Problemy płaszczaków

Twórcy projektu: Michał Wiśniewski, Dominik Kuźmiński, Michał Suszek

Spis treści

- 1. Wprowadzenie
- 2. Problemy i ich rozwiązania
 - Problem nr 1
 - Znalezienie otoczki wypukłej
 - Znalezienie najkrótszych ścieżek
 - Dobranie płaszczaków w pary
 - Cięcie kijków
 - Problem nr 2
 - Naprawa obróconego tekstu
 - Skompresowanie danych za pomocą algorytmu huffmana
 - Problem nr 3
 - Rozwiązanie problemu optymalnego Patrolowania płotu
- 3. Podsumowanie

Wprowadzenie

Projekt "Problemy płaszczaków" został stworzony przez zespół składający się z Michała Wiśniewskiego, Dominika Kuźmińskiego, Michała Suszka i Nikodema Kalińskiego. Celem projektu było rozwiązanie trzech złożonych problemów algorytmicznych, z którymi twórcy zetknęli się podczas prac nad różnymi aspektami informatyki.

Problemy i ich rozwiązania

Problem nr 1 Osoba odpowiedzialna: Dominik Kuźmiński

Znalezienie otoczki wypukłej

Opis: Problem polega na znalezieniu otoczki wypukłej zbioru punktów.

Rozwiązanie: Zastosowano algorytm Jarvisa, który pozwala na efektywne znalezienie otoczki wypukłej zbioru punktów.

Złożoność czasowa: O(nh), gdzie n to liczba punktów, a h to liczba punktów na otoczce wypukłej.

Znalezienie najkrótszych ścieżek

Opis: Znalezienie najkrótszych ścieżek od fabryki do każdego z punktów.

Rozwiązanie: Użyto algorytmu Dijkstry do znalezienia najkrótszych ścieżek.

Złożoność czasowa: O((V+E)logV), gdzie V to liczba wierzchołków, a E to liczba krawędzi.

Dobranie płaszczaków w pary

Opis: Problem polega na dobraniu płaszczaków w pary, gdzie płaszczaki mają ręce albo z tyłu, albo z przodu.

Rozwiązanie: Wykorzystano algorytm Hopcrofta-Karpa.

Złożoność czasowa: $O(\sqrt{VE})$, gdzie V to liczba wierzchołków w grafie, a E to liczba krawędzi.

Cięcie kijków

Opis: Problem cięcia kijków do odpowiednich długości.

Rozwiązanie: Użyto zachłannego podejścia do problemu plecakowego.

Złożoność czasowa: W najgorszym przypadku O(n^2), gdzie n to liczba kijków. Sortowanie ma złożoność O(n log n), a główna pętla może mieć złożoność O(n^2).

Problem nr 2 Osoba odpowiedzialna: Michał Wiśniewski

Wyszukiwanie wzorców w tekście

Opis: Problem wymagał efektywnego wyszukiwania wzorców w tekście. **Rozwiązanie:** Zastosowano algorytm Boyera-Moore'a, który jest jednym z

najefektywniejszych algorytmów wyszukiwania wzorców w tekście.

Algorytm Boyera-Moore'a:

• **Heurystyki:** Algorytm używa dwóch heurystyk - złej przesunięcia znaku i dobrej przesunięcia sufiksu - aby szybko przeskakiwać fragmenty tekstu, które nie mogą zawierać wzorca.

Kompresja danych

Opis: Problem wpisywania słów do maszyny informatycznej.

Rozwiązanie: Zastosowano algorytm Huffmana do kompresji danych.

Algorytm Huffmana:

• **Kompresja:** Algorytm generuje prefiksowe kody binarne, które są przypisywane do każdego znaku w taki sposób, aby najczęściej występujące znaki miały najkrótsze kody.

Problem nr 3 Osoba odpowiedzialna: Michał Suszek

Opis problemu: Optymalne patrolowanie płotu.

Rozwiązanie: Użyto zachłannego rozwiązania, polegającego na sekwencyjnym przechodzeniu wzdłuż płotu i wykonywaniu patrolu.

Opis: W najprostszym podejściu, patrolowanie odbywa się poprzez liniowe przechodzenie od jednego końca płotu do drugiego. Jest to łatwe do zaimplementowania, ale niekoniecznie optymalne pod względem czasu czy zasobów.

Podsumowanie

Projekt "Problemy płaszczaków" był wyzwaniem, które wymagało zastosowania różnych algorytmów do rozwiązania złożonych problemów. Każdy z członków zespołu wniósł

swoją unikalną wiedzę i umiejętności, co pozwoliło na efektywne rozwiązanie napotkanych problemów