## Assignment 27 (Robustness I)

In the lecture we have learned about robustness of solutions in optimization. Please answer the following questions.

- What is robustness in the context of optimization? Why is robustness an important factor in single- and multi-objective optimization?
- Due to the uncertainties present in the real-world systems, one must search for solutions that well performs under all possible scenarios.
- Importance: less sensitive to perturbations.
- What is the difference between type I and type II robustness from the lecture? Which additional element is necessary in an optimization algorithm to be able to use type II robustness?
- **Robust I** global minimizer of the mean effective function wrt  $\delta$  neighbourhood.
- **Robust II** Measure the difference between the function value f(x) & the effective function  $f^{P}(x)$  (perturbed function).
- The additional element for type II usability: A user-defined threshold, η

1

• In the following we show a plot of the fitness function in a single-objective maximization problem. For the two solutions A (at  $x_A = 4$ ) and B (at  $x_B = 8$ ), compute their respective mean effective fitness values  $f^{eff}(x_A)$  and  $f^{eff}(x_B)$ . The neighborhood has a size of 3 and consists of the samples at  $x + \delta$  for  $\delta \in \{-1, 0, 1\}$ .



Neighbours and function values of  $x_A \& x_B$ :

| 4+0 = 4 | f(x) = 6                    | 8+0 = 4 | f(x) = 3              |
|---------|-----------------------------|---------|-----------------------|
| 4-1 = 3 | f(x) = 2.9                  | 8-1 = 7 | f(x) = 2              |
| 4+1 = 5 | $f\left(x\right) = 1$       | 8+1 = 9 | f(x) = 2              |
|         | $f^{\text{eff}}(x_A) = 3.3$ |         | $f^{eff}(x_B) = 2.33$ |
|         |                             |         |                       |

• Which of the two solutions A and B is more robust according to type I robustness?

Since we are given a single-objective **maximization** problem comparing the mean effective fitness values we observe solution **A** as more robust.

• Which of the two solutions A and B is more robust according to type II robustness, using a value of  $\eta = 0.3$ ? Use  $f^{eff}$  as the perturbed function.

Using the definition of Type II robustness and  $f^{P}(x) = f^{eff}(x)$ ,

$$\frac{\left\| f^{eff}(x_A) - f(x_A) \right\|}{\left\| f(x_A) \right\|} = \frac{\sqrt{(3.3 - 6)^2}}{\sqrt{6^2}} = 0.45 \le 0.3$$

$$\frac{\left\| f^{eff}(x_B) - f(x_B) \right\|}{\left\| f(x_B) \right\|} = \frac{\sqrt{(2.33 - 3)^2}}{\sqrt{3^2}} = 0.22 < 0.3$$

Hence, solution **B** is more robust.