

מערכות ספרתיות

3

- •ייצוג קנוני
 - XOR •
- Don't care•
- •שערים מרובי כניסות
 - •יישום של לוגיקה

ד"ר רון שמואלי

ייצוג קנוני של פונקציות מיתוג

- בייצוג קנוני: כל אחד מאברי הפונקציה מכיל את כל המשתנים של הפונקציה.
 - f(xyz)=xyz+x'y'z' (אברי מכפלה) דוגמא לייצוג קנוני –

g(xyz)=xy'+xy'z – דוגמא לייצוג לא קנוני –

- מעבר לייצוג קנוני:

g(xyz)=(x+y+z)(x'+y'+z) (אברי סכום – דוגמא לייצוג קנוני

g(xyz)=(x+y')(x'+y'+z) – דוגמא לייצוג לא קנוני

מעבר לייצוג קנוני: –

ייצוג קנוני של פונקציות מיתוג (המשך)

 \widetilde{x} -ם משתנה המופיע בפונקציה עם/בלי משלים : Literal הגדרה - הגדרה שתנה המופיע בפונקציה עם

• הגדרה minterm:

- איבר מכפלה של פונקציה אם הוא מכיל את כל הליטרלים של הפונקציה.
 - נקרא גם מכפלה סטנדרטית ומסומן ב mi.
- המינטרם יקבל את הערך 1 כקומבינציה אחת ויחידה של משתני הכניסה.

:Maxterm הגדרה

- איבר סכום של פונקציה אם הוא מכיל את כל הליטרלים של הפונקציה.
 - .Mi ב קרא גם סכום סטנדרטי ומסומן ב
 - המקסטרם יקבל את הערך 0 כקומבינציה אחת ויחידה של משתני
 הכניסה.

מכפלות וסכומים סטנדרטיים בשלושה משתנים.

	хуz	מכפלות סטנדרטיות	סכומים סטנדרטיים
0	000	mo=x'y'z'	Mo=(x+y+z)
1	001	m1=x'y'z	M1=(x+y+z')
2	010	m2=x'yz'	M2=(x+y'+z)
3	011	m3=x'yz	M3=(x+y'+z')
4	100	m4=xy'z'	M4=(x'+y+z)
5	101	m5=xy'z	M5=(x'+y+z')
6	110	m6=xyz′	M6=(x'+y'+z)
7	111	m7=xyz	M7=(x'+y'+z')

ייצוג קנוני - המשך

- Sum Of Products = SOP ייצוג קנוני •
- Product Of Sums = POS ייצוג קנוני •

• דוגמא: מעבר מטבלת אמת לייצוג בוליאני ולהיפך

נתונה הפונקציה f ע"י טבלאת אמת תן SOP קנוני ל f

תן POS קנוני ל

תן POS קנוני ל

f תן ייצוג בוליאני ל

5

(c) Dr. Ron Sh	mueli
----------------	-------

דוגמא ייצוג קנוני

- $f(xyz)=\Sigma(0,2,5,7)$ $g(xyz)=\Pi(0,1,6,7)$ נתונות
 - g ו f השלם את טבלאת האמת של •
 - k(xyz)=f xor g קנוני ל SOP תן
 - k(xyz) מינימלי ל SOP תן
 - (מינימלית) K ממש את

	хуz	f	g	k
0	000			
1	001			
2	010			
3	011			
4	100			
5	101			
6	110			
7	111			
	2011			

(c) Dr. Pon Shmueli

mta 11.11.11 XNOR -I XOR פעולת

- XNOR ו XOR לפונקצית SOP תן ייצוג קנוני
 - תן ייצוג SOP מינימלי •
- או XOR תן ייצוג קנוני POS לפונקצית XNOR ו
 - תן ייצוג POS מינימלי •
- $(A \oplus B)' = A' \oplus B = A \oplus B'$

• דוגמא: הוכח כי

2011

(c) Dr. Ron Shmueli

7

	wxyz	f	A
0	0000		רוגמא ייצוג קנוני של פונקציה עם Φ
1	0001		תכנן מערכת המקבלת ספרת BCD תכנן
2	0010		ומפיקה f= 1 אם הספרה מתחלקת ב 4 או
3	0011		ב 5 ללא שארית.
4	0100		
5	0101		י תן ייצוג קנוני SOP ל f.
6	0110		י תן ייצוג קנוני POS ל f.
7	0111		
8	1000		
9	1001		
10	1010		⊕ don't care הגדרת
11	1011		Ψ dont cale it init
12	1100		
13	1101		
14	1110		
1520	11 1111		(c) Dr. Ron Shmueli

(c)) Dr.	Ron	Shm	ueli
(\mathbf{v})	, 01.	11011	011111	a on

ייצוג קנוני של פונקציה דואלית (עד כאן אפקה בוקר)

- $F(xyz)=\Pi(0,3,5)=$
- $F^{D}(xyz)=(\Pi(0,3,5))^{D}=$
 - תכונות של פונקציות דואליות לעצמן
 - כל הפונקציות הדואליות לעצמן בשני משתנים

Α	В		
0	0		
0	1		
1	0		
4 01	1		

(c) Dr. Ron Shmueli

יישום של לוגיקה ספרתית									
А	В	AB	(AB)'	A+B	(A+B)'	A xor B	(A xor B)'		
0	0								
0	1								
1	0								
1	1								
2011 (c) Dr. Ron Shmueli							10		

דוגמא

- $f(xyz)=\Sigma(0,4,7)$ ממש את הפונקציה •
- ממש ≡ ממש מינימלית בעזרת שערים •

 $f(xyz)=\Sigma(0,2,6)+\Sigma(7)$ -

הרחבה לשערים מרובי כניסות

- את כל השערים (מלבד NOT) ניתן להרחיב כך שיהיו
 להם יותר משתי כניסות.
- אם האופרטור הבינארי שהשער מייצג הוא גם חילופי וגם קיבוצי,
 ההרחבה יכולה להיעשות בפשטות בעזרת אותו סוג שער.

שער XOR מרובה כניסות

שער XOR מרובה כניסות •

$$f(xyz) = x \oplus y \oplus z$$

• תן SOP קנוני

תן SOP מינימלי

13

(م)	۱Dr	Don	Chmi	نامر
l C	וט (ROH	Shmu	Jell

ניתוח ותכנון של מערכת צרופים

- לניתוח של מערכת צרופים נדרש אחד מהבאים:
- ביטוי בולאני או קנוני או טבלאת אמת לכל אחד מהמוצאים.
 או תאור מילולי של המערכת (הבעיה העיקרית)

<u>דוגמא לתיאור בעיה בעזרת קטע קוד:</u>

If (a==b) and (b==c)
$$\rightarrow$$
 d=b
else
If (a==b) \rightarrow d=c
else
If (a==c) \rightarrow d=a
else
d=o

(10.0.5)

	abc	
0	000	
1	001	
2	010	
3	011	
4	100	
5	101	
6	110	
7	111	

דוגמא (קב 2)

• תכנן מערכת להפעלת האור הפנימי ברכב

	abc		
0	000		
1	001		
2	010		
3	011		
4	100		
5	101		
6	110		
7	111		

