

FIGURE 1

CCAGGTCCAAC TGCACCTCGGTTCTATCGATTGAATTCCCCGGGGATCCTCTAGAGATCCCT
CGACCTCGACCCAC CGCGTCCGCCAAGCTGGCCCTGCACGGCTGCAAGGGAGGCTCCTGTGGA
CAGGCCAGGCAGGTGGCCTCAGGAGGTGCCTCAGGCCAGTGGCCTGAGGCCAGC
AAGGGCTAGGGTCCATCTCCAGTCCCAGGACACAGCAGGCCACC ATGCCACGCCCTGGC
TCCAGCAGCATCAGCAGCCCCAGGACCGGGGAGGCACAGGTGGCCCCACCACCCGGAGG
AGCAGCTCCTGCCCTGTCCGGGGTGACTGATTCTCCTCCGCCAGGCCACCCAGAGGAGA
AGGCCACCCCGCTGGAGGCACAGGCCATGAGGGCTCTCAGGAGGTGCTGCTGATGTGGCT
TCTGGTGTGGCAGTGGCGGCACAGAGCACGCCAACCGCCGGCGTTAGGGTGTGTGCT
GTCCCGGGCTCACGGGACCCCTGTCTCCGAGTCGTTGTGCAGCGTGTGTACCAGCCCTTC
TCACCACCTGCGACGGCACCGGCCCTGCAGCACCTACCGAACCAATTATAGGACCGCCTAC
CGCCGCAGCCCTGGGCTGGCCCTGCCAGGCCTCGCTACCGTGCTGCCCGCTGGAAGAG
GACCAGCGGGCTTCCTGGGGCTGTGGAGCAGCAATATGCCAGGCCATGCCGAAACGGAG
GGAGCTGTGTCCAGCCTGGCCCTGCCCTGCAGGATGGCGGGGTGACACTTGCCAG
TCAGATGTGGATGAATGCAGTGCTAGGAGGGCGGCTGTCCCCAGCGCTGCATCAACACCGC
CGGCAGTTACTGGTGCCAGTGTGGAGGGCACAGCCTGTCTGCAGACGGTACACTCTGTG
TGCCCAAGGGAGGGCCCCCAAGGTGGCCCCAACCCGACAGGAGTGGACAGTGCAATGAAG
GAAGAAGTGCAGAGGCTGCAGTCCAGGGTGGACCTGCTGGAGGAGAAGCTGCAGCTGGTGT
GGCCCCACTGCACAGCCTGGCCTCGCAGGCACTGGAGCATGGCTCCGGACCCGGCAGCC
TCCTGGTGCACTCCTCCAGCAGCTGGCCGATCGACTCCCTGAGCGAGCAGATTCCCTTC
CTGGAGGAGCAGCTGGGTCTGCTCCTGCAAGAAAGACTCGTGACTGCCAGCGCCCCAGG
CTGGACTGAGCCCCCTCACGCCCTGCAGCCTGCCATGCCAACATGCTGGGGTC
CAGAAGCCACCTGGGGTGAUTGAGCGGAAGGCCAGGCAGGGCTTCCTCTTTCTCCTC
CCCTTCCCTGGGAGGGTCCCCAGACCCCTGGCATGGATGGCTGGGATTTTTGTGAAT
CCACCCCTGGCTACCCCCACCCCTGGTTACCCCAACGGCATCCCAAGGCCAGGTGGCCCTCA
GCTGAGGGAAGGTACGAGTTCCCTGCTGGAGCCTGGGACCCATGGCACAGGCCAGGCAGCC
CGGAGGCTGGTGGGCCTCAGTGGGGCTGCTGCCTGACCCCCAGCACAATAAAATGAAA
CGTAAAAAAAAAAAAAAAAGGGCGGCCGCGACTCT
AGAGTCGACCTGCAGAAGCTTGGCCCATGGCCAAC TTGTTATTGAGCTTATAATGGT
TACAAAT

FIGURE 2

MTDSPPPGHPEEKATPPGGTGHEGLSGGAADVASGVGSGRHRARLPARPLGCVLSRAHDPV
SESFVQRVYQPFLTTCGHRACSTYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGAC
GAAICQPPCRNGGSCVQPGRCRCPAGWRGDTCQSDVDECSARRGGCPQRCINTAGSYWCQCW
EGHSLSAADGTLCPKGPPRVAPNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVLAPLHSLAS
QALEHGLPDPGSLLVHSFQQLGRIDSLSEQISFLEEQLGSCSCKKDS

Signal sequence:

amino acids 1-19

cAMP- and cGMP-dependent protein kinase phosphorylation sites.

amino acids 93-97, 270-274

N-myristoylation sites.

amino acids 19-25, 78-84, 97-103, 100-106, 103-109, 157-163,
191-197, 265-271

Amidation site.

amino acids 26-30

Aspartic acid and asparagine hydroxylation site.

amino acids 152-164

Cell attachment sequence.

amino acids 130-133

EGF-like domain cysteine pattern signature.

amino acids 123-135

FIGURE 3

CGCTCGCCCCGTCGCCCTCGCCTCCCCGAGAGTCCCCTCGCGGCAGCAGATGTGTGTGGG
GTCAGCCCACGGCGGGACTATGGTGAAATTCCCGGCGCTCACGCACTACTGGCCCTGATC
CGGTTCTTGGTGCCTGGCATACCAACATAGCCATCGACTTCGGGGAGCAGGCCCTGAA
CCGGGGCATTGCTGCTGCAAGGAGGATGCAGTCGAGATGCTGGCCAGCTACGGGCTGGCGT
ACTCCCTCATGAAGTTCTCACGGGTCCATGAGTGAECTCAAAAATGTGGGCTGGTGT
GTGAACAGCAAGAGAGACAGGACAAAGCCGTCTGTGTATGGTGGTGGCAGGGGCATCGC
TGCCGTCTTCACACACTGATAGCTTATAGTGTAGTTAGGATACTACATTATCAATAAACTGC
ACCATGTGGACGAGTCGGTGGGAGCAAGACGAGAAGGGCCTCCTGTACCTCGCCCTT
CCTTCATGGACGCAATGGCATGGACCAGTGGCATTCTTAAACACAATACAGTT
CCTGGTGGGATGTGCCTCAATCTCAGATGTAGCTCAGGTTGTTTGAGCCATTTGC
TTCACAGTCACCTGGAATGCCGGAGGCCCTGCTCATCCGATCCTCTCCTGTACATGGC
GCACTTGTGCGCTGCACCACCCCTGCGCTGGCTACTACAAGAACATTACAGACATCATCCC
TGACAGAAGTGGCCGGAGCTGGGGAGATGCAACAATAAGAAAGATGCTGAGCTCTGGT
GCCCTTGGCTTAATTCTGGCCACACAGAGAACAGTGGCCTATTGTCAACCTCTTGTT
TCCCGGGACCTTGGTGGCAGTTCTGCAGCCACAGAGGAGTGGCATTGACAGCCACATA
CCCTGTGGGTACATGCCATACGGCTGGTGACGGAAATCCGTGTGTATCCTGCTTTCG
ACAAGAATAACCCACAGCAACAAACTGGTGAGCACGAGCAACACAGTCACGGCAGCCCACATC
AAGAAGTTCACCTCGTCTGCATGGCTCTGTCACTCACGCTCTGTTGTATGTTGGAC
ACCCAACGTGTCTGAGAAAATCTTGATAGACATCATGGAGTGGACTTTGCCTTGAGAAC
TCTGTGTTGTCCTTGCAGATCTCCTCTCCAGTCCAGTCACAGTGAGGGCGCAT
CTCACCGGGTGGCTGATGACACTGAAGAAAACCTTCGTCCTGCCCTCAGCTCTGCTGCG
GATCATCGTCCTCATGCCAGCCTCGTGGCTCACCTACCTGGGGTGACGGTGCACGGCGACCC
TGGCGTGGGCTCCCTCTGGCGGGCTTGTGGAGAACATCCACCATGGTCGCCATCGCTGCG
TGCTATGTCTACCGGAAGCAGAAAAAGAAGATGGAGAACATGAGTCGGCCACGGAGGGGAAGA
CTCTGCCATGACAGACATGCCCTCGACAGAGGGAGGTGACAGACATCGTGGAAATGAGAGAGG
AGAATGAATAAGGCACGGACGCCATGGGACTGCAGGGACGGTCAGTCAGGATGACACTTC
GGCATCATCTTCCCTCTCCATCGTATTTGTTCCCTTTTTGTTGTTGGTAAT
GAAAGAGGCCTTGATTTAAAGGTTCTGTCATTCTCTAGCATACTGGGTATGCTCACACT
GACGGGGGACCTAGTGAATGGTCTTACTGTTGCTATGAAAAACAAACAAACTGAC
TTCATACCCCTGCCTCACGAAAACCAAAGACACAGCTGCCTCACGGTTGACGTTGTGTC
TCCTCCCTGGACAATCTCCTCTGGAACCAAAGGACTGCAGCTGTCATCGCGCTCGGT
CACCTGCACAGCAGGCCACAGACTCTCCTGCCCCCTCATCGCTCTTAAGAACAG
TTAAAACTCGGCTTCTTGATTTGCTTCCAGTCACATGGCGTACAAAGAGATGGAGGCC
CGGTGGCCTCTTAAATTCCCTCTGCCACGGAGTCAGAACCATCTACTCCACACATGCAG
GAGGCGGGTGGCACGCTGCAGCCGGAGTCCCCGTTCACACTGAGGAACGGAGACCTGTGAC
CACAGCAGGCTGACAGATGGACAGAACTCCTGGTAGAAAGGTTGGTTGAAATGCCCGGG
GGCAGCAAACGTGACATGGTGAATGATAGCATTCACTCTGCGTCTCCTAGATCTGAGCAA
GCTGTCAGTTCTCACCCCCACCGTGTATACATGAGCTAACCTTTAAATTGTCAACAAA
GCGCATCTCAGATTCCAGACCCCTGCCGATGACTTTCTGAAAGGCTGCTTCCCTCGC
CTTCCCTGAAGGTCGCATTAGAGCGAGTCACATGGAGCATCCTAACCTTGCTATTAGTTT
TACAGTGAACTGAAGCTTAAGTCTCATCCAGCATTCTAACATGCCAGGTTGCTGTAGGGTAAC
TTTGAAGTAGATATATTACCTGGTTCTGCTATCCTTAGTCATAACTCTGCGGTACAGGTAA
TTGAGAATGTACTACGGTACTTCCCTCCACACCACGATAAAAGCAAGACATTATAACG
ATACCAAGACTCACTATGTGGTCTCCCTGAAATAACGCATTGAAATCCATGCAGTGCAGTA
TATTTCTAAGTTGGAAAGCAGGTTTTCTTAAATTATAGACACGGTTCACT
AAATTGATTAGTCAGAATTCTAGACTGAAAGAACCTAAACAAAAAAATATTAAAGATA
TAAATATATGCTGTATATGTTATGTAATTATTTAGGCTATAACACATTCCATTTCGC
ATTTCATAAAATGTCTCTAATACAAAAAA

FIGURE 4

MVKFPALTHYWPLIRFLVPLGITNIAIDFGEQALNRGIAAVKEDAVEMLASYGLAYSLMKFF
TGPMMSDFKNVGLVFVNNSKRDRTKAVLCMVVAGAIAAVFHTLIAYSDLGYYIINKLHHVDESV
GSKTRRAFLYLAAPPFMDAMAWTAGILLKHYSFLVGCAISDVIAQVVFVAILLHSHLEC
REPLLIPILSLYMGALVRCTTLCGYYKNIHDIIIPDRSGPELGGDATIRKMLSFWWPLALIL
ATQRISRPIVNLFVSRLGGSSAATEAVAILTATYPVGHMPYGWLTEIRAVYPAFDKNNPSN
KLVSTSNTVTAAHIKKFTFVCMALSLLCFVMFWTPNVSEKILIDIIGVDFAFELCVVPLR
IFSFFPVPVTVRALGTGWLMTLKKTFLAPSSVLRIIVLIASLVLPYLGHGATLGVGSL
AGFVGESTMVAIAACYVYRKQKKKMENESATEGEDSAMTDMPPTEEVDIVEMREENE

Transmembrane domains:

amino acids 86-106, 163-179, 191-205, 237-253, 327-343, 357-374,
408-423, 431-445

FIGURE 5

CCTGACAGAAGTCCCCGGAGCTGGGGAGATNCAACATTAAGAAGATGCTGAGCTCTGGT
GCCNTTTGGCTCTAATTCTGCCACACAGAGAACAGTCGGCCTATTGTCAACCTTTGTT
TCCCGGGACCTGGTGGCAGTTCTGCAGCCACAGAGGCAGTGGCGATTTGACAGCCACATA
CCCTGTGGGTACATGCCATACGGCTGGTTGACGGAAATCCGTGCTGTATCCTGCTTCG
ACAAGAATAACCCCAGCAACAAACTGGTGAGCACGAGAACACAGTCACGGCGGCCACATC
AAGAAGTTCACCTCGTCTGCATGGCTCTGTCACTCACGCTCTGTTCGTATGTTGGAC
ACCCAACGTGTCTGNGAAAATCTTGATAGACATCATCGGAGTGGACTTGCCTTGAGAAC
TCTGTGTTGTTCTTGCAGATCTTCTCCTTCTCCCAGTTCCAGTCACAGTGAGGGCGCAT
CTCACCGGGTGGCTGATGACACTGAAGAAAACCTTCGTC

FIGURE 6

TGACGGAATCCCGGGCTGGGTATCCTGGTTNGACAAGATAAACCCCCAGCAANAAATTGGG
GAGCAGGGCAAAACAGTNACGGGCAGCCCACATCAAGAAGTTCACCTNGTTGNATGGNTC
TGTCAACTCACGCTNTGTTCGTATGTTGGACACCCAAAGTGGAGAAAATTGGAT
AGACATNATCGGAGTGGANTTGCCTTGAGAANTTGNNGNTGTTCCCTTGCGGATTTCT
CCTTTCCCAGTTCCAGTCACAGNGAGGGCGCATCTCACCGGGNGGNTGATGACANTGAAG
AAAACCTTGTCCCTGCCCTCAGCTNTTGGTGCAGTCATTGTCCTNATNGCCAGCCTGTTG
GGTCCTACCCTACCTGGGGTGCACGGTGCACCGCTGGCGTGGTTCCCTCCTGGCGGGCA

FIGURE 7

TATTCCCAGTTCCGGTCACGGGGAGGGCGATNTCACCGGGTGGCTGANGACACTGAAGAAA
ACCTTNGTCCTTGCCCCCAGNTTGTGNTGCGGATNATCGTCCTCATGCCAGCCTNGTGGT
CCTACCCTACCTGGGGGTGCACGGTGAGAC

FIGURE 8

GCCCCGCGCCCGGCGCCGGCGCCCAGGCCGGGAGCCACCGCCATGGGGCCTGCCTGGGA
GCCTGCTCCCTGCTCAGCTGCGCGTCCTGCCTCTGCGGCTCTGCCCTGCATCCTGTGCAG
CTGCTGCCCGCCAGCCAACTCCACCGTGAGCCGCCTCATCTTACGTTCTTCTTCTTCC
TGGGGGTGCTGGTGTCCATCATTATGCTGAGCCCGGGCGTGGAGAGTCAGCTCTACAAGCTG
CCCTGGGTGTGTGAGGAGGGGCCGGATCCCCACCGTCTGCAGGGCACATCGACTGTGG
CTCCCTGCTTGGCTACCGCGCTGTCTACCGCATGTGCTTGCACGGCGGCCCTCTTCTTCT
TCTTTTCACCCCTGCTCATGCTCTGCGTGAGCAGCAGCCGGACCCCCGGCTGCCATCCAG
AATGGGTTTGGTTCTTAAGTTCTGATCCTGGTGGGCCTCACCGTGGTGCCTTCTACAT
CCCTGACGGCTCCTCACCAACATCTGGTTCTACTTCGGCGTGTGGCTCCTCCTTCA
TCCTCATCCAGCTGGTGTGCTCATCGACTTGCACACTCCTGGAACACCAGCGGTGGCTGGC
AAGGCCGAGGAGTGCATTCCCGTGCCTGGTACGCAGGCCTTTCTTCACTCTCCTTCTT
CTACTTGCTGTGATCGCGGCCGTGGCGCTGATGTTCATGTACTACACTGAGCCCAGCGGCT
GCCACGAGGGCAAGGTCTTCATCAGCCTCAACCTCACCTCTGTGTCTGCGTGTCCATCGCT
GCTGTCCTGCCAAGGTCCAGGACGCCAGCCAACCTGGGTCTGCTGCAGGCCTCGGTCT
CACCCCTACACCATGTTGTCACCTGGTCAGCCCTATCCAGTATCCCTGAACAGAAATGCA
ACCCCCATTGCCAACCCAGCTGGCAACGAGACAGTTGTGGCAGGCCCGAGGGCTATGAG
ACCCAGTGGTGGATGCCCGAGCATTGTGGCCTCATCATCTTCCCTGTGCACCCCTTT
CATCAGTCTGCGCTCCTCAGACCACCGCAGGTGAACAGCCTGATGCAGACCGAGGAGTGCC
CACCTATGCTAGACGCCACACAGCAGCAGCAGCAGCAGGTGGCAGCCTGTGAGGGCCGGGCC
TTTGACAACGAGCAGGACGGACGGCGTCACCTACAGCTACTCCTTCCACTTCTGCCTGGTGCT
GGCCTCACTGCACGTCTGATGACGCTCACCAACTGGTACAAGCCGGTGAGACCCGGAAGA
TGATCAGCACGTGGACCGCCGTGGGTGAAGATCTGTGCCAGCTGGCAGGGCTGCTCCTC
TACCTGTGGACCCCTGGTAGCCCCACTCCTCTGCGCAACCGCGACTTCAGTGAGGCAGCCT
CACAGCCTGCCATCTGGTGCTCCTGCCACCTGGTGCCTCTGGCTCGGTGACAGCCAACCT
GCCCTCCCCACACCAATGCCAGGCTGAGCCCCCACCCCTGCCAGCTCCAGGACCTG
CCCCCTGAGCCGGGCCCTCTAGTCGTAGTGCCTCAGGGTCCGAGGAGCATCAGGCTCCTGCA
GAGCCCCATCCCCCGCCACACCCACACGGTGGAGCTGCCCTTCCCTCCCTCCCTGT
TGCCCTACTCAGCATCTGGATGAAAGGGCTCCCTGTGCTCAGGCTCCACGGGAGCGGG
CTGCTGGAGAGAGCGGGGAACCTCCACACAGTGGGCATCCGGCACTGAAGCCCTGGTGT
CCTGGTCACGTCCCCCAGGGGACCCCTGCCCTGGACTTCGTGCCTTACTGAGTCTCT
AAGACTTTCTAATAAACAGCCAGTGCCTGTAAAAAAA

FIGURE 9

MGACLGACSLSCASCLCGSAPCILCSCCPASRNSTVSRLIFTFFLFLGVLVSIIMLSPGVE
SQLYKLPWVCEEGAGIPTVLQGHIDCGSLLGYRAVYRMCFATAAFFFFFTLLMLCVSSRD
PRAAIQNGFWFFKFLILVGLTVGAFYIPDGSFTNIWFYFGVVGSLFILIQLVLLIDFAHSW
NQRWLGAEECDRSAWYAGLFFFLLFYLLSIAAVALMFMYYTEPSGCHEGKVFISLNLTFC
VCVSIAAVLPKVQDAQPNSGILLQASVITLYTMFVTWSALSSIPEQKCNPHLPTQLGNETVVA
GPEGYETQWWDAPSIVGLIIFLLCTLFISLRSSDHRQVNSLMQTEECPPMLDATQQQQQQVA
ACEGRAFDNEQDGVTYSYSFFHFCLVLASLHVMMTLTNWYKPGETRKMISTWTAVWVKICAS
WAGLLLWTLVAPLLLNRDFS

Signal sequence:

amino acids 1-20

Transmembrane domains:

amino acids 40-58, 101-116, 134-150, 162-178, 206-223, 240-257,
272-283, 324-340, 391-406, 428-444

FIGURE 10

GAGCGAGGCCGGGACTGAAGGTGTGGTGTGAGCCCTCTGGCAGAGGGTTAACCTGGTC
AAATGCACGGATTCTCACCTCGTACAGTTACGCTCTCCCGCGCACGTCCGAGGACTTGA
AGTCCTGAGCGCTCAAGTTGTCCGTAGGTCAGAGAAGGCCATGGAGGTGCCACCGGC
ACCGCGGAGCTTCTCTGTAGAGCATTGTGCCTATTCCCCGAGTCTTGCTGCCAAGCTG
TGACTGCCGATTCGGAAGTCCTTGAGGAGCGTCAGAACGGCTTCCCTACGTCCCAGAGCCC
TATTACCGGAATCTGGATGGACCGCCTCCGGAGCTGTTGGCAAAGATGAACAGCAGAG
AATTCAAAGGACCTTGCTAATATCTGTAAGACGGCAGCTACAGCAGGCATCATTGGCTGGG
TGTATGGGGAATACCAGCTTTATTCATGCTAAACAACAATACATTGAGCAGAGCCAGGCA
GAAATTATCATAACCGGTTGATGCTGTGCAATCTGCACATCGTGTGCCACACGAGGCTT
CATTGTTATGGCTGGCGCTGGGTTGGAGAACTGCAGTGTGACTATATTCAACACAG
TGAAACACTAGTCTGAATGTATACCGAAATAAGATGCCTTAAGCCATTGTAATTGCAGGA
GCTGTCACGGGAAGTCTTTAGGATAAACGTAGGCCTGCGTGGCTGGTGGCTGGCAT
AATTGGAGCCTGCTGGCACTCCTGTAGGAGGCCTGCTGATGGCATTCAAGTACGCTG
GTGAGACTGTTAGGAAAGAAAACAGAAGGATCGAAAGGCACTCCATGAGCTAAACTGGAA
GAGTGGAAAGGCAGACTACAAGTTACTGAGCACCTCCCTGAGAAAATTGAAAGTAGTTACG
GGAAGATGAACCTGAGAATGATGCTAAGAAAATTGAAGCACTGCTAAACCTCCTAGAAACC
CTTCAGTAATAGATAAACACAAGACAAGGACTGAAAGTGCTCTGAACCTCACTGGAGA
GCTGAAGGGAGCTGCCATGTCCGATGAATGCCAACAGACAGGCCACTTTGGTCAGCCTGC
TGACAAATTAAAGTGTGGTACCTGTGGTGGCAGTGGCTTGCTTTGTCTTTCTTTCTT
TTTAACTAAGAATGGGCTGTTGTACTCTCACTTACTTATCCTAAATTAAATACATACT
TATGTTGTATTAATCTAATATGCATACATGGATATATCCACCCACCTAGATTTAA
GCAGTAAATAAACATTGCAAAAGATTAAAGTTGAATTACAGTT

FIGURE 11

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA23318
><subunit 1 of 1, 285 aa, 1 stop
><MW: 32190, pI: 9.03, NX(S/T): 2
MEVPPPAPRSFLCRALCLFPRVFAAEAVTADSEVLEERQKRLPYVPEPYYPESGWDRRLRELF
GKDEQQRISKDLANICKTAATAGIIGWVYGGIPAFIHAKQQYIEQSQAEIFYHNRFDQSAH
RAATRGFIRYGWRWGRTAVFVTIFNTVNTSLNVYRNKDALSHFVIAGAVTGSLFRINVGLR
GLVAGGIIGALLGTPVGGLLMAFQKYAGETVQERKQKDRKALHELKLEEWKGRLQVTEHLPE
KIESSLREDEPENDAKKIEALLNLPRNPSVIDKQDKD
```

Important Features:

Signal Peptide:

amino acids 1-24

Transmembrane domains:

amino acids 76-96 and 171-195

N-glycosylation site:

amino acids 153-156

FIGURE 12

CGGAAGTCCCTTGAGGAGCGTCAGAAGCGGCTTCCCTACGTCCCAGAGCCCTATTACCCGGA
ATCTGGATGGGACCGCTCCGGGAGCTGTTGGCAAAGATGAACAGCAGAGAATTCAAAGGA
CCTTGCTAATATCTGTAAGACGGCAGCTACAGCAGGCATCATTGGCTGGGTATGGGGAA
TACCAGCTTTATTCATGCTAAACAACAATACATTGAGCAGAGCCAGGCAGAAATTATCAT
AACCGGTTTGTGCTGTGCAATCTGCACATCGTGCTGCCACACGAGGCTTCATTGTTCATG
GCTGGCGCCGAACC

FIGURE 13

TCAAGTTGTCCGTAGGTCGAGAGAAGGCCATGGAGGTGCCGCCACCGGACCGCGGAGCTT
TTTCTGTAGAGCATTGTGCCTATTCGGAGTTTGCTGCCGAAGCTGTGACTGCCGAT
TCGGAAGTCCTTGAGGAGCGTCAGAACGGCTCCCTACGTCCCAGAGCCCTATTACCCGGA
ATTTGGATGGGACCGCCTCCGGAGCTGTTGGCAAAGATGAACAGCAGAGAAATTCAAAGG
ACCTTGCTGATATNTGTAAGACGGCAGCTACAGCAGGCATCATTGGCTGGGTGTATGGGGGA
ATACCAGCTTTATTGNTAAACAACAATACATTGAGCAGAGCCAGGCAGAAATTATNA
TAACC

FIGURE 14

GAGCCGCCGCCGCGCGCGCGCAGCCCCAGGCCGGCCCCACCGTCT
GCGTTGCTGCCCGCCTGGGCAGGCCAAAGGAAGGACAAGCAGCTGTCAAGGAACCT
CCGCCGGAGTCGAATTACGTGCAGCTGCCGGCAACCACAGGTTCAAGATGGTTGCCGGG
GCTTCGCGTGTCCAAGAACTGCCTGTGCCCTCAACCTGCTTACACCTGGTAGTCTG
CTGCTAATTGGAATTGCTGCGTGGGCATTGGCTTGGCTGATTCCAGTCTCCGAGTGGT
CGCGTGGTCATTGCAGTGGCATCTTCTTGCTTGTGCTTACTGGGTCTGATTGGAG
CTGTAAAACATCATCAGGTGTTGCTATTTTTATATGATTATTCTGTTACTGTATTTATT
GTTCAGTTCTGTATCTGCGCTTGTAGCCCTGAACCAGGAGCAACAGGGTCAGCTTCT
GGAGGTTGGTTGAAACAATACGGCAAGTGCTCGAAATGACATCCAGAGAAATCTAAACTGCT
GTGGGTTCCGAAGTGTAAACCAAATGACACCTGTCTGGCTAGCTGTGTTAAAGTGACCAC
TCGTGCTGCCATGTGCTCCAATCATAGGAGAATATGCTGGAGAGGTTTGAGATTGTTGG
TGGCATTGGCCTGTTCTCAGTTTACAGAGATCCTGGGTGTTGGCTGACCTACAGATA
GGAACCAGAAAGACCCCGCGCGAACCTAGTGCATTCTTGATGAGAAAACAAGGAAGAT
TTCCTTCGTATTATGATCTGTTCACTTCTGTAATTTCTGTTAAGCTCCATTGCCAGT
TTAAGGAAGGAAACACTATCTGGAAAAGTACCTTATTGATAGTGGATTATATATTTACT
CTATGTTCTCTACATGTTTTCTTCCGTTGCTGAAAATATTGAAACTTGTGGTCTC
TGAAGCTCGGTGGCACCTGGAATTACTGTATTCAATTGCTGGGACTGTCCACTGTGGCCTT
TCTTAGCATTTCACCTGCAGAAAAACTTGTATGGTACCACTGTGTTGGTATATGGTGA
TCTGAACGTACATCTCACTGGTATAATTATATGTAGCACTGTGCTGTAGATAGTCCCTAC
TGGAAAAAGAGTGGAAATTATTAAACAGAAAGTATGAGATCCTGTTATGTTAAGGGAAA
TCCAAATTCCAATTGGTCTTTAGGAAAGATTGTTGGTAAAAAGTGTAGTA
AAAAATGATAATTACTGTAGTCTTTATGATTACACCAATGTATTCTAGAAATAGTTAT
GTCTTAGGAAATTGTGGTTAATTGACTTTACAGGTAAGTGCAAAGGAGAAGTGGTT
CATGAAATGTTCAATGTATAATAACATTACCTCAGCCTCCATCAGAAATGGAACGAGTTT
TGAGTAATCAGGAAGTATATCTATATGATCTGATATTGTTATAATAATTGAAGTCTAA
AAGACTGCATTAAACAGTTAGTATTAAATGCGTGGCCCACGTAGCAAAAGATATTG
ATTATCTTAAAATTGTTAAATACCGTTTATGAAATTCTCAGTATTGTAACAGCAACTT
GTCAAACCTAAGCATATTGAATATGATCTCCATAATTGAAATTGAAATCGTATTGTG
GCTCTGTATATTCTGTTAAAAATTAAAGGACAGAAACCTTCTTGTATGCATGTTGA
ATTAAAAGAAAGTAATGGAAG

FIGURE 15

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA39979
><subunit 1 of 1, 204 aa, 1 stop
><MW: 22147, pI: 8.37, NX(S/T): 3
MVCGGFACSKNCLCALNLLYTLVSLLLIGIAAWGIGFGLISSLRVVGVVIAVGIFLFLIALV
GLIGAVKHHQVLLFFYMIILLLVFIVQFSVSCACLAQNQQGQQLLEVGVNNNTASARNDIQR
NLNCCGFRSVNPNDTCLASCVKSDHSCSPCAPIIGEYAGEVLRFVGGIGLFFSFTIELGVWL
TYRYRNQKDPRANPSAFL
```

Signal Peptide:

amino acids 1-34

Transmembrane domains:

amino acids 47-63, 72-95 and 162-182

FIGURE 16

TGATTGGAGCTGTAAAAANTCTTCAGGTGTTGTNATTTTTATATGATTATTCTGTAANT
TGTATTTATTGTTCAGTTNTGTATCTTCAGCTTGTTAGCCNTGAACCAGGAGAACAGG
GTCAGNTNTGGAGGTTGGTTGGAACAATACGGCAAGTGCTCGAAATGACATCCAGAGAAAT
NTAAACTGCTGTGGGTTCCGAAGTGTAAACCAAATGACACCTGTNTGGCTAGCTGTGTTAA
AAGTGACCACTNGTGCTGCCATGTGCTCCAATCATAGGAGAATATGCTGGAGAGGTTTGAC
GATTGTTGGTGGCATTGGCCTGTTNTCAGTTTACAGAGATCCTGGGTGTTGGCTGACC
TACAGATAACAGGAACCAAG

FIGURE 17

AATCCCAAATTCCCCAATTTTTGGNCTTTAGGGAAAGATGTGTTGGTAAAAAGTGT
TAGTATAAAAATGATAATTACTTGTAGTCCTTATGATTACACCAATGTATTCTAGAATAG
TTATGTCTTAGGAAATTGTGGTTAACCTTGACTTTACAGGTAAGTGCAAAGGAGAAGTG
GTTTCATGAAATGTTCTAATGTATAAACATTACCTCAGCCTCCCATCAGAATGGAACG
AGTTTGAGTAATCCAGGAAGTATATCTATATGATCTTGATATTGTTTATATAATTGAAAG
TCTAAAAGACTGCATTTAAACAAGTTAGTATTAATCGTTGCCACGTAGCAAAAGAT
ATTGATTATCTTAAAATTGTTAAATACCGTTCATGAAAGTTCTCAGTATTGTAACAGC
AACTTGTCAAACCTAAGCATATTGAATATGATCTCCATAATTGAAATTGAAATCGTATT
GTGTGGAGGAAATGGCAATCTTATGTGTGCTGAAGGACACAGTAAGAGCACCAAGTTGTGCC
CCACTTGC

FIGURE 18

ATGATTATTCTGTTACTTGTATTTATTGTTCAGTTTATGGTATCTTCGCGCTTGTTAGCCC
CTGAAACCAGGAGCAACAGGGNNNCAGCTTCCCTGGAGGTTGGCAACAATCACGGCCAAG
TGACTCCGCAAATGACATCCCAGAGAAATCCTAAACTGCTGTGGGTTCCGAAGTGTAAACCC
AAATGACACCTGTCTGGCTNGCTGTGTTAAAAGTGACCACTCGTGCTGCCATGTGCTCCAA
TCATAGGAGAATATGC

FIGURE 19

CAGTCACCATGAAGCTGGCTGTCTCATGGCCTGGCCCTCACCTTCCCTGGTGTG
CTCTGGTGGCCAGATGCTACTGGCTGCCAGTTGAGACGCTGCAGTGTGAGGGACCTGT
CTGCACTGAGGAGAGCAGCTGCCACACGGAGGATGACTGACTGATGCAAGGAAGCTGGCT
TCCAGGTCAAGGCCTACACTTCAGTAACCCCTCCACCTGATTGTGCTATGACTGGCTG
ATCCTCCAAGGTCCAGCCAAGCCAGTTTGAGGGGACCTGCTGGTTCTGCCTGCCAGGC
CTGGCAAGACTGGCCACTGACTCAGGTGACCTCTACCGAGATGGCTCAGCTCTGGTCCCC
CCGGGCCTAACAGGAATTCTCATCACCGTGGTACAAAAGGCAGACAGGGCACTACCAC
TGCAGTGGCATCTTCAGAGCCCTGGCTGGATCCCAGAAACAGCATCTGTTGGCTAT
CACAGTCCAAGAACTGTTCCAGCGCAATTCTCAGAGCTGTACCCCTCAGCTGAACCCAAG
CAGGAAGCCCCATGACCCTGAGTTGTAGACAAAGTGGCCCTGCAGAGGTAGCTGCCGC
CTCCTCTCTCTACAAGGATGGAAGGATAGTCAAAGCAGGGGCTCTCCTCAGAATT
CCAGATCCCCACAGCTTCAGAAGATCACTCCGGTCATACTGGTGTGAGGCAGCCACTGAGG
ACAACCAAGTTGGAAACAGAGCCCCAGCTAGAGATCAGAGTGCAGGGTGTCCAGCTCT
GCTGCACCTCCCACATTGAATCCAGCTCTCAGAAATCAGCTGCCAGGAACGTCTGA
GGAGGCCCTGGGCCTCTGCCTCCGCCAACCCATCTCTGAGGATCCAGGCTTTCTT
CTCCTCTGGGATGCCAGATCCTCATCTGTATCACCAGATGGCCTTCTCTCAAACACATG
CAGGATGTGAGAGTCTCCTCGGTACCTGCTCATGGAGTTGAGGAATTATCTGCCACCA
GAAGCCTGGGACCACAAAGGCTACTGCTGAATAGAAGTAAACAGTTCATCCATGATCTCACT
TAACCACCCAATAAATCTGATTCTTATTTCTCTGCACATATGCATAAGTA
CTTTTACAAGTTGTCCTCAGTGTGTTAGAATAATGTAGTTAGGTGAGTGTAAATAATT
ATATAAAAGTGAGAATTAGAGTTAGCTATAATTGTGTATTCTCTTAAACACAACAGAATT
TGCTGTCTAGATCAGGAATTCTATCTGTATATCGACAGAATGTTGTGATTAAAGAGAA
CTAATGGAAGTGGATTGAATAACAGCAGTCTCAACTGGGGCAATTGGCCCCCAGAGGACA
TTGGCAATGTTGGAGACATTGGTCATTATAACTTGGGGGTGGGGATGGTGGATGT
GTGTCTACTGGCATCCAGTAAATAGAAGCCAGGGGTGCCGCTAACACATCCTATAATGCACAG
GGCAGTACCCCACAACGAAAAATACTGGCCAAAATGTCAGTGTACTGAGTTGAGAAA
CCCCAGCCTAATGAAACCCCTAGGTGTTGGCCTGGGAATGGGACTTGTCCCTCTAATT
TATCTCTTCCAGCCTATTCTAGCTATTCTACTGACATACCACTCTTAGCTGGTGTATG
GTCTGTTCTTAGTTCTAGTTGATCCCTCAAAAGCATTATGTTGAAATCTTAATCCCC
AAGGTGATGGCATTAAAGAAGTGGCCTTGGGAAGTGATTAGATCAGGAGTGCAGGCCCTC
ATGATTAGGATTAGTGCCTTATTAAAAAGGCCAGAGAGCTAACTCACCTCCACCAT
ATGAGGACGTGGCAAGAAGATGACATGTATGAGAACAAAAACAGCTGTCGCCAACACCG
ACTCTGTCGTTGCCTTGATCTGAACCTCCAGCCTCAGAACTATGAGAAATAAAATTCTGG
TTGTTGTAGCCTAA

FIGURE 20

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA40594
><subunit 1 of 1, 359 aa, 1 stop
><MW: 38899, pI: 5.21, NX(S/T): 0
MKLGCVLMMAWALYLSLGVLWVAQMLLAASFETLQCEGPVCTEESSCHTEDDLTDAREAGFQV
KAYTFSEPFHLIVSYDWLILQGPAKPVFEGDLLVLRCQAWQDWPLTQVTFYRDGSALGPPGP
NREFSITVVQKADSGHYHCSGIFQSPGPGIPETASVVAITVQELFPAPILRAVPSAEPQAGS
PMTLSCQTKLPLQRSAARLLFSFYKDGRIVQSRGLSSEFQIPTASEDHSGSYWCEAATEDNQ
VWKQSPQLEIRVQGASSSAAPTLNPAPQKSAAPGTAAPEEAPGPLPPPPTPSSEDPGFSSPL
GMPDPHLYHQMGLLLKHMQDVRVLLGHLLMELRELSGHQKPGTTKATAE
```

Signal sequence:

amino acids 1-17

Leucine zipper pattern sequence:

amino acids 12-33

Protein kinase C phosphorylation site:

amino acids 353-355

FIGURE 21

CCACACGCGTCCGCCAACCGCGTCCGCCAACGGGTCCGCCACCGCTCCGGGCCACAGAAAGTT
TGAGCCTTTGGTAGCAGGAGGCTGGAAGAAAGGACAGAAGTAGCTCTGGCTGTGATGGGG
ATCTTAACGGGCCTGCTACTCCTGGGCACCTAACAGTGGACACTTATGGCCGTCCCACCT
GGAAGTGCAGAGAGTGTAAACAGGACCTGGAAAGGGATGTGAATCTTCCTGCACCTATG
ACCCCTGCAAGGCTACACCCAAGTCTTGGTGAAGTGGCTGGTACAACGTGGCTCAGACCC
GTCACCACATCTTCTACGTGACTCTTCTGGAGACCATATCCAGCAGGCAAAGTACCAAGGGCG
CCTGCATGTGAGCCACAAGGTTCCAGGAGATGTATCCCTCAATTGAGCACCCCTGGAGATGG
ATGACCGGAGCCACTACACGTGTAAGTCACCTGGCAGACTCCTGATGGCAACCAAGTCGTG
AGAGATAAGATTACTGAGCTCCGTGTCAGAAACTCTCTGTCTCCAAGCCCACAGTGACAAC
TGGCAGCGGTTATGGCTTACGGTGCCTCAGGGAATGAGGATTAGCCTCAATGCCAGGCTC
GGGGTTCTCCTCCATCAGTTATTTGGTATAAGCAACAGACTAATAACCAGGAACCCATC
AAAGTAGCAACCCCTAACGTACCTTACTCTCAAGCCTGCCGTGATAGCCGACTCAGGCTCCTA
TTTCTGCACTGCCAACGGCCAGGTTGGCTCTGAGCAGCACAGCATTGTGAAGTTGTGG
TCAAAGACTCCTCAAAGCTACTCAAGACCAAGACTGAGGCACCTACAACCATGACATACCCC
TTGAAAGCAACATCTACAGTGAAGCAGTCCTGGGACTGGACCACTGACATGGATGGCTACCT
TGGAGAGACCAGTGCTGGGCCAGGAAAGAGCCTGCCTGTCTTGCCTCATCCTCATCATCT
CCTTGTGCTGTATGGGTTTTACCATGGCTATATCATGCTCTGTCGGAAGACATCCCAA
CAAGAGCATGTCTACGAAGCAGCCAGGTAAGAAAGTCTCTCCTTCCATTGGACCCGT
CCCTGCCCTCAATTGATTACTGGCAGGAATGTGGAGGAAGGGGGTGTGGCACAGACCC
AATCCTAACGGCCGGAGGCCTCAGGGTCAGGACATAGCTGCCTCCCTCTCAGGCACCTT
CTGAGGTTGTTTGGCCCTCTGAACACAAAGGATAATTAGATCCATCTGCCCTCTGCTTCC
AGAATCCCTGGGTGGTAGGATCCTGATAATTAAATTGGCAAGAATTGAGGCAGAAGGGTGGGA
AACCAAGGACCACAGCCCCAAGTCCCTCTTATGGGTGGTGGCTCTGGGCCATAGGGCACA
TGCCAGAGAGGCCAACGACTCTGGAGAAACCATGAGGGTGGCCATCTCGCAAGTGGCTGCT
CCAGTGATGAGCCAACCTCCAGAATCTGGCAACAAACTACTCTGATGAGCCCTGCATAGGA
CAGGAGTACCAAGATCATGCCAGATCAATGGCAACTACGCCGCCCTGCTGGACACAGTTCC
TCTGGATTATGAGTTCTGGCACTGAGGGCAAAGTGTCTGTTAAAATGCCCATAGGC
CAGGATCTGCTGACATAATTGCCCTAGTCAGTCCTGCCCTCTGCATGGCCTTCTCCCTGCT
ACCTCTTCCCTGGATAGCCCAAAGTGTCCGCCCTACCAACACTGGAGCCGTGGAGTCCT
GGCTTGCCTGGATTGCAAGATGCACTCAAGTAAGCCAGCTGCTGGATTGGCTCTGG
GCCCTCTAGTATCTGCCGGGGCTTCTGGTACTCCCTCTAAATACCAAGAGGGAAAGATG
CCCCTAGCACTAGGACTGGTCATCATGCCCTACAGACACTATTCAACTTGGCATCTGCCA
CCAGAAGACCCGAGGGAGGCTCAGCTGCCAGCTCAGAGGACCAGCTATATCCAGGATCAT
TTCTCTTCTTCAGGGCCAGACAGCTTTAATTGAAATTGTTATTTCACAGGCCAGGGTTCA
GTTCTGCTCCTCCACTATAAGTCTAATGTTCTGACTCTCCTGGTGTCAATAATATCTA
ATCATAACAGC

FIGURE 22

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45416
><subunit 1 of 1, 321 aa, 1 stop
><MW: 35544, pI: 8.51, NX(S/T): 0
MGILLGLLLGHLTVDTYGRPILEVPESVTGPWKGDVNLPCTYDPLQGYTQVLVKWLVQRGS
DPVTIFLRDSSGDHIQQAKYQGRLHVSHKVPGDVSLQLSTLEMDDRSHYTCEVTWQTPDGNQ
VVRDKITELRVQKLSVSKPTVTGSGYGFTVPQGMRISLQCQARGSPPISYIWYKQQTNQE
PIKVATLSTLLFKPAVIADSGSYFCTAKGQVGSEQHSDIVKFVVKDSSKLLKTTEAPTTMT
YPLKATSTVKQSWDWTMDGYLGETSAGPGKSLPVFAIIILIIISLCCMVFPMAYIMLCRKT
SQQEHVYEAR
```

Signal Sequence:

amino acids 1-19

Glycosaminoglycan attachment site:

amino acids 149-152

Transmembrane domain:

amino acids 282-300

FIGURE 23

GGCCGGGAGCCCCTGCCAGGGCACGGGGCGGGCGGGCTCCGCCGGCACAT
GGCTGCAGCCACCTCGCGCACCAGGGCGCCAGCTGCCAGGTCCGTCGGA
GGCGCCGGCGCCGGAGCCAAGCAGCAACTGAGCGGGAAAGCGCCCGTCCGGGATC
GGGATGTCCCTCCTCTCTCTTGCTAGTTCTACTATGTTGAACTTGGGACTCA
CACTGAGATCAAGAGAGTGGCAGAGGAAAAGGTCACTTGCCCTGCCACCATCAACTGGGGC
TTCAGAAAAAGACACTCTGGATATTGAATGGCTGCTACCGATAATGAAGGGAACCAAAA
GTGGTGTACTACTCCAGTCGTATGTCTACAATAACTGACTGAGGAACAGAACGGCCG
AGTGGCCTTGCTTCAATTCTGGCAGGAGATGCCTTGCAAGATTGAACCTCTGAAGC
CCAGTGATGAGGGCCGGTACACCTGTAAGGTTAAGAATTCAAGGGCCTACGTGTGGAGCCAT
GTCATCTTAAAGTCTTAGTGAGACCATCCAAGCCAAAGTGTGAGTTGGAAGGAGAGCTGAC
AGAAGGAAGTGACCTGACTTGCACTGTGAGTCATCCTCTGGCACAGAGCCCATTGTGTATT
ACTGGCAGCGAATCCGAGAGAAAAGAGGGAGAGGATGAACGTCTGCCTCCAAATCTAGGATT
GACTACAACCACCCCTGGACGAGTTCTGCTGAGAATCTTACCATGTCTACTCTGGACTGTA
CCAGTGACAGCAGGCAACGAAGCTGGAGGAAAGCTGTGTGGCGAGTAAGTACAGT
ATGTACAAAGCATCGGCATGGTGCAGGAGCAGTGACAGGCATAGTGGCTGGAGCCCTGCTG
ATTTCTCTTGGTGTGGCTGCTAATCGAAGGAAAGACAAAGAAAGATATGAGGAAGAAGA
GAGACCTAATGAAATTGAGAAGATGCTGAAGCTCCAAAAGCCGTCTTGTGAAACCCAGCT
CCTCTCCTCAGGCTCTGGAGCTCACGCTCTGGTTCTCCTCCACTCGCTCCACAGCAAAT
AGTGCCTCACGCAGCCAGCGACACTGTCAACTGACGCAGCACCCAGCCAGGGCTGGCAC
CCAGGCATAACGCCTAGTGGGCCAGAGGTGAGAGGTTCTGAACCAAAGAAAGTCCACCATG
CTAATCTGACCAAAGCAGAAACCACACCCAGCATGATCCCCAGCCAGAGCAGAGCCTTCAA
ACGGCT**TGA**ATTACAATGGACTTGACTCCCACGCTTCTAGGAGTCAGGGTCTTGGACTC
TTCTCGTCATTGGAGCTCAAGTCACCAGCCACACAACCAGATGAGAGGTCATCTAAGTAGCA
GTGAGCATTGCACGGAACAGATTAGCATTGAGCATTCTTCTTACAATACCAAAGCAA
AGGATGTAAGCTGATTGATCTGTAAAAGGCATCTTATTGTGCCCTTAGACCAGAGTAAGGG
AAAGCAGGAGTCCAAATCTATTGTTGACCAGGACCTGTGGTGAGAAGGTTGGGAAAGGTG
AGGTGAATATACTAAAACCTTTAATGTGGATATTGTATCAGTGCTTGATTACAATT
TTCAAGAGGAATGGATGCTGTTGTAATTCTATGCAACTTCTGCAAACATTATTGGATT
ATTAGTTATTCAAGACAGTCAGCAGAACCCACAGCCTTATTACACCTGTCTACACCATGTAC
TGAGCTAACCACTCTAAGAAACTCCAAAAAGGAAACATGTGTCTTCTATTCTGACTTAAC
TTCATTGTCATAAGGTTGGATATTAAATTCAAGGGAGTTGAAATAGTGGAGATGGAGA
AGAGTGAATGAGTTCTCCACTCTACTAACTCACTATTGTATTGAGCCAAAATAAC
TATGAAAGGAGACAAAATTGTGACAAAGGATTGTGAAGAGCTTCCATCTCATGATGTT
ATGAGGATTGTTGACAAACATTAGAAATATATAATGGAGCAATTGTGGATTCCCTCAAAT
CAGATGCCCTCAAGGACTTCCCTGCTAGATATTCTGGAAGGAGAAAATACAACATGTCTT
TATCAACGTCCCTAGAAAGAATTCTCTAGAGAAAAGGGATCTAGGAATGCTGAAAGATTA
CCCAACATACCATTATAGTCCTCTTCTGAGAAAATGTGAAACCAAGGAAATTGCAAGACTGG
GTGGACTAGAAAGGGAGATTAGATCAGTTCTTCTTAATATGTCAAGGAAGGTAGCCGGCA
TGGTGCCAGGCACCTGTAGGAAAATCCAGCAGGTGGAGGTTGCAGTGAGCCGAGATTATGCC
ATTGCACTCCAGCCTGGGTGACAGAGCGGGACTCCGTCTC

FIGURE 24

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45419
><subunit 1 of 1, 373 aa, 1 stop
><MW: 41281, pI: 8.33, NX(S/T): 3
MSLLLLLLSYYVGTGLTHTEIKRVAEEKVTLPCHHQLGLPEKDTLDIEWLLTDNEGNQKV
VITYSSRHVYNNLTEEQKGRVAFASNFLAGDASLQIEPLKPSDEGRYTCKVKNSGRYVWSHV
ILKVLVRPSKPCKELEGELTEGSDLTLQCESSSGTEPIVYYWQRIREKEGEDERLPPKSRID
YNHPGRVLLQNLTMYSGLYQCTAGNEAGKESCVVRTVQYVQSIGMVAGAVTGIVAGALLI
FLLVWLILLRKDKERYEEEERPNEIREDAEAPKARLVKPSSSSGSRSSRGSSSTRSTANS
ASRSQRTLSTDAAQPGLATQAYSLVGPEVRGSEPKVHANLTKAETTPSMIPSQSRAFQTV
```

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 232-251

FIGURE 25

GTGGTTCCCTTGCTCTCGCGCCCAGTCCTCCTCCCTGGTTCTCTCAGCCGCTGTCGGAGGAGAGCACCCGGA
GACCGGGGCTGCAGTCGCGCGCTTCTCCCCGCTGGCGGCTCGCCGCTGGCAGGTGCTGAGCGCCCTAG
AGCCTCCCTGCCGCTCCCTCTGCCCGGCGAGCAGTCACATGGGTGTTGGAGGTAGATGGCTCCCG
GCCCGGGAGGCGCGGTGGATGCCGCTGGCAGAAGCAGCCGCCATTCCAGCTGCCCGCGGCCGGCG
CCCTGCGAGTCCCCGGTTCAGCATGGGACTCTCTCCGAGCAGCAGCACCGCCCTCGCCTCTGCAGCCGCATC
GCCCGCCAGCCACAGCACGATGATGCCGCGCTCCCTCTCTGCTGGATTCTTAGCACCACAGCTCAG
CCAGAACAGAAGGCTGAATCTCATGGCACATACGCCATGTTGACCGTGCACCGGCCAGGTGCTAACCTGT
GACAAGTGTCCAGCAGGAACCTATGTCCTGAGCATTGTACCAACACAAGCTGCGCTCTGCAGCAGTTGCCCT
GTGGGACCTTACCAAGGCATGAGAATGGCATAGAGAAATGCCATGACTGTAGTCAGCCATGCCATGGCCAATG
ATTGAGAAATTACCTTGTGCTGCCCTGACTGACCGAGAAATGCACTTGCCCACCTGGCATGTTCCAGTCTAACGCT
ACCTGTGCCCCCCATACGGTGTGCTGTGGGTGGGGTGTGCGGAAGAAAGGGACAGAGACTGAGGATGTGCGG
TGTAAGCAGTGTGCTGGGTACCTCTCAGATGTGCCTCTAGTGTGATGAAATGCAAAGCATAACAGACTGT
CTGAGTCAGAACCTGGTGTGATCAAGCCGGGACCAAGGAGACAGAACGACTGTGTCGGCACACTCCGCTTC
TCCAGCTCACCTCACCTCCCGGACAGCCATTTCCACGCCCTGAGCACATGGAAACCCATGAAGTCCCT
TCCCTCCACTTATGTCCTGAACTCAACAGAACGACTTCTCTGCTCTGTTAGACCAAGGTACTG
AGTAGCATCCAGGAAGGGACAGTCCCTGACAAACACAAGCTCAGCAAGGGGAGGAAGACGTGAACAAGACCC
CCAAACCTCAGGTAGTCACCACAGCAAGGCCAACACAGAACATCCTGAGCTGCGCTCATGGAG
GCCACTGGGGCGAGAAGTCCAGCACGCCATCAAGGCCAACAGGGGACATCCTAGACAGAACCTACACAAG
CATTGACATCAATGACATTGGCCTGGATGATTGTGCTTTCTGCTGCTGGTCTTGTTGATTGTGGT
TGCAGTATCGGAAAAGCTGAGGACTCTGAAAAGGGGCCCCGGCAGGATCCAGTGCCTATTGTGGAAAAGGCA
GGGCTGAAGAAATCCATGACTCCAACCCAGAACCGGGAGAAATGGATCTACTACTGCAATGCCATGGTATCGAT
ATCCTGAAGCTTGTAGCAGCCAAAGTGGGAGCCAGTGGAAAGATATCTATCAGTTCTTGCAATGCCAGTGAG
AGGGAGGTTGCTGCTTTCTCAATGGGTACACAGCCGACCAAGGGGCTACGAGCTCTGAGCAGTGAG
ATCCGGGGCCCCGAGGCCAGCCTGCCAGCTAAATTAGGCCCTGCCAGCACCGGAGAAACGATGTTGAG
AAGATTGCTGGCTGATGGAAGACACCACCCAGCTGAAACTGACAAACTAGCTCTCCGATGAGCCCCAGCC
CTTAGCCGAGCCCCATCCCCAGCCCCAACCGGAAACTTGAGAATTCCGCTCTCTGACGGTGGAGGCCCTCCCC
CAGGACAAGAACAAAGGGCTCTCGTGGATGAGTCGGAGCCCCCTCTCGCTGTGACTCTACATCCAGCGGCTCC
TCCGCGCTGAGCAGGAACGGTTCTTATTACCAAGAAAAGGACACAGTGTGCGGAGGTACGCCCTGGAC
CCCTGTGACTTGCAGCCTATCTTGATGACATGCTCCACTTCTAAATCCTGAGGAGCTGCCGTGATTGAAGAG
ATTCCCCAGGCTGAGGACAAACTAGACCGGCTATTGAAATTATTGGAGTCAAGAGCCAGGAAGCCAGCAGACC
CTCCCTGGACTCTGTTATGCCATCTCCGACCTGCTGTAAGAACATAGGGACTTGCAATTGAAATTACTCA
ATTAGTGGCAGGGTGGTTTTAAATTCTCTGTTCTGATTGTTGTTGGGGTGTGTTGTTGTTG
GTGTTG
TCCT
ATACCCACCAAAAGTTTAAAGTCCATATTCTCCATTGGCTTCTATGTTCAAGCTTGCCTGAGGTGTAACTGTTGAA
TGCACCTAAATTACTTAACCTACCAAAATGCACTGTAACCTTCCACACACTGGATTGTGAGGCTCTAAC
TTCTTAAAGTATAATGCCATCTGTAACCTTAAAGCAGTCTTATGCTCTTAAACATTACACCTACTTTT
AAAAACAAATTATTACTATTATTATTGTTGTCCTTATAAATTCTTAAAGGTTAAAGAAAATTAAAGA
CCCCATTGAGTTACTGTAATGCAATTCAACTTGTAGTTATCTTTAAATATGCTTGTATAGTTCATATTG
CTGAAACTTGCACACACTATTGCTGATTGTATGGTTTCACTGGACACCGTGTAGAATGCTTGTATTACTG
TCTTCTTATGCTAATATGCTCTGGCTGGAGAAATGAAATCCTCAAGCCATCAGGATTGCTTGTATTAAAGTGGCTT
GACAACGGGCCACCAAGAACCTGAACTTCACCTTCTGAGCTGTTGAGACACATTGCTGCACTTT
GGAAAGTCAAATCAAGTGCAGTGGCGCCCTTCCATAGAGAATTGCCCAGCTTGTAAAAGATGTCTTG
TTTTTATATACACATAATCAATAGGTCCAATCTGCTCTCAAGGCCCTGGTCTGGTGGGATTCTTCAACCAATT
ACTTTAATTAAAAATGGCTGCAACTGTAAGAACCCCTGCTGATATATTGCAACTATGCTCCATTACAAATG
TACCTTCTAATGCTCAGTTGCCAGGTTCCAATGCAAAGGTGGCGTGGACTCCCTTGTGTTGGTGGGGTTGTGG
GTAGTGGTGAAGGACCGATATCAGAAAAATGCCCTCAAGTGTACTAATTATTAATAAACATTAGGTGTTGTTA
AAAAAAAAA

FIGURE 26

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52594
><subunit 1 of 1, 655 aa, 1 stop
><MW: 71845, pI: 8.22, NX(S/T): 8
MGTPSSSTALASCRIARRATATMIAGSLLLLGFLSTTTAQPEQKASNLIGTYRHVRATG
QVLTCDKCPAGTYVSEHCTNTSLRVCSSCPVGTFRHENGIEKCHDCSQPCPWPWPMIEKLPCA
ALTDRECTCPPGMFQSNTCAPHTVCVPVGWRKKGTETEDVRCKQCARGTFSDVPSSVMKC
KAYTDCLSQNLLVVIKPGTKETDNVCGTLPSFSSSTSPSPGTAIFPRPEHMETHEVPSSTYVP
KGMNSTESNSSASVRPKVLSSIQEGLVPDNTSSARGKEDVNKTLPNLQVVNHQQGPHHRHIL
KLLPSMEATGGEKSSTPIKGPKRGHPRQNLHKHFDINEHLPWMIVLFLLLVLVVIVVCSIRK
SSRTLKKGPRQDPSAIVEKAGLKKSMPTQNREKWIYYCNGHGIDILKLVAAQVGSQWKDIY
QFLCNASEREVAAFSNGYTADHERAYAALQHWTIRGPEASLAQLISALRQHRRNDVVEKIRG
LMEDTTQLETDKLALPMSPSPLSPSPPIPSPNAKLENSALLTVEPSPQDKNKGFFVDESEPLL
RCDSTSSGSSALSRNNGSFITKEKKDTVLRQVRLDPQIFDDMLHFLNPEELRVIEEIPQ
AEDKLDRLFEIIGVKSQEASQTLDSVYSHLPDLL

Signal sequence:

amino acids 1-41

Transmembrane domain:

amino acids 350-370

FIGURE 27

ATGGGAAGCCAGTAACACTGTGGCCTACTATCTCTTCCGTGGGCCATCTACATTGGGA
CTCGGGATTATGAGGTAGAGGTGGAGGCAGGCCGATGTCAGAGGTCTGAAATAGTCAC
CATGGGGAAAATGATCCGCCTGCTGTTGAAGCCCCCTCTCATCCGATCGCTTTGGCC
TTGATGATTGAAAATAAGTCCTGTCACCAGATGCACTGCTGTCAGAGATCCTG
TCACTGCTGCCATTGAAGTTTTCCAATCATCGTCATTGGGATCATTGCATTGATATTAGC
ACTGGCCATTGGTCTGGCATCCACTCGACTGCTCAGGGAAAGTACAGATGTCGCTCATCCT
TTAAGTGTATCGAGCTGATAGCTCGATGTGACGGAGTCGGATTGCAAAGACGGGGAGGAC
GAGTACCGCTGTGTCGGTGGGTGAGAATGCCGTGCTCCAGGTGTTACAGCTGCTTC
GTGGAAGACCATGTGCTCCGATGACTGGAAGGGTCACTACGCAAATGTTGCCGTGCCAAC
TGGTTTCCAAGCTATGTGAGTCAGATAACCTCAGAGTGAGCTCGCTGGAGGGCAGTTC
CGGGAGGAGTTGTGTCATCGATCACCTCTGCCAGATGACAAGGTGACTGCATTACACCA
CTCAGTATATGTGAGGGAGGGATGTGCTCTGCCACGTGGTACCTTGCACTGCACAGCCT
GTGGTCATAGAAGGGCTACAGCTACGCATCGTGGGTTGAAACATGTCCTGCTCTCGCAG
TGGCCCTGGCAGGCCAGCCTCAGTCCAGGGTACCCACCTGTGCCGGGCTCTGTCACTCAC
GCCCTGTGGATCATCACTGTCACACTGTGTTATGACTGTTACCTCCCCAAGTCATGGA
CCATCCAGGTGGTCTAGTTCCCTGTTGACAATCCAGCCCCATCCCACGGTGGAGAAG
ATTGTCTACCACAGCAAGTACAAGCCAAAGAGGCTGGCAATGACATGCCCTATGAAGCT
GGCCGGGCCACTCACGTTCAATGAAATGATCCAGCCTGTCGCCAAGTCTGAAGAGA
ACTTCCCCGATGGAAAAGTGTGCTGGACGTCAAGGATGGGGGCCACAGAGGATGGAGGTGAC
GCCTCCCTGTCCTGAACCACCGCGGCCGTCCTTGTGATTCCAACAAGATGCAACCACAG
GGACGTGTACGGTGGCATCATCTCCCCCTCCATGCTCTGCCGGCTACCTGACGGGTGGCG
TGGACAGCTGCCAGGGGACAGCGGGGCCCTGGTGTGTCAGAGAGGAGGCTGTGGAAG
TTAGTGGGAGCGACCAGCTTGGCATGGCTGCCAGAGGTGAAACAAGCCTGGGTGTACAC
CCGTGTCACCTCCTGGACTGGATCCACGAGCAGATGGAGAGAGACCTAAAAC**TGAA**
GAGGAAGGGACAAGTAGCCACCTGAGTTCTGAGGTGATGAAGACAGCCGATCCTCCCT
GGACTCCCGTGTAGGAACCTGCACACGAGCAGACACCCTGGAGCTTGAGTTCCGGCACCA
GTAGCTGGGACCACAGGTGCCGCCACACACCAACTAATTGTATTAGAGAC
AGGGTTTACCATGTTGCCAGGCTGCTCTCAAACCCCTGACCTCAAATGATGTCCTGCTT
CAGCCTCCACAGTGTGGATTACAGGCATGGGCCACCGCCTAGCCTCACGCTCCTTTC
TGATCTTCACTAAGAACAAAAGAAGCAGCAACTGCAAGGGCGGCCCTTCCACTGGTCCAT
CTGGTTTCTCCAGGTCTGCAAATTCTGACGAGATAAGCAGTTATGTGACCTCACG
TGCAAAGCCACCAACAGCCACTCAGAAAAGACGCCAGAGCAGCCAGAAGTGCAGAACTGCAGTC
ACTGCACGTTTCATCTCTAGGGACCAACCAACCCCTTCTACTCCTAAAGACTTAT
TTTCACATGTGGGAGGTTAATCTAGGAATGACTGTTAAGGCCATTTCATGATTCTT
TGTAGCATTGGTCTGACGTATTATTGTGCTTGTCAAATAATGTTCCCTCCCT
CATTGTCTGGCGTGTCTGCGTGGACTGGTACGTCAAATCATCCACTGAAA

FIGURE 28

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45234
><subunit 1 of 1, 453 aa, 1 stop
><MW: 49334, pI: 6.32, NX(S/T): 1
MGENDPPAVEAPFSFRSLFGLDDLKISPVAPDADAVAAQILSLLPLKFFPIIVIGIIALILA
LAIGLGIHFDCSGKYRCRSSFKCIELIARCDGVSDCKDGEDEYRCRVGGQNAVLFVTAAS
WKTMCSDDWKGHYANVACAQLGFPSPYVSSDNLRVSSLEQQFREEFVSIDHLLPDDKVTALHH
SVYVREGCASGHVVTLQCTACGHRRGYSSRIVGGNMSLLSQWPWQASLQFQGYHLCGGSVIT
PLWIITAHCVYDLYLPKSWTIQVGLVSLLDNPAPSHLVEKIVYHSKYKPKR LGNDIALMKL
AGPLTFNEMIQPVCLPNSEENFPDGKVCWTSGWGATEDGGDASPVLNHAAPLISNKICNHR
DVYGGIISPSMLCAGYL TGGVDSCQGDGGPLVCQERRLWKLVGATSGF GIGCAEVNKPGVYT
RVTSFLDWIHEQMERDLKT
```

Signal Peptide:

amino acids 1-20

Transmembrane domain:

amino acids 240-284

FIGURE 29

CCCCACGCGTCCGTCTAGTCCCCGGGCAACTCGGACAGTTGCTCATTTATTGCAACGGTCAAGGCCTGGCTTGT
GCCAGAACGGCGCGCGCGCGCACGCACGACACACACACGGGGGGAAACTTTTTAAAAATGAAAGGCTAGAAGA
GCTCAGCGCGCGCGCGCTCGCGAGGGCTCCGGAGCTGACTCGCCGAGGCAGGAATCCCTCCGGTCGCGA
CGCCCGGCCCCGGCTCGCGCCCGTGAGGGATGGTGCAGCGCTGCCGCCGGGGCCGAGAGCTGCTGCACTGAAG
GCCGGCGACGATGGCAGCGCGCCCGTCCCCGTGCCCCCGCCGCCCTCTGCTGCCCTGGCCGGTGTCT
GCTCGCGCCCTGCGAGGCCGAGGGGTGAGCTTATGGAACCAAGGAAGAGCTGATGAAGTTGTCACTGCCTCTGT
TCGGAGTGGGACCTCTGGATCCCAGTGAAGAGCTTCGACTCCAAGAATCATCCAGAAGTGCTGAATATTCGACT
ACAACGGGAAAGCAAAGAACTGATCATAAATCTGAAAGAAATGAAGGTCTCATGCCAGCTTCACGGAAAC
CCACTATCTGCAAGACGGTACTGATGTCCTCCCTCGCTGAAATTACACGGTCACTGTTACTACCATGGACATGT
ACGGGGATATTCTGATTCAAGCAGTCAGTCTCAGCAGTGTCTGGTCTCAGGGGACTTATTGTGTTGAAAATGA
AAGCTATGTCCTAGAACCAATGAAAAGTGCAACCAACAGATAACAAACTCTTCCAGCGAAGAAGCTGAAAAGCGT
CCGGGGATCATGTGGATCACATCACACACACAAACCTCGCTGAAAGAATGTGTTCCACCACCTCTCAGAC
ATGGGCAAGAAGGCATAAAAGAGAGACCCCAAGGCAACTAAGTATGTGGAGCTGGTATCGTGGCAGACAACCG
AGAGTTTCAGAGGCAAGGAAAAGATCTGAAAAGTTAAGCAGCGATTAATAGAGATTGCTAATCACGTTGACAA
GTTTACAGACCACTGAACATTCCGATCGTGTGGTAGCGTGGAAACTGTGGAATGACATGGACAAATGCTCTGT
AAGTCAGGACCCATTCAACAGCCTCCATGAATTCTGGAACCTGGAGGAAGATGAAGGCTTCTACCTCGCAAATCCA
TGACAATGCGCAGCTGTCAGTGGGTTTATTCCAAGGGACCATCGGCATGGCCCAATCATGAGCATGTG
CACGGCAGGACAGCTGGGGAAATTGTCATGGACATTCAAGACAATCCCTGGTGCAGCGTGACCCCTGGCACA
TGAGCTGGGCCACAATTTCGGGATGAATCATGACACACTGGACAGGGCTGTAGCTGTCAAATGGGGTTGAGAA
AGGAGGCTGCATCATGAAACGCTTCCACCGGGTACCCATTCCCATGGTGTCAAGCAGGAGAAGGACTT
GGAGAGCAGCCTGGAGAAAAGGAATGGGGTGTGCTGTTAACCTGCCAAGTCAGGGAGTCAGGGAGTCAGGGGGCA
GAAGTGTGGAAAGACATTGTGAAAGAGGAGAGGTGTGACTGTGGGAGCCAGAGGAATGTATGAATCGCTG
CTGCAATGCCACCACCTGTACCCCTGAAGCGGACGCTGTGCGCACATGGGCTGTGCTGAAAGACTGCCAGCT
GAAGCCTGCAGGAACAGCGTGCAGGGACTCCAGCAACTCCGTGACCTCCAGAGTTCTGCACAGGGGCCAGCC
TCACTGCCAGCCAATGTGACCTGCACGATGGGCACTCATGTCAGGATGTGGACGGTACTGCTACAATGGCAT
CTGCCAGACTCACGAGCAGCTGTGTCAGCTCTGGGACCAGGTGCTAAACCTGCCCTGGGATCTGTTGA
GAGAGTCATTCTGCAGGTGATCCTATGGAACACTGTGCAAAGTCTCGAAGAGTTCCATTGCAATGCGAGAT
GAGAGATGCTAAATGTGAAAATCCAGTGTCAAGGAGGTGCCAGCCGGCCAGTCATTGTTACCAATGCCGTTTC
CATAGAAACAAACATCCCTCTGCAGCAAGGAGGCCGATTCTGTGCCGGGGACCCACGTGACTTGGCGATGA
CATGCCGGACCCAGGGTTGTGCTTGCAGGCACAAAGTGTGAGATGGAAAATCTGCCATGCAATGTCATGTC
AAATATTAGTGTCTTGGGTTCAAGAGTGTGCAATGCACTGCAAGTGTGCAACACAGGAAGAA
CTGCCACTGCGAGGCCACTGGCACCTCCCTCTGTGACAAGTTGGTTGGAGGAAGCAGACAGCAGGGCC
CATCCGGCAAGCAGAACAGCAAGGAGGAAGCTGCAGAGTCCAACAGGGAGCGGGCCAGGGCCAGGAGGCCGTGG
ATCGCAGGAGCATGCGTCACTGCCACTGACACTCATTGAGCCCTCCCATGACATGGAGACCGTGAACCAGTG
CTGCTGCAGAGGAGGTCAAGCGTCCCCAGGCCTCTGTGACTGGCAGCATTGACTCTGGCTTGCATCGTT
TCCATGACAACAGACACAACACAGTTCTCGGGCTCAGGAGGGGAAGTCCAGCCTACCGCAGTCTGCAAGAAA
CACTGCAAGGAAGGGCAGGACTCCCTGGTGTAGCTTGTCAAAACATGGACATGCTTCACTGCTGCTCTGAG
AGAGTAGCAGGTTACCACTCTGGCAGGGCCAGCCCTGCAGCAAGGAGGAAGAGGACTCAAAGTCTGCCCTTC
ACTGAGCCTCCACAGCAGTGGGGAGAAGCAAGGGTTGGGCCAGTGTCCCCCTTCCCAAGTGCACACCTCAGCT
TGGCAGCCCTGATGACTGGTCTCTGGCTGCAACTTAATGCTCTGATATGGCTTTAGCATTTATTATGAAAAT
AGCAGGGTTTAGTTAATTATCAGAGACCTGCACCCATTCCATCTCCATCCAAGCAAATGAATGGCAA
TGAAACAAACTGGAGAAGAAGGTAGGAGAAGGGCGGTGAACCTGGCTCTTGCTGTGGACATGCGTGACCAGC
AGTACTCAGGTTGAGGGTTGCAGAAAGCAGGGACCCACAGAGTCACCAACCCTCATTAAACAAGTAAGAA
TGTTAAAAGTGAAAACAATGTAAGAGCCTAACTCCATCCCCGTGGCATTACTGCATAAAATAGAGTCATTT
GAAAT

FIGURE 30

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49624
><subunit 1 of 1, 735 aa, 1 stop
><MW: 80177, pi: 7.08, NX(S/T): 5
MAARPLPVSPARALLALAGALLAPCEARGVSLWNQGRADEVVSVASVRSGDLWIPVKSFDS
NIPEVLNIRLQRESKELIINLERNEGLIASSFTETHYLQDGTDVSLARNYTGHCYYHGHVRG
YSDSAVSLSTCSGLRGLIVFENESYVLEPMKSATNRYKLFPAKKLKVRGSCGSHNTPNLA
AKNVFPPPSQTWARRHKRETLKATKYVELVIVADNREFQRQGKDLEKVQRLIEIAHVDKF
YRPLNIRIVLVGVEVWNDMDKCSVSQDPFTSLHEFLDWRKMLLPRKSHDNAQLVSGVYFQG
TTIGMAPIMSMCTADQSGGIVMDHSDNPLGAAVTLAHELGHNFGMNHDTLDRCCSCQMAVEK
GGCIMNASTGYPFPMFSSCSRKDLETSLEKGMGVCLFNLPEVRESFGGQKCGNRFVEEGEE
CDCGEPEECMNRCCNATTCTLKPDAVCAHGLCCEDCQLKPAGTACRDSSNSCDLPEFCTGAS
PHCPANVYLHDGHSCQDVDGYCYNGICQTHEQQCVTLWGPGAKPAPGICFERVNSAGDPYGN
CGKVSKSSFAKCEMRDAKCGKIQCQGGASRPVIGTNASVIETNIPLQQGRILCRGTHVYLG
DDMPDPGLVLAGTKCADGKICLNRQCQNISVFGVHECAMQCHGRGVCNNRKNCCEAHWAPP
FCDKFGFGGSTDSGPIRQAEARQEAESNRERGQGQEPVGSQEHASTASLTLI

Signal peptide:

amino acids 1-28

FIGURE 31

TCCCAAGGCTTCTTGGATGGCAGATGATTNTGGGGTTTG CATTGTTCCCTGACAACGAAA
ACAAAACAGTTTGGGGTT CAGGAGGGAAANTCCAGCCTACCCAGGAAGTTGCAGAAACA
GTGCAAGGAAGGGCAGGANTTCCTGGTTGAGNTTTGNTAAAACATGGACATGNTTCAGTG
CTGCTCNTGAGAGAGTAGCAGGTTACCAC TTTGGCAGGCCAGCCCTGCAGCAAGGAGGA
AGAGGACTCAAAGTTGGCCTTCACTGAGCCTCCACAGCAGTGGGGAGAAGCAAGGGTT
GGGCCAGTGTCCCCTTCCCCAGTGACACCTCAGCCTGGCAGCCCTGATAACTGGTNTNT
GGCTGCAANTTAATGCTNTGATATGGCTTTAGCATTATTATATGAAAATAGCAGGGTTT
AGTTTTAATTATCAGAGACCCTGCCACCCATTCCATNTCCATCCAAG

FIGURE 32

CATCCTGCAACATGGTGAACACCACGCCGGCTAATTTGTTGTATTTGGTAGAGATGGGA
TTTCACCGTGTAGCCAGGATTGTCTCAATCTGACCTCATGATCTGCCCGCTCGGCCTCCC
AAAGTGCTGGATTACAGGCAGTGCAACCACACCGGCCACAAACTTTAAGAAGTTAAT
GAAACCATACTTTACATTTAATGACAGGAAAATGCTACAATAATTGTTAACCCAAA
TTCTGGATACAAAAGTACAATCTTACTGTGTAAATACATGTATATGTACTATATGAAAATA
TACCAAATATCAATAACTTATCTCTGGTAAAAACCTCTTCATACCCGTGCTAACAA
CTTTAACAAAAAATTCATCACTTTAAGAATCAAGAAAATTCATGAAGGTATATGGG
ACAGAAAAAAACCAAGGGAAAATCACGCCACTTGGGAAAAAGATTGAAATCTGCCT
TTTTATAGATTGTAATTAATAAGGTCCAGGCTTCTAAGCAACTTAAATGTTGTTCGA
AACAAAGTACTTGTCTGGATGTAGGAGGAAAGGGAGTGTACTGCCATTATGATGCC
TTGAATATAAGACCCACTTGCTATCTCCCTGCACCAGCCAGGAGCCACCCATCCTCCAGC
ACACTGAGCAGCAAGCTGGACACACGGCACACTGATCAAATGGTAAGGGATGGTGGCGA
TGCTCATTCTGGGTCTGCTACTTCTGGCGCTGCTCCTACCCGTGCAGGTTCTTCATTGTT
CCTTAACCAGTATGCCGGAAAGCTACTGCAGCCAAACACAAAGCCCTCCAACAGTGCC
ACAGCCTACAGCCGGTCTCCTGTGGCTTGCTTGCCTTCTACATCTTACCATTAAGAGG
CAGGTCAAGAACAGCTACAGTTCTCCAACCCATACACTAAACCGAATCCAAATGGTGC
AGAAGTTCAATGTGGCAAGGAAAAAACAGGTCTTCATCAAATCTACTAATTCACTC
ATTAACAGAGAAACGCTTGAGAGTCTCAAACGGACTGGTTAAAGAGCATCTGAAGGATT
GACTAGATGATAATGCCGTACTCCAGTACTTGGAGGCCCTAGGCCGGGATCACCTG
AGGTCAAGGAGTTGAGACTAACCTGCCAAATGGTGAACCCATCTGTACTAAAAATACA
AATATTGACTGGCGTGGTGGTGAGTGCCTGTGATCCAGCTACTCAGGTGGCTGAAGCAGG
ACAATCACTGAACTCAGGAGGCAGAGGTTGCAGTGAGCTGAGATCGCGCTACTGCACTCTA
GCCTAGCCTGGCAACAGAGTGAGACTCGTCTCAAAAAAAAAAGCCAAGTGCAGTGGCT
CACGCCGTAAATCCGGCAGTGGAGGCCAGGTGGCGGATCACGAGGTAGGAGATCA
AGACCACCTGGCTAATACAGTGAACCCGTCTACTAAAAATACAAAAATTAGCC
GATGGTGGCAGGCACCTGGAGTCCAGCTACTCGGGAGGCTGAGGCAGGAGAATAGCGT
CTCAGGAGGCGGAGCTTGCACTGAGCCGAGATTGCGCTACTGCACCTCCAGCCTGGCGACAG
CGCGAGACTCCGTCTAAAAAAAAAAAAAA

FIGURE 33

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48309
><subunit 1 of 1, 67 aa, 1 stop
><MW: 6981, pI: 7.47, NX(S/T): 0
MGKGMVAMLILGLLLLALLLPVQSSFVPLTSMPEATAAETTKPSNSALQPTAGLLVVLLAL
LHLYH
```

Signal peptide:

amino acids 15-27

FIGURE 34

GCCGGCGGAGAGCGCGCCAGCCCCGCCGATGCCCGCGCCAGGACGCCCTCCGCTGCTGGCCCGC
CGGCGGGCTGACTGCGCTGCTGCTGCTGGGCCATGGCGGCGGGCGCTGGGCAGGGCCAGGAGCACC
AGGCGGGGGCGGGCGGGCGAGGGCCCCCGCGCAGACGGGAGGACGGACAGGACCCGACAGCAAGCACC
TGTACACGGCCGACATGTTACGCACGGGATCCAGAGCGCCGCGCACTTCGTCATGTTCTCGGCCCTGGTGTG
GACACTGCCAGCGGCTGCAGCCACTTGAATGACCTGGGAGACAAATAAACAGCATGGAAGATGCCAAGTCT
ATGTTGGCTAAAGTGGACTGCACGGCCACTCCGACGTGTGCTCCGCCAGGGGGTGCAGGATACCCACCTTAA
AGCTTTCAAGCCAGGCCAAGAAGCTGTGAAGTACCCAGGGACTTCAGACACTGGAAAAGTGGATGC
TGCAGACACTGAACGAGGAGCCAGTGACACCAGGCCAGTGGAACGCCAGTGCCCCGAGCTCAAGCAAG
GGCTGTATGAGCTCAGCAAGCAACTTTGAGCTGCACGTTGCACAAGGCAGCACCTTATCAAGTCTCGCTC
CGTGGTGTGGTCACTGCAAAGCCCTGGCTCCAACCTGGGAGCAGCTGGCTCTGGGCCCTGAAACATTCCGAAACTG
TCAAGATTGCAAGGGTGTACACAGCAGTGAACCTCTGCTCCGGAAACAGGGTGTGGCTATCCCACTC
TTCTCTGGTTCGGAGATGGGAAAAAGGGTGGATCAGTACAAGGGAAAGCAGGGATTGGAGTCAGTGGAGTAGC
TGGAGCTGCCAGCTGCAGCGCACAGAGACTGGAGCAGGGAGACCTCACGCCCTCAGAGGCCCCGGTCTGGCAG
CTGAGGCCAGGGCTGACAAGGGCAGTGTGTTGCCACTCACTGAAAATAACCTCGATGACACCATTGAGAAGGAA
TAACCTTCATCAAGTTTATGCTCCATGGTGTGGTCAATTGTAAGACTCTGGCTCCTACTTGGGAGGAACCTCTCTA
AAAAGGAATTCCCTGGTCTGGGGGGTCAAGATGCCAGTGAAGTACAGTGCACACTGCTGAACGGAAATATCTGAGCA
AGTATTGGTACGAGGCTACCCCCACGTTATTGCTTTCCGAGGGAGGAAGAAAGTCAGTGAGCACAGTGGAGGCA
GAGACCTTGACTCGTTACACCGCTTGTCTGAGCCAAGCGAAAGACGAACTTTAGGAACACAGTTGGAGGTAC
CTCTCTGCCAGCTCCGCACCCCTGGCTTAGGAGTTAGTCACTCCACAGAGGCCACTGGGTTCCAGTGGTGGCT
GTTCAGAAAGCAGAACATACAGCTGAGGTATCTCTTGTTGTTGAGGAAACACACTCTACAG
ATTCTTTATTAAGTTAAAGTTCTCAAGTAAATGTGTAACTCATGGTCACTGTGAAACACATTTCAGTGGCGATA
TATCCCCTTGACCTTCTCTGATGAAATTACATGGTTCCCTGAGACTAAAATAGCGTTGAGGGAAATGAAA
TTGCTGGACTATTGTTGGCTCTGAGTTGAGTTGAGTTGGTGAAGAAAGAACATCCAAGCATAGTTACCTGC
CCACGAGTTCTGGAAAGGTGGCCTGTGGCAGTATTGACGTTCTCTGATCTTAAGTCACAGTTGACTCAAAAC
TGTGTTGGTCCGTAGCATGGAGCAGATTGAAATGAAAAACACACCTCTGGAGATAACCTTCAGGCCGCTG
TGGAGCTCTGTTGCTGTGAATACCTCTCAGTGTGAGAGGTTAGCCGTGATGAAAGCAGCGTACTCTGACC
GTGCCTGAGTAAGAGAATGCTGATGCCATAACTTATGTCGATACTTGTCAAAACTGTTACTGTTGAGGGAT
CCTTCTGTTCTCACGGGGTGAACATGCTTCTGAGGAAACACACTGTTAACACGAAGCAGGCCACATGAACTGT
TGGATGCTTCTCTAGAAAGGGTAGGAGTGGAAATTCCACCGAGGCTATTCTCAGTATCTCATTAACCTATTGA
AAGATTCCAGTTGATTGTCACCTGGGTGACAAGACCCAGACAGGCTTCCAGGCCGGTATCCAGGGAGG
TCTGCAGCCCTGCTGAAGGGCCCTAACTAGAGTTCTAGAGTTCTGATTCTGTTCTCAGTAGTCCTTTAGAGG
CTTGCTATACTTGTCTGCTCAAGGAGGTGACCCCTTAATGTTGAGAATGGGATGCAATTGATCTCAAGAC
CAAAGACAGATGTCAGTGGGCTCTGGCCCTGGTGTGACGGCTGTGGCAGCTGGTGTGAGTCAGTGTCTCTA
ACTCATGTCGTCCTTGTGATTAACACCTCTATCTCTCTGGGAAATAAGCACACATACAGGTTAGCTCAAGATA
GATAGGTGTTGTCCTTTACCATGAGCTACTTCCCATAATAACCACTTGCATCCAACACTCTCACCCACCT
CCCACAGCAAGGGGATGTGGATACTTGGCCAAAGTAACTGGTGGTAGGAATCTTAGAAACAAGACCAACTTATA
CTGTCGTCTGAGGCAGAAGATAACAGCAGCATCTGACCAGCCTCTGCCCTAAAGGAATCTTATTAATCAG
TATGGTTACAGATAATTCTTTTAAAGGAACACCTCTAGAGAAGCACAACGTCAAGAGTCTTGTACA
CACAACTTCAGCTTGTCATCACAGAGTCTGTATTCCAAGAAAATCAAAGTGGTACAATTGTTGTTACACTAT
GATACTTCTAAATAAAACTCTTTTTTTAA

FIGURE 35

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA46776
><subunit 1 of 1, 432 aa, 1 stop
><MW: 47629, pi: 5.90, NX(S/T): 0
MPARPGRLLPPLLARPAALTALLLLLGHGGGGRWGARAQEAAAAAADGPPAADGEDGQDPHS
KHLYTADMFTHGIQSAAHFVMFFAPWCGHCQRLQPTWNNDLGDKYNNSMEDAKVYVAKVDCTAH
SDVCSAQGVRGYPTLKLFKPGQEAVKYQGPRDFQTLENWMLQTLNEEPVTPEPEVEPPSAPE
LKQGLYELSAASNFEHLVAQGDHFIKFAPWCGHCKALAPTWEQLALGLEHSETVKIGKVDCT
QHYELCSGNQVRGYPTLLWFRDGKKVDQYKGKRDLESLEYVESQLQRTEGATETVTPSEA
PVLAEEPEADKGTVLALTENNFDITIAEGITFIKFYAPWCGHCKTLAPTWEELSKKEFPGLA
GVKIAEVDCATAERNICSKYSVRGYPTLLLFRGGKKVSEHSGGRDLDLHRFVLSQAKDEL
```

Signal sequence:

amino acids 1-32

FIGURE 36

CTTTCTGAGGAACCACAGCAATGAATGGCTTGATCCTGCTTCGAAGAAACCAATTAT
CCTCCTGGTACTATTCTTTGCAAATTCAAGACTGGGTCTGGATATTGATAGCCGTCTA
CCGCTGAAGTCTGTGCCACACACACAATTCAACAGGACCCAAAGGAGATGATGGTAAAAA
GGAGATCCAGGAGAAGAGGGAAAGCATGGCAAAGTGGACGCATGGGGCCGAAAGGAATTAA
AGGAGAACTGGGTGATATGGGAGATCAGGGCAATATTGGCAAGACTGGCCCATTGGGAAGA
AGGGTGACAAAGGGAAAAAGGTTGCTGGAATACCTGGAGAAAAAGGCAAAGCAGGTACT
GTCTGTGATTGTGGAAGATAACCGGAAATTGTTGACAACACTGGATATTAGTATTGCTCGGCT
CAAGACATCTATGAAGTTGTCAAGAATGTGATAGCAGGGATTAGGAAACTGAAGAGAAAT
TCTACTACATCGTGCAGGAAGAGAAGAACTACAGGAATCCCTAACCCACTGCAGGATTGG
GGTGGAAATGCTAGCCATGCCAAGGATGAAGCTGCCAACACACTCATCGCTGACTATGTTGC
CAAGAGTGGCTTCTTCGGGTGTTCAATTGGCGTGAATGACCTGAAAGGGAGGGACAGTACA
TGTCCACAGACAACACTCCACTGCAGAACTATAGCAACTGGAATGAGGGGGAACCCAGCGAC
CCCTATGGTCATGAGGACTGTGTGGAGATGCTGAGCTCTGGCAGATGGAATGACACAGAGTG
CCATCTTACCATGTACTTGTCTGTGAGTTCAAGAAGAAAAGTAACTTCCCTCATCCT
ACGTATTCGCTATTTCTGTGACCGTCATTACAGTTATTGTTATCCATCCTTTTCTG
ATTGTACTACATTGATCTGAGTCAACATAGCTAGAAAATGCTAAACTGAGGTATGGAGCCT
CCATCATCAAAAAAAAAAAAAAAA

FIGURE 37

```
>/usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50980
><subunit 1 of 1, 277 aa, 1 stop
><MW: 30645, pI: 7.47, NX(S/T): 2
MNGFASLLRRNQFILLVLFLLQIQSLGLDIDSRPTAEVCATHTISPGPKGDDGEKGDPGEEG
KHGKVGRMGPKGIKGELGDMGDQGNIKGKGPPIGKKGDKGEKGLLGIPEKGKAGTVCDGRY
RKFGVQLDISIARLKTSMKFVKNVIA吉IRETEEKFYIVQEEKNYRESLTHCRIRGGMLAMP
KDEAANTLIADYVAKSGFFRVFIGVNLDEREGQYMSTDNTPLQNYSNWNEGEPSDPYGHEDC
VEMLSSGRWNDTECHLTMYFVCEFIKKKK
```

Signal peptide:

amino acids 1-25

FIGURE 38

GGTTCTATCGATTGAATTCGCCACACTGGCCGGATCCTCTAGAGATCCCTCGACCTCGAC
CCACCGTCCGCTCTCCGCCGTGGAGTGGTGGGGCTGGTGGGAATGGCGTGT
GCCAGCGCACGCGCCTCCCTGGAAGGAGAAGTCTCAGCTAGAACGAGCGGCCCTAGGTTT
CGGAAGGGAGGATCAGGGATGTTGCAGCGGCTGGAACCAGACGGTGCCATAGAGGAAGC
GGGCTCCATGGCTGCCCTCTGCTGCTGCCCTGCTGCTGTTGCTACCGCTGCTGCTGCTGA
AGCTACACCTCTGCCGCAGTTGCCTGGCTCCGGGACTTGGCTTGCGGCTGCCGAGCT
CTGTGCTGCAAAGGGCTTCAGCTCGGCCCTGGCCGGCTGCCGCCGACCCGAAGG
TCCCGAGGGGGCTGCAGCTGGCCTGGCGCTCGCGAACACTGGCCAGCAGCGGCCGCG
ACACCTTCTCATTCACGGCTCGCGCCTTAGCTACTCAGAGGCGGAGCGCAGAGTAAC
AGGGCTGCACGCCCTCCTACGTGCCTAGGCTGGACTGGGACCCGACGGCGCGACAG
CGCGAGGGAGCGCTGGAGAAGGCGAGCGGGCAGCGCCGGAGCCGGAGATGCAGCGGCC
GAAGCGCGCGGAGTTGCCGGAGGGACGGTGCCTGGCGCAGAGTGGAGGAGCCGCC
CTGTCACCTGGAGCAACTGTGGCGCTGCTCCTCCCCGCTGGCCAGAGTTCTGTTGCT
GTTGGGCTGGCCAAGGCCGCTGCCACTGCCCTTGTGCCAACGCCCTGCCGGGCC
CCCTGCTGCACTGCCCTCGCAGCTGCCCGCGCTGGTGCCTGGCCAGAGTTCTG
GAGTCCTGGAGCCGGACCTGCCGCTGAGAGCCATGGGCTCCACCTGTGGCTGCAGG
CCCAGGAACCCACCCCTGCTGGAATTAGCATTGCTGGCTGAAGTGTCCGCTGAAGTGGATG
GGCCAGTGCCAGGATACTCTCTTCCCCCAGAGCATAACAGACACGTGCCTGTACATCTC
ACCTCTGGCACCACGGCCTCCCAAGGCTGCTGGATCAGTCATCTGAAGATCCTGCAATG
CCAGGGCTCTATCAGCTGTGGTCCACCAGGAAGATGTGATCTACCTGCCCTCCCAC
TCTACCACATGTCCGGTCCCTGCTGGCATCGTGGCTGCATGGCATTGGCACAGTG
GTGCTGAAATCCAAGTTCTGGCTGGTCAAGTCTGGGAAGATTGCCAGCACAGGGTGC
GGTGTCCAGTACATTGGGAGCTGTGCCATACCTGTCAACCAGCCCCGAGCAAGGCAG
AACGTGGCCATAAGGTCCGGCTGGCAGTGGCAGCGGGCTGCCAGATACTGGAGCGT
TTTGTGGCGCTCGGGCCCTGCAGGTGCTGGAGACATATGACTGACAGAGGCAACGT
GGCCACCATCAACTACACAGGACAGCGGGCGCTGTGGGCGTGTCTGGCTTACAAGC
ATATCTTCCCTTCTCCTTGATTGCTATGATGTCACCACAGGAGAGCCAATTGGGACCC
CAGGGGCACTGTATGCCACATCTCAGGTGAGCCAGGGCTGCTGGTGGCCCCGTAAGCCA
GCAGTCCCCATTCTGGCTATGCTGGCGGCCAGAGCTGGCCAGGGAAAGTTGCTAAAGG
ATGTCTTCCGGCTGGGATGTTTCTCAACACTGGGACCTGCTGGCTGCGATGACCAA
GGTTTCTCCGCTTCCATGATCGTACTGGAGACACCTCAGGTGGAAGGGGAGAATGTGGC
CACAACCGAGGTGGCAGAGGTCTCGAGGCCCTAGATTTCTCAGGAGGTGAACGTCTATG
GAGTCACTGTGCCAGGGCATGAAGGCAGGGCTGGAATGGCAGCCCTAGTCTGCGTCCCC
CACGCTTGGACCTTATGCACTACACCCACGTGCTGAGAACCTGCCACCTTATGCCCG
GCCCGATTCTCAGGCTCCAGGAGTCTTGGCCACCACAGAGACCTCAAACAGCAGAAAG
TTCGGATGGCAAATGAGGGCTCGACCCAGCACCTGCTGACCCACTGTACGTTCTGGAC
CAGGCTGTAGGTGCCTACCTGCCCTACAACACTGCCGGTACAGCGCCCTGGCAGGAAA
CCTTCGAATCTGAGAACCTCACACCTGAGGCACCTGAGAGAGGAACCTGTGGGGTGGGG
CCGTTGCAGGTGTACTGGGCTGTCAGGGATCTTCTATACCAGAACCTGCGGTCACTATT
GTAATAATGTGGCTGGAGCTGATCCAGCTGCTCTGACCTAAAGGGGGGGGGGGGGGG
AAAAAAAAAGGGCGGCCGCACTAGAGTCGACCTGCAGTAGGGATAACAGGGTAATAAGC
TTGGCCGCCATGGCCAACCTGTTATTGCAG

FIGURE 39

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50913
><subunit 1 of 1, 730 aa, 1 stop
><MW: 78644, pI: 7.65, NX(S/T): 2
MGVCQRTRAPWKEKSQLERAALGFRKGSGMFASGWNQTVPIEEAGSMAALLLPLLLLLPL
LLLKLHLWPQLRWLPAIDLAFAVRALCCKRALRALARAAAAADPEGPEGGCSLAWRLAELAQ
RAAHTFLIHGSRRFSYSEAERESNRAARAFLRALGWDWGPDDGDSGEGSAGEGERAAPGAGD
AAAGSGAEFAGGDGAARGGGAAAPLSPGATVALLLPAGPPEFLWLWFGLAKAGLRTAFVPTAL
RRGPLLHCLRSCGARALVLAPEFLESLEPDLPALRAMGLHLWAAGPGTHPAGISDLLEAVSA
EVDPVPGYLSSPQSITDTCLYIFTSGTTGLPKAARIHLKILQCQGFYQLCGVHQEDVIYL
ALPLYHMSGSSLGIVGCMGIGATVVLKSKFSAGQFWEDCQQHRVTVFQYIGELCRYLVNQPP
SKAERGHKVRLAVGSGLRPDTWERFVRRFGPLQVLETYGLTEGNVATINYTGQRGAVGRASW
LYKHIFPFSLIRYDVTTGEPIRDPOGHCMATSPGEPLLAVPVSQQSPFLGYAGGPELAQGK
LLKDVFVFRPGDVFFNTGDLLVCDQGFLRFHDRTGDTFRWKGENVATTEVAEVFEALDFLQE
NVYGVTVPGHEGRAGMAALVLRPPHALDLMQLYTHVSENLPYARPRFLRLQESLATTEFK
QQKVRMANEGFDPSLSDPLVLDQAVGAYLPLTTARYSALLAGNLRI

Type II transmembrane domain:

amino acids 45-65

Other transmembrane domain:

amino acids 379-398

cAMP- and cGMP-dependent protein kinase phosphorylation site
starting at amino acid 136

CUB domain protein motif

amino acids 254-261

putative AMP-binding domain siganture

amino acids 332-343

N-glycosylation sites

amino acids 37-40 and 483-486

FIGURE 40

CCTGTGTTAAGCTGAGGTTCCCTAGATCTGTATATCCCCAACACATACTCCACGCACA
CACATCCCCAAGAACCTCGAGCTCACACCAACAGACACACGCGCGCATACACTCGCTCTC
GCTTGTCCATCTCCCTCCCAGGGAGCCGGCGCGCTCCCACCTTGCCGCACACTCCGGC
GAGCCGAGCCCGCAGCGCTCAGGATTCTCGCGCTCGGAACTCGGATTGCAGCTCTGAACCC
CCATGGTGGTTTTAAACACTTCTTCTCTCGTTGATTGCACCGTTCCA
TCTGGGGCTAGAGGAGCAAGGCAGCAGCCTCCCAGCCAGGCCCTGGCTGCCATCGT
CCATCTGGCTTATAAAAGTTGCTGAGCGCAGTCAGAGGGCTGCGCTGCTCGTCCCCTCGG
CTGGCAGAAGGGGTGACGCTGGCAGCGCGAGGAGCGGCCGCTGCCTCTGGCGGGCTTT
CGGCTTGAGGGCAAGGTGAAGAGCGCACCGCCGTGGGTTACCGAGCTGGATTGTATG
TTGCACCATGCCTTCTTGATCGGGCTGTGATTCTCCCTTTGGGCTGCTGCTCTCCC
TCCCCGCCGGGGCGATGTGAAGGCTCGGAGCTCGGGAGAGGTCCGCCAGCGTACGGTGCC
AAGGGATTAGCCTGGCGGACATCCCCTACCAAGGAGATCGCAGGGAACACTTAAGAATCTG
TCCTCAGGAATATAACATGCTGCACCACAGAAATGGAAGACAAGTTAACGCAACAAAGCAAAC
TCGAATTGAAAACCTTGTGGAAGAGACAAGCCATTTGTGCGCACCACTTTGTGTCCAGG
CATAAAGAAATTGACGAATTTCGAGAGCTCTGGAGAATGCAGAAAAGTCACTAAATGA
TATGTTGTACGGACCTATGGCATGCTGACAGAATTCAAAGTCTTCAGGACCTCT
TCACAGAGCTGAAAAGGTACTACACTGGGGTAATGTGAATCTGGAGGAAATGCTCAATGAC
TTTGGGCTCGGCTCTGGAACGGATGTTAGCTGATAAACCTCAGTATCAGTGA
AGACTACCTGGAATGTGAGCAAATACACTGACCAGCTCAAGCCATTGGAGACGTGCC
GGAAACTGAAGATTAGCTGAGTTACCCGCGCTTCATTGCTGCCAGGACCTTGTCCAGGGCTG
ACTGTGGGAGAGAAGTTGCAAACCGAGTTCCAAGGTCAAGCCAAACCCAGGGTGTATCCG
TGCCTCATGAAGATGCTGTACTGCCATACTGTCGGGGCTTCCACTGTGAGGCCCTGCA
ACAACACTGTCTAACGTCAAGGGCTGTTGCAAATCAGGCTGACCTGACACAGAG
TGGAATCTGTTATAGATGCAATGCTCTGGTGGCAGAGCGACTGGAGGGCATTCAACAT
TGAGTCGGCATGGACCCGATAGATGTCAGAAGATTCTGAAGCCATTATGAACATGCAAGAAA
ACAGCATGCAGGTGCTGCAAAGGTCTTCAGGGATGTGGTCAGCCAAACCTGCTCCAGCC
CTCAGATCTGCCGCTCAGCTCTGAAAATTAAATACACGTTCAAGGCCCTACAATCCTGA
GGAAAGACCAACAACGCTGCAGGACAAGCTGGACCGGCTGGTCACAGACATAAAAGAGA
AATTGAAGCTCTAAAAAGGTCTGGTCAGCATTACCTACACTATCTGCAAGGACGAGAGC
GTGACAGCGGGCACGTCCAACGAGGGAGGAATGCTGGAACGGGCACAGCAAAGCCAGATACTT
GCCTGAGATCATGAATGATGGCTCACCAACCAGATCAACAATCCGAGGTGGATGTGGACA
TCACTCGGCTGACACTTCATCAGACAGCAGATTATGGCTCTCCGTGTGATGACCAACAAA
CTAAAAAAACGCCTACAATGGAATGATGTCAATTCCAGGACACAAGTGTGACCAATCCAGTGG
CTCAGGGAGTGGCAGTGGGTGCATGGATGACGTGTGTCACGGAGTTGAGTTGTGACCA
CAGAGGCCCGCAGTGGATCCGACCGGAGAGAGGGTGGACTCTCTGCAGCCAGCGTGGC
CACTCCCTGCTCTGGTCTCTCACCTGCATTGTCCTGGCACTGCAGAGACTGTGAGATA
ATCTTGGGTTTGTCAGATGAAACTGCATTAGCTATCTGAATGGCCAACACTCACTTCTT
TTCTTACACTCTGGACAATGGACCATGCCACAAAAACTTACCGTTCTATGAGAAGAGAG
CAGTAATGCAATCTGCCTCCCTTTGTTTCCAAAGAGTACCGGGTGCAGACTGAACG
CTTCCTCTTCCTCAGCTATCTGTGGGGACCTTGTATTCTAGAGAGAATTCTTACTCAA
ATTTTCTGTAACGAGGAGATTCTTACCTTCATTGCTTTATGCTGCAGAAGTAAAGGAAT
CTCACGTTGTGAGGGTTTTCTCATTAAAAT

FIGURE 41

>/usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50914
><subunit 1 of 1, 555 aa, 1 stop
><MW: 62736, PI: 5.36, NX(S/T): 0
MPSWIGAVILPLLGLLSLPAGADVKARSCGEVRQAYGAKGFSLADIPYQEIA
GEHLRICPQEYTCCTTEMEDKLSQQSKLEFENLVEETSHFVRTTFVSRHKKFDEFF
RELLENAEKS LNDMF VRTYGMLYMQNSEVFQDLFTELKRYYTGGVNLEEMLNDFWAR
LLERMFQLINPQYHFSEDY LECVSKYTDQLKPFGDVPRKLKIQVTRAFIAARTFVQGLTVG
REVANRVSKVSPTPGCIRAL MKMLYCPYCRGLPTVRPCNNYCLNVMKCLANQADLD
TEWNLFIDAMLLVAERLEGPFNIES VMDPIDVKISEAIMNMQMENSMQVS
AKVFQGCGQPKPAPALRSARSAPENFNTRFRPYNPEER PTTAAGTSLDRLVT
DIKEKLKLSKKVWSALPYTICKDESVTAGTSNEEECWNGHSKARYLPE IMNDGLTN
QINNPEVDVDITRPDTFIRQQIMALRVMTNKLKNAYNGNDVNFQDTSDESGSG
SGSGCMDDVCPTEFEFVTTEAPAVDPDRREVDSSAAQRGHSLLSWSLTCIVL
ALQRLCR

Signal peptide:

amino acids 1-23

FIGURE 42A

CGGACGCGTGGCGGACCGTGGCAAAAGAACCTGGAGTGCAAAGCTAAATAAGTTAGCTGAGAAAACGCACG
CAGTTGCAGCGCCTGCGCCGGGTGCGCCAACCTACGCAAAGACCAAGCGGGCTCCGCGCGGACCGGCCGGGGC
TAGGGACCCGGCTTGGCCTTCAGGCTCCCTAGCAGCGGGAAAAGGAATTGCTGCCCGAGTTCTGCGGAGGT
GGAGGGAGATCAGGAAACGGCTTCTCCTCACTTCGCCCCGTGGTGAGTGTGCGGGAGATTGGCAAACGCCTAGG
AAAGGACTGGGAAAATAGCCCTGGAAAGTGGAGAAGGTGATCAGGAGGCGGTCCACTACGGCAGTTATCTG
TCTGATCAGAGCCAGACCGCACGCGTCCACTTCGAGTTCTTCAGGTGAGTGGGACCGCAGGACAGACGGCGA
TCCCGCCGCCCTCCGTACCAGCACTCCCAGGAGAGTCAGCCTCGCTCCCAACGTCGAGGGCGCTCTGCCACGA
AAAGTTCCGTCCACTGTGATTCTCAATTCCCTGCTTGGTTTTCTCCAGAGAACTTTGGTGGAGATATTAA
ACTTTTTCTTTTTCTGGTGGAAAGCTGCTCTAGGAGGGGGAGGAGGAGGAGAAAGTGAATGTGC
TGGAGAAGAGCGAGCCCTCCTGTTCTCCGGAGTCCCATTAAAGCATCATTCTGAAAGATTAAAGTTGT
CGGACATGGTGACAGCTGAGAGGAGAGGAGGAGTTCTGCAAGGTGGAGAGTCCTCACCGTCTGGTGCATG
TGTGCGCCCGCAGCGGGCGGGCGTGGTCTCCGCGTGGAGTCTCACCTGGACCTGAGTGAATGGCTCCCA
GGGGCTGTGCGGGGCATCCGCTCCGCTTCTCCACAGGCCTGTGTCTGGAAAGATGCTAGCAATGGGG
CGCTGGCAGGATTCTGGATCCTCTGCCTCCTCACTTATGGTACCTGTCCTGGGCCAGGCCTAGAAGAGGAGG
AAGAAGGGCCTTAAGCTCAAGCTGGAGAGAACTAGAGCCAGCACAACTTCCACCTCCAGCCCCATCTCA
TTTCATCCTAGGGATGATCAGGAGTTAGAGATGTGGTTACCA CGGATCTGAGATTAAAACACCTACTCTG
ACAAGCTCGCTGCCGAAGGAGTTAACTGGAGAACTACTATGTCCAGCCTATTGCAACACCATCCAGGAGTCAGT
TTATTACTGGAAAGTATCAGATAACACCCGGACTTCACATTCTATCATAAGACCTACCAACCCAACTGTTAC
CTCTGGACAATGCCACCCACCTACAGAAACTGAAGGAGGTGGATATTCAACGCAATGGTCGGAAAATGGCACT
TGGGTTAACAGAAAAGAATGCATGCCACCAAGAGGAGTTGATACTTTGGTTCCCTTTGGGAAGTG
GGGATTACTATACACACTACAAATGTGACAGTCTGGATGTGTGGCTATGACTGTATGAAACGACAATGCTG
CCTGGACTATGACAATGGCATATACTCCACACAGATGTACACTCAGAGAGTACAGCAAATCTAGCTCCATA
ACCCCAAAAGCTATATTTTATATACTGCCTATCAAGCTGTTCACTCACCAGTCAAGCTCCTGGCAGGTATT
TCGAACACTACCGATCCATTATCAACATAAACAGGAGAAGATATGCTGCCATGCTTCTGCTTAGATGAAGCAA
TCAACAAACGTGACATTGGCTCTAAAGACTTATGGTTCTATAACAACAGCATTATCATTACTCTCAGATAATG
GTGCCAGCCTACGGCAGGAGGAGTAACCTGGCTCTCAGAGGTAGCAAAGGAACATATTGGGAAGGAGGGATCC
GGGCTGTAGGCTTGTGCATAGCCCACCTCTGAAAAACAAGGAACAGTGTGTAAGGAACATTGTGCACATCACTG
ACTGGTACCCACTCTCATTCACTGGCTGAAGGACAGATTGATGAGGACATTCAACTAGATGGCTATGATATCT
GGGAGACCATAAGTGGGTCTCGCTCACCCGAGTAGATATTGCTACATTGACCCCTACACCAAGGC
AAAAAAATGGCTCTGGCAGCAGGCTATGGATCTGAAACACTGCAATCCAGTCAGCCATCAGAGTGCAGCACTG
GAAATTGCTTACAGGAAATCCTGGCTACAGCAGTGGTCCCCCTCAGTCTTCAGCAACCTGGACCGAACCG
GTGGCACAATGAACGGATCACCTGTCAACTGGCAAAAGTGTATGGCTTCTCAACATCACAGCCACCCATATGA
GAGGGTGGACCTATCTAACAGGTATCCAGGAATCGTGAAGAAGCTCCTACGGAGGCTCTCACAGTTCAACAAAC
TGCAGTGCCTGGTCACTGGTCAAGGACTTCTGCAAGGACAGTGGAGATGTTATTCTCGCTCCTTAGAAAACGTG
GTGAGTCCTGAGTTCCACTGCTGTGCTTCAGTCACAGCAGGAAACACTGCTTTGAATTATAGGAGGAGAACATA
ACCTACCATCCGCAAGCATGCTAATTGATGGAAGTTACAGGGTAGCATGATTAAACTACCTTGATAAATTAC

FIGURE 42B

AGTCAAAGATTGTGTCACCTCAAAGGCCTGAAGAATATATTTCTGGTGAATTTGTATGTCTGTCATATGA
CACTGGGTTTTAATTAAATTCTATTTATATATAAATATGTTCTTCCTGTGAAAAGCTGTTTCT
CACATGTGAACAGCTTGACACTCATTTACCATGCGTGAGGGAATGGCAAATAAGATGTTGAGCACACTGCC
ACAATGAATGTAACATTTCTAACACTTTACTAGAAGAACATTCACTGATAAAAAACCTAATTTATTTACA
GAAAAATATTTGTTGTTTATAAAAGTTATGCAAATGACTTTATTTTATTCCTGCATACCATTAGAAGA
ATTTTATTCATTCTCAAATTATCAAGCACTGTAATACTATAAATTATGTAATACTGTGTGAATTCACTGACTA
TAAAAACATCATTCACTGAGAAACTTATAATCGCATTGTCATCAAGATTGAAATGTAATAAGATGAATATAT
ATTACTGGAAATTCAATGTTGTCAGAGTTGAGACAACTTATTGTTCTATCATAAACTATTTATGTATCTT
AATTATTAAAATGATTACTTTATGGCACTAGAAAATTACTGTGGCTTCTGATCTAACCTCTAGCTAAATT
GTATCATTGGCCTAAAAAATAAAAACTTTACTAATAGGCAATTGAAGGAATGGTTGCTAACACCACAGTAA
TATAATATGATTACAGATAGATGCTTCCCCTGGCTATGACATGGAGAAAGATTTCCATAATAAACTAA
TATTTATATTAGGTTGGTCAAAACTAGTTGCGGTTTCCATTAAAAGTAATAACCTTACTCTTATACAAAGT
GGACACTGTGGGAGATAAGAGAAATGGAAGATA CGGATCCTGCCTGGAGTAGGTAACCTGCTGGAAACCCC
ACATGCAAACGTATGAGGAGATTAAAGGAGTATTATCAGTAATGAAGTTATCATGGTCATCAATGAGCATA
GATTGGTGTGGATCCTGTAGACCCTGGTGTTCCTTGAAGTGCCCTCTCTAATGCAGAGCCTGAAAGCTTAC
AGTATAACACTGAAAAGTCACAGATAGCTAGAATTATGATCTTGAAGTTATAACTGTGATCTGAAATGTGT
GGTGGTATGACAGCATAACATTAAACATTACATCACAGCTCAAAGGACTGTGATATAATCCATTATAC
AACTCAAAGGACTGTGATATAATCCATTATACAGCTCACAGTTCTGAAAATGTATAAAAGAATCTATAAT
CTAGTACTGAAATTACTAAATTGGTAAGATGATTAAATGATTAAATTAAACATTATCTAGAATATAT
GGCTCCATTATTTATTTATAGTGTAAAGTTGTATTCTAAAGTTGTGTTGTGACAGTATCTTAAATGAG
TCTTAAAAAATAAAGGCATATTGTTCATGTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAA

FIGURE 43

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48296
><subunit 1 of 1, 515 aa, 1 stop
><MW: 56885, pi: 6.49, NX(S/T): 5
MAPRGCAGHPPPSQACVCPGKMLAMGALAGFWILCLLTYGYLSWGQALEEEEGLAQA
GEKLEPSTTSTSQPHLIFILADDQGFRDVGYHGSEIKPTLDKLAEGVKLENYYVQPICTP
SRSQFITGKYQIHTGLQHSIIRPTQPNCPLDNATLPQKLKEVGYSTHMVGKWHLGFRKEC
MPTRRGFDTFFGSLLGSGDYYTHYKCDSPGMCGYDLYENDNAAWDYDNGIYSTQMYTQRVQQ
ILASHNPTKPIFLYTAYQAVHSPLQAPGRYFEHYRSIININRRYAAMLSCLDEAINVTIA
LKTYGFYNNSIIYSSDNGGQPTAGGSNWPLRGSKGTWEGGIRAVGVHSPLLKNKGTVC
ELVHITDWYPTLISLAEGQIDEEDIQLDGYDIWETISEGLRSPRVDILHNIDPYTPRQKMAPG
QQAMGSGTLQSSQPSECSTGNCLQEILATATGSPLSLSATWDRTGGTMNGSPCQLAKVYGFS
TSQPTHMRGWTYLTGIQES

Important Features:

Signal Peptide:

amino acids 1-37

Sulfatases signature 1.

amino acids 120-132

Sulfatases signature 2.

amino acids 168-177

Tyrosine kinase phosphorylation site.

amino acids 163-169

N-glycosylation sites.

amino acids 157-160, 306-309 and 318-321

FIGURE 44

CGGACGCGTGGGTGCGAGTGGAGCGGAGGACCCGAGCGGCTGAGGGAGAGAGGGAGGCAGCAGGAC
TTAGCTGCTACGGGGTCCGGCCGGCCCTCCGAGGGGGCTCAGGAGGAGGAAGGGAGGAC
CCGTGCGAGAATGCCTCTGCCCTGGAGCCTGCGCTCCGCTGCTCTCCTGGTGGCAG
GTGGTTCGGAACCGCGCAGTGCAAGGCATCACGGGTGTTAGCATCGGCACGTCAAGCCT
GGGGTCTGTCACTATGGAACATAACTGGCTGCTGCTACGGCTGGAGAAGAAAACAGCAAGGG
AGTCTGTGAAGCTACATGCGAACCTGGATGTAAGTTGGTAGTGCCTGGACCAAACAAAT
GCAGATGCTTCCAGGATACACCGGAAACCTGCAGTCAGATGTAATGAGTGTGGAAATG
AAACCCGGCCATGCCAACACAGATGTTGAATACACACCGAAGCTACAAGTGCTTGCCT
CAGTGGCCACATGCTCATGCCAGATGCTACGTGTGAACTCTAGGACATGTGCCATGATAA
ACTGTCAGTACAGCTGTGAAGACACAGAAGAAGGGCACAGTGCTGTGCTCATCCTCAGGA
CTCCGCCTGGCCCCAATGGAAGAGACTGTCTAGATATTGATGAATGTGCCTCTGGTAAAGT
CATCTGTCCTACAATCGAAGATGTTGAACACACATTGGAAGCTACTACTGCAAATGTCACA
TTGGTTCGAACTGCAATATATCAGTGGACGATATGACTGTATAGATATAATGAATGACT
ATGGATAGCCATACGTGCAGCCACCATGCCATTGCTCAATACCCAAGGGCTTCAAGTG
TAAATGCAAGCAGGGATATAAGGCAATGGACTTCGGTGTCTGCTATCCCTGAAAATTCTG
TGAAGGAAGTCCTCAGAGCACCTGGTACCATCAAAGACAGAATCAAGAAGTTGCTTGCTCAC
AAAAACAGCATGAAAAAGAAGGCAAAATTAAAAATGTTACCCAGAACCCACCAGGACTCC
TACCCCTAAGGTGAACTTGCAGCCCTCAACTATGAAGAGATAGTTCCAGAGGGCGGAAC
CTCATGGAGGTAAAAAAGGAAATGAAGAGAAATGAAAGAGGGCTTGAGGATGAGAAAAGAG
AAGAGAAAGCCCTGAAGAATGACATAGAGGAGCGAACGCTGCGAGGAGATGTGTTTCCCT
AAGGTGAATGAAGCAGGTGAATTGGCCTGATTCTGGTCCAAAGGAAAGCGCTAACCTCAA
ACTGGAACATAAAGATTAAATATCTGGTTGACTGCAGCTCAATCATGGGATCTGTGACT
GGAAACAGGATAGAGAAGATGATTTGACTGGAATCCTGCTGATCGAGATAATGCTATTGGC
TTCTATATGGCAGTTCCGGCCTTGGCAGGTACAAGAAAGACATTGGCGATTGAAACTTCT
CCTACCTGACCTGCAACCCCAAAGCAACTTCTGTTGCTTTGATTACGGCTGGCCGGAG
ACAAAGTCGGAAACTTCGAGTGTGAAAACAGTAACAATGCCCTGGCATGGGAGAAG
ACCACGAGTGGAGGATGAAAAGTGGAGACAGGGAAAATTGAGTGTATCAAGGAACTGATGC
TACCAAAAGCATCATTGGTAAAGCAGAACGTGCAAGGGAAAACCGGCAAATCGCAGTGG
ATGGCGTCTGCTTGTGTTGAGGCTTATGTCAGATGCTTATCTGTGGATGACTGAATG
TTACTATCTTATATTGACTTGTATGTCAGTCCCTGGTTTTGATATTGCATCATAG
GACCTCTGGCATTAGAATTACTAGCTGAAAATTGTAATGTACCAACAGAAATATTATTG
TAAGATGCCTTCTTGTATAAGATATGCCAATATTGCTTAAATATCATATCACTGTATCT
TCTCAGTCATTCTGAATCTTCCNCATTATATTATAAAATNTGAAANGTCAGTTATCTC
CCCTCCTCNGTATATCTGATTGTATANGTANGTTGATGNGCTCTCTACAACATTCTA
GAAAATAGAAAAAAAGCACAGAGAAATGTTAAGTGTGACTCTTATGATAACTCTTGG
AACTATGACATCAAAGATAGACTTTGCCTAAGTGGCTAGCTGGTCTTCATAGCCAAAC
TTGTATATTAAATTCTTGTAAATAATAA

FIGURE 45

MPLPWSLALPLLLSWVAGGFGNAAASARHHGLLASARQPGVCHYGTKLACCYGWRNSKGVCE
ATCEPGCKFGECPGNKCRCPGTYGKTCSDVNECGMKPRPCQHRCVNTHGSYKCFCLSGH
MLMPDATCVNSRTCAMINCQYSCEDTEEGPQCLCPSSGLRAPNGRDCLDIDECAKGKVICP
YNRRCVNTFGSYYCKCHIGFELQYISGRYDCIDINECTMDSHTCSHHANCFTQGSFKCKCK
QGYKGNGLRCSAIPENSVKEVLRAPGTIKDRIKKLLAHKNNSMKKAKIKNVTPEPTRTPPK
VNLQPFNYEEIVSRGGNSHGGKGNEEK

Signal peptide:

amino acids 1-21

EGF-like domain cysteine pattern signature.

amino acids 80-91

Calcium-binding EGF-like domains

amino acids 103-124, 230-251 and 185-206

FIGURE 46

GGGAGCTGCTGCTGTGGCTGCTGGTGTGCGCGCTGCTCCTGCTCTTGGTGCAGCTGCTG
CGCTTCCTGAGGGCTGACGGCGACCTGACGCTACTATGGGCCAGTGGCAGGGACGACGCC
AGAATGGGAGCTGACTGATATGGTGGTGTGGGTACTGGAGCCTCGAGTGGATTGGTGAGG
AGCTGGCTTACCAGTTGTCTAAACTAGGAGTTCTCTTGCTGTCAAGCCAGAAGAGTCAT
GAGCTGGAAAGGGTGAAGAAGATGCCTAGAGAATGCAATTAAAAGAAAAAGATATACT
TGTGTTGCCCTTGACCTGACCGACACTGGTCCCCATGAAGCGGCTACCAAAGCTGTTCTCC
AGGAGTTGGTAGAACATCGACATTCTGGTCAACAATGGTGAATGTCCCAGCGTTCTGTGC
ATGGATACCAGCTGGATGTCTACAGAAAGCTAACAGAGCTTAACACTTAGGGACGGTGTG
CTTGACAAAATGTGTTCTGCCTCACATGATCGAGAGGAAGCAAGGAAAGATTGTTACTGTGA
ATAGCATCCTGGGTATCATATCTGTACCTCTTCCATTGGATACTGTGCTAGCAAGCATGCT
CTCCGGGGTTTTTAATGGCCTCGAACAGAACATTGCCACATACCCAGGTATAATAGTT
TAACATTTGCCAGGACCTGTGCAATCAAATATTGTGGAGAATTCCCTAGCTGGAGAAGTCA
CAAAGACTATAGGCAATAATGGAGACCAGTCCCACAAGATGACAACCAGTCGTTGTGCGG
CTGATGTTAACATCAGCATGGCCAATGATTGAAAGAAGTTGGATCTCAGAACACCTTCTT
GTTAGTAACATATTGTGGCAATACATGCCAACCTGGGCTGGATAACCAACAAGATGG
GGAAGAAAAGGATTGAGAACCTTAAGAGTGGTGTGGATGCAGACTCTCTTATTAAAATC
TTAAGACAAAACATGACTGAAAAGAGCACCTGTACTTTCAAGCCACTGGAGGGAGAAATG
GAAAACATGAAAACAGCAATCTCTTATGCTTCTGAATAATCAAAGACTAATTGTGATT
ACTTTTAATAGATATGACTTGTGCTTCAACATGGAATGAAATAAAAATAATAAAAAG
ATTGCCATGAATCTGCAAAA

FIGURE 47

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA36343
><subunit 1 of 1, 289 aa, 1 stop
><MW: 32268, pI: 9.21, NX(S/T): 0
MVVWVTGASSGIGEELAYQLSKLGVSLVLSARRVHELERVKRRCLEGNLKEKDILVLPLDL
TDTGSHEAATKAVLQEFGRIDILVNNGGMSQRSLCMDTSLDVYRKLIELNYLGTVSLTKCVL
PHMIERKQGKIVTVNSILGIISVPLSIGYCASKHALRGFFNGLRTELATYPGIIVSNICPGP
VQSNIVENSLAGEVTKTIGNNGDQSHKMTTSRCVRLMLISMANDLKEVWIEQPFLLVTLW
QYMPTWAWWITNKGKKRIENFKSGVDADSSYFKIFKTKHD
```

Important Features:

Signal Peptide:

amino acids 1-31

Transmembrane domain:

amino acids 136-157

Tyrosine kinase phosphorylation site.

106-113 and 107-114

Homologous region to Short-chain alcohol dehydrogenase

amino acids 80-90, 131-168, 1-13 and 176-185

FIGURE 48

GCGACGTGGGCACCGCCATCAGCTGTTCGCGCGTCTTCTCCTCCAGGTGGGGCAGGGGTTTC
GGGCTGGTGGAGCATGTGCTGGGACAGGAACAGCATCCTCAATCAATCAAACAGCATATTGG
TTGCATCTTCTACACACTACAGCTATTGTTAGGTTGCCTGCGGACACGCTGGGCCTGTCC
TGATGCTGCTGAGCTCCCTGGTCTCTCGCTGGTCTGTCTACCTGGCCTGGATCTGTTC
TTCGTGCTCTATGATTCTGCATTGTTGTATCACCACTATGCTATCAACGTGAGCCTGAT
GTGGCTCAGTTCCGGAAGGTCCAAGAACCCCCAGGGCAAGGCTAAGAGGCAGTGAGCCCTCA
ACCCAAGCCAGGCTGACCTCATCTGCTTGGCTTCAGCCGCTCAGCGTGCCTGT
GACAGCGTGGCCCCGGCCCCCAAGCCTCAGGAGGGCAACACAGTCCCTGGCGAGTGGCCC
TGGCAGGCCAGTGTGAGGAGGCAAGGAGCCCACATCTGCAGCGGCTCCCTGGTGGCAGACAC
CTGGGTCCCTCACTGCTGCCACTGCTTGAAAAGGCAGCAGCAACAGAACTGAATTCTGGT
CAGTGGTCCTGGGTTCTGAGCGTGAGGGACTCAGCCCTGGGCCAAGAGGTGGGGTG
GCTGCCCTGCAGTTGCCAGGGCTATAACCACACTACAGCCAGGGCTCAGACCTGGCCCTGCT
GCAGCTCGCCCACCCCCACGACCCACACACCCCTCTGCCTGCCAGCCGCCATCGCTTCC
CCTTGGAGCCTCCTGCTGGCCACTGGCTGGGATCAGGACACCACTGATGCTCCTGGGACC
CTACGCAATCTGCCTCGTCTCATCAGTGCCTCACAGTCAACTGTATCTACAACCAGCT
GCACCAGCGACACCTGTCCAACCCGGCCGGCTGGGATGCTATGTGGGGCCCCAGCCTG
GGGTGCAGGGCCCCCTGTCAAGGAGATTCCGGGGCCCTGTGCTGTGCCTGAGCCTGACGGA
CACTGGGTTCAAGGCTGGCATCATCAGCTTGATCAAGCTGTGCCAGGAGGACGCTCCTGT
GCTGCTGACCAACACAGCTGCTCACAGTTCTGGCTGCAGGCTCGAGTTCAAGGGGGCAGCTT
TCCTGGCCCAGAGCCCAGAGACCCGGAGATGAGTGTGAGGACAGCTGTGTAGCCTGTGGA
TCCTTGAGGACAGCAGGTCCCCAGGCAGGAGCACCCCTCCCCATGCCCTGGGAGGCAGGCT
GATGCACCAAGGGACAGCTGGCTGTGGCGGAGCCCTGGTGTAGGAGGAGGCGGTGCTAAGT
CTGCCCACTGCTTCATTGGCGCCAGGCCAGAGGAATGGAGCGTAGGGCTGGGACCAAGA
CCGGAGGAGTGGGGCTGAAGCAGCTCATCCTGCATGGAGCCTACACCCACCCCTGAGGGGG
CTACGACATGCCCTCCTGCTGGCCAGGCCCTGTGACACTGGAGGCCAGCCTGCCGGCCCC
TCTGCCTGCCCTATCCTGACCAACACCCTGCCTGATGGGAGCGTGGCTGGTTCTGGGACGG
GCCGCCAGGAGCAGGCATCAGCTCCCTCAGACAGTGCCTGACCCCTCTGGGGCTAG
GCCCTGCAGCCGGCTGCATGCAGCTCTGGGGTGTGGCAGGCCATTCTGCCGGGGATGG
TGTGTACCACTGCTGTGGGTGAGCTGCCAGCTGTGAGGGCTGTCTGGGGCACCACGGTG
CATGAGGTGAGGGCACATGGTTCTGGCCGGCTGCACAGCTCGAGATGCTTGCCTAAGG
CCCCGCCAGGCCGGCTTCACCGCGCTCCCTGCCTATGAGGACTGGGTCAAGCAGTTGG
ACTGGCAGGTCTACTTCGCCAGGAACCAAGAGCCCGAGGCTGAGCCTGGAAGCTGCTGGCC
AACATAAGCCAACCAACCAGCTGCT**TGA**CAGGGGACCTGCCATTCTCAGGACAAGAGAAATGC
AGGCAGGCAAATGGCATTACTGCCCTGTCTCCCCACCCCTGTATGTGTGATTCCAGGCAC
CAGGGCAGGCCAGAACGCCAGCAGCTGTGGGAAGGAACCTGCCTGGGCCACAGGTGCCCA
CTCCCCACCCCTGCAGGACAGGGGTGTCTGTGGACACTCCCACACCCAACTCTGCTACCAAGC
AGGCCTCAGCTTCTCCTCTTACTCTTCAGATAACATCACGCCAGCCACGTTGTT
TGAAAATTCTTTGGGGGGCAGCAGTTCTTTAAACTTAAATAATTGTTAC
AAAATAAAA

FIGURE 49

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA40571
MLLSSLVSLAGSVYLAWILFFVLYDFCIVCITYAINVSLMWLSFRKVQEPOGKAKRHGNTV
PGEWPWQASVRQGAHICSGSLVADTWVLTAAHCFEKAATELNSWSVVLGSLQREGLSPGA
EEVGVAALQLPRAYNHYSQGSDLALLQLAHPTTHTPLCLPQPAHRFPFGASCWATGWDQDTS
DAPGTLRNLRRLRISRPTCNCIYNQLHQRHLSNPAPGMLCGGPQPGVQGPCQGDGGPVLC
LEPDGHWVQAGIISFASSCAQEDAPVLLNTAAHSSWLQARVQGAFLAQSPETPEMSDEDS
CVACGSLRTAGPQAGAPSPWPWEARLMHQQLACGGALVSEEAVLAAHCFIGRQAPEEWSV
GLGTRPEEWGLKQLILHGAYTHPEGGYDMALLLAQPVTLGASLRPLCLPYPDHHLPDGERG
WVLGRARPAGISSLQTVPVTLLGPRACSRHLAAPGGDGSPILPGMVCTSAVGELPSCEGLS
GAPLVHEVRGTWFLAGLHSFGDACQGPAPAVFTALPAYEDWVSSLDWQVYFAEEPEPEAEP
GSCLANISQPTSC
```

Important features:

Signal peptide:

amino acids 1-15

Homologous region to Serine proteases, trypsin family

amino acids 79-95, 343-359 and 237-247

N-glycosylation sites.

amino acids 37-40 and 564-567

Kringle domains

amino acids 79-96, 343-360 and 235-247

FIGURE 50

CGGGCCGCCCGCCCCATTGGGCCGGGCTCGCTGGCGGGCAGGGGCAGCCTCACGGAGCTGAGCCAGGGCTGGCATGGGTGT
GCCGCGTCCCTGAGTCCCAGAGTCGGCGGGCGGGCAGGGGCAGCCTCACGGAGCTGAGCCAGGGCTGGCATGGGTGT
CCCAGCTGTAGCCGCCTCACAGGAAGATGCTGCGTCGGCGGGCAGCCTGCACGGAGCTGAGGGTCCAGG
GCATGTGGGTGCAGCCCTGGGAGCACTGTGGTTCTGCCTCACAGGAAGCCCTGGAGGTCCAGG
TCCCTGAAGACCCAGTGGTGGCACTGGTGGCACCCGATGCCACCCCTGTGCTGCTCCTCTCC
CCTGAGCCTGGCTCAGCCTGGCACAGCTAACCTCATCTGGCAGCTGACAGATAACAAACA
GCTGGTGCACAGCTTGCTGAGGGCCAGGACCAGGGCAGCGCCTATGCCAACCGCACGGCCC
TCTTCCGGACCTGCTGGCACAGGGCACCGATCCCTGAGGCTGCAGCGCGTGCAGGGCG
GACGAGGGCAGCTTCACCTGCTGAGCATCCGGATTTCGGCAGCGCTGCCGTAGCCT
GCAGGGTGGCCGCTCCCTACTCGAAGCCCAGCATGACCCCTGGAGGCCAACAAAGGACCTGCGGC
CAGGGGACACGGTGACCATCACGTGCTCCAGCTACCAGGGCTACCCTGAGGCTGAGGTGTT
TGGCAGGGATGGCAGGGTGTGCCCTGACTGGCACAGTGACCGTGCAGATGGCCAACGA
GCAGGGCTTGTGATGTGCACAGCGTCCTGCGGGTGGTGTGGGTGCGAATGGCACCTACA
GCTGCCTGGTGCACACCCGTGCTGCAGCAGGATGCGCACRGCTCTGTCACCATCACAGGG
CAGCCTATGACATTCCCCCAGAGGCCCTGTGGGTGACCGTGGCTGTCTGTCTCAT
TGCAC TGCTGGTGGCCCTGGCTTCTGTGCTGGAGAAAGATCAAACAGAGCTGTGAGGAGG
AGAATGCAGGAGCTGAGGACCAGGATGGGAGGGAGAAGGCTCCAAGACAGCCTGCAGCCT
CTGAAACACTCTGACAGCAAAGAAGATGATGGACAAGAAATAGCCTTGACCATGAGGACCAAGG
GAGCTGCTACCCCTCCCTACAGCTCCTACCCCTGGCTGCAATGGGCTGCACGTGAGGCC
TGCCCCAACAGATGCATCCTGCTCTGACAGGTGGCTCCTCTCAAAGGATGCGATAACAC
AGACCACTGTGCAGCCTTATTCTCCAATGGACATGATTCCAAGTCATCCTGCTGCCTTT
TTCTTATAGACACAATGAACAGACCACCAACCTTAGTTCTTAAGTCATCCTGCCTGCT
GCCCTATTCACAGTACATACATTCTTAGGGACACAGTACACTGACCAATCACCACCTC
TTCTTCCAGTGTGCGTGGACCATCTGGCTGCCTTTCTCCAAAAGATGCAATATTCAA
CTGACTGACCCCTGCCTTATTCAACAAAGACACGATGCATAGTCACCCGGCTTGT
TCCAATGGCGTGATAACTAGTGTGATCATGTTCAAGCCCTGCTTCCACCTGCATAGAATCTT
TCTTCTCAGACAGGGACAGTGCAGGCTCAACATCTCCTGGAGTCTAGAAGCTGTTCT
CCCTCCTCCTCCCTGCCCAAGTGAAGACAGGGCAGGGCAGGAATGCTTGGGACACCG
AGGGGACTGCCCGCCCCACCCCCACCATGGTGTATTCTGGGCTGGGCAGTCTTCC
TTGCCTCTGGCCAGCTCCTGGCCTCTGGTAGAGTGAGACTTCAGACGTTCTGATGCCTCCG
GATGTGATCTCTCCCTGCCCAAGGAATGAAAGATGTGAGGACTTCTAATTAAATGT
TCGGAGGGATTTGTAACACTGGGGTATATTGGGAAATAAATGTCTTGTAAAAAAA
AAAAAAAAAAAAAA

FIGURE 51

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA41386
><subunit 1 of 1, 316 aa, 1 stop, 1 unknown
><MW: -1, pI: 4.62, NX(S/T): 4
MLRRRGSPGMGVHVGAAALGALWFCLTGALEVQVPEDPVVALVGTATLCCSFSPFGFSLAQ
LNLIWQLTDTKQLVHSFAEGQDQGSAYANRTALFPDLLAQGNASLRLQRVRVADEGSFTCFV
SIRDFGSAAVSLQVAAPYSKPSMTLEPNKDLRPGDTVTITCSSYQGYPEAEVFWQDGQGVPL
TGNVTTSQMANEQGLFDVHSVLRVVLGANGTYSCLVRNPVLQQDAHXSVTITGQPMTFPPEA
LWVTVGLSVCLIALLVALAFVCWRKIKQSCEEENAGAEDQDGEGEGSKTALQPLKHSDSKED
DGQEIA
```

Important features:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 251-270

N-glycosylation site.

amino acids 91-94, 104-107, 189-192 and 215-218

Homologous region to Immunoglobulins and MHC

amino acids 217-234

FIGURE 52

TTCGTGACCCTTGAGAAAAGAGTTGGTGGTAATGTGCCACGTCTTCTAAGAAGGGGGAGTC
CTGAACTTGTCTGAAGCCCTGTCCGTAAAGCCTTGAACCTACGTTCTTAAATCTATGAAGTCG
AGGGACCTTCGCTGCTTTGTAGGGACTTCTTCCTGCTTCAGCAACATGAGGCTTTCT
TGTGGAACCGCGTCTTGACTCTGTCGTCACTCTTGTATTGGGGCTTGATCCCTGAACCA
GAAGTAAAATTGAAGTTCTCCAGAACGCATTCTGCCATCGCAAGACCAAAGGAGGGGA
TTTGATGTTGGTCCACTATGAAGGCTACTTAGAAAAGGACGGCTCCTTATTTCACTCCACTC
ACAAACATAACAATGGTCAGCCCATTGGTTACCTGGCATCTGGAGGCTCTCAAAGGT
TGGGACCAGGGCTTGAAGGAATGTGTAGGAGAGAAGAGAAAGCTCATCATTCCCTGC
TCTGGGCTATGGAAAAGAAGGAAAAGTAAAATTCCCCAGAAAGTACACTGATATTAAATA
TTGATCTCCTGGAGATTCGAAATGGACCAAGATCCCAGAATCATTCCAAGAAATGGATCTT
AATGATGACTGGAAACTCTCTAAAGATGAGGTAAAGCATATTAAAGAAGGAGTTGAAAAA
ACATGGTGCCTGGTGAATGAAAGTCATCATGATGCTTGGTGGAGGATATTTTGATAAAG
AAGATGAAGACAAAGATGGGTTATATCTGCCAGAGAATTACATATAAACACGATGAGTTA
TAGAGATACATCTACCCCTTTAATATAGCACTCATCTTCAAGAGAGGGCAGTCATCTTAA
AGAACATTTATTTTATACAATGTTCTTCTGCTTGTGTTTATTTTATATATTTTT
CTGACTCCTATTTAAAGAACCCCTTAGGTTCTAAGTACCCATTCTTCTGATAAGTTATT
GGGAAGAAAAGCTAATTGGCTTTGAATAGAAGACTTCTGGACAATTTTCACTTCACAG
ATATGAAGCTTGTGTTACTTCACTTATAAATTAAAATGTTGCAACTGGGAATATACC
ACGACATGAGACCAGGTTATAGCACAAATTAGCACCCCTATATTCTGCTTCCCTTATTTTC
TCCAAGTTAGAGGTCAACATTGAAAAGCCTTTGCAATAGCCCAAGGCTTGCTATTTCAT
GTTATAATGAAATAGTTATGTGTAACTGGCTCTGAGTCTGCTTGAGGACCAGAGGAAAA
TGGTTGTTGGACCTGACTTGTAAATGGCTACTGCTTACTAAGGAGATGCAATGCTGAAG
TTAGAAACAAGGTTAATAGCCAGGCATGGTGGCTCATGCCTGTAATCCCAGCACTTGGGAG
GCTGAGGCGGGCGGATCACCTGAGGTTGGAGTCGAGACCAGCCTGACCAACACGGAGAAA
CCCTATCTACTAAAATACAAAGTAGCCCAGCGTGGTATGCGTGCCTGTAATCCCAGCT
ACCCAGGAAGGCTGAGGCGGCAGAACATCAATTGAAACCCGAGGCCAGGTTGCGGTAAGCCGAG
ATCACCTNCAGCCTGGACACTCTGCTCGAAAAAAAGAAAAGAACACGGTTAATACCATATNA
ATATGTATGCATTGAGACATGCTACCTAGGACTTAAGCTGATGAAAGCTTGGCTCCTAGTGT
TGGTGGCTATTATGATAAAATAGGACAAATCATTATGTGTGAGTTCTTGTAAATAAAATG
TATCAATATGTTAGATGAGGTAGAAAGTTATTTATATTCAATATTACTTCTTAAGGC
TAGCGGAATATCCTTCTGGTTCTTAAATGGGTAGTCTAGTATATTACTACAATAACA
TTGTATCATAAGATAAAAGTAGTAAACCAGTCTACATTCCCATTCTGCTCATAAAAAC
TGAAGTTAGCTGGGTGTGGCTCATGCCTGTAATCCCAGCACTTGGGGCCAAGGAGGG
TGGATCACTTGAGATCAGGAGTTCAAGACCAAGCAGCCTGGCCAACATGGTGAACCTTGTCTCTA
CTAAAAATACAAAATTAGCCAGGCGTGGTGGTCACACCTGAGTCCCAGCTACTCGGGAG
GCTGAGACAGGAGATTGCTTGAACCCGGAGGCAGGTTGCAAGTCAAGGAGATTGTGCC
ACTGCACTCCAGCCTGGGTGACAGAGCAAGACTCCATCTAAAAAAAAAGAAGCAGA
CCTACAGCAGCTACTATTGAATAAACCTATCCTGGATTTT

FIGURE 53

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44194
><subunit 1 of 1, 211 aa, 1 stop
><MW: 24172, pI: 5.99, NX(S/T): 1
MRLFLWNAVLTLFVTSLIGALIPEPEVKIEVLQKPFICHRKTGGDLMLVHYEGYLEKD GSL
FHSTHKHNNNGQPIWFTLGLILEALKGWDQGLKGMCVGEKRKLIIPPALGYGKEGKGKIPPEST
LIFNIDLLEIRNGPRSHESFQEMDLNDDWKLSKDEVKAYLKKEFEKHGAVVNESHHDALVED
IFDKEDEDKDGFISAREFTYKHDEL
```

Important features:

Signal peptide:

amino acids 1-20

N-glycosylation site.

amino acids 176-179

Casein kinase II phosphorylation site.

amino acids 143-146, 156-159, 178-181 and 200-203

Endoplasmic reticulum targeting sequence.

amino acids 208-211

FKBP-type peptidyl-prolyl cis-trans isomerase

amino acids 78-114 and 118-131

EF-hand calcium-binding domain.

amino acids 191-203, 184-203 and 140-159

S-100/ICaBP type calcium binding domain

amino acids 183-203

FIGURE 54

AATAAAGCTCCTTAATGTTGATATGTCCTTGAAGTACATCCGTGCATTTTTTAGCAT
CCAACCATTCCCTCCCTTGAGTTCTGCCCTCAAATCACCTCTCCGTAGCCCACCGA
CTAACATCTCAGTCTGAAA**ATG**CACAGAGATGCCTGGCTACCTCGCCCTGCCTCAGCCT
CACGGGGCTCAGTCTTTCTCTTGGTGCCACCAGGACGGAGCATGGAGGTACAGTAC
CTGCCACCCCTCAACGTCTCAATGGCTCTGACGCCGCTGCCCTGCACCTCAACTCCTGC
TACACAGTGAACCACAAACAGTTCTCCCTGAACCTGGACTTACCAAGGAGTGAACAACACTGCTC
TGAGGAGATGTTCTCCAGTTCAGCATGAAGATCATTAAACCTGAAGCTGGAGCGGTTCAAG
ACCGCGTGGAGTTCTCAGGGAACCCCAGCAAGTACGATGTGTCGGTATGCTGAGAACGTG
CAGCCGGAGGATGAGGGATTACAACGTCTACATCATGAACCCCCCTGACCGCCACCGTGG
CCATGGCAAGATCCATCTGCAGGTCTCATGGAAGAGCCCCCTGAGCGGGACTCCACGGTGG
CCGTGATTGTGGGTGCCCTCCGTCGGGGCTTCTGGCTGGTCATCTTGGTGCATGGTG
GTCAAGTGTGTGAGGAGAAAAAAAGAGCAGAACCGGATGATGGCGCAAG**TAG**TGGTGGCGGCC
CTGCAGCCTCCGTCTCCGTCTCCCTCTCCGCTGTACAGTACCTGCCTGCTCG
CTCTTGGTGTGCTTCCCGTACCTAGGACCCCAGGGCCACCTGGGGCCTCCTGAACCCCCG
ACTTCGTATCTCCACCCCTGCACCAAGAGTGACCCACTCTTCCATCGAGAACCTGCCA
TGCTCTGGACGTGTGGGCCCTGGGAGAGGAGAGAAAGGGCTCCACCTGCCAGTCCCTGG
GGGGAGGCAGGAGGCACATGTGAGGGCCCCAGAGAGAACGGAGTGGTGGCAGGGTAGA
GGAGGGCCGCTGTCACCTGCCAGTGCTTGCCTGGCAGTGGCTTCAGAGAGGACCTGGTGG
GGAGGGAGGGCTTCCTGTGCTGACAGCGCTCCCTCAGGAGGGCCTGGCCTGGCACGGCTG
TGCTCCTCCCTGCTCCAGGCCAGAGCAGCCATCAGGCTGGAGGTGACGATGAGTCCCTGA
AACTTGGAGGGCATGTTAAAGGGATGACTGTGCAATTCCAGGGACTGACGGAAAGCCAGGG
CTGCAGGCAAAGCTGGACATGTGCCCTGGCCAGGAGGCCATGTTGGGCCCTCGTTCCATT
GCTAGTGGCCTCCTGGGCTCCTGTTGGCTCTTAATCCCTTAGGACTGTGGATGAGGCCAG
ACTGGAAGAGCAGCTCCAGGTAGGGGCCATGTTCCAGCGGGGACCCACCAACAGAGGCC
AGTTCAAAGTCAGCTGAGGGCTGAGGGGTGGGCTCCATGGTGAATGCAGGTTGCTGCAG
GCTCTGCCTCTCCATGGGTAACCACCCCTGCCCTGGCAGGGCAGCCAAGGCTGGAAAT
GAGGAGGCCATGCACAGGTGGGAGCTTCTTGGCTTCAAGAGAGGAAAGCCTGAGGCC
GCCCTGGTGGGTTCCACCTGGCTTGGCTACAGAGAGGAAAGGAAAGCCTGAGGCC
GCATAAGGGAGGCCTTGGAACCTGAGCTGCCAATGCCAGCCCTGCCCCATCTGCCAG
CTACTCGCTCCTCTCCAAACAACCTCCCTCGTGGGACAAAAGTGACAATTGTAGGCCAGGC
ACAGTGGCTCACGCCGTAAATCCCAGCAGCTTGGAGGCCAAGGGGGTGGATTACCTCCAT
CTGTTAGTAGAAATGGGCAAACCCATCTCTACTAAAAAATACAAGAATTAGCTGGCGTG
GTGGCGTGTGCTGTAATCCCAGCTATTGGGAGGCTGAGGAGGAGAATCGCTTGAGGCC
GGAAGCAGAGGTTGCACTGAACTGAGATAGTGATAGTGCCACTGCAATTGCCAG
ATAGAGAGACTCCATCTCAAAAAAA

FIGURE 55

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45415
<subunit 1 of 1, 215 aa, 1 stop
<MW: 24326, pI: 6.32, NX(S/T): 4
MHRDAWLPRPAFSLTGLSLFFSLVPPGRSMEVTVPATLNVLNGSDARLPCTFNSCYTVNHKQ
FSLNWTYQECNNCSEEMFLQFRMKIINLKLERFQDRVEFGNPSKYDVSVMLRNVQPEDEGI
YNCYIMNPDRHRGHGKIHQLQVLMEPPERDSTVAVIVGASVGGFLAVVILVLMVVKCVRRK
KEQKLSTDDLKTEEGKTDGEGNPDDGAK
```

Important features:

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 161-179

Immunoglobulin-like fold:

amino acids 83-127

N-glycosylation sites.

amino acids 42-45, 66-69 and 74-77

FIGURE 56

GTTGTATATGTCCTGAAGTACATCCGTGCATTTTTAGCATCCAACCATCCTCCCTTGTA
GTTCTCGCCCCCTCAAATCACCTCTCCCTAGCCCACCCNACTAACATCTCAGTCTTGAA
AATGCACAGAGATGCCTGGCTACCTCGCCCTGCCTCAGCCTCACGGGCTCAGTCTCTTT
TCTCTTGGTGCACCAGGACGGAGCATGGAGGTCCACAGTACCTGNCCACCCCTAACGTCC
TCAATGGCTCTGACGCCCGCCTGCCCTTCAACTCCTGCTACACAGTGAACCACAAAC
AGTTCTCCCTGAACTGGACTTACCAAGGAGTGCAACAAC TGCTCTGAGGAGATGTTCCCTCAG
TTCCGCATGAAGATCATTAACCTGAAGCTGGAGCGGTTCAAGACCGCGTGGAGTTCTCAGG
GAACCCCAGCAAGTACGATGTGTCGGTATGCTGAGAACGTGCAGCCGGAGGATGAGGGGA
TTTACAAC TGCTACATCATGAACCCCCC

FIGURE 57

TCACGGGGCTCATCTTTCTCTTGCTGCCACCAGGACGGAGCATGGAGGTNCACATA
CCTGCCACCCCTAACGTCTCAATGGCTTGACGCCCGCCTGCCCTGCACCTCAACTCCNG
CTACACAGTGAACCACAAACAGTTCTCCCTGAACCTGGATTACCAAGGAGTGCAACAACGGC
TCTGAGGAGATGTTCCCTCCAGTTCCCGATGGAAGATCATTAAACCTGAAAGCTGGAAGCGG
TTTCAAGAACCGCGTGGAAAGTTCTCAGGGAACCCCAGCAAGTACGATGTGTCGGTGATGC
TGAGAACGTGCAGCCGGAGGATGAGGGGATTACAAC TGCTACATCATGAACCCCCC

FIGURE 58

TGCGGCAGCGTCGTACACCATGGGCCTCCACCTCCGCCCTACCGTGTGGGCTGCTCCGGATGGCCTCTGT
TCCCTTGCTGCTGCTAATGCTGCTCGCGGACCCAGCGCTCCGCCGGACGTCAACCCCCAGTGGTGTGGTCC
CTGGTATTTGGTAACCAACTGGAAGCCAAGCTGGACAAGCCGACAGTGGTGCACACTACCTCTGCTCCAAGAAGA
CCGAAAGCTACTTCACAACTGGCTGAACCTGGAACGTGTGCTGCCGTGATCATTGACTGCTGGATTGACAATA
TCAGGCTGGTTACAACAAAACATCCAGGGCACCCAGTTCTGTATGGTGTGGATGTACGTGTCCCTGGCTTTG
GGAAGACCTTCACTGGAGTTCTGGACCCCAGCAAAAGCAGCGTGGGTTCCATTTCCACACCAGGGTGGAGA
GCCTTGTGGGTGGGCTACACACGGGTGAGGATGTCCGAGGGCTCCCTATGACTGGCCCGAGCCCCAAATG
AAAACGGGCCACTTCTGGCCCTCCCGAGATGATCGAGGAGATGTACAGCTGTATGGGGGCCCGTGGTGC
TGGTGGCCACAGTATGGCAACATGTACACGGCTCTACTTCTGCAAGCGGCAGGCCAGGGCTGGAAGGACAAGT
ATATCCGGGCTTCGTGCACTGGGTGCGCCCTGGGGGGCGTGGCCAAGACCTGCGCTCTGGCTTCAGGAG
ACAACAACCGATCCCAGTCATCGGCCCCCTGAAGATCCGGAGCAGCAGCGGTCACTGTCTCCACAGCTGGC
TGCTGCCCTACAACATACATGGTACCTGAGAAGGTGTTGTCAGACACCCACAATCAACTACACACTGCGGG
ACTACCGCAAGTTCTCAGGACATCGGCTTGAAGATGGCTGCTCATGCGGCAGGACACAGAAGGGCTGGTGG
AAGCCACGATGCCACCTGGCGTGCAGCTGACTGCCTCTATGGTACTGGCTCCCACACCAGACTCCTTCTACT
ATGAGAGCTCCCTGACCGTGAACCTAAAATCTGCTTGTGACGGCGATGGTACTGTGAACCTGAAGAGTGC
TGCAGTGCCAGGGCTGGCAGAGCCGCAGGAGCACCAAGTGTGCTGCAGGAGCTGCCAGGCAGCAGCACATCG
AGATGCTGGCAACGCCACCACCTGGCTATCTGAAACGTGCTCTGGGCTTGAAGGACACTGGCTTGTG
CTCTGTGGCTGGCCGTGGACCTGCTGTTGCCCTCTGGGCTGTCATGCCACCGCCTGGGCTTGAAGGATTTGTGA
CTCACCAATTCAAGGCCCGAGTCTTGGACTGTGAAAGCATCTGCCATGGGAAGTGCTTGTATCCTTCTCT
GTGGCAGTGAAGAAGGAAGAAATGAGAGTCTAGACTCAAGGGACACTGGATGCCAGAATGCTGCTGATGGTGA
ACTGCTGTGACCTTAGGACTGGCTTCAAGGGTGGACTGGCTGGCCCTGGTCCAGTCCCTGCTGGGCT
TGTCCCCCTATTCTGTGGCTTTCATACTTGCCTACTGGCCCTGGCCCCGAGCCTTCTATGAGGGATGTT
ACTGGCTGTGGTCTGTACCCAGGGTCCAGGGATCGGCTCTGGCCCTGGGTGACCTTCCACACACCA
GCCACAGATAGGCCCTGCACACTGGTACGGTAGCTAGAGCTGCTGCCCTGGTGGCTTAGCTGGTGGCCAGCC
TGACTGGCTTCTGGCGAGCCTAGTACTGCTGCCAGGGCAGTTGTTGCTGCTGGTCTCG
CCTGGACATCTCACTCCACTCTAACCTCCCTACCCAGGAGCATTCAAGCTCTGGATGGCAGAGATGTG
CCCCCAGTCCCGCAGGCTGTGTTCCAGGGCCCTGATTCTCGGATGTGCTATTGGCCCCAGGACTGAAGCTGC
CTCCCTTCACCCCTGGGACTGTGGTCCAAGGATGAGAGCAGGGGTTGGAGCCATGCCCTCTGGGAACCTATGGA
GAAAGGAATCAAGGAAGCAGCCAAGGCTGCTCGCAGCTCCCTGAGCTGCACCTTGTAAACCCACCATCA
CACTGCCACCCCTGCCCTAGGGTCTACTAGTACCAAGTGGTCAGCACAGGGCTGAGGATGGGCTCTATCCAC
CCTGGCCAGCACCCAGCTAGTGTGGACTAGCCCAGAAACTTGAATGGGACCTGAGAGAGCCAGGGTCCCC
TGAGGGCCCCCTAGGGCTTCTGTCTGCCCTAGGGTGTCCATGGATCTCCCTGTGGCAGCAGGATGGAGAGT
CAGGGCTGCCCTCATGGCAGTAGGCTAAGTGGGTGACTGGCCACAGGCCAGAAAAGGGTACAGCTCTAGGT
GGGGTTCCCAAAGACGCCTTCAGGCTGGACTGAGCTGCTCTCCACAGGGTTCTGTGCAGCTGGATTTCCTCTG
TTGCATACATGCCCTGGCATCTGTCTCCCCTTGTGAGTGGCCCCACATGGGCTCTGAGCAGGCTGTATCTG
GATTCTGGCAATAAAAGTACTCTGGATGCTGAAAAAAAAAAAAAA

FIGURE 59

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44189
><subunit 1 of 1, 412 aa, 1 stop
><MW: 46658, pI: 6.65, NX(S/T) : 4
MGLHLRPYRVGLLPDGLLFLLLLMLLADPALPAGRHPPVVLVPGDLGNQLEAKLDKPTVVH
YLCSKKTESYFTIWLNLLELLPVIIDCWIDNIRLVYNKTSRATQFPDGVDVRVPGFGKTFSL
EFLDPSKSSVGSYFHTMVESLVGWGYTRGEDVRGAPYDWRRAPNENGPYFLALREMIEEMYQ
LYGGPVVLVAHSMGNMYTLYFLQRQPQAWKDKYIRAFVSLGAPWGGVAKTLRVLASGDNNRI
PVIGPLKIREQQRSAVSTSLLPYNTWSPEKVFVQTPTINYTLRDYRKFFQDIGFEDGWLM
RQDTEGLVEATMPPGVQLHCLYGTGVPTPDSFYYESFPDRDPKICFGDGDGTVNLKSALQCQ
AWQSRQEHQVLLQELPGSEHIEMLANATTLAYLKRVLLGP

Important features:

Signal peptide:

amino acids 1-28

Potential lipid substrate binding site:

amino acids 147-164

N-glycosylation sites.

amino acids 99-102, 273-276, 289-292 and 398-401

Lipases, serine proteins

amino acids 189-201

Beta-transducin family Trp-Asp repeat

amino acids 353-365

FIGURE 60

CGGACGCGTGGCGGACGCGTGGGCAGCAGCGGGCGGCGACGGCGACATGGAGAGCGGG
GCCTACGGCGCGCCAAGGCAGGGCGGCTCCTCGACCTGCAGCGCTTCCTGACGCAGCCGCA
GGTGGTGGCGCGCGCCGTGTGCTTGGTCTTCGCTTGATCGTGTCTCCTGCATCTATGGTG
AGGGCTACAGCAATGCCAACGAGTCTAAGCAGATGTACTGCGTGTCAACCGAACGAGGAT
GCCTGCCGCTATGGCAGTGCCATCGGGGTGCTGGCCTTCCTGGCCTCGGCCTTCTTGGT
GGTCGACGCGTATTCCCCCAGATCAGCAACGCCACTGACCGCAAGTACCTGGTCATTGGTG
ACCTGCTCTCTCAGCTCTGGACCTTCCTGTGGTTGGTTCTGCTTCCTCACCAAC
CAGTGGGCAGTCACCAACCCGAAGGACGTGCTGGTGGGGCGACTCTGTGAGGGCAGCCAT
CACCTTCAGCTTCTTCCATCTCCTGGGGTGTGCTGGCCTCCCTGGCCTACCAGCGCT
ACAAGGCTGGCGTGGACGACTTCATCCAGAATTACGTTGACCCCACCCGGACCCAAACACT
GCCTACGCCTCCTACCCAGGTGCATCTGTGGACAACCTACCAACAGCCACCCCTCACCAAGAA
CGGGGAGACCACCGAGGGCTACAGCCGCCCCCTGTGTACTGAGTGGCGGTTAGCGTGGAA
GGGGGACAGAGAGGGCCCTCCCTCTGCCCTGGACTTCCATCAGCCTCTGGAACTGCCA
GCCCTCTCTTCACCTGTTCCATCCTGTGCAGCTGACACACAGCTAAGGAGCCTCATAGCC
TGGCGGGGGCTGGCAGGCCACACCCCAAGTGCCTGTGCCAGAGGGCTCAGTCAGCCGCT
CACTCCTCCAGGGCACTTTAGGAAAGGGTTTAGCTAGTGTCTCGCTTTAATGA
CCTCAGCCCCGCCTGCAGTGGCTAGAACGCCAGCAGGTGCCATGTGCTACTGACAAGTGCCT
CAGCTTCCCCCGGCCGGTCAGGCCGTGGAGCCGCTATTATCGCTCTGCCAAAG
ACTCGTGGGGGCCATCACACCTGCCCTGTGCAGCGGAGCCGGACCAGGCTTGTGCTCCTCA
CTCAGGTTGCTCCCTGTGCCACTGCTGTATGATCTGGGGGCCACCACCCCTGTGCCGGT
GGCCTCTGGGCTGCCCTCCGTGGTGTGAGGGCGGGCTGGTGTCTAGGCACCTCCCTTG
CTCCCACCCCTGGCAGCAGGGAAAGGGCTTGCCGTACAACACCCAGCTTATGTAATATT
TGCAGTTGTTACTTAGGAAGCCTGGGAGGGCAGGGTCCCCATGGCTCCAGACTCTGTC
TGTGCCGAGTGTATTATAAAATCGTGGGGAGATGCCGGCTGGATGCTGTTGGAGACG
GAATAAATGTTCTCATTCAAAG

FIGURE 61

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48304
<subunit 1 of 1, 224 aa, 1 stop
<MW: 24810, pI: 4.75, NX(S/T): 1
MESGAYGAAKAGGSFDLRRFLTQPQVVARAVCLVFALIVFSCIYGEGLSNAHESKQMYCVFN
RNEDACRYGSAIGVLAFLASAFFLVVDAYFPQISNATDRKYLVIDLLFSALWTFLWFVGFC
FLTNQWAVTNPKDVLVGADSVRAAITFSFFSIFSWGVLASLAYQRYKAGVDDFIQNYVDPTP
DPNTAYASYPGASVDNYQQPPFTQNAETTEGYQPPPVY
```

Important features:

Type II Transmembrane domain:

amino acids 1-45

Other transmembrane domains:

amino acids 74-90, 108-126 and 145-161

N-glycosylation site.

amino acids 97-100

FIGURE 62

GAGCCACCTACCCTGCTCCGAGGCCAGGCCTGCAGGGCTCATCGGCCAGGGTGTCACTGAGCAGAAGG**ATG**
CCCGTGGCCGAGGCCCCAGGTGGCTGGCGGGCAGGGGACGGAGGTGATGGGAGGAAGCGGAGCCAGAGGGG
ATGTTCAAGGCCTGTGAGGACTCCAAGAGAAAAGCCGGGCTACCTCCGCCTGGTGCCTCTGTTGTGCTGCTG
GCCCTGCTCGTGCCTGGCTCGCGGGGGTGCTACTCTGGTATTCTTAGGGTACAAGGCGGAGGTGATGGTCAGC
CAGGTGACTCAGGCAGTCTGCGTGTACTCAATGCCACTTCTCCAGGATCTTACCCGCCGGAACTAGTGCCT
TTCCGCAGTCAAACGCCAAAGCCCAGAAGATGCTCAAGGAGCTCATCACAGCACCCGCCGGAACTTACTAC
AACTCCAGCTCCGTCTATTCCCTTGGGGAGGGACCCCTCACCTGCTCTCTGGTCAATTCTCAAATCCCCGAG
CACCGCCGGCTGATGCTGAGCCCCGAGGTGGTGCAGGCACTGCTGGTGGAGGAGCTGCTGTCACAGTCAACAGC
TCGGCTGCCGTCCCCTACAGGGCCAGTACGAAGTGGACCCCGAGGCCTAGTGTATGCCAGGAGCCAGTGTGAAA
GACATAGCTGATTGAATTCCACGCTGGGTTGTTACCGCTACAGCTACGTGGGCAGGGCCAGGTCTCCGGCTG
AAGGGCCTGACCACCTGGCCTCCAGCTGCCTGTGGCACCTGCAGGGCCCAAGGACCTCATGCTCAAACCTCCGG
CTGGAGTGGACGCTGGCAGAGTGGCCGGACCGACTGGCATGTATGACGTGGCCGGGCCCTGGAGAACAGGCTC
ATCACCTGGTGTACGGCTGCAGGCCAGGAGCCCGTGGAGGTCTGGCGTCGGGGCCATCATGGCGGTC
GTCTGGAAGAAGGCCCTGCAAGCTACTACGACCCCTTCGTGCTCTCGTGCAGCCGGTGGCTTCCAGGCCTGT
GAAGTGAACCTGACGCTGGACAACAGGCTGACTCCAGGGCTCCTCAGCACCCCGTACTTCCCAAGCTACTAC
TCGCCCCAAACCCACTGCTCCTGGCACCTCACGGTGCCTCTCTGGACTACGGCTTGGCCCTCTGGTTGATGCC
TATGCACTGAGGAGGGAGAAGTATGATTGCGCTGCACCCAGGGCAGTGGACGATCCAGAACAGGAGGCTGTG
GGCTGCGCATCTGCAGCCCTACGCCAGAGGATCCCGTGGTGGCCACGGCCGGGATCACCATCAACTTCACC
TCCAGATCTCCCTCACCGGGCCGGTGTGCGGGTGCACTATGGCTGTACAAACCAGTCGGACCCCTGCCCTGG
GAGTTCTCTGTTCTGTGAATGGACTCTGTGCTCTGCTGTGATGGGTCAAGGACTGCCCAACGGCCTGGAT
GAGAGAAACTGCGTTGCAAGGCCACATTCACTGCAAAAGAGGACAGCACATGCATCTCACTGCCAAGGTCTGT
GATGGCAGCCTGATTGCTCAACGGCAGCGATGAAGAGCAGTGCAGGAAGGGTGCCATGTGGACATTCA
TTCCAGTGTGAGGACCGGAGCTGCGTAAGAACCCGAGTGTGATGGCGGCCAGTCAGGGACGGC
TCGGATGAGGAGGACTGTGACTGTGGCCTCCAGGGCCCTCCAGGGCATTGTTGGTGGAGCTGTGCTCCGAG
GGTAGTGGCCATGGCAGGCCAGCCTCCAGGTGCGACACATCTGTGGGGGGGCCCTCATGCTGACCGC
TGGGTGATAACAGCTGCCACTGCTCCAGGAGGACAGCATGGCTCCACGGTGTGTTGGACCGTGTCCGG
AAGGTGTCAGAACTCGCGCTGGCCTGGAGAGGTGTCCTCAAGGTGAGGCCCTGCTCTGCACCCGTACCA
GAAGAGGACAGCCATGACTACGACGTGGCGCTGCTGCAGCTCGACCACCCGGTGGTGCCTGGCCGCGTGC
CCCGTCTGCCTGCCCGCGCTCCACTTCTCGAGGCCGCTGCACTGCTGGATTACGGCTGGGGCGCCTTG
CGCGAGGGCGGCCCATCAGCAACGCTCTGCAGAAAGTGGATGTCAGTTGATCCACAGGACCTGTGCAGCGAG
GCCTATCGCTACCAGGTGACGCCAGCATGCTGTGCGCTACCGCAAGGGCAAGAAGGATGCCTGTCAGGGT
GACTCAGGTGGTCCGCTGGTGTGCAAGGCACTCAGTGGCGCTGGTCTGGCGGGCTGGTCAAGACGTCCCC
GGCTGTGGCCGGCTAACTACTTGGCGTCTACACCCGCATCACAGGTGTGATCAGCTGGATCCAGCAAGTGGT
ACCT**GA**GGAAACTGCCCTGCAAAGCAGGGCCACCTCTGGACTCAGAGAGGCCAGGGCAACTGCCAAGCAGG
GGGACAAGTATTCTGGCGGGGGTGGGGAGAGAGCAGGCCCTGTGGTGGCAGGGAGGTGGCATCTTGCTCGTCC
CTGATGTCGCTCCAGTGATGGCAGGAGGATGGAGAAGTGCAGCAGCTGGGGGCTGGTCAAGACGTCCCC
CAGGCCACACCCAGCCCTCTGCCTCCAAATTCTCTCTCCGCTCCCTCCACTGCTGCCATAATGCAAG
GCAGTGGCTCAGCAGCAAGAATGCTGGTCTACATCCCGAGGAGTGTCTGAGGTGGCCCAACTCTGTACAGAGG
CTGTTGGGAGGCTTGCCTCCAGAGAGCAGATTCCAGCTGGAGGCCCTGGTCAACTTGGGATCTGGGAAAT
GGAAGGTGCTCCATCGGAGGGACCCCTAGAGCCCTGGAGACTGCGAGGTGGCCTGCTGCCACTGTAAGCAA
AAGGTGGGGAGTCCCTGACTCCAGGGTCCCTGGCCACCCCTGCCCTGGAGGCCCTCACAGCCCAGACCC
CACTGGGAGGTGAGCTCAGCTGCCCTTGGATAAAGCTGCTGATaaaaaaaaaaaaaaaaaaaaaaa

FIGURE 63

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49152
><subunit 1 of 1, 802 aa, 1 stop
><MW: 88846, pI: 6.41, NX(S/T): 7
MPVAEAPQVAGGQGDGGDGEAEPEGMFKACEDSKRKARGYLRLVPLFVLLALLVLASAGVL
LWYFLGYKAEVMVSQVYSGSLRVLNRHFSQDLTRRESSAFRSETAKAQKMLKELITSTRLGT
YYNSSSVYSFGEGLTCFFWFILQIPEHRRMLSPPEVVQALLVEELLSTVNSSAAVPYRAEY
EVDPEGLVILEASVKDIAALNSTLGCYRSYVGQGVRLKGPDHLASSCLWHLQGPKDML
KLRLLEWTLAECRDRLLAMYDVAGPLEKRLITSVYGCSRQEPPVVEVLAGAIMAVVWKGLHSY
YDPFVLSVQPVVFQACEVNLTLDNRLDSQGVLSTPYFPSPYSPQTHCSWHLTVPSLDYGLAL
WFDAYALRRQKYDLPCTQGQWTIQNRRLCGLRILQPYAERIPVVAATAGITINFTSQISLTGP
GVRVHYGLYNQSDPCPGEFLCSVNGLCVPACDGVKDCPNGLDERNCVCRATFQCKEDSTCIS
LPKVCDGQPDCNLNGSDEEQCQEGVPCGTFTQCEDRSCVKKPNPQCDGRPDCRDGSDEEHCD
CGLQGPSSRIVGGAVSSEGEWPWQASLQVGRGRHICGGALIADRWTAAHCFQEDSMASTVL
WTVFLGKVWQNSRWPGEVSKVSRLLLHPYHEEDSHDYDVALLQLDHPVVRSAAVRPVCLPA
RSHFFEPGLHCWITGWGALREGGPISNALQKVDVQLIPQDLCSEAYRYQVTPRMLCAGYRKG
KKDACQGDGGGPLVCKALSGRWFLAGLVSWGLGCGRPNYFGVYTRITGVISWIQQVVT
```

Important features:

Type II transmembrane domain:

amino acids 46-67

Serine proteases, trypsin family, histidine active site.

amino acids 604-609

N-glycosylation sites.

amino acids 127-130, 175-178, 207-210, 329-332, 424-427, 444-447
and 509-512

Kringle domains.

amino acids 746-758 and 592-609

Homologous region to Kallikrein Light Chain:

amino acids 568-779

Homologous region to Low-density lipoprotein receptor:

amino acids 451-567

FIGURE 64

GCACCCAGGCCAGTGGACGATCCAGAACAGGAGGCTGTGTGGCTTGCACATCCTGCAGCCC
TACGCCGAGAGGATCCCCGTGGTGGCACGGCCGGGATCACCATCAACTCACCTCCAGAT
CTCCCTCACCGGGCCCGGTGCGGGTGCACATGGCTTGACAACCAGTCGGACCCCTGCC
CTGGAGAGTTCCCTCTGTTCTGTGAATGGACTCTGTGTCCCTGCCTGTGATGGGTCAAGGAC
TGCCCCAACGGCCTGGATGAGAGAAACTGCCTTGCAGAGCCACATTCCAGTGCAGGAAAGAGGA
CAGCACATGCATCTCACTGCCAAGGTCTGTGATGGCAGCCTGATTGTCTAACGGCAGCG
ATGAAGAGCAGTGCCAGGAAGGGTGCCATGTGGACATTCACCTCCAGTGTGAGGACCGG
AGCTGCGTAAGAACGCCAACCGCAGTGTGATGGCGGCCGACTGCAGGGACGGCTCGGA
TGAGGAGCACTGTGACTGTGGCCTCCAGGGCCCTCCAGCCGCATTGTTGGAGCTGTGT
CCTCCGAGGGTGAGTGGCCATGGCAGGCCAGCCTCCAGGTTGGTCGACACATCTGTGG
GGGCCCTCATCGCTGACCGCTGGTGATAACAGCTGCCACTGCTTCCAGGAGGACAGCAT
GGCCTCCACGGTGCTGTGGACCGTGTCCCTGGCAAGGTGTGGCAGAACTCGCCTGGCCTG
GAGAGGTGTCTTCAGGTGAGCCGCTGCTGCAGCTCGACCACCCGGTGGCGCTGGCCCGTGC
GAACGACGTGGCGCTGCTGCAGCTCGACCACCCGGTGGCGCTGGCCCGTGC
CGTCTGCCTGCCCGCGCTCCACTTCTGAGCCCGCCTGCACTGCTGGATTACGGCT
GGGCGCCTGCGCGAGGGCGCCCATCAGCAACGCTCTGCAGAAAAGTGGATGTGCAGTTG
ATCCCACAGGACCTGTGCAGCGAGGCCTATCGCTACCAGGTGACGCCACGCATGCTGTG
CGGCTACCGCAAGGGCAAGAAGGATGCCTGTCAGGGTACTCAGGTGGTCCGCTGGTGTG
AGGCACTCAGTGGCCGCTGGTCTGGCGGGGCTGGTCAGCTGGGCGCTGGCTGGCCGG
CCTAACTACTTCGGCGTCTACACCCGCATCACAGGTGTGATCAGCTGGATCCAGCAAGTGG
GACCTGAGGAAC TGCCCCCTGCAAAGCAGGGCCCACCTCCTGGACTCAGAGAGCCAGGGC
AACTGCCAAGCAGGGGACAAGTAT

FIGURE 65

GGACGAGGCAGATCTCGTTCTGGGCAGCCGTTGACACTCGCTCCCTGCCACCGCCCCGGG
CTCCGTGCCAAGTTTCATTTCACCTCTGCCTCCAGTCCCCCAGCCCCCTGGCCG
AGAGAAGGGTCTTACCGGCCGGATTGCTGGAAACACCAAGAGGTGGTTTGTTTAAA
ACTTCTGTTCTGGGAGGGGGTGTGGCGGGCAGGATGAGCAACTCCGTTCTGCTCTG
TTTCTGGAGCCTCTGCTATTGCTTGCTGCCGGAGCCCCGTACCTTGGTCCAGAGGGAC
GGCTGGAAGATAAGCTCCACAAACCAAAGCTACACAGACTGAGGTCAAACCATCTGTGAGG
TTAACCTCCGCACCTCCAAGGACCCAGAGCATGAAGGATGCTACCTCTCCGTCGCCACAG
CCAGCCCTAGAAGACTGCAGTTCAACATGACAGCTAAAACCTTTCATCATTACGGAT
GGACGATGAGCGGTATCTTGAAACTGGCTGCACAAACTCGTGTCAAGCCCTGCACACAAGA
GAGAAAGACGCCAATGTAGTTGTGGTTGACTGGCTCCCCCTGGCCACCAGCTTACACGGA
TGCGGTCAATAATACCAGGGTGGTGGACACAGCATTGCCAGGATGCTGACTGGCTGCAGG
AGAAGGACGATTTCTCTCGGAATGTCCACTTGATGGCTACAGCCTCGGAGCGCACGTG
GCCGGGTATGCAGGCAACTCGTGAAGGAACGGTGGCCGAATCACAGGTTGGATCCTGC
CGGGCCCATGTTGAAGGGGCCGACATCCACAAGAGGCTCTCCGGACGATGCAGATTTG
TGGATGTCCACACCTACACGCGTTCTCGGCTTGAGCATTGGTATTAGATGCCTGTG
GGCCACATTGACATCTACCCAAATGGGGTGACTTCCAGCCAGGCTGTGGACTAACGATGT
CTTGGGATCAATTGCATATGGAACAATCACAGAGGTGGTAAATGTGAGGATGAGCGAGCCG
TCCACCTTTGTTGACTCTCTGGTAATCAGGACAAGCCGAGTTGCCTCCAGTGCACT
GACTCCAATCGTTCAAAAGGGATCTGTCTGAGCTGCCAAGAACCGTTGTAATAGCAT
TGGCTACAATGCCAAGAAAATGAGGAACAAGAGGAACAGCAAATGTACCTAAAAACCGGG
CAGGCATGCCCTTCAGAGGTAACCTCAGTCCCTGGAGTGTCCCTGAGGAAGGCCCTTAATA
CCTCCTTCTTAATACCATGCTGCAGAGCAGGGCACATCCTAGCCCAGGAGAAGTGGCCAGCA
CAATCCAATCAAATCGTTGCAAATCAGATTACACTGTGCATGTCTTAGGAAAGGAAATCTT
ACAAAATAAACAGTGTGGACCCCTAATAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA

FIGURE 66

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49646
><subunit 1 of 1, 354 aa, 1 stop
><MW: 39362, pI: 8.35, NX(S/T): 2
MSNSVPLLCFWSLCYCFAAGSPVPFGPEGRLEDKLHKPKATQTEVKPSVRFLRTSKDPEHE
GCYLSVGHSQPLEDCSFNMTAKTFFIIHGWTMSGIFENWLHKLVSALHTREKDANVVVDWL
PLAHQLYTDAVNNTRVVGHSIARMLDWLQEKKDDFSLGNVHLIGYSLGAHVAGYAGNFVKGT
GRITGLDPAGPMFEGADIHKRLSPDDADFVDVLHTYTRSGFLSIGIQMPVGHIDYPNGGDF
QPGCGLNDVLGSIAYGTITEVVKCEHERAVHLFVDSLNVQDKPSFAFQCTDSNRFKKGICL
CRKNRCNSIGYNAAKKMRNKRNSKMYLKTRAGMPFRGNLQSLECP
```

Important features:

Signal peptide:

amino acids 1-16

Lipases, serine active site.

amino acids 163-172

N-glycosylation sites.

amino acids 80-83 and 136-139

FIGURE 67

CGGACGCGTGGCGGACCGTGGGCCTGGCAAGGGCGGGCGCCGGCGAGCCACCTTCCCCCTCCCCCGC
TTCCCTGTGCGCTCCGCTGGCTGGACCGCCTGGAGGAGTGGAGCAGCACCCGCCGGCCCTGGGGCTGACAGT
CGGAAAGTTGGCCGAAGAGGAAGTGGCTCAAACCCGGCAGGTGGGACCCAGGGCCAGACCAGGGCGCTCG
CTGCCTGCGGGCGGGCTGTAGGCGAGGGCGCCCCAGTGCGAGACCCGGGCTTCAGGAGCCGGCCCCGGAG
AGAAGAGTGGCGGGCGACGGAGAAAACAACCTCAAAGTTGGCAGAAGGCACCGCCCTACTCCCAGGGCTGCC
CCGCCTCCCCGGCCCGAGCCCTGGCATCCAGACTACGGGTCGAGCCGGGCGATGGAGCCCCCTGGGAGGCC
CACCAGGGAGGCTGGGCGCCGGGCTCCGCCCGACCCATGGGTAGACCAAGAAGCTCCGGGACCCCTCC
GCACCTCTGGACAGCCAGGATGCTTGGCACCCCTCCCTCCCTGGAGGCCTGGCCATCCAG
ACCGGATTATTTCAAATCATGCTGTGAGGACCCCCCAGCAGTGCTTAAAGTGCAGGGCACCTACAGA
GGCCCTGGTCCGGGACAGCGCACCTCCCTGCCAACCTGCACCTGGCTCATCCTGGCAGCAAGGAACAGACTG
TCACCATCAGGTTCCAGAAGCTACACCTGGCTGTGGCTCAGAGCCTTAACCCCTACGCTCCCTCCAGGCC
TGATCTCCCTGTGTGAGGCACCTCCAGCCCTTGCAAGCTGCCGGGGCAACGTACCATCACTACAGCTATG
CTGGGCCAGAGCACCCATGGCCAGGGCTTCTGCTCCCTACAGCCAAGATTGGCTATGTGCCCTGCAGGAAG
AGTTTCAGTGCCTGAACCACCGCTGTATCTGCTGTCCAGCCTGTGATGGGTTGATGCCCTGTGGCAGTGGCT
CTGATGAAGCAGGTTGCAGCTCAGACCCCTTCCCTGGCTGACCCCAAGACCCGCTCCCTGCCCTGCAATG
TCACCTTGGAGGACTTCATGGGTCTTCTCTCTGGATATAACACACCTAGCCTCAGTCTCCCACCCCCAGT
CCTGCCATTGGCTGCTGGACCCCCATGATGGCCGGCGCTGGCGTGCCTCACAGCCCTGGACTTGGGCTTTG
GAGATGCAAGGCTGACTGTGAGACACTGCTGGCAGGCTGTGCTTACACACAGTGGCTTAGTCTCACCCACTTCA
GCAATGGCAAGGCTGACTGTGAGGAGACACTGCTGGCAGGCTGTGCTTACACACAGTGGCTTAGGAGCA
ATGGTCGTGGCTCAATGCCACCTACATGTGCGGGCTATTGCTTGGCTTGGGACAGACCCCTGTGGCTTAGGCT
CTGGCCTGGGAGCTGGCGAAGGCCCTAGGTGAGGCGCTACAGTGAGGACAGCGCTGTGACGGCTATGGGACT
GTGCTGACGGCACAGATGAGGAGACTGCCAGGCTGCCCACCTGGACACTTCCCTGTGGGCTGTGGCACCT
CTGGTGCCACAGCTGCTACCTGCTGACCGCTGCAACTACAGACTTTCTGTGCTGATGGAGCAGATGAGA
GAGCTGTCGGCATTGCCAGGCTGGCAATTCCGATGCCGGGACGAGAAGTGGCTGTGAGACGTGGGTGCG
ATGGGAGCCAGACTGTGCGGACGGCAGTGATGAGTGGACTGCTCTATGTTCTGCCCGCAAGGTCAATTACAG
CTGAGTCATTGGCAGCTAGTGTGCGGCTGCTCTGGTCATGCCCTGGGCTGCACCTGCAAGCTCTATGCCA
TTCGCACCCAGGAGTACAGCATCTTGCCCCCCTCTCCCGATGGAGGCTGAGATTGTGCAAGCAGGCAACCC
CTTCCTACGGCAGCTCATTGCCAGGCTGCCATCCCACCTGTAGAAGACTTCTACAGAGAACTCTAATGATA
ACTCAGTGTGGCAACCTGCGTTCTGCTACAGATCTACGCCAGGATATGACTCCAGGAGGTGGCCAGGTG
CCGCCGTCGTGAGGCCCTGGTACGCCCTGCCGCTGGGCTTGCTCCCTGAA
CCAACACCCGGCTCGGCCCTGAGGCCAGATCCAGGTCACACCTCTGCTGCTCCCTGAGGCCCTAGATG
GTGGCACAGGCTCAGCCGTGAGGCCGGGAGTGGGTGGCAAGATGGGAGCAGGCCACCCACTGCCATCA
AGGCTCCCTCCCATCTGCTAGCACGTCTCCAGCCCCACTACTGTCCTGAAGGCCAGGGCCACTGCCCTCAC
TGCCCTAGAGCCATCACTATTGCTGGAGTGGTGCAGGCCCTGCCAGGCCGCTGGCCAGGCCCTGGGGCC
CAGGACCAACCCGGAGGCCCTGAGGCCACACAGCAGTCCTGGCCCTGGAAGATGAGGACGATGTGCTACTGG
TGCACTGGCTGAGGCCGGGAGTGGTAGCTGAGGCCAGGAGTGGCCACTGCTTACCTTGAGGGACCTGGGG
CTCTACTGAGGCCCTCTCCCTGGGGCTCTACTCATAGTGGCACAAACCTTTAGAGGTGGGTAGCCTCCCTC
ACCAACTTCCCTCCCTGGATTTCAGGGACTTGGTGGGCCCTCCGGTTGACCCCTATGTAGCTGCTATAAAGT
TAAGTGTCCCTCAGGCAGGGAGAGGGCTCACAGACTCCTCTGTACGTGGCCATGGCCAGACACCCAGTCC
TCACCAACCATGCTCCCAACGCCACCATTTGGGTGGCTGTTTAAAGTAAAGTCTTAGAGGATCATA
GGTCTGGACACTCCATCCTGCCAACCTCACCCAAAAGTGGCCTTAAGCACCAGGAATGCCAATTAACTAGAGA
CCCTCCAGCCCCAAGGGAGGATTGGCAGAACCTGAGGTTTGGCATCCACAATCCCTACAGGGCTGG
CTCACAAAAAGAGTGCAACAAATGCTTCTATTCCATAGCTACGGCATTGCTAGTAAGTTGAGGTAAAAATAAA
GGAATCATACTCTC

FIGURE 68

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49631
<subunit 1 of 1, 713 aa, 1 stop
<MW: 76193, pI: 5.42, NX(S/T): 4
MLLATLLLLLGGALAHPDRIIFPNHACEDPPAVLLEVQGTLQRPLVRDSRTSPANCTWLIL
GSKEQTVTIRFQKLHLACGSERLTLRSPLQPLISLCEAPPSPQLPGGNVTITYSYAGARAP
MGQGFLLSYSQDWLMCLQEEFQCLNHRCVSAVQRCGVDAACGDGSDEAGCSSDPFPGLTPRP
VPSLPCNVTLEDFYGVFSSPGYTHLASVSHPQSCHWLLDPHDGRRLAVRFTALDLGFGDAVH
VYDGPgpPESSRLLRSLTHFSNGKAVTVETLSGQAVVSYHTVAWSNGRGFNATYHVRGYCLP
WDRPCGLGSGLGAGEGLGERCYSEAQRCDGSWDCADGTDEEDCPGCPPGHFPCGAAGTSGAT
ACYLPADRCNYQTFCADGADERRCRHCQPGNFRCRDEKCVYETWVCDGQPDCAAGSDEWDGS
YVLPRKVITAAVIGSLVCGLLVIALGCTCKLYAIRTQEYSIFAPLSRMEAEIVQQQAPPSY
GQLIAQGAIAPPVEDFTPENPNDNSVLDNLRSLLQILRQDMTPGGPGARRQRGRILMRRLLVR
RLRRWGLLPRTNTPARASEARSQVTPSAAPLEALDGGTGPAREGGAVGGQDGGEQAPPLPIKA
PLPSASTSPAPTTVPEAPGPLPSLPLEPSLLSGVVQALRGRLPSLGPPGptrsppgptav
LALEDEDVLLVPLAEPGVWVAEAEDEPLLT
```

Important features:

Signal peptide:

amino acids 1-16

Transmembrane domain:

amino acids 442-462

LDL-receptor class A (LDLRA) domain proteins

amino acids 411-431, 152-171, 331-350 and 374-393

FIGURE 69

CGAGCTGGCGAGAAGTAGGGGAGGGCGGTGCTCCGCCGCGTGGCGGTGCTATCGCTTCG
CAGAACCTACTCAGGCAGCCAGCTGAGAAGAGTTGAGGGAAAGTGCTGCTGGGTCTGCA
GACGCGATGGAATAACGTGCAGCCGAAAATAAAACATCGCCCCTCTGCTTCAGTGTGAAAGG
CCACGTGAAGATGCTGCGGCTGGCACTAACTGTGACATCTATGACCTTTTATCATGCAC
AAGCCCCTGAACCATAATTGTTATCACTGGATTGAAGTCACCGTTATCTTATTTTCATA
CTTTTATATGTACTCAGACTTGATCGATTAATGAAGTGGTTATTTGGCCTTGCTTGATAT
TATCAACTCACTGGTAACAACAGTATTCA TGCTCATCGTATCTGTGTTGGCACTGATACCAG
AAACCACAAACATTGACAGTTGGTGGAGGGGTGTTGCAC TTGTGACAGCAGTATGCTGTCTT
GCCGACGGGCCCTTATTTACCGGAAGCTTCTGTTCAATCCCAGCGGTCTTACCAAGAAAAAA
GCCTGTGCATGAAAAAAAAGAAGTTTGTATTTATATTACTTTAGTTGATAACTAAGT
ATTAACATATTCTGTATTCTTCAAAAAAAAAAAAAAAA

FIGURE 70

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49645
><subunit 1 of 1, 152 aa, 1 stop
><MW: 17170, pI: 9.62, NX(S/T): 1
MDNVQPKIKHRPFCFSVKGHVKMLRLALTTSMTFFIIAQAPEPYIVITGFEVTVILFFILL
YVLRLDRLMKWLFWPPLLDIINSLVTTVFMLIVSVLALIPETTTLTVGGGVFALVTAVCCLAD
GALIYRKLLFNPSGPYQKKPVHEKKEVL
```

Important features:

Potential type II transmembrane domain:

amino acids 26-42

Other potential transmembrane domain:

amino acids 44-65, 81-101 and 109-129

Leucine zipper pattern

amino acids 78-99 and 85-106

N-myristoylation site.

amino acids 110-115

Ribonucleotide reductase large subunit protein

amino acids 116-127

FIGURE 71

GGCGAGAAGTAGGGAGGGCGTGTCCGCCGCGGTGGCGGTGCTATCGTTTGACAGAAC
TACTCAGGCAGCCAGNTGAGAAGAGTTGAGGGAAAGTGCTGCTGGGTCTGCAGACGCGA
TGGATAACGTGCAGCCGAAAATAAAACATGCCCTCTGCTTCAGTGTGAAAGGCCACGTG
AAGATGCTGCGGCTGGCACTAACTGNGACATCTATGACCTTTTATNATCGCACAAGCCCC
TGAACCATAATTGTTATCACTGGATTGAAGTCACCGTTATCTTATTTTCTACATTTTAT
ATGTACTCAGACTTGATCGATTAATGAAGTGGTTATTTGGCCTTGCTGATATTATCAAC
TCACTGGTAACAACAGTATTGCTCATCGTATCTGTGTTGGCACTGATACCAGAAACCAC
AACATTGACAGTTGGTGGAGGGGTGTTGCACTTGTGACAGCAGTATGCTGTNTGCCGAC

FIGURE 72

CAGCCCCGCGCGCCGGCGAGTCGCTGAGCCGGCTGCCGGACGGGACGGGACCGGCTAGG
CTGGGCGC~~CCCCCCC~~GGGCCGTGGCATGGCGACTGGCCGGCTGCTGCTGC
CTCTGCTGGCCCAGTGGCTCCTGCGCCGCCGGAGCTGGCCCCGCGCCCTCACGCTG
CCCCTCCGGGTGGCCGCCACGAACCACGTAGTTGCGCCCACCCGGACCCGGACCCC
TGCCGAGGCCACGCCGACGGCTTGGCGCTGCCCTGGAGCCTGCCCTGGCGTCCCCGG
GCGCCGCCAACCTCTTGGCCATGGTAGACAACCTGCAGGGGACTCTGGCCGGCTACTAC
CTGGAGATGCTGATCGGGACCCCCCGCAGAAGCTACAGATTCTCGTTGACACTGGAAGCAG
TAACCTTGCCGTGGCAGGAACCCGCACTCCTACATAGACACGTACTTGACACAGAGAGGT
CTAGCACATACCGCTCCAAGGGCTTGACGTACAGTGAAGTACACACAAGGAAGCTGGACG
GGCTTCGTTGGGAAGACCTCGTCACCACCCAAAGGCTCAATACTTCTTCTGTCAA
CATTGCCACTATTTGAATCAGAGAATTCTTTGCCTGGATTAAATGGAATGGAATAC
TTGGCCTAGCTTATGCCACACTGCCAAGCCATCAAGTTCTCTGGAGACCTTCTCGACTCC
CTGGTACACAAGCAAACATCCCAACGTTCTCCATGCAGATGTGTGGAGCCGGCTGCC
CGTTGCTGGATCTGGACCAACGGAGGTAGTCTTGTCTGGGTGGAATTGAACCAAGTTGT
ATAAAGGAGACATCTGGTATAACCCTATTAAGGAAGAGTGGTACTACCAGATAGAAATTCTG
AAATTGGAAATTGGAGGCCAAGCCTTAATCTGGACTGCAGAGAGTATAACGCAGACAAGGC
CATCGTGGACAGTGGCACCACGCTGCGCCTGCCAGAAGGTGTTGATGCGGTGGTGG
AAGCTGTGCCCGCGCATCTGATTCCAGAATTCTCTGATGGTTCTGGACTGGGTCCCAG
CTGGCGTGTGGACGAATTGGAAACACCTTGGCTTACTTCCCTAAATCTCCATCTACCT
GAGAGACGAGAACTCCAGCAGGTATTCCGTATCACAACTCCTGCCTCAGCTTACATTAGC
CCATGATGGGGCCGGCCTGAATTATGAATGTTACCGATTGGCATTCCCCATCCACAAAT
GCGCTGGTATGGTGCACGGTATGGAGGGCTTACGTATCTCGACAGAGCCCAGAA
GAGGGTGGCTTCGCGAGCGAGCCCTGTGCAGAAATTGCGAGGTGCTGCAGTGTCTGAAATT
CCGGGCCTTCTCAACAGAGGATGTAGCCAGCAACTGTGTCCCGCTCAGTCTTGAGCGAG
CCCATTGTGGATTGTGTCTATGCGCTCATGAGCGTCTGTGGAGCCATCCTCTGTCTT
AATCGTCCTGCTGCTGCGTCCGGTGTCAAGCGTCGCCCGTGACCCCTGAGGTGTC
ATGATGAGTCCTCTGGTCAGACATCGCTGGAAATGAATAGCCAGGCCTGACCTCAAGCAA
CCATGAACTCAGCTATTAAGAAAATCACATTCCAGGGCAGCAGCCGGATCGATGGTGGCG
CTTCTCCTGTGCCACCCGTCTCAATCTCTGTTCTGCTCCAGATGCCTCTAGATTAC
TGTCTTTGATTCTGATTTCAGCTTCAAATCCTCCACTTCCAAGAAAAATAATTAA
AAAAAAAACTTCATTCTAA

FIGURE 73

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45493
><subunit 1 of 1, 518 aa, 1 stop
><MW: 56180, pi: 5.08, NX(S/T): 2
MGALARALLPLLAQWLLRAAPELAPAPFTLPLRVAATNRVVAPTPGPGTPAERHADGLAL
ALEPALASPAGAANFLAMVDNLQGDSGRGYYLEMLIGTPPQKLQILVDTGSSNFAVAGTPHS
YIDTYFDTERSSTYRSKGFDVTVKYTQGSWTGFVGEDLVTIPKGFNTSFLVNIATIFESENF
FLPGIKWNGILGLAYATLAKPSSLETFFDSLVTQANI PNVFSMQMCGAGLPVAGSGTNGGS
LVLGGIEPSLYKGDIWYTPIKEEWYYQIEILKLEIGGQSLNLDREYNADKAIVDSGTTLLR
LPQKVFDAVVEAVARASLIPEFSDGFWTGSQLACWTNSETPWSYFPKISIYLRDENSSRSFR
ITILPQLYIQPMMGAGLNYE CYRGISPSTNALVIGATVMEGFYVIFDRAQKRVGFAASPCA
EIAGAAVSEISGPFSTEDVASNCVPAQSLSEPILWIVSYALMSVC GAILLV LIVLLL PFRC
QRPRDPEVVNDESSLVRHRWK
```

Important features:

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 466-494

N-glycosylation sites.

amino acids 170-173 and 366-369

Leucine zipper pattern.

amino acids 10-31 and 197-118

Eukaryotic and viral aspartyl proteases

amino acids 109-118, 252-261 and 298-310

FIGURE 74

CGCCTCCGCCTCGGAGGCTGACGCGCCGGCGCCGTTCCAGGCCTGTGCAGGGCGGATCG
GCAGCCGCCTGGCGGCATCCAGGGCGGTGCGGGGCCTGGCGGGAGCCGGAGGCCGGCC
GGCATGGAGGCCTGCTGCTGGCGCGGGTTGCTGCTGGCGCTTACGTCTTGCTACTA
CAACCTGGTGAAGGCCCGCCGTGCGGCCGATGGCAACCTGCGGGGCCACGGCGTGG
TCACGGGCCAACAGCGGCATCGAAAGATGACGGCGCTGGAGCTGGCGGCCGGAGCG
CGCGTGGTGCCTGGCGCCAGCCAGGAGCGCGGGAGGCCTGCCTCGACCTCCGCCA
GGAGAGTGGAAACAATGAGGTCATCTCATGGCCTTGGACTTGGCAGTCTGGCCTCGGTGC
GGGCCTTGCCACTGCCTTCTGAGCTTGAGCCACGGTTGGACATCCTCATCCACAATGCC
GGTATCAGTTCTGTGGCGGACCGTGAGGCCTTAACCTGCTGCTCGGGTGAACCATA
CGGTCCCTTCTGCTGACACATCTGCTGCCTGCCTGAGGCATGTGCCCTAGCCGCG
TGGTGGTGGTAGCCTCAGCTGCCACTGTCGGGACGTCTGACTCAAACGCCTGGACCGC
CCAGTGGTGGCTGGCGCAGGAGCTGCGGCATATGCTGACACTAACGCTGGCTAATGTACT
GTTTGCCTGGGAGCTGCCAACAGCTTGAGGCCACTGGCGTCACCTGCTATGCAGCCCACC
CAGGGCCTGTGAACTCGGAGCTGTTCTGCGCATGTTCTGGATGGCTGCCACTTTG
CGCCCATTGGCTTGCTGGCTCCGGCACCAAGAGGGGTGCCAGACACCCCTGTATTG
TGCTCTACAAGAGGGCATCGAGCCCTCAGTGGAGATATTTGCCACTGCCATGTGGAAG
AGGTGCCTCCAGCTGCCGAGACGACCGGGCAGCCATGGCTATGGGAGGCCAGCAAGAGG
CTGGCAGGGCTGGGCTGGGAGGATGCTGAACCCGATGAAGACCCCCAGTCTGAGGACTC
AGAGGCCCATCTCTCTAACGACCCCCCACCTGAGGAGCCCACAGTTCTAACCTTACC
CCAGCCCTCAGAGCTCACCAGATTGTCTAACGACGACCGAATTCAAGCTAAAGTTGAG
CCTGAGATCCAGCTCTCC**TAA**CCCTCAGGCCAGGATGCTGCCATGGCACTTCATGGCCTT
GAAAACCTGGATGTGTGAGGCCATGCCCTGGACACTGACGGTTGTGATCTGACCTC
CGTGGTTACTTCTGGGCCCAAGCTGTGCCCTGGACATCTCTTCTGGTGAAGGAAT
AATGGGTGATTATTCCTCTGAGAGTGACAGTAACCCAGATGGAGAGATAGGGTATGCT
AGACACTGTGCTTCGGAAATTGGATGTAGTATTTCAAGGCCAACCCCTATTGATTCTG
ATCAGCTCTGGAGCAGAGCAGGGAGTTGCAATGTGATGCAGTGCACACATTGAGAATTAG
TGAACATGATCCCTTGCAACCGTCTAGCTAGGTAGTTAAATTACCCCATGTTAATGAAGCG
GAATTAGGCTCCCGAGCTAAGGGACTCGCCTAGGGTCTCACAGTGAGTAGGAGGAGGGCCTG
GGATCTGAACCCAAGGGTCTGAGGCCAGGGCAGTGCCTAAGATGGGTGCTGAGAAGTGA
GTCAGGGCAGGGCAGCTGGTATCGAGGTGCCCATGGAGTAAGGGACGCCCTCCGGCGG
ATGCAGGGCTGGGTCACTGTATCTGAAGCCCTCGGAATAAGCGCGTTGACCGCCAAA
AAAAAAAAAAAAAAA

FIGURE 75

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48227
<subunit 1 of 1, 377 aa, 1 stop
<MW: 40849, pI: 7.98, NX(S/T): 0
MEALLLGAGLLLGYLVYYNLVKAPPCCGGMGNLRGRTAVVTGANSIGKMTALELARRGAR
VVLACRSQERGEAAAFDLRQESGNNEVIFMALDLASLASVRAFATAFLSSEPRLDILIHNAG
ISSCGRTREAFNLLRVNHIGPFLTHLLPCLKACAPSRRVVVVASAAHCRGRDFKRLDRP
VVGWRQELRAYADTKLANVLFARELANQLEATGVTCYAAHPGPVNSELFRLHVPGWLRPLLR
PLAWLVLRAPRGGAQTPLYCALQEGIEPLSGRYFANCHVEEVPPAARDRAAHRLWEASKRL
AGLGPGEDAEPDEDPQSEDSEAPSSLSTPHPEEPTVSQPYPSHQSSPDLSKMTHRIQAKVEP
EIQLS
```

Important features:

Signal peptide:

amino acids 1-16

Glycosaminoglycan attachment site.

amino acids 46-49

Short-chain alcohol dehydrogenase family

amino acids 37-49 and 114-124

FIGURE 76

GGAGGAGACAGCCTCCTGGGGCAGGGTCCCTGCCTCTGCTGCTCTGCTCATC**ATGGGAGGCATGGCTCAG**
GACTCCCCGCCAGATCTAGTCCACCCCCAGGACCAGCTGTTCCAGGGCCCTGGCCAGGATGAGCTGC
CAAGCCTCAGGGCAGCCACCTCCCACCATCCGTGGTGTGAATGGGAGCCCTGCCAGGATGGCTGC
CCACACCACCTCCTGCCTGATGGGACCCCTCTGCTACAGCCCCCTGCCCGGGACATGCCACGATGGCCAG
GCCCTGTCCACAGACCTGGGTGTCTACACATGTGAGGCCAGCAACGGCTTGGCACGGCAGTCAGCAGAGGCCT
CGGCTGTCTGGCTGTCTCCGGGAGGATTCCAGATCCAGCCTGGACATGGTGGCTGTGGTGGGTGAGCAG
TTTACTCTGGAATGTGGGCCCTGGGCCACCCAGAGCCCACAGTCTCATGGTGGAAAGATGGGAAACCCCTG
GCCCTCCAGCCCGAAGGCACACAGTGTGGGGGTCCCTGCTGATGGCAAGAGCAGAGAAGACTGACGAAGGG
ACCTACATGTGTGGCCACCAACAGCGCAGGACATAGGGAGAGGCCCGCAGCCGGTTTCCATCCAGGAGCCC
CAGGACTACACGGAGGCCTGTGGAGCTTCTGGCTGTGCAATTCACTGCTGAAAATGTGACACTGCTGAACCCGGAT
CCTGCAGAGGGCCCAAGCCTAGACCGCGGTGTGGCTCAGCTGGAAGGTCAGTGGCCCTGCTGCGCCTGCCAA
TCTTACACGGCCTGTTAGGACCCAGACTGCCCGGGAGGCCAGGGAGCTCCGTGGCAGAGGAGCTGCTGGCC
GGCTGGCAGAGCGCAGAGCTGGAGGCCTCCACTGGGCCAAGACTACAGAGTTCAAAGTGAGGACCATCTCTGGC
CGGGCTCGAGGCCCTGACAGCAACGTGCTGCTCTGAGGTGCGGAAAAAGTGCCAGTGCCACCTCAGGAA
GTGACTCTAAAGCCTGGCAATGGCACTGTCTTGTGAGCTGGTCCACCTGCTGAAAACCACAATGGCATE
ATCCGTGGCTACCAGGTCTGGAGCTGGCAACACATCACTGCCACAGCCAACGGACTGTAGTTGGTGAGCAG
ACCCAGCTGGAATGCCACCCATATGCCAGGTCTCTACTGCGTGCAAGTGGCTGCAGTCAGTGGTGCTGGAGCT
GGGGAGGCCAGTAGACCTGCTGCCCTTTAGAGCAGGCCATGGAGCGAGGCCACCCAAGAACCCAGTGAGCAT
GGTCCCTGGACCCCTGGAGCAGCTGAGGGCTACCTTGAGCGGCCTGAGGTATTGCCACCTGCGGTGTTGCACTC
TGGCTGTGCTCTGGGACCCGGCGTGTGTATCCACCGCCGGCGCCAGCTAGGGTGCACCTGGGCCAGGTCTG
TACAGATAACAGTGGAGATGCCATCTAAAACACAGGATGGATCACTGAGCTCCCAGTGGTGGCAGAGACACT
TGGCTTCCACCTCTGGCTCTGGGACCTGAGCAGCAGCAGCAGCAGCCCTCAGCAGTCGGCTGGGGCGGATGCCCG
GACCACTAGACTGTCGTCGCTCTGAGCTCCACCGCCGGCGCCAGCTAGGGTGCACCTCCAGACACC
AGCACTTTTATGGCTCCCTCATCGTGAGCTGCCCTCCAGTACCCAGGCCAGGCAAGTCCCAGGTCCAGCT
GTCAGGCCCTCCCACCCAGCTGGCCAGCTCTCCAGCCCCCTGTTCCAGCTCAGACAGCCTCTGCAAGCCGAGG
GGACTCTCTCTCCCGCTTGTCTCTGGCCCTGAGGGCTTGGAGGCCAAAAGAAGCAGGAGCTGCAGCAT
GCCAACAGTTCCCCTGCTCCGGGCAGCCACTCTTGAGCTCCGGCTGTGAGTTAGGAAATAGAGGTCC
AAGAACCTTCCAAAGCCCAGGAGCTGTGCCCAAGCTCTGGTGCCTGGGGCCCTGGGACCGAAACTCCTC
AGCTCCTCAAATGAGCTGGTTACTCGTCATCTCCCTCCAGCACCCCTTTCTCATGAAACTCCCCAACTCAG
AGTCACACAGACCCAGCCTCCGGTGGCACCACAGGCTCCCTCCATCCTGCTGCCAGCAGCCCCCATCCCCATC
CTTAGCCCTGCACTCCCCCTAGCCCCCAGGCCTCTCCCTCTGCCCCAGCCAGCTCCAGTCGCTGTCC
AGCTCCTCACTGTCATCCCTGGGGAGGATCAAGACAGCGTGTGACCCCTGAGGAGTAGCCCTGTGCTTGAA
CTCAGTGAGGGTGGAGGAGACTCCAGGAACAGCGTCTCCATGCAAGGGCTCCTCACCCCCCACCACCTAT
GGGTACATCAGCGTCCCAACAGCCTCAGAGTTACGGACATGGCAGGACTGGAGGAGGGTGGGGCCAAGGGGG
GGAGTCTTGCTGTGCCACCTCGGCCCTGCCCTACCCCCACCCCGAGCGAGGGCTCTTAGCCAATGGTTGGGGC
TCAGCCTCTGAGGACAATGCCGCCAGCGCCAGGCCAGCTTGTCACTCCTCCGATGGCTCTTCCCTCGCTGAT
GCTCACTTGGCCGGCCCTGGCAGTGGCTGGATAGCTTGGTTGGCTAGAGCCCAGGGAGGAGACTGC
GTCCTCATAGATGCCCTCATCCTCTCCCTCCCCACGGGATGAGATCTCTGACCCCCAACCTCTCCCTGCCCC
TGGGAGTGGAGGCCAGACTGGTTGGAAGACATGGAGGTCAGCCACACCCAGCGGCTGGGAAGGGGATGCCCT
TGGGCCCCCTGACTCTGAGATCTCTCCCTGAGAGACTCCAGACGGGAATCAGAACCAACTTCTCTGCA
GTAGATTACTCT**TGAACCGTGTCCCTGAGACTCTCCAGACGGGAATCAGAACCAACTTCTCTGCA**CCCCACAAG
ACCTGGGCTGTGGTGTGGGTCTTGGCTGTGTTCTGCACTGGGTCACCTCCAGGAGGAGAGAG
TTCTCCCTCCAGATTGTGAAAACAATGAAAACAAAATTAGAGCAAAGCTGACCTGGAGCCCTCAGGGAGCAA
ACATCATCTCCACCTGACTCCTAGCCACTGCTTCTGCTGCACTCCACCCACCCAGGTTGTTTGGC
CTGAGGAGCAGCCCTGCCGTGCTGCTCTTCCCCCACCATTGGATCACAGGAAGTGGAGGAGCCAGGGTGCCTT
GTGGAGGACAGCAGTGGCTGCTGGAGAGGGCTGTGGAGGAAGGAGCTCTCGGAGCCCCCTCTAGCCTTACCT
GGGGCCCTCCTCTAGAGAAGAGCTCAACTCTCTCCAAACCTCACCATGGAAAGAAAATAATTATGAATGCCACTG
AGGCACTGAGGCCCTACCTCATGCCAAACAAAGGGTTCAAGGCTGGGTCTAGCGAGGATGCTGAAGGAAGGGAGG
TATGAGACCGTAGGTCAAAGCACCACCTCGTACTGTTGTCATATGAGCTTAAGAAATTGATACCATAAAAT
GGTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 77

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA41404
<subunit 1 of 1, 985 aa, 1 stop
<MW: 105336, pI: 6.55, NX(S/T): 7
MGGMAQDSPPQILVHPQDQLFQGPGPARMSCQASGQPPPTIRWLLNGQPLSMVPPDPHLLP
DGTLQLLQPPARGHAHDGQALSTDLGVTCEASNRLGTAVSRGARLSAVLREDFOIQPRDM
VAVVGEQFTLECGPPWGHPEPTVSWWKDGKPLALQPGRHTVSGSLLMARAEEKSDEGYMCV
ATNSAGHRESRAARVSIQEPQDYTEPVELLAVRIQLENVTLLNPDPAEGPKPRPAVWLWKV
SGPAAPAQSYTALFRQTAPGGQGAPWAEELLAGWQSAELGGLHWGQDYEFKVRPSSGRARG
PDSNVLLLRLPEKVPAPPQEVTLKPGNGTVFVSWVPPAENHNGIIRGYQVWSLGNTSLPP
ANWTVVGEQTQLEIATHMPGSYCVQVAVTGAGAGEPSRPVCLLLEQAMERATQEPSEHGPW
TLEQLRATLKRPEVIATCGVALWLLLGTAVCIHRRRARVHLGPGLYRYTSEDAILKHRMD
HDSQWLADTWRSSTSGSRDLSSSSSLSRLGADARDPLDCRRSLLSDRSRSPGVPLL PDTST
FYGSLIAELPSSTPARPSPQVPAVRRLPPQLAQLSSPCSSSDSCLCSRRLGSSPRLSLAPAEA
WKAKKKQELQHANSPLLRGSHSLELRACELGNRGSKNLSQSPGAVPQALVAWRALGPKLLS
SSNELVTRHLPPAPLFPHETPPTQSQQTQPPVAPQAPSSILLPAAPIPILSPCSPPSPQASS
LSGPSPASSRLSSSSLSSLGEDQDSVLTPPEEVALCLELSEGEETPRNSVSPMPRAPSPTTY
GYISVPTASEFTDMGRTGGVGPKGGVLLCPRPCLTPSEGSILANGWGSASEDNAASARA
SLVSSSDGSFLADAHFARALAVAVDSFGGLEPREADCVFIDASSPPSPRDEIFLTPNLSLP
LWEWRPDWLEDMEVSHTQRLGRGMPPWPPDSQISSQRSQLHCRMPKAGASPVDYS
```

Important features:

Transmembrane domain:

amino acids 448-467

N-glycosylation sites:

amino acids 224-227, 338-341, 367-370, 374-377, 658-661 and 926-929

N-myristoylation sites.

amino acids 47-52, 80-85, 88-93, 99-104, 105-110, 181-186, 272-277, 290-295, 355-360, 403-408, 462-467, 561-566, 652-657, 849-854 and 876-881

Phosphotyrosine interaction domain proteins

amino acids 740-753

FIGURE 78

CTCCCACGGTGTCCAGGCCAGAATGCGGCTCTGGCCTGCTATGGGTTGCCTGCTGCT
CCCAGGTTATGAAGCCCTGGAGGGCCAGAGGAATCAGCGGGTCGAAGGGACACTGTGT
CCCTGCAGTGCACCTACAGGAAGAGCTGAGGGACCACCGAAGTACTGGTCAGGAAGGGT
GGGATCCTCTCTCGCTGCTGGCACCATCTATGCAGAAGAAGAAGGCCAGGAGACAAT
GAAGGGCAGGGTGTCCATCCGTACAGCCAGGAGCTCGCTCATTGTGACCCGTGGA
ACCTCACCTGCAAGACGCTGGGAGTACTGGTGTTGGTCGAAAAACGGGCCCCATGAG
TCTTACTGATCTCTGTTCTGCTTCCAGGACCTGCTGCTCCCTCCCTCTCCCAC
CTTCCAGCCTCTGGCTACAAACACGCCTGCAGCCAAGGAAAAGCTCAGCAAACCCAGCCCC
CAGGATTGACTTCTCCTGGGCTTACCCGGCAGCCACCACAGCCAAGCAGGGAAAGACAGGG
GCTGAGGCCCTCATTGCCAGGGACTTCCCAGTACGGCACGAAAGGACTTCTCAGTACAC
AGGAACCTCTCCTCACCCAGCGACCTCTCCTGCAGGGAGCTCCGCCCCCCCATGCAGC
TGGACTCCACCTCAGCAGAGGACACCAGTCAGCTCTCAGCAGTGGCAGCTCTAAGCCCAGG
GTGTCCATCCCGATGGTCCGCATACTGGCCCCAGTCCTGGTGTGCTGAGCCTTGTGAGC
CGCAGGCCTGATGCCCTCTGCAGCCACCTGCTCTGGAGAAAGGAAGCTAACAGGCCA
CGGAGACACAGAGGAACGAGAAGTTCTGGCTCTCACGCTTGACTGCGGAGGAAAAGGAAGCC
CCTTCCCAGGCCCTGAGGGGACGTGATCTCGATGCCCTCCACACATCTGAGGAGGA
GCTGGGCTTCTGAAGTTGTCTCAGCGTAGGGCAGGAGGCCCTCTGGCCAGGCCAGCAGT
GAAGCAGTATGGCTGGCTGGATCAGCACCGATTCCGAAAGCTTCCACCTCAGCCTCAGAG
TCCAGCTGCCGGACTCCAGGGCTCTCCCCACCCCTCCCAGGCTCTCCTTGATGTTCCA
GCCTGACCTAGAACGCTTGTCAAGCCCTGGAGGCCAGAGCGGTGGCTTGCTCTCCGGCTG
GAGACTGGGACATCCCTGATAGGTTCACATCCCTGGGAGACTACCAAGGCTGCTGACCCCTCA
GCAGGGCCAGACAAGGCTCAGTGGATCTGGTCTGAGTTCAATCTGCCAGGAACTCCTGGC
CTCATGCCCTAGTGTGGACCCCTGCCTCCCTCCACTCCAGACCCACCTTGTCTTCCCTCC
TGGCGTCTCAGACTTAGTCCCACGGTCTCCTGCATCAGCTGGTGTGAAGAGGGAGCATGCT
GGGGTGAGACTGGGATTCTGGCTTCTTTGAACCACCTGCATCCAGCCCTCAGGAAGCCT
GTGAAAACGTGATTCCCTGGCCCCACCAAGACCCACCAAAACCATCTCTGGGCTTGGTGCAG
GACTCTGAATTCTAACATGCCAGTGACTGTCGCACTTGAGTTGAGGGCCAGTGGCCTG
ATGAACGCTCACACCCCTCAGCTTAGAGTCTGCATTGGCTGTGACGCTCTCACCTGCC
CAATAGATCTGCTCTGCTGCGACACCAGATCCACGTGGGACTCCCTGAGGCCCTGCTAAC
TCCAGGCCTGGTCAGGTGACATTGCAGGATAAGCCAGGACCGGCACAGAAAGTGG
TTGCCCTTNCCATTGCCCTCCCTGGNCATGCCCTTGCCTTGGAAAAAAATGATGAAGA
AAACCTGGCTCTCCTTGCTGGAAAGGGTACTTGCTATGGGTTCTGGTGGCTAGAGA
GAAAAGTAGAAAACCAGAGTCACGTAGGTGCTAACACAGAGGAGAGTAGGAACAGGGCGG
ATACCTGAAGGTGACTCCGAGTCCAGGCCCTGGAGAAGGGTGGGGGGTGGTAAAGTA
GCACAACACTATTTTTTCTTTCCATTATTATTGTTTTAAAGACAGAACCTCGTGC
GCTGCCAGGCTGGAGTGCAGTGGCACGATCTGCAAACCTCCGCTCTGGGTTCAAGTGATT
CTTCTGCCCTCAGCCTCCCGAGTAGCTGGGATTACAGGCACGCACCACACCTGGCTAATT
TTTGTACTTTAGTAGAGATGGGTTTCACCATGTTGGCCAGGCTGGTCTGAACTCTGAC
CTCAAATGAGCCTCTGCTCAGTCTCCAAATTGCCGGATTACAGGCATGAGCCACTGTG
TCTGGCCCTATTCCCTTAAAAGTGAATTAAAGAGTTGTTCAAGTGCAGTATGCAAACCTGGAAAG
ATGGAGGAGAAAAGAAAAGGAAGAAAAAAATGTCACCCATAGTCTCACCAAGAGACTATCAT
TATTCGTTTGTTGACTTCCACTCTTCTTCACTACATAATTGCCGGTGTCTT
TTTACAGAGCAATTATCTGTATATAACACTTGTATCCTGCCCTTACCTTATCGTCC
ATCACTTTATTCCAGCACTCTGTGTTACAGACCTTTATAAATAAAATGTTCATCA
GCTGCATAAAAAAAAAAAAAAA

FIGURE 79

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44196
<subunit 1 of 1, 332 aa, 1 stop
<MW: 36143, pI: 5.89, NX(S/T): 1
MRLLVLLWGCLLPGYEALEGPEEISGFEGDTVSLQCTYREELRDHRKYWCRKGGILFSRCS
GTIYAAEEEGQETMKGRVSIRDLSRQELSLIVTLWNLTQDAGEYWCVEKRGPDESLLISLFV
FPGPCCPPSPSPTFQPLATTRLQPKAKAQQTQPPGLTSPGLYPAATTAKQGKTGAEAPPLPG
TSQYGHERTSQYTGTSPHPATSPAGSSRPPMQLDSTAEDTSPALSSGSSKPRVSIPMVRI
LAPVLVLLSLLSAAGLIAFCSHLLLWRKEAQQATETQRNEKFWLRLTAEEKEAPSQAPEGD
VISMPPLHTSEEELGFSKFVSA
```

Important features:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 248-269

N-glycosylation site.

amino acids 96-99

Fibrinogen beta and gamma chains C-terminal domain.

amino acids 104-113

Ig like V-type domain:

amino acids 13-128

FIGURE 80

TTGTGACTAAAAGCTGGCCTAGCAGGCCAGGGAGTGCAGCTGCAGCGTGGGGTGGCAGGA
GCCGCAGAGCCAGAGCAGACAGCCGAGAACAGGTGGACAGTGTAAAGAACCAAGTGGTCTC
GCTCTGTTGCCAGGCTAGAGTGTACTGGCGTGTACATAGCTCACTGCAGCCTCAGACTCCT
GGACTTGAGAAATCCTCCTGCCTTAGCCTCCTGCATATCTGGGACTCCAGGGTGCACCAA
GCCCTGTTCTCCTCTGTGAGTGGACCACGGAGGCTGGTGGCTGCAGCTGCCTGTCACTCCAA
AGCTCAGCTCTGAGCCAGAGTGGTGGCTCCACCTCTGCCGCCGCATAGAACCCAGGAG
CAGGGCTCTCAGAAGCGGTGGTGCCTCAGCTGGGATCATGTTGTTGGCCCTGGTCTGTCTGC
TCAGCTGCCTGCTACCCCTCCAGTGAGGCCAAGCTCTACGGCGTTGTGAACTGGCCAGAGTG
CTACATGACTTCGGGCTGGACGGATA~~CCGGGATA~~CAGCCTGGCTGACTGGGTCTGCCTTGC
TTATTCACAAGCGGTTCAACGCAGCTGCTTGGACTACGAGGCTGATGGGAGCACCAACA
ACGGGATCTCCAGATCAACAGCCGGAGGTGGTGCAGCAACCTCACCCGAACGTCCCCAAC
GTGTGCCGGATGTACTGCTCAGATTGTTGAATCCTAATCTCAAGGATA~~CCGTTATCTGTGC~~
CATGAAGATAACCCAAGAGCCTCAGGGCTGGGTTACTGGGAGGCCTGGAGGCATCACTGCC
AGGGAAAAGACCTCACTGAATGGGTGGATGGCTGTGACTTCTAGGATGGACGGAACCATGCA
CAGCAGGCTGGAAATGTGGTTGGTCCTGACCTAGGCTGGAAAGACAAGCCAGCGAATA
AAGGATGGTTGAACGTGAAA

FIGURE 81

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52187
<subunit 1 of 1, 146 aa, 1 stop
<MW: 16430, pI: 5.05, NX(S/T): 1
MLLALVCLLSCLLPSEAKLYGRCELARVLHDFGLDGYRGYSLADWVCLAYFTSGFNAAALD
YEADGSTNNNGIFQINSRRWCSNLTPNVPNVCRMYSQDILLNPNLKDTVICAMKITQEPMQGLGY
WEAWRHHCQGKDLTEWVDGCDF
```

Important features:

Signal peptide:

amino acids 1-18

N-myristoylation site.

amino acids 67-72

Homologous region to Alpha-lactalbumin / lysozyme C proteins.

amino acids 34-58 (catalytic domain), 111-132 and 66-107

FIGURE 82

AGCCGCTGCCCGGGCGCCGCCGCGCGCACCAATGAGTCCCCGCTCGCCTGCGTTC
GCTGCGCCTCCTCGTCTCGCCGTCTCTCAGCCGCCGAGCAACTGGCTGTACCTGGCCA
AGCTGTCGTCGGTGGGAGCATCTCAGAGGAGGAGACGTGCAGAGAAACTCAAGGGCCTGATC
CAGAGGCAGGTGCAGATGTGCAAGCGGAACCTGGAAGTCATGGACTCGGTGCGCCGCGTGC
CCAGCTGGCCATTGAGGAGTGCCAGTACCAAGTTCCGGAACCGGGCGCTGGAACTGCTCCACAC
TCGACTCCTGCCGTCTCGCAAGGTGGTGACGCAAGGGACTCGGGAGGCAGCCTCGTG
TACGCCATCTCTCGGCAGGTGTGGCCTTGCAGTGACGCCGGCGTCAGCAGTGGGAGCT
GGAGAAGTGCAGGCTGTGACAGGACAGTGCATGGGTCAAGCCCACAGGGCTTCCAGTGGTCAG
GATGCTCTGACAACATCGCCTACGGTGTGGCCTCTCACAGTCGTTGTGGATGTGCGGGAG
AGAAGCAAGGGGCCTCGTCCAGCAGGCCCTCATGAACCTCCACAACATGAGGCCGGCAG
GAAGGCCATCCTGACACACATGCGGTGGAATGCAAGTGCCACGGGTGTCAGGCTCTGTG
AGTAAAGACGTGCTGGCGAGCCGTGCCGCCCTCCGCCAGGTGGTCACGCACTGAAGGAG
AAGTTGATGGTGCCACTGAGGTGGAGGCCACGCCGTGGCTCCTCCAGGGCACTGGTACC
ACGCAACGCACAGTCAAGCCGACACAGATGAGGACCTGGTACTTGGAGCCTAGCCCCG
ACTTCTGTGAGCAGGACATGCGCAGCGCGTGGCTGGCACGAGGGCCGCACATGCAACAAG
ACGTCCAAGGCCATCGACGGCTGTGAGCTGCTGTGGCCGGCTTCCACACGGCGCA
GGTGGAGCTGGCTGAACGCTGCAGCTGCAAATTCCACTGGTGTGCTTCGTCAAGTGCAGG
AGTGCCAGCGGCTCGTGGAGTTGCACACGTGCCATGACCGCCTGCCTAGCCCTGCGCCGGC
AACCACTAGTGGCCAGGGAAAGGCCATAATTAAACAGTCTCCCACCACTACCCAAGA
GATACTGGTTGTATTTTGTGTTCTGGTTGGTTGGCTCATGTTATTTATTGCCGAA
ACCAGGCAGGCAACCCCAAGGGCACCAACCAGGGCCTCCCCAAAGCCTGGGCTTGTGGCT
GCCACTGACCAAAGGGACCTTGCTCGTGCCTGGCTGCCGATGTGGCTGCCACTGACCA
CTCAGTTGTTATCTGTGTCCGTTCTACTTGAGACCTAAGGTGGAGTAACAAGGAGTAT
TACCACCACATGGCTACTGACCGTGTATCGGGGAAGAGGGGGCCTATGGCAGGGAAAATA
GGTACCGACTTGATGGAAGTCACACCCTCTGGAAAAAAAGAACTCTTAACTCTCCAGCACACA
TACACATGGACTCCTGGCAGCTTGAGCCTAGAAGCCATGTCTCTCAAATGCCCTGAGAAAGG
GAACAAGCAGATACCAAGGTCAAGGGACCAGGTTCAAGCCTACATGGACAGCTAGA
GGTCGATATCTGTGGGTCTTCCAGGCAAGAAGAGGGAGATGAGAGCAAGAGACGACTGAA
GTCCCACCCCTAGAACCCAGCCTGCCAGCCTGCCCTGGGAAGAGGAAACTTAACCACTCC
CCAGACCCACCTAGGCAGGCATATAGGCTGCCATCCTGGACCAGGGATCCGGCTGTGCCTT
TGCAGTCATGCCCGAGTCACCTTCACAGCGCTGTTCCATGAAAATGAAAAACACACAC
AC
GAGAGGGAGGAAAGGGCTGTGCCTTGCAGTCATGCCAGTCACCTTCACAGCACTGTTCTC

FIGURE 83

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48328
<subunit 1 of 1, 351 aa, 1 stop
<MW: 39052, pI: 8.97, NX(S/T): 2
MSPRSCLRSLLVFAVFSAAASNWLAKLSSVGSISEEETCEKLGLIQRQVQMCKRNLE
VMDSVRRGAQLAIEECQYQFRNRRWCNCSTLDSPVFGKVVTQGTREAAFVYAISSAGVAFAV
TRACSSGELEKCGCDRTVHGVPQGFQWSGCSDNIAYGVAFSQSFVDVRERSKGASSRALM
NLHNNEAGRKAILTHMRVECKCHGVSGSCEVKTCAVPPFRQVGHALKEKFDGATEVEPRR
VGSSRALVPRNAQFKPHTDEDLVYLEPSPDFCEQDMRSGVLGTRGRTCNKTSKAIDGCELLC
CGRGFHTAQVELAERCSCFKHWCCFVKCRQCQRLVELHTCR
```

Important features:

Signal peptide:

amino acids 1-22

N-glycosylation sites.

amino acids 88-91 and 297-300

Wnt-1 family signature.

amino acids 206-215

Homologous region to Wnt-1 family proteins

amino acids 183-235, 305-350, 97-138, 53-92 and 150 -174

FIGURE 84

CGGACGCGTGGCGGACGCGTGGCGGACGCGTGGCGGACGCGTGGCTGGGTGCCTGCAT
CGCCATGGAACCAACCAGGTACAGCAAGTGGGGCGCAGCTCCGAGGAGGTCCCCGGAGGGC
CCTGGGGACGCTGGGTGCACTGGAGCAGGAGACCCCTCTTGCCTGGCTGTCCCTGGTC
ACCACAGTCCTTGCGTGTGATTCTGAGTATCCTATTGTCCAAGGCCTCACGGAGCGC
GGCGCTGCTTGACGCCACGACCTGCTGAGGACAACGCCCTCGAAGCAGACGGCGCGCTGG
GTGCCCTGAAGGAGGAGGTGGAGACTGCCACAGCTGCTGCTGGGGACGCAGGCGCAGCTG
CAGACCACGCCGCGCGAGCTGGGAGGCGCAGGCGAAGCTGATGGAGCAGGAGAGCGCC
GCGGGAACTGCGTGAGCGCGTGACCCAGGGCTGGCTGAAGCCGGCAGGGCGTGAGGACG
TCCGCACTGAGCTGTTCCGGCGCTGGAGGCCGTGAGGCTCCAGAACAACTCCTGCGAGCC
TGCCCCACGTCGTGGCTGTCCTCGAGGGCTCTGCTACTTTCTCTGTGCCAAAGACGAC
GTGGGCGGGCGCGCAGGATCACTGCGCAGATGCCAGCGCGCACCTGGTATCGTTGGGGCC
TGGATGAGCAGGGCTTCCTCACTCGAACACCGCGTGGCGTGTTACTGGCTGGGCGTGAGG
GCTGTGCCATCTGGCAAGGTTAGGGCTACCACTGGGTGGACGGAGTCTCTCAGCTT
CAGCCACTGGAACCAGGGAGAGCCAATGACGCTGGGGCGCGAGAACACTGTGTATGATGC
TGCACACGGGCTGGAACGACGCACCGTGTGACAGCGAGAACGGACGGCTGGATCTGTGAG
AAAAGGCACAACTGCTGACCCCGCCAGTGCCCTGGAGGCCGCCATTGCAGCATGTC
TCCTGGGGCTGTCACCTCCCTGGCTCCTGGAGCTGATTGCCAAAGAGTTTTCTTC
CATCCACCGCTGCTGAGTCTCAGAACACTTGGCCAACATAGCCCTGTCCAGCCCAGTGC
TGGGCTCTGGACCTCCATGCCGACCTCATCCTAACTCCACTCACGCAGACCCAACCTAAC
TCCACTAGCTCCAAAATCCCTGCTCCTGCGTCCCCGTGATATGCCCTCACTCTCC
CCAAGGTTAGGTGACTGAGGACTGGAGCTGTTGGTTCTCGCATTTCACCAA
AGCTGTTTGCAAGCCTGAGGAAGCATCAATAAATATTGAGAAATGAAAAAA

FIGURE 85

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56352
<subunit 1 of 1, 293 aa, 1 stop
<MW: 32562, pI: 6.53, NX(S/T): 2
MDTTRYSKWGGSEEVPGGPWGRWVHWSRRPLFLALAVLVTTVLWAVILSILLSKASTERAA
LLDGHDLLRTNASKQTAALGALKEEVGDCHSCCSGTQAQLQTTRAELGEAQAKLMEQESALR
ELRERVTQGLAEAGRGRGREDVRTELFRALEAVRLQNNSCPCPTSWLSFEGSCYFFSVPKTTW
AAAQDHCADASAHLVIVGGLDEQGFLTRNTRGRGYWLGLRAVRHLGKVQGYQWVDGVSLFS
HWNQGEPNDAWGRENCVMMMLHTGLWNDAPCDSEKDGWICEKRHNC
```

Important features:

Type II transmembrane domain:

amino acids 31-54

N-glycosylation sites.

amino acids 73-76 and 159-162

Leucine zipper pattern.

amino acids 102-123

N-myristoylation sites.

amino acids 18-23, 133-138 and 242-247

C-type lectin domain signature.

amino acids 264-287

FIGURE 86

GCCAGGGGAAGAGGGT GATCCGACCCGGGAAGGT CGCTGGCAGGGCGAGTTGGGAAAGCG
GCAGCCCCGCCGCCCG CAGCCCCTCTCCTCTTCTCCCACGT CCTATCTGCCTCTCG
CTGGAGGCCAGGCCGT GCAGCATCGAAGACAGGAGGA ACTGGAGCCTCATGGCCGGCCGG
GGCGCCGGCCTCGGGCT TAAATAGGAGCTCCGGCTCTGGCTGGGACCCGACCGCTGCCGGC
CGCGCTCCCGCTGCTCCTGCCGGTG **ATGGAAAACCCCAGCCGGCCGCCCTGGCAAG**
GCCCTCTGCCTCTCCTGCCACTCTCGCGCCGCCAGCCTCTGGGGAGAGTC
CATCTGTTCCGCCAGAGCCCCGCCAAATACAGCATCACCTCACGGGCAAGTGGAGCCAGA
CGGCCTTCCCCAAGCAGTACCCCTGTTCCGCCCGCGCAGTGGCTTCGCTGGGG
GCCGCGCATAGCTCCGACTACAGCATGTGGAGGAAGAACAGTACGT CAGTAACGGGCTGCG
CGACTTTGCGGAGCGCGCGAGGCCCTGGCGCTGATGAAGGAGATCGAGGCCGGGGAGG
CGCTGCAGAGCGTGCACGAGGTGTTTCCGCCGCCGTCCCCAGCGGACCGGGCAGACG
TCGGCGAGCTGGAGGTGCAGCGCAGGCACTCGCTGGTCTCGTTGTGGTGCATCGTGC
CAGCCCCACTGGTCTGGACCTGTACCCCTACGACGCCGGACGGACAGCGGCTTCACCTTCTCC
TCCCCCAACTCGCCACCATCCGCAGGACACGGTACCGAGATAACGTCTCCTCTCCAG
CCACCCGGCCA ACTCCTCTACTACCCCGGCTGAAGGCCCTGCCCTCCATGCCAGGGTGA
CACTGCTGCGGCTGCGACAGAGCCCCAGGGCTTCATCCCTCCGCCAGTCCTGCCAGC
AGGGACAATGAGATTGTAGACAGCGCCTCAGTCCAGAAACGCCGCTGGACTGCGAGGTCTC
CCTGTGGTGTCTGGGACTGTGCGGAGGCCACTGTGGGAGGCTGGACCAAGAGCAGGA
CTCGCTACGTCCGGTCCAGCCGCAACAACGGGAGCCCCTGCCCGAGCTCGAAGAAGAG
GCTGAGTGCCTGCTGATAACTGCGT **CTAAG** ACCAGAGCCCCG CAGCCCTGGGGCCCCCG
GAGCCATGGGTGTCGGGGCTCTGTGCAGGCTCATGCTGCAGGCCGGAGGGCACAGGG
GGTTTGCCTGCTCCTGACCGCGGTGAGGCCGCCGACCATCTCTGCACTGAAGGCCCT
CTGGTGGCCGGCACGGCATTGGAAACAGCCTCCTCCCTTCCAACCTTGCTTAGGGG
CCCCCGTGTCCGTCTGCTCTCAGCCTCCTCCTGCAGGATAAAGTCATCCCCAAGGCTC
CAGCTACTCTAAATTATGTCTCCTTATAAGTTATTGCTGCTCCAGGAGATGTCCTTCATCG
TCCAGGGGCTGGCTCCCACGTGGTGCAGATAACCTCAGACCTGGTGCCTAGGCTGTGCTG
AGCCCACCTCCCGAGGGCGCATCCAAGCGGGGCCACTTGAGAAGTGAATAATGGGGCGG
TTTCGGAAGCGTCAGTGTCCATGTTATGGATCTCTCGCTTGAAATAAGACTATCTCT
GTTGCTCACAAAAAAAAAAAAAAA

FIGURE 87

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53971
><subunit 1 of 1, 331 aa, 1 stop
><MW: 35844, pi: 5.45, NX(S/T): 2
MENPSPAAALGKALCALLLATLGAAGQPLGGESICSARAPAKYSITFTGKWSQTAFPKQYPL
FRPPAQWSLLGAAHSSDYSMWRKNQYVSNGLRDFAERGEAWALMKEIEAAGEALQSVHEVF
SAPAVPSGTGQTSAELEVQRHSLVSFVVRIVPSPDWFVGVDSDLLCDGDRWREQAALDLYP
YDAGTDSGFTFSSPNFATIPQDTVTEITSSSPSHPANSFYYPRLKALPPIARVTLLRLRQSP
RAFIIPPAPVLPSPRDNEIVDSASVPETPLDCEVSLWSSWGLCGGHCGRLGTSRTRYVRVQPA
NNGSPCPELEEEAECVPDNCV
```

Important features:

Signal peptide:

amino acids 1-26

FIGURE 88

GGCGGCGTCCGTGAGGGCTCTTGGCAGGGTAGTGTGTTGGTGTCCCTGTCTGCGTGA
TATTGACAAACTGAAGCTTCCTGCACCACTGGACTTAAGGAAGAGTGACTCGTAGGCGGA
CAGCTTAGTGGCCGGCCGGCGCTCATCCCCGTAAGGAGCAGAGTCCTTGTACTGAC
CAAGATGAGCAACATCTACATCCAGGAGCCTCCCACGAATGGAAAGGTTTATTGAAAACTA
CAGCTGGAGATATTGACATAGAGTTGGTCAAAGAACGCTCTAAAGCTTGCAGAAATT
ATCCAACTTGTTGGAAGCTTATTATGACAATACCATTTTACAGAGTTGTGCCTGGTTT
CATAGTCCAAGGCGGAGATCCTACTGGCACAGGGAGTGGTGGAGAGTCTATCTATGGAGCGC
CATTCAAAGATGAATTCATTACGGTTGCGTTTAATCGGAGAGGACTGGTGCATGGCA
AATGCTGGTCTCATGATAATGGCAGCCAGTTTCTCACACTGGTCGAGCAGATGAAC
TAACAATAAGCATAACCCTTGGAAAGGTTACAGGGATACAGTATATAACATGTTGCGAC
TGTCAAGTAGACATTGATGATGACGAAAGACCACATAATCCACACAAAATAAAAGCTGT
GAGGTTTGTAAATCCTTTGATGACATCATTCAAGGGAAATTAAAAGGCTGAAAAAAGA
GAAACCAGAGGAGGAAGTAAAGAAATTGAAACCCAAAGGCACAAAAAATTAGTTACTTT
CATTGGAGAGGAAGCTGAGGAAGAAGAGGGAGGAAGTAAATCGAGTTAGTCAGAGCATGAAG
GGCAAAAGCAAAAGTAGTCATGACTTGCTTAAGGATGATCCACATCTCAGTTCTGTTCCAGT
TGTAGAAAGTGAAAAGGTGATGCACCAGATTAGTTGATGATGGAGAAGATGAAAGTGCAG
AGCATGATGAATATATTGATGGTGATGAAAAGAACCTGATGAGAGAAAGAATTGCCAAAAAA
TTAAAAAAAGGACACAGTGCATGCAATGTTAAATCAGCTGGAGAAGGAGAAGTGGAGAAGAAATC
AGTCAGCCGCAGTGAAGAGCTCAGAAAAGCAAGACAATTAAAACGGAACTTTAGCAG
CAAAACAAAAAAAGTAGAAAATGCAGCAAAACAAGCAGAAAAAGAAGTGAAGAGGAAGAA
GCCCTCCAGATGGTGTGCGAATACAGAAGAGAAAAGCAAAAGTATGAAGCTTGAG
GAAGCAACAGTCAGGAAACTTCCGGAGATCAGACCCCTGCACTGCTGAACCAAGT
TTAAATCTAAACTCACTCAAGCAATTGCTGAAACACCTGAAATGACATTCTGAAACAGAA
GTAGAAGATGATGAAGGATGGATGTACATGACTTCAGTTGAGGATAAAAGCAGAAAAGT
GAAAGATGCAAGCATGCAAGACTCAGATACTTGAATCTATGATCCTCGGAATCCAGTGA
ATAAAAGAAGGAGGAAGAAGCAAAAGCTGATGAGAGAGAAAAAGAAAGAAGATAAAAT
GAGAATAATGATAACCAGAACTTGCTGGAAATGTGCCTACAATGGCCTGTAACAGCCATTG
TTCCCAACAGCATCACTTAGGGGTGTGAAAAGAAGTATTGAAACCTGTTGTCTGGTTT
AAAAACAATTATCTGTTGCAAATTGGAATGATGTAAGCAAATGCTTTGGTTACTGG
TACATGTGTTTCTAGCTGACCTTATATTGCTAAATCTGAAATAACTTCCCT
TCCACAAAAAA

FIGURE 89

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50919
><subunit 1 of 1, 472 aa, 1 stop
><MW: 53847, pI: 5.75, NX(S/T): 2
MSNIYIQEPPTNGVLLKTTAGDIDIELWSKEAPKACRNFIQLCLEAYYDNTIFHRVVPGFI
VQGGDPTGTGSGGESIYGAPPFKDEFHSRLRFNRRGLVAMANAGSHDNGSQFFTLGRADELN
NKHTIFGKVTGDTVYNMLRLSEVDIDDDERPHNPKIKSCEVLFNPFDIIPREIKRLKKEK
PEEEVKKLKPKGTKNFSLLSFGEAAEEEEEVNRVSQSMKGKSKSSHDLKDDPHLSSVPVV
ESEKGDAPDLVDDGEDESAEHDEYIDGDEKNLMRERIAKKLKDDTSANVKSAGEGEVEKKSV
SRSEELRKEARQLKRELLAAKQKKVENAAKQAEKRSEEEEAPPDGAVAAYRREKQKYEALRK
QQSKKGTSREDQTLALLNQFKSKLTQAIATPENDIPETEVEDDEGWMHSVLFEDKSRKVK
DASMQDSDTFEIYDPRNPVNRRREESKLMREKKERR
```

Important features:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 109-112 and 201-204

Cyclophilin-type peptidyl-prolyl cis-trans isomerase signature.

amino acids 49-66

Homologous region to Cyclophilin-type peptidyl-prolyl cis-trans isomerase

amino acids 96-140, 49-89 and 22-51

FIGURE 90

CGCCGCCGTTGGGGCTGGAAGTTCCCAGGTCCGTGCCGGGAGAGAGATGCTGCCGG
CCGCCTCGGCTTGAGGCAGAGAAGTGTCCCAGACCCATTGCGCTGCTGACGGCGTCG
AGCCCTGGCAGACATGTCCACAGGGTTCTCCTCGGGACTCTGGCTCCACCACC
GTGGCCGCCGGCGGGACCAGCACAGGGCGTTCTCCTCGGAACGGAACGTCTAGCAA
CCCTCTGTGGGGCTCAATTGGAAATCTTGAAGTACTTCAACTCCAGCAACTACATCTG
CTCCTCAAGTGGTTTGAACCGGGCTTTGGATCTAAACCTGCCACTGGTTCACTCTA
GGAGGAACAAATACAGGTGCTTGACACCAAGAGGCCCAAGTGGTACCAAATATGGAAC
CCTGCAAGGAAAACAGATGCATGTGGGAAGACACCCATCCAAGTCTTTAGGAGTCCCCT
TCTCCAGACCTCCTAGGTATCCTCAGGTTGCACCTCCAGAACCCCCGGAGCCCTGGAAA
GGAATCAGAGATGCTACCACCTACCCGCTGGATGGAGTCTCGCTCTGCGCAGGCTGGAG
TGCAGTGGCACGATCTCGGCTCACTGCAACCTCCGCCTCCGGTTCAAGCGAGTCTCCTGC
CTCAGCCTCTGAGTGTCTGGGGCTACAGGTGCTGCAGGAGTCCTGGGCCAGCTGGCCTCG
ATGTACGTCAGCACGCCGGAACGGTACAAGTGGCTGCCTCAGCGAGGACTGTCTGTACCT
GAACGTGTACGCGCCGGCGCCGGGATCCCCAGCTGCCAGTGTGGCTGGTTCC
CGGGAGGCCCTCATCGTGGCGCTGCTTCTCGTACGACAGGCTGGCATCTCGGCTTCTGAGCACGGA
GAGAAAGTGGTGTGGTTCTGAGCACAGGCTGGCATCTCGGCTTCTGAGCACGGA
CGACAGCCACGCGCCGGAACTGGGGCTGCTGGACCAGATGGCGCTTGTGGCTGGTGC
AGGAGAACATCGCAGCCTCGGGGAGACCCAGGAAATGTGACCCTGTTGGCCAGTCGGCG
GGGGCCATGAGCATCTCAGGACTGATGATGTCACCCCTAGCCTGGGTCTCTCCATGGGC
CATTCCCAGAGTGGCACCGCGTTATTCAAGACTTTCATCACTAGTAACCCACTGAAAGTGG
CCAAGAACGTTGCCACCTGGCTGGATGCAACCACAACAGCACAGATCCTGGTAAACTGC
CTGAGGGCACTATCAGGGACCAAGGTGATGCGTGTCCAACAAGATGAGATTCTCCACT
GAACCTCCAGAGAGACCCGGAAGAGATTATCTGGTCCATGAGCCCTGTGGTGGATGGTGTGG
TGATCCCAGATGACCCATTGGTGTCTGACCCAGGGGAAGGTTCATCTGTGCCCTACCTT
CTAGGTGTCAACAAACCTGGAATTCAATTGGCTTGTGCTTATAATATCACCAAGGAGCAGGT
ACCACTTGTGGAGGAGTACCTGGACAATGTCAATGAGCATGACTGGAAGATGCTACGAA
ACCGTATGATGGACATAGTTCAAGATGCCACTTCGTGTATGCCACACTGCAGACTGCTCAC
TACCACCGAGAAACCCAATGATGGAAATCTGCCCTGCTGGCCACGCTACAACAAGGATGAA
AAGTACCTGCAGCTGGATTAACTACACAGAGTGGCATGAAGCTCAAGGAGAAGAACGATGGC
TTTTGGATGAGTGTACCAGTCTCAAAGACCTGAGAAGCAGAGGCAATTCTAAGGGTGGC
TATGCAGGAAGGAGCCAAAGAGGGTTGCCCTACCATCCAGGCCCTGGGAGACTAGCCA
TGGACATACCTGGGACAAGAGTTCTACCCACCCAGTTAGAACTGCGAGGAGTCCTGCT
GCCTCCAGGCCAAAGCTAGAGCTTGTGCTGTGGACCTGCACTGCCCTTCCAGCC
TGACATCCCATGATGCCCTACTTCAGTGTGACATCCAGTTAGGCCAGGCCCTGTCAAC
ACCACACTGTGCTCAGCTCCAGCCTCAGGACAACCTTTTCTTCAATCCT
CCCACCCCTCAATGTCTCTGTGACTCCTCTTATGGGAGGTGACCCAGACTGCCACTGC
CCCTGTCAGTGCACCCAGCTGGCATTACCATCCACTCTGCTCAACCTGTTCTGTCTGT
TCACATTGGCCTGGAGGCCTAGGGCAGGTTGTGACATGGAGCAAACCTTGGTAGTTGGGA
TCTCTCTCCCACCCACACTTATCTCCCCAGGGCACTCCAAAGTCTATACACAGGGTGG
TCTCTCAATAAGAAGTGTGATTAGAAAAAAAAAAAAA

FIGURE 91

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44179
<subunit 1 of 1, 545 aa, 1 stop
<MW: 58934, pI: 9.45, NX(S/T): 4
MSTGFSFGSGTTLGTTVAAGGTSTGGVFSFGTGTSSNPSVGLNFGNLGSTSTPATT SAPSSG
FGTGLFGSKPATGFTLGGTNTGALHTKRPQVVTKYGTLQGKQMHVGKTPIQVFLGVPPSRPP
LGILRFAPPEPPEPKGIRDATTYPPGWSLALSPGWSAVARSRLTATSASRVQASLLPQPLS
VWGYRCLQESWGQLASMYVSTRERYKWLRFSEDCLYLNVYAPARAPGDPQLPVMVWFPGGAF
IVGAASSYEGSDLAAREKVVLVFLQHRLGIFGFLSTDDSHARGNWGLLDQMAALRWVQENIA
AFGGDPGNVTLFGQSAGAMSISGLMMSPLASGLFHRAISQSGTALFRLFITSNPLKVAKKVA
HLAGCNHNSTQILVNCLRALS GTKVMRVSNKMRFLQLNFQRDPEEIIWSMSPVVDGVVI PDD
PLVLLTQGVSSVPYLLGVNNLEFNWLLPYNITKEQVPLVVEYLDNVNEHDWKMLRNRMMD
IVQDATFVYATLQTAHYHRETPMMGICPAGHATTRMKSTCSWILPQEWA
```

Important features:

Signal peptide:

amino acids 1-29

Carboxylesterases type-B serine active site.

amino acids 312-327

Carboxylesterases type-B signature 2.

amino acids 218-228

N-glycosylation sites.

amino acids 318-321, 380-383 and 465-468

FIGURE 92

GAGAACAGGCCTGTCAGGCAGGCCCTGCGCCTCCTATGCGGAGATGCTACTGCCACTGCT
GCTGTCCCTCGCTGCTGGCGGGTCCCAGGCTATGGATGGGAGATTCTGGATACGAGTGCAGG
AGTCAGTGATGGTGCCGGAGGGCCTGTGCATCTCTGTGCCCTGCTCTTCTCCTACCCCCGA
CAAGACTGGACAGGGTCTACCCCAGCTTATGGCTACTGGTTCAAAGCAGTGACTGAGACAAC
CAAGGGTGCCTCTGTGGCCACAAACCACCAAGAGTCGAGAGGTGAAATGAGCACCCGGGGCC
GATTCCAGCTCACTGGGGATCCGCCAAGGGAACTGCTCCTGGTGTAGAGACGCGCAG
ATGCAGGATGAGTCACAGTACCTCTTCGGGTGGAGAGAGGAAGCTATGTGACATATAATT
CATGAACGATGGGTTCTTCTAAAAGTAACAGTGCTCAGCTCACGCCAGACCCAGGACC
ACAACACCGACCTCACCTGCCATGTGACTTCTCCAGAAAGGGTGTGAGCGCACAGAGGACC
GTCCGACTCCGTGTGGCCTATGCCCCAGAGACCTTGTATCAGCATTACGTGACAACAC
GCCAGCCCTGGAGCCCCAGCCCCAGGGAAATGTCCCATACTGGAAGCCCCAAAAGGCCAGT
TCCTGCGGCTCCTCTGTGCTGACAGCCAGCCCCCTGCCACACTGAGCTGGTCTGCAG
AACAGAGTCTCTCTCGTCCCACCTGGGGCCCTAGACCCCTGGGCTGGAGCTGCCGG
GGTGAAGGCTGGGATTCAAGGGCCTACACCTGCCAGCGGAGAACAGGCTGGCTCCAGC
AGCGAGCCCTGGACCTCTGTGCACTATCCTCCAGAGAACCTGAGAGTGATGGTTCCCAA
GCAAACAGGACAGTCCTGGAAAACCTGGAACGGCACGTCTCCAGTACTGGAGGGCCA
AAGCCTGTGCCTGGTCTGTGTCACACACAGCAGCCCCCAGCCAGGCTGAGCTGGACCCAGA
GGGGACAGGTTCTGAGCCCCCTCCAGCCCTCAGACCCCCGGGTCTGGAGCTGCCTGGGTT
CAAGTGGAGCACGAAGGAGAGTTCACCTGCCACGCTGGCACCCACTGGGCTCCCAGCACGT
CTCTCTCAGCCTCTCGTGCACTATAAGAAGGGACTCATCTCAACGGCATTCTCCAACGGAG
CGTTTCTGGGAATCGGATCACGGCTCTTCTTCTCGCCTGCCCTGATCATCATGAAG
ATTCTACCGAAGAGACGGACTCAGACAGAAACCCCGAGGGCCAGGGTTCTCCCGGCACAGCAC
GATCCTGGATTACATCAATGTGGTCCCGACGGCTGGCCCCCTGGCTCAGAAGCGGAATCAGA
AAGCCACACCAACAGTCCTCGGACCCCTCTCCACCAAGGTGCTCCCTCCCCAGAATCAAAG
AAGAACCAAGAAAAAGCAGTATCAGTTGCCAGTTCCAGAACCCAAATCATCCACTCAAGC
CCCAGAATCCCAGGAGAGCCAAGAGGAGCTCCATTATGCCACGCTCAACTCCAGGCGTCA
GACCCAGGCCTGAGGCCCGGATGCCAAGGGCACCCAGGCGATTATGCAGAAGTCAAGTTC
CAATGAGGGCTCTTAGGCTTAGGACTGGACTTCCGCTAGGGAGGAAGGTAGAGTAAGAG
GTTGAAGATAACAGAGTGCAAAGTTCTCTCTCCCTCTCTCTCTCTCTCTCTCTCTCT
CTCTCTTCTCTCTCTTTAAAAAACATCTGCCAGGGCACAGTGGCTCACGCCTGTAATC
CCAGCACTTGGGAGGTTGAGGTGGCAGATGCCCTGAGGTGGAGTTCGAGACCAGCCTG
GCCAACTTGGTAAACCCGCTCTACTAAAAATACAAAAATTAGCTGGCATGGTGGCAGG
CGCCTGTAATCCTACCTACTTGGGAAGCTGAGGCAGGAGAACACTTGAACCTGGGAGACGG
AGGTTGCAGTGAGCCAAGATCACACCAATTGCACGCCAGCCTGGCAACAAAGCGAGACTCCA
TCTAAAAAAAAATCCTCAAATGGTTGGTGTGTAATCCCAGCACTTGGGAGGCTA
AGGTGGGTGGATTGCTTGAGGCCAGGAGTTGAGACCAAGCCTGGCAACATGGTAAACCC
ATCTCTACAAAAATACAAAACATAGCTGGCTTGGTGTGTCCTGTAAGTCCAGCTGT
CAGACATTAAACCAAGAGCAACTCCATCTGGAAATAGGAGCTGAATAAAATGAGGCTGAGACC
TACTGGCTGCATTCTCAGACAGTGGAGGCATTCTAAGTCACAGGATGAGACAGGAGGTCCG
TACAAGATAACAGGTATAAAGACTTGTGATAAAAACAGATTGCAAGTAAAGAAGCCAACCAA
ATCCCCACCAAAACCAAGTTGCCACGAGAGTGACCTCTGGTGTGTCCTCACTGCTACACTCCT
GACAGCACCATGACAGTTACAAATGCCATGGCAACATCAGGAAGTTACCCGATATGTCCCA
AAAGGGGGAGGAATGAATAATCCACCCCTGTTAGCAAATAAGCAAGAAATAACCATAAAA
GTGGGCAACCAGCAGCTAGGCCTGCTTGTATGGAGTAGCCATTCTTTGTTCCCTT
TACTTCTTAATAAACTTGCTTACCTTAAAAAA

FIGURE 93

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA54002
><subunit 1 of 1, 544 aa, 1 stop
><MW: 60268, pI: 9.53, NX(S/T): 3
MLLPLLLSSLLGGSQAMDGRFWIRVQESVMVPEGLCISVPCSFSYPRQDWGSTPAYGYWFK
AVTETTKGAPVATNHQSREVERMSTRGRFQLTGDPAKGNCSLVIRDAQMDESQYFFRVERGS
YVTYNFMNDGFFLKVTVL SFTPQDHN DLTCHVDFSRKGVSAQRTVRLRVAYAPRDLVIS
ISRDNTPALEPQPQGNVPYLEAQKGQFLRLCAADSQPPATLSWVLQRNLSSHPWGPRPL
GLELPGVKAGDSGRYTCRAENRLGSQQRALDLSVQYPHENLRVMVSQANRTVLENLGNGTSL
PVLEGQSLCLVCVTHSSPPARLSWTQRGQVLSPSQPSDPGVLELPRVQVEHEGEFTCHARHP
LGSQHVSLSLSVHYKKGLISTAFSNGAFLGIGITALLFLCLALIIMKILPKRRTQTETPRPR
FSRHSTILDYINVVPTAGPLAQKRNQKATPNSPRTPPPAGAPSPESKKNQKKQYQLPSFPEP
KSSTQAPESQESQEELHYATLNFPGVRPRPEARMPKGTQADYAEVKFQ

Important features:

Signal peptide:

amino acids 1-15

Transmembrane domain:

amino acids 399-418

N-glycosylation site.

amino acids 100-103, 297-300 and 306-309

Immunoglobulins and major histocompatibility complex proteins signature.

amino acids 365-371

FIGURE 94

TGAAGAGTAATAGTGGAAATCAAAAGAGTCACCGCAATGAACTGTTATTACTGCTGCGT
TTA
TATGTTGGAAATTCCCTCCTATGGCCTTGTCTGGAGCAACAGAAA
ACTCTCAAACAAAGA
AAAGTCAGCAGCCAGTGCATCTCATTGAGAGTGAAGCGTGGCTGGGTG
GAACCAATT
TTTGTACCAGAGGAATGAATACGACTAGTCATCACATCGGCCAGCTAAGATCTGATTAGA
CAATGGAAACAATTCTTCCAGTACAAGCTTTGGGAGCTGGAGCTGGAAAGTACTTTATCA
TTGATGAAAGAACAGGTGACATATATGCCATACAGAAGCTTGATAGAGAGGAGCGATCC
CT
TACATCTTAAGAGCCCAGGTAAAGACATCGCTACTGGAAGGGCTGTGGAAACCTGAGTCTGA
GTTGTCATCAAAGTTCCGGATATCAATGACAATGAACCAAATTCTAGATGAACCTTATG
AGGCCATTGTACCAGAGATGTCTCCAGAAGGAACATTAGTTATCCAGGTGACAGCAAGTGA
GCTGACGATCCCTCAAGTGGTAATAATGCTCGTCTCTACAGCTTACTCAAGGCCAGCC
ATATTTCTGTTGAACCAACAACAGGAGTCATAAGAATATCTCTAAAATGGATAGAGAAC
TGCAAGATGAGTATTGGGTAATCATTCAAGCCAAGGACATGATTGGTCAGCCAGGAGCGTTG
TCTGGAAACAACAAGTGTATTAATTAAACTTCAAGTGTAAATGACAATAAGCCTATATTAA
AGAAAGTTTATACCGCTTGACTGTCTGAATCTGCACCCACTGGACTTCTATAGGAACAA
TCATGGCATATGATAATGACATAGGAGAGAATGCAGAAATGGATTACAGCATTGAAGAGGAT
GATTGCAAAACATTGACATTACTAATCATGAAACTCAAGAAGGAATAGTTATATTAA
AAAGAAAGTGGATTGAGCACCAGAACACTACGGTATTAGAGCAAAAGTTAAAACCATC
ATGTTCCCTGAGCAGCTCATGAAGTACCAACTGAGGCTTCCACCACTTCATTAAGATCCAG
GTGGAAGATGTTGATGAGCCTCTTTCTCTCCATATTATGTATTGAAAGTTTG
AGAAACCCACAGGGATCATTGTAGGCCTGGTCTGCCACAGACCCAGACAATAGGAAT
CTCCTATCAGGTATTCTATTACTAGGAGCAAAGTGTCAATATCAATGATAATGGTACAATC
ACTACAAGTAACTCACTGGATCGTAAATCAGTGTCTGGTACAACCTAAGTATTACAGCCAC
AGAAAATACAATATAGAACAGATCTCTCGATCCACTGTATGTGCAAGTTCTTAACATCA
ATGATCATGCTCCTGAGTTCTCAATACTATGAGACTATGTTGAAATGCAGGCTCT
GGTCAGGTAACTCAGACTATCAGTGCAGTGGATAGAGATGAATCCATAGAACAGCACCATT
TTACTTTAATCTATCTGTAGAAGACACTAACAAATTCAAGTTTACAATCATAGATAATCAAG
ATAACACAGCTGTCTTGTACTAACAGAACTGGTTAACCTTCAAGAAGAACCTGTCTC
TACATCTCCATCTTAATTGCCGACAATGGAATCCGTACTTACAAGTACAAACACCCCTAC
CATCCATGTCTGTGACTGTGGTACAGTGGAGCACACAGACACTGCCAGTACCA
GGAGCTTGCTTCAAGACAGAAAGTTATCATTGCTATTCTCATTTGATTGATCATA
TTGGGTTATTTTGACTTGGGTTAAAACAACGGAGAAAACAGATTCTATTCTGA
GAAAAGTGAAGATTCAAGAGAAATATATTCCAATATGATGATGAAGGGGTGGAGAACAG
ATACAGAGGCCTTGATATAGCAGAGCTGAGGAGTAGTACCAATGCGGGAACGCAAGACT
CGGAAAACCACAAGCGCTGAGATCAGGAGCCTACAGGCAGTCTTGCAGTTGGCCCCGA
CAGTGCCTATTCAAGGAAATTCAATTCTGGAAAAGCTCGAAGAACGTAATAACTGATCC
GTGCTTCTTGTGATTCCCTCAGACCTACGCTTTGAGGGAACAGGGTATTAGCTGGATCC
CTGAGCTCCTTGAATCAGCAGTCTGATCAGGATGAAAGCTATGATTACCTTAATGAGTT
GGGACCTCGCTTAAAAGATTAGCATGCATGTTGGTCTGCAGTGCAGTCAAATAATTAGG
GCTTTTACCATCAAAATTAAAAGTCTAATGTGATTGCAACCCAATGGTAGTCTTAA
AGAGTTTGTGCCCTGGCTCATGGGGGAAAGCCCTAGTCTATGGAGTTCTGATTCC
CTGGAGTAAATACCTCATGGTATTTAAGCTACCTACATGCTGTCAATTGAAACAGAGATGTG
GGGAGAAATGTAACAAATCAGCTCACAGGCATCAATACAACCAAGATTTGAAGTAAAATAATG
TAGGAAGATATTAAAGTAGATGAGAGGACACAAGATGTAGTCGATCCTTATGCGATTATAT
CATTATTACTAGGAAAGAGTAAAATACCAACGAGAAAATTAAAGGAGCAAAATTG
CAAGTCAAATAGAAATGTACAAATCGAGATAACATTACATTCTATCATATTGACATGAAA
ATTGAAAATGTATAGTCAGAGAAATTTCATGAATTATTCCATGAAGTATTGTTCTTAT
TTAAA

FIGURE 95

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53906
><subunit 1 of 1, 772 aa, 1 stop
><MW: 87002, pi: 4.64, NX(S/T): 8
MNCYLLLRFMLGIPPLLWPCLGATENSQTKVKQPVRSHLRVKRGWVWNQFFVPEEMNTTSHH
IGQLRSDLNDGNNSFQYKLLGAGAGSTFIIDERTGDIYAIQKLDREERSLYILRAQVIDIAT
GRAVEPESEFVIKVSDINDNEPKFLDEPYEAIPEMSPEGTLVIQVTASDADDPSSGNARL
LYSLLQGQPYFSVEPTTGVIARISSKMDRELQDEYWVIIQAKDMIGQPGALSGTTSVLIKLSD
VNDNKPIFKESLYRLTVSESAPGTTSIGTIMAYDNDIGENAEMDYSIEEDDSQTFDIITNHE
TQEGIVILKKKVDFEHQNHYGIRAKVKNHHVPEQLMKYHTEASTTFIKIQVEDVDEPPLFLL
PYYVFEVFEETPQGSFVGVVSATDPDNRKSPIRYSITRSKVFNINDNGTITTSNSLDREISA
WYNLSITATEKYNIEQISSIPLYVQVLNINDHAPEFSQYYETYVCENAGSGQVIQTISAVDR
DESIEHHFYFNLSVEDTNNSSFTIIDNQDNTAVILTNRGFLQEEPVFYISILIADNGIP
SLTSTNTLTIHVCDCGDGSQTQCQYQELVLSMGFKTEVIIAILICIMIIFGFIFLTLGLKQ
RRKQILFPEKSEDFRENIFQYDDEGGGEEDTEAFDIAELRSSTIMRERKTRKTTSAEIRSLY
RQSLQVGPDSAIFRKFILEKLEEANTDPCAPPFDLQTYAFEGTGSLAGSLSSLESAVSDQD
ESYDYLNELGPRFKRLACMFGSAVQSNN
```

Important features:

Signal peptide:

amino acids 1-21

Transmembrane domain:

amino acids 597-617

N-glycosylation sites.

amino acids 57-60, 74-77, 419-423, 437-440, 508-511, 515-518,
516-519 and 534-537

Cadherins extracellular repeated domain signature.

amino acids 136-146 and 244-254

FIGURE 96

ATTTCAAGGCCAGCCATATTTNTGTTGAACCAACAACAGGAGTCATAAGAATATTTNTA
AAATGGATAGAGAACTGCAAGATGAGTATTGGGTAAATCATTCAAGCCAAGGACATGATTGGT
CAGCCAGGAGCGTTGTNTGGAACAAACAAGTGTATTAATTAAACTTCAGATGTTAATGACAA
TAAGCCTATATTTAAAGAAAGTTATACCGCTTGACTGTNTNTGAATCTGCACCCACTGGGA
NTTNTATAGGAACAATCATGGCATATGATAATGACATAGGAGAGAATGCAGAAATGGATTAC
AGCATTGAAGAGGATGATTGCAAACATTTGACATTATT

FIGURE 97

GCAACCTCAGCTTCTAGTATCCAGACTCCAGCGCCGCCCCGGCGCGAACCCAACCCGAC
CCAGAGCTTCTCCAGCGCGCGCAGCGAGCAGGGCTCCCGCCTTAACCTCCCTCCGCGGGG
CCCAGCCACCTTCGGGAGTCGGGTTGCCACCTGCAAACCTCTCCGCTTCTGCACCTGCCA
CCCCTGAGCCAGCGCGGGCCCCGAGCGAGTC**ATGG**CCAACGCAGGGCTGCAGCTGTTGGC
TTCATTCTCGCCTCCTGGGATGGATCGGCGCCATCGTCAGCACTGCCCTGCCCACTGGAG
GATTACTCCTATGCCGGCGACAACATCGTACCGCCCAGGCCATGTACGAGGGGCTGTGGA
TGTCCCTGCGTGTGCGAGAGCACCGGGCAGATCCAGTCAAAGTCTTGACTCCTGCTGAAT
CTGAGCAGCACATTGCAAGCAACCGTGCCTGATGGTGGTGGCATCCTCTGGAGTGAT
AGCAATCTTGTGGCCACCCTGGCATGAAGTGTATGAAGTGCTTGAAGACGATGAGGTGC
AGAAGATGAGGATGGCTGTCAATTGGGGTGCATATTCTTCTGCAGGTCTGGCTATTAA
GTTGCCACAGCATGGTATGGAATAGAATCGTCAAGAATTCTATGACCCATGACCCAGT
CAATGCCAGGTACGAATTGGTCAGGCCTCTTCACTGGCTGGGCTGCTGCTCTCTGCC
TTCTGGGAGGTGCCCTACTTGCTGTTCTGTCCCCGAAAAACAAACCTCTACCAACACCA
AGGCCCTATCCAAAACCTGCACCTTCAGCGGGAAAGACTACGTG**TGA**ACAGAGGCAAAAG
GAGAAAATCATGTTGAAACAAACCGAAAATGGACATTGAGATACTATCATTAAACATTAGGAC
CTTAGAATTGGGTATTGTAATCTGAAGTATGGTATTACAAAACAAACAAACAAAAAA
ACCCATGTGTTAAACTCAGTCTAAACATGGCTTAACTTCTTATTTATCTTCTTCCTCA
ATATAGGAGGGAAGATTTCATTGTATTACTGCTCCATTGAGTAATCATACTCAAAT
GGGGGAAGGGGTGCTCTTAAATATATAGATATGTATATACATGTTTTCTATTAAAAA
ATAGACAGTAAAATACTATTCTCATTATGTTGATACTAGCATACTTAAATATCTCTAAAAT
AGGTAATGTATTAAATTCCATATTGATGAAGATGTTATTGGTATATTCTTCTTCGTCC
TTATATACATATGTAACAGTCAAATATCATTACTCTCTTCAATTAGCTTGGGTGCCCTTG
CCACAAGACCTAGCCTAATTACCAAGGATGAATTCTTCATTCTCATGCGTGCCCTTT
CATATACTTATTTCATTACCATATCTTATAGCACTTGCATCGTTATTAGCCCTTAT
TTGTTTGTGTTCTATTGGCTCTATCTCCTGAATCTAACACATTTCTAGCCTACATTAA
GTTCTAAAGCCAAGAAGAATTATTACAAATCAGAACATTGGAGGCAAATCTTCATG
ACCAAAGTGATAAATTCTGTTGACCTCCCACACAATCCCTGACTCTGACCCATAGCACT
CTGTTTGTGTTGAAAATATTGTTCAATTGAGTAGCTGATGCTGATGCTGTTCCCCAGGGTGT
AACACAACTTATTGATTGATTAAGCTACTTATTCTAGTTATATCCCCCTAAACT
ACCTTTTGTCCCCATTCTTAATTGTATTGTTCCAAAGTGTAAATTATCATGCGTTTA
TATCTCTTAATAAGGTGTGGTCTGTTGTCGAACAAAGTGTAGACTTCTGGAGTGATA
ATCTGGTACAAATATTCTCTGTAGCTGTAAGCAAGTCACCTAATCTTCTACCTCTTT
TTCTATCTGCCAAATTGAGATAATGATACTTAACCAGTTAGAAGAGGTAGTGTGAATATTAA
TTAGTTATTAATTACTCTTATTCTTGAACATGAACATGCTATGTAGTGTCTTATTGCT
CAGCTGGCTGAGACACTGAAGAAGTCACTGAACAAAACCTACACACATACCTTCT
CACTGCCTTCCTCTCTACCAAGTCTATTCCACTGAACAAAACCTACACACATACCTTCT
GTGGTTCAGTGCCTTCCTCTACCAAGTCTATTCCACTGAACAAAACCTACGCACATAC
CTTCATGTGGCTCAGTGCCTTCCTCTACCAAGTCTATTCCATTCTCAGCTGTT
GACATGTTGTGCTGTTCCATTAAACAACGTCTACTTTCCAGTCTGTACAGAAC
CTATTCACCTGAGCAAGATGATGTAATGGAAAGGGTGTGGCACTGGTGTCTGGAGAAC
GATTGAGTCTGGTGTATCAATCACCCTGTGTTGAGCAAGGCATTGGCTGCTGTA
GCTTATTGCTTCACTGTAAGCGGTGGTTGTAATTCTGATCTCCCACACTGATG
TTGTGGGATCCAGTGAGATAGAATACATGTAAGTGTGTTGTAATTAAAAAGTGCTAT
ACTAAGGAAAGAATTGAGGAATTAACTGCATACGTTGGTGTCTTCAAATGTTGA
AAATAAAAAAAATGTTAAG

FIGURE 98

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52185
><subunit 1 of 1, 211 aa, 1 stop
><MW: 22744, pI: 8.51, NX(S/T): 1
MANAGLQLLGFIЛАFLGWIGAIVSTALPQWRIYSYAGDNIVTAQAMYEGLWMSCVSQSTGQI
QCKVFDSSLNLSSTLQATRALMVVGILLGVIAIFVATVGMKCMKCLEDEVQKMRMAVIGGA
IFLLLAGLAILVATAWYGNRIVQEFYDPMPTPVNARYEFGQALFTGWAASLCLGGALLCCSC
PRKTTSYPTPRYPKPAPSSGKDYV
```

Important features:

Signal peptide:

amino acids 1-21

Transmembrane domains:

amino acids 82-102, 118-142 and 161-187

N-glycosylation site.

amino acids 72-75

PMP-22 / EMP / MP20 family proteins

amino acids 70-111

ABC-2 type transport system integral membrane protein

amino acids 119-133

FIGURE 99

TTCTGGCAAACCGGGCTNCAGCTGTTGGCCTCATCTGCCTCCTGGATGGATGGC
GCCATCNTCACACTGCCCTCCCCAGTGGAGGATTTACTCCCTATGCTGGCGACAACATCG
TGACCGCCCAGCCATGTACGAGGGCTGTGGATGTCCNGCGTGTGCAGAGCACCGGGCAG
ATCCAGTGCAAAGTCCTTGACTCCTGCTGAATCTGAGCAGCACATTGCAAGCAACCGTGC
CTTGATGGTGGTTGGCATCCTCCTGGGAGTGATAGCAATCTTGTGGCACCGTTGGCATGA
AGTGTATGAAGTGCTTGGAAAGACGATGAGGTGCAGAAGATGAGGATGGCTGTCAATTGGGGC
GCGATATTCCTTCTGCAGGTCTGGCTATTTAGTTGCCACAGCATGGTATGGCAATAGAAN
CNTTCAACANTTCTATGACCCCTATGACCCAGTCATGCCAGGTACGAATTGGTCA
GGCTCTCTTCACTGGCTGGCTGCTGCTCTGCCTCTGGGAGGTGCCCTACTTGCT
GTTCCTGTCCC

FIGURE 100

ACCCCTGACCCAACGCGGCCCGACCGNTTCATGGCCAAACGCAGGNCCTCCAGCTGTTGG
GCTTCATTCTCCCCTCCTGGATGGACCAGGCGCCATCNTCAGCACTGCCCTGCCAGTG
GAGGATTACTCCTATNCCGGCNACACATCGTGANCGCCAGGCCNTGTACGAGGGGCTGT
GGATGTCCTGCGTGTGCGAGAGCACCGGGCAGATCCAGTGCAAAGTCTTGACTCCCTGCT
GAATCTGAGCAGCACATTGCAAGCAACCGTGCCTGATGGTGGTTGGCATCCTCCTGGAG
TGATAGCAATCTNNNTGCCACCGTTGTNNNTGAAGTGTATGAAGTGCTTGAAGACGATGA
GGTGCAGAAGATGAGGATGGCTGTCATTGGGGCGCGATATTCTTGCAGGTCTGGCTA
TTTAGTTGCCACAGCATGGTATGGCAATAGAACATCGTTCAAGAATTCTATGACCCTATGACCGA

FIGURE 101

GGGCCGACCATTATCCAACCGGGNTCACTGTTGGCTCATCTCCCTCCTGGATGAANCAGCGC
CATCNTCAGACTCCCTGCCCATGGAGATTTNNCCTATGCTGGCGACAACATCNTGACCCCC
AGCCATGTACGAGGGGCTTGAACGTCNGCGTGTGCAGANCACCGGGCAGATCCAGTGCAA
AGTCTTGACTCCTGCTGAATCTGNGCAGCACATTGCAGCAACCCNTGCCCTGATGGTGGT
TGGCATTCCCTGGGAGTGATAGCAATCTTGCCACCGTTGGCATGAAGTGTATGAAGT
GCTTGGAAAGACGATGAGGTGCAGAAGATGAGGATGGCTGTCATTGGGGCGCGATATTCCTT
CTTGCAGGTCTGGCTATTNNNNGTTGCCACAGCATGGTATGGCAATAGAACGTTCAAGAAT
TCTATGACCCCTATGACCCCAGTCAATGCCAGGTACGAATTGGTCAGGCTCTCTTCACTGGC
TGGGCTGCTGCTCTCTGCCCTCTGGGAGGTGCCCTACTTGCTGTTCCCTGCGA

FIGURE 102

ATTCTCCCTCCTGGATGGATCGCNCCACCGTCACATTGCCTTCCCCANTGGAGGATTNAC
TCCTATGCTGGCGACAACATCGTGACCCCCCAGGCCATTACCGAGGGCTTGGATGTCNT
GCNTGTCGCAGAGCACCGGGCAGATCCCAGTGCAAAGTCTTGACTCCTGCTGAATCTGAG
CAGCACATTGCAAGCAACCCGTGCCTTGATGGGTTGGCATCCTCCTGGAGTGATAGCAAC
CTTGTCGCCACCGTTGGCATGAAGTGTATGAAGTGCTTGGAAAGACGATGAGGTGCCAGAAG
ATGAGGATGGCTGTCATTGGGGCGCGATATTCTTGCAGGTCTGGCTATTAGTNGC
CACAGCATGGTATGGCAATAGANTNNTCNNNNNTCTATGACCCTATGACCCAGTCAATG
CCAGGTACGAATTGGTCAGGCTCTTCACGGCTGGCTGCTGCTCTCTGCCTCTG
GGAGGTGCCCTACTTGTGTTCCCTGTCCC

FIGURE 103

AGAGCACCGGCAGATCCCAGTNCAAAGTCTTGACCCTGCTGAATCTGAGCAGCACATTNC
AAGCAACCCCTTGCCTTGAAGGTGGTTGNCATCCCCCTGGAGTGAATAGCAATCTTGTG
GCCACC GTTGGCATGAAGTNTATGAAGTGCTT GGAAGACGATGAGGTGCAGAAGATGAGGAT
GGCTGT CATTGGGGCGCGAT ATTCTTGCAGGTCTGGCTATTTAGTNNCCACAGCAT
GGTATGGCAATAGNATNNNTCGNGGNTTCTATGACCTATGACCCAGTCATGCCAGGTAC
GAATTTGGTCAGGCTCTCTTCACTGGCTGGCTGCTGCTCTGCCTCTGGGAGGTGC
CCTACTTTGCTGTT CCTGTCCCCGAA

FIGURE 104

AGCAATGCCCTGCCCCAGTGGAGGATTAATTCTATGNTGGGACAACATTGTGACNGCCC
AGGCCATGTACGGGGGGCTGTGGATGTCCTGCGTGTGCAGAGCACCGGGCAGATCCAGTGC
AAAGTNTTGACTCCTGCTGAATTGAGCAGCACATTGCAAGCAACCCGTGCCTTGATGGT
GGTTGGCATCTTCCTGGGAGTGATAGCAATCTTGTGCCACCGTGGNAATGAAGTGTATGA
AGTGCTTCCAAGACGATGAGGTGCAGAAGATGAGGATGGCTGTCAATTGGGGCGCATAATT
CTTNTTGCAAGGTCTGGCTATTAGTTGCCACAGCATGGTATGCCAATAGAATNGTTCAAGA
ATTTTATGACCCTATGACCCAGTCAATGCCAGGTACGAATTGGTCAGGCTTNTTCAGTG
GCTGGGCTGCTGCTNTTCTGCCTNTGGGAGGTGCCCTANTTGCTGTTCCCTGCGAACCC

FIGURE 105

TCATAGGGGGCGCGATATTTTCTTGCAGGTNTGGTTATTTAGTTGCCACAGCATGGTA
TGGCAATAGAATCGTTCAAGAATTNTATGACCCTATGACCCAGTCAATGCCAGGTACGAAT
TTGGTCAGGCTCTNTCACTGGNTGGGCTGCTGCTCTNTNNGCCTNTGGGAGGTGCCCTA
CTTGCTGTTCTG

FIGURE 106

TTCCCTGGGATGGATCCGCCCATCNTCACATGCCCTGCCCNNTGGAGATTTACNCCTATGC
TGGCGAACAAACATCNTGACCGCCCAGGCCATGTACGAGGGCTGTGAATGTCCTGCGTGTC
CCAGAGCACCAGGGCAGATCCAGTGCAAAGTCTTGACTCCTGCTGAATCTGAGCAGCACAT
TGCAAGCAACCNTGCCCTGATGGTGGTGGCATCCTCCTGGAGTGATAGCAATCTTGTGG
CCACCGTTGGCATGAAAGTGTATGAAGTGCTTGGAAGACGATGAGGTGCAGAAGATGAGGAT
GGCTGTCATTGGGGCGCGATATTCTTCTTGCAAGGTCTGGCTATTTAGNNGCACAGCAT
GGTATGGCAATCAGACCCNNTCANAAACTCTATGACCTATGACCCAGTCAATGCCAGGTA
CGAATTGGTCAGGCTCTCTCACTGGCTGGCTGCTCTCTGCCTTCTGGAGGTG
CCCTACTTGCTGTTCCGTCCCCGAAAAACAACCTTTACCCACG

FIGURE 107

CGGGGCTGCAGCTGTTGGGCTTCATCTCGCTTCTGGGATGGAATCGGCCCATCGTCAGCA
CTGCCCTGCCCATGGAGGATTACTCNTATGCTGGCACAACATCGTACCCAGGCCA
TGTACGAGGGGCTGTGGATGTCNGCGTGTGCAGAGCACCGGGCAGATCCAGTGCAAAGTCT
TTGACTCCTTGCTGAATCTGAGCAGCACATTGCAAGCAACCNTGCCTTGATGGTGGTTGGCA
TCCTCCTGGGAGTGATAGCAATCTTGCCACCGTTGGCATGAAGTGTATGAAGTGCTTG
GAAGACGATGAGGTGCAGAAGATGAGGATGGCTGTCATTGGGGCGCGATATTCTTGC
AGGTCTGGCTATTNTAGTTGCCACAGCATGGTATGGCAATAGAACGTTCAAGAATTCTAT
GACCCTATGACCCCAGTCAATGCCAGGTACGAATTGGTCAGGCTCTCTCACTGGCTGGC
TGCTGCTTCTCTGCCTCTGGGAGGTGCCCTACTTGTGTTGCAGAA

FIGURE 108

GCCTGCCGTCACTGCCGGCACCGCGGCCCTGCCCTGCCCTCCGCCCTGCCCTGCAC
CGCGTAGACCGACCCCCCCCCTCCAGCGGCCACCCGGTAGAGGACCCCCGCCGTGCCCG
ACCGTCCCCGCCCTTTGTAAAACCTAAAGCAGGGCGCAGCATTACGTTCCGCCCGGT
GACCTCTCAGGGTCTCCCCGCCAAGGTGCTCCGCCGCTAACCGAACATGGCGAAGGTGGAG
CAGGTCTGAGCCTCGAGCCGAGCACGCTCAAATTCCGAGGTCCCTCACCGATGTTGT
CACCAACCTAAAGCTTGGCAACCCGACAGACGAAATGTGTGTTAACGGTAAGACTA
CAGCACCAACGTTAGGTACTGTGTGAGGCCAACAGCGGAATCATCGATGCAGGGCCTCAATT
AATGTATCTGTGATGTTACAGCCTTCGATTATGATCCAATGAGAAAAGTAAACACAAGTT
TATGGTCAGTCTATGTTGCTCCAATGACACTTCAGATATGGAAGCAGTATGGAAGGAGG
CAAACCGGAAGACCTTATGGATTAAAACCTAGATGTGTTGAATTGCCAGCAGAGAAT
GATAAACCACATGATGTAGAAATAAAATTATCCACAATGCATCAAAGACAGAAC
ACCAATAGTGTCTAAGTCTGAGTTCTTGGATGACACCGAACGTTAAGAAGGTTATGG
AAGAATGTAAGAGGCTGCAAGGTGAAGTTAGAGGCTACGGGAGGAGAACAGCAGTTCAAG
GAAGAAGATGGACTGCGGATGAGGAAGACAGTGCAGAGCAACAGCCCCATTTCAGCATTAGC
CCCAACTGGGAAGGAAGAACAGCCTTAGCACCCGGCTTGGCTCTGGTGGTTTGTCTTTA
TCGTTGGTGTATTATTGGGAAGATTGCTTGAGAGGTAGCATGCACAGGATGGTAAATTG
GATTGGTGGATCCACCATATCATGGGATTAAATTATCATAACCAGTGTAAAAGAAATT
AATGTATGATGACATCTCACAGGTCTGCCTTAAATTACCCCTCCCTGCACACACATACAC
AGATAACACACACAAAATATAATGTAACGATCTTTAGAAAGTTAAAATGTATAGTAACG
ATTGAGGGGGAAAAAGAATGATCTTATTAAATGACAAGGGAAACATGAGTAATGCCACAAT
GGCATATTGTAAATGTCATTAAACATTGGTAGGCCTGGTACATGATGCTGGATTACCTC
TCTTAAATGACACCCCTCCTCGCCTGGTGGCTGGCCCTGGGAGCTGGAGGCCAGCAT
GCTGGGAGTGCAGCTCCACACAGTAGTCCCCACGTGGCCACTCCGGCCAGGCTG
CTTCCGTGTCTCAGTTCTGTCCAAGCCATCAGCTCCGGACTGATGAACAGAGTCAGA
ACCCCAAAGGAATTGCACTGGCAGCATCAGACGTACTCGTCATAAGTGAGAGGCGTGTG
TGACTGATTGACCCAGCGCTTGGAAATAATGGCAGTGCTTGTCACTTAAAGGGACAA
GCTAAATTGTATTGGTCATGTAGTGAAGTCAAACGTATTAGAGATGTTAATGCATA
TTAACCTATTAAATGTATTCTCATCTCATGTTCTTATTGTACAAGAGTACAGTTAATGC
TCGCTGCTGCTGAACCTCTGTTGGTGAACGGTATTGCTGCTGGAGGGCTGTGGCTCCT
GTCTCTGGAGAGTCTGGTATGGAGGTGGGTTATTGGGATGCTGGAGAAGAGCTGCCA
GGAAGTGTGTTCTGGTCAGTAAATAACAACTGTCAAGGGAGGGAAATTCTCAGTAGTG
ACAGTCACACTAGGTTACCTTTAAATGAAGAGTAGTCAGTCTCTAGATTGTTCTTATA
CCACCTCTCAACCATTACTCACACTTCCAGCGCCCAGGTCCAAGTCTGAGCCTGACCTCCCC
TTGGGGACCTAGCCTGGAGTCAGGACAAATGGATGGCTGCAGAGGGTTAGAAGCGAGGGC
ACCAGCAGTTGTGGTGGGAGCAAGGGAAAGAGAGAAACTCTTCAGCGAATCCTCTAGTAC
TAGTTGAGAGTTGACTGTGAATTAAATTATGCCATAAAAGACCAACCCAGTTCTGTTGA
CTATGTAGCATCTGAAAAGAAAAATTATAATAAAAGCCCCAAAATTAAGAAAA

FIGURE 109

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53977
<subunit 1 of 1, 243 aa, 1 stop
<MW: 27228, pI: 7.43, NX(S/T): 2
MAKVEQVLSLEPQHELKFRGPFTDVVTNLKLGNPTDRNVCFKVTTAPRRYCVRPNSGIID
AGASINVSVMLQPFDYDPNEKSCHKFMVQSMFAPTDTSDMEAVWKEAKPEDLMDSKLRCVFE
LPAENDKPHDVEINKIISTTAKTETPIVSKSLSSSLDDTEVKVMEECKRLQGEVQLREE
NKQFKEEDGLRMRKTVQSNSPISALAPTGKEEGLSTRLLALVVLFFIVGVIIGKIAL
```

Important features:

Transmembrane domain:

amino acids 224-239

N-glycosylation site.

amino acids 68-71

N-myristoylation site.

amino acids 59-64, 64-69 and 235-240

FIGURE 110

GTCAGTCTTAGATTGCTTATCCCACCTTCAACCANTACTCACATTCNAGCGCCAG
GTCCANGTCTGAGCCTGACTCCCCCTGGGGACCTAGCCTGGAGTCAGGACAATGGNTCGGG
CTGCAGAGGNTTAGAAGCGAGGGCACCAGCAGTTGGGTGGGAGCAAGGGNNAGAGAAA
CTCTTCAGCGAACCTCTAGTACTAGTTGAGAGTTGACTGTGAATTAAATTATGCCATA
AAAGACNAACCCAGTTCTGTTGACTATGTAGCATCTGAAAAGAAAAATTATAATAAAGCC
CCAAAATTAAGAATTCTTTGTCATTTGTCACATTGCTCTATGGGGGAATTATTATTTT
ATCATTTTTATTATTTGCCATTGGAAGGTTAACTTTAAAATGAGC

FIGURE 111

TATTGTAAAGGCCATTTAAACCATTGGTAGGCCTGGTACATGATGCTGGATTACCTCCTT
AAATGACACCNTTCCTCGCCTGTTGGTGCCTGGCCNTTGGGGAGCTGGAGCCCCAGCATGCTG
GGGAGTGCCTCAGCTCCACACAGTAGTCCCCACGTGGCCACTCCGGCCCAGGCTGCTTT
CCGTGTCTTCAGTTCTGTCCAAGCCATCAGCTCCTGGACTGATGAACAGAGTCAGAACGCC
CAAAGGAATTGCCACTGTGGCAGCATCAGACGTACTCGTCATAAGTGAGAGGCGTGTGTTGA
CTGATTGACCCAGCGCTTGGAAATAATGGCAGTGCTTGTTCACTTAAAGGGACCAAGCT
AAATTGTATTGGTCATGTAGTGAAGTCAAACTGTTATTCAAGAGATGTTAATGCATATTTA
ACTTATTTAATGTATTCATCTCATGTTTCTTATTGTCACAAGAGTACAGTTAATGCTGCG
TGCTGCTGAACCTGTTGGGTGAACGGTATTGCTGGAGGGCTG

FIGURE 112

CCCTGGTGGTTTGTCTTAATTCGTTGGTGTATTNTGGAAAGATTGCTTAGAGGTA
GNATGCACCNGGCTGGTAAATTGGATTGGTGGATCCACCATATCCATGGGATTAAATTAT
CATAACCATGTGTAAAAAGAAATTAATGTATGACATNTCACAGGTATTGCCTTAAATT
ACCCATCCCTGNANACACATACACAGATAACACANANACAAATNTAATGTAACGATNTTTAG
AAAGTTAAAAATGTATAGTAAC

FIGURE 113

GGTGGCCCATTCCCGGCCAGGCTGCTTCGGTNTTCAGTTCTGTCCAAGCCATCAGCTCC
TTGGGACTGATGAACAGAGTCAGAAGCCAAAGGAATTGCACTGTGGCAGCATNAGACGTAC
TTGTNATAAGTGAGAGGCCTGTTGACTGATTGACCCAGCGCTTGGAAATAATGGCAGT
GCTTTGTTCANTTAAAGGGACCAAGCTAAATTGTATTGGTCATGTAGTGAAGTCAAACTG
TTATTCAAGAGATGTTAACATGCATATTTAANTTATTTAATGTATTTNATNTCATGTTTCTTA
TTGTCACAAGAGTACAGTTAACATGCTGCGTGCTGAANTNTGTTGGGTGAACGGTATTGC
TGCTGGAGGGCTGTGGGCTCCTCTGTCTTGGAGAGTCTGGTCATGTGGAGGTGGG

FIGURE 114

TGCTTCCGTCTCAGTTCTGTCCAAGCCATCAGCTCCTGGGACTTGATGAACAGAGTC
AGAAGCCCAAAGGAATTGCACGTGGCAGCATCAGACGTACTCGTCATAAGTGAGAGGGGTG
TGTTGACTGATTGACCCAGCGCTTGGAAATAATGGCAGTGCTTGTTCACTTAAAGGGAC
CAAGCTAAATTGTATTGGTTCATGTAGTGAAGTCAAACTGTTATTAGAGATGTTAACAGTAA
ATATTTAACTTATTAATGTATTCATCTCATGTTCTTATTGTCACAAGAGTACAGTTAA
TGCTGCGTGC

FIGURE 115

AAACCTTAAAAGTTGAGGGAAAAGAATGATCCTTATTAATGACAAGGGAAACNTGN
AATGCCACAATGGCATATTGTAAATGTCATTTAACATTGGTAGGCCTGGTACATGATGC
TGGATTACCTCTCTTAAATGACACCCTCCTCGCCTGGTCTGGCCCTGGGAGCTN
GAGCCCAGCATGCTGGGAGTGCGGTCTGCTCACACAGTAGTCCCCANGTGGCCANTCCC
GGCCCAGGCTGCTTCCGTCTTCAGTTCTGCCAAGCCATCAGCTCCTGGANTGATGA
ACAGAGTCAGAACCCAAAGGAATTGCANTGTGGCAGCATCAGANTANTNGTCATAAGTGA
GAGGCGTGTGTTGANTGATTGACCCAGCGCTTGGAAATAATGGCAGTGCTTGTTCAN
AAAGGGNCCAAGNTAAATTGTATTGGTCATGTAGTGAAGTCAAANTGTTATTCAAGAGATG
TTAATGCATATTAANTTATTAATGTATTCATNTCATGTTCTTATTGTCACAAGGGT
ACAGTTAATGCTGCGTGTGAANTCTGTTGGGTGAANTGGTATTGCTG

FIGURE 116

GGCCCTTGGGAGCTGGAGCCCAGCATGCTGGGAGTCAGCTCCACACAGTAGTCCC
CACGTGGCCCCTCCGGCCAGGCTGCTTCGTCTCAGTTCTGTCCAAGCCATCAGC
TCCTTGGACTGATGAACAGAGTCAGAACGCCAAAGGAATTGCAGTGCGCATCAGACG
TACTCGTCATAAGTGAGAGGGGTGTGTTGACTGATTGACCCAGCGCTTGAAATAATGGC
AGTGCTTGTTCACTTAAAGGGACCAAGCTAAATTGTATTGGTCATGTAGTGAAGTCAAA
CTGTTATTCAAGAGATGTTAATGCATATTAACCTATTAAATGTATTCATCTCATGTTTC
TTATTGTACAAGAGTACAGTTAATGCTGCGTGTGACTCTGTTGGGTGAACGGTAT
TGCTGCTGGAGGGCTGTGGCTCCTCTGTCTGGAGAGTCTGGTCATGTGGAGGTGGG

FIGURE 117

GCGAGCTCGGGTGCCTGGCCCGGCCCTGGCGGGCGGCCTCCGGCTCAGGCTGGCTGAGA
GGCTCCCAGCTGCAGCGTCCCCGCCCTCCTCGGGAGCTCTGATCTCAGCTGACAGTGCC
CTCGGGGACCAAACAAGCCTGGCAGGGTCTCACTTTGTTGCCAGGCTGGAGTTAGTGCA
TGATCATGTTACTGCAGCCTGACCTCCTGGGTTCAAGCGATCCTGCTGAGTAGCTGGGA
CTACAGGACAAAATTAGAAGATCAAATGGAAAATATGCTGCTTGGTTGATATTTTCACC
CCTGGGTGACCTCATTGATGGATCTGAAATGGAATGGGATTTATGTCAGGACTTGAGAAA
GGTACCCGGATTGTCACTGAAAGGACTTCCATCTCACAGCCCCGATTGAGGCAGATG
CTAAGATGATGGTAAATAACAGTGTGGCATCGAACATGCCAGAAAGAAACTCCAACCTCCAGC
CTTCTGAATTGGAGGATTATCTTCTATGAGACTGTCTTGAGAACATGGCACCCGAAACCTT
AACCAAGGGTGAAAGTTCAAGATTGGTTCTTGAGCCACTAAAATATCACCAACAAAGGGAG
TATCTGTTAGGAGAAAGAGACAGGTGTATGGCACCGACAGCAGGTTAGCATCTGGACAAA
AGGTTCTAACCAATTCCCTTCAGCACAGCTGTGAAGCTTCCACGGGCTGAGTGGCAT
TCTCATTCCCTCAGCATGTTCTAACTGCTGCCACTGTGTTAGTGGAAAGGACTATG
TCAAAGGGAGTAAAAGCTAAGGGTAGGGTTGTAAGATGAGGAATAAAAGTGGAGGCAAG
AACGTCGAGGTTCTAAGAGGGAGCAGGAGAGAACAGTAGTGGTGGTACCAAAAGAGAGGGTAC
CAGAGAGCATCTGCAGGAGAGAGCGAAGGGTGGAGAAGAAGAAAAAAATCTGGCCGGGGTC
AGAGGATTGCCAAGGGAGGCCTCCCTTCAGTGGACCCGGGTCAGAACATCCACATTCCG
AAGGGCTGGCACGAGGAGGCATGGGGACGCTACCTGGACTATGACTATGCTCTCTGGA
GCTGAAGCGTGCTCACAAAAGAAATACATGGAACCTTGGAAATCAGCCCAAGATCAAGAAA
TGCCTGGTGAATGATCCACTCTCAGGATTGATAACGATAGGGCTGATCAGTTGGTCTAT
CGGTTTGCACTGTCGACGAATCCAATGATCTCCTTACCAAAACTGCGATGCTGAGTC
GGGCTCCACCAGGTTGGGGCTATCTGCGTCTGAAAGATCCAGACAAAAAGAATTGGAAGC
GCAAAATCATTGCGGTCTACTCAGGGCACCAGTGGGTGGATGTCCACGGGTTCAAGAAGGAC
TACAACGTTGCTGTCGATCACTCCCTAAAATACGCCAGATTGCTCTGGATTACCG
GAACGATGCCAATTGTGCTTACGGTAACAGAGACCTGAAACAGGGCGGTATCATCTAAA
TCACAGAGAAAACCAGCTCTGCTTACCGTAGTGAGATCACTTCATAGGTTATGCCTGGACTT
GAACCTGTCAATAGCATTCAACATTTCAAAATCAGGAGATTTCGTCCATTAAAAAA
TGTATAGGTGCAGATATTGAAACTAGGTGGGACTTCAATGCCAAGTATATACTCTTCTTIA
CATGGTGTGAGTTTCAATTGTTAGAAAAATTGTTGCTTCTTAAAGAATAGACACACTTT
AAACCTTCAAACAGGTATTATAAAACATGTGACTCCTTAATGGACTTATTCTCAGGGTCC
TACTCTAAGAAGAATCTAATAGGATGCTGGTTGTATTAAATGTGAAATTGCATAGATAAA
GGTAGATGGTAAAGCAATTAGTATCAGAAATAGAGACAGAAAGTTACAACACAGTTGACTA
CTCTGAGATGGATCCATTAGCTCATGCCCTCAATGTTATATTGTTATCTGTTGGGTCT
GGGACATTAGTTAGTTTGAAGAATTCAAATCAGAAGAAAAGCAAGCATTATAAA
CAAAACTAATAACTGTTTACTGCTTAAGAAAATAACAAATTACAATGTGTTATTATTTAAAAA
TGGGAGAAATAGTTGTTCTATGAAATAAACCTAGTTAGAAATAGGGAAGCTGAGACATT
TAAGATCTCAAGTTTATTAACTAATCTCAAATATGGACTTTCATGTATGCATAGGG
AAGACACTCACAAATTATGAATGATCATGTGTTGAAAGCCACATTATTTATGCTACAT
TCTATGTATGAGGTGCTACATTAGGACAAAGAATTCTGTAATCTTTCAAGAAAGAGT
CTTTTCTCCTTGACAAATCCAGTTGTATGAGGACTATAGGGTGAATTCTCTGATTAG
TAATTAGATATGTCCTTCTTAAAGAATAAAATTATGAATATGA

FIGURE 118

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57253
<subunit 1 of 1, 413 aa, 1 stop
<MW: 47070, pI: 9.92, NX(S/T): 3
MENMLLWLIFFTPGWTLIDGSEMEWDFMWHLRKVPRIVSERTFHLTSPAFAEADAKMMVNTVC
GIECQKELPTPSLSELEDYLSYETVFENGTRTLTRVKVQDLVLEPTQNITTKGVSVRRKRQV
YGTDSRFSILDKRLFNTFPFSTAVKLSTGCSGILISPQHVLAAHCVHDGKDVKGSKKLRV
GLLKMRNKGKRRGSKRSRREASGGDQREGTREHLQERAKGGRRKKSGRGQRIAEGRPS
FQWTRVKNTHIPKGWARGGMGDATLDYDYALLELKRAHKKKYMELGISPTIKKMPGGMIHFS
GFDNDRADQLVYRFCSVSDESNDLLYQYCDAESGSTGSGVYRLKDSDKKNWKRKIIAVYSG
HQWVDVHGVQKDYNNAVIRTPLKYAQICLWIHGNDANCAYG
```

Important features:

Signal peptide:

amino acids 1-16

N-glycosylation sites.

amino acids 90-93, 110-113 and 193-196

Glycosaminoglycan attachment site.

amino acids 236-239

Serine proteases, trypsin family, histidine active site.

amino acids 165-170

FIGURE 119

AATGTGAGAGGGCTGATGGAAGCTGATAGGCAGGACTGGAGTGTAGCACCACTGGAT
GTGACAGCAGGCAGAGGAGCACTTAGCAGCTTATTCACTGTCCGATTCTGATTCCGGCAAGG
ATCCAAGCATGGAATGCTGCCCGTCGGCAACTCCTGGCACACTGCTCCTCTTCTGGCTTC
CTGCTCCTGAGTTCCAGGACCACGCTCCGAGGAGGACCGGGACGGCTATGGGATGCCTG
GGGCCCATGGAGTGAATGCTCACGCACCTGCAGGGGGAGGGGCTCCTACTCTTGAGGCGCT
GCCTGAGCAGCAAGAGCTGTGAAGGAAGAAATATCCGATACAGAACATGCAGTAATGTGGAC
TGCCCCACCAGAAGCAGGTGATTCCGAGCTCAGCAATGCTCAGCTCATAATGATGTCAAGCA
CCATGCCAGTTTATGAATGGCTCCTGTCTAATGACCTGACAACCCATGTTCACTCA
AGTGCCAAGCAAAGGAACAACCTGGTTGTTGAACACTGACACCTAAGGTCTTAGATGGTACG
CGTTGCTATACAGAACTTGGATATGTGCATCAGTGGTTATGCCAAATTGTTGGCTGCGA
TCACCACTGGGAAGCACCGTCAAGGAAGATAACTGTGGGGCTGCAACGGAGATGGTCCA
CCTGCCGGCTGGTCCGAGGGCAGTATAAATCCCAGCTCTCCGCAACCAAATGGATGATACT
GTGGTTGCACCCATGGAAGTAGACATATTGCCTTGTCTAAAAGGTCTGATCACTT
ATATCTGGAAACCAAAACCTCCAGGGACTAAAGGTAAAACAGTCTCAGCTCACAGGAA
CTTCCTTGTGGACAATTCTAGTGTGGACTTCCAGAAATTCCAGACAAAGAGATACTGAGA
ATGGCTGGACCACTCACAGCAGATTTCATTGTCAAGATTGTAACCTGGGCTCCGCTGACAG
TACAGTCCAGTCATCTTCTATCAACCCATCATCCACCGATGGAGGGAGACGGATTCTTTC
CTTGCTCAGCAACCTGTGGAGGGTTATCAGCTGACATCGGCTGAGTGCACGATCTGAGG
AGCAACCGTGTGGTGTGACCAACTGTCACTATTACCCAGAGAACATCAAACCAAACC
CAAGCTTCAGGAGTGCAACTTGGATCCTGTCCAGCCAGTGACGGATAACAGCAGATCATGC
CTTATGACCTCTACCATCCCCCTCCTCGGTGGAGGCCACCCATGGACCGCGTGCCTCC
TCGTGTGGGGGGGCATCCAGAGCCGGCAGTTCTGTGGAGGGAGGACATCCAGGGCA
TGTCACTTCAGTGGAAAGAGTGGAAATGCATGTACACCCCTAACAGATGCCATCGCGAGCCCT
GCAACATTTTGACTGCCCTAAATGGCTGGCACAGGAGTGGTCTCCGTGCACAGTGACATGT
GCCAGGGCCTCAGATACCGTGTGGCCTCTGCATCGACCATCGAGGAATGCACACAGGAGG
CTGTAGCCCCAAAACAAAGCCCCACATAAAAGAGGAATGCATCGTACCCACTCCCTGCTATA
AACCCAAAGAGAAACTCCAGTCAGGGCCAAGTTGCCATGGTCAAACAGCTCAAGAGCTA
GAAGAAGGAGCTGCTGTCAAGAGGAGCCCTCGTAAGTTGAAAGCACAGACTGTTCTATA
TTTGAAGACTGTTTGTAAAGAAAGCAGTGTCTCACTGGTTGAGCTTCATGGGTTCTGA
ACTAAAGTGTAAATCATCTCACCAAGCTTTGGCTCTCAAATTAAAGATTGATTAGTTCAA
AAAAAA

FIGURE 120

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58847
<subunit 1 of 1, 525 aa, 1 stop
<MW: 58416, pI: 6.62, NX(S/T): 1
MECCRATPGTLLLFLAFLSSRTARSEEDRGLWDAGPWSECSRTCGGASYSLRRCLS
SKSCEGRNIRYRTCSNVDCPPEAGDFRAQQCSAHNDVKHHGQFYEWLPVSNDPDNPCSLKCQ
AKGTTLVVELAPKVLGTRCYTESLDMCISGLCQIVGCDHQLGSTVKEDNCGVNGDGSTCR
LVRGQYKSQLSATKSDDTVVALPYGSRHIRLVLKGPDHLYLETKTLQGTKGENSLSTGTFL
VDNSSVDFQKFPDKEILRMAGPLTADFIVKIRNSGSADSTVQFIFYQPIIHRWRETDFFPCS
ATCGGGYQLTSAECYDLRSNRVVADQYCHYYPPENIKPKPKLQECNLDPASPASDGYKQIMPYD
LYHPLPRWEATPWTACSSSCGGGIQSRAVSCVEEDIQGHVTSVEEWKCMYTPKMPIAQPCNI
FDCPKWLAQEWSPTVTCGQGLRYRVVLCIDHRGMHTGGCSPKTYPHIKEECIVPTPCYKPK
EKLPVEAKLPWFKQAQELEEGAAVSEEPS
```

Important features:

Signal peptide:

amino acids 1-25

N-glycosylation site.

amino acids 251-254

Thrombospondin 1

amino acids 385-399

von Willebrand factor type C domain proteins

amino acids 385-399, 445-459 and 42-56

FIGURE 121

CGGACGCGTGGCGCGCTCGGAACCTCCGTGGAGGGCCGGTGGGCCCTCGGCCTGAC
AGATGGCAGTGGCCACTGCGGCAGTACTGGCGCTCTGGCGGGCGCTGTGGCTGGCG
GCCCGCCGGTTCGTGGGCCAGGGTCCAGCGCTGCGCAGAGGCGGGACCCGGCCTCAT
GCACGGGAAGACTGTGCTGATCACCGGGCGAACAGCGGCCTGGCCGCCACGCCGCCG
AGCTACTGCGCCTGGGAGCGCGGGTGATCATGGCTGCCGGACCGCGCGGCCAGGGAG
GCGGCGGGTCAGCTCCGCCGAGCTCCGCCAGGCCGGAGTGCAGCCTGGCGT
CAGCGGGGTGGCGAGCTCATAGTCGGAGCTGGACCTCGCCTCGCTGCCTCGGTGCGC
CCTTCTGCCAGGAAATGCTCAGGAAGAGCCTAGGCTGGATGTCTGATCAATAACGCAGGG
ATCTTCCAGTGCCCTTACATGAAGACTGAAGATGGTTGAGATGCAGTCGGAGTGAACCA
TCTGGGCACTTCTACTCACCAATCTTCTCCTGGACTCCTCAAAAGTCAGCTCCCAGCA
GGATTGTGGTAGTTCTTCAAACTTATAAATACGGAGACATCAATTGATGACTTGAAC
AGTGAACAAAGCTATAATAAAAGCTTTGTTAGCCGGAGCAAACGGCTAACATTCTTT
TACCAGGGAACTAGCCCGCCGCTTAGAAGGCACAAATGTCACCGTCAATGTGTTGCATCCTG
GTATTGTACGGACAAATCTGGGAGGCACATACACATTCCACTGTTGGTCAAACCACTCTTC
AATTGGTGTACGGCTGCTAAAGTAGGAACAAGGAGTAAAAGAGCTGTTATAAAACTGCATATCAG
TTATATCTGTGATCAGGAATGGTGTGGATTGAGAACTTGTACTTGAAGAAAAAGAATTG
ATATTGGAATAGCCTGCTAACAGGATACATGTGGTATTGGAGTTACTGAAAAATTATTT
TGGGATAAGAGAATTCAAGCAAAGATGTTAAATATATAGTAAGTATAATGAATAATAA
GTACAATGAAAAATACAATTATATTGAAACATTATAACTGGCAAGCATGGATGACATATTA
ATATTGTCAGAATTAAAGTGAACCAAAGTGCATCGAGAGGTTTCAAGTATCTTGAGTT
TCATGCCAAAGTGTAACTAGTTACTACAATGTTGGTGTGGAAATTATCTGC
CTGGTGTGCACACAAGTCTTACTTGAATAAATTACTGGTAC

FIGURE 122

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58747
<subunit 1 of 1, 336 aa, 1 stop
<MW: 36865, pI: 9.15, NX(S/T) : 2
MAVATAAAVLAALGGALWLAARRFVGPRVQRLRRGGDPGLMHGKTVLITGANSGLGRATAAE
LLRLGARVIMGCRDRARAEEAAGQLRRELRQAAECGPEPGVSGVGELIVRELDLASLRVRA
FCQEMLQEEPRLDVLINNAGIFQCPYMKTEDGFEMQFGVNHLGHFLLTNLLLGLLKSSAPSR
IVVVSSKLYKYGDINFDDLNEQSYNKSFCYSRSKLANILFTRELARRLEGTVNVNLHPG
IVRTNLGRHIHIPLLVKPLFNLVSWAFFKTPVEGAQTSIYLASSPEVEGVSGRYFGDCKEEE
LLPKAMDESVARKLWDISEVMVGLLK
```

Important features:

Signal peptide:

amino acids 1-21

Short-chain alcohol dehydrogenase family protein

amino acids 134-144, 44-56 and 239-248

N-glycosylation site.

amino acids 212-215 and 239-242

FIGURE 123

GGGGATTGTAAAGAGGAAGNACTGTGCCAAAGNTATGGATGAATCTGTTGCAAGAAAATTN
TGGGATATCAGTGAAGTGTGGTTNGCCTGCTAAAATAGGAACAAGGAGTAAAAGAGCTGTT
TATAAAACTGCATATCAGTTATATCTGTGATCAGGAATGGTGTGGATTGAGAACTTGTACT
TGAAGAAAAAGAATTGATATTGGAATAGCCTGNTAACAGGNAACATGTGGTATTGGAG
TTACTGAAAAATTATTTGGATAAGAGAATTTCAGCAAAGATGTTAAATATATAGT
AAGTATAATGAATAATAAGTACAATGAAAATACAATTATATTGTAAAATTATAACTGGCA
AGCATGGATGACATATTAATATTGTCAGAATTAAAGTGACTCAAAGTGCTATCGAGAGGTTT
TTCAAGTATCTTGAGTTCATGGCAAAGTGTAACTAGTTTACTACAATGTTGGTGT
TGTGTGGAAATTATCTGCCTGGCTT

FIGURE 124

GAGAGGACGAGGTGCCGCTGCCCTGGAGAATCCTCCGCTGCCGTGGCTCCGGAGCCCAGCC
CTTCCTAACCAACCAACCTAGCCCAGTCCAGCCGCCAGCGCCTGTCCCTGTACGGAC
CCCAGCGTTACCATGCATCCTGCCGTCTTCTATCCTTACCCGACCTCAGATGCTCCCTCT
GCTCCTGGTAACTGGGTTTTACTCCTGTAACAACGTAAAGTCTGCTACAGAGA
ATATAGATGAAATTAAACAATGCTGATGTTGCTTAGTAAATTATGCTGACTGGTGT
CGTTTCAGTCAGATGTTGCATCCAATTGGAGGAAGCTCCGATGTCATTAAGGAAGAATT
TCCAAATGAAAATCAAGTAGTGTGCTCCAGAGTTGATTGTGATCAGCACTCTGACATAGCCC
AGAGATAACAGGATAAGCAAATACCAACCCCTCAAATTGTTGTAATGGATGATGAAG
AGAGAATAACAGGGTCAGCGATCAGTGAAAGCATTGGCAGATTACATCAGGCAACAAAAAG
TGACCCCCATTCAAGAAATTGGGACTTAGCAGAAATCACCCTTGTGATCGCAGCAAAAGAA
ATATCATTGGATATTGGAGCAAAGGACTCGGACAACATAGAGTTGAAACGAGTAGCG
AATATTTGCATGACTGTGCCCTTCTTCATGGGATGTTCAAAACCGGAAAG
ATATAGTGGCGACAACATAATCTACAAACCACCAGGGCATTCTGCTCCGGATATGGTGTACT
TGGGAGCTATGACAATTGATGTGACTTACAATTGGATTCAAGATAATGTGTTCTCTT
GTCCGAGAAATAACATTGAAAATGGAGAGGAATTGACAGAAGAAGGACTGCCTTCTCAT
ACTCTTCACATGAAAGAAGATAACAGAAAGTTAGAAATATTCCAGAATGAAGTAGCTCGGC
AATTAATAAGTAAAAAGGTACAATAACCTTTACATGCCATTGTGACAAATTAGACAT
CCTCTTCTGCACATACAGAAAACCTCCAGCAGATTGTCTGTAATCGCTATTGACAGCTTAG
GCATATGTATGTGTTGGAGACTTCAAAGATGTATTAATTCTGGAAAACCTCAAGCAATTG
TATTTGACTTACATTCTGGAAAACCTGCACAGAGAATTCCATCATGGACCTGACCCAACGTGAT
ACAGCCCCAGGAGAGCAAGCCAAGATGTAGCAAGCAGTCCACCTGAGAGCTCCTCCAGAA
ACTAGCACCCAGTGAATATAGGTATACTCTATTGAGGGATCGAGATGAGCTTAAAAACTTG
AAAAACAGTTGTAAGCCTTCAACAGCAGCATCACCTACGTGGTGGAAATAGTAAACCTA
TATTTCTATAATTCTATGTGTTATTTGAAATAACAGAAAGAAATTAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 125

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57689
<subunit 1 of 1, 406 aa, 1 stop
<MW: 46927, pI: 5.21, NX(S/T): 0
MHPAVFLSLPDLRCSLLLVTWVFTPVTTEITSLATENIDEILNNADVALVNFYADWCRFSQ
MLHPIFEASDVIKEFPNENQVFARVDCDQHSDIAQRYRISKYPTLKLFRNGMMMKREYR
GQRSVKALADYIRQQKSDPIQEIRDLAETTLDRSKRNIIGYFEQKDSNDNYRVFERVANILH
DDCAFSAFGDVS KPERYSGDNIIYKPPGHSAPDMVYLGAMTNFDVTYNWIQDKCVPLVREI
TFENGEELEEGLPFLILFHMKEDTESLEIFQNEVARQLISEKGTINFLHADCDKFRHPLLH
IQKTPADCPVIAIDSFRHMYVFGDFKDVLIPGKLQFVFDLHSGKLHREFHHGPDTDTAPG
EQAQDVASSPPESSFQKLAPSEYRYTLLRDRDEL
```

Important features:

Signal peptide:

amino acids 1-29

Endoplasmic reticulum targeting sequence.

amino acids 403-406

Tyrosine kinase phosphorylation site.

amino acids 203-211

Thioredoxin family proteins

amino acids 50-66

FIGURE 126

ATTAAGGAAGAATTCCAAATGAAAATCAAGTAGTNTTGCCAGAGTNGATTGTGATCAGCA
CTCTGACATAGCCCAGAGATAAGCAAATACCCAACCCTCAAATTGTTCGTAATG
GGATGATGATGAAGAGAGAACAGGGGTCAAGCGATCAGTGAAAGCATTGGCAGATTA

FIGURE 127

AGAGGCCTCTGGAAAGTTGTCGGGGTGGTCCGCGCNGGAGGCCGGGTGAGAGGACNAGG
TGCCGCTGCCTGGAGAACATCCTCCGCTGCCGTGGCTCCGGAGCCCAGCCCTTCTTAACCC
AACCCAACCTAGCCNGTCCCAGCCGCCAGCGCCTGTCCTGTCNCGGANCCCAGCGTNACC
ATGCATCCTGCCGTCTCCTATCCTTACCCGACCTCAGATGCTCCCTCTGCTCCTGGTAAC
TTGGGTTTTACTCCTGTAACAACGTAAATAACNNGTCTGATAACNNAGAATATAGATGAAA
TTTTAAACNATGCTGATGTGGCTTAGTCATTTTATGCTGACTGGTGTCTTCAGTCAG
ATGTGGCATCCAATTGGAGGANGCTTCCGATGTCATTAAGGAAGAATTCCAAATGAAAA
TCAAGTAGTGTGTTGCCAGAGTTGATTGTGATCAGCACTCTGACATAGCCCAGAGATAAGGA
TAAGCAAATACCCAAACCTCAAATTGTTGTAATGGGATGATGATGAAGAGAGAATACAGG
GGTCAGCGATCAGTGAAAGCATTGGCAGATTACATCAGGC

FIGURE 128

GCCCACGCGTCCGATGGCGTTCACGTTCGCGGCCCTCTGCTACATGCTGGCGCTGCTGCTCA
CTGCCCGCCTCATCTTCGCCATTGGCACATTAGCATTGATGAGCTGAAGACTGAT
TACAAGAACCTATAGACCAGTGTAAATACCCCTGAATCCCCTGTACTCCCAGAGTACCTCAT
CCACGCTTCTCTGTGTATGTTCTTGCGAGCAGAGTGGCTTACACTGGGTCTCAATA
TGCCCCTCTGGCATATCATATTGGAGGTATATGAGTAGACCAGTGTAGTGGCCAGGA
CTCTATGACCTACAACCATCATGAATGCAGATATTCTAGCATATTGTCAAAGGAAGGATG
GTGCAAATTAGCTTTATCTTAGCATTCTTACTACCTATATGGCATGATCTATGTT
TGGTGAGCTTTAGAACAACACAGAAGAATTGGTCCAGTTAAGTGCATGCAAAAGCCAC
CAAATGAAGGGATTCTATCCAGCAAGATCCTGTCCAAGAGTAGCCTGTGGAATCTGATCAGT
TACCTTAAAAATGACTCCTTATTTTAAATGTTCCACATTTGCTGTGAAAGACTG
TTTCATATGTTACTCAGATAAAGATTTAAATGGTATTACGTATAAATTAAATATAAAAT
GATTACCTCTGGTGTGACAGGTTGAACTTGCACTTCTTAAGGAACAGCCATAATCCTCTG
AATGATGCATTAATTACTGACTGTCCTAGTACATTGAAAGCTTGTATAGGAACATTGTA
GGGCTCATTGGTTTCATTGAAACAGTATCTAATTATAAATTAGCTGTAGATATCAGGTGC
TTCTGATGAAGTGAATGTATCTGACTAGTGGAAACTTCATGGGTTCTCATCTGTC
ATGTCGATGATTATATGGATACATTACAAAAATAAAAGCGGAAATTCCCTCGCTT
GAATATTATCCCTGTATATTGATGAATGAGAGATTCCCATATTCCATCAGAGTAATAAA
TATACTTGCTTAATTCTTAAGCATAAGTAAACATGATATAAAATATGCTGAATTACTT
GTGAAGAATGCATTTAAAGCTATTTAAATGTGTTTATTGTAAGACATTACTTATTAAG
AAATTGGTTATTATGCTTACTGTTCTAATCTGGTGGTAAAGGTATTCTTAAGAATTGCAAGG
TACTACAGATTTCAAAACTGAATGAGAGAAAATTGTATAACCATCCTGCTGTTCTTAGT
GCAATACAATAAAACTCTGAAATTAAAGACTC

FIGURE 129

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA23330
<subunit 1 of 1, 144 aa, 1 stop
<MW: 16699, pI: 5.60, NX(S/T): 0
MAFTFAAFCYMLALLTAALIFFAIWHIIAFDELKTDYKNPIDQCTLNPLVLPEYLIHAFF
CVMFLCAAEWLTLGLNMPLLAYHIWRYMSRPVMSGPGLYDPTTIMNADILAYCQKEGWCKLA
FYLLAFFYYLYGMIYVLVSS
```

Important features:

Signal peptide:

amino acids 1-20

Type II transmembrane domain:

amino acids 11-31

Other transmembrane domain:

amino acids 57-77 and 123-143

FIGURE 130

ATTATAGCATTGATGAGCTGAAGACTGATTACAAGATCCTATAGACCAGTGTAAATACCTG
AATCCCCTTGTACTCCCAGAGTACCTCATCCACGCTTCTGTGTATGTTCTTGTC
AGCAGAGTGGCTTACACTGGGTCTCAATATGCCCTCTGGCATATCATATTGGAGGTATA
TGAGTAGACCAGTGTGAGTGGCCCAGGACTCTATGACCCCTACAACCACATGAATGCAGAT
ATTCTAGCATATTGTCAGAAGGAAGGATGGTCAAATTAGCTTTATCTCTAGCATT
TTACTACCTATATGGCATGATCTATGTTTGGTGAGCTCTAGAACACACAGAAGAATT
GGTCCAGTTAAGTGCATGCAAAAGCCACCAATGAAGGGATTCTATCCAGCAAGATCCTGT
CCAAGAGTAGCCTGTGGAATCTGATCAGTTACTTAAAAAATG

FIGURE 131

CGGACGCGTGGGGAAACCCTCCGAGAAAACAGCAACAAGCTGAGCTGCTGTGACAGAGGG
GAACAAGATGGCGCGCCGAAGGGAGCCTCTGGGTGAGGACCCAACTGGGCCTCCGCCGC
TGCTGCTGCTGACCATGGCCTGGCCGGAGGTTGGGACCGCTCGGCTGAAGCATTGAC
TCGGTCTTGGGTGATAACGGCGTCTGCCACCGGGCCTGTCAGTTGACCTACCCCTGCACAC
CTACCCCTAAGGAAGAGGGAGTTGTACGCATGTCAGAGAGGTTGCAGGCTGTTCAATTGTC
AGTTTGTGGATGATGGAATTGACTAAATCGAACTAAATTGGAATGTGAATCTGCATGTACA
GAAGCATAATTCCAATCTGATGAGCAATATGCTGCCATCTGGGTGCCAGAACAGCTGCC
ATTGCTGAAC TGAGACAAGAACAACTTATGTCCTGATGCCAAAAATGCACCTACTCTTC
CTCTAACTCTGGTGAGGT CATTCTGGAGTGACATGATGGACTCCGCACAGAGCTTCATAACC
TCTTCATGGACTTTTATCTCAAGCCGATGACGGAAAATAGTTATATTCCAGTCTAAGCC
AGAAATCCAGTACGCACCACATTGGAGCAGGAGCCTACAAATTGAGAGAACATCTCTAA
GCAAAATGTCCTATCTGCAAATGAGAAATTACAAGCGCACAGGAATTTCTGAAGATGGA
GAAAGTGATGGCTTTAAGATGCCCTCTCTTAACACTCTGGGTGGATTAACTACAACTCT
TGTCCTCTGGTGATGGTATTGCTTGGATTGTTGTGCAACTGTTGCTACAGCTGGAGC
AGTATGTTCCCTCTGAGAAGCTGAGTATCTATGGTACTGGAGTTATGAATGAACAAAAG
CTAAACAGATATCCAGCTTCTCTTGTTGTTAGATCTAAACTGAAGATCATGAAGA
AGCAGGGCCTCTACCTACAAAAGTGAATCTGCTCATTCTGAAATTTAAGCATTTC
AAAAGACAAGTGTAA TAGACATCTAAAATTCCACTCCTCATAGAGCTTTAAAATGGTTCA
TTGGATATAGGCCTTAAGAAATCACTATAAAATGCAAATAAGTTACTCAAATCTGTG

FIGURE 132

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA26847
<subunit 1 of 1, 323 aa, 1 stop
<MW: 36223, pI: 5.06, NX(S/T): 1
MAAPKGSLWVRTQLGLPPLLLTMAAGGSGTASAEAFDSVLGDTASCHRACQLTYPLHTYP
KEEELYACQRGCRLFSICQFVDDGIDLNRKLECESACTEAYSQSDEQYACHLGCQNQLPFA
ELRQEQLMSLMPKMHLLFPLTLVRSFWSDMMDSAQSFITSSWTFYLQADDGKIVIFQSKPEI
QYAPHLEQEPNLRESSLSKMSYLQMRNSQAHRNFLEDGESDGFLRCLSLNSGWILTTTLVL
SVMVLLWICCATTAVATEQYVPSEKLSIYGDLEFMNEQKLNRYPASSLVVVRSKTEDHEEAG
PLPTKVNLAHSEI
```

Important features:

Signal peptide:

amino acids 1-31

Transmembrane domain:

amino acids 241-260

N-glycosylation site.

amino acids 90-93

FIGURE 133

TTGGGTGATACGGCGTCTGCCACCGGGCCTGTCAGTTGACCTACCCCTGCACACCTACCC
TAAGGAAGAGGAGTTGTACGCATGTCAGAGAGGTTGCAGGCTGTTCAATTGTCAGTTG
TGGATGATGGAATTGACTTAAATCGAACTAAATTGGAATGTAATCTGCATGTACAGAAGCA
TATTCCAATCTGATGAGCAATATGCTTGCCATCTTGGTTGCCAGAACATCAGCTGCCATTGCG
TGAACGTGAGACAAGAACAACTTATGTCCCTGATGCCAAAAATGCACCTACTCTTCCTCTAA
CTCTGGTGAGGTCAATTCTGGAGTGACATGATGGACTCCGC

FIGURE 134

CACACTGGCCGGATCTTTAGAGTCCTTGACCTGACCAAGGGTCNGGAAAACAGCAACAA
GCTGAGCTGCTGTGACAGAGGAACAAGATGGCGCGCCGAAGGGAGCCTTGGGTGAGGAC
CCAACGGGGCTCCCGCGCTGCTGCTGACCATGGCCTGGCGAGGTTGGGGACCG
CTTCGGCTGAAGCATTGACTCGGTCTGGTGATACGGCGTCTGCCACCAGGGCTGTCAG
TTGACCTACCCCTTGACACCTACCCCTAACGAAAGAGGAGTTGTACGCATGTCAGAGAGGTTG
CAGGCTGTTTCAATTGTCAGTTGGATGATGGAATTGACTTAAATCGAACTAAATTGG
AATGTGAATCTGCATGTACAGAACATATTCCCAATCTGATGAGCAATATGCTTGCCATCTT
GGTGCAGAACATCAGCTGCCATTGCTGAACGTGAGACAAGAACAACTTATGTCCCTGATGCC
AAAAATGCACCTACTCTTCCTCTAACTCTGGTGAGGTATTCTGGAGTGACATGATGGACT
CCGC

FIGURE 135

GCGAGGTGGCGATCGCTGAGAGGCAGGAGGGCCGAGGCCGGCCTGGGAGGCAGGCCGGAGGT
GGGGCGCCGCTGGGCCGGCCGCACGGCTTCATCTGAGGGCGCACGCCCGGACCGAGC
GTGCGGACTGGCCTCCCAAGCGTGGGCGACAAGCTGCCGGAGCTGCAATGGCCGGCTG
GGGATTCTTGGCCTCCTGGCGCGTGTGGCTGCTCAGCTGGCCACGGAGAGGAGC
AGCCCCCGGAGACAGCGGCACAGAGGTGCTCTGCCAGTTAGTGGTTACTTGGATGATTGT
ACCTGTGATGTTGAAACCATTGATAGATTTAATAACTACAGGCTTCCCAGACTACAAAAA
ACTTCTTGAAAGTGACTIONTAGGTATTACAAGGTAAACCTGAAGAGGCCGTGTCCTTCT
GGAATGACATCAGCCAGTGTGGAAGAAGGGACTGTGCTGTCAAACCATGTCATCTGATGAA
GTTCCTGATGGAATTAAATCTGCGAGCTACAAGTATTCTGAAGAACCAATAATCTCATTGA
AGAATGTGAACAAGCTGAACGACTTGGAGCAGTGGATGAATCTCTGAGTGAGGAAACACAGA
AGGCTGTTCTCAGTGGACCAAGCATGATGATTCTCAGATAACTCTGTGAAGCTGATGAC
ATTCACTCCCCTGAAGCTGAATATGTAGATTGCTTCTTAATCCTGAGCGCTACACTGGTTA
CAAGGGACCAGATGCTTGGAAAATATGGAATGTCATCTACGAAGAAAATGTTAACGCCAC
AGACAATTAAAAGACCTTAAATCCTTGGCTCTGGTCAAGGGACAAGTGAAGAGAACACT
TTTACAGTTGGCTAGAAGGTCTCTGTGTAGAAAAAAAGAGCATTCTACAGACTTATATCTGG
CCTACATGCAAGCATTAAATGTGCATTGAGTGAAGATATCTTACAAGAGACCTGGTTAG
AAAAGAAATGGGGACACAACATTACAGAATTCAACAGCGATTGATGAAATTGACTGAA
GGAGAAGGTCCAAGAAGGCTTAAGAACCTGTATTTCTACTTAATAGAACTAAGGGCTT
ATCCAAAGTGTACCATTCTCGAGCGCCAGATTCAACTCTTACTGGAAATAAAATTC
AGGATGAGGAAAACAAATGTTACTTCTGGAAATACTTCATGAAATCAAGTCATTCCCTTG
CATTGATGAGAATTCACTTGTGGGATAAAAAGAAGCACACAAACTAAAGGAGGA
CTTCTGACTGCATTAGAAATATTCAAGAATTATGGATTGTGGTTGTTAAATGTC
GTCTGTGGGAAAGCTTCAGACTCAGGGTTGGGCACTGCTCTGAAGATCTTATTTCTGAG
AAATTGATAGCAAATATGCCAGAAAGTGGACCTAGTTATGAATTCCATCTAACAGACAAGA
AATAGTATCATTATTCAACGCATTGGAAGAATTCTACAAGTGTGAAAGAATTAGAAAATC
TCAGGAACCTGTTACAGAAATTCATAAAGAAAACAAGCTGATATGTGCTGTTCTGGAC
AATGGAGGCAGAAAGAGTGGATTTCATTCAAAGGCATAATAGCAATGACAGTCTTAAGCCAA
ACATTATATAAAGTTGCTTGTAAAGGAGAATTATATTGTTAAAGTAAACACATT
AAAAATTGTGTTAAGTCTATGTATAACTACTGTGAGTAAAGTAATACTTAAATAATGTG
GTACAAATTAAAGTTAAATTGAATAAAAGGAGGATTATCAAATTAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

FIGURE 136

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53974
<subunit 1 of 1, 468 aa, 1 stop
<MW: 54393, pI: 5.63, NX(S/T): 2
MGRGWGFLFGLLGAWLSSGHGEEQPETAAQRCFCQVSGYLDCTCDVETIDRFNNYRLF
PRIQLLESDYFRYYKVNLKRCPFWNDISQCGRRDCAVKPCQSDEVPDGIKSASYKYSEE
NNLIEECEQAERLGAVDESLSEETQKAVLQWTKHDDSSDNFCEADDIQSPEAEYVDLLNPE
RYTGYKGPAWKIWNVIYEENCFKPQTIKRPLNPLASGQGTSEENTFYSWLEGLCVEKRAFY
RLISGLHASINVHLSARYLLQETWLEKKWGNITEFQQRFDGILTEGEGPRLKNLYFLYLI
ELRALSKVLPFFERPFDQLFTGNKIQDEENKMLLEILHEIKSFPFHFDENSFFAGDKKEAH
KLKEDFRLHFRNISRIMDCVGCFKCRWGKLQTQGLGTALKILFSEKLIANMPESGPSYEFH
LTRQEIVSLFNAFGRISTSVKELENFRNLLQNIH

Important features:

Signal peptide:

amino acids 1-23

N-glycosylation site.

amino acids 280-283 and 384-387

Amidation site.

amino acids 94-97

Glycosaminoglycan attachment site.

amino acids 20-23 and 223-226

Aminotransferases class-V pyridoxal-phosphate

amino acids 216-222

Interleukin-7 proteins

amino acids 338-343

FIGURE 137

GCTGGAAATATGGATGTCATCTACGAGAAACTGTTTAAGCCACAGACAATTAAAAGACCTT
TAAATCCTTGGCTCTGGTCAAGGGACAAGTGAAGAGNACACTTTACAGTGGCTAGAA
GGTCTCTGTGTAGAAAAAAGAGCATTCTACAGACTTATCTGGCCTACATGCAAGCATTAA
TGTGCATTTGAGTGCAAGATATCTTTACAAGAGACCTGGTTAGAAAAGAAATGGGACACA
ACATTACAGAATTNAACAGCGATTGATGGAATTTGACTGAAGGAGAAGGTCCAAGAAGG
CTTAAGAACCTGTATTTCTACTTAATAGAACTAAGGGCTTATCCAAAGTGTACCATT
CTTNGAGCGCCCAGATTTCAACTNTTACTGGAAATAAAATTCAAGGATGAGGNAACAAAA
TGTTACTTTGGAAATACTTCATGAAATCAAGTCATTCCTTGCAATTGATGAGAATTCA
TTTTTTGCTG

FIGURE 138

CGGACGCGTGGCGGACGCGTGGCGGACGCGTGGTTGGAGGGGCAGGATGGGAGGGAA
AGTGAAGAAAACAGAAAAGGAGAGGGACAGAGGCCAGAGGACTCTCATACTGGACAGAAC
CGATCAGGCATGGACTCCCCTCGTCACTCACCTGTTGCCCCGTGTTCTGACAGG
TCTCTGCTCCCCTTAACCTGGATGAACATCACCCACGCCTATTCCCAGGGCCACCAGAAG
CTGAATTGGATACAGTGTCTAACACATGTTGGGGTGGACAGCGATGGATGCTGGTGGC
GCCCCCTGGATGGGCCTTCAGGCGACCGGAGGGGGACGTTATCGCTGCCCTGTAGGGGG
GGCCCACAATGCCCATGTGCCAAGGGCCACTTAGGTGACTACCAACTGGAAATTCATCTC
ATCCTGCTGTGAATATGCACCTGGGATGTCTCTGTTAGAGACAGATGGTGATGGGGATTC
ATGGTGAGCTAAGGAGAGGGTGGCAGTGTCTGAAGGTCCATAAAAGAAAAAGAGAA
GTGTGGTAAGGGAAAATGGTCTGTGTGGAGGGTCAAGGAGTTAAAACCCTAGAAAGCAA
AGGTAGGTAATGTCAGGGAGTAGTCTTCATGCCTCCTTCAACTGGGAGCATGTTCTGAGGGT
GCCCTCCCAAGCCTGGAGTAACTATTTCCCCCATCCCCAGGCCGTGCCCTCTTGGTCT
CGTGCTTGTGGCAGCTGTCTTCAGTTCTGGATATGTGCCGTGGATGCTTCATTCCA
GCCTCAGGGAAGCCGGCACCCACTGCCAACGTGAGCCAGAGGAAGGCTGAGTACTTGGTT
CCCAGAAGGAGATACTGGTGGAAAAGATGGGCAAAGCGGTATGATGCCTGGCAAAGGG
CCTGCATGGCTATCCTCATTGCTACCTAACGTGCTTGCAAAGCTCCATTTGGGAGGCCAAG
TTCAGACTCCTGGCCAGGTGTGGTGGCCACACCTGTAATTCTAGCACTTGGGAGGCCAAG
GTGGGCAGATCACTTGAGGTCAGGAGTTCAAGACCAGCCTGGCAACATGGTAAACTCCAT
CTCTACTAAAAAAAAAATAAAAAATTAGCTGGGTGCGCTAGTGCATGCCTGTAATCTC
ATCTACTCGGGAGGCTAAGACAGGAGACTCTCACTTCAACCCAGGAGGTGGAGGTTGCGGTG
AGCCAAAGATTGTGCCTCTGCACTCTAGCGTGGGTGACAGAGTAAGCGAGACTCCATCTCAA
AATAATAATAATAATTCAGACTCCTTATCAGGAGTCCATGATCTGGCCTGGCACAGTAA
CTCATGCCTGTAATCCAACATTTGGGAGGCCAACGCCAGGAGGATTGCTGAGGTCTGGAG
GTTTGAGACCAGCCTGGCAACATAGAAAGACCCATCTAAATAATGTTTAAAAAT

FIGURE 139

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57039
><subunit 1 of 1, 124 aa, 1 stop
><MW: 13352, pI: 5.99, NX(S/T): 1
MELPFVTHLFLPLVFLTGLCSPFNLDHHPRLFPGPPEAEFGYSVLQHVGGGQRWMLVGAPW
DGP SGD RRG DVY RCP VGG AHN APC AKG HLG DY QLG NSH PAV NMHL GMS LLE TDG DGG F MVS
```

Important features:

Signal peptide:

amino acids 1-22

Cell attachment sequence.

amino acids 70-73

N-glycosylation site.

amino acids 98-101

Integrins alpha chain proteins

amino acids 67-81

FIGURE 140

CACAGTTCCCCACCATCACTCNCNTCCCATTCTTCCAACTTTATTTTAGCTGCCATTGGGA
GGGGGCAGGATGGGAGGGAAAGTGAAGAAAACAGAAAAGGAGAGGGACAGAGGCCAGAGGAC
TTCTCATACTGGACAGAACCGATCAGGCATGGAACCTCCCTTGTCACTCACCTGTTCTTG
CCCCTGGTGGTCTGACAGGTCTCTGCTCCCCCTTAACCTGGATGAACATCACCCACGCCT
ATTCCCAGGGCCACCAGAAGCTGAATTGGATAACAGTGTCTTACAACATGTTGGGGGTGGAC
AGCGATGGATGCTGGTGGCGCCCCCTGGATGGCCTTCAGGCACCGGAGGGGGACGTT
TATCGCTGCCCTGTAGGGGGGCCACAATGCCCATGTGCCAAGGGCCACTTAGGTGACTA
CCAACCTGGAAATTCATCTCATCCTGCTGTGAATATGCACCTGGGATGTCTCTGTTAGAGA
CAGATGGTGATGG

FIGURE 141

AAAGTTACATTTCTCTGGAACTCTCCTAGGCCACTCCCTGCTGATGCAACATCTGGGTTTG
GGCAGAAAGGAGGGTGCTCGGAGCCGCCCTTCTGAGCTCCTGGGCCGCTCTAGAACAA
ATT CAGGCTCGCTCGACTCAGACCTCAGCTCCAACATATGCATTCTGAAGAAAGATGGCT
GAGATGGACAGAATGCTTATTGGAAAGAACAAATGTTCTAGGTCAAACAGTCTACCA
AATGCAGACTTCACAATGGTCTAGAAGAAATCTGGACAAGTCTTTCATGTGGTTTCT
ACGCATTGATTCCATGTTGCTCACAGATGAAGTGGCCATTCTGCCTGCCCTCAGAACCTC
TCTGTACTCTCAACCAACATGAAGCATCTCTGATGTGGAGCCCAGTGATCGGCCTGGAGA
AACAGTGTACTATTCTGTCGAATACCAGGGGAGTACGAGAGCCTGTACAGGCCACATCT
GGATCCCCAGCAGCTGGTGCTCACTCACTGAAGGTCTGAGTGTGATGTCAGTGACATC
ACGCCACTGTGCCATACAACCTTCGTGTAGGGCACATTGGGCTCACAGACCTCAGCCTG
GAGCATCCTGAAGCATCCCTTAATAGAAACTCAACCATTACCGACCTGGGATGGAGA
TCACCAAAGATGGCTTCCACCTGGTTATTGAGCTGGAGGACCTGGGGCCCAGTTGAGTTC
CTTGTGGCCTACTGGAGGAGGGAGCCTGGTGCCGAGGAACATGTCAAAATGGTGAGGAGTGG
GGGTATTCCAGTGCACCTAGAAACCATGGAGCCAGGGCTGCATACTGTGTGAAGGCCAGA
CATTGTAAGGCCATTGGGAGGTACAGCGCCTCAGCCAGACAGAACATGTGTGGAGGTGCAA
GGAGAGGCCATTCCCTGGTACTGGCCTGTTGCCTTGTGCTCATGCTGATCCTTGT
GGTGTGCCACTGTTGTCCTGGAAAATGGGCCGCTGCTCCAGTACTCCTGTTGCCGTGG
TGGCCTCCCAGACACCTGAAAATAACCAATTCAACCCAGAAGTTAACAGCTGCAGAAGG
GAGGAGGTGGATGCCGTGACGGCTGTGATGTCTCCTGAGGAACCTCCTCAGGGCTGGAT
CTCA**TAG**TTTGCAGAAGGGCCAGGTGAAGCCAGAACCTGGTCTGCATGACATGGAAACC
ATGAGGGACAAGTTGTTCTGTTTCCGCCACGGACAAGGGATGAGAGAACAGTAGGAAGA
GCCTGTTCTACAAGTCTAGAACCAACCATCAGAGGAGGGTGGTTGCTAACAGAACAC
TGACTGAGGCTTAGGGATGTGACCTCTAGACTGGGGCTGCCACTGCTGGCTGAGCAACC
CTGGAAAAGTGACTTCATCCCTCGGTCTAACAGTTCTCATCTGAATGGGGAATTACC
TACACACCTGCTAAACACACACACAGACTCTCTCTATATACACACGTACACATAAA
TACACCCAGCACTGCAAGGCTAGAGGGAAACTGGTGACACTCTACAGTCTGACTGATTGAG
TGTGTTCTGGAGAGCAGGACATAATGTATGATGAGAACATGATCAAGGACTCTACACACTGGGT
GGCTTGGAGAGGCCACTTCCAGAATAATCCTTGAGAGAAAAGGAATCATGGAGCAATGG
TGTGAGTTCACTCAAGCCCAATGCCGTGCAAGAGGGAAATGGCTTAGCGAGCTCTACAGT
AGGTGACCTGGAGGAAGGTACAGCCACACTGAAAATGGGATGTGCAACACGGAGGATC
CATGAACTACTGTAAGTGTGACAGTGTGTCACACTGCAGACAGCAGGTGAATGTATGT
GTGCAATGCGACGAGAACATGCAGAACATGTGCACTGTTGTTGCTCCTTTTC
TGTGTTGTAAGTACAGAACATTCAAGAAATAAAAGGCCACCTGCCAAAGCGGTAAAAAA
AAAAAAAAAA

FIGURE 142

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57033
<subunit 1 of 1, 311 aa, 1 stop
<MW: 35076, pI: 5.04, NX(S/T): 2
MQTFTMVLLEIWTSLFMWFFYALIPCLLTDEVAILPAPQNLSQLSTNMKHLLMWSPIAPGE
TVYYSVEYQGEYESLYTSHIWIPSSWCSLTEGPECDVTDDITATVPYNLRVRATLGSQTSAW
SILKHPFNRNSTILTRPGMEITKDGFLVIELEDLGPFQFEFLVAYWRREPGAEHVKMVRSG
GIPVHLETMEPGAAYCVKAQTFVKAIGRYSAFSQTECVEVQGEAIPLVLALFAFGFMLLILV
VVPLFVWKMGRLLQYS CCPVVVLPTDLKITNSPQKLISCRREEVDACATAVMSPEELLRAWIS
```

Important features:

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 230-255

N-glycosylation site.

amino acids 40-43 and 134-137

Tissue factor proteins.

amino acids 92-119

Integrins alpha chain proteins

amino acids 232-262

FIGURE 143

TCCTGCTGATGCACATCTGGTTGGAAAAGGAGGTTGCTCGAGCCGCCCTTAGCTT
CCTGGCCGGCTCTAGAACAAATTCAAGGCTCGCTGCGACTAGACCTCAGCTCCAACATATGCA
TTCTGAAGAAAGATGGCTGAGATGACAGAATGCTTATTTGAAAGAAACAATGTTCTAGG
TCAAACGTGAGTCTACCAAATGCAGACTTCACAATGGTTCTAGAAGAAATCTGGACAAGTCT
TTTCATGTGGTTTCTACGCATTGATTCCATGTTGCTCACAGATGAAGTGGCCATTCTGC
CTGCCCTCAGAACCTCTGTACTCTCAACCAACATGAAGCATCTCTGATGTGGAGGCCA
GTGATCGCGCCTGGAGAACAGTGTACTATTCTGTAATACCAGGGGAGTACGAGAGCCT
GTACACGAGCCACATCTGGATCCCCAGCAGCTGGTGCTCACTCACTGAAGGTCTGAGTGTG
ATGTCACTGATGACATCACGCCACTGTGCCATACAACCTTGTGTCAGGCCACATTGGC
TCACAGACCTCAGCCTGGAGCATCCTGAAGCATCCCTTAATAGAAACTCAACCATCCTTAC
CCGACCTGGATGGAGATCACAAAGATGGCTNCACCTGGTTATTGAGCTGGAGGACCTGG
GGCCCCAGTTGAGTTCCCTGGCCTANTGGAGGAGGGCGAACCCCTGCGCGCAAGGG
GTTNGCGAACCCCTTGCAGCCGCTGGGTATCTCTCGAGAAAAGAGAGGCCAATATGACCC
ACATACTCAATATGGACGAANTGCTATTGTCCACCTGTTGAGTGGCGCTGGTTGAT

FIGURE 144

CCCACGCGTCCGCCACCGTCCGAGGGACAAGAGAGAAGAGAGACTGAAACAGGGAGAAGA
GGCAGGAGAGGAGGAGGTGGGGAGAGCACGAAGCTGGAGGCCGACACTGAGGGAGGGCGGG
GGAGGTGAAGAAGGAGAGAGGGAGAAGAGGCAGGAGCTGGAAAGGAGAGAGGGAGGAGGAG
GAGGAGATGCCGGATGGAGACCTGGAGTTAGGTGGCTTGGAGAGCTTAATGAAAAGAGAAC
GGAGAGGAGGTGTGGGTTAGAACCAAGAGGTAGCCCTGTGGCAGCAGAAGGCTGAGAGGA
GTAGGAAGATCAGGAGCTAGAGGGAGACTGGAGGGTTCCGGAAAAGAGCAGAGGAAAGAGG
AAAGACACAGAGAGACGGGAGAGAGAAGAAGAGTGGTTGAAGGGCGGATCTCAGTCCCTG
GCTGCTTGGCATTGGGAACTGGGACTCCCTGTGGGAGGAGAGGAAAGCTGGAAGTCCT
GGAGGGACAGGGTCCCAGAAGGAGGGACAGAGGAGCTGAGAGAGGGGGCAGGGCGTTGG
CAGGGTCCCTCGGAGGCCTGGGATGGGGCTGCAGCTCGTCTGAGCGCCCTCGAGC
GCTGGTACTCTGGCTGCACTGGGGCAGCAGCTCACATCGGACCAGCACCTGACCCGAGG
ACTGGTGGAGCTACAAGGATAATCTCCAGGGAAACTCGTGCAGGGCTCCTTCTGGGC
CTGGTGAATGCAGCGTGGAGTCTGTGTGCTGTGGGAAGCGGCAGAGCCCCGTGGATGTGGA
GCTGAAGAGGGTTCTTATGACCCCTTCTGCCCTTAAGGCTCAGCAGTGGAGGAGAGA
AGCTCCGGGAACCTGTACAACACCGGCCGACATGTCTCCTGCCTGCACCCGACCT
GTGGTCAATGTGTCTGGAGGTCCCCTCCTTACAGCCACCGACTCAGTGAACCGCCTGCT
GTTGGAGCTCGCGACGGAGCCGGCTCGAACATCAGATCAACCACCAAGGGCTCTGCTG
AGGTGCAGCTCATTCACTCAACCAGGAACCTACGGGAATTCAAGCAGTGCCTCCCGGG
CCCAATGGCCTGGCATTCTCAGCCTCTTGTCAACGTTGCCAGTACCTCTAACCCATTCT
CAGTCGCCTCCTTAACCGCGACACCCTCACTCGCATCTCCTACAAGAATGATGCCTACTT
TTCAAGACCTGAGCCTGGAGCTCCTGTTCCCTGAATCCTCGGCTCATCACCTATCAGGC
TCTCTCAGCACCCGCCCTGCTCCGAGACTGTCACCTGGATCCTCATTGACCGGGCCCTCAA
TATCACCTCCCTCAGATGCACCTCGAGACTCCTGAGCCAGAATCCTCCATCTCAGATCT
TCCAGAGCCTCAGCGGTAAACAGCCGGCCCTGCAGCCCTGGCCACAGGGCACTGAGGG
AACAGGGACCCCGGCACCCCGAGAGGGCGCTGCCAGGGCCAACTACCGCCTGCATGTGGA
TGGTGTCCCCATGGTCGCTGA~~G~~ACTCCCCCTCGAGGATTGCACCCGCCGCTTAAGCCTC
CCCACAAGGCGAGGGAGTTACCCCTAAAACAAAGCTATTAAAGGGACAGAATACTTA

FIGURE 145

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA34353
<subunit 1 of 1, 328 aa, 1 stop
<MW: 36238, pI: 9.90, NX(S/T): 3
MGAAARLSAPRALVLWAALGAAAHHGPAPDPEDWWSYKDNLQGNFVPGPPFWGLVNAAWSLC
AVGKRQSPVDVELKRVLYDPFLPPLRLSTGGEKLRGTLYNTGRHVSFLPAPRPVVNVSGGPL
LYSHRLSELRLLGARDGAGSEHQINHQGFSAEVQLIHFNQELYGNFSAASRGPNGLAILSL
FVNVAESTSNPFLSRLLNRTDTITRISYKNDAYFLQDLSLELLFPESFGFITYQGSLSTPPCSE
TVTWILIDRALNITSLQMHSRLLSQNPPSQIFQSLSGNSRPLQPLAHRALRGNRDPRHPER
RCRGPNYRLHVDGVPHGR
```

Important features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 177-199

N-glycosylation site.

amino acids 118-121, 170-173 and 260-263

Eukaryotic-type carbonic anhydrases proteins

amino acids 222-270, 128-164 and 45-92

FIGURE 146

GGCGCCTGGTCTGCGCTACTGGCTGTACGGAGCAGGAGCAAGAGGTCGCCGCCAGCCTCCGCCAGCCTC
GTTCGTGTCCCCGCCCTCGCTCCTGCAGCTACTGCTCAGAACGCTGGGGGCCACCCCTGGCAGACTAACGAA
GCAGCTCCCTCCCACCCAAC TGCAAGGCTTAATTGGACGCTTGCCCTTCTCCAGGTTGAGGGAGC
CGCAGAGGCGAGGCTCGGTATTCTGCAGTCAGCACCCACGTCGCCGCCAGCCTCGGTGCTCAGGCCCTTC
GCGAGCGGGCTCTCGCTCGGTTCCCTGTGAAGGCTCTGGCGCTGCAGAGGCCGTCGGTTGGCT
CACCTCTCCCAGGAAACTCACA CACTGGAGAGC AAAAGGAGTGGAAAGAGCCTGTTGGAGATTTCTGGGAA
ATCC TGAGGTCA TT TGAAGTGTACCGCGGGAGTGGCTCAGAGTAACCACAGTGCTGTTCATGGCTAGA
GCAATTCCAGCCATGGTGGTCCCAATGCCACTTTATTGGAGAAAATTTGGAAAAATACATGGATGAGGATGGT
GAGTGGTGGATAGCCAAAACAGAGGAAAAGGGCATCACAGACAATGACATGCCAGAGTATTTGGACCTTCAT
AATAAATTACGAAGTCAGGTGTATCCAACAGCCTTAATATGGAGTATATGACATGGATGTAGAGCTGGAAAGA
TCTCGAGAATCTGGGCTGAAAGTTGCTGTGGAACATGGACCTGCAAGCTGCTTCCATCAATTGGACAGAAT
TTGGGAGCACACTGGGGAAAGATATA GGCCCCGACGTTCATGTACAATCGTGGTATGATGAAAGACTTT
AGCTACCCATATGAACATGAATGCAACCCATATTGTCATTAGGTGTTCTGGCCCTGTATGTACACATTATACA
CAGGTCGTGTGGCAACTAGTAACAGAACGTTGTGCCATTAAATTGTGTCAATAACATGAACATCTGGGGCAG
ATATGGCCCAAAGCTGTCTACCTGGTGTGCAATTACTCCCAAAGGAAACTGGTGGGCCATGCCCTTACAAA
CATGGGCGGCCCTGTTCTGCCACCTAGTTGGAGGGGCTGTAGAGAAAATCTGTGCTACAAAGAAGGG
TCAGACAGGTATTATCCCCCTCGAGAAGAGGAAACAAATGAAATAGAACGACAGCAGTCACAGTCCATGACACC
CATGTCGGACAAGATCAGATGATACTAGCAGAAATGAAGTCATAAGCGCACAGCAAATGTCCTAAATTGTTCT
TGTGAAGTAAGATTAAGAGATCAGTGCAGGAAACAACCTGCAATTAGGTACGAATGTCCTGCTGGCTTTGGAT
AGTAAGCTAAAGTTATTGGCAGTGTACATTATGAAATGCAATTCCAGCATCTGTAGAGCTGCAATTCTATTGGT
ATAATAGACAATGATGGTGGCTGGTAGATATCACTAGACAAGGAAGAACAGCATTATTTCATCAAGTCCAATAGA
AATGGTATTCAAACAATTGGCAAATATCAGTCTGTAATTCTTCAGTCTCTAAAGTAACAGTTCAAGGCTGTG
ACTTGTGAAACAACTGTGGAACAGCTCTGTCATTCTATAAGCCTGTTCACATTGCCAACAGGTATACTGTCCT
CGTAACTGTATGCAAGCAAATCCACATTATGCTCGTGTAAATTGGAAACTCGAGTTATTCTGATCTGTCAGTATC
TGCAGAGCAGCAGTACATGCTGGAGTGGTCAAAATCACGGTGGTTATGTTGATGTAATGCCGTGGACAAAAGA
AAGACCTACATTGCTTCTTTCAGAATGGAATTCTCAGAAAGTTACAGAACCTCCAGGAGGAAGGCATT
AGAGTGGTGTGTTG TGAAACTGAATACTTGGAGAGGACCATAAGACTATTCCAAATGCAATTCTGA
ATTGGTATAAAACTGTAACATTACTGTACAGAGTACATCAACTATTTCAGCCAAAAGGTGCCAAATGCATA
TAAATCTGATAAAACAAAGTCTATAAAATAAAACATGGGACATTAGCTTGGAAAAGTAATGAAAATATAATGG
TTTAGAAATCCTGTGTTAAATATTGCTATATTCTTAGCAGTTATTCTACAGTTAATTACATAGTCATGATT
GTTCTACGTTCATATATTATGGTGCTTGTATATGCCACTAATAAAATGAATCTAAACATTGAATGTGAATG
GCCCTCAGAAAATCATCTAGTCATTAAAATAATCGACTCTAAACTGAAAGAACCTTATCACATTTC
AGTTCAATGCTATGCCATTACCAACTCCAAATAATCTCAAATAATTCCACTTAATAACTGAAAGTTTTTC
TGTTAATTAGGCATATAGAATATTAAATTCTGATATTGCACTTCTTATTAAATAATCCTTTAATATC
CAAATGAATCTGTTAAATGTTGATTCTGGGAATGGCTTAAAATAAAATGTAATAAAAGTCAGAGTGGTGGT
ATGAAAACATTCTAGTGTATGTAAGTAAATGTTAGGGTTAAGCATGGACAGCCAGAGCTTCTATGTACTGTTA
AAATTGAGGTCACTATTCTTCTGGTATCTGGCAAATACTCCTGCAGGCCAGGAAGTATAATGAAAGAAGTT
GAACAAAGATGAACTAATGTTAGTACCTATAATGGTGTATATTGTTCTATGAAAATGTTAGCTGCTTGTAA
ATATTGCCATATCATGGTACCTATAATGGTGTATATTGTTCTATGAAAATGTTAGCTGCTTGTAA
AATCTGTTAAATGTTAGTCTGGTAAATTCTGCTGGTGGATTACATATTAAATTCTGCTGGTGG
TAAACATTAAATTAATCATGTTCAAAAAAA

FIGURE 147

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45417
<subunit 1 of 1, 500 aa, 1 stop
<MW: 56888, pI: 8.53, NX(S/T): 2
MKCTAREWLRTTVLFMARAI PAMVVPNATLLEKLLEKYMDEDGEWWIAKQRGKRAITDNDM
QSILDHLNKLRSQVYPTASNMEYMTWDVELERSAESWAESCLWEHGPASLLPSIGQNLGAHW
GRYRPPTFHVQSWYDEVKDFSYPYEHECNPYCPFRCSGPVCTHYTQVVWATSNRIGCAINLC
HNMMNIWGQIWPKAVYLVNCNYS PKGNWWGHAPYKHGRPCSACPPSFGGGCRENLCYKEGSDRY
YPPREEETNEIERQQSQVHDTHVRTRSSRNEVISAQQMSQIVSCEVRLRDQCKGTTCNR
YECPAGCLDSKAKVIGSVHYEMQSSICRAAIHYGIIDNDGGWVDITRQGRKHYFIKSNRNGI
QTIGKYQSANSFTVSKTVQAVTCETTVEQLCPFHKPASHCPRVYCPRNCMQANPHYARVIG
TRVYSDLSSI CRAAVHAGVVRNHGGYDVMPVDKRKYIASFQNGIFSESLQNPPGGKAFRV
FAVV
```

Important features:

Signal peptide:

amino acids 1-20

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7 protein

amino acids 165-186, 196-218, 134-146, 96-108 and 58-77

N-glycosylation site

amino acids 28-31

FIGURE 148

GC GGAGACAAGCGCAGAGCGCAGCGCACGCCACAGACAGCCCTGGCATCCACCGACGGCG
CAGCCGGAGCCAGCAGAGCCGAAGGCGCCCCGGCAGAGAAAGCCGAGCAGAGCTGGGT
GGCGTCTCCGGCCGCCGCTCCGACGGGCCAGGCCCTCCCCATGTCCCTGCTCCCACGCCG
CGCCCTCCGGTCAGCATGAGGCTCCTGGCGCGCTGCTCCTGCTGCTGGCGCTGT
ACACCGCGCGTGTGGACGGGTCAAATGCAAGTGCTCCCGAAGGGACCCAAAGATCCGCTAC
AGCGACGTGAAGAACGCTGGAAATGAAGCCAAAGTACCCGACTGCGAGGAGAACGATGGTTAT
CATCACCAAGAGCGTGTCCAGGTACCGAGGTCAAGGAGCACTGCCTGCACCCAAAGCTGC
AGAGCACCAAGCGCTTCATCAAGTGGTACAACGCCCTGGAACGAGAACGCGAGGGTCTACGAA
GAATAGGGTAAAAAACCTCAGAAGGGAAAACTCCAACCAACAGTTGGGAGACTTGTGCAAAGGA
CTTTCAGATTAAAGCCTTTC
TTTCTCACAGGCATAAGACACAAATTATATTGTTATGAAGCATTACCAACGGTCAG
TTTTACATTTATAGCTGCGTGCGAAGGCTTCCAGATGGGAGACCCATCTCTCTTGCT
CCAGACTTCATCACAGGCTGCTTTATCAAAAGGGAAAACTCATGCCTTCCTTTAA
AAAATGCTTTTGATTTGTCCACGTCACTATACATCTGAGCTTATAAGCGCCCGGA
GGAACAATGAGCTGGTGGACACATTCAATTGCAGTGTGCTCCATTCTAGCTGGGAAGC
TTCCGCTTAGAGGTCTGGCCTGGCGCCTCGGCACAGCTGCCACGGCTCTCTGGCTTATGGCG
GTCACAGCCTCAGTGTGACTCCACAGTGGCCCTGTAGCCGGCAAGCAGGAGCAGGTCTCT
CTGCATCTGTTCTCTGAGGAACTCAAGTTGGTGCCAGAAAATGTGCTTCATTCCCCCT
GGTTAATTTTACACACCCTAGGAAACATTCCAAGATCCTGTGATGGCGAGACAAATGATC
CTTAAAGAAGGTGTGGGTCTTCCAAACCTGAGGATTTCTGAAAGGTTCACAGGTTCAATA
TTTAATGCTTCAGAACGATGTGAGGTTCCAAACACTGTCAGCAAAACCTTAGGAGAAA
TAAAAATATGAATACATGCGCAATAACACAGCTACAGACACACATTCTGTTGACAAGGGAA
AACCTCAAAGCATGTTCTTCCCTCACCAACAGAACATGCAGTACTAAAGCAATATAT
TTGTGATTCCCCATGTAATTCTCAATGTTAAACAGTGCAGTCCTCTTGAAAGCTAAGAT
GACCATGCGCCCTTCCCTGTACATATACCCTTAAGAACGCCCCCTCCACACACTGCC
CAGTATATGCCGCATTGTACTGCTGTGTTATATGCTATGTACATGTCAGAAACCATTAGCAT
TGCATGCAGGTTCATATTCTTAAGATGGAAAGTAATAAAATATATTGAAATGTA
AAAAAA

FIGURE 149

MSLLP~~R~~RAPPVSMRLAALLLLLLALYTARVDGSKCKCSRKGPKIRYSDVKLEMKP~~K~~YPH
CEEKMVIITTKSVSRYRGQE~~H~~CLHPKLQSTKRFIKWYN~~A~~WNEKRRVYEE

Signal sequence:

amino acids 1-34

FIGURE 150

GCCCCAGGGACTGCTATGGCTTCTTGTTCACCCCGGCTGCGTCATGTTAAACTCCAATGTCCTCCTGTG
GTTAAGTGTCTTGCCATCAAGTCACCCATTGACAGCCAAGCACAGTATCCAGTTGTCAACACAAATTATGG
CAAATCCGGGCCTAACGAAACACCGTTACCCATGAGATCTTGGGTCAGTGGAGCAGTAATTAGGGTCCCCTA
TGCCTCACCCCCACTGGAGAGAGCGGTTTAGCCCCAGAACCCCCGTCCTCTGGACTGGCATCGAAATAC
TACTCAGTTGCTGTGCCCCAGCACCTGGATGAGAGATCCTACTGCATGACATGTCGCCATCTGGTT
TACCGCCAATTGGATACCTTGATGACCTATGTCAGATCAAATGAAGACTGCCCTACTTAAACATCTACGT
GCCACGGAAGATGGAGCCAACACAAGAAAAACGCAGATGATAACGAGTAATGACCCTGGTGAAGAGCGAAGA
TATTGATGATCAGAACAGTAAGAACCGCTATGGCTATATCCATGGGGATCTTACATGGAGGGCACCGCAA
CATGATTGACGGCAGCATTTGGCAAGCTACGAAACGTCATCGTGTACCACTAACCGTCTGGGAATACT
AGGGTTTTAAGTACCGGTGACCAGGCAGCAAAAGGCAACTATGGGCTCTGGATCAGATTCAAGCACTGCGGTG
GATTGAGGAGAATGTGGGAGCCTTGGGGGGACCCAAAGAGAGTGACCATCTTGGCTGGGGCTGGGGCTC
CTGTGTAGCCTGTTGACCTGTCCTACTCAGAAGGCTCTTCCAGAAGGCCATTCAGAGCGGCACCGC
CCTGTCAGCTGGCAGTGAACACCAGCCAGTACACTCGGATATTGGCAGACAAGGTCGGCTGCAACAT
GCTGGACACCAACGGACATGGTAGAATGCGCTGCGGAACAAGAACTACAAGGAGCTCATCCAGCAGACCATCACCC
GGCACCTACACATAGCCTCGGGCGGTGATGACGGCAGTCATCCCAGACGACCCAGATCCTGATGGA
GCAAGGCGAGTCCCTCAACTACGACATCATGCTGGCGTCAACCAAGGGAAAGGCCATGAAGTTCGTGGACGGCAT
CGTGGATAACGAGGACGGTGTGACGCCAACGACTTGTACTCTCCGTGTCACACTCGTGGACAACCTTACGG
CTACCCCTGAAGGGAAAGACACTTGGGGAGACTATCAAGTTCATGTCACAGACACTGGGCGATAAGGAAAACCC
GGAGACGGCGGGAAAACCTGGCTCTCTTACTGACCACCCAGTGGGTGGCCCCCGCCGTGGCCGGACCT
GCACCGCAGTACGGCTCCCCCACCTACTTCTATGCCTCATGTCACAGGAAATGAAAGCCCAGCTG
GGCAGATTGGCCATGGTAGAGGCCCCATGTCCTGGCATCCCCATGATCGGCTCACCGAGCTTCA
TTGTAACCTTCCAAGAACGACGTATGCTCAGCGCCGTGGCATGACCTACTGGACGAACCTGCCAAAACACTGG
TGATCCAATCAACCAGTCCCTCAGGATACCAAGTTCATCACACAAACCCAGCTTGAAGAAGTGGCCTG
GTCAAGTATAATCCAAGACAGCTATCTGCATATTGGCTTGAACCCAGAGTGAGAGATCACTACCGGGC
AACGAAAGTGGTTCTGGTTGAACTGTTCTCATTTGACAACACTGAACGAGATATTCAAGTATGTTCAAC
AACACAAAGGTTCTCACCAGACATGACATCATTTCCATGGCACCCGGCATCTCCGCCAAGATATGGCC
AACCAAAACGCCAGCAATCACTCCTGCCAACAACTCTAACGGACCTCACAAACAGGGCTGA
GGACACAACGTCCCTATTGAAACCAACGAGATTATTCCACCGAATTAGTGTACCATTGCCGTGGGGCGTC
GCTCTCTCCTCAACATTTAGCTTGGCGCTGTACTACAAAAGGACAAGAGGCCATGAGACTCACAG
GCGCCCCAGTCCCCAGAGAAACACCAAAATGATATGTCACATCCAGAACGAAGAGATCATGTCCTGAGAT
GAAGCAGCTGGAACACGATCAGAGTGTGAGTCGCTCAGGCACACACTGAGGCTCACCTGCCAGA
CTACACCCCTACGCTGCCGGTGCAGATGACATCCACTTATGACGCCAACACCATCACCATTGCCGTGGGGCGTC
CACACTGACGGGATGCAGCTTGCACACTTTAACACCTTCAGTGGAGGACAAAACAGTACAAATTACCCCA
CGGACATTCCACCACTAGAGTTAGTTGCCCTATTCCCTCTGCCCTACCGCTCAGCAACAT
AGAAGAGGGAAAGGAAAG
GACTTAAGACAAAAATGCAAAAGGCACTCATCCCATCCGGCAGACCCCTATGTTGGTGTGTTCCAGTATTAC
AAGATCAACTTGACCCCTGTGAAATGTGAGAAGTACACATTCTGTAAATAACTGCTTAAAGATCTCTACCA
CTCCAATCAATTGTTAGTGTGATAGGACATCACATTCAAGGCCCCGGTGTGTTCCAACGTCATGGAAGCAGCT
GACACTCTGAAACTCAGCCAAGGACACTTGATATTTTAATTACAATGGAAGTTAAACATTCTTGTG
CACACAATGGATGGCTCCTTAAGTGAAGAAAGAGTCAATGAGATTGCCCAGCACATGGAGCTGTAATCCAG
AGAGAAGGAAACGTAGAAATTATTAAAAGAATGGACTGTGCGAGCGAAATCTGTACGGTTCTGTGCAAAGAG
GTGTTTGCCAGCCTGAACTATATTAGAGACTTTGT

FIGURE 151

MLNSNVLLWLTAIKFTLIDSQAQYPVVNTNYGKIRGLRTPLPNEILGPVEQYLGVPYASP
PTGERRFQPPEPPSSWTGIRNTTQFAAVCPQHLDERSLLHDMLPIWFTANLDTLMTYVQDQN
EDCLYLNIYVPTEDGANTKKNADDITSNDRGEDEDIHDQNSKKPVMVYIHGGSYMEGTGNMI
DGSILASYGNVIVITINYRLGILGFLSTGDQAAKGNYGLLDQIQALRWIEENVGAFGGDPKR
VTIFGSGAGASCVSLLTLSHYSEGLFQKAIIQSGTALSSWAVNYQPAKYTRILADKVGCNML
DTTDMVECLRKNKYKELIQQTITPATYHIAFGPVIDGDVI PDDPQILMEQGEFLNYDIMLGV
NQGEGLKFVDGIVDNEDGVTPNDFDFSVSNFVDNLYGYPEGKDTLRETIKFMYTDWADKENP
ETRRKTLVALFTDHQWVAPAVAADLHAQYGSPTYFYAFYHHCQSEMKPSWADSAHGDEVPYV
FGIPMIGPTELFSCNF SKNDVMLS A VVMTYWTNF A KTGDPNQPV QDTKFIHTKP NR FEEVA
WSKYNPKDQLYLHIGLKPRVRDHYRATKVAFWLELVPHLHN LNEIFQYVSTTKVPPPDMTS
FPYGTRRSPAKIWPTTKRPAITPANNPKHSKDPHKTGPEDTTVLIETKRDYSTELSVTIAVG
ASLLFLNILAFAALYYKKDKRRHETHRRPSPQRNTTNDIAHIQNEEIMSLQMKQLEHDHECE
SLQAHDTLRLTCPPDYTLR RSPDDIPLMTPNTITMIPNTLTGMQPLHTFNTFSGGQN STN
LPHGHSTTRV

Signal sequence:

amino acids 1-24

Transmembrane domains:

amino acids 189-204, 675-692

FIGURE 152

GGGAAAG**ATGGCGCGACTCTGGGACCCCTGGGTCTGGCAGCAGTGGCGGCATGTTGT**
CGGCTCGGGATGGGTCCAGGATGTTACTCCTTCTTGTGGGTCTGGCAGGGCCA
CAGCAAGTCGGGGCGGGTCAAACGTTGAGTACTGAAACGGGAGCACTCGCTGTCGAAGCC
CTACCAGGGTGTGGGCACAGGCAGTCCTCACTGTGGAATCTGATGGCAATGCCATGGTGA
TGACCCAGTATATCCGCCTAACCCAGATATGCAAAGTAAACAGGGTGCCTGTGGAACCGG
GTGCCATGTTCCCTGAGAGACTGGAGTTGCAAGGTGACTTCAAAATCCATGGACAAGGAAA
GAAGAATCTGCATGGGATGGCTGGCAATCTGGTACACAAAGGATCGGATGCAGCCAGGGC
CTGTGTTGAAACATGGACAAATTGTGGGCTGGGAGTATTGTAGACACCTACCCAAAT
GAGGAGAAGCAGCAAGAGCGGGTATTCCCTACATCTCAGCCATGGTAACAAACGGCTCCCT
CAGCTATGATCATGAGCGGGATGGCGGCCTACAGAGCTGGGAGGCTGCACAGCATTGTCC
GCAATCTCATTACGACACCTCCTGGTATTGCTACGTCAAGAGGCATTGACGATAATG
ATGGATATTGATGGCAAGCATGAGTGGAGGGACTGCATTGAAGTGCCGGAGTCCGCCGTGCC
CCGGGCTACTACTTCGGCACCTCCTCCATCACTGGGATCTCTCAGATAATCATGATGTCA
TTTCTTGAAGTTGTTGAACGTGACAGTGGAGAGAACCCCAGAAGAGGAAAAGCTCCATCGA
GATGTGTTCTGCCCTCAGTGGACAATATGAAGCTGCTGAGATGACAGCTCCACTGCCGCC
CCTGAGTGGCCTGCCCTCTCCTCATCGTCTTTCTCCCTGGTGTGTTCTGTATTGCCA
TAGTCATTGGTATCATACTCTACAACAAATGGCAGGAACAGAGCCAAAGCGCTCTACT**TGA**
GCCCTCCTGCTGCCACCACTTTGTGACTGTCACCCATGAGGTATGGAAGGAGCAGGCACTG
GCCTGAGCATGCAGCCTGGAGAGTGTCTCTAGCAGCTGGTGGGACTATATTCTG
TCACTGGAGTTTGAATGCAGGGACCCCGCATTCCATGGTGTGCATGGGACATCTAATC
CTGGTCTGGGAAGCCACCCACCCAGGGCAATGCTGCTGATGTCCTTCCCTGCAGTCC
TTCCATGTGGAGCAGAGGTGTGAAGAGAATTACGTGGTGTGACTCAGAAGGCCCTCTACTCAGTTTG
AATCCACAAAGAATTAAAAACTGGTAACACCACAGGCTTCTGACCATCCATTGTTGGGTT
TTGCATTGACCAACCCCTGCCTACCTGAGGAGCTTCTTGAAACCAGGATGGAAACT
TCTCCCTGCCCTACCTCCTTCACTCCATTGTCCTCTGTGTGCAACCTGAGCTG
GGAAAGGCATTGGATGCCTCTGTGGGGCTGGGCTGCAGAACACACCTGCGTTCAC
TGGCCTTCATTAGGTGGCCCTAGGGAGATGGCTTCTGCTTGGATCACTGTTCCCTAGCAT
GGGTCTGGCTATTGGCATGTCCTCCAAATCAAGTCTCTCAGGCCCTCAGTG
AAGTTGGCTAAAGGGTGGTGTAAAAATCAAGAGAAGCCTGGAAGACATCATGGATGCCATG
GATTAGCTGTGCAACTGACCAGCTCAGGTTGATCAAACCAAAAGCAACATTGTCATGTG
GTCTGACCATGTGGAGATGTTCTGGACTTGCTAGAGCCTGCTTAGCTGCATGTTGTAGT
TACGATTTGGAAATCCACTTGTAGTGCTGAAAGTGTAAAGGAAGCTTCTTACACCTT
GGGCTGGATATTGCCAGAGAAGAAATTGGCTTTTTCTTAATGGACAAGAGACAGT
TGCTGTTCTCATGTTCCAAGTCTGAGAGCAACAGACCCCTCATCATCTGTCCTGGAGAGTT
CACTGTCATTGAGCAGCACAGCCTGAGTGCTGGCCTCTGTCAACCCATTTCACACTGCCCTA
TTGACAAGGGTTACATGCTGCTCACCTACTGCCCTGGGATTAATCAGTTACAGGCCAG
AGTCTCCTGGAGGGCTGGAACTCTGAGTCCTCTATGAACCTCTGTAGCCTAAATGAAAT
TCTAAAATACCGATGGAACAAAAAAAGGGCGGCCGACTCTAGAGTCG
ACCTGCAGTAGGGATAACAGGGTAATAAGCTGGCCGCATGG

FIGURE 153

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50911
><subunit 1 of 1, 348 aa, 1 stop
><MW: 39711, pI: 8.70, NX(S/T): 1
MAATLGPLGSWQQWRRCLSARDGSRMLLLLLLGSGQGPQQVGAGQTFEYLKREHSLSKPYQ
GVGTGSSSIWNLMGNAMVMTQYIRLTPDMQSKQGALWNRVPCFLRDWELQVHFKIHGQGKKN
LHGDSLAIWYTKDRMQPGPVFGNMDKFVGLGVFVDTYPNEEKQQERVFPYISAMVNNGSLSY
DHERDGRPTELGGCTAIVRNLYDTFLVIRYVKRHTIMMDIDGKHEWRDCIEVPGVRLPRG
YYFGTSSITGDLSDNHDVISLKLFELTVERTPEEEKLHRDVFLPSVDNMKLPEMTAPLPLS
GLALFLIVFFSLVFSVFAIVIGIILYNKWQEQRKRFY
```

Signal sequence:

amino acids 1-38

Transmembrane domain:

amino acids 310-329

FIGURE 154

CCGAGCCGGCGCGCAGCGACGGAGCTGGGCCGCTGGACCATGGCGTGAGTGCAATCTACGGATCAGTCT
CTGATGGTGGTCGTTAACCTCAGTGGGACTCAAGATTCCATGAAGAAAATCAGTTGCTTCATTCAAGAAT
TGGGGTCTGGCTCAGAATTCCAGCTGGTAAAATCTTTCTAGAAAGAGGTTAATTATGCCTGCAGTCT
GACATGTTCCCAGATTGAGGTAAAACATGAAGAGAAAATAGAATACTTAATAATGCTTTCCGCAACCGCTTCT
TGCTGCTGCTGGCCCTGGCTGCGTGCTGGCCTTGTGAGCCTCAGGCTGCAGTCTCCACCTGATCCCAGGTGT
CGACTCCTAAGAATGGAATGAGTAGCAAGAGTCGAAAGAGAATCATGCCCGACCCTGTGACGGAGCCCCCTGTGA
CAGACCCCGTTATGAAGCTCTTTGACTGCAACATCCCCAGTGTGGCCGAGCGCAGCATGGAAGGTATGCC
CGCATCATTAAAGCTGGCTCAGTGCATGTGTCATTGCCACGGAGACAGGTACCCACTGTATGTCAATTCCA
AAACAAAGCAGCAGAAAATTGACTGCACTCTGGCTAACAGGAAACCGTATCACCCAAAATGGAAGCTTTCA
TTAGTCACATGTCAAAAGGATCCGGAGCCTCTTCGAAAGCCCTTGAACTCCTGCCTCTTACCCAAATCACC
CATTGTGAGATGGGAGAGCTCACACAGACAGGAGTTGTCAGCATTGCAAGAACGGTCAGCTGCTGAGGGATA
TCTATCTAAAGAAACACAAACTCCTGCCAATGATTGGTCTGCAAGACCAGCTTATTTAGAGACCAGTGGAAAAA
GCCGGACCCATAAAAGTGGGCTGGCCTTGCTTATGGCTTCTCCAGATTGACTGGAAGAAGATTATTCA
GGCACCAAGTGCCTGTTCTGCTCTGGAAAGCTGCTATTGCCCGTAAGAAACCAAGTATCTGAAAAGGAGC
AGCGTCGTCACTCCTACGTTGAAAACAGCCAGCTGGAGAAGACCTACGGGAGATGGCAAGATCGTGG
ATGCCCCACCAAGCAGCTTAGAGCTGCCAACCCATAGACTCCATGCTCTGCCACTTCTGCCACAATGTCAGCT
TTCCCTGTACCAAGAAATGGCTGTGTTGACATGGAGCACTCAAGGTAAATTAGACCCATCAGATCGAGGATGAAA
GGGAAAGACGGGAGAAGAAAATTGACTTCGGTATTCTCCTGGGTGCCACCCCATCCTGAACCAAACCATCG
GCCGGATGCACTGCCACCGAGGGCAGGAAAGAGCTTCTGGCCCTRACTCTGCTCATGATGTCACTCTGT
CACCAAGTCTCAGTGCCTGGGCTTCAAGGCCAGGTTCCAAGGTTGCAAGGCCAGGTTGATCTTGAGCTT
GGCAAGACAGAGAAAAGCCAGTGAACATTCCGCCGATTCTTACAATGGCGTCACTGTCACATTCCACACCT
CTTCTGCCAAGACCAAGCCATTCTCCAAAGCCATGTGCCGCTTGAAAACATTGGCCGTTGTGAAA
GGGACATGTTGAGCCCTGGGTGGCAGTGGTACAAATTATTATGATGCTAGTCACAGGGAAAGGATTCAAGG
TATGCACTACAGCACTAGAATCCATGCCAATACAGAGCATAGGGAAAGGTCACATTCTAGTTGCTGTTAC
TAAGGGTAGAAGATTATTGCTTTAAAGGCTAAATTATTGTTGTTGGAAACCACAGATGGTTGGGTTGAACAGT
AAGCACATTGCTGCAATGTTGACGTGAATTGCTGGTACAAATGCCAGTTCAAGACCTGAAGTTGCCAATCCAAGTTGCAC
TCTTCTGCCCTGCCCATGTTACTATGTGATGGAACCACAGCACACCTCAACCAAATTTTAATCTTAGACATT
TTTACCTGTCCTGTTAAGAATTCTGTAAGTGAATTCTAAAGGTTGGCAAACCTTTCTGTAAG
GCCAGATTGTAATATTCAGACTGTGGACCAAAAGGCCACATAACAGTCTCTGTCATAACTACTCAACTCTGT
TTCTGAAGCAGGAAAGCCACCACAGACAGTACATAAAGGAATATGTGATGCTGGGTTCCAGGCCAGACAAAACA
GATGGTGACCAACTTGGCCCTGGCTGTAGTTGCTGACCCCTCATCTAAAAAATAGGTATACTACAATTGC
ACTTCCAGCACTTGAGAACGAGTTGAATACCAAGAATTATTCAATGGTTCCTCCAGTAACCTCTGCTAGAAACA
CAGAATTGGCTGTATGACACTAGAACAAAATGAGGGTAAATAAACATTGAATTAGAATGAATCATAGAA
AACTGATTAGAAGAATACCTGATGTTATGATGATTGTTAAGTATGTTCTAAATATTGTT
CTGCTGAGTCATTTGCTGTATGCTGAAATTGTTGATGCCATTAGTATTGTTATAGTTAGGAAAATATT
TTCTAAAGACCAAGTTAGATGACTCTTATTCTGCTAGTAATATTCAATTGCTGTCACCTGCTTGGTGGTTAGAAG
GAGGCTAGAAGATGAATTCAAGGCACCTTCTCCAATAAAACTAATTATGGCTCATTCCTTGACAAGCTGTAGA
ACTGGATTCTTTAAACCATTTCATCAGTTCAAAATGGTAAATTCTGATTGTTAAATGCGTTTTGGA
AGAACTTTGCTATTAGGTAGTTACAGATCTTATAAGGTGTTATATATTAGAAGCAATTATAATTACATCTG
TGATTCTGAACTAATGGTCTAATTAGAGAAATGGAAGTGAAAGTGAAGATTCTCTGTTGTCATCGGCATTCC
AACTTTTCTCTTGTGTTGTCCAGTGTGCAATTGATGTTCTATAAATAAATTGTTAAGAATAA

FIGURE 155

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48329
><subunit 1 of 1, 480 aa, 1 stop
><MW: 55240, pI: 9.30, NX(S/T): 2
MLFRNRFLLLALAALLAFVSLSQLQFFHLIPVSTPKNGMSSKSRKRIMPDPVTEPPVTDPVY
EALLYCNIPSVAERSMEGHAPHFKLVSVHFIRHGDRYPLYVIPKTKRPEIDCTLVANRKP
YHPKLEAFISHMSKGSGASFESPLNSLPLYPNHLCEMGELTQTGVVQHLQNGQLLRDIYLK
KHKLPPNDWSADQLYLETTGKSRTLQSGLALLYGFLPDFDWKKIYFRHQPSALFCSCGSCYCP
VRNQYLEKEQRRQYLLRLKNSQLEKTYGEMAKIVDVPTKQLRAANPIDSMLCHFCHNVSFPC
TRNGCVDMEHFKVIKTHQIEDERERREKKLYFGYSLLGAHPILNQTIGRMQRATEGRKEELF
ALYSAHDVTLSPLSVLSEARFPRFAARLIFELWQDREKPSEHSVRLIYNGVDVTFHTSF
CQDHHKRSPKPMCPLENLVRFVKRDMFVALGGSGTNYYDACHREGF
```

Signal sequence:

amino acids 1-18

FIGURE 156

AAAAAAGCTCACTAAAGTTCTATTAGAGCGAATACGGTAGATTCATCCCTTGAAGAACAGTACTGTGGA
GCTATTTAAGAGATAAAAACGAAATATCCTTCTGGGAGTTCAAGATTGTGCAGTAATTGGTTAGGACTCTGAGC
GCCGCTGTCACCAATCGGGAGAGAAAAGCGGAGATCCTGTCGCCCTGCACCGCCTGAAGCACAAAGCAGAT
AGCTAGGAATGAACCATCCCTGGGAGTATGTGAAACAACGGAGGAGCTGTACTTCCAACGTCCCATTCTAT
GGCGCAAGGAACGTCTGACTTCAGTGGTTAAGGGAGAATTGAAAATAATTCTGGAGGAAGATAAGAATGAT
TCCCTGCGCAGCTGCACCGGGACTACAAAGGGCTGTCTGGGAATCCTCTGGGACTCTGTGGGAGACCGG
ATGCACCCAGATAACGCTATTCACTTCCGGAAAGAGCTGGAGAAAGGCTCTAGGGTGGGAGCATCTCAGGGACCT
GGGGCTGGAGCCCCGGGAGCTCGGGAGCGGGAGTCCGATCATCCCCAGAGGTAGGACGAGCTTTCGCCCT
GAATCCCGCAGCGGAGCTGGTACGGCGGGAGGATAGACCGGGAGGAGCTGTATGGGGCCATCAAGTG
TCAATTAAATCTAGACATTCTGATGGAGGATAAAAGTGAATTAGAAATAAAATTAGTGAATAGCAGCCACTGAGATGCGGTT
CCCTCTACCCACGCCTGGATCCGGATATCGGAAGAACACTCTGAGAGCTACAGCCCAGACTCA
CTTCTCCCTCATCGTCAAAATGGAGCCAGGGTAGTAAGTACCCGAATTGGTGTGAAACGCGCCCTGGACCG
CGAAGAAAAGGCTGTCACCACTGGTCTTACGGCCTCGACGGGGCGACCCGGTGCACAGGCACCGCG
CATCCGCGTGTGGTTCTGGATGCGAACGACAACGACCCAGCGTTGCTCAGCCCGAGTACCGCGCAGCGTTCC
GGAGAATCTGGCCTTGGCACCGCAGCTGCTTGAGTCACAGCTACCGACCCCTGACGAAGGAGTCAATGCGGAAGT
GAGGTATTCCCTCCGGTATGTGGACGACAAGGGCCCAAGTTTCAAACAGTATTGTAATTGGACAATATC
AACAAATAGGGAGCTGGACCGAGGAGTCAGGATTCTACAGATGGAAGTGCAGAACGAAATGGATAATGAGGATA
TTCTGCGCGAGCCAAAGTCCTGATCACTGTTCTGGACGTGAAACGACAATGCCCAGAGTGGTCTCACCTCTCT
CGCCAGCTCGGTTCCCGAAAACTCTCCAGAGGGACATTAAATTGCCCTTTAAATGTAATGACCAAGATTCTGA
GGAAAACGGACAGGTGATCTGTTCATCCAAAGGAATCTGCCCTTAAATTAGAAAAATCTTACGGAAATTACTA
TAGTTTAGTCACAGACATAGCTGGATAGGAACAGGTTCTAGCTACACATCACAGTGACCGCCACTGACCG
GGGAACCCGCCCTATCCACGAAACTCATCTCGCTGAACTGGCAGACACCAACGACAACCCGCCGGTCTT
CCCTCAGGCCCTCTATCCGTTATATCCAGAGAACATCCAGAGGAGTTCCCTCGTCTGTGACCGCCCA
CGACCCCGACTGTGAAGAGAACGCCCAGATCACTTATCCCTGGCTGAGAACACCATCCAAGGGCAAGCCTATC
GTCCTACGTGTCATCAACTCCGACACTGGGTACTGTATGCGCTGAGCTCCTCGACTACGAGCAGTCCGAGA
CTTGCAGTGAAGTGTGGCGGGACAACGGGACCCGCCCTCAGCAGAACGCTGTGAGCTGTCG
GCTGGACCAGAACGACAATGCCCCGAGATCCTGTACCCGCCCTCCCACGGACGGTCCACTGGCGTGGAGCT
GGCTCCCCGCTCCGAGAGCCGGTACCTGGTACCAAGGTGGTGGCGGTGGACAGAGACTCCGGCAGAACGC
CTGGCTGCTTACCGTCTGCTCAAGGCCAGCGAGCCGGACTCTCTGGTGGGTCTGCACACGGCGAGGTGCG
CACGGCGCAGGCCCTGCTGGACAGAGACGCGCTCAAGCAGAGCCTCGTAGTGGCGTCCAGGACCACGGCCAGC
CCCTCTCTGCCACTGTACGCTACCGTGGCGTGGCGACAGCATCCCCAAGTCTGGCGGACTCGCAG
CCTCGAGTCTCAGCTAACTCTGAAACCTCAGACCTCACTGTACCTGGTAGCGGTGGCCGGTCTCTG
CGTCTTCCGTGCTCATCTGCTGCGCTCAGGCTGCGGCTGGACAAGTCAACGCTGTCAGGC
TTCAAGGAGGGCTTGACAGGAGGCCGGCTCGCAGGGTGGACGGGGTGCAGGCTTCTGAGAC
CTATTCCCACGAGGTTCCCTCACCACGGACTCGCGGAAGAGTCACCTGATCTTCCCAGCCAACTATGAGA
CATGCTCGTCAGCCAGGAGAGCTTGAAGGGCCCTTTGCTGTCAAGGTGATTGGTATTCTAAAGA
CAGTCATGGTTAATTGAGGTGAGTTATATCAAATCTCTTTCTTTTTTAATTGCTCTGTCTCCAAGC
TGGAGTGCAGGGTACGATCATAGCTCACTGCGCCTCAAACCTTAGGCTCAAGCAATTATCCCACCTTGCT
CCGGTGTAAACGGGACTCACGGTCAAGCCACCTACTGTCTGCCATCTATCTATCTATCTATCTAT
CTATCTATCTATCTATCTATTACTTCTGTACAGACGGAGTCTCACGCCGTAACTCCAGTACTTGGGAGGC
CGAGGGGGGGATCACGTGGAGGTTGGAGTTGAGACCCTGACCAACATGGAGAAACCCGTCTATAACTAA
AAAAAATACAAAATTAGCCGGCGGGTGGAGGTGCAATGAGCTGAGATTGTGCCATTGCACTCCAGCTGGCAACAAGAGTG
AAACTCTATCTCA

FIGURE 157

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48306
><subunit 1 of 1, 916 aa, 1 stop
><MW: 100204, pi: 4.92, NX(S/T): 4
MIPARLHRDYKGLVLLGILLGTLWETGCTQIRYSVPEELEKGSRVGDISRDLGLEPRELAER
GVRIIPRGRTQLFALNPRSGSLVTAGRIDREELCMGAIKCQLNLDILMEDKVKIYGVEVEVR
DINDNAPYFRESELEIKISENAATEMRFPPLPHAWDPDIGKNSLQSYLESPNTHFSLIVQNGA
DGSKYPELVLKRALDREEKAHHHLVLTASDGGDPVRTGTARIRVMVLDANDNAPAFFAQPEYR
ASVPENLALGTQLLVVNATDPDEGVNAEVRYSFYVDDKAAQVFKLCDNSGTISTIGELDHE
ESGFYQMEVQAMDNAGYSARAKVLITVLDVNDNAPEVVLTSASSVPENS PRGTLIALLNVN
DQDSEENGQVICFIQGNLPFKLEKSYGNYSLVTDIVLDREQVPSYNITVTATDRGTPPLST
ETHISLNVADTNNDNPVFPQASYSAYIPENNPRGVSLVSVAHDPCCEENAQITYSLAENTI
QGASLSSYVSINSDTGVLVALSSFDYEQFRDLQVKVMARDNGHPPLSNVSLSFVLDQNDN
APEILYPALPTDGSTGVELAPRSAEPGYLVTKVVAVDRDSGQNAWLSYRLLKASEPGLFSVG
LHTGEVRTARALLDRDALKQSLVVAVQDHGQPPLSATVTLTVAVADSIPQVLADLGSLESPA
NSETSDLTLYLVVAVAASCVFLAFVILLALRLRRWHKSRLLQASGGGLTGAPASHFVGVD
GVQAFLQTYSHESVSLTTDSRKSHLIFPQPNYADMVLVSQESFEKSEPLLSDSVFSKDSHGL
IEVSLYQIFFLFFFNCVSQAGVQRYDHSSLRPQTPRLKQLSHLCRRCNRDYRCKPPTVCLS
IYLSIYLSIYLSIYLLLSDGSLOTPVIPVLWEAEAGGSPEVGSLRPA
```

Signal sequence:

amino acids 1-30

Transmembrane domains:

amino acids 693-711, 809-823, 869-888

FIGURE 158

CCCAGGCTCTAGTCAGGAGGAGAAGGAGGAGCAGGAGGTGGAGATTCCCAGTTAAAG
GCTCCAGAACATCGTGTACCAGGCAGAGAACTGAAGTACTGGGGCCTCCTCCACTGGGTCCGAA
TCAGTAGGTGACCCGCCCTGGATTCTGGAAGACCTCACCAATGGGACGCCCGACCTCGT
GCGGCCAAGACGTGGATGTTCTGCTCTGCTGGGGGAGCCTGGCAGGACACTCCAGGGC
ACAGGAGGACAAGGTGCTGGGGGTCACTGAGTGCCAACCCCATTGCAGCCTTGGCAGGC
CCTTGTCCAGGGCCAGCAACTACTCTGTGGCGGTGTCTGTAGGTGGCAACTGGGTCTT
ACAGCTGCCACTGTAAAAACCGAAATAACACAGTACGCCTGGAGACCACAGCCTACAGAA
TAAAGATGGCCCAGAGCAAGAAATACCTGTGGTTCAGTCATCCCACACCCCTGCTACAACA
GCAGCGATGTGGAGGACCACAACCATGATCTGATGCTTCAACTGCGTGACCAGGCATCC
CTGGGGTCAAAGTGAAGCCATCAGCCTGGCAGATCATTGCACCCAGCCTGGCAGAAGTG
CACCGTCTCAGGCTGGGCACTGTCACCAGTCCCCGAGAGAATTTCTGACACTCTCAACT
GTGCAGAAGTAAAAATCTTCCCCAGAAGAAGTGTGAGGATGCTTACCCGGGCAGATCACA
GATGGCATGGTCTGTGCAGGCAGCAGCAAAGGGCTGACACGTGCCAGGGCGATTCTGGAGG
CCCCCTGGTGTGTGATGGTGCACTCCAGGGCATCACATCCTGGGCTCAGACCCCTGTGGGA
GGTCCGACAAACCTGGCGTCTATACCAACATCTGCCGTACCTGGACTGGATCAAGAAGATC
ATAGGCAGCAAGGGTGATTCTAGGATAAGCACTAGATCTCCCTTAATAAACTCACAACTCT
CTGGTTC

FIGURE 159

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48336
<subunit 1 of 1, 260 aa, 1 stop
<MW: 28048, pI: 7.87, NX(S/T): 1
MGRPRPRAAKTWMFLLLGGAWAGHSRAQEDKVLGGHECOPHSQPWQAALFQGQQLLCGGVL
VGGNWVLTAAHCKKPKYTVRLGDHSLQNKGDPQEIPVVQSIPHPCYNSSDVEDHNHDLMLL
QLRDQASLGSKVVKPISSLADHCTQPGQKCTVSGWGTVTSPRENFPDTLNCAEVKIFPQKKCED
AYPGQITDGMVCAGSSKGADTCQGDGGPLVCDGALQGITSWGSDPCGRSDKPGVYTNICRY
LDWIKKIIGSKG
```

Important Features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 51-71

N-glycosylation site.

amino acids 110-113

Serine proteases, trypsin family, histidine active site.

amino acids 69-74 and 207-217

Tyrosine kinase phosphorylation site.

amino acids 182-188

Kringle domain proteins motif

amino acids 205-217

FIGURE 160

GGCGCCGGTGCACCGGGCGGGCTGAGGCCTCTGCGGCCGGCTGCGGCCGGCG
CGCGCCGCCAACGCCCCAACCCCGGCCGCCCCCTAGCCCCCGCCGGCCGCGCCCG
GCCCGCGCCCAGGTGAGCGCTCCGCCCGCGAGGCCCGCCCCGGCCCGCCCCCG
CCCCGGCCGGCGGGGAACCGGGCGGATTCTCGCGCTCAAACCACCTGATCCCATAAAAC
ATTCATCCTCCCGGGCCCGCTGCGAGCGCCCGCCAGTCCGCGCCGCCGCCCCCTCG
CCCTGTGCGCCCTGCGGCCCTGCGCACCCGCGGCCAGGCCAGGCCAGAGCCGGCGGAGC
GGAGCGCGCCGAGCCTCGTCCCGCGGCCGGCCGGCCGTAGCGGCGGCCCTGGA
TGCGGACCCGGCCGGGGAGACGGCGCCGCCGAAACGACTTCAGTCCCCGACGCGC
CCCGCCAACCCCTACGTGAAGAGGGCGTCCGCTGGAGGGAGGCCGGCTGCTGGCATGGTG
CTGTGGCTGCAGGCCTGGCAGGTGGCAGCCCCATGCCAGGTGCGTATGCTACAATGA
GCCAAGGTGACGACAAGCTGCCCGAGCAGGGCTGCAGGCTGTGCCGTGGCATCCCTG
CTGCCAGCCAGCGCATCTTCCTGCACGGCAACCGCATCTCGCATGTGCCAGCTGCCAGCTTC
CGTGCCTGCCGCAACCTCACCATCCTGTGGCTGCACTCGAATGTGCTGGCCGAATTGATGC
GGCTGCCTCACTGGCTGGCCACATTCCACGGCTGGGCCCTACACACGCTGCACCTGGACC
GGTCTGTGGACCCCTGCCACATTCCACGGCTGGGCCCTACACACGCTGCACCTGGACC
TGCGGCCTGCAGGAGCTGGGCCGGGCTGTTCCGCGGCCCTGGCTGCCCTGCAGTACCTCTA
CCTGCAGGACAACCGCCTGCAGGCACTGCCTGATGACACCTCCGCGACCTGGCAACCTCA
CACACCTCTCCTGCACGGCAACCGCATCTCAGCGTCCGGAGCGCGCTTCCGTGGGCTG
CACAGCCTCGACCGTCTCCTACTGCACCAAGAACCGCTGGCCATGTGCACCCGATGCC
CCGTGACCTTGGCCGCTCATGACACTCTATCTGTTGCCAACATCTATCAGCGCTGCC
CTGAGGCCCTGGCCCCCTGCGTGCCTGCACTGAGGCTCAACGACAACCCCTGGGCTG
TGTGACTGCCGGCACGCCACTCTGGGCTGGCTGCAAGTTCGCCGCTCTCC
GGTGCCTGCAGCCTCCGCAACGCCCTGGCTGGCGTACCTCAAACGCCCTAGCTGCC
ACCTGCAGGCTGCGCTGTGGCCACCGCCCTTACCATCCCCTGACCGGCAGGGCCACC
GATGAGGAGCCGCTGGGCTTCCAAGTGCCTGCCAGCCAGATGCCGCTGACAAGGCC
ACTGGAGCCTGGAAGACCAGCTTCCGGCAGGCAATGCCGTAAGGGACGCCGCTGCC
ACAGCCCAGGGCAACGGCTCTGGCCACGGCACATCAATGACTCACCC
CTGGCTCTGCTGAGCCCCCGCTACTGCAGTGCAGGCCGGAGGCTCCGAGCC
CCCCACCTCGGCCCTGCCGGAGGCCAGGCTGTTCACGCAAGAACCGCACCC
GCCGTCTGGCCAGGCAGGCCGGGTGGCGGACTGGTACTCAGAAGGCTCAGGTGCC
CTACCCAGCCTCACCTGCAGCCTCACCCCCCTGGCCTGGCGCTGGTGTGGACAGTGC
TGGGCCCTGCTTGACCCCAGCGACACAAGAGCGTGCAGCAGCCAGGTGTGTACATAC
GGGGTCTCTCCACGCCGCAAGCCAGGCCGGCGGCCACCC
GTCCCTCCCTGATGGACGCCGCTGCCGCCACCCCCATCTCCACCC
TTCGGCGGCAGCGTTGTTCAAGAACGCCCTCCCACCC
GCATTTATTTACTTGTAAAAATATCGGACGACGTGGAATAAGAGCTTTCTTAAA
AAAA

FIGURE 161

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44184
><subunit 1 of 1, 473 aa, 1 stop
><MW: 50708, pI: 9.28, NX(S/T): 6
MKRASAGGSRLLAWVLWLQAWQVAAPCPGACVCYNEPKVTTSCPQQGLQAVPGIPAASQRI
FLHGNRISHVPAASFRCRNLTILWLHSNVLARIDAAFTGLALLEQLDLSDNAQLRSVDPA
TFHGLGRLHTLHLDRCGLQELGPGLFRGLAALQYLYLQDNALQALPDDTFRDLGNLTHLFLH
GNRISSVPERAFRGLHSLDRLLLHQNRVAHVPHAFRDLGRLMTLYLFANNLSALPTEALAP
LRALQYLRLNDNPWVCDCRARPLWAWLQKFRGSSSEVPCSLPQRLAGRDLKRLAANDLQGCA
VATGPYHPIWTGRATDEEPLGLPKCCQPDAADKASVLEPGRPASAGNALKGRVPPGDSPPGN
GSGPRHINDSPFGTLPGSAEPPLTAVRPEGSEPPGFPTSGPRRPGCSRKNRTRSHCRLGQA
GSGGGGTGDSEGSGALPSLTCSLTPLGLALVLWTVLGPC
```

Important features:

Signal peptide:

amino acids 1-26

Leucine zipper pattern.

amino acids 135-156

Glycosaminoglycan attachment site.

amino acids 436-439

N-glycosylation site.

amino acids 82-85, 179-183, 237-240, 372-375 and 423-426

VWFC domain

amino acids 411-425

FIGURE 162

GGAAGTCCACGGGGAGCTTGGATGCCAAAGGGAGGACGGCTGGGTCTGGAGAGGACTAC
TCACTGGCATATTCTGAGGTATCTGTAGAATAACCACAGCCTCAGATACTGGGACTTTAC
AGTCCCACAGAACCGTCCTCCAGGAAGCTGAATCCAGCAAGAACAAATGGAGGCCAGCGGG
AGCTCATTGCAGACAAAGGCAAGTCCTTTCTCCTTCTGGCTTATCTCTGGCG
GGCGCGCGGGAACCTAGAAGCTATTCTGTGGTGGAGGAAACTGAGGGCAGCTCCTTGTAC
CAATTAGCAAAGGACCTGGGTCTGGAGCAGAGGGAAATTCTCCAGGCGGGGGTAGGGTTG
TTTCCAGAGGGAACAAACTACATTGCAGCTCAATCAGGAGACCCGGATTGTTGCTAAAT
GAGAAATTGGACCGTGAGGATCTGTGGTACACAGAGCCCTGTGTGCTACGTTCCAAGT
GTTGCTAGAGAGTCCTCGAGTTTCAAGCTGAGCTGCAAGTAATAGACATAAACGACC
ACTCTCCAGTATTCTGGACAAACAATGTTGGTAAAGTATCAGAGAGCAGTCCTCCTGG
ACTACGTTCTCTGAAGAATGCCGAAGACTTAGATGTAGGCCAAAACAATATTGAGAACTA
TATAATCAGCCCCAACTCCTATTTCGGGTCTCACCAGCAACCGCAGTGTGATGGCAGGAAAT
ACCCAGAGCTGGTGGTACAAAGCGCTGGACCGAGAGGAAGAAGCTGAGCTCAGGTTAAC
CTCACAGCACTGGATGGTGGCTCTCCGCCAGATCTGCACTGCTCAGGCTACATCGAAGT
CCTGGATGTCAACGATAATGCCCTGAATTGAGCAGCCTTCTATAGAGTGCAGATCTCTG
AGGACAGTCCGGTAGGCTTCTGGTTGTGAAGGTCTGACACAGGATGTAGACACAGGAGTC
AACGGAGAGATTCCTATTCACTTTCCAAGCTTCAGAAGAGATTGGAAAACCTTAAGAT
CAATCCCTGACAGGAGAAATTGAACAAAAAAACAACTCGATTGAAACTTCAGTCCT
ATGAAGTCAATATTGAGGCAAGAGATGCTGGAACCTTTCTGGAAAATGCACCGTCTGATT
CAAGTGATAGATGTGAACGACCATGCCAGAAGTTACATGCTGCTTACAGATTTGATT
ACCTGAGAACGCGCTGAAACTGTGGTGCACTTTCAGTGTTCAGATCTGATT
AAAATGGAAAATTAGTTGCTCCATTCAAGGAGGATCTACCCCTCCTGAAATCCGCGGAA
AACTTTACACCTACTAACGGAGAGACCACTAGACAGAGAACGAGACGGGAATACAACAT
CACTATCACTGTCACTGACTTGGGACCCCTATGCTGATAACACAGCTCAATATGACCGTGC
TGATGCCGATGTCAATGACAACGCTCCGCCCTCACCCAAACCTCCTACACCCCTGTC
CGCGAGAACACAGCCCCGCCCTGCACATCCGCACTCGCTCAGCGCTACAGACAGAGACTCAGG
CACCAACGCCAGGTACCTACTCGCTGCTGCCAGGACCCGACCTGCCCTCACAT
CCCTGGTCTCCATCAACGCCAACACGGCCACCTGTTGCCCTCAGGTCTCTGGACTACGAG
GCCCTGCAGGGTTCCAGTCCGCGTGGCGCTTCAGACCGACGGCTCCCGCGCTGAGCAG
CGAGGCGCTGGTGCCTGGTGGCTGGACGCCAACGACAACCTGCCCTCGTGTGTAC
CGCTGCAGAACGGCTCCGCCCTGCACCGAGCTGGTCCCCGGCGGCGAGCCGGCTAC
CTGGTGACCAAGGTGGTGGCGTGGACGGCACTCGGCCAGAACGCTGGCTGTC
GCTGCTCAAGGCCACGGAGCTCGGTCTGTTGGCGTGTGGCGACAATGGCGAGGTGCGCA
CCGCCAGGCTGCTGAGCGAGCGCAACGCCAACGACAACCTGCCCTCGTGTGTAC
AATGGCGAGCCTCCGCGCTGGCCACCGCACGCTGCACGTGCTCCTGGTGACGGCTTC
CCAGCCCTACCTGCCCTCCGGAGGGCGCCACCCAGGCCAGGCCACTGCTCACCG
TCTACCTGGTGGTGGCGTGGCTCGGTCTTCGCTTCCCTTTGGTGCTCCTGTT
GTGGCGGTGCCTGGCTGTAGGAGGAGCAGGGCGGCCCTGGTGGTGCTGCTTGGTGCCGA
GGGCCCTCCAGGGCATCTTGTGGACATGAGCGGCCAGGCCACTCCAGAGCTACC
AGTATGAGGTGTCTGGCAGGAGGCTCAGGGACCAATGAGTTCAAGTCTGAAGCCGATT
ATCCCCAACCTCCCTCCCAGTGCCCTGGAAAGAAATACAAGGAAATTCTACCTCCCCAA
TAACCTTGGTCAATATTCAGTGAACATAGTGAATTACATTCCATAGGTATT
TGTGGCATTTCCATGCCAATGTTATTCCCCAATTGTGTATGAAATTGACGGAT
TTACTCTGATTTCTCATGTTCTCCCTTGTAAAGTGAACATTACCTTATT
CCTGGTTCTT

FIGURE 163

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48314
<subunit 1 of 1, 798 aa, 1 stop
<MW: 87552, pI: 4.84, NX(S/T): 5
MEASGKLICRQRQVLFSLLLGLSLAGAAEPRSYSVVEETEGSSFVTNLAKDLGLEQREFSR
RGVRVVSRGNKLHLQLNQETADLLLNEKLDREDLCGHTEPVCVLRFQVLLESPFEFFQAELOV
IDINDHSPVFLDKQMLVKVSESSPPGTTFPLKNAEDLDVGQNNIENYIISPNSYFRVLTRKR
SDGRKYPELVLKDALKALDREEEAELRLTLTALDGGSPPRSGTAQVYIEVLDVNDNAPEFEQPFY
RVQISEDSPVGFLVVKVSATDVDTGVNGEISYSLFQASEEIGKTFKINPLTGEIELKKQLDF
EKLQSDEVNIEARDAGTFSGKCTVLIQVIDVNDHAPEVTMSAFTSPIPENAPETVVALFSVS
DLDSENGKISCSIQEDLPFLLKSAENFYTLTERPLDRESRAEYNITITVTDLGTPMILITQ
LNMTVLIADVNDNAPAFQTSYTLFVRENNSPALHIRSVSATDRDGTNAQVTYSLLPPQDP
HLPLTSLVSINADNGHLFALRSLDYEALQGFQFRVGASDHGSPALSSEALVRVVVLDANDNS
PFVLYPLQNGSAPCTELVPRAAEPGYLVTKVAVDGDSGQNAWLSYQLLKATELGLFGVWAH
NGEVRTARLLSERDAAKHRLVVLVKDNNGEPPRSATATLHVLLVDGFSQPYLPLPEAAPTQAQ
ADLLTVYLVVALASVSSLFLFSVLLFVAVRLCRRSRAASVGRCLVPEGPLPGHLVDMMSGRT
LSQSYQYEVCLAGGSGTNEFKFLKPIIPNFPPQCPGKEIQGNSTFPNNFGFNIQ
```

Important features:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 685-712

Cadherins extracellular repeated domain signature.

amino acids 122-132, 231-241, 336-346, 439-449 and 549-559

ATP/GTP-binding site motif A (P-loop).

amino acids 285-292

N-glycosylation site.

amino acids 418-421, 436-439, 567-570 and 786-789

FIGURE 164

ACCCACGCGTCCGCCACGCGTCCGCCACGCGTCCGCCACGCGTCCGCCGTAGCGTGC
GCCGATTGCCTCTGGCCTGGCAATGGTCCGGCTGCCGGTCACGACCGCCCCCGCGTCAT
GCGGCTCCTCGGCTGGTGGCAAGTATTGCTGTGGTGCTGGACTTCCGTCACCGCGTGG
AGGTTGCAGAGGAAAGTGGTCGTTATGGTCAGAGGAGCAGCCTGCTCACCTCTCAGGTG
GGGGCTGTGTACCTGGGTGAGGAGGAGCTCCTGCATGACCCGATGGCCAGGACAGGGCAGC
AGAAGAGGCCAATGCGGTGCTGGGCTGGACACCCAAGGCGATCACATGGTGTGCTG
TGATTCCCTGGGAAGCTGAGGACAAAGTGAGTCAGAGCCTAGCGCGTCACCTGTGGTGT
GGAGGAGCGGAGGACTCAAGGTGCAACGTCCGAGAGAGCCTTCTCTGGATGGCGCTGG
AGCACACTCCCTGACAGAGAACAGGAGTATTACACAGAGCCAGAAGTGGCGGAATCTGACG
CAGCCCCGACAGAGGACTCCAATAACACTGAAAGTCTGAAATCCCCAAGGTGAACGTGAG
GAGAGAACATTACAGGATTAGAAAATTCACTCTGAAAATTAAATATGTCACAGGACCT
TATGGATTTCTGAACCCAAACGGTAGTGACTGTACTCTAGCCTGTTACACCCGTGGT
GCCGCTTCTGCCAGTTGGCCCTCACTTAACCTCTGCCCCGGCATTCCAGCTCTT
CACTTTTGGCACTGGATGCATCTCAGCACAGCAGCCTTCTACCAGGTTGGCACCGTAGC
TGTCCTAATATTTATTATTCAAGGAGCTAACCAATGCCAGATTAAATCATACAGATC
GAACACTGGAAACACTGAAAATCTCATTAAATCAGACAGGTATAGAACCAAGAAGAAT
GTGGTGGTAACTCAAGCGACCAAATAGGCCCTTCCAGCAGCTTGATAAAAAGTGTGGA
CTGGTTGCTGTATTTCTTATTCTTTAATTAGTTTATTATGTATGCTACCATTGAA
CTGAGAGTATTGGGGCTAATTCCAGGACAAGAGCAGGAACATGTGGAGTAGTGATGGTCT
GAAAGAAGTGGAAAGAGGAACCTCAATCCTCGTTAGAAATTAGTGCTACAGTTCTATA
CATTCTCCAGTGACGTGTTGACTTGAAACTCAGGCAGATTAAAAGAACATTGTTGAA
CAACTGAATGTATAAAAAAATTATAAACTGGTGTAACTAGTATTGCAATAAGCAAATGC
AAAAATATTCAATAG

FIGURE 165

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48333
><subunit 1 of 1, 360 aa, 1 stop
><MW: 39885, pI: 4.79, NX(S/T): 7
MVPAAGRRPPRVMRLLGWWQVLLWVLGLPVRGVEVAEESGRLWSEEQPAHPLQVGAVYLGE
ELLHDPMGQDRAEEANAVLGLDTQGDHMVMLSVPGEAEDKVSSEPSGVTCGAGGAEDSRC
NVRESLFSLDGAGAHFPDREEEYYTEPEVAESDAAPTEDSNNTESLKSPKVNCERNITGLE
NFTLKILNMSQDLMDFLNPNGSDCTLVLFYTPWCRFSASLAPHFNSLPRAFFPALHFLALDAS
QHSSLSTRFGTVAVPNILLFQGAKPMARFNHTDRTLETLKIFIFNQTGIEAKKNVVVTQADQ
IGPLPSTLIKSVDWLLVFSLFFLISFIMYATIRTESIRWLIPGQEQEHV
```

Important features:

Signal peptide:

amino acids 1-25

Transmembrane domain:

amino acids 321-340

Homologous region to dilsufide isomerase

amino acids 212-302

N-glycosylation site.

amino acids 165-168, 181-184, 187-190, 194-197, 206-209, 278-281
and 293-296

Thioredoxin domain

amino acids 211-227

FIGURE 166

CCCGGCTCCGCTCCCTCTGCCCTCGGGTCGCGGCCACGATGCTGCAGGCCCTGGCT
CGCTGCTGCTGCTCTCCTCGCCTCGCACTGCTGCCTGGCTCGCGCGGGCTTCCCTC
TTTGGCCAGCCGACTTCTCCTACAAGCGCAGCAATTGCAAGCCCACCGTCAACCTGCA
GCTGTGCCACGGCATCGAATACCAGAACATGCGGCTGCCAACCTGCTGGCCACGAGACCA
TGAAGGAGGTGCTGGAGCAGGCCGGCTTGGATCCCGCTGGTCATGAAGCAGTGCCACCCG
GACACCAAGAAGTTCCTGTGCTCGCTTCGCCCGTCTGCCTCGATGACCTAGACGAGAC
CATCCAGCCATGCCACTCGCTCTGCGTGCAGGTGAAGGACCGCTGCCCGGTATGTCCG
CCTTCGGCTTCCCGACATGCTTGAGTGCACCGTTCCCCCAGGACAACGACCTT
TGCATCCCCCTCGCTAGCAGCACCTCCTGCCAGCCACCGAGGAAGCTCAAAGGTATG
TGAAGCCTGCAAAATAAAATGATGATGACAACGACATAATGAAACGCTTGAAATG
ATTTGCACTGAAAATAAAAGTGAAGGAGATAACCTACATCAACCGAGATACCAAAATCATC
CTGGAGACCAAGAGCAAGACCATTACAAGCTGAACGGTGTCCGAAAGGGACCTGAAGAA
ATCGGTGCTGTGGCTCAAAGACAGCTTGCAGTGCACCTGTGAGGAGATGAACGACATCAACG
CGCCCTATCTGGTCATGGACAGAAACAGGGGGAGCTGGTATCACCTCGGTGAAGCGG
TGGCAGAAGGGCAGAGAGAGTTCAAGCGATCTCCCGCAGCATCCGCAAGCTGCAGTGCTA
GTCCCGGCATCCTGATGGCTCCGACAGGCCTGCTCCAGAGCACGGCTGACCATTCTGCTCC
GGGATCTCAGCTCCGTTCCCAAGCACACTCCTAGCTGCTCCAGTCTCAGCCTGGCAGCT
TCCCCCTGCCTTTGCACGTTGCATCCCCAGCATTCTGAGTTATAAGGCCACAGGAGTG
GATAGCTGTTTACCTAAAGGAAAAGCCCACCCGAATCTGTAGAAATATTCAAACTAATA
AAATCATGAATATTTAA

FIGURE 167

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50920
><subunit 1 of 1, 295 aa, 1 stop
><MW: 33518, pI: 7.74, NX(S/T): 0
MLQGPGSLLLLFLASHCCLGSARGLFLFGQPDFSYKRSNCKPIPVNQLCHGIEYQNMRLPN
LLGHETMKEVLEQAGAWIPLVMKQCHPDTKKFLCSLFAPVCLDDLDETIQPCHSLCVQVKDR
CAPVMSAFGFPWPDMLECDRFPQDNDLCIPLASSDHLLPATEEAPKVCEACKKNDDNDIM
ETLCKNDFALKIKVKEITYINRDTKIILETKSktiyKLNGVSERDLKKSVLWLKDSDLQCTCE
EMNDINAPYLVMGQKQGGELVITSVKRWQKGQREFKRISRSIRKLQC
```

Important features:

Signal peptide:

amino acids 1-20

Cysteine rich domain, homologous to frizzled N terminus

amino acids 6-153

FIGURE 168

GTGGAGGCCGCGACGATGGCGGGCCGACGGAGGCCGAGACGGGGTTGGCGAGCCCCGGG
CCCTGTGCGCGCAGCGGGCCACCGCACCTACGCGCCGCTGGTGTTCCTGCTCGCATC
AGCCTGCTCAACTGCTCCAAGCCACGCTGTGGCTCAGCTTGACCTGTGGCTACGTCAT
TGCTGAGGACTTGGTCCTGTCCATGGAGCAGATCAACTGGCTGTCACTGGTCTACCTCGTGG
TATCCACCCCATTGGCGTGGCGGCATCTGGATCCTGGACTCCGTGGCTCCGTGGCG
ACCATCCTGGGTGGCTGAACTTGCCCTCATGGGTGGCCAGAGCCTGTGCCCTGCATGGT
TGTGGGACCCAAACCCATTGCCCTCATGGGTGGCCAGAGCCTGTGCCCTGCATGGC
AGAGCCTGGTCATCTTCTCTCCAGCCAAGCTGGCTGCCCTGTGGTCCCAGAGCACCAGCGA
GCCACGGCCAACATGCTGCCACCATGTCGAACCCCTGGCGTCCCTGTGGCAATGTGCT
GTCCCCTGTGCTGGTCAAGAAGGGTGAGGACATTCCGTTAATGCTCGGTGTCTATACCATCC
CTGCTGGCGTCGTCTGCCCTGTCCACCATGTCCTGTGGAGAGTGTGCCCTGGCG
CCCTCTGCCGGGCTGCCAGCTCCACCTCAGAGAAGTCCTGGATGGCTCAAGCTGCAGCT
CATGTGGAACAAGGCCTATGTCATCCTGGCTGTGCTTGGGGAAATGATCGGATCTCTG
CCAGCTTCTCAGCCCTCCTGGAGCAGATCCTGTGCAAGCGGCCACTCCAGTGGGTTTCC
GGCCTCTGTGGCGCTCTTCATCACGTTGGATCCTGGGGCACTGGCTCTGGCCCTA
TGTGGACGGACCAAGCACTCACTGAGGCCACCAAGATTGGCCTGTGCCCTCTCTGG
CCTGCGTGCCCTTGGCTGGCTCCAGCTGCAGGGACAGACCCCTGGCCCTGGCTGCCACC
TGCTCGCTGCTGGCTGTTGGCTCTCGGTGGGCCCTGGCCATGGAGTTGGCGGTGCA
GTGTTCTCCCCGTGGGGAGGGGGCTGCCACAGGCATGATTTGTGCTGGGAGGCC
AGGGAAATACTCATGCTGGCAATGACGGCACTGACTGTGCGACGCTGGAGGCCCTTG
TCCACCTGCCAGCAGGGGAGGATCCACTTGACTGGACAGTGTCTCTGCTGATGGCGG
CCTGTGCACCTTCTCAGCTGCATCCTGGCGTCTTCCACACCCATACGGCGCCTGC
AGGCCGAGTCTGGGGAGCCCCCTCCACCCGTAACGCCGTGGCGCGCAGACTCAGGGCG
GGTGTGGACCGAGGGGAGCAGGAAGGGCTGGGTCTGGGCCAGCACGGCACTCCGGA
GTGCACGGCGAGGGGGCTCGTAGAGGACCCAGAGGGCCGGAGCCCCACCCAGCCT
GCCACCGAGCGACTCCCCGTGCGCAAGGCCAGCAGCCACCGACGCGCCCTCCGCC
AGACTCGCAGGCAGGGTCCAAGCGTCCAGGTTATTGACCCGGCTGGTCTCACTCCT
CTCCTCCCCGTGGTGATCACGTAGCTGAGCGCCTGTAGTCCAGGTTGCCGCCACATCGA
TGGAGGCGAACTGGAACATCTGGTCACCTGCGGGCGGGGGCAAAGGGCTCCTGCGGGCT
CCGGGAGCGAATTACAAGCGCGCACCTGAAAA

FIGURE 169

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50988
><subunit 1 of 1, 560 aa, 1 stop
><MW: 58427, pI: 6.86, NX(S/T): 2
MAGPTEAETGLAEPRALCAQRGHRTYARRWFLLAISLLNCSNATLWLSFAPVADVIAEDLV
LSMEQINWLSLVLYVSTPFGVAAIWILDVGRLRAATILGAWLNFAGSVLRMVPCMVGQTQN
PFAFLMGGQSLCALAQSLVIFSPAKLAALWFPEHQRATANMLATMSNPLGVLVANVLSPVLV
KKGEDIPLMLGVYTIPAGVVCLLSTICLWESVPPTPPSAGAASSTSEKFLDGLKLQLMWNK
YVILAVCLGGMIGISASFSALEQILCASGHSSGFSGLCALFITFGILGALALGPYVDRTK
HFTEAUTKIGLCLFSLACVPFALVSQQLQGQTLALAATCSLLGLFGFSVGPVAMELAVECSFPV
GEGAATGMI FVLGQAEGILIMLAMTALTIVRSEPSLSTCQQGEDPLDWTVSLLL MAGLCTFF
SCILAVFFHTPYRRLQAESGEPPSTRNAVGGADSGPGVDRGGAGRAGVLGPSTATPECTARG
ASLEDPRGPGSPHPACHRATPRAQPAATDAPS RPGRLAGRVQASRFIDPAGSHSSFSSPWVIT
```

Important features:

Signal peptide:

amino acids 1-44

Transmembrane domains:

amino acids 61-79, 98-112, 126-146, 169-182, 201-215, 248-268,
280-300, 318-337, 341-357, 375-387, 420-441

N-glycosylation site.

amino acids 40-43 and 43-46

Glycosaminoglycan attachment site.

amino acids 468-471

FIGURE 170

GTCCCACATCTGCTCAACTGGGTCAAGGTCCCTCTAGACCAGCTTGTCATCATTTGCTGAAGTGGACCAAC
TAGTTCCCAGTAGGGGTCTCCCTGGCAATTCTGATCGCGTTGGACATCTCAGATCGCTTCCAATGAAGA
TGGCCTTGCCTGGGTCTGTTCAATACTCATCTAACTATGGGACAAGGTTGTGCCGGCAGCTGGGG
AAGAGCACGGGCTGATCAAGCCATCCAGGAAACACTGGAGGACTGTCCAGGCTTGAAGAAACTCTAGTGGT
TCTGAATCTAGCCCCTGGCGGTAGCAGTGAATTGCAACTCTGCAACTTCTGCTGGGCTTTGGGCAGGGTGG
CTACTTATTCCTTGTAGGGATTGTCAAGGAGGTGACCACTCTCACGGTGAATAACCAAGTGTCAAGAGGAAGTGCC
ATCTGGTACAGTGATCGGGAAAGCTGTCCCAGGAACACTGGGGGGAGGAGAGGCGAGGCAAGCTGGGGCCGCTT
CCAGGTGTTGAGCTGCCAGGCGCTCCCCATTAGGTGACTCTGAGGAAGGCTTGTCAACCACAGGCAGGG
GCTGGATCGAGAGCAGCTGCGCAGACTGGGATCCCTGGCTGGTTCTTGATGTGCTTGCCACAGGGGATT
GGCTCTGATCCATGTGGAGATCCAAGTGTGGACATCAATGACCACAGCCACGGTTCCCAAAGGCAGCAGGA
GCTGGAAATCTCTGAGAGCGCTCTGCAACCCGGATCCCCCTGGACAGAGCTTGTACCCAGACACAGGCC
TAACACCCTGCACACCTACACTCTGCTCCAGTGAACCTTGCCCTGGATGTCAATTGTGGCCCTGATGAGAC
CAAACATGCAGAACTCATAGTGGTGAAGGAGCTGGACAGGAAATCATTCACTTTTGATCTGGTGTAACTGC
CTATGACAATGGGAAACCCCCCAAGTCAGGTACCAAGCTGGAAATCCAAGAAGATGCTGCACCTGGTACCTCTCATAAAACT
CCCTGCGTTGCTGAGAGTTCACTGGCACTGGAAATCCAAGAAGATGCTGCACCTGGTACCTCTCATAAAACT
GACCGCCACAGACCCCTGACCAAGGCCCAATGGGAGGTTGAGTCTTCTCAGTAAGCACATGCCTCAGAGGT
GCTGGCACCTCAGTATTGATGCCAACAGACAGGCCAGGTCTTCTGCGTCACCTCTAGACTATGAAAAGAACCC
TGCCTACGAGGTGGATGTTCAAGGCAAGGGACCTGGGCTTCAATCCTATCCCAGGCCATTGCAAAGTTCTCATCAA
GGTCTGGATGTCATAACATCCCAAGCATCCACGTACATGGGCTCCAGCCATCTGGTGTCAAGC
TCTTCCAAGGACAGTTTATTGCTCTGTCATGGCAGATGACTTGAGATTCAAGGACACAATGGTTTGGTCCACTG
CTGGCTGAGCCAAGAGCTGGGCAACTCAGGCTGAAAAGAACTAATGGCAACACATACATGTTGCTAACCAATGC
CACACTGGACAGAGGAGCAGTGGCCAAATATACCCACTCTGTTAGCCAAGGACCAAGGACTCCAGGCCCTATC
AGCCAAGAAACAGCTCAGCATTCAAGATCAGTGAACATCAACGACAATGCACCTGTGTTGAGAAAAGCAGGTATGA
AGTCTCACGGGGAAACAAACTTACCCCTCTTCACTTCAAGGCTCATGATGCAAGACTGGCAT
TAATGGAAAAGTCTCATACCGCATCAGGACTCCCAGTGTCTCAATTAGCTATTGACTCCAACACAGGAGA
GGTCACTGTCAGAGGTCACTGAACATGAAGAGATGGCGGCTTGAGTTCCAGGTGATCGCAGAGGACAGCGG
GCAACCCATGCTGCACTCAGTGTCTGTGGTCAAGCTCTGGATGCCATGATAATGCCAGGGTGGT
CCAGCCTGTGTCAGCGATGGAAAGCCAGCCTCTCCGTGCTTGTGAATGCCCAACAGGCCACCTGCTGGTGCC
CATCGAGACTCCAAATGGCTGGGCCAGCGGGACTGACACACCTCACTGGCACTCACAGCTCCGGCATT
CCTTGACAACCATTGTCAGAGGATGCAAGACTCGGGGCAAATGGAGAGGCCCTACAGCATCGCAATGG
AAATGAAGCCCACCTCTCATCCTCAACCCCTACAGGGCAGCTGGTCAATGTCACCAATGCCAGCAGCCT
CATTGGAGTGAGTGGAGCTGGAGATAGTAGAGGACCAAGGGAAAGCCCCCTTACAGACCCGAGCCCTGTT
GAGGGTCATGTTGTCAACAGTGTGACCCACTGAGGGACTCAGGCCAGCCTGGGCCCTGAGCATGTCGAT
GCTGACGGTGTCTGGCTGTACTGTTGGCATCTGGGTTGATCTGGCTTGTTCATGTCATCTGCCG
GACAGAAAAGGACAAACAGGCCATCAACTGTCGGAGGGCCAGTCCACCTACGCCAGCAGGCCAAGAGGCC
CCAGAAACACATTCAAGAGGCAAGACATCCACCTCGTGCCTGTCAAGGGTCAAGGCTGGGAGCCTGTCAGGCC
CGGGCAGTCCCACAAAGATGTTGACAGGGAGCTGGATGAGGAAAGCAGGCTGGGAGCCCTGCTGCAAGGCC
CCACCTACCCGACCCCTGACAGGAGCTGCCGTAATCAAGCAACAGGGAGCACCGGGAGAGGCCAGAGG
GCTGCAAGACACGGTCAACCTCTTCAACCATCCAGGCAAGGAAATGCCCTCCGGAGAACCTGAACCTTC
CGAGCCCCAGCCTGCCACAGGCCAGCCAGTCCAGGCTCTGCAAGGTTGCAAGGCCACAGGGAGGCTGGC
TGGAGACCAAGGGCAGTGAGGAAGCCCCACAGAGGCCACAGGCTCTGCAACCCCTGAGACGGCAGGACATCT
CAATGGCAAAGTGTCCCCGTAGAAAATCAGGGCCCCGTCAAGATCCTGCGGAGCCTGGCTGTC
TGCCCTCGCCAGCGGAACCCCGTGGAGGAGCTCACTGTTGATTCTCTCTGTCAGCAAATCTCCAGCTGCT
GTCTTGCTGTCATCAGGGCAATTCCAGCCAAACCAACCGAGGAAATAAGTACTTGGCCAAGGCCAGGAGG
CAGCAGGAGTCAATCCCAGACACAGATGGCCAAGTGAAGGGCTGGAGGCCAGACAGACCCAGAACAGGAGG
AGGGCCTTGGATCCTGAAGAGGACCTCTGTGAAGCAACTGCTAGAAGAAGAGCTGTCAAGTCTGCTGGACCC
CAGCACAGGTCTGGCCCTGGACCGGCTGAGCGCCCTGACCCGGCTGGATGGCGAGACTCTCTTGCCCTCAC
CACCAACTACCGTGACAATGTGATCTCCCGGATGTCAGCCACGGAGGAGGCCAGCTCCAGACGTTCGG
CAAGGCAGAGGCCACAGAGCTGAGCCAACAGGCACGGCTGGCCAGCACCTTGTCTGGAGATGAGCTCACT
GCTGGAGATGCTGCTGGACAGCGCTCCAGCATGCCCTGGAGGCCCTGGAGGCCAGCTGCG
CTGGGGAGGACCCCTGAGTTAGACTTGGCACCCAGTGCAAGGCTCAGGCATGAAAGTGAAGGGACCCAGGTGG
AAAGACGGGAACTGAGGGCAAGAGCAGAGGCAGCAGCAGCAGCAGCAGGCTGTGAAACATACTCAGACGCC
CTGGATCCAAGAACCCAGGGGCTGAGGATCTGTTGACAAGAGGCTGGTTCTAAATCTTGTAACTCACTAGCTAG
CGGGGGCTGAGAACCTTGGGTGACTGATGCTACCCCCAACAGAGGAGGCAAGAGGCCAGGACTAACAGCTGAC
TGACCAAAGCAGCCCCCTGTAAGCAGTCTGAGCTTGGAGGACAGGGACGGGCTGGAGATAAGTGT
TCCTGGCAAAACATATGTTGAGCAGGACAAAGGGTCAAGTCTGGCAGAACAGATGCCACGGAGTATCACAGGCAGG
AAAGGGTGGCCTTCTGGGTAGCAGGAGTCAGGGGCTGTACCCCTGGGGTGCCAGGAATGCTCTGACCTAT
CAATAAGGAAAAGCAGTAAAAAAAAAAAAAA

FIGURE 171

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48331
<subunit 1 of 1, 1184 aa, 1 stop
<MW: 129022, pI: 5.20, NX(S/T): 5
MMQLLQLLLGPGGYLFLLGDCQEVTTLTVKYQVSEEVPSGTIVGKLSQELGREERRQA
GAAFQVLQLPQALPIQVDSEEGLSTGRRLDREQLCRQWDPCLVSDVLATGDLALIHVEIQ
VLDINDHQPRFPKGQELEISESASLRTRIPLDRALDPDTGPNTLHTYTLSPSEHFALDVIV
GPDETKHAELIVVKELDREIHSFFDLVLTAYDNGNPPKGTSLVKVNVLDNSNDNSPAFAESS
LALEIQEDAAPGTLLIKLTATDPDQGPNGEVEFFLSKHMPPEVLDTFSIDAKTGQVILRRPL
DYEKNPAYEVDVQARDLGPNPIPAHCKVLIKVLVDVNDNIPSIHVTWASQPSLVSEALPKDSF
IALVMADDLDSGHNGLVCWLSQELGHFRLKRTNGNTYMLLTNATLDREQWPKYTLTLLAQD
QGLQPLSAKKQLSIQISDINDNAPVFEKSRYEVSTRENNLPSLHLITIKAHADLGIN GKVS
YRIQDSPVAHLVAIDSNTGEVTAQRSINYEMAGFEFQVIAEDSGQPMIASSSVWVVSLLDA
NDNAPEVVQPVLSDGKASLSVLVNASTGHLLVPIETPNGLGPAGTDTPPLATHSSRPFLTT
IVARDADSGANGEPLYSIRNGNEAHLFILNPHTGQLFVNVTNASSLIGSEWELEIVVEDQGS
PPLQTRALLRVMFVTSDHLDARSARKPGALSMSMLTVICLAVLLGIFGLLIALFMSICRTEK
KDNRAYNCREAESTYRQQPKRPQKHIQKADIHLVPVLRGQAGEPCEVGQSHKDVDKEAMMEA
GWDPCLQAFHLPHTLYRTLRNQGNQGAPAESREVLQDTVNLLFNHPRQRNASRENNLPEP
QPATGQPRS RPLKVAGSPTGRLAGDQGSEEAPQRPPASSATLRRQRHLNGKVSPEKE SGPRQ
ILRSLVRLSVAFAERNPVEELTVDSPPVQQISQLLSSLLHQGQFQPKPNHRGNKYLAKPGGS
RSAIPDTDGPSARAGGQTDPEQEEGPLDPEE DLSVKQLLEEELSSLDPSTGLALDRLSAPD
PAWMARLSSLPLTTNYRDNVISPDAAAATEEPRTFQTFGKAEAPELSPTGTRLASTFVSEMSSL
LEM LLEQRSSMPVEAASEALRRLSVCGRTLSLDLATSAASGMKVQGDPGGKTGTEGKSRGSS
SSSRCL
```

Important features:

Signal peptide:

amino acids 1-13

Transmembrane domain:

amino acids 719-739

N-glycosylation site.

amino acids 415-418, 582-585, 659-662, 662-665 and 857-860

Cadherins extracellular repeated domain signature.

amino acids 123-133, 232-242, 340-350, 448-458 and 553-563

FIGURE 172

CGGACGCGTGGCGGACGCGTGGGGAGAGCCGAGTCCGGCTGCAGCACCTGGAGAAGG
CAGACCGTGTGAGGGGGCCTGTGGCCCCAGCGTGCTGTGGCTCGGGAGTGGAAAGTGGAG
GCAGGAGCCTCCTAACACTCGCCATGAGTTCCTCATCGACTCCAGCATCATGATTACCT
CCCAGATACTATTTTGATTGGCTTCTTCATGCGCCAATTGTTAAAGACTAT
GAGATACTGAGTACAGGTGATCTCTCCGTGACGTTGCATTTCATGGCACCCT
GTTGAGCTCATCATCTTGAAATCTTAGGAGTATTGAATAGCAGCTCCGTTATTTC
GGAAAATGAACCTGTGTGAATTCTGCTGATCCTGGTTTCATGGTGCCTTTACATTGGC
TATTTATTGTGAGCAATATCGACTACTGCATAAACAAACGACTGCTTTTCCTGTCTCTT
ATGGCTGACCTTATGTATTCTTGAAACTAGGAGATCCCTTCCCATTCTCAGCCAA
AACATGGGATCTTATCCATAGAACAGCTCATCAGCCGGTTGGTGTATTGGAGTGA
CTC
ATGGCTCTTCTTGATTTGGCTGTCAACTGCCATACACTACATGTCTTACTCCT
CAGGAATGTGACTGACACGGATATTCTAGCCCTGGAACGGCGACTGCTGCAA
ACCATGGATA
TGATCATAAGCAAAAAGAAAAGGATGGCAATGGCACGGAGAACATGTT
CAGAAGGGGAA
GTGCATAACAAACCATCAGTTCTGGGAATGATAAAAAGTGT
TACCACTCAGCATCAGG
AAGTGA
AAATCTTACTCTTATTCAACAGGAAGTGGATGCTTGGAAAGAATTAAGCAGGCAGC
TTTCTGAAACAGCTGATCTATGCTACCAAGGAGAGAACATGAA
ACTCCAAA
ACCTTC
AAGGGGAAATATTTAATTTCTTGGTACTTTCTCTATTACTGTGTTGGAAAATTT
CATGGCTACCATCAATATTGTTTGATCGAGTTGGAAAACGGATCCTGTCACAAGAGGCA
TTGAGATCACTGTGAATTATCTGGGAATCCAATTGATGTGAAGTTGGT
CCAAACACATT
TCCTTCATTCTTGTGGAATAATCATCGTCACATCCATCAGAGGATTGCTGATCA
CTCTTAC
CAAGTTCTTTATGCCATCTAGCAGTAAGCCTCCAATGTCATTG
CCTGCTATTAGCAC
AGATAATGGCATGTACTTTGTCTCCTCTGTGCTGATCCGAATGAGTATGC
CTTAGAA
TACCGCACCATAATCACTGAAGTCCTGGAGAACTGCAGTTCAACTCTATC
ACCCTGGTT
TGATGTGATCTTCTGGTCAGCGCTCTCTAGCATACTCTTCTATTGGCT
CACAAAC
AGGCACCAGAGAACCAAATGGCACCTTGAACTTAAGCCTACTACAGACTGTTAGAGGCCAGT
GGTTCAAAATTTAGATATAAGAGGGGGAAAATGGAACCAGGGCCTGACATT
TATAAAC
AAACAAAATGCTATGGTAGCATTTCACCTTCATAGCATACTCCT
CCCCGT
CAGGTGATA
CTATGACCATGAGTAGCATGCCAGAACATGAGAGGGAGAACTAA
CTCAAGACAA
GCAGAGAGCATCCGTGGATATGAGGCTGGTAGAGGGCGGAGAGGCCAAGAA
ACTAA
AGGTGAAAATACACTGGAAC
CTGGGGCAAGACATGTCTATGGTAGCTGAGGCCAAACACGT
AGGATT
CCGTTAAGGTT
CACATGGAAAAGGTT
TAGCTTGCCTTGAGATTGACTCATT
AAAATCAGAGACTGTAAC
AAAAAAAAAAAAAGGGCGGCCGACTCTAGAGTCG
ACCTGCAGAAGCTTGGCCGCATGGCCAACTTGT
TTATTGCAGCTTATAATG

FIGURE 173

MSFLIDSSIMITSQLFFGFWLFFMRQLFKDYEIRQYVVQVIFSVDFAFSCTMFELIIFEI
LGVLNSSSRYFHWKMNLCVILLILVFMPFYIGYFIVSNIRLLHKQRLLFSCLLWLTMYFF
WKLGDPPILSPKHGILSIEQLISRVGVIGVTLMALLSGFGAVNCPTYMSYFLRNVTDI
LALERRLLQTMDMIISKKRMAMARRTMFQKGEVHNKPSPFWGMIKSVTTSASGSENLTLIQ
QEVDALEELSRLQLFLETADLYATKERIEYSKTFKGKYFNFLGYFFSIYCVWKIFMATINIVF
DRVVKTDPVTRGIEITVNYLGIQFDVKFWSQHISFILVGIIIVTSIRGLLITLTKFFYAISS
SKSSNVIVLLLAQIMGMYFVSSVLLIRMSMPLYRTIITEVLGELQFNFYHRWFDVIFLVSA
LSSILFLYLAHKQAPEKQMAP

Important features:

Signal peptide:

amino acids 1-23

Potential transmembrane domains:

amino acids 37-55, 81-102, 150-168, 288-311, 338-356, 375-398,
425-444

N-glycosylation sites.

amino acids 67-70, 180-183 and 243-246

Eukaryotic cobalamin-binding proteins

amino acids 151-160

FIGURE 174

CATGGGAAGTGGAGCCGGAGCCTCCTACACTCGCCATGAGTTCCCTCATCGACTCCAGCA
TCATGATTACCTCCNGANACTATTTTTGGATTTGGGTGGCTTTCTCNGCGCCAATGTT
TAAAGACTATGAGATACTGTCAGTATGTTGACNGGTGATCTCTCCGTGACGTTGCCATT
CTTGCACCATGTTGAGCTCATCTTGAAATCTNGGAGTATTGAATAGCAGCTCCGT
TATTTCACTGGAAAATGAACCTGTGTGTAATTCTGCTGATCCTGGTTNTCATGGTGCCTT
TTACATTGGCTATTTATTGTGAGCAATATCCGACTACTGCATAAACAAACGACTGCTTTT
CCTGTCTCTTATGGCTGACCTTATGTATTTCCAG

FIGURE 175

GTGTTGCCCTGGGGAGGGGAAGGGGAGCCNGGCCCTTCCTAAAATTGCCAAGGGTTTC
TTTNTTGAATTCCGGGTTNNGNATACCTTCCCAGAAAATATTTTGAGTTGGGTAGNTT
TTTTCATGCGCCAATTGTTAAAGACTATGAGATACTGTCAGTATGTTGTACAGGTGATNTT
NTCCGTGACGTTGCATTTCTGCACCATGTTGAGCTCATCATNTTGAAATNTTAGGAG
TATTGAATAGCAGCTCCGTTATTTCACTGGAAAATGAACCTGTGTGAATTCTGCTGATC
CTGGTTTCATGGTGCCTTTACATTGGCTATTTATTGTGAGCAATATCCGACTACTGCA
TAAACAACGACTGCTTTCTGTCTNTTATGGCTGACCTTATGTATTNTNTGGAAAN
TAGGAGATCCCTTCCCATTCTC

FIGURE 176

CTCGCGCAGGGATCGTCCCATGGCCGGGCTCGGAGCCCGCACCCTTGGGGGCTCCGGGATTGCTACCTTT
TGGCTCCCTGCTCGA**ACTGCTCTCTCACGGCTGTGCC**TTCAATCTGGACGTATGGTGCTGC
GGAGGGCGAGCCAGGCAGCCTTCGGCTCTGTGGCCTGCACCGCAGTGCAGCCCCAACCCAGAGCTG
GCTGCTGGTGGTGCTCCCCAGGCCCTGGCTCTGGCAGCAGCGAATCGCACTGGAGGCCTTCGCTTG
CCCCTGAGCTGGAGAGACTGACTGCTACAGAGTGGACATCGACAGGGAGCTGATATGCAAAGGAAAGCAA
GGAGAACCAGTGGTTGGGAGTCAGTGGAGCCAGGGCCTGGGCAAGATTGTTACCTGTGCACACCGATA
TGAGGCAAGGCAGCAGTGGACCAGATCCTGGAGACGCCGGATATGATTGGTCGCTTGTGCTCAGCCAGGA
CCTGGCATCCGGATGAGTTGGATGGGAAATGGAAGTTCTGTGAGGGACGCCCAAGGCCATGAACAATT
TGGTTCTGCCAGCAGGCCACAGCTGCCCTCTCCCTGATAGCCACTACCTCCTCTTGGGCCCCAGGAAC
CTATAATTGGAAGGGCACGCCAGGGTGGAGCTCTGTGCACAGGGCTCAGCGGACCTGGCACACGG
TCCCTACGAGGGGGGGAGAGAAGGAGCAGGACCCCCGCCATCCGGTCCCTGCCAACAGCTACTTGGCTT
CTCTATTGACTCGGGAAAGGTCTGGTGCCTGCAGAAGAGCTGAGCTTGAGCTGGAGGCCCGCCAACCA
CAAGGGTGTGTTGATCCCTGCAGGACAGCGCAGTCGCTGGCCAGGTTATGCTGTCTGGGAGCG
CCTGACCTCCGGTTGGCTACTCACTGGCTGTGGCTGACCTCAACAGTGTGATGGCTGCCAGACCTGATAGTGGG
TGCCCCCTACTTCTTGAGCGCAAGAAGAGCTGGGGTGCTGTGATGTGACTTGAACCAGGGGGTCACTG
GGCTGGGATCTCCCTCTCCGGCTCTGGCTCCCTGACTCCATGTTGGGATCAGCCTGGCTGTCTGGGGA
CCTCAACCAAGATGGCTTCCAGATATTGCACTGGGGTGCCTTGTGATGGGAAAGTCTTACATCACCA
TGGGAGCAGCTGGGGGTGCGGAAACCTCACAGGTGCTGGAGGGCGAGGCTGTTGGGATCAAGAGCTTCGG
CTACTCCCTGTCAGGAGCTGGATATGGATGGGAACCAATACCTGACCTGCTGGTGGGCTCCCTGGCTGACAC
CGCAGTGCCTTCAGGGGAGACCCATCCTCCATGAGGCTCTATTGCTCCACGAAGCATCGACCT
GGAGCAGGCAACTGTGCTGGGGCACTCGGTCTGTGGACCTAAGGGTCTGTTCACTACATTGCACTCCC
CAGCAGCTATAGCCCTACTGTGGCCCTGGACTATGTGTTAGATGCGACACAGACGGAGGCTCCGGGCCAGGT
TCCCCGTGTGACCTGAGCTGGAGACGCCATGTTCCAGCTCCAGGAAAATGTCAAAGACAAGCTTGGGCCATTGT
AGTGACCTTGTCCCTACAGTCTCCAGACCCCTCGGCTCCGGCGACAGGCTCTGGCCAGGGCTGCCAGTGGC
CCCCATCCTCAATGCCACAGCCCAGCACCCAGGGCAGAGATCCACTTCCTGAAGCAAGGCTGGTGAAGA
CAAGATCTGCCAGAGCAATCTGCACTGGTCCACGCCGCTCTGTACCCGGGTGAGCAGCACCGAATTCCAACC
TCTGCCCATGGATGTGGATGGAACAACAGCCCTGTTGACTGAGTGGGAGCCAGTCATTGGCTGGAGCTGAT
GGTCACCAACTGCCATCGGACCCAGGCCAGGGCTGATGGGATGATGCCATGAAGCCAGCTCCTGGT
CATGCTTCTGACTCACTGCACTACTCAGGGGTCGGGCCCTGGACCTGCGGAGAAGCCACTCTGCCGTCAA
TGAGAATGCCCTCCATGTTGAGTGTGAGCTGGGAACCCATGAAGAGAGGTGCCAGGTACCTTCTACCTCAT
CCTTAGCACCTCGGGATCAGCATTGAGACCACGGAACTGGAGGTAGAGCTGCTGTTGGCACGATCAGTGAGCA
GGAGCTGCATCCAGTCTGCACTGGAGCCCGTGTCTCATGAGCTGCCACTGTCCTTGAGGAATGCCATTCC
CCAGCAACTCTCTCTGGTGTGGAGGGCGAGAGAGGCCATGCACTGAGCTGGGATGTGGGAGCAAGGT
CAAGTATGAGGTCAAGGTTCCAACCAAGGCCAGTCGCTCAGAACCCCTGGCTCTGCCCTTCTCAACATCATGTG
GCCCTCATGAGATTGCAATGGGAAGTGGTTGCTGATCCCAATGCACTGGAGGTGGAGCAGTGGAGCTAGGGATAGG
GCAGAAAGGGCTTGCTCTCCAGGCCAACATCCTCCACCTGGATGAGCAGTGGAGCTGGGAGGAGGGCAGGGCCTGG
GCTGGAGGCCACTGAGCAGCAGGAGCCTGGTGAAGCGGAGGGAGCCAGCATGCTCTGGTGGCCAGTGTCTCTGC
TGAGAAGAAGAAAACATCACCCCTGGACTGCGCCGGGACGGCAACTGTGTTGAGCTGCTGCCACTCTA
CAGCTTGACCGCGGGCTGTGCTGCACTGTCATGTCATGGGCCACTCAGTGAAGTCTCCATAAAAGAACATTGATGCTCGAGA
TGCCTCCACAGTGTACCCAGTGTGATGGTATACTGGACCCATGGCTGTGGTGGCAGAAGGAGTGCCCTGGTGGGT
CATCCTCCTGGCTGTACTGGCTGGCTGGCTAGCACTGCTGGTGTGCTCCCTGTGGAAGATGGATTCTT
CAAACGGCGAAGCACCCGAGGCCACCGTGCCCACTGACCTGCGGTGAAGATTCTCGGAAAGACCCAGCAGCA
GTTCAAGGAGGAGAAGACGGGACCCATCCTGAGGAACAACTGGGGCAGCCCCGGGGAGGGCCGATGCA
CCCCATCCTGGCTGCTGACGGCATTCCGAGCTGGCCCCGATGGGCATCCAGGGCAGGCCAGGTTCC
CATGCTCCAGCCTGGCTGTGGCTGCCCTCCATCCCTCCAGAGATGGCTCTGGGATGAGAGGGTAGAGT
GGGCTGCTGGTGTGCACTCAAGATTGGCAGGATCGGCTCTCTCAGGGCAGAGACCTCTCCACCCACAAGAAC
TCCTCCCACCCAACTTCCCTTAGAGTGTGAGATGAGAGTGGGAAATCAGGGACAGGGCATGGGTAGGG
TGAGAAGGGCAGGGTGTGCTGATGCAAAGGTGGGAGAAGGGATCTAATCCCTCTCCATTACCCCTGT
GTAACAGGACCCAAAGGACCTGCCCTCCCGGAAGTGCCTAACCTAGAGGGTGGGGAGGGTTGTCAGTGA
CTCAGGCTGCTCTCTAGTTCCCTCTCATCTGACCTTAGTTGCTGCCATCAGTCTAGTGGTTCTGTG
TTCGTCTATTAAAAAATATTGAGAACAAAAAAAAAAAAAA

FIGURE 177

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA55737

><subunit 1 of 1, 1141 aa, 1 stop

><MW: 124671, pi: 5.82, NX(S/T): 5

MAGARSRDPWGASGICYLFGSLLVELLFSRAVAFNLDVMGALRKEGEPGSLFGFSVALHRQL
QPRPQSLLVGAPQALALPGQQANRTGGLFACPLSLEETDCYRVDIDQGADMQKESKENQWL
GVSVRSQGPGGKIVTCAHRYEARQRVDQILETRDMIGRCFVLSQDLAIRDELDGGEWKFC
RPQGHEQFGFCQQGTAAGSPDHSYLLFGAPGTYNWKGATARVELCAQGSADLAHLDGPYEA
GGEKEQDPRLIPVPANSYFGFSIDSGKGLVRAEELSFVAGAPRANHKGAVVILRKDSASRLV
PEVMLSGERLTSGFGYSLAVADLNSDGWPDLIVGAPYFFERQEELGAVVYVLNQGHHWAGI
SPLRLCGSPDSMFGISLAVLGDLNQDGFPDIAVGAPFDGDGKVFYHGSSLGVVAKPSQVLE
GEAVGIKSFYGSLSGSLDMDGQNQYPDLLVGSLADTAVLFRARPILHVSHEVIAPRSIDLEQ
PNCAGGHSVCVDLRVCFSYIAVPSSYPTVALDYVLDADTDRLRGQVPRVTFLSRNLEEPK
HQASGTWVWKHQHDRVCGDAMFQLQENVKDKLRAIVVTLSYSLOTPRLLRRQAPGQGLPPVAP
ILNAHQPSTQRRAEIHFQKQGCEDKICQSNLQLVHARFCTRVSDETFQPLPMDVDGTTALFA
LSGQPVIGLELMVTNLPSPDAQPQADGDDAHEAQQLLVMLPDSLHYSGVRALDPAEKPLCLSN
ENASHVECELGNPMPKRGQAQVTFYLILSTSGISIETTELEVELLATISEQELHPVSARARVF
IELPLSIAGMAIPQQLFFSGVVRGERAMQSERDVGSKVYEVTVSNQGQSLRTLGS AFLNIM
WPHEIANGKWLLYPMQVELEGGQGPGQKGLCSPRNILHLDVDSRDRRRRELEPPEQQEPGE
RQEPMSSWWPVSSAEKKNITLDCARGTANCVFSCPLYSFDRAAVLHWGRLWNSTFLEEY
SAVKSLEVIIVRANITVKSSIKNMLRDASTVIPVMVYLDPMMAVVAEGVPWWVILLAVLAGLL
VLALLVLLWKMGFFKRKHPEATVPQYHAVKI PREDRQQFKEEKTGTILRNNWGS PRREGP
DAHPIAADGHPELGPDPGHPGPGTA

Important features:

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 1040-1062

N-glycosylation sites.

amino acids 86-89, 746-749, 949-952, 985-988 and 1005-1008

Integrins alpha chain proteins.

amino acids 1064-1071, 384-408, 1041-1071, 317-346, 443-465, 385-
407, 215-224, 634-647, 85-99, 322-346, 470-479, 442-466, 379-408
and 1031-1047

FIGURE 178

CGCGCCGGCGCAGGGAGCTGAGTGGACGGCTCGAGACGGCGCGTGCAGCAGCTCCAGA
AAGCAGCGAGTTGGCAGAGCAGGGCTGCATTCCAGCAGGAGCTGCGAGCACAGTGCTGGCT
CACAACAAGATGCTCAAGGTGTCAGCGTACTGTGTGTGCAGCCGCTGGTGCAGTC
GTCTCTCGCAGCTGCCCGGGTGGCTGCAGCCGGGGCGGTCGGACGGCGTAATTTCT
TGGATGATAAACAAATGGCTACCAACAAATCTCTCAGTATGACAAGGAAGTCGGACAGTGGAAC
AAATTCCGAGACGAAGTAGAGGGATGATTATTCGCACCTGGAGTCCAGGAAAACCCTTCGA
TCAGGCTTAGATCCAGCTAAGGATCCATGCTAAAGATGAAATGTAGTCGCCATAAAAGTAT
GCATTGCTCAAGATTCTCAGACTGCAGTCTGCATTAGTCACCGGAGGCTTACACACAGGATG
AAAGAACAGGAGTAGACCATAGGCAGTGGAGGGTCCCATATTATCCACCTGCAAGCAGTG
CCCAGTGGTCTATCCCAGCCCTGTTGTGGTTAGATGGTACACTACTCTTTCAGTGCA
AACTAGAATATCAGGCATGTGCTTAGGAAAACAGATCTCAGTCAAATGTGAAGGACATTGC
CCATGTCCTCAGATAAGCCCACCAAGTACAAGCAGAAATGTTAAGAGAGCATGCAGTGACCT
GGAGTTCAGGGAAGTGGCAAACAGATTGCGGACTGGTTCAAGGCCCTCATGAAAGTGGAA
GTCAAACAAAGAACAAAAACATTGCTGAGGCCTGAGAGAACAGATTGATACCAGCATT
TTGCCAATTGCAAGGACTCACTGGCTGGATGTTAACAGACTTGATACAAACTATGACCT
GCTATTGGACCAGTCAGAGCTCAGAACATACAGTTAACATGAAACAGTGATGACCAAGG
CATTCTCAATTCTGTGACACATACAGGACAGTTAACATGAAACAGTGATGAC
TGCTTCCAGAGACAGCAAGACCCACCTGCCAGACTGAGCTCAGCAATATTGAGAAGCGGCA
AGGGTAAAGAACAGCTCTAGGACAGTATATCCCCCTGTGTGATGAAGATGGTTACTACAAGC
CAACACAATGTCATGGCAGTGGACAGTGCTGGTGTGTTGACAGATATGAAAGTC
ATGGGATCCAGAATAATGGTGTGAGATTGCTATAGATTTGAGATCTCCGGAGATTT
TGCTAGTGGCGATTTCATGAATGGACTGATGATGAGGATGATGAAGACGATATTGAAATG
ATGAAGATGAAATTGAAGATGATGATGAAGATGAAGGGATGATGATGATGGTGGTGTGAC
CATGATGTATAACATTTGATTGATGACAGTTGAAATCAATAAAATTCTACATTCTAAATT
CAAAATGATAGCCTATTAAAATTATCTTCTTCCAAATAACAAATGATTCTAAACCTCA
CATATATTGTATAATTATTGAAAAATTGCAAGCTAAAGTTATAGAAACTTTATGTTAAAT
AAGAACATTTGCTTGAGTTTATATTCTTACACAAAAAGAAAATACATATGCACTCTA
GTCAGACAAAATAAGTTGAAGTGCTACTATAATAAAATTTCACGAGAACAAACTTGT
AAATCTTCCATAAGCAAAATGACAGCTAGTGCTGGATCGTACATGTTAATTTTGAAAG
ATAATTCTAAGTGAATTTAAAATAAAATTGACCTGGGTCTTAAGGATTTAGG
AAAAATATGCATGCTTAATTGCATTCCAAAGTAGCATCTGCTAGACCTAGATGAGTCAG
GATAACAGAGAGATACCACATGACTCCAAAAAAAAAAAAAA

FIGURE 179

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49829
><subunit 1 of 1, 436 aa, 1 stop
><MW: 49429, pI: 4.80, NX(S/T): 0
MLKVSAVLCVCAAWSQSLAAAAAVAAAGGRSDGGNFLDDKQWLTTISQYDKEVGQWNKFR
DEVEDDYFRTWSPGKPFQALDPAKDPCLMKCSRHKV рIAQDSQTAVCISHRRLTHRMKEA
GV DHRQWRGPILSTCKQCPVVYPSPVCGSDGHTYSFQCKLEYQACVLGKQISVKCEGHCP
SDKPTSTS RNVKRACSDLEFREVANRLRDWFKA LHESGSQNKTKTLLRPERSRFDT S I LP
CKDSL GWMFNRLDTNYDLLL DQSELRSIYLDKNEQCTKAFFNSCDTYKDSLISNNEWCYCFQ
RQQDPPCQTELSNIQKRQGVKKLLGQYIPLCDEDGYYKPTQCHGSVGQCWCVDRYGNEVMGS
RINGVADCAIDFEISGDFASGDFHEWTDDDEDDIMNDEDEIEDDDEDEGDDDDGGDDHDVYI
```

Important features:

Signal peptide:

amino acids 1-16

Leucine zipper pattern.

amino acids 246-267

N-myristoylation sites.

amino acids 357-362, 371-376 and 376-381

Thyroglobulin type-1 repeat proteins

amino acids 353-365 and 339-352

FIGURE 180

CAGACTCCAGATTCCCTGTCAACCACGAGGAGTCCAGAGAGGAAACGCCGGAGCGGAGACAACAGTACCTGACGC
CTCTTCAGCCGGGATGCCCGCAGCAGGGATGGCACAAGATCTGGCTGCCCTCCCCGTGCTCCCTGGCC
GCTCTGCCCTCCGGTCTGCTGCCCTGGGGCGGCCGGCTTCACACCTCCCTCGATAGCAGTTCACCTTACCCCT
CCCGCCGGCCAGAAGGAGTGCTCTACAGCCCATGCCCTGAAGGCCCGCTGGAGATCGAGTACCAAGTTTA
GATGGAGCAGGATTAGATATTGATTTCCATCTTGCTCTCCAGAAGGCAAAACCTTAGTTGAACAAAGAAAA
TCAGATGGAGTTACACTGTAGAGACTGAAGTTGGTATTACATGTTCTGCTTGACAATACTCAGCACCATT
TCTGAGAAGGTGATTTCTTGAATTAACTCTGGATAATATGGAGAACAGGCACAAGAACAGAACAGATTGGAAG
AAATATATTACTGGCACAGATATACTGGATATGAAACTGGAAGACATCTGGAACTCAACAGCATCAAGTCC
AGACTAACAGCAAAGTGGGCACATACAAATTCTGCTTAGAGCATTGAAGCTCGTGTGAAACATACAAGAAC
AACTTGATAGAGTCATTCTGGCTATGGTTAATTAGTGGTCACTGGTGGTGTGAGCCATTCAAGTTAT
ATGCTGAAGAGTCTGTTGAAGATAAGAGGAAAGTAGAACATTAAAACACTAGAGTACGTAACATTGAA
AATGAGGCATAAAATGCAATAACTGTTACAGTCAAGACCATTAAATGGTCTTCCAAAATATTTGAGATATA
AAAGTAGGAAACAGGTATAATTAAATGTGAAATTAAAGTCTTCACTTCTGTGCAAGTAATCCTGCTGATCCAG
TTGTAAGTGTGAAACAGGAATTGGCAGAATATAGGTTAACTGAATGAAGCCATTAAACTGCA
TTTCTTAACCTTGAAAATTTGCAATGTCTTAGGTGATTAAATAGTGTGAAACACC
AGTCTGTTTAAACAGGTTCTATTACCCAGAACCTTTTGTAATGCCAGTTACAAATTAAACTGTGGAAGTT
TCAGTTTAAGTTATAACCTGAGAATTACCTAATGATGGATTGAAATACTTCTAGACTACAAAGCCAA
CTTTCTCTATTACATATGCATCTCCTATAATGTAATAGATAATAGCTTGTAAATACAATTAGGTTTTG
AGATTTTATAACCAAATACATTCTAGTGTAAACATATTAGCAGAACGATTAGTCTTGTACTTTGCTTACATT
CCAAAGCTGACATTTCACGATTAAAAACACAAAGTTACACTTACTAAATTAGGACATGTTCTTCT
AAATGAAGAATATAGTTAAAGCTTCTCCATAGGGCACATTCTTAACCTTAACAAAGTGTAGGA
TTTAAATTAATGTGAGGTTAAAGTTAATAGTATCTGTCAAGTTAATATCTGCAACAGTTAA
TAATCATGTTATGTTAATTAAATGATTGCTGACTTGATAATTCTTACCGCAGTTATGAGGAAATA
TTGCTAAATGATCTGGGCTTACCCATAAAATATCTCTTCTGAGCTTAAGAATTATCAGAAAACAGGAA
AGAATTAGAAAACCTGAGAACCTTAATCAAAATAAAATTCACTTAAGTAGAACTATAAATAATATCTAGA
ATCTGACTGGCTCATGACATCTACTCATAACATAAACTAAAGGAGATGATTAATTTCAGTTAGCTGGAAG
AAACTTGGCTGTAGGTTTATTTCTACAAGAATTCTGGTTGAATTATTTGTAAGCAGGTACATTATA
AAATGTAAGCCTACTGTAAAGGTTAGCACTGGGTGACATATTAAATTTTATTATAACAACCTTAT
TAAATGGCCTTCTGAAACACTTATTGATGTTGAAGTAGGATTAGAAACATAGACTCCCAGTTAA
CACCTAAATGTGAATAACCCATATACAAACAAAGTTCTGCCATCTAGCTTTGAAGTCTATGGGGCTTAC
TCAAGTACTAGTAATTAACTTCATCATGAATGAACATAATTAACTTAAAGTTATGCCATTATAACGTTGTTAT
GACTACATTGTGAGTTAGAAACAAACTAAATTTGGGGTATAGAACCCCTCAACAGGTTAGTAATGCTGGAATT
CTGATGAGCAATAATGATAACCAGAGAGTGTTCATTACACTCATAGTAGTATAAAAGAGATACTTCCC
TCTTAGGCCCTGGGAGAAGAGCAGTTAGATTCCCTACTGCCAGGTTTAAATGAGGTAATGCCGTAT
ATGATCAATTACCTTAATGGCAAGAAAATGTTCTCAGGTGTCTAGGGTATCTCTGCAACACTTGCGAGAACAA
AGGTCAATAAGATCCTGGCTATGAATACCCCTCCCTTGGCTGTTAAATTGCAATGAGAACAAATTACA
GTACCCATAACTAAACAGCAGGTACAGATAAAACTACTGCACTCTTCTTACAAATGAAATTGTTACATACTTCT
CCTCCTGTATGGCTGTACTGTACTCTGACTCCCTTACAAATGAAATTGTTACATACTTCT
ACATGTATGATTGCTTACCTGATCTTAAACCTATGATTGACTCTTACCTATGAAAGTAAAGAACGATAATTGCTT
TATTGGAAAAGAATTAGGAATACTAAGGACAATTATTGTTATAGACAAGTAAAGAACAGATATTAAAGG
CATAAACAAAAAGCAAACCTGTAAACAGAGTAAAGAACAGATATTCTAAAGACATACTGTTATCTGCTT
CATATGCTTTTTAATTCACTATCCATTCTAAATTAAAGTTATGCTAAATTGAGTAAGCTGTTATCACTT
AACAGCTATTGCTTTCAATATAACAAATTAAACTACAATTAACTAAGGCCAACCGATTTC
CATATGTAGCAGTTACCGTGTTCACCTCACACTAAGGCCAGTGGTTGCTCTGATATGCAATTGGATGATTAAT
GTTATGCTGTTCTTCTGATGTGAATGTCAAGACATGGAGGGTGTGTAATTGTTATGGAAAATTAAATCCTTCTA
CACATAATGGGTCTTAAATTGACAAAAATGAGCACTTACAATTGTTATGCTCCTCAAATGAAGATTCTTAT
GTGAAATTAAAAGACATTGATTCCGATGTAAGGATTTCATGTAAGTACAATAATGCAACATCAGTGTG
CTCAAACGTCTTATACTTATAAACAGCCATCTTAAATAAGCAACGTATTGTGAGTACTGATATGTATATAATA
AAATTATCAAAGGAAAA

FIGURE 181

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52196
><subunit 1 of 1, 229 aa, 1 stop
><MW: 26017, pI: 4.73, NX(S/T): 0
MGDKIWLPPVLLAALPPVLLPGAAGFTPSSLSDFTFTLPAGQKECFYQPMPLKASLEIEY
QVLDGAGLDIDFHLASPEGKTLVFEQRKSDGVHTVETEVGDYMFCDNTFSTISEKVIFFEL
ILDNMGEQAQEQQEDWKKYITGTDILDLMKLEDILESINSIKSRLSKSGHIQILLRAFEARDRN
IQESNFDRVNFWSMVNLVVVVSAIQVYMLKSLFEDKRKSRT
```

Important features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 195-217

N-myristoylation site.

amino acids 43-48

Tyrosine kinase phosphorylation site.

amino acids 55-62

FIGURE 182

CCATCCCTGAGATCTTTATAAAAAACCCAGTCTTGCTGACCAGACAAAGCATACCAAGAT
CTCACCAAGAGAGTCGCAGACACTATGCTGCCTCCATGCCCTGCCAGTGTGTCCTGGATG
CTGCTTCCTGCCTCATTCTCCTGTGTCAGGTTCAAGGTGAAGAAACCCAGAAGGAAC TGCC
CTCTCCACGGATCAGCTGTCCAAAGGCTCCAAGGCCTATGGCTCCCCCTGCTATGCCTTGT
TTTGTACCAAAATCCTGGATGGATGCAGATCTGGCTTGCCAGAAGCGGGCCCTCTGGAAAAA
CTGGTGTCTGTGCTCAGTGGGCTGAGGGATCCTCGTGTCCCTGGT GAGGAGCATTAG
TAACAGCTACTCATACATCTGGATTGGCTCCATGACCCCACACAGGGCTTGAGCCTGATG
GAGATGGATGGAGTGGAGTAGCACTGATGTGATGAATTACTTTGCATGGAGAAAAATCCC
TCCACCATCTAAACCCCTGGCCACTGTGGGAGCCTGTCAAGAACGACAGGATTCTGAAGTG
GAAAGATTATAACTGTGATGCAAAGTTACCCATGTCTGCAAGTTCAAGGACTAGGGCAGGT
GGGAAGTCAGCAGCCTCAGCTGGCGTGCAGCTCATGGACATGAGACCAGTGTGAAGAC
TCACCCCTGGAAGAGAATATTCTCCCCAAACTGCCCTACCTGACTACCTTGT CATGATCCTCC
TTCTTTTCTTTCTTCACCTCATT CAGGCTTTCTGTCTTCCATGTCTTGAGATC
TCAGAGAATAATAATAAAAAATGTTACTTTATAAAAAAAAAAAAAAAA

FIGURE 183

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56965
<subunit 1 of 1, 175 aa, 1 stop
<MW: 19330, pI: 7.25, NX(S/T): 1
MLPPMALPSVSWMLLSCLILLCQVQGEETQKELPSPRISCPKGSKAYGSPCYALFLSPKSWM
DADLACQKRPSGKLVSVLSGAEGSFVSSLVRSISNSYSYIWIGLHDPTQGSEPDGDGWEWSS
TDVMNYFAWEKNPSTILNPGHCGSLSRSTGFLWKDYNCDAKLPYVCKFKD
```

Important features:

Signal peptide:

amino acids 1-26

C-type lectin domain signature.

amino acids 146-171

FIGURE 184

CCAGTCTGTCGCCACCTCACTGGTGTCTGCTGTCCCCGCCAGGCAAGCCTGGGTGAGAGC
ACAGAGGAGTGGGCCGGGACCATGCGGGGGACGCGGCTGGCGCTCCTGGCGCTGGTGC
TGCCTGCGGAGAGCTGGCGCCGGCCCTGCGCTGCTACGTCTGTCCGGAGCCCACAGGAGTGT
CGGACTGTGTCACCATGCCACCTGCACCAACGAAACCATGTGCAAGACCACACTCTAC
TCCCGGGAGATAGTACCCTTCCAGGGGACTCCACGGTGACCAAGTCCTGTGCCAGCAA
GTGTAAGCCCTCGGATGTGGATGGCATCGGCCAGACCCCTGCCGTGCTGCAATACTG
AGCTGTGCAATGTAGACGGGGCGCCGCTCTGAACAGCCTCCACTGCCGGCCCTCACGCTC
CTCCCACTCTTGAGCCTCCGACTGTAGGTCCCCGCCACCCCCATGCCCTATGCCGCCA
GCCCGAATGCCCTGAAGAAGTGCCCTGCACCAAGGAAAAAAAAAAAAAAA

FIGURE 185

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56405
<subunit 1 of 1, 125 aa, 1 stop
<MW: 13115, pI: 5.90, NX(S/T): 1
MRGTRLALLALVLAACGELAPALRCYVCPEPTGVSDCVTIATCTTNETMCKTLYSREIVYP
FQGDSTVTKSCASKCKPSDVDGIGQTLPVSCCNTELCNVDGAPALNSLHCGALTLLPLLSLRL
```

Important features:

Signal peptide:

amino acids 1-17

N-glycosylation site.

amino acids 46-49

FIGURE 186

CTGCAGTCAGGACTCTGGGACCGCAGGGGGCTCCGGACCCTGACTCTGCAGCCGAACCGGC
ACGGTTCTGGGGACCCAGGCTTGCAAAGTGACGGTCATTTCTTTCTCCCTCTT
GAGTCCTTCTGAGATGATGGCTCTGGGCGCAGCAGGAGCTACCCGGTCTTGTCGCATGG
TAGCGGCGGCTCTCGCGGCCACCCCTGCTGGGAGTGAGCGCCACCTGAACTCGTTCTC
AATTCCAACGCTATCAAGAACCTGCCCGCACCGCTGGGCGGCTGCGGGCACCCAGGCTC
TGCAGTCAGCGCCGCCGGAAATCCTGTACCCGGCGGAATAAGTACCAAGACCATTGACA
ACTACCAGCCGTACCGTGCAGAGGACGAGGAGTGCGGCAGTGATGAGTACTGCGCTAGT
CCCACCCGCGGAGGGACGCAGGCGTGCAGGAAATCTGTCTGCCTGCAGGAAGCGCCAAAACG
CTGCATGCGTCACGCTATGTGCTGCCCGGAATTACTGAAAAATGGAATATGTGTCTT
CTGATCAAATCATTCCGAGGAGAAATTGAGGAAACCATCACTGAAAGCTTGGTAATGAT
CATAGCACCTTGGATGGGTATTCCAGAAGAACCACCTTGTCTTCAAAATGTATCACACCAA
AGGACAAGAAGGTTCTGTTGTCTCCGGTCATCAGACTGTGCCTCAGGATTGTGTTGTGCTA
GACACTTCTGGTCCAAGATCTGTAAACCTGTCCTGAAAGAAGGTCAAGTGTGTACCAAGCAT
AGGAGAAAAGGCTCTCATGGACTAGAAATATTCCAGCGTTGTTACTGTGGAGAAGGTCTGTC
TTGCCGGATACAGAAAGATCACCATAAGCCAGTAATTCTCTAGGCTTCACACTTGTCA
GACACTAAACCAGCTATCCAAATGCAGTGAACTCCTTTATATAATAGATGCTATGAAAACC
TTTATGACCTTCATCAACTCAATCCTAAGGATATAAGTTCTGTGGTTCACTTAAGCAT
TCCAATAACACCTTCCAAAAACCTGGAGTGTAAAGAGCTTGTGTTATGGAACACTCCCTG
TGATTGCAGTAAATTACTGTATTGAAATTCTCAGTGTGGCACTTACCTGAAATGCAATGA
AACTTTAATTATTTCTAAAGGTGCTGCACTGCCTATTTCTTCTTGTGTTATGAAATTT
TTGTACACATTGATTGTTATCTGACTGACAAATATTCTATATTGAACGTAAATCATT
TCAGCTTATAGTTCTAAAAGCATAACCCCTTACCCATTAAATTCTAGAGTCTAGAACGCA
AGGATCTTGGAAATGACAAATGATAGGTACCTAAATGTAACATGAAAATACTAGCTTATT
TTCTGAAATGTAATCTTAATGCTTAAATTATTTCCCTTAGGCTGTGATAGTTTGA
AATAAAATTAAACATTAAAAAAAAAA

FIGURE 187

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57530
<subunit 1 of 1, 266 aa, 1 stop
<MW: 28672, pI: 8.85, NX(S/T): 1
MMALGAAGATRVFVAMVAAALGGHPLLGVSATLNSVLNSNAIKNLPPPLGGAAGHPGSAVSA
APGILYPGGNKYQTIDNYQPYPACAEDEECGTDEYCASPTRGGDAGVQICLACRKRRKRCMRH
AMCCPGNYCKNGICVSSDQNHFREIEETITESFGNDHSTLDGYSRRTTLSSKMYHTKGQEG
SVCLRSSDCASGLCCARHFWSKICKPVLKEGQVCTKHRRKGSHGLEIFQRACYCGEGLSCRIQ
KDHHQASNSSLHTCQRH
```

Important features:

Signal peptide:

amino acids 1-23

N-glycosylation site.

amino acids 256-259

Fungal Zn(2)-Cys(6) binuclear cluster domain

amino acids 110-126

FIGURE 188

TGTGTTCCCTGCAGTCAGAATTGGGACNGCAGGGTTCCCGGACCTGATTTGCAGCGGA
ACGGGAAGGTTTGAGGGACCCAGGTTGAAATGACGGTCATTTTTCTCCTTCNG
GAGTCCTNTGAGANGATGGTTGGGCGCAGCGGGAGCTAACCGGTTTGTNGCGATG
GTAGCGCGGTTTCCGGGCCACCTNTGCTGGAGTGAGCGCACCTGAATCGGTTTC
AATTCCAACGNTATCAAGAACCTGCCACCGNTGGCGCGCTCGGGGCACCCAGGNTT
TGCAGTCAGCGCCGCCGGAAATCCTGTACCCGGCGGAATAAGTACCAGACCATTGACA
ATTACCAGCCGTACCCGTGCGCAGAGGACGAGGAGTGCGGCACTGATGAGTACTGCCTAGT
CCCACCCGCGGAGGGGANGCGGGCGTGC_{AA}ATNTGTNTNGCCTGCAGGAAGCGCCGAAAACG
CTGCATGCGTCANGCTATGTGCTGCCCGGGAAATTACTGCAAAATGGAATATGTGTNTT
CTGATCAAATCATTCCGAGGAGAAATTGAGGAAACCATCACTGAAAGCTTGGTAATGAT
CATAGCACCTTGGATGGG

FIGURE 189

GAGGAACCTACCGTACCGGCCGCGCTGGTAGTCGCCGTGCGCACCTCACCAATCCCGTGCGCCGCGG
CTGGGCCGTCGGAGAGTCGCGTGTGCTTCTCCTGCACGCCGTGCTGGCTCGGCCAGGCCGGTCCGCC
GGTTTGAGGATGGGGAGTAGCTACAGGAAGCGACCCCGCATGCCAAGGTATTTTGAAATGAAAAGGA
AGTATTAGAAATGAGCTGAAGACCATTACAGATTAAATTTGGGAGACAGATTGTGATGCTTGATTCAC
TGAAGTAATGTAGACAGAAAGTCTCAAATTGCAATTACATCAACTGGAACCGAGCTGAATCTTAATGTT
TTAACATCAGAACTTGCAATAAGAAAGAAATGGGAGTCTGGTAAATAAGATGACTATATCAGAGACTGAAAAG
GATCATTCTGTGTTCTGATAGTGATATGCCATTAGGGCACAGATCAGGATTTACAGTTACTTGG
AGTGTCAAAACTGCAAGCAGTAGAGAAATAAGACAAGCTTCAAGAAATTGGATTGAAGTTACATCTGATAA
AAACCGAATAACCAAATGCACATGGGATTTAAAAATAATAGAGCATATGAAGTACTCAAAGATGAAGA
TCTACGGAAAAGTATGACAAATATGGAGAAAAGGGACTGAGGATAATCAAGGTGGCCAGTGAAGACTGG
CTATTATCGTTATGATTTGGTATTATGATGATGATCCTGAAATCATAACATGGAAAGAAGAGAATTGATGC
TGCTGTTAATTCTGGAGAACTGTGTTGTAATTAACTCCCCAGGCTGTCACACTGCCATGATTAGCTCC
CACATGGAGAGACTTGCTAAAGAAGTGGATGGTTACTCGAATTGGAGCTGTAACGTGGTGTGATGATAGAAT
GCTTGCGAATGAAAGGAGTCACAGCTATCCCAGTCTTCATTTCGGTCTGGATGGCCAGTGAAGATA
TCATGGAGACAGATCAAAGGAGAGTTAGTGAGTTGCAATGCAGCATGTTAGAAGTACAGTGACAGAACTTTG
GACAGGAAATTGTCAACTCAAACACTGCTTTGCTGCTGGTATTGGCTGGTGTGACTTTTGTTCAAA
AGGAGGAGATTGTTGACTTACAGACACGACTCAGGTTAGGGCATGTTCTCAACTCATTGGATGCTAA
AGAAATATTTGGAAGTAATACATAATCTTCCAGATTGAAACTACTTCCGAAACACACTAGAGGATCGTT
GGCTCATCATGGTGGCTGTTATTTCATTTGGAAAAAAATGAAATTCAAATGCTGAGCTGAAAGAAACT
AAAAACTCTACTTAAAGATGATCATATTCAAGTGGCAGGTTGACTGTTCTGACCAGACATCTGAGTAA
TCTGTTATGTTTCAGCCGCTCTAGCAGTATTAAAGGACAAGGAAACAAAGAATATGAAATTGATCATGGAAA
GAAGATTCTATATGATATACTTGCTTGTGCAAAGAAAGTGTGAATTCTCATGTTACACGCTGGACTCAAAA
TTTCTGCCAATGACAAGAACATGGCTGTTGATTCTTGTGCCCCCTGGTGTCCACATGCGAGCTTACT
ACCAAGAGTTACGAAGAGCATCAAATCTCTTATGGTCAGCTTAAGTTGGTACACTAGATGTACAGTTCATG
GGGACTCTGTAACATGATAACATTCAAGGTTATCCAACACAGTGGTATTCAACCAGTCCAACATTGAGTA
TGAAGGACATCACTGCTGAACAAATCTTGAGTTCATAGAGGATCTTATGAATCCTCAGGGTCTCCCTAC
ACCCACCACCTCAACGAACTAGTTACACAAGAAAACACAACGAAGTCTGGATGGTGATTCTATTCTCCGTG
GTGTCATCCTTGCCAAGCTTAATGCCAGAATGGAAAAGAATGGCCGGACATTAACGGACTGATCAACGTGG
CAGTATAGATTGCCAACAGTATCATCTTTGTCGCCAGGAAACGTTCAAAGATAACCTGAGATAAGATTTT
TCCCCAAAATCAAATAAGCTTACAGTACAGTTACAATGGTIGGAATAGGGATGCTTATTCCCTGAGAAT
CTGGGGTCTAGGATTTCACCTCAAGTATCCACAGATCTAACACCTCAGACTTCAGTGAAAAGTCTACAAGG
GAAAATCATGGGTGATTCTATGCTCTGGTGTGGACCTGCCAGAATTGCTCCAGAATTGCTGAGCT
CTTGGCTAGGATGATTAAGGAAAAGTGAAGCTGGAAAAGTACAGTGTCAAGGCTTATGCTCAGACATGCCAGAA
AGCTGGATCAGGGCTATCCAACGTTAAAGTTTATTCTACAGAAAGAGCAAAAGAGAATTCTCAAGAAGAGCA
GATAAATACCAAGAGATGCAAAAGCAATCGCTGCCATTAAAGTGAAAAAGTCTCCGAAATCAAGGCAA
GAGGAATAAGGATGAACTGATAATGTTACATTATGATGGGAATGAATGAACATTATCTAGACTTGCACTG
AAGACACCTATTAGAATGTTACATTATGATGGGAATGAATGAACATTATCTAGACTTGCACTG
GAATTATCTACAGCACTGGTAAAGAAGGGTCTGCAAACATTCTGTAAAGGGCCGTTATAAATATT
GACTTGCAGGCTATAATATGGTCACACATGAGAACAGTACATGTTCTTGTGTTATTGCT
TTAACACCTTAAAAAATATTAAACGATTCTAGCTCAGGCCATACAAAGTAGGCTGGATTGAGTCCATG
GACCATAGATTGCTGTCCTCGACGGACTTAAATGTTCAGGGCTGGCTGAACATGAGTCTGCTGTGCT
ATCTACATAATGTCTAAGTTGATAAAAGTCCACTTCCCTCACGTTTTGCTGACCTGAAAAGAGGTAAC
TAGTTTGTCACTGTTCTCTAAAATGCTATCCCTAACCATATATTATTTGCTTTAAAACACCCAT
GATGTTGACAGTAAACAAACCTGTTATGCTGTATTATTATGAGGAGATTCTCATTGTTCTTCTCTCA
AAGGTTGAAAATGCTTTAATTTCACAGCCGAGAACAGTGCAGCAGTATATGTCACACAGTAAGTACAC
AAATTGAGCAACAGTAAGTGCACAAATTCTGAGTTGCTGTATCATCCAGGAAACCTGAGGGAAAAAATT
TAGCAATTAACTGGGATTGAGGTATCTAAATATGTTATCAAGTATTAGGTTCTATTTAAAGATATA
TGTGTTCATGTTCTGAAATTGCTTCTAGAAATTCTCCACTGATAGTTGATTGGAGCTCTAATAT
TTACATATTGCTCTGAACTTGTGTTCTGACCTGATCTTATTACATTGGGTTCTTCTGATAGTTGG
TTTTCACTCTGTCAGTCTATTATTACAAATGAGAAAATTACTTACAGGTTGTTACTGAGCTTAT
AATGATACTGAGTTATTCCAGTTACTGAGTTACTGCAAGGGCTGCCCTTCTAGATAAATATTGACATAATA
ACTGAAGTTATTGTTATAAGAAAATCAAGTATATAATCTAGGAAAGGGATCTCTAGTTCTGTTGTTAGA
CTCAAGAATCACAAATTGTCAGAACATGAGTTGTTAGTTATAATTCAAGGTTACAGAATGGTAAAATT
CCAATCAGTCAAAAGAGGTCATGAATTAAAGGCTGCAACTTTCAAAAAAAAAAAAAA

FIGURE 190

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56439
<subunit 1 of 1, 747 aa, 1 stop
<MW: 86127, pI: 7.46, NX(S/T): 2
MGVWLNKDDYIRDLKRIILCFLIVYMAILVGTDQDFYSLLGVSKTASSREIRQAFKKLALKL
HPDKNPNNPNAHGDFLKINRAYEVLKDEDLRKKYDKYGEKGLEDNQGGQYESWNYYRYDFGI
YDDDPEIITLERREFDAAVNSGELWFVNFYSPGCSHCHDLAPTRWDFAKEVDGLLRIGAVNC
GDDRMLCRMKGVNNSYPSLFIFRSGMAPVKYHGDRSKESLVSFAMQHVRSTVTELWTGNFVNS
IQTAFAAGIGWLITFCSKGGDC LTSQTRLRLSGMLFLNSLDAKEIYLEVIHNLPDFELLSAN
TLEDRLAHHRWLLFFFHFGKNENSNDPELKKLKTLKNDHIQVGRFDCSSAPDICSNLYVFQP
SLAVFKGQGTKEYEIHGKKILYDILAFAKESVNSHVTTLGPQNF PANDKEPWLVDFFFAPWC
PPCRALLPELRRASNLLYQQLKF GTLDCTVHEGLCNMYNIQAYPTTVFNQSNIHEYEGHHS
AEQILEFIEDLMNPVVSLPTTFNELVTQRKHNEVWMVDFYSPWCHPCQVLMPEWKRMART
LTGLINVGSIDCQQYHSFCAQENVQRYPEIRFFF PKSNKAYQYHSYNGWNRDAYSLRIWGLG
FLPQVSTDLPQTFS EKV LQGKNHWVIDFYAPWCGPCQNFAPEFELLARMIKGKVAGKVDC
QAYAQT CQKAGIRAYPTVKFYFYERAKRN FQEEQINTRDAKAIAALISEKLET LRN QGKR NKDEL
```

Important features:

Endoplasmic reticulum targeting sequence.

amino acids 744-747

Cytochrome c family heme-binding site signature.

amino acids 158-163

Nt-dnaJ domain signature.

amino acids 77-96

N-glycosylation site.

amino acids 484-487

FIGURE 191

AGACAGTACCTCCTCCCTAGGACTACACAAGGACTGAACCAGAAGGAAGAGGACAGAGCAAA
GCCATGAACATCATCCTAGAAATCCTCTGCTTCTGATCACCATCATCTACTCCTACTTGG
GTCGTTGGTGAAGTTTCTTCATTCTCAGAGGAGAAAATCTGTGGCTGGGAGATTGTTCTCA
TTACTGGAGCTGGGCATGGAATAGGCAGGCAGACTACTTATGAATTGCAAAACGACAGAGC
ATATTGGTTCTGTGGGATATTAATAAGCGCGGTGGAGGAAACTGCAGCTGAGTGCCGAAA
ACTAGGCGTCACTGCGCATGCGTATGTGGTAGACTGCAGCAACAGAGAAGAGATCTATCGCT
CTCTAAATCAGGTGAAGAAAGAAGTGGGTGATGTAACAATCGTGGTGAATAATGCTGGACA
GTATATCCAGCCGATCTTCTCAGCACCAAGGATGAAGAGATTACCAAGACATTTGAGGTCAA
CATCCTAGGACATTTGGATCACAAAGCACTTCTTCATCGATGATGGAGAGAAATCATG
GCCACATCGTCACAGTGGCTTCAGTGTGCGGCCACGAAGGGATTCTTACCTCATCCCATA
TGTTCCAGCAAATTGCCGCTGTTGGCTTCACAGAGGTCTGACATCAGAACATTCAAGGCCTT
GGGAAAAACTGGTATCAAAACCTCATGTCCTGCCAGTTTGTAATACTGGGTCACCA
AAAATCCAAGCACAAAGATTATGGCCTGTATTGGAGACAGATGAAGTCGAAGAAGTCTGATA
GATGGAATACTTACCAATAAGAAAATGATTTGTTCCATCGTATATCAATATCTTCTGAG
ACTACAGAACAGTTCTCCTGAACGCGCCTCAGCGATTTAAATCGTATGCAGAACATTCAAT
TTGAAGCAGTGGTTGCCACAAATCAAATGAATAAAATAAGCTCCAGGCAGAGATG
TATGCATGATAATGATATGAATAGTTCGAACATGCTGCAAAGCTTATTCACATTTT
TCAGTCCTGATAATATTAAAAACATTGGTTGGCACTAGCAGCAGTCAAACGAACAAGATTA
ATTACCTGTCCTCCTGTTCTCAAGAATATTACGTAGTTTCTAGGTCTGTTTCTT
TCATGCCTCTTAAAAACTCTGTGCTTACATAAACATACTTAAAGGTTCTTAAGATAT
TTTATTTTCCATTAAAGGTGGACAAAAGCTACCTCCCTAAAGTAAATACAAAGAGAACT
TATTTACACAGGAAAGGTTAACAGACTGTTCAAGTAGCATTCCAATCTGTAGCCATGCCACAG
AATATCAACAAGAACACAGAACAGAACATGAGTCACAGCTAACAGAGATCAAGTTCAGCAGGCAGCTT
ATCTCAACCTGGACATATTAAAGATTAGCATTGAAAGATTTCCCTAGCCTCTTCTT
TCATTAGCCCCAAACGGTGCAACTCTATTCTGGACTTTATTACTTGATTCTGTCTTGTAT
AACTCTGAAGTCCACCAAAAGTGGACCCCTCTATATTCCCTTTTATAGTCTTATAAGA
TACATTATGAAAGGTGACCGACTCTATTAAATCTCAGAACATTAAAGTTCTAGCCCCATGA
TAACCTTTCTTGTAAATTATGCTTCATATATCCTGGTCCCAGAGATGTTAGACAAT
TTTAGGCTCAAAATTAAAGCTAACACAGGAAAGGAACGTACTGGCTATTACATAAGAAA
CAATGGACCCAAGAGAAGAA

FIGURE 192

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56409
<subunit 1 of 1, 300 aa, 1 stop
<MW: 33655, pI: 9.31, NX(S/T): 1
MNIIILEILLLITIIYSYLESLVKFFIPQRRKSVAGEIVLITGAGHGIGRQTTYEFAKRQSI
LVLWDINKRGVEETAAECRKLGVTAHYVVDCSNREEIYRSLNQVKKEVGDVTIVVNNAAGTV
YPADLLSTKDEEITKTFEVNILGHFWITKALLPSMMERNHGHIVTVASVCVGHEGIPYLIPYC
SSKFAAVGFHRGLTSELQALGKTGIKSCLCPVFVNTGFTKNPSTRLWPVLETDEVVRSLID
GILTNKKMIFVPSYINIFLRLQKFLPERASAILNRMQNIQFEAVVGHKIKMK
```

Important features:

Signal peptide:

amino acids 1-19

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 30-33 and 58-61

Short-chain alcohol dehydrogenase family protein

amino acids 165-202, 37-49, 112-122 and 210-219

FIGURE 193

CGGGGGCGGCTGCGGGCGCGAGGTGAGGGCGCGAGGTGAGGGCGCGAGGTTCCCAGCAGG
ATGCCCGGCTCTGCAGGAAGCTGAAGTGAGAGGCCGGAGAGGGCCAGCCGCCGGGGC
AGGATGACCAAGGCCGGCTGTCGGCTGTGGCTGGTCTGGTGTTCATGATCCT
GCTGATCATCGTGTACTGGACAGCGCAGGCCCGCGACTTCTACTTGCACACGTCTTCT
CTAGGCCGACACGGGCCGGCTGCCACGCCGGGCCGGACAGGGACAGGGAGCTCACG
GCCGACTCCGATGTCGACGAGTTCTGGACAAGTTCTAGTGCTGGCGTAAGCAGAGCGA
CCTTCCCAGAAAGGAGACGGAGCAGCCGCTGCGCCGGGAGCATGGAGGAGAGCGTGAGAG
GCTACGACTGGTCCCCCGCGACGCCCGCGAGCCCAGACCAGGGCGGCAGCAGGCGGAG
CGGAGGAGCGTGCTGCGGGCTCTGCGCCAACCTCCAGCCTGGCCTCCCCACCAAGGAGCG
CGCATTGACGACATCCCCACTCGGAGCTGAGCCACCTGATCGGACGACGGCACGGG
CCATCTACTGCTACGTGCCAAGGTGGCCTGCACCAACTGGAAGCGCGTGTGATCGTGTG
AGCGGAAGCCTGCTGCACCGCGGTGCGCCCTACCGCGACCCGCTGCGCATCCGCGGAGCA
CGTGCACAACGCCAGCGCGCACCTGACCTTCAACAAGTTCTGGCGCGCTACGGGAAGCTCT
CCCGCCACCTCATGAAGGTCAAGCTCAAGAAGTACACCAAGTTCTCTTGTGCGGACCCCC
TTCGTGCGCCTGATCTCCGCCCTCCGAGCAAGTTGAGCTGGAGAACGAGGAGTTCTACCG
CAAGTTGCCGTGCCCATGCTGCGGCTGTACGCCAACACACCAGCCTGCCGCTGGCGC
GCGAGGCCTCCGCGCTGGCCTCAAGGTGTCTCGCCAACCTCATCCAGTACCTGCTGGAC
CCGCACACGGAGAAGCTGGGCCCTCAACGAGCACTGGCGGAGGTGTACCGCCTCTGCCA
CCCGTGCCAGATCGACTACGACTTCGTGGGAAGCTGGAGACTCTGGACGAGGACGCCGCG
AGCTGCTGCAGCTACTCCAGGTGGACCGCAGCTCCGCTCCCCCGAGCTACCGAACAGG
ACCGCCAGCAGCTGGAGGAGGACTGGTTGCCAAGATCCCCCTGGCCTGGAGGCAGCAGCT
GTATAAAACTCTACGAGGCCGACTTTGTTCTTCGGCTACCCCAAGCCCAAAACCTCCTCC
GAGACTGAAAGCTTCGCGTTGCTTTCTCGCGTGCCTGGAACCTGACGCACGCGCACTCC
AGTTTTTTATGACCTACGATTTGCAATCTGGCTTCTGTTCACTCCACTGCCTCTATCC
ATTGAGTACTGTATCGATATTGTTTTAAGATTAATATTCAGGTATTAATACGA

FIGURE 194

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56112
<subunit 1 of 1, 414 aa, 1 stop
<MW: 48414, pI: 9.54, NX(S/T): 4
MTKARLFRLWLVGSVFMILLIIVYWDSAGAAHFYLHTSFSRPTGPPPLPTPGPDRDRELTA
DSDVDEFLDKFLSAGVKQSDLPRKETEQPPAPGSMEESVRGYDWSPRDARRSPDQGRQQAER
RSVLRGFCANSSLAFPTKERAFDDIPNSELSHLIVDDRHGAIYCYVPKVACTNWKRVMIVLS
GSLLHRGAPYRDPLRIPREHVHNASAHLTFNKFWRRYGKLSRHLMKVKLKKYTKFLFVRDPF
VRLISAFRSKFELENEEFYRKFAVPMLRLYANHTSLPASAREAFRAGLKVSFANFIQYLLDP
HTEKLAPFNEHWRQVYRLCHPCQIDYDFVGKLETLDDEAAQLLQLLQVDRQLRFPPSYRNRT
ASSWEEDWFAKIPLAWRQQLYKLYEADFVLFGYPK PENLLRD
```

Important features:

Signal peptide:

amino acids 1-31

N-glycosylation sites.

amino acids 134-137, 209-212, 280-283 and 370-373

TNFR/NGFR family cysteine-rich region protein

amino acids 329-332

FIGURE 195

TCGGGCCAGAATT CGGCACGAGGC GGAC GAGGC GACGGC CTACGGGCTT GGAGGTGA
AAGAGGCCAGAGTAGAGAGAGAGAGACCGACGTACAGGGATGGCTACGGAACCGCGCT
ATGCCGGGAAGGTGGTGGTGTGACC GGGGGCGGGCGCGCATCGGAGCTGGATCGTGC
GCCTCGTGAACAGCGGGGCCGAGTGGTTATCTGCACAAGGATGAGTCTGGGGCCGGC
CCTGGAGCAGGAGCTCCCTGGAGCTGTCTTATCCTCTGTGATGTGACTCAGGAAGATGATG
TGAAGACCTGGTTCTGAGACCATCCGCCGATTGGCCGCTGGATTGTGTTGTCAACAAAC
GCTGGCCACCACCCACCCCCACAGAGGCCTGAGGAGACCTCTGCCAGGGATTCCGCCAGCT
GCTGGAGCTGAACCTACTGGGACGTACACCTTGACCAAGCTGCCCTCCCTACCTGCGGA
AGAGTCAAGGAATGTCATCAACATCTCCAGCCTGGTGGGGCAATCGGCCAGGCCAGGCA
GTTCCCTATGTGGCACCAAGGGGGCAGTAACAGCCATGACCAAAGCTTGGCCCTGGATGA
AAGTCCATATGGTGTCCGAGTCAACTGTATCTCCCCAGGAAACATCTGGACCCGCTGTGGG
AGGAGCTGGCAGCCTTAATGCCAGACCCCTAGGCCACAATCCGAGAGGGCATGCTGCCAG
CCACTGGGCCGCATGGGCCAGCCCGCTGAGGTGGGGCTGCCAGTGTCCCTGGCCCTCCGA
AGCCAACCTCTGCACGGCATTGAACTGCTCGTACGGGGGTGCAGAGCTGGGTACGGT
GCAAGGCCAGTCGGAGCACCCCGTGGACGCCCGATATCCCTCCTTGATTCTCTCATTT
CTACTTGGGCCCCCTCCTAGGACTCTCCCACCCAAACTCCAACCTGTATCAGATGCAGC
CCCCAAGCCCTAGACTCTAAGCCCAGTTAGCAAGGTGCCGGTCACCCTGCAGGTTCCCAT
AAAAACGATTGCAGCC

FIGURE 196

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56045
<subunit 1 of 1, 270 aa, 1 stop
<MW: 28317, pI: 6.00, NX(S/T): 1
MATGTRYAGKVVVVTGGGRGIGAGIVRAFVNNSGARVVICDKDESGGRALEQELPGAVFILCD
VTQEDDVKTIVSETIRRFGRILDGVNNAGHPPPQRPEETSAGQFRQLLELNLLGTYTLTKL
ALPYLRKSQGNVINISSLVGAIGQAQAVPYVATKGAVTAMTKALALDESPYGVRVNCISPGN
IWTPPLWEELAALMPDPRATIREGMLAQPLGRMGQPAEVGAAAVFLASEANFCTGIELLVTGG
AELGYGCKASRSTPVDAPDIPS
```

Important features:

N-glycosylation site.

amino acids 138-141

Short-chain alcohol dehydrogenase family protein

amino acids 10-22, 81-91, 134-171 and 176-185

FIGURE 197

AGGCAGGGCAGCAGCTGCAGGCTGACCTTGCAGCTGGCGGAATGGACTGGCCTCACAAACCTG
CTGTTTCTTCTTACCATTTCCATCTTCCTGGGCTGGGCCAGCCCAGGAGCCCCAAAAGCAA
GAGGAAGGGCAAGGGCGGCCTGGCCCTGGCCCTGGCCCTCACAGGTGCCACTGGACC
TGGTGTACGGATGAAACCGTATGCCCGCATGGAGGAGTATGAGAGGAACATCGAGGAGATG
GTGGCCAGCTGAGGAACAGCTCAGAGCTGGCCAGAGAAAGTGTGAGGTCAACTTGCAGCT
GTGGATGTCCAACAAGAGGAGCCTGTCTCCCTGGGCTACAGCATCAACCACGACCCCAGCC
GTATCCCCGTGGACCTGCCGGAGGCACGGTGCTGTCTGGCTGTGAACCCCTTCACC
ATGCAGGAGGACCGCAGCATGGTGAGCGTGCCCGTGTTCAGCCAGGTTCCGTGCCCGCCG
CCTCTGCCGCCACCGCCCCGCACAGGGCCTGCCGCCAGCGCGAGTCATGGAGACCATCG
CTGTGGCTGCACCTGCATCTTGAATCACCTGGCCAGAAGCCAGGCCAGCAGCCGAGA
CCATCCTCCTTGCACCTTGCCAAGAAAGGCCTATGAAAAGTAAACACTGACTTTGAAA
GCAAG

FIGURE 198

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59294
<subunit 1 of 1, 180 aa, 1 stop
<MW: 20437, pI: 9.58, NX(S/T): 1
MDWPHNLLFLLTISIFLGLGQPRSPKSKRKGQGRGPLAPGPHQVPLDLVSRMKPYARMEEY
ERNIEEMVAQLRNSSELAQRKCEVNLQLWMSNKRSLSPWGYSINHDPSRIPVVDLPEARCLCL
GCVNPFTMQEDRSMVSVPVFSQPVRRRLCPPPRTGPCRQRAVMETIAVGCTCIF
```

Important features:

Signal peptide:

amino acids 1-20

N-glycosylation site.

amino acids 75-78

Homologous region to IL-17

amino acids 96-180.

FIGURE 199

GC GCCGCCAGCGTAGGC GG GGGTGGCCCTGCGTCTCCGCTTCCTGAAAAACCCGGCGGG
CGAGCGAGGCTGCGGGCCGGCGCTGCCCTCCCCACACTCCCCGCGAGAACGCTCGCTCG
GCGCCCAACATGGCGGGTGGCGCTGCCCGCAGCTAACGGCGCTCCTGGCCGCTGGAT
CGCGCTGTGGCGCGACGGCAGGCCCGAGGAGGCCGCTGCCGCCGGAGCAGAGCCGGG
TCCAGCCCAGACCCTCCAACGGACGCTGGTGTGGAGGGCGAGTGGAATGCTGAAATT
TACGCCCATGGTGTCCATCCTGCCAGCAGACTGATTCAAATGGGAGGCTTGCAAAGAA
TGGTGAATACTTCAGATCAGTGTGGGAAGGTAGATGTCATTCAAAGAACAGGTTGAGTG
GCCGCTTCTTGTCAACCCTCCCAGCATTTCATGCAAAGGATGGGATATTCCGCCGT
TATCGTGGCCCAGGAATCTTCAAGAACCTGCAGAATTATATCTTAGAGAAGAAATGGCAATC
AGTCGAGCCTCTGACTGGCTGGAAATCCCCAGCTCTAACGATGTCTGGAATGGCTGGTC
TTTTAGCATCTCTGGCAAGATATGGCATCTTCACAACATTTCACAGTGACTCTTGGAAATT
CCTGCTTGGTGTCTTATGTGTGTTCTCGTCATGCCACCTTGGGTTTGGCCTTTATGGG
TCTGGTCTTGGTGGTAATATCAGAATGTTCTATGTGCCACTTCCAAGGCATTATCTGAGC
GTTCTGAGCAGAATCGGAGATCAGAGGAGGCTCATAGAGCTAACAGCTGAGGATGGGAG
GAGGAAAAAGATGATTCAAATGAAGAAGAAAACAAGACAGCCTGTAGATGATGAAGAAGA
GAAAGAAGATCTGGCGATGAGGATGAAGCAGAGGAAGAAGAGGAGGAGGACAACCTGGCTG
CTGGTGTGGATGAGGAGAGAAGTGAGGCCATGATCAGGGGCCAGGAGAGGACGGTGTG
ACCCGGGAGGAAGTAGAGCCTGAGGAGGCTGAAGAAGGCATCTGAGCAACCTGCCAGC
TGACACAGAGGTGGAGAACACTCCTGAGGCAGCGTAAAGTCAGCATGCTGACAAGGGAC
TGTAGATTTAATGATGCGTTTCAAGAATACACACAAACATATGTCAGCTTCCCTTGG
CCTGCAGTTGTACCAAATCCTTAATTTCCTGAATGAGCAAGCTCTTAAAGATGCT
CTCTAGTCATTGGTCTCATGGCAGTAAGCCTCATGTATACTAAGGAGAGTCTTCCAGGTGT
GACAATCAGGATATAGAAAACAACGTAAGTGTGGATCTGTTGGAGACTGGGATGGGAA
CAAGTTCATTTACTTAGGGTCAGAGAGTCTGACCAAGGAGGCCATTCCCAGTCATAATC
AGCACCTTCAGAGACAAGGCTGCAGGCCCTGAAATGAAAGCCAAGCAGGAGCCTGGCT
CCTGAGCATCCCCAAAGTGTAAAGCTAGAAGCCTGACATCCTTCTGTGAAAGTATTTAT
TTTGTCAAATTGCAGGAAACATCAGGCACCACAGTCAGTGAAAAATCTTCACAGCTAGAA
ATTGAAAGGGCTTGGGTATAGAGAGCAGCTCAGAAGTCATCCCAGCCCTGAAATCTCCTG
TGCTATGTTTATTCTTACCTTAATTTCAGCATTCCACCATGGCATTCAAGGCTCT
CCACACTCTCACTATTATCTCTGGTCAGAGGACTCCAATAACAGCCAGGTTACATGAAC
TGTGTTGTCATTCTGACCTAACGGGTTAGATAATCAGTAACCATAACCCCTGAAGCTGT
GACTGCCAACATCTCAAATGAAATGTTGTGGCCTCAGAGACTCAAAGGAAGTAAGGATT
TTACAAGACAGATTAAGGAAACTGGTTGTCAGGAAAGTCTCTGAAAGTCTGCTGAAAGTGT
AAGTTTCTAAGCAATATTTCAAGCCAGAAGTCCTCTAAGTCTGCTGAGTACAAGGTAGT
CTTGTGAAGAAAAGTTGAATACTGTTTGTGTTCTCAAGGGGTTCCCTGGGTCTTGAAC
TACTTAATAATAACTAAAAACCACTCTGATTTCCTCAGTGATGTGCTTTGGTGAAC
GAATTAATGAACCTCCAGTACCTGAAAGTGAAGATTGATTGTTCCATCTCTGTAATC
TTCCTAACAGAATTATATCTTGTAAATCTCTCAACTCAATCTACTGTAAGTACCCAGGGAG
GCTAATTCTT

FIGURE 200

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56433
<subunit 1 of 1, 349 aa, 1 stop
<MW: 38952, pI: 4.34, NX(S/T): 1
MAGGRCGPQLTALLAAWIAAVAAATAGPEEAALPPEQSRVQPMTASNWTLMVEGEWMLKFYAP
WCPSCQQTDSEWEAFAKNGEILQISVGKVDVIQEPGLSGRFFVTTLPAFFHAKDGFRRYRG
PGIFEDLQNYILEKKWQSVEPLTGWKSPASLTMSGMAGLFSISGKIHHLHNYFTVTLGIPAW
CSYVFFVIATLVFGLFMGLVLVVISECFYVPLPRHLSERSEQNRSEEAHRAEQLQDAEEEK
DDSNEEENKDSLVDDEEEKEDLGDEDEAEEEEEDNLAAVGDEERSEANDQGPPGEDGVRE
EVEPEEAEEGISEQPCPADTEVVEDSLRQRKSQHADKGL
```

Important features:

Signal peptide:

amino acids 1-22

Transmembrane domain:

amino acids 191-211

N-glycosylation site.

amino acids 46-49

Thioredoxin family proteins. (homologous region to disulfide isomerase)

amino acids 56-72

Flavodoxin proteins

amino acids 173-187

FIGURE 201

ATCTGGTTGAACTACTTAAGCTTAATTGTTAAACTCCGGTAAGTACCTAGCCCACATGATT
TGACTCAGAGATTCTCTTTGTCCACAGACAGTCATCTCAGGGGCAGAAAGAAAAGAGCTCC
CAAATGCTATATCTATTCAAGGGCTCTCAAGAACAAATGGAATATCATCCTGATTAGAAAAT
TTGGATGAAGATGGATATACTCAATTACACTTCGACTCTCAAAGCAATACCAAGGATAGCTGT
TGTTTCAGAGAAAGGATCGTGTGCTGCATCTCCTCCTGGCGCCTCATTGCTGTAATTGG
GAATCCTATGCTTGGTAATACTGGTGATAGCTGTGGTCTGGGTACCATGGGGTTCTTCC
AGCCCTTGTCTCCTAATTGGATTATATGAGAAGAGCTGTTATCTATTCAAGCATGTC
AAATTCTGGATGGAAGTAAAAGACAATGCTGGCAACTGGGCTCTAATCTCCTAAAGATAG
ACAGCTCAAATGAATTGGGATTATAGTAAAACAAGTGTCTTCCAACCTGATAATTCAATT
TGGATAGGCCTTCTGGCCCCAGACTGAGGTACCATGGCTCTGGGAGGATGGATCAACATT
CTCTCTAACTTATTTCAGATCAGAACACAGCTACCCAAAGAAAACCCATCTCCAATTGTG
TATGGATTACGTGTCAGTCATTATGACCAACTGTGTAGTGTGCCCTCATAGTATTG
GAGAAGAAGTTTCAATGAAGGAAGGGTGAGAAGGAGAGAATATGTGAGGTAGTA
AGGAGGACAGAAAACAGAACAGAAAAGAGTAACAGCTGAGGTCAAGATAATGCAGAAAATG
TTTAGAGAGCTGGCCAAGTGTAACTCTAACCAAGAAATTGAAGGGAGAGGCTGTGATTCT
GTATTGTCGACCTACAGGTAGGCTAGTATTATTTCTAGTTAGTAGATCCCTAGACATGG
AATCAGGGCAGCCAAGCTTGAGTTTATTATTTATTATTTGAGATAGGGTCT
CACTTGTACCCAGGCTGGAGTGCAGTGGCACAACTCGACTCACTGCAGCTATCTCGC
CTCAGCCCCCTCAAGTAGCTGGACTACAGGTGCATGCCACCAGGCTAATTTGGTG
TTTTTGAGAGACTGGTTTGCCATGTTGACCAAGCTGGCTCTAACTCCTGGCTTAAG
TGATCTGCCCGCTGGCTCCAAAGTGCTGGATTACAGATGTGAGCCACCACACCTGGC
CCCAAGCTTGAATTTCATTGCCCCCTGCTTACAGTTGACTGGCATTCCTGGTAAGGCCATAAGCGA
ATCTTAATTCTGGCTCTATCAGAGTTGTTCATGCTCAACAATGCCATTGAAGTGCACGGT
GTGTTGCCACGATTGACCTCAACTCTAGCAGTATCAGTTATGAACTGAGGGTGAAT
ATATTCTGAATAGCTAAATGAAGAAATGGAAAAAAATCTTCACCACAGTCAGAGCAATT
ATTATTTCTCATCAGTATGATCATAATTATGATTATCATCTTAGTAAAAGCAGGAACCTCTA
CTTTTCTTATCAATTAAATAGCTCAGAGACTACATGCCATTCTCTAAATAGAATCTT
TTTTTTTTTTTTGAGACAGAGTTCGCTTTGTCCTGGCAGGCTGGAGTGCACGG
CACGATCTCGGCTACCGCAACCTCCGCCCCCTGGGTTCAAGCAATTCTCTGCCTCAGCCT
CCCAAGTAGCTGGATTACAGTCAGGCCACCACACCCGGCTAATTTGTATTGTTAGT
AGAGACAGGGTTCTCCATGTCGGTCAGGTAGTCCGAACCTCTGACCTCAAGTGTACTGC
CTGCCTCGGCCTCCAAAGTGTGGATTACAGGCGTGAGCCACTGCACCCAGCCTAGAATCT
TGTATAATATGTAATTGTAGGGAAACTGCTCTAGGAAAGTTTCTGCTTTAAATACA
AAAATACATAAAATACATAAAATCTGATGATGAATATAAAAAGTAACCAACCTCATTGGA
ACAAGTATTAACATTGGAAATATGTTTATTAGTTGATGTACTGTTACAATT
ACCATTGTTTCAGTAATTACTGTAAAATGGTATTATTGGAATGAAACTATATTCTCATG
TGCTGATTGTCCTATTCTCATCTTCCACTGGTGCTATTGTTATTCCAAATGGATA
TTCTGTATTACTAGGGAGGCATTACAGTCCTCTAATGTTGATTAATATGTGAAAAGAAAT
TGTACCAATTACTAAATTATGCAGTTAAAATGGATGATTGTTATGTTATGTGGATT
TTCAATAAAAAAAAAACTCTTATCAAAAAAAAAAAAAAA

FIGURE 202

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53912
<subunit 1 of 1, 201 aa, 1 stop
<MW: 22563, pI: 4.87, NX(S/T): 1
MEYHPDLENLDEDGYTQLHFDSQSNTRIAVVSEKGSCAASPPWRLIAVILGILCLVILVIAV
VLGTMGVLSLSSPCPPNWIYEKSCYLFMSMSLNWDGSKRQCWLGSNLLKIDSSNELGFIVKQ
VSSQPDNSFWIGLSRPQTEVPWLWEDGSTFSSNLFQIRTTATQENPSPNCVWIHVSVIYDQL
CSVPSYSICEKKFSM
```

Important features:

Type II transmembrane domain:

amino acids 45-65

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 197-200

N-myristoylation sites.

amino acids 35-40 and 151-156

Homologous region to LDL receptor

amino acids 34-67 and 70-200.

FIGURE 203

GGAGGGGAGGAGCAGGCCACACAGGCACAGGCCGGTGAGGGACCTGGAGGGTCTCGCTCTGTCA
CACAGGCTGGAGTGCAGTGGTGTGATCTTGGCTCATCGTAACCTCCACCTCCGGGTTCAAGTGATTCTCATGCC
TCAGCCTCCCAGTAGCTGGATTACAGGTGGTACTTCCAAGAGTGACTCCGTCGGAGGAAATGACTCCAG
TCGCTGTCAGACACTGTTCTGCTGAGTCTGCTCTGGCCAAGGTGCCACGGCAGGGGCCACAGG
GAAGACTTCGCTTCTGAGCCAGCGAACAGACACACAGGAGCAGCCTCACTACAAACCCACACCAGACCTG
CGCATCTCATCGAGAACTCCGAAGAGGCCCTCACAGTCATGCCCTTCCCTGAGGCCACCCCTGCTTCCCGA
TCCTCCCTGACCCAGGGGCTTACCACTTCTGCTCTACTGGAACCGACATGCTGGAGATTACATCTTC
TATGGCAAGCGTACTTCTGCTGAGTGACAAAGCCTTAGCCTCTGCTTCCAGCACCAAGGAGGAGCCTG
GCTCAGGGCCCCCGCTTAGCCACTTCTGTCACCTCTGGAGGCCCTCAGAACATCAGCCTGCCAGTGCC
GCCAGCTTACCTTCTCCACAGTCCTCCACAGGCCGCTCACAATGCTCGGTGACATGTGCGAGCTC
AAAAGGGACCTCCAGCTGCTCAGCCAGTTCTGAAGCATTCCAGAAGGCCCTCAAGGAGGCCCTGGCTGCC
GCCAGCCAGCAGTTGAGGCCCTGAGTCGAAACTGACCTCTGAGATTATGGGGACATGGTGTCTTCGAG
GAGGACCGGATCAACGCCACGGTGGAAGCTCCAGGCCACAGCCGCCCTCAGGGACCTGACATCCACTCCGG
CAGGAGGAGGAGCAGAGCGAGATCATGGAGTACTCGGTGCTGCTCGAACACTCTTCAGAGGAGCAAAGGC
CGGAGCGGGGAGGCTGAGAAGAGACTCCTCTGGTGGACTTCAGCAGCCAAGGCCCTGTTCCAGGACAAGAATTCC
AGCCAAGTCTGGGTGAGAAGGTCTGGGATGTGGTACAGAACACCAAAGTAGCCAACCTCACGGAGGCCGTG
GTGCTCACTTCCAGCACCAGTACAGCGAAGAATGTGACTCTGCAATGTGTTCTGGTGAAGAACCCCCACA
TTGAGCAGCCCGGGCATTGGAGCAGTGTGCTGGTGGAGACCGTCAGGAGAGAACCCAAACATCCTGCTTCTGC
AACCACTTGACCTACTTGCACTGCTGATGGTCTCCTCGGTGGAGGTGGACGCCGTGACAAGCACTACCTGAGC
CTCCTCTCTACGTGGGTGTGCTCTGCCCTGCCCTGCTGCACTTGTGACCATTCGCGCTTACCTCTGCTTCCAGG
GTGCCCTCGCCGTGCAAGGAGAACCTCGGGACTACACCATCAAGGTGCAATGAACCTGCTGCTGGCGAGCAGTGC
CTGCTGGACACGAGCTTCTGCTCAGCGAGCCGGTGGCCCTGACAGGCTCTGAGGCTGGCTGCCAGGAGTGC
ATCTTCTGCACTTCTCCCTGCTCACCTGCCCTTCTGGATGGGCTCGAGGGTACACCTCTACCGACTCGTG
GTGGAGGTCTTGGCACCTATGTCCCTGGCTACCTACTCAAGCTGAGGCCATGGGCTGGGCTTCCCATCTT
CTGGTACGCTGGTGGCCCTGGTGGATGTGGACAACATGGCCCATCATCTGGCTGTGCAAGGACTCCAGAG
GGCGTCATCTACCCCTCATGTGCTGGATCCGGGACTCCCTGGTCAGCTACATACCAACCTGGCCTTCTCAGC
CTGGTGTCTGTTCAACATGGCCATGCTAGCCACCATGGTGGTGCAGATCCTGCGGCTGCCCTGGCCTTGATCTTCTCC
AAGTGGTACATGTGCTGACACTGCTGGGCTCAGCCTGGCTTGGCCCTGGGCTTGGGCTTGGGCTTCCATCTT
TTGCTTCTGGCACCTTCAGCTTGTGCTCTACCTTTCAGCATCATCACCTCTTCCAAGGCTTCTCATC
TTCATCTGGTACTGGCATGCGGTGCAGGCCGGGGTGGCCCTCCCTCTGAAGAGCAACTCAGACAGCGCC
AGGCTCCCATCAGCTCGGGCAGCACCTCGTCAGCCGATCTAGGCCCTCAGGCCACCTGCCATGTGATGAAG
CAGAGATGCGCCTGTCGCACACTGCTGTGGCCCCGAGCCAGGCCAGGCCAGGCCAGTGCAGCCGAGACT
TTGAAAGCCAACGACCATGGAGAGATGGGCCATGGTGGACGGACTCCGGGCTGGGCTTTGAATTG
GCCTGGGACTACTCGGCTCTCACTCAGCTCCACGGGACTCAGAAGTGCGCCGCACTGTCAGCTAGGGTACTG
TCCCACATCTGCCCACCCAGCTGGAGGCCCTGGTCTCTCCTTACACCCCTGGGCCAGGCCCTCATTGCTGG
GGCAGGCCCTGGATCTTGAGGGCTGGCACATCCTTAATCCTGTGCCCTGCTGGACAGAAATGTGGCTCCA
GTTGCTCTGCTCTCGTGGTACCCCTGGGACTCTGCACTCTGCTGATCTCTGTCAATTAACTCAGGTGGCACCCAGGG
CGAATGGGGCCAGGGCAGACCTTCAGGGGAGGCCCTGGGGAGAGGCCCTTGTGCAAGGAGCACCCAGGG
AGCTCGCCTACCTCTGAGGCCAGGCCCTCCCTCAGCCCCCAGTCCTCCCTCCATCTTCCCTGGGTT
TCCCTCTCCAGGCCCTGGTCTCTGCTCTGTTACAGCTGGGGCTCCCTGCAAGGCTCTGAGGCCCTGGG
GTGGTTCCAGGAGCTGCTGGTCTGGCTAGGTCCCTCTGCACTCTGAGGCCCTGGTGTATGAGCTGCAATTGCC
GGCTGGTACCGATGCGTGGCTGGCTAGGTCCCTCTGCAAGGCTCTGAGGCCCTGGTGTAGGTGGCAAGA
CTGCAAGGCCCTGGGCTGGGCTGGGCTGGGCTGGGCTGGGCTGGGCTGGGCTGGGCTGGGCTGGGCTGG
CTCACCTGACCAAGCACGCCCTAGAGGGGCCCTGCCCTGCAAGGCCCTGGTGTAGGTGGCAAGA
CCATGCCAGTCCCGTCTGGTTCCATCCCACCACTCCAAGGACTGAGACTGACCTCTCTGGTGACACTGCC
GAGCCTGACACTCTCTAAGAGGTCTCTCCAAGGCCCAAATAGCTCCAGGCCCTGCCGCCATCATGGT
TAATTCTGTCACAAACACACAGGGTAGATTGCTGGCCTGTTGAGGTGGTAGGGACACAGATGACCGACCTG
GTCACTCCTCTGCCAACATTAGCTGGTATGTGAGGGCTGCGTGAGCAAGAACCTGGAGCTACAGGGACA
GGGAGGCCATCTCTGCCGGGATCCTGGAGACTCCTGCAAGGAGTCAGCGTTCAATTGACCTTGAGAG
GGGAAGGATGTTCTTTACGTACCAATTCTTGTCTTGTATATAAAAAGAAGTACATGTTCAATTGTAGAGA
ATTGGAAACTGTAGAAGAGAATCAAGAAGAAAATAAAAAATCAGCTGTTGTAATCGCCTAGCAAAAAAAA
AAAAAAAAAAAAAAAAAAAAA

FIGURE 204

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50921
<subunit 1 of 1, 693 aa, 1 stop
<MW: 77738, pI: 8.87, NX(S/T): 7
MTPQSLLQTTLFLLSLLFLVQGAHGRGHREDFRFCSQRNQTHRSSLHYKPTPDLRISIENSE
EALTVHAPFPAAHPASRSFPDPRGLYHFCLYWNRHAGRLHLLYGRDFLLSDKASSLLCFQH
QEESLAQGPPPLLATSVTSPWSPQNISLPSAASFSTFSFHSPPHTAAHNASVDMCELKRDQLL
SQFLKHPQKASRRPSAAPASQQLQSLQESKLTSVRFMGDMVSFEEDRINATVWKLQPTAGLQD
LHIHSRQEQQSEIMEYSVLLPRTLQRTKGRSGAEKRLLLVDFSSQALFQDKNSSQVLGE
KVLGIVVQNTKVANLTEPVVLTQHQQLQPKNVTLQCVFWEDPTLSSPGHWSSAGCETVRRE
TQTSCFCNHLYFAVLMVSSVEVDAVHKHYLSLLSYVGCVVSALACLVTIAAYLCSRVPLPC
RRKPRDYTIKVHMNLLAVFLLDTSFLLSEPVALTGSEAGCRASAIFLHFSLTCLSWMGLE
GYNLYRLVVEVFGTYVPGYLLKLSAMGWGFPIFLVTIVALVDVDNYGPIILAVHRTPEGVIY
PSMCWIRDSLVSYITNLGLFSLVFLFNMAMLATMVVQILRLRPHTQKWSHVLLGLSLVLG
LPWALIFFSFASGTQQLVVLYLFSIITSFQGFLIFIWYWSMRLQARGGPSPLKSNSDSARLP
ISSGSTSSSRI
```

Important features:

Signal peptide:

amino acids 1-25

Putative transmembrane domains:

amino acids 382-398, 402-420, 445-468, 473-491, 519-537, 568-590
and 634-657

Microbodies C-terminal targeting signal.

amino acids 691-693

cAMP- and cGMP-dependent protein kinase phosphorylation sites.

amino acids 198-201 and 370-373

N-glycosylation sites.

amino acids 39-42, 148-151, 171-174, 234-237, 303-306, 324-327
and 341-344

G-protein coupled receptors family 2 proteins

amino acids 475-504

FIGURE 205

TGCCTGGCTGCCTGTCAACAATGCCGTTACTCTGCTTCCAGGTTGCCCTGCCTGCAGA
GGAAANCNTCGGGACTACACCNTCAAGTGCACATGAACCTGCTGCTGGCCGTCTCCTGCTG
GACACGAGCTTCCTGCTCAGCGNAGCCGGTGGCCCTGACAGGCTCTGAAGGCTGGCTGCCGA
GCCAGTGCCATCTTCCTGCACCTCTCCTGCTCACCTGCCTTCCTGGATGGCCTCGAGGGG
TACAACCTCTACCGACTCGTGGTGGAGGTCTTGGCACCTATGTCCCTGGCTACCTACTCAA
GCTGAGCGCCATGGGCTGGGCTTCCCCATCTTCTGGTGACGCTGGTGGCCTGGTGGATG
TGGACAACTATGGCCCCATCATCTTGGCTGTGCATAGGACTCCAGAGGGCGTCATCTACCCT
TCCATGTGCTGGATCCGGACTCCCTGGTCAGCTACATCACCAACCTGGCCTTTCAGCCT
GGTGTTCCTGTTAACATGG

FIGURE 206

CGGACGCGTGGGCCGACGCGTGGGCCGACGCGTGGGCCGACGCGTGGCTGGTTAGGAAAAAGTTGGATGGGATTATGTGAAACTACCCCT
TCCTTTCAAAAATGGAGACACAGAAGAGGGCTCTAGGAAAAAGTTGGATGGGATTATGTGAAACTACCCCT
GCGATTCTCTGCTGCCAGAGCAGGCTGGCGCTCCACCCCCAGTGCAGCCTCCCTGGCGGGTGGTAAAGAGAC
TCGGGAGTCGCTGCTCCAAAGTGCCCCCGCTGAGTGAAGCTCAGCCCAGTCAGCAAATGGACCTCTCGGGC
TTCTCCTGCTGACATCTGCCCTGGCGGCCAGAGACAGGGACTCAGGCCAATCAAACCTGAGTAGTAAATTCC
AGTTTCCAGCAACAAGGAACAGAACGGAGTACAAGATCCTCAGCATGAGAGAATTATTACTGTGCTACTAATG
GAAGTATTACAGCCCAAGGTTCCCTACACTTATCCAAGAAATACGGTCTGGATGGAGATTAGTAGCAGTAG
AGGAAAATGTATGGATACAACCTACGTTGATGAAAGATTGGGCTTGAAGACCCAGAAGATGACATATGCAAGT
ATGATTGTAGAAGTTGAGGAACCCAGTGATGGAACATATAATTAGGGCCTGGTGGTCTGGTACTGTACCG
GAAAACAGATTCTAAAGGAATCAAATTAGGATAAGATTGTATCTGATGAAATATTTCCTCTGAACCAGGGT
TCTGCATCCACTACACATTGTCATGCCACAATTACAGAACGGTGTGAGTCCTCAGTGCACCCCCCTCAGCTT
TGCCACTGGACCTGCTTAATAATGCTATAACTGCCCTTAGTACCTTGGAGAGACCTTATTGATATCTGAAACAG
AGAGATGGCAGTTGGACTTAAAGATCTATAAGGCCAACCTTGGCAACTCTTGGCAAGGTTTGTGTTTGGAA
GAAAATCCAGAGTGGTGGATCTGAACTTCTAAACAGAGGGAGGTAAGATTATAACAGTCACACCTGTAACCTCT
CAGTGTCCATAAAGGAAGAACCTAAAGAGAACCGATACCATTCTGCCAGGGTGTCTCTGGTTAACAGCTGTG
TGDDGAACACTGTGCCCTGTTGTCCTCCAAATTGCAATGTAATGTCAATGTGCTTCAAGGAAAGTTACTAAAAAATACC
ACGAGGTCTTCAGTTGAGACCAAAAGACGGTGTCAAGGGATTGCACAAATCACTCACCGACGTGGCCCTGGAGC
ACCATGAGGAGTGTGACTGTGTCAGAGGGAGCACAGGAGGTAGCCGCATCACCAACAGCAGCTCTGCCCA
GAGCTGTGAGTGCAGTGGCTGATTCTATTAGAGAACGTATGCGTTATCCATCTTAACTCAGTTGTTGCT
TCAAGGACCTTCATCTCAGGATTACAGTGCATCTGAAAGAGGAGACATCAAACAGAATTAGGAGTTGCGA
ACAGCTCTTGAGAGGAGGCCAAAGGACAGGAGAAAAGGCTTCAATGTTGAAAGAAAATTAAATGTTGAT
TAAATAGATCACCAAGCTAGTTCAGAGTTACCATGTAAGTATTCCACTAGCTGGGTTCTGTATTTCAGTTCTTC
GATACGGCTAGGGTAATGTCAGTACAGGAAAAAAACTGTGCAAGTGAGCACCTGATTCCGTTGCTTAAAC
TCTAAAGCTCCATGTCCTGGCCTAAATGTTAAATCTGGATTTTTTTTTTGCTCATATTACAT
ATGTAACCAAGAACATTCTATGTAACAAACCTGGTTTAAAAGGAACATGTTGCTATGAAATTAAACTGT
GTCATGCTGATAGGACAGACTGGATTTCATATTCTTATTAAAATTCTGCCATTAGAAGAGAACACTACA
TTCATGGTTGGAAAGAGATAAACCTGAAAAGAACAGTGGCCTTATCTTACATTGACATTATAACTGTTGCTTTCT
TTTCATTGTCACATTTTATATTCTCTTTGACATTATAACTGTTGCTTTCTAATCTTGTAAATTATATCT
ATTTTACCAAAGGTATTAAATTCTTTTATGACAACCTAGATCAACATTNTTGTGTTAAATTCT
AAACACAAATTGTTAGCCAGAGGAACAAAGATGATAAAATATTGTTGCTCTGACAAAAAATACATGTTATTCA
TTCTCGTATGGCTAGAGTTAGATTAACTGCAATTAAAAACTGAATTGGAAATAGAATTGTTGAAAGTGTGAAA
GACTTTGGAAAAATTAAATTATCATCTTCCATTCTGTTATTGGAGGATGAAAATAAAAGAACACTATG
AAAGTAGACATTGAGTCAGCAGGCAATTACTAACCTATTCTCTTTGGGGAAATCTGAGCCTAGCTCAGAAAAACAT
AAAGCACCTGGAAAAAGACTGGCAGCTCTCTGATAAAGCGTGTGCTGAGTAGGAACACATCCTATT
TTGTGATGTTGTTGTTTATTCTTAAACTCTGTTCCATACACTGTATAAATACATGGATATTGTTATGTACA
GAAGATGTCCTTAACCAGGTCAGTTATTGTAACCTGCAATTAAAAGAAAATCAGTAAAATATTGTTATGTACA
AAAATGCTTAATATNGTCCTAGGTTATGTGGTGAACATTGAAATCAAAATGTATGAAATCATCAAATAAAAGA
ATGTCGCTATTGGGAGAAAATTAAAAAAAGGTTAGGGATAACAGGGTAATGCGGCC

FIGURE 207

MSLFGLLLTSLAGQRQGTQAESNLSSKFQFSSNKEQNGVQDPQHERIITVSTNGSIHS
FPHTYPRNTVLVWRLVAVEENVWIQLTFDERFGLEDPEDDICKYDFVEVEEP
SDGTILGRWC
GSGTVPKGKQISKGNQIRIFVSDEYFPSEPGFCIHYNIVMPQFTEAVSPSVLPPS
ALPLDLL
NNAITAFSTLEDLIRYLEPERWQLDLEDLYRPTWQLLGKA
FVFGRKS
RVVDLNLLTEEVRLY
SCTPRNF
SVSIREELKRTDTIFWP
GCLLVKRCGGNCACCLHNCNECQC
CVPSKVTKKYHEV
LRPKTGVRGLHKSLTDVALEHHEECDCVCRGSTGG

Signal sequence:

amino acids 1-14

FIGURE 208

CCCATCTCAAGCTGATCTGGCACCTCTCATGCTCTGCTCTCAACCAGACCTTACATCCATTGGAAAGA
AGACTAAAAAATGGTGTCCAATGTGGACACTGAAGAGACAAATTCTTACCTTTAACATAATCCTAATTTC
AAACTCCTGGGCTAGATGGTTCTAAAACCTGCCCCGTGATGTCACTCTGGATGTTCAAAGAACCATGTG
ATCGTGGACTGCACAGACAAGCATTTGACAGAAATTCTGGAGGTATTCCCACCGAACACCAGAACCTCACCC
ACCATTAACCACATACCAAGACATCTCCCCAGCAGTCTTACAGACTGGACATCTGGTAGAGATCGATTTCAGA
TGCAACTGTGTACCTATTCCACTGGGGTCAAAAACACATGTGATCAAGAGGCTGCAGATTAAACCCAGAAC
TTTAGTGGACTCACTTATTAAAATCCCTTACCTGGATGGAACCAAGAGCTACTAGAGATACCGCAGGGCTCCCG
CCTAGCTTACAGCTCTAGCCTTGAGGCCAACACATCTTCCATCAGAAAAGAGAACTTAACAGAACACTGGCC
AACATAGAAATACTCTACCTGGCAAAAGTGTATTATCGAAATCTTGTATGTTCATATTCAATAGAGAAA
GATGCCCTCTAAACTTGACAAAGTAAAAGTGTCTCCCTGAAAGATAACAATGTACAGCCGTCCACTGTT
TTGCCATCTACTTAACAGAACTATATCTTACAACAACATGATTGCAAAAATCCAAGAAGATGATTAAATAAC
CTCAACCAATTACAAATTCTTGACCTAAGTGGAAATTGCCCTCGTTATAATGCCCATTTCTTGCGCCG
TGAAAAATAATTCTCCCTACAGATCCCTGAAATGCTTTGATGCCGTGACAGAAATTAAAGTGTCTACGTCTA
CACAGTAACCTCTTCAGCATGTGCCCAAGATGGTTAAAGAACATCAACAAACTCCAGGAACGGATCTGTCC
CAAAACTCTGGCCAAGAAATTGGGATGCTAAATTCTGCATTCTCCAGCCTCATCCAATTGGATCTG
TCTTCAATTGAACTCAGGTCTATCGTGCATCTATGAATCTATCACAAGCATTCTCACTGAAAAGCCTG
AAAATTCTGGGATCAGAGGATATGCTTAAAGAGCTTAAACCTCTGCCATTACATAATCTTCAA
AACTCTGAAAGTTCTTGATCTTGCACTAACTTATAAAAATTGCTAACCTCAGCATGTTAAACAATTAAAAGA
CTGAAAGTCATAGATCTTCAGTGAAATAAATCACCTCAGGAGATTCAAGTGAAGTGGCTTCTGCTCAAAT
GCCAGAACTCTGTAGAAAGTTATGAACCCAGGTCTGGAAACAATTACATTATTTCAGATATGATAAGTATGCA
AGGAGTTGCAAGATTCAAAACAAAGAGGCTTCTTCATGCTGTTAATGAAAGCTGCTACAAGTATGGCAGACC
TTGGATCTAAGTAAAATAGTATTTTGTCAGTCCTCTGATTTCAGCATCTTCTTCAATGCTCAAATGCCCTG
AACTCTGTCAGGAAATCTCATTAGCCTAACCTCTTCAATGGCAGTGAATTCCAACCTTCTGAGAGCTGAGATATTG
GACTTCTCCAACAACCGCTGATTACTCCATTCAACAGCATTGAAAGAGCTTACAAACTGGAAGTCTGGAT
ATAAGCAGTAAAGCATTATTTCAATCAGAAGGAATTACTCATATGCTAAACTTACCAAGAACCTAAAGGTT
CTGCAGAAACTGATGATGAACGACAATGACATCTTCTCCACAGCAGGACCATGGAGAGTGAGTCTTCTAGA
ACTCTGGAATTCAAGAGGAATTAGACATCTCTAAAATTCCCTAAGTTCTGCCCTCTGGAGTTTGATGGT
ATGCCTCAAATCTAAAGAATCTCTTGGCCAAAATGGCTCAAATCTTCTGTTGAGAAACTCCAGTGT
CTAAAGAACCTGGAAACTTGGACCTCAGCCACAACCAACTGACCACTGTCCTGAGAGATTATCCAACCTGTTCC
AGAACCTCAAGAATCTGATTCTTAAAGATAATCAAATCAGGAGTCTGACGAAGTATTCTACAAGATGCCCTC
CAGTTGCGATATCTGGATCTCAGCTCAAATAAATCCAGATGATCCAAAGACAGCTTCCAGAAAATGCTCCTC
AACATCTGAAGATGTTGCTTTGATCATAATGGTTCTGTGCACCTGTGATGCTGTGTTGCTGGTGG
GTAAACCATAAGGAGGTGACTATTCTTACCTGGCACAGATGTGACTTGTGAGGGCCAGGAGCACACAAGGGC
CAAAGTGTGATCTCTGGATCTGATCACCTGTGAGTTAGATCTGACTAACCTGATTCTGTTCTCACTTTCCATA
TCTGTATCTCTTCTCATGGTGTGATGAGCAGCAGCTAACCTCTATTCTGGGATGTGTTGATATTACCAT
TTCTGTAAGGCCAAGATAAAAGGGTATCAGCGTCTAAATCACAGACTGTTGCTATGATGCTTTATGTGAT
GACACTAAAGACCCAGCTGTGACCGAGTGGTTTTGGCTGAGCTGGCCAAACTGGAAGACCCAAAGAGAGAAA
CATTTAAATTATGTCAGGAAAGGACTGGTTACAGGGCAGCAGTTCTGGAAAACCTTCCAGAGCATA
CAGCTTAGCAAAAGACAGTGTGTTGATGACAGACAAGTATGCAAAGACTGAAAATTAAAGATAGCATTTCAC
TTGTCCTCATCAGAGGCTATGGATGAAAAAGTGTGATTATCTGATATTCTTGAGAAGGCCCTTCAGAAG
TCCAAGTCTCCAGCTCCGGAAAAGGCTCTGTGGGAGTCTGTGCTTGTGAGTGGCCAACAAACCCGCAAGCTCAC
CCATACTCTGGCAGTGTCTAAAGAACGCCCTGGCCACAGACAATCATGTGGCTATAGTCAGGTGTTCAAGGAA
ACGGTCTAGCCTTCTTGCAAAACACAACGTCTAGTTACCAAGGAGAGGCCGGC

FIGURE 209

MVFPMWTLKRQILILFNIILISKLLGARWFPTLPCDVTLDPKHNHIVDCTDKHLTEIPGG
IPTNTTNLTLTINHIPDISPASFHRLDHLVEIDFRCNCVPIPLGSKNNMCIKRLQIKPRSFS
GLTYLKSLYLDGNQNLLEIPQGLPPSLQLLSLEANNIFSIRKENTELANIEILYLGQNCYR
NPCYVSYSIEKDAFLNLTKLKVLSLKDNNTAVPTVLPTSTELYLYNNMIAKIQEEDDFNNL
NQLQILDLSGNCPRCYNAPFFCAPCKNNSPLOIPVNNAFDALTELKVRLHSNSLQHVPPRWF
KNINKLQELDLSQNFNLAKEIGDAKFLHFLPSLIQLDLSFNFELQVYRASMNLSQLAFSSLKSL
KILRIRGYVFKELKSFNLSPLHNLQNLLEVLDLGTNFIFKIANLSMFQFKRLKVIDLSVNKIS
PSGDSSEVGFCASNARTSVESYEPOVLEQLHYFRYDKYARSCRFKNKEASFMSVNESCYKYGQ
TLDLSKNSIFFVKSSDFQHLSFLKCLNLSGNLISQTLNGSEFQPLAELRYLDFSNNRLDLLH
STAFAEELHKLEVLDISSIONSHYFQSEGITHMLNFTKNLKVLQKLMMNNDNISSTSRTMESES
LRTLEFRGNHLDVLWREGDNRYLQLFKNLLKLEELDISKNSLSFLPSGVFDGMPPNLKNL
AKNGLKSFSWKKLQCLKNLETLDLSHNQLTTVPERLSNCSRSKLNLLKNNQIRSLTKYFLQ
DAFQLRYLDLSSNKIQMIQKTSFPENVNNLKMLLHHNRFLCTCDAVWFVWWVNHTEV
YIYHFCKAKIKGYQRLISPDCCYDAFIYDTPKDPAVTEWVLAELVAKLEDPREKHFNL
RDWLPGPVLENLSQSIQLSKKTVFVMTDKYAKTENFKIAFYLSHQRLMDEKVDV
KPFQSKFLQLRKRLCGSSVLEWPTNPQAHPYFWQCLKNALATDNHV
AYSQVFKETV

Signal sequence:

amino acids 1-26

Transmembrane domain:

amino acids 840-860

FIGURE 210

GGGTACCATTCTCGCCTGCTGCAAGTTACGGAATGAAAAATTAGAACAAACAGAAACATGGAAAACATGTTCCCTTC
AGTCGTCAATGCTGACCTGCATTTCCTGCTAATATCTGGTCTGTGAGTTATGCGCCGAAGAAAATTTCATA
GAAGCTATCCTGTGATGAGAAAAGCAAATGACTCAGTTATTGCGAGGTGCAGCAATCGACTACAGGAAG
TTCCCCAAACGGTGGGCAAATATGTGACAGAACTAGACCTGTCTGATAATTTCATCACACACATAACGAATGAAT
CATTCAGGGCTGCAAATCTCACTAAAATAATCTAAACCACAACCCCAATGTACAGCACCAGAACGGAAATC
CCGGTATAACAATCAAATGGCTTGAATATCACAGACGGGCATTCTCAACCTAAAAACCTAAGGGAGTTACTGC
TTGAAGACAACCAGTTACCCAAATACCCCTGGTTGCCAGAGTCTTGACAGAACTTAGTCTAATTCAAACAA
ATATATAACAACATAACTAAAGAGGGCATTCAAGACTTATAAAACTCTGAAAAACTCTATTGGCTGGAACGT
ATTITAACAAAGTTGCGAGAAAACAATAGAACATAGAAGATGGAGTATTGAAACGCTGACAAATTGGAGTTGCTAT
CACTATCTTCAATTCTCTTACACGTGCCACCCAAACTGCCAAGCTCCCTACGCAAACCTTTCTGAGCAACA
CCCAGATCAAATACATTAGTGAAGAAGATTCAAGGGATTGATAAATTAAACATTACTAGATTAAAGGGGAAC
GTCGGAGGTGCTTCAATGCCCAATTCCATGCGTGCCTGTGATGGGGTGTCAATTAAATAGATGTTTGG
CTTTCAAAACTGACCCAACTTCGATACTAAACCTCTAGCACTCCCTAGGAAGATAATGCTGCCCTGG
TTAAAAATATGCTCATCTGAAGGTGCTGGATTTGAACTATTAGTGGAGAAATAGTCTCTGGGGCAT
TTTAACGATGCTGCCCGCTTAGAAATACTGACTTGTCTTTAACTATATAAAGGGAGTTATCCACAGCATA
TTAATATTCCAGAAACTCTCTAAACTTTGTCTTACGGGCAATTGCAATTAAAGGGTTATGTGTTCAAGGAAC
TCAGAGAAGATGATTCCAGCCCTGATGCAGCTCCAACTTATGACTATCAACTTGGGTATTAATTAA
AGCAAACTGATTCAAACCTTTCCAAAATTCTCCAATCTGAAATTATTTACTTGTCAAGAAAACAGAAATATCAC
CGTTGGAAAAGATACCCGGAGAGTTATGCAAATAGTCTCTTCAACGTATATCCGAAACGACGCTCAA
CAGATTGAGTTGACCCACATTGAACTTTATCATTTCACCCGCTTTAAATAAAGCCACAATGTGCTGCTT
ATGGAAAAGCCCTAGATTAAAGCTAACAGTATTCTTCAATTGGGCAAACCAATTGAAAATCTTCTGACA
TTGCTGTTAAATCTGCTGCAAATAGCAATGCTCAAGTGTAAAGTGGAACTGAAATTTCAGCCATTCTCATG
TCAAATATTGAGATTGACAAACAAATAGACTAGACTTGTGAAATGCTAGTGTCTTACTGAAATTGTCCGACTTGG
AAGTCTAGATCTCAGCTATAATTCAACTATTCAAGAACATAGCAGGGTAACACATCATCTAGAAATTATTCAA
ATTTCACAAATCTAAAGTTTAAACTTGAGCCACAACACATTATCTTAAACAGATAAGTATAACCTGGAAA
GCAAGTCCCTGGTAGAATTAGTTTCAGTGGCAATGCCCTGACATTGTGAAATGATGACAAACAGGTATA
TCTCCATTTCAAAGGTCTCAAGAACATGACACCGTCTGGATTATCCTTAATAGGCTGAAAGCACATCCAAATG
AAGCATTCCATTTCAGCAGCTCACTGAACATACATATAATGATAATATGTTAAAGTTTAACTGG
CATTACTCCAGCAGTTCTCGTCTGAGTTGACTTACGTGGAAACAAACTACTCTTTAACTGATGAGCC
TATCTGACTTACATCTCCCTCGACACTGCTGAGTCATAACAGGATTCCACCTACCCCTGGCTTCT
TTTCTGAAGTCAGTAGTCTGAAGCACCTCGATTAAAGTCCAATCTGCTAAAACAATCAACAAATCCGACTTG
AAACTAAGACCACCACAAATTATCTATGTTGAAACTACAGGAAACCCCTTGAAATGACCTGTGACATTGGAG
ATTTCGAAGATGGATGGATGAACATCTGAATGTCAAATTCCAGACTGGTAGATGTCATTGTGCCAGTCCTG
GGGATCAAAGAGGGAAAGAGTATTGAGTCAGTCAGTCAACAACTTGTGTTCAAGATGTCAGTCAGTGAATTAT
TTTCTTCACGTTCTTATCACCACCATGGTTATGTTGGCTGCCCTGCTCACCATTGTTTACTGGGATGTT
GGTTATATATAATGTTGTTAGCTAAGGTAAGGCTACAGGTCTTACTGACTGGGTGATAAATGAGCTGCCATCATCGACA
CTTACATTCTTATGACACCAAAGATGCCCTGTTACTGACTGGGTGATAAATGAGCTGCCATCCTCCAGTGGCTGACA
AGAGCCGAGACAAAAAGCTCTCCTTGTCTAGAGGGAGGGATTGGGACCCGGGATTGGGCATCATCGACA
TCATGCAGAGCATCAACCAAAGCAAGAAAACAGTATTGTTAAACAAAAAATATGCAAAAGCTGAACTTTA
AAACAGCTTTTACTTGGTTTGAGGCTACGGCAGGGATCTGTAAGAGCTCCATCCTCCAGTGGCTGACA
CAGTGTACAGCATTCTCAGTATTGAGGCTACGGCAGGGATCTGTAAGAGCTCCATCCTCCAGTGGCTGACA
ACCCGAAGGCAGAAGGCTTGGCAAACCTGAGAAATGTTGACTGAAATGATTACGGTATAACA
ATATGTATGTCGATTCCATTAAAGCAACTAACTGACGTTAGTCATGTTGCGCATAATAAAGATGCAAAG
GAATGACATTCTGTATTAGTTATGCTATGAAACAAATTATCCAAAACCTAGTGGTTAAACAAACACA
TTTGTGGCCCACAGTTTGAGGGTCAGGAGTCCAGGCCACGCTAACTGGGTCTCTGCTCAGGGTGTCTCAG
AGGCTGCAATGTAGGTGTTACCCAGAGACATAGGCATCACTGGGTACACTCATGTGGTTGTTCTGGATTCA
ATTCTCCTGGCTATTGCCAAAGGCTATACTCATGTAAGGCCATGCCCTCCCACAAGGCAGCTTGCTTC
ATCAGAGCTAGAAAAAGAGAGGGTTGCTAGCAAGATGAAGTCACAATCTTGTGAAATGCAATCAAAAGTGT
ATCTCATCACTTGGCCATTCTATTGTTAGAAGTAAACACAGGTCCCACCAAGCTCCATGGGAGTGACC
TCAGTCCAGGGAAACAGCTGAAGACCAAGATGGTGAGCTCTGATTGCTTCACTGGTCAACTATTTCCT
TGACTGCTGCTGGGATGGCCTGCTATTGATGATGAGATTGTGAATATCAGGAGGCAGGGATCACTGTGGACC
ATCTTAGCAGTTGACCTAACACATCTCTTCAATATCTAAGAAACTTTGCCACTGTGACTAATGGCTCTAATA
TTAAGCTGTTGTTATATTATCATATATCTATGGCTACATGGTTATTATGCTGTGGGTGCGTTGGTTTAT
TTACAGTTGCTTTACAAATATTGCTGTAACATTGACTCTAAGGTTAGATGCCATTAAAGAACTGAGATGG
ATAGCTTTAAAGCATCTTTACTCTTACCATTTAAAGTATGCAAGCTAAATTGCAAGCTTTGGCTATA
TTGTTAATTGCCATTGCTGTAATCTAAAATGAATGAATAAAATGTTCACTTACAAAAA

FIGURE 211

MENMFLQSSMLTCIFLLISGSCELCAEENFSRSYPCDEKKQNDNSVIAECASNRRLQEVPQTVG
KYVTELDLSDFITHTNESFQGLQNLTKINLNHNPNVQHQNGNPGIQSNGLNITDGAFLNL
KNLRELLLEDNQLPQIPSGLPESLTELSLIQNNIYNITKEGISRLINLKNLYLAWNCFNKV
CEKTNIEDGVFETLTNLELLSLSFNSLSHVPPKLPSSLRKLFLSNTQIKYISEEDFKGLINL
TLLDLSGNCPRCFNAPFPCVPCDGGASINIDRFAFQNLTQLRYLNLSSTSLRKINAAWFKNM
PHLKVLDEFNYLVGEIVSGAFLTMLPRLEILDLSFNYIKGSYPQHINISRNFSKLLSLRAL
HLRGYVFQELREDDFQPLMQLPNLSTINLGINFQKQIDFKLFQNFNLEIIYLSENRISPLV
KDTRQSYANSSSFQRHIRKRRSTDFFFDPHSNFYHFTRPLIKPQCAAYGKALDLSLNSIFFI
GPNQFENLPDIACLNLSANSNAQVLSGTEFSAI PHVKYLDLTNNRLDFDNASALTELDLEV
LDLSYNSHYFRIAGVTHHLEFIQNFTNLKVNLSHNNIYTLDKYNLESKSLVELVFSGNRL
DILWNDDDNRYISIFKGLKNLTRLDSLNRKHIPNEAFNL PASLTELHINDNMLKFFNWT
LLQQFPRLELLDLRGNKLLFLTDSDLSDFTSSLRTLLLSHNRISHLPSGFLSEVSSLKHLDLS
SNLLKTINKSALETKTTKLSMLELHGNPFECTCDIGDFRRWMDEHLNVKIPRLVDVICASP
GDQRGKSIVSLELTTCVSDVTAVILFFFITTMVMLAALAHHLFYWDVIFIYNVCLAKVK
GYRSLSTSQTFYDAYISYDTKDASVTDWVINELRYHLEESRDKNVLLCLEERDWDPGLAIID
NLMQSINQSKKTVFVLTKKYAKSWNFKTAFLALQRLMDENMDVIIFILEPVLQHSQYLR
RQRICKSSILQWPDNPKAEGLFWQTLRNVVLTENDSRYNNMYVDSIKQY

Signal sequence:

amino acids 1-26

Transmembrane domain:

amino acids 826-848

FIGURE 212

CCAGGTCCAAC TGACACTCGGTTCTATCGATTGAATTCCCCGGGATCCTCTAGAGATCCCT
CGACCTCGACCCACCGCGTCCGCCAAGCTGGCCCTGCACGGCTGCAAGGGAGGCTCCTGTGGA
CAGGCCAGGCAGGTGGCCTCAGGAGGTGCCTCAGGCGGCCAGTGGCCTGAGGCCAGC
AAGGGCTAGGGTCCATCTCCAGTCCCAGGACACAGCAGCGGCCACCATGGCCACGCCTGGC
TCCAGCAGCATCAGCAGCCCCCAGGACCGGGAGGCACAGGTGGCCCCCACCACCCGGAGGA
GCAGCTCCTGCCCTGTCCGGGGATGACTGATTCTCCTCCGCCAGGCCACCCAGAGGAGAA
GGCCACCCCCGCTGGAGGCACAGGCCATGAGGGGCTCTCAGGAGGTGCTGCTGATGTGGCTT
CTGGTGTTGGCAGTGGCGGCACAGAGCACGCCAACGGCCGGCGTAGGGTGTGCTGT
CCGGGCTCACGGGACCCCTGTCTCCGAGTCGTTGTGCAGCGTGTGTACCAAGCCCTCCTCA
CCACCTGCACGGCACCGGCCCTGCAGCACCTACCGAACCATCTATAGGACGCCAACCGC
CGCAGCCCTGGCTGGCCCTGCCAGGCCTCGCTACCGGTGCTGCCCGGCTGGAAGAGGAC
CAGCGGGCTTCCTGGGGCTGTGGAGCAGCAATATGCCAGCCCATGCCGAACGGAGGGA
GCTGTGTCCAGCCTGGCGCTGCCCTGCAGGATGGCGGGGTGACACTTGCCAGTCA
GATGTGGATGAATGCAGTGCTAGGAGGGCGGCTGTCCCCAGCGTGCATCAACACCGCCGG
CAGTTACTGGTGCAGTGTGGAGGGCACAGCCTGTGCAGACGGTACACTCTGTGTGC
CCAAGGGAGGGCCCCCAGGTGGCCCCAACCGACAGGAGTGGACAGTGCAATGAAGGAA
GAAGTGCAGAGGCTGCAGTCCAGGGTGGACCTGCTGGAGGAGAAGCTGCAGCTGGTGTGGC
CCCACTGCACAGCCTGGCCTCGCAGGCACTGGAGCATGGCTCCGGACCCGGCAGCCTCC
TGGTGCACTCCTCCAGCAGCTGGCCGCATCGACTCCCTGAGCGAGCAGATTCCCTCCTG
GAGGAGCAGCTGGGGCTGCTCCTGCAAGAAAGACTCGTGACTGCCAGCGCCCCAGGCTG
GACTGAGCCCTCACGCCGCCCTGCAGCCCCATGCCCTGCCAACATGCTGGGGTCCAG
AAGCCACCTGGGGTGAUTGAGCGGAAGGCCAGGCAGGGCTTCCTCTTCCCTCCCC
TTCTCGGGAGGCTCCCCAGACCCCTGGCTACCCCAACGGCATCCAAAGGCCAGGTGGCCCTCAGCTG
AGGAAGGTACGAGCTCCCTGCTGGAGCCTGGACCCATGGCACAGGCCAGGCAGCCGGAG
GCTGGGTGGGGCCTCAGTGGGGCTGCTGCCTGACCCCCAGCACAATAAAATGAAACGTGA
AAAAAAAAAAAAAAAAAAAAAAAAGGGCGGCCGCGACTCTAGAGT
CGACCTGCAGAAGCTGGCCGCATGGCCAACCTGTTATTGCAGCTTATAATGGTTACAAAT

FIGURE 213

MRGSQEVL LMWLLVIAVGGTEHAYRPGR RVCAVRAHGD PVSE SFVQR VYQPFLTTCDGHRAC
STYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGACGAAICQPPCRNGGSCVQPGRCR
CPAGWRGDTCQSDVDEC SARRGGCPQRCINTAGSYWCQCWE GHSL SADGTL CVPKG GPPRVA
PNPTGVDSAMKEEVQRLQSRVLLEEK LQLVLA PLHSL ASQALEHGLPD PGSL LVHSF QQLG
RIDSLSEQISFLEEQLGSCSCKKDS

Signal sequence:

1-19

FIGURE 214

GCCAGGCAGGTGGCCTCAGGAGGTGCCCTCAGGCAGGCCAGTGGCCTGAGGCCAGCAAG
GGCTAGGGTCCATCTCCAGTCCCAGGACACAGCAGCGGCCACCATGCCACGCCTGGCTCC
AGCAGCATCAGAGCAGCCCTGTGGTGGCAGCAAAGTCAGCTGGCTGGCCCTGTGA
GGGGCTTCGCGCTACGCCCTGCGGTGCCCCAGGGCTGAGGTCTCCTCATCTTCTCCCTAGC
AGTGGATGAGCAACCCAACGGGGCCGGGAGGGAACTGGCCCCGAGGGAGAGGAACCCC
AAAGCCACATCTGTAGCCAGGATGAGCAGTGTGAATCCAGGCAGCCCCCAGGACCGGGAGG
CACAGGTGGCCCCCACCACCCGGAGGAGCAGCTCCTGCCCTGTCCGGGGATGACTGATT
TCCTCCGCCAGGCCACCCAGAGGAGAAGGCCACCCGCCCTGGAGGCACAGGCCATGAGGGC
TCTCAGGAGGTGCTGCTGATGTGGCTCTGGTGGCAGTGGCGACAGAGCACGCC
CCGGCCCGGCCGTAGGGTGTGCTGCCGGCTCACGGGACCCCTGTCTCCAGTCGTT
TGCAGCGTGTGTACCAAGCCCTCCTCACACCTGCGACGGCACCGGCCCTGCAGCACCTAC
CGAACCATCTATAGGACCGCCTACCGCCGCAGCCCTGGCTGGCCCTGCCAGGCC
CGCGTGCTGCCCGGCTGGAAGAGGACCAGCAGGGCTTCCTGGGGCTGTGGAGCAGCAATAT
GCCAGGCCCATGCCGAACGGAGGGAGCTGTGTCCAGCCTGCCGCTGCCGTGCC
GGATGGCGGGGTGACACTGCCAGTCAGATGTGGATGAATGCAGTGCTAGGAGGGCGGCTG
TCCCCAGCGCTGCATCAACACCGCCGGCAGTTACTGGGCCAGTGTGGAGGGCACAGCC
TGTCTGCAGACGGTACACTCTGTGTGCCAAGGGAGGGCCCCCAGGGTGGCCCCAACCG
ACAGGAGTGGACAGTGAATGAAGGAAGAAGTGCAGAGGCTGCAGTCCAGGGTGGAC
GGAGGAGAAGCTGCAGCTGGTGTGCCAGCCTGGCCCTGCAGGCC
ATGGGCTCCGGACCCGGCAGCCTCTGGTGCAGCTCCTCCAGCAGCTGGCCGC
TCCCTGAGCGAGCAGATTCTCTGGAGGAGCAGCTGGGTCTGCTCTGCAAGAAAGA
CTCGTGACTGCCAGCGCTCAGGCTGGACTGAGCCCTCACGCC
CCCCTGCCAACATGCTGGGGTCCAGAACGCCACCTCGGGGTGACTGAGCGGAAGGCC
AGGGCTTCCTCCTCTCCCTCCCTGGGAGGCTCCCCAGACCC
GGGCTGGATCTCTGTGAATCCACCCCTGGCTACCCCCACCC
TCCCAAGGCCAGGTGGACCCCTCAGCTGAGGGAGGTAC
CCATGGCACAGGCCAGGCAGCCGGAGGCTGGGTGGGGCTCAGTGGGGCTGCTGCC
CCCCAGCACAATAAAATGAAACGTG

FIGURE 215

MRGSQEVLLMWLLVIAVGGTEHAYRPGRVCVRAGDPVSESFVQRVYQPFLTTCDGHRAC
STYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGACGAAICQPPCRNGGSCVQPGRCR
CPAGWRGDTCQSDVDECSARRGGCPQRCINTAGSYWCQCWEGHLSADGTLCVPKGGPPRVA
PNPTGVDSAMKEEVQRLQSRVDLLEEKQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLG
RIDSLSEQISFLEEQLGSCSCKDS

Signal sequence:

1-19

FIGURE 216

CCACCGCGTCCGAAGCTGGCCCTGCACGGCTGCAAGGGAGGCTCCTGTGGACAGGCCAGGCA
GGTGGGCCTCAGGAGGTGCCTCCAGGCCAGTGGCCTGAGGCCAGCAAGGGCTAGGG
TCCATCTCCAGTCCCAGGACACAGCAGCGGCCACCATGCCACGCCCTGGCTCCAGCAGCAT
CAGCAGCCCCCAGGACCGGGAGGCACAGGTGGCCCCACCACCCGGAGGAGCAGCTCCTGC
CCCTGTCCGGGGATGACTGATTCTCTCCGCCAGGCCACCCAGAGGAGAAGGCCACCCGC
CTGGAGGCACAGGCC**TGAGGGCTCTCAGGAGGTGCTGCTGATGTGGCTCTGGTGTGGC**
AGTGGGCGGCACAGAGCACGCCAACCGGCCGGCGTAGGGTGTGCTGTCGGGCTCACG
GGGACCCCTGTCTCCGAGTCGTTCGCAGCGTGTGTACCGCCCTCCTCACCAACCTGCGAC
GGGCACCGGGCCTGCAGCACCTACCGAACCATCTATAGGACCGCCTACCGCCGAGCCCTGG
GCTGGCCCTGCCAGGCCTCGCTACCGTGTGCCCCGGCTGGAAGAGGACCAGCAGGGCTTC
CTGGGGCCTGTGGAGCAGCAATATGCCAGCCATGCCGGAACGGAGGGAGCTGTGTCAG
CCTGGCCGCTGCCGCTGCCCTGCAGGATGGCGGGGTGACACTTGCCAGTCAGATGTGGATGA
ATGCAGTGCTAGGAGGGCGGCTGTCCCCAGCGCTGCGTCAACACCGCCGGCAGTTACTGGT
GCCAGTGTTGGAGGGCACAGCCTGTGCAAGACGGTACACTCTGTGTGCCAACAGGGAGGG
CCCCCCAGGGTGGCCCCAACCGACAGGAGTGGACAGTGAATGAAGGAAGAAGTGCAGAG
GCTGCAGTCCAGGGTGGACCTGCTGGAGGAGAACGCTGCAGCTGGTGTGGCCCCACTGCACA
GCCTGGCCTCGCAGGCAGTGGAGCATGGCTCCCGACCCGGCAGCCTCTGGTGCAGTCC
TTCCAGCAGCTGGCCGCATCGACTCCCTGAGCGAGCAGATTCTCTGGAGGAGCAGCT
GGGTCTGCTCTGCAAGAAAGACTCG**TGACTGCCAGCGCCCCAGGCTGGACTGAGCCCC**
TCACGCCGCCCTGCAGCCCCATGCCCTGCCAACATGCTGGGGTCCAGAACGCCACCTCG
GGGTGACTGAGCGGAAGGCCAGGCAGGGCTTCCTCTTCCCTCCCTCCTCGGGAG
GCTCCCCAGACCCCTGGCATGGATGGATGGCTGGATCTTCTCTGTGAATCCACCCCTGGCTACC
CCCACCCGGCTACCCCAACGGCATCCAAAGGCCAGGTGGCCCTCAGCTGAGGAAAGGTAC
GAGCTCCCTGCTGGAGCCTGGACCCATGGCACAGGCCAGGCAGCCGGAGGCTGGGTGGGG
CCTCAGTGGGGCTGCTGCCTGACCCCCAGCACAATAAAATGAAACGTG

FIGURE 217

MRGSQEVLIMWLLVLAvggTEHAYRPGRRVCAVRAHGDPVSESFVQRVYQPFLTCDGHRA
STYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGACGAAICQPPCRNGGSCVQPGRCR
CPAGWRGDTQCSDVDECSARRGGCPQRCVNTAGSYWCQCWEGHSLADGTLCVPKGGPPRVA
PNPTGVDSAMKEEVQRLQSRVLLEEKLQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLG
RIDSLSEQISFLEEQLGSCSCKKDS

Signal sequence:

1-19

FIGURE 218

GGTTGCCACAGCTGGTTAGGGCCCGACCACGGGGCCCTTGTCAAGGAGGAGACAGCCTCCGGCCGGGGAG
GACAAGTCGCTGCCACCTTGGCTGCCACGTGATTCCCTGGACGGTCCGTTCCCTGCCGTAGCTGCCGGCCG
AGTTGGGTCTCCGTTTCAAGGCCGCTCCCCCTTCTGGTCTCCCTCTCCCGTGGCCGGTTATCGGGAGG
AGATTGTCTTCCAGGGCTAGCAATTGGACTTTGATGATGTTGACCCAGCGGCAGGAATAGCAGGAACAGTGAT
TTCAAAGCTGGGCTCAGCCTGTGTTCTCTCGTGTAAAGCAGGAAATGGGAGAAACTCCCAGGCAGGAACACCTTTGCTGTG
A
T
ATGGCCGCGTCATGATGCCCGAAAAGGGATTTCTACCTGACCCCTTCTCATCTGGGACATGTACAC
TCTCTTCGCTTGTGAGTGCCGTAACCTGGCTGTTCACTGTCCTGCCATCCGTATTCGCTGCCATGCTCT
TCCCTTCTCCATGGCTACACTGTTGAGGACAGCTTCAGTGACCCGGAGTGATTCCCTGGGCGTACAGATG
AAGCAGCTTCATAGAAATGGAGATAGAACGTTACCAATGGTGCAGGCCCCAGGGCCAGCGACCACGCCCTCGTA
TCAAGAATTCCAGATAAACAAACCAGATTGTGAAACTGAAATACTGTTACACATGCAAGATCTTCCGGCTCCCC
GGGCCTCCATTGCAGCATCTGTGACAACCTGTTGAGGACGCTTCGACCATCACTGCCCTGGTGGGAATTGTG
TTGGAAAGAGGAACCTACCGCTACTCTACCTCTCATCCTTCTCTCCCTCACAATCTATGCTTCCGCT
TCAACATCGTCTATGTGCCCTAAATCTTGAAAATTGGCTTCTGGAGACATTGAAAGAAACTCCTGGAACTG
TTCTAGAAGTCTCATTGCTTCTTACACTCTGGCCGTGGACTGACTGGATTTCATACTTCCCTCGTGG
CTCTCAACCAGACAACCAATGAAGACATCAAAGGATCATGGACAGGGAAAGATCGGTCCAGAACCTACAGCC
ATGGCAATATTGTGAAGAACTGCTGTGAAGTGCTGTGTTGGCCCTTGCCCCCAGTGTGCTGGATGAAGGGTA
TTTGCCACTGGAGGAAGTGGAAAGTCGACCTCCCAGTACTCAAGAGACAGTAGCAGCCTCTTGCCACAGAGCC
CAGCCCCCACAGAACACCTGAACTCAAATGAGATGCCGAGGACAGCAGCACTCCGAAGAGATGCCAACCTCCAG
AGCCCCCAGGCCACACAGGAGGAGCTGAAGCTGAGAAGTAGCTATCTATGGAAGAGACTTTGTTGTGTT
TAATTAGGGCTATGAGAGATTTCAGGTGAGAAGTTAAACCTGAGACAGAGAGCAAGTAAGCTGTCCTTTAACT
GTTTTCTTGGCTTGTAGTCACCCAGTGTGACACTGGCATTCTGCTGCAAGCTTTAAATTCTGAACCT
CAAGGCAGTGGCAGAACAGATGTCAGTCACCTCTGATAACTGGAAAAATGGGTCTTGGCCCTGGCACTGGTTCT
CCATGGCCTAGCCACAGGGTCCCCCTGGACCCCTCTTCCCTCAGATCCCAGCCCTGGCTGGGTAC
TGGTCTCATTCTGGGCTAAAAGTTTGAGACTGGCTCAAATCTCCCAAGCTGCTGCACGTGCTGAGTCCAGA
GGCAGTCACAGAGACCTGGCCAGGGATCTTAACGGTTCTGGGTCTTCAGGACTGAAGAGGAGGAG
TGGGGTCAGAAGATTCTCTGGCACCAAGTGCAGCATTGCCACAAATCCTTTAGGAATGGGACAGGTACCT
TCCACTTGTGTTGANNNNNNNNNNNNNNNNNNNNNNNTGTTTTCTTGTACTCTGCTCCATTAGGAG
CAGGAATGGCAGTAATAAAAGTCTGACTTTGGTCAATTCTTCCCTCAGAGGAAGCCGAGTGCTCACTTAAAC
ACTATCCCCTCAGACTCCCTGTGTGAGGCCTGCAGAGGCCCTGAATGCACAAATGGAAACCAAGGCACAGAGAG
GCTCTCCTCTCCTCTCCCTCTCCCCGATGTACCTCAAAAAAAAAAATGCTAACCAAGTCTTCCATTAAGCCT
CGGCTGAGTGAGGGAAAGCCCAGCACTGCTGCCCTCTGGGTAACTCACCCCTAACGGCCTGGCCACCTCTGGCT
ATGGTAACCACACTGGGGCTTCCCAAGCCCCGCTTCCAGCATTCCACCGCAGAGTCCCAGAGCCACTT
CACCCCTGGGGTGGCTGTGGCCCCAGTCAGCTGTGCTCAGGACCTGCTTATTCAGGAAAGAAGATTATGT
ATTATATGTGGCTATATTCTAGAGCACCTGTGTTTCTCTTCTAAGCCAGGTCTGTCTGGATGACTTAT
GCGGTGGGGAGTGTAAACCGAACCTTCATCTATTGAAGGCGATTAAACTGTGTCTAATGCA

FIGURE 219

MSVMVVRKKVTRKWEKLPGRNTFCCDGRVMMARQKGIFYLTLFLILGTCTLFFAFECRYLAV
QLSPAIPVFAAMLFLFSMALLRTSFSDPGVIPLAPDEAAFIEMEIEATNGAVPQGQRPPP
RIKNFQINNQIVKLKYCYTCKIFRPPRASHCSICDNCVERFDHHCPWVGNCVGKRNRYRYFYL
FILSLSLLTIYVFVNIVYVALKSLKIGFLETLKETPGTVLEVLIKFFTWSVVGILTGFHTF
LVALNQTTNEDIKG SWTGKNRVQNPySHGNIVKNCCEVLCGPLPPSVLDRRGILPLEESGSR
PPSTQETSSSLLPQSPAPTEHLNSNEMPEDSSTPEEMPPEPPPEPQEAAEAEK

Putative transmembrane domains:

amino acids 36-55 (type II TM), 65-84, 188-208, 229-245

FIGURE 220

AAAACCCTGTATTTTACAATGCAAATAGACAATNANCCTGGAGGTCTTGAAATTAGGTAT
TATAGGGATGGTGGGGTTGATTTTNTTCCTGGAGGCTTGGACTCTCNCTTCT
CCCACAGAGCNCTCGACCATCACTGCCCTGGGTGGGAATTGTGTTGGAAAGAGGAACTA
CCGCTANTTCTACCTCTTCATCCTTNTCTCTCCNCCTCACAAATCTATGTCTCGCCTTCA
ACATCGT

FIGURE 221

GTTGTGTCCTTCAGCAAAACAGTGGATTAAATCTCCTGCACAAGCTTGAGAGCAACACAA
TCTATCAGGAAAGAAAGAAAGAAAAAAACCGAACCTGACAAAAAAGAAGAAAAGAAGAAGA
AAAAAAATCATGAAAACCATCCAGC~~AAA~~ATGCACAATTCTATCTCTGGGCAATCTTCAC
GGGGCTGGCTGCTCTGTCTCTTCCAAGGAGTGCCC GTGCGCAGCGGAGATGCCACCTTCC
CCAAAGCTATGGACAACGTGACGGTCCGGCAGGGGAGAGCGCCACCTCAGGTGCACTATT
GACAACCGGGTCACCCGGGTGGCCTGGCTAAACCGCAGCACCATCCTCTATGCTGGGAATGA
CAAGTGGTGCCTGGATCCTCGCGTGGCCTCTGAGCAACACCCAAACGCAGTACAGCATCG
AGATCCAGAACGTGGATGTATGACGAGGGCCCTTACACCTGCTCGGTGCAGACAGACAAAC
CACCCAAAGACCTCTAGGGTCCACCTCATTGTGCAAGTATCTCCAAAATTGTAGAGATTT
TTCAGATATCTCCATTAATGAAGGGAAACAATATTAGCCTCACCTGCATAGCAACTGGTAGAC
CAGAGCCTACGGTTACTTGGAGACACATCTCTCCAAAGCGGTTGGCTTGAGTGAAGAC
GAATACTTGGAAATTCAAGGCATCACCCGGGAGCAGTCAGGGACTACGAGTGCAGTGCCTC
CAATGACGTGGCCGCCGTGGTACGGAGAGTAAAGGTACCCTGAACATCCACCATACA
TTTCAGAAGCCAAGGGTACAGGTGTCCCCGTGGACAAAAGGGACACTGCAGTGTGAAGCC
TCAGCAGTCCCCTCAGCAGAATTCCAGTGGTACAAGGATGACAAAAGACTGATTGAAGGAAA
GAAAGGGGTGAAAGTGGAAACAGACCTTCCCTCTCAAAACTCATCTTCTCAATGTCTTG
AACATGACTATGGAAACTACACTTGCCTGGCCTCCAACAAGCTGGCCACACCAATGCCAGC
ATCATGCTATTGGTCCAGGCGCCGTAGCGAGGTGAGCAACGGCACGTGAGGAGGGCAGG
CTGCGTCTGGCTGCTGCCTTTCTGGTCTTGACCTGCTTCTCAAATTTGATGTGAGTGCC
ACTTCCCCACCCGGAAAGGCTGCCACCACCAACACAGCAATGGCAACAC
CGACAGCAACCAATCAGATATATAACAAATGAAATTAGAAGAAACACAGCCTCATGGGACAGA
AATTGAGGGAGGGAAACAAAGAATACTTGGGGGGAAAAGAGTTAAAAAGAAATTGAA
AATTGCCTTGCAGATATTAGGTACAATGGAGTTTCTTCCAAACGGGAAGAACACAGC
ACACCCGGCTGGACCCACTGCAAGCTGCATCGTGCACCTCTTGGTGCCAGTGTGGGCAA
GGGCTCAGCCTCTGCCACAGAGTGCCCCACGTGGAACATTCTGGAGCTGGCCATCCCA
AATTCAATCAGTCCATAGAGACGAACAGAATGAGACCTCCGGCCAAGCGTGGCGCTGCGG
GCACTTGGTAGACTGTGCCACCACGGCGTGTGAAACGTGAAATAAAAGAGCAAAA
AAAAA

FIGURE 222

MKTIQPKMHNSISWAIFTGLAALCLFQGPVRSGDATFPKAMDNVTVRQGESATLRCTIDNR
VTRVAWLNRSTILYAGNDKWCLDPRVLLSNTQTQYSIEIQNVDVYDEGPYTCVQTDNHPK
TSRVHLIVQVSPKIVEISSDISINEGNNISLTCIATGRPEPTVWRHISPKAVGFVSEDEYL
EIQGITREQSGDYECSASNDVAAPVVRRVKVTVNYPPIISEAKGTGVPVGQKGTLQCEASAV
PSAEFQWYKDDKRLIEGKKGVKVENRPFLSKLIFFNVSEHDYGNYTCVASNLGHTNASIML
FGPGAVSEVSNNGTSRRAGCVWLLPLLVLHLLLKF

Signal peptide:

amino acids 1-28

FIGURE 223

GAAAAAAAATCATGAAAACCATCCAGCCAAAATGCACAATTCTATCTCTGGGCAATCTTC
ACGGGGCTGGCTGCTCTGTCTCTTCCAAGGAGTGCCCCGTGCGCAGCGGAGATGCCACCTT
CCCCAAAGCTATGGACAACGTGACGGTCCGGCAGGGGAGAGGCCACCTCAGGTGCACTA
TTGACAACCGGGTCACCCGGGTGGCTAAACCGCAGCACCATCCTATGCTGGGAAT
GACAAGTGGTGCCTGGATCCTCGCGTGGCCTTCTGAGCAACACCCAAACGCAGTACAGCAT
CGAGATCCAGAACGTGGATGTGTATGACGAGGCCCTAACACCTGCTCGGTGCAGACAGACA
ACCACCCAAAGACCTCTAGGGTCCACCTCATTGTGCAAGTATCTCCAAAATTGTAGAGATT
TCTTCAGATATCTCCATTAATGAAGGAAACAATATTAGCCTCACCTGCATAGCAACTGGTAG
ACCAGAG

FIGURE 224

ATGGCTGGTACGGCGGGCGGGCAGGGGACCGGGGCCGGCCGGAGCGGGCAGCTGCCGGAGCCCTGA
ATCACCGCCTGCCCGACTCCACC**AT**GAACGTGCCTGCAGGAGCTGGAGCTGCAGCAACGTGGATTCCAG
AAGGGGACAAGAACAGCTGTTAGGCTACGCACGCAGCTGGAGCTGGCTTAGCAGGTGCCTCTACTGCTGGCT
GCACTGCTCTGGGCTGCCCTGTGCCCTAGGGTCCAGTACCAAGAGACCCATCCCACAGCACCTGCCCTACA
GAGGCCTGCATTGAGTGGCTGGAAAAATCCTGGAGTCCTGGAGCGAGGGTGGAGCCCTGTGAGGACTTTAC
CAGTCTCCTGTGGGGCTGGATTGGAGAACCCCTGCCATGGCCTCTCGCTGGAAACACCTCAACAGC
CTCTGGGACAAAACCAGGCCATACTGAAGCACCTGCTGAAAACACCACTCAACTCCAGCAGTGAGCTGAG
CAGAAGACACAGCCTCTACCTATCTGCCATCAGGTGGAGCGCATTGAGGAGCTGGAGCCAGCCACTGAGA
GACCTCATTGAGAAGATTGGTGGTGGAAACATTACGGGCCCTGGGACCAGGACAACATTATGGAGGTGTTGAAG
GCAGTAGCAGGGACCTACAGGCCACCCATTCTTCAACGCTACATCAGTGCCTACTAAGAGTTCCAACAGC
AATGTTATCCAGGTGGACCACTGCTGGCTCTTCTGCCCTCTGGGATTACTACTAAACAGAACTGCCAATGAG
AAAGTGCTCACTGCCATCTGGATTACATGGAGGAACGGGATGCTGCTGGGTGGCGGCCACCTCACGAGG
GAGCAGATGCAGCAGGTGCTGGAGTGGAGATAAGCTGCCAACATCACAGTGCCTCAGGACCAGCGCGCAG
GAGGAGAAGATCTACCAAGATGAGCATTGGAGCTGCAGGCTCTGGCGCCCTCCATGGACTGGCTTGAGTTC
CTGTCTTCTTGCTGTACCATTGGAGTTGAGTGAATCTGAGCCTGTGGTGTATGGGATGGATTATTCAG
CAGGTGTAGAGCTCATCAACCGCACCGAACAGCATCTGAACAATTACCTGATCTGGAAACCTGGTGC
ACAACCTCAAGCCTGGACCGACGCTTGAGTCTGCACAAGAGAACGCTGGAGACCCCTCATGGCACA
TCCTGTGTGCCAGGTGGCAGACCTGCATCTCAAACACGGATGACGCCCTGGCTTGCTGGGTCACTCTC
GTGAAGGCCACGTTTGACCGCAAAGCAAAGAAATTGCAAGGGGATGATCAGCGAAATCCGGACCGCATTGAG
GAGGCCCTGGGACAGCTGGTTGGATGGATGACAAGACCCGCCAGGAGCAGCAAGGAGAAAGCAGATGC
GATATGATTGGTTCCGACCTTATCTGGAGCCAAAGAGCTGGATGATGTTATGACGGGTACGAAATTCT
GAAGATTCTTCTCCAAAACATGTTGAATTGTAACCTCTCTGCCAAGGTTATGGCTGACCAGCTCGCAAG
CCTCCCAGCCGAGACCAGTGGAGCATGACCCCCCAGACAGTGAATGCTACTACCTCCAACAGAATGAGATC
GTCTCCCCGCTGGCATCTGCAGGCCCTCTATGCCGCAACCACCCAGGCCCTGAACCTCGGTGGC
GGTGTGGTCACTGGGCACTGAGTTGACGCATGCCATTGATGACCAAGGGCGAGTATGACAAAGAAGGG
CGGCCCTGGTGCAGAATGAGTCCCTGGCAGCCTCCGGAACACACGGCTGCATGGAGGAACACTACA
TACCAAGGTCAATGGGGAGGGCTCAACGGCCGCCAGACGCTGGGGAGAACATTACTGACA
ACGGGGGCTGAAG GCTGCCCTACAAAGCATGGCTGAGAAAGCATGGGGAGGGAGCAGCAACTGCC
AGCGTGGCCTACAAAGCATGGCTGAGAAAGCATGGGGAGGGAGCAGCAACTGCC
AACCAACCAAGCTCTCTCGTGGGATTGCCAGGTGTGGCTCGTCCGCACACCAGAGAGCT
CTGGTGACCGACCCCCACAGCCCTGCCGCTTCCGCGTGTGGCAGCTCTCCA
CACTCGGCTGCCCTGTGGCTCCCCATGAACCCAGGGCAGCTGTGAGGTGTGG**TAG**A
GAAATGGCCAGCTGTCAACAGACCTGGGGAGCTCTCTGACAAAGCTGTTGCTCTGGGTGGAGGAAGCAA
ATGCAAGCTGGCTGGGTCTAGTCCCTCCCCACAGGTGACATGAGTACAGACCC
CTGCCTCTGCTTGGGGTGCCCTGCCAGCAGAGCCCCCACCATTCACTGT
GCACATCTTCCGTGTCACCC
GCCTGGAAGAGGTCTGGTGGGGAGGCCAGTCCC
TAGGAAGGAGTCTGCC

FIGURE 225

MNVALQELGAGSNVGFQKGTRQLLGSRSQLLELVLAGASLLLALLGCLVALGVQYHRDPSH
STCLTEACIRVAGKILESLDRGVSPCEDFYQFSCGGWIRRNPPLPDGRSRWNTFNSLWDQNQA
ILKHLLENTTFNNSSEAEQKTQRFYLSCLQVERIEELGAQPLRDLIEKIGGWNIITGPWDQDN
FMEVLKAVAGTYRATPFFTYYISADSKSSNSNVIQVDQSGFLPLPSRDYYLNRTANEKVLTAY
LDYMEELGMILLGGRPTSTREQMQQVLELEIQLANITVPQDQRRDEEKIYHKMSISELQALAP
SMDWLEFLSFLLSPLELSDSEPVVVYGMMDYLQQVSELINRTEPSILNNYLIWNLVQKTTSSL
DRRFESAQEKLLETLYGTTKSCVPRWQTCISNTDDALGFALGSLFVKATFDRQSKEIAEGMI
SEIRTAFFEEALGQLVWMDEKTRQAAKEKADAIYDMIGFPDFILEPKELDDVYDGYEISEDSF
FQNMLNLYNFSAKVMADQLRKPPSRDQWSMTPQTVNAYYLPTKNEIVFPAGILQAPFYARNH
PKALNFGGIGVVMGHELTHAFDDQGREYDKEGNLRPWQNESLAAFRNHTACMEEQYNQYQV
NGERLNGRQTLGENITDNGGLKAAYNAYKAWLRKHGEEQQLPAVGLTNHQLFFVGFAQVWCS
VRTPESSHEGLVTDPHSPARFRVLGTLNSRDFLRHFGCPVGSPMNPGQLCEVW

Type II Transmembrane domain:

amino acids 32-57

FIGURE 226

GCCCCGCCCTCGCCCTCCGCACTCCCCTCCCTCCGCCGCTCCGCCGCCCCCTCCCTCCCTCCCTCC
CAGCTGTCCCCTTCGCGTCATGCCGAGCCTCCGCCGCCGGCCGCTGCTGCTCCTCGGGCTGCTGCTGCT
CGGCTCCCGGCCGCCGCCGGCCGAGGCCCGGGCTGCTGCCCATCCGTTCTGAGAAGGAGCCGCTGCC
CGTTCGGGGAGCGGCAGGTAGGTGGCGCCGGGGAGGGCGGGGGAGTGGGGCTGGGGAGTCAGGCC
CAGCCCGAGGGGGCGGGCGCAGGTGGCTCGGCCGGGGGGAGGGGGAGGGGGAGTCAGGCC
GCGGTGCCCTGGGACCCGGACCCGCCGGCAGCCCCGGGGAGCAGCTGGGAGCTGGGAGCAGGCC
CAAGCCCGTCCCGCAGGTGACCTTCGGCGGAAGGTCTATGCCCTGGACAGACGTGGCACCCGACCTAGG
GGAGGCCATTGGGGTGATGCCGCTGGCTGTGCGCCTGCGAGGGCAGTGGGTGCGCTTACAGGGCCCTGG
CAGGGTCAGCTGCAAGAACATCAAACCAGAGTGCCAACCCGGCTGTGGGAGCCGCGCAGCTGCCGGACA
CTGCTGCCAGACACTGCCCTCAGGACTTCGTTGGCGCTGTCAGGGCCAGGTGCAAGGGCGTGGCACAGGCC
AGTCTCGCTGCGCTCTAGCCTCCGTTCTATCCTACAGGCCGCTGGACCCCTACAGGATCCGCTT
CTCAGACTCCAATGGCAGTGTCTGTTGAGCACCCCTGCAAGCCCCACCCAAGATGGCTGGTCTGTGGGTGTG
GCCGGCAGTGCCTCGGTTGCTCTGCCGCTCTAGGGCAGAACAGCTGCACTGGGACITGTGACACTCACTCA
CCCTCAGGGGAGGTCTGGGGCCCTCTATCCGGCACCGGGCCCTGTCCTCCAGAGACCTTCAGTGCCATCCTGAC
TCTAGAAGGCCCCACCAGCAGGGCGTAGGGGCATCACCTGTCACTCTCAGTGAACAGGACTCCTTGCA
TTTTTGCTGCTCTTCCGAGGCCCTTGCAAGGACTAACCCAGGTTCCCTGAGGCTCCAGATTCTACACCAGGGCA
GCTACTCGGAAACTTCAGGCCAATGCTCAGGCCAGGAACAGGCTTGTGAGGTGCTGCCAACCTGACAGT
CCAGGAGATGGACTGGCTGGTCTGGGGAGCTGAGGCTGGCAGGAGGGCAGGGCTGCGCAT
CAGTGGACACATTGCTGCCAGGAAGAGCTGCCAGCTGCAAAAGTGTCTTGTGGGCTAATGCCCTGATCCC
AGTCCAAACGGGTCTGCCGCTCACGCCCCACTCTGCTAGGAAATGGCNCCCTGATCTCCAGGTGCAATT
GGTAGGGACAACAGTGGGTGGCATGCACTGGAAACCAAGGCTCAGGCCAGGGATGCCACTGTCTT
GTGCCACATGGCTGGCTATCTCCCTGCCCTCAGGGCTGGGTATCTGCCCTGGCTGGGTGCCAGGGGG
TCATATGCTGCTGCAAGATGAGCTCTTCTGAACTGTCAGGGCACCAAGGACTTCCCAGACGGAGAGCTTGGGGCA
ACGTGGCTGCCCTGCCCTACTGTGGGCATAGGCCCGCCCTGCCCTAGCAGGAGGCCCTGGTCTACC
CCCTGTGAAGAGCCAAGCAGCAGGGCACGCCCTGGTTCTGGATAACCACTGTCACCTGCACTATGAAGTGCT
GCTGGCTGGCTGGTCTGAGAACAGGACTGTCACTGCCAACCTCTGGCCTCTGGAACGCCAGGGC
TCGGCGCTGCTGAAGGGATTCTATGGCTCAGAGGCCAGGGTGTGGTAAGGACCTGGAGGCCAGCTGCG
GCACCTGGCAAAAGGATGGCTTCCCTGATGATCACCAAGGTAGCCCAGAGGGGAGCTCGAGGGCAGCCT
CTCCTCCAGGTGCACTAGCCAACCATGTGAGGTTGGCGACTGCCCTGGAGGGCGCCGGAGGGGG
GCCGGCGCTGGGGCTCCGGATACAGCCTCTGCTGCCGCGCTGTGGTGCCTGGCTCCGCCAGGCC
CAAACCTGGTGGTCTGGCGGCCCGAGACCCAAACATGCTTCTCGAGGGCAGCAGGCCACGGGG
TCGCTGGCGCCAACGACCCGCTCTGCTCACTCTGCACTGCCAGAGACGAACGGTATCTGTGACCCGGT
GGTGTGCCACCGCCAGCTGCCAACACCCGGTGCAGGCTCCGACCGAGTGTGCCCTGGCTTGGCTGCTGTA
TTTGATGGTGAACGGAGCTGGGGCAGCGGGTACCGGGTGGCACCCGGTGTGCCCCCTTGGCTTAATTAA
GTGCTGCTGCTGCAACCTGCAAGCAGGGGGCAGCGGGTACCGGGTGGCACCTGGAGAGGTGACTGAGAAGGTGCA
CTGTGCCCTGGCTGCTGCAACCCACCGACTGCTGCAAAACAGTGTCCAGGTGAGGCCACCCCCAGCTGG
GGACCCCATGCAAGGCTGATGGGCCCCGGCTGCCGTTTGCTGGCAGTGGTCCCAGAGAGTCAGAGCTGGCA
CCCCCTCAGTGCCCTGGTGTGGAGAGATGAGCTGATCACCTGCAAGATGTGGGTAAGTGGGAGCAGAGGCTTGT
GTGAGGGGGTACTGGAGGCTGGAGTAGGGAGACCTTCCCAGGGAGGTCCCTGAAAGAAGCTGAAGGTCA
CTGTGTCCCAGTGCCTCTGGGGACACTCAGTGTCTGCTTGTACCGAGCAGGGTGCATGCTGTTCCGCTGCACGCC
GGGGATGACTGTCACTGCCACTGTCTGCTGGCTGGGAAGGAGAGTCAGTGTGTTCCGCTGCACGCC
GGCGCGTAAGTGAGGGAGTCCAGGGTCAGCAGCTGTGAGTGGAGGGCTCACCTGCCGTGGAGACTCTGATCAG
GGAAGGGAGCACTCACTGTGCAAGAACAGTCAGGCCCTACAAGTGCCATTCCAATCCACCCCTCACAGCA
ACCTGGTGAATTGTTATTGACCTTTCTTACAAATGAGATTCTGAAGCTCAGAGAAAATTAAGCAACGAG
ATGAAGGTCAACCCAGCTGTGCACTGACCTGTTAGAAAATACTGCCCTTCTGGACCAAGGCAGGGATGCTT
TGCCCTGCCCTCATGCCCTCTGTGCCCTCTCACTCCCTCCCTCAACATCCCTCCCTCTGTCTCC
AGCAGCCCCAGAGACCAGAACACTGATCCAGAGAGAACAGGCCAGGGCTTGGAGCAGGCCAGGG
AAGTGACCAAGAGGATGGGGCTGAGCTGGGGAGGGGGTGGCATCGAGGACCTTCTGCATTCTCTGTGG
CCCAGTGCCTTGTCTCTGCTGCCCTACTCTCCACCCACTACCTCTGGGAACCAAGCTCCACAAGGG
GAGAGGCAGCTGGGCCAGACCGAGGTACAGCCACTCCAAGTCAGTCCCTGCCCTGCCACCCCTCG
GCCACCCCTTCTGTACATAATGTCAGTGGCTGGGATTTTAATTATCTTACTCAGCACCAAG
GGCCCCGGACACTCCACTCTGCTGCCCTGAGCTGGAGAGTCAGAGTCATTATGGAGAGTTGTATT
ATTCTTTCTAGTCTGGGATGGGGTGGCTGGGAGAGAGAGTCAGTGGGGAGCTGAAAGAGACCTGG
GCNGAGAGTAGGGAGGTGAGAGAGAGAGAGTCAGTGGGGAGCTGAAAGAGACCTGGAGAGGGCAGAGG
CGTGGCNNTGGCTGGCATNCCTGGGAGAGGGCTGGGATGGTTCTGAGATGGTCTAGAGACTCAAG
AATTAGGGAAAGTAGAACAGGATTGACTCAAGTTAGTTCCACATGCTGCCCTGTTGCTGACTCATG
TTGAAGTTGCTCCAGAGAGAGAATCAAAGGTGCAACCAGCCCCCTCTCCCTCCCTCCCT
TCCCTCCCCCTCCCCCTCCCCCTCCCCCTCC

FIGURE 227

GGCGAGCGGGGTGCTGCAGCGCCGTATGGCTGGTACGGCGGGCGGGCAGGG
CCGGGGCGCGGCCGGAGCGGCCAGCTGCCGGAGCCCTGAATCACCGCCTGGCCGAC
TCCACCATGAACGTGCGCTGCAGGAGCTGGAGCTGGCAGCAACGTGGATTCCAGAAGGG
GACAAGACAGCTGTTAGGCTACGCACGCAGCTGGAGCTGGCTTAGCAGGTGCCTCTAC
TGCTGGCTGCACTGCTTCTGGCTGCCTTGTGCCCTAGGGTCCAGTACACAGAGACCCA
TCCCACAGCACCTGCCTACAGAGGCCTGCATTGAGTGGCTGGAAAAATCCTGGAGTCCT
GGACCGAGGGGTGAGCCCCTGTGAGGACTTTACCAGTTCTCCTGTGGGGCTGGATTCGGA
GGAACCCCCCTGCCGATGGCGTTCTCGCTGGAACACCTCAACAGCCTCTGGACCAAAAC
CAGGCCATACTGAAGCACCTGCTTGAAAACACCACCTCAACTCCAGCAGTGAAGCTGAGCA
GAAGACACAGCGCTTCTACCTATCTTGCCTACAGGTGGAGCGCATTGAGGAGCTGGAGCCC
AGCCACTGAGAGACCTCATTGAGAAGATTGGTGGTGGAACATTACGGGCCCTGGACCAAG
GACAACTTATGGAGGTGTTGAAGGCAGTAGCAGGGACCTACAGGGCCACCCATTCTCAC
CGTCTACATCAGTGCCTACTCTAACAGAGTTCCAACAGCAATGTTATCCAGGTGGACCAGTCTG
GGCTCTTCTGCCCTCGGGATTACTACTTAAACAGAACTGCCAATGAGAAAGTAAGGAAC
ATCTTCCGAACCCCCATCCCTACCCCTGGCTGAGCTGGCTGATCCCTGTTGACTTTCCCT
TTGCCAAGGGTCAGAGCAGGAAGGTGAGCCTATCCTGTACCTAGTGAACAAACTGCCCT
CCTTCTTCTTCTTCTCCCTCCCTCCCTTTCTCCCTTCCCTTCCCTTCC
TCTTATTCTCTAGTAGGTTCATAGACACCTACTGTGTGCCAGGTCCAGTGGGGAAATTG
GAGATATAAGTTCCGAGCCATTGCCACAGGAAGCGTTAGTGTGATGGGTTATGGACCT
AGATAGGCTGATAACAAAGCTCACAAGAGGGTCTGAGGATTCAAGGAGAGACTTATGGAGCC
AGCAAAGTCTCCTGAAGAGATTGCATTGAGCCAGGTCTGTAG

FIGURE 228

ATGCCTACTACCTTCCAACAAGAATGAGATCGTCTTCCCCGTGGCATCCTGCAGGCC
TTCTATGCCCGCAACCACCCCAAGGCCCTGAACCTCGGTGGCATCGGTGTGGTCATGGCCA
TGAGTTGACGCATGCCTTGATGACCAAGGGCGCGAGTATGACAAAGAACGGGACCTGCGGC
CCTGGTGGCAGAATGAGTCCCTGGCAGCCTCCGGAACACACGGCCTGCATGGAGGAACAG
TACAATCAATACCAGGTCAATGGGGAGAGGGCTCAACGGCCGCCAGACGCTGGGGGAGAACAT
TGCTGACAACGGGGGCTGAAGGCTGCCTACAATGCTTACAAAGCATGGCTGAGAAAGCATG
GGGAGGAGCAGCAACTGCCAGCCGTGGGCTACCAACCACAGCTCTCGTGGGATT
GCCAGGTGTGGTGCCTGGTCCGCACACCAGAGAGCTCTCACGAGGGCTGGTGACCGACCC
CCACAGCCCTGCCGCTTCCCGTGCTGGCACTCTCTCCAACCTCCGTACTTCCTGCGGC
ACTTCGGCTGCCCTGTCGGCTCCCCATGAACCCAGGGCAGCTGTGAGGTGTGGTAGACC
TGGATCAGGGGAGAAATGGCCAGCTGTCACCAGACCTGGGCAGCTCTCGACAAAGCTGT
TTGCTCTTGGGTTGGGAGGAAGCAAATGCAAGCTGGCTGGGTCTAGTCCCTCCCCCACA
GGTACATGAGTACAGACCCCTCAATCACCAATTGTGCCTCTGCTTGGGGTGCCCCT
GCCTCCAGCAGAGCCCCACCATTCACTGTGACATCTTCCGTGTCACCCCTGCCTGGAAGAG
GTCTGGGTGGGAGGCCAGTCCCATAGGAAGGAGTCTGCCTCTGTCCCCAGGCTCACT
CAGCCTGGCGGCCATGGGCCTGCCGTGCCCTGCCCACTGTGACCCACAGGCCTGGGTGGT
TACCTCCTGGACTTCTCCCCAGGCTCACTCAGTGCACCTAGGGGTGGACTCAGCTCTGTC
TGGCTCACCCCTCACGGCTACCCCCACCTCACCCGTGCTCCTGTGCCACTGCTCCAGTG
CTGCTGCTGACCTTCACTGACAGCTCTAGTGGAAAGCCAAGGGCCTCTGAAAGCCTCCTGC
TGCCCCACTGTTCCCTGGCTGAGAGGGAAAGTCATATGTGTAGCGGGTACTGGTCCTGT
GTCTTAGGGCACAAGCCTAGCAAATGATTGATTCTCCCTGGACAAAGCAGGAAAGCAGATA
GAGCAGGGAAAAGGAAGAACAGAGTTATTTTACAGAAAAGAGGGTGGAGGGTGTGGTCT
TGGCCCTTATAGGACC

FIGURE 229

CCACCGCGTCCGAGCCGCCGAGAATTAGACACACTCCGGACGCCAAAAGCAACCGAGA
GGAGGGGAGGCACAAACACCGAAAAACAAAAAGAGAGAAACAACACCCAACTGGGTGG
GGGAAGAAAGAAAGAAACCCACCCACCAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAATCCTGTGGCGCCGCCCTGGTTCCCGGAAAGACTGCCAGCACCGGGG
TGGGGAGTGCAGCTGAAAGCTGCTGGAGAGTGAGCAGCCCTAGCAGGGATGGAC**ATGATG**
CTGTTGGTGAGGGTGCAGCTGCTCGAACCAAGCTGGCTGGCGCCGGTGCCTCAGCCTGTG
CTGCCTGCTACCCCTCGCCTCCGGCTGGACAGAGTGTGGACTTCCCCTGGCGCCGTGG
ACAACATGATGGTCAGAAAAGGGACACGGCGGTGCTTAGGTGTTATTGGAAGATGGAGCT
TCAAAGGGTGCCTGGCTGAACCGGTCAAGTATTATTGCGGGAGGTGATAAGTGGTCAGT
GGATCCTCGAGTTCAATTCAACATTGAATAAAGGGACTACAGCCTCCAGATAACAGAATG
TAGATGTGACAGATGATGGCCCATAACGTGTTCTGTTAGACTCAACATAACCCAGAAC
ATGCAGGTGCATCTAAGTGTGCAAGTTCCCTCTAAGATATATGACATCTCAAATGATATGAC
CGTCAATGAAGGAACCAACGTCACTCTTACTTGTGTTGCCACTGGGAAACCAAGAGCCTCCA
TTTCTGGCGACACATCTCCCCATCAGCAAAACCATTGAAAATGGACAATATTGACATT
TATGGAATTACAAGGGACCAGGCTGGGAATATGAATGCAAGTGCAGTGCAGGAAATGCTGTGTCATT
CCCAGATGTGAGGAAGTAAAGTTGTCACACTTGCTCTACTATTCAAGGAAATTAAAT
CTGGCACCGTGACCCCCGGACGCAGTGGCTGATAAGATGTGAAGGTGCAGGTGTGCCGCCT
CCAGCCTTGAATGGTACAAAGGAGAGAAGAAGCTTCAATGCCAACAGGAATTATT
TCAAAATTAGCACAAGATCCATTCTCACTGTTACCAACGTGACACAGGAGCACTCGGCA
ATTATACTGTGTGGCTGCCAACAGCTAGGCACAACCAATGCGAGCCTGCCCTTAACCCT
CCAAGTACAGCCCAGTATGGAATTACCGGGAGCGCTGATGTTCTTCTCTGCTGTTACCT
TGTGTTGACACTGTCTCTTCACCAGCATATTCTACCTGAAGAATGCCATTCTACA**ATAA**
TTCAAAGACCCATAAAAGGTTTAAGGATTCTGAAAGTGTGATGGCTGGATCCAATCT
GGTACAGTTGTTAAAGCAGCGTGGGATATACTCAGCAGTGTACATGGGATGATGCC
TTCTGTAGAATTGCTCATTATGTAATAACTTTAATTCTACTCTTTTGATTAGCTACATTA
CCTTGTGAAGCAGTACACATTGCTTTTAAGACGTGAAAGCTCTGAAATTACTTTAG
AGGATATTAAATTGTGATTTCATGTTGAATCTACAACCTTCAAAAGCATTCACTGATGGT
CTGCTAGGTTGCAGGCTGAGTTACAAAAGCAATTGCAAGTGAATATGTGATTCTTAA
GGCTGCAATACAAGCATTCACTGCTTCAATAAGACGTCAATCCACATTACAAGATG
CATTTTTCTTTTGATAAAAAGCAAATAATTGCTTCAGATTATTCTCAAAATA
TAACACATATCTAGATTTCTGCTTGCACTGATATTCAAGGTTCAAGGATGAGCCTGTAAT
ATAACTGGCTGTGCAGCTCTGCTTCTTCTGTAAGTTCACTGATGGGTGTGCCTTCATAC
AATAATTCTCTTGTCTCCAACATAATAAAATGTTGCTAAATCTACAATTGTA
AAGTAAAATAAACAGAGTGTCAAGTTAAACCAACTACACTATCTCTAAGTAACGAAGGAGC
TATTGGACTGTAAAATCTCTTGTGACTGACAATGGGTTGAGAATTGCCCCACACT
AACTCAGTTCTGTGATGAGAGACAATTAAATAACAGTATAGTAAATACCATATGATTT
TTTAGTTGTTAGCTAAATGTTAGATCCACCGTGGAAATCTTCAAAATGACAGCACA
GTCCACTCAAAGGATTGCTTAGCAATACAGCATCTTCTTCACTAGTCCAAGC
TTTAAGATGATTGTCAGAAAGGGACAAAGCTCTATCACCTAATATTACAAGAGTTGGTA
AGCGCTCATTAATTATTGTCAGGTTATTATGACAGTCGACCTGGAGGGTATGGA
TATGGATATGGACGTTCCAGAGACTATAATGGCAGAAACCAGGGTGGTTATGACCGCTACTC
AGGAGGAAATTACAGAGACAATTGACAACGTGAAATGAGACATGCACATAATAGATA
CAAGGAATAATTCTGATCCAGGATGTCCTCCAAATGGCTGTTAAAGGTTTTGG
AGCTGCACTGAAGCATCTTATTTATAGTATCAACCTTGTAAATTGACACTGCCA
AGTAGCTGAAGACCTTTAGACAGTTCCATCTTTAAATTCTGCTATTAA
AGACAAATTATGGGACGTTGTCACAAAAAA

FIGURE 230

MMLLVQGACCSNQWLAAVLLSLCCLLPSCLPAGQSVDFFWAAVDNMMVRKGDTAVLRCYLED
GASKGAWLNRSSIIFAGGDKWSVDPRVSISTLNKRDYSLQIQNVDVTDDGPYTCSVQTQHTP
RTMQVHLTVQVPPKIYDISNDMTVNEGTVNLTCLATGKPEPSISWRHISPSAKPFENGQYL
DIYGITRDQAGEYECSAENAVSFDPDVRKVVVNFAPTIQEIKSGTVTPGRSGLIRCEGAGV
PPPafeWYKGEKKLFNGQQGIIIQNFSTRSILTNTVNTQEHFGNYTCVAANKLGTTNASLPL
NPPSTAQYGITGSADVLFSCWYLVLTSSFTSIFYLKNAILQ

Important features of the protein:

Signal peptide:

amino acids 1-31

Transmembrane domain:

amino acids 326-345

N-glycosylation sites.

amino acids 71-75, 153-157, 273-277, 284-288, 292-296, 305-309

Casein kinase II phosphorylation site.

amino acids 147-151, 208-212, 224-228

Tyrosine kinase phosphorylation site.

amino acids 178-186

N-myristoylation sites.

amino acids 7-13, 63-70, 67-73, 151-157, 239-245, 291-297,
302-308, 319-325

Myelin P0 protein:

amino acids 92-121

FIGURE 231

AGTGGTCGATGGGAAGGATCTTCTCCAAGTGGTCCTTGAGGGAGCATTCTGCTGG
CTCCAGGACTTGGCATCTATAAGCTGGCAATGAGAAATAAGAAAATTCTAAGGAGGA
CGAGCTTGTGAGGACCAACAAGCTGCTTCACCAAATTGCAATGGAGCCTTCGAAA
TCAATGTTCAAAGCCAAGAGGAGAAATGGGGTGAACCTCTCCCTAGCTGTGGTGGTCATC
TACCTGATCCTGCTACCGCTGGCGCTGGCTGCTGGTGGTCCAAGTTCTGAATCTGCAGGC
GCGGCTCCGGTCTGGAGATGTATTCCTCAATGACACTCTGGCGGCTGAGGACAGCCCCTG
CCTTCTCCTGCTGCAGTCAGCACACCCCTGGAGAACACCTGGCTCAGGGTGCATCGAGGCTG
CAAGTCCTGCAGGCCAACTCACCTGGGTCCCGTCAGCCATGAGCACTTGCTGCAGCGGGT
AGACAACTTCACTCAGAACCCAGGGATGTTCAGAATCAAAGGTGAACAAAGGCCAGGTC
TTCAAGGTACAAGGGGCCATGGCATGCCTGGTCCCCCTGGCCGCGGGACCACCTGCT
GAGAAGGGAGCCAAGGGGCTATGGGACGAGATGGAGCAACAGGCCCTGGGACCCCAAGG
CCCACCGGGAGTCAAGGGAGAGGCCCTCCAAGGACCCCAGGGTGCCTCAGGGAAAGCAAG
GAGCCACTGGCACCCCAGGACCCCAAGGAGAGAACGGCAGCAAAGGCATGGGTCTCATT
GGCCAAAAGGGAAACTGGAACTAAGGGAGAGAAAGGAGACCTGGTCTCCCAGGAAGCAA
AGGGACAGGGCATGAAAGGAGATGCAGGGTCATGGGCCTCTGGAGGCCAGGGAGTA
AAGGTGACTTCGGGAGGCCAGGCCACCAGGTTGGCTGGTTCTGGAGCTAAAGGAGAT
CAAGGACAACCTGGACTGCAGGGTGTCCGGCCCTCCTGGTCAGTGGACACCCAGGTGC
CAAGGGTGAGCCTGGCAGTGCTGGCTCCCTGGCGAGCAGGACTTCCAGGGAGGCCGGGA
GTCCAGGAGGCCACAGGCCTGAAAGGAAGCAAAGGGACACAGGACTTCAAGGACAGCAAGGA
AGAAAAGGAGAACATCAGGAGTCCAGGCCCTGCAGGTGTGAAGGGAGAACAGGGAGGCCAGG
GCTGGCAGGTCCAAGGGAGGCCCTGGACAAGCTGGCCAGAACAGGGAGACCAGGGAGTGAAAG
GATCTTCTGGGAGCAAGGAGTAAAGGGAGAAAAGGTGAAAGAGGTGAAAACACTCAGTGTCC
GTCAGGATTGTCGGCAGTAGTAACCGAGGCCGGCTGAAGTTACTACAGTGGTACCTGGG
GACAATTGCGATGACGAGTGGCAAATTCTGATGCCATTGTCTCTGCCATGCTGGTT
ACTCCAAAGGAAGGCCCTGTACAAAGTGGAGCTGGCACTGGCAGATCTGGCTGGATAAT
GTTCAGTGTGGGAGGCCAGGGAGAGTACCCGTGGAGCTGCAGCGTCTTGACCCGAAACCTTCA
TGACTGCAGGCCACGAGGAGGACGCAGGCCGGTGCAGCGTCTTGACCCGAAACCTTCA
CTTCTCTGCTCCGAGGTGTCTCGGCTCATATGTGGGAAGGCAGAGGATCTGTGAGGAGT
TCCCTGGGACAACGTGAGCAGCCTCTGGAGAGGGGCCATTAATAAGCTAACATCATTGA

FIGURE 232

```
></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA68886
><subunit 1 of 1, 520 aa, 1 stop
><MW: 52658, pI: 9.16, NX(S/T): 3
MRNKKILKEDELLSETQQAAFHQIAAMEPFEINVPKPKRRNGVNFSLAVVVIYLILLTAGAGL
LVVQLNLQARLRVILEMYFLNDTLAEDSPSFSLQLQSAHPGEHLAQGASRLQVLQAQLTWVR
VSHEHLLQRVDNFTQNPGMFRIKGEQGAPGLQGHKGAMGMPGAPGPPGPPAEKGAKGAMGRD
GATGPSPGPQGPPGVKGEAGLQGPQGAPGKQGATGTPGPQGEKGSKGDGGLIGPKGETGKGE
KGDLGLPGSKDRGMKGDAGVMGPPGAQGSKGFGRPGPGLAGFPGAKGDQGQPGLQGVPG
PPGAVGHPGAKGEPGSAGSPGRAGLPGSPGSPGATGLKGSKGDTGLQGQQGRKGESGVPGPA
GVKGEQGSPGLAGPKGAPQAGQKGDQGVKGSSGEQGVKGEKGERGENSVSRIVGSSNRGR
AEVYYSGTWGTICDDEWQNSDAIVFCRMLGYSKGRALYKVGAGTGQIWLDNVQCRGTESTLW
SCTKNSWGHHDCSVHEEDAGVECSV
```

Transmembrane domain:

amino acids 47-66 (type II)

N-glycosylation sites.

amino acids 43-47, 83-87, 136-140

Tyrosine kinase phosphorylation site.

amino acids 432-440

N-myristoylation sites.

amino acids 41-47, 178-184, 253-259, 274-280, 340-346, 346-352,
400-406, 441-447, 475-481, 490-496, 515-521

Amidation site.

amino acids 360-364

Leucine zipper pattern.

amino acids 56-78

Speract receptor repeat

amino acids 422-471, 488-519

C1q domain proteins.

amino acids 151-184, 301-334, 316-349

FIGURE 233

CCACCGCGTCCGAAGGCAGACAAAGGTTCATTGTAAGAAGCTCCTCCAGCACCTCCTCT
CTTCTCCTTTGCCAAACTACCCAGTGAGTGTGAGCATTAAAGAACATCCTCTGCCAAG
ACCAAAAGGAAAGAAGAAAAAGGGCAAAGC~~AAAATGAA~~ACTGATGGTACTTGTTCAC
CATTGGGCTAACCTTGCTGCTAGGAGTTCAAGCCATGCCTGCAAATGCCTCTCTGCTACA
GAAAGATACTAAAAGATCACAACACTGTACAACCTTCCGGAAAGGAGTAGCTGACCTGACACAG
ATTGATGTCAATGTCCAGGATCATTCTGGATGGGAAGGGATGTGAGATGATCTGTTACTG
CAAACCCAGCGAATTGCTCTGCTGCCAAAGACGTTTCTTGACCAAAGATCTCTTCG
TGATTCCCTGCAACAATCAATTGAGAATCTTCATGTATTCTGGAGAACACCATTCTGATTTC
CCACAAACTGCACTACATCAGTATAACTGCATTCTAGTTCTATATAGTGCAATAGAGCAT
AGATTCTATAAAATTCTTACTTGTCTAAGACAAGTAAATCTGTGTTAAACAAGTAGTAATAAA
AGTTAATTCAATCTAAAAAAAAAAAAAA

FIGURE 234

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52758
<subunit 1 of 1, 98 aa, 1 stop
<MW: 11081, pI: 6.68, NX(S/T): 1
MKLMVLVFTIGLTLLGVQAMPANRLSCYRKILKDHNCHNLPEGVADLTQIDVNQDHFWDG
KGCEMICYCNFSELLCCPKDVFFGPKISFVIPCNNQ
```

Important features:

Signal peptide:

amino acids 1-20

N-glycosylation site.

amino acids 72-76

Tyrosine kinase phosphorylation site.

amino acids 63-71

FIGURE 235

CCACCGCGTCCGCGGACCGCTGGACCCCAGGTCTGGAGCGAATTCCAGCCTGCAGGG
CTGATAAGCGAGGCATTAGTGAGATTGAGAGAGACTTTACCCCGCGTGGTGGTGGAGGGC
GCGCAGTAGAGCAGCACAGCGCGGGTCCCGGGAGGCCGCGCTGCTCGCAGCGAG**ATG**
TGGAAATCTCCTTCACGAAACCGACTCGGCTGTGGCCACCGCGCCGCCCGCGTGGCTGTG
CGCTGGGGCGCTGGTGTGGCGCTTCTTCTCCTCGGCTCCTCTCGGGTGGTTTA
TAAAATCCTCCAATGAAGCTACTAACATTACTCAAAGCATATAATGAAAGCATTGGAT
GAATTGAAAGCTGAGAACATCAAGAAGTTCTTACATAATTACAGATAACCACATTAGC
AGGAACAGAACAAAACCTTCAGCTGCAAAGCAAATTCAATCCAGTGGAAAGAATTGGCC
TGGATTCTGTTGAGCTAGCTCATTATGATGTCCTGTTGTCCTACCCAAATAAGACTCATCCC
AACTACATCTCAATAATTAAATGAAGATGGAAATGAGATTTCACACATCATTATTGAACC
ACCTCCTCCAGGATATGAAAATGTTCGGATATTGTACCACTTCAGTGTCTCTCCTC
AAGGAATGCCAGAGGGCGATCTAGTGATGTTAACTATGCACGAAGACTGAAGACTTCTTAAA
TTGGAACGGGACATGAAAATCAATTGCTCTGGAAAATTGTAATTGCCAGATATGGAAAGT
TTTCAGAGGAAATAAGGTTAAAATGCCAGCTGGCAGGGCCAAGGGAGTCATTCTACT
CCGACCCCTGCTGACTACTTGTCTCTGGGTGAAGTCCTATCCAGACGGTGGAACTTCT
GGAGGTGGTGTCCAGCGTGGAAATATCCTAAATCTGAATGGTGCAGGAGACCCCTCACACC
AGGTTACCCAGCAAATGAATATGTTAGCGTGGAAATTGCAGAGGCTGTTGGTCTTCAA
GTATTCTGTTATCCAATTGGATACTATGATGCACAGAAGCTCTAGAAAAAATGGTGGC
TCAGCACCAACCAGATAGCAGCTGGAGAGGAAGTCTCAAAGTGCCTACAATGTTGGACCTGG
CTTACTGAAACTTTCTACACAAAAGTCAGATGCACATCCACTCTACCAATGAAGTGA
CGAGAATTACAATGTGATAGGTACTCTCAGAGGAGCAGTGGAAACCAGACAGATATGTCATT
CTGGGAGGTCAACGGGACTCATGGGTGTTGGTATTGACCTCAGAGTGGAGCAGCTGT
TGTTCATGAAATTGTGAGGAGCTTGGAAACACTGAAAAAGGAAGGGTGGAGACCTAGAAGAA
CAATTGTTGTTGCAAGCTGGATGCAGAAGAATTGGTCTTGGTCTACTGAGTGGCA
GAGGAGAATTCAAGACTCCTCAAGAGCGTGGCGTGGCTTATATTAAATGCTGACTCATCTAT
AGAAGGAAACTACACTCTGAGAGTTGATTGTACACCGCTGATGTACAGCTGGTACACAACC
TAACAAAAGAGCTGAAAAGCCCTGATGAAGGCTTGAAGGCAAATCTTTATGAAAGTTGG
ACTAAAAAAAGTCCTCCCCAGAGTTCACTGGCATGCCAGGATAAGCAAATTGGATCTGG
AAATGATTGAGGTGTTCTCCAACGACTTGAATTGCTTCAGGCAGAGCACGGTATACTA
AAAATTGGAAACAAACAAATTCACTGGCTATCCACTGTATCACAGTGTATGAAACATAT
GAGTTGGTGGAAAAGTTTATGATCCAATGTTAAATATCACCTCACTGTGGCCAGGTTG
AGGAGGGATGGTGTGAGCTAGCCAATTCCATAGTGCTCCCTTGATTGTCAGGATTATG
CTGTAGTTAAGAAAGTATGCTGACAAAATCTACAGTATTCTATGAAACATCCACAGGAA
ATGAAGACATACAGTGTATCTGATTCACTTTCTGAGTAAAGAATTTCAGGAAAT
TGCTTCCAAGTTCACTGAGAGACTCCAGGACTTGAACAAAGCAACCCAAATAGTATTAAGAA
TGATGAATGATCAACTCATGTTCTGAAAGAGCATTATTGATCCATTAGGTTACAGAC
AGGCCTTTTATAGGCATGTCATCTATGCTCCAAGCAGCCACAACAAGTATGCAGGGAGTC
ATTCCCAGGAATTATGATGCTCTGTTGATATTGAAAGCAAAGTGGACCCCTCCAAGGCCT
GGGGAGAAGTGAAGAGACAGATTATGTTGCAGCCTCACAGTGCAGGCAGCTGCAGAGACT
TTGAGTGAAGTAGCCTAAGAGGATTAGAGAATCCGTATTGAATTGTTGTGGTATGTCA
CTCAGAAAGAATCGTAATGGGTATATTGATAAATTAAAATTGGTATATTGAAATAAGT
TGAATATTATATAA

FIGURE 236

```
></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA52756
><subunit 1 of 1, 750 aa, 1 stop
><MW: 84305, pI: 6.93, NX(S/T): 10
MWNLHETDSAVATARRPRWLCA GALVLAGGFFLLGFLFGWFIKSSNEATNITPKHNMK AFL
DELKAENIKKFLHNFTQIPIHLAGTEQNFQLAKQIQSQWKEFGLDSVELAHYDVLLSYPNKTH
PNYISIINEDGNEIFNTSLFEPPPPGYENVSDIVPPFSAFSPQGMPEGDLVYVNYARTEDFF
KLERDMKINC SGKIVIARYGKVFRGNKVKN AQLAGAKGVILYSDPADYFAPGVKSYPDGWNL
PGGGVQRGNILNLNGAGDPLTPGY PAN EYAYRRGIAEAVGLPSIPVHPIGYYDAQKLLEKMG
GSAPPDSSWRGSLKVPYNVGP GFTGNFSTQVKMHIHSTNEVTRIYNVIGTLRGAVEPD RYV
ILGGHRDSWVFGGIDPQSGAAVVHEIVRSFGTLKKEGWRPRRTILFASWDAEEFGLLGSTE W
AEENSRLLQERGVAYINADSSIEGNYTLRV DCTPLMYSLVHNLT KELKSPDEGFEGKSLYES
WTKKSPSPEFSGMPRI SKLGS GND FEV FFQRLGIASGRARYTKNWETNKFSGYPLYHSV YET
YELVEKFYDPMFKYH LTVAQVRGGMV FELANSIVLPFDCRDYAVVLRKYADKIYSISMKH PQ
EMKTYSVSFDSLFS AVKNFT EIASKF SERLQDFDKSNP IVL RMMNDQLMFLERA FIDPLGLP
DRPFYRHVIYAPSSH NKYAGESFP GIYDALFDIESKVDP SKAWGEVKRQIYVAAFTVQAAA E
TLSEVA
```

Signal sequence:

amino acids 1-40

N-glycosylation sites.

amino acids 76-80, 121-125, 140-144, 153-157, 195-199, 336-340,
459-463, 476-480, 638-642

Tyrosine kinase phosphorylation sites.

amino acids 363-372, 605-613, 606-613, 617-626

N-myristoylation sites.

amino acids 85-91, 168-174, 252-258, 256-262, 282-288, 335-341,
360-366, 427-433, 529-535, 707-713