Polynomial Preconditioning for Gradient Methods

Nikita Doikov (EPFL, Switzerland)

Joint work with Anton Rodomanov (CISPA, Germany)

FGS Conference on Optimization, Gijón

June 20, 2024

Outline

- I. Introduction: preconditioning of gradient methods
- II. Symmetric polynomial preconditioning
- III. Krylov subspace preconditioning

IV. Experiments and conclusions

Optimization problem

$$\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x})$$

 $ightharpoonup f: \mathbb{R}^n \to \mathbb{R}$ is differentiable

Assume that f is (strongly) convex and has Lipschitz gradient \Rightarrow there exist $0 \le \lambda_{\min} \le \lambda_{\max}$ s.t.

$$\lambda_{\min} \mathbf{I} \leq \nabla^2 f(\mathbf{x}) \leq \lambda_{\max} \mathbf{I}, \quad \forall \mathbf{x} \in \mathbb{R}^n$$

Gradient Method. Iterate, for $k \ge 0$:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \gamma \nabla f(\mathbf{x}_k)$$

The rate of convergence depends on the extremal characteristics of the spectrum. To find $f(\mathbf{x}_k) - f^* \leq \varepsilon$ we need

- $\mathcal{O}(\frac{\lambda_{\text{max}}}{\lambda_{\text{min}}} \ln \frac{1}{\varepsilon})$ gradient steps (strongly convex functions)
- $\mathcal{O}(\frac{\lambda_{\max}\|x_0 x^*\|^2}{\varepsilon}) \text{ gradient steps (convex functions)}$

Example: logistic regression

Distribution of the top eigenvalues:

► There are large gaps between top eigenvalues ⇒ slow convergence

Problem structure

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}f(\boldsymbol{x})$$

$$\overline{\min_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x})} \quad \text{Fix matrix } \boldsymbol{B} = \boldsymbol{B}^\top \succ 0 \text{ (curvature matrix)}$$

Our assumption: for some $0 \le \mu \le L$, we have

$$\mu \mathbf{B} \leq \nabla^2 f(\mathbf{x}) \leq L \mathbf{B}, \quad \forall \mathbf{x} \in \mathbb{R}^n$$

i.e. the function f is (strongly) convex and has Lipschitz gradient w.r.t. the induced norm $\|\mathbf{x}\|_{\mathbf{B}} := \langle \mathbf{B}\mathbf{x}, \mathbf{x} \rangle^{1/2}$

Example 1. Let $f(x) = \frac{1}{2} \langle Ax, x \rangle - \langle b, x \rangle$. Then B := A and $\mu = L = 1$.

Example 2. Let f(x) = g(Ax + b). Assume that $g(\cdot)$ is μ -strongly convex and L-smooth. Then $\mathbf{B} := \mathbf{A}^{\top} \mathbf{A}$.

Intuitively, **B** is the best uniform approximation of the Hessian

Gradient vs. Newton's method

Gradient method:
$$\mathbf{x}_{k+1} = \mathbf{x}_k - \gamma \nabla f(\mathbf{x}_k)$$

Newton-type method:
$$\mathbf{x}_{k+1} = \mathbf{x}_k - \gamma \mathbf{B}^{-1} \nabla f(\mathbf{x}_k)$$

- + much faster convergence
- expensive to use B^{-1}

This work: $\mathbf{x}_{k+1} = \mathbf{x}_k - \gamma \mathbf{P} \nabla f(\mathbf{x}_k)$, where $\mathbf{P} \approx \mathbf{B}^{-1}$

Preconditioned Gradient Method

Composite optimization problem: $\left| \min_{\mathbf{x}} F(\mathbf{x}) = f(\mathbf{x}) + \psi(\mathbf{x}) \right|$

$$\min_{\mathbf{x}} F(\mathbf{x}) = f(\mathbf{x}) + \psi(\mathbf{x})$$

 \blacktriangleright ψ is a simple component (e.g. indicator of a convex set)

Define, for some M > 0 and preconditioner $\mathbf{P} = \mathbf{P}^{\top} \succ 0$:

$$\mathsf{GradStep}_{M,\boldsymbol{P}}(\boldsymbol{x},\boldsymbol{g}) \stackrel{\mathrm{def}}{=} \operatorname*{argmin}_{\boldsymbol{y}} \left\{ \langle \boldsymbol{g}, \boldsymbol{y} \rangle + \frac{M}{2} \| \boldsymbol{y} - \boldsymbol{x} \|_{\boldsymbol{P}^{-1}}^2 + \psi(\boldsymbol{y}) \right\}$$

Preconditioned Gradient Method. Iterate, k > 0:

$$\mathbf{x}_{k+1} = \mathsf{GradStep}_{M,\mathbf{P}}(\mathbf{x}_k, \nabla f(\mathbf{x}_k))$$

Theorem. Let $\alpha \mathbf{B}^{-1} \leq \mathbf{P} \leq \beta \mathbf{B}^{-1}$ and set $M := \beta L$. Then

$$F(x_k) - F^* \le \left(1 - \frac{1}{4} \frac{\alpha}{\beta} \frac{\mu}{L}\right)^k (F(x_0) - F^*)$$
 (strongly convex)

$$F(x_k) - F^* \le \frac{\beta}{\alpha} \frac{L\|x_0 - x^*\|_B^2}{k}$$
 (convex functions)

Preconditioned Fast Gradient Method

We can accelerate the gradient steps!

[Nesterov, 1983]

Preconditioned Fast Gradient Method. Set $v_0 = x_0$, $A_0 = 0$. Iterate, $k \ge 0$:

- 1. Find a_{k+1} from eq. $\frac{Ma_{k+1}^2}{A_{k+1}} = 1 + \alpha \mu A_{k+1}$, $A_{k+1} = A_k + a_{k+1}$
- 2. Choose $H_k = \frac{1+\alpha\mu A_{k+1}}{a_{k+1}}$, $\theta_k = \frac{a_{k+1}}{A_{k+1}}$, $\omega_k = \frac{\rho}{H_k}$, $\gamma_k = \frac{\omega_k(1-\theta_k)}{1-\omega_k\theta_k}$
- 3. Set $\bar{\boldsymbol{v}}_k = (1 \gamma_k)\boldsymbol{v}_k + \gamma_k \boldsymbol{x}_k$
- **4.** Set $\mathbf{y}_k = (1 \theta_k)\mathbf{x}_k + \theta_k \bar{\mathbf{v}}_k$
- **5.** Compute $\mathbf{v}_{k+1} = \mathsf{GradStep}_{M,\mathbf{P}}(\bar{\mathbf{v}}_k, \nabla f(\mathbf{y}_k))$
- **6.** $\mathbf{x}_{k+1} = (1 \theta_k)\mathbf{x}_k + \theta_k\mathbf{v}_{k+1}$

Theorem. Let $\alpha \mathbf{B}^{-1} \leq \mathbf{P} \leq \beta \mathbf{B}^{-1}$ and set $M := \beta L$. Then

$$F(x_k) - F^\star \le \left(1 - \sqrt{\frac{\alpha}{\beta} \frac{\mu}{L}}\right)^k \frac{\beta}{\alpha} \frac{L \|x_0 - x^\star\|_B^2}{2}$$
 (strongly convex)

$$F(x_k) - F^* \le \frac{\beta}{\alpha} \frac{2L\|x_0 - x^*\|_B^2}{k^2}$$
 (convex functions)

This work: new polynomial preconditioners

Standard gradient methods:

$$P := I$$

 \Rightarrow the condition number $\frac{\beta}{\alpha}$ is the largest: $\boxed{\frac{\beta}{\alpha} = \frac{\lambda_1}{\lambda_n}}$ where

$$\lambda_1 \geq \ldots \geq \lambda_n$$
 are eigenvalues of **B**

▶ NB: for ${m P}:={m B}^{-1}$ we have $rac{eta}{lpha}=1$ (but too expensive)

This work: new family of preconditioners that provably improves β/α for non-uniform spectrum.

▶ Example: set $P := \operatorname{tr}(B)I - B$

Then

$$\frac{\beta}{\alpha} \approx \frac{\lambda_2}{\lambda_n}$$
, when $\lambda_1 \gg \lambda_2$

Outline

I. Introduction: preconditioning of gradient methods

II. Symmetric polynomial preconditioning

III. Krylov subspace preconditioning

IV. Experiments and conclusions

Symmetric polynomial preconditioner

- Family of symmetric matrices $\{P_{\tau}\}_{0 \leq \tau \leq n-1}$
- ▶ Set **P**₀ := **I**

Define $oldsymbol{U}_{ au} := \operatorname{tr}(oldsymbol{B}^{ au}) oldsymbol{I} - oldsymbol{B}^{ au}$ and set recursively

$$oldsymbol{P}_{ au} := rac{1}{ au} \sum_{i=1}^{ au} (-1)^{i-1} oldsymbol{P}_{ au-i} oldsymbol{U}_i$$

We have

$$ightharpoonup P_1 = \operatorname{tr}(B)I - B$$

$$P_2 = \frac{1}{2} \operatorname{tr}(P_1 B) I - P_1 B = \frac{1}{2} [\operatorname{tr}(B)^2 - \operatorname{tr}(B^2)] I - \operatorname{tr}(B) B + B^2$$

$$ho$$
 $P_{\tau} = p_{\tau}(B)$ where $p_{\tau}(\cdot)$ is a polynomial of degree τ

▶
$$P_{n-1} \propto B^{-1}$$

Main lemma

For $\mathbf{a} \in \mathbb{R}^{n-1}$ denote by $\sigma_0(\mathbf{a}), \ldots, \sigma_{n-1}(\mathbf{a})$ the elementary symmetric polynomials in n-1 variables. Thus,

$$\sigma_{ au}(oldsymbol{a}) := \sum_{1 \leq i_1 < \ldots < i_{ au} \leq n-1} a_{i_1} \ldots a_{i_{ au}}$$

Fix the spectral decomposition, with $QQ^{\top} = I$:

$$\boldsymbol{B} = \boldsymbol{Q} \operatorname{Diag}(\lambda_1, \ldots, \lambda_n) \boldsymbol{Q}^{\top}$$

Lemma. It holds:

$$\mathbf{P}_{\tau} = \mathbf{Q} \operatorname{Diag} (\sigma_{\tau}(\lambda_{-1}), \dots, \sigma_{\tau}(\lambda_{-n})) \mathbf{Q}^{\top}$$

where $\lambda_{-i} \in \mathbb{R}^{n-1}$ contains all eigenvalues except λ_i

▶ In particular, $P_{n-1} = \det(B)B^{-1}$

Approximation quality

Theorem. For any τ , we have

$$\lambda_n \sigma_{\tau}(\lambda_{-n}) \mathbf{B}^{-1} \leq \mathbf{P}_{\tau} \leq \lambda_1 \sigma_{\tau}(\lambda_{-1}) \mathbf{B}^{-1}.$$

 \Rightarrow the condition number $\frac{\beta}{\alpha}$ is bounded as

$$\frac{\beta}{\alpha} = \frac{\lambda_1}{\lambda_n} \cdot \xi_{\tau}(\boldsymbol{\lambda}), \quad \text{where} \quad \xi_{\tau}(\boldsymbol{\lambda}) := \frac{\sigma_{\tau}(\boldsymbol{\lambda}_{-1})}{\sigma_{\tau}(\boldsymbol{\lambda}_{-n})} \leq 1$$

- $\blacktriangleright \ \xi_0(\lambda) = 1, \ \xi_{n-1}(\lambda) = \frac{\lambda_n}{\lambda_1}$
- \triangleright $\xi_{\tau}(\lambda)$ monotonically decreases with τ
- \blacktriangleright $\xi_{\tau}(\lambda) \rightarrow 0$ when $\frac{\lambda_1}{\lambda_{\tau+1}} \rightarrow \infty$

More precisely,

$$\xi_{\tau}(\lambda) \leq \frac{\lambda_n + \sum_{i=\tau+1}^{n-1} \lambda_i}{\lambda_1 + \sum_{i=\tau+1}^{n-1} \lambda_i}$$

Improvement of the spectrum

► Top: different distributions of eigenvalues of **B**

▶ Bottom: improvement of the condition number when using the preconditioner P_{τ} of higher order $0 \le \tau < n$

Stochastic representation

Let $S \subseteq \{1, ..., n\}$ be random subset of coordinates

Denote $I_S \in \mathbb{R}^{n \times (\tau+1)}$ — the matrix obtained from $I \in \mathbb{R}^{n \times n}$ by keeping only the columns from S

- $lackbox{\textbf{B}}_{S\times S}:=lackbox{\textbf{I}}_Sm{\textbf{B}}m{\textbf{I}}_S\in\mathbb{R}^{(\tau+1)\times(\tau+1)}$
- ► Then $I_S(B_{S\times S})^{-1}I_S\approx B^{-1}$

Theorem.

$$m{P}_{ au} \propto \mathbb{E}_{S \sim \mathsf{Vol}_{ au+1}(m{B})} igg[m{I}_S (m{B}_{S imes S})^{-1} m{I}_S igg]$$

where $Vol_{\tau+1}(\boldsymbol{B})$ is the volume sampling (choose S with probability $\propto \det(\boldsymbol{B}_{S\times S})$)

[Rodomanov-Kropotov, 2020]

► Coordinate method with volume sampling:

$$\mathbf{x}^+ = \mathbf{x} - \gamma \mathbf{I}_S(\mathbf{B}_{S \times S})^{-1} \mathbf{I}_S \nabla f(\mathbf{x})$$

Outline

I. Introduction: preconditioning of gradient methods

II. Symmetric polynomial preconditioning

III. Krylov subspace preconditioning

IV. Experiments and conclusions

Krylov subspaces

We know that $m{P}_{ au} = p_{ au}(m{B})$ for some polynomial $p_{ au}$

► Can we find a better polynomial?

Set

$$P_a = a_0 I + a_1 B + \ldots + a_{\tau} B^{\tau}, \quad a \in \mathbb{R}^{\tau+1}$$

▶ Preconditioned gradient step: $\mathbf{x}^+ = \mathbf{x} - \mathbf{P}_a \nabla f(\mathbf{x})$

By our assumption, we have

$$f(\mathbf{x}^+) \leq f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{x}^+ - \mathbf{x} \rangle + \frac{L}{2} ||\mathbf{x}^+ - \mathbf{x}||_{\mathbf{B}}^2$$
 (*)

Idea: minimize (*) with respect to $\mathbf{a} \Leftrightarrow \text{project } \frac{1}{L}\mathbf{B}^{-1}\nabla f(\mathbf{x})$ onto the *Krylov subspace*:

$$\mathbf{x}^+ - \mathbf{x} = \underset{\mathbf{h} \in \mathcal{K}_{-}}{\operatorname{argmin}} \|\mathbf{h} + \frac{1}{L} \mathbf{B}^{-1} \nabla f(\mathbf{x})\|_{\mathbf{B}}^2,$$

where
$$\mathcal{K}_{ au} = \operatorname{span} ig\{
abla f(oldsymbol{x}), oldsymbol{B}
abla f(oldsymbol{x}), \dots, oldsymbol{B}^{ au}
abla f(oldsymbol{x}) ig\}$$

Gradient method with Krylov preconditioning

Iterate, $k \ge 0$:

1. Form the Gram matrix $\mathbf{A}_k \in \mathbb{R}^{(\tau+1)\times(\tau+1)}$:

$$[\mathbf{A}_k]^{(i,j)} = L \cdot \langle \nabla f(\mathbf{x}_k), \mathbf{B}^{i+j+1} \nabla f(\mathbf{x}_k) \rangle$$

2. Form the vector $\boldsymbol{g}_k \in \mathbb{R}^{\tau+1}$:

$$[\mathbf{g}_k]^{(i)} = \langle \nabla f(\mathbf{x}), \mathbf{B}^i \nabla f(\mathbf{x}) \rangle$$

- **3.** Compute $\boldsymbol{a}_k = \boldsymbol{A}_k^{-1} \boldsymbol{g}_k$
- 4. Set $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k \boldsymbol{P}_{\boldsymbol{a}_k} \nabla f(\boldsymbol{x}_k)$

Theorem. Let $P \succ 0$ be any preconditioner that is given by a polynomial of degree τ : $P = p_{\tau}(B)$, and $\alpha B^{-1} \preceq P \preceq \beta B^{-1}$.

Then, the method achieves the corresponding rate of GM with $\frac{\beta}{\alpha}$

Bounds on the condition number

The method automatically chooses the optimal polynomial

Example 1. Set

$$q_{ au}(s) = \left(1 - rac{s}{\lambda_1}
ight) \left(1 - rac{s}{\lambda_2}
ight) \cdot \ldots \cdot \left(1 - rac{s}{\lambda_{ au}}
ight)$$

and $p_{ au}(s):=rac{1+q_{ au}(s)\cdot(lpha s-1)}{s}$ with $lpha:=rac{2}{\lambda_{ au+1}+\lambda_n}.$ Then,

$$\frac{\beta}{\alpha} \leq \frac{\lambda_{\tau+1}}{\lambda_n}$$

Example 2. Fix $0 < \epsilon < 1$, let $\tau := \left\lceil \sqrt{\frac{\lambda_1}{\lambda_n}} \ln \frac{8}{\epsilon} \right\rceil$ and set $p_{\tau}(s) := \frac{1 - Q_{\tau}(s)}{s}$, where $Q_{\tau}(\cdot)$ is a normalized Chebyshev polynomial of the first kind of degree τ . Then,

$$\frac{\beta}{\alpha} \leq 1 + \epsilon$$

Polynomial preconditioning: summary

Symmetric polynomial preconditioning

- ▶ Family of fixed preconditioners P_{τ} , $0 \le \tau \le n-1$
- ▶ Improve the condition number when $\lambda_{\tau} \gg \lambda_{\tau+1}$
- Can be used both in gradient method and fast gradient methods
- Stochastic interpretation through volume sampling

Krylov preconditioning

- ► Achieves the best possible polynomial preconditioning
- ► The preconditioner changes with iterations
- Works only with gradient method (unconstrained minimization)

Outline

I. Introduction: preconditioning of gradient methods

II. Symmetric polynomial preconditioning

III. Krylov subspace preconditioning

IV. Experiments and conclusions

Experiments: regression with Huber loss

• synthetic data: control of the leading eigenvalues λ_1 , λ_2

Experiments: logistic regression

► real data (MNIST)

Experiments: quasi-Newton methods

Experiments: soft maximum

$$\min_{\mathbf{x}} \left\{ \ f_{\mu}(\mathbf{x}) \ = \ \mu \ln \Bigl(\sum_{i=1}^{m} \exp \bigl(\frac{\langle \mathbf{a}_{i}, \mathbf{x} \rangle - b_{i}}{\mu} \bigr) \Bigr) \ \approx \ \max_{1 \leq i \leq m} \bigl[\langle \mathbf{a}_{i}, \mathbf{x} \rangle - b_{i} \bigr] \ \right\}$$

Gradient method vs. BFGS

Experiments: soft maximum

$$\min_{\boldsymbol{x}} \left\{ \ f_{\mu}(\boldsymbol{x}) \ = \ \mu \ln \left(\sum_{i=1}^{m} \exp \left(\frac{\langle \boldsymbol{a}_{i}, \boldsymbol{x} \rangle - b_{i}}{\mu} \right) \right) \ \approx \ \max_{1 \leq i \leq m} \left[\langle \boldsymbol{a}_{i}, \boldsymbol{x} \rangle - b_{i} \right] \ \right\}$$

► Fast gradient method vs. BFGS

Conclusions

In practice, the spectrum of the Hessian is non-uniform

- ▶ We want the methods to exploit this information
- ► This work: fixed curvature matrix $B \Rightarrow$ polynomial approximation of B^{-1}
- **Symmetric polynomial preconditioning** of degree τ , two operations:

$$m{B}^{ au}m{h}$$
 and $\mathrm{tr}\left(m{B}^{ au}
ight) = n \cdot \mathbb{E}_{m{u} \sim S^{n-1}}\left[\langle m{B}^{ au}m{u}, m{u}
angle
ight]$

- ▶ Instead of **B**, we can use $\nabla^2 f(\mathbf{x})$
- Non-convex optimization ⇒ spectral preconditioning

References:

- Doikov, N., Rodomanov A., ICML 2023 (International Conference on Machine Learning) Polynomial Preconditioning for Gradient Methods
- Doikov, N., Stich, S.U., Jaggi, M., ICML 2024 (International Conference on Machine Learning) Spectral Preconditioning for Gradient Methods on Graded Non-convex Functions

Open problems

- ▶ Stochastic optimization (the product of two random variables $P_{\xi}\nabla f_{\xi}(x)$)
- ► Relations to classic quasi-Newton methods
- Local superlinear convergence
- Complexity theory for non-uniform spectrum (lower bounds and optimal methods)

Thank you very much for your attention!