Step 1: Check the distribution of number of trips since it is a count variable. It could possibly require \log/sqrt transform

Quantiles									
100.0%	maximum	1161							
99.5%		876.595							
97.5%		770.625							
90.0%		669							
75.0%	quartile	575.25							
50.0%	median	492							
25.0%	quartile	399.5							
10.0%		323							
2.5%		217.925							
0.5%		148.24							
0.0%	minimum	53							

Summary Stat	istics				
Mean	492.33973				
Std Dev	138.66895				
Std Err Mean	5.1323681				
Upper 95% Mean	502.41571				
Lower 95% Mean	482.26374				
N	730				

Conclusion: Does not require any transform. The right tail could be outliers

Step2: Check for multi-collinearity

Conclusion: There isn't a significant collinearity between trips and other 3 variables. This is expected since they are average values. Average duration isn't collinear with average distance and expected duration which is interesting to explore

Step 3: To get an idea of the importance of variables, we run a stepwise fit model including all predictors. Since I don't want to lose too many variables at this point of time, I choose AIC as the stopping rule, and the direction as forward.

Conclusion: We see a bit of all predictor variables coming in – Year, Month, Day, AvgDistance.

Step 4: Then, we try backward selection.

Step	wise Fi	t for Trips											
Stepv	wise Re	gression Co	ntrol										
SS	SE DF	E RMSE	RSquare	RSquare Adj	Ср	Р	AICc		BIC				
178534	4.3 72	0 92.635293	0.5592	0.5537	4.3836893	10	8695.807	87	45.963				
Curre	ent Estii	mates											
Lock	Entered	Parameter							Estimate	nDF	SS	"F Ratio"	"Prob>
	√	Intercept							-5.0596306	1	0	0.000	
	✓	Month{Jan&F	eb&Mar&l	Dec&Apr-Nov8	kJul&May&J	un&A	lug&Sep&0	Oct}	-77.838469	4	4195423	122.226	1.4e-7
	✓	Month{Jan&F	eb-Mar&D	ec&Apr}					-34.114982	2	469087	27.332	3.6e-
		Month{Jan-Fe	eb}						0	1	284.9933	0.033	0.855
	✓	Month{Mar-D	ec&Apr}						-20.211153	1	67098.58	7.819	0.005
		Month{Dec-A	pr}						0	1	293.849	0.034	0.853
	✓	Month{Nov&	Jul&May&	Jun-Aug&Sep8	kOct}				-22.974836	1	221104.7	25.766	4.91€
		Month{Nov&	Jul&May-J	un}					0	1	7810.583	0.910	0.340
		Month{Nov&	Jul-May}						0	1	475.9231	0.055	0.814
		Month{Nov-J	ul}						0	3	18089.88	0.702	0.551
		Month{Aug&	Sep-Oct}						0	1	17342.64	2.024	0.155
		Month{Aug-S	Sep}						0	1	2958.637	0.344	0.557
	✓	Year{2017-20	18}						-36.476387	1	921011.9	107.328	1.5e-
	✓	DayofWeek{M	1on&Sun-T	ue&Thu&Fri&\	Wed&Sat}				-47.706082	3	2093883	81.335	2.5e-
	✓	DayofWeek{M	Ion-Sun}						-20.264253	1	86186.41	10.044	0.001
	✓	DayofWeek{Tu	ue-Thu&Fr	&Wed&Sat}					-25.447851	1	214419.4	24.987	7.26e
		DayofWeek{Ti	hu&Fri-We	d&Sat}					0	1	5337.21	0.622	0.43
		DayofWeek{Ti	hu-Fri}						0	1	3.025292	0.000	0.985
		DayofWeek{W	/ed-Sat}						0	2	8130.497	0.473	0.62
		Weekend{Yes	-No}						0	1	7266.551	0.847	0.357
		AvgDuration							0	1	7565.66	0.882	0.348
	✓	ExpectedDura	tion						59.4909073	1	288114.1	33.575	1.03e
		AvgDistance							0	1	902.5046	0.105	0.745

Conclusion: More or less the same set of variables except Expected Duration. This is expected due to its collinearity with Avg Distance

Step 5: Use these important predictors (Month, Year, DayOfWeek, either AvgDistance or ExpectedDuration) and do a Mixed Model to capture time variable. I included AR(1) structure to check for higher order correlation

Conclusion: The model looks good to start with. Row 702 and Row 282 could be outliers. Most of the predictor variables chosen are statistically significant. The ANOVA table (Fixed Effects Test) is also significant. The residual plots are not so good. Q-Q plot is skewed, possibly because of the two outliers. From the trips-residual vs row number plot, we infer a wave like pattern. The row numbers are arranged in chronological pattern, date order. This is due to the serial correlation. So, AR(1) does not fix the problem.

Step 6: Check the marginal plots to reason out this residual behavior

Conclusion: It is doing well. AvgDistance could be checked for transformation.

No transformation is required

△ Actual by Predicted Plot 900 800 700 600 Trips Actual 500 400 300 200 100 400 500 600 100 200 300 700 800 900 Trips Predicted

8366.6998

8412.1353

8511.6864

△ Repeated Effects Covariance Parameter Estimates

0.4828556 0.0347873

7687.983 538.66254

-2 Residual Log Likelihood 8247.8977

-2 Log Likelihood

AlCc

Covariance Parameter

AR(1)

Residual

BIC

Step 7: The two outliers mentioned above are removed and mixed model is tried again

Conclusion: It can be seen that the AICc has improved from 8600 to 8412. Also, all the predictors are still significant.

0.4146737

6732.5358

0.5510375

8863,4411

Estimate Std Error 95% Lower 95% Upper

Step 7: Then I tried the Time Series Modelling in JMP under specialized modelling. Before that a look at the Trips pattern shows variability and seasonality. So, I log-transformed and differenced the data.

Step 8: I used this as the dependent variable and fit a time series model to check the ACF and PACF plots

Step 9: I see that it could be anything between AR(1) to AR(7) or MA or any combination of these. I played around with these, transfer functions and compared the significance of the predictors, and AIC values.

After these trail and errors, I came up with this model using following thumb rules:

- 1. Go for a parsimonious model
- 2. Look for significance of predictor terms
- 3. Go with the min AIC model

Report	Graph	Model	DF	Variance	AIC	SBC	RSquare	-2LogLH	We
[x]	[]	AR(7)	719	0.0545389	-42.27364	-5.562232	0.326	-58.27364	1.00
[x]	[]	ARMA(2, 2) No Intercept	723	0.0587908	7.990611	26.346317	0.270	-0.009389	0.00
[x]	[]	ARMA(1, 1) No Intercept	725	0.0594643	14.124032	23.301885	0.260	10.124032	0.00
[x]	[]	MA(2) No Intercept	725	0.0595282	14.934414	24.112267	0.259	10.934414	0.00
[x]	[]	MA(1) No Intercept	726	0.0626843	51.480434	56.069360	0.219	49.480434	0.00
[x]	[]	AR(2) No Intercept	725	0.0687288	118.73866	127.91651	0.146	114.73866	0.00
[x]	[]	AR(1) No Intercept	726	0.0721597	153.05513	157.64406	0.103	151.05513	0.00
[x]	[]	—— AR(1)	725	0.0722526	154.98887	164.16672	0.103	150.98887	0.00

Also, the transformation and first order differencing has already been done. The intercept is found insignificant always, so that was removed. I chose ARMA(1,1,1) since it is parsimonious and gives good results as well. AR(7) gives better results but is highly complex.

The best models's results is shown:

