TEK5020/9020 Mønstergjenkjenning Høsten 2023

Forelesning 13 - Ikke-ledet læring

Idar Dyrdal (idar.dyrdal@its.uio.no)

UiO: Institutt for teknologisystemer

3. november 2023

Ikke-ledet læring

Innhold i kurset

Oversikt

- Introduksjon til mønstergjenkjenning
- Beslutningsteori (desisjonsteori)
- Parametriske metoder
- Ikke-parametriske metoder
- Lineære og generaliserte diskriminantfunksjoner
- Evaluering av klassifikatorer
- Ikke-ledet læring
- Klyngeanalyse.

Oversikt Problemstilling Maksimum

ksemnel

Generalisering

Eksempel

Isodata-algoritmer

Avslutnir

Ikke-ledet læring

Denne og neste forelesningen tar for seg metoder som kan brukes når det man har av treningssampler ikke er merket med klassetilhørighet.

Kort fortalt:

- Ikke-ledet læring går ut på trene klassifikatorer uten slik merking av treningssamplene. I noen tilfeller lar det seg faktisk gjøre å estimere tetthetsfunksjonene til de enkelte klassene.
- Derved kan man konstruere en klassifikator, f.eks. ut fra minimum feilrateprinsippet.
- Det beslektede temaet *klyngeanalyse* (neste forelesning) dreier seg hovedsakelig om å kartlegge strukturen i et ukjent datasett.
- Målet er her å dele datasettet inn i et antall naturlige klynger ut fra innbyrdes likhet (similaritet) eller nærhet i egenskapsrommet.

Tema for denne forelesningen er ikke-ledet læring.

Oversikt **Problemstilling** Maksimum-likelihood metoden Eksempel Generalisering Eksempel I

Ikke-ledet læring

Trening av klassifikator vha. treningssett uten merkede sampler (dvs. ukjent klassetilhørighet). Behov for slike metoder bl.a. når:

- Merkede sampler ikke er tilgjengelig,
- det er for kostbart å merke sampler,
- når statistikken i problemet endres over tid, dvs. klassifikatoren må kunne oppdateres med nye data.

Maksimum-likelihood metoden kan her brukes til å estimere parametrene i en såkalt blandingstetthet

$$p(\mathbf{x}|\boldsymbol{\theta}) = \sum_{i=1}^{c} p(\mathbf{x}|\omega_i, \boldsymbol{\theta}_i) P(\omega_i),$$

der $p(\mathbf{x}|\omega_i, \boldsymbol{\theta}_i)$ komponenttettheter, $P(\omega_i)$ er blandingsparametre og $\boldsymbol{\theta} = (\boldsymbol{\theta}_1^t, \dots, \boldsymbol{\theta}_c^t)^t$ er den ukjente parametervektoren.

Maksimum-likelihood estimering av parametervektor

Metoden er som i ledet læring, men beregningene blir som oftest mer kompliserte (multimodal fordeling, mangel på suffisiente observatorer). Det er likevel mulig å komme frem til en løsning i enkelte tilfeller.

Skal estimere parametervektoren $\boldsymbol{\theta}$ i blandingstettheten, dvs. hver av subvektorene $\boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_c$ skal estimeres ved hjelp av et treningssett $\mathcal{X} = \{\boldsymbol{x}_1, \dots, \boldsymbol{x}_n\}$ med *ukjent* klassetilhørighet.

Dette krever at $p(x|\theta)$ er identifiserbar, dvs. at θ er unik (forutsettes her). Dette er som oftest tilfelle for blandinger av vanlige (kontinuerlige) tetthetsfunksjoner, mens diskrete fordelinger ofte ikke er identifiserbare.

Antar (i første omgang):

- Antall klasser c er kjent,
- A priorisannsynlighetene $P(\omega_i)$, i = 1, ..., c er kjente,
- Tetthetsfunksjonene $p(\mathbf{x}|\omega_i, \boldsymbol{\theta}_i)$, i = 1, ..., c har kjent form (funksjoner av $\boldsymbol{\theta}_i$).

Oversikt Problemstilling Maksimum-likelihood metoden Eksempel Generalisering Eksempel Isodata-algoritmen Avslutnin

Maksimum-likelihood metoden

Likelihoodfunksjonen er

$$p(\mathscr{X}|\boldsymbol{\theta}) = \prod_{k=1}^{n} p(\boldsymbol{x}_{k}|\boldsymbol{\theta})$$
 (som for ledet læring).

Faktoriseringen er mulig fordi det forutsettes, som for ledet læring, at treningssamplene er innbyrdes uavhengige.

Log-likelihoodfunksjonen blir som tidligere

$$\mathscr{L}(\boldsymbol{\theta}) = \ln p(\mathscr{X}|\boldsymbol{\theta}) = \sum_{k=1}^{n} \ln p(\boldsymbol{x}_{k}|\boldsymbol{\theta}).$$

Denne skal maksimaliseres med hensyn på parametervektoren $\boldsymbol{\theta}$.

Maksimum-likelihood metoden

Eksemne

Generalisering

ksempel

Isodata-algoritme

Maksimum-likelihood metoden (forts.)

Ved innsetting for blandingstettheten blir gradienten til log-likelihoodfunksjonen

$$\nabla_{\boldsymbol{\theta}_{i}} \mathcal{L}(\boldsymbol{\theta}) = \sum_{k=1}^{n} \nabla_{\boldsymbol{\theta}_{i}} \ln p(\boldsymbol{x}_{k} | \boldsymbol{\theta})$$

$$= \sum_{k=1}^{n} \frac{1}{p(\boldsymbol{x}_{k} | \boldsymbol{\theta})} \nabla_{\boldsymbol{\theta}_{i}} \left[\sum_{j=1}^{c} p(\boldsymbol{x}_{k} | \omega_{j}, \boldsymbol{\theta}_{j}) P(\omega_{j}) \right]$$

$$= \sum_{k=1}^{n} \frac{P(\omega_{i})}{p(\boldsymbol{x}_{k} | \boldsymbol{\theta})} \nabla_{\boldsymbol{\theta}_{i}} p(\boldsymbol{x}_{k} | \omega_{i}, \boldsymbol{\theta}_{i}).$$

Den siste overgangen er mulig siden θ_i og θ_j er funksjonelt uavhengige for $i \neq j$.

Oversikt Problemstilling **Maksimum-likelihood metoden** Eksempel Generalisering Eksempel Isodata-algoritmen Avslutning

Maksimum-likelihood metoden (forts.)

Innsetting av Bayes regel

$$P(\boldsymbol{\omega}_i|\boldsymbol{x}_k,\boldsymbol{\theta}) = \frac{p(\boldsymbol{x}_k|\boldsymbol{\omega}_i,\boldsymbol{\theta}_i)P(\boldsymbol{\omega}_i)}{p(\boldsymbol{x}_k|\boldsymbol{\theta})}$$

gir da

$$\nabla_{\boldsymbol{\theta}_{i}} \mathcal{L}(\boldsymbol{\theta}) = \sum_{k=1}^{n} P(\omega_{i}|\mathbf{x}_{k}, \boldsymbol{\theta}) \frac{\nabla_{\boldsymbol{\theta}_{i}} p(\mathbf{x}_{k}|\omega_{i}, \boldsymbol{\theta}_{i})}{p(\mathbf{x}_{k}|\omega_{i}, \boldsymbol{\theta}_{i})}$$
$$= \sum_{k=1}^{n} P(\omega_{i}|\mathbf{x}_{k}, \boldsymbol{\theta}) \nabla_{\boldsymbol{\theta}_{i}} \ln p(\mathbf{x}_{k}|\omega_{i}, \boldsymbol{\theta}_{i}).$$

En nødvendig betingelse for maksimum av \mathscr{L} er da gitt ved likningssystemet

$$\sum_{k=1}^{n} P(\boldsymbol{\omega}_{i}|\boldsymbol{x}_{k},\boldsymbol{\theta}) \nabla_{\boldsymbol{\theta}_{i}} \ln p(\boldsymbol{x}_{k}|\boldsymbol{\omega}_{i},\boldsymbol{\theta}_{i}) = 0, i = 1,\ldots,c.$$

Oversikt Problemstilling Maksimum-likelihood-metoden **Eksempel** Generalisering Eksempel Isodata-algoritmen Avslutning

Eksempel – multivariate normalfordelinger med ukjent forventning

Antar nå at fordelingene er gitt ved $N(\boldsymbol{\mu}_i, \Sigma_i)$, i = 1, ..., c der $\boldsymbol{\mu} = (\boldsymbol{\mu}_1^t, ..., \boldsymbol{\mu}_c^t)^t$ er ukjent. Da blir

$$\ln p(\mathbf{x}|\omega_i, \boldsymbol{\mu}_i) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^t \Sigma_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) - \ln\{(2\pi)^{d/2}|\Sigma_i|^{1/2}\}$$

slik at

$$\nabla_{\boldsymbol{\mu}_i} \ln p(\boldsymbol{x}|\omega_i, \boldsymbol{\mu}_i) = \Sigma_i^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_i).$$

Innsetting i likningssystemet gir

$$\sum_{k=1}^{n} P(\boldsymbol{\omega}_{i}|\boldsymbol{x}_{k},\boldsymbol{\mu}) \Sigma_{i}^{-1}(\boldsymbol{x}_{k}-\boldsymbol{\mu}_{i}) = 0$$

og multiplikasjon med Σ_i på begge sider av likhetstegnet gir

$$\sum_{k=1}^n P(\omega_i|\mathbf{x}_k,\boldsymbol{\mu})(\mathbf{x}_k-\boldsymbol{\mu}_i)=0.$$

Oversikt Problemstilling Maksimum-likelihood-metoden **Eksempel** Generalisering Eksempel Isodata-algoritmen Avslu

Eksempel (forts.)

Løsningen på likningssystemet kan da skrives som

$$\hat{oldsymbol{\mu}}_i = rac{\displaystyle\sum_{k=1}^n P(\omega_i|oldsymbol{x}_k,\hat{oldsymbol{\mu}})oldsymbol{x}_k}{\displaystyle\sum_{k=1}^n P(\omega_i|oldsymbol{x}_k,\hat{oldsymbol{\mu}})},\,i=1,\ldots,c,$$

der

$$P(\boldsymbol{\omega}_i|\boldsymbol{x}_k,\hat{\boldsymbol{\mu}}) = \frac{p(\boldsymbol{x}_k|\boldsymbol{\omega}_i,\hat{\boldsymbol{\mu}}_i)P(\boldsymbol{\omega}_i)}{p(\boldsymbol{x}_k|\hat{\boldsymbol{\mu}})}.$$

Dette er et tilfredsstillende resultat, der samplene veies med aposteriorisannsynlighetene for hver klasse, dvs. den mest sannsynlige klassen gis størst vekt. Dette er imidlertid en *implisitt* løsning for forventningsvektoren (ingen eksplisitt løsningen).

Oversikt Problemstilling Maksimum-likelihood-metoden **Eksempe**l Generalisering Eksempel Isodata-algoritmen Avslutning

Løsning ved iterasjon

Det implisitte likningssystemet kan løses iterativt ut fra startverdier $\hat{\pmb{\mu}}_i(0)$ for forventningsestimatene

$$\hat{oldsymbol{\mu}}_i(j+1) = rac{\displaystyle\sum_{k=1}^n P(oldsymbol{\omega}_i | oldsymbol{x}_k, \hat{oldsymbol{\mu}}(j)) oldsymbol{x}_k}{\displaystyle\sum_{k=1}^n P(oldsymbol{\omega}_i | oldsymbol{x}_k, \hat{oldsymbol{\mu}}(j))}, i=1,\ldots,c,$$

der estimatene av aposteriorisannsynlighetene er

$$P(\omega_i|\mathbf{x}_k,\hat{\boldsymbol{\mu}}(j)) = \frac{p(\mathbf{x}_k|\omega_i,\hat{\boldsymbol{\mu}}_i(j))P(\omega_i)}{\sum_{l=1}^c p(\mathbf{x}_k|\omega_l,\hat{\boldsymbol{\mu}}_l(j))P(\omega_l)}.$$

Her oppdateres estimatene rekursivt for j = 0, 1, 2, ..., med rask konvergens dersom separasjonen mellom klassene er god, men man er ikke garantert et globalt maksimum, bare at gradienten er null.

Oversikt Probl

Aaksimum-likelihood metode

Eksempel

Generalisering

ksempel

sodata-algoritmen

Eksempel med to klasser

To univariat normalfordelte klasser med ukjente forventningsverdier, enhetlige varianser $(\sigma = 1)$ og apriorisannsynlighetene $P(\omega_1) = 1/3$ og $P(\omega_2) = 2/3$.

Blandingstettheten er da gitt ved

$$p(x|\mu_1, \mu_2) = \frac{1}{3\sqrt{2\pi}} \exp\left[-\frac{1}{2}(x - \mu_1)^2\right] + \frac{2}{3\sqrt{2\pi}} \exp\left[-\frac{1}{2}(x - \mu_2)^2\right]$$

som funksjon av de ukjente parametrene μ_1 og μ_2 . Et treningssett med n=1000 sampler er trukket fra blandingstettheten med sanne parameterverdier

$$\mu_1 = -2 \text{ og } \mu_2 = 2.$$

Kan da beregne log-likelihood funksjonen som funksjon av de to (ukjente) parametrene, dvs.:

$$\mathscr{L}(\mu_1, \mu_2) = \sum_{k=1}^n \ln p(x_k | \mu_1, \mu_2).$$

Oversikt Problemstilling Maksimum-likelihood-metoden **Eksempel** Generalisering Eksempel Isodata-algoritmen Avslutning

Histogram over treningssettet

Histogrammet viser tydelig de to modene i blandingstettheten, sentrert om -2 og 2. Antall sampler fra hver bakenforliggende klasse er henholdsvis $n_1 = 329$ og $n_2 = 671$.

Maksimum-likelihood metodei

Eksempel

Generalisering

ksempel

Isodata-algoritmer

Log-likelihood funksjonen for blandingstettheten

Konturplott av log-likelihood funksjonen

- Primært maksimum i $[\mu_1 = -2.035, \mu_2 = 1.965]$ der $\mathcal{L} = -1986.3$.
- Sekundært maksimum i $[\mu_1 = 2.080, \mu_2 = -1.780]$ der $\mathcal{L} = -2202.1$.

Maksimum-likelihood metoder

Eksempel

Generalisering

Eksempel

odata-algoritmen

Avslutnin

Iterasjonsprosessen med forskjellige startpunkt

Startpunkt hvilket maksimum man ender i. Uheldig valg av startverdier kan gi konvergens mot et sadelpunktet (rødt symbol), der gradienten også er null.

Oversikt Problemstilling Maksimum-likelihood-metoden **Eksempe**l Generalisering Eksempel Isodata-algoritmen Avslutnin

Primær og sekundær løsning

Estimerte tetthetsfunksjoner for hver løsning; primærløsningen (blå kurve) og sekundærløsningen (grønn kurve). Samplene i datasettet er plottet nederst.

Oversikt Problemstilling Maksimum-likelihood metoden Eksempel Generalisering Eksempel Isodata-algoritmen Avslutnin,

Generalisering – ukjente a priori sannsynligheter

 $P(\omega_i)$, $i=1,\ldots,c$ kan inkluderes blant de ukjente. Det kan vises at $\hat{P}(\omega_i)$ og $\hat{\boldsymbol{\theta}}_i$ må tilfredsstille likningssystemet

$$\hat{P}(\omega_i) = \frac{1}{n} \sum_{k=1}^n \hat{P}(\omega_i | \mathbf{x}_k, \hat{\boldsymbol{\theta}})$$

$$\sum_{k=1}^n \hat{P}(\omega_i | \mathbf{x}_k, \hat{\boldsymbol{\theta}}) \nabla_{\boldsymbol{\theta}_i} \ln p(\mathbf{x}_k | \omega_i, \hat{\boldsymbol{\theta}}_i) = 0$$

$$i = 1, \dots, c,$$

der

$$\hat{P}(\boldsymbol{\omega}_i|\boldsymbol{x}_k,\hat{\boldsymbol{\theta}}) = \frac{p(\boldsymbol{x}_k|\boldsymbol{\omega}_i,\hat{\boldsymbol{\theta}}_i)\hat{P}(\boldsymbol{\omega}_i)}{\sum_{j=1}^c p(\boldsymbol{x}_k|\boldsymbol{\omega}_j,\hat{\boldsymbol{\theta}}_j)\hat{P}(\boldsymbol{\omega}_j)}, \quad i = 1,\ldots,c.$$

Dette forutsetter at \mathscr{L} er deriverbar mhp. $\hat{P}(\omega_i)$ og at $\hat{P}(\omega_i) \neq 0$ for alle i.

Oversikt Problemstilling Maksimum-likelihood metoden Eksempel Generalisering **Eksempel** Isodata-algoritmen Avslutning

Eksempel – multivariate normalfordelinger (alle parametre ukjente)

For $p(\mathbf{x}|\omega_i, \boldsymbol{\theta}_i) = N(\boldsymbol{\mu}_i, \Sigma_i)$ for alle klasser blir likningssystemet (kan vises):

$$\hat{P}(\omega_i) = \frac{1}{n} \sum_{k=1}^{n} \hat{P}(\omega_i | \mathbf{x}_k, \hat{\boldsymbol{\theta}})$$

$$\hat{\boldsymbol{\mu}}_i = \frac{\sum_{k=1}^{n} \hat{P}(\omega_i | \mathbf{x}_k, \hat{\boldsymbol{\theta}}) \mathbf{x}_k}{\sum_{k=1}^{n} \hat{P}(\omega_i | \mathbf{x}_k, \hat{\boldsymbol{\theta}})}$$

$$\hat{\Sigma}_i = \frac{\sum_{k=1}^{n} \hat{P}(\omega_i | \mathbf{x}_k, \hat{\boldsymbol{\theta}}) (\mathbf{x}_k - \hat{\boldsymbol{\mu}}_i) (\mathbf{x}_k - \hat{\boldsymbol{\mu}}_i)^t}{\sum_{k=1}^{n} \hat{P}(\omega_i | \mathbf{x}_k, \hat{\boldsymbol{\theta}})}$$

Dette likningssystemet kan også løses ved iterasjon.

Eksempel – Fishers datasett

```
>> load fisheriris
>> meas(1:10,:)
ans =
    5.1000
              3.5000
                        1,4000
                                   0.2000
    4.9000
              3.0000
                        1,4000
                                   0.2000
    4.7000
              3.2000
                        1.3000
                                   0.2000
    4.6000
              3.1000
                        1.5000
                                   0.2000
    5.0000
              3,6000
                        1,4000
                                   0.2000
    5.4000
              3.9000
                        1.7000
                                   0.4000
    4.6000
              3.4000
                        1.4000
                                   0.3000
    5.0000
              3.4000
                        1.5000
                                   0.2000
    4.4000
              2,9000
                        1,4000
                                   0.2000
    4.9000
              3.1000
                        1.5000
                                   0.1000
>> species(1:10)
ans =
 10×1 cell array
    {'setosa'}
    {'setosa'}
    {'setosa'}
    {'setosa'}
    {'setosa'}
    {'setosa'}
    ('setosa')
    {'setosa'}
    ('setosa')
    {'setosa'}
>> summary(categorical(species));
     setosa
     versicolor
                      50
     virginica
                      50
>>
```


Maksimum-likelihood metode

Eksempel

Generalisering

Eksempel

Isodata-algoritmen

Spredningsplott og blandingstetthet – 1 iterasjon

// Aaksimum-likelihood metode

Eksempel

Generalisering

Eksempel

Isodata-algoritmer

Spredningsplott og blandingstetthet – 11 iterasjoner

Oversikt Problemstilling Maksimum-likelihood-metoden Eksempel Generalisering **Eksempel** Isodata-algoritmen Avslutnin_i

Spredningsplott og blandingstetthet – 21 iterasjoner

Oversikt Problemstilling Maksimum-likelihood-metoden Eksempel Generalisering **Eksempel** Isodata-algoritmen Avslutnin_i

Spredningsplott og blandingstetthet – 31 iterasjoner

Oversikt Problemstilling Maksimum-likelihood-metoden Eksempel Generalisering **Eksempel** Isodata-algoritmen Avslutnin_i

Spredningsplott og blandingstetthet – 41 iterasjoner

//aksimum-likelihood metode

Eksempel

Generalisering

Eksempel

Isodata-algoritmeı

Spredningsplott og blandingstetthet – 51 iterasjoner

Maksimum-likelihood metode

Eksempel

Generalisering

Eksempel

odata-algoritmen

Spredningsplott og blandingstetthet – 61 iterasjoner

//aksimum-likelihood metoder

Eksempel

Generalisering

Eksempel

Isodata-algoritmeı

Spredningsplott og blandingstetthet – 71 iterasjoner

Maksimum-likelihood metode

Eksempel

Generalisering

Eksempel

Isodata-algoritmer

Avslutnir

Spredningsplott og blandingstetthet – 91 iterasjoner

Oversikt Problemstilling Maksimum-likelihood metoden Eksempel Generalisering Eksempel Isodata-algoritmen Avslutnin;

Parameterestimatene

Gaussisk blandingsfordeling med tre komponenter i to dimensjoner

Klasse 1 (versicolor): Sigma 1:

Blandingsparameter: 0.291250 0.3528 0.2203

Middel: 0.4798 -0.2291 0.2203 0.1924

Klasse 2 (virginica): Sigma 2:

Blandingsparameter: 0.375417 0.5964 0.2971 Middel: 1.9740 0.0083 0.2971 0.2303

Wilddel: 1.9740 0.0083 0.2971 0.230

Klasse 3 (setosa): Sigma 3:

TEK5020/9020 Mønstergjenkjenning Høsten 2023

Forenkling – datasett med tette klynger omkring sampelmidlene

Anta her at samplene danner tette, adskilte klynger, slik at

$$\hat{P}(\pmb{\omega}_i|\pmb{x}_k,\hat{\pmb{ heta}})pprox egin{cases} 1 & \pmb{x}_k\in\pmb{\omega}_i \ 0 & ext{ellers}. \end{cases}$$

Oversikt Problemstilling Maksimum-likelihood metoden Eksempel Generalisering Eksempel Isodata-algoritmen

Tilnærmet resultat – tette klynger

Likningssystemet reduseres da til

$$\hat{P}(\omega_i) = \frac{1}{n} \sum_{k=1}^n \hat{P}(\omega_i | \mathbf{x}_k, \hat{\boldsymbol{\theta}}) \approx \frac{n_i}{n}$$

$$\hat{\boldsymbol{\mu}}_i = \frac{\sum_{k=1}^n \hat{P}(\omega_i | \mathbf{x}_k, \hat{\boldsymbol{\theta}}) \mathbf{x}_k}{\sum_{k=1}^n \hat{P}(\omega_i | \mathbf{x}_k, \hat{\boldsymbol{\theta}})} \approx \frac{1}{n_i} \sum_{\mathbf{x}_k \in \mathcal{X}_i} \mathbf{x}_k = \boldsymbol{m}_i$$

$$\hat{\Sigma}_i = \frac{\sum_{k=1}^n \hat{P}(\omega_i | \mathbf{x}_k, \hat{\boldsymbol{\theta}}) (\mathbf{x}_k - \hat{\boldsymbol{\mu}}_i) (\mathbf{x}_k - \hat{\boldsymbol{\mu}}_i)^t}{\sum_{k=1}^n \hat{P}(\omega_i | \mathbf{x}_k, \hat{\boldsymbol{\theta}})} \approx \frac{1}{n_i} \sum_{\mathbf{x}_k \in \mathcal{X}_i} (\mathbf{x}_k - \boldsymbol{m}_i) (\mathbf{x}_k - \boldsymbol{m}_i)^t$$

der n_i være antall sampler i klasse ω_i . Dette er et tilfredsstillende (intuitivt riktig) resultat.

Maksimum-likelihood metode

ksempel

eneralisering

sempel

Isodata-algoritmen

Avslutnir

Isodata-algoritmen (K-Means-Clustering)

For multivariate normalfordelinger er $\hat{P}(\omega_i|\mathbf{x}_k,\hat{\boldsymbol{\theta}})$ stor når Mahalanobisavstanden $r_i^2 = (\mathbf{x}_k - \boldsymbol{\mu}_i)^t \hat{\Sigma}_i^{-1} (\mathbf{x}_k - \boldsymbol{\mu}_i)$ er liten.

Dersom r_i^2 erstattes med Euclidsk avstand $||\mathbf{x}_k - \hat{\boldsymbol{\mu}}_i||^2$ fra hvert klassemiddel, vil det foregående resultatet antyde følgende enkle iterasjonsprosess:

- Initialisér $\hat{\pmb{\mu}}_1, \dots, \hat{\pmb{\mu}}_c$
- Gjenta inntil ferdig:
 - Klassifisér $\mathbf{x}_k, k = 1, ..., n$ til nærmeste middel
 - Oppdatér $\hat{\boldsymbol{\mu}}_1, \dots, \hat{\boldsymbol{\mu}}_c$
 - Hvis ingen endring -> ferdig.

Dette er den grunnleggende *Isodata-algoritmen* – et eksempel på en *klyngeanalysemetode*.

Oversikt Problemstilling Maksimum-likelihood metoden Eksempel Generalisering Eksempel Isodata-algoritmen Avslutning

Eksempel – Isodata-algoritmen (1)

Umerket datasett

 $\hat{\pmb{\mu}}_1$ (rød) , $\hat{\pmb{\mu}}_2$ (blå) og $\hat{\pmb{\mu}}_3$ (grønn) Initialisering

Oversikt Problemstilling Maksimum-likelihood metoden Eksempel Generalisering Eksempel <mark>Isodata-algoritmen</mark> Avslutnin

Eksempel – Isodata-algoritmen (2)

Klassifisering til nærmeste middel

Oppdatering av $\hat{\boldsymbol{\mu}}_1, \hat{\boldsymbol{\mu}}_2$ og $\hat{\boldsymbol{\mu}}_3$

Iterasjon 1

Oversikt Problemstilling Maksimum-likelihood metoden Eksempel Generalisering Eksempel Isodata-algoritmen Avslutnin

Eksempel – Isodata-algoritmen (3)

Reklassifisering til nærmeste middel

Oppdatering av $\hat{\boldsymbol{\mu}}_1, \hat{\boldsymbol{\mu}}_2$ og $\hat{\boldsymbol{\mu}}_3$

Iterasjon 2

Oversikt Problemstilling Maksimum-likelihood metoden Eksempel Generalisering Eksempel Isodata-algoritmen Avslutnin

Eksempel – Isodata-algoritmen (4)

Reklassifisering til nærmeste middel

Endelig klassetilordning (klyngeinndeling)

Sluttresultat

Eksempel – Fishers datasett

```
>> load fisheriris
>> meas(1:10,:)
ans =
    5.1000
              3.5000
                        1,4000
                                   0.2000
    4.9000
              3.0000
                        1,4000
                                   0.2000
    4.7000
              3.2000
                        1.3000
                                   0.2000
    4.6000
              3.1000
                        1.5000
                                   0.2000
    5.0000
              3,6000
                        1,4000
                                   0.2000
    5.4000
              3.9000
                        1.7000
                                   0.4000
    4.6000
              3.4000
                        1.4000
                                   0.3000
    5.0000
              3.4000
                        1.5000
                                   0.2000
    4.4000
              2,9000
                        1,4000
                                   0.2000
    4.9000
              3.1000
                        1.5000
                                   0.1000
>> species(1:10)
ans =
 10×1 cell array
    {'setosa'}
    {'setosa'}
    {'setosa'}
    {'setosa'}
    {'setosa'}
    {'setosa'}
    {'setosa'}
    {'setosa'}
    ('setosa')
    {'setosa'}
>> summary(categorical(species));
     setosa
     versicolor
                      50
     virginica
                      50
>>
```


Eksempel

Generalisering

sempel

Isodata-algoritmen

Avslutnin

K-means algoritmen – tre klynger

Oversikt Problemstilling Maksimum-likelihood-metoden Eksempel Generalisering Eksempel **Isodata-algoritmen** Avslutning

Desisjonsregioner

Maksimum-likelihood metodei

ksempe

Generalisering

Eksempe

Isodata-algoritmen Av

Fishers Irisdata transformert til de to første prinsipalkomponentene

Maksimum-likelihood metode

Eksempel

Ekse

mpel Isodata-algoritmen

Avslutnin

K-means algoritmen – tre klynger (med PCA)

Maksimum-likelihood metoder

ksempe

Generalisering

sempel

Isodata-algoritmen

Avslutnir

K-means – fasit og klyngedannelse – tre klynger

Maksimum-likelihood metodei

Eksempel

ering E

empel Isodata-algoritmen

K-means algoritmen – to klynger (med PCA)

//aksimum-likelihood metode

Eksempel

Eks

mpel Isodata-algoritmen

K-means algoritmen – fire klynger (med PCA)

-Oversikt Problemstilling Maksimum-likelihood metoden Eksempel Generalisering Eksempel Isodata-algoritmen **Avslutning**

Innhold i kurset

Ikke-ledet læring

- Introduksjon til mønstergjenkjenning
- Beslutningsteori
- Parametriske metoder
- Ikke-parametriske metoder
- Lineære og generaliserte diskriminantfunksjoner
- Evaluering av klassifikatorer
- Ikke-ledet læring
- Klyngeanalyse (neste gang).