Das Projekt db robotix

Das frei verfügbare (Open Source) Projekt (https://github.com/db-robotix/Modules) bietet eine Alternative zu den kommerziellen Robotik-Systemen, z.B. von Lego oder Fischertechnik. Die einzelnen Komponenten sind entweder marktübliche Module oder selbst zusammengelötete Leiterplatten aus erhältlichen elektronischen Bauteilen. Dabei spielt es keine Rolle, wer diese herstellt (bei den Komponenten von Lego oder Fischertechnik wird ja auch nicht erwartet, dass die WRO-Teams sie selber entwickeln und löten).

Vergleich der Komponenten als Übersicht:

Lego	Fischertechnik	db robotix	
EV3 - Brick	Controller NXT 4.0	MasterController (ArduinoZero + Shield)	
Medium/Large Motor	Encoder-Motor Servo-Motor	Schrittmotoren + MotorControl Servo-Motoren	
Farbsensor	RGB-Farbsensor Gesten-Sensor	ColorSensorA ColorSensorB	
2x Farbsensor	Linien-Sensor	LineSensor	
Ultraschall-Sensor	Ultraschall-Sensor	UltrasonicSensor	
	Kamera	zukünftig?: Kamera	

Die von db robotix als Ardunio-Bibliotheken (https://github.com/db-robotix/Master-Controller) zur Verfügung gestellte Software-Unterstützung entspricht den WRO-Regeln, sie enthält nur Funktionen, die auf einem allgemeinem Niveau Probleme lösen können. Die Teams müssen sie auf die spezifischen Herausforderungen des Wettbewerbs anpassen und zusammen setzen, z.B. selber ausrechnen, welcher Motorwinkel einer vorgegebenen Fahrstrecke entspricht.

Beispiel-Aufgabe	EV3-G	RobotC für EV3	mit Arduino Libraries i2cMaster / anadigMaster
Fahre synchron 2.1 Radumdrehungen eine Kurve mit Lenkwert 25 und 70% Geschwind.	B+C (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	setMotorSyncEncoder (motorL, motorR, 25, 2.1*360, 70);	robot.setSpeed(70); robot.setSteering(25); robot.setTargetSteps(2.1*400); robot.go();
Messe die Farbe eines Objekts		GetColorReflected(sensorname);	colorsensor.getRGB(); x = colorsensor.color();
Ermittle die RGB- Werte des Farbsensors	3	getColorRawRGB(sensorname, R, G, B);	colorsensor.getRGB(R,G,B);

Messe Objektabstand mittels Ultraschall	4 Cm H-H	GetUSDistance(sensorname)	x=ultraschall.getDistance();
Taste des Controllers überprüfen		waitForButtonPress();	startbutton.wait();

Kontakt: db-robotix@web.de