ECMT3150: The Econometrics of Financial Markets

1b. Linear Time Series Analysis

Simon Kwok University of Sydney

Semester 1, 2021

Outline

- 1. MA Model
- 2. ARMA Model
- 3. Stationarity and Invertibility
- 4. Model Checking and Portmanteau Tests

Moving-Average (MA) Model

$$MA(q)$$
:

$$y_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \cdots + \theta_q \varepsilon_{t-q}$$

where $\{\varepsilon_t\} \sim wn(0, \sigma_\varepsilon^2)$. Noting that $E(y_t) = \mu$, we can demean the MA(q) model into

$$u_t = \varepsilon_t + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q}$$

= $[1 + \theta(L)] \varepsilon_t$,

where $\theta(x) = \sum_{i=1}^{q} \theta_i x^i$.

Ex: Show that for an MA(q) model, the ACF is given by, for j > 0,

$$\begin{array}{ll} \rho_{j} & \equiv & \mathit{Corr}(u_{t}, u_{t-j}) = \mathit{Corr}(y_{t}, y_{t-j}) \\ & = & \left\{ \begin{array}{ll} \frac{\theta_{j} + \sum_{i=1}^{q-j} \theta_{j+i} \theta_{i}}{1 + \sum_{i=1}^{q} \theta_{i}^{2}} & \text{if } j \leq q, \\ 0 & \text{if } j > q, \end{array} \right. \end{array}$$

and $\rho_{-i} = \rho_i$. Plot the ACF against lag order.

MA Model Estimation

Given the time series data $\{y_t\}_{t=1}^T$, we can estimate an MA(q) model by either conditional or exact maximum likelihood estimation (MLE).

- Conditional MLE: Set the initial errors (ε_t for $t=0,-1,\ldots,-q+1$) to zero. Then assume a distribution on $\{\varepsilon_t\}_{t=1}^T$ (usually iid normal). The joint likelihood function is obtained in terms of the MA parameters $\mu,\theta_1,\ldots,\theta_q$. Maximize the log-likelihood w.r.t. $\mu,\theta_1,\ldots,\theta_q$.
- ▶ Exact MLE: Treat the initial errors (ε_t for $t=0,-1,\ldots,-q+1$) as extra parameters. Maximize the log-likelihood w.r.t. $\mu,\theta_1,\ldots,\theta_q,\varepsilon_0,\varepsilon_{-1},\ldots,\varepsilon_{-q+1}$.

MA Model Selection

- ▶ Use sample ACF. The asymptotic variance of $\hat{\rho}_j$ is $\frac{1}{T}$. For large T, the 95% confidence interval is roughly given by $\hat{\rho}_j \mp \frac{1.96}{\sqrt{T}}$.
- Use information criteria.

Forecasting with MA model

Suppose $\{y_t\} \sim \mathit{MA}(q)$ with errors $\{\varepsilon_t\} \sim \mathit{wn}(0,\sigma_{\varepsilon}^2)$. For $\ell=1$,

$$\hat{y}_{t}(1) = E[y_{t+1}|\mathcal{F}_{t}]
= E[\mu + \varepsilon_{t+1} + \theta_{1}\varepsilon_{t} + \dots + \theta_{q}\varepsilon_{t-q+1}|\mathcal{F}_{t}]
= \mu + \theta_{1}\varepsilon_{t} + \dots + \theta_{q}\varepsilon_{t-q+1},$$

as $E[arepsilon_{t+1}|\mathcal{F}_t]=0$, and $arepsilon_t,\ldots,arepsilon_{t-q+1}$ are measurable w.r.t. \mathcal{F}_t . The forecast error is $e_t(1)=y_{t+1}-\hat{y}_t(1)=arepsilon_{t+1}$, with variance $Var[e_t(1)]=\sigma_{arepsilon}^2$.

Forecasting with MA model

For
$$\ell = 2$$
,

$$\hat{y}_t(2) = E[y_{t+2}|\mathcal{F}_t]$$

$$= E[\mu + \varepsilon_{t+2} + \theta_2 \varepsilon_{t+1} + \dots + \theta_q \varepsilon_{t-q+2}|\mathcal{F}_t]$$

$$= \mu + \theta_2 \varepsilon_t + \dots + \theta_q \varepsilon_{t-q+2}.$$

The forecast error is $e_t(2) = y_{t+2} - \hat{y}_t(2) = \varepsilon_{t+2} + \theta_1 \varepsilon_{t+1}$, with variance

$$\begin{aligned} \textit{Var}[e_t(2)] &= \textit{Var}(\varepsilon_{t+2}) + \theta_1^2 \textit{Var}(\varepsilon_{t+1}) + 2\theta_1 \textit{Cov}(\varepsilon_{t+2}, \varepsilon_{t+1}) \\ &= \sigma_{\varepsilon}^2 + \theta_1^2 \sigma_{\varepsilon}^2 + 0 \\ &= (1 + \theta_1^2) \sigma_{\varepsilon}^2. \end{aligned}$$

Forecasting with MA model

Q: What is the ℓ -step ahead forecast of an MA(q) model? What are the forecast error and its variance? What happens to the forecast and its variance when ℓ increases beyond q?

A: The ℓ -step ahead forecast is

$$\hat{y}_{t}(\ell) = \begin{cases} \mu + \theta_{\ell} \varepsilon_{t} + \dots + \theta_{q} \varepsilon_{t-q+\ell} & \text{if } \ell \leq q, \\ \mu & \text{if } \ell > q. \end{cases}$$
 (1)

The forecast error is

$$e_{t}(\ell) = \begin{cases} \varepsilon_{t+\ell} + \theta_{1}\varepsilon_{t+\ell-1} + \dots + \theta_{\ell-1}\varepsilon_{t+1} & \text{if } \ell \leq q, \\ \varepsilon_{t+\ell} + \theta_{1}\varepsilon_{t+\ell-1} + \dots + \theta_{q}\varepsilon_{t+\ell-q} & \text{if } \ell > q. \end{cases}$$
 (2)

The forecast variance is

$$Var[e_t(\ell)] = \begin{cases} (1 + \theta_1^2 + \theta_2^2 + \dots + \theta_{\ell-1}^2)\sigma_{\ell}^2 & \text{if } \ell \leq q, \\ (1 + \theta_1^2 + \theta_2^2 + \dots + \theta_q^2)\sigma_{\ell}^2 & \text{if } \ell > q, \end{cases}$$
(3)

which is equal to $Var(y_t)$.

As ℓ increases beyond q, $\hat{y}_t(\ell)$ stays at the mean level μ , and the forecast variance remains at $Var(y_t) = (1 + \theta_1^2 + \theta_2^2 + \dots + \theta_q^2)\sigma_{\ell}^2$.

Autoregressive Moving-Average Model

$$\{y_t\} \sim ARMA(p,q)$$
 if

$$y_{t} = \phi_{0} + \phi_{1}y_{t-1} + \dots + \phi_{p}y_{t-p} + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1} + \dots + \theta_{q}\varepsilon_{t-q}$$

$$[1 - \phi(L)] y_{t} = \phi_{0} + [1 + \theta(L)] \varepsilon_{t},$$

where $\{\varepsilon_t\} \sim wn(0, \sigma_\varepsilon^2)$.

After demeaning $(y_t = \mu + u_t)$, the expressions become

$$u_{t} = \phi_{1}u_{t-1} + \dots + \phi_{p}u_{t-p} + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1} + \dots + \theta_{q}\varepsilon_{t-q}$$

$$[1 - \phi(L)] u_{t} = [1 + \theta(L)] \varepsilon_{t}. \tag{4}$$

Ex: What is the ACF of a stationary ARMA(1,1) model?

Stationarity Condition

 $\{y_t\}$ is said to be *stationary* if it can be expressed as an $MA(\infty)$ process of the form $u_t = [1 + \psi(L)] \, \varepsilon_t$.

Stationarity condition: The ARMA(p,q) model is stationary iff all the roots of the polynomial equation $1-\phi(x)=0$ lie outside the unit circle.

In this case, $1+\psi(L):=\frac{1+\theta(L)}{1-\phi(L)}$ is a well-defined infinite-order polynomial.

Q: Does the stationarity condition imply weak (covariance) stationarity?

Hint: ARMA(p,q) can be expressed as $MA(\infty)$ under the stationarity condition. The Yule-Walker equations yield a unique set of autocovariances as solution: $\gamma_0,\gamma_1,\gamma_2,\ldots$ Verify that the mean (by definition), the variance γ_0 and autocovariances γ_j are all time-invariant; hence the model is weakly stationary.

Stationarity Condition

Q: What is the stationarity condition for an AR(1) model? A: For AR(1), we want the root of the equation $1-\phi_1x=0$ to have magnitude greater than one, i.e., $|x|=\frac{1}{|\phi_1|}>1$, so the stationarity condition is $|\phi_1|<1$.

Q: How about AR(2)?

Hint: The polynomial equation is $1-\phi_1x-\phi_2x^2=0$. Let $z=\frac{1}{x}$. The polynomial equation then becomes $z^2-\phi_1z-\phi_2=0$. Now impose the condition |x|>1, which is equivalent to |z|<1. Let the two roots be z_1 and z_2 , where $z_1< z_2$. Then from the conditions $z_1>-1$, $z_2<1$ and $|z_1z_2|<1$, we obtain $\phi_2-\phi_1<1$, $\phi_1+\phi_2<1$ and $|\phi_2|<1$.

Stationarity Condition of AR(2)

Invertibility Condition

 $\{y_t\}$ is said to be *invertible* if it can be expressed as an $AR(\infty)$ process of the form $[1-\pi(L)]$ $u_t=\varepsilon_t$.

Invertibility condition: The ARMA(p,q) model is invertible iff all the roots of the polynomial equation $1 + \theta(x) = 0$ lie outside the unit circle.

In this case, $1-\pi(L):=\frac{1-\phi(L)}{1+\theta(L)}$ is a well-defined infinite-order polynomial.

Q: What is the invertibility condition for an MA(1) model? A: For MA(1), the invertibility condition is $|\theta_1| < 1$.

Ex: What is the invertibility condition of an MA(2) model?

Ex: Is a stationary AR(p) invertible? Ex: Is an invertible MA(q) stationary?

AR Representation

Given an ARMA(p, q) model:

$$\begin{array}{rcl} y_t & = & \mu + u_t, \\ \left[1 - \phi(L)\right] u_t & = & \left[1 + \theta(L)\right] \varepsilon_t. \end{array}$$

Suppose the invertibility condition holds, so that $\frac{1}{1+\theta(L)}$ is a well-defined infinite-order polynomial. Define $1+\pi(L)=\frac{1-\phi(L)}{1+\theta(L)}$. Then we can rewrite the model as $AR(\infty)$:

$$\epsilon_{t} = \frac{1 - \phi(L)}{1 + \theta(L)} u_{t}
= [1 + \pi(L)] u_{t}
= u_{t} + \pi_{1} u_{t-1} + \pi_{2} u_{t-2} + \cdots$$

MA Representation

Given an ARMA(p, q) model:

$$y_t = \mu + u_t,$$
 $[1 - \phi(L)] u_t = [1 + \theta(L)] \varepsilon_t.$

Suppose the stationarity condition holds, so that $\frac{1}{1-\phi(L)}$ is a well-defined infinite-order polynomial. Define $1+\psi(L)=\frac{1+\theta(L)}{1-\phi(L)}$. Then we can rewrite the model as $MA(\infty)$:

$$u_{t} = \frac{1+\theta(L)}{1-\phi(L)}\varepsilon_{t}$$

$$= [1+\psi(L)]\varepsilon_{t}$$

$$= \varepsilon_{t} + \psi_{1}\varepsilon_{t-1} + \psi_{2}\varepsilon_{t-2} + \cdots$$
(5)

Interpretation: ψ_j as a function of j is the *impulse response* function. ψ_j is the marginal impact of the lag j shock ε_{t-j} on the current observation y_t .

MA Representation

Q: Let $\{y_t\}$ be a weakly stationary process. What happens to the ℓ -step ahead forecast and its variance as $\ell \to \infty$?

A: By weak stationarity, $\{y_t\}$ can be expressed as an $MA(\infty)$ process (5), so that

$$\begin{array}{lcl} \mathit{Var}(y_t) & = & \mathit{Var}(\varepsilon_t + \psi_1 \varepsilon_{t-1} + \psi_2 \varepsilon_{t-2} + \cdots) \\ \\ & = & \sigma_\varepsilon^2 \left(1 + \sum_{i=1}^\infty \psi_i^2 \right) < \infty. \end{array}$$

This implies that $\psi_i \to 0$ as $i \to \infty$.

It follows from (1) with $q=\infty$ that the ℓ -step ahead forecast is

$$\begin{array}{lcl} y_t(\ell) & = & \mu + \psi_\ell \varepsilon_t + \psi_{\ell+1} \varepsilon_{t-1} + \cdots \\ & \to & \mu \text{ as } \ell \to \infty. \end{array}$$

This is the mean-reverting property. The forecast variance is, by (3) with $q = \infty$,

$$\begin{array}{lll} \mathit{Var}[e_t(\ell)] & \to & (1+\psi_1^2+\psi_2^2+\cdots)\sigma_\epsilon^2 \\ & = & \mathit{Var}(y_t) \text{ as } \ell \to \infty. \end{array}$$

Model Checking

If a model is correctly specified, the residual process $\{\hat{\varepsilon}_t\}$ should look like a white noise.

To test $H_0: \rho_\ell=0$ vs $H_a: \rho_\ell \neq 0$, we get the sample ACF $\hat{\rho}_\ell$ of $\{\hat{\epsilon}_t\}$.

• Suppose $ho_j=0$ for all $j>\ell$ under H_0 . Then,

$$\sqrt{T}\hat{\rho}_{\ell} \overset{d}{\to} \textit{N}\left(0, 1+2\sum_{j=1}^{\ell-1}\rho_{j}^{2}\right) \text{ as } \textit{T} \to \infty.$$

The t ratio converges in distribution to standard normal:

$$t=rac{\hat{
ho}_\ell}{\sqrt{\left(1+2\sum_{j=1}^{\ell-1}\hat{
ho}_j^2
ight)/T}}\stackrel{d}{
ightarrow} {\sf N}(0,1) ext{ as } T
ightarrow\infty.$$

▶ Suppose $\{\varepsilon_t\} \sim wn(0, \sigma_{\varepsilon}^2)$ under H_0 . Then all $\rho_j = 0$ for all $j \neq 0$, and so

$$\sqrt{T}\hat{\rho}_{\ell} \stackrel{d}{\to} N(0,1) \text{ as } T \to \infty.$$

This is a two-sided test (reject H_0 at α level if $|t| > z_{\alpha/2}$).

Portmanteau Tests

Set a maximum lag m. We want to test $H_0: \rho_1 = \cdots = \rho_m = 0$ vs $H_a: \rho_j \neq 0$ for some $j = 1, \ldots, m$.

Assume $\{y_t\} \sim ARMA(p,q)$, with $\{\varepsilon_t\} \sim iid$ and some moment conditions.

Box-Pierce test on $\{\hat{\varepsilon}_t\}$:

$$Q^*(m) = T \sum_{\ell=1}^m \hat{
ho}_\ell^2 \stackrel{d}{
ightarrow} \chi^2(m-p-q) ext{ as } T
ightarrow \infty.$$

Ljung-Box test on $\{\hat{\varepsilon}_t\}$:

$$Q(m) = T(T+2) \sum_{\ell=1}^m rac{\hat{
ho}_\ell^2}{T-\ell} \stackrel{d}{
ightarrow} \chi^2(m-p-q) ext{ as } T
ightarrow \infty.$$

They are one-sided tests (reject H_0 at α level if $Q(m) > \chi^2_{\alpha}$).