Name: NetID: UID: /43

Section: ED1: Nathan Dunfield (8am) ED3: Ping Hu (9am) ED5: Ping Hu (10am)

ED2: Boonrod Yuttanan (8am) ED4: Jeff Mudrock (9am) ED6: Boonrod Y. (10am)

Instructions: Take care to note that problems are not weighted equally. Calculators, books, notes, and suchlike aids to gracious living are not permitted. **Show all your work** as credit will not be given for correct answers without proper justification, except for the "circle your answer" questions.

Important note: There are problems on the **back** of each sheet.

Scratch Space: Below.

Good luck!

Problem	Score	Out of	
1		5	
2		11	
3		10	
4		11	
5		6	
Total		43	

- 1. Consider the function $f = x^3 + y^3 + 3xy$.
 - (a) It turns out the critical points of f are (0,0) and (-1,-1). Classify them into local mins, local maxes, and saddles. **(4 points)**

(b) Based on your answer in (a), circle the correct contour diagram of f. (1 point)

2.	Consider the function	f:	$\mathbb{R}^2 \rightarrow$	\mathbb{R} given by	f(x, y)	$= x^2 -$	$2x + v^2 - 2v$.

(a) Use Lagrange multipliers to find the max and min of f on the circle $x^2 + y^2 = 8$. (6 points)

(b) Consider the region D where $x^2 + y^2 \le 8$. Explain why f must have a global min and max on D. **(2 points)**

(c) Find the global min and max of f on D. (3 points)

3. Let *C* be the portion of a helix parameterized by

$$\mathbf{r}(t) = (\cos(2t), -\sin(2t), 9 - t)$$
 for $0 \le t \le 2\pi$.

(a) Circle the correct sketch of *C* below: **(2 points)**

(b) Compute the length of *C*. **(5 points)**

(c) Suppose C is made of material with density given by $\rho(x, y, z) = x + z$. Give a line integral for the mass of C, and reduce it to an ordinary definite integral (something like $\int_0^1 t^2 \sin t \ dt$). (3 **points**)

- 4. Let *C* be the curve parameterized by $\mathbf{r}(t) = (e^t, t)$ for $0 \le t \le 1$, and consider the vector field $\mathbf{F} = (1, 2\gamma)$.
 - (a) Circle the picture of **F** below: **(2 points)**

(b) Directly compute $\int_C \mathbf{F} \cdot d\mathbf{r}$. (5 **points**)

(c) The vector field **F** is conservative. Find $f: \mathbb{R}^2 \to \mathbb{R}$ so that $\nabla f = \mathbf{F}$. (2 **points**)

(d) Use your answer in (c) to check your answer in (b). (2 points)

- 5. Let *C* be the indicated portion of the ellipse $\frac{x^2}{4} + y^2 = 1$ between A = (0, -1) and B = (0, 1).
 - (a) Give a parameterization \mathbf{r} of C, indicating the domain so that it traces out precisely the segment indicated. (3 points)

(b) Let L be the line segment joining B to A. Give a parameterization $\mathbf{f} \colon [0,1] \to \mathbb{R}^2$ of L so that $\mathbf{f}(0) = B$ and $\mathbf{f}(1) = A$. **(2 points)**

(c) Suppose $g: \mathbb{R}^2 \to \mathbb{R}$ is a function whose level sets are indicated below. Circle the sign of $\int_C g \, ds$ (1 point)

