Calculus with Applications (MATH 11A-02F)

Question of the Day

If you had to swap your legs with the legs of any other animal, which animal would you choose?

On the Docket

Check in.

 ${\sf Concept}\ {\sf Review-Approximation}\ {\sf and}\ {\sf Optimization}$

Function Shapes

Harmonic Constituents?

Chain rule practice.

Approximation

First Order Approximation

$$f(x + dx) \approx f(x) + f'(x) \cdot dx$$

Second Order Approximation

$$f(x + dx) \approx f(x) + f'(x) \cdot dx + \frac{1}{2}f''(x) \cdot (dx)^2$$

- What is *f*?
- What is \approx ?

- What is x?
- What is *dx*?

Approximation

First Order Approximation

$$f(x + dx) \approx f(x) + f'(x) \cdot dx$$

Second Order Approximation

$$f(x+dx)\approx f(x)+f'(x)\cdot dx+\frac{1}{2}f''(x)\cdot (dx)^2$$

- What is f?
- What is \approx ?

- What is *x*?
- What is dx?

To approximate $\sqrt[3]{127}$

- What is *f*?
- What is *f*′?
- What is f''?

- What is *x*?
- What is *dx*?

Approximation

Question

What might a third order approximation look like?

Exercise

Find a first and second order approximation of $f(x) = \sqrt{x}$.

Use x = 4 and dx = -0.1 to approximate $\sqrt{3.9}$.

Try x = 4 and dx = 5 to approximate $\sqrt{9}$.

What is happening?

Exerci<u>se</u>

The diameter of a tumor was measured to be 19 mm. If the diameter increases by 1 mm, use a first order approximation to estimate the relative change in volume $(V = \frac{4}{3}\pi r^3)$ and surface area $(S = 4\pi r^2)$.

Optimization

Goal and Constraint

An optimization problem consists of a goal and a restriction

$$g(x,y) r(x,y) = C$$

Using the restriction, rewrite the goal in terms of one variable. With the derivative, optimize the goal (e.g. maximize, minimize).

Optimization

Goal and Constraint

An optimization problem consists of a goal and a restriction

$$g(x,y)$$
 $r(x,y) = C$

Using the restriction, rewrite the goal in terms of one variable. With the derivative, optimize the goal (e.g. maximize, minimize).

Exercise

If 1200 cm² of material is available to make a box with a square base and an open top, find the largest possible volume of the box.

- What is the goal function? What is the constraint?
- What is the restriction?

Section 7

Optimization Solution

Restriction: A(h, l, w) = 2lh + 2wh + wl.

Goal: V(h, l, w) = lwh.

Since the box is square bottomed, I = w. Therefore

$$A(h, w) = 2wh + 2wh + ww = 4wh + w^2, V(h, w) = wwh = w^2h.$$

Given $4wh + w^2 = 1200$, rearrange to $h = 300w^{-1} - \frac{1}{4}w$. Then

$$V'(w) = \frac{d}{dw}w^2\left(300w^{-1} - \frac{1}{4}w\right) = \frac{d}{dw}300w - \frac{1}{4}w^3 = 300 - \frac{3}{4}w^2$$

Since $300 - \frac{3}{4}w^2 = 0$ when $w = \pm 20$, the volume maximizes at

$$300w - \frac{1}{4}w^3 = 300(20) - \frac{1}{4}(20)^3 = 4000$$

jhi3.github.io

Section 7

Optimization

Exercise

Find two positive number whose product is 100 and whose sum is a minimum.

Exercise

The sum of two positive numbers is 16. What is the smallest possibel value of the sum of their squares?

Question

If a system to be optimized is written in terms of <u>three</u> variables, what information might make the system solvable?

Function Shapes

At the points $x \in \{-3, -2, -1, 0, 1, 2, 3\}$ below

What can you say about the functions red, green and blue? (Think slope, first derivative, second derivative, etc.)

jhi3.github.io

Harmonic Constituents

Harmonic Constituents

Chain Rule Practice

Differentiate the following functions:

$$f(x) = (6x^2 + 7x)^4$$

$$g(t) = (4t^2 - 3t + 2)^{-2}$$

$$H(z) = 2^{1-6z}$$

$$h(z) = \sin(z^6) + \sin^6(z)$$

$$f(x) = \ln(\sin(x)) - (x^4 - 3x)^{10}$$

$$f(x) = (\sqrt[3]{12x} + \sin^2(3x))^{-1}$$