FMI, Info, Anul I

Logică matematică și computațională

Seminar 4

1 Breviar

Pentru orice e și orice Γ , notăm cu $e \models \Gamma$ (și spunem că e satisface Γ sau e este model pentru Γ) dacă, pentru orice $\varphi \in \Gamma$, $e \models \varphi$. Pentru orice Γ , notăm cu $Mod(\Gamma)$ mulţimea modelelor lui Γ .

Spunem că Γ este **satisfiabilă** dacă există $e:V\to\{0,1\}$ cu $e\vDash\Gamma$ și **nesatisfiabilă** în caz contrar, când nu există $e:V\to\{0,1\}$ cu $e\vDash\Gamma$, i.e. pentru orice $e:V\to\{0,1\}$ avem că $e\not\vDash\Gamma$.

Pentru orice mulțime Γ de formule și orice formulă φ , notăm $\Gamma \vDash \varphi$ (și spunem că din Γ se deduce semantic φ sau că φ este consecință semantică a lui Γ) dacă pentru orice $e: V \to \{0,1\}$ cu $e \vDash \Gamma$ avem $e \vDash \varphi$.

Pentru orice $v \in V$ și $e: V \to \{0, 1\}$, vom defini

$$v^e := \begin{cases} v, & \text{dacă } e(v) = 1, \\ \neg v, & \text{dacă } e(v) = 0, \end{cases}$$

2 Exerciţii

(S4.1) Să se găsească toate modelele fiecăreia dintre mulțimile de formule:

- (i) $\Gamma = \{v_n \to v_{n+1} \mid n \in \mathbb{N}\};$
- (ii) $\Gamma = \{v_0\} \cup \{v_n \to v_{n+1} \mid 0 \le n \le 7\}.$

Demonstraţie:

- (i) Fie $e: V \to \{0, 1\}$ şi $n \in \mathbb{N}$. Atunci $e \models v_n \to v_{n+1}$ dacă şi numai dacă $e^+(v_n \to v_{n+1}) = 1$ dacă şi numai dacă $e^+(v_n) \to e^+(v_{n+1}) = 1$ dacă şi numai dacă $e(v_n) \to e(v_{n+1}) = 1$ dacă şi numai dacă $e(v_n) \le e(v_{n+1})$. Prin urmare,
 - $e \models \Gamma$ dacă și numai dacă pentru orice $n \in \mathbb{N}, e \models v_n \to v_{n+1}$ dacă și numai dacă pentru orice $n \in \mathbb{N}, e(v_n) \le e(v_{n+1})$ dacă și numai dacă $e(v_0) \le e(v_1) \le \ldots \le e(v_n) \le e(v_{n+1}) \le \ldots$ dacă și numai dacă (pentru orice $v \in V, e(v) = 0$) sau (există $k \in \mathbb{N}$ a.î. pentru orice $i < k, e(v_i) = 0$ și, pentru orice $i \ge k, e(v_i) = 1$).

Definim $e^{\infty}: V \to \{0,1\}$ astfel încât, pentru orice $v \in V$, $e^{\infty}(v) = 0$ şi, pentru orice $k \in \mathbb{N}$, $e_k: V \to \{0,1\}$, astfel încât, pentru orice $n \in \mathbb{N}$,

$$e_k(v_n) = \begin{cases} 0 & \text{dacă } n < k \\ 1 & \text{dacă } n \ge k. \end{cases}$$

Atunci

$$Mod(\Gamma) = \{e_k \mid k \in \mathbb{N}\} \cup \{e^{\infty}\}.$$

(ii) Fie $e: V \to \{0, 1\}$. Atunci

 $e \models \Gamma$ dacă şi numai dacă $e \models v_0$ şi, pentru orice $0 \le n \le 7, e \models v_n \to v_{n+1}$ dacă şi numai dacă $e(v_0) = 1$ şi $e(v_0) \le e(v_1) \le \ldots \le e(v_7) \le e(v_8)$ dacă şi numai dacă pentru orice $n \in \{0, 1, \ldots, 8\}, e(v_n) = 1$.

Aşadar,

$$Mod(\Gamma) = \{e : V \to \{0,1\} \mid e(v_n) = 1 \text{ pentru orice } 0 \le n \le 8\}.$$

(S4.2) Fie $f: V \to \{0,1\}$. Găsiţi Γ astfel încât $Mod(\Gamma) = \{f\}$. Demonstraţie: Luăm $\Gamma := V^f = \{v^f \mid v \in V\}$.

Fie $e: V \to \{0,1\}$. Avem $e \in Mod(\Gamma)$ dacă și numai dacă pentru orice $v \in V$, $e \models v^f$ dacă și numai dacă pentru orice $v \in V$, $e^+(v^f) = 1$. Vom arăta că ultima afirmație este echivalentă cu e = f.

Presupunem că pentru orice $v \in V$, $e^+(v^f) = 1$. Fie $v \in V$. Vrem e(v) = f(v). Dacă f(v) = 1, atunci $v^f = v$ și deci $e(v) = e^+(v) = e^+(v^f) = 1 = f(v)$. Dacă f(v) = 0, atunci $v^f = \neg v$ și deci

$$e(v) = e^+(v) = \neg \neg e^+(v) = \neg e^+(\neg v) = \neg e^+(v^f) = \neg 1 = 0 = f(v).$$

Invers, presupunem că e = f și vrem să arătăm că pentru orice $v \in V$, $e^+(v^f) = 1$. Fie $v \in V$. Atunci $e^+(v^f) = f^+(v^f) = 1$.

(S4.3)

- (i) Să se arate că mulțimea modelelor unei mulțimi satisfiabile și finite de formule este infinită.
- (ii) Găsiți o mulțime (infinită) de formule cu proprietatea că nu există o mulțime finită de formule care să aibă exact aceleași modele.

Demonstrație:

(i) Fie Γ o mulţime de formule ca în enunţ. Dat fiind că Γ este satisfiabilă, admite un model şi fie acesta e. Pe de altă parte, dat fiind că Γ este finită, există un $n \in \mathbb{N}$ cu proprietatea că $\bigcup_{\varphi \in \Gamma} Var(\varphi) \subseteq \{v_0, v_1, \dots, v_n\}$.

Fie, atunci, pentru orice $k \in \mathbb{N}$, câte o funcție $e_k : V \to \{0,1\}$, definită, pentru orice $x \in V$, prin:

$$e_k(x) := \begin{cases} e(x), & \text{dacă } x \in \{v_0, \dots, v_n\} \\ 1, & \text{dacă } x \in \{v_{n+1}, \dots, v_{n+k}\} \\ 0, & \text{altfel.} \end{cases}$$

Atunci, pentru $k \neq l$ avem $e_k \neq e_l$. Prin urmare, $\{e_k \mid k \in \mathbb{N}\}$ este o mulţime numărabilă, deci infinită. Pentru orice $k \in \mathbb{N}$ şi $\varphi \in \Gamma$, aplicând Propoziția 1.12 pentru φ , e şi e_k , avem că $e_k^+(\varphi) = e^+(\varphi) = 1$, deci $e_k \models \varphi$.

Am obținut astfel că $\{e_k \mid k \in \mathbb{N}\} \subseteq Mod(\Gamma)$. Aşadar, $Mod(\Gamma)$ este infinită.

(ii) Considerăm $\Gamma := V = \{v_n \mid n \in \mathbb{N}\}$, o mulțime infinită de formule. Demonstrăm că Γ nu este echivalentă cu nicio mulțime finită de formule. Observăm că o evaluare $e: V \to \{0,1\}$ este model al lui Γ dacă și numai dacă $e(v_n) = 1$ pentru orice $n \in \mathbb{N}$ dacă și numai dacă e este funcția constant egală cu 1, funcție pe care o notăm cu 1. Prin urmare, $Mod(\Gamma) = \{1\}$.

Fie acum Δ o mulțime finită de formule. Avem două cazuri:

- (a) Δ nu este satisfiabilă. Atunci $Mod(\Delta) = \emptyset$.
- (b) Δ este satisfiabilă. Atunci aplicăm (i) pentru a concluziona că $Mod(\Delta)$ este infinită.

În ambele cazuri, obținem că $Mod(\Delta) \neq Mod(\Gamma)$, deci Γ nu este echivalentă cu Δ .