1 Definição Uma sequência $\{a_n\}$ tem limite L e escrevemos

$$\lim_{n \to \infty} a_n = L \qquad \text{ou} \qquad a_n \to L \text{ quando } n \to \infty$$

se pudermos tornar os termos a_n tão próximos de L quanto quisermos ao fazer n suficientemente grande. Se $\lim_{n\to\infty} a_n$ existir, dizemos que a sequência **converge** (ou é **convergente**). Caso contrário, dizemos que a sequência **diverge** (ou é **divergente**).

EXEMPLO 2 Determine se a sequência é convergente ou divergente:

$$\left\{\frac{4n^2}{2n^2+1}\right\}$$

Solução Queremos determinar se $\lim_{n \to +\infty} 4n^2/(2n^2 + 1)$ existe. Seja, então, $f(x) = 4x^2/(2x^2 + 1)$ e vamos estudar $\lim_{n \to +\infty} f(x)$.

$$\lim_{x \to +\infty} \frac{4x^2}{2x^2 + 1} = \lim_{x \to +\infty} \frac{4}{2 + \frac{1}{x^2}}$$

Assim sendo, pelo Teorema 12.1.3, $\lim_{n \to +\infty} f(n) = 2$. Dessa forma, a sequência dada é convergente e $4n^2/(2n^2 + 1)$ converge para 2.

EXEMPLO 5 Determine se a sequência é convergente ou divergente:

$$\left\{n \operatorname{sen} \frac{\pi}{n}\right\}$$

Solução Queremos determinar se o $\lim_{n \to +\infty} n \operatorname{sen}(\pi/n)$ existe. Seja $f(x) = x \operatorname{sen}(\pi/x)$ e vamos estudar o $\lim_{x \to +\infty} f(x)$. Uma vez que f(x) pode ser escrita na forma $[\operatorname{sen}(\pi/x)]/(1/x)$ e $\lim_{x \to +\infty} \operatorname{sen}(\pi/x) = 0$, bem como $\lim_{x \to +\infty} (1/x) = 0$, a regra de L'Hôpital pode ser aplicada para obtermos

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{-\frac{\pi}{x^2} \cos \frac{\pi}{x}}{-\frac{1}{x^2}}$$
$$= \lim_{x \to +\infty} \pi \cos \frac{\pi}{x}$$

Logo, $\lim_{n\to+\infty} f(n) = \pi$, se *n* for inteiro positivo. Dessa forma, a sequência dada é convergente e $n \operatorname{sen}(\pi/n)$ converge para π .

Se $\{a_n\}$ e $\{b_n\}$ forem sequências convergentes e c for uma constante, então

$$\lim_{n\to\infty} (a_n + b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n$$

$$\lim_{n\to\infty} (a_n - b_n) = \lim_{n\to\infty} a_n - \lim_{n\to\infty} b_n$$

$$\lim_{n \to \infty} c a_n = c \lim_{n \to \infty} a_n \qquad \qquad \lim_{n \to \infty} c = c$$

$$\lim_{n\to\infty} (a_n b_n) = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n$$

$$\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n} \quad \text{se } \lim_{n\to\infty} b_n \neq 0$$

$$\lim_{n \to \infty} a_n^p = \left[\lim_{n \to \infty} a_n\right]^p \text{ se } p > 0 \text{ e } a_n > 0$$

EXEMPLO 6 Use o Teorema 12.1.5 para provar que a següência

$$\left\{\frac{n^2}{2n+1}\operatorname{sen}\frac{\pi}{n}\right\}$$

é convergente e ache o seu limite.

Solução

$$\frac{n^2}{2n+1}\operatorname{sen}\frac{\pi}{n} = \frac{n}{2n+1} \cdot n\operatorname{sen}\frac{\pi}{n}$$

No Exemplo 1 comprovamos que a sequência [n/(2n + 1)] é convergente e que lim $[n/(2n+1)] = \frac{1}{2}$. No Exemplo 5 ficou provado que a sequência $[n sen(\pi/n)]$

é convergente e que $\lim_{n \to +\infty} [n \operatorname{sen}(\pi/n)] = \pi$. Assim sendo, pelo Teorema 12.1.5 (iv),

$$\lim_{n \to +\infty} \left[\frac{n}{2n+1} \cdot n \operatorname{sen} \frac{\pi}{n} \right] = \lim_{n \to +\infty} \frac{n}{2n+1} \cdot \lim_{n \to +\infty} n \operatorname{sen} \frac{\pi}{n}$$
$$= \frac{1}{2} \cdot \pi$$

Logo, a sequência dada é convergente e seu limite é $\frac{1}{2}\pi$.

Nos exercícios a seguir, escreva os 4 primeiros elementos da seguência e determine se ela é convergente ou divergente. Caso seja convergente, ache o seu limite:

$$1. \left\{ \frac{n+1}{2n-1} \right\}$$

$$2. \ \begin{cases} \frac{2n^2+1}{3n^2-n} \end{cases}$$

$$3. \left\{ \frac{n^2+1}{n} \right\}$$

4.
$$\left\{ \frac{3n^3+1}{2n^2+n} \right\}$$

1.
$$\left\{ \frac{n+1}{2n-1} \right\}$$
 2. $\left\{ \frac{2n^2+1}{3n^2-n} \right\}$ 3. $\left\{ \frac{n^2+1}{n} \right\}$ 4. $\left\{ \frac{3n^3+1}{2n^2+n} \right\}$ 5. $\left\{ \frac{3-2n^2}{n^2-1} \right\}$ 6. $\left\{ \frac{e^n}{n} \right\}$

6.
$$\left\{\frac{e^n}{n}\right\}$$

10 Definição Uma sequência $\{a_n\}$ é chamada **crescente** se $a_n < a_{n+1}$ para todo $n \ge 1$, isso é, $a_1 < a_2 < a_3 < \cdots$. É chamado **decrescente** se $a_n > a_{n+1}$ para todo $n \ge 1$. Uma sequência é monótona se for crescente ou decrescente.

EXEMPLO 1 Determine se as seguintes sequências são crescentes, decrescentes ou não-monótonas: (a) [n/(2n + 1)]; (b) [1/n]; (c) $[(-1)^{n+1}/n]$.

Solução

(a) Os elementos da sequência podem ser escritos como

$$\frac{1}{3}$$
, $\frac{2}{5}$, $\frac{3}{7}$, $\frac{4}{9}$, ..., $\frac{n}{2n+1}$, $\frac{n+1}{2n+3}$, ...

Observe que obtemos a_{n+1} de a_n , substituindo n por n+1. Logo, como $a_n = n/(2n+1)$,

$$a_{n+1} = \frac{n+1}{2(n+1)+1}$$
$$= \frac{n+1}{2n+3}$$

Observando os quatro primeiros elementos da sequência, vemos que eles crescem quando n cresce. Assim, suspeitamos que em geral

$$\frac{n}{2n+1} \leqslant \frac{n+1}{2n+3} \tag{1}$$

A desigualdade (1) pode ser comprovada se encontrarmos uma desigualdade equivalente que sabemos ser válida. Multiplicando cada membro de (1) por (2n + 1)(2n + 3), obtemos as desigualdades equivalentes:

$$n(2n+3) \le (n+1)(2n+1)$$

$$2n^2 + 3n \le 2n^2 + 3n + 1$$
 (2)

A desigualdade (2) é, obviamente, verdadeira, pois o segundo membro é 1 maior do que o primeiro. Logo, a desigualdade (1) é verificada e, portanto, a sequência dada é crescente.

(b) Os elementos da sequência podem ser escritos como:

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \frac{1}{n+1}, \dots$$

Como

$$\frac{1}{n} > \frac{1}{n+1}$$

para todo n, a sequência é decrescente.

(c) Os elementos da sequência são

1,
$$-\frac{1}{2}$$
, $\frac{1}{3}$, $-\frac{1}{4}$, ..., $\frac{(-1)^{n+1}}{n}$, $\frac{(-1)^{n+2}}{n+1}$, ...

Como $a_1 = 1$ e $a_2 = -\frac{1}{2}$, $a_1 > a_2$. Porém $a_3 = \frac{1}{3}$; assim $a_2 < a_3$. Em geral, consideramos três elementos consecutivos da seqüência:

$$a_n = \frac{(-1)^{n+1}}{n}$$
 $a_{n+1} = \frac{(-1)^{n+2}}{n+1}$ $a_{n+2} = \frac{(-1)^{n+3}}{n+2}$

Se *n* for impar, $a_n > a_{n+1}$ e $a_{n+1} < a_{n+2}$; por exemplo, $a_1 > a_2$ e $a_2 < a_3$. Se *n* for par, $a_n < a_{n+1}$ e $a_{n+1} > a_{n+2}$; por exemplo, $a_2 < a_3$ e $a_3 > a_4$. Dessa forma, a sequência não é nem crescente, nem decrescente e, assim sendo, não é monótona.

11 **Definição** Uma sequência $\{a_n\}$ é **limitada superiormente** se existir um número M tal que

$$a_n \leq M$$
 para todo $n \geq 1$

Ela é limitada inferiormente se existir um número m tal que

$$m \le a_n$$
 para todo $n \ge 1$

Se ela for limitada superior e inferiormente, então $\{a_n\}$ é uma sequência limitada.

EXEMPLO 2 Use o Teorema 12 para provar que a sequência é convergente:

 $\left\{\frac{2^n}{n!}\right\}$

Solução Os elementos da sequência dada são

$$\frac{2^1}{1!}$$
, $\frac{2^2}{2!}$, $\frac{2^3}{3!}$, $\frac{2^4}{4!}$, ..., $\frac{2^n}{n!}$, $\frac{2^{n+1}}{(n+1)!}$, ...

1! = 1, 2! = 2, 3! = 6, 4! = 24. Assim sendo, os elementos da sequência podem ser escritos como

2, 2,
$$\frac{4}{3}$$
, $\frac{2}{3}$, ..., $\frac{2^n}{n!}$, $\frac{2^{n+1}}{(n+1)!}$, ...

Então $a_1 = a_2 > a_3 > a_4$; logo, a sequência dada pode ser decrescente. Precisamos verificar se $a_n \ge a_{n+1}$; isto é, precisamos determinar se

$$\frac{2^n}{n!} \geqslant \frac{2^{n+1}}{(n+1)!} \tag{5}$$

$$\Leftrightarrow$$
 $2^n(n+1)! \geqslant 2^{n+1}n!$

$$\Leftrightarrow$$
 $2^n n!(n+1) \ge 2 \cdot 2^n n!$

$$\Leftrightarrow n+1 \geqslant 2$$
 (6)

Quando n = 1, a desigualdade (6) torna-se 2 = 2 e (6) é, obviamente, verdadeira quando n > 2. Como a desigualdade (5) é equivalente a (6), segue que a seqüência dada é decrescente e, portanto, monótona. Um limitante superior para a seqüência dada é 2, e um limitante inferior é 0. Assim sendo, a seqüência é limitada.

A sequência $\{2^n/n!\}$ é, então, uma sequência monótona limitada e, pelo Teorema 12.2.6, ela é convergente.

O Teorema 12. estabelece que uma condição suficiente para uma sequência monótona ser convergente é que ela seja limitada. Esta também é uma condição necessária e será dada no teorema a seguir.