

SSH

Votre instructeur

Thierry DECKER mail@thierry-decker.com

- Telnet est utilisé pour communiquer avec un système distant
- Mais Telnet n'est pas sécurisé
- Ne possède pas de mécanisme de chiffrement
- Les données transitent en clair (mot de passe compris)
- N'importe qui peut capturer les paquets transmis entre client et serveur
- Des informations critiques peuvent être exposées
- Pour parer à ce problème, SSH (Secure Socket Shell) est apparu

- Qu'est-ce que SSH?
 - SSH est aussi connu sous le nom de Secure Socket Shell
 - Un protocole qui fournit un moyen sûr d'accéder à un système distant
 - SSH établit une connexion sécurisée (chiffrée) entre un client et un serveur
 - Les deux composants s'identifient mutuellement
 - Les données sont échangées au travers d'une communication chiffrée

- Comment fonctionne SSH?
 - Le protocole SSH utilise
 - Le chiffrement symétrique
 - Le chiffrement asymétrique
 - Le hachage
 - Pour sécuriser le transport des informations entre client et serveur

- Comment fonctionne SSH?
 - Trois étapes pour établir une connexion SSH
 - Vérification du serveur par le client
 - Création d'une clé de session pour chiffrer toute la communication
 - Authentification du client par le serveur

- Vérification du serveur par le client
 - Si le client accède pour la première fois au serveur, il lui est demandé de vérifier manuellement la clé publique du serveur
 - La clé vérifiée est ensuite ajoutée dans les fichiers de configuration du client (fichier known_hosts dans le répertoire ~/.ssh)
 - Si le client à déjà accédé au serveur, l'identité du serveur est vérifiée avec les informations précédemment enregistrées dans *known_hosts*

- Création d'une clé de session
 - Après avoir vérifié le serveur, les deux participants négocient une clé de session en utilisant l'algorithme Diffie-Hellman
 - L'algorithme est conçu de façon à ce que les deux participants contribuent également à la création de la clé de session
 - La clé de session est une clé symétrique (utilisée pour chiffrer ET déchiffrer)

- Authentification du client par le serveur
 - L'authentification est faite en utilisant une paire de clés SSH
 - L'une est réputée publique (pour chiffrer et peut être diffusée)
 - L'autre est réputée privée (pour déchiffrer)
 - Après établissement d'un chiffrement asymétrique (première phase)
 - Le client commence par envoyer un ID (hash) pour la paire de clés avec laquelle il souhaite s'authentifier auprès du serveur
 - Le serveur vérifie cet ID avec son fichier authorized_keys
 - Si une clé publique avec cet ID est trouvée, le serveur génère un nombre aléatoire et utilise la clé publique pour chiffrer ce nombre et l'envoyer
 - Si le client à la bonne clé privée, il peut déchiffrer ce message et obtenir le nombre aléatoire créé par le serveur

- Authentification du client par le serveur
 - Le client combine le nombre aléatoire obtenu du serveur avec la clé partagée de session et calcul le hash de cette valeur
 - Le client envoie le hash au serveur en réponse au message reçu précédemment du serveur
 - Le serveur utilise la même clé partagée et le nombre aléatoire initialement généré et calcul son propre hash
 - Si les deux hash sont identiques, cela prouve que le client est bien en possession de la clé privée et est donc authentifié

Merci de votre attention!

