Algoritmos Aproximados para Problemas NP Completos

Parte 1

Introdução

- Problemas intratáveis ou difíceis são comuns na natureza e nas áreas do conhecimento.
 - "Fáceis" → resolvidos por algoritmos polinomiais
 - Busca Binária: O(logn), Pesquisa Sequencial: O(n), Ordenação por Merge Sorte: O(nlogn)
 - "Difíceis" → resolvidos por algoritmos exponenciais

- Vértices e arcos (arestas)
- Grafo dirigido
 - Arco "começa" e "termina" em um vértice
 - Notação: v-w
 - Arco sai de v e entra em w

Maneira de representar um grafo
 0-5 0-6 2-0 2-3 3-6 3-10 4-1 5-2 5-10

- Passeio em grafo
 - Um passeio (= walk) em um grafo é uma sequência de vértices
 - se v e w são vértices consecutivos na sequência então vw é um arco do grafo.

- Caminho em grafo
 - Um passeio sem arcos repetidos
- Por exemplo, 0-2-7-3-6 é um caminho simples no grafo da figura.

Problema do Caminho Mínimo

- Dado um vértice s de um grafo com custos positivos nos arcos, encontrar uma árvore de caminhos baratos com raiz s no grafo.
 - Problema foi descoberto por Edsger W. Dijkstra em 1959

- A franja (= fringe) de uma subárvore radicada T de G é o conjunto de todos os arcos do grafo que têm ponta inicial em T e ponta final fora de T.
- Leque de saída do conjunto de vértices de T.

- O processo iterativo consiste no seguinte: enquanto a franja de T não estiver vazia,
 - escolha, na franja de T, um arco x-y que minimize $dist[x] + c_{xy}$,
 - acrescente o arco x-y e o vértice y a T
 - faça dist[y] = dist[x] + c_{xy} .
- c_{xy} é o custo do arco x-y

Exemplo

Grafo com custos a seguir (raiz em 0):

0-1 0-2 1-3 1-4 2-3 2-4 3-1 3-5 4-5

10 20 70 80 50 60 0 10 10

Exemplo

Grafo com custos a seguir (raiz em 0):

```
0-1 0-2 1-3 1-4 2-3 2-4 3-1 3-5 4-5
```

10 20 70 80 50 60 0 10 10

```
dist[]
T
                                    franja
                 1 2 3 4 5
0
                                    0 - 1 \quad 0 - 2
0 1
                                    0-2 1-3 1-4
                                                        0-1 \ 0-2
  1 2
                                    1-3 1-4 2-3 2-4
                     20
                                                             20
                                                         10
                                                                           50
                                                                               60
                                                                                    10
                                    1-4 2-4 3-5
               0 10 20 70
                                    3-5 4-5
  1 2 3 4
               0 10 20 70 80
               0 10 20 70 80 80
```

Exercício

Grafo com custos a seguir (raiz em 0):

0-2 0-3 0-4 2-4 3-4 3-5 4-1 4-5 5-1 1-2

70 50 30 10 10 20 0 30 50 30

Exercício

Grafo com custos a seguir (raiz em 0):

0-2 0-3 0-4 2-4 3-4 3-5 4-1 4-5 5-1 1-2

70 50 30 10 10 20 0 30 50 30

Т						d:	ist	ГΊ				franja		0-3	0-4
												3		50	30
0						0	*	*	*	*	*	0-2 0-3 0-4			
0	4					0	*	*	*	30	*	0-2 0-3 4-1 4-5			
0	4	1				0	30	*	*	30	*	0-2 0-3 4-5 1-2	4-1	4-5	1-2
0	4	1	3			0	30	*	50	30	*	0-2 4-5 1-2 3-5	0	30	30
0	4	1	3	5		0	30	*	50	30	60	0-2 1-2			
0	4	1	3	5	2	0	30	60	50	30	60				

- Implementação ingênua
 - Cada iteração recalcula a franja
- Possível otimizar o algoritmo proposto
 - Vértices maduros x imaturos
 - Fila priorizada implementada por um heap

- Análise do algoritmo
 - Versão apresentada: O(V²)
 - Versão melhorada: O(A logV)

Problemas Fáceis x Difíceis

- Considere um grafo com peso positivo nas arestas, dois vértices i e j e um inteiro k>0.
 - Existe um caminho de i até j com peso <=k?</p>

Fácil ou Difícil?

Problemas Fáceis x Difíceis

- Considere um grafo com peso positivo nas arestas, dois vértices i e j e um inteiro k>0.
 - Existe um caminho de i até j com peso >k?

Fácil ou Difícil

Problemas Fáceis x Difíceis

- Considere um grafo com peso positivo nas arestas, dois vértices i e j e um inteiro k>0.
 - Existe um caminho de i até j com peso >k?

- Fácil ou Difícil
 - Não existe algoritmo eficiente. É equivalente ao PCV em termos de complexidade.