

Security Fundamentals

Learning Objectives

Revisit basic definitions used in security

Learn the main security principles

Learn about threats to security and ways to protect

Common information security targets

The classic top aspects of information security are the preservation of

- Confidentiality: ensuring that information is accessible only to those authorised to have access
- Integrity: safeguarding the accuracy and completeness of information and processing methods
- Availability: ensuring that authorised users have access to information and associated assets when required

Other definitions...

- Anonymity/Untraceability
- Pseudonymity
- Unlinkability
- Copy protection, information flow control
- Data protection/personal data privacy

Aspects of integrity and availability protection

- Rollback
- Authenticity
- Non-repudiation
- Audit

Common questions regarding security

• Is my system secure?

Factors that affect security

What's required for an effective protection?

Security engineering

- '... about building systems to remain dependable in the face of malice, error, or mischance' [1]
- Focuses on tools, processes and methods
- Why?
 - Design, implement, test systems
- How easy is it?
 - Protect the wrong things...
 - Protect things in the wrong way...

A framework

Security Engineering Analysis Framework [1]

- Policy: What you are supposed to achieve
- Mechanism: What you assemble to implement the policy
- Assurance: Reliance you place on a mechanism
- Incentive: Motive for people or attackers to protect or attack a policy

What is a system?

'Simply stated, a system is an integrated composite of people, products, and processes that provide a capability to satisfy a stated need or objective.'

'Ignoring the human components, and thus neglecting usability issues, is one of the largest causes of security failure' [1]

Security principles

Why do we need them?

- The security principles helps to achieve information security goals
 - Confidentiality, Integrity, Availability

 ... most essential principles, regardless of the actual domain...

Simplicity

'Keep the design as simple and small as possible'
[5]

It's easier to understand simple solutions.

 A simple solution may be less likely to have vulnerabilities (compared to a complex solution)

How about analysing and reviewing the system?

Open design

'The design should not be secret' [5]

 The protection mechanism of a system shouldn't depend on secrecy

Secrets may be hard to protect...

Compartmentalisation

 Organise resources into isolated groups or similar needs.

Limit access to information based on tasks

- Have to identify similar needs
 - Object oriented programming

Least privilege

- 'Every program and every privileged user of the system should operate using the least amount of privilege necessary to complete the job.' – J. Saltzer
- Privileges should be reduced to the absolute minimum
- Subjects of a system should not be granted access to objects other than those needed to complete their job

Trust and trustworthiness

- Trust Vs. Trustworthiness
 - A trusted system may misbehave and not meet the user's expectations
 - A trustworthy system satisfies the user's expectations

Trust has to be minimised

Trustworthiness has to be maximised

Fail-safe defaults

- A system should start in and return to a secure default state in case of failure
- A security mechanism can be enabled at system start-up and re-enabled whenever it fails
- It's an important principle in access control
 - Permission is denied unless explicitly granted
 - Whitelist approach

Complete mediation

- 'Every access to every object must be checked for authority' [5]
- Access to any object must be monitored and controlled
- Ensure that access control mechanisms cannot be bypassed
- Protect sensitive information during transit/in storage, which requires data to be encrypted to achieve complete mediation

No single point of failure

Build redundant security mechanisms

Security should not rely on a single mechanism

Prevent single points of failure

Also known as defence in depth.

Usability

- Design usable security mechanisms
 - Security mechanisms should be easy to use

- Not only concerned with end users
 - System administrators, auditors, software engineers, etc.

Security mechanisms should be designed with these users in mind

Threats to security and ways to protect

Vulnerabilities and threats [2]

- A vulnerability is a weakness in a system that might be exploited and cause loss or harm
- A threat to a system is a set of circumstances having the potential to cause loss or harm

Threats, controls and vulnerabilities[2]

Attacks and control

- The exploitation of a vulnerability perpetrates an attack on the system
- Controls are protective measures that could address problems

Threats Vs. Controls Vs. Vulnerabilities 'A threat is blocked by control of a vulnerability' [2]

Access controls under attack

In reality most attacks take place on some type of access control

 What makes it difficult for security professional is that there are several ways for a system to be attacked

Before securing them, they should be identified

Security issues – Vulnerability analysis

Look for security issues

- Carry out a vulnerability analysis
 - Look for holes that could be exploited
 - Carried out by scanning systems and identifying missing patches, misconfigured settings, programming code mistakes, etc.

What can go wrong...?

What can go wrong after running a vulnerability scanner and fixing all the issues?

- How is this system connected to other systems?
- Are the sensitive data encrypted while in storage and transit?
- Who has access to this system?
- Can someone steal this system?
- Can someone insert a USB device and extract the data?
- What are the vectors that malware can be installed on the system?
- Is the system protected in the case of a disaster?
- Are there any access channels that are not auditable?

Threat modelling

- Threat modelling is a structured approach to identify potential threats that could exploit vulnerabilities
- Who would likely want to attack us?
- How could they successfully do this?
- Looks outward and try to figure out all the ways a structure could be attacked.

What has to be done?

Security policies

- Security requirement analysis
 - Identify assets and their values
 - Identify vulnerabilities, threats and risk priorities
 - Identify legal and contractual requirements
- Define security policies
- Security policy document
- Selection and implementation of controls

Identify assets and values

Example: Risk identification and vulnerabilities

- Examples of threats on main assets
 - Radio jamming/data manipulation
 - Becoming an HMI
 - Backup server
 - **–** ...
- Examples of vulnerabilities
 - ClearSCADA server: CVE-2014-5411, CVE-2014-5412, CVE-2014-5413
 - Network switches: CVE-2001-0895, CVE-2014-5412
 - Controllers: Siemens SIMATIC S7-300, S7-1200, ET 200S PLC,
 - Management server: SIMATIC STEP 7, Connecter Components Workbench, TIA Portal, ...

Define suitable security policies

 The security requirements identified can be complex and may have to be abstracted first into high-level security policy

 A set of rules that clarifies which are and are not authorised, required, and prohibited activities, states and information flows

Security policy document

- Understand what exactly security means for an organisation and what needs to be protected or enforced.
- Document high-level security policies as a reference for anyone involved in implementing controls
- Lay out the overall objectives, principles, and the underlying threat model that are to guide the choice of mechanisms in the next step.

Selection and implementation of controls

- Issues addressed in a typical low-level organisation security policy
 - General (affecting everyone) and specific responsibilities for security
 - Name manager who 'owns' the overall policy and is in charge of its continued enforcement, maintenance, review, and evaluation of effectiveness
 - Name individual managers who 'own' individual information assets and are responsible for their day-today security
 - Reporting responsibilities for security incidents, vulnerabilities, software malfunctions

... continued

- Mechanism for learning from incidents
- User training, documentation, and revision of procedures
- Physical security
 - Authorisation procedure for removal of property
 - Clear desk policy
 - Define security perimeter

• ...

— ...

Questions?

References

- [1] Security Engineering: A Guide to Building Dependable Distributed Systems, 2nd Edition, By Ross Anderson, Chapter, 1 https://www.cl.cam.ac.uk/~rja14/book.html
- [2] Security in Computing, 5th Edition, By Charles P. Pfleeger, Shari Lawrence Pfleeger, Prentice Hall, Chapter 1,

https://ptgmedia.pearsoncmg.com/images/9780134085043/samplepages/9780134085043.p df

- [3] All In One CISSP Exam Guide, 5th Edition by Shon Harris. ISBN 978-0-07-160217-4
- [4] Systems Engineering Fundamentals, DoD, January 2001,

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-885j-aircraft-systems-engineering-fall-2005/readings/sefguide_01_01.pdf

- [5] The Protection of Information in Computer Systems, J. Saltzer and M. Schroeder, Proceedings of the IEEE, Vol. 63, No. 9, September 1975.
- [6] William Stallings, Network and Internetwork Security: Principles and Practice. Englewood Cliffs, NJ: Prentice-Hall International, 1999.
- [7] British Standard 7799 "Code of practice for information security management"
- [8] German Information Security Agency's "IT Baseline Protection Manual" http://www.bsi.bund.de/gshb/english/etc/
- [9] US DoD National Computer Security Center Rainbow Series, for military policy guidelines http://www.radium.ncsc.mil/tpep/library/rainbow/