Home ► My courses ► EEE117-2017S-Tatro ► Homework ► Homework 12 - Chapter 14

Started on	Saturday, 22 April 2017, 10:13 PM
State	Finished
Completed on	Saturday, 22 April 2017, 10:14 PM
Time taken	22 secs
Grade	100.00 out of 100.00

Correct

Mark 25.00 out of 25.00

P14.13_6ed

Given:
$$H(s) = \frac{\frac{R_0}{L}s}{s^2 + \left(\frac{R_0 + R_{in}}{L}\right)s + \frac{1}{LC}}$$

Where R_0 = 50 k Ω (kilo Ohm) and R_{in} = 12.5 k Ω (kilo Ohm)

a) Find f_0 .

$$f_0 = \boxed{ 254.8518720658 }$$

kHz (kilo Hz)

b) Find Q.

c) Find f_{c1}.

$$f_{c1} = 239.409$$

kHz (kilo Hz)

d) Find f_{c2}.

$$f_{c2} = \boxed{271.29}$$

kHz (kilo Hz)

e) Find β (Beta).

$$\beta = (R + R_i)/L = \begin{bmatrix} 31.88 \end{bmatrix}$$

kHz (kilo Hz)

a)
$$f_0 = 254.8519 \text{ kHz}$$

b)
$$Q = 7.9936$$

c)
$$f_{c1} = 239.4089 \text{ kHz}$$

d)
$$f_{c2} = 271.2909 \text{ kHz}$$

e) ↓ = 31.8820 kHz

Correct

Correct

Mark 25.00 out of 25.00

P14.12_6ed

For this bandpass filter circuit, find the following values.

a) Find ω_0 .

$$\omega_0 = \boxed{1000}$$

krad/sec (kilo rad/sec)

b) Find f₀.

$$f_0 = \boxed{159.15}$$

kHz (kilo Hz)

c) Find Q.

d) Find ω_{c1} .

$$\omega_{c1} = \boxed{935.55}$$

krad/sec

e) Find ω_{c2} .

$$\omega_{c2} = \boxed{1068.8}$$

krad/sec

f) Find β (Beta).

$$\beta = 133.3$$

krad/sec

- a) $\omega_0 = 1,000 \text{ krad/sec}$
- a) $f_0 = 159.1549 \text{ kHz}$
- c) Q = 7.50
- d) $\omega_{c1} = 935.5531 \text{ krad/sec}$

- e) ω_{c2} = 1,068.8864 krad/sec
- f) ↓ = 133.3333 krad/sec

Correct

Correct

Mark 25.00 out of 25.00

P14.27_6ed

Given:
$$H(s) = \frac{s^2 + \omega_0^2}{s^2 + \beta s + \omega_0^2}$$

For this bandreject filter:

a) Calculate ω_0 .

$$\omega_0 = \boxed{8000}$$

krad/sec (kilo rad/sec)

b) Calculate f_0 .

$$f_0 = \boxed{1273}$$

kHz (kilo Hz)

c) Find Q.

d) Find ω_{c1} .

$$\omega_{\rm cl} = \boxed{7753}$$

krad/sec (kilo rad/sec)

e) Find ω_{c2} .

$$\omega_{c2} = 8253$$

krad/sec (kilo rad/sec)

f) Find β (Beta).

$$\beta = \boxed{79.577}$$

kHz (kilo Hz)

- a) ω_0 = 8,000 krad/sec
- a) $f_0 = 1,273.2395 \text{ kHz}$
- b) Q = 16.0
- c) $\omega_{c1} = 7,753.9053 \text{ krad/sec}$
- d) ω_{c2} = 8,253.9053 krad/sec
- e) $\beta = 79.5775 \text{ kHz}$

Correct

Correct

Mark 25.00 out of 25.00

P14.35_9ed

Given:
$$H(s) = \frac{s^2 + \omega_0^2}{s^2 + \beta s + \omega_0^2}$$

For this bandreject filter:

a) Calculate ω_0 .

$$\omega_0 = \boxed{1000}$$

krad/sec (kilo rad/sec)

b) Calculate f₀.

$$f_0 = \boxed{159.15}$$

kHz (kilo Hz)

c) Find Q.

d) Find ω_{c1} .

$$\omega_{c1} = \boxed{967.22}$$

krad/sec (kilo rad/sec)

e) Find ω_{c2} .

$$\omega_{c2} = \boxed{1030}$$

krad/sec (kilo rad/sec)

f) Find β (Beta).

$$\beta = 10.61$$

kHz (kilo Hz)

- a) $\omega_0 = 1,000 \text{ krad/sec}$
- a) $f_0 = 159.1549 \text{ kHz}$
- b) Q = 15.0
- c) ω_{c1} = 967.2221 krad/sec
- d) ω_{c2} = 1,033.8887 krad/sec
- e) ↓ = 10.6103 kHz

Correct