UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

PAUTA EVALUACION 2 ALGEBRA LINEAL (520131) ALGEBRA II (520136)

1.-

$$u = i - j + 3k$$
, $v = 2i - 4j - 2k$, $w = 14i + 8j - 2k$, $s = i - 2j - k$.

a)
$$u \cdot v = 1(2) - 1(-4) + 3(-2) = 0$$

$$u \times v = \begin{vmatrix} i & j & k \\ 1 & -1 & 3 \\ 2 & -4 & -2 \end{vmatrix} = 14i + 8j - 2k$$

$$v \times w = \begin{vmatrix} i & j & k \\ 2 & -3 & -2 \\ 14 & -8 & -2 \end{vmatrix} \quad 24i - 24j + 72k$$

$$s \cdot (v \times w) = (1)24 - 2(-24) - 72 = 0$$

- b) Las operaciones entre vectores anteriores arrojan las siguientes consecuencias
 - i) u y v son perpendiculares.
 - ii) w es perpendicular a u y a v.
 - iii) s, v y w son coplanares.

2.-

$$L_1: x = 1, y = 7t - 3, z = t$$

 $L_2: x = 5t - 2, z = 3t, z = -4t + 4$

a) El ángulo φ entre L_1 y L_2 va a estar dado por el ángulo entre un vector paralelo a L_1 y un vector paralelo a L_2 . De acuerdo a las ecuaciones de las rectas L_1 y L_2 , un vector paralelo a L_1 es $v_1 = 7j - k$ y un vector paralelo a L_2 es $v_2 = 5i + 3j - 4k$. Así:

$$cos\varphi = \frac{v_1 \cdot v_2}{||v_1||||v_2||}$$

1

Ahora:

$$v_1 \cdot v_2 = 0(5) + 7(3) - 1(-4) = 25$$

 $||v_1|| = \sqrt{0 + 49 + 1} = \sqrt{50}$
 $||v_2|| = \sqrt{25 + 9 + 6} = \sqrt{50}$

con lo cual:

$$cos\varphi = \frac{1}{2}$$

b) $v_1 = 7k - k$ vector paralelo a L_1

 $v_2 = 5i + 3j - 4k$ vector paralelo a L_2

Entonces, el vector resultante del producto cruz entre estos dos vectores, w, será un vector perpendicular a las rectas L_1 y L_2 y por lo tanto este vector va a ser un vector paralelo a la recta cuya ecuación deseamos obtener. Luego:

$$w = \begin{vmatrix} i & j & k \\ 0 & 7 & -1 \\ 5 & 3 & -4 \end{vmatrix} = -25i - 5j - 35k$$

De aquí, un vector con la misma dirección del vector \boldsymbol{w} y por ende paralelo a la recta buscada va a ser:

$$v = \frac{1}{5} \ w = -5i - j - 7k$$

con lo que la ecuación de la recta perpendicular a las rectas L_1 y L_2 y que pasa por el punto (5,6,7) queda dada por:

$$\frac{x-5}{5} = \frac{z-6}{-1} = \frac{z-7}{-7}$$

3.-

$$L_1: x = t + 1, \ y = -t - 2, \ z = 2t + 2$$

 $L_2: x = \frac{1}{2}t + 4, \ y = \frac{1}{2}t - 2, \ z = 4$

De las ecuaciones para las rectas L_1 y L_2 se tiene que:

 $v_1 = i - j + 2k$, vector paralelo a la recta L_1 $v_2 = \frac{1}{2}i + \frac{1}{2}j$, vector paralelo a la recta L_2 Entonces, haciendo $n = v_1 \times v_2$, el vector n pasa a ser perpendicular a las rectas L_1 y L_2 , con lo cual se puede tomar como vector normal al plano cuya ecuación deseamos obtener:

$$n = v_1 \times v_2 = \left| egin{array}{ccc} i & j & k \ 1 & -1 & 2 \ 1/2 & 1/2 & 0 \end{array}
ight| = -i + j + k$$

Así, n = -i + j + k es el vector normal al plano buscado. Luego la ecuación del plano con vector normal pependicular a las rectas L_1 y L_2 y que pasa por el punto (2, -1, 3) está dada por:

$$-(x-2) + (y+1) + (z-3) = 0$$

ó

$$\pi: -x + y + z = 0$$

Dado que el vector n es \perp a L_1 y L_2 y también \perp a π , entonces se pueden calcular las distancias de L_1 y L_2 al plano, usando la fórmula de la distancia entre un punto y el plano. De lo anterior, la recta L_1 , es paralela a un vector del plano, entonces basta elegir un punto de L_1 .

Sea $Q=(1,-2,2)\in L_1$ y $P=(2,-1,3)\in \pi,$ entoces la distancia d_1 de Q al plano es

$$d_1 = rac{|n\cdot ec{PQ}|}{||n||}$$

donde, $\vec{PQ} = -i - j - k$ y n = -i + j + k

Ahora, $n \cdot \vec{PQ} = 1 - 1 - 1 = -1$ y $||n|| = \sqrt{1 + 1 + 1} = \sqrt{3}$, con lo cual:

$$d_1 = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$

Análogamente, para L_2 . Sea $Q=(4-2-4)\in L_2$ y $P=(2,-1,3)\in \pi,$ entonces $\vec{PQ}=2i-j+k$

$$d_2 = \frac{|(-i+j+k)\cdot(2i-j+k)|}{||-i+j+k||}$$
$$= \frac{2}{3}\sqrt{3}$$

4.- H_1 subconjunto de \mathbb{R}^3 , H_2 y H_3 subespacios de \mathbb{R}^3 , tales que:

$$H_1 = \{(x, y, z)/y + z = 0\}$$

 $H_2 = \{(x, y, z)/x = z\}$
 $H_3 = \{(x, y, z)/x = y = 0\}$

- a) H_1 es subespacio
 - i) $(0,0,0) \in H_1$, 0+0+0=0luego $H_1 \neq \phi$
 - ii) (a, b, c) y $(x, y, z) \in H_1$ cualquiera $\Rightarrow (*) \quad a+b+c=0$ x+y+z=0

Ahora

$$(a, b, c) + (c, y, z) = (a + x, b + y, c + z)$$

De (*) se tiene $(a + b + c) + (x + y + z) = 0$
 $\Rightarrow (a + b) + (b + y) + (c + z) = 0$
Así $(a, b, c) + (x, y, z) \in H_1$

- iii) $\lambda \in \mathbb{R}$ y $(a, b, c) \in H_1$ cualquiera $\Rightarrow a + b + c = o / \lambda$ $\Rightarrow \lambda(a + b + c) = 0$ $\Rightarrow \lambda a + \lambda b + \lambda c = 0$ (*) Ahora $\lambda(a, b, c) = (\lambda a, \lambda b, \lambda c)$ De (*) $\lambda(a, b, c) \in H_1$
- i), ii) e iii) $\Rightarrow H_1$ es subespacio.
- b) $H_1 + H_3 = \{w = u + v/u \in H_1, v \in H_2\}$ $u \in H_1 \Rightarrow u = (a, b, c) \text{ con } a + b + c = 0$ $v \in H_3 \Rightarrow v = (x, y, z) \text{ con } x = y = 0$ $\Rightarrow w = u + v = (a, b, c + z) \text{ con } c = -b - c$ $\Rightarrow w = (a + b, -a - b + z)$

Como z es cualquier real $\Rightarrow w$ puede ser cualquier elemento $\in \mathbb{R}^3$ y así

$$H_1 + H_3 = I R^3$$

$$H_2 + H_3 = \{w = u + v/u \in H_2, v \in H_3\}$$

 $u \in H_2 \Rightarrow u = (a, b, c) \text{ con } a = c$
 $v \in H_2 \Rightarrow v = (x, y, z) \text{ con } x = y = 0$
 $\Rightarrow w = u + v = (a, b, a + z)$
como $z \in \mathbb{R}$ cualquiera
 $\Rightarrow w \in \mathbb{R}^3$, cualquiera y así

$$H_2 + H_3 = I R^3$$

c)
$$H_1 \cap H_2 = \{ w/w \in H_1 \text{ y } w \in H_2 \}$$

 $w \in H_1 \cap H_2 \Rightarrow w = (x, y, x) \text{ con } x + y + x = 0 \Rightarrow y = x - 2x$

$$\begin{split} H_1 \cap H_2 &= \{(x, -2x, x)/x \in I\!\!R\} \\ \Longrightarrow H_1 + H_2 \text{ no es suma directa} \\ H_1 \cap H_3 &= \{w/w \in H_1 \text{ y } w \in H_3\} \\ w \in H_1 \cap H_3 \Rightarrow w = (0, 0, 0) \Rightarrow H_1 \cap H_3 = \{(0, 0, 0)\} \\ \Longrightarrow H_1 \oplus H_3 &= I\!\!R^3 \end{split}$$

$$\begin{split} H_2 \cap H_3 &= \{w|w \in H_2 \text{ y } w \in H_3\}\\ w \in H_2 \cap H_3 \Rightarrow w &= (0,0,0)\\ \Longrightarrow H_2 \oplus H_3 &= I\!\!R^3 \end{split}$$