Pion Capture at Rest

Mark Ross-Lonergan (Hi!)
LArlAT Analysis Summit, 30th Sept 2016

Pion capture at rest

A negative pion which stops in a material has the chance to be electromagnetically captured forming a pionic-atom.

As the Pion spirals inwards, eventually there is a non-zero overlap of the pion wavefunction with nucleons of the host nucleus, and is absorbed.

The rest mass of the pion is then converted into kinetic energy for the nucleons. This is not a democratic process! Only a "few" nucleons share in the kinetic energy.

Depending on internal final state interactions and re-absorption, between 0 and ~5 nucleons are ejected from the nucleus and **no** final state pion

Not just neutrons.

Capture on Lithium

Table 7
Branching ratios per stopped pion (%) for ⁶Li.

Ref.	nn	np	nd	nt	pp	dt	pt	tt	cc ^{c)}
[166]	41(17)	11(3)		N TONES			10 10	11.00	
[166] ^{a)}	69(28)	23(6)							
[179]	51(9)	13(2)	14(2)	8.6(13)					4.2(5)
[178] ^{b)}	66(2)	6.5(6)	11(1)	5.2(5)	0.02(1)	0.80(5)	0.4(2)	0.18(1)	1.9

a) Finer angular resolution.

Capture on He

Table 8
Branching ratios for stopped pion absorption in 'He.

Capture on Deuterium

Table 4
Branching ratios for capture of stopped pions in (liquid) deuterium. Data from Highland et al. [79] and MacDonald et al. [80].

Channel	Branching ratio (%)			
π d→nn	73.75(27)			
→ nnγ	26.06(27)			
→ nne e	0.181(2)			
→nnπ"	0.000145(19)			

	Branching ratios (%)								
Reaction	[184]	[111, 112]	[183]	[182]	[181]				
$\pi^{-3}\text{He} \rightarrow \gamma X^{\alpha}$	14.0 ± 1.3	10.5 ± 1.3	_						
$\rightarrow \pi^{e}t$	17.8 ± 2.3	15.8 ± 0.8	_	12.8 ± 1.2	13.5 ± 2.3				
\rightarrow dn	-	15.9 ± 2.3	15.9 ± 1.6	-	11.7 ± 1.8				
→ pnn	_	57.8 ± 5.4		-	60.8 ± 4.0				
\rightarrow dn + pnn	68.2 ± 2.6	73.7 ± 5.9	22	W.7	72.5 ± 4.2				
P(3He)	2.68 ± 0.13	2.28 ± 0.18	<u> </u>						

X = t, dn, pnn.

^{b)} For comparison normalised to 91%, the total yield per π stop [179].

c) Coincidences between any two charged (p, d, t) particles.

What would we see?

dY/dE, particles / (MeV stopped pion)

Fig. 1. Spectra of p (squares), d (circles), t (triangles) emitted in stopped pion absorption on ¹²C nuclei.

What would we see?

Fig. 1. Spectra of p (squares), d (circles), t (triangles) emitted in stopped pion absorption on ¹²C nuclei.

Stopped Pions in LAr

What would we see?

Fig. 1. Spectra of p (squares), d (circles), t (triangles) emitted in stopped pion absorption on ¹²C nuclei

Yu.B. Gurov et al 2015

Stopped Pions in LAr

"Evaporation particles" that escape from the surface of the nucleus once thermodynamic equilibrium is established

"Primary particles" formed directly after the absorption of pions by the intranuclear clusters

This is Geant4 generated by either

"CHIPSNuclearCaptureAtRest"

"hBertiniCaptureAtRest"

No pion capture on Ar data has been taken, MC is mostly tuned from Carbon, Silicon and Calcium measurements

I am modifying Irene's "StoppingTracksFilter_module.cc" to select all stopping Pions that undergo capture.

Ran over both MC and some run 1 data to get a feel for Pi Minus capture

MC: Capture + 1 proton (reconstructed KE ~ 71 MeV)

MC: Deuteron (not reconstructed, KE ~40 MeV)

MC: Triton (not reconstructed, KE truth = 44 MeV)

MC: Triton (not reconstructed, KE truth = 44 MeV)

MC: Triton (not reconstructed, KE truth 41 MeV)

Data Run 1: Pure capture? no visible nucleons

Data Run 1: Pure capture? no visible nucleons

Data Run 1: Capture + neutrons? Incorrect reco

Data Run 1: Capture + neutrons? Incorrect reco

Data: Backgrounds, Stopping Muons and/or Pion Decay?

0.000000000

Data: Backgrounds Stopping Protons

1st Background, Pion Decay or Capture? Simulated 120,000 piMinus events, Energies 500-1000 MeV

Fit Bragg peak to a power law $dE/dx = A rr^{-b}$

Total energy loss of tracky

Mean x

Mean y Std Dev x Std Dev y 22 2.905

1.326

Captured Pi-

B) Topological Information

Track Curvyness: Sum of angles between successive 3D spacepoints

 $trkCurvyness = Sum \theta_i$

B) Topological Information

Track Curvyness: Sum of angles between successive 3D spacepoints

 $trkCurvyness = Sum \theta_i$

Track length, correlated to Energy loss

B) Topological Information

A **LOT** more powerful topological information can be used

- 1) Are there any daughter tracks reconstructed? If not Capture more likely.
- 2) Now many?
- 3) Are the daughters muon/electron like? (indicative of decay)
- 4) or Proton/ Deuteron like? (indicative of capture)
- 5) Are there unassociated hits surrounding track endpoint, not easy but some correlation to neutron activity?

Currently working on adding these as discriminators between capture and decay

Boosted Decision Tree

BDT response

Boosted Decision Tree

Next steps.

- 1) More statistics in MC!
- 2) Implement other topological cuts. PIDA/Liklihood ID of daughters
- 3) Investigate a few oddities, anomalously large dE/dx at low residual range
- 4) Other potential backgrounds, scatterings and Muon decays?
- 5) Tailored reconstruction, tuned to get final state protons/deuterons
- 6) Statistical charge identification via capture/decay ratio.
- 7) ...Suggestions welcome!

Backup

Charged Particles from Capture of Negative Pions by Nuclei. Yu. G. BunvAsuov et al 1971 (not necessarily stopped)

loss and total energy for 12C.

in capture of pions by ³²S nuclei: O-protons, △-deuterons, ●-tritons.

Argoneut 1306.1712.pdf

PIDA proton->Deut->Trit 17 -> 25 -> 32(? estim)

34+ is a trit?

