Vyzařování teplotního zdroje, černé těleso, Stefan-Boltzmannův zákon, Planckův zákon, Wienův posouvací zákon

1. Vyzařování teplotního zdroje

- Vyzařování teplotního zdroje vzniká přeměnou tepelné energie na elektromagnetické záření.
- Atomy a molekuly teplotního zdroje obsahují nabité částice (elektrony, protony), které při vzájemných kinetických interakcích oscilují.
- Oscilace dipólů způsobují vznik elektrických (E) a magnetických (H) polí, která vedou k emisi fotonů.
- Záření teplotního zdroje je tedy funkcí jeho **teploty** a je distribuováno v různých **vlnových délkách**.

Typy vyzařování: 1. Absolutně černé těleso – ideální model s maximální emisivitou $(\varepsilon = 1)$. 2. Reálná tělesa – mají nižší emisivitu $(\varepsilon < 1)$ a závisí na povrchu a materiálu tělesa.

2. Absolutně černé těleso

- Definice: Těleso, které pohltí všechno dopadající záření, bez ohledu na vlnovou délku.
 - Ideální model v termodynamice a optice.
- Spektrální pohltivost α_{λ} : Pro absolutně černé těleso $\alpha_{\lambda} = 1$ pro všechny vlnové délky.
- Realizace: V praxi lze přiblížit "černou dutinou" s malým otvorem (ztracené záření uvnitř se prakticky neodrazí ven).

3. Stefan-Boltzmannův zákon

• Tento zákon určuje celkovou intenzitu záření teplotního zdroje:

$$H_{0e} = \sigma T^4$$

- σ : Stefan-Boltzmannova konstanta, 5,670 × $10^{-8}\,W\cdot m^{-2}\cdot K^{-4}.$
- T: Absolutní teplota tělesa (v Kelvinech).
- Význam:
 - Popisuje, že celková energie vyzařovaná povrchem tělesa roste s mocninou čtvrté teploty.
 - Platí pro absolutně černé těleso, ale lze jej upravit pro nečerná tělesa zavedením emisivity ε :

$$H_e = \varepsilon \sigma T^4, \quad \varepsilon \in (0,1)$$

4. Wienův posouvací zákon

 Tento zákon popisuje posun maxima intenzity záření k kratším vlnovým délkám s rostoucí teplotou:

$$\lambda_{\max} T = b$$

- $\lambda_{\mathbf{max}}$: Vlnová délka, při které je intenzita vyzařování největší.
- **b**: Wienova konstanta, $2,898 \times 10^{-3} \, m \cdot K$.

• Význam:

- S rostoucí teplotou se maximum vyzařování posouvá do oblasti krátkých vlnových délek (např. viditelné světlo → ultrafialové záření).
- Použití: Měření teploty hvězd a dalších zářivých objektů.

5. Planckův zákon

• Planckův zákon popisuje **spektrální rozložení záření** absolutně černého tělesa:

$$H_{0\lambda} = \frac{c_1}{\lambda^5} \frac{1}{e^{c_2/\lambda T} - 1}$$

- $-c_1$: První radiační konstanta.
- c₂: Druhá radiační konstanta.
- $-\lambda$: Vlnová délka záření.
- T: Absolutní teplota tělesa.

• Fyzikální význam:

- Zákon spojil Rayleigh-Jeansův a Wienův zákon a překonal problém ultrafialové katastrofy.
- Předpokládá, že energie záření je **kvantována**:

$$E = h\nu$$

- * h: Planckova konstanta, 6,626 × 10^{-34} J \cdot s.
- * ν : Frekvence záření.

• Důsledek:

- Planckův zákon umožnil rozvoj kvantové fyziky.
- Popisuje celé spektrum záření absolutně černého tělesa.

6. Porovnání zákonů a shrnutí

Zákon	Rovnice	Význam
Stefan-	$H_{0e} = \sigma T^4$	Celková intenzita záření.
Boltzmannův		
Wienův	$\lambda_{\max}T=b$	Maximum záření závisí na
posouvací		teplotě.
Planckův zákon	$H_{0\lambda} = \frac{c_1}{\lambda^5} \frac{1}{e^{c_2/\lambda T} - 1}$	Spektrální rozložení
	A e-2/1	vyzařování.

7. Praktické aplikace

- 1. Termografie: Měření teploty objektů na základě vyzařovaného tepelného záření.
- 2. Astrofyzika: Studium hvězd a kosmických objektů díky Wienovu zákonu.
- 3. **Žárovky a světelné zdroje**: Charakterizace teplotních a neteplotních zdrojů.
- 4. Průmyslová měření: Kalibrace teploty v metalurgii, sklárnách apod.

Fotometrické a radiometrické veličiny a jednotky, šedé těleso, emisivita, citlivost lidského oka

1. Radiometrické veličiny a jednotky

Radiometrie se zabývá měřením **elektromagnetického záření** v celém spektru (UV, viditelné světlo, IR). Popisuje fyzikální vlastnosti záření bez ohledu na citlivost lidského oka.

Hlavní radiometrické veličiny:

- 1. Zářivý tok (Φ)
 - Celkový výkon záření emitovaný zdrojem (integrální veličina).
 - Jednotka: watt (W).
 - $\Phi = \int H_{\lambda} d\lambda$, kde H_{λ} je spektrální hustota zářivého toku.
- 2. **Zářivost** (I_e)
 - Množství zářivého toku na jednotku **prostorového úhlu** ve směru vyzařování:

$$I_e = \frac{\mathrm{d}\Phi}{\mathrm{d}\Omega} \quad [\mathrm{W} \cdot \mathrm{sr}^{-1}].$$

- 3. Zářivá hustota (L_e)
 - Zářivý tok vyzařovaný z jednotkové plochy do jednotkového prostorového úhlu:

$$L_e = \frac{\mathrm{d}^2 \Phi}{\mathrm{d} A \cdot \mathrm{d} \Omega \cdot \cos \theta} \quad [\mathrm{W} \cdot \mathrm{m}^{-2} \cdot \mathrm{sr}^{-1}].$$

- Zohledňuje **úhel dopadu záření** (θ) na plochu A.
- 4. Osvětlení (E)
 - Zářivý tok dopadající na jednotku plochy:

$$E = \frac{\mathrm{d}\Phi}{\mathrm{d}A} \quad [\mathbf{W} \cdot \mathbf{m}^{-2}].$$

2. Fotometrické veličiny a jednotky

Fotometrie je podmnožinou radiometrie, která bere v úvahu **citlivost lidského oka** na různé vlnové délky záření (360–780 nm). Měření je přizpůsobeno viditelnému světlu.

Hlavní fotometrické veličiny:

- 1. Světelný tok (Φ_n)
 - Celkové množství světla vyzařované zdrojem. Vypočítává se pomocí světelné účinnosti:

$$\Phi_v = \int_{360 \, \text{nm}}^{780 \, \text{nm}} K(\lambda) H_\lambda \, d\lambda.$$

- $-K(\lambda)$: Světelná účinnost.
- Jednotka: lumen (lm).
- 2. Svítivost (I)
 - Světelný tok na jednotku prostorového úhlu:

$$I = \frac{\Phi_v}{\Omega}$$
 [cd = lm · sr⁻¹].

- Jednotka: kandela (cd).
- 3. Osvětlení (E)
 - Světelný tok dopadající na jednotkovou plochu:

$$E = \frac{\Phi_v}{A}$$
 [lx = lm · m⁻²].

- Jednotka: lux (lx).
- 4. **Jas** (*L*)
 - Svítivost vyzařovaná z jednotkové plochy v daném směru:

$$L = \frac{\mathrm{d}I}{\mathrm{d}A \cdot \cos \theta} \quad [\mathrm{cd} \cdot \mathrm{m}^{-2}].$$

3. Šedé těleso

Šedé těleso je **reálné těleso**, které nevyzařuje maximální možný výkon (jako absolutně černé těleso). Má konstantní **emisivitu** (ε) menší než 1 pro všechny vlnové délky.

• Emisivita je poměr skutečného záření tělesa k záření absolutně černého tělesa:

$$\varepsilon = \frac{H_e}{H_0}, \quad \varepsilon \in (0, 1).$$

Typy emisivity:

- 1. Integrální emisivita celkové vyzařování.
- 2. Spektrální emisivita emisivita závislá na vlnové délce.

Reálné povrchy:

- Matný černý lak má vysokou emisivitu ($\varepsilon \approx 0,98$),
- Leštěné kovy mají nízkou emisivitu ($\varepsilon \approx 0, 1-0, 3$).

4. Citlivost lidského oka

Citlivost lidského oka na záření není rovnoměrná v celém spektru:

• Maximální citlivost: $\lambda = 555\,\mathrm{nm}$ (zelená oblast) za denního světla – fotopické vidění.

• Při nízké úrovni osvětlení (noční vidění) je citlivost posunuta k **modré oblasti** $(\lambda \approx 507 \, \mathrm{nm})$ – **skotopické vidění**.

Světelná účinnost:

- Fotopická účinnost: Zrakový vjem je nejefektivnější při 555 nm. Maximální účinnost $K_v = 683 \, \mathrm{lm} \cdot \mathrm{W}^{-1}$.
- Relativní světelná účinnost $K(\lambda)$ vyjadřuje schopnost oka vnímat světlo na různých vlnových délkách.

5. Shrnutí veličin a jejich jednotek

Typ veličiny	Radiometrická jednotka	Fotometrická jednotka
Zářivý tok (Φ)	W (watt)	lm (lumen)
Zářivost (I_e)	$ m W\cdot sr^{-1}$	cd (kandela)
Zářivá hustota (L_e)	$\mathrm{W}\cdot\mathrm{m}^{-2}\cdot\mathrm{sr}^{-1}$	${\rm cd\cdot m^{-2}}$
Osvětlení (E)	$ m W\cdot m^{-2}$	lx (lux)

6. Praktické aplikace

- 1. Průmyslová měření:
 - Měření osvětlení pracovních ploch (luxmetry).
 - Vyhodnocování emisivity materiálů v tepelné technice.
- 2. Osvětlení:
 - Navrhování umělého osvětlení (kanceláře, továrny, ulice).
- 3. Tepelné ztráty:
 - Identifikace míst s vysokou emisivitou pro úniky tepla.
- 4. Fotografické a optické systémy:
 - Správné nastavení expozice a měření intenzity světla.
- 5. Citlivost oka:
 - Design displejů a obrazovek s ohledem na citlivost lidského oka.

Teplotní zdroje záření – žárovky, halogenové žárovky, výbojové zdroje záření

1. Teplotní zdroje záření – žárovky

1.1 Vakuové žárovky

- **Princip**: Vlákno ze **wolframu (W)** je zahříváno elektrickým proudem, až začne vyzařovat viditelné světlo (**tepelné záření**).
- Konstrukce:

- Vlákno: **průměr 0,05–0,2 mm**.
- Baňka: Vyrobena ze sodno-vápenatého skla.
- Prostup baňkou: kovarové dráty (Fe-Ni-Co s nízkým koeficientem teplotní roztažnosti).
- Patice: Edisonův závit (E14, E27) nebo bajonetové patice.

• Vlastnosti:

- Fungují při nižších teplotách.
- Relativně **nízká účinnost** (většina energie je přeměněna na teplo, ne na světlo).

1.2 Halogenové žárovky

- Vylepšená verze žárovek s delší životností a vyšší účinností.
- Princip:
 - Halogenový cyklus: Halogenové plyny (např. WI_2, WBr_2) reagují s odpařeným wolframem a vracejí ho zpět na vlákno.
 - Vlákno může dosahovat **vyšší teploty** \rightarrow více světla a delší životnost.

Konstrukce:

- Vlákno: wolframové.
- Baňka: Vyrobena z **křemenného skla**, které odolává vyšším teplotám.
- Provozní podmínky: tlak 1,2 MPa a teplota až 400 °C.
- Prostup baňkou: Stejně jako u vakuových žárovek Fe-Ni-Co dráty.
- Patice: Kolíkové (např. G4, G6.35).

• Výhody:

- Vyšší účinnost a delší životnost než vakuové žárovky.
- Kompaktnější rozměry.

2. Výbojové zdroje záření

Výbojky jsou založeny na emisi světla při **průchodu elektrického proudu plynem** nebo párou.

2.1 Rtuťové výbojky (Hg)

- Obsahují rtuť, která při elektrickém výboji vyzařuje ultrafialové záření.
- Typy:
 - 1. Nízkotlaké (< $100\,\mathrm{kPa})$ používají se ve fluorescenčních lampách.
 - 2. Středotlaké $(100 \,\mathrm{kPa} 1 \,\mathrm{MPa})$.
 - 3. **Vysokotlaké** (> 1 MPa) vysoký výkon a jas.

2.2 Sodíkové výbojky (Na)

- Používají sodíkové páry pro tvorbu světla.
- Typy:

- 1. **Nízkotlaké sodíkové výbojky** velmi vysoká účinnost, emitují **žluté** monochromatické světlo.
- 2. Vysokotlaké sodíkové výbojky širší spektrum světla, oranžovo-žluté světlo, často využívané pro veřejné osvětlení.

2.3 Halogenidové výbojky

- Vysokotlaké výbojky obsahující směs halogenidů kovů (např. sodíku, skandia, india).
- Výhody:
 - Vysoká účinnost a lepší barevné podání než rtutové a sodíkové výbojky.
- Použití:
 - Osvětlení stadionů, průmyslových hal, výstavní osvětlení.

2.4 Zářivky (fluorescenční lampy)

- Jsou kombinací primárního a sekundárního zdroje světla.
- 1. **Primární zdroj**: **Nízkotlaký rtuťový výboj** produkuje ultrafialové záření.
- 2. **Sekundární zdroj**: **Luminofory** na vnitřní straně baňky přeměňují UV záření na viditelné světlo (Stokesův posun).
- **Princip**: Elektrony v luminoforech absorbují UV záření (excitační energie E_1) a emitují světlo při návratu do základního stavu (E_2).
- Výhody:
 - Vysoká účinnost.
 - Stabilní světelný výstup při vysokých frekvencích (40–50 kHz).

Shrnutí vlastností teplotních a výbojových zdrojů

Typ zdroje	Princip	Výhody	Nevýhody
Vakuové	Zahřátí wolframového	Jednoduchá	Nízká účinnost,
žárovky	vlákna	konstrukce	krátká životnost
Halogenové	Halogenový cyklus,	Vyšší účinnost, delší	Vyšší teplota povrchu
žárovky	vyšší teploty	životnost	
Rtuťové	Výboj v rtuťových	Vysoký výkon	Škodlivé pro životní
výbojky	parách		prostředí (Hg)
Sodíkové	Výboj v sodíkových	Vysoká účinnost	Monochromatické
výbojky	parách		světlo (nízkotlaké)
Halogenidové	Výboj s příměsí	Dobré barevné	Vyšší pořizovací
výbojky	halogenidů kovů	podání	náklady
Zářivky	UV záření přeměněné	Vysoká účinnost,	Nutnost
	luminofory	stabilní světlo	elektronického předřadníku

Praktické aplikace:

- 1. Vakuové a halogenové žárovky domácí osvětlení, dekorativní účely.
- 2. Rtuťové a sodíkové výbojky veřejné osvětlení, průmyslové haly.
- 3. Halogenidové výbojky stadiony, výstavní prostory.
- 4. Zářivky kanceláře, školy, obchody.

Zdroje záření LED

1. Základní princip fungování LED

LED (Light Emitting Diode) je polovodičová součástka, která vyzařuje světlo na základě elektroluminiscence – procesu, při kterém dochází k radiativní rekombinaci elektronů a děr v polovodičovém materiálu.

Princip činnosti:

- 1. Rekombinace nosičů náboje:
 - Při aplikaci napětí v propustném směru se elektrony přesouvají z vodivostního pásu do valenčního pásu.
 - Při rekombinaci s dírami dochází k uvolnění energie ve formě fotonu.
- 2. Barva světla závisí na šířce zakázaného pásu polovodiče (band gap).
 - Energie fotonu (E) je dána vztahem:

$$E = h \cdot f = \frac{h \cdot c}{\lambda}$$

kde hje Planckova konstanta, ffrekvence, crychlost světla a λ vlnová délka.

2. Materiály pro výrobu LED

Barva světla závisí na použitém polovodičovém materiálu:

Materiál	Barva	Vlnová délka (nm)	Napětí (V)
SiC, GaN	Modrá	450	3,6
GaP	Zelená	565	2,2
GaAsPN	$\check{ m Z}{ m lut}cute{ m a}$	580	2,1
GaAsP, GaP:ZnO	Červená	635	2,0
GaAsSi	Infračervená	800-950	1,5
SiC, GaN +	Bílá	420-700	3,6
luminofory			

3. Vlastnosti LED

Výhody LED:

- Vysoká účinnost: Přeměna elektrické energie na světelnou energii dosahuje desítek procent.
- 2. Barevná čistota: Spektrální barva závisí pouze na polovodičovém materiálu \rightarrow není potřeba barevný filtr.
- 3. Miniaturizace: Malé rozměry a nízké zástavbové nároky.
- 4. **Rychlá odezva**: LED diody se rozsvěcují velmi rychle (vhodné pro frekvenční aplikace).
- 5. Regulace intenzity: Jednoduché stmívání pomocí pulzně-šířkové modulace (PWM) nebo změnou proudu.
- 6. Dlouhá životnost: 30 000–50 000 hodin provozu.
- Mechanická odolnost: Nemají pohyblivé části → vysoká odolnost vůči otřesům a vibracím.

Nevýhody LED:

- 1. **Závislost na teplotě**: Při vysokých teplotách klesá účinnost.
- 2. Citlivost na napětí: Překročení maximálního napětí vede k poškození LED.
- 3. **Nutnost chlazení**: Vysokovýkonné LED vyžadují účinné chlazení pro zabránění tepelného poškození.

4. Spektrální charakteristika LED

- LED diody mají relativně úzké spektrum vyzařovaného světla, jehož šířka je definována jako FWHM (Full Width at Half Maximum).
- Barva záření se přímo odvíjí od použitého materiálu a odpovídající energetické mezery.

5. Směrová charakteristika LED

- Směrovost LED záření je dána konstrukcí čipu a optickými členy (např. čočky, reflektory).
- LED diody lze vyrobit s různou směrovostí, od úzkých kuželů (bodové osvětlení) až po široké vyzařovací charakteristiky (difuzní světlo).

6. Aplikace LED

1. **Indikátory** – kontrolky na přístrojích, elektronice.

- 2. Vnitřní osvětlení domácnosti, kanceláře, průmyslové objekty.
- 3. **Veřejné osvětlení** pouliční lampy, parkovací osvětlení.
- 4. LED pásky dekorativní a funkční osvětlení.
- 5. Světla vozidel světlomety, brzdová a směrová světla.
- 6. Datová komunikace optické sítě využívající infračervené LED diody.

7. Elektro-optické charakteristiky LED

LED diody mají specifickou závislost světelného výkonu a dopředného proudu.

- **Zvýšení proudu** zvyšuje světelný výkon, ale pouze do určitého limitu.
- Vyšší proud vede k zahřívání čipu, což snižuje účinnost.

8. Praktické výhody a budoucnost LED

- LED technologie se stala dominantní v osvětlení díky:
 - Energetické úspornosti.
 - Možnosti regulace intenzity a barvy.
 - Dlouhé životnosti a spolehlivosti.
- Budoucí vývoj směřuje k:
 - Zvýšení účinnosti na úrovně přes 60–70 %.
 - Zlepšení odvodu tepla a chlazení.
 - Rozšíření aplikací v biologickém osvětlení (fytotrony, světla pro rostliny).

Shrnutí

Vlastnost	LED
Princip činnosti	Elektroluminiscence – rekombinace elektronů a děr
Účinnost	Desítky procent
Barva světla	Závisí na materiálu (spektrální barva)
Životnost	30 000–50 000 hodin
Regulace	Snadné stmívání (PWM, změna proudu)
Aplikace	Indikátory, osvětlení, komunikace, automobily

Lasery a laserové diody

1. Základní princip laserů

- Laser = Light Amplification by Stimulated Emission of Radiation
- Princip fungování spočívá ve stimulované emisi záření, kdy foton iniciuje emisi dalšího fotonu se stejnou energií, fází a směrem.

- Hlavní kroky:
 - 1. **Absorpce**: Elektrony absorbují energii a přecházejí do excitovaného stavu.
 - 2. Spontánní emise: Návrat do základního stavu uvolní foton náhodného směru.
 - 3. **Stimulovaná emise**: Excitovaný elektron je "donucen" uvolnit foton při návratu do základního stavu. Výsledný foton je **koherentní** (stejná fáze, směr a frekvence).

2. Typy laserů podle aktivního prostředí

- 1. Pevnolátkové lasery:
 - Aktivní prostředí tvořeno krystaly nebo sklem dopovaným ionty.
 - Příklady:
 - Rubínový laser: Aktivní prostředí \mathbf{Cr}^3+ v safírové matrici ($\lambda=0,6943\,\mu m$).
 - **Neodymový YAG laser**: Aktivní prostředí $Nd^3 + v$ yttrium-aluminium-granátu ($\lambda = 1,062 \mu m$).
- 2. Plynové lasery:
 - Aktivní prostředí tvořeno plyny.
 - Příklady:
 - \mathbf{CO}_2 laser: Aktivní plyn CO_2 , N_2 a He ($\lambda = 10, 6 \,\mu m$).
 - **He-Ne laser**: Helium-neon směs ($\lambda = 0,6328 \,\mu m$).
- 3. Polovodičové lasery (Laserové diody):
 - Založeny na P-N přechodu polovodiče, kde dochází k **elektroluminiscenci**.
 - Příklady materiálů a aplikací:

- 4. Kapalinové lasery:
 - Aktivní médium tvořeno **organickými barvivy** (tunovatelné lasery).
- 5. Plazmatické lasery:
 - Aktivní prostředí tvoří ionizované plazma.

3. Typy laserů podle činnosti

- Kontinuální (CW Continuous Wave): Stabilní výstupní výkon.
- Pulzní (P): Emise světla v krátkých, intenzivních pulsech.

4. Laserové diody

Laserové diody jsou polovodičové lasery, které emitují koherentní světlo pomocí P-N přechodu.

Typy laserových diod:

- 1. Hranově vyzařující lasery (EEL):
 - Světlo emituje z hrany polovodičového čipu.
 - Vysoká účinnost, velký rozsah výkonů (od mW až po kW).
 - Nesymetrická divergence svazku (např. $30 \times 20^{\circ}$).

2. Plošně vyzařující lasery (VCSEL):

- Světlo emituje kolmo k povrchu čipu.
- Nižší výkony, ale homogennější svazek.

Vlastnosti laserových diod:

- Široký rozsah vlnových délek (od UV po IR).
- Vysoká účinnost: Přeměna elektrické energie na světlo.
- Nutnost chlazení: Vysokovýkonné diody vyžadují aktivní chlazení.

Aplikace laserových diod:

- Optické čtečky: CD, DVD.
- Telekomunikace: Vysílání signálů přes optická vlákna.
- Biomedicína: Laserová terapie, chirurgické nástroje.
- Ukazovátka a zaměřovače: Přenosné lasery.

5. Parametry laserového svazku

- 1. Profil svazku:
 - Gaussovský svazek: Nejčastější profil intenzity.
- 2. Divergence svazku:
 - Udává rozbíhavost svazku.
- 3. Rezonátory:
 - Optické dutiny, které udržují světlo mezi zrcadly a umožňují zesílení.
 - Typy: stabilní rezonátory (zrcadla b, c, d, e).

6. Vláknové lasery

- Aktivní prostředí tvořeno optickým vláknem dopovaným ionty vzácných zemin (např. Nd, Yb).
- Výhody:
 - Vysoká účinnost.
 - Možnost přenosu svazku na dlouhé vzdálenosti.
 - Kompaktní provedení.
- Aplikace: Průmyslové řezání, sváření, telekomunikace.

7. Shrnutí vlastností laserů

Typ laseru	Aktivní médium	Vlnová délka	Aplikace
Pevnolátkový Plynový	Nd:YAG, rubín CO ₂ , He-Ne	694–1064 nm 10,6 μm, 632,8 nm	Řezání, značení, medicína Průmysl, laboratoře, metrologie
Polovodičový (diodový)	GaAs, GaN, InP	375–1555 nm	Telekomunikace, optické disky
Kapalinový (barvivový)	Organická barviva	400-1000 nm	Spektroskopie, věda
Vláknový	Dopované optické vlákno	$1064~\mathrm{nm}$	Řezání, telekomunikace, sváření

8. Praktické aplikace laserů

- 1. Průmyslové zpracování materiálů: Řezání, svařování, značení.
- 2. Optické komunikace: Přenos dat přes optická vlákna.
- 3. Medicína: Laserová chirurgie, terapie, dermatologie.
- 4. Věda a výzkum: Spektroskopie, optické experimenty.
- 5. **Spotřební elektronika**: CD/DVD čtečky, laserové projektory.

Vláknová optika, typy vláken, parametry, disperze, ohnuté a kuželové vlákno, svazky vláken

1. Základní princip vláknové optiky

• Vláknová optika využívá **světlovody** pro přenos světla pomocí **totálního odrazu** na rozhraní mezi jádrem a obálkou vlákna.

• Využití: datová komunikace, osvětlení, zobrazovací aplikace.

2. Typy optických vláken

2.1 Podle indexu lomu:

- 1. Diskrétní vlákna (step-index):
 - Jádro má konstantní index lomu, obálka nižší index lomu.
 - Typické pro jednomodová vlákna.
- 2. Gradientní vlákna (GRIN):
 - Index lomu jádra se plynule mění směrem k obálce.
 - Redukuje modovou disperzi a umožňuje lepší přenos dat.

2.2 Podle počtu módů:

- 1. Jednomodová vlákna (SMF Single Mode Fiber):
 - Světlo se šíří pouze **jedním módem**.
 - Průměr jádra: 8 μm.
 - Pracovní vlnová délka: 1300 nm nebo 1550 nm.
 - Parametry:
 - Útlum: **1,5 dB/km** při 1300 nm.
 - Numerická apertura (NA): 0,15.
 - Výhody: Vysoká šířka pásma, nízká disperze \rightarrow vhodné pro dlouhé vzdálenosti.
- 2. Vícemodová vlákna (MMF Multimode Fiber):
 - Světlo se šíří **více módy**.
 - Průměr jádra: $50 \mu m$.
 - Pracovní vlnová délka: 850 nm a 1300 nm.
 - Parametry:
 - Útlum: 3 dB/km při 850 nm.
 - Numerická apertura (NA): **0,23**.
 - Výhody: Nižší náklady, vhodné pro krátké vzdálenosti.

2.3 Speciální vlákna:

- 1. Kapalinová vlákna:
 - Jádro vyplněno kapalinou.
 - Použití: osvětlovací aplikace.
- 2. Celoplastová vlákna (POF Plastic Optical Fiber):
 - Jádro i obálka z plastu.
 - Vysoký útlum, levné, vhodné pro krátké spoje.
- 3. PCS vlákna (Plastic-Cladded Silica):
 - Jádro: tavený křemen, obálka: plast.
 - Vyšší útlum než skleněná vlákna.

3. Parametry optických vláken

3.1 Útlum:

- Ztráta energie při průchodu světla vláknem.
- Definice:

$$A = 10 \cdot \log \left(\frac{P_{\rm in}}{P_{\rm out}}\right) \, [{\rm dB}]$$

- Hlavní příčiny:
 - **Absorpce**: Pohlcení světla materiálem.
 - Rozptyl: V důsledku nerovnoměrnosti materiálu.

3.2 Disperze:

Rozptyl optického signálu v časové doméně. Omezuje šířku pásma a rychlost přenosu dat.

Typy disperze:

- 1. Modová disperze (intermodální):
 - Vícemodová vlákna různé módy mají odlišné dráhy.
- 2. Materiálová disperze (intramodální):
 - Závislost rychlosti světla na vlnové délce v materiálu.
- 3. Chromatická disperze:
 - Kombinace materiálové disperze a vlivů zdroje světla.
- 4. Polarizační disperze:
 - Různé polarizační složky světla se šíří různou rychlostí.

4. Ohnuté a kuželové vlákno

Ohnuté vlákno:

- Ohnutí optického vlákna způsobuje ztráty světla v důsledku úniku světla mimo vlákno.
- Důsledky:
 - Zvýšený útlum.
 - Omezení použitelnosti na krátké vzdálenosti.

Kuželové vlákno:

- Optické vlákno s proměnným průměrem jádra.
- Použití:
 - Lepší propojení vláken s různými parametry.
 - Redukce disperze v určitých aplikacích.

5. Svazky vláken

Optická vlákna lze uspořádat do svazků pro přenos světla nebo obrazu.

Typy svazků:

- 1. Uspořádané svazky:
 - Vlákna jsou pevně uspořádána.
 - Použití: Přenos obrazu (endoskopy, optické senzory).
- 2. Neuspořádané svazky:
 - Vlákna jsou náhodně uspořádána.
 - Použití: Osvětlovací aplikace (světelná distribuce).

Pohyblivé a pevné svazky:

- Pohyblivé svazky umožňují ohyb a přizpůsobení.
- Pevné svazky mají stabilní geometrii.

6. Shrnutí hlavních parametrů vláken

Parametr	Jednomodové	Vícemodové (GRIN)
Průměr jádra	8 µm	50 µm
Numerická apertura NA	0,15	0,23
Útlum @ 1300 nm	$1,5~\mathrm{dB/km}$	$1.5~\mathrm{dB/km}$

Parametr	Jednomodové	Vícemodové (GRIN)
Šířka pásma	Nekonečná (teoreticky)	600–1300 MHz/km
Použití	Dlouhé vzdálenosti, data	Krátké vzdálenosti, sítě

7. Praktické aplikace vláknové optiky

- 1. **Telekomunikace**: Přenos dat na dlouhé vzdálenosti (internet, telefonie).
- 2. Senzory: Měření tlaku, teploty, vibrací (vláknové senzory).
- 3. **Zobrazování**: Endoskopy a mikroskopy.
- 4. Osvětlení: Světelná vlákna pro dekorativní a průmyslové účely.

Detektory s vnějším fotoefektem

1. Základní princip vnějšího fotoefektu

- Vnější fotoefekt je jev, při kterém dopadající fotony uvolní elektrony z povrchu materiálu (nejčastěji kovu).
- Energie fotonu E_f je dána vztahem:

$$E_f = h \cdot f = \frac{h \cdot c}{\lambda},$$

kde:

- h Planckova konstanta,
- -f frekvence záření,
- -c rychlost světla,
- $-\lambda$ vlnová délka.
- Aby došlo k uvolnění elektronu, musí být energie fotonu větší než **výstupní práce** W_v daného materiálu:

$$E_f > W_v$$
.

• Uvolněné elektrony se nazývají **fotoelektrony** a mohou být detekovány a zesilovány.

2. Hlavní typy detektorů s vnějším fotoefektem

2.1 Fotonka (Phototube)

- Princip:
 - Foton dopadá na fotokatodu, která emituje fotoelektrony.

 Fotoelektrony jsou ur accelerated (urychleny) k anodě elektrickým polem a detekovány jako proud.

• Vlastnosti:

- Vysoká citlivost.
- Stabilní výkon při změnách teploty.
- Široký dynamický rozsah.
- Velká citlivá plocha pro dopadající záření.

• Aplikace:

- Chemická a lékařská analýza.
- Laserová měření.

2.2 Fotonásobič (Photomultiplier Tube – PMT)

• Princip:

- 1. Foton dopadne na **fotokatodu**, která uvolní fotoelektron.
- 2. Fotoelektron je **urychlen** k dynodám pod vysokým napětím.
- 3. Při nárazu na dynodu dochází k **sekundární emisi elektronů** \rightarrow násobení proudu.
- 4. Výsledkem je **zesílený proud elektronů** na anodě.

• Typy fotonásobičů:

- **Head-on type**: Optická osa je kolmá na povrch katody.
- Side-on type: Světlo dopadá z boku na katodu.

• Vlastnosti:

- $-\,$ Extrémně vysoká citlivost (zesílení až $10^6).$
- Široký spektrální rozsah (UV až viditelné světlo).
- Rychlá odezva.

• Nevýhody:

- Vyžadují vysoké napětí (1000 V).
- Citlivé na vnější elektromagnetické rušení.

• Aplikace:

- Detekce slabého světla (např. hvězdná pozorování, scintilační detektory).
- Spektroskopie.

2.3 Mikrokanálová destička (Microchannel Plate – MCP)

• Princip:

- Destička obsahuje velké množství mikrokanálků s vodivými stěnami.
- Foton uvolní fotoelektron, který je urychlen elektrickým polem podél mikrokanálků.
- Nárazy elektronu na stěny kanálků způsobují **sekundární emisi elektronů** \to zesílení signálu.

Vlastnosti:

- Kompaktní provedení.
- Vysoké zesílení signálu (až 10⁵).
- Rychlá odezva vhodné pro detekci **rychlých pulzů**.

• Aplikace:

- Noční vidění.
- Detekce ultrafialového záření (UV spektroskopie).
- Systémy pro zobrazování slabého světla.

3. Obecné charakteristiky detektorů záření

- 1. **Spektrální citlivost**: Citlivost detektoru na různé vlnové délky záření.
- 2. Relativní spektrální citlivost: Poměr citlivosti k maximální hodnotě citlivosti.
- 3. Integrální citlivost: Celková citlivost detektoru v širokém spektru záření.
- 4. Prahová citlivost: Minimální intenzita záření, kterou detektor dokáže zaznamenat.
- 5. Směrová charakteristika: Závislost citlivosti detektoru na úhlu dopadajícího záření.

4. Srovnání detektorů s vnějším fotoefektem

Typ detektoru	Citlivost	Zesílení	Aplikace
Fotonka	Vysoká	Žádné (přímá detekce)	Chemie, lékařská měření

Typ detektoru	Citlivost	Zesílení	Aplikace
Fotonásobič (PMT)	Extrémně vysoká	$Až~10^6$	Detekce slabého světla, spektroskopie
Mikrokanálová destička	Vysoká	$\rm A\check{z}~10^5$	Noční vidění, UV detekce

5. Praktické aplikace detektorů s vnějším fotoefektem

- 1. Spektroskopie: Analýza světelného spektra ve vědeckém výzkumu.
- 2. **Astronomie**: Detekce slabého světla z vesmírných objektů.
- 3. Noční vidění: Použití mikrokanálových destiček pro zesílení slabého světla.
- 4. Laserová měření: Precizní detekce a měření laserového záření.
- 5. **Analytická chemie**: Fotometrické analýzy v laboratořích.

Detektory s vnitřním fotoefektem

1. Základní princip vnitřního fotoefektu

- Vnitřní fotoefekt je jev, při kterém foton dopadající na materiál dodá dostatek
 energie elektronu ve valenčním pásu, aby překonal zakázaný pás a přešel do
 vodivostního pásu.
- Vytvářejí se elektron-děrové páry, které jsou následně detekovány jako změna elektrických vlastností (odpor, proud, napětí).
- Základní materiály: polovodiče jako Si (křemík), Ge (germanium), GaAs (gallium arsenid), InGaAs.

2. Typy detektorů s vnitřním fotoefektem

2.1 Fotorezistor (Fotoodpor)

- Princip: Po absorpci fotonu dojde ke snížení elektrického odporu materiálu.
- Rovnice odporu:

$$R = \rho \frac{l}{S},$$

kde ρ je měrný odpor, ldélka dráhy, Sprůřez kontaktu.

• Materiály:

- CdS (sulfid kadmia): citlivost kolem 520 nm (podobná lidskému oku).
- CdSe (selenid kadmia): citlivost na 690 nm.
- Pro IR oblast: CdTe (830 nm), InSb (1,6 μm).

Nevýhody:

- Vysoká teplotní závislost.
- Nelinearita změny odporu.
- Pomalá odezva (v desítkách ms).
- Použití: Starší aplikace, dnes nahrazovány fotodiodami a fototranzistory.

2.2 Fotodioda

- Princip: Dopadající foton vytvoří elektron-děrový pár v oblasti PN přechodu.
- · Režimy zapojení:
 - 1. **Fotovoltaický režim** (bez vnějšího napětí):
 - Fotodioda funguje jako zdroj napětí (fotočlánek).
 - Pracuje ve 4. kvadrantu voltampérové charakteristiky.
 - 2. Fotovodivostní režim (s vnějším napětím):
 - Zvýšení závěrného proudu úměrně osvětlení.
 - Vhodné pro měření s **rychlou odezvou** a vysokým dynamickým rozsahem.
- Materiály:
 - Si (křemík): UV, viditelné světlo, IR do 900 nm.
 - Ge (germanium): IR do $1.5 \mu m$.
 - InGaAs: širší IR oblast.
- Výhody:
 - Vysoká rychlost (až stovky GHz).
 - Lineární odezva na intenzitu záření.
- Aplikace: Snímače světla, měřicí přístroje, optické komunikace.

2.3 Segmentové diody

• Popis: Fotodiody rozdělené na více nezávislých citlivých oblastí v jednom pouzdře.

- Princip: Rozložení signálů (proudů) z jednotlivých segmentů umožňuje určení pozice osvětlené oblasti.
- Použití:
 - Kvadrantové diody: Pro určování středu osvětlení v osách X a Y.
 - Měření pozice světelného bodu.

2.4 Fototranzistor

- **Princip**: Záření dopadající na **bázi** tranzistoru řídí propustnost **PN přechodu** \rightarrow ovlivňuje kolektorový proud.
- Vlastnosti:
 - Citlivější než fotodiody díky zesilovacímu efektu.
 - Delší doba odezvy (v desítkách µs).
- Použití:
 - **Spínací prvky**: Optočleny (kombinace LED a fototranzistoru).
 - Snímače záření,

2.5 PSD detektor (Position Sensitive Detector)

- Popis: Velkoplošná fotodioda s nanesenou odporovou vrstvou.
- Princip: Rozložení fotoproudu do vývodů umožňuje určit pozici ozářeného místa.
- Použití:
 - Optická triangulace: Bezdotykové měření vzdálenosti.
 - Přesné určování polohy pomocí laserových diod.

3. Šum v detektorech s vnitřním fotoefektem

- 1. Fotonový šum: Fluktuace v toku dopadajících fotonů.
- 2. Fotoelektrický šum: Náhodnost generování nosičů náboje.
- 3. Zesilovací šum: Fluktuace zesíleného signálu.
- 4. Elektrický šum obvodů: Šum součástek detektoru.
- 5. **Šum temného proudu**: Proud způsobený tepelnou excitací bez osvětlení.

4. Srovnání detektorů s vnitřním fotoefektem

Typ detektoru	Rychlost	Citlivost	Aplikace
Fotorezistor	Pomalejší	Nižší	Starší měřicí a světelné snímače
Fotodioda	Velmi rychlá	Vysoká	Měření světla, optické komunikace
Fototranzistor	Střední	Vyšší než fotodioda	Optočleny, spínací aplikace
PSD detektor	Rychlá	Velká plocha	Optická triangulace, měření polohy

5. Praktické aplikace detektorů s vnitřním fotoefektem

- 1. **Optické komunikace**: Přenos dat pomocí světelných signálů (fotodiody).
- 2. Měření vzdálenosti: Laserové triangulační senzory s PSD detektory.
- 3. Bezkontaktní spínače: Optočleny s fototranzistory.
- 4. Osvětlení a senzory světla: Automatické stmívání, měření intenzity světla.
- 5. **Průmyslová kontrola**: Systémy detekce světelných značek.

Aplikace v měření – vzdálenosti, rozměru, teploty

1. Měření vzdálenosti

Optická měření vzdálenosti využívají principy laserové triangulace a optických metod.

1.1 Laserová triangulace

- Princip:
 - Laserový paprsek je zaměřen na povrch objektu.
 - Odražené světlo je zachyceno **senzorem** (např. CCD nebo PSD detektorem).
 - Z polohy odraženého bodu na senzoru se geometricky určí vzdálenost objektu (optická osa senzoru je skloněna k laserovému paprsku).
- Metody triangulace:
 - Bodové měření měření jednotlivého bodu.
 - **Profilové měření** skenování profilu objektu pomocí 2D snímače.
 - Rozmítání promítání vzoru pro zjištění povrchových nerovností.

Použití:

Kontrola kvality výrobků.

- Měření vzdáleností v průmyslu a logistice.

1.2 Optické mikrometry

Optické mikrometry využívají stínový nebo závěrkový efekt k měření rozměrů objektů.

• Typy mikrometrů:

- 1. **Analogové optické mikrometry** výstupem je analogový signál.
- 2. Digitální optické mikrometry poskytují digitální hodnoty pro vyšší přesnost.

· Princip měření:

- Světelný paprsek je vysílán a zachycen detektorem. Překážka (měřený objekt) částečně blokuje paprsek a vytváří stín.
- Míra blokace světla odpovídá velikosti měřeného objektu.

Použití:

- Měření průměrů, tlouštěk a pozic součástek.
- Rychlá a přesná měření v průmyslových aplikacích.

2. Měření rozměru

Optické metody umožňují bezkontaktní a přesné měření rozměrů různých objektů.

2.1 Laserové profilometry

- Použití laserových paprsků k měření **3D profilu** objektu.
- Princip:
 - Laser skenuje povrch objektu a vytváří **výškový profil**.
 - Odražené světlo je detekováno senzory (např. CCD kamery).

Použití:

- Kontrola plochých nebo válcových povrchů.
- Detekce vad na povrchu materiálů.

2.2 Optické závory

- Princip:
 - Světelný zdroj a detektor jsou umístěny proti sobě.
 - Přerušení světelného paprsku objektům způsobí změnu signálu detektoru.

• Použití:

– Detekce přítomnosti objektů.

– Kontrola průchozích rozměrů (např. průměr tyčí, rychlost pohybu).

3. Měření teploty

Pro měření teploty se používají bezkontaktní **pyrometry** a **termokamery**, které detekují tepelnou radiaci.

3.1 Pyrometrie

- Pyrometr: Přístroj pro bezkontaktní měření teploty na základě záření objektu.
- Typy pyrometrů:
 - 1. Monochromatické pyrometry měří intenzitu záření na jedné vlnové délce.
 - 2. **Pásmové pyrometry** měří intenzitu v určitém spektrálním pásmu.
 - 3. Celkové (úhrnné) pyrometry měří celkové tepelné záření objektu.

Princip:

- Intenzita vyzařování je úměrná teplotě podle **Stefan-Boltzmannova zákona**.
- Teplota se určí porovnáním s referenční hodnotou nebo kalibrovaným zářením.

Použití:

- Měření teploty tavenin v hutnictví.
- Kontrola teploty povrchů ve výrobě.

3.2 Termokamery

- Termokamery snímají infračervené záření emitované objekty a převádějí ho na teplotní mapu.
- Senzory:
 - $\bf Mikrobolometry$ detektory citlivé na změnu teploty.
 - Ge optika čočky pro infračervené záření.

Použití:

- Diagnostika tepelných ztrát budov.
- Kontrola přehřívání elektrických zařízení.
- Lékařské zobrazování (detekce zánětů).

4. Praktické aplikace v průmyslu

- 1. Kontrola kvality:
 - Laserová triangulace pro měření povrchových vad a rozměrů součástek.
- 2. Monitorování teploty:
 - Termokamery a pyrometry pro zajištění bezpečnosti výrobních procesů.
- 3. Automatizace výrobních linek:

• Optické závory a mikrometry pro rychlou detekci a kontrolu součástek.

4. Bezkontaktní měření vzdálenosti:

• Laserové senzory pro logistiku a skladování.

Shrnutí hlavních aplikací a metod

Měřená veličina	Metoda	Technologie	Aplikace
Vzdálenost	Laserová	Laserové diody, PSD	Robotika, kontrola pozic,
	triangulace	detektory	měření profilů
Rozměr	Optické	Optické závory, CCD	Kontrola součástek,
	mikrometry	snímače	měření průměrů
Teplota	Pyrometry,	IR senzory,	Hutnictví, stavebnictví,
	termokamery	mikrobolometry	medicína