Assignment Project Exam Help Computer Graphics

WeChat? 2statores 5 2021 Term 3 Lecture 17

What did we learn last week?

Reflections

- Reflective objects signment Project Exam Help
- Environment Maps
- Cube Maps https://tutorcs.com
- Realtime Cube Maps

Post Processing

WeChat: cstutorcs

- Framebuffers and Render Targets
- Kernel Sampling
- Bloom

What are we covering today?

Shadow Mapping

Casting shadows signment Project Exam Help

Deferred Rendering https://tutorcs.com

- Post processing lighting
 Lights as geometry WeChat: cstutorcs

Shadow Mapping

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Blinn-Phong Lighting and Shadows

What's our current system?

- Calculating fragment Project Exam Help
- angle of light and viewer
 "Bottom" surfaces of officets tutorcs.com
- correctly receive no light No detection of occluding objects: stutorcs
- Surfaces light shouldn't reach will still be lit

What Would Ray Tracing Do?

Light through rays rather than angle calculations

Any rays that Assignment Project Exam Help

Ray Tracing is still expensive tutorcs.com

Something more efficient?
Use our current rendering tech? cstutorcs

What are we missing?

Information needed for shadows

- Blinn-Phong is his signment Project Exam Help
- Ray Tracing would offer collision detection of light rays the crucial information of light rays. The crucial information of light rays.

- Does the light reach specific objects?
 What technique can we use to find out now far the light rays can reach?

Render to a Framebuffer

A common work around to replace Ray Tracing

- When we render, we use a teptroject Exam Help
- It tells us how far away the closest visible objects are we want to know whether light is reaching objects . . .
- Render to a depth buffer from the perspective of the light! WeChat: cstutorcs

Rendering from the Light's Perspective

(Darker is closer, Brighter further away)

A Depth Map from the Light Source

What Information do we get from this?

- A depth buffer will show us the closest visible fragments to the viewer
- From the light source, these are the closest fragments to the light The depth buffer records where the light reaches!

- We record this depth buffer to a texture called the Depth Map How do we use this While rendering from our main camera though?

Remember Model/View/Projection Transforms?

Transforming between perspectives

- While rendering satisfient Project Exam Help
- Transform that fragment position into the light's view Sample from the Depth Map for the fragment's position
- Compare the two depth values: WeChat: cstutorcs
 - Current Fragment Depth
- If the Depth Map sample is lower than the Fragment Depth, the light has not reached the fragment!

Depth Map Testing

Image credit: learnopengl.com

Shadow Mapping

The process

- Render to separate gentlemant Project Exam Helpine
- Prepare a View Transform matrix for every light When rendering a fragment. tutorcs.com
- - Find the fragment position
 - For each light: WeChat: cstutorcs
 - Transform the position into the light's perspective
 - Check depth against the light's depth map
 - If it fails the test, remove the light from the lighting equation
 - Calculate lighting for the fragment using whatever lights remain

Analysis of Shadow Mapping

Pros

- Reasonably a Assignment Project Exam Help
- Efficient in comparison to Ray Tracing https://tutorcs.com

Cons

- Rendering the scene are extra time per light (but it's a simple depth render, not colour at least)
- Is your Depth map accurate enough? Are there sampling artifacts?
- How wide can you render? Enough for 360° point light?

Shadow Acne

I don't know where this name came from!

An artifact of depth snapping Project Exam Help

Depth maps might be on an angle https://tutorcs.com might not get a perfectly correct depth Surfaces are able to cast shadows stutoro

themselves!

Image credit: learnopengl.com

Depth Map Accuracy

Depth Maps have their own texels

- Depth measurements Project Exam Helpall
- An exact depth map can have inaccuracies between:

 The part of the depth tip Sexel that Orcas peom

 - and the actual surface depth
- A surface in full light Cast have quotest

Shadow Bias

We can introduce a Shadow Bias to correct this

- During shadow calculation Project Exam Help
- Move the depth map "into" the object

 Then the depth map never looks like the object is obscuring itself
- This is a partial solution that can lead to "Peter Pan-ing" where the shadow detaches from the object: cstutorcs

Image credit: learnopengl.com

Over Sampling

Sampling outside the Depth Map

Like all textures, the perturbation of the least texture of the least te UV coordinates

- What does this represent: //tutorcs.com
- This point light can shine on the green cube But the object is outside its shadow mapped frustum!
- What sampling settings should we use here?

Correcting Over Sampling

We can't cast shadows if we can't detect obscuring objects

- Anything outside signment Project Exam Help
- What value in our depth map keeps things lit? The maximum, furthest depth, 1.9 com
- This works, unless our object is further than the far plane of our light's frustum (higher than the far plane of our light's
- We can detect a fragment distance higher than 1.0 though
 - If depth map >= 1.0 && fragment distance >= 1.0
 - then apply light to that fragment

More Shadows ...

There's more we don't have time for

- Shadow Mapping teads to cause jagged Exam Help
 - Perspective Aliasing
 - Projective Aliasing https://tutorcs.com
- We'd want to smooth them out
- There are more adv wed realining to for Elsadow Bias also
- We can make shadow mapping more efficient by custom fitting the light's frustum to the scene

Break Time

A story of a Graphics Engine: CryEngine, by Crytek

- CryEngine started as an Nvidja tech demo (1999)
 Was known for much longer possible view distances than other angines
- Far Cry (2004) with Ubisoft
 - o CryEngine gains a rattasi foitutoficis comiler large, open environments
- Crysis series (2007-2013)
 - o "Can it run Crysis?" We tat pater estate pressivare requirements
 - Well known for volumetric lighting/shadows and motion blur
 - CryEngine 3 Lighting demo (2010): https://youtu.be/vPQ3BbuYVh8
 - CryEngine 3 also pushed features like dynamic vegetation and dynamic caustics
- Eventually bought by Amazon as Lumberyard (now Open 3D Engine)

Deferred Rendering

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Limitations of Forward Rendering (our current lighting)

Too many lights? Too many fragments?

- Work per fragment Broject Exam Help in the scene
 - Many of these lights won't even affect the fragment
- Multiple fragments betps://tutowcsngomh other and wasting resources
- Inefficient algorithm Calatin Cottes Was Sed work when there are several lights in a scene
- O(lights * fragments)

What's the solution?

Deferred Rendering

- Defers lighting until after a fragment Project Exame Helpvisible
 - Uses framebuffers storing different information
- Light volumes https://tutorcs.com
 - Lights are rendered as geometry, limiting which fragments they affect
 - o Also treats lights multiplied of the problects, instead of things that affect all objects
- Effectively: O(lights + pixels)

Deferred Rendering Steps

A system that only lights the visible fragment

- We do a first render pass with Project ExamiHelp
- Store the information in some frame buffers

 Each buffer is a standard Screen Live, Come buffer
- Then do lighting for each pixel

WeChat: cstutores

The Geometry Pass

The G-Pass stores information in the G-buffer

Four standard buffes. Project Exam Help

Fragment position

Surface normal

Albedo (diffuse colour)
Specularity (specular Colour)
Specularity (specular Colour)

https://tutorcs.com

Image credit: learnopengl.com

Information per pixel

What can we do with this information?

- The Lighting Passignment Project Exam Help
- Loop through all pixels

 Calculate lighting for each pixel like it was a fragment
 - G-buffer should have all the information we need

WeChat: cstutorcs
How much has this helped?

- In complex scenes with overlapping fragments
- We've reduced the number of lit fragments to exactly the number of pixels

What's next?

Geometry Pass Issues

- We've deferred spignment Project Exam Help
- But we're still applying every light to every pixel (still applying lights that might not have an effect)
- Add a technique to limit which lights apply to which pixels! WeChat: cstutorcs

Restricting Lights

Turning off some of the lights!

- We could try to saignment Project Exam Help
- Radius for attenuation of point lights Cones for spot lights //tutorcs.com
- But if we put this branching into the shader, our parallel GPUs have issues In large scale parallel calculation circulation ci
- They all run the same code in lock step
- Which means we can't use if/else to reduce the amount of work!

Light Volumes

Rendering Lights like they're Geometry

- In the Lighting Assignment Project Exam Help
- Render each light as a sphere (or other simple shapes like cubes)

 o Size based on attenuations.com
- Each light volume will affect certain pixels
- Calculate the light's Wfechathos tutores ly

Image credit: learnopengl.com

Light Volumes Details

Some things to think about

- Rendering Light volumes lowers the number of lighting calculations
 - Each light renders a constant number of pixels, not a multiplication of fragments
- But adds a geometrhttps://tutorcs.com
 - Which is why we use simple objects
- Need to take into action to the light spheres.
 - o If you're inside a sphere, can you see it?
 - Need to adjust culling settings

Deferred Rendering

Pros

• Significantly reassignment Project ExamoHelp

Better the more fragments and lights there are

Cons

- Extra render passesWeChat: cstutorcs
 - G-Pass and Lighting Pass
- Memory usage
 - Storing G-buffer and light geometry
- No differentiation of objects
 - Can't use custom shaders for separate objects

Image credit: Hannes Nevalainen c/o learnopengl.com

What did we learn today?

Advanced Techniques using Framebuffers and Render Targets

- Shadow Mapping Signment Project Exam Help
 - Rendering Depth from the perspective of the light
 - o Detecting intervenir attps://htutorcsacomows
- Deferred Rendering
 - o Defer rendering until the training tie decided
 - Renders all lighting specific information into a G-buffer
 - Use light volumes to limit which fragments are affected by which lights