

LED B won't be used for PMT testing

The PMT pulse fluctuated significantly while LED B was on.

Pulse info:

*Frequency: 1kHz

*Amplitude: 5V

*Pulse Width: 50 ns

PMT HV= 800 V

• LED HV= 13V

Δ172mV

But if we change the frequency.

• Pulse info:

*Frequency: 2kHz

*Amplitude: 5V

*Pulse Width: 50 ns

• PMT HV= 800 V

• LED HV= 13V

• Δ54*mV*

To sum up.

PMT HV Voltage (V)	There is no pulse below this frequency (kHz).	The pulse becomes distorted at this frequency (kHz).
9	4	4.2
11	2	2.2
13	0.9	1.2
15	0.6	0.8
17	0.4	0.6
19	0,2	0.4

Modifying the pulse width also has an impact.

- Pulse Width: 50 ns
- ∆138*mV*

- Pulse Width: 56 ns
- $\Delta 56mV$

To sum up.

PMT HV Voltage (V)	Pulse stabilizes at (ns)	
9	116	
11	78	
13	56	
15	48	
17	40	
19	34	

To stabilize the pulse with the default pulse conditions

we need.

• Pulse info:

*Frequency: 1kHz

*Amplitude: 5V

*Pulse Width: 50 ns

PMT HV= 800 V

• LED HV= 14V

LED A.

• Pulse info:

*Frequency: 1kHz

*Amplitude: 5V

*Pulse Width: 50 ns

• PMT HV= 800 V

• LED HV= **10V**

LED C.

• Pulse info:

*Frequency: 1kHz

*Amplitude: 5V

*Pulse Width: 50 ns

• PMT HV= 800 V

• LED HV= 32V

LED D.

• Pulse info:

*Frequency: 1kHz

*Amplitude: 5V

*Pulse Width: 50 ns

• PMT HV= 800 V

• LED HV= **7V**

To check if this frequency-pulse width dependency is only present in LED B .

- Pulse Width: 32 ns
- Δ192 mV

- Frequency: 0.3 kHz
- Δ180 mV

LED A.

- Pulse Width: 10 ns
- Δ18.4 mV

- Frequency: 16 Hz
- Δ 60 mV

LED D.

• Pulse Width: 3.4 ns

• Frequency: 15 Hz

LED C*.

- Pulse Width: 116 ns
- Δ 5.5 mV

- Frequency: 23 KHz
- Δ 14.4 mV