INSPIRE Final Presentation

August 5th 2010

Members

- Helinda C. Haro
- Brandon Le
- Elizabeth Toller
- Eric Chang
- Allaina Honda
- Bryce Anglin
- Jessica Bacchus
- Alejandro Lopez
- Stephanie Sodergren

Agenda

- Introduction of Program and Project
- Analysis of Performance and Aerodynamics
 - Lift and Drag
 - Static Thrust
 - Thrust Required
 - Rate of Climb
 - Take-off Distance
 - Flight Endurance
 - Level Turn Performance
 - Airspeed Calibration
- Moments of Inertia

What is INSPIRE

- Interdisciplinary National Science Project Incorporating Research and Education Experience
 - Provide practical research experience
 - Provide professional career development information
 - Allow students to discover and utilize a network of resources
 - Established to motivate students to pursue STEM careers

The Project

To Analyze the Aerodynamic and Performance Characteristics of the DROID 3

Flight testing helped to validate our predictions and determine the capabilities

of the DROID 3

The Steps

- Learning about Aerodynamics
- Measuring the Plane
- Calculating Aerodynamic and Performance Characteristics
- CDR (Critical Design Review)
- Creation of Flight Procedures
- Tech Brief
- Flight Testing
- Analysis of Data
- Final Presentation

The DROID 3

- Wingspan: 9 feet 8.5 inches
- ▶ Total Length: 8 feet
- Chord: 2 feet 1.5 inches

Vehicle Configuration

Full weight: 44.96 lbs CG: 7" from leading edge of wing

On-boardPitot tube/TachometerPiccoloStatic port

Lift and Drag

Lift and Drag

- Lift and Drag were found by considering the glide ratio, forward motion over downward motion, considered equal to L/D when thrust is absent.
- At 0 degree flaps L/D= 7.78
- ▶ At 15 degree flaps L/D= 6.35
- ▶ At 32 degree flaps L/D=5.34

Static Thrust

Static Thrust

- Prediction: PropCalc
 - Determined an approximate RPM
 - Dimensions of propeller: 26x10
- Testing: Force gauge connected to tail of DROID
 - Different throttle settings
 - Recorded the RPM

Static Thrust

Static Thrust Available [v=0]

Thrust Required for Level Flight

Thrust Required

Initial Equation:

$$T_{required} = \frac{W}{C_L / C_D}$$

- Flight Testing:
 - Used the RPM, airspeed, and propeller dimensions
 - Inserted the propeller dimensions and RPM into PropCalc
 - Several graphs with one point from each graph
 - Final graph of thrust required

Thrust Required

Thrust Required vs. Velocity

Thrust Required

Challenges:

- Finding areas where the velocity and altitude were consistent
- Roll angle was close to zero
- Finding level flight for a good amount of time
- Amount of data per second

Rate of Climb

Rate of Climb

Thrust Required vs. Velocity

$$ROC = \frac{VT_{\text{ex}}}{W}$$

Rate of Climb

Prediction

Test Data (Distance)

Latitude 0.00000389038 x 365228 = 0.3000886159 ft

Longitude 0.00019722353 x 299656 = 25.365406128 ft

Test Data (Angle)

•Due to calibration of gyroscopic pitch sensor, ¾ of a degree must be added to given pitch to receive actual pitch

Data

Data

Data

Error Analysis

- Flight testing data was recorded at 1 Hz. Take-off was an estimated 1.5 seconds.
- Due to change in constants, analytical data was not applicable to take-off testing of 15 degree and 32 degree flaps settings

Findings

- ▶ 15 degree flap setting had a take-off distance of 31.28 feet
- 32 degree flap setting had a take-off distance of 44.88946
- For DROID 3 aircraft:
 - Use 15 degree flap setting for optimized take-off
 - Use 32 degree flap setting for optimized landing

Flight Endurance

Flight Endurance

- Flight Testing
 - Ground Test
- Data

Initial Weight-19,033 grams			
RPM	Weight Diff.	Time	
initial-3500	105g	10 min	
3500-4500	130g	7 min	
4500-5500	222g	6 min	
5550-6500	270g	5 min	

oz burned	oz per min	RPM	minutes on a full tank
3.70	0.37	3500	134.99
4.58	0.65	4500	76.32
7.83	1.30	5500	38.31
9.52	1.90	6500	26.24

Flight Endurance

Initial Equation:

$$R = \frac{V^2}{g \tan \phi} \quad \begin{array}{l} R = \text{turn radius} \\ V = \text{velocity} \\ g = \text{acceleration due to gravity} \\ \Phi = \text{bank angle} \end{array}$$

R= turn radius

V = velocity

- Testing:
 - Fly multiple level turns at constant bank and velocity

Level Turn Performance

Airspeed Calibration

Airspeed Calibration

			Results			
	WT. 6	O		D:ff	10:1-1-0-	
Trial	KTAS	Ground		Difference (Pitot-Ground)		
1	47.30318	47.79142		-0.48824		
2	53.84654	54.51497		-0.66843		
3	68.93083	72.25318		-3.32235		
4	67.86904	68.37338		-0.50434		

- Airspeed calibration factor calculated to be minute
- Calibration of -3.32KTAS was omitted as outlier
- Average calibration factor = -.55KTAS

Moments of Inertia

Moments of Inertia

Find moment of inertia for I_{xx}, I_{yy}, and I_{zz}

Inertia tensor

Stress Testing-Simple Pendulum

- Ensure that channel and metal bar can hold weight of aircraft
- Placed 100 lbs on channel
- Allowed to sit for 10 minutes
- Successful!

Stress Testing - Bifilar

- Followed same procedure as before, only now testing strength of cables
- At 90 lbs, the universal joints broke apart
- Failed stress test
- Retested with stronger universal joints, and was successful

Roll Inertia Test

Roll Inertia Test

Roll Inertia Test

- Poor data due to uncontrollable secondary oscillations
- Will use stopwatch data instead
- T = 2.28 seconds

Simple Pendulum

Roll Inertia Results

$$I'_{xx} = \frac{WT^2L}{4\pi^2}$$

Using parallel axis theorem...

Rotational inertia about pivot point

W= weight of aircraft and rig (lbs)

T=period (sec)

L= length of pendulum (ft)

$$I_{xx} = {I'}_{xx} - rac{WL^2}{g} - I_{rig}$$
 Rotational inertia about aircraft's axis

Roll Inertia Results

$$I'_{xx} = \frac{(51.115lbs)(2.28sec)^2(3ft)}{16\pi^2} = 20.207 slugs \cdot ft^2$$

$$Translational\ MOI = \frac{(51.115lbs)(3ft)}{32.2ft/sec^2} = 14.298\ slugs \cdot ft^2$$

$$I_{rig} = 0.0393 slugs \cdot ft^2$$

$$I_{xx} = 20.207 slugs \cdot ft^2 - 14.298 slugs \cdot ft^2 - 0.0393 slugs \cdot ft^2$$

Roll Inertial Results

Measured

$$I_{xx} = 5.8697 \ slugs \cdot ft^2$$

Estimated

$$I_{xx} = 4.254 \ slugs \cdot ft^2$$

Percent Error

38%

Time vs. X accelerometers (1 oscillation)

Time vs. X accelerometers (zoom)

Time vs. X accelerometers (zoom)

Pitch Inertia Results

- T (period) is the time difference from peak to peak
- Took average of every period
- T = 2.2 seconds

Pitch Inertia Results

$$I'_{yy} = \frac{WT^2L}{4\pi^2}$$

$$I_{yy} = I'_{yy} - \frac{WL^2}{g} - I_{rig}$$

Use same method as I_{xx}

Pitch Inertia Results

Measured

$$I_{yy} = 4.478 \, slugs \cdot ft^2$$

Estimated

$$I_{yy} = 3.862 \ slugs \cdot ft^2$$

Percent Error

15.95%

Yaw Inertia Results

T = 4.7 seconds

$$I_{zz} = \frac{gT^2d^2W}{16\pi^2l} - I_{rig}$$

g= gravity constant (ft/sec²)

T= period (sec)

d= distance between cables (ft)

W= weight of aircraft and rig (lbs)

L= length of cables (ft)

$$\frac{\left(\frac{32.2ft}{sec^2}\right)(4.7sec)^2(2.104ft)^2(51.115lbs)}{16\pi^2(5.25ft)} - 0.4692 slugs \cdot ft^2$$

Yaw Inertial Results

Measured

$$I_{zz} = 2.4228 \ slugs \cdot ft^2$$

Estimated

$$I_{zz} = 6.3976 \, slugs \cdot ft^2$$

Percent Error

62.13%

In Conclusion

- Not all, but most predictions in our CDR were confirmed.
- We all learned a lot about math, physics, and aeronautics through this project.
- We are all really grateful for the time we have spent here, and those who have helped us at Dryden.

Questions?