Predicting Heart Failure Survival with Machine Learning

Lightweight IBM Cloud Garage Method for Data Science

1 Architectural Components Overview

IBM Data and Analytics Reference Architecture. Source: IBM Corporation

1.1 Data Source

1.1.1 Technology Choice

- The dataset consists of medical records of 299 heart failure patients collected at Faisalabad Institute of Cardiology and Allied Hospital in Faisalabad, Punjab, Pakistan, during April—December 2015.
- The data is downloaded from Kaggle.
- Pandas is primarily used to load the data.

1.1.2 Justification

• The dataset is in .csv format and pandas package provides convenient way to load the data and perform basic statistics of the dataset.

1.2 Enterprise Data

1.2.1 Technology Choice

Not needed

1.2.2 Justification

Not needed

1.3 Streaming analytics

1.3.1 Technology Choice

Not needed

1.3.2 Justification

Not needed

1.4 Data Integration

1.4.1 Technology Choice

- For loading and extracting the statistics of the dataset, pandas dataframe object was used.
- For scaling the dataset, sklearn package, StandardScaler() was used.

1.4.2 Justification

• Both packages provide an easy and efficient way of performing computations with minimal arguments.

1.5 Data Repository

1.5.1 Technology Choice

• The dataset is saved in Github Repository.

1.5.2 Justification

• Since there are no additional dataset or live dataset, Github provides easy way of storing data.

1.6 Discovery and Exploration

1.6.1 Technology Choice

• Pandas, Matplotlib, Seaborn

1.6.2 Justification

- Pandas is used to explore the statistics of the dataset which provides metrics like mean, std, 25,50,75 % quantiles, min and max values.
- Matplotlib and Seaborn is used to visualize the data, specifically to plot distribution plots, correlation plots, histograms etc.

1.7 Actionable Insights

1.7.1 Technology Choice

- Scikit-Learn framework was used to split the dataset into train and test, scaling, training the ML models and printing the classification reports. Following methods and libraries are imported from sklearn,
 - o train test split, GridSearchCV, StandardScaler
 - o RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier
 - classification_report, confusion_matrix, accuracy_score

1.7.2 Justification

- Scikit-Learn framework provides good collection of most of the baselines ML models to preprocess, train the data, perform hyperparameter tuning and also print performance reports.
- For hyperparameter tuning, the sklearn library provides easy way to get the best parameters for the given dataset.
- For assessing the model performance, the classification report provides a comprehensive report of evaluation metrics like Precision, Recall and F1 scores.
 Along with this, sklearn library also provides an easy function to print Confusion Matrix.

1.8 Applications / Data Products

1.8.1 Technology Choice

- Jupyter notebook is used for maintaining the code and performing experiments.

 Along with the code, explanations are also provided as a report within the .ipynb file.
- This project is carried out as an assignment from the "IBM Advanced Capstone Project in Data Science".

1.8.2 Justification

 Jupyter notebook provides an easy framework to load the packages, libraries, perform exploratory data analysis, ML model training and also writing the findings/analysis in the form of a report.

1.9 Security, Information Governance and Systems Management

1.9.1 Technology Choice

Not needed

1.9.2 Justification

• The dataset used is open source.