1) The n-queens puzzle is the problem of placing n queens on an n x n chessboard such that no two queens attack each other.

Given an integer n, return all distinct solutions to the **n-queens** puzzle. You may return the answer in any order.

Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space, respectively.

Example 1:

Input: n = 4

Output: [[".Q..","...Q","Q...","...Q."],["...Q.","Q...","...Q",".Q..."]] Explanation: There exist two distinct solutions to the 4-queens puzzle

's AWI

as shown above

Example 2:

Input: n = 1
Output: [["Q"]]

2) Write a program to convert a number into a mono-digit number.

Conditions:

- a) You are allowed to add and subtract the consecutive digits (starting from left).
- b) You are allowed to do only one operation on a digit.
- c) You cannot perform any operation on a resultant digit of the previous operation.
- d) Your code should also find if a given number cannot be converted to a mono digit number.

Input	Output
72581	7 (2+5) 81
	77 (8-1)
	777
3962	cannot create a mono digit number

Write a program to print all permutations of a given string. Note here you need to take all combinations as well, say for the input ABC the output should be as follows:

Input: ABC Output:

Α

ВС

AB AC BA BC CA CB

ABC ACB BCA BAC CBA CAB

4) Write a program to solve a Sudoku puzzle by filling the empty cells.

A sudoku solution must satisfy all of the following rules:

- 1. Each of the digits 1-9 must occur exactly once in each row.
- 2. Each of the digits 1-9 must occur exactly once in each column.
- 3. Each of the digits 1-9 must occur exactly once in each of the 9 3x3 sub-boxes of the grid.

The '.' character indicates empty cells

5	3			7				
6			1	9	5			
	g	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Input: board =

[["5", "3", ".", ".", "7", ".", ".", "."], ["6", ".", ".", "1", "9", "5", ".", ".", "."],[".","9","8",".",".",".","6","."],["8",".",".",".","6",".",".", ".","3"],["4",".",".","8",".","3",".","1"],["7",".",".",".","2",".", ".",".","6"],[".","6",".",".",".","2","8","."],[".",".",".","4","1", "9",".",".","5"],[".",".",".","8",".",".","7","9"]]

Output:

[["5", "3", "4", "6", "7", "8", "9", "1", "2"], ["6", "7", "2", "1", "9", "5", "3", "4", "8"],["1","9","8","3","4","2","5","6","7"],["8","5","9","7","6","1","4", "2", "3"], ["4", "2", "6", "8", "5", "3", "7", "9", "1"], ["7", "1", "3", "9", "2", "4", "8", "5", "6"], ["9", "6", "1", "5", "3", "7", "2", "8", "4"], ["2", "8", "7", "4", "1", "9", "6", "3", "5"], ["3", "4", "5", "2", "8", "6", "1", "7", "9"]]

Explanation: The input board is shown above and the only valid solution is shown below:

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	З	4	8
1	9	8	m	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	ო	თ	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9