

Formularium

Academiejaar 2024 - 2025

Timo Vandevenne

Dit document is nog niet klaar, als we nieuwe formules zien zal ik deze toevoegen.

Formule	Variabelen en uitleg
Verdunningsregel: $M_i V_i = M_f V_f$	M Molariteit [mol/l]
	m Molaliteit [mol/kg]
PV = nRT	P Druk
	V Volume
	R Gasconstante
	T Temperatuur [K]
$\Delta \mathbf{U} = q + \mathbf{w}$	ΔU Verandering van interne energie
	q warmteuitwisseling met omgeving
	(q>0: warmte van omgeving in systeem)
	w Arbeid verricht op/door het systeem
	(w>0: arbeid op systeem)
$\mathbf{w} = -P\Delta V$	ΔV Volumeverandering
Wet van Hess:	ΔH^0_{rxn} Reactieenthalpie
$\Delta H_{rxn}^0 = \sum_{i} i \Delta H_f^0(prod.) - \sum_{i} j \Delta H_f^0(reag.)$	(ΔH_{rxn}^{0}) endotherme reactie)
	$\mathbf{H}_{\mathbf{f}}^{0}$ Standaardvormingsenthalpie
	\mathbf{i}, \mathbf{j} coefficiënten in reactievergelijking
$q = ms\Delta T$	m massa [g]
	s Specifieke warmte $\left[\frac{J}{q \circ C}\right]$
$q = C\Delta T$	ΔT Temperatuurverandering
1	C Warmtecapaciteit
$q_{sys} = 0 \Leftrightarrow q_{rxn} + q_{cal} + q_{opl} = 0$ $q_{rxn} = n\Delta H_{rxn}^{0}$	
$q_{rxn} = n\Delta H_{rxn}^0$ $E = h\mathbf{v} = h\frac{c}{\lambda}$	E Energie [J]
λ	h constante van Planck = $6.62 \cdot 10^{-34}$ Js
	$ \mathbf{v} $ frequentie [Hz]
	c Lichtsnelheid = $3 \cdot 10^8 \frac{m}{s}$
	λ Golflengte [m]
$E_{kin,e^-} = h\nu - W$	W Werkfunctie: maat voor hoe sterk e^- in metaal worden
1000,0	vastgehouden
De Broglie: $\lambda = \frac{h}{n} = \frac{h}{mu}$	\mathbf{p} Impuls $\left[\frac{kg \cdot m}{s}\right]$
o p mu	m Massa bewegend deeltje [kg]
	u Snelheid
Wet van Dalton: $P_i = y_i P_{tot}$	P _i Partieeldruk
7, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	y _i Molfractie gas [%]
Wet van Raoult: $P_i = x_i P_i^0$	x _i Molfractie vloeistof [%]
	P _i Dampdruk
Wet van Henry: $P_i = x_i H_i = \frac{C_i}{k}$	C _i Concentratie
'n	H _i Henry constante
	k gegeven constante bij bep. temp
	· · · ·

$K = \frac{[C]^c[D]^d}{[A]^a[B]^b}$	$aA+bB \rightleftharpoons cC+dD$
	K Evenwichtsconstante (K>1: Evenwicht naar rechts)
	[X] Concentratie van stof X
Principe van Le Châtelier	Systeem compenseert uitwendige stress gedeeltelijk
-	• Concentratieverandering
	• Druk & volumeverandering
	• Temperatuursverandering
$\Delta T_b = iK_b m$	ΔT_b Kookpuntsverhoging
$\Delta T_f = iK_f m$	$\Delta m K_f$ Vriespuntsverlaging
, ,	i Van 't Hoff factor: aantal opgeloste deeltjes waarin een
	verbinding voorkomt in oplossing
	$\mathbf{K_b}, \mathbf{K_f}$ karakteristiek van het oplosmiddel
	m Molaliteit [mol/kg]
$\pi = iMRT$	π Osmotische druk
$\Delta P = x_{\text{opgeloste stof}} P_{\text{oplosmiddel}}^0$	ΔP Dampdrukverlaging