Oblivious Computation Part II - Oblivious Sorts

Gilad Asharov

Bar-Ilan University

Access Patterns Reveal Information!

Models of Computation

Metrics:

Size (how many wires, gates)
Depth (parallelism)

Time
Size of the memory

T N

Oblivious RAM Compiler: State of the Art

Lower bound: $\Omega(\log N)$

[GoldreichOstrovsky'96, LarsenNeilsen'18]

 $O(\log N)$

Computational security [OptORAMa'20]

Statistical security

Example: Oblivious Sorts

- Merge sort: $O(n \log n)$
 - non oblivious
- Bubble sort: $O(n^2)$
 - oblivious
- Other oblivious sorts?

Merge((1,2,3),(4,5,6))	Merge((1,3,5),(2,4,6))			
1,2,3 4,5,6	1,3,5 2,4,6			
1,2,3 4,5,6	1,3,5 2,4,6			
1,2,3 4,5,6	1,3,5 2,4,6			
1,2,3 4,5,6	1,3,5 2,4,6			
1,2,3 4,5,6	1,3,5 2,4,6			
1,2,3 4,5,6	1,3,5 2,4,6			

BubbleSort(1,2,3,4)	BubbleSort(4,3,2,1)		
1,2,3,4	4,3,2,1		
1,2,3,4	3,4,2,1		
1,2,3,4	3,2,4,1		
1,2,3,4	3,2,1,4		
1,2,3,4	2,3,1,4		
1,2,3,4	2,1,3,4		
1,2,3,4	1,2,3,4		

Oblivious Sorts In the RAM Model

_	Algorithm		Oblivious	Client Storage	Runtime	Most practical	
	Merge sort	[von Neumann' 45]	No	O(1)	$2n\log n$		
Circuit Model!	Bitonic sort	[Batcher'68]	Yes	O(1)	$n\log^2 n$	0	
Circuit Model:	${ m AKS~sort}$	[AKS'83]	Yes	O(1)	$5.4 \times 10^7 \times n \log n$	0	
	Zig-zag sort	[Goodrich'14]	Yes	O(1)	$8 \times 10^4 \times n \log n$	0	

*constants of AKS, Zig-zag are from [Goodrich'14] Z: poly log k

Bucket Oblivious Sort

500 1234 2323 5566 111 444 8696 1122 5927 2937 2911

Oblivious Permute

8696 2323 1234 1122 2937 5566 500 2911 111 5927 444

Non-Oblivious Sort

111 444 500 1122 1234 2323 2911 2937 5566 5927 8986

Oblivious Permute + Non-Oblivious Sort = Oblivious Sort

Merge-Sort

Bucket Oblivious Permute

- Interpret the input array as B buckets of size Z each (Z=poly log k, B=N/Z, k is the security parameter)
 - Assign to each element a *random* destination bin [1,...,B]
 - Add dummy bins

(We later remove these dummy elements using the non-oblivious sort)

Bucket Oblivious Permute

MergeSplit
Bucket

MergeSplit - takes all read elements in input buckets and distribute them to output buckets according to the ith MSB

Oblivious Sorts In the RAM Model

Algorithm		Oblivious	Client Storage	Runtime	Error Probability
Merge sort	[vonNeumann'45]	No	O(1)	$2n\log n$	0
Bitonic sort	[Batcher'68]	Yes	O(1)	$n\log^2 n$	0
${ m AKS~sort}$	[AKS'83]	Yes	O(1)	$5.4 \times 10^7 \times n \log n$	0
Zig-zag sort	[Goodrich'14]	Yes	O(1)	$8 \times 10^4 \times n \log n$	0
Bucket oblivious sort	[ACNPRS'20]	Yes	2Z	$6n\log n$	$\approx e^{-Z/6}$
Bucket oblivious sort	[ACNPRS'20]	Yes	O(1)	$pprox 2n\log n\log^2 Z$	$\approx e^{-Z/6}$

*constants of AKS, Zig-zag are from [Goodrich'14]

(Oblivious) Sorting Faster Than $O(n \log n)$?

(Oblivious) Sorting Faster than $O(n \log n)$?

"No! Such a result is not possible with comparison-based"

Knuth73: The Art of Computer Programming

RAM Model:

Non-comparison based sorts? (k - length of the key)

Radix-sort $O(k \cdot n)$, counting sort $O(2^k + n)$

Circuit Model:

Radix sort, counting sort - make input-dependent memory accesses Do not have equally efficient counterparts in the circuit model n: number of elementsk: length of each key (#bits)w: payload (#bits)

What about the Circuit Model?

Can we go lower than $(k + w) \cdot \Omega(n \log n)$ circuit-size?

Comparator based?

- Any comparator-based sorting circuit must consume $\Omega(n \log n)$ comparators
- Even for k = 1 long key!

Stability?

• Stable sort requires $\Omega(n \log n)$ selector gates in the *indivisible* model, even for k=1 [Lin,Shi,Xie19]

Assuming a well-known network conjecture, sorting circuits of size $(k + w) \cdot o(n \log n)$ do not exist for general k [Afshani, Freksen, Kamma, Larsen19]

No unconditional lower bound is known

n: number of elements

k: length of each key (#bits)

w: payload (#bits)

Tight Compaction A Central Problem!

Linear size circuit

(Ignoring polylog* factors)

(Almost) Linear size sorting circuit (short keys) [ALS'21]

RAM Model

Linear time oblivious compaction

Optimal Oblivious RAM compiler

[OptORAMa, AKLNPS'20]

Tight Compaction

- Input: An array of size n where each element is marked 0 or 1
- Output: all 0-elements appear before 1-elements
- RAM model? Trivial in O(n)
- Oblivious RAM model?
 - Deterministic: $O(n \log n)$ [AKS'83]
 - Open question from [LeightonMaSuel'95]
 - Reveals the number of 0's, randomized
 - Randomized: $O(n \log \log n)$ [MZ'14, LST'18] (negl error prob.)
 - lower bound: stable, indivisible, $\Omega(n \log n)$ [LST'18]

- OptORAMa [Asharov Komargodski Lin Nayak Peserico Shi 20]:
 Deterministic, O(n), very large constant
 - Better constant [Dittmer Ostrovksy 20]
- O(n) work, depth $O(\log n)$ [Asharov Komargodski Lin Peserico Shi 20]

Circuit Model

Linear size circuit

(Ignoring polylog* factors)

O(nw)*poly $\log^* n$ size circuit Compacting n balls of size w each

RAM Model

Linear time oblivious compaction

O(n) time **deterministic** algorithm for compacting n balls, each of size word-size (Assuming word size $O(\log N)$)

Not comparison based

Not stable

Balls and bins model

Metadata is computed using bit-slicing tricks

- 1) Simple, randomized oblivious tight compaction (RAM model) in $O(n \log \log k)$
 - Lin, Shi, Xie: Can we Overcome the $n \log n$ Barrier for Oblivious Sorting? SODA'19
- 2) Linear size compaction circuit
 - Asharov, Lin, Shi: Sorting Short Keys in Circuits of Size $o(n \log n)$, SODA'21
- 3) Linear time algorithm for oblivious tight compaction in the RAM model
 - Asharov, Komargodski, Lin, Nayak, Peserico and Shi: OptORAMa, Optimal Oblivious RAM, EUROCRYPT'20

[Lin,Shi,Xie, SODA'19]

011001010110001001011001010101101011

1) Interpret the array as n/Z bins of size Z each

[Lin,Shi,Xie, SODA'19]

0 1 1 0 0 1 0 1 0 0 1 1 0 0 0 10 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1

1) Interpret the array as n/Z bins of size Z each

2) Random shift cycle for each row

[Lin,Shi,Xie, SODA'19]

0 1 1 0 0 1 0 1 0 0 1 1 0 0 0 10 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1

1) Interpret the array as n/Z bins of size Z each

2) For each row, perform random shift cycle

[Lin,Shi,Xie, SODA'19]

0 1 1 0 0 1 0 1 0 0 1 1 0 0 0 10 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1

- 1) Interpret the array as n/Z bins of size Z each
- 2) For each row, perform random shift cycle
 - 3) Sort each **column** independently

$$Z = \log^6 k$$

$$\frac{n}{Z} \cdot Z \log^2 Z = O(n \log^2 Z) \in O(n \log \log k)$$

[Lin,Shi,Xie, SODA'19]

Claim:

W.h.p, there exists a mixed stripe of size $Z/\log^2 k = \log^4 k$ rows

- 1) Interpret the array as n/Z bins of size Z each
- 2) For each row, perform random shift cycle
 - 3) Sort each **column** independently

4) copy the mixed stripe to some working array of size
$$\frac{n}{\log^6 k} \cdot \log^4 k = n/\log^2 k$$

5) Sort (obliviously!) the mixed stripe; write it back

$$n/Z = n/\log^6 k$$

0 1 1 0 0 1 0 1 0 0 1 1 0 0 0 10 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1

- 2) For each row, perform random shift cycle
 - 3) Sort each column independently
- 4) Copy the mixed stripe to some working array of size $\frac{n}{\log^6 k} \cdot \log^4 k = n/\log^2 k$
 - 5) Sort (obliviously!) the mixed stripe; write it back

When $n \in O(k)$, the algorithm is statistically secure and runs in $O(n \log \log n)$

- 1) Simple, randomized oblivious tight compaction (RAM model) in $O(n \log \log k)$
 - Lin, Shi, Xie: Can we Overcome the $n \log n$ Barrier for Oblivious Sorting? SODA'19
- 2) Linear size compaction circuit
 - Asharov, Lin, Shi: Sorting Short Keys in Circuits of Size $o(n \log n)$, SODA'21
- 3) Linear time algorithm for oblivious tight compaction in the RAM model
 - Asharov, Komargodski, Lin, Nayak, Peserico and Shi: OptORAMa, Optimal Oblivious RAM, EUROCRYPT'20

Our Cost Model

Generalized Boolean gates

w-selector gates

"Reverse" selector

Oblivious Tight Compaction

- Input: An array of size n where each element is marked 0 or 1
- Output: all 0-elements appear before 1-elements

0 1 1 0 0 1 0 1 0 0 1 1 0 0 0 1

(1) Count the number of balls marked 0

(2) Mark the elements that are "misplaced"

0 1 1 0 0 1 0 1 0 0 0 1

Observation: number of reds always equals number of blues
We just have to swap them!

Bipartite Expander Graph

- O(1) degree
- Constant spectral expansion

- 1 that wants to swap with 0
- 0 that wants to swap with 1

For every pair of • •

 $O(nd^2)$ boolean gates $O(n \cdot d^2)$ w-selector gates

O(nw) gates total

Claim

At the end of this procedure, there are no more than n/100 remaining swaps

- Consider the sets of "survivors"
 - Each of size > n/200
 (Recall #reds=#blues)
 - Their sets of neighbors must be disjoint
- Expansion property: for any set of size > n/200, number of neighbors > n/2

0 0 R

Loose Compactor

Loose Compactor

Loose Compactor

Reverse Route

Recurse

What Do We Have So Far?

Loose Swap + Loose Compactor
$$\implies$$
 Tight Compactor

$$O(n \cdot f(n) + nw)$$

$$O(n \cdot f(n) + nw)$$

Loose Compactor

 $\leq 1\%$ are marked

Bipartite Expander Graph

- O(1) degree
- Constant spectral expansion

Two stages:

- Find which edges will be chosen
 - Find a matching (routes)
- Route elements on those edges

 $O(n \log n + nw)$ boolean gates

w-selector gates

Find a Matching

< 1% are marked

Repeat $\log n$ times:

- All in L: propose to all incident vertices
- R: accept only if 1 proposal received, else reject all
- All in L: if received "accept" become

 $O(n \log n)$ boolean gates

Each edge has an indicator (a wire) whether to "route" an element on it

Route

 $\leq 1\%$ are marked

On all marked edges:

Move an element

Requires O(n) w-selector gates

 $O(n \log n)$ boolean gates

Overall circuit requires $O(n \log n + nw)$ boolean gates

What Do We Have So Far?

Loose Compactor $O(n \log n + nw)$

Loose Swap + Loose Compactor
$$\Longrightarrow$$
 Tight Compactor $O(nw)$ $O(n \cdot f(n) + nw)$ $O(n \cdot f(n) + nw)$

Tight Compactor $O(n \log n + nw)$

Tight Compactor $O(n \log n + nw) \implies \text{Loose Compactor } O(n \log \log n + nw)$

Chunk: $\log n$ balls (each ball w bits long)

 $n/\log n$ chunks, $w \log n$ bit payload each

Step 1: Run tight compact to move all "dense" chunks to the front

O(nw) circuit

Tight Compactor $O(n \log n + nw) \implies \text{Loose Compactor } O(n \log \log n + nw)$

 $O(n \log \log n + nw)$ size circuit

Tight Compactor $O(n \cdot f(n) + nw) \implies \text{Loose Compactor } O(n \cdot f(f(n)) + nw)$

n/f(n) chunks, $w \cdot f(n)$ bit payload each

Chunk: f(n) balls $(w \cdot f(n))$ bits)

Step 1: Run tight compact to move all "dense" chunks to the front

O(nw) circuit

Tight Compactor $O(n \cdot f(n) + nw) \implies \text{Loose Compactor } O(n \cdot f(f(n)) + nw)$

 $O(n \cdot f(f(n)) + nw)$ size circuit

What Do We Have So Far?

Loose Compactor $O(n \log n + nw)$

Loose Compactor
$$\Longrightarrow$$
 Tight Compactor $O(n \cdot f(n) + nw)$ $O(n \cdot f(n) + nw)$

$$O(n \cdot f(n) + nw)$$
 $O(n \log n + nw)$

Tight Compactor
$$\Longrightarrow$$
 Loose Compactor

$$O(n \cdot f(n) + nw)$$

$$O(n \cdot f(f(n)) + nw)$$

Tight Compactor
$$\Longrightarrow$$
 Tight Compactor

$$O(n \cdot f(n) + nw)$$

$$O(n \cdot f(n) + nw)$$

$$O(n \cdot f(f(n)) + nw)$$

Bootstrapping!

Tight Compactor $O(n \log n + nw)$

Tight Compactor
$$\Longrightarrow$$
 Tight Compactor $O(n \cdot f(n) + nw)$ $O(n \cdot f(f(n)) + nw)$

Tight Compactor

$$O(n \log n + nw)$$

$$\Longrightarrow$$

 $\longrightarrow \frac{\text{Tight Compactor}}{O(n \log \log n + nw)} \longrightarrow \frac{\text{Tight Compactor}}{O(n \log^{(4)} n + nw)} \longrightarrow \frac{\text{Tight Compactor}}{O(n \log^{(8)} n + nw)}$

Constant blowups exponentially....

$$C^{d} \cdot \left(n \cdot \log^{(2^{d})} n + nw\right)$$
$$\log^{(2^{d})} n = w$$
$$d = \log(\log^* n - \log^* w)$$

A tight compactor of size: poly($\log^* n - \log^* w$) · O(nw)

Tight Compaction

Selection

Sorting

Tight Compaction A Central Problem!

Linear size circuit (Ignoring polylog* factors)

(Almost) Linear size sorting circuit (short keys) [ALS'21]

Linear time compaction

Optimal Oblivious RAM compiler [OptORAMa, AKLNPS'20]

Oblivious RAM Compiler: State of the Art

Lower bound: $\Omega(\log N)$

[GoldreichOstrovsky'96, LarsenNeilsen'18]

 $O(\log N)$

Computational security [OptORAMa'20]

Statistical security

Thank You!