Моя сестра положит новую книгу о цветах на стол.

Алгоритм 1

Алгоритм 2

Соединим то, что может модифицировать другую часть речи на основе знаний о языке. Получаем граф вида:

Прилагательные и предлоги могут модифицировать существительные (если считать существительные условной вершиной при предлоге). А существительные могут модифицировать глаголы и существительные. Без учета этих ограничений граф

представляет собой полный граф на 9 вершинах, который содержит невозможные пары.

Ограничения:

- 1. Предлоги модифицируют существительные слева $word(pos(x)) = P \Rightarrow (label(X) = case, word(mod(x)) = N, mod(x) < pos(x))$
 - 2. Прилагательные и детерминанты модифицируют существительное (в данном случае слева)

 $word(pos(x)) = Adj \Rightarrow (label(X) \in \{amod, det\}, word(mod(x)) = N, mod(x) < pos(x))$

3. Существительное модифицирует глагол

 $word(pos(x)) = N \Rightarrow (label(X) \in \{obj, obl, nsubj\}, word(mod(x)) = V)$

4. Существительные модифицируют существительные $word(pos(x)) = N \Rightarrow (label(X) = nmod, word(mod(x)) = N, mod(x) > pos(x))$

Алгоритм 3.

root	Моя	сестра	положит	новую	книгу	0	цвета х	на	стол
	1	2	3	4	5	6	7	8	9

Step	Stack	Queue	Created Arc	
	(root)	(1,2,3,4,5,6,7,8,9)		
1	(1)	(2,3,4,5,6,7,8,9)		
2	()	(2,3,4,5,6,7,8,9)	1 <- 2	
3	(2)	(3,4,5,6,7,8,9)		
4	()	(3,4,5,6,7,8,9)	2 <- 3	
5	(3)	(4,5,6,7,8,9)		
6	(3, 4)	(5, 6,7,8,9)		
7	(3)	(5, 6,7,8,9)	4 <- 5	
8	(3, 5)	(6,7,8,9)		
9	(3, 5, 6)	(7, 8,9)		
10	(3, 5)	(7, 8,9)	6 <- 7	
11	(3, 5, 7)	(8, 9)		
	(3,5,7,8)	(9)		

	(3,5,7)	(9)	8 <- 9		
	(3,5,7,9)				
Теперь делаем связи правые, для этого меняем очередь и стек					
	()	(9, 7, 5, 3)			
	(9)	(7, 5, 3)			
	(9, 7)	(5, 3)	5 -> 7		
	(9)	(5, 3)			
	(9, 5)	(3)	3 -> 5		
	(9)	(3)			
	()	(3)	3 -> 9		
	(3)				

В итоге остается только 3 - главная вершина в предложении.