

目录

自定义常量:	2
函数:	5
设备函数:	5
模拟输入函数:	5
模拟输出函数:	8
电源函数:	10
校准模块:	10
静态数字 IO 模块:	11
数字输入模块:	11
数字输出模块:	14
通讯协议模块:	16
基础读写函数:	

自定义常量:

//Function Return

typedef int FT_STATUS

FT_STATUS	Int	设备状态
FT_OK	0	指令成功
FT_INVALID_HANDLE	1	无效的句柄
FT_DEVICE_NOT_FOUND	2	设备未找到
FT_DEVICE_NOT_OPENED	3	设备未打开
FT_IO_ERROR	4	设备 IO 错误
FT_INSUFFICIENT_RESOURCES	5	数字输入通道
FT_INVALID_PARAMETER	6	无效的参数
FT_INVALID_BAUD_RATE	7	无效的波特率
FT_OTHER_ERROR	>=8	其他问题

// instrument states:

typedef BYTE **RDState**

RDState	Int	采集状态
RDStateReady	0	准备完成,可以进行各种操作
RDStateArmed	1	等待触发中
RDStateDone	2	完成采集
RDStateTriggered	3	完成触发
RDStateRunning	3	运行采集中
RDStateConfig	4	配置中
RDStateWait	7	等待触发

// acquisition modes:

typedef int RDACQMODE

RDACQMODE	Int	采集模式
RDACQMODESingle	0	单次采集
RDACQMODEScanShift	1	滑动采集
RDACQMODEScanScreen	2	扫描采集

// trigger source

typedef BYTE RDTRIGSRC

RDTRIGSRC	Int	触发源
RDTRIGSRCNone	0	无触发源=不触发
RDTRIGSRCDetectorAnalogInCH1	1	模拟输入通道 1
RDTRIGSRCDetectorAnalogInCH2	2	模拟输入通道 2
RDTRIGSRCAnalogOut1	3	模拟输出通道 1
RDTRIGSRCAnalogOut2	4	模拟输出通道 2
RDTRIGSRCDetectorDigitalIn	5	数字输入通道

RDTRIGSRCDigitalOut	6	数字输出通道
RDTRIGSRCExternal1	8	外部触发 1
RDTRIGSRCExternal2	9	外部触发 2

//trigger slope

typedef int RDTriggerSlope

RDTriggerSlope	Int	边沿触发模式
RDTriggerSlopeRise	0	上升沿触发模式
RDTriggerSlopeFall	1	下降沿触发模式
RDTriggerSlopeEdge	2	双边沿触发模式

// trigger mode:

typedef int **RDTRIGTYPE**

RDTRIGTYPE	Int	触发类型
RDTRIGTYPEEdge	0	边沿触发

// analog out signal types

typedef BYTE **RDFUNC**

RDFUNC	Int	模拟输出类型
RDFUNCDC	0	直流
RDFUNCSine	1	正弦
RDFUNCSquare	2	方波
RDFUNCTriangle	3	三角波
RDFUNCRampUp	4	上升锯齿波
RDFUNCRampDown	5	下降锯齿波
RDFUNCNoise	6	噪声
RDFUNCPulse	7	脉冲
RDFUNCTrapezium	8	梯形波
RDFUNCSinePower	9	幂正弦
RDFUNCCustom	10	自定义波形
RDFUNCPlay	31	连续波

// analog out channel node types

typedef int RDAnalogOutNode

RDAnalogOutNode	Int	输出节点
RDAnalogOutNodeCarrier	0	载波
RDAnalogOutNodeFM	1	FM 调制
RDAnalogOutNodeAM	2	AM 调制

// digital io channel node types typedef int RDDigitalOutType

RDDigitalOutType	Int	数字信号输出模式
RDDigitalOutTypePulse	0	脉冲模式
RDDigitalOutTypeCustom	1	自定义模式
RDDigitalOutTypeRandom	2	随机模式

typedef int RDDigitalOutIdle

RDDigitalOutIdle	Int	空闲电平
RDDigitalOutIdleInit	0	初始化
RDDigitalOutIdleLow	1	低电平
RDDigitalOutIdleHigh	2	高电平
RDDigitalOutIdleZet	3	高阻

函数:

设备函数:

Int RDEnumDeviceCount(DWORD* count)

描述:

扫描所有设备、返回设备数量。

参数

- count - 查找到的设备数量

int RDEnumDeviceInfo (int i, char* Description,char* SerialNumber,FT_HANDLE *handle)

描述:

根据设备索引返回对应设备的 SN 号和描述信息。

参数:

- -i- 设备索引,从0开始
- Description 设备描述信息
- SerialNumber 设备序列号
- handle 设备句柄

int RDdeviceOpen(int i,FT_HANDLE *ftHandle)

描述:

根据设备索引打开对应设备,返回句柄。

参数:

- -i- 设备索引,从0开始
- ftHandle 设备句柄

int RDdeviceClose(FT_HANDLE ftHandle)

描述:

根据设备句柄关闭设备。

参数:

- ftHandle - 设备句柄

模拟输入函数:

int RDAnalogInStatus(FT_HANDLE handle,RDState* sts)

描述:

获取设备的模拟输入模块的状态。

参数:

- handle - 设备句柄

- sts - 状态类型

int RDAnalogInFrequencySet(FT_HANDLE handle,int fre)

描述:

设置设备的模拟输入模块的采样频率。

参数:

- handle 设备句柄
- fre 频率(1~40MHz) 单位为 Hz。

int RDAnalogInChannelRangeSet(FT_HANDLE handle,int channel,double range)

描述:

设置设备的模拟输入模块每个通道的电压量程。

参数:

- handle 设备句柄
- channel 通道号, 0 为通道 A, 1 为通道 B
- range 量程, 5V 或者 25V,单位为 V

int RDAnalogInChannelEnableSet(FT_HANDLE handle,int channel,bool enable)

描述:

设置设备的模拟输入模块每个通道的采样使能。

参数:

- handle 设备句柄
- channel 通道号, 0 为通道 A, 1 为通道 B
- enable 0 为关闭采样, 1 为开启采样

int RDAnalogInTriggerAutoTimeoutSet(FT_HANDLE handle, int timeout)

描述:

设置设备的模拟输入模块的自动触发超时功能。

参数:

- handle 设备句柄
- timeout 0 为永不超时, 1 为超时 1s··· 单位为 s

int RDAnalogInTriggerSourceSet(FT_HANDLE handle,RDTRIGSRC trigsrc)

描述:

设置设备的模拟输入模块的触发源。

参数:

- handle 设备句柄
- trigsrc 触发源参数,常用 RDTRIGSRCNone ,RDTRIGSRCDetectorAnalogInCH1(2)

int RDAnalogInTriggerTypeSet(FT_HANDLE handle, RDTRIGTYPE trigtype)

Instruments Playground SDK

描述:

设置设备的模拟输入模块的触发类型。

参数:

- handle 设备句柄
- trigtype 触发类型参数,常用边沿触发,RDTRIGTYPEEdge

int RDAnalogInTriggerLevelSet(FT_HANDLE handle, double voltsLevel, double range)

描述:

设置设备的模拟输入模块的触发电压。

参数

- handle 设备句柄
- voltsLevel 触发电压设置, 范围为: -5~5V 或-25~+25 V
- range 当前通道的量程 5V 或 25V

int RDAnalogInTriggerConditionSet(FT HANDLE handle, RDTriggerSlope trigcond)

描述:

设置设备的模拟输入模块的触发边沿。

参数:

- handle 设备句柄
- trigcond 触发边沿参数,包括上边沿,下边沿,双向边沿

int RDAnalogInBufferSizeSet(FT HANDLE handle, int buffersize)

描述:

设置设备的模拟输入模块的缓存大小。

参数:

- handle 设备句柄
- buffersize 单次采样的每个通道的缓存区域大小, 可选值: 32, 64, 128…2048

int RDAnalogInConfigure(FT HANDLE handle,bool run)

描述:

设置设备的模拟输入模块的开启和关闭。

参数:

- handle 设备句柄
- run 0: 关闭模拟输入模块, 1: 开启模拟输入

int RDAnalogInRead(FT_HANDLE handle,int ch, int size,double range, double *RxBuffer,uchar* CalArray,int *backsize)

描述:

设置设备的模拟输入模块的开启和关闭。

- handle 设备句柄
- ch 通道索引 0: 通道 A, 1: 通道 B

- size 缓存大小 数值和 RDAnalogInBufferSizeSet 设置值相同
- range 量程大小 数值和 RDAnalogInRangeSet 设置值相同
- RxBuffer 采样结果数组 单位为 V
- CalArray 校准数组,通过 RDCalibrationRead 获取
- backsize 设备返回的采样结果数组的实际大小

模拟输出函数:

int RDAnalogOutNodeEnableSet(FT_HANDLE handle,int ch, RDAnalogOutNode node, bool enable)

描述:

设置设备的模拟输出模块的对应通道和节点的使能。

参数:

- handle 设备句柄
- ch 通道索引, 0: 模拟输出通道 A, 1: 模拟输出通道 B
- node 节点索引
- enable 0: 使能模拟输出通道, 1: 关闭模拟输出通道

int RDAnalogOutNodeFunctionSet(FT_HANDLE handle, int ch, RDAnalogOutNode node, RDFUNC func)

描述:

设置设备的模拟输出模块的对应通道和节点的波形函数。

参数:

- handle 设备句柄
- ch 通道索引, 0: 模拟输出通道 A, 1: 模拟输出通道 B
- node 节点索引
- func 波形函数索引, 分为简单波形函数, 自定义波形函数和连续波

int RDAnalogOutNodeFrequencySet(FT_HANDLE handle, int ch, RDAnalogOutNode node, int hzFrequency)

描述:

设置设备的模拟输出模块的对应通道和节点的波形频率。

参数:

- handle 设备句柄
- ch 通道索引, 0: 模拟输出通道 A, 1: 模拟输出通道 B
- node 节点索引
- hzFrequency 波形频率,单位 Hz,范围 0-20MHz,对于简单函数为整个波形的周期频率,对于自定义和连续波为两个采样点的间隔频率

int RDAnalogOutNodeOffsetAmpSet(FT_HANDLE handle, int ch, RDAnalogOutNode node, double vOffset,double amp,uchar* CalArray)

Instruments Playground SDK

描述:

设置设备的模拟输出模块的对应通道和节点的波形偏置和幅值。

参数:

- handle 设备句柄
- ch 通道索引, 0: 模拟输出通道 A, 1: 模拟输出通道 B
- node 节点索引
- vOffset- 输出波形的直流偏置,单位为 V。范围-5~5V
- amp 输出波形的幅值, 单位为 V。范围-5~5V
- CalArray 通过 RDCalibrationRead 获取的校准数组

int RDAnalogOutNodeSymmetrySet(FT_HANDLE handle,int ch,RDAnalogOutNode node,double percentageSymmetry)

描述:

设置设备的模拟输出模块的对应通道和节点的对称性。

参数:

- handle 设备句柄
- ch 通道索引, 0: 模拟输出通道 A, 1: 模拟输出通道 B
- node 节点索引
- percentageSymmetry- 波形对称性百分比参数 ,范围 0~100。大多数情况合适 50%。

int RDAnalogOutNodePhaseSet(FT_HANDLE handle,int ch,RDAnalogOutNode node,double degreePhase)

描述:

设置设备的模拟输出模块的对应通道和节点的初始相位。

参数:

- handle 设备句柄
- ch 通道索引, 0: 模拟输出通道 A, 1: 模拟输出通道 B
- node 节点索引
- degreePhase 波形初始相位角度, 范围 0~360°。

int RDAnalogOutNodeDataSet(FT_HANDLE handle, int ch, RDAnalogOutNode node, double *rgdData, int cdData)

描述:

设置设备的模拟输出模块的对应通道和节点的自定义波形数据。

参数:

- handle 设备句柄
- ch 通道索引, 0: 模拟输出通道 A, 1: 模拟输出通道 B
- node 节点索引
- rgdData 最大支持 255 个数据点, 范围-1~1 之间。 幅值和偏置通过 RDAnalogOutNodeOffsetAmpSet 调节。
- cdData rgdData 的实际大小

int RDAnalogOutConfigure(FT_HANDLE handle, int ch, bool output)

Instruments Playground SDK

描述:

设置设备的模拟输出模块的对应通道和节点的使能。

参数:

- handle 设备句柄
- ch 通道索引, 0: 模拟输出通道 A, 1: 模拟输出通道 B, 2: AB 通道同时设置
- output 0: 关闭模拟输出通道输出, 1: 打开模拟输出通道输出

电源函数:

int RDAnalogIOChannelNodeSet(FT_HANDLE handle,int ch,double value,uchar* CalArray)

描述:

设置设备的电源模块的对应通道的电压值。

参数:

- handle 设备句柄
- ch 通道索引, 0: 电源正向输出通道 A, 1: 电源负向输出通道 B
- value 电压值, 正向输出为 0~5V,负向输出为-5~0V
- CalArray 校准值, 通过 RDCalibrationsRead 获取

int RDAnalogIOChannelEnableSet (FT HANDLE handle,int ch, bool enable)

描述:

设置设备的电源输出模块的对应通道和节点的使能。

参数:

- handle 设备句柄
- ch 通道索引, 0: 电源正向输出通道 A, 1: 电源负向输出通道 B
- enable 通道输出使能 0: 关闭输出, 1: 打开输出

校准模块:

int RDCalibrationWrite(FT HANDLE handle,uchar *CalArray)

描述・

写入设备的校准模块的参数。写入成功后保存在 EEPROPM 中。*通常不建议客户使用参数:

- handle 设备句柄
- CalArray 校准参数数组. 范围 0~255. 大小为 14。具体排列顺序如下:
- 0~3: 模拟输出 A, B 通道的 Offset, 模拟通道 A, B 的 Amplitude。
- 4~5: 电源输出 A, B 通道的 Offset
- 6~9: 5V 量程下的模拟输入 A, B 通道的 Offset, 模拟通道 A, B 的 Amplitude。
- 10~13: 25V 量程下的模拟输入 A, B 通道的 Offset, 模拟通道 A, B 的 Amplitude。

int RDCalibrationRead(FT_HANDLE handle,uchar *CalArray)

描述:

读取设备的校准模块的参数。在进行模拟输入输出和电源控制时务必先使用该函数获取 对应参数,并将参数数组整体传递给需要的函数即可。

参数:

- handle 设备句柄
- CalArray 校准参数数组, 范围 0~255, 大小为 14。

静态数字 IO 模块:

int RDDigitalIOOutputEnableSet (FT HANDLE handle, uint outputs)

描述:

设置设备的数字IO的各个通道是否为输出通道。

参数:

- handle 设备句柄
- outputs 使能通道, LSB, 0xFF表示全部设置为输出通道。

int RDDigitalIOOutputSet (FT_HANDLE handle, uint sets)

描述:

设置设备的数字IO的各个通道输出电平状态。

参数:

- handle 设备句柄
- sets 设置状态, LSB, 0xFF 表示全高电平。

int RDDigitalIOInputStatus (FT_HANDLE handle,uint *reads)

描述:

回读数字 IO 的 16 个通道电平状态。

参数:

- handle 设备句柄
- reads 回读结果, LSB, 0xFF 表示全高电平。

数字输入模块:

int RDDigitalInDividerSet(FT HANDLE handle, uint div)

Instruments Playground SDK

描述:

设置设备的数字输入的分频参数。

参数:

- handle 设备句柄
- div 分频。实际频率等于最大频率(40MHz)除以分频率。

int RDDigitalInBufferSizeSet(FT HANDLE handle,int buffersize)

描述:

设置设备的数字输入的缓存大小。

参数:

- handle 设备句柄
- buffersize 缓存大小,可用值: 32,64,128…2048。

int RDDigitalInChannelSet(FT HANDLE handle,int channel)

描述:

设置设备的数字输入的使能通道一共16个,和数字输出,静态口共用。

- handle 设备句柄
- channel 数字通道, LSB, 范围: 0x00~0xFF, 0: 关闭输入, 1: 打开输入。

int RDDigitalInTriggerSourceSet(FT HANDLE handle,RDTRIGSRC trigsrc)

描述:

设置设备的数字输入的触发源。

参数:

- handle 设备句柄
- trigsrc 触发源, 常用 RDTRIGSRCDetectorDigitalIn。

int RDDigitalInTriggerTypeSet(FT HANDLE handle, RDTRIGTYPE type)

描述:

设置设备的数字输入的触发类型。

参数:

- handle 设备句柄
- type 触发类型, 常用边沿触发, RDTRIGTYPEEdge。

int RDDigitalInTriggerSlopeSet(FT HANDLE handle,RDTriggerSlope slope)

描述:

设置设备的数字输入的触发边沿方向。(用于非 RDTRIGSRCDetectorDigitalIn 的情况) 参数:

- handle 设备句柄
- slope 触发边沿方向。

int RDDigitalInTriggerSet(FT HANDLE handle, uint Rais, uint Fall)

Instruments Playground SDK

描述:

设置设备的数字输入的 RDTRIGSRCDetectorDigitalIn 时候的各个通道触发边沿开关。

参数:

- handle 设备句柄
- Rais 上边沿开关。LSB, 0x11 使能数字 1 和 8 通道的上升沿触发。
- Fall 下边沿开关。LSB, 0x11 使能数字 1 和 8 通道的下降沿触发。

int RDDigitalInTriggerTimeoutSet(FT HANDLE handle, int enable)

描述:

设置设备的数字输入的触发超时。

参数:

- handle 设备句柄
- enable- 超时使能, 0: 永不超时, N>1: 超时 N 秒。

int RDDigitalInConfigure(FT HANDLE handle,bool enable)

描述:

设置设备的数字输入的采集开关。

参数:

- handle 设备句柄
- enable 0: 关闭采集, 1: 开始采集。

int RDDigitalInStatus(FT HANDLE handle,RDState* sts)

描述:

设置设备的数字输入的状态读取。

参数:

- handle 设备句柄
- sts 状态, 0x02 为可以读取数据。

int RDDigitalInRead(FT HANDLE handle,int size,UINT16* RxBuffer,int *backsize)

描述:

设置设备的数字输入的缓存大小。

- handle 设备句柄
- size 缓存大小 数值和 RDAnalogInBufferSizeSet 设置值相同
- RxBuffer 数字信号结果, LSB, 每一位代表一个通道, 1 为高电平, 0 为低电平。
- backsize 设备返回的 RxBuffer 的实际大小

数字输出模块:

int RDDigitalOutRun(FT HANDLE handle, bool enable)

描述:

设置设备的数字输出的输出使能。

参数:

- handle 设备句柄
- enable 输出使能, 0: 关闭输出, 1: 开启输出。

int RDDigitalOutTriggerSourceSet(FT HANDLE handle, RDTRIGSRC trigsrc)

描述:

设置设备的数字输出的触发源。

参数:

- handle 设备句柄
- trigsrc 触发源。

int RDDigitalOutTriggerSlopeSet(FT HANDLE handle, RDTriggerSlope slope)

描述:

设置设备的数字输出的触发边沿方向。

参数:

- handle 设备句柄
- slope 边沿类型, 上边沿, 下边沿, 双向边沿。

int RDDigitalOutTypeSet(FT_HANDLE handle,int ch,RDDigitalOutType type)

描述:

设置设备的数字输出的触发类型。

参数:

- handle 设备句柄
- type -触发类型,常用边沿触发,RDTRIGTYPEEdge。

int RDDigitalOutEnableSet(FT HANDLE handle, uint chs)

描述:

设置设备的数字输出的通道使能。

参数:

- handle 设备句柄
- chs 通道使能, 共 16 个, LSB, 0x00~0xFF。例如 0x0F,使能 1~8 通道

int RDDigitalOutIdleSet(FT HANDLE handle,int ch, RDDigitalOutIdle idle)

描述:

设置设备的数字输出的空闲状态。

参数:

- handle - 设备句柄

Instruments Playground SDK

- idle - 空闲状态。常用低电平。

int RDDigitalOutDividerInitSet(FT_HANDLE handle,int ch, uint divinit)

描述:

设置设备的数字输出的分频初始数。用于延时信号输出,单位为最大频率的倒数。

- handle 设备句柄
- ch 通道号, LSB, 0x00~0xFF。
- divinit 分频初始数。N: N/MaxFre 秒后发送信号。

int RDDigitalOutDividerSet(FT HANDLE handle,int ch, uint div)

描述:

设置设备的数字输出的分屏。

参数:

- handle 设备句柄
- ch 通道号, LSB, 0x00~0xFF。
- div 分频。实际输出的数值信号频率等于最大频率除以分频率。

int RDDigitalOutCounterInitSet(FT_HANDLE handle,int ch,int initlevel,uint counter)

描述:

设置设备的数字输出的初始电平和持续时间。

参数:

- handle 设备句柄
- ch 通道号, LSB, 0x00~0xFF。
- initlevel 初始电平, 0: 低电平, 1: 高电平。
- counter 持续时间的个数, 最小周期 (25ns) 乘以个数为实际持续时间。

int RDDigitalOutCounterSet(FT_HANDLE handle,int ch, uint counter_l,uint counter_h)

描述:

设置设备的数字输出的高低电平的持续时间。

- handle 设备句柄
- ch 通道号, LSB, 0x00~0xFF。
- counter_I 低电平持续时间的个数,最小周期(25ns)乘以个数为实际持续时间。
- counter_h 高电平持续时间的个数, 最小周期(25ns)乘以个数为实际持续时间。

通讯协议模块:

int RDDigitalUartRateSet(FT_HANDLE handle, double rate)

描述:

设置设备的串口通信速率。

参数:

- handle 设备句柄
- rate 串口波特率,可选: 110,150,300,600,1200,2400,4800,9600,14400,19200, 28800,38400,56000,57600,115200,128000,153600,230400,256000,460800,921600。

int RDDigitalUartTxRxIOSet(FT HANDLE handle, int TxDIO, int RxDIO)

描述:

设置设备的串口的 TX,RX 接口通道号。

参数:

- handle 设备句柄
- TxDIO 发送接口, 0: ch1···15:ch16。 - RxDIO - 接收接口, 0: ch1···15:ch16。

int RDDigitalUartTx(FT_HANDLE handle, uchar* data, int length)

描述:

设置设备的串口的TX输出数据,并发送。

参数:

- handle 设备句柄
- data 发送数据, 单次最长支持 255 个。
- length 数据长度。

int RDDigitalUartRx(FT_HANDLE handle, uchar* rgRX, int length, int * rxcount, int *fParity)

描述:

回读设备的串口 RX 数据。

- handle 设备句柄
- length 缓存 rgRX 的长度
- rgRX 串口数据结果。
- rxcount- 设备返回的 rgRX 的实际长度
- fParity 奇偶校验

int RDDigitalI2CRateSet(FT_HANDLE handle, double rate)

描述:

设置设备的 I2C 通信速率。

参数:

- handle 设备句柄
- rate 串口波特率, 可选: 1,4,10,40,100,400,1000,4000,1e4,4e4,1e5,4e5,1e6,4e6,1e7。

int RDDigitalI2CTxRxIOSet(FT HANDLE handle, int SCLDIO, int SDADIO)

描述:

设置设备的 I2C 的 SCL 和 SDA 接口通道号。

参数:

- handle 设备句柄
- SCLDIO 时钟接口, 0: ch1···15:ch16。
- SDADIO 信号接口, 0: ch1···15:ch16。

int RDDigitalI2CTx(FT HANDLE handle, uchar addr, uchar* data, int length)

描述:

设置设备的 I2C 的 TX 输出数据, 并发送。

参数:

- handle 设备句柄
- data 发送数据, 单次最长支持 255 个。
- length 数据长度。

int RDDigitalI2CRx(FT_HANDLE handle,uchar addr, uchar* rgRX, int length, int * rxcount, int *fParity)

描述:

回读设备的 I2C 的 RX 数据。

- handle 设备句柄
- length 缓存 rgRX 的长度
- rgRX I2C 数据结果。
- rxcount- 设备返回的 rgRX 的实际长度
- fParity 奇偶校验

int RDDigitalSPIRateSet(FT_HANDLE handle, double rate)

描述:

设置设备的 SPI 通信速率。

参数:

- handle 设备句柄
- rate 串口波特率,可选: 1,4,10,40,100,400,1000,4000,1e4,4e4,1e5,4e5,1e6,4e6,1e7

int RDDigitalSPITxRxIOSet(FT_HANDLE handle, int CSDIO,int ClockDIO,int DQ0, int DQ1)

描述:

设置设备的 SPI 的 CS,Clock,DQ0,DQ1 接口通道号。

参数:

- handle 设备句柄
- CSDIO 片选接口, 0: ch1···15:ch16。
- ClockDIO 时钟接口, 0: ch1···15:ch16。
- DQ0 数据 0 接口, 0: ch1···15:ch16。
- DQ1 数据1接口, 0: ch1···15:ch16。

int RDDigitalSPITx(FT HANDLE handle, uchar* data, int length)

描述:

设置设备的 SPI 的 TX 输出数据, 并发送。

参数:

- handle 设备句柄
- data 发送数据, 单次最长支持 255 个。
- length 数据长度。

int RDDigitalSPIRx(FT_HANDLE handle, uchar* rgRX, int length, int * rxcount, int *fParity)

描述:

回读设备的 SPI 的 RX 数据。

- handle 设备句柄
- length 缓存 rgRX 的长度
- rgRX SPI 数据结果。
- rxcount 设备返回的 rgRX 的实际长度
- fParity 奇偶校验

基础读写函数:

int write(FT_HANDLE handle, uchar *data, int count)

描述:

对设备进行基础读写操作,需要对应指令才会有响应。

参数:

- handle 设备句柄
- data 指令数组
- count 指令数组长度。

int read(FT HANDLE handle, uchar *data, int *count, int msTimeout=0)

描述:

对设备进行基础读操作。

- handle 设备句柄
- data 指令数组
- count 指令数组长度。
- msTimeout 延时等待, 0 为不延时, 单位 ms。