OLLSCOIL NA hÉIREANN, CORCAIGHTHE NATIONAL UNIVERSITY OF IRELAND, CORK

COLÁISTE NA hOLLSCOILE, CORCAIGH UNIVERSITY COLLEGE, CORK

SUMMER EXAMINATIONS, 2012

B.E. DEGREE (ELECTRICAL AND ELECTRONIC, ENERGY)

POWER ELECTRONICS, DRIVES AND ENERGY CONVERSION EE4001

Dr. L. Seed Prof. N. Riza Dr. J.G. Hayes

Time allowed: 3 hours

Answer *four* out of five questions. All questions carry an equal weighting of 20 marks.

The use of an approved calculator is permitted.

1. Induction Motor Characterization and DOL Operation

- (a) A symmetrical, four-pole, three-phase, star-connected induction motor is characterized as follows. The dc phase-to-phase resistance is measured to be 3.54 Ω. A no-load test with an applied voltage of 400 V (line-line), 50 Hz, results in a phase current of 1.8 A, and a three-phase power of 120 W. A locked-rotor test with an applied voltage of 71 V (line-line), 50 Hz, results in a phase current of 4 A, and a three-phase power of 150 W.
 - (i) Based on the no-load test, estimate the per-phase equivalent circuit parameters: stator resistance, R_S , core friction and windage losses, P_{CFW} , and stator self inductance, L_S .

[5 *marks*]

(ii) Based on the locked-rotor test, estimate the per-phase equivalent circuit parameters: reflected rotor resistance, $R'_{\rm R}$, stator leakage inductance, $L_{\rm LS}$, and reflected rotor leakage inductance $L_{\rm LR}$.

Assume that $L'_{LR} = \frac{3}{2}L_{LS}$ for this Class B machine.

[5 *marks*]

- (b) The specification table for Westinghouse induction motors is provided as an attachment (see page 7). Consider the **22** kW, **four**-pole machine with 400 V (line-line), 50 Hz applied in the delta configuration.
 - (i) Estimate the per-phase equivalent circuit parameters: $L_{\rm M}$, $R_{\rm R}$, $R_{\rm S}$, $P_{\rm CFW}$, $L_{\rm LS}$ and $L_{\rm LR}$. Assume $R_{\rm S}$ equals $R_{\rm R}$, and $L_{\rm LS}$ equals $L_{\rm LR}$ for this class of machine.

[7 *marks*]

(ii) If the machine is run in generating mode and outputs 22 kW electrical, what are the approximate input shaft speed and machine power factor for this condition?

[3 *marks*]

2. Permanent Magnet AC Machines and Induction Motor Speed Control

- (a) The specification sheet for the TK 164-110-03 12-pole permanent magnet motor is attached (see page 8).
 - (i) Estimate the no-load core, friction and windage losses and determine the per-phase no-load current.

[4 *marks*]

(ii) Under full-load conditions, determine the applied per-phase current and voltage, power factor for the full power condition under water cooling: 13.92 kW output power at 173.99 rad/s.

[4 *marks*]

Note that the specified winding parameters are twice the per-phase parameters.

$$T_{EM} = 3 \cdot k \cdot I_{ph(rms)}$$
 and $E_{ph(rms)} = k \cdot \omega$

- (b) Consider the Westinghouse 75 kW, 6-pole machine delta-wired to 400 V (line-line), 50 Hz (see page 7).
 - (i) What are the initial starting line current and torque for a direct-on-line start?
 - (ii) Sketch the wiring diagram of the direct-on-line start of the induction machine.

[4 *marks*]

A volts/hertz controller with voltage boost is integrated into the delta-wired drive. The series resistance is estimated to be $80 \text{ m}\Omega$.

- (iii) Determine approximate values for the starting frequency, line voltage and current in order to supply the specified starting torque.
- (iv) Determine approximate values for the line voltage and current and power factor required to ensure constant-power operation of the machine at twice the rated speed.
- (v) Based on your answers in part (iv) above, determine approximate values for the line voltage, line current and power factor required to ensure constant-power operation of the machine at twice the rated speed when operating as a **generator**.

Use the formula
$$slope = \frac{V_{ph,rated} - R_S \cdot I_{R,rated}}{f_{rated}}$$
 for low-voltage boost.

[8 *marks*]

3. Non-isolated Dc-dc Converters

- (a) A fuelcell vehicle features two interleaved 30 kW boost converters to provide a total output power of 60 kW. The converters are interleaved in order to reduce the ripple current drawn from the source. Each converter has an inductance of 45 μH and switches at 16 kHz. At lower power levels only one phase of the interleaved converter is required to operate. The other phase is disabled. The vehicle generates a 400 V dc link voltage when the fuel cell voltage drops to 200 V at 5 kW and only one stage operates.
 - (i) At what stage power does the stage current become discontinuous when the fuelcell voltage is 200 V?
 - (ii) Is the stage operating in CCM or DCM for the 5 kW condition?
 - (iii) Determine the peak and rms currents in the inductor and the rms current in the fuelcell input capacitor.
 - (iv) Calculate the rms current in the dc-link capacitor.

[7 *marks*]

(v) Sketch to rough scale the current in (a) the inductor, and (b) the dc-link capacitor. [3 marks]

The switch duty cycle during DCM buck is given by $D = \sqrt{\frac{V_{LV}}{V_{HV}\left(V_{HV} - V_{LV}\right)}} \, 2f \, L I_{LV} \; .$ The switch duty cycle during DCM boost is given by $D = \sqrt{\frac{\left(V_{HV} - V_{LV}\right)}{V_{IV}V_{HV}}} \, 2f \, L I_{LV} \; .$

LV, HV = low voltage, high voltage.

- (b) Design a Voltage Regulator Module (VRM) for local power regulation of a microprocessor on a mobile phone. The VRM is powered from a 3.8 V Li-ion battery and uses a buck converter. The microprocessor specifications call for a 1.0 V supply and consumes 2 A. The switching frequency is 1 MHz.
 - (i) Choose an inductor that limits the current ripple to $\pm -5\%$.
 - (ii) Calculate the $L \cdot I_L(rms) \cdot I_L(pk)$ factor in order to determine a relative sizing for the inductor.
 - (iii) Determine the inductance required for each stage if two converters are interleaved to achieve the same peak-to-peak input ripple current as for the single stage converter. Use the following formulae for the input peak-peak ripple current.

$$0 \le D \le 0.5 \quad \Delta I_{I(p-p)} = \frac{V_{LV}}{fL} (1-2D), \quad 0.5 \le D \le 1.0 \quad \Delta I_{I(p-p)} = \frac{V_{LV}}{fL} (1-2D) (1-D)$$

(iv) Calculate the $2 \cdot L \cdot I_L(rms) \cdot I_L(pk)$ factor in order to determine relative sizing for the two inductors.

[10 *marks*]

4. Isolated Dc-dc Converters

- (a) A 100 kHz forward converter, is supplied by 400 V, and outputs 12 V at 20 A. The primary has 50 turns and the secondary has 5 turns.
 - (i) Sketch the circuit.
 - (ii) Calculate the duty cycle, output inductance, and rms secondary and rms output inductor currents, if the output inductor has a 10 % peak-to-peak current ripple.
 - (ii) Calculate the peak and rms currents in the primary if the magnetizing inductance is 3 mH.

[10 *marks*]

- (b) Design a continuous-conduction flyback dc-dc power converter for the following conditions: nominal dc input voltage 400 V, output voltage $V_0 = 12$ V, output power $P_0 = 5$ to 10 W, switching frequency $f_S = 40$ kHz. Note the following design considerations: (i) maintain the maximum duty cycle at no greater than 0.45; (ii) the primary winding has 100 turns.
 - (i) Calculate the number of secondary turns so as to not exceed the maximum duty cycle. Assume ideal components and note that the number of turns must be an integer.
 - (ii) Determine the minimum magnetizing inductance required such that the converter is the continuous-conduction boundary at low power.
 - (iii) Determine the primary average, rms and peak currents at full power.
 - (iv) Determine the secondary rms and output capacitor rms currents.

[10 *marks*]

5. Power Semiconductors

- (a) The IRFP460 power MOSFET from International Rectifier operates in a boost converter switching at 20 kHz with a dc link voltage $V_{\rm d}=400$ V, and load current $I_{\rm o}=20$ A. The MOSFET is driven by a voltage-source square wave $v_{\rm GG}$, of amplitude 0 V to 15 V, in series with an external gate resistance $R_{\rm G}=25$ Ω . Assume a silicon carbide diode with a 1 V forward drop and no reverse recovery.
 - (i) Sketch $v_{GG}(t)$, $v_{GS}(t)$, $v_{DS}(t)$, and $i_D(t)$ during turn-on of the MOSFET.
 - (ii) Determine the following parameters from the data sheet at a junction temperature of 80°C: threshold voltage, forward transconductance, gate-source capacitance, gate-drain capacitance, and on-state resistance. See pages 9-11.
 - (iii) Calculate the following (i) turn-on delay time $t_{d(on)}$, (ii) current rise time t_{ri} , (iii) voltage fall time t_{fv} .

Useful formulae:

RC charge time
$$t = -RC \ln \left[I - \frac{v_c - V_{ci}}{V_{GG} - V_{ci}} \right]$$

RC discharge time $t = -RC \ln \left[\frac{v_c - (-V_{GG})}{V_{ci} - (-V_{GG})} \right]$

[10 *marks*]

- (b) The Gen II Toyota Prius uses a 20 kW bidirectional converter to generate a 500 V dc link voltage from the 200 V NiMH battery. The bidirectional converter has an inductance of 435 uH and switches at 10 kHz. The vehicle is operating in generating mode and the bidirectional converter is required to act as a boost at full power.
 - (i) Calculate the rms, average, maximum, and minimum currents in the IGBT.
 - (iv) Determine the typical power loss at 125 °C due to conduction and switching in the IGBT for this full-power condition when using the SEMiX 252GB126HDs as the half-bridge module. See pages 12-13.

The rms of a triangular wave is $\Delta I_{P-P} \div \sqrt{12}$.

[10 *marks*]

75kW-450kW TEFC, CLASS F, S1 (MCR) DUTY

kМ	Full Speed (RPM)	Frame No.	Rated Torque (Non)	Cu 380	nest (an at volts 460	sp) 415	MARKS STATE OF	clency at load		Po/	ner Fac at load 75%	ancianioni -	D.O.L. Starting current (%FLC)	D.O.L. Starting Torque (%FLI)	Peli out Torque (%FET)	Hoter inertia mri (kg.mi)	Hax load inertia mr' (kg.m')	Sound presser (dB(A)) (svg so- lookin)
19	2960	02500	242	13)	125	120	95.5	955	95.0	3091	0.68	0.85	685	140	250	0.5	10	81
75	1480	02509	484	137	130	126	95,5	955	95,0	0,87	0.84	9.77	650	220	240	33	44	73
75	984	DSBOM	728	139	132	127	95.3	948	943	0.86	0.83	0.76	688	140	230	2.8	127	75 80
90	2960	D2805	290	169	153	147	954	948	94.0	0.89	0.88	0,82	712 204	118 140	230	937 12	16 56	78
90	1480 Non	20850	561	164	156	151 153	95.6 95.3	95.0 94.9	94.2 94.8	0.87	0.84	9.76 9.76	694	155	230	43	150	79
90 110	985 2960	03/5S 0280W	355	167 195	359 186	179	95.4	95.0	94.8	0.90	0.88	0.82	715	105	230	0.9	18	-80
100	1482	02805	709	198	188	182	95.8	952	94.4	88.0	0.85	879	703	140	230	2.4	-68	78
110	985	DBISM	1066	202	1972	185	95.8	953	949	0.86	0.84	027	689	140	220	5	125	75
TIÓ	737	0315A	1425	297	206	198	94.9	94.5	93.0	0.8)	0.76	8.65	643	150	220	7,5	320	75
132	2976	03755	424	233	221	213	95.8	952	943	0.90	0.88	0.83	723	100	220	1,3	.20	80
132	1482	03155	850	236	224	216	962	956	948	0.89	8.85	0.80	741	140	220	33	75	78
332	986	03/58	1278	243	231	222	95.8	95,4	953	0.86	0.85	0.78	494	150	220	5.7	229	79
132	137	.0319A	1710	259	246	237	95	94.5	93,1	0.82	937	0.66	638	110	220	8.3	365	75
150	2976	03/5M	461	263	250	50	56	95.4	95.4	0.90	0.89	0,84	724	95	220	.15	23	83
150	1485	D3I5W	964	268	254	245	962	95.6	94.8	0.89	0.85	0.80	309	140	220	3,6	91	78
150	985	D315A	1454	276	262	252	95.3	94.8	93.5	0.87	0.85	0.78	.69T	300	220	7.3 9(1	260 400	79 75
750	337 3000	1315A	1943	292	277	207	95.5	94.8	93.2 20.6	0.82	0.78	0.69	666 677	106	220 215	2	30	83
185	2982	23/5M	592	323	308	,296 294	957	947 95.4	93,5 94.5	0.90	0.89	0.86	775	140	220	37	78	76
185 185	1486 985	D315M D315A	1189 1793	338	321	310	95.5	95	93.5	0.87	0.85	079	673	120	220	89	270	79
185	737	B3150	2397	359	341	329	95.5	94.8	93.5	082	0.79	0.69	634	10	220	91.7	450	- 13
720	2970	11315A	707	350	332	320	36	96	95.5	0.91	0.90	0.86	722	90	240	2.2	30	93
220	1475	0315A	1424	358	340	328	95.8	95.2	94.0	0.89	0.67	0.83	726	100	240	591	130	81
220	997	D3(50)	2128	360	342	329	96.5	95.4	94.6	0.89	0.87	9,80	699	100	230	16.5	350	-81
220	738	03(50	2846	388	369	355	95,5	95	935	0,82	078	0.69	653	190	220	11.6	520	78
260	2970	03150	836	437	45	300	96	95.5	94,0	0.91	0.98	0.86	720	95	240	2,85	40	85
260	1480	03/50	1677	447	424	409	95	95,5	94,0	0.89	0.87	0.83	700	100	240	6.9	150	82
260	985	93/50	2520	452	430	414	96	95.6	94.5	0.88	0.86	0,79	695	90	,220	12,9	400	82
250	738	03/5A	3354	483	459	442	95,9	95,3	940	0.82	0.78	0.69	650	110	.210	20,3	750	79
300	2995	03ED	963	484	460	444	96.3	95.8	945	0.91	0.90	0.87	735	. 100	240 240	3.35 7.6	45 150	85 83
300	1480	03150	1935	499	474	457	963 m.o.	95.8	945	0.89	0.87	0,83	720 710	90	220	19.2	550	82
300	985	0355A 0355C	2908	506 540	981 514	464	96,0 96,0	95,6 95,5	94.5 94.5	0.82	0.78	0.69	665	100	210	22.4	800	80
300 335	740 2975	D3(5D	3871 8075	544	317	498	964	96	945	0.91	0.90	0.87	745	86	240	3.9	52	85
335	1480	B3150	5161	56	533	514	96.4	95.8	94.5	0.89	0.87	0.94	710	100	240	8.6	165	85
335	987	23550	326	566	538	519	96.0	95,6	94,5	98.00	080	0.80	705	90	210	21.0	550	83
335	740	D400A		616	585	564	96.0	95.5	94.5	0.81	076	0,66	65.0	100	210	29.3	950	-90
375	2975	10355A		612	581	550	96.4	96.0	94.8	30.92	0.90	0.89	730	.85	240	4725	60	'85
175	1480	D355A		632	600	578	96.5	96.0	94,8	0.89	0.87	0.84	310	100	230	323	195	85
375	987	0400A	3628	640	608	586	96.3	95,8	94,8	0.88	0.86	0.00		92	200	22.7	550	83
375	740	04000	4839	690	658	635	961	95,5	94,5	6.81	0.27	88.0	645	95	290	305	960	80
450		04000		688	654	630	96.5	961	94.8	0.92	8.90	0.88		90	240	7.7	85	35
450		03550		79	.575 275	45)	96,6	96.0	94.8	0.89	0,87	0,84		95 an	230	13,5	210	85
450		D400A		321	685 750	860	96,3	95.8	94.8	0.88	0.88	0.70		90 95	210 210	25 50	580 1300	83 83
450		D450A		77)	733	706	96)	95.6	94,6			9669						ege Administration

Technical Data Summary TK 164

High power medium speed spindle motors Applications:
Direct drive lathes
Swiss type lathes Speed up to 5000 rpm, 40-200 Nm Short duty constant power

	Symbol	TK 164-60-04	TK 164-110-03	TK 164-250-09	Units
Reference data (winding independent)	T				
Nominal torque, S1,0 speed, conduction+convection cooled IC 418 1)	Tnc	19	40	106	Nmrms
Nominal torque, S1, O speed, water cooled 2)	Tnw	37	80	209	Nmrms
Peak torque, S6 10% 1)	Tpk	54	114	302	Nmrms
Maximum torque 3)	Tul	93	171	389	Nm
Maximum structural speed	Pn	500	500	500	rad/sec
Critical flux control torque 4)	Pf	86	157	366	Nm
Motor constant	Tw	2,33	3,63	6,31	Nm/sqrt(W)
Pole number	PN	12	12	12	
Connection		Υ	Y	Y	
Physical data (winding independent)					
Rotor inertia	Jm	4,30	7,30	16	mkam2
Acceleration at maximum torque	apk	12576	15595	18855	rad/s2
Outer diameter	Dout	164	164	164	mm
Rotor hole diameter	Din	96	96	96	mm
Overall stator length	Stkout	102	152	292	mm
Stack length	Stk	60	110	250	mm
Stator mass	Msta	4.8	8	17	kg
Rotor mass	Mrot	1,3	2.4	5,5	ka
Insulation		Class H - F	Class H - F	Class H - F	
Protection		IP 00	IP 00	IP 00	
Thermal data (winding independent)					
Thermal imp. assumed for cond. Cooling 1)	Rthc	0,390	0,214	0,093	K/W
Thermal impedance, motor to cooling frame 2)	Rthw	0,092	0,050	0.021	K/W
Thermal capacity	Cth	2,016	3,360	7.140	J/K
Thermal time constant cond cooling 1)	Tc	786	719	664	sec
Thermal time constant, water cooled 2)	Tw	185	168	150	sec
Loss at Tnc	LOc	267	491	1.120	W
Loss at Tnw	LOW	1.030	1,880	4,380	W
Coolant flow, 5 C temp rise, 35 C inlet	Cfl	3,0	5,4	12,6	lit/min
Treshold of built-in PTC	PTCt	130	130	130	oC
Standard data (wholes dans data)					
Electrical data (winding dependent) Nominal speed (knee speed) 5)	wn	173,29	173,99	52,40	rad/sec
Nominal speed (knee speed) 5) Nominal power, water cooling, knee speed 6)	Pnw	6.41	173,99	10.95	kW
Back E.M.F. between phases	Ke	1,80	1,76	5.13	
Torque constant	Kt	3,13	3.05		Nm/Arms
Temp.coeff. of E.M.F. and Kt	dKe/dT	-0,09	-0,09	-0.09	%/oC
Winding resistance, 20oC	Rw	2,69	1.06	-,	Ohm
			6,58	_, _	
Winding inductance	LW	12,63			
Nominal current, zero speed 1)	In0	6,08	13,12		Arms
Nominal current, zero speed, 2)	In	12,46	27,62		Arms
Maximum current 3)	lpk	37,19	70,12	,	Arms
Frequency Efficiency at rated power 6)	fn n	166 0,86	166 0,88	50 0,71	Hz

Definitions:

- 1) Motor assembled in light alloy case with outer surface = 500% of
 2) Water cooled motor, water inlet temperature = 35 C, copper temp, 120
 3) Torque at which magnetic saturation prevents further overloading
 4) Knee torque corresponding to unlimited constant power operation
 5) Limit of constant torque operation with 400 Vac supply

SEMIX 252GB126HDs

Trench IGBT Modules

SEMIX 252GB126HDs

Preliminary Data

Features

- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability

Typical Applications

- AC inverter drives
- UPS
- Electronic Welding

Remarks

 Case temperatur limited to T_C=125°C max.

Absolute Maximum Ratings T _{case} = 25°C, unless otherwise specified								
Symbol	Conditions		Values	Units				
IGBT								
V _{CES}	T _j = 25 °C		1200	ν				
l _c	T _j = 150 °C	T _c = 25 °C	270	Α				
		T _c = 80 °C	200	Α				
I _{CRM}	I _{CRM} =2xI _{Cnom}		400	Α				
V _{GES}			± 20	٧				
t _{pac}	V _{CC} = 600 V; V _{GE} ≤ 20 V; V _{CES} < 1200 V	T _j = 126 °C	10	μs				
Inverse Diode								
l _p	T _j = 150 °C	T _c = 25 °C	210	A				
		T _c = 80 °C	160	Α				
IFRM	I _{FRM} = 2xI _{Fnom}		400	Α				
FSM	t _p = 10 ms; sin.	T _j = 25 °C	1000	Α				
Freewhee	ling Diode							
l _p	T _j = *C	T _{csee} = *C	10	Α				
I _{FRM}	I _{FRM} = 2xI _{Fnom} , t _p = ms			Α				
Module								
I _{t(FMS)}			600	Α				
T _{vj}			- 40 + 150	.c				
T _{elg}			- 40 + 126	.c				
V _{isot}	AC, 1 min.		4000	ν				

Characte	ristics	T _{case} =	T _{case} = 25°C, unless otherwise specified						
Symbol	Conditions		min.	typ.	max.	Units			
IGBT									
V _{GE(th)}	V _{GE} = V _{CE} , I _C = 6,4 mA		5	6,8	6,5	٧			
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C			1	mΑ			
V _{CE0}		T _j = 25 °C		1	1,2	٧			
		T _j = 125 °C		0,9	1,1	V			
r _{CE}	V _{GE} = 16 V	T _j = 25°C		4,7	6,3	mΩ			
		T _j = 125°C		7,3	9	mΩ			
V _{CE(sat)}	I _{Onom} = 150 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,7	2,15	٧			
		T _j = 125°C _{chipley} .		2	2,45	V			
Cies				10,7		nF			
Coes	V _{CE} = 26, V _{GE} = 0 V	f = 1 MHz		0,6		nF			
Cres				0,5		nF			
Qa	V _{QE} = -8 +15V			1050		пC			
t _{d(on)}				300		ns			
Ļ.	R _{Gon} = 3 Ω	V _{CC} = 600V		45		ns			
E _{an}		I _{Cnom} = 150A		20		mJ			
t _{d(off)}	R _{Geff} = 3 Ω	T _j = 126 °C		570		ns			
t _y				110		ns			
E _{aff}				21		mJ			
R _{th(j-c)}	per IGBT				0,15	K/W			

