多元函数重积分 review

二元函数重积分

• 直角坐标系(X-型积分、Y-型积分,累次积分计算原则) 积分换序,积分换元(极坐标、一般坐标) 性质:对称性(轴,中,轮)

三元函数重积分

- 直角坐标系(条形积分、切片积分) 积分换元(柱、球、一般坐标)
- 应用: 体积+表面积
 - **1** z = f(x, y): 投影 $XOY = \overline{y}$ $y = \sqrt{1 + f_x^2 + f_y^2} dxdy$
 - ② 参数方程形式:

$$(x_u, y_u, z_u) \times (x_v, y_v, z_v) = (A, B, C), ds = \sqrt{A^2 + B^2 + C^2} dudv$$

- 1 曲线曲面积分
 - ■曲线积分
 - ■曲面积分

第一类型曲线积分

几何意义: 非均匀密度曲线的质量(平面+空间)

性质: 无方向性; 线性封闭; 弧段可加性; 保序性

$$\int_{L} f dl \le \int_{L} g \, dl \quad \text{if } f \le g$$

第一类型曲线积分

$$dl=\sqrt{(x'(t))^2+(y'(t))^2+(z'(t))^2}\,dt,t\in[\alpha,\beta]$$

例 1.1 (计算)

- **①** $\int_L \sqrt{y} \, dl$, 其中 L 是 $y = x^2$ 上点 O(0,0) 与 B(1,1) 之间的一段弧. ans: $\frac{5\sqrt{5}-1}{12}$
- 2 $\int_L \sqrt{x^2 + y^2} \, dl$, $\not = L : x^2 + y^2 = ax$, (a > 0). ans: $2a^2$
- ③ $\int_L e^{\sqrt{x^2+y^2}} dl$, 其中 L 为圆周 $x^2+y^2=a^2$, y=x 和 x 轴在第一象限所围成扇形的边界. ans: $2(e^a-1)+\frac{\pi}{4}ae^a$
- **4** $\int_L x^2 dl$, 其中 $L: \left\{ \begin{array}{l} x^2 + y^2 + z^2 = a^2, \\ x + y + z = 0. \end{array} \right.$ (参数方程 + 对称性) ans: $\frac{2}{3}\pi a^3$
- **6** $\int_L z \, dl$, $extrm{!}{\sharp} \ P \ L : x = a \cos t, y = a \sin t, z = bt, 0 \le t \le 2\pi$. ans: $2b\sqrt{a^2 + b^2}\pi^2$

物理意义: 变力沿(有向) 曲线做功;

定向曲线 + 向量被积函数 $\vec{F} = P\vec{i} + Q\vec{j} + R\vec{k}$

性质:有向性;线性封闭;弧段可加性;

$$\int_{L^{-}} \vec{F}(x,y) \cdot dr = -\int_{L^{+}} \vec{F}(x,y) \cdot dr$$

直接积分 识别 dx, dy, dz; 从 A 到 B 的有向弧线;

特点:参数单调变化或关于某参变量成函数形式变化

方法: 化第二类型积分为定积分计算, $\alpha \sim$ 起点, $\beta \sim$ 终点

参数方程 $\int_{\alpha}^{\beta} (Px'(t) + Qy'(t) + Rz'(t)) dt$

例 1.2 (计算)

$$\mathbf{1} \int_{\widehat{AB}} x dy - y dx, \, \not\exists \, \stackrel{\frown}{=} \widehat{AB} : \left\{ \begin{array}{l} x = a \cos t \\ y = b \sin t \end{array} \right., t : 0 \to \frac{\pi}{2}.$$

ans: $\frac{ab}{2}\pi$

第二类曲线积分 v.s. 第一类曲线积分 $\int_{\vec{r}} \overrightarrow{F} \cdot d\overrightarrow{l} = \int_{\vec{r}} \overrightarrow{F} \cdot \overrightarrow{n} ds$

例 1.3 (计算 (对比两种算法))

$$I = \int_{\overrightarrow{L}} (y-z) \, dx + (z-x) \, dy + (x-y) \, dz$$
, 其中 L 为 $x^2 + y^2 + z^2 = a^2$ 与平面 $x+y+z=0$ 的交线, 从 z 轴正向看去 L 取逆时针方向. $(a>0)$. ans: $-2\sqrt{3}a^2\pi$

例 1.4 (积分 v.s. 路径)

- ① $\int_L y^2 dx$, 其中 L 为 ans: $-\frac{4}{3}a^3$; 0 (1) 逆时针方向绕行的上半圆周; (2) 从点 A 沿 x 轴到 B 的直线段; (一般情况下,积分与路径相关)
- ② $\int_L 2xy \, dx + x^2 \, dy$, 其中 L 为 ans: 1; 1; 1 (1) 曲线 $y = x^2, O \to B$; (2) 曲线 $x = y^2, O \to B$; (3) 有向折线 OAB

格林公式 (基础版本)

结论: 第二类型曲线积分
$$\Rightarrow$$
 二重积分 $\oint_{L^+} P dx + Q dy = \iint_D (Q_x - P_y) dx dy$

例 1.5

1
$$\oint_L (x^2y dx - xy^2 dy, L 为 正 向 圆 周 x^2 + y^2 = a^2$$

ans: $\frac{-\pi}{2}a^4$

② $\iint e^{-y^2} dx dy$, 其中 D 为以 A(0,0), B(1,1), C(0,1) 为顶点的三角形.

ans: $(\frac{1}{2}(1-e^{-1}))$.

3 椭圆面积. $(2\iint_D dxdy = \oint_{L^+} xdy - ydx)$

条件

- · L 为封闭曲线 (?if not) 且简单 (不自交) 取正向
- L 所围成区域为 D 单连通区域 (?if not)
- P, Q, P_y, Q_x 在 D 上连续.
- 第一公式、第二公式、第三公式

格林公式(非封闭曲线)

应用 1: 非封闭曲线. 构造一个合适的封闭路径

例 1.6 (计算)

$$\begin{split} I &= \int_{\widehat{ABC}} (x + xy^2 + 3) \, dy - (x + y - \frac{y^3}{3}) \, dx, \\ & \sharp \, \text{中曲线} \, \widehat{ABC} \, \text{由} \, x^2 + y^2 = 1 \, \text{在第四象限部分} \, \widehat{AB} \\ & = \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \, \text{在第一象限部分} \, \widehat{BC} \, \text{连接而成, 起点} \\ & A(0, -a) \, \text{终点} \, C(0, b). \end{split}$$
 ans: $(a + b)(3 + \frac{\pi a}{2})$

格林公式 ($Q_x = P_v$ 的应用)

应用 2.1: 积分与路径无关 (四个等价命题, Thm.1.2.) 验证条件并构造积分路径

例 1.7 (计算)

- $\oint_{L^+} \frac{xdy ydx}{x^2 + v^2}$. L 为包含原点, 简单闭曲线. ans: (2π)
- ② $\int_{L_x}^{y} dx + \ln x \, dy$, 其中 $L \neq A(1,1)$ 到 B(2,2) 的分段光滑有向曲线, 且与 y轴不相交. ans: (2 ln 2)
- 3 例题1.4

格林公式 (
$$Q_x = P_v$$
的应用)

应用 2.2: 求解全微分方程: du = P(x,y) dx + Q(x,y) dy.

例 1.8 (求解原函数)

- ① (曲线积分) $2xy^3 dx + 3x^2y^2 dy$.
- ② (不定积分) $xy^2 dx + x^2y dy$.
- **3** (凑微分) $\frac{2x(1-e^y)}{(1+x^2)^2} dx + \frac{e^y}{1+x^2} dy$.

ans: $x^2y^3 + c$

ans: $\frac{x^2y^2}{2} + c$

ans: $\frac{e^{y}-1}{1+x^{2}}+c$

格林公式 ($Q_x = P_v$ 的应用)

一元微分方程求解 $P(x,y)dx + Q(x,y)dy = 0 \Rightarrow du = 0 \Rightarrow u \equiv c$

例 1.9 (微分方程求解)

$$(3x^2 + 6xy^2) dx + (6x^2y + 4y^3) dy = 0$$

2
$$(\cos x + \frac{1}{v}) dx + (\frac{1}{v} - \frac{x}{v^2}) dy = 0$$

3
$$\frac{dy}{dx} = \frac{-x}{y} + \sqrt{1 + (\frac{x}{y})^2}, (y > 0)$$

4
$$y \, dy + (y - x) \, dy = 0$$

ans:
$$x^3 + 3x^2y^2 + y^4 = c$$

ans:
$$\sin x + \ln |y| + \frac{x}{y} = c$$

ans:
$$\sqrt{x^2 + y^2} = x + c$$

ans:
$$\frac{x}{y} = -\ln|y| + c$$

第一类型曲面积分

几何意义: 非均匀密度曲面的质量 $\iint\limits_{D}
ho(x,y,z)\,dS$

$$dS = \frac{1}{\cos \gamma} dx dy = \sqrt{1 + z_x^2 + z_y^2} dx dy$$
 $dS = J(u, v) du dv$ 参数方程情形

例 2.1 (计算曲面积分)

- ① $\iint_{\Sigma} \frac{dS}{z}, \Sigma : x^2 + y^2 + z^2 = a^2$ 被 z = h(0 < h < a) 截出的顶部. ans: $2\pi a \ln \frac{a}{h}$
- 2 $\iint_{\Sigma} xyzdS$, Σ 为坐标平面与 x+y+z=1 所围成的四面体表面. ans: $\frac{\sqrt{3}}{120}$
- **3** $\iint_{\Sigma} (x+y+z)dS$, $\not\equiv \forall \Sigma : x^2 + y^2 + z^2 = R^2, z \ge 0$. ans: πR^3
- **④** 球面 $x^2 + y^2 + z^2 = 1$ 上取点 $A(1,0,0), B(0,1,0), C(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}})$ 为顶点的球面三角形. 已知球面密度为 $\rho = x^2 + z^2$, 求三角形块的质量. ans: $\frac{\pi}{6}$
- **⑤** 设 S 为 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 的上半部分,点 $P(x,y,z) \in S$, π 是 P 处的切平面, $\rho(x,y,z)$ 为原点 O 到平面 π 的距离,求 $\iint_S \frac{z}{\rho(x,y,z)} dS$. ans: $\frac{3}{2}\pi$

第二类型曲面积分

几何意义: 有向曲面流体通过量; 常分: 上侧 vs 下侧, 外侧 vs 内侧有向小块曲面 ΔS 的有向投影流向曲面一侧的流量

$$\Phi = \iint\limits_{S} \overrightarrow{F} \cdot \overrightarrow{dS} = \iint\limits_{\Sigma} \overrightarrow{F} \cdot \overrightarrow{e_n} \, ds = \iint\limits_{S} P dy dz + Q dz dx + \underline{R dx dy}$$

$$(dS)_{xy} = dxdy = \pm d\sigma_{xy}, ds = \frac{1}{|\cos \gamma|} d\sigma_{xy}$$

$$\int_{S} \vec{F} \cdot d\vec{S} = -\int_{S^{-}} \vec{F} \cdot d\vec{S}$$

例 2.2 (基于定义—-化成二重积分)

- ① $\iint_{\Sigma} x^2 dy dz + y^2 dz dx + z^2 dx dy$, 其中 Σ 为长方体 $\Omega = [0, a] \times [0, b] \times [0, c]$ 的表面外侧. ans: (a + b + c)abc
- ② $\iint_{\Sigma} xyzdxdy$, $\Sigma \in \mathbb{R}^2 + y^2 + z^2 = 1$ 外侧在 $x \ge 0, y \ge 0$ 的部分. ans: $\frac{2}{15}$
- ③ 计算 $I = \iint_S (x+1) dy dz + y dz dx + dx dy$, 其中 S 以 (1,0,0), (0,1,0), (0,0,1) 为顶点的平面三角形, 法线方向为由原点到 S 的方向. ans: $\frac{4}{3}$

第二类型曲面积分

基于 $(dxdy, dydz, dzdx) = (\cos \alpha, \cos \beta, \cos \gamma)ds$ 的讨论

例 2.3 (基于讨论—-互相转换)

- ① 计算 $I = \iint_S (z^2 + x) dy dz + \sqrt{z} dx dy$, 其中 S 为抛物面 $z = \frac{1}{2}(x^2 + y^2)$ 在平面 z = 0 与 z = 2 之间的部分, 方向向下. ans: $(4 \frac{8}{3}\sqrt{2})\pi$
- ② 计算 $I = \iint_S y dy dz x dz dx + z^2 dx dy$, 其中 S 为锥面 $z = \sqrt{x^2 + y^2}$ 在平面 z = 1 与 z = 2 之间的外侧. ans: $-\frac{15}{2}\pi$
- ③ $I = \iint_S x \, dy dz y \, dz dx 2z \, dx dy$, $S \, 为 \, z = x^2 + y^2$ 前半部分介于 z = 0, z = 1 之间的部分,取后侧. ans: $-\frac{\pi}{2}$
- **4** $I = \iint_S y^2 z \, dx dy$, $S \, \exists \, z = x^2 + y^2 \, \exists \, z = 1$ 所围封闭区域外侧. ans: $\frac{\pi}{6}$

高斯公式

结论: 第二类型封闭曲面积分 \Rightarrow 三重积分 $\iint_{\Omega} P dy dz + Q dz dx + R dx dy = \iiint_{\Omega} (P_x + Q_y + R_z) dv$

- 封闭区域, 外法向量
- 函数性质好
- 第一公式、第二公式、第三公式

高斯公式——基本公式及技巧

例 2.4

- **①** $I = \iint_S x^3 dy dz + y^3 dz dx + z^3 dx dy, S 为 <math>x^2 + y^2 + z^2 = R^2$ 的外侧. ans: $\frac{12}{5} \pi R^5$
- ② $\iint_{\Sigma} (x-y) dxdy + (y-z)x dydz$, 其中 Σ 为柱面 $x^2 + y^2 = 1$ 及平面 z = 0, z = 3 所围成封闭区域的外侧. ans: $\frac{-9\pi}{2}$
- **3** $I = \iint_S (2x+z) dy dz + z dx dy$, 其中 S 为有向曲面 $z = x^2 + y^2 (0 \le z \le 1)$, 法 线方向与 z 轴 正向成锐角. ans: 补片, $\left(\frac{-1}{2}\pi\right)$
- **4** $I = \iint_S \frac{xdydz + ydzdx + zdxdy}{(\sqrt{2x^2 + 2y^2 + z^2})^3}$. $S: x^2 + y^2 + z^2 = 1$ 外侧. ans: 挖洞, (2π)

例 2.5

- ① 设 $\iint_{S} (xf(x)dydz (y+z)f(x)dzdx x^{2}ze^{2x}dxdy = 0$ 对于 z > 0 内任意封闭 光滑曲面 S 成立, 其中 $f \in C^{1}(0,\infty), f(0+) = 0$, 求 f(x). ans: $(\frac{x}{2} \frac{1}{4})e^{2x} + \frac{1}{4}$
- ② $\iint_{\Sigma} (x^2 \cos \alpha + y^2 \cos \beta + z^2 \cos \gamma) dS$, 其中 Σ 为锥面 $z^2 = x^2 + y^2$ 介于 z = 0, z = h(h > 0) 之间比分的下侧, $(\cos \alpha, \cos \beta, \cos \gamma)$ 为 Σ 的法向量的方向余弦.

结论: 第二类型封闭曲线积分

⇒ 第二类型曲面积分

 Γ 的正向与 Σ 的侧服从右手法则

$$\oint_{\Gamma} (Pdx + Qdy + Rdz)$$

$$= \iint_{\Sigma} (R_y - Q_z) dy dz + (P_z - R_x) dz dx + (Q_x - P_y) dx dy$$

$$= \iint_{\Sigma} \left((R_y - Q_z) \cos \alpha + (P_z - R_x) \cos \beta + (Q_x - P_y) \cos \gamma \right) ds$$

