Матрицы и определители

Содержание

Определение матрицы

3-	определение матрида	_
§2	Действия с матрицами	2
§3	Определитель матрицы	3

1

§1. Определение матрицы

NtB 1.1. Матрица является одним самых важных объектов линейной алгебры. В курсе мы встретимся с разными интерпретациями этого математического объекта и дадим ему целый ряд определений. Начнем с самого простого...

Опр. 1.1. Матрицей с коэффициентами из поля \mathbb{K} называется прямоугольная таблица следующего вида:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix},$$

где числа $a_{ij} \in \mathbb{K}$ называются **коэффициентами** матрицы. Упорядоченную совокупность элементов с фиксированным первым индексом i_0 называют *строкой* матрицы с номером i_0 . Упорядоченную совокупность элементов с фиксированным вторым индексом j_0 называют *столбцом* матрицы с номером j_0 .

 ${f NtB}$ 1.2. Таким образом, у представленной выше матрицы имеется m строк и n столбцов. Матрица называется $\kappa вадратной$, если число ее строк равно числу столбцов.

NtB 1.3. Используемые обозначения для матриц:

$$A_{m \times n}, \quad B_{s \times t}, \dots \quad \|a_{ij}\|_{i=1\dots m}^{j=1\dots n}, \dots$$

Пример 1.1. Примеры матриц:

$$A_{2\times 3} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & -1 \end{pmatrix}, \quad B_{3\times 3} = \begin{pmatrix} 2 & 1 & 3 \\ 2 & 3 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad C_{1\times 3} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}.$$

§2. Действия с матрицами

NtB 2.1. Будем обозначать множество $m \times n$ матриц через $Mat_{\mathbb{K}}(m,n)$. Определим на этом множестве некоторые операции:

(a) Сложение: если $A = ||a_{ij}||, B = ||b_{ij}||$ и $C = ||c_{ij}||$, тогда

$$C = A + B \quad \Leftrightarrow \quad c_{ij} = a_{ij} + b_{ij}$$

(б) Умножение на число: если $A = ||a_{ij}||, \lambda \in \mathbb{K}$ и $D = ||d_{ij}||,$ тогда

$$D = \lambda \cdot A \quad \leftrightarrow \quad d_{ij} = \lambda \cdot a_{ij}.$$

Лемма 2.1. Операция сложения индуцирует на множестве $Mat_{\mathbb{K}}(m,n)$ структуру коммутативной группы.

- **NtB 2.2.** Операция умножения на число не является внутренней операцией на $Mat_{\mathbb{K}}(m,n)$, она называется *внешней*. Структуры с внешними операциями мы рассмотрим позже, а пока будем просто ее использовать.
 - (в) Умножение матриц: пусть $A\in Mat_{\mathbb{K}}(m,p),$ $B\in Mat_{\mathbb{K}}(p,n)$ и $C\in Mat_{\mathbb{K}}(m,n),$ тогда

$$C = A \cdot B \quad \Leftrightarrow \quad c_{ij} = \sum_{k=1}^{p} a_{ik} \cdot b_{kj}$$

- NtB 2.3. Таким образом, перемножить можно только такие матрицы, у число столбцов у перевого сомножителя которых, совпадае с числом строк второго сомножителя. В результате получается матрица, число строк которой совпадает с числом строк первого сомножителя, а число столбцом с числом столбцов второго.
- ${f NtB}$ 2.4. Умножение матриц не коммутативно и определено на матрицах из различных множеств Mat. Чтобы сделать умножение внутренней операцией на данном множестве, необходимо рассматривать только квадратные матрицы.
- **Пемма 2.2.** Множество квадратных матриц, наделенное операциями сложения и умножения, имеет структуру кольца, единицей которого является матрица

$$E = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}.$$

(г) Транспонирование: пусть $A\in Mat_{\mathbb{K}}(m,n)$, тогда $A^T\in Mat_{\mathbb{K}}(n,m)$:

$$A^T = \|\widetilde{a}_{i,j}\|: \quad \widetilde{a}_{ij} = a_{ji}$$

NtB 2.5. Независимо от размеров матрицы, произведения $A^T \cdot A$ и $A \cdot A^T$ существуют всегда, хотя, конечно, могут не совпадать.

§3. Определитель матрицы

NtB 3.1. Вводимое здесь понятие является крайне важной характеристикой матрицы. Подробное определение и обсуждение свойств мы проведем в дальнейшем, а в этой лекции лишь упомянем только самые необходимые.

Опр. 3.1. Определителем квадратной матрицы A называется число |A|, которое ставится ей в соответствие следующим образом:

1. Если $A_{1\times 1}=(a)$, тогда |A|=a;

2. Если
$$A_{2\times 2}=\begin{pmatrix} a_{11}&a_{12}\\a_{21}&a_{22}\end{pmatrix}$$
, тогда $\begin{vmatrix} a_{11}&a_{12}\\a_{21}&a_{22}\end{vmatrix}=a_{11}a_{22}-a_{12}a_{21};$

3. Если $A_{3\times3}=\begin{pmatrix} a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33} \end{pmatrix}$, тогда |A| можно получить разложением по первой строке:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} , \end{vmatrix} = a_{11} \cdot (-1)^{1+1} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} +$$

$$+ a_{12} \cdot (-1)^{1+2} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \cdot (-1)^{1+3} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}.$$

NtB 3.2. Аналогичным образом можно вычислять определители матриц больших размеров, но нам пока будет достаточно приведенных формул.

 ${f NtB}$ 3.3. Часто для определителя матрицы A используют обозначение $\det A$.

Пемма 3.1. Приведем (пока) без доказательства некоторые интересные свойства определителя. В частности, определитель матрицы

- не изменится, если
 - матрицу транспонировать;
 - прибавить к одной строке другую, умножив на любое число;
- окажется равным нулю, если
 - присутствует нулевая строка;
 - некоторые строки пропорциональны;
- умножится
 - на (-1) если поменять любые две строки местами;
 - на число λ , если на это число умножить некоторую строку.

Важно!

$$det(A+B) \neq det A + det B$$
.