

明細書

カラーフィルターの保護膜、RGB用画素、ブラックマトリックス又はスペーサーを形成するための光硬化性樹脂組成物、及びカラーフィルター

5

技術分野

本発明は、フマレート系共重合体を含有し、カラーフィルターの保護膜、RGB用画素、ブラックマトリックス又はスペーサーを形成するための光硬化性樹脂組成物、及び、それを用いたカラーフィルターに関する。

背景技術

近年、パーソナルコンピューターなどのフラットディスプレーとして、カラーリキッドクリスタル表示装置が急速に普及してきている。一般にカラー液晶表示装置（101）は、図1に示すように、カラーフィルター1と TFT 基板等の電極基板2とを対向させて 1～10 μm 程度の間隙部3を設け、当該間隙部3内に液晶化合物Lを充填し、その周囲をシール材4で密封した構造をとっている。カラーフィルター1は、透明基板5上に、画素間の境界部を遮光するために所定のパターンに形成されたブラックマトリックス層6と、各画素を形成するために複数の色（通常、赤（R）、緑（G）、青（B）の3原色）を所定順序に配列した画素部7又は最近ではホログラムを利用した画素部と、保護膜8と、透明電極膜9とが、透明基板に近い側からこの順に積層された構造をとっている。また、カラーフィルター1及びこれと対向する電極基板2の内面側には配向膜10が設けられる。さらに間隙部3には、カラーフィルター1と電極基板2の間のセルギャップを一定且つ均一に維持するために、スペーサーとして一定粒子径を有するパール11が分散されている。そして、各色に着色された画素それぞれ又はカラーフィルターの背後にある液晶層の光透過率を制御することによってカラー画像が得られる。

カラーフィルターに形成される保護膜8は、カラーフィルターに画素部が設けられる場合には画素部の保護とカラーフィルターの平坦化の役割を果たしている。カラー液晶表示装置では、カラーフィルターの透明基板表面のうねりに起因するギャップムラ、R、G及びBの各画素間でのギャップムラ、或いは各画素内でのギャップムラなどの存在により透明電極膜9の平坦性が損なわれると、色ムラ或いはコントラストムラを生じ、その結果、画像品質の低下を来たすと言う問題がある。従って、保護膜には高い平坦性が求められる。

スペーサーとして図1に示したような微粒子状のパール11を分散させる場合には、当該パールは、ブラックマトリックス層6の背後であるか画素の背後であるかは関係なく、ランダムに分散する。パールが表示領域すなわち画素部に配置された場合、パールの部分をバックライトの光が透過し、また、パール周辺の液晶の配向が乱れ、表示画像の品位を著しく低下させる。そこで図2に示すように、パールを分散させるかわりに、カラーフィルターの内面側であってブラックマトリックス層6が形成されている位置と重り合う領域に、セルギャップに対応する高さを有する柱状スペーサー12を形成することが行われるようになってきた。

上記した画素部7やブラックマトリックス層6のような着色層、保護膜8及び柱状スペーサー12は、樹脂を用いて形成することができる。着色層は、各色の画素やブラックマトリックスの線ごとに所定のパターンに形成する必要がある。保護膜8は、シール部の密着性や密閉性を考慮すると、透明基板上の画素部が形成された領域のみ被覆できるものであることが好ましい。また、柱状スペーサー12は、ブラックマトリックス層の形成領域内すなわち非表示領域に正確に設ける必要がある。このため、硬化させたい領域を選択的に露光した後にアルカリ現像することができる光硬化性樹脂を用いて着色層、保護膜及び柱状スペーサーを形成することが提案されている。

アルカリ可溶性光硬化性樹脂としては、例えば、重量平均分子量が約2,000で、アルカリ可溶性を規定するカルボン酸基を有するオクレゾールノボラックエポキシアクリレート等が知られている。しかし、この樹脂は、硬化性を規定

するアクリロイル基としてモノマー成分を使用することから、成膜時の信頼性が低い。すなわち、例えば液晶部へ残留モノマー単位が溶出するなどの恐れがあり、さらに、アルカリ現像時の溶出量が多く、減膜する場合がある。

- また、光硬化性を付与するために（メタ）アクリロイル基等のラジカル重合性基を化合物の分子構造中に導入する方法としては、例えば、ジオール類に過剰のジイソシアネートを反応させて、末端にイソシアネート基を残した反応物を調製し、この反応物のイソシアネート基に2-ヒドロキシルエチル（メタ）アクリレートなどを反応させてウレタン（メタ）アクリレートを生成させることによって、末端に（メタ）アクリロイル基等のラジカル重合性基を導入する方法が知られて
いる。しかしながら、この方法では、原理的に分子構造の両末端だけにしか（メタ）アクリロイル基が導入されない。さらに、一分子中に（メタ）アクリロイル基等のラジカル重合性基を2個以上有する多官能化合物を含有させてラジカル重合させる方法も考えられるが、ラジカル重合性基の含有量を制御することはできず、ゲル化等の問題もある。
そこで、本発明者らは、少なくとも下記式5で表される構成単位と下記式6で表される構成単位とからなる主鎖を有し、そのカルボキシル基又は水酸基の少なくとも一部に下記式7で表される（メタ）アクリロイルオキシアルキルイソシアネート化合物が当該化合物のイソシアネート基の反応により結合した光硬化性樹脂を提案している（日本特許公開公報2000-105456号）。

20

式5

式 6

5 式 7

(各式中、R¹⁰は水素または炭素数1～5のアルキル基、R¹¹は炭素数2～4のア
10 ルキレン基、R¹²はアルキレン基、および、R¹³は水素またはメチルを示す。)

上記提案に係る光硬化性樹脂は、アルカリ可溶性のカルボキシル基とラジカル重合性の(メタ)アクリロイル基の量を自由に調節できるという利点を有するものである。

しかし、上述した種々のアクリル系硬化性樹脂は、いずれも耐熱変色性が十分
15 とは言えない。カラーフィルターは液晶パネルを組み立てる途中で高温に晒され、例えば、配向膜を形成する工程においては250℃程度で約1時間ほど加熱される。アクリル系硬化性樹脂を用いてカラーフィルターの着色層や保護膜を形成する場合には、このような高温の加熱プロセス中に変色し、黄変の招来や透明性の低下などの問題を生じるおそれがある。

20 本発明は、かかる事情を考慮して成し遂げられたものであり、その第一の目的
は、耐熱変色性に優れ、微細形状の構造を形成するのに好適な、カラーフィルターの保護膜、RGB用画素、ブラックマトリックス又はスペーサーを形成するた

めの光硬化性樹脂組成物、特に、アルカリ現像性の光硬化性樹脂組成物を提供することにある。

また、本発明の第二の目的は、耐熱変色性や透明性に優れ、且つ、細部の寸法精度や均一性にも優れた性能の良いカラーフィルターを提供することにある。

5

発明の開示

本発明に係るカラーフィルターの保護膜、RGB用画素、ブラックマトリックス又はスペーサーを形成するための光硬化性樹脂組成物は、バインダー成分として、少なくとも下記式1で表される構成単位と酸性官能基を備えた構成単位とが連結した分子構造を有する共重合体を含有することを特徴とする。

式1

15

(式中、R¹及びR²は、それぞれ独立して炭素数3～8の分岐アルキル基若しくは置換分岐アルキル基、又は、炭素数4～8のシクロアルキル基若しくは置換シクロアルキル基を表す。)

このフマレート系共重合体は優れた耐熱変色性を備えるだけでなく、各構成単位の含有割合を変更することによって、反応硬化性、アルカリ可溶性、塗工性などを適宜に調節できる。従って、この共重合体を配合した本発明に係る光硬化性樹脂組成物により形成された硬化物は、耐熱変色性に優れており、黄変などの変色や透明性の低下を来たさない。

上記フマレート系共重合体中の酸性官能基を備えた構成単位は、下記式2で表される構成単位であることが好ましい。

式 2

5

(式中、 R^3 は水素原子、メチル基又はカルボキシメチル基である。)

上記フマレート系共重合体は、エチレン性不飽和結合を備えた構成単位をさらに有するのが好ましい。エチレン性不飽和結合は反応硬化性に寄与する。また、エチレン性不飽和結合を備えた構成単位は、下記式 3 で表される構成単位又は下記式 4 で表される構成単位であることが好ましい。

式 3

15

(式中、 R^4 及び R^5 は水素原子又はメチル基である。)

式4

5 (式中、R⁶及びR⁹は水素原子又はメチル基であり、R⁷は炭素数2乃至4のアルキレン基であり、R⁸はアルキレン基である。また、nは0又は1の数である。)

上記式1で表される構成単位と前記酸性官能基を備えた構成単位の重合割合は、共重合体の酸価が40～200mg KOH/gとなるように調節するのが好ましい。

10 また、フマレート系共重合体が、式1で表される構成単位と前記酸性官能基を備えた構成単位と共にエチレン性不飽和結合含有単位を有する場合には、酸価が40~200mg KOH/gで、且つ、エチレン性不飽和結合の含有量が0.5~2.0mmol/gとなるように重合割合を調節するのが好ましい。

15 フマレート系共重合体の重量平均分子量は5000～100000であるこ
とが好ましい。

また、エチレン性不飽和結合を有するフマレート系共重合体と何らかの反応硬化性化合物を組み合わせて用いる場合には、フマレート系共重合体と反応硬化性化合物の間にも架橋結合が形成されるので、架橋の反応点密度が高くなり露光感度及び皮膜の強度や硬度が向上する。

20 カラーフィルターの保護膜、RGB用画素、ブラックマトリックス又はスペーサーを形成するための上記光硬化性樹脂組成物は、2個以上のエチレン性不飽和結合を有する重合性化合物をさらに含有することが好ましい。また、この光硬化性樹脂組成物は、必要に応じて、光重合開始剤をさらに含有していてもよい。

本発明によれば、上記光硬化性樹脂組成物の硬化膜を250°Cで1時間加熱した時に、加熱前の380nmにおける光線透過率に対する加熱後の同波長における光線透過率の比が90%以上であるような、耐熱性に優れた硬化膜を得ることができる。

- 5 本発明に係るカラーフィルターの保護膜、RGB用画素、ブラックマトリックス又はスペーサーを形成するための光硬化性樹脂組成物は、カラーフィルターの細部、例えば、画素部やブラックマトリックス層などの着色層、当該着色層を被覆する保護層、及び、液晶パネルのセルギャップを維持するための柱状スペーサーを形成するのに適しており、所望の膜厚の着色層、保護膜及び所望の高さの柱
10 状スペーサーを精度よく形成することができる。

図面の簡単な説明

第1図は、液晶パネルの一例についての模式的断面図である。

- 15 第2図は、液晶パネルの別の例についての模式的断面図である。

なお、各図中の符号の意味は以下の通りである。

- 液晶パネル(101)；液晶パネル(102)；カラーフィルター(1)；電極基板(2)；間隙部(3)；シール材(4)；透明基板(5)；ブラックマトリックス層(6)；画素部(7R、7G、7B)；保護膜(8)；透明電極膜(9)；
20 配向膜(10)；パール(11)；柱状スペーサー(12)

発明を実施するための最良の形態

- 25 以下において本発明を詳しく説明する。なお、本発明において(メタ)アクリルとはアクリル基又はメタクリル基のいずれかであることを意味し、(メタ)アクリロイルとはアクリロイル基又はメタクリロイル基のいずれかであることを意味する。

本発明においてバインダー成分として用いられる共重合体（以下において「フマレート系共重合体」と称する場合がある）は、少なくとも、下記式1で表される構成単位と、酸性官能基を備えた構成単位とが連結した分子構造を有するものである。

5

式1

10 (式中、R¹及びR²は、それぞれ独立して炭素数3～8の分岐アルキル基若しくは置換分岐アルキル基、又は、炭素数4～8のシクロアルキル基若しくは置換シクロアルキル基を表す。)

式1で表される構成単位（フマレート単位）は、主として樹脂の耐熱変色性、透明性に寄与する成分である。式1で表される構成単位を共重合体の主鎖へと導入するために使用される单量体としては、下記式8で表されるフマレートを使用することができる。

式8

20

(式中、R¹及びR²は、式1と同じである。)

式1及び式8中のR¹、R²が炭素数3～8の分岐アルキル基若しくは置換分岐

アルキルである官能基の具体例としては、イソプロピル基、1-クロロー-2-ブロピル基、1, 3-ジクロロー-2-ブロピル基、sec-ブチル基、3-クロロー-2-ブチル基、tert-ブチル基、sec-アミル基、3-ペンチル基、2, 3-ジメチル-3-ペンチル基、tert-アミル基、ネオペンチル基、イソペンチル基、4-メチル-2-ペンチル基、2-エチル-ヘキシル基等が挙げられる。

このような分岐アルキル基及び／又は置換分岐アルキル基を有するフマレートの具体例としては、ジイソブチルフマレート、ジ-sec-ブチルフマレート、ジ-tert-ブチルフマレート、ジイソブチルフマレート、ジ-sec-アミルフマレート、ジ-tert-アミルフマレート、ジ-4-メチル-2-ペンチルフマレート、ジ-sec-アミルフマレート、ジ-3-ペンチルフマレート、ビス(2, 4-ジメチル-3-ペンチル)フマレート、イソプロピル-sec-ブチルフマレート、tert-ブチル-4-メチル-2-ペンチルフマレート、イソプロピル-tert-ブチルフマレート、sec-ブチル-tert-ブチルフマレート、sec-ブチル-tert-アミルフマレート、ジ-4-メチル-ペンチルフマレート、tert-ブチル-イソアミルフマレート等が挙げられる。

式1及び式8中のR¹、R²が炭素数4～8のシクロアルキル基若しくは置換シクロアルキル基である官能基の具体例としては、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、4-クロロ-シクロヘキシル基、4-tert-ブチル-シクロヘキシル基、イソボルニル基、ボルニル基、ノルボニル基等が挙げられる。

このようなシクロアルキル基及び／又は置換シクロアルキル基を有するフマレートの具体例としては、ジシクロブチルフマレート、ジシクロペンチルフマレート、ジシクロヘキシルフマレート、ジシクロヘプチルフマレート、ジシクロオクチルフマレート、ビス(4-クロロ-シクロヘキシル)フマレート、ビス(4-tert-ブチル-シクロヘキシル)フマレート、ジイソボルニルフアレート、ジボルニルフマレート、ジノルボニルフマレート等が挙げられる。

式1中のR¹がアルキル基で、R²がシクロアルキル基であるフマレートの具体例としては、イソプロピル-シクロブチルフマレート、1-クロロー-2-ブロピ

ルーシクロペンチルフマレート、1, 3-ジクロロ-2-プロピルシクロヘキシルフマレート、sec-ブチルシクロヘキシルフマレート、3-クロロ-2-ブチルシクロヘキシルフマレート、tert-ブチルシクロペンチルフマレート、tert-ブチルシクロヘキシルフマレート、sec-アミルシクロヘキシルフマレート、3-ペンチルボルニルフマレート、2, 3-ジメチル-3-ペンチルアダマンチルフマレート、tert-アミルシクロヘキシルフマレート、ネオペンチルシクロペンチルフマレート、4-メチル-2-ペンチルシクロヘキシルフマレート、2-エチルヘキシルシクロヘキシルフマレート等が挙げられる。

前記フマレートの中でも、ジイソプロピルフマレート、ジ-sec-ブチルフマレート、ジ-tert-ブチルフマレート、ジシクロヘキシルフマレート、ジ-tert-アミルフマレートが好ましい。

酸性官能基を備えた構成単位（酸性官能基含有単位）は、アルカリ現像性に寄与する成分であり、その含有割合は、樹脂に要求されるアルカリ可溶性の程度により調整される。酸性官能基を有する構成単位を共重合体の主鎖へと導入するために使用される単量体としては、エチレン性不飽和結合と酸性官能基を有する化合物を使用することができる。酸性官能基は、通常はカルボキシル基であるが、アルカリ現像性に寄与できる成分であればカルボキシル基以外のものでもよい。

酸性官能基を有する構成単位としては、下記式2で表される構成単位が好ましい。

20

式2

25 (式中、R³は水素原子、メチル基又はカルボキシメチル基である。)

式2の構成単位を導入するために使用される単量体としては、アクリル酸、メタクリル酸又はイタコン酸を用いることができる。

本発明に用いられる共重合体は、式1で表される構成単位（フマレート単位）と、酸性官能基を備えた構成単位（酸性官能基含有単位）を必須の主鎖構成成分として含有するが、他の共重合成分を主鎖に含んでいてもよい。主鎖には、例えば、エチレン性不飽和結合を備えた構成単位、芳香族炭素環を備えた構成単位、及び／又は、エステル基を備えた構成単位が含有されていてもよい。

エチレン性不飽和結合を備えた構成単位（エチレン性不飽和結合含有単位）は、樹脂の反応硬化性に寄与する成分であり、その含有割合は要求される硬化性の程度により調整される。硬化性に寄与するエチレン性不飽和結合は、主鎖連結を形成するための重合条件の下で一緒に共重合し得るので、共重合体の主鎖部分を形成した後で、適切な官能基を介して共重合体の主鎖にペンドント状に導入する。

エチレン性不飽和結合含有単位としては、下記式3で表されるものが好ましい。

15 式3

(式中、R⁴及びR⁵は水素原子又はメチル基である。)

20 式3の構成単位を共重合体に導入するためには、先ず、フマレートと（メタ）アクリル酸又はイタコン酸を共重合して共重合体の主鎖部分を形成した後、上記（メタ）アクリル酸又はイタコン酸由来のカルボキシル基にエポキシ基含有（メ

タ) アクリレートを反応させればよい。ただし、(メタ)アクリル酸又はイタコン酸由来のカルボキシル基が少なくなり過ぎるとアルカリ現像性が不足するので、エポキシ基含有(メタ)アクリレートの量を適切に調節する必要がある。

エポキシ基含有(メタ)アクリレートとしては、下記式9で表されるグルシジル又はメチルグルシジル(メタ)アクリレートや、下記式10で表される脂環族エポキシ化合物を例示することができる。式9のグルシジルメタクリレートとしてはブレンマーG H(商品名、日本油脂(株)製)、メチルグルシジルメタクリレートとしてはサイクロマーM-GMA(CYCLOMER M-GMA)(商品名、ダイセル化学工業(株)製)が市販され、式10の脂環族エポキシ化合物としてはサイクロマーM100及びA200(CYCLOMER M100及びCYCLOMER A200)(商品名、ダイセル化学工業(株)製)が市販されている。

式9

15

(式中、R¹⁴及びR¹⁵は各々独立して水素原子又はメチル基である。)

式 10

20

(式中、R¹⁶は水素原子又はメチル基である。サイクロマーM100はR¹⁶がメチル基であり、サイクロマーA200はR¹⁶が水素原子である。)

また、エチレン性不飽和結合含有単位としては、下記式4で表される構成単位も好ましいものの一つである。

5

式4

10

(式中、R⁶及びR⁹は水素原子又はメチル基であり、R⁷は炭素数2乃至4のアルキレン基であり、R⁸はアルキレン基である。また、nは0又は1の数である。)

式4に含まれるR⁷は、炭素数2乃至4のアルキレン基であり、例えば、エチレン基、プロピレン基、ブチレン基等を例示できる。R⁸は好ましくは炭素数2乃至6のアルキレン基である。

式4の構成単位を共重合体に導入するためには、先ず、フマレート及び(メタ)アクリル酸又はイタコン酸と共に下記式11で表されるヒドロキシアルキル(メタ)アクリレートを共重合して共重合体の主鎖部分を形成する。

15

式1 1

5 (式中、R⁶及びR⁷は式4と同じである。)

式1 1のヒドロキシアルキル(メタ)アクリレートとしては、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルメタクリレート、4-ヒドロキシブチルアクリレート、4-ヒドロキシブチルメタクリレート等が例示される。

10 このヒドロキシアルキル(メタ)アクリレートを共重合させることによって、下記式1 2で表される水酸基を備えた構成単位が共重合体の主鎖中に導入される。

式1 2

15

(式中、R⁶及びR⁷は式4と同じである。)

その後、上記ヒドロキシアルキル(メタ)アクリレート由来の水酸基に下記式
20 1 3で表されるイソシアネート化合物を反応させればよい。

式13

5 (式中、 R^8 はアルキレン基であり、 R^9 は水素原子又はメチル基である。また、
 h は0又は1の数である。)

式13の(メタ)アクリロイルオキシアルキルイソシアネートとしては、メタ
 クリロイルイソシアネート、2-アクリロイルオキシエチルイソシアネート、2
 -メタクリロイルエチルイソシアネート等が例示される。これらの中では、(メ
 10 タ)アクリロイル基が炭素数2~6のアルキレン基を介してイソシアネート基
 (-NCO)と結合したもの、例えば、2-アクリロイルオキシエチルイソシア
 ネート、2-メタクリロイルエチルイソシアネート等を使用するのが好ましい。
 これらのうち、メタクリロイルイソシアネートは、下記式14で表され、例えば、
 日本ペイント(株)製「MA I」等の商品名で市販されている。また、2-メタ
 15 クリロイルエチルイソシアネートは、例えば、昭和電工(株)製「カレンズMO
 I」等の商品名で市販されている。

式14

20

上記の例では、エチレン性不飽和結合を備えた構成単位を共重合体に導入する
 部位が、水酸基やカルボキシル基を有するモノマー由来の主鎖構成単位であるが、

逆に、イソシアネート基やエポキシ基を有するモノマー由来の主鎖構成単位を導入部位として利用することも出来る。

例えば、上記式14で表されるメタクリロイルイソシアネート、上記式9で表されるグリシジル（メタ）アクリレート、上記式10で表される脂環族エポキシ化合物等を用いることが出来る。これらは、先に例示したモノマーと同様、反応制御や製造が容易である。これらのモノマーを用いて共重合体の主鎖部分を形成した後、主鎖部分に導入されたイソシアネート基やエポキシ基と反応し得る官能基（水酸基やカルボキシル基）とエチレン性不飽和結合とを有する化合物を主鎖部分に反応させることによって、エチレン性不飽和結合を備えた構成単位を導入することができる。
10

芳香族炭素環を備えた構成単位（芳香族炭素環含有単位）は、共重合体をカラーフィルターの保護膜等の塗膜形成樹脂として用いる際に、当該樹脂に塗膜性を付与する成分である。芳香族炭素環含有単位を共重合体の主鎖へと導入するため15に使用される单量体としては、エチレン性不飽和結合と芳香族炭素環とを有する化合物を使用することができる。

芳香族炭素環含有単位としては、下記式15で表される構成単位が好ましい。

式15

(式中、R¹⁷は水素原子又はメチル基であり、R¹⁸は芳香族炭素環を示す。)

上記式中に含まれるR¹⁸は芳香族炭素環であり、例えば、フェニル基、ナフチル基等が例示される。この構成単位を導入するために使用される单量体としては、
25 例えは、スチレン、α-メチルスチレンを例示でき、また、その芳香族環は、塩素、臭素等のハロゲン原子、メチル基、エチル基等のアルキル基、アミノ基、ジ

アルキルアミノ基等のアミノ基、シアノ基、カルボキシル基、スルfonyl酸基、
磷酸機等で置換されていてもよい。

エステル基を備えた構成単位（エステル基含有単位）は、樹脂のアルカリ現像性を抑制する成分である。エステル基含有単位を共重合体の主鎖へと導入するために使用される単量体としては、エチレン性不飽和結合とエステル基とを有する化合物を使用することができる。

エステル基含有単位としては、下記式 16 で表されるものが好ましい。

式 16

10

(式中、R¹⁹は水素原子又はメチル基であり、R²⁰はアルキル基またはアラルキル基を示す。)

上記式中に含まれるR²⁰はアルキル基またはアラルキル基であり、例えば、炭素数1乃至12のアルキル基、ベンジル基、フェニルエチル基等のアラルキル基が例示される。この構成単位を導入するために使用される単量体としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ジシクロペニタニル、(メタ)アクリル酸ジシクロペニタニルオキシエチル、(メタ)アクリル酸イソボニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェニルエチル等の(メタ)アクリル酸のエステル類が例示される。

各構成単位を共重合体の主鎖へと導入するために使用される単量体は、各構成

単位ごとに、それぞれ例示したものを単独でも、また2種以上を混合して使用してもよい。

特に好ましい共重合体としては、式1で表される構成単位と、酸性官能基を備えた構成単位と共に、エチレン性不飽和結合を備えた構成単位が連結してなり、
5 反応硬化性を有する共重合体（硬化性樹脂）、具体的には、下記式17又は下記式18で表されるランダム共重合体又はブロック共重合体、特にランダム共重合体を例示することができる。なお、これらの共重合体の主鎖は、必要に応じて他の主鎖構成単位を含んでいてもよい。

式17

10

(式中、R¹乃至R⁵は上記と同じである。a、b、cは整数である。)

式 1 8

5 (式中、R¹乃至R³、R⁶乃至R⁹及びhは上記と同じである。a、b、cは整数である。)

本発明において、共重合体の分子構造を構成する各構成単位の含有割合は適宜調節される。式1で表される構成単位の含有割合が少なすぎる場合には耐熱変色性が十分に向上せず、多すぎる場合にはアルカリ現像性が低下するという問題がある。また、酸性官能基含有単位が少なすぎる場合にはアルカリ現像性が不十分となり、多すぎる場合には溶剤溶解性が低下するという問題がある。また、エチレン性不飽和結合が少なすぎる場合には反応硬化性が不十分となり、多すぎる場合には基板密着性が低下するという問題がある。

具体的には、上記フマレート系共重合体中に式1で表される構成単位と前記酸性官能基を備えた構成単位を含有し、酸価が好ましくは40～200mg KOH/g、特に好ましくは70～150mg KOH/gとなるように重合割合を調節する。

また、フマレート系共重合体が、式1で表される構成単位と前記酸性官能基を備えた構成単位と共にエチレン性不飽和結合含有単位を有する場合には、酸価が好ましくは40～200mg KOH/g、特に好ましくは70～150mg KOH/gで、且つ、エチレン性不飽和結合の含有量が好ましくは0.5～2.0mmol/g、特に好ましくは0.8～1.6mmol/gとなるように重合割合

を調節する。

上記のフマレート系共重合体を製造するには、先ず、式1で表される構成単位と、酸性官能基を備えた式2のような構成単位からなり、さらに必要に応じて、エチレン性不飽和結合を有するペンダント構造を後から導入できる官能基を有する構成単位、芳香族炭素環を備えた式15のような構成単位、エステル基を備えた式16のような構成単位、或いは、その他の構成単位を含有する主鎖を有する重合体（原料重合体）を製造し、それから当該原料重合体にエチレン性不飽和結合と共に何らかの別の官能基を有する化合物を反応させて、エチレン性不飽和結合のペンダント構造を導入すればよい。

ただし、酸性官能基含有単位としてカルボキシル基を備えた式2のような構成単位を用い、エチレン性不飽和結合含有単位としてグリシジル（メタ）アクリレートを用いる場合のように、酸性官能基含有単位がエチレン性不飽和結合のペンダント連結部位としても機能する場合には、原料重合体の主鎖は、酸性官能基含有単位とは別に、エチレン性不飽和結合を後から導入するために必要な官能基を有する構成単位を含有していなくてもよい。

原料重合体を製造するために用いられる重合用溶媒としては、水酸基、アミノ基等の活性水素を有しない溶媒が好ましく、例えば、テトラヒドロフラン等のエーテル類；ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル等のグリコールエーテル類、メチルセロソルブアセテート等のセロソルブエステル類やプロピレングリコールモノメチルエーテルアセテート、酢酸-3-メトキシブチル等が挙げられ、芳香族炭化水素類、ケトン類、エステル類等も用いることができる。

原料重合体を製造するために用いられる重合開始剤としては、一般的にラジカル重合開始剤として知られているものを使用することができる。その具体例としては、2, 2'-アゾビスイソブチロニトリル、2, 2'-アゾビス-(2, 4-ジメチルバレニトリル)、2, 2'-アゾビス-(4-メトキシ-2, 4-ジメチルバレニトリル)等のニトリル系アゾ化合物（ニトリル系アゾ系重合開始剤）；ジメチル2, 2'-アゾビス(2-メチルプロピオネート)、2, 2'

アゾビス(2,4,4-トリメチルペンタン)等の非ニトリル系アゾ化合物(非ニトリル系アゾ系重合開始剤);*t*-ヘキシルペルオキシピバレート、*tert*-ブチルペルオキシピバレート、3,5,5-トリメチルヘキサノイルペルオキシド、オクタノイルペルオキシド、ラウロイルペルオキシド、ステアロイルペルオキシド、1,1,3,3-テトラメチルブチルペルオキシ2-エチルヘキサンエート、サクシニックペルオキシド、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルペルオキシ)ヘキサン、1-シクロヘキシリ-1-メチルエチルペルオキシ2-エチルヘキサンエート、*t*-ヘキシルペルオキシ2-エチルヘキサンエート、4-メチルベンゾイルペルオキシド、ベンゾイルペルオキシド、1,1'-ビス-(*tert*-ブチルペルオキシ)シクロヘキサン等の有機過酸化物(パーオキサイド系重合開始剤);および過酸化水素が挙げられる。ラジカル重合開始剤として過酸化物を使用する場合には、これと還元剤とを組み合わせてレドックス型重合開始剤として使用してもよい。

原料重合体の製造においては、重量平均分子量を調節するために分子量調節剤を使用することができ、例えば、クロロホルム、四臭化炭素等のハロゲン化炭化水素類;*n*-ヘキシルメルカプタン、*n*-オクチルメルカプタン、*n*-ドデシルメルカプタン、*tert*-ドデシルメルカプタン、チオグリコール酸等のメルカプタン類;ジメチルキサントゲンジスルフィド、ジイソプロピルキサントゲンジスルフィド等のキサントゲン類;ターピノーレン、 α -メチルスチレンダイマー等が挙げられる。

原料重合体は、ランダム共重合体およびブロック共重合体のいずれであってよい。ランダム共重合体を製造する場合には、各構成単位を誘導するそれぞれの単量体、触媒等を含有する配合組成物を、溶剤を入れた重合槽中に80~110°Cの温度条件で2~5時間かけて滴下し、熟成させることにより重合させることができる。

原料重合体のポリスチレン換算重量平均分子量(以下、単に「重量平均分子量」または「M_w」という。)が5,000~100,000の範囲のものが好ましく、酸価が40mg KOH/g~200mg KOH/g、水酸基価が5mg KO

H/g ~ 400 mg KOH/g のものがより好ましい。

原料重合体にエチレン性不飽和結合を導入する反応は、原料重合体の分子構造と、エチレン性不飽和結合を導入する単位の分子構造との組み合わせに応じて様々である。

5 式1で表される構成単位と式2で表されるカルボキシル基含有単位からなり必要に応じて他の構成単位を含有する原料重合体に、エチレン性不飽和結合の導入単位としてグリシジル（メタ）アクリレートを反応させる場合には、当該グリシジル（メタ）アクリレートを少量の触媒の存在下、原料重合体の溶液中に全量を一度に投入してから一定時間反応を続けるか、或いは、少しづつ滴下すること
10 によって、式17で表される共重合体が得られる。

また、式1で表される構成単位と式2で表されるカルボキシル基含有単位と式12で表される水酸基含有単位からなり必要に応じて他の構成単位を含有する原料重合体に、エチレン性不飽和結合の導入単位として式13で表されるイソシアネート化合物を反応させる場合には、当該イソシアネート化合物を少量の触媒
15 の存在下、原料重合体の溶液中に、全量を一度に投入してから一定時間反応を続けるか、或いは、少しづつ滴下することによって、式18で表される共重合体が得られる。この場合、触媒としてはラウリン酸ジブチル錫等が用いられ、また、p-メトキシフェノール、ヒドロキノン、ナフチルアミン、tert-ブチルカテコール、2,3-ジ-tert-ブチルp-クレゾール等の重合禁止剤が必要
20 に応じて使用される。

エチレン性不飽和結合を有するイソシアネート化合物は、原料重合体のアルコール性水酸基に対してイソシアネート基を介して付加反応をし、ウレタン結合を形成する。その結果、原料重合体の主鎖における式12で表される水酸基含有単位の部分にエチレン性不飽和結合が導入され、式4の構成単位が形成される。

25 また、エチレン性不飽和結合を有するイソシアネート化合物は、原料重合体のカルボキシル基に対してイソシアネート基を介して炭酸ガスの脱離を伴う縮合反応をし、アミド結合を形成する。その結果、原料重合体の主鎖における式2で表されるカルボキシル基含有単位の部分にもエチレン性不飽和結合が導入され

る。ただし、カルボキシル基に対するイソシアネート化合物の反応性は、アルコール性水酸基に対する同イソシアネート化合物の反応性と比べて非常に小さいので、エチレン性不飽和結合は主としてアルコール性水酸基含有単位の部分に導入され、カルボキシル基含有単位の部分に導入されるエチレン性不飽和結合は概して非常に少量である。従って、ほとんどのカルボキシル基は残存し、アルカリ現像性は失われない。

このようにして得られるフマレート系共重合体を、カラーフィルターの着色層、当該着色層を被覆する保護膜または液晶パネルのセルギャップを維持するための柱状スペーサーを形成するために用いる場合には、GPC（ゲルパーミエーションクロマトグラフィー）で測定したポリスチレン換算重量平均分子量が 5,000～100,000、好ましくは 8,000～70,000 の範囲に調節するのが好ましい。重量平均分子量が 5,000 より小さく現像性が良すぎてパターン露光時のパターン形状を制御しにくく、また、パターンが作製できる場合でも最終的な膜厚が減る（膜減り）等の問題がある。一方、重量平均分子量が 100,000 より大きいと、レジスト化した時の粘度が高くなりすぎて塗工適性が低下したり、現像性が悪くなりパターンが抜けにくくなるなどの問題がある。

フマレート系共重合体の酸価は 40 mg KOH/g～200 mg KOH/g とするのが好ましく、70 mg KOH/g～150 mg KOH/g とするのがより好ましい。酸価はアルカリ現像性と関係しており、酸価が低すぎると現像性が悪化し、残渣などの問題を生じる。一方、酸価が高すぎると現像性が良すぎてパターン露光時のパターン形状を制御しにくい等の問題がある。フマレート系共重合体において水酸基価は、5 mg KOH/g～400 mg KOH/g の範囲に調節できる。

本発明に用いられるフマレート系共重合体は、耐熱変色性に寄与する式 1 の構成単位と、酸性やアルカリ可溶性に寄与する酸性官能基含有単位とが連結し、さらに必要に応じて、反応硬化性に寄与するエチレン性不飽和結合含有単位や、塗膜性に寄与する芳香族炭素環含有単位や、アルカリ現像性を抑制するエステル基含有単位が連結してなるものであり、優れた耐熱変色性を備えるだけでなく、こ

れら各構成単位の含有割合を変更することによって、反応硬化性、アルカリ可溶性、塗工性などを適宜に調節できる。

従って、上記フマレート系共重合体は、カラーフィルターの保護膜、RGB用画素、ブラックマトリックス又はスペーサーを形成するためのアルカリ現像可能な光硬化性樹脂組成物のバインダー成分として好適に用いることができる。フマレート系共重合体を用いた光硬化性樹脂組成物は、カラーフィルターの細部、特に、カラーフィルターの着色層、保護膜または液晶パネルのセルギャップを維持するための柱状スペーサーを形成するのに適しているが、耐熱変色性に優れしており黄変を来たし難いので、そのなかでも画素部や保護膜などの高い透明性を要求される部分を形成するのに非常に適している。

以下において、フマレート系共重合体を配合してなるカラーフィルターの保護膜、RGB用画素、ブラックマトリックス又はスペーサーを形成するための光硬化性樹脂組成物について詳しく説明する。

フマレート系共重合体に、必要に応じて光硬化性化合物、光重合開始剤、増感剤などを配合することによって、アルカリ現像可能な光硬化性樹脂組成物を調製することができる。フマレート系共重合体がエチレン性不飽和結合含有単位を有する場合には、エチレン性不飽和結合が光照射により架橋結合を形成し得るので、光硬化性化合物を配合しなくても光硬化性樹脂組成物として用いることが可能である。ただし、その場合であっても、反応性や架橋密度を向上させるためには光硬化性化合物を配合するのが好ましい。

本発明において光硬化性樹脂組成物には、フマレート系共重合体を固形分比で、通常5～80重量%、好ましくは10～50重量%含有させる。フマレート系共重合体の含有量が80重量%よりも多いと粘度が高くなりすぎ、その結果、流動性が低下し塗布性に悪くなる場合がある。また、フマレート系共重合体の含有量が5重量%よりも少ないと、粘度が低くなりすぎ、その結果、塗布乾燥後の塗膜安定性が不十分であり、露光、現像適性を損なう等の問題を生じる場合がある。

上記の光硬化性化合物としては、2個以上のエチレン性不飽和結合を有する多官能重合性化合物が好ましく用いられる。特に、多官能アクリレート系のモノマ

一又はオリゴマーが好ましく用いられ、例えば、エチレングリコールジ（メタ）アクリレート、ジエチレングリコールジ（メタ）アクリレート、プロピレングリコールジ（メタ）アクリレート、ジプロピレングリコールジ（メタ）アクリレート、ポリエチレングリコールジ（メタ）アクリレート、ポリプロピレングリコールジ（メタ）アクリレート、ヘキサンジ（メタ）アクリレート、ネオペンチルグリコールジ（メタ）アクリレート、グリセリンジ（メタ）アクリレート、グリセリントリ（メタ）アクリレート、トリメチロールプロパントリ（メタ）アクリレート、1, 4-ブタンジオールジアクリレート、ペンタエリスリトール（メタ）アクリレート、ジペンタエリスリトールヘキサ（メタ）アクリレートなどを例示することができる。これらの成分は2種以上を組み合わせて使用してもよい。

上記の多官能重合性化合物は、3個以上のエチレン性不飽和結合を有するモノマーを含むことが好ましく、その含有量は多官能重合性化合物の使用量の約30～95重量%を占めることが好ましい。

また、これらの多官能重合性化合物には、反応希釈剤としてメチル（メタ）アクリレート、エチル（メタ）アクリレート、プロピル（メタ）アクリレート、ブチル（メタ）アクリレート、ペンチル（メタ）アクリレート、エチルヘキシル（メタ）アクリレート、ステレン、メチルステレン、N-ビニルピロリドンなどの単官能性モノマーを添加することができる。

多官能重合性化合物は、光硬化性樹脂組成物中に固形分比3～80重量%、好ましくは5～75重量%含有される。多官能重合性化合物が3重量%未満になると、形成される膜の接着強度、耐熱性等の各種物理的強度が不十分になると不都合が生じ、また、この値が80重量%を超えると光硬化性樹脂組成物の安定性が低下すると共に、形成される膜の可撓性が不十分になるという不都合が生じる。さらに、現像液に対する溶解特性を向上させるためにもこの割合は必要で、上記範囲から外れる場合には、パターン解像はされるがモノマー硬化速度が大きくなり、パターン周囲に対してスカムやひげを生じる。さらに上記範囲外において、ひどい場合には部分的な膨潤・剥離からくるレジスト再付着が生じ、正確なパターン形成を阻害することがある。

さらに本発明の光硬化性樹脂組成物の中には、耐熱性、密着性、耐薬品性（特に耐アルカリ性）の向上を図る目的で、必要に応じて、エポキシ基を分子内に2個以上有する化合物（エポキシ樹脂）を配合することができる。エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂としてエピコート1001、
5 1002、1003、1004、1007、1009、1010（商品名、ジャパンエポキシレジン（株）製）など、ビスフェノールF型エポキシ樹脂としてエピコート807（商品名、ジャパンエポキシレジン（株）製）など、フェノールノボラック型エポキシ樹脂としてEPPN201、202（商品名、日本化薬（株）製）、エピコート154（商品名、ジャパンエポキシレジン（株）製）など、クレゾールノボラック型エポキシ樹脂としてEOCN102、103S、104S、
10 1020、1025、1027（商品名、日本化薬（株）製）、エピコート180S（商品名、ジャパンエポキシレジン（株）製）などを例示できる。さらに、環式脂肪族エポキシ樹脂や脂肪族ポリグリシジルエーテルを例示することもできる。

15 これらの中では、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂が好ましい。これらのエポキシ基を分子内に2個以上有する化合物の多くは高分子量体であるが、ビスフェノールAやビスフェノールFのグリシジルエーテルは低分子量体であり、そのような低分子量体は特に好ましい。また、グリシジル（メタ）アクリレート、オキセタン（メタ）アクリレート、脂環式エポキシ（メタ）アクリレート等を樹脂骨格中に含むアクリル共重合体等も有効である。
20

このようなエポキシ樹脂を光硬化性樹脂組成物中に配合する場合には、固形分比で、通常は60重量%以下、好ましくは5～40重量%の割合で含有される。エポキシ樹脂の含有量が60重量%を超えると、エポキシ樹脂量が多くなりすぎ、
25 光硬化性樹脂組成物の保存安定性、現像適正が低下する場合がある。また、エポキシ樹脂は、光硬化性樹脂組成物の乾燥塗膜のタックを除去するためにも有効であり、添加量5重量%程度で十分な効果が発言する。エポキシ樹脂は、露光・アルカリ現像後においても反応することなく塗膜中に残存している酸性基と、加熱

処理によって反応し、塗膜に優れた耐アルカリ性を付与することになる。

光重合開始剤としては、紫外線、電離放射線、可視光、或いは、その他の各波長、特に365 nm以下のエネルギー線で活性化し得るラジカル重合開始剤を好ましく用いることができる。ラジカル重合開始剤は、例えば紫外線のエネルギーによりフリーラジカルを発生する化合物であって、ベンゾイン、ベンゾフェノンなどのベンゾフェノン誘導体又はそれらのエステルなどの誘導体；キサントン並びにチオキサントン誘導体；クロロスルフォニル、クロロメチル多核芳香族化合物、クロロメチル複素環式化合物、クロロメチルベンゾフェノン類などの含ハロゲン化合物；トリアジン類；フルオレノン類；ハロアルカン類；光還元性色素と還元剤とのレドックスカップル類；有機硫黄化合物；過酸化物などがある。好ましくは、イルガキュアー184、イルガキュアー369、イルガキュアー651、イルガキュアー907（商品名、チバ・スペシャルティー・ケミカルズ社製）、ダロキュアー1173（商品名、チバ・スペシャルティー・ケミカルズ社製）、アデカ1717（商品名、旭電化工業（株）製）、2-メチル-1-（4-メチルチオフェニル）-2-モルホリノプロパン-1、2、2'-ビス（オクロロフェニル）-4、5、4'-テトラフェニル-1、2'-ビイミダゾール（黒金化成（株）製）などのケトン系及びビイミダゾール系化合物等を挙げることができる。これらの開始剤を1種のみ又は2種以上を組み合わせて用いることができる。2種以上を併用する場合には、吸収分光特性を阻害しないようにするのがよい。

ラジカル重合開始剤は、光硬化性樹脂組成物中に固形分比として、通常、0.05～1.8重量%、好ましくは0.1～1.3重量%含有される。ラジカル重合開始剤の添加量が0.05重量%未満になると光硬化反応が進まず、残膜率、耐熱性、耐薬品性などが低下する傾向がある。また、この添加量が1.8重量%を超えるとベース樹脂への溶解度が飽和に達し、スピンドルティング時や塗膜レベリング時に開始剤の結晶が析出し、膜面の均質性が保持できなくなってしまい、膜荒れ発生と言う不具合が生じる。

なお、光硬化性樹脂組成物を調製するにあたって、重合開始剤は、前記フマレ

ート共重合体を含有する光硬化性樹脂組成物に最初から添加してもよいが、比較的長期間保存する場合には、使用直前に光硬化性樹脂組成物中に分散或いは溶解することが好ましい。

光感度の向上を期待したい場合には、増感剤を添加してもよい。用いる増感剤としては、スチリル系化合物或いはクマリン系化合物が好ましい。具体的には、
5 2-(p-ジメチルアミノスチリル)キノリン、2-(p-ジエチルアミノスチリル)キノリン、4-(p-ジメチルアミノスチリル)キノリン、4-(p-ジエチルアミノスチリル)キノリン、2-(p-ジメチルアミノスチリル)-3,
10 3-3H-インドール、2-(p-ジエチルアミノスチリル)-3, 3-3H-インドール、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジエチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンズイミダゾール、2-(p-ジエチルアミノスチリル)ベンズイミダゾールなどが挙げられる。

また、クマリン系化合物としては、7-ジエチルアミノ-4-メチルクマリン、
15 7-エチルアミノ-4-トリフルオロメチルクマリン、4, 6-ジエチルアミノ-7-エチルアミノクマリン、3-(2-ベンズイミダゾリル)-7-N, N-ジエチルアミノクマリン、7-ジエチルアミノシクロペンタ(c)クマリン、7-アミノ-4-トリフルオロメチルクマリン、1, 2, 3, 4, 5, 3H, 6H,
20 10H-テトラヒドロ-8-トリフルオロメチル(1)ベンゾピラノ-(9, 9a, 1-g h)-キノリジン-10-オン、7-エチルアミノ-6-メチル-4-トリフルオロメチルクマリン、1, 2, 3, 4, 5, 3H, 6H, 10H-テトラヒドロ-9-カルベトキシ(1)ベンゾピラノ-(9, 9a, 1-g h)-キノリジン-10-オンなどが挙げられる。

上述の光硬化性樹脂組成物には、必要に応じて上記の成分以外にも、界面活性剤、シランカップリング剤等の各種の添加剤を配合することができる。

さらに、上記光硬化性樹脂組成物を用いてカラーフィルターの着色層を形成する場合には、当該硬化性樹脂組成物中に顔料や染料等の色材を配合する。色材としては、画素部のR、G、B等の求める色に合わせて、有機着色剤及び無機着色

剤の中からカラーフィルターの加熱プロセスに耐え得る耐熱性があり、且つ、良好に分散し得る微粒子のものを選んで使用することができる。

有機着色剤としては、例えば、染料、有機顔料、天然色素等を用いることができる。また、無機着色剤としては、例えば、無機顔料、体質顔料等を用いること 5 ができる。

有機顔料の具体例としては、カラーインデックス (C.I. ; The Society of Dyers and Colourists 社発行) においてピグメント (Pigment) に分類されている化合物、すなわち、下記のようなカラーインデックス (C.I.) 番号が付されているものを見挙げることができる。C.I.ピグメントイエロー 1、C.I.ピグメントイエロー 3、
10 C.I.ピグメントイエロー 12、C.I.ピグメントイエロー 13、C.I.ピグメントイエロー 138、C.I.ピグメントイエロー 150、C.I.ピグメントイエロー 180、C.I.ピグメントイエロー 185 等のイエロー系ピグメント；C.I.ピグメントレッド 1、C.I.ピグメントレッド 2、C.I.ピグメントレッド 3、C.I.ピグメントレッド 254、C.I.ピグメントレッド 177 等のレッド系ピグメント；及び、C.I.ピグメントブルー 15、C.I.ピグメントブルー 15 : 3、C.I.ピグメントブルー 15 : 4、
15 C.I.ピグメントブルー 15 : 6 等のブルー系ピグメント；C.I.ピグメントバイオレット 23 : 19；C.I.ピグメントグリーン 36.

また、前記無機顔料あるいは体質顔料の具体例としては、酸化チタン、硫酸バリウム、炭酸カルシウム、亜鉛華、硫酸鉛、黄色鉛、亜鉛黄、べんがら（赤色酸化鉄(III)）、カドミウム赤、群青、紺青、酸化クロム緑、コバルト緑、アンバー、チタンブラック、合成鉄黒、カーボンブラック等を挙げることができる。本発明において色材は、単独でまたは2種以上を混合して使用することができる。

色材は、光硬化性樹脂組成物中に、通常、40～75重量%、好ましくは45～70重量%の割合で配合する。色材の配合割合が40重量%を下回ると、各画素部の着色力が不十分であり、鮮明な画像の表示が困難であり、一方、75重量%を超えると、各画素部における光透過率が不十分となるなどの不都合を生じる。

光硬化性樹脂組成物に色材を配合する場合には、色材を均一且つ安定して分散させるために、当該光硬化性樹脂組成物中に分散剤を配合してもよい。分散剤と

しては、例えば、カチオン系、アニオン系、ノニオン系、両性、シリコーン系、フッ素系等の界面活性剤を使用できる。界面活性剤の中でも、次に例示するような高分子界面活性剤（高分子分散剤）が好ましい。

すなわち、ポリオキシエチレンラウリルエーテル、ポリオキシエレンステアリルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類；ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル等のポリオキシエチレンアルキルフェニルエーテル類；ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のポリエチレングリコールジエステル類；ソルビタン脂肪酸エステル類；脂肪酸変性ポリエステル類；3級アミン変性ポリウレタン類などの高分子界面活性剤が好ましく用いられる。

本発明の光硬化性樹脂組成物には、塗料化及び塗布適性を考慮して通常、フマレート系共重合体、光硬化性化合物、光重合開始剤等に対する溶解性の良好な溶剤が含有される。使用可能な溶剤としては、例えばメチルアルコール、エチルアルコール、N-プロピルアルコール、i-プロピルアルコールなどのアルコール系溶剤；メトキシエタノール、エトキシエタノールなどのセロソルブ系溶剤；メトキシエトキシエタノール、エトキシエトキシエタノールなどのカルビトール系溶剤；酢酸エチル、酢酸ブチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチル、乳酸エチルなどのエステル系溶剤；アセトン、メチルイソブチルケトン、シクロヘキサンなどのケトン系溶剤；メトキシエチルアセテート、エトキシエチルアセテート、エチルセロソルブアセテートなどのセロソルブアセテート系溶剤；メトキシエトキシエチルアセテート、エトキシエトキシエチルアセテートなどのカルビトールアセテート系溶剤；ジエチルエーテル、エチレングリコールジメチルエーテル、テトラヒドロフランなどのエーテル系溶剤；N, N-ジメチルホルムアミド、N, N-ジメチルアセトアミド、N-メチルピロリドンなどの非プロトン性アミド溶剤；γ-ブチロラクトンなどのラクトン系溶剤；ベンゼン、トルエン、キシレン、ナフタレンなどの不飽和炭化水素系溶剤；N-ヘプタン、N-ヘキサン、N-オクタン

などの飽和炭化水素系溶剤などの有機溶剤を例示することができる。これらの溶剤の中では、メトキシエチルアセテート、エトキシエチルアセテート、エチルセロソルブアセテートなどのセロソルブアセテート系溶剤；メトキシエトキシエチルアセテート、エトキシエトキシエチルアセテートなどのカルビトールアセテート系溶剤；エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールジエチルエーテルなどのエーテル系溶剤；メトキシプロピオン酸メチル、エトキシプロピオン酸エチル、乳酸エチルなどのエステル系溶剤が特に好適に用いられる。特に好ましくは、MBA（酢酸-3-メトキシブチル、 $\text{CH}_3\text{CH}(\text{OCH}_3)\text{CH}_2\text{CH}_2\text{OCOCH}_3$ ）、PGMEA（プロピレングリコールモノメチルエーテルアセテート、 $\text{CH}_3\text{OCH}_2\text{CH}(\text{CH}_3)\text{OCOCH}_3$ ）、DMDG（ジエチレングリコールジメチルエーテル、 $\text{H}_3\text{COC}_2\text{H}_4\text{OCH}_3$ ）又はこれらを混合したものを使用することができ、これらを用いて固形分濃度を5～50重量%に調製する。

上記の光硬化性樹脂組成物を製造するには、上記フマレート系共重合体、光硬化性化合物、光重合開始剤、及び、その他の成分を適切な溶剤に投入し、ペイントシェーカー、ビーズミル、サンドグラインドミル、ボールミル、アトライターミル、2本ロールミル、3本ロールミルなどの一般的な方法で溶解、分散させればよい。なお、メインポリマーであるフマレート系共重合体としては、合成反応後に有効成分であるフマレート系共重合体を単離精製したものを用いるほか、合成反応により得られた反応液、その乾燥物などをそのまま用いてもよい。

このようにして得られる光硬化性樹脂組成物を何らかの支持体に塗布して塗膜を形成し、当該塗膜に紫外線、電離放射線等の活性化エネルギー線を照射すると、光硬化性化合物が架橋結合を形成してフマレート系共重合体を包み込むか、又は、フマレート系共重合体がエチレン性不飽和結合を有する場合にはそれ自体が架橋結合を形成して硬化する。

硬化後の皮膜は、耐熱変色性に優れており、黄変などの変色や透明性を低下し難い。また、エチレン性不飽和結合を有するフマレート系共重合体と光硬化性化合物を組み合わせて用いる場合には、フマレート系共重合体と光硬化性化合物の

間にも架橋結合が形成されるので、架橋の反応点密度が高くなり露光感度、及び、皮膜の強度や硬度が向上する。

本発明においては、次のような方法によって、皮膜の耐熱性（耐黄変性）を評価することができる。先ず、基板上に硬化性樹脂組成物を塗布し、必要に応じて
5 乾燥させて塗布膜を形成する。ここで、基板としては、透明ガラス基板のように露光、現像等の一連のパターン形成工程に支障を来たさないものであれば、特に問題なく使用できる。塗布膜の厚さも特に制限はないが、通常は、 $1 \sim 10 \mu\text{m}$ 程度の厚さとする。この塗布膜を、適切な条件で、例えば $70 \sim 150^\circ\text{C}$ で、 $1 \sim 10$ 分間、プリベークする。プリベーク後、当該塗布膜が完全に硬化する照射
10 強度で露光して硬化させてから、適切な条件で、例えば $180 \sim 280^\circ\text{C}$ で、 $2 \sim 80$ 分間、ポストベークする。

このようにして得られた硬化膜の光（ 380 nm ）の透過率を、ガラス基板をリファレンスとし測定する。この段階で測定した透過率を「加熱試験前透過率」とする。

15 次に、ガラス基板上の硬化膜を 250°C で1時間加熱し、加熱試験硬化膜を得る。このようにして得られたガラス基板上の加熱試験硬化膜の光（ 380 nm ）の透過率を、ガラス基板をリファレンスとし測定する。この段階で測定した透過率を「加熱試験後透過率」とする。

20 このようにして加熱試験前後の光線透過率を夫々算出し、加熱試験前透過率に対する加熱試験後透過率の比から硬化膜の耐熱性を評価することができる。本発明によれば、加熱試験前後の光線透過率の比を 90% 以上に維持することができる。

また、本発明においては、次のような方法によって、硬化性樹脂組成物の露光感度を評価することができる。先ず、基板上に硬化性樹脂組成物を塗布し、必要に応じて乾燥させて塗布膜を形成する。ここで、基板としては、透明ガラス基板のように露光、現像等の一連のパターン形成工程に支障を来たさないものであれば、特に問題なく使用できる。塗布膜の厚さも特に制限はないが、通常は、 $1 \sim 10 \mu\text{m}$ 程度の厚さとする。この塗布膜を、適切な条件で、例えば $70 \sim 150^\circ\text{C}$

で、1～10分間、プリベークする。プリベーク後、既知の照射強度で塗布膜を露光し、膜厚を測定する。この段階で測定した膜厚を「現像前膜厚」とする。

次に、プリベークした塗布膜を適切な現像剤に接触させて未露光部を溶解、除去し、残った露光部を必要に応じて洗浄することによって、塗布膜を現像する。

- 5 ここで、現像剤の組成及び現像の条件は、試験される硬化性樹脂組成物に合わせて適切に選択する。現像剤としては、硬化性樹脂組成物の露光部（硬化した部分）はほとんど溶解せず、未露光部を完全に溶解できるものが好ましいことは言うまでもない。そして、現像された塗布膜を、適切な条件で、例えば180～280℃で、20～80分間、ポストベークする。ポストベーク後、塗布膜の厚さを測定
- 10 し、「最終硬化後膜厚」とする。

このようにして測定された現像前膜厚と最終硬化後膜厚とから次式に従って、残膜率を計算する。

$$\text{残膜率} (\%) = (\text{最終硬化後膜厚} (\mu\text{m}) \div \text{現像前膜厚} (\mu\text{m})) \times 100$$

- 一方、同じ硬化性樹脂組成物を上記と同様にして基板上に塗布、乾燥し、プリベークし、リファレンス用の塗布膜を形成する。このリファレンス用塗布膜を、当該塗布膜が完全に硬化する照射強度で露光し、膜厚を測定する。この段階で測定した膜厚を「完全露光膜厚」とする。次に、完全露光した塗布膜を現像はせずに、サンプルと同じ方法でポストベークした後、得られた膜の膜厚を前述したのと同じ方法で測定し、「現像工程無しの最終膜厚」とする。そして、測定された完全露光膜厚と現像工程無しの最終膜厚とから次式に従って、リファレンス残膜率を計算する。

$$\text{リファレンス残膜率} (\%) = (\text{現像工程無しの最終膜厚} (\mu\text{m}) \div \text{完全露光膜厚} (\mu\text{m})) \times 100$$

- このようにして残膜率とリファレンス残膜率を算出し、残膜率が誤差範囲1%としてリファレンス残膜率と等しくなった最も小さい露光量を、硬化性樹脂組成物の最低露光量と決定する。この最低露光量が小さいほど感度が高いと評価できる。

本発明によれば、このようにして決定される最低露光量が100mJ/cm²以

下の硬化性樹脂組成物を得ることが可能である。

本発明の光硬化性樹脂組成物は、カラーフィルターの細部、例えば、画素部やブラックマトリックス層などの着色層、当該着色層を被覆する保護層、及び、液晶パネルのセルギャップを維持するための柱状スペーサーを形成するのに適している。また、本発明の光硬化性樹脂組成物は、液晶表示装置以外の他方式の表示装置にも利用可能であり、例えば、有機EL表示素子のカラーフィルターの保護膜、画素部、その他の細部を形成するのにも好適に用いられる。

本発明の光硬化性樹脂組成物は、カラーフィルターの保護膜や画素部として使用した時に、液晶パネル組み立て途中での加熱プロセスによっても黄変を来たし難く、透明性に非常に優れている。さらに、この光硬化性樹脂組成物中にエチレン性不飽和結合を有するフマレート共重合体と第三成分としての硬化性化合物を組み合わせて配合する場合には、組成物中における架橋反応の反応点密度が高くなり、硬化後において塗膜強度、耐熱性、耐薬品性等の諸物性にも優れている。

カラーフィルターは、透明基板に所定のパターンで形成されたブラックマトリックスと、当該ブラックマトリックス上に所定のパターンで形成した画素部と、当該画素部を覆うように形成された保護膜を備えている。保護膜上に必要に応じて液晶駆動用の透明電極が形成される場合もある。また、ブラックマトリックス層が形成された領域に合わせて、透明電極板上若しくは画素部上若しくは保護膜上に柱状スペーサーが形成される場合もある。

画素部は赤色パターン、緑色パターン及び青色パターンがモザイク型、ストライプ型、トライアングル型、4画素配置型等の所望の形態で配列されてなり、ブラックマトリックス層は各画素パターンの間及び画素部形成領域の外側の所定領域に設けられている。画素部やブラックマトリックス層などの着色層は、様々な方法で形成でき、例えば、染色法、顔料分散法、印刷法、電着法のいずれを用いても形成することができる。ブラックマトリックス層は、クロム蒸着等により形成してもよい。しかしながら、これらの着色層は、上記した光硬化性樹脂組成物を用いて顔料分散法により形成するのが好ましい。すなわち、上記した光硬化性樹脂組成物に有色の又は黒色の着色顔料を分散させて塗工材料を調製し、透明

基板の一面側に塗布し、フォトマスクを介して紫外線、電離放射線等の活性化エネルギー線を照射することにより露光し、アルカリ現像後、クリーンオープン等で加熱硬化することにより着色層を形成できる。着色層は、通常、1. 5 μm 程度の厚さに形成する。

5 保護膜は、上記した光硬化性樹脂組成物の塗工液を、スピンドルコーティング、ロールコーティング、スプレイ、印刷等の方法により塗布して形成することができる。保護膜は、例えば、2 μm 程度の厚さに形成する。スピンドルコーティングを使用する場合、回転数は500～1500回転／分の範囲内で設定する。光硬化性樹脂組成物の塗工膜は、フォトマスクを介して活性化エネルギー線を照射することにより露光され、アルカリ現像後、クリーンオープン等で加熱硬化されて保護膜となる。

保護膜上の透明電極は、酸化インジウムスズ(ITO)、酸化亜鉛(ZnO)、酸化スズ(SnO)等、およびそれらの合金等を用いて、スパッタリング法、真空蒸着法、CVD法等の一般的な方法により形成され、必要に応じてフォトレジストを用いたエッチング又は治具の使用により所定のパターンとしたものである。この透明電極の厚みは、通常20～500 nm程度、好ましくは100～300 nm程度である。

透明電極上の柱状スペーサーも、上記した光硬化性樹脂組成物の塗工液を、スピンドルコーティング、ロールコーティング、スプレイ、印刷等の方法により塗布し、フォトマスクを介する活性化エネルギー線照射により露光し、アルカリ現像後、クリーンオープン等で加熱硬化することにより形成できる。柱状スペーサーは、例えば、5 μm 程度の高さに形成される。スピンドルコーティングの回転数も保護膜を形成する場合と同様に、500～1500回転／分の範囲内で設定すればよい。

このようにして製造されたカラーフィルターの内面側に配向膜を形成し、電極基板と対向させ、間隙部に液晶を満たして密封することにより、液晶パネルが得られる。

実施例

実施例 1

(共重合樹脂溶液 1 の合成)

下記分量のモノマー

<共重合組成>

- 5 · ジシクロヘキシリルマレート (DCHF) : 529 g
 · アクリル酸 (AA) : 171 g

を、パープチルO (商品名、日本油脂(株) 製の有機過酸化物) 14 gと共に、
 300 g のジェチレングリコールジメチルエーテル (DMDG) に溶解した溶液
 を、80°Cに温度調整した 1000 g の DMDG を入れた窒素雰囲気の重合槽中

- 10 に 6 時間かけて滴下した後、同温度で 4 時間熟成して重合させ、共重合樹脂溶液
 1を得た。

(光硬化性樹脂組成物 1 の調製)

下記分量の下記材料を室温で攪拌、混合し、光硬化性樹脂組成物 1を得た。

<光硬化性樹脂組成物 1 の組成>

- 15 · 上記共重合樹脂溶液 1 (固形分 35%) : 69.0 重量部
 · ジペンタエリスリトールペンタアクリレート (SR399、サートマー社製) :
 11.0 重量部
 · オルソクレゾールノボラック型エポキシ樹脂 (商品名エピコート 180S70、
 ジャパンエポキシレジン社製) : 15.0 重量部
- 20 · 2-メチル-1-(4-メチルチオフェニル)-2-モルホリノプロパン-1-
 1 : 1.5 重量部
 · 2, 2'-ビス(オ-クロロフェニル)-4, 5, 4', 5'-テトラフェニ
 ル-1, 2'-ビイミダゾール : 1.0 重量部
 · DMDG : 66.0 重量部

25 実施例 2

(原料重合体の合成)

下記分量のモノマー

<共重合組成>

・ジシクロヘキシリルマレート (DCHF) : 469 g

・アクリル酸 (AA) : 132 g

を、パープチルO (商品名、日本油脂 (株) 製の有機過酸化物) 12 gと共に、

258 g のジェチレングリコールジメチルエーテル (DMDG) に溶解した溶液

5 を、80°Cに温度調整した859 g のDMDGを入れた窒素雰囲気の重合槽中に

6時間かけて滴下した後、同温度で4時間熟成して重合させ、原料重合体の溶液

(共重合樹脂溶液2の前駆体)を得た。

(共重合樹脂溶液2の合成)

前記の合成で得られた原料重合体の溶液1730 gへ、グリシジルメタクリレ

10 ート (GMA) 99 g、ピリジン5 g、ハイドロキノン0.5 gを仕込み、均一

に溶解させた。次に、攪拌下の反応液中に空気をバーリングしながら80°Cまで

昇温し、80°Cで5時間反応して共重合樹脂溶液2を得た。

(光硬化性樹脂組成物2の調製)

用いた樹脂を共重合樹脂溶液2に変更した以外は実施例1と同様に組成物の

15 調製を行い、光硬化性樹脂組成物2を得た。

実施例3

(原料重合体の合成)

下記分量のモノマー

<共重合組成>

20 ・ジシクロヘキシリルマレート (DCHF) : 557 g

・アクリル酸 (AA) : 113 g

を、パープチルO (商品名、日本油脂 (株) 製の有機過酸化物) 13.4 gと共に、

287 g のジェチレングリコールジメチルエーテル (DMDG) に溶解した

溶液を、80°Cに温度調整した957 g のDMDGを入れた窒素雰囲気の重合槽

25 中に6時間かけて滴下した後、同温度で4時間熟成して重合させ、原料重合体の

溶液(共重合樹脂溶液3の前駆体)を得た。

(共重合樹脂溶液3の合成)

前記の合成で得られた原料重合体の溶液1914 gへ、グリシジルメタクリレ

ート (GMA) 30 g、ピリジン 1.5 g、ハイドロキノン 0.15 g を仕込み、均一に溶解させた。次に、攪拌下の反応液中に空気をバーピングしながら 80 °C まで昇温し、80 °C で 5 時間反応して共重合樹脂溶液 3 を得た。

(光硬化性樹脂組成物 3 の調製)

- 5 用いた樹脂を共重合樹脂溶液 3 に変更した以外は実施例 1 と同様に組成物の調製を行い、光硬化性樹脂組成物 3 を得た。

比較例 1

(共重合樹脂溶液 4 の合成)

下記分量のモノマー

10 <共重合組成>

- ・メタアクリル酸メチル (MMA) : 357 g
- ・メタクリル酸 (MAA) : 181 g

を、アゾビスイソブチロニトリル (AIBN) 3 g と共に、650 g のジエチレングリコールジメチルエーテル (DMDG) に溶解した溶液を、1000 g の D

- 15 MDG を入れた重合槽中に 100 °C で 6 時間かけて滴下し、重合させ、共重合樹脂溶液 4 を得た。

(光硬化性樹脂組成物 4 の調製)

用いた樹脂を共重合樹脂溶液 4 に変更した以外は実施例 1 と同様に組成物の調製を行い、光硬化性樹脂組成物 4 を得た。

- 20 得られた共重合体の物性を第 1 表に示した。

第1表

	共重合体組成 (重量%)					酸価 mgKOH/g	Mw × 10 ⁴	C=C 含有量 mmol/g	濃度 %
	MMA	DCHF	MAA	AA	GMA				
実施例 1	—	75.6	—	24.4	—	190	2.2	0	35
実施例 2	—	67.0	—	18.8	14.2	90	2.4	1.0	35
実施例 3	—	79.5	—	16.2	4.3	110	2.5	0.3	35
比較例 1	71.8	—	28.2	—	—	220	3.1	0	35

5 MMA : メタクリル酸メチル

DCHF : ジシクロヘキシルフマレート

MAA : メタクリル酸

AA : アクリル酸

GMA : グリシジルメタクリレート

10 実施例 4

(1) ブラックマトリックスの形成

先ず、下記分量の各成分を混合し、サンドミルにて十分に分散し、黒色顔料分散液を調製した。

<黒色顔料分散液の組成>

15 ・ 黒色顔料 : 23部

・ 高分子分散剤 (商品名 Disperebyk 111、ビックケミー・ジャパン
(株) 製) : 2重量部

・ 溶剤 (DMDG) : 75重量部

次に下記分量の各成分を十分混合して、光硬化性ブラックマトリックス用樹脂

20 組成物を得た。

<光硬化性ブラックマトリックス用樹脂組成物の組成>

- ・上記の黒色顔料分散液：61重量部
- ・実施例1の光硬化性樹脂組成物1：20重量部
- ・溶剤(DMDG)：30重量部

そして、厚み1.1mmのガラス基板(旭硝子(株)製AL材)上に上記光硬化性ブラックマトリックス用樹脂組成物をスピンドルコーターで塗布し、100°Cで3分間乾燥させ、膜厚約1μmの光硬化性ブラックマトリックス層を形成した。当該光硬化性ブラックマトリックス層を、超高压水銀ランプで遮光パターンに露光した後、0.05%水酸化カリウム水溶液で現像し、その後、基板を180°Cの雰囲気中に30分間放置することにより加熱処理を施して遮光部を形成すべき領域にブラックマトリックスを形成した。

(2) 着色層の形成

上記のようにしてブラックマトリックスを形成した基板上に、下記組成の赤色(R用)光硬化性樹脂インクをスピンドルコーティング法により塗布(塗布厚み1.5μm)し、その後、70°Cのオーブン中で30分間乾燥した。

次いで、赤色(R用)光硬化性インクの塗布膜から100μmの距離にフォトマスクを配置してプロキシミティアライナにより2.0kWの超高压水銀ランプを用いて着色層の形成領域に相当する領域のみに紫外線を10秒間照射した。次いで、0.05wt%水酸化カリウム水溶液(液温23°C)中に1分間浸漬してアルカリ現像し、赤色(R用)光硬化性樹脂インクの塗布膜の未硬化部分のみを除去した。その後、基板を180°Cの雰囲気中に30分間放置することにより加熱処理を施して赤色画素を形成すべき領域に赤色のレリーフパターンを形成した。

次に、下記組成の緑色(G用)光硬化性樹脂インクを用いて、赤色のレリーフパターン形成と同様の工程で、緑色画素を形成すべき領域に緑色のレリーフパターンを形成した。

さらに、下記組成の青色(B用)光硬化性樹脂インクを用いて、赤色のレリーフパターン形成と同様の工程で、青色画素を形成すべき領域に青色のレリーフパターンを形成し、赤(R)、緑(G)、青(B)の3色からなる着色層を形成し

た。

＜赤色（R用）光硬化性樹脂インクの組成＞

- ・C. I. ピグメントレッド177：10重量部
 - ・ポリスルホン酸型高分子分散剤：3重量部
- 5 ・実施例1の光硬化性樹脂組成物1：5重量部
- ・酢酸-3-メトキシブチル：82重量部

＜緑色（G用）光硬化性樹脂インクの組成＞

- ・C. I. ピグメントグリーン36：10重量部
 - ・ポリスルホン酸型高分子分散剤：3重量部
- 10 ・実施例1の光硬化性樹脂組成物1：5重量部
- ・酢酸-3-メトキシブチル：82重量部

＜青色（B用）光硬化性樹脂インクの組成＞

- ・C. I. ピグメントブルー15：6：10重量部
 - ・ポリスルホン酸型高分子分散剤：3重量部
- 15 ・実施例1の光硬化性樹脂組成物1：5重量部
- ・酢酸-3-メトキシブチル：82重量部

実施例5：保護膜の形成

実施例4において着色層を形成したガラス基板上に、実施例1の光硬化性樹脂組成物1をスピンドルコート法により塗布、乾燥し、乾燥膜厚2μmの塗布膜を形成した。

光硬化性樹脂組成物1の塗布膜から100μmの距離にフォトマスクを配置してプロキシミティアライナにより2.0kWの超高压水銀ランプを用いて着色層の形成領域に相当する領域のみに紫外線を10秒間照射した。次いで、0.05wt%水酸化カリウム水溶液（液温23°C）中に1分間浸漬してアルカリ現像し、光硬化性樹脂組成物の塗布膜の未硬化部分のみを除去した。その後、基板を200°Cの雰囲気中に30分間放置することにより加熱処理を施して保護膜を形成し、本発明のカラーフィルターを得た。

実施例6：スペーサーの形成

実施例 4において着色層を形成したガラス基板上に、実施例 1で得られた光硬化性樹脂組成物 1をスピンドルコート法により塗布、乾燥し、乾燥膜厚 5 μm の塗布膜を形成した。

光硬化性樹脂組成物 1の塗布膜から 100 μm の距離にフォトマスクを配置
5 してプロキシミティアライナにより 2. 0 kWの超高圧水銀ランプを用いて、ブ
ラックマトリックス上のスペーサーの形成領域のみに紫外線を 10 秒間照射し
た。次いで、0. 05 wt %水酸化カリウム水溶液（液温 23 °C）中に 1 分間浸
漬してアルカリ現像し、光硬化性樹脂組成物の塗布膜の未硬化部分のみを除去
10 した。その後、基板を 200 °Cの雰囲気中に 30 分間放置することにより加熱処理
を施して固定スペーサーを形成し、本発明のカラーフィルターを得た。

得られたカラーフィルターの固定スペーサーを含む表面に、基板温度 200 °C
でアルゴンと酸素を放電ガスとし、DC マグネットロンスパッタリング法によって
ITO をターゲットとして透明電極膜を形成した。その後、更に透明電極膜上に
ポリイミドよりなる配向膜を形成した。

15 次いで、上記カラーフィルターと、 TFT を形成したガラス基板とを、エポキ
シ樹脂をシール材として用い、150 °Cで 0. 3 kg/cm² の圧力をかけて接合
してセル組みし、TN 液晶を封入して液晶表示装置を作製した。

実施例 7

実施例 4において着色層を形成したガラス基板の当該着色層上に、実施例 5に
20 おいて着色層と保護膜を形成したカラーフィルターの当該保護膜上に、それぞれ、
基板温度 200 °Cでアルゴンと酸素を放電ガスとし、DC マグネットロンスパッタ
リング法によって ITO をターゲットとして透明電極膜を形成した。その後、更
に透明電極膜上にポリイミドよりなる配向膜を形成してカラーフィルターを得
た。

25 (耐熱性の評価)

10 cm 画のガラス基板上に、実施例 1で得られた光硬化性樹脂組成物 1をス
ピンドルコート（形式 1H-DX2、MIKASA 製）により、塗布、乾燥し、乾
燥膜厚 2. 2 μm の塗布膜を形成した。この塗布膜をホットプレート上で 90 °C、

3分間加熱した。加熱後、塗布膜に2.0 kWの超高压水銀ランプを装着したUVアライナー（形式MA 1200、大日本スクリーン製）によって、100 mJ/cm²の強度（405 nm照度換算）で紫外線を照射した。

紫外線の照射後、塗布膜をクリーンオーブン（SCOV-250 Hy-So、5 忍足研究所（株）製）により、200°Cで30分間乾燥し、膜厚2.0 μmの硬化膜を得た。このようにして得られたガラス基板上の硬化膜の光（380 nm）の透過率を、ガラス基板をリファレンスとし、吸光計（島津（株）製、UV-3100PC）を用いて測定した。

次いで、硬化膜付きのガラス基板をクリーンオーブン（SCOV-250 Hy-So、10 忍足研究所（株）製）により、250°Cで1時間加熱し、加熱試験硬化膜を得た。このようにして得られたガラス基板上の加熱試験硬化膜の可視光（380～780 nm）の透過率を、ガラス基板をリファレンスとし、吸光計（UV-3100PC、島津（株）製）を用いて測定した。

上記加熱試験前後の光（380 nm）の透過率の変化から硬化膜の耐熱性を15 評価した。さらに、上述したのと同じ方法により、実施例2で得られた光硬化性樹脂組成物2、実施例3で得られた光硬化性樹脂組成物3、及び、比較例1で得られた光硬化性樹脂組成物4の塗布膜を形成し、加熱試験前後の光の透過率の変化から硬化膜の耐熱性を評価した。

このようにして各光硬化性樹脂組成物1乃至4から形成された硬化膜の耐熱性を評価した結果を第2表に示す。

第2表

	実施例1	実施例2	比較例3	比較例1
加熱後の380 μm での透過率 (%)	92	90	91	75

(感度の評価)

- 10 cm²のガラス基板上に、実施例1で得られた光硬化性樹脂組成物1をスピニコーター（形式1H-DX2、MIKASA製）により、塗布、乾燥し、乾燥膜厚2 μmの塗布膜を形成した。この塗布膜をホットプレート上で90°C、3分間加熱した。加熱後、塗布膜から100 μmの距離にフォトマスクを配置して2.0 kWの超高压水銀ランプを装着したUVアライナー（形式MA 1200、大日本スクリーン製）によって、同一塗膜を4等分した各領域のそれぞれに、50、100、150、200 mJ/cm²の強度（405 nm照度換算）で紫外線を照射した。
- 10 紫外線の照射後、これら4つの各領域から、寸法が約1 mm × 3 mmの矩形状に塗布膜を削り取ってガラス基板を部分的に露出させ、触針式表面粗度測定装置（Dektak 1600、日本アネルバ（株）製）により各照射領域の膜厚を測定し、現像前膜厚とした。
- 次いで、塗布膜の露光部に0.05 wt %の水酸化カリウム水溶液をスピニ現像機（INK、MODEL：915、Applied Process Technology社製）にて60秒間散布し、未露光部を溶解、除去し、残った露光部を純水で60秒間水洗することにより現像した。現像後、露光部の膜をクリーンオーブン（SCOV-250 Hy-So、忍足研究所（株）製）により、200°Cで30分間加熱した。そして、得られた膜の各領域の膜厚を、前述したのと同じ方法で測定し、最終硬化後膜厚とした。

このようにして測定された現像前膜厚と最終硬化後膜厚とから次式に従って、残膜率を計算した。

$$\text{残膜率} (\%) = (\text{最終硬化後膜厚} (\mu\text{m}) \div \text{現像前膜厚} (\mu\text{m})) \times 100$$

一方、リファレンス残膜率を、次のようにして決定した。先ず、塗布膜の全面に100 mJ/cm²の強度で露光したこと以外はサンプルと同じ方法で、光硬化性樹脂組成物1の完全露光膜厚を測定した。次に、100 mJ/cm²露光した塗布膜を現像はせずに、サンプルと同じ方法で加熱だけした後、得られた膜の膜厚を前述したのと同じ方法で測定し、現像工程無しの最終膜厚とした。そして、測

定された完全露光膜厚と現像工程無しの最終膜厚とから次式に従って、リファレンス残膜率を計算した。

$$\text{リファレンス残膜率 (\%)} = (\text{現像工程無しの最終膜厚 (\mu m)} \div \text{完全露光膜厚 (\mu m)}) \times 100$$

5 このようにして算出された残膜率が誤差範囲 1 % としてリファレンス残膜率と等しくなった最も小さい露光量を、光硬化性樹脂組成物 1 の最低露光量と決定した。

さらに、上述したのと同じ方法により、実施例 2 で得られた光硬化性樹脂組成物 2、実施例 3 で得られた光硬化性樹脂組成物 3、及び、比較例 1 で得られた光 10 硬化性樹脂組成物 4 の塗布膜を形成し、現像前膜厚、最終硬化後膜厚、完全露光膜厚、及び現像工程無しの最終膜厚を測定し、各光硬化性樹脂組成物 2 乃至 4 の最低露光量を決定した。

このようにして、各光硬化性樹脂組成物 1 乃至 4 について最低露光量を決定した。結果を第 3 表に示す。

15

第 3 表

実施例No.	組成物No.	最低硬化露光量 (mJ/cm ²)
実施例 1	硬化性樹脂組成物 1	200
実施例 2	硬化性樹脂組成物 2	100
実施例 3	硬化性樹脂組成物 3	150
比較例 1	硬化性樹脂組成物 4	200

産業上の利用可能性

20

以上説明したように、本発明においてバインダー成分として用いられるフマレート系共重合体は、耐熱変色性に寄与する式 1 の構成単位と、酸性やアルカリ可溶性に寄与する酸性官能基含有単位とが連結し、さらに必要に応じて、反応硬化性に寄与するエチレン性不飽和結合含有単位や、塗膜性に寄与する芳香族炭素環

含有単位や、アルカリ現像性を抑制するエステル基含有単位が連結してなるものである。

このフマレート系共重合体は優れた耐熱変色性を備えるだけでなく、各構成単位の含有割合を変更することによって、反応硬化性、アルカリ可溶性、塗工性など适宜に調節できる。従って、この共重合体は、光硬化性、熱硬化性等の反応硬化性樹脂組成物のバインダー成分として好適に用いることができ、当該反応硬化性樹脂組成物により、さまざまな微細構造、特にカラーフィルターの細部を形成することが可能である。

本発明により提供されるカラーフィルターの保護膜、RGB用画素、ブラックマトリックス又はスペーサーを形成するための光硬化性樹脂組成物は、前記フマレート系共重合体をバインダー成分として含有するものである。

この光硬化性樹脂組成物は、カラーフィルターの細部、例えば、画素部やブラックマトリックス層などの着色層、当該着色層を被覆する保護層、及び、液晶パネルのセルギャップを維持するための柱状スペーサーを形成するのに適している。

本発明のカラーフィルターの保護膜、RGB用画素、ブラックマトリックス又はスペーサーを形成するための光硬化性樹脂組成物は、カラーフィルターの保護膜や画素部として使用した時の黄変が生じにくく、透明性に優れている。

特に、前記フマレート系共重合体をバインダー成分として含有し、必要に応じて2個以上のエチレン性不飽和結合を有する多官能重合性化合物を組み合わせて配合する場合には、組成物中における架橋反応の反応点密度が高くなり、露光感度、及び、硬化後においての塗膜強度、耐熱性、耐薬品性等の諸物性に優れている。

請求の範囲

1. バインダー成分として、少なくとも下記式1で表される構成単位と酸性官能基を備えた構成単位とが連結した分子構造を有する共重合体を含有することを
 5 特徴とする、カラーフィルターの保護膜、RGB用画素、ブラックマトリックス又はスペーサーを形成するための光硬化性樹脂組成物。

式1

(式中、R¹及びR²は、それぞれ独立して炭素数3～8の分岐アルキル基若しくは置換分岐アルキル基、又は、炭素数4～8のシクロアルキル基若しくは置換シクロアルキル基を表す。)

15

2. 前記酸性官能基を備えた構成単位が、下記式2で表される構成単位である請求の範囲第1項に記載の光硬化性樹脂組成物。

式2

20

(式中、R³は水素原子、メチル基又はカルボキシメチル基である。)

3. 前記共重合体がエチレン性不飽和結合を備えた構成単位をさらに有する請求の範囲第1項に記載の光硬化性樹脂組成物。
- 5 4. 前記エチレン性不飽和結合を備えた構成単位が、下記式3で表される構成単位又は下記式4で表される構成単位である請求の範囲第3項に記載の光硬化性樹脂組成物。

式3

10

(式中、R⁴及びR⁵は水素原子又はメチル基である。)

式4

5

(式中、R⁶及びR⁹は水素原子又はメチル基であり、R⁷は炭素数2乃至4のアルキレン基であり、R⁸はアルキレン基である。また、hは0又は1の数である。)

5. 前記共重合体の酸価が40～200mg KOH/gである請求の範囲第1項
10 に記載の光硬化性樹脂組成物。

6. 前記共重合体は酸価が40～200mg KOH/gで且つエチレン性不飽和結合の含有量が0.5～2.0mmol/gである請求の範囲第3項に記載の光硬化性樹脂組成物。

15

7. 前記共重合体の重量平均分子量が5000～100000である請求の範囲第1項に記載の光硬化性樹脂組成物。

8. 前記共重合体が固形分比で5～80重量%含まれる請求の範囲第1項に記載
20 の光硬化性樹脂組成物。

9. 光硬化性化合物をさらに含有する請求の範囲第1項に記載の光硬化性樹脂組成物。

10. 光重合開始剤をさらに含有する請求の範囲第1項に記載の光硬化性樹脂組成物。
- 5 11. エポキシ基を分子内に2個以上有する化合物をさらに含有する請求の範囲第1項に記載の光硬化性樹脂組成物。
12. 色材をさらに含有する請求の範囲第1項に記載の光硬化性樹脂組成物。
- 10 13. 前記光硬化性樹脂組成物の硬化膜を250°Cで1時間加熱した時に、加熱前の380nmにおける光線透過率に対する加熱後の同波長における光線透過率の比が90%以上である請求の範囲第1項に記載の光硬化性樹脂組成物。
14. カラーフィルターの製造に用いられる請求の範囲第1項に記載の光硬化性樹脂組成物。
- 15 15. 透明基板と、当該透明基板上に形成された着色層とを備え、当該着色層が前記請求の範囲第1項に記載の光硬化性樹脂組成物を硬化させて形成したRGB用画素又はブラックマトリックスであるカラーフィルター。
- 20 16. 透明基板と、当該透明基板上に形成された着色層と、当該着色層を被覆する保護膜とを備え、前記の保護膜が前記請求の範囲第1項に記載の光硬化性樹脂組成物を硬化させて形成したものであるカラーフィルター。
- 25 17. 透明基板と、当該透明基板上に形成された着色層と、対向させるべき電極基板との間隔を維持するために非表示部と重なり合う位置に設けられたスペーサーとを備え、前記のスペーサーが前記請求の範囲第1項に記載の光硬化性樹脂組成物を硬化させて形成したものであるカラーフィルター。

1/1

第1図

第2図

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/06339

A. CLASSIFICATION OF SUBJECT MATTER

Int.C1⁷ G02B5/20, G03F7/027, G02F1/1335, G02F1/1339

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.C1⁷ G02B5/20, G03F7/027, G02F1/1335, G02F1/1339

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho	1926-1996	Toroku Jitsuyo Shinan Koho	1994-2003
Kokai Jitsuyo Shinan Koho	1971-2003	Jitsuyo Shinan Toroku Koho	1996-2003

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP 2002-14468 A (Mitsubishi Chemical Corp.), 18 January, 2002 (18.01.02), Full text; all drawings (Family: none)	1-17
A	JP 2001-337450 A (Mitsubishi Chemical Corp.), 07 December, 2001 (07.12.01), Full text; all drawings (Family: none)	1-17
A	JP 2002-12607 A (Mitsubishi Chemical Corp.), 15 January, 2002 (15.01.02), Full text; all drawings (Family: none)	1-17

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:	
"A"	document defining the general state of the art which is not considered to be of particular relevance
"E"	earlier document but published on or after the international filing date
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O"	document referring to an oral disclosure, use, exhibition or other means
"P"	document published prior to the international filing date but later than the priority date claimed
"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&"	document member of the same patent family

Date of the actual completion of the international search 21 August, 2003 (21.08.03)	Date of mailing of the international search report 09 September, 2003 (09.09.03)
---	---

Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer
Facsimile No.	Telephone No.

国際調査報告

国際出願番号 PCT/JP03/06339

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C1' G02B 5/20 G03F 7/027 G02F 1/1335
 G02F 1/1339

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C1' G02B 5/20 G03F 7/027 G02F 1/1335
 G02F 1/1339

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1926-1996年
 日本国公開実用新案公報 1971-2003年
 日本国登録実用新案公報 1994-2003年
 日本国実用新案登録公報 1996-2003年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	JP 2002-14468 A (三菱化学株式会社) 2002. 01. 18 全文、全図 (ファミリーなし)	1-17
A	JP 2001-337450 A (三菱化学株式会社) 2001. 12. 07 全文、全図 (ファミリーなし)	1-17

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 21. 08. 03	国際調査報告の発送日 09.09.03
国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 峰 祐治 2V 7635 電話番号 03-3581-1101 内線 6532

C(続き) 関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	JP 2002-12607 A (三菱化学株式会社) 2002. 01. 15 全文、全図 (ファミリーなし)	1-17