DS 1 Année 2020-2021

Devoir du 19/09/2020

Exercice 1:

1. On conjecture que $\forall n \in \mathbb{N}, u_n = \frac{1}{\sqrt{n+1}}$.

Pour tout $n \in \mathbb{N}$, on pose $P(n) = "u_n = \frac{1}{\sqrt{n+1}}$ ".

Initialisation : comme $u_0 = 1 = \frac{1}{\sqrt{0+1}}$, P(0) est vraie.

Hérédité : Soit $n \in \mathbb{N}$ tel que P(n) soit vraie.

Par définition, on a $u_{n+1} = \frac{u_n}{\sqrt{u_n^2 + 1}}$ donc, grâce à l'hypothèse de récurrence,

$$u_{n+1} = \frac{\frac{1}{\sqrt{n+1}}}{\sqrt{\frac{1}{n+1} + 1}} = \frac{\frac{1}{\sqrt{n+1}}}{\sqrt{\frac{n+2}{n+1}}} = \frac{1}{\sqrt{n+2}}$$

donc P(n+1) est vérifiée.

Ainsi,
$$\forall n \in \mathbb{N}, u_n = \frac{1}{\sqrt{n+1}}$$
.

2. On conjecture que $\forall n \in \mathbb{N}, v_n = n!$.

Pour tout $n \in \mathbb{N}$, on pose $P(n) = "v_n = n!"$.

Initialisation: Comme $v_0 = 1 = 0!$ et $v_1 = 1 = 1!$, P(0) et P(1) sont vraies.

Hérédité : Soit $n \in \mathbb{N}$ tel que P(n) et P(n+1) soient vraies.

Par définition, on a $v_{n+2}=(n+1)\left(V_n+V_{n+1}\right)$ donc, grâce à l'hypothèse de récurrence,

$$v_{n+2} = (n+1)(n! + (n+1)!)(n+1)n!(1+n+1) = (n+2)!$$

donc P(n+2) est vérifiée.

Ainsi, par récurrence double, $\forall n \in \mathbb{N}, v_n = n!$.

3. Pour tout $n \in \mathbb{N}$, on pose $P(n) = "w_n \ge 2^{n-1}$ ".

Initialisation : Comme $w_0 = 1 \ge 2^{-1}$, P(0) est vraie.

Hérédité : Soit $n \in \mathbb{N}$ tel que P(0), P(1), ..., P(n) soient vraies.

Par définition, on a $w_{n+1} = \sum_{k=0}^{n} w_k w_{n-k}$ donc, grâce à l'hypothèse de récurrence,

$$v_{n+2} \ge \sum_{k=0}^{n} 2^{k-1} 2^{n-k-1} = \sum_{k=0}^{n} 2^{n-2} = (n+1)2^{n-2}.$$

Or, $(n+1)2^{n-2} \ge 2^n \Leftrightarrow (n+1) \ge 4 \Leftrightarrow n \ge 3$.

Ainsi, on a prouvé que $\forall n \geq 3$, $(P(0) \land P(1) \land ... \land P(n) \Rightarrow P(n+1))$.

Il suffit de vérifier que P(1), P(2) et P(3) sont vraies pour pouvoir conclure.

Comme $w_1=1\geq 2^0,\,w_2=2\geq 2^1$ et $w_3=5\geq 2^2,\,$ on a, par récurrence forte :

$$\forall n \in \mathbb{N}, w_n \geq 2^{n-1}.$$

Exercice 2:

1. Supposons $P_0 \wedge (\forall n \in \mathbb{N}, P_n \Rightarrow (P_{2n} \wedge P_{2n+1}))$ et montrons par récurrence forte que l'on a P(n) pour tout entier n.

Initialisation : Par hypothèse P(0) est vraie.

Hérédité : Soit $n \in \mathbb{N}$ tel que P(0), P(1), ..., P(n) soient vraies. Distinguons deux cas.

- Si n+1 est impair, alors il est égal à 2p+1 avec $p=\frac{n}{2}$. Comme $\frac{n}{2} \leq n$, P(n/2) est vraie donc on a P(n+1).
- Si n+1 est pair, alors il est égal à 2p avec $p=\frac{n+1}{2}$. Or $\frac{n+1}{2} \leq n \Leftrightarrow n \geq 1$.

Donc si n > 0, alors $P\left(\frac{n+1}{2}\right)$ est vraie donc P(n+1) aussi.

Ainsi, on a $\forall n \in \mathbb{N}^*$, $(P(0) \land P(1) \land ... \land P(n) \Rightarrow P(n+1))$.

Comme P(0) est vraie et implique P(1), on en déduit que, pour tout entier n, P(n) est vraie.

- 2. Supposons $P_0 \wedge P_1 \wedge (\forall n \in \mathbb{N}^* P_n \Rightarrow (P_{2n} \wedge P_{2n+1}))$. L'implication $P_0 \Rightarrow (P_0 \wedge P_1)$ étant alors vraie, on a $\forall n \in \mathbb{N} P_n \Rightarrow (P_{2n} \wedge P_{2n+1})$. D'après la question précédent, on a donc P(n) pour tout entier n.
- 3. L'implication

$$(P_0 \land P_1 \land P_2 \land (\forall n \geq 2, P_n \Rightarrow (P_{2n} \land P_{2n+1}))) \Rightarrow \forall n \in \mathbb{N}, P(n)$$

n'est pas forcément vraie.

Par exemple, si l'on pose, pour tout entier n, $P(n) = "n \neq 3"$, alors P_0 , P_1 et P_2 sont vraies et $\forall n \geq 2$, $P_n \Rightarrow (P_{2n} \land P_{2n+1})$ mais on n'a pas $\forall n \in \mathbb{N}$, P(n).

4. Supposons $P_1 \wedge (\forall n \in \mathbb{N}^*, P_n \Rightarrow P_{n-1}) \wedge (\forall n \in \mathbb{N}, P_n \Rightarrow P_{2n})$ et montrons par récurrence forte que l'on a P(n) pour tout entier n.

Initialisation : Par hypothèse P(1) est vraie puis P(0) l'est aussi. Hérédité : Soit $n \in \mathbb{N}$ tel que P(0), P(1), ..., P(n) soient vraies. Distinguons deux cas.

- Si n+1 est pair, alors il est égal à 2p avec $p=\frac{n+1}{2}$. Or $\frac{n+1}{2} \le n \Leftrightarrow n \ge 1$. Donc si n>0, alors $P\left(\frac{n+1}{2}\right)$ est vraie donc P(n+1) aussi.
- Si n+1 est impair, alors il est égal à 2p+1 avec $p=\frac{n}{2}$. Si $p+1 \le n$, alors on a P(2p+2) et, comme $2p+2 \in \mathbb{N}^*$, P(2p+1) est vraie. Or, $p+1 \le n \Leftrightarrow \frac{n}{2}+1 \le n \Leftrightarrow n \ge 2$.

Ainsi, on a $\forall n \geq 2$, $(P(0) \land P(1) \land ... \land P(n) \Rightarrow P(n+1))$. Comme P(1) est vraie et implique P(0) et P(2), on en déduit que, pour tout entier n, P(n) est vrai.

Exercice 3:

- 1. L'assertion est vraie. En effet, soit $x \in]0,1]$. Posons y = x/2. On a $0 < x \le 1$ donc $y \in]0,1]$. De plus, comme x > 0, y < x. Ainsi, $[\forall x \in]0,1]$, $\exists y \in]0,1]$: y < x. La négation de $\forall x \in]0,1]$, $\exists y \in]0,1]$: y < x est $[\exists x \in]0,1]$, $\forall y \in]0,1]$: $y \ge x$
- 2. L'assertion est fausse. En effet, si l'on prend x=1, alors $\forall y \in]0,1], \ y \leq x$. La négation de $\forall x \in]0,1], \ \exists y \in]0,1] : \ y>x$ est $\boxed{\exists x \in]0,1], \ \forall y \in]0,1] : \ y \leq x}$
- 3. L'assertion est fausse. En effet, si l'on prend p=0 et q=1, alors $(p,q) \in \mathbb{N}^2$ et p < q mais il n'existe aucun entier appartenant à]0,1[. La négation de $\forall (p,q) \in \mathbb{N}^2$, $p < q \Rightarrow \exists r \in \mathbb{N} : p < q < r$ est

$$\exists (p,q) \in \mathbb{N}^2 : (p < q \text{ et } \forall r \in \mathbb{N} : r \le p \text{ ou } r \ge q).$$

4. L'assertion est vraie. En effet, soit $(x,y) \in \mathbb{R}^2$ tel que x < y. Posons $z = \frac{x+y}{2}$. Comme x < y, 2x < x + y < 2y donc x < z < y. La négation de $\forall (x,y) \in \mathbb{R}^2$, $x < y \Rightarrow \exists z \in \mathbb{R} : x < z < y$ est : $\exists (x,y) \in \mathbb{R}^2 : x < y \text{ et } \forall z \in \mathbb{R}, z < x \lor y < z$.

On a

$$S_1 = \sum_{i=1}^n \left(\sum_{j=1}^i i + \sum_{j=i+1}^n j \right) = \sum_{i=1}^n \left(i^2 + \frac{(n-i)(n+i+1)}{2} \right) = \frac{1}{2} \sum_{i=1}^n \left(i^2 - i + n(n+1) \right)$$

donc
$$S_1 = \frac{n(n+1)(4n-1)}{12}$$
.

On a
$$S_2 = \sum_{j=1}^n \sum_{i=1}^j \frac{i^2}{j} = \sum_{j=1}^n \frac{(j+1)(2j+1)}{6} = \frac{1}{6} \sum_{j=1}^n (2j^2 + 3j + 1)$$
 donc

$$S_2 = \frac{1}{6} \left(\frac{n(n+1)(2n+1)}{3} + \frac{3n(n+1)}{2} + n \right) = \boxed{\frac{n(4n^2 + 15n + 17)}{36}}.$$

On a
$$S_3 = \sum_{i=0}^n \sum_{j=0}^i \binom{n}{i} \binom{i}{j} = \sum_{i=0}^n \left(\binom{n}{i} \sum_{j=0}^i \binom{i}{j} \right) = \sum_{i=0}^n \left(\binom{n}{i} 2^i \right) = \boxed{3^n}.$$

On a

$$S_4 = \sum_{i=0}^n \sum_{j=0}^i \sum_{k=0}^j \binom{n}{i} \binom{i}{j} \binom{j}{k} = \sum_{i=0}^n \sum_{j=0}^i \binom{n}{i} \binom{i}{j} \sum_{k=0}^j \binom{j}{k} = \sum_{i=0}^n \sum_{j=0}^i \binom{n}{i} \binom{i}{j} 2^j$$

donc
$$S_4 = \sum_{i=0}^n \left(\binom{n}{i} \sum_{j=0}^i \binom{i}{j} 2^j \right) = \sum_{i=0}^n \binom{n}{i} 3^i = \boxed{4^n}.$$

On a
$$P = \prod_{i=0}^{n} \sum_{j=0}^{j} 2^{i!j} = \prod_{i=0}^{n} \frac{2^{i!(i+1)} - 1}{2^{i!} - 1} = \prod_{i=0}^{n} \frac{2^{(i+1)!} - 1}{2^{i!} - 1} = \boxed{2^{(n+1)!} - 1}$$

Exercice 5: Soit $n \in \mathbb{N}^*$.

1. D'après le binôme de Newton, si n > 2, on a :

$$\left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \left(\frac{1}{n}\right)^k = 1 + \binom{n}{1} \times \frac{1}{n} + \sum_{k=2}^n \binom{n}{k} \left(\frac{1}{n}\right)^k = 2 + \sum_{k=2}^n \binom{n}{k} \left(\frac{1}{n}\right)^k.$$

Comme
$$\sum_{k=2}^{n} \binom{n}{k} \left(\frac{1}{n}\right)^k \ge 0$$
, on en déduit que $\left(1 + \frac{1}{n}\right)^n \ge 2$.

Si
$$n=1$$
, alors $\left(1+\frac{1}{n}\right)^n=2^1=2\geqslant 2$ donc le résultat est vérifié.

Dans tous les cas, on obtient $\left(1+\frac{1}{n}\right)^n \geqslant 2$.

- 2. Si k = 0, alors, $\frac{1}{n^k} \binom{n}{k} = 1$ et $\frac{1}{0!} = 1$, on a donc bien le résultat souhaité.
 - Supposons donc $k \geqslant 1$. Alors, puisque $\frac{1}{n^k} \binom{n}{k} = \frac{1}{n^k} \times \frac{n(n-1)\cdots(n-k+1)}{k!}$, et que chacun des k termes $n,\ n-1,\cdots,\ n-k+1$ est inférieur ou égal à n, on a : $\frac{n(n-1)\cdots(n-k+1)}{n^k} \leqslant \frac{n^k}{n^k} \leqslant 1$ et donc le résultat souhaité en découle.

Ainsi, dans tous les cas, on obtient $\left\lceil \frac{1}{n^k} \binom{n}{k} \right\rceil \leqslant \frac{1}{k!}$.

3. Soit $k \in \mathbb{N}$, tel que $2 \leqslant k \leqslant n$.

Puisque k! est le produit des (k-1) facteurs $k(k-1) \times \cdots \times 2$, et que chacun de ces (k-1) facteurs est supérieur ou égal à 2, on a $k! \ge 2^{k-1}$, et donc,

$$\boxed{\frac{1}{n^k} \binom{n}{k} \leqslant \frac{1}{k!} \leqslant \frac{1}{2^{k-1}}.}$$

- 4. Si n = 1, le résultat est immédiat.
 - Si $n \ge 2$, alors, on a $\left(1 + \frac{1}{n}\right)^n = 2 + \sum_{k=2}^n \binom{n}{k} \left(\frac{1}{n}\right)^k$.

De plus, pour tout entier $k \ge 2$, on a $\frac{1}{n^k} \binom{n}{k} \le \frac{1}{2^{k-1}}$, d'où :

$$\left(1 + \frac{1}{n}\right)^n \leqslant 2 + \sum_{k=2}^n \frac{1}{2^{k-1}}.$$

Or, comme $\sum_{k=2}^{n} \frac{1}{2^{k-1}} = \frac{1}{2} \times \frac{1 - \frac{1}{2^{n-1}}}{1 - \frac{1}{2}}$, on a : $\left(1 + \frac{1}{n}\right)^n \leqslant 2 + 1 - \frac{1}{2^{n-1}} < 3$.

Dans tous les cas, on a $\left| \left(1 + \frac{1}{n} \right)^n \right| < 3$.

Exercice 6:

1. (a) Soit $n \in \mathbb{N}$. D'après la formule du binôme de Newton, on a,

$$\sum_{k=0}^{n+1} (-1)^k \binom{n+1}{k} = \sum_{k=0}^{n+1} \binom{n+1}{k} (-1)^k \times 1^{n+1-k} = (-1+1)^{n+1} = \boxed{0.}$$

(b) Soit $n \in \mathbb{N}^*$ et $k \in \mathbb{N}^*$, on a

$$\binom{n}{k-1} \frac{(-1)^{k-1}}{k} = \frac{n!}{(k-1)!(n-k+1)!} \frac{(-1)^{k-1}}{k}$$
$$= \frac{n! \times (n+1)}{k \times (k-1)!(n+1-k)!} \frac{(-1)^{k-1}}{n+1}$$
$$= \binom{n+1}{k} \frac{(-1)^{k-1}}{n+1}$$

(c) Considérons, pour tout $n \in \mathbb{N}^*$, la propriété

$$P(n)$$
: " $\sum_{k=1}^{n} {n \choose k} \frac{(-1)^{k-1}}{k} = \sum_{k=1}^{n} \frac{1}{k}$."

- Initialisation : On a $\sum_{k=1}^{1} {1 \choose k} \frac{(-1)^{k-1}}{k} = \frac{(-1)^0}{1} = 1$ et $\sum_{k=1}^{1} \frac{1}{k} = \frac{1}{1} = 1$ donc P(1) est vraie.
- Hérédité : Soit $n \in \mathbb{N}^*$ tel que P(n) soit vraie.

Alors, puisque, pour tout entier $k, 1 \le k \le n$, $\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$, on a:

$$S = \sum_{k=1}^{n+1} \binom{n+1}{k} \frac{(-1)^{k-1}}{k} = \sum_{k=1}^{n} \left(\binom{n}{k} + \binom{n}{k-1} \right) \frac{(-1)^{k-1}}{k} + \frac{(-1)^n}{n+1}$$

donc
$$S = \sum_{k=1}^{n} {n \choose k} \frac{(-1)^{k-1}}{k} + \sum_{k=1}^{n} {n \choose k-1} \frac{(-1)^{k-1}}{k} + \frac{(-1)^n}{n+1}$$
.

En utilisant ce qui précède, on a

$$\sum_{k=1}^{n} \binom{n}{k-1} \frac{(-1)^{k-1}}{k} = \frac{-1}{n+1} \sum_{k=1}^{n} (-1)^k \binom{n+1}{k}.$$

Or, comme $\sum_{k=0}^{n+1} (-1)^k \binom{n+1}{k} = 0$, on en déduit que

$$\frac{-1}{n+1} \sum_{k=1}^{n} (-1)^k \binom{n+1}{k} = \frac{-1}{n+1} \left(-1 - (-1)^{n+1} \right)$$

et ainsi, on obtient, en utilisant l'hypothèse de récurrence,

$$\sum_{k=1}^{n+1} \binom{n+1}{k} \frac{(-1)^{k-1}}{k} = \sum_{k=1}^{n} \frac{1}{k} + \frac{1}{n+1} + \frac{(-1)^{n+1}}{n+1} + \frac{(-1)^{n}}{n+1} = \sum_{k=1}^{n+1} \frac{1}{k}$$

et donc P(n+1) est vraie. Ainsi,

$$\forall n \in \mathbb{N}^*, \ \sum_{k=1}^n \binom{n}{k} \frac{(-1)^{k-1}}{k} = \sum_{k=1}^n \frac{1}{k}.$$

2. Considérons, pour tout $n \in \mathbb{N}^*$, la propriété

$$P(n)$$
: " $\sum_{k=0}^{2n-1} \frac{(-1)^k}{k+1} = \sum_{k=n+1}^{2n} \frac{1}{k}$."

- Initialisation : on a
$$\sum_{k=0}^{1} \frac{(-1)^k}{k+1} = \frac{1}{1+0} + \frac{-1}{1+1} = \frac{1}{2}$$
.

Or,
$$\sum_{k=0}^{2} \frac{1}{k} = \frac{1}{2}$$
 donc $P(1)$ soit vraie.

– Hérédité : Soit $n \in \mathbb{N}^*$ tel que P(n) est vraie. On a

$$\sum_{k=0}^{2(n+1)-1} \frac{(-1)^k}{k+1} = \sum_{k=0}^{2n+1} \frac{(-1)^k}{k+1} = \sum_{k=0}^{2n-1} \frac{(-1)^k}{k+1} + \frac{1}{2n+1} - \frac{1}{2n+2}$$

et, grâce à l'hypothèse de récurrence, on a,

$$\sum_{k=0}^{2(n+1)-1} \frac{(-1)^k}{k+1} = \sum_{k=n+1}^{2n} \frac{1}{k} + \frac{1}{2n+1} - \frac{1}{2n+2}$$

$$= \sum_{k=n+1}^{2n} \frac{1}{k} + \frac{1}{2n+1} + \frac{1}{2n+2} - \frac{1}{n+1}$$

$$= \sum_{k=n+2}^{2n+2} \frac{1}{k}$$

donc, P(n+1) est vraie.

Ainsi,
$$\forall n \in \mathbb{N}^*, \ \sum_{k=0}^{2n-1} \frac{(-1)^k}{k+1} = \sum_{k=n+1}^{2n} \frac{1}{k}.$$

3. On note, pour tout $k \in \mathbb{N}^*$, $H_k = \sum_{p=1}^k \frac{1}{p}$.

(a) Soit $n \in \mathbb{N}^*$, on a:

$$\sum_{k=1}^{n} H_k = \sum_{k=1}^{n} \sum_{p=1}^{k} \frac{1}{p} = \sum_{p=1}^{n} \sum_{k=p}^{n} \frac{1}{p} = \sum_{p=1}^{n} \frac{1}{p} (n-p+1) = (n+1) \sum_{p=1}^{n} \frac{1}{p} - \sum_{p=1}^{n} 1$$
$$= (n+1)H_n - n$$

(b) Soit $n \in \mathbb{N}^*$, on a

$$\sum_{k=1}^{n} k H_k = \sum_{k=1}^{n} \left(k \sum_{p=1}^{k} \frac{1}{p} \right) = \sum_{p=1}^{n} \sum_{k=p}^{n} \frac{k}{p} = \sum_{p=1}^{n} \left(\frac{1}{p} \sum_{k=p}^{n} k \right)$$
$$= \frac{1}{2} \sum_{p=1}^{n} \frac{1}{p} (n-p+1)(n+p) = \frac{n(n+1)}{2} H_n + \frac{1}{2} \sum_{p=1}^{n} (1-p)$$
$$= \frac{n(n+1)}{2} H_n + \frac{n(1-n)}{4}.$$

Exercice 7:

Procédons par analyse-synthèse.

Analyse : Supposons qu'il existe $(h, g) \in L \times N$ tel que f = h + g. Il existe alors $a \in \mathbb{R}$ tel que $\forall x \in [0, 1], h(x) = ax$.

De plus, on a
$$\int_0^1 f(x) dx = \int_0^1 h(x) dx + \int_0^1 g(x) dx = \int_0^1 ax dx = \frac{a}{2}$$
.
Ainsi, $a = 2 \int_0^1 f(x) dx$ et g est définie par $\forall x \in [0, 1], g(x) = f(x) - ax$.

Synthèse: posons $a = 2 \int_0^1 f(x) dx$ et considérons les fonctions h et g définies par

$$\forall x \in [0,1], \quad h(x) = ax \quad \text{et} \quad g(x) = f(x) - ax$$

On a clairement f = h + g et $h \in L$. Il reste à prouver que $g \in N$.

On a
$$\int_0^1 g(x) dx = \int_0^1 f(x) dx - \int_0^1 ax dx = \int_0^1 f(x) dx - \frac{a}{2} = 0$$
 donc $g \in N$.

On a donc prouvé que $\exists ! (h,g) \in L \times N$, f = h + g.