Graph Spanners Algorithmen für verteilte Systeme

Sebastian Forster

Universität Salzburg

Dieses Werk ist unter einer Creative Commons Namensnennung 4.0 International Lizenz lizenziert.

Ziel: Reduziere Anzahl an Kanten

Ziel: Reduziere Anzahl an Kanten

Dichter Graph

$$m = \Omega(n^2)$$

Ziel: Reduziere Anzahl an Kanten

Ziel: Reduziere Anzahl an Kanten

Laufzeit: $T(n, m) \Rightarrow T(n, m')$

Ziel: Reduziere Anzahl an Kanten

Laufzeit: $T(n, m) \Rightarrow T(n, m')$

No Free Lunch: In vielen Fällen nur mit Approximation möglich

Definition

Ein t-Spanner (Spanner mit Stretch t) eines Graphen G=(V,E) ist ein Subgraph H=(V,F), für den

$$\operatorname{dist}_{H}(u,v) \leq t \cdot \operatorname{dist}_{G}(u,v)$$

für alle Paare von Knoten $u, v \in V$ gilt.

Definition

Ein t-Spanner (Spanner mit Stretch t) eines Graphen G=(V,E) ist ein Subgraph H=(V,F), für den

$$\operatorname{dist}_{H}(u,v) \leq t \cdot \operatorname{dist}_{G}(u,v)$$

für alle Paare von Knoten $u, v \in V$ gilt.

Subgraph: $F \subseteq E$

Definition

Ein t-Spanner (Spanner mit Stretch t) eines Graphen G=(V,E) ist ein Subgraph H=(V,F), für den

$$\operatorname{dist}_{H}(u,v) \leq t \cdot \operatorname{dist}_{G}(u,v)$$

für alle Paare von Knoten $u, v \in V$ gilt.

Subgraph: $F \subseteq E$

Definition

Ein t-Spanner (Spanner mit Stretch t) eines Graphen G=(V,E) ist ein Subgraph H=(V,F), für den

$$\operatorname{dist}_{H}(u,v) \leq t \cdot \operatorname{dist}_{G}(u,v)$$

für alle Paare von Knoten $u, v \in V$ gilt.

Subgraph: $F \subseteq E$

Definition

Ein t-Spanner (Spanner mit Stretch t) eines Graphen G=(V,E) ist ein Subgraph H=(V,F), für den

$$\operatorname{dist}_{H}(u,v) \leq t \cdot \operatorname{dist}_{G}(u,v)$$

für alle Paare von Knoten $u, v \in V$ gilt.

Definition

Ein t-Spanner (Spanner mit Stretch t) eines Graphen G=(V,E) ist ein Subgraph H=(V,F), für den

$$\operatorname{dist}_{H}(u,v) \leq t \cdot \operatorname{dist}_{G}(u,v)$$

für alle Paare von Knoten $u, v \in V$ gilt.

Lemma

Für jeden Spanner H von G gilt: $\operatorname{dist}_H(u,v) \ge \operatorname{dist}_G(u,v)$ für jedes Paar von Knoten $u,v \in V$.

Definition

Ein t-Spanner (Spanner mit $Stretch\ t$) eines Graphen G=(V,E) ist ein Subgraph H=(V,F), für den

$$\operatorname{dist}_{H}(u,v) \leq t \cdot \operatorname{dist}_{G}(u,v)$$

für alle Paare von Knoten $u, v \in V$ gilt.

Lemma

Für jeden Spanner H von G gilt: $\operatorname{dist}_H(u,v) \ge \operatorname{dist}_G(u,v)$ für jedes Paar von Knoten $u,v \in V$.

Lemma

Ein Subgraph H=(V,F) ist genau dann ein t-Spanner von G=(V,E) wenn ${\rm dist}_H(u,v)\leq t\cdot w_G(u,v)$

für **jede Kante** $(u, v) \in E$ gilt.

Definition

Ein t-Spanner (Spanner mit $Stretch\ t$) eines Graphen G=(V,E) ist ein Subgraph H=(V,F), für den

$$\operatorname{dist}_{H}(u,v) \leq t \cdot \operatorname{dist}_{G}(u,v)$$

für alle Paare von Knoten $u, v \in V$ gilt.

Lemma

Für jeden Spanner H von G gilt: $\operatorname{dist}_H(u,v) \ge \operatorname{dist}_G(u,v)$ für jedes Paar von Knoten $u,v \in V$.

Lemma

Ein Subgraph H=(V,F) ist genau dann ein t-Spanner von G=(V,E) wenn ${\rm dist}_H(u,v)\leq t\cdot w_G(u,v)$

für **jede Kante** $(u, v) \in E$ *gilt.*

Heute: Ungerichtete, ungewichtete Graphen mit $w_G(u, v) = 1$

Ziel: Berechne 3-Spanner für Graph G = (V, E)

Ziel: Berechne 3-Spanner für Graph G = (V, E)

1 $F \leftarrow \emptyset$

Ziel: Berechne 3-Spanner für Graph G = (V, E)

- 1 $F \leftarrow \emptyset$
- 2 foreach $(u, v) \in E$ do
- 3 | Sei H = (V, F)

Ziel: Berechne 3-Spanner für Graph G = (V, E)

```
1 F \leftarrow \emptyset

2 foreach (u, v) \in E do

3 | Sei H = (V, F)

4 | if \operatorname{dist}_H(u, v) > 3 then

5 | F \leftarrow F \cup \{(u, v)\}
```

Ziel: Berechne 3-Spanner für Graph G = (V, E)

```
1 F \leftarrow \emptyset

2 foreach (u, v) \in E do

3 | Sei H = (V, F)

4 | if \operatorname{dist}_H(u, v) > 3 then

5 | F \leftarrow F \cup \{(u, v)\}
```

Lemma

H = (V, F) ist ein 3-Spanner von G.

Ziel: Berechne 3-Spanner für Graph G = (V, E)

```
1 F \leftarrow \emptyset

2 foreach (u, v) \in E do

3 | Sei H = (V, F)

4 | if \operatorname{dist}_H(u, v) > 3 then

5 | F \leftarrow F \cup \{(u, v)\}
```

Lemma

H = (V, F) ist ein 3-Spanner von G.

Beweis:

• Sei $(u, v) \in E$ beliebige Kante von G

Ziel: Berechne 3-Spanner für Graph G = (V, E)

```
1 F \leftarrow \emptyset

2 foreach (u, v) \in E do

3 | Sei H = (V, F)

4 | if \operatorname{dist}_H(u, v) > 3 then

5 | F \leftarrow F \cup \{(u, v)\}
```

Lemma

H = (V, F) ist ein 3-Spanner von G.

- Sei $(u, v) \in E$ beliebige Kante von G
- Falls $(u, v) \in F$: $dist_H(u, v) = 1 \le 3$

Ziel: Berechne 3-Spanner für Graph G = (V, E)

```
1 F \leftarrow \emptyset

2 foreach (u, v) \in E do

3 | Sei H = (V, F)

4 | if \operatorname{dist}_H(u, v) > 3 then

5 | F \leftarrow F \cup \{(u, v)\}
```

Lemma

H = (V, F) ist ein 3-Spanner von G.

- Sei $(u, v) \in E$ beliebige Kante von G
- Falls $(u, v) \in F$: $dist_H(u, v) = 1 \le 3$
- Falls $(u, v) \notin F$: Sei H' = (V, F') der Zustand von H direkt vor der Entscheidung "gegen" (u, v).

Ziel: Berechne 3-Spanner für Graph G = (V, E)

```
1 F \leftarrow \emptyset

2 foreach (u, v) \in E do

3 | Sei H = (V, F)

4 | if \operatorname{dist}_H(u, v) > 3 then

5 | F \leftarrow F \cup \{(u, v)\}
```

Lemma

```
H = (V, F) ist ein 3-Spanner von G.
```

- Sei $(u, v) \in E$ beliebige Kante von G
- Falls $(u, v) \in F$: $dist_H(u, v) = 1 \le 3$
- Falls $(u, v) \notin F$: Sei H' = (V, F') der Zustand von H direkt vor der Entscheidung "gegen" (u, v). Da $F' \subseteq F$: dist $H(u, v) \leq \operatorname{dist}_{H'}(u, v) \leq 3$

Definition

Der Girth (Taillenweite) eines Graphen ist die Länge seines kürzesten Kreises.

Definition

Der Girth (Taillenweite) eines Graphen ist die Länge seines kürzesten Kreises.

Lemma

H = (V, F) hat Girth > 4.

Definition

Der Girth (Taillenweite) eines Graphen ist die Länge seines kürzesten Kreises.

Lemma

H = (V, F) hat Girth > 4.

Beweis:

• Annahme: H hat Kreis K der Länge ≤ 4 .

Definition

Der Girth (Taillenweite) eines Graphen ist die Länge seines kürzesten Kreises.

Lemma

H = (V, F) hat Girth > 4.

- Annahme: H hat Kreis K der Länge ≤ 4 .
- Sei (u, v) die zuletzt hinzugefügte Kante des Kreises.

Definition

Der Girth (Taillenweite) eines Graphen ist die Länge seines kürzesten Kreises.

Lemma

H = (V, F) hat Girth > 4.

- Annahme: H hat Kreis K der Länge ≤ 4 .
- Sei (u, v) die zuletzt hinzugefügte Kante des Kreises. Vor dem Hinzufügen: kein Weg von u nach v der Länge 3 in H. Daher:

$$|K \setminus \{(u,v)\}| > 3$$

Definition

Der Girth (Taillenweite) eines Graphen ist die Länge seines kürzesten Kreises.

Lemma

H = (V, F) hat Girth > 4.

Beweis:

- Annahme: H hat Kreis K der Länge ≤ 4 .
- Sei (u, v) die zuletzt hinzugefügte Kante des Kreises. Vor dem Hinzufügen: kein Weg von u nach v der Länge 3 in H. Daher:

$$|K \setminus \{(u,v)\}| > 3$$

Andererseits:

$$|K \setminus \{(u,v)\}| = |K| - 1 \le 4 - 1 = 3$$

Definition

Der Girth (Taillenweite) eines Graphen ist die Länge seines kürzesten Kreises.

Lemma

H = (V, F) hat Girth > 4.

Beweis:

- Annahme: H hat Kreis K der Länge ≤ 4 .
- Sei (u, v) die zuletzt hinzugefügte Kante des Kreises. Vor dem Hinzufügen: kein Weg von u nach v der Länge 3 in H. Daher:

$$|K \setminus \{(u,v)\}| > 3$$

Andererseits:

$$|K \setminus \{(u,v)\}| = |K| - 1 \le 4 - 1 = 3$$

Widerspruch!

Lemma

Jeder ungerichtete Graph mit n Knoten und Girth > 4 hat $O(n^{3/2})$ Kanten.

Lemma

Jeder ungerichtete Graph mit n Knoten und Girth > 4 hat $O(n^{3/2})$ Kanten.

Beweis:

• Sei G ein Graph mit Girth > 4 und mindestens $3n^{3/2}$ Kanten.

Lemma

Jeder ungerichtete Graph mit n Knoten und Girth > 4 hat $O(n^{3/2})$ Kanten.

- Sei G ein Graph mit Girth > 4 und mindestens $3n^{3/2}$ Kanten.
- Entferne wiederholt Knoten mit Grad $< n^{1/2} + 1$ (mit allen anliegenden Kanten), bis jeder Knoten Grad $\ge n^{1/2} + 1$ hat.

Lemma

Jeder ungerichtete Graph mit n Knoten und Girth > 4 hat $O(n^{3/2})$ Kanten.

- Sei G ein Graph mit Girth > 4 und mindestens $3n^{3/2}$ Kanten.
- Entferne wiederholt Knoten mit Grad $< n^{1/2} + 1$ (mit allen anliegenden Kanten), bis jeder Knoten Grad $\ge n^{1/2} + 1$ hat.
- Dadurch werden $\leq n \cdot (n^{1/2} + 1) \leq 2n^{3/2}$ Kanten entfernt.

Lemma

Jeder ungerichtete Graph mit n Knoten und Girth > 4 hat $O(n^{3/2})$ Kanten.

- Sei G ein Graph mit Girth > 4 und mindestens $3n^{3/2}$ Kanten.
- Entferne wiederholt Knoten mit Grad $< n^{1/2} + 1$ (mit allen anliegenden Kanten), bis jeder Knoten Grad $\ge n^{1/2} + 1$ hat.
- Dadurch werden $\leq n \cdot (n^{1/2} + 1) \leq 2n^{3/2}$ Kanten entfernt.
- Der resultierende Graph G' = (V', E') hat
 - $|E'| \ge |E| 2n^{3/2} \ge n^{3/2}$
 - wegen $|E'| \le |V'|^2$: $|V'| \ge |E'|/|V'| \ge |E'|/n \ge n^{3/2}/n = n^{1/2} \ne 0$
 - minimalen Grad $\geq n^{1/2} + 1 \geq |V'|^{1/2} + 1$

Lemma

Jeder ungerichtete Graph mit n Knoten und Girth > 4 hat $O(n^{3/2})$ Kanten.

Beweis:

- Sei G ein Graph mit Girth > 4 und mindestens $3n^{3/2}$ Kanten.
- Entferne wiederholt Knoten mit Grad $< n^{1/2} + 1$ (mit allen anliegenden Kanten), bis jeder Knoten Grad $\ge n^{1/2} + 1$ hat.
- Dadurch werden $\leq n \cdot (n^{1/2} + 1) \leq 2n^{3/2}$ Kanten entfernt.
- Der resultierende Graph G' = (V', E') hat
 - $|E'| \ge |E| 2n^{3/2} \ge n^{3/2}$
 - wegen $|E'| \le |V'|^2$: $|V'| \ge |E'|/|V'| \ge |E'|/n \ge n^{3/2}/n = n^{1/2} \ne 0$
 - minimalen Grad $\geq n^{1/2} + 1 \geq |V'|^{1/2} + 1$

Lemma

Jeder ungerichtete Graph mit n Knoten und min. Grad $\geq n^{1/2} + 1$ hat Girth ≤ 4 .

Lemma

Jeder ungerichtete Graph mit n Knoten und Girth > 4 hat $O(n^{3/2})$ Kanten.

Beweis:

- Sei G ein Graph mit Girth > 4 und mindestens $3n^{3/2}$ Kanten.
- Entferne wiederholt Knoten mit Grad $< n^{1/2} + 1$ (mit allen anliegenden Kanten), bis jeder Knoten Grad $\ge n^{1/2} + 1$ hat.
- Dadurch werden $\leq n \cdot (n^{1/2} + 1) \leq 2n^{3/2}$ Kanten entfernt.
- Der resultierende Graph G' = (V', E') hat
 - $|E'| \ge |E| 2n^{3/2} \ge n^{3/2}$
 - ▶ wegen $|E'| \le |V'|^2$: $|V'| \ge |E'|/|V'| \ge |E'|/n \ge n^{3/2}/n = n^{1/2} \ne 0$
 - minimalen Grad $\geq n^{1/2} + 1 \geq |V'|^{1/2} + 1$

Lemma

Jeder ungerichtete Graph mit n Knoten und min. Grad $\geq n^{1/2} + 1$ hat Girth ≤ 4 .

• Somit: G' hat Girth ≤ 4

Lemma

Jeder ungerichtete Graph mit n Knoten und Girth > 4 hat $O(n^{3/2})$ Kanten.

Beweis:

- Sei G ein Graph mit Girth > 4 und mindestens $3n^{3/2}$ Kanten.
- Entferne wiederholt Knoten mit Grad $< n^{1/2} + 1$ (mit allen anliegenden Kanten), bis jeder Knoten Grad $\ge n^{1/2} + 1$ hat.
- Dadurch werden $\leq n \cdot (n^{1/2} + 1) \leq 2n^{3/2}$ Kanten entfernt.
- Der resultierende Graph G' = (V', E') hat
 - $|E'| \ge |E| 2n^{3/2} \ge n^{3/2}$
 - wegen $|E'| \le |V'|^2$: $|V'| \ge |E'|/|V'| \ge |E'|/n \ge n^{3/2}/n = n^{1/2} \ne 0$
 - minimalen Grad $\geq n^{1/2} + 1 \geq |V'|^{1/2} + 1$

Lemma

Jeder ungerichtete Graph mit n Knoten und min. Grad $\geq n^{1/2} + 1$ hat Girth ≤ 4 .

- Somit: G' hat $Girth \leq 4$
- Da jeder Kreis in G' auch in G existiert: G hat Girth ≤ 4 Widerspruch!

Lemma

Jeder ungerichtete Graph mit n Knoten und min. Grad $\geq n^{1/2} + 1$ hat Girth ≤ 4 .

Lemma

Jeder ungerichtete Graph mit n Knoten und min. Grad $\geq n^{1/2} + 1$ hat Girth ≤ 4 .

Beweis:

• Angenommen, G hat Girth ≥ 5

Lemma

Jeder ungerichtete Graph mit n Knoten und min. Grad $\geq n^{1/2} + 1$ hat Girth ≤ 4 .

- Angenommen, G hat Girth ≥ 5
- G ist nicht kreisfrei ($\sum Grade \ge 2n \Rightarrow \#Kanten \ge n$)

Lemma

Jeder ungerichtete Graph mit n Knoten und min. Grad $\geq n^{1/2} + 1$ hat Girth ≤ 4 .

- Angenommen, G hat Girth ≥ 5
- *G* ist nicht kreisfrei (\sum Grade $\geq 2n \Rightarrow \#$ Kanten $\geq n$)
- Sei v ein beliebiger Knoten auf Kreis der Länge ≥ 5

Lemma

Jeder ungerichtete Graph mit n Knoten und min. Grad $\geq n^{1/2} + 1$ hat Girth ≤ 4 .

- Angenommen, G hat Girth ≥ 5
- *G* ist nicht kreisfrei (\sum Grade $\geq 2n \Rightarrow \#$ Kanten $\geq n$)
- Sei v ein beliebiger Knoten auf Kreis der Länge ≥ 5
- ullet Betrachte Breitensuchbaum der Tiefe 2 von v

Lemma

Jeder ungerichtete Graph mit n Knoten und min. Grad $\geq n^{1/2} + 1$ hat Girth ≤ 4 .

- Angenommen, G hat Girth ≥ 5
- *G* ist nicht kreisfrei (\sum Grade $\geq 2n \Rightarrow \#$ Kanten $\geq n$)
- Sei v ein beliebiger Knoten auf Kreis der Länge ≥ 5
- ullet Betrachte Breitensuchbaum der Tiefe 2 von v

Lemma

Jeder ungerichtete Graph mit n Knoten und min. Grad $\geq n^{1/2} + 1$ hat Girth ≤ 4 .

- Angenommen, G hat Girth ≥ 5
- *G* ist nicht kreisfrei (\sum Grade $\geq 2n \Rightarrow \#$ Kanten $\geq n$)
- Sei v ein beliebiger Knoten auf Kreis der Länge ≥ 5
- ullet Betrachte Breitensuchbaum der Tiefe 2 von v
- Keine Kanten zwischen Knoten im Baum (ansonsten Kreis der Länge ≤ 4)

Lemma

Jeder ungerichtete Graph mit n Knoten und min. Grad $\geq n^{1/2} + 1$ hat Girth ≤ 4 .

- Angenommen, G hat Girth ≥ 5
- *G* ist nicht kreisfrei (\sum Grade $\geq 2n \Rightarrow \#$ Kanten $\geq n$)
- Sei v ein beliebiger Knoten auf Kreis der Länge ≥ 5
- ullet Betrachte Breitensuchbaum der Tiefe 2 von v
- Keine Kanten zwischen Knoten im Baum (ansonsten Kreis der Länge ≤ 4)
- Für Girth ≥ 5 muss es noch mindestens einen Knoten mit Distanz 3 zu v geben

Lemma

Jeder ungerichtete Graph mit n Knoten und min. Grad $\geq n^{1/2} + 1$ hat Girth ≤ 4 .

- Angenommen, G hat Girth ≥ 5
- *G* ist nicht kreisfrei (\sum Grade $\geq 2n \Rightarrow \#$ Kanten $\geq n$)
- ullet Betrachte Breitensuchbaum der Tiefe 2 von v
- Keine Kanten zwischen Knoten im Baum (ansonsten Kreis der Länge ≤ 4)
- Für Girth ≥ 5 muss es noch mindestens einen Knoten mit Distanz 3 zu v geben
- Anzahl der Knoten im Graph:

$$|V| \ge (n^{1/2})^2 + 1$$

Lemma

Jeder ungerichtete Graph mit n Knoten und min. Grad $\geq n^{1/2} + 1$ hat Girth ≤ 4 .

- Angenommen, G hat Girth ≥ 5
- *G* ist nicht kreisfrei (\sum Grade $\geq 2n \Rightarrow \#$ Kanten $\geq n$)
- Sei v ein beliebiger Knoten auf Kreis der Länge ≥ 5
- ullet Betrachte Breitensuchbaum der Tiefe 2 von v
- Keine Kanten zwischen Knoten im Baum (ansonsten Kreis der Länge ≤ 4)
- Für Girth ≥ 5 muss es noch mindestens einen Knoten mit Distanz 3 zu v geben
- Anzahl der Knoten im Graph:

$$|V| \ge (n^{1/2})^2 + 1 \ge n + 1 > n$$

Lemma

Jeder ungerichtete Graph mit n Knoten und min. Grad $\geq n^{1/2} + 1$ hat Girth ≤ 4 .

- Angenommen, G hat Girth ≥ 5
- *G* ist nicht kreisfrei (\sum Grade $\geq 2n \Rightarrow \#$ Kanten $\geq n$)
- Sei v ein beliebiger Knoten auf Kreis der Länge ≥ 5
- ullet Betrachte Breitensuchbaum der Tiefe 2 von v
- Keine Kanten zwischen Knoten im Baum (ansonsten Kreis der Länge ≤ 4)
- Für Girth ≥ 5 muss es noch mindestens einen Knoten mit Distanz 3 zu v geben
- Anzahl der Knoten im Graph:

$$|V| \ge (n^{1/2})^2 + 1 \ge n + 1 > n$$
 Widerspruch!

Wir haben gezeigt:

Theorem

Jeder Graph G mit n Knoten hat einen 3-Spanner mit $O(n^{3/2})$ Kanten.

Wir haben gezeigt:

Theorem

Jeder Graph G mit n Knoten hat einen 3-Spanner mit $O(n^{3/2})$ Kanten.

Allgemein gilt:

Theorem

Wir haben gezeigt:

Theorem

Jeder Graph G mit n Knoten hat einen 3-Spanner mit $O(n^{3/2})$ Kanten.

Allgemein gilt:

Theorem

Für
$$k = \lceil \log n \rceil$$
:

Wir haben gezeigt:

Theorem

Jeder Graph G mit n Knoten hat einen 3-Spanner mit $O(n^{3/2})$ Kanten.

Allgemein gilt:

Theorem

Für
$$k = \lceil \log n \rceil$$
:

$$n^{1/k} \le n^{1/\log n}$$

Wir haben gezeigt:

Theorem

Jeder Graph G mit n Knoten hat einen 3-Spanner mit $O(n^{3/2})$ Kanten.

Allgemein gilt:

Theorem

Für
$$k = \lceil \log n \rceil$$
:

$$n^{1/k} \le n^{1/\log n} = \left(2^{\log n}\right)^{1/\log n}$$

Wir haben gezeigt:

Theorem

Jeder Graph G mit n Knoten hat einen 3-Spanner mit $O(n^{3/2})$ Kanten.

Allgemein gilt:

Theorem

Für jede ganze Zahl $k \ge 2$ hat jeder Graph G mit n Knoten einen (2k-1)-Spanner mit $O(n^{1+1/k})$ Kanten.

Für $k = \lceil \log n \rceil$:

$$n^{1/k} \le n^{1/\log n} = \left(2^{\log n}\right)^{1/\log n} = 2^{(1/\log n) \cdot \log n}$$

Wir haben gezeigt:

Theorem

Jeder Graph G mit n Knoten hat einen 3-Spanner mit $O(n^{3/2})$ Kanten.

Allgemein gilt:

Theorem

Für
$$k = \lceil \log n \rceil$$
:

$$n^{1/k} \le n^{1/\log n} = \left(2^{\log n}\right)^{1/\log n} = 2^{(1/\log n) \cdot \log n} = 2$$

Wir haben gezeigt:

Theorem

Jeder Graph G mit n Knoten hat einen 3-Spanner mit $O(n^{3/2})$ Kanten.

Allgemein gilt:

Theorem

Für jede ganze Zahl $k \ge 2$ hat jeder Graph G mit n Knoten einen (2k-1)-Spanner mit $O(n^{1+1/k})$ Kanten.

Für $k = \lceil \log n \rceil$:

$$n^{1/k} \le n^{1/\log n} = \left(2^{\log n}\right)^{1/\log n} = 2^{(1/\log n) \cdot \log n} = 2$$

Somit: $O(n^{1+1/k}) = O(n)$

Greedy (2k-1)-Spanner

```
Ziel: Berechne (2k-1)-Spanner für Graph G=(V,E)

1 F \leftarrow \emptyset

2 foreach (u,v) \in E do

3 | Sei H=(V,F)

4 | if \operatorname{dist}_H(u,v) > 2k-1 then

5 | F \leftarrow F \cup \{(u,v)\}
```

Greedy (2k-1)-Spanner

```
Ziel: Berechne (2k-1)-Spanner für Graph G=(V,E)

1 F \leftarrow \emptyset

2 foreach (u,v) \in E do

3 | Sei H=(V,F)

4 | if \operatorname{dist}_H(u,v) > 2k-1 then

5 | F \leftarrow F \cup \{(u,v)\}
```

Lemma

H = (V, F) ist ein (2k - 1)-Spanner von G.

Greedy (2k-1)-Spanner

```
Ziel: Berechne (2k-1)-Spanner für Graph G=(V,E)

1 F \leftarrow \emptyset

2 foreach (u,v) \in E do

3 | Sei H=(V,F)

4 | if \operatorname{dist}_H(u,v) > 2k-1 then

5 | F \leftarrow F \cup \{(u,v)\}
```

Lemma

H = (V, F) ist ein (2k - 1)-Spanner von G.

Beweis:

• Wie bei 3-Spanner

Lemma

H = (V, F) hat Girth > 2k.

Lemma

H = (V, F) hat Girth > 2k.

Beweis:

• Annahme: H hat Kreis K der Länge $\leq 2k$.

Lemma

H = (V, F) hat Girth > 2k.

- Annahme: H hat Kreis K der Länge $\leq 2k$.
- Sei (u, v) die zuletzt hinzugefügte Kante des Kreises.

Lemma

H = (V, F) hat Girth > 2k.

- Annahme: H hat Kreis K der Länge $\leq 2k$.
- Sei (u, v) die zuletzt hinzugefügte Kante des Kreises. Vor dem Hinzufügen: kein Weg von u nach v der Länge 2k 1 in H.

Lemma

H = (V, F) hat Girth > 2k.

- Annahme: H hat Kreis K der Länge $\leq 2k$.
- Sei (u, v) die zuletzt hinzugefügte Kante des Kreises. Vor dem Hinzufügen: kein Weg von u nach v der Länge 2k 1 in H. Daher:

$$|K\setminus\{(u,v)\}|>2k-1$$

Lemma

H = (V, F) hat Girth > 2k.

Beweis:

- Annahme: H hat Kreis K der Länge $\leq 2k$.
- Sei (u, v) die zuletzt hinzugefügte Kante des Kreises. Vor dem Hinzufügen: kein Weg von u nach v der Länge 2k-1 in H. Daher:

$$|K\setminus\{(u,v)\}|>2k-1$$

Andererseits:

$$|K \setminus \{(u, v)\}| = |K| - 1 \le 2k - 1$$

Lemma

H = (V, F) hat Girth > 2k.

Beweis:

- Annahme: H hat Kreis K der Länge $\leq 2k$.
- Sei (u, v) die zuletzt hinzugefügte Kante des Kreises. Vor dem Hinzufügen: kein Weg von u nach v der Länge 2k 1 in H. Daher:

$$|K \setminus \{(u,v)\}| > 2k-1$$

Andererseits:

$$|K \setminus \{(u, v)\}| = |K| - 1 \le 2k - 1$$

Widerspruch!

Lemma

Jeder ungerichtete Graph mit n Knoten und Girth > 2k hat $O(n^{1+1/k})$ Kanten.

Lemma

Jeder ungerichtete Graph mit n Knoten und Girth > 2k hat $O(n^{1+1/k})$ Kanten.

Lemma

Jeder ungerichtete Graph mit n Knoten und Minimalgrad $\geq n^{1/k} + 1$ hat Girth $\leq 2k$.

Lemma

Jeder ungerichtete Graph mit n Knoten und Girth > 2k hat $O(n^{1+1/k})$ Kanten.

Lemma

Jeder ungerichtete Graph mit n Knoten und Minimalgrad $\geq n^{1/k} + 1$ hat Girth $\leq 2k$.

Betrachte Breitensuchbaum der Tiefe k von v auf Kreis der Länge $\geq 2k + 1$:

Lemma

Jeder ungerichtete Graph mit n Knoten und Girth > 2k hat $O(n^{1+1/k})$ Kanten.

Lemma

Jeder ungerichtete Graph mit n Knoten und Minimalgrad $\geq n^{1/k} + 1$ hat Girth $\leq 2k$.

Betrachte Breitensuchbaum der Tiefe k von v auf Kreis der Länge $\geq 2k + 1$:

$$|V| \ge (n^{1/k})^k + 1 = n + 1 > n$$

Vermutete Optimalität

Girth Vermutung (Erdős)

Für jedes $k \ge 2$ und jedes genügend große n gibt es einen Graph mit n Knoten und $\Omega(n^{1+1/k})$ Kanten, der keinen Kreis der Länge $\le 2k$ besitzt.

(Bewiesen für k = 2, 3)

Girth Vermutung (Erdős)

Für jedes $k \ge 2$ und jedes genügend große n gibt es einen Graph mit n Knoten und $\Omega(n^{1+1/k})$ Kanten, der keinen Kreis der Länge $\le 2k$ besitzt.

(Bewiesen für k = 2, 3)

Lemma

Wenn die Girth Vermutung zutrifft, dann gibt es für alle genügend große n einen Graph G mit n Knoten, so dass jeder (2k-1)-Spanner von G mindestens $\Omega(n^{1+1/k})$ Kanten besitzt.

Girth Vermutung (Erdős)

Für jedes $k \ge 2$ und jedes genügend große n gibt es einen Graph mit n Knoten und $\Omega(n^{1+1/k})$ Kanten, der keinen Kreis der Länge $\le 2k$ besitzt.

(Bewiesen für k = 2, 3)

Lemma

Wenn die Girth Vermutung zutrifft, dann gibt es für alle genügend große n einen Graph G mit n Knoten, so dass jeder (2k-1)-Spanner von G mindestens $\Omega(n^{1+1/k})$ Kanten besitzt.

Beweis:

• Sei G wie in der Girth Vermutung: Girth > 2k und $\Omega(n^{1+1/k})$ Kanten

Girth Vermutung (Erdős)

Für jedes $k \ge 2$ und jedes genügend große n gibt es einen Graph mit n Knoten und $\Omega(n^{1+1/k})$ Kanten, der keinen Kreis der Länge $\le 2k$ besitzt.

(Bewiesen für k = 2, 3)

Lemma

Wenn die Girth Vermutung zutrifft, dann gibt es für alle genügend große n einen Graph G mit n Knoten, so dass jeder (2k-1)-Spanner von G mindestens $\Omega(n^{1+1/k})$ Kanten besitzt.

- Sei G wie in der Girth Vermutung: Girth > 2k und $\Omega(n^{1+1/k})$ Kanten
- Angenommen es gibt einen (nicht-trivialen) (2k-1)-Spanner H von G

Girth Vermutung (Erdős)

Für jedes $k \ge 2$ und jedes genügend große n gibt es einen Graph mit n Knoten und $\Omega(n^{1+1/k})$ Kanten, der keinen Kreis der Länge $\le 2k$ besitzt.

(Bewiesen für k = 2, 3)

Lemma

Wenn die Girth Vermutung zutrifft, dann gibt es für alle genügend große n einen Graph G mit n Knoten, so dass jeder (2k-1)-Spanner von G mindestens $\Omega(n^{1+1/k})$ Kanten besitzt.

- Sei G wie in der Girth Vermutung: Girth > 2k und $\Omega(n^{1+1/k})$ Kanten
- Angenommen es gibt einen (nicht-trivialen) (2k-1)-Spanner H von G
- Sei (u, v) Kante aus $G \setminus H$: \exists Pfad P der Länge 2k 1 von u nach v in H

Girth Vermutung (Erdős)

Für jedes $k \ge 2$ und jedes genügend große n gibt es einen Graph mit n Knoten und $\Omega(n^{1+1/k})$ Kanten, der keinen Kreis der Länge $\le 2k$ besitzt.

(Bewiesen für k = 2, 3)

Lemma

Wenn die Girth Vermutung zutrifft, dann gibt es für alle genügend große n einen Graph G mit n Knoten, so dass jeder (2k-1)-Spanner von G mindestens $\Omega(n^{1+1/k})$ Kanten besitzt.

- Sei G wie in der Girth Vermutung: Girth > 2k und $\Omega(n^{1+1/k})$ Kanten
- Angenommen es gibt einen (nicht-trivialen) (2k-1)-Spanner H von G
- Sei (u, v) Kante aus $G \setminus H$: \exists Pfad P der Länge 2k 1 von u nach v in H
- P + (u, v) ist Kreis der Länge 2k in G Widerspruch!

• Liefert (vermutlich) optimalen Spanner

- Liefert (vermutlich) optimalen Spanner
- ullet Schnelle Impementierung im RAM Modell: $O(kn^{2+1/k})$ [Roditty/Zwick '04]

- Liefert (vermutlich) optimalen Spanner
- Schnelle Impementierung im RAM Modell: $O(kn^{2+1/k})$ [Roditty/Zwick '04]
- Effiziente Implementierung in verteilten Modellen unklar

- Liefert (vermutlich) optimalen Spanner
- Schnelle Impementierung im RAM Modell: $O(kn^{2+1/k})$ [Roditty/Zwick '04]
- Effiziente Implementierung in verteilten Modellen unklar
- **Ziel**: Lokale Spanner-Konstruktionen, die effiziente Implementierungen ermöglichen

Definition

Ein Cluster ist eine Menge zusammenhängender Knoten. Ein Clustering ist eine Partition der Knoten des Graphen in Cluster.

Definition

Ein Cluster ist eine Menge zusammenhängender Knoten. Ein Clustering ist eine Partition der Knoten des Graphen in Cluster.

Theorem ([Baswana/Sen '03])

Für jedes $k \ge 2$ kann ein (2k-1)-Spanner eines ungerichteten Graphen mit $O(n^{1+1/k}+kn)$ Kanten in Erwartung in $O(k^2)$ Runden im CONGEST Modell berechnet werden.

Definition

Ein Cluster ist eine Menge zusammenhängender Knoten. Ein Clustering ist eine Partition der Knoten des Graphen in Cluster.

Theorem ([Baswana/Sen '03])

Für jedes $k \ge 2$ kann ein (2k-1)-Spanner eines ungerichteten Graphen mit $O(n^{1+1/k}+kn)$ Kanten in Erwartung in $O(k^2)$ Runden im CONGEST Modell berechnet werden.

Algorithmus von Baswana/Sen für gewichtete Graphen

Heute: Ungewichtete Graphen

Definition

Ein Cluster ist eine Menge zusammenhängender Knoten. Ein Clustering ist eine Partition der Knoten des Graphen in Cluster.

Theorem ([Baswana/Sen '03])

Für jedes $k \ge 2$ kann ein (2k-1)-Spanner eines ungerichteten Graphen mit $O(n^{1+1/k}+kn)$ Kanten in Erwartung in $O(k^2)$ Runden im CONGEST Modell berechnet werden.

Algorithmus von Baswana/Sen für gewichtete Graphen

Heute: Ungewichtete Graphen

Ziel: Jeder Knoten weiß, welche anliegenden Kanten zum Spanner gehören

- 1 $H \leftarrow (V, \emptyset)$
- $\mathbf{z} \ Z \leftarrow \emptyset$
- 3 foreach $Knoten v \in V$ do
- Füge v zu Z mit Wahrscheinlichkeit $p = \frac{1}{\sqrt{n}}$ hinzu und erstelle Cluster

- $1 H \leftarrow (V, \emptyset)$ $2 Z \leftarrow \emptyset$
- 3 foreach Knoten $v \in V$ do
- Füge v zu Z mit Wahrscheinlichkeit $p=\frac{1}{\sqrt{n}}$ hinzu und erstelle Cluster für v
- 5 **foreach** *Knoten* $v \in V \setminus Z$ **do**
- **if** v hat (mindestens) einen Nachbar aus Z **then**
- 7 Füge v zum Cluster eines Nachbarn aus Z in hinzu
- Füge Kante zu diesem Nachbar zu H hinzu

- $1 H \leftarrow (V, \emptyset)$ $2 Z \leftarrow \emptyset$
- 3 foreach Knoten $v \in V$ do
- Füge v zu Z mit Wahrscheinlichkeit $p=\frac{1}{\sqrt{n}}$ hinzu und erstelle Cluster für v
- 5 **foreach** *Knoten* $v \in V \setminus Z$ **do**
- if v hat (mindestens) einen Nachbar aus Z then
- Füge v zum Cluster eines Nachbarn aus Z in hinzu
 - Füge Kante zu diesem Nachbar zu H hinzu
- 9 **foreach** *Knoten* $v \in V$ **do**
- if v ist Teil eines Clusters then
 - Füge für jedes mit v benachbarte Cluster eine Kante zu H hinzu
- 12 else

11

Füge Kanten zu allen Nachbarn von v zu H hinzu

- $1 H \leftarrow (V, \emptyset)$ $2 Z \leftarrow \emptyset$
- 3 foreach Knoten $v \in V$ do
- Füge v zu Z mit Wahrscheinlichkeit $p=\frac{1}{\sqrt{n}}$ hinzu und erstelle Cluster für v
- 5 **foreach** *Knoten* $v \in V \setminus Z$ **do**
 - if v hat (mindestens) einen Nachbar aus Z then
- Füge v zum Cluster eines Nachbarn aus Z in hinzu
- Füge Kante zu diesem Nachbar zu H hinzu
- 9 **foreach** *Knoten* $v \in V$ **do**
- if v ist Teil eines Clusters then
- Füge für jedes mit v benachbarte Cluster eine Kante zu H hinzu
- 12 else
- Füge Kanten zu allen Nachbarn von v zu H hinzu

Laufzeit: O(1) Runden

Lemma

H hat Stretch 3.

Lemma

H hat Stretch 3.

Beweis:

• Sei (u, v) beliebige Kante von G

Lemma

H hat Stretch 3.

- Sei (u, v) beliebige Kante von G
- ullet Falls u oder v nicht geclustert ist: H enthält Kante (u,v)

Lemma

H hat Stretch 3.

- Sei (u, v) beliebige Kante von G
- Falls u oder v nicht geclustert ist: H enthält Kante (u, v)
- Falls sowohl u als auch v geclustert sind:
 - Cluster von v ist zu u benachbart

Lemma

H hat Stretch 3.

- Sei (u, v) beliebige Kante von G
- Falls u oder v nicht geclustert ist: H enthält Kante (u, v)
- Falls sowohl *u* als auch *v* geclustert sind:
 - Cluster von v ist zu u benachbart
 - ▶ Daher enthält *H* eine Kante (*u*, *w*), wobei *w* ein Knoten aus dem Cluster von *v* ist

Lemma

H hat Stretch 3.

- Sei (u, v) beliebige Kante von G
- Falls u oder v nicht geclustert ist: H enthält Kante (u, v)
- Falls sowohl *u* als auch *v* geclustert sind:
 - Cluster von v ist zu u benachbart
 - Daher enthält H eine Kante (u, w), wobei w ein Knoten aus dem Cluster von v ist
 - Somit gibt es einen Pfad der Länge höchstens 3 von u nach v über w und das gemeinsame Zentrum des Clusters von w und v

Drei Arten von Kanten in H:

Kanten zum Zentrum des Clusters für geclusterte Knoten

Kanten zu benachbarten Clustern für geclusterte Knoten

Kanten zu Nachbarn für nicht-geclusterte Knoten

Drei Arten von Kanten in *H*:

- Kanten zum Zentrum des Clusters für geclusterte Knoten
 - ► Höchstens eine Kante pro Knoten

Kanten zu benachbarten Clustern für geclusterte Knoten

Santen zu Nachbarn für nicht-geclusterte Knoten

Drei Arten von Kanten in *H*:

- Kanten zum Zentrum des Clusters für geclusterte Knoten
 - Höchstens eine Kante pro Knoten
 - ▶ Höchstens *n* geclusterte Knoten
- Kanten zu benachbarten Clustern für geclusterte Knoten

Santen zu Nachbarn für nicht-geclusterte Knoten

Drei Arten von Kanten in H:

- Kanten zum Zentrum des Clusters für geclusterte Knoten
 - Höchstens eine Kante pro Knoten
 - Höchstens n geclusterte Knoten
 - \rightarrow O(n) Kanten
- Kanten zu benachbarten Clustern für geclusterte Knoten

Santen zu Nachbarn für nicht-geclusterte Knoten

Drei Arten von Kanten in *H*:

- Kanten zum Zentrum des Clusters für geclusterte Knoten
 - Höchstens eine Kante pro Knoten
 - Höchstens n geclusterte Knoten
 - \rightarrow O(n) Kanten
- Kanten zu benachbarten Clustern für geclusterte Knoten
 - ► Höchstens |Z| Kanten pro Knoten

Kanten zu Nachbarn für nicht-geclusterte Knoten

- Kanten zum Zentrum des Clusters für geclusterte Knoten
 - Höchstens eine Kante pro Knoten
 - Höchstens n geclusterte Knoten
 - \rightarrow O(n) Kanten
- Kanten zu benachbarten Clustern für geclusterte Knoten
 - ► Höchstens |Z| Kanten pro Knoten
 - $Ex[|Z|] = pn = \sqrt{n}$
- Kanten zu Nachbarn für nicht-geclusterte Knoten

- Kanten zum Zentrum des Clusters für geclusterte Knoten
 - Höchstens eine Kante pro Knoten
 - Höchstens n geclusterte Knoten
 - \rightarrow O(n) Kanten
- Kanten zu benachbarten Clustern für geclusterte Knoten
 - ► Höchstens |Z| Kanten pro Knoten
 - $Ex[|Z|] = pn = \sqrt{n}$
 - ► Höchstens *n* geclusterte Knoten
- Kanten zu Nachbarn für nicht-geclusterte Knoten

- Kanten zum Zentrum des Clusters für geclusterte Knoten
 - Höchstens eine Kante pro Knoten
 - Höchstens n geclusterte Knoten
 - ightharpoonup o O(n) Kanten
- Kanten zu benachbarten Clustern für geclusterte Knoten
 - ► Höchstens |Z| Kanten pro Knoten
 - $Ex[|Z|] = pn = \sqrt{n}$
 - ► Höchstens *n* geclusterte Knoten
 - ▶ $\Rightarrow O(n^{3/2})$ Kanten in Erwartung
- Santen zu Nachbarn für nicht-geclusterte Knoten

- Kanten zum Zentrum des Clusters für geclusterte Knoten
 - Höchstens eine Kante pro Knoten
 - Höchstens n geclusterte Knoten
 - \rightarrow O(n) Kanten
- Kanten zu benachbarten Clustern für geclusterte Knoten
 - ▶ Höchstens |Z| Kanten pro Knoten
 - $Ex[|Z|] = pn = \sqrt{n}$
 - ► Höchstens *n* geclusterte Knoten
 - ▶ $\Rightarrow O(n^{3/2})$ Kanten in Erwartung
- Kanten zu Nachbarn für nicht-geclusterte Knoten
 - In Erwartung höchstens $\frac{1}{p} = \sqrt{n}$ Nachbarn pro Knoten

- Kanten zum Zentrum des Clusters für geclusterte Knoten
 - Höchstens eine Kante pro Knoten
 - Höchstens n geclusterte Knoten
 - \rightarrow O(n) Kanten
- Kanten zu benachbarten Clustern für geclusterte Knoten
 - ► Höchstens |Z| Kanten pro Knoten
 - $Ex[|Z|] = pn = \sqrt{n}$
 - ► Höchstens *n* geclusterte Knoten
 - ▶ $\Rightarrow O(n^{3/2})$ Kanten in Erwartung
- Santen zu Nachbarn für nicht-geclusterte Knoten
 - In Erwartung höchstens $\frac{1}{p} = \sqrt{n}$ Nachbarn pro Knoten Waiting Time Bound!

- Kanten zum Zentrum des Clusters für geclusterte Knoten
 - Höchstens eine Kante pro Knoten
 - Höchstens n geclusterte Knoten
 - ightharpoonup
 ightharpoonup O(n) Kanten
- Kanten zu benachbarten Clustern für geclusterte Knoten
 - ► Höchstens |Z| Kanten pro Knoten
 - $Ex[|Z|] = pn = \sqrt{n}$
 - ► Höchstens *n* geclusterte Knoten
 - ▶ $\Rightarrow O(n^{3/2})$ Kanten in Erwartung
- Kanten zu Nachbarn für nicht-geclusterte Knoten
 - In Erwartung höchstens $\frac{1}{p} = \sqrt{n}$ Nachbarn pro Knoten Waiting Time Bound!
 - ► Höchstens *n* nicht-geclusterte Knoten

- Kanten zum Zentrum des Clusters für geclusterte Knoten
 - ► Höchstens eine Kante pro Knoten
 - Höchstens n geclusterte Knoten
 - \rightarrow O(n) Kanten
- Kanten zu benachbarten Clustern für geclusterte Knoten
 - ► Höchstens |Z| Kanten pro Knoten
 - $Ex[|Z|] = pn = \sqrt{n}$
 - ► Höchstens *n* geclusterte Knoten
 - ▶ $\Rightarrow O(n^{3/2})$ Kanten in Erwartung
- Kanten zu Nachbarn für nicht-geclusterte Knoten
 - In Erwartung höchstens $\frac{1}{p} = \sqrt{n}$ Nachbarn pro Knoten Waiting Time Bound!
 - ► Höchstens *n* nicht-geclusterte Knoten
 - ▶ $\Rightarrow O(n^{3/2})$ Kanten in Erwartung

- Kanten zum Zentrum des Clusters für geclusterte Knoten
 - Höchstens eine Kante pro Knoten
 - Höchstens n geclusterte Knoten
 - \rightarrow O(n) Kanten
- Kanten zu benachbarten Clustern für geclusterte Knoten
 - ► Höchstens |Z| Kanten pro Knoten
 - $Ex[|Z|] = pn = \sqrt{n}$
 - ► Höchstens *n* geclusterte Knoten
 - ▶ $\Rightarrow O(n^{3/2})$ Kanten in Erwartung
- Kanten zu Nachbarn für nicht-geclusterte Knoten
 - In Erwartung höchstens $\frac{1}{p} = \sqrt{n}$ Nachbarn pro Knoten Waiting Time Bound!
 - ► Höchstens *n* nicht-geclusterte Knoten
 - \rightarrow $O(n^{3/2})$ Kanten in Erwartung
- \Rightarrow Spanner mit $O(n^{3/2})$ Kanten in Erwartung

- 1 $H \leftarrow (V, \emptyset)$
- 2 Sei C_0 triviales Clustering: Jedes Cluster besteht aus einem Knoten

```
1 H \leftarrow (V, \emptyset)
```

2 Sei C_0 triviales Clustering: Jedes Cluster besteht aus einem Knoten

```
3 for i = 0 to k - 1 do
```

Arbeite auf Subgraph G_i induziert durch Knoten in C_i

5 | if
$$i = k - 1$$
 then
6 | $C_{i+1} = \emptyset$

else

Füge jedes Cluster aus C_i mit Wahrscheinlichkeit $\frac{1}{n^{1/k}}$ zu C_{i+1} hinzu

```
1 H \leftarrow (V, \emptyset)
```

2 Sei C_0 triviales Clustering: Jedes Cluster besteht aus einem Knoten

```
3 for i = 0 to k - 1 do
```

Arbeite auf Subgraph G_i induziert durch Knoten in C_i

5 **if**
$$i = k - 1$$
 then

$$C_{i+1} = \emptyset$$

else

8

9

10

11

12

13

Füge jedes Cluster aus C_i mit Wahrscheinlichkeit $\frac{1}{n^{1/k}}$ zu C_{i+1}

hinzu

foreach *Knoten* v *aus Cluster in* $C_i \setminus C_{i+1}$ **do**

if v hat (mindestens) einen Nachbar in einem Cluster aus C_{i+1} then

Füge v zu einem der Nachbarcluster aus C_{i+1} hinzu

Füge Kante zu entsprechendem Nachbar zu H hinzu

else

```
1 H \leftarrow (V, \emptyset)
```

2 Sei C_0 triviales Clustering: Jedes Cluster besteht aus einem Knoten

3 **for**
$$i = 0$$
 to $k - 1$ **do**

Arbeite auf Subgraph G_i induziert durch Knoten in C_i

5 | **if**
$$i = k - 1$$
 then 6 | $C_{i+1} = \emptyset$

else

8

9

10

11

12

13

14

Füge jedes Cluster aus C_i mit Wahrscheinlichkeit $\frac{1}{n^{1/k}}$ zu C_{i+1} hinzu

foreach Knoten v aus Cluster in $C_i \setminus C_{i+1}$ **do**

if v hat (mindestens) einen Nachbar in einem Cluster aus C_{i+1} **then**

Füge v zu einem der Nachbarcluster aus C_{i+1} hinzu Füge Kante zu entsprechendem Nachbar zu H hinzu

else

Füge für jedes mit v benachbarte Cluster aus C_i eine Kante zu H hinzu

Lemma

Jedes Cluster in C_i hat Radius ≤ i.

(Es gibt einen Knoten in C_i mit Distanz $\leq i$ zu jedem anderen Knoten in C_i .)

Lemma

Jedes Cluster in C_i hat Radius ≤ i.

(Es gibt einen Knoten in C_i mit Distanz $\leq i$ zu jedem anderen Knoten in C_i .)

Lemma

H hat Stretch 2k - 1.

- Sei (u, v) beliebige Kante von G
- Betrachte i so dass $u \in C_i \setminus C_{i+1}$ und j so dass $v \in C_j \setminus C_{j+1}$

Lemma

Jedes Cluster in C_i hat Radius ≤ i.

(Es gibt einen Knoten in C_i mit Distanz $\leq i$ zu jedem anderen Knoten in C_i .)

Lemma

H hat $Stretch\ 2k-1$.

- Sei (u, v) beliebige Kante von G
- Betrachte i so dass $u \in C_i \setminus C_{i+1}$ und j so dass $v \in C_j \setminus C_{j+1}$
- Ohne Beschränkung der Allgemeinheit: $i \le j$

Lemma

Jedes Cluster in C_i hat Radius ≤ i.

(Es gibt einen Knoten in C_i mit Distanz $\leq i$ zu jedem anderen Knoten in C_i .)

Lemma

H hat $Stretch\ 2k-1$.

- Sei (u, v) beliebige Kante von G
- Betrachte i so dass $u \in C_i \setminus C_{i+1}$ und j so dass $v \in C_j \setminus C_{j+1}$
- Ohne Beschränkung der Allgemeinheit: $i \le j$
- v ist in einem Nachbarcluster C von u in C_i enthalten

Lemma

Jedes Cluster in C_i hat Radius ≤ i.

(Es gibt einen Knoten in C_i mit Distanz $\leq i$ zu jedem anderen Knoten in C_i .)

Lemma

H hat $Stretch\ 2k-1$.

- Sei (u, v) beliebige Kante von G
- Betrachte i so dass $u \in C_i \setminus C_{i+1}$ und j so dass $v \in C_j \setminus C_{j+1}$
- Ohne Beschränkung der Allgemeinheit: $i \le j$
- v ist in einem Nachbarcluster C von u in C_i enthalten
- Im Spanner gibt es daher eine Kante (u, w) zu einem Knoten w in C

Lemma

Jedes Cluster in C_i hat Radius ≤ i.

(Es gibt einen Knoten in C_i mit Distanz $\leq i$ zu jedem anderen Knoten in C_i .)

Lemma

H hat $Stretch\ 2k-1$.

- Sei (u, v) beliebige Kante von G
- Betrachte i so dass $u \in C_i \setminus C_{i+1}$ und j so dass $v \in C_j \setminus C_{j+1}$
- Ohne Beschränkung der Allgemeinheit: $i \le j$
- v ist in einem Nachbarcluster C von u in C_i enthalten
- Im Spanner gibt es daher eine Kante (u, w) zu einem Knoten w in C
- C hat Radius i, somit:

$$\operatorname{dist}_{H}(u, v) \leq 1 + i + i$$

Lemma

Jedes Cluster in C_i hat Radius ≤ i.

(Es gibt einen Knoten in C_i mit Distanz $\leq i$ zu jedem anderen Knoten in C_i .)

Lemma

H hat $Stretch\ 2k-1$.

- Sei (u, v) beliebige Kante von G
- Betrachte i so dass $u \in C_i \setminus C_{i+1}$ und j so dass $v \in C_j \setminus C_{j+1}$
- Ohne Beschränkung der Allgemeinheit: $i \le j$
- v ist in einem Nachbarcluster C von u in C_i enthalten
- Im Spanner gibt es daher eine Kante (u, w) zu einem Knoten w in C
- *C* hat Radius *i*, somit:

$$dist_H(u, v) \le 1 + i + i = 2i + 1 \le 2(k - 1) + 1 = 2k - 1$$

Lemma

H hat $O(n^{1+1/k} + kn)$ Kanten in Erwartung.

Lemma

H hat $O(n^{1+1/k} + kn)$ Kanten in Erwartung.

Beweis:

• Zwei Arten von Kanten für jeden Knoten: Kanten zur Erweiterung eines Clusters und Kanten zu benachbarten Clustern

Lemma

H hat $O(n^{1+1/k} + kn)$ Kanten in Erwartung.

- Zwei Arten von Kanten für jeden Knoten: Kanten zur Erweiterung eines Clusters und Kanten zu benachbarten Clustern
- In jeder der k Iteration fügt jeder der n Knoten höchstens eine Kante zur Erweiterung des Clusters zum Spanner hinzu

Lemma

H hat $O(n^{1+1/k} + kn)$ Kanten in Erwartung.

- Zwei Arten von Kanten für jeden Knoten: Kanten zur Erweiterung eines Clusters und Kanten zu benachbarten Clustern
- In jeder der k Iteration fügt jeder der n Knoten höchstens eine Kante zur Erweiterung des Clusters zum Spanner hinzu
- Für $0 \le i \le k 2$: Knoten in $C_i \setminus C_{i+1}$ hat in Erwartung $O(n^{1/k})$ benachbarte Cluster aus C_i

Lemma

H hat $O(n^{1+1/k} + kn)$ Kanten in Erwartung.

- Zwei Arten von Kanten für jeden Knoten: Kanten zur Erweiterung eines Clusters und Kanten zu benachbarten Clustern
- In jeder der k Iteration fügt jeder der n Knoten höchstens eine Kante zur Erweiterung des Clusters zum Spanner hinzu
- Für $0 \le i \le k 2$: Knoten in $C_i \setminus C_{i+1}$ hat in Erwartung $O(n^{1/k})$ benachbarte Cluster aus C_i Waiting Time Bound!

Lemma

H hat $O(n^{1+1/k} + kn)$ Kanten in Erwartung.

- Zwei Arten von Kanten für jeden Knoten: Kanten zur Erweiterung eines Clusters und Kanten zu benachbarten Clustern
- In jeder der k Iteration fügt jeder der n Knoten höchstens eine Kante zur Erweiterung des Clusters zum Spanner hinzu
- Für $0 \le i \le k 2$: Knoten in $C_i \setminus C_{i+1}$ hat in Erwartung $O(n^{1/k})$ benachbarte Cluster aus C_i Waiting Time Bound!
- Somit: Jeder Knoten in Clustering $C_i \setminus C_{i+1}$ (für $i \le k-2$) fügt in Erwartung $O(n^{1/k})$ Kanten zum Spanner hinzu

Lemma

H hat $O(n^{1+1/k} + kn)$ Kanten in Erwartung.

- Zwei Arten von Kanten für jeden Knoten: Kanten zur Erweiterung eines Clusters und Kanten zu benachbarten Clustern
- ullet In jeder der k Iteration fügt jeder der n Knoten höchstens eine Kante zur Erweiterung des Clusters zum Spanner hinzu
- Für $0 \le i \le k 2$: Knoten in $C_i \setminus C_{i+1}$ hat in Erwartung $O(n^{1/k})$ benachbarte Cluster aus C_i Waiting Time Bound!
- Somit: Jeder Knoten in Clustering $C_i \setminus C_{i+1}$ (für $i \le k-2$) fügt in Erwartung $O(n^{1/k})$ Kanten zum Spanner hinzu
- Erwartete Anzahl an Clustern in C_{k-1} : $\frac{n}{(n^{1/k})^{k-1}} = \frac{n}{n^{k-1/k}} = n^{1/k}$

Lemma

H hat $O(n^{1+1/k} + kn)$ Kanten in Erwartung.

- Zwei Arten von Kanten für jeden Knoten: Kanten zur Erweiterung eines Clusters und Kanten zu benachbarten Clustern
- In jeder der k Iteration fügt jeder der n Knoten höchstens eine Kante zur Erweiterung des Clusters zum Spanner hinzu
- Für $0 \le i \le k 2$: Knoten in $C_i \setminus C_{i+1}$ hat in Erwartung $O(n^{1/k})$ benachbarte Cluster aus C_i Waiting Time Bound!
- Somit: Jeder Knoten in Clustering $C_i \setminus C_{i+1}$ (für $i \le k-2$) fügt in Erwartung $O(n^{1/k})$ Kanten zum Spanner hinzu
- Erwartete Anzahl an Clustern in C_{k-1} : $\frac{n}{(n^{1/k})^{k-1}} = \frac{n}{n^{k-1/k}} = n^{1/k}$
- Jeder Knoten in Clustering C_{k-1} fügt in Erwartung $O(n^{1/k})$ Kanten zum Spanner hinzu

Lemma

H hat $O(n^{1+1/k} + kn)$ Kanten in Erwartung.

- Zwei Arten von Kanten für jeden Knoten: Kanten zur Erweiterung eines Clusters und Kanten zu benachbarten Clustern
- In jeder der k Iteration fügt jeder der n Knoten höchstens eine Kante zur Erweiterung des Clusters zum Spanner hinzu
- Für $0 \le i \le k 2$: Knoten in $C_i \setminus C_{i+1}$ hat in Erwartung $O(n^{1/k})$ benachbarte Cluster aus C_i Waiting Time Bound!
- Somit: Jeder Knoten in Clustering $C_i \setminus C_{i+1}$ (für $i \le k-2$) fügt in Erwartung $O(n^{1/k})$ Kanten zum Spanner hinzu
- Erwartete Anzahl an Clustern in C_{k-1} : $\frac{n}{(n^{1/k})^{k-1}} = \frac{n}{n^{k-1/k}} = n^{1/k}$
- Jeder Knoten in Clustering C_{k-1} fügt in Erwartung $O(n^{1/k})$ Kanten zum Spanner hinzu
- Insgesamt: $O(k \cdot n + n \cdot n^{1/k})$ Kanten in Erwartung

Laufzeitanalyse

Laufzeitanalyse

Analyse/Implementierungsdetail:

• Jede Iteration benötigt O(i) = O(k) Runden um Cluster zu samplen und alle Knoten im Cluster und Nachbarn des Clusters darüber zu informieren

(Jedes Cluster in C_i hat Radius $\leq i$)

Laufzeitanalyse

Analyse/Implementierungsdetail:

- Jede Iteration benötigt O(i) = O(k) Runden um Cluster zu samplen und alle Knoten im Cluster und Nachbarn des Clusters darüber zu informieren
 - (Jedes Cluster in C_i hat Radius $\leq i$)
- Somit: Laufzeit $O(k^2)$

Zusammenfassung

- Spanner komprimiert Graph mit Distanz-Approximation
- Obere Schranke: $O(n^{1+1/k})$ Kanten für (2k-1)-Spanner
- Untere Schranke: $\Omega(n^{1+1/k})$ Kanten für (2k-1)-Spanner
- Verteilter Algorithmus: $O(n^{1+1/k} + kn)$ Kanten für (2k-1)-Spanner in $O(k^2)$ Runden

Quellen

Der Inhalt dieser Vorlesungseinheit basiert zum Teil auf einer Vorlesungseinheit von Virginia Vassilevska Williams.

Literatur:

- Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, José Soares: "On Sparse Spanners of Weighted Graphs". *Discrete & Computational Geometry* 9: 81–100 (1993)
- Surender Baswana, Sandeep Sen. "A simple and linear time randomized algorithm for computing sparse spanners in weighted graphs". Random Structures and Algorithms 30(4): 532–563 (2007)
- Liam Roditty, Uri Zwick. "On Dynamic Shortest Paths Problems". *Algorithmica* 61(2): 389–401 (2011)