Efficient Computation of Nullspace Bases

May 20, 2011

1 Nullspace Basis Computation

1.1 High level outline

Let us first assume that the dimension of the $m \times n$ input matrix \mathbf{F} satisfies n = 3m. Let $\vec{s} = [s_1, \ldots, s_n] \in \mathbb{Z}$ be a list of shift, such that each column degree of \mathbf{F} is bounded by the corresponding entry in \vec{s} . For example, we can set each entry of \vec{s} to be the corresponding column degree of \mathbf{F} , or we can simply set each entry of \vec{s} to be the maximum column degree of \mathbf{F} . This condition on the shift is very useful, since it makes the column degrees of \mathbf{F} for any polynomial matrix \mathbf{A} bounded component-wise by the \vec{s} -column degrees of \mathbf{A} . For simplicity, we also assume without loss of generality that the columns of \mathbf{F} and the corresponding entries of \vec{s} are arranged to make the entries of \vec{s} in increasing orders. Let $\xi = \sum \vec{s}$. We want to compute a \vec{s} -minimal null space basis \mathbf{N} with a cost of $h(n, \xi) = O^{\sim}(n^{\omega-1}\xi)$.

Let $s = \xi/n$ be the average of the entries of \vec{s} . First, we compute an $(\mathbf{F}, 4s, \vec{s})$ -basis \mathbf{P} , which can be done efficiently. We claim that \mathbf{P} contains at least 2n/5 null space basis elements. (See Lemma 2 for a proof.)

Let $[\mathbf{P}_1, \mathbf{P}_2] = \mathbf{P}$ with \mathbf{P}_1 consists of the nullspace basis elements computed. Then the residual $\mathbf{FP} = [\mathbf{0}, \mathbf{FP}_2]$ can be used to compute the remaining nullspace basis elements. We claim that the matrix multiplication \mathbf{FP}_2 can be done efficiently. (See Corollary 1) If \vec{b} is the \vec{s} -column degrees of \mathbf{P}_2 and \mathbf{Q} is a \vec{b} -minimal nullspace basis of \mathbf{FP}_2 , then $[\mathbf{P}_1, \mathbf{P}_2\mathbf{Q}]$ is a \vec{s} -minimal nullspace basis of \mathbf{F} .

Assume the columns of **P** are arranged in increasing order of their \vec{s} -column degrees. Then by Lemma 3 the \vec{s} -column degrees of **P** are bounded componentwise by $\vec{s} + 4s$. Let $\vec{t} = \vec{b} - 4s$, where \vec{b} is the \vec{s} -column degrees of **P**₂, then \vec{t} is bounded component-wise by the largest entries of \vec{s} , with the sum of the entries bounded by ξ .

At this point, the problem is reduced to computing a \vec{t} -minimal nullspace basis of $\mathbf{G} = \mathbf{FP}_2/x^{4s}$, which still has row dimension m, but column dimension bounded by 3n/5 and column degrees bounded by \vec{t} , with $\sum \vec{t}$ bounded by ξ .

Let

$$\left[egin{array}{c} \mathbf{G}_1 \ \mathbf{G}_2 \end{array}
ight] = \mathbf{G}$$

with G_1 having n/5 rows and G_2 having 2n/15 rows. If we compute a \vec{t} -minimal nullspace basis N_1 of G_1 , where N_1 has \vec{t} -degrees \vec{u} , then compute a \vec{u} -minimal nullspace basis N_2 of G_2N_1 , then N_1N_2 is a \vec{t} -minimal nullspace basis of G. We claim that the sum of column degrees of G_2N_1 is bounded by ξ (Lemma 1), and the multiplication G_2N_1 can be computed efficiently (Corollary 2), and the multiplication N_1N_2 can also be done efficiently (Corollary 2).

The computation of \mathbf{N}_1 and \mathbf{N}_2 is similar to the original problem, only the dimension has decreased. For computing \mathbf{N}_1 , the dimension of the input matrix \mathbf{G}_1 is bounded by $(n/5) \times (3n/5)$. For computing \mathbf{N}_2 , and the dimension of input matrix $\mathbf{G}_2\mathbf{N}_1$ is bounded by $(2n/15) \times (2n/5)$. The sum of column degrees of \mathbf{G}_1 and that of $\mathbf{G}_2\mathbf{N}_1$ are both bounded by ξ still.

Let $h(n,\xi)$ be the computational cost of the original problem, then we have the recurrence relation

$$h(n,\xi) \in O^{\sim}(n^{\omega-1}\xi) + h(3n/5,\xi) + h(2n/5,\xi),$$

which gives $h(n,\xi) \in O^{\sim}(n^{\omega-1}\xi)$.

We now have an efficient way to compute a \vec{s} -minimal nullspace basis for input matrix with dimension n=3m. For more general cases, if n<3m and $m\in\Theta(n)$, we can simply add zero columns to the input matrix to make n=3m. If n>3m, we can do a precomputation like in the first step to compute a partial nullspace basis that reduces the column dimension to 3m. In this case, we can simply take ξ as the sum of the column degrees of the 3m columns with the largest column degrees.

In summary, this gives a way to compute a \vec{s} -minimal nullspace basis of \mathbf{F} with a cost of $O^{\sim}(n^{\omega-1}\xi)$, where n is the column dimension of \mathbf{F} and ξ is the sum of the column degrees of the 3m columns with the largest column degrees. Of course, a small simplification for the computational complexity is that we can just take the sum λ of just m instead of 3m columns with the largest column degrees, since $O^{\sim}(n^{\omega-1}\xi) = O^{\sim}(n^{\omega-1}\lambda)$.

1.2 Some proofs

Now we give the proofs of some of the claims:

Lemma 1. Given an $\mathbf{F} \in \mathbb{K}[x]^{m \times n}$, and a shift $\vec{s} \in \mathbb{Z}_{\geq 0}$ with entries bounding the corresponding column degrees of \mathbf{F} . The sum of the \vec{s} -column degrees of any \vec{s} -minimal nullspace basis of \mathbf{F} is bounded by $\xi = \sum \vec{s}$.

Proof. Let \mathbf{P} be a $(\mathbf{F}, \vec{s}, \sigma)$ -basis with high enough order σ so $\mathbf{P} = [\mathbf{N}, \bar{\mathbf{N}}]$ contains a complete null space basis \mathbf{N} of \mathbf{F} . Let k be the column dimension of $\bar{\mathbf{N}}$. Note that the sum of the \vec{s} -column degrees of \mathbf{P} is at most $\xi + k\sigma$, since the sum is ξ at order 0 and increases by at most k for each order increase. Also note that the sum of the \vec{s} -degrees of $\bar{\mathbf{N}}$ is greater than or equal to the sum of the column degrees of $\bar{\mathbf{F}}\bar{\mathbf{N}}$, which is at least $k\sigma$ since every column of $\bar{\mathbf{F}}\bar{\mathbf{N}}$ is nonzero and has order σ . So the sum of the \vec{s} -column degrees of \mathbf{N} is bounded by $\xi + k\sigma - k\sigma = \xi$.

Lemma 2. Let $\mathbf{F} \in \mathbb{K}[x]^{n/3 \times n}$, \vec{s} be a shift with entries bound the corresponding column degrees of \mathbf{F} , and $s = \sum \vec{s}/n$ be the average of the entries of \vec{s} . Then an $(\mathbf{F}, 4s, \vec{s})$ -basis contains at least 2n/5 null space basis elements.

Proof. From Lemma 1, the sum of \vec{s} -column degrees of any \vec{s} -minimal nullspace basis of $\bf F$ is bounded by $\xi = \sum \vec{s}$. Also, such a nullspace basis has at least 2n/3 columns so the average \vec{s} -column degree is bounded by 3s/2. Therefore, at least 3/5 of the columns of such nullspace basis, that is, at least 2n/5 columns have \vec{s} -column degrees bounded by 15s/4. Since $\bf F$ multiplied by these columns has the column degrees bounded component-wise by the \vec{s} -column degrees of these columns, which are bounded by 15s/4, an $(\bf F, 15s/4, \vec{s})$ -basis must contain at least 2n/5 such columns. We can just take the order to be 4s instead of 15s/4 for simplicity.

Lemma 3. Let \vec{s} , \vec{F} be as before. If an $(\vec{F}, \sigma, \vec{s})$ -basis has columns arranged in increasing \vec{s} -column degrees, with \vec{s} -column degrees \vec{b} . Let $\vec{t} = \vec{b} - \sigma$. Then the \vec{t} -column degrees of the basis are bounded component-wise by \vec{s} .

Proof. An $(\mathbf{F}, 0, \vec{s})$ -basis has \vec{s} -column degrees \vec{s} . Then for each order increase, any column of the basis has its \vec{s} -column degree increase by at most one, hence at order σ , the \vec{s} -column degree increase for each column is at most σ .

Remark 1. Note the difference between Lemma 1 and Lemma 3. In Lemma 1, we consider only the shifted degree of a nullspace basis, where as in Lemma 3 applies to a order basis but the order is subtracted from the degrees.

Lemma 4. Given $\mathbf{A} \in \mathbb{K}[x]^{m \times n}$, and a shift \vec{s} with entries bound the column degrees of \mathbf{A} . Let $\boldsymbol{\xi} = \sum \vec{s}$. Let $\mathbf{B} \in \mathbb{K}[x]^{n \times k}$ and the sum of \vec{s} -column degrees of \mathbf{B} is bounded by $\boldsymbol{\xi}$. Then we can multiply \mathbf{A} and \mathbf{B} with a cost of $O^{\sim}(n^{\omega-1}\boldsymbol{\xi})$

Proof. First consider multiplying \mathbf{A} with the columns $\mathbf{B}^{(1)}$ of \mathbf{B} whose \vec{s} -degrees are in the range $(\xi/2, \xi]$. There is at most one such column. We do this in $\log n$ steps. At step j we work with the columns \mathbf{A}_j of \mathbf{A} whose column degrees are in the range $(\xi/2^j, \xi/2^{j-1}]$, the the corresponding rows $\mathbf{B}_j^{(1)}$ in $\mathbf{B}^{(1)}$. The column dimension of \mathbf{A}_j , which is the same as the row dimension of $\mathbf{B}_j^{(1)}$, is less then 2^j . The degree of $\mathbf{B}_j^{(1)}$ is less than ξ . To use fast multiplication, we expand $\mathbf{B}_j^{(1)}$ to a matrix $\bar{\mathbf{B}}_j^{(1)}$ with degree $\delta \in \Theta(\xi/2^j)$ and column dimension $q \in O(2^j)$ as follows. Write

$$\mathbf{B}_{j}^{(1)} = \mathbf{B}_{j,0}^{(1)} + \mathbf{B}_{j,1}^{(1)} x^{\delta} + \dots + \mathbf{B}_{j,q-1}^{(1)} x^{\delta(q-1)} = \sum_{k=0}^{q-1} \mathbf{B}_{j,k}^{(1)} x^{\delta k}$$

with each $\mathbf{B}_{j,k}^{(1)}$ having degree less than δ . Set $\bar{\mathbf{B}}_{j}^{(1)} = \left[\mathbf{B}_{j,0}^{(1)}, \mathbf{B}_{j,1}^{(1)}, \dots, \mathbf{B}_{j,q-1}^{(1)}\right]$. We can then multiply \mathbf{A}_{j} , which has dimension $m \times O(2^{j})$, and $\bar{\mathbf{B}}_{j}^{(1)}$, which has dimension $O(2^{j}) \times O(2^{j})$, with a cost of $O^{\sim}\left((m/2^{j})\left(2^{j}\right)^{\omega} \xi/2^{j}\right) = O^{\sim}\left(\left(2^{j}\right)^{\omega-2} m\xi\right)$.

Adding up the columns of $\mathbf{A}_j \bar{\mathbf{B}}_j^{(1)}$ gives $\mathbf{A}_j \mathbf{B}_j^{(1)}$ and cost $O(2^j \xi)$. Therefore, multiplying \mathbf{A} and $\mathbf{B}^{(1)}$ over $\log(n)$ steps cost $O^{\sim}(n^{\omega-2}m\xi)$.

Next we multiply **A** with the columns $\mathbf{B}^{(2)}$ of **B** whose \vec{s} -column degrees are in the range $(\xi/4, \xi/2]$. We proceed in the same way as before, but notice that the columns of **A** whose degrees are higher than $\xi/2$ are no longer needed since the corresponding rows in $\mathbf{N}^{(2)}$ must be 0, as the \vec{t} -column degree of $\mathbf{N}^{(2)}$ is bounded by $\xi/2$. Multiplying **A** and $\mathbf{B}^{(2)}$ also cost $O^{\sim}(n^{\omega-2}m\xi)$.

Continue doing this, it cost $O^{\sim}(n^{\omega-2}m\xi)$ to multiply **A** with the columns $\mathbf{B}^{(i)}$ of **B** whose \vec{s} -column degrees are in the range $(\xi/2^i, \xi/2^{i-1}]$. As before, notice that the columns of **A** whose degrees are higher than $\xi/2^{i-1}$ are not needed, as \vec{s} -column degrees of $\mathbf{B}^{(i)}$ is bounded by $\xi/2^{i-1}$. The overall cost for i from 1 to $\log n$ is $O^{\sim}(n^{\omega-2}m\xi)$ to multiply **A** and **B**.

Corollary 1. The multiplication of \mathbf{F} and \mathbf{P}_2 can be done with a cost of $O^{\sim}(n^{\omega-1}\xi)$.

Proof. Since the \vec{s} -column degrees \vec{b} of \mathbf{P}_2 satisfies $\sum \vec{b} \leq 4sn + \xi = 5\xi$, one way to use Lemma 4 is to use the shift $\vec{s}' = \vec{s} + 4s$.

Corollary 2. The multiplication of G_2 and N_1 can be done with a cost of $O^{\sim}(n^{\omega-1}\xi)$.

Proof. Lemma 4 applies directly here.

Corollary 3. The multiplication of \mathbf{N}_1 and \mathbf{N}_2 can be done with a cost of $O^{\sim}(n^{\omega-1}\xi)$.

Proof. Lemma 4 applies because the sum of the column degrees of \mathbf{N}_1 is bounded by the sum of the \vec{t} -column degrees of \mathbf{N}_1 , which is $\sum \vec{u} \leq \xi$, and the sum of \vec{u} -column degrees of \mathbf{N}_2 is also bounded by ξ .

Lemma 5. For an input matrix $\mathbf{F} \in \mathbb{K}[x]^{m \times n}$, an order vector $\vec{\sigma}$, and a shift vector \vec{s} , if \mathbf{P} is a $(\mathbf{F}, \vec{\sigma}, \vec{s})$ -basis with \vec{s} -column degrees \vec{t} , and \mathbf{Q} is a $(\mathbf{FP}, \vec{\tau}, \vec{t})$ -basis with \vec{t} -column degrees \vec{u} , where $\vec{\tau} \geq \vec{\sigma}$ component-wise, then \mathbf{PQ} is a $(\mathbf{F}, \vec{\tau}, \vec{s})$ -basis with \vec{s} -column degrees \vec{t} .

Proof. It is clear that \mathbf{PQ} has order $(\mathbf{F}, \vec{\tau})$. We now show that \mathbf{PQ} is \vec{s} -column reduced and has \vec{s} -column degrees \vec{u} , or equivalently, $x^{\vec{s}}\mathbf{PQ}$ is column reduced and has column degrees \vec{u} . Notice that $x^{\vec{s}}\mathbf{P}$ has column degrees \vec{t} and a full rank leading column coefficient matrix P. Hence $x^{\vec{s}}\mathbf{P}x^{-\vec{t}}$ has column degrees $[0, \ldots, 0]$. Similarly, $x^{\vec{t}}\mathbf{Q}x^{-\vec{u}}$ has column degrees $[0, \ldots, 0]$ and a full rank leading column coefficient matrix Q. Therefore, $x^{\vec{s}}\mathbf{P}x^{-\vec{t}}x^{\vec{t}}\mathbf{Q}x^{-\vec{u}} = x^{\vec{s}}\mathbf{PQ}x^{-\vec{u}}$ has column degrees $[0, \ldots, 0]$ and a full rank leading column coefficient matrix PQ. It follows that $x^{\vec{s}}\mathbf{PQ}$ has column degrees \vec{u} , or equivalently, the \vec{s} -column degrees of \mathbf{PQ} is \vec{u} .

It remains to show that any $\mathbf{t} \in \langle (\mathbf{F}, \vec{\tau}) \rangle$ is generated by the columns of \mathbf{PQ} . Since $\mathbf{t} \in \langle (\mathbf{F}, \vec{\sigma}) \rangle$, it is generated by the $(\mathbf{F}, \vec{\sigma})$ -basis \mathbf{P} , that is, $\mathbf{t} = \mathbf{Pa}$ for $\mathbf{a} = \mathbf{P}^{-1}\mathbf{t} \in \mathbb{K}[x]^n$. Also, $\mathbf{t} \in \langle (\mathbf{F}, \vec{\tau}) \rangle$ implies that $\mathbf{a} \in \langle (\mathbf{FP}, \vec{\tau}) \rangle$ since

FPa = **Ft** $\equiv 0 \mod x^{\vec{\tau}}$. It follows that $\mathbf{a} = \mathbf{Qb}$ for $\mathbf{b} = \mathbf{Q}^{-1}\mathbf{a} \in \mathbb{K}[x]^n$. Therefore, $\mathbf{a} = \mathbf{P}^{-1}\mathbf{t} = \mathbf{Qb}$, which gives $\mathbf{t} = \mathbf{PQb}$.

Lemma 6. For an input matrix $\mathbf{G} = \begin{bmatrix} \mathbf{G}_1^T, \mathbf{G}_2^T \end{bmatrix}^T \in \mathbb{K} [x]^{m \times n}$ and a shift vector \vec{s} , if \mathbf{N}_1 is a \vec{s} -minimal nullspace basis of \mathbf{G}_1 with \vec{s} -column degrees \vec{t} , and \mathbf{N}_2 is a \vec{t} -minimal nullspace basis of $\mathbf{G}_2\mathbf{N}_1$ with \vec{t} -column degrees \vec{u} , then $\mathbf{N}_1\mathbf{N}_2$ is a \vec{s} -minimal nullspace basis of \mathbf{G} with \vec{s} -column degrees \vec{u} .

Proof. It is clear that $\mathbf{N_1N_2}$ is a nullspace basis. Showing its \vec{s} -column reducedness is same as before. It remains to show that any \mathbf{n} satisfies $\mathbf{Gn} = 0$ must be a linear combination of the columns of $\mathbf{N_1N_2}$. We use the similar proof as before. First, $\mathbf{n} = \mathbf{N_1a}$ for some polynomial vector \mathbf{a} . Also, $\mathbf{Gn} = 0$ implies that $\mathbf{G_2N_1a} = 0$, hence $\mathbf{a} = \mathbf{N_2b}$ for some vector \mathbf{b} . We now have $\mathbf{n} = \mathbf{N_1N_2b}$ as required.