Lezione 3 – Codifiche binarie di informazioni non numeriche

Architettura degli elaboratori

Modulo 1 – Fondamenti architetturali

Unità didattica 2 – Rappresentazione binaria delle informazioni

Nello Scarabottolo

Università degli Studi di Milano - Ssri - CDL ONLINE

bit meno significativ		hit niù significativi			aratteri: il codice <u>ASCII</u> $A = x\underline{41} = \underline{65}_{10} a = x61 = 97_{10}$				
		000	001	010	011	100	101	110	111
Ī	0000	NUL	DLE	SP 32	0 48	@ 64	P 80	` 96	p 112
ſ	0001	SOH	DC1	! 33	1 49	A 65	Q 81	a 97	q 113
Ī	0010	STX	DC2	" 34	2 50	B 66	R 82	b 98	ľ 114
	0011	ETX	DC3	# 35	3 51	C 67	S 83	C 99	S 115
ſ	0100	EOT	DC4	\$ 36	4 52	D 68	T 84	d 100	t 116
ſ	0101	ENQ	NAK	% 37	5 53	E 69	U 85	e 101	U 117
ſ	0110	ACK	SYN	& 38	6 54	F 70	V 86	f 102	V 118
ſ	0111	BEL	ETB	' 39	7 55	G 71	W 87	g 103	W 119
Ī	1000	BS	CAN	(40	8 56	H 72	X 88	h 104	X 120
Ī	1001	HT	EM) 41	9 57	I 73	Y 89	İ 105	y 121
Ī	1010	LF	SUB	* 42	: 58	J 74	Z 90	j 106	Z 122
ſ	1011	VT	ESC	+ 43	; 59	K 75	[91	k 107	{ 123
Ī	1100	FF	FS	, 44	< 60	L 76	\ 92	I 108	124
Ī	1101	CR	GS	- 45	= 61	M 77] 93	m 109	} 125
Ī	1110	SO	RS	. 46	> 62	N 78	^ ₉₄	n 110	~ 126
Ī	1111	SI	US	/ 47	? 63	O 79	_ 95	0 111	DEL

Codifica di immagini

Immagine costituita da una matrice rettangolare di punti immagine (pixels: picture elements).

- risoluzione spaziale data dal numero di pixel;
- risoluzione cromatica data dal numero di bit per pixel:

8 bit per pixel: 256 livelli di grigio;

24 bit per pixel: immagine RGB da 16 milioni di colori.

Codifica di segnali audio

Il segnale audio è una forma d'onda variabile nel tempo:

- la codifica binaria si effettua campionando la forma d'onda e memorizzando i campioni;
- la frequenza di campionamento deve essere almeno doppia della massima frequenza del segnale (teorema di Nyquist-Shannon).

Codifica di filmati

Serve codificare separatamente il segnale audio e il segnale video (sequenza di immagini).

Per ridurre le dimensioni, si ricorre a compressione sfruttando il fatto che il sistema percettivo (occhio umano) non è in grado di apprezzare variazioni troppo ridotte tra immagini successive di una sequenza.

		Dimensioni di codifica			
Info	Bit	Commento			
Numero	64 bit	$n_{\text{MAX}} = 1.79 \times 10^{308}$ (gli atomi nell'universo sono circa 10^{79})			
Testo	2 Kbyte	1 pagina di testo da 2000 battute			
Immagine	30 Mbyte	10 Mpixel, 24 bit/pixel, 16 milioni di colori (2,5 Mbyte dopo compressione JPEG)			
Audio	5,3 Mbyte	1 minuto di audio 44.100 campioni da 16 bit al sec.			
Video	67,5 Mbyte	1 minuto di audio-video compressione MPEG-2: 9 Mbit/sec.			

Byte? Cosa è 'sta roba?

Un po' di nomenclatura:

bit un "pezzettino" di informazione:

una cifra binaria, che può essere

0 o 1

byte un "morso di informazione": 8 bit

word una "parola" binaria:

16 bit ovvero 2 byte

double word una "doppia parola" binaria:

32 bit ovvero 4 byte

quad word ... octal word ...

In sintesi...

A patto di usare un numero adeguato di bit, possiamo codificare qualsiasi tipo di informazione.

Per non usare troppi bit – e per consentire di trasmettere le informazioni su canali fisici di costo contenuto – si può ricorrere a compressione, che sfrutta le imperfezioni del sistema percettivo umano.

TUTTO PUÒ ESSERE BIT!!!

