Statistics 831: Probability and Statistical Models

Homework #1 Due 1/22/2020

1 Problems:

1. (RC 1st ed: 2.5) The RANDU generator, once popular on IBM machines, is based on the recursion:

$$X_{n+1} = 65539X_n \mod 2^{31}.$$

Illustrate the undesirable behavior of this generator with a computer experiment, and produce a 3D plot which demonstrates the problem clearly. (*Hint:* show $X_{t+1} = (6X_t - 9X_{t-1}) \mod 2^{31}$

- 2. In class we discussed the Box-Muller algorithm for generating pairs of iid N(0,1) random variates.
 - (a) Show that if X_1 and X_2 are independent standard normal random variables then their polar coordinates $R=\sqrt{X_1^2+X_2^2}$ and $\theta=\tan^{-1}X_1/X_2$ are also independent and derive their distributions.
 - (b) Show how to generate R and θ by the inverse cdf method, and a pair of standard normals via the substitution $X_1 = R\cos\theta$ and $X_2 = R\sin\theta$.
 - (c) Implement the Box-Muller algorithm, and compare with the method described in class based on k=12 independent uniform [0,1] r.v.'s and the CLT. Are the two "statistically indistinguishable"? How do the respective computational costs compare?
- 3. RC 2.23 Skip (c) and part ii of (d). You may use available routines to generate the Gamma random variables.
- 4. RC 2.30 Skip (f).
- 5. Given a normal distribution N(0,1) restricted to \mathbb{R}^+ , construct an Accept-Reject algorithm based on $Exp(\lambda)$ and optimize in λ . Repeat for intervals $[1,\infty)$, $[2,\infty)$, $[4,\infty)$. For each interval, compare the efficiency to direct rejection sampling from the normal.