

JAN 25, 2024

OPEN ACCESS

DOI:

dx.doi.org/10.17504/protocols.io. q26g7pkd8gwz/v1

External link:

https://clellandlab.ucsf.edu/protocols

Protocol Citation: Katie Jing Kay Lam, Olubankole Arogundade, Claire D Clelland 2024. Copy number variation analysis by ddPCR. protocols.io https://dx.doi.org/10.17504/protocols.io.g26g7pkd8gwz/v1

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Created: Jan 25, 2024

Copy number variation analysis by ddPCR

Katie Jing Kay Lam¹, Olubankole Arogundade¹, Claire D Clelland¹

¹University of California, San Francisco

Katie Jing Kay Lam

University of California, San Francisco

ABSTRACT

This protocol describes copy number variation analysis using Bio-Rad Droplet Digital PCR ddPCR and QuantaSoft Software (with modifications).

MATERIALS

A	В	С
Reagent	Manufacturer	Catalog No.
ddPCR Copy Number Assay: RPP30, Human, Homo sapiens	Bio-Rad	dHsaCP100048 5
ddPCR Supermix for Probes (No dUTP)	Bio-Rad	1863024
Droplet Generation Oil for Probes	Bio-Rad	1863005

A	В	С
Equipment/Consumable	Manufacturer	Catalog No.
C1000 Touch Thermal Cycler with 96-Deep Well Reaction Module	Bio-Rad	1851197
ddPCR 96-Well Plates	Bio-Rad	12001925
DG8 Cartridges	Bio-Rad	1864008
DG8 Cartridge Holder	Bio-Rad	1863051
DG8 Gaskets	Bio-Rad	1863009
PCR Plate Heat Seal, foil, pierceable	Bio-Rad	1814040
PX1 PCR Plate Sealer	Bio-Rad	1814000
QX200 Droplet Digital PCR System	Bio-Rad	

Last Modified: Jan 25, 2024

PROTOCOL integer ID: 94179

Keywords: Bio-Rad, ddPCR

ddPCR workflow

1

1. Sample preparation

2. Droplet generation

Figure 1. ddPCR workflow [1]

ddPCR reaction set up

2 Thaw all components to room temperature

Oct 25 2024

3 Prepare 20X target primers/probe

А	В
Forward primer (100 µM)	18 μL
Reverse primer (100 µM)	18 μL
Target probe (FAM) *light sensitive	5 μL
RNase/DNase-free H2O	59 μL

Note: Store at -20°C

4 Prepare Master Mix – Number of reactions + 1 (as extra)

A	В
2X ddPCR Supermix for Probes (No dUTPs)	11 μL
20X target primers/probe (FAM)	1.1 μL
20X reference primers/probe (HEX/VIC)	1.1 μL
RNase/DNase-free H2O	Up to 22 µL (including DNA sample)

Note: RRP30 is used as the reference primer/probe in this protocol

5 For each PCR tube: DNA sample (Up to 350 ng) + Master Mix = $22 \mu L$

Droplet generation

6 Insert DG8TM Cartridge into cartridge holder

Oct 25 2024

Figure 2. Loaded DG8 Cartridge [2]

7 FIRST - Load >20µL sample into wells

Note:

- Add a 50:50 mix of Supermix & H₂O in empty wells
- All 8 wells must be loaded with samples or Supermix + H₂O
- Make sure there are no bubbles
- 8 Load 70 μL of generation oil into all 8 wells

Note:

- Make sure samples are loaded before generation oil
- Generation oil is one-time use/can only be used within a day once opened
- **9** Apply a DG8 Gasket on cartridge
- 10 Load cartridge into QX200TM Droplet Generator

Figure 3. Loaded GD8 Cartridge in QX200™ Droplet Generator [3]

Transfer Droplets

Droplets should be transferred to 96-well plate within 5 mins of generation

12 Transfer 40 μL droplets to a ddPCR 96-Well Plate

Note: Pipette SLOWLY for droplet suction and dispensing

13 Cover 96w plate with a foil seal sheet

Note: The side with red line should be facing up

Figure 4. 96-well plate covered with foil seal sheet [1]

14 Seal plate in a PX1 PCR Plate Sealer at 180°C for 5 secs

Figure 5. Bio-Rad PX1 PCR Plate Sealer [4]

ddPCR cycle

ddPCR cycle should be started within 40 mins after sealing

16 Place plate into Bio-Rad Thermal Cycler with 96-Deep Well C1000 block

A	В	С	D
Step	Temperature	Time	
Enzyme Activation	94°C	10 mins	Ramp rate
Denaturation	94°C	30 sec	2°C/sec
Annealing/Extension	*50-65°C	1 min	2 0/860
Repeat from step 2 (39x)			
Enzyme Deativation	98°C	10 mins	
Hold	4°C	∞	

Note: Optimized annealing temperature when using primers/probe set for the first time by using gradient temperatures

Reading the plate

17 Set plate in room temperature for 1-2mins

Note: The plate can be stored at 4°C for ≤3 days before reading

18 Place plate in Bio-Rad QX200TM Droplet Reader

Figure 6. Bio-Rad QX200™ Droplet Reader [5]

19 Open QuantaSoft Software & set up

19.1 Select a well

- 19.2 E.g. Sample
 - Enter sample name
 - Experiment: CNV2
 - Supermix: ddPCR Supermix for Probes (no dUTP)
- 19.3 E.g. Target 1 (FAM)
 - Enter name
 - Type: **Ch 1 Unknown**

- E.g. Target 2 (HEX/VIC) 19.4
 - Enter name (RPP30)
 - Type: Ch 2 Reference
- 19.5 Repeat (copy & paste) for every well used in the plate
- 20 Save template & RUN

Data analysis

- 21 Check if there are >10k events for each sample
- 22 Set threshold manually (pink line) - if necessary

Oct 25 2024

Figure 7. ddPCR 2-D plot [1,6]

Note: Make sure the positive droplets (blue/green) are separated from the negative droplets (grey)