ПИСЬМЕННАЯ РАБОТА

для поступающих на второй курс

1. Вычислить предел

$$\lim_{x \to 0} \sqrt[x]{\cos \sqrt{x}}.$$

2. Исследовать на сходимость и абсолютную сходимость несобственный интеграл при всевозможных значениях вещественного параметра α

$$\int_{0}^{+\infty} \frac{\cos x}{x^{\alpha} + \arctan x} dx.$$

3. Исследовать на сходимость числовой ряд

$$\sum_{n=1}^{\infty} \ln \left(\frac{\sinh \frac{1}{n}}{\sin \frac{1}{n}} \right) .$$

4. Функцию

$$f(x,y) = x \ln\left(1 + |y|\right)$$

исследовать на дифференцируемость в точке (0,0).

5. Для матрицы

$$A = \begin{pmatrix} \frac{5}{2}, & \frac{3}{2} \\ \\ \frac{3}{2}, & \frac{5}{2} \end{pmatrix}$$

найти симметричную положительно определенную матрицу B, такую, что

$$B^2 = A.$$

ПИСЬМЕННАЯ РАБОТА

для поступающих на второй курс

1. Вычислить предел

$$\lim_{x \to +0} \left(x \left(e^{1/x} - 1 \right) \right)^{x + \sin x} .$$

2. Исследовать на сходимость несобственный интеграл при всевозможных значениях вещественного параметра α

$$\int_{1}^{+\infty} \left(\frac{x^3 + x}{x - 1}\right)^{\alpha} dx.$$

3. Исследовать на сходимость и равномерную сходимость ряд

$$\sum_{n=1}^{\infty} \frac{x^n}{n^n + x^n}$$

на множестве $E = [0, +\infty)$.

4. Функцию

$$f(x,y) = x \operatorname{sh} |y|$$

исследовать на дифференцируемость в точке (0,0).

5. Самосопряженное преобразование двумерного евклидова пространства в ортонормированном базисе e_1 , e_2 имеет матрицу

$$A = \left(\begin{array}{cc} 4 & 2 \\ \\ 2 & 1 \end{array}\right)$$

Найти ортонормированный базис, в котором матрица этого преобразования имеет диагональный вид.

ПИСЬМЕННАЯ РАБОТА

для поступающих на второй курс

1. Вычислить предел

$$\lim_{x \to +0} \left(2 \operatorname{ch} \frac{1}{x} \right)^{x+\operatorname{sh} x} .$$

2. Исследовать на сходимость несобственный интеграл при всевозможных значениях вещественного параметра α

$$\int_{0}^{1} \frac{\left(x - x^{2}\right)^{\alpha}}{\ln^{1/3}(1+x)} dx.$$

3. Исследовать на сходимость и равномерную сходимость ряд

$$\sum_{n=1}^{\infty} \frac{x^n}{1+x^n}$$

на множестве E = [0, 1).

4. Функцию

$$f(x,y) = y\sin|x|$$

исследовать на дифференцируемость в точке (0,0).

5. Самосопряженное преобразование двумерного евклидова пространства в ортонормированном базисе e_1 , e_2 имеет матрицу

$$A = \left(\begin{array}{cc} 5 & 3 \\ \\ 3 & 5 \end{array}\right)$$

Найти ортонормированный базис, в котором матрица этого преобразования имеет диагональный вид.

ПИСЬМЕННАЯ РАБОТА

для поступающих на второй курс

1. Вычислить предел

$$\lim_{x \to +\infty} x \left(\frac{\pi}{2} - \arcsin \frac{x}{\sqrt{x^2 + 1}} \right).$$

2. Исследовать на сходимость и абсолютную сходимость при всех значениях параметра $\alpha \in \mathbb{R}$ несобственный интеграл

$$\int_{0}^{+\infty} x^{\alpha} \sin\left(x^{2}\right) dx.$$

3. Исследовать на поточечную и равномерную сходимость функциональный ряд

$$\sum_{k=1}^{\infty} \frac{\ln\left(k + x^k\right)}{k^3 + kx}$$

на множествах $x \in (0,1)$ и $x \in (1,+\infty)$.

- 4. В двумерном вещественном евклидовом пространстве $\mathcal E$ базис $e=\{e_1,e_2\}$ имеет матрицу Грама $\Gamma=\begin{pmatrix}1&1\\1&2\end{pmatrix}$, подпространство $M=\mathrm{Lin}\{e_1+e_2\}.$ Найти базис в ортогональном дополнении M^\perp и матрицу преобразования ортогонального проектирования на M в базисе e.
- **5.** В двумерном вещественном евклидовом пространстве \mathcal{E} с ортонормированным базисом $e = \{e_1, e_2\}$ самосопряженное преобразование имеет матрицу $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$. Найти матрицу перехода к ортонормированному базису в \mathcal{E} , в котором это преобразование имеет диагональный вид. Найти этот диагональный вид.

МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ ПИСЬМЕННАЯ РАБОТА

для поступающих в магистратуру

- 1. Составить уравнение плоскости, параллельной плоскости x+2y-3z+1=0 и равноотстоящей от точек A(0;1;0) и B(2;1;4). Система координат ортогональная.
- 2. При всех возможных значениях λ найти решения системы

$$\begin{cases} 2x - y - 5z = 3, \\ -x + 2y + z = \lambda, \\ -x + y + 2z = 3. \end{cases}$$

3. Вычислить предел

$$\lim_{x \to 1} \frac{\sqrt{x^2 - x + 1} - 1}{\ln x} \, .$$

- **4.** Найти условный экстремум функции z = 2x 8y + 7 относительно уравнения связи $x^2 + 2y^2 = 1$.
- 5. Найти область сходимости степенного ряда

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} (x+2)^n.$$

6. Вычислить объём заданной области

$$\Omega = \left\{ (x,y) \mid x > 0; \ y > 0; \ 1 < x^2 + y^2 < 3; \ 0 < z < \frac{2x + 3y}{x^2 + y^2} \right\}.$$

- 7. Найти площадь части поверхности параболоида $z=x^2+y^2$, расположенной в первом квадранте и внутри цилиндра $x^2+y^2=1$.
- **8.** Разложить функцию $f(x) = \pi |x|, x \in [-\pi, \pi]$, в ряд Фурье по тригонометрической системе с периодом 2π . Выяснить, является ли ряд равномерно сходящимся. Ответ обосновать.
- 9. Найти все действительные решения уравнения

$$y'' - 4y = 8e^{2x}.$$

10. Монету бросают пять раз. Найти вероятность того, что "герб" выпадет не более двух раз.

Ответы к задачам для поступающих на второй курс

1. Вычислить предел

$$\lim_{x \to +\infty} x \left(\frac{\pi}{2} - \arcsin \frac{x}{\sqrt{x^2 + 1}} \right) .$$

Ответ: 1.

2. Исследовать на сходимость и абсолютную сходимость при всех значениях параметра $\alpha \in \mathbb{R}$ несобственный интеграл

$$\int_{0}^{+\infty} x^{\alpha} \sin\left(x^{2}\right) dx.$$

Ответ:
$$\alpha \in \left\{ \begin{array}{lll} (-\infty,-3] & - & \text{расходится,} \\ (-3,-1) & - & \text{сходится абсолютно,} \\ [-1,1) & - & \text{сходится условно,} \\ [1,+\infty) & - & \text{расходится.} \end{array} \right.$$

3. Исследовать на поточечную и равномерную сходимость функциональный ряд

$$\sum_{k=1}^{\infty} \frac{\ln\left(k + x^k\right)}{k^3 + kx}$$

на множествах $x \in (0,1)$ и $x \in (1,+\infty)$.

Ответ: сходится равномерно на (0,1) и $(1,+\infty)$.

4. В двумерном вещественном евклидовом пространстве $\mathcal E$ базис $e=\{e_1,e_2\}$ имеет матрицу Грама $\Gamma=\begin{pmatrix}1&1\\1&2\end{pmatrix}$, подпространство $M=\mathrm{Lin}\{e_1+e_2\}.$ Найти базис в ортогональном дополнении M^\perp и матрицу преобразования ортогонального проектирования на M в базисе e.

Other:
$$M^{\perp} = \operatorname{Lin}\{3e_1 - 2e_2\}, \quad P_M \stackrel{e}{\leftrightarrow} \frac{1}{5} \begin{pmatrix} 2 & 3 \\ 2 & 3 \end{pmatrix}.$$

5. В двумерном вещественном евклидовом пространстве \mathcal{E} с ортонормированным базисом $e = \{e_1, e_2\}$ самосопряженное преобразование имеет матрицу $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$. Найти матрицу перехода к ортонормированному базису в \mathcal{E} , в котором это преобразование имеет диагональный вид. Найти этот диагональный вид.

Other:
$$S = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad S^{-1}AS = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}.$$

Задачи для поступающих на второй курс для переводников и восстанавливающихся

- 1. Вычислить предел функции одного вещественного переменного в точке.
- **2.** Исследовать на сходимость и абсолютную сходимость при всех значениях параметра несобственный интеграл.
- **3.** Исследовать на поточечную и равномерную сходимость функциональный ряд на заданном множестве.
- 4. В конечномерном вещественном евклидовом пространстве с заданным базисом найти базис в ортогональном дополнении заданного подпространства и преобразование ортогонального проектирования на заданное подпространство.
- **5.** Найти матрицу перехода к ортонормированному базису конечномерного евклидова пространства, в котором заданное самосопряженное линейное преобразование имеет диагональный вид.

На решение этих задач отводится два астрономических часа.

ПИСЬМЕННАЯ РАБОТА

для поступающих на второй курс

1. Вычислить предел

$$\lim_{x \to +\infty} \left(\sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x} \right) .$$

2. Исследовать на сходимость при всех значениях параметра $\alpha \neq 0$ несобственный интеграл

$$\int_{0}^{1} \frac{|\ln x|^{\alpha}}{1 - x^{\alpha}} dx.$$

3. Исследовать на поточечную и равномерную сходимость функциональный ряд

$$\sum_{k=1}^{\infty} \frac{k^x}{k + x^k}$$

на множествах $x \in (1,2), x \in (2,3)$ и $x \in (3,+\infty)$.

4. В трёхмерном вещественном евклидовом пространстве \mathcal{E} с ортонормированным базисом $e = \{e_1, e_2, e_3\}$ задано подпространство

$$M = \operatorname{Lin}\{e_1 - e_2, e_2 + e_3\}.$$

Найти базис в ортогональном дополнении M^{\perp} и общий вид линейного преобразования пространства \mathcal{E} , ядро которого совпадает с M^{\perp} .

5. В двумерном вещественном евклидовом пространстве \mathcal{E} с ортонормированным базисом $e = \{e_1, e_2\}$ самосопряженное преобразование \mathcal{A} имеет матрицу $A = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$. Найти матрицу перехода к ортонормированному базису в \mathcal{E} , в котором матрица преобразования \mathcal{A} имеет диагональный вид, вычислить матрицу преобразования \mathcal{A} в этом базисе.

Ответы к задачам для поступающих на второй курс

1. Вычислить предел

$$\lim_{x \to +\infty} \left(\sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x} \right) .$$

Otbet: $\frac{1}{2}$.

2. Исследовать на сходимость при всех значениях параметра $\alpha \neq 0$ несобственный интеграл

$$\int_{0}^{1} \frac{|\ln x|^{\alpha}}{1 - x^{\alpha}} dx.$$

Ответ: $\alpha > 0$ — сходится, $\alpha < 0$ — расходится.

3. Исследовать на поточечную и равномерную сходимость функциональный ряд

$$\sum_{k=1}^{\infty} \frac{k^x}{k + x^k}$$

на множествах $x \in (1,2), x \in (2,3)$ и $x \in (3,+\infty)$.

Ответ: при $x \in (1,2)$ и $x \in (3,+\infty)$ сходится неравномерно, при $x \in (2,3)$ сходится равномерно.

4. В трёхмерном вещественном евклидовом пространстве \mathcal{E} с ортонормированным базисом $e = \{e_1, e_2, e_3\}$ задано подпространство

$$M = \text{Lin}\{e_1 - e_2, e_2 + e_3\}.$$

Найти базис в ортогональном дополнении M^{\perp} и общий вид линейного преобразования пространства \mathcal{E} , ядро которого совпадает с M^{\perp} .

Ответ: $M^{\perp} = \text{Lin}\{e_1 + e_2 - e_3\}$, $\mathcal{A}(xe_1 + ye_2 + ze_3) = (x - y)a + (y + z)b$ для любых линейно независимых векторов $a, b \in \mathcal{E}$.

5. В двумерном вещественном евклидовом пространстве \mathcal{E} с ортонормированным базисом $e = \{e_1, e_2\}$ самосопряженное преобразование \mathcal{A} имеет матрицу $A = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$. Найти матрицу перехода к ортонормированному базису в \mathcal{E} , в котором матрица преобразования \mathcal{A} имеет диагональный вид, вычислить матрицу преобразования \mathcal{A} в этом базисе.

Other:
$$S = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad S^{-1}AS = \begin{pmatrix} 4 & 0 \\ 0 & -2 \end{pmatrix}.$$

- **6.** Функцию f(x,y) = |x|y исследовать на дифференцируемость в \mathbb{R}^2 .
- 7. Для задачи на условный экстремум функции f(x,y) = 2x + y при условии $x^2 y^2 = 1$ найти стационарные точки функции Лагранжа и проверить в них достаточные условия локального условного экстремума второго порядка.
- 8. Вычислить двойной интеграл

$$\iint\limits_G x\,dx\,dy,$$

где область
$$G = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid \begin{array}{c} x + y > 1, \\ x^2 + y < 1 \end{array} \right\}.$$

9. Решить задачу Коши

$$y''(x) = y(x)y'(x), \quad y(0) = -1, \quad y'(0) = \frac{1}{2}.$$

10. Найти преобразование Фурье функции $f(x) = e^{-|x|}$.

Ответы к задачам для поступающих в магистратуру

1. Вычислить предел

$$\lim_{x \to 0} \frac{2\ln(\cos x) + x\sin x}{\sqrt[3]{1 + x^4} - \sqrt{1 - x^4}}.$$

Other: $-\frac{2}{5}$.

2. Исследовать на сходимость при всех значениях параметра $\alpha \neq 0$ несобственный интеграл

$$\int_{0}^{1} \left(-\frac{x}{\ln x} \right)^{\alpha} dx.$$

Ответ: сходится при $0 < |\alpha| < 1$ и расходится при $|\alpha| \ge 1$.

3. Исследовать на поточечную и равномерную сходимость функциональный ряд

$$\sum_{k=1}^{\infty} \frac{x + \sqrt{k}}{x + k^2}$$

на множествах $x \in (0,1), x \in (1,+\infty).$

Ответ: сходится равномерно на (0,1) и сходится поточечно неравномерно на $(1,+\infty)$.

4. Пусть \mathcal{L} — линейное пространство вещественных многочленов степени не выше первой. Пусть \mathcal{A} — линейное преобразование пространства \mathcal{L} вида

$$(\mathcal{A}x)(t) = x(0)t + x(1) \quad \forall x \in \mathcal{L}, \quad \forall t \in \mathbb{R}.$$

Найти обратное преобразование \mathcal{A}^{-1} .

Other:
$$(A^{-1}y)(t) = (y(1) - y(0))(1 - t) + y(0)t$$
.

5. Для каждого $k \in \overline{1,2,3}$ обозначим через \mathcal{E}_k базис в пространстве решений линейной однородной системы

$$\begin{cases} x_1 + 2x_2 - x_3 = 0, \\ 2x_1 - x_2 + 2x_3 = 0, \end{cases}$$

состоящий из столбцов фундаментальной матрицы решений этой системы со свободной переменной x_k . Найти \mathcal{E}_k для каждого $k \in \overline{1,2,3}$ и найти матрицы перехода от \mathcal{E}_1 к \mathcal{E}_2 и от \mathcal{E}_2 к \mathcal{E}_3 .

Otbet:
$$\mathcal{E}_1 = \begin{pmatrix} 1 \\ -\frac{4}{3} \\ -\frac{5}{3} \end{pmatrix}$$
, $\mathcal{E}_2 = \mathcal{E}_1 \left(-\frac{3}{4} \right)$, $\mathcal{E}_3 = \mathcal{E}_2 \left(\frac{4}{5} \right)$.

- **6.** Функцию f(x,y) = |x|y исследовать на дифференцируемость в \mathbb{R}^2 . Ответ: не дифференцируема в точках (0,y) при всех $y \neq 0$ и дифференцируема в остальных точках \mathbb{R}^2 .
- 7. Для задачи на условный экстремум функции f(x,y) = 2x + y при условии $x^2 y^2 = 1$ найти стационарные точки функции Лагранжа и проверить в них достаточные условия локального условного экстремума второго порядка.

Ответ: для функции Лагранжа $L(x,y,\lambda)=2x+y+\lambda(x^2-y^2-1)$ стационарные точки: $\left(-\frac{2}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{\sqrt{3}}{2}\right)$ — удовлетворяет достаточному условию строгого локального условного максимума, $\left(\frac{2}{\sqrt{3}},-\frac{1}{\sqrt{3}},-\frac{\sqrt{3}}{2}\right)$ — удовлетворяют достаточному условию строгого локального условного минимума.

8. Вычислить двойной интеграл

$$\iint\limits_G x\,dx\,dy,$$

где область
$$G = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid \begin{array}{c} x + y > 1, \\ x^2 + y < 1 \end{array} \right\}.$$

OTBET: $\frac{1}{12}$.

9. Решить задачу Коши

$$y''(x) = y(x)y'(x), \quad y(0) = -1, \quad y'(0) = \frac{1}{2}.$$

Otbet: $y(x) = -\frac{2}{x+2}$.

10. Найти преобразование Фурье функции $f(x) = e^{-|x|}$.

Ответ:
$$F[f](y) = \sqrt{\frac{2}{\pi}} \frac{1}{y^2+1}$$
.

ПИСЬМЕННАЯ РАБОТА

для поступающих на второй курс

1. Вычислить предел

$$\lim_{x \to +\infty} \left(\frac{\ln(1+x) - \ln x}{\operatorname{arcctg} x} \right)^x.$$

2. Исследовать на сходимость и абсолютную сходимость при всех значениях параметра $\alpha \neq 1$ несобственный интеграл

$$\int_{1}^{+\infty} \frac{\sin x}{\left|x^{\alpha} - x\right|^{\alpha}} dx.$$

3. При всех значениях параметра $\alpha \in \mathbb{R}$ исследовать на поточечную и равномерную сходимость функциональный ряд

$$\sum_{n=1}^{\infty} \left(\exp\left(2^{-n/x}\right) - 1 \right)^{\alpha}$$

на множествах $x \in (0,1)$ и $x \in (1,+\infty)$.

Ответы к задачам для поступающих на второй курс

1. Вычислить предел

$$\lim_{x \to +\infty} \left(\frac{\ln(1+x) - \ln x}{\operatorname{arcctg} x} \right)^x.$$

Otbet: $\exp\left(-\frac{1}{2}\right)$.

2. Исследовать на сходимость и абсолютную сходимость при всех значениях параметра $\alpha \neq 1$ несобственный интеграл

$$\int_{1}^{+\infty} \frac{\sin x}{\left|x^{\alpha} - x\right|^{\alpha}} dx.$$

Ответ: сходится условно при $\alpha \in (0,1)$ и расходится при остальных α .

3. При всех значениях параметра $\alpha \in \mathbb{R}$ исследовать на поточечную и равномерную сходимость функциональный ряд

$$\sum_{k=1}^{\infty} \left(\exp\left(2^{-n/x}\right) - 1 \right)^{\alpha}$$

на множествах $x \in (0,1)$ и $x \in (1,+\infty)$.

Ответ: сходится поточечно при $\alpha > 0$ и всех x > 0, расходится поточечно при всех $\alpha \le 0$ и x > 0. При $\alpha > 0$ сходится равномерно на множестве $x \in (0,1)$ и не сходится равномерно на множестве $x \in (1,+\infty)$.

московский физико-технический институт ПИСЬМЕННАЯ РАБОТА ПО МАТЕМАТИКЕ

для поступающих на второй курс

1. Вычислить предел

$$\lim_{x \to 0} \left(\frac{\arcsin x}{\sin x} \right)^{\frac{1}{\operatorname{ch} x - \cos x}}.$$

2. Исследовать на сходимость при всех значениях параметра α несобственный интеграл

$$\int_{0}^{1} \left(\frac{x^2}{\sin \pi x} \right)^{\alpha} dx.$$

3. Исследовать на поточечную и равномерную сходимость функциональный ряд

$$\sum_{k=1}^{\infty} \left(\sqrt{k^2 + x^k} - k \right)$$

на множествах $x \in (0, \frac{1}{2})$ и $x \in (\frac{1}{2}, 1)$.

4. При всех значениях параметра $\alpha>0$ исследовать функцию

$$f(x,y) = \begin{cases} \frac{|x+y|^{\alpha}}{|x|+|y|}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0) \end{cases}$$

на непрерывность и дифференцируемость в точке (0,0).

5. В евклидовом пространстве \mathcal{P}_1 , состоящем из всех вещественных многочленов степени не выше первой, скалярное произведение задано формулой

$$(p,q) = \int_{0}^{+\infty} e^{-t} p(t) q(t) dt \quad \forall p, q \in \mathcal{P}_{1}.$$

Найти в \mathcal{P}_1 ортогональную проекцию многочлена $p(t)\equiv 1$ на линейную оболочку многочлена $q(t)\equiv t.$

Ответы для поступающих на второй курс

1. Вычислить предел

$$\lim_{x \to 0} \left(\frac{\arcsin x}{\sin x} \right)^{\frac{1}{\operatorname{ch} x - \cos x}}.$$

Otbet: $\exp\left(\frac{1}{3}\right)$.

2. Исследовать на сходимость при всех значениях параметра α несобственный интеграл

$$\int_{0}^{1} \left(\frac{x^2}{\sin \pi x} \right)^{\alpha} dx \,.$$

Ответ: сходится при $|\alpha| < 1$ и расходится при остальных α .

3. Исследовать на поточечную и равномерную сходимость функциональный ряд

$$\sum_{k=1}^{\infty} \left(\sqrt{k^2 + x^k} - k \right)$$

на множествах $x \in (0, \frac{1}{2})$ и $x \in (\frac{1}{2}, 1)$.

Ответ: сходится равномерно при $x \in (0, \frac{1}{2})$ и неравномерно при $x \in (\frac{1}{2}, 1)$.

4. При всех значениях параметра $\alpha>0$ исследовать функцию

$$f(x,y) = \begin{cases} \frac{|x+y|^{\alpha}}{|x|+|y|}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0) \end{cases}$$

на непрерывность и дифференцируемость в точке (0,0).

Ответ: разрывна при $0 < \alpha \le 1$, непрерывна и недифференцируема при $1 < \alpha \le 2$, дифференцируема при $2 < \alpha$.

5. В евклидовом пространстве \mathcal{P}_1 , состоящем из всех вещественных многочленов степени не выше первой, скалярное произведение задано формулой

$$(p,q) = \int_{0}^{+\infty} e^{-t} p(t) q(t) dt \quad \forall p, q \in \mathcal{P}_1.$$

Найти в \mathcal{P}_1 ортогональную проекцию многочлена $p(t) \equiv 1$ на линейную оболочку многочлена $q(t) \equiv t$.

Ответ: ортогональная проекция $r(t) \equiv \frac{t}{2}$.

московский физико-технический институт ПИСЬМЕННАЯ РАБОТА ПО МАТЕМАТИКЕ

для восстанавливающихся на второй курс

1. Вычислить предел

$$\lim_{x \to +\infty} \frac{x \arctan x - 1}{\sqrt{\cos \frac{1}{x} - 1}}.$$

2. Вычислить неопределённый интеграл

$$\int \frac{(x+1)}{(x^2+1)^{3/2}} \, dx \, .$$

3. Линейное пространство L является линейной оболочкой функций $\sin x$ и $\cos x$. Линейное преобразование $A: L \to L$ таково, что

$$A(\sin x) = \cos\left(x - \frac{\pi}{6}\right), \quad A(\cos x) = \sin\left(x + \frac{\pi}{6}\right).$$

Найти собственные числа и собственные векторы линейного преобразования A.

4. Исследовать на сходимость несобственный интеграл

$$\int_{0}^{1} \frac{dx}{(1-x)^{\alpha} |\ln x|^{1/\alpha}}$$

при всех значениях параметра $\alpha \neq 0$.

5. Исследовать на сходимость и равномерную сходимость функциональный ряд

$$\sum_{n=1}^{\infty} \frac{x^n}{n + x^{2n}}$$

на множествах $x \in (1,2)$ и $x \in (2,+\infty)$.

московский физико-технический институт ПИСЬМЕННАЯ РАБОТА ПО МАТЕМАТИКЕ

для переводящихся на второй курс

1. Вычислить предел

$$\lim_{x \to \infty} \frac{x \sin \frac{1}{x} - 1}{\sqrt{\cos \frac{1}{x}} - 1}.$$

2. Вычислить неопределённый интеграл

$$\int \frac{(x^3 + 2x)}{(x^2 + 1)^{3/2}} \, dx \, .$$

3. Линейное пространство L является линейной оболочкой функций $\sin x$ и $\cos x$. Линейное преобразование $A: L \to L$ таково, что

$$A(\sin x) = \cos\left(x - \frac{\pi}{6}\right), \quad A(\cos x) = \sin\left(x + \frac{\pi}{6}\right).$$

Найти собственные числа и собственные векторы линейного преобразования A.

4. Исследовать на сходимость несобственный интеграл

$$\int_{0}^{+\infty} \frac{x^{\alpha} dx}{\sqrt{x + \sqrt{x}}}$$

при всех значениях параметра α .

5. Исследовать на сходимость и равномерную сходимость функциональный ряд

$$\sum_{n=1}^{\infty} \frac{n}{1 + n^2 x^2} \ln \left(1 + \sqrt{\frac{x}{n}} \right)$$

на множествах $x \in (0,1)$ и $x \in (1,+\infty)$.

Ответы для восстанавливающихся на второй курс

1. Вычислить предел

$$\lim_{x \to +\infty} \frac{x \arctan x - 1}{\sqrt{\cos \frac{1}{x}} - 1}.$$

Ответ: $\frac{4}{3}$, $\left(\operatorname{arcctg} x = \frac{1}{x} - \frac{1}{3x^3} + O\left(\frac{1}{x^5}\right) \text{ при } x \to +\infty\right)$.

2. Вычислить неопределённый интеграл

$$\int \frac{(x+1)}{(x^2+1)^{3/2}} \, dx \, .$$

Otbet: $\frac{x-1}{\sqrt{x^2+1}} + C$.

3. Линейное пространство L является линейной оболочкой функций $\sin x$ и $\cos x$. Линейное преобразование $A: L \to L$ таково, что

$$A(\sin x) = \cos\left(x - \frac{\pi}{6}\right), \quad A(\cos x) = \sin\left(x + \frac{\pi}{6}\right).$$

Найти собственные числа и собственные векторы линейного преобразования A. Ответ: $A(\sin x + \cos x) = \frac{1+\sqrt{3}}{2} (\sin x + \cos x)$, $A(\sin x - \cos x) = \frac{1-\sqrt{3}}{2} (\sin x - \cos x)$.

4. Исследовать на сходимость несобственный интеграл

$$\int_{0}^{1} \frac{dx}{(1-x)^{\alpha} |\ln x|^{1/\alpha}}$$

при всех значениях параметра $\alpha \neq 0$.

Ответ: $\alpha < 0$ сходится, $\alpha > 0$ расходится.

5. Исследовать на сходимость и равномерную сходимость функциональный ряд

$$\sum_{n=1}^{\infty} \frac{x^n}{n + x^{2n}}$$

на множествах $x \in (1,2)$ и $x \in (2,+\infty)$.

Ответ: $x \in (1,2)$ сходится неравномерно, $x \in (2,+\infty)$ сходится равномерно.

Ответы для переводящихся на второй курс

1. Вычислить предел

$$\lim_{x \to \infty} \frac{x \sin \frac{1}{x} - 1}{\sqrt{\cos \frac{1}{x}} - 1}.$$

Otbet: $\frac{2}{3}$.

2. Вычислить неопределённый интеграл

$$\int \frac{(x^3 + 2x)}{(x^2 + 1)^{3/2}} \, dx \, .$$

Otbet: $\frac{x^2}{\sqrt{x^2+1}} + C$.

3. Линейное пространство L является линейной оболочкой функций $\sin x$ и $\cos x$. Линейное преобразование $A: L \to L$ таково, что

$$A(\sin x) = \cos\left(x - \frac{\pi}{6}\right), \quad A(\cos x) = \sin\left(x + \frac{\pi}{6}\right).$$

Найти собственные числа и собственные векторы линейного преобразования A.

Otbet:
$$A(\sin x + \cos x) = \frac{1+\sqrt{3}}{2}(\sin x + \cos x)$$
, $A(\sin x - \cos x) = \frac{1-\sqrt{3}}{2}(\sin x - \cos x)$.

4. Исследовать на сходимость несобственный интеграл

$$\int_{0}^{+\infty} \frac{x^{\alpha} dx}{\sqrt{x + \sqrt{x}}}$$

при всех значениях параметра α .

Ответ: $-\frac{3}{4} < \alpha < -\frac{1}{2}$ сходится, при остальных α расходится.

5. Исследовать на сходимость и равномерную сходимость функциональный ряд

$$\sum_{n=1}^{\infty} \frac{n}{1 + n^2 x^2} \ln \left(1 + \sqrt{\frac{x}{n}} \right)$$

на множествах $x \in (0,1)$ и $x \in (1,+\infty)$.

Ответ: $x \in (0,1)$ сходится неравномерно, $x \in (1,+\infty)$ сходится равномерно.

московский физико-технический институт ПИСЬМЕННАЯ РАБОТА ПО МАТЕМАТИКЕ

для поступающих на второй курс

1. Вычислить предел

$$\lim_{x \to 0} \left(\sqrt{3 + \cos x} - 1 \right)^{\frac{1}{x \sin x}}.$$

2. Исследовать на сходимость несобственный интеграл

$$\int_{0}^{+\infty} \sqrt{\frac{1+x^{\alpha}}{x+x^{4}}} \, dx.$$

при всех значениях параметра $\alpha \in \mathbb{R}$.

3. Исследовать на сходимость и равномерную сходимость функциональный ряд

$$\sum_{n=1}^{\infty} \frac{\ln(x^n + n)}{x^n + n}$$

на множествах $x \in (1, 2), x \in (2, +\infty)$.

- **4.** Найти расстояние от параболоида $z=x^2+y^2$ до прямой x=y=z+2. Система координат декартова прямоугольная.
- **5.** В ортонормированном базисе $e = \{e_1, e_2\}$ евклидова пространства E квадратичная форма K имеет матрицу

$$\left(\begin{array}{cc} 1 & 3\sqrt{2} \\ 3\sqrt{2} & 4 \end{array}\right).$$

Найти ортонормированный базис в E, в котором K имеет диагональный вид. Указать этот диагональный вид K.

Ответы для поступающих на второй курс

1. Вычислить предел

$$\lim_{x\to 0} \left(\sqrt{3+\cos x} - 1\right)^{\frac{1}{x\sin x}}.$$

Otbet: $\exp\left(-\frac{1}{8}\right)$.

2. Исследовать на сходимость несобственный интеграл

$$\int_{0}^{+\infty} \sqrt{\frac{1+x^{\alpha}}{x+x^{4}}} \, dx.$$

при всех значениях параметра $\alpha \in \mathbb{R}$.

Ответ: сходится при $\alpha \in (-1, 2)$, расходится при остальных α .

3. Исследовать на сходимость и равномерную сходимость функциональный ряд

$$\sum_{n=1}^{\infty} \frac{\ln(x^n + n)}{x^n + n}$$

на множествах $x \in (1,2), x \in (2,+\infty).$

Ответ: сходится при всех x>1; неравномерно при $x\in (1,2)$; равномерно при $x\in (2,+\infty).$

4. Найти расстояние от параболоида $z = x^2 + y^2$ до прямой x = y = z + 2. Система координат декартова прямоугольная.

Otbet: $\frac{5\sqrt{3}}{4\sqrt{2}}$.

Решение: Пусть (x,y,z) — точка параболоида, ближайшая к прямой. Тогда внешняя нормаль к параболоиду (2x,2y,-1) ортогональна направляющему вектору прямой (1,1,1), т. е. $x+y=\frac{1}{2}$. Существует t>0, такое, что (x,y,z)+t(2x,2y,-1) — точка прямой, ближайшая к параболоиду. Отсюда x(1+2t)=y(1+2t)=z-t+2. Так как t>0, то $x=y=\frac{1}{2}-x$, т. е. $x=y=\frac{1}{4},\ z=\frac{1}{8},\$ и $\frac{1}{4}+\frac{t}{2}=\frac{1}{8}-t+2$, т. е. $t=\frac{5}{4}$. Тогда искомое расстояние $d=|t(2x,2y,-1)|=\frac{5}{4}\sqrt{\frac{1}{2}+1}=\frac{5\sqrt{3}}{4\sqrt{2}}$.

5. В ортонормированном базисе $e = \{e_1, e_2\}$ евклидова пространства E квадратичная форма K имеет матрицу

$$\left(\begin{array}{cc} 1 & 3\sqrt{2} \\ 3\sqrt{2} & 4 \end{array}\right).$$

Найти ортонормированный базис в E, в котором K имеет диагональный вид. Указать этот диагональный вид K.

Otbet:
$$e'_1 = \frac{e_1 + \sqrt{2}e_2}{\sqrt{3}}, \quad e'_2 = \frac{\sqrt{2}e_1 - e_2}{\sqrt{3}}, \quad \begin{pmatrix} 7 & 0 \\ 0 & -2 \end{pmatrix}.$$

МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ ПИСЬМЕННАЯ РАБОТА ПО МАТЕМАТИКЕ

для поступающих на второй курс

1.(5) Вычислить предел

$$\lim_{x \to 0} \left(\cos x + \sin\left(x^2\right)\right)^{\frac{x}{\sinh x - \lg x}}.$$

2.(5) Вычислить наибольшую кривизну кривой

$$\Gamma = \left\{ x(t) = t, \ y(t) = e^t, \ z(t) = t \quad \middle| \quad t \in \mathbb{R} \right\}.$$

3.(5) Исследовать на сходимость и равномерную сходимость функциональный ряд

$$\sum_{k=1}^{\infty} \sqrt[k]{x} \exp(-kx)$$

на множествах $x \in (0,1)$ и $x \in (1,+\infty)$.

4. Вещественное евклидово пространство E является линейной оболочкой функций $f(x) = e^x$ и $g(x) = xe^x$ со скалярным произведением

$$(u,v) = \int_{-\infty}^{0} u(x)v(x) dx \qquad \forall u,v \in E.$$

- а)(4) Доказать, что функции f и g образуют базис в E, и вычислить матрицу Грама базиса $\{f,g\}$;
- **б**)(2) Вычислить в базисе $\{f,g\}$ матрицу преобразования ортогонального проектирования из E на линейную оболочку функции h=f+g;
- ${f B}$ (2) Найти расстояния от функций f и g до линейной оболочки функции h=f+g.

Пусть $A: E \to E$ — линейное преобразование вида

$$(Au)(x) = \int_{-\infty}^{x} u(t) dt, \quad \forall u \in E, \quad \forall x \in \mathbb{R}.$$

- Γ)(2) Вычислить в базисе $\{f, g\}$ матрицу преобразования A;
- д)(3) Вычислить в базисе $\{f, g\}$ матрицу сопряжённого преобразования A^* ;
- ${\bf e}$)(4) Найти в E ортогональный базис из собственных векторов самосопряжённого преобразования A^*A .

1.(5) Вычислить предел

$$\lim_{x \to 0} \left(\cos x + \sin\left(x^2\right)\right)^{\frac{x}{\sinh x - \lg x}}.$$

Ответ: e^{-3} .

Решение:
$$\left(\cos x + \sin\left(x^2\right)\right)^{\frac{x}{\sinh x - \lg x}} = \left(1 + \frac{x^2}{2} + o(x^2)\right)^{\frac{1}{\left(-\frac{x^2}{6} + o(x^2)\right)}} = \exp\left(\frac{\frac{1}{2} + o(1)}{-\frac{1}{6} + o(1)}\right).$$

Инструкция: по два очка за верное разложение основания и степени.

2.(5) Вычислить наибольшую кривизну кривой

$$\Gamma = \left\{ x(t) = t, \ y(t) = e^t, \ z(t) = t \quad \middle| \quad t \in \mathbb{R} \right\}.$$

Ответ:
$$k(t) = \frac{\sqrt{2} e^t}{(2 + e^{2t})^{\frac{3}{2}}}$$
, $k_{\text{max}} = k(0) = \frac{\sqrt{2}}{3\sqrt{3}}$.

Решение: $\vec{r}(t) = (x(t), y(t), z(t)), t \in \mathbb{R},$

$$k(t) = |\vec{r}'(t) \times \vec{r}''(t)| / |\vec{r}'(t)|^3 = |(-e^t, 0, e^t)| / |(1, e^t, 1)|^3 = \frac{\sqrt{2} e^t}{(2 + e^{2t}))^{\frac{3}{2}}}.$$

Пусть
$$a = e^t > 0$$
, $f(a) = \frac{\sqrt{2}a}{(2+a^2)^{\frac{3}{2}}}$, $f'(a) = \frac{2\sqrt{2}(1-a^2)}{(2+a^2)^{\frac{5}{2}}}$, $\max_{a>0} f(a) = f(1) = \frac{\sqrt{2}}{3\sqrt{3}}$.

Инструкция: два очка за k(t), три очка за исследование на максимум.

3.(5) Исследовать на сходимость и равномерную сходимость функциональный ряд

$$\sum_{k=1}^{\infty} \sqrt[k]{x} \exp(-kx)$$

на множествах $x \in (0,1)$ и $x \in (1,+\infty)$.

Ответ: сходится неравномерно на (0,1) и сходится равномерно на $(1,+\infty)$.

Решение: $u_k(x) = \sqrt[k]{x} \exp(-kx)$, $\lim_{k\to\infty} \sqrt[k]{u_k(x)} = e^{-x} < 1$, $\forall x > 0$, поэтому ряд сходится при x > 0 по признаку Коши. Для $x_k = \frac{1}{2k} \in (0,1), k \in \mathbb{N}$, имеем $u_k(x_k) \to \frac{1}{\sqrt{e}}$ при $k \to \infty$. Следовательно, $u_k(x) \not\rightrightarrows 0$ при $x \in (0,1), k \to \infty$, т. е. ряд не сходится равномерно на (0,1). $u_k'(x)=\frac{\sqrt[k]{x}e^{-kx}}{kx}(1-k^2x)<0$ при x>1. Тогда $\sup u_k(x)=u_k(1)=e^{-k}$ — член сходящегося ряда. Поэтому ряд сходится

равномерно на $(1, +\infty)$ по признаку Вейерштрасса.

Инструкция: одно очко за поточечную сходимость и по два очка за исследование равномерной сходимости на каждом множестве.

4. Вещественное евклидово пространство E является линейной оболочкой функций $f(x) = e^x$ и $g(x) = xe^x$ со скалярным произведением

$$(u,v) = \int_{-\infty}^{0} u(x)v(x) dx \qquad \forall u,v \in E.$$

а)(4) Доказать, что функции f и g образуют базис в E, и вычислить матрицу Грама базиса $\{f,g\}$;

Ответ:
$$\Gamma = \begin{pmatrix} (f,f) & (f,g) \\ (f,g) & (g,g) \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{1}{4} \end{pmatrix}$$

Инструкция: два очка за доказательство базисности и два очка за матрицу Грама.

б)(2) Вычислить в базисе $\{f, g\}$ матрицу преобразования ортогонального проектирования из E на линейную оболочку функции h = f + g;

Ответ: Пусть P — ортопроектор на Lin(h). Тогда получаем:

$$P(f) = \frac{(f,h)}{|h|^2} h = \frac{\frac{1}{2} - \frac{1}{4}}{\frac{1}{2} + \frac{1}{4} - \frac{1}{2}} h = h = f + g, \quad P(g) = \frac{(g,h)}{|h|^2} h = \frac{-\frac{1}{4} + \frac{1}{4}}{\frac{1}{2} + \frac{1}{4} - \frac{1}{2}} h = 0.$$

Поэтому матрица P в базисе $\{f, g\}$ равна $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$.

(2) Найти расстояния от функций f и g до линейной оболочки функции h=f+g.

Otbet:
$$\rho\left(f, \text{Lin}(h)\right) = |f - P(f)| = |f - f - g| = |g| = \frac{1}{2},$$

$$\rho\left(g, \text{Lin}(h)\right) = |g - P(g)| = |g - 0| = |g| = \frac{1}{2}.$$

Пусть $A: E \to E$ — линейное преобразование вида

$$(Au)(x) = \int_{-\infty}^{x} u(t) dt, \quad \forall u \in E, \quad \forall x \in \mathbb{R}.$$

 Γ)(2) Вычислить в базисе $\{f, g\}$ матрицу преобразования A;

Ответ:
$$Af = f$$
, $Ag = g - f$, матрица A равна $M = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$.

д)(3) Вычислить в базисе $\{f,g\}$ матрицу сопряжённого преобразования A^* ; Ответ: Матрица A^* равна

$$M^* = \Gamma^{-1} A^{\mathrm{T}} \Gamma = \left(\begin{array}{cc} 4 & 4 \\ 4 & 8 \end{array} \right) \left(\begin{array}{cc} 1 & 0 \\ -1 & 1 \end{array} \right) \left(\begin{array}{cc} \frac{1}{2} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{1}{4} \end{array} \right) = \left(\begin{array}{cc} -1 & 1 \\ -4 & 3 \end{array} \right).$$

 ${f e}$)(4) Найти в E ортогональный базис из собственных векторов самосопряжённого преобразования A^*A .

Ответ: Матрица A^*A равна $M^*M=\begin{pmatrix} -1 & 2 \\ -4 & 7 \end{pmatrix}$. Характеристическое уравнение $(-1-\lambda)(7-\lambda)+8=\lambda^2-6\lambda+1=0$ имеет корни $3\pm 2\sqrt{2}$, которым соответствуют собственные векторы $\{f,g\}\begin{pmatrix} 1 \\ 2\pm\sqrt{2} \end{pmatrix}=f+(2\pm\sqrt{2})g$. Ортогональный базис из собственных векторов A^*A имеет вид

$$\left\{ f + (2 + \sqrt{2})g, f + (2 - \sqrt{2})g \right\}.$$

Инструкция: одно очко за матрицу A^*A , одно очко за собственные числа, и по одному очку за каждый собственный вектор.

МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ ПИСЬМЕННАЯ РАБОТА ПО МАТЕМАТИКЕ

для поступающих на второй курс

1.(5) Вычислить предел

$$\lim_{x \to +\infty} \log_{(x \operatorname{arcctg} x)} \left(\operatorname{th}(\ln x) \right)$$

2. Числовая последовательность x_n задана следующим образом:

$$x_1 = 1,$$
 $x_{n+1} = \frac{2}{x_n} + 1 \quad \forall n \in \mathbb{N}.$

- a)(2) Доказать, что последовательность x_n сходится.
- **б)(2)** Найти число a предел последовательности x_n , и для любого числа $\varepsilon > 0$ указать номер $N(\varepsilon)$, такой, что для всех $n > N(\varepsilon)$ выполнено $|x_n a| < \varepsilon$.
- в)(2) Исследовать сходимость числового ряда

$$\sum_{n=1}^{\infty} |x_n - a|.$$

- **3.** Пусть матрица Грама векторов \vec{a} и \vec{b} имеет вид $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$.
 - \mathbf{a})(2) Найти длину вектора $\left[\vec{a}, \vec{b}\right]$.
 - **б**)(2) Найти длину вектора $\vec{a} + \vec{b} + \left[\vec{a}, \vec{b} \right]$.
 - \mathbf{B})(2) Найти все векторы \vec{c} , удовлетворяющие уравнению

$$(\vec{a}, \vec{c}) \vec{a} + (\vec{b}, \vec{c}) \vec{b} = \vec{c}.$$

4.(5) Исследовать на сходимость и абсолютную сходимость при всех значеиях параметра $\alpha \in \mathbb{R}$ несобственный интеграл

$$\int_{2}^{+\infty} \frac{x \sin(x^{\alpha})}{\ln x} dx.$$

5. Пусть функции $g_1(x) = e^x$ и $g_2(x) = e^{-x}$, где $x \in \mathbb{R}$. В линейном пространстве L — вещественной линейной оболочке функций g_1 и g_2 , скалярное произведение задано билинейной формой

$$(f,h) = f(0)h(0) + f'(0)h'(0) \quad \forall f,h \in L.$$

Пусть линейное преобразование $A:L\to L$ имеет вид

$$(Af)(x) = \int_{-x}^{x} f(t) dt \quad \forall f \in L, \quad \forall x \in \mathbb{R}.$$

- а)(2) Найти базис в подпространствах $\operatorname{Ker} A$, $\operatorname{Im} A$, $(\operatorname{Ker} A)^{\perp}$, $(\operatorname{Im} A)^{\perp}$.
- **б**)(3) Найти матрицы преобразования A и сопряжённого преобразования A^* в базисе $\{g_1, g_2\}$.
- ${\bf B}$)(3) Найти ортонормированный базис из собственных функций самосопряжённого линейного преобразования A^*A , и указать матрицу этого преобразования в найденном базисе.

ПИСЬМЕННАЯ РАБОТА ПО МАТЕМАТИКЕ

для поступающих на четвёртый курс

1.(6) Применяя теорию вычетов, вычислить интеграл

$$\oint_{|z|=2} \left(z \sin \frac{1}{z-1} \right) \, dz.$$

Контур интегрирования ориентирован против часовой стрелки.

2.(6) Решить задачу Коши

$$(x+y)\frac{\partial u(x,y)}{\partial x} + y\frac{\partial u(x,y)}{\partial y} = 0 \quad \forall x \in \mathbb{R}, y > 0,$$

 $u(x,1) = x^2 \quad \forall x \in \mathbb{R}.$

3.(6) Найти минимум функционала

$$J(y) = \int_{1}^{2} x \exp\left(y'(x)\right) dx$$

на множестве

$$M = \{ y \in C^2[1,2] : y(1) = y(2) = 0 \}.$$

4.(6) Пусть $\frac{a_0}{2} + \sum\limits_{k=1}^{\infty} a_k \cos kx$ — ряд Фурье функции

$$f(x) = \cos\left(\frac{x^{m+1}}{\pi^m}\right), \quad x \in [-\pi, \pi],$$

где m — фиксированное натуральное число. Найти все значения параметра $\alpha>0$, при которых сходится числовой ряд

$$\sum_{k=1}^{\infty} |a_k|^{\alpha}.$$

5.(6) Пусть функция $\varphi:[0,+\infty)\to\mathbb{R}$. Найти необходимые и достаточные условия на функцию φ , при которых следующая смешанная задача

$$\begin{cases} u_{tt}'' = u_{xx}'', & t > 0, \quad x > 0, \\ u|_{t=0} = 0, & x > 0, \\ u_{t}'|_{t=0} = 0, & x > 0, \\ u|_{x=0} = \varphi(t), & t > 0, \end{cases}$$

имеет классическое решение. Найти это классическое решение.

ОТВЕТЫ

для поступающих на второй курс

1.(5) Вычислить предел

$$\lim_{x \to +\infty} \log_{(x \operatorname{arcctg} x)} (\operatorname{th}(\ln x))$$

Ответ: 6.

Решение: При x > 1 имеем:

$$th(\ln x) = \frac{x - \frac{1}{x}}{x + \frac{1}{x}} = 1 - \frac{2}{x^2} + O\left(\frac{1}{x^4}\right),$$

$$x \operatorname{arcctg} x = x \int_{x}^{+\infty} \frac{dt}{1+t^{2}} = x \int_{x}^{+\infty} \left(\frac{1}{t^{2}} - \frac{1}{t^{4}} + O\left(\frac{1}{t^{6}}\right)\right) dt =$$

$$= x \left(\frac{1}{x} - \frac{1}{3x^{3}} + O\left(\frac{1}{x^{5}}\right)\right) = 1 - \frac{1}{3x^{2}} + O\left(\frac{1}{x^{4}}\right).$$

$$\log_{(x \operatorname{arcctg} x)} \left(\operatorname{th}(\ln x)\right) = \frac{\ln\left(1 - \frac{2}{x^{2}} + O\left(\frac{1}{x^{4}}\right)\right)}{\ln\left(1 - \frac{1}{x^{2}} + O\left(\frac{1}{x^{4}}\right)\right)} = \frac{-\frac{2}{x^{2}} + O\left(\frac{1}{x^{4}}\right)}{-\frac{1}{x^{2}} + O\left(\frac{1}{x^{4}}\right)} \xrightarrow{(x \to +\infty)} \frac{-2}{-\frac{1}{x^{2}}} = 6.$$

Инструкция: По два очка за верное разложение аргумента и основания логарифма.

2. Числовая последовательность x_n задана следующим образом:

$$x_1 = 1,$$
 $x_{n+1} = \frac{2}{x_n} + 1 \quad \forall n \in \mathbb{N}.$

- a)(2) Доказать, что последовательность x_n сходится.
- **б**)(2) Найти число a предел последовательности x_n , и для любого числа $\varepsilon > 0$ указать номер $N(\varepsilon)$, такой, что для всех $n > N(\varepsilon)$ выполнено $|x_n a| < \varepsilon$.
- ${\bf B}$)(2) Исследовать сходимость числового ряда

$$\sum_{n=1}^{\infty} |x_n - a|.$$

Ответ: $a=2, \quad N(\varepsilon)>1+\log_{3/5}\varepsilon, \quad$ ряд сходится.

Решение: Для любого n имеем неравенство $x_n \ge 1$. Формальный предельный переход в рекурентной формуле для x_n приводит к уравнению $a = \frac{2}{a} + 1$, которое имеет решения a = 2 и a = -1. Значение a = -1 не подходит, т. к. неравенство $x_n \ge 1$ влечёт $a \ge 1$. Но без доказательства факта сходимости x_n переход к пределу в рекурентном соотношении не является обоснованным.

Покажем, что x_n сходится. Неравенство $x_n \ge 1$ влечёт $x_{n+1} \le 2+1=3$. Тогда при $n \ge 2$ справедлива оценка $x_{n+1} \ge \frac{2}{3}+1=\frac{5}{3}$. Отсюда при $n \ge 2$ получаем:

$$|x_{n+1} - 2| = \frac{2}{x_n} - 1 = \frac{2 - x_n}{x_n} \implies |x_{n+1} - 2| = \frac{|x_n - 2|}{x_n} \le \frac{3}{5} |x_n - 2|.$$

Так как $x_2 = 3$, то для любого $n \ge 2$ имеем:

$$|x_n - 2| \le \left(\frac{3}{5}\right)^{n-1} |x_2 - 2| = \left(\frac{3}{5}\right)^{n-1}.$$

Таким образом, a=2, и $|x_n-2|<\varepsilon$, если $n>N(\varepsilon)>1+\log_{3/5}\varepsilon$. Наконец,

$$\sum_{n=1}^{\infty} |x_n - 2| \le 1 + \sum_{n=2}^{\infty} \left(\frac{3}{5}\right)^{n-1} = 1 + \frac{3}{2} = \frac{5}{2}.$$

Инструкция: Предел найден без доказательства сходимости последовательности и оценки номера $N(\varepsilon)$ — одно очко.

- **3.** Пусть матрица Грама векторов \vec{a} и \vec{b} имеет вид $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$.
 - \mathbf{a})(2) Найти длину вектора $\left[\vec{a}, \vec{b}\right]$.
 - $\mathbf{6}$)(2) Найти длину вектора $\vec{a} + \vec{b} + \left[\vec{a}, \vec{b} \right]$.
 - \mathbf{B})(2) Найти все векторы \vec{c} , удовлетворяющие уравнению

$$(\vec{a}, \vec{c}) \vec{a} + (\vec{b}, \vec{c}) \vec{b} = \vec{c}.$$

Ответ: а) $\sqrt{3}$, б) 3, в) $\vec{c} = \alpha \left(\vec{a} - \vec{b} \right) \quad \forall \alpha \in \mathbb{R}$.

Решение: По определению матрицы Грама векторов \vec{a} и \vec{b} имеем $(\vec{a}, \vec{a}) = 2$, $(\vec{b}, \vec{b}) = 2$, $(\vec{a}, \vec{b}) = 1$. Пусть φ — угол между \vec{a} и \vec{b} . Тогда $\cos \varphi = \frac{(\vec{a}, \vec{b})}{|\vec{a}| |\vec{b}|} = \frac{1}{2}$, и $\sin \varphi = \frac{\sqrt{3}}{2}$. Поэтому длина вектора $[\vec{a}, \vec{b}]$ равна $|\vec{a}| |\vec{b}| \sin \varphi = \sqrt{3}$. Так как векторы $\vec{a} + \vec{b}$ и $[\vec{a}, \vec{b}]$ ортогональны, то длина их суммы \vec{s} равна $\sqrt{|\vec{a} + \vec{b}|^2 + 3}$, где $|\vec{a} + \vec{b}|^2 = (\vec{a}, \vec{a}) + (\vec{b}, \vec{b}) + 2(\vec{a}, \vec{b}) = 2 + 2 + 2 = 6$. Поэтому длина \vec{s} равна $\sqrt{6 + 3} = 3$.

Далее, $\vec{c}=\alpha\vec{a}+\beta\vec{b}$, где $\alpha=(\vec{a},\vec{c})=2\alpha+\beta$ и $\beta=\left(\vec{b},\vec{c}\right)=\alpha+2\beta$. Таким образом, $\alpha+\beta=0$. Следовательно, $\vec{c}=\alpha\left(\vec{a}-\vec{b}\right)$ для любого $\alpha\in\mathbb{R}$.

Инструкция: Найден угол между \vec{a} и \vec{b} — одно очко. Найдена длина суммы \vec{a} и \vec{b} — одно очко.

4.(5) Исследовать на сходимость и абсолютную сходимость при всех значеиях параметра $\alpha \in \mathbb{R}$ несобственный интеграл

$$\int_{2}^{+\infty} \frac{x \sin(x^{\alpha})}{\ln x} dx.$$

Ответ: сходится абсолютно при $\alpha < -2$, сходится условно при $\alpha \geq 2$, расходится при $\alpha \in [-2,2)$.

Решение: При $\alpha = 0$ интеграл, очевидно, расходится. При $\alpha < 0$ подынтегральная функция положительна в окрестности $+\infty$, $\sin{(x^{\alpha})} \sim x^{\alpha}$ при $x \to +\infty$, поэтому по признаку сравнения имеем:

$$\int_{2}^{+\infty} \frac{x \sin(x^{\alpha})}{\ln x} dx \stackrel{\text{cx.}}{\sim} \int_{2}^{+\infty} \frac{dx}{x^{-1-\alpha} \ln x}.$$

Последний интеграл сходится при $(-1-\alpha) > 1$ и расходится при $(-1-\alpha) \le 1$. Следовательно, при $\alpha < -2$ интеграл сходится абсолютно, а при $\alpha \in [-2,0)$ — расходится.

При $\alpha > 0$ делаем замену $x^{\alpha} = t$, получаем:

$$\int_{2}^{+\infty} \frac{x \sin(x^{\alpha})}{\ln x} dx = \int_{2^{\alpha}}^{+\infty} \frac{t^{\frac{1}{\alpha}} t^{\frac{1}{\alpha} - 1} \sin(t)}{\ln t} dt = \int_{2^{\alpha}}^{+\infty} \frac{\sin(t)}{t^{1 - \frac{2}{\alpha}} \ln t} dt.$$

При $1-\frac{2}{\alpha}\geq 0$ интеграл сходится по признаку Дирихле, при $1-\frac{2}{\alpha}<0$ расходится по отрицанию критерия Коши, так как в этом случае $\frac{1}{t^{1-\frac{2}{\alpha}}\ln t}=\frac{t^{\frac{2}{\alpha}-1}}{\ln t}\to +\infty$ при $t\to +\infty$. Итак, при $\alpha\geq 2$ интеграл сходится, а при $\alpha\in (0,2)$ — расходится. Так как для любого $\alpha\geq 2$ имеем $0\leq 1-\frac{2}{\alpha}<1$, то интеграл при $\alpha\geq 2$ абсолютно расходится:

$$\int\limits_{2^{\alpha}}^{+\infty} \frac{|\sin(t)|}{t^{1-\frac{2}{\alpha}} \ln t} \, dt \geq \int\limits_{2^{\alpha}}^{+\infty} \frac{\sin^2(t)}{t^{1-\frac{2}{\alpha}} \ln t} \, dt = \underbrace{\int\limits_{2^{\alpha}}^{+\infty} \frac{dt}{2t^{1-\frac{2}{\alpha}} \ln t} - \int\limits_{2^{\alpha}}^{+\infty} \frac{\cos(2t)}{2t^{1-\frac{2}{\alpha}} \ln t} \, dt,}_{\text{сходится по признаку Дирихле}}$$

Инструкция: Верное исследование сходимости при $\alpha \leq 0$ — два очка. Верное исследование сходимости при $\alpha > 0$ — три очка.

5. Пусть функции $g_1(x) = e^x$ и $g_2(x) = e^{-x}$, где $x \in \mathbb{R}$. В линейном пространстве L — вещественной линейной оболочке функций g_1 и g_2 , скалярное произведение задано билинейной формой

$$(f,h) = f(0)h(0) + f'(0)h'(0) \quad \forall f, h \in L.$$

Пусть линейное преобразование $A: L \to L$ имеет вид

$$(Af)(x) = \int_{-x}^{x} f(t) dt \quad \forall f \in L, \quad \forall x \in \mathbb{R}.$$

- а)(2) Найти базис в подпространствах $\operatorname{Ker} A$, $\operatorname{Im} A$, $(\operatorname{Ker} A)^{\perp}$, $(\operatorname{Im} A)^{\perp}$.
- **б**)(3) Найти матрицы преобразования A и сопряжённого преобразования A^* в базисе $\{g_1, g_2\}$.
- ${\bf B}$)(3) Найти ортонормированный базис из собственных функций самосопряжённого линейного преобразования A^*A , и указать матрицу этого преобразования в найденном базисе.

Ответ: a) Ker $A = \operatorname{Im} A = \operatorname{Lin}(\operatorname{sh} x)$, $(\operatorname{Ker} A)^{\perp} = (\operatorname{Im} A)^{\perp} = \operatorname{Lin}(\operatorname{ch} x)$,

$$\mathsf{6)}\ \mathcal{A} = \left(\begin{array}{cc} 1 & 1 \\ -1 & -1 \end{array}\right), \quad \mathcal{A}^* = \left(\begin{array}{cc} 1 & -1 \\ 1 & -1 \end{array}\right).$$

(Замечание: $(A^*f)(x) = f'(x) + f'(-x) \quad \forall f \in L$)

в) $\{ \sinh x, \cosh x \}$ — ОНБ в L из собственных функций A^*A , его матрица в этом базисе

$$\left(\begin{array}{cc} 0 & 0 \\ 0 & 4 \end{array}\right).$$

Решение: $(Ag_1)(x) = 2 \operatorname{sh} x$, $(Ag_2)(x) = 2 \operatorname{sh} x$, поэтому $\operatorname{Im} A = \operatorname{Lin}(\operatorname{sh} x)$. Функция $f = a_1g_1 + a_2g_2 \in \operatorname{Ker} A$ равносильно $(Af)(x) = (2a_1 + 2a_2) \operatorname{sh} x = 0$ для любого $x \in \mathbb{R}$. Следовательно, $a_1 + a_2 = 0$, поэтому $f = a_1(g_1 - g_2) = 2a_1 \operatorname{sh} x$ для любого $a_1 \in \mathbb{R}$. Следовательно, $\operatorname{Ker} A = \operatorname{Lin}(\operatorname{sh} x)$. Таким образом, $\operatorname{Ker} A = \operatorname{Im} A = \operatorname{Lin}(\operatorname{sh} x)$, и поэтому

 $(\operatorname{Ker} A)^{\perp} = (\operatorname{Im} A)^{\perp} = (\operatorname{Lin}(\operatorname{sh} x))^{\perp}$. Функция $h = b_1 g_1 + b_2 g_2 \in (\operatorname{Lin}(\operatorname{sh} x))^{\perp}$ равносильно $b_1(g_1, \operatorname{sh} x) + b_2(g_2, \operatorname{sh} x) = 0$. Так как $(g_1, \operatorname{sh} x) = 1$, $(g_2, \operatorname{sh} x) = -1$, то получаем $b_1 - b_2 = 0$. Следовательно, $h = b_1(g_1 + g_2) = 2b_1 \operatorname{ch} x$ для любого $b_1 \in \mathbb{R}$. Итак, получаем, что $(\operatorname{Lin}(\operatorname{sh} x))^{\perp} = \operatorname{Lin}(\operatorname{ch} x)$, и $(\operatorname{Ker} A)^{\perp} = (\operatorname{Im} A)^{\perp} = \operatorname{Lin}(\operatorname{ch} x)$.

Далее, матрица Грама базиса $\{g_1,g_2\}$ равна $\Gamma=\begin{pmatrix}2&0\\0&2\end{pmatrix}$, матрица преобразования A равна $\mathcal{A}=\begin{pmatrix}1&1\\-1&-1\end{pmatrix}$. Поэтому матрица преобразования A^* равна

$$\mathcal{A}^* = \Gamma^{-1} \mathcal{A}^{\mathrm{T}} \Gamma = \mathcal{A}^{\mathrm{T}} = \left(egin{array}{cc} 1 & -1 \ 1 & -1 \end{array}
ight)$$

Матрица преобразования A^*A равна $\mathcal{A}^*\mathcal{A} = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$. Её собственные числа $\lambda_1 = 0$ и $\lambda_2 = 4$. Собственая функция, отвечающая λ_1 , равна $f_1 = a_1(g_1 - g_2)$ для $a_1 \neq 0$. При этом $(f_1, f_1) = a_1^2(2+2) = 4a_1^2 = 1$ при $a_1 = \frac{1}{2}$, т. е. $f_1(x) = \sinh x$. Собственая функция, отвечающая λ_2 , равна $f_1 = a_2(g_1 + g_2)$ для $a_2 \neq 0$. При этом $(f_2, f_2) = a_2^2(2+2) = 4a_2^2 = 1$ при $a_2 = \frac{1}{2}$, т. е. $f_2(x) = \cosh x$. Искомый ОНБ из собственных функций преобразования A^*A равен $\{\sinh x, \cosh x\}$, матрица преобразования A^*A в этом базисе равна $\begin{pmatrix} 0 & 0 \\ 0 & 4 \end{pmatrix}$.

Инструкция: Нет учёта матрицы Грама базиса $\{g_1, g_2\}$ при вычислении матрицы сопряжённого преобразования — снять одно очко.

ОЧКИ	ОЦЕНКА
0-2	НЕУД. (1)
3-4	НЕУД. (2)
5-7	УДОВЛ. (3)
8–10	УДОВЛ. (4)
11-14	XOP. (5)
15–18	XOP. (6)
19–22	XOP. (7)
23–25	ОТЛ. (8)
26-28	ОТЛ. (9)
29–30	ОТЛ. (10)

МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ ПИСЬМЕННАЯ РАБОТА ПО МАТЕМАТИКЕ

для поступающих на второй курс

1.(6) Вычислить частичные пределы числовой последовательности

$$x_n = n\cos\left(\pi\sqrt{n^2 + n}\right) \quad \forall n \in \mathbb{N}.$$

2.(6) Вычислить предел

$$\lim_{x \to +\infty} \left(\int_{0}^{x} \left(t \operatorname{arctg} \frac{1}{t} \right) dt - x \right).$$

- **3.** Пусть матрица Грама векторов \vec{a} и \vec{b} имеет вид $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$.
- \mathbf{a})(2) Найти длину вектора $\left[\vec{a},\left[\vec{a},\vec{b}\right]\right]$.
- $\mathbf{6}$)(4) Найти все векторы \vec{c} , удовлетворяющие уравнению

$$\left[\left[\vec{a}, \vec{b} \right], \vec{c} \right] = \vec{a} + \vec{b}$$

4.(6) Исследовать на сходимость и равномерную сходимость функциональный ряд

$$\sum_{n=1}^{\infty} \frac{1}{n^x + n^{\frac{1}{x}}}$$

на множествах $x \in (0,1), x \in (1,2), x \in (2,+\infty).$

5. Пусть функции $g_1(x) = xe^x$ и $g_2(x) = e^x$, где $x \in \mathbb{R}$. В евклидовом пространстве \mathcal{E} — вещественной линейной оболочке функций g_1 и g_2 — скалярное произведение задано билинейной формой

$$(f,h) = f(0)h(0) + f'(0)h'(0) \quad \forall f, h \in \mathcal{E}.$$

Пусть билинейная форма $\mathcal B$ имеет вид:

$$\mathcal{B}(f,h) = f(1)h(1) \quad \forall f, h \in \mathcal{E}.$$

 ${f a}$)(4) Найти в базисе $\{g_1,g_2\}$ матрицу самосопряжённого преобразования ${\cal A}$ пространства ${\cal E}$, для которого выполнено равенство:

$$\mathcal{B}(f,h) = (\mathcal{A}f,h) \quad \forall f,h \in \mathcal{E}.$$

 $\mathbf{6}$)(2) Найти ортонормированный базис из собственных функций преобразования $\mathcal A$ и указать матрицу $\mathcal A$ в найденном базисе.

ОТВЕТЫ

для поступающих на второй курс

1.(6) Вычислить частичные пределы числовой последовательности

$$x_n = n\cos\left(\pi\sqrt{n^2 + n}\right) \quad \forall n \in \mathbb{N}.$$

Otbet: $\pm \frac{\pi}{8}$.

Решение: $x_n = n\cos\left(\pi n + \frac{\pi}{2} - \frac{\pi}{8n} + O\left(\frac{1}{n^2}\right)\right) = (-1)^n \frac{\pi}{8} + O\left(\frac{1}{n}\right).$

Инструкция: Разложен аргумент косинуса — три очка.

2.(6) Вычислить предел

$$\lim_{x \to +\infty} \left(\int_{0}^{x} \left(t \operatorname{arctg} \frac{1}{t} \right) dt - x \right).$$

Ответ: $-\frac{\pi}{4}$.

Решение:

$$\int_{0}^{x} \left(t \operatorname{arctg} \frac{1}{t} \right) dt = \frac{x^{2}}{2} \operatorname{arctg} \frac{1}{x} + \frac{x}{2} - \frac{\operatorname{arctg} x}{2} \stackrel{(x \to +\infty)}{=} x - \frac{\operatorname{arctg} x}{2} + O\left(\frac{1}{x}\right).$$

Инструкция: Вычислен интеграл — три очка.

- **3.** Пусть матрица Грама векторов \vec{a} и \vec{b} имеет вид $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$.
- \mathbf{a})(2) Найти длину вектора $\left[\vec{a},\left[\vec{a},\vec{b}\right]\right]$.
- $\mathbf{6}$)(4) Найти все векторы \vec{c} , удовлетворяющие уравнению

$$\left[\left[\vec{a}, \vec{b} \right], \vec{c} \right] = \vec{a} + \vec{b}$$

Ответ: a) $\sqrt{2}$, б) $\vec{c} = 2\vec{a} - 3\vec{b} + t \left[\vec{a}, \vec{b} \right]$ для любого $t \in \mathbb{R}$.

Решение: а) Имеем:

$$\left| \left[\vec{a}, \left[\vec{a}, \vec{b} \right] \right] \right| = \left| \vec{a} \left(\vec{a}, \vec{b} \right) - b \left(\vec{a}, \vec{a} \right) \right| = \left| \vec{a} - 2\vec{b} \right| =$$

$$= \sqrt{(\vec{a}, \vec{a}) - 4 \left(\vec{a}, \vec{b} \right) + 4 \left(\vec{b}, \vec{b} \right)} = \sqrt{2 - 4 + 4} = \sqrt{2}.$$

б) Пусть
$$\vec{c}=\alpha \vec{a}+\beta \vec{b}+t\left[\vec{a},\vec{b}\right]$$
, тогда

$$\alpha \left[\left[\vec{a}, \vec{b} \right], \vec{a} \right] + \beta \left[\left[\vec{a}, \vec{b} \right], \vec{b} \right] = \vec{a} + \vec{b}, \iff$$

$$\alpha \left(2\vec{b} - \vec{a} \right) + \beta \left(\vec{b} - \vec{a} \right) = \vec{a} + \vec{b}, \iff$$

$$\vec{a} \left(-\alpha - \beta \right) + \vec{b} \left(2\alpha + \beta \right) = \vec{a} + \vec{b}.$$

Следовательно, $\alpha+\beta=1, 2\alpha+\beta=1,$ откуда $\alpha=2, \beta=-3.$ Итого, получаем

$$\vec{c} = 2\vec{a} - 3\vec{b} + t \left[\vec{a}, \vec{b} \right] \quad \forall t \in \mathbb{R}.$$

Инструкция: а) Понимает, чему равны длины векторов \vec{a} и \vec{b} и их скалярное произведение — одно очко. б) Вектор \vec{c} разложен по базису $\left\{\vec{a}, \vec{b}, \left[\vec{a}, \vec{b}\right]\right\}$ с неизвестными координатами — одно очко. Получена линейная система уравнений на эти координаты — два очка.

4.(6) Исследовать на сходимость и равномерную сходимость функциональный ряд

$$\sum_{n=1}^{\infty} \frac{1}{n^x + n^{\frac{1}{x}}}$$

на множествах $x \in (0,1), x \in (1,2), x \in (2,+\infty).$

Ответ: сходится неравномерно на (0,1) и (1,2) и равномерно на $(2,+\infty)$.

Решение: При $x \in (0,1)$ имеем $\frac{1}{x} > 1$ и поэтому

$$\frac{1}{n^x+n^{\frac{1}{x}}}<\frac{1}{n^{\frac{1}{x}}}$$
 — член сходящегося ряда.

При x > 1 имеем

$$\frac{1}{n^x + n^{\frac{1}{x}}} < \frac{1}{n^x}$$
 — член сходящегося ряда.

Следовательно, ряд сходится поточечно при $x>0,\,x\neq 1.$ Далее, при x>2 имеем

$$\frac{1}{n^x + n^{\frac{1}{x}}} < \frac{1}{n^x} < \frac{1}{n^2}$$
 — член сходящегося ряда.

Следовательно, ряд сходится равномерно при x > 2 по признаку Вейерштрасса. На множестве (0,1) или (1,2) имеем: для любого n существует x_n из соответствующего множества вблизи единицы, такой, что

$$\sum_{k=n+1}^{2n} \frac{1}{k^{x_n} + k^{\frac{1}{x_n}}} \ge \frac{1}{2} \lim_{x \to 1} \sum_{k=n+1}^{2n} \frac{1}{k^x + k^{\frac{1}{x}}} = \frac{1}{2} \sum_{k=n+1}^{2n} \frac{1}{k+k} > \frac{n}{8n} = \frac{1}{8}.$$

Следовательно, по отрицанию критерия Коши, на множествах (0,1) и (1,2) нет равномерной сходимости.

Инструкция: Доказана поточечная сходимость при $0 < x \neq 1$, — два очка. Доказана равномерная сходимость на $(2, +\infty)$ — два очка. Доказана неравномерная сходимость на (0, 1) и (1, 2) — два очка.

5. Пусть функции $g_1(x) = xe^x$ и $g_2(x) = e^x$, где $x \in \mathbb{R}$. В евклидовом пространстве \mathcal{E} — вещественной линейной оболочке функций g_1 и g_2 — скалярное произведение задано билинейной формой

$$(f,h) = f(0)h(0) + f'(0)h'(0) \quad \forall f, h \in \mathcal{E}.$$

Пусть билинейная форма \mathcal{B} имеет вид:

$$\mathcal{B}(f,h) = f(1)h(1) \quad \forall f, h \in \mathcal{E}.$$

a)(4) Найти в базисе $\{g_1, g_2\}$ матрицу самосопряжённого преобразования \mathcal{A} пространства \mathcal{E} , для которого выполнено равенство:

$$\mathcal{B}(f,h) = (\mathcal{A}f,h) \quad \forall f,h \in \mathcal{E}.$$

 $\mathbf{6}$)(2) Найти ортонормированный базис из собственных функций преобразования $\mathcal A$ и указать матрицу $\mathcal A$ в найденном базисе.

Ответ: а)
$$A = \begin{pmatrix} e^2 & e^2 \\ 0 & 0 \end{pmatrix}$$
,
б) $\lambda_1 = 0$ и $\lambda_2 = e^2$, $f_1(x) = (x-1)e^x$ и $f_2(x) = xe^x$.

Решение: $\mathcal{B}(g_i,g_j)=e^2$ для i,j=1,2, поэтому матрица B в базисе $\{g_1,g_2\}$ имеет вид

$$B = \begin{pmatrix} e^2 & e^2 \\ e^2 & e^2 \end{pmatrix} = e^2 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

Матрица Грама базиса $\{g_1, g_2\}$ имеет вид

$$\Gamma = \left(\begin{array}{cc} 1 & 1 \\ 1 & 2 \end{array}\right).$$

Поэтому матрица преобразования \mathcal{A} в базисе $\{g_1,g_2\}$ равна

$$A = \Gamma^{-1}B = e^2 \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = e^2 \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} e^2 & e^2 \\ 0 & 0 \end{pmatrix}.$$

Инструкция: Пункт а) — по одному очку за B и Γ . Пункт б) — по одному очку за собственные числа и нормированные собственные векторы.

ОЧКИ	ОЦЕНКА
0-2	НЕУД. (1)
3-4	НЕУД. (2)
5-7	УДОВЛ. (3)
8–10	УДОВЛ. (4)
11-14	XOP. (5)
15–18	XOP. (6)
19–22	XOP. (7)
23–25	ОТЛ. (8)
26-28	ОТЛ. (9)
29–30	ОТЛ. (10)