	u tre equation
	ax = b
where a, l	of Zn, a to and the operation
are those such an	of Zn. We can also write equation in the form
	$ax \equiv b \pmod{n}$
where X	is to come from [n]
Observat	non If gcd(a, n) = 1 tron to has the unique solution x = a - b
for each	possible b & Zn
What i	f gcd(ann) = d >1 ??
DIS CUSSIA	Suppre J X & Z st
	$ax = b \pmod{n}$

Then n ax-b a = a'd and n = n'd so that n'd a'xd - b But then d Must divide b Conclusion If ax = b (mode) has a solution then gcd (a, n) | b. More Discussion Suppose d=gcd(a,n) does divide b and set n=n'd, a=a'd and b=b'd Claim X& Z is a solution of ax = b(modn) ift a'x = b' (mod n')

 Claim a'x = b' (mod n') has a UNIQUE
Solution in Zn', say xi

 $Pf/gcd(a',n')=1=)(a')^{-1}$ exists in $Z_{n'}$ and so

a'x = b' in $Z_{n'}$

 $x = (a')^{-1}b \quad \text{in } Z_{n'}$

Observation Every other solution of $a'x = b' \pmod{n'}$

must be congruent to x, (mod n')

Pf/ If a'x2 = b' (modn') then

 $\alpha'(x_2-x_1) \equiv 0 \pmod{n'}$

1.e n' | a' (x2-x1)

But $gcd(n', a') = 1 =) n' | x_2 - x_1$

Conclusion The other solutions of a'x = b'(medi

(and therefore also of ax = b(modn) in Zn are

 $x_1 + x_1, x_1 + 2x_1, \dots, x_i + (d-1)x_1$

Ex 8x = h: (mod12)

Realize gcd(8,12)=4 so the b's in Ziz

for which there are solutions are

0,4,8

b=0: 8x=0 x=0,3,6,9

b=4! 8x=4 x=2,5,8,11

b=8: 8x=8 x=1, 4, 7, 10