单纯形法

1.用单纯形表求解以下线形规划问题

$$max z = x_1 - 2x_2 + x_3$$

$$s.t. \begin{cases} x_1 + x_2 + x_3 \le 12 \\ 2x_1 + x_2 - x_3 \le 6 \\ -x_1 + 3x_2 \le 9 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

2. 某农场生产四种农作物、每种农作物的成本和利润如下:

农作物	肥料(公斤/亩)	杀虫剂(公斤/亩)	利润 (元)
萝卜	4	2	50
包心菜	2	9	40
洋葱	5	2	10
土豆	0	3	20

目前农场有400公斤肥料和500公斤杀虫剂,问每种农作物种植多少亩才能使利润最大?

3.考虑下列线形规划问题。

$$min z = x_1 + x_2 - 4x_3$$

$$s.t. \begin{cases} x_1 + x_2 + 2x_3 = 9 \\ x_1 + x_2 - x_3 \le 2 \\ x_1 - x_2 - x_3 \ge -4 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

- (1) 用单纯形法计算此题, 并写出最优解。
- (2) 写出线性规划问题的对偶问题,并求出对偶问题的解。

4.线形规划为题如下,

$$maxz=5x_1+3x_2+6x_3$$
,

$$s.t.$$

$$x_1 + 2x_2 + x_3 \le 18$$

$$2x_1 + x_2 + 3x_3 \le 16$$

$$x_1 + x_2 + x_3 = 10$$

$$x_1, x_2 \ge 0 \cdot x_3$$
 无约束

- (1) 用单纯形法计算此题, 并写出最优解。
- (2) 写出线性规划问题的对偶问题,并求出对偶问题的解。

5.已知线性规划问题

$$max z = x_1 + 5x_2 + 3x_3 + 4x_4$$

$$\max z = x_1 + 5x_2 + 3x_3 + 4x_4$$

$$s.t.\begin{cases} 2x_1 + 3x_2 + x_3 + 2x_4 \le 800 \\ 5x_1 + 4x_2 + 3x_3 + 4x_4 \le 1200 \\ 3x_1 + 4x_2 + 5x_3 + 3x_4 \le 1000 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

- (1) 求线性规划问题的最优解
- (2) 求对偶问题的最优解
- 如果 x_3 的系数由 $[1,3,5]^T$ 变为 $[1,3,2]^T$,最优解基和最优解变吗?若改变请求出 (3) 结果。

6.某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、100克维生 素。现在有五种饲料可供选用,各种饲料每公斤营养成分含量及单价如下表,求满足动物 成长的营养需求的费用最低方案。

饲料	蛋白质 (克)	矿物质 (克)	维生素(毫	价格 (元/公
			克)	斤)
1	3	1	0.5	0.2
2	2	0.5	1.0	0.7
3	1	0.2	0.2	0.4
4	6	2	2	0.3
5	12	0.5	0.8	0.8

7.用单纯形法求解

$$maxz=2x_1-x_2+x_3$$

$$s.t. \begin{cases} 3x_1 + x_2 + x_3 \le 60 \\ x_1 - x_2 + 2x_3 \le 10 \\ x_1 + x_2 - x_3 \le 20 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

答案: $x^i = (15,5,0)$, $z^i = 25$

8. 用单纯形法求解

$$maxz=2x_1+x_2+x_3$$

$$s.t. \begin{cases} 4x_1 + 2x_2 + 2x_3 \ge 4 \\ 2x_1 + 4x_2 \le 20 \\ 4x_1 + 8x_2 + 2x_3 \le 16 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

答案: 无穷多最优解, $z^{i}=8$

9. 用单纯形法求解

$$maxz=3x_1+x_2+3x_3$$

$$s.t. \begin{cases} 2x_1 + x_2 + x_3 \le 2 \\ x_1 + 2x_2 + 3x_3 \le 5 \\ 2x_1 + 2x_2 + x_3 \le 6 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

答案: $x^i = (0.2, 0, 1.6)$, $z^i = 5.4$

10. 用单纯形法求解

$$maxz=2x_1+4x_2+x_3+x_4$$

$$s.t. \begin{cases} x_1 + 3x_2 + x_4 \le 4 \\ 2x_1 + x_2 \le 3 \\ x_2 + 4x_3 + x_4 \le 3 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

答案: $x^i = (1,1,0.5,0), z^i = 6.5$

对偶

1.已知规划问题 $min z = 2x_1 + 3x_2 + 5x_3 + 2x_4 + 3x_5$

$$s.t. \begin{cases} x_1 + x_2 + 2x_3 + x_4 + 3x_5 \ge 4 \\ 2x_1 - x_2 + 3x_3 + x_4 + x_5 \ge 3 \\ x_i \ge 0 \cdot i = 1, 2, 3, 4, 5 \end{cases}$$

已知其对偶问题最优解为 $y_{1}^{i} = \frac{4}{5}$, $y_{2}^{i} = \frac{3}{5}$, 求原问题的最优解。

2.已知线性规划问题

 $maxz=x_1+2x_2+3x_3+4x_4$

$$s.t. \begin{cases} x_1 + 2x_2 + 2x_3 + 3x_4 \le 20 \\ 2x_1 + x_2 + 3x_3 + 2x_4 \le 20 \\ x_i \ge 0 \cdot i = 1, 2, 3, 4 \end{cases}$$

已知对偶问题的最优解 $y_1^i = \frac{6}{5}$, $y_2^i = \frac{1}{5}$, 试用互补松弛定理求该线性规划问题的最优解。

$$\begin{array}{lll} & \min \ w = 20 y_1 + \ 20 y_2 \\ & y_1 + 2 y_2 \geqslant 1 & (1) \\ & 2 y_1 + y_2 \geqslant 2 & (2) \\ & 2 y_1 + 3 y_2 \geqslant 3 & (3) \\ & 3 y_1 + 2 y_2 \geqslant 4 & (4) \\ & y_1, \ y_2 \geqslant 0 & \end{array}$$

将 $y_1^*=6/5$, $y_2^*=1/5$ 代入上述约束条件,得(1)、(2)为严格不等式;由互补松弛定理可以推得 $x_1^*=0$, $x_2^*=0$ 。又因 $y_1^*>0$, $y_2^*>0$,故原问题的两个约束条件应取等式,所以

$$2x_3^* + 3x_4^* = 20$$
 $3x_3^* + 2x_4^* = 20$ 解得 $x_3^* = x^* = 4$ 故原问题的最优解为 $X^* = (0, 0, 4, 4)^T$

3.用对偶单纯形法求解下列规划问题 $min z=4 x_1+2 x_2+6 x_3$

$$s.t.\begin{cases} 2x_1 + 4x_2 + 8x_3 \ge 24 \\ 4x_1 + x_2 + 4x_3 \ge 8 \\ x_i \ge 0 \cdot i = 1, 2, 3 \end{cases}$$

解:

解 将问题改写成如下形式

$$\max (-z) = -4x_1 - 2x_2 - 6x_3$$

$$-2x_1 - 4x_2 - 8x_3 + x_4 = -24$$

$$-4x_1 - x_2 - 4x_3 + x_5 = -8$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

显然, p_4 、 p_5 可以构成现成的单位基,此时,非基变量在目标函数中的系数全为负数,因此 p_4 、 p_5 构成的就是初始正侧基。整个问题的计算过程列在表 2—7 中。 \pm 2—7

	12 2						
C	, j	-4	-2	-6	0	0	b
C_B	X_{B}	\boldsymbol{x}_1	\boldsymbol{x}_2	\boldsymbol{x}_3	\boldsymbol{x}_4	x ₅	U
0	X4	-2	[-4]	-8	1	0	-24
0	X 5	-4	-1	-4	0	1	-8
	-z	-4	-2	-6	0	0	0
()	-4/-2	-2/-4	-6/-10	0	0	
-2	x ₂	1/2	1	2	-1/4	0	6
0	X ₅	-7/2	0	[-2]	-1/4	1	-2
	-z	-3	0	-2	-1/2	0	-120
(7	-3/(-7/2)	0	-2/-2	(-1/2)/(-1/4)	0	

-2	x ₂	-3	1	0	-1/2	1	4
-6	X ₃	7/4	0	1	1/8	-1/2	4
	-z	-1/2	0	0	-1/4	-1	-32

最后一个单纯形表中,已得到一个可行的正侧解,因而得到问题的最优解为 $X^* = (0, 4, 4)^T$

最优值为 z*=32

4.写出下列问题的对偶问题 $m ax z = 2x_1 + 2x_2 - 4x_3$

$$s.t. \begin{cases} x_1 + 3x_2 + 3x_3 \le 30 \\ 4x_1 + 2x_2 + 4x_3 \le 80 \\ x_i \ge 0 \cdot i = 1, 2, 3 \end{cases}$$

解:

解: 其对偶问题为

min w=30y₁+ 80y₂

$$y_1+4y_2 \ge 2$$

 $3y_1 + 2y_2 \ge 2$
 $3y_1 + 4y_2 \ge -4$
 $y_1, y_2 \ge 0$

5.写出下列线性规划问题的对偶问题 $min z=2 x_1+8 x_2-4 x_3$

$$s.t. \begin{cases} x_1 + 3x_2 - 3x_3 \ge 30 \\ -x_1 + 3x_2 - 3x_3 = 80 \\ 4x_1 + 2x_2 - 4x_3 \le 50 \\ x_1 \le 0, x_2 \ge 0, x_3$$
无约束

解: 其对偶问题为

$$\max w=30y_1+80 \ y_2+50 \ y_3$$

 $y_1-y_2+4 \ y_3 \geqslant 2$
 $3y_1+5y_2+2y_3 \leqslant 8$
 $-3y_1+4y_2-4y_3=-4$
 $y_1\geqslant 0, \ y_2$ 无限制, $y_3\leqslant 0$

运输问题

1. 某食品公司经营糖果业务,公司下设三个工厂A1、A2、A3,四个销售部B1、B2、B3、B4,已知每天各自的生产量、销售量及调运时的单位运输费用情况。问:如何调运可使费用最小?

	B1	B2	B3	B4	产量
A1	3	11	3	10	7
A2	1	9	2	8	4
A3	7	4	10	5	9
需求量	3	2	5	6	

解:

2.对小表的运输问题求出最优解

	B1	B2	B3	B4	产量
A1	3	11	3	10	7
A2	1	9	2	8	4
A3	7	4	10	5	9
需求量	3	6	5	6	20

3.有 ABC 三个化肥厂供应 1、2、3、4 四个地区的农用化肥,三个厂每年每年产量为 A-50 万吨,B-60 万吨,C-50 万吨。四个地区的需求量分别是 1 地区最高 50 万吨,最低 30 万吨,2 地区为 70 万吨,3 地区为 30 万吨以下,4 地区不低于 10 万吨。费用表如下,问最低运费是多少?

	1	2	3	4
1	16	13	22	17
2	14	13	19	15
3	19	20	23	

4.某工厂按合同规定必须于当年的每个季度末分别提供 10、151、25、20 台统一规格的柴油机。已知该厂的生产能力及生产每台柴油机的成本如表所示。又如果生产出来的柴油机当季不交货,每台每积压一个季度需要存储费 0.15 万元。要求在完成合同的情况下,做出使全年生产费用最小的决策。

季度	产能	单位成本(万元/台)
1	25	10.8
2	35	11.1
3	30	11.0
4	10	11.3

解

5.一个农民承包了6块耕地共300亩,准备播种小麦、玉米、水果、蔬菜四种农产品。, 其需求量及单亩收益如下表,求最优解。

	地块1	地块2	地块3	地块4	地块5	地块6	计划播种面积
小麦	500	550	630	1000	800	700	76
玉米	800	700	600	950	900	930	88
水果	1000	960	840	650	600	700	96
蔬菜	1200	1040	980	860	880	780	40
地块面	42	56	44	39	60	59	
积							

6.某客车制造厂根据合同要求从当年开始连续四年,每年年末支付 40 辆规格型号相同的车辆,根据实际情况,当年未交货的车,每辆每年的存储和维护费用为 4 万元,在签订合同时,该厂已有 20 辆车,同时有要求四年后完成合约还需存储 25 辆车,问该车厂每年要如何生产,才能使得生产费用和存储费用最少?

	可生产数量(辆)		制造成本(万元/辆)	
	正常上班	加班	正常上班	加班
1	20	30	50	55
2	38	24	56	61
3	15	30	60	65
4	42	23	53	58

	年度1	年度2	年度3	年度4	库存	生产能力(辆)
0	4	8	12	16	20	20
1	50	54	58	62	66	20
1'	55	59	63	67	71	30
2		56	60	64	68	38
2'		61	65	69	74	24
3			60	64	68	15
3'			65	69	74	30
4				53	57	42
4*				58	62	23
合同需求量(辆)	40	40	40	40	25	

整数规划

1.某科学试验卫星拟从下列仪器装置中选若干件装上。有关数据见下表。

仪器装置代号	体积	重量	实验中的价值
A_1	v_1	w_1	c_1
A_2	v_2	w_2	c_2
A_3	v_3	w_3	<i>c</i> ₃
A_4	v_4	W_4	C ₄
A_5	v_5	w_5	<i>c</i> ₅
A_6	v_6	w_6	<i>c</i> ₆

要求: (1) 装入卫星的仪器装置总体积不超过 V,总质量不超过 W; (2) A_1 和 A_3 最多安装一件; (3) A_2 和 A_4 至少安装一件; (4) A_4 和 A_6 或者都不安,或者都按上;总目的是装上去的仪器装置使该卫星发挥最大的实验价值。试建立这个问题的数学模型。

解:

目标函数:

$$\max z = \sum_{j=1}^{6} c_j x_j$$

约束方程:

$$\begin{cases} \sum_{j=1}^{6} v_{j} x_{j} \leq V \\ \sum_{j=1}^{6} w_{j} x_{j} \leq W \\ x_{1} + x_{3} \leq 1 \\ x_{2} + x_{4} \geq 1 \\ x_{5} = x_{6} \\ x_{j} = \begin{cases} 1, 安装 j 仪器 \\ 0, 否则 \end{cases} \end{cases}$$

2.某钻井队要从以下 10 个可供选择的井位中确定 5 个钻井探油,使总的钻井费用最小。若 10 个井位的代号为 $s_1...s_{10}$,相应的钻探费用为 $c_1...c_{10}$,并且井位选择上要满足下列限制条件:

(1)或选择 s_1 和 s_1 ,或选择 s_1 ;(2)选择了 s_1 和 s_1 就不能选择 s_1 ,反过来一样;(3)在 s_1 , s_1 , s_1 ,中最多选两个。试建立这个问题的正数规划模型。

解:

目标函数:

$$m \in z = \sum_{j=1}^{10} c_j x_j$$

が東方程:
$$\begin{cases} \sum_{j=1}^{10} x_j = 5 \\ x_1 + x_8 = 1 \\ x_7 + x_8 = 1 \end{cases}$$
 约束方程:
$$\begin{cases} x_3 + x_5 \le 1 \\ x_4 + x_5 \le 1 \\ x_5 + x_6 + x_7 + x_8 \le 2 \\ x_j = \begin{cases} 1, 选择 j 井位 \\ 0, 否则 \end{cases}$$

3.用匈牙利法求解指派问题,已知效率矩阵如下:

7 9 10 12

13 12 16 17

15 16 14 15

11 12 15 16

解:最优指派方案为 $x_{13}=x_{22}=x_{34}=x_{41}=1$

4. 用匈牙利法求解指派问题,已知效率矩阵如下:

3 8 2 10 3

8 7 2 9 7

6 4 2 7 5

8 4 2 3 5

9 10 6 9 10

解:最优指派方案为 $x_{15}=x_{23}=x_{32}=x_{44}=x_{51}=1$

5.从甲乙丙丁戊五人中选四人去完成工作,已知每人完成工作的时间如下表,规定每项工作只能由一人单独完成,每个人最多承担一项。又假定甲必须完成一件,丁不能做第四件在满足上述条件下,花费时间最少的方案。

	甲	Z	丙	丁	戊
1	10	2	3	15	9
2	5	10	15	2	4
3	15	5	14	7	15
4	20	15	13	6	8

解: 先假定一种工作五, 有题列出下表

	甲	乙	丙	丁	戊
1	10	2	3	15	9
2	5	10	15	2	4
3	15	5	14	7	15
4	20	15	13		8
5		0	0	0	0

用匈牙利法求得最优方案: 甲2, 乙3, 丙1, 戊4, 丁不分配。

图与网络分析

1. 下图是 6 个城市的交通图,为将部分道路改造成高速公路,使各个城市均能通达,又要使高速公路的总长度最小,应如何做?最小的总长度是多少?

2. 对下面的连通图,试求出最小树。

3. 用标号法求下图所示的最大流问题, 弧上数字为容量和初始可行流量。

4.

已知有 6 个村子,相互间道路的距离如下图所示,拟合建一所小学。已知 A 处有小学生 50 人,B 处 40 人,C 处 60 人,D 处 20 人,E 处 70 人,F 处 90 人,问小学应建在哪一个村子,使学生上学最方便(走的总路程最短)。

5.用破圈法求下图的最小树。

6.用标号法求 v1 到 v9 的最短路。

答案: V1V5V7V9

7.

排队论

1.某店有一个修理工,顾客到达过程为泊松流,平均每小时3人,修理时间服从负指数分 布, 平均19分钟, 求:

- (1) 店内的空闲概率;
- (2) 有四个顾客的概率;
- (3) 至少有一个顾客的概率;
- (4) 店内顾客的平均数;
- (5) 等待服务的顾客数;
- (6) 平均等待修理的时间;
- (7) 一个顾客在店内逗留时间超过15分钟的概率。
- 3. 解: 单位时间为小时、 $\lambda = 3$, $\mu = 6$, $\rho = \lambda/\mu = 3/6 = 0.5$
 - (1) 店内空闲的时间: $p_0 = 1 \rho = 1 1/2 = 0.5$:

(2) 有 4 个顾客的概率:
$$\rho_4 = \rho^4 (1 - \rho) = \left(\frac{1}{2}\right)^4 \left(1 - \frac{1}{2}\right) = \frac{1}{2^5} = 0.03125$$

- (3) 至少有一个顾客的概率: $P\{N \ge 1\} = 1 p_0 = 0.5$.

$$L = \frac{\rho}{1-\rho} = 1$$
 (4) 店内顾客的平均数:

- (5) 等待服务的顾客的平均数: $L_q = L \rho = 0.5$

$$W = \frac{L_q}{\lambda} = \frac{0.5}{3} = 0.1667$$

- (6) 平均等待修理的时间:
- (7) 一个顾客在店内逗留时间超过 15 分钟的概率。

$$P\{T > 15\} = e^{-(\mu - \lambda)t} = e^{-15(\frac{1}{10} - \frac{1}{20})} = e^{-\frac{1}{2}} = 0.607$$

- 2.设有一个医院门诊,只有一个值班医生。病人的到达过程为 Poisson 流,平均到达时间间 隔为20分钟、诊断时间服从负指数分布、平均需12分钟、求:
 - (1) 病人到来不用等待的概率;
 - (2) 门诊部内顾客的平均数;
 - (3) 病人在门诊部的平均逗留时间;
- (4) 若病人在门诊部内的平均逗留时间超过1小时,则医院方将考虑增加值班医生。问病 人平均到达率为多少时, 医院才会增加医生?

4. 解: 单位时间为小时、 $\lambda = 3$, $\mu = 60/12 = 5$, $\rho = \lambda/\mu = 0.6$

(1) 病人到来不用等待的概率: $P_0 = 1 - \rho = 1 - 0.6 = 0.4$

$$L = \frac{\rho}{1-\rho} = \frac{0.6}{1-0.6} = 1.5$$
 (人)

$$W=rac{1}{\mu-\lambda}=0.5$$
 (3) 病人在门诊部的平均逗留时间; (小时)

(4) 若病人在门诊部内的平均逗留时间超过1小时,则有:

$$1 = \frac{1}{\mu - \lambda} = \frac{1}{5 - \lambda} \quad , \quad \therefore \quad \lambda = 4$$

即当病人平均到达时间间隔小于等于 15 分钟时, 医院将增加值班医生。

- 3. 某排队系统只有1名服务员,平均每小时有4名顾客到达,到达过程为 Poisson 流,, 服务时间服从负指数分布、平均需6分钟、由于场地限制、系统内最多不超过3名顾客、 求:
 - (1) 系统内没有顾客的概率;
 - (2) 系统内顾客的平均数;
 - (3) 排队等待服务的顾客数;
 - (4) 顾客在系统中的平均花费时间;
 - (5) 顾客平均排队时间。
- 5. 解: 单位时间为小时, $\lambda = 4$, $\mu = 10$, $\rho = \lambda/\mu = 0.4$, K = 3

$$p_0 = \frac{1 - \rho}{1 - \rho^4} = \frac{1 - 0.4}{1 - 0.4^4} = 0.616$$

- (1) 系统内没有顾客的概率:
- (2) 系统内顾客的平均数:

$$L = \frac{\rho}{1 - \rho} - \frac{(K+1)\rho^{K+1}}{1 - \rho^{K+1}} = \frac{0.4}{1 - 0.4} - \frac{4 \times 0.4^4}{1 - 0.4^4} = 0.562$$
 (A)

(3) 排队等待服务的顾客数: $L_q = L - (1 - p_0) = 0.562 - 0.384 = 0.178$ (人).

(4) 顾客在系统中的平均花费时间:

$$W = \frac{L}{\lambda(1-\rho^3 p_0)} = \frac{0.562}{3.842} = 0.146 = 8.8$$
 (分钟)

(5) 顾客平均排队时间: $W_q = W - 1/\mu = 0.146 - 0.1 = 0.046 = 2.8$ (分钟)。

- 4. 某街区医院门诊部只有一个医生值班,此门诊部备有6张椅子供患者等候应诊。当椅子 坐满时,后来的患者就自动离去,不在进来。已知每小时有 4 名患者按 Poisson 分布到达, 每名患者的诊断时间服从负指数分布,平均12分钟,求:
 - (1) 患者无须等待的概率;

- (2) 门诊部内患者平均数;
- (3) 需要等待的患者平均数;
- (4) 有效到达率;
- (5) 患者在门诊部逗留时间的平均值;
- (6) 患者等待就诊的平均时间;
- (7) 有多少患者因坐满而自动离去?
- 6. 解: 此问题可归结为M/M/1/7的模型,单位时间为小时,

$$\lambda = 4$$
, $\mu = 5$, $\rho = \lambda/\mu = 0.8$, $K = 7$

$$p_0 = \frac{1 - 0.8}{1 - 0.8^8} = 0.2403$$
 (1) 患者无须等待的概率:

(2) 门诊部内患者平均数:
$$L = \frac{0.8}{1 - 0.8} - \frac{8 \times 0.8^8}{1 - 0.8^8} = 2.387 \tag{人}$$

(3) 需要等待的患者平均数:
$$L_q = 2.387 - (1 - p_0) = 1.627$$
 (人)

 $\lambda_{\varepsilon} = \lambda(1 - P_7) = 4 \times (1 - \frac{1 - 0.8}{1 - 0.8^8} \times 0.8^7) = 3.8$

- (4) 有效到达率:
- (5) 患者在门诊部逗留时间的平均值:

$$W = \frac{L}{\lambda_{\varepsilon}} = \frac{2.387}{3.8} = 0.628$$
 (小时) =37.7(分钟)

(6) 患者等待就诊的平均时间: $W_q = 37.7 - 12 = 25.7$ (分钟)

$$P_7 = \frac{1-\rho}{1-\rho^8} \rho^7 = 0.0503 = 5.03\%$$
 的患者因坐满而自动离去.

5.某大学图书馆的一个借书柜台的客流服从泊松分布,平均每小时 50 人. 为顾客服务的时 间服从负指数分布,平均每小时可服务80人,求:

- (1) 顾客借书不必等待的概率; (3/8)
- (2) 顾客前平均顾客数; (5/3)
- (3) 顾客在柜台前平均逗留时间(1/30)
- (4) 顾客在柜台前平均等等待时间(1/80)

6.汽车按泊松分布到达某告诉公路收费口,平均90辆/小时,每辆车通过的平均时间35秒, 服从负指数分布。司机抱怨等待时间太长,管理部门拟采用自动收款装置使收费时间缩短 到 30 秒, 但条件是原收费口的平均等待车辆超过 6 辆, 且新装置的利用率不低于 75%时才 使用, 问上述条件下新装置能否被采用。

7.有一台公用电话亭,打电话的乘客服从 $\lambda = 6$ 个/小时的泊松分布,平均每个人打电话时间 为3分钟, 服从负指数分布。试求:

- (1) 到达者在开始打电话前需等待10分钟以上的概率;
- (2) 顾客到达时算起到打完电话离去超过10分钟的概率;

- (3) 管理部门决定当打电话的顾客平均等待时间超过 3 分钟,将安装第二台,问λ为多大时须安装第二台。
- 8.顾客按照泊松分布到达只有一名理发员的理发店,平均10人/小时。理发店对每位顾客的服务时间服从负指数分布,平均为5分钟。店内包括理发椅供3个,当顾客到达无作为时,就依次站着等待、试求:
- (1) 顾客到达有座位的概率;
- (2) 到达的顾客需站着等待的概率
- (3) 顾客进入理发店到离去不超过2分钟的概率;
- (4) 理发店内应有多少座位,才能保证80%顾客到达有座位。

存储论

1.某商品单位成本为5元,每天的保管费为成本的0.1%,每次的订购费为10元,已知对该商品的需求是100件/天,不允许缺货。假设该商品的进货可以随时实现。问怎么组织进货,才能最经济?

K=5元/件,R=100件/天, $C_1=0.005$ 元/件*天, $C_3=10$ 件/天

$$t^{i} = \sqrt{\frac{2C_{3}}{C_{1}R}} = 6.32$$
 Ξ , $Q^{i} = Rt^{i} = 632$ Ξ , $C^{i} = \sqrt{2C_{1}C_{3}R} = 3.16$ Ξ / Ξ

所以应该每隔6.32天就进货,每次进货批量为632件,每次花费3.16元/天。

2.企业生产某种产品,正常生产条件下可成产 10 件/天。根据供货合同,需要按 7 天/天供货。存储费每件 0.13 元/天。缺货费每件 0.5 元/天,每次生产准备费用 80 元,求最优存储策略。

缺货补充时间较长

P=10元/件,R=17件/天, $C_1=0.13$ 元/件*天, $C_2=0.5$ 元/件*天, $C_3=80$ 件/天

$$t^{i} = \sqrt{\frac{2C_{3}}{C_{1}R}} \sqrt{\frac{C_{1} + C_{2}}{C_{2}}} \sqrt{\frac{P}{P - R}} = 27.6$$
 Ξ , $Q^{i} = Rt^{i} = 193.2$ Ξ , $t^{i}_{2} = \frac{C_{1}}{C_{1} + C_{2}}$ Ξ

$$t_{1}^{i} = \frac{P - R}{P} t_{2}^{i} = 1.7$$
 $\xi, t_{3}^{i} = \frac{R}{P} t^{i} = 21.0$

$$A^{i} = R(t^{i} - t^{i}_{3}) = 46.2$$
件, $B^{i} = Rt^{i}_{1} = 11.9$ 件, $C^{i} = \frac{2C_{3}}{t^{i}} = 5.8$ 元/天

3.某建筑工地每月需用水泥 800 吨,每吨定价 2000 元,不可缺货。设每吨每月保管费为货物单价的 0.2%,每次订购费用为 300 元,求最佳订购批量、经济周期与最小费用

[解]
$$R=800$$
吨/月, $K=2000$ 元/吨,
 $c_1=2000*0.2\%=4$ 元/吨月,
 $c_3=300$ 元/次
$$T_0=\sqrt{\frac{2c_3}{c_1R}}=\sqrt{\frac{2\times300}{4\times800}}=0.433$$
月
$$Q_0=T_0R=\sqrt{\frac{2c_3R}{c_1}}=346$$
吨
$$C_0=\sqrt{2c_1c_3R}=1386$$
元/月

4.若某件产品装配时需要一种外购件。已知年需求量为 10000 件,单价为 100 元。又每组织一次订货需要 2000 元,每件每年的存储费为外购的 20%,试求经济订货批量 Q 及每年最小的存储加订购费用(设订购提前期为零)。

- 5.某厂每月需购进某种零件 2000 件,每件 150 元。已知每件的年存储费用为成本的 16%,没组织一次订货需 1000 元,订货提前期为零。
 - (1) 求经济订货批量及最小费用。
- (2) 如果该零件允许缺货,每短缺一次的损失费用为 5元/件年,求经济订货量、最小费用及最大允许缺货量。

6.设某厂每年需用某种材料 1800 吨,不需每日供应,但不得缺货。设每吨每月的保管费为 60 元,每次订购费为 200 元,试求最佳订购量(设提前订货期为零)。

7.某公司采用无安全存量的存储策略。每年使用某种零件 100000 件,每件每年的保管费 30 元,每次订购费用为 600 元,试求: 经济订购批量,订购次数。

8.某公司采用无安全存量的存储策略,每年需电感5000个,每次订购费500元,保管费用每年每个10元,不允许缺货。若采购少量电感,每个30元,若采购1500个以上,每个单价18元,问该公司每次应采购多少个?

9.某工厂的采购情况为小于 2000 个,单价 100 元,大于等于 2000 个单价 80 元,假设年需求量为 10000,每次订货费为 2000 元,存储费率为 20%,则每次应购多少?