //H = (OC + OD) //wb/m^2
11 // so
12 H=0.15*2 //Wb/m<sup>2</sup>
13 //area of loop
14 A=W*H //T A/m or J
15 printf ("the energy loss per ubitvolume of the
      magnetic material during one cycle is %f J", A)
```

Scilab code Exa 21.5 eddy current

```
1 //example - 21.5.
2 //page no - 633
3 //given
4 //volume
5 V=0.01 //m^3
6 //frequency
7 f=50 //Hz
```

Scilab code Exa 21.6 eddy current

```
1 / \exp -21.6
2 //page no-633
3 //given
4 //hysteresis loss is
5 \text{ W1} = 300 \text{ //W}
6 //max flux density is
7 Bmax1=0.9 //Wb/m^2
8 \, \text{Bmax2=1.1}
               //Wb/m^2
9 //frequency
          //Hz
10 f1=50
11 f2=40
          //Hz
12 //we know that
13 / \text{W=nu} * (\text{Bmax}) ^1.7 * f *V
14 // s0
15 //W1=nu*(Bmax1)^1.7*f1*V ----(1)
16 / W2 = nu * (Bmax2) ^1.7 * f *V
                                ----(2)
17 //from one and 2 we get
18 W2=W1*(Bmax2)^1.7*f2/((Bmax1)^1.7*f1) //W
19 printf ("The hysteresis loss at 40 Hz frequency is
      \%f W', W2)
```

Scilab code Exa 21.7 hysteresis loss

```
1 // \text{example} - 21.7
2 / \text{page no} = 634
3 //given
4 //flux density
5 Bm = 1.10 / \text{Wb/m}^2
6 //frequency
7 f = 50 //Hz
8 //thickness of sheet
9 t=0.5*10^{-3} /m
10 //resistivity
11 rho=30*10^-8 //per ohm m
12 // density
13 rhodash=7800 //kg/m^3
14 / mass
15 \text{ m=1} //\text{kg}
16 //volume of material
17 V=m/rhodash //m^3
18 //and
19 k=1.11
20 //hysteresis loss in each cycle
21 Wh=380
           /W s/m^3
22 //loss per kg of specimen is given by
23 We=4/3*(Bm*f*t*k)^2*V/(rho)
                                   //watt/kg
24 printf ("the loss is \%f watt/kg", We)
```

Scilab code Exa 21.8 hysteresis loss

```
\begin{array}{ll} 1 & //\operatorname{example} -21.8 \\ 2 & //\operatorname{page no} -634 \\ 3 & //\operatorname{given} \end{array}
```

```
4 //frequency
5 f = 50
         //Hz
6 // \text{mass}
7 \text{ m}=50 \text{ //kg}
8 //density
9 rho=7500 // kg/m^3
10 //volume of material
11 V=m/rho //m^3
12 //hysteresis loop area
13 A = 150 / m^2
14 //scale factor
15 //1 \text{ cm} = 0.008 \text{ Wb/m}^2 \text{ on y-axis} \text{ and } 1\text{cm} = 20 \text{ A/m on x-}
16 //energy lost during each cycle
17 E=A*0.008*20*10^4 / J/m^3
18 //poer loss due to hysteresis
19 P=E*f*V //J/s
20 //energy lost in one hour
21 Wh=P*(60*60) //J
22 printf ("the energy lost in one hour is %e J", Wh)
```

Scilab code Exa 21.11 eddy current loss

```
//example -21.11
//page no-650
//given
//frequency
f=50 //Hz
//eddy current loss in transformer
We=100 //W
//to find eddy current loss at frequencies
f1=60 //Hz
f2=100 //Hz
//as we know that
//We is directly proportional to f^2
```

Scilab code Exa 21.15 magnetic field strength and flux density

```
1 / \exp -21.15
2 //page no-651
3 //given
4 //length of wire
5 1=250*10^{-3} /m
6 //no of turns
7 N = 400
8 //current
9 I = 15 //A
10 //permeability in vaccum
11 mu0=1.2457*10^-6
                     //H/m
12 //relative permeability
13 \text{ mur}=1
14 //magnetic field strength
15 H = N * I / I
            //AT/m
16 //flux density is
17 B=mu0*mur*H //\text{Wb/m}^2
18 printf ("the magnetic field strength is %f AT/m and
      flux density is \%f Wb/m",H,B)
```

Chapter 22

superconducting materials properties behaviour and application

Scilab code Exa 22.2 critical field

```
1 // \text{example} - 22.2
\frac{2}{\text{page no}} - 660
3 //given
4 //critical temp of Pb
5 \text{ T0} = 7.17 / \text{K}
6 //critical field
7 \text{ HO} = 0.0803 //A/m
8 //to find the critical field at
9 \text{ T1=3 } //\text{K}
10 T2=10 //K
11 //critical field at T1
12 Hc1=H0*(1-T1^2/T0^2) //A/m
13 //critical field at T2
14 Hc2=H0*(1-T2^2/T0^2) //A/m
15 printf ("the critical field at 3K temp is %f A/m and
        at 10K ia \%f A/m", Hc1, Hc2)
```

Scilab code Exa 22.3 critical current

```
//example - 22.3
//page no - 660
//given
//critical magnetic field
| Hc=7.9*10^3 //A/m
//diameter of aluminium wire
//diameter of aluminium wire
//critical current is give by
//critical current is give by
//critical current which can pass through
a long thin superconducting wire of aluminium is
//f A", Ic)
```

Scilab code Exa 22.4 superconducting material

```
1 / \text{example} - 22.4
2 / page no-667
3 //given
4 //specific density of lead
5 \text{ sd} = 11.4
6 //density of lead
7 rho=sd*10^3 // kg/m^3
8 //atomic weight of lead
9 Aw = 207.2 // kg/kg - mol
10 //velocity of sound in lead
11 v = 1200 //m/s
                     //particles/kg-mol (avogadro's
12 \text{ NA} = 6.023 * 10^26
      number)
                     //C/electrons (charge on an
13 \text{ e=} 1.602*10^-19
      electron)
```

Scilab code Exa 22.9 magnetic field

```
1 / \text{example} - 22.9
2 //page no-673
3 //given
4 //magnetic field at 0K temp
5 \text{ HO} = 65 * 10^3 / A/m
6 //critical temp
7 Tc = 7.18 //K
8 //diameter of wire
9 d=1*10^-3 /m
10 //radius of wire
11 \text{ r=d/2} / \text{m}
12 //area of cross section
13 A = (\%pi) * r^2 / m^2
14 //to find the current density at 4.2 K
15 //since it is given that Hc is parabolicaly
      dependent on T, so
16 T = 4.2 / K
17 Hc = H0 * (1 - T^2 / Tc^2)
                          //A/m
18 // critical current
```

```
19 Ic=2*(%pi)*r*Hc //A
20 //critical current density Jc
21 Jc=Ic/A //A/m^2
22 printf ("the critical current density of lead is %e A/m^2", Jc)
```

Scilab code Exa 22.10 superconductors

```
1 // \text{example} - 22.10
2 / page no -673
3 //given
4 //critical field at 3K and 14 K are 21 A/m and 10 A/
5 T1=7
          //K
           //K
6 T2 = 14
            //A/m
7 \text{ Hc1} = 21
8 \text{ Hc} 2 = 10
             //A/m
9 //DETERMINING CRITICAL TEMP
10 //as we know that H=H0*(1-T^2/Tc^2)
11 //so we get
12 / 71 = H0 * (1 - 7^2 / Tc^2)
13 / 10 = H0 * (1 - 14^2 / Tc^2) - -(2)
14 //dividing 1 and 2 we get
15 //71/10 = (\text{Tc}^2 - 7^2)/(\text{Tc}^2 - 14^2)
16 //on solving we get
17 Tc = sqrt(3626/11)
                        //K
18 //DETERMINING CRITICAL FIELD AT 0K
19 H0=Hc1/(1-T1^2/Tc^2)
                            //A/m
20 //DETERMINING CRITICAL FIELD AT
21 T = 4.2
             //K
22 \text{ Hc}=\text{HO}*(1-\text{T}^2/\text{Tc}^2)
                           //A/m
23 printf ("the critical temp is \%f K\setminusn, the critical
       field at 0K is %f A/m and critical field at 4.2 K
        is \%f A/m", Tc, HO, Hc)
```

Scilab code Exa 22.11 superconductors

```
1 / \exp -22.11
\frac{2}{\sqrt{\text{page no}-674}}
3 //given
4 //depth of penetration at 3K is 39.8 nm and at 7.1 K
       is 1730 A
5 \text{ T1=3} //\text{K}
6 T2=7.1 //K
7 dp1=39.6*10^-9
8 dp2=1730*10^-10 //m
9 //as we know that depth of penetration and temp are
      related as
10 //(dp(T)/dp(T0)) = 1/(1-t^4/Tc^4)
11 //so we get
12 // at 3K
13 // let dp(T0) = dp0
14 //dp0 = sqrt(dp1^2*(1-T1^4/Tc^4)) - (1)
15 // also
16 //dp0 = sqrt(dp2^2*(1-T2^4/Tc^4)) .---(2)
17 //solving 1 and 2 we get
18 //((Tc^4-81)/(Tc^4-(7.1)^4))=(173)^2/(39.6)^2
19 //so we get
20 Tc=(48417.9/18.085)^{(1/4)}
21 //depth of penetration at absolute zero willbe
22 	ext{ dp0=sqrt(dp1^2*(1-T1^4/Tc^4))*10^9}
23 printf ("critica temp is %f K\n and depth of
      penetration at critica zero is %f nm", Tc, dp0)
```

Chapter 23

thermal properties and materials

Scilab code Exa 23.1 coefficient of linear expansion

```
1 // \text{example} -23.1
2 / \text{page no} - 681
3 //given
4 //length of glass rod and steel rod is equal at 273
     K and differ by 1.2 mm at 373 K
           //K
5 T1 = 273
6 T2 = 373
          //K
7 //coefficients of linear expansion af glass and
      steel are
8 alphaG=8*10^-6 //per degree C
9 alphaS=12*10^-6
                    //per degrees C
10 //we know that
11 //1T2=1T1*(1+alpha(T2-T1))
12 //so for glass rod
13 / 1100G = 10 * (1 + (alpha1) * (T2-T1))
14 //similarly for steel rod
15 / 1100G = 1.0008 * 10  ----(1)
16 //1100S = lo*(1+(alpha2)*(T2-T1))
17 / 1100S = 1.0012 * 10
```

```
18  //we have given that
19  //l100S-l100G=1.2 mm ---(3)
20  //from 1 and 2 put in 3, we get
21  //1.0012*l0-1.0008*l0=1.2
22  //so
23  l0=1.2*l0^-3/(0.0012-.0008)  //m
24  printf ("the length of rod at 0 degrees celcius is %f m",10)
```

Scilab code Exa 23.2 stress strain

```
1 / \text{example} - 23.2
2 / \text{page no} - 684
3 //given
4 //coefficient of linear expansion of Cu and steel
5 alphaCu=18*10^-6 //cm/cm/degree C
6 alphaSteel=14*10^-6 //cm/cm/degree C
7 //young's modulus of elasticity
8 ECu=106*10^9 //Pa
9 ESteel=200*10^9 //Pa
10 //part(a)
11 //since alphaCu>alphaSteel
12 //so steel will contract less.
13 printf ("Hence strip will bend in the direction of
     copper")
14 //part(b)
15 //annealing temp
16 T2=530 //degrees celcius
17 //room temp
18 T1=30 //degrees celcius
19 // difference in temp
20 T=T2-T1 //degrees celcius
21 //differnce in values of coefficient of linear
     expansion
```

Chapter 26

optical properties of materials and materials for opto electronic devices

Scilab code Exa 26.1 energy of photon

```
1 // \text{example} - 26.1
\frac{2}{\text{page no}} - 769
3 //given
4 //wavelength of light
5 \quad lambda=5.893*10^{-7} / m
6 //plank's constant
7 h=6.626*10^-34 //J s
8 //velocity of light
9 c = 3 * 10^8
              //m/s
10 //energy of photon
11 Ephoton=h*c/lambda
12 / \text{we know that } 1eV = 1.6*10^- - 19 J
13 / so
14 EPhoton=Ephoton/(1.6*10^--19) //eV
15 printf ("the energy of photon is \%.23\,\mathrm{f} J or \%\mathrm{f} eV",
      Ephoton, EPhoton)
```

Scilab code Exa 26.2 absorption

```
1 / \text{example} - 26.2
2 / \text{page no} - 769
3 //given
4 ///thickness of sample
5 t=0.45*10^-4 /cm
6 //energy of light
7 E1=3 //eV
8 //absorption coefficient
9 alpha=50000 //per cm
10 //incident power on the sample
11 I0=15*10^{-3} //W
12 //we know that
13 //intensity of transmitted light is given by
14 It=I0*exp(-alpha*t) //W or J/s
15 //thus total energy absorbed is
16 Iabsorbed=I0-It //W or J/s
17 printf ("total energy absorbed is \%e J/s", Iabsorbed)
18 //plank's constant
19 h=6.626*10^{-34} //J s
20 //energy of outgoing radiation
21 E2 = 2.35 //eV
22 //fraction of each photon energy unit which is
      converted ton heat
23 E = (E1 - E2) / E1
24 //therefore total amount of energy converted to heat
       per second is
25 EC=E*Iabsorbed //J/s
26 printf ("total amount of energy coverted to heat is
     \%e J/s", EC)
27 //charge on an electron
28 e=1.6*10^-19 //C
29 //no of photons = nphoton
```

Scilab code Exa 26.3 energy of photon

```
1 / \text{example} - 26.3
2 / \text{page no} - 783
3 //given
4 //energy of photon
5 E=1.5*10^-19 //J
6 //quantum eficiency
7 muquantam=0.6
8 //photon current
9 Iopc = 3*10^-6 //A
10 //speed of light
11 c = 3 * 10^8 / m/s
12 //plank's constant
13 h=6.626*10^{-34} //J s
14 //wavelength at which the photodiode is operating
15 lambda=h*c/E*10^6 //micro m
16 //responsivity of diode
17 R = 0.64
18 //incident optical power is given by
19 Piop=Iopc/R*10^6 //micro W
20 printf ("wavelength at which photodiode is operating
       is %f micro m \n and incident optical power is
      \%f micro W, lambda, Piop)
```

Scilab code Exa 26.4 optical fibre

```
1 // \text{example} - 26.4
```

```
//page no-784
//given
//refractive index of core and cladding
mucladding=1.47
mucore=1.50
//critocal angle at the core cladding interface
thetac=asin(mucladding/mucore) *180/(%pi) //degrees
printf ("the critical angle at core cladding interface is %f degrees", thetac)
```

Scilab code Exa 26.5 energy of absorbed light

```
1 //example - 26.5
2 //page no - 784
3 //given
4 //energy band gap
5 Eg = 0.75*1.6*10^-19 //J
6 //plank's constant
7 h = 6.626*10^-34 //Js
8 //speed of light
9 c = 3*10^8 //m/s
10 //wavelength of light
11 lambda = h*c/Eg*10^10 //A
12 printf ("wavelength of light is %f A", lambda)
```

Scilab code Exa 26.7 energy of photoelectron

```
1 //example -26.7
2 //page no-784
3 //given
4 //frequency of light
5 f=1.5*10^9*10^6 //Hz
6 //pank's constant
```

```
7 h=6.626*10^-34  //J s
8 //threshold frequency is
9 f0=1.2*10^9*10^6  //Hz
10 //maximum energy of emitted photoelectron is
11 Emax=h*(f-f0)/(1.6*10^-19)  //eV
12 printf ("the maximum enery of the emitted photoe;
    lectron is %f eV", Emax)
```