Data Exploration & Visualization

Module 3

Perception & Cognition

Dr. ZENG Wei

DSAA 5024

The Hong Kong University of Science and Technology (Guangzhou)

Visualization Process

- Information visualization reference model
 - Data transformations
 - Visual mappings
 - View transformations

Human Interaction

Raw Data: idiosyncratic formats

Data Tables: relations (cases by variables) + meta-data

Visual Structures: spatial substrates + marks + graphical properties

Views: graphical parameters (position, scaling, clipping, ...)

Data Exploration & Visualization

Module 3: Perception & Cognition

- Visual Channels
 - Pre-attentative visuals
 - Feature conjunction
- Just noticeable difference
 - Weber's law
 - Stevens' power law
- Gestalt theory

Semiology of graphics

- Bertin's Semiology of Graphics defined what visualization is.
 - It is the mapping of data features to visual features
- Given this definition, we can then discuss:
 - What are data elements?
 - Numbers, text, locations, etc.
 - What are visual elements?
 - Colors, points, lines, size, etc.
 - How do we do the mapping?
 - Numbers -> Position

Semiology of graphics

- Geometric primitives: marks
 - Points, lines, areas, volumes
- Attributes: visual/retinal variables (channels)
 - Parameters control mark appearance
 - [x, y]
 - Position
 - [Z]
 - Size, shape,
 - · Greyscale, color
 - Texture, orientation
- Data types
 - Nominal, ordinal, quant

Grammar and languages

- "Grammar of Graphics," Wilkinson, 1999
 - First proposed a grammar for constructing layered visualizations
 - Concepts include:
 - Data, Scale, Geometry, Coordinates, Facets, and Aesthetics, etc.
- "ggplot2," Wickham, 2005
 - A visualization library in R
 - Implemented the *Grammar of Graphics*
 - Made modifications to focus more on the layers
 - "A Layered Grammar of Graphics," Wickham, 2010

ggplot2

```
1 (ggplot(mtcars,
2 aes('wt', 'mpg',
3 color='factor(gear)'))
4 + geom_point()
5 + facet_wrap('~cyl')
6 + theme_bw())
```


fac	tor(gea
•	3
•	4
•	5

	name	mpg	cyl	disp	hp	drat	wt	qsec	VS	am	gear	carb
0	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
1	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
2	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
3	Homet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
4	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2

D3, Vega, Vega-lite

- Outside of the R, Jeff Heer (Univ. of Washington) has been working on a similar effort but for web-based development
 - Flare (2005), Heer. (Note: Written in Java)
 - Protovis (2009), Bostock and Heer

- D3.js (2011), Bostock and Heer
 - Key feature: maps data to SVG elements
- Vega (2015), Satyanarayan et al.
 - Key feature: a specification based language
- Vega-Lite (2016), Satyanarayan et al.
 - Key feature: makes interactivity a firstclass citizen

Example Vega-lite language and visualization

Goal of visualization

- Visualization motivation:
 - Recording, communication, analysis
- Finding patterns is key to visualization.
- Example Tasks:
 - Patterns showing groups?
 - Patterns showing structure?
 - What patterns are similar?
- How should we organize information on the screen?

Visual attention

- Attention is the cognitive process of selectively concentrating on one aspect of the environment while ignoring other things
- Comprises a range of cognitive and perceptual processes
- One convenient (if perhaps simplistic) way to frame these is as top-down or bottom-up attention
 - Top down → "cognitive", voluntary
 - Bottom-up → "perceptual", involuntary
- Guideline for visualization design
 - How to make information visually distinct to stand out

Change blindness

Most of the time we are not "paying attention"

Change blindness

Most of the time we are not "paying attention"

Demo from Ron Rensink: http://www.psych.ubc.ca/~rensink/flicker/

Selective attention test

Scenario:

- 3 people in white shirts
- 3 people in black shirts
- They pass basketballs around

Task:

- Keep a silent count of the number of passes made by the people in White shirts
- Don't count passes made by the people in black shirts
- Requirement: Attention!!!

Selective attention test

Selective attention test

- How many passes?
 - 15 times
- Did you see the gorilla?
 - Half of the people watched the video and counted the passes missed the gorilla
- Conclusion: We are missing a lot of what goes on around us, and that we have no idea that we are missing so much.

Preattentive processing

- The ability of the low-level human visual system to rapidly identify certain basic visual properties.
 - Without need for focused attention
 - Tasks completed in less than 200 to 250 ms
 - Parallel processing
- A limited set of visual elements are preattentive
 - What can be perceived immediately
 - What properties are good discriminators
 - What can mislead viewers
 - Differentiate items 'at a glance'

Preattentive visual tasks

- Counting and estimation
 - How many elements of a certain type are present?
 - How many 3's?
- Target detection
 - Is something there?
 - Where is the red circle?
- Boundary detection
 - Can the elements be grouped?
 - What associates them?
- Region tracking
 - Can we track one or more elements?

Counting task: How many 3's?

Counting task: How many 3's?

3330209905959595772564675050678904567 **3**

Detection task: Where is the red circle?

The visual system identifies the target through a difference in hue

Detection task: Where is the red circle?

The visual system identifies the target through a difference in curvature (form)

Boundary task: Where is the boundary?

Form (left) and Hue (right) are preattentive features for boundary detection tasks.

More preattentive features

More preattentive features

- Form
 - Line orientation
 - Line length
 - Line width
 - Size
 - Curvature
 - Spatial grouping
 - Blur
 - Numerosity

- Color
 - Hue
 - Intensity
- Motion
 - Flicker
 - Direction of motion
 - Velocity of motion
- Spatial position
 - 2D position
 - Stereo depth
 - Shading

Beyond data visualization, do you know any scenario making use of pre-attentative visuals?

Feature conjunction

- Search for the red circle
- Not preattentive must perform a sequential search
- Conjunction of features (hue and form)

Feature conjunction

- Identify group boundary
 - Left: unique feature hue is preattentive
 - Right: conjunction of features hue and form are non preattentive

Feature conjunction

- Identify group boundary
 - Left: form randomly varies in the background, hue is preattentative
 - Right: hue randomly varies in the background, form is not preattentative

More examples

Combinations do not pop out

More examples

Surrounded colours do not pop out

Distraction and clutter

- Pre-attentive symbols become less distinctive as the variety of distractors increases.
- Two factors are important in determining whether something stands out preattentively:
 - the degree of difference of the target from the non-targets (distractors), and
 - the **degree of difference** of the **non-targets** from **each other**.

Distractors

- For example, yellow highlighting of text works well if yellow is the only color in the display besides black and white
- but if there are many colors the highlighting will be less effective.

Integral vs. separable

- How do the coding schemes work together?
 - Luminance variation is only real way of showing details
 - Colours must be chosen for dissimilarity
- Integral vs. separable visual dimensions
 - Integral: 2 or more features are processed holistically
 - Example: rectangle shape = width, height
 - Separable: make separate judgments about each dimension
 - Example: big red ball, size and colour are distinct
- Redundant coding: using separable dimensions to encode the same thing
- Interference: one visual attributes performance on the other

Integral vs. separable

- Many of visual elements are not independent
- Separable dimensions are orthogonal.
 - e.g., position is highly separable from color.
 - In contrast, red and green hue perceptions tend to interfere with each other.

[Ware 2000]

Lessons for visualization design

- Many visual elements are preattentative
 - Task dependent
 - Compound features can be non preattentative
 - When highlighting, choose one feature only
- To ensure that attention aligns with relevance in visuals used in visualization

Color name	RGB (1-255)					
Black	0, 0, 0					
Orange	230, 159, 0					
Sky blue	86, 180, 233					
Bluish green	0, 158, 115					
Blue	0, 114, 178					
Vermillion	213, 94, 0					

Lessons for visualization design

- Tradeoffs in trying to display multivariate/highdimensional data
 - Glyphs are frequently used for discrete multivariate data
 - · Every time we use glyph, we sacrifice detail
 - Large glyphs == less details
 - Clear discrimination needs wider glyph spacing

Lessons for visualization design

- A critical issue for information display is whether more complex patterns can be preattentively processed.
- Coding with combinations of features requires conjunction search
 - Image that we wish to search for a gray square
 - Conjunction searches are generally not pre-attentive, although there are a few very interesting exceptions.
- Guidelines for highlighting
 - Adding marks to highlight is better than taking a mark away
 - Coding must stand out on some simple dimension
 - Color > simple shape = orientation, size
 - Use whatever graphical dimension is least used elsewhere

Data Exploration & Visualization

Module 3: Perception & Cognition

- Visual Channels
 - Pre-attentative visuals
 - Feature conjunction
- Just noticeable difference
 - Weber's law
 - Stevens' power law
- Gestalt theory

Magnitude estimation

How much bigger is the lower bar?

Magnitude estimation

How much bigger is the right circle?

Magnitude estimation

How much bigger is the right circle?

Color difference

Which is brighter?

Color difference

Which is brighter?

Just noticeable difference

- The minimum level a stimulus that needs to be changed in order for people to be able to perceive it.
 - S: the intensity of a particular stimulation (length, size, color, weight, density, etc.)

- In the 1830's, Weber made measurements of the just-noticeable differences (JNDs) in the perception of weight and other sensations.
- For a range of stimuli, the ratio of the JND △S to the initial stimulus S was relatively constant:

$$\Delta S / S = k$$

- For the same stimuli, *k* is **constant**
- For different stimulus, k is different

$$S = 2cm$$

 $\Delta S = 0.1cm$

$$\Delta S/S = 0.1cm/2cm$$

= 0.05

$$S = 8cm$$

 $\Delta S = 0.1cm$

$$\Delta S / S = 0.1cm / 8cm$$

= 0.0125

More noticeable difference

$$S = 10$$

$$\Delta S = 10$$

$$\Delta S/S = 10/10$$
$$= 1$$

$$S = 110$$

 $\Delta S = 10$

$$\Delta S / S = 10 / 110$$

= 0.091

22

Most continuous variations in magnitude are parasived as discrete stars

perceived as discrete steps

- Examples: color maps, font sizes

- Ratios more important than magnitude in stimulus detection
 - For example: we detect the presence of a change from 100 cm to 101 cm with the same probability as we detect the presence of a change from 1 to 1.01 cm

Stevens' Power Law

$$s(x) = ax^b$$

s is the sensation

x is the intensity of the attribute

a is a multiplicative constant

b is the power

b > 1: overestimate

b < 1: underestimate

[graph from Wilkinson 99]

Stevens' Power Law

Apparent magnitude scaling

$$S = 0.98A^{0.87}$$

J. J. Flannery, The relative effectiveness of some graduated point symbols in the presentation of quantitative data, Canadian Geographer, 8(2), pp. 96-109, 1971

Relative magnitude estimation

Accuracy of judgment

 Choices of visual variable dependent on different data types [Mackinlay, 1986]

Graphical perception accuracy

Effectiveness principle

Credit: Tamara Munzner

Data Exploration & Visualization

Module 3: Perception & Cognition

- Visual Channels
 - Pre-attentative visuals
 - Feature conjunction
- Just noticeable difference
 - Weber's law
 - Stevens' power law
- Gestalt theory

Gestalt theory

- Gestalt (German word 'the unified whole'), is interpreted as "pattern" or "configuration"
- The whole is more than the sum of its parts

Law of proximity

- The whole is more than the sum of its parts
 - Proximity: Objects or shapes that are close to one another are perceived to form groups.
 - Similarity
 - Continuity
 - Closure
 - Symmetry
 - Figure-ground

Law of similarity

- The whole is more than the sum of its parts
 - Proximity
 - Similarity: Objects or shapes that are similar in shape, size, color, texture or value are perceived to belong together.
 - Continuity
 - Closure
 - Symmetry
 - Figure-ground

Law of continuity

- The whole is more than the sum of its parts
 - Proximity
 - Similarity
 - Continuity: Objects or shapes that are arranged in a line or a curve are perceived to be more related than those that are abrupt.
 - Closure
 - Symmetry
 - Figure-ground

Law of closure

- The whole is more than the sum of its parts
 - Proximity
 - Similarity
 - Continuity
 - Closure: Figures or shapes that are incomplete or partially hidden are perceived to be complete as our brain automatically fill in the gaps.
 - Symmetry
 - Figure-ground

Law of symmetry

- The whole is more than the sum of its parts
 - Proximity
 - Similarity
 - Continuity
 - Closure
 - Symmetry: Objects or shapes that are symmetrical and forming around a center point are {perceptually pleasing}.
 - Figure-ground

Law of figure-ground

- The whole is more than the sum of its parts
 - Proximity
 - Similarity
 - Continuity
 - Closure
 - Symmetry
 - Figure-ground: Humans can distinguish an object (the figure of the rule) from background (the ground)

Application

Charming China, Season 3

- Interchange circos diagram
 - Haloes to reduce ambiguity caused by edge crossing

Credit: Zeng et al. 2013

Population pyramid diagram

- Arranges male/female population in symmetry

- Tornado plot
 - Bar charts arranged in symmetry
 - Make comparison easy
 - Useful for sensitivity analysis

Product	Store 1	Store 2	
Product (A)	1983	1983	
Product (B)	1780	1780	
Product (C)	1734	1734	
Product (D)	1598	1598	
Product (E)	1443	1443	
Product (F)	1438	1438	
Product (G)	1389	1389	
Product (H)	1275	1275	
Product (I)	1237	1237	
Product (J)	1198	1198	

Bubble sets

- spatial organization
- set membership relationship

Credit: Collins et al., 2009

Questions?