

GOAL OF THE STUDY

Determine auditory threshold for speech reverberation using a specific room model.

PROCEDURE

1. Model a room for auralization based on an actual room
(choice of room is somewhat arbitrary!)
2. Manipulate two independent variables of the modeled room for speech processing:
 - Bandwidth (octave-band Fc at .25, .5, 1.0 and 2.0 kHz)
 - Reverberation time (volume & absorption): “room size”

3-D sound systems benefit from simulated reverberation

- Diffuse field simulation minimizes the problem of **UNEXTERNALIZED STIMULI**
- Begault 92 AES study, speech: IHL reduced from 25% to 2%

3-D sound & auralization systems benefit from head-tracked interfaces

- Head tracking minimizes the problem of **REVERSALS**, enhances **IMMERSION**
- Wenzel 96 study, noise bursts: reversals reduced from 28% to 7%

"Ideal responses"

s13.

s20

s10

s14

s25

Hardware & Software

- Stimuli preparation and playback**

- CATT Acoustic (auralized room model)
- Crystal River Engineering Acoustetron
(direct sound synthesis)
- LAKE CP-4 convolution engine, equalization
- Roland S-760 sampler
- Anechoic speech from EBU SQAM CD
("Sound Quality Assessment Material Recordings for Subjective Tests")

RT and absorption in the 3 modeled rooms (ray tracing)

Spatial calculation of the intensity of virtual early reflection images.
Left: side view; right: forward view.

Size of circle = intensity of the reflection;
Distance = time delay;
Location = incidence to a listener.

Threshold study

- 10 subjects (normal hearing, “non-expert”)
- Within-subjects design (all Ss ran all conditions)
- Levitt staircase algorithm used to adjust level of reverberation to within 1 dB of threshold
- Three-alternative forced choice, using absolute threshold criteria (identify any change).

Comparison of results to full-BW stimuli

The interaction between room size and filter band was also significant.

0 degree direct sound
60 degree reflection -12 dB

Masking of spectral cues relevant to:

- playback from loudspeakers in typical rooms
- perception of reflection spectral cues in real rooms