B.Tech-II Year

(Compact Notes)

(DSTL-III SEM)

B. Tech IYear [Subject Name: 3571]

Q-1 Give an example of relation R which is-

@ Symmetric but neither transitive non reflexion.

6 R is both Symmetric and contisymmetric.

@ R is transitive but R-IUR is not transitive.

Scol! Let A= {1,2,33 be any set and a relation R is defined on A i.e. R = AXA

@ Define R as R= 2(1,2)(2,1) (2,2) (3,3)3 charly as (1,1) & R so R is not reflexive.

Now again (12) ER & (2,1) ER = (x1, z) ER (y1z) ER 3 = (x1, z) ER

so, R is not transitue.

Define R = g(1,1)(2,2) which is both symmetric one well as antisymmetric.

@ Define R = {(1,2)3 thon R-1 = {(2,1)3

NOW RURT = {(1,2)(2,11)}

(211) E RUR-1

but (1,1) & RUR-

=> RUR" is not transitive:

Compact Notes

Unit-1

Q-2 Let $U = \xi 1, 2, 3, --793$ be the universal Ωd and Ωd .

Let $U = \xi 1, 2, 3, 4, 53$ $D = \xi 1, 3, 5, 7, 93$ $B = \xi 4, 5, 6, 7, 8, 93$ $E = \xi 2, 4, 6, 83$ $C = \xi 5, 6, 7, 8, 93$ $F = \xi 1, 5, 93$

then find-

@ AUB and DUF B BC, E', D'

@ AB, DE, ED @ COD, EOF, AOB

@ (AUC)/B ,(BOC)/A

Sol"- Here U= {1,2,3,---,93 and A= {1,2,3,4,5,3, B= {4,5,6,73, C= {5,6,7,8,93} D= {1,3,5,7,93, E= {2,4,6,83, F= 21,5,93

@ AUB = {1,2,3,4,5,6,73 and DUF = {1,3,5,7,93

B B = {1,2,3,8,93, E= {1,3,5,7,93, D= {2,4,6,83

© A|18 = {1,2,3,4,5}/{44,5,6,73}, D|E = {1,3,5,7,93} = {1,2,39}, E|D={2,4,6,89}

3 = {1,2,4,5,6,8,93

A & B = A | B U B | A = & 1,2,33 U & 6,73 = & 1,2,3,6,73

@
$$AUC|B$$
, $AUC = \{1, 2, 3, 4, 5, 6, 7, 8, 93\}$

$$AUC|B = \{1, 2, 3, 4, 5, 6, 7, 8, 93\}$$

$$(B \oplus 9)|A , B \oplus C = \{8-c\}U \text{ (C-B)}$$

$$= \{43 \ V \ \{8,93\} = \{4, 8, 93\}$$

Q-3 (onsider the relation R= {(1,3),(1,4),(3,2),(3,3),(3,4)} on A= {1,2,3,43.

@ find the matorix MR&R @ find the domain and range of R

@ Find the Composition relation ROR @ Find ROR and ROR

8d"- Here R = {(113), (14), (3,2), (3,3), (3,4)3 on A = {1,2,3,43

@ find the matrix Mr of R

[Note: if arb then but I otherway

D Domain and Ronge of R

Domain of R = {1,33 and Range of R= {2,3,43

B. Tech IYear [Subject Name: 3571]

- © Find R^{-1} = $\{(1,3),(1,4),(3,2),(3,3),(3,3),(3,4),3\}$ R^{-1} = $\{(6,9)|(anb)\in R3$ R^{-1} = $\{(3,1),(4,1),(2,3),(3,3),(4,3)\}$
- @ Draw the directed graph of R

- © Find the Composition Relation RoR [Note: for Ros, (a,b) ∈R, (b,c) ∈s Here R = 2(1,3), (1,4), (3,2), (3,3), (3,4) 3 =1 (a,c) ∈ Ros]

 then RoR = {(1,2), (1,3), (1,4), (3,2), (3,3), (3,4) 3 (1,3) ∈R € (3,2) ∈R

 =1 (1,2) ∈RoR

 (1,3) ∈R (3,3) ∈R

 =1 (1,3) ∈RoR
- P find $R \circ R^{-1} \neq R^{+} \circ R$ $R = \{(3,1), (1,4), (2,3), (3,3), (3,4)\}$ $R^{+} = \{(3,1), (4,1), (2,3), (3,3), (3,4)\}$

RORT = {(1,1),(1,3),(1,4),(3,3),(3,1),(3,4)}

RTOR = { (2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,3),(4,3)}

Q-4: Prove that in the set of integers; the relation defined by the statement, (x-y) divisible by 5 is an equivalence relation.

Proof Here Set of integers, ZI = {0, ±1, ±2, ±3, -- >3 Now xRy is defined as (x-4) divisible by 5

To Bove that R is equivalence relation, we need to show that R is O Reflexive (ii) Symmetric (iii) transitive

(i) R is suflexive > clearly x Rx, as x-x=0 and we know that 0 is divisible by 5 =) (x-gr) is divisible by 5

=) R is reflexible. (ii) R is Symmetric > if MRy > (X-y) is divisible by 5 1: e. x - y = 5m =) y-x = -5m

=) y-x = 5(-m), where -m is also in-legel

=) (y-x) is divisible by 5

=) y R x

a) so if xky =) ykx

=) R is symmetric.

(ii) Transitive - for transitive we have to show that xky fyrz = xkz

NOW x Ry = (x-4) is drawible by 5 yRz => (y-z) is divisible by 5

NOW (X-y) & (y-2) are divisible by 5

=) (x-y)+(y-z) is also divisible by 5

(x-2) is also divisible by 5

xRz, so R is transitive and thus R is equivalence

Compact Notes

Uhit-1

8-5 Prove by mathematical induction for all positive integers that 3.5 2n+1 is divisible by 17

Proof Principle of Mathematical Induction: Let P be a proposition defined on the positive integers N: that is P(n) is either tree or false for each n+N. Suppose P has the following two properties

1 PC1) is truly

@ PCKH) is true for energy positive integer new

Here p = 3.5 2n+1 23n+1

(i) for n=1 P(1) = 3.53+24 = 375+16 = 391 is divisible by 17

(ii) Let forn=k PCK) is true

=) 3.5 2K+1 3K+1 12 chiudble by 17

=) $3.5^{2k+1} + 2^{3k+1} = 17m - 2^{3k+1}$

(iii) We have to show that P is true for n=x+1

1000 P(1c+1) = 3.52(k+1)+1

1000 P(1c+1) = 3.52(k+1)+1

= 3.5 ×+3 + 3×+4

= 5°. 3.5° 2k+1 + 93.93k+1

from eq " () = 52 (17m-23K+1) +23.23K+1

= 5217m -1423k+1

= 17 (52m-23k+1) which is clivished by 17

Hence by M. I 3-52n+1 23n+1 is clivisible by 17 for all positive integer

Compact Notes

Unit-1

$$\frac{1}{1.5} + \frac{1}{5.9} + \frac{1}{9.13} + \frac{1}{(4n+1)-3} \underbrace{\frac{1}{(4n+1)+17}}_{(4n+1)+17} = \frac{n+1}{4(n+1)+17} = \frac{n+1}{4(n+1)+17} = \frac{n+1}{(4n+5)}$$

$$\frac{1}{1.5} + \frac{1}{5.9} + \frac{1}{9.13} + \frac{1}{(4n+1)(4n+5)}$$

$$\frac{1}{4n+1} = \frac{n}{4n+1} + \frac{1}{(4n+1)(4n+5)} = \frac{1}{4n+1} \left[\frac{n}{4n+5} + \frac{1}{4n+5} \right] \\
= \frac{1}{4n+1} \left[\frac{4n^2 + 5n+1}{4n+5} \right] = \frac{(4n+1)(4n+5)}{(4n+5)}$$

= n+1 = R.H.S. = L.H.S.=R.H.S.

thus this will be true for all n.

Compact Notes

Uhit-1

Q-7 Consider the fun" FIX-Y and giy-z be two fun"s Such that gof: 'X -> Z is bijectine prone that

1) f is injective

@ g is surjective Proof 1 Let f: x > 4 and g:4>2 be two functions such that gof: X >> 2 is bijective

1. Let x1 4 x2 be any elements in X such that

$$f(x_1) = f(x_2)$$

$$\Rightarrow g[f(x_1)] = g[f(x_2)]$$

=> g[f(xx)] = g[f(xx)] [: g is a funt]

=)
$$gef(x_1) = gef(x_2)$$

=) $x_1 = x_2$

gof is bejective so gof is injective

thus f(m) = f (m) = 100 Hence f is injective

2. Let 3 be any element in Z

Since g of is , surjectine, therefore IX, EX Such that (gof) x1 = 3 ⇒ g [f(x)] = 3

thus far any z E Z there exists an element f(x1) EY Such that g[f(x1)] = 3 Hence g is surjective.

$$\begin{array}{lll} & & & & \\ & & & \\ & & & \\ &$$

```
B. Tech IYear [Subject Name: DSTL]
 Q-9 Find the number between (00 to 1000 which is divisible by
      300 5 or 7.
Sal - Let A = Set of all integer b/w 100 to 1000 divisible by 3
       A = $102,105,108, --- 19993
                                         Note: 102,105,108, -- 999 MAA
                                          with d=3, a=102, Th=999
     1A = 300
                                              m=9+(n+1)d
                                              999 = 102+(11)3
                                           n= 999-99 = 300 7
    Let B = Set of all integers b/w 100 to 1000 divisible by 5
        8 = 9105, 110, 115, --, 9953
                                               Tn= 9+(4-1) d
                                                995=105+(h-1)5
      181=179
                                                  n= 995-100=895
  Let C = Set of all integers b/w 100 to 1000 divisible by 7
                                                994= 105+(11-1)7
    C= {105,112,119, - 994
                                                n= 994-98=128
    101= 128
Now ANB = Set of all integers b/w 100, to 1000 dinsible by
               30r 5
             = Set of all integers b/w 100 to 1000 divisible by 15
             = { 105, 120, 135, -- - 19909
      IANB = 180
  Similarly IANCI = 43
              |BNC| = 26
             |ANBNC|= 9
the set of numbers divisible by 3005007 = AUBUC
```

Compact Notes

$$|AUBUC| = |A| + |B| + |C| - |AB| - |ADC| - |BDC| + |ADB| - |ADC| + |ADB| - |BDC| = 300 + |79 + |28 - |80 - 43 - 26 + 9 = 367$$

Q-10 Suppose a list A Contains the 30 students in morthematics class and a list B (ontains 35 students in an English class and suppose there are 20 names on both list. find the number of students in

@ Only on list A @ Only on list B @ on list A or B

@ on exactly one list.

Sol Inclusion-Exclusion Principle > n(AUB) = n(A)+n(B)-n(AMB)

- (a) List A had 30 named, 20 names are on both lists => names only on A = 30-20 = 10
- (B) List B has 35 names, 20 names are on both lists => Nomes only on B = 35-20 = 15
- (E) Named on list A or B = n(AUB) n (AUB) = n(A) + n(B) - n(ANB) = 30 + 35 - 20 = 45
- @ pames on exactly one list is, n(A&B) from @f @ n(A&B) = 10+15=25

```
B. Tech IYear [Subject Name: DSTL]
 Q.1 Consider the set Q of rational numbers and x be the operation
      on a defined by
                         0x6= a+6-ab
@ Find 3x4 (1) 2x(-5) (iii) 7x(t)
O TS (Q,X) a semigroup? Is it Commudative?
@ Find the identity element of (Q,*).
@ To any of the element in (Q, x) have on invelve, What isit?
Sol @ Here axb=a+b-ab, a,b&Q
       (i) 3×4 = 3+4-3×4 = 7-12=5
       (ii) 2x(-5) = 2+(-5) -2(-5) = 2-5+10=7
     (iii) 7*(1) = 7+1 -7x1 = 4
(b) We have
            01*(b*c) = 0*[8+c-bc]
                    = 9+ (b+c-bc) - a (b+c-bc)
                    = a+b+c+bc-ab-ac+abc -0
          (Q1Xb) XC = (Q B-QB) XC
                  = (a+b-ab)+c- (a+b-ab)C
                  = a+b+c-ab-ac-bc+abc -@
       from eq " Of eq " @
                    a*(b*c)=(a*b)*c
       => (Q, *) is a semigroup.
    Now axb = atb-ab
            6*9 = 6+9 - pa = a+6-96 = 0*6
         => axb=b*a
       → (0, *) il Commutative
 @ Let e be an identity element of * then axe= a for ong every
                   axe = ate-ae=a
      CLEQ,
                         ec1-9)=0
                           e=0, Hence o is the identity element grown
   Compact Notes
                      Unit-2
                                                   Page- 2
```

6) Let x be an inverse for a E Q then it satisfies axx= e =) axx=0 =) a+x-ax=0 ⇒ Q+X(1-a)=0

thus if a + 1, then a has invers and it is a.

Q-2 Let G be a reduced relsidue system modulo 15, say.

G = £1,2,4,7,8,11,13,143. Then G is a group under the multiplication modulo 15

@ Find the multiplication table of G @ Find 2-1, 11-1 @ final the orders and subgroups generated by 2, 7 and 11

1 Is G Cyclic?

Sal To find axb in G. Find the semainder when the product abis G= 8/78, 4, 4, 8, 11, 13, 143 divided by 15.

8 1 2 11 4 13 14 7 11 11 7 14 2 13 1 8 4 13 13 11 7 1 148 4 2 14 14 13 11 8 7 4 2 1

(b) find 27, 77, 117, for inverse axb=e, here=1 =) ax b=1 so for inverse of 2, 2 *2 =1 =) 2-1=8,7-1=13, 11-1=1)

Compact Notes

(c) Here we have
$$2^{\frac{3}{2}} = 2 \times_{k} 2 = 4$$
, $2^{\frac{3}{2}} = 8$, $2^{\frac{4}{2}} = 16 \times_{15} = 1$

| Here we have $2^{\frac{3}{2}} = 2 \times_{k} 2 = 4$, $2^{\frac{3}{2}} = 8$, $2^{\frac{4}{2}} = 16 \times_{15} = 1$

| Here we have $2^{\frac{3}{2}} = 2 \times_{k} 2 = 4$, $2^{\frac{3}{2}} = 8$, $2^{\frac{4}{2}} = 16 \times_{15} = 1$

| Group generated by $2^{\frac{3}{2}} = 2^{\frac{3}{2}} = 2$

$$2^{1} = 2$$
 $2^{2} = 2$
 $2^{3} = 8$
 $2^{4} = 2$
 $2^{5} = 9$
 $2^{6} = 9$
 $2^{8} = 1$

group generated by 2 = 21,2,4,83

Also 7=4, 43=13, 44=1, hence 0(7)=4 group generated by 7 = 51, 3,7,133

Now 112=1, Hence O(1)=2 and glaup generated by 11 = \$1,113

D Since G Has no element which generat the G so G is not Cyclic.

Q-3 Consider the symmetric group S3,

@ Find the corder and the group generated by each element of s

B Find the number and all subgroups of S3

€ Let A = {0, 0, 2 and B = {p, φ2g. find AB, σ3A and Aσ3

@ Is so cyclic.?

Sall's The symmetric group S3 o(5) = 31 = 6 has 6 elements $\varepsilon = \left(\begin{array}{cc} 1 & 2 & 3 \\ 2 & 3 \end{array}\right), \quad \sigma_3 = \left(\begin{array}{cc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right), \quad \varphi = \left(\begin{array}{cc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right)$

 $\sigma_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \quad \sigma_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \quad \phi_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$

the multiplication table of S3

Now for arder of element $o(x) = x^n = E$, $h \le o(S_3)$

(i) E' = E, O(E) = 1 and group generated by $E = \{E_3 \rightarrow E \text{ is identifyedness}\}$ (ii) $\sigma_1^2 = E$, $O(\sigma_1) = 2$ and group generated by $\sigma_1 = \{E_1, \sigma_1\}$

(iii) $\sigma_{1}^{2} = \varepsilon$, $o(\sigma_{2}) = 2$ and group generated by $\sigma_{2} = \varepsilon \varepsilon_{1} \sigma_{2} \varepsilon_{3}$

iv) 52= 8 ,0(03)= 2 and group generaled by 03 = 88,033

(v) $\phi_1^2 = \phi_2$, $\phi_3^3 = \varepsilon$, $o(\phi_1) = 3$ and group generated by $\phi_1 = \xi \varepsilon_1 \phi_1 \phi_2$

(vi) $\phi_2^2 = \phi_1$, $\phi_2^3 = \varepsilon$, $o(\phi_2) = 3$ and group generated by $\phi_2 = \varepsilon \varepsilon_1 \phi_1 A_2 3$

(b) Here $O(S_3) = 6$ so S_3 has subgroup of order, 1,2,3,86 Subgroup of order $1 = E = H_1$ Subgroup of order $6 = E = E = H_2$

Compact Notes

Unit -2

Page- | 5

Subgroup of order 27 H3 = { E, 0; 3, H4 = { E, 0; 3, H5 = { E, 0; 3} Subgroup of archer 3 => H6 = { \$ \$ 1, \$ \$ 2; E3

So, S3 has 6 Subgroup of aroles, 1,2,3,46.

O Here A = ξ σ, σ 23, B = ξ φ, φ 23 Now multiply each element of A by each element of B

Hence AB = & 0, ,02,033

Now for $\sigma_3 A$, $\sigma_3 \sigma_1 = \phi_1$, $\sigma_3 \sigma_2 = \phi_2$ hence $\sigma_3 A = \delta \phi_1 \phi_2$

Now for A03, 903 = 62, 0203 = 6,

hence A 03 = { \$ \phi_1, \phi_2}

D Since S3 has no element of order 6 thus S3 has no generator therefore S3 is not Cyclic.

B. Tech IYear [Subject Name: 3571]

Q-4 What do you mean by the Cosets of a Lubgsoup! Consider the group ZZ of integers under the addition and the Subgroup H = 5---, 12, -6, 0, 6, 12, --- 3 Considering the multiple of 6

@ Find the Cosets of It in G

(b) What is the index of 14 in G.

Scal Let \$ # H Subgroup of Gooup G and a & G then,
the set

OH = & a.h | hett 3 is called Left coset of Hing

and the set

Ha = & h-al heH3 is Called Right Coset of Hin G.

Compact Notes

B. Tech IYear [Subject Name: 3571]

Hence H has only 6 clistinct Costs in Z, oth, 1+H, 2+H
3+H, 4+H, 5+H

1 Inclex of 1+ in G = total number of distinct Cosets

Since, H is abelian, all eleft Cosets are equals to right Cosets thus Holdistinct Cosets of H = 6

Index of Hin G = 6

B. Tech IYear [Subject Name: DSTL] Q-5. In a group G prone that (1) (a+) = a (ii) $(ab)^{-1} = b^{-1}a^{-1}$ Proof (i) Let G be a group and a & G and at is an inverse of Q in G => aat = e = ata and ateG -=) Inverse of (a+) is a by inverse property =) /(a+)+=a/ Hence proved (ii) Let G be a group and a eq & beg =) ab & G .: G is a group] Now, we have to show that inverse of (ab) is b'at .i.e. (ab) (btat) = e = (btat)(ab) take left side ab (b-lat) = a (bb+) (a+) by associative ing = aleja-1 : 6b-=e. = aa-: ae=a = e 11ly 6-101 (ab) = e =) ((ab) - = b-a-1 Hence foroud Compact Notes Unif-2 Page- 9

O-60i Let H be a subgroup of a finite group G. Bone that the order of H is a divisor of arder of G. i.e. a(H)/ag)

State and prove Lagrange Theorem.

Proof Let G be a finite group of arder 'n' and H be a subgroup of G af arder 'm' then we have to show that o(H) | O(4) i.e. m/n.

Since H is a subgroup of G of aroler m them H has m' clistinct elements, he, he, hs -- hm
Now let a & G. Claim that Ha has m-distinct elements i.e. ha, hea, hea, -- hma
proof claim let hia = hja feel i + j

hiaat = hjaat [aff two ateg]
- hi = hj which is contractiction

=> Ha has 'm' ctiotinet elements.

Now G is finite, then number of all costs of Hin G are finite. This Implies that number of distinct right costs of H in G are finite.

Also we have,

G = Han Haz U Haz U --- U Heir

 $O(q) = O(Ha_1) + O(Ha_2) + O(Ha_3) + -- + O(Ha_k)$ M = M + M + -- + M M = Km + O(H) / O(G) M = K = O(H) / O(G)Hence proved

Compact Notes

Unit-2

B. Tech IYear [Subject Name: 35TL] O.60 Prone that energy group of porme order is cyclic. Proof - Let 4 be a group of aroles p(say) we have to show that q is cyclic, as we know that order of every element of a group divides order of G then, for x ∈ 9, o(x) | o(9) => o(x) + b : lo is posime =) O(x) = | ox p we also know that identity is the only element in a group of order 1 so, number of element glarder p= p-1 thus G has alement of aroles p therefore 9 is cyclia

1-lence praved

Unit -2

B. Tech IYear [Subject Name: DSTL] Q# Let G= &1,-1, i,-i3 with the binary operation multiplication be an algebraic structure, where it . Determine Whether G is an abelian or not. Solli First we construct the composition table for 9 1111-1 as by the table all element are belongs to G thus G is closed under the multiplication. 1) Association + By the Composition teable G hald oursociation (2) Identity) I is the identity element for G as 1 xa=1 for every af G (3) Inverse - from the Composition table inverse of as far inverse 7-1 = 7 01×a+=1 (-1) = -1 (i) - = -i (-1) = 0 (9) Commutation! - As by the Composition table each road and Columns of Corresponding element are identical. Therefore the given binary operation is Commutation of thus (G, X) is Commutative and G is abeliano

Unit -2

Compact Notes

B. Tech IYear [Subject Name: DSTL] Q.B The subgroup H of a group q is normal subgroup if ging EH for every hEH + g EG Proof Let H be normal subgloup of q then Hg = g H for + g E G where Hg = Englhet 3 & gH = Egh | het3 -> hg =gh Now geg, g-1 eg =) 99-1=e heH =) eheH =1 gigh EH : gh= hg =) 9-1hg EH Conversly, Let g-14 & g & G and heH then we have to show that H is hermalice. Hg = 9 H Lit x E Hy => x=hg =) x = ehg =) X = gg-1hg =) X E 9H = | Hg = gH - 0 Thy , we can show that gH = Hy - 1 / Hg = g H

Compact Notes

Unit-2

B. Tech IYear [Subject Name: 3571]

Q-90 Prone that ZLG is Cyclic.

(D) Obtain all distinct left cosets of H= 2033 in the group (Z/6, +6) and find their Unicom.

Salvi

= @ Here ZLs is a group with the operation delolition modulo 6

Z6= {0,1,2,3,4,53

Now o(0) = 1 o(2) = 3 o(4) = 3 o(1) = 6 o(3) = 2 o(5) = 6

as ZG has two element of order 6 are, 145 <17 = {n.1 | n e zz

So 217 & 257 are generator of 26 thus (Z6, to) is Cyclic.

B Hure H = {0,33} Lift Gosts of H are

 $0 \in \mathbb{Z}_{6}$, $0 + H = \{0, 3\} = H_{1}$ $1 = H_{2}$ $1 + H_{2} = H_{5}$ $1 + H_{2} = H_{2}$ $1 + H_{3} = H_{6}$ $1 + H_{4} = \{2, 5\} = H_{3}$ $1 + H_{5} = \{2, 5\} = H_{3}$ $1 + H_{5} = \{0, 3\} = H_{6}$ $1 + H_{5} = \{0, 3\} = H_{6}$ $1 + H_{5} = \{0, 3\} = H_{6}$ $1 + H_{5} = \{0, 1\} = H_{5}$ $1 + H_{5} = \{0, 1\} = \{0,$

Compact Notes

Unit-2

B. Tech I Year [Subject Name: DSTL]
Q-10 Define Ring? Give the example of both Commutations and non-Commutation rings.
Ring! - Let R be a non-empty set with two binary operations + &. (R,+,.) is said to be a ring if (R,+) is Commutative group (R,.) is Semigroup
3 Left & right distributive law helds
(i) $(R, +)$ is Commutatine group (i) $(A+b+C) = (A+b)+C$, $(A+a) + C \in R$ (ii) $(A+b) = 0 = b+a$ for each $(A+c)$ (iv) $(A+b) = b+a$ $(A+c) = b+a$ (iv) $(A+b) = b+a$ $(A+c) = b+a$ (A+b) = b+a $(A+c) = (A+b) = a(A+b) = b+a$ $(A+c) = (A+b) = a$
3 Left and Right distributive law hold
(i) $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ left clistributurlow of $\forall a \cdot b \cdot c \in \mathbb{R}$ (ii) $(a+b) \cdot c = (a \cdot c) + (b \cdot c)$ right u u u
Ex! (Zi+i.) is a ring.
Commutative Ring! - A ring which satisfies a.b=b.a ranber.
Ext. (Z,+1.0)

Compact Notes

Unit-2

Example of non-Commutative ring. Max2 (IR) as take
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$AB = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$BA = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$AB \neq BA$$

Q-10 B find the zero divised of Z/6,4 Z/4.

at b are two non-zero element of R such that a b = a there at b are zero divised.

Z16 = {0,1,2,3,4,53

here 2x3=6=0 1 +6 3x4=12=0 1+6

thus 2, 3, & 4 are zero druisar of Za

Zy = {0,1,2,33 here 2.2 = 4 = 0, ty

thus 2 is only zunce divisor of ZL4

Q-1 Consider the poset P= {1,3,4,1224, 48,723 with respect to the relation "divides". Is pa lating

Sal" Here P = 21, 3, 4, 12, 24, 48, 723 with relation of divisibility. i.e. in (214), 2/4

Now let 21, 2, 2e any two elements in P, then sup Ex. 73 under divisibility relation is last positive integer 2 such that $\pi/2$ 4 $\pi/2$

ile superny) = lom of (nig)

"to such that wax fully i.e.

inf (my) = ged (xy)

Now, Draw the Harri Diogram fur P

Classly from the diagram sup &48,729 does not belongs to P, therefore P is not a lattice under divisibility.

Q-2 (1) Is Dys a lattice ? Explain your answer. (11°) Is Das a complemented lattice? Justify your answer (iii) Show that Dyz is a complemented lattice

Dys = Set of all positive divisor of 48

Dys = {1,2,3,4,6,8,12,24,8483 is a post under the relation of divisibility

Now, The Hasse chagram of Dys is given by

Clearly from the diagram Dus is a lattice as for any pair as & Dys we have

aub = LCM Eq. 63 & and = GCD & a. 63 existin Dys (ii) there from diagram T= 48 F 48 =1 but the Complement of 2, 4, 8, 3 does not exist, So Dys is not a Complemented lattice. [: in Dn. a, b & Dn avb= n, antel]

Compact Notes

B. Tech IYear [Subject Name: 3571]

(1ii) Dyz = £112,3,8,7,14,21,423 is a lattice under the relation druison. Now the Hasse diagram of

In any such lattice, the diagonally opposit elands are complements of each cether.

For example == 14 & T4 = 3, 2=21, 21=2-- andron,

Hence Dya B a Complemented lattia as each climate has complement.

@ 3 What do you mean by distributed lattice and Complemented lattice? Consider the bounded lattice L given below. Check whether it is distributine or not.

Raln'

Distributine Lattice! - A lattice L is called abstrabeline lattice if for any 916,CEL, if

it satisfies the distribution property ->

(1) an(bvc) = (anb) V canc

av (bnc) = (avb) A (avc)

Complemented Leitlice. A leitlice L is Called a Complemented lattice if L is bounded and every elements

in L has a Complement.

the given lattice $\angle L$ is complemented as all elements has Complement. $\overline{D} = \overline{D}$, $\overline{L} = 0$, $\overline{\alpha} = C$, $\overline{C} = \alpha$, $\overline{b} = \alpha$

from given hattice L adice L Suchthat

cn(dve) = CNI-

but (c nd) v (cne) = a v o

1. e. CN (dve) + (cnd) V (cne)

thus given latter it not distribution.

Q-4 find the lower and upper bounds of the Cuberts & gib, c3, fr, h3 and & a, c, d, f & in the poset with the given Hasse diagreem. d Also find the greatest lower bound and had upper bound of & b, d, g3. Sol The lower bound of & arb, c3 = a

lower bounds of &i,h3 = 0,b, c,che,f lower bound of saio, dif = a Upper bound of & aibie3 = eifihit Upper bound of & ish I closent exist. Upper bound of & a c diff - f, h, i

glb & b, dog3 = b lub & bidigg = g.

Q-5 Let (L, S) be a lattice then for any a 1 b EL, then O a S b \ anb=a.

@ a≤b ⇔avb=6

Proof (1) Suppose anb=a

Since anb=inflais, thereare anb <b
=) a <b ["anb=a]

Conversely suppose that as b since < 1s reflexine, we have also ens & ens a => a is lower sound offaible => a < inflaible

Since and is infimum of tarby, and sa

D Suppose avb=b

Since a≤ avb and avb=b

[a≤b]

Consulty, suppose that a & b

we know for reflexitify b & b, therefor supparing & by the definition avb = supparing

b & avb - D

from eq " O f eq " D _______

a +b=b

B. Tech IYear [Subject Name: DSTL] Q6 In a latticel, a, b, EEL prove that the following properties Oan(buc) > Canbiv(anc) @ av(bnc) < (avb) n (avc) Proof 1 120 know that · · · [anb = luffaiby] CIADSa and and & b & bvc => and is lower bound of Ear bucy =1 anbsan (buc) -1-Now again ancsa [" ant=inflaxy] and ancs cx buc =1 anc (an(bvc) - @ from an & equa an (bvc) is opportound of Earbranes =) (and IV cand) < anchord) Hence proved

(ii) This inquality can be proved in structure manner or using the principle of duality then we get av (bac) < bub / (ave)

Compact Notes

Unit-3

Q-7 of some that every finete laffice is bounded.

@ Prome that energy distributive lattice is modular

3 Gine an example of lattice which is modular but not distributive.

Sal O Let L be a finite lattice L= & a, 1921013--- Phy

Naw L is finite then

greatest element of L = a1 x a2 x a3v -- van

and least element of L = a1 x a2 x a3x -- - a an

and both are exist in L

=> L is a baunoled lattice.

Det L be a distributive lattice and ab, c∈L then we know to show that as c ⇒ avence = (avb) Ac

Since Lis distribution, the Lhald av (bn c) = (av b) n (av c)

and also a < c = avc=c - (2)

from 1 40

ale c =) av (bAc) = (avb)Ac

thus I is a modular lattice.

(anb) v (anc) = an I = a

An (bVC) # (anb) V (anc) thus the ofiner lattice is moduley but NOT Wistributing.

Compact Notes

Unit-3

Q-8 Simplify the following Boolaan Expression using K-map

@ A'B'c'D'+A'B'C'D+A'B'CD+A'B'CD'=A'B'

By K-map By K-map

CD	AB	AB'	A'B'	A'B
CD	0	0	M	6
cD'	0	. 0	1	. 9
c' D'	0	0	1	. 0
c'D		- 64	1	

thus we get A'B'=RiHS.

Q-9 Find the Sum-of-Products and Product-of-Sum expassion of the Boolean fun F(N1413) = (N14)z'

Ang- F(x, y, z) = (x+y) 2!

SOP > F(x1412) = x42+x42+x42'

POS > f(xy,z) = (x+y+z)(x+y+z) (x+y+z)(x+y+z) (x+y+z) (x+y+z)

Compact Notes

B. Tech I Year [Subject Name: DSTL] Q-100 Use Karnaugh, map to simplify the Bookon fun' f(a,b,c,d) = ab'c+b'c'd' + bcd + acd' +a'b'c+a'b'c'd lal" 1-hre Booklean fun' f(a,b,c,d) = ab'c+b'c'd' + bcd + acd' + a'b'c + a'b'c'd cd ab ab' a'b' a'b cd III III

Hence Flarbicial = ed + b'd' + abc + a'bd

(b) Simplify the Boolan fun $F(A_1B_1,C_1D) = \sum_{i=1}^{n} (D_1 1_1 2_1 3_1 4_1 S_1 G_1 7_1 8_1 9_1 11)$ Here the fund is of 4 variables $AB_1 = \frac{1}{1} \frac{1$

Hence F(A,B,c;D) = AB+AB'+A'BC+A'BD' = AB+AB'+A'B(C+D')

B. Tech I Year [Subject Name: DSTL] Q-1 O Show that the propositions—(prig) and -pv-rg are logically equivalent. Sol" Construct the truth tables for -(prig) 4-1/2

þ	9	pra	-(p/4)	þ	19	7	79	1-16rad
T	T	7	1	7	T	F	F	F
T	F	F	4	T	1	1	1	1
F	T	F	T	F	T	1	F	T
F	F	P	T	F	F	T	FT	T

Since from the truth tables the truth values of -(pra) of (-pv-19) are some in all possible Cases, the proposition-(pra) of (-pv-19)

(ii) Use touth table to show that the two propositions per and (pag) V (-7ph -79) are logically equivalent.

So from the truth teible the truth values for both proposition are some for all possible casses, thus they are logically equivalent.

Compact Notes

Mit-4

B. Tech IYear [Subject Name: 3571]

Q2 Show that +7(pug) V (-7/29) = -1/2 without Using touth table.

Proof

State mants

rents Reason

0 -(pv4) v (-pn9)

(2) = (7p179) V (7p19)

(3) = ->p \((-79 \quad 9) -

(1) = -iP AT

8 = 7p

By DeMorgan's Law
By Distributine Law
By Complement Law
By Identity Law

Q3 Define tautalogies, Contradications, and Contingency. Check whether the (bvg.) V(-pvr) -> (q,vr) is tautalogy, contradication or Contingency.

Soel" Tautalogies! I Statement which is true for all possible truth value of its propositional.

Contradication: A statement which is always false for all possible truth values is called a Contradiction.

Contingency! It statement which is true as well as false for come patrible truth values is called a contingency.

Here give (pv 9) v (-1 pv 8) -> (9 v8)=(1)

b	1 9	18	1. 1.49	1 -1p	2 April	948	(pvg)v(-pv8)	~
T	T	7	Т	F	T	T	T	T
T	T	F	T	F	F	T	Τ	T
T	F	1	T	F	T	T	T	T
Т	F	F	T	F	F	- F	T	F
F	5	T	丁	7	T	T	+	T
5	T	F	T	T	T	T	τ	T
2	c	T	F	T	T	+	T	7
r	F	8	F	+	T	F	T	F
F	The		from	the	fauth	feeble the	given proposition	1da
	4.7.2		ingan		1,7		0 1 1	

Compact Notes

Unit-4

B. Tech IYear [Subject Name: DSTL]
Q-4 Define Converse, inverse and Contrapositive of p->0 write the Converse, inverse and Contrapositive of given "If he has Courseye, then he will win."
Sol Let p -> q be any Conditional statement then
@ Converse! Conterse of p-19 12 9-76.
1 Inverse: Imerse of prog is -p->-19
@ Contrapositive; Contrapositive of p-19 is -9-17p
The given statement is "If he has coulage then he will be
Bere 10 -> He has Gurage 9-1 He will with p->9
Converse! 9-7
" If he will will then he has Courge."
Inverse!10-9-79
" If he has no Courage from he will not win."

Contrapositive! 79-7-76

Compact Notes

Unit-4

B. Tech IYear [Subject Name: DSTL]
Q: 5 Show that [(pvq) 1 - (-pr(-9v-8))]v[+pr-9)
is a tautalogy by using laws of dogic.
See Here we have
= [(pva) n-1(-1pn-1(qnx))] v (-1(pva) v -1(pva))] By DeMas
= [(pva) n-(pv(qnr))] v-[(pva) n (pva)] By QueMaryan;
= [[pva] n (pva) n(pva)] v -> [(pva) n (pva)] By Distributi
= [(pva) \(pvr)] \-[(pva) \(pvr)]
this can be written as $x = (pvq) \wedge (pvr)$ $= xv - x$ where $x = (pvq) \wedge (pvr)$
= T By Complement law
thus the given proposition is a tautalogy.

Q 66 Let A = 21,2,3,453. Determine the touth value of each of the following Statements.

@ (JKEA)(H+3=10) (B (XXEA)(H+3<10)

(7 x EA) (X+3<5) (1) (X X EA) (X+3 < 7)

Kall Here A = \$1,2,3,4,53

60 false as for no number in A is a salution of 2+3=10

(6) True, for every number in A satisfies 2+3<10

True for x=1, 1+3<5 i.e. has only one salution I

False as x=5 1 3+3 € 7

Determine the fruth value of each of the following statements where U=11,2,39 is the universal set:

(i) Inty, x2 y+1 . 1 +x Jy, x2+y2<12 @ Vxry n Ty'<12

Solli (i) Exty, x22y+1

True fal x=1 , y=1, 2,3

(11) True for x=1,2,3, y=1 +x=y,x+y2<12

(iii) $+ x + y \cdot x^{2} + y^{2} < 12$ false as $x = 2 \cdot 1 \cdot y = 3$ $2^{2} + 3^{2} + 12$

Compact Notes

Chit -4

В	. Tech IYear [Subject Name: DSTL]
Q 7 Exp.	lain various Rules of Inference for proposition.
each There a	els of Inference! In this method, we reduce the gine argument to a series of arguments of which is lonewn to be valid. It various rule of Inference are given below.
(Additi	On to The bill of his in
0 0/00011	on! If p is a primise, we can use delolition and
	þ
	: pvq
@ Conjunc	tion'. If p + 9 are two primi paimises then we can use Conjuction to derive pag
	pra
3 Simplifico	tion; If prog is a premise then we concere
	pnqp
(9) Low of	Detachment (Modes Power) - In this if p- 9 & p
conclusio	or phemices and of is the Conclusion, then the on of this implication is true.
	p->8
	V

Unit-4

Page-45

Compact Notes

B. Tech IYear [Subject Name: 3571]

- (3) how of Contra Positive (Modus Tallens)'- If p-29 & 79 are from promises and 7 p is Conclusion then Conclusion of this populication is true.

 100 promises and 7 p is

 100 promises and 7 p is
- Auo of Hypothetical Syllogism The is one of the most wind also known as chair Rule.

 If p-> 9 & 9-> 2 are two premises then we can use they be the tical Syllogism to derive p-> 8.

Q'- & Check the validity of the following argument or If I get the igh and work hard, then I will get promoted, then I will be hoppy. I will not be happy. I will not be happy. Therefore, either I will not get the job or I will not work hard,"

Sal"

Let \$: I get the fob

q: -I work hard

r: I get promoted

s: I will be happy

form the above argument an se written in symbolic form

Now

D (PNOT)-> &

premise (giun)

() r - 1 s

premise (given)

3) (pnq)→3

Hypothetical Syllogism using 182

@ ->S

premise (giun)

(B) - (prof)

Modes tollens Using 3 fg

@ -pv79

By ReMergan's Law in 8

Conclusion

Hence the given argument is valid.

Compact Notes

Unit-4

B. Tech IYear [Subject Name: DSTL]
Qq Translate the following Sontenas in quantified expressions of pardicute logic
(5) All students need financial aid.
(ii) some cows are not white.
in Suresh will get alivision if and only if he gots firestolium
If water is hot then snyam will sowin in pool.
I All integers are either even or odd integers.
al" O All students need finacial aid.
M-1 Set of students
P(x) -1 x need finacial aid
trem PCX)
ii) Some Cow are not white.
M-1 Set of cows
P + 9 is a white Go
IXEM - P(X)
ii) Suresh will get clinision if and only if he gets first clinision. p -> Suresh get clinision

(iii) Suresh will get clinision if and only if he gets first clinision

p → Suresh get clinision

q + suresh get first division

p ←> 9

Compact Notes

Chit-4

(iv) If water is host then Shyam will swim in poel.

p -) water is host.

q -) Shyam will ewirn in pool.

| 0 -> 9

(v) All integers are either even or odd integers.

2 -> Set of integers

p -> n is even integer

q -> n is odd integer

+xez (p(x) vg(x))

	Year [Subject Name: DSTL]	
(11) Euler Graph	!- I grajon which Contain called an Euleaan graph.	an Eulerian Circut
•	el crops	*
Hamiltonian Gra	path that visit ever Raph G has a Hamiltonia	y vertex of G exact
a Hamiltonia	Raph G has a Hamiltonic	in Clacinitis Collidor
exi:		
(iii) Planari G	saph! - A graph a is said	I to be planar if the
no edges coo		
ey:		
Complete Bipartit	e graph! - The bi partite of	Saph G is Called each vertex invi is
denoted by kmn in va.	where mis the number of wester in U	lge. This graph is
Compact Notes		=======================================
	Unit-5	Page-

B. Tech IYear [Subject Name: DSTL]	
Q-9 Show that the maninum number of edges in a s graph with n-vertices is n(h-1)	imple
Book Let G be a graph with 'n' vertices and 'c'	colges
Now By Hand Shaking Lemma \[\frac{N}{2} d(vi) = 2C \] =) $d(v_1) + d(v_2) + d(v_3) + + d(v_n) = 2C -$ Since the maximum degree of each vertex in the G an be (N-1) then from eq (1)	-0
(n-1) + (n-1) + (n-1) + + (n-1) = 2e $= n(n-1) = 2e$ $= n(n-1) = 2e$	

Flence the maximum number of edges in any Simple graph with n-wetices is n(h1).

Compact Notes

Unit-8

B. Tech I Year [Subject Name: DSTL] O 3 O Proise that Complete graph Ky is planar Proof the Complete graph Ky has 4 westices and 6 colges as

Now V=4 =) 3x4-676 e=6 |2-676

which satisfies the tooperty. Thus ky is a planter graph

6) Show that a complete bipartite graph Kmin is planas if mor n is less than or equal to 2.
Proof- we shall show that both kin, kein can be drawn on a plane without crossing edges

Clearly the graph Kin is without Crossings of edges and therefore it is planas.

Now, Redrand Kan

Hence broud

Compact Notes

Unit-5

B. Tech IYear [Subject Name: DSTL]
Q-4 If a connected planar graph q has n-vertices an
'e' edges and 'r' region then
Euler's Formula
Sal Let G be a Connected planar graph. wo shall prove the result by induction on the number of edges of G
and one infinite region in r=1
p = 1 - e + 8 = 1 - o + 1 = 2 Now $p = 1$ then $p = 1 - o + 1 = 2$
C=1, n=2 $C=1, n=1$
When $e=1$, $h=2$ then $r=1$, then we have $n-e+r=2-1+1=2$
and if c=1 and n=1 i.e G has slif loop than r=2 n-c+r=1-1+2=2
thus the result is trusk for C=1
graphs with at most e-1 edges.

Compact Notes

Now, let G be a Connected greeph with ceedges and it regions. If G is a tree then e=n+1 and how only one infinite region, then n-e+r=n-h+1+1=2

Hence result is trure in this Case.

Now if G is not a tree then it how some Circuit.

Now, let 'a' be an cologies in some Circuit.

Removal of Colge 'a' from the plane repersentation of G will merge the two region into one region thus G-a is a connected graph with 'n' vertices and C-1 cologies and (1-1) regions.

Now

n-e+r-2

Hence brand

Compact Notes

Unit-5

B. Tech IYear [Subject Name: DSTL]	
Q-5 What do you mean generating function? recurrence relation $q_n = 2q_{n-1} - q_{n-2}$, $h_{7/2}$, $q_0 = 3$, $q_1 = -2$ using generating function $\frac{dol}{dol}$ Generating function. The generating function sequence q_0 , q_1,q_2 , q_1 real numbers is if infinite series	Salve the gran
$G(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + + a_k x^k + a_3 x^2 + a_4 x^2 + a_5 x^3 + + a_5 x^3 + + a_5 x^2 + a_5 x^3 + + a_5 x^3 +$	
Here given recurrence relation is $ Q_{10} = 2 Q_{10-1} - Q_{10-2} - Q_{10} + Q_{20} $ Let $Q_{(2)} = \sum_{n=0}^{\infty} Q_{1n} n n = Q_{0} + Q_{10} + Q_{0} n^{2} + Q_{10} $ multiplying eg n (1) by n^{2} and adoling we get,	from 2 tox
$\sum_{n=2}^{\infty} a_n x^n = 2 \sum_{n=2}^{\infty} a_{n-1} x^n - \sum_{n=2}^{\infty} a_{n-2} x^n$ $G(x) - a_0 - a_1 x = 2 x (G(x) - a_0) - x^2 G(x)$	
$Q(x) = 3, Q_1 = -2$ $Q(x) - 3 + 2x = 2x (Q(x) - 3) - x^2 Q(x)$ $Q(x) - 3 + 2x = 2x Q(x) - 6x x - x^2 Q(x)$ $Q(x) \left[1 - 2x + x^2\right] = 3 - 8x$	Generating fund
$G(x) = \frac{3-8x}{(1-x)^2} = \frac{3}{(1-x)^2} - \frac{8x}{(1-x)^2}$ $C(n = 3(n+1)-8n = 3-5n$	$\frac{1}{(1-H)^{2}} = h+1$ $\frac{2(1-H)^{2}}{(1-H)^{2}} = N$

Compact Notes

Unit -5

B. Tech IYear [Subject Name: DSTL] Q-6 Solve the recurrence relation ant -5An++6an=5h Subject to Condition go = 0, a = 2 Itis LNHRR ant -5an+1 +6an=5h Saln The associated homogeneous recurrence relation is ant - 5941 + 69n = 0 -0 Let an = or be a sel of eg to put an = 8" in eq "(1) 8n+2-58-n+1+68-n=0-2 divides eg " by on [Chareq"] 8- 58+6=0 so the sall of ear @ is Cln = C2"+ C23" to find the particular sel of cq "O Qu = C35" : 5 is not a root of Charley" fut in eq " (1) ice get C35 M2 - 5 C35 M+1 + 6 C35 = 5h 52 (3 - 52 (3 + 6 (3 = 1 603=1 a(h) = 1 5h then the general seel of ear O is an = an + an = C12"+ 5"

Compact Notes

UNIT-5

Pow, given
$$a_1 = 2$$
, $a_0 = 0$

from eq n 3

hut $n = 0$
 $a_0 = c_1 + c_2 + \frac{1}{6}$
 $c_1 + c_2 = -\frac{1}{6}$

And $a_{-1} = 2c_1 + 3c_2 + \frac{1}{6}$
 $a_1 = 2c_1 + 3c_2 = 2 - \frac{1}{6} = \frac{1}{6}$

From $a_1 + a_2 = a_1$

From $a_2 + a_3 = a_4$

And $a_3 = a_4$

And $a_4 = a_5$

And $a_5 = a_5$

An

Q-7 Solve the recurrence relation On - 7 an-1 +10 an-2 =0 with a = 3, a = 3 We have an-7an-1+10an-2=0 -0 Let an = 2 is a salt of eq " O then put an= 3h divid by 2n-2 2- 78 + 10 2 = 0 [Chews Egy] 8= (5+2)8+10=0 (8-5)(8-2)=0 both are distinct root thus the general south is Cin = 6(2) 1 + 62 (5) 2 from initial conclition a = 3 but no incer & Clo = b1 + b2 b1 + b= 3 Just hal a1 = 261+562 3 = 261+562 then by= 4 br=7 but in egn & an= 4.2"- 5"

Compact Notes

Unit-5

Page- 6/

B. Tech IYear [Subject Name: DSTL] Q-8 A simple graph with n' vertices and k' Components Can have at most (n-K)(h-K+1) edges. Sal Let G be a graph with in Kerticas and K Component Let minzing . - - . Mr be the number of kerticos in each of K Component of G then, nother hat -- the = h and no 21 Now E(n:-1) = ni+hi+hg+---+hr- K = h-K Squaring on both side we get (\(\frac{1}{2}(n_i-1) \) = n^2 + x^2 - 2nk => = (ni-1)2+ sum of the terms type 2 (ni-1)(nj-1) = \$0^2+k^2-2 = \$12+k2-24K =) 2 (hi-2ni)+K < h2+k2-2nk [: (no-1) >0 => 5 ni2 - 2 Zhi < n2+12-2nK-K =) Zni2 < h2 k2-2nk-k+2n " Zhi=h => = ni2 < n2 [(k-1) (2n-k)] Since we know that maximum number of copes in a simple graph with n' verticois mn-1) So the maximum number of edges in the Component is hi (hi-1)

Compact Notes

Unit-5

thus the maximum number of edges in G $\frac{K}{2} \frac{1}{2} h^{2} (n - 1) = \frac{1}{2} \left[\sum_{k=1}^{K} h^{2} - \sum_{k=1}^{K} h^{2} \right]$ $= \frac{1}{2} \left[h^{2} - (k-1) (2n-k) - n \right]$ $= \frac{1}{2} (n-k) (n-k+1)$ thus it can has at most (n-K)(n-k+1) edges

Qq Define traversing of binary tree. A binary tree has
11 nodes. It's marder and postarder traversals node
sequence are

Inorder-DBFE AGCLJHK Posterder-DFE BGLJKHCA

Praw the tree.

tree T with rocot R. They are follows

Derovoler! - O Brocess the R & Traverse the left subtree of R in prearder & Traverse the Right subtree of R in prearder.

(ii) Process the Sept Subtree of R in Inveder

(iii) Process the Societ R

(iii) Traverso the right subtree of R in increase

(ii) Traverse the right subtree of R in postarder (iii) Traverse the right subtree of R in postarder (iii) Process the road R

The given sequence of postwells and inorder are

Left Byt

Thorder -> DBFEAGCLJHK (Left, Root right)

Postorder -> DFEBGLJKHKA (Left, Right, Soot)

Compact Notes

Chit-5

thus the final tree is

B. Tech IYear [Subject Name: DSTL] Solve the Recurrence relation any -59mm +69m=(m+) Here glundNHRR is. an+2 - San+1 + 6an= (n+1)2 -0 the associated selation is ans 2 - 5an+1 +6an=0 -2 Aut an= 2" in eq " [clinich by 2" -500 +68 = 0 then associated homogeneous recurrence relation is an = ((2)"+(2(3)" Now let the particular solved eg " O is ant = Aot Ain + Azht [: F(n) is a pooly monial but this in eg " Ao + A1(n+2) + A2(n+2) 2] -5[Ao +A1(n+1)+A2(n+1)2]+6[Ao+A1n +A2n2] = (n+1)2 (2 Ao-3A-A2) + n(2A1-6A2) +2A2n2= n2+2n+1 on Compatting 2 A0 -3 A1-A2 = 1 2A1-6A2 = 2 2 A2 = 1 A2 = 5, A0 = 9 an = 9+5n+2 an = 92" + 63" + 9 + 5n + nh is the final Solution.

Compact Notes

