

B2

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
23 October 2003 (23.10.2003)

PCT

(10) International Publication Number
WO 03/087399 A1

(51) International Patent Classification⁷: **C12Q 1/26.**
A61K 31/03, 31/12, A61P 3/10

(21) International Application Number: **PCT/SI03/00618**

(22) International Filing Date: 16 April 2003 (16.04.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
0201152-6 17 April 2002 (17.04.2002) SE
60/410,626 13 September 2002 (13.09.2002) US

(71) Applicant (for all designated States except US): **BIOVITRUM AB [SE/SI]**; S-112 76 Stockholm (SE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **GRÖNBERG, Alvar [SE/SI]**; Tuvstarrvägen 7, S-741 42 Knivsta (SE). **WIKSTRÖM, Per [SE/SI]**; Tegelvägen 1 b, S-194 36 Upplands Väsy (SE).

(74) Agent: **HÖGLUND, Lars**; Biovitrum AB, S-112 76 Stockholm (SE).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CI, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CI, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CI, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 03/087399 A1

(54) Title: NAD(P)H OXIDASE INHIBITORS FOR INCREASED GLUCOSE UPTAKE AND TREATMENT OF TYPE II DIABETES

(57) Abstract: The present invention relates to the use of NAD(P)H oxidase inhibitors to increase cellular uptake of glucose and in the treatment and/or prevention of diseases caused by insulin resistance or diseases related thereto, such as type II diabetes. Specifically, the invention relates to a method for identifying an agent useful for the treatment or prophylaxis of a medical condition associated with elevated levels of blood glucose, the method comprising (i) contacting a candidate agent with a mammalian NAD(P)H oxidase or NAD(P)H oxidase complex; and (ii) determining whether said candidate agent inhibits the biological activities of the NAD(P)H oxidase or NAD(P)H oxidase complex.

BEST AVAILABLE COPY

NAD(P)H Oxidase inhibitors for increased glucose uptake and treatment of type II diabetes.

TECHNICAL FIELD

- The present invention relates to the use of NAD(P)H oxidase inhibitors to
- 5 increase cellular uptake of glucose and in the treatment and/or prevention of diseases caused by insulin resistance or diseases related thereto, such as type II diabetes.

BACKGROUND ART

A large number of people suffer, or are predisposed to suffer from disturbances in their metabolism. One such disturbance includes insulin resistance, which is characteristic of the metabolic syndrome (syndrome X), polycystic ovary syndrome, obesity and type II diabetes, diseases that are rapidly growing in number in the western world. These diseases are multi-factorial and their mechanism or physiology are, in the majority of cases, not well characterized or understood. Type II diabetes includes the most prevalent form of diabetes, which results from insulin resistance with an insulin secretory defect. Pharmacological treatments such as metformin and rosiglitazone have an ameliorating effect on insulin resistance and are believed to increase the effectiveness of endogenous insulin and thereby contribute to the lowering of elevated blood glucose levels in type II diabetes patients.

One mechanism whereby insulin resistance may be induced is via elevation of reactive oxygen species (ROS). Although contrasting effects of ROS have been reported on the insulin signal transduction system and glucose transport, it has been shown that prolonged exposure of cells to ROS causes insulin resistance. Insulinomimetic effects of ROS have been reported using muscle cells and adipocytes. Acute exposure of adipocytes to H₂O₂ was shown to activate pyruvate dehydrogenase activity and lipid synthesis [May et al., Journal of Biological Chemistry, 254:9017-21 (1979)]. Some but not all aspects of insulin signaling appear to be activated by H₂O₂. Using L6 myocytes it was shown that H₂O₂ caused a PI3K-dependent activation of PKB and inhibition of GSK3 within 30 min of treatment [Tirosh et al., Journal of Biological Chemistry, 274:10595-602 (1999)]. Prolonged treatment (24 h) of L6 muscle cells and 3T3-L1 adipocytes with a ROS generating system increased the expression of GLUT1 that resulted in elevated basal glucose transport [Kozlovsky et al., Free Radical Biology & Medicine, 23:859-69 (1997); Kozlovsky et al., Journal of Biological Chemistry,

272:33367-72 (1997)]. Treatment of these cell lines with H₂O₂ also interferes with insulin signaling [Rudich et al., American Journal of Physiology, 272:E935-40 (1997)]. Simultaneous treatment with insulin and H₂O₂ was shown to inhibit insulin stimulated glucose transport and glycogen synthesis in spite of intact PKB activation [Blair et al., 5 Journal of Biological Chemistry, 274:36293-9 (1999)]. Pretreatment with ROS inhibited insulin stimulated IRS-1 and PI3K cellular redistribution, PKB serine phosphorylation and glucose transport [Tirosh, Potashnik et al., Journal of Biological Chemistry, 274:10595-602 (1999)]. The antioxidant lipoic acid could prevent these effects [Rudich et al., Diabetologia, 42:949-57 (1999)]. Taken together, these results suggest that insulin 10 signaling involve redox reactions, with some steps that can be mimicked and some that can be inhibited by H₂O₂. Integrating these findings with the demonstration that insulin can stimulate the production of H₂O₂, it can be hypothesized that ROS are involved in insulin signaling and may be responsible for the insulin resistance observed after prolonged treatment with insulin and other agents.

15 Oxidative stress is caused by excess free radical production in cellular metabolism. The free radicals derived from reaction products of oxygen are often termed reactive oxygen species (ROS). A reducing environment inside the cell prevents oxidative damage and can be maintained by the action of antioxidant enzymes and substances, such as superoxide dismutase (SOD), catalase, glutathione, selenium-dependent glutathione, thioredoxin hydroperoxidases, thioredoxin, vitamins C and E, and probably more unknown players.

20 Oxidative stress has been demonstrated in several different diseases and is implicated as an important driving force in the aging process [Finkel et al., Nature, 408:239-47 (2000); Spector, Journal of Ocular Pharmacology & Therapeutics, 16:193-25 201 (2000)]. A growing body of data demonstrate signs of increased oxidative stress in type II diabetes. It is likely that the oxidative stress is contributing to many of the vascular complications occurring in the late stages of the disease but the evidence for oxidative stress as causative factor in the development of insulin resistance and deterioration of beta cell function is still lacking. An inverse relationship between 30 insulin action on glucose disposal and plasma superoxide ion, and a positive relationship between insulin action on glucose disposal and plasma GSH/GSSG ratio have been observed in type 2 diabetic patients during euglycemic hyperinsulinemic clamp [Paolisso et al., Metabolism: Clinical & Experimental, 43:1426-9 (1994)]. Decreased serum vitamin E content, a marker of impaired oxidant/antioxidant status,

was reported to be associated with increased risk of developing type II diabetes [Salonen et al., BMJ, 311:1124-7 (1995)]. In animal experiments it was recently demonstrated that chemically induced oxidative stress exacerbated insulin resistance and hyperglycemia in obese Zucker rats [Laight et al., British Journal of Pharmacology, 128:269-71 (1999)]. There are also indications that beta cell toxic agents like alloxan and streptozotocin that are used to induce experimental animal diabetes act via oxidative stress [Davis et al., Biochemical Pharmacology, 55:1301-7 (1998); Hotta et al., Journal of Experimental Medicine, 188:1445-51 (1998)].

Superoxide can be produced by a number of cellular enzyme systems: NAD(P)H oxidases, xanthine oxidase, lipoxygenases, cyclooxygenase, P-450 monooxygenases, and the enzymes of mitochondrial oxidative phosphorylation. The majority of free radicals are produced by the mitochondria as unwanted by-products of the respiratory chain but the cell also purposely generates free radicals. The cellular defense system of the body utilizes oxygen radicals to kill invading microorganisms and the vascular system uses the nitric oxide radicals as an intermediate in the regulation of vascular tone. Originally, the NAD(P)H oxidase system responsible for production of superoxide that participates in bacterial killing was demonstrated in neutrophils and other phagocyte cells [Segal et al., Annals of the New York Academy of Sciences, 832:215-22 (1997)]. A growing number of experimental data from endothelial cells and other cell types show that ROS can be produced through activation of NAD(P)H-oxidase [Jones et al., American Journal of Physiology, 271:H1626-34 (1996); Krieger-Brauer et al., Journal of Biological Chemistry, 272:10135-43 (1997); Bayraktutan et al., Cardiovascular Research, 38:256-62 (1998)]. When activated, the NAD(P)H oxidase assembles at the plasma membrane and catalyses the single electron reduction of molecular O₂ to superoxide (O₂⁻). In the presence of superoxide dismutase, O₂⁻ dismutates to hydrogen peroxide (H₂O₂) that can be converted to a hydroxyl radical (OH⁻) in the presence of ferrous ions. The list of other free radicals originating from O₂⁻ that can be formed in the cell is longer, and will not be further discussed here. At least five proteins are required for the formation of an active NAD(P)H oxidase complex: the membrane bound cytochrome b558 and the cytosolic proteins, p47^{phox}, p67^{phox}, p40^{phox} and a small GTP-binding protein, Rac-1 or Rac-2 [Abo et al., Journal of Biological Chemistry, 267:16767-70 (1992); Babior, Advances in Enzymology & Related Areas of Molecular Biology, 65:49-95 (1992); Knaus et al., Journal of Biological Chemistry, 267:23575-82 (1992)]. Cytochrome b558 is a flavoprotein with an NAD(P)H-binding

site and consists of two subunits, gp91^{phox} and p22^{phox} [Sumimoto et al., Biochemical & Biophysical Research Communications, 186:1368-75 (1992)].

- The hypoglycemic agent diphenylene iodonium (DPI) has been shown to diminish the rate of mitochondrial respiration by inhibiting NADH dehydrogenase.
- 5 Holland et al. (1973; J. Biol. Chem. 248: 6050-6056) discloses that the enzyme inhibition causes the hypoglycemic action by decreasing mitochondrial oxidation and the hepatic and whole body ATP content (See also Gatley, S.J. & Martin, J.L. (1979) Xenobiotica 9: 539-546). However, it has not been previously shown that agents which inhibit NAD(P)H oxidase would be useful for increasing the activity of the insulin receptor and/or the intracellular insulin-signaling pathway, and thereby be useful against 10 insulin resistance.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a graph depicting the effect of DPI on insulin stimulated glucose 15 transport in L6 cells when treated with different concentrations (0.1–10 µM) of DPI alone for 30 min or together with insulin (200 or 1000 nM) for additional 30 min.

Fig. 2 is a graph depicting the effect of H₂O₂ generated by glucose oxidase (GO) 20 DPI stimulated glucose transport. Differentiated L6 cells were treated with 25 mU/ml GO for 30 min before addition of DPI. After additional 30 min, 200 nM insulin was added and glucose transport was measured after 30 min.

Fig. 3 is a graph depicting blood glucose concentrations during an insulin tolerance test in ob/ob mice treated for 4 days with daily i.p. injections of DPI, 1 mg/kg (n=7), or vehicle (n=8).

25

DISCLOSURE OF THE INVENTION

It has surprisingly been found that inhibition of NAD(P)H oxidase stimulates glucose uptake in rat skeletal muscle cells. A NAD(P)H oxidase complex is putatively involved in down-regulation of insulin signaling via generation of ROS. Thus, pharmacological inhibition of NAD(P)H oxidase activity should increase insulin 30 signaling and restore insulin sensitivity. This surprising effect has not been seen previously and demonstrates the utility of the entire, or parts of, NAD(P)H oxidase complex, which generates ROS, as a tool for finding drugs that can be used for treating type II diabetes, specifically insulin resistance.

Consequently, in a first aspect this invention provides a method for identifying an agent useful for the treatment or prophylaxis of a medical condition associated with elevated levels of blood glucose, said method comprising

- (i) contacting a candidate agent with a mammalian NAD(P)H oxidase or NAD(P)H oxidase complex; and
- 5 (ii) determining whether said candidate agent inhibits the biological activities of the NAD(P)H oxidase or NAD(P)H oxidase complex.

The said medical condition is preferably associated with insulin resistance, such as, in particular, type II diabetes. One clinical definition of diabetes is the so-called 10 fasting glucose level. A patient is diagnosed with diabetes if the amount of glucose is above 126 milligrams per deciliter (mg/dl) measured on two occasions. Impaired fasting glucose and impaired glucose tolerance are associated with the insulin resistance syndrome. An individual can be insulin resistant in the absence of fasting 15 hyperglycemia if an oral glucose tolerance test with 75 g anhydrous glucose dissolved by WHO [World Health Organization, Tech. Rep. Ser., no. 727, (1985)].

In one embodiment of the invention, cells containing the NAD(P)H oxidase or the NAD(P)H oxidase complex may be brought into contact with inhibitors of the 20 NAD(P)H oxidase or the NAD(P)H oxidase complex, followed by monitoring the glucose uptake by these cells, and comparing this activity with that of the NAD(P)H oxidase or the NAD(P)H oxidase complex in the absence of inhibitor. Compounds that affect the glucose uptake of these cells are to be considered as potential drug candidates.

The NAD(P)H oxidase or NAD(P)H oxidase complex is preferably selected from the group consisting of gp91phox, p22phox, Mox2, Nox4, Nox5, DUOX1, 25 DUOX2, (b5+b5R) oxidoreductase, p47phox, p67phox, p40phox, Rac-1, and Rac-2.

The proteins may be of any mammalian species, however, a preferred species is *Homo sapiens*. The nucleotide and amino acid sequences from *Homo sapiens* are disclosed in the enclosed sequence listing.

In one embodiment, the invention includes a method for identifying an agent 30 that increases glucose uptake by a cell. The method includes the following steps: contacting a cell with a candidate agent that inhibits the activity of an NAD(P)H oxidase or an NAD(P)H oxidase complex; measuring glucose uptake by the cell in the presence of the candidate agent; and determining whether the candidate agent increases glucose uptake by the cell.

The method can optionally include an additional step of comparing glucose uptake by the cell in the presence of the candidate agent with glucose uptake by a cell in the absence of the candidate agent.

The method can optionally include a step of contacting the candidate agent with
5 the NAD(P)H oxidase or the NAD(P)H oxidase complex and determining that the candidate agent inhibits the activity of the NAD(P)H oxidase or the NAD(P)H oxidase complex.

In one example, the NAD(P)H oxidase or the NAD(P)H oxidase complex is a
10 human NAD(P)H oxidase or a human NAD(P)H oxidase complex. The NAD(P)H oxidase or the NAD(P)H oxidase complex can optionally be selected from the group consisting of gp91phox, p22phox, Mox2, Nox4, Nox5, DUOX1, DUOX2, (b5+b5R) oxidoreductase, p47phox, p67phox, p40phox, Rac-1, and Rac-2. The nucleic acid and amino acid sequences of exemplary NAD(P)H oxidases and NAD(P)H oxidase complexes are described herein.

15 The cell can be, for example, a muscle cell or an adipocyte.

In some embodiments, the candidate agent is selected from the group consisting of pyridine, imidazole, diethyl pyrocarbonate, chloromercuribenzoic acid, 4-(2-aminomethyl)-sulfonyl fluoride acetovanillone, and derivatives thereof.

In another aspect, the invention features a method for increasing glucose uptake
20 in a cell by contacting a cell with an amount of an inhibitor of an NAD(P)H oxidase or an NAD(P)H oxidase complex effective to increase glucose uptake by the cell. The cell can be, for example, a muscle cell or an adipocyte. The method can optionally include an additional step of detecting an increase in glucose uptake by the cell in response to the contacting of the cell with the inhibitor.

25 In one example, the NAD(P)H oxidase or the NAD(P)H oxidase complex is a human NAD(P)H oxidase or a human NAD(P)H oxidase complex. The NAD(P)H oxidase or the NAD(P)H oxidase complex can optionally be selected from the group consisting of gp91phox, p22phox, Mox2, Nox4, Nox5, DUOX1, DUOX2, (b5+b5R) oxidoreductase, p47phox, p67phox, p40phox, Rac-1, and Rac-2. The nucleic acid and
30 amino acid sequences of exemplary NAD(P)H oxidases and NAD(P)H oxidase complexes are described herein.

In some embodiments, the inhibitor is selected from the group consisting of pyridine, imidazole, diethyl pyrocarbonate, chloromercuribenzoic acid, 4-(2-aminomethyl)-sulfonyl fluoride acetovanillone, and derivatives thereof.

In another aspect, the invention provides a method for the treatment of a medical condition associated with elevated levels of blood glucose, comprising administering to a patient in need thereof an effective amount of an inhibitor or antagonist of NAD(P)H oxidase or NAD(P)H oxidase complex.

5 In one embodiment, the invention features a method for the treatment of a medical condition, including the following steps: selecting an individual diagnosed as having a medical condition characterized by elevated levels of blood glucose; and administering to the individual an amount of an inhibitor of an NAD(P)H oxidase or an NAD(P)H oxidase complex effective to reduce blood glucose levels in the individual.

10 The medical condition can be characterized by, for example, insulin resistance, a need for increased activity of the insulin receptor, and/or a need for increased activity of the intracellular insulin-signaling pathway.

In one example, the medical condition is diabetes, e.g., type II diabetes.

15 In some embodiments, the individual does not have and/or has not been diagnosed as having a disorder (e.g., atherosclerosis) characterized by a vascular injury, e.g., vascular hyperpermeability of endothelial cells. In addition, in some embodiments, the method does not include a step of evaluating a vascular injury (if present) in the individual before and/or after the administration of the inhibitor to the individual.

20 In some embodiments, the method includes an additional step of detecting a reduction in blood glucose levels in the individual in response to the administration of the inhibitor.

25 In one example, the NAD(P)H oxidase or the NAD(P)H oxidase complex is a human NAD(P)H oxidase or a human NAD(P)H oxidase complex. The NAD(P)H oxidase or the NAD(P)H oxidase complex can optionally be selected from the group consisting of gp91phox, p22phox, Mox2, Nox4, Nox5, DUOX1, DUOX2, (b5+b5R) oxidoreductase, p47phox, p67phox, p40phox, Rac-1, and Rac-2. The nucleic acid and amino acid sequences of exemplary NAD(P)H oxidases and NAD(P)H oxidase complexes are described herein.

30 In some embodiments, the inhibitor is selected from the group consisting of pyridine, imidazole, diethyl pyrocarbonate, chloromercuribenzoic acid, 4-(2-aminomethyl)-sulfonyl fluoride acetovanillone, and derivatives thereof.

The inhibitor or antagonist can be identified according to the method as described above. Examples of known inhibitors or antagonists are those selected from the group consisting of pyridine, imidazole, diethyl pyrocarbonate,

- chloromercuribenzoic acid, 4-(2-aminomethyl)-sulfonyl fluoride and acetovanillone, including derivatives thereof. The said inhibitor or antagonist is e.g. a compound having an inhibitory effect on the ROS generating activity of the NAD(P)H oxidase or the NAD(P)H oxidase complex. The inhibitor or antagonist could exert its effect by interacting with the active site or a regulatory site, or both sites, of the NAD(P)H oxidase.

A compound that shows the desirable characteristics with regards to inhibiting the activity of the NAD(P)H oxidase or the NAD(P)H oxidase complex will be further tested in an assay of insulin stimulated glucose uptake in differentiated L6-K1 cells or other skeletal muscle cells, muscle tissue biopsies, adipocytes or adipocyte cell lines. An active compound should stimulate basal and insulin stimulated glucose uptake in a manner similar to the NAD(P)H oxidase inhibitor diphenylene iodonium (DPI). The compounds will preferably be of such nature that they are suited for oral administration, but any route of administration, such as, intravenous, suppository or parental routes will be considered.

In yet another aspect, the invention provides the use of an NAD(P)H oxidase- or NAD(P)H oxidase complex inhibitor or antagonist, as described above, in the manufacture of a medicament for the treatment and/or prevention of a medical condition connected with elevated levels of blood glucose.

As defined herein, the term "prevent" or "treat" is not intended to exclusively mean the complete abolishment of the disease or condition, but is meant that there is complete or some amelioration, so that an improvement over the expected symptomology is clinically observed. An example of one such criterion could be the lowering of blood glucose levels by more than 25%. Other such criteria, well known in the art, could be envisioned.

As defined herein, the term "reactive oxygen species" means compounds selected from the group comprising compounds or compound species such as H₂O₂, OH⁻ and O₂⁻. Compounds such as these will be referred to as "ROS".

As defined herein, the term "NAD(P)H oxidase" or "NAD(P)H oxidase complex" means one of the proteins or any combination of two or more of the proteins selected from the group comprising the membrane bound cytochrome b558 consisting of gp91^{phox} (nucleotide sequence according to SEQ ID NO:1, amino acid sequence according to SEQ ID NO:2), p22^{phox} (nucleotide sequence according to SEQ ID NO:3, amino acid sequence according to SEQ ID NO:4), Mox2 (nucleotide sequence

according to SEQ ID NO:5, amino acid sequence according to SEQ ID NO:6), Nox4 (nucleotide sequence according to SEQ ID NO:7, amino acid sequence according to SEQ ID NO:8), Nox5 (nucleotide sequence according to SEQ ID NO:9, amino acid sequence according to SEQ ID NO:10), DUOX1 (nucleotide sequence according to

5 SEQ ID NO:11, amino acid sequence according to SEQ ID NO:12), p138Tox (DUOX2) (nucleotide sequence according to SEQ ID NO:13, amino acid sequence according to SEQ ID NO:14), (b5+b5R) oxidoreductase (nucleotide sequence according to SEQ ID NO:15, amino acid sequence according to SEQ ID NO:16), and the cytosolic proteins,

p47^{phox} (nucleotide sequence according to SEQ ID NO:17, amino acid sequence

10 according to SEQ ID NO:18), p67^{phox} (nucleotide sequence according to SEQ ID NO:19, amino acid sequence according to SEQ ID NO:20), p40^{phox} (nucleotide

sequence according to SEQ ID NO:21, amino acid sequence according to SEQ ID NO:22), and a small GTP-binding protein, Rac-1, (which has two different amino acid variants), (nucleotide sequence according to SEQ ID NO:23, amino acid sequence

15 according to SEQ ID NO:24 and SEQ ID NO:25, respectively), or Rac-2, (nucleotide sequence according to SEQ ID NO:26, amino acid sequence according to SEQ ID NO:27), which combination gives rise to reactive oxygen species, or other proteins or assemblies of proteins which essentially have NAD(P)H oxidase activity. Preferably, these enzymes contain consensus sequences for FAD- and/or NAD(P)H-binding sites.

20 In addition to the specific NAD(P)H oxidase amino acid and nucleotide sequences described herein, fragments or variants thereof that retain NAD(P)H oxidase activity (or fragments or variants thereof that encode polypeptides that retain such activity) can be used in the methods of the invention (e.g., screening methods).

25 In some embodiments, a polypeptide used in a method of the invention differs from an NAD(P)H oxidase amino acid sequence described herein at one or more residues and yet retains NAD(P)H oxidase activity. The differences are, preferably, differences or changes at a non-essential residue or a conservative substitution. In one embodiment, a polypeptide includes an amino acid sequence that is at least about 60% identical to an NAD(P)H oxidase amino acid sequence described herein or a fragment thereof. Preferably, the polypeptide is at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more identical to an NAD(P)H oxidase amino acid sequence described herein. Preferred polypeptide fragments are at least 10%, preferably at least 20%, 30%, 40%, 50%, 60%, 70%, or more, of the length of an NAD(P)H oxidase amino acid sequence described herein.

As used herein, "% identity" of two amino acid sequences, or of two nucleic acid sequences, is determined using the algorithm of Karlin and Altschul (PNAS USA 87:2264-2268, 1990), modified as in Karlin and Altschul, PNAS USA 90:5873-5877, 1993). Such an algorithm is incorporated into the NBLAST and XBLAST programs of 5 Altschul et al. (J. Mol. Biol. 215:403-410, 1990). BLAST nucleotide searches are performed with the NBLAST program, score = 100, wordlength =12. BLAST protein searches are performed with the XBLAST program, score =50, wordlength=3. To obtain gapped alignment for comparison purposes GappedBLAST is utilized as described in Altschul et al (Nucleic Acids Res. 25:3389-3402, 1997). When utilizing 10 BLAST and GappedBLAST programs the default parameters of the respective programs (e.g., XBLAST and NBLAST) are used to obtain nucleotide sequences homologous to a nucleic acid molecule described herein.

The term "NAD(P)H oxidase activity", as described herein, refers to enzymatic activity of either the NAD(P)H oxidase or the NAD(P)H oxidase complex, as defined 15 herein, whereby reactive oxygen species (ROS) are produced. Such enzymatic activity is readily established and procedures for this are well known to a skilled person. This activity is well known in the art and methods whereby this can be monitored are well known.

The term "inhibiting" with regards to ROS generating activity of the NAD(P)H 20 oxidase or the NAD(P)H oxidase complex is meant the lowering of said activity to the range between 20%-100% of normal activity when measured with said methods. A preferred value of the inhibitory constant K_i is <10 μM, or more preferably <1 μM.

As defined herein, the term "NAD(P)H oxidase inhibitor" means any compound capable of lowering the activity of the NAD(P)H oxidase or the NAD(P)H oxidase 25 complex, according to the above mentioned definition.

When activated, the NAD(P)H oxidase complex assembles at the plasma membrane and catalyses the single electron reduction of molecular O₂ to superoxide (O₂⁻). In the presence of superoxide dismutase, O₂⁻ dismutates to hydrogen peroxide (H₂O₂) that can be converted to a hydroxyl radical (OH⁻) in the presence of ferrous ions. 30 The list of other free radicals originating from O₂⁻ that can be formed in the cell is longer, and will not be further discussed here. Several proteins are required for the formation of an active NAD(P)H oxidase complex and may include: p22phox, Mox2, Nox4, Nox5, DUOX1, DUOX2, (b5+b5R) oxidoreductase, p47phox, p67phox, p40phox, Rac-1, Rac-2 [Lambeth et al. (2000) Trends Biochem. Sci. 25: 459-461].

A fully active complex producing oxygen radicals in the presence of NAD(P)H, FAD, GTP and amphiphilic compounds can be reconstituted *in vitro* with individual recombinant proteins [Rotrosen et al., Journal of Biological Chemistry, 268:14256-60 (1993)].

5 The invention will now be demonstrated by the following examples. These examples are for the purpose of illustration only and are not intended to limit the scope of the invention in any way. The information necessary for carrying out these experiments is supplied in the references. Any variations and adjustments that need to be made for correct function of these assays (variations in pH, concentration ranges, etc) 10 will be apparent for a skilled person.

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Suitable methods and materials are described below, although methods and materials similar or equivalent to those described herein can also be used 15 in the practice or testing of the present invention. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

20

EXAMPLES

EXAMPLE 1: The NAD(P)H oxidase inhibitor DPI increases glucose uptake in rat skeletal muscle cells

25 Cell culture medium, fetal bovine serum, antibiotics, trypsin-EDTA were purchased from Life Technologies. Diphenylene iodonium (DPI), cytidine, bovine insulin, bovine serum albumin, and glucose oxidase were purchased from Sigma. 2-Deoxy-[³H] glucose (specific activity 1102.6 GBq/mmol) was purchased from NEN Life Science Products and 2-Deoxy-[¹⁴C] glucose from Amersham Pharmacia Biotech.
30 Tissue culture plastics were purchased from Becton Dickinson.

Rat skeletal muscle L6-K cells were grown in minimal essential medium (α -MEM Glutamax I) containing 10% fetal bovine serum at 37°C, 5% CO₂. The cells were passaged twice weekly by treatment with trypsin-EDTA and transfer of 1/3 of the cells to new flasks with fresh culture medium. For differentiation into myotubes, 30,000 cells

were seeded in 1 ml in 24-well plates. When the cells were confluent, usually after 3 days, the medium was replaced by differentiation medium consisting of α-MEM, 2% fetal bovine serum and penicillin/streptomycin at a concentration of 100 U/ml and 100 µg/ml, respectively. The medium was replaced every 2-3 days. Between days 4-7, 5 differentiation medium containing 1 mM cytidine was used. The cells were differentiated for 8-10 days before being used in experiments.

On the day before the glucose transport assay, the wells of the culture plate were emptied and 1 ml serum free DMEM containing 5 mM glucose and penicillin/streptomycin was added. In some experiments the cells were treated over night with test 10 compounds in 1 ml and additional treatments were added the next day to give a total volume of 2 ml. In these experiments, insulin (100-1000 nM) was added in 0.2 ml. When all treatments were performed after 20-24 h in serum free medium, a total volume of 1 ml was used. The wells were emptied and 0.5 ml prewarmed PBS without 15 Ca²⁺/Mg²⁺ containing 1 µCi/ml radioactive 2-deoxy-glucose added. After 10 min at 37°C, the wells were emptied and washed three times with cold PBS. The cell monolayer was solubilized in 0.5 ml 0.5 M NaOH for 3 h at room temperature. 400 µl 20 was mixed with 8 ml scintillation fluid (Optiphase, Wallac) and counted in a scintillation counter (Packard TriCarb). Two 10-µl aliquots were used for determination of protein concentration using the method according to Bradford (Anal. Biochem., 1976, 72:248-54) from BioRad.

When differentiated L6 cells are incubated with the NAD(P)H oxidase inhibitor DPI [O'Donnell V.B. et al. (1993) Biochem. J. 290: 41-49] a significant increase in glucose uptake can be observed (Fig. 1). This increase is comparable to or greater than that caused by insulin. This effect is seen when cells are stimulated with 0.1-10 µM DPI 25 for 1 h. A bell-shaped dose response curve for DPI with an optimum at 1 µM is recorded. The effect of suboptimal concentrations of DPI during a 1 h treatment could be stimulated further if insulin is added 30 min after DPI. However, insulin has little additional effect when the maximum effect of DPI is reached in the 1 h protocol (Fig. 1). The effective concentrations at which DPI stimulates glucose transport corresponds 30 well to the concentrations inhibiting NAD(P)H oxidase activity in cell free systems [O'Donnell et al., Biochemical Journal, 290:41-9 (1993)]. These results suggest that DPI stimulates glucose transport via activation of the same mechanism as insulin. On the basis of the above results it is postulated that DPI enhances a constitutive activity of the insulin receptor and/or the intracellular insulin-signaling pathway. The existence of such

a constitutive activity is suggested from experiments in which adipocytes have been transfected with the tyrosine phosphatase PTP1B [Chen et al., Journal of Biological Chemistry, 272:8026-31 (1997)]. These data are compatible with DPI augmenting constitutive intracellular signaling via the same pathway that is used by insulin.

5

EXAMPLE 2: Glucose oxidase reduces the effect of DPI on glucose uptake

Assuming that the enhancing effect of DPI on insulin signaling was due to inhibition of ROS production, it was investigated whether an exogenous source of H₂O₂ could counteract the effect of DPI. To this end, L6 cells were treated with 25 mU/ml of glucose oxidase for 30 min before addition of DPI. Such a treatment has previously been shown to result in a steady production of micromolar concentrations of H₂O₂ that can freely pass the cell membrane and cause inhibition of insulin signaling [Tirosh, Potashnik et al., Journal of Biological Chemistry, 274:10595-602 (1999)].

It was found that glucose oxidase reduced the stimulatory effect of DPI by 68% and insulin stimulated glucose transport by 65% (Fig. 2). The available results suggest that H₂O₂ can counteract the effect of DPI in addition to inducing insulin resistance. This further strengthens the similarity between the effects of insulin and DPI and shows that DPI acts by inhibiting H₂O₂ production. In spite of superoxide being the primary product of NAD(P)H oxidase, H₂O₂ is the main effector in the cell since superoxide is converted to H₂O₂ by superoxide dismutase.

EXAMPLE 3: DPI decreases blood glucose levels in ob/ob mice

Studies were conducted *in vivo*, in an animal model of obesity characterized by insulin resistance. Eight-month old C57BL/6J ob/ob mice (M&B A/S, Denmark) were matched for sex, weight and fasting blood glucose concentrations. The animals were injected intraperitoneally once daily with DPI (1 mg/kg) or water for 4 days. On day 5, the animals were fasted for 2.5 h and then given an i.p. injection of human insulin 0.5 U/kg (Actrapid, Novo Nordisk, Denmark) and their blood glucose levels were monitored for 4 h by sampling from the tail. The glucose concentration was determined using a Glucometer Accutrend Sensor (Roche).

Without any overt side effects of the DPI treatment, the treated animals exhibited significantly lower blood glucose levels than the control group 1-4 h after injection of insulin, suggesting a decreased insulin resistance (Fig. 3).

EXAMPLE 4: Identification of agents inhibiting NAD(P)H oxidase

Methods to be used for identifying compounds that inhibit the activity of the NAD(P)H oxidase complex are illustrated.

(A) Neutrophil membrane and cytosol assay for superoxide mediated

5 cytochrome c reduction (Diatchuk, V. et al. (1997) J. Biol. Chem. 272: 13292-13301). Sources of neutrophil membranes and cytosol from buffy coats of normal donors are obtainable from the Blood Bank. Enzyme cofactors and cytochrome c for detection of superoxide-mediated reduction are commercially available. The assay is based on a color change that occurs upon reduction of cytochrome c. This change can be measured
10 as a change in light absorbance using a standard microplate spectrophotometer.

(B) Neutrophil membrane + recombinant p47^{phox}, p67^{phox} and rac1 for superoxide-mediated cytochrome c reduction (absorbance) (Nisimoto, Y. et al. (1997) J. Biol. Chem. 272: 18834-18841).

15 (C) Fully recombinant NAD(P)H oxidase assay for superoxide mediated cytochrome c reduction [Rotrosen, D. et al. (1993) J. Biol. Chem. 268: 14256-14260].

(D) Fluorescence assay, which measures the interaction between rac and p67^{phox} [Nisimoto, Y. et al. (1997) J. Biol. Chem. 272: 18834-18841]. This assay would limit the screening to detection of compounds interfering with this particular step in the activation of the oxidase. The fluorescent GTP analog 2'-(or-3')-O-(N-methylantraniloyl)-βγ-imidoguanosine 5'-triphosphate (MANT-GMPPNP, available from Molecular Probes), binds tightly to Rac, and shows an increase in fluorescence when p67^{phox} is added, indicating complex formation. Rac1 and Rac2 bind to p67^{phox} with a 1:1 stoichiometry and with Kd values of 120 nM and 60 nM, respectively.

20 (E) Binding assay utilizing ¹²⁵I- or fluorescence labeled mastoparan. Mastoparan is a peptide present in wasp venom that has been shown to inhibit NAD(P)H oxidase activation, most likely via its ability to bind to p67^{phox} [Tisch-Idelson, D., et al. (2001) Biochemical Pharmacology 61: 1063-1071].

25 (F) Test compounds can be analyzed in a nitroblue tetrazolium reduction assay utilizing a thioredoxin-gp91^{phox} fusion protein. This protein has weak diaphorase activity in the presence of NAD(P)H and FAD and is inhibited by DPI.

30 (G) Test compounds can be added in appropriate amounts to cultured cells. The reactive oxygen species released from said cells may be measured with the use of a probe, resorufin, which becomes fluorescent in the presence of hydrogen peroxide and a peroxidase [Zhou, M. et al., (1997) Anal. Biochem., 253: 162-168].

Intracellular production of ROS can be measured with the use of various cell permeable analogs of dichlorofluorescin acetate as described by Xie, J.I. et al. [(1999) J. Biol. Chem. 274: 19323-19328].

CLAIMS

1. A method for identifying an agent that increases glucose uptake by a cell, the method comprising:
 - 5 contacting a cell with a candidate agent that inhibits the activity of an NAD(P)H oxidase or an NAD(P)H oxidase complex;
 - measuring glucose uptake by the cell in the presence of the candidate agent; and determining whether the candidate agent increases glucose uptake by the cell.
- 10 2. The method of claim 1, wherein the NAD(P)H oxidase or the NAD(P)H oxidase complex is a human NAD(P)H oxidase or a human NAD(P)H oxidase complex.
3. The method of claim 1, wherein the cell is a muscle cell.
- 15 4. The method of claim 1, wherein the cell is an adipocyte.
5. The method of claim 1, wherein the NAD(P)H oxidase or the NAD(P)H oxidase complex is selected from the group consisting of gp91phox, p22phox, Mox2, Nox4, Nox5, DUOX1, DUOX2, (b5+b5R) oxidoreductase, p47phox, p67phox, 20 p40phox, Rac-1, and Rac-2.
6. The method of claim 1, wherein the candidate agent is selected from the group consisting of pyridine, imidazole, diethyl pyrocarbonate, chloromercuribenzoic acid, 4-(2-aminomethyl)-sulfonyl fluoride acetovanillone, and derivatives thereof.
- 25 7. The method of claim 1, further comprising comparing glucose uptake by the cell in the presence of the candidate agent with glucose uptake by a cell in the absence of the candidate agent.
- 30 8. The method of claim 1, further comprising contacting the candidate agent with the NAD(P)H oxidase or the NAD(P)H oxidase complex and determining that the candidate agent inhibits the activity of the NAD(P)H oxidase or the NAD(P)H oxidase complex.

9. A method for increasing glucose uptake in a cell, the method comprising contacting a cell with an amount of an inhibitor of an NAD(P)H oxidase or an NAD(P)H oxidase complex effective to increase glucose uptake by the cell.

5 10. The method of claim 9, further comprising detecting an increase in glucose uptake by the cell in response to the contacting of the cell with the inhibitor.

11. The method of claim 9, wherein the cell is a muscle cell.

10 12. The method of claim 9, wherein the cell is an adipocyte.

13. The method of claim 9, wherein the NAD(P)H oxidase or the NAD(P)H oxidase complex is selected from the group consisting of gp91phox, p22phox, Mox2, Nox4, Nox5, DUOX1, DUOX2, (b5+b5R) oxidoreductase, p47phox, p67phox,

15 p40phox, Rac-1, and Rac-2.

14. The method of claim 9, wherein the NAD(P)H oxidase or the NAD(P)H oxidase complex is a human NAD(P)H oxidase or a human NAD(P)H oxidase complex.

20 15. The method of claim 9, wherein the inhibitor is selected from the group consisting of pyridine, imidazole, diethyl pyrocarbonate, chloromercuribenzoic acid, 4-(2-aminomethyl)-sulfonyl fluoride acetovanillone, and derivatives thereof.

25 16. A method for the treatment of a medical condition, the method comprising: selecting an individual diagnosed as having a medical condition characterized by elevated levels of blood glucose; and

administering to the individual an amount of an inhibitor of an NAD(P)H oxidase or an NAD(P)H oxidase complex effective to reduce blood glucose levels in the individual.

30

17. The method of claim 16, further comprising detecting a reduction in blood glucose levels in the individual in response to the administration of the inhibitor.

18. The method of claim 16, wherein the medical condition is characterized by insulin resistance.
19. The method of claim 16, wherein the medical condition is characterized by a
5 need for increased activity of the insulin receptor.
20. The method of claim 16, wherein the medical condition is characterized by a
need for increased activity of the intracellular insulin-signaling pathway.
- 10 21. The method of claim 16, wherein the medical condition is diabetes.
22. The method of claim 21, wherein the medical condition is type II diabetes.
- 15 23. The method of claim 16, wherein the NAD(P)H oxidase or the NAD(P)H
oxidase complex is selected from the group consisting of gp91phox, p22phox, Mox2,
Nox4, Nox5, DUOX1, DUOX2, (b5+b5R) oxidoreductase, p47phox, p67phox,
p40phox, Rac-1, and Rac-2.
- 20 24. The method of claim 16, wherein the NAD(P)H oxidase or the NAD(P)H
oxidase complex is a human NAD(P)H oxidase or a human NAD(P)H oxidase complex.
- 25 25. The method of claim 16, wherein the inhibitor is selected from the group
consisting of pyridine, imidazole, diethyl pyrocarbonate, chloromercuribenzoic acid,
4-(2-aminomethyl)-sulfonyl fluoride acetovanillone, and derivatives thereof.
26. Use of an inhibitor of an NAD(P)H oxidase or an NAD(P)H oxidase
complex, effective to increase glucose uptake by the cell, in the manufacture of a
medicament for increasing glucose uptake in a cell.

Fig. 1

Fig. 2

Fig. 3

SEQUENCE LISTING

<110> Biovitrum AB

<120> New use

<130> BV-1000

<160> 27

<170> PatentIn version 3.1

<210> 1

<211> 4266

<212> DNA

<213> Homo sapiens

<400> 1
cttcctctgc caccatgggg aactgggctg tgaatgaggg gctctccatt tttgtcattc 60
tggtttggct ggggttgaac gtcttcctct ttgtctggta ttaccgggtt tatgatattc 120
cacctaagtt cttttacaca agaaaacttc ttgggtcagc actggcactg gccagggccc 180
ctgcagcctg cctgaatttc aactgcatgc tgattctctt gccagtctgt cgaaatctgc 240
tgtccttcct caggggttcc agtgcgtgct gctcaacaag agtgcagaaga caactggaca 300
ggaatctcac ct当地ataaa atgggtggcat ggatgattgc acttcactct gc当地attcaca 360
ccattgcaca tctt当地taat gt当地aatggt gt当地aatgc cc当地gtcaat aattctgatc 420
ctt当地ttagt agcactctct gaacttggag acaggcaaaa t当地aaagttat ct当地attttg 480
ctcgaaagag aataaagaac cctgaaggag gc当地gtacct ggctgtgacc ct当地tggcag 540
gc当地actgg agt当地tcatc acgctgtgcc tc当地t当地taat tatcacttcc tcc当地caaaa 600
ccatccggag gt当地tacttt gaagtctttt ggtacacaca tc当地tctttt gt当地tcttct 660
tc当地tggct tgccatccat ggagctgaac gaattgtacg tggcagacc gc当地agagtt 720
tggctgtgca taatataaca gtttgtgaac aaaaaatctc agaatgggaa aaaataaagg 780
aatgccc当地 cc当地tactttt gctggaaacc ctc当地tatgac ttggaaatgg atagtggtc 840
ccatgtttct gt当地tctgt gagaggttgg tgctggctttt gctactcaa cagaagggtgg 900
tc当地t当地ccaa ggtggctact caccccttca aaaccatcga gctacagatg aagaagaagg 960
ggttcaaaaat ggaagtgaa caatacattt ttgtcaagtg cccaaagggtg tccaagctgg 1020
agtggcaccc tt当地tactg acatccgccc ctgaggaaga ct当地t当地tagt atccatatcc 1080
gc当地ctgtgg ggactggaca gaggggtgt tcaatgcttg tggctgtgat aaggcaggagt 1140
ttcaagatgc gtggaaacta ccttaagatag cggttgc当地gg gccc当地tggc actgccc当地gt 1200
aagatgtgtt cagctatgag gtgggtatgt tagtgggagc agggattggg gtc当地acaccct 1260

tccatccat tctcaagtca gtctggtaca aatattgcaa taacgccacc aatctgaagc	1320
tcaaaaagat ctacttctac tggctgtgcc gggacacaca tgcctttag tggtttcag	1380
atctgctgca actgctggag agccagatgc agggaaaggaa caatgccgc ttctcagct	1440
acaacatcta cctcaactggc tggatgagt ctcaggccaa tcactttgt gtgcaccatg	1500
atgaggagaa agatgtgatc acaggcctga aacaaaagac tttgtatgga cggcccaact	1560
gggataatga attcaagaca attgcaagtc aacaccctaa taccagaata ggagtttcc	1620
tctgtggacc tgaagccttg gctgaaaccc tgagtaaaca aagcatctcc aactctgagt	1680
ctggccctcg gggagtgcatt tcattttca acaaggaaaa cttctaactt gtctcttcca	1740
tgagggaaata aatgtgggtt gtgctgccaa atgctaaat aatgctaatt gataatataa	1800
atacccctg cttaaaaatg gacaaaaaga aactataatg taatggttt cccttaaagg	1860
aatgtcaaag attgtttgat agtataagt tacatttatg tggagctcta tggtttgag	1920
agcacttttcaaaacattat tcattttt tcctctcagt aatgtcagtg gaagtttaggg	1980
aaaagattct tggactcaat tttagaatca aaaggaaaag gatcaaagg ttcagtaact	2040
tccctaagat tatgaaactg tgaccagatc tagccatct tactccaggt ttgatactct	2100
ttccacaata ctgagctgcc tcagaatccct caaaatcagt ttttatattc cccaaaagaa	2160
gaaggaaaacc aaggagtagc tatatatattc tactttgtgt cattttgcc atcattatta	2220
tcatactgaa ggaaattttc cagatcatta ggacataata catgttgaga gtgtctcaac	2280
acttattatg gacagtatttgc acatctgagc atactccagt ttactaatac agcaggtaa	2340
ctggccaga tgttcttct acagaagaat attggattga ttggagttaa tgtaataactc	2400
atcatttacc actgtgcttg gcagagagcg gatactcaag taagtttgat taaatgaatg	2460
aatgaatttta gaaccacaca atgccaagat agaattaatt taaagcctta aacaaaattt	2520
atctaaagaa ataacttcta ttactgtcat agaccaaagg aatctgattc tcccttaggt	2580
caagaacagg ctaaggatac taaccaatag gattgcctga agggttctgc acattcttac	2640
ttgaagcatg aaaaaagagg gttggaggtg gagaattaac tcctgcccatt gactctggct	2700
catctagttcc tgctccttgt gctataaaat aaatgcagac taatttcctg cccaaagtgg	2760
tcttctccag ctagccctta tgaatattga acttaggaat tgtgacaaat atgtatctga	2820
tatggtcatt tgttttaat aacacccacc ccttattttc cgtaaataca cacacaaaat	2880
ggatcgcatc tgtgtgacta atggtttatt tgtattatcatcatcatc atcctaaaat	2940
taacaaccca gaaacaaaaa tctctataca gagatcaaat tcacactcaa tagtatgttc	3000
tgaatataatg ttcaagagag agtctctaaa tcactgttag tggccaaag agcagggtt	3060

3/61

tcttttgg	ttt cttagaactg ctcccatttc tgggaactaa aaccagttt atttccccca	3120
cccccgg	gg ccacaaatgt ttagaactct tcaacttcgg taatgaggaa gaaggagaaa	3180
gagctgggg	gggg aagggcagaa gactggttt ggagggaaag gaaataagga gaaaagagaa	3240
tgggagagt	tg agagaaaata aaaaaggcaa aagggagaga gaggggaagg gggctctcata	3300
ttggtcattc	cctgccccag atttcttaaa gtttgatatg tatagaatat aattgaagga	3360
ggtatacaca	tactgatgtt gtttgatta tctatggtat tgaatctttt aaaaatctggt	3420
cacaat	ttt gatgctgagg gggattattc aagggactag gatgaactaa ataagaactc	3480
agttgttctt	tgtcatacta ctattcctt cgtctccag aatcctcagg gcactgaggg	3540
taggtctgac	aaataaggcc tgctgtgcga atatagcctt tctgaaatgt accaggatgg	3600
tttctgctt	gagacactt ggtccagcct gttcacactg cacctcaggt atcaattcat	3660
ctattcaaca	gatatttatt gtgttattac tatgagtcag gctctgttta ttgttcaat	3720
tcttacacc	aaagtatgaa ctggagaggg tacctcagtt ataaggagtc tgagaatatt	3780
ggccctttct	aacctatgtg cataattaaa accagctca tttgttgctc cgagagtgtt	3840
tctccaagg	tttctatctt caaaaccaac taagttatga aagtagagag atctgccctg	3900
tgttatccag	ttatgagata aaaaatgaat ataagagtgc ttgtcattat aaaagttcc	3960
tttttatctc	tcaagccacc agctgccagc caccacgagc cagctgccag cctagcttt	4020
tttttttttt	tttttttagc acttagtatt tagcatttat taacaggtac tctaagaatg	4080
atgaagcatt	gttttaatc ttaagactat gaaggtttt cttagttctt ctgctttgc	4140
aattgtgtt	gtgaaatttg aatacttgca ggcttgat gtgaataatt ctgcgggg	4200
acctggaga	taattctacg gggattctt aaaactgtgc tcaactatta aaatgaatga	4260
gcttcc		4266

<210> 2
<211> 570
<212> PRT
<213> Homo sapiens

<400> 2
Met Gly Asn Trp Ala Val Asn Glu Gly Leu Ser Ile Phe Val Ile Leu
1 5 10 15

Val Trp Leu Gly Leu Asn Val Phe Leu Phe Val Trp Tyr Tyr Arg Val
20 25 30

Tyr Asp Ile Pro Pro Lys Phe Phe Tyr Thr Arg Lys Leu Leu Gly Ser
35 40 45

Ala Leu Ala Leu Ala Arg Ala Pro Ala Ala Cys Leu Asn Phe Asn Cys
50 55 60

4/61

Met Leu Ile Leu Leu Pro Val Cys Arg Asn Leu Leu Ser Phe Leu Arg
65 70 75 80

Gly Ser Ser Ala Cys Cys Ser Thr Arg Val Arg Arg Gln Leu Asp Arg
85 90 95

Asn Leu Thr Phe His Lys Met Val Ala Trp Met Ile Ala Leu His Ser
100 105 110

Ala Ile His Thr Ile Ala His Leu Phe Asn Val Glu Trp Cys Val Asn
115 120 125

Ala Arg Val Asn Asn Ser Asp Pro Tyr Ser Val Ala Leu Ser Glu Leu
130 135 140

Gly Asp Arg Gln Asn Glu Ser Tyr Leu Asn Phe Ala Arg Lys Arg Ile
145 150 155 160

Lys Asn Pro Glu Gly Gly Leu Tyr Leu Ala Val Thr Leu Leu Ala Gly
165 170 175

Ile Thr Gly Val Val Ile Thr Leu Cys Leu Ile Leu Ile Ile Thr Ser
180 185 190

Ser Thr Lys Thr Ile Arg Arg Ser Tyr Phe Glu Val Phe Trp Tyr Thr
195 200 205

His His Leu Phe Val Ile Phe Phe Ile Gly Leu Ala Ile His Gly Ala
210 215 220

Glu Arg Ile Val Arg Gly Gln Thr Ala Glu Ser Leu Ala Val His Asn
225 230 235 240

Ile Thr Val Cys Glu Gln Lys Ile Ser Glu Trp Gly Lys Ile Lys Glu
245 250 255

Cys Pro Ile Pro Gln Phe Ala Gly Asn Pro Pro Met Thr Trp Lys Trp
260 265 270

Ile Val Gly Pro Met Phe Leu Tyr Leu Cys Glu Arg Leu Val Arg Phe
275 280 285

Trp Arg Ser Gln Gln Lys Val Val Ile Thr Lys Val Val Thr His Pro
290 295 300

Phe Lys Thr Ile Glu Leu Gln Met Lys Lys Lys Gly Phe Lys Met Glu
305 310 315 320

Val Gly Gln Tyr Ile Phe Val Lys Cys Pro Lys Val Ser Lys Leu Glu
325 330 335

Trp His Pro Phe Thr Leu Thr Ser Ala Pro Glu Glu Asp Phe Phe Ser
340 345 350

Ile His Ile Arg Ile Val Gly Asp Trp Thr Glu Gly Leu Phe Asn Ala
355 360 365

Cys Gly Cys Asp Lys Gln Glu Phe Gln Asp Ala Trp Lys Leu Pro Lys
370 375 380

5/61

Ile Ala Val Asp Gly Pro Phe Gly Thr Ala Ser Glu Asp Val Phe Ser
 385 390 395 400

Tyr Glu Val Val Met Leu Val Gly Ala Gly Ile Gly Val Thr Pro Phe
 405 410 415

Ala Ser Ile Leu Lys Ser Val Trp Tyr Lys Tyr Cys Asn Asn Ala Thr
 420 425 430

Asn Leu Lys Leu Lys Lys Ile Tyr Phe Tyr Trp Leu Cys Arg Asp Thr
 435 440 445

His Ala Phe Glu Trp Phe Ala Asp Leu Leu Gln Leu Leu Glu Ser Gln
 450 455 460

Met Gln Glu Arg Asn Asn Ala Gly Phe Leu Ser Tyr Asn Ile Tyr Leu
 465 470 475 480

Thr Gly Trp Asp Glu Ser Gln Ala Asn His Phe Ala Val His His Asp
 485 490 495

Glu Glu Lys Asp Val Ile Thr Gly Leu Lys Gln Lys Thr Leu Tyr Gly
 500 505 510

Arg Pro Asn Trp Asp Asn Glu Phe Lys Thr Ile Ala Ser Gln His Pro
 515 520 525

Asn Thr Arg Ile Gly Val Phe Leu Cys Gly Pro Glu Ala Leu Ala Glu
 530 535 540

Thr Leu Ser Lys Gln Ser Ile Ser Asn Ser Glu Ser Gly Pro Arg Gly
 545 550 555 560

Val His Phe Ile Phe Asn Lys Glu Asn Phe
 565 570

<210> 3

<211> 687

<212> DNA

<213> Homo sapiens

<400> 3

gcagtgtccc agccgggttc gtgtcgccat gggcagatc gagtgggcca tggggccaa	60
cgagcaggcg ctggcgccg gcctgatcct catcaccggg ggcacatcggtt ccacagctgg	120
gcgcattcacc cagtggtaact ttggtgcccta ctccattgtt gcgggcgtgt ttgtgtgcct	180
gctggagttac ccccgaaaaa agaggaagaa gggctccacc atggagcgct ggggacagaa	240
gcacatgacc gccgtggta agctgttcgg gcccatttacc aggaattact atgttcgggc	300
cgtccctgcattt ctcctgtct cgggtccccgc cggcttcctg ctggccacca tccttgggac	360
cgcctgcctg gccattgcga gcccatttacc cctactggcg gctgtgcgtg gcgagcagtgc	420
gacgccccatc gagcccaagc cccgggagcg gcccagatc ggagggcacca tcaagcagcc	480
gccccagcaac ccccccggc ggcggggcgc cgaggccgc aagaagccca gcgaggagga	540

6/61

ggctgcggcg	gccccccggg	aggccccag	gtcaaccca	tcccggtgac	600
cgacgaggtc	gtgtgacctc	gccccggacc	tgccctccca	ccaggtgcac	660
taaaacgcagc	gaaggccggg	aaaaaaaaaa			687

<210> 4
<211> 195
<212> PRT
<213> Homo sapiens

<400> 4
Met Gly Gln Ile Glu Trp Ala Met Trp Ala Asn Glu Gln Ala Leu Ala
1 5 10 15
Ser Gly Leu Ile Leu Ile Thr Gly Gly Ile Val Ala Thr Ala Gly Arg
20 25 30
Phe Thr Gln Trp Tyr Phe Gly Ala Tyr Ser Ile Val Ala Gly Val Phe
35 40 45
Val Cys Leu Leu Glu Tyr Pro Arg Gly Lys Arg Lys Lys Gly Ser Thr
50 55 60
Met Glu Arg Trp Gly Gln Lys His Met Thr Ala Val Val Lys Leu Phe
65 70 75 80
Gly Pro Phe Thr Arg Asn Tyr Tyr Val Arg Ala Val Leu His Leu Leu
85 90 95
Leu Ser Val Pro Ala Gly Phe Leu Leu Ala Thr Ile Leu Gly Thr Ala
100 105 110
Cys Leu Ala Ile Ala Ser Gly Ile Tyr Leu Leu Ala Ala Val Arg Gly
115 120 125
Glu Gln Trp Thr Pro Ile Glu Pro Lys Pro Arg Glu Arg Pro Gln Ile
130 135 140
Gly Gly Thr Ile Lys Gln Pro Pro Ser Asn Pro Pro Pro Arg Pro Pro
145 150 155 160
Ala Glu Ala Arg Lys Lys Pro Ser Glu Glu Ala Ala Ala Ala Ala
165 170 175
Gly Gly Pro Pro Gly Gly Pro Gln Val Asn Pro Ile Pro Val Thr Asp
180 185 190
Glu Val Val
195

<210> 5
<211> 2044
<212> DNA
<213> Homo sapiens

<400> 5
caaagacaaa ataatttact aggaaagccc ttactaacga cccaacatcc agacacaggt 60

7/61

gagggagaag aaatttcctg acagccgaag agcaacaagt atcatgatgg ggtgctggat	120
tttgaatgag ggtctctcca ccatattagt actctcatgg ctggaaataa attttatct	180
gtttattgac acgttctact ggtatgaaga ggaggagtct ttccattaca cacgagttat	240
tttgggttca acactggctt gggcacgagc atccgcactg tgcctgaatt ttaactgcat	300
gctaattcta atacctgtca gtcgaaacct tatccattc ataagaggaa caagtatttg	360
ctgcagagga ccgtggagga ggcaattaga caaaaacctc agatttcaca aactggtcgc	420
ctatggata gctgttaatg caaccatcca catcggtcg catttcttca acctggaacg	480
ctaccactgg agccagtcgg aggaggccc gggacttctg gccgcacttt ccaagctggg	540
caacacccct aacgagagct acctcaaccc tgtccggacc ttccccacaa acacaaccac	600
tgaattgcta aggacaatag caggcgtcac cggtctggtg atctctctgg cttagtctt	660
gatcatgacc tcgtcaactg agttcatcag acaggcctcc tatgagttgt tctggtacac	720
acaccatgtt ttcatcgctc tcttctcag cctggccatc catggacgg gtcggattgt	780
tcgaggccaa acccaagaca gtctctctct gcacaacatc accttctgtt gagaccgcta	840
tgcagaatgg cagacagtgg cccaatgccc cgtgcctcaa tttctggca aggaacccctc	900
ggcttggaaa tggattttag gccctgtggt cttgtatgca tgtgaaagaa taatttagtt	960
ctggcgattt caacaagaag ttgtcattac caaggtggta agccacccct ctggagtctt	1020
ggaaacttcac atgaaaaaagc gtggctttaa aatggcgcctt gggcagtaca tcttggitgc	1080
gtgcccagcc atatcttcgc tggagtggca ccccttcacc cttacctctg cccccccagga	1140
agacttttc agcgtgcaca tccgggcagc aggagactgg acagcagcgc tactggaggc	1200
ctttggggca gagggacagg ccctccagga gccctggagc ctgccaaggc tggcagtgg	1260
cggggccctt ggaactgccc tgacagatgt atttcaactac ccagtgtgtg tgtgcgtgc	1320
cgcggggatc ggagtcaactc cttcgctgc tcttctgaaa tctatatggt acaaatgcag	1380
tgagggcacag accccactga agctgagcaa ggtgtatttc tactggattt gccgggatgc	1440
aagagctttt gagtggtttg ctgatctttt actctccctg gaaacacgga tgagtgagca	1500
ggggaaaact cacttctga gttatcatat atttcttacc ggctggatg aaaatcaggc	1560
tcttcacata gctttacact gggacgaaaa tactgacgtg attacaggct taaagcagaa	1620
gaccttctat gggaggccc actggAACAA tgagttcaag cagattgcct acaatcaccc	1680
cagcagcagt attggcgtgt tcttctgtgg acctaaagct ctctcgagga cacttcaaaa	1740
gatgtgccac ttgtattcat cagctgaccc cagaggtgtt catttcttatt acaacaagga	1800
gagcttctag actttggagg tcaagtccag gcattgtgtt ttcaatcaag ttattgattc	1860
caaagaactc caccaggaat tcctgtgacg gcctgttgat atgagctccc agttggaaac	1920

tggtaataa taattaacta ttgtgaacag tacactatac catacttcct tagttataa 1980
 ataacatgtc atatacaaca gaacaaaaac atttactgaa attaaaatat attatgttc 2040
 tcca 2044

<210> 6
 <211> 568
 <212> PRT
 <213> Homo sapiens

<400> 6
 Met Met Gly Cys Trp Ile Leu Asn Glu Gly Leu Ser Thr Ile Leu Val
 1 5 10 15

Leu Ser Trp Leu Gly Ile Asn Phe Tyr Leu Phe Ile Asp Thr Phe Tyr
 20 25 30

Trp Tyr Glu Glu Glu Ser Phe His Tyr Thr Arg Val Ile Leu Gly
 35 40 45

Ser Thr Leu Ala Trp Ala Arg Ala Ser Ala Leu Cys Leu Asn Phe Asn
 50 55 60

Cys Met Leu Ile Leu Ile Pro Val Ser Arg Asn Leu Ile Ser Phe Ile
 65 70 75 80

Arg Gly Thr Ser Ile Cys Cys Arg Gly Pro Trp Arg Arg Gln Leu Asp
 85 90 95

Lys Asn Leu Arg Phe His Lys Leu Val Ala Tyr Gly Ile Ala Val Asn
 100 105 110

Ala Thr Ile His Ile Val Ala His Phe Phe Asn Leu Glu Arg Tyr His
 115 120 125

Trp Ser Gln Ser Glu Glu Ala Gln Gly Leu Leu Ala Ala Leu Ser Lys
 130 135 140

Leu Gly Asn Thr Pro Asn Glu Ser Tyr Leu Asn Pro Val Arg Thr Phe
 145 150 155 160

Pro Thr Asn Thr Thr Glu Leu Leu Arg Thr Ile Ala Gly Val Thr
 165 170 175

Gly Leu Val Ile Ser Leu Ala Leu Val Leu Ile Met Thr Ser Ser Thr
 180 185 190

Glu Phe Ile Arg Gln Ala Ser Tyr Glu Leu Phe Trp Tyr Thr His His
 195 200 205

Val Phe Ile Val Phe Phe Leu Ser Leu Ala Ile His Gly Thr Gly Arg
 210 215 220

Ile Val Arg Gly Gln Thr Gln Asp Ser Leu Ser Leu His Asn Ile Thr
 225 230 235 240

Phe Cys Arg Asp Arg Tyr Ala Glu Trp Gln Thr Val Ala Gln Cys Pro
 245 250 255

Val Pro Gln Phe Ser Gly Lys Glu Pro Ser Ala Trp Lys Trp Ile Leu
260 265 270

Gly Pro Val Val Leu Tyr Ala Cys Glu Arg Ile Ile Arg Phe Trp Arg
275 280 285

Phe Gln Gln Glu Val Val Ile Thr Lys Val Val Ser His Pro Ser Gly
290 295 300

Val Leu Glu Leu His Met Lys Lys Arg Gly Phe Lys Met Ala Pro Gly
305 310 315 320

Gln Tyr Ile Leu Val Gln Cys Pro Ala Ile Ser Ser Leu Glu Trp His
325 330 335

Pro Phe Thr Leu Thr Ser Ala Pro Gln Glu Asp Phe Phe Ser Val His
340 345 350

Ile Arg Ala Ala Gly Asp Trp Thr Ala Ala Leu Leu Glu Ala Phe Gly
355 360 365

Ala Glu Gly Gln Ala Leu Gln Glu Pro Trp Ser Leu Pro Arg Leu Ala
370 375 380

Val Asp Gly Pro Phe Gly Thr Ala Leu Thr Asp Val Phe His Tyr Pro
385 390 395 400

Val Cys Val Cys Val Ala Ala Gly Ile Gly Val Thr Pro Phe Ala Ala
405 410 415

Leu Leu Lys Ser Ile Trp Tyr Lys Cys Ser Glu Ala Gln Thr Pro Leu
420 425 430

Lys Leu Ser Lys Val Tyr Phe Tyr Trp Ile Cys Arg Asp Ala Arg Ala
435 440 445

Phe Glu Trp Phe Ala Asp Leu Leu Leu Ser Leu Glu Thr Arg Met Ser
450 455 460

Glu Gln Gly Lys Thr His Phe Leu Ser Tyr His Ile Phe Leu Thr Gly
465 470 475 480

Trp Asp Glu Asn Gln Ala Leu His Ile Ala Leu His Trp Asp Glu Asn
485 490 495

Thr Asp Val Ile Thr Gly Leu Lys Gln Lys Thr Phe Tyr Gly Arg Pro
500 505 510

Asn Trp Asn Asn Glu Phe Lys Gln Ile Ala Tyr Asn His Pro Ser Ser
515 520 525

Ser Ile Gly Val Phe Phe Cys Gly Pro Lys Ala Leu Ser Arg Thr Leu
530 535 540

Gln Lys Met Cys His Leu Tyr Ser Ser Ala Asp Pro Arg Gly Val His
545 550 555 560

Phe Tyr Tyr Asn Lys Glu Ser Phe
565

<210> 7
<211> 2232
<212> DNA
<213> Homo sapiens

<400> 7
ccgcacaact gtaaccgctg cccccggccgc cgcccgcctcc ttctcgggcc ggccggcaca 60
gagcgcagcg cggcggggcc ggcggcatgg ctgtgtcctg gaggagctgg ctcgccaacg 120
aaggggttaa acacctctgc ctgttcatct ggctctccat gaatgtcctg cttttctgga 180
aacactttctt gctgtataac caagggccag agtataccta cctccaccag atgttgggc 240
taggattgtg tctaaggcaga gcctcagcat ctgttcttaa cctcaactgc agccttatcc 300
ttttaccat gtgccgaaca ctcttggctt acctccgagg atcacagaag gttccaagca 360
ggagaaccag gagattgtt gataaaagca gaacattcca tattacctgt ggtgtacta 420
tctgtatttt ctcaggcgtg catgtggctg cccatctggt gaatgccctc aacttctcag 480
tgaattacag tgaagacttt gttgaactga atgcagcaag ataccgagat gaggatccta 540
aaaaacttctt cttcacaact gttcctggcc tgacaggggt ctgcattggg gtgggtctat 600
tcctcatgat cacagcctct acatatgcaa taagagttc taactatgat atcttctgg 660
atactcataa cctcttctt gtcttctaca tgctgctgac gttgcattgtt tcaggagggc 720
tgctgaagta tcaaactaat ttagataccc accctccgg ctgcattcagt cttaccgaa 780
ccagctctca gaatatttcc ttaccagagt atttctcaga acattttcat gaacctttcc 840
ctgaaggatt ttcaaaaacgg gcagagttt cccagcacaa atttgtgaag atttgtatgg 900
aagagcccaag attccaaagct aattttccac agacttggct ttggatttct ggacctttgt 960
gcctgtactg tgccgaaaga ctttacaggt atatccggag caataagcca gtcaccatca 1020
tttccgtcat aagtcatccc ttagatgtca tggaaatccg aatggtcaaa gaaaatttt 1080
aagcaagacc tggtcagtat attactctac attgtcccag tgtatctgca ttagaaaatc 1140
atccatttac cctcacaatg tgtccaaactg aaaccaaagc aacatttggg gttcatctta 1200
aaatagtagg agactggaca gaacgatttc gagattact actgcctcca tctagtcag 1260
actccgaaat tctgccttc attcaatcta gaaattatcc caagctgtat attgtatggc 1320
cttttggaaag tccattttagt gaatcactga actatgaggt cagcctctgc gtggctggag 1380
gcattggagt aactccattt gcatcaatac tcaacaccct gttggatgac tggaaaccat 1440
acaagcttag aagactatac ttatattggg tatgcagaga tatccagtc ttccgttgg 1500
ttgcagattt actctgtatg ttgcataaca agttttggca agagaacaga cctgactatg 1560
tcaacatcca gctgtaccc agtcaaacag atgggataca gaagataatt ggagaaaaat 1620

11/61

atcatgcact	gaattcaaga	ctgtttatag	gacgtcctcg	gtggaaaactt	ttgtttgatg	1680
aaatagcaaa	atataacaga	ggaaaaacag	ttggtgtttt	ctgttggtga	cccaattcac	1740
tatccaagac	tcttcataaa	ctgagtaacc	agaacaactc	atatggaca	agatttgaat	1800
acaataaaga	gtcttcagc	tgaaaacttt	tgccatgaag	caggactcta	aagaaggaat	1860
gagtgcatt	tctaagactt	tgaaaactcag	cggaatcaat	cagctgtgtt	atgccaaaga	1920
atagtaaggt	tttcttattt	atgattattt	gaaaatggaa	atgtgagaat	gtggcaacat	1980
gaccgtcaca	ttacatgttt	aatctggaaa	ccaaagagac	cctgaagaat	atttgatgtg	2040
atgattcatt	ttcagttctc	aaattaaaag	aaaactgtta	gatgcacact	gttgatttc	2100
atggtggatt	caagaactcc	ctagtgagga	gctgaacttg	ctcaatctaa	ggctgattgt	2160
cgtgttcctc	tttaaattgt	ttttgggtga	acaaatgcaa	gattgaacaa	aattaaaaat	2220
tcattgaagc	tg-					2232

<210> 8
<211> 578
<212> PRT
<213> Homo sapiens

<400> 8
Met Ala Val Ser Trp Arg Ser Trp Leu Ala Asn Glu Gly Val Lys His
1 5 10 15

Leu Cys Leu Phe Ile Trp Leu Ser Met Asn Val Leu Leu Phe Trp Lys
20 25 30

Thr Phe Leu Leu Tyr Asn Gln Gly Pro Glu Tyr His Tyr Leu His Gln
35 40 45

Met Leu Gly Leu Gly Leu Cys Leu Ser Arg Ala Ser Ala Ser Val Leu
50 55 60

Asn Leu Asn Cys Ser Leu Ile Leu Leu Pro Met Cys Arg Thr Leu Leu
65 70 75 80

Ala Tyr Leu Arg Gly Ser Gln Lys Val Pro Ser Arg Arg Thr Arg Arg
 85 90 95

Leu Leu Asp Lys Ser Arg Thr Phe His Ile Thr Cys Gly Val Thr Ile
100 105 110

Cys Ile Phe Ser Gly Val His Val Ala Ala His Leu Val Asn Ala Leu
115 120 125

Asn Phe Ser Val Asn Tyr Ser Glu Asp Phe Val Glu Leu Asn Ala Ala
130 135 140

Arg Tyr Arg Asp Glu Asp Pro Arg Lys Leu Leu Phe Thr Thr Val Pro
145 150 155 160

Gly Leu Thr Gly Val Cys Met Val Val Val Leu Phe Leu Met Ile Thr
165 170 175

Ala Ser Thr Tyr Ala Ile Arg Val Ser Asn Tyr Asp Ile Phe Trp Tyr
 180 185 190
 Thr His Asn Leu Phe Phe Val Phe Tyr Met Leu Leu Thr Leu His Val
 195 200 205
 Ser Gly Gly Leu Leu Lys Tyr Gln Thr Asn Leu Asp Thr His Pro Pro
 210 215 220
 Gly Cys Ile Ser Leu Asn Arg Thr Ser Ser Gln Asn Ile Ser Leu Pro
 225 230 235 240
 Glu Tyr Phe Ser Glu His Phe His Glu Pro Phe Pro Glu Gly Phe Ser
 245 250 255
 Lys Pro Ala Glu Phe Thr Gln His Lys Phe Val Lys Ile Cys Met Glu
 260 265 270
 Glu Pro Arg Phe Gln Ala Asn Phe Pro Gln Thr Trp Leu Trp Ile Ser
 275 280 285
 Gly Pro Leu Cys Leu Tyr Cys Ala Glu Arg Leu Tyr Arg Tyr Ile Arg
 290 295 300
 Ser Asn Lys Pro Val Thr Ile Ile Ser Val Ile Ser His Pro Ser Asp
 305 310 315 320
 Val Met Glu Ile Arg Met Val Lys Glu Asn Phe Lys Ala Arg Pro Gly
 325 330 335
 Gln Tyr Ile Thr Leu His Cys Pro Ser Val Ser Ala Leu Glu Asn His
 340 345 350
 Pro Phe Thr Leu Thr Met Cys Pro Thr Glu Thr Lys Ala Thr Phe Gly
 355 360 365
 Val His Leu Lys Ile Val Gly Asp Trp Thr Glu Arg Phe Arg Asp Leu
 370 375 380
 Leu Leu Pro Pro Ser Ser Gln Asp Ser Glu Ile Leu Pro Phe Ile Gln
 385 390 395 400
 Ser Arg Asn Tyr Pro Lys Leu Tyr Ile Asp Gly Pro Phe Gly Ser Pro
 405 410 415
 Phe Glu Glu Ser Leu Asn Tyr Glu Val Ser Leu Cys Val Ala Gly Gly
 420 425 430
 Ile Gly Val Thr Pro Phe Ala Ser Ile Leu Asn Thr Leu Leu Asp Asp
 435 440 445
 Trp Lys Pro Tyr Lys Leu Arg Arg Leu Tyr Phe Ile Trp Val Cys Arg
 450 455 460
 Asp Ile Gln Ser Phe Arg Trp Phe Ala Asp Leu Leu Cys Met Leu His
 465 470 475 480
 Asn Lys Phe Trp Gln Glu Asn Arg Pro Asp Tyr Val Asn Ile Gln Leu
 485 490 495

13/61

Tyr Leu Ser Gln Thr Asp Gly Ile Gln Lys Ile Ile Gly Glu Lys Tyr
 500 505 510

His Ala Leu Asn Ser Arg Leu Phe Ile Gly Arg Pro Arg Trp Lys Leu
 515 520 525

Leu Phe Asp Glu Ile Ala Lys Tyr Asn Arg Gly Lys Thr Val Gly Val
 530 535 540

Phe Cys Cys Gly Pro Asn Ser Leu Ser Lys Thr Leu His Lys Leu Ser
 545 550 555 560

Asn Gln Asn Asn Ser Tyr Gly Thr Arg Phe Glu Tyr Asn Lys Glu Ser
 565 570 575

Phe Ser

<210> 9
<211> 2223
<212> DNA
<213> Homo sapiens

<400> 9
ggcgacgcgg acggcaacgg ggccatcacc ttcgaggagc tccggacga gctgcagcgc 60
ttccccggag tcatggagaa cctgaccatc agcactgccc actggctgac ggcccccgc 120
ccccgcccac gcccgcgcg gccgcgccag ctgaccgcg cctactggca caaccacgc 180
agccagctgt tctgcctggc cacctatgca ggcctccacg tgctgtctt cgggctggcg 240
gccagcgcgc accgggacct cggcgccagc gtcatggtgg ccaagggtcg tggccagtgc 300
ctcaacttcg actgcagctt catcgccgtg ctgatgctca gacgctgcct cacctggctg 360
cgggcccacgt ggctggctca agtcctacca ctggaccaga acatccagtt ccaccagtt 420
atgggctacg tggtagtggg gctgtccctc gtgcacactg tggctcacac tgtgaacttt 480
gtactccagg ctcaggcggg ggcagccct ttccaggctt gggagctgct gtcaccacg 540
aggcctggca ttggctgggt acacggttcg gcctcccgaa caggtgtcg tctgctgctg 600
ctgctccatcc tcatgttcat ctgctccagt tcctgcatcc gcaggagtgg ccacttttag 660
gtgttctatt ggactcacct gtcctacctc ctcgtgtggc ttctgctcat ctttcatggg 720
cccaacttct ggaagtggct gtcggctt ggaatcttgc ttccctggaa gaaggccatc 780
ggactggcag tgccccat ggcagccgtg tgcacatgg aagtcaaccc cctccctcc 840
aaggtaactc atctccatcc caagcggccc ccttttttc actataagacc tggtgactac 900
ttgtatctga acatccccac cattgctcgc tatgagtggc accccttcac catcagcagt 960
gctcctgagc agaaagacac tatctggctg cacattcggt cccaggcca gtggacaaac 1020
aggctgtatg agtccttcaa ggcacatcagac ccactggcc gtggttctaa gaggctgtcg 1080
aggagtgtga caatgagaaa gagtcaaagg tcgtccaagg gctctgagat acttttgag 1140

aaacacaaaat tctgtaacat caagtgtac atcgatggc cttatggac ccccacccgc 1200
aggatcttg cctctgagca tgccgtgctc atcggggcag gcatcgcat cacccccctt 1260
gcttccattc tgtagactat catgtacagg caccagaaaa gaaagcatac ttgccccagc 1320
tgccagcact cctggatcga aggtgtccaa gacaacatga agctccataa ggtggacttt 1380
atctggatca acagagacca gcgggttttc gagtggtttg tgagcctgct gactaaactg 1440
gagatggacc aggccgagga ggctcaatac ggccgcttcc tggagctgca tatgtacatg 1500
acatctgcac tggcaagaa tgacatgaag gccattggcc tgtagatggc cttgaccc 1560
ctggccaaca aggagaagaa agactccatc acggggctgc agacgcgcac ccagcctggg 1620
cgccctgact ggagcaaggt gttccagaaa gtggctgctg agaagaaggg caaggtgcag 1680
gtcttcttct gtggctcccc agctctggcc aaggtgctga agggccattt tgagaagtcc 1740
ggcttcagat tttccaaga gaatttctag cctcacctct ccaagctctg ccccaagtcc 1800
acaccatggg tctgcttcat cgcatggta taaatgcccc cacagggacc agcctcagat 1860
gaccaccca ataagacaaa gcctaggac cccctaattc tgctcaacag agagaacagg 1920
agaccccaag gggcagatga acttcctcta gaacccaggg gaaggggcag tgccttgttc 1980
agtctgctgt agattctggg gttctgtga aagtggggc accagaggct ggtcacggg 2040
gcttgggggt ggggttcgag gggcagagg gcaaccactc ctccaaacat tttccgacgg 2100
agccttcccc cacatccatg gtcccaaacc tgcccaatca tcacagtcat ttggaaagctt 2160
atttctccgg catcttataa aattgttcaa acctacagta aaaaaaaaaa aaaaaaaaaa 2220
aaa 2223

<210> 10
<211> 565
<212> PRT
<213> *Homo sapiens*

```

<400> 10
Met Glu Asn Leu Thr Ile Ser Thr Ala His Trp Leu Thr Ala Pro Ala
1           5           10          15

```

Pro Arg Pro Arg Pro Arg Arg Pro Arg Gln Leu Thr Arg Ala Tyr Trp
20 25 30

His Asn His Arg Ser Gln Leu Phe Cys Leu Ala Thr Tyr Ala Gly Leu
35 40 45

His Val Leu Leu Phe Gly Leu Ala Ala Ser Ala His Arg Asp Leu Gly
50 55 60

Ala Ser Val Met Val Ala Lys Gly Cys Gly Gln Cys Leu Asn Phe Asp
65 70 75 80

15/61

Cys Ser Phe Ile Ala Val Leu Met Leu Arg Arg Cys Leu Thr Trp Leu
85 90 95

Arg Ala Thr Trp Leu Ala Gln Val Leu Pro Leu Asp Gln Asn Ile Gln
100 105 110

Phe His Gln Leu Met Gly Tyr Val Val Val Gly Leu Ser Leu Val His
115 120 125

Thr Val Ala His Thr Val Asn Phe Val Leu Gln Ala Gln Ala Glu Ala
130 135 140

Ser Pro Phe Gln Phe Trp Glu Leu Leu Leu Thr Thr Arg Pro Gly Ile
145 150 155 160

Gly Trp Val His Gly Ser Ala Ser Pro Thr Gly Val Ala Leu Leu Leu
165 170 175

Leu Leu Leu Leu Met Phe Ile Cys Ser Ser Ser Cys Ile Arg Arg Ser
180 185 190

Gly His Phe Glu Val Phe Tyr Trp Thr His Leu Ser Tyr Leu Leu Val
195 200 205

Trp Leu Leu Leu Ile Phe His Gly Pro Asn Phe Trp Lys Trp Leu Leu
210 215 220

Val Pro Gly Ile Leu Phe Phe Leu Glu Lys Ala Ile Gly Leu Ala Val
225 230 235 240

Ser Arg Met Ala Ala Val Cys Ile Met Glu Val Asn Leu Leu Pro Ser
245 250 255

Lys Val Thr His Leu Leu Ile Lys Arg Pro Pro Phe Phe His Tyr Arg
260 265 270

Pro Gly Asp Tyr Leu Tyr Leu Asn Ile Pro Thr Ile Ala Arg Tyr Glu
275 280 285

Trp His Pro Phe Thr Ile Ser Ser Ala Pro Glu Gln Lys Asp Thr Ile
290 295 300

Trp Leu His Ile Arg Ser Gln Gln Trp Thr Asn Arg Leu Tyr Glu
305 310 315 320

Ser Phe Lys Ala Ser Asp Pro Leu Gly Arg Gly Ser Lys Arg Leu Ser
325 330 335

Arg Ser Val Thr Met Arg Lys Ser Gln Arg Ser Ser Lys Gly Ser Glu
340 345 350

Ile Leu Leu Glu Lys His Lys Phe Cys Asn Ile Lys Cys Tyr Ile Asp
355 360 365

Gly Pro Tyr Gly Thr Pro Thr Arg Arg Ile Phe Ala Ser Glu His Ala
370 375 380

Val Leu Ile Gly Ala Gly Ile Gly Ile Thr Pro Phe Ala Ser Ile Leu
385 390 395 400

16/61

Gln Ser Ile Met Tyr Arg His Gln Lys Arg Lys His Thr Cys Pro Ser
 405 410 415

Cys Gln His Ser Trp Ile Glu Gly Val Gln Asp Asn Met Lys Leu His
 420 425 430

Lys Val Asp Phe Ile Trp Ile Asn Arg Asp Gln Arg Ser Phe Glu Trp
 435 440 445

Phe Val Ser Leu Leu Thr Lys Leu Glu Met Asp Gln Ala Glu Glu Ala
 450 455 460

Gln Tyr Gly Arg Phe Leu Glu Leu His Met Tyr Met Thr Ser Ala Leu
 465 470 475 480

Gly Lys Asn Asp Met Lys Ala Ile Gly Leu Gln Met Ala Leu Asp Leu
 485 490 495

Leu Ala Asn Lys Glu Lys Asp Ser Ile Thr Gly Leu Gln Thr Arg
 500 505 510

Thr Gln Pro Gly Arg Pro Asp Trp Ser Lys Val Phe Gln Lys Val Ala
 515 520 525

Ala Glu Lys Lys Gly Lys Val Gln Val Phe Phe Cys Gly Ser Pro Ala
 530 535 540

Leu Ala Lys Val Leu Lys Gly His Cys Glu Lys Phe Gly Phe Arg Phe
 545 550 555 560

Phe Gln Glu Asn Phe
 565

<210> 11

<211> 5494

<212> DNA

<213> Homo sapiens

<400> 11

gcagagctgc agaggcaccg gacgagagag ggctccggcg gcccagctgg cagccaggcc 60

ggagacaagt tgcagtcccc ggctctggtg acgccgtggc cgccagggtct ccattttggg 120

acatttcaat ccctgagccc ctattattt catcatgggc ttctgcctgg ctctagcatg 180

gacacttctg gttggggcat ggacccctct gggagcttag aaccccatgg cgtggaggt 240

gcagcgattt gatgggttgt acaaacaacct catggagcac agatggggca gcaaaggetc 300

ccggctgcag cgcctggtcc cagccagcta tgcagatggc gtgtaccagc cttggaga 360

accccacctg cccaaacccccc gagaccttag caacaccata tcaaggggcc ctgcagggt 420

ggcctccctg agaaaccgca cagtgttggg ggtcttcctt ggctatcacg tgctttcaga 480

cctggtgagc gtggaaactc cccgctgccc cgccgagttc ctcaacattc gcatccgccc 540

cgagacccc atgttcgacc ccgaccagcg cggggacgtg gtgctgcct tccagagaag	600
ccgctggac cccgagaccg gacggagtcc cagcaatccc cgggaccgg ccaaccagg	660
gacgggctgg ctggacggca gcgcacatcta tggttcctcg cattcctgga gcgcacgc	720
gcggagcttc tccagggac agctggcgtc ggggccccac cccgctttc cccgagactc	780
gcagaacccc ctgctcatgt gggcgccgc cgaccccgcc accgggcaga acgggccccg	840
ggggctgtac gccttcgggg cagagagagg gaaccggaa cccttcctgc aggcgctgg	900
cctgctctgg ttccgctacc acaacctgtg ggcgcagagg ctggcccgcc agcaccaga	960
ctggaggac gaggagctgt tccagcacgc acgcaagagg gtcatcgcca cctaccagaa	1020
catcgctgtg tatgagtggc tgccagctt cctgcagaaa acactcccg agtatacagg	1080
ataccggcca tttctggacc ccagcatctc ctcagagttc gtggcggcct ctgagcagtt	1140
cctgtccacc atgggtcccc ctggcgtcta catgagaaat gccagctgcc acttccaggg	1200
ggtcatcaat cgaaactcaa gtgtctccag agctctccgg gtctgcaaca gctactggag	1260
ccgtgagcac ccaaggctac aaagtgtga agatgtggat gcactgctgc tggcatggc	1320
ctcccagatc gcagagcgag aggaccatgt gttggttgaa gatgtgcggg atttctggcc	1380
tgggccactg aagtttccc geacagacca cctggccagc tgccctgcagc gggccggga	1440
tctgggcctg ccctcttaca ccaaggccag ggcagcaactg ggcttgcctc ccattacccg	1500
ctggcaggac atcaaccctg cactctcccg gagcaatgac actgtactgg aggccacagc	1560
tgccctgtac aaccaggact tatcctggct agagctgctc cttggggac tcctggagag	1620
ccaccgggac cctggaccc tcgtttagcac catcgccctt gaacaatttg tgccgtacg	1680
ggatggtgac cgctactggg ttgagaacac caggaatggg ctgttctcca agaaggagat	1740
tgaagaaatc cgaaatacca ccctgcagga cgtgtggc gctgttatca acattgaccc	1800
cagtgctctg cagccaatg tctttgtctg gcataaagga gacccctgtc cgccagccgag	1860
acagctcagc actgaaggcc tgccagcgtg tgctccctct gttgttgtg actatttga	1920
ggcagtgga tttggcttcg gggcacccat cgggaccctc tggcgttcc ctttggtag	1980
cctgctcagt gcctggattg ttgccccgt ccggatgaga aatttcaaga ggctccaggg	2040
ccaggaccgc cagagcatcg tgtctgagaa gctcgtggga ggcacggaaatg ctttggatg	2100
gcaaggccac aaggagccct gcccggccgt gcttgttac ctgcagcccg ggcagatccg	2160
tgtggtagat ggcaggctca ccgtgtcccg caccatccag ctgcagccctc cacagaaggt	2220
caacttcgtc ctgtccagca accgtggacg ccgcactctg ctgctcaaga tccccaaaggaa	2280
gtatgacctg gtgctgtgt ttaacttggaa ggaagagcg caggcgctgg tggaaaatct	2340

18/61

ccggggagct ctgaaggaga gcgggtttag catccaggag tggagctgc gggagcagga	2400
gctgatgaga gcagctgtga cacggagca gcggaggcac ctcctggaga ctttttcag	2460
gcacctttc tcccagggtgc tggacatcaa ccaggccgac gcagggaccc tgcccctgga	2520
ctcccccag aaggtgcggg aggcctgac ctgtgagctg agcagggccg agtttgcga	2580
gtccctggc ctcaagcccc aggacatgtt tgtggagtc atgttctctc tggctgacaa	2640
ggatggcaat ggctacctgt cttccgaga gttccctggac atcctggtgg tttcatgaa	2700
aggctctcct gagaaaaagt ctcgccttat gttccgcatt tacgactttg atggaatgg	2760
cctcatttcc aaggatgagt tcatcaggat gctgagatcc ttcatcgaga tctccaacaa	2820
ctgcctgtcc aaggcccagc tggctgaggt ggtggagtcc atgttccggg agtcggatt	2880
ccaggacaag gaggaactga catggaaaga ttttcaattc atgctgcggg accacaatag	2940
cgagctccgc ttacgcagc tctgtgtcaa aggggtggag gtgcctgaag tcatcaagga	3000
cctctgccgg cgagccctct acatcagcca ggatatgatc tgcctctc ccagagttag	3060
tgcccgttgt tccgcagcg acattgagac ttagttgaca ctcagagac tgcagtgc	3120
catggacaca gaccctcccc aggagattcg gcggagggtt ggcaagaagg taacgtcatt	3180
ccagcccttg ctgttcactg aggccgcaccc agagaagtcc caacgcagct gtctccacca	3240
gacggtgcaa cagttcaagc gtttcattga gaactaccgg cgccacatcg gtcgtggc	3300
cgtgttctac gccatcgctg gggggctttt cctggagagg gctactact acgccttgc	3360
cgcacatcac acgggcatca cggacaccac ccgcgtggga atcatcctgt cgcccccac	3420
agcagccagc atctcttca ttttcctta catcttgctc accatgtgcc gcaacctcat	3480
caccccttg cgagaaacct tcctcaaccg ctacgtgccc ttgcacgccc ccgtggactt	3540
ccatcgctc attgcctcca ccgcacatcg ctcacagtc ttacacagtg tggccatgt	3600
ggtaatgtg tacctgttct ccatcagccc ctcacgcgtc ctctttgtcc ttttctgg	3660
cctctccat gatgatgggt ctgagttccc ccagaagtat tactggtggt tttccagac	3720
cgtaccaggc ctcacggggg ttgtgtgtct ctcgttgcgtt gccatcatgt atgttcttgc	3780
ctccccaccac ttccggccgc gcagttccg gggcttctgg ctgacccacc acctctacat	3840
cctgtctat gtcctgctca tcatccatgg tagtttgcc ctgatccagc tgccccgtt	3900
ccacatcttc ttccctggc cagcaatcat ctatggggc gacaagctgg tgagcctgag	3960
ccggaagaag gtggagatca gcgtggtgaa ggcggagctg ctgcctcag gagtgcacca	4020
cctgcgggttc cagcggcccc agggcttta gtacaagtca gggcagtggg tgcggatgc	4080
ttgcctggct ctggggacca ccgagttacca ccccttcaca ctgacccatgc cgccccatga	4140
ggacacgctt agcctgcaca tccgggcagc agggccctgg accactcgcc tcagggagat	4200

ctactcagcc	ccgacgggtg	acagatgtgc	cagataccca	aagctgtacc	ttgatggacc	4260
atttggagag	ggccaccagg	agtggcataa	gttgaggtg	tcagtgttag	tgggaggggg	4320
cattgggtc	acccctttg	cctccatcct	caaagacctg	gtctcaagt	catccgtcag	4380
ctgccaagtg	ttctgttaaga	agatctactt	catctgggtg	acgcggaccc	agcgtcagtt	4440
tgagtggctg	gctgacatca	tccgagaggt	ggaggagaat	gaccaccagg	acctgggtgc	4500
tgtgcacatc	tacatcaccc	agctggctga	gaagttcgac	ctcaggacca	ctatgctgta	4560
catctgtgag	cggcacttcc	agaaggtct	gaaccggagt	ctattcacag	gcctgcgc	4620
catcacccac	tttggccgtc	ccccctttga	gcccttcttc	aactccctgc	aggaggtcca	4680
cccccaggtc	cggaagatcg	gggtgtttag	ctgtggccccc	cctggcatga	ccaagaatgt	4740
ggaaaaggcc	tgtcagctca	tcaacaggca	ggaccggact	cacttctccc	accattatga	4800
gaacttctag	gccctgtccc	gggggttctg	cccactgtcc	agttgagcag	aggtttgagc	4860
ccacacacctca	cctctgttct	tcctatttct	ggctgcctca	gccttctctg	atttccacc	4920
tcccaacctt	gttccaggtg	gccatagtca	gtcaccatgt	gtgggctcag	ggaccccccag	4980
gaccaggatg	tgtctcagcc	tggagaaatg	gtgggggggc	agtgtctagg	gactagagtg	5040
agaagtaggg	gagctactga	tttggggcaa	agtgaardt	ctgcttcaga	cttcagaaac	5100
aaatctcaga	agacaagctg	acctgacaag	tactatgtgt	gtgcatgtct	gtatgtgt	5160
tggggcggtg	agtgttaagga	tgca	gtggatgc	tggcatctta	gaaccctccc	5220
tactccata	cctcctcctc	ttctgggctc	cccactgtca	gacgggctgg	caaatgcctt	5280
gcaggaggt	gaggctggac	ccatggcaag	ccatttacag	aaacccactc	ggcaccccccag	5340
tctaacacca	caactaattt	cacccaaggt	tttaagcacg	ttctttcatc	agaccctggc	5400
ccaataccta	tgtatgcaat	gctcctcagc	cctcttcctc	ctgctccagt	agtctccctt	5460
ccaaataaaat	cactttctg	ccaaaaaaaaa	aaaa			5494

<210> 12
<211> 1551
<212> PRT
<213> Homo sapiens

<400> 12

Met Gly Phe Cys Leu Ala Leu Ala Trp Thr Leu Leu Val Gly Ala Trp
1 5 10 15

Thr Pro Leu Gly Ala Gln Asn Pro Ile Ser Trp Glu Val Gln Arg Phe
20 25 30

20/61

Asp Gly Trp Tyr Asn Asn Leu Met Glu His Arg Trp Gly Ser Lys Gly
35 40 45

Ser Arg Leu Gln Arg Leu Val Pro Ala Ser Tyr Ala Asp Gly Val Tyr
50 55 60

Gln Pro Leu Gly Glu Pro His Leu Pro Asn Pro Arg Asp Leu Ser Asn
65 70 75 80

Thr Ile Ser Arg Gly Pro Ala Gly Leu Ala Ser Ile Arg Asn Arg Thr
85 90 95

Val Leu Gly Val Phe Phe Gly Tyr His Val Leu Ser Asp Leu Val Ser
100 105 110

Val Glu Thr Pro Gly Cys Pro Ala Glu Phe Leu Asn Ile Arg Ile Pro
115 120 125

Pro Gly Asp Pro Met Phe Asp Pro Asp Gln Arg Gly Asp Val Val Leu
130 135 140

Pro Phe Gln Arg Ser Arg Trp Asp Pro Glu Thr Gly Arg Ser Pro Ser
145 150 155 160

Asn Pro Arg Asp Pro Ala Asn Gln Val Thr Gly Trp Leu Asp Gly Ser
165 170 175

Ala Ile Tyr Gly Ser Ser His Ser Trp Ser Asp Ala Leu Arg Ser Phe
180 185 190

Ser Arg Gly Gln Leu Ala Ser Gly Pro Asp Pro Ala Phe Pro Arg Asp
195 200 205

Ser Gln Asn Pro Leu Leu Met Trp Ala Ala Pro Asp Pro Ala Thr Gly
210 215 220

Gln Asn Gly Pro Arg Gly Leu Tyr Ala Phe Gly Ala Glu Arg Gly Asn
225 230 235 240

Arg Glu Pro Phe Leu Gln Ala Leu Gly Leu Leu Trp Phe Arg Tyr His
245 250 255

Asn Leu Trp Ala Gln Arg Leu Ala Arg Gln His Pro Asp Trp Glu Asp
260 265 270

Glu Glu Leu Phe Gln His Ala Arg Lys Arg Val Ile Ala Thr Tyr Gln
275 280 285

Asn Ile Ala Val Tyr Glu Trp Leu Pro Ser Phe Leu Gln Lys Thr Leu
290 295 300

Pro Glu Tyr Thr Gly Tyr Arg Pro Phe Leu Asp Pro Ser Ile Ser Ser
305 310 315 320

Glu Phe Val Ala Ala Ser Glu Gln Phe Leu Ser Thr Met Val Pro Pro
325 330 335

Gly Val Tyr Met Arg Asn Ala Ser Cys His Phe Gln Gly Val Ile Asn
340 345 350

21/61

Arg Asn Ser Ser Val Ser Arg Ala Leu Arg Val Cys Asn Ser Tyr Trp
355 360 365

Ser Arg Glu His Pro Ser Leu Gln Ser Ala Glu Asp Val Asp Ala Leu
370 375 380

Leu Leu Gly Met Ala Ser Gln Ile Ala Glu Arg Glu Asp His Val Leu
385 390 395 400

Val Glu Asp Val Arg Asp Phe Trp Pro Gly Pro Leu Lys Phe Ser Arg
405 410 415

Thr Asp His Leu Ala Ser Cys Leu Gln Arg Gly Arg Asp Leu Gly Leu
420 425 430

Pro Ser Tyr Thr Lys Ala Arg Ala Ala Leu Gly Leu Ser Pro Ile Thr
435 440 445

Arg Trp Gln Asp Ile Asn Pro Ala Leu Ser Arg Ser Asn Asp Thr Val
450 455 460

Leu Glu Ala Thr Ala Ala Leu Tyr Asn Gln Asp Leu Ser Trp Leu Glu
465 470 475 480

Leu Leu Pro Gly Gly Leu Leu Glu Ser His Arg Asp Pro Gly Pro Leu
485 490 495

Phe Ser Thr Ile Val Leu Glu Gln Phe Val Arg Leu Arg Asp Gly Asp
500 505 510

Arg Tyr Trp Phe Glu Asn Thr Arg Asn Gly Leu Phe Ser Lys Lys Glu
515 520 525

Ile Glu Glu Ile Arg Asn Thr Thr Leu Gln Asp Val Leu Val Ala Val
530 535 540

Ile Asn Ile Asp Pro Ser Ala Leu Gln Pro Asn Val Phe Val Trp His
545 550 555 560

Lys Gly Asp Pro Cys Pro Gln Pro Arg Gln Leu Ser Thr Glu Gly Leu
565 570 575

Pro Ala Cys Ala Pro Ser Val Val Arg Asp Tyr Phe Glu Gly Ser Gly
580 585 590

Phe Gly Phe Gly Val Thr Ile Gly Thr Leu Cys Cys Phe Pro Leu Val
595 600 605

Ser Leu Leu Ser Ala Trp Ile Val Ala Arg Leu Arg Met Arg Asn Phe
610 615 620

Lys Arg Leu Gln Gly Gln Asp Arg Gln Ser Ile Val Ser Glu Lys Leu
625 630 635 640

Val Gly Gly Met Glu Ala Leu Glu Trp Gln Gly His Lys Glu Pro Cys
645 650 655

Arg Pro Val Leu Val Tyr Leu Gln Pro Gly Gln Ile Arg Val Val Asp
660 665 670

22/61

Gly Arg Leu Thr Val Leu Arg Thr Ile Gln Leu Gln Pro Pro Gln Lys
675 680 685

Val Asn Phe Val Leu Ser Ser Asn Arg Gly Arg Arg Thr Leu Leu Leu
690 695 700

Lys Ile Pro Lys Glu Tyr Asp Leu Val Leu Leu Phe Asn Leu Glu Glu
705 710 715 720

Glu Arg Gln Ala Leu Val Glu Asn Leu Arg Gly Ala Leu Lys Glu Ser
725 730 735

Gly Leu Ser Ile Gln Glu Trp Glu Leu Arg Glu Gln Glu Leu Met Arg
740 745 750

Ala Ala Val Thr Arg Glu Gln Arg Arg His Leu Leu Glu Thr Phe Phe
755 760 765

Arg His Leu Phe Ser Gln Val Leu Asp Ile Asn Gln Ala Asp Ala Gly
770 775 780

Thr Leu Pro Leu Asp Ser Ser Gln Lys Val Arg Glu Ala Leu Thr Cys
785 790 795 800

Glu Leu Ser Arg Ala Glu Phe Ala Glu Ser Leu Gly Leu Lys Pro Gln
805 810 815

Asp Met Phe Val Glu Ser Met Phe Ser Leu Ala Asp Lys Asp Gly Asn
820 825 830

Gly Tyr Leu Ser Phe Arg Glu Phe Leu Asp Ile Leu Val Val Phe Met
835 840 845

Lys Gly Ser Pro Glu Glu Lys Ser Arg Leu Met Phe Arg Met Tyr Asp
850 855 860

Phe Asp Gly Asn Gly Leu Ile Ser Lys Asp Glu Phe Ile Arg Met Leu
865 870 875 880

Arg Ser Phe Ile Glu Ile Ser Asn Asn Cys Leu Ser Lys Ala Gln Leu
885 890 895

Ala Glu Val Val Glu Ser Met Phe Arg Glu Ser Gly Phe Gln Asp Lys
900 905 910

Glu Glu Leu Thr Trp Glu Asp Phe His Phe Met Leu Arg Asp His Asn
915 920 925

Ser Glu Leu Arg Phe Thr Gln Leu Cys Val Lys Gly Val Glu Val Pro
930 935 940

Glu Val Ile Lys Asp Leu Cys Arg Arg Ala Ser Tyr Ile Ser Gln Asp
945 950 955 960

Met Ile Cys Pro Ser Pro Arg Val Ser Ala Arg Cys Ser Arg Ser Asp
965 970 975

Ile Glu Thr Glu Leu Thr Pro Gln Arg Leu Gln Cys Pro Met Asp Thr
980 985 990

23/61

Asp Pro Pro Gln Glu Ile Arg Arg	Arg Phe Gly Lys Lys	Val Thr Ser
995	1000	1005
Phe Gln Pro Leu Leu Phe Thr	Glu Ala His Arg Glu	Lys Phe Gln
1010	1015	1020
Arg Ser Cys Leu His Gln Thr	Val Gln Gln Phe Lys	Arg Phe Ile
1025	1030	1035
Glu Asn Tyr Arg Arg His Ile	Gly Cys Val Ala Val	Phe Tyr Ala
1040	1045	1050
Ile Ala Gly Gly Leu Phe Leu	Glu Arg Ala Tyr Tyr	Tyr Ala Phe
1055	1060	1065
Ala Ala His His Thr Gly Ile	Thr Asp Thr Thr Arg	Val Gly Ile
1070	1075	1080
Ile Leu Ser Arg Gly Thr Ala	Ala Ser Ile Ser Phe	Met Phe Ser
1085	1090	1095
Tyr Ile Leu Leu Thr Met Cys	Arg Asn Leu Ile Thr	Phe Leu Arg
1100	1105	1110
Glu Thr Phe Leu Asn Arg Tyr	Val Pro Phe Asp Ala	Ala Val Asp
1115	1120	1125
Phe His Arg Leu Ile Ala Ser	Thr Ala Ile Val Leu	Thr Val Leu
1130	1135	1140
His Ser Val Gly His Val Val	Asn Val Tyr Leu Phe	Ser Ile Ser
1145	1150	1155
Pro Leu Ser Val Leu Ser Cys	Leu Phe Pro Gly Leu	Phe His Asp
1160	1165	1170
Asp Gly Ser Glu Phe Pro Gln	Lys Tyr Tyr Trp Trp	Phe Phe Gln
1175	1180	1185
Thr Val Pro Gly Leu Thr Gly	Val Val Leu Leu Leu	Ile Leu Ala
1190	1195	1200
Ile Met Tyr Val Phe Ala Ser	His His Phe Arg Arg	Arg Ser Phe
1205	1210	1215
Arg Gly Phe Trp Leu Thr His	His Leu Tyr Ile Leu	Leu Tyr Val
1220	1225	1230
Leu Leu Ile Ile His Gly Ser	Phe Ala Leu Ile Gln	Leu Pro Arg
1235	1240	1245
Phe His Ile Phe Phe Leu Val	Pro Ala Ile Ile Tyr	Gly Gly Asp
1250	1255	1260
Lys Leu Val Ser Leu Ser Arg	Lys Lys Val Glu Ile	Ser Val Val
1265	1270	1275
Lys Ala Glu Leu Leu Pro Ser	Gly Val Thr His Leu	Arg Phe Gln
1280	1285	1290

24/61

Arg Pro Gln Gly Phe Glu Tyr Lys Ser Gly Gln Trp Val Arg Ile
1295 1300 1305

Ala Cys Leu Ala Leu Gly Thr Thr Glu Tyr His Pro Phe Thr Leu
1310 1315 1320

Thr Ser Ala Pro His Glu Asp Thr Leu Ser Leu His Ile Arg Ala
1325 1330 1335

Ala Gly Pro Trp Thr Thr Arg Leu Arg Glu Ile Tyr Ser Ala Pro
1340 1345 1350

Thr Gly Asp Arg Cys Ala Arg Tyr Pro Lys Leu Tyr Leu Asp Gly
1355 1360 1365

Pro Phe Gly Glu Gly His Gln Glu Trp His Lys Phe Glu Val Ser
1370 1375 1380

Val Leu Val Gly Gly Ile Gly Val Thr Pro Phe Ala Ser Ile
1385 1390 1395

Leu Lys Asp Leu Val Phe Lys Ser Ser Val Ser Cys Gln Val Phe
1400 1405 1410

Cys Lys Lys Ile Tyr Phe Ile Trp Val Thr Arg Thr Gln Arg Gln
1415 1420 1425

Phe Glu Trp Leu Ala Asp Ile Ile Arg Glu Val Glu Glu Asn Asp
1430 1435 1440

His Gln Asp Leu Val Ser Val His Ile Tyr Ile Thr Gln Leu Ala
1445 1450 1455

Glu Lys Phe Asp Leu Arg Thr Thr Met Leu Tyr Ile Cys Glu Arg
1460 1465 1470

His Phe Gln Lys Val Leu Asn Arg Ser Leu Phe Thr Gly Leu Arg
1475 1480 1485

Ser Ile Thr His Phe Gly Arg Pro Pro Phe Glu Pro Phe Phe Asn
1490 1495 1500

Ser Leu Gln Glu Val His Pro Gln Val Arg Lys Ile Gly Val Phe
1505 1510 1515

Ser Cys Gly Pro Pro Gly Met Thr Lys Asn Val Glu Lys Ala Cys
1520 1525 1530

Gln Leu Ile Asn Arg Gln Asp Arg Thr His Phe Ser His His Tyr
1535 1540 1545

Glu Asn Phe
1550

<210> 13
<211> 6375
<212> DNA
<213> Homo sapiens

<400> 13
ggtctgtcct gagccgacac ctgcacagtgcgagacacaa ggaccaggag agaaaggta 60
gagtgcagcc ggggaggctg aggatcggcg gagctggaag agtgagggtg aaggcaagaa 120
gtagagcaca gaagcaaaga ttttaagagg aaagaagaca ttgtacccca acaccaccc 180
aaaccacagg ctgcagggtt ggcattgtcc gtgcaagacc agaggcactg atgctcctgg 240
gagctttct gactggatcc ctgggtccat cggcagtcggacggcactc tcactgcct 300
ggaaagtgcgcgctatgac ggctgggttacaacccctgag gcaccacgag cgtggtgctg 360
ttggctgccc gttgcagcgc cgcgttccat ccaattacgc cgacgggtgttatcaggctc 420
tggaggagcc gcagctgccc aacccgcgcc ggctcagcaa cgccagccacg cggggcatag 480
ccggcctgccc gtcgctccac aaccgcaccc tactgggggttcttgccttcc taccatgttc 540
tttccgacgt ggtgagcgtg gaaacgcggcgttgccttcc aacatccgca 600
tccccacctgg agacctcgatg ttcgaccccg accagcgcgg ggacgtgggtgttcc 660
agaggagccg ctgggaccccg gagaccggac ggagtcccgacaaaccccg gacctggcca 720
accaggtgac gggctggctg gacggcagcg ccatctatgg ctccctcgacatcc 780
acgcgcgtgcg gagcttctcg gggggacagc tgccgtcggg gcccggaccc gctttcccc 840
gagactcgca gaacccctg ctcatgtggg cggcgcggc ccccgccacc gggcagaacg 900
ggccccgggg gctgtacgcc ttccgggcag agagaggaa ccgggaaccc ttccctgcagg 960
cgctgggcct gctctgggttc cgctaccaca acctgtgggc gcagaggctg gcccggcaggc 1020
acccagactg ggaggacgag gagctgttcc agcacgcacg caagagggtc atcgccaccc 1080
accagaacat cgctgtgtat gagttggctgc ccagcttccct gcagaaaaaca ctcccgaggat 1140
atacaggata ccgtcccttc cttagacccca gcattcccc ggaatttgcgttgcctctg 1200
agcagttctt ctctaccatg gtggccctg gtgtctacat gagaatgtcc agctgtcatt 1260
tccggaaagggtt cctgaacaag ggttttcaaa gctcccaagc tctcagggtc tgcaacaact 1320
actggattcg ggagaacccca aatctgaaca gtacccagga ggtgaatgag ctgctgctgg 1380
aatggccctc ccagattcg gagttggagg acaacatagt ggtgaagat ctgaggatt 1440
actggccctgg ccctggcaaa ttctcccgta cagactatgt ggccagcagc atccaaacgtg 1500
gccgagatata ggggctggccc agctatacgcc agggccctgttgccttggg ctggacatcc 1560
caaggaactg gagtgatctc aaccctaatttggacccca ggtgtggag gccacagctg 1620
ccctgtacaa ccaggaccta tccctggcttag agctgttcccttggccctc ctggagagcc 1680
atggggaccc tggacccctg ttcaagtgccttgcgttgcga ccagtttgcgttgcggg 1740
atggtgaccg ctactgggtt gagaacacca ggaatgggtt gttctccaag aaggagattt 1800

26/61

aagacatccg aaataccacc ctgcgggacg tgctggtcgc tgtttatcaac attgacccc	1860
gtgccctgca gcccaatgtc tttgtctggc ataaagggtgc accctgcctt caacctaagc	1920
agctcacaac tgacggcctg ccccagtgtg cacccctgac tgtgcttgac ttctttgaag	1980
gcagcagccc tgggtttgcc atcaccatca ttgctctctg ctgccttccc ttagtgagtc	2040
tgcttctctc tggagtggtg gcctatttcc ggggcccaga acacaagaag ctacaaaaga	2100
aactcaaaga gagcgtgaag aaggaagcag ccaaagatgg agtgcgcagcg atggagtgcc	2160
caggccccaa ggagaggagc agtccccatca tcatccagct gctgtcagac aggtgtctgc	2220
aggtcctgaa caggcatctc actgtgctcc gtgtggtcca gctgcagcct ctgcagcagg	2280
tcaacccat cctgtccaaac aaccgaggat gcccgcacct gctgctcaag atccctaagg	2340
agtatgaccc ggtgctgctg tttagttctg aagaggaacg gggcgccctt gtgcagcagc	2400
tatggactt ctgcgtgcgc tgggctctgg gcctccatgt ggctgagatg agcgagaagg	2460
agctattnag gaaggctgtg acaaaggcagc agcgggaacg catcctggag atcttcttca	2520
gacacccctt tgctcaggtg ctggacatca accagggcga cgcaggacc ctgccttgg	2580
actcctccca gaagggtgcgg gaggccctga cctgcagct gaggcaggcc gagtttgcgg	2640
agtccctggg cctcaagccc caggacatgt ttgtggagtc catgttctct ctggctgaca	2700
aggatggcaa tggctacctg tccttccgag agttccctgga catcctggtg gtcttcatga	2760
aaggctcccc agaggataag tcccgcttaa tgtttaccat gtatgacctg gatgagaatg	2820
gttccctctc caaggacgaa ttcttccacca tgatgcgatc cttcatcgag atctccaaca	2880
actgcctgtc caaggccccag ctggccgagg tggtgagtc tatgttccgg gagtcgggat	2940
tccaggacaa ggaggagctg acatgggagg attttcaactt catgctgcgg gaccatgaca	3000
gcgcgcctccg cttcacgcag ctctgtgtca aagggtggagg tggaggtgga aatggattta	3060
gagatatctt taaacaaaac atcagctgtc gagtctcggt catcaactcg acacccctggg	3120
agcgctcccc ccccccaggaa ctggggccccc ctgtcccaaga agcccccagag ctgggaggcc	3180
ctggactgaa gaagaggttt ggcaaaaagg cagcagtgcc cactcccccgg ctgtacacag	3240
aggcgctgca agagaagatg cagcgaggct tcctagccca aaagctgcag cagtacaagc	3300
gtttcgtgga gaactaccgg aggcacatcg tgtgtgtggc aatcttctcg gccatctgt	3360
ttggcgtgtt tgcagatcggt gcttactact atggctttgc ctggccaccc tcggacattt	3420
cacagaccac cctcggtggc atcatcctgt cacgaggcac ggccggccagc gtctccctca	3480
tgttctctta tatcttgctc accatgtgcc gcaacccat aacccctctg cgagagactt	3540
tcctcaaccg ctatgtgcct tttgatgccg cagtggactt ccaccgctgg atcgccatgg	3600
ctgctgttgtt cctggccatt ttgcacagtg ctggccacgc agtcaatgtc tacatcttct	3660

cagtcagccc actcagcctg ctggcctgca tattcccaa cgtctttgtg aatgatgggt	3720
ccaagcttcc ccagaagttc tattggtggt tcttccagac cgtcccaggt atgacaggtg	3780
tgcttctgct cctggcctg gccatcatgt atgtcttcgc ctccccaccac ttccgcgc	3840
gcagcttccg gggcttctgg ctgaccacc acctctacat cctgctctat gccctgctca	3900
tcatccatgg cagctatgct ctgatccage tgcccactt ccacatctac ttccctggtcc	3960
cggaatcat ctatggaggt gacaagctgg tgagcctgag ccggaagaag gtggagatca	4020
gcgtggtaa ggcggagctg ctgcctcag gagtgaccta cctgcaattc cagaggcccc	4080
aaggcttga gtacaagtca ggacagtggg tgccgatcgc ctgcctggct ctggggacca	4140
ccgagtagcca ccccttcaca ctgacccctcg cgcccatga ggacacactc agcctgcaca	4200
tccgggcagt ggggcctgg accactcgcc tcagggagat ctactcatcc ccaaaggggca	4260
atggctgtgc tggataccca aagctgtacc ttgatggacc gtttggagag ggccatcagg	4320
agtggataaa atttgaggtg tcagtgttgg tgggggggg cattggggtc accccccttg	4380
cctccatcct caaagacctg gtcttcaagt catccttggg cagccaaatg ctgtgtaaga	4440
agatctactt catctgggtg acacggaccc agcgtcagtt tgagtggctg gctgacatca	4500
tccaagaggt ggaggagaac gaccaccagg acctgggtgc tgtgcacatt tatgtcaccc	4560
agctggctga gaagttcgac ctcaggacca ccatgctata catctgcgag cggcacttcc	4620
agaaaagtgct gaaccggagt ctgttacgg gcctgcgc tc catcaccac tttggccgtc	4680
cccccttcga gcccttcttc aactccctgc aggaggtcca cccacaggtg cgcaagatcg	4740
gggtgttcag ctgcggccct ccaggaatga ccaagaatgt agagaaggcc tgtcagctcg	4800
tcaacaggca ggaccgagcc cacttcatgc accactatga gaacttctga gcctgtcctc	4860
cctggctgct gcttccagta tcctgccttc tcttctgtgc acctaagttg cccagccctg	4920
ctggcaatct ctccatcaga atccaccta ggcctcagct ggagggctgc agagcccctc	4980
ccaatattgg gagaatattg acccagacaa ttatacaa at gaaaaaggc aggagactat	5040
gttctacaat tgca gatgattata agtccacctg tttatcaacg gcaccattcc	5100
tgca gcccctc cagacttcct gccttagca agtgcgcac cagtcaggat ctcccaaaga	5160
agataaagac cactcctcac cccagctcaa gccatggcag gcgtggcaag caaagtgggg	5220
aggagacagt ccctgcttgt gacaagtgtg gaggtaaaa ggtcaatagt gcttgcctcc	5280
gatagctccc cacatctcta attgacttcc acaaaaatcga tgcgttgctt tggtatttgc	5340
ttggactgac atttgaggggaa ggaggaggct gggatcctt ggctgagaat ctccctcagag	5400
cccagtcag aagctgtgat gcttagaacc tggacagccc gactgcctca actctgtctc	5460

28/61

caggtctatt ccctccagct cccaaaggag cagccctact tctacccctt cccgtccccca 5520
 aagtgtcagc aactttgagg agggcaccag gaaacaaaga tgcctccca gccctgatat 5580
 tcttgatgtc accagtgata cccactgccc tgacccctgg gcaggcccct ctctgcata 5640
 actggagtgg tccctggct cttggggctg aaggattcca gcctctctgc cagatattca 5700
 gtactcgatc tcaattcccc tcttccacaa gagttgggtg accagctgtc cttagttgcc 5760
 caggactctc cctgttttag cactgaaagt ctctgcccc aggaaacccc atcagtcaca 5820
 ggcagattgg gacagctggt caccttacgc aagagccagg ctgaaacatc ccctccatac 5880
 tcagctctt aacttttctt ttcccttttc atcgggctct ttcctaaaaa gctgagctgt 5940
 aaaatatttt acatcgaggt ataataaata atcatgtaca tgtttacca ccaccaggt 6000
 caagacatag aatgtttcaa catttccatc accccagaaa ctccccctgt acccccttcc 6060
 cttcgtctcc cctagctcct agaagcaacc actgatgtga tttctaccaa atccagtttt 6120
 ggtcctacta aatatactct tttgagactg gcctctttta ctcaccataa tgcctttgt 6180
 attcatccat gctgttgtgt gtatcagcag tttgttcctt ttcattgctg agtagtattc 6240
 tattttagag atgtaccaca gtttgttat tcttctgttg atggacgttt gggtttttc 6300
 taattttgaa tgattataaa taaaaattct gtgagtgttc ttgtaaaaaaaaaaaaaaa 6360
 aaaaaaaaaa aaaaaa 6375

<210> 14
 <211> 1548
 <212> PRT
 <213> Homo sapiens

<400> 14

Met	Leu	Arg	Ala	Arg	Pro	Glu	Ala	Leu	Met	Leu	Leu	Gly	Ala	Leu	Leu
1								10							15

Thr	Gly	Ser	Leu	Gly	Pro	Ser	Gly	Ser	Gln	Asp	Ala	Leu	Ser	Leu	Pro
20								25							30

Trp	Glu	Val	Gln	Arg	Tyr	Asp	Gly	Trp	Phe	Asn	Asn	Leu	Arg	His	His
35								40							45

Glu	Arg	Gly	Ala	Val	Gly	Cys	Arg	Leu	Gln	Arg	Arg	Val	Pro	Ala	Asn
50								55				60			

Tyr	Ala	Asp	Gly	Val	Tyr	Gln	Ala	Leu	Glu	Pro	Gln	Leu	Pro	Asn
65								70			75			80

Pro	Arg	Arg	Leu	Ser	Asn	Ala	Ala	Thr	Arg	Gly	Ile	Ala	Gly	Leu	Pro
85								90							95

Ser	Leu	His	Asn	Arg	Thr	Val	Leu	Gly	Val	Phe	Phe	Gly	Tyr	His	Val
100								105							110

Leu	Ser	Asp	Val	Val	Ser	Val	Glu	Thr	Pro	Gly	Cys	Pro	Ala	Glu	Phe
115								120							125

Leu Asn Ile Arg Ile Pro Pro Gly Asp Leu Val Phe Asp Pro Asp Gln
130 135 140

Arg Gly Asp Val Val Leu Pro Phe Gln Arg Ser Arg Trp Asp Pro Glu
145 150 155 160

Thr Gly Arg Ser Pro Ser Asn Pro Arg Asp Leu Ala Asn Gln Val Thr
165 170 175

Gly Trp Leu Asp Gly Ser Ala Ile Tyr Gly Ser Ser His Ser Trp Ser
180 185 190

Asp Ala Leu Arg Ser Phe Ser Gly Gly Gln Leu Ala Ser Gly Pro Asp
195 200 205

Pro Ala Phe Pro Arg Asp Ser Gln Asn Pro Leu Leu Met Trp Ala Ala
210 215 220

Pro Asp Pro Ala Thr Gly Gln Asn Gly Pro Arg Gly Leu Tyr Ala Phe
225 230 235 240

Gly Ala Glu Arg Gly Asn Arg Glu Pro Phe Leu Gln Ala Leu Gly Leu
245 250 255

Leu Trp Phe Arg Tyr His Asn Leu Trp Ala Gln Arg Leu Ala Arg Gln
260 265 270

His Pro Asp Trp Glu Asp Glu Glu Leu Phe Gln His Ala Arg Lys Arg
275 280 285

Val Ile Ala Thr Tyr Gln Asn Ile Ala Val Tyr Glu Trp Leu Pro Ser
290 295 300

Phe Leu Gln Lys Thr Leu Pro Glu Tyr Thr Gly Tyr Arg Pro Phe Leu
305 310 315 320

Asp Pro Ser Ile Ser Pro Glu Phe Val Val Ala Ser Glu Gln Phe Phe
325 330 335

Ser Thr Met Val Pro Pro Gly Val Tyr Met Arg Asn Ala Ser Cys His
340 345 350

Phe Arg Lys Val Leu Asn Lys Gly Phe Gln Ser Ser Gln Ala Leu Arg
355 360 365

Val Cys Asn Asn Tyr Trp Ile Arg Glu Asn Pro Asn Leu Asn Ser Thr
370 375 380

Gln Glu Val Asn Glu Leu Leu Leu Gly Met Ala Ser Gln Ile Ser Glu
385 390 395 400

Leu Glu Asp Asn Ile Val Val Glu Asp Leu Arg Asp Tyr Trp Pro Gly
405 410 415

Pro Gly Lys Phe Ser Arg Thr Asp Tyr Val Ala Ser Ser Ile Gln Arg
420 425 430

Gly Arg Asp Met Gly Leu Pro Ser Tyr Ser Gln Ala Leu Leu Ala Phe
435 440 445

30/61

Gly Leu Asp Ile Pro Arg Asn Trp Ser Asp Leu Asn Pro Asn Val Asp
450 455 460

Pro Gln Val Leu Glu Ala Thr Ala Ala Leu Tyr Asn Gln Asp Leu Ser
465 470 475 480

Gln Leu Glu Leu Leu Gly Gly Leu Leu Glu Ser His Gly Asp Pro
485 490 495

Gly Pro Leu Phe Ser Ala Ile Val Leu Asp Gln Phe Val Arg Leu Arg
500 505 510

Asp Gly Asp Arg Tyr Trp Phe Glu Asn Thr Arg Asn Gly Leu Phe Ser
515 520 525

Lys Lys Glu Ile Glu Asp Ile Arg Asn Thr Thr Leu Arg Asp Val Leu
530 535 540

Val Ala Val Ile Asn Ile Asp Pro Ser Ala Leu Gln Pro Asn Val Phe
545 550 555 560

Val Trp His Lys Gly Ala Pro Cys Pro Gln Pro Lys Gln Leu Thr Thr
565 570 575

Asp Gly Leu Pro Gln Cys Ala Pro Leu Thr Val Leu Asp Phe Phe Glu
580 585 590

Gly Ser Ser Pro Gly Phe Ala Ile Thr Ile Ile Ala Leu Cys Cys Leu
595 600 605

Pro Leu Val Ser Leu Leu Ser Gly Val Val Ala Tyr Phe Arg Gly
610 615 620

Arg Glu His Lys Lys Leu Gln Lys Lys Leu Lys Glu Ser Val Lys Lys
625 630 635 640

Glu Ala Ala Lys Asp Gly Val Pro Ala Met Glu Trp Pro Gly Pro Lys
645 650 655

Glu Arg Ser Ser Pro Ile Ile Ile Gln Leu Leu Ser Asp Arg Cys Leu
660 665 670

Gln Val Leu Asn Arg His Leu Thr Val Leu Arg Val Val Gln Leu Gln
675 680 685

Pro Leu Gln Gln Val Asn Leu Ile Leu Ser Asn Asn Arg Gly Cys Arg
690 695 700

Thr Leu Leu Leu Lys Ile Pro Lys Glu Tyr Asp Leu Val Leu Leu Phe
705 710 715 720

Ser Ser Glu Glu Glu Arg Gly Ala Phe Val Gln Gln Leu Trp Asp Phe
725 730 735

Cys Val Arg Trp Ala Leu Gly Leu His Val Ala Glu Met Ser Glu Lys
740 745 750

Glu Leu Phe Arg Lys Ala Val Thr Lys Gln Gln Arg Glu Arg Ile Leu
755 760 765

31/61

Glu Ile Phe Phe Arg His Leu Phe Ala Gln Val Leu Asp Ile Asn Gln
 770 775 780

Ala Asp Ala Gly Thr Leu Pro Leu Asp Ser Ser Gln Lys Val Arg Glu
 785 790 795 800

Ala Leu Thr Cys Glu Leu Ser Arg Ala Glu Phe Ala Glu Ser Leu Gly
 805 810 815

Leu Lys Pro Gln Asp Met Phe Val Glu Ser Met Phe Ser Leu Ala Asp
 820 825 830

Lys Asp Gly Asn Gly Tyr Leu Ser Phe Arg Glu Phe Leu Asp Ile Leu
 835 840 845

Val Val Phe Met Lys Gly Ser Pro Glu Asp Lys Ser Arg Leu Met Phe
 850 855 860

Thr Met Tyr Asp Leu Asp Glu Asn Gly Phe Leu Ser Lys Asp Glu Phe
 865 870 875 880

Phe Thr Met Met Arg Ser Phe Ile Glu Ile Ser Asn Asn Cys Leu Ser
 885 890 895

Lys Ala Gln Leu Ala Glu Val Val Glu Ser Met Phe Arg Glu Ser Gly
 900 905 910

Phe Gln Asp Lys Glu Glu Leu Thr Trp Glu Asp Phe His Phe Met Leu
 915 920 925

Arg Asp His Asp Ser Glu Leu Arg Phe Thr Gln Leu Cys Val Lys Gly
 930 935 940

Gly Gly Gly Gly Asn Gly Ile Arg Asp Ile Phe Lys Gln Asn Ile
 945 950 955 960

Ser Cys Arg Val Ser Phe Ile Thr Arg Thr Pro Gly Glu Arg Ser His
 965 970 975

Pro Gln Gly Leu Gly Pro Pro Val Pro Glu Ala Pro Glu Leu Gly Gly
 980 985 990

Pro Gly Leu Lys Lys Arg Phe Gly Lys Lys Ala Ala Val Pro Thr Pro
 995 1000 1005

Arg Leu Tyr Thr Glu Ala Leu Gln Glu Lys Met Gln Arg Gly Phe
 1010 1015 1020

Leu Ala Gln Lys Leu Gln Gln Tyr Lys Arg Phe Val Glu Asn Tyr
 1025 1030 1035

Arg Arg His Ile Val Cys Val Ala Ile Phe Ser Ala Ile Cys Val
 1040 1045 1050

Gly Val Phe Ala Asp Arg Ala Tyr Tyr Tyr Gly Phe Ala Leu Pro
 1055 1060 1065

Pro Ser Asp Ile Ala Gln Thr Thr Leu Val Gly Ile Ile Leu Ser
 1070 1075 1080

32/61

Arg Gly Thr Ala Ala Ser Val Ser Phe Met Phe Ser Tyr Ile Leu
1085 1090 1095

Leu Thr Met Cys Arg Asn Leu Ile Thr Phe Leu Arg Glu Thr Phe
1100 1105 1110

Leu Asn Arg Tyr Val Pro Phe Asp Ala Ala Val Asp Phe His Arg
1115 1120 1125

Trp Ile Ala Met Ala Ala Val Val Leu Ala Ile Leu His Ser Ala
1130 1135 1140

Gly His Ala Val Asn Val Tyr Ile Phe Ser Val Ser Pro Leu Ser
1145 1150 1155

Leu Leu Ala Cys Ile Phe Pro Asn Val Phe Val Asn Asp Gly Ser
1160 1165 1170

Lys Leu Pro Gln Lys Phe Tyr Trp Trp Phe Phe Gln Thr Val Pro
1175 1180 1185

Gly Met Thr Gly Val Leu Leu Leu Leu Val Leu Ala Ile Met Tyr
1190 1195 1200

Val Phe Ala Ser His His Phe Arg Arg Arg Ser Phe Arg Gly Phe
1205 1210 1215

Trp Leu Thr His His Leu Tyr Ile Leu Leu Tyr Ala Leu Leu Ile
1220 1225 1230

Ile His Gly Ser Tyr Ala Leu Ile Gln Leu Pro Thr Phe His Ile
1235 1240 1245

Tyr Phe Leu Val Pro Ala Ile Ile Tyr Gly Gly Asp Lys Leu Val
1250 1255 1260

Ser Leu Ser Arg Lys Lys Val Glu Ile Ser Val Val Lys Ala Glu
1265 1270 1275

Leu Leu Pro Ser Gly Val Thr Tyr Leu Gln Phe Gln Arg Pro Gln
1280 1285 1290

Gly Phe Glu Tyr Lys Ser Gly Gln Trp Val Arg Ile Ala Cys Leu
1295 1300 1305

Ala Leu Gly Thr Thr Glu Tyr His Pro Phe Thr Leu Thr Ser Ala
1310 1315 1320

Pro His Glu Asp Thr Leu Ser Leu His Ile Arg Ala Val Gly Pro
1325 1330 1335

Trp Thr Thr Arg Leu Arg Glu Ile Tyr Ser Ser Pro Lys Gly Asn
1340 1345 1350

Gly Cys Ala Gly Tyr Pro Lys Leu Tyr Leu Asp Gly Pro Phe Gly
1355 1360 1365

Glu Gly His Gln Glu Trp His Lys Phe Glu Val Ser Val Leu Val
1370 1375 1380

33/61

Gly Gly Gly Ile Gly Val Thr Pro Phe Ala Ser Ile Leu Lys Asp
 1385 1390 1395

Leu Val Phe Lys Ser Ser Leu Gly Ser Gln Met Leu Cys Lys Lys
 1400 1405 1410

Ile Tyr Phe Ile Trp Val Thr Arg Thr Gln Arg Gln Phe Glu Trp
 1415 1420 1425

Leu Ala Asp Ile Ile Gln Glu Val Glu Glu Asn Asp His Gln Asp
 1430 1435 1440

Leu Val Ser Val His Ile Tyr Val Thr Gln Leu Ala Glu Lys Phe
 1445 1450 1455

Asp Leu Arg Thr Thr Met Leu Tyr Ile Cys Glu Arg His Phe Gln
 1460 1465 1470

Lys Val Leu Asn Arg Ser Leu Phe Thr Gly Leu Arg Ser Ile Thr
 1475 1480 1485

His Phe Gly Arg Pro Pro Phe Glu Pro Phe Phe Asn Ser Leu Gln
 1490 1495 1500

Glu Val His Pro Gln Val Arg Lys Ile Gly Val Phe Ser Cys Gly
 1505 1510 1515

Pro Pro Gly Met Thr Lys Asn Val Glu Lys Ala Cys Gln Leu Val
 1520 1525 1530

Asn Arg Gln Asp Arg Ala His Phe Met His His Tyr Glu Asn Phe
 1535 1540 1545

<210> 15

<211> 1676

<212> DNA

<213> Homo sapiens

<400> 15

agccttatgg attggattcg actgacccaaa agtggaaagg atctaacggg attaaaaggc	60
aggtaattg aagtaactga agaagaacctt aagaaacaca acaaaaaaaga tgattgttgg	120
atatgcataa gaggttcgt ttataatgtc agcccttata tggagtatca tcctgggtga	180
gaagatgaac taatgagagc agcaggatca gatggtaactg aacttttga tcaggttcat	240
cgttgggtca attatgaatc catgctgaaa gaatgcctgg ttggcagaat ggccattaaa	300
cctgctgttc taaaagacta tcgtgaggag gaaaagaaag tcttaatgg catgcttccc	360
aagagccaag tgacagatac acttgccaaa gaaggtccta gttatccaag ctatgattgg	420
ttccaaacag actcttagt caccattgcc atatatacta aacagaagga tatcaattta	480
gactcaatta tagtgatca tcagaatgtat cccttttagag cagaaacaat tattaaggat	540
tgttatatc ttatacatat tgggctaagc catgaggttc aggaagattt ttctgtgcgg	600
gttgttggaga gtgtggaaaa aatagagatt gttctacaaa aaaaagagaa tacttcttgg	660

gactttcttg	gccatccccct	gaagaatcat	aattcaactta	ttccaaggaa	agatacaggt	720					
ttgtactaca	gaaagtgc	cca	gttaattcc	aaggaagatg	ttactcatga	tacgaggctt	780				
ttctgttga	tgctgccacc	aagca	cttcaagtgc	ccattggca	acatgtttac	840					
ctcaagctac	ctattacagg	tacaga	aaata	gtaaagccat	atacacctgt	atctggttcc	900				
ttactctcag	agtcaagga	accagtt	ccc	aacaata	aatacatcta	cttttgata	960				
aaaatctatc	ccactggact	cttcacacca	gagtt	gatc	gtcttcagat	tggagat	1020				
gtttctgtaa	gcagt	cctga	gggcaattt	aaaatatcca	agttccaaga	attagaagat	1080				
ctcttttgt	tggcagctgg	aacaggctc	acaccaatgg	ttaaaatact	gaattatgct	1140					
ttgactgata	tacc	cagtct	caggaaagt	aa	gctgtatgt	tcttcaataa	aacagaagat	1200			
gatataattt	ggagaagcc	attggagaaa	ttagcattt	aagataaaag	actggatgtt	1260					
gaatttgttc	tctc	agcacc	tatttctgaa	tggatggca	aacagg	gaca	tatttacca	1320			
gctcttctt	ctga	attttt	gaaaagaaat	ttggaca	aa	cttctgcatt	1380				
tgtggaccag	tgcc	attttac	agaacaagg	gtaagg	ttgc	tgc	atgtatct	1440			
aaaaatgaga	tccat	agtttt	tacagcataa	tgaag	agctg	tcatt	gtcctt	1500			
agtttatcta	aattt	gtat	tgc	tttaggt	tttt	taagag	aacat	tttg	1560		
aagg	ttaact	agaatcc	cagc	cttc	agtttc	ttaa	atgttc	cttc	agtaca	1620	
ggtaacttct	tgg	ctttctt	ttgt	accaca	actt	attttta	ctact	gat	at	ttgacc	1676

<210> 16
<211> 487
<212> PRT
<213> Homo sapiens

<400> 16

Met Asp Trp Ile Arg Leu Thr Lys Ser Gly Lys Asp Leu Thr Gly Leu
1 5 10 15

Lys Gly Arg Leu Ile Glu Val Thr Glu Glu Glu Leu Lys Lys His Asn
20 25 30

Lys Lys Asp Asp Cys Trp Ile Cys Ile Arg Gly Phe Val Tyr Asn Val
35 40 45

Ser Pro Tyr Met Glu Tyr His Pro Gly Gly Glu Asp Glu Leu Met Arg
50 55 60

Ala Ala Gly Ser Asp Gly Thr Glu Leu Phe Asp Gln Val His Arg Trp
65 70 75 80

Val Asn Tyr Glu Ser Met Leu Lys Glu Cys Leu Val Gly Arg Met Ala
85 90 95

Ile Lys Pro Ala Val Leu Lys Asp Tyr Arg Glu Glu Glu Lys Lys Val
100 105 110

Leu Asn Gly Met Leu Pro Lys Ser Gln Val Thr Asp Thr Leu Ala Lys
115 120 125

Glu Gly Pro Ser Tyr Pro Ser Tyr Asp Trp Phe Gln Thr Asp Ser Leu
130 135 140

Val Thr Ile Ala Ile Tyr Thr Lys Gln Lys Asp Ile Asn Leu Asp Ser
145 150 155 160

Ile Ile Val Asp His Gln Asn Asp Ser Phe Arg Ala Glu Thr Ile Ile
165 170 175

Lys Asp Cys Leu Tyr Leu Ile His Ile Gly Leu Ser His Glu Val Gln
180 185 190

Glu Asp Phe Ser Val Arg Val Val Glu Ser Val Gly Lys Ile Glu Ile
195 200 205

Val Leu Gln Lys Lys Glu Asn Thr Ser Trp Asp Phe Leu Gly His Pro
210 215 220

Leu Lys Asn His Asn Ser Leu Ile Pro Arg Lys Asp Thr Gly Leu Tyr
225 230 235 240

Tyr Arg Lys Cys Gln Leu Ile Ser Lys Glu Asp Val Thr His Asp Thr
245 250 255

Arg Leu Phe Cys Leu Met Leu Pro Pro Ser Thr His Leu Gln Val Pro
260 265 270

Ile Gly Gln His Val Tyr Leu Lys Leu Pro Ile Thr Gly Thr Glu Ile
275 280 285

Val Lys Pro Tyr Thr Pro Val Ser Gly Ser Leu Leu Ser Glu Phe Lys
290 295 300

Glu Pro Val Leu Pro Asn Asn Lys Tyr Ile Tyr Phe Leu Ile Lys Ile
305 310 315 320

Tyr Pro Thr Gly Leu Phe Thr Pro Glu Leu Asp Arg Leu Gln Ile Gly
325 330 335

Asp Phe Val Ser Val Ser Ser Pro Glu Gly Asn Phe Lys Ile Ser Lys
340 345 350

Phe Gln Glu Leu Glu Asp Leu Phe Leu Leu Ala Ala Gly Thr Gly Phe
355 360 365

Thr Pro Met Val Lys Ile Leu Asn Tyr Ala Leu Thr Asp Ile Pro Ser
370 375 380

Leu Arg Lys Val Lys Leu Met Phe Phe Asn Lys Thr Glu Asp Asp Ile
385 390 395 400

Ile Trp Arg Ser Gln Leu Glu Lys Leu Ala Phe Lys Asp Lys Arg Leu
405 410 415

Asp Val Glu Phe Val Leu Ser Ala Pro Ile Ser Glu Trp Asn Gly Lys
420 425 430

36/61

Gln Gly His Ile Ser Pro Ala Leu Leu Ser Glu Phe Leu Lys Arg Asn
 435 440 445

Leu Asp Lys Ser Lys Val Leu Val Cys Ile Cys Gly Pro Val Pro Phe
 450 455 460

Thr Glu Gln Gly Val Arg Leu Leu His Asp Leu Asn Phe Ser Lys Asn
 465 470 475 480

Glu Ile His Ser Phe Thr Ala
 485

<210> 17
 <211> 1340
 <212> DNA
 <213> Homo sapiens

<400> 17		
ccacccagtc atggggaca cttcatcg tcacatcgcc ctgctggct ttgagaagcg	60	
cttcgtaccc agccagcact atgtgtacat gttcctggtg aatggcagg acctgtcgga	120	
gaaggtggtc taccggcgct tcaccgagat ctacgagttc cataaaacct taaaagaaat	180	
gttccctatt gaggcagggg cgatcaatcc agagaacagg atcatcccc acctcccagc	240	
tcccaagtgg tttgacgggc agcggggccgc cgagaaccgc cagggcacac ttaccgagta	300	
ctgcagcacg ctcatgagcc tgcccaccaa gatctccgc tgccccacc tcctcgactt	360	
cttcaaggtg cgccctgatg acctaagct ccccacggac aaccagacaa aaaagccaga	420	
gacataacttg atgccccaaag atggcaagag taccgcgaca gacatcaccc gccccatcat	480	
cctgcagacg taccgcgcca ttgccgacta cgagaagacc tcgggctccg agatggctct	540	
gtccacgggg gacgtggtgg aggtcgtgg gaagagcggag agcgggttgt gttctgtca	600	
gatgaaagca aagcgaggct ggatcccagc atccttcctc gagccccctgg acagtccctga	660	
cgagacggaa gaccctgagc ccaactatgc aggtgagcca tacgtcgcca tcaaggccta	720	
cactgctgtg gagggggacg aggtgtccct gtcgagggt gaagctgttg aggtcattca	780	
caagctcctg gacggcttgtt gggcatcag gaaagacgc gtcacaggct actttccgtc	840	
catgtacctg caaaagtccgg ggcaagacgt gtcccaggcc caacgccaga tcaagcgggg	900	
ggcgcgcgc cgcaggctgt ccattccgcaa cgcgcacagc atccatcagc ggtcgccgaa	960	
gcccctcagc caggacgcct atcgccgcaa cagcgtccgt tttctgcagc agcgacgcgg	1020	
ccaggcgcgg cggggaccgc agagccccgg gagcccgctc gaggaggagc ggcagacgca	1080	
gcgcctctaaa cgcaggccgg cggtgcccccc gggcccgagc gccgacctca tcctgaaccg	1140	
ctgcagcggag agcaccaagc ggaagctggc gtctccgtc tgaggctgg ggcgcgtccc	1200	
cagctagcgt ctccggccctt gcccggccgt gcctgtacat acgtgttcta tagagccctgg	1260	
cgtctggacg cgcaggccag ccccgacccc tgtccagcgc ggctccgc accctcaata	1320	

aatgttgctt ggagtggaaag

1340

<210> 18

<211> 390

<212> PRT

<213> Homo sapiens

<400> 18

Met Gly Asp Thr Phe Ile Arg His Ile Ala Leu Leu Gly Phe Glu Lys
1 5 10 15Arg Phe Val Pro Ser Gln His Tyr Val Tyr Met Phe Leu Val Lys Trp
20 25 30Gln Asp Leu Ser Gln Glu Lys Val Val Tyr Arg Arg Phe Thr Glu Ile Tyr
35 40 45Glu Phe His Lys Thr Leu Lys Glu Met Phe Pro Ile Glu Ala Gly Ala
50 55 60Ile Asn Pro Glu Asn Arg Ile Ile Pro His Leu Pro Ala Pro Lys Trp
65 70 75 80Phe Asp Gly Gln Arg Ala Ala Glu Asn Arg Gln Gly Thr Leu Thr Glu
85 90 95Tyr Cys Ser Thr Leu Met Ser Leu Pro Thr Lys Ile Ser Arg Cys Pro
100 105 110His Leu Leu Asp Phe Phe Lys Val Arg Pro Asp Asp Leu Lys Leu Pro
115 120 125Thr Asp Asn Gln Thr Lys Lys Pro Glu Thr Tyr Leu Met Pro Lys Asp
130 135 140Gly Lys Ser Thr Ala Thr Asp Ile Thr Gly Pro Ile Ile Leu Gln Thr
145 150 155 160Tyr Arg Ala Ile Ala Asp Tyr Glu Lys Thr Ser Gly Ser Glu Met Ala
165 170 175Leu Ser Thr Gly Asp Val Val Glu Val Val Glu Lys Ser Glu Ser Gly
180 185 190Trp Trp Phe Cys Gln Met Lys Ala Lys Arg Gly Trp Ile Pro Ala Ser
195 200 205Phe Leu Glu Pro Leu Asp Ser Pro Asp Glu Thr Glu Asp Pro Glu Pro
210 215 220Asn Tyr Ala Gly Glu Pro Tyr Val Ala Ile Lys Ala Tyr Thr Ala Val
225 230 235 240Glu Gly Asp Glu Val Ser Leu Leu Glu Gly Glu Ala Val Glu Val Ile
245 250 255His Lys Leu Leu Asp Gly Trp Trp Val Ile Arg Lys Asp Asp Val Thr
260 265 270

38/61

Gly Tyr Phe Pro Ser Met Tyr Leu Gln Lys Ser Gly Gln Asp Val Ser
 275 280 285

Gln Ala Gln Arg Gln Ile Lys Arg Gly Ala Pro Pro Arg Arg Ser Ser
 290 295 300

Ile Arg Asn Ala His Ser Ile His Gln Arg Ser Arg Lys Arg Leu Ser
 305 310 315 320

Gln Asp Ala Tyr Arg Arg Asn Ser Val Arg Phe Leu Gln Gln Arg Arg
 325 330 335

Arg Gln Ala Arg Pro Gly Pro Gln Ser Pro Gly Ser Pro Leu Glu Glu
 340 345 350

Glu Arg Gln Thr Gln Arg Ser Lys Pro Gln Pro Ala Val Pro Pro Arg
 355 360 365

Pro Ser Ala Asp Leu Ile Leu Asn Arg Cys Ser Glu Ser Thr Lys Arg
 370 375 380

Lys Leu Ala Ser Ala Val
 385 390

<210> 19

<211> 2206

<212> DNA

<213> Homo sapiens

<400> 19

ctagtcttc	agccttcagg	ctgttttgg	cttgaagctc	tcttggcctc	ctagttctta	60
cctaatcatg	tccctggtgg	aggccatca	cctctggaat	gaaggggtgc	tggcagcgga	120
caagaaggac	tggaagggag	ccctggatgc	cttcagtgcc	gtccaggacc	cccactcccc	180
gatttgcttc	aacattggct	gcatgtacac	tatcctgaag	aacatgactg	aagcagagaa	240
ggcctttacc	agaagcatta	accgagacaa	gcacttggca	gtggcttact	tccaacgagg	300
gatgctctac	taccagacag	agaaatatga	tttggctatc	aaagaccta	aagaagcctt	360
gattcagctt	cgagggAAC	agctgataga	ctataagatc	ctggggctcc	agttcaagct	420
gtttgcctgt	gaggtgttat	ataacattgc	tttcatgtat	gccagaagg	aggaatggaa	480
aaaagctgaa	gaacagttag	cattggccac	gagcatgaag	tctgagccca	gacattccaa	540
aatcgacaag	gcgtatggagt	gtgtctggaa	gcagaagcta	tatgagccag	tggtgatccc	600
tgtggcaag	ctgtttcgac	caa atgagag	acaagtggct	cagctggcca	agaaggatta	660
cctaggcaag	gcgacggctcg	tggcatctgt	ggtggatcaa	gacagttct	ctgggtttgc	720
ccctctgcaa	ccacaggcag	ctgagcctcc	acccagaccc	aaaaccccag	agatcttcag	780
ggctctggaa	ggggaggctc	accgtgtgct	atttgggttt	gtgcctgaga	caaaagaaga	840
gctccaggtc	atgccaggga	acattgtctt	tgtcttgaag	aagggaatg	ataactgggc	900
cacggtcatg	ttcaacgggc	agaaggggct	tgtccctgc	aactaccttg	aaccagttga	960

gttgcggatc caccctcagc agcagccccaa ggagggaaagc tctccgcagt ccgacatccc 1020
 agctcctcct agttccaaag cccctggaaa accccagctg tcaccaggcc agaaacaaaa 1080
 agaagagcct aaggaagtga agctcagtgt tcccattgccc tacacactca aggtgcacta 1140
 caagtacacg gtagtcatga agactcagcc cgggctcccc tacagccagg tccgggacat 1200
 ggtgtctaag aaactggagc tccggctgga acacactaag ctgagctatac ggcctcgga 1260
 cagcaatgag ctggtgcccc tttcagaaga cagcatgaag gatgcctggg gccaggtaa 1320
 aaactactgc ctgactctgt ggtgtgagaa cacagtgggt gaccaaggct ttccagatga 1380
 acccaaggaa agtaaaaaaag ctgatgctaa taaccagaca acagaacctc agcttaagaa 1440
 aggccagccaa gtggaggcac tcttcagttt tgaggctacc caaccagagg acctggagtt 1500
 tcaggaaggg gatataatcc tgggtttatc aaaggtgaat gaagaatggc tggaaaggaa 1560
 gtgcaaaggaa aaggtggca ttttcccaa agttttgtt gaagactgcg caactacaga 1620
 tttggaaagc actcggagag aagtcttagga tgttcacaa actacaaagc tgaagaaaat 1680
 gaagccctat tacttgtttt taagattttt cacccttctg ctgtatactg tactgagaca 1740
 ttacagtttgaagtgtaa ctatatttc cctgttaaaa tttaacctac tagacaatga 1800
 tgtgagtacc caggatgatt tcctggggca cagtgggtga ggagatgggg acaggtgaat 1860
 ggaggagttt ggggagagga aaagtggatg gaagtgtctg gaaagggcac gagagagtct 1920
 tccaggtaact gatcctgttt ctgctctga gtgctagcta gccagctgtg ttcacactgt 1980
 aaacattcat caagctgtac atttggtgca cttttctgtg tcataccaca ataaaaaaaaa 2040
 acctatcatc atcttacaaa aacaagacac ccaagtccag gccaaggag taagtacaaa 2100
 tattcctgtt tctgaaccat tactgttaatt ggctcttaag gcttgaagta accttatagg 2160
 ttactcataa ggcataataca aataaacttg tttgtttct ttttcc 2206

<210> 20
 <211> 526
 <212> PRT
 <213> Homo sapiens

<400> 20

Met Ser Leu Val Glu Ala Ile Ser Leu Trp Asn Glu Gly Val Leu Ala
 1 5 10 15

Ala Asp Lys Lys Asp Trp Lys Gly Ala Leu Asp Ala Phe Ser Ala Val
 20 25 30

Gln Asp Pro His Ser Arg Ile Cys Phe Asn Ile Gly Cys Met Tyr Thr
 35 40 45

Ile Leu Lys Asn Met Thr Glu Ala Glu Lys Ala Phe Thr Arg Ser Ile
 50 55 60

40/61

Asn Arg Asp Lys His Leu Ala Val Ala Tyr Phe Gln Arg Gly Met Leu
65 70 75 80

Tyr Tyr Gln Thr Glu Lys Tyr Asp Leu Ala Ile Lys Asp Leu Lys Glu
85 90 95

Ala Leu Ile Gln Leu Arg Gly Asn Gln Leu Ile Asp Tyr Lys Ile Leu
100 105 110

Gly Leu Gln Phe Lys Leu Phe Ala Cys Glu Val Leu Tyr Asn Ile Ala
115 120 125

Phe Met Tyr Ala Lys Lys Glu Glu Trp Lys Lys Ala Glu Glu Gln Leu
130 135 140

Ala Leu Ala Thr Ser Met Lys Ser Glu Pro Arg His Ser Lys Ile Asp
145 150 155 160

Lys Ala Met Glu Cys Val Trp Lys Gln Lys Leu Tyr Glu Pro Val Val
165 170 175

Ile Pro Val Gly Lys Leu Phe Arg Pro Asn Glu Arg Gln Val Ala Gln
180 185 190

Leu Ala Lys Lys Asp Tyr Leu Gly Lys Ala Thr Val Val Ala Ser Val
195 200 205

Val Asp Gln Asp Ser Phe Ser Gly Phe Ala Pro Leu Gln Pro Gln Ala
210 215 220

Ala Glu Pro Pro Pro Arg Pro Lys Thr Pro Glu Ile Phe Arg Ala Leu
225 230 235 240

Glu Gly Glu Ala His Arg Val Leu Phe Gly Phe Val Pro Glu Thr Lys
245 250 255

Glu Glu Leu Gln Val Met Pro Gly Asn Ile Val Phe Val Leu Lys Lys
260 265 270

Gly Asn Asp Asn Trp Ala Thr Val Met Phe Asn Gly Gln Lys Gly Leu
275 280 285

Val Pro Cys Asn Tyr Leu Glu Pro Val Glu Leu Arg Ile His Pro Gln
290 295 300

Gln Gln Pro Gln Glu Glu Ser Ser Pro Gln Ser Asp Ile Pro Ala Pro
305 310 315 320

Pro Ser Ser Lys Ala Pro Gly Lys Pro Gln Leu Ser Pro Gly Gln Lys
325 330 335

Gln Lys Glu Glu Pro Lys Glu Val Lys Leu Ser Val Pro Met Pro Tyr
340 345 350

Thr Leu Lys Val His Tyr Lys Tyr Thr Val Val Met Lys Thr Gln Pro
355 360 365

Gly Leu Pro Tyr Ser Gln Val Arg Asp Met Val Ser Lys Lys Leu Glu
370 375 380

41/61

Leu Arg Leu Glu His Thr Lys Leu Ser Tyr Arg Pro Arg Asp Ser Asn
 385 390 395 400

Glu Leu Val Pro Leu Ser Glu Asp Ser Met Lys Asp Ala Trp Gly Gln
 405 410 415

Val Lys Asn Tyr Cys Leu Thr Leu Trp Cys Glu Asn Thr Val Gly Asp
 420 425 430

Gln Gly Phe Pro Asp Glu Pro Lys Glu Ser Glu Lys Ala Asp Ala Asn
 435 440 445

Asn Gln Thr Thr Glu Pro Gln Leu Lys Lys Gly Ser Gln Val Glu Ala
 450 455 460

Leu Phe Ser Tyr Glu Ala Thr Gln Pro Glu Asp Leu Glu Phe Gln Glu
 465 470 475 480

Gly Asp Ile Ile Leu Val Leu Ser Lys Val Asn Glu Glu Trp Leu Glu
 485 490 495

Gly Glu Cys Lys Gly Lys Val Gly Ile Phe Pro Lys Val Phe Val Glu
 500 505 510

Asp Cys Ala Thr Thr Asp Leu Glu Ser Thr Arg Arg Glu Val
 515 520 525

<210> 21
<211> 1301
<212> DNA
<213> Homo sapiens

<400> 21		
agactctcca cctgctccct gggaccatcg cccaccatgg ctgtggccca gcagctgcgg	60	
'gccgagagtg actttgaaca gcttccggat gatgttgcca tctcggccaa cattgctgac	120	
atcgaggaga agagaggctt caccagccac tttgtttcg tcatcgaggt gaagacaaaa	180	
ggaggatcca agtacctcat ctaccgccc taccgcagt tccatgctt gcagagcaag	240	
ctggaggagc gcttcgggcc agacagcaag agcagtcccc tggcctgtac cctgccacaca	300	
ctccccagcca aagtctacgt gggtgtgaaa caggagatcg ccgagatgcg gataacctgcc	360	
ctcaacgcct acatgaagag cctgctcagc ctgccgtct gggtgctgat ggatgaggac	420	
gtccggatct tcttttacca gtcgcccstat gactcagagc aggtgccccca ggcactccgc	480	
cggctccgccc cgccgcaccccg gaaagtcaag agcgtgtccc cacagggcaa cagcgttgcac	540	
cgcacatggcag ctcccgagagc agaggctcta tttgacttca ctggaaacag caaactggag	600	
ctgaatttca aagctggaga tgtgatcttc ctccctagtc ggatcaacaa agactggctg	660	
gagggcactg tccggggagc cacgggcatac ttccctctct ccttcgtgaa gatcctcaaa	720	
gacttccctg aggaggacga ccccaccaac tggctgcgtt gctactacta cgaagacacc	780	
atcagcacca tcaagtctgt ggccctggag ggagggcct gtccagccattt cctgccatcc	840	

42/61

ctacgaccac cgcccctcac atcaccttct catgggtccc tctcccactc caaagcccc 900
 agtggctccc agatgagcca caatgctgta acaagccatc aacgtccagg gtggcctggc 960
 cagcctcatt cccctttccc ccacccaca ccccacttcc agcctgatgc ctcttactc 1020
 cagcctgtca ccccccttagg gacatcgccg tggaggaaga tctcagcagc actcccstat 1080
 tgaaagacct gctggagctc acaaggccggg agttccagag agaggacata gctctgaatt 1140
 accggggacgc tgagggggat ctggttcggc tgctgtcgg a tgaggacgta gcgctcatgg 1200
 tgcggcaggc tcgtggcctc ccctcccaga agcgcctttt cccctggaag ctgcacatca 1260
 cgcagaagga caactacagg gtctacaaca cgcatgccatg a 1301

<210> 22

<211> 348

<212> PRT

<213> Homo sapiens

<400> 22

Met	Ala	Val	Ala	Gln	Gln	Leu	Arg	Ala	Glu	Ser	Asp	Phe	Glu	Gln	Leu
1															15

Pro	Asp	Asp	Val	Ala	Ile	Ser	Ala	Asn	Ile	Ala	Asp	Ile	Glu	Glu	Lys
													20	25	30

Arg	Gly	Phe	Thr	Ser	His	Phe	Val	Phe	Val	Ile	Glu	Val	Lys	Thr	Lys
													35	40	45

Gly	Gly	Ser	Lys	Tyr	Leu	Ile	Tyr	Arg	Arg	Tyr	Arg	Gln	Phe	His	Ala
													50	55	60

Leu	Gln	Ser	Lys	Leu	Glu	Glu	Arg	Phe	Gly	Pro	Asp	Ser	Lys	Ser	Ser	
													65	70	75	80

Ala	Leu	Ala	Cys	Thr	Leu	Pro	Thr	Leu	Pro	Ala	Lys	Val	Tyr	Val	Gly
													85	90	95

Val	Lys	Gln	Glu	Ile	Ala	Glu	Met	Arg	Ile	Pro	Ala	Leu	Asn	Ala	Tyr
													100	105	110

Met	Lys	Ser	Leu	Leu	Ser	Leu	Pro	Val	Trp	Val	Leu	Met	Asp	Glu	Asp
													115	120	125

Val	Arg	Ile	Phe	Phe	Tyr	Gln	Ser	Pro	Tyr	Asp	Ser	Glu	Gln	Val	Pro
													130	135	140

Gln	Ala	Leu	Arg	Arg	Leu	Arg	Pro	Arg	Thr	Arg	Lys	Val	Lys	Ser	Val	
													145	150	155	160

Ser	Pro	Gln	Gly	Asn	Ser	Val	Asp	Arg	Met	Ala	Ala	Pro	Arg	Ala	Glu
													165	170	175

Ala	Leu	Phe	Asp	Phe	Thr	Gly	Asn	Ser	Lys	Leu	Glu	Leu	Asn	Phe	Lys
													180	185	190

Ala	Gly	Asp	Val	Ile	Phe	Leu	Leu	Ser	Arg	Ile	Asn	Lys	Asp	Trp	Leu
													195	200	205

43/61

Glu Gly Thr Val Arg Gly Ala Thr Gly Ile Phe Pro Leu Ser Phe Val
 210 215 220

Lys Ile Leu Lys Asp Phe Pro Glu Glu Asp Asp Pro Thr Asn Trp Leu
 225 230 235 240

Arg Cys Tyr Tyr Tyr Glu Asp Thr Ile Ser Thr Ile Lys Ser Val Ala
 245 250 255

Trp Glu Gly Gly Ala Cys Pro Ala Phe Leu Pro Ser Leu Arg Pro Pro
 260 265 270

Pro Leu Thr Ser Pro Ser His Gly Ser Leu Ser His Ser Lys Ala Pro
 275 280 285

Ser Gly Ser Gln Met Ser His Asn Ala Val Thr Ser His Gln Arg Pro
 290 295 300

Gly Trp Pro Gly Gln Pro His Ser Pro Phe Pro His Pro Thr Pro His
 305 310 315 320

Phe Gln Pro Asp Ala Ser Leu Leu Gln Pro Val Thr Pro Leu Gly Thr
 325 330 335

Ser Arg Trp Arg Lys Ile Ser Ala Ala Leu Pro Tyr
 340 345

<210> 23
<211> 28567
<212> DNA
<213> Homo sapiens

<400> 23	
gtttcaccat gttggtgagg ctggtctcaa actcctgaac ttgtgatcca cccacctggg	60
ccgcctcaacc aaagtgcgtgg gatgacagac gtgagccact gcgcggcggc accacaggtt	120
cctctttttt tttttttttt ttgagacggg gtctcgctct gactccaggc tggagtgcag	180
tggcgccatc tgggctcaact gaaaccaccc cctcccaggt tcaagagatt ctcctgcctc	240
aggctcctga gtagctggaa ctacaggcgc gcgcctccac gccctgctaa tctaattttt	300
gtatTTTTAG tagagacggg gtttcaccat gttggccagg atggtctcga tctcttgacc	360
ttgtgatccg ccctccctcg cctcccaaag tgctgggttt acaggctgaa gccaccgcgc	420
cctgtctgac aggttcctcg tttttttttt tgTTTTTTTT tttgagacgg agtttcgttc	480
ttgtcgcccc ggctggagtg caatagcagg atctcggttc actgcaacca ctgcctcccc	540
ggttgaagtg attcacctgc ctcagcctcc tgagtagctg ggattacagg cgccccaccac	600
cacgccccgt taatTTTTTG tatttttatt agagacagtg tttcaccatg ttggccaggc	660
tggtcttgaa ctcgtgacct caggtgatcc gccccctca gcctccaaa gtgttgggat	720
tacggacgtg agccaccgcg ccgagctgac aggttcctct taaagccctg agtcccaggg	780
aagggacctg caggccccgc cacgcccagg ccgcTTTACG gcgcagatg gcccgtac	840

44/61

cggccccgggg	ccggagccga	gtgggcccga	gcgttcccgaa	gcattcccgaa	agtccagaga	900
aactccggga	gcggcgcggg	cgggagcggt	cggccgggag	cggcccccggc	cggAACCTGG	960
gagcggcgcc	gccggcgccgg	gggaggggag	gccggatgtg	agtggagcgg	ccatttcctg	1020
tttctctgca	gtttcctca	gttttgggtg	gtggccgctg	ccgggcacatcg	gtttccagtc	1080
cgcggaggc	gaggcggcgt	ggacagcggc	cccgacaccc	agcgcacccgc	cgcggcaag	1140
ccgcgcgc	gtccgcgcgc	ccccgagccc	gccggttcct	atctcagcgc	cctgcgcgcg	1200
ccgcgcgc	ccagcgcgcg	gcctgtatgc	aggccatcaa	gtgtgtggtg	gtgggagacg	1260
ggtgagtgcg	cggccggggc	cgggctggag	gccgcgggat	cgggcgcgg	gggggggttgg	1320
gcccggactg	gggcccaggc	aggccggcgt	ccgcgcggc	tgcgttaggc	gttgggcctg	1380
ggcctgtgtc	gccccgggg	ggccgcggcg	ggcgcacccca	ccggaccctg	acggcccg	1440
cggcgcgtgc	ctgggtccgg	ctctcgatgg	aggagggcct	cgccgcgcgc	cggctagagg	1500
aaaaagtcaa	ctccaccctc	cggctttctt	ccggacgc	gcccgcgc	ctcctcgga	1560
gcgcgttag	agcaagcgct	cttggagatt	ttgaccattt	ttccaaaaag	ggaccctta	1620
tttttttgc	atgaacctct	cgatccccctt	ttgagaattt	gttgggaac	gcggcggtca	1680
agtcgatcat	atttgatgca	tgcttgattt	tacggccgc	tttggtgc	ccaaacttt	1740
ctttaaaaaa	atttttttt	catagacggg	gtctcgctgt	gttgc	ccggctcga	1800
actcctgggt	tcaagcaatc	ctcccatccc	agcctccaaa	atgctggat	tacaggcgt	1860
tgcaccac	cctggcta	ctttaaaagt	ttttttaga	aatgggtct	cactgtttt	1920
tccaggctgg	tctcgaaattc	ctgcgtcaa	gtgattctcc	tgcctctcag	cctccaaaag	1980
cgctgggtg	acaccgcgc	cggcctctca	acttattttc	gacaggttt	ttgacttaca	2040
cttctgcccac	tgttaggatt	ctttaaaattt	tttgc	ttccgtggag	aaagtttga	2100
agatgctggc	tgggaggagc	cggctgtat	ggggactgt	tttttctttt	ctttcttct	2160
ttttttttt	taaacaacgt	ggtgtggtca	ttgaca	aaaaaactt	tgcttaacgc	2220
gttaggtatg	ggatgttagca	gaactggccc	cctgtactc	caggcattgc	ttttcatgtat	2280
tgtccgtgat	ggttacaggc	cctagaggaa	gacaaaactt	gtcttatgca	gttttttct	2340
cccatagaaa	caagaatctc	agtgtacccc	gagcaaaatc	gcgcgtctca	gcgttgcttgc	2400
tataggttag	tgttagcgag	gaagaattac	taccagttt	atcaaactca	atgcaactgg	2460
tacatgttgc	agtaaagtcc	aaggaaagt	ctggcatcac	ggtaactgg	attgatattc	2520
ttcaaaactt	tcattaggac	agatttgggt	tcttgcattt	cagatgcaag	aaggataatt	2580
agacagctga	ttttttaag	atgcccac	gtcggttttgc	tcttggaa	gtgaaggagt	2640
attagagtat	gtaggctatt	caggctttt	ttttttttt	tttttttttgc	agacggagtt	2700

tcaactctgtt gcccaggctg gagtgcaagt gcacgatttc ggctcaaac aacccggcc	2760
tcccaggtc aagcgatcct cctgcctca gttcccttagt agctgggatt acaggcacgc	2820
gccaccgtgt ccggctaatt tttgtatTTT ttagtagaga cggggttca ccatgttgc	2880
ctggctggtc tcgaattcct gacctcaggt gatccacccg cctgggtctc ccagagtgtt	2940
gggattacag gcgtaagcca cggcgccccgg cccaaTTTTT ttttttttcc ttttctttt	3000
tttttttttgc agacggggtc tcactctgtc gcccaggctg gagtgcaatg gcgcgatctc	3060
tgctcctgca acctctgcct cccgggttca agcgattctc gtgccttagt ctcccaagta	3120
gctgggatta caggcgcaag ccaccatgcc cagctaattt gttttttttt ttttttttgc	3180
tatTTTTTGT gtggagacgg agtttccacca tgTTGGTgag gctggctca aactccctgac	3240
cctcaagtga tccgccccggcc tcggcctgtt tttttttttt ttttttttta agtcatattt	3300
ctgataattt ttgaaaatt tctaaaacta aaacataagc atagcagata cgTTTatttta	3360
atactaaccg attgtggacc tctgctgtt gaattggctg ttttatctag tcaaataact	3420
tgttgaatgt catggaatct ggaccgtccc ttcaaatccc caccccacccg cttacatggg	3480
gtAACCCtAA gcacatcccc cacctcccaa gagaggcggt tcaatggag gtcaacaaga	3540
ctaaacaaga tgTTGGTTAT taactacctc gcagggtcccc cttgctgaat gcttagtaaa	3600
tgccaggtac tgTTATTGCG gtttctacta ctgagactct gtgagggagt attaggctt	3660
aaagtctgtg gcTTTgagtt ttcaagtctgt tttttttttt taatttagtta tgagcattt	3720
aacaagcaca gttttttttt aatactatgt tttagtattga tgTTGACTAC agctaagtga	3780
tattagaagt gaaatgtacc tggccaggTC aggtggctca cacctgtAAC ccAGCATT	3840
gggaggccaa ggtgggtgga tcaactagac tttaggatTC aagaccagcc tgggcaacat	3900
ggcgagaccc tgtctctgct AAAAATACAA AAATTAGCTA ggtgttagaca catgtgcctg	3960
tagtcccAGC tactcgggag gctaaggTgg gaggatcgct tgAAACCCAG gaggtggagg	4020
ttgttagttagt ctgagattgt gccattgcac tccagccgt gcgacagagt gagacTTGT	4080
ctcaaaaaAG caaaaACAAA AACTATTAGA gatacgtttt tggccgggca cggtagctca	4140
agcctgttaat cccagcactt tgggaggccg aggtggcgg ttcacctgag gtcaggagtt	4200
tgagaccagt ctggccaata tggcgaaacc tcgtctctac TAAAAATAGA AAAATTAGCT	4260
gggcacgcct gtaatcctag ctattcagga ggTTGAGGCA ggagaatcgc ttgaacttgg	4320
gaggtggagg ttgcagttagt ccaagattgt accattgcac tccagcttgg gtgacagagg	4380
gaaactgtct tttttgtttt gtttggTTT aaaggagata catcttcatc tgTTCTGTCT	4440
ttgacccttt gcctggacca tggcagtgtc ctTTcaggct gtacgtccct ccacccctgg	4500

46/61

40/61
ctccttgcc tctgcttaca ctgggcctt aaggaaactc ctgctccttg tctcatc 4560
cctagggatg gttctgtctt atcatttcta gaattggatg ccttgcac 4620
cttaactctg catacaggc tgtgtaaata attccttcat gaaaatctct atttcaatct 4680
tctggatga gtttttcct tctggaccc tgactgatag agactgataa tacacccgta 4740
tgaaaatatg tctgccaggt gcggtggtc atgcctgtaa tctcagact ttgggaggcc 4800
gaggcaggcg gatcacctga ggtcaggagc tcgagaccag cctggccaac atggcaaaac 4860
cctgtctcta ctaaaagtac aaaaattagc cgggcgtgg ggtggcgcc tgtaatcccc 4920
gctactcagg atgctgaggg aggagaatca cttgaacccg gaaggcggaa gttgcagtga 4980
gctgagattg tgtcaactgca ctccagcctg ggcgacaaga gcaaggctct gtcttggaaaa 5040
aaaaagaaaa aaagtcagaa ataatttgc aagcatgtta gaaaattcta gatttcctga 5100
atagcaattt aaftgagatt ggccaagaaa tattacatag gttgataact cttttattct 5160
aagatagtcc tttctgagca tgggtcttat aattttttt tcctccac 5220
ccacctttta actttcaactt agtggac 5280
tttctctca gctttcccta ggtaa 5340
gacag catcacc 5400
ccaggcagg cg 5460
accctgtctc tactaaaaat acaaaaaat tagccaagga tgg 5520
tggcgtact cgggaggctg agg 5580
cagccaa tategtgcca ctgcactcca gcctggtaa cagagtgaga ctccgtctca 5640
aaaagaaaaaaa aaaaagac 5700
aaac 5760
tttgcgtcagc ctcccaagta gctgg 5820
acttgcgtcga gtaggtgg 5880
taatagagac gaggttctc 5940
atccac 5960
gcaat 6000
tttgcgtcact gcaac 6060
acttgcgtcga gtaggtgg 6120
actcctgacc ttaggc 6180
gagccatcgt ccctggccta aacaac 6240
tttgcgtcact ttttgcgtc 6300
gatatggc 6360

48/61

ggcatgagcc accgtgcctg gcttatggct agctttctt acattgattt tgaagtcaga	8220
tattggtagt agaacatcat aatttttagat tgggtttgt gtttatttag cactgcacta	8280
ctctagtggc gtattttct ggacagattt tatctgcata gttAACGAG ttatatataa	8340
ggcctaccgt tacagaatcc ccataccctt tttgtcagtg taaatcgagg accttcatgc	8400
gaggtcttta atttattcaa taagtaggaa tatatatttgc acagttacta aattctactg	8460
ccttgcctt aagatctaca tactttttt tggttttga gtcagagagt ctgcgttgt	8520
tgctcaggct ggagtgcagt gatgcgatct cagctcaactg caacctctac cccgtggcct	8580
caagcgatac ttctgcctca gcctcctgag tagctggat tacaggcgcc tgccaccaca	8640
ctcagctaatttttgttattttaatagag atgcagtttgc gctgtgttgg tcagtcgtt	8700
ctcgaactcc tggcctgaag tgatccaccc gccttggcct cttgtctggaa ttacagggaa	8760
gagccactgc gcctggccaa gatctactca cttttagaca gcaatataatgc ctctgtattt	8820
tggtttgc当地 ttgttaattgtt cattggaaga gtttggctt tctgtctga gatcaacgtg	8880
tctttaaaag aaggcagtgc agaaagttgtt ttttttga gtttcttggaa tcttttattt	8940
ttttAACGTG aggaaattcc tagcgtttctt agatttggat attgtgtttttaaagttttgg	9000
ttttagatt tcaggaagta acactaaagt ttaccctact ctccctaaaaa agtaagtaaa	9060
aagttctttt ggctggcgtt ggtggctcac gcctgttaacc ccagcactttt gggaggccga	9120
tgggggtggat ctccctgaggtt caggaattcg agaccagtctt gccaacatg gcaaaaccct	9180
gtctctactg aaaatacaac aacaaaaaaaaa aattagctgg atgtgggtt gcttacgtgt	9240
agtcccagct acttgggagg ctgaggcagg agaattgttc gaacccagca ggcagaggtt	9300
gtggtaagcc aggattgcac cattgggctc cagcctggaa gacagagcca agactccgtc	9360
ttaaagttctt cttaatggaa aaatgaagaa cataatagca acataagtta tttgtttca	9420
ttgtggttat ttctacagga cagggcaggg gaagcacaga taggtaaaaaaaattgttag	9480
catcatgagc tagggggaaa tccaatgttag aaatggcatg aactttcttc cagccgactc	9540
atgttcgtttt cctagagtga tgacattgtc cgatgattga aaagagggtt aactgagcag	9600
ttaattatataaagtttagaa attccaaaga agtagtaactt accagaaattt ctccagcagt	9660
atcagtcaag acttgggcc aaatacggct tccatttttc atgagggaaa ggccatggaa	9720
aggctgtcac attgcccagtttgcagatgttgc acttgggttgc tggaaagcgca gcgtggacaa	9780
ggaatgaata tacactaata ggagtggaaat aaccttttc ttttacctat ttgaataaaat	9840
taagtaaaag ttttaatcag aagactaaa gaggagtcga ttttatcttt tgattgcact	9900
aagcttaaat ataaggttgc actttaagaa ttctgttagtt taataatcat attcttataa	9960
gacatagatt tgtaacaaat agtgattggtaataaaattt cagtcagtat cagattatgc	10020

cagtaccttg aattttttcc cggttggacc tttctcagct aaagatgtca ttcaggaaag 10080
gaagtttaga ggattttaga cacagctggt tgccttata ttagtagttt tgttcctcat 10140
atacatagag acttaggaca gaatagtaaa agaagtgata atgacatttt atcataaacag 10200
tcaaaacctt catagcagct tatccttgac actgagtggc aactattgtt aaggttttta 10260
cacaacctt atctttttt tttttttttt tttttttttt gacggagttt 10320
tgctcttggtt gcccaggctg gagtgcaatg ggcgaatctc ggctcaactgc aacttccgccc 10380
tccccgggttc aagcgactct cctgcttcag cctcccgagt agctgggatt acaggcatgc 10440
acgccccggct aattttgtat ttttagtaga gagggggttc tccatgttgg tcaggcttt 10500
ctcgaattcc tgacctcagg tgatccgccc gccttggcct cccaaagtgc tgggattaca 10560
tgtgtgagcc accgagccca gccaaccttt atcattttta aaaaggtccc tttaggcctt 10620
aggctccact ttcttcctca gctgccacat ccaaaccatg ggtaagcgat gcttgatctg 10680
cctccaagtt caagcagtcc aggaaacagc ccacttatgt tcactgtcca gtccccatcc 10740
ttggtccagg ccaccatgga tggctcctgg actgttagcaa cagcttccat gtgtgtctgc 10800
cttgactgag tccctggcgt cctcaggctt cctgccacac tgcagttggaa ggcttcttct 10860
aaaatccagt gctttctggg caattaaaaa cctgtgactt tccaagtagg atctagtc 10920
catgtcctta acaagaagag gtaacgtatt tccctatgcc actgcccact tattttttta 10980
ttgttgagat gggatcgtgc ttgtcacct aggctgggtg gagttgggtg atcacaagctc 11040
actgctgcc 11100
actgctgccc tgaattcctg ggctgaaggg atccttgc ttcaagcctcc tgagtagctg
ggactacagg caagagccac cacttatttt tgaattttt gtggaaacaa ggtctcccta
tgttgcccag gctggtcttg aactcctggg ctcagcgatc ctccccacctc aggccccctgt
gctgggattha tagcctccctg tgcgggatt acaggctaa gccactgcac caggctttta
tttttaatt taaaaaaaaatt tatttttttgg agacagggtc tcactttgtc cctcagactg
gatgcactgg tgcaatcttg tttcaactgca gccttgcaccc ctcttgcctgg ttcaagtgat
cctcgtgcct cagcccccca agtagctgag actactgctg cacacccgcca cacccaccta
atttttgtat ttttagtaga gaacgggtt ctccatgttgc gcccagctgg tcttgaactc
ctgggctcaa gcgatccacc cacctcagcc tcccaaagtgc ctaggattac aggcacatgagc
caccatgcct ggcctaaaaa tatttttttc agctctagaa atgttagctc ttttgcgtta
catttccaga gctgctttaa taatgacagt tatcacacgc ataatttcat gtgtatgattg
cattcttaat ttttaattt aacaactgca cttacttcat gaggtcttgc tcattgata
atcttttagca ccttagtgc ttctgggtta gcacacgggtt gatataaatt gaaattgaat 11820

50/61

taatgctcac agtagttgg ggatggagct ggtagttctg cattaatttt gcaggtgaaa 11880
aaaaaaaggca tgaggaagtt gaaacttgcc aaaaaataca gccagtacgt gctagaattt 11940
gccctgggtc tcaaatactgg gcttctgact ccaaagcttgcgct catabaggtt 12000
tatTTTcaca ttctaaagctt ttaacgaaat gtatgtccaa tgagtcattt ctgttttagaa 12060
agccttttagg agtttggaaagc tacttcctgg tgatgtaatg tttgactctc taaagtctt 12120
ggaatgggaa gttccaactt ttgttaagcc ctaataatg tcatgagtga atgaatattt 12180
gcaagactgg ctggcctgt aatctgcctt gagtgtgagg gaaaatggaa aagcgcttaa 12240
ctttatggtg aattctaatt tatagtagtt gagattgaac gacaaaaatc taaaatttat 12300
gatgctgatg tgtcattgtg accttggtaa actgacagca cagcagagag aagggctcat 12360
taaggagagc acttggctaa ctgaaccctc aggatgccag agacttgaat tctcatgtaa 12420
gcccttaagc ttgccttgct aatgctgtaa aaattggaga cctttatgtt ttgctaattga 12480
tgtggtgacc ttagtttatta ggtgatagcc tcttgaaaaa cattccaggt gggtgggaga 12540
ctttcagcca ccactttct gcctggcgcc acactggtaa tattaggatt agtctctacc 12600
cattgccagt tgtcaggtg gtgccttctt ctctgaagta tttctacaca cttctctgtt 12660
tggcaagttt aactcccatc gtctctgagc tgtaattaa atgtctggga tgtattgtga 12720
tagtccctgc ttatagactt atgggtctgt gtgaggattt gggctggggg aggtggcatt 12780
taaatacagc tgaatcaatg tgatggcagt tacgtgtggt agtttattga ctaagcactt 12840
tctctcaaga gaacagtcat tgctgattgc catagggag gctgttaggga tgtggtgaa 12900
ttttgagctg tcccacttaa ggcagcagaa taagttactt aaagaggaag gctgtgtttt 12960
tatatttagt ttaattaaaa tacctttagg ctgggtgtgg tggctccagc ctgtaatccc 13020
agcactttgg gaggtccagg tggcggttc acttgaggctc aggagttcga gaccagctg 13080
gccaacatgg cgaaaaacca tctctactaa aaataaaaaa aaattatcca ggcgtgggtgg 13140
tggacagctg taatcccagc tacttggag gctgaggcag gagaatcgct tgaacctggg 13200
aggcagaggt tgcagtgagc caagatggtg cctctgcact gcactccagc tggggcgaca 13260
gcacgagact cggtctcaaa aaaaaaaaaa aaagaaaaaaaaa aagaaaaaaaaa gaaaatatct 13320
tcaggatcaa acttaagatt ctgtatgaga ggctctacag atgttcacag aagagacgtg 13380
aagttttaaa atcttggttc tcttgagtct tgtagctagg tgacaactgt ttcttgacta 13440
ttaatgctaa cacccgggtac ctaaacagaa tgtgatggct cctgactcta tctttctgag 13500
aaattctagt ttgtttactt taaatttcag ggtaccaatg tgtatgtggt gataaagggt 13560
tatagaaaaac attttcttta atgctaaatgta tgtgatgtat atgccttgat ttttttctc 13620
tagaaattat tttaacttaa tagtggaaagc taagattaca ttcatgttga ctaagcaacc 13680

ttttttctct ttctcttttag agctgttaggt aaaacttgcc tactgatcag ttacacaacc 13740
aatgcatttc ctggagaata tatccctact gtgtaagtat cttaaattgg gaattaacct 13800
gtttgtgtta cgggtttcac atttcttga ccattgttt tgctgtaaag ccatctttaa 13860
tcctcatatg aacagatact aatttttct taaacattca ctgaaaccta attataaggt 13920
atattaggtt tttaaaaaat agggctgggg gtggtgatct cagcactttg ggagactgag 13980
gcgggtggat caactgaggg tcaggagttc gagaccagca tggtaaacgt gatgaaaccc 14040
catctctact aaaaatacaa aaaattagcc aggtgtggg gcgggtgcct gtaatcccac 14100
atacttggga ggctgaggca ggagaatcac tcgaaccgtg gaggcggagg ttgcagttag 14160
ccaagatcac gccactgcac tccagcctgg gcaatgagag cgaaactcca tctcaaaaga 14220
aaaaaaaaaa agaaacttag ggtaatataa actttcaca actttgctag ttgattttta 14280
gacatccaga aagcaaactt taactgtctg tgaggtacag agactggatg atgttaaaga 14340
aaaccatagt tggacacaag aactctgacc aaaagtctga tcagaaacag tccttgcag 14400
tgcacgagtt tcagatacac tggcttctg ggaactggaa agggaaagat tccattacgt 14460
ttaattggc ctttctgat aagtcatcag ttggttacat gtccgcattg aggtgttaggg 14520
ctttggaatt gaaacttggg tgtgtgttt gaagggggaa tgggagggtg gaattggcta 14580
ttgaattgt tactccctat aggcagcaga attgggtgga gacaggaaag tgctgctctg 14640
gtgatgggtt acccgggagc gcacgtagct gagcctcata atgcaccatc ctgcagctgc 14700
tgtgagtcct ccctgtgcag gctggggagg tgtcgcctcc tccccacctg tgttcacctc 14760
ctcaggcaca acacacaccc aggtgtctc tgaagtgtcg tacccatgtt tttgttgg 14820
ttgttgggtt tttccttttt ttttttttt tttggagttt gtctctctct cttgcccagg 14880
atggagtgct gtgatgcgtat ctcagctcac tgcagcgtct gcctcctggg ttcaagtgtat 14940
tctctgcctc agcctccctag gtacgtgtga ttacaggcat acaccaccac acctggctaa 15000
ttttgttcc ttttagtagag acgggtttca ccatgttggc caggttggc tcaaactct 15060
gacctcaggt gatctgccc cttcagcctc ccaaagtgtc gggattacag gcgtgagcca 15120
cggcacccat ttttactgt aagtggaaatc atgctgtccc tgggtgccta aatttatggg 15180
ggagattttc cttatctaca tatgttagata aagggttaat cattaatgtat taatgattt 15240
gaagtactat aactgattt acccactggt cacttggact cttgggttta acaaacattg 15300
ctgggttcag tgggtccct tatgtctttg tgcacacttg atagattttt agaagcaaaa 15360
tcgtgccaaa tcaaaagaca atggatgttt taaattttgg tagatacagc tgggcgtgat 15420
tgctcacgccc tgtaatccca gcactttggg aggccaagac ggaaggatca cttgagggtca 15480

tggaaatata attaacatgt ccatcaccat cacacccctt cttcttcctt cttctttttt 17400
cttgagaccc agtttgcac ttgttgcaca ggccggagtg cagtggcgca acttggccca 17460
ctgcaaccc tcgttccccgg gttcaagcga ttctttgcc tcagccccc aagtagctgg 17520
gactacaggc gcctgtcacc acgcctggc taattttgc attttttagta gacacaaagt 17580
ttcgtcatgt tggccaggct ggtctcgAAC tcttgcaccc aggtgatccg cccacccgg 17640
cctcccaaag tgctggatt acaggcgtga gccaccgtgc ccagccctcg ctttttatta 17700
tatTTTcct ttTTTTTT ttcttttttgc cttccctgtc cagaggaaac actatTTTct 17760
tctaaagctt ggTTTCTGCT gaccagtagc aattttAAC atcagtctga ttccctctg 17820
tcagcctata ggcttgctg ggTTATCTCT cctgactaat ttgtgttagca acttcacatg 17880
aatttaaaca ttgttatcat cagttAACAC tcactttgaa aatgttatttggaggcTTGT 17940
taagtcaggc gtattttgtg tgactgctct acactcaggc cttctggaaa ccctgcagag 18000
ggtagctcta gtggccagct agctcttttgc ctgaaaaatga gcaacataag tacatgaaaa 18060
acccaacaag taggatttga aagcggggct aattgtaccc ttatttcttc tggggataaa 18120
agtcttaaac ttgtttaaa gtaaaatgtt ttatttcttgc acggtgattt gtttcaCTTA 18180
aatacgTTt tgTTTgttcc ttcatTTCTC cttaagTTTT gggTTgggTT tggTTTgtt 18240
cccgcaagtt ttgcccgtgc cgccTTCCCTC cttgtgcctg cagggacatt tgctggTgtg 18300
gcagcctcoa ggcccgTCCC cagcTTTTT cttggcacac cttctctagg atggctggga 18360
cagtgactta gcttctacac ctgtgactaa ccattttcat tccattctac agctttgaca 18420
attattctgc caatgtttagt gttagatggaa aaccggtaa tctggctta tgggatacag 18480
ctggacaaga agattatgac agattacGCC ccctatccta tccgcaaaca gtaaggattt 18540
cagctgactt ttaatgtgtc tttagagta tataattctc gagcgcttaa ttagtgcattg 18600
ttacctatgg acttgcttat attgccatca ttgggtatt gagtaaaatag caaacagggt 18660
gggattgggtt ccatgtaaac atccccctag atgcaagccc aggggTTTTg tgTTTgagc 18720
gttaccagct gttccattgt tggcattttt acagtctcc atttagctt agaataaccg 18780
tatgaaagag ctacttttg ttttgcaaa ccagTTTTA acaccaatta gtttgaaggc 18840
aggTTTgctg tgtgacattt ttgtaccaca gaatcaaatt aggcaattaa gattcaggTT 18900
tctttaaacc aagtttagtaa ctaatctcac aggtttaata catTTTTCC cacaaaatac 18960
ataatttGta tggattttgtt gaaccataca atagaaccta aatttattca atgttagattt 19020
aagTTTgggt ttgtaaaat gtatccactg tgcataatca gaaaaaaaaag ttacttttg 19080
cttctgtatc agacaactaa gtgatttattt taccaaaagct aatttagagca gtagctggTg 19140

aaaatgggta cttagaagac attgttgcg taaaaagtta cttttcttta agcagcggtt 19200
ttacttgtt atcatttgct tatcttgta catgttgcg cttcattttt aaaagtatct 19260
ttggaagcaa aagttaaata tgcttgagat tccttgggtt gataacctgt gtgcattgtcc 19320
tagctctgtg acttcaggca ggcttcattcc tctctccagt ctttgcctgt ttccttgtag 19380
ggtgagatga gtacgtgtca cgcacgcata acagtcctgg gcacatagca cacactgtgg 19440
ggccagccgc tgtcagaatt ctccctgttcc tcagtgtgcg ggtgggtcgg cctaaagagt 19500
gctgcttcc acgttgcgtcc caaatgagtg gaagttgtgt ggtgctcagc acacctgggt 19560
tggccggagg gattggggtt ggggttgggt tgaggtcagg aagacatcct agagaaaggc 19620
tggcttgag ccctgattga tgatgaggca gcctgtgatt gattcaacca gtacttcgtt 19680
gtagggggta atatgggtga aataacttag tggtaagtc tgctgttatta aaaatcagtc 19740
tataatcccc agacaattca aattcttcag tatcttagga aactcttcta tacccagtgg 19800
atgttaata attcagattt taaaatggatt taaaaacata ctggctggta gagtaggaga 19860
cttcagccca ctggacacat gtggaaagggt gtgggtgtcat tctgagaaac aagagccacc 19920
ctgctgtgac tcagggggta ccgggcaggg tgaggcctct ctaaggaagg cctcacagta 19980
agtcaagggt gacttggcag gagtcccact ttgtgttctg aggaacacac agataaggaa 20040
agagaactct cctcagcttgc aacaaagctg tagagtgtga cgcctggtat caaaagttagt 20100
gttgcctca tagggctaga acttaaactt catgtttctt ctgtgtgaga ctgtggactg 20160
cttcctata aaatatttga ggagcaaggg agggagtggg acatggttct tgccctcagg 20220
tagttcacag aaaagtccca taaactgtgt aagacaccct gtgctagcaa gggggtgagc 20280
cgggcgcctta aggagcaaga ggggcgagca cccacccagc agtggaaagca ttccctgtctg 20340
gactccctca gagataagga aattatcttgc acaactcagg ggcaggccac agatgctcag 20400
ataccagtgt ctggaaaggc tcatcccttt gagccacact gtcctaagaa gaactggatc 20460
tggtagtaac atgctggcac ctgggtctct tggataaaa gggaaacct ctaaattttg 20520
tactacatgg aatgtggtcc ctgattgctg gctctgtgtt ctgcagacct gttgatgtag 20580
ctcatccaag actgcttaga cactctcctg aaggaccagt tggaagattt cttatctagg 20640
gtgtcctaaa aagagatgtt acatttcttgc tggcattta acattggcat cctctctatt 20700
ggcagctct gtcggctaag tctgttcaga ccattcattt ctcttcgtt ctccaaagat 20760
ggtggcagg tagtcgccat tcttagttga aattgcctt caggtttta tttccgaat 20820
tacgtaatcc ttacattatt ttctcttgc aatcttgct aagttctgca tactcatctt 20880
cagttgctat gcacagaatc aagtcttgc agagtaacgc tcaagtccag catctccct 20940
tgtgttagatc acctgttattt atttgcctgc ttgtaccagc attgggtgggtg tgagtggag 21000

cctaagtgac ctgtcagtgt cacagcgagt cctgagccct gtgtgtgtcc tgagactcag 21060
gctgtgcagc gggttcgctg agatgctgag cctccatgtt ggggtcagcc aggaccccag 21120
tgcgtcatgc cagttgttc attttctctc taggctaaaa gtgtgttg ttgtgttgt 21180
tgtttgagac agagttcgc tcttggcc aggctggagt gcaatgggtg tgatcttggc 21240
tcactgcaac ctccgcttcc cagggtcaag tgactttccc gccttagtct ctcaagtagc 21300
tgggactaca ggcatgtgct accatgcctg gctaattttg ttttgtatTT tattttttt 21360
gagacagagc gagactctgt ctcaaaaaaaaaaaa caaaagaaaa caaagaaaaa agaaaagctt 21420
gagtgagatg aaattaaaaat aattttctca tttttagaca gggtctcgct ctgtcacccca 21480
gactggagtg cagtgtcaca atctcgctc actgcaacct ccaccccccgg ggttcaagca 21540
gttctctgcc tcagccccc gagtagctgg gattacaggt gcctgccacc atgccccggct 21600
aattttttgt attttttagta gacacagggt ttcaccatct tggccaggTT ggccttgaac 21660
tcctgacccctc gtgatccacc tgccctggcc tcccaaggtg ttgggattag aggctgtgagc 21720
gcctttctta aaagagttcc agggttctat gttggaaagag cgagtttgc agtttttatt 21780
ggAACAAAGA aatgaattga cagcattgtg ataaacactg gaagtgtcac ttctaaaaatt 21840
tgtccatggc tgaaagtggg ggctcatgcc tgtaatccc gcacgttggg aagccaaggT 21900
gggtggagca cctgaggtca agagttttag accagcctgg ccaacatggT gaaacctggT 21960
ctctactaaa aatacaaaaa attagctggg cgtgggtgg tggcctgtt gtcccagct 22020
cttgggaggc taaggcagga gaatcgctt aacccaggag gcagaggTT cagttagctg 22080
agatctcacc attgcactcc agcctggca acagagcaag actccgtctc aaaaacgcTT 22140
gtccttaagg ggtggctcc cccagaccta caaagttagcc cagaatttgg ggtcttagtg 22200
tcagcaacag tgctgatTT gataatgca gtcgtacat tcaaaccagt ctcccagaac 22260
taggtggaaag ataggaacat ttctgcata gagaacttggg atgttctggc agcattaaaa 22320
ccctgaggcc cggctatgtt ctgggagagc ccttggcag gcatcattt acaacgggtc 22380
ctttcctgt atgctgtggc ttcaactagg ctgtgtctga gaactcggat ggagcacttg 22440
aaagtccccg tggctccgc ctgccttgc ggtaaggac agtgcagaac atctccggct 22500
gtgccagctg ttgttagattc tgggggtgc tgccatggg gggaggac gttgttgc 22560
ccctcagga tctccctgac ctctgtctc accatcgTT aacttaacgc ctgttttg 22620
ccaggttagcg tggagtgttt cagtggcatt tgtcatcgaa gatagttttag aatctattgt 22680
atgcttttgg atctctccgg agggtaaga caaaattcta ataaagaatc gataagaggt 22740
tatattgatt ttgttgc tcagtctgtt caaaactcaa accaagttct catgcattac 22800

taggttggag aaacgtacgg taaggatata acctcccccggg gcaaagacaa gccgattgcc 22860
gtatgtaaaa ct当地cgtcc acttcagttt caagcttct ct当地ctctc atttcaactc 22920
gtttccttag gatttttat taagcctcaa gctccttgag tgtttataat ttaattcaact 22980
caaggttggg gtttgcttg atgaaataaa cttcattaga gtgtgatagt tt当地ccaccg 23040
gcttgaatta aagcagttt gtaactgtga tcttctctc ccaagtgaaa ggaggggaca 23100
gtgagagggc cc当地ctctg gctggttgg gatgcagata tggagactcc tcccggaaagc 23160
ccacctggct gtgagccgag ccggagcagg accaacctt gtc当地ggggc ct当地ttctc 23220
cgcttgggtg tccctgtgg tggggctgtc tggcgttggc tgtcagtg tgc当地gagcta 23280
acccccacccgt gctttagatg gt当地gttggg tgccgcgggt attcttggac gagcttgc 23340
atgcgccagc actcttcaaa tgccagttat aaaaagctgt tgtgtggat gtttcttcc 23400
cttctaggta caaggtatca gctggaggg taaaatgtta gcttggaaat tgtgtgcatt 23460
tcataaaagta gcataattgc ct当地tccag gagaatattt tagaaatcta gcattttaga 23520
attcttgggc attttaaat acaggtgaat atttgaattt ggtttgcacac aaaatacaga 23580
atggatgaag catgcagatg tttggcgtgt gccccgaagc accctctact ct当地ctctg 23640
cacccacccct ttgc当地ctc gctcagcca cagctgcccc gggagcgggt tctcctgagg 23700
ccctggctgt gctgactcta gggcagcgtg aggggtggttg tcaagctgtga aggtgccact 23760
tacacactaa gtc当地cttc ct当地tggagg gaagggtca agtagcaaatttggagccc 23820
ccgcttggtg ct当地ggctg tgacaggcag ct当地tgaaga agcagttaa tt当地accag 23880
tgaccatcta aaactgtttg tactctaaac cagattttac agaaatatttgaatcatacc 23940
tttataacttg atttcttctt tt当地tagatgt taggc当地aaa ggaagcctcc tgagggtctg 24000
gtctgatcct cctgatcctt gaagagcttc cagcatcatt ct当地cttcat gctccccatt 24060
ttcataagta actgggtggct tgacatgctg ggtttggttt gggagccctc tgacaaaactg 24120
aaagggtgga tc当地ggcg tctgaccaca ccactggtag acacgctctg cgtccaaacaa 24180
gtc当地tccca gcaacatgtta gaaagcaaag tgcatgctt attctaaatgt tgttgtctaa 24240
atgttccct gt当地tccctt tt当地taggtat gt当地tctttaa tt当地cttcc ccttgtgagt 24300
cctgcatcat tt当地aaatgt ccgtgcaaag gtaggtgggg atttaaaatgt tgtagtgaag 24360
ttatagaatg atcctctcag aaataaatac tt当地aaatat cacttagcct aggaattttt 24420
agttattnaa attgggtttt gcaatttgct acttaggtac atgattgggt tt当地ttttt 24480
ctt当地gagac ggaggtctca ct当地tggtg tccaggctgg agttgtactg gtgacatcag 24540
agctcactgt agccttgaac tc当地ggctc aaacagttct cctgccccag cctcctgagt 24600
tgctgggacc ataaatgtgc accaccatgc gtggctaaatc tt当地aaagaat tt当地gtatgg 24660

ctggttttgt agaccctggc ttgtctcaa ctccctgggtt gaagtgatct ttcagcttca 24720
gcctccccaaa gtggtggat tatacgctgt agccactgca tctggcccat cagcagttta 24780
ttttatttat ttattttga gagagtcttt tttttgtt ttgttttgtt ttttagatg 24840
gagtttcaact cttgttgccc aggctggagt gcagtgacgc aatcttgct cactgcaact 24900
tccgcctcct gggttcaagt gattctcatg cctcagcctc ccgagtagct gggattacag 24960
gcatgcacca ccacgcccgg ctaattttgt attttagta gaaatgtggt ttctccacgt 25020
cagtcaggct ggtctgaac tcccgacctc aggtgatccg cgctgtcggtt cctcccaaag 25080
tgctgggatt acaggcgtgg gccaccgtgc ccggctgaga cagaatcttgcg 25140
caagctggag tgcagtggca caatcttggg tcactgcaac ctccccctcc cggttcaagc 25200
aattctcctg cctcagcctt cttagtagct gggattacag gtgcccgaca acacacctgg 25260
ctaatttttg tacttttagt agagacgggg tttcaccatg tttgccaggtt tggctcgaa 25320
ccccctggcct caagtgatcc acccgccgca gactcccaga gtgctggat ttcagggtgt 25380
agccactatg cccggcctaa tacgtggatt tttaaagctt caggttctgg ttcagaagtt 25440
tcctgggtct cattaaaata atgaggcact cagaattggt ctaataaaaa taacgaccat 25500
ttctttctac tccagtcctt ttcacaaact tcttagtgaa aatgacaagt gaggcccttc 25560
agtagggca ttttcagtgg agataatagc ggcagacctg agaccttggg ctaggttagtt 25620
tattctcatt tctgaacaga tgatgaattt tctcagatga ccctaagaaaa ttgttttacc 25680
aaaaacaaaag tgatctattt gctttggag gaactccctt cctttgttt ctcttccctt 25740
ccccccctcc cctgcgggtt tagagccgt tctgtccgtt cgtgggtctg tccagccatg 25800
atccggaggt cctagcttgc taatgaaaca cctgagatgt tccttatggc tcaaggctt 25860
aattgaaggt gggaaaccacc tgaagcctcc gtggggaggc cttgccttagt gtttaggtgtc 25920
tggcatgagt gcccggcgtt ggggtgtgatt taggtgaagg acatctgtaa aggagcgtgt 25980
cacaacctct gttccttctt cacatctgtt ggtatcctga ggtgcggcac cactgtccca 26040
acactcccat catccttagt ggaactaaac ttgatcttag ggatgataaa gacacgatcg 26100
agaaaactgaa ggagaagaag ctgactccca tcacccatcc gcagggtcta gccatggcta 26160
aggagattgg tatggaatcc ttttttttcccttcttcttacccctttt attgtatgt 26220
cagagactgg agtccagttt gggaaaggag ggtgtgtgtc tcccaactcag ggcctgggt 26280
actcttgggg aaccagctgg caaggccctg tgggtcttaa cgtcagcgtt ggaagggtgga 26340
agcaggcgtt ggagccggca gaaggcgccc gggccccagg agctgcctcc cgctgggt 26400
gtgatcagaa gagagtgggg tcgagtgtac attgccgtgtt ggtcgtgtt cctgttaggt 26460

ctgtaaaata cctggagtgc tcggcgctca cacagcgagg cctcaagaca gtgttgacg 26520
aagcgatccg agcagtcctc tgcccgctc ccgtgaagaa gaggaagaga aaatgcctgc 26580
tgttgtaaat gtctcagccc ctcgttcttg gtcctgtccc ttggaacctt tgtacgcttt 26640
gctcaaaaaaa aaacaaaaaaaaaaaaacaaa aaaaaaaaaac aacggtgag cttcgcact 26700
caatgccaac ttttgttac agattaattt ttccataaaaa ccatttttg aaccaatcag 26760
taattttaag gtttgttg ttctaaatgt aagagttcag actcacattc tattaaaatt 26820
tagccctaaa atgacaagcc ttcttaaagc cttattttc aaaagcgccc cccccattct 26880
tgttcagatt aagagttgcc aaaataccctt ctgaactaca ctgcattgtt gtgccgagaa 26940
caccgagcac tgaactttgc aaagaccttc gtcttgaga agacggtagc ttctgcagtt 27000
aggaggtgca gacacttgct ctcstatgta gttctcagat gcgtaaagca gaacagcctc 27060
ccgaatgaag cggtgccatt gaactcacca gtgagttagc agcacgtgtt cccgacataa 27120
cattgtactg taatggagtg agcgttagcag ctcagcttt tggatcagtc tttgtgattt 27180
catagcgagt tttctgacca gctttgcgg agatttgaa cagaactgct atttcctcta 27240
atgaagaatt ctgttagct gtgggtgtgc cgggtgggt gtgtgtgatc aaaggacaaa 27300
gacagtattt tgacaaaata cgaagtggag atttacacta cattgtacaa ggaatgaaag 27360
tgtcacgggt aaaaactcta aaaggtaat ttctgtcaaa tgcagtagat gatgaaagaa 27420
aggttggtat tatcaggaaa tgttttctta agctttcct ttctcttaca cctgccatgc 27480
ctccccaaat tggcattta attcatctt aaactggttg ttctgttagt cgctaactta 27540
gtaagtgcct ttcttataga accccttctg actgagcaat atgcctcctt gtattataaa 27600
atctttctga taatgcatta gaaggaaaa ttgtcgatta gtaaaagtgc tttccatgtt 27660
actttattca gagctaataa gtgcttcct tagtttcta gtaacttaggt gtaaaaatca 27720
tgtgttgcag ctttatagtt ttaaaatat tttagataat tcttaaacta tgaaccttct 27780
taacatcaact gtcttgccag attaccgaca ctgtcaactg accaatactg accctctta 27840
cctcgcccac gcggacacac gcctcctgta gtgccttgc ctattgatgt tccttgggt 27900
ctgtgaggtt ctgtaaactg tgctagtgct gacgatgttc tgtacaactt aactcaactgg 27960
cgagaataca gcgtggacc cttcagccac tacaacagaa tttttaaat tgacagttgc 28020
agaattgtgg agtgtttta cattgatctt ttgctaattgc aatttagcatt atgtttgca 28080
tgtatgactt aataaatcct tgaatcatac gactggtaat actgggtttt ttgagacttg 28140
atgaacaagt tcctgggttg tgtttggctt ccttgcattt aagtccctggg ttggtggaga 28200
cagtcatttt caatgcgtgt ctccacacag gagggacagg gagtgccacc tccaggggag 28260
aactgggtga gccaaatac ggcaggagtg gaggtgacat tcatgtttgg acctgtcgaa 28320

cagtggcgaa gctctgaggg agaagcgcct atcgggtgt gtgtgcacat cctggccag 28380
 agcttaggggc tgaagatgga gatgttggga ccctagactg gccctggaag agtagaggtt 28440
 ggtgaaccac atgcccttaa gatccttc agaggcttag tgctggctt acgcctctaa 28500
 gcccgacgct ttgggaggct gacacaggag gagcgcttaa gcccaggagt tctagaccag 28560
 cctggac 28567

<210> 24
 <211> 211
 <212> PRT
 <213> homo sapiens

<400> 24
 Met Gln Ala Ile Lys Cys Val Val Val Gly Asp Gly Ala Val Gly Lys
 1 5 10 15

Thr Cys Leu Leu Ile Ser Tyr Thr Thr Asn Ala Phe Pro Gly Glu Tyr
 20 25 30

Ile Pro Thr Val Phe Asp Asn Tyr Ser Ala Asn Val Met Val Asp Gly
 35 40 45

Lys Pro Val Asn Leu Gly Leu Trp Asp Thr Ala Gly Gln Glu Asp Tyr
 50 55 60

Asp Arg Leu Arg Pro Leu Ser Tyr Pro Gln Thr Val Gly Glu Thr Tyr
 65 70 75 80

Gly Lys Asp Ile Thr Ser Arg Gly Lys Asp Lys Pro Ile Ala Asp Val
 85 90 95

Phe Leu Ile Cys Phe Ser Leu Val Ser Pro Ala Ser Phe Glu Asn Val
 100 105 110

Arg Ala Lys Trp Tyr Pro Glu Val Arg His His Cys Pro Asn Thr Pro
 115 120 125

Ile Ile Leu Val Gly Thr Lys Leu Asp Leu Arg Asp Asp Lys Asp Thr
 130 135 140

Ile Glu Lys Leu Lys Glu Lys Lys Leu Thr Pro Ile Thr Tyr Pro Gln
 145 150 155 160

Gly Leu Ala Met Ala Lys Glu Ile Gly Ala Val Lys Tyr Leu Glu Cys
 165 170 175

Ser Ala Leu Thr Gln Arg Gly Leu Lys Thr Val Phe Asp Glu Ala Ile
 180 185 190

Arg Ala Val Leu Cys Pro Pro Val Lys Lys Arg Lys Arg Lys Cys
 195 200 205

Leu Leu Leu
 210

<210> 25
 <211> 192

<212> PRT
 <213> Homo sapiens

<400> 25
 Met Gln Ala Ile Lys Cys Val Val Val Gly Asp Gly Ala Val Gly Lys
 1 5 10 15
 Thr Cys Leu Leu Ile Ser Tyr Thr Thr Asn Ala Phe Pro Gly Glu Tyr
 20 25 30
 Ile Pro Thr Val Phe Asp Asn Tyr Ser Ala Asn Val Met Val Asp Gly
 35 40 45
 Lys Pro Val Asn Leu Gly Leu Trp Asp Thr Ala Gly Gln Glu Asp Tyr
 50 55 60
 Asp Arg Leu Arg Pro Leu Ser Tyr Pro Gln Thr Asp Val Phe Leu Ile
 65 70 75 80
 Cys Phe Ser Leu Val Ser Pro Ala Ser Phe Glu Asn Val Arg Ala Lys
 85 90 95
 Trp Tyr Pro Glu Val Arg His His Cys Pro Asn Thr Pro Ile Ile Leu
 100 105 110
 Val Gly Thr Lys Leu Asp Leu Arg Asp Asp Lys Asp Thr Ile Glu Lys
 115 120 125
 Leu Lys Glu Lys Lys Leu Thr Pro Ile Thr Tyr Pro Gln Gly Leu Ala
 130 135 140
 Met Ala Lys Glu Ile Gly Ala Val Lys Tyr Leu Glu Cys Ser Ala Leu
 145 150 155 160
 Thr Gln Arg Gly Leu Lys Thr Val Phe Asp Glu Ala Ile Arg Ala Val
 165 170 175
 Leu Cys Pro Pro Pro Val Lys Lys Arg Lys Arg Lys Cys Leu Leu Leu
 180 185 190

<210> 26
 <211> 579
 <212> DNA
 <213> Homo sapiens

<400> 26
 atgcaggcca tcaagtgtgt ggtgggtggga gatggggccg tgggcaagac ctgccttctc 60
 atcagctaca ccaccaacgc ctttccccga gagtacatcc ccaccgtgtt tgacaactat 120
 tcagccaatg tgatggtgga cagcaagcca gtgaacctgg ggctgtggga cactgctggg 180
 caggaggact acgaccgtct ccggccgctc tcctatccac agacggacgt cttcctcatc 240
 tgcttctccc tcgtcagccc agcctcttat gagaacgtcc gcgccaaagtg gttcccagaa 300
 gtgcggcacc actgccccag cacacccatc atcctggtgg gcacccaagct ggacctgcgg 360
 gacgacaagg acaccatcga gaaactgaag gagaagaagc tggctcccat cacctacccg 420

cagggcctgg cactggccaa ggagattgac tcggtaaat acctggagtgc	ctcagccctc	480
acccagagag gcctgaaaac cgtgttcgac gaggccatcc gggccgtgct	gtgcctcag	540
cccacgcggc agcagaagcg cgccctgcagc ctcctctag		579
<210> 27		
<211> 192		
<212> PRT		
<213> Homo sapiens		
<400> 27		
Met Gln Ala Ile Lys Cys Val Val Val Gly Asp Gly Ala Val Gly Lys		
1	5	10
15		
Thr Cys Leu Leu Ile Ser Tyr Thr Thr Asn Ala Phe Pro Gly Glu Tyr		
20	25	30
Ile Pro Thr Val Phe Asp Asn Tyr Ser Ala Asn Val Met Val Asp Ser		
35	40	45
Lys Pro Val Asn Leu Gly Leu Trp Asp Thr Ala Gly Gln Glu Asp Tyr		
50	55	60
Asp Arg Leu Arg Pro Leu Ser Tyr Pro Gln Thr Asp Val Phe Leu Ile		
65	70	75
80		
Cys Phe Ser Leu Val Ser Pro Ala Ser Tyr Glu Asn Val Arg Ala Lys		
85	90	95
Trp Phe Pro Glu Val Arg His His Cys Pro Ser Thr Pro Ile Ile Leu		
100	105	110
Val Gly Thr Lys Leu Asp Leu Arg Asp Asp Lys Asp Thr Ile Glu Lys		
115	120	125
Leu Lys Glu Lys Lys Leu Ala Pro Ile Thr Tyr Pro Gln Gly Leu Ala		
130	135	140
Leu Ala Lys Glu Ile Asp Ser Val Lys Tyr Leu Glu Cys Ser Ala Leu		
145	150	155
160		
Thr Gln Arg Gly Leu Lys Thr Val Phe Asp Glu Ala Ile Arg Ala Val		
165	170	175
Leu Cys Pro Gln Pro Thr Arg Gln Gln Lys Arg Ala Cys Ser Leu Leu		
180	185	190

INTERNATIONAL SEARCH REPORT

International application No.

PCT/SE 03/00618

A. CLASSIFICATION OF SUBJECT MATTER

IPC7: C12Q 1/26, A61K 31/03, A61K 31/12, A61P 3/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7: C12Q, A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE, DK, FI, NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-INTERNAL, BIOSIS, MEDLINE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5763496 A (JAMES ARTHUR HOLLAND), 9 June 1998 (09.06.98), column 2, line 4 - line 8; column 10 --	1-26
X	US 5902831 A (JAMES ARTHUR HOLLAND ET AL), 11 May 1999 (11.05.99), column 14 "conclusion", column 9 --	1-26
X	Diabetes, Vol. 49, November 2000, Toyoshi Inoguchi et al: "High Glucose Level and Free Fatty Acid Stimulate Reactive Oxygen Species Production Through Protein Kinase C-Dependent Activation of NAD(P)H Oxidase in Cultured Vascular Cells", page 1939 - page 1945, figure 3, page 1940 --	1-26

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

- *'A' document defining the general state of the art which is not considered to be of particular relevance
- *'B' earlier application or patent but published on or after the international filing date
- *'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *'O' document referring to an oral disclosure, use, exhibition or other means
- *'P' document published prior to the international filing date but later than the priority date claimed

- *'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

- *'X' document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

- *'Y' document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

- *'&' document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

21 July 2003

22-07-2003

Name and mailing address of the ISA/
Swedish Patent Office
Box 5055, S-102 42 STOCKHOLM
Facsimile No. +46 8 666 02 86

Authorized officer

Carl-Olof Gustafsson/EÖ
Telephone No. +46 8 782 25 00

INTERNATIONAL SEARCH REPORT

International application No.

PCT/SE 03/00618

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 017533 A1 (HENRY FORD HEALTH SYSTEM), 15 March 2001 (15.03.01), pages 6-8, page 8, lines 1-11, claims --	9,16
A	WO 9912539 A1 (THE JOHNS HOPKINS UNIVERSITY SCHOOL OF MEDICINE), 18 March 1999 (18.03.99) --	9,16
A	US 2001019832 A1 (MARGUERITE LUTHMAN), 6 Sept 2001 (06.09.01), examples 1-4, claims -- -----	1-26

INTERNATIONAL SEARCH REPORT

International application No.
PCT/SE03/00618

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: 9-25
because they relate to subject matter not required to be searched by this Authority, namely:
see next sheet
2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/SE03/00618

Claims 9-25 relate to methods of treatment of the human or animal body by surgery or by therapy/ diagnostic methods practised on the human or animal body/Rule 39.1.(iv). Nevertheless, a search has been executed for these claims. The search has been based on the alleged effects of the compounds/compositions.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/SE 03/00618

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 5763496 A 09/06/98		AT 189957 T 15/03/00 AU 1085997 A 19/06/97 CA 2238098 A,C 05/06/97 CA 2309881 A 05/06/97 DE 69606882 D,T 17/08/00 EP 0861070 A,B 02/09/98 SE 0861070 T3 EP 0914821 A 12/05/99 ES 2144792 T 16/06/00 GR 3033067 T 31/08/00 JP 11507946 T 13/07/99 US 5902831 A 11/05/99 WO 9719679 A 05/06/97	
US 5902831 A 11/05/99		AT 189957 T 15/03/00 AU 1085997 A 19/06/97 CA 2238098 A,C 05/06/97 CA 2309881 A 05/06/97 DE 69606882 D,T 17/08/00 EP 0861070 A,B 02/09/98 SE 0861070 T3 EP 0914821 A 12/05/99 ES 2144792 T 16/06/00 GR 3033067 T 31/08/00 JP 11507946 T 13/07/99 US 5763496 A 09/06/98 WO 9719679 A 05/06/97	
WO 017533 A1 15/03/01		NONE	
WO 9912539 A1 18/03/99		AU 9226198 A 29/03/99 US 6090851 A 18/07/00	
US 2001019832 A1 06/09/01		AU 4131601 A 12/09/01 AU 4632100 A 10/11/00 CA 2399889 A 07/09/01 EP 1181750 A 27/02/02 EP 1259232 A 27/11/02 JP 2002543597 T 17/12/02 SE 0000718 D 00/00/00 WO 0164209 A 07/09/01	

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)