1. Introduction

This report details the analysis of the 0.pcap file using a custom packet sniffer. The analysis includes metrics such as total data transferred, packet size distribution, source-destination flows, and answers to specific PCAP-related questions. The results are derived using Python and the Scapy library.

2. Part 1: Metrics and Plots

2.1 Packet Transfer Metrics

Total Bytes Transferred: 324,998,397 bytes (309.94 MB)

Total Packets Captured: 805,995
Minimum Packet Size: 54 bytes
Maximum Packet Size: 1,514 bytes

• Average Packet Size: 403.23 bytes

• Unique Source-Destination Pairs: 6,202

• Top Source-Destination Pair (by data transferred): ('172.16.133.95', 49358, '157.56.240.102', 443) (17,342,229 bytes)

2.2 Packet Size DistributionA histogram of packet sizes is provided in the figure below

3. Part 2: PCAP-Specific Questions

Q1: How many unique connections were made to the IMS server?

• Unique connections: 1

Q2: What course was registered in IMS?

• Extracted Course Registration Data:

"Embedded Systems" (identified through manual inspection of course-related packets)

Q3: Total data transferred over port 4321?

• Total Bytes Transferred on Port 4321: 1,620 bytes

Q4: Number of occurrences of 'SuperUser' in the PCAP?

• Total 'SuperUser' Occurrences: 69

4. Part 3: Network Capture and HTTP Analysis

4.1 Identified Application Layer Protocols

Protoco I	Description	RFC
SMB	Server Message Block, used for Windows file sharing	
UDP	A connectionless transport protocol used for fast, low-latency communication	RFC 768

OCSP	A protocol used to check the revocation status of digital certificates in HTTPS and TLS connections	RFC 6960
ARP	A network protocol used to resolve IP addresses into MAC addresses in local networks	RFC 826
mDNS	A protocol that resolves hostnames to IP addresses in small networks without a DNS server	RFC 6762

4.2 First HTTP GET Request Per Website

Website	Request Line	IP Address	Connection Type
Canara Bank	GET /index.html HTTP/1.1	107.162.160.8	Non-Persistent
GitHub	GET / HTTP/2	20.207.73.82	Persistent
Netflix	GET /browse HTTP/2	54.73.148.110	Persistent

4.3 HTTP Headers, Error Codes, and Performance Metrics

• Request Headers:

Header Name	V alue	
User-Agent	Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:134.0)	
	Gecko/20100101 Firefox/134.0	

Accept-Language en-US,en;q=0.5

Connection keep-alive

• HTTP Error Codes Observed:

Forbidden: The server denied access to the resource. Not Found: The requested page does not exist.

- Performance Metrics Captured During Page Load:
 - Browser Name: Firefox

error.

500

- o **Time to First Byte (TTFB):** Time from request to first response byte.
- o **DNS Lookup Time:** Time spent resolving the domain name to an IP.

Internal Server Error: The server encountered an unexpected

- TCP Connection Time: Time taken to establish a connection.
- o First Contentful Paint (FCP): When the first piece of visible content appears.
- Largest Contentful Paint (LCP): When the largest element is fully rendered.
- Time to Interactive (TTI): When the page is fully interactive.
- o Total Request Count: Number of HTTP requests made by the page.
- o Total Page Size: Total size of all loaded assets.
- First Input Delay (FID): Measures page responsiveness.
- Cumulative Layout Shift (CLS): Measures visual stability of the page.

4.4 Cookie Analysis

• Response Cookies:

Cookie Name	Domain	Path	Value
flwssn	.netflix.com	1	f73c35b1-be76-4924-81b1-f7d cbc978409
netflix-sans-bold-3-loaded	.netflix.com	/	true

netflix-sans-normal-3-load .netflix.com / true ed

• Request Cookies:

Cookie Name	V alue
flwssn	f73c35b1-be76-4924-81b1-f7dcbc978409
netflix-sans-bold-3-loaded	true
netflix-sans-normal-3-loaded	true
NetflixId	v=3&ct=BgjHlOvcAxLZAdQSVzTn3mhGAO5LuUC
nfvdid	BQFmAAEBEP2SQEIRy0VHh8eO-oXlhDtAJNiB_c12DLGwqxYG
OptanonConsent	isGpcEnabled=0&datestamp=Sat+Feb+01+2025+19:06:2 2
	

5. Conclusion

This report presents a detailed breakdown of packet analysis based on the 0.pcap file. We successfully:

- Extracted key network metrics (total data, flows, and packet distribution).
- Answered PCAP-specific questions regarding IMS, data transfers, and SuperUser occurrences.
- Identified the registered course "Embedded Systems" through manual inspection of packet data.
- Conducted a **network capture and HTTP analysis**, identifying application layer protocols, request headers, cookies, and observed HTTP error codes.

The insights gained from this analysis demonstrate practical applications of **packet sniffing**, **traffic monitoring**, and **network security analysis**.

6. References

- 1. Scapy Documentation
- 2. PCAP Analysis Techniques

Appendix

- PCAP File Name: 0.pcap
- Python Script Name: pcap_analysis.py
- Results Output File: pcap_analysis_results.txt
- Course Inspection File: course_search_results.txt