DÉPLOYEZ UN MODÈLE DANS LE CLOUD

Victoire MOHEBI Janvier 2023

- Problématique & Présentation des données
- Présentation de l'architecture Big Data retenue
- Présentation de l'environnement Big Data dans le cloud
- Prétraitement des images
- V Conclusion & Perspective

- □ Startup « Fruit! » souhaite créer une application mobile grand public de reconnaissance de fruit et affichage d'informations
- Développer des robots cueilleurs intelligents
- ☐ Mettre en place un moteur de classification des images de fruits

- **☐** Mettre en place l'architecture Big Data
 - Augmentation du volume des données
 - Preprocessing et réduction de dimension
- **☐** Moyens : Scripts pyspark + solution évolutive

- Le jeu de donnée « fruit 360 » est disponible sur <u>Kaggle</u>
- Au total 90380 image de 131 fruits et legumes
- Jeu de donnée d'entraînement : 67 692 images (un fruit ou un légume par image).
- Jeu de donnée de test : 22 688 images (un fruit ou un légume par image
- Jeu de données de multi fruits non labellisé : 103

images

■ Taille de l'image : 100 x 100 pixels

HOW BIG IS THE BIG DATA?

- Traiter des volumes de données massifs
- RÈGLE DE 5V :
 Volume, Vitesse, Variété,
 Variabilité, Véracité

ARCHITECTURE BIG DATA: SCALABILITÉ VERTICALE

La distribution, un élément clé dans l'architecture Big Data

- Aajout des RAM du CPU...
- Très cher et que l'on utilisait des hardwares qui étaient voués à être jetés

LES ENJEUX DE PASSAGE À L'ÉCHELLE ?

- Capacité réseau limitée
- Stockage insuffisant, que ce soit en RAM ou sur disque dur
- Puissance de calcul insuffisante

SCALABILITÉ HORIZONTALE

- Passage à l'échelle est plus facile
- Calculs parallélisables dans une architecture distribuée

SPARK; PLATEFORME DE CALCUL DISTRIBUÉ

- Spark (ou Apache Spark), Framework open source de calcul distribué in-memory pour le traitement et l'analyse de données massives
- Stocker et traiter le big data sur différents ordinateurs communiquant via un réseau
- Consiste en la réalisation d'opérations sur des données qui ne sont pas stockées en un seul endroit, mais éparpillées au sein d'un réseau de différentes machines (un « cluster »).

ARCHITECTURE SPARK

Spark peut lancer un traitement sur une machine locale ou sur une machine en ligne

Quel langage de programmation pour utiliser SPARK?

Qu'est-ce que PySpark?

- PySpark , une interface pour Apache Spark en Python
- Ecrire des applications Spark à l'aide d'API Python
- Shell PySpark pour analyser interactivement les données dans un environnement distribué
- PySpark supporte la plupart des fonctionnalités de Spark telles que Spark SQL, Data Frame, Streaming, MLlib (Machine Learning) et Spark Core.

Executer *Spark* en local Configurations requises

Virtual Machine UBUNTU

- JAVA 8+
- Télécharger le fichier TAR de Spark
- Installer le PySpark avec PyPi
- Spécifier des variables d'environnement dans .bashrc
- Lancer un shell spark

Spark UI

- Apache Spark fournit une suite d'interfaces utilisateur/interface utilisateur
- Surveiller l'état de l'application
 Spark/PySpark, la consommation de ressources du cluster Spark et les configurations Spark

CONFIGURATIONS REQUISES

Amazon S3, AWS Identity and Access IAM sont entièrement conformes au Code RGPD

CONFIGURATIONS REQUISES

- Les stratégies de compartiment et les stratégies utilisateur sont deux options de stratégie d'accès disponibles pour accorder des autorisations aux ressources Amazon S3
- Les deux utilisent le langage d'accès Policy basé sur JSON.

Stockage des données sur un système pouvant être mis à l'échelle

Chargement des données dans un format structuré

Prétraitement des données par calcul distribué

Stockage des résultats du prétraitement sous format parquet

CLOUD COMPUTING

- Trois principaux types de services Cloud :
 - Infrastructure en tant que service (laaS),
 - logiciel en tant que service (SaaS)
 - plate-forme en tant que service (PaaS)

- Caractéristiques du modèle Cloud :
 - Plus besoin d'ordinateurs hyper performants
 - Plus besoin d'organiser sa sauvegarde sur CD, clé USB ou autre.
 - Possibilité de partager ses contenus et des ressource avec son réseau personnel.
 - Passage du stockage local (concret) au Cloud,
 - Différentes fournisseurs principaux de cloud :
 - Ex. Amazon Web Service, AZURE, Google cloud, IBM Cloud
- Rapport du cloud avec le big data et le calcul distribué :
 - Louer des tiers des ressources matérielles pour une durée déterminées

PLATFORMES UTILISÉES POUR LE DÉPLOIEMENT SUR LE CLOUD

Amazon WEB SERVICE aws 19

AWS-IAM AWS Identity and Access Management

AWS-S3 **Amazon Simple Storage Service**

Databricks Outil d'ingénierie de données basé sur le cloud

CONFIGURATIONS REQUISES

Cross-account IAM Rôle

Databricks ID account

Création de Workplace

Création et configuration du cluster

PRÉPARER LES IMAGES POUR LA MODÉLISATION

Extraction d'information des images (features extraction)

Réduction de dimensions

Solution envisageable:

Egalisation histogramme et redimensionne ment

Traitement d'image + extraction de features (ORB, SURF, SIFT, etc.)

Algorithme préentraînés (Transfer Learning)

FEATURE EXTRACTION AVEC RESNET50

- Le modèle Resnet50(Residual Network)
- Resnet50 : pré-entraîné sur la base de données <u>Imagenet</u> (plus de 14 millions d'images classées en plus de 20 000 groupes)
- Resnet50 est composé de 50 couches
- La particularité : introduire des connexions résiduelles. Contrairement aux réseaux de neurones convolutifs ave l'architecture linéaire
- Le réseau résiduel, la sortie des couches précédentes est reliée à la sortie de nouvelles couches pour les transmettre toutes les deux à la couche suivante.

LE FORMAT PARQUET?

- Alternative au stockage CSV
- Parquet est un format de fichier open source largement utilisé par l'écosystème Hadoop et SPARK
- Combinaison de formats de stockage en ligne et en colonnes (hybrides)

INSTANCE SPARK

- Extraction du chemin vers chaque fichier
- Obtention de la catégorie de fruit

SPARK UI dans le DATABRICKS

- SPARK UI (interface utilisateur Spark) est l'interface Web
- Surveiller et inspecter les exécutions de tâches Spark dans un navigateur Web
- Le cluster a mis moins de 5 min pour traiter les 2000 images dans le compartiment S3!

Bucket S3 contenant les résultats

Bucket S3 contenant les images initiales

Enregistrement en local des resultats sous format parquet

CONCLUSION

- Solution PaaS (Plateforme as a Service)
- Utilisation de pySpark pour anticiper la forte évolution de la base de données
- Prétraitement des images : Extraction des features avec TL & Réduction dimensionnelle
- Sauvegarde des résultats au format parquet ou csv
- Application utilisable en mode local ou en ligne

Déploiement sur le cloud

- Fournisseur choisit : AWS + Databricks
- Services utilisés : S3 IAM Databricks

Difficultés rencontrée

- Nombreuses possibilités techniques : choix complexes
- Débug complexe dû à des erreurs peu explicites (superposition Spark/Java)

PERSPECTIVE

- Prétraitement des images pour le cas réels (recadrage, plusieurs fruits, arrière plan, etc.)
- Transfer Learning avec fine tuning pour meilleur accuracy pour la classification
- Déployer le modèle en production sur un cluster
- Monitoring...
- Tester d'autres solutions technique pour le déploiement dans le cloud, ex. service EMR d'Amazon Web Services
- Tester d'autre fournisseur de cloud comme Google Cloud Platform (GCP)
 Microsoft AZURE ou IBM Cloud
- Automatisation des tache de collecter des photos

MERCI DE VOTRE ATTENTION!