CMT107: Visual Computing - Exercise Sheet 3

Reflection and Refraction

4) Let **r** be the direction vector of the perfect reflection of a light ray at a point **p** on a surface with normal **n**. Give the equations to compute the direction vector **d** of the original light ray. See figure below. Assume **d**, **r**, and **n** are all unit vectors.

(Hints: Perfect reflection means the angle between \mathbf{n} and \mathbf{d} is equal to the angle between \mathbf{n} and \mathbf{r} , so the projection of \mathbf{d} on the surface is the same as the projection of \mathbf{r} on the surface, and the projection of \mathbf{d} on \mathbf{n} direction is the negative vector of the projection \mathbf{r} on \mathbf{n}).

5) A light vector \mathbf{v} passing from air into water is refracted on the water surface (see figure). Given \mathbf{v} , and the unit normal \mathbf{n} of the water surface, compute the resulting vector \mathbf{w} . Assume that the projections of \mathbf{v} and \mathbf{w} onto \mathbf{n} have the same length and that the projection of \mathbf{w} onto the water surface has half the length of the projection of \mathbf{v} onto the surface.

