COPY OF PAPERS ORIGINALLY FILED

1/15

89 267 109 449 189 567 207 129 387 149 447 879 327 169 507 CTC
R
CGA
I
ATC
V
GTT
L A Sicc 25 A 200 NO ctc ctc ctc ctc ctc > 3**T**G A 200 356 376 376 376 376 276 276 276 360 360 360 360 360 GAA CGC CGC CGC CTG W W SGC GGC GGC GGC GGC CCT ACC ACC GAG GTG GTG S AGC CTG CTG CTG CTG F TTC GGG GGC H CAC ٦ ا Z V V SCC TGC N N N TGG TGG CTG CTG CCGGACTAGTICTAGACCGCTGCGGGCCGCCAGGCGCGGGA CGC CGC ACC ACC SAA L CTG CTG GTA GTG GTG GTG CTG CTG F F F G CTG GGC CTG CTG GCC GTG GTG GTG CGC CGC CTG CTG CTG CTG CGC ASS D GAC S TCG T L C CTG CTG A JCG ² AAG GCA GGC GGC GGC GGC GGC GGC GGC GGC A

Ouput

FIG. 1B.

1.A.

FROM FIG.

2/15

209 627	229 687	249	269 807	208 867	309 927
V GTC	X AAA	E GAG	L CTC	I ATC	FTC
D GAT	S 700	s TCG	L CTC	L CTG	A GCC
•		Y			
S TCG	S AGT	A GCC	L CTC	L CTC	\ GTG
I ATC	$_{\rm ATC}^{\rm I}$	L CTG	₁ ACC	L CTC	¥ 766
_		S AGC			
GGA	Į ATT	> Q GTA	F TTC	→ ACC	F
		ACC			
I ATT		CTC		ATC	S
T ACC	GGA	R AGG	F	$_{\rm ATC}^{\rm I}$	P DOO
_	_	A AAG	_	_	-
		AGG			
I ATT		TCA	CAG	₩ TGG	V GTC
		GCA.			
T ACA	AAC	AAG.	, v	IATC	D GAC
2 76 76	11G	ACA	CGC	F	CAA
$_{ATT}^{\mathrm{I}}$	T ACT	$_{\rm ATC}^{\rm I}$	I ATC	F	K AAG
S TCG	V GTT	Q CAG	Q CAG	S TCC	F
I ATT	4 = =	L TTA	CAC	\ GTC	N AAC
		$_{ATT}^{\mathrm{I}}$			

COPY OF PAPERS ORIGINALLY FILED

TO FIG. 1C. FIG. 1B.

FROM FIG. 1B

TTT GCT AAT TCA GCC CTA AAC CCC ATC CTC TAC AAC ATG ACA CTG TGC AGG AAT GAG 987

K K I F C C F W F P E K G A I L T D T 349

AAG AAA ATT TTT TGC TGC TTC TGG TTC CCA GAA AAG GGA GCC ATT TTA ACA GAC ACA 1047

V K R N D L S I I S G 388

GTC AAA AGA AAT GAC TTG TGG ATT ATT TCT GGC TAA 1088

× 766 107 107 TTTTCTTTATAGCCGAGTTTCTCACACCTGGGGAGCTGTGGCATGCTTTTAAACAGAGTTCATTTCCAGTACCCTCCA CAGTGCACCCTGCTTTAAGAAAALGAACQ FATGCAAATAGACATCCACAGCGTCGGTAAATTAAGGGGGTGATCACCAA ICCATCTTAAAAAAAAAAAAAAAAAAAGATTTGTTATGGGTTCCTTTTAAATGTGAACTTTTTAGTGTGTTTTGTAATATG AGGCTGAGGTGGGTGGATCACCTGAGGTCAGGAGTTCGAGACCAACCTGACCAACATGGTGAGACCCCCGTCTACTA CTCTTGAACCTGGGAGGCAGAGGTTGCAGTGAGCCGAGATCGTGCCATTGCACTCCAACCAGGGCAACAAGAGTGAAAC GTTTCATAATATTTTCCCTTTATAÅAAGGÄTTTGTTGGCCAGGTGCAGTGGTTCATGCCTGTAATCCCAGCAGTTTGGG <u> AAAATAAAAAAAAAATTAGCTGGGAGTGGTGGGCACCTGTAATCCTAGCTACTTGGGAGGCTGAACCAGGAGAAT</u>

FIG. 1C.

RTA01/2057957v1

COPY OF PAPERS ORIGINALLY FILED

3/15


```
E-value
Sequence Description
                                                 score
                                                        4. 7e-37
           PF00001 7 transmembrane receptor (rhodopsin 119.9
7tm 1
Parsed for domains:
Sequence Domain seq-f seq-t hmm-f
                                  hmm-t
                                             score
                                                    E-value
                                     259 [ ] 119.9
                 57
                       321
Alignments of top-scoring domains:
7tm_1: domain 1 of 1, from 57 to 321: score 119.9, E = 4.7e-37
                *->GN1LV:1v:1rtkk1rtptnif:1NLAVADLLf11t1ppwa1yy1va
                   GN+ +++++r +++r +t +++1NL ADLLf + p++ ++ -+
                   GNVCALVLVAR-RRRRGATACLVLNLFCADLLFISAIPLVLAVR-WT 101
   F1h14273, 57
                qaadWpfGsa1Ck1vtaldvvnmyaSi11Lta1SiDRY1A1vhP1ryrrr
                  P W++G++ C+1+ ++++++ + i1+L+a S++R + Iv 1+ +r
   F1h14373, 102 -- EAWLLGPVACHLLFYYMTLSGSVTILTLAAVSLERMVCIV-HLQRGVR 148
                 rtsprrAkvvillvwvlallls1PpllfswvktveegngtlnvnvevCli
                   +r +v+++1+W +++++1P +f+ v+ ++
                                                      ~++ ++ +C++
   F1h14273, 149 GPGRRARAVLLALIWGYSAVAALPLCVFFRVVPQRLPG--ADQEISICTL 196
                dfpccstasvstwlrsyv11st1wgF11P11vilvcYtrI1rt1r.....
                             ++5+ +++ ++ F1+P 1v1++ Y+ I1 + + ++++
                  +p++++
   F1h14273, 197 INPTIPG----EISWEVSFVTLNELVRGLVIVISYSKILQITKasrkr 240
                           ....kaakt11vyvvvFv1CV1Pyfiv111dt1c
                 + + +++++ + ++++ ++ +t1++++ F++ V P i++11 +
   F1h14273, 241 1cvs1ayseehqirvsqqdfRLFRTLFLLMVSFFIMVSPIIITILLILIQ 290
                 .1siimsstCe1erv1pta11vt1wLayvNsc1NPi1Y<-*
                              F1h14273, 291 nFK-----QDLVIVPSLFFWVVAPTFANSALNPILY 321
```

FIG. 2.

Analysis of Flh14273, (362 aa)

>F1h14273, 1086 bases, 1825 checksum.
MSPECARAAQDAPLRSLEQANRTRFPFFSDVKGDHRLVLAAVETTVLVLEFAVSLLGNVC
ALVLVARRRRGATAQLVLNLFCADLLFYSAIPLVLAVRVTEAVLLGPVACHLLFYVMTL
SGSVTILTLAAVSLERMVCIVHLQRCVRGPGRRARAVLLALIWGYSAVAALPLCVFFRVV
PQRLPGADQEISICTLIWPTIPGEISWDVSFVTLNFLVPGLVIVISYSKILQITKASRKR
LTVSLAYSESHQIRVSQQDFRLFRTLFTLMVSFFIMWSPIIITILLILIQNFKQDLVIWP
SLFFWVVAFTFANSALNPILYNMTLCRNEWKKIFCCFVFGPEKGAILTDTSVKRNDLSIIS
G+

FIG. 4.

ORIGINALLY FILED

>PS0004/PDDC00004/CAMP_PHDSPHD_SITE cAMP- and cGMP-dependent protein kinase phosphorylatic NRTR NMTL

>PS00001/PDDC00001/ASN_GLYCDSYLATION N-glycosylation site.

24 325

Query: 21 Query: 322

Prosite Pattern Matches for F1h14273

KRLT 242 Query: 239 ><u>PS00005</u>/PDEC00005/PKC_PHESPHE_SITE Protein kinase C phosphorylation site

239 352 SRK SVK Query: 237 Query: 350

SQQD 259 Query: 256

>PS00008/PDDC00008/MYRISTYL N-myristoylation site

GNVCAL 62 GATACL 77 GAILTD 348 Query: 72 Query: 57

Query: 343

>PS00009/PDDC00009/AMIDATION Amidation site.

PCRR 153 Query: 150 >PS00029/PDDC00029/LEUCINE_ZIPPER Leucine zipper pattern. Query: 106

127 LGPVACHLLFYVMTLSGSVTIL

Transmembrane Segments Predicted by MEMSAT

Start	End	Orient	Score
46	66	out->ins	5.1
75	98	ins->out	4.0
113	134	out->ins	4.0
156	177	ins->out	4.9
209	227	out->ins	3.7
266	289	ins->out	6.5
297	321	out->ins	3.2

>F1h14273,

MSPECARAAGDAPLRSLEQANRTRFPFFSDVKGDHRLVLAAVETTVLVLIPAVSLLGNVC ALVLVARRRRGATACLVLNLFCADLLFISAWPLVLAVRWTEAWLLGPVACHLLFYVMTL SGSVTILTLAAVSLERMVCIVHLQRGVRGPGRRARAVLLALIWGYSAVAALPLCVFFRVV PQRLPGADQEISICTLIWPTIPGEISWDVSFVTLNFLVPGLVIVISYSKILQITKASRKRLTVSLAYSESHQIRVSQQDFRLFRTLFLLMVSFFIMWSPIIITILLILIQNFKQDLVIWP SLFFWVVAFTFANSALNPILYNMTLCRNEWKKIFCCFWFPEKGAILTDTSVKRNDLSIIS

Transmembrane Segments for Presumed Mature Peptide

Start	End	Orient	Score	
14	37	ins->out,	4.07.	#1 - 9에 (*
52	73	out->ins	4.0 81 74	9
95	116	ins->out"	4.9	r over the second
148	166	out->ins	3.7	17
205	228	ins->out	6.5	e ·
236	260	out->ins	3.2	•

>F1h14273, _mature

LVLVARRRRRGATACLVLNLFCADLLFISAIPLVLAVRWTEAWLLGPVACHLLPYVMTLS GSVTILTLAAVSLERMVCIVHLQRGVRGPGRRARAVLLALIWGYSAVAALPLCVFFRVVP QRLPGADQEISICTLIWPTIPGEISWDVSFVTLNFLVPGLVIVISYSKILQITKASRKRL TVSLAYSESHQIRVSQQDFRLFRTLFLLMVSFFIMWSPIIITILLILIQNFKQDLVIWPS LFFWVVAFTFANSALNPILYNMTLCRNEWKKIPCCFWFPEKGAILTDTSVKRNDLSIISG

9/15

COPY OF PAPERS ORIGINALLY FILED

TTGCCAAGCTCAGCGTAAGCCTCTTCCACTGCAATCTCACAGAAGGGGTTCATGGAGTGCTTCACACCATCAGTGACCA

Input file 14273m; Output File 14273mtra Sequence length 1560

	10 30	900	50 150	70 210	90 270	110 330	130 390	150 450	170 510
2	GGC	D GAT	$_{\rm ATC}^{\rm I}$	80 000	S AGC	>10 GTC	A GCC	P CCG	A GCG
5	T ACG	S TCG	L CTC	R CGG	ACC	> GTC	L CTG	9	P CC C
	T ACG	F	GGA	R CGT	F	٦ 2 3	T ACA	S AGC	L CTC
	CAG	F	L CTG	R CGC	L CTC	ეეე ეეე	L CTC	L TTG	A GCG
	A SCA (P CCT	> <u>F</u>	A GCG	L 776	ا 776	$_{\text{ATC}}^{\rm I}$	99	S TCG
							T ACG		
-	E SAG 1	H CAC	ACC	L CTG	A GCG	¥7 766	V GTC	R CGG	100
)	CT (ACC	E GAG	۷ 576	C 760	A GCC	S AGC	L CTC	¥ 766
֖֓֞֝֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	S	8 20 20 20	V GTG	L CTA	т. Т. С.	E GAG	AGC	CGC -	$_{ATA}^{\mathrm{I}}$
5	M TG T	N AAT	۲ 5	A GCT	CTC	ACT	S AGC	CTG	7.T
֚֚֓֞֝֝֞֜֝֝֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֡֓֓֡֓֡֓֡֓֡֓֡֓	ည	V GTC	S AGC	7GT	AAC	¥ 766	M ATG	I ATC	A GCT
	ງວວສິ	0.44 AA	<u>الله</u> الله	4. C.	CTC	850 000	ACA	် ၁၉	CTG
-	3GCG(GAC	٧ 13	AAC	٧ [.] 16	\ GTG	A.T.G	V GTG	L CTG
֭֡֝֜֝֜֝֜֜֝֜֝֜֝֜֝֓֓֓֜֝֜֜֜֜֓֓֓֓֡֓֜֜֜֜֜֜֜֜֡֓֓֡֓֡֡֡֡֡֡֓֜֜֡֡֡֡֡֡֡֡	3CCG(CTG					16		GCA
5	:TGG(T ACC					TĄČ		A GCG
- -)	יכפכנ	CAC	CAC	Lî CTG			F		Q CAG
)))	:CGGA	S TCG	D GAC			L CTA			T ACT
] - -	TTCC	P 000	99	> GTC		CCT	L CTG	S AGC	CGG
	CGCCATCTTCCCGGACGCGTGGG	00 T	K AAG			I ATC		V GTC	SGG
<u>ن</u> ک	000	P 23	>10 010	F T T	R CGT	A GCC	2 202	A GCG	999

7B FIG.

COPY OF PAPERS ORIGINALLY FILED

10/15

JUL 2 2 2002

FIG

TRADENT 362 086 250 290 870 310 330 F TTT A A A A A A C A A C A A STG STG STG STG STG SAA SCG ACG S TCC SAT TCC S TC S 4GT
AG 3CA
3CA
CTC >15 516 710 11 11 11 11 11 11 11 11 11 11 GAA GTG S S CGC CGC TTC S S AAGC TAA. S AGC CL CL CGA CGA TAC TAC TAC 88 AAC GGA GGA AGG AGG ATC TAC CCA CCA CCA AT THE PROPERTY OF THE PROPERT TGG V SGG SGG SAAGT ATC TTG TTC SCA SCA SCA CTA CTA AAC AAC GTG GAC GCC TGC 760 176 176 176 176 176 177 171 N AAT CTG CTG ATT TTT GTT GTT GTC GTC

മ

TAAGTGTGTTTGTAATATGATCTAGTTAATAAATI TTAAAAATACCCGACTTCCAACAGCAGGCATCTACGGAGCCAGCAAATTAAGGAATGATCGCTCAGTATAAAATAT

CTAGCCTCTGGTGCCAGGTGAACCACGGTGTGTGTAAAGCGAGTTAACTTCAAGGAAAGCCCACCAGTGCGCCTGC


```
14273m.
  Query:
Scores for sequence family classification (score includes all domains):
Sequence Description
                                                   Score
7tm 1
           PF00001
                      7 transmembrane receptor (rhodopsin 118.8
                                                          1e-35
Parsed for domains:
Sequence Domain seq-f seq-t hmm-f
                                    hmm-t
                                               score
                                                      E-value
                  57
                        321 ..
                                 1
                                      259 F 7 118.8
Alignments of top-scoring domains:
7tm_1: domain 1 of 1, from 57 to 321: score 118.8, E = 1e-36
                 *->GN1LVi1vi1rtkk1rtptnifi1NLAvADLLf11t1ppwa1yy1vq
                    GN+ +++++r +++r ++ +++1NL ADLLf+ + D++ ++ ++
                    GNVCALVLVAR-RRRRGASASLVLNLFCADLLFTSAIPLVLVVR-WT 101
   14273m, 57
                 gaadWpfGaa1Ck1vta1dvvnmyaSi111Lta1SiDRY1A1vhP1rvrrr
                   e W++G+++C+1+ +++++++ + i1+1+a S++R + Iv 1r
   14273m, 102 -- EAWLLGPVVCHLLPYVMTMSGSVTILTLAAVSLERMVCIV-RLRRGLS 148
                 rtsprrA. kvv111vWv1a111s1Pp11fswvktveagngt1nvnvtvC1
                    rr++++++++W ++1++1P ++++ v +
   14273m, 149 GP-GRRTgAALLAFIVGYSALAALPLYILFRVVPQRLPGGD--QEITPCT 195
                 idfpeestasvstwirsyv11st1vgF21P11vi1voYtr11rt1r....
                               ++5+ +++ ++ F1+P 1v1++ Y+ 11 + + +++
                 +d+p++ +
   14273m, 196 LDWPNRIG-----EISWDVFFETLNFLVPGLVIVISYSKILQITKasrk 239
                 .....pygggggggggggggggggggkkaakt11vvvvvFv1CW1Pvfiv111dt-
                 +<+++> '44+++'4' '44++'++ +t1++++V F++ W P | +++11 | +
   14273m, 240 ritislayseshqirvsqqdyRLFRTLFLLMVSFFIMWSPIIITILLILI 289
                 c. laiimestCelerviptallvtlwLayvNsc1NPilY<-*
                                + D ++++ + ++++Ns+1NP;+Y
  14273m, 290 QnFR-----QDLVIWPSLFFWVVAFTFANSALNPILY 321
```

FIG. 8.

COPY OF PAPERS ORIGINALLY FILED

>14273m, 1086 bases, 6943 checksum.
MSPECAQTTGPCPSHTLDQVNRTHFPFFSDVKGDHRLVLSVVETTVLGLIFVVSLLGNVC
ALVLVARRRRGASASLVLNLFCADLLFTSAIPLVLVVRWTEAWLLGPVVCHLLFVVMTM
SGSVTILTLAAVSLERMVCIVRLRRGLSGPGRRTQAALLAFIWGYSALAALPLYILFRVV
PQRLPGGDQEIPICTLDWPNRIGEISWDVFFETLNFLVPGLVIVISYSKILQITKASRKR
LTLSLAYSESHQIRVSQQDYRLFRTLFLLMVSFFIMSPIIITILLILIQNFRQDLVIVP
SLFFWVVAFTFANSALNPILYNMSLFRNEWRKIFCCFPFPEKGAIFTDTSVRRNDLSVIS
S*

FIG. 10.

Prosite Pattern Matches for 14273m,

>PS00001/PD0C00001; ASN_GLYCOSYLATION N-glycosylation site.

Query: 21 NRTH 24 NRTH 325 Query: 322

>PS00002/PD0C00002/GLYCOSAMINOGLYCAN Glycosaminoglycan attachment site.

Additional rules: ŘŬ

There must be at least two acidic amino acids (Glu or Asp) from -2 to -4 relative to the serine.

SGPG Query: 148 151

><u>PS00004</u>/PD0C00004/CAMP_PH0SPH0_SITE cAMP- and cGMP-dependent protein kinase phosphorylation

Query: 239 KRLT 242

>PS00005/PD0C00005/PKC_PH0SPH0_SITE Protein kinase C phosphorylation site.

SRK 239 Query: 237 SVR 352 Query: 350

>PS00006/PDDC00006/CK2_PHOSPHO_SITE/Casein kinase II phosphorylation site.

Prochibition order

SVVE Query: 40 43 SQQD Query: 256 259

>PS00008/PDDC00008/MYRISTYL N-myristoylation site.

GNVCAL 62 Query: 57 GASASL 77 Query: 72

Query: 343 GAIFTD 348

>PS00009/PDDC00009/AMIDATION Amidation site.

PGRR Query: 150 153 FIG. 11.

COPY OF PAPERS ORIGINALLY FILED

Transmembrane Segments Predicted by MEMSAT

Start	End	Orient	Score
46	66	out->ins	5.1
77	98	ins->out	3.3
113	134	out->ins	3.8
156	177	ins->out	4.5
209	227	out->ins	2.4
266	289	ins->out	6.5
297	321	out->ins	3.2

>14273m

MSPECAQTTGPGPSHTLDQVNRTHFPFFSDVKGDHRLVLSVVETTVLGLIFVVSLLGNVC ALVLVARRRRGASASLVLNLFCADLLFTSAIPLVLVVRWTEAWLLGPVVCHLLFYVMTM SGSVTILTLAAVSLERMVCIVRLRRGLSGPGRRTQAALLAFIWGYSALAALPLYILFRVV PQRLPGGDQEIPICTLDWPNRIGEISWDVFFETLNFLVPGLVIVISYSKILQITKASRKR LTLSLAYSESHQIRVSQQDYRLFRTLFLLMVSFFIMWSPIIITILLILIQNFRQDLVIWP SLFFWVVAFTFANSALNPILYMMSLFRNEWRKIFCCFFFPEKGAIFTDTSVRRNDLSVIS

Transmembrane Segments for Presumed Mature Peptide

Start	End	Orient	Score		
16	37	ins->out	3.3		
52	73	, out-≯iņs,	3.8	7.41 M-17	e de accompa
95	116	ins->out	4.5		/ (5 %)
148	166	out->ins	2.4	2*1	61 -21
205	228	ins->out	6.5	5°'	्र १ का
236	260	out->ins	3.2	l.,	: ઇ.

>14273m,_mature

LVLVARRRRRGASASLVLNLFCADLLFTSAIPLVLVVRWTEAWLLGPVVCHLLFYVMGMS GSVTILTLAAVSLERMVCIVRLRRGLSGPGRRTQAAIIAFIWGYSALAALPLYILFRVVP QRLPGGDQEIPICTLDWPNRIGEISWCVFFETLNFLVPGLVIVISYSKILQITKASRKRL TLSLAYSESKQIRVSQQDYRLFRTLFLLMVSFFTMWSPIIITILLILIQNFRQDLVIWPS LFFWVVAFTFANSALNPILYNMSLFRNEWRKIFCCFFFPEKGAIFTDTSVRRNDLSVISS

FIG. 12.