Learning Quadcopter Flight Dynamics

We denote the position of the quadcopter with x, y, z [m], the orientation by ϕ, θ, ψ [rad] and the angular speed of the four rotors as $\Omega = [\Omega_1, \Omega_2, \Omega_3, \Omega_4]$ [rad/s].

Task 1, estimating k

Estimating k using $k_{est}=K_p*m$. Which is derived from $m\ddot{z}=F=4\cdot k\Omega^2-mg$ where $\Omega_i=\Omega$ for all rotors, and by letting the $u=4\Omega^2$ we get $\zeta=\ddot{z}+g=\frac{k}{m}*u$ This gives an estimate on the form $\zeta=K_pu$ from which we can estimate k as $k_{est}=K_p\cdot m$. This results in code such as $k_{est}=sys2.Kp*m$.

Which results in $k_{est}=2.2067e-08$, and the true k=2.2000e-08.

This difference is $\approx 6.7e-11$ which is ~0.3 % of the true value. The estimation is very close to the real value and can be considered a good estimation.

Task 2, estimating I_3 and b

By setting $\Omega_1=\Omega_3$ and $\Omega_2=\Omega_4$ the resulting torque profile will be that there is only a torque around the *z*-axis. That gives the equation of motion for the yaw angle as $\tau_\psi=I_3\ddot\psi=b_i(-2\Omega_1^2+2\Omega_2^2)$.

Let $u=(-2\Omega_1^2+2\Omega_2^2)$ then the dynamics for $\dot{\psi}$ are given by $rac{d}{dt}\dot{\psi}=rac{b}{I_3}u$

To estimate b and I_3 , we make the quadcopter hover. This is done by letting $\Omega_2=c\omega_1$ and setting ω_1 from the quation $mg=k(2\omega_2^2+2\omega_1^2)$.

Combining these equations into $\Omega_1 = \sqrt{\frac{mg}{2k(c^2+1)}}$ and using this to set c and the number of segments resulting in a hovering quadcopter, and the yaw angle ψ in the range $\pm \pi$.

After some trial and error the values of c=0.7 and the number of segments =12 were found. Producing the following two graphs where we can read that the z position barely changes.

With these results, the b and I_3 can be estimated.

Due to the proportional relation between them, $\frac{b}{I_3}=K_p$, only one of them can be estimated at a time,

meaning one of them have to be estimated in another way. It is therefore assumed that I_3 is estimated elsewhere/previously. Applying this to the code results in code as $b_est = Kp * I3$.

Which results in $b_{est} = 1.9969e - 09$ and the true b = 2.0000e - 09.

This difference is $\approx 3.1e-12$ which is ~0.2 % of the true value. The estimation is very close to the real value and can be considered a good estimation.

Task 3, estimating I_1 and I_2

Due to the summetry of the quadcopter, it holds that $I_1 = I_2$,

so we proceed estimating only one of them.

The equations of motion for the ϕ angle is given by

 $au_\phi = I_1 \ddot{\phi}$, where for small angles, the torque is given by

$$au_\phi=kl(-\Omega_2^2+\Omega_4^2)$$
 .

If $\Omega_1 = \Omega_3$ and $-\Omega_1^2 + \Omega_2^2 - \Omega_3^2 + \Omega_4^2 = 0$ there will only be a torque on ϕ .

Let $u=(-\Omega_2^2+\Omega_4^2)$, then $\dot{\phi}$ will satisfy $\dot{\phi}=rac{kl}{I_2}rac{1}{s}u$.

To estimate I_1 we find Ω_H where $\Omega_H=\Omega_i$ so that the quadcopter hovers. By rewriting

$$mg=k(2\Omega_1^2+2\Omega_2^2)$$
 using Ω_H we get

$$\Omega_H = \sqrt{rac{2\Omega_H^2}{4k}}$$

With this, the quadcopter is hovering.

Adding a new constraint, $\Omega_4 = \Omega_2$, which implies that

 $2\Omega_H=\Omega_2^2(1+c^2)$ must hold in order to keep the quadcopter hovering.

This can be made into $\Omega_2 = \sqrt{\frac{2\Omega_H^2}{1+c^2}}$,

which is a function of c.

Finding a value of c and the number of segments by satisfying that the ϕ angle stays small.

Using c=0.6 and the number of segments =30 produces the two graphs below.

Using the equations introduces in this task, $I_{est}=\frac{kl}{K_p}$ results in $I_{est}=1.6667e-05$ with the true I=1.6600e-05.

This difference is $\approx 6.7e-08$ which is $\sim 0.4\%$ of the true value.

The estimation is very close to the real value and can be considered a good estimation.

Task 4, closing the loop

The fourth task was to evaluate and confirm that the quadcopter moved $0.1\mathrm{m}$ in the y direction and maintaining the z level. Confirming this, the graph below show the position and angles.

Task 5, estimating a disturbance model

We now consider when the wind is acting on the quadcopter, resulting in a force in the y direction. With the goal of keeping the quadcopter in the center/origin. To do this we estimate with an ARMA model, using the acceleration as measurement and deciding the decimating factor R.

Inspecting the illustration of the disturbance in Figure 3 in the Lab manual, the structure for the ARMA was set to na = 2 and nc = 1.

Then, by trial and error, the decimating factor R was set to reproduce an estimation of the true denominator.

Which results in $R_{est}=9.45$ and estimated denominator $s^s+0.06036s+0.96$ with the true denominator $s^2+0.060s+1$. This produces the two graphs above, showing that it was a good estimation. Also note in the second graph that the position is quite affected by the wind.

Task 6, using the disturbance model in a control design

Implementing an LQG controller was the last task of this lab. This was done by inserting previously calculated values for ω_0 and ϵ , which results in $\omega_0=\sqrt{0.96}=0.9798$ and $\frac{0.06036}{\omega_0}=0.0308$.

Using this produces the graph above, in which we can see that using the disturbance in the control design drastically improves the controller.