Analysis of Algorithms CSC 402 2023-24

Subject Incharge

Dr. Bidisha Roy Associate Professor Room No. 401

email: <u>Bidisharoy@sfit.ac.in</u>

Module 3

Greedy Method Approach

Greedy Method

Greed is good. (Some of the time)

General Method

- Makes the choice that looks the best at that moment
 - Example
 - Taking a shorter route
 - Investing in shares
 - Playing a bridge hand
 - The hope: a locally optimal choice will lead to a globally optimal solution.
- Sometimes they work, sometimes don't.
- Primarily used to solve optimization problems.

Elements of Greedy Algorithms

- Greedy choice property
 - A globally optimal solution is derived from a locally optimal (greedy) choice.
 - When choices are considered, the choice that looks best in the current problem is chosen, without considering results from sub problems.

Elements of Greedy Algorithms

- Optimal substructure
 - A problem has optimal substructure if an optimal solution to the problem is composed of optimal solutions to subproblems.

Problems to be considered

- Knapsack Problem
- Single source shortest path
- Minimum Spanning Trees
 - Kruskal's Algorithm
 - Prim's Algorithm
- Job sequencing with deadlines
- Optimal storage tapes

Knapsack Problem

- A thief robbing a store finds n items; the ith item is worth c_i cost units and weighs w_i weight units. The thief wants to take as valuable load as possible, but he can carry at most W weight units in his knapsack.
- Which items should he take ??? is the 0-1 knapsack problem (each item can be taken or left)
- To be able to solve using greedy approach, we convert into fractional knapsack problem

Knapsack Problem... Greedy Solution

- Uses the maximum cost benefit per unit selection criteria
 - Sort items in decreasing c_i/w_i .
 - Add items to knapsack (starting at the first) until there are no more items, or the next item to be added exceeds W.
 - If knapsack is not yet full, fill knapsack with a fraction of next unselected item.

Knapsack Problem... Algorithm

- Knapsack(C, W, M, X, n)
 - -for i \leftarrow 1 to n
 - do X[i] ← 0

// Initial Solution

 $-RC \leftarrow M$

- // Remaining capacity of knapsack
- -for i \leftarrow 1 to n
 - do if W[i] > RC then
 - -break
 - X[i] ← 1
 - RC ← RC W[i]
- -ifi ≤ n then
 - X[i] ← RC/W[i]

Knapsack Problem... Problem

- M = 25, n = 3, C = (25, 24, 17), W = (16, 14, 9)
- M = 20, n = 3, C = (25, 24, 15), W = (18, 15, 10)
- M=15, n=7, C=(5,10,15,7,8,9,4), W=(1,3,5,4,1,3,2)
- Analysis
 - Depends on time taken to arrange elements in descending order of profit, O(nlogn) if a good sort algorithm is used
 - Other parts of algorithm take O(n) time

Knapsack Problem... Applications

- Internet download Managers
- Resource Allocation
- Portfolio Optimization
- Cutting stock problems

Single Source Shortest Path

Given a graph G = (V,E), to find the shortest path from a given source vertex s
V to each other vertex V ∈ V.

- Algorithms to be considered in greedy approach
 - Djikstra's shortest path Algorithm

Djikstra's Shortest Path Algorithm

- Solves the single-source shortest-paths problem on a weighted, directed graph where all edge weights are nonnegative.
- Data structure
 - S: a set of vertices whose final shortest-path weights have already been determined
 - Q: a min-priority queue keyed by their distance values
- Idea
 - Repeatedly select the vertex u ∈V-S (kept in Q) with the minimum shortest-path estimate, adds u to S, and relaxes all edges leaving u.

Djikstra's Algorithm ... contd

DIJKSTRA(G, w, s)

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
 - $Q \leftarrow V[G]$

 $S \leftarrow \emptyset$

- 4 while $Q \neq \emptyset$
- 5 **do** $u \leftarrow \text{EXTRACT-MIN}(Q)$
- $S \leftarrow S \cup \{u\}$
- 7 **for** each vertex $v \in Adj[u]$
 - **do** Relax(u, v, w)

INITIALIZE-SINGLE-SOURCE (G, s)

- 1 for each vertex $v \in V[G]$
- 2 **do** $d[v] \leftarrow \infty$
- $3 \qquad \pi[v] \leftarrow \text{NIL}$
- $4 \quad d[s] \leftarrow 0$

Relax(u, v, w)

- 1 **if** d[v] > d[u] + w(u, v)
 - then $d[v] \leftarrow d[u] + w(u, v)$
 - $\pi[v] \leftarrow u$

Djikstra's Algorithm ... contd

void dij(int n, int v, int cost[10][10], int dist[]) int i,u,count,w,visited [10],min; for(i=1;i <=n;i++)visited[i]=0;dist[i]=cost[v][i]; visited[v]=1;count=2; while(count<=n) min=99; $for(w=1;w\leq=n;w++)$ //Extract-min if(dist[w]<min && !visited[w])</pre> min=dist[w],u=w; visited[u]=1; //A minimum distance vertex is removed from Q count++; $for(w=1;w\leq=n;w++)$ if((dist[u]+cost[u][w]<dist[w]) && !visited[w])</pre> dist[w]=dist[u]+cost[u][w];

Djikstra's Algorithm ... Analysis

- If priority queue maintained as a linear array, each Extract-Min takes |V| time for V vertices, so O(V²).
- Scanning edges in adjacency list takes O(E) time
- Other operations take linear time of either E or V.
- Average complexity using linear priority queue is O(V²).

Djikstra's Algorithm ... Analysis

- If priority queue maintained as a binary heap, each Extract-Min takes |logV| time for V vertices, so O(VlogV).
- Build heap operation takes O(V) time.
- Other operations take linear time of either E or V.
- Average complexity using binary heap queue is O(ElogV).

Djikstra's Algorithm ... Applications

- Route Planning and Navigation Systems/ Maps
- IP routing to find OSPF
- Telephone/Cellular Networks
- https://ieeexplore.ieee.org/stamp/stamp.jsp?arn umber=6305611 (The application of Dijkstra's algorithm in the intelligent fire evacuation system)
- Pathfinding in Video Games and Robotics
- Social Network Analysis

Spanning Trees

- Given a connected, undirected graph, a
 spanning tree of that graph is a subgraph
 which is a tree and connects all the
 vertices together.
- Let G = (V, E) be an undirected connected graph. A subgraph T = (V, E') of G is a spanning tree iff T is a tree.

Minimum Spanning Trees

- A minimum spanning tree (MST) or minimum weight spanning tree is then a spanning tree with weight less than or equal to the weight of every other spanning tree.
- Let G = (V, E) be an undirected graph.
 - T = (V, E') is a **minimum spanning tree** of G if T E is an acyclic subset that connects all of the vertices and whose total weight $w(T) = \sum w(u, v)$ [where u, v belong to V] is minimized.

Minimum Spanning Trees

- Greedy Algorithms for MST
 - Kruskal's Algorithm
 - -Prim's Algorithm

Kruskal's Algorithm

- Was put forward by Joseph Kruskal.
- In Kruskal's algorithm,
 - The set A is a forest.
 - The safe edge added to A is always a leastweight edge in the graph that connects two distinct components.

- MST_KRUSKAL (G, w)
 - $-A \leftarrow \emptyset$
 - for each vertex $v \in V[G]$
 - do Make-Set (v)
 - Sort the edges of E by increasing weight w
 - for each edge $(u, v) \in E$, in order by nondecreasing weight
 - do if Find-Set(u) ≠ Find-Set(v) then
 - $-A \leftarrow A \cup \{(u, v)\}$
 - Union (u,v)
 - Return A.

- Make-Set(x)-creates a new set whose only member is x.
- Find-Set(x)- returns a representative element from the set that contains x
 - determine whether two vertices u and v belong to the same tree by testing whether FIND_SET(u) equals FIND_SET(v).
- Union(x, y) –unites the sets that contain x and y, say, S_x and S_y, into a new set that is the union of the two sets.

Analysis

- O(V) time required to initialize the V disjoint sets.
- Sorting generally done using a comparison sort on average requires O(ElogE) time.
- O(ElogE) time for checking the existence of cycles (not belonging to same tree)
- Run time is O(ElogE) in average case.

```
int i,j,k,a,b,u,v,n,ne=1;
int min,mincost=0,adj[9][9],parent[9];
while(ne < n)
         for(i=0,min=99;i<n;i++)
         for(j=0;j <n;j++)
         if(adj[i][j] < min)
               min=adj[i][j];
               a=u=i;
               b=v=j;
     u=find(u); v=find(v);
     if(uni(u,v))
            printf("%d edge (%d,%d) =%d\n",ne++,a,b,min);
            mincost +=min;
     adj[a][b]=adj[b][a]=999;
```

```
int find(int i)
           while(parent[i])
           i=parent[i];
           return i;
int uni(int i,int j)
           if(i!=j)
           parent[j]=i;
           return 1;
           return 0;
```

Prim's Algorithm

- MST grows "naturally" starting from a arbitrary root.
- Has the property that the edges in the set A always form a single tree.
- Logic
 - The tree starts from an arbitrary root vertex r.
 - Grow the tree until it spans all the vertices in set V.
- Data Structure
 - Q: a minimum priority queue keyed by edge values.

Prim's Algorithm ... contd

- MST-PRIM(G, w, r)
 - **for** each $u \in V[G]$
 - do key[u] $\leftarrow \infty$
 - π[u] ←NIL
 - $-\ker[r] \leftarrow 0$
 - $-Q \leftarrow V[G]$
 - while $Q \neq \emptyset$
 - do u ← Extract-Min (Q)
 - **for** each $v \in Adj[u]$

 \rightarrow **do if** $v \in Q$ and w(u, v) < key[v]

then $\pi[v] \leftarrow u$

 $\text{key}[v] \leftarrow w(u, v)$

Prim's Algorithm ... contd

Analysis

- Performance depends on how we implement priority queue Q.
- If implemented as a heap, initialization takes
 O(V) time
- Body of while loop executed V times. Extract-Min takes O(logV) time.
 - Total time is O(VlogV).
- For loop executes in O(E) times
 - Test for membership within for loop executes constant time.
 - Assignment for key takes O(logV) time.
- Average complexity is O(ElogV).

Applications of MST

- Network Design (Designing LANs, Laying Communication Lines, etc.)
- Approximation algorithms for NP-hard problems
- Cluster Analysis
- https://www.geeksforgeeks.org/application s-of-minimum-spanning-tree/
- https://www.javatpoint.com/applications-ofminimum-spanning-tree

Job Sequencing using deadlines

- We are given a list of n jobs. Every job i is associated with an integer deadline d_i ≥ 0 and a profit p_i > 0. For any job i, profit is earned if and only if the job is completed within its deadline.
- Only one machine to process the jobs for one unit of time.
- To find the optimal solution and feasibility of jobs we are required to find a subset J such that each job of this subset can be completed by its deadline.
- The value of a feasible solution J is the sum of profits of all the jobs in J, or ∑_{i∈J}p_i.

Job Sequencing ... Algorithm

- 1. Sort p_i into nonincreasing order i.e. $p_1 \ge p_2 \ge p_3 \ge ... \ge p_i$.
- 2. Add the next job i to the solution set J if i can be completed by its deadline.
 - Assign i to time slot [r-1, r], where r is the largest integer such that 1 ≤ r ≤ d_i and [r-1, r] is free i.e. Schedule the job in its latest possible free slot if its available
- 3. Stop if all jobs are examined. Otherwise, go to step 2.
- 4. Complexity: O(n²)

Job Sequencing using deadlines

- n=4, $(p_1,p_2,p_3,p_4)=(100,10,15,27)$, $(d_1,d_2,d_3,d_4)=(2,1,2,1)$
- n=5, {p₁,p₂,..,p₅}= {20,15,10,5,1}, {d₁, d₂, .., d₅} = {2,2,1,3,3}

i	1	2	3	4	5	6	7
p _i	5	4	8	7	6	9	3
d _i	3	2	1	3	2	1	2

Optimal Storage on Tapes

- There are 'n' programs that are to be stored on a computer tape of length 'l'.
- Associated with each program i is the length I_i, 1≤i ≤ n.
 - All the programs can only be written on the tape if the sum of all the lengths of the program is at most l.
- Assumption: that whenever a program is to be retrieved from the tape, the tape is positioned at the front.

Optimal Storage on Tapes

- If the programs are stored in the order I = i₁, i₂, ..., i_n, the time t_i needed to retrieve $program_{j} i_{j}$ $t_{j} = \sum_{l_{i_{k}}}^{j} l_{i_{k}}$
- If all programs are retrieved equally often, then the mean retrieval time (MRT) = $\frac{1}{n}\sum_{i=1}^{n}t_{i}$
- Self Study

Optimal Storage on Tapes The material in this presentation belongs to St. Francis Institute of Technology and is solely for educational purposes. Distribution and modifications of the content is prohibited.

• n=3 and (L1, L2, L3) = (5, 10, 3)

Ordering	MRT
L1,L2,L3	5+(5+10)+(5+10+3)/3=38/3
L1,L3,L2	5+(5+3)+(5+10+3)/3=31/3
L2,L1,L3	10+(5+10)+(5+10+3)/3=43/3
L2,L3,L1	10+(3+10)+(5+10+3)/3=41/3
L3,L1,L2	3+(5+3)+(5+10+3)/3=29/3
L3,L2,L1	3+(3+10)+(5+10+3)/3=34/3

Other Problems The material in this presentation belongs to St. Francis Institute of Technology and is solely for educational purposes. Distribution and modifications of the content is prohibited.

Huffman Coding

Next Topic

Dynamic Programming