SUITES VÉRIFIANT
$$u_{n+2} = \frac{u_{n+1}^2 + u_n^2}{2}$$

<u>Définitions et notations</u>:

- On note S l'ensemble des suites $u = (u_n)_{n \in \mathbb{N}}$ vérifiant $u_0 \in \mathbb{R}_+$, $u_1 \in \mathbb{R}_+$ et $u_{n+2} = \frac{1}{2}(u_{n+1}^2 + u_n^2)$ pour tout entier naturel n.
- Pour $(x,y) \in \mathbb{R}^2_+$, u(x,y) désigne l'unique suite u de S telle que $u_0 = x$ et $u_1 = y$; le terme de rang n de la suite u(x,y) est noté $u_n(x,y)$.
- Pour $\lambda \in \mathbb{R}^1$, on note E_{λ} l'ensemble des couples $(x,y) \in \mathbb{R}^2_+$ tels que la suite u(x,y) tende vers λ .

Objectif:

Le but du problème est d'étudier les éléments de S, en particulier de décrire l'ensemble des couples (x, y) de \mathbb{R}^2 tels que la suite u(x, y) tende vers 0.

I. - <u>Généralités</u>

- 1. a) Déterminer les suites constantes appartenant à S.
 - b) On considère une suite $u \in S$. On suppose que u tend vers $\lambda \in \overline{\mathbb{R}}$. Quelles sont les valeurs possibles de λ ?
 - c) Pour $u \in S$ et $n \in \mathbb{N}$, exprimer $u_{n+3} u_{n+2}$ en fonction de u_{n+2} et u_n .
- 2. Dans cette question, on suppose que $u \in S$ vérifie la condition (C_1) suivante :
 - (C_1) $\exists N \in \mathbb{N}, u_{N+2} > \max(\{u_N, u_{N+1}\}).$
 - a) Si N est fixé comme dans (C_1) , montrer que la suite $(u_n)_{n>N+1}$ est strictement croissante.
 - b) Montrer que u tend vers $+\infty$.

On prouverait de même que si u vérifie la condition (C_2) $\exists N \in \mathbb{N}, u_{N+2} < \min(\{u_N, u_{N+1}\}),$ alors u converge vers 0.

- 3. a) Étudier les suites u(2,0) et u(1,0).
 - b) Montrer que E_0 , E_1 et $E_{+\infty}$ sont non vides.
- 4. Dans cette question, on suppose que $u \in S$ est non nulle et vérifie la condition (C_3) suivante :
 - $(C_3) \quad \forall n \in \mathbb{N}, \min(\{u_n, u_{n+1}\}) \le u_{n+2} \le \max(\{u_n, u_{n+1}\}).$

Dans les questions 4.a) et 4.b), on suppose de plus que $u_0 \le u_1$.

- a) Montrer que la suite $(u_{2k})_{k\geq 0}$ (resp. la suite $(u_{2k+1})_{k\geq 0}$) est croissante (resp. est décroissante).
- b) Montrer que u converge vers 1.
- c) Si $u_0 > u_1$, que deviennent les résultats de 4.a) et 4.b)?
- 5. Déterminer $E_0 \cup E_1 \cup E_{+\infty}$.
- 1. $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$ est appelée la droite numérique (réelle) achevée.

II. - Étude des bassins d'attraction

- 1. On considère $u \in S$. On suppose que u converge vers 1. On considère alors une suite $u' \in S$ telle que $u'_0 \ge u_0$ et $u'_1 \ge u_1$, l'une au moins des deux inégalités étant stricte.
 - a) Montrer qu'il existe $\varepsilon > 0$ tel que $u'_n \ge u_n + \varepsilon$ pour tout $n \ge 2$.
 - b) Que dire de u'_n lorsque n tend vers $+\infty$?
- 2. On note $A = \{x \in \mathbb{R}_+, u_n(x,0) \xrightarrow[n \to +\infty]{} 0\}.$
 - a) Justifier l'existence de $a = \sup(A)$. Établir que $1 \le a \le 2$.
 - b) Montrer que, pour tout $k \in \mathbb{N}$, la fonction $x \mapsto u_k(x,0)$ est continue sur \mathbb{R}_+ .
 - c) En utilisant la question 2.b) et les résultats de la partie I, montrer que la suite u(a,0) converge vers 1.
 - d) Étudier le comportement de u(x,0) selon la position de x par rapport à a.
 - e) Étudier u(x, y) lorsque x > a et $y \in \mathbb{R}_+$.
- 3. Dans cette question, le réel $x \in [0, a]$ est fixé.
 - a) Montrer qu'il existe un unique réel $y \in \mathbb{R}_+$ tel que u(x,y) converge vers 1.

On note $y = \varphi(x)$ ce réel. L'application φ est donc définie sur [0, a].

- b) Décrire les trois ensembles E_0 , E_1 et $E_{+\infty}$ à l'aide du réel a et de l'application φ .
- 4. a) Montrer que l'application φ est strictement décroissante sur [0, a].
 - b) Montrer que l'application φ est continue sur [0, a].