Multi-Model Resilient Observer Under False Data Injection Attacks

O. M. Anubi

C. Konstantinou

C. A. Wong*

S. Vedula

Motivation

- Existing resilient observers rely on model of the physical side mainly
- Cleverly crafted FDIA can bypass physics-based only detectors/monitors
- Integrating cyber-side and physical-side model for a resilient estimator is a challenging problem
- Concurrent model can improve state-of-the art resilient estimators
 - ◆ Data-Driven model for the cyber side
 - Physics-based model for physical side

Problem Statement

Setup

- Overview of Resilient Estimators:
 - ◆ Error correction problem
 - ◆ Compressive sensing problem
 - ♦ I_0 minimization (nonconvex) \longrightarrow I_1 minimization (convex)
 - ◆ Above relaxation holds under restricted isometric property (RIP)
- A globally convex approximation to the moving horizon compressive sensing problem with
 - ◆ The RIP condition
 - ◆ Linear time-invariant (LTI) system model
 - Auxiliary data-driven model

$$\underset{\mathbf{e}}{\text{Minimize:}} \|\mathbf{e}\|_{l_0} \quad \text{Subject to:} \quad \tilde{\mathbf{y}} = F\mathbf{e}.$$

Minimize:
$$\|\mathbf{e}\|_{l_1}$$
 Subject to: $\tilde{\mathbf{y}} = F\mathbf{e}$.

$$\mathbf{y}_{(T)} = \begin{bmatrix} \mathbf{y}_{k-T+1} \\ \mathbf{y}_{k-T+2} \\ \vdots \\ \mathbf{y}_{k} \end{bmatrix} \in \mathbb{R}^{mT}, \ \mathbf{u}_{(T-1)} = \begin{bmatrix} \mathbf{u}_{k-T+1} \\ \mathbf{u}_{k-T+2} \\ \vdots \\ \mathbf{u}_{k-1} \end{bmatrix} \in \mathbb{R}^{l(T-1)},$$

$$H_{(T)} = \begin{bmatrix} 0 & 0 & \dots & 0 \\ CB & 0 & \dots & 0 \\ CAB & CB & \dots & 0 \\ \vdots & \vdots & & \vdots \\ CA^{T-2}B & CA^{T-3}B & \dots & CB \end{bmatrix} \in \mathbb{R}^{mT \times l(T-1)}, \, \Phi_{(T)} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{T-1} \end{bmatrix} \in \mathbb{R}^{mT \times n}$$

Problem Statement

■ Optimization Problem:

- ◆ Formulation used for the numerical studies
- Returns an estimate of the state vector
- Current state estimate using physics based model and forward propagation

■ Equivalent Optimization Problem:

- ◆ If a receding horizon T is large enough and (A,C) is observable
- ◆ Then there exists $F_{(T)}$ such that $F_{(T)}\Phi_{(T)}=0$
- ◆ Following is the representation for optimization problem discussed before

Minimize:
$$\|\mathbf{e}\|_1$$

Subject to:
$$\mathbf{f}_{(T)} = F_{(T)}\mathbf{e}$$
$$\|\mathbf{y}_T + \mathbf{e}_T - \boldsymbol{\mu}(\mathbf{z}_{\mathbf{k}})\|_{\Sigma^{-1}(\mathbf{z}_{k})}^2 \leq \chi_m^2(\tau),$$

- \bullet e_{τ} , $y_{\tau} \in \mathbb{R}^m$ is the vector containing the last m elements of the respective vectors e, y in order.
- ◆ Used in the proof of the main theorem

Results

Theorem 1 Given a dataset $\mathcal{D} = \{\mathbf{Z}, \mathbf{Y}\}$ containing historical auxiliary variables $\mathbf{Z} \in \mathbb{R}^{p \times T}$ and corresponding sensor measurements $\mathbf{Y} \in \mathbb{R}^{m \times T}$. Suppose that the latent sensor measurement satisfies the data-driven GPR prior given and that there exists $\tau \in (0, 1)$ such that the true measurement \mathbf{y}_k^* satisfies $p(\mathbf{y}_k^* | \mathbf{z}_k, \mathcal{D}) \geq \tau$. Consider the convex optimization problem discussed before. Let $\hat{\mathbf{e}}$ be the solution of the equivalent form in the previous slide. If $\delta_{2s}(F_{(T)}) < \frac{1}{\sqrt{2}}$, then, for any feasible sparse vector \mathbf{e} ,

$$\|\hat{\mathbf{e}}_T - \mathbf{e}_T\|_2 \le K_1 \mathsf{sat}_1 \left(K_2 \|\mathbf{e} - \mathbf{e}[s]\|_2 \right),$$

where

$$K_1 = \sqrt{2\chi_m^2(\tau)\overline{\sigma}(\mathbf{z}_k)}$$

$$K_2 = K_3 \sqrt{\frac{m-s}{2\chi_m^2(\tau)\overline{\sigma}(\mathbf{z}_k)}},$$

with

$$K_{3} = \frac{2}{\sqrt{s}} \left(\frac{\delta_{2s} + \sqrt{\delta_{2s} \left(\frac{1}{\sqrt{2}} - \delta_{2s} \right)}}{\sqrt{2} \left(\frac{1}{\sqrt{2}} - \delta_{2s} \right)} + 1 \right)$$

and $\overline{\sigma}(\mathbf{z}_k)$ is the biggest singular value of $\Sigma(\mathbf{z}_k)$.

Results

Proof Sketch

- The probability of y_k^* given the auxiliary variable z_k and the dataset D must be greater than or equal to τ
- This implies a quadratic inequality
 - lacktriangle A function of composite measurements, y_T corrupted by the sparse error vector, e_T
- True measurement $y_{(T)}^*$ is a function of $\phi_{(T)}$
 - lacktriangle When multiplied by $F_{(T)}$ equals to zero
- Then using Theorem 1 from the paper,
 - lacklost The optimal \hat{e} satisfies the following inequality
- With both the stated and quadratic inequalities
 - ◆ We can arrive at the stated conditions

$$\mathbf{y}_{(T)} = \mathbf{y}_{(T)}^* + \mathbf{e}_{(T)}$$
$$= \Phi_{(T)} \mathbf{x}_{k-T+1} + H_{(T)} \mathbf{u}_{(T-1)} + \mathbf{e}_{(T)}$$

$$\mathbf{f}_{(T)} = F_{(T)} \left(\mathbf{y}_{(T)} - H \mathbf{u}_{(T-1)} \right)$$
$$= F_{(T)} \mathbf{e}_{(T)}$$

$$\left\| \hat{\mathbf{e}}_{(T)} - \mathbf{e}_{(T)} \right\|_{2} \le K_{3} \left\| \mathbf{e}_{(T)} - \mathbf{e}_{(T)}[s] \right\|_{1}$$

$$\le K_{3} \sqrt{m - s} \left\| \mathbf{e}_{(T)} - \mathbf{e}_{(T)}[s] \right\|_{2}$$

System Model

- IEEE 14-bus system with 5 generators
- Linearized generator swing equations and power flow equations.
- State variables:
 - lacktriangle Generators rotor angles (δ)
 - lacktriangle Generators frequencies (ω)
 - lacktriangle Voltage bus angles (θ) .
- Control inputs:
 - Generators mechanical input P_g with inner PI frequency regulation
 - lacktriangle Bus active power demand P_d .

$$\begin{bmatrix} I & 0 & 0 \\ 0 & M & 0 \\ 0 & 0 & 0 \end{bmatrix} \dot{x} = - \begin{bmatrix} 0 & -I & 0 \\ L_{gg} & D_g & L_{lg} \\ L_{gl} & 0 & L_{ll} \end{bmatrix} x + \begin{bmatrix} 0 & 0 \\ I & 0 \\ 0 & I \end{bmatrix} u$$

$$\theta(t) = -L_{ll}^{-1}(L_{lg}\delta(t) - P_d).$$

$$\begin{bmatrix} \dot{\delta}(t) \\ \dot{\omega}(t) \end{bmatrix} = \begin{bmatrix} 0 & I \\ -M^{-1}(L_{gg} - L_{gl}L_{ll}^{-1}L_{lg}) & -M^{-1}D_g \end{bmatrix} \tilde{x} + \begin{bmatrix} 0 & 0 \\ M^{-1} & -M^{-1}L_{gl}L_{ll}^{-1} \end{bmatrix} u,$$
$$y(t) = \begin{bmatrix} 0 & I \\ -P_{\text{node}}L_{ll}^{-1}L_{lg} & 0 \end{bmatrix} \tilde{x} + \begin{bmatrix} 0 & 0 \\ -P_{\text{node}}L_{ll}^{-1} & 0 \end{bmatrix} u$$

System Model

- Reduced System State Variables:
 - lacktriangle Generators rotor angles (δ)
 - lacktriangle Generators frequencies (ω)
- Measurement Channels y(t):
 - \blacksquare Generator frequency ω , it is also in PI feedback loop
 - The net power injected at each bus P_{net}
- Auxiliary Model:
 - Data collected from NYISO used to build GPR
 - Covariance matrix (Σ) is used to locate mean (μ) within three standard deviations from true values.
- Threat Model:
 - FDIA on at most 30% of the measurements
 - FDIA cannot be detected by BDD (5% threshold)

Results

- The multi model observer is compared against:
 - ◆ Luenberger Observer:
 - Unable to reconstruct actual states under FDIA
 - ◆ I₁- Based Unconstrained Observer:
 - Most of the signals are reconstructed
 - Cascading controller might lead to instability
- The estimated generator rotor angle (δ) is used for comparison

Results

- Outperforms both previous observers
- State Reconstruction:
 - More accurate compared to previous observers
 - Accuracy is due to constraint from auxiliary model
- Performance Analysis:
 - ◆ Root Mean Square value
 - Maximum absolute value of error.

TABLE I ERROR METRIC VALUES

	RMS metric			Max. Abs. metric		
	LO	L10	MMO	LO	L10	MMO
δ_1	2.8801	0.0001	0.0001	6.4274	0.0028	0.0007
δ_2	2.7967	0.0002	0.0001	6.4437	0.0022	0.0013
δ_3	3.2746	0.0018	0.0001	9.7444	0.0387	0.0013
δ_4	3.4786	0.0004	0.0004	10.7019	0.0048	0.0042
δ_5	3.329	0.0011	0.0003	9.1387	0.0121	0.0024

LO: Luenberger Observer, L1O: Unconstrained ℓ₁-based Observer MMO: Proposed Multi-Model Observer

Conclusion and Future Work

■ Conclusion:

- ◆ Novel data-driven constrained I₁ minimization based observer is developed.
- ◆ Figure on the **left** represents implemented schematic.

■ Future Work:

- **◆** Cascading Controller:
 - ➤ Observer as filter
 - > Feedback Loop with controller
 - Figure on the right represents proposed schematic
- Constraint:
 - Used Quadratic constraint
 - Develop sophisticated constraint
- Uncertainties:
 - Study effect of FDIA under system uncertainties

More information:

eng.famu.fsu.edu/~anubi/