

Universidade Federal do Ceará	
Disciplina: TÓPICOS AVANÇADOS EM APRENDIZAGEM DE	Código:
MÁQUINA / TÓPICOS ESPECIAIS EM LÓGICA II	CK0255/CKP8377
Professor(a): João Paulo P. Gomes / César Lincoln C. Mattos	
Semestre: 2020.2	
Discente:	Matrícula:

Trabalho 6

Leia as Instruções:

- O trabalho é individual.
- As simulações poderão ser realizadas em quaisquer linguagens de programação.
- Para a avaliação do trabalho deverá ser submetido um arquivo pdf com texto e figuras referentes aos resultados das simulações.
- Para a avaliação do trabalho deverão ser enviados os códigos fonte.

Curso: Ciência da Computação

- 1. Implemente um modelo de **Processos Gaussianos** com kernel RBF para tarefas de regressão unidimensional com ruído de observação Gaussiano. Implemente um procedimento de otimização dos hiperparâmetros do modelo (kernel e verossimilhança) via maximização da evidência. **Esse procedimento é opcional para os alunos de graduação, que podem escolher valores fixos para os hiperparâmetros**.
 - Avalie o seu modelo com os dados **gp_data.csv** fornecidos, reportando o RMSE e NLPD obtidos. Faça o plot da curva predita, indicando a média $\hat{\mu}$ e a incerteza $(\hat{\mu} \pm 2\hat{\sigma})$ predita ao longo do intervalo [-1,1] do domínio.
 - Na otimização dos hiperparâmetros (**pós-graduação**), use métodos baseados em gradientes para facilitar sua implementação, como os do Scipy (https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize).
 - \rightarrow Note que você precisará calcular os gradientes da evidência em relação aos hiperparâmetros.
 - → Opcionalmente, você pode usar o pacote Jax (https://github.com/google/jax) ou outro similar para calcular automaticamente os gradientes.
 - ightarrow O procedimento de otimização deve garantir que os hiperparâmetros do modelo sejam positivos.