

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER P-1111	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) REVISED OPTSA MODEL Volume 2: Computer Program Documentation		5. TYPE OF REPORT & PERIOD COVERED Final
7. AUTHOR(s) Lowell Bruce Anderson Eleanor L. Schwartz Jerome Bracken		6. PERFORMING ORG. REPORT NUMBER P-1111
8. PERFORMING ORGANIZATION NAME AND ADDRESS Institute for Defense Analyses Program Analysis Division 400 Army-Navy Drive, Arlington, Va. 22202		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS T-229
11. CONTROLLING OFFICE NAME AND ADDRESS Weapons Systems Evaluation Group 400 Army-Navy Drive, Arlington, Va. 22202		12. REPORT DATE June 1975
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 104
		15. SECURITY CLASS. (of this report) Unclassified
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Further requests for this document must be approved by Director, Weapons Systems Evaluation Group, Arlington, Virginia 22202.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Aircraft Allocation to Missions, Multi-Stage Game, Game Theory, General Purpose Forces, Tactical Air Forces		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This paper describes and documents an improved version of the optimal sortie allocation model (OPTSA) previously presented in IDA Papers P-992 and P-993, published in December 1973. OPTSA is a model for computing allocations of general purpose aircraft to combat air support airbase attack, and intercept missions. The mathematical problem is a two-side, zero-sum, multi-stage game with simultaneous moves at each		

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. continued

stage. The revised OPTSA model includes a substantially improved game-solving procedure and a more detailed simulation of warfare between the opposing sides.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

PAPER P-1111

REVISED OPTSA MODEL

Volume 2: Computer Program Documentation

Lowell Bruce Anderson
Jerome Bracken
Eleanor L. Schwartz

September 1975

INSTITUTE FOR DEFENSE ANALYSES
PROGRAM ANALYSIS DIVISION

PAPER P-1111

REVISED OPTSA MODEL

Volume 2: Computer Program Documentation

Lowell Bruce Anderson
Jerome Bracken
Eleanor L. Schwartz

September 1975

INSTITUTE FOR DEFENSE ANALYSES
PROGRAM ANALYSIS DIVISION
400 Army-Navy Drive, Arlington, Virginia 22202
Contract DAHC15 73 C 0200
Task Order T-229

CONTENTS OF VOLUME 2

PREFACE	v
I. PROGRAM FEATURES	1
A. Program Segments of OPTSA	1
B. Arithmetic Statement Functions	1
C. COMMON Blocks	2
D. Premature Stops	3
II. INPUT	5
A. Definitions of Input Variables	5
B. Explanatory Notes on the Input Variables	13
C. Table of Upper and Lower Limits on Variables . . .	15
D. Facsimile OPTSA Data Deck	17
III. DEFINITIONS OF INDEXING AND COMPUTED VARIABLES	21
A. Program MAIN	21
B. Subroutine READ	21
C. Subroutine SIMPL1	22
D. Subroutine SIMPL2(IB,IR)	26
E. Subroutine SIMPL3(JB,JR)	28
F. Subroutine CAM(IDL, IDU)	31
1. Indexing Variables	31
2. Computed Variables	32
IV. PROGRAM LISTING, BY SUBROUTINE	43
A. Program MAIN	43
B. Subroutine CLRCOM	45
C. Subroutine READ	47
D. Subroutine SIMPL1	55
E. Subroutine SIMPL2	61

F.	Subroutine SIMPL3	67
G.	Subroutine CAM	75
H.	Subroutine CVFX	93
I.	Subroutine CAMCLR	94
V.	OUTPUT	95
A.	Reading the Output - Explanation of Output Options	95
B.	Sample Output of Input Variables	99
C.	Sample Output of Game Solutions	107
1.	Option 2A	107
2.	Option 2B	108
3.	Option 3A	113
4.	Option 3B	114
5.	Option 3C	122

APPENDIXES

- A. ALPHABETICAL LISTING AND DEFINITIONS OF INPUT VARIABLES
- B. ALPHABETICAL LISTING AND DEFINITIONS OF COMPUTED VARIABLES OF SUBROUTINE CAM

TABLES

1	Output Options	96
2	Variables Output	98

PREFACE

This volume is a documentation of the computer program of the revised OPTSA II model. The program is operational on the CDC 6400 at IDA. It occupies about 66,000 octal (equivalent to 28,000 decimal) 60-bit words of core and requires 50 seconds to compile. It contains about 2,500 FORTRAN statements.

The game matrices are dimensioned to hold up to 11 pure strategies per period per side. Wars of up to 90 days can be played, with one, two, or three decision periods.

This volume contains guides to data-deck preparation, variable definitions, a program listing, sample output, and a guide to the various output options available.

Chapter I

PROGRAM FEATURES

A. PROGRAM SEGMENTS OF OPTSA

There are a main program and eight subroutines:

MAIN	Main program; calls CLRCOM, READ, and appropriate "SIMPL" routine, depending on number of periods in war (if one period, SIMPL3(1,1) is called; if two periods, SIMPL2(1,1); if three periods, SIMPL1).
CLRCOM()	Initializes certain variables in blank COMMON to zero.
READ	Reads and prints input variables.
SIMPL1	First-stage game-solving routine.
SIMPL2(IB,IR)	Second-stage game-solving routine, when first-period strategy pair IB,IR is played.
SIMPL3(JB,JR)	Third-stage game-solving routine, when second-period strategy pair JB,JR is played.
CAM(IDL, IDU)	Performs assessment between days IDL and IDU.
CVFX()	Performs interpolations for use in CAM.
CAMCLR	Initializes certain variables in CAM to zero.

B. ARITHMETIC STATEMENT FUNCTIONS

In the area fire-attack mode (mode 4), Newton's method is sometimes used to find the optimal proportion Q of ABA passes to attack sheltered aircraft. The use of Newton's method requires two functions corresponding to the first and second derivatives of the function to be optimized. In the program, these are defined as the arithmetic statement functions

$$F14(Q) = A2 - A3 - ALOG(A4)*A4**Q - A5*ALOG(A6)*A6**Q$$

and

$$F24(Q) = -A3*(ALOG(A4)**2)*A4**Q - A5*(ALOG(A6)**2)*A6**Q ,$$

where ALOG is the natural logarithm.

These function definitions are placed at the beginning of subroutine CAM. The quantities A2, A3, etc., are computed in the program. The same functions are used for the Blue and the Red airbases.

C. COMMON BLOCKS

Blank COMMON (located in all routines except CVFX and CAMCLR) contains all the input variables, plus the following variables (defined in Chapter III of this volume, below):

U(11,11),SUB(11,11,11),SUR(11,11,11)	}	Payoff matrices, game values, optimal strategies
V(11,11),SVB(11,11,11),SVR(11,11,11)		
W(11,11),SWB(11),SWR(11),VALUE		
SHELB(90),SHELK(90)	}	Used in assessment routine
BSHELK(90),RSHELK(90)		
BDI(3,90),RDI(3,90)		
BDD(3,90),RDD(3,90)		
BGF(90),RGF(90)		
BAI(4,90),RAI(4,90)		
BAD(4,90),RAD(4,90)		
BAF(90),RAF(90)		
BF(90),RF(90)		
FEBA(90)		
CBF(90),CRF(90)	}	Lower and upper days of decision periods
CBAF(90),CRAF(90)		
IDL1, IDUi, IDU2, IDU3		

Common block CAMVAR, which appears in subroutines CAM and CAMCLR contains variables that hold intermediate results on each day of the assessment routine:

SORRB(2,3),SORRR(2,3)
BA(2,3),RA(2,3),BS(2,3),RS(2,3)
BAL(2,3),RAL(2,3),BSL(2,3),RSL(2,3)
BAKAA(2,3),RAKAA(2,3),BSKAA(2,3),RSKAA(2,3)
VBIDRA(2),VBADRI(4),VRIDBA(2),VRADBI(4)
BSENG(2,2),RSENG(2,2)
BPENG(2),RPENG(2)
BSFB(2,3),BAFB(2,3),RSFB(2,3),RAFB(2,3)
BAVUL(4),RAVUL(4),PBABA(2),PRABA(2)
BPOPS(4),BPOPNS(4),RPOPS(4),RPOPNS(4)
VBDRS,VBDRNS,VBKRS,VBKRNS
VRDBS,VRDBNS,VRKBS,VRKBNS

D. PREMATURE STOPS

In addition to the normal ending, there are three ways the program could stop:

- (1) A negative payoff entry is generated whose absolute value is greater than variable GVA (the input amount added to each payoff entry to make it positive for game solution). The absolute value is printed out, and termination occurs. (The old version of OPTSA did not have this feature; infinite loops occurred when GVA was too small.) The testing is done in subroutine SIMPL3.
- (2) Red attack mode 4 (area fire) is used at the Blue airbase, and Newton's method is used to find the optimal proportion of Red aircraft to attack Blue shelters. If, after 100 iterations of Newton's method, successive approximations are still more than EPS4 (input) amount apart, the program will stop. However, since Newton's method will rarely be needed for the optimization (and, if needed, it should converge very quickly), this premature stop will probably never occur.
- (3) Similar to (2) above, but with Blue at attack mode 4 at the Red airbase.

For diagnostic purposes, these stops are labeled 223, 445, and 446, respectively.

Chapter II

INPUT

A. DEFINITIONS OF INPUT VARIABLES

The variables are listed in the order in which they are read (which corresponds closely to the order in which they are used in the program). They are listed alphabetically in Appendix A. The following input variables are used only in the SIMPL routines:

IPRV
IPRU
IRO,JRO,KRO
NB,NR
PB(,)
PR(,)
GVA

The following input variables are used only in subroutine SIMPL3 (the final-stage game):

MOE,MOET
BCWGT,BSWGT(3),BQWGT(2)
RCWGT,RSWGT(3),RQWGT(2) } Used only for MOEs 4 and 5

The following input variables are used both in subroutine CAM (the assessment routine) and other routines:

PROPB(,)
PROPR(,)
IDL2,IDL3
NID
NPD

All the rest of the input variables are used exclusively in subroutine CAM. An asterisk indicates a discussion of the specified variable(s) in Section B of this chapter (below). A table of lower and upper limits on variables appears in Section C.

<u>Variable Name,</u> <u>Dimension Limits,</u> <u>and Indices</u> ¹	<u>Definition</u>
NKBD	Number of kinds of Blue divisions (up to 3).
NKRD	Number of kinds of Red divisions (up to 3).
*NKBA	Number of kinds of Blue aircraft.
*NKRA	Number of kinds of Red aircraft.
NID	Number of days in war (up to 90).
*NPD	Number of periods in war (up to 3).
*IDL2	First day of second period (if two periods, first day of first period--i.e., day 1).
*IDL3	First day of third period (if two periods, first day of second period).
*IRO	First Red allocation to use in solving first-period games (must not exceed NR).
*JRO	First Red allocation to use in solving second-period games (must not exceed NR).
*KRO	First Red allocation to use in solving third-period games (must not exceed NR).
*IPRV	Indicator for printing second-period game results: 0 - do not print; 1 - print.
*IPRU	Indicator for printing third-period game results.
IREPLB	Indicator for casualty replacement of Blue ground forces: 0 - no Blue ground casualties are to be replaced; 1 - all Blue ground casualties are to be replaced.
IREPLR	Indicator for casualty replacement of Red ground forces.

¹The indexing variables TY, TYB, and TYR are declared to be integer in the program.

Variable Name, Dimension Limits, and Indices	Definition
BDA(3,90) KBD, ID	Blue divisions added, by kind of Blue division and day (including day 1).
RDA(3,90) KRD, ID	Red divisions added, by kind of Red division and day (including day 1).
BAA(4,90) KBA, ID	Blue aircraft added, by kind of Blue aircraft and day (including day 1).
RAA(4,90) KRA, ID	Red aircraft added, by kind of Red aircraft and day (including day 1).
DBQRA	Desired Blue Quick Reaction Alert aircraft level (number of aircraft).
DRQRA	Desired Red Quick Reaction Alert aircraft level (number of aircraft).
PBSHEL	Starting number of Blue aircraft shelters.
PRSHEL	Starting number of Red aircraft shelters.
FBD(3) KBD	Firepower per Blue division.
FRD(3) KRD	Firepower per Red division.
FBA(2) KBA	Firepower per successful Blue CAS sortie: 1 - by a GP plane on CAS; 2 - by an SP-CAS plane.
FRA(2) KRA	Firepower per successful Red CAS sortie: 1 - by a GP plane on CAS; 2 - by an SP-CAS plane.
*IDBSRC	Day for Blue sortie rates to change.
*IDRSRC	Day for Red sortie rates to change.
SORRB1(2,3) TYB, MSB	Sortie rates for Blue before day IDBSRC, by type of plane: 1 - GP; 2 - SP and by mission: 1 - CAS; 2 - ABA; 3 - INT.
SORRB2(2,3) TYB, MSB	Sortie rates for Blue on and after day IDBSRC, by type of plane: 1 - GP; 2 - SP and by mission: 1 - CAS; 2 - ABA; 3 - INT.

Variable Name, Dimension Limits, and Indices	Definition
SORRR1(2,3) TYR,MSR	Sortie rates for Red before day IDR SRC, by type of plane: 1 - GP; 2 - SP and by mission: 1 - CAS; 2 - ABA; 3 - INT.
SORRR2(2,3) TYR,MSR	Sortie rates for Red on and after day IDR SRC, by type of plane: 1 - GP; 2 - SP and by mission: 1 - CAS; 2 - ABA; 3 - INT.
IAA	Indicator for air-to-air combat mode: 0 - basic method; 1 - method whereby some attackers drop their ordnance, then shoot back at enemy interceptors.
XNBAA	Number of notionalized Blue air-to-air combat regions (on Blue side of FEBA).
XNRAA	Number of notionalized Red air-to-air combat regions (on Red side of FEBA).
*BALPHA(2,2) TYB,MSB	Fraction of Blue attackers that do <i>not</i> jettison their ordnance and fly back but continue on, by Blue attacker type: 1 - GP; 2 - SP and by attack mission: 1 - CAS; 2 - ABA.
*RALPHA(2,2) TYR,MSR	Fraction of Red attackers that do <i>not</i> jettison their ordnance but continue on, by Red attacker type and mission.
BIDRA(2,4) TYB,INDR	Air-to-air detection parameter for Blue interceptors detecting Red attackers (subscripted as for BIKRA, below).
BIKRA(2,4) TYB,INDR	Air-to-air kill parameter for Blue interceptors: 1 - GP; 2 - SP killing Red attackers: 1 - GP-CAS; 2 - GP-ABA; 3 - SP-CAS; 4 - SP-ABA.
*BADRI(4,2) INDB,TYR	Air-to-air detection parameter for Blue attackers detecting Red interceptors.
BAKRI(4,2) INDB,TYR	Air-to-air kill parameter for Blue attackers: 1 - GP-CAS; 2 - GP-ABA; 3 - SP-CAS; 4 - SP-ABA killing Red interceptors: 1 - GP; 2 - SP.

Variable Name, Dimension Limits, and Indices	Definition
RIDBA(2,4) TYR,INDB	Air-to-air detection parameter--Red interceptors detect Blue attackers.
RIKBA(2,4) TYR,INDB	Air-to-air kill parameter--Red interceptors: 1 - GP; 2 - SP kill Blue attackers: 1 - GP-CAS; 2 - GP-ABA; 3 - SP-CAS; 4 - SP-ABA.
*RADBI(4,2) INDR,TYB	Air-to-air detection parameter--Red attackers detect Blue interceptors.
RAKBI(4,2) INDR,TYB	Air-to-air kill parameter--Red attackers: 1 - CAS; 2 - ABA; 3 - CAS; 4 - ABA kill Blue interceptors: 1 - GP; 2 - SP.
BSAMZR(2,2) TYR,MSR	Proportion of Red attack sorties destroyed by Blue ground-to-air weapons, by type: 1 - GP; 2 - SP and by mission: 1 - CAS; 2 - ABA.
RSAMZB(2,2) TYB,MSB	Proportion of Blue attack sorties, by type and mission, destroyed by Red ground-to-air weapons.
IR3SH	Indicator for Red SP-ABA planes to be sheltered: 0 - do shelter them; 1 - do not shelter them.
*BFRAC1	Fraction of Blue aircraft on base before sortie rate change.
BFRAC2	Fraction of Blue aircraft on base after sortie rate change.
*RFRAC1	Fraction of Red aircraft on base before sortie rate change.
RFRAC2	Fraction of Red aircraft on base after sortie rate change.
FBSK	Fraction of Blue aircraft shelters hit by Red that are destroyed.
FRSK	Fraction of Red aircraft shelters hit by Blue that are destroyed.
BPASS(2) TYB	Number of passes per Blue ABA sortie by 1 - GP plane on ABA; 2 - SP-ABA plane.
RPASS(2) TYR	Number of passes per Red ABA sortie by 1 - GP plane on ABA; 2 - SP-ABA plane.

Variable Name, Dimension Limits, and Indices	Definition
IBABA	Indicator for Blue ABA attack mode of Red airbases (1, 2, 3, or 4).
IRABA	Indicator for Red ABA attack mode of Blue airbases (1, 2, 3, or 4).
XNBAB	Number of notionalized (identical) Blue airbases.
XNRAB	Number of notionalized (identical) Red airbases.
BPARK	Number of Blue parking areas for aircraft on each Blue airbase.
RPARK	Number of Red parking areas for aircraft on each Red airbase.
BDRS(2) TYB	Parameter for Blue detecting Red shelters: 1 - Blue GP aircraft; 2 - Blue SP-ABA aircraft.
BDRNS(2)	Parameter for Blue detecting Red nonsheltered aircraft: 1 - Blue GP aircraft; 2 - Blue SP-ABA aircraft.
BKRS(2)	Parameter for Blue killing Red shelters: 1 - Blue GP aircraft; 2 - Blue SP-ABA aircraft.
BKRNS(2)	Parameter for Blue killing Red nonsheltered aircraft: 1 - Blue GP aircraft; 2 - Blue SP-ABA aircraft.
RDBS(2) TYR	Parameter for Red detecting Blue shelters: 1 - Red GP aircraft; 2 - Red SP-ABA aircraft.
RDBNS(2)	Parameter for Red detecting Blue nonsheltered aircraft: 1 - Red GP aircraft; 2 - Red SP-ABA aircraft.
RKBS(2)	Parameter for Red killing Blue shelters: 1 - Red GP aircraft; 2 - Red SP-ABA aircraft.
RKBNS(2)	Parameter for Red killing Blue nonsheltered aircraft: 1 - Red GP aircraft; 2 - Red SP-ABA aircraft.

The following 21 variables are used only if ABA mode 4 (area fire) is played (variables beginning with "B" affect events taking place at the Blue airbase (IRABA=4); variables beginning with "R" affect events taking place at the Red airbase (IBABA=4)).

Variable Name, Dimension Limits, and Indices	Definition
B4B	Area (in square meters) of a typical airbase on which Blue aircraft might be located.
B4AL	Overlap factor (between 0 and 1) for Red munitions at the Blue airbase.
B4AN1,B4AN2	Lethal area covered by one pass of a Red general-purpose or special-purpose ABA aircraft (resp.) dropping "anti-nonsheltered" munitions against nonsheltered aircraft.
B4AS1,B4AS2	Lethal areas covered by one pass of a Red general-purpose or special-purpose ABA aircraft (resp.) dropping "anti-shelter" munitions against shelters.
B4NS1,B4NS2	A reduction factor applied to B4AN1 or B4AN2 (resp.) when "anti-nonsheltered" munitions are dropped on shelters.
B4SN1,B4SN2	An expansion (or reduction) factor applied to B4AS1 or B4AS2 (resp.) when "anti-shelter" munitions are dropped on nonsheltered aircraft.
R4B	Area of a typical airbase on which Red aircraft might be located.
R4AL	Overlap factor (between 0 and 1) for Blue munitions at Red airbase.
R4AN1,R4AN2	Lethal area covered by one pass of a Blue general-purpose or special-purpose ABA aircraft (resp.) dropping "anti-nonsheltered" munitions against nonsheltered aircraft.
R4AS1,R4AS2	Lethal area covered by one pass of Blue general-purpose or special-purpose ABA aircraft (resp.) dropping "anti-shelter" munitions against shelters.
R4NS1,R4NS2	A reduction factor applied to R4AN1 or R4AN2 (resp.) when "anti-nonsheltered" munitions are dropped on shelters.
R4SN1,R4SN2	An expansion (or reduction) factor applied to R4AS1 or R4AS2 (resp.) when "anti-shelter" munitions are dropped on nonsheltered aircraft.
EPS4	Convergence criterion for Newton's method used in attack mode 4.
[End of variables for area fire]	
NFRFA	Number (up to 15) of force ratios for FEBA advance.

<u>Variable Name, Dimension Limits, and Indices</u>	<u>Definition</u>
*FRFA(15)	Force ratios for FEBA advance--vector of breakpoint abscissas for interpolation.
*FA(15)	FEBA advance—vector of breakpoint ordinates for interpolation.
NFRBD	Number (up to 15) of force ratios for Blue division destruction.
*FRBD(15)	Force ratio for Blue division destruction--vector of breakpoint abscissas for interpolation.
BD(15)	Proportion of Blue divisions destroyed--vector of breakpoint ordinates for interpolation.
NFRRD	Number (up to 15) of force ratios for Red division destruction.
*FRRD(15)	Force ratios for Red division destruction.
RD(15)	Proportion of Red divisions destroyed.
NB	Number of Blue pure strategies (all pure strategies are available in each period).
NR	Number of Red pure strategies (all pure strategies are available in each period).
*PB(20,3) IBA,MS	Proportion of Blue general-purpose aircraft assigned to mission MS (1 - CAS; 2 - ABA; 3 - INT) by Blue pure strategy IBA; note that $\sum_{MS=1}^3 PB(IBA,MS) \leq 1.0, \text{ for } IBA = 1, NB.$
*PR(20,3) IRA,MS	Proportion of Red general-purpose aircraft assigned to mission MS by Red pure strategy IRA.
*MOE	Measure of effectiveness to be optimized: (1) FEBA; (2) firepower difference; (3) air firepower difference; (4) surviving aircraft, weighted by type; (5) generalized air measure, including QRA.
MOET	Day on which MOE is to be found.
The following six variables are used as weights if MOE=4 or 5:	
BCWGT	Weight for cumulative Blue CAS firepower delivered (must be zero if MOE=4).

Variable Name, Dimension Limits, and Indices	Definition
BSWGT(3) MS	Weights for surviving special-purpose aircraft (KBA=2,3,4), by kind of aircraft (1 - SP-CAS; 2 - SP-ABA; 3 - SP-INT).
BQWGT(2)	If MOE=4, BQWGT(1) = weight for surviving Blue general-purpose aircraft; BQWGT(2) is not used. If MOE=5, BQWGT(1) = weight for Blue general-purpose surviving aircraft minus desired Blue QRA; BQWGT(2) is weight for desired-minus-actual Blue QRA.
RCWGT	Weight for cumulative Red CAS firepower delivered (must be zero if MOE=4).
RSWGT(3) MS	Weights for surviving special-purpose Red aircraft, by kind of aircraft.
RQWGT(2)	Weights for Red surviving general-purpose aircraft and/or QRA (analogous to BQWGT(..)).
*GVA	Game value added (i.e., value added to each payoff entry to make it positive for the game-solving procedure).

B. EXPLANATORY NOTES ON THE INPUT VARIABLES

NKBA,NKRA	These input variables would usually be either 1 (general-purpose aircraft only) or 4 (general-purpose and all kinds of special-purpose aircraft).
NPD,IDL2,IDL3	There can be up to three periods. The first and last days of the periods are denoted by the variables IDL1=1, IDU1, IDL2, IDU2, IDL3, and IDU3=NID (resp.). They should be in increasing order. Furthermore, IDU1, the last day of the first period, equals IDL2-1 (one day before the first day of the second period), and IDU2=IDL3-1. From the inputs IDL2 and IDL3, all the other period limits can be found. A two-period war is considered as the last two periods of a three-period war and is marked by the variables IDL2 (which must be input as 1), IDL3 (input), IDU2=IDL3-1, and IDU3=NID. The variables IDL1 and IDU1 are not used. In a one-period war, IDL3 must be input as 1.
IR0,JR0,KR0	These input variables <i>must not exceed</i> NR (the input number of Red pure strategies). They can, however, be left blank or input as zero--in which case the first pure strategy in Red's list will be used as a first guess.

IPRV,IPRU	The various printout options that can be obtained with these variables are explained in Section A of Chapter V (below). In a two-period war, IPRV must equal 1 to obtain output. In a one-period war, IPRU must equal 1.
IDBSRC, IDRSRC	These input variables are the <i>first</i> days that the new sortie rates will be used.
BALPHA(,),RALPHA(,)	Values for these variables are needed only if IAA = 1.
BADRI(,),RADBI(,)	Values for these variables are needed only if IAA = 0.
BFRAC1,BFRAC2, RFRAC1,RFRAC2	Since these inputs are closely related to the sortie rates, care should be taken in making the inputs compatible with sortie rates.
FRFA(),FRBD(),FRRD()	Abscissa breakpoint vectors should be monotone.
FRFA()	Only force ratios greater than or equal to 1.0 need be input; inputs less than 1.0 will be ignored. (The FEBA advance function F is forced to be symmetrical in the sense that $F(1/x) = -F(x)$, where x is the force ratio.)
PB(,),PR(,)	Though these vectors are dimensioned to hold up to 20 pure strategies, the game matrix arrays will hold only 11. The sum $\sum_{MS=1}^3 PB(IBA,MS)$ must not exceed 1.0--and generally should equal 1.0 exactly, for all IBA; similarly for Red. If the sum is less than 1.0, some GP aircraft are not assigned to a mission; they are still vulnerable to enemy ABA.
MOE	If MOE = 4 or 5, a wide variety of different measures can be obtained by varying the 12 input weights (as described in detail in the appendix to Vol. I).
MOET	Usually equal NID (the last day of the war), it should not exceed NID. Even if MOET is less than NID, the running time of the model remains the same (i.e., the running time depends on NID, not MOET).
GVA	This should be large enough to avoid the premature stop; 10,000 or 20,000 is a good range.

C. TABLE OF UPPER AND LOWER LIMITS ON VARIABLES¹

Variable	Lower Limit	Upper Limit	Variable	Lower Limit	Upper Limit
NKBD,NKRD	1	3	IDBSRC, IDRSRC		
NKBA,NKRA	1	4	SORRB1(,)		
NID	1	90	SORRB2(,)		
NPD	1	3	SORRR1(,)		
IDL2,IDL3	1		SORRR2(,)		
IRO,JRO,KRO	0	NR (input)	IAA	0	1
IPRV,IPRU	0	1	XNBAA,XNRAA	1.0	
IREPLB,IREPLR	0	1	BALPHA(,)	0.0	1.0
BDA(KBD, ID) RDA(KRD, ID)			RALPHA(,)	0.0	1.0
BAA(KBA, ID) RAA(KRA, ID)			BIDRA(,)	0.0	1.0
DBQRA,DRQRA			BIKRA(,)	0.0	1.0
PBSHEL PRSHEL			BADRI(,)	0.0	1.0
FBD(KBD) FRD(KRD)			BAKRI(,)	0.0	1.0
FBA() FRA()			RIDBA(,)	0.0	1.0
			RIKBA(,)	0.0	1.0
			RADBI(,)	0.0	1.0
			RAKBI(,)	0.0	1.0
			BSAMZR(,)	0.0	1.0
			RSAMZB(,)	0.0	1.0

(continued on next page)

¹If no lower limit is specified, it is zero.

Limits on dimensioned variables apply to each variable in the array.

These limits merely insure that the program will run (and not, for instance, have to divide by zero); they do not insure reasonable answers.

Variables are listed in the order input to the program, the same order as in Section A of this chapter (above).

Other restrictions on variables are described in Section B of this chapter (above).

Variable	Lower Limit	Upper Limit	Variable	Lower Limit	Upper Limit
IR3SH	0	1	NFRFA	1	15
BFRAC1,BFRAC2	0.0	1.0	FRFA()		
RFRAC1,RFRAC2	0.0	1.0	FA()		
FBSK,FRSK	0.0	1.0	NFRBD	1	15
BPASS()			FRBD()		
RPASS()			BD()	0.0	1.0
IBABA,IRABA	1	4	NFRRD	1	15
XNBAB,XNRAB	1.0		FRRD()		
BPARK,RPARK	1.0		RD()	0.0	1.0
BDRS(),BDRNS(),	0.0	1.0	NB,NR	1	11
BKRS(),BKRNS()			PB(,)	0.0	1.0
RDBS(),RDBNS(),	0.0	1.0	PR(,)	0.0	1.0
RKBS(),RKBNS()			MOE	1	5
B4B			MOET	1	90
B4AL	0.0	1.0	BCWGT		
B4AN1,B4AN2,B4AS1,			BSWGT()		
B4AS2,B4NS1,B4NS2			BQWGT()		
B4SN1,B4SN2			RCWGT		
R4B			RSWGT()		
R4AL	0.0	1.0	RQWGT()		
R4AN1,R4AN2,R4AS1,			GVA		
R4AS2,R4NS1,R4NS2					
R4SN1,R4SN2					
EPS4 ¹					

¹EPS4 must be strictly greater than zero if mode 4 is used.

D. FACSIMILE OPTSA DATA DECK

On the following three pages appears a typescript facsimile of the data deck for a problem, to illustrate data-deck preparation. Each line of print represents one data card. The variables appearing on that card are listed in order at the left. For each card, there are eight fields, each 10 columns wide. (Real variables are not right-justified in this deck.)

Variable(s)	Card Column	Data Card
NKBD, NKRD, NKBA, NKRA NID, IDL2, IDL3 NPD, IDL2, IDL3 IPV, IFRU IREPLB, IREPLR BDA (KBD, ID), BDA (KRD, ID)	1 3 4 2 3 4 1 2 1 1 0 0 2 4 6 6.	4.0 4.0 11. 11. 1. 0. 6.
RDA (KRD, ID) ¹	80.	3.
	20.	3.
	40.	10.
	10.	10.
	75.	2.
BAA (KBA, ID) ¹	1500.	75.
	75.	75.
	300.	200.
	200.	200.
RAA (KRA, ID) ¹	2500.	40.

Type following sequence of commands is used to read the array BAA(,)—NKED and NID have already been input:

DO 1a KED = 1,NED

READ (Input track, [b]) (EDA(KED, ID), ID = 1, NID)

[a] CONTINUE

Therefore, NED sets of cards (each set containing enough fields for NID inputs) must be prepared. In the example, since NID = 30, four cards (containing 30 fields) are needed in each set. Since NED = 3, three sets (or 12 cards in all) are needed to input RDA, BAA, and RAA are similar.

		1	2	3	4	5	6	7	8
		300.							
		400.							
		500.							
DRORA, DRQRA		200.							
PISHEL		1000.							
PISHEL		2000.							
FBD (KED)		10.							
PRB()		6.							
PRB()		1.							
PRB()		.15							
IDBSRG, IDBSRC		.06							
SORRB1()		2.0							
SORRB2()		1.0							
SORRR1()		3.0							
SORRR2()		1.7							
IAA		1							
XIBAA, XNRAA		1.0							
BALPHA()		0.8							
RALPHA()		0.5							
BIDRA()		.001							
BIKRA()		3							
BIDRI()		.001							
BAKRI()		.1							
RIDBA()		.0005							
RIKBA()		.0005							
RADBI()		.0005							
BAKBIL()		.1							
BSAMMR()		.05							
RSAMMR()		.05							
IR3SH		1							
BRRA1, BFRAG2		.8							
RFRAC1, RFRGAC2		.7							
PRSK, PRSK		1.0							
BEASS, BEASS		1.0							
REASS()		1.0							
TEABA, IRABA		20							
XBAB, XNRAB		20							
BEARK, RPARK									
BDNSL(), BDNSL() ²		10000.							
BKNS(), BKNS()		.01							
RDNSL(), RDNSL() ²		.01							
RDNSL(), RDNSL() ³		.01							
4B_B4AL, B4ANL, B4AN2 ³									
B4SN1, B4S2, B4NS1, B4NS2		1000000.							
R4B, R4AL, R4NL, R4AN2 ³		1.0							
R4NS1, R4AN1, R4NS1, R4NS2		1000000.							
R4NS1, R4NS2		1.0							
EPS4		.0001							

Four two-vectors are read in one statement and are input on one card. The first eight go on one card; the last two negative-sign variables for each state must be read for the area five-track mode.

"The vector $\text{FPEA}(\cdot)$ is read in, element by element, up to NPEA (the first input number). Therefore, a set of cards sufficient to contain NPEA elements is required. Then the vector $\text{FAL}(\cdot)$ is read in the same manner. The procedures for $\text{FBD}(\cdot)$ and $\text{FRD}(\cdot)$ are

Each card is pure strategy and contains the articulation proportions to the three missions OAS, ASB, and TIN (fresh). There are NB/NR cards: the first NB form Blue's list of pure strategies; the remainder, Red's. The command sequence (NB and NR have been similar.

DO [a] IBA = 1.0B
DO [a] IBA = 1.5B
DO [a] IBA = 2.0B

READ (input track, fb) } FB(TB4, MS), MS=1,3)

[a] CONTINUE

```
DO [c] TBA = 1,NR
  READ (11,unit,track) [b]
  (TB(A MS), MS=1,3)
```

[e] COUNTING

Chapter III

DEFINITIONS OF INDEXING AND COMPUTED VARIABLES

A. PROGRAM MAIN

<u>Variable</u>	<u>Definition</u>
IDL1	First day of first period of war (always set to 1)
IDU1	Last day of first period (set to IDL2-1; IDL2 is an input).
IDU2	Last day of second period (set to IDL3-1; IDL3 is an input).
IDU3	Last day of third period of war (always set to NID, the number of days in the war).

Note that, in a two-period war, IDL2 and IDU2 are the first and last days of the first period; IDL3 and IDU3, the first and last days of the second period.

B. SUBROUTINE READ

<u>Variable</u>	<u>Definition</u>
IBA	Blue allocation of aircraft to mission (i.e., the IBA th pure strategy in Blue's list).
IRA	Red allocation of aircraft to mission (i.e., the IRA th pure strategy in Red's list).
KAT	Kind of attacker: 1 - GP-CAS; 2 - GP-ABA; 3 - SP-CAS; 4 - SP-ABA.
TYI	Type of interceptor: 1 - GP; 2 - SP (this is declared to be an integer variable).

The following indexing variables (used in subroutines READ and CAM) are defined in the section on CAM: ID, KBA, KBD, KRA, KRD, MS, and TY.

The variables MIT and MOT (the input and output tracks) are assigned the values 5 and 6 (resp.) in the program. MOT also appears in routines SIMPL1, SIMPL2, and SIMPL3, which contain WRITE statements.

C. SUBROUTINE SIMPL1

The three game-solving subroutines (SIMPL1, SIMPL2, and SIMPL3) each follow the same procedure: "raw" payoff entries are generated by CAM and solution of games at following stages. The raw payoff entries are stored in COMMON matrices W for SIMPL1, V for SIMPL2, and U for SIMPL3. GVA is then added to each payoff entry; the results are placed in the simplex tableau matrix AS; and the game is solved as in Chapter 3 of Volume I of this paper. There is a *separate* matrix AS for each subroutine. Along with AS, there is a collection of variables for the LP right-hand side, cost row, pivot coefficient, etc., *for each subroutine*. When the game is solved, the optimal strategies are transferred to the COMMON arrays SWB and SWR (which are vectors) for SIMPL1, SVB and SVR for SIMPL2, and SUB and SUR for SIMPL3. The strategy arrays also hold the Blue and Red pure strategy played in the previous period.

While the game value and strategy arrays in COMMON are dimensioned for 11 entries, the simplex tableau arrays in each subroutine are dimensioned for 20. Thus, if the core space is available and it is desired to play up to 20 pure strategies, only the arrays in COMMON need be redimensioned.

A two-period war is considered as the last two periods of a three-period war. Second-period games are solved by SIMPL3; first-period games, by SIMPL2; one-period war, by SIMPL3.

Variables are listed in alphabetical order. Computed and indexing variables are not separated, as many integer variables are computed and later used as indices. An asterisk preceding a variable indicates storage in blank COMMON.

Variable Name, Dimension Limits, and Indices	Definition
AS(20,40) J , I	Coefficient matrix for LP (linear programming problem) for solving first stage games.
BIG	Largest element in payoff column of first Red pure strategy used.
BS(20) IROW	LP right-hand side.
CS(40) I	LP cost coefficients.
GVAL	Expected outcome (game value) for a relaxed problem plus GVA (i.e., GVAL-GVA is the two-sided optimal value of a relaxed matrix game).
IBACT(20) LB	1, if payoff row LB for Blue has been computed; 0, otherwise.
IBAS(20) IBC	Active Blue strategies in solution of current relaxed problem.
IBASIC(20) IROW	Basic variable in row IROW.
IBAS1	IBASIC(IROW), for a given value of IROW: or IBAS(IBC).
IBC	Counter for determining vector IBAS.
IBIG	Blue pure strategy producing payoff value BIG against first Red pure strategy used.
IENTER	Variable to enter basis in dual simplex method.
INDIC	Working variable used to determine IENTER.
INFEAS	0, if current solution is feasible; 1, if infeasible--used both in dual simplex method and in determining whether solution to current relaxed problem is solution to whole game.
IR	First Red pure strategy to be used (also used for each new Red pure strategy to enter tableau).
IRACT(20) I	1, if payoff column I for Red has been computed; 0, otherwise.

Variable Name, Dimension Limits, and Indices	Definition
IRAS(20) IRC	Red pure strategy corresponding to row IRC of simplex tableau.
IRAS1	IRAS(IRC).
IRC	Counter for determining vector IRAS.
IROW	Row of simplex tableau being processed (in pivoting operations, etc.).
ITCOL	Total number of columns of LP (decision plus slack variables).
JBIG	New Red pure strategy to enter LP as a new constraint.
LB	Blue pure strategy or column of LP being considered.
LEAVE1	Row whose basic variable will leave basis in dual simplex method.
LR	Red pure strategy being considered.
MS	Mission (used for setting first-period allocations).
NBC	Number of Blue pure strategies used with nonzero probability in optimal solution to current relaxed problem.
NBL	NB+NROWM1 (i.e., one less than total number of columns in tableau---NB is an input.)
NPDM1	Number of periods minus 1 (NPD-1).
NPDM2	NPD-2.
NRAS	Number of Red pure strategies being considered in current relaxed problem (essentially the same as NROWS).
NROWM1	NROWS-1.
NROWS	Number of rows of LP being solved.
PIVCO	Value of pivot term.
*PROPB(3,3) MS,1	(Defined in CAM.)

Variable Name, Dimension Limits, and Indices	Definition
*PROPR(3,3) MS,1	(Defined in CAM.)
RATIO	Ratio of cost coefficient to variable in leaving row to determine entering basic variable in dual simplex method.
RENT	Ratio of cost coefficient to variable in leaving row for entering basic variable.
SUM(20) J	Expected outcome of optimal Blue strategy for current relaxed problem against Red pure strategy J--i.e., $\sum_{LB} X(LB) * W(LB, J)$.
*SVB(11,11,11) LB,LR, L	Optimal Blue for second period (i.e., probability of Blue playing pure strategy L in period 2 when Blue and Red have played LB and LR, resp., in period 1).
*SVR(11,11,11) LB,LR, L	Optimal Red strategy for second period (i.e., probability of Red playing pure strategy L in period 2 when Blue and Red have played LB and LR, resp., in period 1).
*SWB(11) L	Optimal Blue strategy for first period (i.e., probability of Blue playing pure strategy I).
*SWR(11) IRAS1	Optimal Red strategy for first period (i.e., probability of Red playing pure strategy IRAS1).
TEST	Variable for determining feasibility of right-hand side in current dual simplex iteration.
*VALUE	Value of game (total three-stage game for three-period war.)
*W(11,11) LB, J	First-stage game-payoff matrix; W(LB,J) is the value of a second-stage game when Blue and Red pure strategies LB and J, (resp.) have been played in the first period (this value becomes a payoff entry in the first-stage game).
X(20) IBAS1	Blue randomized strategy (vector of probabilities) optimal for current relaxed problem.
XNEC	"Northeast corner"; value of LP at any iteration, appearing at upper right corner of simplex tableau.

D. SUBROUTINE SIMPL2(IB,IR)

Variable Name, Dimension Limits, and Indices	Definition
AS(20,40) J , I	Coefficient matrix for LP for solving second-stage games.
BIG BS(20) IROW CS(40) I GVAL	(As in SIMPL1.)
IB	Blue pure strategy that was used in period 1. Set in the calling program SIMPL1.
IBACT(20) LB IBAS(20) IBC IBASIC(20) IROW IBAS1 IBC IBIG IENTER INDIC INFEAS	(As in SIMPL1.)
IR	Red pure strategy that was used in period 1. Set in the calling program SIMPL1.
IRACT(20) I IRAS(20) IRC IRC IROW ITCOL JBIG	(As in SIMPL1.)
JR	First Red pure strategy to be used; also used for each new Red pure strategy to enter tableau.
LB LEAVE1 LR	(As in SIMPL1.)

Variable Name, Dimension Limits, and Indices	Definition
MS	Mission (used for setting second-period allocations).
NBC NBL NPDM1 NRAS NROWM1 NROWS PIVCO	(As in SIMPL1.)
*PROPB(3,3) MS,2	(Defined in CAM.)
*PROPR(3,3) MS,2	(Defined in CAM.)
RATIO RENT	(As in SIMPL1.)
*SUB(11,11,11) LB,LR, L	Optimal Blue strategy for third period (i.e., probability that Blue plays pure strategy L in period 3 when Blue and Red played LB and LR in period 2 and IB and IR in period 1).
SUM(20) J	(As in SIMPL1.)
*SUR(11,11,11) LB,LR, L	Optimal Red strategy for third period (i.e., probability that Red plays pure strategy L in period 3 when Blue and Red played LB and LR in period 2 and IB and IR in period 1).
*SVB(11,11,11) IB,IR, I	Optimal Blue strategy for second period (i.e., probability that Blue plays pure strategy I in period 2 when Blue and Red played IB and IR (set in SIMPL1) in period 1).
*SVR(11,11,11) IB,IR,IRAS1	Optimal Red strategy for second period (i.e., probability that Red plays pure strategy IRAS1 in period 2 when Blue and Red played IB and IR (set in SIMPL1) in period 1).
TEST	(As in SIMPL1).
*V(11,11) LB, J	Second-stage game payoff matrix; V(LB,J) is the payoff entry when Blue and Red play pure strategies LB and J (resp.) in period 2--having played IB and IR in period 1.
*W(11,11) IB,IR	Value of second-stage game, which becomes a payoff entry in the first-stage game matrix W.

Variable Name, Dimension Limits, and Indices	Definition
--	------------

X(20) }
 IBAS1 } (As in SIMPL1.)
 XNEC }

E. SUBROUTINE SIMPL3(JB,JR)

The final-stage payoffs found in this subroutine are actual measures of effectiveness from the assessment routine (e.g., FEBA position, cumulative Blue minus Red firepower, etc.).

Variable Name, Dimension Limits, and Indices	Definition
--	------------

AS(20,40) Coefficient matrix of LP for solving third-stage games.
 J , I

BA "Blue aircraft" (working variable used in computing MOE 5).

*BAD(4,90)
 KA,MOET }
 *BAI(4,90)
 KA,MOET }

(Defined in CAM.)

BIG
 BS(20) } (As in SIMPL1.)
 IROW }

*CBAF(90)
 MOET }
 *CBF(90)
 MOET }
 *CRAF(90)
 MOET }
 *CRF(90)
 MOET }

(Defined in CAM.)

CS(40) (As in SIMPL1.)
 I

*FEBA(90) (Defined in CAM.)
 MOET

Variable Name, Dimension Limits, and Indices	Definition
G	Negative of a negative payoff entry $U(I,J)$, whose absolute value is greater than GVA--i.e., if $U(I,J) + GVA < 0$, G is set equal to $ U(I,J) $, which is greater than GVA, and the program stops.
GVAL	(As in SIMPL1.)
IBACT(20) LB IBAS(20) IBC IBASIC(20) IROW IBAS1 IBC IBIG IENTER INDIC INFEAS IRACT(20) I IRAS(20) IRC IRC IROW ITCOL	{ (As in SIMPL1.)
JB	Blue pure strategy that was used in period 2 (set in the calling program SIMPL2).
JBIG	(As in SIMPL1.)
JR	Red pure strategy that was used in period 2 (set in the calling program SIMPL2).
KA	Kind of aircraft (indexing variable used in computing MOEs 4 and 5).
KR	First Red pure strategy to be used (also used for each new Red pure strategy to enter tableau).
LB LEAVE1	{ (As in SIMPL1.)
MS	Mission (used for setting third-period allocations; also equal to KA-1 in computing MOEs 4 and 5).

Variable Name, Dimension Limits, and Indices	Definition
NBC NBL } NRAS }	(As in SIMPL1.)
NRWML NROWS } PIVCO }	(As in SIMPL1.)
*PROPB(3,3) MS,3 } *PROPR(3,3) MS,3 }	(Defined in CAM.)
RA	"Red aircraft" (working variable used in computing MOE 5).
*RAD(4,90) KA,MOET } *RAI(4,90) KA,MOET }	(Defined in CAM.)
RATIO RENT }	(As in SIMPL1.)
*SUB(11,11,11) JB,JR, I	Optimal Blue strategy for third period (i.e., probability that Blue plays pure strategy I in period 3 when Blue and Red played JB and JR in period 2).
SUM(20) J	(As in SIMPL1.)
SUMOE	Working variable used in computing MOEs 4 and 5.
*SUR(11,11,11) JB,JR,IRAS1	Optimal Red strategy for third period (i.e., probability that Red plays pure strategy IRAS1 in period 3 when Blue and Red played JB and JR in period 2).
TEST	(As in SIMPL1.)
*U(11,11) LB, J	Third-stage game payoff matrix U(LB,J) is the payoff entry when Blue and Red play pure strategies LB and J (resp.) in period 3, having played JB and JR in period 2 (and some pure strategy pair in period 1).
*V(11,11) JB,JR	Value of a third-stage game, which becomes a payoff entry in a second-stage game matrix V.
X(20) IBAS1 } XNEC }	(As in SIMPL1.)

F. SUBROUTINE CAM(IDL, IDU)

Since in CAM there are many dimensioned variables whose elements are computed in large DO loops, a list of definitions of the most commonly used indexing variables of these loops is given first. The indexing variables are in alphabetical order. TY, TYB, and TYR are declared integer. Then the computed variables are defined *in the order computed in the subroutine*. They are defined alphabetically in Appendix B.

1. Indexing Variables

Variable	Definition
ID	Day of war.
IDM1	Preceding day (ID-1).
INDB	Indicator for Blue attacker in air-to-air interaction: 1 - Blue GP-CAS; 2 - Blue GP-ABA; 3 - Blue SP-CAS; 4 - Blue SP-ABA. Computed as INDB = MSB+2*(TYB-1).
INDR	Indicator for Red attacker in air-to-air interaction: 1 - Red GP-CAS; 2 - Red GP-ABA; 3 - Red SP-CAS; 4 - Red SP-ABA. Computed as INDR = MSR+2*(TYR-1).
IPD	Period of war (also a computed variable).
KBA	Kind of Blue aircraft: 1 - Blue GP; 2 - Blue SP-CAS; 3 - Blue SP-ABA; 4 - Blue SP-INT. Used in air-to-ground interaction and initial and final Blue-aircraft-inventory calculations.
KBD	Kind of Blue division (up to three kinds).
KRA	Kind of Red aircraft: 1 - Red GP; 2 - Red SP-CAS; 3 - Red SP-ABA; 4 - Red SP-INT. Used in air-to-ground interaction and initial and final Red-aircraft-inventory calculations.
KRD	Kind of Red division (up to three kinds).
MS	Aircraft mission: 1 - CAS; 2 - ABA; 3 - INT. Also used to index kind of SP aircraft, by the relation MS=KBA-1 or KRA-1.

Variable	Definition
MSB	Blue aircraft mission: 1 - CAS; 2 - ABA; 3 - INT.
MSR	Red aircraft mission: 1 - CAS; 2 - ABA; 3 - INT.
TY	Type of aircraft: 1 - GP; 2 - SP (without specifying what kind of SP aircraft; the mission is needed to do that.)
TYB	Type of Blue aircraft: 1 - GP; 2 - SP.
TYR	Type of Red aircraft: 1 - GP; 2 - SP.

2. Computed Variables

Variable Name, Dimension Limits, and Indices	Definition
IDL	First day for which assessment is to be computed in that particular call of CAM.
IDU	Last day for which assessment is to be computed in that particular call of CAM.

Forces at Beginning of Day

BDI(3,90) KBD, ID	Blue division inventory at beginning of day ID, by kind of Blue division.
RDI(3,90) KRD, ID	Red division inventory at beginning of day ID, by kind of Red division.
BGF(90) ID	Blue ground firepower delivered on day ID.
RGF(90) ID	Red ground firepower delivered on day ID.
SHELB(90) ID	Number of Blue shelters at beginning of day ID.
SHELRL(90) ID	Number of Red shelters at beginning of day ID.

Variable Name, Dimension Limits, and Indices	Definition
BAI(4,90) KBA, ID	Inventory of Blue aircraft at beginning of day ID, by kind of Blue aircraft.
RAI(4,90) KRA, ID	Inventory of Red aircraft at beginning of day ID, by kind of Red aircraft.
ABQRA	Actual number of Blue QRA aircraft (GP aircraft designated as QRA).
BAAS	Blue GP aircraft assignable to missions.
ARQRA	Actual number of Red QRA aircraft (GP aircraft designated as QRA).
RAAS	Red GP aircraft assignable to missions.
IPD	Period of war.
PROPB(3,3) MS, IPD	Proportion of Blue GP aircraft assigned to mission MS in period IPD (in two-period war, IPD is 2 for the first period, 3 for the second).
PROPR(3,3) MS, IPD	Proportion of Red GP aircraft assigned to mission MS in period IPD.
BA(2,3) TY, MS	Blue aircraft on missions, by aircraft type (GP or SP) and mission.
RA(2,3) TY, MS	Red aircraft on missions, by aircraft type and mission.
SUMB, SUMR	Working variables for computing BANAS and RANAS.
BANAS	Blue GP aircraft not assigned to missions.
RANAS	Red GP aircraft not assigned to missions.
SORRB(2,3) TY, MS	Sortie rates for Blue, by aircraft type and mission.
BFRAC	Fraction of Blue aircraft on base.
SORRR(2,3) TY, MS	Sortie rates for Red, by aircraft type and mission.
RFRAC	Fraction of Red aircraft on base.

Variable Name, Dimension Limits, and Indices	Definition
BS(2,3) TY,MS	Blue sorties, by aircraft type and mission.
RS(2,3) TY,MS	Red sorties, by aircraft type and mission.
BANF(2,3) TY,MS	Blue aircraft not flying (i.e., staying on the base)--positive only if the sortie rate is less than 1.0.
RANF(2,3) TY,MS	Red aircraft not flying (i.e., staying on the base)--positive only if the sortie rate is less than 1.0.
<u>Air-to-Air Interaction</u>	
BITS	Blue INT sorties.
BATS	Blue attack sorties (CAS and ABA).
RITS	Red INT sorties.
RATS	Red attack sorties (CAS and ABA).
IBIRA	Check variable (the Blue-interceptor/Red-attacker attritions are zero if either side has zero sorties; IBIRA then is set to 1, and the attrition computation bypassed).
IBARI	Check variable for the Blue-attacker/Red-interceptor interaction.
VBIDRA(2) ¹ TYB	Average detection parameter for Blue interceptors, by type, against Red attackers in the air-to-air interaction.
VRADBI(4) ¹ INDR	Average detection parameter for Red attackers, by kind of attacker, against Blue interceptors in the air-to-air interaction.
VRIDBA(2) ¹ TYR	Average detection parameter for Red interceptors, by type, against Blue attackers in the air-to-air interaction.
VBADRI(4) ¹ INDB	Average detection parameter for Blue attackers, by kind of attacker, against Red interceptors in the air-to-air interaction.

¹All air-to-air detection parameters are averaged over target type and are a function of shooter type.

Variable Name, Dimension Limits, and Indices	Definition
SUM, PROD, X1, X15	Working variables for computing attritions.
RATS1	Red attack sorties per notionalized air-to-air combat region on Blue side of FEBA (RATS1=RATS/XNBAA).
BITS1	Blue intercept sorties per notionalized air-to-air combat region on Blue side of FEBA (BITS1=BITS/XNBAA).
BATS1	Blue attack sorties per notionalized air-to-air combat region on Red side of FEBA (BATS1=BATS/XNRAA).
RITS1	Red intercept sorties per notionalized air-to-air combat region on Red side of FEBA (RITS1=RITS/XNRAA).

The following 10 variables are computed only if the second air-to-air attrition method is used:

PROD1, PROD2, X1, X15, X2, DENOM	Working variables for computing attritions in second method.
BSENG(2,3) TYB,MSB	Blue attack sorties engaged by Red interceptors, by type of Blue aircraft and <i>attack mission</i> only: 1 - CAS; 2 - ABA.
RSENG(2,2) TYR,MSR	Red attack sorties engaged by Blue interceptors, by type of Red aircraft and <i>attack mission</i> only: 1 - CAS; 2 - ABA.
BPENG(2) TYB	Proportion of Blue intercept sorties engaged that are of type TYB: 1 - GP; 2 - SP.
RPENG(2) TYR	Proportion of Red intercept sorties engaged that are of type TYR.
[End of variables for second attrition method]	
BSKAA(2,3) TYB,MSB	Blue sorties killed in the air-to-air interactions, by aircraft type and mission.
RSKAA(2,3) TYR,MSR	Red sorties killed in the air-to-air interactions, by aircraft type and mission.

Variable Name, Dimension Limits, and Indices	Definition
BSFB(2,3) TY,MS	Blue sorties that fly back to Blue airbase and do not attempt to deliver ordnance (BSFB(TY,3)=0; the whole array is zero if the first air-to-air attrition method is used).
RSFB(2,3) TY,MS	Red sorties that fly back to Red airbase and do not attempt to deliver ordnance (RSFB(TY,3)=0; the whole array is zero if the first air-to-air attrition method is used).
SRB	Working variable, equal to the maximum of 1.0 and the appropriate Blue sortie rate.
SRR	Working variable, equal to the maximum of 1.0 and the appropriate Red sortie rate.
BAKAA(2,3) TY,MS	Blue aircraft killed in the air-to-air interaction, by aircraft type and mission.
RAKAA(2,3) TY,MS	Red aircraft killed in the air-to-air interaction, by aircraft type and mission.
BAFB(2,3) TY,MS	Blue aircraft that fly back to Blue airbase, by aircraft type and mission.
RAFB(2,3) TY,MS	Red aircraft that fly back to Red airbase, by aircraft type and mission.
BSL(2,3) TY,MS	Blue sorties lost to enemy SAMs (ground-to-air interaction), by aircraft type and mission.
RSL(2,3) TY,MS	Red sorties lost to enemy SAMs (ground-to-air interaction), by aircraft type and mission.
BAL(2,3) TY,MS	Blue aircraft lost to enemy SAMs (ground-to-air interaction), by aircraft type and mission.
RAL(2,3) TY,MS	Red aircraft lost to enemy SAMs (ground-to-air interaction), by aircraft type and mission.
<u>Air-to-Ground (Airbase Attack) Interaction--Blue Airbases</u>	
BSHEL	Number of Blue shelters (recomputed each day).
BAVUL(4) KBA	Blue aircraft vulnerable to enemy ABA, by kind of Blue aircraft, not including QRA.

Variable Name, Dimension Limits, and Indices	Definition
ABQRAS	Number of sheltered Blue QRA aircraft (QRA are given priority in sheltering).
ABQRAN	Number of nonsheltered Blue QRA aircraft.
BSHELL1	Blue shelters remaining after QRA aircraft are sheltered (zero if ABQRAN > 0.0).
BAVULT	Total Blue aircraft vulnerable to enemy ABA, not including QRA.
BPOPS(4) KBA	Population of sheltered Blue aircraft (i.e., number of aircraft), by kind of Blue aircraft, including QRA.
BPOPNS(4) KBA	Population of nonsheltered Blue aircraft.
BTOTS	Total sheltered Blue aircraft ($= \sum_{KBA} BPOPS(KBA)$).
BTOTNS	Total nonsheltered Blue aircraft ($= \sum_{KBA} BPOPNS(KBA)$).
BTOT	Total Blue aircraft vulnerable to ABA ($=BTOTS+BTOTNS$).
PRABA(2) TYR	Red ABA aircraft passes, by type of ABA aircraft: 1 - GP; 2 - SP.
RATP	Red attack total passes ($=PRABA(1) + PRABA(2)$).
VRDBS	Average detection parameter for Red against Blue shelters.
VRKBS	Average kill parameter for Red against Blue shelters.
VRDBNS	Average detection parameter for Red against Blue nonsheltered aircraft.
VRKBNS	Average kill parameter for Red against Blue nonsheltered aircraft.
Q	Proportion of Red passes to attack Blue shelters (the remainder attack Blue nonsheltered aircraft)--computed if IRABA=2 or 4.

The following variables are computed only if Red uses area fire (IRABA=4):

Variable Name, Dimension Limits, and Indices	Definition
B4AN	Average area covered by a Red "anti-nonsheltered" munition.
B4AS	Average area covered by a Red "anti-shelter" munition.
B4NS	Average reduction factor when Red "anti-nonsheltered" munitions are used against shelters.
B4SN	Average expansion factor when Red "anti-shelter" munitions are used against nonsheltered aircraft.
NTN	Number of iterations of Newton's method to find optimal Q.

The following working variables are used to hold intermediate results in the attrition calculations:

Red Attack Mode 1: TERMS1, XS, TERMS2, TERMN1, XNS, TERMN2.

Red Attack Mode 2: CS0, CNO, CS1, CS, CN1, CN, C1, Q0, Q, CS2.

Red Attack Mode 3: T, TERM1, TERM2, TERMS, TERMNS.

Red Attack Mode 4: X4N, X4S, X4NS, X4SN, A1N, A2N, A0B, A3, A4, A1S, A2S, A2, A5, A6, X0, X1, Q0, NTN, Q1, Q, TERMS, TERMNS, and the arithmetic statement functions F14(Q) and F24(Q).

The results in all cases are the following:

BAKS	Blue sheltered aircraft destroyed.
BSHELK(90) ID	Blue shelters destroyed on day ID.
BAKNS	Blue nonsheltered aircraft destroyed.

Airbase Attack--Red Airbases

RSHEL	Number of Red shelters (recomputed each day).
RAVUL(4) KBA	Red aircraft vulnerable to enemy ABA, by kind of Red aircraft, not including QRA.
ARQRAS	Number of sheltered Red QRA aircraft.
ARQRAN	Number of nonsheltered Red QRA aircraft.

Variable Name, Dimension Limits, and Indices	Definition
RSHELL	Number of Red shelters remaining after QRA aircraft are sheltered.
XS	Indicator for sheltering of Red SP-ABA aircraft: 0.0 - do not shelter; 1.0 - shelter (XS=1-IR3SH)--also used later in routine.
RAVULT	Total Red aircraft vulnerable to ABA that can be sheltered, not including QRA.
RPOPS(4) KRA	Population of sheltered Red aircraft, by kind of Red aircraft.
RPOPNS(4) KRA	Population of nonsheltered Red aircraft, by kind of Red aircraft.
RTOTS	Total sheltered Red aircraft ($= \sum_{KRA} RPOPS(KRA)$).
RTOTNS	Total nonsheltered Red aircraft ($= \sum_{KRA} RPOPNS(KRA)$).
RTOT	Total Red aircraft vulnerable to ABA ($=RTOTS+RTOTNS$).
PBABA(2) TYB	Blue ABA aircraft passes by type of ABA aircraft: 1 - GP; 2 - SP.
BATP	Blue attack total passes ($=PBABA(1)+PBABA(2)$).
VBDRS	Average detection parameter for Blue against Red shelters.
VBKRS	Average kill parameter for Blue against Red shelters.
VBDRNS	Average detection parameter for Blue against Red nonsheltered aircraft.
VBKRNS	Average kill parameter for Blue against Red nonsheltered aircraft.
Q	Proportion of Blue passes to attack Red shelters-- computed if IBABA=2 or 4.

The following variables are computed only if Blue uses area fire (IBABA=4):

<u>Variable Name, Dimension Limits, and Indices</u>	<u>Definition</u>
R4AN	Average area covered by a Blue "anti-nonsheltered" munition.
R4AS	Average area covered by a Blue "anti-shelter" munition.
R4NS	Average reduction factor when Blue "anti-nonsheltered" munitions are used against shelters.
R4SN	Average expansion factor when Blue "anti-shelter" munitions are used against nonsheltered aircraft.
NTN	Number of iterations of Newton's method to find optimal Q.

The following working variables are used to hold intermediate results in the attrition calculations:

Blue Attack Mode 1: TERMS1, XS, TERMS2, TERMN1, XNS, TERMN2.

Blue Attack Mode 2: CS0, CNO, CS1, CS, CN1, CN, C1, Q0, Q, CS2.

Blue Attack Mode 3: T, TERM1, TERM2, XS, XNS, TERMS, TERMNS.

Blue Attack Mode 4: X4N, X4SN, X4NS, X4S, A1N, A2N, A0B, A3, A4, A1S, A2S, A2, A5, A6, X0, X1, Q0, NTN, Q1, Q, TERMS, TERMNS, and the arithmetic statement functions F14(Q) and F24(Q).

The results in all cases are the following:

RAKS	Red sheltered aircraft destroyed.
RSHELK(90) ID	Red shelters destroyed on day ID.
RAKNS	Red nonsheltered aircraft destroyed.

Aircraft Destroyed and Final Measures for Day

XS	Proportion of sheltered aircraft killed in the ABA interaction--used for apportioning destroyed aircraft by kind of aircraft (redefined for Red).
XNS	Proportion of nonsheltered aircraft killed in the ABA interaction--used for apportioning destroyed aircraft by kind of aircraft (redefined for Red).

Variable Name, Dimension Limits, and Indices	Definition
BAD(4,90) KBA, ID	Blue aircraft destroyed on day ID, by kind of Blue aircraft.
RAD(4,90) KRA, ID	Red aircraft destroyed on day ID, by kind of Red aircraft.
BAF(90) ID	Blue air firepower (i.e., successful CAS firepower) delivered on day ID.
RAF(90) ID	Red air firepower delivered on day ID.
BF(90) ID	Blue total firepower (ground plus successful CAS) delivered on day ID.
RF(90) ID	Red total firepower delivered on day ID.
FRBR	Force ratio of Blue to Red firepower.
FRRB	Force ratio of Red to Blue firepower ($=1/FRBR$).
DFEBA	FEBA advance.
DFOBA	Negative of FEBA advance.
FEBA(90) ID	FEBA position at end of day ID.
PBDID	Percept Blue divisions destroyed.
BDD(3,90) KBD, ID	Blue divisions destroyed on day ID, by kind of Blue division.
PRDID	Percent Red divisions destroyed.
RDD(3,90) KRD, ID	Red divisions destroyed on day ID, by kind of Red division
CBF(90) ID	Cumulative Blue ground plus CAS firepower delivered to date.
CRF(90) ID	Cumulative Red ground plus CAS firepower delivered to date.
CBAF(90) ID	Cumulative Blue CAS firepower delivered to date.

Variable Name, Dimension Limits, and Indices	<u>Definition</u>
CRAF(90) ID	Cumulative Red CAS firepower delivered to date.

Chapter IV

PROGRAM LISTING

A. PROGRAM MAIN

```

PROGRAM MAIN(INPUT,OUTPUT,TAPES=INPUT,TAPE6=OUTPUT)
C OPTSA II
C(D)PSEG
COMMON NKRD,NKRU,NKRA,NKRA
COMMON NID
COMMON NPD,IDL1,IDL1,IDL2,IDL2,IDL3,IDL3
COMMON IR0,JR0,KR0
COMMON IPRV,IPRU
COMMON IREPLB,IREPLR
COMMON BDA(3,90),RDA(3,90)
COMMON RAA(4,90),RAA(4,90)
COMMON DBQRA,DRQRA
COMMON SHFLB(90),SHELRL(90),PHSHEL,PHSHEL
COMMON RSHELK(90),RSHELK(90)
COMMON FBD(3),FHD(3),FRA(2),FRA(2)
COMMON IDR$RC,IDSRC
COMMON SORRB1(2,3),SORRB2(2,3),SORRR1(2,3),SORRR2(2,3)
COMMON IAA,XNRAA,XNRAA,BALPHA(2,2),RALPHA(2,2)
COMMON BIDRA(2,4),RAURI(4,2),RIDRA(2,4),RADBT(4,2)
COMMON BIKRA(2,4),RAKRT(4,2),RIKRA(2,4),RAKBT(4,2)
COMMON BSAM7R(2,2),RSAM7B(2,2)
COMMON IR$H,BFRAC1,BFRAC2,RFRAC1,RFRAC2,FBSK,FRSK
COMMON BPASS(2),RPASS(2)
COMMON IBABA,IRABA,XNBAR,XNRAB,BPARK,RPARK
COMMON BDRS(2),BDRNS(2),BKRS(2),RKNS(2)
COMMON RDNS(2),RDBNS(2),RKBS(2),RKNS(2)
COMMON R4B,BAL,R4AN1,B4AN2,B4AS1,R4AS2,R4NS1,B4NS2,R4SN1,B4SN2
COMMON R4R,R4AL,R4AN1,R4AN2,R4AS1,R4AS2,R4NS1,R4NS2,R4SN1,R4SN2
COMMON EPS4
COMMON NFRA,FRFA(15),FA(15)
COMMON NFBD,FRBD(15),BD(15)
COMMON NFRRD,FRRD(15),RD(15)
COMMON NH,NR
COMMON PR(20,3),PR(20,3)
COMMON PROPA(3,3),PROPR(3,3)
COMMON MOE,MOET
COMMON RCWGT,RSWGT(3),ROWGT(2),RCWGT,RSWGT(3),ROWGT(2)
COMMON GVA
C
COMMON U(1,11),SUR(1,11,11),SUR(1,11,11)
COMMON V(1,11),SVR(1,11,11),SVR(1,11,11)
COMMON W(1,11),SWR(11),SWR(11),VALUE
C
COMMON BDI(3,90),RDI(3,90)
COMMON BDD(3,90),RDD(3,90)
COMMON RGF(90),RGF(90)
COMMON BAT(4,90),RAI(4,90)
COMMON BAD(4,90),RAD(4,90)
COMMON BAF(90),RAF(90)
COMMON BFT(90),RF(90)
COMMON FERA(90)
COMMON CBF(90),CRF(90)
COMMON CBAF(90),CRAF(90)
C
C(D)PEND
CALL CLRCOM(1+1+90)
CALL READ

```

```

IDL1=1
IDU1=IDL7-1
IDU2= IDL7-1
IDU3=NID
C
ITERATION LOOP CAN GO HERE
C
CALL CLRCOM(2,1,90)
IF(NPD .EQ. 1) CALL SIMPL3(1,1)
IF(NPD .EQ. 2) CALL SIMPL2(1,1)
IF(NPD .EQ. 3) CALL SIMPL1
C
ITERATION LOOP CAN GO HERE
C
9999 CONTINUE
END

```

MAIN	00059
MAIN	00060
MAIN	00061
MAIN	00062
MAIN	00063
MAIN	00064
MAIN	00065
MAIN	00066
MAIN	00067
MAIN	00068
MAIN	00069
MAIN	00070
MAIN	00071
MAIN	00072
MAIN	00073
MAIN	00074
MAIN	00075

B. SUBROUTINE CLRCOM

SUBROUTINE CLRCOM(ICL,IDL,IDU)		CLRCOM 00002
C	COUPUM	
COMMON	NKRD,NKRD,NKBA,NKRA	MAIN
COMMON	NID	MAIN
COMMON	NPD,IDL1,IDL1,IIDU1,IDL2,IIDU2,IDL3,IIDU3	MAIN
COMMON	IRO,JRO,KRO	MAIN
COMMON	IPRV,IPRU	MAIN
COMMON	IREPLB,IREPLR	MAIN
COMMON	BDA(3,90),RDA(3,90)	MAIN
COMMON	BAA(4,90),RAA(4,90)	MAIN
COMMON	DBQRA,DRQRA	MAIN
COMMON	SHELB(90),SHELR(90),PRSHEL,PHSHEL	MAIN
COMMON	BSHELK(90),RSHELK(90)	MAIN
COMMON	FBD(3),FRD(3),FRA(2),FRA(2)	MAIN
COMMON	IDRSRC,IRSRC	MAIN
COMMON	SORRB1(2,3),SORRB2(2,3),SORRM1(2,3),SORRR2(2,3)	MAIN
COMMON	IAA,XNBA,XNRAA,XBALPHA(2,2),XALPHA(2,2)	MAIN
COMMON	BIDRA(2,4),BADRI(4,2),RIDRA(2,4),RADBI(4,2)	MAIN
COMMON	BIKRA(2,4),BAKRI(4,2),RIKBA(2,4),RAKBI(4,2)	MAIN
COMMON	BSAMZR(2,2),RSAMZB(2,2)	MAIN
COMMON	IR3SH,BFHAC1,BFRAC2,RFRAC1,RFRAC2,FBSK,FRSK	MAIN
COMMON	BPASS(2),RPASS(2)	MAIN
COMMON	IBABA,IRABA,XNBAR,XNRAB,BPARK,RPARK	MAIN
COMMON	BDRS(2),BDRNS(2),BKRS(2),BKRNS(2)	MAIN
COMMON	RDBS(2),RDBNS(2),RKBS(2),RKBN(2)	MAIN
COMMON	R4B,B4AL,B4AN1,B4AN2,B4AS1,B4AS2,B4NS1,B4NS2,B4SN1,B4SN2	MAIN
COMMON	R4B,R4AL,R4AN1,R4AN2,R4AS1,R4AS2,R4NS1,R4NS2,R4SN1,R4SN2	MAIN
COMMON	EPS4	MAIN
COMMON	NFRFA,FRFA(15),FA(15)	MAIN
COMMON	NFRBD,FRBD(15),BD(15)	MAIN
COMMON	NFRRD,FRRD(15),RD(15)	MAIN
COMMON	N8,NR	MAIN
COMMON	PB(20,3),PR(20,3)	MAIN
COMMON	PROPB(3,3),PROPR(3,3)	MAIN
COMMON	MOE,MOET	MAIN
COMMON	BCWGT,BSWGT(3),BCWGT(2),RCWGT,RSWGT(3),RWGWT(2)	MAIN
COMMON	GVA	MAIN
C		MAIN
COMMON	U(11,11),SUR(11,11,11),SUR(11,11,11)	MAIN
COMMON	V(11,11),SVR(11,11,11),SVR(11,11,11)	MAIN
COMMON	W(11,11),SWB(11),SWR(11),VALUE	MAIN
C		MAIN
COMMON	BDI(3,90),BDI(3,90)	MAIN
COMMON	BDD(3,90),RDD(3,90)	MAIN
COMMON	BGF(90),RGF(90)	MAIN
COMMON	BAI(4,90),RAI(4,90)	MAIN
COMMON	BAD(4,90),RAD(4,90)	MAIN
COMMON	BAF(90),RAF(90)	MAIN
COMMON	BF(90),RF(90)	MAIN
COMMON	FERA(90)	MAIN
COMMON	CBF(90),CRF(90)	MAIN
COMMON	CBAF(90),CRAF(90)	MAIN
C	COUPUM	
IF(ICL .GT. 1) GO TO 5		CLRCOM 00003
DO 100 I=1,90		CLRCOM 00004
DO 101 J=1,3		CLRCOM 00005
		CLRCOM 00006

```

1n1      BDA(J,I)=RDA(J,I)=RAA(J,I)=RAA(J,I)= 0.0
1n1      CON1NUF
1n1      RAA(4+I) =RAA(4+I) = 0.0
1n0      CONTINUE
1n0      DO 102 J=1,3
1n0      FBU(J)=FRU(J)=0.0
1n0      DO 103 K=1,20
1n0      PB(K,J)=PR(K,J)=0.0
1n3      CONTINUE
1n2      CONTINUE
1n2      DO 104 I=1,15
1n2      FRFA(I)=FA(I)=FRBD(I)=RD(I)=FRHD(I)=RN(I)=0.0
1n4      CONTINUE
1n4      DO 105 K=1,2
1n4      BPASS(K)=RPASS(K)=FBA(K)=FRA(K)=0.0
1n4      HSAMZR(K,1)=HSAMZR(K,2)=0.0
1n4      RSAMZB(K,1)=HSAMZB(K,2)=0.0
1n4      DO 106 L=1,3
1n4      SOKRH1(K,L)=SOKRH2(K,L)=SORRR1(K,L)=SORRR2(K,L)=0.0
1n6      CONTINUE
1n5      CONTINUE
5      CONTINUE
IF(ICL .GT. 2) GO TO 6
DO 202 J=1,3
DO 203 I=1,3
PRUPR(I,J) = PRUPR(I+J) = 0.0
2n3      CONTINUE
2n2      CONTINUE
6      CONTINUE
DO 300 I=IDL,1DU
DO 301 J=1,3
BDI(J,I)=BAI(J,I)=PDI(J,I) = RAI(J,I) = 0.0
BDD(J,I)=BAD(J,I)=PDD(J,I) = RAD(J,I) = 0.0
3n1      CONTINUE
BAD(4+I) = RAI(4+I) = RAD(4+I) = RAI(4+I) = 0.0
BGF(I) =BAF(I)=HF(I)=CHF(I)=CHAF(I)=0.0
HGF(I) =RAF(I)=HF(I)=CRF(I)=CRAF(I)=0.0
SHELH(I)=SHELK(I)= 0.0
HSHELK(I)=RSHELK(I)= .0
FEBA(I)=0.0
3n0      CONTINUE
RETURN
END

```

CLRCOM	00007
CLRCOM	00008
CLPCOM	00009
CLPCOM	00010
CLPCOM	00011
CLPCOM	00012
CLPCOM	00013
CLPCOM	00014
CLPCOM	00015
CLRCOM	00016
CLRCOM	00017
CLRCOM	00018
CLRCOM	00019
CLRCOM	00020
CLPCOM	00021
CLPCOM	00022
CLRCOM	00023
CLRCOM	00024
CLPCOM	00025
CLPCOM	00026
CLRCOM	00027
CLRCOM	00028
CLRCOM	00029
CLRCOM	00030
CLRCOM	00031
CLPCOM	00032
CLRCOM	00033
CLRCOM	00034
CLPCOM	00035
CLRCOM	00036
CLPCOM	00037
CLRCOM	00038
CLPCOM	00039
CLPCOM	00040
CLRCOM	00041
CLRCOM	00042
CLPCOM	00043
CLPCOM	00044
CLPCOM	00045
CLPCOM	00046
CLRCOM	00047
CLRCOM	00048
CLRCOM	00049

C. SUBROUTINE READ

	READ	00002
	READ	00003
L	SUBROUTINE READ	
OPTSA II		
CDUPUIM		
COMMON NKRD,NKRD,NKBA,NKRA	MAIN	
COMMON NID	MAIN	
COMMON NPD,IDL1,IDL1+IDL2,IDL2+IDL3+IDL3	MAIN	
COMMON IRD,JRD,KRD	MAIN	
COMMON IPRV,IPRU	MAIN	
COMMON IREPLB,THEPLR	MAIN	
COMMON RIA(3,90),RNA(3,90)	MAIN	
COMMON RAA(4,90),RAA(4,90)	MAIN	
COMMON DBORA,DRORA	MAIN	
COMMON SHELB(90),SHELRL(90)+PHSHEL,PHSHEL	MAIN	
COMMON BSHELK(90),RSHELK(90)	MAIN	
COMMON FRD(3),FRD(3),FRA(2),FRA(2)	MAIN	
COMMON IDSRSC,IUPSRC	MAIN	
COMMON SORRR1(2,3),SORRR2(2,3),SORRH1(2,3),SORRH2(2,3)	MAIN	
COMMON TAA,XNRAA,XNRAA,BALPHA(2,2)+RALPHA(2,2)	MAIN	
COMMON RIRDA(2,4),RADRI(4,2)+RIDRA(2,4),RADRI(4,2)	MAIN	
COMMON RIKRA(2,4),RAKRI(4,2),RIKRA(2,4),RAKRI(4,2)	MAIN	
COMMON BSAMZR(2,2),RSAMZB(2,2)	MAIN	
COMMON IR3SH,BFRAC1,HFRAC2,RFRAC1,RFRAC2,FRSK,FRSK	MAIN	
COMMON RPASS(2)+RPASS(2)	MAIN	
COMMON IBARA+IRARA,XNRAA,XPARK,RPARK	MAIN	
COMMON RDPS(2),HDNS(2),RKRS(2),RKRN(2)	MAIN	
COMMON RDHS(2),HDNS(2),RKHS(2),RKRN(2)	MAIN	
COMMON R4R,B4AL,B4AN1,B4AN2,B4AS1,R4AS2,R4NS1,B4NS2,R4SN1,R4SN2	MAIN	
COMMON R4R,R4AL,R4AN1,R4AN2,R4AS1,R4AS2,R4NS1,R4NS2,R4SN1,R4SN2	MAIN	
COMMON EPS4	MAIN	
COMMON NFREA,FRFA(15),FA(15)	MAIN	
COMMON NFRRD,FRBD(15),RN(15)	MAIN	
COMMON NFRRD,FRRD(15),RN(15)	MAIN	
COMMON NB,NP	MAIN	
COMMON PB(20,3),PR(20,3)	MAIN	
COMMON PROPB(3,3),PROPR(3,3)	MAIN	
COMMON MOE,MOET	MAIN	
COMMON BCWGT,BSWGT(3),BOWGT(2),RCWGT,RSWGT(3),RWGKT(2)	MAIN	
COMMON GVA	MAIN	
C		
COMMON U(11,11)+SUR(11,11,11),SUR(11,11,11)	MAIN	
COMMON V(11,11)+SVR(11,11,11),SVR(11,11,11)	MAIN	
COMMON W(11,11)+SWR(11,11,11),VALUE	MAIN	
C		
COMMON BDT(3,90),RDI(3,90)	MAIN	
COMMON BDD(3,90)+RDD(3,90)	MAIN	
COMMON BGF(90),RGF(90)	MAIN	
COMMON RAI(4,90),RAI(4,90)	MAIN	
COMMON RAD(4,90)+RAD(4,90)	MAIN	
COMMON RAF(90),RAF(90)	MAIN	
COMMON RF(90),RF(90)	MAIN	
COMMON FERA(90)	MAIN	
COMMON CRF(90),CpF(90)	MAIN	
COMMON CBAF(90)+CRAF(90)	MAIN	
C		
CDUPUIM	READ	00004
INTEGER TY,TYI	READ	00005
10 FORMAT(B110)	READ	00006

```

20 FORMAT(8F10.0)          READ    00007
21 FORMAT(8F10.1)          READ    00008
22 FORMAT(8F10.2)          READ    00009
23 FORMAT(8F10.3)          READ    00010
25 FORMAT(8F10.5)          READ    00011
3n1 FORMAT(1H ,4F10.5)     READ    00012
3n2 FORMAT(1H ,2F10.5)     READ    00013
3n3 FORMAT(1H ,3F10.4)     READ    00014
3n4 FORMAT(1H ,2F10.4)     READ    00015
C
C --- TAPES
C
MIT = 5                   READ    00016
MOT = 6                   READ    00017
C
C --- CAMPAIGN DESCRIPTION
C
      WRITE(MOT,1010)
1010 FORMAT(2)H1 NKBD,NKRD,NKBA,NKRA
      READ(MIT,10) NKBD,NKRD,NKBA,NKRA
      WRITE(MOT,10) NKBD,NKRD,NKBA,NKRA
C
      WRITE(MOT,1020)
1020 FORMAT(5H0 NID)
      READ(MIT,10) NID
      WRITE(MOT,10) NID
C
      READ(MIT, 10) NPD,IDL2,IDL3
      WRITE(MOT,1030)
1030 FORMAT(1H0,13HNPD,IDL2,IDL3)
      WRITE(MOT, 10) NPD,IDL2,IDL3
C
      READ(MIT, 10) IRO,JRO,KRO
      WRITE(MOT,1040)
1040 FORMAT(1H0,11HIRO,JRO,KRO)
      WRITE(MOT, 10) IRO,JRO,KRO
C
      READ(MIT, 10) IPRV,IPRU
      WRITE(MOT,1060)
1060 FORMAT(1H0, 9HIPRV,IPRU)
      WRITE(MOT, 10) IPRV,IPRU
C
      READ(MIT, 10) IREPLH,IREPLR
      WRITE(MOT,1070)
1070 FORMAT(1H0,13HIREPLH,IREPLR)
      WRITE(MOT, 10) IREPLH,IREPLR
C
C --- FORCES
C
      WRITE(MOT,2010)
2010 FORMAT(1)H1 BDA(KBD,ID)
      DO 210 KBD=1,NKBD
      READ(MIT,21) (BDA(KBD,ID),ID=1,NID)
210 WRITE(MOT,21) (BDA(KBD,ID),ID=1,NID)
C
      WRITE(MOT,2020)
2020 FORMAT(13H0 RDA(KRD,ID))

```

```

      DO 220 KRD=1,NKRD
      READ (MIT,21) (RDA(KRD, ID), ID=1,NID)
  220 WRITE(MOT,21) (RDA(KRD, ID), ID=1,NID)

C   WRITE(MOT,2030)
  2030 FORMAT( 13H0 BAA(KBA, ID))
      DO 230 KBA=1,NKBA
      READ ( MIT,20) (BAA(KBA, ID), ID=1,NID)
  230 WRITE( MOT,20) (BAA(KBA, ID), ID=1,NID)

C   WRITE(MOT,2040)
  2040 FORMAT( 13H0 RAA(KRA, ID))
      DO 240 KRA=1,NKRA
      READ ( MIT,20) (RAA(KRA, ID), ID=1,NID)
  240 WRITE( MOT,20) (RAA(KRA, ID), ID=1,NID)

C   READ(MIT, 21) DBQRA,DRQRA
      WRITE(MOT,2100)
  2100 FORMAT(1H0,11HDBQRA,DRQRA)
      WRITE(MOT, 21) DBQRA,DRQRA

C   READ(MIT, 20) PBSHEL
      WRITE(MOT,2110)
  2110 FORMAT(1H0, 6HPBSHEL)
      WRITE(MOT, 20) PBSHEL

C   READ(MIT, 20) PRSHEL
      WRITE(MOT,2120)
  2120 FORMAT(1H0, 6HPRSHEL)
      WRITE(MOT, 20) PRSHEL

C   FIREPOWER SCORES--GROUND AND AIR
C   WRITE(MOT,3010)
  3010 FORMAT(10H1 FBD(KBD))
      READ (MIT,21) (FBD(KBD), KRD=1,NKRD)
      WRITE(MOT,21) (FBD(KBD), KRD=1,NKRD)

C   WRITE(MOT,3020)
  3020 FORMAT(10H0 FRD(KRD))
      READ (MIT,21) (FRD(KRD), KRD=1,NKRD)
      WRITE(MOT,21) (FRD(KRD), KRD=1,NKRD)

C   READ(MIT, 25) (FBA(KBA), KBA=1,2)
      WRITE(MOT,3030)
  3030 FORMAT(1H0,18H(FBA(KBA), KBA=1,2))
      WRITE(MOT, 25) (FBA(KBA), KBA=1,2)

C   READ(MIT, 25) (FRA(KRA), KRA=1,2)
      WRITE(MOT,3040)
  3040 FORMAT(1H0,18H(FRA(KRA), KRA=1,2))
      WRITE(MOT, 25) (FRA(KRA), KRA=1,2)

C   SORTIE_RATES
C   READ(MIT, 10) IDBSRC, IDRSRC
      WRITE(MOT,2130)
  2130 FORMAT(1H0,13HIDBSRC.IDRSRC

```

```

      WRITE(MOT, 10)  IDBSRC, IDRSRC
C
      READ(MIT, 23)  ((SORRRA1(TY,MS),MS=1:3),TY=1:2)
      WRITE(MOT,2140)
2140  FORMAT(1H0,31H((SORRRA1(TY,MS),MS=1:3),TY=1:2))
      WRITE(MOT,303)  ((SORRRA1(TY,MS),MS=1:3),TY=1:2)
C
      READ(MIT, 23)  ((SORRRA2(TY,MS),MS=1:3),TY=1:2)
      WRITE(MOT,2150)
2150  FORMAT(1H0,31H((SORRRA2(TY,MS),MS=1:3),TY=1:2))
      WRITE(MOT,303)  ((SORRRA2(TY,MS),MS=1:3),TY=1:2)
C
      READ(MIT, 23)  ((SORRR1(TY,MS),MS=1:3),TY=1:2)
      WRITE(MOT,2160)
2160  FORMAT(1H0,31H((SORRR1(TY,MS),MS=1:3),TY=1:2))
      WRITE(MOT,303)  ((SORRR1(TY,MS),MS=1:3),TY=1:2)
C
      READ(MIT, 23)  ((SORRR2(TY,MS),MS=1:3),TY=1:2)
      WRITE(MOT,2170)
2170  FORMAT(1H0,31H((SORRR2(TY,MS),MS=1:3),TY=1:2))
      WRITE(MOT,303)  ((SORRR2(TY,MS),MS=1:3),TY=1:2)
C
C   AIR TO AIR PARAMETERS
C
      READ(MIT, 10)  IAA
      WRITE(MOT,2200)
22n0 FORMAT(1H0, 3HIAA
      WRITE(MOT, 10)  IAA
C
      READ(MIT, 21)  XNBAAXNRAA
      WRITE(MOT,2210)
2210 FORMAT(1H0,11HXNBAAXNRAA
      WRITE(MOT, 21)  XNBAAXNRAA
C
      READ(MIT, 23)  ((BALPHA(TY,MS),MS=1:2),TY=1:2)
      WRITE(MOT,2220)
2220 FORMAT(1H0,31H((BALPHA(TY,MS),MS=1:2),TY=1:2))
      WRITE(MOT,302)  ((BALPHA(TY,MS),MS=1:2),TY=1:2)
C
      READ(MIT, 23)  ((RALPHA(TY,MS),MS=1:2),TY=1:2)
      WRITE(MOT,2230)
2230 FORMAT(1H0,31H((RALPHA(TY,MS),MS=1:2),TY=1:2))
      WRITE(MOT,302)  ((RALPHA(TY,MS),MS=1:2),TY=1:2)
C
      READ(MIT, 25)  ((BIDRA(TYI,KAT),KAT=1:4),TYI=1:2)
      WRITE(MOT,2310)
2310 FORMAT(1H0,34H((BIDRA(TYI,KAT),KAT=1:4),TYI=1:2))
      WRITE(MOT,301)  ((BIDRA(TYI,KAT),KAT=1:4),TYI=1:2)
C
      READ(MIT, 25)  ((BIKRA(TYI,KAT),KAT=1:4),TYI=1:2)
      WRITE(MOT,2320)
2320 FORMAT(1H0,34H((BIKRA(TYI,KAT),KAT=1:4),TYI=1:2))
      WRITE(MOT,301)  ((BIKRA(TYI,KAT),KAT=1:4),TYI=1:2)
C
      READ(MIT, 25)  ((BADRI(KAT,TYI),TYI=1:2),KAT=1:4)
      WRITE(MOT,2330)
2330 FORMAT(1H0,34H((BADRI(KAT,TYI),TYI=1:2),KAT=1:4))
      WRITE(MOT,302)  ((BADRI(KAT,TYI),TYI=1:2),KAT=1:4)

      READ    00123
      READ    00124
      READ    00125
      READ    00126
      READ    00127
      READ    00128
      READ    00129
      READ    00130
      READ    00131
      READ    00132
      READ    00133
      READ    00134
      READ    00135
      READ    00136
      READ    00137
      READ    00138
      READ    00139
      READ    00140
      READ    00141
      READ    00142
      READ    00143
      READ    00144
      READ    00145
      READ    00146
      READ    00147
      READ    00148
      READ    00149
      READ    00150
      READ    00151
      READ    00152
      READ    00153
      READ    00154
      READ    00155
      READ    00156
      READ    00157
      READ    00158
      READ    00159
      READ    00160
      READ    00161
      READ    00162
      READ    00163
      READ    00164
      READ    00165
      READ    00166
      READ    00167
      READ    00168
      READ    00169
      READ    00170
      READ    00171
      READ    00172
      READ    00173
      READ    00174
      READ    00175
      READ    00176
      READ    00177
      READ    00178
      READ    00179
      READ    00180

```

```

C      READ(MIT, 25) ((BAKRI(KAT,TYI),TYI=1,2),KAT=1,4)          READ  00181
      WRITE(MOT,2340)                                         READ  00182
      FORMAT(1H0,34H((BAKRI(KAT,TYI),TYI=1,2),KAT=1,4))      READ  00183
      WRITE(MOT,302) ((BAKRI(KAT,TYI),TYI=1,2),KAT=1,4)       READ  00184
C      READ(MIT, 25) ((RIDBA(TYI,KAT),KAT=1,4),TYI=1,2)        READ  00185
      WRITE(MOT,2350)                                         READ  00186
      FORMAT(1H0,34H((RIDBA(TYI,KAT),KAT=1,4),TYI=1,2))      READ  00187
      WRITE(MOT,301) ((RIDBA(TYI,KAT),KAT=1,4),TYI=1,2)       READ  00188
C      READ(MIT, 25) ((RIKHA(TYI,KAT),KAT=1,4),TYI=1,2)        READ  00189
      WRITE(MOT,2360)                                         READ  00190
      FORMAT(1H0,34H((RIKHA(TYI,KAT),KAT=1,4),TYI=1,2))      READ  00191
      WRITE(MOT,301) ((RIKHA(TYI,KAT),KAT=1,4),TYI=1,2)       READ  00192
C      READ(MIT, 25) ((RADBI(KAT,TYI),TYI=1,2),KAT=1,4)        READ  00193
      WRITE(MOT,2370)                                         READ  00194
      FORMAT(1H0,34H((RADBI(KAT,TYI),TYI=1,2),KAT=1,4))      READ  00195
      WRITE(MOT,302) ((RADBI(KAT,TYI),TYI=1,2),KAT=1,4)       READ  00196
C      READ(MIT, 25) ((RAKBI(KAT,TYI),TYI=1,2),KAT=1,4)        READ  00197
      WRITE(MOT,2380)                                         READ  00198
      FORMAT(1H0,34H((RAKBI(KAT,TYI),TYI=1,2),KAT=1,4))      READ  00199
      WRITE(MOT,302) ((RAKBI(KAT,TYI),TYI=1,2),KAT=1,4)       READ  00200
C      SAM PARAMETERS                                         READ  00201
C      READ(MIT,23) ((BSAMZR(TY,MS),MS=1,2),TY=1,2)           READ  00202
      WRITE(MOT,2410)                                         READ  00203
      FORMAT(1H0, 31H((BSAMZR(TY,MS),MS=1,2),TY=1,2))       READ  00204
      WRITE(MOT,304) ((BSAMZR(TY,MS),MS=1,2),TY=1,2)         READ  00205
C      READ(MIT,23) ((RSAMZB(TY,MS),MS=1,2),TY=1,2)           READ  00206
      WRITE(MOT,2420)                                         READ  00207
      FORMAT(1H0, 31H((RSAMZB(TY,MS),MS=1,2),TY=1,2))       READ  00208
      WRITE(MOT,304) ((RSAMZB(TY,MS),MS=1,2),TY=1,2)         READ  00209
C      ABA PARAMETERS                                         READ  00210
C      READ(MIT,10) IR3SH                                     READ  00211
      WRITE(MOT,2440)                                         READ  00212
      FORMAT(1H0,5HIR3SH)                                     READ  00213
      WRITE(MOT,10) IR3SH                                     READ  00214
C      READ(MIT, 23) BFRAC1,BFRAC2                         READ  00215
      WRITE(MOT,2450)                                         READ  00216
      FORMAT(1H0,13H BFRAC1,BFRAC2)                         READ  00217
      WRITE(MOT, 23) BFRAC1,BFRAC2                         READ  00218
C      READ(MIT, 23) RFRAC1,RFRAC2                         READ  00219
      WRITE(MOT,2455)                                         READ  00220
      FORMAT(1H0,13H RFRAC1,RFRAC2)                         READ  00221
      WRITE(MOT, 23) RFRAC1,RFRAC2                         READ  00222
C      READ(MIT, 23) FBSK,FRSK                           READ  00223
      WRITE(MOT,2460)                                         READ  00224
      FORMAT(1H0, 9HFBSK,FRSK)                            READ  00225
      WRITE(MOT, 23) FBSK,FRSK                           READ  00226
C      READ(MIT, 23) FBSK,FRSK                           READ  00227
      WRITE(MOT,2460)                                         READ  00228
      FORMAT(1H0, 9HFBSK,FRSK)                            READ  00229
      WRITE(MOT, 23) FBSK,FRSK                           READ  00230
C      READ(MIT, 23) FBSK,FRSK                           READ  00231
      WRITE(MOT,2460)                                         READ  00232
      FORMAT(1H0, 9HFBSK,FRSK)                            READ  00233
      WRITE(MOT, 23) FBSK,FRSK                           READ  00234
C      READ(MIT, 23) FBSK,FRSK                           READ  00235
      WRITE(MOT,2460)                                         READ  00236
      FORMAT(1H0, 9HFBSK,FRSK)                            READ  00237
      WRITE(MOT, 23) FBSK,FRSK                           READ  00238

```

	WRITE(MOT, 23) FB5K+FR5K	
C	READ(MIT, 22) (BPASS(TY),TY=1,2)	READ 00239
	WRITE(MOT,2470)	READ 00240
2470	FORMAT(1H0,18H(BPASS(TY),TY=1,2))	READ 00241
	WRITE(MOT, 22) (BPASS(TY),TY=1,2)	READ 00242
C	READ(MIT, 22) (RPASS(TY),TY=1,2)	READ 00243
	WRITE(MOT,2475)	READ 00244
2475	FORMAT(1H0,18H(RPASS(TY),TY=1,2))	READ 00245
	WRITE(MOT, 22) (RPASS(TY),TY=1,2)	READ 00246
C	READ(MIT,10) IBABA,IRABA	READ 00247
	WRITE(MOT,2476) IBABA	READ 00248
	WRITE(MOT,2477) IRABA	READ 00249
2476	FORMAT(1H0,42HIBABA--BLUE ATTACKS RED AIRBASE USING MODE,15)	READ 00250
2477	FORMAT(1H0,42HIRABA--RED ATTACKS BLUE AIRBASE USING MODE,15)	READ 00251
C	READ(MIT, 21) XNBAB,XNRAB	READ 00252
	WRITE(MOT,2480)	READ 00253
2480	FORMAT(1H0,11HXNBAB,XNRAB)	READ 00254
	WRITE(MOT, 21) XNBAB,XNRAB	READ 00255
C	READ(MIT, 21) BPARK+RPARK	READ 00256
	WRITE(MOT,2490)	READ 00257
2490	FORMAT(1H0,11HBPAK,RPARK)	READ 00258
	WRITE(MOT, 21) BPARK,RPARK	READ 00259
C	READ(MIT,25) BDRS,BDRNS,BKRS,BKRNS	READ 00260
	WRITE(MOT,2524)	READ 00261
	WRITE(MOT,2525) BDRS	READ 00262
	WRITE(MOT,2526) BDRNS	READ 00263
	WRITE(MOT,2527) BKRS	READ 00264
	WRITE(MOT,2528) BKRNS	READ 00265
2524	FORMAT(1H0,5X,6X,4HR GP ,2X,8HB SP ABA)	READ 00266
2525	FORMAT(1H ,5HBDRS ,2F10.5)	READ 00267
2526	FORMAT(1H ,5HBDRNS,2F10.5)	READ 00268
2527	FORMAT(1H ,5HBRKS ,2F10.5)	READ 00269
2528	FORMAT(1H ,5HBRNS,2F10.5)	READ 00270
C	READ(MIT,25) RDBS,RDBNS,RKBS,RKNS	READ 00271
	WRITE(MOT,2529)	READ 00272
	WRITE(MOT,2530) RDBS	READ 00273
	WRITE(MOT,2531) RDBNS	READ 00274
	WRITE(MOT,2532) RKBS	READ 00275
	WRITE(MOT,2533) RKNS	READ 00276
2529	FORMAT(1H0,5X,6X,4HR GP ,2X,8HR SP ARA)	READ 00277
2530	FORMAT(1H ,5HRDBS ,2F10.5)	READ 00278
2531	FORMAT(1H ,5HRDNS,2F10.5)	READ 00279
2532	FORMAT(1H ,5HRKBS ,2F10.5)	READ 00280
2533	FORMAT(1H ,5HRKNS,2F10.5)	READ 00281
C	AREA FIRE PARAMETERS	READ 00282
C	READ(MIT,21)	READ 00283
1	B4B,B4A1,B4AN1,B4AN2,B4AS1,B4AS2,B4NS1,B4NS2,B4SN1,B4SN2	READ 00284
	WRITE(MOT,2610)	READ 00285
2610	FORMAT(1H0,	READ 00286
		READ 00287
		READ 00288
		READ 00289
		READ 00290
C	READ(MIT,21)	READ 00291
		READ 00292
		READ 00293
		READ 00294
		READ 00295
		READ 00296

```

1      56HB4B,B4AL,B4AN1,B4AN2,B4AS1+R4AS2,B4NS1,B4NS2,R4SN1,R4SN2) READ 00297
      WRITE(MOT,2615)                                     READ 00298
1      R4B,R4AL,B4AN1,B4AN2,B4AS1+R4AS2,B4NS1,B4NS2,B4SN1,B4SN2 READ 00299
2615 FORMAT(1H,F15.1+F10.4,F10.1+F10.4)             READ 00300
C
      READ(MIT,21)                                     READ 00301
1      R4B,R4AL,R4AN1,R4AN2,R4AS1+R4AS2,R4NS1,R4NS2,R4SN1,R4SN2 READ 00302
      WRITE(MOT,2620)                                     READ 00303
2620 FORMAT(1H0,
1      56HR4B,R4AL,R4AN1,R4AN2,R4AS1+R4AS2,R4NS1,R4NS2,R4SN1,R4SN2) READ 00304
      WRITE(MOT,2615)                                     READ 00305
1      R4B,R4AL,R4AN1,R4AN2,R4AS1+R4AS2,R4NS1,R4NS2,R4SN1,R4SN2 READ 00306
C
      READ(MIT,25) EPS4                               READ 00307
      WRITE(MOT,2630)                                     READ 00308
2630 FORMAT(1H0,4HEPS4)
      WRITE(MOT,25) EPS4                               READ 00309
C
C   FUNCTIONS FOR FERA ADVANCE AND DIVISION DESTRUCTION
C
      WRITE(MOT,3410)                                     READ 00310
3410 FORMAT(21H0,NFRFA,FRFA(I),FA(I))              READ 00311
      READ(MIT,10) NFRFA                                READ 00312
      WRITE(MOT,10) NFRFA                                READ 00313
      READ(MIT,22) (FRFA(I),I=1,NFRFA)                READ 00314
      WRITE(MOT,22) (FRFA(I),I=1,NFRFA)                READ 00315
      READ(MIT,21) (FA(I),I=1,NFRFA)                  READ 00316
      WRITE(MOT,21) (FA(I),I=1,NFRFA)                  READ 00317
C
      WRITE(MOT,3420)                                     READ 00318
3420 FORMAT(21H0,NFRBD,FRBD(I),BD(I))              READ 00319
      READ(MIT,10) NFRBD                                READ 00320
      WRITE(MOT,10) NFRBD                                READ 00321
      READ(MIT,22) (FRBD(I),I=1,NFRBD)                READ 00322
      WRITE(MOT,22) (FRBD(I),I=1,NFRBD)                READ 00323
      READ(MIT,21) (BD(I),I=1,NFRBD)                  READ 00324
      WRITE(MOT,21) (BD(I),I=1,NFRBD)                  READ 00325
C
      WRITE(MOT,3420)                                     READ 00326
      READ(MIT,10) NFRBD                                READ 00327
      WRITE(MOT,10) NFRBD                                READ 00328
      READ(MIT,22) (FRBD(I),I=1,NFRBD)                READ 00329
      WRITE(MOT,22) (FRBD(I),I=1,NFRBD)                READ 00330
      READ(MIT,23) (BD(I),I=1,NFRBD)                  READ 00331
      WRITE(MOT,23) (BD(I),I=1,NFRBD)                  READ 00332
C
      WRITE(MOT,3430)                                     READ 00333
3430 FORMAT(21H0,NFRRD,FRRD(I),RD(I))              READ 00334
      READ(MIT,10) NFRRD                                READ 00335
      WRITE(MOT,10) NFRRD                                READ 00336
      READ(MIT,22) (FRRD(I),I=1,NFRRD)                READ 00337
      WRITE(MOT,22) (FRRD(I),I=1,NFRRD)                READ 00338
      READ(MIT,23) (RD(I),I=1,NFRRD)                  READ 00339
      WRITE(MOT,23) (RD(I),I=1,NFRRD)                  READ 00340
C
C   --- STRATEGIES BY ALLOCATION BY MISSION
C
      WRITE(MOT,4005)                                     READ 00341
4005 FORMAT(7H1,NB,NR)                                READ 00342
      READ(MIT,10) NB,NR                                 READ 00343
      WRITE(MOT,10) NB,NR                                 READ 00344
C
      WRITE(MOT,4010)                                     READ 00345
4010 FORMAT(22H0,PB(IBA,MS), MS=1,3)
      DO 410 IBA=1,NB                                  READ 00346
      READ(MIT,23) (PB(IBA,MS), MS=1,3)                READ 00347
      READ(MIT,23) (PB(IBA,MS), MS=1,3)                READ 00348
      READ(MIT,23) (PB(IBA,MS), MS=1,3)                READ 00349
      READ(MIT,23) (PB(IBA,MS), MS=1,3)                READ 00350
      READ(MIT,23) (PB(IBA,MS), MS=1,3)                READ 00351
      READ(MIT,23) (PB(IBA,MS), MS=1,3)                READ 00352
      READ(MIT,23) (PB(IBA,MS), MS=1,3)                READ 00353
      READ(MIT,23) (PB(IBA,MS), MS=1,3)                READ 00354

```

```

410 WRITE(MOT,23) (PR(TBA, MS), MS=1,3)
C
        WRITE (MOT,4020)
4020 FORMAT(2H0 PR(IRA, MS), MS=1,3)
DO 420 IRA=1,NR
    READ (MIT,43) (PR(IRA, MS), MS=1,3)
420 WRITE(MOT,23) (PR(IRA, MS), MS=1,3)
C
C --> MEASURE OF EFFECTIVENESS
C
        WRITE (MOT,5010)
5010 FORMAT(1H1 MOE,MOET)
    READ (MIT,10) MOE,MOET
    WRITE(MOT,10) MOE,MOET
C
C     WEIGHTS FOR MOE 4 AND MOE 5
C
    READ(MIT, 23) BCWGT
    WRITE(MOT,5110)
5110 FORMAT(1H0, 5HBCWGT
    WRITE(MOT, 23) BCWGT
C
    READ(MIT, 23) (BSWGT(MS),MS=1,3)
    WRITE(MOT,5120)
5120 FORMAT(1H0,16H(BSWGT(MS),MS=1,3)
    WRITE(MOT, 23) (BSWGT(MS),MS=1,3)
C
    READ(MIT, 23) (BQWGT(I),I=1,2)
    WRITE(MOT,5130)
5130 FORMAT(1H0,16H(BQWGT(I),I=1,2)
    WRITE(MOT, 23) (BQWGT(I),I=1,2)
C
    READ(MIT, 23) RCGWT
    WRITE(MOT,5160)
5160 FORMAT(1H0, 5HRCGWT
    WRITE(MOT, 23) RCGWT
C
    READ(MIT, 23) (RSWGT(MS),MS=1,3)
    WRITE(MOT,5170)
5170 FORMAT(1H0,16H(RSWGT(MS),MS=1,3)
    WRITE(MOT, 23) (RSWGT(MS),MS=1,3)
C
    READ(MIT, 23) (RQWGT(I),I=1,2)
    WRITE(MOT,5180)
5180 FORMAT(1H0,16H(RQWGT(I),I=1,2)
    WRITE(MOT, 23) (RQWGT(I),I=1,2)
C
    READ(MIT, 20) GVA
    WRITE(MOT,5300)
5300 FORMAT(1H0, 3HGVA
    WRITE(MOT, 20) GVA
C
C 9999 CONTINUE
RETURN
END

```

READ	00355
READ	00356
READ	00357
READ	00358
READ	00359
READ	00360
READ	00361
READ	00362
READ	00363
READ	00364
READ	00365
READ	00366
READ	00367
READ	00368
READ	00369
READ	00370
READ	00371
READ	00372
READ	00373
READ	00374
READ	00375
READ	00376
READ	00377
READ	00378
READ	00379
READ	00380
READ	00381
READ	00382
READ	00383
READ	00384
READ	00385
READ	00386
READ	00387
READ	00388
READ	00389
READ	00390
READ	00391
READ	00392
READ	00393
READ	00394
READ	00395
READ	00396
READ	00397
READ	00398
READ	00399
READ	00400
READ	00401
READ	00402
READ	00403
READ	00404
READ	00405
READ	00406
READ	00407
READ	00408
READ	00409
READ	00410

D. SUBROUTINE SIMPL1

```

SUBROUTINE SIMPL1          SIMPL1 00002
CDUPUIM
COMMON NKRD,NKRU,NKBA,NKRA          MAIN
COMMON NID                           MAIN
COMMON NPD,IDL1,IDL1,IDL2,IDL2,IDL3,IDL3,IDL3
COMMON IR0,JR0,KR0                   MAIN
COMMON IPRV,IPRU                    MAIN
COMMON IREFPLR,IHEPLR                MAIN
COMMON BDA(3,90),RDA(3,90)           MAIN
COMMON BAA(4,90),RAA(4,90)           MAIN
COMMON DBQRA,DQRA                  MAIN
COMMON SHFLB(90),SHELRL(90),PRSHEL,PRSHEL
COMMON BSHELK(90),RSHELK(90)         MAIN
COMMON FBD(3),FHD(3),FRA(2),FRA(2)
COMMON IDSRC,IDSRC                 MAIN
COMMON SORRB1(2,3),SORRR2(2,3),SORRH1(2,3),SORRR2(2,3)
COMMON IAA,XNRAA,XNRAA,BALPHA(2,2),RALPHA(2,2)
COMMON BIDRA(2,4),BADRI(4,2),RIDRA(2,4),RADBI(4,2)
COMMON BIKRA(2,4),RAKRI(4,2),RIKRA(2,4),RAKBI(4,2)
COMMON BSAMZR(2,2),RSAMZB(2,2)
COMMON IR3SH,BFHAC1,HFRAC2,RFRAC1,RFRAC2,FRSK,FRSK
COMMON RPASS(2),PPASS(2)            MAIN
COMMON IBABA,IRARA,XNRAB,XNRAB,BPARK,RPARK
COMMON BDNS(2),BDRNS(2),BKRS(2),RKNS(2)
COMMON RDNS(2),RDBNS(2),RKBS(2),RKNS(2)
COMMON R4B,B4L,R4AN1,B4AN2,B4AS1,R4AS2,B4NS1,R4SN1,R4SN2
COMMON R4B,R4L,R4AN1,R4AN2,R4AS1,R4AS2,R4NS1,R4NS2,R4SN1,R4SN2
COMMON EPS4                         MAIN
COMMON NFRA,FRFA(15),FA(15)        MAIN
COMMON NFBD,FRBD(15),RD(15)        MAIN
COMMON NFBD,FRBD(15),RD(15)        MAIN
COMMON NB,NR                         MAIN
COMMON PB(20,3),PR(20,3)           MAIN
COMMON PRNPB(3,3),PROPB(3,3)        MAIN
COMMON MOE,MOET                     MAIN
COMMON RCWGT,HSGWT(3),ROWGT(2),RCWGT,RSWGT(3),ROWGT(2)
COMMON GVA                          MAIN
C
COMMON U(11,11),SUB(11,11,11),SUR(11,11,11)
COMMON V(11,11),SVR(11,11,11),SVR(11,11,11)
COMMON W(11,11),SWR(11),SWR(11),VALUE
C
COMMON BDI(3,90),RDI(3,90)          MAIN
COMMON BDN(3,90),RDD(3,90)          MAIN
COMMON RGF(90),RGF(90)              MAIN
COMMON BAT(4,90),RAI(4,90)          MAIN
COMMON BAD(4,90),RAD(4,90)          MAIN
COMMON BAF(90),RAF(90)              MAIN
COMMON RF(90),RF(90)                MAIN
COMMON FERA(90)                    MAIN
COMMON CRF(90),CRF(90)              MAIN
COMMON CBF(90),CBF(90)              MAIN
C
CDUPUIM
DIMENSION IHAS(20),IRAS(20),IBASIC(20),AS(20,40),CS(40),BS(20)
DIMENSION X(20),SUM(20),TBACT(20),IRACT(20)
MOT=6                               SIMPL1 00003
                                         SIMPL1 00004
                                         SIMPL1 00005
                                         SIMPL1 00006

```

```

1 IF(IPRV .EQ. 1) WRITE(MOT,I)
1 FORMAT(1H1/)
DO 723 I=1,20
IBACT(I) = IRACT(I) = 0
BS(I) = 0.0
IBAS(I) = IRAS(I) = IBASIC(I) = 0
DO 721 J=1,40
CS(J) = 0.0
AS(I,J) = 0.0
721 CONTINUE
723 CONTINUE
DO 731 I=1,11
DO 732 J=1,11
W(I,J)=0.
732 CONTINUE
731 CONTINUE
C FIRST SETUP OF MATRIX W
IR=10
IF(IR0 .EQ. 0) IR=1
IBIG=1
IRACT(IR)=1
DO 725 LB=1,NB
C COMPUTE PAYOFF ENTRY (LB,IR)
C SET ALLOCATION
DO 730 MS= 1,3
PROPB(MS,1) = PB(LB,MS)
PROPR(MS,1) = PR(IR,MS)
730 CONTINUE
CALL CAM(IDL1,IDL1)
CALL SIMPL2(LB,IR)
IF(LB .EQ. 1) BIG= W(1,IR)
IF(W(LB,IR) .LE. BIG) GO TO 725
725 IBIG= LB
BIG= W(LB,IR)
725 CONTINUE
C FIRST TIME SIMPLEX MATRIX SETUP
DO 790 I=1,NB
PIVCO= W(IBIG,IR)+ GVA
AS(1,I)= (W(1,IR) + GVA)/PIVCO
CS(1,I) = 1. - AS(1,I)
790 CONTINUE
AS(1,NB+1) = -1.0/PIVCO
CS(NB+1) = 1.0/PIVCO
XNEC=-1.0/PIVCO
BS(1)= -XNEC
C SET ACTIVE BLUE AND RED STRATEGIES FIRST TIME
C
DO 750 I=1,NB
IBAS(I)= 0
750 X(I) = 0.0
IBAS(1)=IBIG
IBASIC(1) = IBIG
X(IBIG) = 1.0
IRAS(1)=IR
DO 751 I=2,NR
IRAS(I)=0
751 CONTINUE

```

SIMPL1	00007
SIMPL1	00008
SIMPL1	00009
SIMPL1	00010
SIMPL1	00011
SIMPL1	00012
SIMPL1	00013
SIMPL1	00014
SIMPL1	00015
SIMPL1	00016
SIMPL1	00017
SIMPL1	00018
SIMPL1	00019
SIMPL1	00020
SIMPL1	00021
SIMPL1	00022
SIMPL1	00023
SIMPL1	00024
SIMPL1	00025
SIMPL1	00026
SIMPL1	00027
SIMPL1	00028
SIMPL1	00029
SIMPL1	00030
SIMPL1	00031
SIMPL1	00032
SIMPL1	00033
SIMPL1	00034
SIMPL1	00035
SIMPL1	00036
SIMPL1	00037
SIMPL1	00038
SIMPL1	00039
SIMPL1	00040
SIMPL1	00041
SIMPL1	00042
SIMPL1	00043
SIMPL1	00044
SIMPL1	00045
SIMPL1	00046
SIMPL1	00047
SIMPL1	00048
SIMPL1	00049
SIMPL1	00050
SIMPL1	00051
SIMPL1	00052
SIMPL1	00053
SIMPL1	00054
SIMPL1	00055
SIMPL1	00056
SIMPL1	00057
SIMPL1	00058
SIMPL1	00059
SIMPL1	00060
SIMPL1	00061
SIMPL1	00062
SIMPL1	00063
SIMPL1	00064

```

      GVAL=PIVCO
      NROWS=NRAS=NBC=1
C   GENERAL LOOP FOR TESTING TOTAL FEASIBILITY
C   DETERMINE IF CONSTRAINT IS VIOLATED FIND MOST VIOLATED ONE
C
2600  CONTINUE
      IR=JRG=IRAS(1)
      INFEAS=0
      DO 270  J=1,NR
      SUM(J)=0.0
      SUM(IR)=GVAL-GVA
      IF(IRACT(J) .EQ. 1) GO TO 270
      DO 260  I=1,NBC
C   GROUP ACTIVE STRATEGIES TOGETHER
C   IF ROW ALREADY HAS BEEN COMPUTED, NEED NOT RECOMPUTE ENTRIES
      LB=IRAS(I)
      IF(IRACT(LB) .EQ. 1) GO TO 259
C   FIND ENTRY,SET ALLOCATION, CALL CAM, ASSIGN TO W
C
      DO 255  MS=1,3
      PROPR(MS,I) = PR(LB,MS)
      PROPR(MS,1) = PR( J,MS)
255  CONTINUE
      CALL CAM(IDL1,IDL1)
      CALL SIMPL2(LB, J)
259  SUM(J) = SUM(J) + X(LB)*W(LB,J)
260  CONTINUE
261  IF(SUM(J) .GE. GVAL-GVA) GO TO 270
      INFEAS=1
      IF(SUM(J) .LT. SUM(JRG)) JRG=J
270  CONTINUE
      Do 268  I=1,NRC
      LB=IRAS(I)
      IBACT(LB) =1
268  CONTINUE
      IF(INFEAS=1) 271,272,272
271  CONTINUE
C   WHOLE GAME HAS BEEN SOLVED
C   FIND AND ASSIGN OPTIMAL BLUE AND RED STRATEGIES
C   IF DESIRED PRINT STRATEGY AND VALUE
C
      VALUE = GVAL-GVA
      Do 2701  J=1,NR
2701  SWR(J)= 0.0
      Do 2711  IRC=1, NRAS
      IRAS1=IRAS(IRC)
      SWR(IRAS1) = CS(NB+IRC)*GVAL
2711  CONTINUE
      Do 2712  I=1,NB
2712  SWB(I) =X(I)
      WRITE(MOT,407)
407  FORMAT(1H1,33HPAYOFF MATRIX FOR GAME AT STAGE 1 )
      WRITE(MOT,408) (IRACT(I),I=1,NR)
      SIMPL1  00065
      SIMPL1  00066
      SIMPL1  00067
      SIMPL1  00068
      SIMPL1  00069
      SIMPL1  00070
      SIMPL1  00071
      SIMPL1  00072
      SIMPL1  00073
      SIMPL1  00074
      SIMPL1  00075
      SIMPL1  00076
      SIMPL1  00077
      SIMPL1  00078
      SIMPL1  00079
      SIMPL1  00080
      SIMPL1  00081
      SIMPL1  00082
      SIMPL1  00083
      SIMPL1  00084
      SIMPL1  00085
      SIMPL1  00086
      SIMPL1  00087
      SIMPL1  00088
      SIMPL1  00089
      SIMPL1  00090
      SIMPL1  00091
      SIMPL1  00092
      SIMPL1  00093
      SIMPL1  00094
      SIMPL1  00095
      SIMPL1  00096
      SIMPL1  00097
      SIMPL1  00098
      SIMPL1  00099
      SIMPL1  00100
      SIMPL1  00101
      SIMPL1  00102
      SIMPL1  00103
      SIMPL1  00104
      SIMPL1  00105
      SIMPL1  00106
      SIMPL1  00107
      SIMPL1  00108
      SIMPL1  00109
      SIMPL1  00110
      SIMPL1  00111
      SIMPL1  00112
      SIMPL1  00113
      SIMPL1  00114
      SIMPL1  00115
      SIMPL1  00116
      SIMPL1  00117
      SIMPL1  00118
      SIMPL1  00119
      SIMPL1  00120
      SIMPL1  00121
      SIMPL1  00122

```

```

408 FORMAT(1H ,4X,11I1)
DO 410 I=1,NB
WRITE(MOT,409) IFACT(I),(W(I+J),J=1,NR)
410 CONTINUE
WRITE(MOT,419) VALUE
419 FORMAT(1H0,13HGAME VALUE      ,F15.4)
NPDM2=NPD-2
WRITE(MOT,423) NPDM2
423 FORMAT(1H0,34HMLUE AND KFD STRATEGIES FOR PERIOD, I3)
WRITE(MOT,30) (SWR(I),I=1,NB)
WRITE(MOT,30) (SWR(I),I=1,NR)
20 FORMAT(1H ,4X,11F11.3)
NPDM1=NPD-1
WRITE(MOT,423) NPDM1
DO 3100 LB=1,NB
DO 3100 LR=1,NR
IF(SWR(LB) .LE. 0.0 .OR. SWR(LR) .LE. 0.0) GO TO 3100
WRITE(MOT,11) LB,LR
11 FORMAT(1H0,2I11)
WRITE(MOT,30) (SVR(LR,LR,L),L=1,NR)
WRITE(MOT,30) (SVR(LR,LR,L),L=1,NR)
3100 CONTINUE
RETURN
272 CONTINUE

C NEED MORE KFD STRATEGIES
C ENTER JBIG FOR KFD
C
NRAS=NRAS+1
IR = JBIG
IRACT(JBIG)=1
IRAS(NRAS)=JBIG
DO 280 LB=1,NB

C COMPUTE PAYOFF ENTRY (LB,IR)
C SET ALLOCATION
C
IF(IFACT(LB) .EQ. 1) GO TO 280
DO 278 MS= 1,3
PROPH(MS,1) = PH(LB,MS)
PROPH(MS,1) = PH(TR,MS)
278 CONTINUE
CALL CAM(IDL1,IDL1)
CALL SIMPL2(LB,IR)
280 CONTINUE

C ASSIGN PAYOFFS TO SIMPLEX MATRIX PIVOT IN NEW CONSTRAINT
C PIVOTING IN A ROW
C
NROWS=NROWS+1
DO 300 K=1,NB
C GIVEN JBIG
AS(NROWS,K) = -( W(K,JBIG) + GVA)
300 CONTINUE
NROWM1=NROWS-1
DO 302 K=1,NROWM1
AS(NROWS,NH+K) = 0.0
302 CONTINUE

```

STMP1 00123
 STMP1 00124
 STMP1 00125
 STMP1 00126
 STMP1 00127
 STMP1 00128
 STMP1 00129
 STMP1 00130
 STMP1 00131
 STMP1 00132
 STMP1 00133
 STMP1 00134
 STMP1 00135
 STMP1 00136
 STMP1 00137
 STMP1 00138
 STMP1 00139
 STMP1 00140
 STMP1 00141
 STMP1 00142
 STMP1 00143
 STMP1 00144
 STMP1 00145
 STMP1 00146
 STMP1 00147
 STMP1 00148
 STMP1 00149
 STMP1 00150
 STMP1 00151
 STMP1 00152
 STMP1 00153
 STMP1 00154
 STMP1 00155
 STMP1 00156
 STMP1 00157
 STMP1 00158
 STMP1 00159
 STMP1 00160
 STMP1 00161
 STMP1 00162
 STMP1 00163
 STMP1 00164
 STMP1 00165
 STMP1 00166
 STMP1 00167
 STMP1 00168
 STMP1 00169
 STMP1 00170
 STMP1 00171
 STMP1 00172
 STMP1 00173
 STMP1 00174
 STMP1 00175
 STMP1 00176
 STMP1 00177
 STMP1 00178
 STMP1 00179
 STMP1 00180

```

AS(K,NB+NROWS) = 0.0
3^2 CONTINUE
BS(NROWS) = -1.0
AS(NROWS,NB+NROWS) = 1.0
IBASIC(NROWS) = NB + NROWS
DO 301 J=1,NROWM1

C PIVOT OUT VARIABLE FROM CONSTRAINT
C
IF(IBMASIC(J) .GT. NB) GO TO 301
IBASIC = IBMASIC(J)
PIVCO = W(IBMASIC,J,BIG) + GVA
NBL = NB+NROWM1
DO 304 I=1,NBL
AS(NROWS,I) = AS(NROWS,I) + PIVCO*AS(J,I)
304 CONTINUE
BS(NROWS)=BS(NROWS) + PIVCO*BS(J)
301 CONTINUE

C NOW PIVOT TO RE-SOLVE PROBLEM USE DUAL SIMPLEX METHOD
C TO START LET SLACK IN LAST ROW LEAVE BASIS
C SLACK VARIABLE IS NEGATIVE
C
LEAVE1=NROWS
800 CONTINUE
C FIND ENTERING BASIC VARIABLE
ITCOL=NB+NROWS
INDIC=0
DO 801 I=1,ITCOL
IF(AS(LEAVE1,I) .GE. 0.0) GO TO 801
IF(INDIC .EQ. 1) GO TO 802
RENT = CS(I)/AS(LEAVE1,I)
IENTER = I
INDIC=1
802 CONTINUE
RATIO = CS(I)/AS(LEAVE1,I)
IF(RATIO .LE. RENT) GO TO 801
IENTER = I
RENT = RATIO
801 CONTINUE
C IENTER IS THE VARIABLE TO ENTER THE BASIS
IBASIC(LEAVE1) = IENTER
C PIVOT
PIVCO = AS(LEAVE1,IENTER)
DO 805 I=1,ITCOL
AS(LEAVE1,I) = AS(LEAVE1,I)/PIVCO
IF(I .EQ. IENTER) GO TO 805
CS(I) = CS(I) - AS(LEAVE1,I)*CS(IENTER)
805 CONTINUE
BS(LEAVE1) = BS(LEAVE1)/PIVCO
DO 803 J=1,NROWS
IF(J .EQ. LEAVE1) GO TO 803
DO 804 I=1,ITCOL
IF(I .EQ. IENTER) GO TO 804
AS(J,I) = AS(J,I) - AS(LEAVE1,I)*AS(J,IENTER)
804 CONTINUE
BS(J) = BS(J) - BS(LEAVE1)*AS(J,IENTER)
803 CONTINUE

```

```

SIMPLI 00181
SIMPLI 00182
SIMPLI 00183
SIMPLI 00184
SIMPLI 00185
SIMPLI 00186
SIMPLI 00188
SIMPLI 00189
SIMPLI 00190
SIMPLI 00187
SIMPLI 00191
SIMPLI 00192
SIMPLI 00193
SIMPLI 00194
SIMPLI 00195
SIMPLI 00196
SIMPLI 00197
SIMPLI 00198
SIMPLI 00199
SIMPLI 00200
SIMPLI 00201
SIMPLI 00202
SIMPLI 00203
SIMPLI 00204
SIMPLI 00205
SIMPLI 00206
SIMPLI 00207
SIMPLI 00208
SIMPLI 00209
SIMPLI 00210
SIMPLI 00211
SIMPLI 00212
SIMPLI 00213
SIMPLI 00214
SIMPLI 00215
SIMPLI 00216
SIMPLI 00217
SIMPLI 00218
SIMPLI 00219
SIMPLI 00220
SIMPLI 00221
SIMPLI 00222
SIMPLI 00223
SIMPLI 00224
SIMPLI 00225
SIMPLI 00226
SIMPLI 00227
SIMPLI 00228
SIMPLI 00229
SIMPLI 00230
SIMPLI 00231
SIMPLI 00232
SIMPLI 00233
SIMPLI 00234
SIMPLI 00235
SIMPLI 00236
SIMPLI 00237
SIMPLI 00238

```

```

XNEC=XNEC-BS(LEAVE1)*CS(IENTER)           SIMPLI 00239
CS(IENTER) =0.0                            SIMPLI 00240
DO 806 J=1,NROWS                          SIMPLI 00241
AS(I,J,IENTER) = 0.0                      SIMPLI 00242
806 CONTINUE                                SIMPLI 00243
AS(LEAVE1,IENTER) = 1.0                    SIMPLI 00244
C TEST RHS FOR FEASIBILITY FIND MOST NEGATIVE ENTRY TO LEAVE BASIS SIMPLI 00245
C                                         SIMPLI 00246
810 INFEAS=0                               SIMPLI 00247
TEST= 0.0                                  SIMPLI 00248
DO 811 J=1,NROWS                          SIMPLI 00249
IF(BS(J) .GE. 0.0) GO TO 811             SIMPLI 00250
INFEAS=1                                  SIMPLI 00251
IF(BS(J) .GE. TEST) GO TO 811           SIMPLI 00252
TEST = BS(J)                               SIMPLI 00253
LEAVE1=J                                 SIMPLI 00254
811 CONTINUE                                SIMPLI 00255
IF(INFEAS=1) 840,800,800                 SIMPLI 00256
SIMPLI 00257
C FEASIBLE SOLUTION FOUND                SIMPLI 00258
C FIND ACTIVE BLUE STRATEGIES            SIMPLI 00259
C                                         SIMPLI 00260
840 CONTINUE                                SIMPLI 00261
GVAL= -1.0/XNEC                           SIMPLI 00262
IBC=0                                     SIMPLI 00263
DO 849 I=1,NB                            SIMPLI 00264
849 X(I) = 0.0                             SIMPLI 00265
DO 850 IROW=1,NROWS                       SIMPLI 00266
SIMPLI 00267
C SEE IF A SLACK VARIABLE IS BASIC      SIMPLI 00268
IF(IBASIC(IROW) .GT. NB) GO TO 850       SIMPLI 00269
IBC=IBC+1                                SIMPLI 00270
IBASI=IBAS(IBC)=IBASIC(IROW)              SIMPLI 00271
X(IBASI)= BS(IROW)* GVAL                 SIMPLI 00272
850 CONTINUE                                SIMPLI 00273
NBC=IBC                                 SIMPLI 00274
GO TO 2600                                SIMPLI 00275
END                                      SIMPLI 00276

```

E. SUBROUTINE SIMPL2

SUBROUTINE SIMPL2(IB,IR)	
CDUPUIM	SIMPL2 00002
COMMON NKRD,NKRU,NKBA,NKRA	MAIN
COMMON NID	MAIN
COMMON NPD,IDL1,IDL1,IDL2,IDL2,IDL3,IDL3	MAIN
COMMON IR0,JR0,KR0	MAIN
COMMON IPRV,IPRU	MAIN
COMMON IREPLB,IREPLR	MAIN
COMMON BDA(3,90),RDA(3,90)	MAIN
COMMON BAA(4,90),RAA(4,90)	MAIN
COMMON DBQRA,DRQRA	MAIN
COMMON SHELB(90),SHELR(90),PBSHEL,PBSHEL	MAIN
COMMON BSHELK(90),RSHELK(90)	MAIN
COMMON FBD(3),FRD(3),FBA(2),FRB(2)	MAIN
COMMON IDRSRC,IURSRC	MAIN
COMMON SORRB1(2,3),SORRB2(2,3),SORRM1(2,3),SORRM2(2,3)	MAIN
COMMON IAA,XNBA,XNRAA,BALPHA(2,2),RALPHA(2,2)	MAIN
COMMON BIDRA(2,4),RADRI(4,2),RIDRA(2,4),RADBI(4,2)	MAIN
COMMON BIKRA(2,4),BAKRI(4,2),RIKRA(2,4),RAKBI(4,2)	MAIN
COMMON BSAMZ(4,2),RSAMZB(2,2)	MAIN
COMMON TR3SH,BFRHAC1,BFRAC2,RFRAC1,RFRAC2,FBSK,FRSK	MAIN
COMMON BPASS(2),RPASS(2)	MAIN
COMMON B8ABA,IRABA,XNBAB,XNRAB,BPARK,RPARK	MAIN
COMMON RDNS(2),BDRNS(2),BKRS(2),BKNS(2)	MAIN
COMMON RDNS(2),BDRNS(2),RKBS(2),RKNS(2)	MAIN
COMMON B4R,B4AL,B4AN1,B4AN2,B4AS1,R4AS2,B4NS1,B4NS2,R4SN1,R4SN2	MAIN
COMMON R4B,R4AL,R4AN1,R4AN2,R4AS1,R4AS2,R4NS1,R4NS2,R4SN1,R4SN2	MAIN
COMMON EPS4	MAIN
COMMON NFRFA,FRFA(15),FA(15)	MAIN
COMMON NFRBD,FRBD(15),RD(15)	MAIN
COMMON NFRRD,FRRD(15),RD(15)	MAIN
COMMON NB,NR	MAIN
COMMON PB(20,3),PR(20,3)	MAIN
COMMON PROPR(3,3),PR0PR(3,3)	MAIN
COMMON MOE,MOET	MAIN
COMMON BCWGT,BSWTGT(3),BOWGT(2),RCWGT,RSWGT(3),RWGWT(2)	MAIN
COMMON GVA	MAIN
C	MAIN
COMMON U(11,11),SUB(11,11,11),SUR(11,11,11)	MAIN
COMMON V(11,11),SVB(11,11,11),SVR(11,11,11)	MAIN
COMMON W(11,11),SWB(11),SWR(11),VALUE	MAIN
C	MAIN
COMMON BDI(3,90),RDI(3,90)	MAIN
COMMON BDO(3,90),RDD(3,90)	MAIN
COMMON BGF(90),RGF(90)	MAIN
COMMON BAI(4,90),RAI(4,90)	MAIN
COMMON RAD(4,90),RAD(4,90)	MAIN
COMMON RAF(90),RAF(90)	MAIN
COMMON BF(90),RF(90)	MAIN
COMMON FERA(90)	MAIN
COMMON CBF(90),CRF(90)	MAIN
COMMON CBAF(90),CRAF(90)	MAIN
C	MAIN
CDUPUIM	SIMPL2 00003
DIMENSION IBAS(20),IRAS(20),IBASIC(20),AS(20,40),CS(40),BS(20)	SIMPL2 00004
DIMENSION X(20),SUM(20),TBACT(20),IRACT(20)	SIMPL2 00005
MOT=6	SIMPL2 00006

```

1 IF(NPD .EQ. 2 .AND. IPRU .EQ. 1) WRITE(MOT,1)
1 FORMAT(1H1/)
DO 723 I=1,20
IBACT(I) = IRACT(I) = 0
BS(I) = 0.0
IBAS(I) = IRAS(I) = IBASIC(I) = 0
DO 721 J=1,40
CS(J) = 0.0
AS(I,J) = 0.0
721 CONTINUE
723 CONTINUE
DO 731 I=1,11
DO 732 J=1,11
V(I,J)=0,
732 CONTINUE
731 CONTINUE
C FIRST SETUP OF MATRIX V
JR= JRO
IF( JRO ,EQ. 0) JR=1
IBIG=1
IRACT(JR)=1
DO 725 LB=1,NB
C COMPUTE PAYOFF ENTRY (LB,JR)
C SET ALLOCATION
DO 730 MS=1,3
PROPB(MS,2) = PR(LB,MS)
PROPR(MS,2) = PR(JR+MS)
730 CONTINUE
CALL CAM(IDL2,IDL2)
CALL SIMPL3(LB,JR)
IF(LR .EQ. 1) BIG=V(1,JR)
IF(V(LB,JR) .LE. BIG) GO TO 725
726 IBIG= LB
BIG=V(LB,JR)
725 CONTINUE
C FIRST TIME SIMPLEX MATRIX SETUP
DO 790 I=1,NB
PIVCO= V(IBIG,JR) + GVA
AS(1,I)= ( V(I,JR)+ GVA)/PIVCO
CS(1,I) = 1.0-AS(1,I)
790 CONTINUE
AS(1,NB+1) = -1.0/PIVCO
CS(NB+1) = 1.0/PIVCO
XNEC=1.0/PIVCO
BS(1)= -XNEC
C SET ACTIVE BLUE AND RED STRATEGIES FIRST TIME
C
DO 750 I=1,NB
IBAS(I)= 0
750 X(I) = 0.0
IBAS(I)=IBIG
IBASIC(I) = IBIG
X(IBIG)= 1.0
IRAS(I)= JR
DO 751 I=2,NR
IRAS(I)=0
751 CONTINUE

```

SIMPL2	00007
SIMPL2	00008
SIMPL2	00009
SIMPL2	00010
SIMPL2	00011
SIMPL2	00012
SIMPL2	00013
SIMPL2	00014
SIMPL2	00015
SIMPL2	00016
SIMPL2	00017
SIMPL2	00018
SIMPL2	00019
SIMPL2	00020
SIMPL2	00021
SIMPL2	00022
SIMPL2	00023
SIMPL2	00024
SIMPL2	00025
SIMPL2	00026
SIMPL2	00027
SIMPL2	00028
SIMPL2	00029
SIMPL2	00030
SIMPL2	00031
SIMPL2	00032
SIMPL2	00033
SIMPL2	00034
SIMPL2	00035
SIMPL2	00036
SIMPL2	00037
SIMPL2	00038
SIMPL2	00039
SIMPL2	00040
SIMPL2	00041
SIMPL2	00042
SIMPL2	00043
SIMPL2	00044
SIMPL2	00045
SIMPL2	00046
SIMPL2	00047
SIMPL2	00048
SIMPL2	00049
SIMPL2	00050
SIMPL2	00051
SIMPL2	00052
SIMPL2	00053
SIMPL2	00054
SIMPL2	00055
SIMPL2	00056
SIMPL2	00057
SIMPL2	00058
SIMPL2	00059
SIMPL2	00060
SIMPL2	00061
SIMPL2	00062
SIMPL2	00063
SIMPL2	00064

```

      GVAL=PIVCO
      NROWS=NRAST=NBC=1
C
C GENERAL LOOP FOR TESTING TOTAL FEASIBILITY
C DETERMINE IF CONSTRAINT IS VIOLATED FIND MOST VIOLATED ONE
C
2600  CONTINUE
      JR=JBIG=IRAS(1)
      INFEAS=0
      DO 270   J=1,NR
      SUM(J)= 0.0
      SUM(J)=GVAL-GVA
      IF(IRACT(J) .EQ. 1) GO TO 270
      DO 260   I=1,NBC
C
C GROUP ACTIVE STRATEGIES TOGETHER
C IF ROW ALREADY HAS BEEN COMPUTED, NEED NOT RECOMPUTE ENTRIES
C
      LB=IRAS(I)
      IF(IRACT(LB) .EQ. 1) GO TO 259
C
C FIND ENTRY, SET ALLOCATION, CALL CAM, ASSIGN TO V
C
      DO 255   MS=1,3
      PROPR(MS,2) = PR(LB,MS)
      PROPR(MS+2) = PR(J,MS)
255  CONTINUE
      CALL CAM(IDL2,IDL2)
      CALL SIMPL3(LB,J)
259  SUM(J) = SUM(J) + X(LB) * V(LB,J)
260  CONTINUE
261  IF(SUM(J) .GE. GVAL-GVA) GO TO 270
      INFEAS=1
      IF(SUM(J) .LT. SUM(JRIG)) JBIG=J
270  CONTINUE
      DO 260   I=1,NBC
      LB=IRAS(I)
      IRACT(LB)=1
268  CONTINUE
      IF(INFEAS=1) 271,272,272
271  CONTINUE
C
C MATRIX GAME SOLUTION HAS BEEN FOUND          ASSIGN W(IB,IR)
C FIND AND ASSIGN OPTIMAL BLUE AND RED STRATEGIES
C IF DESIRED PRINT STRATEGY AND VALUE
C
      W(IB,IR)= GVAL-GVA
      DO 2701  J=1,NR
2701  SVR(IB,IR,J) = 0.0
      DO 2711  IRC= 1, NRAST
      IRAS1=IRAS(IRC)
      SVR(IB,IR,IRAS1)= CS(NB*TRC)*GVAL
2711  CONTINUE
      DO 2712  I=1,NB
2712  SVB(IB,IR,I) = X(I)
      IF(IPRV .EQ. 0) RETURN
      IF(NPD .EQ. 2 .OR. IPNU .EQ. 1) WRITE(MOT,I)
      NPD=1
      SIMPL2  00065
      SIMPL2  00066
      SIMPL2  00067
      SIMPL2  00068
      SIMPL2  00069
      SIMPL2  00070
      SIMPL2  00071
      SIMPL2  00072
      SIMPL2  00073
      SIMPL2  00074
      SIMPL2  00075
      SIMPL2  00076
      SIMPL2  00077
      SIMPL2  00078
      SIMPL2  00079
      SIMPL2  00080
      SIMPL2  00081
      SIMPL2  00082
      SIMPL2  00083
      SIMPL2  00084
      SIMPL2  00085
      SIMPL2  00086
      SIMPL2  00087
      SIMPL2  00088
      SIMPL2  00089
      SIMPL2  00090
      SIMPL2  00091
      SIMPL2  00092
      SIMPL2  00093
      SIMPL2  00094
      SIMPL2  00095
      SIMPL2  00096
      SIMPL2  00097
      SIMPL2  00098
      SIMPL2  00099
      SIMPL2  00100
      SIMPL2  00101
      SIMPL2  00102
      SIMPL2  00103
      SIMPL2  00104
      SIMPL2  00105
      SIMPL2  00106
      SIMPL2  00107
      SIMPL2  00108
      SIMPL2  00109
      SIMPL2  00110
      SIMPL2  00111
      SIMPL2  00112
      SIMPL2  00113
      SIMPL2  00114
      SIMPL2  00115
      SIMPL2  00116
      SIMPL2  00117
      SIMPL2  00118
      SIMPL2  00119
      SIMPL2  00120
      SIMPL2  00121
      SIMPL2  00122

```

```

      WRITE(MOT+407) NPDm1
      FORMAT(1H//,1H , 31HPAYOFF MATRIX FOR GAME AT STAGE ,I:, )
      WRITE(MOT,408) (IRACT(I),I=1,NR)
      408 FORMAT(1H ,4X11111)
      DO 410 I=1,NB
      WRITE(MOT,409) IRACT(I)*(V(I,J),J=1,NR)
      409 FORMAT(1H +,I2*2X,1F11.3)
      410 CONTINUE
      IF(NPD .LE. 2) GO TO 420
      WRITE(MOT,410) I0,IH
      410 FORMAT(1H0,3H1B=,I0,7H     IH=,15)
      WRITE(MOT,411) W(IH,IP)
      411 FORMAT(1H0,1UWW(IH,IH) ,F15.4)
      GO TO 422
      420 WRITE(MOT,421) *(IH,IR)
      421 FORMAT(1H0,13HGAME VALUE   ,F15.4)
      422 CONTINUE
      WRITE(MOT,423) NPDm1
      423 FORMAT(1H0,24HBLUE AND RED STRATEGIES FOR PERIOD ,I3)
      WRITE(MOT,30) (SVR(IH,IR,I),I=1,NH)
      WRITE(MOT,30) (SVP(IH,IR,I),I=1,NP)
      30 FORMAT(1H ,4X,11F11.3)
      WRITE(MOT,423) NPD
      DO 3100 LB=1,NB
      DO 3100 LR=1,NR
      IF(SVR(IH,IR,LB)*LF+0. *OR. SVR(IH,IR,LR)*LF .GT. 0.) GO TO 3100
      WRITE(MOT,11) LB,LR
      11 FORMAT(1H0,211)
      WRITE(MOT,30) (SUR(LB,LR,L),L=1,NH)
      WRITE(MOT,30) (SUR(LB,LR,L),L=1,NR)
      3100 CONTINUE
      IF(IP<U .EQ. 1 .AND. NPD .LE. 3) WRITE(MOT,1)
      RETURN
      272 CONTINUE
C NEED MORE RED STRATEGIES
C ENTER JHIG FOR RED
C
C NRAS=NHAS+1
C JR = JHIG
C IRACT(JHIG)=1
C IRAS(NHAS)=JHIG
C DO 280 LB=1,NB
C
C COMPUTE PAYOFF ENTRY (LB,JR)
C SET ALLOCATION
C
C IF(IHACT(LB) .EQ. 1) GO TO 280
C DO 278 MS=1,3
C PPROF(MS,2) = PR(LB,MS)
C PPROF(MS,2) = PR(JR,MS)
C
C 278 CONTINUE
C CALL CAM(IDU2+IDU2)
C CALL SIMPL3(LB,JR)
C 280 CONTINUE
C
C ASSIGN PAYOFFS TO SIMPLEX MATRIX PIVOT IN NEW CONSTRAINT
C PIVOTING IN A ROW
      STVPL2 00123
      STVPL2 00124
      STVPL2 00125
      STVPL2 00126
      STVPL2 00127
      STVPL2 00128
      STVPL2 00129
      STVPL2 00130
      STVPL2 00131
      STVPL2 00132
      STVPL2 00133
      STVPL2 00134
      STVPL2 00135
      STVPL2 00136
      STVPL2 00137
      STVPL2 00138
      STVPL2 00139
      STVPL2 00140
      STVPL2 00141
      STVPL2 00142
      STVPL2 00143
      STVPL2 00144
      STVPL2 00145
      STVPL2 00146
      STVPL2 00147
      STVPL2 00148
      STVPL2 00149
      STVPL2 00150
      STVPL2 00151
      STVPL2 00152
      STVPL2 00153
      STVPL2 00154
      STVPL2 00155
      STVPL2 00156
      STVPL2 00157
      STVPL2 00158
      STVPL2 00159
      STVPL2 00160
      STVPL2 00161
      STVPL2 00162
      STVPL2 00163
      STVPL2 00164
      STVPL2 00165
      STVPL2 00166
      STVPL2 00167
      STVPL2 00168
      STVPL2 00169
      STVPL2 00170
      STVPL2 00171
      STVPL2 00172
      STVPL2 00173
      STVPL2 00174
      STVPL2 00175
      STVPL2 00176
      STVPL2 00177
      STVPL2 00178
      STVPL2 00179
      STVPL2 00180

```

```

C
NROWS=NROWS+1                               SIMPL2 00181
DO 300 K=1,NB                               SIMPL2 00182
C GIVEN JBIG                                 SIMPL2 00183
AS(NROWS,K) = -( V(K,JBIG)+GVA)           SIMPL2 00184
300 CONTINUE                                SIMPL2 00185
NRWM1=NROWS-1                               SIMPL2 00186
DO 302 K=1,NRWM1                           SIMPL2 00187
AS(NROWS,NB+K) = 0.0                         SIMPL2 00188
AS(K,NB+NROWS) = 0.0                         SIMPL2 00189
302 CONTINUE                                SIMPL2 00190
BS(NROWS) = -1.0                            SIMPL2 00191
AS(NROWS,NB+NROWS) = 1.0                     SIMPL2 00192
IBASIC(NROWS) = NB + NROWS                  SIMPL2 00193
DO 301 J=1,NRWM1                           SIMPL2 00194
301 CONTINUE                                SIMPL2 00195
C PIVOT OUT VARIABLE FROM CONSTRAINT        SIMPL2 00196
C
IF (IBASIC(J) .GT. NB) GO TO 301          SIMPL2 00197
IBAS1= IBASIC(J)
PIVCO = V(IBAS1,JBIG) + GVA
NBL= NB+NRWM1
DO 304 I=1,NBL
AS(NROWS,I) = AS(NROWS,I)+PIVCO*AS(J,I)
304 CONTINUE                                SIMPL2 00198
BS(NROWS)=BS(NROWS) + PIVCO*BS(J)
301 CONTINUE                                SIMPL2 00199
C NOW PIVOT TO RE-SOLVE PROBLEM USE DUAL SIMPLEX METHOD
C TO START LET SLACK IN LAST ROW LEAVE BASIS
C SLACK VARIABLE IS NEGATIVE
C
LEAVE1=NROWS                               SIMPL2 00200
800 CONTINUE                                SIMPL2 00201
C FIND ENTERING BASIC VARIABLE             SIMPL2 00202
ITCOL=NB+NROWS                           SIMPL2 00203
INDIC=0                                     SIMPL2 00204
DO 801 I=1,ITCOL
IF (AS(LEAVE1,I) .GE. 0.0) GO TO 801
IF (INDIC .EQ. 1) GO TO 802
RENT= CS(I)/AS(LEAVE1,I)
IENTER =I
INDIC=1
802 CONTINUE                                SIMPL2 00205
RATIO= CS(I)/AS(LEAVE1,I)
IF (RATIO .LE. RENT) GO TO 801
IENTER =I
RENT = RATIO
801 CONTINUE                                SIMPL2 00206
C IENTER IS THE VARIABLE TO ENTER THE BASIS
IBASIC(LEAVE1) = IENTER
C PIVOT
PIVCO= AS(LEAVE1,IENTER)
DO 805 I=1,ITCOL
AS(LEAVE1,I)= AS(LEAVE1,I)/PIVCO
IF (I .EQ. IENTER) GO TO 805
CS(I) =CS(I) - AS(LEAVE1,I)*CS(IENTER)
805 CONTINUE                                SIMPL2 00207

```

```

BS(LEAVE1) = BS(LEAVE1)/PIVCO          SIMPL2 00239
DO 803 J=1,NROWS                      SIMPL2 00240
IF(J .EQ. LEAVE1) GO TO 803            SIMPL2 00241
DO 804 I=1,ITCOL                      SIMPL2 00242
IF(I .EQ. IENTER) GO TO 804            SIMPL2 00243
AS(J,I) = AS(J,I)-AS(LEAVE1,I)*AS(J,IENTER)  SIMPL2 00244
804 CONTINUE                           SIMPL2 00245
BS(J)= BS(J) - BS(LEAVE1)*AS(J,IENTER)  SIMPL2 00246
803 CONTINUE                           SIMPL2 00247
XNEC=XNEC-BS(LEAVE1)*CS(IENTER)        SIMPL2 00248
CS(IENTER) = 0.0                        SIMPL2 00249
DO 805 J=1,NROWS                      SIMPL2 00250
AS(J,IENTER) = 0.0                      SIMPL2 00251
805 CONTINUE                           SIMPL2 00252
AS(LEAVE1,IENTER) = 1.0                SIMPL2 00253
C TEST RHS FOR FEASIBILITY FIND MOST NEGATIVE ENTRY TO LEAVE BASIS
810 INFEAS=0                            SIMPL2 00254
TEST= 0.0                               SIMPL2 00255
DO 811 J=1,NROWS                      SIMPL2 00256
IF(BS(J) .GE. 0.0) GO TO 811            SIMPL2 00257
INFEAS=1
IF(BS(J) .GE. TEST) GO TO 811            SIMPL2 00258
TEST = BS(J)
LEAVE1=J
811 CONTINUE                           SIMPL2 00259
IF(INFEAS=1) 840,800,800               SIMPL2 00260
C FEASIBLE SOLUTION FOUND
C FIND ACTIVE BLUE STRATEGIES
C
849 CONTINUE                           SIMPL2 00261
GVAL= -1.0/XNEC                      SIMPL2 00262
IBC=0                                 SIMPL2 00263
DO 849 I=1,NB                         SIMPL2 00264
849 X(I) = 0.0                         SIMPL2 00265
DO 850 IROW=1,NROWS                   SIMPL2 00266
C SEE IF A SLACK VARIABLE IS BASIC
IF(IBASIC(IROW) .GT. NB) GO TO 850   SIMPL2 00267
IBC=IBC+1
IBAS1=IBAS(IBC)=IBASIC(IROW)
X(IBAS1)= BS(IROW)* GVAL
850 CONTINUE                           SIMPL2 00268
NBC=IBC
GO TO 2600
END

```

F. SUBROUTINE SIMPL3

SUBROUTINE SIMPL3 (JB+JR)		SIMPL3 00002
CDUDIM		
COMMON NKRD,NKRD,NKBA,NKRA		MAIN
COMMON NID		MAIN
COMMON NPD,IDL1,IDL1,IDL2,IDL2,IDL3,IDL3		MAIN
COMMON IR0,JR0,KR0		MAIN
COMMON IPRV,IPRU		MAIN
COMMON TREPLB,IREPLR		MAIN
COMMON BDA(3,90),RDA(3,90)		MAIN
COMMON BAA(4,90),RAA(4,90)		MAIN
COMMON DBQRA,DRQRA		MAIN
COMMON SHELB(90),SHELB(90),PBSHEL,PRSHEL		MAIN
COMMON BSHELK(90),RSHELK(90)		MAIN
COMMON FBD(3),FRD(3),FBA(2),FRA(2)		MAIN
COMMON IDRSRC,DRSRC		MAIN
COMMON SORRB1(2,3),SORRB2(2,3),SORRH1(2,3),SORRR2(2,3)		MAIN
COMMON IAA,XNRAA,XNRAA,BALPHA(2,2),RALPHA(2,2)		MAIN
COMMON BIDRA(2,4),BAURI(4,2),RIDRA(2,4),RADB(4,2)		MAIN
COMMON BIKRA(2,4),BAKRI(4,2),RIKBA(2,4),RAKB(4,2)		MAIN
COMMON BSAMZR(2,2),RSAMZB(2,2)		MAIN
COMMON IR3SH,BFRAC1,BFRAC2,RFRAC1,RFRAC2,FBSK,FRSK		MAIN
COMMON BPASS(2),RPASS(2)		MAIN
COMMON IBABA,IRABA,XNBAB,XNRAB,BPARK,RPARK		MAIN
COMMON BDRS(2),BDNS(2),BKRS(2),BKNS(2)		MAIN
COMMON RDNS(2),RDBNS(2),RKBS(2),RKNS(2)		MAIN
COMMON B4B,B4AL,B4AN1,B4AN2,B4AS1,R4AS2,B4NS1,B4NS2,B4SN1,B4SN2		MAIN
COMMON R4B,R4AL,R4AN1,R4AN2,R4AS1,R4AS2,R4NS1,R4NS2,R4SN1,R4SN2		MAIN
COMMON EP34		MAIN
COMMON NFRFA,FRFA(15),FA(15)		MAIN
COMMON NFRBD,FRBD(15),BD(15)		MAIN
COMMON NFRRD,FRRD(15),RD(15)		MAIN
COMMON NB,NR		MAIN
COMMON PB(20,3),PR(20,3)		MAIN
COMMON PROPB(3,3),PROPR(3,3)		MAIN
COMMON MOE,MOET		MAIN
COMMON BCWGT,BSWGT(3),BQWGT(2),RCWGT,RSWGT(3),RQWGT(2)		MAIN
COMMON GVA		MAIN
C		MAIN
COMMON U(11,11),SUR(11,11,11),SUR(11,11,11)		MAIN
COMMON V(11,11),SV(11,11,11),SV(11,11,11)		MAIN
COMMON W(11,11),SWB(11),SWA(11),VALUE		MAIN
C		MAIN
COMMON BD1(3,90),RD1(3,90)		MAIN
COMMON BD2(3,90),RD2(3,90)		MAIN
COMMON BGF(90),RGF(90)		MAIN
COMMON BA1(4,90),RA1(4,90)		MAIN
COMMON BA2(4,90),RA2(4,90)		MAIN
COMMON BA3(90),RAF(90)		MAIN
COMMON BF(90),RF(90)		MAIN
COMMON FEBA(90)		MAIN
COMMON CBF(90),CRF(90)		MAIN
COMMON CBKF(90),CRKF(90)		MAIN
C		MAIN
CDUDIM		SIMPL3 00003
DIMENSION IBAS(20),IRAS(20),IBASIC(20),AS(20,40),CS(40),BS(20)		SIMPL3 00004
DIMENSION X(20),SUM(20),IBACT(20),IRACT(20)		SIMPL3 00005
MOT=6		SIMPL3 00006

```

1 FORMAT(IHI/)
DO 723 I=1,20
IBACT(I) = IRACT(I) = 0
BS(I) = 0.0
IBAS(I) = IRAS(I) = IBASIC(I) = 0
DO 721 J=1,40
CS(J) = 0.0
AS(I,J) = 0.0
721 CONTINUE
723 CONTINUE
DO 731 I=1,11
DO 732 J=1,11
U(I,J)=0.
732 CONTINUE
731 CONTINUE
C FIRST SETUP OF MATRIX U
KRAKR0
IF(KR0 .EQ. 0) KR=1
IBIG=1
IRACT(KR)=1
DO 725 LB=1,NB
C COMPUTE PAYOFF OF ENTRY (LB,KR)
C SET ALLOCATION
DO 740 MS=1,3
PROPB(MS,3) = PB(LB,MS)
PROPR(MS,3) = PR(KR,MS)
740 CONTINUE
CALL CAN(IDL3, IDU3)
GO TO 511,512,513,514,515,MOE
511 U(LB,KR) = FEBA(MOET)
GO TO 519
512 U(LB,KR) = CBF(MOET)-CRF(MOET)
GO TO 519
513 U(LB,KR) = CBAF(MOET)-CRAF(MOET)
GO TO 519
C SURVIVING AIRCRAFT MOE IS MOE +
514 CONTINUE
SUMOE=RQWGT(1)*(BAI(1,MOET)-BAD(1,MOET))-
1 RQWGT(1)*(RAI(1,MOET)-RAD(1,MOET))
DO 5141 KA=2,4
MS=KA-1
SUMOE=SUMOE+BSWGT(MS)*(BAI(KA,MOET)-BAD(KA,MOET))
1 RSWGT(MS)*(RAI(KA,MOET)-RAD(KA,MOET))
5141 CONTINUE
U(LB,KR)=SUMOE
GO TO 519
C DRA PENALTY MOE IS MOE 5
515 CONTINUE
BA=BAI(1,MOET)-BAD(1,MOET)-DBGRA
RA=RAI(1,MOET)-RAD(1,MOET)-DRGRA
SUMOE=BCWGT*CBAF(MOET)-RCWGT*CRAF(MOET)
SUMOE=SUMOE+RQWGT(1)*AMAX1(0.0,RA)*RQWGT(2)*AMIN1(0.0,BA)
SUMOE=SUMOE-RQWGT(1)*AMAX1(0.0,RA)-RQWGT(2)*AMIN1(0.0,RA)
DO 5151 KA=2,4
MS=KA-1
SUMOE=SUMOE+BSWGT(MS)*(BAI(KA,MOET)-BAD(KA,MOET))
1 RSWGT(MS)*(RAI(KA,MOET)-RAD(KA,MOET))
5151 CONTINUE

```

```

U,LH,KR,=SUMOE
GO TO 519
519 CONTINUE
IF(U(LB,KR) + GVA .LE. 0.0) GO TO 5191
GO TO 5192
5191   U=U(LB,KR)
GO TO 1100
5192 CONTINUE
IF( LB .EQ. 1) RIG=U(1,KR)
IF(U(LB,KR).LE. BIG) GO TO 725
726   RIG=LB
BIG=U(LA,KR)
725 CONTINUE
C FIRST TIME SIMPLEX MATRIX SETUP
DO 790 I=1,NB
PIVCO= U(I,BIG,KR) + GVA
AS(I,I)= ( U(I,KR) + GVA) /PIVCO
CS(I)= 1. - AS(I,I)
790 CONTINUE
AS(1,NB)= -1.0/PIVCO
CS(NB+1)= 1.0/PIVCO
XNEC=-1.0/PIVCO
BS(1)= -XNEC
C SET ACTIVE BLUE AND RED STRATEGIES FIRST TIME
C
DO 750 I=1,NB
IBAS(I)= 0
750 X(I)= 0.0
IBAS(1)=BIG
IBAS(1)= BIG
X(BIG)= 1.0
IRAS(1)= KR
DO 751 I=2,NR
IRAS(I)=0
751 CONTINUE
GVAL=PIVCO
NROWS=NRA=S=NBC=1
C GENERAL LOOP FOR TESTING TOTAL FEASIBILITY
C DETERMINE IF CONSTRAINT IS VIOLATED FIND MOST VIOLATED ONE
C
2600 CONTINUE
KR=RIG=IRAS(1)
INFEAS=0
DO 270 J=1,NR
SUM(J)= 0.0
SUM(KR)=GVAL-GVA
IF(TRACT(J) .EQ. 1) GO TO 270
DO 260 I=1,NBC
C GROUP ACTIVE STRATEGIES TOGETHER
C IF ROW ALREADY HAS BEEN COMPUTED: NEED NOT RECOMPUTE ENTRIES
C JUST USE THEM
C
LB=IRAS(1)
IF(TRACT(LB) .EQ. 1) GO TO 259
C
      SIMPL3 00065
      SIMPL3 00066
      SIMPL3 00067
      SIMPL3 00068
      SIMPL3 00069
      SIMPL3 00070
      SIMPL3 00071
      SIMPL3 00072
      SIMPL3 00073
      SIMPL3 00074
      SIMPL3 00075
      SIMPL3 00076
      SIMPL3 00077
      SIMPL3 00078
      SIMPL3 00079
      SIMPL3 00080
      SIMPL3 00081
      SIMPL3 00082
      SIMPL3 00083
      SIMPL3 00084
      SIMPL3 00085
      SIMPL3 00086
      SIMPL3 00087
      SIMPL3 00088
      SIMPL3 00089
      SIMPL3 00090
      SIMPL3 00091
      SIMPL3 00092
      SIMPL3 00093
      SIMPL3 00094
      SIMPL3 00095
      SIMPL3 00096
      SIMPL3 00097
      SIMPL3 00098
      SIMPL3 00099
      SIMPL3 00100
      SIMPL3 00101
      SIMPL3 00102
      SIMPL3 00103
      SIMPL3 00104
      SIMPL3 00105
      SIMPL3 00106
      SIMPL3 00107
      SIMPL3 00108
      SIMPL3 00109
      SIMPL3 00110
      SIMPL3 00111
      SIMPL3 00112
      SIMPL3 00113
      SIMPL3 00114
      SIMPL3 00115
      SIMPL3 00116
      SIMPL3 00117
      SIMPL3 00118
      SIMPL3 00119
      SIMPL3 00120
      SIMPL3 00121
      SIMPL3 00122

```

C	FIND ENTRY	SET ALLOCATION, CALL CAM, ASSIGN TO U	SIMPL3	00123
	DO 255 MS=1:3		SIMPL3	00124
	PROPB(MS,3) = PB(LB,MS)		SIMPL3	00125
	PROPR(MS,3) = PR(J,MS)		SIMPL3	00126
255	CONTINUE		SIMPL3	00127
	CALL CAM(IDL3, IDU3)		SIMPL3	00128
	GO TO (521, 522, 523, 524, 525), MOE		SIMPL3	00129
521	U(LB, J) = FEB(A(MOET))		SIMPL3	00130
	GO TO 529		SIMPL3	00131
522	U(LB, J) = CRF(MOET)-CRF(MOET)		SIMPL3	00132
	GO TO 529		SIMPL3	00133
523	U(LB, J) = CBAF(MOET)-CRAF(MOET)		SIMPL3	00134
	GO TO 529		SIMPL3	00135
C	SURVIVING AIRCRAFT MOE IS MOE 4		SIMPL3	00136
524	CONTINUE		SIMPL3	00137
	SUMOE=BQWGT(1)*(BAI(1,MOET)-BAD(1,MOET))- 1 RQWGT(1)*(RAI(1,MOET)-RAD(1,MOET))		SIMPL3	00138
	DO 5241 KA=2,4		SIMPL3	00139
	MS=KA-1		SIMPL3	00140
	SUMOE=SUMOE+BQWGT(MS)*(BAI(KA,MOET)-BAD(KA,MOET)) 1 - RQWGT(MS)*(RAI(KA,MOET)-RAD(KA,MOET))		SIMPL3	00141
5241	CONTINUE		SIMPL3	00142
	U(LB, J)=SUMOE		SIMPL3	00143
	GO TO 529		SIMPL3	00144
C	GRA PENALTY MOE IS MOE 5		SIMPL3	00145
525	CONTINUE		SIMPL3	00146
	BA=BA(1,MOET)-BAD(1,MOET)-DRQRA		SIMPL3	00147
	RA=RA(1,MOET)-RAD(1,MOET)-DRQRA		SIMPL3	00148
	SUMOE=BQWGT*CBAF(MOET)-RQWGT*CRAF(MOET)		SIMPL3	00149
	SUMOE=SUMOE+BQWGT(1)*AMAX1(0,0,BA)+BQWGT(2)*AMIN1(0,0,BA)		SIMPL3	00150
	SUMOE=SUMOE-RQWGT(1)*AMAX1(0,0,RA)-RQWGT(2)*AMIN1(0,0,RA)		SIMPL3	00151
	DO 5251 KA=2,4		SIMPL3	00152
	MS=KA-1		SIMPL3	00153
	SUMOE=SUMOE+BQWGT(MS)*(BAI(KA,MOET)-BAD(KA,MOET)) 1 - RQWGT(MS)*(RAI(KA,MOET)-RAD(KA,MOET))		SIMPL3	00154
5251	CONTINUE		SIMPL3	00155
	U(LB, J)=SUMOE		SIMPL3	00156
	GO TO 529		SIMPL3	00157
529	CONTINUE		SIMPL3	00158
	IF(U(LB, J) + GVA .LE. 0.0) GO TO 5291		SIMPL3	00159
	GO TO 5292		SIMPL3	00160
5291	G= -U(LB, J)		SIMPL3	00161
	GO TO 1100		SIMPL3	00162
5292	CONTINUE		SIMPL3	00163
259	SUM(J) = SUM(J) + X(LB)*U(LB,J)		SIMPL3	00164
260	CONTINUE		SIMPL3	00165
261	IF(SUM(J) .GE. GVAL=GVA) GO TO 270		SIMPL3	00166
264	INFEAS=1		SIMPL3	00167
	IF(SUM(J) .LT. SUM(JBIG)) JBIG=J		SIMPL3	00168
270	CONTINUE		SIMPL3	00169
	DO 268 I=1,NBC		SIMPL3	00170
	LB=IBAS(I)		SIMPL3	00171
	IBACT(LB) =1		SIMPL3	00172
268	CONTINUE		SIMPL3	00173
	IF(INFEAS=1) 271,272,272		SIMPL3	00174
271	CONTINUE		SIMPL3	00175
			SIMPL3	00176
			SIMPL3	00177
			SIMPL3	00178
			SIMPL3	00179
C			SIMPL3	00180

```

C      MATRIX GAME SOLUTION HAS BEEN FOUND          ASSIGN V(JH,JR)      SIMPL3 00181
C      FIND AND ASSIGN OPTIMAL BLUE AND RED STRATEGIES   SIMPL3 00182
C .IF DESIRED PRINT STRATEGY AND VALUE               SIMPL3 00183
C
C      V(JH,JR) = GVAL-GVA                         SIMPL3 00184
C      DO 2701 J=1,NH                            SIMPL3 00185
2701 SUR(JH,JR,J)= 0.0                          SIMPL3 00186
      DO 2711 IHC= 1, NRAS
      IRAS1=IRAS(IHC)
      SUR(JH,JR,IRAS1)= CS(NH+IHC)*GVAL
2711 CONTINUE
      DO 2712 I=1,NB
2712 SUB(JH,JR+1)=X(I)
      IF(IPMU .EQ. 0) RETURN
      IF(IPNU .EQ. 1) WRITE(MOT,1)
      WRITE(MOT,407) NRD
407  FORMAT(//1H , 31HPAYOFF MATRIX FOR GAME AT STAGE ,I3 )
      WRITE(MOT,408) (IRACT(I),I=1,NR)
418  FORMAT(1H ,4X,1I11)
      DO 411 I=1,NB
      WRITE(MOT,409) 1RACT(I), (U(I,J),J=1,NR)
419  FORMAT(1H ,4X,1F11.3)
410 CONTINUE
      IF(IPNU .EQ. 1) GO TO 420
      WRITE(MOT,414) JR,JH
418  FORMAT(1HU,3HJB&E,I5,7H   JR=,I5)
      WRITE(MOT,419) V(JB,JR)
419  FORMAT(1HU,10HV(JB,JH)   ,F15.4)
      GO TO 422
420  WRITE(MOT,421) V(JB,JR)
421  FORMAT(1Hu,13HGAME VALUE   ,F15.4)
422 CONTINUE
      WRITE(MOT,423) NRD
423  FORMAT(1Hu,34HBLUE AND RED STRATEGIES FOR PERIOD ,I3)
      WRITE(MOT,30) (SUR(JB,JP,I),I=1,NH)
      WRITE(MOT,30) (SUR(JB,JP,I),I=1,NR)
420  FORMAT(1H ,4X,1I11,F11.3)
      RETURN
272 CONTINUE
C NEED MORE RED STRATEGIES
C ENTER JHIG FOR RED
C
C      NRAS=NRAS*1
C      KR=JRIG
C      IRACT(JHIG)=1
C      IRAS(NRAS)=JHIG
C      DO 280 LR=1,NB
C
C      COMPUTE PAYOFF ENTRY (LR,KR)
C      SET ALLOCATION
C
C      IF(1RACT(LR) .LE. 1) GO TO 280
C      DO 27M MS=1,3
C      PROPH(MS,3) = PH(LR,MS)
C      PROPH(MS,3) = PR(KR,MS)
278 CONTINUE
      CALL CAM(1DL3,1DU3)

```

```

GO TO (531,532,533,534,535),MOE
531 U(LB,KR)=FEBA(MOET)
GO TO 539
532 U(LB,KR)=CBF(MOET)-CRF(MOET)
GO TO 539
533 U(LB,KR)=CBAF(MOET)-CRAF(MOET)
GO TO 539
C SURVIVING AIRCRAFT MOE IS MOE 4
534 CONTINUE
SUMOE=BQWGT(1)*(BAI(1,MOET)-BAD(1,MOET))-RSWGT(MS)*(RAI(1,MOET)-RAD(1,MOET))
DO 5341 KA=2,4
MS=KA-1
SUMOE=SUMOE+BQWGT(MS)*(BAI(KA,MOET)-BAD(KA,MOET))
1 - RSWGT(MS)*(RAI(KA,MOET)-RAD(KA,MOET))
5341 CONTINUE
U(LB,KR)=SUMOE
GO TO 539
C QRA PENALTY MOE IS MOE 5
535 CONTINUE
BA=BAI(1,MOET)-BAD(1,MOET)-DBQRA
RA=RAI(1,MOET)-RAD(1,MOET)-DRQRA
SUMOE=BQWGT*CBAF(MOET)-RCWGT*CRAF(MOET)
SUMOE=SUMOE+BQWGT(1)*AMAX1(0.0,BA)+BQWGT(2)*AMIN1(0.0,BA)
SUMOE=SUMOE-BQWGT(1)*AMAX1(0.0,RA)-BQWGT(2)*AMIN1(0.0,RA)
DO 5351 KA=2,4
MS=KA-1
SUMOE=SUMOE+BQWGT(MS)*(BAI(KA,MOET)-BAD(KA,MOET))
1 - RSWGT(MS)*(RAI(KA,MOET)-RAD(KA,MOET))
5351 CONTINUE
U(LB,KR)=SUMOE
GO TO 539
539 CONTINUE
IF(U(LB,KR) .LE. 0.0) GO TO 5391
GO TO 5392
5391 G= -U(LB,KR)
GO TO 1100
5392 CONTINUE
280 CONTINUE
C ASSIGN PAYOFFS TO SIMPLEX MATRIX PIVOT IN NEW CONSTRAINT
C PIVOTING IN A ROW
C
NROWS=NROWS+1
DO 300 K=1,NB
C GIVEN JBIG
AS(NROWS,K) = -(U(K,JBIG)*GVA)
300 CONTINUE
NROWM1=NROWS-1
DO 302 K=1,NROWM1
AS(NROWS,NB+K) = 0.0
AS(K,NB+NROWS) = 0.0
302 CONTINUE
BS(NROWS)= -1.0
AS(NROWS,NB+NROWS) = 1.0
IBASIC(NROWS) = NB + NROWS
DO 301 J=1,NROWM1
C
SIMPL3 00239
SIMPL3 00240
SIMPL3 00241
SIMPL3 00242
SIMPL3 00243
SIMPL3 00244
SIMPL3 00245
SIMPL3 00246
SIMPL3 00247
SIMPL3 00248
SIMPL3 00249
SIMPL3 00250
SIMPL3 00251
SIMPL3 00252
SIMPL3 00253
SIMPL3 00254
SIMPL3 00255
SIMPL3 00256
SIMPL3 00257
SIMPL3 00258
SIMPL3 00259
SIMPL3 00260
SIMPL3 00261
SIMPL3 00262
SIMPL3 00263
SIMPL3 00264
SIMPL3 00265
SIMPL3 00266
SIMPL3 00267
SIMPL3 00268
SIMPL3 00269
SIMPL3 00270
SIMPL3 00271
SIMPL3 00272
SIMPL3 00273
SIMPL3 00274
SIMPL3 00275
SIMPL3 00276
SIMPL3 00277
SIMPL3 00278
SIMPL3 00279
SIMPL3 00280
SIMPL3 00281
SIMPL3 00282
SIMPL3 00283
SIMPL3 00284
SIMPL3 00285
SIMPL3 00286
SIMPL3 00287
SIMPL3 00288
SIMPL3 00289
SIMPL3 00290
SIMPL3 00291
SIMPL3 00292
SIMPL3 00293
SIMPL3 00294
SIMPL3 00295
SIMPL3 00297

```

```

C PIVOT OUT VARIABLE FROM CONSTRAINT          SIMPL3 00298
C NEEDNT WORRY ABOUT SLACKS                  SIMPL3 00299
C
C IF(IBASIC(J) .GT. NB) GO TO 301           SIMPL3 00300
C IBASIC=IBASIC(J)
C PIVCO=U(IBASIC,JBIG)*BVA
C NBL=NB+NROWSI
C DO 304 I=1,NBL
C     AS(NROWS,I) = AS(NROWS,I)+PIVCO*AS(J,I)
C 304 CONTINUE
C     BS(NROWS)=BS(NROWS) + PIVCO*BS(J)
C 301 CONTINUE
C
C NOW PIVOT TO RE-SOLVE PROBLEM USE DUAL SIMPLEX METHOD
C TO START LET SLACK IN LAST ROW LEAVE BASIS
C SLACK VARIABLE IS NEGATIVE
C
C LEAVE1=NROWS
C 8n0 CONTINUE
C FIND ENTERING BASIC VARIABLE
C ITCOL=NB+NROWS
C INDIC=0
C DO 801 I=1,ITCOL
C     IF(AS(LEAVE1,I) .GE. 0.0) GO TO 801
C     IF(INDIC .EQ. 1) GO TO 802
C     RENT= CS(I)/AS(LEAVE1,I)
C     IENTER =I
C     INDIC=1
C 8n2 CONTINUE
C     RATIO= CS(I)/AS(LEAVE1,I)
C     IF(RATIO .LE. RENT) GO TO 801
C     IENTER =I
C     RENT = RATIO
C 8n1 CONTINUE
C     IENTER IS THE VARIABLE TO ENTER THE BASIS
C     IBASIC(LEAVE1) = IENTER
C
C PIVOT
C     PIVCO= AS(LEAVE1,IENTER)
C     DO 805 I=1,ITCOL
C         AS(LEAVE1,I)= AS(LEAVE1,I)/PIVCO
C         IF(I .EQ. IENTER) GO TO 805
C         CS(I)=CS(I) - AS(LEAVE1,I)*CS(IENTER)
C 8n5 CONTINUE
C     BS(LEAVE1) = BS(LEAVE1)/PIVCO
C     DO 803 J=1,NROWS
C         IF(J .EQ. LEAVE1) GO TO 803
C     DO 8n4 I=1,ITCOL
C         IF(I .EQ. IENTER) GO TO 804
C         AS(I,I) = AS(I,I)-AS(LEAVE1,I)*AS(J,IENTER)
C 8n4 CONTINUE
C     BS(J)= BS(J) - BS(LEAVE1)*AS(J,IENTER)
C 8n3 CONTINUE
C     XNEC=XNEC-BS(LEAVE1)*CS(IENTER)
C     CS(IENTER) =0.0
C     DO 8n6 J=1,NROWS
C         AS(J,IENTER) = 0.0
C 8n6 CONTINUE
C     AS(LEAVE1,IENTER) = 1.0

```

```

C TEST RHS FOR FEASIBILITY FIND MOST NEGATIVE ENTRY TO LEAVE BASIS SIMPL3 00355
C
C 810 INFEAS=0 SIMPL3 00356
TEST= 0.0 SIMPL3 00357
DO 811 J=1,NROWS SIMPL3 00358
IF(BS(J) .GE. 0.0) GO TO 811 SIMPL3 00359
INFEAS=1 SIMPL3 00360
IF(BS(J) .GE. TEST) GO TO 811 SIMPL3 00361
TEST = BS(J) SIMPL3 00362
LEAVE1=j SIMPL3 00363
811 CONTINUE SIMPL3 00364
IF(INFEAS=1) 840,800,800 SIMPL3 00365
C SIMPL3 00366
C FEASIBLE SOLUTION FOUND SIMPL3 00367
C FIND ACTIVE BLUE STRATEGIES SIMPL3 00368
C
840 CONTINUE SIMPL3 00369
GVAL= -1.0/XNEC SIMPL3 00370
IBC=0 SIMPL3 00371
DO 849 I=1,NB SIMPL3 00372
849 X(I) = 0.0 SIMPL3 00373
DO 850 IROW=1,NROWS SIMPL3 00374
C SEE IF A SLACK VARIABLE IS BASIC SIMPL3 00375
IF(IBASIC(IROW) .GT. NB) GO TO 850 SIMPL3 00376
IBC=IBC+1 SIMPL3 00377
IBAS=IBAS(IBC)=IBASIC(IROW) SIMPL3 00378
X(IBAS1)= BS(IROW)* GVAL SIMPL3 00379
850 CONTINUE SIMPL3 00380
NBC=IBC SIMPL3 00381
GO TO 2600 SIMPL3 00382
1100 CONTINUE SIMPL3 00383
WRITE(MOT,1101) G SIMPL3 00384
1101 FORMAT(1HO, 34MGVA TOO SMALL. SHOULD BE AT LEAST ,F10.2) SIMPL3 00385
STOP 223 SIMPL3 00386
END SIMPL3 00387
SIMPL3 00388
SIMPL3 00389
SIMPL3 00390

```

G. SUBROUTINE CAM

SUBROUTINE CAM(IUL,IUU)		CAM	00002
C	OPTSA II	CAM	00003
COUPUIM			
COMMON	NKBD,NKHD,NKHA,NKRA	MAIN	
COMMON	NID	MAIN	
COMMON	NPD,IDL1,IUU1,IDL2,IUU2,IDL3,IUU3	MAIN	
COMMON	IRO,JRU,KRU	MAIN	
COMMON	IPRV,IPRU	MAIN	
COMMON	IREPLH,IREPLR	MAIN	
COMMON	BDA(3,90),MDA(3,90)	MAIN	
COMMON	BAA(4,90),MAA(4,90)	MAIN	
COMMON	DBQRA,DNQRA	MAIN	
COMMON	SHELH(90),PSHSEL,PRSHEL	MAIN	
COMMON	BSHELK(90),RSHELK(90)	MAIN	
COMMON	FHU(3),FHD(3),FBA(2),FRA(2)	MAIN	
COMMON	IDBSRC,UDRSRC	MAIN	
COMMON	SOKRB1(2,3),SOKRB2(2,3),SOHRR1(2,3),SOHRR2(2,3)	MAIN	
COMMON	IAA,XNDAA,XNRAA,BALPHA(2,2),RALPHA(2,2)	MAIN	
COMMON	BIDRA(2,4),BADH1(4,2),RHUBA(2,4),RADBT(4,2)	MAIN	
COMMON	BIRKA(2,4),RAKHI(4,2),RINBA(2,4),RAKBI(4,2)	MAIN	
COMMON	BSAMZR(2,2),RSAMZR(2,2)	MAIN	
COMMON	IW3SH,BFRAC1,BFRAC2,RFRAC1,RFRAC2,FBISK,FHSK	MAIN	
COMMON	BPASS(2),HPASS(2)	MAIN	
COMMON	IBABA,XNBBAB,XNRAB,BPARK,RPARK	MAIN	
COMMON	BDKS(2),BUNNS(2),BKRS(2),BKRN5(2)	MAIN	
COMMON	RDKS(2),RDNS(2),RKBS(2),RKBNS(2)	MAIN	
COMMON	B4B,B4AL,B4AN1,B4AN2,B4AS1,B4AS2,B4NS1,B4NS2,B4SN1,B4SN2	MAIN	
COMMON	K4B,K4AL,R4AN1,R4AN2,R4AS1,R4AS2,R4NS1,R4NS2,R4SN1,R4SN2	MAIN	
COMMON	EPS4	MAIN	
COMMON	NFRFA,FRFA(15),FA(15)	MAIN	
COMMON	NFRBD,FRBD(15),BD(15)	MAIN	
COMMON	NFRD,FRD(15),RD(15)	MAIN	
COMMON	NHINH	MAIN	
COMMON	PH(20,3),PR(20,3)	MAIN	
COMMON	PROFB(3,3),PROPR(3,3)	MAIN	
COMMON	M0E,M0E!	MAIN	
COMMON	BCWGT,BWGT(3),MCWGT,MSWGT(3),RWGWT(2)	MAIN	
COMMON	GVA	MAIN	
C		MAIN	
COMMON	U(11,11),SUR(11,11,11),SUR(11,11,11)	MAIN	
COMMON	V(11,11),SVB(11,11,11),SVH(11,11,11)	MAIN	
COMMON	W(11,11),SWB(11),SWR(11),VALUE	MAIN	
C		MAIN	
COMMON	BDI(3,90),BDI(3,90)	MAIN	
COMMON	BDD(3,90),BDD(3,90)	MAIN	
COMMON	BGF(90),RGF(90)	MAIN	
COMMON	BAI(4,90),RAI(4,90)	MAIN	
COMMON	BAU(4,90),RAU(4,90)	MAIN	
COMMON	BAF(90),RAF(90)	MAIN	
COMMON	HF(90),RF(90)	MAIN	
COMMON	FEBA(90)	MAIN	
COMMON	CBF(90),CHF(90)	MAIN	
COMMON	CBAr(90),CHAr(90)	MAIN	
C	COUPUIM	CAM	00004
C	CUMMON/CAMVAR/ SURRH(2,3),SURRK(2,3)	CAM	00005
C	CUMMON/CAMVAR/ SURRH(2,3),SURRK(2,3)	CAM	00006

```

COMMON/CAMVAR/ BA(2,3),RA(2,3),BS(2,3),HS(2,3)
COMMON/CAMVAR/ BA(2,3),HAKAA(2,3),BSKA(2,3),HSKAA(2,3)
COMMON/CAMVAR/ BAL(2,3),HAL(2,3),BSL(2,3),BSL(2,3)
COMMON/CAMVAR/ VRDTRA(2),VRDA(4),VRDTRA(2),VRADRI(4)
COMMON/CAMVAR/ BSENG(2,2),HSENG(2,2)
COMMON/CAMVAR/ BPENG(1),HPENG(2)
COMMON/CAMVAR/ BSFB(2,3),BAFB(2,3),RSFB(2,3),RAFB(2,3)
COMMON/CAMVAR/ BAVUL(4),RAVUL(4),PBABA(2),PMABA(2)
COMMON/CAMVAR/ BPOPS(4),BPOPNS(4),BPOPS(4),BPOPNS(4)
COMMON/CAMVAR/ VBURS,VBDHNS,VBKRS,VBKHN
COMMON/CAMVAR/ VRBRS,VRBRSNS,VRKBS,VRKBNS
INTEGM TY,1Y,1Y
DIMENSION BANF(2,3),RANF(2,3)
F14(4)= A2-A3*ALUG(A4)*A4*A6-A5*ALOG(A6)*A6**4
F24(4)= -A3*(ALUG(A4)**2)*A4**4-A5*(ALOG(A6)**2)*A6**4
CALL CLRCUM(3,IUL,1DU)

--- DO LOOP ON ID
DO 3000 ID=IUL,1DU
CALL CAMCLR
--- STARTING DIVISION INVENTORY FOR ID -- B AND R
IF(ID-1) 1510,1510,1520
1510 DO 1514 KBU=1,NKBU
1512 BUI(KBU,1D) = BDA(KBD+ID)
DO 1514 KRD=1,NKRD
1515 RDI(KRD,1D) = RDA(KRD+ID)
GO TO 1500
1520 IUMI = ID-1
DO 1522 KRD=1,NKRD
1522 BDI(KBU,1D) = BDI(KRD,1DM1) - BDD(KRD,IUMI) + BDA(KBD+ID)
DO 1524 KRD=1,NKRD
      RDI(KRD,1D)=RDI(KRD,1DM1)-RDD(KRD,1DM1) + RDA(KRD,1D)
1524 CONTINUE
C --- GROUND FIREPOWER FOR ID -- B AND R
C
1600 BGF(ID) = 0.
DO 1610 KBD=1,NKBD
1610 BGF(ID) = BDI(KBD,1D)*FRD(KBD)
RGF(ID) = 0.
DO 1620 KRD=1,NKRD
      RGF(ID)= RDI(KRD,1D)*FRD(KRD)
1620 CONTINUE
C --- SHELTER INVENTORY FOR ID--B AND R
C
IF(ID-1) 1621,1621,1622
1621 CONTINUE
      SHELB(ID) = SHELB(1DM1) - RSHELB(1DM1)
      SHELR(ID) = SHELR(1DM1) - RSHELR(1DM1)
      GO TO 1623
1621 CONTINUE
      SHELB(1) = PSHEL
      SHELR(1) = PSHLR
1623 CONTINUE

```

CAM	00007
CAM	00008
CAM	00009
CAM	00010
CAM	00011
CAM	00012
CAM	00013
CAM	00014
CAM	00015
CAM	00016
CAM	00017
CAM	00018
CAM	00019
CAM	00020
CAM	00021
CAM	00022
CAM	00023
CAM	00024
CAM	00025
CAM	00026
CAM	00027
CAM	00028
CAM	00029
CAM	00030
CAM	00031
CAM	00032
CAM	00033
CAM	00034
CAM	00035
CAM	00036
CAM	00037
CAM	00038
CAM	00039
CAM	00040
CAM	00041
CAM	00042
CAM	00043
CAM	00044
CAM	00045
CAM	00046
CAM	00047
CAM	00048
CAM	00049
CAM	00050
CAM	00051
CAM	00052
CAM	00053
CAM	00054
CAM	00055
CAM	00056
CAM	00057
CAM	00058
CAM	00059
CAM	00060
CAM	00061
CAM	00062
CAM	00063
CAM	00064

C
 C - STARTING AIRCRAFT INVENTORY FOR ID-- 8 AND K
 C
 1F(IU-1)2010,2010,2020
 2010 DU 2012 KRAE1,IKRA
 2012 BAI(KRA,IU)*RAA(KRA,IU)
 DU 2013 KRAE1,IKRA
 2014 RAI(KRA,IU)*RAA(KRA,IU)
 GO TO 2050
 2050 IUM1=IU=1
 DU 2022 KRAE1,IKRA
 2022 BAI(KRA,IU)*RAI(KRA,IUM1)-RAU(KRA,IM1)+RAA(KRA,ID)
 DU 2023 KRAE1,IKRA
 RAI(KRA,IU)*RAI(KRA,IM1)-RAU(KRA,IM1)+RAA(KRA,ID)
 2024 CONTINUE
 C
 C DETERMINATION OF GHA AND
 C AIRCRAFT ASSIGNMENTS--BLUE AND RED
 C
 2050 CONTINUE
 IF(BAI(1,IU)=UBGHA) 2051,2052,2052
 2051 ARUHRA=BAI(1,IU)
 BAAS=U0
 GO TO 2053
 2052 ARUHRA=URGHA
 BAAS= BAI(1,IU)-UBGHA
 IF(RAI(1,IU)=URGHA) 2054,2055,2055
 2054 ARUHRA=RAI(1,IU)
 RAAS=U0
 GO TO 2055
 2055 ARUHRA=URGHA
 RAAS= RAI(1,IU)-URGHA
 2056 CONTINUE
 2050 CONTINUE
 IPU=1
 IF(IU = GE. IUL2) IPU#2
 IF(IU = GE. IUL3) IPU#3
 SUM=SUMK =U+0
 DU 2001 MS= 1,3
 RAI(1,MS)=PHOPD(MS,IPU)*BAAS
 RAI(1,MS)=PHOPM(MS,IPU)*RAAS
 RAI(2,MS) = RAI(MS+1,IU)
 RAI(2,MS) = RAI(MS+1,IU)
 SUMM=SUMB+ RAI(1,MS)
 SUM=SUMK+ RAI(1,MS)
 2051 CONTINUE
 RANAS= BAAS-SUMB
 RANAS= RAAS-SUMK
 C
 C SORTIE RATES FOR BLUE AND RED
 C
 IF(IU=IDSRC) 2080,2085,2085
 2080 CONTINUE
 DU 2001 TY=1#2
 DU 2001 MS=1#3
 SURRH(TY,MS) = SURRH1(TY,MS)
 2081 CONTINUE
 BFHAC=DFHAC1

2085	GO TO 208Y	CAM	00123
	CONTINUE	CAM	00124
	DO 2086 TY=1,2	CAM	00125
	DO 2086 MS=1,3	CAM	00126
	SORRB(TY,MS) = SORRB2(TY,MS)	CAM	00127
2086	CONTINUE	CAM	00128
	BFRAC=BFRAC2	CAM	00129
208Y	CONTINUE	CAM	00130
	IF(ID=IDSRC) 2090,2095,209S	CAM	00131
2090	CONTINUE	CAM	00132
	DO 2091 TY=1,2	CAM	00133
	DO 2091 MS=1,3	CAM	00134
	SORRR(TY,MS) = SORRR1(TY,MS)	CAM	00135
2091	CONTINUE	CAM	00136
	RFRAC=RFRAC1	CAM	00137
	GO TO 2100	CAM	00138
2095	CONTINUE	CAM	00139
	DO 2096 TY=1,2	CAM	00140
	DO 2096 MS=1,3	CAM	00141
	SORRR(TY,MS) = SORRR2(TY,MS)	CAM	00142
2096	CONTINUE	CAM	00143
	RFRAC=HFRAC2	CAM	00144
C		CAM	00145
C		CAM	00146
C	AIRCRAFT DESTRUCTION -- AIM TO AIM INTERACTION	CAM	00147
C		CAM	00148
C		CAM	00149
2100	CONTINUE	CAM	00150
C		CAM	00151
C	SURTIES FOR BLUE AND RED	CAM	00152
C		CAM	00153
	DO 2101 TY=1,2	CAM	00154
	DO 2101 MS=1,3	CAM	00155
	BS(TY,MS) = BA(TY,MS)*SORRB(TY,MS)	CAM	00156
	RS(TY,MS) = RA(TY,MS)*SORRR(TY,MS)	CAM	00157
	BANF(TY,MS)=0.0	CAM	00158
	IF(SORRB(TY,MS) < LT. 1.0) BANF(TY,MS)=BA(TY,MS)*(1.-SORRB(TY,MS))	CAM	00159
	IF(SORRR(TY,MS) < LT. 1.0) BANF(TY,MS)=RA(TY,MS)*(1.-SORRR(TY,MS))	CAM	00160
2101	CONTINUE	CAM	00161
	BITS= BS(1,3) + BS(2,3)	CAM	00162
	BATS= BS(1,1) + BS(1,2) + BS(2,1) + BS(2,2)	CAM	00163
	RITS=HS(1,3) + HS(2,3)	CAM	00164
	RATS= RS(1,1)+HS(1,2)+RS(2,1)+HS(2,2)	CAM	00165
C	CHECKS	CAM	00166
C		CAM	00167
	IBIRA=IBAH1=0	CAM	00168
	IF(RATS < 1. .OR. BITS < 1.) IBIMA=1	CAM	00169
	IF(RITS < LT. 1. .OR. BATS < 1.) IBAKI=1	CAM	00170
C	COMPUTING AVERAGE DETECTION PARAMETERS	CAM	00171
C		CAM	00172
2180	CONTINUE	CAM	00173
	IF(IBIRA .EQ. 1) GO TO 2185	CAM	00174
	DO 2181 TYB =1,4	CAM	00175
	SUM= 0.0	CAM	00176
	DO 2182 TYR =1,2	CAM	00177
	DO 2182 MSR =1,2	CAM	00178
		CAM	00179
		CAM	00180

```

INUR= MSH+ 2*(IYH-1) CAM 00181
SUM= SUM+ RDBA(TYB+INDR)*HS(TYB,MSH) CAM 00182
2182 CONTINUE CAM 00183
VRIUHA(TYB)= SUM/RATS CAM 00184
2183 CONTINUE CAM 00185
IF( IAA .EQ. 1) GO TO 2185 CAM 00186
DO 2183 IYH=1,2 CAM 00187
DO 2183 MSR=1,2 CAM 00188
INDR= MSH+ 2*(IYH-1) CAM 00189
SUM= 0.0 CAM 00190
DO 2184 IYB=1,2 CAM 00191
SUM= SUM+ RADRI(INDR+TYB)*BS(TYB,3) CAM 00192
2184 CONTINUE CAM 00193
VRAUDI(INDR)= SUM/RITS CAM 00194
2185 CONTINUE CAM 00195
2186 CONTINUE CAM 00196
IF(IBARI .EQ. 1) GO TO 2200 CAM 00197
DO 2186 IYR =1,4 CAM 00198
SUM= J*0 CAM 00199
DO 2187 TYB =1,4 CAM 00200
DO 2187 MSR =1,4 CAM 00201
INDR= MSH+ 2*(IYB-1) CAM 00202
SUM= SUM+ RDBA(TYB+INDR)*BS(TYB,MSH) CAM 00203
2187 CONTINUE CAM 00204
VRIUHA(TYB)=SUM/RATS CAM 00205
2188 CONTINUE CAM 00206
IF( IAA .EQ. 1) GO TO 2200 CAM 00207
DO 2188 IYB=1,2 CAM 00208
DO 2188 MSR=1,2 CAM 00209
INDR= MSH+ 2*(IYB-1) CAM 00210
SUM= 0.0 CAM 00211
DO 2189 IYR=1,2 CAM 00212
SUM= SUM+ RADRI(INDR+TYR)*RS(TYR,3) CAM 00213
2189 CONTINUE CAM 00214
VRAUDI(INDR)=SUM/RITS CAM 00215
2190 CONTINUE CAM 00216
2200 CONTINUE CAM 00217
CAM 00218
C CHOOSE DESIRED METHOD OF ATTRITION CAM 00219
C STATEMENT NUMBERS IN 2200S FOR FIRST METHOD CAM 00220
C STATEMENT NUMBERS IN 2300S FOR SECOND MEIHOU CAM 00221
C CAM 00222
IF( IAA .EQ. 1) GO TO 2300 CAM 00223
C CAM 00224
C BLUE INTERCEPTORS, RED ATTACKERS CAM 00225
C CAM 00226
IF(IBMRA .EQ. 1) GO TO 2249 CAM 00227
C CAM 00228
C BLUE INTERCEPTORS KILL RED ATTACKERS CAM 00229
C CAM 00230
C HATS1=RATS/XNRAA CAM 00231
DO 2210 TYR =1,4 CAM 00232
DO 2210 MSR =1,4 CAM 00233
INDR= MSH+ 2*(IYR-1) CAM 00234
PROU=1.0 CAM 00235
DO 2220 TYB =1,4 CAM 00236
X1= (1.0-VRIUHA(TYB))*RATS1/RATS1 CAM 00237
X15=AMAX1(0.0, 1.0-RIKRA(TYB,INUR)*X1) CAM 00238

```

PROD= PROD# X15** (BS(TYB,3)/ANRAA)	CAM 00239
CONTINUE	CAM 00240
RSKAA(TYR,MSR)=RS(TYH,MSR)*(1.-PROD)	CAM 00241
2210 CONTINUE	CAM 00242
C RED ATTACKERS KILL BLUE INTERCEPTORS	CAM 00243
C	CAM 00244
BITS1=RITS/XNRAA	CAM 00245
DO 2230 TYB =1,4	CAM 00246
PROD=1.0	CAM 00247
DO 2240 TYR =1,4	CAM 00248
DO 2240 MSR =1,2	CAM 00249
INDR= MSR+ 2*(TYH-1)	CAM 00250
X15=(1.-(1.-VMAUDI([NUR]))*BITS1)/BITS1	CAM 00251
X15=AMAX1(0,0, 1.-RAKBI(INDR, TYB)*X1)	CAM 00252
PROD=PROD* X15** (RS(TYH,MSR)/XNRAA)	CAM 00253
2249 CONTINUE	CAM 00254
BSKAA(TYB,3)= BS(TYB,3)*(1.-PROD)	CAM 00255
2250 CONTINUE	CAM 00256
GO TO 2250	CAM 00257
2249 RAKAA(1,1)=RAKAA(1,2)=RAKAA(2,1)=RAKAA(2,2)=0.0	CAM 00258
RSKAA(1,1)=RSKAA(1,2)=RSKAA(2,1)=RSKAA(2,2) = 0.0	CAM 00259
BSKAA(1,3) = BSKAA(2,3) = 0.0	CAM 00260
BAKAA(1,3) = BAKAA(2,3)=0.0	CAM 00261
2250 CONTINUE	CAM 00262
C	CAM 00263
C RED INTERCEPTORS, BLUE ATTACKERS	CAM 00264
C	CAM 00265
IF(IHAI .EQ. 1) GO TO 2299	CAM 00266
C	CAM 00267
C RED INTERCEPTORS KILL BLUE ATTACKERS	CAM 00268
C	CAM 00269
BATS1=BATS/XNMRAA	CAM 00270
DO 2260 TYB =1,4	CAM 00271
DO 2260 MSB =1,4	CAM 00272
INDB= MSB+ 2*(TYB-1)	CAM 00273
PROD=1.0	CAM 00274
DO 2270 TYR =1,4	CAM 00275
X1= (1.-(1.-VHIDRA(TYR))*BATS1)/BATS1	CAM 00276
X15=AMAX1(0,0, 1.-RIKBA(TYR+INDB)*X1)	CAM 00277
PROD =PROD *X15** (RS(TYB,3)/XNRAA)	CAM 00278
2270 CONTINUE	CAM 00279
BSKAA(TYB,MSB)=BS(TYB,MSB)*(1.-PROD)	CAM 00280
2260 CONTINUE	CAM 00281
C	CAM 00282
C BLUE ATTACKERS KILL RED INTERCEPTORS	CAM 00283
C	CAM 00284
RITS1=RITS/XNMRAA	CAM 00285
DO 2280 TYR =1,4	CAM 00286
PROD=1.0	CAM 00287
DO 2290 TYB=1,2	CAM 00288
DO 2290 MSB=1,2	CAM 00289
INDB= MSB+ 2*(TYB-1)	CAM 00290
X1= (1.-(1.-VHADRI([NDR]))*RITS1)/RITS1	CAM 00291
X15=AMAX1(0,0, 1.-BAKKI(INDB, TYB)*X1)	CAM 00292
PROD=PROD* X15** (BS(TYB,MSB)/XNRAA)	CAM 00293
2290 CONTINUE	CAM 00294
RSKAA(TYB,3)=RS(TYB,3)*(1.-PROD)	CAM 00295
	CAM 00296

2280	CONTINUE	CAM	00297
	GO TO 2400	CAM	00298
2299	BSKAA(1,1) = BSKAA(1,2) = BSKAA(2,1) = BSKAA(2,2) = 0.0	CAM	00299
	BAKAA(1,1) = BAKAA(1,2) = BAKAA(2,1) = BAKAA(2,2) = 0.0	CAM	00300
	RSKAA(1,3) = RSKAA(2,3) = 0.0	CAM	00301
	HAKAA(1,3) = HAKAA(2,3) = 0.0	CAM	00302
	GO TO 2400	CAM	00303
2300	CONTINUE	CAM	00304
C		CAM	00305
C	ALTERNATE ATTRITION SCHEME	CAM	00306
C	IN THIS ATTRITION METHOD ATTACKERS SHOOT AT INTERCEPTORS ONLY IF	CAM	00307
C	ENGAGED BY THEM AND THEN ONLY (1.-ALPHA) OF THE TIME	CAM	00308
C		CAM	00309
C	BLUE INTERCEPTORS, RED ATTACKERS	CAM	00310
C		CAM	00311
	IF (1-B1HA .EQ. 1) GO TO 2349	CAM	00312
C		CAM	00313
C	RED ATTACKERS KILLED	CAM	00314
C		CAM	00315
	RATS1=RATS/XRDA	CAM	00316
	DO 2310 TYH =1,2	CAM	00317
	DO 2310 MSR =1,2	CAM	00318
	INDR= MSR* 2*(TYH-1)	CAM	00319
	PROD1=PROD2=1.0	CAM	00320
	DO 2311 TYB =1,2	CAM	00321
	X1=(1.-(1.-B1HA(TYH))*R4TS1)/RATS1	CAM	00322
	X2=MAX1(0.0, 1.-B1HA(TYB))	CAM	00323
	X2=MAX1(0.0, 1.-X1)	CAM	00324
	PROD1=PROD1*X1*#(RS(TYB,3)/XRDA)	CAM	00325
	PROD2=PROD2*X2*#(RS(TYB,3)/XRDA)	CAM	00326
2311	CONTINUE	CAM	00327
	RSKAA(TYH,MSR)=RS(TYH,MSR)*(1.-PROD1)	CAM	00328
	RSENG(TYH,MSR)=RS(TYH,MSR)*(1.-PROD2)	CAM	00329
2310	CONTINUE	CAM	00330
C		CAM	00331
C	BLUE INTERCEPTORS KILLED	CAM	00332
C		CAM	00333
	UENOM= BS(1,3)*VBIDRA(1) + BS(2,3)*VBIDRA(2)	CAM	00334
	BPENG(1)=(BS(1,3)*VBIDRA(1))/UENOM	CAM	00335
	BPENG(2)=(BS(2,3)*VBIDRA(2))/UENOM	CAM	00336
	DU 2320 TYH =1,2	CAM	00337
	SUM= U.0	CAM	00338
	DU 2321 TYH =1,2	CAM	00339
	DO 2321 MSR =1,2	CAM	00340
	INDR= MSR* 2*(TYH-1)	CAM	00341
	SUM=SUM+ RSENG(TYB,MSR) *RAKB1(INDR,TYB)*BPENG(TYB)*	CAM	00342
	1 (1.-RALPHA(TYH,MSR))	CAM	00343
2321	CONTINUE	CAM	00344
	RSKAA(TYB,3)=SUM	CAM	00345
2320	CONTINUE	CAM	00346
	GO TO 2350	CAM	00347
2349	RAKAA(1,1)=RAKAA(1,2)=RAKAA(2,1)=RAKAA(2,2)=0.0	CAM	00348
	RSKAA(1,1)=RSKAA(1,2)=RSKAA(2,1)=RSKAA(2,2)=0.0	CAM	00349
	BSKAA(1,3) = BSKAA(2,3) = 0.0	CAM	00350
	BAKAA(1,3) = BAKAA(2,3) = 0.0	CAM	00351
2350	CONTINUE	CAM	00352
C	RED INTERCEPTORS, BLUE ATTACKERS	CAM	00353
		CAM	00354

```

C IF(IHARI .EQ. 1) GO TO 2399
C
C BLUE ATTACKERS KILLED
C
BATS1=BATS/XNRAA
DO 2360 TYR =1,2
DO 2360 MSB =1,2
INDB= MSB* 2*(TYR-1)
PROD1=PROD2=1.0
DO 2361 TYR =1,2
X1= (1.-(1.-VHIDBA(TYR))*BATS1)/BATS1
X15=AMAX1(0.0, 1.-R1KBA(TYR,INDB)*X1)
X2 =AMAX1(0.0, 1.-X1)
PROD1=PROD1*X15*(RS(TYR,3)/XNRAA)
PROD2=PROD2*X2 *(RS(TYR,3)/XNRAA)
2361 CONTINUE
BSKAA(TYR,MSB)=BS(TYR,MSB)*(1.-PROD1)
BSENQ(TYB,MSB)=BS(TYB,MSB)*(1.-PROD2)
2364 CONTINUE
C
C RED INTERCEPTORS KILLED
C
DENOM= RS(1,3)*VHIDBA(1)+RS(2,3)*VRIDBA(2)
RPENG(1)=(RS(1,3)*VRIDBA(1))/DENOM
RPENG(2)=(RS(2,3)*VRIDBA(2))/DENOM
DO 2370 TYR =1,2
SUM= 0.0
DO 2371 TYR =1,2
DO 2371 MSB =1,2
INDB= MSB* 2*(TYR-1)
SUM=SUM+ BSENQ(TYB,MSB)*BAKRI(INDB,TYR)*RPENG(TYR)*
(1.-HALPMA(TYB,MSB))
2371 CONTINUE
RSKAA(TYR,3)= SUM
2370 CONTINUE
GO TO 2400
2399 BSKAA(1,1)=BSKAA(1,2)=BSKAA(2,1)=BSKAA(2,2)= 0.0
BAKAA(1,1)=BAKAA(1,2)=BAKAA(2,1)=BAKAA(2,2)= 0.0
RSKAA(1,3)= RSKAA(2,3)= 0.0
WAKAA(1,3)= WAKAA(2,3)= 0.0
2400 CONTINUE
C
C FIRST REVISED ATTACK-- SUBTRACT OUT AIRCRAFT LOSSES
C IN AIR TO AIR INTERACTION
C
C COMPUTE AND SUBTRACT OUT SORTIES LOST
C
IF(IAA) 2401+2401+2403
2401 DO 2402 TY=1,2
DO 2402 MS=1,3
BS(TY,MS)= BS(TY,MS)-BSKAA(TY,MS)
RS(TY,MS)= RS(TY,MS)-RSKAA(TY,MS)
2402 CONTINUE
GO TO 2407
2403 CONTINUE
DO 2405 TY=1,2
BS(TY,3)=BS(TY,3)-BSKAA(TY,3)

```

```

CAM 00355
CAM 00356
CAM 00357
CAM 00358
CAM 00359
CAM 00360
CAM 00361
CAM 00362
CAM 00363
CAM 00364
CAM 00365
CAM 00366
CAM 00367
CAM 00368
CAM 00369
CAM 00370
CAM 00371
CAM 00372
CAM 00373
CAM 00374
CAM 00375
CAM 00376
CAM 00377
CAM 00378
CAM 00379
CAM 00380
CAM 00381
CAM 00382
CAM 00383
CAM 00384
CAM 00385
CAM 00386
CAM 00387
CAM 00388
CAM 00389
CAM 00390
CAM 00391
CAM 00392
CAM 00393
CAM 00394
CAM 00395
CAM 00396
CAM 00397
CAM 00398
CAM 00399
CAM 00400
CAM 00401
CAM 00402
CAM 00403
CAM 00404
CAM 00405
CAM 00406
CAM 00407
CAM 00408
CAM 00409
CAM 00410
CAM 00411
CAM 00412

```

```

HS(TY,3)=HS(TY,3)-RSKAA(TY,3) CAM 00413
BSFB(TY,3)=RSFB(TY,3)=0 DO 2405 MS=1+2 CAM 00414
DO 2405 MS=1+2 CAM 00415
BSFB(TY,MS)=(1,-BALPHA(TY,MS))+(BSENG(TY,MS)-RSKAA(TY,MS)) CAM 00416
RSFB(TY,MS)=(1,-RALPHA(TY,MS))+(HSENG(TY,MS)-RSKAA(TY,MS)) CAM 00417
BS(TY,MS)=BS(TY,MS)-RSKAA(TY,MS)-BSFB(TY,MS) CAM 00418
HS(TY,MS)=HS(TY,MS)-RSKAA(TY,MS)-RSFB(TY,MS) CAM 00419
2405 CONTINUE CAM 00420
2407 CONTINUE CAM 00421
C CONVERT SORTIES LOST TO AIRCRAFT LOST CAM 00422
C FIND REMAINING NUMBER OF AIRCRAFT CAM 00423
C DO 2410 TY=1+2 CAM 00424
DO 2410 MS=1+3 CAM 00425
SRB=AMAX1(1,0,SORRB(TY,MS)) CAM 00426
SRB=AMAX1(1,0,SURRR(TY,MS)) CAM 00427
BAFB(TY,MS)=BSFB(TY,MS)/SRB CAM 00428
RAFB(TY,MS)=RSFB(TY,MS)/SRR CAM 00429
BAKAA(TY,MS)=BSKAA(TY,MS)/SRB CAM 00430
RAKAA(TY,MS)=RSKAA(TY,MS)/SRR CAM 00431
BA(TY,MS)=BA(TY,MS)-BANF(TY,MS)-BAFB(TY,MS)-BAKAA(TY,MS) CAM 00432
HA(TY,MS)=HA(TY,MS)-HANF(TY,MS)-RAFB(TY,MS)-RAKAA(TY,MS) CAM 00433
RA(TY,MS)=HA(TY,MS)-HAL(TY,MS) CAM 00434
2410 CONTINUE CAM 00435
C BLUE AND RED SAMS AND SECOND REVISED ATTACK CAM 00436
C FIND ANY SUBTRACT OUT SORTIES AND AIRCRAFT KILLED BY SAMS CAM 00437
C DO 2415 TY=1+2 CAM 00438
BSL(TY,3)=HSL(TY,3)=0 DO 2416 MS=1+2 CAM 00439
DO 2416 MS=1+2 CAM 00440
BSL(TY,MS)=BSAM2B(TY,MS)+BS(TY,MS) CAM 00441
HSL(TY,MS)=BSAM2R(TY,MS)+RS(TY,MS) CAM 00442
2415 CONTINUE CAM 00443
2415 CONTINUE CAM 00444
DO 2420 TY=1+2 CAM 00445
DO 2420 MS=1+3 CAM 00446
SRB=AMAX1(1,0,SORRB(TY,MS)) CAM 00447
SRB=AMAX1(1,0,SURRR(TY,MS)) CAM 00448
BAL(TY,MS)=BSL(TY,MS)/SRB CAM 00449
RAL(TY,MS)=HSL(TY,MS)/SRR CAM 00450
BS(TY,MS)=BS(TY,MS)-BSL(TY,MS) CAM 00451
BA(TY,MS)=BA(TY,MS)-HAL(TY,MS) CAM 00452
HS(TY,MS)=HS(TY,MS)-HSL(TY,MS) CAM 00453
RA(TY,MS)=RA(TY,MS)-HAL(TY,MS) CAM 00454
2420 CONTINUE CAM 00455
C AIRCRAFT DESTRUCTION--AIRBASE ATTACK CAM 00456
C BLUE AIRBASES CAM 00457
C COMPUTE NUMBER OF BLUE AIRCRAFT VULNERABLE TO ABA BY RED CAM 00458
C BSHEL=SHELB(IU) CAM 00459
IF(SHELB(IU) .LT. 1,) BSHEL=0. CAM 00460

```

```

BAVUL(1)= BANAS
DO 2501 MS=1+j
2501 CONTINUE
DO 2502 KBA=2,j
MS=KBA=1
BAVUL(KBA)=BAVUL(1)+BA(1,MS)+BANE(1,MS)+BAFB(1,MS)
2502 CONTINUE
ABQRAS=AMINI(ABQRA,BSHEL)
BSHEL1= BSHEL-ABQRAS
ABQRAN=ABQRA-ABGRAS
BAVULT=BAVUL(1)+BAVUL(2)+BAVUL(3)+BAVUL(4)
BSHEL1=AMINI(BSHEL1,BAVULT)
IF(BAVULT .EQ. 0.0) GO TO 2505
DO 2504 KBA=1,NKBA
BPOPS(KBA)= BSHEL1*(BAVUL(KBA)/BAVULT)
2504 CONTINUE
2505 CONTINUE
DO 2506 KBA=1,NKBA
BPOPNs(KBA)=BPMAC*(BAVUL(KBA)-BPOPS(KBA))
BPOPS(KBA)=BPMAC*BPOPS(KBA)
2506 CONTINUE
BPOPS(1)=BPOPS(1)+ABQRAS
BPOPNs(1)=BPOPNs(1)+ABQRAN
BTOTS=BTOTNS=0.0
DO 2507 KBA=1,4
BTOTS= BTOTS+BPOPS(KBA)
BTOTNS=BTOTNS+BPOPNs(KBA)
2507 CONTINUE
BTOT=BTOTS+BTOTNS

C HED ATTACKERS--COMPUTE NUMBER OF HED ATTACK PASSES
C
DO 2509 TYR=1,2
PRABA(TYR)= RS(TYR,2)*RPASS(TYR)
2509 CONTINUE
RATP=PRABA(1)*PRABA(2)

C CHECKS
C
IF(HAIP .LT. 1.0 .OR. BTOT .LT. 1.0) GO TO 2598
C AVERAGE RED EFFECTIVENESS PARAMETERS
C
VRDBS = ( HRBS(1)*PRABA(1) + HRBS(2)*PRABA(2) ) / RATP
VRKBS = ( HKBS(1)*PRABA(1) + HKBS(2)*PRABA(2) ) / RATP
VRDBNS = ( RDNS(1)*PRABA(1) + RDNS(2)*PRABA(2) ) / RATP
VRKBNS = ( RKNS(1)*PRABA(1) + RKNS(2)*PRABA(2) ) / RATP

C USING APPROPRIATE HED ATTACK MODE, COMPUTE NUMBER OF BLUE AIRCRAFT
C KILLED
C
GO TO (2510,2520,2530,2540), IKABA
2510 CONTINUE
TERMS1=0.0
IF(BSHEL .NE. 0.0) TERMS1=
1 VRKBNS* (1.-(1.-VRDBS)**(BSHEL/XNBAR)) / (BSHEL/XNBAR)
X5=AMAX1(0.0, 1.-TERMS1*(1.-VRKBNS)**(BTOTNS/XNBAR) )
CAM 00471
CAM 00472
CAM 00473
CAM 00474
CAM 00475
CAM 00476
CAM 00477
CAM 00478
CAM 00479
CAM 00480
CAM 00481
CAM 00482
CAM 00483
CAM 00484
CAM 00485
CAM 00486
CAM 00487
CAM 00488
CAM 00489
CAM 00490
CAM 00491
CAM 00492
CAM 00493
CAM 00494
CAM 00495
CAM 00496
CAM 00497
CAM 00498
CAM 00499
CAM 00500
CAM 00501
CAM 00502
CAM 00503
CAM 00504
CAM 00505
CAM 00506
CAM 00507
CAM 00508
CAM 00509
CAM 00510
CAM 00511
CAM 00512
CAM 00513
CAM 00514
CAM 00515
CAM 00516
CAM 00517
CAM 00518
CAM 00519
CAM 00520
CAM 00521
CAM 00522
CAM 00523
CAM 00524
CAM 00525
CAM 00526
CAM 00527
CAM 00528

```

```

TERMSZ= 1.- AS** (RATP/XNBAR)
BAKS=BTOTS*TERMSZ
BSHELK(IU)=FB3K*BSHEL*TERMSZ
TERML=U.U
IF(BTOTS .GE. 1.0) TERMN1=
VKKBS*(1.-(1.-VRDBNS)**(BTUTNS/ANBAR))/AMIN1(BPARK,BTOTS/XNBAR)
ANS= AMAX1(0.U, 1.-TERMN1)
TERMN2= 1.- ANS** (RATP/XNBAR)
BARN5= BTUINS*TERMN2
GO TO 2600
2520 CONTINUE
IF(BTUTNS .LT. 1.0) GO TO 2521
IF(BTUTNS.LT. 1.0) GO TO 2522
CS0=BSHEL/ANBAR
CNO= BTOTNS/ANBAR
CS1= 1.-(VKKBS/CS0)*(1.-(1.-VRDBNS)**CS0)
CS1= AMAX1(0.U,CS1)
CS=CS1** (RATP/XNBAR)
CN1= 1.-(VKKBS/AMIN1(BPARK,CNO))*(1.-(1.-VRDBNS)**CNO)
CN1= AMAX1(0.U, CN1)
CN=CN1** (RATP/XNBAR)
IF( CS .NE. U.0) GO TO 2523
U= .0001
GO TO 2525
2523 IF(CN .NE. 0.U) GO TO 2524
U= .9999
GO TO 2525
2524 CONTINUE
C1=BTUTNS*CN*ALUG(CN)/(BTOTS*ALUG(CS))
W0=ALUG(C1)/(ALUG(CS)+ALOG(CN))
W= W0
IF(W0 .LE. 0.U) W= 1.0
IF(W0 .GE. 1.0) W= 1.0
2525 CONTINUE
CS2= 1.-CS**U
BAKS=BTOTS*CS2
BSHELK(IU)=FB3K*BSHEL*CS2
BAKN5=BTUINS*(1.-CN***(1.-W))
GO TO 2600
2521 BAKS=BSHELK(IU)=U.0
CN1= 1.-(VKKBS/AMIN1(BPARK,CNO))*(1.-(1.-VRDBNS)**CNO)
CN1= AMAX1(0.U, CN1)
CN=CN1** (RATP/XNBAR)
BAKN5=BTUINS*(1.-CN)
GO TO 2600
2522 BAKNS= 0.U
CS1= 1.-(VKKBS/CS0)*(1.-(1.-VRDBNS)**CS0)
CS1= AMAX1(0.U,CS1)
CS=CS1** (RATP/XNBAR)
BAKS=BTOTS*(1.-CS)
BSHELK(IU)= FB3K*BSHEL*(1.-CS)
GO TO 2600
2530 CONTINUE
T=BTUINS*BSHEL
TERM1=(VKKBS*BSHEL+VRDBNS*BTOTS)/T
TERM2=(1.-(1.-TERM1))**(T/XNBAR)/AMIN1(BPARK,(T/XNBAR))
AS= AMAX1(0.U, 1.-VKKBS*TERM2)
ANS= AMAX1(0.U, 1.-VKKBS*TERM2)

```

```

TERMS# 1. = A5** (RA1P/XN8AB)
TERMS# 1. = A4S** (RA1P/XN8AB)
BAKS= BTOTS*TERMS
BSHELK(1U)= FBSK*BSHEL*TERMS
BAKNS= BTOTNS*TERMS
GO TO 2600
2540 CONTINUE
B4AN=(B4AN1*PRABA(1)+B4AN2*PRABA(2))/RATP
B4AS=(B4AS1*PRABA(1)+B4AS2*PRABA(2))/RATP
B4NS=(B4NS1*PRABA(1)+B4NS2*PRABA(2))/RATP
B4SN=(B4SN1*PRABA(1)+B4SN2*PRABA(2))/RATP
X4N=(1.-B4AL)*B4AN/B4B
X4Sn=(1.-B4AL)*B4AS/B4B
X4NS=(1.-B4AL)*B4AN+B4NS
X4S=(1.-B4AL)*B4AS/B4B
X4N=AMIN1(1.0,X4N)
X4Sn=AMIN1(1.0,X4Sn)
X4NS=AMIN1(1.0,X4NS)
X4S=AMIN1(1.0,X4S)
X4N=AMAX1(0.0,X4N)
X4NS=AMAX1(0.0,X4NS)
X4S=AMAX1(0.0,X4S)
A1N=(B4AL*RA1P/(B4B*XN8AB))+(B4AS*B4SN-B4AN)
A0B=RATP/XN8AB
A3=(1.-X4N)**A0B
A4=((1.0-X4N)/(1.0-X4N))**A0B
A1S=B4AL*B4AN*RATP+B4NS/(B4B*XN8AB)+1.
A2S=(B4AL*RATP/(B4B*XN8AB))+(B4AS-B4AN*B4NS)
A2=A2S*A2N
A5=(1.-X4NS)**A0B
A6=((1.0-X4S)/(1.0-X4NS))**A0B
IF(BTOTS .LT. .0001) GO TO 2548
IF(BTOTNS .LT. .0001) GO TO 2549
X0=F14(0.)
X1=F14(1.)
IF(X0 .GE. 0. .AND. X1 .GE. 0.) GO TO 2549
IF(X0 .LE. 0. .AND. X1 .LE. 0.) GO TO 2548
2541 CONTINUE
C
C USE NEWTONS METHOD
C
Q0=.5
NTN=0
2542 Q1=Q0-F14(Q0)/F24(Q0)
IF(ABS(Q1-Q0) .LT. EHS4) GO TO 2543
IF(NTN .GT. 100) STOP 445
Q0=Q1
NTN=NTN+1
GO TO 2542
2543 Q=Q1
TERMS# A1S+A2S*Q-A5*A6**Q
TERMS# A1N+A2N*Q-A3*A4**Q
TERMS# AMIN1(1.0,TERMS)
BAKS= BTOTS*TERMS
BSHELK(1U)= FBSK*BSHEL*TERMS
BAKNS= BTOTNS*AMIN1(1.0,TERMS)

```

```

GO TO 2600
2540 CONTINUE
C USE ONLY ANTI-NONSHelterED-AIRCRAFT MUNITIONS
C TERMS# B4AL*B4AN*RATP#H4NS/(B4B*XNBAR)+1.-(1.-X4NS)**(RATP/XNBAR) CAM 00645
C TERMS# AMIN1(1.0,TERMS) CAM 00646
C TERMNS#B4AL*B4AN*RATP/(B4B*XNBAR)+1.-(1.-X4N)**(RATP/XNBAR) CAM 00647
C BAKS=TOTS*TERMS CAM 00648
C BSHELK(IU)=FBOK*BSHEL*TERMS CAM 00649
C BAKNS=BTOINS*AMIN1(1.0,TERMNS) CAM 00650
C GO TO 2600
2541 CONTINUE
C USE ONLY ANTI-SHELTER MUNITIONS
C TERMS# (B4AL)*B4AS*RATP/(B4B*XNBAR)+1.-(1.-X4S)**(RATP/XNBAR) CAM 00651
C TERMS#AMIN1(1.0,TERMS) CAM 00652
C TERMNS#B4AL*B4AS*RATP*B4SN/(B4B*XNBAR)+1.-(1.-X4S)**(RATP/XNBAR) CAM 00653
C BAKS=TOTS*TERMS CAM 00654
C BSHELK(IU)=FBOK*BSHEL*TERMS CAM 00655
C BAKNS=BTOINS*AMIN1(1.0,TERMNS) CAM 00656
C GO TO 2600
2542 CONTINUE
C BAKS=BAKNS=BSHELK(IU)=0.0 CAM 00657
C USE ONLY ANTI-SHELTER MUNITIONS
C TERMS# (B4AL)*B4AS*RATP/(B4B*XNBAR)+1.-(1.-X4S)**(RATP/XNBAR) CAM 00658
C TERMS#AMIN1(1.0,TERMS) CAM 00659
C TERMNS#B4AL*B4AS*RATP*B4SN/(B4B*XNBAR)+1.-(1.-X4S)**(RATP/XNBAR) CAM 00660
C BAKS=TOTS*TERMS CAM 00661
C BSHELK(IU)=FBOK*BSHEL*TERMS CAM 00662
C BAKNS=BTOINS*AMIN1(1.0,TERMNS) CAM 00663
C GO TO 2600
2543 CONTINUE
C BAKS=BAKNS=BSHELK(IU)=0.0 CAM 00664
C USE ONLY ANTI-SHELTER MUNITIONS
C TERMS# (B4AL)*B4AS*RATP/(B4B*XNBAR)+1.-(1.-X4S)**(RATP/XNBAR) CAM 00665
C TERMS#AMIN1(1.0,TERMS) CAM 00666
C TERMNS#B4AL*B4AS*RATP*B4SN/(B4B*XNBAR)+1.-(1.-X4S)**(RATP/XNBAR) CAM 00667
C BAKS=TOTS*TERMS CAM 00668
C BSHELK(IU)=FBOK*BSHEL*TERMS CAM 00669
C BAKNS=BTOINS*AMIN1(1.0,TERMNS) CAM 00670
C GO TO 2600
2544 CONTINUE
C RED AIRBASES
C COMPUTE NUMBER OF HEU AIRCRAFT VULNERABLE TO ABA BY BLUE
C IF IR3SH=1, DO NOT SHELTER RED SP ABA AIRCRAFT
C HSHEL=SHELR(IU)
C IF(SHELR(IU) < LT 1.) HSHEL=0.
C HAVUL(1)=KRAVS
C DO 2601 MS=1,3
C HAVUL(1)=HAVUL(1)+RA(1,MS)+RANF(1,MS)+RAFB(1,MS) CAM 00671
C 2601 CONTINUE CAM 00672
C DO 2602 KRA=2,4 CAM 00673
C MS=KRA-1 CAM 00674
C HAVUL(KRA)=RA(2,MS)+RAFB(2,MS)+RANF(2,MS) CAM 00675
C 2602 CONTINUE CAM 00676
C ARGRAS=AMIN1(KRGRAS,HSHEL)
C HSHELL=RSHELL-ARGRAS CAM 00677
C ARGRAS=ARGRAS-ARGRAS CAM 00678
C XS=1-IR3SH CAM 00679
C HAVUL1=HAVUL(1)+RAVUL(2)+RAVUL(3)*XS+RAVUL(4) CAM 00680
C RSHELL=AMIN1(RSHELT,HAVULT) CAM 00681
C IF(HAVULT < EU 0.0) GO TO 2605 CAM 00682
C DO 2604 KRA=1,NKRA CAM 00683
C RPOPS(KRA)=RSHELL*(HAVUL(KRA)/RAVULT) CAM 00684
C 2604 CONTINUE CAM 00685
C RPOPS(3)=XS*RPOPS(3) CAM 00686
C 2605 CONTINUE CAM 00687
C DO 2606 KRA=1,NKRA CAM 00688
C RPOPSNS(KRA)=RFKAC*(HAVUL(KRA)-RPOPS(KRA)) CAM 00689
C RPOPS(KRA)=RFKAC*RPOPS(KRA) CAM 00700
C 2606 CONTINUE CAM 00701
C RPOPSNS(KRA)=RFKAC*(HAVUL(KRA)-RPOPS(KRA)) CAM 00702

```

```

2605 CONTINUE
RPOPS(1)=RPOPS(1)+ARURAS
RPOPN(1)=RPOPN(1)+ARUHAN
RTOTS=RTOTINS+0.0
DO 2607 RRA=1,4
RTOTS= RTOTS+RPOPS(KRA)
RTOTNS=RTUTNS+RPOPN(KRA)
2607 CONTINUE
RTOT=RTOTS+RTOTNS
C
C     BLUE ATTACKERS--COMPUTE NUMBER OF BLUE ATTACK PASSES
C
DO 2609 TYB=1,2
PBABA(TYB)= B5(TYB,2)*BPASS(TYB)
2609 CONTINUE
BATP=PBABA(1)+PBABA(2)
C
C     CHECKS
C
IF(BATP .LT. 1.0 .OR. RTOT .LT. 1.0) GO TO 2698
C
C     AVERAGE BLUE EFFECTIVENESS PARAMETERS
C
VBDRS = ( BURS(1)*PBABA(1)+ BDRS(2)*PBABA(2))/BATP
VKRS = ( BURS(1)*PBABA(1)+ BKRS(2)*PBABA(2))/BATP
VBDRNS = ( BURNS(1)*PBABA(1)+ BDRNS(2)*PBABA(2))/BATP
VKRNS = ( BURNS(1)*PBABA(1)+ BKRNS(2)*PBABA(2))/BATP
C
C     USING APPROPRIATE BLUE ATTACK MODE, COMPUTE NUMBER OF RED AIRCRAFT
C     KILLED
C
GO TO (2610,2620,2630,2640), IBABA
2610 CONTINUE
TERMS1=0.0
IF(RSMEL .NE. 0.0) TERMS1=
1 VBKRS* (1.-(1.-VBDRS)**(RSMEL/XNRAB))/ (RSMEL/XNRAB)
XS=AMAX1(0.0, 1.-TERMS1*(1.-VBRNS)**(RTOTNS/XNRAB))
TEHMS= 1. - AS** (BATP/XNRAB)
RAKS=RTOTS*TERMS2
RSMELK(1)=FHK*K*RSHEL*TERMS2
TERM1=0.0
IF(RTUTNS .GE. 1.0) TERM1=
1 VBRNS* (1.-(1.-VDRNS)**(RTOTNS/XNRAB))/AMIN1(RPAHK,RTOTNS/XNRAB)
XNS=AMAX1(0.0, 1.-TERM1)
TERMN2= 1. - ANS** (BATP/XNRAB)
RAKNS= RTOTNS*TERMN2
GO TO 2700
2620 CONTINUE
IF(RTOTS .LT. 1.0) GO TO 2621
IF(RTUTNS.LT. 1.0) GO TO 2622
CS0=RSHEL/XNRAB
CNO= RTOTNS/XNRAB
CS1= 1.-(VBRNS/CS0)*(1.-(1.-VBURS)**CS0)
CS1= AMAX1(0.0,CS1)
CS=CS1** (BATP/XNRAB)
CN1= 1.-(VBRNS/AMIN1(RPAHK,CNO))*(1.-(1.-VDRNS)**CNO)
CN1= AMAX1(0.0, CN1)
CN=CN1** (BATP/XNRAB)

```

IF (CS .NE. 0.0) GO TO 2623	CAM	00761
U= .UUU1	CAM	00762
GO TO 2625	CAM	00763
2623 IF (CN .NE. 0.0) GO TO 2624	CAM	00764
Q= .9999	CAM	00765
GO TO 2625	CAM	00766
2624 CONTINUE	CAM	00767
CI=HTUINS*CN*ALUG(CN)/(HTOTS*ALUG(CS))	CAM	00768
Q0=ALUG(CI)/(ALUG(CS)+ALUG(CN))	CAM	00769
Q= U0	CAM	00770
IF (QC .LE. 0.0) Q= U0	CAM	00771
IF (UU .GE. 1.0) U= 1.0	CAM	00772
2625 CONTINUE	CAM	00773
CS2= 1.-CS**U	CAM	00774
HANS=HTOTS*CS2	CAM	00775
RSHELN(ID)=FRSK*RSHEL*CS2	CAM	00776
HANS=HTUINS*(1.-CN**(1.-Q))	CAM	00777
GO TO 2700	CAM	00778
2621 HANS=RSHELN(U0)=U0	CAM	00779
CNI= 1.-(VBKNS/AMIN1(RPARK,CNU))*(1.-(1.-VBDRNS)**CNO)	CAM	00780
CNI= AMAX1(0.0, CN1)	CAM	00781
CNCNI**(BATH/XNMAH)	CAM	00782
HANS=HTUINS*(1.-CN)	CAM	00783
GO TO 2700	CAM	00784
2622 RAKNS= 0.0	CAM	00785
CS1= 1.-(VBKNS/CS0)*(1.-(1.-VBUHS)**CS0)	CAM	00786
CS1= AMAX1(0.0,U,CS1)	CAM	00787
CS=CS1**(BATH/XNMAH)	CAM	00788
RAK=HTOTS*(1.-CS)	CAM	00789
RSHELN(ID)= FRSK*RSHEL*(1.-CS)	CAM	00790
GO TO 2700	CAM	00791
2630 CONTINUE	CAM	00792
T=HTUINS*RSHEL	CAM	00793
TERM1=(VBUHS*RSHEL+VBDRNS*HTUINS)/T	CAM	00794
TERM2=(1.-(1.-TERM1)**(T/XNRAB))/AMIN1(RPARK,(T/XNRAB))	CAM	00795
XSA AMAX1(U0,U, 1.-VBKNS*TERM2)	CAM	00796
XNS= AMAX1(0.0, 1.-VBKNS*TERM2)	CAM	00797
TERMS =1. - AS **(RATP/XNRA8)	CAM	00798
TERMS=1. - ANS**(RATP/XNRA8)	CAM	00799
RAKS= HTOTS*TERMS	CAM	00800
RSHELN(ID)= FRSK*RSHEL*TERMS	CAM	00801
HAKNS= HTUINS*TERMS	CAM	00802
GO TO 2700	CAM	00803
2640 CONTINUE	CAM	00804
R4AN=(R4AN1*PBABA(1)+R4AN2*PBABA(2))/BATP	CAM	00805
R4AS=(R4AS1*PBABA(1)+R4AS2*PBABA(2))/BATP	CAM	00806
R4NS=(R4NS1*PBABA(1)+R4NS2*PBABA(2))/BATP	CAM	00807
R4SN=(R4SN1*PBABA(1)+R4SN2*PBABA(2))/BATP	CAM	00808
X4N= (1.-R4AL)*R4AN/R4B	CAM	00809
X4SN= (1.-R4AL)*R4AN*R4NS/R4B	CAM	00810
X4NS= (1.-R4AL)*R4AS/R4B	CAM	00811
X4NS=AMIN1(1.0,X4N)	CAM	00812
X4SN=AMIN1(1.0,X4SN)	CAM	00813
X4NS=AMIN1(1.0,X4NS)	CAM	00814
X4S=AMIN1(1.0,X4S)	CAM	00815
X4N = AMAX1(U.0, X4N)	CAM	00816
X4NS = AMAX1(U.0, X4NS)	CAM	00817

```

X4SN = AMAX1(0.0, X4SN )
X4S = AMAX1(0.0, X4S )
A1N= 1.0*R4AL*R4AN*BATP/(R4B*XNRAB)
A2N= (R4AL*B1P)/(R4B*XNNAB) * (R4AS*R4SN-R4AN)
A0B= BATP/XNRAB
A3= (1.0-X4N)**A0B
A4= ((1.0-X4SN)/(1.0-X4N))**A0B
A1S= R4AL*R4AN*BATP*R4NS/(R4B*XNRAB)*1.
A2S= (R4AL*BATP/(R4B*XNRAB))* (R4AS-R4AN*R4NS)
A2=A2S+A2N
A5= (1.0-X4NS)**A0B
A6= ((1.0-X4S)/(1.0-X4NS))**A0B
IF(RTOTS .LT. .0001) GO TO 2648
IF(HTUNNS .LT. .0001 ) GO TO 2649
X0=F14(0.0)
X1=F14(1.0)
IF(X0 .GE. 0.0 .AND. X1 .GE. 0.) GO TO 2649
IF(X0 .LE. 0.0 .AND. X1 .LE. 0.) GO TO 2648
2641 CONTINUE
C
C USE NEWTONS METHOD
C
Q0=.5
NTN=0
2642 Q1=Q0-F14(Q0)/F24(Q0)
IF(ABS(Q1-Q0) .LT. EPS4) GO TO 2643
IF(NTN .GT. 100) STOP 446
Q0 =Q1
NTN= NTN+1
GO TO 2642
2643 Q= Q1
TERMNS= A1S+A2S*Q-A5*A6**Q
TERMNS=AIN + A2N*Q-A3*A4**Q
TERMNS=AMIN1(1.0,TERMS)
RAKS= RTOTS*TERMS
RSHELK(IU)= FRSK*RSHEL*TERMS
RAKNS=RTOTNS*AMIN1(1.0,TERMS)
GO TO 2700
2644 CONTINUE
C
C USE ONLY ANTI-NONSHelterED-AIRCRAFT MUNITIONS
C
TERMS= R4AL*R4AN*BATP*R4NS/(R4B*XNRAB)+1.0-(1.0-X4NS)**(BATP/XNRAB)
TERMS= AMIN1(1.0,TERMS)
TERMS=R4AL*R4AN*BATP/(R4B*XNRAB)+1.0-(1.0-X4N)**(BATP/XNRAB)
RAKS= RTOTS*TERMS
RSHELK(IU)= FRSK*RSHEL*TERMS
RAKNS=RTOTNS*AMIN1(1.0,TERMS)
GO TO 2700
2645 CONTINUE
C
C USE ONLY ANTI-SHELTER MUNITIONS
C
TERMS= (R4AL)*R4AS*BATP/(R4B*XNRAB)+1.0-(1.0-X4S)**(BATP/XNRAB)
TERMS=AMIN1(1.0,TERMS)
TERMS=R4AL*R4AS*BATP*R4SN/(R4B*XNRAB)+1.0-(1.0-X4SN)**(BATP/XNRAB)
RAKS=RTOTS*TERMS
RSHELK(IU)= FRSK*RSHEL*TERMS

```

	RAKNS=RTOINS*#MIN1(1+0.1TERMS)	CAM	00877
	GO TO 2700	CAM	00878
2690	CONTINUE	CAM	00879
	RAKS=RAKNS=RSMELR(ID)=0.0	CAM	00880
2700	CONTINUE	CAM	00881
C	TOTAL AIRCRAFT DESTRUCTION	CAM	00883
C	AS= 0.0	CAM	00884
	IF(RTUTS .GT. .0001) AS=RAKS/RTUTS	CAM	00885
	XNS= 0.0	CAM	00886
	IF(RTUTS .GT. .0001) XNS=RAKNS/RTOTNS	CAM	00887
	BAU(1,1D)=AS*RPOPS(1)+ XNS*RPOPN(1)	CAM	00888
	DO 2701 MS=1,3	CAM	00889
	BAU(1,1D)=BAU(1,1D)+RAKAA(1,MS)+BAL(1,MS)	CAM	00890
2701	CONTINUE	CAM	00891
	IF(NRKA .EQ. 1) GO TO 2703	CAM	00892
	DO 2702 RKA=2,4	CAM	00893
	MS=RKA=1	CAM	00894
	BAU(RKA,1D)=AS*RPOPS(KRA)+XNS*RPOPN(KRA)+RAKAA(2,MS)+BAL(2,MS)	CAM	00895
2702	CONTINUE	CAM	00896
2703	CONTINUE	CAM	00897
	AS= 0.0	CAM	00898
	IF(RTUTS .GT. .0001) AS=RAKS/RTUTS	CAM	00899
	XNS= 0.0	CAM	00900
	IF(RTUTS .GT. .0001) XNS=RAKNS/RTOTNS	CAM	00901
	BAU(1,1D)= AS*RPOPS(1)+ XNS*RPOPN(1)	CAM	00902
	DO 2706 MS=1,3	CAM	00903
	BAU(1,1D)=BAU(1,1D)+RAKAA(1,MS)+HAL(1,MS)	CAM	00904
2706	CONTINUE	CAM	00905
	IF(NRKA .EQ. 1) GO TO 2708	CAM	00906
	DO 2707 RKA=2,4	CAM	00907
	MS= RKA=1	CAM	00908
	BAU(RKA,1D)=AS*RPOPS(KRA)+XNS*RPOPN(KRA)+RAKAA(2,MS)+RAL(2,MS)	CAM	00909
2707	CONTINUE	CAM	00910
2708	CONTINUE	CAM	00911
C	-- AIR FIREPOWER FOR ID -- B AND R	CAM	00912
C	BAF(ID)= 0.0	CAM	00913
	RAF(ID) = 0.0	CAM	00914
	DO 2801 TY=1,2	CAM	00915
	BAF(ID) = BAF(ID) + BS(TY,1)*FBA(TY)	CAM	00916
	RAF(ID) = RAF(ID) + RS(TY,1)*FRA(TY)	CAM	00917
2801	CONTINUE	CAM	00918
C	BF(ID)=BGF(ID)+BAF(ID)	CAM	00919
C	RF(ID)=RGF(ID)+RAF(ID)	CAM	00920
C	FEBR FOR ID	CAM	00921
C	FRBR= RF(ID)/RF(ID)	CAM	00922
	IF(RF(ID) .LT. RF(ID)) GO TO 2802	CAM	00923
	CALL CVFX (RFRA, FRA, FRBR, DFEBA)	CAM	00924
	DO TO 2805	CAM	00925
2802	CONTINUE	CAM	00926
	DO TO 2805	CAM	00927
	DO TO 2805	CAM	00928
C	FEBR FOR ID	CAM	00929
C	FRBR= RF(ID)/RF(ID)	CAM	00930
	IF(RF(ID) .LT. RF(ID)) GO TO 2802	CAM	00931
	CALL CVFX (RFRA, FRA, FRBR, DFEBA)	CAM	00932
	DO TO 2805	CAM	00933
2802	CONTINUE	CAM	00934

```

    FRBB = RF(ID)/BF(ID)
    CALL CVFX(NFHA,FRFA,FA,FRRB,UFBA)
    UFEBA=DFUBA
2805 CONTINUE
    IF(ID=1) 2810,2810,2820
2810 FEBA(ID)=UFEBA
    GO TO 2850
2820 IDM1=ID-1
    FEBA(IU)=FEBA(IUM1)+UFEBA
C
C --- DIVISION DESTRUCTION FOR ID
C
2850 CONTINUE
    IF(IKEPLD .EQ. 0) GO TO 2851
    RDD(1,1D)=RDD(2,1D)=RDD(3,1D)=RDD(4,1D)=0.0
    GO TO 2855
2851 CALL CVFA(INFRDD,FRRD,BD,FRBR,PRDID)
    DO 2852 KBD=1,NKBD
2852 RDD(KBD,IU)=RDD(KBD,ID)*PRDID
2855 IF(IKEPLH .EQ. 0) GO TO 2856
    RDD(1,1D)=RDD(2,1D)=RDD(3,1D)=RDD(4,1D)=0.0
    GO TO 2860
2856 CALL CVFX(INFRRD,FRFD,RD,FRBR,PRDID)
    DO 2857 KRD=1,NKRD
2857 RDD(KRD,IU) = RDD(KRD,ID)*PRDID
2860 CONTINUE
C
C --- CUMULATIVE TOTAL AND AIR FIREPOWER -- B AND R
C
2870 IF(IU=1) 2875,2875,2880
2875 CRF(ID)=RF(ID)
    CRF(ID) = RF(ID)
    CHAF(ID) = BAF(ID)
    CHAF(ID) = RAF(ID)
    GO TO 2900
C
2880 IUM1=ID-1
    CRF(ID) = CRF(IUM1) + RF(ID)
    CRF(ID) = CRF(IUM1) + RF(ID)
    CHAF(ID) = CHAF(IUM1) + BAF(ID)
    CHAF(ID) = CHAF(IUM1) + RAF(ID)
2900 CONTINUE
C
C --- END OF DO LOOP ON ID
C
3000 CONTINUE
C
9999 CONTINUE
    RETURN
    END

```

CAM	00935
CAM	00936
CAM	00937
CAM	00938
CAM	00939
CAM	00940
CAM	00941
CAM	00942
CAM	00943
CAM	00944
CAM	00945
CAM	00946
CAM	00947
CAM	00948
CAM	00949
CAM	00950
CAM	00951
CAM	00952
CAM	00953
CAM	00954
CAM	00955
CAM	00956
CAM	00957
CAM	00958
CAM	00959
CAM	00960
CAM	00961
CAM	00962
CAM	00963
CAM	00964
CAM	00965
CAM	00966
CAM	00967
CAM	00968
CAM	00969
CAM	00970
CAM	00971
CAM	00972
CAM	00973
CAM	00974
CAM	00975
CAM	00976
CAM	00977
CAM	00978
CAM	00979
CAM	00980
CAM	00981
CAM	00982
CAM	00983
CAM	00984

H. SUBROUTINE CVFX

```

SUBROUTINE CVFX(M,X,FX,VX,VFX)          CVFX  00002
C   OPTSA II                           CVFX  00003
C   SUBROUTINE CALCULATE VFX=FUNCTION(VX)  CVFX  00004
C   DIMENSION X(8),FX(8)                 CVFX  00005
C   I=1                                CVFX  00006
C   IF( VX=X(1))30,20,10               CVFX  00007
C   10 DO 12 I=2,M                      CVFX  00008
C   IF( VX=X(I))15,20,12               CVFX  00009
C   12 CONTINUE                         CVFX  00010
C   XDIF = VX-X(M)                     CVFX  00011
C   FRAC = XDIF / ( X(M)-X(M-1) )      CVFX  00012
C   VFX = FX(M) + FRAC * ( FX(M)-FX(M-1) )  CVFX  00013
C   GO TO 99                           CVFX  00014
C   15 XDIF = VX-X(I-1)                CVFX  00015
C   FRAC = XDIF / ( X(I)-X(I-1) )      CVFX  00016
C   VFX = FX(I-1) + FRAC * ( FX(I)-FX(I-1) )  CVFX  00017
C   GO TO 99                           CVFX  00018
C   20 VFX = FX(I)                     CVFX  00019
C   GO TO 99                           CVFX  00020
C   30 XDIF = X(1)-VX                  CVFX  00021
C   FRAC = XDIF / ( X(2)-X(1) )        CVFX  00022
C   VFX = FX(1) - FRAC * ( FX(2)-FX(1) )  CVFX  00023
C   GO TO 99                           CVFX  00024
C   99 CONTINUE                         CVFX  00025
C   RETURN                            CVFX  00026
C   END                               CVFX  00027
C                                     CVFX  00028
C                                     CVFX  00029
C                                     CVFX  00030
C                                     CVFX  00031
C                                     CVFX  00032
C                                     CVFX  00033

```

I. SUBROUTINE CAMCLR

```

SUBROUTINE CAMCLR
COMMON/CAMVAR/ SORRB(2,3),SORRR(2,3) CAMCLR 00002
COMMON/CAMVAR/ BA(2,3),RA(2,3),BS(2,3),RS(2,3) CAMCLR 00003
COMMON/CAMVAR/ BAKAA(2,3),RAKAA(2,3),BSKAA(2,3),RSKAA(2,3) CAMCLR 00004
COMMON/CAMVAR/ BAL(2,3),RAL(2,3),BSL(2,3),RSL(2,3) CAMCLR 00005
COMMON/CAMVAR/ VBIDRA(2),VBADRI(4),VRIDBA(2),VRADBI(4) CAMCLR 00006
COMMON/CAMVAR/ BSENG(2,2),RSENG(2,2) CAMCLR 00007
COMMON/CAMVAR/ BPENG(2),RPENG(2) CAMCLR 00008
COMMON/CAMVAR/ BSFB(2,3),BAFB(2,3),RSFB(2,3),RAFB(2,3) CAMCLR 00009
COMMON/CAMVAR/ BAVUL(4),RAVUL(4),PBARA(2),PRARA(2) CAMCLR 00010
COMMON/CAMVAR/ BPOPS(4),BPOPNS(4),RPOPS(4),RPOPNS(4) CAMCLR 00011
COMMON/CAMVAR/ VBDRS,VBDRNS,VBKRS,VBKNS CAMCLR 00012
COMMON/CAMVAR/ VRDBS,VRDBNS,VRKBS,VRKBNS CAMCLR 00013
COMMON/CAMVAR/ VRDBS,VRDBNS,VRKBS,VRKBNS CAMCLR 00014
DO 3 I=1,2 CAMCLR 00015
DO 4 J=1,3 CAMCLR 00016
    BA(I,J)= RA(I,J)= BS(I,J)= RS(I,J)=0.0 CAMCLR 00017
    BAL(I,J)= RAL(I,J)= BSL(I,J)= RSL(I,J)=0.0 CAMCLR 00018
    BAKAA(I,J)=RAKAA(I,J)=BSKAA(I,J)=RSKAA(I,J)=0.0 CAMCLR 00019
    BSFB(I,J)=BAFB(I,J)=RSFB(I,J)=RAFB(I,J)=0.0 CAMCLR 00020
    SORRB(I,J)=SORRR(I,J)=0.0 CAMCLR 00021
4 CONTINUE CAMCLR 00022
    VBIDRA(I)=VRIDBA(I)=0.0 CAMCLR 00023
    PBABA(I)=PRABA(I)=0.0 CAMCLR 00024
    BPENG(I)=RPENG(I)=0.0 CAMCLR 00025
    BSENG(1,I)=BSENG(2,I)=0.0 CAMCLR 00026
    RSENG(1,I)=RSENG(2,I)=0.0 CAMCLR 00027
3 CONTINUE CAMCLR 00028
DO 5 K=1,4 CAMCLR 00029
    VBADRI(K)=VRADBI(K)=0.0 CAMCLR 00030
    BAVUL(K)=RAVUL(K)=0.0 CAMCLR 00031
    BPOPS(K)=BPOPNS(K)=RPOPS(K)=RPOPNS(K)=0.0 CAMCLR 00032
5 CONTINUE CAMCLR 00033
RETURN CAMCLR 00034
END CAMCLR 00035

```

Chapter V

OUTPUT

There are two parts to the output. First, input variables are printed out by subroutine READ as they are read in. This output is exhibited in Section B of this chapter (below). Second are the payoff matrices, game values, and optimal strategies for the various stages. The output of the original program was very long and, thus, cumbersome to read. Though some of this lengthiness is unavoidable due to the backwards induction procedure used to solve the game, a "strategy recall" process has been introduced to shorten the output somewhat. There are now several output options of various lengths and detail, which are explained in Section A (below). Examples of output, using the sample data from Chapter II with the various output options, appear in Section C.

A. READING THE OUTPUT - EXPLANATION OF OUTPUT OPTIONS

The output listing is generated as the program progresses, and some of the payoff matrices and strategy arrays are covered up with new information. However, the "strategy recall" feature prints optimal Blue and Red strategies for period $k+1$ *immediately after* printing the strategies for period k . A period $k+1$ strategy pair is printed for each possible realization of a randomized period- k strategy. This feature makes it possible to avoid printing the space-consuming payoff matrices yet to retain the important strategy information.

The output option is controlled by the two input variables IPRV and IPRU. The number of periods in the war (variable NPD)

also affects the output. Table 1 describes the options: Option 3A does not give strategies for all periods; option 3C is quite long. The overall best options seem to be 2A for a two-period war and 3B for a three-period war; they give all the strategy information with a minimum of payoff matrices.

Table 1. OUTPUT OPTIONS

Output Option	Number of Periods (NPD)	Print Inputs		Output		Output Length (Pages)*
		IPRV	IPRU	Strategies for Period(s)	Partial Payoff Matrices for Period(s)	
1	1	1	1	1	1	1
2A	2	1	0	1,2	1	1
2B	2	1	1	1,2	1,2	4 or 5
3A	3	0	0	1,2	1	1
3B	3	1	0	1,2,3	1,2	7 or 8
3C	3	1	1	1,2,3	1,2,3	100 to 200

*This is somewhat dependent on NB and NR, the number of pure strategies input .

A "unit" of printout contains the following, in order:

- The notation "Payoff Matrix for Game at Stage" and the stage (period).
- The payoff matrix. Not all the entries in a payoff matrix are necessarily computed; at the left-hand side and top of the matrix are zero-one indicators (vectors IBACT() and IRACT()) that show whether the corresponding row or column of payoff entries has not or has been computed.
- Except in a stage-one game, the Blue and Red pure strategies played in the preceding period; these are marked JB and JR or IB and IR.
- The value for this game, given the preceding period pure strategies. This is marked "game value" for a stage-one

game; otherwise, it is marked $V(JB, JR)$ or $W(IR, IR)$ as the game value becomes a payoff entry in a game at the preceding stage. This value assumes optimal play in all following periods. (All payoff entries and game values represent values of the selected MOE on day MOET, not at the end of intermediate periods.)

- The notation "Blue and Red Strategies for Period" and the current period.
- The optimal strategies. These are output as two rows--the first for Blue, the second for Red. Each row gives probabilities for choosing the input pure strategies for that side, in order. Of course, strategies in preceding periods have been played.
- Except for final-stage games, the optimal strategies for the following period. There is output a strategy pair for each possible realization of the randomized strategy for the current period. (The strategies for the following period might, however, all be the same, regardless of the randomization outcome.) This is preceded by the notation "Blue and Red Strategies for Period" and the following period.

There is a lot of manipulation of variable names, and the number of periods in the war affects which variable names are used for which output. Table 2 shows which variables hold which elements of a unit of output, for a given stage and number of periods.

Following is a brief guide for reading the output for other than one-page options:

- The last page of output contains the payoff matrix of the overall game to be solved (the first-stage game), the optimal first-period strategies, and the optimal second-period strategies for each active pair of Blue and Red first-period pure strategies.
- To find the second-period payoff matrices for a given active pair of first-period strategies, look for the output unit where IB and IR (or JB and JR for a two-period war) are equal to the particular pair. The second-period strategies will be the same as those on the last page of output. For a three-period war, the optimal third-period strategies will also be given. (In option 3C, be careful not to confuse third- and second-period printout units.)
- If option 3C is being used, the third-period payoff matrices for a particular *second-period* active pure-strategy pair

Table 2. VARIABLES OUTPUT

Number of Periods	Stage/ Current Period	Payoff Matrix	Pure Strategy Pair (Preceding Period)	Value of Game	Variable for--		Optimal Blue and Red Strategies (Following Period)
					Optimal Blue and Red Strategies (Current Period)		
1	1	U(KB,KR)	[1,1]	[V(1,1)]	SUB(1,1,KB) KB=1,NB SUR(1,1,KR) KR=1,NR		n/a
2	1	V(JB,JR)	[1,1]	[W(1,1)]	SVB(1,1,JB) JB=1,NB SVR(1,1,JR) JR=1,NR		SVB(JB,JR,.) SUR(JB,JR,.)
2	2	U(KB,KR)	JB,JR	V(JB,JR)	SUB(JB,JR,KB) KB=1,NB SUR(JB,JR,KR) KR=1,NR		n/a
3	1	W(IB,IR)	n/a	VALUE	SWB(IB) IB=1,NB SWR(IR) IR=1,NR		SVB(IB,IR,.) SVR(IB,IR,.)
3	2	V(JB,JR)	IB,IR	W(IB,IR)	SVB(IB,IR,JB) JB=1,NB SVR(IB,IR,JR) JR=1,NR		SVB(JB,JR,.) SUR(JB,JR,.)
3	3	U(KB,KR)	JB,JR	V(JB,JR)	SUB(JB,JR,KB) KB=1,NB SUR(JB,JR,KR) KR=1,NR		n/a

(JB,JR) are found by leafing back from the second-period payoff matrix.

This guide will be made clear by the examples.

Changing the number of periods is a real data change; hence, different optimal strategies and game values are to be expected for the examples for options 2A and 2B and the examples for options 3A, 3B, and 3C--and, indeed, do occur. However, given the number of periods and decision days, the output option naturally does not affect the game values or strategies at all. The examples for options 2A and 2B, for instance, have *exactly* the same game solution.

B. SAMPLE OUTPUT OF INPUT VARIABLES (using output option 2B)

NKRD	NKRD	NKBA	NKRA
3	3	4	4
NIN			
30			
NPD, IDL ² , IDL ³			
2	1	11	
TRD, JRD, KRD			
0	6	1	
IPRV, IPRU			
1	1		
IREPLR, IREPLR			
0	0		

BDA(KBD,IU)							
24.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
-0.0	6.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
-0.0	-0.0	-0.0	6.0	-0.0	-0.0	-0.0	-0.0
-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
12.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
-0.0	-0.0	-0.0	3.0	-0.0	-0.0	-0.0	-0.0
-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
10.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
-0.0	-0.0	-0.0	3.0	-0.0	-0.0	-0.0	-0.0
-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
8.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0

RDA(KRD,IU)							
80.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
-0.0	-0.0	-0.0	20.0	-0.0	-0.0	-0.0	-0.0
-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
40.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
-0.0	-0.0	-0.0	10.0	-0.0	-0.0	-0.0	-0.0
-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
10.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
-0.0	-0.0	-0.0	2.0	-0.0	-0.0	-0.0	-0.0
-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0

RAA(KRA,IU)							
4500	-0	-0	-0	75	-0	-0	-0
-0	-0	-0	-0	-0	-0	-0	-0
-0	75	-0	-0	-0	-0	-0	-0
-0	-0	-0	75	-0	-0	-0	-0
300	-0	-0	-0	-0	-0	-0	-0
-0	-0	-0	-0	-0	-0	-0	-0
-0	-0	-0	-0	-0	-0	-0	-0
-0	-0	-0	-0	-0	-0	-0	-0
200	-0	-0	-0	-0	-0	-0	-0
-0	-0	-0	-0	-0	-0	-0	-0
-0	-0	-0	-0	-0	-0	-0	-0
-0	-0	-0	-0	-0	-0	-0	-0
200	-0	-0	-0	-0	-0	-0	-0
-0	-0	-0	-0	-0	-0	-0	-0
-0	-0	-0	-0	-0	-0	-0	-0
-0	-0	-0	-0	-0	-0	-0	-0
500	-0	-0	-0	-0	-0	-0	-0
-0	-0	-0	-0	-0	-0	-0	-0
-0	-0	-0	-0	-0	-0	-0	-0

DBUKASURURA
200.0 £00.0

PBSHEL
1000

PRSHEL
£000

FBD(ABD)	10.0	8.0	6.0
FHD(KHD)	6.0	5.0	4.0
TFBA(KBA),KBA=1,2)	.14000	.15000	
(FRA(KRA),KRA=1,2)	.55000	.58000	
IDBSRC, IDRSRC	5	4	
((SOKHR1(TY,MS),MS=1,3),TY=1,4)	2.0000	1.5000	2.5000
	2.0000	3.0000	1.5000
((SOKHR2(TY,MS),MS=1,3),TY=1,4)	1.0000	1.5000	1.0000
	1.7000	1.0000	.6000
((SOKHR1(TY,MS),MS=1,3),TY=1,4)	3.0000	2.5000	2.5000
	3.0000	2.0000	2.0000
((SOKHR2(TY,MS),MS=1,3),TY=1,4)	1.7000	1.5000	1.5000
	1.7000	1.0000	.5000
IAA	1		
XNBA, XNRAA	1.0	1.0	
((BALPHA(TY,MS),MS=1,2),TY=1,4)	.50000	.60000	
	.50000	.60000	
((RALPHA(TY,MS),MS=1,2),TY=1,4)	.50000	.40000	
	.50000	.40000	
((B1DHA(TYI,KAI)),KAI=1,4),TYI=1,2)	.00100	.00100	.00100
	.00150	.00150	.00200
((B1MHA(TYI,KAI)),KAI=1,4),TYI=1,2)	.50000	.30000	.30000
	.50000	.50000	.50000
((BAUH1(KAT,TYI),TYI=1,2),KAI=1,4)	.00100	.00100	
	.00100	.00100	
	.00100	.00100	
	.00100	.00100	
((BAKMH1(KAT,TYI),TYI=1,2),KAT=1,4)	.10000	.10000	
	.10000	.10000	
	.10000	.10000	
	.10000	.10000	

((HIDDA(TY1,KAI),TY1=1,4),TY1=1,4)			
.60050	.00050	.60050	.00050
.60100	.00100	.60100	.00100
((RIMDA(TY1,KAI),TY1=1,4),TY1=1,2)			
.20000	.20000	.20000	.20000
.30000	.30000	.30000	.30000
((RAUD1(KAI,TY1),TY1=1,2),KAI=1,4)			
.60050	.00050	.60050	.00050
.60050	.00050	.60050	.00050
.60050	.00050	.60050	.00050
((HARBI(KAI,TY1),TY1=1,2),KAI=1,4)			
.10000	.10000	.10000	.10000
.10000	.10000	.10000	.10000
.10000	.10000	.10000	.10000
((HSAMZRY(TY,MS),MS=1,2),TY=1,4)			
.0500	.1000	.0500	.1000
.0500	.1000	.0500	.1000
((HSAMZH(TY,MS),MS=1,2),TY=1,2)			
.0500	.1000	.0500	.1000
.0500	.1000	.0500	.1000
IR3SH			
1			
BFRAC1+BFRAC2			
.800	.900	.800	.900
RFRAU1+RFRAU2			
.700	.900	.700	.900
FBSK+FRSK			
.1000	.500	.1000	.500
(RPASS(TY),TY=1,2)			
1.00	1.00	1.00	1.00
(TPASS(TY),TY=1,2)			
1.00	1.00	1.00	1.00
IRABH==BLUE ATTACKS RED AIRBASE USING MODE			
IRABH==RED ATTACKS BLUE AIRBASE USING MODE			
XNRAB:XNRAB			
20.0	20.0	20.0	20.0
BPARK+RPARK			
10000.0	10000.0	10000.0	10000.0
B GP B SP AHA			
BDRS	.01000	.01000	.01000
BDRNS	.02000	.02000	.02000
BKRS	.40000	.40000	.40000
BKRNS	.60000	.60000	.60000
R GP R SP AHA			
RDRS	.01000	.01000	.01000
RDRNS	.02000	.02000	.02000

KKBS .20000 .20000
KKBNs .30000 .30000

B4B+B4AL+B4AN1+B4AN2+B4AS1+B4AS2+B4NS1+B4NS2+B4SN1+B4SN2
1000000.0 0.0000 10000.0 20000.0 15000.0 15000.0 0.0000 0.0000 1.0000 1.0000

R4B+R4AL+R4AN1+R4AN2+R4AS1+R4AS2+R4NS1+R4NS2+R4SN1+R4SN2
1000000.0 0.0000 10000.0 20000.0 15000.0 15000.0 0.0000 0.0000 1.0000 1.0000

EPS4

.00010

NFRFA+FRFA(I)+FA(I)

11							
.10	.20	.33	.50	.67	1.00	1.50	2.00
.000	5.00	10.00					
-0.0	-40.0	-20.0	-10.0	-6.0	0.0	2.0	10.0
0.0	40.0	60.0					

NFRBD+FRBD(I)+BD(I)

11							
.10	.20	.33	.50	.67	1.00	1.50	2.00
.000	5.00	10.00					
.020	.014	.014	.009	.008	.008	.008	.007
.005	.003	.002					

NFRRD+FRRD(I)+RD(I)

11							
.10	.20	.33	.50	.67	1.00	1.50	2.00
.000	5.00	10.00					
-0.02	.003	.005	.007	.008	.008	.008	.009
.010	.014	.020					

NB, NK

6 6

PR(10A, MS), MS=1,3)		
1.000	0.000	0.000
.500	.500	0.000
0.000	1.000	0.000
.500	0.000	.500
0.000	.500	.500
0.000	0.000	1.000

PR(10A, MS), MS=1,3)		
1.000	0.000	0.000
.500	.500	0.000
0.000	1.000	0.000
.500	0.000	.500
0.000	.500	.500
0.000	0.000	1.000

MOE: MOET
1 30

BCWGI
~~0.000~~

TBSWGI (MS) + MS=1,3
~~1.000 1.000 1.000~~

(BQWGI (I) + I=1,2)
~~1.000 0.000~~

RCWGI
~~0.000~~

(RBSWGI (MS) + MS=1,3)
~~0.000 0.000 0.000~~

(RQWGI (I) + I=1,2)
~~0.000 0.000~~

GVA
~~10000~~

C. SAMPLE OUTPUT OF GAME SOLUTIONS

1. Option 2A

PAYOFF MATRIX FOR GAME AT STAGE 1							
		0	0	0	0	0	1
0	0.000	0.000	0.000	0.000	0.000	-259.816	
0	0.000	0.000	0.000	0.000	0.000	-137.352	
0	0.000	0.000	0.000	0.000	0.000	-50.268	
0	0.000	0.000	0.000	0.000	0.000	-150.940	
0	0.000	0.000	0.000	0.000	0.000	-53.733	
1	212.618	39.621	24.456	134.052	46.768	4.617	

GAME VALUE 4.6171

BLUE AND RED STRATEGIES FOR PERIOD 1

0.000	0.000	0.000	0.000	0.000	1.000
0.000	0.000	0.000	0.000	0.000	1.000

BLUE AND RED STRATEGIES FOR PERIOD 2

0	0				
0.000	1.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

2. Option 2B

PAYOUT MATRIX FOR GAME AT STAGE 2

	1	0	0	0	0	0
1	-259.816	-53.888	102.782	-98.673	105.823	133.783
0	-264.448	0.000	0.000	0.000	0.000	0.000
n	-269.600	0.000	0.000	0.000	0.000	0.000
n	-268.791	0.000	0.000	0.000	0.000	0.000
n	-267.381	0.000	0.000	0.000	0.000	0.000
n	-263.438	0.000	0.000	0.000	0.000	0.000

JR₁ = 1 JR₂ = 6

V(JR₁,JR₂) = -259.8161

BLUF AND RED STRATEGIES FOR PERIOD 2

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOUT MATRIX FOR GAME AT STAGE 2

	1	0	0	0	0	0
1	-137.352	-6.815	106.530	-37.054	109.448	136.242
0	-143.377	0.000	0.000	0.000	0.000	0.000
n	-149.252	0.000	0.000	0.000	0.000	0.000
n	-148.119	0.000	0.000	0.000	0.000	0.000
n	-147.474	0.000	0.000	0.000	0.000	0.000
n	-144.589	0.000	0.000	0.000	0.000	0.000

JR₁ = 2 JR₂ = 6

V(JR₁,JR₂) = -137.3520

BLUF AND RED STRATEGIES FOR PERIOD 2

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOUT MATRIX FOR GAME AT STAGE 2

	1	0	0	0	0	0
1	-60.268	24.495	110.616	4.802	117.742	139.345
0	-66.875	0.000	0.000	0.000	0.000	0.000
n	-73.488	0.000	0.000	0.000	0.000	0.000
n	-63.073	0.000	0.000	0.000	0.000	0.000
n	-71.445	0.000	0.000	0.000	0.000	0.000
n	-68.203	0.000	0.000	0.000	0.000	0.000

JR₁ = 3 JR₂ = 6

V(JR₁,JR₂) = -60.2677

BLUF AND RED STRATEGIES FOR PERIOD 2

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 2

	1	0	0	0	0	0
0	-162.009	0.000	0.000	0.000	0.000	0.000
0	-167.674	0.000	0.000	0.000	0.000	0.000
0	-177.454	0.000	0.000	0.000	0.000	0.000
1	-166.940	3.271	178.847	-34.951	181.922	203.629
0	-175.444	0.000	0.000	0.000	0.000	0.000
0	-168.495	0.000	0.000	0.000	0.000	0.000

JR = 4 JR = 6

V(JR,JR) = -160.9397

BLUE AND RED STRATEGIES FOR PERIOD 2

0.000	0.000	0.000	1.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 2

	1	0	0	0	0	0
1	-53.733	31.172	164.931	10.650	170.188	180.594
0	-66.723	0.000	0.000	0.000	0.000	0.000
0	-81.803	0.000	0.000	0.000	0.000	0.000
0	-57.328	0.000	0.000	0.000	0.000	0.000
0	-76.986	0.000	0.000	0.000	0.000	0.000
0	-67.765	0.000	0.000	0.000	0.000	0.000

JR = 5 JR = 6

V(JR,JR) = -53.7326

BLUE AND RED STRATEGIES FOR PERIOD 2

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 2

	1	0	0	0	0	0
0	-5.110	0.000	0.000	0.000	0.000	0.000
1	4.617	44.161	228.567	20.987	223.133	216.404
0	-25.926	0.000	0.000	0.000	0.000	0.000
0	1.188	0.000	0.000	0.000	0.000	0.000
0	-25.024	0.000	0.000	0.000	0.000	0.000
0	-5.178	0.000	0.000	0.000	0.000	0.000

JR = 6 JR = 6

V(JR,JR) = 4.6171

BLUE AND RED STRATEGIES FOR PERIOD 2

0.000	1.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 2

	1	0	0	0	0	0
1	212.618	248.930	282.677	226.629	278.994	273.679

0	175.778	0.000	0.000	0.000	0.000	0.000
0	74.035	0.000	0.000	0.000	0.000	0.000
0	207.477	0.000	0.000	0.000	0.000	0.000
0	72.192	0.000	0.000	0.000	0.000	0.000

JR = 6 JR = 1

V(JR,JR) 212.6182

BLUE AND RED STRATEGIES FOR PERIOD 2

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOUT MATRIX FOR GAME AT STAGE 2

	1	0	0	0	0	0
0	11.565	0.000	0.000	0.000	0.000	0.000
0	16.151	0.000	0.000	0.000	0.000	0.000
0	18.223	0.000	0.000	0.000	0.000	0.000
1	39.821	77.385	134.148	43.612	135.967	141.225
0	27.555	0.000	0.000	0.000	0.000	0.000
0	38.318	0.000	0.000	0.000	0.000	0.000

JR = 6 JR = 2

V(JR,JR) 39.8207

BLUE AND RED STRATEGIES FOR PERIOD 2

0.000	0.000	0.000	1.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOUT MATRIX FOR GAME AT STAGE 2

	1	0	0	0	0	0
0	18.582	0.000	0.000	0.000	0.000	0.000
0	18.460	0.000	0.000	0.000	0.000	0.000
0	15.038	0.000	0.000	0.000	0.000	0.000
0	21.639	0.000	0.000	0.000	0.000	0.000
0	17.683	0.000	0.000	0.000	0.000	0.000
1	24.456	50.712	82.743	31.474	85.386	91.314

JR = 6 JR = 3

V(JR,JR) 24.4562

BLUE AND RED STRATEGIES FOR PERIOD 2

0.000	0.000	0.000	0.000	0.000	1.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOUT MATRIX FOR GAME AT STAGE 2

	1	0	0	0	0	0
0	65.516	0.000	0.000	0.000	0.000	0.000
0	90.487	0.000	0.000	0.000	0.000	0.000
0	63.862	0.000	0.000	0.000	0.000	0.000
1	134.052	184.574	240.970	135.527	238.781	232.951
0	65.001	0.000	0.000	0.000	0.000	0.000
0	65.997	0.000	0.000	0.000	0.000	0.000

JH# 6 JR# 4

V(JR,JRT) 134.0521

BLUE AND RED STRATEGIES FOR PERIOD 2

0.000	0.000	0.000	1.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOUT MATRIX FOR GAME AT STAGE 2

	0	0	0	1	0	0
0	22,363	0.000	0.000	34,980	0.000	0.000
0	21,794	0.000	0.000	33,276	0.000	0.000
0	16,421	0.000	0.000	30,877	0.000	0.000
0	35,206	0.000	0.000	41,137	0.000	0.000
0	27,983	0.000	0.000	35,045	0.000	0.000
1	49,623	79,177	122,066	46,768	124,227	128,286

JH# 6 JR# 5

V(JR,JRT) 46.7683

BLUE AND RED STRATEGIES FOR PERIOD 2

0.000	0.000	0.000	1.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 1

	0	0	0	0	0	1
0	0.000	0.000	0.000	0.000	0.000	-259.816
0	0.000	0.000	0.000	0.000	0.000	-137.332
0	0.000	0.000	0.000	0.000	0.000	-60.268
0	0.000	0.000	0.000	0.000	0.000	-160.940
1	212.616	39.821	24.456	134.052	46.768	4.617

GAME VALUE 4.6171

BLUE AND RED STRATEGIES FOR PERIOD 1

0.000	0.000	0.000	0.000	0.000	1.000
0.000	0.000	0.000	0.000	0.000	1.000

BLUE AND RED STRATEGIES FOR PERIOD 2

6	6	0	0	0	0
0.000	1.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

3. Option 3A

PAYOUT MATRIX FOR GAME AT STAGE 1

	1	0	1	0	0	0
0	-13.7n8	0.000	-34.617	0.000	0.000	0.000
0	96.944	0.000	10.139	0.000	0.000	0.000
0	209.360	0.000	25.209	0.000	0.000	0.000
0	59.810	0.000	-7.705	0.000	0.000	0.000
0	209.227	0.000	26.195	0.000	0.000	0.000
1	220.841	64.633	32.487	141.546	69.116	83.694

GAME VALUE 32.4866

BLUE AND RED STRATEGIES FOR PERIOD 1

0.000	0.000	0.000	0.000	0.000	1.000
0.000	0.000	1.000	0.000	0.000	0.000

BLUE AND RED STRATEGIES FOR PERIOD 2

6	3				
0.000	0.000	0.000	0.000	0.000	1.000
0.000	0.000	0.000	1.000	0.000	0.000

4. Option 3B

PAYOFF MATRIX FOR GAME AT STAGE 2						
	1	0	0	1	0	0
0	-34.900	0.000	0.000	-26.743	0.000	0.000
0	-45.769	0.000	0.000	-26.205	0.000	0.000
0	-59.956	0.000	0.000	-26.941	0.000	0.000
0	-35.242	0.000	0.000	-21.625	0.000	0.000
0	-47.199	0.000	0.000	-22.360	0.000	0.000
1	-10.769	17.066	46.954	-13.708	33.273	34.216

IR# 1 TR# 1

$$W(IR,TR) = -13.7077$$

BLUE AND RED STRATEGIES FOR PERIOD 2

0.000	0.000	0.000	0.000	0.000	1.000
0.000	0.000	0.000	1.000	0.000	0.000

BLUE AND RED STRATEGIES FOR PERIOD 3

6	4				
1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 2

	1	0	0	1	0	0
0	76.947	0.000	0.000	73.988	0.000	0.000
0	85.001	0.000	0.000	73.525	0.000	0.000
0	86.972	0.000	0.000	75.477	0.000	0.000
0	105.823	0.000	0.000	92.832	0.000	0.000
0	97.390	0.000	0.000	92.780	0.000	0.000
1	116.641	130.867	151.931	96.944	148.564	100.805

IR# 2 TR# 1

$$W(IR,TR) = 96.9436$$

BLUE AND RED STRATEGIES FOR PERIOD 2

0.000	0.000	0.000	0.000	0.000	1.000
0.000	0.000	0.000	1.000	0.000	0.000

BLUE AND RED STRATEGIES FOR PERIOD 3

6	4				
1.000	1.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 2

	1	0	0	1	0	0
1	209.340	227.733	244.000	211.499	237.509	222.970
0	174.659	0.000	0.000	0.000	0.000	0.000
0	127.552	0.000	0.000	0.000	0.000	0.000
0	196.486	0.000	0.000	0.000	0.000	0.000

0	136.971	0.000	0.000	0.000	0.000	0.000	0.000
0	154.056	0.000	0.000	0.000	0.000	0.000	0.000

IR# 3 IR# 1

W(IR,IR) 204.3601

BLUE AND RED STRATEGIES FOR PERIOD 2

1.000	0.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000	0.000

BLUE AND RED STRATEGIES FOR PERIOD 3

1	1					
1.000	0.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000	0.000

PAYOUT MATRIX FOR GAME AT STAGE 2

1	0	0	1	0	0	1
0	-1.052	0.000	0.000	.816	0.000	106.560
0	14.467	0.000	0.000	.976	0.000	74.578
0	27.334	0.000	0.000	10.257	0.000	39.811
1	41.297	72.424	146.475	15.051	119.119	106.493
0	47.548	0.000	0.000	.27.065	0.000	46.820
1	86.869	94.931	122.277	62.733	107.578	56.761

IR# 4 IR# 1

W(IR,IR) 52.8897

BLUE AND RED STRATEGIES FOR PERIOD 2

0.000	0.000	0.000	.061	0.000	.939	
0.000	0.000	1.770	.511	0.000	.489	

BLUE AND RED STRATEGIES FOR PERIOD 3

4	4					
1.000	0.000	0.000	0.000	0.000	0.000	
1.000	0.000	0.000	0.000	0.000	0.000	
4	6					
1.000	0.000	0.000	0.000	0.000	0.000	
1.000	0.000	0.000	0.000	0.000	0.000	
4	4					
1.000	0.000	0.000	0.000	0.000	0.000	
1.000	0.000	0.000	0.000	0.000	0.000	
6	6					
1.000	0.000	0.000	0.000	0.000	0.000	
1.000	0.000	0.000	0.000	0.000	0.000	

PAYOUT MATRIX FOR GAME AT STAGE 2

1	0	0	0	0	0	0
1	209.227	236.839	262.842	213.406	252.873	231.156
0	176.770	0.000	0.000	0.000	0.000	0.000
0	116.475	0.000	0.000	0.000	0.000	0.000
0	205.832	0.000	0.000	0.000	0.000	0.000
0	129.579	0.000	0.000	0.000	0.000	0.000
0	156.292	0.000	0.000	0.000	0.000	0.000

TH# 5 TR# 1

W(IR,IR) 209.2276

BLUE AND RED STRATEGIES FOR PERIOD 2

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

BLUE AND RED STRATEGIES FOR PERIOD 3

1	1				
1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOUT MATRIX FOR GAME AT STAGE 2

	1	0	0	1	0	0
0	212.678	0.000	0.000	220.620	0.000	0.000
0	187.801	0.000	0.000	193.770	0.000	0.000
0	97.321	0.000	0.000	98.998	0.000	0.000
1	226.755	240.999	255.859	220.841	248.125	221.719
0	117.661	0.000	0.000	118.394	0.000	0.000
0	169.915	0.000	0.000	154.464	0.000	0.029

TH# 6 TR# 1

W(IR,IR) 220.8412

BLUE AND RED STRATEGIES FOR PERIOD 2

0.000	0.000	0.000	1.000	0.000	0.000
0.000	0.000	0.000	1.000	0.000	0.000

BLUE AND RED STRATEGIES FOR PERIOD 3

4	4				
1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOUT MATRIX FOR GAME AT STAGE 2

	1	0	0	1	0	1
0	11.565	0.000	0.000	15.323	0.000	102.519
0	22.826	0.000	0.000	18.190	0.000	68.391
0	31.502	0.000	0.000	24.409	0.000	38.885
1	49.659	79.387	133.421	38.426	116.472	95.743
0	49.337	0.000	0.000	79.141	0.000	45.783
1	81.950	93.565	116.551	57.800	100.140	61.141

TH# 6 TR# 2

W(IR,IR) 64.6334

BLUE AND RED STRATEGIES FOR PERIOD 2

0.000	0.000	0.000	1.01	0.000	.899
1.000	0.000	0.000	.524	0.020	.476

BLUE AND RED STRATEGIES FOR PERIOD 3

4	4				
1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

4	6					
1.000	0.000	0.000	0.000	0.000	0.000	
1.000	0.000	0.000	0.000	0.000	0.000	
6	4					
1.000	0.000	0.000	0.000	0.000	0.000	
1.000	0.000	0.000	0.000	0.000	0.000	
6	6					
1.000	0.000	0.000	0.000	0.000	0.000	
1.000	0.000	0.000	0.000	0.000	0.000	

PAYOUT MATRIX FOR GAME AT STAGE 2

	1	0		1	0	0
0	18.562	0.000	0.000	24.814	0.000	0.000
0	18.608	0.000	0.000	23.975	0.000	0.000
0	19.444	0.000	0.000	23.130	0.000	0.000
0	24.741	0.000	0.000	26.760	0.000	0.000
0	25.265	0.000	0.000	25.157	0.000	0.000
1	42.485	58.079	83.461	32.487	67.844	59.391

IR= 6 TR= 3

$$W(IR,TR) = 32.4866$$

BLUE AND RED STRATEGIES FOR PERIOD 2

0.000	0.000	0.000	0.000	0.000	1.000
0.000	0.000	0.000	1.000	0.000	0.000

BLUE AND RED STRATEGIES FOR PERIOD 3

6	4					
1.000	0.000	0.000	0.000	0.000	0.000	
1.000	0.000	0.000	0.000	0.000	0.000	

PAYOUT MATRIX FOR GAME AT STAGE 2

	1	0		1	0	1
0	65.516	0.000	0.000	85.354	0.000	203.161
0	100.538	0.000	0.000	94.524	0.000	155.555
0	88.646	0.000	0.000	86.678	0.000	97.990
1	149.151	195.197	248.871	135.371	227.788	176.828
0	110.659	0.000	0.000	101.922	0.000	98.349
1	169.603	170.976	185.566	143.406	174.801	98.907

IR= 6 TR= 4

$$W(IR,TR) = 141.5464$$

BLUE AND RED STRATEGIES FOR PERIOD 2

0.000	0.000	0.000	.547	0.000	.453
0.000	0.000	0.000	.461	0.000	.139

BLUE AND RED STRATEGIES FOR PERIOD 3

4	4					
1.000	0.000	0.000	0.100	0.000	0.000	
1.000	0.000	0.000	0.000	0.000	0.000	

4 6

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000
6	4				
1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000
6	6				
1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOUT MATRIX FOR GAME AT STAGE 2

	1	0	0	1	0	0
0	22.343	0.000	0.000	29.214	0.000	0.000
0	25.443	0.000	0.000	29.021	0.000	0.000
0	26.153	0.000	0.000	28.167	0.000	0.000
0	41.557	0.000	0.000	34.965	0.000	0.000
0	48.064	0.000	0.000	34.520	0.000	0.000
1	89.351	107.042	140.722	69.116	119.676	80.691

IH= 6 TR= 5

W(IR,IR) 69.1158

BLUE AND RED STRATEGIES FOR PERIOD 2

0.000	0.000	0.000	0.000	0.000	1.000
0.000	0.000	0.000	1.000	0.000	0.000

BLUE AND RED STRATEGIES FOR PERIOD 3

6	4				
1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOUT MATRIX FOR GAME AT STAGE 2

	1	1	0	0	0	0
0	-5.110	23.229	0.000	0.000	0.000	0.000
0	15.652	36.860	0.000	0.000	0.000	0.000
0	4.726	35.703	0.000	0.000	0.000	0.000
0	5.854	34.583	0.000	0.000	0.000	0.000
0	23.342	47.083	0.000	0.000	0.000	0.000
1	91.175	83.694	139.385	96.300	122.063	106.287

IH= 6 TR= 6

W(IR,IR) 83.6945

BLUE AND RED STRATEGIES FOR PERIOD 2

0.000	0.000	0.000	0.000	0.000	1.000
0.000	1.000	0.000	0.000	0.000	0.000

BLUE AND RED STRATEGIES FOR PERIOD 3

6	2				
1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 2

	1	0	0	0	0	0
1	-34.617	32.119	54.143	14.948	52.976	43.211
0	-34.632	0.000	0.000	0.000	0.000	0.000
0	-34.639	0.000	0.000	0.000	0.000	0.000
0	-34.656	0.000	0.000	0.000	0.000	0.000
0	-34.662	0.000	0.000	0.000	0.000	0.000
0	-34.670	0.000	0.000	0.000	0.000	0.000

IR# 1 TR# 3

$$W(IR,TR) = -34.6169$$

BLUE AND RED STRATEGIES FOR PERIOD 2

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

BLUE AND RED STRATEGIES FOR PERIOD 3

1	1	0	0	0	0
1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 2

	1	0	0	0	0	0
0	9.511	0.000	0.000	0.000	0.000	0.000
0	9.142	0.000	0.000	0.000	0.000	0.000
0	8.700	0.000	0.000	0.000	0.000	0.000
0	9.704	0.000	0.000	0.000	0.000	0.000
0	9.378	0.000	0.000	0.000	0.000	0.000
1	10.119	34.868	57.173	24.729	53.213	50.627

IR# 2 TR# 3

$$W(IR,TR) = 10.1392$$

BLUE AND RED STRATEGIES FOR PERIOD 2

0.000	0.000	0.000	0.000	0.000	1.000
1.000	0.000	0.000	0.000	0.000	0.000

BLUE AND RED STRATEGIES FOR PERIOD 3

6	1	0	0	0	0
1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 2

	1	0	0	1	0	0
0	20.275	0.000	0.000	24.803	0.000	0.000
0	20.520	0.000	0.000	24.108	0.000	0.000
0	20.748	0.000	0.000	23.491	0.000	0.000
0	22.657	0.000	0.000	25.020	0.000	0.000
0	22.751	0.000	0.000	24.136	0.000	0.000
1	25.892	41.911	67.867	25.209	55.769	52.366

IR# 3 TR# 3

$$W(IR,TR) = 25.2192$$

BLUE AND RED STRATEGIES FOR PERIOD 2

0.000	0.000	0.000	0.000	0.000	1.000
0.000	0.000	0.000	1.000	0.000	0.000

BLUE AND RED STRATEGIES FOR PERIOD 3

6	4				
1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOUT MATRIX FOR GAME AT STAGE 2

	1	0	0	0	0	0
0	-8.343	2.000	0.000	0.000	0.000	0.000
0	-8.778	0.000	0.000	0.000	0.000	0.000
0	-9.177	0.000	0.000	0.000	0.000	0.000
0	-9.094	0.000	0.000	0.000	0.000	0.000
0	-8.687	0.000	0.000	0.000	0.000	0.000
1	-7.759	29.933	53.134	19.196	48.753	45.284

IR= 4 TR= 3

$$W(IR, IR) = -7.7059$$

BLUE AND RED STRATEGIES FOR PERIOD 2

0.000	0.000	0.000	0.000	0.000	1.000
1.000	0.000	0.000	0.000	0.000	0.000

BLUE AND RED STRATEGIES FOR PERIOD 1

6	1					
1.000	0.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000	0.000

PAYOUT MATRIX FOR GAME AT STAGE 2

	1	0	0	1	0	0
0	18.568	0.000	0.000	24.525	0.000	0.000
0	19.006	0.000	0.000	23.757	0.000	0.000
0	19.480	0.000	0.000	23.059	0.000	0.000
0	22.562	0.000	0.000	25.274	0.000	0.000
0	22.687	0.000	0.000	24.138	0.000	0.000
1	29.560	45.449	71.293	26.195	59.439	54.499

IR= 5 TR= 3

$$W(IR, IR) = 26.1952$$

BLUE AND RED STRATEGIES FOR PERIOD 2

0.000	0.000	0.000	0.000	0.000	1.000
0.000	0.000	0.000	1.000	0.000	0.000

BLUE AND RED STRATEGIES FOR PERIOD 1

6	4					
1.000	0.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 1						
	0	1	0	0	0	0
0	-13.78	0.00	-34.617	0.000	0.000	0.000
0	96.944	0.00	16.139	0.000	0.000	0.000
0	209.340	0.00	25.209	0.000	0.000	0.000
0	59.810	0.000	-7.705	0.000	0.000	0.000
0	209.257	0.000	26.195	0.000	0.000	0.000
1	220.841	64.633	32.487	141.546	69.116	83.694

GAME VALUE 32.4866

BLUE AND RED STRATEGIES FOR PERIOD 1						
	0	0	0	0	0	1
0	0.000	0.000	0.000	0.000	0.000	1.000
0	0.000	0.000	1.000	0.000	0.000	0.000

BLUE AND RED STRATEGIES FOR PERIOD 2

	0	0	0	0	0	1
0	0.000	0.000	0.000	0.000	0.000	1.000
0	0.000	0.000	0.000	1.000	0.000	0.000

5. Option 3C

The full output using option 3C consists of about 20 four- or five-page sections, one for each first-period payoff entry computed. The sections appear in the order that the first-period payoff entries are computed, which depends on the input data. Shown below are the sections for the first and last payoff entries computed, which are elements (1,1) and (5,3) of the first-period payoff matrix. (To avoid undue length of this volume, the rest of the pages of output 3C have been omitted.) Each section has a second-period payoff matrix and game solution *at the end*, preceded by a series of third-period payoff matrices and game solutions.

PAYOFF MATRIX FOR GAME AT STAGE 3						
	1	0	0	0	0	0
1	-34.996	-28.356	3.252	-39.917	3.567	4.271
0	-36.116	0.000	0.000	0.000	0.000	0.000
0	-37.195	0.000	0.000	0.000	0.000	0.000
0	-35.707	0.000	0.000	0.000	0.000	0.000
0	-36.946	0.000	0.000	0.000	0.000	0.000
0	-36.640	0.000	0.000	0.000	0.000	0.000

J_R = 1 I_R = 1

$$V(JR, JR) = -34.9957$$

BLUE AND RED STRATEGIES FOR PERIOD 3

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 3

	1	0	0	0	0	0
1	-45.769	-35.004	-6.899	-37.579	-6.600	-6.256
0	-46.903	0.000	0.000	0.000	0.000	0.000
0	-48.143	0.000	0.000	0.000	0.000	0.000
0	-46.619	0.000	0.000	0.000	0.000	0.000
0	-47.938	0.000	0.000	0.000	0.000	0.000
0	-47.689	0.000	0.000	0.000	0.000	0.000

J_R = 2 I_R = 1

$$V(JR, JR) = -45.7684$$

BLUE AND RED STRATEGIES FOR PERIOD 3

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 3

	1	0	0	0	0	0
1	-59.956	-45.570	-22.629	-47.998	-22.503	-22.184
0	-61.858	0.000	0.000	0.000	0.000	0.000
0	-63.043	0.000	0.000	0.000	0.000	0.000
0	-61.557	0.000	0.000	0.000	0.000	0.000
0	-62.042	0.000	0.000	0.000	0.000	0.000
0	-62.718	0.000	0.000	0.000	0.000	0.000

J_R = 3 I_R = 1

$$V(JR, JR) = -59.9564$$

BLUE AND RED STRATEGIES FOR PERIOD 3

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 3						
	1	0	0	0	0	0
1	-35.242	-18.209	10.486	-21.418	10.421	10.518
0	-37.177	0.000	0.000	0.000	0.000	0.000
0	-39.051	0.000	0.000	0.000	0.000	0.000
0	-36.559	0.000	0.000	0.000	0.000	0.000
0	-38.697	0.000	0.000	0.000	0.000	0.000
0	-38.226	0.000	0.000	0.000	0.000	0.000

JH = 4 IR = 1

$$V(JR, IR) = -35.2421$$

BLUE AND RED STRATEGIES FOR PERIOD 3

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 3

	1	0	0	0	0	0
1	-47.189	-28.934	-9.901	-31.546	-8.925	-8.823
0	-53.276	0.000	0.000	0.000	0.000	0.000
0	-56.554	0.000	0.000	0.000	0.000	0.000
0	-51.520	0.000	0.000	0.000	0.000	0.000
0	-56.201	0.000	0.000	0.000	0.000	0.000
0	-55.943	0.000	0.000	0.000	0.000	0.000

JH = 5 IR = 1

$$V(JB, JR) = -47.189$$

BLUE AND RED STRATEGIES FOR PERIOD 3

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 3

	1	0	0	0	0	0
1	-10.749	3.224	17.089	1.389	16.798	16.568
0	-27.511	0.000	0.000	0.000	0.000	0.000
0	-52.050	0.000	0.000	0.000	0.000	0.000
0	-23.449	0.000	0.000	0.000	0.000	0.000
0	-41.439	0.000	0.000	0.000	0.000	0.000
0	-40.458	0.000	0.000	0.000	0.000	0.000

JB = .6 IR = 1

$$V(JB, JR) = -10.768$$

BLUE AND RED STRATEGIES FOR PERIOD 3

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 3

	1	0	0	0	0	0
1	17.046	32.547	45.138	30.845	45.068	45.066
0	5.521	0.000	0.000	0.000	0.000	0.000

0	-3.404	0.600	0.000	0.000	0.000
0	0.346	0.000	0.000	0.000	0.000
0	-3.019	0.000	0.000	0.000	0.000
0	-2.215	0.000	0.000	0.000	0.000

J_H = 6 I_R = 2

V(JR,JR) 17.0663

BLUE AND RED STRATEGIES FOR PERIOD 3

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOUT MATRIX FOR GAME AT STAGE 3

1	0	0	0	0	0
1	46.956	50.784	72.193	58.274	72.227
0	39.844	0.000	0.000	0.000	0.000
0	32.715	0.000	0.000	0.000	0.000
0	44.668	0.000	0.000	0.000	0.000
0	33.061	0.000	0.000	0.000	0.000
0	33.619	0.000	0.000	0.000	0.000

J_H = 6 I_R = 3

V(JR,JR) 46.9562

BLUE AND RED STRATEGIES FOR PERIOD 3

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOUT MATRIX FOR GAME AT STAGE 3

1	0	0	0	0	0
1	-13.708	14.601	49.800	9.340	49.632
0	-16.928	0.000	0.000	0.000	0.000
0	-20.062	0.000	0.000	0.000	0.000
0	-15.649	0.000	0.000	0.000	0.000
0	-19.421	0.000	0.000	0.000	0.000
0	-18.500	0.000	0.000	0.000	0.000

J_H = 6 I_R = 4

V(JR,JR) -13.7077

BLUE AND RED STRATEGIES FOR PERIOD 3

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOUT MATRIX FOR GAME AT STAGE 3

1	0	0	0	0	0
1	33.273	50.996	83.694	47.413	83.497
0	31.233	0.000	0.000	0.000	0.000
0	29.248	0.000	0.000	0.000	0.000
0	31.977	0.000	0.000	0.000	0.000
0	29.649	0.000	0.000	0.000	0.000
0	30.152	0.000	0.000	0.000	0.000

J_H = 6 I_R = 5

V(JR,JR) 33.2729

BLUE AND RED STRATEGIES FOR PERIOD 3

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 3

	1	0	0	0	0	0
1	34.216	43.365	114.280	41.597	111.914	109.495
0	30.903	0.000	0.000	0.000	0.000	0.000
0	19.377	0.000	0.000	0.000	0.000	0.000
0	32.347	0.000	0.000	0.000	0.000	0.000
0	22.779	0.000	0.000	0.000	0.000	0.000
0	25.768	0.000	0.000	0.000	0.000	0.000

JH= 6 IR= 6

V(JR,JR) 34.2154

BLUE AND RED STRATEGIES FOR PERIOD 3

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 3

	1	0	0	0	0	0
1	-26.743	-19.908	11.075	-20.713	11.947	13.307
0	-27.574	0.000	0.000	0.000	0.000	0.000
0	-28.444	0.000	0.000	0.000	0.000	0.000
0	-27.273	0.000	0.000	0.000	0.000	0.000
0	-28.224	0.000	0.000	0.000	0.000	0.000
0	-27.965	0.000	0.000	0.000	0.000	0.000

JH= 1 IR= 4

V(JR,JR) -26.7429

BLUE AND RED STRATEGIES FOR PERIOD 3

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 3

	1	0	0	0	0	0
1	-26.265	-19.770	12.555	-20.573	13.276	14.417
0	-26.876	0.000	0.000	0.000	0.000	0.000
0	-27.756	0.000	0.000	0.000	0.000	0.000
0	-26.777	0.000	0.000	0.000	0.000	0.000
0	-27.575	0.000	0.000	0.000	0.000	0.000
0	-27.362	0.000	0.000	0.000	0.000	0.000

JH= 2 IR= 4

V(JR,JR) -26.2051

BLUE AND RED STRATEGIES FOR PERIOD 3

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 3

	1	0	0	0	0	0
1	-26.941	-26.757	12.381	-21.539	12.983	13.948
0	-27.644	0.000	0.000	0.000	0.000	0.000
0	-28.457	0.000	0.000	0.000	0.000	0.000
0	-27.451	0.000	0.000	0.000	0.000	0.000
0	-28.351	0.000	0.000	0.000	0.000	0.000
0	-28.117	0.000	0.000	0.000	0.000	0.000

J_H = 3 I_R = 4

V(JR,JR) = -26.9808

BLUE AND RED STRATEGIES FOR PERIOD 3

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 3

	1	0	0	0	0	0
1	-21.625	-14.744	26.641	-15.719	26.673	26.927
0	-22.917	0.000	0.000	0.000	0.000	0.000
0	-24.266	0.000	0.000	0.000	0.000	0.000
0	-22.455	0.000	0.000	0.000	0.000	0.000
0	-23.976	0.000	0.000	0.000	0.000	0.000
0	-23.455	0.000	0.000	0.000	0.000	0.000

J_H = 4 I_R = 4

V(JR,JR) = -21.6255

BLUE AND RED STRATEGIES FOR PERIOD 3

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 3

	1	0	0	0	0	0
1	-22.940	-13.453	24.391	-16.826	24.405	24.617
0	-24.296	0.000	0.000	0.000	0.000	0.000
0	-25.505	0.000	0.000	0.000	0.000	0.000
0	-23.922	0.000	0.000	0.000	0.000	0.000
0	-25.359	0.000	0.000	0.000	0.000	0.000
0	-24.971	0.000	0.000	0.000	0.000	0.000

J_H = 5 I_R = 4

V(JR,JR) = -22.9404

BLUE AND RED STRATEGIES FOR PERIOD 3

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 2

	1	2	3	1	2	3
0	-34.996	0.000	0.000	-26.743	0.000	0.000
0	-45.763	0.000	0.000	-26.205	0.000	0.000
0	-59.956	0.000	0.000	-26.901	0.000	0.000
0	-35.212	0.000	0.000	-21.625	0.000	0.000
0	-47.169	0.000	0.000	-22.940	0.000	0.000
1	-10.769	17.066	46.056	-13.708	33.273	34.216

I(R= 1 i(R= 1

#(I(R,I(R) = -13.7177

BLUE AND RED STRATEGIES FOR PERIOD 2

0.000	0.000	0.000	0.000	0.000	1.000
0.000	0.000	0.000	1.000	0.000	0.000

BLUE AND RED STRATEGIES FOR PERIOD 3

6	4				
1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

[DELETED OUTPUT SECTIONS OCCUR HERE.]

PAYOFF MATRIX FOR GAME AT STAGE 3

	1	0	0	0	0	0
1	18.588	29.990	49.302	28.364	48.546	48.945
0	17.102	0.000	0.000	0.000	0.000	0.000
0	16.166	0.000	0.000	0.000	0.000	0.000
0	17.445	0.000	0.000	0.000	0.000	0.000
0	16.252	0.000	0.000	0.000	0.000	0.000
0	16.445	0.000	0.000	0.000	0.000	0.000

JH= 1 JR= 1

V(JR,JH) 18.5883

BLUE AND RED STRATEGIES FOR PERIOD 3

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 3

	1	0	0	0	0	0
1	19.066	31.268	47.024	28.766	47.275	47.618
0	16.533	0.000	0.000	0.000	0.000	0.000
0	15.532	0.000	0.000	0.000	0.000	0.000
0	16.974	0.000	0.000	0.000	0.000	0.000
0	15.647	0.000	0.000	0.000	0.000	0.000
0	15.746	0.000	0.000	0.000	0.000	0.000

JH= 2 JR= 1

V(JR,JH) 19.0962

BLUE AND RED STRATEGIES FOR PERIOD 3

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 3

	1	0	0	0	0	0
1	19.460	30.369	45.774	28.976	46.031	46.360
0	16.190	0.000	0.000	0.000	0.000	0.000
0	14.909	0.000	0.000	0.000	0.000	0.000
0	16.758	0.000	0.000	0.000	0.000	0.000
0	14.909	0.000	0.000	0.000	0.000	0.000
0	15.157	0.000	0.000	0.000	0.000	0.000

JH= 3 JR= 1

V(JR,JH) 19.4797

BLUE AND RED STRATEGIES FOR PERIOD 3

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 3

	1	0	0	0	0	0
1	22.552	35.414	52.435	33.807	53.047	53.316
0	18.452	0.000	0.000	0.000	0.000	0.000
0	16.859	0.000	0.000	0.000	0.000	0.000
0	19.258	0.000	0.000	0.000	0.000	0.000
0	17.051	0.000	1.000	0.000	0.000	0.000
0	17.179	0.000	0.000	0.000	0.000	0.000

JH = 4 IR = 1

V(JR,JH) 22.5524

BLUE AND RED STRATEGIES FOR PERIOD 3

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 3

	1	0	0	0	0	0
1	22.687	35.033	50.562	33.583	50.776	51.041
0	18.354	0.000	0.000	0.000	0.000	0.000
0	15.887	0.000	0.000	0.000	0.000	0.000
0	19.225	0.000	0.000	0.000	0.000	0.000
0	15.998	0.000	0.000	0.000	0.000	0.000
0	16.102	0.000	0.000	0.000	0.000	0.000

JH = 5 IR = 1

V(JR,JH) 22.6872

BLUE AND RED STRATEGIES FOR PERIOD 3

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 3

	1	0	0	0	0	0
1	29.540	43.795	58.510	42.225	58.572	58.668
0	22.629	0.000	0.000	0.000	0.000	0.000
0	17.847	0.000	0.000	0.000	0.000	0.000
0	24.029	0.000	0.000	0.000	0.000	0.000
0	18.025	0.000	0.000	0.000	0.000	0.000
0	18.308	0.000	0.000	0.000	0.000	0.000

JH = 6 IR = 1

V(JR,JH) 29.5001

BLUE AND RED STRATEGIES FOR PERIOD 3

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 3

	1	0	0	0	0	0
1	45.440	56.243	57.635	55.170	57.799	57.968
0	39.454	0.000	0.000	0.000	0.000	0.000

0	34.562	0.000	0.000	0.000	0.000	0.000
0	40.472	0.000	0.000	0.000	0.000	0.000
0	34.819	0.000	0.000	0.000	0.000	0.000
0	35.148	0.000	0.000	0.000	0.000	0.000

J_H= 6 IR= 2

V(JR,JR) 45.4415

BLUE AND RED STRATEGIES FOR PERIOD 3

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOUT MATRIX FOR GAME AT STAGE 3

	1	0	0	0	0	0
1	71.293	79.158	87.125	78.634	87.288	87.487
0	66.335	0.000	0.000	0.000	0.000	0.000
0	61.576	0.000	0.000	0.000	0.000	0.000
0	67.003	0.000	0.000	0.000	0.000	0.000
0	61.776	0.000	0.000	0.000	0.000	0.000
0	62.024	0.000	0.000	0.000	0.000	0.000

J_H= 6 IR= 3

V(JR,JR) 71.2924

BLUE AND RED STRATEGIES FOR PERIOD 3

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOUT MATRIX FOR GAME AT STAGE 3

	1	0	0	0	0	0
1	26.105	42.363	67.644	39.997	67.746	67.886
0	24.451	0.000	0.000	0.000	0.000	0.000
0	22.854	0.000	0.000	0.000	0.000	0.000
0	24.933	0.000	0.000	0.000	0.000	0.000
0	23.160	0.000	0.000	0.000	0.000	0.000
0	23.455	0.000	0.000	0.000	0.000	0.000

J_H= 6 IR= 4

V(JR,JR) 26.1952

BLUE AND RED STRATEGIES FOR PERIOD 3

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOUT MATRIX FOR GAME AT STAGE 3

	1	0	0	0	0	0
1	59.439	72.496	91.391	79.871	91.707	92.081
0	56.308	0.000	0.000	0.000	0.000	0.000
0	55.175	0.000	0.000	0.000	0.000	0.000
0	54.853	0.000	0.000	0.000	0.000	0.000
0	55.317	0.000	0.000	0.000	0.000	0.000
0	55.402	0.000	0.000	0.000	0.000	0.000

J_H= 6 IR= 5

$V(JR, JR)$ 59.4385

BLUE AND RED STRATEGIES FOR PERIOD 3

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 3

	1	2	3	4	5	6
1	54.479	63.162	102.132	50.366	102.311	102.519
0	53.058	0.000	0.000	0.000	0.000	0.000
0	51.657	0.000	0.000	0.000	0.000	0.000
0	53.553	0.000	0.000	0.000	0.000	0.000
0	51.946	0.000	0.000	0.000	0.000	0.000
0	52.345	0.000	0.000	0.000	0.000	0.000

$J_H = 6 \quad IR = 6$

$V(JR, JR)$ 54.4985

BLUE AND RED STRATEGIES FOR PERIOD 3

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 3

	1	2	3	4	5	6
1	24.575	32.549	56.631	30.559	57.093	57.642
0	23.618	0.000	0.000	0.000	0.000	0.000
0	22.700	0.000	0.000	0.000	0.000	0.000
0	23.844	0.000	0.000	0.000	0.000	0.000
0	22.944	0.000	0.000	0.000	0.000	0.000
0	23.126	0.000	0.000	0.000	0.000	0.000

$J_H = 1 \quad IR = 4$

$V(JR, JR)$ 24.525^

BLUE AND RED STRATEGIES FOR PERIOD 3

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 3

	1	2	3	4	5	6
1	23.757	32.480	55.405	30.586	55.845	56.378
0	22.888	0.000	0.000	0.000	0.000	0.000
0	22.056	0.000	0.000	0.000	0.000	0.000
0	23.173	0.000	0.000	0.000	0.000	0.000
0	22.185	0.000	0.000	0.000	0.000	0.000
0	22.339	0.000	0.000	0.000	0.000	0.000

$J_H = 2 \quad JR = 4$

$V(JR, JR)$ 23.7574

BLUE AND RED STRATEGIES FOR PERIOD 3

1.000	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 3						
	1	0	0	0	0	0
1	23.0e9	32.363	56.258	30.557	64.691	55.207
0	22.2e7	0.000	0.000	0.000	0.000	0.000
0	21.3e2	0.000	0.000	0.000	0.000	0.000
0	22.4e3	0.000	0.000	0.000	0.000	0.000
0	21.5e9	0.000	0.000	0.000	0.000	0.000
0	21.6e7	0.000	0.000	0.000	0.000	0.000

J_H= 3 J_R= 4

$$V(JR, JR) = 23.0584$$

BLUE AND RED STRATEGIES FOR PERIOD 3

1.0e0	0.000	0.000	0.000	0.000	0.000	0.000
1.0e0	0.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 3

	1	0	0	0	0	0
1	25.274	35.467	61.147	33.416	61.505	61.936
0	24.1e9	0.000	0.000	0.000	0.000	0.000
0	22.9e5	0.000	0.000	0.000	0.000	0.000
0	24.4e2	0.000	0.000	0.000	0.000	0.000
0	23.1e9	0.000	0.000	0.000	0.000	0.000
0	23.4e2	0.000	0.000	0.000	0.000	0.000

J_H= 4 J_R= 4

$$V(JR, JR) = 25.2737$$

BLUE AND RED STRATEGIES FOR PERIOD 3

1.0e0	0.000	0.000	0.000	0.000	0.000	0.000
1.0e0	0.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 3

	1	0	0	0	0	0
1	24.1e8	34.999	58.061	33.085	60.311	59.734
0	23.0e8	0.000	0.000	0.000	0.000	0.000
0	21.9e9	0.000	0.000	0.000	0.000	0.000
0	23.3e1	0.000	0.000	0.000	0.000	0.000
0	22.1e6	0.000	0.000	0.000	0.000	0.000
0	22.2e6	0.000	0.000	0.000	0.000	0.000

J_H= 5 J_R= 4

$$V(JR, JR) = 24.1374$$

BLUE AND RED STRATEGIES FOR PERIOD 3

1.0e0	0.000	0.000	0.000	0.000	0.000	0.000
1.0e0	0.000	0.000	0.000	0.000	0.000	0.000

PAYOFF MATRIX FOR GAME AT STAGE 2

	1	2	3	4	5	6
0	18.598	0.100	0.000	24.525	0.000	0.000
0	19.106	0.000	0.000	23.757	0.000	0.000
0	19.490	0.000	0.000	23.050	0.000	0.000
0	22.512	0.000	0.000	25.274	0.000	0.000
0	22.627	0.000	0.000	24.138	0.000	0.000
1	29.570	45.440	71.293	26.198	59.479	54.499

IM= 5 . IR= 3

W(IR,IR) = 26.1952

BLUE AND RED STRATEGIES FOR PERIOD 2

0.020	0.000	0.000	0.000	0.000	1.000
0.000	0.000	0.000	1.000	0.000	0.000

BLUE AND RED STRATEGIES FOR PERIOD 3

6	4				
1.020	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000

[AFTER A BLANK PAGE, OCCURS THE FOLLOWING:]

PAYOFF MATRIX FOR GAME AT STAGE 1

	1	0	1	0	0	0
0	-13.748	0.000	-34.617	0.000	0.000	0.000
0	96.944	0.000	10.139	0.000	0.000	0.000
0	209.360	0.000	25.219	0.000	0.000	0.000
0	59.810	0.000	-7.735	0.000	0.000	0.000
0	209.257	0.000	26.195	0.000	0.000	0.000
1	220.841	64.633	32.487	141.546	69.116	93.694

GAME VALUE 32.4866

BLUF AND RED STRATEGIES FOR PERIOD 1

0.000	0.000	0.000	0.000	0.000	1.000
0.000	0.000	1.000	0.000	0.000	0.000

BLUF AND RED STRATEGIES FOR PERIOD 2

6	3				
0.000	0.000	0.000	0.000	0.000	1.000
0.000	0.000	0.000	1.000	0.000	0.000

APPENDIX A

ALPHABETICAL LISTING AND DEFINITIONS OF INPUT VARIABLES

Variable Name	Definition
BAA(KBA, ID)	Blue aircraft added, by kind of Blue aircraft and day (including day 1).
BADRI(INDB, TYR)	Air-to-air detection parameter for Blue attackers detecting Red interceptors.
BAKRI(INDB, TYR)	Air-to-air kill parameter for Blue attackers: 1 - GP-CAS; 2 - GP-ABA; 3 - SP-CAS; 4 - SP-ABA killing Red interceptors: 1 - GP; 2 - SP.
BALPHA(TYB, MSB)	Fraction of Blue attackers that do <i>not</i> jettison their ordnance and fly back but continue on, by Blue attacker type: 1 - GP; 2 - SP and attack mission: 1 - CAS; 2 - ABA.
BCWGT	Weight for cumulative Blue CAS firepower delivered (must be zero if MOE=4).
BD(15)	Proportion of Blue divisions destroyed--vector of breakpoint ordinates for interpolation.
BDA(KBD, ID)	Blue divisions added, by kind of Blue division and day (including day 1).
BDRNS(2)	Parameter for Blue detecting Red nonsheltered aircraft: 1 - Blue GP aircraft; 2 - Blue SP-ABA aircraft.
BDRS(TYB)	Parameter for Blue detecting Red shelters: 1 - Blue GP aircraft; 2 - Blue SP-ABA aircraft.
BFRAC1	Fraction of Blue aircraft on base before change in sortie rate.
BFRAC2	Fraction of Blue aircraft on base after change in sortie rate.
BIDRA(TYB, INDR)	Air-to-air detection parameter for Blue interceptors detecting Red attackers (subscripted as for BIKRA, below).
BIKRA(TYB, INDR)	Air-to-air kill parameter for Blue interceptors: 1 - GP; 2 - SP killing Red attackers: 1 - GP-CAS; 2 - GP-ABA; 3 - SP-CAS; 4 - SP-ABA.
BKRNS(2)	Parameter for Blue killing Red nonsheltered aircraft: 1 - Blue GP aircraft; 2 - Blue SP-ABA aircraft.

<u>Variable Name</u>	<u>Definition</u>
BKRS(2)	Parameter for Blue killing Red shelters: 1 - Blue GP aircraft; 2 - Blue SP-ABA aircraft.
BPARK	Number of Blue parking areas for aircraft on each Blue airbase.
BPASS(TYB)	Number of passes per Blue ABA sortie by 1 - GP-ABA aircraft; 2 - SP-ABA aircraft.
BQWGT(2)	If MOE=4, BQWGT(1) is weight for surviving Blue general-purpose aircraft; BQWGT(2) is not used. If MOE=5, BQWGT(1) is weight for Blue GP surviving aircraft minus desired Blue QRA; BQWGT(2) is weight for desired minus actual Blue QRA.
BSAMZR(TYR,MSR)	Proportion of Red attack sorties by type: 1 - GP; 2 - SP and by mission: 1 - CAS; 2 - ABA destroyed by Blue ground-to-air weapons.
BSWGT(MS)	Weights for surviving SP aircraft (KBA=2,3,4), by kind of aircraft: 1 - SP-CAS; 2 - SP-ABA; 3 - SP-INT.
B ⁴ AL	Overlap factor (between 0 and 1) for Red munitions at the Blue airbase.
B ⁴ AN1,B ⁴ AN2	Lethal area covered by one pass of a Red GP- or SP-ABA aircraft (resp.) dropping "anti-nonsheltered" munitions against nonsheltered aircraft.
B ⁴ AS1,B ⁴ AS2	Lethal area covered by one pass of a Red GP- or SP-ABA aircraft (resp.) dropping "anti-shelter" munitions against shelters.
B ⁴ B	Area (in square meters) of a typical airbase on which Blue aircraft might be located.
B ⁴ NS1,B ⁴ NS2	A reduction factor applied to B ⁴ AN1 or B ⁴ AN2 (resp.) when "anti-nonsheltered" munitions are dropped on shelters.
B ⁴ SN1,B ⁴ SN2	An expansion (or reduction) factor applied to B ⁴ AS1 or B ⁴ AS2 (resp.) when "anti-shelter" munitions are dropped on nonsheltered aircraft.
DBQRA	Desired Blue Quick Reaction Alert aircraft level (number of aircraft).

Variable Name	Definition
DRQRA	Desired Red Quick Reaction Alert aircraft level (number of aircraft).
FA(15)	FEBA advance--vector of breakpoint ordinates for interpolation.
FBA(KBA)	Firepower per successful Blue CAS sortie: 1 - by a GP plane on CAS; 2 - by a SP-CAS plane.
FBD(KBD)	Firepower per Blue division.
FBSK	Fraction of Blue aircraft shelters hit by Red that are destroyed.
FRA(KRA)	Firepower per successful Red CAS sortie: 1 - by a GP plane on CAS; 2 - by a SP-CAS plane.
FRBD(15)	Force ratio for Blue division destruction--vector of breakpoint abscissas for interpolation.
FRD(KRD)	Firepower per Red division.
FRFA(15)	Force ratios for FEBA advance--vector of breakpoint abscissas for interpolation.
FRRD(15)	Force ratios for Red division destruction.
FRSK	Fraction of Red aircraft shelters hit by Blue that are destroyed.
GVA	Game value added (i.e., value added to each payoff entry to make it positive for the game-solving procedure).
IAA	Indicator for air-to-air combat mode: 0 - basic method; 1 - method where some attackers drop their ordnance, then shoot back at enemy interceptors.
IBABA	Indicator for Blue ABA attack mode of Red airbases (1, 2, 3, or 4).
IDBSRC	Day for Blue sortie rates to change.
IDL2	First day of second period; if two periods, first day of first period (i.e., day 1).
IDL3	First day of third period; if two periods, first day of second period.

<u>Variable Name</u>	<u>Definition</u>
IDRSRC	Day for Red sortie rates to change.
IPRU	Indicator for printing third-period game results.
IPRV	Indicator for printing second-period game results: 0 - do not print; 1 - print.
IRABA	Indicator for Red ABA attack mode of Blue airbases (1, 2, 3, or 4).
IREPLB	Indicator for casualty replacement of Blue ground forces: 0 - no Blue ground casualties are replaced; 1 - all Blue ground casualties are replaced.
IREPLR	Indicator for casualty replacement of Red ground forces.
IRO	First Red allocation to use in solving first-period games (must not exceed NR).
IR3SH	Indicator for Red SP-ABA aircraft to be sheltered: 0 - do shelter them; 1 - do <i>not</i> shelter them.
JR0	First Red allocation to use in solving second-period games (must not exceed NR).
KR0	First Red allocation to use in solving third-period games (must not exceed NR).
MOE	Measure of effectiveness to be optimized: 1 - FEBA; 2 - firepower difference; 3 - air firepower difference; 4 - surviving aircraft, weighted by type; 5 - generalized air measure, including QRA.
MOET	Day on which MOE is to be found.
NB	Number of Blue pure strategies (all pure strategies are available in each period).
NFRBD	Number (up to 15) of force ratios for Blue division destruction.
NFRFA	Number (up to 15) of force ratios for FEBA advance.
NFRRD	Number (up to 15) of force ratios for Red division destruction.
NID	Number (up to 90) of days in war.

<u>Variable Name</u>	<u>Definition</u>
NKBA	Number of kinds of Blue aircraft.
NKBD	Number (up to 3) of kinds of Blue divisions.
NKRA	Number of kinds of Red aircraft.
NKRD	Number (up to 3) of kinds of Red divisions.
NPD	Number (up to 3) of periods in war.
NR	Number of Red pure strategies (all pure strategies are available in each period).
RAA(KRA, ID)	Red aircraft added, by kind of Red aircraft and day (including day 1).
RADBI(INDR, TYB)	Air-to-air detection parameter--Red attackers detect Blue interceptors.
RAKBI(INDR, TYB)	Air-to-air kill parameter; Red attackers-- 1 - CAS; 2 - ABA; 3 - CAS; 4 - ABA kill Blue interceptors: 1 - GP; 2 - SP.
RALPHA(TYR, MSR)	Fraction of Red attackers that do not jettison their ordnance but continue on, by Red attacker type and mission.
RCWGT	Weight for cumulative Red CAS firepower delivered (must be zero if MOE=4).
RD(15)	Proportion of Red divisions destroyed.
RDA(KRD, ID)	Red divisions added by kind of Red division and day (including day 1).
RDBNS(2)	Parameter for Red detecting Blue nonsheltered aircraft: 1 - Red GP aircraft; 2 - Red SP-ABA aircraft.
RDBS(TYR)	Parameter for Red detecting Blue shelters: 1 - Red GP aircraft; 2 - Red SP-ABA aircraft.
RFRAC1	Fraction of Red aircraft on base before change in sortie rate.
RFRAC2	Fraction of Red aircraft on base after change in sortie rate.

Variable Name	Definition
RIDBA(TYR,INDB)	Air-to-air detection parameter; Red interceptors detect Blue attackers.
RIKBA(TYR,INDB)	Air-to-air kill parameter; Red interceptors-- 1 - GP; 2 - SP kill Blue attackers: 1 - GP-CAS; 2 - GP-ABA; 3 - SP-CAS; 4 - SP-ABA.
RKBNS(2)	Parameter for Red killing Blue nonsheltered aircraft: 1 - Red GP aircraft; 2 - Red SP-ABA aircraft.
RKBS(2)	Parameter for Red killing Blue shelters: 1 - Red GP aircraft; 2 - Red SP-ABA aircraft.
RPARK	Number of Red parking areas for aircraft on each Red airbase.
RPASS(TYR)	Number of passes per Red ABA sortie by-- 1 - Red GP-ABA aircraft; 2 - Red SP-ABA aircraft.
RQWGT(2)	Weights for Red surviving GP aircraft and/or QRA (analogous to BQWFT(.)).
RSAMZB(TYB,MSB)	Proportion of Blue attack sorties by type and mission destroyed by Red ground-to-air weapons.
RSWGT(MS)	Weights for surviving SP Red aircraft, by kind of aircraft.
R ⁴ AL	Overlap factor (between 0 and 1) for Blue munitions at Red airbase.
R ⁴ AN1,R ⁴ AN2	Lethal area covered by one pass of a Blue GP- or SP-ABA aircraft (resp.) dropping "anti-nonsheltered" munitions against nonsheltered aircraft.
R ⁴ AS1,R ⁴ AS2	Lethal area covered by one pass of a Blue GP- or SP-ABA aircraft (resp.) dropping "anti-shelter" munitions against shelters.
R ⁴ B	Area of a typical airbase on which Red aircraft might be located.
R ⁴ NS1,R ⁴ NS2	A reduction factor applied to R ⁴ AN1 or R ⁴ AN2 (resp.) when "anti-nonsheltered" munitions are dropped on shelters.
R ⁴ SN1,R ⁴ SN2	An expansion (or reduction) factor applied to R ⁴ AS1 or R ⁴ AS2 (resp.) when "anti-shelter" munitions are dropped on nonsheltered aircraft.

<u>Variable Name</u>	<u>Definition</u>
SORRB1(TYB,MSB)	Sortie rates for Blue before day IDBSRC, by type of aircraft: 1 - GP; 2 - SP and by mission: 1 - CAS; 2 - ABA; 3 - INT.
SORRB2(TYB,MSB)	Sortie rates for Blue on and after day IDBSRC, by type of aircraft: 1 - GP; 2 - SP and by mission: 1 - CAS; 2 - ABA; 3 - INT.
SORRR1(TYR,MSR)	Sortie rates for Red before day IDR SRC, by type of aircraft: 1 - GP; 2 - SP and by mission: 1 - CAS; 2 - ABA; 3 - INT.
SORRR2(TYR,MSR)	Sortie rates for Red on and after day IDR SRC, by type of aircraft: 1 - GP; 2 - SP and by mission: 1 - CAS; 2 - ABA; 3 - INT.
XNBAA	Number of notionalized Blue air-to-air combat regions (on Blue side of FEBA).
XNBAB	Number of notionalized (identical) Blue airbases.
XNRAA	Number of notionalized Red air-to-air combat regions (on Red side of FEBA).
XNRAB	Number of notionalized (identical) Red airbases.

APPENDIX B

ALPHABETICAL LISTING AND DEFINITIONS OF
COMPUTED VARIABLES OF SUBROUTINE CAM

<u>Variable Name</u>	<u>Definition</u>
ABQRA	Actual number of Blue QRA aircraft (GP aircraft designated as QRA).
ABQRAN	Number of nonsheltered Blue QRA aircraft.
ABQRAS	Number of sheltered Blue QRA aircraft (QRA are given priority in sheltering).
ARQRA	Actual number of Red QRA aircraft (GP aircraft designated as QRA).
ARQRAN	Number of nonsheltered Red QRA aircraft.
ARQRAS	Number of sheltered Red QRA aircraft.
BA(TY,MS)	Blue aircraft on missions, by aircraft type (GP or SP) and mission.
BAAS	Blue GP aircraft assignable to missions.
BAD(KBA, ID)	Blue aircraft destroyed on day ID, by kind of Blue aircraft.
BAF(ID)	Blue air firepower (i.e., successful CAS firepower) delivered on day ID.
BAFB(TY,MS)	Blue aircraft that fly back to Blue airbase, by aircraft type and mission.
BAI(KBA, ID)	Inventory of Blue aircraft at beginning of day ID, by kind of Blue aircraft.
BAKAA(TY,MS)	Blue aircraft killed in the air-to-air interaction, by aircraft type and mission.
BAKNS	Blue nonsheltered aircraft destroyed.
BAKS	Blue sheltered aircraft destroyed.
BAL(TY,MS)	Blue aircraft lost to enemy SAMs (ground-to-air interaction), by aircraft type and mission.
BANAS	Blue GP aircraft not assigned to missions.
BANF(TY,MS)	Blue aircraft not flying (i.e., staying on the base): positive only if the sortie rate is less than 1.0.
BATP	Blue attack total passes (=PBABA(1)+PBABA(2)).

Variable Name	Definition
BATS	Blue attack sorties (CAS and ABA).
BATS1	Blue attack sorties per notionalized air-to-air combat region on Red side of FEBA (BATS1=BATS/XNRAA).
BAVUL(KBA)	Blue aircraft vulnerable to enemy ABA, by kind of Blue aircraft (not including QRA).
BAVULT	Total Blue aircraft vulnerable to enemy ABA (not including QRA).
BDD(KBD, ID)	Blue divisions destroyed on day ID, by kind of Blue division.
BDI(KBD, ID)	Blue division inventory at beginning of day ID, by kind of Blue division.
BF(ID)	Blue total firepower (ground plus successful CAS) delivered on day ID.
BFRAC	Fraction of Blue aircraft on base.
BGF(ID)	Blue ground firepower delivered on day ID.
BITS	Blue intercept sorties.
BITSI	Blue intercept sorties per notionalized air-to-air combat region on Blue side of FEBA (BITSI=BITS/XNBAA).
BPENG(TYB)	Proportion of Blue intercept sorties engaged that are of type TYB: 1 - GP; 2 - SP.
BPOPNS(KBA)	Population of nonsheltered Blue aircraft.
BPOPS(KBA)	Population of sheltered Blue aircraft (i.e., number of aircraft), by kind of Blue aircraft (including QRA).
BS(TY, MS)	Blue sorties, by aircraft type and mission.
BSENG(TYB, MSB)	Blue attack sorties engaged by Red interceptors, by type of Blue aircraft and <i>attack</i> mission only: 1 - CAS; 2 - ABA.
BSFB(TY, MS)	Blue sorties that fly back to Blue airbase and do not attempt to deliver ordnance (BSFB(TY,3)=0; the whole array is zero if the first air-to-air attrition method is used).

<u>Variable Name</u>	<u>Definition</u>
BSHEL	Number of Blue shelters (recomputed each day).
BSHELL	Blue shelters remaining after QRA aircraft are sheltered (zero if ABQRAN > 0.0).
BSHELK(ID)	Blue shelters destroyed on day ID.
BSKAA(TYB,MSB)	Blue sorties killed in the air-to-air interactions, by aircraft type and mission.
BSL(TY,MS)	Blue sorties lost to enemy SAMs (ground-to-air interaction), by aircraft type and mission.
BTOT	Total Blue aircraft vulnerable to ABA (=BTOTS+BTOTNS).
BTOTNS	Total nonsheltered Blue aircraft ($= \sum_{KBA} BPOPNS(KBA)$).
BTOTS	Total sheltered Blue aircraft ($= \sum_{KBA} BPOPS(KBA)$).
B4AN	Average area covered by a Red "anti-nonsheltered" munition.
B4AS	Average area covered by a Red "anti-shelter" munition.
B4NS	Average reduction factor when Red "anti-nonsheltered" munitions are used against shelters.
B4SN	Average expansion factor when Red "anti-shelter" munitions are used against nonsheltered aircraft.
CBAF(ID)	Cumulative Blue CAS firepower delivered to date.
CBF(ID)	Cumulative Blue ground plus CAS firepower delivered to date.
CRAF(ID)	Cumulative Red CAS firepower delivered to date.
CRF(ID)	Cumulative Red ground plus CAS firepower delivered to date.
DFEBA	FEBA advance.
DFOBA	Negative of FEBA advance.
FEBA(ID)	FEBA position at end of day ID.
FRBR	Force ratio of Blue to Red firepower.

Variable Name	Definition
FRRB	Force ratio of Red to Blue firepower ($=1/FRBR$).
IBARI	Check variable for the Blue attacker-Red interceptor interaction.
IBIRA	Check variable (the Blue interceptor-Red attacker attritions are zero if either side has zero sorties; IBIRA then is set to 1, and the attrition computation is bypassed).
IDL	First day for which assessment is to be computed in that particular call of CAM.
IDU	Last day for which assessment is to be computed in that particular call of CAM.
IPD	Period of war.
NTN	Number of iterations of Newton's method to find optimal Q.
PBABA(TYB)	Blue ABA aircraft passes by type of ABA aircraft: 1 - GP; 2 - SP.
PBDID	Percent Blue divisions destroyed.
PRABA(TYR)	Red ABA aircraft passes by type of ABA aircraft: 1 - GP; 2 - SP.
PRDID	Percent of Red divisions destroyed.
PROD1, PROD2, X1, X15, X2, DENOM	Working variables for computing attritions in second method (air-to-air).
PROPB(MS,IPD)	Proportion of Blue GP aircraft assigned to mission MS in period IPD (in two-period war, IPD is 2 for the first period and 3 for the second).
PROPR(MS,IPD)	Proportion of Red GP aircraft assigned to mission MS in period IPD.
Q	Proportion of Blue passes to attack Red shelters--computed if IBABA=2 or 4. Or proportion of Red passes to attack Blue shelters (the remainder attack Blue nonsheltered aircraft)--computed if IRABA=2 or 4.
RA(TY,MS)	Red aircraft on missions, by aircraft type and mission.
RAAS	Red GP aircraft assignable to missions.

<u>Variable Name</u>	<u>Definition</u>
RAD(KRA, ID)	Red aircraft destroyed on day ID, by kind of Red aircraft.
RAF(ID)	Red air firepower delivered on day ID.
RAFB(TY, MS)	Red aircraft that fly back to Red airbase, by aircraft type and mission.
RAI(KRA, ID)	Red aircraft inventory at beginning of day ID, by kind of Red aircraft.
RAKAA(TY, MS)	Red aircraft killed in the air-to-air interaction, by aircraft type and mission.
RAKNS	Red nonsheltered aircraft destroyed.
RAKS	Red sheltered aircraft destroyed.
RAL(TY, MS)	Red aircraft lost to enemy SAMs (ground-to-air interaction), by aircraft type and mission.
RANAS	Red GP aircraft not assigned to missions.
RANF(TY, MS)	Red aircraft not flying (i.e., staying on the base; this is positive only if the sortie rate is less than 1.0).
RATP	Red attack total passes (=PRABA(1)+PRABA(2)).
RATS	Red attack sorties (CAS and ABA).
RATS1	Red attack sorties per notionalized air-to-air combat region on Blue side of FEBA (RATS1=RATS/XNBA).
RAVUL(KBA)	Red aircraft vulnerable to enemy ABA, by kind of Red aircraft (not including QRA).
RAVULT	Total Red aircraft vulnerable to ABA that can be sheltered (not including QRA).
RDD(KRD, ID)	Red divisions destroyed on day ID, by kind of Red division.
RDI(KRD, ID)	Red division inventory at beginning of day ID, by kind of Red division.
RF(ID)	Red total firepower delivered on day ID.
RFRAC	Fraction of Red aircraft on base.
RGF(ID)	Red ground firepower delivered on day ID.

Variable Name	Definition
RITS	Red intercept sorties.
RITS1	Red intercept sorties per notionalized air-to-air combat region on Red side of FEBA (RITS1=RITS/XNRAA).
RPENG(TYR)	Proportion of Red intercept sorties engaged that are of type TYR.
RPOPNS(KRA)	Population of nonsheltered Red aircraft, by kind of Red aircraft.
RPOPS(KRA)	Population of sheltered Red aircraft, by kind of Red aircraft.
RS(TY,MS)	Red sorties, by aircraft type and mission.
RSENG(TYR,MSR)	Red attack sorties engaged by Blue interceptors, by type of Red aircraft and <i>attack</i> mission only: 1 - CAS; 2 - ABA.
RSFB(TY,MS)	Red sorties that fly back to Red airbase and do not attempt to deliver ordnance (RSFB(TY,3)=0; the whole array is zero if the first air-to-air attrition method is used).
RSHEL	Number of Red shelters (recomputed each day).
RSHELL1	Number of Red shelters remaining after QRA aircraft are sheltered.
RSHELK(ID)	Red shelters destroyed on day ID.
RSKAA(TYR,MSR)	Red sorties killed in the air-to-air interactions, by aircraft type and mission.
RSL(TY,MS)	Red sorties lost to enemy SAMs (ground-to-air interaction), by aircraft type and mission.
RTOT	Total Red aircraft vulnerable to ABA (=RTOTS+RTOTNS).
RTOTNS	Total nonsheltered Red aircraft (= \sum_{KRA} RPOPNS(KRA)).
RTOTS	Total sheltered Red aircraft (= \sum_{KRA} RPOPS(KRA)).

Variable Name	Definition
R4AN	Average area covered by a Blue "anti-nonsheltered" munition.
R4AS	Average area covered by a Blue "anti-shelter" munition.
R4NS	Average reduction factor when Blue "anti-nonsheltered" munitions are used against shelters.
R4SN	Average expansion factor when Blue "anti-shelter" munitions are used against nonsheltered aircraft.
SHELB(ID)	Number of Blue shelters at beginning of day ID.
SHELR(ID)	Number of Red shelters at beginning of day ID.
SORRB(TY,MS)	Sortie rates for Blue, by aircraft type and mission.
SORRR(TY,MS)	Sortie rates for Red, by aircraft type and mission.
SRB	Working variable, equal to the maximum of 1.0 and the appropriate Blue sortie rate.
SRR	Working variable, equal to the maximum of 1.0 and the appropriate Red sortie rate.
SUM, PROD, X1, X15	Working variables for computing attritions (air-to-air).
SUMB, SUMR	Working variables for computing BANAS and RANAS.
VBADRI(INDB)	Average detection parameter for Blue attackers, by kind of attacker, against Red interceptors in the air-to-air interaction.
VBDRNS	Average detection parameter for Blue against Red nonsheltered aircraft.
VBDRS	Average detection parameter for Blue against Red shelters.
VBIDRA(TYB)	Average detection parameter for Blue interceptors, by type, against Red attackers in the air-to-air interaction.
VBKRNS	Average kill parameter for Blue against Red nonsheltered aircraft.
VBKRS	Average kill parameter for Blue against Red shelters.

Variable Name	Definition
VRADBI(INDR)	Average detection parameter for Red attackers, by kind of attacker, against Blue interceptors in the air-to-air interaction.
VRDBNS	Average detection parameters for Red against Blue nonsheltered aircraft.
VRDBS	Average detection parameter for Red against Blue shelters.
VRIDBA(TYR)	Average detection parameter for Red interceptors, by type, against Blue attackers in the air-to-air interaction.
VRKBNS	Average kill parameters for Red against Blue nonsheltered aircraft.
VRKBS	Average kill parameter for Red against Blue shelters.
XNS	Proportion of nonsheltered aircraft killed in the ABA interaction--used for apportioning destroyed aircraft by kind of aircraft (redefined for Red).
XS	Indicator for sheltering of Red SP-ABA aircraft: 0.0 - do not shelter; 1.0 - shelter (XS=1-IR3SH)--also used later in routine as proportion of sheltered aircraft killed in the ABA interaction--used for apportioning destroyed aircraft by kind of aircraft (redefined for Red).

U170397

IDA