Edge: Operators

Dr. Tushar Sandhan

Who am I?

■ Who am I?

many

■ Who am I?

many

■ Who am I?

few, dim

■ Who am I?

many

few, dim

■ Who am I?

many

few, dim

non-uniform

■ Who am I?

few, dim

non-uniform

■ Who am I?

few, dim

non-uniform

patchy

■ Who am I?

few, dim

non-uniform

patchy

■ Who am I?

few, dim

non-uniform

patchy

mewww~

Who am I?

many

few, dim

non-uniform

patchy

mewww~

- It implies: edges convey a lot of info.
- Lossy but extremely high compression

Discontinuity in color

- Discontinuity in color
- Change in surface normal

- Discontinuity in color
- Change in surface normal
- Change in illumination

- Discontinuity in color
- Change in surface normal
- Change in illumination
- Depth discontinuity

- Discontinuity in color
- Change in surface normal
- Change in illumination
- Depth discontinuity
- Reflectance change

- Discontinuity in color
- Change in surface normal
- Change in illumination
- Depth discontinuity
- Reflectance change
- Inoculation is an edge itself!

- Discontinuity in color
- Change in surface normal
- Change in illumination
- Depth discontinuity
- Reflectance change
- Inoculation is an edge itself!

- Taylor's edge
 - \circ expand $f(x + \Delta x)$

- Taylor's edge
 - \circ expand $f(x + \Delta x)$

$$f(x + \Delta x) = f(x) + \Delta x \frac{\partial f(x)}{\partial x} + \frac{(\Delta x)^2}{2!} \frac{\partial^2 f(x)}{\partial x^2} + \frac{(\Delta x)^3}{3!} \frac{\partial^3 f(x)}{\partial x^3} + \cdots$$
$$= \sum_{n=0}^{\infty} \frac{(\Delta x)^n}{n!} \frac{\partial^n f(x)}{\partial x^n}$$

Taylor's edge

o expand
$$f(x + \Delta x)$$

$$f(x + \Delta x) = f(x) + \Delta x \frac{\partial f(x)}{\partial x} + \frac{(\Delta x)^2}{2!} \frac{\partial^2 f(x)}{\partial x^2} + \frac{(\Delta x)^3}{3!} \frac{\partial^3 f(x)}{\partial x^3} + \cdots$$
$$= \sum_{n=0}^{\infty} \frac{(\Delta x)^n}{n!} \frac{\partial^n f(x)}{\partial x^n}$$

$$f(x+1) = f(x) + \frac{\partial f(x)}{\partial x} + \frac{1}{2!} \frac{\partial^2 f(x)}{\partial x^2} + \frac{1}{3!} \frac{\partial^3 f(x)}{\partial x^3} + \cdots$$
$$= \sum_{n=0}^{\infty} \frac{1}{n!} \frac{\partial^n f(x)}{\partial x^n}$$

Taylor's edge

o expand
$$f(x + \Delta x)$$

$$f(x + \Delta x) = f(x) + \Delta x \frac{\partial f(x)}{\partial x} + \frac{(\Delta x)^2}{2!} \frac{\partial^2 f(x)}{\partial x^2} + \frac{(\Delta x)^3}{3!} \frac{\partial^3 f(x)}{\partial x^3} + \cdots$$
$$= \sum_{n=0}^{\infty} \frac{(\Delta x)^n}{n!} \frac{\partial^n f(x)}{\partial x^n}$$

$$f(x+1) = f(x) + \frac{\partial f(x)}{\partial x} + \frac{1}{2!} \frac{\partial^2 f(x)}{\partial x^2} + \frac{1}{3!} \frac{\partial^3 f(x)}{\partial x^3} + \cdots$$
$$= \sum_{n=0}^{\infty} \frac{1}{n!} \frac{\partial^n f(x)}{\partial x^n}$$

$$f(x-1) = f(x) - \frac{\partial f(x)}{\partial x} + \frac{1}{2!} \frac{\partial^2 f(x)}{\partial x^2} - \frac{1}{3!} \frac{\partial^3 f(x)}{\partial x^3} + \cdots$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \frac{\partial^n f(x)}{\partial x^n}$$

Forward

Forward

$$\frac{\partial f(x)}{\partial x} = f'(x) = f(x+1) - f(x)$$

$$\frac{\partial f(x)}{\partial x} = f'(x) = f(x+1) - f(x)$$

$$\frac{\partial f(x)}{\partial x} = f'(x) = f(x) - f(x-1)$$

$$\frac{\partial f(x)}{\partial x} = f'(x) = f(x+1) - f(x)$$

$$\frac{\partial f(x)}{\partial x} = f'(x) = f(x) - f(x-1)$$

$$\frac{\partial f(x)}{\partial x} = f'(x) = \frac{f(x+1) - f(x-1)}{2}$$

$$\frac{\partial f(x)}{\partial x} = f'(x) = f(x+1) - f(x)$$

$$\frac{\partial f(x)}{\partial x} = f'(x) = f(x) - f(x-1)$$

$$\frac{\partial f(x)}{\partial x} = f'(x) = \frac{f(x+1) - f(x-1)}{2}$$

$$\frac{\partial^2 f(x)}{\partial x^2} = f''(x) = f(x+1) - 2f(x) + f(x-1)$$

$$\frac{\partial f(x)}{\partial x} = f'(x) = f(x+1) - f(x)$$

o Image f(x, y)

$$\frac{\partial f(x)}{\partial x} = f'(x) = f(x) - f(x-1)$$

$$\frac{\partial f(x)}{\partial x} = f'(x) = \frac{f(x+1) - f(x-1)}{2}$$

$$\frac{\partial^2 f(x)}{\partial x^2} = f''(x) = f(x+1) - 2f(x) + f(x-1)$$

Forward

$$\frac{\partial f(x)}{\partial x} = f'(x) = f(x+1) - f(x)$$

o Image f(x, y)

Backward

$$\frac{\partial f(x)}{\partial x} = f'(x) = f(x) - f(x-1)$$

 $\frac{\partial^2 f(x,y)}{\partial x^2} = f(x+1,y) - 2f(x,y) + f(x-1,y)$

Central

$$\frac{\partial f(x)}{\partial x} = f'(x) = \frac{f(x+1) - f(x-1)}{2}$$

$$\frac{\partial^2 f(x,y)}{\partial y^2} = f(x,y+1) - 2f(x,y) + f(x,y-1)$$

o 2nd order central

$$\frac{\partial^2 f(x)}{\partial x^2} = f''(x) = f(x+1) - 2f(x) + f(x-1)$$

- Isolated point
 - 2nd derivatives
 - Laplacian

$$\nabla^2 f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

- Isolated point
 - 2nd derivatives
 - Laplacian

$$\nabla^2 f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$\frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

$$\frac{\partial^2 f}{\partial y^2} = f(x,y+1) + f(x,y-1) - 2f(x,y)$$

- Isolated point
 - 2nd derivatives
 - Laplacian

$$\nabla^2 f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$\frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

$$\frac{\partial^2 f}{\partial y^2} = f(x,y+1) + f(x,y-1) - 2f(x,y)$$

$$\nabla^2 f(x,y) = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

- Isolated point
 - o 2nd derivatives
 - Laplacian

$$\nabla^2 f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$\frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

$$\frac{\partial^2 f}{\partial y^2} = f(x,y+1) + f(x,y-1) - 2f(x,y)$$

$$\nabla^2 f(x,y) = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

0	1	0
1	-4	1
0	1	0

- Isolated point
 - 2nd derivatives
 - Laplacian

$$\nabla^2 f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$\frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

$$\frac{\partial^2 f}{\partial y^2} = f(x,y+1) + f(x,y-1) - 2f(x,y)$$

$$\nabla^2 f(x,y) = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

0	1	0	
1	-4	1	
0	1	0	

- Isolated point
 - o 2nd derivatives
 - Laplacian

$$\nabla^2 f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$\frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

$$\frac{\partial^2 f}{\partial y^2} = f(x,y+1) + f(x,y-1) - 2f(x,y)$$

$$\nabla^2 f(x,y) = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

0	1	0		1	
1	-4	1	─	1	
0	1	0		1	

- Turbine blade under X-ray
 - Laplace operator

Input

- Turbine blade under X-ray
 - Laplace operator

Input

Laplacian

- Turbine blade under X-ray
 - Laplace operator

Input

Laplacian

Thresholding

- PCB wire bonds
 - Laplace operator

Input

- PCB wire bonds
 - Laplace operator

Input

Laplacian

- PCB wire bonds
 - Laplace operator

Input Laplacian | Laplacian |

- PCB wire bonds
 - Laplace operator

Input Laplacian | Laplacian | max(0, Laplacian)

With orientation

Horizontal

-1	-1	-1
2	2	2
-1	-1	-1

With orientation

Horizontal

-1	-1	-1
2	2	2
-1	-1	-1

+45 degrees

2	-1	-1
-1	2	-1
-1	-1	2

With orientation

Horizontal

-1	-1	-1
2	2	2
-1	-1	-1

+45 degrees

2	-1	-1
-1	2	-1
-1	-1	2

Vertical

-1	2	-1
-1	2	-1
-1	2	-1

With orientation

Horizontal

-1	-1	-1
2	2	2
-1	-1	-1

+45 degrees

2	-1	-1
-1	2	-1
-1	-1	2

Vertical

-1	2	-1
-1	2	-1
-1	2	-1

-45 degrees

-1	-1	2
-1	2	-1
2	-1	-1

- With orientation
 - +45d line det kernel

+45 degrees

$\begin{array}{c|ccccc} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{array}$

Line

- With orientation
 - +45d line det kernel

- With orientation
 - +45d line det kernel

+45 degrees

2	-1	-1
-1	2	-1
-1	-1	2

- 1. Input
- 2. 45d det
- 3. Top zoom
- 4. Bottom zoom
- 5. Max(0, Lap)
- 6. Thresholding

- Types
 - o step
 - o ramp
 - o roof

- Types
 - o step
 - o ramp
 - o roof

- Types
 - o step
 - o ramp
 - o roof

$$\nabla f(x,y) \equiv \operatorname{grad}[f(x,y)] \equiv \begin{bmatrix} g_x(x,y) \\ g_y(x,y) \end{bmatrix} = \begin{bmatrix} \frac{\partial f(x,y)}{\partial x} \\ \frac{\partial f(x,y)}{\partial y} \end{bmatrix}$$

$$\nabla f(x,y) \equiv \operatorname{grad}[f(x,y)] \equiv \begin{bmatrix} g_x(x,y) \\ g_y(x,y) \end{bmatrix} = \begin{bmatrix} \frac{\partial f(x,y)}{\partial x} \\ \frac{\partial f(x,y)}{\partial y} \end{bmatrix}$$

$$M(x,y) = \|\nabla f(x,y)\| = \sqrt{g_x^2(x,y) + g_y^2(x,y)}$$

$$\alpha(x,y) = \tan^{-1} \left[\frac{g_y(x,y)}{g_x(x,y)} \right]$$

$$\nabla f(x,y) \equiv \operatorname{grad}[f(x,y)] \equiv \begin{bmatrix} g_x(x,y) \\ g_y(x,y) \end{bmatrix} = \begin{bmatrix} \frac{\partial f(x,y)}{\partial x} \\ \frac{\partial f(x,y)}{\partial y} \end{bmatrix}$$

$$M(x,y) = \|\nabla f(x,y)\| = \sqrt{g_x^2(x,y) + g_y^2(x,y)}$$

$$\alpha(x,y) = \tan^{-1} \left[\frac{g_y(x,y)}{g_x(x,y)} \right]$$

$$\nabla f(x,y) \equiv \operatorname{grad}[f(x,y)] \equiv \begin{bmatrix} g_x(x,y) \\ g_y(x,y) \end{bmatrix} = \begin{bmatrix} \frac{\partial f(x,y)}{\partial x} \\ \frac{\partial f(x,y)}{\partial y} \end{bmatrix}$$

$$M(x,y) = \|\nabla f(x,y)\| = \sqrt{g_x^2(x,y) + g_y^2(x,y)}$$

$$\alpha(x,y) = \tan^{-1} \left[\frac{g_y(x,y)}{g_x(x,y)} \right]$$

- Sobel operator
 - o derivatives via kernel
 - o separable
 - diagonal direction points are not greatly discriminatory

- Sobel operator
 - o derivatives via kernel
 - separable
 - diagonal direction points are not greatly discriminatory

$$\mathsf{M}_{x} = \begin{bmatrix} +1 & 0 & -1 \\ +2 & 0 & -2 \\ +1 & 0 & -1 \end{bmatrix} \qquad \mathsf{M}_{y} = \begin{bmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} \qquad \begin{array}{c} M = \sqrt{(M_{x}^{2} + M_{y}^{2})} \\ \theta = \tan^{-1}(M_{y}, M_{x}) \end{array}$$

- Sobel operator
 - o derivatives via kernel
 - separable
 - diagonal direction points are not greatly discriminatory

$$\mathsf{M}_{x} = \begin{bmatrix} +1 & 0 & -1 \\ +2 & 0 & -2 \\ +1 & 0 & -1 \end{bmatrix} \qquad \mathsf{M}_{y} = \begin{bmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} \qquad \begin{array}{c} M = \sqrt{(M_{x}^{2} + M_{y}^{2})} \\ \theta = \tan^{-1}(M_{y}, M_{x}) \end{array}$$

Input

- Sobel operator
 - o derivatives via kernel
 - separable
 - diagonal direction points are not greatly discriminatory

$$\mathsf{M}_x = egin{bmatrix} +1 & 0 & -1 \ +2 & 0 & -2 \ +1 & 0 & -1 \end{bmatrix}$$

$$\mathsf{M}_{x} = \begin{bmatrix} +1 & 0 & -1 \\ +2 & 0 & -2 \\ +1 & 0 & -1 \end{bmatrix} \qquad \mathsf{M}_{y} = \begin{bmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} \qquad \begin{array}{c} M = \sqrt{(M_{x}^{2} + M_{y}^{2})} \\ \theta = \tan^{-1}(M_{y}, M_{x}) \end{array}$$

$$M = \sqrt{(M_x^2 + M_y^2)}$$

$$\theta = \tan^{-1}(M_{\mathcal{Y}}, M_{\mathcal{X}})$$

Input

M

- Sobel operator
 - o derivatives via kernel
 - separable
 - diagonal direction points are not greatly discriminatory

$$\mathsf{M}_x = egin{bmatrix} +1 & 0 & -1 \ +2 & 0 & -2 \ +1 & 0 & -1 \end{bmatrix}$$

$$\mathsf{M}_x = egin{bmatrix} +1 & 0 & -1 \ +2 & 0 & -2 \ +1 & 0 & -1 \end{bmatrix} \qquad \mathsf{M}_y = egin{bmatrix} +1 & +2 & +1 \ 0 & 0 & 0 \ -1 & -2 & -1 \end{bmatrix} \qquad egin{matrix} M = \sqrt{(M_\chi^2 + M_y^2)} \ 0 = \tan^{-1}(M_\chi - M_\chi) \ 0 = \tan^{-1}(M_\chi - M_\chi)$$

$$M = \sqrt{(M_x^2 + M_y^2)}$$

$$\theta = \tan^{-1}(M_y, M_x)$$

Input

High robustness to noise

M

Threshold on M

- Roberts operator
 - o discriminatory diagonals
 - fast

$$M_x = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 $M_y = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$

input

no TH

with TH

- Prewitt operator
 - o high sensitivity than Sobel

$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \quad M_y = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

- Edge Sensitivity
 - \circ Edge point is the peak in M in θ direction

- Edge Sensitivity
 - \circ Edge point is the peak in M in θ direction
 - Edges are highly sensitive to the noise

- Edge Sensitivity
 - \circ Edge point is the peak in M in θ direction
 - Edges are highly sensitive to the noise
 - Derivatives amplify noise

- Edge Sensitivity
 - \circ Edge point is the peak in M in θ direction
 - Edges are highly sensitive to the noise
 - Derivatives amplify noise
 - o How to reduce this sensitivity?

- Stability
 - o refers to less sensitivity to noise
- Solution: apply smoothing filter G before finding edges

- Stability
 - o refers to less sensitivity to noise
- Solution: apply smoothing filter G before finding edges

$$\left\{G_{\sigma}*I\right\}$$

- Stability
 - refers to less sensitivity to noise
- Solution: apply smoothing filter G before finding edges

$$\Delta * \left\{ G_{\sigma} * I \right\}$$

... Δ is derivative (1st or 2nd) operator

- Stability
 - refers to less sensitivity to noise
- Solution: apply smoothing filter G before finding edges

$$E = \Delta * \left\{ G_{\sigma} * I \right\}$$
 ... Δ is derivative (1st or 2nd) operator

- Stability
 - refers to less sensitivity to noise
- Solution: apply smoothing filter G before finding edges

$$E = \Delta * \left\{ G_{\sigma} * I \right\}$$

... Δ is derivative (1 st or 2 nd) operator

$$E = \left\{ \Delta * G_{\sigma} \right\} * I$$

- Stability
 - refers to less sensitivity to noise
- Solution: apply smoothing filter G before finding edges

$$E = \Delta * \left\{ G_{\sigma} * I \right\}$$

... Δ is derivative (1st or 2nd) operator

$$E = \left\{ \Delta * G_{\sigma} \right\} * I$$

... Conv. is associative

Edge at zero crossings

$$G(x, y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

- LoG
 - Laplacian of Gaussian

$$G(x,y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

- LoG
 - Laplacian of Gaussian

$$G(x,y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

- LoG
 - Laplacian of Gaussian

$$\nabla^2 G(x, y) = \frac{\partial^2 G(x, y)}{\partial x^2} + \frac{\partial^2 G(x, y)}{\partial y^2}$$

$$G(x,y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

- LoG
 - Laplacian of Gaussian

$$\nabla^2 G(x, y) = \frac{\partial^2 G(x, y)}{\partial x^2} + \frac{\partial^2 G(x, y)}{\partial y^2}$$

 $= \frac{\partial}{\partial x} \left(\frac{-x}{\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}} \right) + \frac{\partial}{\partial v} \left(\frac{-y}{\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}} \right)$

$$G(x,y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

- LoG
 - Laplacian of Gaussian

$$\nabla^2 G(x, y) = \frac{\partial^2 G(x, y)}{\partial x^2} + \frac{\partial^2 G(x, y)}{\partial y^2}$$

$$= \frac{\partial}{\partial x} \left(\frac{-x}{\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}} \right) + \frac{\partial}{\partial y} \left(\frac{-y}{\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}} \right)$$

$$G(x,y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

- LoG
 - Laplacian of Gaussian

$$\nabla^2 G(x, y) = \frac{\partial^2 G(x, y)}{\partial x^2} + \frac{\partial^2 G(x, y)}{\partial y^2}$$

$$= \left(\frac{x^2}{\sigma^4} - \frac{1}{\sigma^2}\right) e^{-\frac{x^2 + y^2}{2\sigma^2}} + \left(\frac{y^2}{\sigma^4} - \frac{1}{\sigma^2}\right) e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$G(x,y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

LoG

Laplacian of Gaussian

$$\nabla^2 G(x, y) = \frac{\partial^2 G(x, y)}{\partial x^2} + \frac{\partial^2 G(x, y)}{\partial y^2}$$

$$= \left(\frac{x^2}{\sigma^4} - \frac{1}{\sigma^2}\right) e^{-\frac{x^2 + y^2}{2\sigma^2}} + \left(\frac{y^2}{\sigma^4} - \frac{1}{\sigma^2}\right) e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$= \left(\frac{x^2 + y^2 - 2\sigma^2}{\sigma^4}\right) e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$G(x,y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

- LoG
 - Laplacian of Gaussian

$$\nabla^2 G(x, y) = \frac{\partial^2 G(x, y)}{\partial x^2} + \frac{\partial^2 G(x, y)}{\partial y^2}$$

$$= \frac{\partial}{\partial x} \left(\frac{-x}{\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}} \right) + \frac{\partial}{\partial y} \left(\frac{-y}{\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}} \right)$$

$$= \left(\frac{x^2}{\sigma^4} - \frac{1}{\sigma^2}\right) e^{-\frac{x^2 + y^2}{2\sigma^2}} + \left(\frac{y^2}{\sigma^4} - \frac{1}{\sigma^2}\right) e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$= \left(\frac{x^2 + y^2 - 2\sigma^2}{\sigma^4}\right) e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

LoG

- Laplacian of Gaussian
- for convenience negative of LoG are plotted

0	0	-1	0	0
0	-1	-2	-1	0
-1	-2	16	-2	-1
0	-1	-2	-1	0
0	0	-1	0	0

LoG

- Laplacian of Gaussian
- for convenience negative of LoG are plotted

$$g(x,y) = \left[\nabla^2 G(x,y)\right] \star f(x,y)$$

0	0	-1	0	0
0	-1	-2	-1	0
-1	-2	16	-2	-1
0	-1	-2	-1	0
0	0	-1	0	0

LoG

- Laplacian of Gaussian
- for convenience negative of LoG are plotted

$$g(x,y) = \left[\nabla^2 G(x,y)\right] \star f(x,y)$$

$$g(x,y) = \nabla^2 [G(x,y) \star f(x,y)]$$

0	0	-1	0	0
0	-1	-2	-1	0
-1	-2	16	-2	-1
0	-1	-2	-1	0
0	0	-1	0	0

LoG

input

LoG

zero crossings

LoG are approximately DoGs

LoG are approximately DoGs

to speed up computations

- LoG are approximately DoGs
 - to speed up computations

- LoG are approximately DoGs
 - to speed up computations

- LoG are approximately DoGs
 - o to speed up computations

- What is the best DOG?
 - the one who obeys the LoG closely

- LoG are approximately DoGs
 - o to speed up computations

- What is the best DOG?
 - the one who obeys the LoG closely

$$\sigma_1 = \frac{\sigma}{\sqrt{2}}$$
 $\sigma_2 = \sqrt{2} \sigma$

Conclusion

- Operators

Conclusion

Operators

- ☐ There is no definition about what is a perfect edge
- depending upon applications, edge definition changes
 - Sobel
 - Roberts
 - Prewitt
 - Laplacian
 - LoG
 - DoG

Conclusion

Operators

- ☐ There is no definition about what is a perfect edge
- depending upon applications, edge definition changes
 - Sobel
 - Roberts
 - Prewitt
 - Laplacian
 - LoG
 - DoG

Who was I?

