Sequence Alignment Project

Dot Matrix Analysis & Pairwise Alignment

Task1: Compare two sequences of your interest using Dot Matrix

- Target sequence-Human Insulin (AJ009655.1), Subject sequence- Owl Monkey Insulin (J02989)
- They were pasted in the YASS genomic similarity search tool
- Check window size and threshold value parameters and select "Run YASS"
- Once result was obtained, zoomed Dot Plot was selected
- The Red lines represented reverse alignment and green lines represented forward alignments

Figure 1: Sequences inserted in YASS

Figure 2: Zoomed Dot Plot

Dot matrix plots with explanations.

1) Mapped Dot Plot

- Straight Diagonal line indicated regions of high similarity or exact matches.
- Slight deviation in diagonal led to breaking of one alignment into two due to insertion, deletion or some other mutations.
- Parallel lines indicated sequence duplications (annotated by arrows in mapped dot plot), Short dots represented random matches and noise.

Figure 3: Mapped Dot Plot

2) Tabular Result:

Gives us information of alignment, size, statistics, and information regarding mutations

Size Length of aligned sequences	The first three entries in the table show a greater length of aligned sequences. This means more residues are aligned, there is better conservation of sequences, and alignment is reliable			
Sense				
1. Number of forward alignments	14 forward alignments – indicate homology and shared conserved regions in insulin sequence of human and monkey			
2. Number of Reverse alignments-	18 reverse alignments – indicate presence of inverted repeats and complementary sequences between target and subject sequences			
Statistical Info				
1.E value: Range 2.31742e ⁻²⁷⁰ to 8.41428	Low E value: 2.31742e ⁻²⁷⁰ – alignment is statistically signifiant High E value: 8.41428- Less significant alignment			

2. Score: Range 3281 to 57	High score- 3281 indicates high sequence identity and similarity,homology Lowest score, 57 indicates low similarity and poor alignment quality
3. Bit Score: Range 116.55 to 18.42	116.50- High quality alignment, statistically significant 18.42- Less significant alignment
Mutations Info	
ts- Transition substitutions of purines by purines(A,G) or of pyrimidines by pyrimidines (T,C)	ts/tv ratio gives information regarding substitution pattern (transition/transversion) Transition (ts/tv>2) Entries:2,
tv- Transversion substitutions beween purines and pyrimidines	Neutral/slight transition (ts/tv=1-2) Entries:1,4,5,7,11,15,22,28, Transversion(ts/tv<1) Entries:3,8,9,10,12,13,14,16,17,18,19,20,23,24,25,26,27,29,30,31
Bias- represents (match,mis match,deletion) respectively	First entry has maximum match,mismatch and deletions – (15,15,24) 21st and 32nd entry has minimum match,mismatch and deletions –(1,0,0)

Positions					Statistics					Mutations			
# pa	asted.Apr_3_2025_17_18_43_96271454.1	pasted.Apr_3_2025_17_18_43_96271454.2	size	sense	Evalue	score	bit-score	entropy	#ts	#tv	bias	bias.p	
	sapiens_ins_gene,_partial	sulin_gene,_complete_cds.											
1	(65-1228)	(620-1761)	1164/1142	forward	2.31742e-270	3281	917.2	5.35706	33	21	15, 15, 24	3.74e-0	
2	(1158-1362)	(1691-1888)	205/198	forward	2.42642e-29	409	116.55	4.95539	24	10	14, 7, 13	6.47e-0	
3	(139-252)	(683-790)	114/108	forward	1.03595e-10	187	54.66	4.19824	8	10	6, 5, 7	3.80e-0	
4	(1272-1350)	(1882-1957)	79/76	forward	4.00667e-10	180	52.71	4.31497	9	9	6, 6, 6	4.43e-6	
5	(1-72)	(546-611)	72/66	forward	2.00603e-05	124	37.09	4.09023	10	6	7, 5, 4	3.35e-0	
6	(37-73)	(599-635)	37/37	forward	0.000114189	115	34.59	3.78714	7	0	4, 2, 1	4.80e-6	
7	(719-654)	(609-672)	66/64	reverse	0.021061	88	27.06	3.82687	12	12	11, 5, 8	1.14e-6	
3	(599-510)	(972-1062)	90/91	reverse	0.14544	78	24.27	3.74644	12	28	12, 16, 12	1.40e-6	
•	(554-604)	(1331-1380)	51/50	forward	0.14544	78	24.27	3.37356	1	15	8, 4, 4	2.09e-6	
0	(110-32)	(1797-1875)	79/79	reverse	0.315041	74	23.16	3.23593	10	24	13, 10, 11	1.96e-6	
1	(1130-1095)	(1007-1045)	36/39	reverse	0.382197	73	22.88	3.32636	2	1	1, 0, 2	1.11e-	
2	(1326-1393)	(1944-2008)	68/65	forward	0.382197	73	22.88	4.02193	9	10	9, 3, 7	9.54e-	
3	(850-766)	(134-218)	85/85	reverse	0.682416	70	22.04	3.79465	12	21	12, 8, 13	1.30e-	
4	(133-99)	(580-614)	35/35	reverse	0.827885	69	21.76	2.85539	1	9	2, 4, 4	5.33e-	
5	(224-179)	(338-381)	46/44	reverse	1.00436	68	21.48	3.54659	10	5	4, 7, 4	3.14e-	
6	(166-107)	(2000-2060)	60/61	reverse	1.00436	68	21.48	2.98523	4	18	7, 10, 5	1.63e-	
7	(1215-1148)	(1877-1944)	68/68	reverse	1.21846	67	21.2	3.375	9	19	7, 11, 10	1.83e-	
8	(319-288)	(232-264)	32/33	reverse	1.4782	66	20.93	3.27761	1	7	3, 1, 4	4.27e-	
9	(1175-1236)	(109-172)	62/64	forward	1.4782	66	20.93	3.39275	8	15	9, 5, 9	1.74e-	
0	(553-517)	(185-221)	37/37	reverse	1.7933	65	20.65	3	4	10	4, 5, 5	5.27e-	
1	(766-751)	(1542-1557)	16/16	reverse	1.7933	65	20.65	3.27761	1	0	1, 0, 0	3.33e-	
2	(946-1000)	(437-490)	55/54	forward	1.7933	65	20.65	2.85539	10	10	8, 5, 7	2.86e-0	
3	(67-37)	(1333-1363)	31/31	reverse	2.17557	64	20.37	2.92193	1	8	4, 3, 2	6.40e-	
4	(780-810)	(297-327)	31/31	forward	2.17557	64	20.37	2.84644	3	6	2, 2, 5	3.84e-	
5	(404-459)	(1834-1892)	56/59	forward	3.8845	61	19.53	3.03915	7	13	7, 6, 7	3.82e-	
5	(1199-1175)	(1865-1889)	25/25	reverse	4.71254	60	19.25	2.84535	2	4	2, 1, 3	8.23e-	
7	(443-423)	(632-652)	21/21	reverse	5.7171	59	18.97	2.92193	1	3	1, 1, 2	1.48e-	
8	(220-152)	(89-157)	69/69	reverse	6.9358	58	18.69	3.27761	13	18	12, 8, 11	1.73e-	
9	(277-225)	(446-498)	53/53	reverse	6.9358	58	18.69	3.08496	9	13	10, 6, 6	1.90e-	
9	(1207-1172)	(500-535)	36/36	reverse	6.9358	58	18.69	3	3	9	4, 3, 5	5.22e-	
1	(794-813)	(205-224)	20/20	forward	8.41428	57	18.42	2.80735	1	3	1, 0, 3	4.94e-6	
2	(193-206)	(1492-1505)	14/14	forward	8.41428	57	18.42	3.16992	1	0	1, 0, 0	3.33e-6	

Figure 4: Tabular Result of alignment of Human and Owl Monkey Insulin sequences

3) Raw Data

Raw data of some alignments-

```
*(65-1228)(620-1761) Ev: 2.31742e-270 s: 1164/1142 f

* "ENA|AJ009655|AJ009655.1_Homo_sapiens_ins_gene,_partial" (1393 bp) /

"ENA|J02298] J022989.1_OW1_monkey_(A.trivirgatus)_insulin_gene,_complete_cds." (2113 bp)

* score = 3281 : bitscore = 917.20

* mutations per triplet 15, 15, 24 (3.74e-03) | ts : 33 tv : 21 | entropy : 5.35706
   |230 | 240 | 250 | 260 | 270 | 280 | 290 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 |
   | 390 | 400 | 410 | 420 | 430 | 440 | 450 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 | 460 
                                                                                                                                                                                                           1970
                                                                                           950
                                                                                                                                              960
                                                                                                                                                                                                                                                                980
   570
                                                                                                                                                                                                                 580
                                                                                                                                                                                                                                                                     590
   *(1272-1350)(1882-1957) Ev: 4.00667e-10 s: 79/76 f
  * "ENA|AJ009655|AJ009655.1 Homo_sapiens_ins_gene,_partial" (1393 bp) /
"ENA|J02989|J02989.1_Owl_monkey_(A.trivirgatus)_insulin_gene,_complete_cds." (2113 bp)
* score = 180 : bitscore = 52.71
  * mutations per triplet 6, 6, 6 (4.43e-02) | ts : 9 tv : 9 | entropy : 4.31497
                                                                                                 1290
                                                                                                                                                      1300
                                                                                                                                                                                                             11310
                                                                                                                                                                                                                                                                   11320
                                                                                                                                                                                                                                                                                                                        11330
*(1-72)(546-611) Ev: 2.00603e-05 s: 72/66 f

*"ENA|AJ009655|AJ009655.1_Homo_sapiens_ins_gene,_partial" (1393 bp) /

"ENA|J029891_Owl_monkey_(A.trivirgatus)_insulin_gene,_complete_cds." (2113 bp)

* score = 124 : bitscore = 37.09

* mutations per triplet 7, 5, 4 (3.35e-02) | ts : 10 tv : 6 | entropy : 4.09023
                                                                                                                                                                                                                                                                         150
                                                                                                                                                             130
                                                                                                                                                                                                                    140
                                                                                                                                                                                                                                                                                                                                 160
                                                                                                       120
 AGCAGGTCTGTTCCAAGGCCCTTTGCGTCAGGTGGGCTCAGGGTTCCAGGGTGGCTCGACCCCAGGCCCCAG
                                                                                                                                                                                                                         580
                                                                                                                                 570
                                                                                                                                                                                                                                                                              1590
 *(37-73)(599-635) Ev: 0.000114189 s: 37/37 f

*"ENA|AJ009655|AJ009655.1_Homo_sapiens_ins_gene,_partial" (1393 bp) /

"ENA|J02989|J02989.1_0wl_monkey_(A.trivirgatus)_insulin_gene,_complete_cds." (2113 bp)

* score = 115 : bitscore = 34.59

* mutations per triplet 4, 2, 1 (4.80e-02) | ts : 7 tv : 0 | entropy : 3.78714
                                                                     50
                                                                                                                             60
*(719-654)(609-672) Ev: 0.021061 s: 66/64 r
 * "ENA|AJ009655|AJ009655.1_Homo_sapiens_ins_gene,_partial" (1393 bp) /
"ENA|J02989|J02989.1_OW1_monkey_(A.trivirgatus)_insulin_gene,_complete_cds." (2113 bp)

* score = 88 : bitscore = 27.06

* mutations per triplet 11, 5, 8 (1.14e-02) | ts : 12 tv : 12 | entropy : 3.82687
                                                                                                       700
                                                                                                                                                             690
                                                                                                                                                                                                                680
                                                                                                                                                                                                                                                                     670
                                                  710
 | 1/10 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00 | 15/00
```

Figure 4: Raw Result of alignment of Human and Owl Monkey Insulin sequence

Task 2: Perform pairwise sequence alignment using BLAST for the same sequences.

Figure 5: Sequence pasted in blast n

Figure 6: Result obtained from blast n

Task 3: Interpret the E-value and alignment score for BLAST results.

1)Alignment Score – 850

It is based on matches, mismatches, gaps, and scoring matrices (BLOSUM) **Higher score means better alignment.**A score of **850** is **high**, alignment is of good quality with few mismatches or gaps.

2)E value- 0

Alignment is statistically significant, not by chance. The match is **not random**, sequences are **very likely related**.

3) Percentage Identity- 84.59%

84.59% of the aligned nucleotides (or amino acids) are **exact matches**. For DNA criteria for homology is Over ~70–75% identity. The obtained identity is above that hence the two sequences are homologous in nature

Figure 7: Sequence Alignment from blast n

Score	Expect	Identities	Gaps
850 bits(460)	0.0	752/889(85%)	36/889(4%)

Discussion on similarity/homology between the sequences.

- The alignment between the two sequences revealed an alignment score of **850**, an **E-value** of **0**, and a percentage identity of **84.59%**.
- These values indicate a **highly significant similarity** between the sequences.
- The high alignment score and E-value confirm that the match is not random and is significant
- Gap of 4% might be due to deletion, insertions or mismatches
- A high percentage of identity indicates conservation at the nucleotide level.
- Sequences are likely **homologous**, they are from a common ancestor.

