Network: Internetworking

Jae Hyeon Kim

Reference

William Stalling, Data and Computer Communications 10/E, Prentice Hall

Routing

- Key design issue for (packet) switched networks
 - Many connections will need paths more than one switch
 - Select route across network between end nodes
- Characteristics required
 - Correctness
 - Simplicity
 - Robustness
 - Stability
 - Fairness
 - Optimality
 - Efficiency

Performance Criteria

- Used for selection of route
- Approach for the optimum route
 - Simplest is choose minimum hop (least number of nodes)
 - Can be generalized as "least one" routing because it is more flexible, therefore it is more common than "minimum hop"
 - Least-cost algorithms

Example Packet Switched Network

Decision Time and Place

- Time
 - Packet or virtual circuit basis
 - Fixed or dynamically changing
- Place
 - Distributed routing : made by each node
 - More complex, but more robust
 - Centralized routing : made by some designated node
 - Network control center
 - Source routing : made by source station
 - Allows the user to dictate a route

Network Information Source and Update Timing

- Routing decisions usually based on knowledge of network traffic load and link cost
 - Distribute routing: using local knowledge, information from adjacent nodes, information from all nodes on a potential route
 - Central routing : collect information from all nodes
- Issue of update timing
 - Fixed routing : never updated, simple, not sensible
 - Adaptive routing: regular updates, more overload

Routing Strategies (1)

- Fixed routing
- Use a single permanent route for each source to destination pair of nodes
- The route was determined using a least cost algorithm
- Route is fixed until a change in network topology: based on expected traffic or capacity
- Advantage is simplicity
- Disadvantage is lack of flexibility: does not react to network congestion

Fixed Routing Tables

Node 1 Directory		
Destination	Next Node	
2	2	
3	4	
4	4	
5	4	

Destination	Next Node
1	1
3	3
4	4
5	4
6	4

Node 2 Directory

Destination Next Node				
1	5			
2	5			
4	5			
5	5			
6	5			

Node 3 Directory

Central Routing Directory

		From node					
		1	2	3	4	5	6
	1	-	1	5	2	4	5
	2	2	-	5	2	4	5
To node	3	4	3	-	5	3	5
node	4	4	4	5	1	4	5
	5	4	4	5	5	-	5
	6	4	4	5	5	6	-

Node 4 Directory		
Destination	Next Node	
1	2	
2	2	
3	5	
5	5	
6	5	

Destination	Next Node
1	4
2	4
3	3
4	4
6	6

Node o Directory		
Destination	Next Node	
1	5	
2	5	
3	5	
4	5	
5	5	

Node 6 Directory

Routing Strategies (2)

- Flooding
- Packet sent by node to every neighbor
- No network information required
- Eventually multiple copies arrive at destination
- Each packet is uniquely numbered so duplicates can be discarded
- Need to limit incessant retransmission of packets
 - Node can remember identity of packet retransmitted

Flooding Example

Properties and Disadvantage

- All possible routes are tried
 - Very robust, military network
- At least one packet will have taken minimum hop route
 - Can be used to set up virtual circuit
- Nodes directly or indirectly connected to source are visited
 - Useful to distribute information
- Disadvantage
 - High traffic load
 - Security concerns

Routing Strategies (3)

- Random routing
- Simplicity of flooding with much less traffic load
- A route node selects one outgoing path for retransmission of incoming packet
- Selection can be random or round robin
- A refinement is to select outgoing path based on probability calculation
- No network information needed
- Random route is typically neither least cost nor minimum hop

Routing Strategies (4)

- Adaptive routing
- Used by almost all packet switching networks
- Routing decisions change as conditions on the network change
- Requires information about network
- Disadvantages
 - Decisions more complex
 - Tradeoff between quality of network info. And overhead
 - Reacting too quickly can cause oscillation
 - Reacting too slowly means info may be irrelevant
- Advantages
 - Improved performance
 - Aid congestion control

ARPANET Routing Evolution (1)

- 1st generation : distance vector routing (1969)
 - Distributed adaptive estimated delay, such as queue length
 - Version of Bellman-Ford algorithm(doesn't consider line speed)
- 2nd generation: link state routing (1979)
 - Distributed adaptive using measured delay, such as RTT
 - Version of Dijkstra's algorithm
 - ✓ Re-computed average delays every 10 seconds, and any changes are flooded to all other nodes
 - ✓ Good under light, medium loads, but under heavy loads, little correlation between reported delays and those experienced

ARPANET Routing Evolution (2)

- 3rd generation : link state routing (1987)
 - Link cost calculation changed
 - ✓ To damp routing oscillations
 - ✓ To reduce routing overhead
 - Measure average delay over last 10 seconds and transform into link utilization estimate
 - Normalize this based on current value and previous results
 - Set link cost as function of average utilization

Internet Routing Protocols

- Routers are responsible for receiving and forwarding packets through the interconnected set of networks Link cost
 - makes routing decisions based on knowledge of the topology and traffic/delay conditions of the Internet
 - routers exchange routing information using a special routing protocol
- Two concepts in considering the routing function:
 - routing information
 - ✓ Information about the topology and delays of the Internet
 - routing algorithm
 - ✓ The algorithm used to make a routing decision for a particular datagram, based on current routing information

Autonomous System (AS)

- It exhibits the following characteristics as
 - it is a set of routers and networks managed by a single organization
 - consists of a group of routers exchanging information via a common routing protocol
 - except in times of failure, it is connected (in a graph-theoretic sense); there is a path between any pair of nodes
- Interior Router Protocol (IRP)
 - a shared routing protocol which passes routing information between routers within an AS
 - custom tailored to specific applications and requirements

Exterior Routing Protocol (ERP)

- May be more than one AS in an internetwork
 - Routing algorithms and tables may differ between different AS
- Routers need information about networks outside their AS
 - Use an exterior router protocol (ERP) for this
 - Supports summary information on AS reachability
- Example
 - Border gateway protocol (BGP)

Application of IRP and ERP

Approaches: Distance-vector Routing

- Requires that each node (router or host) exchange information with its neighboring nodes
 - Two nodes are said to be neighbors if they are both directly connected to the same network
- First generation routing algorithm for ARPANET
 - Used by Routing Information Protocol (RIP)
- A node maintains a vector of link costs for each directly attached network, distance and next-hop for each destination
 - Requires transmission of lots of information by each router
- Changes take long time to propagate

Approaches: Link-state Routing

- Designed to overcome drawbacks of distance-vector
- When a router is initialized, it determines the link cost on each of its network interfaces
 - It then advertises this set of link costs to all other routers in the internet topology, not just neighboring routers
- From then on, the router monitors its link costs
 - Whenever there is a significant change, the router again advertises its set of link costs to all other routers in the configuration
- The OSPF protocol is an example

Consideration for ERP

- Both are not effective for exterior router protocol
- Not distance-vector
 - Assumes routers share common distance metric
 - But different Ass may have different priorities & needs
 - But have no info. On AS that will be visited along a route
- Not link-state
 - Different Ass may use different metrics and have different restrictions
 - Flooding of link state information to all routers unmanageable

ERP: Path-vector Routing

- Alternative to dispense with concept of routing metrics
 - that is, does not include distance or cost estimate
 - simply provides information about which networks can be reached by a given router and ASs crossed to get there
 - so, each block of routing information lists all of the ASs visited in order to reach the destination network by this route
- BGP (Border Gateway Protocol)
 - it was developed for use in conjunction with the TCP/IP suite
 - it has become the preferred ERP for the Internet
 - designed to allow routers in different ASs to cooperate in the exchange of routing information
 - current version is known as BGP-4 (RFC 4271)