Sparse Prior

August 20, 2013

1 Sparse Prior

We introduce sparse prior to improve the prediction accuracy of our Naive Bayes classifier. We assign each $\theta_{y,i}^{(k)}(j)$ with a binary random variable $Z_{y,i}^{(k)}(j)$. $\theta_{y,i}^{(k)}(j) = 0$ when $Z_{y,i}^{(k)}(j) = 0$. Fix y, k, j, $\{\theta_{y,i}^{(k)}(j) : Z_{y,i}^{(k)}(j) = 1\}$ are sampled from Dirichlet distribution as before.

1.1 the Model

Fix y, k, denote i as position index for feature vector, and $j = \{1, 2, ..., 8\}$ as class index, thus

$$\theta_{i,j} := \theta_{y,i}^{(k)}(j)$$
 $Z_{i,j} := Z_{y,i}^{(k)}(j)$

$$Z_{i,j} \sim Bernoulli(p_i)$$

$$\theta_{i,j} = \frac{\mu_{i,j} Z_{i,j}}{\sum_{j'=1}^{8} \mu_{ij'} Z_{ij'}}$$

$$\mu_{i,j} \sim Gamma(\alpha_{i,j}, 1)$$

In order to simulate posterior distribution of θ_{ij} , we need to simulate joint distribution $\mathbb{P}(p_i, Z_{ij}, \mu_{ij}|Data)$. We use Gibbs sampler to simulate this distribution.

1.2 Gibbs Sampler

Fix y, k. Let X be a data matrix, and each row represents a feature vector x and Y(x) = y, the conditional distributions for this model are

1.
$$\mu_{ij}, \forall i, j | Z_{i'j'}, \forall i'j', p_{i'}, \forall i', X$$

Fix i ,

• For j with $Z_{ij} = 0$, simulate μ_{ij} from prior distribution.

- For j with $Z_{ij} = 1$, let $\mathcal{J} = \{j : Z_{ij} = 1\}$. First we can simulate $\{\frac{\mu_{ij}}{\sum_{j' \in \mathcal{J}} \mu_{ij'}} : j \in \mathcal{J}\}$ given data, and this is a Dirichlet distribution with parameters $(\alpha_{ij} + \# \text{ of occurrence of class } j \text{ for feature } i : j \in \mathcal{J}\}$. Given $\{\frac{\mu_{ij}}{\sum_{j' \in \mathcal{J}} \mu_{ij'}} : j \in \mathcal{J}\}$, we can simulate $\sum_{j \in \mathcal{J}} \mu_{ij}$ from $Gamma(\sum_{j \in \mathcal{J}} \alpha_{ij}, 1)$, where α_{ij} are posterior Dirichlet parameters. Eventually we get $\{\mu_{ij} : j \in \mathcal{J}\}$ given $\{\frac{\mu_{ij}}{\sum_{j' \in \mathcal{J}} \mu_{ij'}} : j \in \mathcal{J}\}$ and $\sum_{j \in \mathcal{J}} \mu_{ij}$.
- 2. $Z_{ij}, \forall ij | \mu_{i'j'}, p_{i'}, \forall i'j', X$

Let Z_i be a binary vector equals to $(Z_{ij}: j=1,\ldots,8)$. Since X is independent across columns (i.e features), We can sample $(Z_i|\mu_{i'j'},p_{i'},\forall i'j',X)$ independently across different i's.

$$\mathbb{P}(Z_{i}|\mu_{i'j'}, p_{i'}, \forall i'j', X, Z_{i'}, i' \neq i)$$

$$\propto \mathbb{P}(X|\mu_{i'j'}, p_{i'}, \forall i'j', Z_{i}, Z_{i'}, i' \neq i) \times \mathbb{P}(Z_{i}|\mu_{i'j'}, p_{i'}, \forall i'j', Z_{i'}, i' \neq i)$$

$$\propto \mathbb{P}(X|\mu_{i'j'}, p_{i'}, \forall i'j', Z_{i}, Z_{i'}, i' \neq i)$$

$$\propto \mathbb{P}(X_{i}|\mu_{ij'}, p_{i}, \forall j', Z_{i})$$

where X_i indicates ith column of X. Since Z_i can only have 2^8 possible values, it is a discreate distribution and is easy to find out.

3. $p_i, \forall i | Z_{i'j'}, \mu_{ij}, X \sim Beta(\alpha_i + \#(Z_{ij} = 1), \beta_i + \#(Z_{ij} = 0))$ where α_i, β_i are parameters for prior distribution of p_i .

By sampling μ_{ij} , Z_{ij} , p_i iteratively, we can eventually simulate joint distribution $\mathbb{P}(p_i, Z_{ij}, \mu_{ij}|X)$.