1.

TP- TD : Utilisation d'un code de calculs par éléments finis *EF_Hermitte*

Pour toutes les comparaisons numériques, on utilisera les grandeurs physiques suivantes :

```
— matériau constitutif aluminium : E=70~GPa, \rho=2,6.10^3~kg.m^{-3}
```

- section rectangulaire : $b_s = 0,15 m, h_s = 0,3 m$
- longueur de la poutre seule : $l=2\ m$
- chargement réparti : $p_y = -200 \ n.m^{-1}$ et $p_x = 100 \ N.m^{-1}$
- déplacement imposé : $u_d = 10 \ cm$
- pour le portique Figure 1.1 -
 - hauteur du mât : h = 3 m
 - chargement : $F_y = 5 \ kN$

1.1 Statique linéaire

1.1.1 Poutre console dans les axes de structure

Comparer les déplacements aux extrémités (avec un seul élément), puis les déplacements au centre de la poutre

- 1. Poutre console avec chargement terminal et chargement réparti
- 2. Barre avec déplacement longitudinal imposé
- 3. Barre encastrée avec déplacement longitudinal imposé et chargement réparti cf exemple du chapitre 6
- 4. pour le portique, comparer les déplacements et rotations aux points A et B de la Figure 1.1; tester en ajoutant un raidisseur

On peut ensuite vérifier que plus le nombre d'éléments augmente, plus la solution est précise (par exemple pour la poutre console sous chargement réparti).

Ce qu'on retiendra :

- en HPP, les comportements en tension et flexion sont représentés avec la même discrétisation mais des ddls distincts
- les **dimensions** des grandeurs physiques sont du ressort de l'**utilisateur**
- l'orientation (sens de parcours) des éléments est définie par l'ordre des noeuds dans la connectivité des éléments
- les réactions peuvent être évaluées simplement (mais approximativement)
 connaissant les efforts dans les poutres utilisant le ddl concerné par la restriction cinématique

Figure 1.1: Cas de portiques : (a) potence (portique simple) et (b) portique symétrique.

1.1.2 Poutre console hors des axes de structure - à 15 °de l'horizontale

- 1. Poutre console avec chargement terminal et chargement réparti
- 2. Barre avec déplacement longitudinal imposé

Ce qu'on retiendra :

- les conditions aux limites sont exprimées dans le repère de structure sauf procédures spécifiques pour définir des repères locaux et/ou des relations entre ddls
- les résultats doivent être indépendants de l'orientation de la barre dans le repère

1.2. Vibration libres 3

1.2 Vibration libres

Pour une poutre, comparer les 5 premières pulsations propres et les modes de vibration associés avec un seul élément puis en raffinant le maillage - commenter la précision des pulsations obtenues.

- 1. Poutre en conditions rotulé rotulé
- 2. Poutre en conditions encastrée libre
- 3. Tester le cas du portique, en modifiant la masse puis en ajoutant un raidisseur

Pour les vibrations longitudinales, les pulsations propres et modes propres pour des conditions appuyé-appuyé (rotulé) sont :

$$\omega_k = k \frac{\pi}{l} c \text{ avec } c = \sqrt{\frac{E}{\rho}}$$

$$u(x,t) = \sum_{k=1}^{+\infty} a_k \sin\left(\frac{k\pi}{l} x\right) \cos\left(\frac{k\pi}{l} c t\right)$$
(1.1)

et dans le cas encastré-libre :

$$\omega_{k} = (2k-1)\frac{\pi}{2l} c$$

$$u(x,t) = \sum_{k=1}^{+\infty} a_{k} \sin\left((2k-1)\frac{\pi}{2l} x\right) \cos\left((2k-1)\frac{\pi}{2l} c t\right)$$
(1.2)

Ce qu'on retiendra :

- les vibrations libres sont en tension et en flexion
- plus le rang de la valeur propre est élevé plus l'erreur par rapport à la solution exacte est grande
- il y a autant de valeurs propres et vecteurs propres associés que de *ddl*s dans le problème

1.2.1 Flambage linéarisé

Pour une poutre, comparer les 5 premières charge de flambage sous un chargement de compression à l'extrémité et les modes associés avec un seul élément puis en raffinant le maillage - commenter la précision des charges obtenues.

- Poutre en conditions rotulé rotulé
- Poutre en conditions encastrée libre
- Poutre en conditions encastrée libre soumise à un déplacement transverse puis un déplacement longitudinal
- Tester le cas du portique, en modifiant le chargement et en ajoutant un raidisseur

Ce qu'on retiendra :

- la structure doit être soumise à une **pré-contrainte** pour **initialiser** la **rigidité géométrique**
- ici les **pré-contraintes** sont les **efforts normaux** dans le **repère** de la **poutre**
- la charge critique est proportionnelle au chargement
- pour des **conditions cinématiques** imposées, les **réactions** doivent être intégrées aux **efforts extérieurs**