Learning from Examples

Dr. Steven Bethard

Computer and Information Sciences University of Alabama at Birmingham

31 Mar 2016

Outline

- Supervised Learning
 - Hypothesis Functions
 - Features
 - Evaluating Hypotheses
 - Overfitting and Underfitting
- Supervised Learning Algorithms
 - Decision Trees
 - Random Forests
 - k-Nearest Neighbors
 - Linear and Logistic Regression
 - Support Vector Machines
 - Neural Networks

Outline

- Supervised Learning
 - Hypothesis Functions
 - Features
 - Evaluating Hypotheses
 - Overfitting and Underfitting
- 2 Supervised Learning Algorithms
 - Decision Trees
 - Random Forests
 - k-Nearest Neighbors
 - Linear and Logistic Regression
 - Support Vector Machines
 - Neural Networks

- Examine pairs of inputs and outputs
- Guess a possible function mapping input to output
- Predict outputs given new inputs

```
f(1) = 1 f(Romeo and Juliet) = Shakespeare

f(2) = 4 f(Tom Sawyer) = Twain

f(3) = 9 f(Macbeth) = Shakespeare

f(4) = 16 f(Huckleberry Finn) = Twain

f(5) = ? f(Othello) = ?
```

- Examine pairs of inputs and outputs
- Guess a possible function mapping input to output
- Predict outputs given new inputs

```
f(1) = 1 f(Romeo and Juliet) = Shakespeare

f(2) = 4 f(Tom Sawyer) = Twain

f(3) = 9 f(Macbeth) = Shakespeare

f(4) = 16 f(Huckleberry Finn) = Twain

f(5) = ? f(Othello) = ?
```

- Examine pairs of inputs and outputs
- Guess a possible function mapping input to output
- Predict outputs given new inputs

```
f(1) = 1 f(Romeo and Juliet) = Shakespeare

f(2) = 4 f(Tom Sawyer) = Twain

f(3) = 9 f(Macbeth) = Shakespeare

f(4) = 16 f(Huckleberry Finn) = Twain

f(5) = 25 f(Othello) = ?
```

- Examine pairs of inputs and outputs
- Guess a possible function mapping input to output
- Predict outputs given new inputs

```
f(1) = 1 f(Romeo and Juliet) = Shakespeare

f(2) = 4 f(Tom Sawyer) = Twain

f(3) = 9 f(Macbeth) = Shakespeare

f(4) = 16 f(Huckleberry Finn) = Twain

f(5) = 25 f(Othello) = ?
```

- Examine pairs of inputs and outputs
- Guess a possible function mapping input to output
- Predict outputs given new inputs

```
f(1) = 1 f(Romeo and Juliet) = Shakespeare

f(2) = 4 f(Tom Sawyer) = Twain

f(3) = 9 f(Macbeth) = Shakespeare

f(4) = 16 f(Huckleberry Finn) = Twain

f(5) = 25 f(Othello) = Shakespeare
```

Original Function

An unknown function $f: D_f \to R_f$

Training Examples

Pairs of (x, f(x)) where $x \in D_f$ and $f(x) \in R_f$

Hypothesis Function

Some function $h: D_f \to R_f$

Learning Goal

Original Function

An unknown function $f: D_f \to R_f$

Training Examples

Pairs of (x, f(x)) where $x \in D_f$ and $f(x) \in R_f$

Hypothesis Function

Some function $h: D_f \to R_f$

Learning Goal

Original Function

An unknown function $f: D_f \to R_f$

Training Examples

Pairs of (x, f(x)) where $x \in D_f$ and $f(x) \in R_f$

Hypothesis Function

Some function $h: D_f \to R_f$

Learning Goal

Original Function

An unknown function $f: D_f \to R_f$

Training Examples

Pairs of (x, f(x)) where $x \in D_f$ and $f(x) \in R_f$

Hypothesis Function

Some function $h: D_f \to R_f$

Learning Goal

Defining a Machine Learning Problem

Describe the function $f: D_f \to R_f$

- What is D_f ?
- What is R_f ?

Ex: Income Prediction

$$D_f = \text{people}$$

$$R_f = \mathbb{R}$$

Ex: Face Recognition

$$D_f =$$

$$R_f = 0$$

Defining a Machine Learning Problem

Describe the function $f: D_f \to R_f$

- What is D_f ?
- What is R_f ?

Ex: Income Prediction

$$D_f$$
 = people

$$R_f = \mathbb{R}$$

Ex: Face Recognition

$$D_f =$$

$$R_f = 0$$

Defining a Machine Learning Problem

Describe the function $f: D_f \to R_f$

- What is D_f ?
- What is R_f ?

Ex: Income Prediction

$$D_f$$
 = people

$$R_f = \mathbb{R}$$

Ex: Face Recognition

$$D_f = 1$$

$$R_f = 0$$

Defining a Machine Learning Problem

Describe the function $f: D_f \to R_f$

- What is D_f ?
- What is R_f ?

Ex: Income Prediction

$$D_f$$
 = people

$$R_f = \mathbb{R}$$

Ex: Face Recognition

$$D_f =$$

$$R_f = 0$$

Defining a Machine Learning Problem

Describe the function $f: D_f \to R_f$

- What is D_f ?
- What is R_f ?

Ex: Income Prediction

$$D_f$$
 = people

$$R_f = \mathbb{R}$$

Ex: Face Recognition

 D_f = image regions

 $R_f = \{0, 1\}$

Defining a Machine Learning Problem

Describe the function $f: D_f \to R_f$

- What is D_f ?
- What is R_f ?

Ex: Income Prediction

$$D_f$$
 = people

$$R_f = \mathbb{R}$$

Ex: Face Recognition

 D_f = image regions

 $R_f = \{0, 1\}$

Defining a Machine Learning Problem

Describe the function $f: D_f \to R_f$

- What is D_f ?
- What is R_f ?

Ex: Income Prediction

$$D_f$$
 = people

$$R_f = \mathbb{R}$$

Ex: Face Recognition

 D_f = image regions

$$R_f = \{0, 1\}$$

Defining a Machine Learning Problem

Describe the function $f: D_f \to R_f$

- What is D_f ?
- What is R_f ?

Ex: Income Prediction

$$D_f$$
 = people

$$R_f = \mathbb{R}$$

Ex: Face Recognition

 D_f = image regions

 $R_f = \{0, 1\}$

Decomposing Domain Objects

Smoker identification:

```
f(John) = true

f(Mary) = false

f(Frank) = false

f(Sally) = ?
```

Easier if we know, e.g.

- cigarette smell?
- teeth stains?
- deep cough?

Definition

Features (or attributes) are the components of a domain object believed to be important for learning the function *t*

Decomposing Domain Objects

```
Smoker identification:
```

```
f(John) = true

f(Mary) = false

f(Frank) = false

f(Sally) = ?
```

Easier if we know, e.g.

- cigarette smell?
- teeth stains?
- deep cough?

Definition

Features (or attributes) are the components of a domain object believed to be important for learning the function to

Decomposing Domain Objects

```
Smoker identification:
```

```
f(John) = true

f(Mary) = false

f(Frank) = false

f(Sally) = ?
```

Easier if we know, e.g.

- cigarette smell?
- teeth stains?
- deep cough?

Definition

Features (or attributes) are the components of a domain object believed to be important for learning the function *f*

Input John broke the red lamp Output Noun Verb Det Adj Noun

```
Input John broke the red lamp
Output Noun Verb Det Adj Noun
```

```
D_f =
```

$$R_f =$$

```
Input John broke the red lamp
Output Noun Verb Det Adj Noun
```

```
D_f = \{a, aardvark, abacus, abalone, ...\}

R_f =
```

```
Input John broke the red lamp
Output Noun Verb Det Adj Noun
```

```
D_f = \{a, aardvark, abacus, abalone, ...\}

R_f = \{\text{Noun, Verb, Adj, Adv, Det, ...}\}
```

```
Input John broke the red lamp
Output Noun Verb Det Adj Noun
```

```
D_f = \{a, aardvark, abacus, abalone, ...\}
R_f = \{\text{Noun, Verb, Adj, Adv, Det, ...}\}
```

```
f(bark) = \text{Noun? Verb?} ... the bark of the tree ... heard the dog bark ...
```

```
Input John broke the red lamp
Output Noun Verb Det Adj Noun
```

```
D_f = \{a, aardvark, abacus, abalone, ...\} in a sentence R_f = \{\text{Noun, Verb, Adj, Adv, Det, ...}\}
```

```
f(bark) = \text{Noun? Verb?} ... the bark of the tree ... heard the dog bark ...
```

```
Input John broke the red lamp
Output Noun Verb Det Adj Noun
```

Function Description

```
D_f = \{a, aardvark, abacus, abalone, ...\} in a sentence R_f = \{\text{Noun, Verb, Adj, Adv, Det, ...}\}
```

```
f(bark) = \text{Noun? Verb?} ... the bark of the tree ... heard the dog bark ...
```

Feature Representation

```
f([w_0 = bark, w_{-1} = the]) = \text{Noun}
f([w_0 = bark, w_{-1} = dog]) = \text{Verb}
```

Named Entity Recognition Exercise

Definition

A named entity recognition program find spans of words that are people, locations, organizations, etc.

Input Bill works for Microsoft Corporation

Output [PER Bill] works for [ORG Microsoft Corporation]

Exercise

Named entity recognition as supervised learning:

- Describe the function domain
- Describe the function range (keep it small!)
- Describe the feature space

One Named Entity Recognition Approach

Function Description

```
D_f = \{a, aardvark, abacus, abalone, \ldots\} in a sentence
```

```
R_f = \{B-Per, I-Per, B-Org, I-Org, \dots, O\}
```

```
f(Bill) = B-Per

f(works) = O
```

$$f(for) = O$$

f(Microsoft) = B-Org

f(Corporation) = I-Org

Typical Features

Word itself Capitalization

Preceding label First in sentence?

- **Train** learning algorithm on examples E_{train}
- Learning algorithm produces a hypothesis h
- **Test hypothesis on new examples** E_{test} Don't peek!

- **Train** learning algorithm on examples E_{train}
- Learning algorithm produces a hypothesis h
- Test hypothesis on new examples E_{test} Don't peek!

- **Train** learning algorithm on examples E_{train}
- Learning algorithm produces a hypothesis h
- Test hypothesis on new examples E_{test} Don't peek!

$$h_1(x) = \begin{cases} true & \text{if } x_1 = 1 \\ false & \text{otherwise} \end{cases}$$
 $h_2(x) = \begin{cases} true & \text{if } x_2 = a \\ false & \text{otherwise} \end{cases}$

- **Train** learning algorithm on examples E_{train}
- Learning algorithm produces a hypothesis h
- Test hypothesis on new examples E_{test} Don't peek!

$$h_1(x) = \begin{cases} true & \text{if } x_1 = 1 \\ false & \text{otherwise} \end{cases}$$
 $h_2(x) = \begin{cases} true & \text{if } x_2 = a \\ false & \text{otherwise} \end{cases}$

Performance: $\frac{4}{4} = 1.0$

Performance: $\frac{3}{4} = 0.75$

- **Train** learning algorithm on examples E_{train}
- Learning algorithm produces a hypothesis h
- Test hypothesis on new examples E_{test} Don't peek!

Train:
$$\begin{array}{c|cc} x_1 & x_2 & f(x) \\ \hline 1 & a & true \\ 0 & b & false \\ 0 & c & false \\ 0 & b & false \\ \end{array}$$

Test:
$$\begin{array}{c|ccc} x_1 & x_2 & f(x) \\ \hline 1 & a & true \\ 0 & b & false \\ 0 & c & false \\ 1 & c & true \\ \end{array}$$

$$h_1(x) = \begin{cases} true & \text{if } x_1 = 1\\ false & \text{otherwise} \end{cases}$$

$$h_2(x) = \begin{cases} true & \text{if } x_2 = a \\ false & \text{otherwise} \end{cases}$$

Performance: $\frac{4}{4} = 1.0$

Performance: $\frac{3}{4} = 0.75$

- **Train** learning algorithm on examples E_{train}
- Learning algorithm produces a hypothesis h
- Test hypothesis on new examples E_{test} Don't peek!

Train:
$$\begin{array}{c|ccc} x_1 & x_2 & f(x) \\ \hline 1 & a & true \\ 0 & b & false \\ 0 & c & false \\ 0 & b & false \\ \end{array}$$

Test:
$$\begin{array}{c|ccc} x_1 & x_2 & f(x) \\ \hline 1 & a & true \\ 0 & b & false \\ 0 & c & false \\ 1 & c & true \\ \end{array}$$

$$h_1(x) = \begin{cases} true & \text{if } x_1 = 1\\ false & \text{otherwise} \end{cases}$$

$$h_2(x) = \begin{cases} true & \text{if } x_2 = a \\ false & \text{otherwise} \end{cases}$$

Performance: $\frac{4}{4} = 1.0$ Performance: $\frac{3}{4} = 0.75$

- **Train** learning algorithm on examples E_{train}
- Learning algorithm produces a hypothesis h
- Test hypothesis on new examples E_{test} Don't peek!

Train:
$$\begin{array}{c|ccc} x_1 & x_2 & f(x) \\ \hline 1 & a & true \\ 0 & b & false \\ 0 & c & false \\ 0 & b & false \\ \end{array}$$

Test:
$$\begin{array}{c|ccc} x_1 & x_2 & f(x) \\ \hline 1 & a & true \\ 0 & b & false \\ 0 & c & false \\ 1 & c & true \\ \end{array}$$

$$h_1(x) = \begin{cases} true & \text{if } x_1 = 1\\ false & \text{otherwise} \end{cases}$$
Performance: $\frac{4}{4} = 1.0$

Performance:
$$\frac{4}{4} = 1.0$$

$$h_2(x) = \begin{cases} true & \text{if } x_2 = a \\ false & \text{otherwise} \end{cases}$$

Performance: $\frac{3}{7} = 0.75$

- **Train** learning algorithm on examples E_{train}
- Learning algorithm produces a hypothesis h
- Test hypothesis on new examples E_{test} Don't peek!

$$h_1(x) = \begin{cases} true & \text{if } x_1 = 1\\ false & \text{otherwise} \end{cases}$$

Performance: $\frac{4}{4} = 1.0$

$$h_2(x) = \begin{cases} true & \text{if } x_2 = a \\ false & \text{otherwise} \end{cases}$$

Performance: $\frac{3}{4} = 0.75$

Train, Development and Test sets

Bad Idea

- **Evaluate** on test set
- Examine errors and adjust hypothesis
- 3 Goto 1

Tuning to your test set will overestimate model accuracy

Instead, split data into:

Train Used to train a hypothesis function

Dev Used to tune/adjust the hypothesis

Test Used to estimate hypothesis function's accuracy

Train, Development and Test sets

Bad Idea

- **Evaluate** on test set
- Examine errors and adjust hypothesis
- 3 Goto 1

Tuning to your test set will overestimate model accuracy

Instead, split data into:

Train Used to train a hypothesis function

Dev Used to tune/adjust the hypothesis

Test Used to estimate hypothesis function's accuracy

Train, Development and Test sets

Bad Idea

- **Evaluate** on test set
- **2** Examine errors and adjust hypothesis
- 3 Goto 1

Tuning to your test set will overestimate model accuracy

Instead, split data into:

Train Used to train a hypothesis function

Dev Used to tune/adjust the hypothesis

Test Used to estimate hypothesis function's accuracy

Split data into *k* parts, then iteratively train and test:

Accuracy is average of the accuracies on each of the *k* folds

- Cross validation is not a substitution for a test set
- Cross validation can be used instead of train+dev

Split data into *k* parts, then iteratively train and test:

Accuracy is average of the accuracies on each of the *k* folds

- Cross validation is not a substitution for a test set
- Cross validation can be used instead of train+dev

Split data into *k* parts, then iteratively train and test:

Accuracy is average of the accuracies on each of the *k* folds

- Cross validation is not a substitution for a test set
- Cross validation can be used instead of train+dev

Split data into *k* parts, then iteratively train and test:

Accuracy is average of the accuracies on each of the *k* folds

- Cross validation is not a substitution for a test set
- Cross validation can be used instead of train+dev

Split data into *k* parts, then iteratively train and test:

Accuracy is average of the accuracies on each of the *k* folds

- Cross validation is not a substitution for a test set
- Cross validation can be used instead of train+dev

Split data into *k* parts, then iteratively train and test:

Accuracy is average of the accuracies on each of the *k* folds

- Cross validation is not a substitution for a test set
- Cross validation can be used instead of train+dev

Split data into *k* parts, then iteratively train and test:

Accuracy is average of the accuracies on each of the *k* folds

- Cross validation is not a substitution for a test set
- Cross validation can be used instead of train+dev

Split data into *k* parts, then iteratively train and test:

Accuracy is average of the accuracies on each of the *k* folds

- Cross validation is not a substitution for a test set
- Cross validation can be used instead of train+dev

Split data into *k* parts, then iteratively train and test:

Accuracy is average of the accuracies on each of the *k* folds

- Cross validation is not a substitution for a test set
- Cross validation can be used instead of train+dev

Split data into *k* parts, then iteratively train and test:

Accuracy is average of the accuracies on each of the k folds

- Cross validation is not a substitution for a test set
- Cross validation can be used instead of train+dev

Split data into *k* parts, then iteratively train and test:

Accuracy is average of the accuracies on each of the *k* folds

- Cross validation is not a substitution for a test set
- Cross validation can be used instead of train+dev

Split data into *k* parts, then iteratively train and test:

Accuracy is average of the accuracies on each of the *k* folds

- Cross validation is not a substitution for a test set
- Cross validation can be used instead of train+dev

Learning Curves

Insufficient Training Data

Underfitting

Addressing Underfitting

More complex model

<i>X</i> ₁	f(x)	h(x)
1	1	1
2	0	2
3	1	3
4	4	4

 $h(x) = x_1$

2

More features

Addressing Underfitting

More complex model

<i>X</i> ₁	f(x)	h(x)
1	1	1
2	0	0
3	1	1
4	4	4

More features

f(x)

*X*₁

h(x)

Addressing Underfitting

More complex model

<i>x</i> ₁	f(x)	h(x)
1	1	1
2	0	2
3	1	3
4	4	4

<i>x</i> ₁	f(x)	h(x)
1	1	1
2	0	0
3	1	1
4	4	4

More features

7	X 1	<i>X</i> ₂	f(x)	h(x)
	1	1	1	1
	2	4	0	0
	3	9	1	1
	4	16	4	4

Overfitting

Overfitting

Simpler model

Fewer features

28

15

Simpler model

Fewer features

Simpler model

<i>X</i> ₁	<i>X</i> ₂	f(x)	h(x)
2	1	7	7
3	2	9	9
4	3	13	13
1	2	3	1
5	1	15	28

<i>X</i> ₁	<i>x</i> ₂	f(x)	h(x)
2	1	7	5
3	2	9	9
4	3	13	13
1	2	3	3
5	1	15	14

Fewer features

<i>x</i> ₁	<i>X</i> ₂	f(x)	h(x)
2	1	7	7
3	2	9	9
4	3	13	13
1	2	3	1
5	1	15	28

Simpler model

<i>X</i> ₁	<i>X</i> ₂	f(x)	h(x)
2	1	7	5
3	2	9	9
4	3	13	13
1	2	3	3
5	1	15	14

Fewer features

<i>X</i> ₁	f(x)	h(x)
2	7	6
3	9	9
4	13	12
1	3	3
5	15	15

Outline

- Supervised Learning
 - Hypothesis Functions
 - Features
 - Evaluating Hypotheses
 - Overfitting and Underfitting
- Supervised Learning Algorithms
 - Decision Trees
 - Random Forests
 - k-Nearest Neighbors
 - Linear and Logistic Regression
 - Support Vector Machines
 - Neural Networks

Decision Trees

Should I play golf today?

Function

 $D_f = \text{days}$ $R_f = \{Yes, No\}$

Features

- Weather
- Humidity
- Wind

Decision Trees as Functions

$$f(x) = x_1 xor x_2 \qquad f(x) = (x_1 \wedge x_2) \vee \neg x$$

Decision Trees as Functions

$$f(x) = x_1 xor x_2$$

$$f(x) = (x_1 \land x_2) \lor \neg x_3$$

Learning Decision Trees

- \blacksquare Select a feature x_i for the node
- \mathbf{P} For each value of x_i create a child node
- 3 Sort training examples into child nodes
- If examples are sorted perfectly, terminate
- **5** Else, repeat the process for each child node

- \blacksquare Select a feature x_i for the node
- \mathbf{P} For each value of x_i create a child node
- 3 Sort training examples into child nodes
- If examples are sorted perfectly, terminate
- **5** Else, repeat the process for each child node

<i>X</i> ₁	<i>X</i> ₂	f(x)
true	true	true
true	false	false
false	true	true
false	false	true

- \blacksquare Select a feature x_i for the node
- \mathbf{P} For each value of x_i create a child node
- 3 Sort training examples into child nodes
- If examples are sorted perfectly, terminate
- **5** Else, repeat the process for each child node

<i>X</i> ₁	<i>X</i> ₂	f(x)
true	true	true
true	false	false
false	true	true
false	false	true

3 true, 1 false

- \blacksquare Select a feature x_i for the node
- \mathbf{P} For each value of x_i create a child node
- 3 Sort training examples into child nodes
- If examples are sorted perfectly, terminate
- **5** Else, repeat the process for each child node

<i>X</i> ₁	<i>x</i> ₂	f(x)
true	true	true
true	false	false
false	true	true
false	false	true

- \blacksquare Select a feature x_i for the node
- \mathbf{P} For each value of x_i create a child node
- 3 Sort training examples into child nodes
- If examples are sorted perfectly, terminate
- **5** Else, repeat the process for each child node

<i>X</i> ₁	<i>X</i> ₂	f(x)
true	true	true
true	false	false
false	true	true
false	false	true

- \blacksquare Select a feature x_i for the node
- \mathbf{P} For each value of x_i create a child node
- 3 Sort training examples into child nodes
- If examples are sorted perfectly, terminate
- **5** Else, repeat the process for each child node

<i>X</i> ₁	<i>X</i> ₂	f(x)
true	true	true
true	false	false
false	true	true
false	false	true

- \blacksquare Select a feature x_i for the node
- \mathbf{P} For each value of x_i create a child node
- 3 Sort training examples into child nodes
- If examples are sorted perfectly, terminate
- **5** Else, repeat the process for each child node

<i>X</i> ₁	<i>X</i> ₂	f(x)
true	true	true
true	false	false
false	true	true
false	false	true

- \blacksquare Select a feature x_i for the node
- \mathbf{P} For each value of x_i create a child node
- 3 Sort training examples into child nodes
- If examples are sorted perfectly, terminate
- **Solution** Else, repeat the process for each child node

<i>x</i> ₁	<i>x</i> ₂	f(x)
true	true	true
true	false	false
false	true	true
false	false	true

- \blacksquare Select a feature x_i for the node
- \mathbf{P} For each value of x_i create a child node
- 3 Sort training examples into child nodes
- If examples are sorted perfectly, terminate
- **Solution** Else, repeat the process for each child node

<i>X</i> ₁	<i>X</i> ₂	f(x)
true	true	true
true	false	false
false	true	true
false	false	true

- \blacksquare Select a feature x_i for the node
- \mathbf{P} For each value of x_i create a child node
- 3 Sort training examples into child nodes
- If examples are sorted perfectly, terminate
- **Solution** Else, repeat the process for each child node

<i>X</i> ₁	<i>X</i> ₂	f(x)
true	true	true
true	false	false
false	true	true
false	false	true

- \blacksquare Select a feature x_i for the node
- \mathbf{P} For each value of x_i create a child node
- 3 Sort training examples into child nodes
- If examples are sorted perfectly, terminate
- **Solution** Else, repeat the process for each child node

<i>X</i> ₁	<i>X</i> ₂	f(x)
true	true	true
true	false	false
false	true	true
false	false	true

- \blacksquare Select a feature x_i for the node
- \mathbf{P} For each value of x_i create a child node
- 3 Sort training examples into child nodes
- If examples are sorted perfectly, terminate
- **Solution** Else, repeat the process for each child node

<i>X</i> ₁	<i>X</i> ₂	f(x)
true	true	true
true	false	false
false	true	true
false	false	true

- \blacksquare Select a feature x_i for the node
- \mathbf{P} For each value of x_i create a child node
- 3 Sort training examples into child nodes
- If examples are sorted perfectly, terminate
- **Solution** Else, repeat the process for each child node

<i>X</i> ₁	<i>X</i> ₂	f(x)
true	true	true
true	false	false
false	true	true
false	false	true

- \blacksquare Select a feature x_i for the node
- \mathbf{P} For each value of x_i create a child node
- 3 Sort training examples into child nodes
- If examples are sorted perfectly, terminate
- **Solution** Else, repeat the process for each child node

<i>X</i> ₁	<i>X</i> ₂	f(x)
true	true	true
true	false	false
false	true	true
false	false	true

Decision Tree Exercise

Build a decision tree for:

<i>X</i> ₁	<i>X</i> ₂	f(x)
0	а	true
0	b	false
1	С	true
0	С	false
1	b	false
1	а	true

Decision Tree Exercise

Build a decision tree for:

<i>X</i> ₁	<i>X</i> ₂	f(x)
0	а	true
0	b	false
1	С	true
0	C	false
1	b	false
1	а	true

Two possible solutions:

Feature Selection Order

- Different orders result in different trees
- "Good" features should be used before "poor" ones

What is a "good" feature?

```
x_1 x_2 f(x)
a 0 true
x_1 is a good feature
x_1 is a good feature
x_2 is a poor feature
x_2 is a poor feature
x_3 is a poor feature
```

Feature Selection Order

- Different orders result in different trees
- "Good" features should be used before "poor" ones

What is a "good" feature?

```
x_1 x_2 f(x)
a 0 true x_1 is a good feature
a 1 true
b 0 false x_2 is a poor feature
x_1 is a good feature
```

Feature Selection Order

- Different orders result in different trees
- "Good" features should be used before "poor" ones

What is a "good" feature?

<i>X</i> ₁	<i>X</i> ₂	f(x)	
а	0	true	
а	1	true	
b	0	false	
b	1	false	

Feature Selection Order

- Different orders result in different trees
- "Good" features should be used before "poor" ones

What is a "good" feature?

<i>X</i> ₁	x_2	f(x)	
а	0	true	x_1 is a good feature
а	1	true	_
b	0	false	x_2 is a poor feature
b	1	false	

Good features provide more information

Information can be quantified in terms of bits

Task: Encode abacabad using as few bits as possible

Simple Encoding:

a 00

b 01

c 10

d 11

abacabad \rightarrow 16 bits 00010010010011

Using Probability:

a 0

b 10

c 110

d 111

abacabad $\to 14$ bits 01001100100111

<u>Information</u>

Good features provide more information

Information can be quantified in terms of bits

Task: Encode abacabad using as few bits as possible

Simple Encoding:
a 00
b 01
c 10
d 11

abacabad $\rightarrow 16$ bits 00010010010011

Using Probability:
a 0
b 10
c 110

abacabad \rightarrow 14 bits 01001100100111

<u>Information</u>

Good features provide more information

Information can be quantified in terms of bits

Task: Encode abacabad using as few bits as possible

Simple Encoding:

a 00

b 01

c 10

d 11

abacabad $\rightarrow 16$ bits 00010010011

Using Probability:

a 0

b 10

c 110

d 11

abacabad $\to 14 \text{ bits}$ 01001100100111

Good features provide more information

Information can be quantified in terms of bits

Task: Encode abacabad using as few bits as possible

Simple Encoding:

a 00

b 01

c 10

d 11

abacabad \rightarrow 16 bits 00010010010011

Using Probability:

a (

b 10

c 110

d 11

abacabad $\to 14 \text{ bits}$ 01001100100111

Good features provide more information

Information can be quantified in terms of bits

Task: Encode abacabad using as few bits as possible

Simple Encoding:

a 00

b 01

c 10

d 11

abacabad \rightarrow 16 bits 000100100010011

Using Probability:

a (

b 10

c 110

d 111

abacabad $\rightarrow 14$ bits 01001100100111

Good features provide more information

Information can be quantified in terms of bits

Task: Encode abacabad using as few bits as possible

Simple Encoding:

a 00

b 01

c 10

d 1

abacabad \rightarrow 16 bits 000100100010011

Using Probability:

a 0

b 10

c 110

d 111

abacabad \rightarrow 14 bits 01001100100111

Good features provide more information

Information can be quantified in terms of bits

Task: Encode abacabad using as few bits as possible

Simple Encoding:

a 00

b 01

c 10

d 11

abacabad \rightarrow 16 bits 00010010010011

Using Probability:

a 0

b 10

c 110

d 111

abacabad \rightarrow 14 bits 01001100100111

Definition

The entropy of a random variable *X* is:

$$H(X) = -\sum_{x \in X} P(x) \log_2 P(x)$$

Bit-based Interpretation

Smallest number of bits that can encode a stream of values from *X*'s distribution

Intuitions

- High entropy \rightarrow unpredictable distribution
- Low entropy \rightarrow predictable distribution

Definition

The entropy of a random variable *X* is:

$$H(X) = -\sum_{x \in X} P(x) \log_2 P(x)$$

Bit-based Interpretation

Smallest number of bits that can encode a stream of values from *X*'s distribution

Intuitions

- High entropy → unpredictable distribution
- Low entropy \rightarrow predictable distribution

Definition

The entropy of a random variable *X* is:

$$H(X) = -\sum_{x \in X} P(x) \log_2 P(x)$$

Bit-based Interpretation

Smallest number of bits that can encode a stream of values from *X*'s distribution

Intuitions

- High entropy → unpredictable distribution
- Low entropy → predictable distribution

X	Y
math	yes
history	no
cs	yes
math	no
math	no
cs	yes
history	no
math	yes

$$= -\sum_{x \in X} P(x) \log_2 P(x)$$

$$= -P(math) \log_2 P(math)$$

$$-P(history) \log_2 P(history)$$

$$-P(cs) \log_2 P(cs)$$

$$= -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{4} \log_2 \frac{1}{4} - \frac{1}{4} \log_2 \frac{1}{4}$$

$$= -\frac{1}{2}(-1) - \frac{1}{4}(-2) - \frac{1}{4}(-2)$$

$$= \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$

$$= 1.5$$

$$H(Y) = 1.0$$

X	Y
math	yes
history	no
cs	yes
math	no
math	no
cs	yes
history	no
math	yes

$$H(X) = -\sum_{x \in X} P(x) \log_2 P(x)$$

$$= -P(math) \log_2 P(math)$$

$$-P(history) \log_2 P(history)$$

$$-P(cs) \log_2 P(cs)$$

$$= -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{4} \log_2 \frac{1}{4} - \frac{1}{4} \log_2 \frac{1}{4}$$

$$= -\frac{1}{2}(-1) - \frac{1}{4}(-2) - \frac{1}{4}(-2)$$

$$= \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$

$$= 1.5$$

$$H(Y) = 1.0$$

X	Y
math	yes
history	no
cs	yes
math	no
math	no
cs	yes
history	no
math	yes

$$H(X) = -\sum_{x \in X} P(x) \log_2 P(x)$$

$$= -P(math) \log_2 P(math)$$

$$-P(history) \log_2 P(history)$$

$$-P(cs) \log_2 P(cs)$$

$$= -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{4} \log_2 \frac{1}{4} - \frac{1}{4} \log_2 \frac{1}{4}$$

$$= -\frac{1}{2}(-1) - \frac{1}{4}(-2) - \frac{1}{4}(-2)$$

$$= \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$

$$= 1.5$$

$$H(Y) = 1.0$$

X	Y
math	yes
history	no
cs	yes
math	no
math	no
cs	yes
history	no
math	yes

$$H(X) = -\sum_{x \in X} P(x) \log_2 P(x)$$

$$= -P(math) \log_2 P(math)$$

$$-P(history) \log_2 P(history)$$

$$-P(cs) \log_2 P(cs)$$

$$= -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{4} \log_2 \frac{1}{4} - \frac{1}{4} \log_2 \frac{1}{4}$$

$$= -\frac{1}{2}(-1) - \frac{1}{4}(-2) - \frac{1}{4}(-2)$$

$$= \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$

$$= 1.5$$

$$H(Y) = 1.0$$

X	Y
math	yes
history	no
cs	yes
math	no
math	no
cs	yes
history	no
math	yes

$$H(X) = -\sum_{x \in X} P(x) \log_2 P(x)$$

$$= -P(math) \log_2 P(math)$$

$$-P(history) \log_2 P(history)$$

$$-P(cs) \log_2 P(cs)$$

$$= -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{4} \log_2 \frac{1}{4} - \frac{1}{4} \log_2 \frac{1}{4}$$

$$= -\frac{1}{2}(-1) - \frac{1}{4}(-2) - \frac{1}{4}(-2)$$

$$= \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$

$$= 1.5$$

$$H(Y) = 1.0$$

X	Y
math	yes
history	no
cs	yes
math	no
math	no
cs	yes
history	no
math	yes

$$H(X) = -\sum_{x \in X} P(x) \log_2 P(x)$$

$$= -P(math) \log_2 P(math)$$

$$-P(history) \log_2 P(history)$$

$$-P(cs) \log_2 P(cs)$$

$$= -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{4} \log_2 \frac{1}{4} - \frac{1}{4} \log_2 \frac{1}{4}$$

$$= -\frac{1}{2}(-1) - \frac{1}{4}(-2) - \frac{1}{4}(-2)$$

$$= \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$

$$= 1.5$$

$$H(Y) = 1.0$$

X	Y
math	yes
history	no
cs	yes
math	no
math	no
cs	yes
history	no
math	yes

$$H(X) = -\sum_{x \in X} P(x) \log_2 P(x)$$

$$= -P(math) \log_2 P(math)$$

$$-P(history) \log_2 P(history)$$

$$-P(cs) \log_2 P(cs)$$

$$= -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{4} \log_2 \frac{1}{4} - \frac{1}{4} \log_2 \frac{1}{4}$$

$$= -\frac{1}{2}(-1) - \frac{1}{4}(-2) - \frac{1}{4}(-2)$$

$$= \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$

$$= 1.5$$

$$H(Y) = 1.0$$

Entropy

X	Y
math	yes
history	no
cs	yes
math	no
math	no
cs	yes
history	no
math	yes

$$H(X) = -\sum_{x \in X} P(x) \log_2 P(x)$$

$$= -P(math) \log_2 P(math)$$

$$-P(history) \log_2 P(history)$$

$$-P(cs) \log_2 P(cs)$$

$$= -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{4} \log_2 \frac{1}{4} - \frac{1}{4} \log_2 \frac{1}{4}$$

$$= -\frac{1}{2}(-1) - \frac{1}{4}(-2) - \frac{1}{4}(-2)$$

$$= \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$

$$= 1.5$$

$$H(Y) = 1.0$$

Entropy

X	Y
math	yes
history	no
cs	yes
math	no
math	no
cs	yes
history	no
math	yes

$$H(X) = -\sum_{x \in X} P(x) \log_2 P(x)$$

$$= -P(math) \log_2 P(math)$$

$$-P(history) \log_2 P(history)$$

$$-P(cs) \log_2 P(cs)$$

$$= -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{4} \log_2 \frac{1}{4} - \frac{1}{4} \log_2 \frac{1}{4}$$

$$= -\frac{1}{2}(-1) - \frac{1}{4}(-2) - \frac{1}{4}(-2)$$

$$= \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$

$$= 1.5$$

$$H(Y) = 1.0$$

Entropy

		$H(X) = -\sum_{x} P(x) \log_2 P(x)$
X	Y	$= -P(math) \log_2 P(math)$
math history	yes no	$-P(history) \log_2 P(history)$
cs	yes	$-P(cs)\log_2 P(cs)$
math	no	$= -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{4}\log_2\frac{1}{4} - \frac{1}{4}\log_2\frac{1}{4}$
math	no	$= -\frac{1}{2}(-1) - \frac{1}{4}(-2) - \frac{1}{4}(-2)$ $= \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$
cs history	yes no	$-\frac{1}{2}+\frac{1}{2}+\frac{1}{2}$ = 1.5
math	yes	

H(Y) = 1.0

X	Y
math	yes
history	no
cs	yes
math	no
math	no
CS	yes
history	no
math	yes

Specific Conditional Entropy

$$H(Y|X=x) = -\sum_{y \in Y} P(y|x) \log_2 P(y|x)$$

$$H(Y|X=cs) = -P(yes|cs) \log_2 P(yes|cs)$$
$$-P(no|cs) \log_2 P(no|cs)$$
$$= -1 \log_2 1 - 0 \log_2 0$$
$$= -1 \cdot 0 - 0 \cdot \infty$$
$$= 0$$

X	Y
math	yes
history	no
cs	yes
math	no
math	no
CS	yes
history	no
math	yes

Specific Conditional Entropy

$$H(Y|X=x) = -\sum_{y \in Y} P(y|x) \log_2 P(y|x)$$

$$H(Y|X=cs) = -P(yes|cs) \log_2 P(yes|cs)$$
$$-P(no|cs) \log_2 P(no|cs)$$
$$= -1 \log_2 1 - 0 \log_2 0$$
$$= -1 \cdot 0 - 0 \cdot \infty$$
$$= 0$$

X	Y
math	yes
history	no
cs	yes
math	no
math	no
cs	yes
history	no
math	yes

Specific Conditional Entropy

$$H(Y|X=x) = -\sum_{y \in Y} P(y|x) \log_2 P(y|x)$$

$$H(Y|X=cs) = -P(yes|cs) \log_2 P(yes|cs)$$
$$-P(no|cs) \log_2 P(no|cs)$$
$$= -1 \log_2 1 - 0 \log_2 0$$
$$= -1 \cdot 0 - 0 \cdot \infty$$
$$= 0$$

X	Y
math	yes
history	no
CS	yes
math	no
math	no
cs	yes
history	no
math	yes

Specific Conditional Entropy

$$H(Y|X=x) = -\sum_{y \in Y} P(y|x) \log_2 P(y|x)$$

$$H(Y|X=cs) = -P(yes|cs) \log_2 P(yes|cs)$$
$$-P(no|cs) \log_2 P(no|cs)$$
$$= -1 \log_2 1 - 0 \log_2 0$$
$$= -1 \cdot 0 - 0 \cdot \infty$$
$$= 0$$

X	Y
math	yes
history	no
CS	yes
math	no
math	no
CS	yes
history	no
math	yes

Specific Conditional Entropy

$$H(Y|X=x) = -\sum_{y \in Y} P(y|x) \log_2 P(y|x)$$

$$H(Y|X=cs) = -P(yes|cs) \log_2 P(yes|cs)$$
$$-P(no|cs) \log_2 P(no|cs)$$
$$= -1 \log_2 1 - 0 \log_2 0$$
$$= -1 \cdot 0 - 0 \cdot \infty$$
$$= 0$$

X	Y
math	yes
history	no
cs	yes
math	no
math	no
cs	yes
history	no
math	yes

Specific Conditional Entropy

$$H(Y|X=x) = -\sum_{y \in Y} P(y|x) \log_2 P(y|x)$$

$$H(Y|X=cs) = -P(yes|cs) \log_2 P(yes|cs)$$
$$-P(no|cs) \log_2 P(no|cs)$$
$$= -1 \log_2 1 - 0 \log_2 0$$
$$= -1 \cdot 0 - 0 \cdot \infty$$
$$= 0$$

X	Y
math	yes
history	no
cs	yes
math	no
math	no
cs	yes
history	no
math	yes

Specific Conditional Entropy

$$H(Y|X=x) = -\sum_{y \in Y} P(y|x) \log_2 P(y|x)$$

$$H(Y|X=cs) = -P(yes|cs) \log_2 P(yes|cs)$$
$$-P(no|cs) \log_2 P(no|cs)$$
$$= -1 \log_2 1 - 0 \log_2 0$$
$$= -1 \cdot 0 - 0 \cdot \infty$$
$$= 0$$

X	Y
math	yes
history	no
cs	yes
math	no
math	no
cs	yes
history	no
math	yes

Specific Conditional Entropy

$$H(Y|X=x) = -\sum_{y \in Y} P(y|x) \log_2 P(y|x)$$

$$H(Y|X=cs) = -P(yes|cs) \log_2 P(yes|cs)$$
$$-P(no|cs) \log_2 P(no|cs)$$
$$= -1 \log_2 1 - 0 \log_2 0$$
$$= -1 \cdot 0 - 0 \cdot \infty$$
$$= 0$$

X	Y
math	yes
history	no
cs	yes
math	no
math	no
cs	yes
history	no
math	yes

Conditional Entropy

$$H(Y|X) = \sum_{x \in X} P(X=x)H(Y|X=x)$$

$$H(Y|X = history) = 0$$

$$H(Y|X = cs) = 0$$

$$H(Y|X) = P(X = math)H(Y|X = math) +$$

$$P(X = history)H(Y|X = history) +$$

$$P(X = cs)H(Y|X = cs)$$

$$= \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 0 + \frac{1}{4} \cdot 0 = \frac{1}{2}$$

X	Y
math	yes
history	no
cs	yes
math	no
math	no
cs	yes
history	no
math	yes

Conditional Entropy

$$H(Y|X) = \sum_{x \in X} P(X=x)H(Y|X=x)$$

Given:
$$H(Y|X=math) = 1$$

 $H(Y|X=history) = 0$
 $H(Y|X=cs) = 0$

$$H(Y|X) = P(X = math)H(Y|X = math) +$$

$$P(X = history)H(Y|X = history) +$$

$$P(X = cs)H(Y|X = cs)$$

$$= \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 0 + \frac{1}{4} \cdot 0 = \frac{1}{2}$$

X	Y
math	yes
history	no
cs	yes
math	no
math	no
cs	yes
history	no
math	yes

Conditional Entropy

$$H(Y|X) = \sum_{x \in X} P(X=x)H(Y|X=x)$$

Given:
$$H(Y|X=math) = 1$$

 $H(Y|X=history) = 0$
 $H(Y|X=cs) = 0$
 $H(Y|X) = P(X=math)H(Y|X=math) + P(X=history)H(Y|X=history) + P(X=cs)H(Y|X=cs)$
 $= \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 0 + \frac{1}{4} \cdot 0 = \frac{1}{2}$

X	Y
math	yes
history	no
cs	yes
math	no
math	no
cs	yes
history	no
math	yes

Conditional Entropy

$$H(Y|X) = \sum_{x \in X} P(X=x)H(Y|X=x)$$

Given:
$$H(Y|X=math) = 1$$

 $H(Y|X=history) = 0$
 $H(Y|X=cs) = 0$
 $H(Y|X) = P(X=math)H(Y|X=math) + P(X=history)H(Y|X=history) + P(X=cs)H(Y|X=cs)$
 $= \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 0 + \frac{1}{4} \cdot 0 = \frac{1}{2}$

X	Y
math	yes
history	no
cs	yes
math	no
math	no
cs	yes
history	no
math	yes

Conditional Entropy

$$H(Y|X) = \sum_{x \in X} P(X=x)H(Y|X=x)$$

Given:
$$H(Y|X=math) = 1$$

 $H(Y|X=history) = 0$
 $H(Y|X=cs) = 0$
 $H(Y|X) = P(X=math)H(Y|X=math) + P(X=history)H(Y|X=history) + P(X=cs)H(Y|X=cs)$
 $= \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 0 + \frac{1}{4} \cdot 0 = \frac{1}{2}$

X	Y
math	yes
history	no
cs	yes
math	no
math	no
cs	yes
history	no
math	yes

Conditional Entropy

$$H(Y|X) = \sum_{x \in X} P(X=x)H(Y|X=x)$$

Given:
$$H(Y|X=math) = 1$$

 $H(Y|X=history) = 0$
 $H(Y|X=cs) = 0$
 $H(Y|X) = P(X=math)H(Y|X=math) + P(X=history)H(Y|X=history) + P(X=cs)H(Y|X=cs)$
 $= \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 0 + \frac{1}{4} \cdot 0 = \frac{1}{2}$

X	Y
math	yes
history	no
cs	yes
math	no
math	no
cs	yes
history	no
math	yes

Conditional Entropy

$$H(Y|X) = \sum_{x \in X} P(X=x)H(Y|X=x)$$

Given:
$$H(Y|X=math) = 1$$

 $H(Y|X=history) = 0$
 $H(Y|X=cs) = 0$
 $H(Y|X) = P(X=math)H(Y|X=math) + P(X=history)H(Y|X=history) + P(X=cs)H(Y|X=cs)$
 $= \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 0 + \frac{1}{4} \cdot 0 = \frac{1}{2}$

X	Y
math	yes
history	no
cs	yes
math	no
math	no
cs	yes
history	no
math	yes

Information Gain

IG(Y|X) = H(Y) - H(Y|X)

Intuitive Explanation

How many bits would it save to know X?

$$H(Y|X) = 0.5$$

$$H(Y) = 1$$

$$IG(Y|X) = 1 - 0.5 = 0.5$$

X	Y
math	yes
history	no
CS	yes
math	no
math	no
CS	yes
history	no
math	yes

Information Gain

IG(Y|X) = H(Y) - H(Y|X)

Intuitive Explanation

How many bits would it save to know X?

$$H(Y|X) = 0.5$$
$$H(Y) = 1$$

$$IG(Y|X) = 1 - 0.5 = 0.5$$

X	Y
math	yes
history	no
CS	yes
math	no
math	no
CS	yes
history	no
math	yes

Information Gain

IG(Y|X) = H(Y) - H(Y|X)

Intuitive Explanation

How many bits would it save to know X?

$$H(Y|X) = 0.5$$

$$H(Y) = 1$$

IG(Y|X) = 1 - 0.5 = 0.5

X	Y
math	yes
history	no
cs	yes
math	no
math	no
cs	yes
history	no
math	yes

Information Gain

$$IG(Y|X) = H(Y) - H(Y|X)$$

Intuitive Explanation

How many bits would it save to know X?

$$H(Y|X) = 0.5$$

$$H(Y) = 1$$

$$IG(Y|X) = 1 - 0.5 = 0.5$$

X	Y
math	yes
history	no
cs	yes
math	no
math	no
cs	yes
history	no
math	yes

Information Gain

IG(Y|X) = H(Y) - H(Y|X)

Intuitive Explanation

How many bits would it save to know X?

$$H(Y|X) = 0.5$$

$$H(Y) = 1$$

$$IG(Y|X) = 1 - 0.5 = 0.5$$

7 1	X 2	Y
0	а	T
0	b	F
1	С	T
0	С	F
1	b	F
1	а	T

$$\frac{X_1 X_2 Y}{0 \ a \ T} \qquad H(Y) = -P(T) \log_2 P(T) - P(F) \log_2 P(F)
0 \ b \ F
1 \ c \ T
0 \ c \ F
1 \ b \ F
1 \ a \ T$$

$$\begin{array}{lll} X_1 \ X_2 \ Y \\ \hline 0 & a & T \\ 0 & b & F \\ 1 & c & T \\ 0 & c & F \\ 1 & b & F \\ 1 & a & T \\ \end{array} \qquad \begin{array}{ll} = -P(T) \log_2 P(T) - P(F) \log_2 P(F) \\ = -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} = 1 \end{array}$$

$$\begin{array}{lll} X_1 \ X_2 \ Y \\ \hline 0 \ a \ T \\ 0 \ b \ F \\ 1 \ c \ T \\ 0 \ b \ F \\ 1 \ b \ F \\ 1 \ a \ T \end{array} \qquad \begin{array}{lll} H(Y) & = -P(T) \log_2 P(T) - P(F) \log_2 P(F) \\ & = -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} = 1 \\ H(Y|X_1=0) = \end{array}$$

$$\begin{array}{lll} X_1 \ X_2 \ Y \\ \hline 0 \ a \ T \\ 0 \ b \ F \\ 1 \ c \ T \\ \hline 0 \ c \ F \\ 1 \ b \ F \\ 1 \ a \ T \end{array} \qquad \begin{array}{lll} H(Y) & = -P(T) \log_2 P(T) - P(F) \log_2 P(F) \\ & = -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} = 1 \\ H(Y|X_1=0) = -P(T|0) \log_2 P(T|0) - P(F|0) \log_2 P(F|0) \end{array}$$

$$\begin{array}{lll} X_1 \ X_2 \ Y \\ \hline 0 \ a \ T \\ 0 \ b \ F \\ 1 \ c \ T \\ 0 \ c \ F \\ 1 \ b \ F \end{array} & H(Y) = -P(T) \log_2 P(T) - P(F) \log_2 P(F) \\ = -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} = 1 \\ H(Y|X_1=0) = -P(T|0) \log_2 P(T|0) - P(F|0) \log_2 P(F|0) \\ = -\frac{1}{3} \log_2 \frac{1}{3} - \\ \end{array}$$

$$\begin{array}{lll} X_1 \ X_2 \ Y \\ \hline 0 \ a \ T \\ 0 \ b \ F \\ 1 \ c \ T \\ 0 \ c \ F \\ 1 \ b \ F \end{array} \qquad \begin{array}{lll} H(Y) & = -P(T) \log_2 P(T) - P(F) \log_2 P(F) \\ & = -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} = 1 \\ H(Y|X_1=0) = -P(T|0) \log_2 P(T|0) - P(F|0) \log_2 P(F|0) \\ & = -\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} \end{array}$$

$$\begin{array}{lll} X_1 \ X_2 \ Y \\ \hline 0 \ a \ T \\ 0 \ b \ F \\ 1 \ c \ T \\ 0 \ c \ F \\ 1 \ b \ F \end{array} \qquad \begin{array}{lll} H(Y) & = -P(T) \log_2 P(T) - P(F) \log_2 P(F) \\ & = -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} = 1 \\ H(Y|X_1=0) = -P(T|0) \log_2 P(T|0) - P(F|0) \log_2 P(F|0) \\ & = -\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} = 0.92 \end{array}$$

$$\begin{array}{lll} X_1 \ X_2 \ Y \\ \hline 0 \ a \ T \\ \hline 0 \ b \ F \\ 1 \ c \ T \\ \hline 0 \ c \ F \\ 1 \ b \ F \\ \end{array} \qquad \begin{array}{lll} H(Y) & = -P(T) \log_2 P(T) - P(F) \log_2 P(F) \\ & = -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} = 1 \\ H(Y|X_1=0) = -P(T|0) \log_2 P(T|0) - P(F|0) \log_2 P(F|0) \\ & = -\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} = 0.92 \\ H(Y|X_1=1) = \\ \hline 1 \ a \ T \end{array}$$

$$\begin{array}{lll} X_1 \ X_2 \ Y \\ \hline 0 \ a \ T \\ \hline 0 \ b \ F \\ 1 \ c \ T \\ \hline 0 \ c \ F \\ 1 \ b \ F \\ \end{array} \qquad \begin{array}{lll} H(Y) & = -P(T) \log_2 P(T) - P(F) \log_2 P(F) \\ & = -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} = 1 \\ H(Y|X_1=0) = -P(T|0) \log_2 P(T|0) - P(F|0) \log_2 P(F|0) \\ & = -\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} = 0.92 \\ H(Y|X_1=1) = \dots = 0.92 \\ \end{array}$$

$$\begin{array}{lll} X_1 X_2 Y & H(Y) & = -P(T) \log_2 P(T) - P(F) \log_2 P(F) \\ \hline 0 & a & T & = -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} = 1 \\ \hline 0 & b & F & H(Y|X_1=0) = -P(T|0) \log_2 P(T|0) - P(F|0) \log_2 P(F|0) \\ \hline 0 & c & F & = -\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} = 0.92 \\ \hline 1 & b & F & H(Y|X_1=1) = \dots = 0.92 \\ \hline 1 & a & T & H(Y|X_1) & = \end{array}$$

$$\begin{array}{lll} X_1 \ X_2 \ Y \\ \hline 0 \ a \ T \\ \hline 0 \ b \ F \\ 1 \ c \ T \\ \hline 0 \ c \ F \\ 1 \ b \ F \\ \hline 1 \ b \ F \\ \hline 1 \ d \ T \\ \hline \end{array} \qquad \begin{array}{lll} H(Y) & = -P(T) \log_2 P(T) - P(F) \log_2 P(F) \\ & = -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} = 1 \\ H(Y|X_1=0) & = -P(T|0) \log_2 P(T|0) - P(F|0) \log_2 P(F|0) \\ & = -\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} = 0.92 \\ H(Y|X_1=1) & = \dots = 0.92 \\ \hline 1 \ a \ T \\ \end{array} \qquad \begin{array}{lll} H(Y|X_1) & = P(X_1=0)H(Y|X_1=0) + P(X_1=1)H(Y|X_1=1) \\ \end{array}$$

$$\begin{array}{lll} X_1 \ X_2 \ Y \\ \hline 0 \ a \ T \\ \hline 0 \ b \ F \\ 1 \ c \ T \\ \hline 0 \ c \ F \\ 1 \ b \ F \\ \hline \end{array} \qquad \begin{array}{lll} H(Y) & = -P(T) \log_2 P(T) - P(F) \log_2 P(F) \\ & = -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} = 1 \\ H(Y|X_1=0) = -P(T|0) \log_2 P(T|0) - P(F|0) \log_2 P(F|0) \\ & = -\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} = 0.92 \\ H(Y|X_1=1) = \dots = 0.92 \\ 1 \ a \ T \\ H(Y|X_1) & = P(X_1=0)H(Y|X_1=0) + P(X_1=1)H(Y|X_1=1) \\ & = 0.5 \cdot 0.92 + \end{array}$$

$$\begin{array}{lll} X_1 \ X_2 \ Y \\ \hline 0 \ a \ T \\ \hline 0 \ b \ F \\ 1 \ c \ T \\ \hline 0 \ c \ F \\ 1 \ b \ F \\ \hline \end{array} \qquad \begin{array}{lll} H(Y) & = -P(T) \log_2 P(T) - P(F) \log_2 P(F) \\ & = -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} = 1 \\ H(Y|X_1=0) = -P(T|0) \log_2 P(T|0) - P(F|0) \log_2 P(F|0) \\ & = -\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} = 0.92 \\ H(Y|X_1=1) = \dots = 0.92 \\ 1 \ a \ T \\ H(Y|X_1) & = P(X_1=0)H(Y|X_1=0) + P(X_1=1)H(Y|X_1=1) \\ & = 0.5 \cdot 0.92 + 0.5 \cdot 0.92 \end{array}$$

$$\begin{array}{lll} X_1 \ X_2 \ Y \\ \hline 0 \ a \ T \\ \hline 0 \ b \ F \\ 1 \ c \ T \\ \hline 0 \ c \ F \\ 1 \ b \ F \\ \hline \end{array} \qquad \begin{array}{lll} H(Y) & = -P(T) \log_2 P(T) - P(F) \log_2 P(F) \\ & = -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} = 1 \\ H(Y|X_1=0) = -P(T|0) \log_2 P(T|0) - P(F|0) \log_2 P(F|0) \\ & = -\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} = 0.92 \\ H(Y|X_1=1) = \dots = 0.92 \\ H(Y|X_1) & = P(X_1=0)H(Y|X_1=0) + P(X_1=1)H(Y|X_1=1) \\ & = 0.5 \cdot 0.92 + 0.5 \cdot 0.92 = 0.92 \end{array}$$

$$\begin{array}{lll} X_1 \ X_2 \ Y \\ \hline 0 \ a \ T \\ 0 \ b \ F \\ 1 \ c \ T \\ 0 \ c \ F \\ 1 \ b \ F \\ 1 \ a \ T \\ \end{array} \qquad \begin{array}{lll} H(Y) & = -P(T) \log_2 P(T) - P(F) \log_2 P(F) \\ & = -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} = 1 \\ H(Y|X_1=0) = -P(T|0) \log_2 P(T|0) - P(F|0) \log_2 P(F|0) \\ & = -\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} = 0.92 \\ H(Y|X_1=1) = \dots = 0.92 \\ 1 \ a \ T \\ H(Y|X_1) & = P(X_1=0)H(Y|X_1=0) + P(X_1=1)H(Y|X_1=1) \\ & = 0.5 \cdot 0.92 + 0.5 \cdot 0.92 = 0.92 \\ IG(Y|X_1) & = \end{array}$$

$$\begin{array}{lll} X_1 \ X_2 \ Y \\ \hline 0 \ a \ T \\ 0 \ b \ F \\ 1 \ c \ T \\ 0 \ c \ F \\ 1 \ b \ F \\ \end{array} \qquad \begin{array}{lll} H(Y) & = -P(T) \log_2 P(T) - P(F) \log_2 P(F) \\ & = -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} = 1 \\ H(Y|X_1=0) = -P(T|0) \log_2 P(T|0) - P(F|0) \log_2 P(F|0) \\ & = -\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} = 0.92 \\ H(Y|X_1=1) = \dots = 0.92 \\ 1 \ a \ T \\ H(Y|X_1) & = P(X_1=0)H(Y|X_1=0) + P(X_1=1)H(Y|X_1=1) \\ & = 0.5 \cdot 0.92 + 0.5 \cdot 0.92 = 0.92 \\ IG(Y|X_1) & = H(Y) - H(Y|X_1) = 1 - 0.92 \end{array}$$

$$\begin{array}{lll} X_1 \ X_2 \ Y \\ \hline 0 \ a \ T \\ \hline 0 \ b \ F \\ 1 \ c \ T \\ \hline 0 \ c \ F \\ 1 \ b \ F \\ \hline 1 \ b \$$

$$\begin{array}{lll} X_1 \ X_2 \ Y \\ \hline 0 \ a \ T \\ 0 \ b \ F \\ 1 \ c \ T \\ 0 \ c \ F \\ 1 \ b \ F \\ H(Y|X_1=0) = -P(T) \log_2 P(T) - P(F) \log_2 P(F) \\ & = -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} = 1 \\ H(Y|X_1=0) = -P(T|0) \log_2 P(T|0) - P(F|0) \log_2 P(F|0) \\ & = -\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} = 0.92 \\ 1 \ b \ F \\ H(Y|X_1=1) = \dots = 0.92 \\ 1 \ a \ T \\ H(Y|X_1) = P(X_1=0)H(Y|X_1=0) + P(X_1=1)H(Y|X_1=1) \\ & = 0.5 \cdot 0.92 + 0.5 \cdot 0.92 = 0.92 \\ IG(Y|X_1) = H(Y) - H(Y|X_1) = 1 - 0.92 = 0.08 \\ IG(Y|X_2) = \end{array}$$

$$\begin{array}{lll} X_1 \ X_2 \ Y \\ \hline 0 \ a \ T \\ \hline 0 \ b \ F \\ 1 \ c \ T \\ 0 \ b \ F \\ 1 \ a \ T \\ \hline \end{array} \qquad \begin{array}{lll} H(Y) & = -P(T) \log_2 P(T) - P(F) \log_2 P(F) \\ & = -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} = 1 \\ H(Y|X_1=0) = -P(T|0) \log_2 P(T|0) - P(F|0) \log_2 P(F|0) \\ & = -\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} = 0.92 \\ H(Y|X_1=1) = \ldots = 0.92 \\ 1 \ a \ T \\ H(Y|X_1) & = P(X_1=0)H(Y|X_1=0) + P(X_1=1)H(Y|X_1=1) \\ & = 0.5 \cdot 0.92 + 0.5 \cdot 0.92 = 0.92 \\ IG(Y|X_1) & = H(Y) - H(Y|X_1) = 1 - 0.92 = 0.08 \\ IG(Y|X_2) & = \text{Your turn!} \end{array}$$

$$\begin{array}{lll} X_1 \ X_2 \ Y \\ \hline 0 \ a \ T \\ \hline 0 \ b \ F \\ 1 \ c \ T \\ 0 \ c \ F \\ 1 \ b \ F \\ \hline 1 \ b \ F$$

Select the feature with the highest information gain:

$$\begin{array}{lll} X_1 \ X_2 \ Y \\ \hline 0 \ a \ T \\ \hline 0 \ b \ F \\ 1 \ c \ T \\ \hline 0 \ c \ F \\ 1 \ b \ F \\ \hline 1 \ b \$$

32/63

Select the feature with the highest information gain:

$$\begin{array}{lll} X_1 \ X_2 \ Y \\ \hline 0 \ a \ T \\ 0 \ b \ F \\ 1 \ c \ T \\ 0 \ c \ F \\ 1 \ b \ F \\ 1 \ a \ T \\ \end{array} \qquad \begin{array}{lll} H(Y) & = -P(T) \log_2 P(T) - P(F) \log_2 P(F) \\ & = -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} = 1 \\ H(Y|X_1=0) = -P(T|0) \log_2 P(T|0) - P(F|0) \log_2 P(F|0) \\ & = -\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} = 0.92 \\ H(Y|X_1=1) = \dots = 0.92 \\ H(Y|X_1) & = P(X_1=0)H(Y|X_1=0) + P(X_1=1)H(Y|X_1=1) \\ & = 0.5 \cdot 0.92 + 0.5 \cdot 0.92 = 0.92 \\ IG(Y|X_1) & = H(Y) - H(Y|X_1) = 1 - 0.92 = 0.08 \\ IG(Y|X_2) & = \text{Your turn!} = 0.67 \\ \text{So } X_2 \text{ is a much better feature to split on} \end{array}$$

Repeat at each node

Select the feature with the highest information gain:

$$\begin{array}{lll} X_1 \ X_2 \ Y \\ \hline 0 \ a \ T \\ \hline 0 \ b \ F \\ 1 \ c \ T \\ \hline 0 \ b \ F \\ 1 \ c \ T \\ \hline 0 \ c \ F \\ 1 \ b \ F \\ \hline 1 \ b \ F$$

So X_2 is a much better feature to split on

Repeat at each node; different examples⇒different entropy

Random Forests

Algorithm:

- Generate a bootstrap sample of *n* examples
- For each node, select *k* features at random
- Split on the feature with the highest information gain
- Repeat steps 1, 2 and 3 to generate *n* decision trees
- **5** Classify by taking the majority vote

Why random forests?

- Combining independent classifiers ⇒ better model
- Partially random trees should be more independent

Random Forests

Algorithm:

- Generate a bootstrap sample of *n* examples
- 2 For each node, select *k* features at random
- 3 Split on the feature with the highest information gain
- A Repeat steps 1, 2 and 3 to generate *n* decision trees
- **S** Classify by taking the majority vote

Why random forests?

- Combining independent classifiers ⇒ better model
- Partially random trees should be more independent

Random Forests

Algorithm:

- Generate a bootstrap sample of *n* examples
- 2 For each node, select *k* features at random
- Split on the feature with the highest information gain
- Repeat steps 1, 2 and 3 to generate *n* decision trees
- **S** Classify by taking the majority vote

Why random forests?

- \blacksquare Combining independent classifiers \Rightarrow better model
- Partially random trees should be more independent

Bootstrap sample:

[0, 5, 0, 1, 5, 4]

Random feature subsets:

[1, 2], [2, 0]

<i>x</i> ₀	<i>X</i> ₁	<i>X</i> ₂	f(x)
0	0	0	F
0	0	1	F
0	1	1	F
1	0	1	F
1	0	0	T
1	1	1	T

000*F* 111*T* 000*F* 001*F* 111*T* 100*T*

Bootstrap sample:

<i>x</i> ₀	<i>X</i> ₁	x_2	f(x)
0	0	0	F
0	0	1	F
0	1	1	F
1	0	1	F
1	0	0	T
1	1	1	T

000F 1117 000F 001F X1 1117 1007

Bootstrap sample:

<i>x</i> ₀	<i>X</i> ₁	<i>x</i> ₂	f(x)
0	0	0	F
0	0	1	F
0	1	1	F
1	0	1	F
1	0	0	T
1	1	1	T

Bootstrap sample:

<i>x</i> ₀	<i>X</i> ₁	<i>X</i> ₂	f(x)
0	0	0	F
0	0	1	F
0	1	1	F
1	0	1	F
1	0	0	T
1	1	1	T

Bootstrap sample:

<i>x</i> ₀	<i>X</i> ₁	<i>X</i> ₂	f(x)
0	0	0	F
0	0	1	F
0	1	1	F
1	0	1	F
1	0	0	T
1	1	1	T

Bootstrap sample: [0, 5, 0, 1, 5, 4]

Random feature subsets:

[1, 2], [2, 0]

<i>x</i> ₀	<i>X</i> ₁	<i>x</i> ₂	f(x)
0	0	0	F
0	0	1	F
0	1	1	F
1	0	1	F
1	0	0	T
1	1	1	T

Bootstrap sample: [0, 5, 0, 1, 5, 4]

Random feature subsets:

[1, 2], [2, 0]

Random Forest Properties

Disadvantages

- Hard to estimate complexity due to random factor
- \blacksquare *k* (# of features) must be determined experimentally

Advantages

- State of the art performance on many datasets
- Relatively simple to implement
- Expected error can be determined while training
 - Bootstrap sample leaves out about $\frac{1}{3}$ of examples
 - Use these out-of-bag examples to test individual trees
 - Collect votes from all trees to get overall accuracy

Random Forest Properties

Disadvantages

- Hard to estimate complexity due to random factor
- \blacksquare *k* (# of features) must be determined experimentally

Advantages

- State of the art performance on many datasets
- Relatively simple to implement
- Expected error can be determined while training
 - Bootstrap sample leaves out about ½ of examples
 - Use these out-of-bag examples to test individual trees
 - Collect votes from all trees to get overall accuracy

Random Forest Properties

Disadvantages

- Hard to estimate complexity due to random factor
- \blacksquare *k* (# of features) must be determined experimentally

Advantages

- State of the art performance on many datasets
- Relatively simple to implement
- Expected error can be determined while training
 - Bootstrap sample leaves out about $\frac{1}{3}$ of examples
 - Use these out-of-bag examples to test individual trees
 - Collect votes from all trees to get overall accuracy

- Find the *k* training examples closest to *p*
- \blacksquare Classify p with the most common f(x)

- Find the *k* training examples closest to *p*
- \blacksquare Classify p with the most common f(x)

- Find the *k* training examples closest to *p*
- \blacksquare Classify p with the most common f(x)

$$k = 1$$

- Find the *k* training examples closest to *p*
- \blacksquare Classify p with the most common f(x)

$$k = 1$$

- Find the *k* training examples closest to *p*
- Classify p with the most common f(x)

$$k = 1$$

- Find the *k* training examples closest to *p*
- \blacksquare Classify p with the most common f(x)

$$k = 3$$

- Find the *k* training examples closest to *p*
- Classify p with the most common f(x)

$$k = 3$$

- Find the *k* training examples closest to *p*
- Classify p with the most common f(x)

$$k = 3$$

Euclidean Distance

$$\sqrt{\sum_{i=1}^{n}(a_i-b_i)^2}$$

close 0 far ∞

Cosine Similarity

$$\frac{\sum_{i=1}^{n} a_i b_i}{\sqrt{\sum_{i=1}^{n} a_i^2} \sqrt{\sum_{i=1}^{n} b_i^2}}$$

close 1 far -1

Euclidean Distance

$$\sqrt{\sum_{i=1}^{n} (a_i - b_i)^2} \qquad \text{close 0} \\ \text{far } \infty$$

Cosine Similarity

 ∞

close 1 far

Euclidean Distance

$$\sqrt{\sum_{i=1}^{n} (a_i - b_i)^2} \qquad \text{close } 0$$

$$\text{far } \infty$$

Cosine Similarity

close 1 far -1

Euclidean Distance

$$\sqrt{\sum_{i=1}^{n} (a_i - b_i)^2} \qquad \text{close } 0$$

$$\text{far } \infty$$

Cosine Similarity

close 1 far -1

Euclidean Distance

$$\sqrt{\sum_{i=1}^{n} (a_i - b_i)^2} \qquad \text{close } 0$$

$$\text{far } \infty$$

Cosine Similarity

Euclidean Distance

$$\sqrt{\sum_{i=1}^{n} (a_i - b_i)^2} \qquad \text{close 0} \\ \text{far } \infty$$

Cosine Similarity

Euclidean Distance

$$\sqrt{\sum_{i=1}^{n} (a_i - b_i)^2} \qquad \text{close } 0$$

$$\text{far } \infty$$

Cosine Similarity

k-Nearest Neighbor Exercise

Training data:

	,	
<i>X</i> ₁	<i>X</i> ₂	f(x)
-1	1	Α
0	1	A
0	2	A
2	2	В
3	2	В
3	3	В

Classify x = [1, 1] with 3-NN Euclidean? Cosine?

Cosine Similarity

$$\frac{\sum_{i=1}^{n} a_i b_i}{\sqrt{\sum_{i=1}^{n} a_i^2} \sqrt{\sum_{i=1}^{n} b_i^2}}$$

close 1 far -1

Euclidean Distance

$$\sqrt{\sum_{i=1}^{n} (a_i - b_i)^2} \qquad \begin{array}{c} \text{close } 0 \\ \text{far } \infty \end{array}$$

k-Nearest Neighbor Exercise

Training data:

	_			
<i>X</i> ₁	<i>X</i> ₂	f(x)		
-1	1	Α		
0	1	Α		
0	2	Α		
2	2	В		
3	2	В		
3	3	В		

Euclidean Distance

$$\sqrt{\sum_{i=1}^{n} (a_i - b_i)^2} \qquad \text{close 0} \\ \text{far } \infty$$

Classify x = [1, 1] with 3-NN

		J	L	1		
Euclidean? A Cosine?					e? <i>E</i>	
0	1	Α		2	2	В
0	2	Α		3	2	В
2	1 2 2	В		3	3	В

Cosine Similarity

$$\frac{\sum_{i=1}^{n} a_i b_i}{\sqrt{\sum_{i=1}^{n} a_i^2} \sqrt{\sum_{i=1}^{n} b_i^2}}$$

close 1 far -1

k-Nearest Neighbor Properties

Theoretical Properties

- \blacksquare Given enough data and the right k, minimizes error
- Able to approximate many kinds of functions

Empirical Issues

- Simple to implement given a distance function
- Large training data means long search times
- Not always clear what distance function to use

Linear Models

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots$$

Where:

- x_1, x_2, x_3, \dots are the features of x
- \blacksquare θ are feature weights

Learning linear models:

■ Select parameters (weights) to minimize *loss*

Linear Models

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots$$

Where:

- x_1, x_2, x_3, \dots are the features of x
- \blacksquare θ are feature weights

Learning linear models:

■ Select parameters (weights) to minimize *loss*

How "wrong" is this h(x)?

How "wrong" is this h(x)?

Loss at one point

$$L_{0/1}(\theta, x) = \begin{cases} 0 & \text{if } h_{\theta}(x) = f(x) \\ 1 & \text{otherwise} \end{cases}$$

How "wrong" is this h(x)?

Loss at one point

$$L_{0/1}(\theta, x) = \begin{cases} 0 & \text{if } h_{\theta}(x) = f(x) \\ 1 & \text{otherwise} \end{cases}$$

 $L_1(\theta, x) = |f(x) - h_{\theta}(x)|$

How "wrong" is this h(x)?

Loss at one point

$$L_{0/1}(\theta, x) = \begin{cases} 0 & \text{if } h_{\theta}(x) = f(x) \\ 1 & \text{otherwise} \end{cases}$$

$$L_1(\theta, x) = |f(x) - h_{\theta}(x)|$$

$$L_2(\theta, x) = (f(x) - h_{\theta}(x))^2$$

How "wrong" is this h(x)?

Loss at one point

$$L_{0/1}(\theta, x) = \begin{cases} 0 & \text{if } h_{\theta}(x) = f(x) \\ 1 & \text{otherwise} \end{cases}$$

$$L_1(\theta, x) = |f(x) - h_{\theta}(x)|$$

$$L_2(\theta, x) = (f(x) - h_{\theta}(x))^2$$

Empirical Loss

$$L(\theta) = \frac{1}{|X|} \sum_{x \in X} L(\theta, x)$$

Loss Exercise

Recall that $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots$ and consider:

- $\theta_a = [0, 1]$
- $\theta_b = [0.6, 1.2]$

Which θ is better by:

■
$$L_{0/1}(\theta) = \frac{1}{|X|} \sum_{x \in X} h_{\theta}(x) \neq f(x)$$
?

•
$$L_1(\theta) = \frac{1}{|X|} \sum_{x \in X} |f(x) - h_{\theta}(x)|$$
?

•
$$L_2(\theta) = \frac{1}{|X|} \sum_{x \in X} (f(x) - h_{\theta}(x))^2$$
?

Loss Exercise

Recall that $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots$ and consider:

- $\theta_a = [0, 1]$
- $\theta_b = [0.6, 1.2]$

Which θ is better by:

$$L_{0/1}(\theta) = \frac{1}{|X|} \sum_{x \in X} h_{\theta}(x) \neq f(x)?$$

$$\theta_a \left(\frac{2}{5} \text{ vs. } \frac{5}{5}\right)$$

$$L_1(\theta) = \frac{1}{|X|} \sum_{x \in X} |f(x) - h_{\theta}(x)|?$$

$$\theta_a \left(\frac{6}{5} \text{ vs. } \frac{7.2}{5}\right)$$

$$L_2(\theta) = \frac{1}{|X|} \sum_{x \in \mathcal{H}} (f(x) - h_{\theta}(x))^2?$$

$$\theta_b \left(\frac{20}{5} \text{ vs. } \frac{12.4}{5}\right)$$

- Best model parameters $\theta = \underset{\theta'}{\operatorname{argmin}} Loss(h_{\theta'})$
- \blacksquare Minimized function has partial derivatives = 0

- Best model parameters $\theta = \underset{\theta'}{\operatorname{argmin}} Loss(h_{\theta'})$
- \blacksquare Minimized function has partial derivatives = 0

Example:
$$x = [x_1]$$
 with L_2 loss

$$Loss(h_\theta) = \frac{1}{|X|} \sum_{x \in X} (f(x) - (\theta_0 + \theta_1 x_1))^2$$

- Best model parameters $\theta = \underset{\theta'}{\operatorname{argmin}} Loss(h_{\theta'})$
- \blacksquare Minimized function has partial derivatives = 0

Example:
$$x = [x_1]$$
 with L_2 loss

$$Loss(h_{\theta}) = \frac{1}{|X|} \sum_{x \in X} (f(x) - (\theta_0 + \theta_1 x_1))^2$$

$$= \frac{1}{|X|} \sum_{x \in Y} f(x)^2 - 2\theta_0 f(x) - 2\theta_1 x_1 f(x) + \theta_0^2 + 2\theta_0 \theta_1 x_1 + \theta_1^2 x_1^2$$

- Best model parameters $\theta = \underset{\theta'}{\operatorname{argmin}} Loss(h_{\theta'})$
- \blacksquare Minimized function has partial derivatives = 0

Example:
$$x = [x_1]$$
 with L_2 loss
$$Loss(h_{\theta}) = \frac{1}{|X|} \sum_{x \in X} (f(x) - (\theta_0 + \theta_1 x_1))^2$$

$$= \frac{1}{|X|} \sum_{x \in X} f(x)^2 - 2\theta_0 f(x) - 2\theta_1 x_1 f(x) + \theta_0^2 + 2\theta_0 \theta_1 x_1 + \theta_1^2 x_1^2$$

$$\frac{\delta}{\delta \theta_0} Loss(h_{\theta}) = \frac{1}{|X|} \sum_{x \in X} -2f(x) + 2\theta_0 + 2\theta_1 x_1 = 0$$

- Best model parameters $\theta = \underset{\theta'}{\operatorname{argmin}} Loss(h_{\theta'})$
- \blacksquare Minimized function has partial derivatives = 0

Example:
$$x = [x_1]$$
 with L_2 loss
$$Loss(h_{\theta}) = \frac{1}{|X|} \sum_{x \in X} (f(x) - (\theta_0 + \theta_1 x_1))^2$$

$$= \frac{1}{|X|} \sum_{x \in X} f(x)^2 - 2\theta_0 f(x) - 2\theta_1 x_1 f(x) + \theta_0^2 + 2\theta_0 \theta_1 x_1 + \theta_1^2 x_1^2$$

$$\frac{\delta}{\delta \theta_0} Loss(h_{\theta}) = \frac{1}{|X|} \sum_{x \in X} -2f(x) + 2\theta_0 + 2\theta_1 x_1 = 0$$

$$\theta_0 = \frac{1}{|X|} \sum_{x \in X} f(x) - \theta_1 x_1$$

- Best model parameters $\theta = \underset{\theta'}{\operatorname{argmin}} Loss(h_{\theta'})$
- \blacksquare Minimized function has partial derivatives = 0

Example:
$$x = [x_1]$$
 with L_2 loss
$$Loss(h_{\theta}) = \frac{1}{|X|} \sum_{x \in X} (f(x) - (\theta_0 + \theta_1 x_1))^2$$

$$= \frac{1}{|X|} \sum_{x \in X} f(x)^2 - 2\theta_0 f(x) - 2\theta_1 x_1 f(x) + \theta_0^2 + 2\theta_0 \theta_1 x_1 + \theta_1^2 x_1^2$$

$$\frac{\delta}{\delta \theta_0} Loss(h_{\theta}) = \frac{1}{|X|} \sum_{x \in X} -2f(x) + 2\theta_0 + 2\theta_1 x_1 = 0$$

$$\theta_0 = \frac{1}{|X|} \sum_{x \in X} f(x) - \theta_1 x_1$$

$$\frac{\delta}{\delta \theta_1} Loss(h_{\theta}) = \dots$$

Formal approach:

- Given: function h_{θ} and function $Loss(\theta)$
- Derive $\nabla Loss(\theta) = \left[\frac{\delta}{\delta\theta_0}Loss(\theta), \frac{\delta}{\delta\theta_1}Loss(\theta), \ldots\right]$
- Solve for θ in $\nabla Loss(\theta) = 0$

But there may be no closed form solution!

Gradient Descent

 θ = any setting of all parameters while θ has not converged:

for 1 in
$$0...|\theta|$$
:

$$\theta_i = \theta_i - \alpha \frac{\delta}{s_0} Loss(\theta)$$

Formal approach:

- Given: function h_{θ} and function $Loss(\theta)$
- Derive $\nabla Loss(\theta) = \left[\frac{\delta}{\delta\theta_0}Loss(\theta), \frac{\delta}{\delta\theta_1}Loss(\theta), \ldots\right]$
- Solve for θ in $\nabla Loss(\theta) = 0$

But there may be no closed form solution!

Gradient Descent

 θ = any setting of all parameters while θ has not converged:

for i in
$$0 \dots |\theta|$$
:

$$\theta_i = \theta_i - \alpha \frac{\circ}{\delta \theta_i} Loss(\theta)$$

Formal approach:

- Given: function h_{θ} and function $Loss(\theta)$
- Derive $\nabla Loss(\theta) = \left[\frac{\delta}{\delta\theta_0}Loss(\theta), \frac{\delta}{\delta\theta_1}Loss(\theta), \ldots\right]$
- Solve for θ in $\nabla Loss(\theta) = 0$

But there may be no closed form solution!

Gradient Descent

```
\theta = any setting of all parameters while \theta has not converged: for i in 0...|\theta|: \theta_i = \theta_i - \alpha \frac{\delta}{\delta \theta_i} Loss(\theta)
```

Gradient Descent Properties

For convex functions:

- Given small enough α , converges to global minimum
- May be slow: scans entire training data every step

Alternative: stochastic gradient descent:

- Calculate loss for each x and update θ accordingly
- Often faster than batch gradient descent
- Not guaranteed to converge to global minimum

For non-convex functions:

Only converges to a local minimum

Gradient Descent Properties

For convex functions:

- Given small enough α , converges to global minimum
- May be slow: scans entire training data every step

Alternative: stochastic gradient descent:

- Calculate loss for each x and update θ accordingly
- Often faster than batch gradient descent
- Not guaranteed to converge to global minimum

For non-convex functions:

Only converges to a local minimum

Gradient Descent Properties

For convex functions:

- Given small enough α , converges to global minimum
- May be slow: scans entire training data every step

Alternative: stochastic gradient descent:

- Calculate loss for each x and update θ accordingly
- Often faster than batch gradient descent
- Not guaranteed to converge to global minimum

For non-convex functions:

Only converges to a local minimum

Recall overfitting solutions:

- Use simpler model
- Use fewer features

Learning as optimization allows another: Regularization

- Instead of minimizing $Loss(\theta)$
- Minimize $Loss(\theta) + \lambda Complexity(\theta)$
- Where λ can be tuned

Common choices for *Complexity* (θ)

$$L_1(\theta) = \sum_i |\theta_i|, \text{ encourages weights of 0 (sparsity)}$$

■
$$L_2(\theta) = \sum_i |\theta_i|^2$$
, often makes math easier

Recall overfitting solutions:

- Use simpler model
- Use fewer features

Learning as optimization allows another: Regularization

- Instead of minimizing $Loss(\theta)$
- Minimize $Loss(\theta) + \lambda Complexity(\theta)$
- Where λ can be tuned

Common choices for *Complexity* (θ)

■
$$L_1(\theta) = \sum |\theta_i|$$
, encourages weights of 0 (sparsity)

$$\mathbf{L}_2(\theta) = \sum_i |\theta_i|^2$$
, often makes math easier

Recall overfitting solutions:

- Use simpler model
- Use fewer features

Learning as optimization allows another: Regularization

- Instead of minimizing $Loss(\theta)$
- Minimize $Loss(\theta) + \lambda Complexity(\theta)$
- Where λ can be tuned

Common choices for *Complexity* (θ)

■
$$L_1(\theta) = \sum |\theta_i|$$
, encourages weights of 0 (sparsity)

■
$$L_2(\theta) = \sum_i |\theta_i|^2$$
, often makes math easier

Recall overfitting solutions:

- Use simpler model
- Use fewer features

Learning as optimization allows another: Regularization

- Instead of minimizing $Loss(\theta)$
- Minimize $Loss(\theta) + \lambda Complexity(\theta)$
- Where λ can be tuned

Common choices for *Complexity*(θ)

- $L_1(\theta) = \sum_i |\theta_i|$, encourages weights of 0 (sparsity)
- $L_2(\theta) = \sum_i |\theta_i|^2$, often makes math easier

Regularization Exercise

<i>X</i> ₁	<i>x</i> ₂	f(x)
2	1	4
3	2	9
4	3	13

Given L_2 loss, which is better:

$$\theta_a = [-2, 3, 1]$$

$$\theta_b = [0, 3, 0]$$

for the regularization:

■ None?

$$\blacksquare L_1, \lambda = \frac{1}{3}?$$

$$L_2, \lambda = \frac{1}{3}?$$

Loss:

$$L_2(\theta) = \frac{1}{|X|} \sum_{x \in X} (f(x) - h_{\theta}(x))^2$$

Regularizers:

$$L_1(\theta) = \sum_i |\theta_i| \quad L_2(\theta) = \sum_i |\theta_i|^2$$

Regularization:

$$L(\theta) = Loss(\theta) + \lambda \ \textit{Complexity}(\theta)$$

Regularization Exercise

<i>X</i> ₁	<i>x</i> ₂	f(x)
2	1	4
3	2	9
4	3	13

Loss:

$$L_2(\theta) = \frac{1}{|X|} \sum_{x \in Y} (f(x) - h_{\theta}(x))^2$$

Regularizers:

$$L_1(\theta) = \sum_i |\theta_i| \quad L_2(\theta) = \sum_i |\theta_i|^2$$

Regularization:

$$L(\theta) = Loss(\theta) + \lambda \ \textit{Complexity}(\theta)$$

Given L_2 loss, which is better:

$$\theta_a = [-2, 3, 1]$$

$$\theta_b = [0, 3, 0]$$

for the regularization:

None?
$$\theta_a \left(\frac{1}{3} \text{ vs. } \frac{5}{3}\right)$$

•
$$L_1$$
, $\lambda = \frac{1}{3}$? $\theta_a \left(\frac{7}{3} \text{ vs. } \frac{8}{3} \right)$

•
$$L_2$$
, $\lambda = \frac{1}{3}$? $\theta_b \left(\frac{15}{3} \text{ vs. } \frac{14}{3} \right)$

Linear regression:

- $h(x): \mathbb{R}^n \Rightarrow \mathbb{R}$
- \bullet $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots$

$$L_2(h_\theta) = \frac{1}{|X|} \sum_{x \in X} (f(x) - (\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots))^2$$

Logistic regression:

$$h(x): \mathbb{R}^n \Rightarrow [0,1]$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots)}}$$

Linear regression:

- $h(x): \mathbb{R}^n \Rightarrow \mathbb{R}$
- $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots$

$$L_2(h_{\theta}) = \frac{1}{|X|} \sum_{x \in X} (f(x) - (\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots))^2$$

Logistic regression:

- $h(x): \mathbb{R}^n \Rightarrow [0,1]$
- $h_{\theta}(x) = \frac{1}{1 + e^{-(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots)}}$

$$L_2(h_{\theta}) = \frac{1}{|X|} \sum_{x \in Y} \left(f(x) - \left(\frac{1}{1 + e^{-(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots)}} \right) \right)^2$$

Logistic Regression Properties

- $h_{\theta}(x)$ can be interpreted as P(f(x) = 1)
- Can be generalized for multi-class classification
- With regularization, state-of-the-art on many problems

Classification problem:

Classification hyperplanes:

Classification hyperplanes:

Classification problem:

Classification hyperplanes:

$$x_2 = 3.7$$

$$x_1 - x_2 = 0$$

Maximizing margin:

 $= x_1 - x_2 = 0 \Rightarrow 0.12$

Classification problem:

Classification hyperplanes:

$$x_2 = 3.7$$

 $\Rightarrow \frac{13}{14}$

$$= 2x_1 - x_2 =$$

$$x_1 - x_2 = 0$$

Maximizing margin

 $= x_1 - x_2 = 0 \Rightarrow 0.55$

Classification problem:

Classification hyperplanes:

$$x_2 = 3.7$$

$$\Rightarrow \frac{13}{14}$$

$$= 2x_1 - x_2 =$$

$$x_1 - x_2 = 0$$

Maximizing margin:

Classification problem:

Classification hyperplanes:

$$x_2 = 3.7$$

$$\Rightarrow \frac{13}{14}$$

$$2x_1 - x_2 = 3$$

$$\Rightarrow \frac{1}{1}$$

$$\blacksquare X_1 -$$

Maximizing margin:

Data points at margin a

Classification problem:

Classification hyperplanes:

$$x_2 = 3.7$$

$$\Rightarrow \frac{13}{14}$$

$$2x_1 - x_2 = 3$$

$$\Rightarrow \frac{14}{14}$$

$$x_1 - x_2 =$$

Maximizing margin:

Classification problem:

Classification hyperplanes:

$$x_2 = 3.7$$

$$\Rightarrow \frac{13}{14}$$

$$2x_1 - x_2 = 3$$

$$\Rightarrow \frac{14}{14}$$

$$x_1 - x_2 = 0$$

$$\Rightarrow \frac{14}{14}$$

Maximizing margin:

Classification problem:

Classification hyperplanes:

$$x_2 = 3.7$$

$$\Rightarrow \frac{13}{14}$$

$$2x_1 - x_2 = 3$$

$$\rightarrow \frac{1}{14}$$

$$x_1 - x_2 = 0$$

Maximizing margin

Classification problem:

Classification hyperplanes:

$$x_2 = 3.7$$

$$\Rightarrow \frac{13}{14}$$

$$2x_1 - x_2 = 3$$

$$\Rightarrow \frac{14}{14}$$

$$x_1 - x_2 = 0$$

$$\Rightarrow \frac{14}{14}$$

Maximizing margin:

Classification problem:

Classification hyperplanes:

$$x_2 = 3.7$$

$$\Rightarrow \frac{13}{14}$$

$$2x_1 - x_2 = 3$$

$$\Rightarrow \frac{14}{14}$$

$$x_1 - x_2 = 0$$

$$\Rightarrow \frac{14}{14}$$

Maximizing margin:

$$2x_1 - x_2 = 3 \Rightarrow 0.35$$

Classification problem:

Classification hyperplanes:

$$x_2 = 3.7$$

$$\Rightarrow \frac{13}{14}$$

$$2x_1 - x_2 = 3$$

$$\Rightarrow \frac{14}{14}$$

$$x_1 - x_2 = 0$$

$$\Rightarrow \frac{14}{14}$$

Maximizing margin:

$$2x_1 - x_2 = 3 \Rightarrow 0.35$$

$$x_1 - x_2 = 0 \Rightarrow 0.50$$

Classification problem:

Classification hyperplanes:

$$x_2 = 3.7$$

$$\Rightarrow \frac{13}{14}$$

$$2x_1 - x_2 = 3$$

$$\Rightarrow \frac{14}{14}$$

$$x_1 - x_2 = 0$$

$$\Rightarrow \frac{14}{14}$$

Maximizing margin:

$$2x_1 - x_2 = 3 \Rightarrow 0.35$$

$$x_1 - x_2 = 0 \Rightarrow 0.50$$

Support Vector Machine Classifiers

Support vector machine loss, with $f(x) : \mathbb{R} \Rightarrow \{-1, +1\}$:

$$L_{2}(\theta) = \frac{1}{2} \sum_{i} \theta_{i}^{2} + \underbrace{C}_{\text{misclassify}} \sum_{x \in X} \max \left(0, 1 - f(x) \sum_{i} \theta_{i} x_{i} \right)$$
regularizer

Compare to L2-regularized logistic regression:

$$L_2(\theta) = \frac{1}{2} \sum_{i} \theta_i^2 + \frac{1}{|X|} \sum_{x \in X} \left(f(x) - \left(\frac{1}{1 + e^{-\sum_{i} \theta_i x_i}} \right) \right)^2$$

Support Vector Machine Classifiers

Support vector machine loss, with $f(x) : \mathbb{R} \Rightarrow \{-1, +1\}$:

$$L_{2}(\theta) = \underbrace{\frac{1}{2} \sum_{i} \theta_{i}^{2}}_{\text{regularizer}} + \underbrace{C}_{\substack{\text{misclassify } x \in X \\ \text{cost}}} \sum_{x \in X} \max \left(0, 1 - f(x) \sum_{i} \theta_{i} x_{i} \right)$$

Compare to L2-regularized logistic regression:

$$L_2(\theta) = \frac{1}{2} \sum_i \theta_i^2 + \frac{1}{|X|} \sum_{x \in X} \left(f(x) - \left(\frac{1}{1 + e^{-\sum_i \theta_i x_i}} \right) \right)^2$$

Support vector machine dual form:

$$L(\alpha) = \sum_{x \in X} \alpha_x - \frac{1}{2} \sum_{x \in X, \, x' \in X} \alpha_x \alpha_{x'} f(x) f(x') \sum_i x_i x_i'$$

Common kernels k(x, x'):

- Linear $(\sum_i x_i x_i')$
- Polynomial $(\sum_i x_i x_i')^d$
- Radial basis function (RBF) $-e^{-\gamma ||x-x'||^2}$

Demo: kernels allow non-linear classification boundaries

http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html?js=1

Support vector machine dual form:

$$L(\alpha) = \sum_{x \in X} \alpha_x - \frac{1}{2} \sum_{x \in X, \, x' \in X} \alpha_x \alpha_{x'} f(x) f(x') k(x, x')$$

Common kernels k(x, x'):

- Linear $(\sum_i x_i x_i')$
- Polynomial $(\sum_i x_i x_i')^d$
- Radial basis function (RBF) $e^{-\gamma ||x-x'||^2}$

Demo: kernels allow non-linear classification boundaries

http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html?js=1

Support vector machine dual form:

$$L(\alpha) = \sum_{x \in X} \alpha_x - \frac{1}{2} \sum_{x \in X, \, x' \in X} \alpha_x \alpha_{x'} f(x) f(x') k(x, x')$$

Common kernels k(x, x'):

- Linear $(\sum_i x_i x_i')$
- Polynomial $(\sum_i x_i x_i')^d$
- Radial basis function (RBF) $-e^{-\gamma ||x-x'||^2}$

Demo: kernels allow non-linear classification boundaries

http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html?js=1

Support vector machine dual form:

$$L(\alpha) = \sum_{x \in X} \alpha_x - \frac{1}{2} \sum_{x \in X, \, x' \in X} \alpha_x \alpha_{x'} f(x) f(x') k(x, x')$$

Common kernels k(x, x'):

- Linear $(\sum_i x_i x_i')$
- Polynomial $(\sum_i x_i x_i')^d$
- Radial basis function (RBF) $-e^{-\gamma ||x-x'||^2}$

Demo: kernels allow non-linear classification boundaries

■ http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html?js=1

Kernel Alternative: Feature Engineering

Nonlinear classification via feature transformation:

Kernels: similar effect, but may be more efficient

Kernel Alternative: Feature Engineering

Nonlinear classification via feature transformation:

Kernels: similar effect, but may be more efficient

Support Vector Machine Properties

Theoretical Properties

- Efficient optimal separators in huge feature spaces
- Can approximate essentially any function

Empirical Issues

- Classification usually fast, but training often slow
- Kernel functions (and parameters) chosen empirically

Neurons in the Brain

Neurons in a Neural Network

Common choices for activation function g:

threshold(x) =
$$\begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$$
 sigmoid(x) =
$$\frac{1}{1 + e^{-x}}$$

Neurons in a Neural Network

Common choices for activation function g:

threshold(x) =
$$\begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$$
 sigmoid(x) =
$$\frac{1}{1 + e^{-x}}$$

Neural Network Example: Logical And

Neural Network Example: Logical And

Neural Network Example: Logical And

Neural Network Exercise

Neural Network Exercise

Learning Neural Networks

Gradient descent over the θ s in all nodes:

The Forward-propagate activation, get output a_0

$$L(\theta) = \frac{1}{|X|} \sum_{x \in X} -f(x) \log(a_o) - (1 - f(x)) \log(1 - a_o)$$

- **3** Calculate $\nabla L(\theta)$ by *back propagation*:
 - Measure how much each unit was "responsible" for errors
 - 2 For output unit, $(a_o f(x))$
 - 3 For hidden layer k, weighted average of layer k + 1
- **4** Use $L(\theta)$ and $\nabla L(\theta)$ to take a gradient descent step
- **5** Goto 1

Neural Net Properties

Expressive Power

- Single layer networks: linearly separable functions
- Multi-layer networks: essentially any function

Empirical Issues

- How many hidden layers?
- How many nodes in each layer?
- How to initialize weights?
- Has gradient descent gotten stuck at local minimum?

Neural Net Properties

Expressive Power

- Single layer networks: linearly separable functions
- Multi-layer networks: essentially any function

Empirical Issues

- How many hidden layers?
- How many nodes in each layer?
- How to initialize weights?
- Has gradient descent gotten stuck at local minimum?

Key Ideas

Supervised Learning:

- Input: (x, f(x)) examples; Output: h, a guess at f
- Representation: *x* decomposed into features
- Evaluation: train, development, test
- Learning curves: reveal underfitting, overfitting

Supervised Learning Algorithms:

- Decision trees and random forests
- Linear and logistic regression
- Support vector machines
- k-nearest neighbors
- Neural networks