

Track patient recovery in real-time by processing streaming data

BIOMEDICAL DATA DESIGN

TA: Haoyin Xu

Group:Zhenyu Xiao Haobin Zhou Yimeng Xu Emma Cardenas 01 elCU Database 02 APACHE

Content

03 Our Goal

04 Challenges

01 EICU Database

Overview of the database

The eICU Collaborative Research Database, a freely available multi-center database for critical care research

Tom J. Pollard, Alistair E. W. Johnson [™], Jesse D. Raffa, Leo A. Celi, Roger G. Mark & Omar Badawi

Scientific Data 5, Article number: 180178 (2018) | Cite this article

36k Accesses | **476** Citations | **78** Altmetric | Metrics

1.Background of the database

Stream data Philips
from ICU

Healthcare elCU Collaborative Research Database

Overview of the database

- 1.Background of the database
- 2. Data source of the database

200,859 patient units

Data we need

- 1.Background of the database
- 2. Data source of the database
- 3. Data types and the data we may need to utilize

documentation	Monitor data	APACHE	Care plan	
admissionDrug	vitalAperiodic	apachePatientResult		
allergy	vitalPeriodic			
customLab				
diagnosis				Care documentation
infusionDrug				care accumentation -
intakeOutput				
lab				
medication				
microLab				Monitor data
nurseCare				
nurseCharting				
pastHistory				
physicalExam				

O2 APACHE

FEATURE ARTICLES

Acute Physiology and Chronic Health Evaluation (APACHE) IV: Hospital mortality assessment for today's critically ill patients*

Zimmerman, Jack E. MD, FCCM; Kramer, Andrew A. PhD; McNair, Douglas S. MD, PhD; Malila, Fern M. RN, MS

Author Information ⊗

Critical Care Medicine 34(5):p 1297-1310, May 2006. | *DOI*: 10.1097/01.CCM.0000215112.84523.F0

1.Overview of APACHE

- 1.Overview of APACHE
- 2.APACHE I, APACHE II, III and IV

- 1.Overview of APACHE
- 2.APACHE I, APACHE II, III and IV

information

- 1.Overview of APACHE
- 2.APACHE I, APACHE II, III and IV
- 3. Evaluation criterion

AU-ROC

Hosmer-Lemeshow C statistic for goodnessof-fit test Cox chi-square test to evaluate the equivalence of subgroups and in aggregate

- 1.Overview of APACHE
- 2.APACHE I, APACHE II, III and IV
- 3. Evaluation criterion
- 4. Advantages and disadvantages

Positive side APACHE IV Negative side

- 1.Excellent discrimination
- 2.Excellent calibration
- 3. Predictions are consistent in most subgroups and the mean

- 1.Access to the data related to 142 variables
- 2. The generalization ability
- 3. Static prediction

What we hope to predict based on APACHE?

- Healthy status
- Death rate
- Recovery rate
- Expected duration of hospitalization
- Intensive care unit readmission rate
- Complication rate
- Trends in disease progression...

The inputs we wish to utilize and the outputs we wish to obtain

(We want streaming input and output.)

Input data:

- Physiological parameters and monitoring data
- Laboratory examination data
- Drug information
- Treatment information: Includes information on treatments, surgeries, and rehabilitation received by the patient.
- Event Data: Includes event data such as medical records, surgical records, and pain assessments.
- Other things that may be important...

The inputs we wish to utilize and the outputs we wish to obtain

(We want streaming input and output.)

Output data:

- Real-time analysis results: Includes real-time analysis results of patient status, such as abnormal alerts, disease predictions, and deterioration warnings.
- Patient status prediction: Predicts possible patient status and disease trends, such as possible patient diagnosis, treatment effects, etc.
- Decision support information: Decision support information provided to clinicians, such as recommended treatment plans, drug dose adjustment suggestions, etc.
- Statistics and analyzing results: Provides statistical analysis results for a patient group or a specific case, such as average vital signs of the patient group, prevalence of a specific diagnosis, etc.

Method/model to be used

- Better acc?
- logistics regression (reproduced from APACHE)
- SVM
- K-Means
- Decision tree (or a weak learner for AdaBoost?)
- XGBoost (Suitable for incremental learning)
- ANNS (needs to be followed up with continued research)
- CNN (for image)
- RNN LSTM RL...

04 Challenges

04 Challenges

- elCU Database
 - Accessibility to Database
 - High Dimensional Data
 - Time-Sensitive Data
 - Data Completeness & Quality
- Evaluating performance / Establishing criteria
- Medical interventions / Medicines

References

- 1.Pollard, T., Johnson, A., Raffa, J. et al. The eICU Collaborative Research Database, a freely available multi-center database for critical care research. *Sci Data* **5**, 180178 (2018). https://doi.org/10.1038/sdata.2018.178
- 2.Zimmerman, Jack E. MD, FCCM; Kramer, Andrew A. PhD; McNair, Douglas S. MD, PhD; Malila, Fern M. RN, MS. Acute Physiology and Chronic Health Evaluation (APACHE) IV: Hospital mortality assessment for today's critically ill patients*. Critical Care Medicine 34(5):p 1297-1310, May 2006. | DOI: 10.1097/01.CCM.0000215112.84523.F0
- 3.Castella, Xavier MD; Artigas, Antoni MD; Bion, Julian MBBS MRCP, FRCA, MD; Kari, Aarno MD. A comparison of severity of illness scoring systems for intensive care unit patients: Results of a multicenter, multinational study. Critical Care Medicine 23(8):p 1327-1335, August 1995.
- 4.Lemeshow S, Teres D, Klar J, Avrunin JS, Gehlbach SH, Rapoport J. Mortality Probability Models (MPM II) Based on an International Cohort of Intensive Care Unit Patients. JAMA. 1993;270(20):2478–2486. doi:10.1001/jama.1993.03510200084037
- 5. Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 29-36.

