

W. Theilheimer

**Synthetische Methoden
der Organischen Chemie**

3

Basel - Verlag von S. Karger - New York

CFTRI-MYSORE

1799

Synthetic method

W. Theilheimer

Synthetische Methoden
der
Organischen Chemie

Repertorium
3

Mit Titeln der Bände 1 und 2 und Generalregister

With English Index Key

1949

BASEL

S. KARGER

NEW YORK

1799 ✓

Alle Rechte, insbesondere das der Übersetzung in fremde Sprachen, vorbehalten

Copyright 1949 by Karger AG. Verlag, Basel

Printed in Switzerland

E1,5:4

N48:3

CFTRI-MYSORE

1799

Synthetic method..

Druck: Friedrich Reinhardt AG. Basel

Aus dem Vorwort zum 1. und 2. Band

In der mit diesem Band beginnenden Buchreihe sollen neue Methoden zur Synthese organischer Verbindungen, Verbesserungen bekannter und auch bewährte ältere Methoden, die sich in den in Fachzeitschriften veröffentlichten Originalarbeiten verstreut vorfinden, laufend registriert werden.

Aufbauend auf der Weygandschen Systematik wurde versucht, alle Reaktionen an Hand weniger einfacher, wenn auch rein formaler Richtlinien zu ordnen. Dies führte zur Ausarbeitung von Reaktions-Formelzeichen, die sich im Gegensatz zu den bisherigen Trivial- bzw. Autorennamen, wie Oxydation, Friedel-Crafts-Synthese, systematisch anordnen lassen. Man kann so die Methoden, ohne ihren Namen zu kennen, mittels des Formelzeichens auffinden.

Benutzer, die an die alten Bezeichnungen gewöhnt sind, finden diese im ausführlichen alphabetischen Register, das in vielen Fällen den Gebrauch der Systematik entbehrlich machen und besonders zum Aufsuchen komplizierter Reaktionen mit Vorteil benutzt werden dürfte. Da die Sammlung für die Handbibliothek am Arbeitsplatz im Laboratorium gedacht ist, soll sie eine rasche Orientierung gestatten, ohne daß fürs erste die Literatur der Instituts- oder Werkbibliothek herangezogen werden muß. Neben der systematischen Registrierung der Methoden werden deshalb im alphabetischen Register auch Synthesen durch ihre Ausgangs- und Endprodukte registriert. Dies ermöglicht es, im Text, innerhalb der Reaktionszeichen, nach einem weiteren methodischen Kriterium, nämlich den Hilfsstoffen, einzuteilen. Neuartig ist ferner die Registrierung der komplizierten Verbindungen. Auf Sammelbegriffe wie Aufbau, Austausch, Heterocyclen sei noch besonders hingewiesen.

Die Referate beschränken sich auf das zur Beurteilung der Zweckmäßigkeit einer Synthese Notwendige, wie Zahl und Art der Reaktionsstufen, die Ausbeute, wichtige, die Methode betreffende Literatur usw. Vor Ausführung einer bestimmten Synthese ist es deshalb erforder-

lich, das Zentralblatt oder ein anderes Referatenblatt und, wenn möglich, auch die Originalarbeit zu Rate zu ziehen. Um Wiederholungen zu vermeiden, wurden bei der Anwendung einer Methode in ähnlichen Fällen diejenigen ausgewählt, die am ausführlichsten beschrieben sind und die besten Ausbeuten geben. Synthesen, die in ihre Stufen zerlegt und an verschiedenen Stellen eingeordnet sind, können mit Hilfe der Vermerke *Ausg. f.* und *Darst. s.* zusammengesetzt werden.

Basel, im November 1945 und Februar 1948.

W. Th.

Vorwort zum 3. Band

Dieser 3. Band der «Synthetischen Methoden» umfaßt hauptsächlich Referate von Arbeiten aus den Jahren 1946/47 mit einigen Ergänzungen aus dem Jahre 1948. Amerikanische Arbeiten wurden besonders berücksichtigt als Ausgleich für ihr Fehlen im 2. Band. Aus Zeitmangel wurde jedoch auf das Durcharbeiten früherer Jahrgänge amerikanischer Zeitschriften verzichtet, zumal sich gute Methoden meistens in den folgenden Jahrgängen wiederholen. Sollten wichtige Methoden in unserer Sammlung vermißt werden, dann bitten wir, uns darauf aufmerksam zu machen, damit wir sie in künftigen Bänden nachholen können.

Dieser Band enthält auch alle Titel der beiden vorhergehenden Bände, so daß in vielen Fällen das dreimalige Aufsuchen einer Methode in jedem Band auf ein einmaliges Nachschlagen im 3. Band reduziert werden kann.

Um das Material nicht zu sehr auf Kosten der Uebersicht anschwellen zu lassen, werden Veröffentlichungen, die nicht ganz in den Rahmen der «Synth. Meth.» passen und die in den Sachregistern der Referatenblätter leicht aufgefunden werden können, nicht aufgenommen. Arbeiten aus schwerer zugänglichen und lesbaren Zeitschriften, wie z. B. den russischen, werden im allgemeinen nur dann referiert, wenn die betreffende Methode sonst nirgends beschrieben ist. Fortsetzungen bereits aufgenommener Arbeiten, die nichts wesentlich Neues bringen, werden nicht mehr referiert, evtl. aber an der Stelle der aufgenommenen Arbeit zitiert. Diese kurzen Literaturzitate sind im 3. Band neueingeführt. Da sie keine eigenen Nummern haben, sind sie im alphabetischen Register nicht enthalten. Es empfiehlt sich deshalb bei Benutzung einer Methode aus den beiden ersten Bänden, auch

an der betreffenden systematischen Stelle des 3. Bandes nachzusehen, ob dort nicht neuere Literatur zitiert ist.

Wie in den vorhergehenden Bänden sind Doppelbindungen in Ringen weggelassen worden, wenn dadurch keine Mißverständnisse entstehen können.

Da es voraussichtlich nicht möglich sein wird, auch eine englische Ausgabe dieses Bandes zu veröffentlichen, ist dem Register ein englischer Schlüssel angefügt worden. Der englisch-sprachige Benutzer wird außerdem die meist in dieser Sprache abgefaßten Originalarbeiten zu Hilfe nehmen können.

An dieser Stelle sei den Herren mein besonderer Dank ausgesprochen, die mir seit Beginn der «Synth. Meth.» die laufenden Jahrgänge der Zeitschriften zugänglich gemacht und mir einen Arbeitsplatz in Bibliotheksnähe zur Verfügung gestellt haben: Prof. Dr. H. Erlenmeyer und Prof. Dr. T. Reichstein, Chemische Anstalt der Universität Basel, Prof. Dr. R. C. Elderfield, Department of Chemistry, Columbia University, New York City, und Dr. J. A. Aeschlimann, Director of Chemical Research, Hoffmann-LaRoche, Inc., Nutley, New Jersey, wo ich gegenwärtig an der Fortsetzung der «Synth. Meth.» arbeite.

Herrn und Frau Dr. Sorkin-Brügger habe ich wiederum für das Korrekturlesen zu danken.

Für die großzügige Förderung meiner Arbeit an dieser Buchreihe bin ich den folgenden amerikanischen Firmen zu Dank verpflichtet:

- Abbott Laboratories, North Chicago, Ill.
- Eastman Kodak Co., Rochester, N. Y.
- Givaudan-Delawanna, Inc., Delawanna, N. J.
- B. F. Goodrich Co., Akron, Ohio.
- Heyden Chemical Corporation, New York.
- Hoffmann-LaRoche, Inc., Nutley, N. J.
- Monsanto Chemical Co., Dayton, Ohio.
- Chas. Pfizer & Co., Inc., Brooklyn, N. Y.
- Sharp & Dohme, Inc., Philadelphia, Pa.
- Shell Development Co., San Francisco, Cal.
- The Upjohn Co., Kalamazoo, Mich.

Nutley, New Jersey, USA., im Juni 1949.

W. Th.

Systematik

Für die Reihenfolge der Methoden gelten folgende Richtlinien:

1. Reaktionszeichen.

Die Einteilung erfolgt zuerst nach den Bindungen, die bei einer Reaktion entstehen. Diese erscheinen im Reaktions-Formelzeichen in Gestalt ihrer beiden Elementsymbole, z. B. die Bindung zwischen Wasserstoff und Stickstoff als HN. Die Reihenfolge der Elemente ist die gleiche wie im Chemischen Zentralblatt und in Beilsteins Handbuch der organischen Chemie: H, O, N, Hal (Halogene), S, Ü (Übrige Elemente). C steht an letzter Stelle.

Das «*Prinzip der letzten Stelle*» bestimmt die Reihenfolge der Elementsymbole und ist auch sonst nach Möglichkeit immer angewandt worden.

Die Methoden zur Herstellung einer bestimmten Bindung werden nach ihrer Bildungsweise eingeteilt. Es werden 4 Fälle unterschieden: Aufnahme (\Downarrow), Umlagerung (\curvearrowright), Austausch (\leftrightarrow) und Abgabe ($\uparrow\downarrow$).

Die weitere Einteilung ergibt sich aus den Bindungen, die bei der Reaktion gelöst werden. Von den Elementen, die an diesen Bindungen beteiligt sind, werden im allgemeinen bei Aufnahme und Umlagerung zwei, bei Austausch und Abgabe eines in das Reaktionszeichen aufgenommen.

Die Bildung des Reaktionszeichens wird durch folgende vereinfachende Annahmen erleichtert:

1. Die Bindungen für die Registrierung ergeben sich rein formal aus den Strukturformeln, ohne daß auf Reaktionsmechanismen Rücksicht genommen wird.
2. Doppel- und Dreifachbindungen werden 2 bzw. 3 Einfachbindungen gleichgesetzt.
3. Es werden in der Regel nur stabile organische Verbindungen berücksichtigt. Zwischenprodukte, wie z. B. Grignard-Verbindungen, Na-Malonester und anorganische Reaktionspartner, wie z. B. Salpetersäure, werden deshalb nicht zur Bildung des Reaktionszeichens herangezogen.

Beispiele

siehe Band 2, Seite VI

Systematische Uebersicht

siehe Seite 411

2. Hilfsstoffe.

Eine weitere Unterteilung, die im Reaktionszeichen nicht mehr zum Ausdruck kommt, wird nach den für die Reaktion charakteristischen Hilfsstoffen vorgenommen. Ihre Reihenfolge richtet sich im wesentlichen nach dem periodischen System. Hilfsstoffe, die sich aus mehreren Bestandteilen zusammensetzen, werden nach demjenigen eingeteilt, der für die Reaktion verantwortlich ist, z. B. steht KMnO_4 bei Mn, NaClO bei Cl. Geht ein Bestandteil des Hilfsstoffs in das Reaktionsprodukt ein, dann ist der Rest als Träger dieses Bestandteils für die Einordnung maßgebend; das ist z. B. bei einer Chlorierung mit PCl_5 Phosphor, bei einer Nitrosierung mit NaNO_2 Natrium.

3. Innerhalb dieser Unterteilung sind die einzelnen Referate von einfachen zu komplizierten Beispielen fortschreitend angeordnet.

4. Treten bei einer Reaktion Veränderungen an mehreren Bindungen ein, wie z. B. bei Ringschlüssen, oder kann sie auf verschiedene Art durchgeführt werden, dann wird sie, falls notwendig, an mehreren Stellen eingeordnet. Das Hauptzitat steht in diesen Fällen in der Regel an der letzten Stelle; an den übrigen Stellen befinden sich Hinweise auf dieses.

Alphabetisches Register

Im alphabetischen Register finden sich als Schlagworte Methoden, Verbindungsklassen, Reagenzien und dgl.; Einzelverbindungen und Autoren, soweit nicht eine Methode nach ihnen benannt ist, sind, wie bisher, in den Registern der Referatenblätter zu suchen. Auf *kompliziertere Verbindungen*, z. B. mit mehreren funktionellen Gruppen, ist bei den entsprechenden einfacheren Verbindungen unter «spezielle» hingewiesen, z. B. bei Carbonsäuren auf Aminocarbonsäuren. Beginnend mit diesem Band sind unter der Bezeichnung «spezielle m. a. W. s.» nur solche Verbindungen aufgeführt, die einen anderen Wortanfang haben und deshalb an einer anderen Registerstelle stehen. Methoden zur Synthese eines bestimmten *Endprodukts* findet man beim Schlagwort dieses Endprodukts unter «aus» registriert, z. B. Carbonsäuren aus Alkoholen, Kohlenwasserstoffen. Synthesen, die sich mit einem bestimmten *Ausgangsmaterial* ausführen lassen, sind bei dem Schlagwort des Ausgangsmaterials unter «Ausg. f.» = Aus-

VIII

gangsmaterial für (die Darstellung von ...) zu suchen, z. B. Alkohole, Ausg. f. Ketone, Carbonsäuren.

Die Bezeichnungen der Verbindungsklassen beziehen sich in der Regel nur auf funktionelle Gruppen, die bei der Reaktion verändert werden. Eine Reaktion, bei der aus einer Aminocarbonsäure ein Aminoalkohol entsteht, wird demnach unter «Alkohole aus Carbonsäuren», bzw. «Carbonsäuren, Ausg. f. Alkohole» registriert. Ringbezeichnungen können sich auch auf die entsprechenden hydrierten Ringe beziehen. Sind hydrierte Ringe aber besonders aufgeführt, dann ist bei ihnen, wie auch in einigen anderen Fällen, von der Inversion Gebrauch gemacht worden, wie sie in den Sachregistern der «Chemical Abstracts» üblich ist. Z. B. stehen Dihydrofurane unter Furane, Dihydro-. Griechische Buchstaben und Einzelbuchstaben, die vom eigentlichen Namen durch Bindestrich getrennt sind, werden bei der alphabatischen Anordnung nicht berücksichtigt, z. B. stehen «O-Acetyl-derivate» unter A.

Abkürzungen

siehe Seite 406.

Herstellung der H—O-Bindung

Aufnahme

Anlagerung an Wasserstoff und Kohlenstoff $\text{HO} \Downarrow \text{HC}$
 s. $\text{OC} \Downarrow \text{HC}$

Anlagerung an Sauerstoff $\text{HO} \Downarrow \text{O}$

Nickel Ni
Oxyverbindungen aus Peroxyden ←
 s. 2, 1

Anlagerung an Sauerstoff und Stickstoff $\text{HO} \Downarrow \text{ON}$

Phenylhydrazin ←
Dioxyindole aus Isatogenen ←
 s. 2, 2

Anlagerung an Sauerstoff und Kohlenstoff $\text{HO} \Downarrow \text{OC}$
 s. $\text{HC} \Downarrow \text{OC}$, $\text{OC} \Downarrow \text{OC}$, $\text{NC} \Downarrow \text{OC}$, $\text{SC} \Downarrow \text{OC}$, $\text{CC} \Downarrow \text{OC}$.

Austausch

Stickstoff \downarrow $\text{HO} \ddagger \text{N}$

Natriumjodid NaJ
Abspaltung der Nitratgruppen ←
von Kohlehydrat-salpetersäureestern
 s. 2, 3

Zink/Eisen Zn/Fe
 s. 2, 4

Aluminiumpulver Al
Naphtole aus Diazo-oxyden ←
 s. 2, 104

Palladium-Kohle**Pd-C****Spaltung von Salpetersäureestern** $\text{ONO}_2 \rightarrow \text{OH}$

1. Mit Pd-Kohle können Salpetersäureester bei Zimmertemp. u. mäßigem Überdruck so hydriert werden, daß die Reduktion bei molekularem N₂ aufhört. Es wurden in fast quantitativer Ausbeute Sacharose, Laevoglucosan u. Methylglucosid aus den vollnitrierten Derivaten erhalten. (L. P. Kuhn, Am. Soc. 68, 1761 (1946).)

Halogen ↓**HO↑Hal****Natrium****Na****Furanring-Oeffnung****C**

2.

Na-Pulver in wasserfreiem Ae. unter schnellem Rühren und Eiskühlung tropfenweise innerhalb 5 Stdn. mit Tetrahydrofurfurylchlorid (Darst. s. 459) in wasserfreiem Ae. versetzt u. noch 2 Stdn. weitergerührt → 4-Penten-1-ol. A: 76–83%. (L. A. Brooks u. H. R. Snyder, Org. Synth. 25, 84 (1945).)

Alkoh. Kalilauge**KOH****Benzofurane aus Cumarinen**

←

3.

Zu einer Lsg. von Cumarin in Chlf. bei Zimmertemp. innerhalb 3 Stdn. unter gutem Rühren Br₂ in Chlf. getropft u. überschüssiges Br₂ mit Na₂SO₃ entfernt → Cumarin-dibromid (A: 70%) zu einer Lsg. von KOH in abs. Alk. unterhalb 20° unter gutem Rühren innerhalb ca. 30 Min. gegeben u. unter weiterem Rühren 1/2 Stde. unter Rückfluß gekocht → Cumarilsäure (A: 82–88%). (R. C. Fuson, J. W. Kneisley u. E. W. Kaiser, Org. Synth. 24, 33 (1944).)

Natriumsulfit**Sulfinsäuren aus Sulfonsäurechloriden** $\text{SO}_2\text{Cl} \rightarrow \text{SO}_2\text{H}$

s. 1, 5, 581

Schwefel ↓**HO↑S****Natriumamalgam****Na, Hg****Detosylierung** $\text{OTs} \rightarrow \text{OH}$

s. 2, 6.

Natriumalkoholat

NaOR

Detosylierung bei schwer spaltbaren Verbindungen
s. 2, 7**Kohlenstoff \downarrow** **HO \rightleftharpoons C***Natrium*

Na

Verseifung von Benzoylderivaten
s. 2, 8OBz \rightarrow H*Natronlauge*

NaOH

Desacetylierung
s. 3, 227OAc \rightarrow OH**Carbonsäuren aus Carbonsäureestern**
s. 2, 823COOR \rightarrow COOH**Cumarinring-Oeffnung**
s. 1, 104

C

Kalilauge

KOH

Desacetylierung
s. 2, 9; 3, 227OAc \rightarrow OH**Carbonsäuren aus Carbonsäureestern**
s. 2, 10/11COOR \rightarrow COOH**aus schwerverseifbaren****Carbonsäureestern**

s. 2, 21, 21

Ketone aus Oxidoverbindungen \leftarrow

s. 2, 13

Natriumalkoholat

NaOR

Desacetylierung bei Glykosiden
s. 1, 1OAc \rightarrow OH*Natrium/fl. NH₃*Na/NH₃**Spaltung von Benzyläthern**ROR \rightarrow ROH

4.

Zu einer Lsg. von 2'-Keto-3,4-imidazolido-2- γ -benzyl-oxypropylthiophen in fl. NH₃ unter Röhren Na in kleinen Stücken zugegeben, unmittelbar hierauf NH₄-Chlorid zugefügt und NH₃ bei Zimmertemp verdampfen gelassen → 2'-Keto-3,4-imidazolido-2- γ -oxypropylthiophen. A: 83,5 %. (L. C. Cheney J. R. Piening, Am. Soc. 67, 2252 (1945).)

Alkali in Pyridin

←

Aetherspaltung

s. 1, 2

Kaliumcarbonat

K₂CO₃

Desacetylierung

s. 2, 14

OAc → OH

Vorsichtige Abspaltung der Carbäthoxyl-Gruppe OCOOC₂H₅ → OH

s. 2, 15

Kaliumhydrogencarbonat

KHCO₃

Partielle Verseifung

s. 1, 3

OAc → OH

Desacetylierung bei Glykosiden

s. 1, 220

Methylmagnesiumjodid

CH₃MgJ

Aetherspaltung

s. 2, 20

ROR → ROH

Bariumhydroxyd

Ba(OH)₂

Desacetylierung

s. 2, 16/7

OAc → OH

Desacetylierung bei Glykosiden

s. 1, 217

Carbonsäuren aus Carbonsäureestern

COOR → COOH

s. 3, 81

Bariummethylat

Ba(OR)₂

Desacetylierung

s. 1, 5

OAc → OH

Desacetylierung bei Glykosiden

s. 1, 4

- Debenzoylierung bei Glykosiden** $\text{OBz} \rightarrow \text{OH}$
5. 2,3,4-Tribenzoyl-methyl- α -d-rhamnopyranosid (Darst. s. 66) mit Bariummethylat in Methanol 30 Min. geschüttelt und 24 Stdn. bei 25° stehen gelassen \rightarrow Methyl- α -d-rhamnopyranosid. A: 94 %. (W. T. Haskins, R. M. Hann u. C. S. Hudson, Am. Soc. 68, 628 (1946).)
- Aluminiumchlorid** AlCl_3
- Aetherspaltung** $\text{ROR} \rightarrow \text{ROH}$
s. 1, 6/7; 2, 18
- Essigsäure** CH_3COOH
- Partielle Verseifung von Polyacetalen** $\begin{array}{c} \text{CO} \\ | \\ \text{CO} \backslash \text{C} \\ | \\ \text{CO} / \end{array} \rightarrow \begin{array}{c} \text{COH} \\ | \\ \text{COH} \end{array}$
s. 2, 19
- Ameisensäure/Acetylchlorid** $\text{HCOOH}/\text{CH}_3\text{COCl}$
- Schonender Abbau methylierter Polysaccharide** $\text{ROR} \rightarrow \text{ROH}$
s. 1, 8
- Pyridin-hydrochlorid** \leftarrow
- Aetherspaltung**
s. 1, 9; 2, 20/1
- Phosphor/Jodwasserstoffsäure** P/HJ
- Aetherspaltung**
s. 3, 11
- Schwefelsäure** H_2SO_4
- Spaltung von Methyläthern**
6. 3,5-Dinitroanisol mit konz. H_2SO_4 5 Stdn. im Oelbad auf 145° erhitzt \rightarrow 3,5 Dinitrophenol. A: 90 %. (P. E. Verkade u. P. H. Witjens, R. 65, 361 (1946).)
7. 6-Methoxylepidin mit 60 %ig. H_2SO_4 4 Stdn. bei 135—137° gekocht \rightarrow 6-Oxylepidin. A: quantitativ. (M. A. Clapp u. R. S. Tipson, Am. Soc. 68, 1332 (1946).)
- Glykosidspaltung**
8. $\text{C}_6\text{H}_{11}\text{O}_5\text{OCH}_3 \rightarrow \text{C}_6\text{H}_{11}\text{O}_5\text{OH}$
 α -Methyl-d-mannosid in 2-n. H_2SO_4 1 Stde. mit Wasserdampf destilliert und hierauf mit BaCO_3 neutralisiert \rightarrow d-Mannose. A: 60—70 %. (J. T. Sheehan u. W. Freudenberg, Org. Synth. 22, 86 (1942).)
9. Monomethyl- β -methylarabinosid mit 20 Teilen 5 %ig. H_2SO_4 3 Stdn. gekocht und mit BaCO_3 neutralisiert \rightarrow Methylarabinose. A: 90 %. —

Die Hydrolyse mit HCl gab wegen der Bildung von Furfuralderivaten geringe Ausbeuten. (M. A. Oldham u. J. Honeyman, Soc. 1946, 986.)

Spaltung von Acetalen

Aldehyde aus Aldehydacetaten

Carbonsäuren aus Carbonsäureestern

Salzsäure

HCl

Glykosidspaltung

Spaltung von Trityläthern

Spaltung von Acetalen

Aldehyde aus Aldehydacetaten

Partielle Desacetylierung s. 2, 29

Debenzoylierung

Bromwasserstoffsäure

HBr

Aetherspaltung

$$\text{ROR} \rightarrow \text{ROH}$$

Spaltung von Trityläthern

10.

6-Trityl-1, 2, 3, 4-tetraacetyl- β -d-glucose (Darst. s. 212) in der Wärme in Essigsäure gelöst, auf ca. 10° gekühlt, eine gesätt. Lsg. von HBr in Essigsäure zugegeben, ca. 45 Sek. geschüttelt, sofort filtriert u. in kaltes W. gegossen → 1, 2, 3, 4-Tetraacetyl- β -d-glucose. A: 55%. (D. D. Reynolds u. W. L. Evans, Org. Synth. 22, 56 (1942).)
s. a. 2, 249

←

Oxycarbonsäuren aus Methoxynitrilen
s. 2, 236

Jodwasserstoffsäure/Phosphor

HJ/P

Spaltung von Methyläthern

ROR → ROH

11. N-Methyl-(3-methoxy-4-oxybenzyl)-alanin (Darst. s. 610) in CO₂-Atmosphäre mit rotem P und einer Mischung von Acetanhydrid u. HJ (D. 1, 7) 3 Stdn. gelinde gekocht → N-Methyl-3, 4-dioxyphenylalanin. A : 82%. (V. Deulofeu u. T. J. Guerrero, Org. Synth. 22, 89 (1942).)

Nickel

Ni

Spaltung von Benzyläthern

s. 2, 32

Spaltung von Acetalen

s. 2, 33/4

*Palladium-Calciumcarbonat*Pd · CaCO₃**Spaltung von Benzyläthern**

s. 2, 35

ROR → ROH

Palladium-Kohle

Pd · C

s. 1, 13/4

Spaltung von Trityläthern

s. 1, 216

Abgabe**Sauerstoff ↓**

HO ↑ O

*Natriumsulfit*Na₂SO₃**Alkohole aus Peroxyden**

OOH → OH

s. 1, 15/6

Herstellung der H—N-Bindung

Aufnahme

Anlagerung an Sauerstoff und Stickstoff

HN ↓ ON

Natriumalkoholat

NaOR

Isoxazolring-Oeffnung
Furazane

C

12.

0,9 g 4-(3-Isoxazolyl)-3-furazan-carbonsäure mit einer Lsg. von Na in abs. Alk. auf dem Dampfbad erwärmt u. über Nacht stehengelassen → 1,1 g Na-Iminomalonyl-furazan-carboxylat. (A. Quilico u. M. Freri, G. 76, 3 (1946).)

Anlagerung an Stickstoff

HN ↓ NN

Zinkstaub

Zn

Hydrazoverbindungen aus Azoverbindungen

$\text{N} : \text{N} \rightarrow \text{NH} \cdot \text{NH}$

Totalreduktion von Bisazoverbindungen
s. 1, 17

Milde Reduktion von empfindlichen Hydrazoverbindungen
s. 1, 18

Schwefelwasserstoff

H₂S

Partielle Reduktion von Nitroazoverbindungen
s. 1, 19

Schwefeldioxyd

SO₂

Hydrazinocarbonsäuren
s. 1, 261

NHNH₂

Nickel

Ni

Reduktive Cinnolinring-Oeffnung
s. 2, 36

C

Anlagerung an Stickstoff und Kohlenstoff **HN ↓ NC**
 s. a. HC ↓ NC, OC ↓ NC, NC ↓ NC, HalC ↓ NC

Ohne Hilfsstoffe **o. H.**

Thiazoline **○**
 s. 1, 490

Lithium **Li**

Triazine **○**
 s. 1, 285

Ammoniak **NH₃**

Thioamide aus Nitrilen **CN → CSNH₂**
 s. SC ↓ NC

Zinn **Sn**

Chinolinring **○**
 s. 2, 649

Austausch

Sauerstoff ↑ **HN ↑ O**

Elektrolyse **↖**

Amine aus Nitroverbindungen **NO₂ → NH₂**
 s. 1, 292

Natrium **Na**

Amine aus Oximen **CHNOH → CH₂NH₂**
 s. 2, 37

Natriumamalgam **Na, Hg**

s. 1, 20

Amine aus Nitroverbindungen **NO₂ → NH₂**
 s. 1, 28

Zink **Zn**

Amine aus Nitrosoverbindungen **NO → NH₂**
 s. 2, 39

Hydroxylamine aus Nitroverbindungen **NO₂ → NHOH**
 s. 2, 265; 3, 761

Amine aus Nitroverbindungen $\text{NO}_2 \rightarrow \text{NH}_2$
 s. 3, 537

Alkylaminoverbindungen aus Nitroverbindungen $\text{NO}_2 \rightarrow \text{NHR}$
 s. 1, 21

Asym. Hydrazine aus Nitrosaminen $\text{N} \cdot \text{NO} \rightarrow \text{N} \cdot \text{NH}_2$
 s. 1, 255; 2, 40

Aluminium Al

Amine aus Nitroverbindungen $\text{NO}_2 \rightarrow \text{NH}_2$
 s. 1, 22

Aluminiumamalgam Al, Hg

Aminoacridine aus Nitroacridonen \leftarrow
 s. 1, 23

Zinn(II)-chlorid SnCl_2

Amine aus Nitroverbindungen $\text{NO}_2 \rightarrow \text{NH}_2$

p-Nitro-p'-acetamidodiphenylsulfon (Darst. s. 524) zu einer Lsg. von SnCl_2 in konz: HCl gegeben u. nach anfängl. Kühlen 2 Stdn. auf dem Dampfbad erhitzt \rightarrow 4,4'-Diaminodiphenylsulfon. A: 74—77%. (C. W. Ferry, J. S. Buck u. R. Baltzly, Org. Synth. 22, 31 (1942).) s. a. 2, 41/2

Partielle Reduktion von Dinitroverbindungen
 s. 1, 24/5

Hydrazinhydrat $\text{H}_2\text{N} \cdot \text{NH}_2$

Aminodisulfide aus Nitrodisulfiden

14. Bis-(2-chlor-4-nitrophenyl)-disulfid mit einem großen Ueberschuß Hydrazin innerhalb 20 Stdn. umgesetzt \rightarrow Bis-(4-amino-2-chlorphenyl)-disulfid. A: 95%. (B. Riegel u. a., Am. Soc. 68, 1264 (1946). S. a. R. Möhlau, H. Beyschlag u. H. Kohres, B. 45, 133 (1912).)

Semicarbazide aus Nitroharnstoffen $\text{NHCONHNO}_2 \rightarrow \text{NHCONHNH}_2$
 s. 2, 43

Hydroxylamin

Amine aus Hydroxylaminen NH_2OH
 s. 3, 285 $\text{NH}_2\text{OH} \rightarrow \text{NH}_2$

Schwefel

Aminoaldehyde aus Nitrokohlenwasserstoffen S
 s. 1, 162 $\text{NO}_2 \rightarrow \text{NH}_2$

*Natriumsulfid**Na₂S***Partielle Reduktion von Di- und Polynitroverbindungen**

15.

2,4-Dinitrophenol in W. mit NH₄-Chlorid u. ca. 28%ig. NH₃ versetzt, auf 85° erhitzt, nach Abkühlen auf 70° portionsweise geschmolzenes 60%ig. Na₂S zugegeben, wobei man die Temp. schließlich bei 80–85° hält u. dann noch 15 Min. dabei beläßt → 2-Amino-4-nitrophenol. A: 64–67%. (W. W. Hartman u. H. L. Sillaway, Org. Synth. 25, 5 (1945).)

16.

Zu einer Mischung von 1-n-Propoxy-2,4-dinitrobenzol u. W. unter kräftigem Rühren u. Kochen unter Rückfluß tropfenweise innerhalb 2 Stdn. eine Lsg. von Na₂S u. S. in W. gegeben u. noch 1 Stde. unter Rühren gekocht → 1-n-Propoxy-2-amino-4-nitrobenzol (A: 56%) u. 1-n-Propoxy-2-nitro-4-aminobenzol (A: 33%). (P. E. Verkade u. W. Meerburg, R. 65, 768 (1946).)

s. a. 1, 25; 2, 38

*Natriumhydrogensulfid**NaHS*

s. 2, 38

*Natriumhyposulfit**Na₂S₂O₄***Amine aus Nitrosoverbindungen***NO → NH₂*

s. 1, 360

Amine aus Nitroverbindungen*NO₂ → NH₂*

s. 1, 26; s. a. A. T. Peters, Soc. 1947, 742.

*Fe**Eisen*

17.

Eisenpulver in Alk.-W.-HCl 15 Min. zum Sieden erhitzt, hierauf unter Rühren innerhalb 45 Min. bei 60–70° allmählich 2,6-Dichlor-4-nitroanisol (Darst. s. 230) eingetragen u. noch 1 Stde. gekocht \rightarrow 4-Methoxy-3,5-dichloranilin. A: 96%. (C. de Traz, Helv. 30, 232 (1947).) s.a. 1, 27, 30; 2, 44

o-Aminoketone

s. 2, 45

Eisen/Ferroion

s. 2, 46

Fe/Fe⁺⁺

Nickel

Ni

Amine aus Oximen

cis- u. trans-Isomere. Skitasche Regel

s. 2, 47

Amine aus Nitroverbindungen

18.

2-Nitro-p-cymol mit Raney-Ni in abs. Alk. bei 100–120° u. 700–1500 lb. Druck ca. $\frac{3}{4}$ Stdn. hydriert \rightarrow 2-Amino-p-cymol. A: 87–90%. (C. F. H. Allen u. J. van Allan, Org. Synth. 22, 9 (1942).)

19.

5-Nitro-8-acetamino-6-chinolyl-methylsulfid in abs. Alk. mit Raney-Ni bei ca. 40 lb. Druck hydriert \rightarrow 5-Amino-8-acetamino-6-chinolyl-methylsulfid. A: 91%. (H. Gilman u. a., Am. Soc. 68, 1577 (1946); s. a. 69, 2053 (1947).)

s. a. 1, 28/9; 2, 48, 77

Nickel, platiniert

Ni/Pt

Amine aus Oximen

s. 3, 38

Palladium

Pd

20. Es wurde gefunden, daß bei der katalytischen Hydrierung von β -Phenyl- α -oximinopropionsäure mit Pd-Kohle die Anwesenheit des Reaktionsprodukts, Phenylalanin, den Ablauf der Reaktion hemmt. (K. L. Waters u. W. H. Hartung, J. org. Chem. 10, 524 (1945).)

Amine aus Nitroverbindungen
s. 1, 30

Pd-Tierkohle-Katalysator
s. 2, 49

Stickstoff \downarrow

Silbernitrat

Carbonsäureamide aus Diazoketonen
s. 2, 216

Natriumhyposulfit

Reduktive Spaltung von Azoverbindungen
s. 1, 173

Nickel

s. 1, 398

gleichzeitig Benzoylierung

s. 2, 411

Schwefel \downarrow

Natrium

Spaltung von Sulfonsäureamiden

21.

1-(p-Fluorophenyl)-1-oxy-2-(N-methyl-p-toluolsulfonamido)-äthan in kochendem Amylalkohol mit Na versetzt \rightarrow 1-(p-Fluorophenyl)-2-(methylamino)-äthanol. A: 77,5 %. (L. S. Fosdick, O. Fancher u. K. F. Urbach, Am. Soc. 68, 840 (1946).)

Schwefelsäure

s. 2, 428

Salzsäure

22.

3-(N-p-Toluolsulfonyl-3-piperidyl-5,6-dihydro-4-carbolin mit 20%igem HCl ca. 45 Stdn. bis zur vollständigen Lsg. unter Rückfluß gekocht → 3-(3-Piperidyl)-5,6-dihydro-4-carbolin. A: 80%. L. Marion, R. H. F. Manske u. M. Kulka, Can. J. Research 24B, 224 (1946).)

Kohlenstoff \downarrow **HN \leftrightarrow C***Natronlauge**NaOH***Verseifung von acylierten Aminen** $\text{NHAc} \rightarrow \text{NH}_2$

s. 1, 31, 35; 2, 312

α -Aminocarbonsäuren aus α -Acylamino-
 α -cyanocarbonsäureestern
s. 3, 665

*Kalilauge**KOH* **α -Aminocarbonsäuren aus Hydantoinen***C*

s. 1, 568

*Natriumalkoholat**NaOR***Verseifung von acylierten Aminen** $\text{NHAc} \rightarrow \text{NH}_2$

s. 1, 32

*Calciumhydroxyd**Ca(OH)₂***Verseifung von Harnstoffen zu Aminen** $\text{OC}\begin{cases} \diagup \\ \diagdown \end{cases}\text{NHR} \rightarrow 2\text{RNH}_2$

s. 1, 33

*Bariumhydroxyd**Ba(OH)₂***Verseifung von acylierten Aminen** $\text{NHAc} \rightarrow \text{NH}_2$

s. 2, 50; 3, 365

 α -Aminocarbonsäuren aus Hydantoinen*C*

s. 2, 223

*Ameisensäure/Salzsäure**HCOOH/HCl* **α -Aminocarbonsäuren aus α -Cyanurethanen** \leftarrow

s. 3, 189

Hydrazinhydrat $\text{H}_2\text{N} \cdot \text{NH}_2$ **Verseifung von Phtalimiden** $\begin{array}{c} \text{CO} \\ | \\ \text{CO} \end{array} > \text{NR} \rightarrow \text{H}_2\text{NR}$

23.

8-(3-Phtalimido-propylamino)-6-methoxychinolin u. 85 %oig. Hydrazinhydrat in 95 %oig. Alk. 2 $\frac{1}{2}$ Stdn. unter Rückfluß gekocht → 8-(3-Aminopropylamino)-6-methoxychinolin. A: 91,4 %. (H. S. Mosher, Am. Soc. 68, 1565 (1946). Methode s. H. R. Ing u. R. H. F. Manske, Soc. 1926, 2348).

Taurinamide

24.

20 g 2-Phtalimidoäthansulfonylchlorid u. 41 g Octadecylamin in Bzl. 1 Stde. unter Rückfluß gekocht → 33 g 1-(2-Phtalimido-äthylsulfonyl-amino)-octadecan mit 42 %oig. Hydrazinhydrat in Alk. 1 Stde. unter Rückfluß gekocht → 16 g 1-(Taurylamino)-octadecan, davon 19,8 g u. 1-Pantolacton 2 Stdn. auf 100° erhitzt → 23 g d-1-[(N-Pantoyltauryl)amino]-octadecan. (W. B. s. J. F. Mead u. a., J. biol. Chem., 163, 465 (1946). S. a. R. Winterbottom u. a., Am. Soc. 69, 1393 (1947).)

Phosphoniumjodid

 PH_4J

Amine aus Urethanen

 $\text{NHCOOR} \rightarrow \text{NH}_2$

Spaltung von Carbobenzoxoxyderivaten von Aminen

25.

ϵ, ϵ' -Dicarbobenzoxo-lysine-anhydrid unter Durchleiten von H_2 in Eisessig bei 50° innerhalb 1 $\frac{1}{2}$ –2 Stdn. mit PH_4J versetzt u. nach Beendigung der CO_2 -Entwicklung aufgearbeitet → Lysine-anhydrid-dijodhydrat. A: fast quantitativ. (E. Katchalski, J. Großfeld u. M. Frankel, Am. Soc. 68, 879 (1946). Methode s. Harington u. Mead, Biochem. J., 29, 1603 (1935).)

s. a. 2, 138

Schwefelsäure H_2SO_4 **Prim. aus sek. Aminen** $NHR \rightarrow NH_2$

26.

Eine Lsg. von 5 g 4-(4-Diäthylamino-1-methylbutylamino)-7-chlorchinolin in konz. H_2SO_4 im Oelbad schnell auf 180° u. innerhalb 15–20 Min. weiter auf $200\text{--}210^\circ$ erhitzt \rightarrow 1,14 g 4-Amino-7-chlorchinolin. (R. H. Baker, R. M. Dodson u. B. Riegel, Am. Soc. 69, 704 (1947).)

Verseifung von acylierten Aminen $NHAc \rightarrow NH_2$

s. 1, 34

Partielle Verseifung

s. 2, 52

Brom Br_2 **Austausch von lockergebundenen Methylgruppen** $N(CH_3)_2 \rightarrow NH(CH_3)$
gegen Wasserstoff bei acylierten Anilinen

s. 1, 35

Halogenwasserstoffsäuren $HHal$ **Amine aus Formamidoverbindungen** $NHCHO \rightarrow NH_2$

27.

Eine Lsg. von 4-Chlor-5-formamido-2,6-dimethylpyrimidin in eiskalter konz. HCl bei Zimmertemp. 30 Min. stehengelassen \rightarrow 4-Chlor-5-amino-2,6-dimethylpyrimidin. A : 85 %. (R. Hull, B. J. Lovell, H. T. Openshaw u. A. R. Todd, Soc. 1947, 41.)

Verseifung von acylierten Aminen $NHAc \rightarrow NH_2$

s. 1, 36, 276, 292; 2, 311, 436; 3, 408

gleichzeitig Veresterung

s. 3, 175

 α -Aminocarbonsäuren aus α -Acylamino-malonsäureestern

s. 3, 674

 α -Aminocarbonsäuren aus α -Acylamino- α -cyancarbonsäureestern

s. 3, 80

Verseifung von Phtalimiden

s. 2, 454, 565, 651; 3, 334, 363

Amine aus Urethanen

28.

Eine Mischung von 3,4-trans-Dicarbäthoxyaminothiophan u. 48%ig. HBr 40 Min. unter Rückfluß gekocht \rightarrow 3,4-trans-Diaminothiophandihydrobromid. A: 95 %. (G. B. Brown, B. R. Baker, S. Bernstein u. S. R. Safir, J. org. Chem. 12, 155 (1947).)

s. a. 2, 53

 α -Aminocarbonsäuren aus α -Cyanurethanen

s. 3, 189

Spaltung von Uramidoaminen**Veresterung****Benzoylierung**

29.

N-Uramido-homomerochinen (Darst. s. 746) mit 0,1-n. HCl 27 Stdn. unter Rückfluß gekocht, im Vakuum eingedampft, den Rückstand nochmals dreimal in ca. 4%ig. abs. alkoh. HCl eingedampft, das entstandene Homomerochinen-ester-hydrochlorid in Chlf. aufgenommen, mit K-Carbonat-Brei unter kräftigem Rühren u. Rückfluß $\frac{1}{2}$ Stde. gekocht, nach dem Abkühlen innerhalb 10 Min. tropfenweise mit Benzoylchlorid in Chlf. versetzt u. unter kräftigem Rühren u. Rückfluß 2 Stdn. gekocht \rightarrow N-Benzoyl homomerochinen-äthylester. A: 96,3 %. (R. B. Woodward u. W. E. Doering, Am. Soc. 67, 860 (1945).)

Nickel**Ni****Spaltung von Carbobenzoxyderivaten von Aminen $\text{NHCOOR} \rightarrow \text{NH}_2$**

s. 2, 443

*Palladium**Pd***Prim. aus sek. Aminen**
s. 1, 75NHR \rightarrow NH₂**Spaltung von Carbobenzoxyderivaten von Aminen** NHCOOR \rightarrow NH₂
s. 1, 353; 2, 426*Palladiumoxyd**PdO***Hydrierende Spaltung von tert.
zu prim. u. sek. Aminen**
s. 1, 37*Ueber Zwischenprodukte**ü. Z.***Sek. aus tert. Aminen**
s. 3, 353NRR' \rightarrow NHR

Herstellung der H—S-Bindung

Austausch

Halogen \downarrow **HS \rightleftharpoons Hal***Zink**Zn***Mercaptane aus Sulfonsäurechloriden**SO₂Cl \rightarrow SH

30. p-Chlorbenzolsulfonylchlorid in H₂SO₄-Eiswasser innerhalb 1/2 Stde. mit Zn-Staub versetzt, 2 Stdn. bei 0° gerührt, unter Rückfluß gekocht, den kristallinen Zn-p-Chlorbenzolsulfinat-Niederschlag abfiltriert, in der Siedehitze in H₂SO₄ suspendiert u. wiederum mit Zn-Staub in kleinen Portionen versetzt \rightarrow p-Chlorthiophenol. A : 70%. (A. E. Senear, M. M. Rapport u. J. B. Koepfli, J. biol. Chem. 167, 229 (1947). S. a. R. Adams u. C. S. Marvel, Org. Synth., Coll. Vol. I., 2. Auflage, Seite 504 (1941).)

Kohlenstoff \downarrow **HS \rightleftharpoons C***Natrium/fl. Ammoniak**Na/NH₃***Spaltung von Benzylthioäthern**
s. 1, 38RSR \rightarrow RSH

<i>Natriumsulfid</i>	Na_2S
Mercaptane aus Rhodaniden	$SCN \rightarrow SH$
s. 2, 54	
<i>Natronlauge</i>	$NaOH$
Mercaptane aus Thiolsäureestern	$SCOR \rightarrow SH$
s. 1, 457	
<i>Natriumsulfit</i>	Na_2SO_3
Mercaptane aus Isothioharnstoffen	$SC \begin{array}{c} \diagup \\ \diagdown \end{array} \begin{array}{c} NH \\ NH_2 \end{array} \rightarrow SH$
s. 1, 494	

Herstellung der H—C-Bindung

Aufnahme

Anlagerung an Sauerstoff und Kohlenstoff $HC \downarrow OC$

Natriumhydrid NaH
Sek. Alkohole aus Ketonen $CO \rightarrow CHOH$

31.

NaH verwandelt gewisse Oxoverbindungen mit α -H-Atom in die entsprechenden Anionen, die Claisen-Kondensationen geben können. Oxoverbindungen ohne α -H-Atom werden reduziert. — B: Benzophenon unter Röhren zu einer Suspension von NaH in Xylol gegeben, langsam auf 145° erhitzt u. 6 Stdn. dabei belassen, wobei nach 3 Stdn. weiteres Xylol zugegeben wurde, damit die Reaktionsmischung flüssig bleibt \rightarrow Benzhydrol. A: 83 %. (W. B. s. F. W. Swamer u. C. R. Hauser, Am. Soc. 68, 2647 (1946).)

Natriumamalgam Na, Hg
Prim. Alkohole aus Aldehyden $CHO \rightarrow CH_2OH$

32.

Eine wss. Lsg. von 3,6-Anhydro-d-galactose unter Röhren u. Durchleiten von CO₂ mit Na,Hg reduziert → α-3,6-Anhydromelicit. A: 93%. (R. C. Hockett u. a. Am. Soc. 68, 922 (1946).)

s. a. 2, 55

Sek. Alkohole aus Ketonen

CO → CHOH

s. 1, 39

Stereoisomere Alkohole

s. 2, 62

Natronlauge/Silber

NaOH/Ag

Cannizzaro-Reaktion

2CHO → CH₂OH + COOH

33.

Aktives Ag scheint ein allgemein wirksamer Katalysator bei der Cannizzaro-Reaktion zu sein, in Fällen, in denen Alkali allein versagt. — B: Zu einer gut geschüttelten Suspension von aktivem Ag in W. festes NaOH gegeben, wobei die Temp. auf 53° steigt, unter weiterem Schütteln u. Ansteigen der Temp. auf 90° eine Mischung von Salicylaldehyd u. 37%ig. Formalin zugegeben u. nach 30 Min. aufgekocht → Salicylalkohol. A: 98,4%. (W. B. s. I. A. Pearl, J. org. Chem. 12, 85, 79 (1947).)

Magnesium/Magnesiumjodid

Mg/MgJ₂

**Bimolekulare Reduktion
von Aldehyden zu Glykolen**

←

s. 1, 689

Zink

Zn

Sek. Alkohole aus Ketonen

CO → CHOH

s. 1, 40

Lithium-Aluminium-Hydrid

LiAlH₄

Alkohole aus Oxoverbindungen

s. 3, 52

Kupfer-Aluminium

Cu-Al

Sek. Alkohole aus Ketonen

s. 1, 41

Aluminiumamalgam

Al,Hg

Prim. Alkohole aus Aldehyden

CHO → CH₂OH

34.

250 g Strophanthidin in 10 g Portionen mit Al-Amalgam (Darst. s. Original) in 95%ig. Alk. ca. 4 Tage bei Zimmertemp. stehengelassen, wobei mehrmals W. zugegeben wurde \rightarrow 212 g Strophanthidol. (M. Ehrenstein u. A. R. Johnson, J. org. Chem. 11, 823 (1946).)

Sek. Alkohole aus Ketonen
s. 1, 42

$\text{CO} \rightarrow \text{CHOH}$

Aluminiumalkoholat

Al(OR)_3

Al-tert.-Butylat für die Meerwein-Ponndorf-Reduktion
s. 1, 43

\leftarrow

Sek. Alkohole aus Ketonen
s. 1, 45, 74, 157; 2, 56–8

$\text{CO} \rightarrow \text{CHOH}$

Sulfidalkohole aus Alkylphenacylsulfiden
s. 1, 44

Kupferchromit

CuCr_2O_4

Prim. Alkohole aus Aldehyden

$\text{CHO} \rightarrow \text{CH}_2\text{OH}$

35. δ -Oxyvaleraldehyd mit Cu-Chromit in Alk. bei 150° u. 2000 lb./sq. in. 10–15 Min. hydriert \rightarrow 1,5-Pentandiol. A: 96,2%. (L. E. Schniepp u. H. H. Geller, Am. Soc. 68, 1646 (1946).)

Sek. Alkohole aus Ketonen

$\text{CO} \rightarrow \text{CHOH}$

36. Wegen der hohen Ausbeuten u. der Einfachheit der Ausführung wurde die katalytische Reduktion mit Cu-Chromit der chemischen mit Al-Iso-propylat, wenn möglich, vorgezogen. — B: p-Acetyl biphenyl mit 4% Cu-Chromit nach Adkins (Lazier u. Arnold, Org. Synth., Coll. Vol. II., 144) in abs. Alk. bei 1200 lb. Druck u. 125 – 135° \rightarrow p-Biphenyl-methylcarbinol (Ausg. f. 85). A: 80–90%. (W. B. s. D. T. Mowry, W. F. Huber u. a., Am. Soc. 68, 1105, 1109 (1946).)

Kobalt

Co

s. 1, 46/7

Nickel

Ni

Alkohole aus Oxidoverbindungen
s. 2, 59

\leftarrow

Prim. Alkohole aus Aldehyden	$\text{CHO} \rightarrow \text{CH}_2\text{OH}$
s. 2, 75	
Sek. Alkohole aus Ketonen	$\text{CO} \rightarrow \text{CHOH}$
s. 2, 60/1	
Stereoisomere Ringalkohole aus Ringketonen	
s. 2, 62	
Verbesserte Darst. des Ni-Katalysators	
s. 1, 48	
Glykole aus α-Oxyketonen	←
s. 2, 63	
Hydrierung von Kohlehydraten	←
Polyalkohole	
s. 2, 64	
Aktivierter Ni-Katalysator	
s. 1, 49	
<i>Palladium</i>	<i>Pd</i>
Lenkung der Hydrierung	←
s. 2, 94	
Hydrierung von Pyronen	←
s. 2, 83	
<i>Palladium-Mohr</i>	
Hydrierung von Arylglyoxylsäureestern	←
s. 1, 712	
<i>Palladiumoxyd</i>	<i>PdO</i>
Sek. Alkohole aus Ketonen	$\text{CO} \rightarrow \text{CHOH}$
s. 1, 50	
<i>Palladium-Bariumsulfat</i>	<i>Pd . BaSO₄</i>
Alkohole aus Oxidoverbindungen	
s. 3, 132	$\begin{array}{c} \text{C}—\text{C} \\ \backslash \quad / \\ \text{O} \end{array} \rightarrow \text{CHC(OH)}$
<i>Platinschwarz</i>	<i>Pt</i>
Stereoisomere Ringalkohole aus Ringketonen	
s. 2, 65	
<i>Platinoxyd</i>	<i>PtO₂</i>
Alkohole aus Oxidoverbindungen	
s. 2, 66	

Sek. Alkohole aus Ketonen
s. 3, 373; s. a. 2, 67

Anlagerung an Stickstoff und Kohlenstoff HC \downarrow NC

Natrium

Na

Amine aus Azomethinen
s. 1, 355

Amine aus Nitrilen
s. 1, 51

Nickel

Ni

Amine aus Azomethinen
s. 1, 354

Amine aus Nitrilen

37. Benzylcyanid mit Raney-Ni in fl. NH₃ oder bei 0° mit NH₃ gesätt. Methanol bei 500–2000 lb. Anfangsdruck u. 100–130° hydriert → β-Phenyläthylamin. A: 83–90%. (W. B. s. J. C. Robinson jr. u. H. R. Snyder, Org. Synth. 23, 71 (1943). S. a. G. Reutenuer u. C. Paquot, C. r. 223, 578 (1946).)
s. a. 1, 52; 2, 68–70

Nickel, platiniert

Ni/Pt

Amine aus Nitrilen und Oximen

←

38. Schwierige Reduktionen können mit platinierterem Raney-Ni in Na₂CO₃-Medium nach Delépine u. Horeau, Bl. 4, 3 (1937), quantitativ verlaufen.
— B: Triphenyl-acetonitril → β,β,β-Triphenyläthylamin. α-Phenyl-β,β-dimethyl-β-butyläthylamin aus dem entsprechenden Oxim. (W. B. s. J. Décombe, C. r. 222, 90 (1946).)

*Platinoxyd*PtO₂**Amine aus Hydrazonen**

39.

N-Acetyl-isopelletierin-phenylhydrazone mit Adams-Katalysator (PtO₂) in Essigsäure bei 25° u. 3 at hydriert → 1-(N-Acetyl-2-piperidyl)-2-aminopropan. A: 92%. (T. R. Norton u. a., Am. Soc. 68, 1330 (1946).)

Amine aus Nitrilen

s. 1, 53

α -Aminoalkohole aus Cyanhydrinen

s. 1, 54

Hydrierung des Isochinolinrings

s. 2, 839

Anlagerung an Kohlenstoffs. a. $\text{OC} \downarrow \text{CC}$, $\text{SC} \downarrow \text{CC}$ $\text{HC} \downarrow \text{CC}$ **Elektrolyse****Aethylen- aus Acetylen-derivaten** $\text{C} : \text{C} \rightarrow \text{C} : \text{C}$

40.

Methylpropyläthinylcarbinol elektrolytisch mit einer Cu-Platte als Kathode, einem Ni-Draht als Anode u. 1%ig. Na-Carbonat-Lsg. als Katholyt reduziert → Methylpropylvinylcarbinol. A: 75–80%. (I. A. Shikheev, J. Gen. Chem. (UdSSR.) 16, 657 (1946).) S. a. J. N. Azerbaev, J. Gen. Chem. (UdSSR.) 15, 412 (1945).)

Dihydroacridine aus Acridinen

s. 1, 55

Natrium

Na

Aethylen- aus Acetylen-derivaten

s. 1, 59

 $\text{C} : \text{C} \rightarrow \text{C} : \text{C}$ **Kernhydrierung**

s. 2, 71

Selektive Kernhydrierung

41.

4-(p-Methoxyphenyl)-benzoësäure (Darst. s. 237) mit Na in Isoamylalkohol bei ca. 130° innerhalb ca. $1\frac{1}{4}$ Stdn. reduziert → 4-(p-Methoxyphenyl)-cyclohexancarbonsäure. — Wenn die Reduktion beim ersten Ansatz nicht vollständig ist, wird sie wiederholt. A: 87–91%. (W. S. Johnson, C. D. Gutsche u. R. D. Offenhauer, Am. Soc. 68, 1648 (1946).)

Tert. Amine aus Aethylenderivaten

s. 1, 291

 $\text{C} : \text{C} \rightarrow \text{CHCNRR}'$ **Natriumamalgam**

Na,Hg

Hydrierung der Kohlenstoff-Doppelbindung

s. 3, 610

 $\text{C} : \text{C} \rightarrow \text{CHCH}$

<i>Kalilauge</i>	<i>KOH</i>
Dicarbonsäuren aus β-Ketocarbonsäureestern	←
s. 2, 160	
<i>Quecksilber</i>	<i>Hg</i>
Anlagerung von Wasser und Alkoholen an die Kohlenstoff-Dreifachbindung	←
s. OC \downarrow CC·Hg	
<i>Zinkchlorid</i>	<i>ZnCl₂</i>
Tokopherol-Synthese	←
s. 2, 739	
<i>Kupferchromit</i>	<i>CuCr₂O₄</i>
Kernhydrierung	←
s. 2, 72/3	
<i>Kobalt/Aluminiumoxyd</i>	<i>Co/Al₂O₃</i>
Kernhydrierung	
s. 3, 45	
<i>Nickel</i>	<i>Ni</i>
Herstellung eines Raney-Ni-Katalysators	←
s. 1, 56	
Hydrierung der Kohlenstoff-Doppelbindung	$C : C \rightarrow CHCH$
s. 1, 669; 2, 74	
Hydrierung der Kohlenstoff-Dreifachbindung	$C : C \rightarrow CH_2CH_2$
42. 2-Butin-1,4-diol mit Raney-Ni in Methanol unter Kühlung bei 150 at im rotierenden Autoklaven 30 Min. hydriert → Butan-1,4-diol. A: 92 %. (A. W. Johnson, Soc. 1946, 1014.)	
cis-trans-Isomere Aethylenderivate aus Acetylenderivaten	$C : C \rightarrow C : C$
s. 1, 59/60	
Kernhydrierung bei O-Heterocyclen	

43.

Dihydropyran mit Raney-Ni bei 40 lb. Anfangsdruck u. Zimmertemp. innerhalb 15–20 Min. hydriert → Tetrahydropyran. A: fast 100 %. (D. W. Andrus u. J. R. Johnson, Org. Synth. 23, 90 (1943).)

s. a. 1, 57/8

gleichzeitig Alkohole aus Aldehyden
s. 2, 75

Kernhydrierung bei N-Heterocyclen

44.

N-Acetyl-7-oxy-8-methyl-1,2,3,4-tetrahydroisoquinolin mit Raney-Ni in abs. Alk. bei 3000 lb. Druck u. 150° 16 Stdn. hydriert \rightarrow stereoisomeres Gemisch von N-Acetyl-7-oxy-8-methyldecahydroisoquinolinen. A: ca. 100 %. — Pt-Katalysator entfernt auch die Hydroxylgruppe. (W. B. s. R. B. Woodward u. W. E. Doering, Am. Soc. 67, 860 (1945).) s. a. 3, 54

auch gleichzeitig Alkylierung

s. 2, 76

Hydrierung der Kohlenstoff-Doppelbindung,
gleichzeitig Amine aus Nitroverbindungen

s. 2, 77

Nickel/Alkalien**Carbonsäuren, gesätt. aus Aethylencarbonsäuren** $\text{C : C} \rightarrow \text{CHCH}$

s. 2, 74

s. a. W. D. McPhee u. E. S. Erickson jr., Am. Soc. 68, 624 (1946)

Nickel/Ameisensäure Ni/HCOOH **Kernhydrierung**

s. 1, 28

Rutheniumdioxyd RuO_2 **Kernhydrierung**

45. p-Diäthylaminoanilin mit RuO_2 hydriert \rightarrow N,N-Diäthyl-1,4-cyclohexandiamin A: 74 %. — Die Hydrierung mit $\text{Co-Al}_2\text{O}_3$ bei $200-210^\circ$ begünstigt die Bildung von trans-Isomerem, während RuO_2 bei $100-110^\circ$ mehr cis-Isomeres gibt. (W. B. s. L. C. Behr u. a., Am. Soc. 68, 1296 (1946).)

Palladium-Mohr Pd **Hydrierung der Kohlenstoff-Doppelbindung** $\text{C : C} \rightarrow \text{CHCH}$

s. 2, 78

Lenkung der Hydrierung

s. 2, 94

Palladium-Calciumcarbonat Pd-CaCO_3 **Hydrierung der Kohlenstoff-Doppelbindung** $\text{C : C} \rightarrow \text{CHCH}$

s. 2, 80

Aethylen- aus Acetylen-derivaten $\text{C : C} \rightarrow \text{C : C}$

s. 2, 79

*Palladium-Strontiumcarbonat**Pd-SrCO₃***Hydrierung der Kohlenstoff-Doppelbindung**

s. 1, 606

C : C → CHCH

Kernhydrierung

s. 2, 81

*Palladium-Bariumcarbonat**Pd-BaCO₃***Selektive Hydrierung
der Kohlenstoff-Doppelbindung**

s. 2, 82

C : C → CHCH

Hydrierung von Pyronen

s. 2, 83

←

*Palladium-Bariumsulfat**Pd-BaSO₄***Hydrierung der Kohlenstoff-Doppelbindung**

s. 3, 46, 140

C : C → CHCH

*Palladium-Kohle**Pd-C*

46. Mit einem Pd-Katalysator auf Kohle oder BaSO₄ (Darst. s. Original) mit oder ohne Mineralsäure kann die C-C-Doppelbindung von Thiophenen, Biotin-Zwischenprodukten u. anderen Sulfiden hydriert u. ferner bei α-Bromthiophen das Brom durch Wasserstoff ersetzt werden. Nach diesem Verfahren können auch Nitro- und Carbonyl-Gruppen reduziert werden. Bei α,β-ungesättigten Ketonen kann die C-C-Doppelbindung bevorzugt hydriert werden. — B: Thiophen mit Pd-Kohle in Methanol mit konz. H₂SO₄ 20–30 Min. bei 2–4 at hydriert → Tetrahydrothiophen. A: 71%. (W. B. s. R. Mozingo u. a., Am. Soc. 67, 2092 (1945).)

Kernhydrierung

←

47. β-Naphtol mit 5%ig. Pd-Kohle in Ggw. von N-Aethylmorpholin in Alk. bei 2500 lb. Anfangsdruck u. 175° 10–15 Stdn. hydriert → β-Tetralon, isoliert als Bisulfitverbindung. A: 40%, 65% bezogen auf verbrauchtes β-Naphtol. — Ohne Basenzusatz ist die Ausbeute nur gering. (G. Stork u. E L. Foreman, Am. Soc. 68, 2172 (1946).)

*Platin**Pt***Entfernung von Katalysatorgiften**

s. 2, 84

C : C → CHCH

Hydrierung der Kohlenstoff-Doppelbindung

48.

1-(m-Bromphenyl)-1,2-dimethyläthylen mit PtO (nach Adams, Voorhees u. Shriner, Org. Synth., Coll. Vol. I, 463 (1941)) in abs. Alk. bei 25–30° 1 Stde. hydriert → m-sek.-Butylbrombenzol. A: 92,3 %. — Die Hydrierung mit Ni gelang nicht. (C. S. Marvel, R. E. Allen u. C. G. Overberger, Am. Soc. 68, 1088 (1946).)

Cyclohexan- aus Cyclohexenderivaten

s. 1, 61

Selektive Hydrierung der Kohlenstoffdoppelbindung

s. 1, 62

Partielle Hydrierung von Dienen

s. 2, 86/7

Aethylen- aus Acetylen-derivaten

s. 2, 85

Reduktion von Lactamen

s. 1, 79

Umlagerung

Typus Sauerstoff/Kohlenstoff

HC \cap OC

Kalilauge

KOH

α,β -ungesättigte Carbonsäuren aus α -Brom-methylketonen

s. 2, 494

Silberoxyd

Ag_2O

Synthesen mit Diazomethan

s. 1, 190, 623–31; 2, 216, 708, 771

Bleitetraacetat

$\text{Pb} (\text{CH}_3\text{COO})_4$

Ketone aus Aethylenderivaten

$\text{CH} : \text{CH} \rightarrow \text{CH}_2\text{CO}$

s. 1, 139

Wasserstoffperoxyd

H_2O_2

s. 2, 170

Ammoniumpolysulfid

$(\text{NH}_4)_2\text{S}_x$

Willgerodt-Umlagerung

s. 1, 151/2; 2, 180/1

<i>Ueber Zwischenverbindungen</i>	$\ddot{\cup}$. Z.
Ketone aus Aethylenderivaten s. 2, 179	$\text{CH}:\text{CH} \rightarrow \text{CH}_2\text{CO}$
Ketone aus 1,2-Dihalogenverbindungen s. 2, 818	$\text{CHBrCHBr} \rightarrow \text{CH}_2\text{CO}$

Austausch

Sauerstoff \downarrow	HC \uparrow O
<i>Elektrolyse</i>	\swarrow
Alkohole aus Carbonsäuren s. 1, 63	$\text{COOH} \rightarrow \text{CH}_2\text{OH}$
Kohlenwasserstoffe aus Ketonen s. 1, 77	$\text{CO} \rightarrow \text{CH}_2$
Amine aus Carbonsäureamiden s. 2, 88	$\text{CONH}_2 \rightarrow \text{CH}_2\text{NH}_2$
<i>Natrium</i>	<i>Na</i>
Alkohole aus Carbonsäureestern Bouveault-Blanc-Reduktion s. 1, 64, 75; 2, 89/90	$\text{COOR} \rightarrow \text{CH}_2\text{OH}$

Neue Verfahren

49. Eine verbesserte allgemeine Methode zur Reduktion von Fettsäureestern mit Na wurde ausgearbeitet. Als reduzierende Alkohole eignen sich sek. Alkohole am besten. Es wurde nur ein kleiner, ca. 5 %/ig. Ueberschuß an Na u. reduzierendem Alkohol verwendet, dazu noch ein inertes Lösungsmittel, ein Aether oder Kohlenwasserstoff, wie z.B. Xylol. Ester u. reduzierender Alkohol werden mit genügend Lösungsmittel versetzt, um die Reaktionsmischung flüssig zu erhalten, u. unter Röhren u. Siedetemp. zu fein verteilt Na im Lösungsmittel gegeben. Die Ausbeuten betragen 80–95 %. Die Methode ist besonders nützlich zur Darst. von ungesättigten Alkoholen aus ungesättigten Estern. — Auch Nitrile können nach diesem Verfahren zu Aminen reduziert werden. (V. L. Hansley, Ind. Eng. Chem. 39, 55 (1947).)
50. Durch Zusätze, die das entstehende Alkoholat zerstören, wie z. B. CO_2 , NH_4Cl , u. durch Einhalten bestimmter Reaktionsbedingungen (s. Original) kann die Ausbeute erhöht werden. — B: Oelsäurebutylester mit einem 25 %/ig. Natriumüberschuß in Butanol u. CO_2 -Atmosphäre bei 80–110° \rightarrow Oleylalkohol. A: 95 %. (L. Palfray u. P. Anglaret, C. r. 224, 404 (1947); 223, 205 (1946).)

Acridine aus Acridonen

s. 2, 91

←

Natriumamalgam*Na,Hg*

s. 1, 65; 2, 92

Aminoacridine aus Nitroacridonen

s. 1, 23

Kupfer*Cu***Kohlenwasserstoffe aus Aldehyden** $\text{CHO} \rightarrow \text{CH}_3$

s. 1, 28

Kupferoxyd*CuO***Alkohole aus Carbonsäuren** $\text{COOH} \rightarrow \text{CH}_2\text{OH}$

51. Bei der katalytischen Hydrierung von Carbonsäuren mit Cu-Chromit oder CuO mit oder ohne Zusatz von Erdalkalioxyden nehmen die Ausbeuten an Alkoholen mit abnehmender Kettenlänge ebenfalls ab, u. zwar am schnellsten bei Verwendung von Cu-Chromit, am langsamsten bei Verwendung des säurebeständigen CuO mit Erdalkali-Zusatz. — B: Laurinsäure mit CuO bei 250 at u. 300° innerhalb 90 Min. hydriert → Laurylalkohol. A: 94 %. (W. B. s. A. Guyer, A. Bieler u. K. Jaberg, Helv. 30, 39 (1947).)

Zinkstaub*Zn***Kohlenwasserstoffe aus Ketonen** $\text{CO} \rightarrow \text{CH}_2$

s. 1, 576

Kohlenwasserstoffe aus Chinonen

←

s. 1, 66; 2, 93

Zinkstaub, verkupfert*Zn,Cu***Kohlenwasserstoffe aus Aldehyden** $\text{CHO} \rightarrow \text{CH}_3$

s. 1, 67

Zinkamalgam*Zn,Hg***Clemmensen-Reduktion****Kohlenwasserstoffe aus Aldehyden**

s. 1, 68, 617

Kohlenwasserstoffe aus Ketonen $\text{CO} \rightarrow \text{CH}_2$

s. 1, 70; 2, 601

Alkylphenole aus Phenolketonen

s. 1, 69

Kohlenwasserstoffe aus Chinonen

←

s. 1, 71

*Lithium-Aluminium-Hydrid**LiAlH₄*

**Alkohole aus Carbonsäure-anhydriden, -estern
u. -chloriden
sowie aus Oxoverbindungen**

52.

Aldehyde, Ketone, Carbonsäuren, Carbonsäure-ester, -chloride u. -anhydride können mit LiAlH_4 in Ae. mit guten Ausbeuten zu den entsprechenden Alkoholen reduziert werden. Die Methode eignet sich besonders für die Darst. von ungesättigten Alkoholen, da Doppelbindungen gewöhnlich nicht angegriffen werden. — B: Butanon-2 → sek. Butylalkohol. A: 80%. — Phtalsäureanhydrid → Phtalylalkohol. A: 87%. (W. B. s. R. F. Nystrom u. W. G. Brown, Am. Soc. 69, 1197, 2548 (1947). Ueber Reduktionen mit NaH s. G. Darzens, C. r. 224, 570 (1947).)

*Aluminium-Kupfer**Al,Cu***Kohlenwasserstoffe aus Ketonen** $\text{CO} \rightarrow \text{CH}_2$

s. 1, 41

*Aluminiumamalgam**Al,Hg***Acridine aus Acridonen**

s. 1, 756

Aminoacridine aus Nitroacridonen

s. 1, 23

*Zinn(II)-chlorid**SnCl₂***Amine und Aldehyde aus Carbonsäureamiden**
 $\text{CONH}_2 \xrightarrow{\quad} \text{CHO}$
 $\text{CONH}_2 \xrightarrow{\quad} \text{CH}_2\text{NH}_2$

s. 1, 72

*Phosphor**P***Kohlenwasserstoffe aus Ketonen über Alkohole** $\text{CO} \rightarrow \text{CH}_2$

s. 1, 73

Carbonsäuren aus Ketocarbonsäuren über Lactone

s. 1, 74

*Kupferchromit**CuCr₂O₄***Alkohole aus Carbonsäuren** $\text{COOH} \rightarrow \text{CH}_2\text{OH}$

s. 3, 51

Optisch aktive α -Aminoalkohole aus racem. α -Bromfettsäuren $\text{CHBrCOOH} \rightarrow \text{CHNH}_2\text{CH}_2\text{OH}$

s. 1, 75

Molybdänsulfid MoS_2 **Kohlenwasserstoffe aus Lactonen**

53.

Phtalid in Tetralin bei 300–330° u. 120 at in Ggw. von 10% MoS₂, 5 Stdn. hydriert → o-Xylol. A: 85%. (B. L. Moldavskii u. L. E. Turetskaya, J. Gen. Chem. (UdSSR.) 16, 445 (1946).)

Perchlorsäure $HClO_4$ **Kohlenwasserstoffe aus Ketonen** $CO \rightarrow CH_2$

s. 3, 56

s. a. 1, 76, 712

Nickel Ni **Totale Hydrierung**

54.

3-Acetyl-2-phenylpyrrocolin (Darst. s. 626) in Dioxan mit Raney-Ni bei 125 at/Zimmertemp. u. 190° 10,2 Stdn. hydriert → 2-Cyclohexyl-3-äthyloctahydropyrrocolin. A: 92%. (B., auch zur partiellen Hydrierung s. E. T. Borrows, D. O. Holland u. J. Kenyon, Soc. 1946, 1083.)

Nickel, platiniert Ni/Pt **Methylgruppen aus acylierten Oxymethylengruppen** : CHOAc → · CH₃

55.

1-Methyl-3-acetoxymethylene-cyclohexanone-(2) mit platinierterem Raney-Ni (s. Neuere Methoden der präp. org. Chemie, Berlin 1943, Seite 99) unter Normaldruck 30 Stdn. bis zum Stillstand der H₂-Aufnahme hydriert → 1,3-Dimethyl-cyclohexanone-(2). A: 57%. (P. A. Plattner, A. Fürst u. J. Hellerbach, Helv. 30, 100 (1947).)

Palladium-Mohr Pd **Lenkung der Hydrierung**

s. 2, 94

Hydrierung von Arylglyoxylsäureestern

s. 1, 712

 $CO \rightarrow CH_2$

Palladium-Bariumsulfat**Pd-BaSO₄** **β -Aryl-alkylamine**

s. 1, 76

Palladium-Kohle**Pd-C****Kohlenwasserstoffe aus Ketonen**

56. α -Phenyl- β -benzoyl-propionsäure in Eisessig in Ggw. von etwas HClO₄ mit 5%ig. Pd-Kohle bei 30–35 lb. Druck ca. 1 Stde. hydriert → α , γ -Diphenylbuttersäure. A: 82,5%. (R. H. Baker u. W. W. Jenkins, Am. Soc. 68, 2102 (1946). Methode s. K. W. Rosenmund u. E. Karg, B. 75, 1850 (1943); Synth. Meth. 1, 76.)

Platin**Pt**

s. 1, 77

 δ -Oxyaldehyde aus δ -Lactonen

←

s. 1, 78

Reduktion von Lactamen

←

s. 1, 79

Ueber Zwischenprodukte

ü. Z.

Kohlenwasserstoffe aus OxoverbindungenCO → CH₂**über Hydrazone nach Wolff-Kishner**

s. 1, 80–2; 2, 96–100

Vereinfachte Verfahren

57.

Oxoverbindungen werden mit 85%ig. Hydrazin-hydrat u. NaOH oder KOH in Di- oder Tri-äthylenglykol während einer Stde. so hoch erhitzt, daß genügend W. u. überschüssiges Hydrazin-hydrat abdestilliert, damit die Temp. auf 180–200° steigt und hierauf noch 3–4 Std. unter Rückfluß gekocht. Die Ausbeuten sind ausgezeichnet u. das Verfahren ist für große Ansätze geeignet. — B: β -(p-Phenoxybenzoyl)-propionsäure (Darst. s. 566 a) → γ -(p-Phenoxyphenyl)-Buttersäure. A: 95–96%. (W. B. s. Huang-Minlon, Am. Soc. 68, 2487 (1946).)

s. a. 2, 95

Ohne Alkalizusatz

58.

p-Methylacetophenon mit Hydrazinhydrat 12 Std. im Autoklaven auf 210° erhitzt → 1-Methyl-4-äthylbenzol. A: 83%. (W. B. s. I. J. Rinkes, R. 64, 205 (1945).)

Kohlenwasserstoffe aus AldehydenCHO → CH₃**über Azomethine**

s. 1, 91

**Alkohole aus Carbonsäuren
über Thiolsäureester**
s. 2, 101

COOH → CH₂OH

**Sek. Amine aus Carbonsäureamiden
Isoalloxazine
Flavinsynthese**
s. 2, 102

←

Stickstoff ↓**HC \leftrightarrow N***Natriumnitrit*NaNO₂

**Austausch von Aminogruppen
gegen Wasserstoff**
s. 2, 103

NH₂ → H

Kupfer(I)-oxyd
s. 1, 87/90

Cu₂O

**Die Einwirkung von Cu₂O
auf diazotierte Amine in saurer alkoh. Lsg.**
s. 1, 86

Zinkstaub

Zn

Phenole aus Chinonen
s. 1, 83

←

Aluminium

Al

Naphtole aus Diazo-oxyden
s. 2, 104

←

*Zinn(II)-chlorid*SnCl₂**Methylketone aus α-Diazoketonen**COCHN₂ → COCH₃

59.

2-(4-Chlorophenyl)-4-chinolyl-diazomethylketon mit SnCl₂ in einer 1:2:1-Mischung von konz. HCl, W. u. Alk. → 2-(4-Chlorphenyl)-4-chinolyl-methylketon. Roh-A: 97 %. (Weitere Methoden zur Darst. von Methylketonen u. B. s. R. E. Lutz u. a., Am. Soc. 68, 1813 (1946).)

Amine und Aldehyde aus Carbonsäureamiden
s. 1, 72

$$\begin{array}{c} \text{CONH}_2 \xrightarrow{\quad} \text{CHO} \\ \xrightarrow{\quad} \text{CH}_2\text{NH}_2 \end{array}$$

Unterphosphorige Säure H_3PO_2 **Austausch von Aminogruppen
gegen Wasserstoff** $NH_2 \rightarrow H$ **Allgemeine Methode**

s. 1, 84

s. a. 1, 85; 2, 105

*Jodwasserstoffsäure***HJ****Methylketone aus α -Diazoketonen** $COCHN_2 \rightarrow COCH_3$

60.

Eine Lsg. von 2 g 1-Diazo-1-desoxy-keto-d-galaheptulose-pentaacetat in Chlf. mit 47%ig. HJ versetzt u. 1–2 Min. bis zum Aufhören der N₂-Entwicklung geschüttelt → 1,8 g 1-Desoxy-keto-d-galaheptulose-pentaacetat. — Auch 1-Jod u. 1,1-Dijod-keto-d-galaheptulose-pentaacetat ließ sich auf diese Weise mit fast quantitativer Ausbeute reduzieren. (W. B. s. M. L. Wolfrom u. R. L. Brown, Am. Soc. 65, 1516 (1943).)

Palladium-Bariumsulfat $Pd\text{-BaSO}_4$ **Aryläthylketone durch hydrierende
thermische Zersetzung von Aryl- β -amino ketonen** $CH_2NR_2 \rightarrow CH_3$

s. 2, 106

Palladium-Kohle $Pd\text{-C}$ **Kohlenwasserstoffe aus Aldehyden
über Azomethine** $CHO \rightarrow CH_3$

s. 1, 91

Ueber Zwischenprodukte $\ddot{u}. Z.$ **Austausch von Aminogruppen
gegen Wasserstoff über Chloride** $NH_2 \rightarrow H$

s. 1, 92

**Aldehyde aus Carbonsäuren
über Carbonsäureanilide** $COOH \rightarrow CHO$

s. 2, 122

Aldehyde aus Hydraziden $CONHNH_2 \rightarrow CHO$

s. 1, 109/10

Halogen \downarrow **HC \downarrow Hal***Magnesium**Mg***Austausch von Chlor gegen Wasserstoff** $\text{Cl} \rightarrow \text{H}$

s. 1, 596

Austausch von Jod gegen Wasserstoff $\text{J} \rightarrow \text{H}$

61. 2-Decylmethyljodid in die Grignard-Verbindung umgesetzt u. mit verd. Essigsäure behandelt \rightarrow 2-Methyldecalin. A: 76–81 %. (W. B. s. R. Y. Levina u. S. G. Kulikov, J. Gen. Chem. (UdSSR.), 16, 117 (1946).)

*Zink**Zn***Austausch von Chlor gegen Wasserstoff** $\text{Cl} \rightarrow \text{H}$

s. 86

s. a. 2, 107

Austausch von Brom gegen Wasserstoff $\text{Br} \rightarrow \text{H}$

- 62.

Fluoren-1-methylbromid mit Zn in Eisessig \rightarrow 1-Methylfluoren. A: 83 %. (L. A. Pinck u. G. E. Hilbert, Am. Soc. 68, 751 (1946).)

*Lithium-Aluminium-Hydrid**LiAlH₄***Alkohole aus Carbonsäurechloriden** $\text{COCl} \rightarrow \text{CH}_2\text{OH}$

s. 3, 52

*Aluminiumamalgam**Al,Hg*

s. 2, 108

*Zinn(II)-chlorid**SnCl₂***Austausch von Chlor gegen Wasserstoff** $\text{Cl} \rightarrow \text{H}$

s. 2, 109

Methylketone aus α -Bromketonen $\text{Br} \rightarrow \text{H}$

- 63.

α -Brommethyl-6-methoxy-2-phenyl-4-chinolyl-keton-hydrobromid in 4-n. HCl suspendiert u. mit SnCl_2 5 Stdn. auf kochendem Wasserbad er-

hitzt \rightarrow 6-Methoxy-2-phenyl-4-chinolyl-methylketon. A: 83,5 %. (Weitere Methoden zur Darst. von Methylketonen u. B. s. R. E. Lutz u. a., Am. Soc. 68, 1813 (1946).)

*Nickel**Ni***Austausch von Chlor gegen Wasserstoff** $\text{Cl} \rightarrow \text{H}$

s. 3, 86

s. a. 1, 93–6; 2, 120

Partieller Austausch

64.

4,7-Dichlorcarbostyryl mit Raney-Ni in Alk. in Ggw. von KOH bei Zimmertemp. u. Atmosphärendruck 45 Stdn. hydriert \rightarrow 7-Chlorcarbostyryl. A: 93 %. — Mit Pd-BaSO₄ u. Al in Essigsäure gelang der partielle Austausch nicht. (R. E. Lutz, G. Ashburn u. R. J. Rowlett, jr., Am. Soc. 68, 1322 (1946).)

Austausch von Brom gegen Wasserstoff $\text{Br} \rightarrow \text{H}$

65.

α -Acetamino- β -[2-brom-cumaronyl-(3)]-propionsäure in NaOH gelöst, mit alkoholfeuchtem Raney-Ni versetzt u. bei Zimmertemp. u. schwachem Ueberdruck ca. 2 1/2 Stdn. hydriert \rightarrow α -Acetamino- β -[cumaronyl-(3)]-propionsäure. A: 91 %. (H. Erlenmeyer u. W. Grubenmann, Helv. 30, 297 (1947).)

s. a. 2, 110

Austausch von Jod gegen Wasserstoff $\text{J} \rightarrow \text{H}$

66.

Methyl-2,3,4-tribenzoyl-6-desoxy-6-jod-a-D-mannopyranosid mit Raney-Ni in Methanol in Ggw. von Diäthylamin bei Zimmertemp. u. Atmosphärendruck 90 Min. hydriert \rightarrow Methyl-2,3,4-tribenzoyl-a-D-rhamnopyranosid (Ausg. f. 5). A: 95 %. — Bei dieser Reaktion ist die Ver-

wendung von Diäthylamin u. des Benzoyl- anstatt des Acetyl-derivats vorteilhaft. (W. T. Haskins, R. M. Hann u. C. S. Hudson, Am. Soc. 68, 628 (1946).)

Palladium-Bariumcarbonat

Pd-BaCO₃

Austausch von Chlor gegen Wasserstoff
s. 1, 97

Cl → H

Palladium-Bariumsulfat

Pd-BaSO₄

Aldehyde aus Carbonsäurechloriden
s. 1, 99, 101

COCl → CHO

**Mit «vergiftetem» Katalysator
nach Rosenmund u. Zetzsche**
s. 1, 100

Palladium-Kohle

Pd-C

Austausch von Halogen gegen Wasserstoff

Hal → H

Platinoxyd

PtO₂

67. Aliph. gebundenes Halogen widersteht dem katalytischen Austausch gegen Wasserstoff mit Pd-Tierkohle oder Adamskatalysator in saurem oder neutralem Medium, außer wenn es unter dem Einfluß von benachbarten Kohlenstoff-Mehrfachbindungen steht. Ohne Aktivierung durch andere Substituenten ist auch ar. gebundenes Chlor beständig unter Bedingungen, die nicht den ar. Ring reduzieren. Entsprechend gebundenes Brom wird langsam entfernt. Aminogruppen im ar. System machen Halogen labil, gleichgültig in welcher Stellung. Dieser Effekt verschwindet, wenn die Aminogruppe kationisch wird. (R. Baltzly u. A. P. Phillips, Am. Soc. 68, 261 (1946) B. s. a. M. Levitz u. M. T. Bogert, J. org. Chem. 10, 341 (1945).)

Aldehyde aus Carbonsäurechloriden

COCl → CHO

s. 1, 102

Ueber Zwischenprodukte

ü. Z.

**Austausch von Chlor gegen Wasserstoff
über Hydrazine**

Cl → H

68.

Eine Mischung von 10 g 4-Chlor-7-phenoxychinolin u. 85%ig. Hydrazinhydrat in Alk. 5 Stdn. unter Rückfluß gekocht → 11,8 g rohes 4-Hydrazino-7-phenoxychinolin, davon 5,4 g in W. suspendiert, unter Rühren u. Rückfluß zum Sieden erhitzt, innerhalb 45 Min. mit 10%ig.

CuSO₄-Lsg. behandelt u. noch 1 Stde. unter Röhren u. Rückfluß erhitzt, wobei nach 1/2 Stde. ein Ueberschuß an 10%ig. NaOH-Lsg. zugegeben wurde → 7-Phenoxy-chinolin. A: 67%. (R. O. Clinton u. C. M. Suter, Am. Soc. 69, 704 (1947).)

s. 2, 111

Acridine aus Chloracridinen über Acridane

69.

4,5-Dimethyl-9-chloroacridine mit Raney-Ni in Ggw. von KOH in Bzl.-Alk. bei 35–45° hydriert u. das entstandene 4,5-Dimethylacridan mit K₂CrO₄ in H₂SO₄ oxydiert → 4,5-Dimethylacridin. A: 80%. — Die Methode soll den früheren überlegen sein, insbesondere die Oxydation mit K₂CrO₄, ob nun das Acridan auf obige oder andere Weise hergestellt worden ist. (W. B. s. A. Albert u. J. B. Willis, J. Soc. chem. Ind., 65, 26 (1946).)

Austausch von Jod gegen Wasserstoff über Thiuroniumsalze

s. 2, 111

J → H

Schwefel ↓

HC↑S

Zink

Zn

Austausch von Schwefel gegen Wasserstoff

S → H

70.

5 g 2,6-Dithio-3,5-diphenyl-1-thia-γ-pyranon in kochender Essigsäure gelöst, Zn-Staub u. hierauf in kleinen Portionen konz. HCl zugegeben, nach einer halben Stde. diese Zugaben wiederholt u. noch ca. 2 Stdn. gekocht, bis die Farbe der Mischung schwachgelb wurde → 2 g 3,5-Diphenyl-1-thia-γ-pyranon. (A. Schönberg u. Wafia Asker, Soc. 1946, 604.)

Wasserstoffperoxyd oder Salpetersäure

H₂O₂ oder HNO₃

Austausch von Mercaptogruppen gegen Wasserstoff

SH → H

s. 1, 103

Schwefelsäure H_2SO_4 **Desulfonierung** $SO_2NH_2 \rightarrow H$

71.

3,5-Dibromsulfanilamid (Darst. s. 440) in 70%ig. H_2SO_4 im Oelbad erhitzt, bei einer Badtemp. von 175–180° 2 Stdn. schnell Wasserdampf durchgeleitet u. hierauf bei 105–110° Badtemp. weiter wasserdampfdestilliert → 2,6-Dibromanilin. A: 66–79%. — Ebenso: 2,6-Dichloranilin. A: 75–80%. (M. K. Seikel, Org. Synth. 24, 47 (1944).)

*Nickel**Ni***Kohlenwasserstoffe aus Thioäthern** $CH_2SR \rightarrow CH_3$

s. 2, 112/3

Tetrahydrothiophenring-Oeffnung
s. 2, 114**Kohlenwasserstoffe aus Mercaptalen** $C(SR)_2 \rightarrow CH_2$

72.

Cholestanon-3-thioacetal u. modifiziertes Raney-Ni (Darst. s. Original) in Dioxan 17 Stdn. auf dem Dampfbad erhitzt → Cholestan. Roh-A: 91%. (W. B. s. S. Bernstein u. L. Dorfman, Am. Soc. 68, 1152 (1946).)

Kohlenwasserstoffe aus Thiuroniumsalzen
s. 2, 111**Kohlenwasserstoffe aus Xanthaten**

73.

Tetraacetyl-d-glucopyranosyl-äthyl-xanthat mit Raney-Ni in abs. Alk. 6 Stdn. gelinde unter Rückfluß gekocht → Tetraacetyl-1,5-anhydro-d-sorbit. A: 81%. (H. G. Fletcher jr., Am. Soc. 69, 706 (1947).)

Alkohole aus Thiolsäureestern $COSR \rightarrow CH_2OH$

s. 2, 101, 115

Aldehyde aus Thiolsäureestern $COSR \rightarrow CHO$

74.

Thiolpropionsäure-äthylester in 80%ig. Alk. mit Raney-Ni 6 Stdn. unter Rückfluß gekocht → Propionaldehyd isoliert als Na-Bisulfit-Komplex. A: 73%. (W. B. s. M. L. Wolfrom u. J. V. Karabinos, Am. Soc. 68, 1455 (1946).)

Kohlenstoff↑**HC↑C***Natronlauge**NaOH***Spaltung von 1,3-Sulfonylketonen**
s. 2, 116, 716**Austausch von Carbalkoxygruppen
gegen Wasserstoff**
s. 2, 648

COOR → H

**Austausch von Cyan- und anderer,
sich von der Carboxylgruppe ableitender
funktioneller Gruppen gegen Wasserstoff;
Carbonsäuren aus Nitrilen**

75.

3-Cyano-4-methyl-6-ethoxymethyl-2-pyridone mit NaOH im Autoklaven auf ca. 170°

40 g 5 Stdn. erhitzt → 33 g Na-4-Methyl-6-ethoxymethyl-2-pyridon-3-carboxylat.

36 Stdn. erhitzt → 4-Methyl-6-ethoxymethyl-2-pyridone.
A: 89%.

(W. B. s. W. Wenner u. J. T. Platti, J. org. Chem. 11, 751 (1946).)
s. a. 3, 665

Pyronring-Oeffnung**C**

76.

Isopomiferindimethyläther u. NaOH in W.-Alk. ca. 1/4 Stde. unter Rückfluß gekocht → Isopomiferitindimethyläther. A: 80%. (W. B. s. M. L. Wolfrom u. a., Am. Soc. 68, 406 (1946).)

Cumarinring-Oeffnung
s. 1, 104

C

Natriumalkoholat

NaOR

Aldehyde aus Glycidcarbonsäureestern

←

77.

β -Methyl- β -phenyl-glycidcarbonsäure-äthylester (Darst. s. 681) langsam unter Schütteln zu einer Lsg. von Na in abs. Alk. gegeben, auf 15° gekühlt, W. zugefügt, über Nacht stehengelassen, das Salz abgesaugt (A: 80–85 %), zu HCl gegeben, zuerst gelinde u. dann 1 1/2 Stdn. auf dem Dampfbad erwärmt → α -Phenylpropionaldehyd (A: 65–70 %). (C. F. H. Allen u. J. Van Allan, Org. Synth. 24, 87 (1944).)

*Kupfersalz/Zink*Cu⁺⁺/Zn**Reduktive Spaltung**

←

s. 1, 547

*Siliciumdioxyd-Aluminiumoxyd*SiO₂Al₂O₃**Desalkylierung von Alkylbenzolen**

←

78. Diäthylbenzol in Bzl. bei 400° u. 500 lb./sq. in. über einen SiO₂-Al₂O₃-Katalysator geleitet → Aethylbenzol. A. pro Passage 51,6 %, nach 12 Stdn. insgesamt 96 %. — Arbeiten unter Ueberdruck verbessert die Ausbeute u. schont den Katalysator. (W. B. s. W. M. Kutz u. B. B. Corson, Ind. Eng. Chem. 38, 761 (1946).)

*Bleidioxyd-Kaliumhydroxyd*PbO₂-KOH**Austausch von Benzoyl gegen Wasserstoff**COC₆H₅ → H

s. 1, 534

*Phosphorsäure*H₃PO₄**Austausch von Acetyl gegen Wasserstoff**COCH₃ → H

79.

9-Acetyloctahydroanthracen mit sirupöser (85 %ig.) H₃PO₄ 6 Stdn. unter Rückfluß gekocht → Octahydroanthracen. A: 88 %. (W. B. s. R. T. Arnold u. E. Rondestvedt, Am. Soc. 68, 2176 (1946).)

*Schwefelsäure/Essigsäure*H₂SO₃/CH₃COOH**Austausch von Carbalkoxygruppen gegen Wasserstoff**

COOR → H

s. 1, 558/9; 3, 625

Schwefelsäure

s. 3, 621

Austausch von Acetyl gegen Wasserstoff*Halogenwasserstoffsäure***Austausch von Cyangruppen
gegen Wasserstoff**

s. 2, 118; 3, 631

**Gleichzeitige Verseifung von Acylaminen
und Carbonsäureestern** *α -Aminocarbonsäuren*

80.

Aethyl-acetamidocyanessigsäureäthylester in 40%ig. HBr (oder HCl)
 8 Stdn. unter Rückfluß gekocht \rightarrow d,l- α -Aminobuttersäure. A:
 82,4%. (W. B. s. N. F. Albertson, Am. Soc. 68, 450 (1946).)

**Austausch von Carbalkoxygruppen
gegen Wasserstoff**

s. 2, 160, 641, 771

gleichzeitig Verseifung von Acylaminen**u. Carbonsäureestern** **α -Aminocarbonsäuren**

s. 3, 674

*Ueber Zwischenprodukte**ü. Z.***Verseifung u. Decarboxylierung**

81.

1,3-Dioxy-2-naphtoic acid ethyl ester (Darst. s. 739) in Dioxan unter N_2 auf dem Dampfbad erhitzt, unter Rühren innerhalb 1 Stde. wss. Ba(OH)₂-Lsg. zugegeben u. weitere 3 Stdn. gerührt u. erhitzt \rightarrow 1,3-Dioxy-2-naphtoic acid (A: 90%) zu abgekochtem W. bei Siedetemp. gegeben, unter Rühren u. in N_2 -Atmosphäre 2 Stdn. gekocht, dekantiert, den Rückstand mit frischem W. wieder 2 Stdn. gekocht, die überstehende Flüssigkeit durch ein Filter dekantiert u. zu den vereinigten roten Lsgn. etwas NaHSO₃ zur Entfärbung gegeben \rightarrow Naphtoresorcin. Roh-A: 54–56%. (K. Meyer u. H. S. Bloch, Org. Synth. 25, 73 (1945).)

s. a. 3, 567

←

**Aldehyde aus Ketoximen
mit Hilfe der Beckmannschen Umlagerung**

82.

9-Benzoyl-1,2,3,4-tetrahydrophenanthren-9-oxim in Bzl. suspendiert, unter Röhren u. Kühlen innerhalb 45–60 Min. allmählich mit PCl_5 versetzt, 15–20 Min. auf dem Dampfbad unter Rückfluß gekocht, Bzl. u. POCl_3 im Vakuum auf dem Dampfbad entfernt, den Rückstand in Aethylchlorid gelöst, abgekühlt u. zu einer eisgekühlten Lsg., die aus wasserfreiem SnCl_2 u. abs. Ae. durch Sättigen mit trockenem HCl -Gas hergestellt war, gegeben → 1,2,3,4-Tetrahydrophenanthren-9-aldehyd. A: 68%. (W. B. s. G. H. Coleman u. R. E. Pyle, Am. Soc. 68, 2007 (1946).)

Abgabe

Sauerstoff ↓
 $\text{HC}\uparrow\text{O}$
Natriumamalgam
 Na, Hg
Aldehyde aus Carbonsäuren
 $\text{COOH} \rightarrow \text{CHO}$

83.

3-Fluorsalicylsäure in W. mit NaOH neutralisiert, mit p-Toluidin versetzt, bis zum Schmelzen des p-Toluidins erhitzt, unter kräftigem Röhren in W. gegossen, NaCl u. Borsäure zugesetzt, durch Zugabe von Eis die Temp. auf $13\text{--}15^\circ$ gesenkt, bei dieser Temp. unter gutem Röhren abwechselnd Na-Amalgam u. Borsäure zugegeben, nach ca. 2 Stdn. filtriert, angesäuert u. mit Wasserdampf destilliert → 3-Fluosalicylaldehyd. A: 57%. (L. N. Ferguson, J. C. Reid u. M. Calvin, Am. Soc. 68, 2502 (1946). Methode s. Weil, B. 41, 4147 (1908).)

Natrium/Ammoniak
 Na/NH_3
Kohlenwasserstoffe aus Alkoholen
s. 2, 119

 $\text{OH} \rightarrow \text{H}$

*Borsäure***Aldehyde aus Carbonsäuren**
s. 3, 83*Titandioxyd/Ameisensäure*

s. 1, 105

*Phosphor/Jod***Kohlenwasserstoffe aus Alkoholen**
s. 1, 73*Vanadiumpentoxyd, Aluminiumoxyd***Kohlenwasserstoffe aus prim. Alkoholen**

84. Prim. aliphat. Alkohole können mit einem V_2O_5, Al_2O_3 -Katalysator bei 40 at. u. 380–400° mit Ausbeuten von ca. 68% zu den entsprechenden Paraffinen hydriert werden. – B: n-Octylalkohol → n-Octan. (Apparatur u. w. B. s. V. I. Komarewsky, C. F. Price u. J. R. Coley, Am. Soc. 69, 238 (1947).)

Kupferchromit

85. p-Biphenylmethylcarbinol (Darst. s. 36) mit Cu-Chromit bei 2000 lb./sq. in. u. 200° → p-Aethylbiphenyl. A: fast quantitativ. (W. B. s. D. T. Mowry, W. F. Huber u. a., Am. Soc. 68, 1109 (1946).)
s. a. 1, 106

Jod/Phosphor

s. 1, 73

Palladium

s. 1, 107

*Ueber Zwischenprodukte***Austausch von Hydroxyl gegen Wasserstoff
über Halogenide**

86. 2-Oxy-6-methoxylepidin (Darst. s. 742) mit $POCl_3$ ca. 1 Stde. unter Rückfluß gekocht → 2-Chlor-6-methoxylepidin (A: 88–94%) mit Zn in Essigsäure 6 Std. bei 70° gerührt (Roh-A: 98%) oder mit Raney-Ni in abs. Alk. in Ggw. von KOH bei 60 lb./sq. in. u. 45–65° 2 Std. hydriert (A: 94%) → 6-Methoxylepidin-(hydrat) (Ausg. f. 156). (K. N. Campbell u. a., J. org. Chem. 11, 803 (1946).)
s. a. 1, 108; 2, 120/1

Aldehyde aus Carbonsäuren**über Carbonsäurechloride**

s. 1, 100

über Carbonsäureanilide
s. 2, 122

über Carbonsäurehydrazide
s. 1, 109/10

Stickstoff ↓**HC↑N***Ohne Hilfsstoffe**o. H.*

Carbonsäureimide aus Carbonsäureamiden
s. 1, 123

Kupfersulfat $CuSO_4$

Kohlenwasserstoffe aus Hydrazinen
s. 3, 68

 $NHNH_2 \rightarrow H$ **Kohlenstoff ↓****HC↑C***Ohne Hilfsstoffe**o. H.***Decarboxylierung** $COOH \rightarrow H$

87.

Die Decarboxylierung von bzl.-Jod-3-methyl-4-oxy-chinolin-2-carbonsäuren kann in Mineralöl bei 270—275 ° durchgeführt werden, vorteilhafter aber in Dowtherm-A bei ca. 200 ° u. entsprechend längerer Reaktionszeit. — B: 6-Jod-3-methyl-4-oxychinolin. A: 96 %. (W. B. s. E. A. Steck, L. L. Hallock u. A. J. Holland, Am. Soc. 68, 1241 (1946).)

88. Die Decarboxylierung von 3-Carboxy-4-chinolinolen zu 4-chinolinolen (Ausg. f. 468) wurde entweder durch Erhitzen bis zum Smp., solange bis die CO_2 -Entwicklung aufhörte oder durch Eintragen in kochendes Dowtherm u. ca. 30-min. Erhitzen bis zur Lsg. oder schließlich in schwierigen Fällen durch Erhitzen des Ag-Salzes in Dowtherm (s. 93) durchgeführt. — B: 3-Carboxy-4-chinolinol → 4-Chinolinol. A: 95 %. (W. B. s. B. Riegel u. a., Am. Soc. 68, 1264 (1946) u. weitere Contractarbeiten des OSRD.)
- s. a. 1, 111; 2, 556, 604, 689

Spaltung von Formylderivaten
s. 2, 725a

 $CHO \rightarrow H$

Furanring-Oeffnung**Subst. Acetone aus kondensierten Acetyloxyfuranen**

←

89.

3-Acetyl-2-oxy-4,5-dihydrophenanthro[4,3-b]furan (Darst. s. 157) 10 Min. auf 180–200° erhitzt u. hierauf bei der gleichen Temp. u. 0,1 mm destilliert → 3-Phenanthren-aceton. A: 81%. (W. B. s. A. L. Wilds, W. J. Close u. J. A. Johnson, jr. Am. Soc. 68, 89 (1946).)

Dimethylanilin

←

Decarboxylierung

COOH → H

90. 2-Carboxyindol-3-aldehydanil u. Dimethylanilin langsam unter Rühren auf 193° zum Sieden erhitzt. ca. 20 Min. gekocht, bis die CO₂-Entwicklung aufhörte, W. zugegeben u. mit Wasserdampf destilliert → Indol-3-aldehyd. A: 75–80%. — Die Decarboxylierung in Paraffinöl oder mit Cu in Tetralin oder Chinolin gab schlechte Ausbeuten. (A. C. Shabica u. a., Am. Soc. 68, 1156 (1946).)

Kupfer

Cu

s. 1, 112, 610

Kupferoxyd

91.

2-Methyloxazol-4-carbonsäure mit Chinolin u. ein wenig CuO im Bad auf 180–200° erhitzt u. schließlich kurze Zeit gekocht → 2-Methyloxazol. A: 80%. (J. W. u. R. H. Cornforth, Soc. 1947, 96.).

s. a. 3, 92

Kupfercarbonat, basisches

s. 1, 113

KupferchromitCuCr₂O₄

92. Imidazol-4,5-dicarbonsäure (Darst. s. 344) mit Kupferchromit nach Org. Synth. 19, 31, oder pulverisiertem Cu-Oxyd destilliert, wobei eine Temp. von 262–264° erreicht wird → Imidazol. A: 68–76%. (H. R. Snyder, R. G. Handrick u. L. A. Brooks, Org. Synth. 22, 65 (1942).)

s. a. 1, 112; 2, 124/5

Silbersalze Ag^+

93. Nitroderivate von Carboxychinolinolen lassen sich mit den üblichen Methoden durch Schmelzen oder Erhitzen in Dowtherm schlecht decarboxylieren. Dagegen gibt die Decarboxylierung ihrer Ag-Salze bessere u. auch bei größeren Ansätzen reproduzierbare Ausbeuten. — B: 415 g 3-Carboxy-8-nitro-4-chinolinol in heißem wss. NH_3 gelöst, gesätt. wss. AgNO_3 -Lsg. zugegeben, 12 Stdn. auf dem Dampfbad erhitzt, das entstandene Ag-Salz filtriert, bei 170° getrocknet, fein pulverisiert, in kleinen Portionen unter gutem Rühren zu heftig sd. Dowtherm-A (einer Mischung von Diphenyläther-Biphenyl, 26:74, vom Sdp. 240°) gegeben u. weitere 2 Stdn. gekocht \rightarrow 8-Nitro-4-chinolinol. A: 45 %. (W. B. s. R. H. Baker u. a. Am. Soc. 68, 1267 (1946).) s. a. 3, 88

Aluminiumchlorid AlCl_3

- Abspaltung von Substituenten bei der Friedel-Crafts-Reaktion**
s. 2, 126

Benzophenon \leftarrow

- Decarboxylierung**
s. 2, 127

 $\text{COOH} \rightarrow \text{H}$ *Salzsäure* HCl **Spaltung von Formylderivaten** $\text{CHO} \rightarrow \text{H}$

94.

2-Methyl-2-formyl-1-keto-1,2,3,4-tetrahydrophenanthren in HCl -Alk.-W. $2\frac{1}{2}$ Stdn. unter Rückfluß gekocht \rightarrow 1-Keto-2-methyl-tetrahydrophenanthren. A: 88 %. (Auch alkalische Spaltmethoden s. A. L. Wilds u. C. Djerassi, Am. Soc. 68, 1715 (1946).)

- α -Oxypyrrrole aus 5-Brompyrrol-2-carbonsäuren**
s. 1, 227

 \leftarrow *Nickel* Ni

- Kohlenwasserstoffe aus Aldehyden
Abbau um 1 C-Atom**
s. 2, 128

 $\text{CHO} \rightarrow \text{H}$ *Ueber Zwischenprodukte* $\ddot{\text{u}}. \text{ Z.}$

- Aldehyde aus α -Ketocarbonsäuren**
s. 2, 689

 $\text{COCOOH} \rightarrow \text{CHO}$

Herstellung der O—N-Bindung

Aufnahme

Anlagerung an Stickstoff

ON \downarrow N

Peressigsäure

CH₃COO₂H

N-Oxyde

N=O

95.

Eine Lsg. von Methyl-bis-(β -chloräthyl)-amin-hydrochlorid in W. innerhalb 15 Min. unter Rühren zu 0,26-n. Peressigsäure, die NaHCO₃ enthält, gegeben, 15 Min. bei 25° gerührt u. hierauf mit HCl angesäuert → Methyl-bis-(β -chloräthyl)-amin-oxyd-hydrochlorid. A: 85 %. (W. B. s. M. A. Stahmann u. M. Bergmann, J. org. Chem. 11, 586 (1946).)

Benzopersäure

C₆H₅COO₂H

s. 2, 129; 3, 450

Wasserstoffperoxyd

H₂O₂

95 a.

m-Phenanthrolin-dihydrat mit H₂O₂ in Eisessig 2 Stdn. unter Rückfluß gekocht → m-Phenanthrolin-di-N-oxyd. A: 71 %. — H₂O₂ scheint vorteilhafter zu sein, als die sonst verwendete Benzopersäure. (W. B. s. F. Linsker u. R. L. Evans, Am. Soc. 68, 403 (1946).)

Azoxyverbindungen aus Azoverbindungen

s. 2, 130

Kaliumbichromat

K₂Cr₂O₇

**Nitro- aus Nitroso-verbindungen,
gleichzeitig Carbonsäuren aus Kohlenwasserstoffen**

←

96.

2-Nitroso-5-nitrotoluol (Darst. s. 98) in W. suspendiert, mit K-Bichromat, hierauf bei 5° unter gutem Rühren u. Kühlen mit konz. H_2SO_4 versetzt, die Temp. allmählich auf ca. 65° erhöht u. noch 1 Stde. dabei belassen → 2,5-Dinitrobenzoësäure. A: 55–66%. (W. D. Langley, Org. Synth. 22, 44 (1942).)

Austausch

Wasserstoff \downarrow

ON $\uparrow\downarrow$ H

Cobaltinitrit

Nitroverbindungen aus Aminen
s. 1, 114; 2, 131, 524

$NH_2 \rightarrow NO_2$

Nitrosylchlorid

NOCl

Salpetrigsäureester aus Alkoholen

$OH \rightarrow ONO$

97. In 2-Octanol u. trockenes Pyridin bei 0–10° innerhalb 2½–3 Stdn. Nitrosylchlorid eingeleitet → 2-Octynitrit. A: 80%. (N. Kornblum u. E. P. Oliveto, Am. Soc. 69, 465 (1947).)

Sulfopersäure

H_2SO_5

Nitrosoverbindungen aus Aminen

$NH_2 \rightarrow NO$

98.

Eine Suspension von 5-Nitro-2-aminotoluol in H_2SO_4 unter Rühren wiederholt mit Caro'scher Säure aus K-Persulfat u. H_2SO_4 versetzt u. nach 4-stdg. Rühren bei 40° aufgearbeitet → 2-Nitroso-5-Nitrotoluol (Ausg. f. ON \downarrow N. 96). A: 55–71%. (W. S. Langley, Org. Synth. 22, 44 (1942).)

Ueber Zwischenprodukte

u. Z.

Nitroverbindungen aus Aminen

$NH_2 \rightarrow NO_2$

99.

3-Nitro-p-toluidin zu einer Lsg. von NH_4 -Persulfat in H_2SO_4 gegeben, nach 12 Stdn. verdünnt, das ausgefallene 3-Nitro-4-nitrosotoluol filtriert u. gewaschen, die feuchte Substanz in kleinen Portionen in überschüssiger rauchender HNO_3 gelöst u. solange auf dem Wasserbad

erhitzt, bis die Lsg. nicht mehr tief gefärbt war \rightarrow 3,4-Dinitrotoluol-A: 88 %. (H. J. Page u. B. R. Heasman, Soc. 123, 3235 (1923); A. J. Tomisek u. a., Am. Soc. 68, 1587 (1946).)

Sauerstoff \downarrow **ON \downarrow O***Ohne Hilfsstoffe**o. H.***Salpetersäureester**ONO₂

s. 2, 339

AluminiumsalzeAl⁺⁺⁺**Salpetrigsäureester**

ONO

100.

Verfahren: Alkohole werden mit einem kleinen Ueberschuß wss. NaNO₂-Lsg. gemischt, hierauf innerhalb wenigstens 2 Stdn. unter kräftigem Rühren tropfenweise mit wss. Al₂(SO₄)₃-Lsg. versetzt u. noch 1 Stde. stehengelassen. B: Isoamylnitrit. A: 100 %. — Cyclohexylnitrit. A: 75 %. (W. B. s. A. Chrétien u. Y. Longi, C. r. 220, 746 (1945).)

Acetanhydrid $(CH_3CO)_2O$ **Salpetersäureester**ONO₂

101.

Butylmonoglykoläther unterhalb 5° tropfenweise unter Röhren zu einer Mischung von HNO₃ u. Acetanhydrid gegeben u. noch 10–15 Min. weitergerührt \rightarrow Butylglykolnitrat. A: 90 %. — Durch Zusatz von Acetanhydrid werden Oxydationen durch HNO₃ verhindert. (W. B. s. G. Desseigne, Bl. 1946, 98.)

StickstoffpentoxydN₂O₅**Kohlehydrat-Nitrate**

s. 2, 132

Stickstoff \downarrow **ON \downarrow N****Natriumcarbonat**Na₂CO₃

○

Isoxazole

s. 3, 384

Abgabe**Wasserstoff ↓****ON ↑ H***Chromsäure* CrO_3 **Nitrosoverbindungen aus Hydroxylaminen**
s. 3, 761 $NHOH \rightarrow NO$ **Herstellung der O—Hal-Bindung****Aufnahme****Anlagerung an Halogen****OHal ↓ Hal***Ohne Hilfsstoffe**o. H.***Jodoxyverbindungen und Jodide
aus Jodosoverbindungen**

Jodosobenzol (Darst. s. 103) schnell mit Wasserdampf destilliert, bis fast alles Jodbenzol entfernt ist \rightarrow Jodoxybenzol. A: 92–95%. (H. J. Lucas u. E. R. Kennedy, Org. Synth. 22, 72 (1942).)

Austausch**Halogen ↓****OHal ⇄ Hal***Natronlauge* $NaOH$ **Jodosoverbindungen aus Jodid-dichloriden**

Jodbenzol-dichlorid (Darst. s. 417) mit Na-Karbonat u. Eis im Mörser verrieben, bis das Eis geschmolzen ist, hierauf mit NaOH vermahlen, schließlich noch W. zugegeben u. über Nacht stehengelassen \rightarrow Jodosobenzol (Ausg. f. 102, 769). A: 60–62%. (H. J. Lucas, E. R. Kennedy u. M. W. Formo, Org. Synth. 22, 70 (1942).)

*Natriumhypochlorit**NaOCl***Jodoxyverbindungen aus Jodid-dichloriden** $\text{JCl}_2 \rightarrow \text{JO}_2$

104.

Frisch dargestelltes, pulverisiertes Jodbenzol-dichlorid (Darst. s. 417) mit NaClO-Lsg. u. etwas Essigsäure 1 Stde. auf dem Wasserbad bei 65–75° gerührt → Jodoxybenzol. A: 87–94 %. (M. W. Formo u. J. R. Johnson, Org. Synth. 22, 73 (1942).)

Herstellung der O—S-Bindung

Aufnahme

Anlagerung an Wasserstoff und Sauerstoff $\text{OS} \downarrow \text{HO}$ *Pyridin**C₅H₅N*

Schwefelsäureester von Steroiden
s. 1, 122

 $\text{OH} \rightarrow \text{OSO}_3\text{H}$ **Anlagerung an Schwefel** $\text{OS} \downarrow \text{S}$ *Salpetersäure**HNO₃*

Sulfonsäuren aus Disulfiden
s. 1, 485

 $\text{RSSR} \rightarrow 2\text{RSO}_3\text{H}$ *Ozon**O₃*

Sulfone aus Thioäthern
s. 1, 115

 $\text{R}_2\text{S} \rightarrow \text{R}_2\text{SO}_2$ *Wasserstoffperoxyd**H₂O₂***Sulfoxide aus Thioäthern** $\text{R}_2\text{S} \rightarrow \text{R}_2\text{SO}$

s. 1, 116. Auch w. Methoden s. Th. F. Lavine, J. biol. Chem. 169, 477 (1947).

Sulfone aus Thioäthern $\text{R}_2\text{S} \rightarrow \text{R}_2\text{SO}_2$

s. 1, 117; 2, 542, 558; 3, 502

Cyclische Sulfone

105.

Dibenzothiophen mit 30%ig. H_2O_2 in Eisessig 1 Stde. auf 90° erhitzt u. 1 Stde. unter Rückfluß gekocht \rightarrow Dibenzothiophen-5-dioxyd. A: 96 %. (H. Gilman u. J. F. Nobis, Am. Soc. 67, 1479 (1945). S. a. E. D. Amstutz u. a., Am. Soc. 69, 1922, 1920, 1925 (1947), die bei H_2O_2 -angreifenden Verbindungen CrO_3 als zuverlässigeres Oxydationsmittel empfehlen).

Chromsäure CrO_3

s. 3, 105

Kaliumpermanganat $KMnO_4$

s. 1, 492

Sulfonamide aus Sulfinamiden $SONH_2 \rightarrow SO_2NH_2$

s. 1, 269

*Halogen**Hal***Sulfochloride aus Rhodaniden** $SCN \rightarrow SO_2Cl$

s. 1, 118

Sulfonsäuren aus Disulfiden $RSSR \rightarrow 2RSO_3H$

s. 1, 119

Sulfonsäuren aus Mercaptanen $SH \rightarrow SO_3H$

s. 1, 120

Sulfonsäurechloride aus Mercaptanen $SH \rightarrow SO_2Cl$

s. 3, 418

Austausch**Halogen \downarrow** **OS $\uparrow\!\!\uparrow$ Hal***Alkalihydroxyd***Methansulfonsäureester** $OH \rightarrow OSO_2CH_3$

s. 1, 123

*Organische Basen***Schwefelsäureester** $OH \rightarrow OSO_3H$

s. 2, 133

von Phenolen

s. 1, 121

von Steroiden

s. 1, 122

Methansulfonsäureester

s. 1, 123/4

p-Toluolsulfonsäureester

s. 1, 125, 233; 2, 134

Partielle Tosylierung und Ditosylierung

s. 2, 121, 135

OS ↑ C**Zinkchlorid****Sulfonate aus Aethern**

s. 2, 567

Chlor**Sulfonsäureamide aus Thioäthern
über Sulfonsäurechloride**

s. 3, 420

Herstellung der O—Ü-Bindung**Aufnahme****Anlagerung an
Sauerstoff und die übrigen Elemente****Trialkylsilylsulfate**

106.

Hexamethyldisiloxan langsam unter Kühlen u. Röhren zu rauchender H_2SO_4 , die 20% SO_3 enthält, gegeben → Trimethylsilylsulfat. A: 69%. (L. H. Sommer u. a., Am. Soc. 68, 156 (1946).)

Anlagerung an Sauerstoff und Kohlenstoff**OÜ \Downarrow OC***Ohne Hilfsstoffe**o. H.***Phosphorsäureester aus Oxidoverbindungen**
s. 1, 126; 2, 136**Alkoxy- aus Halogensilanen** \leftarrow 107. $\text{CH}_3\text{SiBr}_3 \rightarrow \text{CH}_3\text{Si}(\text{OCH}_2\text{CH}_2\text{Br})_3$ Methyltribromsilan u. überschüssiges Aethylenoxyd \rightarrow Methyltri-2-bromäthoxysilan. A: 87 %. (W. B. s. W. F. Gilliam, R. N. Meals u. R. O. Sauer, Am. Soc. 68, 1161 (1946).)**Austausch****Wasserstoff \downarrow** **OÜ $\uparrow\downarrow$ H***Trichlorbrommethan* CCl_3Br **Phosphorylierung von Oxyverbindungen und Aminen**
s. 3, 263 \leftarrow **Halogen \downarrow** **OÜ $\uparrow\downarrow$ Hal***Ohne Hilfsstoffe**o. H.***Alkylorthosilicate aus Siliciumhalogeniden
und Alkoholen** $\text{Si}(\text{OR})_4$ 108. $\text{SiCl}_4 \rightarrow \text{Si}(\text{OCH}_3)_4$ SiCl₄ unter Kühlung mit Eis-Kochsalz so schnell wie möglich zu einem kleinen Ueberschuß Methanol gegeben u. sofort destilliert \rightarrow Methylorthosilicat. A: bis zu 80 %. (D. F. Peppard, W. G. Brown u. W. C. Johnson, Am. Soc. 68, 73 (1946).)*Dimethylanilin***Dialkylchlorphosphonate**
s. 2, 137 $\text{PO}(\text{OR})_2\text{Cl}$ *Pyridin* $C_5\text{H}_5\text{N}$ **Phosphorsäureester** \leftarrow 109. Catecholoxychlorphosphin, das aus Pyrocatechol u. POCl₃ entsteht, reagiert in inerten Lösungsmitteln in Ggw. von Pyridin leicht mit Hydroxylgruppen. Durch Einwirkung von W. wird die schützende Catechol-

gruppe abgespalten. Die Trennung u. Reinigung des entstandenen Phosphorsäureesters läßt sich gut durchführen. (W. S. Reich, Nature, 157, 133 (1946).)

s. a. 2, 315

bei Peptiden

Amine aus Urethanen

s. 2, 138

Alkylorthosilicate aus Alkylchlorsilicaten

In Ggw. von tert. Aminen können die Halogenatome von Alkylchlorsilicaten ausgetauscht werden, ohne daß die ursprünglichen Alkoxy-Gruppen angegriffen werden. — B: Allylalkohol unter Kühlen u. Rühren zu einer Mischung von Diäthyldichlorsilicat u. trockenem Pyridin gegeben → Diäthyl-diallyl-orthosilicat. A: 72–80 %. (W. B. s. D. F. Peppard, W. G. Brown u. W. C. Johnson, Am. Soc. 68, 70 (1946).)

Magnesium

Mg

Phosphorsäureester

s. 2, 139

Phosphoroxychlorid

POCl₃

s. 1, 127

Kohlenstoff ↑

OÜ C

Ohne Hilfsstoffe

o. H.

Polymerisation von Alkoxy silanen

Diäthyl-diäthoxy-monosilan mit 80 %ig. Alk. unter Rühren 10 Stdn. auf 90 ° erwärmt → Octaäthyl-diäthoxy-tetrasilan. A: 80,3 %. — Der Polymerisationsgrad hängt von der verwendeten Wassermenge ab. (W. B. s. K. A. Andrianov, J. Gen. Chem. (UdSSR.) 16, 633, 639.)

Herstellung der O—C-Bindung

Aufnahme

Anlagerung an Wasserstoff und Sauerstoff OC \downarrow HO

Ohne Hilfsstoffe

o. H.

Allophanate

OOCNHCONH₂

s. 2, 140

Anlagerung an Wasserstoff und Kohlenstoff OC \downarrow HC

Silberoxyd

Ag₂O

Carbonsäuren aus Aldehyden

CHO → COOH

112. o- u. p-Oxybenzaldehyde können mit 0,5 Mol Ag₂O u. Alkali gut zu den entsprechenden Carbonsäuren oxydiert werden. B: Zu einer Lsg. von p-Oxybenzaldehyd u. NaOH in W. bei 50° unter gutem Rühren AgNO₃ in W. gegeben u. 30 Min. ohne Erhitzen weitergerührt → p-Oxybenzoësäure. A: fast 100%. (J. A. Pearl, J. org. Chem. 12, 85 (1947).)

s. a. I, 128/9; 2, 141

Benzoylperoxyd/Jod

←

Austausch von Wasserstoff gegen Hydroxyl

H → OH

s. 2, 173

Bleitetraacetat

Pb (CH₃COO)₄

Acetoxyverbindungen aus Kohlenwasserstoffen

H → OAc

s. 2, 142

Sek. Alkohole

s. 1, 130

Acetoxyketone aus Ketonen

s. 2, 143

2-Oxymethylpyrrole aus 2-Methylpyrrolen

H → OH

s. 1, 159

Persulfat

S₂O₈⁻

Austausch von Wasserstoff gegen Hydroxyl

s. 1, 131

Selendioxyd
s. 2, 144

SeO₂

Brom

Br

Aldonsäuren aus Kohlehydraten
s. 2, 321

←

Jod/Benzoylperoxyd

Austausch von Wasserstoff gegen Hydroxyl
s. 2, 173

$\text{H} \rightarrow \text{OH}$

Natriumhypochlorit

NaOCl

Carbostyrole

113.

5-Nitrochinolin in H_2SO_4 gelöst, mit soviel NaOH versetzt, daß das 5-Nitrochinolin noch in Lsg. bleibt, NaOCl-Lsg. zugegeben u. über Nacht stehengelassen → 2-Oxy-5-nitrochinolin. A: 85%. (W. B. s. J. D. Capps u. C. S. Hamilton, Am. Soc. 60, 2104 (1938), 69, 176 (1947).)

Natrium-pentacyan-ammin-ferroat

$\text{Na}_3[\text{Fe}(\text{CN})_5\text{NH}_3]$

o-Nitrosophenole aus Kohlenwasserstoffen

Baudisch-Reaktion

s. 3, 298

Ueber Zwischenprodukte

ü. Z.

Phenole aus Kohlenwasserstoffen über Amine

s. 1, 192

α -Oxyketone aus Ketonen über

α -Isonitrosoketone

s. 2, 145

α -Oxycarbonsäuren aus Carbonsäuren über

α -Halogenkarbonsäuren

s. 1, 451

Anlagerung an Sauerstoff

$\text{OC} \downarrow \text{OO}$

Ohne Hilfsstoffe

o. H.

Peroxyde

$\text{H} \rightarrow \text{OOH}$

s. 1, 132

Anlagerung an Sauerstoff und Stickstoff

OC↓ON

Ohne Hilfsstoffe

o. H.

Oxazole

s. 2, 316

Anlagerung an Sauerstoff und Kohlenstoff

OC↓OC

Ohne Hilfsstoffe

o. H.

Partielle und gemischte Carbonsäurederivate

114.

Bernsteinsäureanhydrid u. Methanol 35 Min. auf dem Dampfbad unter Rückfluß gekocht, in den folgenden 15—30 Min. öfter umgeschwenkt, bis die Mischung homogen war, u. hierauf noch 25—30 Min. halb in ein Dampfbad eingetaucht → Methylhydrogensuccinat (A: 95—96%) mit SOCl_2 3 Stdn. auf 30—40° erwärmt → β -Carboxymethoxypropionylchlorid (A: 90—93%). W. B. s. J. Cason, Org. Synth. 25, 19 (1945). Letzte Stufe s. a. W. S. Bishop, Org. Synth. 25, 71 (1945).)

*Alkali***Isocumarinring-Oeffnung**

C

s. 2, 672

Natronlauge

NaOH

Glykole aus Oxidoverbindungen

s. 2, 146

Oxyäther aus Oxidoverbindungen

115.

Propylenoxyd in Ggw. von NaOH zu Aethylalkohol innerhalb 4 Stdn. bei 76—77° gegeben u. hierauf noch 2 Stdn. gekocht → 1-Aethoxy-2-propanol. A: 81,4%. (Bedingungen, unter denen die isomeren Äther entstehen, u. w. B. s. H. C. Chitwood u. B. T. Freure, Am. Soc. 68, 680 (1946).)

Oxycarbonsäuren aus Lactonen

116.

γ -Phenyl- γ -butyrolacton in NaOH bis zur Lsg. unter Rückfluß ge-

kocht, im Eisbad abgekühlt u. mit 6-n. HCl versetzt \rightarrow γ -Oxy- γ -phenylbuttersäure. A: ca. 100%. (R. R. Russell u. C. A. VanderWerf, Am. Soc. 69, 11 (1947).)

Kaliumhydroxyd

KOH

Fluorenonring-Oeffnung

C

117.

Eine Lsg. von Fluorenon in Diphenyläther mit einem Ueberschuß von pulverisiertem KOH unter gutem Rühren $\frac{1}{2}$ — $1\frac{1}{2}$ Stdn. auf 180° erhitzt \rightarrow 2-Phenylbenzoësäure. A: 93—96%. (C. D. Gutsche u. W. S. Johnson, Am. Soc. 68, 2239 (1946). Methode s. E. H. Huntress u. M. K. Seikel, Am. Soc. 61, 816, 1066, 1358 (1939).)

Pyridin

C_5H_5N

Partielle und gemischte Carbonsäurederivate

←

s. 2, 147

Phtalate aus Alkoholen

←

s. 2, 148

Calciumchlorid

$CaCl_2$

Oxydative Furanring-Oeffnung

C

s. 2, 149

Zinkchlorid

$ZnCl_2$

Ringöffnung bei O-Heterocyclen

s. 2, 520

Borfluorid

BF_3

Oxyäther aus Oxidoverbindungen

118.

Epichlorhydrin langsam unter Rühren zu einer eiskalten Lsg. von BF_3 u. Phenol in Bzl. gegeben u. weitere 30 Min. gerührt \rightarrow 1-Phenoxy-3-chlor-2-propanol. A: bis zu 65%. (É. Levas u. H. Lefebvre. C. r. 222, 555 (1946).)

Aluminumamalgam

Al.Hg

Aether aus Chinonen

←

119.

Zu einer Lsg. von 1,4-Benzochinon in 80%ig. Methanol in der Kälte langsam Al-Amalgam, hierauf 50%ig. KOH gegeben, 1 Stde. unter Rückfluß gekocht, allmählich Dimethylsulfat u. KOH-Lsg. zugesetzt, nochmals 1 Stde. erhitzt u. mit Wasserdampf destilliert → Hydrochinon-dimethyl-äther. (W. B. s. G. B. Marini-Bettolo u. F. S. Trucco, G. 73, 300 (1943).)

*Zinn(IV)-chlorid*SnCl₄**Acetale aus Oxidoverbindungen**

s. 2, 150

←

*Schwefelsäure*H₂SO₄**Ringöffnung bei O-Heterocyclen**

C

Glykole aus Oxidoverbindungen

s. 2, 151

-Diketone aus Furanen

s. 1, 133

Desoxyzucker aus Glucalen

s. 2, 152

Verseifung von Kohlehydrathalbacetalen

s. 1, 134

*Brom/Magnesiumhydroxyd*Br₂/Mg(OH)₂**γ-Ketocarbonsäuren aus γ-Lactonen**

120.

Eine heiße wss. Lsg. von MgSO₄ zu einer heißen Lsg. von γ-Phenyl-γ-butyrolacton in wss. NaOH gegeben, unter 10° gekühlt u. innerhalb 2 Stdn. unter Rühren Br₂ zugetropft → β-Benzoylpropionsäure. A: 83%. (R. R. Russell u. C. A. VanderWerf, Am. Soc. 69, 11 (1947). Methode s. J. A. McRae, E. H. Charlesworth u. D. S. Alexander, Can. J. Research 21B, 1 (1943).)

Salzsäure

HCl

Pyranring-Oeffnung

C

121.

2,3-Dihydropyran in HCl kräftig gerührt, bis die Mischung homogen wird, u. hierauf weitere 20 Min. \rightarrow 5-Oxypentanal. A: 79%. (G. F. Woods u. H. Sanders, Am. Soc. 68, 2111 (1946).)

Schwefelwasserstoff/Bromwasserstoff

H₂S/HBr

Acoxy- aus Oxidoverbindungen

122.

In einem Einschlußrohr mit 3,9-Epoxy-11-keto-12-bromcholansäuremethylester, Chlf. u. Acetanhydrid unter Kühlung mit Trockeneis H₂S u. HBr kondensiert, zugeschmolzen 17 Stdn. unter Eiskühlung stehengelassen u. unter Nachbehandlung Diazomethan in Ae. u. hierauf mit Acetanhydrid-Pyridin aufgearbeitet \rightarrow 3-(α)-Acetoxy-11-keto-12-bromcholansäuremethylester. A: 64%. — Durch Entfernung des freigesetzten Br₂ mit H₂S wird die Ausbeute erhöht. (R. B. Turner u. a., J. Biol. Chem. 166, 353 (1946).)

Eisen(III)-chlorid

FeCl₃

Cumarinring-Oeffnung

C

123.

3-Carbomethoxy-3,4-dihydro-5-brom-6-oxy-7,8-dimethylcumarin mit FeCl₃ in Methanol in Ggw. von HCl 12 Stdn. bei Zimmertemp. stehengelassen \rightarrow 2-(2,2-Dicarbomethoxyethyl)-3-brom-5,6-dimethylbenzoquinon. A: 89%. (L. I. Smith u. P. F. Wiley, Am. Soc. 68, 887 (1946).)

Anlagerung an Stickstoff und Kohlenstoff

OC \downarrow NC

Ohne Hilfsstoffe

o. H.

Urethane aus Alkoholen

OH \rightarrow OCONHR

124.

symm.-Dipiperidino-isopropylalkohol u. Phenylisocyanat 30 Min. in Eis u. 16 Stdn. bei Zimmertemp. stehengelassen \rightarrow symm.-Dipiperidino-isopropylphenylurethan. A: 87%. (Yao-Tseng Huang, Ming-Cheng Lu u. I. Chang, Brit. J. Pharmacol. 1, 273 (1946).)

Thiocarbaminsäureester aus Rhodaniden
s. 2, 153

Pyridin

Urethane aus Alkoholen

125. 3,5-Methylengluco-gulo-heptitol u. Phenylisocyanat in Pyridin 2 Stdn. unter Rückfluß gekocht → Pentaphenylcarbamyl-3,5-methylen-gluco-gulo-heptitol. A: 78%. (R. M. Hann, A. T. Ness u. C. S. Hudson, Am. Soc. 68, 1769 (1946).)

Wasserstoffperoxyd

Carbonsäureamide aus Nitrilen

126.

9-Acetamido-9-cyanfluoren, 30% ig. H_2O_2 u. soviel Aceton, wie zur homogenen Lsg. nötig ist, mit 10% ig. Na_2CO_3 -Lsg. 4 Tage bei Zimmertemp. stehengelassen → 9-Acetamido-9-carbamylfluoren. A: 68,5%. (G. H. Harris, B. R. Harriman u. K. W. Wheeler, Am. Soc. 68, 846 (1946).)

s. a. 1, 135; vgl. 3, 274

Chinazolinring aus Isatinring

s. 1, 293

Salzsäure

Iminoester aus Nitrilen

s. 2, 154—6

Über Zwischenprodukte

ü. Z.

**Carbonsäureamide aus Nitrilen
über Iminoester-hydrochloride**

127.

Da Vanillinsäureamid auch mit schwach alkalischem H_2O_2 nach McMaster u. a., J. Indian Chem. Soc. 12, 652 (1935) nicht aus dem Nitril erhalten werden konnte, wurde es auf einem Umweg dargestellt: Vanillonitril in wasserfreiem Ae. u. abs. n-Butanol unter Eis-Salz-Kühlung mit trockenem HCl gesättigt u. 3 Tage bei Zimmertemp. stehengelassen → Vanillinsäure-imino-n-butylester-hydrochlorid (A:

83%) unter N₂ bei 140—170° erhitzt, bis die Blasenbildung aufhörte → Vanillinsäureamid (A: 95%). D. M. Ritter, Am. Soc. 68, 2738 (1946).)

Anlagerung an Kohlenstoff

OC ↓ CC

Ohne Hilfsstoffe

o. H.

Organoquecksilberverbindungen

←

s. UC ↓ CC

Xanthene

○

s. 2, 636

Natrium

Na

Aether aus Aethylenderivaten

C : C → CHC(OR)

128.

Prim., sek., verzweigte u. ungesättigte Alkohole können zufriedenstellend an Acrylsäureester unter Bildung von β-Alkoxypropionsäureestern angelagert werden. Mit wachsendem Mol-Gewicht des Alkohols wird die Addition schwieriger. Mit Al-Alkoholaten, konz. wss. NaOH oder Trimethylbenzylammonium-hydroxyd als Katalysator tritt keine Reaktion ein. — Verfahren: Na, im betreffenden Alkohol gelöst, wurde zu einer Lsg. des Acrylsäureesters im restlichen Alkohol unter Röhren u. unterhalb 40° gegeben, ½—2 Stdn. unter Rückfluß gekocht oder über Nacht stehengelassen. — Längeres Erhitzen führt zur Polymerisation des Acrylsäureesters. — B: Acrylsäuremethylester u. Methylalkohol → β-Methoxypropionsäuremethylester. A: 86—91%. (W. B. s. C. E. Rehberg, M. B. Dixon u. C. H. Fisher, Am. Soc. 68, 544 (1946).)

β-Cyanäthyläther aus Phenolen und Vinylcyanid

s. 2, 157

Polyäther

←

s. 3, 500

Alkali

←

Aether aus Aethylenderivaten

C : C → CHC(OR)

β-Alkoxy-propionitrile

s. 2, 158

NaOH

Natronlauge

Dicarbonsäuren aus β-Ketocarbonsäuren

←

s. 2, 159

Kalilauge

KOH

**Dicarbonsäuren und Ringketone aus
β-Ketocarbonsäuren**

s. 2, 160

Alkalialkoholat

← C

Carbonsäuren aus Endocarbonylverbindungen

129.

4,5,6,7-Tetraphenyl-4,7-endocarbonyl-tetrahydroinden mit alkoh. Alkali 20 Min. bis zur Lsg. behandelt → 7-Carboxy-4,5,6,7-tetraphenyl-3a,4,7,7a-tetrahydroinden. A: 82%. (W. B. s. C. F. H. Allen, J. E. Jones u. J. A. Van Allan, Am. Soc. 68, 708 (1946).)

Natrium/Alkohol

NaOR

Acetessigsäureester aus Diketen

←

130.

Diketen mit einer Lsg. von Na in Methylvinylcarbinol 32 Stdn. bei 0—5° umgesetzt → Methylvinylcarbinylacetacetat (Ausg. f. 758). A: 89%. (W. B. s. W. Kimel u. A. C. Cope, Am. Soc. 65, 1992 (1943).)

*Kaliumhydroxyd in Alk.****α,β*-Aethylenäther aus Acetylenderivaten**

C : C → CH : C(OR)

131.

o-Chlorphenylbenzoylacetylen mit KOH in Methanol 5 Stdn. bei Zimmertemp. stehengelassen → β-Methoxy-o-chlorbenzalacetophenon. A: ca. 100%. (C. L. Bickel, Am. Soc. 69, 73 (1947).)

*Silberbenzoat/Jod*C₆H₅COOAg/J**Glykole aus Aethylenderivaten**

C : C → C(OH)C(OH)

*Quecksilberverbindungen*Hg⁺⁺**Ketone aus Acetylenderivaten**C : C → COCH₂

s. 1, 136/7; 2, 161/2

Diketone und Furane aus Acetylenalkoholen \leftarrow

s. 2, 163

 α,β -Aethylenäther aus Acetylenderivaten $C : C \rightarrow CH : C(OR)$

s. 1, 138

 α -Alkoxyhalogenide aus Aethylenderivaten $C : C \rightarrow C(OR)CHal$

s. 3, 425

Zinkchlorid $ZnCl_2$ **Cumaran- und Chroman-derivate****aus 2-wert. Phenolen** \circ

s. 1, 698

Tokopherol-Synthese

s. 2, 739

Bleitetraacetat $Pb(CH_3COO)_4$ **Ketone aus Aethylenderivaten** $CH : CH \rightarrow COCH_2$

s. 1, 139

Benzoylperoxyd/Jod**Glykolbenzoate aus Aethylenderivaten** $C : C \rightarrow C(OBz)C(OBz)$

s. 2, 173

Benzopersäure $C_6H_5COO_2H$ **Glykole aus Aethylenderivaten****über Oxidoverbindungen** $C : C \rightarrow C(OH)C(OH)$

s. 2, 164

Lactone aus Ketonen C **Ringöffnung**

s. 1, 140

Phtalpersäure**Oxidoverbindungen aus Aethylenderivaten** $C : C \rightarrow C \cdot C$

s. 2, 165/6

14-Oxysteroide

132.

Caryophyllen mit V_2O_5 , das mit H_2O_2 in die Persäure übergeführt worden ist, in Aceton innerhalb 5 Stdn. unter Kühlung, unterhalb 35°, mit 30%ig. H_2O_2 versetzt → Caryophylloxyd. A: 80—85%. (W. Treibs, Chem. B., 80, 56 (1947). Methode s. B. 72, 7, 1194 (1939); Ang. Ch. 52, 698 (1939).)

Vanadinpentoxyd V_2O_5

133.

1,1 g $\Delta^{14,16}\text{-}3\beta,21\text{-Diacetoxy-20-oxo-5-allo-pregnadien}$ in abs. Chlf. mit äther. Phtalmonopersäure 40 Stdn. bei Zimmertemp. stehengelassen → 760 mg $\Delta^{16}\text{-}3\beta,21\text{-Diacetoxy-14,15\beta-oxido-20-oxo-5-allo-pregnen}$, davon 200 mg in Alk. mit 2,5%ig. vorhydriertem Pd-BaSO₄-Katalysator 50 Min. bis zum Stillstand der H₂-Aufnahme hydriert → 120 mg $3\beta,21\text{-Diacetoxy-14-oxy-20-oxo-17-iso-5,14-diallo-pregnane}$. – Phtalmonopersäure wurde der Benzopersäure vorgezogen, da evtl. beigemischtes $\Delta^{16}\text{-}3\beta,21\text{-Diacetoxy-20-oxo-5-allo-pregnen}$ mit ihr nicht reagiert u. sich nach der Oxydation besser entfernen lässt. – Hydrierung mit Pt verläuft zu energisch u. entfernt auch die Hydroxylgruppe. (P. A. Plattner, L. Ruzicka, H. Heußer u. E. Angliker, Helv. 30, 395 (1947). W. B. s. Helv. 30, 385 (1947).)

*Bromacetamid***Bromhydrine aus Aethylenderivaten** $C:C \rightarrow C(OH)CBr$

s. 1, 405

Ozon O_3 **Ozonide aus Aethylenderivaten**

←

s. 2, 167

Oxoverbindungen

s. 1, 141/2

Carbonsäuren

s. 1, 143

Oxydative Ringöffnung

C

Isocyclen

s. 2, 169

Indole

s. 2, 168

Wasserstoffperoxyd H_2O_2 **Oxidoverbindungen aus Aethylenderivaten** $C:C \rightarrow C \cdot C$

s. 2, 166

O

Ketone aus Aethylenderivaten $CH:CH \rightarrow COCH_2$

s. 2, 170

Glykole aus Aethylenderivaten
s. 1, 145; 2, 171

Flavone
s. 1, 245

Isatinring-Oeffnung
s. 1, 281

Säuren, Metallchloride

Acetale aus Vinyläthern und Alkoholen

134.

Durch Erwärmen von Vinyläthern auf im allgemeinen mit Alkoholen niedere Temp., die 50° nicht übersteigt, u. in Ggw. einer Spur von Säuren, wie z. B. H_2SO_4 , HCl oder H_3PO_4 oder Metallchloriden, kann man Acetale mit Ausbeuten von 60—90% erhalten. — B: Butylvinyläther u. Linalool \rightarrow Butyl-linalylacetal. (W. B. s. M. F. Schostakovski u. N. A. Gerschtein, J. Gen. Chem. (UdSSR.) 16, 937 (1946).)

Schwefelsäure

Ketone aus Acetylenderivaten

135.

α -Chlorphenylbenzoylacetylen in konz. H_2SO_4 bei Zimmertemp. 48 Std. stehengelassen \rightarrow α -Chlordibenzoylmethan. A: ca. 100%. (C. L. Bickel, Am. Soc. 69, 73 (1947).)

s. a. 2, 818

Oxynitroverbindungen aus Aethylenderivaten

s. 2, 332

Thionylchlorid

Ketone aus Aethylenderivaten

s. 1, 144

Kaliumpermanganat

Glykole aus Aethylenderivaten

Stereoisomere

s. 1, 145

Jod/Silberbenzoat

s. 1, 146

*Jod/Benzoylperoxyd***Glykolbenzoate aus Aethylenderivaten** $C : C \rightarrow C(OBz)C(OBz)$ **Austausch von Wasserstoff gegen Hydroxyl** $H \rightarrow OH$

s. 2, 173

Alkylhypochlorit $ROCl$ **Chlorhydrine aus Aethylenderivaten** $C : C \rightarrow C(OH)CCl$

s. 2, 488

Kaliumhypojodit KOJ **Oxydative Ringöffnung** C

s. 2, 174/5

Perjodsäure JO_4^-

136.

$3(\alpha),11$ -Dioxy-12-ketocholansäure in Alk. mit wss. NaOH, $NaHCO_3$ u. hierauf langsam unter Umschwenken mit einer wss. Lsg. von H_5JO_6 u. $NaHCO_3$ versetzt, über Nacht bei Zimmertemp. stehengelassen u. hierauf auf 45° erwärmt, bis sich 97% H_5JO_6 umgesetzt hatten \rightarrow $3(\alpha)$ -Oxy-11 || 12-cholan-11-aldehyd-12,24-dicarbonsäure. A: 70%. (N. G. Brink u. E. S. Wallis, J. biol. Chem. 162, 667 (1946).)

Eisen(III)-chlorid $FeCl_3$ **Oxydative Verdopplung des Molekülgerüsts** $2 R \rightarrow R \cdot R$

s. 2, 176

Osmiumtetroxyd OsO_4 **Glykole aus Aethylenderivaten** $C : C \rightarrow C(OH)C(OH)$

s. 1, 147-9; 2, 177/8

Ueber Zwischenprodukte $\ddot{u}. Z.$ **Ketone aus Aethylenderivaten** $CH : CH \rightarrow COCH_3$

s. 2, 179

Umlagerung

Typus Wasserstoff/Sauerstoff

OC \cap HO

Schwefelsäure

H_2SO_4

Lactone aus Aethylencarbonsäuren

←

137.

γ,γ -Diphenylvinylessigsäure in konz. H_2SO_4 15 Min. bei Zimmertemp. stehengelassen \rightarrow γ,γ -Diphenylbutyrolacton. A: 95%. — Die Umlagerung ist reversibel. (W. S. Johnson, J. W. Petersen u. W. P. Schneider, Am. Soc. 69, 74 (1947).)

Typus Wasserstoff/Kohlenstoff

OC \cap HC

Natronlauge

$NaOH$

Flavanone aus Chalkonen

○

s. 1, 150

Kalilauge

KOH

Abbau von Ketonen um 2 C-Atome

←

s. 2, 494

Silberoxyd

Ag_2O

Synthesen mit Diazomethan

←

s. CC \uparrow Hal o. H.

Silbernitrat

$AgNO_3$

Arndt-Eistertscher Säureaufbau

$COCHN_2 \rightarrow CH_2COOH$

s. 2, 216

Aluminumsilikat

←

Ketone aus 1,2 Glykolen

$CH(OH)CH(OH) \rightarrow CH_2CO \cdot$

138.

Butandiol-2,3 bei 225° über einen Morden-Bentonit (Al-Silikat)-Katalysator (Darst. s. Original) geleitet \rightarrow Butanon-2. A: 86%. (A. N. Bourne u. R. V. V. Nicholls, Can. J. Research 25B, 80 (1947).)

Schwefel

S

Willgerodt- und Kindler-Reaktion

←

139.

Es wurde gefunden, daß die Verwendung von konz. NH_4OH , Schwefel u. Pyridin bessere Ausbeuten gibt als das ursprüngliche Reagens Ammoniumpolysulfid. In Verbindung mit letzterem verbessern Thiosulfat u. Ammoniumsulfit die Ausbeute. Außer Ketonen, auch rein aliphat., geben Acetylene u. Olefine unter den Bedingungen der Willgerodt-Reaktion Carbonsäureamide, unter denen der Kindler-Reaktion Thioamide. Tert. Carbinole geben ebenfalls Carbonsäureamide. — B: 2-Acetylphenanthren → 2-Phenanthrenacetamid. A: 82%. — 1-Phenylpropin → β -Phenylpropionamid. A: 90%. (W. B. s. M. Carmack, DeLos F. DeTar u. D. B. Pattison, Am. Soc. 68, 2025, 2029, 2033 (1946). S. a. J. A. King u. F. H. McMillan, Am. Soc. 68, 2335 (1946).)

Ammoniumpolysulfid $(\text{NH}_4)_2\text{S}_x$ **Carbonsäureamide und Carbonsäuren aus Methylketonen****Willgerodt-Umlagerung**

s. 1, 151/2; 2, 180/a

Salzsäure (Mineralsäure)

HCl

Flavanone aus Chalkonen

○

2'-Oxychalkone geben in verd. Essigsäure, die etwas Mineralsäure enthält, mit guten Ausbeuten — bis zu maximal 65% — u. innerhalb 5 Stdn. Flavanone. (T. Oyamada, J. Chem. Soc. Japan, 64, 864 (1943).) s. a. 1, 552/3

Ueber Zwischenprodukte

ü. Z.

Carbonsäuren aus Methylketonen**über Thioamide****Willgerodt-Kindler-Reaktion**

141.

Die Morpholin-Schwefel-Modifikation der Willgerodt-Reaktion wurde zur Synthese von Halogen-, Oxy-, Amino- u. Carboxy-arylessigsäuren benutzt. Auch Pyridyl- u. Chinolyl-methylketone gaben die Reaktion. während α -Thienyl-methylketon nur teerige Produkte lieferte. — B: p,p'-Diacetyl biphenyl, S u. Morpholin 8—10 Stdn. unter Rückfluß gekocht → 4,4'-Biphenylenbis-(1-thioacetylmorpholin) (A: 88,5%) mit

NaOH in W.-Alk. ca. 12 Stdn. unter Rückfluß gekocht \rightarrow 4,4-Biphenyldiessigsäure (A: 86%). W. B. s. E. Schwenk u. D. Papa, J. org. Chem. 11, 798 (1946). S. a. R. L. Malan u. P. M. Dean, Am. Soc. 69, 1797 (1947).)

s. a. 2, 181

Typus Sauerstoff/Stickstoff

OC \cap ON

Ohne Hilfsstoffe o.H.

Subst. Asparaginsäuren aus ar. Oximen
und Maleinsäureanhydrid

s. 1, 153

C₆H₅NO

Isatogene ○

s. 2, 335

Nickel Ni

Carbonsäureamide aus Aldoximen CH : NOH \rightarrow CONH₂

142. (CH₃)₂CH[CH₂]₃CH(CH₃)CH₂CH:NOH \rightarrow (CH₃)₂CH[CH₂]₃CH(CH₃)CH₂CONH₂

Tetrahydrocitraloxim mit Raney-Ni unter Röhren 2 Stdn. auf 110 bis 120° erhitzt \rightarrow Tetrahydrogeranamid. A: 70%. (W. B. s. A. G. Caldwell u. E. R. H. Jones, Soc. 1946, 599.)

Typus Sauerstoff/Kohlenstoff

OC \cap OC

Pyridin C₅H₅N

Pyrone aus Osonen \leftarrow

143.

2,3,4,6-Tetraacetyl-glucoson-hydrat mit Pyridin-Acetanhydrid geschüttelt u. hierauf 3 Tage bei Zimmertemp. stehengelassen \rightarrow 5-Acetoxy-2-acetoxymethyl-pyron-(4). A: 80%. (M. Stacey u. L. M. Turton, Soc. 1946, 661.)

*Salzsäure**HCl***Aldehyde aus 1,2-Glykolmonoäthern
und Oxidoverbindungen**

144.

1-Isopropoxy-2,3-dimethylbutanol-2

2-Methyl-1,2-butylenoxyd

mit 10 %ig. HCl 4—5 Stdn. unter Rückfluß gekocht
→ 2,3-Dimethylbutanal.

A: 74 %.

A: 61 %.

(R. A. Barnes u. W. M. Budde, Am. Soc. 68, 2339 (1946).)

Dihydrofurane aus Epoxyden

s. 2, 182

←

Typus Stickstoff/Kohlenstoff $\text{OC} \cap \text{NC}$ *Salzsäure**HCl***O-Acyli- aus N-Acylderivaten** $\text{NAC} \rightarrow \text{OAC}$

s. 1, 154; s. a. A. P. Phillips u. R. Baltzly, Am. Soc. 69, 200, (1947).

Typus Kohlenstoff $\text{OC} \cap \text{CC}$ *Pyridin* C_5H_5N **Oxidoverbindungen aus Peroxyden**

←

s. 2, 183

Sauerstoff O_2 **Furane aus Cyclopentanonen**

←

145.

1,3-Diphenyl-1-oxy-2-indanon in alkoh. KOH mit Luft oder Sauerstoff → 1,3-Diphenyisobenzofuran. A: 80%. (C. Dufraisse u. S. Ecary, C. r. 223, 1143 (1946).)

Schwefelsäure

H_2SO_4

Tetrahydrofuran

○

s. 2, 184

Ueber Zwischenprodukte

ü. Z.

Allylumlagerung

←

s. 2, 626

Austausch

Wasserstoff

OC $\uparrow\downarrow$ H

Elektrolyse

↖

Chinone aus ar. Kohlenwasserstoffen

←

146. Benzol in 2%ig. Na_2SO_4 mit 1 g Na-Aacetat als Anolyt u. 5%ig. H_2SO_4 als Katholyt mit 3 A/sq.dm. u. 5,5 V bei 15,2° elektrolysiert → Chinon. A: 75,8%. (Yutaka Isomura, J. Chem. Soc. Japan 62, 1167 (1941).)

Fehlingsche Lösung

←

Benzile aus Benzoinen

$CH(OH)CO \rightarrow COCO$

s. 1, 156

Silberoxyd

Ag_2O

Carbonsäuren aus Alkoholen

$CH_2OH \rightarrow COOH$

147. Vanillylalkohol mit frisch dargestelltem Ag_2O u. NaOH in W. mehrere Min. bei 75° umgesetzt → Vanillinsäure. A: 93%. (I. A. Pearl, Am. Soc. 68, 429 (1946).)

Bleitetraacetat

$Pb(CH_3COO)_4$

**2-Oxymethyl- u. 2-Formylpyrrole
aus 2-Methylpyrrolen**

$CH_3 \begin{cases} \nearrow CH_2OH \\ \searrow CHO \end{cases}$

s. 1, 159.

Distickstofftetroxyd

N_2O_4

Uronsäuren aus Glykosiden

←

148. Durch Oxydation mit N_2O_4 lassen sich endständige Alkoholgruppen von Kohlehydraten oxydieren, ohne daß eine etwaige Glykosidbin-

dung angegriffen wird. — B: Trockenes Methylgalaktosid mit N_2O_4 , das über P_2O_5 getrocknet u. im O_2 -Strom oxydiert worden war, 48 Stdn. bei 0° im Autoklaven stehengelassen, hierauf, ebenfalls unter Feuchtigkeitsausschluß, im Vakuum von Stickoxyden befreit, in W. unter Zusatz von etwas Harnstoff gelöst, filtriert u. bei 40° unter kräftigem Rühren mit einer Suspension von $CaCO_3$ behandelt \rightarrow Ca-Galakturonat. A: 75—84%. (K. Maurer u. G. Drefahl, Chem. B. 80, 94 (1947).)

Salpetersäure

HNO_3

Carbonsäuren aus Alkoholen

$CH_2OH \rightarrow COOH$

s. 2, 185

Schwefel

S

Aminoaldehyde aus Nitrokohlenwasserstoffen

\leftarrow

s. 1, 162

Ammoniumpolysulfid

$(NH_4)_2S_x$

Carbonsäureamide aus Mercaptanen

$CH_2SH \rightarrow CONH_2$

s. 3, 394

Thionylchlorid

$SOCl_2$

**Carbonsäuren aus Kohlenwasserstoffen,
gleichzeitig Carbonsäurechloride aus
Carbonsäuren**

\leftarrow

s. 2, 519

Selendioxyd

SeO_2

Aldehyde aus Kohlenwasserstoffen

$CH_3 \rightarrow CHO$

**Die Verwendung von Selendioxyd
bei der Darstellung von
Chinolinaldehyden**

s. 1, 163

Ketone aus Kohlenwasserstoffen

$CH_2 \rightarrow CO$

s. 1, 164; 2, 186

Chromoxyd-Kobalthydrat-Calciumcarbonat

\leftarrow

Ketone aus Kohlenwasserstoffen

$CH_2 \rightarrow CO$

149.

In p-Aethylphenylacetat, das 5% einer 1 : 1 : 8-Mischung von Chromoxyd-Cobalthydrat-Calciumcarbonat enthält, bei 140 — 145° 15 Stdn. Sauerstoff eingeblasen u. das Reaktionsprodukt 2 Stdn. mit Acetan-

hydrid-Natriumacetat unter Rückfluß gekocht → p-Acetylphenylacetat. Umsatz: 24%. A: 79%. (W. S. Emerson u. a., Am. Soc. 68, 1665 (1946).)

Chromsäure

CrO_3

Aldehyde aus Kohlenwasserstoffen
s. 1, 166

$\text{CH}_3 \rightarrow \text{CHO}$

Ueber Aldehydacetate

$\text{CH}_3 \rightarrow \text{CH}(\text{OOCCH}_3)_2 \rightarrow \text{CHO}$

150.

o-Nitrotoluol in Eisessig, Acetanhydrid u. konz. H_2SO_4 unterhalb 10° mit CrO_3 unter Röhren innerhalb 2 Stdn. versetzt u. noch 5 Stdn. weitergerührt → o-Nitrobenzalacetat (A: 23—24%) in wss.-alkoh. HCl oder H_2SO_4 suspendiert u. unter Röhren u. Rückfluß 45 Min. gekocht → o-Nitrobenzaldehyd (A: ca. 74%). (S. M. Tsang, E. H. Wood u. J. R. Johnson, Org. Synth. 24, 75 (1944).)

Ketone aus Kohlenwasserstoffen

$\text{CH}_2 \rightarrow \text{CO}$

s. 2, 187

Chinone aus Kohlenwasserstoffen

←

151.

Zu Acenaphthen in sd. Eisessig innerhalb 15—30 Min. unter Röhren grob pulverisiertes $\text{Na}_2\text{Cr}_2\text{O}_7$ so gegeben, daß das Sieden nicht zu heftig wird, 15 Min. unter Rückfluß gekocht, heißes W. zugesetzt, filtriert, mit W. gewaschen, den Filterrückstand mit 10%ig. wss. Na-Carbonat-Lsg. versetzt, 1 Stde. auf dem Dampfbad erhitzt u. heiß filtriert, um das als Nebenprodukt entstandene Naphtalsäureanhydrid zu entfernen, den Filterrückstand mit 40%ig. NaHSO_3 -Lsg. 45 Min., nach Zusatz von W. noch 10 Min. unter Rückfluß gekocht, filtriert u. das kochende Filtrat mit konz. H_2SO_4 vorsichtig angesäuert → Acenaphthenechinon. A: 42—60%. (C. S. Maxwell u. C. F. H. Allen, Org. Synth. 24, 1 (1944).)

Filmreaktor

s. 1, 168

Carbonsäuren aus Kohlenwasserstoffen

$\text{CH}_3 \rightarrow \text{COOH}$

s. 1, 169

**gleichzeitig Nitro- aus
Nitrosoverbindungen**

s. 3, 96

*a, β-ungesättigte γ-Lactone aus
Dihydrofuranen*
s. 2, 188

Mangandioxyd

MnO_2

Carbonsäuren aus Kohlenwasserstoffen

$CH_3 \rightarrow COOH$

152. 2,4-Dichlortoluol in 58%ig. H_2SO_4 unter kräftigem Rühren bei 80° innerhalb 16—19 Stdn. mit MnO_2 u. konz. H_2SO_4 versetzt → 2,4-Dichlorbenzoësäure. A: 80—88%. W. B. s. J. K. Feldman u. a., J. Gen. Chem. (UdSSR.) 15, 962 (1945).)

Kaliumpermanganat

$KMnO_4$

Carbonsäuren aus Kohlenwasserstoffen
s. 1, 170/1

$CH_3 \rightarrow COOH$

Carbonsäuren aus Alkoholen

$CH_2OH \rightarrow COOH$

153. Eine Suspension von 2-Benzoylamino-2-methyl-n-propanol unter kräftigem Rühren mit $KMnO_4$ so versetzt, daß die Temp. nicht über 40° steigt. u. weitergerührt, bis die Mischung sich auf Zimmertemp. abgekühlt hat → α-Benzoylamino-isobuttersäure. A: 91—93%. — $KMnO_4$ erwies sich anderen Oxydationsmitteln wie z. B. PbO_2 , CrO_3 , NH_4 -Persulfat oder HNO_3 überlegen. (W. B. s. J. H. Billman u. E. E. Parker, Am. Soc. 66, 538 (1944). S.a. H. J. Klosterman u. E. P. Painter, Am. Soc. 69, 1674 (1947).)

Uronsäuren aus Glykosiden

s. 2, 189

Carbonsäureamide aus Aminen

$CH_2NR_2 \rightarrow CONR_2$

s. 2, 190

Chlor

Cl_2

Carbonsäuren aus Kohlenwasserstoffen
s. 1, 172

$CH_3 \rightarrow COOH$

Eisen(III)-sulfat

$Fe_2(SO_4)_3$

Chinone aus Phenolen über Aminophenole
s. 1, 173

Ueber Zwischenprodukte

ü. Z.

Synthesen nach Kröhnke
s. 1, 197—9

**Aldehyde aus Kohlenwasserstoffen
über Halogenide**

$CH_3 \rightarrow CHO$

s. 1, 410

**o-Aldehydocarbonsäuren aus Phtaliden
über 2-Halogenphtalide**

←

154.

In Phtalid bei 135—150° innerhalb 10—13 Stdn. Br₂ mit Hilfe eines CO₂-Stromes geleitet → 2-Bromphtalid (A: 82—95%) mit W. unter Rühren ca. 30 Min. auf dem Dampfbad erhitzt, bis die Phtalidschicht verschwunden ist → Phtaldehydsäure (A: 78—85%). (R. L. Shiner u. F. J. Wolf, Org. Synth. 23, 74 (1943).)

Carbonsäuren aus Kohlenwasserstoffen

über Trihalogenide

CH₃ → COOH

155.

Zu einer Mischung von wasserfreiem Na-Acetat u. 229 g Chinaldin in Eisessig bei 70—75° innerhalb 20 Min. eine Lsg. von Br₂ in Eisessig gegeben, 1 Stde. auf 90—95° erhitzt u. über Nacht stehen gelassen → α-Tribromchinaldin (A: ca. 80%) in H₂SO₄ (1 : 10) bei 115—125° Badtemp. 10 Stdn. gerührt → Chinaldinsäure (A: 90—98%). K. N. Campbell, C. H. Helbing u. J. F. Kerwin, Am. Soc. 68, 1840 (1946).)

über Styrylderivate

156.

20 g 6-Methoxylepidin (Darst. s. 86) mit Benzaldehyd u. geschmolzenem ZnCl₂ ca. 5 Stdn. im Oelbad auf 185—190° erhitzt, bis kein W. mehr überdestillierte → 27,2 g rohes 6-Methoxy-4-styrylchinoxalin mit KMnO₄ in 50%ig. Pyridin oder besser Aceton → Chininsäure (A: 70—85%). (K. N. Campbell u. a., J. org. Chem. 11, 803 (1946). S. a. Am. Soc. 68, 1840 (1946).)

Sauerstoff ↓

OC ≡ O

Ohne Hilfsstoffe

o. H.

β-Halogenacetale aus α,β-Aethylenaldehyden
s. 2, 483

←

Acetylierung
s. 1, 174; 2, 191

OH \rightarrow OAc

Partielle Acetylierung
s. 2, 192

Cumarin-Synthese
s. 2, 635

○

Natrium

Na

Chromone

s. 1, 546; 2, 642

Natrium/Alkohol

NaOR

Cyclopenten- und Furanringschluß

157.

4-Keto-1,2,3,4-tetrahydro-phenanthren-3-acetessigsäure-äthylester

mit KOH in abgekochtem, CO₂-freiem W. u. N₂-Atmosphäre 8 Stdn. gekocht, wobei die KOH-Konzentration allmählich auf 2,5% erhöht wurde $\rightarrow \Delta^{4,3'-2'}$ -Keto-1,2-dihydro-3,4-cyclopenteno-phenanthren. A: 74%.

(W. B. s. A. R. Wilds, W. J. Close u. J. A. Johnson jr., Am. Soc. 68, 83, 86, 89 (1946).)

in abs. Alk. mit trockenem HCl behandelt u. 3 Stdn. unter Rückfluß gekocht \rightarrow 2-Methyl-4,5-dihydrophenanthro[4,3-b]furan-3-carbonsäure-äthylester.
A: 96%.

mit Na in Alk.-Bzl. 12 Stdn. bei Zimmertemp. stehengelassen \rightarrow 3-Acetyl-2-oxy-4,5-dihydrophenanthro[4,3-b]furan. (Ausg. f. 89.)
A: 86%.

Michael-Reaktion
s. 2, 613/4

←

Natriumacetat $Na(CH_3COO)$ **Acetylierung** $\text{OH} \rightarrow \text{OAc}$

158. 7-Oxy-1,2,3,4-tetrahydrophenanthren mit Acetanhydrid u. geschmolzenem Na-Aacetat 10 Stdn. unter Rückfluß gekocht \rightarrow 7-Acetoxy-1,2,3,4-tetrahydrophenanthren. A: ca. 100%. (H. R. Mighton u. R. C. Elderfield, J. org. Chem. 11, 247 (1946).)

s. a. 2, 193

Kaliumcarbonat K_2CO_3 **Tetrahydrofuran** \bigcirc

s. 2, 594

Triäthylamin $(C_2H_5)_3N$ **Flavonolsynthese**

s. 2, 656

Pyridin C_5H_5N **Acetylierung** $\text{OH} \rightarrow \text{OAc}$

s. 2, 194/5

Acetylierung von Kohlehydraten

s. 1, 176; 2, 196

Acetylierung von Cholinen

s. 2, 197

Propionate

s. 2, 198

Tritylierung bei gleichzeitiger**Acetylierung**

s. 2, 250; 3, 212

Carbonsäureanhydride aus Carbonsäuren $\text{CO}\cdot\text{O}\cdot\text{OC}$

s. 2, 295

Kupfersulfat Cu_2SO_4 **Isopropylidenderivate**

s. 1, 175; 2, 199

Borsäureester $\text{B}(\text{OR})_3$

159. Borsäure u. Aethylchlorhydrin 4—5 Stdn. unter einem Soxhlet-Apparat mit wasserfreiem CuSO_4 4—5 Stdn. bei 170—200° gekocht \rightarrow Tri-(2-chloräthyl)-orthoborat. A: 90%. (W. B. s. W. J. Jones u. a., Soc. 1946, 824, 820, 823.)

Zinkchlorid $ZnCl_2$ **Acetylierung** $OH \rightarrow OAc$

s. 1, 180; 2, 102

tert. Alkohole

160.

tert.-Butylalkohol mit Acetanhydrid in Ggw. von $ZnCl_2$ langsam zum Sieden erhitzt u. hierauf 2 Stdn. gelinde unter Rückfluß gekocht \rightarrow tert.-Butylacetat. A: 53—60 %. (R. H. Baker u. F. G. Bordwell, Org. Synth. 24, 18 (1944).)

Acetale

s. 2, 200

Furanringschluß \circ

s. 2, 663

Quecksilber(II)-acetamid \leftarrow **Steroid-glykoside** $OH \rightarrow OR$

s. 2, 201

Borfluorid BF_3 **Acetylierung** $OH \rightarrow OAc$

s. 1, 177

**Acetylierung schwer
acetylierbarer Hydroxylgruppen**
s. 2, 202

Keten $CH_2:C:O$

**Allgemeine Methode zur Darstellung
von Carbonsäureanhydriden**

s. 1, 178

 $2 COOH \rightarrow CO \cdot O \cdot OC$ **Emulsin** \leftarrow **Biosen aus Monosen** $OH \rightarrow OR$

161.

 $2 C_6H_{12}O_6 [\rightarrow C_{12}H_{22}O_{11}] \rightarrow C_{12}H_{14}O_9(OCOCH_3)_8$

Eine Lsg. von 1,65 kg Glucose in W. mit Emulsin u. etwas Toluol versetzt, bei Zimmertemp. 5 Wochen stehengelassen, aufgekocht, mit W. verdünnt, filtriert, mit Hefe in W. versetzt, bei 28—32° 12—14 Tage stehengelassen, mit überschüssigem pulverisiertem $CaCO_3$ 30 Min. gekocht, filtriert, eingedampft, wasserfreies Na-Acetat u. Acetanhydrid zugefügt u. vorsichtig ca. 20 Min. zum Sieden erhitzt \rightarrow 77—87 g β -Octaacetyl-gentiobiose. (B. Helferich u. J. F. Leete, Org. Synth. 22, 53 (1942).)

Acetylchlorid CH_3COCl **Carbonsäureester aus Carbonsäuren** $\text{COOH} \rightarrow \text{COOR}$

162.

trans-Thiophan-3,4-dicarbonsäure in Methanol mit Acetylchlorid ver-
setzt u. 30 Min. unter Rückfluß gekocht → trans-3,4-Dicarbomethoxy-
thiophan. A: 96%. (B. R. Baker u. a., J. org. Chem. 12, 174 (1947).)
s. a. 3, 733

Phosphorpentoxid P_2O_5 **Isopropylidenderivate**
 $\begin{array}{c} \text{CO} \\ | \\ \text{CO} > \text{C} \end{array}$

s. 1, 468

Phosphorsäure H_3PO_4 **Acetylierung** $\text{OH} \rightarrow \text{OAc}$

s. 1, 179

Phosphoroxychlorid POCl_3 **Cumarinringschluß** \bigcirc

s. 2, 673

Xanthene über Methylendiaryle

163.

Zu einer Lsg. von 6-Methyl-2-naphtol in verd. HCl-Alk. 35%ig. Form-
aldehyd gegeben u. kurz erhitzt → Bis-(2-oxy-6-methyl-1-naphthyl)-
methan (A: 100%) in der Wärme in Toluol gelöst, POCl_3 zugegeben
u. ca. $\frac{1}{2}$ Stde. auf 110° erhitzt, bis die HCl-Entwicklung nachläßt →
3,11-Dimethyl-14-dibenzooxa[4,3]xanthen (A: 100%). (R. Royer, A. ch.
[12] 1, 395 (1946).)

p-Toluolsulfonsäure TosOH **Carbonsäureester aus Carbonsäuren** $\text{COOH} \rightarrow \text{COOR}$

164.

unbeständige Carbonsäureester

Brenztraubensäure, abs. Methanol u. ein wenig p-Toluol-sulfon-
säure in Bzl. mit aufgesetzter Kolonne (s. Original) ca. $1\frac{1}{2}$ Tage
im Oelbad auf 150 — 155° erhitzt → Brenztraubensäure-methylester.
A: 65—71%. (A. Weißberger u. C. J. Kibler, Org. Synth. 24, 72
(1944).)

Fettsäureester

165. Bei der Veresterung von Fettsäuren mit Glycerin eignet sich p-Toluolsulfosäure als Katalysator besser als Phenylsulfonsäure, da sie Oelsäure oder Olein weniger angreift. (N. Ivanoff, Chimie et industrie, 53, 41 (1945); Bull. mat. grasses inst. colonial Marseille, 29, 13 (1945).)

p-Toluolsulfosäurechlorid*TosCl***Symm. Aether***ROR*

166.

3,5-Dinitro-4-oxypyridin u. p-Toluolsulfosäurechlorid in Diäthylanilin suspendiert 10 Min. auf dem Wasserbad erwärmt → Di-(3,5-dinitro-4-pyridyl)-äther. A: 80%. (V. A. Petrow u. J. Saper, Soc. 1946, 588.)

Schwefelsäure*H₂SO₄***Anhydrozucker**

167.

Sorbit mit ein wenig konz. H₂SO₄ im Vakuum 1 Stde. auf 140—150° Oelbadtemp. erhitzt → 1:4,3:6-Dianhydrosorbit. Roh-A: 82%. (R. C. Hockett u. a., Am. Soc. 68, 927 (1946).)

**Aether aus Alkoholen
bei gleichzeitiger Umlagerung**
s. 2, 203

Kohlehydrat-Acetale

Methylenlderivate
s. 2, 204

Aethylidenderivate
s. 2, 205

Acetylierung
s. 1, 181; 3, 462

OH → OAc

Reaktionsträge Hydroxylgruppen
s. 1, 180

Carbonsäureester aus Carbonsäuren

COOH → COOR

168.

Eine Mischung von 2-(δ -Carboxybutyl)-thiophan-3,4-trans-dicarbon-säure, Methanol, Chlf. u. etwas konz. H_2SO_4 16 Stdn. unter einem Soxhlet-Apparat, mit wasserfreiem $MgSO_4$ in seiner Hülse, gekocht → 2-(δ -Carbomethoxybutyl)-3,4-trans-dicarbomethoxythiophan. A: 94%. (W. B. s. B. R. Baker u. a., J. org. Chem. 12, 186 (1947) u. die übrigen Arbeiten dieser Reihe.)

s. a. 1, 182; C. E. Rehberg, Org. Synth. 26, 4 (1946).

Furanringschluss

169.

Dibenzoylmorpholinoäthan mit konz. H_2SO_4 in Acetanhydrid 7 Stdn. bei 45° stehengelassen → 2,5-Diphenyl-3-morpholinofuran. A: 83%. (W. B. s. R. E. Lutz, P. S. Bailey u. N. H. Shearer, jr., Am. Soc. 68, 2224 (1946).)

**Oxazole aus α -Aminocarbonsäuren
über α -Acylamino-ketone**

L-Leucin mit Pyridin-Acetanhydrid 6 Stdn. auf dem Dampfbad erhitzt → 3-Acetamido-5-methylhexanon-2 (A: 70,7%) in konz. H_2SO_4 1 Stde. auf dem Dampfbad erhitzt → 2,5-Dimethyl-4-isobutyloxazol (A: 82,6%). (W. B. s. R. H. Wiley, J. org. Chem. 12, 43 (1947).)

Thionylchlorid $SOCl_2$ **Carbonsäureester aus Carbonsäuren**

COOH → COOR

s. 2, 206

Carbonsäurechloride und Carbonsäure-anhydride aus Carbonsäuren
 $COOH \xrightarrow{\quad} COCl$
 $\xrightarrow{\quad} CO \cdot O \cdot OC$

s. 2, 518

Cumarinring-Synthese

s. 2, 682

*Perchlorsäure***Acetylierung**

171. Steroide können mit ausgezeichneten Ausbeuten durch Behandeln in Eisessig-Acetanhydrid bei 18° mit etwas $HClO_4$ u. 30 Min. Stehenlassen unterhalb 35° acetyliert werden. (B. Whitman u. E. Schwenk). Am. Soc. 68, 1865 (1946).)

**Differenzierte Acetylierung
der Hydroxylgruppe in Oxyaminosäuren**
s. 1, 183

*Ammoniumchlorid***Acetale aus Aldehyden**

s. 3, 711

*Salzsäure***Chlormethyläther aus Alkoholen**

172. $CICH_2CH_2OH \rightarrow CICH_2CH_2OCH_2Cl$

Aethylengchlorhydrin unter Eiskühlung mit HCl-Gas gesättigt, mit Trioxymethylen versetzt u. erneut mit HCl gesättigt → 2-Chloräthyl-chlormethyläther. A: 74%. (W. B. s. E. J. Salmi, R. Leimu u. H. Kallio, Suomen Kemistilehti 17B, 17 (1944) [deutsch].)

Acetale**Methylenderivate**

173. Sorbit in warmer 40%ig. wss. Formaldehyd-Lsg. gelöst, auf 0° gekühlt, bei dieser Temp. HCl-Gas eingeleitet, allmählich auf 85° erwärmt u. 1½ Stdn. bei dieser Temp. belassen → 1,3-2,4-5,6-Trimethylensorbit. A: 91%. (M. L. Wolfrom, B. W. Lew u. R. M. Goepp, jr., Am. Soc. 68, 1443 (1946).)

Isopropylidenderivate

s. 2, 209

Benzylidenderivate

s. 2, 210

**α,β -Aethylenacetale und β -Alkoxyacetale
aus α,β -Aethylenaldehyden**

- 174.

Acrolein u. abs. Alk. in Ggw. von HCl zuerst unter Eiskühlung 48 bis 60 Stdn. stehengelassen, hierauf Cu-Carbonat zugegeben u. mit Hilfe einer Fenske-Kolonne im Vakuum destilliert → Acroleinacetal

(A: 24—30%) u. β -Aethoxypropionaldehyd-acetal (A: 21—26%). (F. P. Pingert, Org. Synth. 25, 1 (1945).)

Carbonsäureester aus Carbonsäuren
s. 2, 207/8; 3, 29

COOH → COOR

gleichzeitig Desacetylierung

175.

1,4 Mol 4-Chlor-acetantranilsäure in Methanol suspendiert, 4 Stdn. ohne Kühlung HCl eingeleitet, über Nacht unter Rückfluß gekocht u. dies 2mal wiederholt → 4-Chlor-antranilsäure-methylester. A: 94%. (R. E. Lutz u. a., Am. Soc. 68, 1285 (1946).)

Methoxylactone aus Ketocarbonsäuren

←

s. 2, 215

○

Chromone

s. 1, 546

Benzopyryliumsalze

s. 1, 603

HBr

Bromwasserstoffsäure

Aether aus Alkoholen

ROH → ROR

Furanringschluß

s. 2, 496

ü. Z.

Ueber Zwischenprodukte

←

p-Phenylazophenyl-polyacylglykoside

176.

Polyacetylglucosyl-acetate mit TiCl_4 in Chlf. 3 Stdn. auf dem Dampfbad unter Rückfluß gekocht, mit W. gewaschen, durch Celit (Kieselgur) filtriert, den Chlf.-Rückstand in wasserfreiem Chinolin mit Ag_2O u. p-Phenylazophenol 15 Min. verrührt u. nach 1 Stde. aufgearbeitet. B: p-Phenylazophenyl-tetraacetyl- β -d-glucosid. A: 30%. (W. B. s. C. D. Hurd u. R. P. Zelinski, Am. Soc. 69, 243 (1947).)

Carbonsäureester aus Carbonsäuren
über Carbonsäurechloride

COOH → COOR

s. 3, 460

Stickstoff ↑**OC↑N***Ohne Hilfsstoffe*

o. H.

Austausch von Nitrogruppen gegen Methoxyl
s. 3, 600 $\text{NO}_2 \rightarrow \text{OR}$ **Reaktionen mit Diazoverbindungen**
Aether aus Oxyverbindungen $\text{ROH} \rightarrow \text{ROR}$ **Methylierung alkaliempfindlicher Verbindungen**
s. 2, 213**Aethylierung**
s. 1, 185**Carbonsäureester aus Carbonsäuren** $\text{COOH} \rightarrow \text{COOR}$

177.

Frisch dargestelltes Diphenyldiazomethan (Darst. s. 255) zu Benzoesäure in Ae. gegeben u. nach 30 Min. aufgearbeitet → Benzohydrylbenzoat. A: 100%. (L. I. Smith u. K. L. Howard, Org. Synth. 24, 53 (1944).)

s. a. 1, 186/7; 2, 214

Orthoester aus Iminoester-hydrochloriden $\begin{array}{c} \text{NH} \\ \diagdown \\ \text{C---OR} \end{array} \rightarrow \text{C(OR)}_3$

178. Eine Mischung von Valeriansäure-imino-methylester-hydrochlorid u. wasserfreiem Methanol bei Zimmertemp. unter Feuchtigkeitsauschluß bis zur Lsg. kräftig gerührt, wasserfreien Ae. zugegeben u. unter Röhren u. Rückfluß 18 Stdn. gelinde gekocht → Valeriansäure-orthomethylester. A: 79%. (W. B. s. S. M. McElvain, R. E. Kent u. C. L. Stevens, Am. Soc. 68, 1922, 1917 (1946).)

Methoxylactone aus Ketocarbonsäuren

s. 2, 215

←

α-Acetoxyketone aus α-Diazoketonen
s. 2, 211 $\text{COCHN}_2 \rightarrow \text{COCH}_2\text{OAc}$ **Bromacetoxyketone**
s. 2, 212*Alkalilaugen, wss. u. alkoh.*

←

Austausch von Nitrogruppen gegen Methoxyl $\text{NO}_2 \rightarrow \text{OR}$

179.

125 g 2-Nitro-6-methoxybenzonitril (Darst. s. 600) mit KOH in Methanol 2 Stdn. unter Rückfluß gekocht → 75—86 g 2,6-Dimethoxybenzonitril. (A. Russell u. W. G. Tebbens, Org. Synth. 22, 35 (1942).)

Carbonsäuren aus Diazoketonen

über Carbonsäureamide

s. 2, 216

**Partielle Verseifung von Säureamiden
Sulfonamidocarbonsäuren**

180.

2-[m-(2-Pyrimidylcarbamyl)-phenylsulfonamido]-pyrimidin (A: 56%) mit 10%ig. NaOH 1 Stde. gekocht → 2-(m-Carboxyphenylsulfonamido)-pyrimidin. A: ca. 100%. (J. P. English u. a., Am. Soc. 68, 1039 (1946).)

Carbonsäuren aus Nitrilen

s. 1, 188/9; 2, 217, 726/7; 3, 75, 748

schwerverseifbare Nitrile

181.

Rohes 6-Methoxy-8-cyanchinolin u. KOH in Glycerin 9 Stdn. bei 150—170° gerührt → 6-Methoxy-8-chinolincarbonsäure. A: 78%. — Beim Arbeiten nach der Methode von Bouveault mit NaNO_2 (s. Synth. Meth. 2, 221) war die Isolierung der Säure aus dem Reaktionsgemisch schwierig. (K. N. Campbell u. a., Am. Soc. 68, 1844 (1946).)

Oxazolidin-dione

○

s. 1, 316

Hydantoinringöffnung

□

s. 1, 568

Thiazolidinringöffnung

s. 3, 662

Kupferacetat

182.

Eine Lsg. von 10 g 1-Diazo-1-desoxy-keto-l-fructosetetraacetat in Ggw. von Cu(II)-Acetat in Eisessig gelinde erhitzt, nach Abklingen der Gasentwicklung aufgekocht, das Lösungsmittel im Vakuum abdestilliert, wobei abs. Alk. als Destillationszusatz zur Entfernung der letzten Reste verwendet wurde, u. mit Acetanhydrid u. ZnCl_2 nachacetyliert → 7,35 g keto-l-Fructosepentaacetat. (M. L. Wolfrom u. A. Thompson, Am. Soc. 68, 791 (1946).)

*Silberoxyd**Ag₂O***Carbonsäureester aus Diazoketonen** $\text{COCHN}_2 \rightarrow \text{CH}_2\text{COOR}$

s. 1, 190

*Natriumnitrit**NaNO₂***Austausch von Aminogruppen gegen Hydroxyl** $\text{NH}_2 \rightarrow \text{OH}$ **Alkohole**

s. 2, 218

Acetate

s. 2, 220

Phenole

s. 2, 219

Allgemeine Methode

183.

Zu 3-Brom-4-aminotoluol in H_2SO_4 unterhalb 5° u. innerhalb ca. 15 Min. eine wss. Lsg. von NaNO_2 unter die Oberfläche getropft, 5 Min. weitergerührt, nacheinander mit W., Harnstoff u. Eis versetzt, portionsweise in eine auf 130—135° erhitzte Lsg. von Na_2SO_4 in H_2SO_4 gegeben → 2-Brom-p-kresol. A: 80—92%. Entsprechend: m-Bromphenol. A: 66%. (H. E. Ugnade u. E. F. Orwoll, Org. Synth. 23, 11 (1943).)

Phenole und Phenolester

s. 1, 191

Einführung der Hydroxylgruppe**in ar. Kerne**

s. 1, 192

Austausch bei schwerdiazotierbaren**Verbindungen**

184. Eine Lsg. von Nitrosylschwefelsäure aus NaNO_2 u. konz. H_2SO_4 bei 0° unter Rühren innerhalb 15 Min. zu 2-Amino-3-carboxypyrazin in konz. H_2SO_4 gegeben, 15 Min. weitergerührt, die kalte Diazoniumsalz-Lsg. unter Rühren auf Eis getropft u. bis zum Aufhören der N_2 -Entwicklung weitergerührt → 2-Oxy-3-carboxypyrazin. A: 85%. (W. B. s. A. E. Erickson u. P. E. Spoerri, Am. Soc. 68, 400 (1946).)

Oxoverbindungen aus Semicarbazonen $\text{C: NNHCONH}_2 \rightarrow \text{CO}$

185. Semicarbazone, außer solchen von Verbindungen mit reaktionsfähigen Doppelbindungen u. außer Thiosemicarbazonen, können mit praktisch quantitativen Ausbeuten in einfacher Weise mit NaNO_2 in Eisessig gespalten werden. — B: Zu einer gelinde erwärmteten Lsg. von

trans-Dehydroandrosteron-acetat-semicarbazone in Eisessig allmählich in kleinen Portionen NaNO_2 gegeben, hierauf noch $\frac{1}{2}$ Min. gekocht u. mit W. verdünnt → trans-Dehydroandrosteron-acetat. (W. B. s. S. Goldschmidt u. W. L. C. Veer, R. 65, 796 (1946).)

Diazooxyde und Chinone aus Aminophenolen

s. 2, 300

Carbonsäuren aus Carbonsäureamiden

s. 2, 725

Carbonsäuren aus schwerverseifbaren

Nitrilen

s. 2, 221

Urethane aus Hydraziden

s. 2, 336

Ringerweiterung

s. 1, 539—41

Magnesium

Ketone aus Nitrilen

s. 2, 699

Ketone aus α -Halogenaminen

s. 2, 222

Calciumcarbonat

Arylazophenole aus Aminen

s. 2, 343

Bariumhydroxyd

Imidazolringöffnung

s. 3, 610

α -Aminocarbonsäuren aus Hydantoinen

s. 2, 223

Zink

Acetate aus Salpetersäureestern

bei Kohlehydraten

186. Eine Lsg. des Salpetersäureesters in Acetanhydrid bei 30—35° unter mechanischem Rühren u. Durchleiten eines trockenen HCl-Stromes in kleinen Portionen mit Zn-Staub versetzt, nach ca. 1 Stde., wenn die Diphenylamin-Reaktion (s. Original) negativ ist, den HCl-Strom abgestellt u. noch 15 Min. weitergerührt. — B: Methyl- α -d-glucopyranosid

sid-tetranitrat \rightarrow Methyl- α -d-glucopyranosid-tetraacetat. A: 62%. (W. B. s. D. O. Hoffman, R. S. Bower u. M. L. Wolfrom, Am. Soc. 69, 249 (1947).)

α -Oxyketone aus α -Isonitrosoketonen
s. 2, 145

Ketone aus Nitroverbindungen
s. 2, 224

Methylalkohol

CH_3OH

Aether aus Oxyverbindungen

$OH \rightarrow OR$

187. Gewisse Oxyverbindungen, die Chelatringe bilden, reagieren mit äther. Diazomethan nur in Ggw. von Methanol. — B: Resacetophenon-4-methyläther in Methanol mit äther. Diazomethan-Lsg. 4 Tage bei 0° stehengelassen \rightarrow Resacetophenon-dimethyläther. (W. B. s. A. Schönberg u. Ahmed Mustafa, Soc. 1946, 746.)

Formaldehyd

CH_2O

Spaltung von Semicarbazonen
s. 2, 225

$C:N \cdot NHCONH_2 \rightarrow CO$

Papain

Enzymatische partielle Spaltung
von Carbonsäureamiden zu Carbonsäuren

$CONH_2 \rightarrow COOH$

Carbobenzoxy-l-glutaminsäurediamid mit Papain u. Cystein-hydrochlorid in citrat-gepufferter Lsg. (pH 5,0) 4 Tage bei 40° stehengelassen \rightarrow Carbobenzoxy-l-glutamin. A: 47%. — Mit Cystein aktivierte Papain verseift nur die α -ständige Amidgruppe. (J. S. Fruton, J. biol. Chem. 165, 333 (1946).)

Ameisensäure/Salzsäure

$HCOOH/HCl$

α -Aminocarbonsäuren aus α -Cyanurethanen

α -Cyan- γ -(methylthio)-propylurethan mit einer Mischung aus HCOOH-HCl-W. 6 Stdn. unter Rückfluß gekocht \rightarrow d,l-Methionin. A: 85%. (P. E. Gagnon u. a., Can. J. Research, 25B, 28 (1947).)

Essigsäure

CH_3COOH

Phenole aus Diazoniumsulfaten
s. 1, 194

$ArN^+ = N^+SO_4^{2-} \rightarrow ArOH$

Oxalsäure

Spaltung von Semicarbazonen
s. 1, 195

Phtalsäure

s. 1, 196

Hexamethylenetetramin

Oxoverbindungen aus Aminen
s. 2, 228

Alkylnitrit

Acetale aus Oximen
s. 2, 227

*Zinn(II)-chlorid***Aldehyde aus Nitrilen**

190.

Wasserfreies SnCl_2 in trockenem Ae. innerhalb $2\frac{1}{2}$ —3 Stdn. unter langsamem Rühren mit HCl gesättigt, schnell eine Lsg. von β -Naphto-nitril in trockenem Ae. zugegeben, wieder HCl bis zur Sättigung eingeleitet, 1 Stde. schnell gerührt, über Nacht stehengelassen, die Ae.-Lsg. dekantiert, mit Ae. gewaschen u. den Rückstand 8—10 Stdn. bei 110 — 120° Oelbadtemp. mit Wasserdampf destilliert \rightarrow β -Napht-aldehyd. A: 73—80%. (J. W. Williams, Org. Synth. 23, 63 (1943). Methode s. Stephen, Soc. 127, 1874 (1925).)

s. a. 2, 226

**Dodecanon-Gemisch aus
Mononitrododecan-Gemisch**
s. 1, 193

*Stickstoffoxyde***Lactone aus Oxyacbonsäurehydraziden**

191.

In eine Lsg. von d-Lyxonsäurehydrazid in HCl bei 15 — 20° nitrose Gase, die durch Einwirken von konz. H_2SO_4 auf festes Na-Nitrit her-

gestellt wurden, eingeleitet, bis die heftige Gasentwicklung aufgehört hat → d-Lyxono- γ -lacton. A: 80,7%. (W. B. s. A. Thompson u. M. L. Wolfrom, Am. Soc. 68, 1509 (1946).)

s. 1, 193

Phosphorsäure

H_3PO_4

**Carbonsäuren aus Nitrilen
und Carbonsäureamiden**

192. Aus schwerverseifbaren Nitrilen u. Carbonsäureamiden können mit 100%ig. H_3PO_4 Carbonsäuren in Ausbeuten von 70—90% erhalten werden. — B: 2,6-Dimethylbenzoësäureamid mit 100%ig. H_3PO_4 ½ Stde. auf 145—150° erhitzt → 2,6-Dimethylbenzoësäure. A: ca. 70%. (W. B. s. G. Berger u. S. C. J. Olivier, R. 46, 600 (1927). S. a. H. Mourau, P. Chovin u. G. Rivoal, C. r. 223, 951 (1946).)

Ozon

O_3

**Dodecanon-Gemisch aus
Mononitrododecan-Gemisch**
s. 1, 193

←

Wasserstoffsuperoxyd

H_2O_2

Oxoverbindungen aus subst. Hydroxylaminen
s. 2, 265

←

**Dodecanon-Gemisch aus
Mononitrododecan-Gemisch**
s. 1, 193

←

Sulfit

SO_3^{--}

**Phenole aus Aminen
Bucherer-Reaktion**
s. 2, 229

$NH_2 \rightarrow OH$

α -Diketone aus α -Isonitrosoketonen

←

193.

16-Oximino-östron-3-methyläther u. wasserfreies Na_2SO_3 mit Essigsäure bedeckt, 15 Min. auf dem Dampfbad erhitzt, bis die Gasentwicklung praktisch aufhörte, W. zugegeben, weitere 45 Min. erhitzt, abgekühlt, unter weiterer Zugabe von 3%ig. Na-Bisulfit mit Ae. behandelt, die Bisulfit-schicht schließlich mit konz. HCl angesäuert u. unter

häufigem Umschwenken 25—30 Min. auf dem Dampfbad erhitzt → 16-Ketoöstron-3-methyläther. Roh-A: 56—57%. (M. N. Huffman, J. biol. Chem. 167, 273 (1947).)

Schwefelsäure

Austausch von Aminogruppen gegen Hydroxyl $\text{NH}_2 \rightarrow \text{OH}$
s. 2, 233

α -Oxyketone aus α -Diazoketonen
s. 2, 230

**Austausch von Nitroso-
gegen Acetylgruppen** $\text{NO} \rightarrow \text{OAc}$
s. 1, 292

Spaltung von Nitronen

α -Ketoaldehyde aus α -Halogenketonen $\text{COCH}_2\text{Br} \rightarrow \text{COCHO}$
s. 1, 199

α -Diketone aus α -Isonitrosoketonen

194. $\text{C}_6\text{H}_5\text{COC}(=\text{NOH})\text{CH}_3 \rightarrow \text{C}_6\text{H}_5\text{COCOCH}_3$

Isonitrosopropiophenon mit 10%ig. H_2SO_4 6 Stdn. mit Wasserdampf destilliert → Acetylbenzoyl. A: 66—70%. (W. W. Hartman u. L. J. Roll, Org. Synth. 23, 1 (1943).)

Oxoverbindungen aus Hydrazonen

s. 2, 234

Ketone aus Semicarbazonen $\text{C : N-NHCONH}_2 \rightarrow \text{CO}$
s. 2, 231

Ketone aus Nitrilen

Hoesch-Synthese

s. 2, 606/7

Carbonsäuren aus Nitrilen $\text{CN} \rightarrow \text{COOH}$

195. o-Carboxyphenylacetonitril (Darst. s. 558) mit 50%ig. H_2SO_4 10—12 Stdn. auf dem Dampfbad erhitzt → Homophitalsäure. A: 71—75%. (C. C. Price, Org. Synth. 22, 61 (1942).)

Mesitylacetonitril (Darst. s. CC + Hal. 683) in H_2SO_4 unter Rühren u. Rückfluß 6 Stdn. gekocht → Mesitylessigsäure. A: 87%. (R. C. Fuson u. N. Rabjohn, Org. Synth. 25, 65 (1945).)

s. a. 2, 232

Carbonsäureester aus Nitrilen $\text{CN} \rightarrow \text{COOR}$

- 196a. Eine Mischung von Tetradecylcyanid mit gleichen Teilen 95%ig. Alk. u. konz. H_2SO_4 unter Röhren u. Rückfluß 4 Stdn. gekocht \rightarrow Penta-decansäureäthylester. A: 87%. (W. B. s. L. P. Kyrides u. a., J. org. Chem. 12, 584 (1947).)

**Carbonsäuren aus Diazoxyden
unter Ringverengung**

s. 2, 235

←

Salzsäure HCl **Spaltung von Nitronen** **α , β -ungesättigte Aldehyde**
s. 1, 197 $\text{CH : CHCH}_2\text{Br} \rightarrow \text{CH : CHCHO}$ **α -Ketoaldehyde**
s. 1, 198 $\text{COCH}_2\text{Cl} \rightarrow \text{COCHO}$ **Carbonsäuren aus Nitrilen** $\text{CN} \rightarrow \text{COOH}$

197. Benzoylcyanid (Darst. s. 689) in konz. HCl (D. 1,18) unter Schütteln gelöst u. 5 Tage bei Zimmertemp. stehengelassen \rightarrow Benzoylameisensäure. A: 73—77%. (T. S. Oakwood u. C. A. Weisgerber, Org. Synth. 24, 16 (1944).)

Allyleyanid (Darst. s. 687) in konz. HCl (D. 1,19) unter häufigem Schütteln 7—8 Min. mit kleiner Flamme erwärmt, bis die Reaktion beginnt, u. nach 15 Min. Kochen unter Rückfluß aufgearbeitet \rightarrow Vinyllessigsäure. Roh-A: 52—62%. (E. Rietz, Org. Synth. 24, 96 (1944).)

**gleichzeitig Carbonsäuren
aus Carbonsäureestern**

199.

Eine Lsg. von 2-(δ -Carbomethoxybutyl)-3-cyan-4-carbomethoxydihydrothiophen in Essigsäure-konz. HCl 16 Stdn. unter Rückfluß gekocht \rightarrow 2-(δ -Carboxybutyl)-dihydrothiophen-3,4-dicarbonsäure. A: ca. 100%. (B. R. Baker u. a., J. org. Chem. 12, 167 (1947). W. B. s. die übrigen Arbeiten dieser Reihe.)

Carbonsäuren aus α -Cyancarbonsäureamiden
s. 3, 631

α -Aminocarbonsäuren aus α -Cyanurethanen
s. 3, 189

Carbonsäureester aus Nitrilen

CN \rightarrow COOR

CH₃

In eine Mischung von β -Oxy- β -cyanbuttersäureäthylester u. Butylalkohol bei 0—7° trockene HCl eingeleitet, hierauf 2 Stdn. stehen gelassen, mit K₂CO₃ neutralisiert u. 2 Stdn. auf 60° erwärmt \rightarrow α -Methyl- α -oxybernsteinsäure-äthylbutylester. A: 78%. (W. B. s. J. Colonge, L. Watteau u. L. Cumet, Bl. 1947, 245.)

Bromwasserstoffsäure

HBr

**Carbonsäuren aus Nitrilen
bei gleichzeitiger Aetherspaltung**
s. 2, 236

Ueber Zwischenprodukte

ü. Z.

Austausch von Nitrogruppen gegen Hydroxyl NO₂ \rightarrow NH₂ \rightarrow OH

201. Eine Lsg. von SnCl₂ in konz. HCl auf 5° gekühlt, das Eisbad entfernt, m-Nitrobenzaldehyd zugegeben, wenn die Temp. in ca. 5 Min. 25—30° erreicht hat, wieder mit Eis gekühlt u. kräftig gerührt, dann 2½ Stdn. unter Kühlung mit einer Eis-Salz-Mischung langsam gerührt, filtriert, in konz. HCl suspendiert, bei 4—5° innerhalb 80 Min. unter Röhren eine wss. NaNO₂-Lsg. unter der Oberfläche eingetropft, 1 Stde. unter Kühlung mit Eis-Salz-Mischung weitergerührt, filtriert u. vorsichtig innerhalb 40 Min. in kleinen Portionen zu kochendem W. gegeben \rightarrow m-Oxybenzaldehyd. Roh-A: 59—64%. (R. B. Woodward, Org. Synth. 25, 55 (1945).)

Ketone aus Ketoximen

C : NOH \rightarrow CO

s. 1, 200

**Dodecanon-Gemisch
aus Mononitrododecan-Gemisch**

←

s. 1, 193

Halogen ↑

OC $\downarrow\!\!\downarrow$ Hal

Ohne Hilfsstoffe

o. H.

Austausch von Chlor gegen Hydroxyl

Cl \rightarrow OH

s. 2, 237

Aether

ROR

s. 1, 201

**o-Aldehydecarbonsäuren aus
2-Bromphthaliden**

←

s. 3, 154

Acylierung

OH → OAc

s. 1, 202

Carbonsäureester aus Carbonsäurechloriden

COCl → COOR

s. 2, 277

**Carbonsäureester aus Carbonsäuren
über Carbonsäurechloride**

s. 1, 203/4

β-Dialkylamino-äthylester von Gallensäuren

s. 2, 238

**Wasserlösliche Derivate von
Alkoholen und Aminen**

s. 2, 442

Alkylchlorformate

s. 3, 368

Furanringschluß

○

s. 2, 239

Natrium

Na

Aether

ROH → ROR

202.

l-Menthol in trockenem Toluol mit Na versetzt, im Oelbad zu gelindem Sieden unter Rückfluß erhitzt, sobald das Na schmilzt, mit Röhren begonnen, nach 15 Stdn. abgekühlt, überschüssiges Na entfernt, bei 85 bis 90° unter Röhren eine Lsg. von Monochloressigsäure in warmem, trockenem Toluol so zugegeben, daß das Sieden nicht zu heftig wird, u. unter Röhren u. Rückfluß 48 Stdn. gekocht → l-Menthoxyessigsäure (Ausg. f. 472). A: 78—84%. (M. T. Leffler u. A. E. Calkins, Org. Synth. 23, 52 (1943).)

s. a. 2, 240, 266

Biosen aus Monosen

203.

In geschmolzene 1,2,3,4-Tetraacetyl- β -D-glucose bei 110—140° unter N₂ kleine Na-Stückchen eingetragen, 2,3,4,6-Tetraacetyl- α -glucosyl-1-bromid zugefügt u. nach weiterem 1-stdg. Erhitzen auf 110—120° aufgearbeitet \rightarrow β -Gentiobiose-octa-acetat. A: 80%. Für den Erfolg der Reaktion ist die Reinheit der Reagenzien wesentlich. (W. B. s. V. E. Gilbert, F. Smith u. M. Stacey, Soc. 1946, 622.)

Natrium/Kalium

Na/K

C

Furanring-Oeffnung

s. 2, 770

Natronlauge

NaOH

Austausch von Chlor gegen HydroxylCl \rightarrow OH

s. 1, 205

 α -Oxycarbonsäuren aus **α -Dihalogenketonen**COCHCl₂ \rightarrow CH(OH)COOH

204.

Dichloracetophenon (Darst. s. 430) unterhalb 65° u. innerhalb ca. 2 Std. unter kräftigem Rühren zu wss. NaOH getropft u. 1 Stde. bei 65° weitergerührt \rightarrow Mandelsäure. A: 85—90%. (J. G. Aston, J. D. Newkirk, D. M. Jenkins u. J. Dorsky, Org. Synth. 23, 48 (1943).)

Acylierung mit ungesättigten CarbonsäurechloridenOH \rightarrow OAc

s. 2, 247

←

Phenolearbonate

s. 2, 345

Oxazolonring

s. 1, 313

Kalilauge*KOH* **α -Oxycarbonsäuren aus α -Halogencarbonsäuren** $\text{Cl} \rightarrow \text{OH}$

s. 1, 451

Perester COO_2R

60%ig. tert.-Butylhydroperoxyd bei 10—20° unter Rühren gleichzeitig mit Benzoylchlorid u. 30%ig. KOH innerhalb 1 Stde. versetzt u. über Nacht weitergerührt → tert.-Butylperbenzoat. Roh-A: 99%. (W. B. s. N. A. Milas u. D. M. Surgenor, Am. Soc. 68, 642 (1946).)

Alkali in Wasser u. Alkohol**Aether über Alkaliverbindungen***ROR***Methyläther**

s. 1, 207, 209

**Partieller Austausch von
Brom gegen Methoxyl**

s. 2, 241

Aethyläther

s. 1, 206; 2, 242, 278

Phenyläther

s. 2, 243/4

Benzyläther

s. 1, 208; 2, 245

Thymyläther

s. 2, 246

**Carbonsäuren aus Halogeniden,
gleichzeitig Dehydratisierung**

s. 3, 723

 **β -Dialkylamino-äthylester von
Gallensäuren**

s. 2, 238

Iminoester aus Iminochloriden

s. 2, 823

Pyranring-Synthese

s. 3, 676

Natriumperoxyd Na_2O_2 **Acylperoxyde aus Carbonsäurechloriden** $2 \text{ COCl} \rightarrow \text{CO} \cdot \text{O}_2 \cdot \text{OC}$

206.

Eine Lsg. von p-Nitrobenzoylchlorid in trockenem Toluol unter kräftigem Rühren innerhalb ca. 30 Min. in eine auf 0—5° abgekühlte wss. Na_2O_2 -Lsg. getropft u. 1½ Stdn. weitergerührt → p-Nitrobenzoylperoxyd. A: 86—88%. (W. B. s. C. C. Price u. E. Krebs, Org. Synth. 23, 65 (1943). S. a. M. S. Kharasch u. R. L. Dannley, J. org. Chem. 10, 406 (1945).)

Natriumcarbonat Na_2CO_3 **Austausch von Brom gegen Hydroxyl** $\text{Br} \rightarrow \text{OH}$

207.

Fluoren-1-methylbromid mit Na_2CO_3 in Aceton-W. → Fluoren-1-methanol. A: ca. 100%. (L. A. Pink u. G. E. Hilbert, Am. Soc. 68, 751 (1946).)

Kaliumcarbonat K_2CO_3 **Aether** ROR

208. o-Nitrophenol, n-Butylbromid u. wasserfreies K-Carbonat in trockenem Aceton auf dem Dampfbad 48 Stdn. unter Rückfluß gekocht → o-n-Butoxynitrobenzol. A: 75—80%. — Bei Ansätzen von 2 Mol stieg die Ausbeute auf 85—90%. Andere Nitrophenyläther können ebenso dargestellt werden, wobei das Hexylderivat zur Reaktion 72 Stdn. benötigt. Die Methode, die die Darst. der Phenolsalze vermeidet, ist allgemein anwendbar. (C. F. H. Allen u. J. W. Gates, jr., Org. Synth. 25, 949 (1945).)

s. a. 2, 248

Aether aus Carbonsäureestern $\text{COOR} \rightarrow \text{OR}'$

s. 1, 210

Carbonsäureester aus Carbonsäuren $\text{COOH} \rightarrow \text{COOR}$

s. 2, 277

Natriumacetat $Na(CH_3COO)$ **Austausch von Chlor gegen Acetyl** $\text{Cl} \rightarrow \text{OAc}$

s. 3, 227, 750

Cumarinring-Synthese

s. 2, 607

Kaliumacetat $K(CH_3COO)$ **Austausch von Brom gegen Acetyl**

s. 1, 211; 3, 227

 $Br \rightarrow OAc$ **Kalium jodid****KJ****Phenyläther aus Chloriden** $Cl \rightarrow OR$

209. Phenol u. K-Carbonat in trockenem Aceton unter Rühren u. Rückfluß 15 Min. gekocht, mit einer über Nacht gestandenen Mischung von Chloraceton, KJ u. Aceton langsam versetzt, noch wiederholt K-Carbonat, Aceton u. tropfenweise Chloraceton zugefügt u. 15 Stdn. gerührt, bis die K-Carbonat-Körner verschwunden sind → Phenoxyaceton. — Durch Verwendung von KJ als Katalysator konnte die Ausbeute von 16—23% auf über 90% erhöht werden. (W. B. s. C. D. Hurd u. P. Perletz, Am. Soc. 68, 38 (1946). S. a. C. Djerassi u. C. R. Scholz, Am. Soc. 69, 1688 (1947).)

Natriumsalz Na^+

210.

1,2,2-Trichlor-1,1-difluoräthan tropfenweise zu Na-Phenolaten in Aceton bei 15—20° gegeben u. hierauf mehrere Stdn. unter Rückfluß gekocht → 1-Aryloxy-2,2-dichlor-1,1-difluoräthangat. A: 56—79%. — B: 1-(m-Methylphenoxy)-2,2-dichlor-1,1-difluoräthan. Beim Arbeiten in wasserfreiem Medium kann die Abspaltung von Halogenwasserstoff verringert werden. (W. B. s. E. T. McBee u. R. O. Bolt, Ind. Eng. Chem. 39, 412 (1947).)

Dimethylanilin**Acylierung von tert. Alkoholen** $OH \rightarrow OAc$

211. Tert.-Butylalkohol u. Dimethylanilin in trockenem Ae. zum Sieden erhitzt, ohne weiteres Erhitzen Acetylchlorid unter Rühren so zugegeben, daß mäßiges Sieden aufrechterhalten wird, bei zu heftiger Reaktion gekühlt u. schließlich noch 1 Stde. auf dem Wasserbad erhitzt → tert.-Butylacetat. A: 63—68%. (W. B. s. C. R. Hauser, B. E. Hudson, B. Abramovitch u. J. C. Shivers, Org. Synth. 24, 19 (1944).)

Pyridin C_5H_5N **Trityläther**

s. 1, 212/3

 ROR

Tritylierung und Acetylierung $\text{OH} \rightarrow \text{OAc}$

212.

Eine Mischung von wasserfreier Glucose, Tritylchlorid u. wasserfreiem Pyridin auf dem Dampfbad bis zur Lsg. erhitzt, ohne abzukühlen Acetanhydrid auf einmal zugegeben u. 12 Stdn. stehengelassen → 6-Trityl-1,2,3,4-tetraacetyl- β -D-glucose (Ausg. f. 10). A: 43%. (D. D. Reynolds u. W. L. Evans, Org. Synth. 22, 56 (1942).)
s. a. 2, 249/50

Acetoxyisobutyrate

213.

Zu einer Lsg. von Milchsäureäthylester u. wasserfreiem Pyridin in Bzl. unter Rühren u. Kühlen zwischen 18 u. 23° langsam Acetoxyisobutyrylchlorid gegeben u. über Nacht stehengelassen → Milchsäureäthylester-acetoxyisobutyrat. A: 92%. — In Abwesenheit von Pyridin sind die Ausbeuten viel niedriger. (W. B. s. E. M. Filachione, J. H. Lengel u. C. H. Fisher, Am. Soc. 68, 330 (1946).)

Benzoylierung

s. 1, 214; 2, 251/2

Milde Benzoylierung

214.

3,4-Aceton- β -methylarabinosid in Pyridin bei — 5° innerhalb 45 Min. unter Rühren tropfenweise mit Benzoylchlorid in Pyridin versetzt u., nach weiterem 5-min. Stehen bei — 5°, aufgearbeitet → 2-Benzoyl-3,4-aceton- β -methylarabinosid. A: quantitativ. (J. Honeyman, Soc. 1946, 990.)

Enolderivate

215.

1 g 3,6-Diketo- Δ^4 -cholesten-6-enol-äthyläther mit Pyridin u. Benzoylchlorid 20 Min. unter Rückfluß gekocht → 0,8 g 3-Benzoyloxy-6-äthoxy- $\Delta^{2,4,6}$ -cholestatrien. (W. B. s. W. C. J. Rose, Soc. 1946, 737.)

Monoacylglykole

s. 1, 216

Carbäthoxylierung

s. 2, 253

Carbonsäureanhydride

s. 2, 254; s. a. C. F. H. Allen u. a. Org. Synth. 26, 1 (1946).

Urethane aus Phenolen

216.

o-Nitrophenol u. Aethylphenylcarbamylchlorid in Pyridin über Nacht stehengelassen u. hierauf 10 Min. auf dem Wasserbad erhitzt → *o*-Nitrophenyl-äthylphenyl-carbamat. A: 84%. (W. B. s. N. N. Crounse u. L. C. Raiford, J. org. Chem. 10, 419 (1945).)

Chinolin

Fettsäureester

s. 1, 215

Kupfer

Aether

s. 2, 255

Silberoxyd

Methylierung

s. 2, 256/7

**Methylierung von
leichtoxydierbaren Kohlehydraten**
s. 2, 258

Glykoside

s. 1, 217

Carbonsäureester

s. 2, 259

Silbersalze

Aether aus Alkylhalogeniden

s. 2, 260

Phosphorsäureester3 R Hal → (RO)₃PO

217. α -Bromheptaacetylmaltose u. Tri-Ag-Phosphat in trockenem Bzl. unter Wasserausschluß u. mechanischem Rühren 1 Stde. unter Rückfluß gekocht → Tri-(heptaacetyl-maltose-1)-phosphat. Roh-A: 91%. (W. B. s. W. R. Meagher u. W. Z. Hassid, Am. Soc. 68, 2135 (1946).)

SulfonsäureesterSO₂OR

s. 2, 262

*Silbercarbonat*Ag₂CO₃**Austausch von Brom gegen Hydroxyl**

Br → OH

218.

Eine Lsg. von Acetobromoglucose (Darst. s. 462) in trockenem Aceton bei 0° mit etwas W. u. hierauf innerhalb 15 Min. unter Schütteln in kleinen Portionen mit Ag-Carbonat versetzt, das Schütteln 30 Min. fortgesetzt, auf 50—60° erwärmt u. filtriert → β -d-Glucose-2,3,4,6-tetraacetat. A: 75—80%. (C. M. McCloskey u. G. H. Coleman, Org. Synth. 25, 53 (1945).)

Methylglykoside

ROR

s. 1, 218

Steroidglykoside

s. 1, 219

*Silberacetat*Ag(CH₃COO)**Austausch von Brom gegen Acetoxygruppen**

Br → OAc

s. 1, 221; 2, 261

*Silbernitrat*AgNO₃**Austausch von Brom gegen Hydroxyl**

Br → OH

219.

3-Keto-12-bromo-4,11-dihydroxy-5,6,7,8-tetrahydro-1H-cholestan-12-yl acetate mit AgNO₃ in Aceton-W. 2 Stdn. bei Zimmertemp. stehengelassen → 3-Keto-12-hydroxy-4,11-dihydroxy-5,6,7,8-tetrahydro-1H-cholestan-12-yl acetate. A: 90,5%. (V. R. Mattox u. a., J. biol. Chem. 164, 589 (1946).)

*Magnesium**Mg***Ketone aus α -Halogenaminen**
s. 2, 222 \leftarrow **Acylierung von Alkoholen**
s. 1, 222/3 $\text{OH} \rightarrow \text{OAc}$ **Acylierung von Phenolen**
s. 1, 224*Calciumcarbonat**CaCO₃***Partieller Austausch von Brom gegen Hydroxyl** $\text{Br} \rightarrow \text{OH}$

Eine Lsg. von 4-(γ, β -Dibrompropyl)-guajacol-benzoat in Alk.-Aceton-W. mit CaCO_3 18 Stdn. unter Rückfluß gekocht \rightarrow 4-(α -Oxy- β -brompropyl)-guajacol-benzoat. Roh-A: 83%. (B. Riegel u. H. Witcoff, Am. Soc. 68, 1913 (1946).)

*Zinksalze**Zn***Acylierung von Zuckersäuren** $\text{OH} \rightarrow \text{OAc}$

221. Vollacylierte Zuckersäuren können durch Einwirkung von Acylchlorid auf deren neutrale Zinksalze dargestellt werden. — B: $\text{Zn-}\alpha\text{-d-Glucopentaoxypimelat}$ mit Acetylchlorid ca. 1 Stde. auf 60° erwärmt \rightarrow $\alpha\text{-d-Glucopentaacetoxypimelinsäure}$. A: 70%. — (W. B. s. M. Adelman u. I. G. Breckenridge, Can. J. Research 24B, 297 (1946).)

*Hexamethylentetramin**C₆H₁₂N₄***Aldehyde aus Halogeniden** $\cdot \text{CH}_2\text{Cl} \rightarrow \cdot \text{CHO}$

222. 2-(Chlormethyl)-thiophen mit Hexamethylentetramin in Chlf. 1 Stde. unter Rückfluß gekocht, filtriert, mit Ae. gewaschen u. Wasserdampfdestilliert \rightarrow 2-Thiophenaldehyd. A: 51%. (F. W. Dunn, T. D. Waugh u. D. Dittmer, Am. Soc. 68, 2118 (1946). Methode s. Sommelet, C. r. 157, 852 (1913).)

*Schwefelsäure**H₂SO₄***Aldehyde** $\cdot \text{CHO}$

Eine Mischung von 20 g 1-Chlor-3-methylnon-1-en-4-in-3-ol, verd. H_2SO_4 , Dioxan u. Trimethylcetylammmoniumbromid als Emulgator bei

45—50° 48 Stdn. unter N₂ kräftig gerührt → ca. 10 g 3-Methylnon-2-en-4-in-1-al. (W. B. ohne Emulgatorzusatz s. E. R. H. Jones u. B. C. L. Weedon, Soc. 1946, 937.)

Ketone aus ungesättigten Halogeniden
s. 1, 225

>CO

Austausch von Halogen gegen Oxogruppen
s. 1, 226, 410

>CCl₂ → >CO

Carbonsäuren aus Tribromiden
s. 3, 155

CBr₃ → COOH*Mangandioxyd, Metalloxyde*MnO₂**Aether aus Halogeniden**

Cl → OR

224. p-Nitrochlorbenzol mit NaOH, MnO₂ u. 95%ig. Alk. 15 Stdn. unter Röhren erhitzt → p-Nitrophenetol. A: 85—90%. Der Zusatz von MnO₂, PbO₂ oder Cu₂O begünstigt die Reaktion. (W. B. s. B. B. Dey, T. R. Govindachari u. H. Venkata Krishna Udupa, J. Sci. Ind. Research (Indien) 4, 369 (1945) 1B, 25 (1946).)

s. a. 1, 209

Salzsäure

HCl

Partieller Austausch von Chlor gegen Hydroxyl
Carbostyrole

Cl → OH

225.

2,4-Dichlorchinolin mit 6-n. HCl u. — um Verflüchtigung u. Kondensation im Kühler zu vermeiden — Dioxan, unter Röhren ca. 2 Stdn. unter Rückfluß gekocht → 4-Chlorcarbostyrol. A: fast 100%. (W. B. s. R. J. Rowlett, jr., u. R. E. Lutz, Am. Soc. 68, 1288 (1946).)

Ketone aus ungesättigten Halogeniden
s. 2, 263

←

Oxy- und Alkoxyppyrrole aus Brompyrrolcarbonsäuren
s. 1, 227

←

Acridone aus Chloracridinen
s. 2, 792

←

Kaliumferricyanid **$K_3Fe(CN)_6$** **Carbostyryle**

226.

In eine Mischung von $K_3[Fe(CN)_6]$ u. 10%ig. NaOH bei 60—65° unter Rühren tropfenweise eine wss. Lsg. von 5-Nitrochinolin-jodmethylektat gegeben u. nach weiterem $\frac{1}{2}$ stdg. Rühren aufgearbeitet \rightarrow 1-Methyl-5-nitrocarbostyryl. A: 94%. (A. J. Deinet u. R. E. Lutz, Am. Soc. 68, 1325 (1946).)

Phenanthrolone

s. 2, 264

Ueber Zwischenprodukte**ü. Z.****Alkohole aus Halogeniden über Acetate****Hal \rightarrow OAc \rightarrow OH**

227. p-Nitrobenzylchlorid u. geschmolzenes Na-Acetat in Eisessig 8—10 Stdn. bei 160—170° Oelbadtemp. unter Rückfluß erhitzt \rightarrow p-Nitrobenzylacetat (A: 78—82%) in heißem Methanol gelöst, 15%ig. NaOH-Lsg. zuerst langsam unter Schütteln zugegeben u. 5 Min. stehengelassen \rightarrow p-Nitrobenzylalkohol (A: 64—71%). — p-Jodbenzylbromid u. K-Acetat in 95%ig. Alk. 8 Stdn. unter Rückfluß gekocht, abgekühlt, filtriert, zum Filtrat Kaliumhydroxyd gegeben u. 6. Stdn. unter Rückfluß gekocht \rightarrow p-Jodbenzylalkohol. A: 81—86%. (W. W. Hartmann u. E. J. Rahrs, Org. Synth. 24, 79, 81 (1944).)

**Oxoverbindungen aus Halogeniden
über subst. Hydroxylamine**

s. 2, 265

 $CH_2Cl \rightarrow CHO$ **Oxoverbindungen aus Halogeniden
über Nitrone** **α,β -ungesättigte Aldehyde**

s. 1, 197

 α -Ketoaldehyde

s. 1, 198/9

Schwefel ↑**OC ↑ S****Ohne Hilfsstoffe****o. H.****Aether****ROR**

228. Na-p-Nitrophenolat mit K-Aethylsulfat in W. 16 Stdn. im Autoklaven auf 125—130° erhitzt → p-Nitrophenetol. A: 71,5%. (A. C. Roy u. T. N. Ghosh, J. Indian Chem. Soc. 22, 283 (1945).)

Natrium**Na****Methylierung****OH → OR**

s. 2, 266

Alkalihydroxyd**Austausch von Sulfogruppen gegen Hydroxyl****SO₃H → OH**

229.

Zu geschmolzenem KOH u. ein wenig W. bei 220—230° unter Röhren Na-1,2,3,4-Tetrahydrophenanthren-7-sulfonat gegeben, schnell auf 300 bis 305° erhitzt u. 5 Min. dabei belassen → 7-Oxy-1,2,3,4-tetrahydrophenanthren. A: 85—93%. (J. M. Griffing u. R. C. Elderfield, J. org. Chem. 11, 123 (1946).)

s. a. 2, 268

Methylierung von**Zuckern**

s. 1, 228

Phenolen

s. 1, 229, 231; 2, 267

schwer methylierbaren Phenolen

230. K-2,6-Dichlor-4-nitrophenolat mit Dimethylsulfat innerhalb 20 Min. im Oelbad auf 150—155° erhitzt, 30 Min. bei dieser Temp. gerührt, nach teilweisem Abkühlen mit NaOH versetzt u. zur Zerstörung des überschüssigen Dimethylsulfats 30 Min. bei 80—85° gerührt → 2,6-Dichlor-4-nitroanisol (Ausg. f. 17). A: 98%. (C. de Traz, Helv. 30, 232 (1947).)

Aethylierung von Phenolen

s. 1, 230

Methylierung von Hydroperoxyden	$\text{OOH} \rightarrow \text{OOR}$
s. 1, 232	
Carbonsäuren aus Thioamiden	$\text{CSNR}_2 \rightarrow \text{COOH}$
s. 3, 141	
<i>Natriumalkoholat</i>	<i>NaOR</i>
Anhydrozucker	\leftarrow
s. 2, 269	
<i>Natriumsalze</i>	Na^+
Aether	ROR
s. 3, 228	
Carbonsäureester	COOR
s. 2, 270	
<i>Kaliumcarbonat</i>	K_2CO_3
Methylierung	$\text{ROH} \rightarrow \text{ROR}$
s. 2, 271/2	
i-Aether aus Tosylderivaten bei gleichzeitiger Umlagerung	\leftarrow
s. 3, 596	
<i>Natriumacetat</i>	$\text{Na(CH}_3\text{COO)}$
Epimerisierung gesättigter Sterine	\leftarrow
s. 1, 233	
<i>Bariumhydroxyd</i>	Ba(OH)_2
Anhydrozucker aus Sulfaten	\leftarrow
s. 2, 273	
<i>Quecksilber(I)-chlorid u. Cadmiumcarbonat</i>	HgCl/CdCO_3
Spaltung von Mercaptalen	$\text{C(SR)}_2 \rightarrow \text{CO}$
s. 2, 274	
<i>Chloressigsäure</i>	ClCH_2COOH
Austausch von Sulfhydryl gegen Hydroxyl	$\text{SH} \rightarrow \text{OH}$
s. 2, 275	

Schwefelsäure H_2SO_4 **Carbonsäuren aus Thioamiden**
s. 2, 181 $CSNR_2 \rightarrow COOH$ *Bromwasserstoffsäure* HBr **Austausch von Alkylthiogruppen
gegen Hydroxyl**
s. 2, 276 $SR \rightarrow OH$ **Kohlenstoff ↓** **OC \downarrow C***Ohne Hilfsstoffe**o. H.* **β -Diäthylaminoäthylester von
Thiazolcarbonsäuren**

←

Umesterung
s. 2, 277**Schwefelsäureester**

231.

Neutrale Schwefelsäureester von mehrwertigen Alkoholen können durch Einwirkung von Chlorameisensäureestern auf saure Schwefelsäureester erhalten werden. B: Pentaerythrit-tetrasulfat mit Chlorameisensäuremethylester langsam auf 100° erhitzt u. weitere 15 Stdn. bei dieser Temp. belassen → Pentaerythrit-tetramethylsulfat. A: 82%. (W. B. s. M. Y. Kraft, J. Gen. Chem. (UdSSR.) 16, 677 (1946).)

Alkylorthosilicate

←

232.

Aethylorthosilicat u. Allylalkohol unter ständiger Entfernung des entstehenden Aethylalkohols durch Destillation, 20 Stdn. erhitzt → Allylorthosilicat. A: 91%. — Falls die Alkoholyse nicht ohne Hilfsstoff fortschreitet, kann sie durch Zusatz von trockenem HCl oder $SiCl_4$ gefördert werden. (W. B. s. D. F. Peppard, W. G. Brown u. W. C. Johnson, Am. Soc. 68, 73 (1946).)

Alkylfluorsilicate

←

233. Triäthylfluorsilicat mit n-Butanol erhitzt, wobei der entstandene Aethylalkohol abdestilliert wurde → Tri-n-butyl-fluorsilicat. A: 59%. (W. B. s. D. F. Peppard, W. G. Brown u. W. C. Johnson, Am. Soc. 68, 76 (1946).)

*Natronlauge**NaOH***Carbonsäuren aus α -Halogenketonen
über Pyridiniumsalze** $\text{COCH}_2\text{Br} \rightarrow \text{COOH}$ **Abbau um 1 C-Atom**

s. 2, 833

Indol- und Pyrrolcarbonsäuren

s. 1, 789

*Natriumalkoholat**NaOR***Austausch von Chlor und Methoxyl
gegen Aethoxyl**

s. 2, 278

Alkylorthosilikate

s. 3, 235

←

*Kaliumcarbonat**K₂CO₃* **β -Oxyäthyl-äther**

ROR

234.

6-Oxy-8-nitrochinolin, Aethylencarbonat u. wasserfreies K_2CO_3 2 Std. auf ca. 95° erhitzt → 6-(β -Oxyäthoxy)-8-nitrochinolin. A: 86,4%. (L. H. Cretcher u.a., Am. Soc. 68, 781 (1946). W. B. s. 69, 1952 (1947).)

*Silberoxyd**Ag₂O***Carbonsäuren aus Aethylenderivaten über Ozonide** $\text{C:C} \rightarrow \text{COOH}$

s. 1, 143

*Zink**Zn***Oxoverbindungen aus Aethylenderivaten über Ozonide** $\text{C:C} \rightarrow \text{CO}$

s. 1, 141

Aluminiumchlorid, Alkoholate

←

Alkylorthosilicate

←

235. Gegenseitige Umesterung von Alkylsilicaten u. mit Carbonsäureestern können in Ggw. von Katalysatoren wie AlCl_3 , Al-Aethylat, Sb-Aethylat u. a. bei Entfernung des flüchtigen Reaktionsprodukts praktisch quantitativ durchgeführt werden. (B. s. D. F. Peppard, W. G. Brown u. W. C. Johnson, Am. Soc. 68, 77 (1946).) Umesterung mit Na-Alkoholat, s. B. Helferich u. W. Reimann, (Chemie) B. 80, 163 (1947).

Aluminiumbromid, Acetylpyridiniumchlorid

Spaltung von Phenoläthern
Phenoester aus Phenoläthern
 s. 1, 234

N-Methylmorpholin

Benzoylierung mit ω -Trichloracetophenon
 s. 2, 460

Siliciumtetrachlorid

Alkylorthosilicate
 s. 3, 233

Phosphorsäure

Spaltung von Phenoläthern
Phenoester aus Phenoläthern
 s. 1, 234

Ozon

Abbau von Ketonen um 2 C-Atome
 s. 2, 494

Schwefelsäure

Cumarinring
 s. 1, 591

Vanadinpentoxyd

**Katalytische Oxydation von
 leichtflüchtigen organischen
 Verbindungen**
 s. 1, 235

Chromsäure

Aldehyde aus Aethylenderivaten
 s. 1, 236

Carbonsäuren aus Aethylenderivaten

Barbier-Wielandscher Abbau von Gallensäuren
 s. 1, 752; 3, 733

**Oxydativer Abbau
 von Methylketonen**
 s. 2, 280

von Carbonsäuren

s. 3, 733

von Seitenketten

s. 2, 281

Permanganat MnO_4^- **Aldehyde aus Aethylenderivaten** $C : C \rightarrow CHO$

s. 1, 236

Carbonsäuren aus Aethylenderivaten $C : C \rightarrow COOH$

s. 3, 156

*Hypohalogenite**Halogen***Carbonsäuren aus Methylketonen** $COCH_3 \rightarrow COOH$ **Abbau um 1 C-Atom**

Mesityloxyd u. K-Hypochlorit in Dioxan-W. innerhalb 3—4 Stdn. unter zeitweisem Rühren u. Kühlen umgesetzt u. hierauf das überschüssige Hypochlorit mit Na-Bisulfit zerstört $\rightarrow \beta,\beta$ -Dimethylacrylsäure. A: 49—53%. (L. I. Smith, W. W. Prichard u. L. J. Spillane, Org. Synth. 23, 27 (1943).)

s. a. 1, 237; 2, 283; Thiophencarbonsäuren mit NaClO s. H. D. Hartough u. L. C. Conley, Am. Soc. 69, 3096 (1947).

Oxydativer Abbau von Seitenketten

←

s. 1, 239

Perjodsäure und Perjodat JO_4^- **Oxydative Spaltung der Kohlenstoff-Kette**

←

238.

2-Phenyl-5'-desoxy-l-sorbosotriazol (Darst. s. 254) mit 1,05 Mol NaJO₄ in W. bei 25° 16 Stdn. geschüttelt → 2-Phenyl-4-formyl-osotriazol (A: 95%) u. β-Oxypropionaldehyd (A: 80% als Dimedonderivat). (P. P. Regna, Am. Soc. 69, 246 (1947).)

Oxydativer Abbau von Seitenketten

s. 1, 240

Abbau zu Aldehyden

s. 1, 241; 2, 285

Abbau von Polysacchariden

s. 2, 284

Salzsäure

HCl

Gemischte Acetale

s. 2, 282

Alkylorthosilicate

s. 3, 232

Nickel

Ni

Oxoverbindungen aus Ozoniden

s. 1, 142

Ueber Zwischenprodukte

ü. Z.

Lösung der Aetherbindung

Carbonsäureester und offene Aether aus cycl. Aethern

s. 1, 242

Oxoverbindungen und Carbonsäuren aus Aethylenderivaten über Ozonide

s. 1, 141/3

Carbonsäuren aus Methylketonen

Abbau um 1 C-Atom

s. 1, 243

Carbonsäuren aus Acetonitrilen

Abbau um 1 C-Atom

s. 1, 244

Arylpolyacylglycoside

Umacylierung

239. Optisch reine, nicht kristallisierbare Arylpolyacylglykoside kann man dadurch erhalten, daß man optisch reine kristalline Arylpolyacyl-

glykoside nach Zemplén, B. 62, 1613 (1929) desacyliert u. hierauf wieder acyliert.

B: Phenyl-tetraacetyl- α -d-glukosid mit einem Stückchen Na in Methanol innerhalb 1 Stde. desacyliert u. hierauf mit Propionsäureanhydrid in Pyridin umgesetzt → Phenyl-tetrapropionyl- α -d-glucosid. A: 88%. (W. B. s. C. D. Hurd u. W. A. Bonner, J. org. Chem. 10, 603 (1945).)

Abgabe

Wasserstoff ↑

OC ↑ H

*Silber-Kupfer**Ag-Cu*

Aldehyde aus prim. Alkoholen
s. 1, 155

*Aluminiumalkoholat**Al(OR)₃*

Aldehyde aus prim. Alkoholen
s. 1, 157

Aluminium-isopropylat

**Ketone aus sek. Alkoholen bei
gleichzeitiger Verschiebung der Doppelbindung**
s. 2, 286

Aluminium-phenolat

Ketone aus sek. Alkoholen
s. 1, 158

*Kupferacetat**Cu(CH₃COO)₂*

Oxydation empfindlicher Acyloine
s. 2, 287

Fehlingsche Lösung

←

Benzile aus Benzoinen
s. 1, 156

Stickstoffoxyde

←

Aldehyde aus prim. Alkoholen
s. 1, 160

Chinone aus Hydrochinonen

←

s. 1, 161

Wasserstoffperoxyd H_2O_2 **Flavone aus Chalkonen**

○

s. 1, 245

Selendioxyd SeO_2

s. 2, 288

Chromit

←

Oxo- aus Oxyverbindungen $CHOH \rightarrow CO$

s. 1, 165

Kupferchromit $CuCr_2O_4$

240. Prim. u. sek. Alkohole können mit einem CuO, Cr_2O_3 -Katalysator auf Celit Kieselgur niedergeschlagen, zu den entsprechenden Aldehyden u. Ketonen mit Ausbeuten von 20—80% dehydriert werden. B: 2-Methylbutanol-1 3,6 Stdn, bei 325—335° → 2-Methylbutanal. A: 63%. — 4-Methylpentanol-2 2,6 Stdn. bei 300—310° → 4-Methylpentanon-2. A: 80%. (W. B. s. R. E. Dunbar u. M. R. Arnold, J. org. Chem. 10, 501 (1945).)

Chromsäure CrO_3 **Ketone aus sek. Alkoholen**

s. 1, 167

Acetylenketone

s. 2, 289/91

Partielle Oxydation

s. 2, 292

 Br_2 *Brom*

←

Lactone aus inneren Halbacetalen

s. 2, 293

 BrO_3^- *Bromat***Benzile aus Benzoinen**

s. 2, 622

 $CHOHCO \rightarrow COCO$ *Eisen(III)-sulfat* $Fe_2(SO_4)_3$ **Chinone aus Hydrochinonen**

←

241. Brom-m-xylohydrochinon in Ggw. von $Fe_2(SO_4)_3$ u. HCl mit Wasserdampf destilliert → Brom-m-xylochinon. A: 84%. (L. I. Smith u. P. F. Wiley, Am. Soc. 68, 894 (1946).)

Eisen(III)-chlorid $FeCl_3$ **Tokopherol-Synthese**

s. 1, 678

Sauerstoff ↓**OC↑O***Ohne Hilfsstoffe**o. H.***Furanringschluß**

s. 2, 294

Pyridin C_5H_5N **Carbonsäureanhydride aus Carbonsäuren**

s. 2, 295

 $CO \cdot O \cdot OC$ **Kaliumacetat** $K(CH_3COO)$ **Oxazolone**

s. 3, 325

Essigsäure CH_3COOH **Pyranringschluß**

s. 2, 663

Salzsäure HCl **Octahydroxanthene als Derivate****von Aldehyden**

s. 3, 634

Bromwasserstoffsäure HBr **Tokopherol-Synthese**

s. 1, 678

Cumarano-cumarane

242.

500 mg β,γ -(2,5,2',5'-Tetraoxydiphenyl)- β,γ -dioxybutan in Ae. dispergiert, HBr-Gas bis zur Sättigung eingeleitet u. nach 2 Tagen aufge-

arbeitet → 350 mg α -2,3-Dimethyl-5,5'-dioxycumarano-3',2':2,3-cumaran. (W. B. s. G. J. Gie, Ark. Kemi 19A, Nr. 11 (1945).)

Eisen(II)-sulfat

Ketone aus Peroxyden
s. 1, 246

$FeSO_4$

Stickstoff ↑

OC ↑ N

Ohne Hilfsstoffe

o. H.

Dinitrophenylurethane
s. 1, 247

Ammoniak

NH₃

Azaphenoxazine
s. 2, 407

○

Halogen ↑

OC ↑ Hal

Natronlauge

$NaOH$

Oxidoverbindungen aus Halogenhydrinen

243.

2,5%ig. wss. 1-Chlor-3-butene-2-ol bei Zimmertemp. mit 50%ig. NaOH versetzt → 3,4-Epoxy-1-butene. A: 87%. (R. G. Kadesch, Am. Soc. 68, 46 (1946). W. B. s. Am. Soc. 68, 41 (1946).)

Natriumalkoholat

$NaOR$

s. 2, 296

Cyclische Aether

←

s. 1, 248

Kohlenstoff ↑

OC ↑ C

Ohne Hilfsstoffe

o. H.

Aldehyde aus α -Oxycarbonsäuren

s. 1, 249

*Elektrolyse***Elektrolytische Oxydation**

244.

Chinolin mit Pt-Elektroden in 75%ig. H_2SO_4 in Ggw. von etwas V_2O_5 als Anolyt und 20%ig. H_2SO_4 als Katholyt bei 70—90° mit einer Stromdichte von 0,04—0,1 A/cm² u. 3,2—3,5 V 168 Stdn. elektrolysiert → Chinolinsäure. A: 77%. (W. B. s. M. Kulka, Am. Soc. 68, 2472 (1946).)

Essigsäure CH_3COOH **Oxazole****Formylierung**

245.

Durch Kochen mit Dioxan (s. Original) gereinigtes Kalium in Ae. mit Alk. versetzt, die entstandene Lsg. mit Ae. verdünnt, unter 0° abgekühlt u. eine Mischung von α -Aethoxyäthyliden-aminoessigsäureäthylester u. Ameisensäureäthylester zugegeben → K- α -(α -Aethoxyäthyliden-amino)- β -oxyacrylsäureäthylester (A: 87%) innerhalb 10 Min. zu kochender Essigsäure gegeben u. im Vakuum destilliert → 2-Methyl-oxazol-4-carbonsäureäthylester (A: 75%). (W. B. s. J. W. u. R. H. Cornforth, Soc. 1947, 96.)

Wasserstoffperoxyd H_2O_2 **Carbonsäuren aus α -Ketoaldehyden**
s. 2, 297 $COCHO \rightarrow COOH$ **Perjodat** JO_4^- **Aldehyde aus 1,2-Glykolen**
s. 2, 299 $CH(OH)CH_2OH \rightarrow CHO$ **Salzsäure** HCl **α -Pyrone**
s. 2, 298**Jodwasserstoffsäure** HJ **3-Alkylchromone**
s. 1, 250

Herstellung der N—N-Bindung

Austausch

Wasserstoff \uparrow

NN $\uparrow\downarrow$ H

Ohne Hilfsstoffe

o. H.

Nitramine

s. 1, 251

Natriumnitrit

Nitrosamine

246.

Di-(β -carbäthoxyäthyl)-amin-hydrochlorid mit einem 20%ig. Ueberschuß von NaNO_2 in W. 45 Min. auf 80° erhitzt \rightarrow N-Nitroso-di-(β -carbäthoxyäthyl)-amin. A: 85%. (S. M. McElvain u. G. Stork, Am. Soc. 68, 1049 (1946).)

s. a. 1, 254

N-Aminochinoline aus Chinolinen

über N-Nitrosochinoline

s. 1, 255

Diazoverbindungen aus Aminen

247.

Glycin-äthylester-hydrochlorid u. Na-Aacetat in W. unterhalb 2° unter Röhren mit NaNO_2 in W. versetzt u. vorsichtig aufgearbeitet \rightarrow Diazoessigsäure-äthylester. A: 85%. (E. B. Womack u. A. B. Nelson, Org. Synth. 24, 56 (1944).)

Diazoniumsalze

s. 1, 256

**Verbessertes Verfahren zur Darstellung
von Benzoldiazoniumsalzen**

s. 1, 257

Diazoniumborfluoride

s. 1, 258

Diazoniumeisenkomplexsalze
s. 2, 526

Diazoniumcobaltinitrite
s. 1, 259

Diazoxyde und Chinone aus Aminophenolen
s. 2, 300

Azide aus Hydrazinen

Phenylhydrazin tropfenweise unter Röhren u. Kühlen mit Eis-Kochsalz innerhalb 5—10 Min. zu HCl gegeben, unter fortgesetztem Röhren u. Kühlen Ae., tropfenweise unterhalb 5° eine wss. Lsg. von techn. NaNO₂ innerhalb 25—30 Min. zugefügt u. vorsichtig aufgearbeitet → Phenylazid. A: 65—68%. (R. O. Lindsay u. C. F. H. Allen, Org. Synth. 22, 96 (1942).)

Carbonsäureazide aus Hydraziden
s. 1, 260

Indazole
s. 1, 321

Cinnoline
s. 2, 301

Der Einfluß der Substituenten auf die Widmann-Störmer'sche Cinnolinsynthese
s. 1, 322

Triazole
s. 1, 262/4

Kupfer(I)-salze

Symm. Azoverbindungen aus Aminen
Dimerisierung

Bei schneller Zugabe von Diazoniumsalz-Lsgn. zu Cu(I)-Salzen kann man symm. Azoverbindungen erhalten. — B: 2-Methoxyanilin in HCl mit NaNO₂ bei 0° diazotiert, mit Eiswasser verdünnt, filtriert, schnell innerhalb 5 Min. zu Cu(I)-Salz aus CuSO₄, NH₃ u. Hydroxylamin-chlorhydrat in W. gegeben u. nach 1 Stde. aufgearbeitet → 2,2'-Dimethoxyazobenzol. A: 80%. (W. B. s. B. M. Bogoslovskij, J. Gen. Chem. (UdSSR.), 16, 193 (1946).)

<i>Calciumcarbonat</i>	$CaCO_3$
Arylazophenole aus Aminen	←
s. 2, 343	
<i>Essigsäure</i>	CH_3COOH
Azoxyverbindungen	$N = N$ O
s. 2, 302	
<i>Zinn(II)-chlorid</i>	$SnCl_2$
Hydrazine aus Aminen	$NH_2 \rightarrow NHNH_2$
s. 2, 304	
<i>Schweifeldioxyd</i>	SO_2
s. 1, 261	

Sauerstoff ↑ NN \ddagger O

<i>Elektrolyse</i>	↖
Azoverbindungen, die sich mit den üblichen Mitteln nicht darstellen ließen, aus o- und p-Nitrophenol	$2 RNO_2 \rightarrow RN=NR$
s. 1, 252	
<i>Natronlauge</i>	$NaOH$

Azoverbindungen aus Nitroverbindungen und Aminen ←

In eine Mischung von Nitrobenzol u. m-Anisidin bei 170—175° innerhalb 30 Min. fein pulverisiertes NaOH eingetragen u. noch 20 Min. auf 180—185° erhitzt → m-Methoxyazobenzol. A: 55%. (W. B. s. M. Martynoff, C. r. 223, 747 (1946).)

Natriumcarbonat Na_2CO_3

Triazene \bigcirc

s. 1, 607

Natriumacetat $Na(CH_3COO)$

Stabilisieren von Diazoniumsalzen mit Piperazin ←

s. 1, 253

Zink

Zn

Symm. Azoverbindungen aus Nitroverbindungen
Verdopplung des Molekülgerüsts

251. Nitrobenzol mit Zn-Staub in wss.-methanol. NaOH 10 Stdn. unter Rückfluß gekocht \rightarrow Azobenzol. A: 84—86%. (H. E. Bigelow u. D. B. Robinson, Org. Synth. 22, 28 (1942).)

Essigsäure

CH₃COOH

Azoverbindungen aus Aminen und
Nitrosoverbindungen

Eine Lsg. von p-Aminobenzoësäure in Eisessig mit Nitrosobenzol versetzt, bis zur Lsg. geschüttelt u. verschlossen 12 Stdn. bei Zimmer-temp. stehengelassen \rightarrow p-Phenylazobenzoësäure (Ausg. f. 454). A: 61—70%. (H. D. Anspon, Org. Synth. 25, 86 (1945).)

s. a. 1, 265; 2, 303

gleichzeitig Azoxyverbindungen
s. 2, 302

Sauerstoff

O₂

Azoxyverbindungen aus Hydroxylaminen

1,5 g 4-Acetylamino-4'-hydroxylaminodiphenylsulfon in Methanol-W. in Ggw. von etwas Na-Bicarbonat über Nacht stehengelassen, wobei Oxydation durch Luftsauerstoff eintritt \rightarrow 1,4 g 4,4'-Bis-(p-acetylaminobenzylsulfonyl)-azoxybenzol. — Die Reaktion kann auch in wss. Pyridin durchgeführt werden. (E. L. Jackson, Am. Soc. 68, 1438 (1946).)

Stickstoff ↑

NN \rightleftharpoons N

Kupfersulfat

CuSO₄

Osotriazole aus Osazonen

254.

l-Arabinose-phenylosazon mit CuSO₄ in W. bis zur Lsg. des Osazons u. hierauf weitere 15 Min. gekocht, abgekühlt, filtriert, Cu⁺⁺ als Sulfid entfernt u. das Filtrat mit BaCO₃ neutralisiert → *l*-Arabinose-phenylosotriazol. A: 72%. (W. B. s. W. T. Haskins, R. M. Hann u. C. S. Hudson, Am. Soc. 68, 1766 (1946); 67, 939 (1945); 69, 1461 (1947).) Entsprechend: 5-Desoxy-*l*-sorbose-phenylosazon (Darst. s. 326) → 5-Desoxy-*l*-sorbose-phenylosotriazol (Ausg. f. 238). A: 83%. (P. P. Regna, Am. Soc. 69, 246 (1947).)

*Jod**J₂***Symm. Hydrazide**

←

s. 1, 266

Kohlenstoff ↓NN $\uparrow\downarrow$ C**Nitrosamine aus tert. Aminen**

s. 1, 346

AbgabeNN $\uparrow\downarrow$ H**Wasserstoff** ↓*HgO**Quecksilberoxyd***Diazoverbindungen aus Hydrazonen**

←

255.

Benzophenon-hydrazon (Darst. s. 307) mit gelbem HgO u. Petroläther in einer Druckflasche 6 Stdn. bei Zimmertemp. geschüttelt → Diphenyldiazomethan (Ausg. f. 177). A: 89—96%. (L. I. Smith u. K. L. Howard, Org. Synth. 24, 53 (1944).)

*Bleidioxyd**PbO₂***Azo- aus Hydrazoverbindungen**

s. 2, 305

*Natriumnitrit*NaNO₂

256.

4,4'-Dimethyl-hydrazo-thiazol-(2,2')-hydrochlorid in W. mit einer wss. NaNO₂-Lsg. versetzt → 4,4'-Dimethylazo-thiazol-(2,2'). Roh-A: 90%. (W. B. s. D. Markees, M. Kellerhals u. H. Erlenmeyer, Helv. 30, 304 (1947).)

Sauerstoff ↑

NN ↑ O

*Natriumsulfid*Na₂S**Cinnolinoxyde**

○

s. 2, 340

Kohlenstoff ↑

NN ↑ C

Natriumalkoholat

NaOR

Diazoverbindungen aus Nitrosourethanen

257.

7.1 g N-Nitroso-N-(3,3,3-triphenylpropyl)-carbaminsäureäthylester mit Na in Ae.-Alk. unter Eis-Salz-Kühlung u. Feuchtigkeitsausschluß mehrere Stdn. stehengelassen u. hierauf das Lösungsmittel bei 0° mit Hilfe eines trockenen Luftstroms entfernt → 5,3 g 1-Diazo-3,3,3-triphenylpropan. (L. Hellerman u. R. L. Garner, Am. Soc. 68, 819 (1946).)

Acetanhydrid(CH₃CO)₂O**Triazole**

○

258.

Diacetyl-monoxim- α,α -äthylphenylhydrazone tropfenweise unter Rühren so zu heißem Acetanhydrid gegeben, daß ständig Aethylacetat abdestilliert → 1-Phenyl-3,4-dimethyl-1,2,5-triazol. A: 83%. (R. F. Coles u. C. S. Hamilton, Am. Soc. 68, 1799 (1946).)

Herstellung der N-Hal-Bindung

Austausch

Wasserstoff \downarrow

Natriumacetat

**Austausch von N-Wasserstoff
gegen N-Chlor**

59.

p-n-Octyloxybenzolsulfonamid in 10%ig. NaOH unter Rühren mit 2-n. NaOCl versetzt \rightarrow Na-p-n-Octyloxybenzolsulfonchloramid. A: 88%. (W. B., auch über die Dichlorverbindungen, s. W. E. Hanby u. H. N. Rydon, Soc. 1946, 865.)

s. a. 2, 306

Hypochlorit

260. $(\text{C}_6\text{H}_5)_3\text{CH}_2\text{NHCl}$

1 g β,β,β -Triphenyläthylamin-hydrochlorid mit der äquivalenten Menge KOCl in verd. HCl bei 0° \rightarrow 0,99 g N-Monochlor- β,β,β -triphenylamin. (W. B. s. L. Hellermann, Am. Soc. 68, 825 (1946).)

s. a. 3, 413

Chinonchlorimide aus

p-Nitrophenolen

s. 1, 267

NHal \leftrightarrow H

Na(CH₃COO)

\leftarrow

ClO^-

Herstellung der N—S-Bindung

Austausch

Sauerstoff \downarrow

NS $\downarrow\!\!\downarrow$ O

Acetanhydrid

$(CH_3CO)_2O$

Sulfylimine

$\rangle SO \rightarrow \rangle S : NSO_2$

s. 1, 268

Ueber Zwischenprodukte

$\ddot{u}. Z.$

**Die Identifizierung von
Arylaminosulfonsäuren**

←

**Austausch von Aminogruppen
gegen Chlor**
s. 2, 307

Halogen \downarrow

NS $\downarrow\!\!\downarrow$ Hal

Ohne Hilfsstoffe

o. H.

Sulfaminsäuren

NHSO₃H

261.

2-Aminothiazol in CCl₄ unter Eiskühlung u. Röhren tropfenweise mit Chlorsulfonsäure versetzt u. 1 Stde. bei Zimmertemp. weitergerührt → 2-Thiazolylsulfaminsäure. A: 66%. (W. B. s. C. D. Hurd u. N. Kharasch, Am. Soc. 68, 653 (1946).)

Sulfonsäureamide aus Sulfonsäurechloriden
s. 1, 269

SOCl → SO₂NH ·

Sulfonsäureamide aus Sulfinsäurechloriden
s. 2, 308/9; 3, 24, 511

SO₂Cl → SO₂NH ·

N, N'-disubst. Taurinamide
s. 2, 310

Sulfonyliminoäther
s. 1, 270

Natronlauge

NaOH

Sulfonsäureamide
s. 1, 271

Sulfonylamidine
s. 1, 272

Sulfanilylguanidine
s. 2, 457

←

**Bis-(alkylsulfonsäure)-imide,
Disulmide**
s. 1, 273

Pyridin

C₅H₅N

Sulfonsäureamide
s. 2, 312, 428

Sulfanilylamine

262.

2-Amino-5-brom-4-methylthiazol u. Acetylsulfanilyl-chlorid in Pyridin $\frac{1}{2}$ Stde. auf 37—40° erwärmt u. dann 2 Stdn. bei Zimmer-temp. stehengelassen → 2-(N₄-Acetyl-sulfanilamido)-5-brom-4-methylthiazol. A: 82%. — Gewisse Verbindungen, z. B. 2-Amino-5-halogenpyrimidine, erfordern höhere Temp. als üblich, z. B. 80 bis 90°. (W. B. s. J. P. English u. a., Am. Soc. 68, 453 (1946).)

s. a. 1, 274—6; 2, 311

Indol-acetylsulfanilylamine

s. 2, 313

Herstellung der N—Ü-Bindung

Austausch

Wasserstoff ↑

NÜ ↔ H

Polyhalogenalkane

Phosphorylierung
von Aminen
s. 2, 314

von Aminen und Oxyverbindungen

263.

Zur Phosphorylierung mit Dialkylphosphiten scheint von verschiedenen Polyhalogenverbindungen CCl_3Br für präparative Zwecke am geeignetsten zu sein. Man kann damit sogar ar. Amine direkt phosphorylieren u. in Ggw. einer geeigneten tert. Base auch Aethylalkohol. — Verfahren: Dibenzyl- oder ein anderes Dialkylphosphit mit CCl_3Br u. einem Amin in einem inerten Lösungsmittel, wie z. B. Bzl. oder Aethylacetat, 18 Stdn. bei Zimmertemp. stehenlassen. — B: Dibenzylphosphit u. β -Naphtylamin \rightarrow Dibenzyl- β -naphtylaminophosphonat. A: 93%. (W. B. s. F. R. Atherton u. A. R. Todd, Soc. 1947, 674.)

Halogen ↑

NÜ ↔ Hal

Ohne Hilfsstoffe

o. H.

Aminodialkylphosphonate
s. 2, 481

Pyridin, Natriumsalze

Phosphorylierung von Aminen und Oxyverbindungen
s. 2, 315

Herstellung der N—C-Bindung

Aufnahme

Anlagerung an Sauerstoff und Stickstoff

NC ↓ ON

Ohne Hilfsstoffe

o. H.

Oxazole

s. 2, 316

Anlagerung an Sauerstoff und Kohlenstoff

NC ↓ OC

Ohne Hilfsstoffe

o. H.

Neue Darstellungsmethode von
sek. und tert. Aminen

s. 2, 692

Aminoalkohole aus Oxidoverbindungen

s. 2, 319

N-subst. Aminoalkohole

s. 1, 277/8; 2, 317/8; 3, 362

Oxycarbonsäureamide aus Lactonen

264.

γ -Phenyl- γ -butyrolacton mit fl. NH₃ 4 Stdn. im Einschlußrohr erhitzt
 \rightarrow γ -Oxy- γ -phenylbutyramid. A : 92%. (R. R. Russell u. C. A. Vander
Werf, Am. Soc. 69, 11 (1947).)

s. 2, 320; 3, 24

Charakterisierung von Zuckern als Aldonsäurehydrazide

s. 2, 321

Natriumäthylat

NaOR

Barbitursäuren

s. 1, 315

*Kaliumcarbonat*K₂CO₃**Carbonsäure-methylol-amide aus Carbonsäureamiden***Phosphorsäure*H₃PO₄**Acylierung von Aminen**

NH → NAc

s. 1, 279

Anlagerung an Stickstoff

NC ↓ NN

Ohne Hilfsstoffe

o. H.

Triazol-o-dialdehyde

s. 1, 290

Anlagerung an Stickstoff und Kohlenstoff

NC ↓ NC

Ohne Hilfsstoffe

o. H.

Carbonsäureamide aus Carbonsäureimiden

s. 2, 322

Sek. Carbonsäureamide aus Nitrilen und Carbonsäuren

CN → CONHCOR

s. 1, 280

Xenylharnstoffe aus Derivaten von Aminen

s. 2, 323

Isatinring-Oeffnung

s. 1, 281

Uracilring-Oeffnung

265.

3-Phenyl-6-(δ -carbanilidobutyl)-5,6,8,9-tetrahydrothieno [3,4,e,cis] uracil u. 100%ig. Hydrazinhydrat unter Schütteln 20 Min. auf dem Wasserbad erhitzt \rightarrow 2-(δ -Carbanilidobutyl-(4)-uranilinothiophan-cis-3-carboxhydrazid (Aus. f. 409). A : 95 %. (W. B. s. B. R. Baker u. a., J. org. Chem. 12, 186 (1947).)

Amidine aus Nitrilen
s. 1, 282

Biurete
s. 1, 283

Guanidine aus Cyanamiden und Aminen
s. 2, 324; 3, 396

Diguanide
s. 2, 325

Thioharnstoffe aus Isothiocyanaten

p-Isothiocyanbenzoësäure u. Sulfanilamid in trockenem Aceton 40 Stdn. gekocht, wobei das Reaktionsprodukt mehrmals entfernt wurde, um Stossen zu vermeiden \rightarrow 4-carboxy-4'-sulfonamido-thiocarbanilid. A : 94 %. (W. B. s. L. R. McKee u. R. W. Bost, Am. Soc. 68, 2506 (1946).)
s. a. 1, 284

Hydrazone aus Azinen
s. 1, 615

Pyrazolone
s. 3, 268

Thiazoline
s. 1, 490

Lithium

Li

Triazine
s. 1, 285

Natronlauge

NaOH

Harnstoffe aus Aminen

267. Eine Lsg. von trans-3-Aminothiophan-4-carbonsäure in 0,5-n. NaOH bei 0° mit Phenylisocyanat verrührt u. hierauf auf dem Dampfbad erhitzt.

wärmt, um überschüssiges Isocyanat zu zerstören → trans-4-Uranilino-thiophan-3-carbonsäure (Ausg. f. 404). A : 86 %. (B. R. Baker u. a., J. org. Chem. 12, 180 (1947).)

Pyrazolone

268.

Alkylecyanacethydrazide werden mit 40 %ig. NaOH behandelt, wobei Selbsterwärmung eintritt, oder man läßt sie mehrere Wochen bei Zimmer-temp. stehen u. kann das Reaktionsprodukt dann leichter reinigen → 4-Alkyl-3-aminopyrazolone. A : ca. 100 %. P. E. Gagnon u. a., Can. J. Research 25 B, 28 (1947). Methode mit NaOH s. B. Hepner u. S. Fajersztein, Bl. 4, 854 (1937).)

Natriumalkoholat

NaOR

Purine

s. 1, 398

Pyrimidine

s. 1, 360, 605

Kaliumalkoholat

KOR

269.

Frisch dargestelltes K-Methylat u. frisch gereinigtes Acetonitril 5 Stdn. auf 140° erhitzt → 4-Amino-2,6-dimethylpyrimidin. A : 67–70 %. (A. R. Ronzio u. W. B. Cook, Org. Synth. 24, 6 (1944).)

Kaliumcyanat

KCNO

Uramidoderivate von Aminen

s. 3, 746

N·CONH₂

Kupfersulfat

CuSO₄

Diguanide aus Cyanguanidinen

←

270.

15 g p-Chlorphenyl-cyanguanidin (Darst. s. 278) u. β-Diäthylaminoäthylamin mit CuSO₄ in β-Aethoxyäthanol u. W. unter Rühren u. Rückfluß 2 Stdn. gekocht, mit W. verdünnt, dekantiert, in 1-n. HCl gelöst u. eine

konz. Lsg. von Na₂S eingeröhrt → 14 g N¹-p-Chlorphenyl-N⁵-β-diäthylaminoäthyl-diguanid. (W. B. s. F. H. S. Curd u. F. L. Rose, Soc. 1946, 729. S. a. E. L. May, J. org. Chem. 12, 437, 443 (1947).)

Aluminiumchlorid

AlCl₃

Diamine aus Iminoverbindungen

←

Zu wasserfreiem AlCl₃ in Bzl. unter Röhren u. Kühlen Di-n-butylamin gegeben, auf 90° erwärmt. 30 Min. Aethylenimin eingeleitet u. noch 30 Min. gerührt → N,N-Di-n-butyläthylendiamin. A: ca. 80%. (W. B. s. G. H. Coleman u. J. E. Callen, Am. Soc. 68, 2006 (1946).)

Essigsäure

CH₃COOH

Harnstoffe aus Aminen

NH₂ → NHCONH₂

2 g 7-Amino-9-p-aminophenyl-10-methylphenanthridinium-chlorid in Essigsäure unter Eiskühlung mit einer konz. wss. Lsg. von KCNO versetzt u. nach 12 Stdn. aufgearbeitet → 2 g 7-Carbamido-9-p-carbamido-phenyl-10-methylphenanthridinium-chlorid. (W. B. s. L. P. Walls u. a. Soc. 1946, 1031).

Stickstofftetroxyd

N₂O₄

1,1-Dinitroverbindungen aus Oximen

←

Poncio-Reaktion

273. Eine Lsg. von Benzaldoxim in abs. Ae. zu einer Lsg. von N₂O₄ in abs. Ae. innerhalb 45 Min. so getropft, daß lebhaftes Sieden aufrecht erhalten wurde u. nach 1 Stde. aufgearbeitet → Phenylidinitromethan. A: 38%. (W. B. s. L. F. Fieser u. W. von E. Doering, Am. Soc. 68, 2252 (1946).)

Wasserstoffperoxyd

H₂O₂

Chinazolinring

○

Zu einer Lsg. von 5 g 2-(p-Chlorbenzamido)-4-methoxybenzonitril in Dioxan 20%ig. wss. NaOH, hierauf wiederholt 30%ig. H₂O₂ gegeben u. 1 1/2 Stdn. unter Rückfluß gekocht → 2-(p-Chlorphenyl)-4-oxy-7-methoxychinazolin. A: 81%, Umsatz 70%. Bei Verwendung von weniger Alkali oder 3%ig. H₂O₂ betrug der Umsatz nur 10%. (W. B. s. R. L. McKee, M. K. McKee u. R. W. Bost, Am. Soc. 68, 1902 (1946).)

*Sulfonate***Amidine aus Nitrilen**

s. 2, 326

*Schwefelsäure*H₂SO₄**Subst. Carbonsäureamide aus Nitrilen**

275.

N-Oxymethylphtalimid, Acetonitril u. konz. H₂SO₄ ohne Kühlen vermischt, wobei die Temp. auf 75–80° steigt u. über Nacht stehengelassen → N-(Phtalimidomethyl)-acetamid. A: 83–93%. (W. B. s. S. R. Buc, Am. Soc. 69, 254 (1947).)

Thioharnstoffe aus AminenNH₂ → NHCSNH₂

s. 3, 530

*Chlorsulfonsäure*ClSO₃H**Triazine**

s. 1, 287

Salzsäure

HCl

Allophanate aus Urethanen

276.

Trockenes, festes NaOCN zur äquimolekularen Menge Urethan in wasserfreiem Ae. oder Dioxan, die mit HCl gesättigt sind, gegeben → Aethylallophanat. A: 67%. (W. B. s. A. E. A. Werner u. J. Gray, Sci. Proc. Roy. Dublin Soc. 24, 77 (1946); C. A. 41, 5020, g.).

Amidine aus Nitrilen

$$\text{CN} \rightarrow \text{C} \begin{array}{l} \diagup \\ \diagdown \end{array} \begin{array}{c} \text{NH} \\ | \\ \text{NH}_2 \end{array}$$

s. 2, 327

Thioharnstoffe aus AminenNH₂ → NHCSNH₂

s. 1, 363

Chinazoline

s. 1, 288

277. **Triazine**

1100 g Trichloracetonitril (Darst. s. 406) mit trockenem HCl in einem mit Nickel ausgekleideten Autoklaven bei 800 lb/sq. in. u. Zimmertemp. 100 Stdn. geschüttelt \rightarrow 2,4,6-Tris-(trichlormethyl)-1,3,5-triazin. A : 96 %. (E. T. McBee, O. R. Pierce u. R. O. Bolt, Ind. Eng. Chem. 39, 391 (1947).)

Ueber Zwischenprodukte

u. Z.

Amidine aus Nitrilen

s. 2, 729

Cyanguanidine aus Aminen

278.

128 g p-Chloranilin in 5-n. HCl mit einer wss. Lsg. von NaNO₂ diazotiert, bei 20° zu einer wss. Lsg. von Dicyandiamid gegeben, innerhalb 1½ Stdn. Na-Carbonat zugefügt, um alkalische Reaktion aufrechtzuhalten, filtriert, das gewaschene u. abgepresste Triazen innerhalb ½ Stde. bei 33–36° unter Röhren zu einer Mischung von β-Aethoxyäthanol u. 10-n. HCl gegeben, nach ½ Stde. W. zugesetzt u. aufgearbeitet \rightarrow 108 g p-Chlorphenylcyanguanidin (Ausg. f. 270). (W. B. s. F. H. S. Curd u. F. L. Rose, Soc. 1946, 729.)

Anlagerung an Schwefel und KohlenstoffNC \downarrow SC**Alkalilauge****Thiazine**

s. 2, 546, 557

Anlagerung an KohlenstoffNC \downarrow CC**Ohne Hilfsstoffe**

o. H.

Sek. Amine aus AethylenderivatenC : C \rightarrow CHC(NHR)

s. 2, 328/9

**Ungesättigte Amine aus
Acetylenderivaten**
s. 2, 330; 3, 500

**Aliph. Dinitroverbindungen,
Nitrosalpetersäureester und
Nitroalkohole aus Olefinen**

279. Bei der Addition von N_2O_4 an niedere Olefine in fl. Phase entstehen Dinitroparaffine, Nitroalkohole u. Nitronitrate in guter Gesamtausbeute. Die zuerst entstehenden Nitronitrite sind unbeständig u. müssen mit W. oder Alk. in Nitroalkohole übergeführt werden. Früher aufgetretene Schwierigkeiten konnten durch Verwendung von reinem N_2O_4 , in einigen Fällen von Aethern oder Estern als Lösungsmittel, ferner durch Arbeiten bei oder unter Zimmertemp. u. Zugabe von Sauerstoff zur Eliminierung von N_2O_3 überwunden werden. Die Nitrit-Gruppe geht immer an das C-Atom mit den wenigsten H-Atomen. (N. Levy u. C. W. Scaife, Soc. 1946, 1093 u. folgende Arbeiten.)

**Chlornitroverbindungen aus
Aethylenderivaten**
s. 1, 289

**Acetoacetanilide aus Anilinen
und dimerem Keten**
s. 3, 743

**Subst. Asparaginsäuren aus
ar. Oximen und Maleinsäureanhydrid**
s. 1, 153

Aethylenazofarbstoffe
s. 2, 331

Furanringschluß
s. 2, 294

Pyrazole
s. 3, 283

Thiazanring

280.

Divinylsulfon u. Aethanolamin in W. $1/2$ Stde. unter Rückfluß gekocht u. hierauf mit HCl versetzt \rightarrow N-2-Oxyäthyl-1,4-thiazandioxyd-hydrochlorid. A: 91 %. (A. H. Ford-Moore, A. G. Lidstone u. W. A. Waters, Soc. 1946, 819.)

Triazol-o-dialdehyde

s. 1, 290

Natrium

Na

Amine aus Aethylenderivaten

s. 1, 291

Natrium/Alkohol

NaOR

Cycloalkanon-Ringöffnung

281.

Mit Bzl. entwässertes cis-N-Acetyl-7-keto-8-methyldecahydroisochinolinhydrat in wasserfreiem Alk. aufgenommen, bei 0° mit einer Lsg. von Na in abs. Alk. versetzt, wasserfreies Aethylnitrit zugegeben, 18 Stdn. bei 3–5° stehengelassen u. hierauf 3–4 Stdn. CO₂ durchgeleitet → N-Acetyl-10-oximinodihydrohomomerochininen-äthylester (Ausg. f. 746). A: 58–76%. (R. B. Woodward u. W. E. Doering, Am. Soc. 67, 871 (1945).)

*Natriumcarbonat*Na₂CO₃**Chinazolin- aus Indolring
Ringerweiterung**

←

282.

Dioxyindol in kaltem Methanol gelöst, mit Amylnitrit u. hierauf in kleinen Portionen mit einer kalt gesätt. Na-Carbonat-Lsg. versetzt u. nach 1-stdg. Stehenlassen aufgearbeitet → 3-Oxy-2,4-dioxo-1,2,3,4-tetrahydrochinazolin. A: 85%. (G. Jacini, G. 74, (1944).)

**Heterocyclen aus Aethinylketonen
Pyrazole und Isoxazole**

○

283.

Zu Phenyläthinylketon u. Hydrazinsulfat in sd. Alk.-W. innerhalb einer Stde. Na-Carbonat in möglichst wenig W. getropft u. weitere 3 Stdn. unter

Rückfluß gekocht → 3-Phenylpyrazol. A : 70 %. — Entsprechend mit Hydroxylamin-chlorhydrat → 5-Phenylisoxazol. A : 90 %. — Zu Phenyläthinylketon in Ae. eine äther. Lsg. von Diazomethan bei 0–5° bis zur bleibenden Gelbfärbung getropft u. nach 12 Stdn. aufgearbeitet → 3-Benzoylpyrazol. A : 85 %. — Bei diesen Synthesen tritt das Aethinylketon an die Stelle des sonst verwendeten Oxymethylenderivats des entsprechenden Methylketons. (W. B. s. K. Bowden u. E. R. H. Jones, Soc. 1946, 953.)

Natriumnitrit $NaNO_2$ **Cinnolinsynthese**

○

s. 2, 301

Triton B

←

3-Dialkylaminopropionitrile $C : C \rightarrow CHC(N <)$

284.

Sek. Amine werden vorsichtig zu überschüssigem Acrylonitril gegeben u. im Falleträger Reaktion unter Zugabe von 3–5 Tropfen Triton B über Nacht auf dem Dampfbad erwärmt. B : n-Butylmethylamin unter Verwendung von Triton B u. Erwärmen über Nacht → n-Butylmethylaminopropionitril. A : 83 %. (W. B. s. J. Corse, J. T. Bryant u. H. A. Shonle, Am. Soc. 68, 1905, 1911 (1946).)

Kupfer Cu **N, N'-disubst. Taurinamide**

←

s. 2, 310

Schwefelsäure H_2SO_4 **Oxynitroverbindungen aus Aethylenderivaten**

←

s. 2, 332

Pseudonitrosite $C : C \rightarrow C(NH_2)C(OH)$ **Aminoalkohole aus Aethylenderivaten**

s. 1, 292

**Ringerweiterung des Cyclopentanrings
zum Pyridinring**

←

Diazaphenanthrene aus Azafluorenonen

s. 2, 333

Schwefelsäure/Stickstoffwasserstoffsäure H_2SO_4/HN_3 **Subst. Carbonsäureamide aus Ketonen** $RCOR' \rightarrow RCONHR'$

s. 1, 362

Eisen(III)-chlorid $FeCl_3$

Tetrazole aus Ringketonen
Stickstoffwasserstoffsäure-Lösung
 s. 2, 334

Ueber Zwischenprodukte $\ddot{u}. Z.$

Amine aus Aethylenderivaten
über Hydroxylamine

 $C : C \rightarrow CHC(NH_2)$

Zu einer Lsg. von Na in abs. Alk. eine Lsg. von Hydroxylamin-hydrochlorid in heißem W. gegeben, in Eiswasser gekühlt, filtriert, mit Zimtsäure versetzt u. 9 Stdn. auf dem Dampfbad unter Rückfluß gekocht
 \rightarrow d,l- β -Amino- β -phenylpropionsäure. A: 34 %. (R. E. Steiger, Org. Synth. 22, 26 (1942).)

Umlagerung

Typus Wasserstoff/Stickstoff $NC \cap HN$ *Natronlauge* $NaOH$ **Chinolinringschluß**

s. 2, 470

Typus Sauerstoff/Stickstoff $NC \cap ON$ *Nitrosobenzol* C_6H_5NO **Isatogene**

s. 2, 335

Typus Sauerstoff/Kohlenstoff $NC \cap OC$ *Ohne Hilfsstoffe* $o. H.$ **Chapmansche Umlagerung von Iminoäthern**

s. 2, 823

*Basen***N-Acylderivate aus O-Acylderivaten** $OAc \rightarrow NAc$

s. 1, 292; s. a. A. P. Phillips u. R. Baltzly, Am. Soc. 69, 200 (1947).

Typus Stickstoff/SchwefelNC \cap NS*Phosphorpentachlorid* PCl_5 **Cyansulfonylchloride aus Sulfonamino-carbonsäuren** \leftarrow

s. 2, 480

Typus KohlenstoffNC \cap CC*Ohne Hilfsstoffe*

o. H.

Verkürzter Curtiusscher Abbau \leftarrow

s. 2, 427

Isocyanate aus Aziden $CON_3 \rightarrow N=C=O$

286.

3-Benzamido-2- γ -phenoxypropyl-4-thiophencarbonsäureazid in Xylol bei 170–180° Badtemp. 8 Stdn. unter Rückfluß gekocht \rightarrow 3-Benzamido-2- γ -phenoxypropyl-4-thienylisocyanat. A: ca. 100 %. (L. C. Cheney u. J. R. Piening, Am. Soc. 67, 2252 (1945).)
s. a. 3, 378

Natriumnitrit $NaNO_2$ **Urethane aus Hydraziden** $CONHNH_2 \rightarrow NHCOOR$

s. 2, 336

Eisessig CH_3COOH **Harnstoffe aus Aziden** \leftarrow

s. 1, 334

Wasserstoffperoxyd/Natronlauge $H_2O_2/NaOH$ **Chinazolinring aus Isatinring** \leftarrow

s. 1, 293

Brom/Natriumalkoholat $Br_2/NaOR$ **Urethane aus Carbonsäureamiden** $CONH_2 \rightarrow NHCOOR$ **Hofmannscher Abbau**

s. 2, 337

Kaliumhypobromit

KOBr

Pyrimidinring-Synthese
s. 2, 468/9**Austausch****Wasserstoff ↑**NC H*Ohne Hilfsstoffe*

o. H.

**Die Reaktion von Nitrosoverbindungen
mit aktiven Methylengruppen**
s. 1, 298

C : N .

NitrierungH → NO₂

287. 1-Phenyl-2-propylamin durch eine Kapillare innerhalb 1 Stde. bei -20 bis -15° unter Röhren zn HNO₃ (D. 1,49-1,50) gegeben u. weitere 2 Std. gerührt → 1-(p-Nitrophenyl)-2-propylamin. Roh-A: ca. 80 %. (W. B. s. T. M. Patrick, jr., E. T. McBee u. H. B. Hass, Am. Soc. 68, 1153 (1946).)
- s. a. 1, 192; 2, 338

Höhermolekulare Paraffinkohlenwasserstoffe
s. 1, 301**Ueber die Zusammensetzung der Nitrierungs-
produkte der höhermolekularen aliph. Kohlen-
wasserstoffe**

s. 1, 302

Nitroverbindungen und Salpetersäureester
s. 2, 339**Asymmetrische Substitution
Cinnolinoxyde**
s. 2, 340**Lithium**

Li

Austausch von Wasserstoff gegen AminogruppenH → NH₂

288.

Eine Mischung von Dibenzothiophen u. n-Butyllithium, aus n-Butylbromid u. Li in Ae. unter Röhren u. Rückfluß 20 Stdn. gekocht u. nach Ermittlung des Gehalts an Li-Verbindung durch Titration α -Methylhydroxylamin in Ae. langsam unter Röhren u. Kühlen im Eis-Salz-Bad zugegeben \rightarrow 4-Aminodibenzothiophen. A: 64 %, bezogen auf α -Methylhydroxylamin. (H. Gilman u. S. Avakian, Am. Soc. 68, 1514 (1946).)

Natrium

Tert. aus sek. Aminen
s. 1, 294

Natronlauge

Azoverbindungen durch Kupplung
s. 1, 295; 2, 371; 3, 289

*NaOH**Natriumamid*

Austausch von Wasserstoff gegen Aminogruppen
Tschitschibabin-Reaktion
s. 2, 341

*Natriumacetat**Na(CH₃COO)***Azoverbindungen durch Kupplung**

289.

1,5-Naphthylendiamin in H₂SO₄ mit NaNO₂ in W. bei 0° diazotiert, überschüssiges HNO₂ mit Harnstoff entfernt, mit CaCO₃ neutralisiert, filtriert, u. eine Lsg. von β-Naphtol in NaOH eingerührt \rightarrow 1,5-Naphtalinbisazo-β-naphthol. A: fast 100 %.

in eine Lsg. von β-Naphtylamin in Alk.-Pyridin eingerührt u. hierauf eine wss. Na-Acetat Lsg. zugegeben \rightarrow 1,5-Naphtalinbisazo-β-naphtylamin. A: fast 100 %.

(H. H. Hodgson u. J. S. Whitehurst, Soc. 1947, 80.)

*Natriumnitrit**NaNO₂*

Nitrosierung
s. 2, 342

Nitrosierung von Indolen
s. 2, 385

***α*-Isonitrosoketone**

s. 1, 320

Nitrierung

s. 1, 330

Pseudonitrole

s. 1, 193

Hydrazone aus Aminen

290.

Arsanilsäure in NaOH gelöst, gekühlt, mit NaNO_2 -Lsg. diazotiert, in eine Mischung von Eis-konz. HCl gegossen, die entstandene Diazoniumsalz-Lsg. schnell zu Eiswasser, das Alk., Acetessigester u. Na-Aacetat enthielt, gegeben u. unter wiederholter Zugabe von Eis 5 Stdn. gerührt → Aethyl- α -acetoglyoxylat-p-arsono-phenylhydrazon. A: 92 %. (D. B. Sharp u. C. S. Hamilton, Am. Soc. 68, 588 (1946). S. a. R. F. Coles u. C. S. Hamilton, Am. Soc. 68, 2588 (1946); N. J. Leonard, S. N. Boyd, jr. u. H. F. Herbrandson, J. org. Chem. 12, 47 (1947).)

Indazole

s. 1, 321

Cinnoline

s. 1, 322; 2, 301

Kaliumnitrat**Nitrierung**

291/292.

Zu 6-Chlor-8-acetaminochinolin in konz. H_2SO_4 bei 20–25° innerhalb 20 Min. unter Rühren KNO_3 in konz. H_2SO_4 gegeben u. $4\frac{1}{2}$ Stdn. bei dieser Temp. stehengelassen → 5-Nitro-6-chlor-8-acetaminochinolin. A: 60 %. H. Gilman u. a., Am. Soc. 68, 1577 (1946).)

Silberchlorid**Indophenole**

293.

Eine Lsg. von AgNO_3 in W. langsam unter gutem Rühren zu einer Lsg. von NaCl u. Gelatine in W. gegeben, hierauf allmählich eine Lsg. von Na_2CO_3 in W., die Lsg. eines Phenols in 95 %ig. Alk., schließlich langsam unter kräftigem Rühren eine Lsg. von p-Aminodimethylanilin-chlorhydrat in W. u. noch 30 Min. weitergerührt. A: 90–98 %. — B: N-(4'-Dimethylaminophenyl)-2-bromchinonimin. (W. B. s. P. W. Vittum u. G. H. Brown, Am. Soc. 68, 2235 (1946).)

Calciumcarbonat

CaCO_3

Arylazophenole aus Aminen

s. 2, 343

←

Essigsäure

CH_3COOH

Nitrosierung

$\text{H} \rightarrow \text{NO}$

294.

Eine Lsg. von 3-Acetyl-2-methylpyrrocolin in Eisessig unter Rühren unterhalb 15 ° langsam mit einer wss. NaNO_2 -Lsg. versetzt u. nach 15 Min. aufgearbeitet → 1-Nitroso-3-acetyl-2-methylpyrrocolin. A: 86 %. (W. B. s. E. T. Borrows, D. O. Holland u. J. Kenyon, Soc. 1946, 1075.)

Nitrierung

$\text{H} \rightarrow \text{NO}_2$

s. 1, 330

Eine verbesserte Methode zur Nitrierung von ar. o-Oxycarbonsäuren u. ihren Estern

295.

1 Mol des Ausgangsmaterials wird in möglichst wenig Eisessig gelöst, bei Zimmertemp. schnell eine Mischung von HNO_3 (D. 1,42) u. dem 9-fachen Volumen Eisessig zugegeben u. bis zur Braunfärbung erwärmt. Die Nitrogruppe tritt fast immer in p-Stellung zur Oxygruppe ein. — B: 4-Nitro-1-oxy-2-naphthoësäureäthylester. A: 86 %. (W. B. s. H. C. Barany u. M. Pianka, Soc. 1946, 965.)

C- u. N-Nitroverbindungen

s. 1, 331

←

Bromsuccinimid

$\text{H} \rightarrow \text{NH}_2$

Austausch von Wasserstoff gegen Aminogruppen

s. 2, 491

Ammoniumpolysulfid $(NH_4)_2S_x$ **Carbonsäureamide aus Methylketonen
Willgerodt-Umlagerung** $COCH_3 \rightarrow CH_2CONH_2$

s. 1, 151/2; 2, 180/a

Schwefelsäure H_2SO_4 **p-Dinitrosoverbindungen aus Phenolen** \leftarrow

s. 2, 344

Nitrierung $H \rightarrow NO_2$

296.

Zu einer Mischung von Benzoesäure u. konz. H_2SO_4 unter Wasserkühlung zwischen 70 u. 90° allmählich rauchende HNO_3 (D.1,54) gegeben, 1 Stde. oder über Nacht stehengelassen, 4 Stdn. auf dem Dampfbad erwärmt, abgekühlt, erneut rauchende HNO_3 zugegeben, 3 Stdn. auf dem Dampfbad u. schließlich 3 Stdn. bei $135-145^\circ$ erhitzt \rightarrow 3,5-Dinitrobenzoesäure. A: 54–58%. R. Q. Brewster u. B. Williams, Org. Synth. 22, 48 (1942).

s. a. 1, 343; 2, 346–51

Nitrophenole über Phenolcarbonate

s. 2, 345

Salzsäure HCl **Nitrosoverbindungen** $H \rightarrow NO$

s. 1, 349

 α -Isonitrosoketone aus Ketonen

297.

In eine Lsg. von Phenacylchlorid in trockenem Ae. unter Röhren wasserfreie HCl geleitet, innerhalb ca. 30 Min. allmählich n-Butylnitrit zugegeben, wobei die Reaktionsmischung gelinde zu sieden beginnt, Röhren u. Einleiten von HCl noch 15 Min. fortgesetzt u. noch 1–2 Stdn. oder über Nacht stehengelassen \rightarrow ω -Chlorisonitroso-acetophenon. A: 82–86%. Diese Methode kann mit geringen Änderungen auch bei verschiedenen kernsubst. Phenacylchloriden angewandt werden. (N. Levin u. W. H. Hartung, Org. Synth. 24, 25 (1944).)

s. a. 1, 783

Nitrierung $H \rightarrow NO_2$

s. 1, 346

Natrium-pentacyan-ammin-ferroat $Na_3[Fe(CN)_5NH_3]$ ***o-Nitrosophenole aus Kohlenwasserstoffen
Baudisch-Reaktion***

298.

$Na_3[Fe(CN)_5NH_3]$ in W. gelöst, Benzol-Ligroin zugegeben, mit Eiswasser gekühlt, Hydroxylamin-chlorhydrat u. hierauf H_2O_2 zugefügt, 1 Stde. geschüttelt, die Benzol-Ligroin-Schicht abgetrennt, das entstandene o-Nitrosophenol mit $CuSO_4$ -Lsg. daraus entfernt, das Benzol-Ligroin wieder mit der Reaktionslsg. 1–2 Stdn. geschüttelt, wieder abgetrennt u. die wss. Schicht nach Verdünnen mit W. mit Ligroin ausgeschüttelt \rightarrow o-Nitrosophenol. (O. Baudisch, Am. Soc. 63, 622 (1941); w. B. s. G. Cronheim, J. org. Chem. 12, 7, 1 (1947).)

Ueber Zwischenprodukte $\ddot{u}. Z.$ **Nitrierung von Aminen** $H \rightarrow NO_2$

299.

Zu einer Lsg. von p-Anisidin in Essigsäure bei $0\text{--}5^\circ$ unter schnellem Röhren auf einmal Acetanhydrid gegeben, auf dem Dampfbad bis zur Lsg. der entstandenen kristallinen Masse erhitzt, hierauf auf 45° gekühlt, auf einmal einen 55%ig. Ueberschuß von HNO_3 (D. 1,42) zugegeben, so daß die Temp. schnell auf 70° steigt u. dann wieder zu fallen beginnt, wobei man die Kühlung so reguliert, daß die Temp. während 10 Min. bei $60\text{--}65^\circ$ bleibt u. in den folgenden 10 Min. auf 25° fällt \rightarrow 2-Nitro-4-methoxyacetanilid (A: 75–79 %) mit KOH in W.-Methanol unter Röhren 15 Min. auf dem Dampfbad erwärmt, mit heißem W. versetzt, weitere 15 Min. auf dem Dampfbad verrührt u. abgekühlt \rightarrow 2-Nitro-4-methoxyanilin (A: 95–97 %). (P. E. Fanta u. D. S. Tarbell, Org. Synth. 25, 78 (1945).)

Sauerstoff \downarrow NC \leftrightarrow Os. a. CC \leftrightarrow O*Ohne Hilfsstoffe*

o. H.

**Aminomethylierung bei N-Heterocyclen
s. 3, 608** $>NH \rightarrow >NCH_2N<$ **Sek. Amine aus Aethern
s. 1, 296** $ROR \rightarrow RNHR$

Sek. aus prim. Aminen u. Enoläthern Neue Alkylierungsmethode von Aminen

300.

20 g 6-Methoxy-8-aminochinolin u. 18,5 g 5-Diäthylamino-2-äthoxypenten-2 (Darst. s. 712) auf dem Wasserbad erhitzt → 22,9 g 6-Methoxy-8-(4-diäthylamino-1-methyl-1-butenylamino)-chinolin. (W. B. s. Denitsu Shiho, J. chem. Soc. Japan, 65, 135 (1944); C. A. 41, 3799i.)

Tert. Amine aus Aethern

S. 2, 541

Amine aus Tosylaten

S 2 353

$$\text{OTs} \rightarrow \text{NHs}$$

α,β-Aethylenamine

S 3 713 715

aus Oxymethylenverbindungen

g 2 725 a

Amine aus Ketonen

301

6-Methyl-5-hepten-2-on mit 4 Mol N,N-Diäthylformamid 24 Stdn. auf 180° erhitzt → 6-Methyl-2-diäthylamino-5-hepten. A : 35 %. (W. B. s. J. Dœuvre u. J. Poizat, C. r. 224, 286 (1947)).

Austausch von Sauerstoff gegen Stickstoff im Ring

302.

5 g 5-Methyl-6-carboxy- α -pyron mit wss. NH₃ 5 Stdn. im Einschlußrohr auf 120—140° erhitzt → 2 g 3-Methyl-6-oxypicolinsäure. (F. H. Case, Am. Soc. 68, 2574 (1946).)

S. A. 2. 366

N-subst. 2-Pyrrolidone

303

Aequimolare Mengen Amin u. Lacton werden unter Röhren ca. 3 Stdn. auf 110–130° u. hierauf 3–6 Stdn. auf 250–270° erhitzt, wobei W. abdestilliert. — B: γ -Butyrolacton u. Octadecylamin \rightarrow N-Octadecylpyrrolidon-2. A: 78 %. — γ -Aethyl- γ -valerolacton u. Dodecylamin \rightarrow N-Dodecyl-5-methyl-5-äthylpyrrolidon-2. A: 48 %. (W. B. s. F. B. Zienty u. G. W. Steahly, Am. Soc. 69, 715 (1947).)

Ketimine

C : NH

s. 1, 297

AzomethineNH₂ \rightarrow N : C

s. 1, 391; 2, 354, 689

p-Azo-azomethine

304.

Aminoazobenzol gibt mit ar. Aldehyden in abs. Alk. in der Kälte rasch u. quantitativ Schiff'sche Basen. Diese Reaktion kann zur Charakterisierung der Aldehyde u., da Ketone nicht reagieren, zur Trennung von diesen verwendet werden. — Die Kondensationsprodukte können durch Erwärmen mit 1%ig. H₂SO₄ oder kurzes Kochen mit 5%ig. Oxalsäure leicht hydrolysiert werden. (J. Guilhot, C. r. 221, 146 (1945).)

Die Reaktion von Nitrosoverbindungen mit aktiven MethylengruppenNO \rightarrow N : C

s. 1, 298

Sek. Amine aus Kohlenwasserstoffen und Nitrosoverbindungen

305.

Eine Mischung von 6-Methoxy-8-aminochinolin u. Nitrosobenzol in Isopropylalkohol bis zur Lsg. erhitzt, W. zugegeben, 3 Stdn. bei Zimmertemp. stehengelassen, nochmals das gleiche Volumen W. zugegeben, wobei 2 Schichten entstanden, u. über Nacht stehengelassen \rightarrow Anil (A: 60%) in Toluol gelöst, unter Umschwenken in kleinen Portionen mit einer Lsg. von Phenylhydrazin in Toluol versetzt u. 1 Stde. bei Zimmertemp. stehengelassen \rightarrow 5-Phenylamino-6-methoxy-8-aminochinolin (A: ca. 50%). (H. R. Snyder u. N. R. Easton, Am. Soc. 68, 2641 (1946).)

←

Arylamin-N-glykoside

306.

δ -Ribose u. Anilin in Alk. 2 Stdn. unter Rückfluß gekocht \rightarrow α -Anilin-N- δ -ribofuranosid. A: 84,5 %. Bei tiefen Temp. bilden sich Pyranoside. (W. B. s. L. Berger u. J. Lee, J. org. Chem. 11, 75, 84 (1946).)

Hydrazone

Benzophenon mit wasserfreiem Hydrazin u. abs. Alk. 4 Stdn. im geschlossenen Gefäß auf 150° erhitzt \rightarrow Benzophenonhydrazon (Ausg. f. 255). A: 80—82 %. (L. I. Smith u. K. L. Howard, Org. Synth. 24, 53 (1944).)

s. a. 1, 299/300, 615; 3, 744

Wolff-Kishner-Reduktion

s. 3, 58

Azine

s. 1, 615

Isonitrosoverbindungen

s. 1, 360

Formylierung

s. 2, 358, 675; 3, 724

5-Diacetylamino-acridine

s. 2, 367

Carbonsäureamide aus Carbonsäuren**Allgemein anwendbare Methode zur Darstellung von Amiden der α -Oxysäuren**

s. 1, 303

Darstellung größerer Mengen Amide nicht-flüchtiger Säuren

s. 1, 304

Subst. Carbonsäureamide

s. 1, 305

Carbonsäureamide aus Carbonsäureestern

s. 1, 306/7; 2, 359/60; 3, 722

β -Ketocarbonsäureanilide aus β -Ketocarbon-säureestern

307/8. $C_6H_5COCH_2COOC_2H_5 \rightarrow C_6H_5COCH_2CONHC_6H_5$

Benzoylessigsäureäthylester in trockenem Xylool bei 145—150° unter Röhren innerhalb 30 Min. tropfenweise mit Anilin versetzt u. den entstehenden Alk. abdestilliert \rightarrow Benzoylacetanilid. A: 74—76%. — Feuchtigkeit u. Spuren von Säure vermindern die Ausbeute. (C. J. Kibler u. A. Weißberger, Org. Synth. 25, 7 (1945).)

s. a. 3, 742

Aethanolamide

309.

Carbonsäureester werden mit 2—12 Mol Aethanolamin im Metallbad unter Rückfluß gekocht. — B: 4-Chinolincarbonsäureester u. 5 Mol Aethanolamin 2 Stdn. unter Rückfluß gekocht \rightarrow 4-Chinolyläthanolamid. A: 95%. (W. B. s. A. P. Phillips u. R. Baltzly, Am. Soc. 69, 200 (1947).)

Auch gleichzeitig Austausch von Halogen gegen Aminogruppen
s. 2, 361

Carbonsäureimide

s. 2, 364

Subst. Phtalimide aus p-Toluolsulfonsäureestern
s. 2, 362

N-Alkylhomophthalimide
s. 2, 363

Di-carbobenzoxyaminoverbindungen
s. 1, 353

$C(NHCOOR)_2$

Carbonsäurehydrazide aus Carbonsäureestern $COOR \rightarrow CONHNH_2$
s. 1, 308; 2, 365

Nitrile aus Carbonsäuren

$COOH \rightarrow CN$

310. In Stearinsäure 7—10 Stdn. trockenes NH_3 -Gas bei 340—345° unter einem teilweise mit Glaskugeln gefüllten u. erwärmtten Rückfluß-

rohr eingeleitet \rightarrow Stearonitril. A: 82—90%. (W. B. s. G. Reutenaer u. C. Paquot, C. r. 223, 578 (1946); 224, 478 (1947).)

Formamidine

311.

Rohes m-Chlorformanilid u. m-Chloranilin-hydrochlorid 2 Stdn. bei Unterdruck auf 160° erhitzt \rightarrow Bis-(m-Chlorphenyl)-formamidin (Ausg. f. 663). A: 96%. (C. C. Price u. R. M. Roberts, Am. Soc. 68, 1255 (1946).)

Symm. Formamidine

312.

Orthoameisensäure-äthylester u. m-Chloranilin 2½ Stdn. unter Rückfluß gekocht u. hierauf den entstandenen Alk. abdestilliert \rightarrow Bis-(m-chlorophenyl)-formamidin. A: 93%. (C. C. Price, N. J. Leonard u. H. F. Herbrandson, Am. Soc. 68, 1251 (1946).)

Amidine aus Iminoestern

Subst. Iminoester

s. 2, 355/6; s. a. F. H. S. Curd, J. K. Landquist u. F. L. Rose, Soc. 1947, 160.

Sulfanilylamidine

s. 2, 357

Pyridinring-Synthese

s. 1, 531, 542; 2, 637

Pyridone

s. 1, 574

Acridinring-Synthese

s. 2, 638

Acridone

s. 2, 639

Naphthyridine

s. 1, 543

Pyrazol-Ringschluß

s. 2, 368

1-subst. Pyrazole

s. H. Keskin u. E. Ulosoy, Rev. Fac. sci. uni. Istanbul, Ser. A, 11, Nr. 4, 168 (1946).

Cyclohydrazide

s. 1, 310

Imidazolinring

313.

2-(p-Toluolsulfonamido)-4-methoxyanilin mit der äquimolekularen Menge Benzaldehyd in abs. Alk. 5 Min. erwärmt \rightarrow 2-Phenyl-3-(p-toluolsulfonyl)-5-methoxy-1,2-dihydrobenzimidazol. A: 80%. (R. C. Elderfield u. a., Am. Soc. 68, 1589 (1946); s. a. Am. Soc. 70, 44 (1948).)

Hydantoine

s. 1, 309

Pyrimidin-Ringschluß

s. 2, 369

Nitrohexahydro-pyrimidine

314.

102 g 2-Nitro-2-methyl-1,3-propandiol, Benzylamin, 36% ig. wss. Formaldehyd-Lsg. u. Methanol 6 Stdn. unter Rückfluß gekocht \rightarrow 196 g 5-Nitro-1,3-dibenzyl-5-methyl-hexahydropyrimidin. (W. B. s. M. Senkus, Am. Soc. 68, 1611 (1946).)

Chinazolinring

315.

4-Chloranthranilic acid, Orthoameisensäureäthylester u. Diäthylenglykol 3 Stdn. auf 105–110° u. 24 Stdn. auf 120° erhitzt \rightarrow 7-Chlor-4-oxy-chinazolin. A: 87% (M. K. McKee, R. L. McKee u. R. W. Bost, Am. Soc. 69, 184 (1947).)

s. a. 1, 312

4-Chinazolone

316.

4-Chloranthranilsäure u. Formamid im Oelbad 45 Min. auf 130° u. hierauf 1 $\frac{1}{4}$ Stdn. auf 175° erhitzt \rightarrow 7-Chlor-4-chinazolon. A: 84%. (C. C. Price, N. Leonard u. D. Y. Curtin, Am. Soc. 68, 1305 (1946).)

Diketopiperazine

s. 1, 311

Chinoxalinring

s. 1, 350

Thiazole

s. 1, 472—8; 2, 552—4

Thiazolidine

s. 2, 543

Flavin-Synthese

s. 2, 102

Triazolring-Synthese**Hydrazide aus Carbonsäureestern**

317.

Zu Ameisensäureäthylester in Alk. vorsichtig unter Schütteln innerhalb 10 Min. 85%ig. Hydrazin-hydrat gegeben, nach Abklingen der Reaktion 18 Stdn. auf dem Dampfbad unter Rückfluß gekocht, den größten Teil des W. u. Alk. bei Unterdruck abdestilliert, das zurückbleibende Formylhydrazid unter gewöhnlichem Druck 3 Stdn. erhitzt, während denen die Temp. von 150° auf 200° erhöht wird, und hierauf das Reaktionsprodukt teilweise als Hydrochlorid isoliert \rightarrow 4-Amino-1,2,4-triazol. A: 80—81%. (C. F. H. Allen u. A. Bell, Org. Synth. 24, 12 (1944).)

Alkali**Azomethine**

s. 1, 244

C : NR

Hydrazone

C : NNHR

Wolff-Kishner-Reduktion

s. 1, 80—2; 2, 95—100; 3, 57

Alkyl-3-thioketo-5-keto-6-benzyl-triazine-1, 2, 4

s. 2, 370

○

*Natriumhydroxyd**NaOH***N,N-Dialkylaniline aus Anilinen** $\text{NH}_2 \rightarrow \text{NR}_2$

318. Amine werden mit Trialkylphosphat erhitzt u. hierauf mit NaOH hydrolysiert. A: 53—95%. — B: o-Chloranilin u. Triäthylphosphat \rightarrow o-Chlordiäthylanilin. A: 91%. (W. B. s. D. G. Thomas, J. H. Billman u. C. E. Davis, Am. Soc. 68, 895 (1946).)

Chinoline

s. 1, 610

Imidazole

319.

Phenanthrenchinon mit Benzaldehyd, 28%ig. wss. NH_3 u. NaOH in Alk. 2 Stdn. auf dem Dampfbad \rightarrow 2-Phenylphenanthrimidazol. A: 70 bis 73 %. (W. B. s. E. A. Steack u. A. R. Day, Am. Soc. 68, 771 (1946).)

Oxazolone

s. 1, 313

*Kaliumhydroxyd**KOH***Oxime** $\text{CO} \rightarrow \text{C:NOH}$

s. 2, 372

Chinoline aus Isatinen

s. 1, 555; 2, 602/3; 3, 761

*Natrium/Alkohol**NaOR***Chinolinring**

s. 2, 650

Imidazolidinring

320.

Eine Lsg. von Na in abs. Alk. unter Schütteln zu einer Mischung von p-Tolylharnstoff u. Oxalsäurediäthylester gegeben, Methyljodid

u. abs. Alk. zugefügt u. 30 Min. unter Rückfluß gekocht \rightarrow N-p-Tolyl-N'-methylparabansäure. A: 90%. (W. B. s. A. R. Todd u. N. Whittaker, Soc. 1946, 628.)

Pyrimidinring

321.

Eine Lsg. von Na in abs. Alk. bei 0° unter Rühren mit Acetamidinhydrochlorid u. nach wenigen Min. mit Aethoxymethylenmalonsäure-diäthylester versetzt, 3 Stdn. bei 0° weitergerührt, nochmals eine Lsg. von Na in Alk. zugegeben, langsam auf Zimmertemp. erwärmen u. über Nacht stehengelassen \rightarrow 2-Methyl-4-oxypyrimidin-5-carbonsäureäthylester. A: 86%. (T. A. Geißmann, J. org. Chem. 11, 741 (1946).)

s. a. 1, 314; 2, 373–6, 434

Thiouracile

322.

Zu einer Lsg. von Na u. Thioharnstoff in abs. Alk. langsam unter Rühren Aethoxymethylenmalonsäure-diäthylester gegeben, 1 Stde. unter Rückfluß gekocht u. hierauf über Nacht bei Zimmertemp. stehengelassen \rightarrow 2-Thio-6-oxypyrimidin-5-carbonsäureäthylester. A: 85%. (E. Ballard u. T. B. Johnson, Am. Soc. 64, 794 (1942).)

323.

Durch Kondensation von Thioharnstoff mit β -Ketocarbonsäureestern können 5- u. 6-subst. Thiouracile erhalten werden. — Verfahren. Thioharnstoff wird mit dem β -Ketocarbonsäureester in einer Lsg. von Na in abs. Alk. 6–7 Stdn. auf dem Dampfbad erhitzt u. über Nacht stehengelassen u. im Vakuum bei 40–50° bis fast zur Trockene eingedampft. — B: Thioharnstoff u. α -Aethylacetessigsäureäthylester \rightarrow 5-Aethyl-6-methyl-2-thiouracil. A: 53%. (W. B. s. G. W. Anderson u. a., Am. Soc. 67, 2197 (1945).)

Barbitursäuren

s. 1, 315

Harnsäuren
s. 1, 360

Oxazolidin-dione
s. 1, 316

Kalilauge/Alkohol

KOR

Chinolinring-Synthese
s. 2, 651

Kaliumalkoholat

α -Isonitrosoketone aus Ketonen
s. 1, 317; 2, 145

$\text{COCH}_2 \rightarrow \text{COC} = \text{NOH}$

Natriumcarbonat

Na_2CO_3

Pyrazole
s. 3, 283

Isoxazole

324.

1 g Oenanthoylbrenztraubensäure in Alk. mit einer Lsg. von Hydrazin-hydrochlorid, hierauf mit Na-Carbonat versetzt u. am nächsten Tag aufgearbeitet \rightarrow 0,9 g 5-Hexylisoxazol-3-carbonsäure. (Halit Keskin, Rev. faculté sci. univ. Istanbul, 11A, Nr. 1/2.1 (1946); C. A. 40, 5427, 3.)

Thiazole
s. 2, 559

Selenazole
s. 2, 580

Kaliumcarbonat

K_2CO_3

α, β -ungesättigte Amine aus Aldehyden
s. 2, 380

\leftarrow

Chinoline aus Isatinen
s. 2, 604

\uparrow

Pyrimidine
s. 2, 381

\circ

Purine
s. 2, 440

Glyoxalidone über Oxazolone

325

Hippursäure u. Benzaldehyd mit Acetanhydrid u. geschmolzenem K-Acetat unter anfänglichem Röhren langsam auf dem Wasserbad erhitzt u. nach 1 Stde. aufgearbeitet \rightarrow 2-Phenyl-4-benzal-5-oxazolon (A: 95,1 %) in W.-Alk. mit NH_3 u. K_2CO_3 unter wiederholtem Abfiltrieren des entstandenen Niederschlags solange zum Sieden erhitzt, bis nichts mehr ausfiel \rightarrow 2-Phenyl-4-benzal-5-glyoxalidon (A: 95,4 %). (D. L. Williams u. A. R. Ronzio, Am. Soc. 68, 647 (1946).)

Natriumacetat $\text{Na}(\text{CH}_3\text{COO})$ **Osazone**

326. 45 g 5-Desoxy-l-sorbose mit 160 g Phenylhydrazinhydrochlorid u. Natriumacetat-trihydrat in W. 40 Min. auf dem Dampfbad erhitzt u. über Nacht stehengelassen \rightarrow Phenyl-5-desoxy-l-sorbosazon (Ausg. f. 254). A: 80 %. (P. P. Regna, Am. Soc. 69, 246 (1947).)

Semicarbazone $\text{CO} \rightarrow \text{C : NNHCONH}_2$

s. 1, 319

Pyrrolsynthese

s. 2, 377

Chinoxaline

s. 2, 378

Kaliumacetat $\text{K}(\text{CH}_3\text{COO})$ **Oxime aus Ketonen** $\text{CO} \rightarrow \text{C : NOH}$

s. 1, 318

Semicarbazone $\text{CO} \rightarrow \text{C : NNHCONH}_2$

s. 2, 379

Kaliumcyanid KCN **α -Aminosäuren aus Ketonen**

s. 1, 568

 $\text{CO} \rightarrow \text{C} \begin{cases} \text{NH}_2 \\ \text{COOH} \end{cases}$

<i>Ammoniak</i>	NH_3
4-Amino-5-arylpyrimidine	○
s. 2, 382	
 <i>Piperidin</i>	 $C_5H_{11}N$
Cyanine aus Nitrosoverbindungen	$NO \rightarrow N : C$
s. 2, 383	
 Pyridinring-Synthese	○
s. 2, 658	
 Chinoline	
s. 1, 609	
 <i>Pyridin</i>	 C_5H_5N
Oxime	$CO \rightarrow C : NOH$
327. 7-Methoxy-1,2,3,4-tetrahydrophenanthren-8-aldehyd mit Hydroxylamin-sulfat u. Pyridin in abs. Alk. 24 Stdn. auf dem Dampfbad unter Rückfluß gekocht \rightarrow 7-Methoxy-1,2,3,4-tetrahydrophenanthren-8-aldehyd-oxim. A: 87,5%. (J. M. Griffing u. R. C. Elderfield, J. org. Chem., 11, 132 (1946).)	
s. a. 2, 384	
 Semicarbazone	 $CO \rightarrow C : NNHCONH_2$
s. 1, 323	
 Chinoline	○
s. 1, 610	
 <i>Bariumoxyd</i>	 BaO
Hydrazone	$CO \rightarrow C : NNH_2$
s. 1, 324	
 <i>Magnesiummethyлат</i>	 $Mg(OR)_2$
Barbitursäuren	○
s. 1, 325/6	
 <i>Zink</i>	 Zn
Sek. aus prim. Aminen	$NH_2 \rightarrow NHR$
s. 2, 386	
 <i>Zinkchlorid</i>	 $ZnCl_2$
Austausch von Hydroxyl gegen Aminogruppen	$OH \rightarrow NH_2$

328. 3-Oxy-2-naphtoesäure mit 28%ig. wss. NH₃ u. ZnCl₂ im Autoklaven unter ständigem Rühren oder Schütteln allmählich auf 195° erhitzt u. 36 Stdn. bei dieser Temp. bei ca. 400 lb. Druck belassen → 3-Amino-2-naphtoesäure. A: 66—70%. (C. F. H. Allen u. A. Bell, Org. Synth. 22, 19 (1942).)

2,3-subst. Chinoline u. Acridine

s. 1, 620

Aluminiumoxyd

Al₂O₃

**Austausch von Sauerstoff gegen Stickstoff
im Ring**

s. 1, 327/8; 2, 387

Ammoniumformiat

NH₄OOCH

Amine aus Ketonen

CO → CHNH₂

Leuckartsche Reaktion

s. 2, 388

Azadipyrromethine

s. 1, 329

Ammoniumacetat

NH₄(CH₃COO)

s. 2, 389

Formamid

HCONH₂

Amine aus Ketonen

CO → CHNH₂

s. 2, 390

Harnstoff

CO(NH₂)₂

Ar. Nitramine aus Nitrophenolen

OH → NH₂

329. 1 Mol Pikrinsäure mit 3 Mol Harnstoff 36 Stdn. in einem o,p-Dichlorbenzol-Bad auf 173° erhitzt → Pikramid. A: 88%. (E. Y. Spencer u. G. F. Wright, Can. J. Research 24 B, 204 (1946). Methode s. O. Kym, J. pr. 75, 323 (1907).)

Papain

**Enzymatische Trennung von Stereoisomeren
Carbonsäureanilide aus Carbonsäuren**

COOH → CONHR

330.

N-Benzoyl-3-fluor-d,l-tyrosin in wss. NaOH-Na-Acetat gelöst, filtriert, mit Citrat-Puffer, Cystein-hydrochlorid, Anilin u. einer wss. Papain-Lsg. versetzt, mit Essigsäure auf ein pH von 5,8 gebracht u. 2 Wochen bei 40° stehengelassen, wobei wiederholt 50%ig. Essigsäure zugegeben wurde → N-Benzoyl-3-fluor-l(-)-tyrosylanilid. A: 91%. — Aus dem Filtrat kann das d-Isomere gewonnen werden. (C. Niemann u. M. M. Rapport, Am. Soc. 68, 1671 (1946).)

Acetanhydrid**Formylierung**

s. 2, 391

Sydnone

331. 0,1 Mol N-Nitroso-N-(p-methoxyphenyl)-glycin mit Acetanhydrid gemischt u. vor Sonnenlicht geschützt 24 Stdn. stehengelassen → 14,7 g p-Methoxyphenylsydnon. Durch Erhitzen mit HCl geben die Sydnone die entsprechenden subst. Phenylhydrazine. Da erstere im Vergleich zu letzteren u. ihren Salzen relativ stabil sind, könnten sie als Reagenzien zur Charakterisierung von Oxoverbindungen verwendet werden. (W. B. s. R. A. Eade u. J. C. Earl, Soc. 1946, 591.)

Phenol**N-subst. 5-Aminoacridine**

s. 2, 448

Chinoxalin-Ringschluß

s. 1, 350

Ameisensäure**Methylierung von prim. u. sek. Aminen****Allgemeine Methode**

332.

90%ig. Ameisensäure unter Wasserkühlung langsam mit β -Phenyläthylamin u. hierauf mit 37%ig. Formaldehyd versetzt, in ein 90 bis 100° warmes Oelbad gestellt, bis nach 2—3 Min. Gasentwicklung beginnt, das Oelbad 15—20 Min. entfernt, bis die Gasentwicklung nachläßt, u. hierauf im Bad noch 8 Stdn. auf 95—100° erhitzt → β -Phenyläthyldimethylamin. A: 74—83%. (R. N. Icke, B. B. Wisegarver u. G. A. Alles, Org. Synth. 25, 89 (1945).)

s. a. 2, 352

Essigsäure**Hydrazone**

s. 2, 396/7

Phtalylderivate von Aminen**Phtalimide**

s. 1, 332

Harnstoffe aus Aziden

s. 1, 334

Azoverbindungen aus Chinonen und Hydrazinen

s. 2, 392

←

Pyrrolring

○

333.

5-Aminoisochinolin u. Acetonylaceton in Eisessig-Alk. in Ggw. von 2 Tropfen 1:1 HCl 3 Stdn. unter Rückfluß gekocht → 5-(2,5-Dimethyl-1-pyrryl)-isochinolin. A: 83%. (W. B. s. H. Gilman u. a., Am. Soc. 69, 1946 (1947); 68, 326, 978 (1946).)

s. a. 1, 335/6

Copyrine

s. 2, 403

Glyoxalinring

Eine äther. Lsg. von Diazomethan über KOH-Plätzchen in eine eisgekühlte Lsg. von 18,4 mg ϵ -Chlorformylcapronsäure-äthylester in abs. Ae. destilliert, 20 Stdn. stehengelassen u. unter Rühren trockenen HCl eingeleitet, bis sich kein N₂ mehr entwickelte → 17,7 mg 8-Chlor-7-oxo-octansäure-äthylester, davon 7,5 mg mit K-Phtalimid in trockenem Xylol 8 Stdn. unter Rückfluß gekocht → 9,6 mg 8-Phtalimido-7-oxo-octansäureäthylester mit 6-n. HCl 12 Stdn. unter Rückfluß gekocht, über Nacht abgekühlt, filtriert, aus dem Filtrat durch 3-maliges Abdampfen mit W. im Vakuum überschüssigen HCl entfernt, in W. mit KCNO versetzt, mit Essigsäure auf ein p_h 4–5 eingestellt u. 30 Min. auf dem Wasserbad erhitzt → 2,3-Dihydro-2-oxo-4-imidazolcapronsäure. A: 63%. (W. B. s. K. Dittmer, M. F. Ferger u. V. du Vigneaud, J. biol. Chem. 164, 19 (1946).)

s. a. 1, 337

Phtalazine

335.

o-(2-Aethoxy-6-methyl-1-naphtoyl)-benzoësäure u. Hydrazinhydrat in Essigsäure 3—4 Stdn. unter Rückfluß gekocht → 4-Oxy-1-(2'-äthoxy-6'-methyl-1'-naphtyl)-phtalazin. A: ca. 100 %. (R. Royer, Ann. chim. [12], 1, 416 (1946).)

1-Phenylflavazole zur Charakterisierung von Kohlehydraten

336.

Maltose, o-Phenyldiamin u. W. mit Phenylhydrazin-hydrochlorid u. Eisessig gemischt u. unter CO₂ 8—12 Stdn. im Oelbad auf 95—105° erhitzt → Maltose-(1-phenylflavazol)-derivat. Roh-A: 55—60 %. (W. B. s. G. Neumüller, Ark. Kemi, 21 A, Nr. 19 (1946). Methode s. H. Ohle u. a., B. 74, 13, 279, 398 (1941); 75, 1536 (1942); 77, 507 (1944).)

Malonsäure**Piperidin-Ringschluß**

s. 2, 671

Carbonat CO_3^{--} **Carbonsäureamide aus Carbonsäuren** $COOH \rightarrow CONH_2$

s. 2, 393

Dicyandiamid

337. Isocapronsäure u. Dicyandiamid 6 Stdn. auf 200—208° erhitzt → Isocapronamid. A: 83,3 %. (M. T. Dangyan u. a., Proc. Acad. Sci. Armenian S. S. R., 1945, II. Nr. 4. 107. W. B. s. Proc. Acad. Sci. Armenian S.S.R., 1945, II. Nr. 3. 71 u. Bull. Armenian Branch Acad. Sci. U.S.S.R., 1942, Nr. 9/10, 53; C. A. 40, 3399.)

Nitrile aus Carbonsäuren

338. Eine Mischung von Valeriansäure u. Dicyandiamid innerhalb 5 Stdn. langsam destilliert \rightarrow Valeronitril. A: 72%. (M. T. Dangyan u. M. A. Organisyan, Proc. Acad. Sci. Armenian S.S.R., 1945, II. Nr. 2, 41; C. A. 40, 2783, 3.)

*Ammoniumnitrat***Austausch von Sauerstoff gegen Stickstoff**
s. 2, 394*Stickstoffwasserstoffsäure***Abbau von Carbonsäuren zu Aminen**
s. 1, 338/9*Phosphazoverbindungen***Subst. Carbonsäureamide aus Carbonsäuren** COOH \rightarrow CONHR

339. O₂N COOH + C₆H₅N = P — NH C₆H₅ \rightarrow O₂N CONHC₆H₅
p-Nitrobenzoësäure u. Phenylphosphazoanilid in Toluol unter Rühren 2 Stdn. gekocht \rightarrow p-Nitrobenzoësäureanilid. A: 83%. (W. Einzelheiten, Begrenzung der Methode u. B. s. G. W. Grimmel, A. Guenther u. J. F. Morgan, Am. Soc. 68, 539 (1946).)

*Phosphorsäure***Nitrile aus Carbonsäuren**

340. Adipinsäure u. NH₃ in Ggw. von 2–3% H₃PO₄ bei 150–210° \rightarrow Adipinsäurenitril. A: 80–84%. (W. B. s. V. M. Zoroastrova, S. R. Rafikov u. B. A. Arbuzov, Bull. acad. sci. U.d.S.S.R., Classe sci. chim., 1945, 120; C. A. 40, 3402, 9.)

Skraupsche Chinolin-Synthese

s. 2, 676

**Benzimidazolderivate zur Charakterisierung
von Kohlehydraten**
s. 1, 340*Phosphortrichlorid***4-Chinazolone**

341.

N-Acetylanthranilsäure u. p-Chloranilin in Toluol unter Röhren tropfenweise innerhalb 15 Min. mit PCl_3 versetzt u. 2 Stdn. unter Röhren u. Rückfluß gekocht \rightarrow 2-Methyl-3-p-chlorphenyl-4-chinazolon. A: 69—80%. (W. B. s. H. W. Grimmel, A. Guenther u. J. F. Morgan, Am. Soc. 68, 542 (1946).)

Ammoniumhydrogensulfit

**Austausch von Hydroxyl gegen Aminogruppen
unter milden Bedingungen**

Bucherer-Reaktion

s. 2, 395

Sulfonamide

**Amidine, Carbonsäureamide u. Nitrile
aus Carbonsäuren**

342.

Bei der Reaktion von Sulfonamiden mit Carbonsäuren können je nach den Reaktionsbedingungen Amidine, Amide oder Nitrile entstehen. — B: p-Carboxyphenyl-methylsulfon u. Benzolsulfonamid 1½ Stdn. unter Röhren auf 220—225° erhitzt, hierauf trockenes NH_3 über die Oberfläche geleitet, bis nichts mehr absorbiert wurde, die Temp. innerhalb 10 Min. auf 255—260° erhöht u. nach 2 Stdn. aufgearbeitet \rightarrow p-Amidinophenylmethylsulfon-chlorhydrat. A: 60%. — Benzoësäure u. Benzolsulfondimethylamid auf 235—240° erhitzt u. nach ¼ Stde. aufgearbeitet \rightarrow Benzdimethylamid. A: 83%. — 2,4-Dichlorbenzoësäure u. Benzolsulfonamid 2 Stdn. auf 225° erhitzt \rightarrow 2,4-Dichlorphenylcyanid. A: 80,7%. (W. B. s. P. Oxley u. a., Soc. 1946, 763.)

Schwefeldioxyd

Sek. aus prim. Aminen u. Phenolen

Bucherer-Reaktion

343.

1-Diäthylamino-4-aminopentan mit 7-Chinolinol in einer wss. SO_2 -Lsg. bei 100 mm Hg Ueberdruck ca. 40 Stdn. gekocht, bis die sich abscheidende Oelschicht nicht mehr zunahm \rightarrow 4-Diäthylamino-1-

methylbutylamino-7-chinolin. A: 50%. (W. B. s. E. B. Hartshorn u. S. L. Baird, jr., Am. Soc. 68, 1562 (1946). Methode s. Synth. Meth. 1, 341.)
s. a. 1, 341

Schwefelsäure

H_2SO_4

Hydrazone
s. 1, 342

$CO \rightarrow C : NNHR$

Skraupsche Chinolinsynthese

s. 1, 572

Pyrimidinring

s. 1, 344

Pyrazinring

Pterine
s. 1, 345; 2, 398

Kupferchromit

$CuCr_2O_4$

Piperidin-Ringschluß

s. 2, 399

Hydrochloride von org. Basen

4-Glucosidaminopyrimidine
s. 2, 404

Amine mit Formaldehyd

s. 1, 599

Tetrahydropyridinring

s. 1, 600

2,3-subst. Chinoline

s. 1, 620

Chinoxalinring

s. 1, 350

J

Jod

Sek. aus prim. Aminen u. Phenolen

$OH \rightarrow NHR$

344.

3-Retenol, Anilin u. etwas Jod im Einschlußrohr 6 Stdn. auf 250° erhitzt → Phenyl-3-aminoren. A: 95 %. (W. B. s. K. J. Karrman, Svensk. kem. Tidskr. 58, 92 (1946).)

*Salzsäure**HCl***4-Glycosidaminopyrimidine** \leftarrow

s. 2, 404

 α -Isonitrosoketone

COC : NOH

s. 1, 783

Die Reaktion von Dimethylaminobenzaldehyd mit Aminen

C : N

s. 2, 400

HydrazoneCO \rightarrow C : NNHR

s. 1, 347/8

2,4-Dinitrophenyl-semicarbazid als Reagens für OxoverbindungenCO \rightarrow C : NNHCONHR

s. 2, 401

Kondensationen mit β -Diketonen

○

Copyrin- und Pyrazol-Ringschluß

s. 2, 403

Imidazolone

345.

α -Oximino-acetessigsäure-äthylester mit Pd-Kohle in Alk. u. verd. HCl bei 50 at u. 30—50° 20 Min. hydriert, filtriert, 5-n. HCl u. eine wss. Lsg. von K-Cyanat zugegeben → 4-Methyl-5-carbäthoxyimidazolon-2. A: 81,5 %. (W. B. s. R. Duschinsky u. L. A. Dolan, Am. Soc. 67, 2079 (1945).)

Chinoxaline

s. 1, 350

Phenazine

346.

2-Amino-N-(4-diäthylamino-1-methylbutyl)-anilin u. 2,5-Dioxochinon in HCl in verschlossener Flasche geschüttelt u. nach 24-stdg. Stehenlassen bei Zimmertemp. aufgearbeitet \rightarrow 2-Keto-3-oxy-9-(4'-diäthylamino-1'-methylbutyl)-phenazin. A: 75%. (W. B. s. R. G. Jones u. H. A. Shonle, Am. Soc. 68, 2246 (1946).)

Pyrazinring-Synthese Pyrimido[4,5-b]pyrazine

347.

5,6-Diamino-2,4-dioxypyrimidin in 2-n. HCl mit einer wss. Lsg. von Glyoxal-bisulfit versetzt u. 1 Stde. gekocht \rightarrow 2,4-Dioxypyrimido-[4,5-b]pyrazin. A: 87%. (W. B. s. C. K. Cain, M. F. Mallette u. E. C. Taylor, jr., Am. Soc. 68, 1996 (1946); 69, 1814 (1947).)

Isoalloxazine

348.

o-(3-Morpholinopropylamino)-anilin mit Alloxan in Methanol-HCl, $\frac{1}{2}$ Stde. auf dem Dampfbad \rightarrow 10-(3-Morpholinopropyl)-isoalloxazinhydrochlorid-dihydrat. A: 70%. (W. B. s. R. R. Adams, C. A. Weisel u. H. S. Mosher, Am. Soc. 68, 883 (1946).)

s. a. 2, 402

Triazine

349.

Zu Urethan u. Formalin-Lsg. konz. HCl gegeben u. nach Abklingen der ersten Reaktion 5 Stdn. unter Rückfluß gekocht \rightarrow Tri-N-carboethoxy-trimethylentriamin. A: 95—100%. (C. S. Marvel u. a., Am. Soc. 68, 1681 (1946).)

*Eisen(III)-chlorid**FeCl₃***Tetrazole aus Ringketonen**

s. 2, 334

*Nickel**Ni***Amine aus Ketonen**CO \rightarrow CHNH₂

350.

Acetophenon in fl. NII₃ mit Raney-Ni bei 150° u. 5000–3500 lb. 4–6 Std. hydriert, bis kein H₂ mehr absorbiert wird \rightarrow α -Phenyläthylamin. A: 44–52 %. (W. B. s. J. C. Robinson, jr. u. H. R. Snyder, Org. Synth. 23, 68 (1943).)

Alkylamine aus NitroverbindungenNO₂ \rightarrow NHR

351.

m-Nitrophenyl-methylcarbinol mit Acetaldehyd u. Raney-Ni in Ggw. von Na-Acetat hydriert \rightarrow (m-Aethylaminophenyl)-methylcarbinol. A: 73 %. (C. S. Marvel u. C. G. Overberger, Am. Soc. 68, 185 (1946). Methode s. Emerson u. Mohrmann, Am. Soc. 62, 69 (1940).)

Kernhydrierung unter gleichzeitiger Alkylierung \leftarrow **Hydroindole**

s. 2, 76

*Ueber Zwischenprodukte**ü. Z.**Ueber Halogenverbindungen***Amine**NH₂

s. 1, 429

Carbonsäureamide, auch subst., aus Carbonsäuren COOH \rightarrow CONH₂ über Carbonsäurechloride

352.

Eine Mischung von α -Phenyl- β -(3-methoxy-4-benzyloxy-phenyl)-propiionsäure u. SOCl₂ 10 Min. unter Rückfluß gekocht, überschüssiges SOCl₂ im Vakuum abdestilliert, den Rückstand in wasserfreiem Dioxan gelöst u. unter kräftigem Rühren in 1 l konz. NH₄OH getropft \rightarrow α -Phenyl- β -(3-methoxy-4-benzyloxy-phenyl)-propionamid. A: 89 % (W. B. s. W. D. McPhee u. E. S. Erickson, jr., Am. Soc. 68, 624 (1946).)

s. a. 1, 352; 2, 122, 405/6; 3, 460

Amidine
s. 1, 351

Azaphenoxazine
s. 2, 407

Ueber Stickstoffverbindungen

Prim. Amine aus Aldehyden
s. 1, 353

Sek. aliph. Amine aus Alkoholen

353.

3-Diäthylamino-1-propanol mit SOCl_2 in Chlf. 1 Stde. unter Rückfluß gekocht, im Vakuum eingedampft u. den Rückstand mit Methylanilin 2 Stdn. im Oelbad auf 150° erhitzt \rightarrow 1-Diäthylamino-3-methylanilinopropan (A: 90%) in HCl bei -6° innerhalb 5 Stdn. mit 30%ig. wss. NaNO_2 -Lsg. versetzt, das dabei entstandene p-Nitroso-derivat mit Ae. extrahiert, den Ae.-Rückstand mit Na-Bisulfit in W. 1 Stde. bei Zimmertemp. gerührt u. hierauf auf dem Wasserbad 15 Min. auf 76° erhitzt \rightarrow 1-Diäthylamino-3-methylanilinopropan (A: 65%). (W. B. s. R. Munch, G. T. Thannhauser u. D. L. Cottle, Am. Soc. 68, 1297 (1946). S. a. W. R. Boon, Soc. 1947, 307. Methode s. Braun, Heider u. Müller, B. 51, 737 (1918).)

Sek. Amine aus Oxoverbindungen

über Azomethine

s. 1, 354 (Allgemeine Methode), 355

4-Monoalkylamino-antipyrine
s. 1, 356

Glyoxaline

354.

Pulverisierte d-Weinsäure mit HNO_3 , hierauf langsam innerhalb 15 Min. mit H_2SO_4 (D. 1, 84) bei $38\text{--}43^\circ$ versetzt, 3 Stdn. bei $20\text{--}25^\circ$ stehen gelassen, abgepresst, innerhalb 10 Min. in Eiswasser gelöst, mit Eis-Kochsalz-Mischung gekühlt, unterhalb -5° mit konz. NH_3 innerhalb

3–4 Stdn. versetzt, hierauf unterhalb 2° eine Lsg. von Hexamethylenetetramin aus Formalin u. NH_3 innerhalb $1/2$ Stde. zugegeben u. über Nacht stehengelassen \rightarrow Imidazol-4,5-dicarbonsäure (Ausg. f. 92). A: 43–48%. (H. R. Snyder, R. G. Handrick u. L. A. Brooks, Org. Synth. 22, 65 (1942).)

Stickstoff †

NC \leftrightarrow N

Ohne Hilfsstoffe

o. H.

3-subst. 4-Chinazolone

NH \rightarrow NR

355.

4-Chinazolon u. γ -Diäthylaminopropylamin im Einschlußrohr 24 Stdn. auf 150° erhitzt u. überschüssiges γ -Diäthylaminopropylamin mit CS_2 als Dithiocarbonat entfernt \rightarrow 3-(γ -Diäthylaminopropyl)-4-chinazolone als Diprikat isoliert. A: 74%. (W. B. s. N. J. Leonard u. D. Y. Curtin, J. org. Chem. 11, 341 (1946).)

Phenylierung von Aminen

s. 2, 408

Phenylhydrazone aus Azomethinen

s. 1, 357

C : NR \rightarrow C : NNHR

Subst. Carbonsäureamide aus Hydraziden über Azide

s. 1, 359

CONHNH₂ \rightarrow CONHR

Urethane aus Aziden

s. 1, 358, 389

CON₃ \rightarrow NHCOOR

Subst. Iminoester

s. 2, 355

C $\begin{cases} \diagup \\ \diagdown \end{cases}$ NR
OR

N-Nitro-N'-2,4-dinitrophenylharnstoff als Reagens für prim. und sek. Amine

s. 2, 409

Azophenine

s. 2, 410

Chinazoline

s. 1, 312

Natriumäthylat*NaOR***Pyrimidinring**

s. 1, 605

Harnsäuren

s. 1, 360

Kaliumcarbonat*K₂CO₃***Thiazin-Ringschluß**

s. 2, 560

Organische Basen**Oxindole**

s. 1, 361

Triazafluorene

356.

N-(3',5'-Dinitro-4'-pyridyl)-2-aminopyridin u. Chinolin 10 Min. unter Rückfluß gekocht → 1-Nitro-3,9,12-triazafluoren. A: 75%. (W. B. s. V. A. Petrow u. J. Saper, Soc. 1946, 588.)

Silberoxyd*Ag₂O***Carbonsäureamide***COCl → CH₂CONHR***Aufbau um 1 C-Atom**

s. 1, 631

Bromcyan*BrCN***Pyridinring-Oeffnung***C*

357.

Frisch dest. Pyridin u. 6-Aminochinolin mit Bromcyan (CNBr) in Ae. unter Kühlung umgesetzt → N-[5-(6-Chinolylamino)-2,4-penta-dienylidene]-6-aminochinolin. A: 75,8%. W. B. s. I. L. Knunyants u. T. Y. Kefeli, J. Gen. Chem. (U.d.S.S.R.), 15, 628 (1945); C. A. 40, 6079, 4)

Hydrochloride von org. Basen \leftarrow **Acylierung von Aminen**NH₂ \rightarrow NHAc

358. Durch Zusammenschmelzen eines Aminsalzes mit einem geringen Ueberschuß eines Carbonsäureamids kann die Aminogruppe mit guten Ausbeuten in wenigen Min. acyliert werden, ohne daß andere acylierbare Gruppen reagieren. — B: α -Naphtylamin-hydrochlorid u. Acetamid \rightarrow N-Acetyl- α -naphtylamin. A: 80%. (W. B. s. A. Galat u. G. Elion, Am. Soc. 65, 1566 (1943).)

Salzsäure

HCl

Chinolinring-Synthese \circ

s. 2, 686

Nickel

Ni

Hydrierende Spaltung von Azofarbstoffen bei gleichzeitiger Benzoylierung \leftarrow

s. 2, 411

Ueber Zwischenprodukte

ü. Z.

Isoalloxazine, Flavinsynthese \circ

s. 2, 102

Halogen \uparrow NC \rightleftharpoons Hal*Ohne Hilfsstoffe*

o. H.

Prim. Amine aus HalogenidenHal \rightarrow NH₂

359. $\text{BrCH}_2\text{CH}(\text{OC}_2\text{H}_5)_2 \rightarrow \text{H}_2\text{NCH}_2\text{CH}(\text{OC}_2\text{H}_5)_2$

Bromacetal (Darst. s. Org. Synth. 23, 8) in abs. Alk. mit Trocken-eis-Aceton gekühlt, fl. NH₃ zugegeben u. 12 Stdn. bei ca. 2300 lb. unter Schütteln auf 120—130° erhitzt \rightarrow Aminoacetal. A: 32—39%. — Ebenso: Chloracetal \rightarrow Aminoacetal. A: 46%. (C. F. H. Allen u. J. H. Clark, Org. Synth. 24, 3 (1944).)
s. a. 1, 364/5, 429; 2, 361, 412—5

Sek. aus prim. AminenCl \rightarrow NHR

- 360.

3,9-Dichlor-7-methoxyacridin u. Sulfathiazol in n-Amylalkohol ca. 2^{1/4} Std. im Oelbad auf 120° erhitzt → N¹-(2-Thiazolyl)-N⁴-[9-(3-chlor-7-methoxyacridyl)]-sulfanilamid-hydrochlorid. A: 81%. (W. B. s. L. J. Sargent u. L. Small, J. org. Chem. 11, 175 (1946).)

Alkylamino- aus Chlor-pyrimidinen

Tert. aus sek. Aminen

$$R_2NH \rightarrow R_2NR'$$

Unter Umlagerung

Bei gewissen Aethylenhalogeniden (s. Original) findet Austausch des Halogens gegen basischen Stickstoff unter Umlagerung statt.
— B: 11,5 g 2-Chlordec-3-en-5-in u. Diäthylamin 20 Stdn. auf 100° erhitzt → 10,5 g 4-Diäthylaminodec-2-en-5-in. (W. B. s. E. R. H. Jones, R. N. Lacey u. P. Smith, Soc. 1946, 940.)

Aminoalkohole, N-subst. aus Halogenhydrinen

N-subst. Aminoalkohole wurden durch direkte Kondensation des entsprechenden Amins mit Brom- oder Chlor-hydrin oder einer Oxidoverbindung am besten bei 70—95° innerhalb 10—20 Stdn. hergestellt. (Viele B. s. R. E. Lutz u. a., Am. Soc. 68, 1825 (1946).)

s. a. 2, 417

Diamine, prim. und tert.

γ -Brompropylphthalimid in Xylol mit Di-n-butylamin unter gelegentlichem Schütteln 10 Stdn. im Oelbad auf 140–150° erhitzt, abgekühlt, filtriert, das Xylol abdestilliert, mit HCl 6 Stdn. im Oelbad unter Rückfluß auf 140–150° erhitzt u. aufgearbeitet → γ -Di-n-butylamino-propylamin. A: 77–80%. (W. B. s. L. H. Amundsen u. J. J. Sanderson, Org. Synth. 24, 44 (1944).)

Hydrazine aus Halogeniden
s. 1, 368; 3, 68

Hal \rightarrow NHNH₂

Carbonsäureamide aus Carbonsäurechloriden

COCl \rightarrow CONH₂

Isobutyrylchlorid (Darst. s. 473) unter schnellem Rühren zu ca. 28%ig. wss. NH₃, das in einer Eis-Salz-Kältemischung steht, so getropft, daß die Temp. nicht über 15° steigt, u. noch 1 Stde. weitergerührt \rightarrow Isobutyrat (Ausg. f. 405). A: 78—83%. (R. E. Kent u. S. M. McElvain, Org. Synth. 25, 58 (1945). S. a. W. S. Bishop, Org. Synth. 25, 71 (1945).)

s. a. 2, 418/9

Sulfonsäureacetamide aus Sulfonsäureamiden
s. 2, 420

NH₂ \rightarrow NHAc

Benzoylierung
s. 1, 447; 2, 421/2

Methylamide
s. 2, 406

COCl \rightarrow CON<

Carbonsäureanilide
s. 2, 423

Diäthylamide
s. 2, 424

Gallensäureamide
s. 2, 425

Peptide
s. 2, 426

Hydroxamsäuren aus Carbonsäurechloriden
s. 2, 478

COCl \rightarrow CONHOH

Verkürzter Curtiuscher Abbau
s. 2, 427

CHCOOH \rightarrow CHNHCOOCH₃

Iothiocyanate aus Aminen
s. 1, 464

NH₂ \rightarrow N : C : S

Thienoimidazole

d,l-3-Acetamido-4-benzamido-tetrahydro-2-thiophenvaleriansäure mit Ba(OH)₂ in W. 16 Stdn. im Einschlußrohr auf 140° erhitzt, mit H₂SO₄ angesäuert, zentrifugiert, das Filtrat konzentriert, mit Na-Carbonat u. anschließend bei 0° mit COCl₂ behandelt, bis die Lsg. Kongorotsauer ist → d,l-Hexahydro-2-oxo-1-thieno[3,4]-imidazol-4-valeriansäure (d,l-Biotin). A: 89 %. (W. B. s. S. A. Harris u. a., Am. Soc. 67, 2096 (1945). S. a. L. C. Cheney u. J. R. Piening, Am. Soc. 67, 2252 (1945).)

*Lithium**Li***Tert. aus prim. Aminen** $\text{NH}_2 \rightarrow \text{NR}_2$

366.

m-N,N-Dimethylaminoanilin in Ae. unter N₂ wiederholt mit CH₃Li u. Aethyljodid behandelt → m-N,N-Dimethyl-N',N'-diäthylphenylen-diamin. A: 71 %. — Dieses milde Verfahren scheint zur vollständigen Alkylierung von Aminen allgemein anwendbar zu sein. (H. Gilman, R. H. Kyle u. R. A. Benkeser, Am. Soc. 68, 143 (1946).)

*Lithiumamid**LiNH₂***Tert. aus sek. und sek. aus prim. Aminen
bei N-Heterocyclen** \leftarrow

367.

Zu einer Suspension von LiNH₂ u. p-Methoxybenzylaminopyridin in Bzl., die 2 Stdn. unter Rückfluß gekocht worden war, eine Lsg. von Dimethylaminoäthylchlorid in Bzl. gegeben u. 6½ Stdn. unter Rückfluß gekocht → N,N-Dimethyl-N'-(p-methoxybenzyl)-N'-(*α*-pyridyl)-äthylen-diamin. A: 81 %.

Anstatt LiNH₂ kann auch NaNH₂ verwendet werden. Wenn bei der Darst. von sek. Aminen Chlor- oder Brom-hydrate an Stelle der freien Halogenide verwendet werden, muß die doppelte Menge Amid eingesetzt werden. Die besten Ausbeuten an sek. Aminen werden bei Verwendung eines beträchtlichen Ueberschusses an prim. Aminen u. eines kleinen Ueberschusses an Amid u. bei einer Reaktionszeit von ca. 22 Stdn. erhalten (W. B. s. C. P. Huttner u. a., Am Soc. 68, 1999 (1946).)

*Natronlauge**NaOH***Sek. aus prim. Aminen** $\text{NH}_2 \rightarrow \text{NHR}$ **Alkylierung von Sulfonsäureamiden**

s. 2, 428

Guanidinopyrimidine

s. 2, 432

Sek. u. tert. aus prim. Aminen

s. 2, 429

Benzoylierung von AminocarbonsäurenNH₂ → NHAc

s. 2, 430

Urethane**Carbobenzoxyderivate von Aminen****Alkylchlorformate**

Eine eisgekühlte Lsg. von COCl₂ in Toluol unter gelindem Schütteln schnell mit Benzylalkohol versetzt, eine ½ Stde. unter Eiskühlung u. weitere 2 Std. bei Zimmertemp. stehengelassen u. im Vakuum unterhalb 60° HCl, überschüssiges COCl₂ u. einen Teil des Toluols entfernt → Benzylchlorformat-Lsg. (A: 91—94%) unter Eiskühlung u. kräftigem Rühren innerhalb 20—25 Min. gleichzeitig mit 4-n. NaOH zu einer Lsg. von Glycin in 2-n. NaOH gegeben u. 10 Min. weitergerührt → Carbobenzoxyglycin (A: 86—91%). — Entsprechend: Benzylcarbamat. A: 91—94%. — Carbobenzoxyalanin. A: 80—90%. (H. E. Carter, R. L. Frank u. H. W. Johnston, Org. Synth. 23, 13 (1943).)

Indolizidine

s. 2, 431

Phtalazone aus Halogenphtaliden

369.

3-Brom-6-chlorophtalid in heißem W. gelöst, mit NaOH, hierauf mit einer Lsg. von Hydrazinsulfat in wss. NaOH versetzt, noch 10—15 Min. gekocht u. bei einem p_h von wenig über 7 ausgefällt → 7-Chlorphtalazon. A: 95 %. (W. B. s. W. R. Vaughan u. S. L. Baird, jr., Am. Soc. 68, 1314 (1946). Methode s. S. Gabriel u. A. Neumann, B 26, 521 (1893).)

Kalilauge

KOH

4-Alkylamino-chinazoline

Cl → NHR

s. 3, 388

BenzoylierungNH₂ → NHAc

s. 2, 433

Piperidine
s. 2, 474

3-subst. 1-Phenyl-4-oxyprazole
s. 2, 492

Natrium/Alkohol

NaOR

N-Alkylierung

$\text{NH} \rightarrow \text{NR}$

370.

3,4-Dihydro-3-keto-6,7-dimethyl-2-chinoxalincarbonsäure-äthylester zu einer Lsg. von Na in Alk. gegeben, 15 Min. gerührt, Methyljodid zugesetzt u. ca. 15 Min. unter Rückfluß gekocht \rightarrow 3,4-Dihydro-3-keto-4,6,7-trimethyl-2-chinoxalincarbonsäureäthylester. A: 94%. (J. W. Wellman u. M. Tishler, Am. Soc. 69, 714 (1947).)
s. a. 3, 320

Pyrimidin-Ringschluß
s. 2, 434

Natriumamid

NaNH₂

**Tert. aus sek. und sek. aus prim. Aminen
bei N-Heterocyclen**
s. 2, 435; 3, 367

**m-Amine aus o-Halogeniden
unter Umlagerung**

371.

Zu $\text{NaNH}_2/\text{fl. NH}_3$ aus fl. NH_3 u. Na in Ggw. von $\text{Fe}(\text{NO}_3)_3$ innerhalb 15 Min. 4-Joddibenzothiophen gegeben, 30 Min. gerührt u. restliches NaNH_2 mit NH_4Cl zersetzt \rightarrow 3-Aminodibenzothiophen. A: 49,5 %. (H. Gilman u. J. F. Nobis, Am. Soc. 67, 1479 (1945). S. a. G. A. Martin, jr., Iowa State Coll. J. Sci. 21, 38 (1946); C. A. 41, 952d).

Natriumcarbonat

Na₂CO₃

**Methylierung von Aminoalkoholen
Quartäre Ammoniumsalze**
s. 2, 437

NR_3^+

Urethane aus Aminen $\text{NH}_2 \rightarrow \text{NHCOOR}$

372.

3,3,3-Triphenylpropylamin-hydrochlorid mit Chlorameisensäureäthylester u. Na_2CO_3 in W. geschüttelt \rightarrow N-(3,3,3-Triphenylpropyl)-carbaminsäureäthylester. A: fast 100%. (L. Hellermann u. R. L. Garner, Am. Soc. 68, 819 (1946).)

Piperidinring-Synthese **α -Piperidyl-carbinole**

373.

Chininsäureäthylester u. ϵ -Benzamidocapronsäureäthylester in trockenem, thiophenfreiem Bzl. zu NaNH_2 gegeben, unter Röhren innerhalb ca. 1 Stde. zum Sieden erhitzt, weitere 26 Std. unter Rückfluß gekocht, auf ca. 50° abgekühlt, unter kräftigem Schütteln HCl zugegeben, unter Röhren gelöst, Bzl. abdestilliert, den Rest 17 Std. unter Rückfluß gekocht, abgekühlt, unterhalb 25° mit wss. 33%ig. NaOH alkalisch gemacht, mit Chlf. extrahiert, den Chlf.-Extrakt seinerseits mit HBr extrahiert u. in der Wärme bromiert \rightarrow ϵ -Brom- ϵ -chininyl-n-amylamin-dihydrobromid (A: 34,5%, unter Berücksichtigung des wieder gewonnenen Chininsäureäthylesters 57%) mit Na-Carbonat in Methanol-W. unter N_2 50 Min. geschüttelt, mit Adams-Pt-Oxyd-Katalysator versetzt u. bei Zimmertemp. u. Atmosphärendruck 1 bis 1½ Std. hydriert \rightarrow (6-Methoxychinolyl-4)- α -piperidylcarbinol (A: 85—86%). Gesamt-A: 29,4%, unter Berücksichtigung des wieder gewonnenen Chininsäureäthylesters 50,9%. (W. B. s. H. Sargent, Am. Soc. 68, 2688 (1946). S. a. die folgenden Arbeiten bis 68, 2721.)

Isochinolinring-Synthese

s. 2, 438

Natriumhydrogencarbonat

 $NaHCO_3$

Sek. Amine aus Fluoriden

 $F \rightarrow NHR$ Derivate von α -Aminocarbonsäuren

374.

Die Reaktion von 2,4-Dinitro-fluorbenzol mit Aminogruppen kann zur Identifizierung von Proteinen u. Peptiden verwendet werden. Die entstehenden Derivate sind gegen saure Hydrolyse relativ beständig. — B: 0,2 g l-Phenylalanin, $NaHCO_3$ u. 2,4-Dinitrofluorbenzol in W.-Alk. 2 Stdn. bei Zimmertemp. geschüttelt \rightarrow 0,27 g N-2,4-Dinitrophenyl-l-phenylalanin. (W. B. s. F. Sanger, Biochem. J., 39, 507 (1945).)

Kaliumcarbonat

 K_2CO_3

Tert. aus sek. Aminen

 $R_2NH \rightarrow R_2NR'$

s. 2, 439

Benzoylierung von Aminen

 $N \cdot COC_6H_5$

s. 3, 29

Isochinoline

○

s. 1, 369

Acridine

s. 1, 755/6

Imidazolinring

375.

2-(δ -Carboxybutyl)-3,4-cis-diaminothiophan-sulfat (Darst. s. 409) in 10%igem K-Carbonat unter Schütteln u. Eiskühlung bis zur sauren Reaktion mit $COCl_2$ behandelt \rightarrow 2-(δ -Carboxybutyl)-5-ketoimidazolido-[4,5,c,cis]thiophan (d,l-Biotin). A: 90%. (W. B. s. B. R. Baker u. a., J. org. Chem. 12, 186 (1947) u. die übrigen Arbeiten dieser Reihe.)

Xanthine-Purine

s. 2, 440

Natriumacetat $Na(CH_3COO)$ **Sek. aus prim. Aminen u. Halogeniden**Hal \rightarrow NHR

376. 8-Alkylaminoalkyl-aminochinoline aus Alkylaminoalkylhalogeniden wurden a) durch Erhitzen in abs. Alk., b) mit 1 Mol überschüssigem Aminochinolin als Puffer u. dem Salz des Halogenids in W., c) mit Na-Acetat als Puffer u. d) mit Na_2HPO_4 u. Zitronensäure als Puffer für ein pH von 4,8 hergestellt. B. s. R. C. Elderfield u. a., Am. Soc. 68, 1524, 1516 (1946).)

377.

5-Methyl-6-methoxy-8-aminochinolin u. Diäthylamino-äthylchloridhydrochlorid in W.-Alk.-Dioxan-Aethylenglykol 78 Stdn. im Oelbad auf ca. 120° erhitzt u. während dieser Zeit Na-Aacetat-Trihydrat in 4 Portionen zugegeben \rightarrow 5-Methyl-6-methoxy-8-(2'-diäthylamino-äthylamino)-chinolin. A: 40%, unter Berücksichtigung des wieder-gewonnenen Ausgangsmaterials 55%. — Ohne Zusatz von Dioxan u. Aethylenglykol betrug die Ausbeute nur 11%. (M. Carmack, L. W. Kissinger u. I. Von, Am. Soc. 68, 1551 (1946).)

Kaliumacetat $K(CH_3COO)$

s. 2, 436

Natriumazid NaN_3 **Azide aus Halogeniden**J \rightarrow N₃

s. 1, 371

Carbonsäureazide aus Carbonsäurechloriden $COCl \rightarrow CON_3$

s. 3, 402

**Isocyanate aus Carbonsäurechloriden
über Carbonsäureazide**

378.

Zu einer Lsg. von Na-Azid in W. unter gutem Rühren bei 10—15° Lauroylchlorid in Aceton gegeben, nach 1 Stde. die wss. Schicht möglichst vollständig entfernt, bei 60—70° allmählich zu Bzl. gegeben u. nach 1 Stde. aufgearbeitet \rightarrow Undecylisocyanat. A: 81—86%. (C. F. H. Allen u. A. Bell, Org. Synth. 24, 94 (1944).)

Kaliumsalz K^+ **α -Aminoketone aus α -Halogenketonen**Hal \rightarrow NH₂

s. 3, 334

Diäthylanilin

Benzoylierung
s. 1, 373

$\text{NH}_2 \rightarrow \text{NHCOC}_2\text{H}_5$

Dimethylanilin u. Pyridin

Wasserlösliche Derivate von Oxyverbindungen und Aminen
s. 2, 442

←

←

Pyridin

$\text{C}_5\text{H}_5\text{N}$

Subst. Hydroxylamine aus Halogeniden
s. 2, 265

←

Benzoylierung
s. 1, 374/5

$\text{NH}_2 \rightarrow \text{NHCOC}_2\text{H}_5$

N,N'-diacylierte Diamine als Carbonsäure-derivate
s. 2, 441

○

N-subst. Benzimidazole

379.

4-(1-Diäthylamino-4-pentylamino)-3-aminochlorobenzol in trockenem Pyridin unter Eiskühlung mit p-Anisoylchlorid versetzt, 1 Stde. bei Zimmertemp. stehengelassen u. 12 Stdn. auf dem Wasserbad erhitzt → 5-Chlor-1-(1-diäthylamino-4-pentyl)-2-p-methoxyphenyl-benzimidazol. A: 94%. (R. L. McKee, M. K. McKee u. R. W. Bost, Am. Soc. 68, 1904 (1946).)

1,2,4-Triazole

380.

Aethyl- α -amino-glyoxylat-p-nitrophenylhydrazen in Bzl.-Pyridin unter Röhren tropfenweise mit Phosgen in Bzl. versetzt u. 1 Stde. weitergekürt → 1-(p-Nitrophenyl)-3-carbäthoxy-5-oxy-1,2,4-triazol. A: 87%. (D. B. Sharp u. C. S. Hamilton, Am. Soc. 68, 588 (1946).)

Chinolin

**Carbobenzoxyderivate von Aminen und
ihre Spaltung**
s. 2, 443

Kupfer u. -salze mit Alkalicarbonat

Sek. aus prim. Aminen
s. 1, 376; 2, 310, 444

Diphenylaminocarbonsäuren
Ullmannsche Reaktion
s. 2, 445

Sulfonsäureamide
s. 1, 377

Kupfer u. -salze mit Ammoniak

Amine
s. 1, 378—81

Silbernitrit

Aliphat. Nitroverbindungen
s. 1, 372

Magnesium

Prim. Amine aus Halogeniden

381.

Durch Kondensation von 1 Mol O-Methylhydroxylamin mit 2 Mol Alkyl-Mg-chloriden oder besser -bromiden können prim. Amine frei von sek. u. tert. erhalten werden. Jodide sind für die Reaktion nicht geeignet. Die Ausbeuten betragen 40—90%. Bei der Grignardierung von α,ω -Halogeniden wurde Ae. mit 0,1% W. verwendet, da sonst reaktionsunfähige Polymere entstanden. — B: Pentamethylenbromid in die Grignard-Verbindung umgesetzt, bei —10 bis —15° O-Methylhydroxylamin in Ae. allmählich unter Rühren zugegeben, auf Zimmertemp. erwärmen gelassen, 2 Stdn. unter Rückfluß gekocht u. bei 0° mit 5-n. HCl zersetzt → Cadaverin. A: 68%. (W. B. s. R. Brown u. W. E. Jones, Soc. 1946, 781.)

382.

1-Brom-2-methoxydibenzofuran mit Mg in trockenem Ae.—Bzl. mit etwas Methyljodid als Katalysator umgesetzt u. hierauf innerhalb 10 Min. bei 0° O-Methylhydroxylamin in Ae. zugegeben → 1-Amino-2-methoxydibenzofuran. A: 68%, bezogen auf O-Methylhydroxylamin. (H. Gilman u. S. Avakian, Am. Soc. 68, 580 (1946).)

Tert. aus sek. Aminen
s. 2, 446

Zinkchlorid

Prim. Amine aus Halogeniden
s. 1, 382

Hexamethylentetramin

s. 2, 447

Bromcyan

Cyanamidverbindungen aus Aminen

383.

Arsanilsäure in NaOH mit Bromcyan, das durch Behandeln einer wss. Lsg. von KCN mit Br₂ bis zur schwachen Gelbfärbung erhalten worden war, unter Kühlung versetzt u. 48 Stdn. bei Zimmertemp. stehengelassen → 4-Cyanamidobenzolarsonsäure. A: 70%. (C. K. Banks, J. Controulis u. W. F. Holcomb, Am. Soc. 68, 2102 (1946).)

Phenol

Prim. Amine aus Halogeniden

384.

Rohes 9-Chloracridin (Darst. s. 737) in Phenol unter Röhren auf 70° erwärmt, ebenfalls unter Röhren NH₄-Carbonat zugegeben u. ¾ Stdn. auf 120° erhitzt → 9-Aminoacridin. A: 76—85%. (A. Albert u. B. Ritchie, Org. Synth. 22. 5 (1942).)

5-Aminoacridine

s. 2, 450/1

Sek. aus prim. Aminen

s. 1, 383; 3, 386

4-Aminoquinoline

385. 4-Chlorquinoline, die in 2- oder 3-Stellung subst. sind, brauchen zur vollständigen Reaktion mit prim. Aminen längere Zeit u. höhere

Tempp. als diejenigen, die im Bzl.-Ring subst. sind. In einigen Fällen erniedrigt Zufügen von Phenol die Temp. u. Reaktionszeit derart, daß die Kondensation praktisch durchgeführt werden kann. Das Verhältnis Amin : Chinolin war gewöhnlich 2,2 : 1. Temp. u. Reaktionszeit variierten stark. Amine, die in Nachbarstellung zur prim. Amingruppe keine Verzweigung haben, reagieren leicht u. bei sehr niedriger Temp. — Die Reaktion wurde als beendet angesehen, wenn eine kleine Probe der Mischung in 5%ig. HNO_3 gelöst bei Zusatz von Na-Aacetat klar blieb. B: 4-Chlor-2-phenylchinolin u. 1-Diäthylamino-4-aminopentan 14 Stdn. auf 170—190° erhitzt \rightarrow 4-(4-Diäthylamino-1-methylbutylamino)-2-phenylchinolin. A: 85%. (W. B. s. N. L. Drake u. a., Am. Soc. 68, 1208 (1946) u. w. Contractarbeiten des OSRD.)

N-subst. 5-Aminoacridine

s. 2, 448/9, 452

Essigsäure

CH_3COOH

Sek. aus prim. Aminen

s. 1, 384

$NH_2 \rightarrow NHR$

Chlorhydrate

←

Isocyanate aus Aminen

$NH_2 \rightarrow N = C = O$

s. 1, 385; s. a. B. Witten u. E. E. Reid, Am. Soc. 69, 2470 (1947).

Alkalijodide

←

Sek. aus prim. Aminen

$NH_2 \rightarrow NHR$

386.

3-Methyl-4-chlorochinoline werden mit Dialkylamino-alkylaminen in Phenol in Ggw. von NaJ 10 oder mehr Stdn. auf 165—175° erhitzt, bis das Ende der Reaktion festgestellt wird. — B: 4,6-Dichlor-3-methylchinolin \rightarrow 6-Chlor-3-methyl-4-(1'-methyl-4'-diäthylaminobutylamino)-chinolin. A: 87%. (W. B. s. E. A. Steck, L. L. Hallock u. A. J. Holland, Am. Soc. 68, 129, 132, 380 (1946).)

Arylaminopyrimidine

387.

4,89 g 4,6-Dichlor-2-methylpyrimidin u. p-Chlor-anilin in Eisesig, der mit einem Kristall KJ versetzt war, 20 Stdn. bei 40—50° gerührt, auf Zimmertemp. abgekühlt, wasserfreies Na-Aacetat zugefügt u. bis zur klaren Lsg. weitergerührt → 7,3 g 4-Chlor-6-p-chloranilin-2-methyl-pyrimidin. — 5,1 g 2-Chlor-4-p-chloranilin-6-methylpyrimidin mit p-Chloranilin in HCl-W.-Aceton 2 Stdn. unter Rückfluß gekocht → 6,1 g 2,4-Di-p-chloranilin-6-methylpyrimidin. (W. B. s. F. R. Basford, F. H. S. Curd u. F. L. Rose, Soc. 1946, 713, 721.)

Jod/Natriumacetat

J/Na(CH₃COO)

Tert. Amine

NH₂ → NR₂

s. 1, 370

Salzsäure

HCl

Arylaminopyrimidine

Cl → NHR

s. 2, 453

4-Alkylaminochinazoline

388.

4-Alkylamino-chinazoline lassen sich infolge der Reaktionsfähigkeit des 4-Chloratoms bereits ohne Katalysator in Bzl. oder Alk. herstellen. Zusatz von HCl beschleunigt die Reaktion. In einem Fall war die Umsetzung unvollständig, konnte aber mit KOH durchgeführt werden. — B: 4-Chlorchinazolin u. Aethanolamin in warmem Alk. in Ggw. von etwas konz. HCl einige Stdn. stehengelassen → 4-(β-Oxyethylamino)-chinazolin. A: 94%. (W. B. s. B. E. Christensen, B. Graham u. A. J. Tomisek, Am. Soc. 68, 1306 (1946).)

Isothiocyanate aus Aminen

NH₂ → N = C = S

389.

Zu einer Lsg. von Sulfanilamid in HCl Thiophosgen auf einmal gegeben u. bis zum Verschwinden der roten Farbe gerührt → 4-Isothiocyanbenzolsulfonamid. A: 89%. (W. B. s. R. L. McKee u. R. W. Bost, Am. Soc. 68, 2506 (1946).)

Ueber Zwischenprodukte

ü. Z.

Gabrielsche Aminsynthese

Br → NH₂

s. 2, 454

Schwefel \uparrow **NC \uparrow S***Ohne Hilfsstoffe**o. H.***Sek. Amine aus Mercaptanen****SH \rightarrow NHR**

390.

4-Mercaptopurine u. γ -Diethylaminopropylamin 20 Min. auf 90 bis 110° erhitzt \rightarrow 4-(γ -Diethylaminopropylamino)-purine als Pikrat isoliert. A: 80 %. (W. B. s. N. J. Leonard u. D. Y. Curtin, J. org. Chem. 11, 349 (1946).)

Sek. Amine aus Thioäthern**SR \rightarrow NHR**

s. 2, 455

Guanidine aus Isothioharnstoffen u. Aminen \leftarrow

s. 2, 456

Sulfanilylguanidine

s. 2, 457

Imidazolidinring

○

391.

7,8-Diaminopelargonsäureäthylester in Methanol mit CS₂ versetzt, durch Erwärmen auf 45—50° den entstehenden H₂S vollständig ausgetrieben, wobei nach 8 Stdn. noch 50%ig. Methanol zugegeben wurde, abgekühlt, NaOH zugegeben u. durch Stehenlassen über Nacht bei Zimmertemp. verseift \rightarrow 5-Methyl-2-thio-4-imidazolidinacarbonsäure. A: 53 %. (G. B. Brown u. V. du Vigneaud, J. biol. Chem. 163, 761 (1946).)

Natronlauge**NaOH****Guanidine aus Isothioharnstoffen u. Aminen** \leftarrow

392.

Zu S-Aethylthiocarbonylaminoguanidine (Darst. s. 520) unter Kühlung 2-n. NaOH, hierauf eine 80° warme wss. Lsg. von Glycin schnell zu-

gegeben, wenn die Temp. 25° erreicht hat, aus dem Eisswasser genommen, nach $\frac{1}{2}$ Stde. Ae. zugefügt u. über Nacht stehengelassen → Guanidoessigsäure. A: 80—90%. (E. Brand u. F. C. Brand, Org. Synth. 22, 59 (1942).)

Natrium/Alkohol

**α -Ketocarbonsäure-oxime aus
 α -Thioketo-carbonsäuren**
s. 3, 662

NaOR

C : S → C : NOH

Kaliumcarbonat

Thioformamide aus Aminen

K_2CO_3

$NH_2 \rightarrow NHCHS$

393.

2-Amino-4-methyl-5-aminomethyl-pyrimidin-hydrochlorid in W. unterhalb 15° schnell mit einer wss. Lsg. von K_2CO_3 versetzt, hierauf sofort mit einer wss. Lsg. von K-Dithioformat u. 4 Stdn. bei Zimmertemp. gerührt → 2-Amino-4-methyl-5-thioformamidomethyl-pyrimidin. A: 71%. (C. C. Price, N. J. Leonard u. R. H. Reitsema, Am. Soc. 68, 766 (1946).)

Kupfer

**Austausch der Sulfogruppe gegen die
Aminogruppe**
s. 2, 458

Cu

$SO_3H \rightarrow NH_2$

Ammoniumpolysulfid

Carbonsäureamide aus Mercaptanen

$(NH_4)_2S_x$

$CH_2SH \rightarrow CONH_2$

394.

2-Phenyläthanthsol u. $(NH_4)_2S_x$ 4 Stdn. auf ca. 205° erhitzt → Phenylacetamid. A: 95%. (J. A. King u. F. H. McMillan, Am. Soc. 68, 632 (1946).)

Ammoniumhydrogensulfit

Austausch von Sulfhydril gegen Aminogruppen

NH_4HSO_3

$SH \rightarrow NH_2$

395.

Eine Mischung von 2-Mercaptobenzthiazol u. NH_4HSO_3 in wss. NH_3 im Autoklaven 4 Stdn. auf 150° erhitzt → 2-Aminobenzthiazol. A: 52%. (W. B. s. I. Ubaldini u. A. Fiorenza, G. 76, 215 (1946).)

Ueber Zwischenprodukte

ü. Z.

Sek. Amine aus Sulfonamiden
s. 2, 459NHSO₂· → NHR**Guanidine aus Isothioharnstoffen**
über Cyanamide

←

396.

p-Tolylthioharnstoff mit CuSO₄ u. KOH in W. 15 Min. gekocht → p-Tolylcyanamid (Roh-A: 91%), davon 6,6 g mit Methylamin-hydrochlorid in Butanol 12 Stdn. gekocht → 7,5 g N-p-Tolyl-N'-methylguanidin-hydrochlorid. (W. B. s. H. King u. I. M. Tonkin, Soc. 1946, 1063.)

Kohlenstoff ↑NC \rightleftharpoons C*Ohne Hilfsstoffe*

o. H.

Benzoylierung mit ω -Trichloracetophenon
s. 2, 460NH₂ → NHAc
OH → OAc**Säureamide aus Harnstoffen und Säuren**
s. 2, 461

COOH → CONHR

Die Spaltung von Hexosen über die
Tetraoxybutyl-chinoxaline
s. 1, 386

←

Pyrimidinring-Synthese
s. 1, 387

○

Natronlauge

NaOH

Hydrazone aus Diazoniumsalzen
 α -Ketocarbonsäureester-phenylhydrazone
aus β -Ketocarbonsäureestern
s. 2, 462, 813

←

*Natriumamid*NaNH₂**Carbonsäureamide aus Phenylketonen**
s. 2, 463, 725COC₆H₅ → CONH₂

Natriumnitrit $NaNO_2$ **α -Isonitrosoketone aus β -Ketocarbonsäureestern**

397.

2-Carbäthoxy-cyclohexanon langsam mit wss. NaOH, hierauf mit wss. $NaNO_2$ -Lsg. versetzt, luftdicht verschlossen 48 Stdn. bei Zimmertemp. geschüttelt, auf 0° abgekühlt, unter Schütteln mit einem kleinen Ueberschuß 6-n. H_2SO_4 versetzt u. nach 30-min. Stehen aufgearbeitet \rightarrow 1,2-Cyclohexandionmonoxim. Roh-A: 89 %. (T. A. Geißman u. M. J. Schlatter, J. org. Chem. 11, 771 (1946).)

Kupfer Cu **Sek. Amine aus Acylaminen**

s. 2, 465

 $NHAc \rightarrow NHR$ *Essigsäure* CH_3COOH **Harnstoffe aus Aziden**

s. 1, 388

 $2 RCON_3 \rightarrow CO(NHR)_2$ *Aethylnitrit* C_2H_5ONO **Oximino-lactone aus Acetyl-lactonen**

398.

Acetobutyrolacton mit Aethylnitrit in Methanol in Ggw. einer Spur Säure unter anfänglicher Kühlung mit Eis-Salz-Mischung 15–20 Stdn. stehengelassen, wobei nach dem Schmelzen der Kältemischung allmählich Zimmertemp. erreicht wird \rightarrow α -Oximino- γ -butyrolacton. A: 85 bis 91 %. (H. R. Snyder u. a., Am. Soc. 64, 2082 (1942).)

*Thioharnstoffe***Carbonsäureanilide aus Carbonsäuren** $COOH \rightarrow CONHR$

399. Propionsäure mit symm. Di-o-tolylthioharnstoff einige Stdn. auf 270° erhitzt \rightarrow Propionsäure-o-toluidid. A: 92,3 %. (W. B. s. M. T. Dangyan, Bull. Armenian Branch Sci. Acad. U.d.S.S.R., 1944, Nr. 4, 3; C. A. 40, 3410, 1.)

Phosphorpentachlorid PCl_5 **Beckmannsche Umlagerung**

400.

Zu einer Suspension von 3-Acetyl-9-bromphenanthren-oxim in trockenem Bzl. PCl_5 gegeben, 20 Min. unter Rückfluß gekocht u. das isolierte 3-Acetylaminophenanthren durch 24stdg. Kochen unter Rühren u. Rückfluß mit konz. HCl in Alk. verseift \rightarrow 3-Aminophenanthren. A: 71%. (J. Schultz u. a., J. org. Chem. 11, 307 (1946).)

Schwefel

S

Carbonsäureamide aus α,β -Aethylencarbonsäuren**Abbau um 1 C-Atom****Willgerodt-Verfahren**

401.

α,β -Aethylencarbonsäuren geben unter den Bedingungen der Willgerodt-Reaktion unter Decarboxylierung Carbonsäureamide. — B: Eine Mischung von trans- α -Methylzimtsäure, konz. wss. NH_3 , Schwefel u. Pyridin im Einschlußrohr $5\frac{1}{2}$ Stdn. auf $170 \pm 5^\circ$ erhitzt \rightarrow β -Phenylpropionamid. A: 63%. (W. B. s. C. H. Davis u. M. Carmack, J. org. Chem. 12, 76 (1947).)

Über Zwischenprodukte

ü. Z.

Amine aus Carbonsäuren über Carbonsäurechloride und Azide $\text{COOH} \rightarrow \text{NH}_2$ **Verkürzter Curtiusscher Abbau**

402.

Zu einer Lsg. von NaN_3 in Dioxan-W. bei $0-5^\circ$ innerhalb 15 Min. in kleinen Portionen 9-Phenanthroylchlorid gegeben, $\frac{1}{2}$ Stde. bei $0-5^\circ$ gerührt, Eiswasser zugegeben u. eine weitere $\frac{1}{2}$ Stde. gerührt \rightarrow 9-Phenanthroylazid (A: 98%) mit Dioxan versetzt, das mit Na getrocknet worden war, unter gelindem Erwärmen auf $40-50^\circ$ oder

evtl. unter Kühlen bei mäßiger N_2 -Entwicklung zersetzt, schließlich auf ein Wasserbad gestellt, das allmählich auf 100° erwärmt wurde, die entstandene Isocyanat-Lsg. mit konz. HCl versetzt, 1 Stde. auf dem Wasserbad unter Rückfluß gekocht u. aufgearbeitet → 9-Phenanthrylamin (A: 93%). (M. A. Goldberg, E. P. Ordas u. G. Carsch, Am. Soc. 69, 260 (1947).)

s. a. 1, 390; 2, 466

Amine aus Aziden über Benzylurethane

s. 1, 358, 389

Abgabe

Wasserstoff \downarrow

Kupferacetat

N-Alkylbenzimidazole

s. 1, 391

Nitrosobenzol

Indazole aus o-Methylazoverbindungen

s. 2, 467

Salpetersäure

Hantzsch'sche Pyridinringsynthese

s. 1, 542

Kaliumchromat

Acridine aus Acridanen

s. 3, 69

Kaliumhypobromit

Pyrimidinring-Synthese

s. 2, 468; s. a. Soc. 1947, 378

Eisen(III)-chlorid

Acridine aus Acridanen

s. 1, 23, 756; 2, 91/2

*Kaliumferricyanid, Quecksilberoxyd***Subst. Oxime aus subst. Hydroxylaminen**

403.

N,N-Bis-(1-phenylpropyl)-hydroxylamin mit verschiedenen Oxydationsmitteln, z. B. $\text{K}_3[\text{Fe}(\text{CN})_6]$ in alkal. Lsg. oder mit $\text{HgO} \rightarrow$ Propiophenon-N-(1-phenylpropyl)-oxim. A: fast 100%. (W. B., auch N-Acyloxime, s. P. Grammaticakis, C. r. 224, 1066 (1947).)

Sauerstoff

NC ↑ O

Natronlauge

NaOH

Indoline

s. 1, 392

Tetrahydrochinoline

s. 2, 470

*Natriumacetat*Na(CH_3COO)**Uracilringschluß unter Konfigurationsänderung**

404.

Eine Mischung von trans-4-Uranilinothiophan-3-carbonsäure (Darst. s. 267), wasserfreies Na-Acetat u. Acetanhydrid 10 Min. unter Rückfluß gekocht \rightarrow 1-Acetyl-3-phenyl-5,6,8,9-tetrahydrothieno[3,4,e,cis]-uracil. A: 69%. — Der Zusatz von Na-Acetat fördert die Enolisierung. (B. R. Baker u. a., J. org. Chem. 12, 174 (1947); s. a. die übrigen Arbeiten dieser Reihe.)

Acetanhydrid $(\text{CH}_3\text{CO})_2\text{O}$ **Carbonsäuren aus Oximen über Nitrile**CH: NOH \rightarrow COOH

s. 1, 393

Zinn**Sn****Chinoline****O**

s. 2, 649

Zinn(II)-chlorid**SnCl₂****Anthrazoline****O**

s. 2, 471

Phosphorpentoxyd**P₂O₅****Nitrile aus Carbonsäureamiden**CONH₂ → CN

405.

Sebacinsäure-methylester-amid in Tetrachloräthan bei 40–50° mit P₂O₅ versetzt, mit einem Glasstab gut verrührt, im Oelbad auf 120° erhitzt, eine zweite Portion P₂O₅ zugegeben u. noch 30 Min. unter gelegentlichem Umrühren auf 145° erhitzt → ω-Cyanpelargonsäuremethylester. A: 69–71%. (W. S. Bishop, Org. Synth. 25, 69 (1945).)

Entsprechend ohne Lösungsmittel: Isobutyramid (Darst. s. NC ↑ Hal.) → Isobutyronitril. A: 69–86%. (R. E. Kent u. S. M. McElvain, Org. Synth. 25, 61 (1945).)

406.

972 g Trichloracetamid mit P₂O₅ gut vermischt mittels eines Glascol-Heizmantels elektrisch erhitzt u. destilliert, während nach u. nach weiteres P₂O₅ zugegeben wurde → Trichloracetonitril (Ausg. f. NC ↓ NC). A: 85%. (E. T. McBee, O. R. Pierce u. R. O. Bolt, Ind. Eng. Chem. 39, 391 (1947).)

s. a. 1, 394; 2, 472

Phosphoroxychlorid**POCl₃**

407.

2-(m-Carbamylphenylsulfonamido)-pyrimidin mit POCl₃ in Aethylen-chlorid 10 Min. unter Rückfluß gekocht → 2-(m-Cyanphenyl-sulfonamido)-pyrimidin. A: 93%. (J. P. English u. a., Am. Soc. 68, 1046 (1946).) Entsprechend: Cyanacetamid 8 Stdn. unter Rückfluß gekocht → Malononitril. A: 57–68%. A. R. Surrey, Org. Synth. 25, 63 (1945).)

*Thionylchlorid**SOCl₂*

s. 1, 395

*Schweflige Säure und Salzsäure**SO₂/HCl***Indazolone**

s. 1, 396

*Hydrosulfit oder Eisen(II)-sulfat**S₂O₄²⁻ o. FeSO₄***Indolring-Synthese**

s. 2, 812

*Nickel**Ni***Pyrrolring-Synthese**

s. 1, 397

Stickstoff ↑

NC ↑ N

Ohne Hilfsstoffe

o. H.

Amine aus Aziden über AcylamineCON₃ → NH₂**Abbau um 1 C-Atom**

408.

2,4-Dimethyl-5-thiazolcarbonsäureazid in Ae. zu einer Mischung von Acetanhydrid-Essigsäure gegeben, den Ae. entfernt u. den Rückstand bis zum Aufhören der N₂-Entwicklung erwärmt → 2,4-Dimethyl-5-acetamidothiazol (A: fast 100%) mit W.-Alk.-HCl 10 Stdn. unter Rückfluß gekocht → 5-Amino-2,4-dimethylthiazol (A: 92%). (W. B. s. K. Ganapathi u. Alamela Venkataraman, Proc. Indian Acad. Sci., 22A, 343, 359 (1945).)

Butylnitrit**Modifikation des Curtiusschen Abbaus****Imidazolidin-Ringschluß u. -Ringöffnung**

409.

Zu einer heißen Suspension von 2-(δ-Carbanilidobutyl)-4-uranylino-thiophan-3-cis-carboxhydrazid (Darst. s. 265) in trockenem Butanol

eine Lsg. von HCl in Butanol, hierauf Butylnitrit unter Umschwenken gegeben u. 1 Stde. auf dem Dampfbad erhitzt → 2-(δ -Carbanilidobutyl)-5-keto-6-carbanilido-imidazolido[4,5,c,cis]thiophan (A: 55%) mit Ba(OH)₂ in Methanol-W. im Einschlüsserohr 45 Stdn. bei 160° geschüttelt u. als Sulfat isoliert → 2-(δ -Carboxybutyl)-3,4,cis-diaminothiophansulfat (Ausg. f. 375). (A: 83%). — Bei der Diazotierung in der üblichen Weise mit NaNO₂ blieb der größte Teil des Hydrazids unverändert. — (B. R. Baker u. a., J. org. Chem. 12, 186 (1947); s. a. die übrigen Arbeiten dieser Reihe.)

Eisen(III)-chlorid*FeCl₃***Phenazine**

○

410.

2,6,2'-Triamino-4-methoxydiphenylamin in verd. HCl gelöst, mit über- schüssiger wss. FeCl₃-Lsg. versetzt u. über Nacht bei Zimmertemp. stehengelassen → 1-Amino-3-methoxyphenazin. A: fast 100%. (W. B. s. R. C. Elderfield, W. J. Gensler u. O. Birstein, J. org. Chem. 11, 812 (1946).)

NC ↑ Hal**Halogen ↑***NaOH***Natronlauge****Nitriloxyde aus Hydroxamsäurechloriden**

←

411.

Zu einer Suspension von Benzohydroxamsäurechlorid in Eisswasser unter Kühlung mit Eis-Kochsalz portionsweise 14%ig. wss. NaOH gegeben u. einige Min. geschüttelt → Benzonitriloxyd (Ausg. f. 582). A: 90%. (A. Quilico u. G. Speroni, G. 76, 148 (1946).)

Pyrrolidine

○

s. 2, 473

*NH₃***Ammoniak****Pyrroline**

412.

Zu einer Phenyl-Mg-bromid-Lsg. aus Mg u. Brombenzol in trockenem Ae. γ -Chlor- α -äthyl- α -phenylbutyronitril, ebenfalls in trockenem Ae. langsam zugegeben, im ganzen 8 Stdn. unter Rückfluß gekocht, vorsichtig zu fl. NH₃ gegeben u. unter gelegentlichem Schütteln 24 Stdn. stehen gelassen, bis das NH₃ verdampft war → 2,3-Diphenyl-3-äthyl- Δ^1 -pyrrolin. A: 70%. (W. B. s. J. V. Murray, u. J. B. Cloke, Am. Soc. 68, 126 (1946).)

Schwefelsäure H_2SO_4 **Pyrrolidine****Austausch von N-Wasserstoff gegen N-Halogen**

In Di-n-butylamin, Ligroin u. 3-n. NaOH Chlor unter 100—150 mm Ueberdruck, Eiskühlung u. Schütteln eingeleitet, bis sich die nicht-wäßrige Schicht gelbgrün färbt, die Ligroin-Schicht abgetrennt, gewaschen, das entstandene Chloramin mit H₂SO₄ ausgezogen, diese Lsg. innerhalb 30—40 Min. bei 90—100° zu H₂SO₄ gegeben u. aufgearbeitet, wobei das restliche Ausgangsmaterial nach Hinsberg mit Benzolsulfonylchlorid als Di-n-butyl-benzolsulfonamid abgetrennt wird → 1-n-Butylpyrrolidin. A: 70—80%. — Die Methode ist allgemein anwendbar. (G. H. Coleman, G. Nichols u. T. F. Martens, Org. Synth. 25, 14 (1945).)

Schwefel ↑**NC ↑ S***Organische Basen*

←

Purine aus Pyrimidinen

s. 1, 398

○

Kupfersulfat $CuSO_4$ **Cyanamide aus Isothioharnstoffen** $NHCSNH_2 \rightarrow NHCN$

s. 3, 396

Schwefelsäure H_2SO_4 **Chinolin-Ringschluß**

○

s. 1, 400

Ueber Zwischenprodukte

u. Z.

Allgemeine Methode zur Darstellung von Alkylisothiocyanaten $NH_2 \rightarrow N : C : S$

s. 1, 401

Kohlenstoff ↑

NC ↑ C

Kaliumhydroxyd

KOH

Piperidine

s. 2, 474

*Natriumnitrit*NaNO₂**Vereinfachter Curtiusscher Abbau
Amine aus Hydraziden**CONHNH₂ → NH₂

414.

Bei gewissen Verbindungen lässt sich das Azid-Hydrochlorid in einfacher Weise direkt in das Amin überführen. — B: 2,82 g d-Lysergsäurehydrazid in 0,1-n. HCl bei 0° mit einer NaNO₂-Lsg. versetzt u. hierauf innerhalb 2—3 Min. unter gutem Rühren ebenfalls bei 0° 0,1-n. HCl eingetropft → 2,5 g d-Lysergsäureazid-hydrochlorid, davon 2 g mit kochender 0,2-n. HCl übergossen u. noch 2 Min. leicht gekocht → (+)-6-Methyl-8-amino-ergolen u. seine Isoverbindung (Roh-A: 90%). (W. B. s. A. Hofmann, Helv. 30, 44 (1947).)

Magnesium

Mg

Imidazoline

415.

sym-Diacetyl-lathylendiamin u. Mg-Pulver im Metallbad auf 310—315° erhitzt → 2-Methylimidazolin. A: 94%. (J. A. King u. F. H. McMillan, Am. Soc. 68, 1774 (1946).)

*Bariumhydroxyd*Ba(OH)₂**Imidazolidinring**

416.

Eine Mischung von cis-3,4-Diaminocarbäthoxy-2-methyl-tetrahydrofuran u. wss. Ba(OH)₂-Lsg. 2 Stdn. auf dem Dampfbad erhitzt und hierauf durch die heiße Lsg. 30 Min. einen langsamem CO₂-Strom geleitet → Hexahydro-2-oxo-4-methyl-1-furo[3,4]imidazol. A: 71,4%. (K. Hofmann u. A. Bridgwater, Am. Soc. 67, 1165 (1945); w. B. s. 67, 1459 (1945).)

Acetanhydrid (CH₃CO)₂O

Nitrile aus α -Ketocarbonsäure-oximen ←
s. 3, 662

Butylnitrit ←

Imidazolidinring-Oeffnung C
s. 3, 409

Alkalihypohalogenite ←

Hofmannscher Abbau CONH₂ → NH₂
s. 2, 464, 475/6

Platin Pt

Azafluorene O
s. 2, 477

Ueber Zwischenprodukte ü. Z.

Amine aus Hydroxamsäuren CONHOH → NH₂
Lossensche Umlagerung
s. 2, 478

Herstellung der Hal—Hal-Bindung

Aufnahme

Anlagerung an Halogen HalHal \downarrow Hal

Ohne Hilfsstoffe o. H.

Jodid-dichloride aus Jodiden J → JCl₂

Jodbenzol in trockenem Chlf. vor Licht geschützt unter Kühlung mit Eis-Kochsalz u. Lichtschutz mit trockenem Cl₂ ca. 3 Stdn. behandelt, bis es nicht mehr absorbiert wird → Jodbenzol-dichlorid (Ausg. f. 103/4). A: 87—94 %. (H. J. Lucas u. E. R. Kennedy, Org. Synth. 22, 69 (1942).)

Herstellung der Hal—S-Bindung

Austausch

Wasserstoff \downarrow

Chlor

Sulfonsäurechloride aus Mercaptanen

HalS \leftrightarrow H

Cl

418. ε -Mercaptocapronsäure mit Cl in Eisessig bei 15° gesättigt, 3 Stdn. stehengelassen u. den Eisessig im Vakuum entfernt → ε -Chlorsulfonylcapronsäure. A : 80 %. — In wss. Lsg. entsteht 70 % Di-(ε -carboxypentyl)-sulfid. (G. Ivanovics u. L. Vargha, H. 281, 156 (1944).)

Sauerstoff \downarrow

Phosphorpentachlorid

Sulfonsäurechloride

s. 1, 402; 2, 479

HalS \leftrightarrow O

PCl₅

Cyansulfonylchloride aus

Sulfonamidocarbonsäuren

s. 2, 480

Schwefel \downarrow

Chlor

Thiohalogenide aus Di- und Polysulfiden

HalS \leftrightarrow S

Cl₂

\leftarrow

419. (ClCH₂CH₂)₂S₂ + Cl₂ → 2 ClCH₂CH₂SCl

In eine Lösung von Bis-(2-chloräthyl)-disulfid in trockenem CCl₄ unter gutem Rühren Cl₂ so eingeleitet, daß die Temp. nicht über 10° steigt → 2-Chloräthylthioclorid (Ausg. f. 497). A: 57—79 %. (W. B. s. R. C. Fuson u. a., J. org. Chem. 11, 469, 499 (1946).)

Kohlenstoff \downarrow **HalS \leftrightarrow C***Chlor**Cl*

**Sulfonsäureamide aus Thioäthern
über Sulfonsäurechloride**

 $SR \rightarrow SO_2NH_2$

420.

In eine Suspension von 6-Benzylthio-4,7-dichlorchinolin in Eisessig, der etwas W. enthält, unterhalb 30° Cl₂ bis zur klaren Lsg. eingeleitet, 15 Min. stehengelassen, mit Eiswasser verdünnt, das ausgefallene Sulfonylchlorid filtriert, gewaschen, in Aceton suspendiert u. mit NH₃-Gas gesättigt → 4,7-Dichlor-6-chinolinsulfonamid. A: 67%. (W. B. s. R. H. Baker, R. M. Dodson u. B. Riegel, Am. Soc. 68, 2636 (1946).)

Herstellung der Hal—U-Bindung**Austausch****Sauerstoff \downarrow** **HalÜ \leftrightarrow O***Ohne Hilfsstoffe**o. H.*

**Aminodialkylphosphonate aus Trialkylphosphiten
über Dialkyljodphosphonate**
s. 2, 481

 \leftarrow *Chinolinphosphat* \leftarrow **Austausch von Alkoxy gegen Halogen bei Silanen** \leftarrow

421.

Dimethyldi-n-butoxysilan u. Benzoylchlorid in Ggw. von Chinolinphosphat 10 Stdn. destilliert → Dimethyldichlorsilan. A: 80%. (R. O. Sauer, Am. Soc. 68, 138 (1946).)

Halogen \uparrow **HalÜ $\uparrow\downarrow$ Hal***Ammoniumfluorid**NH₄F***Fluor- aus Chlor-arsinen***Cl \rightarrow F*

422.

Wasserfreies NH₄-Fluorid setzt sich mit Chlorarsinen bei 80—100° glatt u. quantitativ um, während SbF₃, auch in Ggw. eines Katalysators, u. ZnF₂ bei 100° nicht reagieren. B: Methyldichlorarsin mit 3 Mol gut im Vakuumexsikkator getrocknetem NH₄-Fluorid unter Feuchtigkeitsausschluß 2—3 Stdn. bei 70—90° destilliert → Methyldifluorarsin. A: 90—95%. (W. B. s. L. H. Long, H. J. Emeléus u. H. V. A. Briscoe, Soc. 1946, 1123.)

Kohlenstoff**HalÜ $\uparrow\downarrow$ C***Quecksilberchlorid**HgCl₂***Organo-Zinnverbindungen** \leftarrow

423.

Tetramethyl-Zinn mit der 3fachen Menge HgCl₂ umgesetzt → Dimethyl-Zn-dichlorid. A: 86%. — HgCl₂ spaltet Tetraalkyl-Zinn leichter als HCl, wobei der kleinste Rest abgespalten wird. (W. B. s. Z. M. Manulkin, J. Gen. Chem. (U.S.S.R.) 16, 235 (1946).)

*Zinn(IV)-chlorid**SnCl₄*

424.

Tetra-p-anisyl-zinn u. trockenes SnCl₄ im Einschlußrohr 15 Min. auf 80—145°, 2 Stdn. auf 145—160° u. schließlich 1 Stde. auf 160 bis 185° erhitzt → Di-p-anisylzinn-dichlorid. A: 87%. (W. B. s. T. V. Talalaeva, N. A. Saitseva u. K. A. Kotscheschkov, J. Gen. Chem. (U.S.S.R.) 16, 901 (1946).)

Herstellung der Hal-C-Bindung**Aufnahme****Anlagerung an Sauerstoff und Kohlenstoff****HalC $\downarrow\uparrow$ OC***Bromwasserstoff**HBr**Pyranring-Oeffnung* C

s. 3, 676

Anlagerung an Stickstoff und Kohlenstoff **HalC ↓ NC***Ohne Hilfsstoffe* *o. H.***Carbamylfluoride** NHCOF

s. 2, 482

Anlagerung an Kohlenstoff **HalC ↓ CC***Ohne Hilfsstoffe* *o. H.***Fluoride aus Aethylenderivaten, gleichzeitig Austausch von Chlor gegen Fluor** ←
s. 3, 481**Chloride aus Aethylenderivaten** C : C → CHCCl
s. 2, 760**β-Halogenacetale aus α,β-Aethylenaldehyden**
s. 1, 483**Bromide aus Aethylenderivaten** C : C → CHCBr
s. 1, 403/4; 2, 484**Jodide aus Aethylenderivaten, gleichzeitig Austausch von Hydroxyl gegen Jod** C : C → CHCJ
s. 2, 486**Dibromide aus Aethylenderivaten** C : C → CBrCBr
s. 3, 3**Chlornitroverbindungen** C : C → CCICNO₂
s. 1, 289**Kupferchlorid** CuCl₂**Anlagerung von Chlorwasserstoff an die Kohlenstoff-Dreifachbindung** C : C → CH : CCl
s. 1, 406**Quecksilberoxyd** HgO**α-Alkoxyhalogenide aus Aethylenderivaten** C : C → C(OR)CH₂Hal425. ClCH = CHCH = CH₂ → ClCH = CHCH(OCH₃)CH₂J

1-Chlorbutadien, Methanol u. HgO in Ggw. von etwas Hydrochinon langsam mit Jod behandelt → 1-Chlor-4-jod-3-methoxy-1-buten. A: 75%. (A. A. Petrov u. N. P. Sopov, J. Gen. Chem. (U.S.S.R.) 15, 981 (1945); C. A. 40, 6406, 7.)

Quecksilberchlorid, Bariumchlorid-Kohle

HgCl₂, BaCl₂—C

Anlagerung von Fluorwasserstoff an die Kohlenstoff-Dreifachbindung

C : C → CH : CF

426.

Eine Mischung von Acetylen u. HF bei 97–104° über einen Katalysator aus HgCl₂-BaCl₂ auf aktivierter Kohle geleitet → Vinylfluorid. A: 82%. (A. E. Newkirk, Am. Soc. 68, 2467 (1946).)

Bauxit

Al₂O₃

Dichloride aus Aethylenderivaten

C : C → CCl·CCl

s. 1, 407

N-Bromacetamid

CH₃CONHBr

α-Oxyhalogenide aus Aethylenderivaten

C : C → C(OH)CBr

s. 1, 405

β,γ-Aethylen-1,4-bromketone aus Oxydienen

←

s. 2, 487

Benzoylperoxyd

(C₆H₅COO)₂

Bromide aus Aethylenderivaten

C : C → CHCBr

427.

Undecenylacetat in eiskaltem Bzl. in Ggw. von Benzoylperoxyd mit HBr versetzt → 11-Bromundecylacetat. A: 82%. (C. C. Price u. a., J. org. Chem. 11, 281 (1946).)

Luft (Sauerstoff)

O₂

**Synthese von aliph. verzweigten
Carbonsäuren**

s. 2, 485

Jodbenzoldichlorid

C₆H₅JCl₂

**1,2-Dichloride aus
Aethylenderivaten**

C : C → CCl·CCl

428.

Gut getrocknetes Cholesterin mit Jodbenzoldichlorid in Chlf. ½ Stde. unter Rückfluß gekocht → Cholesterindichlorid. A: 81%. — Diese Methode liefert 2 Isomere. (W. B. s. C. J. Berg u. E. S. Wal-lis, J. biol. Chem. 162, 683 (1946).)

*Alkylhypochlorit**RCIO***Chlorhydrine aus Aethylenderivaten**
s. 2, 488 $C : C \rightarrow C(OH)CCl$ *Sulfurylchlorid**SO₂Cl₂***1,2-Dichloride aus Aethylenderivaten** $C : C \rightarrow CCl \cdot CCl$

429.

Methallylchlorid unter gelindem Erwärmen mit Sulfurylchlorid ver-
setzt u. bis zum Aufhören der SO₂-Entwicklung weitererhitzt →
1,2,3-Trichlor-2-methylpropan. A: 83%. (A. Mooradian u. J. B.
Cloke, Am. Soc. 68, 785 (1946).)

Austausch

Wasserstoff \downarrow **HalC $\uparrow\downarrow$ H***Ohne Hilfsstoffe**o. H.***Chlorierung** $H \rightarrow Cl$

430.

In Acetophenon u. Eisessig unterhalb 60° u. innerhalb ca. 5 Stdn. Cl₂
bis zur Gelbfärbung eingeleitet → Dichloracetophenon (Ausg.f. OC $\uparrow\downarrow$ Hal.
204). Roh-A: 90—97%. (J. G. Aston, J. D. Newkirk, D. M. Jenkins u. J.
Dorsky, Org. Synth. 23, 48 (1943).)

431.

In Cyclohexanon u. W. unter Kühlung etwas mehr als 3 Mol Cl₂
ca. 45 Min. lang so eingeleitet, daß es absorbiert wird → 2-Chlor-
cyclohexanon. A: 61—66%. (M. S. Newman, M. D. Farbman u. H.
Hipsher, Org. Synth. 25, 22 (1945).)

432.

Mesitylen u. CCl₄ auf 80° erhitzt, unter Belichtung mit einer 150-
Watt-Lampe 48 Stdn. Cl₂ eingeleitet u. überschüssiges Cl₂ u. HCl

mit Luft ausgetrieben → 1,3,5-Tris-(trichlormethyl)-benzol. A: 98%. (W. B. s. E. T. McBee u. a., Ind. Eng. Chem. 39, 393 (1947) u. die übrigen Arbeiten dieser Reihe.)

s. a. 1, 411

Chlorierung in der Gasphase

s. 1, 408

Bromierung

H → Br

s. 3, 154

s. a. 1, 645; 2, 489/90

Fluorbromide

433.

Alkylfluoride werden mit Br₂ bei 600° durch ein mit kleinen Glasrohrstückchen gefülltes Glasrohr geleitet. — B: Trifluormethan → Trifluorbrommethan. A: 90%. (W. B. s. T. J. Brice, W. H. Pearson u. J. H. Simons, Am. Soc. 68, 968 (1946).)

α -Halogendicarbonsäureester

aus Dicarbonsäuren

s. 1, 409

Aldehyde aus Kohlenwasserstoffen

über Alkylbromide

s. 1, 410, 418

Jodierung

H → J

434.

1-Histidin-monohydrochlorid in 0,5-n. NaOH gelöst, mit Hexan versetzt, bei 10° unter kräftigem Rühren innerhalb 1½ Stdn. eine 0,1-n. Lsg. von Jod in Hexan zugegeben, eine weitere ½ Stde. gerührt, mit HCl angesäuert, das entstandene Jodid mit KJO₃ unter gutem Rühren in Jod umgesetzt u. dieses mit Hexan extrahiert → 2,5-Dijod-histidin. Roh-A: 94%. — Das entstandene Jodium wurde entfernt, weil es die Löslichkeit des Reaktionsprodukts in W. erhöht. (W. B. s. K. J. Brunings, Am. Soc. 69, 205 (1947).)

Natriumcarbonat

Na₂CO₃

Bromierung

H → Br

435.

Eine Suspension von 6,8 g 2-Methyl-4-oxy-6-äthoxymethylpyrimidin in wss. Na_2CO_3 -Lsg. unter Rühren tropfenweise mit Br_2 versetzt, hierauf mit Na-Bisulfit entfärbt u. aufgekocht \rightarrow 6,7 g 2-Methyl-4-oxy-5-brom-6-äthoxymethylpyrimidin. — In alkal. Lsg. wird die β -Stellung des Rings für elektrophile Reagenzien aktiviert. (G. E. McCasland u. a., Am. Soc. 68, 2390 (1946).)

Natrium-hydrogen-carbonat

NaHCO_3

Jodierung

$\text{H} \rightarrow \text{J}$

s. 1, 412

Natriumacetat

$\text{Na(CH}_3\text{COO})$

Bromierung

$\text{H} \rightarrow \text{Br}$

s. 3, 155

Silberfluorid-Kupfer

AgF_2-Cu

Fluorierung

$\text{H} \rightarrow \text{F}$

436.

Kohlenwasserstoff-Dampf u. Fluor werden mit N_2 verdünnt in einem auf 140—325° erhitzten Reaktionsrohr, das mit Cu-Spänen oder -Band, mit einer dünnen AgF_2 -Schicht bedeckt, gefüllt ist, langsam gemischt. B: Trifluormethylbenzol bei 200° \rightarrow Perfluortoluol. A: ca. 85%. (W. B. s. G. H. Cady u. a., Ind. Eng. Chem. 39, 290 (1947). S. a. die übrigen Arbeiten dieser Reihe.)

Quecksilber(II)-acetat

$\text{Hg(CH}_3\text{COO})_2$

Jodierung

$\text{H} \rightarrow \text{J}$

s. 1, 668

Calciumcarbonat

CaCO_3

s. 1, 419

Aluminiumchlorid

AlCl_3

Bromierung

$\text{H} \rightarrow \text{Br}$

437.

30 g 3 β -Acetoxy-20-oxo-5-allo-pregnane in Eisessig unter Zusatz von etwas HBr u. einigen Körnchen AlCl_3 tropfenweise mit einer Lsg. von Br_2 in Eisessig versetzt \rightarrow 33,5 g rohes 3 β -Acetoxy-17-brom-20-oxo-5-allo-pregnane. (P. A. Plattner u. a., Helv. 30, 385 (1947).)

Eisessig CH_3COOH **Chlorierung** $H \rightarrow Cl$

s. 3, 430

Bromierung $H \rightarrow Br$

s. 1, 415

N-Bromsuccinimid**Die Bromierung von Aethylenderivaten
in der Allylstellung**

s. 1, 413; 2, 491

Synthese von 1-Phenyl-4-oxypyrazolen

s. 2, 492

Bromphthalimid \leftarrow **Bromierung**

438. Verfahren: Man kocht mit Bromphthalimid in Bzl. unter Rückfluß, oder man läßt die Reaktion unter ihrer selbsterzeugten Wärme vor sich gehen. B: Toluol \rightarrow Benzylbromid. A: 80%. — Phenol \rightarrow Tribromphenol. A: 85%. (W. B. s. N. I. Putokhin, J. Gen. Chem. (U.S.S.R.); C. A. 40, 3741, 2.)

Phosphor P

s. 1, 451

Phosphortrichlorid PCl_3

s. 1, 416

Phosphorpentachlorid PCl_5 **Chlorierung** $H \rightarrow Cl$

439. 7-Methoxy-1,2,3,4-tetrahydrophenanthren langsam unter Rühren mit PCl_5 bei 80° versetzt, wobei die Temp. allmählich auf 135° erhöht wurde u. 30 Min. bei dieser Temp. weitergerührt \rightarrow 7-Methoxy-8-chlor-1,2,3,4-tetrahydrophenanthren. A: 80%. (W. B. s. S. M. Kupchan u. R. C. Elderfield, J. org. Chem. 11, 136 (1946).)

Wasserstoffperoxyd H_2O_2 **Halogenierung** $H \rightarrow Hal$

440.

Eine Lsg. von Sulfanilamid in HBr auf $70\text{--}75^\circ$ erwärmt, unter gutem Rühren ohne weiteres Erwärmen 30%ig. H_2O_2 zugefügt u. nach 30 Min. filtriert \rightarrow 3,5-Dibromsulfanilamid (Ausg. f. 71). A: 90–94%. Ent-

sprechend: 3,5-Dichlorsulfanilamid. A: 65—71%. (M. K. Seikel, Org. Synth. 24, 47 (1944); s. a. N. J. Leonard, D. Y. Curtin u. K. M. Beck, Am. Soc. 69, 2459 (1947).)

Sulfurylchlorid SO_2Cl_2 **Chlorierung** $H \rightarrow Cl$

s. 1, 417

Sulfurylchlorid u. J SO_2Cl_2 u. J441. $C_6H_5CONHCH_2[CH_2]_3CHClCOOH$

ε -Benzoylaminocapronsäure u. ein wenig fein pulverisiertes Jod in SO_2Cl_2 1—1½ Stdn. auf 60—65° erwärmt u. während der nächsten 1—1½ Stdn. allmählich zum Sieden erhitzt \rightarrow ε -Benzoylmino- α -chlorcapronsäure. Roh-A: 96—97,5%. (A. Galat, Am. Soc. 69, 86 (1947).) s. a. 3, 443

Sulfurylchlorid u. Benzoylperoxyd**Silane**442. $C_6H_5CH_2SiCl_3 \rightarrow C_6H_5CHClSiCl_3$

Mit Benzoylperoxyd aktiviertes SO_2Cl_2 ist ein gutes Chlorierungsmittel für aliphatische Verbindungen. Die Anwendung dieser Methode auf Organo-silicium-verbindungen gibt ausgezeichnete Ausbeuten an monochlorierten Produkten u. ist besser als die photochemische Chlorierung. Methyltrichlorsilane konnten mit SO_2Cl_2 nicht chloriert werden. — B: Benzyltrichlorsilan nach 10stdg. Kochen unter Rückfluß \rightarrow α -Chlorbenzyltrichlorsilan. A: 90%. (W. B. s. L. H. Sommer, F. C. Whitmore u. a., Am. Soc. 68, 485, 488 (1946). Methode s. Kharasch u. Brown, Am. Soc. 61, 2142 (1939); 62, 926 (1940).)

Jod

J

Halogenierung $H \rightarrow Hal$

443.

4-Oxychinaldinsäureäthylester

u. SO_2Cl_2 in Eisessig-Acetanhydrid in Ggw. von etwas Jod 30 Min. auf dem Dampfbad erhitzt \rightarrow 3-Chlor-4-oxychinaldinsäureäthylester. Roh-A: 93%.

u. Br_2 in Eisessig in Ggw. v. etwas Jod 10 Min. auf d. Dampfbad erhitzt \rightarrow 3-Brom-4-oxychinaldinsäureäthylester. Roh-Ausbeute: 95%.

u. JCl in Eisessig auf 80° erhitzt \rightarrow 3-Jod-4-oxychinaldinsäureäthylester. Roh-Ausbeute: 94%.

(W. B. s. A. R. Surrey u. R. A. Cutler, Am. Soc. 68, 2570 (1946).)

Bromjod**BrJ****Bromierung****H → Br**

444. 1-Methoxynaphthalin mit BrJ aus Jod u. Brom in Chlf. → 4-Brom-1-methoxynaphthalin. A: 75%. (E. C. Spaeth, T. A. Geißman u. T. L. Jacobs, J. org. Chem. 11, 399 (1946). Methode s. W. Militzer, Am. Soc. 60, 256 (1938).)

Chlorjod**ClJ****Jodierung****H → J**

s. 1, 419; 2, 493; 3, 443

Natriumhypochlorit**NaClO****Kernchlorierung****H → Cl**

445.

In Benzolkerne kann Chlor mittels wss. Na-Hypochlorit-Lsg. eingeführt werden, u. es entstehen — wenn die Orientierung günstig ist — mit guten Ausbeuten Monochlorderivate. — B: Anissäure mit NaClO in wss. NaOH 1 Stde. bei 20° unter gelegentlichem Rühren stehengelassen → 3-Chloranissäure. A: 80%. (W. B. s. C. Y. Hopkins u. M. J. Chisholm, Can. J. Research 24 B, 208 (1946).)

Kaliumchlorat**KClO₃**

446.

Unter die Oberfläche einer Suspension von 4-Methoxy-3,5-dichlor-acetanilid in konz. HCl innerhalb 1 Stde. unter Rühren bei 0° eine wss. KClO₃-Lsg. getropft u. 30 Min. weitergerührt → 4-Methoxy-2-, 3,5-trichlor-acetanilid. A: 88%. (C. de Traz, Helv. 30, 232 (1947).)

Natriumbromat**NaBrO₃****Bromierung****H → Br**

447.

2-p-Chlorphenyl-4-acetochinolin u. Na-Bromat in Eisessig unter kräftigem Rühren u. langsamem Erwärmen auf 100° tropfenweise mit 48%ig. HBr versetzt → 2-p-Chlorphenyl-4-bromacetochinolin-hydro-

bromid. A: 95,3%. (W. B. s. S. Winstein u. a., Am. Soc. 68, 1831 (1946).)

Kaliumjodat

KJ_3

Jodierung

$H \rightarrow J$

s. 1, 419

Mineralsäuren

Halogenierung von Heterocyclen

$H \rightarrow Hal$

448. Im allgemeinen war die direkte Halogenierung vorteilhafter als die Ring-Synthese aus Halogenverbindungen. — B: 2-Aminothiazol in 1:1 HCl ca. 20 Min. mit Cl₂ behandelt \rightarrow 2-Amino-5-chlorthiazol. A: 42%. — 2-Aminopyridin in 20%ig. H₂SO₄ bei 25° chloriert \rightarrow 2-Amino-5-chlorpyridin. A: 54%. Die Chlorierung in H₂SO₄ war günstiger als in Alk. (W. B. s. J. P. English u. a., Am. Soc. 68, 453 (1946).)

Bromwasserstoff

HBr

Bromierung

$H \rightarrow Br$

s. 3, 373

Abbau von Methylketonen

um 2 C-Atome

s. 2, 494

Eisen

Fe

Austausch von Alkyl und Wasserstoff

gegen Brom

s. 3, 490

\leftarrow

Kobaltfluorid

CoF_3

Fluorierung

$H \rightarrow F$

449. Kohlenwasserstoffe werden in der Dampfphase unter Beimischung von N₂ zur Verdünnung bei 150–300° mit CoF₃ fluoriert. — B: Bis-(trifluormethyl)-benzol \rightarrow Perfluordimethylcyclohexan. A: 88%. (W. B. s. R. D. Fowler u. a., Ind. Eng. Chem. 39, 292 (1947). S. a. die übrigen Arbeiten dieser Reihe.)

Ueber Zwischenprodukte

$\ddot{u}. Z.$

Chlorierung über N-Oxyde

450.

$H \rightarrow Cl$

2-(3'-Chlorphenyl)-6-methylchinolin mit Benzopersäure in Chlf. 10 Tage im Eisschrank stehengelassen \rightarrow 2-(3'-Chlorphenyl)-6-methylchinolin-N-oxyd (A: 76%) mit POCl_3 \rightarrow 2-(3'-Chlorphenyl)-4-chlor-6-methylchinolin (A: 78%). (H. Gilman, R. V. Christian u. S. M. Spatz, Am. Soc. 68, 979 (1946).)

Bromierung von Aethylenderivaten

H \rightarrow Br

s. 3, 711

α -Brom- α,ω -dicarbonsäureester aus α,ω -Dicarbonsäuren

451.

Eine Mischung von Pimelinsäure, Chlf. u. SOCl_2 40 Min. u. nach Zugabe von Br_2 2—3 Stdn. unter Rückfluß gekocht, bis das Brom reagiert hat, unter Rühren oder Schütteln vorsichtig tropfenweise so mit Methanol versetzt, daß die Lsg. lebhaft siedet, u. noch 15 Min. unter Rückfluß gekocht \rightarrow α -Brompimelinsäuredimethylester. A: 77% unter Berücksichtigung des als Nebenprodukt erhaltenen Pimelinsäureesters. (B. R. Baker u. a., J. org. Chem. 12, 167 (1947).)

Sauerstoff \uparrow

HalC $\uparrow\downarrow$ O

Ohne Hilfsstoffe

o. H.

Chloride aus Alkoholen

OH \rightarrow Cl

s. 1, 421

bei gleichzeitiger Umlagerung

s. 2, 495

Halogenide aus Aethern

OR \rightarrow Hal

452.

2,2'-Di-(2-methylsulfonylätethylsulfonyl)-diäthyläther mit Eisessig-konz. HCl 4 Stdn. im Einschlußrohr auf 200° erhitzt \rightarrow 2-Chlor-2'-methylsulfonyl-diäthylsulfon. A: 80%. (Entsprechend mit HBr u. HJ s. R. Brown u. R. C. G. Moggridge, Soc. 1946, 816.)

Chloride aus Aethern

OR \rightarrow Cl

453.

3(α)-Acetoxy-12-methoxy- $\Delta^{9,11}$ -cholensäure-methylester in trockenem alkohol-freiem Chlf. unter Eiskühlung innerhalb 35 Min. mit trockenem

HCl-Gas gesättigt u. nach weiteren 25 Min. aufgearbeitet \rightarrow 3(*a*)-Acetoxy-12-chlor- $\Delta^{9,11}$ -cholensäuremethylester. Roh-A: 92%. (V. R. Mattox u. a., J. biol. Chem. **164**, 580 (1946).)

Bromide aus Alkoholen

$\text{OH} \rightarrow \text{Br}$

s. 1, 489; 2, 726; s. a. W. M. Pearlman, Am. Soc. **70**, 871 (1948)

Allgemeine Methode bei aliphat.

Verbindungen

s. 1, 420

Bromide und Aether aus Alkoholen

Furanringschluß

s. 2, 496

Bromide aus Alkoholen und Aethern

$\text{OR} \rightarrow \text{Br}$

s. 2, 497

Bromide aus Aethern

s. 2, 498

Bromide aus Acetaten

$\text{OAc} \rightarrow \text{Br}$

s. 2, 499/500

Jodide aus Aethern

$\text{OR} \rightarrow \text{J}$

s. 2, 501

Natriumacetat/Thionylchlorid

$\text{Na}(\text{CH}_3\text{COO})/\text{SOCl}_2$

Carbonsäurechloride aus Carbonsäuren

$\text{COOH} \rightarrow \text{COCl}$

454. p-Phenylazobenzoesäure (Darst. s. 252) u. wasserfreies Na-Carbonat mit SOCl_2 1½ Stdn. unter Rückfluß gekocht u. überschüssiges SOCl_2 abdestilliert \rightarrow p-Phenylazobenzoylchlorid. A: 89%. (G. H. Coleman u. a., Org. Synth. **25**, 87 (1945).)

Natriumjodid

NaJ

Jodide aus p-Toluolsulfonsäureestern

$\text{OTs} \rightarrow \text{J}$

455. Es wurde gefunden, daß die Reaktionsfähigkeit von p-Toluolsulfonsäureestern gegenüber NaJ in Aceton derjenigen der entsprechenden Chloride gegenüber demselben Reagens entspricht. (R. S. Tipson, M. A. Clapp u. L. H. Cretcher, J. org. Chem. **12**, 133 (1947).) s. a. 2, 505

**Austausch der Hydroxylgruppe
gegen Jod über die Tosylverbindung**

s. 1, 422; 2, 121

Kaliumhydrogenfluorid

KHF_2

Carbonsäurefluoride

COF

456. Buttersäureanhydrid u. KHF_2 langsam auf 180° erhitzt \rightarrow Butyrylfluorid. A: 86%. (W. B. s. A. I. Maschentsev, J. Gen. Chem. (U.S.S.R.) 15, 915 (1945); C. A. 40, 6443,6.)

Dimethylanilin/Phosphoroxychlorid

\leftarrow

Chloride aus Oxyverbindungen

$\text{OH} \rightarrow \text{Cl}$

457. 16 g NH_4 -2,6-dichlor-8-oxypurin mit POCl_3 u. Dimethylanilin unter Wasserausschluß u. Rückfluß $4\frac{1}{2}$ Stdn. gekocht u. als Ammoniumsalz isoliert \rightarrow 14,5 g NH_4 -2,6,8-Trichlorpurin. (J. Davoll, B. Lythgoe u. A. R. Todd, Soc. 1946, 833.)
s. a. 2, 502

Pyridin/Phosphortribromid

C_5H_5N/PBr_3

$\text{OH} \rightarrow \text{Br}$

458.

Zu PBr_3 in trockenem Pyridin bei -5 bis -3° innerhalb 4 Stdn. eine Mischung von Tetrahydrofurfurylalkohol u. trockenem Pyridin gegeben, 1 Stde. weitergerührt, auf Zimmertemp. erwärmt u. noch 24—48 Stdn. stehengelassen \rightarrow Tetrahydrofurfurylbromid. A: 53 bis 61%. (L. H. Smith, Org. Synth. 23, 88 (1943).)

Pyridin/Thionylchlorid

$C_5H_5N/SOCl_2$

Chloride aus Oxyverbindungen

$\text{OH} \rightarrow \text{Cl}$

459. Tetrahydrofurfurylalkohol in Pyridin unter schnellem Rühren u. Eiskühlung unterhalb 60° tropfenweise mit SOCl_2 versetzt, hierauf das Kühlbad entfernt u. 3—4 Stdn. weitergerührt \rightarrow Tetrahydrofurfurylchlorid (Ausg. f. 2). A: 73—75%. (L. A. Brooks u. H. R. Snyder, Org. Synth. 25, 84 (1945).)
s. a. 1, 437; 2, 503/4

Carbonsäurechloride aus Carbonsäuren

$\text{COOH} \rightarrow \text{COCl}$

s. 1, 626

**Carbonsäureamide u. -ester aus
Carbonsäuren über Carbonsäurechloride**

460. Derivate von Säuren, die gegen Hitze oder überschüssiges SOCl_2 nicht beständig sind, lassen sich nach folgendem Verfahren gewinnen: Die Säure wird mit genau 1 Äquivalent SOCl_2 in 1 Äquivalent Pyridin 1 Stde. bei 15 — 20° stehengelassen u. hierauf ein Alkohol oder Amin in 1 Äquivalent Pyridin unter Rühren zur Mischung mit 1 Äquivalent Säurechlorid getropft. — B: Cyclohexyl-hydrogen-phtalat \rightarrow Cyclohexylphtalanilat. A: 80%. (J. P. E. Human u. J. A. Mills, Nature 158, 877 (1946).)

*Kupferchlorid**CuCl*

s. 1, 424

*Zink**Zn***Jodide aus Alkoholen***OH → J*

461. Zn-Späne in Aethylalkohol unter Wasserkühlung portionsweise mit Jod versetzt u. hierauf bei 20° HCl-Gas eingeleitet → Aethyljodid. A: 90%. (W. B. s. J. de Postis, C. r. 223, 681 (1946).)

Zinkchlorid/Phtaloylchlorid

←

Niedrigsiedende Carbonsäurechloride aus Carbonsäureanhydriden

COCl

s. 1, 423

*Zinkchlorid/Thionylchlorid**ZnCl₂/SOCl₂***Carbonsäurechloride aus Carbonsäuren und Carbonsäureanhydriden**

s. 1, 424

*Aluminiumchlorid**AlCl₃***Acetochlorzucker***OAc → Cl*

s. 1, 427

*Acetanhydrid**(CH₃CO)₂O***Acetobromzucker***OH → Br*

Glucose-monohydrat u. 95%ig. Acetanhydrid mit 3 Tropfen konz. H₂SO₄ versetzt, nach 10–15 Min., während denen man geschüttelt u. etwas gekühlt hat, um Sieden zu vermeiden, 2 Stdn. auf dem Dampfbad erwärmt, das Essigsäure-Acetanhydrid-Gemisch zum großen Teil im Vakuum abdestilliert, durch neues Acetanhydrid ersetzt, unter Eiskühlung HBr eingeleitet u. bei 5° über Nacht stehengelassen → Acetobromglucose (Ausg. f. 218). A: 80–87%. (C. E. Redemann u. C. Niemann, Org. Synth. 22, 1 (1942).)

*Essigsäure**CH₃COOH***Bromide aus Oxyverbindungen***OH → Br*

s. 1, 425

Acetobromzucker

s. 1, 427

Phosgen**Carbonsäurechloride aus Carbonsäuren**

s. 2, 506; 3, 469

Acetylchlorid**Chloride aus Oxyverbindungen**

s. 3, 695

Oxalylchlorid**Carbonsäurechloride aus Carbonsäuren**

s. 2, 507

Benzoylchlorid**Flüchtige Carbonsäurechloride**

s. 2, 508

Benzoylfluorid**Flüchtige Carbonsäurefluoride**

463. Carbonsäuren werden zu heißem Benzoylfluorid gegeben und die flüchtigen Carbonsäurefluoride anschließend destilliert. — B: Propionsäurefluorid. A: 81%. (W. B. s. A. I. Maschentsev, J. Gen. Chem. (U.S.S.R.) 16, 203 (1946); C. A. 41, 706 f.)

Phosphor**Austausch von Hydroxyl gegen Jod**

s. 1, 426, 437

Phosphor(III)-halogenide**Austausch von Hydroxyl gegen Halogen****Waldensche Umkehrung**

464. Um die optisch-aktiven Verbindungen möglichst rein zu erhalten, ist das verwendete PCl_3 , PBr_3 oder PJ_3 von äquimolekularen Mengen auf 60% zu vermindern. Bei der Umsetzung soll der Alkohol immer im Ueberschuß vorhanden sein u. das Halogenierungsmittel soll nur tropfenweise bei tiefer Temp. unter Schütteln zugegeben werden. — B: 1-Methylpropylcarbinol u. $PBr_3 \rightarrow$ d-2-Pentylbromid. (H. Brauns, R. 65, 799 (1946).)

Austausch von Hydroxyl gegen Brom465. $C_2H_5OCH_2CH_2OH \rightarrow C_2H_5OCH_2CH_2Br$

Halogenide aus Alkoholen

β -Aethoxyäthylalkohol unter Röhren innerhalb $1\frac{1}{2}$ –2 Stdn. mit PBr_3 versetzt, wobei man die Temp. bis zu gelindem Sieden steigen läßt $\rightarrow \beta$ -Aethoxyäthylbromid (Ausg. f. 682). A: 65–66%. (G. C. Harrison u. H. Diehl, Org. Synth. 23, 32 (1943).)
s. a. 1, 437; 2, 515

Austausch von sek. u. tert. Hydroxyl

466. 2-Methyl-2,4-pentandiol unterhalb -15° unter kräftigem Röhren innerhalb 4 Stdn. tropfenweise mit PBr_3 versetzt, ohne Röhren innerhalb 2 Tagen auf Zimmertemp. erwärmen u. noch 1–3 Tage stehengelassen \rightarrow 2-Methyl-2,4-dibrompentan (Ausg. f. 756). A: 90%.

Durch das Arbeiten bei tiefer Temp. werden HBr-Verluste vermieden. (W. B. s. J. D. Bartleson, R. E. Burk u. H. P. Lankelma, Am. Soc. 68, 2516 (1946).)

Phosphoroxychlorid

$POCl_3$

Austausch von Hydroxyl gegen Chlor

$OH \rightarrow Cl$

467.

4-Methylcarbostyryl (Darst. s. 740) mit frisch dest. $POCl_3$ gemischt, 15 Min. im Wasserbad auf 80 – 85° erwärmt u. hierauf auf dem Drahtnetz bis zur vollständigen Lsg. \rightarrow 2-Chlorlepidin. A: 90–95%. (C. E. Kaslow u. W. M. Lauer, Org. Synth. 24, 28 (1944).)

468.

4-Chinolinole (Darst. s. 88) mit überschüssigem $POCl_3$ 3 Stdn. unter Rückfluß gekocht geben 4-Chlorchinoline. B: 6-Chlor-4-chinolinol \rightarrow 4,6-Dichlorchinolin. A: 85%. (W. B. s. B. Riegel u. a., Am. Soc. 68, 1264 (1946) u. w. Contractarbeiten des OSRD.)

469. Pyridin-pikrat mit $POCl_3$ in Bzl. 15 Min. unter Rückfluß gekocht \rightarrow Pikrylchlorid. A: 98%. — Die Reaktion kann auch mit $COCl_2$ durchgeführt werden, während freie Pikrinsäure sich weder mit $POCl_3$ noch $COCl_2$ umsetzt. (R. Boyer, E. Y. Spencer u. G. F. Wright, Can. J. Research 24 B, 200 (1946).)
s. a. 1, 428; 2, 509–513; 3, 86

Aminopyrimidine aus Oxypyrimidinen über Chlorpyrimidine

s. 1, 429

Halogenide aus N-Oxyden
s. 3, 450

Chloracridine
s. 2, 790-2; 3, 737

Phosphorpentachlorid

PCl_5

Acetohalogenzucker
s. 1, 427

$OAc \rightarrow Hal$

Aethylenchloride aus Ketonen

$COCH_2 \rightarrow CCl : CH$

470.

Laurophenon u. $PCl_5 \rightarrow$ 1-Phenyl-1-chlor-1-dodecen. A: 88%. (S. P. Massie, Iowa State Coll. J. Sci. 21, 41 (1946).)

1,1-Alkoxychloride aus Acetalen
s. 2, 731

2,6-Dichlorpyridine aus Glutarsäureimiden

471.

0,2 g α -Cyclopentyl- α' -methylglutarimid mit PCl_5 langsam auf 50° , nach Aufhören der Gasentwicklung weiter auf 100° erwärmt u. 30 Min. dabei belassen \rightarrow 0,2 g 2,6-Dichlor-3-cyclopentyl-5-methylpyridin. (P. L. Pickard u. G. L. Lochte, Am. Soc. 69, 14 (1947).)

**2-Chlorphenanthroline aus
N-Methylphenanthrolonen**
s. 2, 529

Carbonsäurechloride aus Carbonsäuren
s. 1, 100, 435; 2, 514, 744

$COOH \rightarrow COCl$

Thionylchlorid

$SOCl_2$

Austausch von Hydroxyl gegen Chlor
s. 1, 430-2, 437; 2, 516, 544

$OH \rightarrow Cl$

Carbonsäurechloride aus Carbonsäuren

$COOH \rightarrow COCl$

472.

Zu SOCl_2 innerhalb 1 Stde. 1-Methoxyessigsäure (Darst. s. 202) unter häufigem Schütteln gegeben u. 5 Std. gelinde unter Rückfluß gekocht \rightarrow 1-Methoxyacetylchlorid. A: 85–87 %. (M. T. Leffler u. A. E. Calkins, Org. Synth. 23, 55 (1943).)

Zu SOCl_2 unter schnellem Röhren Isobuttersäure getropft u. hierauf, ebenfalls unter Röhren, 30 Min. auf 80° erwärmt \rightarrow Isobutyrylchlorid (Ausg. f. 364). A: 90 %. (R. E. Kent u. S. M. McElvain, Org. Synth. 25, 58 (1945).)

s. a. 1, 203/4, 424, 433–5, 626, 629; 2, 517; 3, 114

**Säurechloride u. Säureanhydride
aus Carbonsäuren**
s. 2, 518

**gleichzeitig Carbonsäuren aus
Kohlenwasserstoffen**
s. 2, 519

Schwefelsäure $H_2\text{SO}_4$
Austausch von Hydroxyl gegen Brom $\text{OH} \rightarrow \text{Br}$
s. 1, 437

Furanring-Oeffnung
s. 2, 520

Pyranring-Oeffnung

Eine HBr-konz. H_2SO_4 -Mischung, die durch Einleiten von SO_2 in eine Mischung von Br_2 u. Eiswasser hergestellt worden war, Tetrahydropyran gegeben u. 3 Std. unter Rückfluß gekocht \rightarrow 1,5-Dibrompentan. A: 80–82 %. (D. W. Andrus, Org. Synth. 23, 67 (1943).)

Jod J
Alkylhalogenide aus Alkoholen $\text{OH} \rightarrow \text{Hal}$
s. 1, 437

Salzsäure HCl
Pyranring-Oeffnung
s. 1, 436

Stickstoff \downarrow **HalC \leftrightarrow N***Ohne Hilfsstoffe**o. H.* **α -Chlorketone aus α -Diazoketonen**

475.

Eine Lsg. von Diazomethyl-(8-acetoxy-4-chinolyl)-keton in Methylenechlorid bei 0° mit trockenem HCl gesättigt, Acetylchlorid zugesetzt, um Hydrolyse der Acetoxygruppe durch Spuren von W. zu verhindern, u. bei Zimmertemp. über Nacht stehengelassen → Chlormethyl-(8-acetoxy-4-chinolyl)-keton. A: 86%. (R. B. Turner, J. Mills u. A. C. Cope, Am. Soc. 68, 2220 (1946).)

s. a. 2, 521

KJ**Kaliumjodid****Austausch von Aminogruppen gegen Jod**

s. 1, 438; 2, 522

Kupfer**Cu****Austausch von Aminogruppen gegen Halogen
bei schwerdiazotierbaren Verbindungen**

s. 1, 439/40

Kupfersalze**Cu⁺****Austausch von Aminogruppen gegen Halogen**

s. 2, 523

Austausch von Aminogruppen gegen Chlor

476. Cu(II)-chlorid ist ein wirksamer Katalysator für den Austausch von Diazo-Stickstoff stark positiver Diazonium-Kationen gegen Chlor in schwach saurer und neutraler Lsg., aber viel weniger wirksam bei schwachen Kationen. Es ist Cu(I)-chlorid überlegen. B: p-Nitranilin → p-Chlornitrobenzol. A: 85%. (W. B. s. H. H. Hodgson, Soc. 1946, 745.)

s. a. 1, 441—3

Einfluß des Chlorions

s. 2, 524

Austausch von Aminogruppen gegen Brom

477.

o-Chloranilin in 48%ig. HBr mit NaNO₂ unterhalb 10° diazotiert u. die Diazoniumsalz-Lsg. innerhalb 30 Min. zu kochendem CuBr in 48%ig. HBr gegeben → *o*-Chlorbrombenzol. A: 89—95%. (W. B. s. J. L. Hartwell, Org. Synth. 24, 22 (1944).)

s. a. 1, 444/5

Größere Ansätze

s. 2, 525

Quecksilberbromid

HgBr₂

s. 1, 446

Fluorborsäure

HBF₄

Fluoride aus Aminen

NH₂ → F

478. m-Aminopropiophenon-hydrochlorid in HCl mit wss. NaNO₂ diazotiert u. unter kräftigem Rühren schnell 48%ig. Fluorborsäure zugegeben → Propiophenon-m-diazoniumfluorborat (A: 88%) unter Rühren in kleinen Portionen zu kochendem trockenem Toluol gegeben → m-Fluorpropiophenon. A: 68%. (W. B. s. B. L. Zenitz u. W. H. Hartung, J. org. Chem. 11, 444 (1946).)

Phosphor(III)-bromid

PBr₃

Piperidinring-Oeffnung

C

479.

Zu 1-Benzoyl-4-methylpiperidin unter Kühlen u. Rühren PBr₃ u. hierauf Br₂ gegeben, bei 65°/30 mm—112°/20 mm destilliert, das Destillat auf Eis gegossen, mehrere Std. gerührt, über Nacht stehen gelassen, die Oelschicht abgetrennt u. mit 40%ig. HBr 4 Std. unter Rückfluß gekocht → 1,5-Dibrom-3-methylpentan. A: 65%. (N. J. Leonard u. Z. W. Wicks, Am. Soc. 68, 2402 (1946).)

Phosphor(V)-halogenide

PHal₅

Austausch von Aminogruppen gegen Halogen bei größeren Ansätzen

NH₂ → Hal

s. 1, 447

Brom

Br₂

Austausch von Aminogruppen gegen Brom

NH₂ → Br

480. Zu einer auf —17° gekühlten Lsg. von 2-Amino-4-n-propylpyridin in 60%ig. HBr tropfenweise unter Rühren auf 0° gekühltes Br₂, hierauf

bei 0° eine wss. NaNO₂-Lsg. gegeben u. 1 weitere Stde. gerührt → 2-Brom-4-n-propylpyridin. A: 88,3%. (W. Solomon, Soc. 1946, 934. Methode s. L. C. Craig, Am. Soc. 56, 231 (1934).)

Eisen(III)-chlorid

FeCl₃

Diazoniumeisenkomplexsalze

NH₂ → Br

s. 2, 526

Ueber Zwischenprodukte

ü. Z.

Austausch von Aminogruppen gegen Brom

über Imidbromide bei aliphatischen

Verbindungen

s. 1, 448

über Diazoniumperbromide bei

aromatischen Verbindungen

s. 1, 449

Halogen ↑

HalC↑Hal

Ohne Hilfsstoffe

o. H.

**Fluoride aus Aethylenderivaten,
gleichzeitig Austausch von Chlor gegen Fluor**

←

481.

1,1-Dichloräthylen mit HF in Ggw. von Diphenylamin als Polymerisationsinhibitor unter Druck 35 Stdn. auf 180—195° erhitzt → 1,1,1-Trifluoräthan. Umsatz: 74%. (W. B. s. E. T. McBee u. a., Ind. Eng. Chem. 39, 409 (1947). S. a. die übrigen Arbeiten dieser Reihe.)

***a,b*-Dibromäther aus 1,1-Alkoxychloriden**

←

s. 2, 731

Alkalijodide

Austausch von Brom gegen Jod

Br → J

s. 1, 450

α -Oxycarbonsäuren aus Carbonsäuren

s. 1, 451

KF

Kaliumfluorid

Sulfonsäurefluoride aus Sulfonsäurechloriden

SO₂Cl → SO₂F

482.

Chlormethansulfonsäurechlorid unter Röhren u. Kühlen mit einer wss. KF-Lsg. behandelt → Chlormethansulfonsäurefluorid. A: ca

100%. (E. Gryszkiewicz-Trochimowski, A. Sporzynski u. J. Wnuk, R. 66, 413 (1947).)

Quecksilberoxyd

HgO

Austausch von Chlor und Brom gegen Fluor

$\begin{array}{c} \text{Cl} \rightarrow \text{F} \\ \text{Br} \nearrow \end{array}$

483/4.

1,1-Dichlor-1,2-dibromäthan mit HF u. HgO bei ca. 300 lb./sq. in. ca. 36 Stdn. auf 100° erhitzt → 1,1,1-Trifluor-2-bromäthan. A: 99,8%. (E. T. McBee u. a., Ind. Eng. Chem. 39, 409 (1947). S. a. die übrigen Arbeiten dieser Reihe.)

Antimontrifluorid

SbF₃

Austausch von Chlor gegen Fluor

$\text{Cl} \rightarrow \text{F}$

485.

Phenylchloroform 3× mit SbF₃ versetzt, jeweils 10—15 Min. zum Sieden erhitzt u. schließlich bei gewöhnlichem Druck destilliert → Trifluortoluol. A: 80—96%. (E. Pouterman u. A. Girardet, Helv. 30, 107 (1947).)

s. a. 1, 452

Fluorsilane

486.

n-Propyltrichlorsilan u. SbF₃ in Ggw. von SbCl₅ bei 460—480 mm Druck → n-Propyltrifluorsilan. A: 80%. H. S. Booth u. H. S. Halbedel, Am. Soc. 68, 2652 (1946). W. B. s. H. S. Booth u. a., Am. Soc. 68, 2650—65 (1946).)

Austausch von Brom gegen Fluor

$\text{Br} \rightarrow \text{F}$

487.

4-Nitrobenzotribromid u. sublimiertes SbF₃ bei 30 mm bis zum Aufhören des Schäumens auf 100° erhitzt u. hierauf durch Erhöhen der Temp. destilliert → 4-Nitrobenzotrifluorid. A: 90%. (N. L. Drake u. a., Am. Soc. 68, 1602 (1946); s. a. R. G. Jones, Am. Soc. 69, 2346 (1947).)

Schwefel ↑

HalC \leftrightarrow S

Ohne Hilfsstoffe

o. H.

Austausch von Alkylthiogruppen gegen Chlor

$\text{SR} \rightarrow \text{Cl}$

s. 2, 527

Bromide aus Sulfonylbromiden $\text{SO}_2\text{Br} \rightarrow \text{Br}$

488.

100 g d- α -Brom- π -campher-sulfonyl bromid allmählich bis auf 170° erhitzt \rightarrow 77 g d- α,π -Dibromcampher. (W. B. s. P. C. Guha u. S. C. Bhattacharyya, J. Indian chem. Soc. 21, 271 (1944).)

Kupfer**Cu****Austausch von Sulfogruppen gegen Chlor** $\text{SO}_3\text{H} \rightarrow \text{Cl}$

s. 2, 528

Ueber Zwischenprodukte**ü. Z.****Bromide aus Sulfinsäuren** $\text{SO}_2\text{H} \rightarrow \text{Br}$

s. 2, 581

Kohlenstoff \uparrow **HalC $\uparrow\downarrow$ C****Silbersalze** Ag^+ **Halogenide aus Carbonsäuren** $\text{COOH} \rightarrow \text{Hal}$ **Abbau um 1 C-Atom**

489.

Eine Suspension von Ag-Nor-desoxycholat-diacetat in CCl_4 10 Min. mit Br_2 behandelt \rightarrow 3(α),12(β)-Diacetoxy-22-brombisnorcholan. A: 40%. (W. B. s. N. G. Brink, D. M. Clark u. E. S. Wallis, J. biol. Chem. 162, 695 (1946). Methode s. H. u. C. Hunsdiecker, B. 75, 291 (1942).)

s. a. 1, 453/4

Phosphorpentachlorid PCl_5 **2-Chlorphenanthroline aus** \leftarrow **N-Methylphenanthrolonen**

s. 2, 529

*Eisen***Austausch von Alkyl und Wasserstoff
gegen Brom**

490. Flüssiges Brom substituiert in Ggw. von Eisenpulver bei 0° den Kern von Alkylbenzolen vollständig unter Austausch sek. u. tert. Alkylgruppen. Prim. Alkylgruppen werden nicht ausgetauscht. Die Ausbeuten betragen ca. 60%. — Verfahren: Die Alkylbenzole werden unter Rühren u. Eiskühlung innerhalb 1 Stde. zu Brom gegeben u. eine weitere Stde. im Eisbad stehengelassen. — B: p-sek. Amyltoluol → Pentabromtoluol. — 5-tert. Butyl-m-xylool → Tetrabrom-m-xylool. — p-Jod-sec. Amylbenzol → Pentabromjodbenzol. (W. B. s. G. F. Hennion u. J. G. Anderson, Am. Soc. 68, 424 (1946).)

Herstellung der S—S-Bindung**Aufnahme****Anlagerung an Schwefel***Methyltetrasulfid***Polysulfide**

491. Eine Mischung von Bis-(2-chloräthyl)-pentasulfid u. Methyltetrasulfid 4 Stdn. auf 75° erwärmt, hierauf im Wasserstrahlvakuum u. N₂-Atmosphäre destilliert u. den Rückstand mehrere Stdn. auf eine Badtemp. von 130° erhitzt → Bis-(2-chloräthyl)-heptasulfid. Roh-A: 97%. (W. B. s. R. C. Fuson u. a., J. org. Chem. 11, 487 (1946).)

Austausch**Kohlenstoff ↑***Ohne Hilfsstoffe*

o. H.

Disulfide aus Rhodaniden

s. 2, 530

Abgabe

Wasserstoff ↑

SS ↑ H

Wasserstoffperoxyd

H₂O₂

Disulfide aus Mercaptanen

2 RSH → RS·SR

s. 1, 455

Chloramin-T und Tetrathionat

←

Thiokohlensäure-disulfide aus Xanthaten

←

s. 2, 531

Herstellung der S—Ü-Bindung

Austausch

Sauerstoff ↑

SÜ ↑ O

Ohne Hilfsstoffe

o. H.

Organoquecksilberverbindungen

RHgBr → RHgSR

s. 1, 456

Herstellung der S—C-Bindung

Aufnahme

Anlagerung an Sauerstoff und Kohlenstoff

SC ↓ OC

Natriumsalze

Na⁺

Oxythioäther aus Oxidoverbindungen

$\begin{array}{c} \text{C} \\ | \\ \text{C} > \text{O} \end{array} \rightarrow \begin{array}{c} \text{CSR} \\ | \\ \text{COH} \end{array}$

Mercaptide reagieren in alkal. Lsg. mit Verbindungen, die eine endständige Oxidogruppe haben, so, daß der Schwefel sich mit dem endständigen C verbindet u. eine sek. Alkoholgruppe entsteht. B: 3,4-Epoxy-1-buten u. Na-Hexadecylmercaptid → 2-Oxy-3-butenyl-hexadecylsulfid. A: 84%. (W. B. s. S. P. Massie, Iowa State Coll. J. Sci. 21, 41 (1946).)

s. 2, 532

Salzsäure

HCl

Dioxythioverbindungen aus Chinonen

←

493.

Pulverisiertes Chinon innerhalb 15 Min. unter gutem Rühren portionsweise etwas unterhalb 30° zu Thioharnstoff in HCl gegeben → 2,5-Dioxypyrenylthiuronium-chlorid. A: 60%. (W. B., auch Thioäther, s. M. Schubert, Am. Soc. 69, 712 (1947).)

Sulfone aus Chinonen nach Hinsberg

s. 2, 533, 542

Anlagerung an Stickstoff und Kohlenstoff

SC \downarrow NC

Ammoniak

NH₃

Thioamide aus Nitrilen

CN → CSNH₂

s. 2, 534/5

Anlagerung an Schwefel und Kohlenstoff

SC \downarrow SC

Ohne Hilfsstoffe

o. H.

β -Chlorthiolsäureester aus Carbonsäurechloriden

←

Aethylensulfid in Chlf. mit Acetylchlorid versetzt u. $\frac{1}{2}$ Stde. unter Rückfluß gekocht → 2-Chloräthylthiolacetat. A: 82%. (R. C. G. Moggridge, Soc. 1946, 1105.)

4-Alkylthiopyridiniumsalze aus 4-Thiopyridonen

←

495.

4,44 g 4-Thiopyridon in Alk. bei 60° mit Aethyljodid in Alk. versetzt → 7,5 g 4-Aethylthiopyridin-hydrojodid. (H. Burton u. W. A. Davy, Soc. 1947, 52.)

Natriumcarbonat Na_2CO_3 **Thiadiazine**

○

s. 2, 536

Anlagerung an KohlenstoffSC \downarrow CC*Ohne Hilfsstoffe*

o. H.

Mercaptane aus Aethylenderivaten

C : C → CHCSH

s. 1, 457

Thioäther aus Aethylenderivaten

C : C → CHCSR

496.

8,2 g Cyclohexen mit Thioglykolsäure 15 Min. geschüttelt → 14,5 g Cyclohexylthioglykolsäure. — 1-Methylcyclohexen → 2-Methylcyclohexylthioglykolsäure. — (Näheres über Peroxyd-Effekt, z. B. durch Zusatz von Ascaridol, Markownikoff's Regel u. w. B. s. J. I. Cunneen, Soc. 1947, 36.)

2-Halogenthioäther aus Aethylenderivaten

←

497.

Zu 2-Chloräthylthiochlorid (Darst. s. 419) langsam eine Lsg. von Cyclohexen in CCl_4 gegeben → 2-Chlorcyclohexyl-2-chloräthylsulfid. A: 69%. (W. B. s. R. C. Fuson u. a., J. org. Chem. 11, 469 (1946).) Olefine, deren der Doppelbindung benachbarte C-Atome elektronegative Substituenten, wie z. B. Phenyl oder Halogen, tragen, oder Olefine mit konjugierter Carbonyl- oder Nitrilgruppe reagieren mit Arylthiochloriden schwer oder gar nicht. (B. s. R. A. Turner u. R. Connor, Am. Soc. 69, 1009 (1947).)

Natriumalkoholat oder Triton B

←

Symm. Thioäther aus Aethylenderivaten

C : C → CHCSR

498.

In Acrylonitril in Ggw. von Triton B (Trimethylbenzylammoniumhydroxyd) oder Na-Methylat H_2S eingeleitet u. gelegentlich gekühlt, so daß die Temp. zwischen 65 u. 70° gehalten wurde → 2-Cyanäthylsulfid. A: 86—93%. (W. B. s. L. L. Gershbein u. C. D. Hurd, Am. Soc. 69, 241 (1947); auch über den Einfluß der Katalysatoren s. Am. Soc. 69, 2328 (1947).)

Piperidin $\text{C}_5\text{H}_{10}\text{N}$

**Thiophane aus Mercaptanen und
Aethylenderivaten**

Thioäther aus Aethylenderivaten

Dieckmann-Kondensation

499.

Zu einer Mischung von α -Mercaptoadipinsäureester u. Acrylsäureester unter Eiskühlung etwas Piperidin gegeben, wobei die Temp. auf 70° steigt, über Nacht bei Zimmertemp. stehengelassen, in trockenem Ae. gelöst, unter N_2 zu trockenem Na-Aethylat, erhalten durch Auflösen von Na in Alk. u. Eindampfen im Vakuum zur Trockene, gegeben u. 20 Stdn. stehengelassen → 2-(γ -Carbomethoxypropyl)-3-keto-4-carbomethoxythiophan. A: 77%. (W. B. s. B. R. Baker u. a., J. org. Chem. 12, 167 (1947); 13, 123 (1948) u. die übrigen Arbeiten dieser Reihe. Ueber die Bildung von Isomeren bei der Dieckmann-Kondensation s. R. B. Woodward u. R. H. Eastman, Am. Soc. 68, 2229 (1946).)

Anlagerungen an die Kohlenstoff-Dreifachbindung

500.

An Aethinylketone lassen sich NH_3 , Amine, Oxyverbindungen, Mercaptane, Sulfinsäuren u. a. m. anlagern. — B: Zu einer Lsg. von Na in Alk. bei 0—5° 18,8 g Propenyl-äthinylen-keton in Alk. unter Rühren innerhalb 30 Min. gegeben → 21,4 g 1,1,5-Triäthoxyhexan-3-on. — Thiophenol

in Ae., der 3 Tropfen Piperidin enthielt, zu 2,6 g Phenyläthinylketon in Ae. bei 20° innerhalb 15 Min. getropft → 4,6 g 1-Phenylthio-3-phenylpropen-3-on. — Eine Lsg. von 2,6 g Phenyläthinylketon in Alk. mit p-Toluolsulfinsäure 10 Min. auf dem Dampfbad erhitzt → 1-p-Toluolsulfonyl-3-phenylpropen-3-on (5,1 g α - u. 0,5 g β -Form). (W. B. s. K. Bowden, E. A. Braude u. E. R. H. Jones, Soc. 1946, 945.)

Bariumhydroxyd und Thioessigsäure

Oxymercaptane aus Aethylenoxyden

s. 1, 458

Aluminium-Quecksilber-Paar

Dithiochloride

Al-Hg

S_2Cl

501.

10 g Anthracen, Chlorschwefel u. Al-Hg in wasserfreiem Ae. über Nacht stehengelassen → 7,5 g Anthracen-9,10-di-(dithiochlorid). (W. B. s. J. W. Airan u. S. V. Shah, J. Indian Chem. Soc. 22, 359 (1945).)

Pyrogallol

Sulfone aus Dienen

s. 1, 459

s. a. 1, 713

←

←

Ueber Zwischenprodukte

ü. Z.

Sulfone aus Aethylenderivaten

über Thioäther

←

502.

2-Methylthioäthyl-vinylsulfid mit Phenylthiol gemischt, die Reaktion durch 30min. Erhitzen im Einschlußrohr auf 100° vervollständigt u. ohne weitere Reinigung mit H_2O_2 -Essigsäure behandelt → 2-Phenylsulfonyl-2'-methylsulfonyldiäthyl-sulfon. A: 85%. (W. B. s. R. C. G. Moggridge u. a., Soc. 1946, 816, 813, 815.)

Umlagerung

Typus Stickstoff/Schwefel

SC \cap NS

Acetanhydrid

$(CH_3CO)_2O$

Thioäther aus Thiaminen

503.

2,7 g 2-p-Nitrobenzolthiamino-4-methylthiazol u. Acetanhydrid 5 Min. auf 95° erwärmt → 2,2 g p-Nitrophenyl-2-acetamido-4-methyl-5-thiazylsulfid. (Diskussion dieser Umlagerung u. w. B. s. E. Hoggarth, Soc. 1947, 114, 110. S. a. H. Burton u. W. A. Davy, Soc. 1947, 52.)

Schwefelsäure

H_2SO_4

Aminosulfonsäuren aus Sulfaminsäuren

504.

4-Methyl-2-thiazolylsulfaminsäure mit 96%ig. H_2SO_4 3 Stdn. auf 100—110° erhitzt → 2-Amino-4-methyl-5-thiazol-sulfonsäure. A: 83%. (C. D. Hurd u. N. Kharasch, Am. Soc. 68, 653 (1946).)

Austausch

Wasserstoff \uparrow

SC $\uparrow\downarrow$ H

Ohne Hilfsstoffe

o. H.

Symm. Thioäther aus Kohlenwasserstoffen

2 RH → RSR

505.

Zu einer Mischung von 150 g Benzol, Schwefel u. $AlCl_3$ unterhalb 0° allmählich unter Röhren Br_2 in 120 cm³ Benzol gegeben → 100,5 g Diphenylsulfid. (B. Ciocca u. L. Canonica, G. 76, 113 (1946).)

Thioketone aus Kohlenwasserstoffen

s. 2, 537

$CH_2 \rightarrow CS$

Sulfonierung $H \rightarrow SO_3H$

506.

Styrol innerhalb 2 Stdn. tropfenweise unter Rühren u. Eiskühlung zu einer Suspension, die durch Eindestillieren von SO_3 in eine gekühlte Mischung von Dioxan u. Dichloräthan erhalten worden war, gegeben, über Nacht stehengelassen, hierauf 30 Min. auf dem Dampfbad erhitzt u. als Na-Salz isoliert \rightarrow Na-2-Phenyläthylensulfonat. A: ca. 55%. (F. G. Bordwell u. a. Mitarbb., Am. Soc. 68, 139 (1946).) s. a. 1, 460/1

Aminosulfonsäuren aus Aminen

507.

4-Aminobiphenyl mit H_2SO_4 30 Min. verröhrt, auf dem Wasserbad zur Trockene eingedampft, fein pulverisiert, im Wasserstrahl-Vakuum unter gelegentlichem Umschwenken 48 Stdn. im Oelbad auf 200—220° erhitzt u. als Na-Salz isoliert \rightarrow Na-4-Aminobiphenyl-3-sulfonat (Ausg. f. 666). A: 84,5%. (J. E. Jones, J. org. Chem. 10, 537 (1945); C. A. 40, 1817, 8; s. a. C. F. H. Allan u. J. A. Van Allan, Org. Synth. 27, 88 (1947).)

 $H \rightarrow SO_2Cl$ **Sulfochlorierung**

s. 2, 538

Anhydropyridinsulfonsäure $C_6H_5N \cdot SO_3$ **Sulfonierung** $H \rightarrow SO_3H$

508.

Säureempfindliche Verbindungen, wie z. B. Furan, Pyrrol, Indol, können mit Anhydropyridinsulfonsäure, $C_6H_5N \cdot SO_3$ sulfoniert werden. — B: Furan u. Anhydropyridinsulfonsäure im Einschlußrohr 8 Stdn. auf 90 bis 100° erhitzt u. hierauf mit einer heißen wss. Suspension von Bariumcarbonat behandelt \rightarrow Ba-2-Furansulfonat. A: 90%. (W. B. s. A. P. Terentjev u. a., Compt. rend. acad. sci. U.R.S.S., 51, 603, 689 (1946); 55, 227 (1947).)

Hyposulfit $Me^I S_2 O_3$ **Alkaloid-thiosulfonsäuren** $H \rightarrow S_2O_3H$

s. 2, 539

Quecksilbersulfat $HgSO_4$ **Sulfonierung** $H \rightarrow SO_3H$

s. 2, 540

lenten Menge wss. NaOH auf einmal gegeben, bei 40—60° unter Röhren FeCl₃ in HCl innerhalb 15—20 Min. zugefügt u. 1 Stde. weitergerührt → 15—16 g 2'-Amino-5'-dimethylamino-4-acetamido-diphenyl-sulfon. (W. B. s. S. Pickholz, Soc. 1946, 685.)

Ueber Zwischenprodukte

ü. Z.

Sulfonsäureamide aus Kohlenwasserstoffen

H → SO₂NH₂

über Sulfonsäurechloride

511.

2-Phenyl-4,7-dichlorochinolin mit Chlorsulfonsäure versetzt, nach Abklingen der anfänglich heftigen Reaktion 1 Stde. auf 160—170° erhitzt, abgekühlt, in Eis gegossen, filtriert, gewaschen, das rohe Sulfonylchlorid mit wss. NH₃ D.0,9 1 Stde. bei 0° u. schließlich noch 1 Stde. auf dem Dampfbad verrührt → 2-(3'-Sulfonamidophenyl)-4,7-dichlorochinolin. A: 70—80%. (R. C. Elderfield u. a., Am. Soc. 68, 1272 (1946); s. a. D. J. Legge, Am. Soc. 69, 2079, 2086 (1947).)

Sauerstoff ↑

SC $\uparrow\downarrow$ O

Ohne Hilfsstoffe

o. H.

Thioäther und tert. Amine aus Aethern

←

Pyryliumsalze

s. 2, 541

R·SO₂·R

Sulfone

s. 2, 542

○

Thiazolidin-Ringschluß

s. 2, 543; s. a. H. Soloway u. a., Am. Soc. 70, 1667 (1948)

Natronlauge

NaOH

Thioäther aus Mercaptanen,

SH → SR

anschließend Austausch von Hydroxyl

gegen Chlor

s. 2, 544

Alkohol, Kalilauge

KOH

Thiazin-Ringschluß

○

s. 2, 546

Trithiocarbonate aus Oxidoverbindungen

←

512.

Cyclohexenoxyd u. CS_2 in methanol. KOH über Nacht stehengelassen → Cyclohexen-trithiocarbonat. A: 87%. (W. B. s. C. C. J. Culvenor, W. Davies u. K. H. Pausacker, Soc. 1946, 1050.)

Natriumsulfit

Na_2SO_3

Aliphat. Sulfonsäuren aus Schwefelsäureestern

$\text{OSO}_3\text{H} \rightarrow \text{SO}_3\text{H}$

s. 1, 466

Zinkchlorid

ZnCl_2

Kohlehydrat-mercaptale

s. 2, 547/8

Aluminimumoxyd

Al_2O_3

Austausch von Sauerstoff gegen Schwefel

$-\text{O}- \rightarrow -\text{S}-$

im Ring

s. 1, 467

Thioharnstoff

$(\text{NH}_2)_2\text{CS}$

Cyclische Thioäther aus Oxidoverbindungen

513.

Propylenoxyd u. Thioharnstoff in Eiswasser $\frac{1}{2}$ Stde. bei 0° u. hierauf 3 Stdn. bei 20° gerührt → Propylensulfid. A: 61%. (W. B. s. C. C. J. Culvenor, W. Davies u. K. H. Pausacker, Soc. 1946, 1050.)

Phosphorpentoxyd

P_2O_5

Isopropylidenderivate von Oxymercaptanen

s. 1, 468

Phosphorpentasulfid

P_2S_5

Thiopyrimidine

s. 2, 549; s. a. G. B. Elion u. G. H. Hitchings, Am. Soc. 69, 2138 (1947)

Schwefel

S

Thioamide aus Methylketonen

$\text{COCH}_3 \rightarrow \text{CH}_2\text{CSNH}_2$

Willgerodt-Kindler-Reaktion

s. 2, 181; 3, 139, 141

Salzsäure

HCl

Kohlehydrat-mercaptale

Acyclische Zuckerderivate

s. 1, 469

Thioketone aus Ketonen

CO → CS

514.

Fluorenon in Alk. unter 0° 3 Stdn. mit HCl u. H₂S u. hierauf noch 2 Stdn. mit H₂S allein behandelt → Thiofluorenon. A: 57%. (E. Campaigne u. W. B. Reid, jr., Am. Soc. 68, 769 (1946).)

Stickstoff ↓

SC ≡ N

Ohne Hilfsstoffe

o. H.

Austausch von Iminogruppen gegen Schwefel

C : NH → C : S

515.

5,5-Diethyl-4-iminobarbitursäure zu einer alkoh., bei 10 lb. Druck gesätt., Lsg. von H₂S im Einschlußrohr 12 Stdn. auf 140—150° erhitzt → 5,5-Diethyl-4-thiobarbitursäure. A: 45.8%. (W. B. s. J. H. Boothe u. C. O. Wilson, Am. Soc. 68, 448 (1946).)

NatriumhydrogencarbonatNaHCO₃**Thioäther aus Pyridiniumsalzen**

←

516.

Cystein-hydrochlorid in wss. NaHCO₃-Lsg. gelöst, mit Bis-(β-pyridinium-äthyl)-sulfon-dichlorid versetzt u. bei 25° unter N₂ 24 Stdn. stehenge lassen → Bis-(cysteinyl-äthyl)-sulfon. A: 87%. (M. A. Stahmann u. a., J. org. Chem. 11, 719 (1946).)

Natriumhydrogensulfid

NaHS

Thiophen-Ringschluß

○

s. 2, 561

Natriumdisulfid Na_2S_2 **Thioindoxyle**

s. 1, 717

 CuSCN **Kupferrhodanid****Rhodanide aus Aminen**

s. 1, 470

 $\text{NH}_2 \rightarrow \text{SCN}$ **Ueber Zwischenprodukte** $\ddot{\text{u}}. \text{ Z.}$ **Mercaptane aus Aminen** $\text{NH}_2 \rightarrow \text{SH}$

517.

m-Toluidin in HCl bei 0—4° mit NaNO_2 diazotiert, die kalte Diazoniumsalz-Lsg. zu einer auf 40—45° erwärmten wss. Lsg. von K-Aethylxanthat gegeben, eine weitere $\frac{1}{2}$ Stde. bei 40—45° belassen, das rohe m-Tolyl-äthylxanthat in Alk. gelöst, aufgekocht, allmählich KOH-Plätzchen zugegeben, weitere 8 Stdn. unter Rückfluß gekocht, den größten Teil des Alk. abdestilliert, in W. aufgenommen, ausgeäthert mit HCl stark angesäuert u. in Ggw. von Zn-Staub, um Oxydation zum Disulfid zu verhindern, mit Wasserdampf destilliert → m-Thiokresol. A: 70—75%. (D. S. Tarbell u. D. K. Fukushima, Am. Soc. 68, 1456 (1946), Org. Synth. 27, 81 (1947).)

**Thioäther aus Aminen über
Mercaptane** $\text{NH}_2 \rightarrow \text{SR}$

518.

2,3,5-Trichlor-p-anisidin in HCl mit NaNO_2 diazotiert, die Diazoniumsalz-Lsg. in eine wss. Lsg. von K-Xanthat u. Na-Carbonat gegeben, auf 70—75° erwärmt, nach Aufhören der N_2 -Entwicklung abgekühlt, die wss. Schicht dekantiert, den rohen Xanthogen-Säureester direkt durch Kochen unter Rückfluß mit KOH in Alk. über Nacht verseift, den Alk. abdestilliert, W. zugegeben u. bei 80—90° eine neutrale wss. Lsg. von Chloressigsäure u. Na-Carbonat bis zur negativen Bleireaktion zugegeben → (4-Methoxy-2,3,5-trichlorphenylmercaptopo)-essigsäure. A: 64%. (C. de Traz, Helv. 30, 232 (1947).)

Thioindoxylsynthese

s. 1, 717

○

Halogen \downarrow **SC \uparrow Hal***Ohne Hilfsstoffe**o. H.***Thioäther aus Jodiden** $J \rightarrow SR$

s. 1, 471

Thioäther aus Schwefelchloriden \leftarrow

s. 2, 542

**S-Alkylierung von Thiocarbamidsäureestern
(Xanthogenamiden)** \leftarrow

519.

7,4 g Neopentylxanthogenamid u. Bromessigsäure in Bzl. über Nacht stehengelassen \rightarrow 8,6 g Carboxymethylthio-carbimino-neopentylester-hydrobromid. (W. B. s. A. Johansson, Ark. Kemi, 22 B, Nr. 2 (1946).)

S-Alkylierung von Thioharnstoff**Iothioharnstoffe**

520.

Pulverisierter Thioharnstoff u. Aethylbromid in abs. Alk. 3 Stdn. unter gelegentlichem Schütteln auf 55—65° erwärmt \rightarrow S-Aethyl-thioharnstoff-hydrobromid (Ausg. f. 392). A: 93—99%. (E. Brand u. F. C. Brand, Org. Synth. 22, 59 (1942).)

**Thiuroniumsalze als Derivate
von Halogeniden**
s. 2, 550; s. a. 2, 111**Thiazolring**

mit Thioamiden
s. 1, 472/3; 2, 552—4

mit Thioharnstoff

521.

Chloracetonitril u. Thioharnstoff in Alk. auf dem Dampfbad unter Rückfluß erhitzt \rightarrow 2-Amino-4-imino-2-thiazolin-hydrochlorid. A: 86%. (A. G. Land, C. Ziegler u. J. M. Sprague, J. org. Chem. 11, 617 (1946).)

s. a. 1, 474—7

mit Dithiocarbamat
2-Mercaptothiazole
 s. 1, 478

Natrium

Na

Sulfone
 s. 2, 555

$R \cdot SO_2 \cdot R$

Natronlauge

NaOH

Sulfonylcabonsäuren
 s. 2, 556

Thiazine
 s. 2, 557

○

Kalilauge

KOH

Thioäther aus Halogeniden
 s. 1, 479

$Hal \rightarrow SR$

Natrium/Alkohol

NaOR

s. 1, 480/1, 483

Alkylphenacylsulfide

Sulfidalkohole

s. 1, 482

Sulfone aus Halogeniden über

$RHal \rightarrow R \cdot SO_2 \cdot R$

Thioäther

s. 2, 558; s. a. H. Gilman u. H. S. Broadbent, Am. Soc. 69, 2053 (1947)

Natriumcarbonat

Na₂CO₃

Thioäther aus Mercaptanen

$SH \rightarrow SR$

s. 3, 518

Thiazol-Ringschluß

s. 2, 559

○

Kaliumcarbonat

K₂CO₃

Thiazine

s. 2, 560

Natriumhydrogensulfid

NaHS

Thiophen-Ringschluß

s. 2, 561

Kaliumhydrogensulfid

KHS

Mercaptane aus Bromiden

Br → SH

522. Eine Lsg. von KHS in Propylenglykol bei 170—175° mit 2-Brompyridin unter Röhren u. gelindem Sieden versetzt u. weitere 20 Stdn. unter Röhren auf 150—175° erhitzt → 2-Mercaptopyridin. A: 83—87%. (J. R. Thirtle, Am. Soc. 68, 342 (1946).)

NatriumsulfidNa₂S**Cycl. Thioäther**

○

s. 1, 484

Thio-, Seleno- u. Telluroisochromane

s. 2, 562

NatriumdisulfidNa₂S₂**Disulfide aus Halogeniden**

R·SS·R

s. 2, 570

**Sulfonsäuren aus Halogeniden
über Disulfide**Hal → SO₃H

s. 1, 485

NatriumpolysulfidNa₂S_x**Thiophen-Ringschluß**

○

s. 1, 486

NatriumthiosulfatNa₂S₂O₃**Disulfide über Alkylthiosulfate**

R·SS·R

s. 1, 487

NatriumsulfitNa₂SO₃**Sulfonsäuren**Hal → SO₃H

523.

4,7-Dichlorochinolin u. HCl zu Na₂SO₃ in W. gegeben u. 1 Stde. unter Rückfluß gekocht → 7-Chlorchinolin-4-sulfonsäure. A: 86%. (T. R. Norton u. a., Am. Soc. 68, 1330 (1946).)

s. a. 1, 488/9

NatriumsalzNa⁺**Sulfone aus Sulfinsäuren**RSO₂H → RSO₂R'

Na-p-Acetamidobenzolsulfinat unter Röhren u. Erhitzen im Oelbad in Aethylenglykol u. Carbitol oder Methylcarbitol gelöst, 4-Chlor-nitrobenzol zugegeben u. unter Röhren 3½ Stdn. auf 141—143° erhitzt → p-Nitro-p'-acetamidodiphenylsulfon (Ausg. f. 13). A: 50 bis 52%. (C. W. Ferry, J. S. Buck u. R. Baltzly, Org. Synth. 22, 31 (1942).)

Kaliumsalz

K^+

Thiazolin-Ringschluß

s. 1, 490

○

Piperidin

$C_5H_{10}N$

Thiazolring

Thiobenzamid mit 1,5-Dibrom-acetylaceton u. ein wenig Piperidin in abs. Alk. ½ Stde. auf sd. Wasserbad erwärmt u. als Hydrobromid isoliert → 2,2'-Diphenyl-dithiazolyl-(4,4')-methan. A: 90—95%, bezogen auf Thiobenzamid. (W. B. s. P. Ruggli, A. von Wartburg u. H. Erlenmeyer, Helv. 30, 348 (1947); s. a. 31, 1142 (1948).)

Pyridin

C_5H_5N

Thiocarbonsäuren aus Carbonsäurechloriden

$\text{COCl} \rightarrow \text{COSH}$

s. 1, 491

Thiolsäureester aus Carbonsäurechloriden

$\text{COCl} \rightarrow \text{COSR}$

s. 2, 101

Thiazolring

○

Aethoxalylchloressigsäureäthylester zu Acetylsulfanilylthioharnstoff in trockenem Pyridin gegeben u. nach Abklingen der exothermen Reaktion einige Min. gelinde auf dem Dampfbad erwärmt → 2-N₄-

Acetylsulfanilamido-4,5-dicarbäthoxythiazol. A: 91%. (J. M. Sprague, R. M. Lincoln u. C. Ziegler, Am. Soc. 68, 266 (1946).)

Kupfer

Cu

Sulfone über Thioäther
s. 1, 492

$R \cdot SO_2 \cdot R$

Sulfone aus Sulfinsäuren
s. 2, 563, 565

$R \cdot SO_2 H \rightarrow R \cdot SO_2 \cdot R$

1,3-Ketosulfone

s. 2, 564

Sulfonylcarbonsäureester

s. 2, 566

Kupfer/Jod

Cu/J

Sulfone aus Sulfinsäuren

527.

16,2 g 4-Chlorpyridin in Alk. mit Na-p-Cyanbenzolsulfinat in W. versetzt u. mit einer Spur Cu-Pulver u. Jod 3½ Stdn. gekocht → 26,5 g 4-p-Cyanphenylsulfonylpyridin. (W. B. s. H. Burton u. W. A. Davy, Soc. 1947, 52.)

Zinkchlorid

$ZnCl_2$

**Sulfone u. Sulfonate aus
Sulfonsäurechloriden**
s. 2, 567

←

Phosphorpentasulfid

P_2S_5

Thiazolring

○

528.

Eine Mischung von feinpulverisiertem Acetamid u. P_2S_5 in trockenem Bzl. gegeben, etwas Chloraceton in trockenem Bzl. zugefügt, auf dem Wasserbad bis zum Beginn der exothermen Reaktion erwärmt, das Wasserbad entfernt, das restliche Chloraceton-Bzl. allmählich zugegeben u. nach Aufhören der Reaktion noch 30 Min. auf dem Wasserbad unter Rückfluß gekocht → 2,4-Dimethylthiazol. A: 41—45%, bezogen auf P_2S_5 . — Die Methode ist allgemein anwendbar. (G. Schwarz, Org. Synth. 25, 35 (1945).)

Ueber Zwischenprodukte

ü. Z.

Ueber Isothioharnstoffe**Mercaptane aus Halogeniden**
s. 1, 493—5

Hal → SH

Thioäther aus Halogeniden

Hal → SR

529.

Benzylchlorid u. Thioharnstoff mit etwas konz. NH₃ in Alk. 3 Stdn. unter Rückfluß gekocht, 4-Chlor-8-nitro-chinolin u. Alk. zugegeben, bis zur vollständigen Lsg. erhitzt, eine Lsg. von KOH in Alk. langsam zugefügt, 30 Min. auf dem Dampfbad erhitzt u. 12 Stdn. bei Zimmertemp. stehengelassen → 4-Benzylthio-8-nitro-chinolin. A: 93%. (R. H. Baker u. a., Am. Soc. 68, 1532 (1946).)

Ueber Xanthate**Mercaptane aus Halogeniden**
s. 1, 496

Hal → SH

Kohlenstoff ↑**SC ↑ C***Salzsäure*

HCl

Thioäther aus Rhodaniden
s. 2, 568

SCN → SR

Abgabe**Wasserstoff ↑****SC ↑ H***Brom*

Br

Thiazole aus Thioharnstoffen
s. 2, 569

O

Ueber Zwischenprodukte

ü. Z.

Thiazole über Thioharnstoffe

530.

Eine Lsg. von p-Toluidin in Chlorbenzol innerhalb 5 Min. tropfenweise mit konz. H_2SO_4 , hierauf mit Na-Rhodanid versetzt, 3 Stdn. auf 100° erhitzt, die Lsg. des entstandenen Thioharnstoffs auf 30° abgekühlt, innerhalb 15 Min. SO_2Cl_2 unterhalb 50° zugegeben u. 2 Stdn. bis zum Aufhören der HCl-Entwicklung bei dieser Temp. belassen → 2-Amino-6-methyl-benzothiazol. A: 64–67%. (C. F. H. Allen u. J. Van Allan, Org. Synth. 22, 16 (1942).)

Schwefel ↑

SC ↑ S

Zinn

Sn

Symm. Thioäther
s. 2, 570

RSR

Kohlenstoff ↑

SC ↑ C

Pyridin

C_5H_5N

Abspaltung von Methyljodid bei Thiazinen
s. 2, 571

←

Herstellung der Ü—Ü-Bindung

Austausch

Sauerstoff ↑

ÜÜ ↔ O

Ohne Hilfsstoffe

o. H.

Mercaptoarsine

←

531.

p-Arenosobenzamid mit überschüssiger Thioglykolsäure in W. unter schnellem Rühren auf 100° bis zur klaren Lsg. erhitzt → p-[Bis-(carboxymethylmercapto)-arsino]-benzamid. A: 98%. T. H. Maren, Am. Soc. 68, 1864 (1946). S. a. W. H. C. Rueggeberg, A. Ginsburg u. W. A. Cook, Am. Soc. 68, 1860 (1946).)

Natriumdithionit $Na_2S_2O_4$ **Arsenoverbindungen aus Arsonsäuren**

532. 10 g p-Sulfanilamidobenzolarsonsäure in NaOH innerhalb $1\frac{1}{2}$ Stdn. mit $Na_2S_2O_4$ versetzt u. hierauf 1 Stde. bei $50-60^\circ$ gerührt \rightarrow 7,2 g 4,4'-Disulfanilamidoarsenobenzol. (S. V. Vasiljev, J. Gen. Chem. (U.S.S.R.) **16**, 451 (1946); C. A. **41**, 951d.)

Halogen ↑**ÜÜ↑Hal***Natrium* Na **Arsenoverbindungen**

s. 2, 572

Kohlenstoff ↑**ÜÜ↑C****Ueber Zwischenprodukte** $\ddot{u}. Z.$ **Symm. Diselenide aus Seleniden** \leftarrow

β -(Benzylseleno)-alanin in fl. NH_3 bei dessen Sdp. mit Na versetzt, bis die blaue Farbe 15 Min. bestehen blieb, hierauf NH_3 bei Zimmertemp. bis auf $\frac{1}{3}$ abgedampft, das Na mit NH_4J neutralisiert, NH_3 durch Ae. ersetzt, ca. $\frac{1}{2}$ Stde. gelinde gekocht, in HBr aufgenommen, ein wenig Hydroxylamin-hydrochlorid zugegeben, mit einem Luftstrom oxydiert u. aufgearbeitet \rightarrow β,β' -Diselenodialalanin. A: 90%. (E. P. Painter, Am. Soc. **69**, 229 (1947). W. B. s. **69**, 232 (1947).)

Abgabe**Halogen ↑****ÜÜ↑Hal***Natriumsulfid* Na_2S **Ditelluride**

s. 2, 497

Herstellung der Ü—C-Bindung

Aufnahme

Anlagerung an Halogen und Kohlenstoff

ÜC ↓ HalC

Rongalit

Telluroniumsalze

s. 2, 573

Anlagerung an Kohlenstoff

ÜC ↓ CC

Ohne Hilfsstoffe

o. H.

Organoquecksilberverbindungen aus Aethylenderivaten

s. 1, 500

β-Oxy-α-aminocarbonsäuren

s. 1, 498/9

Acetylperoxyd

Silane aus Aethylenderivaten

534.

1-Octen u. Trichlorsilan unter N₂ bei 45° u. 20 cm Hg Ueberdruck innerhalb 2 Stdn. mit etwas Diacetylperoxyd in 1-Octen versetzt u. noch 9 Stdn. auf 50–63° erwärmt → n-Octyltrichlorsilan. A: 99%. (L. H. Sommer, E. W. Pietrusza u. F. C. Whitmore, Am Soc. 69, 188 (1947).)

Austausch

Wasserstoff ↓

ÜC ↑ H

Ohne Hilfsstoffe

o. H.

Austausch von Wasserstoff gegen Deuterium

H → D

s. 2, 574

*Lithium**Li***Silane** $\vdots \text{SiH} \rightarrow \vdots \text{SiR}$

535.

Triäthylsilan u. Phenyl-Li in Ae. 25 Stdn. unter Rückfluß gekocht
 → Phenyl-triäthylsilan. A: 81 %. (W. B. s. R. N. Meals, Am. Soc. 68, 1880 (1946).)

Natriumcarbonat Na_2CO_3 **Mercurierung** $\text{H} \rightarrow \text{Hg}$

s. 2, 575

Essigsäure CH_3COOH

s. 2, 576

Phosphorpentachlorid PCl_5

*α,β-Athylenphosphinsäuren aus
 Aethylenderivaten*

 $\text{H} \rightarrow \text{PO}_3\text{H}_2$

536.

13,2 g 2,4-Dimethylstyrol u. PCl_5 in Bzl. umgesetzt u. hierauf hydrolysiert → 9,9 g 2,4-Dimethylphenylvinylphosphinsäure. (W. B. s. G. M. Kosolapoff u. W. F. Huber, Am. Soc. 68, 2540.)

Sauerstoff ↑**ÜC↑O***Lithium**Li***Silane** $\text{Si}(\text{OR})_4 \rightarrow \text{SiR}'_4$

s. 3, 542

Zink Zn^{++} **Benzo-selenazole** \leftarrow

537.

o-Nitroselenophenol mit Zn in HCl-Alk. unter gutem Rühren u. Kühlen unterhalb Siedetemp. umgesetzt u. als Zn-Salz isoliert → Zn-o-Amino-selenophenolat (A: ca. 70 %) mit Ameisensäure in Chlf. $2\frac{1}{2}$ Stdn. umgesetzt → Benzoselenazol (A: 70 %). (C. Courtot u. J. Develotte, C. r. 221, 101 (1945).)

Aluminimumoxyd Al_2O_3 **Austausch von Sauerstoff gegen Selen im Ring** $-O \rightarrow -Se-$

538.

Tetrahydrofuran im H_2Se -Strom bei 400° über Al_2O_3 geleitet \rightarrow Selenophan. A: 54 %. (W. B. s. J. K. Jurjew, J. Gen. Chem. (U.S.S.R.), 16, 851 (1946); C. A. 41, 1654c.)

Stickstoff ↑**ÜC \uparrow N***Kupfer(I)-chlorid* $CuCl$ **Arsonsäuren aus Aminen über Diazoniumborfluoride** $NH_2 \rightarrow AsO_3H_2$

s. 1, 501; A. W. Ruddy u. E. B. Starkey, Org. Synth. 26, 60 (1946)

Kupfersulfat $CuSO_4$ **Arsonsäuren aus Aminen****Bartsche Reaktion**

s. 2, 577

Zink Zn **Tert. ar. Arsine aus ar. Aminen** AsR_3

539.

Aryldiazoniumchlorid oder ihre Zn-Doppelsalze geben bei der Zersetzung mit Zn-Staub in Aceton-Suspension in Ggw. von $AsCl_3$ oder eines Chlorarsins gute Ausbeuten an tert. Arsinen. — B: Anilin mit $NaNO_2$ in HCl diazotiert, bei 0° mit konz. $ZnCl_2$ -Lsg. in verd. HCl versetzt, abgesaugt, mit trockenem Aceton gewaschen, das vollständig trockene Zn-Diazoniumchlorid in Ggw. von $AsCl_3$ in trockenem Aceton unterhalb 5° u. innerhalb 2 Stdn. in kleinen Portionen mit Zn versetzt u. nach Stehen über Nacht oder 15-min. Kochen unter Rückfluß aufgearbeitet \rightarrow Triphenylarsin. A: ca. 65 %. (W. B. s. W. E. Hanby u. W. A. Waters, Soc. 1946, 1029.)

Wismuth Bi **Organo-wismuthverbindungen** BiR_3

540.

Phenyldiazonium-wismuth-chlorid u. Bi-Pulver in Aceton bei 5° \rightarrow Triphenyl-wismuth. A: 50,2 %. (W. B. s. T. K. Kosminskaya, M. M. Nad u. K. A. Kotscheschkov, J. Gen. Chem. (U.S.S.R.) 16, 891 (1946).) (W. B. s. T. K. Kosminskaya, M. M. Nad u. K. A. Kotscheschkov, J. Gen. Chem. (U.S.S.R.) 16, 891 (1946); s. a. H. H. Willard, L. R. Perkins u. F. F. Blicke, Am. Soc. 70, 737 (1948).)

Halogenen**ÜC Hal***Ohne Hilfsstoffe**o. H.***Organometallverbindungen**

←

s. 2, 578

Organotellurverbindungen

s. 1, 502

Lithium*Li***Organothalliumverbindungen**

←

Tl(I)-jodid u. Methyljodid in Ae. unter N_2 bei Zimmertemp. tropfenweise unter Röhren mit Methyl-Li in Ae. versetzt, nach 1 Stde. die äther. Lsg. abgehebert u. mit verd. HJ behandelt → Dimethyl-thallium-jodid. A: 90%. (W. B. s. H. Gilman u. R. G. Jones, Am. Soc. 68, 517 (1946).)

Silane

←

Einfache Alkyl- u. Aryl-Li-Verbindungen reagieren in Ae mit SiCl_4 , $\text{Si}(\text{OC}_2\text{H}_5)_4$ oder $\text{Si}(\text{SC}_2\text{H}_5)_4$ fast augenblicklich u. geben mit ausgezeichneten Ausbeuten R_4Si -Verbindungen. — B: SiCl_4 mit 3 Äquivalenten Phenyl-Li u. anschließend mit 1 Äquivalent p-Tolyl-Li umgesetzt → Triphenyl-p-tolyl-silan. A: 91%. (W. B. s. H. Gilman u. R. N. Clark, Am. Soc. 68, 1675 (1946); 69, 1499 (1947). (s. a. R. A. Benkesser u. R. B. Currie, Am. Soc. 70, 1780 (1948).)

Phosphine

←

s. 1, 503

Arsine

←

s. 1, 504

Organotimonverbindungen

Zu einer Lsg. von Phenyl-Li, aus Brombenzol u. Li, in Ae. unter Eiskühlung SbCl_3 in Ae. gegeben u. 2 Std. gekocht → Triphenyl-timon. A: 96—97%. — Mit Li wurden bessere Ergebnisse als mit Mg erzielt. (W. B. s. T. V. Talalaeva u. K. A. Kotscheschkov, J. Gen. Chem. (U.S.S.R.) 16, 777 (1946); C. A. 41, 1215d.)

Natrium*Na***Iso-arsindoline**

○

s. 2, 579

Natriumcarbonat Na_2CO_3 **Selenazolring**

s. 2, 580

Natriumsalz Na^+ **Seleno- und Telluro-isochromane**

s. 2, 562

Kaliumsalz K^+ **Selenocyanate aus Halogeniden** $Hal \rightarrow SeCN$

544. n-Decylbromid u. K-Selenocyanat in 95%ig. Alk. 6 Stdn. unter Rückfluß gekocht \rightarrow n-Decylselenocyanat. A: 67%. (W. B. s. W. E. Weaver u. W. M. Whaley, Am. Soc. 68, 2115 (1946).)

Magnesium Mg **Organo-quecksilberverbindungen** $Br \rightarrow HgBr$

s. 1, 505

Silane \leftarrow

- 545.

p-Chlorphenyl-Mg-bromid aus p-Chlortrimethylsilan verarbeitet u. unter Rückfluß gekocht \rightarrow (p-Chlorphenyl)-trimethylsilan. A: 83%. (W. B. s. C. A. Burkhard, Am. Soc. 68, 2103 (1946).)
s. a. 1, 506

Phosphinsulfide aus Halogeniden \leftarrow

- 546.

Zu 2 Mol Aethyl-Mg-Bromid in Ae. langsam unter Röhren P_2S_5 gegeben, nach Abklingen der Reaktion noch 12 Stdn. auf dem Dampfbad erhitzt, den Ae. abdestilliert u. den Rückstand weitere 11 Stdn. auf 100° erhitzt \rightarrow Triäthylphosphinsulfid. A: 75%, bezogen auf P_2S_5 . (W. B. s. L. Malatesta u. R. Pizzotti, G. 76, 167 (1946).)

Selenide aus Halogeniden $RHal \rightarrow RSeH \rightarrow RSeR'$ **über Selenole**

- 547.

Zu Phenyl-Mg-bromid aus Mg u. Brombenzol in Ae., das zu gelindem Sieden erhitzt worden war, unter H_2 u. Lichtschutz pulverisiertes schwarzes Selen allmählich unter Röhren innerhalb 30 Min. so zugegeben, daß gelindes Sieden ohne Erhitzen aufrechterhalten wurde, u. 30 Min. weitergeführt \rightarrow Selenophenol. A: 57—71%. — Mit Alkyl-halogeniden oder -sulfaten können in wss.-alkohol. NaOH Selenide mit Ausbeuten von 85—95% hergestellt werden. (D. G. Foster, Org. Synth. 24, 89 (1944).)

Arsenrichlorid $AsCl_3$ **Benzophenarsazine**

548.

m-Tolyl- β -naphthylamin, $AsCl_3$ u. wasserfreies o-Dichlorbenzol 5–6 Stdn. unter Rückfluß gekocht \rightarrow 9-Methyl-12-chloro-7,12-dihydrobenzo[α]phenarsazin. A: 95 %. (W. B. s. Buu-Hoi, Hiong-Ki-Wei u. R. Royer, C. r. 220, 50 (1945); s. a. Bl. 1946, 379.)

Natriumpolysulfid Na_2S_x **Selenophenring**

s. 1, 507

Schwefel \downarrow **ÜC $\uparrow\downarrow$ S****Natronlauge** $NaOH$ **Organo-quecksilberverbindungen aus Sulfinsäuren** $RSO_2H \rightarrow RHgCl$

**Austausch von Sulfogruppen
gegen Brom**
s. 2, 581

Natriumsalz Na^+

549. Na-1-Dodecansulfonat unter Röhren zu einer kochenden wss. Lsg. von $HgCl_2$ gegeben u. weitere 2 Stdn. unter Röhren erhitzt \rightarrow 1-Dodecyl-quecksilber-chlorid. A: 49,3 %. Auf diese Weise können Sulfinsäuren in Ggw. von Sulfonsäuren bestimmt u. identifiziert werden. (C. S. Marvel, C. E. Adams u. R. S. Johnson, Am. Soc. 68, 2735 (1946).)

Lithium Li **Silane** $Si(SR)_4 \rightarrow SiR'_4$

s. 3, 542

Kohlenstoff \downarrow **ÜC $\uparrow\downarrow$ C****Ohne Hilfsstoffe***o. H.***spiro-Arsoniumsalze**

s. 2, 582

○

Herstellung der C–C-Bindung

Aufnahme

Anlagerung an Wasserstoff und Kohlenstoff

CC ↓ HC

Magnesium

Mg

Acetylenoxycarbonsäuren aus Aethinylcarbinolen

$$\text{H} \rightarrow \text{COOH}$$

S. 2, 583

NaNH₂

Subst. Malonsäuremonoester

Subst. 1
S 3 555

Triphenylmethyl-Natrium

$$(C_6H_5)_3CNa$$

β -Ketocarbonsäuren aus Ketonen

1

82750

Anlagerung an Sauerstoff und Kohlenstoff

CC ↓ OC

Lithium

Li

Alkohole aus Oxidoverbindungen

$$\text{CH(OH)}$$

s. 2 584; 3 550 s. a. S. C. McKusick, Am. Soc. 70, 1976 (1948)

Sek. Alkohole aus Aldehyden

550

Phenyl-Li aus Li u. Brombenzol in Ae. im N₂-Strom mit α -Picolin versetzt, 1 Stde. bei Zimmertemp. gerührt, im Eis-Salz-Bad gekühlt, den N₂-Strom unterbrochen u. innerhalb 20 Min. langsam trockenen Acetaldehyd in trockenem Ae. zugetropft → 1-(α -Pyridyl)-2-propanol. A: 44 bis 50%. — Entsprechend mit Aethylenoxyd bei gleich guter Ausbeute → 1-(α -Pyridil)-3-propanol. (L. A. Walter, Org. Synth. 23, 83 (1943).)

Tert. Alkohole aus Ketonen

$$\text{CO} \rightarrow \text{C(OH)R}$$

551. Di-isopropyl-keton u. Isopropyl-Li unter N_2 in Petroläther \rightarrow Triisopropylcarbinol. A: 53%. — Carbinole, die wegen sterischer Hindernisse mit Mg nicht dargestellt werden können, können mit Li er-

halten werden. (W. B. s. G. Vavon u. H. Colin, C. r. 222, 801 (1946).) s. a. 1, 508; 2, 585, 709

Aethinylalkohole

s. 1, 719

Aryloxyanthracene aus

Anthrachinonen

s. 1, 509

Natrium

Na

Reduktive Kondensation

Glycerine und α -Oxyketone aus Ketonen und Carbonsäureestern

s. 2, 586

Aethinylcarbinole aus Oxoverbindungen

s. 2, 587

Tert. Alkohole aus Alkylcarbonaten

p-Chlorbiphenyl, Aethylcarbonat u. trockenes, thiophenfreies Bzl. unter Röhren zum Sieden erhitzt, innerhalb 1 Stde. mit Na-Sand oder — bei kleineren Ansätzen — innerhalb $\frac{1}{2}$ Stde. mit Na-Schnitzeln versetzt u. unter Röhren 2 Stdn. — bei Verwendung von Na-Schnitzeln 12 Stdn. — unter Rückfluß gekocht \rightarrow Triphenylcarbinol. A: 35—40%, bei kleineren Ansätzen 47—55%. (A. A. Morton, J. R. Myles u. W. S. Emerson, Org. Synth. 23, 95 (1943).)

Alkali

Oxymethylierung von Phenolen

s. 1, 510. s. a. I. W. Ruderman, Am. Soc. 70, 1662 (1948)

α -Nitroalkohole aus Aldehyden

s. 1, 511

Kalilauge

KOH

Oxymethylierung

α -Methylenkarbonsäuren

s. 2, 588

Aethinylalkohole aus Ketonen

Dimethyläthinylcarbinol u. Dimethylacetylcarbinol in trockenem Ae. langsam zu einer gekühlten u. gerührten Suspension von KOH in

trockenem Ae. gegeben u. über Nacht stehengelassen \rightarrow 2,3,6-Tri-methyl-4-heptin-2,3,6-triol. A: 93 %. (V. I. Nikitin, J. Gen. Chem. (U.S.S.R.), 15, 408 (1945); C. A. 40, 4665, 5. S. a. I. N. Azerbaev, J. Gen. Chem. 15, 412 (1945); C. A. 40, 4683, 4.)

Cyanhydrine aus Ketonen

$\text{CO} \rightarrow \text{C(OH)CN}$

553.

Zu einer Mischung von 2-(δ -Carbomethoxybutyl)-3-keto-4-carbomethoxy-thiophan u. fl. HCN bei 0° etwas 50%ig. KOH gegeben, 16 Stdn. bei 0° stehengelassen u. hierauf mit 85%ig. H_3PO_4 angesäuert \rightarrow 2-(δ -Carbomethoxybutyl)-3-oxy-3-cyan-4-carbomethoxythiophan. A: ca. 100 %. (B. R. Baker u. a., J. org. Chem. 12, 167 (1947). W. B. s. die übrigen Arbeiten dieser Reihe.)

Natrium/Alkohol

NaOR

Lactone aus Oxidoverbindungen

Aufbau um 2 C-Atome

←

554.

Zu einer kochenden Lsg. von Na-Malonester, aus trockenem Malonester u. Na in abs. Alk., innerhalb 2 Stdn. Styroloxyd getropft, unter Kochen 3 Stdn. weitergerührt, auf Zimmertemp. abgekühlt, unter Rühren wss. KOH-Lsg. zugegeben u. ebenfalls unter Rühren den Alk. abdestilliert \rightarrow γ -Phenyl-butyrolacton. A: 72 %. (W. B. s. R. R. Russell u. C. A. VanderWerf, Am. Soc. 69, 11 (1947).)

Kalium-tert. Amylat

KOR

Aethinylalkohole aus Oxoverbindungen

$\text{CO} \rightarrow \text{C(OH)C}\equiv\text{CH}$

s. 2, 593

Kaliumcarbonat

K_2CO_3

s. 2, 592

Tetrahydrofuranane

○

s. 2, 594

Natrium/fl. Ammoniak

Na/NH_3

Acetylenalkohole aus Oxidoverbindungen

s. 2, 589

Aethinylalkohole aus Oxoverbindungen
s. 2, 590

Natriumamid

s. 1, 512; 2, 591/2; s. a. R. M. Anker u. A. H. Cook, Soc. 1948, 806

**Austausch von Wasserstoff gegen Carboxyl
Subst. Malonsäuremonoester**

555.

Verfahren: NaNH_2 in fl. NH_3 wird mit Carbonsäureestern in abs. Ae. innerhalb 2 Min. umgesetzt, unter 15 min. Erwärmen auf dem Wasserbad NH_3 durch Ae. ersetzt u. mit dem 10fachen Ueberschuß an festem CO_2 unter Rühren behandelt. — B: Phenylessigsäureäthylester \rightarrow α -Phenylmalonsäuremonoäthylester. A: 74%. — Substitution des α -H-Atoms durch Phenyl begünstigt die Bildung des Esteranions, während Substitution durch Alkyl Amidbildung begünstigt. (W. B. s. C. R. Hauser, R. Levine u. R. F. Kibler, Am. Soc. 68, 26 (1946); Acetylenkarbonsäuren s. R. A. Raphael, Soc. 1947, 805.)

Natriumcyanid

**Cyanhydrine aus Oxoverbindungen
 α -Aminocarbonsäuren**

556.

Zu einer wss. Lsg. von NaCN , $\text{NH}_4\text{-Chlorid}$ u. NH_3 unter Wasserkühlung eine Lsg. von Diäthylketon in Methanol gegeben, verschlossen 5 Stdn. auf 55–60° erwärmt, in Eis gekühlt, vorsichtig unter Eiskühlung zu konz. HCl gegeben, bei 0–5° mit HCl-Gas gesättigt, über Nacht stehen gelassen u. $2\frac{1}{2}$ Stdn. unter Rückfluß gekocht \rightarrow α -Amino- α -äthylbuttersäure. A: 39–43%. (R. E. Steiger, Org. Synth. 22, 13 (1942). W. B. s. 24, 9 (1944). S. a. R. Gaudry, Can. J. Research, 24B, 309 (1946).)

Benzoine aus Aldehyden

557.

1-Formylbenzo[f]chinolin in 95%ig. Alk. mit einer wss. NaCN-Lsg. versetzt u. 30 Min. unter Rückfluß gekocht → 1-(1-Benzo[f]chinolylglycoyl)-benzo[f]chinolin. A: 82%. (R. E. Benson u. C. S. Hamilton, Am. Soc. 68, 2644 (1946).)

Kaliumcyanid

KCN

Cyanhydrine aus Ketonen
s. 2, 595

CO → C(OH)CN

α-Oxycarbonsäureester
s. 2, 596

Benzoine aus Aldehyden
s. 1, 513; s. 2, 597

CH(OH)CO

2,3-Dioxychinone
s. 1, 514/5; s. a. Chem. B. 80, 391 (1947)

○

o-Carboxyphenylacetonitrile aus Phtaliden

←

558.

Eine Mischung von Phtalid u. pulverisiertem KCN unter Rühren 4—5 Stdn. auf 180—190° erhitzt → o-Carboxyphenylacetonitril (Ausg. f. 195). A: 67—83%. (C. C. Price u. R. G. Rogers, Org. Synth. 22, 30 (1942).)

Diäthylamin

(C₂H₅)₂NH

α-Nitroalkohole aus Aldehyden

CHO → CH(OH)CH(NO₂)R

559.

Chininaldehyd in abs. Alk. unter Eiskühlung mit Nitroäthan u. etwas Diäthylamin versetzt, mit einem Kristall des Reaktionsprodukts geimpft u. 2 Tage bei Zimmertemp. stehengelassen → 1-(6-Methoxy-4-chinolyl)-2-nitro-1-propanol. A: 75%. (W. B. s. M. Levitz u. M. T. Bogert, J. org. Chem. 10, 341 (1945).)

Piperidin

C₅H₁₀N

Subst. Glykolsäuren aus Ketonen
s. 1, 516

CO → C(OH)COOH

**Anlagerung von Benzylcyanid an
Glyoxylsäuren**
s. 1, 517

←

*Kupfer, Magnesium**Cu, Mg***Synthesen mit N-disubst.** $\text{CO} \rightarrow \text{CH(OH)R}$ **3-Chlorpropylaminen**

s. 1, 681; s. a. H. Gilman, F. J. Marshall u. R. A. Benkeser, Am. Soc. 68, 1849, (1946).

*Magnesium**Mg***Sek. Alkohole aus Aldehyden** $\text{CHO} \rightarrow \text{CH(OH)R}$

560.

Zur Grignard-Verbindung aus m-Brombenzotrifluorid u. Mg. in Ae. innerhalb 2 Stdn. bei 2—3° unter kräftigem Rühren eine Lsg. von Acetaldehyd in Ae. gegeben → m-Trifluoromethylphenyl-methylcarbinol. A: 79,5%. (M. W. Renoll, Am. Soc. 68, 1159 (1946); w. B. s. F. S. Prout, J. Cason u. A. W. Ingersoll, Am. Soc. 70, 298 (1948).)

Acetylenalkohole aus Oxoverbindungen $\text{CO} \rightarrow \text{C(OH)R}$

s. 2, 588/9 a. E. D. Venus-Danilova u. E. P. Brichko, J. Gen. Chem. (UdSSR.) 17, 1549 (1947).

Tert. Alkohole aus Ketonen

s. 1, 680; 2, 782, 794; 3, 563; s. a. J. Jacques u. A. Horeau, Bl. 1948, 711

 β -Oxycarbonsäureester

s. 1, 677

Tokopherol-Synthese

s. 1, 678

**Getrennte Darst. des
Grignard-Reagens**

s. 1, 679

Sulfidalkohole

s. 1, 44

Tert. Alkohole aus Carbonsäuren $\text{COOH} \rightarrow \text{C(OH)R}_2$

561. Bei der Umsetzung von Grignard-Verbindungen mit Carbonsäuren wird die Ausbeute dadurch verbessert, daß man die Carbonsäure in Bzl. zur, wie üblich, in Ae. hergestellten Grignard-Verbindung gibt, den Ae. abdestilliert u. dann 2 Stdn. unter Rückfluß kocht. Bei der Darst. von 2-Methyl-3-äthyl-3-pentanol erreicht man dadurch z. B. eine Steigerung der Ausbeute von 53 auf 70%. (R. C. Huston u. D. L. Bailey, Am. Soc. 68, 1382 (1946).)

Tert. Alkohole aus Carbonsäureestern $\text{COOR} \rightarrow \text{C(OH)R}_2$

562.

Zu Phenyl-Mg-bromid aus Brombenzol u. Mg. in trockenem Ae. innerhalb ca. 1 Stde. unter Kühlung mit W. Benzoësäureäthylester in trockenem Bzl. so zugegeben, daß die Mischung gelinde siedet, u. hierauf auf dem Dampfbad noch 1 Stde. unter Rückfluß gekocht → Triphenylcarbinol (s. a. 695). A: 89—93%. — Dieselben Ausbeuten werden auch mit Benzophenon u. der Hälfte an Grignard-Verbindung erzielt. (W. E. Bachmann u. H. P. Hetzner, Org. Synth. 23, 98 (1943).)

s. a. 1, 682, 752; 2, 800

α -Amino-tert.-alkohole aus α -Aminocarbonsäureestern

563.

Zur Grignard-Verbindung aus Mg u. p-Bromanisol in trockenem Ae. α -Amino-n-buttersäureäthylester-hydrochlorid gegeben, den Ae. abdestilliert, durch Bzl. ersetzt u. 24 Stdn. unter Rückfluß gekocht → β -Amino- α,α -dianisyl-n-butanol-hydrochlorid (A: 64%), daraus mit NH_3 die freie Base (Ausg. f. 598) (A: 92%). (A. E. W. Smith, Soc. 1946, 572.)

Vinylalkohole aus Ketenen

C:C:O → C:C(OH)R

564.

Mesityl-Mg-bromid, aus Brommesitylen u. Mg. in trockenem Ae., u. 12 g Dimesitylketen in Ae. 2½ Stdn. unter Rückfluß gekocht, den Ae. durch Bzl. ersetzt u. weitere 2 Stdn. unter Rückfluß gekocht → 10 g Trimesitylvinylalkohol. (R. C. Fuson, D. H. Chadwick u. M. L. Ward, Am. Soc. 68, 389 (1946).)

Magnesiumamalgam

Mg, Hg

β -Oxycarbonsäureester

CO → C(OH)R

s. 1, 677; Bl. 1947, 38

Magnesium/Magnesiumjodid

Mg/MgJ₂

Bimolekulare Reduktion von Aldehyden

←

zu Glykolen

s. 1, 689

Magnesiumsulfat $MgSO_4$ **Oxynitrile aus Oxidoverbindungen**

565.

Aethylenoxyd unter Schütteln u. Kühlen zu einer Lsg. von KCN u. Mg-Sulfat in W. gegeben u. 10—12 Stdn. unter Kühlen, gelegentlichem Schütteln u. evtl. Zugabe von Eis stehengelassen → β -Oxypropionitril. A: 85—90%. (A. P. Terentjev u. E. V. Vinogradova, J. Gen. Chem. (U.S.S.R.), 14, 1044 (1944); C. A. 40, 7157, 4.)

Calciumoxyd CaO **Oxymethylierung** $H \rightarrow CH_2OH$

s. 1, 575

Calciumchlorid $CaCl_2$ **α -Oxy- γ -lactone** \leftarrow **aus β -Oxyaldehyden**

s. 1, 518

Zink Zn **Reformatski-Synthese von Carbonsäureestern**

s. 1, 690/3; 2, 737, 801, 827; s. a. W. E. Bachmann und A. S. Dreiding, J. org. Chem. 13, 317 (1948)

 γ -Lactone aus α -Ketoaldehyden

s. 1, 694

Aluminiumchlorid $AlCl_3$ **Additionen bei Friedel-Crafts-Reaktionen** $CO \rightarrow C(OH)R$ **Alkohole aus Oxoverbindungen**

s. 2, 600, 664

Friedel-Crafts-Synthesen \leftarrow **mit Bernsteinsäureanhydrid**

566. Zu einer Mischung von Diphenyläther, pulverisiertem Bernsteinsäureanhydrid u. thiophenfreiem Bzl. in 4 Portionen wasserfreies $AlCl_3$, gegeben, wobei das Reaktionsgefäß jeweils bis zum Abklingen der Reaktion leicht umgeschwenkt wurde, 2 Stdn. unter Rückfluß gekocht u. über Nacht abkühlen gelassen → β -(p-Phenoxybenzoyl)-propionsäure (Ausg. f. 57). A: 93%. (W. B. s. Huang-Minlon, Am. Soc. 68, 2487 (1946); s. 1, 519; 2, 601; s. a. R. E. Lutz u. G. W. Scott, J. org. Chem. 13, 284 (1948), Acetamidoverbindung s. I. E. Miller u. E. L. Morello, Am. Soc. 70, 1800 (1948).)

Zinn(IV)-chlorid

SnCl₄

**α -Aryl- α -oxycarbonsäuren aus
Oxomalonsäureestern über
Aryloxymalonsäureester**

567.

Xylo u. Oxomalonsäureäthylester unter Feuchtigkeitsausschluß, Kühlen mit Eiswasser u. kräftigem Rühren tropfenweise mit SnCl₄ versetzt, das Kühlbad entfernt u. 3 Stdn. weitergerührt → 2,5-Dimethylphenyloxymalonsäureäthylester (A: 51,5—57%) mit wss. KOH 5 Stdn. auf dem Dampfbad erwärmt, mit Ae. extrahiert, mit konz. HCl angesäuert u. ca. 2 Stdn. auf dem Dampfbad unter Rühren erwärmt, bis die CO₂-Entwicklung aufgehört hat → 2,5-Dimethylmalonsäure (A: 63—70%). Die Methode ist allgemein anwendbar. (J. L. Riebsomer u. J. Irvine, Org. Synth. 25, 33 (1945).)

Kalium-di-hydrogen-phosphat

KH₂PO₄

Cyanhydrine aus Oxoverbindungen

CO → C(OH)CN

s. 1, 520; s. a. J. Colonge, L. Watteau u. L. Cumet, Bl. 1947, 245

Ammoniumchlorid

NH₄Cl

s. 1, 521

Anlagerung an Stickstoff und Kohlenstoff

CC \downarrow NC

Lithium

Li

**2-subst. 1,2-Dihydrochinoline aus
Chinolinen**

568.

Zu einer äther. Lsg. von o-Methoxyphenyl-Li aus o-Bromanisol u. Li tropfenweise unter Rühren Chinolin in Ac. gegeben u. noch 15 Min. weitergerührt → 2-o-Methoxyphenyl-1,2-dihydrochinolin. A: 68%. (T. A. Geißman u. a., J. org. Chem. 11, 748 (1946).)

Ketone aus Nitrilen

CN → COR

s. 1, 522

Auramine

569.

Zu p-Dimethylaminophenyl-Li aus 14,5 g p-Brom-dimethylanilin u. Li in abs. Ae. unter geringem N₂-Ueberdruck u. kräftigem Röhren 10,5 g p-Dimethylaminobenzonitril in trockenem Ae. gegeben, 1/2 Stde. unter Rückfluß gekocht, 16 Std. bei Zimmertemp. stehengelassen u. mit Eis-Ammoniumchlorid-Lsg. geschüttelt → 19 g Auramin-chlorhydrat·H₂O. (W. B. s. L. Hellerman u. a., Am. Soc. 68, 1890 (1946).)

Triazinring

s. 1, 285

Natronlauge

NaOH

Chinoline aus Isatinen Pfitzinger-Borsche-Synthese

570.

Fein gemahlenes 6-Chlorisatin mit Brenztraubensäure in NaOH 14 Std. stehengelassen u. ½ Stde. gekocht → 7-Chlorchinolin-2,4-dicarbonsäure. A: 95%. (A. E. Senear, H. Sargent, J. F. Mead u. J. B. Koepfli, Am. Soc. 68, 2695 (1946). W. B. s. die übrigen Arbeiten dieser Reihe.)

Kalilauge

KOH

571. 2-Phenyl-chinolin-4-carbonsäuren wurden nach Pfitzinger-Borsche dargestellt, wobei überschüssige 30—33%ig. KOH, genügend Alk. zur Lsg. des Isatin-alkali-salzes u. das Keton im Ueberschuß verwendet wurden. Diese Methode gibt gute Ausbeuten. Die Döbner-Miller-Synthese aus Brenztraubensäure, Benzaldehyden u. Anilinen gibt schlechte Ausbeuten, wurde aber bevorzugt, wenn die Ausgangsmaterialien gut erhältlich waren. (B. s. R. E. Lutz u. a., Am. Soc. 68, 1814 (1946).)

s. a. 1, 555; 2, 602/3, 761; A. M. Dowell, jr., H. S. McCullough u. P. K. Calaway, Am. Soc. 70, 226 (1948); Buu-Hoi u. R. Royer, Soc. 1948, 106

*Kaliumcarbonat*K₂CO₃

s. 2, 604

*Ammoniak*NH₃**Cholin carbonsäureamide
aus Isatinen**

572.

12 g Isatin u. Methyläthylketon mit wss. NH₃ (D. 0,880) in einer Druckflasche 8 Stdn. auf 100° erhitzt → 15 g 2,3-Dimethylchinolin-4-carbonsäureamid. (V. A. Petrow, Soc. 1945, 18.)

Dithioisoindigo aus Phtalonitril

s. 1, 525

Magnesium

Mg

Ketone aus Nitrilen

CN → COR

s. 1, 523/4; 2, 605, 699

Ketimine aus Nitrilen

CN → C(:NH)R

573.

Zu Aethyl-Mg-bromid aus Aethylbromid u. Mg in Ae. eine Suspension von Triphenylpropionitril in trockenem Xylol gegeben, nach Abdestillieren des Ae. mehrere Stdn. unter Rückfluß gekocht, bei -5° vorsichtig mit NH₄Cl-Eis hydrolysiert, ausgeäthert, die Ae.-Xylol-Lsg. bei 0° mit wasserfreiem NaSO₄ getrocknet, filtriert u. mit trockenem HCl gesättigt → Aethyl-β,β,β-triphenyläthylketiminhydrochlorid. A: 88%. (W. B. s. R. L. Garner u. L. Hellerman, Am. Soc. 68, 823 (1946). S. a. H. L. Lochte u. a., Am. Soc. 70, 2012 (1948).)

Zink

Zn

β-Ketocarbonsäureester aus Nitrilen**Blaisesche Reaktion**

574.

2-Cyan-6-methoxynaphthalin u. α-Bromisobuttersäureäthylester in Bzl. in Ggw. von Zn → α-(6-Methoxynaphthoyl)-isobuttersäure-äthylester. A: 70%. (W. B. s. A. Horeau u. J. Jacques, C. r. 222, 1113 (1946); Bl. 1947, 58.)

Zinkchlorid

 $ZnCl_2$

Hoesch-Synthese von Ketonen

←

s. 1, 618; 2, 606/7

Anlagerung an Schwefel und Kohlenstoff

CC ↓ SC

Natronlauge

 $NaOH$

Thiazin- aus Thiazolring

←

Thiazolring-Oeffnung

s. 2, 608

Anlagerung an Kohlenstoff

CC ↓ CC

Ohne Hilfsstoffe

o. H.

Einführung der Carboxylgruppe
in den Pyrazolring $H \rightarrow COOH$

s. 1, 530

 α -subst. Carbonsäureester aus
Ketenacetalen $C:C(OR)_2 \rightarrow CRCOOR$

Eine Mischung von n-Propylketen-dimethylacetal (Darst. s. 747) u. Benzylbromid 5 Stdn. erhitzt, wobei bei 140° Badtemp. Methylbromid destilliert → α -Benzylvaleriansäuremethylester. A: 83%. (W. B. s. S. M. McElvain, R. E. Kent u. C. L. Stevens, Am. Soc. 68, 1922 (1946).)

Dien-Synthese
Diels-Alder-Reaktion

1,4-Naphthochinon u. 2,3-Dimethylbutadien-1,3 (Darst. s. 731) in Alk. 5 Stdn. unter Rückfluß gekocht → 2,3-Dimethyltetrahydroanthrachinon (Ausg. f. 705). A: 96%. (C. F. H. Allen u. A. Bell, Org. Synth. 22, 37 (1942).)

s. a. 1, 526/9; 2, 609/11

Synthese von
Ring-di-carbonsäuren nach Alder-Rickert
s. 3, 704

Benzolring-Synthese

577.

Acetylacetone u. Maleinsäureanhydrid 2 Wochen auf 75° erwärmt → Addukt (A: 60–70%), davon 20 g unterhalb 40° in konz. H₂SO₄ gelöst u. nach 1/2 Stde. aufgearbeitet → 14,7 g 7-Acetyl-6-methylisocumaron-4,5-dicarbonsäureanhydrid. — Mit Acetessigester kann eine entsprechende Synthese durchgeführt werden. (E. Berner, Soc. 1946, 1052.)

Ringerweiterung zu Benzolderivaten

←

578.

Cyclone geben beim Erhitzen mit Vinyl-äthern oder -estern Benzolringe, während bei der Reaktion mit Allylderivaten die zuerst entstehende Endocarbonylbrücke beständig ist u. unter analogen Bedingungen nicht abgespalten wird. — B: Tetracyclon u. Vinylbutyläther in Bzl. 8 Stdn. im Einschlußrohr auf 170—180° bis zur Farblosigkeit erhitzt → 1,2,3,4-Tetraphenylbenzol. A: 73,3%. (W. B. s. V. S. Abramov, Bull. acad. sci. U.R.S.S., Classe sci. chim. 1945, 330; C. A. 40, 5024, 5.)

mit separater Dehydrierung

579.

Tetraphenylcyclopentadienon (Darst. s. 618) u. Maleinsäureanhydrid mit Brombenzol versetzt u. 3½ Stdn. gelinde unter Rückfluß gekocht → Tetraphenyldihydrophtalsäureanhydrid (A: fast 100%) mit einer Lsg. von Br₂ in Brombenzol versetzt, durch Schütteln gut gemischt u. nach Abklingen der ersten Reaktion 3

Stdn. gelinde unter Rückfluß gekocht → Tetraphenylphthalsäure-anhydrid. A: 87—89%. (O. Grummitt, Org. Synth. 23, 93 (1943).)

Azulene aus Indanen

s. 2, 612

Pyridinring

s. 1, 531

Pyrazole

s. 3, 283

Pyrazol-o-dialdehyde

s. 1, 532

Pyrazolenin-carbonsäuren

s. 1, 533

Lithium

Spaltung von β -Diketonen

580.

Tetramethyl-1,3-cyclobutandion wird ebenso wie offene β -Diketone durch Behandlung mit Organo-Mg- oder -Li-Verbindungen gespalten. — B: Tetramethyl-1,3-cyclobutandion mit Mesityl-Li aus Brommesytilen u. Li in Ae. über Nacht stehengelassen → Dimethyl-isobutyryl-mesityloyl-methan. A: 75%. (W. B. s. J. L. E. Erikson u. G. C. Kitchens, Am. Soc. 68, 492 (1946).)

Alkalien

Cyanäthylierung

581.

p-Chlorbenzylcyanid u. Acrylonitril in Ggw. von starken Alkalien → γ -p-Chlorphenyl- γ -cyanopimelonitril. A: 80%. (W. B. s. M. Rubin u. H. Wishinsky, Am. Soc. 68, 828 (1946). Methode s. Bruson u. Riener, Am. Soc. 65, 23 (1943). Am. Soc. 65, 23 (1943); 70, 214 (1948).)

Natronlauge

NaOH

Isoxazole

582.

Phenylpropiolsäure u. Benzonitriloxyd (Darst. s. 411) in Alk. mit einigen Tropfen 20%ig. NaOH versetzt → α,γ -Diphenyloxazol- β -carbon-säure. A: 58%. (W. B., auch Synthesen mit Nitroisäuren, s. A. Quilico u. G. Speroni, G. 76, 148, 200 (1946).)

Natrium/Alkohol

NaOR

**Nitromethylverbindungen
aus Aethylenderivaten**
s. 1, 535
Michael-Reaktion

s. 2, 613

Benzolring-Synthese

s. 2, 648

 α -Pyrone

s. 2, 614

Kaliumcyanid

KCN

Bernsteinsäurederivate aus α,β -Aethylen- α -cyan-carbonsäureestern

583.

α -Cyanimtsäureäthylester u. KCN in 90%ig. Alk. 2 Stdn. unter Rückfluß gekocht → Phenylbernsteinsäurenitril. A: 64%. (D. T. Mowry, Am. Soc. 68, 2108 (1946); s. a. R. K. Ray u. B. K. Bhattacharyya, J. Indian Chem. Soc. 23, 469 (1946).)

Kupfer

Cu

Cyclopropane aus Aethylenderivaten

s. 2, 615

Kupfer(I)-bromid/Magnesium

CuBr/Mg

Einführung von angularen $\text{H} \rightarrow \text{CH}_3$ **Methylgruppen**

s. 1, 536

*Kupfer(I)-jodid/Magnesium**CuJ/Mg***β,β-Dialkylbuttersäuren aus
Alkylidencyanessigestern****Die Reaktion von Grignard-Reagenzien mit
hochaktiven Doppelbindungen**

s. 2, 616

*Magnesium**Mg***Homologe Aethylenderivate aus
Acetylenderivaten** $C : C \rightarrow CH:CR$

584.

Mesitoylethylene u. Methyl-Mg-jodid, aus Mg u. Methyljodid, in Ae. 15 Min. unter Rückfluß gekocht → β-Methylbenzalacetomesitylen. A: 73%. (W. B. s. R. C. Fuson u. J. S. Meek, J. org. Chem. 10, 551 (1945).)

Spaltung von β-Diketonen*C*

s. 3, 580

*Aluminiumoxyd-Siliciumdioxyd**Al₂O₃/SiO₂***Kernalkylierung mit Aethylenderivaten** $H \rightarrow R$

585. Benzol u. Aethylen bei 430–500° u. 50–75 lb./sq. in ca. 1/2 Stde. über einen SiO₂-Al₂O₃-Katalysator geleitet → Aethylbenzol. Umsatz: ca. 20%. A: ca. 80%. (W. B. s. A. A. O'Kelly, J. Kellett u. J. Plucker, Ind. Eng. Chem. 39, 154 (1947).)

*Aluminiumchlorid**AlCl₃***Anlagerung von Halogeniden an die
Kohlenstoff-Doppelbindung** $C:C \rightarrow CHalCR$

586.

tert.-Butylchlorid u. cis-Dichloräthylen mit AlCl₃ bei –15° bis 10° innerhalb 20 Min. umgesetzt → 1,1,2-Trichlor-3,3-dimethylbutan. A: 75%. (W. B. s. L. Schmerling, Am. Soc. 68, 1655, 1650 (1946).)

β-Halogenketone aus Aethylenderivaten $C:C \rightarrow CHalC(COR)$

s. 2, 617. s. a. E. R. H. Jones u. a., Soc. 1948, 278

*Acylperoxyde**(RCOO)₂***Anlagerung von Halogeniden
an die Kohlenstoff-Doppelbindung** $C:C \rightarrow CHalCR$

587.

CBr_4 u. CHBr_3 können sich in Ggw. von Diacylperoxyden oder unter Belichtung an Olefine anlagern. — B: 1-Octen u. CBr_4 7 Stdn. unter Belichtung auf 75° erwärmt \rightarrow 1,1,1,3-Tetrabrom-n-nonan. A: 88%. (W. B. s. M. Kharasch, E. V. Jensen u. W. H. Urry, Am. Soc. 68, 154 (1946).)

Nickelcarbonyl

$\text{Ni}(\text{CO})_4$

Acrylsäurederivate

←

588. $\text{Ni}(\text{CO})_4$ tropfenweise zu einer Mischung von Aethylalkohol u. konz. HCl , die mit Acetylen gesättigt war, gegeben \rightarrow Acrylsäureäthylester. A: fast quantitativ. Weitere Ester können mit anderen Alkoholen erhalten werden, Acrylsäureamide mit Aminen u. Acrylsäure selbst mit H_2O . Alle Reaktionen verlaufen praktisch quantitativ. Ni-Carbonyl kann durch Co-Carbonyl ersetzt werden. (Reppe, Modern Plastics, 23, Nr. 3. 162, 210 (1945); C. A. 40, 1449, 4.)

Umlagerung

Typus Wasserstoff/Kohlenstoff

CC \cap HC

Natrium/Alkohol

NaOR

cis-trans-Umlagerung

←

589.

Eine Lsg. von cis-4-(N-Methylcarbanilido)-3-carbomethoxythiophan in einer Lsg. von Na in Methanol $2\frac{1}{2}$ Stdn. unter Rückfluß gekocht \rightarrow trans-4-(N-Methylcarbanilido)-3-carbomethoxythiophan. A: 92%. (B. R. Baker u. a., J. org. Chem. 12, 174 (1947). W. B., auch trans-cis-Umlagerung, s. die übrigen Arbeiten dieser Reihe.) Umlagerung mit methanol. KOH s. W. E. Bachmann u. L. B. Scott, Am. Soc. 70, 1462 (1948).)

Epimerisierung von Steroiden

s. 2, 618

Wanderung der Kohlenstoff-Doppelbindung

←

Umlagerung zu konjugierten Doppelbindungen

590.

1,4-Dihydro- α -naphthoquinone-dimethyläther mit Na-Methylat in Methanol 6 Stdn. im Einschlußrohr auf 130° erhitzt → 1,2-Dihydro- α -naphthoquinone-dimethyläther. A: quantitativ. (A. P. Terentjev u. P. P. Schavalova, J. Gen. Chem. (U.S.S.R.), 15, 142 (1945); C. A. 40, 1821, 9.)

gleichzeitige Alkylierung

s. 3, 675

Stellungswechsel von Substituenten cyclischer Verbindungen

591.

Eine Mischung von 2-Carbäthoxy-cyclohexanon-2- β -propionsäureäthylester u. alkohol. Na-Aethylat 8 Stdn. unter Rückfluß gekocht → 6-Carbäthoxy-cyclohexanon-2- β -propionsäureäthylester. A: 70 %. (H. T. Openshaw u. R. Robinson, Soc. 1937, 941. W. B., auch Isolierung des Zwischenprodukts, s. Soc. 1946, 910, 912.)

Natriumacetat

$Na(CH_3COO)$

Epimerisierung von Steroiden

s. 1, 233

Pyridin

C_5H_5N

Wanderung der Kohlenstoff-Doppelbindung

592.

1-Methyl-2-(p-acetoxyphenyl)-3-äthyl-6-acetoxy-inden in Pyridin 4½ Std. auf dem Wasserbad erwärmt → 1-Aethyl-2-(p-acetoxyphenyl)-3-methyl-5-acetoxy-inden. A: 74%. Die Verschiebung der Doppelbindung ist reversibel. (W. B. s. E. Adler u. B. Hägglund, Ark. Kemi, 19 A. Nr. 23 (1945).)

Bariumhydroxyd

$Ba(OH)_2$

Epimerisierung von Kohlehydraten

s. 2, 837

←

Zinkchlorid

$ZnCl_2$

s. 2, 838

Borfluorid

BF_3

Indene

○

593.

In eine Lsg. von 3,4-Di-(p-oxyphenyl)-hexadien-2,4 in Chlf. unter Kühlung mit Eiswasser 12 Min. bis zur Sättigung BF_3 eingeleitet u. noch 18 Min. bei Zimmertemp. stehengelassen → 1-Methyl-2-(p-oxyphenyl)-3-äthyl-6-oxyinden. Roh-A: 92%. (W. B. s. E. Adler u. B. Hägglund, Ark. Kemi, 19 A. Nr. 23 (1945).)

Aluminium-chrom-oxyd-Katalysator

Cr_2O_3, Al_2O_3

Wanderung der Kohlenstoff-Doppelbindung

←

**Umlagerung zu konjugierten
Doppelbindungen**

s. 2, 619

Nickel

Ni

s. 2, 620

Palladium

Pd

Umlagerung zum ar. System

s. 2, 801

Typus Sauerstoff/KohlenstoffCC \cap OC*Ohne Hilfsstoffe*

o. H.

Claisen-Umlagerung**o-Allylbenzole aus Allyläthern**ArCH₂CH = CH₂

s. 2, 621

**1,2,4-Cyclopentantrione
aus β -Keto- γ -enol-lactonen**

594.

iso-Oxalyl-dibenzyl-keton im CO₂-Strom bei 40 mm u. 271° sublimiert
 → Oxalyl-dibenzyl-keton. A: ausgezeichnet. — Die Umlagerung ist
 reversibel. (A. Schönberg u. Aly Sina, Soc. 1946, 601.)

Kalilauge

KOH

Benzilsäuren aus Benzoinen über Benzile(Ar)₂C(OH)COOH

s. 2, 622

NatriumamidNaNH₂ **α -Oxy- β -diketone aus α -Acoxyketonen**

595.

2 g 2-Benzoxy-4,5,6-trimethoxyacetophenon mit NaNH₂ in Toluol 4 Std. auf 100° erhitzt → 1,2 g 1-Phenyl-3-(2-oxy-4,5,6-trimethoxyphenyl)-1,3-propandion. (W. B. s. V. D. Nageswara Sastry u. T. R. Seshadri, Proc. Indian Acad. Sci. 23 A, 262 (1946); C. A. 41, 449a.)

KaliumacetatK(CH₃COO)**i-Aether aus Tosylaten bei gleichzeitiger
Umlagerung**

596.

3-p-Toluolsulfonyl-22,22-diphenyl-bisnor-5,20-choladien mit geschmolzenem K-Acetat in trockenem Methanol 5 Stdn. unter Rückfluß gekocht \rightarrow 1,1-Diphenyl-2-methyl-2-(6-methoxy-äthio-i-cholenyl)-äthylen. A: 83%. — Diese Umlagerung, die wieder rückgängig zu machen ist, kann zum Schutz der 3-Oxy-Gruppe u. der 5,6-Doppelbindung, in Fällen, wo diese nicht selektiv bromiert werden kann, dienen. (W. B. s. B. Riegel u. E. W. Meyer, Am. Soc. 68, 1097 (1946).)

Aluminiumchlorid $AlCl_3$ **Phenolketone aus Phenolestern****Friessche Verschiebung**

s. 1, 537/8; 2, 623

Schwefelsäure H_2SO_4 **Umlagerung zu konjugierten****Mehrfachbindungen**

s. 2, 624/5

Allylumlagerung

s. 2, 626

Dienon-Phenol-Umlagerung

↑

597.

Zu einer Lsg. von 3-Keto-12a-methyl-3,11,12,12a-tetrahydrochrys en in Acetanhydrid eine kalte Lsg. von konz. H_2SO_4 in Acetanhydrid gegeben u. 4 1/2 Stdn. bei Zimmertemp. stehengelassen \rightarrow 3-Acetoxy-1-methyl-11,12-dihydrochrys en. A: 88%. — Ueberschreitet die H_2SO_4 -Menge einen bestimmten Betrag, dann sinkt die Ausbeute. (A. L. Wilds u. C. Djerassi, Am. Soc. 68, 1715 (1946); w. B. s. 68, 1712; R.T. Arnold, J. S. Buckley, jr. u. J. Richter, Am. Soc. 69, 2322 (1947).)

Typus Stickstoff/KohlenstoffCC \cap NC*Salzsäure* HCl **Benzidin-Umlagerung**

s. 2, 627

↑

Typus Halogen/KohlenstoffCC \cap HalC*Magnesium*

Mg

Stellungswechsel von Substituenten

ar. Kerne

s. 2, 628

←

Typus Kohlenstoff/KohlenstoffCC \cap CC*Kalilauge*

KOH

Ringerweiterung bei Heterocyclen

Dibenzo-monothianaphthyron

←

s. 2, 629

*Natriumnitrit*NaNO₂**Desoxybenzoine aus α -Amino-tert.-alkoholen**

←

598.

β -Amino- α,α -dianisyl-n-butanol (Darst. s. 564) in 25% ig. Essigsäure bei 0° unter Rühren mit einer wss. NaNO₂-Lsg. versetzt u. 4 Stdn. bei Zimmertemp. stehengelassen → α -Aethyldesoxyanisoin. A : 90%. (A. E. W. Smith, Soc. 1946, 572.)

Ringerweiterung bei Isocyclen

←

s. 1, 539—41

Platin-Kohle

Pt-C

s. 1, 732

Austausch**Wasserstoff**CC $\uparrow\downarrow$ H*Lithium*

Li

2-Arylchinoline aus Chinolinen

H → Ar

599.

Eine äther. Lsg. von Chinolinen wird bei 0° unter N₂ allmählich innerhalb 5—10 Min. zu einem kleinen Ueberschuß von p-Dimethylaminophenyl-Li in Ae. gegeben u. weitere 15—40 Min. gerührt → 2-p-Dimethylaminophenyl-chinoline. A: 50—65%. (B. s. H. Gilman, J. L. Towle u. S. M. Spatz, Am. Soc. 68, 2017.)

Kaliumcyanid

KCN

**Einführung der Nitrilgruppe in ar. Kerne,
gleichzeitig Austausch von Nitrogruppen
gegen Methoxyl**

600.

m-Dinitrobenzol mit KCN in Methanol-W. 2 Stdn. bei 40° gerührt u. hierauf 2—3 Tage bei Zimmertemp. stehengelassen → 2-Nitro-6-methoxybenzonitril (Ausg. f. 179). A: 22—23%. (A. Russell u. W. G. Tebbens, Org. Synth. 22, 35 (1942).)

*Aluminiumchlorid*AlCl₃

Oxydативный Ringschluß bei Friedel-Crafts-Reaktionen

s. 2, 749

Acylperoxyde(RCOO)₂

Oxydative Dimerisierung

2 R → R·R

601.

Mit Hilfe von Peroxyden, besonders Diacetylperoxyd, können Dimerisierungen durchgeführt werden, wobei 2 aktivierte H-Atome aus dem monomeren Molekül austreten. B: Diacetylperoxyd u. Chloressigsäure in der Hitze → Dichlorbernsteinsäure. — Entsprechend: Diacetylperoxyd u. Isopropylbenzol → 2,3-Dimethyl-2,3-diphenylbutan. (W. B. s. M. S. Kharasch u. a., J. org. Chem. 10, 386—406.)

p-Nitrosodimethylanilin

s. 2, 630

Wasserstoffperoxyd
s. 2, 631

 H_2O_2 *Selendioxyd* SeO_2 **α -Diketone**

602.

Chinaldin in Dioxan innerhalb 15 Min. unter Erwärmen auf dem Dampfbad zu altem SeO_2 , in Dioxan-W. gegeben u. 1 Stde. unter Rückfluß gekocht → Chinaldil. A: 91%. (F. Linsker u. R. L. Evans, Am. Soc. 68, 947 (1946); vgl. Synth. Meth. 1, 163.)

Chlorschwefel S_2Cl_2

s. 2, 632

Eisen(III)-verbindungen Fe^{+++} **Diaryle**

603.

Zu einer Lsg. von 6-Methyl-2-naphthol in Na-Carbonat in der Siedehitze eine Lsg. von $FeCl_3$ in HCl unter Rühren in kleinen Portionen gegeben u. hierauf $\frac{1}{2}$ — $\frac{3}{4}$ Stdn. gekocht → 6,6'-Dimethyl-2,2'-dihydroxy-1,1'-binaphthyl. A: 75%. (R. Royer, Ann. chim. [12] 1, 429 (1946).)

s. a. 2, 633

Sauerstoff↑**CC↑O***Ohne Hilfsstoffe**o. H.***Chloralkondensation**

604.

Zu einer Mischung von γ -Picolin, Entfärbungskohle „Nuchar“ u. „Filter-Cel“ (zur besseren Aufarbeitung) unter kräftigem Rühren langsam Chloral gegeben, 4 Tage auf 40° und 1 Tag auf 70° erwärmt → 1-(4-

Pyridyl)-2-oxy-3,3,3-trichlorpropan (Ausg. f. 723). A: 65–70 %. (M. Kleiman u. S. Weinhouse, J. org. Chem. 10, 562 (1945).)

Mannich-Reaktionen mit Formaldehyd
Aminomethylierung
Nitramine

605.

Prim. u. sek. Amine geben mit Nitroparaffinen u. Formaldehyd Nitramine. Ar. Amine reagieren teilweise u. nur in Ggw. eines starken basischen Katalysators, wie z. B. Triton B. — B: Isopropylamin unter Rühren unterhalb 25° langsam mit 36 %ig. wss. Formaldehyd versetzt, 2-Nitropropan auf einmal zugegeben, 30 Min. ohne Kühlung weitergerührt, Na_2SO_4 zugesetzt, bis zur Lsg. weitergerührt, die nichtwäßrige Schicht abgetrennt u. noch 5 Tage bei Zimmertemp. stehengelassen \rightarrow N-(2-Nitroisobutyl)-iso-propylamin. A. 76 %. (W. B. s. M. Senkus, Am. Soc. 68, 10 (1946); H. G. Johnson, Am. Soc. 68, 12, 14 (1946).)

**α -subst. Acrylsäuren aus subst.
Malonsäuren**
s. 1, 767

606.

Phenole mit wenigstens einer freien o- oder p-Stellung werden mit 37 %ig. Formaldehyd oder Paraformaldehyd u. aliphat. Aminen in Alk. 1 Stde. stehengelassen u. hierauf 2 Std. unter Rückfluß gekocht. — B: 4-(1,1,3,3-Tetramethylbutyl)-phenol \rightarrow α -Di-n-amylamino-4-(tetramethylbutyl)-o-cresol. A: 81 %. (Viele w. B. s. J. H. Burckhalter u. a., Am. Soc. 68, 1894 (1946). S. a. 70, 1363 (1948).)

607.

Piperidin u. Formalin mit β -Naphthol in 95 %ig. Alk. bei 5° unter Rühren versetzt \rightarrow 1-Piperidinomethyl-2-naphthol. A: 82 %. (W. B. s. R. L. Shriner, G. F. Grillot u. W. O. Teeters, Am. Soc. 68, 946 (1946).)

bei N-Heterocyclen

608.

Dimethylamin-hydrochlorid in 40%ig. Formalin unter Röhren innerhalb 30—60 Min. so zu Pyrrol gegeben, daß die Temp. nicht über 60° steigt, 1½ Stdn. weitergerührt u. über Nacht stehengelassen → 2-Dimethylaminomethylpyrrol. ·A: 77%. — Auch prim. Amine können mit Pyrrol nach diesem Verfahren, bei dem es im Ueberschuß zur Reaktion gebracht wird, umgesetzt werden. (W. Herz, K. Dittmer u. S. J. Cristol, Am. Soc. 69, 1698 (1947).) — Bei Ringen mit 2 u. mehr N-Atomen, wie z. B. Pyrazol, Benzimidazol, tritt Substitution am Stickstoff ein. (G. B. Bachman u. L. V. Heisey, Am. Soc. 68, 2496 (1946).)

Anilinovinyl-pyridiniumsalze

s. 2, 634

 α -Aminonitrile aus Aldehyden**Aufbau um 1 C-Atom**

609. In eine Mischung von 100 g l-Arabinose u. abs. Alk. bei Wasserbadtemp. wasserfreies Methylamin geleitet, auf Zimmertemp. abgekühlt u. wasserfreie HCN zugegeben → 65 g N-Methyl-l-glucosaminsäure-nitril. (M. L. Wolfrom, A. Thompson u. I. R. Hooper, Am. Soc. 68, 2343 (1946).)

 α -Aminocarbonsäuren aus Aldehyden**Aufbau um 2 C-Atome**

610.

Eine gute Mischung von Creatinin u. Vanillin unter Umschwenken im Oelbad 15—20 Min. auf ca. 155° erhitzt → 5-(3-Methoxy-4-oxybenzyl)-creatinin (Roh-A: 95%) in W. suspendiert u. unter Umschwenken innerhalb 30 Min. portionsweise mit 3%ig. Na,Hg versetzt und

nach weiteren 15—30 Min. aufgearbeitet → 5-(3-Methoxy-4-oxybenzyl)-creatinin (Roh-A: 72—74%) mit einer wss. Ba(OH)₂-Lsg. 12 Std. unter Rückfluß gekocht → N-Methyl (3-methoxy-4-oxybenzyl)-alanin (Roh-A: 74%) (Ausg. f. 11). (V. Deulofeu u. T. J. Guerero, Org. Synth. 22, 89 (1942).)

Cumarin-Synthese

s. 2, 635

Xanthene

s. 2, 636

4,5-Diketopyrrolidine

611.

0,5 g p-Toluidin in Bzl. mit Propionyl-brenztraubensäureäthylester u. Benzaldehyd versetzt u. nach 2 Tagen aufgearbeitet → 1,3 g 1-p-Tolyl-2-phenyl-3-propionyl-4,5-diketopyrrolidin. (W. B. s. H. Keskin, Rev. faculté sci. univ. Istanbul 11 A, Nr. 1/2. 1 (1946); C. A. 40, 5427, 3.)

Piperidinring-Synthese

s. 2, 637

Pyridinring-Synthese

612.

2-Nitrovanillin, β -Aminocrotononitril, β -Aminocrotonsäureäthylester u. abs. Alk. 74 Std. unter Rückfluß gekocht u. als Acetoxyderivat isoliert → 3-Cyan-4-(2'-nitro-4'-acetoxy-3'-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridin-5-carbonsäureäthylester. A: 68%. (W. B. s. V. A. Petrow, Soc. 1946, 884.)

Hantzsch Pyridinring-Synthese

s. 1, 542

Chinoline

613.

Ar. Amine u. Aethoxalylpropionsäureäthylester ohne Lösungsmittel oder in Methylenchlorid oder Essigsäure 24—48 Stdn. auf 40—45° erhitzt, die so erhaltenen Kondensationsprodukte bei 250—255° unter kräftigem Rühren zu reinem Mineralöl gegeben u. nach 5—10 Min. aufgearbeitet, geben 3-Methyl-4-oxychinolin-2-carbonsäureester in Ausbeuten von 77—97%. — B: p-Chloranilin → 6-Chlor-3-methyl-4-oxychinolin-2-carbonsäureäthylester. (Ausz. f. HO ↑ C.) A: 95%. (W. B. s. E. A. Steck, L. L. Hallock u. A. J. Holland, Am. Soc. 68, 129, 132, 380 (1946). 1,2,3,4-Tetrahydroacridone s. L. J. Sargent u. L. Small, J. org. Chem. 12, 567 (1947). J. M. Stephen, I. M. Toukin u. J. Walker, Soc. 1947, 1034. Methode s. Conrad u. Limpach, B. 20, 944 (1887); Limpach, B. 64, 969 (1931).)

2-Aryl-4-oxychinoline

614.

2-Aryl-4-oxychinoline können mit befriedigenden Ausbeuten durch Erhitzen von Anthranilsäuren oder -estern mit dem Acetal von Acylophenonen dargestellt werden. — B: Anthranilsäureäthylester u. Acetophenon-diäthylacetal unter Durchleiten von O₂-freiem Stickstoff in Diphenyläther 30 Min. auf 120°, hierauf 30 Min. auf 200° erhitzt u. schließlich ohne Durchleiten von N₂ 10 Stdn. gekocht → 4-Oxy-2-phenylchinolin. A: 84%. (W. B. s. R. C. Fuson u. D. M. Burness, Am. Soc. 68, 1270 (1946).)

Acridinring-Synthese nach Ullmann-Fettvadjian
s. 2, 638**Acridonringschluß**
s. 2, 639**Naphthyridine**
s. 1, 543**Lithium****Ketone aus Kohlenwasserstoffen**
s. 2, 640

Li

CH₃ → CH₂COR

Natrium

Na

Formylierung **α -Oxymethylenketone aus Ketonen**

s. 2, 725a

Carbalkoxylactone

615.

α -Methylglutarsäurediäthylester mit Na in Xylol behandelt, hierauf mit Na-Formiat, mit Eis zersetzt, ausgeäthert, mit Al,Hg reduziert u. im Vakuum destilliert \rightarrow α -Methyl- δ -valerolacton- γ -carbonsäureäthylester. A: 60 %. (R. S. Livschits, N. A. Preobrazhenskii u. M. S. Bardinskaya, J. Gen. Chem. (U.S.S.R.) 15, 836 (1945); C. A: 41, 709h.)

 β -Aldehydo-carbonsäuren**Decarboxylierung**

s. 2, 641

 α,β -Aethylencarbonsäureester

s. 1, 544

Acyloine aus Carbonsäureestern

←

s. 1, 545

Alkylacyloine

616.

Na in trockenem Xylol gut pulverisiert, das Xylol dekantiert, mit Ae. gewaschen, das Na in abs. Ae. suspendiert, auf dem Dampfbad zum Sieden erhitzt, Isobuttersäureäthylester unter Röhren innerhalb 6—8 Stdn. zugegeben, weitere 12—14 Stdn. unter Röhren erhitzt, auf einmal mit Aethyljodid versetzt u. unter Röhren u. Rückfluß 24 Stdn. gekocht \rightarrow 2,5-Dimethyl-4-äthyl-4-oxy-3-hexanon. A: 83,7 %. (W. B. s. J. C. Speck, jr. u. R. W. Bost, J. org. Chem. 11, 788 (1946).)

Chromone

○

s. 1, 546

Allgemeine Chromonsynthese

s. 2, 642

Natronlauge

NaOH

Mannich-Reaktion**Aminomethylierung**

617.

Eine Lsg. von 2,4,6-Trinitrotoluol in Dioxan unter Röhren bei 5—10° nacheinander mit Morpholin, 2%ig. NaOH u. 37%ig. wss. Formaldehyd versetzt, noch 1 Stde. bei 5—10° belassen u. schließlich 1 Stde. auf 40—50° erwärmt → 2,4,6-Trinitrophenyläthyl-N-morpholin. A: 95%. (H. A. Bruson u. G. B. Butler, Am. Soc. 68, 2348 (1946).)

***α,β*-Aethylenaldehyde aus Aldehyden**
s. 1, 548

CHO → CH:CHCHO

***α,β*-Aethylenketone aus Aldehyden**
s. 1, 549

CHO → CH:CHCOR

Chalkone
s. 1, 550/1

Ringschluß der γ -Diketone
s. 1, 554

○

Kalilauge

KOH

Austausch von Wasserstoff gegen Methyl
s. 1, 547

H → CH₃

C-Isopropylidenverbindungen
s. 2, 644

←

Cyclopentadienone

○

618.

Benzil u. Dibenzylketon in Alk. bis nahe an den Sdp. erhitzt, eine Lsg. von KOH in Alk. langsam in 2 Portionen zugegeben u. nach Aufhören des Schäumens 15 Min. unter Rückfluß gekocht → Tetraphenylcyclopentadienon (Ausg. f. 579). A: 91—96%. J. R. Johnson u. O. Grummitt, Org. Synth. 23, 92 (1943).)

Flavanone über Chalkone
s. 1, 552/3

Chinolinring-Synthese
s. 2, 651

Alkoholate

α -Cyancarbonsäureester aus Nitrilen
s. 1, 563

Alkylierung von monosubst. Malonsäure-estern
s. 1, 564

*Natriumalkoholat**NaOR*

3-Alkylindole aus Indolen
s. 1, 565

α -Oxymethylenketone aus Ketonen
s. 2, 643

α,β -Aethylenketone aus Aldehyden

619.

Citral u. Aceton auf mindestens -5° gekühlt, unter kräftigem Röhren tropfenweise mit einer kalten Lsg. von Na in abs. Alk. gerade so schnell versetzt, daß die Temp. nicht über -5° steigt, 3—4 Min. weitergerührt, nach Zusatz einer wss. Weinsäure-Lsg. sofort überschüssiges Aceton mit Wasserdampf entfernt u. über die Bisulfit-Additionsverbindung aufgearbeitet \rightarrow Pseudojonon. A: 45—49%. (A. Russell u. R. L. Kenyon, Org. Synth. 23, 78 (1943).)

 β -Diketone

s. 1, 556

Oxalester-Synthese

620.

Zu einer Auflösung von Na in Alk.-Ae. Diäthyloxalat langsam unter Röhren zugegeben, hierauf tropfenweise ebenfalls unter Röhren Methoxyessigsäure-äthylester u. ohne Röhren 3 Tage bei Zimmertemp. stehengelassen \rightarrow Methoxyäthoxalylessigsäure-äthylester. A: 85%. (D. S. Breslow u. a., Am. Soc. 68, 1232 (1946).)

s. a. 1, 784

 α -Cyanketone aus Nitrilen

s. 2, 645

β -KetocarbonsäureesterCOCH₂COOR**Ketone aus Carbonsäureestern
über β -Ketocarbonsäureester**

621.

2- α -Naphtyl-cinchoninsäure-äthylester mit der doppelten molaren Menge Essigsäureäthylester u. der 1½fachen molaren Menge Na-Aethylat in Bzl. 24 Stdn. unter Rückfluß gekocht, mit Eis u. H₂SO₄ zersetzt, vorsichtig zum Sieden erhitzt, das Bzl. abdestilliert u. noch 2 Stdn. unter Rückfluß gekocht → 2- α -Naphtyl-4-acetochinolin. A: 87%. (W. B. s. S. Winstein u. a., Am. Soc. 68, 1831 (1946) u. weitere Arbeiten des OSRD.)

Thiophansynthese

s. 1, 558/9

○

 α,γ -Diketocarbonsäureester

s. 1, 560

Benzolring-Synthese

s. 2, 648

Chinolinring-Synthese

s. 2, 649/50

Kaliumalkoholat

KOR

FormylierungCH₂ → C:CHOH

s. 3, 245

Oxalestersynthesen

H → COCOOH

 α -Ketocarbonsäuren

s. 1, 557, 562; 2, 646, 689, 827

 α,β -Ketodicarbonsäureester

622.

K mit abs. Alk. in abs. Ae. 20 Stdn. gekocht, unter Kühlung trockenen Oxalsäurediäthylester, hierauf Adipinsäurediäthylester zugeropft u. 1 Stde. gekocht → Oxal-adipinester. A: 73%. — Die Anwendung von K-Aethylat an Stelle von Na-Aethylat verbesserte die Ausbeute. (M. W. Goldberg, F. Hunziker, J. R. Billeter u. H. R. Rosenberg, Helv. 30, 200 (1947).)

Indolsynthese

s. 1, 562

Stobbe-Kondensation

s. 2, 647; s. a. B. Riegel und J. G. Burr jr., Am. Soc. 70, 1070 (1948)

*Natriumamid**NaNH₂* **α -Cyanketone u. α -Cyan carbonsäureester aus Nitrilen**

←

623.

Phenylacetonitril mit NaNH_2 in Ae. $\frac{1}{2}$ Stde. gekocht, Propionsäureäthylester in Ae. zugegeben u. unter Röhren u. Rückfluß 2 Stdn. gekocht → α -Propionylphenylacetonitril. A: 60%. — Entsprechend: Phenylacetonitril → α -Cyanphenylessigsäureäthylester. A: 69%. (W. B. s. R. Levine u. C. R. Hauser, Am. Soc. 68, 760 (1946).)

 α -Cyanketone

s. a. 2, 652

 β -Ketocarbonsäureester aus Ketonen

H → COOR

624.

Methyl-n-hexylketon in abs. Ae. innerhalb 5 Min. zu NaNH_2 , aus Na in fl. NH_3 in Ggw. von $\text{Fe}(\text{NO}_3)_3$, gegeben, NH_3 auf dem Wasserbad so schnell als möglich innerhalb 15—20 Min. entfernt, Ae. zugegeben, hierauf, wenn der Ae. siedet, Diäthylcarbonat u. unter Röhren u. Rückfluß 2 Stdn. gekocht → n-Heptanoyl-essigsäureäthylester. A: 52%. — Anstatt mit Diäthylcarbonat kann die Synthese auch mit festem CO_2 bei anschließender Veresterung durchgeführt werden. (W. B. s. R. Levine u. C. R. Hauser, Am. Soc. 66, 1768 (1944); s. a. G. W. Anderson u. a., Am. Soc. 67, 2197 (1945), wo weitere 5 Methoden zur Darst. von β -Ketocarbonsäureestern angegeben sind.)

Ketone aus Carbonsäureestern über **β -Ketocarbonsäureester**

←

625.

n-Buttersäure-tert.-butylester im gleichen Volumen trockenen Ae. zu NaNH₂ in fl. NH₃ gegeben, Nicotinsäureäthylester, ebenfalls in trockenem Ae. zugefügt, NH₃ durch Ae. ersetzt u. 2 Stdn. unter Rückfluß gekocht → α-Nicotinoyl-n-buttersäure-tert.-butylester (A: 58%) mit Essigsäure-H₂SO₄ gekocht → β-Pyridyl-n-propylketon (A: 48%). (W. B. s. J. C. Shivers, M. L. Dillon u. C. R. Hauser, Am. Soc. 69, 119 (1947).) s. a. 3, 373

Cyclopenteno-phenanthren-Synthese

s. 2, 653

Natriumacetat

Na(CH₃COO)

Austausch von Wasserstoff gegen Acetyl

H → COCH₃

626.

2-Phenylpyrrocolin (Darst. s. 726) u. geschmolzenes Na-Acetat mit Acetanhydrid 6 Stdn. unter Rückfluß gekocht → 3-Acetyl-2-phenylpyrrocolin (Ausg. f. 54). A: 91%. (W. B. s. E. T. Borrows, D. O. Holland u. J. Kenyon, Soc. 1946, 1069.)

Carbonsäuren aus Aldehyden. Aufbau um 1 C-Atom

CHO → CH₂COOH

Azlacton-Synthese. — Oxalozone

s. 2, 654

Pyrrolsynthese

s. 2, 377

Kaliumacetat

K(CH₃COO)

α,β-Aethylencarbonsäuren aus Aldehyden

Aufbau um 2 C-Atome

s. 1, 566

Natriumnitrit

NaNO₂

Acridone aus o-Nitrobenzaldehyden

Lehmstedt-Tanasescu-Reaktion

627.

Roher 2-Nitro-4-chlorbenzaldehyd u. Chlorbenzol in Ggw. von etwas NaNO₂ in konz. H₂SO₄ während 6 Tagen abwechselnd 9 Stdn. geschüttelt u. 15 Stdn. stehengelassen, wobei noch einmal konz. H₂SO₄

mit etwas NaNO_2 zugegeben wurde \rightarrow 3,6-Dichloracridon. Roh-A: 53%. (D. P. Spalding u. a., Am. Soc. 68, 1596 (1946).)

Natriumhydrogensulfit

NaHSO_3

Dialkylamino-acetonitrile

←

628.

Zu einer Mischung von Cyclopentylmethylamin, Na-Bisulfit, 37%ig. Formaldehyd u. W. unter kräftigem Rühren u. Erhitzen auf dem Dampfbad tropfenweise eine wss. Lsg. von KCN gegeben u. noch 6½ Stdn. unter Rühren erhitzt \rightarrow Cyclopentylmethylaminoacetonitril. A: 69%. (W. B. s. J. Corse, J. T. Bryant u. H. A. Shonle, Am. Soc. 68, 1905 (1946). Methode s. Knoevenagel u. Mercklin, B. 37, 4089 (1904); s. a. Luten, J. org. Chem. 3, 588 (1939).)

Natrium-Salz

Na^+

Phtalide

←

s. 1, 567

Kaliumcyanid

KCN

Hydantoine

○

s. 2, 655

α -Aminocarbonsäuren

aus Ketonen

s. 1, 568

Triäthylamin

$(\text{C}_2\text{H}_5)_3\text{N}$

Nitroalkohole

←

629.

Eine Mischung von frisch dest. Phenylnitromethan, 37%ig. Formalin-Lsg. u. Dioxan langsam mit Triäthylamin versetzt, schnell auf 60° erhitzt, etwas gekühlt, um weiteren Temperaturanstieg zu verhindern u. ½ Stde. stehengelassen \rightarrow 2-Nitro-2-phenylpropandiol-1,3. A: 81.5%. (W. B. s. L. F. Fieser, M. Gates u. W. H. Daudt, Am. Soc. 68, 2249, 2248 (1946).)

Flavonolsynthese

○

s. 2, 656

Piperidin

$\text{C}_5\text{H}_{11}\text{N}$

α, β -Aethylencarbonsäuren aus Aldehyden

$\text{CHO} \rightarrow \text{CH:CHCOOH}$

s. 1, 570; 2, 657

**Vorsichtige Kondensation
zu leicht polymerisierbaren
Verbindungen**
s. 1, 569

**α,β -Aethylencarbonsäureester aus
Aldehyden**

630. Aldehyde können unter den Bedingungen der Döbner-Reaktion in einer Stufe mit einem Malonsäure-monoester zu α,β -Aethylencarbon-säurcestern kondensiert werden. Die neue Synthese gibt gute Ausbeuten u. hat einen weiteren Anwendungsbereich als die Claisen- oder Reformatski-Reaktion. — B: m-Nitrobenzaldehyd u. Malonsäure-monomethylester in trockenem Pyridin in Ggw. von etwas Piperidin 6 Std. auf dem Dampfbad unter Rückfluß gekocht \rightarrow m-Nitrozimtsäure-methylester. A: 86,5%. (W. B. s. A. Galat, Am. Soc. 68, 376 (1946).)

**Alkylidenacetessigester aus
Aldehyden**
s. 1, 400, 571

**β,γ -Aethylen- α -cyancarbonsäureester
aus Ketonen**
s. 1, 573

**Synthese von Dicarbonsäuren aus Aldehyden
Carbonsäuren aus α -Cyancarbonsäureamiden**

←

631. $\begin{array}{c} \text{CN} & \text{CN} \\ | & | \\ \text{CH}_3\text{CHO} + 2 \text{H}_2\text{C}\cdot\text{CONH}_2 & \rightarrow \text{CH}_3\text{CH}(\text{CH}\cdot\text{CONH}_2)_2 \rightarrow \text{CH}_3\text{CH}(\text{CH}_2\text{COOH})_2 \end{array}$
Eine wss. Lsg. von Cyanacetamid bei 10° unter Schütteln nacheinander mit frisch dest. Acetaldehyd u. Piperidin versetzt u. 2 Std. bei Zimmertemp. stehengelassen \rightarrow α,α' -Dicyan- β -Methylglutaramid (A: 71%) mit konz. HCl. auf dem Dampfbad bis zur Lsg. erwärmt, mit W. verdünnt u. 8 Std. unter Rückfluß gekocht \rightarrow β -Methylglutarsäure (A: 80%). (R. E. Kent u. S. M. McElvain, Org. Synth. 23, 60 (1943).)

**α,β -Aethylen- β -dicarbonsäureester
aus Aldehyden
Knoevenagel-Synthese**

632. $\text{C}_6\text{H}_5\text{CHO} + \text{H}_2\text{C}(\text{COOC}_2\text{H}_5)_2 \rightarrow \text{C}_6\text{H}_5\text{CH} = \text{C}(\text{COOC}_2\text{H}_5)_2$

Malonsäurediäthylester u. Benzaldehyd, der mindestens 0,2% Benzoësäure enthalten soll, mit etwas Piperidin in Bzl. im Oelbad bei 130 bis 140° 11—18 Std. zu lebhaftem Sieden unter Rückfluß erhitzt, bis kein W. mehr abgeschieden wird \rightarrow Benzalmalonsäurediäthylester. A: 89—91%. — Entsprechend: Benzalmalonsäuredimethylester. A: 90—94%. (C. F. H. Allen u. F. W. Spangler, Org. Synth. 25, 42 (1945).)

Diketo-dicarbonsäureester aus Aldehyden
Cyclohexanone

s. 3, 738

Benzolring-Synthese

633.

Frisch destilliertes Diacetyl u. o-Phenylenediacetonitril in wasserfreiem Piperidin nach anfänglichem Kühlen 3 Stdn. stehengelassen → 1,4-Dicyan-2,3-dimethylnaphthalin. A: ca. 65%. (W. B. s. H. Mourau, P. Chovin u. G. Rivoal, Bl. 1946, 106.)

Octahydroxanthene
Methonderivate von Aldehyden

634.

Aldehyde mit Methon (5,5-Dimethyldihydroresorcin) in 50%ig. Alk. mit 1 Tropfen Piperidin 5 Min. unter Rückfluß gekocht u. die in guter Ausbeute entstehenden Methonderivate in 80%ig. Alk. mit 1 Tropfen konz. HCl 5 Min. erhitzt, ergeben 2,2,7,7-Tetramethyl 4,5-diketo-9-alkyl(aryl)-octahydroxanthene in oft fast quantitativer Ausbeute. Beide Derivate können zur Charakterisierung von Aldehyden benutzt werden. — B: Hexanal → 2,2,7,7-Tetramethyl-4,5-diketo-9-amyl-octahydroxanthene. (W. B. s. E. C. u. M. G. Horning, J. Org. Chem. 11, 95 (1946).)

Pyridinring-Synthese
s. 2, 658

Pyridone
s. 1, 574

Chinolinring
s. 1, 572

*Pyridin**C₅H₅N**α,β-Aethylencarbonsäuren aus Aldehyden* $\text{CH} \rightarrow \text{CH:CHCOOH}$

Crotonaldehyd, Malonsäure u. Pyridin 3 Stdn. auf dem Dampfbad erhitzt → Sorbinsäure. A: 28—32%. — Einfache u. besonders ar. Aldehyde geben bessere Ausbeuten. Mit gewissen basischen Katalysatoren sollen aliphat. Aldehyde eine Mischung von α,β- u. β,γ-ungesättigten Säuren geben. (C. F. H. Allen u. J. Van Allan, Org. Synth. 24, 92 (1944).)

636.

Furfural, Malonsäure u. Pyridin 2 Stdn. auf kochendem Wasserbad erhitzt → Furylacrylsäure. A: 91—92%. (S. Rajagopalan u. P. V. A. Raman. Org. Synth. 25, 51 (1945).)

Acylamidoketone aus α-Aminocarbonsäuren

←

s. 3, 170

Pyridinring-Synthese

○

s. 2, 655

*Magnesium**Mg**Synthese von Kohlenwasserstoffen aus Ketonen*

←

637.

Zu Phenyl-Mg-bromid aus Brombenzol u. Mg in Ae. innerhalb 30 Min. α-Tetralon in Ae. so schnell zugegeben, daß lebhaftes Sieden aufrechterhalten wird, weitere 30 Min. unter Rückfluß erhitzt, 1 Stde. stehengelassen, mit Eis-konz. HCl zersetzt, die Ae.-Schicht abgetrennt, ca. 6 Stdn. mit Wasserdampf destilliert, das zurückbleibende Oel in Ae. aufgenommen u. den Ae. Rückstand mit Acetanhydrid 20—25 Min. auf dem Dampfbad erhitzt → 1-Phenyldialin (Ausg. f. 706). A: 42 bis 48%. (R. Weiß, Org. Synth. 24, 84 (1944).)
s. a. CC ↑ HalMg

Aether aus Lactonen

←

s. 2, 660

β-Ketocarbonsäureester aus Carbonsäure-estern

COCHRCOOR

Eine äther. Lsg. von Aethyl-Mg-bromid unter Röhren, Eiskühlung u. Wasserausschluß mit Diäthylamin in trockenem Ae. versetzt, 15 Min. weitergerührt, um die Bildung des Diäthylamino-Mg-bromids zu vervollständigen, hierauf so schnell als möglich Phenylessigsäuräthylester zugegeben u. 30 Min. auf dem Dampfbad erhitzt $\rightarrow a,\gamma$ -Diphenylacetessigsäureäthylester. A: 62%. (W. B. auch gemischte Esterkondensation s. C. R. Hauser u. H. G. Walker, jr., Am. Soc. 69, 295 (1947).)

Calciumoxyd

CaO

Oxymethylierung

$\text{H} \rightarrow \text{CH}_2\text{OH}$

s. 1, 575

Zink-Staub

Zn

Einführung von Alkylgruppen in die 4-Stellung von Pyridinen

$\text{ArH} \rightarrow \text{ArR}$

s. 1, 576. S. a. J. P. Wibaut u. D. van der Vennen, R. 66, 236 (1947). R. L. Frank u. P. V. Smith, Org. Synth. 27, 38 (1947).

Zinkchlorid

ZnCl₂

Kernalkylierung von ar. Aminen

s. 2, 661

Styryl- aus Methyl-heterocyclen

\leftarrow

639.

Chinaldin-hydrochlorid u. frisch dest. 2-Aethylhexanal in Ggw. von wasserfreiem ZnCl₂ in abs. Alk. 8 Stdn. unter Rückfluß gekocht u. 3 Tage bei 25° stehengelassen \rightarrow 2-(3-Aethyl-1-heptenyl)-chinolin. A: 87%. (W. B. s. E. Graef, J. M. Fredericksen u. A. Burger, J. org. Chem. 11, 257 (1946).)

s. a. 1, 585; 3, 156

Chlormethylierung

$\text{H} \rightarrow \text{CH}_2\text{Cl}$

640.

2-Aethyl-4-resorcyaldehyd-dimethyläther, 40%ig. Formalin u. ZnCl₂ unter Einleiten von HCl u. Kochen unter Rückfluß 90 Min. kräftig gerührt \rightarrow 2,4-Dimethoxy-3-äthyl-5-chlormethylbenzaldehyd. A: 92%. (T. A. Geissman u. a. J. org. Chem. 11, 741 (1946), über Chlorme-

thylierung von Phenolen s. a. C. A. Buehler, J. Tennessee Acad. Sci. 22, 303 (1947); s. a. T. Maki, J. Soc. Chem. Ind. Japan 47, 452 (1942).)

Phenolketone aus Phenolen

s. 1, 577

Ketone aus Carbonsäureanhydriden

$\text{CO}\cdot\text{O}\cdot\text{OC} \rightarrow \text{COR}$

s. 3, 651

Anthrone

s. 2, 662

Furan- und Pyran-ringschluß

s. 2, 663

Chinolinring

s. 1, 763

Borsäure

HBo

Skraupsche Chinolinsynthese

s. 1, 590

Borfluorid

BF_3

Kernalkylierung

$\text{ArH} \rightarrow \text{ArR}$

s. 1, 578

β -Diketone aus Ketonen

$\cdot\text{COCH}_2\text{CO}\cdot$

s. 1, 579

Aluminium-Siliciumdioxyd

Ketone aus Carbonsäureanhydriden

$\text{CO}\cdot\text{O}\cdot\text{OC} \rightarrow \text{COR}$

s. 3, 651

Aluminiumchlorid

AlCl_3

Die Reaktion von ar. Verbindungen mit Carbonylgruppen in Ggw. von sauren Katalysatoren

←

Alkohole und Kohlenwasserstoffe aus Oxoerbindungen

s. 2, 664

Ketone

$\text{Ar} \rightarrow \text{ArCOR}$

s. 1, 580

Cumarinring-Synthese

641.

Eine Mischung von Phenol, Acetessigester u. Nitrobenzol im Oelbad auf 100° erhitzt, unter Röhren innerhalb 30—45 Min. eine Lsg. von AlCl_3 in Nitrobenzol zugegeben u. weitere 3 Stdn. auf 130° erhitzt → 4-Methylcumarin. Roh-A: 40—55%. (E. H. Woodruff, Org. Synth. 24, 69 (1944).)

Aluminiumchlorid/Natriumchlorid

$\text{AlCl}_3/\text{NaCl}$

Oxynaphthochinone

s. 1, 581

Acetanhydrid

$(\text{CH}_3\text{CO})_2\text{O}$

α,β -Aethylencarbonsäuren

C:C·COOH

s. 2, 666

Stilbazole

←

s. 2, 667

Kondensation von 5-Methylacridinen

←

mit Nitrobenzaldehyden

s. 1, 585

Styrylchinoliniumverbindungen

←

Allgemeine Methode

s. 2, 668

Tetraaryl-divinylen-carbeniumsalze

←

s. 2, 669

Pyridinring

○

642.

Acetondicarbonsäure-diäthylester u. Orthoameisensäure-triäthylester mit Acetanhydrid unter kräftigem Rühren u. einer Oelbadtemp. $\leq 130^\circ$ zu gelindem Sieden erhitzt, nach ca. $1\frac{1}{4}$ Stdn. im Vakuum vorsichtig destilliert, den Rückstand mit Eis gekühlt, mit wss. NH_3 versetzt u. 1 Stde. stehengelassen → 2,4-Dioxypyridin-5-carbonsäure-äthylester. A: 60%. (H. J. denHertog, R. 65, 129 (1946).)

Acetanhydrid/Pyridin

$(\text{CH}_3\text{CO})_2\text{O/C}_5\text{H}_5\text{N}$

Die Kondensation von Aldehyden mit aktiven Methyl- u. Methylengruppen

←

s. 2, 665

Hitzeempfindliche Cyanine	
s. 1, 582	
Acetanhydrid/Acetylchlorid	$(CH_3CO)_2O/CH_3COCl$
Cyanine	○
s. 1, 583	
Ammoniumacetat, Piperidinacetat	←
Alkylidencyanessig- und Alkylidenmalonester	←
s. 1, 586; s. a. A. C. Cope u. E. M. Hancock, Org. Synth. 25, 46 (1945); R. K. Ray u. B. K. Bhattacharyya, J. Indian. Chem. Soc. 23, 469 (1946).	
Essigsäure	CH_3COOH
Aminomethylierung	
Mannich-Reaktion	$H \rightarrow CH_2NR_2$
s. 2, 670, bei Thiazolverbindungen s. N. F. Albertson, Am. Soc. 70, 669 (1948)	
Pyrrolring	○
s. 1, 587	
Kondensationen mit β-Diketonen	
Copyrin- und Pyrazol-Ringschluß	
s. 2, 403	
Malonsäure	$H_2C(COOH)_2$
Piperidin-Ringschluß	
s. 2, 671	
Zinn(IV)-chlorid	$SnCl_4$
Chlormethylierung	
s. 1, 584	$H \rightarrow CH_2Cl$
Isocumarine	C
Isocumarinring-Oeffnung	
s. 2, 672	
Phosphoroxychlorid	$POCl_3$
Cumarin-Ringschluß	○
s. 2, 673	
Phosphorpentoxyd	P_2O_5
Azapyrene	
s. 2, 675	

Phosphorsäure H_3PO_4 **Alkylierung von Isocyclen mit Alkoholen** $ArH \rightarrow ArR$

643.

Zur Alkylierung von ar. Verbindungen kann H_3PO_4 verwendet werden. Polysubstitution tritt in beträchtlichem Ausmaß ein. Bei di-subst. Verbindungen herrschen die p-Isomeren vor. Die Alkohole isomerisieren sich gewöhnlich zu verzweigteren Radikalen.
— Verfahren: Zur Mischung der ar. Verbindung mit H_3PO_4 wird unter Rühren allmählich der Alkohol gegeben u. hierauf, ebenfalls unter Rühren, 6—10 Stdn. erhitzt. — B: Toluol u. iso-Propylalkohol → p-Cymol. A: 80%. (W. B. s. I. P. Tsukervanik u. V. Tombovtseva, J. Gen. Chem. (U.S.S.R.), 15, 699, 820 (1945).)

Chlormethylierung $H \rightarrow CH_2Cl$

644.

Naphtalin u. Paraformaldehyd in Eisessig — konz. HCl — 85%ig. H_3PO_4 bei 80—85° 6 Stdn. kräftig gerührt → 1-Chlormethylnaphtalin. A: 74—77%. (O. Grummitt u. A. Buck, Org. Synth. 24, 30 (1944).)

645. Aethylbenzol u. Paraformaldehyd in Eisessig-konz. HCl-85%ig. H_3PO_4 bei 100° 4½ Stdn. gerührt → p-Aethylbenzylchlorid. Umsatz: 38%. A: 73%. (W. B. s. G. M. Kosolapoff, Am. Soc. 68, 1670 (1946). Methode s. Cambron, Can. J. Research 17 B, 10 (1939).)

Skraupsche Chinolinsynthese

s. 2, 676

Arsenpentoxyd As_2O_5

646.

3-Nitro-4-aminoanisol, Glycerin, As_2O_5 u. konz. H_2SO_4 bei 20 mm auf 100° erhitzt, wobei W. abdestilliert, hierauf innerhalb 2 Stdn. bei Siedetemp. weitere konz. H_2SO_4 tropfenweise zugegeben u. bei Zimmertemp. über Nacht stehengelassen → 6-Methoxy-8-nitrochinolin. A: 80%. (M. S. Morgan u. R. S. Tipson, Am. Soc. 68, 1569 (1946); C. 1938. II. 1130; H. S. Mosher, W. H. Yanko u. F. C. Whitmore, Org. Synth. 27, 48 (1947).)

Schwefelsäure H_2SO_4 **Cyclohexylbenzole** $ROH + HR' \rightarrow R \cdot R'$

s. 2, 678

Triarylmethane aus Diarylcarbinolen

s. 2, 679

1,1,1-Trihalogen-2,2-diphenyläthan(DT)-derivate $CO + 2 HR \rightarrow C(R)_2$

s. 1, 588; 2, 677

Diaryl-acenaphtenone

s. 2, 680

Phenolketone aus Phenolen

←

s. 2, 681

Benzanthrone

○

s. 1, 589

Cumarinring

s. 1, 591; 2, 682

Xanthene

647.

Zu einer Mischung von β -Naphtol, Bromacetal u. Eisessig unter Rühren innerhalb ca. 1 Stde. u. unterhalb 35° ein gekühltes Gemisch von Eisessig-konz. H_2SO_4 zugetropft u. noch eine knappe Stde. in Eis stehengelassen \rightarrow Brommethyl-dinaphthoxanten. A: 60—65%. (R. Wizinger u. Y. Al-Attar, Helv. 30, 189 (1947).)

Skraupsche Chinolin-Synthese

648.

p-Anisidin, Glycerin u. p-Nitroanisol unterhalb 40° unter gutem Rühren langsam mit 98% ig. H_2SO_4 versetzt, innerhalb 75—90 Min. auf 135 — 140° erhitzt, 2 Stdn. bei dieser Temp. belassen, auf 90° abgekühlt, innerhalb 20—30 Min. mit einer zweiten Portion 98% ig. H_2SO_4 versetzt, 3 Stdn. bei ca. 140° gelinde unter Rückfluß gekocht u. bei der Aufarbeitung restliches p-Nitroanisol durch Filtrieren u. Bzl.-Extraktion u. restliches p-Anisidin durch Diazotieren abgetrennt \rightarrow

6-Methoxychinolin. A: 66%. — Durch anfängliches Erwärmen der Reaktionsmischung auf eine niedere Temp. kann die Reaktion unter Kontrolle gehalten werden, wird die Ausbeute verbessert u. ein reineres Produkt erhalten. (R. C. Elderfield u. a., Am. Soc. 68, 1584 (1946).)

s. a. 1, 590

Isochinoline

649.

m-Oxybenzaldehyd u. Aminoacetal $\frac{1}{2}$ Stde. auf dem Dampfbad erhitzt, in Bzl. gelöst, entwässert, zur abgekühlten Lsg. auf 0° gekühlte 80%ig. H_2SO_4 unter kräftigem Schütteln gegeben, über Nacht bei $3-5^\circ$ u. hierauf 24 Stdn. bei Zimmertemp. stehengelassen \rightarrow 7-Oxyisochinolin (Aus. f. 661). A: 64%. (R. B. Woodward u. W. E. Doe-ring, Am. Soc. 67, 868 (1945).)

Acridon-Ringschluß

s. 2, 683

Chlorsulfonsäure

$ClSO_3H$

1,1,1-Trihalogen-2,2-diphenyläthan(DT)-derivate

$CO + 2 HR \rightarrow C(R)_2$

650.

Chloral u. Chlorbenzol mit 10% Ueberschuß Chlorsulfonsäure evtl. in CCl_4 kondensiert \rightarrow 1,1,1-Trichlor-2,2-bis-(p-chlorphenyl)-äthan. Roh-A: bis zu 77%. — An Stelle der üblicherweise als Kondensationsmittel in großem Ueberschuß verwendeten konz. H_2SO_4 u. der hier verwendeten Chlorsulfonsäure werden auch mit FSO_3H gute Ergebnisse erzielt. (Ausführliche Beschreibung der Versuchsbedingungen s. W. H. C. Rueggeberg u. a., Ind. Eng. Chem. 38, 211 (1946); 39, 868, 1683 (1947).)

Jod

J

Ketone aus Carbonsäureanhydriden

$CO \cdot O \cdot CO \rightarrow COR$

651.

Thiophen u. 95%ig. Acetanhydrid unter Röhren mit etwas Jod versetzt u. 1 Stde. unter Rückfluß gekocht \rightarrow 2-Acetylthiophen. A: 86%.

— Entsprechend: 2-Benzoylthiophen. A: 90%. — 2-Acetyl furan. A: 60%, mit HJ 76%. Die Reaktion kann auch mit $ZnCl_2$, Al_2O_3 - SiO_3 u. andern Katalysatoren durchgeführt werden. (H. D. Hartough u. A. I. Kosak, Am. Soc. 68, 2639 (1946) 69, 1012, 1014 (1947).)

Hydrochloride org. Basen

←

**Aminomethylierung bei N-Heterocyclen
Mannich-Reaktion**

s. 3, 608

Fluorwasserstoffsäure

HF

**1,1,1-Trihalogen-2,2-diphenyläthan(DT)-
derivate**

652. Chlorbenzol, Chloral u. HF 5 Stdn. auf 70—80° erwärmt → 1,1,1-Trichlor-2,2-di-(p-chlorphenyl)-äthan. A: 88%. (Weitere Einzelheiten des Verfahrens s. J. H. Simons u. a., Am. Soc. 68, 1613 (1946).)

Salzsäure

HCl

Methylierung

s. 1, 592

**Methylendiaryle aus Arylen und
Formaldehyd**

←

s. 3, 163

Chloralkylierung

s. 3, 753

Chlormethylierung

653.

Mesitylen, konz. HCl u. 37%ig. Formaldehyd unter Einleiten von HCl u. kräftigem Rühren 5½ Stdn. im Wasserbad auf 55° erwärmt, wobei nach 2—3 Stdn. die zweite Hälfte der Formaldehyd-Lsg. zugegeben wurde → α -2-Chlorisodurol (Ausg. f. 683). A: 55—61%. (R. C. Fuson u. N. Rabjohn, Org. Synth. 25, 65 (1945).)

s. a. 1, 593—5, 597/8

Methylierung

s. 1, 596

Aminomethylierung

Mannich-Reaktion

654.

Acetophenon mit Dimethylamin-hydrochlorid u. Paraformaldehyd in 95%ig. Alk. in Ggw. von etwas konz. HCl 2 Stdn. unter Rückfluß gekocht → β -Dimethylaminopropiophenon-hydrochlorid. A: 68—72%. (C. E. Maxwell, Org. Synth. 23, 30 (1943).)

655.

1-Aceto-4-methoxynaphton mit Dibutylamin-hydrochlorid, Paraformaldehyd u. ein wenig konz. HCl in Nitromethan-abs. Alk.-Toluol unter Röhren, Rückfluß u. Wasserabscheidung $\frac{1}{2}$ Stde. bei 92—93° gekocht → 4-Methoxy-1-(β -dibutylamino)-propionaphthon. A: 62%. — Nitromethan erwies sich als besonders geeignetes Lösungsmittel. (W. B. s. S. Winstein u. a., J. org. Chem. 11, 215 (1946). S. a. J. Schultz u. a., J. org. Chem. 11, 314 (1946).) s. a. 1, 599

Dialkylaminoacetonitrile

656.

Dimethylamin in W. unter kräftigem Rühren unterhalb 25° mit 37%ig. Formaldehyd, hierauf bei der gleichen Temp. mit 96%ig. NaCN, nach 1 Stde. mit konz. HCl versetzt u. 15 Stdn. stehengelassen → Dimethylaminoacetonitril. A: 73—83%. (R. A. Turner, Am. Soc. 68, 1607 (1946).)

Substitution von Carbonsäureamiden über Carbonsäure-methylol-amide

657.

2 g Sorbinsäureamid, Formaldehyd u. K-Carbonat in W. 2 Stdn. auf dem Wasserbad erwärmt u. am nächsten Tag aufgearbeitet → 2 g N-Methylolsorbinsäureamid, davon 1,8 g mit Brenzkatechin in konz. HCl-Alk. 48 Stdn. stehengelassen → 1,7 g N-(3,4-Dioxybenzyl)-sorbinsäureamid. (R. D. Haworth u. A. H. Lamberton, Soc. 1946, 1003.)

Styrylheterocyclen

s. 2, 685

Indolylidenverbindungen

s. 2, 684

Styrylbenzothiazole

s. 1, 602

Benzopyryliumsalze

s. 1, 603

2,3-Diphenylindole

658.

p-Toluidin mit Benzoin u. konz. HCl unter Rückfluß gekocht → 6-Methyl-2,3-diphenylindol. A: 90%. Ebenso: N-Methylanilin → 1-Methyl-2,3-diphenylindol. A: 52%. (W. B. s. E. Ritchie, J. Proc. Roy. Soc. N. S. Wales 80, 33 (1946); C. A. 41, 3094 c.)

Tetrahydropyridinring

s. 1, 600/1

Chinolinring-Synthese

s. 2, 686

Bromwasserstoffsäure

HBr

BrommethylierungH → CH₂Br

659.

3-Chlor-2,5-diphenylfuran mit Paraformaldehyd in HBr-Eisessig 25 Stdn. geschüttelt → 3-(Bromomethyl)-4-chlor-2,5-diphenylfuran. A: 79%. (W. B. s. R. E. Lutz u. P. S. Bailey, Am. Soc. 68, 2002 (1946).)

Aethylenderivate aus Alkoholen

2 R → R · R

Dimerisierung

660.

Gewisse Diarylcarbinole werden durch starke Mineralsäuren zu Aethylenen dimerisiert. — B: (9-Phenanthryl)-(2-äthoxy-naphtyl-1)-carbinol mit 48%ig. HBr u. Essigsäure 48 Stdn. unter Rückfluß gekocht → 1,2-Di-[(9-phenanthryl)-(2-äthoxynaphyl-1)]-äthylen. (W. B. s. F. Bergmann u. S. Israelashvili, Am. Soc. 68, 354 (1946).)

Trimethincyanine

s. 2, 687/8

←

Ueber Zwischenprodukte

ü. Z.

**Einführung der Methylgruppe in
ar. Kerne**H → CH₃

661.

Zu einer Lsg. von 7-Oxyisochinolin (Darst. s. 649) in abs. Methanol Piperidin gegeben, auf ca. 15° gekühlt, wss. 33%ig. Formaldehyd-Lsg. zugefügt, ca. 12 Stdn. bei Zimmertemp. stehengelassen, zur Trockene eingedampft u. mit Na-Methylat in abs. Alkohol 10—12 Stdn. im Autoklaven auf 220° erhitzt → 7-Oxy-8-methylisochinolin. A: 63%. (R. B. Woodward u. W. E. Doering, Am. Soc. 67, 860 (1945).)

Aethylenderivate aus Ketonen

CO → C:C

s. 2, 485

**Einführung der Aldehydgruppe in
Heterocyclen**

H → CHO

**Aldehyde aus α-Ketocarbonsäuren über
Anile**

s. 2, 689

Methylketone aus CarbonsäurenCOOH → COCH₃**Aufbau um 1 C-Atom**

s. 2, 690

Ketone aus Carbonsäuren

COOH → COR

s. 2, 691

Alkylierung von Aminen

NH → NR

s. 2, 692

Nitrile aus AldehydenCHO → CH₂CN**Aufbau um 1 C-Atom****α-Thioketocarbonsäuren aus Aldehyden****Aufbau um 2 C-Atome**

662.

Veratrumaldehyd u. Rhodanin mit geschmolzenem Na-Aacetat in Eisessig unter gelegentlichem Schütteln $\frac{1}{2}$ Stde. gekocht → Veratralrhodanin (A: 96%) in 15%ig. NaOH unter gelegentlichem Schütteln auf kochendem Wasserbad ca. $\frac{1}{2}$ Stde. bis zur vollständigen Lsg. erhitzt → 3,4-Dimethoxyphenyl-thiobrenztraubensäure (A: ca. 100%), davon 75 g mit Hydroxylamin-Lsg., dargestellt durch Auflösen von Na in Alk., Zugabe von Hydroxylamin-chlorhydrat u. Filtrieren, versetzt, die entstandene Lsg. ca. 20 Min. auf dem Wasserbad erhitzt, den Alk. im Vakuum abdestilliert, den Rückstand in 5%ig. NaOH gelöst, vom Schwefel abfiltriert u. angesäuert → 72 g α -Oximino- β -3,4-dimethoxyphenyl-brenztraubensäure, davon 93 g in Acetanhydrid vorsichtig erwärmt, bis die Gasentwicklung aufgehört hat → 65 g 3,4-Dimethoxyphenyl-acetonitril. (P. L. Julian u. B. M. Sturgis, Am. Soc. 57, 1126 (1935); s. a. J. A. Barltrop, Soc. 1946, 958. E. H. Fisher II. Hibbert, Soc. 69, 1208 (1947); Methode s. Gränacher u. a. Helv. 5, 610 (1922), 6, 458 (1923).)

Jodwasserstoffsäure

HJ

Austausch von Wasserstoff gegen Acetyl
s. 3, 651H → COCH₃**Stickstoff ↓**CC $\ddot{\text{N}}$ *Ohne Hilfsstoffe*

o. H.

KernphenylierungH → C₆H₅

s. 1, 604

 α,β -Aethylen- β -aminocarbonsäureester aus Formamidinen

←

663.

Bis-(m-chlorophenyl)-formamidin (Darst. s. 311) u. Malonsäurediäthylester $3\frac{1}{2}$ Stdn. auf 116–120° erhitzt → roher α -Carbäthoxy- β -m-chlor-

anilino-acrylsäureäthylester. Umsatz 38%, A: 90%. (C. C. Price u. R. M. Roberts, Am. Soc. 68, 1255 (1946).)

β -Acetanilidovinyl-N-heterocyclen

s. 2, 693

Cyclopropanring aus Diazoverbindungen

664.

Auf 145—150° erhitztes Phenanthren unter Rühren innerhalb 10 Std. tropfenweise mit Diazoessigsäureäthylester versetzt u. das Reaktionsprodukt anschließend mit alkoh. NaOH verseift → Dibenz-norcaradiencarbonsäure. Roh-A: 57, 4%. (N. L. Drake u. T. R. Sweeney, J. Org. Chem. 11, 67 (1946).)

Carbazole aus Triazolen

s. 1, 614

Lithium

Li

Einführung der Aldehydgruppe in ar. Kerne

$\text{H} \rightarrow \text{CHO}$

s. 2, 694

Natrium

Na

Synthese sterinähnlicher Verbindungen

s. 1, 606

Natriumhydroxyd

NaOH

Subst. Acetamidomalonester

s. 2, 695

Natronlauge

Thiazinocyanine

s. 2, 696

Chinolinring-Synthese mit Azomethinen

s. 1, 610

Natrium/Alkohol

NaOR

α -Aminocarbonsäuren aus tert. Aminen

$\text{CH}_2(\text{NH}_2)\text{COOH}$

Aufbau um 2 C-Atome

665.

Eine Lsg. von Na in abs. Alk. mit 3-Diäthylaminomethyl-5-methylindol u. Acetamidocyanessigsäureäthylester versetzt, nach vollständiger Lsg. unter Rühren u. gelegentlichem Kühlen unterhalb 40° tropfenweise Dimethylsulfat zugefügt u. über Nacht stehengelassen → α -Acetamido- α -cyan-(5-methylindol)-propionsäureäthylester (A: 87%) mit wss. NaOH 15 Stdn. unter Rückfluß gekocht → 5-Methyltryptophan (A: 55%). (M. E. Jackman u. S. Archer, a. H. N. Rydon, Soc. 1948, 705. W. heterocyclische Verbindungen s. W. Herz, K. Dittmer u. J. S. Cristol, Am. Soc. 70, 504 (1948); N. F. Albertson, Am. Soc. 70, 669 (1948).)

Alkylierung von β -Ketocarbonsäureestern

Ringschluß zu Isocyclen

s. 2, 697

Pyrimidinring

s. 1, 605

Natriumamid

$NaNH_2$

Synthese sterinähnlicher Verbindungen

s. 1, 606

Natriumacetat

$Na(CH_3COO)$

Cyanine

s. 1, 619; 2, 698

Natriumnitrit

$NaNO_2$

Vereinigung von Arylkernen

$Ar + Ar' \rightarrow Ar \cdot Ar'$

Gombergsche Diazokupplung

s. 1, 608

Phenylierung

s. 2, 700

Dimerisierung

s. 2, 701

Vereinigung von Arylkernen

über Triazene

s. 1, 607

Piperidin $C_5H_{11}N$ **Chinolin-Synthese mit Azomethinen**

s. 1, 610/1

Acridine

s. 1, 609

Kupfer Cu **Carbazole aus Triazolen**

s. 1, 614

Kupferchlorid $CuCl_2$ **Diazokupplung**

s. 1, 616, s. a. G. A. R. Kon, Soc. 1948, 224

Kupfercyanid $CuCN$ **Austausch von Amino- gegen Cyangruppen** $NH_2 \rightarrow CN$

666. Na-4-Aminobiphenyl-3-sulfonat (Darst. s. 507) u. $NaNO_2$ in W. unterhalb 0° unter kräftigem Rühren zu HCl gegeben, bei 0° 20 Min. weitergerührt, filtriert u. den Rückstand bei 50—60° in kleinen Portionen unter Rühren zu CuCN, aus $CuSO_4$ u. KCN, gegeben → Na-4-Cyanbiphenyl-3-sulfonat. A: 83%. (J. E. Jones, J. org. Chem. 10, 537 (1945).)

Zinkchlorid $ZnCl_2$ **2,3-subst. Chinoline**

s. 1, 620

Zinkcyanid $Zn(CN)_2$ **Gattermann-Koch-Synthese****Aldehyde** $H \rightarrow CHO$

s. 1, 616, s. a. W. Gruber u. F. Traub, M. 77, 414 (1947)

Methylierung $H \rightarrow CH_3$

s. 1, 617

Quecksilberoxyd HgO **Symm. Dialkyldiaryläthylene**

s. 1, 615

Acetanhydrid $(CH_3CO)_2O$ **Cyanine**

s. 1, 619

Hexamethylentetramin $C_6H_{12}N_4$ **Einführung der Aldehydgruppe in ar. Kerne** $H \rightarrow CHO$ **p-Dialkylaminobenzaldehyde**

s. 2, 702

Hexamethylentetramin/Borsäure $C_6H_{12}N_4/HBO_2$ **o-Oxyaldehyde aus Phenolen**

667. Die Duff-Reaktion zur Darst. von o-Oxyaldehyden aus Phenolen ist so allgemein anwendbar wie die Reimer-Tieman-Reaktion, ist aber kürzer u. gibt bessere Ausbeuten. Sie wurde bei mehreren Phenolen angewandt, bei denen die Reimer-Tiemann-Reaktion versagt. Nicht anwendbar ist sie bei Nitro-, Dinitro-, Thio-phenol u. 2-Oxypyridin. — Verbessertes Verfahren: Eine innige Mischung des Phenols mit Hexamethylentetramin wird unter kräftigem Rühren bei 150° zu einer Lsg. von Borsäure in Glycerin gegeben u. 20 Min. bei 150—165° weitergerührt. — B: 2-Methyl-4-tert. amyl-phenol → 2-Oxy-3-methyl-5-tert. amylbenzaldehyd. A: 19%. (W. B. s. L. M. Liggett u. H. Diehl, Proc. Iowa Acad. Sci. 52, 191 (1945); C. A. 41, 110 e.)
s. a. 1, 621

Phosphoroxychlorid $POCl_3$ **Aldehydsynthesen mit Methylformanilid**

s. 1, 612

p-Aminoaldehyde

s. 2, 703

heterocyclische Aldehyde

668.

Eine Mischung von N-Methylformanilid u. $POCl_3$ unter Wasserausschluß 15 Min. gerührt, hierauf Aethylendichlorid u. 2-Carbäthoxyindol zugegeben u. 1 Stde. unter Rückfluß gekocht → 2-Carbäthoxyindol-3-aldehyd. A: 99,5%. (W. B. s. A. C. Shabica u. a., Am. Soc. 68, 1156 (1946).)

Salzsäure HCl **Naphtalinring-Synthese**

s. 2, 704

 \bigcirc *Nickelsulfat* $NiSO_4$ **Austausch von Amino- gegen Cyan-Gruppen**

s. 2, 705

 $NH_2 \rightarrow CN$

Ueber Zwischenprodukte

ü. Z.

Diarylacroleine

←

s. 2, 706

Halogen +**CC Hal***Ohne Hilfsstoffe*

o. H.

Diazomethylketone aus Carbonsäurechloriden

s. 2, 707

Synthesen mit Diazomethan.**Aufbau um 1 C-Atom****Diazomethylketone aus Carbonsäure-chloriden**

s. 2, 707

Oxymethylketone aus Carbonsäuren

s. 1, 626

Halogenmethylketone aus Carbonsäure-chloriden

s. 1, 623—5

Aminomethylketone über Halogen-methylketone

s. 3, 334

Arndt-Eistertscher Säureaufbau

s. 1, 627—30; 2, 216, 771

Homoamide

s. 1, 631; 2, 708

Lithium

Li

Austausch von Brom gegen Methyl

s. 1, 632

Natrium

Na

Synthese von Kohlenwasserstoffen

s. 2, 710b

Wurtz-Fittig-Synthese

669.

Zu Na-Schnitzeln, die mit trockenem Ae. bedeckt sind, innerhalb 2½ Stdn. u. möglichst bei ca. 20° eine Mischung von n-Butylbrom-

mid u. Brombenzol allmählich zugetropft u. unter gelegentlichem Schütteln 2 Tage bei Zimmertemp. stehengelassen → n-Butylbenzol. A: 65—70%. (R. R. Read, L. S. Foster, A. Russell u. V. L. Simril, Org. Synth. 25, 11 (1945).)

s. a. 1, 633; 2, 710/a; optisch aktive Kohlenwasserstoffe s. R. L. Letsinger, Am. Soc. 70, 406 (1948)

Arylierung über Aether

s. 3, 690

Alkylierung von Acyloinen

s. 3, 616

Alkylierung von β -Ketocarbonsäureestern

s. 1, 638

Malonestersynthese

s. 2, 485, 711

Kalium

Alkylierung von β -Ketocarbonsäureestern

s. 2, 713

Reaktionsträge Ester

s. 2, 712

Natronlauge

Einführung der Aldehydgruppe in ar. Kerne nach Reimer-Tiemann

670.

Eine Lsg. von β -Naphtol in 95%ig. Alk. u. NaOH bei 70—80° unter Röhren tropfenweise mit Chloroform so versetzt, daß ohne weiteres Erhitzen gelindes Sieden aufrechterhalten wurde, u. hierauf noch 1 Stde. weitergerührt → 2-Oxy-1-naphthaldehyd. A: 38—48%. (A. Russell u. L. B. Lockhart, Org. Synth. 22, 63 (1942).)

s. a. 2, 714

Kaliumhydroxyd

KOH

Polyarylkondensation

○

s. 1, 652

Alkalialkoholate

Alkylcarbonate als Lösungsmittel für Metallierungs- u. Alkylierungsreaktionen

CH → CR

s. 1, 635

Hal → C · COOH

K

NaOH

H → CHO

Alkylierung von β -Ketocarbonsäureestern

S. 1, 636

Alkylierung von monosubst. Malonestern $(R'OOC)_2C \begin{cases} H \\ \diagdown \\ R \end{cases} \rightarrow (R'OOC)_2C \begin{cases} H \\ \diagdown \\ R \end{cases}$

50

Natriumalkoholat u. dgl.

NaOR

Alkylierung von Ketonen

$$\text{COCH} \rightarrow \text{COCR}$$

- $$671. \quad \text{C}_6\text{H}_5\text{COCH}_3 + 3 \text{BrCH}_2\text{CH=CH}_2 \rightarrow \text{C}_6\text{H}_5\text{COC(CH}_2\text{CH=CH}_2)_3$$

Gewisse Ketone, bei denen NaNH_2 , Selbstkondensation bewirkt, können mit Na-tert. Amylat alkyliert werden. — B: Acetophenon u. Allylbromid mit Na-tert. Amylat in Xylol \rightarrow Triallyl-acetophenon. A: 70%. (W. B. s. G. Vavon u. J. Conia, C. r. 223, 245 (1946).) s. a. 2, 715, 732, 782

Alkylierung und Spaltung von 1,3-Keto-sulfonen

S. 2. 716

Alkylierung von β -Ketocarbonsäureestern

s. 1, 637; 2, 717/8, 827

Alkylierung von Malonestern

$$(R'COOC)_2C \begin{cases} < \\ H \end{cases} \rightarrow (R'COOC)_2C \begin{cases} < \\ R \end{cases}$$

672. Bei der Alkylierung von Malon- u. Cyanessigestern kann die Ausbeute dadurch erhöht werden, daß man Na-Aethylat zur Mischung des Esters u. des Halogenids so zugibt, daß ein Tropfen der Reaktionsmischung Phenolphthalein-Papier höchstens schwach blaßrot färbt. — Auch bei der Kondensation von Harnstoff mit Na-Methylat zu Barbitursäuren kann durch dieses Verfahren die Ausbeute erhöht werden. (B. s. M. A. Phillips, Ind. Chemist, 21, 678 (1945).)
s. a. 1, 639

Malonestersynthese

$$\text{Hal} \rightarrow \text{CH}_3\text{COOH}$$

March 2019 Edition

Cyclohexanorring-Synthese

8-2-720

Alkylierung von monosubst. Malonestern

March 1970

Alkylierung von Acylamino-malonestern

$$(R'COO)_2C \begin{array}{c} NHAc \\ | \\ H \end{array} \rightarrow (R'COO)_2C \begin{array}{c} NHAc \\ | \\ R \end{array}$$

673.

Acetamidomalonsäurediäthylester u. Acetamidocyanessigsäureäthylester werden im allgemeinen dadurch alkyliert, daß man ihre Na-Salze mit einem 5—10%ig. Ueberschuß eines Alkylhalogenids bis zur neutralen Reaktion auf Lakmus unter Rückfluß kocht. Bereits in Ggw. von wenigen % Wasser sinkt die Ausbeute. — B: Eine Lsg. von Na u. Acetamidomalonsäureester in Alk. mit Methyljodid versetzt u. 13 Stdn. unter Rückfluß gekocht → Methylacetamidomalonsäure-diäthylester. A: 88%. (W. B. s. N. F. Albertson, Am. Soc. 68, 450 (1946).)

α-Aminocarbonsäuren aus Halogeniden
Aufbau um 2 C-Atome

674.

Durch Kochen in Toluol gereinigtes Na in abs. Alk. gelöst, Acetamidomalonester u. hierauf 2-Chlormethylthiophen zugegeben u. 4 Stdn. unter Rückfluß gekocht → Thenylacetamidomalonsäurediäthylester (A: 87,7%) mit 48%ig. HBr 7 Stdn. unter Rückfluß gekocht → β -2-Thienylalanin (Roh-A: 78%). (K. Dittmer, W. Herz u. J. S. Chambers, J. biol. Chem. 166, 541 (1946); s. a. H. Erlenmeyer u. W. Grubenmann, Helv. 30, 297 (1947).)

s. a. 1, 644

Alkylierung von Bernsteinsäureestern

4-Oxy-2-naphthoesäuren

s. 1, 645

Alkylierung von α -Cyancarbonsäure-estern

s. 1, 646; 2, 722; 3, 672

Phenylcyansubstituierte Carbonsäuren

s. 1, 647

**gleichzeitig Wanderung der Doppelbindung
Dialkylvinyl-alkylcyanessigester aus
Alkylidencyanessigestern**

675.

Zu einer Lsg. von Na in abs. Alk., die durch teilweises Eintauchen in ein Trockeneisbad auf -5° gekühlt wurde, unter Röhren 2-Cyan-3-äthylpenten-2-säureäthylester innerhalb 8—10 Min. getropft, 20 Min. weitergeführt, aus dem Tropftrichter so schnell als möglich Methyljodid

zugegeben, sofort mit starker Flamme schnell zum Sieden erhitzt, die heftige Reaktion ohne Kühlung ablaufen gelassen, außer wenn sehr viel durch den Kühler entweicht, nach Abklingen der Reaktion noch 10–15 Min. bis zur neutralen Reaktion auf Lakmus unter Rückfluß gekocht → 2-Cyan-3-äthyl-2-methylpenten-3-säureäthylester. A: 81–87 %. – Die Methode ist allgemein anwendbar. (E. M. Hancock u. A. C. Cope, Org. Synth. 25, 44 (1945).)

α -Acyl-lävulinsäureester

s. 1, 648

ω -Halogen- β -ketocarbonsäureester

s. 1, 649, 770

Enollactone

s. 1, 650

**β . β' -Diketocarbonsäureester, die zugleich
 γ -Diketone sind**

s. 1, 651

**β -Arylisopropylamine aus ar. Aldehyden
über Glycidsäureester**

Darzens-Reaktion

s. 1, 634

**Austausch von Brom gegen Acetyl
Pyranring-Synthese und -Oeffnung**

Hal → CH₂COCH₃

676.

1 Mol Acetessigester, 1 Mol Trimethylenbromid u. 2 Mol Na in Alk. 22 Stdn. auf 80–85° erhitzt → 2-Methyl-3-carbäthoxy-5,6-dihydro-pyran (A: 80 %) mit 48 %ig. HBr 4 Stdn. bei Zimmertemp. u. 3 Stdn. unter Sieden gerührt → 6-Bromhexan-2-on. A: 70 %. (E. P. Anderson, J. V. Crawford u. M. L. Sherrill, Am. Soc. 68, 1294 (1946).)

Kalium-tert.-butylat

KOR

Alkylierung von Ketonen

COCH → COCR

s. 2, 723/4

Alkylierung von β -Ketocarbonsäure-estern

677. Im allgemeinen ist K-t-Butylat das beste Kondensationsmittel, besonders zur Alkylierung von α -subst. Acetessigestern. Für spezielle Fälle können empfohlen werden: Na-Aethylat zur Alkylierung mit n-Butylhalogeniden, K-Aethylat zur Alkylierung mit i-Butyl- u. s-Butyl-jodiden, ferner Na, NaH o. NaNH_2 in Dioxan. Alkyljodide reagieren schneller, geben aber nicht immer wesentlich bessere Ausbeuten. Die maximalen Ausbeuten betrugen bei n-Butylhalogeniden 80%, bei i-Butyl- u. s-Butyl-halogeniden 55—65%. (B. s. W. B. u. A. Renfrow, Am. Soc. 68, 1801 (1946).)

678.

1-Benzoyl-3-carbäthoxy-4-piperidon mit Benzylchlorid in einer Lsg. von K in tert.-Butylalkohol unter N_2 10 Stdn. unter Rückfluß gekocht \rightarrow 1-Benzoyl-3-benzyl-3-carbäthoxy-4-piperidon. A: 88%. (G. Stork u. S. M. McElvain, Am. Soc. 68, 1053 (1946).)

Natriumamid NaNH_2

Alkylierung von Ketonen

s. 1, 655

 $\text{COCH} \rightarrow \text{COCR}$

Aminoalkylierung

679.

5 g β -Tetralon u. Diäthylaminoäthylchlorid in Toluol unter N_2 , unterhalb 35° u. unter Rühren mit fein pulverisiertem NaNH_2 versetzt, unter weiterem Rühren 5 Stdn. auf 85° erwärmt u. noch 1 Stde. unter Rückfluß gekocht \rightarrow 6 g 2-Keto-1-(β -diäthyl-aminoäthyl)-1,2,3,4-tetrahydronaphtalin. (W. B. s. J. A. Barltrop, Soc. 1946, 958; Methode s. Eisleb, B. 74, 1433 (1941).)

Einführung von angularen Methylgruppen
s. 2, 725a

Verzweigte Carbonsäuren
s. 2, 725

Alkylierung von Nitrilen

680.

Zu NaNH_2 in fl. NH_3 (ausführliche Darst. aus Na in Ggw. von etwas $\text{Fe}(\text{NO}_3)_3$ (s. Original) unter Kühlung mit Trockeneis innerhalb 10 Min. Benzylcyanid gegeben, das Trockeneis-Bad entfernt, 15 Min. gerührt, schwefelfreies Toluol u. trockenen Ae. zugetropft, NH_3 u. den größten Teil des Ae. abdampfen gelassen, zur warmen Lsg., evtl. unter Kühlung, innerhalb ca. 20 Min. Bromcyclohexan gegeben u. noch 2 Stdn. im Oelbad unter Rückfluß gekocht $\rightarrow \alpha$ -Cyclohexylphenylacetonitril. A: 65—77%. (E. M. Hancock u. A. C. Cope, Org. Synth. 25, 25 (1945). S. a. G. Newberg u. W. Webster, Soc. 1947, 738; C. H. Tilford, Am. Soc. 69, 2902 (1947).

s. 1, 656; s. a. E. C. Horning, M. G. Horning u. E. J. Platt, Am. Soc. 70, 2072 (1948)

Acetylenecarbonsäuren

s. 1, 654

**Glycidsäureester aus Ketonen und α -Halogencarbonsäureestern
Darzens-Claisen-Reaktion**

681.

Acetophenon u. Chloressigsäureäthylester in Bzl. unter Röhren bei 15 bis 20° innerhalb 2 Stdn. mit fein pulverisiertem NaNH_2 versetzt u. noch 2 Stdn. bei Zimmertemp. weitergerührt $\rightarrow \beta$ -Methyl- β -phenyl-glycidicäure-äthylester (Ausg. f. 77). A: 62—64%. (C. F. H. Allen u. J. Van Allan, Org. Synth. 24, 82 (1944).)

Natriumcyanid**Nitrile aus Halogeniden**

682.

Eine wss. Lsg. von NaCN unter kräftigem Röhren innerhalb 15 Min. mit einer Lsg. von β -Aethoxyäthylbromid (Darst. s. 465) in 95% ig. Alk. versetzt u. unter weiterem Röhren 10 Stdn. gelinde gekocht $\rightarrow \beta$ -Aethoxypropionitril. A: 52—58%. (G. C. Harrison u. H. Diehl, Org. Synth. 23, 33 (1943).)

683.

Zu einer Lsg. von NaCN in W.-Alk. unter Röhren u. Erhitzen im sd. Wasserbad langsam α^2 -Chlorisodurol (Darst. s. 653) gegeben u. weitere 3 Stdn. erhitzt u. gerührt \rightarrow Mesitylacetonitril (Ausg. f. 196). A: 89—93%. (W. B. s. R. C. Fuson u. N. Rabjohn, Org. Synth. 25, 65 1945).)

s. a. 1, 657

Carbonsäuren aus Alkoholen

$\text{CH}_2\text{OH} \rightarrow \text{CH}_2\text{COOH}$

s. 2, 726

Carbonsäuren aus Halogeniden

$\text{Hal} \rightarrow \text{COOH}$

s. 1, 658

Kaliumcyanid

KCN

s. 2, 727

Kaliumjodid

KJ

Nitrile aus Halogeniden

$\text{Hal} \rightarrow \text{CN}$

s. 3, 687

Tetracyan-cyclopropane aus Oxoverbindungen

○

684.

Monobrommalononitril kann mit Ketonen u. Aldehyden unter Einwirkung von KJ zu Tetracyan-cyclopropanen kondensiert werden. B: Monobrommalononitril u. Methyläthylketon mit KJ in Alk.-W. \rightarrow 3-Methyl-3-äthyl-1,1,2,2-tetracyan-cyclopropan. A: 68%. (W. B. s. S. Wideqvist, Ark. Kemi 20 B, Nr. 4 (1945).)

Triäthylamin

$N(\text{C}_2\text{H}_5)_3$

Aethylenderivate aus Halogeniden

$2 \text{RHHal} \rightarrow \text{R:R}$

Dimerisierung

685.

Eine Lsg. von 2 g 2,7-Dibrom-9-chlorfluoren in Nitromethan mit Triäthylamin im Einschlußrohr 1 Stde. auf 100° erhitzt \rightarrow 1,63 g 2,7,2',7'-Tetrabromdibiphenylenäthylen. — Die Verwendung von alkoh. NaOH oder Triäthylamin in Isoamyläther war unbefriedigend. (L. A. Pinck u. G. E. Hilbert, Am. Soc. 68, 2014 (1946).)

*Pyridin**C₅H₅N***Furanring-Synthese**

s. 1, 659

Brasanring

686.

45 g 2,3-Dichlornaphthoquinon u. Resorcin in Pyridin 3 Stdn. unter Rückfluß gekocht \rightarrow 40 g 3-Oxybrasanchinon. — Damit sich nicht nur ein Aryläther, sondern ein Furanring bildet, muß die o-Stellung zur Hydroxylgruppe genügend reaktionsfähig sein. (W. B. s. B. Eistert, Chem. B. 80, 47 (1947).)

*Kupfer**Cu***Diaryle aus Arylhalogeniden**2 ArHal \rightarrow Ar·Ar

s. 1, 660—2; s. a. W. Davey, R. W. Latter, Soc. 1947, 264

*Kupfercyanid**CuCN***Nitrile aus Halogeniden**Hal \rightarrow CN

687.

Allylchlorid mit CuCN u. KJ unter Wasserausschluß, Röhren u. Rückfluß ca. 7 Stdn. auf dem Wasserbad erhitzt \rightarrow Allylcyanid (Ausg. f. 198). A: 79—84%. (C. W. Smith u. H. R. Snyder, Org. Synth. 24, 97 (1944).)

s. a. 2, 728

Rosenmund-von Braunsche Nitril-synthese

688.

9-Bromphenanthren unter Röhren bei 250° mit CuCN versetzt, 15 Min. bis zum Einsetzen der Reaktion auf 280° erhitzt, ohne weiteres Erhitzen, aber unter Röhren innerhalb 15 Minuten nochmals mit CuCN versetzt u. noch $\frac{1}{2}$ Stde. gerührt \rightarrow 9-Cyanphenanthren. A: 87%. (M. A. Goldberg, E. P. Ordas u. G. Carsch, Am. Soc. 69, 260 (1947).)

s. a. 1, 663—6

Amidine aus Halogeniden über Nitrile

s. 2, 729

Hal \rightarrow C

Acylycyanide aus Carbonsäurechloriden689. $\text{C}_6\text{H}_5\text{COCl} \rightarrow \text{C}_6\text{H}_5\text{COCN}$

Benzoylchlorid mit CuCN unter gelegentlichem kräftigem Schütteln 1½ Stdn. auf 220—230° Oelbadtemp. erhitzt → Benzoylcyanid (Ausg. f. 197). A: 60—65%. (T. S. Oakwood u. C. A. Weisgerber, Org. Synth. 24, 14 (1944).)

*Silber**Ag***Dimerisierung unter Halogenabspaltung**

s. 1, 699

*Magnesium**Mg***Synthese von Kohlenwasserstoffen****Dimerisierung**

s. 1, 668

Phenanthrenring-Synthese

s. 2, 730

Synthesen mit α -Alkoxyhalogeniden

s. 1, 775

Olefinketten-Synthese

s. 2, 731

Ungesättigte Fettsäuren

s. 2, 821

Arylierung über Aether

690. MgBr + $\text{CH}_3[\text{CH}_2]_6\text{CH}_2\text{OCH}_2\text{CH} = \text{CH}_2 \rightarrow$ CH₂CH = CH₂

n-Octylallylläther mit konz. Phenyl-Mg-bromid-Lsg. 6 Stdn. auf 75° erwärmt → Allylbenzol. A: 85%. (A. 557, 46.) — 1-Phenylnaphthyläther u. Phenyl-Na, aus Chlorbenzol u. Na. in Bzl. 5 Stdn. geschüttelt u. dann 6 Stdn. auf 70° erwärmt → 2-Phenyl-1-naphtol. Roh-A: 63%. (A. 557, 25.) (W. B. s. A. Lüttringhaus u. a., A. 557, 25, 46 (1945); C. A. 40, 5417, 8; s. a. die folgenden Arbeiten.)

Kohlenwasserstoffe aus Tosylaten

691. Br + $\text{CH}_3\text{C}_6\text{H}_4\text{SO}_2\text{OCH}_2\text{CH}_2\text{Cl} \rightarrow$ CH₂CH₂Cl

2-Bromthiophen mit Mg in Ae. u. hierauf mit β -Chloräthyl-p-toluolsulfonat umgesetzt → β -(2-Thienyl)-äthylchlorid. A: 71,4%. (F. F. Blicke u. F. Leonard, Am. Soc. 68, 1934 (1946). Methode s. S. S. Rosander u. C. S. Marvel, Am. Soc. 50, 1491 (1928).)

Kohlenwasserstoffe aus Ketonen

←

s. 1, 669

Aethylenderivate aus Ketonen

CO → C:C

s. 1, 753; 637

Methylenverbindungen

s. 2, 659

p-subst. Aryläthylene

s. 1, 670

Homologe Anthracene aus Anthrachinonen

s. 1, 671

Prim. AlkoholeJ → CH₂OH**Austausch von Jod gegen Oxymethyl**

s. 2, 732

Tiffeneau-Umlagerung

←

s. 1, 672; s. a. M. Mousseron u. Nguyen-Phuoc-Du, Bl. 1948, 91

Subst. β-AethylalkoholeHal → CH₂CH₂OH**Synthesen mit Aethylenoxyd**

s. 1, 673—6; 2, 733

Zusatz eines Aktivators

s. 1, 674; s. a. T. W. Jezierski, Roczniki Chem. 20, 47 (1946); C. A. 42, 1910 d.

Aldehyde

Hal → CHO

mit Orthoameisensäureester

s. 1, 683

mit Methylformanilid

692.

Zu m-Trifluormethylphenyl-Mg-bromid aus m-Brombenzotrifluorid u. Mg in Ae. innerhalb 3 Min. unter Eiskühlung N-Methylformanilid gegeben, 3 Stdn. weitergerührt u. durch vorsichtiges Zugeben von H₂SO₄ hydrolysiert → m-Trifluormethylbenzaldehyd. A: 51,8%. (W. B. s. H. Gilman u. a., Am. Soc. 68, 426 (1946).)

Ketone aus Carbonsäureanhydriden

CO·O·OC → COR

s. 2, 734

Ketone aus Carbonsäurechloriden

COCl → COR

s. 2, 735

Acylierung von β-Ketocarbonsäureestern

s. 1, 688

Acylierung von Malonsäureestern
s. 3, 739

Benzile aus Carbonsäurechloriden
Dimerisierung
s. 1, 684

Carbonsäuren

693. 3-Brom-p-cymol in Mg in trockenem Ae. behandelt u. hierauf innerhalb 9 Stdn. Trockeneis zugegeben → 3-Methyl-6-isopropylbenzoesäure. A: 56%. — Die Verwendung von Trockeneis ist eine bequeme Carboxylierungsmethode als die Verwendung von CO_2 -Gas unter Druck. (C. T. Lester u. C. F. Bailey, Am. Soc. 68, 375 (1946).)
s. a. 1, 685/6

Zink/Kupfer

Ketone aus Carbonsäurechloriden
s. 2, 736

Zinkalkyle

**Ketone aus Carbonsäuren
über Carbonsäurechloride**
s. 1, 695

Zinkalkylhalogenide

s. 1, 696

Ketone aus Carbonsäureanhydriden
s. 1, 697

Zinkchlorid

Ketone aus Carbonsäurechloriden
s. 2, 738; s. a. A. B. Kuchkarov u. I. P. Tsukavanik, J. Gen. Chem. (UdSSR.) 18, 320 (1948)

**Cumaran- bzw. Chromanderivate aus
zweiwertigen Phenolen**
s. 1, 698

Tokopherol-Synthese
s. 2, 739

Cadmium

**Ketone und Ketocarbonsäuren aus
Carbonsäureanhydriden**
s. 2, 740

Ketone aus CarbonsäurechloridenCOCl \rightarrow COR

694.

Einfache u. subst. Ketone, außer solche mit hochaktiver Ketogruppe, können aus Carbonsäurechloriden u. Cd-Alkylen mit Ausbeuten von 50—84% dargestellt werden. Als Lösungsmittel eignet sich am besten Bzl., dagegen nicht Dibutyläther. Di-sek.-alkyl-Cd gibt schlechte Ausbeuten. — B: Isoamyl-Mg-bromid aus Mg u. Isoamylbromid mit CdCl_2 in Ae. 30—35 Min. unter Rückfluß gekocht, den Ae. durch Bzl. ersetzt, β -Carbomethoxypropionylchlorid zugegeben u. noch 1 Stde. unter Rühren u. Rückfluß gekocht \rightarrow 4-Keto-7-methyl-octansäuremethylester. A: 78,7%. (W. B. s. J. Cason, Am. Soc. 68, 2078 (1946). S. a. W. G. Dauben, J. org. Chem. 13, 313 (1948).

Quecksilber

Hg

Dimerisierung unter Halogenabspaltung2 RHal \rightarrow R·R

s. 1, 699

Amalgamiertes Aluminium

Al,Hg

Alkylierung von IsocyclenArH \rightarrow ArR

s. 1, 700

*Aluminiumchlorid*AlCl₃ *ω -Chlorallylisocyclen*

s. 1, 701/2

Triarylverbindungen

←

695.

Trockenes, thiophenfreies Benzol u. trockenen, schwefelfreien CCl_4 unter Eiskühlung allmählich innerhalb 1½ Stdn. mit AlCl_3 versetzt, ohne daß die Reaktionsmischung ins Kochen kommt, nach weiteren 15 Min. das Eisbad entfernt u. nach Aufhören der Wärmeentwicklung ca. 2 Stdn. unter Rückfluß gekocht, bis die HCl-Entwicklung aufhört \rightarrow Triphenylchlormethan. A: 70—85%. Bei der Aufarbeitung muß mit Acetylchlorid behandelt werden, um das leicht entstehende Triphenylcarbinol (s. a. CC Hal. 562) in das Chlorid zurückzuverwandeln. (C. R. Hauser u. B. E. Hudson, jr., Org. Synth. 23, 102 (1943).)

Oxindol-Ringschluß

○

s. 2, 741

Einführung der Aldehydgruppe in ar. KerneH \rightarrow CHO**Gattermann-Koch-Synthese**

696. Die äquimolekulare Mischung von CO- u. HCl-Gas, die zur Reaktion mit ar. Kohlenwasserstoffen in Ggw. von Cu- oder Al-Chlorid gebraucht wird, um ar. Aldehyde zu bilden, kann leicht durch tropfenweises Zugeben von Chlorsulfonsäure zu wasserfreier oder technischer (96—98%ig.) Ameisensäure bei Zimmertemp. erhalten werden. (L. Bert, C. r. 221, 77 (1945).)

Ketonsynthesen nach Friedel-Crafts

$\text{RH} \rightarrow \text{RCOR}'$

697.

Die Modifikation der Friedel-Craftsschen Synthese nach Perrier, B. 33, 815 (1900), wobei der Kohlenwasserstoff zu einem vorgebildeten Komplex von AlCl_3 u. dem Säurechlorid gegeben wird, ist dem üblichen Verfahren überlegen, weil sie einfacher u. schneller ist, weniger Harze u. bessere Ausbeuten gibt. — B: Zu einer Suspension von wasserfreiem AlCl_3 in CCl_4 unter kräftigem Rühren u. Eiskühlung innerhalb 15 Min. Acetylchlorid gegeben, hierauf unterhalb 5° innerhalb 3 Stdn. Cyclohexylbenzol zugetropft u. eine weitere Stde. gerührt \rightarrow p-Cyclohexylacetophenon. A: 91%. (W. B. s. D. T. Mowry, M. Renoll u. W. F. Huber, Am. Soc. 68, 1105 (1946).)

698.

Zu Bromacetylchlorid in frisch dest. CS_2 unter Röhren u. Kühlen mit Eis- CaCl_2 , wasserfreies AlCl_3 , hierauf tropfenweise Guajacol gegeben, 1 Stde. bei tiefer Temp. u. 6 Stdn. bei Zimmertemp. weitergerührt \rightarrow 4-Bromacetylguajacol. A: 75%. — Beim Arbeiten unter Kühlung findet keine Demethylierung statt. (B. Riegel u. H. Wittcoff, Am. Soc. 68, 1913 (1946), C. A. 41, 3099 h.)

699.

9-Acetylcarbazol mit Acetylchlorid u. AlCl_3 in Ggw. von CaBr_2 oder MgBr_2 in CS_2 unter Kühlung zusammengebracht u. dann 2 Stdn. auf 55—60° erwärmt \rightarrow 1,9-Diacetylcarbazol. A: 80—84%. — Die Ggw. von Bromiden, besonders der 2. u. 3. Elementgruppe, begünstigt die Reaktion, vor allem, wenn gewöhnliches, nicht sublimiertes AlCl_3 verwendet wird. (W. B. s. A. A. Berlin, J. Gen. Chem. (U.S.S.R.) 14, 1096 (1944); C. A. 40, 4054, 8.)

700.

Zu einer Lsg. von 4-Methylimidazolon-2 u. ω -Carbäthoxyvalerylchlorid in Nitrobenzol allmählich unter Rühren u. Kühlen wasserfreies $AlCl_3$ gegeben u. 5 Stdn. auf 65° erwärmt, bis die HCl-Entwicklung aufgehört hat → 4-Methyl-5-(ω -carbäthoxyvaleryl)-imidazolon-2. A: 61,9%. (W. B. s. R. Duschinsky u. L. A. Dolan, Am. Soc. 67, 2079 (1945).)

s. a. 1, 703/4, 707-9; 2, 742, 744-8

**Orientierung bei der Acylierung
von Phenol u. bei der Umlagerung
von Phenoestern**

s. 1, 705

**Acylierbarkeit des Benzolkerns
der Indole u. Chinoline**

s. 1, 706

Acylhydrochinonäther

s. 1, 710

Benzoylbenzoësäureester

s. 2, 743

**Einführung der Gruppen $COCOOH$,
 $CHOHCOR$ u. CH_2COOH in ar. Kerne**

s. 1, 712

**Oxydativer Ringschluß bei
Friedel-Crafts-Reaktionen**

s. 2, 749

Zinn(IV)-chlorid

$SnCl_4$

Ketone aus Carbonsäurechloriden

$COCl \rightarrow COR$

s. 2, 751

Eisen(III)-chlorid

$FeCl_3$

Ketonsynthese

$ArH \rightarrow ArCOR$

s. 2, 746

Eisen(III)-chlorid/Magnesium

$FeCl_3/Mg$

Dimerisierung von Halogeniden

$2 RHal \rightarrow R \cdot R$

s. 1, 668

Ueber Zwischenprodukte

ü. Z.

**Einführung der Carboxylgruppe in
den Pyrazolring**

$H \rightarrow COOH$

s. 1, 530

Schwefel↑**CC↑S***Ohne Hilfsstoffe**o. H.***Aethylenderivate aus Sulfonen**

s. 1, 615

←

Cyclohexenring über Sulfone

s. 1, 713

Nitrile aus Aldehyd-bisulfit-verbindungen**Aufbau um 1 C-Atom**

s. 2, 752

*Kaliumcarbonat**K₂CO₃***Thiazincyanine**

s. 2, 753

←

*Pyridin**C₅H₅N***Cyanine**

s. 1, 714

Kohlenstoff↑**CC↑C***Ohne Hilfsstoffe**o. H.***Alkylierung von p-Chinonen mit Acylperoxyden**

←

701.

Di-palmitoylperoxyd u. 2-Methylnaphtochinon in Ligroin unter Rühren bis zur Lsg. allmählich auf 90° u. nach 1 Stde. 30 Min. auf 100° erhitzt → 2-Methyl-3-pentadecyl-1,4-naphtochinon. A: 60%. (W. B. s. L. F. Fieser u. A. E. Oxford, Am. Soc. 64, 2060 (1942). S. a. Am. Soc. 69, 2338 (1947).)

Elektrolyse**Ketone aus Carbonsäuren nach Kolbe**

s. 1, 715/6

↖

*Natronlauge**NaOH***Thioindoxylsynthese**

s. 1, 717

*Natriumalkoholat**NaOR***C-Acyl-Austausch**

Zu einer Lsg. von Na in abs. Alk. Acetessigester gegeben, unter anfänglichem Rühren, im Wasserstrahlvakuum, u. schließlich durch 1-stdg. Erhitzen auf dem Dampfbad bei 2 mm den Alk. vollständig entfernt, zu dem auf Zimmertemp. abgekühlten Rückstand Benzoesäureäthylester gegeben, 6 Stdn. auf 140—150° u. innerhalb einer weiteren Stde. auf 180° erhitzt, wobei ein Teil destilliert → Benzoylessigsäureäthylester. A: 50—55%. (S. M. McElvain u. K. H. Weber, Org. Synth. 23, 35 (1943).)

*Magnesium**Mg* **β -Ketocarbonsäureester aus Carbonsäure-chloriden**

703.

Aethyl-t-butylmalonat mit Mg-Aethylat in Ae. in das Aethoxy-Mg-Derivat übergeführt, hierauf 2-Furoylchlorid in Ae. zugegeben, 15 Min. unter Rückfluß gekocht, unter Kühlung mit W. versetzt, ausgeäthert, den Ae.-Rückstand in trockenem Bzl. aufgenommen, das W. durch Destillation vollständig entfernt u. mit Toluolsulfonsäure 1½ Stdn. unter Rückfluß gekocht → 2-Furoyl-essigsäure-äthylester. A: 70%. (W. B. s. D. S. Breslow, E. Baumgarten u. C. R. Hauser, Am. Soc. 66, 1286 (1944); s. a. G. W. Anderson u. a., Am. Soc. 67, 2197 (1945), wo weitere 5 Methoden zur Darst. von β -Ketocarbonsäureestern angegeben sind, von denen diese Methode die beste ist, wenn nur kleine Mengen gebraucht werden.)

*Chromsäure**CrO₃***Ketone aus 2 Alkohol- oder Aldehydmolekülen oder aus Aldolen**

s. 1, 718; s. a. Am. Soc. 68, 716 (1946)

*Ueber Zwischenprodukte**ü. Z.***Acetylenedicarbonsäureester-Synthesen**

704.

+

↙

↙

2-Furanpropanol u. Acetylendicarbonsäure-diäthylester 12 Stdn. auf dem Dampfbad erhitzt, das entstandene Additionsprodukt in Aethylacetat mit Pd-BaSO₄-Katalysator (s. Schmidt, B. 52, 409 (1919)) bis zur Aufnahme von 1 Mol H₂ hydriert, filtriert, das Lösungsmittel im Vakuum entfernt u. den Rückstand bei 190—200°/12 mm Aethylen abgespalten → 3,4-Dicarbäthoxy-2-furanpropanol. A: 72%. (K. Hofmann u. a., Am. Soc. 69, 191 (1947). Methode s. K. Alder u. H. F. Rickert, B. 70, 1354 (1937).)

Abgabe

Wasserstoff ↑

CC↑H

Lithium

Li

Acetylenalkohole

s. 1, 719

C≡C·C(OH)

Aluminiumchlorid

AlCl₃

Chrysene

○

s. 1, 720

Aluminiumchlorid/Natriumchlorid

AlCl₃/NaCl

Fluoren-Ringschluß nach Scholl

s. 2, 754

*Chloranil***Dehydrierung**

s. 1, 724/5; 2, 755/6

←

N-Bromsuccinimid

←

s. 1, 726; 2, 757/8

**Abbau von Gallensäuren-Seitenketten
zu Methylketonen**

s. 2, 759

**Dehydrierung in der Seitenkette unter
Schutz der Kerndoppelbindung**

s. 2, 760

Bleioxyd

PbO

Chinolinring-Synthese

○

s. 2, 761

*Bleitetraacetat*Pb(CH₃COO)₄

s. 1, 534

CHCH → C:C

*Sauerstoff*O₂

705.

2,3-Dimethyl-tetrahydroanthrachinon (Darst. s. 576) in 5%ig. alkoh. KOH gelöst und 24 Stdn. Luft durchgeleitet → 2,3-Dimethylanthrachinon. A: 94—96%. C. F. H. Allen u. A. Bell, Org. Synth. 22, 37 (1942).)

Schwefel

S

706.

1-Phenyldialin (Darst. s. 637) u. pulverisierten Schwefel im Metallbad 30 Min. auf 250—270° Badtemp. erhitzt → 1-Phenylnaphtalin. A: 91—94%. (R. Weiß, Org. Synth. 24, 84 (1944).)

Phenole aus Ringketonen

707.

2,3-Diphenyl-1-keto-1,2,3,4-tetrahydronaphthalin u. Schwefel 10 Min. auf 250° erhitzt u. hierauf die Temp. innerhalb 30 Min. auf 300° erhöht → 2,3-Diphenyl-1-naphtol. A: 95%. (F. Bergmann u. J. Szmuszkovic, Am. Soc. 68, 1662 (1946).)
s. a. 1, 668, 721

**Ersatz von Selen durch Schwefel
als Dehydrierungsmittel**
s. 1, 721

Selen

s. 1, 397, 723; 2, 762

*Se**Chromoxyd-Aluminiumoxyd**Cr₂O₃-Al₂O₃***Aethylenderivate**

708. Aethylbenzol in Bzl. bei Atmosphärendruck u. 581° über einen Chromoxyd-Aluminiumoxyd-Katalysator geleitet → Styrol. A: pro Passage 34,8%. Gesamtausbeute: 89,7%. (W. Einzelheiten des Verfahrens s. J. M. Mavity, E. E. Zetterholm u. G. L. Hervert, Ind. Eng. Chem. 38, 829 (1946).)

*Mangandioxyd**MnO₂***Polyarylkkondensation**

s. 1, 727

○

*Brom**Br₂***Dehydrierung**

s. 5442 a

CHCH → C:C

*Nickel**Ni***Pyrrole aus Pyrrolinen**

s. 1, 397

*Palladium**Pd*

s. 1, 728; s. a. V. Harley, C. r. 224, 568 (1947)

Phenole aus Ringketonen

s. 2, 766

Palladium-Kohle**Pd-C****Phenole u. ar. Kohlenwasserstoffe aus Ringketonen**

709.

α-9-Keto-4b,5,6,7,8,8a,9,10-octahydrophenanthren mit 30% ig. Pd-Kohle, nach Linstead u. Thomas, Soc. 1940, 1127, unter N₂

40 Min. auf 280–300° erhitzt →	in p-Cymol 26 Stdn. unter Rückfluß gekocht → 9-Phenanthrol. Roh-A: 57%.
Phenanthren. Roh-A: 73%.	

(C. D. Gutsche u. W. S. Johnson, Am. Soc. 68, 2239 (1946). Phenole in A. von über 80% s. E. C. u. M. G. Horning, Am. Soc. 69, 1359 (1947).) s. a. 1, 729–31, 761; 2, 765

Schwerdehydrierbare Verbindungen

s. 2, 763

Azulene

s. 2, 764

Platin-Kohle**Pt-C**

s. 2, 767

gleichzeitig Ringerweiterung

s. 1, 732

Ueber Zwischenprodukte**ü. Z.****Acetylen- aus Aethylenderivaten
über Dibromide**

CH : CH → C : C

710. C₆H₅CH = CHC₆H₅ → C₆H₅CHBrCHBrC₆H₅ → C₆H₅C ≡ CC₆H₅
Trans-Stilben mit Br₂ in Ae. unter gutem Rühren innerhalb ca. 1 Stde. umgesetzt → Stilben-dibromid (A: 77–81%) allmählich zu einer Lsg. von KOH in abs. Alk. gegeben u. 24 Stdn. bei 130–140° Oelbadtemp. unter Rückfluß gekocht → Diphenylacetylen. A: 66 bis 69%. (L. I. Smith u. M. M. Falkof, Org. Synth. 22, 50 (1942).)

Acetale

Zimtaldehyd u. Essigsäure unter kräftigem Rühren u. Kühlen mit kaltem W. mit Br₂, anschließend mit wasserfreiem Na-Carbonat versetzt u. nach Aufhören der Gasentwicklung $\frac{1}{2}$ Stde. unter Rückfluß gekocht \rightarrow α -Bromzimtaldehyd (A: 75—85%) mit Orthoameisensäureäthylester u. etwas NH₄-Chlorid in abs. Alk. 30 Min. unter Rückfluß gekocht \rightarrow α -Bromzimtaldehyd-acetal (A: 82—86%) mit einer Lsg. von KOH in abs. Alk. 1½ Stdn. unter Rückfluß gekocht \rightarrow Phenylpropargylaldehyd-acetal (A: 80—86%) in H₂SO₄ unter gelegentlichem Schütteln $\frac{1}{2}$ Stde. auf dem Dampfbad erhitzt \rightarrow Phenylpropargylaldehyd (A: 70—81%). (C. F. H. Allen u. C. O. Edens, jr., Org. Synth. 25, 92 (1945).)

Acetylenkarbonsäuren

S. H. Adkins u. R. F. Burks, jr., Org. Synth. 27, 76 (1947)

Sauerstoff ↑

CC ↑ O

Ohne Hilfsstoffe

o. H.

Enoläther aus AcetalenCHC(OR)₂ \rightarrow C:C(OR)

23 g 5-Diäthylaminopentanon-2-diäthylacetal auf 170—190° erhitzt \rightarrow 18 g 5-Diäthylamino-2-äthoxypenten-2 (Ausg. f. 300). (Den-itsu Shihō, J. Chem. Soc. Japan 65, 135 (1944); C. A. 41, 3799 i.)

Thermische SpaltungCHC(OAc) \rightarrow C:C**Aethylenderivate aus Acetaten**

s. 2, 768. S. a. J. P. W. Houtman, J. van Steens u. P. M. Heertjes, R. 65, 781 (1946); E. M. Filachinone u. a., Am. Soc. 70, 526 (1948)

Aethylenderivate aus Fettsäureestern

s. 1, 733, 781

Dehydratisierung über FettsäureesterCHC(OH) \rightarrow C:C

s. 1, 734/5

Aethylenderivate aus BenzoatenCHC(OBz) \rightarrow C:C

s. 1, 736

Dehydratisierung über BenzoateCHC(OH) \rightarrow C:C

s. 2, 804

Dehydratisierung über Anthrachinon- β -carbonsäureester

s. 1, 738

Aethylenderivate aus Acetoxyderivaten über Anthrachinon- β -carbonsäureester

s. 2, 806

Dehydratisierung über Xanthate nach Tschugaeff

s. 1, 737; s. a. R. Adams u. a., Am. Soc. 70, 664 (1948)

Chinolinring

713.

Orthoameisensäureäthylester reagiert mit ar. Aminen u. Verbindungen mit einer aktiven Methylengruppe in der Hitze zu α -subst. β -Anilinoacrylsäureestern. Die Ausbeuten richten sich nach der Aktivität der Methylengruppe. Die Reaktionsprodukte dienen zur Synthese von 4-Oxychinolinen, die, je nach dem Acrylsäureester, mit sehr verschiedenen Ausbeuten erhalten werden.

B: Aequimolare Mengen Orthoameisensäureäthylester, m-Chloranilin u. Acetessigsäure-äthylester auf 160–165° erhitzt, bis die berechnete Menge Alkohol überdestilliert war → α -Acetyl- β -(m-chloranilino)-acrylsäureäthylester (A: 79%) zu heißem Diphenyläther gegeben u. einige Stdn. unter Rückfluß gekocht → 3-Acetyl-4-oxy-7-chlorchinolin (A: 90,5%). (W. B. s. R. Snyder u. R. E Jones, Am. Soc. 68, 1253 (1946).)

Conrad-Limpach-Synthese

714.

Jodaniline u. Aethoxalylpropionat geben mit 76–90% Ausbeute Azomethine, wobei es für die Ausbeute kaum eine Rolle spielt, ob die Reaktion ohne Lösungsmittel oder in Methylenchlorid oder Eisessig ausgeführt wird. Der Ringschluß der Azomethine zu Chinolinen wird in Diphenyläther oder Dowtherm-A bei 240–250° ausgeführt. — B: 6-Jod-3-methyl-4-oxy-chinolin-2-carbonsäureäthylester. A: 82%. (W. B. s. E. A. Steck, L. L. Hallock u. A. J.

Holland, Am. Soc. 68, 1241 (1946) u. w. Contractarbeiten des OSRD. S. a. G. B. Bachmann u. J. W. Wetzel, J. org. Chem. 11, 454 (1946).)

Phenanthroline

715.

o-Phenyldiamin u. Aethoxymethylen-malonsäure-diäthylester 4 Std. auf dem Dampfbad erhitzt → *o*-Bis-(β -dicarbäthoxyvinylamino)-benzol (A: 79%) innerhalb 5 Min. zu kochendem Diphenyläther gegeben u. weitere 25 Min. unter Rückfluß gekocht → 3,8-Dicarbäthoxy-4,7-dioxy-1,10-phenanthrolin (A: 93%). (W. B. s. H. R. Snyder u. G. E. Freier, Am. Soc. 68, 1320 (1946). Cholinringsynthese s. a. B. Riegel u. a., Am. Soc. 68, 1264 (1946) u. w. Contractarbeiten des OSRD., G. F. Duffin, J. D. Kendall, Soc. 1948, 893.)

Natrium

Na

Abspaltung von Methoxyl Anthracene

s. 1, 739

←

Dieckmann-Kondensation

716.

Eine Mischung von Pentan-1,3,5-tricarbonsäuretrimethylester, Na-Pulver, wasserfreiem Bzl. u. einer Spur Methanol auf dem Dampfbad 8 Std. unter Rückfluß gekocht → Cyclohexanon-2,4-dicarbonsäuredimethylester. A: 88%. (H. T. Openshaw u. R. Robinson, Soc. 1946, 912.)

Piperidinring

717./8.

Bis-(2-carbethoxyethyl)-äthylamin unter kräftigem Rühren zu Na in kochendem Xylool in Ggw. von etwas Alk. so zugegeben, daß gelindes Sieden aufrechterhalten wurde, hierauf eine weitere Stde. unter Rückfluß gekocht, aufgearbeitet u. das resultierende 1-Aethyl-3-carbethoxy-4-piperidon in HCl ca. 4 Stdn. unter Rückfluß gekocht → 1-Aethyl-4-piperidon-hydrochlorid. A: 82—87%. (R. C. Fuson, W. E. Parham u. L. J. Reed, Am. Soc. 68, 1239 (1946).)

Chromane

s. 2, 769

*Kalilauge***Dehydratisierung**

KOH

CHC(OH) → C:C

719.

2-(4-Phenoxyphenyl)-äthanol mit Kaliumhydroxyd-Plätzchen bei ca. 225° u. 3—4 mm Druck umgesetzt → 4-Phenoxystyrol. A: 77%. (Beschreibung der Apparatur u. w. B. s. R. L. Frank u. a., Am. Soc. 68, 1365 (1946).) Vinylthiophene s. J. W. Schick u. H. D. Hartough, Am. Soc. 70, 1646 (1948).

Aethylenderivate aus Acetaten

CHC(OAc) → C:C

s. 1, 741

Anthrapyridone

○

720.

N-Acetyl-1-methylaminoanthracen-9-one bei 110—120° in Aethylenglykolmonäthyläther gelöst u. mit KOH in etwas W. versetzt → 3-Methylanthrapyridone. A: 93%. — 1-Nitro-3-methylanthrapyridone kön-

nen aus N-Haloacetyl-1-methylaminoanthrachinon mit NaNO_2 in warmem Aethylenglykolmonoäthylester-W. erhalten werden. (W. B. s. C. F. H. Allen u. C. V. Wilson, J. org. Chem. 10, 594 (1945).)

*Natrium/Alkohol**NaOR***Aethylenderivate aus Schwefelsäure-estern bei Steroiden**

s. 1, 740

Dieckmann-Kondensation**Isocyclen**

s. 1, 560; 2, 771

Piperidinring

721.

N-Benzoyl-di-(β -carbäthoxyäthyl)-amin u. Na-Sand in Bzl. in Ggw. von wenig Alk. unter Rückfluß kurze Zeit gerührt u. dann ohne Rühren 4 Stdn. auf dem Dampfbad erhitzt \rightarrow 1-Benzoyl-3-carbäthoxy-4-piperidon. A: 66%. (S. M. McElvain u. G. Stork, Am. Soc. 68, 1049 (1946).)

Thiophane

s. 1, 558/9; 3, 499

Chinolinring-Synthese

722.

1 Mol 4-Chlorantranilsäure-methylester u. 5,6 Mol Malonsäurediäthylester schnell auf 165°, hierauf innerhalb 90 Min. weiter auf 195° erhitzt, 1 Stde. bei 195—198° unter teilweiser Destillation des entstandenen Alkohols gekocht, den größten Teil des überschüssigen Malonesters unter Rühren bei Unterdruck abdestilliert, nach Abkühlen den entstandenen Aethylmalono-4-chlorantranilid-methylester in Ac. gelöst, eine Lsg. von Na in abs. Alk. tropfenweise unter Rühren u. Sieden innerhalb 2½ Stdn. zugegeben u. über Nacht stehengelassen \rightarrow 3-Carbomethoxy-7-chlor-4-oxycarbostyryl. A: ca. 70%. (R. E. Lutz u. a., Am. Soc. 68, 1285 (1946).)

Azaindole

s. 2, 772

*Kalium/Alkohol**KOR*

**Dehydratisierung, gleichzeitig
Carbonsäuren aus Halogeniden
Wasserfreier Alkohol**

723.

1-(4-Pyridyl)-2-oxy-3,3,3-trichlorpropan (Darst. s. 604) mit einer Lsg. von KOH in Alk., nach J. Smith, Soc. 1927, 1288 u. J. Manske, Am. Soc. 53, 1106 (1931) entwässert, auf 40—50° u. nach Abklingen der heftigen Reaktion 2 Stdn. auf 60° erwärmt → β-(4-Pyridyl)-acrylsäure. A: 74%. (M. Kleimann u. S. Weinhouse, J. org. Chem. 10, 562 (1945).)

**Indolring
Formylierung**

724.

o-Toluidin u. 90%ig. Ameisensäure 3 Stdn. auf dem Wasserbad erwärmt u. über Nacht stehengelassen → rohes o-Formotoluid (A: 85—89%), davon 68 g zu einer Lsg. von K in tert.-Butylalkohol unter N₂ gegeben, den überschüssigen Alkohol abdestilliert u. den Rückstand 20 Min. auf 350—360° erhitzt → 23 g Indol (A: 79%). (F. T. Tyson, Org. Synth. 23, 42 (1943).)

*Natriumamid**NaNH₂*

725.

Eine Mischung von feinpulverisiertem NaNH₂, Acetyl-o-toluidin u. etwas Ae. unter N₂ in einem Metallbad innerhalb 30 Min. auf 240 bis 260° erhitzt u. ca. 10 Min. bei dieser Temp. belassen, bis die Gasentwicklung aufgehört hat → 2-Methylindol. A: 80—83%. — Die Methode ist allgemein anwendbar auf subst. Acetyl- u. Benzoyl-o-toluidine. (C. F. H. Allen u. J. Van Allan, Org. Synth. 22, 94 (1942).)

*Natriumhydrogencarbonat**NaHCO₃*

**Pyrrocoline (Pyrindole, Indolizine)
über quartäre Stickstoffverbindungen**

726.

Phenacylbromid zu einer Lsg. von α -Picolin in trockenem Alk. gegeben, wobei die spontane Reaktion durch äußeres Kühlen unter Kontrolle gehalten wurde, u. am nächsten Tag aufgearbeitet → Phenacyl- α -picoliniumbromid (A: 73%) in W. gelöst, mit NaHCO₃ versetzt, zum Sieden erhitzt, nach $\frac{1}{2}$ Stde. abgekühlt, filtriert u. das Filtrat nochmals gekocht, wobei eine zweite Portion erhalten wird → 2-Phenylpyrrocolin (Ausg. f. 626) (A: 96%). (W. B. s. E. T. Borrrows, D. O. Holland u. J. Kenyon. Soc. 1946, 1069—1083.)

*Natriumacetat**Na(CH₃COO)***Polycyclische Thiazole und Selenazole**

s. 2, 773

*Organische Basen***Dehydratisierung über Tosylate** $\text{CHC(OH)} \rightarrow \text{C:C}$ **Einführung der Δ^{11} -Doppelbindung****bei Steroiden**

s. 2, 805

*Berylliumsulfat**BeSO₄***Dehydratisierung** $\text{CHC(OH)} \rightarrow \text{C:C}$

s. 1, 742

*Bariumoxyd-Siliciumdioxyd**BaO-SiO₂***Aethylenderivate aus Aethern** $\text{CHC(OR)} \rightarrow \text{C:C}$

727.

1,1,3-Trimethoxybutan bei 340° mit N₂ durch einen BaO · SiO₂-Katalysator (Darst. s. Original) geleitet → 1-Methoxy-1,3-butadien. A: 40 bis 60%. (L. Marion u. C. G. Farmilo, Can. J. Research 25 B, 118 (1947). Methode s. G. Meier, B. 77, 108 (1944).)

*Zink**Zn***Aethylenderivate aus α -Alkoxyhalogen-verbindungen** $\text{CHalC(OR)} \rightarrow \text{C:C}$

s. 2, 731, 821

*Zinkchlorid**ZnCl₂***Dehydratisierung** $\text{CHC(OH)} \rightarrow \text{C:C}$

728.

1-Oxy-2,3-diphenyl-1,2,3,4-tetrahydronaphthalin mit ZnCl₂ Lucas-Reagens, aus ZnCl₂ u. konz. HCl u. Bzl. 2 Stdn. auf dem Dampfbad unter Rückfluß gekocht → 2,3-Diphenyl-3,4-dihydronaphthalin. A: 96%. (H. M. Crawford u. H. B. Nelson, Am. Soc. 68, 134 (1946).)

Ringketone aus Carbonsäuren

s. 2, 774; s. a. W. E. Bachmann u. a., J. org. Chem. 13, 317 (1948)

Anthrone

s. 1, 743

Indolringschluß

729.

Während die Bildung von Indolderivaten aus Phenylalkylaminopropanonen in Ggw. von ZnCl₂ ein einfacher Ringschluß ist, verläuft sie in Ggw. von HCl mehr oder weniger unter Umlagerung (R. 65, 897). — B: Eine Mischung von Phenylmethylaminopropanon u. 1,5% seines Gewichts an wasserfreiem ZnCl₂ unter Durchleiten von N₂ ca. 4 Stdn. auf rund 180° erhitzt → 1,3-Dimethylindol. A: 82% (R. 65, 193). (W. B. s. P. E. Verkade u. a., R. 65, 193, 897 (1946) u. w. Arbeiten dieser Reihe.)

Borsäureanhydrid

B₂O₃

Dehydratisierung

CHC(OH) → C:C

s. 2, 775

Aluminimumoxyd

Al₂O₃

730. Verfahren: Carbinole werden ohne Lösungsmittel oder in Bzl. durch ein Rohr mit aktiviertem Al₂O₃ bei 290—310° u. 30—100 mm Druck geleitet. — B: m-(Aethylphenyl)-methylcarbinol → m-Aethylstyrol. A: 93%. (Apparatur u. w. B. s. D. T. Mowry, W. F. Huber u. a., Am. Soc. 68, 1105, 1109 (1946).)

731.

Pinacol bei 420—470° über Al_2O_3 geleitet → 2,3-Dimethylbutadien-1,3. A: 79—86%. (L. W. Newton u. E. R. Coburn, Org. Synth. 22, 40 (1942).) Dehydratisierung mit HBr gibt eine Ausbeute von 55—60%. (C. F. H. Allen u. A. Bell, Org. Synth. 22, 39 (1942).)

s. a. 1, 744

Pyran- aus Furan-Ring Ringerweiterung

732.

Tetrahydrofurfurylalkohol bei 350—375° mit einer Geschwindigkeit von 2—2,5 g/min. über aktiviertes Al_2O_3 (Alorco grade F-1, 8—14 mesh) geleitet → Dihydropyran. A: 88—90%. (Näheres s. L. E. Schniepp u. H. H. Geller, Am. Soc. 68, 1646 (1946).)

Aluminimumalkoholat

$\text{Al}(\text{OR})_3$

Dehydratisierung

$\text{CHC(OH)} \rightarrow \text{C:C}$

s. 1, 44

Acetanhydrid

$(\text{CH}_3\text{CO})_2\text{O}$

s. 1, 694

Barbier-Wielandscher Abbau von Carbonsäuren der Steroidreihe Aethylenderivate aus Carbonsäuren

733.

Desoxycholsäure in Methanol in Ggw. von Acetylchlorid über Nacht bei Zimmertemp. stehengelassen → Desoxycholsäuremethylester (A: 97—100%) in trockenem Bzl. gelöst, zu Phenyl-Mg-bromid aus Brombenzol u. Mg in trockenem Ae. gegeben, 3 Stdn. unter Röhren u. Rückfluß gekocht, das entstandene rohe 3,12-

Dioxy-nor-cholanyldiphenylcarbinol durch 1-stdg. Kochen unter Rückfluß mit Eisessig-Acetanhydrid dehydratisiert u. acetyliert → 3,12-Diacetoxy-bisnor-cholanyldiphenyläthylen (A: 63,5 bis 70%) in Chlf. gelöst zu Eisessig gegeben, unter Rühren bei 50° — zuerst unter Kühlung u. dann unter Erwärmung auf dem Wasserbad — mit CrO_3 in Essigsäure-W. innerhalb 30 Min. oxydiert, überschüssiges CrO_3 mit Methanol entfernt u. die rohe aufgearbeitete 3,12-Diacetoxy-nor-cholansäure durch 2-stdg. Kochen unter Rückfluß in 10%ig wss. KOH verseift → 3,12-Dioxy-nor-cholansäure (A: 57—68%). (B. Riegel, R. B. Moffett u. A. V. McIntosh, Org. Synth. 24, 41, 38 (1944).)

Ar. Amine aus hydroaromatischen Oximen

s. 2, 778

Fluoren-Ringschluß

s. 2, 776

Cyclopenteno-naphtalinring-Synthese

s. 2, 777

Phtalsäureanhydrid

Dehydratisierung

s. 1, 744

Ameisensäure

s. 1, 751; 2, 780

Essigsäure

s. 2, 779

Barbier-Wielandscher Abbau

von Gallensäuren

s. 1, 752/3

Oxalsäure

Eine Mischung von 1-(2,4-Dimethylphenyl)-2,6-dimethyl-1-cyclohexanol u. wasserfreier Oxalsäure 1 Stde. auf 200—220° erhitzt → 1-(2,4-Dimethylphenyl)-2,6-dimethyl-1-cyclohexen. A: 81%. — Bei 130°, mit KHSO_4 bei 190—200°, oder mit kochendem Acetanhydrid konnte kein Wasser abgespalten werden. (R. B. Carlin u. D. A. Constantine, Am. Soc. 69, 50 (1947).)

Phenylisocyanat C_6H_5NCO

s. 2, 781

p-Toluolsulfonsäure

←

2,5-Dimethyl-3-hexin-2,5-diol in Ggw. von p-Toluol-sulfonsäure langsam destilliert → Bis-(1-methylvinyl)-acetylen. A: 80%. (W. B. s. A. Babayan, Bull. Armenian Branch Acad. Sci. U.S.S.R. 1941, Nr. 5/6, 121; C. A. 40, 3394, 8.)

Acetylchlorid CH_3COCl *Dialkyldiarylläthylene*

s. 2, 782

Phosphorpentoxyd P_2O_5

s. 2, 783

Ringketone aus Carbonsäuren

○

s. 2, 784

Pyridinringschluß

s. 2, 785

Naphtyridine

s. 2, 786

Phosphorsäure H_3PO_4 *Ringketone aus Carbonsäuren*

736.

P_2O_5 bei 80° in 85%ig. Phosphorsäure gelöst, zur warmen Lsg. γ -7-Methoxy-1-naphthylbuttersäure gegeben u. bis zur Lsg. der Säure nach 1½-2 Stdn. auf 80—85° erwärmt → 6-Methoxy-1-keto-1,2,3,4-tetrahydrophenanthren. A: 86%. (W. E. Bachmann u. W. J. Horton, Am. Soc. 69, 58 (1947).)

Hydrophenanthrene

s. 1, 745

Phosphoroxychlorid POCl_3 **Dehydratisierung** $\text{CH}(\text{OH}) \rightarrow \text{C:C}$

s. 2, 787

Partielle Dehydratisierung

s. 2, 292

Ringketone aus Carbonsäuren

○

s. 1, 748

Isochinoline

s. 1, 746/7; 2, 788

Phenanthridine

s. 2, 789; s. a. V. Petrow, W. R. Wragg, Soc. 1947, 1410

9-Chloracridine

737.

N-Phenylantranilsäure mit POCl_3 vermischt, allmählich auf 85—90° erwärmt, nach Abklingen der Reaktion 2 Stdn. auf 135—140° Oelbadtemp. erhitzt, überschüssiges POCl_3 im Vakuum bei 140—150° u. 50 mm abdestilliert u. den Rückstand unter gutem Rühren in eine Mischung von wss. NH_3 , Eis u. Chlf. gegossen → 9-Chloracridin (Ausg. f. 384). A: fast 100%. (A. Albert u. B. Ritchie, Org. Synth. 22, 5 (1942). S. a. G. B. Bachmann u. G. M. Picha, Am. Soc. 68, 1599 (1946); J. H. Wilkinson, I. L. Finar, Soc. 1948, 288.)

s. a. 2, 790—2

Acridone

s. 1, 749; G. B. Bachmann u. a., J. org. Chem. 13, 89 (1948).

über 5-Chloracridine

s. 2, 792

Phosphorpentachlorid PCl_5 **Isochinolin-Ringschluß**

s. 2, 793

Acridone

s. 1, 749

Thionylchlorid SOCl_2 **Dehydratisierung** $\text{CH}(\text{OH}) \rightarrow \text{C:C}$

s. 1, 750

Kaliumhydrogensulfat KHSO_4

s. 1, 754

Schwefelsäure H_2SO_4 **Isocyclen****aus Alkoholen**

s. 2, 794

aus Ketonen

s. 2, 795; s. a. L. Ehmann u. K. Miescher, Helv. 30, 413 (1947)

Ringketone aus Carbonsäuren

s. 2, 796/7

Cyclohexanone**Diketo-dicarbonsäureester****aus Aldehyden**

738.

Acetessigsäureäthylester u. Anisaldehyd in Alk. in Ggw. von etwas Piperidin längere Zeit bei 35–40° stehengelassen → *a,a'*-Diacetyl-*β*-(p-methoxyphenyl)-glutarsäureäthylester (A: ca. 75%) in konz. H_2SO_4 -Essigsäure 30 Min. unter Rückfluß gekocht, nach dem Abkühlen in W. gegossen, ausgeäthert, den Ae.-Rückstand mit NaOH in W.-Alk. unter Rückfluß gekocht, angesäuert u. nochmals 15 Minuten unter Rückfluß gekocht → 3-Methyl-5-(p-methoxyphenyl)-2-cyclohexen-1-on (A: 78%). (W. B. s. E. C. Horning u. R. E. Field, Am. Soc. 68, 384 (1946); s. a. Org. Synth. 27, 24 (1947).)

Naphtalinring; Oxynaphtaline**Acylierung von Malonestern**

739.

Zu Mg-Schnitzeln in CCl_4 u. Malonsäurediätylester abs. Alk. gegeben, der in den Tropftrichter destilliert worden war, die Reaktion durch

Erwärmten in Gang gesetzt u. gekühlt, wenn zu starkes Sieden eintritt, nach Abklingen der Reaktion nochmals Malonester auf einmal zugegeben, etwas abgekühlt, trockenen Ae. zugegeben, 1 Stde. auf dem Dampfbad erhitzt, langsam innerhalb 30 Min. Phenylacetylchlorid in trockenem Ae. so zugegeben, daß die heftige Reaktion vor der weiteren Zugabe nachläßt, u. noch 10 Min. auf dem Dampfbad erwärmt → roher Phenylacetylmalonsäure-diäthylester auf einmal ohne Kühlen zu 3 Volumen konz. H_2SO_4 gegeben u. 1 Woche stehengelassen → 1,3-Dioxy-2-naphtoesäureäthylester (Ausg. f. 81). A: 50—59% bezogen auf Malonsäureester. (K. Meyer u. H. S. Bloch, Org. Synth. 25, 73 (1945).)

s. a. 2, 796

Cyclopentenonaphthalinring

s. 2, 795

2-Alkylanthrachinone

s. 2, 797

Phenanthrenring

s. 2, 794

Chinolinring über Anilide

740.

Acetoacetanilid (Darst. s. Org. Synth. 21, 4 (1941)) unter Rühren in kleinen Portionen innerhalb 20—30 Min. in konz. H_2SO_4 eingetragen, wobei die Temp. durch zeitweises Kühlen bei 70—75° gehalten wird, u. hierauf ca. 30 Min. auf 95° erwärmt → 4-Methylcarbostyryl (Ausg. f. 467). A: 86—91%. (W. M. Lauer u. C. E. Kaslow, Org. Synth. 24, 68 (1944).)

741.

α -n-Butylacetoacetanilid in vorgekühlte 98%ig. H_2SO_4 eingetragen, bis zur Lsg. gerührt, 20 Stdn. bei Zimmertemp. stehengelassen u. hierauf wenige Min. auf dem Dampfbad erwärmt → 2-Oxy-3-n-butyl-4-methylchinolin. A: 89,4%. (W. B. s. A. L. Searles u. H. G. Lindwall, Am. Soc. 68, 988 (1946).)

742.

Acetessigsäureäthylester bei 160—165° unter Röhren innerhalb 45 Min. mit p-Anisidin versetzt u. noch 30 Min. auf diese Temp. erhitzt → p-Acetoacetanisidid (A: 93%) ohne Kühlung mit konz. H_2SO_4 (D. 1,84) versetzt, die Temp. innerhalb $1\frac{3}{4}$ Stdn. auf ca. 100° erhöht, $3\frac{1}{2}$ Stdn. dabei belassen und hierauf unter W. über Nacht stehen-gelassen → 2-Oxy-6-methoxy-lepidin (Ausg. f. 86) (A: 79—83%). (K. N. Campbell u. a., J. org. Chem. 11, 803 (1946).)

mit dimerem Keten

743.

2,5-Dimethoxyanilin mit dimerem Keten in warmem Bzl. tropfenweise unter Röhren versetzt u. hierauf 30—40 Min. unter Rückfluß gekocht → 2,5-Dimethoxyacetanilid (A: 94%) allmählich bei 85° zu warmer konz. H_2SO_4 gegeben u. 15 Min. auf dem Wasserbad erhitzt → 5,8-Dimethoxy-4-methylcarbostyryl (A: 84%). — Nach diesem Verfahren können subst. Lepidine mit Ausbeuten von 64—80% synthetisiert werden. (W. B. s. C. E. Kaslow u. N. B. Sommer, Am. Soc. 68, 644 (1946).)

Acridine

s. 1, 755/6

Molybdānoxyd

MoO_x

Aethylenderivate aus Oxoverbindungen

$\text{COCH}_2 \rightarrow \text{CH}:\text{CH}$

s. 2, 798

Jod

J

Dehydratisierung

$\text{CHC(OH)} \rightarrow \text{C}:\text{C}$

s. 1, 757; 2, 799

Aethylenderivate aus Carbonsäuren über Alkohole

s. 2, 800

Basenhydrochloride

←

Indolring

○

s. 1, 762

Chinolinring

s. 1, 763

Fluorwasserstoff

HF

Ringketon-Synthese

s. 1, 758—61; 2, 801; s. a. G. Stork, Am. Soc. 69, 2936 (1947)

Salzsäure

HCl

Ringschluß zu Isocyclen

s. 2, 697

Indolringschluß

s. 3, 729

Acridine

s. 2, 802

Salzsäure/Eisessig

HCl/CH₃COOH

Dehydratisierung

CHC(OH) → C : C

s. 1, 534, 764

Bromwasserstoffsäure/Eisessig

HBr/CH₃COOH

Dehydratisierung

CHC(OH) → C : C

s. 1, 529

Bromwasserstoffsäure

HBr

Ar. Kohlenwasserstoffe aus Ringketonen

←

s. 2, 803

Palladium-Kohle

Pd-C

s. 3, 709

Stickstoff ↓

CC ↑ N

Ohne Hilfsstoffe

o. H.

Pyrimidinring aus Dihydrotriazinring

←

s. 1, 765

Kaliumhydroxyd

KOH

**Nitroäthylenverbindungen aus
Pseudonitrositen**

s. 1, 766

*Natriumnitrit*NaNO₂**Fluorenon-Ringschluß**

s. 2, 810

*Zinkchlorid*ZnCl₂**Indolring-Synthese**

744.

Acetophenon u. Phenylhydrazin 1 Stde. auf dem Dampfkonus erhitzt
 → Acetophenon-phenylhydrazone (A: 87—91%) mit pulverisiertem
 wasserfreiem ZnCl₂ unter kräftigem Rühren mit der Hand im Oel-
 bad einige Min. auf 170° erhitzt, aus dem Oelbad genommen, 5 Min.
 weitergerührt u. sauberen Sand eingerührt, um Erstarrung zu einer
 festen Masse zu vermeiden → 2-Phenylindol (A: 72—80%). (R. L.
 Shriner, W. C. Ashley u. E. Welch, Org. Synth. 22, 98 (1942).)
 s. a. 2, 814

*Schwefelsäure*H₂SO₄**α-subst. Acrylsäuren aus subst. Malonsäuren**

s. 1, 767

Phenanthren-Ringschluß

s. 2, 811

Fischersche Indolringsynthese

s. 2, 814

**auch Indolring aus o-Nitrobrenz-
traubensäuren**

s. 2, 812

Hydrazone aus Diazoniumsalzen

s. 2, 813

Isatine

745.

Isonitrosoacet-o-nitroanilid unter Rühren zu 80° warmer konz. H_2SO_4 gegeben u. die Temp. durch Erwärmen oder Kühlen 15 Min. bei 95 bis 100° gehalten → 7-Nitroisatin. A: 68%. (E. R. Buchman, C. M. McCloskey u. J. A. Seneker, Am. Soc. 69, 380 (1947). S. a. Marvel u. Hiers, Org. Synth., Coll. Vol. I., 2. Auflage, 1941, Seite 327.)

Ueber Zwischenprodukte

ü. Z.

Aethylenderivate aus Oximen über Amine

←

Hofmannscher Abbau von quartären

Ammoniumsalzen

Isolierung von Aminen als Uramidoderivate

746.

N-Acetyl-10-oximino-dihydro-homomerochinen-äthylester (Darst. s. 281) in Eisessig mit PtO_2 (Adams-Katalysator) bei 1—3 at 20—40 Std. hydriert, das Lösungsmittel zum großen Teil im Vakuum bei Zimmertemp. entfernt, den Rückstand in abs. Alk. aufgenommen u. 48 Std. mit wasserfreiem K-Carbonat u. Methyljodid gekocht → N-Acetyl-10-trimethylammonium-dihydro-homomerochinen-äthylester-jodid (A: 90%) mit 60%ig. NaOH oder KOH $\frac{1}{2}$ —1 Stde. auf 140—180° erhitzt, bis die Entwicklung von Trimethylamin aufhört, die überschüssige Lauge abpipettiert, den Rückstand mit konz. HCl neutralisiert, mit Norit entfärbt, filtriert, mit KCNO in wenig W. behandelt u. $\frac{1}{2}$ Stde. auf dem Dampfbad erhitzt → N-Uramidohomomerochinen (Ausg. f. 29) (A: ca. 45%). (R. B. Woodward u. W. E. Doering, Am. Soc. 67, 860 (1945); s.a. A. C. Cope, C. G. Overberger, Am. Soc. 70, 1433 (1948).)

Halogen ↑

CC ↑ Hal

Natrium

Na

Ketenacetale

$CHC(OR)_3 \rightarrow C : C(OR)_2$

Zu einer kräftig gerührten Suspension von feinem Na-Sand in gelinde sd. Bzl. innerhalb ca. 4 Stdn. tropfenweise α -Bromvaleriansäure-orthomethylester gegeben u. weitere 6 Stdn. unter Rühren u. Rückfluß gekocht \rightarrow n-Propylketen-dimethylacetal (Ausg. f. 575). A: 68%. (W. B., auch Pyrolyse von Orthoestern in Ggw. des entsprechenden Ketenacetals, s. S. M. McElvain, R. E. Kent u. C. L. Stevens, Am. Soc. 68, 1922, 1917 (1946).)

Natrium/Kalium

Na/K

Furanring-Oeffnung

C

s. 2, 770

Natriumhydroxyd

NaOH

Acetylenderivate aus 1,2-Dihalogeniden

$\text{CHBrCHBr} \rightarrow \text{C : C}$

s. 2, 815

Cyclopropanringschluß,

○

anschließend Verseifung von Nitrilen

zu Carbonsäuren

γ -Chlorbutyronitril durch Schütteln gut mit pulverisiertem NaOH gemischt, 1 Stde. auf dem Wasserbad erhitzt, innerhalb 8 Stdn. allmählich W. zugegeben u. unter gelegentlichem Rühren nochmals 1½ Stdn. erhitzt \rightarrow Cyclopropancarbonsäure. A: 74—79%. (C. M. Mc Closkey u. G. H. Coleman, Org. Synth. 24, 36 (1944).)

Kaliumhydroxyd/Alkohole

KOH

Acetylenderivate aus α,β -Aethylenhalogeniden

$\text{CH : CBr} \rightarrow \text{C : C}$

s. 3, 711

Acetylenderivate aus 1,2-Dihalogeniden

$\text{CHBrCHBr} \rightarrow \text{C : C}$

s. 2, 816

Polyalkylcyclobutanone

○

s. 1, 769

Kaliumhydroxyd/Chinolin

←

Polyarylkondensation

s. 1, 768

*Natrium/Alkohol**NaOR***Aethylenderivate aus Halogeniden** $\text{CHCBr} \rightarrow \text{C:C}$

s. 2, 817

Ketone aus 1,2-Dihalogeniden über Acetylenderivate $\text{CHBrCHBr} \rightarrow \text{CH}_2\text{CO}$

s. 2, 818

Cyclohexadiene $\text{CHCBr} \rightarrow \text{C:C}$

s. 2, 819

*Kaliumalkoholat**KOR***Ketenacetale aus α -Bromacetalen**

749.

K durch 8-stdg. Kochen unter Rückfluß in tert.-Butylalkohol gelöst, etwas abgekühl, Bromacetal zugegeben, den tert.-Butylalkohol in 16—18 Stdn. bei 120—160° abdestilliert, die Temp. u. den Druck auf 200 mm gesenkt u. weiterdestilliert → Keten-diäthylacetal. A: 67 bis 75%. (S. M. McElvain u. D. Kundiger, Org. Synth. 23, 45 (1943).)

*Natriumcarbonat**Na₂CO₃* **α,β -Aethylengenide aus 1,2-Dihalogeniden** $\text{CHBrCHBr} \rightarrow \text{CH:CBr}$

s. 3, 711

*Kaliumcarbonat**K₂CO₃***Vielgliedrige Polymethylenketone**

s. 1, 770/1; s. a. A. T. Blomquist u. R. W. Holley, Am. Soc. 70, 36 (1948)

*Natriumacetat**Na(CH₃COO)***Aethylenderivate aus Halogeniden****Austausch von Chlor gegen Acetoxygruppen****Die Unterscheidung von isomeren****chlorierten Fettsäureestern**

750.

 α -Chlorcapronsäuremethylester | β -Chlorcapronsäuremethylester**Mit wasserfreiem Na-Aacetat****in Eisessig behandelt**

nach 24 Stdn. → α -Acetoxyhexan-säuremethylester. A: ca. 100%. | nach 4 Stdn. → Δ^2 -Hexensäure-methylester. A: 95%.

(Ueber die Reaktion von γ - u. δ -Chlorfettsäureestern s. H. H. Guest, Am. Soc. 69, 300 (1947).)

Natriumnitrit

$NaNO_2$

1-Nitro-anthrapyridone

○

s. 3, 720

Ammoniak

NH_3

Aethylenderivate aus Halogeniden

$CHCHal \rightarrow C : C$

751. 1,2-Dichlor-1,2-dibromäthan bei -40° mit überschüssigem fl. NH_3 versetzt u. innerhalb $1\frac{1}{2}$ —2 Std. bei 300 — 400 mm auf -30° erwärmen gelassen \rightarrow 1,2-Dichlor-1-bromäthylen. A: 95,5%. (W. B. s. G. M. Mkryan, Bull. Armenian Branch Acad. Sci. U.S.S.R. 1944, Nr. 5/6, 45. C. A. 40, 3392, 4.)
s. a. 2, 820

Triäthylamin

$(C_2H_5)_3N$

752. $CICH_2CH_2SO_2CH_2CHClCH_3 \rightarrow CH_2=CHSO_2CH=CHCH_3$

2-Chloräthyl-2-chlor-n-propylsulfon mit Triäthylamin in trockenem Bzl. bei Zimmertemp. über Nacht gerührt \rightarrow Δ^1 -Propenyl-vinylsulfon. Roh-A: 97%. (R. C. Fuson, C. C. Price u. D. M. Burness, J. org. Chem. 11, 475 (1946). Methode s. Alexander u. McCombie, Soc. 1931, 1916.) S. a. G. D. Buckley, J. L. Carlish u. J. D. Rose, Soc. 1947, 1514.

Diäthylanilin

$C_6H_5N(C_2H_5)_2$

s. 1, 645

Pyridin

C_5H_5N

**Aethylenderivate aus Estern
und Halogeniden**

s. 2, 805

**Einführung der Aethylengruppe
in ar. Kerne
Chloralkylierung**

- 753.

2-Isopropyl-5-methylanisol u. Paracetaldehyd innerhalb 2 Std. bei 5 — 10° mit HCl gesättigt u. hierauf mit Pyridin HCl abgespalten \rightarrow 5-Isopropyl-4-methoxy-2-methylstyrol. A: 49%. — Die

Chloräthylierung scheint einen beschränkteren Anwendungsbe-
reich zu haben als die Chlormethylierung. Eine zu lange Reak-
tionszeit vermindert die Ausbeute. (W. B. s. R. L. Frank u. a.,
Am. Soc. 68, 1365 (1946); C. A. 40, 5707, 9. Methode s. Quelet u.
Ducasse, C. r. 208, 1317 (1939); Bl. 7, 196, 205 (1940).)

Chinolin

←

s. 1, 773

Kollidin

←

s. 1, 774

Kupfer

Cu

**Abspaltung von Jod
Phenanthrenring-Synthese**

○

s. 1, 668

Kupfer(I)-verbindungen

Cu⁺

Abspaltung von Brom

←

Austausch von Brom gegen Cyan

s. 1, 772

Silberacetat

Ag(CH₃COO)

Aethylenderivate aus Halogeniden

CHCBr → C : C

754.

3-Carboxy-4-methoxyphenyl- α -bromoisopropylketon u. Ag-Acetat in
trockenem Bzl. im Dunkeln 2 Stdn. unter Rückfluß gekocht → 3-Carbo-
xy-4-methoxyphenyl-isopropenylketon. A: 79%. (E. D. Amstutz,
E. A. Fehnel u. C. R. Neumoyer, Am. Soc. 69, 349 (1946).)

Zink

Zn

Aethylenderivate aus α -Alkoxyhalogeniden

CBrC(OR) → C : C

Olefinketten-Synthese

s. 1, 775; 2, 731

ungesättigte Fettsäuren

s. 2, 821

Aethylenderivate aus 1,2-Dihalogeniden

CBrCBr → C : C

s. 1, 776/7; 2, 822

ungesättigte Fettsäuren

755.

26—30 g Tetrabromstearinsäure mit granuliertem Zn in abs. Alk. zuerst unter gelindem Erwärmen u. evtl. unter Kühlen mit kaltem W. umgesetzt, nach Abklingen der Reaktion $\frac{1}{2}$ Stde. unter Rückfluß gekocht u. über 12—15 g des Esters, der mit alkoh. HCl dargestellt u. nach seiner Isolierung durch Stehen über Nacht in alkoh. NaOH verseift wurde, aufgearbeitet → 10—12 g Linolsäure. (J. W. McCutcheon, Org. Synth. 22, 75 (1942); w. B. s. 22, 82 (1942).)

Cyclopropanring

756.

Sauerstoff-freier Zn-Staub in W.-n. Propanol unter Eiskühlung u. gutem Rühren innerhalb $1\frac{1}{2}$ Stdn. mit 2-Methyl-2,4-dibrompentan (Darst. s. 466) versetzt, das Eisbad entfernt u. bei Zimmertemp. 32 Stdn. weitergerührt → 1,1,2-Trimethylcyclopropan. A: 64%. (W. B. s. J. D. Bartleson, R. E. Burk u. H. P. Lankelma, Am. Soc. 68, 2513 (1946); s. a. R. W. Shortridge u. a., Am. Soc. 70, 946 (1948).)

Aluminiumchlorid

 AlCl_3

Aethylenderivate u. Cycloalkene aus Halogeniden

757. AlCl_3 ist ein geeigneter Katalysator zur Abspaltung von HCl aus gewissen Polychlorverbindungen, wobei Aethylenderivate oder Cyclopentene entstehen können. — B: 1,1,1,2,3,3-Hexachlorpropan mit AlCl_3 in CCl_4 auf dem Wasserbad auf 30—40° erwärmt, nach Abklingen der HCl-Entwicklung unter Rückfluß gekocht u. nach einer gesamten Reaktionszeit von ca. $3\frac{1}{2}$ Stdn. aufgearbeitet → 1,1,2,3,3-Pentachlorpropen-1. A: 93,5%. (W. B. s. H. J. Prins, R. 65, 455 (1946).)

Thioindoxyl-Ringschluß

s. 2, 809

Zinn(IV)-chlorid

 SnCl_4

Ringketone

s. 1, 778—80; 2, 808

Ueber Zwischenprodukte

ü. Z.

**Abspaltung von Bromwasserstoff aus
höhermolekularen Alkyhalogeniden
ohne Verschiebung der Doppelbindung**
s. 1, 781

CHCBr → C : C

Schwefel ↓**CC ↑ S***Ohne Hilfsstoffe*

o. H.

Abspaltung von Schwefeldioxyd
s. 1, 615, 713

←

Kohlenstoff ↓**CC ↑ C***Ohne Hilfsstoffe*

o. H.

γ,δ-Aethylenketone

←

Beim Erhitzen von β -Ketocarbonsäureestern von β,γ -Aethylenalkoholen auf 170–250° entstehen in Ausbeuten von 23–88% γ,δ -Aethylenketone. Gewöhnlich tritt dabei Inversion der subst. Allylgruppe ein. B: Methylvinylcarbinylacetooacetat (Darst. s. 130) in Diphenyläther 12 Std. auf 185–200° erhitzt → 5-Hepten-2-on. A: 80%. (W. B. s. W. Kimel u. A. C. Cope, Am. Soc. 65, 1992 (1943).)

**Carbonsäureester aus α -Ketocarbonsäure-
estern**
s. 1, 561

COCOOR → COOR

Synthese von cycl. Dicarbonsäuren
s. 704

←

Acridonsynthese
Chapmansche Umlagerung
Iminoester aus Iminochloriden
s. 2, 823

○

NatriumacetatNa(CH₃COO)**Thianaphthenring**

758 a.

o-Carboxyphenylmercaptoessigsäure u. Na-Acetat in Acetanhydrid zuerst vorsichtig auf 80° erhitzt, nach Beendigung der CO₂-Entwicklung weiter auf 135—140° Oelbadtemp., 20 Min. bei dieser Temp. belassen, abgekühlt u. in 10%ig. NaOH noch ca. 1 Stde. bis zur klaren Lsg. unter Rückfluß gekocht → 3-Thianaphtenol. A: 75—80%. (C. Hansch u. H. G. Lindwall, J. org. Chem. 10, 381 (1945).)

Bariumhydroxyd $Ba(OH)_2$ **Ringketone aus α,ω -Dicarbonsäuren**

s. 1, 782; 2, 825

Cerium und seltene Erden

←

s. 2, 824, 826

Borsäure H_3BO_3 **Carbonsäureester aus α -Ketocarbon-säureestern** $COCOOR \rightarrow COOR$

s. 2, 828

Glaspulver

←

s. 1, 784/5

Oxalestersynthese

s. 2, 827

Acetanhydrid $(CH_3CO)_2O$ **Ringverengerung**

←

s. 1, 783

Selen

Se

Diketone aus Triketonen

759.

Perinaphtantrion-hydrat mit gefälltem Se 2 Stdn. im Luftstrom auf 250° erhitzt → Acenaphtenchinon. A: 60%. (W. B. s. A. Schönberg, R. Moubasher u. A. Mostafa, Soc. 1946, 966; vgl. Soc. 1947, 997.)

*Bromwasserstoffsäure**HBr***Phenanthrene**

○

760.

1-(2-Biphenyl)-1-phenyl-2,2-dimethylallylenoxyd mit 48%ig. HBr in Eisessig 24 Stdn. unter Rückfluß gekocht → 9-Phenyl-10-methylphenanthren. A: 56%. (W. B. s. C. K. Bradsher u. a., Am. Soc. 68, 2152, 2149 (1946).)

Bildung eines Elektronenpaars am Stickstoff

Abgabe

Wasserstoff ↓**EIN ↑ H***Kalilauge**KOH***Hofmannscher Abbau von quartären**

C

Ammoniumsalzen**Isochinolinring-Oeffnung**

s. 2, 839

*Bariumhydroxyd**Ba(OH)₂***Basen aus Basenhydrochloriden**

←

s. 2, 840

*Salzsäure**HCl***Spaltung von S-Benzylthiuroniumsalzen**

←

s. 2, 844

Sauerstoff↑**EIN ↑ O***Nickel**Ni***Azo- aus Azoxy-verbindungen**
s. 2, 845*Ueber Zwischenprodukte**ü. Z.***Nitrosoverbindungen aus Nitroverbindungen über Hydroxylamine**

761.

Zu Nitrobenzol in einer wss. NH_4^+ -Chlorid-Lsg. unter kräftigem Rühren innerhalb 5 Min. in kleinen Portionen Zn-Staub gegeben, wobei die Temp., die auf 65° steigt, durch Kühlen auf $50—55^\circ$ gesenkt wird, 20 Min. nach Beginn der Zn-Staub-Zugabe filtriert, den Rückstand mit kochendem W. gewaschen, sofort auf 0 bis -2° gekühlt, zu dieser Phenylhydroxylamin-Lsg. oder -Suspension, die noch Eis enthält, unter Rühren u. weiterem Kühlen auf -5° H_2SO_4 , hierauf so schnell als möglich eiskalte $\text{Na}_2\text{Cr}_2\text{O}_7$ -Lsg. gegeben u. nach 2—3 Min. filtriert \rightarrow Nitrosobenzol. A: 49—53%, bei kleineren Ansätzen 65—70%. (G. H. Coleman, C. M. McCloskey u. F. A. Stuart, Org. Synth. 25, 80 (1945).)

Kohlenstoff↑**EIN ↑ C***Ohne Hilfsstoffe**o. H.***Amine aus quartären Ammoniumsalzen**

762.

4-Cyan-7-methylchinolin-jodmethylat in Benzoësäureäthylester 3 Std. auf 230° erhitzt, wobei Methyljodid abdestilliert \rightarrow 4-Cyan-7-methylchinolin. A: 97%. (V. G. Ramsey, W. E. Baldwin u. R. S. Tipson, Am. Soc. 69, 67 (1947).)

*Natrium/Alkohol**NaOR*

s. 1, 793

Bildung eines Elektronenpaars an Halogen

Abgabe

Sauerstoff \downarrow

El Hal \uparrow O

Ohne Hilfsstoffe

o. H.

Jodide aus Jodosoverbindungen

$\text{JO} \rightarrow \text{J}$

s. 102

Bildung eines Elektronenpaars an den übrigen Elementen

Abgabe

Sauerstoff \downarrow

El Ü \uparrow O

Schwefeldioxyd/Kaliumjodid

SO_2/KJ

Arsenosoverbindungen aus Arsonsäuren

$\text{AsO}_3\text{H}_2 \rightarrow \text{AsO}$

1-(2-Amino-4-aronophenyl)-3,4-dimethyl-1,2,5-triazol in heißer 6-n. H_2SO_4 in Ggw. einer Spur KJ innerhalb 15—20 Min. mit SO_2 reduziert \rightarrow 1-(2-Amino-4-arsenosophenyl)-3,4-dimethyl-1,2,5-triazol. A: 90%. (R. F. Coles u. C. S. Hamilton, Am. Soc. 68, 1799 (1946).)

Halogen \downarrow

El Ü \uparrow Hal

Kaliumpyrosulfit

$\text{K}_2\text{S}_2\text{O}_6$

Telluride aus Telluroniumsalzen

\leftarrow

s. 2, 843

Bildung eines Elektronenpaars am Kohlenstoff

Abgabe

Wasserstoff \uparrow

EIC \uparrow H

Ammoniak

NH₃

Organophosphor-verbbindungen

\leftarrow

764.

3 g Fluorenyl-9-triphenylphosphonium-bromid in kochendem Alk. gelöst u. mit NH₄OH alkalisch gemacht \rightarrow 2,4 g Triphenylphosphin-fluorenylididenid. (L. A. Pinek u. G. E. Hilbert, Am. Soc. 69, 723 (1947).)

Heteropolare Bindung

Aufnahme

Anlagerung an Stickstoff

Het \downarrow N

Ohne Hilfsstoffe

o. H.

Hydrochloride

s. 2, 829

Adipate

\leftarrow

s. 2, 830

Phosphate

765. Rohes 7-Chlor-4-(3-dihexylaminopropylamino)-chinolin in Alk.-Dioxan auf dem Dampfbad tropfenweise mit einer heißen 10%ig. Lsg. von 85%ig. H_3PO_4 in Dioxan versetzt, bis sich kein Niederschlag mehr bildete, u. noch 30 Min. erhitzt \rightarrow 7-Chlor-4-(3-dihexylaminopropylamino)-chinolin-diphosphat. A: 90%. (B. Riegel u. a., Am. Soc. 68, 1229 (1946). W. B. s. w. Contractarbeiten des OSRD.)

Harnstoff-alkylsulfate

Zu 1 Mol Chlorsulfonsäure werden unter Eiskühlung etwas mehr als 1 Mol Alkohol u. hierauf unter weiterem Kühlen u. Röhren 1 Mol Harnstoff gegeben. A: ca. 100%, bei Verwendung von Sulfurylchlorid 80—90%. — B: Harnstoff-äthylsulfat. — Die Isolierung von Aethylhydrogensulfat als Harnstoff-Salz ist seiner Isolierung als Metallsalz bei weitem überlegen. (W. B. s. C. L. Carter u. P. A. Ongley, Am. Soc. 69, 460 (1947).)

Quartäre Ammoniumsalze

767. Alkylhalogenide werden mit einem Ueberschuß des Amins 8—16 Stdn. auf 60—130° erhitzt, wobei eine 95%ig. Umsetzung erreicht wird. Bromide reagieren schneller als Chloride. Bei höheren Temp. besteht die Tendenz zur Bildung von Halohydraten des Amins. — B: Octylpyridinium-chlorid \rightarrow 1-Dodecyl-1-methyl-piperidiniumbromid. (W. B. s. R. S. Shelton u. a., Am. Soc. 68, 757, 755, 753 (1946).)

Acetophenon u. Pyridin mit Jod auf dem Dampfbad \rightarrow Phenacylpyridinium-jodid. A: 84%. (W. B. s. J. L. Hartwell u. S. R. L. Kornberg, Am. Soc. 68, 868 (1946). Darstellungs-Methode der Jodide s. L. C. King u. M. McWhirter, Am. Soc. 68, 717 (1946), Am. Soc. 66, 894, 1612 (1944).)

s. a. 1, 786/7; 3, 726

Methylsulfate

s. 2, 831/2, 839

Lösliche Formen unlöslicher

Azofarbstoffe

s. 1, 788

Synthesen mit Pyridiniumsalzen

α,β -Aethylenaldehyde

s. 1, 197

CH : CHCHO

α -Ketoaldehyde aus α -Halogenketonen
s. 1, 198/9

Carbonsäuren
Abbau um 1 C-Atom
s. 2, 833

Indol- u. Pyrrol-carbonsäuren
s. 1, 787, 2, 835

Hydrochinon

Halogenmethylierung
s. 2, 834

Ueber Zwischenprodukte
s. 1, 787, 2, 835

ü. Z.

Anlagerung an Halogen

Het \Downarrow Hal

Natronlauge

NaOH

Jodoniumverbindungen

Eine Mischung aus Jodosobenzol (Darst. s. 103), Jodoxybenzol (Darst. s. 104) u. 1-n. NaOH 24 Stdn. langsam gerührt, mit W. versetzt, filtriert u. zum Filtrat KJ gegeben \rightarrow Diphenyl-jodonium-jodid. A: 70—72%. (H. J. Lucas u. E. R. Kennedy, Org. Synth. 22, 52 (1942).)

Anlagerung an Schwefel

Het \Downarrow S

Ohne Hilfsstoffe

o. H.

Sulfoniumsalze
s. 1, 790; 2, 836

Austausch

Het $\uparrow\downarrow$

Alkalialze

Alkali⁺

Picrylsulfonate

\leftarrow

770. $(\text{ClCH}_2\text{CH}_2)_3\text{S}^+ \quad \text{C}_6\text{H}_2(\text{NO}_2)_3\text{SO}_3^-$

Tris-(β -chloräthyl)-sulfonium-chlorid u. Na-Picrylsulfonat in W. \rightarrow Tris-(β -chloräthyl)-sulfonium-picrylsulfonat. A: 94%. (W. B., auch Flavianat, s. M. A. Stahmann, J. S. Fruton u. M. Bergmann, J. org. Chem. 11, 704 (1946) u. die übrigen Arbeiten dieser Reihe.)

p-Brombenzylthiuroniumsalze

s. 1, 791

Benzylthiuroniumsalze von Aldehyd- und Ketonbisulfitverbindungen

s. 1, 792

Sonstige Reaktionen

So

Isonitrosocyanessigester

←

Freie Aminocarbonsäuren aus ihren Salzen

771. Isonitrosocyanessigsäureäthylester ist eine genügend starke Säure, um Aminocarbonsäuren in Freiheit zu setzen, u. seine gut in Alkohol löslichen Alkalosalze können anschließend leicht abgetrennt werden. — B: Zu einer Lsg. von Mononatrium-glutaminat in warmem W. $\text{HON} = \text{C}(\text{CN}) \cdot \text{COOC}_2\text{H}_5$ in Methanol gegeben u. den zuerst schmierigen, beim Rühren kristallin werdenden Niederschlag abfiltriert \rightarrow l-Glutaminsäure. A: 91%. (W. B. s. A. Galat, Am. Soc. 69, 707 (1947).)

Chromatographie

Al₂O₃

Aluminimumoxyd

Spaltung von Molekülverbindungen

s. 2, 841

←

←

d-Lactose-hydrat

←

Spaltung von Razematen

s. 2, 842

←

Apparate und Maschinen

für die chemische und
pharmazeutische Industrie

Verarbeitung aller Metalle

KOEHLER, BOSSHARDT & CIE
BASEL 19

Klein-Labor-Type
IV Br

Elektro-Vibration-Siebmaschine

ist das neuzeitliche, bestbewährte Vibrations-Hängesieb
von hoher Leistung und geringem Platzbedarf.

Wird in allen Größen von 100 bis 1000 mm ø geliefert.

Ia. Referenzen in chemischer und pharmazeutischer Industrie, Laboratorien-Prüfstellen der Nahrungs- und Genußmittel usw. Verlangen Sie Spezialprospekt Nr. 66.

Type II
mit staubdichtem Siebkasten
für kontinuierliche Absiebung

Storrer & Co., Zürich

Florastraße 1

Telephon (051) 32 77 22

HOCHVAKUUM - TECHNIK

Diffusionspumpen. Mechanische Hochvakuumpumpen von 1,26 bis 1100 m³/h Förderleistung. Dichtigkeitsprüferäte. Meßgeräte verschiedener Systeme. Starre und rotierende Durchführungen.

Komplette Anlagen für:

Chemische und Nahrungsmittel-Industrie. Sterile Hochvakuumtrocknung- und Dehydrierung. Gewinnung gasfreier Metalle (Metaldestillation). Metallverdampfung (Optik, Reflektoren etc.). Forschungslabourorien.

HIGH VACUUM FOR INDUSTRY
NATIONAL RESEARCH CORPORATION
Vacuum ENGINEERING DIVISION

Generalvertretung

NOVELECTRIC A.G. ZÜRICH
CLÄRIDEHNSTRASSE 25 TEL. (051) 238766

Stopfbüchsenlose Säurepumpe

Neueste Spezialkonstruktion, einfache Bauart,
kleiner Platzbedarf, guter Wirkungsgrad.

Ausführungen in:
Hartblei, rostfreiem Stahl, Bronze, Aluminium,
Eisen gummiert.

Spezialkonstruktion zur Förderung von Dickstoffen.

WEKA G.m.b.H., Wetzikon

Telephon (051) 97 83 02

Register

Abbau

- um 1 C-Atom von
 - Aldehyden zu Kohlenwasserstoffen 2, 128
 - Arylacetonitrilen zu Arylcarbon-säuren 1, 244
 - α -Bromketonen zu Carbonsäuren 1, 789; 2, 833
 - Carbonsäureamiden zu Aminen 2, 475/6
 - zu Urethanen 2, 337
 - Carbonsäureaziden zu Aminen 1, 389; 3, 402, 408
 - zu Urethanen 1, 358, 389
 - Carbonsäurechloriden zu Aminen 3, 402
 - zu Isocyanaten 3, 378
 - Carbonsäurehydraziden zu Aminen 3, 414
 - Carbonsäuren zu Aminen 1, 338, 339, 390; 2, 466
 - zu Halogeniden 1, 453/4; 3, 489
 - Hydroxamsäuren zu Aminen 2, 478
 - Methylketonen zu Carbonsäuren 1, 243
 - um 2 C-Atome von
 - Ketonen zu Ketonen 2, 494
 - von
 - Polysacchariden, methylierten 1, 8
 - *oxydativer OC ↑ C*
 - von
 - Aethylenderivaten zu Methylketonen 2, 280
 - Seitenketten 2, 281
 - zu Aldehyden 1, 241; 2, 285
- Abspaltung ↑*
 - von
 - Alkoxygruppen bei Dihydroalkoxy-Ringen 1, 739
 - Kohlendioxyd, Decarboxylierung $\text{HC} \uparrow \text{C}$
 - Kohlenoxyd* 1, 561, 784/5; 3, 94
 - Methyljodid bei Thiazinen 2, 571
 - Seitenketten 3, 78
 - Substituenten bei der Friedel-Crafts-Reaktion 2, 126
 - unter Bildung von Kohlenstoff-Mehrfachbindungen $\text{CC} \uparrow \uparrow$
 - Acenaphtene* 1, 761
 - Acetale* 1, 175, 184, 468; 2, 200, 210; 3, 174
 - aus
 - Aldehyden 3, 711

- Oxidooverbindungen 2, 150
- Oximen 2, 227
- Vinyläthern 3, 134
- Ausg. f.
 - 1,1-Alkoxychloride 2, 731
 - Enoläther 3, 712
- Spaltung 1, 290; 2, 19, 22/3, 28, 33/4; 3, 711
- spezielle s.
 - α,β -Aethylen-acetale
 - β -Alkoxy-
 - α -Brom-
 - β -Halogen-
 - Keten-
 - Poly-
 - gemischte 2, 282
- Acetanhydrid* als Hilfsstoff $\text{CC} \uparrow \text{O}$, $\text{CC} \uparrow \downarrow \text{O}$; 1, 268, 393, 619; 2, 391; 3, 101, 258, 331, 662, 462, 503, 733
- β -*Acetanilidovinyl-N-heterocyclen* 2, 693
- Acetate* (s. a. Acylierung)
 - aus
 - Salpetersäureestern 3, 186
 - Acetessigester-Synthesen* s. β -Keto-carbonsäureester
 - Acetohalogenzucker* 1, 427; 3, 462
 - Ausg. f.
 - Methylglykoside 1, 218
- Acetonylderivate*
 - aus
 - Acetyl furanen 3, 89
 - Acetoxy-aminosäuren*
 - aus
 - Oxyaminosäuren 1, 183
- α -Acetoxyketone*
 - aus
 - α -Diazoketone 2, 211/2; 3, 182
 - Ketonen 2, 143
 - Ausg. f.
 - γ -Lactone 1, 694
- C-Acetyl* s. C-Acyl, Austausch, Methylketone
- Acetylchlorid* als Hilfsstoff 1, 8; 2, 782; 3, 162, 695, 733
- Acetyl derivate* s. Acylierung
- Acetylen-alkohole*
 - aus
 - ω -Bromstyrolen 1, 719
 - Oxidooverbindungen 2, 589
 - Oxooverbindungen $\text{CC} \downarrow \downarrow \text{OC}$
 - bisdiäthylacetal*
 - Ausg. f.
 - Pyrazol-o-dialdehyde 1, 532
 - Triazol-o-dialdehyde 1, 290

- Acetylen-carbonsäuren**
- aus
 - Acetylenen 2, 583; 3, 555
 - Halogeniden 1, 654
 - Ausg. f.
 - Methoxyacrylsäuren 1, 138
 - derivate
 - aus
 - Aethylenderivaten 3, 710/1
 - Halogeniden 2, 815/6
 - Ausg. f.
 - α,β -Aethylén-äther 1, 138; 3, 131
 - amine, sek. 2, 330
 - Aethylenderivate 1, 59/60; 2, 79, 85; 3, 40
 - , Synthese 3, 584
 - α,β -Aethylén-fluoride 3, 426
 - halogenide 1, 406
 - Ketone 1, 136/7; 2, 161/2, 818; 3, 135
 - , Hydrierung $\text{HC} \downarrow \text{CC}$
 - spezielle m. an. W. s.
 - Chloracetylene, subst.
 - Dichloracetylen
 - dicarbonsäureester-Synthesen 3, 704
 - glykole
 - aus
 - α -Oxyketonen 2, 591
 - ketone 2, 289, 734
 - Ausg. f.
 - Heterocyclen 3, 283
 - α,β -Acetylenoxycarbonsäuren 2, 583
 - Acetylierung s. Acylierung
 - Acetyl-lactone
 - Ausg. f.
 - Oximinolactone 3, 398
 - peroxyd als Hilfsstoff 3, 534
 - sulfanilylamine
 - aus
 - Aminen 1, 274/5; 2, 311, 313
 - Ausg. f.
 - Sulfanilylamine 1, 31, 36; 2, 52, 311
 - o*-Acoxyketone
 - Ausg. f.
 - α -Oxy- β -diketone 3, 595
 - Acridane
 - Ausg. f.
 - Acridine 1, 23, 656; 2, 91/2; 3, 69
 - Acridine
 - aus
 - Acridanen 1, 23, 756; 2, 91/2; 3, 69
 - Acridonen 1, 23, 65, 756; 2, 91/2
 - Chloracridinen 3, 69
 - α -Nitrobenzaldehyden 3, 627
 - spezielle m. an. W. s.
 - Amino-acridine
 - Chlor-
 - Nitro-
-
- Acridiniumsalze** 1, 787; 2, 832, 835
- Acridinring** 1, 755/6; 2, 638, 802
- Acridone** 1, 749; 2, 639, 683, 823
- Ausg. f.
 - Acridine 1, 23, 65, 756; 2, 91/2
 - über 5-Chloracridine 2, 792
 - , 1,2,3,4-Tetrahydro- 3, 613
- Acrylonitril** s. Vinyleyanid
- Acrylsäurederivate** 3, 588
- Acrylsäuren** s. α,β -Aethylencarbonsäuren
- C-Acyl-Austausch** 3, 702
- Acylamine** (s. a. Carbonsäureamide)
- aus
 - Azoverbindungen 2, 411
 - Carbonsäureaziden 3, 408
- Ausg. f.
 - Amine, sek. 2, 465
- spezielle, m. an. W. s.
 - Diamine, N,N'-diacylierte Formamide
- Acylaminoketone**
- aus
 - α -Aminocarbonsäuren 3, 170
- Ausg. f.
 - Oxazole 3, 170
- Acylchinoläther** s. Acylhydrochinonäther
- Acylcyanide**
- aus
 - Carbonsäurechloriden 3, 689
- N-Acyl** aus O-Acyl 1, 292
- O-Acyl** aus N-Acyl 1, 154
- Acylessigester**
- Ausg. f.
 - α -Acyllävulinsäureester 1, 648
- Acylhydrochinonäther** 1, 710
- Acylierung** (s. a. Acetate)
- von
 - Alkoholen, tert. 3, 160, 211
 - Aminen NC \uparrow Hal; 1, 279; 2, 367, 460; 3, 358
 - Aminocarbonsäuren 2, 430
 - Cholinen 2, 197
 - Oxyverbindungen OC \uparrow O, OC \uparrow Hal; 2, 148, 460; 3, 239
 - Sulfonsäureamiden 2, 420
 - Xanthaten 2, 551
 - Zuckersäuren 3, 221
 - , partielle 2, 192
- α -Acyllävulinsäureester**, aus
- Acylessigestern 1, 648
- Acylmalonsäureester** als Zwischenprodukte 2, 690; 3, 739
- Acyloine** (s. a. α -Oxyketone, Alkylacyloine)
- , Oxydation 2, 287
- Acyloinkondensation** 1, 545

- Acylperoxyde**
- als Hilfsstoff 3, 587, 601 (s. a. Acetyl-, Benzoyl-peroxyd)
 - aus Carbonsäurechloriden 3, 206
 - Ausg. f. Alkylchinone 3, 701
 - Adams-Katalysator** (Platinoxid) s. Platin-Katalysatoren
 - Addition** s. Anlagerung
 - Aethane, subst.** s. Bisaryläthane
 - Aethanolamide** 3, 309
 - Aether, a. cyclische** OC $\uparrow\downarrow$ N, OC $\uparrow\downarrow$ Hal, OC $\uparrow\downarrow$ S; 1, 185; 2, 203, 496
 - aus Aethylenderivaten 2, 158; 3, 128 Carbonsäureestern 1, 210 Chinonen 3, 119 Halogeniden OC $\uparrow\downarrow$ Hal Lactonen 2, 660
 - Ausg. f. Aethylenderivate 3, 727 Amine, sek. 1, 296 —, tert. 2, 541 Halogenide 1, 436; 2, 497/8, 501, 520; 3, 452/3 Sulfonsäureester 2, 567 Thioäther 2, 541
 - , Spaltung HO $\uparrow\downarrow$ C; 1, 234
 - (Aether)**
 - spezielle s.
 - α,β -Aethylenäther
 - 1,1-Alkoxychlor-verbindungen
 - α -Alkoxyhalogen-
 - Alkoxyoxido-
 - Allyl-äther
 - Chlormethyl-
 - Cyanäethyl-
 - Diaryl-
 - α,β -Dibrom-
 - Enol-
 - 1,2-Glykolmono-
 - Methoxycarbonsäureester
 - Methoxynitrile
 - Methylglykoside
 - Oxy-äther
 - β -Oxyäethyl-
 - Phenol-
 - Vinyl-
 - , symm. 3, 166
 - i*-Aether 3, 596
 - Aethingyl-derivate** s. Acetylenderivate
 - Aethylalkohole, β -subst.** 1, 673--6; 2, 733
 - Aethylen** als Wasserstoffacceptor 1, 165
 - , Diensynthese mit — 1, 526
 - α,β -Aethylen-acetale**
 - aus α,β -Aethylenaldehyden 3, 174
 - α,β -Aethylen-äther**
 - aus
 - Acetylenderivaten** 1, 138; 3, 131
 - aldehyde** 1, 197; 3, 223
 - Ausg. f.
 - α,β -Aethylenacetale 3, 174
 - β -Alkoxyacetale 3, 174
 - β -Halogenacetale 2, 483
 - α,β -Aethylenamine** (s. a. α -Amino-methylenketone) 2, 634
 - aus Aldehyden 2, 380
 - , sek. aus Acetylenderivaten 2, 330
 - β -aminocarbonsäureester**
 - aus Formamidinen 3, 663
 - Aethylenazofarbstoffe** 2, 331
 - β,γ -Aethylen-1,4-bromketone**
 - aus Oxydienen 2, 487
 - Aethylencarbonsäurechloride** 2, 247
 - α,β -Aethylen-carbonsäureester**
 - aus Aldehyden 3, 630
 - spezielle s.
 - α,β -Aethylencyancarbonsäureester
 - Alkylidenedacetessigester
 - Aethylencarbonsäuren** 3, 755
 - Ausg. f.
 - Lactone 3, 137
 - , Synthese 2, 821
 - α,β -Aethylencarbonsäuren** 2, 666
 - aus Aldehyden, Aufbau um 2 C-Atome 1, 566, 569/70; 2, 657; 3, 635/6
 - α -Brommethylketonen 2, 494
 - Formaldehyd 1, 767; 2, 588
 - Ausg. f.
 - Carbonsäureamide 3, 401
 - β -Oxy- α -aminocarbonsäuren 1, 498/9
 - α,β -Aethylen- α -cyancarbonsäureester**
 - Ausg. f.
 - Bernsteinsäurederivate 3, 583
 - β,β -Dialkylbuttersäuren 2, 616
 - Dialkylvinyl-alkylcyanessigester 3, 675
 - β,γ -Aethylen- α -cyancarbonsäure-ester** 1, 573
 - Aethylenderivate** (s. a. Doppel-bindung)
 - aus Acetylenderivaten 1, 59/60; 2, 79, 85; 3, 40
 - , Synthese 3, 584
 - Aethern 3, 727
 - Alkoholen CC $\uparrow\downarrow$ O
 - durch Kondensation 3, 660
 - α -Alkoxyhalogeniden 1, 775; 2, 731

- (Aethylenderivate aus)
- Alkylbromiden, Aufbau um 2
 - C-Atome 1, 775
 - Aminen 3, 746
 - Carbonsäureestern 1, 736, 741; 2, 768, 804—6
 - Carbonsäuren durch Grignard-Synthese 2, 800; 3, 733
 - 1, 2-Dihalogeniden 1, 772, 776/7; 2, 822; 3, 755
 - Einfachbindungen, Dehydrierung
 $\text{CC} \uparrow \text{H}$
 - Halogeniden $\text{CC} \uparrow \text{Hal}$
 - durch Kondensation 3, 685
 - Hydrazone 1, 615
 - Oximen 3, 746
 - Oxoverbindungen $\text{CC} \uparrow \text{O}$; 1, 615, 669/70; 2, 485, 659, 798
 - Schwefelsäureestern 1, 740
 - Ausg. f.
 - Acetylenderivate 3, 710/1
 - Aether 2, 158; 3, 128
 - α,β -Aethylenphosphinsäuren 3, 536
 - Aldehyde 1, 141/2, 236
 - Amine 1, 291; 2, 238/9; 3, 284/5
 - Aminoalkohole 1, 292
 - Carbonsäuren $\text{OC} \uparrow \text{C}$
 - Cyclopropane 2, 615
 - Dinitroverbindungen, aliphat. 3, 279
 - Glykole (auch acyierte) $\text{OC} \downarrow \text{CC}$
 - Halogenhydrine 1, 405; 2, 488
 - Halogenide $\text{HalC} \downarrow \text{CC}$
 - , Synthese 3, 586/7
 - β -Halogenketone 2, 617
 - 2-Halogenthioäther 3, 497
 - Ketone 1, 139, 141/2, 144; 2, 170, 179
 - Mercaptane 1, 457
 - Nitroalkohole 2, 332; 3, 279
 - 2-Nitrohalogenide 1, 289
 - Nitromethylverbindungen 1, 535
 - Nitrosalpetersäureester 3, 279
 - Oxidoverbindungen 2, 164—6; 3, 132/3
 - Ozonide 1, 141, 143; 2, 167
 - Thioäther 3, 496, 498/9, 502
 - Thiolsäureester 1, 457
 - , Bromierung 3, 711
 - durch Abspaltung von Wasserstoff $\text{CC} \uparrow \text{H}$
 - , Hydrierung $\text{HC} \downarrow \text{CC}$
 - , Spaltung über die Ozonide 1, 141—3
 - spezielle m. an. W. s.
 - Acrylsäurederivate
 - ω -Bromstyrol
- ω -Chlorallylverbindungen
- Dialkyldiaryläthylene
 - Dialkylvinyl-alkylcyanessigester
 - Diarylacroleine
 - Diene
 - Dienone
 - Enoläther
 - Enolderivate
 - Enollactone
 - Methoxyacrylsäuren
 - Olefinketten
 - Oxydiene
 - Styrylheterocyclen
 - Tetraaryl-divinylen-carbenium-salze
 - Vinyläther
 - Vinylalkohole
 - Vinylcyanid
 - α,β -Aethylen- β -dicarbonsäureester
 - aus
 - Aldehyden 3, 632
 - α,β -Aethylenfluoride
 - aus
 - Acetylenderivaten 3, 426
 - Aethylenglykol als Lösungsmittel 1, 188
 - Aethylenhalogenide (s. a. α,β -Aethylenfluoride)
 - aus
 - Acetylenderivaten 1, 406
 - Ketonen 3, 470
 - Ausg. f.
 - Ketone 2, 263
 - spezielle s.
 - β,γ -Aethylen-1,4-bromketone
 - α,β -Aethylenfluoride
 - ω -Bromstyrol
 - ω -Chlorallylverbindungen
 - α,β -Aethylenketone
 - aus
 - Aldehyden 3, 619
 - Ausg. f.
 - Ketone, homologe 1, 536
 - γ,δ -Aethylenketone 3, 758
 - α,β -Aethylen- γ -lactone
 - aus
 - Dihydrofuranen 2, 188
 - Aethylenoxyd (s. a. Oxidoverbindungen)
 - , Grignardsynthese mit — 1, 673 bis 6; 2, 733
 - α,β -Aethylenphosphinsäuren
 - aus
 - Acetylenderivaten 3, 536
 - Aethylidenderivate von Kohlehydraten 2, 205
 - — —, Spaltung 2, 28
 - Aktivator bei Grignard-Reaktionen 1, 674

- Aldehydacetate**
 — Ausg. f.
 Aldehyde 3, 150
Aldehyde (s. a. Oxoverbindungen, Vinylalkohole)
 — aus
 Aethylenderivaten durch oxydative Spaltung 1, 141/2, 236
 Aldehydacetaten 3, 150
 Alkoholen OC ↑ H
 Carbonsäure-amiden 1, 72
 -aniliden 2, 122
 -chloriden 1, 99—102
 Carbonsäuren 1, 100, 105, 109/10; 2, 122; 3, 83
 1,2-Glykolen 2, 299
 1,2-Glykolmonoäthern 3, 144
 Halogeniden 1, 226, 410; 3, 222
 —, Aufbau um 1 C-Atom 1, 683
 α -Ketocarbonsäuren 2, 689
 Ketoximen 3, 82
 Kohlenwasserstoffen 1, 159, 162/3, 166, 410; 3, 150
 Nitrilen 2, 226; 3, 190
 Oxidoverbindungen 3, 144
 α -Oxycarbonsäuren 1, 249
 Ozoniden 1, 141/2
 Thiolsäureestern 3, 74
 — Ausg. f.
 α,β -Aethylen-amine 2, 380
 -carbonsäureester 3, 630
 -carbonsäuren 1, 400, 566, 569 bis 571; 2, 657; 3, 635/6
 -dicarbonsäureester 3, 632
 -ketone 3, 619
 Alkohole, prim. 2, 55, 75; 3, 32, 34/5, 52
 —, sek. 2, 599; 3, 550, 560
 Alkylidenedacetessigester 1, 400, 571
 Amine, prim. 1, 353
 α -Aminonitrile 3, 609
 Benzoine 1, 513; 2, 597; 3, 557
 Carbonsäuren 1, 128/9; 2, 141, 321; 3, 112
 —, Aufbau um 1 C-Atom 2, 654
 Diketodicarbonsäureester 3, 738
 Glykole 1, 689
 Ketone, Kondensation 1, 718
 Kohlenwasserstoffe, Abbau um 1 C-Atom 2, 128
 Nitrile, Aufbau um 1 C-Atom 2, 752; 3, 662
 Nitroalkohle 1, 511; 3, 559
 β -Oxycarbonsäuren, Reformatski-Synth. 1, 690—3; 2, 737, 801, 827
 α -Thioketocarbonsäuren, Aufbau um 2 C-Atome 3, 662
 — durch oxydativen Abbau von Seitenketten 1, 241; 2, 285
- spezielle m. an. W. s.
 α,β -Aethylenaldehyde
 Aminoaldehyde
 Diarylacroleine
 p-Dimethylaminobenzaldehyd
 2-Formylpyrrole
 α -Ketoaldehyde
 α -Nitrobenzaldehyd
 Pyrazol-o-dialdehyd
 Triazol-o-dialdehyd
Aldehydgruppe, Einführung in ar. Kerne 1, 612, 616/7, 621; 2, 689, 694, 702/3, 714; 3, 668, 670, 696
 β -Aldehydocarbonsäuren 2, 641
 α -Aldehydocarbonsäuren
 — aus
 2-Halogenphthaliden 3, 154
 Phthaliden 3, 154
Alder s. a. Diensynthesen
Rickert-Synthese 3, 704
Aldole
 — Ausg. f.
 Ketone 1, 718
Aldonsäurehydrazide 2, 321
Aldonsäuren
 — aus
 Kohlehydraten 2, 321
Aldoxime s. Oxime
Alicyclische Verbindungen s. Isocyclen
Alkalijodide (s. a. Kalium-, Natrium-jodid) 3, 386/7
Alkalosalze (s. a. bei den einzelnen Elementen) Het
Alkaloid-thiosulfonsäuren 2, 539
Alkoholate als Hilfsstoffe (s. a. im systematischen Teil) 3, 235
Alkohole
 — aus
 Aldehyden (prim. Alkohole) 2, 55, 75; 3, 32, 34/5, 52
 — (sek. Alkohole) 2, 599; 3, 550, 560
 Alkylcarbonaten (tert. Alkohole) 3, 551a
 Aminen 2, 218
 Carbonsäureanhydriden 3, 52
 Carbonsäurechloriden 3, 52
 Carbonsäureestern durch Reduktion (prim. Alkohole) 1, 64, 75; 2, 89/90; 3, 49/50, 52
 — durch Synthese (tert. Alkohole) 1, 682, 752/3; 2, 800; 3, 562/3, 733
 — durch Verseifung HO ↑ C
 Carbonsäuren durch Reduktion (prim. Alkohole) 1, 63; 3, 51
 — durch Synthese (tert. Alkohole) 3, 561

(Alkohole aus)

Halogeniden, Aufbau um 2 C-Atome 1, 673—6; 2, 733

Ketonen (sek. Alkohole) $\text{HC}\swarrow\text{OC}$ — (stereoisomere Alkohole) 2, 62

— (tert. Alkohole) 2, 585, 600, 664, 709; 3, 551, 563

Oxidoverbindungen 2, 59, 66, 584; 3, 122, 133, 550

Peroxyden 1, 15/6

Schwefelsäureester 1, 122

Thiolsäureester 2, 101, 115

— Ausg. f.

Aldehyde (prim. Alkohole) $\text{OC}\uparrow\text{H}$

Carbonsäuren 2, 185, 189; 3, 147, 153

—, Aufbau um 1 C-Atom 2, 726

Chlormethyläther 3, 172

Halogenide $\text{HalC}\uparrow\text{O}$

Ketone (sek. Alkohole) $\text{OC}\uparrow\text{H}$

Salpetrigsäureester 3, 97, 100

Schwefelsäureester 1, 122, 2, 133

Urethane 1, 247; 3, 124/5, 368

— Derivate (s. a. Acylierung)

Allophanate 2, 140

Dinitrophenylurethane 1, 247

Trityläther 1, 212/3, 216; 2, 249/50; 3, 212

— spezielle m. an. W. s. (a. unter Oxy...)

Acetylenalkohole

Acetylenglykole

Aethanolamide

Aethylalkohole, β -subst.

Aminoalkohole

α -Aryl- α -oxycarbonsäureester

α -Aryl- α -oxycarbonsäuren

Aryloxymalonsäureester

Carbonsäure-methyloxamide

Cyanhydrine

Diarylcarbinole

Glycerine

Glykole

Halogenhydrine

Kohlehydrate

Nitroalkohole

α -Piperidylcarbinole

Polyalkohole

Ringalkohole, stereoisomere

Sulfidalkohole

Vinylalkohole

 β -Alkoxyacetale

— aus

α,β -Aethylenaldehyden 3, 174

1,1-Alkoxychloride

— aus

Acetalen 2, 731

— Ausg. f.

α,β -Dibromäther 2, 731

 α -Alkoxyhalogenide

— aus

Aethylenderivaten 3, 425

— Ausg. f.

Aethylenderivate 1, 775; 2, 731

—, Grignard-Synthesen mit —

1, 775; 2, 731, 821

Alkoxy silane

— aus

Halogensilanen 3, 107

Alkylacyloine

— aus

Carbonsäureestern 3, 616

Alkyläthylene s. Dialkyldiaryläthylene

Alkylamine

— aus

Nitroverbindungen 3, 351

5-Alkylaminoacridine 2, 448/9

4-Alkylamino-antipyrine 1, 356

-chinazoline 3, 388

-chinoline 3, 385

Alkylaminopyrimidine 2, 432, 453

Alkylarylamine s. Arylalkylamine

Alkyl-aryle 2, 711

— aus

Aminen, Diazokupplung 1, 613

-benzimidazole 1, 391

-benzole 1, 578, 700

-carbonate

— Ausg. f.

Alkohole, tert. 3, 551a

— bei Alkylierungsreaktionen 1, 564, 635/6, 642, 646; 2, 711, 721

-chlorformate 3, 368

-chlorsilicate

— Ausg. f.

Kieselsäureester 3, 110

3-Alkylchromone 1, 250

 α -Alkyl- α -cyancarbonsäureester

— aus

α -Cyancarbonsäureestern 1, 646; 2, 722

Alkylenoxyde s. Oxidoverbindungen

Alkyl-fluorsilicate 3, 233

-halogenide s. Halogenide

-hypochlorit als Hilfsstoff s. Hypohalogenite

Alkylenacetessigester

— aus

Aldehyden 1, 400, 571

Alkylidencyanessigester s. α,β -Aethylen- α -cyancarbonsäureester

Alkylierung (s. a. einzelne Alkylierungen u. Austausch von Wasserstoff gegen Methyl)

— von

Aminen, ar. 2, 661

(Alkylierung von)

- Chinonen 3, 701
- Hydroperoxyden 1, 232
- Isocyclen 1, 578, 700; 3, 643
- Ketonen 2, 715/6, 723-5, 782; 3, 671
- Malonestern $\text{CC} \uparrow \text{Hal}$; 1, 564, 2, 485, 695
- Nitrilen 1, 656; 3, 680
- Sulfonsäureamiden 2, 428, 459
- N-Alkylierung** 3, 370
- , reduktive 3, 351
- 3-Alkylindole**
 - aus
Indolen 1, 565
- Alkylisothiocyanate** 1, 401
- α-Alkyl-β-ketocarbonsäureester**
 - aus
β-Ketocarbonsäureestern 1, 635-8; 2, 712/3, 717/8
- Alkyl-naphtaline** 1, 700
- nitrit** als Hilfsstoff 2, 227; 3, 398, 409
- phenacylsulfide** 1, 482
- Ausg. f.
Sulfidalkohole 1, 44
- phenole**
 - aus
Phenolketonen 1, 69
 - sulfonsäureimide** 1, 273
- S-Alkylthioharnstoffe** s. Isothioharnstoffe
- 4-Alkylthiopyridiniumsalze**
 - aus
4-Thiopyridonen 3, 495
- Alkylthiosulfate** (Bunte-Salze)
 - aus
Halogeniden 1, 487
 - Ausg. f.
Disulfide 1, 487
- Allophanate** 2, 140
- aus
Urethanen 3, 276
- Allyläther**
 - Ausg. f.
o-Allylphenole 2, 621
- Allylalkohol**
 - Ausg. f.
Aminopropanole 1, 291
- o-Allylphenole**
 - aus
Allyläthern 2, 621
- Allylumlagerung** 2, 626
- Aluminium** 2, 104
- Amalgam** 1, 23, 42, 700, 756; 3, 34, 119
- Kupfer** 1, 41
- Quecksilber-Paar** 3, 501
- alkoholat** 1, 43/4, 157; 2, 56—8, 286
- bromid** 1, 234

- chlorid** $\text{HO} \uparrow \text{C}, \text{CC} \downarrow \text{OC}, \text{CC} \cap \text{OC},$
 $\text{CC} \uparrow \text{O}, \text{CC} \uparrow \text{Hal}$; 1, 427, 720; 2, 617, 754; 3, 235, 271, 437, 586, 757
- hydrid** s. Lithium-aluminium-hydrid
- oxyd** 1, 327/8, 467, 744; 2, 387, 841; 3, 538, 730—2
- oxyd-Chromoxyd** 2, 619; 3, 708
- oxyd-Siliciumdioxyd** 3, 78, 585
- oxyd-Vanadiumpentooxyd** 3, 84
- phenolat** zur Oxydation 1, 158
- salze** 3, 100
- silicat** 3, 138
- Amalgam** s. Aluminium-, Natrium-amid u. a.
- Ameisensäure** als Hilfsstoff 1, 8, 105, 751; 2, 780; 3, 189, 332
- Amide** s. Carbonsäure-, Sulfon-säureamide
- Amidine**
 - aus
Carbonsäuren 3, 342
 - Halogeniden 2, 729
 - Iminoestern 2, 355/6
 - Nitrilen 1, 282; 2, 326/7, 729
 - Säureamiden 1, 351; 2, 357
- Ausg. f.
 - Pyrimidine 1, 314, 605; 2, 373-6, 381, 434; 3, 321
- spezielle s.
Formamidine
Sulfanilylamidine
- Amine** (s. a. ar., prim., sek., tert. Amine)
 - , Acylierung $\text{NC} \uparrow \text{O}$; 1, 279; 2, 367, 430, 460
- aus
 - Acylaminen $\text{HN} \uparrow \text{C}$
 - Aethylenderivaten 1, 291; 2, 238/9; 3, 284/5
 - Azoverbindungen 1, 173, 398; 2, 411
 - Carbonsäureamiden durch Reduktion 1, 72; 2, 88, 102
 - , Hofmann'scher Abbau 2, 475/6
 - Carbonsäure-azidén, Abbau um 1 C-Atom 1, 389; 3, 402, 408
 - chloriden, Abbau um 1 C-Atom 3, 402
 - hydraziden, Abbau um 1 C-Atom 3, 414
 - Carbonsäuren, Abbau um 1 C-Atom 1, 338/9, 390; 2, 466
 - Formamiden 3, 27
 - Harnstoffen 1, 33
 - Hydrazonen 3, 39
 - Hydroxamsäuren, Abbau um 1 C-Atom 2, 478

(Amine aus)

- Hydroxylaminen 3, 285
- Isonitrosoverbindungen 1, 360
- Mercaptanen 3, 390
- Nitrilen 1, 51—4; 2, 68—70; 3, 37
- Nitrosoverbindungen 1, 360; 2, 39
- Nitroverbindungen $\text{HN} \uparrow\downarrow \text{O}$
- Oximen 1, 20; 2, 37, 47; 3, 20, 38
- Oxoverbindungen 1, 354—6, 634; 2, 388, 390, 394; 3, 301, 350
- Sulfonsäureamiden 1, 34
- p-Toluolsulfonsäureestern 2, 353
- Urethanen 1, 353, 2, 53, 138, 426, 443; 3, 25, 28, 189
- Ausg. f.
- Acetylsulfanilylamine 1, 274/5; 2, 311, 313
- Aethylenderivate 3, 746
- Alkohole 2, 218
- Alkylaryle 1, 613
- Aminopropanole 1, 291
- Aminosulfonsäuren 3, 507
- Arsine 3, 539
- Arylazophenole 2, 343
- Azoverbindungen 1, 265, 295; 2, 302/3; 3, 250, 252
- , symm. 3, 249
- Carbonsäureamide 2, 190
- Cyanamidoverbindungen 3, 383
- Cyanguanidine 3, 278
- Diazoverbindungen 3, 247
- Fluoride 3, 478
- Formamidine 3, 311/2
- Guanidine 2, 324, 456; 3, 392, 396
- N-Halogenamine 2, 306; 3, 260
- Harnstoffe 2, 323, 409; 3, 267, 272
- Hydrazine 1, 261; 2, 304
- Hydrazone 3, 290
- Isocyanate 1, 385
- Isothiocyanate 1, 401, 464; 3, 389
- Kohlenwasserstoffe $\text{HC} \uparrow\downarrow \text{N}$
- Mercaptane 1, 717; 3, 517
- Nitramine 3, 299, 605
- Nitrosoverbindungen 3, 98
- Phenole 2, 229
- Sulfanilylamine 1, 276; 2, 311/2; 3, 262
- Thioäther 3, 518
- Thiocyanate 1, 470
- Thioformamide 1, 398/9; 3, 393
- Thioharnstoffe 1, 284, 363; 3, 530
- Urethane 3, 372

— Derivate

- Carbobenzoxyderivate 1, 353; 2, 138, 426, 443; 3, 368
- Diacylamine 2, 367
- Phtaloylderivate 1, 332/3
- Xenylcarbamate 2, 323
- Uramidoderivate 2, 323, 409; 3, 746
- spezielle m. a. W. s.
- Aethylenamine
- α,β -Aethylen- β -aminocarbon-säureester
- Alkylamine (Alkylamino-)
- Arylamine (Arylamino-)
- Diamine
- α -Halogenamine
- Nitramine
- Oxyaminocarbonsäuren
- Taurinamide
- , ar.
- aus
- Oximen, hydroaromatischen 2, 778
- , prim.
- aus
- Aldehyden 1, 353
- Aminen, sek. 1, 75; 3, 26
- , tert. 1, 37
- Phtalimiden 2, 454, 651; 3, 23, 334, 363
- Ausg. f.
- Amine, tert. 1, 370; 2, 352, 429; 3, 318, 332, 366
- , sek. s. dort
- , sek.
- aus
- Acetylenderivaten 2, 330
- Acylaminen 2, 465
- Alkoholen 3, 353
- Aminen, prim. 2, 408
- u. Aethern 1, 296
- u. Enoläthern 3, 300
- u. Halogeniden $\text{NC} \uparrow\downarrow \text{Hal}$
- u. Oxoverbindungen 1, 354 bis 356; 2, 386
- u. Phenolen 1, 341; 2, 407; 3, 343/4
- , tert. 1, 35, 37; 3, 353
- Carbonsäureamiden 1, 72; 2, 102
- Kohlenwasserstoffen u. Nitrosoverbindungen 3, 305
- Sulfonsäureamiden 2, 428, 459; 3, 21/2
- Thioäthern 2, 455
- , tert.
- als Zwischenprodukte 1, 606; 2, 695, 697; 3, 665
- aus
- Aethern 2, 541
- Aethylenderivaten 1, 291

- (Amine, *tert.* aus)
- Aminen, prim. 1, 370; 2, 352, 429; 3, 318, 332, 366
 - , sek. NC \uparrow Hal: 1, 278, 294; 2, 76, 692; 3, 332
 - Ammoniumsalzen, quartären 1, 793; 3, 762
 - —, Ausg. f.
 - Amine, prim. 1, 37
 - α -Aminocarbonsäuren 3, 665
 - Ammoniumsalze, quartäre 1, 793
 - Nitrile
 - — spezielle s.
 - Dialkylaminoacetonitrile
 - 3-Dialkylaminopropionitrile
- m-Amine*
- aus
 - α -Halogeniden 3, 371
- Aminoacridine*
- aus
 - Nitroacridinen 1, 23
- Aminoaldehyde*
- aus
 - Nitrokohlenwasserstoffen 1, 162
- Aminoalkohole*
- aus
 - Aethylenderivaten 1, 292
 - α -Bromcarbonsäuren 1, 75
 - Cyanhydrinen 1, 54
 - Halogenhydrinen (N-subst. Aminoalkohole) 3, 362
 - Ketonen 1, 681
 - Oxidoverbindungen 1, 277/8; 2, 317—9
 - , Methylierung 2, 437
- tert.- α -Aminoalkohole*
- aus
 - α -Aminocarbonsäureestern 3, 563
 - Ausg. f.
 - Desoxybenzoine 3, 598
- Aminocyclierung* (s. a. Amino-methylierung) 3, 679
- Aminocarbonsäureester* s. a. α,β -Aethylen- β -aminocarbonsäure-ester
- α -Aminocarbonsäureester*
- Ausg. f.
 - tert.- α -Aminoalkohole 3, 563
- Aminocarbonsäuren* 3, 80
- aus ihren Salzen 3, 771
 - Ausg. f.
 - Hydrazinocarbonsäuren 1, 261
 - Sulfonamidocarbonsäuren 1, 271
 - spezielle s.
 - Asparaginsäuren, subst.
 - Oxyaminocarbonsäuren
- α -Aminocarbonsäuren*
- aus
 - Aminen, *tert.* 3, 665
 - α -Cyanurethanen 3, 189
- Halogeniden, Aufbau um 2 C-Atome 1, 644; 3, 674
- Hydantoinen 1, 568; 2, 223
- Oxooverbindungen, Aufbau um 1 C-Atom 1, 568
- , Aufbau um 2 C-Atome 3, 610
- Ausg. f.
- Acylaminoketone 3, 170
 - Diketopiperazine 1, 311
 - Oxazole 3, 170
 - , Derivate 3, 374
- N-Aminochinoline*
- aus
 - Chinolinen 1, 255
 - N-Nitrosochinolinen 1, 255
- Aminodisulfide*
- aus
 - Nitrodisulfiden 3, 14
- Aminogruppen* s. Amine u. Austausch
- α -Aminoketone* (s. a. α -Amino-methylenketone)
- aus
 - Carbonsäurechloriden, Aufbau um 1 C-Atom 3, 334
 - α -Halogenketonen 3, 334
- β -Aminoketone* (s. a. Aryl- β -amino-ketone)
- aus
 - Ketonen 1, 599
- α -Aminoketone* 2, 45
- α -Aminomethylenketone*
- aus
 - α -Oxymethylenketonen 2, 725a
- Aminomethylierung* (s. a. Amino-alkylierung) 1, 599, 606; 2, 670; 3, 605—8, 617, 654/5
- α -Aminonitrile*
- aus
 - Aldehyden, Aufbau um 1 C-Atom 3, 609
- Aminophenole*
- Ausg. f.
 - Chinone 1, 173; 2, 300
- Aminopropanole*
- aus
 - Aminen u. Allylalkohol 1, 291
- Aminosäuren* s. Aminocarbonsäuren
- Aminosulfonsäuren*
- aus
 - Aminen 3, 507
 - Sulfaminsäuren 3, 504
- Aminothiazole*
- Ausg. f.
 - Thiazole 1, 92
- Aminothioäther*
- aus
 - Nitrothioäthern 3, 19

Ammonium-chlorid 1, 521; 2, 404; 3, 711
-fluorid 3, 422
-formiat 1, 329; 2, 388
-hydrogensulfit 2, 395; 3, 395
-nitrat 2, 394
-polysulfid $\text{OC} \cap \text{HC}$; 3, 394
Ammoniumsalze 2, 829/30
—, quartäre 2, 839; 3, 726, 746, 767/8
— — aus
Aminen, prim. 2, 437
—, tert. 1, 793
— — Ausg. f.
Amine, tert. 1, 793; 3, 762
— — spezielle s.
Acridiniumsalze
Pyridiniumsalze
Ammoniumsulfid 1, 19
Anhydropyridinsulfonsäure als Hilfsstoff 3, 508
Anhydrozucker 2, 269, 273; 3, 167
Anile s. Azomethine
Anilide s. Carbonsäure-, Sulfonsäure-anilide
Anlagerung
— an die Kohlenstoff - Doppelbindung (s. a. Aethylenderivate, Ausg. f.) von Halogeniden 3, 586/7
Nitrylchlorid 1, 289
Thiochloriden 3, 497
— an die Kohlenstoff-Dreifachbindung (s. a. Acetylenderivate, Ausg. f.) 3, 500
— an die Kohlenstoff - Sauerstoff-Doppelbindung von Benzylcyanid 1, 517
— an Diene von
Schwefeldioxyd 1, 459, 713
Anthracene
— spezielle s.
Anthrachinone
Anthrone
Oxyanthracene
Anthrachinon- β -carbonsäureester 1, 738; 2, 806
Anthrachinone
— Ausg. f.
Oxyanthracene, subst. 1, 509
Anthrachinonring 2, 797
Anthrapyridone 3, 720
Anthrazoline 2, 471
Anthrone 1, 743, 760; 2, 662
Antimontrifluorid 1, 452; 3, 485—7
Antimonverbindungen, metallorganische 3, 543
Arndt-Eistert'scher Aufbau von Carbonsäuren CC \uparrow Hal.o.H.
Aromatische Verbindungen s. Arylderivate, Isocyclen

Arsenosoverbindungen
— aus
Arsonsäuren 3, 763
Arsenoverbindungen 2, 572
— aus
Arsonsäuren 3, 532
Arsenpentoxyd 3, 646
Arsentrichlorid 3, 548
Arsine 1, 504
— aus
Aminen 3, 539
— spezielle s.
Chlor-arsine
Cyan-
Fluor-
Mercapto-
spiro-Arsoniumsalze 2, 582
Arsonsäuren
— aus
Aminen 2, 577
Diazoniumborfluoriden 1, 501
— Ausg. f.
Arsenosoverbindungen
Arsenoverbindungen
Arylacetonitrile
— Ausg. f.
Arylcabsonsäuren 1, 244
Arylähylketone
— aus
Aryl- β -aminoketonen 2, 106
 β -Arylalkylamine 1, 76
Aryl-alkyle s. Alkylaryle
-amine
— Ausg. f.
Diaryle 1, 660—2, 699; 2, 701
Triazene 1, 607
 β -aminoketone
— Ausg. f.
Arylähylketone 2, 106
-aminopyrimidine 2, 453; 3, 469
— aus
Methylthiopyrimidinen 2, 455
-aminosulfonsäuren, Identifizierung 2, 307
-arsonsäuren s. Arsonsäuren
-azophenole
— aus
Aminen 2, 343
-carbonsäuren (s. a. Diphenylamin-carbonsäuren)
— aus
Arylacetonitrilen 1, 244
2-Arylchinoline
— aus
Chinolinen 3, 599
Aryl-derivate (s. a. Isocyclen, Heterocyclen, Kerne)
— spezielle m. a. W. s.
Acenaphthene
Aethylalkohole, β -arylsubst.

- (*Arylderivate*)
- Alkylbenzole
 - Alkylnaphthaline
 - Bis-arylätthane
 - Dialkyldiarylätthylene
 - Diaryl-acenaphtenone
 - acroleine
 - carbinole
 - Diaryle
 - Diphenylätthanderivate
 - α -Nitrobenzaldehyde
 - Triarylmethane
 - essigsäureester 1, 712
 - glyoxylsäureester 1, 712
 - Arylierung* (s. a. Austausch von Wasserstoff)
 - über Aether 3, 690
 - α -Aryl- α -oxycarbonsäureester 1, 712
 - α -Aryl- α -oxycarbonsäuren
 - aus
 - Aryloxymalonsäureestern 3, 567
 - Oxomalonsäureestern 3, 567
 - Ausg. f.
 - α -Aryl- α -oxycarbonsäuren 3, 567
 - polyacylglykoside (s. a. p-Phenylazophenyl-polyacylglykoside) 3, 239
 - Ascaridol als Hilfsstoff 3, 496
 - Asparaginsäuren, subst. 1, 153
 - Aufbau*
 - um 1 C-Atom
 - Aldehyde aus Halogeniden 1, 683
 - α -Amino-carbonsäuren aus Oxo-verbindingen 1, 568; 3, 610
 - ketone aus Carbonsäurechloriden 3, 334
 - nitrile aus Aldehyden 3, 609
 - Carbonsäureamide aus Carbonsäuren 1, 631; 2, 708
 - Carbonsäuren aus Aldehyden 2, 654
 - aus Carbonsäuren $\text{CC} \uparrow \text{N}$ Hal. o. H.
 - aus Halogeniden 1, 658, 685/6; 2, 726/7
 - aus Kohlenwasserstoffen 1, 530; 3, 555
 - β -Ketocarbonsäuren aus Ketonen 1, 561, 784; 2, 646, 689, 827
 - Methylketone aus Carbonsäuren 2, 690
 - Nitrile aus Aldehyden 2, 752; 3, 662
 - α -Oxyketone aus Carbonsäuren 1, 626
 - um 2 C-Atome

- α,β -Aethylencarbonsäureester aus Oxoverbindungen 2, 737, 801
- α,β -Aethylencarbonsäuren aus Aldehyden 1, 400, 566, 569/70; 2, 657
- Alkohole aus Halogeniden 1, 673 bis 676; 2, 733
- α -Aminocarbonsäuren aus Aminen, tert. 3, 665
- aus Halogeniden 1, 644
- Carbonsäuren aus Halogeniden 1, 640/1; 2, 485, 719
- β -Ketocarbonsäureester aus Carbonsäurechloriden 1, 649
- Lactone aus Oxidoverbindungen 3, 554
- β -Oxycarbonsäureester aus Oxo-verbindingen 1, 690—3; 2, 737, 827
- α -Thioketocarbonsäuren aus Aldehyden 3, 662
- Aufspaltung* s. Spaltung, Ringöffnung
- Auramine* 3, 569
- Austausch*
 - von Acetyl gegen Brom 2, 499/500
 - Wasserstoff 2, 117; 3, 79
 - von Alkoxy gegen Alkoxy 2, 278
 - Halogen 2, 497/8, 501
 - bei Silanen 3, 421
 - von Alkylgruppen gegen Brom 3, 490
 - von Alkylthiogruppen gegen Hydroxyl 2, 276
 - Wasserstoff 2, 112—4
 - von Aminogruppen gegen Acoxygruppen 2, 220
 - Cyan 2, 705; 3, 666
 - Halogen $\text{HalC} \uparrow \text{N}$
 - Hydroxyl 1, 191; 2, 218/9; 229, 233; 3, 183/4
 - Nitrogruppen 1, 114; 2, 131, 524
 - Sulphydryl 1, 717; 3, 517/8
 - Wasserstoff 1, 84—90, 92; 2, 103.
 - von Brom gegen [105/6]
 - Fluor 3, 483, 487
 - Jod 1, 450
 - von Carbalkoxygruppen gegen Wasserstoff 2, 160, 641, 648, 771
 - von Chlor gegen
 - Brom 3, 484
 - Fluor 1, 452; 3, 481, 483, 485
 - von Cyan gegen
 - Wasserstoff 2, 118; 3, 75
 - von Halogen gegen
 - Acetonyl 3, 676
 - Acoxygruppen 1, 211, 221; 2, 261; 3, 750
 - Aldehydgruppen 1, 683; 3, 692

- (Austausch von Halogen gegen)
- Alkoxy OC \rightleftharpoons Hal
 - Aminogruppen NC \rightleftharpoons Hal
 - Azidgruppen 1, 371
 - Cyan 1, 657/8, 663—6, 772; 2, 726 bis 729; 3, 682/3, 687—9
 - Hydroxyl 1, 205, 227; 2, 237; 3, 207, 218—20, 225, 227
 - Methyl 1, 632
 - Nitrogruppen 1, 372
 - Oxymethyl 2, 732
 - Sulphydil 1, 493—6; 3, 522
 - Sulfonsäuregruppen 1, 485, 488/9; 3, 523
 - Wasserstoff HC \rightleftharpoons Hal
 - von Hydroxyl gegen
 - Aminogruppen 1, 429; 2, 395; 3, 328
 - Halogen HalC \rightleftharpoons O
 - Sulfonsäuregruppen 1, 489
 - Wasserstoff HC \rightleftharpoons O
 - von Iminogruppen gegen
 - Schwefel 3, 515
 - von Mercaptogruppen gegen
 - Wasserstoff 1, 103
 - von Nitrogruppen gegen
 - Hydroxyl 3, 201
 - Methoxyl 3, 179, 600
 - von Nitrosogruppen gegen
 - Acetylgruppen 1, 292
 - von Quecksilber gegen
 - Halogen 1, 498/9; 2, 581
 - von Sauerstoff gegen
 - Schwefel im Ring 1, 467; 3, 513
 - Selen im Ring 3, 538
 - Stickstoff im Ring 1, 327; 2, 366, 387; 3, 302
 - von Schwefel gegen
 - Wasserstoff HC \rightleftharpoons S
 - von Sulfamidgruppen gegen
 - Wasserstoff 3, 71
 - von Sulphydil gegen
 - Hydroxyl 2, 275
 - von Sulfonsäuregruppen gegen
 - Aminogruppen 2, 458
 - Halogen 2, 528, 581
 - Hydroxyl 2, 268; 3, 229
 - von Wasserstoff gegen
 - Acyl 3, 626, 651
 - Aethylen 3, 753
 - Aldehydgruppen an ar. Kernen 1, 612, 616/7; 2, 689, 694, 702/3, 714; 3, 668, 670, 696
 - Allylgruppen 1, 638
 - Aminogruppen 2, 341, 491; 3, 288
 - Brommethyl 3, 659
 - Chloralkyl 3, 753
 - Chlormethyl 1, 584, 593—8; 3, 640, 644/5, 653
 - Cyan 3, 600
-
- Deuterium 2, 574
 - Halogen HalC \rightleftharpoons H
 - Hydroxyl 1, 130/1, 159, 192, 451; 2, 142—5, 173; 3, 113
 - Methyl 1, 547, 592, 617, 643, 672; 2, 723—5a, 782
 - Nitrogruppen NC \rightleftharpoons H (NC \rightleftharpoons O)
 - Nitrosogruppen 2, 342, 344; 3, 294
 - Oxymethyl 1, 510, 575; 2, 588
 - Phenyl 1, 604; 2, 408, 700
 - Sulphydil 1, 462
 - Sulfonsäuregruppen 1, 460/1, 463; 2, 538, 540; 3, 506—8
 - partieller, von Chlor gegen
 - Wasserstoff 3, 64
 - Aza-dipyrrromethine* 1, 329
 - aus
 - β -Cyanketonen 2, 389
 - fluorene 2, 477
 - fluorenone
 - Ausg. f.
 - Diazaphenanthrene 2, 333
 - indole 2, 772
 - phenoxazine 2, 407
 - pyrene 2, 675
 - Azide*
 - aus
 - Hydrazinen 3, 248
 - Azine*
 - aus
 - Ketonen 1, 615
 - Ausg. f.
 - Hydrazone 1, 615
 - Azlactone* s. Oxazolone
 - Azlacton-Synthese* 2, 654
 - p-Azo-azomethine* 3, 304
 - Azomethine*
 - aus
 - Aminen und Oxoverbindungen 2, 354, 400, 689
 - Nitrosoverbindungen 1, 298
 - Ausg. f.
 - Kohlenwasserstoffe 1, 91
 - Phenylhydrazone 1, 357
 - Azophenine* 2, 410
 - Azoverbindungen*
 - aus
 - Aminen u. Nitrosoverbindungen 1, 265; 2, 302/3; 3, 252
 - u. Nitroverbindungen 3, 250
 - Azoxyverbindungen 2, 845
 - Chinonen u. asymm. Hydrazinen 2, 392
 - Hydrazoverbindungen 2, 305; 3, 256
 - Nitroverbindungen 1, 252; 3, 251
 - Ausg. f.
 - Acylamine 2, 411
 - Amine 1, 173, 398
 - Azoxyverbindungen 2, 130

- (*Azoverbindungen*, Ausg. f.)
- Hydrazoverbindungen 1, 17—9
 - durch Kupplung 1, 295; 2, 371; 3, 289
 - spezielle s.
 - Aethylenazofarbstoffe
 - Arylazophenole
 - p-Azo-azomethine
 - o-Methylazoverbindungen
 - , symm.
 - aus
 - Aminen 3, 249
- Azoxyverbindungen*
- aus
 - Aminen u. Nitrosoverbindungen 2, 302
 - Azoverbindungen 2, 130
 - Hydroxylaminen 3, 253
 - Ausg. f.
 - Azoverbindungen 2, 845
- Azulene*
- aus
 - Indanonen 2, 612
- Barbier-Wieland'scher Abbau*
s. Wieland
- Barbitursäurederivate* (s. a. Pyrimidinring) 1, 315, 325/6
- Bariumchlorid-Kohle* 3, 426
- Bariumhydroxyd* 1, 217, 458, 782; 2, 16/7, 50, 223, 273, 837, 840; 3, 81, 416, 610
- Bariummethyлат* 1, 4/5; 3, 5
- Bariumoxyd* 1, 324
- Siliciumdioxyd* 3, 727
- Bart'sche Reaktion* 1, 501; 2, 577
- Basen*
- aus
 - Basenhydrochloriden 2, 840
- Baudisch-Reaktion* 3, 298
- Bauxit* 1, 407
- Beckmann'sche Umlagerung* 1, 153, 783; 3, 82, 400
- Benzanthracene* 1, 780
- Benzanthrone, subst.* 1, 589
- Benzidin-Umlagerung* 2, 627
- Benzile*
- aus
 - Benzoinen 1, 156; 2, 622
 - Carbonsäurechloriden 1, 684
 - Ausg. f.
 - Benzilsäuren 2, 622
- Benzilsäuren*
- aus
 - Benzoinen über Benzile 2, 622
- Benzimidazole* (s. a. Alkylbenzimidazole)
- als Derivate von Zuckern 1, 340
 - , N-subst. 3, 379
- Benzofurane*
- aus
 - Cumarinen 3, 3
- Benzoine*
- aus
 - Aldehyden 1, 513; 2, 597; 3, 557
 - Ausg. f.
 - Benzile 2, 622
- Benzoisofurane*
- aus
 - Indanonen 3, 145
- Benzolringsystem* (s. a. Arylderivate, Cyclohexadiene, Cyclohexane, Hydrobenzolring) 2, 648; 3, 577, 633
- aus
 - Cyclonen 3, 578
- Benzopersäure* 2, 129, 164; 3, 450
- Benzophenarsazine* 3, 548
- Benzophenon* als Hilfsstoff 2, 127
- Benzopyryliumsalze* 1, 603
- Benzothiophene* s. Thianaphtene
- Benzoylbenzoësäureester* 2, 743
- Benzoylchlorid* als Hilfsstoff 2, 508
- Benzoylfluorid* als Hilfsstoff 3, 463
- Benzoylierung* s. Acylierung
- Benzoylperoxyd* als Hilfsstoff 2, 173; 3, 427, 442
- Benzylcyanid*
- Ausg. f.
 - Diphenyl-bernsteinsäure-mononitril 1, 517
 - Phenylcyancarbonsäureester 1, 647
- Benzylthiuroniumsalze*
s. Thiuroniumsalze
- Bernsteinsäurederivate*
- aus
 - α,β -Athylen- α -cyancarbonsäure-estern 3, 583
 - Benzylcyanid 1, 517
- Berylliumsulfat*, wasserfreies 1, 742
- Bi-* s. a. Di-
- Bicyclooctan-Ringsystem* 1, 528
- Biguanide* 2, 325
- aus
 - Cyanguanidinen 3, 270
- Biosen*
- aus
 - Monosen 3, 161, 203
- Bisaryläthane* 1, 588
- Bisulfit* s. Sulfit
- Biurete, subst.*
- aus
 - Uretdionen 1, 283
- Blaise-Guérin*, Abbau von Carbonsäuren 1, 249
- Blaise'sche Reaktion* 3, 574
- Bleioxyde* 1, 130, 534; 2, 305, 761
- Bleitetraacetat* 1, 130, 159, 534; 2, 142/3

- Borfluorid* 1, 177, 578/9; 2, 202; 3, 118, 593
Borsäure 1, 621; 2, 828; 3, 83, 667
Borsäureanhydrid 2, 775
Borsäureester 3, 159
Borsche s. Pfitzinger
Bouveault-Blanc-Reduktion 1, 64; 2, 89/90; 3, 49/50
Brasane 3, 686
Brenztraubensäuren, subst.
 s. α -Ketocarbonsäuren
Brom als Hilfsstoff 1, 35, 119/20, 465; 2, 293, 321, 569; 3, 120, 480
 α -*Bromacetale*
— Ausg. f.
 Ketenacetale 3, 749
Bromacetamid 1, 405; 2, 487
 α -*Bromacetylverbindungen*
 s. α -Halogenketone
Bromat 2, 622
p-Brombenzylthiuroniumsalze 1, 791
 α -*Bromcarbonsäuren*
— aus
 Carbonsäuren 1, 416, 451
— Ausg. f.
 α -Aminoalkohole 1, 75
 α -Jodcarbonsäuren 1, 451
 Mercaptocarbonsäuren 1, 496
Bromcyan 3, 357, 383
Bromide s. Halogenide, Austausch
Bromieren s. Austausch von Wasser-
 stoff gegen Halogen
Bromjod 3, 444
Brommalonitril 3, 684
Brommethylierung 3, 659
 α -*Brommethylketone*
— Ausg. f.
 α,β -Aethylencarbonsäuren 2, 494
Bromphthalimid als Hilfsstoff 3, 438
5-Brompyrrol-2-carbonsäuren
— Ausg. f.
 α -Oxypyrrrole 1, 227
 ω -*Bromstyrole*
— Ausg. f.
 Acetylenalkohole 1, 719
N-Bromsuccinimid als Hilfsstoff 2, 491
—, Bromierungen 1, 413; 2, 491/2
—, Einführung von Doppelbindun-
 gen OC $\uparrow\downarrow$ H
Bucherer-Reaktion 1, 341; 2, 229,
 395; 3, 343
Bunte-Salze s. Alkylthiosulfate
- Cadmium* 2, 740; 3, 694
Cadmiumcarbonat 2, 274
Calcium-carbonat 2, 343; 3, 149, 220
 -chlorid 1, 518; 2, 149
 -hydroxyd 1, 33
 -oxyd 1, 575
Cannizzaro-Reaktion 3, 33
Carbäthoxygruppe, Abspaltung 2, 15
Carbäthoxylierung 2, 253
Carbalkoxylactone 3, 615
Carbamate, Carbaminsäureester
 s. Urethane
Carbamylfluoride 2, 482
Carbazole
— aus
 Triazolen 1, 614
Carbeniumsalze s. Tetraaryl-
 divinylen-carbeniumsalze
Carbobenzoxyderivate von Aminen
 2, 443; 3, 368
—, Spaltung 1, 353; 2, 138, 426, 443;
 3, 25
Carbonate s. Kohlensäureester
Carbonat-Ion als Hilfsstoff 2, 393
Carbonsäureamide (s. a. Acylamine)
— aus
 α,β -Aethylencarbonsäuren 3, 401
 Aldoximen 3, 142
 Aminen 2, 190
Carbonsäureaziden (subst. Amide)
 1, 359
 -chloriden 2, 405/6, 418/9, 424 bis
 426; 3, 364
 -estern 1, 306/7; 2, 359—61; 3, 722
 -hydraziden (subst. Amide) 1, 359
 -imiden 2, 322
Carbonsäuren 1, 303—5, 352; 2,
 393, 405/6; 3, 337, 339, 352,
 460
—, Aufbau um 1 C-Atom 1, 631;
 2, 708
— u. Harnstoffen 2, 461
Diazoketonen 1, 631; 2, 216, 708
Iminoestern 3, 127
Ketonen 1, 362
 γ -Lactonen (subst. Amide) 2, 320
Mercaptanen 3, 394
Methylketonen 1, 151/2; 2, 180/a
Nitrilen 1, 135; 3, 126/7
— (sek. Amide) 1, 280
— (subst. Amide) 3, 275
Nitrosoverbindungen 1, 298
Phenylketonen 2, 463, 725
— Ausg. f.
Aldehyde 1, 72
Amidine 1, 351
Amine 1, 72; 2, 88, 102
—, Hofmann'scher Abbau 2, 475
 bis 476
Carbonsäureimide 2, 123
Carbonsäuremethyloxamide 3, 657
Carbonsäuren 2, 216, 725; 3, 188,
 192
Nitrile 1, 394/5; 2, 472; 3, 405—7
Urethane 2, 337

(Carbonsäureamide)

- spezielle s.
- Aethanolamide
- Barbitursäuren
- Carbonsäureanilide
- Carbonsäuremethylolamide
- α -Cyancarbonsäureamide
- Lactame
- Oxycarbonsäureamide
- Peptide
- , Substitution über Carbonsäuremethylolamide 3, 657
- Carbonsäureanhydride*
- aus
 - Carbonsäuren 1, 178, 645; 2, 254, 295, 518
- Ausg. f.
 - Alkohole 3, 52
 - Carbonsäurechloride 1, 423/4
 - Dicarbonsäuren, Aufbau um 2 C-Atome 1, 650
 - Enollactone 1, 650/1
 - Ketocarbonsäuren 1, 519, 697; 2, 601, 740; 3, 566
 - Ketone 2, 640, 734; 3, 566
- Carbonsäureanilide* (s. a. β -Ketocarbonsäureanilide)
- aus
 - Carbonsäurechloriden 2, 122, 423
 - Carbonsäuren 2, 122; 3, 330
- Ausg. f.
 - Aldehyde 2, 122
- Carbonsäureazide*
- aus
 - Carbonsäurechloriden 3, 378, 402
 - Carbonsäurehydraziden 1, 260,
- Ausg. f. [359]
 - Acylamine 3, 408
 - Amine 3, 402, 408
 - Carbonsäureamide 1, 359
 - Harnstoffe 1, 388
 - Isocyanate 3, 286, 378
 - Triazol-o-dialdehyde 1, 290
 - Urethane 1, 247, 358, 389
- Carbonsäurechloride*
- aus
 - Carbonsäureanhydriden 1, 423/4
 - Carbonsäuren $\text{HalC} \uparrow\downarrow \text{O}$
- Ausg. f.
 - Acylcyanide 3, 689
 - Acylperoxyde 3, 206
 - Aldehyde 1, 99—102
 - Alkohole 2, 101; 3, 52
 - Amine, Abbau um 1 C-Atom 3, 402
 - Benzile 1, 684
 - Carbonsäure-amide 2, 405/6, 418/9, 424—6; 3, 364
 - azide 3, 378, 402
 - ester 1, 203/4; 2, 277

- β -Chlorthiolsäureester 3, 494
- α -Diazoketone $\text{CC} \uparrow\downarrow \text{Hal. o. H.}$
- α -Halogenketone 1, 623—5; 2, 521; 3, 334
- Hydroxamsäuren 2, 478
- Isocyanate, Abbau um 1 C-Atom 3, 378
- β -Ketocarbonsäureester 1, 649; 3, 703
- Ketone $\text{CC} \uparrow\downarrow \text{HalAlCl}_3$ 2, 735/6, 738, 751; 3, 649
- Thiolsäureester 2, 101
- Thiolsäuren 1, 491
- Aethylencarbonsäurechloride
- Alkylchlorformate
- Carbonsäureester-chloride
- Carbonsäurederivate* (s. a. Bernstein-säurederivate)
- partielle u. gemischte 2, 147; 3, 114
- Carbonsäureester* (s. a. Acylierung, Carbonsäuren)
- aus
 - Carbonsäurechloriden 1, 203/4; 2, 277
 - Carbonsäuren $\text{OC} \uparrow\downarrow \text{O}$; 1, 186/7, 203/4; 2, 214/5, 238, 259, 270; 3, 177
 - α -Diazoketonen 1, 190; 2, 771
 - α -Ketocarbonsäureestern 1, 561, 784/5; 2, 828
 - Nitrilen 3, 196a, 200
- Ausg. f.
 - Aethylenderivate 1, 736, 741; 2, 768, 804—6
 - Alkohole, prim., durch Reduktion 1, 64, 75; 2, 89/90; 3, 49/50, 52
 - , tert., durch Synthese 1, 682, 752/3; 2, 800; 3, 562/3, 733
 - Barbitursäuren 1, 315, 325/6
 - Carbonsäure-amide 1, 306/7; 2, 359—61, 405/6, 418/9, 424—6; 3, 722
 - hydrazide 1, 110, 308; 2, 365; 3, [317] Glycerine 2, 586
 - β -Ketocarbonsäureester 1, 558 bis 560; 2, 771; 3, 621, 625, 721
 - α -Ketocarbonsäuren u. -ester s. Oxalestersynthese
 - α -Oxyketone 2, 586
 - α -Oxymethylencarbonsäureester 2, 641; 3, 245
 - spezielle s.
 - Acetobromzucker
 - Acetoxyverbindungen
 - α,β -Aethylencarbonsäureester
 - Alkylchlorformate
 - Aminocarbonsäureester
 - Arylessigsäureester

(Carbonsäureester, spez. s.)

Carbonate
Cyancarbonsäureester
Ketocarbonsäureester
Lactone
Malonsäuremonoester, subst.
Methoxycarbonsäureester
Oxycarbonsäureester
—, Verseifung $\text{HO} \uparrow\downarrow \text{C}$
—, α -subst.
— aus
Ketenacetalen 3, 575
Carbonsäureester-chloride
— Ausg. f.
Ketocarbonsäureester 1, 712
Carbonsäurefluoride 3, 456, 463
Carbonsäurehalogenide s. Carbon-
säure-chloride, -fluoride
Carbonsäurehydrazide
— aus
Carbonsäureestern 1, 110, 308;
2, 365; 3, 317
— Ausg. f.
Aldehyde 1, 109/10
Amine 3, 414
Carbonsäureamide, subst. 1, 359
Carbonsäureazide 1, 260, 359
—, symm. 1, 266
Carbonsäureimide (s. a. Glutarsäure-
imide) 2, 363/4
— aus
Carbonsäureamiden 2, 123
— Ausg. f.
Carbonsäureamide 2, 322
Carbonsäure-methylol-amide
— aus
Carbonsäureamiden 3, 657
Carbonsäuren (s. a. Carbonsäure-
ester)
— aus
Acetonitrilen, subst., Abbau um
1 C-Atom 1, 244
Aethylenderivaten $\text{OC} \uparrow\downarrow \text{C}$
Aldehyden 1, 128/9; 2, 141, 321;
3, 112
—, Aufbau um 1 C-Atom 2, 654
Alkoholen 2, 185, 189; 3, 147, 153
—, Aufbau um 1 C-Atom 2, 726
 α -Bromketonen, Abbau um 1 C-
Atom 1, 789; 2, 833
Carbonsäureamiden 2, 216, 725;
3, 188, 192
Carbonsäureestern $\text{HO} \uparrow\downarrow \text{C}$
Carbonsäuren, Abbau um 1 C-
Atom 1, 752
—, Aufbau um 1 C-Atom
 $\text{CC} \uparrow\downarrow \text{Hal. o.H.}$
Carbonsäurethioamiden 2, 181; 3,
141
 α -Cyancarbonsäureamiden 3, 631

α -Diazoketonen 1, 627—30; 2,
216, 771
Diazooxyden 2, 235
Endocarbonylverbindungen 3,
129
Halogeniden 3, 155, 723
—, Aufbau um 1 C-Atom 1, 658,
685/6; 2, 726/7; 3, 693
—, — 2 C-Atome, Malonester-
synthese 1, 564, 635, 639-44;
2, 485, 711, 719-21
 α -Ketoaldehyden 2, 297
 α -Ketocarbonsäuren 1, 754/5; 2,
827/8
Kohlenwasserstoffen, Aufbau um
1 C-Atom 1, 530; 3, 555
— durch Oxydation 1, 169—72;
2, 519; 3, 96, 152, 155/6
Methylketonen 1, 151, 243; 2,
181; 3, 141
—, Abbau um 1 C-Atom 1, 237/8,
243; 3, 236/7
Nitrilen $\text{OC} \uparrow\downarrow \text{N}$
— Ausg. f.
Aethylenderivate, Grignard-Syn-
these 2, 800; 3, 733
Aldehyde 1, 100, 105, 109/10; 2,
122; 3, 83
Alkohole, Reduktion 1, 63; 3, 51
—, Synthese 3, 561
Amine, Abbau 1, 338/9, 389/90; 2,
466
 α -Bromcarbonsäuren 1, 416, 451
Carbonsäure-amide 1, 303-5, 352;
2, 393, 405/6; 3, 337, 339, 352,
460
-anhydride 1, 178, 645; 2, 254,
295, 518
-anilide 2, 122; 3, 330
-chloride $\text{Hal.C} \uparrow\downarrow \text{O}$
Carbonsäuren, Abbau 1, 752
—, Aufbau $\text{CC} \uparrow\downarrow \text{Hal. o.H.}$
Halogenide, Abbau um 1 C-Atom
1, 453/4; 3, 489
Ketone 1, 580
— über Carbonsäurechloride
 $\text{CC} \uparrow\downarrow \text{Hal. AlCl}_3$; 1, 695/6; 2,
690/1
Methylketone, Aufbau um 1 C-
Atom 2, 690
 α -Oxycarbonsäuren 1, 451
 α -Oxiketone, Aufbau um 1 C-
Atom 1, 626
—, Derivate:
p-Brombenzylthiuroniumsalze 1,
791
Diamine, N,N'-diacylierte 2, 441
— spezielle s.
Acetylen-carbonsäuren
Aethylen-

(Carbonsäuren, spez.)	
Aldehydo-	2-Aryl-4-oxy-
Amino-	Carbostyryle
Aryl-	Chinaldine
α -Brom-	Lepidine
5-Brompyrrol-2-	N-Nitrosochinoline
o-Carboxyphenylacetonitrile	<i>Chinoline, 1,2-Dihydro-, 2-subst.</i>
Carboxysulfanilylamine	— aus
α -Cyancarbonsäuren	Chinolinen 3, 568
β,β -Dialkylbuttersäuren	<i>Chinolinphosphat</i> als Hilfsstoff 3, 421
Di-carbonsäuren	<i>Chinolinring</i>
α -Halogen-	— aus
Hydrazino-	α,β -Aethylenaminen 3, 713, 715
α -Jod-	Aminen nach Döbner-Miller 3, 571
Keto-	— nach Skraub 1, 590; 2, 676; 3, 646, 648
Malonsäuremonoester, subst.	α -Aminoaldehyden 1, 400, 572; 2, 651, 686
Mercaptocarbonsäuren	α -Aminocarbonsäureestern 3, 614
Methoxyacrylsäuren	Aniliden 3, 722
Oxy-carbonsäuren	— nach Knorr 3, 740—3
Sulfonamino-	Azomethinen 1, 609—11, 620, 763
α -Thioketo-	— nach Conrad-Limpach 3, 613, 714
—, verzweigte 2, 725	Isatinen 1, 555; 2, 602—4, 761; 3, 570/1
<i>Carbonsäurethioamide</i>	α -Nitroaldehyden 2, 649
— aus	<i>bz-Tetrahydro-</i> 2, 650
Methylketonen 2, 181; 3, 141	<i>1,2,3,4-Tetrahydro-</i> 2, 470
Nitrilen 2, 534/5	<i>Chinolone</i> s. Carbostyryle
— Ausg. f.	<i>Chinonchlorimide</i>
Carbonsäuren 2, 181; 3, 141	— aus
<i>Carbonylverbindungen</i> s. Oxoverbindungen	p-Nitrophenolen 1, 267
Carbostyryle 3, 113, 225/6	<i>Chinone</i>
<i>Carboxyaldehyde</i> s. Aldehydocarbonsäuren	—, Alkylierung 3, 701
<i>o-Carboxyphenylacetonitrile</i>	— aus
— aus	Aminophenolen 1, 173; 2, 300
Phtaliden 3, 558	Hydrochinonen 1, 161; 3, 241
<i>Caro'sche Säure</i> s. Sulfopersäure	Kohlenwasserstoffen 1, 168; 3, 146, 151
Chalkone 1, 550—3	Phenolen 1, 173
— Ausg. f.	— Ausg. f.
Flavanone 1, 150, 552/3; 3, 140	Aether 3, 119
<i>Chapman'sche Umlagerung</i> von	Azoverbindungen 2, 392
Iminoestern 2, 823	Dioxyarylthioverbindungen 3, 493
<i>Chinaldine</i> , Substituentenaustausch	Kohlenwasserstoffe 1, 66, 71; 2, 93
1, 201, 382	Sulfone 2, 533, 542
<i>Chinazolinring</i> (s. a. Alkylamino-chinazoline)	— spezielle s.
— aus	Dioxychinone
Indolring 1, 293; 3, 282	Oxynaphthochinone
4-Chinazolone 3, 316, 341, 355	<i>Chinonmonimine</i> s. Indophenole
<i>Chinolin</i> als Hilfsstoff 2, 443	<i>Chinoxaline</i> als Derivate von Kohlehydraten 1, 386
<i>Chinoline</i>	<i>Chinoxalinring</i> (s. a. Pyrazinring) 1, 350; 2, 378
— Ausg. f.	<i>Chlor</i> als Hilfsstoff 1, 115, 172, 463/4; 3, 418—20
N-Aminochinoline 1, 255	
2-Arylchinoline 3, 599	
1,2-Dihydrochinoline, 2-subst. 3,	
N-Nitrosochinoline 1, 255 [568]	
— spezielle s.	
4-Alkylamino-chinoline	
N-Amino-	
2-Aryl-	

- Chloracetylene*, subst. .
 — aus
 Dichloracetylen 1, 667
- Chloracridine* 2, 790—2; 3, 737
- Ausg. f.
 Acridine 3, 69
- Chloral-Kondensation* 2, 677; 3, 604, 650
- Chloralkylierung* (s. a. Chlormethylierung) 3, 753
- ω -*Chlorallylverbindungen* 1, 702
- Chloramin-T* (s. a. Dichloramin-T) 2, 531
- Chloranil* als Hilfsstoff $CC \uparrow H$
- Chlorarsine*
 — Ausg. f.
 Fluorarsine 3, 422
- γ -*Chlorcrotylverbindungen*
 — Ausg. f.
 Methylketone 1, 225
- Chloressigsäure* als Hilfsstoff 2, 275
- Chloride* s. Halogenide, Austausch
- Chlorierung* s. Austausch von Wasserstoff gegen Halogen
- Chlorimide* s. Chinonchlorimide
- Chlorjod* 1, 419; 2, 493; 3, 443
- Chlormethyläther*
 — aus
 Alkoholen 3, 172
- Chlormethylierung* 1, 584, 593—8; 3, 640, 644/5, 653
- Chlorschwefel* 1, 462; 2, 632
- Chlorsulfonsäure* 1, 287; 3, 650
- β -*Chlorthiolsäureester*
 — aus
 Carbonsäurechloriden 3, 494
- Choline*, Acetylierung 2, 197
- Chromanring* 1, 678, 698
- Chromatographie*
 — Spaltung von
 Molekülverbindungen 2, 841
 Razematen 2, 842
- Chromit-Katalysator* s. bei Kupfer u. Aluminium
- Chromonring* 1, 546, 552/3; 2, 642, 769
- , s. a.
 3-Alkylchromone
 Benzopyryliumsalze
 Flavone (2-Phenylchromone)
- Chromoxyd-Aluminiumoxyd* 3, 708
- Chromoxyd-Kobalthydrat-Calciumcarbonat* 3, 149
- Chromsäure*, Chromtrioxyd $OC \uparrow H$, $OC \uparrow C$; 2, 289—92; 3, 69, 96, 510, 733, 761
- Chrysene* 1, 720
- Cinnoline* (s. a. 4-Oxycinnoline) 1, 322
- Cinnolinoxide* 2, 340
- Cinnolinringöffnung*, reduktive 2, 36
- Claisen* s. Darzens, Perkin-Umlagerung 2, 621
- Clemmensen-Reduktion* $HC \uparrow O$
- Conrad-Limpach'sche Chinolinring-Synthese* 3, 613, 714
- Copyrinring* 2, 403
- Cumarano-cumarane* 3, 242
- Cumaranring* 1, 698; 2, 607
- Cumarine*
 — Ausg. f.
 Benzofurane 3, 3
- Cumarinring* 1, 591; 2, 635, 673, 682; 3, 641
- Öffnung* 1, 104; 3, 123
- Curtius'scher Abbau* 1, 338/9, 358, 389/90; 2, 427, 466; 3, 402, 408/9, 414
- Cyanäthyläther*
 — aus
 Phenolen 2, 157
- Cyanäthylierung* 3, 581
- Cyanamid*
 — Ausg. f.
 Chinazoline 1, 288
 Guanidine 2, 324
- Cyanamidoverbindungen*
 — aus
 Aminen 3, 383
 Isothioharnstoffen 3, 396
- Ausg. f.
 Guanidine 3, 396
- α -*Cyancarbonsäureamide*
 — Ausg. f.
 Carbonsäuren 3, 631
- Cyancarbonsäureester*
 — spezielle s.
 Aethylen- α -cyancarbonsäureester
 α -Alkyl- α -cyancarbonsäureester
 Dialkylvinyl-alkylcyanessigester
 Phenylcyancarbonsäureester
- α -*Cyancarbonsäureester*
 — aus
 Nitrilen 1, 563; 3, 623
- Ausg. f.
 α -Alkyl- α -cyancarbonsäureester 1, 646; 2, 722
- Cyanguanidine*
 — aus
 Aminen 3, 278
- Ausg. f.
 Biguanide 3, 270
- Cyanhydrine*
 — aus
 Oxidoverbindungen 3, 566
 Oxoverbindungen 1, 520/1; 2, 595; 3, 553, 556
- Ausg. f.
 α -Aminoalkohole 1, 54
 Hydantoine 1, 309

- Cyanide* s. Nitrile, Austausch
Cyanine (s. a. Trimethincyanine) 1, 582/3, 619, 714; 2, 696, 698, 753
 — aus
 Nitrosoverbindungen 2, 383
Cyanketone
 — Ausg. f.
 Azadipyrromethine 2, 389
α-Cyanketone
 — aus
 Nitrilen 2, 645, 652; 3, 623
Cyansulfonylchloride
 — aus
 Sulfonylaminocarbonsäuren 2, 480
α-Cyanurethane
 — Ausg. f.
 α-Aminocarbonsäuren 3, 189
Cyclische Aether s. Aether
Cyclisierung s. Ringschluß
Cyclo- s. a. Ring-
Cyclo-alkanonringöffnung 3, 281
-butanone 1, 769
-hexadiene 2, 819
 — aus
 Cyclopentadienonen 3, 579
-hexane 1, 713
-hexanone 2, 720
-hexenone 3, 738
-hexylbenzole 2, 678
-hydrazide 1, 310
Cyclone
 — Ausg. f.
 Benzolderivate 3, 578
Cyclo-pentadienone 3, 618
 — Ausg. f.
 Cyclohexadiene 3, 579
-pentanring
 — aus
 Dicarbonsäureestern 1, 560
 — Ausg. f.
 Pyridinring 2, 333
-pentantrione
 — aus
 β-Keto-γ-enollactonen 3, 594
-pentene
 — aus
 Halogeniden 3, 757
-pentenonaphthaline 2, 777
-pentenophenanthren-Synthese 2, 653
-pentenring 1, 554; 3, 157
-propanring (s. a. Tetracyclocopropane)
 — aus
 Aethylenderivaten 2, 615
 Diazoverbindungen 3, 664
 Dihalogeniden 3, 756
- Darzens-Claisen-Reaktion* 1, 634; 3, 681
- Decarboxylierung* HC ↑ C; 2, 160, 648, 771; 3, 81
Dehydratisierung
 — von
 Alkoholen CC ↑ O
 Carbonsäureamiden zu Nitrilen 1, 394/5; 2, 472; 3, 405—7
 Oximen zu Nitrilen 1, 393
Dehydrierung CC ↑ H
 — von
 Oxy- zu Oxo-verbindungen OC ↑ H
 Ringketonen zu Phenolen und Kohlenwasserstoffen 3, 709
Delépine, Oxydation von Aldehyden zu Carbonsäuren 1, 129
Denigès, Reagens von — 2, 161
Desacetylierung s. Verseifung
Desaminierung s. Austausch von Aminogruppen gegen Wasserstoff
Desoxybenzoine
 — aus
 α-Amino-tert.alkoholen 3, 598
Desoxyzucker
 — aus
 Glucalen 2, 152
Deuterium s. Austausch von Wasserstoff gegen —
Di- s. a. Bi-
Diacylamine 2, 367
Diäthylcarbonat (s. a. Alkylcarbonate)
 — Ausg. f.
 α-Cyanearbonsäureester 1, 563
Diäthylsulfat zur Aethylierung 1, 230
Dialkylaminoacetonitrile 3, 628, 656
3-Dialkylaminopropionitrile 3, 284
Dialkylbenzole 1, 578
β,β-Dialkylbuttersäuren
 — aus
 Alkylidencyanessigestern 2, 616
Dialkylcarbonate s. Alkylcarbonate
Dialkylidarylätihylene 1, 615; 2, 782
Dialkylvinyl-alkylcyanessigester
 — aus
 Alkylidencyanessigestern 3, 675
Diamine 3, 363
 — aus
 Iminen 3, 271
 —, *N,N'-diacylierte* 2, 441
Diaryl-acenaphtenone 2, 680
-acroleine 2, 706
-carbinole
 — Ausg. f.
 Triarylmethane 2, 679
Diaryle
 — aus
 Arylaminen 1, 607; 2, 701
 Arylhalogeniden 1, 660—2
 Triazenen 1, 607

Diazaphenanthrene (s. a. Phenanthroline)
 — aus
 Azafluorenonen 2, 333

Diazoacetylverbindungen s. α -Diazoketone

Diazoäthan zur Aethylierung 1, 185

Diazoanhydride s. Diazo-oxyde

Diazoketone
 — aus
 Carbonsäurechloriden $CC \uparrow Hal.$
 o. H.
 — Ausg. f.
 α -Acetoxyketone 2, 211/2; 3, 182
 Carbonsäureamide 1, 631; 2, 216,
 708
 Carbonsäureester 1, 190; 2, 771
 Carbonsäuren 1, 627—30; 2, 216
 α -Halogenketone 1, 623—5; 2,
 521; 3, 334, 475
 Methylketone 3, 59/60
 α -Oxyketone 1, 626; 2, 230

Diazokupplung 1, 607/8, 613; 2, 700

Diazomethan
 — Ausg. f.
 Pyrazol-o-dialdehyde 1, 532

-Synthesen $CC \uparrow Hal.o.H.$

Diazonium-borfluoride 1, 258

-Salze 1, 256—9
 — Ausg. f.
 Arsonsäuren 1, 501
 -cobaltinitrite 1, 259
 -eisenkomplexsalze 2, 526
 -salze 1, 256—9
 — Ausg. f.
 Hydrazone 2, 462, 813
 —, Stabilisierung 1, 253
 —, Zersetzung 1, 88
-sulfate
 — Ausg. f.
 Phenole 1, 194

Diazo-oxyde
 — aus
 Aminen 2, 300
 — Ausg. f.
 Carbonsäuren 2, 235
 Phenole 2, 104

Diazotierung s. Natriumnitrit

Diazoverbindungen
 — aus
 Aminen 3, 247
 Hydrazonen 3, 255
 Nitrosourethanen 3, 257
 — Ausg. f.
 Carbonsäureester $OC \uparrow N.o.H.$
 Cyclopropanring 3, 664

Dibenzo-monothianaphthyrone 2, 629

α,β -Dibromäther
 — aus
 1,1-Alkoxychloriden 2, 731

Dicarbonsäureester
 — spezielle s.
 Acetylendicarbonsäureester
 α,β -Aethylen- β -dicarbonsäureester
 Aryloxymalonsäureester
 Diketodicarbonsäureester
 α -Halogendifcarbonsäureester
 Malonsäureester, disubst.
 Oxomalonsäureester

Dicarbonsäuren
 — aus
 Aldehyden, Synthese 3, 631
 Carbonsäureanhydriden 1, 650
 β -Ketocarbonsäureestern 2,
 159/60
 — Ausg. f.
 Ringketone 1, 782; 2, 824—6

α,ω -Dicarbonsäuren
 — Ausg. f.
 α -Halogen- α,ω -dicarbonsäure-
 ester 1, 409; 3, 451

Dichloracetylen
 — Ausg. f.
 Chloracetylene, subst. 1, 667

Dichloramin-T (s. a. Chloramin-T)
 1, 414

Dicyandiamid als Hilfsstoff 3, 337/8

Dieckmann-Kondensation 1, 558—60;
 2, 771; 3, 499, 721

Diels-Alder-Reaktion s. Dien-
 synthesen

Diene
 —, Anlagerung an Schwefeldioxyd 1,
 459, 713

Dienone
 — Ausg. f.
 Phenole 3, 597

Diensynthesen $CC \downarrow CC$; 1, 713

— von Lactonen 2, 609

Diguanide s. Biguanide

Dihalogenide
 — Ausg. f.
 Cyclopropanring 3, 756

1,2-Dihalogenide
 — Ausg. f.
 Aethylenderivate 1, 772, 776/7; 2,
 815/6; 3, 755
 Ketone 2, 818

α,α -Dihalogenketone
 — Ausg. f.
 α -Oxycarbonsäuren 3, 204

Diketen
 — Ausg. f.
 Acetessigsäure-amide 3, 743
 -ester 3, 130

α,γ -Diketocarbonsäureester
 — aus
 Ketonen 1, 784

- Diketodicarbonsäureester**
- aus
 - Aldehyden 3, 738
- Diketone**
- aus
 - Acetylenalkoholen 2, 163
 - Triketonen 3, 759
- α -Diketone** (s. a. Benzile)
- aus
 - α -Isonitrosoketonen 3, 193/4
- Ausg. f.**
- Isocyclen 3, 633
- , Isonitrosoderivate aus Ketonen** 1, 317, 320, 783; 2, 145; 3, 297
- β -Diketone** (s. a. α -Oxy- β -diketone)
- aus
 - Methylketonen 1, 556, 579
 - , Ringschlüsse 2, 403
 - , Spaltung 3, 580
 - , cycl., Ringöffnung 3, 580
- γ -Diketone**
- aus
 - Furanen 1, 133
 - Ausg. f.
 - Cyclopentene 1, 554
- Diketopiperazine**
- aus
 - α -Aminocarbonsäuren 1, 311
- Diketo-tricarbonsäureester**
- aus
 - Enollactonen 1, 651
- Dimerisierung** 1, 545, 660—2, 668; 2, 701, 730; 3, 249, 251, 660, 685
- , Kolbe-Synthese 1, 715/6
 - , oxydative 2, 176, 630-3; 3, 601-3
- p-Dimethylaminobenzaldehyd**
- Ausg. f.
 - Trimethincyanine 2, 688
- Dimethylcinnilin** als Hilfsstoff 2, 137, 442, 502; 3, 90, 211, 457
- Dimethylsulfat** OC \downarrow S
- Dinitrophenyl-hydrazone** 1, 342, 347/8
- urethane** als Derivate von Alkoholen 1, 247
- Dinitrosoverbindungen**
- aus
 - Phenolen 2, 344
- Dinitroverbindungen** (s. a. Dinitronaphtaline)
- aus
 - Aethylenderivaten 3, 279
- Ausg. f.**
- Nitramine 1, 24/5; 3, 15
- 1,1-Dinitroverbindungen**
- aus
 - Oximen 3, 273
- Dioxyarylthioverbindungen**
- aus
 - Chinonen 3, 493
- Dioxychinone** 1, 514/5, 581
- Dioxyindole**
- aus
 - Isatogenen 2, 2
- Ausg. f.**
- Chinazolinring 3, 282
- Diphenyläthan-derivate** s. 1,1,1-Trichlor-2,2-diphenyläthan(DT)-derivate
- Diphenylaminocarbonsäuren** 2, 445
- Diphenyle** s. Diaryle
- 2,3-Diphenylindole** 3, 658
- Diphenyl-oxybernsteinsäure-mono-nitril**
- aus
 - Phenylglyoxylsäure u. Benzylcyanid 1, 517
- Diselenide**
- aus
 - Seleniden 3, 533
- Disulfide** (s. a. Polysulfide)
- aus
 - Alkylthiosulfaten 1, 487
 - Halogeniden 1, 485, 487; 2, 570
 - Mercaptanen 1, 455
 - Thiocyanaten 2, 530
- Ausg. f.**
- Sulfonsäuren 1, 119
- spezielle s.**
- Amino-disulfide
 - Nitro-
 - Thiokohlensäure-
- Dithiochloride** 3, 501
- Dithio-isoindigo**
- aus
 - Phtalonitril 1, 525
- Dithionit** s. Hyposulfit
- Döbner-Miller'sche Chinolinsynthese** 3, 571
- Döbner-Synthese** 1, 569/70; 2, 657
- Doppelbindung** (s. a. Aethylenderivate)
- , Wanderung 2, 620; 3, 675
- Dowtherm-A** 3, 93
- Dreifachbindung** s. Acetylenderivate
- Duff-Reaktion** 1, 621; 3, 667
- Einführung von funktionellen Gruppen** s. Austausch v. Wasserstoff
- Eisen** 1, 27; 2, 4, 46; 3, 17, 490
- (III)-chlorid** 1, 23, 668; 2, 176, 334, 526, 746; 3, 123, 410, 510
- nitrat** 1, 294
- (III)-oxyd** 2, 633
- (II)-salze** 2, 46
- sulfat** 1, 173, 246; 2, 812; 3, 241
- (III)-verbindungen** 3, 603
- Elektrolyse** HC \downarrow CC, HC \uparrow O; 1, 252, 292; 3, 146, 244
- Emulsin** als Hilfsstoff 3, 161

- Endocarbonylverbindungen* 3, 578
 — Ausg. f.
 Benzolring
 Carbonsäuren 3, 129
- Enoläther*
 — aus
 Acetalen 3, 712
 — Ausg. f.
 Amine, sek. 3, 300
 Ketone
- Enolderivate* 3, 215
- Enollactone* (s. a. β -Keto- γ -enollactone)
 — aus
 Carbonsäureanhydriden 1, 650/1
 — Ausg. f.
 Diketo-tricarbonsäureester 1, 651
- Entwässerung* (s. a. Dehydratisierung)
 — durch azeotrope Destillation 1, 229; 2, 596
- Enzyme* als Hilfsstoffe s. Emulsin, Papain
- Epimerisierung*
 — von
 Kohlehydraten 2, 837/8
 Steroiden 1, 233; 2, 618
- Epoxyde* s. Oxidoverbindungen
- Erdalkalien u. seltene Erden* 2, 824/5
- Ester* s. Carbonsäure-, Sulfonsäureester
- Esterkondensation* 1, 558—60; 2, 771; 3, 621/2, 625, 638, 721
- Fehlingsche Lösung* 1, 156
- Fenske-Kolonne* 3, 174
- Fettvadjian* s. Ullmann
- Filmreaktor* 1, 168
- Fischer'sche Indolsynthese* 2, 812-4; 3, 744
- Fittig* s. Wurtz-Fittig-Synthese
- Flavanone*
 — aus
 Chalkonen 1, 150, 552/3; 3, 140
- Flavazole*, 1-Phenyl- 3, 336
- Flavine* s. Isoalloxazine
- Flavone*
 — aus
 Chalkonen 1, 245; 2, 288
- Flavonole* 2, 656
 — aus
 Pyryliumsalz-methyläthern 2, 279
- Fluor-arsine*
 — aus
 Chlorarsinen 3, 422
- borsäure* 3, 478
- bromide* 3, 433
- Fluorenonring* 2, 776, 810
 — nach Scholl 2, 754
- Oeffnung* 3, 117
- Fluoride* (s. a. α,β -Aethylenfluoride, Austausch, Halogenide)
 — aus
 Aminen 3, 478
- Fluorsilane* 3, 486
- Fluorwasserstoffsäure* CC \uparrow O; 3, 652
- Formaldehyd* als Hilfsstoff 2, 225
 —, Aminomethylierung 1, 599, 606; 2, 670; 3, 605—8, 617, 654/5
 —, Brommethylierung 3, 659
 —, Chlormethylierung 1, 584, 593-8; 3, 640, 644/5, 653
 —, Methylierung 1, 592; 3, 661
 —, Oxymethylierung 1, 510, 575; 2, 588
 — Ausg. f.
 Aminoacetonitrile 3, 656
 Methylendiaryle 1, 547; 3, 163
 Nitramine 3, 605
- Formamide* 2, 358, 391, 675; 3, 724
 — Ausg. f.
 Amine 3, 27
- Formamidine*
 — aus
 Aminen 3, 311/2
 — Ausg. f.
 α,β -Aethylen- β -aminocarbon-säureester 3, 663
- 2-Formylpyrrole*
 — aus
 2-Methylpyrrolen 1, 159
- Friedel-Crafts-Synthesen* CC \uparrow Hal.
 $AlCl_3$; 1, 519, 580, 645
 —, Abspaltung von Substituenten 2, 126
- Fries'sche Verschiebung* 1, 537/8; 2, 623
- Furane, Diensynthese* 1, 529
 —, Hydrierung 1, 57/8
 — spezielle s.
 Acetylfurane
 Benzofurane
 Furfurylidienverbindungen
- , Dihydro-*
 — aus
 1,2-Oxidoverbindungen 2, 182
 — Ausg. f.
 α,β -Aethylen- γ -lactone 2, 188
- , Tetrahydro-* 2, 594, 768
- Furanring* 1, 659; 2, 184, 239, 294, 496, 663; 3, 157, 169
 — aus
 Acetylenalkoholen 2, 163
 Cyclopantanonen 3, 145
 — Ausg. f.
 Pyranring 3, 732
- Oeffnung* 2, 149, 520, 770; 3, 2, 89
- Furazane* 3, 12

Furfurylidienverbindungen 1, 544,
548/9

Gabriel'sche Aminsynthese 2, 362,
454

Gallensäurederivate 2, 425

Gattermann-Koch-Synthese 1, 616-8;
3, 696

Gattermann-Kupfer 1, 439/40

Girard-Reagenz T 1, 141

Glaspulver 1, 784/5; 2, 827

Glucal 2, 807

— Ausg. f.

Desoxyzucker 2, 152

Glucosidaminopyrimidine 2, 404

Glutarsäureimide

— Ausg. f.

2,6-Dichlorpyridine 3, 471

Glycerine

— aus

Carbonsäureestern u. Ketonen 2,
586

Glycidsäureester

— aus

α -Halogencarbonsäureestern u.
Oxoverbindungen 1, 634; 3,
681

— Ausg. f.

Oxoverbindungen 3, 77

Glykolacetate

— aus

Aethylenderivaten 1, 139

— Ausg. f.

Ketone 1, 139

Glykolbenzoate

— aus

Aethylenderivaten 2, 173

Glykole

— aus

Aethylenderivaten 1, 145-9; 2,
164, 171, 177/8

Aldehyden durch bimolekulare
Reduktion 1, 689

Oxidooverbindungen 1, 126; 2, 146,
151, 164

α -Oxyketonen 2, 63

— Ausg. f.

Aldehyde, Abbau um 1 C-Atom
2, 299

Ketone 3, 138

1,2-Glykolmonoäther

— Ausg. f.

Aldehyde 3, 144

Glykoside (s. a. Aether, Arylpoly-
acylglykoside, Kohlehydrate)

— Ausg. f.

Uronsäuren 2, 189; 3, 148

— Spaltung 1, 8, 10; 2, 25/6; 3, 8/9

Glyoxale s. α -Ketoaldehyde

Glyoxalidone

— aus

Oxazolonen 3, 325

Glyoxaline s. Imidazole

Glyoxylsäuren s. α -Ketocarbonsäuren

Gomberg'sche Reaktion s. Diazo-
kupplung

Grignard-Synthesen s. Magnesium,
Lithium

Guanidine

— aus

Aminen u. Cyanamiden 2, 324;
3, 396

— u. Isothioharnstoffen 2, 456;
3, 392, 396

— Ausg. f.

Pyrimidine 1, 344; 2, 369

— spezielle s.

Cyanguanidine

Diguanide

Guanidinopyrimidine

Sulfanilylguanidine

Guanidinopyrimidine 2, 432

Halbacetale, innere

— Ausg. f.

Lactone 2, 293

Halogen als Hilfsstoff OS \downarrow S (s. a.
bei den einzelnen Halogenen)

-Abspaltung CC \uparrow Hal

-Anlagerung HalC \downarrow CC

-Austausch s. dort

β -Halogenacetale

— aus

α - β -Aethylenaldehyden 2, 483
 α -Halogenamine

— Ausg. f.

Ketone 2, 222

N-Halogenamine

— aus

Aminen 2, 306; 3, 260

α -Halogencarbonsäureester

— Ausg. f.

Glycidsäureester 1, 634; 3, 681

ω -Halogencarbonsäureester

— Ausg. f.

ω -Halogen- β -ketocarbonsäure-
ester 1, 649

α -Halogencarbonsäuren s. α -Brom-
carbonsäuren

α -Halogen- α , ω -dicarbonsäureester

— aus

α , ω -Dicarbonsäuren 1, 409; 3, 451

Halogenhydride

— aus

Aethylenderivaten 1, 405; 2, 488

— Ausg. f.

Aminoalkohole, N-subst. 3, 362

Oxidooverbindungen 2, 296; 3, 243

Halogenide (s. a. Austausch)

- aus
 - Aethern 1, 436; 2, 497/8, 501, 520; 3, 452/3
 - Aethylenderivate HalC \downarrow CC
 - Alkoholen HalC $\uparrow\downarrow$ O
 - Carbonsäuren, Abbau um 1 C-Atom 1, 453/4; 3, 489
 - N-Oxyden 3, 450
 - Sulfonsäurehalogeniden 3, 488
 - Thioäthern 2, 527
 - p-Toluolsulfonsäureestern 1, 422; 2, 121, 505; 3, 455
- Ausg. f.
 - Acetylencarbonsäuren 1, 654
 - Acetylenderivate 2, 815/6
 - Aether OC $\uparrow\downarrow$ Hal
 - Alkohole, Aufbau um 2 C-Atome 1, 673—6; 2, 733
 - Alkylthiosulfate 1, 487
 - α -Aminocarbonsäuren, Aufbau um 2 C-Atome 1, 644; 3, 674
 - Carbonsäuren 3, 155, 723
 - , Aufbau um 1 C-Atom 1, 658, 685/6; 2, 726/7; 3, 693
 - , Aufbau um 2 C-Atome, Malonester-Synthese 1, 564, 635, 639—44; 2, 485, 711, 719—21
 - Disulfide 1, 485, 487; 2, 570
 - Hydrazine 3, 68
 - Kohlenwasserstoffe, Synthese 1, 633; 2, 710/b
 - Phosphinsulfide 3, 546
 - Phosphorsäureester 3, 217
 - Selenole 3, 547
 - Sulfonsäureamide 1, 377; 2, 459
 - Thioäther 1, 713; 2, 558; 3, 529
- Derivate:
 - Thiuroniumsalze 2, 550
 - spezielle m.a.W.s.
 - Acetobromzucker
 - Aethylenthalogenide
 - 1,1-Alkoxyhalogenverbindungen
 - α -Alkoxyhalogenverbindungen
 - α -Bromacetale
 - 5-Brompyrrol-2-carbonsäuren
 - Chloracetylene, subst.
 - Chlormethyläther
 - β -Chlorthiolsäureester
 - α,β -Dibromäther
 - Dichloracetylen
 - 1,2-Dihalogenide
 - 2-Nitrohalogenide
 - α -Oxyhalogenide
 - Polyhalogenide
 - 1,1,1-Trichlor-2,2-diphenyläthan-(DT)-derivate
- o-Halogenide
 - Ausg. f.

m-Amine unter Umlagerung 3, 371

 ω -Halogen- β -ketocarbonsäureester

- aus
- ω -Halogencarbonsäureestern 1, 649
- α -Halogenketone (s. a. α -Brommethylketone)
 - aus
 - Carbonsäurechloriden über α -Diazoketone 1, 623—5; 2, 521; 3, 334
 - Diazoketonen 3, 475
- Ausg. f.
 - α -Aminoketone 3, 334
 - Carbonsäuren, Abbau um 1 C-Atom 1, 789; 2, 833
 - α -Ketoaldehyde 1, 198/9
 - Methylketone 3, 63
- β -Halogenketone
 - aus
 - Aethylenderivate 2, 617
 - 1,4-Halogenketone s. β,γ -Athylen-1,4-bromketone
- Halogenphthalide
 - aus
 - Phtaliden 3, 154
 - Ausg. f.
 - α -Aldehydocarbonsäuren 3, 154
 - Phtalazone 3, 369
- Halogensilane
 - Ausg. f.
 - Alkoxysilane 3, 107
- N-Halogensulfonsäureamide
 - aus
 - Sulfonsäureamiden 3, 259
- 2-Halogenthioäther
 - aus
 - Aethylenderivate 3, 497
- Halogenwasserstoff
 - Abspaltung aus Halogeniden CC \uparrow Hal
 - Anlagerung an die Kohlenstoff-Dreifachbindung 1, 406
- Harnsäuren 1, 360
- Harnstoff
 - als Hilfsstoff 3, 329
 - Ausg. f.
 - Oxazolidin-dione 1, 316
- Alkylsulfate 3, 766
- Harnstoffe (s. a. Bi-harnstoffe, Nitroharnstoffe)
 - aus
 - Aminen 2, 323, 409; 3, 267, 272
 - Carbonsäureaziden 1, 388
 - Ausg. f.
 - Amine 1, 33
 - Carbonsäureamide 2, 461
 - zur Charakterisierung von Aminen 2, 323, 409

Heterocyclen

- , Isomerisierung 2, 629
- spezielle
 - mit einem O-Atom s.
 - Brasane
 - Chromone
 - Cumarine
 - Benzoisofurane
 - Furane
 - Pyrane
 - Xanthene
 - mit einem N-Atom s.
 - Acridine
 - Anthrapyridone
 - Azafluorene
 - Carbazole
 - Chinoline
 - Indole
 - Indolizine
 - Isochinoline
 - Phenanthridine (9-Azaphenanthrene)
 - Pyridine
 - Pyrrole
- mit einem Heteroatom außer O u. N, s.
- Isoarsindoline
- Seleno-isochromane
- Selenophene
- Telluro-isochromane
- Thianaphtene (Benzothiophene)
- Thio-isochromane
- Thiophene
- mit zwei O-Atomen, s.
- Cumarano-cumarane
- mit zwei N-Atomen, s.
- Anthrazoline (1,5-Diaza-anthracene)
- Azaindole
- Benzimidazole
- Chinazoline (1,3-Diazanaphthaline)
- Chinoxaline (1,4-Diazanaphthaline)
- Cinnoline (1,2-Diazanaphthaline)
- Copyrine (2,7-Diazanaphthaline)
- Cyclohydrazide (1,2-Diazin-Ringsystem)
- Diazaphenanthrene
- Imidazole (Glyoxaline)
- Indazole
- Napthyridine (Diazanaphthaline)
- Phenanthroline (Diazaphenanthrene)
- Phenazine (5,10-Diazaanthracene)
- Phtalazine (2,3-Diazanaphthaline)
- Pyrazine
- Pyrazole
- Pyrimidine
- Uretidine (1,3-Diazacyclobutan-Ringsystem)

mit zwei verschiedenen Heteroatomen, s.

- Benzophenarsazine
- Dibenzo-monothia-naphthyron
- Isoxazole
- Oxazole
- Selenazole
- Thiazole
- mit drei u. mehr Heteroatomen, s.*
- Azaphenoxazine (2,10-Diaza-9-oxa-anthracen-Ringsystem)
- Flavazole (1-Pyrazolo[3,4-b]-chinoxaline)
- Isoalloxazine (1,3,9,10-Tetraaza-anthracen-Ringsystem)
- Purine
- Pyrimido[4,5-b]pyrazine (1,3,5,8-Tetraazanaphthaline)
- Sydone
- Tetrazole
- Thienoimidazole (Thiophenoimidazole)
- Triazafluorene
- Triazine
- Triazole

N-Heterocyclen, 1,2-Dihydro-, subst. 3, 568

Hexamethylentetramin als Hilfsstoff 1, 621; 2, 228, 447, 702; 3, 222, 667

Hinsberg-Reaktion 2, 533

Hoesch-Synthese von Ketonen 2, 606/7

Hofmann'scher Abbau von Ammoniumsalzen, quartären 2, 839; 3, 746
Carbonsäureamiden 2, 337, 464, 475/6

Hydantoin 1, 568; 2, 655

- aus Cyanhydrinen 1, 309
- Ausg. f. α -Aminocarbonsäuren 1, 568; 2, 223

Hydrazide s. Carbonsäure-, Sulfonsäure-hydrazide

Hydrazine

- aus
 - Aminen 1, 261; 2, 304
 - Azoverbindungen s. Hydrazoverbindungen
 - Halogeniden 3, 68
 - Nitrosaminen 1, 255; 2, 40
- Ausg. f.
 - Azoverbindungen 2, 392
 - Kohlenwasserstoffe 3, 68
- Hydrazinhydrat 2, 43; 3, 14, 23/4*
- Hydrazinocarbonsäuren*
- aus
 - Aminocarbonsäuren 1, 261

- (*Hydrazinocarbonsäuren aus*)
Halogencarbonsäuren 1, 368
- Hydrazone**
- aus
 - Aminen 3, 290
 - Azinen 1, 615
 - Diazoniumsalzen 2, 462, 813
 - Oxoverbindungen 1, 299/300, 342, 347/8, 615; 2, 396/7; 3, 307, 744
 - Ausg. f.
 - Aethylenderivate, symm. 1, 615
 - Amine 3, 39
 - Diazoverbindungen 3, 255
 - Sulfone 1, 615
 - spezielle s.
 - α -Ketocarbonsäureester-phenylhydrazone
 - Osazone
- Hydrazoverbindungen**
- aus
 - Azoverbindungen 1, 17—9
 - Ausg. f.
 - Azoverbindungen 2, 305; 3, 256
- Hydride** als Hilfsstoffe s. Natrium-, Lithium-aluminium-hydrid
- Hydrierung** (s. a. Reduktion) HO, HN, HC
- , partielle 2, 86/7
 - , selektive 1, 62; 2, 82, 85
 - , totale 3, 54
- Hydrobenzolring** durch Diensynthese CC \downarrow CC; 1, 713
- Hydrochinon** als Hilfsstoff 2, 834
- Hydrochinone**
- Ausg. f.
 - Chinone 1, 161; 3, 241
- Hydrolyse** HO \downarrow C, HN \downarrow C
- Hydroperoxyde**, Alkylierung 1, 232
- Hydrosulfit** 2, 812
- Hydroxamsäurechloride**
- Ausg. f.
 - Nitriloxyde 3, 411
- Hydroxamsäuren**
- aus
 - Carbonsäurechloriden 2, 478
 - Ausg. f.
 - Amine, Abbau um 1 C-Atom 2, 478
- Hydroxylamin** als Hilfsstoff 3, 285
- Hydroxylamine**
- aus
 - Nitroverbindungen 2, 265; 3, 761
 - Ausg. f.
 - Amine 3, 285
 - Azoxyverbindungen 3, 253
 - Nitrosoverbindungen 3, 761
 - , subst. 2, 265
 - Ausg. f.
 - Oxime, subst. 3, 403
 - Oxooverbindungen 2, 265
- Hypohalogenite** OC \downarrow C; 2, 174/5, 337, 464, 468/9, 475/6, 488; 3, 104, 113, 236/7, 260, 413, 445
- Hyposulfit** 2, 539 812
- Imidazole** (s. a. Glyoxalidone) 3, 319
- Ausg. f.
 - Purine 2, 440
 - , hydrierte 3, 313, 320, 375, 391, 409, 415/6
- Imidazolring-Öffnung** 3, 409, 610
- Imide** s. Carbonsäureimide
- Imine** (s. a. Ketimine)
- aus
 - Ketonen 1, 297
 - Ausg. f.
 - Diamine 3, 271
- Iminochloride**
- aus
 - Carbonsäureaniliden 2, 122
 - Ausg. f.
 - Iminoester 2, 823
- Iminoester**
- aus
 - Iminochloriden 2, 823
 - Nitrilen 2, 154—6; 3, 127
 - Ausg. f.
 - Amidine 1, 282; 2, 355/6
 - Carbonsäureamide 3, 127
 - Orthoester 3, 178
 - , Chapman'sche Umlagerung 2, 823
 - , subst. 2, 355
- Indanone**
- Ausg. f.
 - Azulene 2, 612
 - Benzoisofurane 3, 145
- Indazole** 1, 321
- aus
 - o-Methylazoverbindungen 2, 467
- Indazolone** 1, 396
- Indene** (s. a. Indanone) 3, 593
- Indole** 1, 562, 762; 2, 812—4; 3, 724/5, 729, 744
- spezielle s.
 - 3-Alkylindole
 - Dioxyindole
 - 2,3-Diphenylindole
 - Isatine
 - Isatogene
 - Nitrosoindole
 - Oxindole
- Indoline** 1, 392
- Indolizidine** 2, 431
- Indolizine** 3, 726
- Indolring**
- Ausg. f.
 - Chinazolinring 1, 293; 3, 282
 - Oeffnung 1, 281; 2, 168

- Indophenole* 3, 293
Isatine 3, 745
 — Ausg. f.
 Chinolincarbonsäureamide 3, 572
 Chinoline 1, 555; 2, 602—4, 761;
 3, 570/1
Isatogene 2, 335
 — Ausg. f.
 Dioxyindole 2, 2
Isoalloxazine 2, 102, 402; 3, 348
Isoarsindoline 2, 579
Isochinoline 1, 369, 746/7; 2, 438,
 788, 793; 3, 649
Isochinolinring-Oeffnung 2, 839
Isocumarine 2, 672
Isocumarinring-Oeffnung 2, 672
Isocyanate
 — aus
 Aminen 1, 385
 Carbonsäureaziden 3, 286, 378
 Carbonsäurechloriden, Abbau um
 1 C-Atom 3, 378
 — Ausg. f.
 Uretdione 1, 286
Isocyclen (s. a. Arylderivate)
 —, Ringschluß zu — 2, 794/5
 —, ω -chlorallyl-subst. 1, 701/2
 —, höhergliedrige 1, 770/1; 2, 697
 — spezielle s.
 Anthracene
 Azulene
 Benzanthracene
 Bicyclo-octane
 Chrysene
 Cyclo-butane
 -hexylbenzole
 -pentenonaphthaline
 -pentenophenanthrene
 -pentene
 -propane
 Indene
 Naphtaline
 Perinaphtindanone
 Phenanthrene
 Ringketone
Isoindigo-verbindungen
 — aus
 Oxindolen 2, 632
Isomerisierung s. Umlagerung
Isonitrosocyanessigester als Hilfs-
 stoff 3, 771
 α -Isonitrosoketone
 — aus
 -Ketocarbonsäureestern 3, 397
 Ketonen 1, 317, 320, 783; 2, 145;
 3, 297
 — Ausg. f.
 -Oxyketone 2, 145
- Isopropylidenderivate* 1, 175, 468; 2,
 199, 209, 644
 —, Spaltung 1, 175; 2, 19, 22/3, 33
Iothiocyanate
 — aus
 Aminen 1, 401, 464; 3, 389
 — Ausg. f.
 Thioharnstoffe 3, 266
Iothioharnstoffe (s. a. Thiuronium-
 salze)
 — aus
 Halogeniden 1, 493—5; 2, 111,
 550; 3, 520
 — Ausg. f.
 Cyanamide 3, 396
 Guanidine 2, 456; 3, 392, 396
 Kohlenwasserstoffe 2, 111
 Mercaptane 1, 493/4
Isoxazole 3, 283, 324, 582
Isoxazolring-Oeffnung 3, 12
- Jod* 1, 266, 437, 693, 757; 2, 799/800;
 3, 344, 441, 443
/Kupfer 3, 527
/Natriumacetat 1, 370
/Phosphor 1, 73
/Silberbenzoat 1, 146
Jodbenzoldichlorid als Hilfsstoff 3,
 428
 α -Jodcarbonsäuren
 — aus
 α -Bromcarbonsäuren 1, 451
 — Ausg. f.
 α -Oxycarbonsäuren 1, 451
Joddichloride
 — aus
 Jodiden 3, 417
 — Ausg. f.
 Jodosoverbindungen 3, 103
 Jodoxyverbindungen 3, 104
Jodide (s. a. Halogenide, Austausch)
 — aus
 Jodosoverbindungen 3, 102
 — Ausg. f.
 Joddichloride 3, 417
Jodieren s. Austausch von Wasser-
 stoff
Jodoniumverbindungen 3, 769
Jodosoverbindungen
 — aus
 Joddichloriden 3, 103
 — Ausg. f.
 Jodoxyverbindungen 3, 102
Jodoxyverbindungen
 — aus
 Joddichloriden 3, 104
 Jodosoverbindungen 3, 102
Jodwasserstoffsäure 1, 250; 3, 11, 60,
 651

- Kalium** 2, 485, 711—3
 —, Reinigung 3, 245
-/Natrium 2, 770
-alkoholat 2, 145, 593, 723/4
-chlorat 3, 446
-cyanat 3, 746
-cyanid 2, 595—7, 655, 727; 3, 558,
 583, 600
-ferricyanid 2, 264; 3, 226, 403
-fluorid 3, 482
-hydrogenfluorid 3, 456
-hydrogensulfid 3, 522
-hydroxyd, alkoh. 2, 546; 3, 3, 131,
 512, 711
-hydroxyd/Chinolin 1, 768
-hypojodit s. Hypohalogenite
-jodat/Kaliumjodid 1, 419
-jodid (s. a. Alkalijodide) 1, 438; 2,
 522; 3, 209, 684, 687, 763
-permanganat s. Permanganat
-phosphat, prim. 1, 520
-pyrosulfit 2, 843
-rhodanid 1, 490
-salz 3, 334, 544
Katalysatoren s. bei Nickel, Platin
 etc.
Katalysatorgifte, Entfernung von —
 2, 84
Kernalkylierung mit Aethylenderiva-
 ten 3, 585
Kerne s. Isocyclen, Heterocyclen
 —, Austausch von Substituenten
 s. Austausch
 —, Einführung von Substituenten
 s. Austausch von Wasserstoff
Kernhydrierung $\text{HC} \downarrow \text{CC}$
 —, selektive 3, 41
Keten als Hilfsstoff 1, 178
Ketenacetale
 — aus
α-Bromacetalen 3, 747, 749
 — Ausg. f.
Carbonsäureester, α-subst. 3, 575
Ketendimere
 — Ausg. f.
β-Ketocarbonsäureanilide 3, 743
β-Ketocarbonsäureester 3, 130
Ketene
 — Ausg. f.
Vinylalkohole 3, 564
Ketimine
 — aus
Ketonen 1, 297
Nitrilen 3, 573
 — Ausg. f.
Aldehyde 3, 82
α-Ketoacetate s. *α-Acetoxyketone*
α-Ketoaldehyde
 — aus
α-Halogenketonen 1, 198/9
 — Ausg. f.
Carbonsäuren 2, 297
α-Ketoalkohole s. *α-Oxyketone*
Ketoamine s. *Aminoketone*
β-Ketocarbonsäureanilide
 — aus
Ketendimeren 3, 743
β-Ketocarbonsäureestern 3, 308
Ketocarbonsäureester
 — aus
Carbonsäureester-chloriden 1,
 712
 — spezielle s.
Acylessigester
Acyllävulinsäureester
Alkylidenacetessigester
α-Alkyl-β-ketocarbonsäureester
Arylglyoxylsäureester
Benzylbenzoësäureester
α,γ-Diketocarbonsäureester
Diketotricarbonsäureester
*ω-Halogen-β-ketocarbonsäure-
 ester*
β-Ketocarbonsäureester
 — aus
Carbonsäurechloriden 1, 649; 3,
 703
Carbonsäureestern 1, 558—60; 2,
 771; 3, 621, 625, 721
α,γ-Diketocarbonsäureestern 1,
 784/5; 2, 827
Ketendimeren 3, 130
Ketonen 3, 624
 —, Oxalestersynthese 1, 561, 784;
 2, 827
Nitrilen 3, 574
 — Ausg. f.
α-Alkyl-β-ketocarbonsäureester
 1, 635—8; 2, 697, 717/8
Dicarbonsäuren 2, 159/60
β-Ketocarbonsäureanilide 3, 308
*α-Ketocarbonsäureester-phenyl-
 hydrazone* 2, 462, 813
Ketone 1, 558/9; 2, 160, 771
**α-Ketocarbonsäureester-phenyl-
 hydrazone**
 — aus
β-Ketocarbonsäureestern 2, 462,
 813
Ketocarbonsäuren
 — aus
Carbonsäureanhydriden 1, 519,
 697; 2, 601, 740; 3, 566
 — Ausg. f.
Methoxylactone 2, 215
α-Ketocarbonsäuren
 — Ausg. f.
Aldehyde 2, 689
Carbonsäuren 1, 784/5; 2, 827/8

- γ-Ketocarbonsäuren*
- aus
 - γ*-Lactonen 3, 120
 - α-Ketocarbonsäureoxime*
 - aus
 - α*-Thioketocarbonsäuren 3, 662
 - Ausg. f.
 - Nitrile 3, 662 - β-Keto-γ-enollactone*
 - Ausg. f.
 - 1,2,4-Cyclopentantrione 3, 594

Ketole s. Oxyketone

Ketone (s. a. Oxoverbindungen)

 - , Abbau 2, 494
 - aus
 - Acetylenderivaten durch Wasseranlagerung 1, 136/7; 2, 161—3, 818; 3, 135
 - Aethylenderivaten 1, 139, 141/2, 144; 2, 170, 179
 - α,β*-Aethylenhalogeniden 2, 263
 - Aethylenketonen, Hydrierung 1, 536
 - 2 Aldehyd-Molekülen 1, 718
 - Aldolen 1, 718
 - Alkoholen, sek. durch Oxydation $\text{OC} \uparrow\downarrow \text{H}$
 - 2 Alkohol-Molekülen 1, 718
 - Carbonsäuranhydriden 2, 640, 734
 - Carbonsäurechloriden $\text{CC} \uparrow\downarrow \text{Hal.}$ AlCl_3 ; 2, 735/6, 738, 751; 3, 694
 - Carbonsäureestern 3, 373, 621, 625
 - Carbonsäuren 1, 580
 - über Carbonsäurechloride $\text{CC} \uparrow\downarrow \text{Hal.}$ AlCl_3 ; 1, 695/6; 2, 690/1
 - 1,2-Dihalogeniden 2, 818
 - Glykolacetaten 1, 139
 - Glykolen 3, 138
 - α*-Halogenaminen 2, 222
 - β*-Ketocarbonsäureestern 2, 160, 771; 3, 373, 621, 625
 - Kohlenwasserstoffen durch Oxydation 1, 164; 2, 186/7; 3, 149
 - Nitrilen, Grignard-Synthese 1, 522—4; 2, 605, 699
 - , Hoesch-Synthese 1, 618; 2, 606/7
 - Nitroverbindungen 1, 193; 2, 224
 - Oxidoverbindungen 2, 13
 - Oximen 1, 200
 - Ozoniden 1, 142
 - Peroxyden 1, 246
 - α*-Acetoxyketone 2, 143
 - α,β*-Aethylenhalogenide 3, 470
 - Alkohole, sek. $\text{HC} \downarrow \text{OC}$
 - Amine 1, 634; 2, 388, 390, 394; 3, 301, 350

Carbonsäureamide 1, 362

α,γ-Diketocarbonsäureester 1, 784

α-Diketone bzw. deren Isonitroso-derivate 1, 317, 320, 783; 2, 145; 3, 297

β-Diketone 1, 556, 579

Glycerine 2, 586

Ketimine 1, 297

β-Ketocarbonsäureester 1, 561, 784; 2, 827

Kohlenwasserstoffe 1, 669—71; 2, 601; 3, 637

Lactone durch oxydativen Abbau 1, 140

α-Oxycarbonsäureester 2, 596

β-Oxycarbonsäureester 1, 677

α-Oxycarbonsäuren 1, 516

β-Oxycarbonsäuren, Reformatski-Synthese $\text{CC} \downarrow \text{OC. Zn.}$

α-Oxyketone 2, 145

α-Oxymethylenketone 2, 643, 725a

Thioketone 3, 514

 - spezielle m.a.W.s.
 - Acetonylderivate
 - α*-Acetoxyketone
 - Acetylenketone
 - o*-Acoxyketone
 - Acylaminoketone
 - Acylhydrochinonäther
 - α,β*-Aethylen-1,4-bromketone
 - α,β*-Aethylenketone
 - Alkylphenacylsulfide
 - Aminoketone
 - Arylacetonitrile
 - Aryläthylketone
 - Aminoalkohole 1, 681
 - β*-Aminoketone 1, 599
 - Arylaminoketone
 - α*-Cyanketone
 - Cyclopentantrione
 - Desoxybenzoine
 - α*-Diazoketone
 - Dienone
 - α,α*-Dihalogenketone
 - Diketone
 - Endocarbonylverbindungen
 - α*-Halogenketone
 - Methylketone
 - Oxomalonsäureester
 - Phenylketone
 - Ringketone
 - Ketonitrile s. Cyanketone
 - Ketonspaltung s. Austausch von Acyl gegen Wasserstoff
 - Ketophenole s. Phenolketone
 - Ketosulfone 2, 564
 - , Alkylierung 2, 716
 - , Spaltung 2, 116, 716

- Ketimine**
- aus
 - Nitrilen, Synthese 3, 573
 - Ausg. f.
 - Aldehyde 3, 82
- Kettenverlängerung** (s. a. Aufbau)
- CC ↓, CC ↑
- Kieselsäureester** (s. a. Alkylfluorosilikate) 3, 108, 232, 235
- aus
 - Alkylchlorsilikaten 3, 110
- Kindler-Reaktion** 2, 181; 3, 139, 141
- Kishner** s. Wolff-Kishner-Reduktion.
- Knoevenagel-Synthese** (s. a. Perkin-Claisen-Knoevenagel-Synthese) 3, 632
- Kobalt-Katalysator** 1, 46/7
- aluminium-oxyd 3, 45
 - fluorid 3, 449
 - hydrat 3, 149
 - nitrit ON ↑ H
 - oxyd 1, 209
- Koch** s. Gattermann-Koch-Synthese
- Kohlehydrate**
- Ausg. f.
 - Aldonsäuren 2, 321
 - Polyalkohole 2, 64
 - Derivate:
 - Aethylidenderivate 2, 28, 205
 - Aldonsäurehydrazide 2, 321
 - Benzimidazolderivate 1, 340
 - Chinoxaline 1, 386
 - Flavazole, 1-Phenyl- 3, 336
 - Isopropylidenderivate 1, 175, 468; 2, 19, 22/3, 33, 209, 644
 - Mercaptale 1, 469; 2, 274, 547/8
 - Methylderivate 2, 204
 - Salpetersäureester 2, 3/4, 132
 - Desacetylierung HO ↑ C
HO ↑ C
 - Hydrierung 1, 49
 - Ringöffnung 1, 134
 - Spaltung 1, 386
 - spezielle s.
 - Acetobromzucker
 - Anhydrozucker
 - Biosen
 - 2-Desoxyzucker
 - Glucale
 - Glykoside
 - Methylglykoside
 - Osone
 - Polysaccharide, methylierte
 - Uronsäuren
- Kohlendioxyd**, Grignard-Synthesen mit — 1, 685/6
- Kohlensäureester** (s. a. Alkylcarbonate) 2, 345
- Kohlenstoffringe** s. Isocyclen
- Kohlenwasserstoffe** (s. a. Paraffine)
- aus
 - Aldehyden, Abbau um 1 C-Atom 2, 128
 - Aminen HC ↑ N
 - Azomethinen 1, 91
 - Carbonsäuren HC ↑ C
 - Chinonen 1, 66, 71; 2, 93
 - Halogeniden 1, 633; 2, 710/b
 - Hydrazinen 3, 68
 - Isothioharnstoffen 2, 111
 - Ketonen durch Synthese 1, 669 bis 671; 2, 601; 3, 637
 - Lactonen 3, 53
 - Mercaptalen 3, 72
 - Oxoverbindungen durch Reduktion HC ↑ O
 - Oxyverbindungen HC ↑ O
 - Thioäthern 2, 112—4
 - p-Toluolsulfonsäureestern und Halogeniden, Synthese 3, 691
 - Ausg. f.
 - Aldehyde 1, 159, 162/3, 166, 410; Amine, sek. 3, 305 [3, 150]
 - Azomethine 1, 298
 - Carbonsäuren 1, 169—72, 530; 2, 519; 3, 96, 152, 155/6
 - Chinone 1, 168; 3, 146, 151
 - Ketone durch Oxydation 1, 164; 2, 186/7; 3, 149
 - o-Nitrosophenole 3, 298
 - Thioäther 3, 505
 - Thioketone 2, 573
 - ar.
 - aus
 - Ringketonen 2, 803; 3, 709
- Kolbe-Synthese** 1, 715/6
- Kondensation, reduktive** 1, 689; 2, 586
- Konjugierte Mehrfachbindungen** durch Umlagerung 2, 624/5
- Kröhnke'sche Aldehydsynthese** 1, 197—9
- Kupfer** 1, 28, 439/40, 492, 610, 614, 660/1; 2, 255, 310, 444/5, 458, 465, 528, 563—6, 615
- /Jod 3, 527
 - /Magnesium 1, 681
 - /Silberfluorid 3, 436
 - /Zink 2, 736
 - /Aluminium-Katalysator 1, 41
 - /Chrom-Barium-Oxyd-Katalysator
 - /Silber-Katalysator 1, 155 [1, 106]
 - acetat 1, 391; 2, 287; 3, 182
 - bromid 1, 536
 - carbonat 1, 113
 - (I)-chlorid 1, 406, 424, 501, 772
 - chromit-Katalysator 1, 75, 106, 112, 165; 2, 124/5, 399; 3, 35/6, 85, 92, 240

(*Kupfer*)-cyanid $\text{CC} \uparrow\downarrow \text{Hal}$; 1, 772; 3, 666
-jodid 2, 616
-oxyd 1, 86—90; 3, 51, 91/2
-rhodanid 1, 470
-salze $\text{HalC} \uparrow\downarrow \text{N}$; 1, 613
-(I)-salze 3, 249
-sulfat 1, 175; 2, 199, 577; 3, 68, 159, 254, 270, 396
Kupplung zu Azoverbindungen
 1, 295; 2, 371
Lactame, Reduktion 1, 79
Lactone
 — aus
 Aethylencarbonsäuren 3, 137
 Halbacetalen, inneren 2, 293
 Ketonen durch oxydativen Abbau 1, 140
 Oxidoverbindungen, Aufbau um 2 C-Atome 3, 554
 Oxycarbonsäurehydraziden 3, 191
 — Ausg. f.
 Aether 2, 660
 Kohlenwasserstoffe 3, 53
 Oxycarbonsäureamide 3, 24, 264
 Oxycarbonsäuren 3, 116
 — durch Diensynthese 2, 609
 — spezielle s.
 Acetyllactone
 α,β -Aethylen- γ -lactone
 Carbalcoxylactone
 Enollactone
 Methoxylactone
 Oximinolactone
 γ -Lactone
 — aus
 α -Acetoxyketonen 1, 694
 β -Oxyaldehyden 1, 518
 — Ausg. f.
 Carbonsäureamide, subst. 2, 320
 γ -Ketocarbonsäuren 3, 120
 δ -Lactone
 — Ausg. f.
 δ -Oxyaldehyde 1, 78
 δ -Lactosehydrat als Hilfsstoff 2, 842
Lehmstedt-Tanasescu-Reaktion
 3, 627
Lepidine, Substituentenaustausch 1, 201, 382
Leuckart'sche Reaktion 1, 634;
 2, 388, 390; 3, 301
Limpach s. Conrad
Lithium $\text{CC} \downarrow \text{OC}$; 1, 285, 503/4, 522, 632, 719; 2, 584/5, 640, 694, 709; 3, 288, 366, 535, 541—3, 568/9, 580, 599
-aluminium-hydrid 3, 52
-amid 3, 367
Lossen'sche Umlagerung 2, 478

Magnesium $\text{OC} \uparrow\downarrow \text{Hal}$, $\text{CC} \downarrow \text{OC}$, $\text{CC} \downarrow \text{NC}$, $\text{CC} \uparrow\downarrow \text{O}$, $\text{CC} \uparrow\downarrow \text{Hal}$
 1, 505/6; 2, 139, 222, 446, 583, 616, 628, 699; 3, 61, 381/2, 415, 545—7, 584, 703
-/Kupfer 1, 681
-/Magnesiumjodid 1, 684, 689
-Amalgam 1, 677
-hydroxyd 3, 120
-methylat 1, 325/6
-sulfat 1, 170, 3, 565
Malonsäure als Hilfsstoff 2, 671
Malonsäureester (s. a. Acylmalonsäureester)
 — Reaktion mit Amidinen 1, 314
 — Synthesen 1, 564, 635, 639—44; 2, 485, 711, 719—21
 —, *disubst.*
 — — aus
 Malonsäureestern, monosubst. 1, 564, 642; 2, 711, 721
Malonsäuremonoester, *subst.*
 — aus
 Carbonsäureestern 3, 555
Mangandioxyd 1, 727; 3, 152, 224
Mannich-Basen (s. a. Amine, tert. als Zwischenprodukte) 1, 599; 2, 670; 3, 607/8, 615, 617, 654/5
Markownikoff's Regel 2, 486; 3, 496
Meerwein-Ponndorf-Reduktion
 $\text{HC} \downarrow \text{OC}$. Al(OR)_3
Mehrfachbindungen s. Doppel-, Drei-fach-bindung
 —, konjugierte durch Umlagerung 2, 624/5
Mercaptale 1, 469; 2, 547/8
 — Ausg. f.
 Kohlenwasserstoffe 3, 72
 —, Spaltung 2, 274
Mercaptane (s. a. Sulfhydril bei Austausch)
 — aus
 Aethylenderivaten 1, 457
 Aminen 1, 717; 3, 517
 Isothioharnstoffen 1, 493/4
 Sulfonsäurechloriden 3, 30
 Thioäthern 1, 38
 Thiocyanaten 2, 54
 Thiolsäureestern 1, 457
 — Ausg. f.
 Carbonsäureamide 3, 394
 Disulfide 1, 455
 Sulfonsäurechloride 3, 418
 Sulfonsäuren 1, 120
 Thioäther 1, 471, 479—83; 2, 544 bis 545; 3, 518
 —, symm. 3, 418
 — spezielle m. a. W. s.
Oxymercaptane
Mercaptoarsine 3, 531

- Mercaptocarbonsäuren**
- aus
 - Bromcarbonsäuren 1, 496
- Mercaptothiazole**
- Ausg. f.
 - Thiazole 1, 103
- Mercurierung** s. Quecksilberverbindungen, metallorganische
- Mesyl-** s. Methylsulfonsäure-
- Methonderivate von Aldehyden**
- 3, 634
- Methoxy-acrylsäuren**
- aus
 - Acetylencarbonsäuren 1, 138
 - carbonsäureester
 - Ausg. f.
 - Oxycarbonsäuren 2, 21
 - lactone
 - aus
 - Ketocarbonsäuren 2, 215
 - nitrile
 - Ausg. f.
 - Oxycarbonsäuren 2, 236
- Methylalkohol** als Hilfsstoff 3, 187
- o-Methylazoverbindungen**
- Ausg. f.
 - Indazole 2, 467
- Methylen-derivate** (s. a. Formale)
- von Polyoxyverbindungen 2, 204; 3, 173
 - diaryle
 - aus
 - Formaldehyd 1, 547; 3, 163
 - Ausg. f.
 - Xanthene 3, 163
- Methylformanilid** 1, 612; 2, 357, 694, 703, 714; 3, 692
- Methylglykoside**
- aus
 - Acetobromzuckern 1, 218
- Methylgruppen**
- aus
 - Oxymethylengruppen, acylierten 3, 55
 - Einführung von angularen — 1, 536; 2, 725a
- O-Methylhydroxylamin** 3, 288, 381/2
- Methyllierung** (s. a. Aether, Ester)
- von
 - Aminen 2, 352; 3, 332
 - Hydroperoxyden 1, 232
 - Kernen, ar. 1, 547, 592, 596, 617, 672; 3, 661
- Methylketone** (s. a. Acetyllactone)
- aus
 - Carbonsäuren, Aufbau um 1 C-Atom 2, 690
 - γ -Chlorcrotylverbindungen 1, 225
 - α -Diazoketone 3, 59/60
 - α -Halogenketone 3, 63
-
- Ausg. f.
- β,γ -Aethylen- α -cyancarbonsäure-ester 1, 573
- Carbonsäureamide 1, 151/2; 2, 180/a
- Carbonsäuren 1, 151; 2, 181; 3, 141
- , Abbau um 1 C-Atom 1, 237/8, 243; 3, 236/7
- Carbonsäurethioamide 2, 181; 3, 141
- β -Diketone 1, 556, 579
- durch Abbau 2, 759
- Methylmagnesiumjodid** als Hilfsstoff 2, 20
- N-Methylmorpholin** als Hilfsstoff 2, 460
- 2-Methylpyrrole**
- Ausg. f.
 - 2-Formylpyrrole 1, 159
 - 2-Oxymethylpyrrole 1, 159
- Methylsulfate** 2, 831/2, 839
- Methylsulfonsäureester**
- aus
 - Alkoholen 1, 124
 - Phenolen 1, 123
- Methyltetrasulfid** als Hilfsstoff 3, 491
- Methylthiopyrimidine**
- Ausg. f.
 - Arylaminopyrimidine 2, 455
- Michael-Addition** 2, 613/4
- Miller** s. Doeblner
- Molekülverbindungen, Spaltung**
- 2, 841
- Molybdänoxyd** 2, 798
- Molybdänsulfid** 3, 53
- Monosen**
- Ausg. f.
 - Biosen 3, 161, 203
- Mozingo'sches Nickel** zur Entschwefelung $\text{HC} \uparrow\downarrow \text{S.Ni}$
- Müller** s. Sonn-Müller-Reaktion
- Naphthaline, hydrierte** s. Tetralone
- Naphthalinring** 1, 645, 748, 758, 778; 2, 704, 808; 3, 739
- Naphthole**
- aus
 - Diazo-oxyden 2, 104
- Naphthyridine** 1, 543
- Natrium** $\text{HC} \downarrow \text{CC}, \text{HC} \uparrow\downarrow \text{O}, \text{CC} \uparrow\downarrow \text{O}, \text{CC} \uparrow \text{O}$; 1, 51, 355; 2, 8, 37, 157, 240, 266, 555, 572, 579, 586/7, 710/1; 3, 2, 21, 128, 202/3, 500, 551a, 616, 669, 690, 747
- /fl. Ammoniak 1, 38, 59; 2, 589/90; 3, 4
- /Kalium 2, 770

(Natrium)-Amalgam 1, 20, 23, 39, 65; 2, 6, 55, 62; 3, 32, 83, 610
 -äthylat 3, 702
 -amid CC $\uparrow\downarrow$ O, CC $\uparrow\downarrow$ Hal; 1, 512, 606; 2, 341, 435, 463, 591/2, 725; 3, 555, 595, 725
 -azid 1, 371; 3, 378, 402
 -bromat 3, 447
 -cyanid 1, 657/8; 2, 570; 3, 556/7, 682/3
 -disulfid 1, 485; 2, 570
 -dithionit 3, 532 s. Hyposulfit
 -hydrid 3, 31
 -hydrogensulfid 2, 38, 561
 -hydrogensulfit 3, 628
 -hypochlorit s. Hypohalogenite
 -hyposulfit 1, 26, 360
 -jodid (s. a. Alkalijodide) 1, 422; 2, 3, 121, 505; 3, 455
 -nitrit ON $\uparrow\downarrow$ H, OC $\uparrow\downarrow$ N, NN $\uparrow\downarrow$ H(O), NC $\uparrow\downarrow$ H(O), CC \cap CC, CC $\uparrow\downarrow$ N; 2, 336, 342, 526, 810; 3, 256, 397, 414, 598, 627, 720
 -pentacyan-ammin-ferroat 3, 298
 -peroxyd 3, 206
 -polysulfid 1, 486, 507
 -salz 1, 567; 2, 270, 315, 532, 562; 3, 210, 228, 492, 524, 549
 -sulfid HN $\uparrow\downarrow$ O; 1, 484, 497; 2, 38, 54, 340, 562
 -sulfit 1, 15, 466, 488/9; 2, 5; 3, 523
 -thiosulfat 1, 487
 Nickel HN $\uparrow\downarrow$ O, HC $\downarrow\downarrow$ NC, HC $\downarrow\downarrow$ CC, HC $\uparrow\downarrow$ Hal, HC $\uparrow\downarrow$ S; 1, 397; 2, 1, 32—4, 36, 411, 443, 620, 845; 3, 54, 142, 350/1, 588
 —, platiniert 3, 38, 55
 -Bimstein-Katalysator 1, 397
 -carbonyl 3, 588
 -sulfat 2, 705
 Niewland'sche Acetylierungsmethode 1, 177
 Nitramine
 — aus
 Aminen 3, 299
 —, Nitroparaffinen u. Formaldehyd 3, 605
 Dinitroverbindungen 1, 24/5; 3, 15
 Nitrophenolen 3, 329
 N-Nitramine 1, 251
 Nitrate s. Salpetersäureester
 Nitrierung NC $\uparrow\downarrow$ H(O)
 — von Phenolen über Carbonate 2, 345
 Nitrile
 —, Alkylierung 1, 656; 3, 680
 — aus
 Aldehyden, Aufbau um 1 C-Atom 2, 752; 3, 662

Carbonsäureamiden 1, 394/5; 2, 472; 3, 405—7
 Carbonsäuren 3, 310, 338, 340, 342
 α -Ketocarbonsäureoximen 3, 662
 Oximen 1, 393
 — Ausg. f.
 Aldehyde 2, 226; 3, 190
 Amidine 1, 282; 2, 326/7, 729
 Amine 1, 51—4; 2, 68—70; 3, 37
 Carbonsäureamide 1, 135, 280; 3, 126/7, 275
 Carbonsäureester 3, 196a, 200
 Carbonsäuren OC $\uparrow\downarrow$ N
 Carbonsäurethioamide 2, 534/5
 α -Cyancarbonsäureester 1, 563; 3, 623
 α -Cyanketone 2, 645, 652; 3, 623
 Iminoester 2, 154—6; 3, 127
 Ketimine 3, 573
 β -Ketocarbonsäureester 3, 574
 Ketone 1, 522—4, 618; 2, 605—7, 699
 — spezielle außer Cyan-(verbindungen) s.
 Acylcyanide
 α -Alkyl- α -cyancarbonsäureester
 Alkylidencyanessigester
 Aminonitrile
 Benzylcyanid
 o-Carboxyphenylacetonitrile
 Dialkylaminoacetonitrile
 3-Dialkylaminopropionitrile
 Dialkylvinyl-alkylcyanessigester
 Diphenyl-oxybernsteinsäuremononitril
 Methoxynitrile
 Oxynitrile
 Tetracyanocyclopropane
 Nitriloxide
 — aus
 Hydroxamsäurechloriden 3, 411
 Nitrite s. Salpetrigsäureester, Alkyl-nitrit
 Nitroacridine
 — Ausg. f.
 Aminoacridine 1, 23
 α,β -Nitroäthylenderivate
 — aus
 Pseudonitrositen 1, 766
 Nitroalkohole
 — aus
 Aethylenderivaten 2, 332; 3, 279
 Aldehyden u. Nitroparaffinen 1, 511; 3, 559, 629
 Nitroamine s. Nitramine
 1-Nitroanthrapyridone 3, 720
 α -Nitrobenzaldehyde
 — Ausg. f.
 Acridine 3, 627

N-Nitro-N'-2,4-dinitrophenylharnstoff als Reagenz für Amine 2, 409
Nitrodisulfide
 — Ausg. f.
 Aminodisulfide 3, 14
2-Nitrohalogenide
 — aus
 Aethylenderivaten 1, 289
Nitroharnstoffe
 — Ausg. f.
 Semicarbazide 2, 43
Nitrokohlenwasserstoffe (s. a. Nitroparaffine)
 — Ausg. f.
 Aminoaldehyde 1, 162
Nitromethylverbindungen
 — aus
 Aethylenderivaten 1, 535
Nitrone (s. a. N-Oxyde, Oxime, subst.) 1, 197—9
Nitroparaffine (s. a. Nitroverbindungen, aliphat.)
 — Ausg. f.
 Nitramine 3, 605
 Nitroalkohole 1, 511; 3, 559, 629
 Nitropyrimidine, Hexahydro- 3, 314
Nitrophenole
 — Ausg. f.
 Nitramine, ar. 3, 329
o-Nitrophenole, Ringöffnung 1, 622
p-Nitrophenole
 — Ausg. f.
 Chinonchlorimide 1, 267
Nitropyrimidine, Hexahydro-
 — aus
 Nitroparaffinen 3, 314
Nitrosalpetersäureester
 — aus
 Aethylenderivaten 3, 279
Nitrosamine 1, 254, 346; 3, 246
 — Ausg. f.
 Hydrazine, asymm. 1, 255; 2, 40
Nitrosierung 2, 342, 344; 3, 294
 — von Ketonen s. α -Isonitroso-ketone
Nitrosoacetanilid zur Phenyllierung 1, 604
N-Nitrosochinoline
 — aus
 Chinolinen 1, 255
 — Ausg. f.
 N-Aminochinoline 1, 255
Nitrosoindole 2, 385
o-Nitrosophenole
 — aus
 Kohlenwasserstoffen 3, 298

Nitrosoverbindungen (s. a. Dinitrosoverbindungen)
 — als Hilfsstoffe 2, 335, 467, 630
 — aus
 Aminen 3, 98
 Hydroxylaminen 3, 761
 Nitroverbindungen 3, 761
 — Ausg. f.
 Amine 1, 360; 2, 39
 —, sek. 3, 305
 Azomethine 1, 298
 Azoverbindungen 1, 265; 2, 302/3; 3, 252
 Carbonsäureamide 1, 298
 Cyanine 2, 383
 Nitroverbindungen 3, 96
Nitrosourethane
 — Ausg. f.
 Diazoverbindungen 3, 257
Nitrosylchlorid 3, 97
Nitrothioäther
 — aus
 Aminothioäthern 3, 19
Nitroverbindungen (s. a. Dinitroverbindungen)
 — aus
 Aminen 1, 114; 2, 131, 524; 3, 99
 Nitrosoverbindungen 3, 96
 — Ausg. f.
 Alkylamine 3, 351
 Amine $\text{HN} \uparrow\downarrow \text{O}$
 Azoverbindungen 1, 252; 3, 251
 Hydroxylamine 2, 265
 Ketone 1, 193; 2, 224
 Nitrosoverbindungen 3, 761
 —, aliphat. (s. a. Nitroparaffine)
 — — aus
 Kohlenwasserstoffen, aliphat. 1, 301/2
Nitrylchlorid
 —, Anlagerung an die Kohlenstoff-Doppelbindung 1, 289
Olefine s. a. Aethylenderivate
Olefinketten-Synthese 1, 775; 2, 731, 821
Onsäuren s. Aldonsäuren
Oppenauer-Oxydation 1, 157/8
Organometallverbindungen (s. a. bei den einzelnen Metallen) 2, 578
Orthoester
 — aus
 Iminoester-hydrochloriden 3, 178
Osazone 3, 326
 — Ausg. f.
 Osotriazole 3, 254
Osmiumtetroxyd $\text{OC} \downarrow\downarrow \text{CC}$
Osone
 — Ausg. f.
 Pyrone 3, 143

- Osoziazole**
- aus
 - Osazonen 3, 254
 - Oxalester-Synthese** 1, 557, 784; 2, 646, 689, 827; 3, 620, 622
 - Oxalsäure** als Hilfsstoff 1, 195; 3, 734
 - Oxalylchlorid** als Hilfsstoff 2, 507
 - Oxazole** 2, 316; 3, 245
 - aus
 - Acylaminoketonen 3, 170
 - α -Aminocarbonsäuren 3, 170
 - Oxazolidin-dione** 1, 316
 - Oxazolone** 1, 313; 2, 654; 3, 325
 - Ausg. f.
 - Glyoxalidone 3, 325
 - Oxidoverbindungen** (s. a. Aether)
 - aus
 - Aethylenderivaten 2, 164—6; 3, 132/3
 - Halogenhydrinen 2, 296; 3, 243
 - Peroxyden 2, 183
 - Schwefelsäureestern 2, 273
 - Ausg. f.
 - Acetale 2, 150
 - Aldehyde 3, 144
 - Acetylenalkohole 2, 589
 - Alkohole 2, 59, 66, 584; 3, 122, 133, 550
 - Aminoalkohole 1, 277/8; 2, 317 bis 319
 - Furane, Dihydro- 2, 182
 - Glykole 1, 126; 2, 146, 151, 164
 - Ketone 2, 13
 - Lactone, Aufbau um 2 C-Atome
 - Oxyäther 3, 115, 118 [3, 554]
 - Oxymercaptane 1, 458
 - Oxynitrile 3, 565
 - Oxythioäther 2, 532; 3, 492
 - Thioäther, cyclische 3, 513
 - Trithiocarbonate 3, 512
 - spezielle s.
 - Aethylenoxyd
 - Anhydrozucker
 - Glycidsäureester
 - Oxime** (s. a. Nitrone, N-Oxyde)
 - aus
 - Aldehyden 1, 318; 3, 327
 - Ketonen 2, 372, 384
 - Ausg. f.
 - Acetale 2, 227
 - Aethylenderivate 3, 746
 - Amine 1, 20; 2, 37, 47; 3, 20, 38
 - Asparaginsäuren, subst. 1, 153
 - Carbonsäureamide 3, 142
 - 1,1-Dinitroverbindungen 3, 273
 - Ketone 1, 200
 - Nitrile 1, 393
 - spezielle m. a. W. s.
 - Sulfonyloxime
 - , hydroaromatische
 - —, Ausg. f.
 - Amine, ar. 2, 778
 - , subst.
 - — aus
 - Hydroxylaminen, subst. 3, 403
 - Oximinolactone**
 - aus
 - Acetylactonen 3, 398
 - Oxindole** 1, 361; 2, 741
 - Ausg. f.
 - Isoindigoverbindungen 2, 632
 - Oxomalonsäureester**
 - Ausg. f.
 - α -Aryl- α -oxycarbonsäuren 3, 567
 - Aryloxymalonsäureester 3, 567
 - Oxoverbindungen**
 - aus
 - Aminen 2, 228
 - Glycidsäureestern 3, 77
 - Halogeniden 2, 265
 - Hydrazen 2, 234
 - Hydroxylaminen, subst. 2, 265
 - Oxyverbindungen OC $\uparrow\downarrow$ H
 - Ozoniden 1, 141/2
 - Semicarbazonen 1, 195/6; 2, 225, 231; 3, 185
 - Ausg. f.
 - Aethylenderivate 1, 615, 669/70; 2, 485, 659, 798
 - Amine 1, 354—6, 634; 2, 388, 390, 394; 3, 301, 350
 - α -Aminocarbonsäuren 1, 568; 3, 556, 610
 - Glycidsäureester 1, 634; 3, 681
 - Kohlenwasserstoffe HC $\uparrow\downarrow$ O
 - Tetracyan-cyclopropane 3, 684
 - Derivate:
 - Hydrazone
 - Methonderivate
 - Oxime
 - Semicarbazone
 - Thiuroniumsalze von Bisulfit-verbindungen
 - Xanthene, Octahydro-
 - spezielle s.
 - Aldehyde
 - Chinone
 - Ketone
 - Kohlehydrate
 - Oxy-aldehyde
 - Oxyketone
 - Oxyacetylene** s. Acetylenalkohole
 - Oxyäther**
 - aus
 - Oxidoverbindungen 3, 115, 118
 - β -Oxyäthyl-äther 3, 234
 - β -Oxyaldehyde (s. a. Aldole)
 - Ausg. f.
 - γ -Lactone 1, 518

- δ -Oxyaldehyde**
 — aus
 δ -Lactonen 1, 78
- α -Oxyaldehyde**
 — aus
 Phenolen 1, 621; 3, 667
- Oxyamine** s. Aminoalkohole
- Oxyaminocarbonsäuren**
 — Acetylierung der Hydroxylgruppe 1, 183
- β -Oxy- α -aminocarbonsäuren**
 — aus
 α,β -Aethylencarbonsäuren 1, 498/9
- Oxyanthracene, subst.**
 — aus
 Anthrachinonen 1, 509
- Oxycarbonsäureamide**
 — aus
 Lactonen 3, 24, 264
- α -Oxycarbonsäureamide**
 — aus
 α -Oxycarbonsäuren 1, 303
- α -Oxycarbonsäureester** (s. a. α -Aryloxycarbonsäureester)
 — aus
 Ketonen 2, 596
- β -Oxycarbonsäureester**
 — aus
 Ketonen 1, 677
- Oxycarbonsäurehydrazide**
 — Ausg. f.
 Lactone 3, 191
- Oxycarbonsäuren**
 — aus
 Lactonen 3, 116
 Methoxycarbonsäureestern 2, 21
 Methoxynitrilen 2, 236
- spezielle s.
 α,β -Acetylen-oxycarbonsäuren
 Aldonsäuren
 α -Aryl- α -oxycarbonsäuren
 Diphenyloxybernsteinsäuremononitril
 β -Oxy- α -aminosäuren
 4-Oxy-2-naphtoesäuren
- α -Oxycarbonsäuren** (s. a. Benzilsäuren)
 — aus
 Carbonsäuren 1, 451
 α -Dihalogenketonen 3, 204
 α -Halogencarbonsäuren 1, 451
 Ketonen 1, 516
- Ausg. f.
 Aldehyde 1, 249
 α -Oxycarbonsäureamide 1, 303
- β -Oxycarbonsäuren**
 — aus
 Oxoverbindungen, Reformatski-Synthese $\text{CC} \downarrow \text{OC. Zn.}$
- 4-Oxycinnoline** 2, 301
- Oxydation** OH, ON, OS, OC
 —, elektrolytische 3, 146, 244
 —, katalytische in der Dampfphase 1, 235
 —, partielle von Alkoholen zu Ketonen 2, 292
- N-Oxyde** (s. a. Nitrone, Oxime, subst.) 2, 129; 3, 95/a, 450
- Ausg. f.
 Halogenide 3, 450
- spezielle s.
 Cinnolinoxyde
- Oxydiene**
 — Ausg. f.
 β,γ -Athylen-1,4-bromketone 2, 487
- α -Oxy- β -diketone**
 — aus
 Acoxyketonen 3, 595
- α -Oxyhalogenide** s. Halogenhydrine
- Oxyketone**
 — spezielle s.
 α -Oxy- β -diketone
 α -Oxymethylenketone
 Phenolketone
- α -Oxyketone** (s. a. Acyloine)
 — aus
 Carbonsäureestern u. Ketonen 2, 586
 Carbonsäuren, Aufbau um 1 C-Atom 1, 626
 α -Diazoketonen 1, 626; 2, 230
 α -Isonitrosoketonen 2, 145
 Ketonen 2, 145
- Ausg. f.
 Acetylenglykole 2, 591
 Glykole 2, 63
- Oxymercaptane**
 — aus
 Oxidoverbindungen 1, 458
 —, Isopropylidenderivate 1, 468
- α -Oxymethylenkarbonsäureester**
 — aus
 Carbonsäureestern 2, 641; 3, 245
- Oxymethylengruppen, acyierte**
 — —, Ausg. f.
 Methylgruppen 3, 55
- α -Oxymethylenketone**
 — aus
 Ketonen 2, 643, 725a
 — Ausg. f.
 α -Aminomethylenketone 2, 725a
 —, Spaltung 2, 725a; 3, 94
- Oxymethylierung** 1, 510, 575; 2, 588
- 2-Oxymethylpyrrole**
 — aus
 2-Methylpyrrolen 1, 159
- Oxynaphthochinone** 1, 581
- 4-Oxy-2-naphtoesäuren** 1, 645

- Oxynitrile**
- aus
 - Oxidoverbindungen 3, 565
 - α-Oxynitrile s. Cyanhydrine
 - 4-Oxypyrazole, subst. 2, 492
 - α-Oxypyrrole
 - aus
 - 5-Brompyrrol-2-carbonsäuren 1, 227
- Oxysilane**, Polymerisation 3, 111
- 5-Oxysteroid 2, 66
- 14-Oxysteroid**
- aus
 - Steroiden 3, 132
- Oxsulfonsäuren** 1, 461
- Oxythioäther**
- aus
 - Oxidoverbindungen 2, 532; 3, 492
- Oxyverbindungen**
- aus
 - Kohlenwasserstoffen 2, 173
 - Peroxyden 2, 1
 - Ausg. f.
 - Amine, sek.
 - Oxoverbindungen $\text{OC} \uparrow \text{H}$
 - spezielle m.a.W.s.
 - Alkohole
 - Dioxychinone
 - Phenole
 - Ozon** $\text{OC} \downarrow \text{CC}$; 1, 115, 193; 2, 494
 - Ozonide** 1, 141—3
 - aus
 - Aethylenderivaten 1, 141, 143; 2, 167
- Palladium**, Katalysatoren $\text{HC} \downarrow \text{OC}$, $\text{HC} \uparrow \text{O}$, $\text{HC} \uparrow \text{Hal}$, $\text{CC} \uparrow \text{H}$; 1, 30, 37, 75, 91, 353; 2, 801
- Bariumsulfat 1, 76, 99—101; 3, 46, 132, 704
- Calciumcarbonat 2, 35
- Kohle $\text{CC} \uparrow \text{H}$; 1, 13/4, 216, 761; 2, 49; 3, 1, 20, 46/7, 56, 709
- Stromtiumcarbonat 1, 606
- Popain** als Hilfsstoff 3, 188, 330
- Paraffine**, Nitrierung 1, 301/2
- Peptide** (s. a. Phosphorylierung) 2, 426
- Peraktivin** s. Dichloramin-T
- Perchlorsäure** 1, 76, 183, 712; 3, 171
- Peressigsäure** 3, 95
- Perester** 3, 205
- Perinaphtindanone** 1, 759
- Perjodat** 1, 241; 2, 299; 3, 238
- Perjodsäure** $\text{OC} \uparrow \text{C}$; 3, 136
- Perkin-Claisen-Knoevenagel-Synthese von α,β-Aethylen-derivaten** $\text{CC} \uparrow \text{O}$
- Permanganat** $\text{OC} \uparrow \text{H}$; 1, 145, 236, 269, 492; 3, 156
- Peroxyd-Effekt** 2, 486; 3, 496
- Peroxyde** (s. a. Acylperoxyde)
- als Hilfsstoff s. Acetyl-, Benzoylperoxyd, Ascaridol
 - aus
 - Kohlenwasserstoffen 1, 132
 - Ausg. f.
 - Alkohole 1, 15/6
 - Ketone 1, 246
 - Oxidoverbindungen 2, 183
 - Oxyverbindungen 2, 1
 - spezielle s.
 - Enolperoxyde
- Perrier-Verfahren** bei der Friedel-Crafts-Synthese 2, 748
- Persulfat** 1, 131
- Pfitzinger-Borsche-Synthese** 1, 555; 2, 602—4, 761; 3, 570—2
- Phenanthrenring** 1, 606, 668, 745; 2, 811; 3, 760
- Phenantridine** 2, 674, 789
- Phenanthroline**, 2-Chlor-
- aus
 - Phenanthrolonen 2, 529
- Phenanthrone** 2, 264
- Ausg. f.
 - Phenanthroline, 2-Chlor- 2, 529
- Phenazine** 3, 346, 410
- Phenol** als Hilfsstoff 1, 350, 383; 3, 384—6
- Phenoläther**
- aus
 - Halogeniden 1, 201; 3, 209
 - Ausg. f.
 - Phenoester 1, 234
 - Spaltung $\text{HO} \uparrow \text{C}$
- Phenole**
- aus
 - Aminen 2, 229
 - Chinonen 1, 83
 - Diazoniumsulfaten 1, 194
 - Diazo-oxyden 2, 104
 - Diennonen 3, 597
 - Phenoläthern $\text{HO} \uparrow \text{C}$
 - Ringketonen 2, 766; 3, 707, 709
 - Ausg. f.
 - Amine, sek. 1, 341; 2, 407; 3, 343/4
 - Chinone 1, 173
 - Cyanäthyläther 2, 157
 - Dinitrosoverbindungen 2, 344
 - Phenolketone 1, 577, 618
 - Urethane 3, 216
 - Derivate:
 - Mesylderivate 1, 123
 - Schwefelsäureester 1, 121
 - spezielle m.a.W.s.
 - Alkylphenole
 - o-Allylphenole
 - Aminophenole

- (*Phenole*, spez.)
 Arylazophenole
 Dioxyarylthioverbindungen
 Hydrochinone
 Nitrophenole
 o-Nitrosophenole
 Oxynaphtochinone
- Phenoester*
 — aus
 Phenoläthern 1, 234
 — Ausg. f.
 Phenolketone 1, 537/8; 2, 623
- Phenolketone*
 — aus
 Phenolen 1, 577, 618; 2, 681
 Phenolestern 1, 537/8; 2, 623
 — Ausg. f.
 Alkylphenole 1, 69
- p-Phenylazophenyl-polyacetylglykoside* 3, 176
- Phenylcyancarbonsäureester*
 — aus
 Benzylcyanid 1, 647
- Phenylhydrazin* als Hilfsstoff 2, 2
- Phenylhydrazone* (s. a. *Hydrazone*)
 — aus
 Azomethinen 1, 357
- Phenylierung* s. Austausch von Wasserstoff gegen Phenyl
- Phenylisocyanat* als Hilfsstoff 2, 781
- Phenylketone*
 — Ausg. f.
 Carbonsäureamide 2, 463, 725
- Phosgen* als Hilfsstoff 2, 506; 3, 469
- Phosphate* 3, 765
- Phosphazoverbindungen*
 — Ausg. f.
 Carbonsäureamide 3, 339
- Phosphine* 1, 503
- Phosphinsäuren* s. α,β -Aethylen-phosphinsäuren
- Phosphinsulfide*
 — aus
 Halogeniden 3, 546
- Phosphoniumjodid* 2, 138; 3, 25
- Phosphor* 1, 73, 426; 3, 11
- halogenide $\text{HalC} \uparrow\downarrow \text{O}$, $\text{CC} \uparrow\downarrow \text{O}$; 1, 127, 402, 416, 467, 612; 2, 472, 479/80, 673/4, 703; 3, 163, 341, 400, 407, 439, 479, 536, 668
- pentasulfid 2, 549; 3, 528
- pentoxyd 1, 394; 2, 675, 783—6; 3, 405/6
- Phosphorsäure* 1, 179, 234, 279, 340, 745; 2, 51, 676; 3, 79, 192, 340, 643—5, 736
- Phosphorsäureester* 1, 127; 2, 136—9, 315
 — aus
 Halogeniden 3, 217
- Phosphorverbindungen, metallorganische* 3, 764
- Phosphorylierung*
 — von
 Aminen 2, 314, 481; 3, 263
 Oxyverbindungen 2, 315; 3, 263
 Peptiden 2, 138
- Phtalazine* 3, 335
- Phtalazone*
 — aus
 Halogenphtaliden 3, 369
- Phtalide* s. a. Halogenphtalide 1, 567
- Ausg. f.
 o-Aldehydocarbonsäuren 3, 154
 o-Carboxyphenylacetonitrile 3, 558
 2-Halogenphtalide 3, 154
- Phtalimide* 1, 332/3; 2, 454
- Ausg. f.
 Amine, prim. 2, 454, 651; 3, 23, 334, 363
 —, subst.
 — aus
 p-Toluolsulfonsäureestern 2, 362
- Na-Phtalimidomalonester* 1, 644
- Phtalonitril*
 — Ausg. f.
 Dithio-isoindigo 1, 525
- Phtaloylchlorid* als Hilfsstoff 1, 423
- Phtalpersäure* als Hilfsstoff 2, 165/6, 279; 3, 132
- Phtalsäure* als Hilfsstoff 1, 196
- Phtalsäureanhydrid* als Hilfsstoff 1, 744
- Picrylsulfonate* 3, 770
- Piperidinring* 2, 399, 474, 637, 671; 3, 373, 717
- Öffnung 3, 479
- Piperidone* 3, 721
- α -Piperidyl-carbinole 3, 373
- Platin-Katalysatoren* $\text{HC} \downarrow\uparrow \text{NC}$, $\text{HC} \downarrow\uparrow \text{CC}$, $\text{HC} \uparrow\downarrow \text{O}$; 1, 102; 2, 477, 767; 3, 67, 373
- Poly-acetale*
 —, partielle Verseifung von 2, 19
- alkohole
 — aus
 Kohlehydraten 2, 64
- aryle (s. a. Diaryle) 1, 652, 727
- halogenalkane als Hilfsstoffe 2, 314; 3, 263
- halogenide 3, 586/7
- Polymerisation v. Oxysilanen* 3, 111
- Polymerisationsinhibitoren* s. Pyrogallol
- Poly-nitroverbindungen*
 —, partielle Reduktion von — 1, 24/5; 2, 38
- saccharide
 —, Abbau 1, 8; 2, 284

- (*Poly*)-sulfide 3, 491
 — Ausg. f.
 Thiohalogenide 3, 419
Ponndorf s. Meerwein-Ponndorf-Reaktion
Ponzio-Reaktion 3, 273
Prey, Aetherspaltung 1, 9
Pseudonitrosite 1, 193, 292
 — Ausg. f.
 α,β -Nitroäthylenderivate 1, 766
Pseudothiuroniumsalze s. Thiuroniumsalze
Pteridine 2, 398
Purdie's Reagenz (Methyljodid und Silberoxyd) $OC \uparrow Hal \cdot Ag_2O$
Purine (s. a. Xanthine)
 — aus
 Glyoxalinen 2, 440
 Pyrimidinen 1, 398/9
Pyranring 2, 663; 3, 676
 — aus
 Furanring 3, 732
 -Öffnung 1, 436; 3, 121, 474, 676
Pyrazine (s. a. Diketopiperazine, Chinoxaline) 1, 345; 3, 347
Pyrazol-o-dialdehyde 1, 532
Pyrazole 2, 368, 403; 3, 283
 — spezielle m. a. W. s.
 4-Alkylaminoantipyrine
 4-Oxypyrazole
Pyrazolene 1, 533
Pyrazoloncarbonsäuren
 — aus
 Pyrazolonen 1, 530
Pyrazolone 3, 268
Pyrazolring 2, 368, 403
Pyridine (s. a. Piperidine, 4-Thiopyridone)
 — Ausg. f.
 Naphthyridine 1, 543
 —, Einführung von C-Substituenten in die 4-Stellung 1, 576
 —, Substituentenaustausch 1, 205, 380
 —, 2,6-Dichlor-
 — aus
 Glutarsäureimiden 3, 471
Pyridinhydrochlorid als Hilfsstoff
 $HO \uparrow C$
Pyridiniumsalze (s. a. Ammoniumsalze, quartäre)
 — Ausg. f.
 Aldehyde 1, 197—9
 Carbonsäuren 1, 789; 2, 833
 Thioäther 3, 516
 —, lösliche Form von Azofarbstoffen 1, 788
 — spezielle s.
 4-Alkylthiopyridiniumsalze
- Pyridinring* (s. a. Chinolinring) 1, 531, 542; 2, 658, 785; 3, 612, 642
 — aus
 Cyclopentanring 2, 333
 -Öffnung 3, 357
 —, Tetrahydro- 1, 600/1
Pyridone 1, 574
Pyrimidine
 — aus
 Dihydrotriazinen 1, 765
 — spezielle s.
 Alkylamino-pyrimidine
 Arylamino-
 Glycosidamino-
 Guanidino-
 Methylthio-
 Nitrohexahydro-
 Thiouracile
 Uracilring
Pyrimidinring 2, 381/2, 440, 468/9;
 3, 269
 — aus
 Amidinen 1, 314, 605; 2, 373—6,
 381, 434; 3, 321
 Guanidinen 1, 344; 2, 369
*Pyrimido[4,5-*b*]pyrazine* (s. a. Pteridine) 3, 347
Pyrindole s. Indolizine
Pyrogallol 1, 459
Pyrolyse s. Decarboxylierung, Dehydrierung
Pyrone 2, 298
 — aus
 Osonen 3, 143
 —, Hydrierung 2, 83
Pyronring-Öffnung 3, 76
Pyrrocoline s. Indolizine
Pyrrole
 — aus
 Pyrrolinen 1, 397
 — spezielle s.
 5-Brompyrrol-2-carbonsäuren
 2-Formylpyrrole
 2-Oxymethylpyrrole
 Carbonsäuren 1, 756, 758—61; 2,
 α -Oxypyrrrole
Pyrrolidine 1, 327/8; 2, 473; 3, 413
 —, 4,5-Diketo- 3, 611
2-Pyrrolidone, *N*-subst. 3, 303
Pyrroline 3, 412
 — Ausg. f.
 Pytrole 1, 397
Pyrrolring 1, 335/6, 397, 587; 2, 377;
 3, 333
Pyryliumsalze 1, 603; 2, 541
 — Ausg. f.
 Flavonole 2, 279
Quecksilber 1, 699
 $-(II)$ -acetamid 2, 201

- (Quecksilber)-(II)-acetat 1, 668
 —bromid 1, 446
 -(I)-chlorid 2, 274
 -(II)-chlorid 3, 423, 426
 -oxyd 1, 615; 3, 255, 403, 425, 483/4
 -sulfat 2, 540
Quecksilberverbindungen als Hilfsstoffe OC ↑ CC
 —, metallorganische 1, 456, 498 bis 500, 505; 2, 575/6
 — aus Sulfinsäuren 2, 581; 3, 549
- Raney-Nickel** s. Nickel
Razemate (s. a. Stereoisomere), Spaltung 2, 841
 —, Spaltung durch Chromatographie 2, 842
Reduktion (s. a. Hydrierung)
 —, elektrolytische 1, 63, 77, 252, 292; 2, 88
 —, partielle
 — — von Polynitroverbindungen 1, 24/5; 2, 38; 3, 16
 —, selektive
 — — von Nitroazoverbindungen 1, 19
Reformatski-Synthese 1, 690—4; 2, 737, 801, 827
Reimer-Tiemann'sche Aldehydsynthese 2, 714; 3, 670
Rhodanide s. Thiocyanate
Rhodanin, Synthese mit 3, 662
Rickert s. Alder
Ring- s. a. Cyclo-
Ringalkohole, stereoisomere
 — aus Ringketonen 2, 62, 65
Ringe s. Isocyclen, Heterocyclen
 —, Dihydro-dialkoxy-, Abspaltung der Alkoxygruppen 1, 739
Ringerweiterung 1, 293, 539—41; 2, 333/4; 3, 578/9, 732
Ringketone (s. a. Cyclone) 2, 697, 801
 — aus 774, 784, 796, 801; 3 736
 Dicarbonsäuren 1, 782; 2, 824—6
 — Ausg. f.
 Kohlenwasserstoffe, ar. 2, 803; 3, 709
 Phenole 2, 766; 3, 707, 709
 Ringalkohole, stereoisomere 2, 62, 65
 Tetrazole 2, 334
 —, Ringöffnung 3, 580
 —, vielgliedrige 1, 770/1
Ringöffnung C
 — bei O-Heterocyclen 2, 520
 — bei S-Heterocyclen 2, 114
 —, oxydative 2, 174/5; 3, 136
Ringschluß O
 —, oxydativer bei Friedel-Crafts-Synthesen 2, 754
Ringverengung 1, 783; 2, 235
Rongalit 2, 573
Rosenmund-Zetsche, Hydrierung v. Säurechloriden 1, 99—102
Rutheniumdioxyd 3, 45
- Saccharide** s. Kohlehydrate
Säurederivate s. Carbonsäure-, Sulfonsäure-derivate
Salpetersäure als Hilfsstoff 1, 103; 2, 185
Salpetersäureester (s. a. Nitrosalpettersäureester) 2, 132, 339; 3, 101
 — Ausg. f.
 Acetate 3, 186
 —, Spaltung 2, 3/4; 3, 1
Salpetrigsäureester
 — aus Alkoholen 3, 97, 100
Salze Het
Sandmeyer-Reaktion HalC ↑ N
Sauerstoff 2, 485; 3, 145, 253, 705
Schiff'sche Basen s. Azomethine
Schmidt-Reaktion 1, 362
Scholl'scher Fluoren-Ringschluß 2, 754
Schwefel CC ↑ H; 1, 162; 2, 181; 3, 139, 141, 401
Schwefeldioxyd 1, 341, 396; 463; 3, 343, 763
Schwefelsäureester 3, 231
 — aus Alkoholen 1, 122; 2, 133
 Phenolen 1, 121
 — Ausg. f.
 Aethylenderivate 1, 740
 Alkohole 1, 122
 Oxidoverbindungen 2, 273
 Sulfonsäuren 1, 466
Schwefeltetraoxyd zur Sulfonierung 1, 460
Schwefelwasserstoff 1, 19; 2, 534/5; 3, 122
Schenk s. Willgerodt-Umlagerung
Seitenketten, Abspaltung von — 3, 78
 —, Einführung von — in ar. Kerne 2, 601
-Oxydation OC ↑ C
Selen CC ↑ H; 3, 759
Selenazole 2, 580; 3, 537
 —, polycyclische 2, 773
Selendioxyd OC ↑ H; 2, 144, 172, 288; 3, 602

- Selenide**
- aus
 - Selenolen 3, 547
 - Ausg. f.
 - Diselenide 3, 533
- Selenocyanate** 3, 544
- Selenoisochromane** 2, 562
- Selenole**
- aus
 - Halogeniden 3, 547
 - Ausg. f.
 - Selenide 3, 547
- Selenophenring** 1, 507
- Seltene Erden** 2, 824/5
- Semicarbazide**
- aus
 - Nitroharnstoffen 2, 43
- Semicarbazone** 1, 319, 323; 2, 379, 401
- Ausg. f.
 - Oxoverbindungen 1, 195/6; 2, 225, 231; 3, 185
- Silane** 3, 442, 534/5, 542, 545
- spezielle s.
 - Halogensilane
 - Oxysilane
- Silber** 1, 699; 3, 33
- Kupfer** 1, 155
- acetat** 1, 221; 3, 754
- benzoat** 1, 146
- carbonat** 1, 218—20; 3, 218
- chlorid** 3, 293
- fluorid-Kupfer** 3, 436
- nitrat** 2, 216; 3, 219
- nitrit** 1, 372
- oxyd** OC ↑ Hal; 1, 190, 627—9; 2, 141; 3, 112, 147, 176
- Silbersalzabbau** 1, 453/4; 3, 489
- Silbersalze** 2, 260—2; 3, 88, 93, 217
- Silicate** s. Kieselsäureester
- Siliciumdioxyd-Aluminiumoxyd** 3, 78, 585
- Bariumoxyd** 3, 727
- Skita'sche Regel** 2, 47
- Skraup'sche Chinolin-Synthese** 1, 590; 2, 676; 3, 646, 648
- Sonn-Müller-Reaktion** 1, 72; 2, 122
- Spaltung** (s. a. Verseifung)
- von
 - Acetalen 1, 290; 2, 19, 22/3, 28, 33/4; 3, 711
 - Aethern HO ↑ C
 - Mercaptalen 2, 274
 - Razematen durch Chromatographie 2, 842
 - , oxydative der Kohlenstoff-Kette 1, 386; 3, 238
 - , partielle von Acetalen 2, 19
 - , reduktive 1, 547
- Stellungswechsel von Substituenten**
- cycl. Verbindungen 2, 628; 3, 591
- Stereoisomere** (s. a. Razemate), Trennung 3, 330
- Steroide** (s. a. Oxysteroide)
- Ausg. f.
 - 14-Oxysteroide 3, 132
 - , Glykoside 1, 219; 2, 201
 - , Schwefelsäureester 1, 122
- Stickstoffoxyde** (s. a. N-Oxyde) als Hilfsstoffe 1, 160/1; 3, 148, 191, 273
- Stickstoffpentoxyd** 2, 132
- Stickstoffwasserstoffsäure** 1, 338/9, 362
- Lösung**, Herstellung 2, 334
- Stilbazole** 2, 667
- Stilbene** 1, 772
- Stobbe-Kondensation** 2, 647
- Styrylheterocyclen** 1, 585, 602; 2, 665, 667/8, 684/5; 3, 156, 639, 662
- Substituenten**, cycl. Verbindungen, Stellungswechsel 2, 628; 3, 591
- Substitution** (s. a. Austausch)
- , asymm. 2, 340
- Succinoxyderivate**, Schutz der Hydroxylgruppe 2, 292
- Sulfaminsäuren** 3, 261
- Ausg. f.
 - Aminosulfonsäuren 3, 504
- Sulfanilyl-amidine** 2, 457
- amine**
- aus
 - Acetylsulfanilylaminen 1, 31, 36; 2, 52, 311
 - Aminen 1, 276; 2, 311/2; 3, 262
- guanidine** 2, 457
- Sulfate** s. Schwefelsäureester
- Sulphydrilverbindungen** s. Mercaptane
- Sulfidalkohole** 1, 482
- aus
 - Alkylphenacylsulfiden 1, 44
- Sulfide** s. Thioäther
- Sulfinsäuren**
- aus
 - Sulfonsäurechloriden 2, 5, 581
 - Ausg. f.
 - Quecksilberverbindungen, metallorganische 2, 581; 3, 549
 - Sulfone 2, 542, 556, 563—6; 3, 510, 527
 - Sulfonsäureamide 1, 269
- Sulfit** 2, 229; 3, 193
- Sulfite** s. Schwefligsäureester
- Sulfochloride** s. Sulfonsäurechloride
- Sulfonamide** s. Sulfonsäureamide
- Sulfonamidoacbonsäuren** 3, 180
- aus
 - Aminocarbonsäuren 1, 271

- (*Sulfonamidocarbonsäuren*)
- Ausg. f.
 - Cyansulfonylchloride* 2, 480
 - Sulfonate* als Hilfsstoffe 2, 326
 - Sulfone*
 - aus
 - Chinonen 2, 533, 542
 - Dienen 1, 459, 713
 - Hydrazen 1, 615
 - Sulfinsäuren 2, 542, 556, 563—6; 3, 510, 527
 - Sulfonsäurechloriden 2, 555, 567
 - Thioäthern 1, 115, 117, 492; 2, 542, 558; 3, 502
 - spezielle s.
 - 1,3-Ketosulfone
 - Sulfonylcarbonsäuren u. -ester
 - , *cyclische*
 - aus
 - Thioäthern 3, 105
 - Sulfoniumsalze* 1, 790; 2, 836
 - Sulfonsäure-amide* als Hilfsstoffe 3, 342
 - aus
 - Halogeniden 1, 377; 2, 459
 - Kohlenwasserstoffen 3, 511
 - Sulfinsäuren 1, 269
 - Sulfonsäurechloriden NS $\uparrow\downarrow$ Hal
 - Sulfonsäuren 2, 307
 - Thioäthern 3, 420
 - Ausg. f.
 - Amine 1, 34
 - , sek. 2, 428, 459; 3, 21/2
 - N-Halogensulfonsäureamide 3, 259
 - Sulfonsäureamidine 2, 357
 - spezielle s.
 - Acetylsulfanilylamine
 - Sulfanilylamine
 - Sulfonylaminocarbonsäuren
 - Taurinamide
 - amidine
 - aus
 - Sulfonsäure-amiden 2, 357
 - chloriden 1, 272
 - Ausg. f.
 - Halogenide 3, 488
 - chloride (s. a. *Cyansulfonylchloride*)
 - aus
 - Kohlenwasserstoffen 2, 538; 3, 511
 - Mercaptanen 3, 418
 - Sulfonsäuren 1, 402
 - Thioäthern 3, 420
 - Ausg. f.
 - Mercaptane 3, 30
 - Sulfinsäuren 2, 5, 581
 - Sulfone 2, 555, 567
 - Sulfonsäure-amide NS $\uparrow\downarrow$ Hal
 - amidine 1, 272
-
- ester 2, 567
 - fluoride 3, 482
 - hydrazide
 - imide 1, 273
 - iminoester 1, 270
 - ester (s. a. Methyl-, p-Toluol-sulfonsäureester) 2, 262
 - aus
 - Sulfonsäurechloriden u. Aethern 2, 567
 - , Verseifung 2, 6, 7
 - fluoride
 - aus
 - Sulfonsäurechloriden 3, 482
 - imide
 - aus
 - Sulfonsäurechloriden 1, 273
 - iminoester
 - aus
 - Sulfonsäurechloriden 1, 270
 - Sulfonsäuren* (s. a. Austausch)
 - aus
 - Disulfiden 1, 119
 - Mercaptanen 1, 120
 - Schwefelsäureestern 1, 466
 - Ausg. f.
 - Sulfonsäurechloride 1, 402
 - spezielle s.
 - Amino-sulfonsäuren
 - Arylamino-
 - Oxy
 - Sulfonyl-carbonsäureester* 2, 566
 - carbonsäuren 2, 556
 - ketone s. Ketosulfone
 - Sulopersäure* 3, 98/9
 - Sulfoxide*
 - aus
 - Thioäthern 1, 116
 - Ausg. f.
 - Sulfonylimine 1, 268
 - Sulfurylchlorid* 1, 463; 3, 429, 441 bis 443, 509
 - Sulfonylimine*
 - aus
 - Sulfoxiden 1, 268
 - Sydone* 3, 331
 - Tanasescu* s. Lehmstedt
 - Taurinamide* 2, 310; 3, 24
 - Telluride*
 - aus
 - Telluroniumsalzen 2, 843
 - Tellurisochromane* 2, 562
 - Telluroniumsalze* 2, 573
 - Ausg. f.
 - Telluride 2, 843
 - Tellurverbindungen, organische* 1, 497, 502
 - Terpene, katalytische Oxydation* 1, 236

- Tetraaryl-divinylen-carbeniumsalze**
2, 669
- Tetracyancyclopropane**
— aus
Oxyverbindungen 3, 684
- Tetrathionat** 2, 531
- Tetrazole**
— aus
Ringketonen 2, 334
- Thalliumverbindungen** 3, 541
- Thia-** s. a. Thio-
- Thiadiazine** 2, 536
- Thiamine**
— Ausg. f.
Thioäther 3, 503
- Thianaphtene** (s. a. Thioindoxyle) 3,
758a
- 1,4-Thiazanring** 3, 280
- Thiazinring** 2, 546, 557, 560
— aus
Thiazolring 2, 608
- Thiazole**
— aus
Aminothiazolen 1, 92
Mercaptothiazolen 1, 103
- , polycyclische 2, 773
- Thiazolidinring** 2, 543
- Offnung 3, 662
- Thiazolinring** 1, 490
- Thiazolumsalze**, Ausg. f. Cyanine
- Thiazolring SC** Hal; 1, 464/5; 2,
569; 3, 509, 530
- Ausg. f.
Thiazinring 2, 608
- Offnung 2, 608
- Thienoimidazole** 3, 365
- Thio-** s. a. Thia-
- Thioacetale** s. Mercaptale
- Thioäther**
— aus
Aethern 2, 541
Aethylenderivaten 3, 496, 498/9,
502
- Aminen 3, 518
- Halogeniden SC Hal
- Kohlenwasserstoffen 3, 505
- Mercaptanen 1, 471, 479—83; 2,
544/5; 3, 518
- Pyridiniumsalzen 3, 516
- Thiaminen 3, 503
- Thiochloriden 2, 542
- Ausg. f.
Kohlenwasserstoffe 2, 112—4
- Mercaptane 1, 38
- Sulfone 1, 115, 117, 492; 2, 542,
558; 3, 502
- , cyclische 3, 105
- Sulfonsäure-amide u. -chloride 3,
420
- Sulfoxyde 1, 116
- spezielle s.
Alkylphenacylsulfide
- 4-Alkylthiopyridiniumsalze
- Aminothioäther
- Dioxyarylthioverbindungen
- 2-Halogenthioäther
- Nitrothioäther
- Oxythioäther
- Sulfidalkohole
- , cyclische
- aus
Oxidooverbindungen 3, 513
- , symm. 2, 570
- — aus
Mercaptanen 3, 418
- Thioamide** s. Carbonsäurethioamide
- Thiobarbitursäuren** 2, 549
- Thiocarbaminsäureester**
—, S-Alkylierung 3, 519
- aus
Thiocyanaten 2, 153
- Thiocarbimide** s. Isothiocyanate
- Thiocyanate**
— aus
Aminen 1, 470
- Ausg. f.
Disulfide 2, 530
- Mercaptane 2, 54
- Thioäther 2, 568
- Thiocarbaminsäureester 2, 153
- Thioformamide**
— aus
Aminen 1, 398/9; 3, 393
- Thiohalogenide**
— aus
Polysulfiden 3, 419
- Ausg. f.
Thioäther 2, 542
- Thioharnstoff** als Hilfsstoff 3, 513
- Thioharnstoffe** (s. a. Isothioharn-
stoffe) als Hilfsstoffe 3, 399
- aus
Aminen 1, 363; 3, 530
- Isothiocyanaten 1, 284; 3, 266
- Thioindoxylring** 1, 717; 2, 809
- Thioisochromane** 2, 562
- α-Thioketocarbonsäuren**
— aus
Aldehyden, Aufbau um 2 C-
Atome 3, 662
- Ausg. f.
α-Ketocarbonsäureoxime 3, 662
- Thioketone** (s. a. 4-Thiopyridone)
— aus
Ketonen 3, 514
- Kohlenwasserstoffen 2, 573
- Thiokohlensäuredisulfide**
— aus
Xanthaten 2, 531

- Thiolsäureester** (s. a. β -Chlorthiolsäureester)
 — aus
 Aethylenderivaten 1, 457
 Carbonsäurechloriden 2, 101
 — Ausg. f.
 Aldelhyde 3, 74
 Alkohole 2, 101, 115
 Mercaptane 1, 457
- Thiolsäuren**
 — aus
 Carbonsäurechloriden 1, 491
- Thionylchlorid** $\text{HgCl} \uparrow \text{O}$; 1, 144, 395, 750; 2, 206, 518, 682
- Thiophanring** 1, 558/9; 3, 499
- Thiophenole**
 — aus
 Aminen 1, 717
- Thiophenring** 1, 486; 2, 561
- 4-Thiopyridone**
 — Ausg. f.
 4-Alkylthiopyridiniumsalze 3, 495
- Thiosulfate** s. Alkylthiosulfate
- Thiosulfonsäuren** s. Alkaloid-thiosulfonsäuren
- Thiouracile** 3, 323
- Thiuroniumsalze** (s. a. Isothioharnstoffe)
 — Ausg. f.
 Kohlenwasserstoffe 2, 111
 — Spaltung 2, 844
 — spezielle s.
 p-Brombenzylthiuroniumsalze
 Dioxyarylthioverbindungen
 — von
 Carbonsäuren 1, 791
 Oxobisulfitverbindungen 1, 792
- Tiemann** s. Reimer
- Tiffeneau-Umlagerung** 1, 672
- Titandioxyd** 1, 105
- Titanetrachlorid** 3, 176
- Tokopherol-Synthese** 1, 678; 2, 739
- p-Toluolsulfonsäure** als Hilfsstoff 3, 164/5, 735
- p-Toluolsulfonsäurechlorid**
 als Hilfsstoff 3, 166
- p-Toluolsulfonsäure-dichloramid**
 s. Dichloramin-T
- p-Toluolsulfonsäureester** 1, 125, 422; 2, 134
 — Ausg. f.
 Aether 3, 596
 Amine 2, 353
 Halogenide 1, 422; 2, 121, 505; 3, 455
 Kohlenwasserstoffe, Synthese 3, 691
 Phtalimide, subst. 2, 362
 — Spaltung 2, 6/7
- Tosylierung** s. p-Toluolsulfonsäureester
- Triäthylamin** als Hilfsstoff 2, 656; 3, 629, 685, 752
- Trialkylsilylsulfate** 3, 106
- Triarylmethane**
 — aus
 Diarylcarbinolen 2, 679
- Triazafluorene** 3, 356
- Triazene**
 — aus
 Arylaminen 1, 607
- 1,3,5-Triazine, Dihydro-**
- Ausg. f.**
 Pyrimidine 1, 765
- 1,2,4-Triazinring** 2, 370
- 1,3,5-Triazinring** 3, 349
- aus**
 Nitrilen 1, 285, 287; 3, 277
- Triazol-o-dialdehyde** 1, 290
- 1,2,3-Triazole** (s. a. Osotriazole) 1, 262—4; 3, 258
- Ausg. f.**
 Carbazole 1, 614
- 1,2,4-Triazole** 3, 317, 380
- Trichloracetophenon** zur Benzoylierung 2, 460
- Trichlorbrommethan** (s. a. Polyhalogenalkane) als Hilfsstoff 3, 263
- 1,1,1-Trichlor-2,2-diphenyläthan**
 (DT)-derivate 2, 677; 3, 650, 652
- Triketone**
 — Ausg. f.
 Diketone 3, 759
- Trimethincyanine** 2, 687/8
- Trimethylbenzylammoniumhydroxyd** 3, 284, 495, 605
- Triphenylmethylderivate** von
 Alkoholen 1, 212/3, 216; 2, 249/50; 3, 212
- Spaltung** 1, 216; 2, 27; 3, 10
- Triphenylmethylnatrium** als Hilfsstoff 2, 750
- Trithiocarbonate**
 — aus
 Oxidooverbindungen 3, 512
- Triton B** s. Trimethylbenzylammoniumhydroxyd
- Triptyl** s. Triphenylmethyl...
Tschitschibabin-Reaktion 2, 341
 Wanderung
- Verseifung** bei schwerverseifbaren
Tschugaeff, Dehydratisierung über Xanthate 1, 737
- Ullmann-Fettvadjian'sche Acridin-ring-Synthese** 2, 638
- Ullmann'sche Reaktion** 2, 445
- Umacylierung** 3, 239

- Umesterung* 2, 277
Umlagerung (s. a. Allylumlagerung,
 Epimerisierung, Stellungs-
 wechsel) ↗
 —, *cis-trans* 3, 589
 — von
 Heterocyclen 2, 629
 Oxidoverbindungen 2, 13
 — zu konjugierten Mehrfachbin-
 dungen 2, 203, 495, 619, 624/5;
 3, 590
 — zum ar. System 2, 801
Unterchlorigsäure s. Hypohalogenite
Unterphosphorigsäure 1, 84/5
Uracilring 3, 404
 -Oeffnung 3, 265
Uramidoderivate von Aminen 3, 746
 — Spaltung 3, 29
Uretidine
 — aus
 Isocyanaten 1, 286
 — Ausg. f.
 Biurete 1, 283
Urethane
 — aus
 Alkoholen 1, 247; 3, 124/5, 368
 Aminen 3, 372
 Carbonsäure-amiden 2, 337
 -aziden 1, 247, 358, 389
 -hydraziden 2, 336
 Phenolen 3, 216
 — Ausg. f.
 Allophanate 3, 276
 Amine 2, 53; 3, 28, 189
 — spezielle s.
 Carbobenzoxyderivate von
 Aminen
 α-Cyanurethane
 Nitrosourethane
Uronsäuren
 — aus
 Glykosiden 2, 189; 3, 148
Vanadinpentoxyd 1, 235; 3, 133
 -Aluminimoxyd 3, 84
Verbindungen, ungesättigte
 s. Acetylen- u. Aethylderivate
Verdopplung des Molekülgerüsts
 s. Dimerisierung
Veresterung s. Carbonsäure-,
 Sulfonsäure-ester
 —, azeotrope 3, 164, 168
Verschiebung s. Umlagerung,
 Verbindungen 2, 21
 —, partielle 1, 3; 2, 29
 — — von Säureamiden 3, 180
 —, selektive 2, 52
Verseifung bei schwerverseifbaren
Vinyläther
 — Ausg. f.
 Acetale 3, 134
- Vinylalkohole* (s. a. Aldehyde)
 — aus
 Ketenen 3, 564
Vinylcyanid (s. a. Cyanäthylierung)
 — Ausg. f.
 Cyanäthyläther 2, 157/8
Walden'sche Umkehrung 3, 464
*Wanderung der Kohlenstoff-Doppel-
 bindung* (s. a. Umlagerung) 2,
 619/20, 801; 3, 592
Wasserabspaltung s. Dehydrati-
 sierung
Wasseranlagerung OC ↓
Wasserstoffperoxyd OS ↓ S; 1, 103,
 135, 193, 245, 293; 2, 166, 170—2,
 265, 297, 631; 3, 95a, 126, 274,
 440
Wieland'scher Abbau von Gallen-
 säuren 1, 752; 3, 733
Willgerodt-Umlagerung 1, 151/2; 2,
 180/1; 3, 139, 141, 401
*Wismutverbindungen, metall-
 organische* 3, 540
Wolff-Kishner-Reduktion 1, 80—2;
 2, 95—100; 3, 57
Wurtz-Fittig-Synthese 1, 633; 2, 710/
 a; 3, 669
Xanthate
 — Ausg. f.
 Acylxanthate 2, 551
 Thiokohlensäuredisulfide 2, 531
Xanthene 2, 636; 3, 163, 647
 —, Octahydro- 3, 634
Xanthine 2, 440
Xanthogenamide s. Thiocarbamin-
 säureester
Xenglycarbamate 2, 323
Zetzsche s. Rosenmund
Zink HN ↑ O, HC ↑ O, CC ↓ OC,
 CC ↑ Hal; 1, 17/8, 40, 576; 2, 4,
 145, 224, 386, 731, 821; 3, 30, 62,
 70, 86, 186, 251, 461, 537, 539, 574
 -/Kupfer 2, 736
 -Amalgam HC ↑ O
 -alkyle 1, 695
 -alkylhalogenide 1, 696/7
 -chlorid OC ↑ O, HalC ↑ O, CC ↑ O,
 CC ↑ Hal, CC ↑ O; 1, 618, 620;
 2, 547/8, 567, 606/7, 814, 838;
 3, 328, 744
 -cyanid 1, 616/7
 -dimethyl 1, 695
 -salze 3, 221
Zinkstaub, verkupfert 1, 67
Zinn 1, 267; 2, 570, 649
 -(II)-chlorid 1, 25, 193; 2, 41/2, 109,
 226, 304, 471; 3, 13, 59, 63, 190
 -(IV)-chlorid 1, 584, 778—80; 2, 150,
 672, 739, 751; 3, 424, 567

Zinnverbindungen, metallorganische
3, 423/4

Zucker s. Kohlehydrate
Zuckersäuren, Acylierung 3, 221

Zeitschriften-Abkürzungen

A.	Liebig's Annalen der Chemie
A. ch.	Annales de Chimie
Am. Soc.	Journal of the American Chemical Society
Ar.	Archiv der Pharmazie und Berichte der Deutschen Pharmazeutischen Gesellschaft
Ark. Kemi	Arkiv för Kemi, Mineralogi och Geologi
Bl.	Bulletin de la Société Chimique de France
C. r.	Comptes rendus (Paris)
G.	Gazzetta Chimica Italiana
H.	Hoppe Seyler's Zeitschrift für physiologische Chemie
Helv.	Helvetica Chimica Acta
J. org. Chem.	Journal of Organic Chemistry
J. pr.	Journal für praktische Chemie
M.	Monatshefte für Chemie
Org. Synth.	Organic Syntheses
R.	Recueil des Travaux Chimiques des Pays-Bas
Soc.	Journal of the Chemical Society
Synth. Meth.	Synthetische Methoden der Organischen Chemie

Die übrigen Zeitschriften-Abkürzungen siehe Beilsteins Handbuch der organischen Chemie oder Chemical Abstracts

Abkürzungen

A:	Ausbeute	o. H.	ohne Hilfsstoffe
Ae.	Diäthyläther	prim.	primär
abs.	absolut	%ig.	prozentig
äther.	ätherisch	Roh-A:	Rohausbeute
Alk.	Aethylalkohol	s.	siehe
alkal.	alkalisch	s. a.	siehe auch
alkoh.	alkoholisch	sd.	siedend
ar.	aromatisch	sek.	sekundär
at	Atmosphäre	Smp.	Schmelzpunkt
Ausg. f.	Ausgangsmaterial für (die Darst. von . . .)	stdg.	ständig
B:	Beispiel	Stde.	Stunde
Bzl.	Benzol	Stdn.	Stunden
Chlf.	Chloroform	subst.	substituiert
D.	Dichte	symm.	symmetrisch
Darst.	Darstellung	Temp.	Temperatur
fl.	flüssig	tert.	tertiär
gesätt.	gesättigt	u.	und
Ggw.	Gegenwart	u. a.	und andere
konz.	konzentriert	ü. Z.	über Zwischenprodukte
Lsg.	Lösung	verd.	verdünnt
Min.	Minute	Verf.	Verfahren
Mitarb.	Mitarbeiter	Vf.	Verfasser
Mitt.	Mitteilung	vgl.	vergleiche
ms.	meso	W.	Wasser
n.	normal	wss.	wäßrig
		W. B. s.	Weitere Beispiele siehe
		z. B.	zum Beispiel

Zeichen

Abgabe	↑	Ringschluß
Aufnahme	↓	Ringöffnung
Austausch	↔	Umlagerung
Elektrolyse	↖	

Bei mehrstufigen Synthesen beziehen sich eingeklammerte Ausbeuteangaben auf die unmittelbar vorhergehende Stufe.

English Key to the Index (Register)

see under

Acetylation	Acylierung
Acids, derivatives	Carbonsäure-, Sulfonsäure-derivate
Acylacetic esters	Acylessigester
Acylation	Acylierung
C-Acyl exchange	C-Acyl-Austausch
Acylquinol ethers	Acylhydrochinonäther
Addition	Anlagerung
Alcohols	Alkohole
Alicyclic compounds	Isocyclen
Alkene oxides	Oxidoverbindungen
Alkenes	Aethylenderivate
Alkoxides	Alkoholate
Alkylation	Alkylierung
Alkylideneacetooacetic esters	Alkyldenacetessigester
S-Alkylthioureas	Iothioharnstoffe
Allyl rearrangement	Allylumlagerung
Anhydrosugars	Anhydrozucker
Aromatic compounds	Arylderivate, Isocyclen
Arylation	Arylierung
Aspartic acids	Asparaginsäuren
Benzene ring system	Benzolringssystem
Benzoylation	Acylierung
Bile acid derivatives	Gallensäurederivate
Bismuth compounds	Wismutverbindungen
Boric acid	Borsäure
Boron fluoride	Borfluorid
Bromine	Brom
Bromo-	Brom-
Carbamates, carbamic acid esters	Urethane
Carbethoxylation	Carbäthoxylierung
Carbohydrates	Kohlehydrate
Carbon dioxide	Kohlendioxyd
Carbonyl compounds	Oxoverbindungen
Carboxylic acid-	Carbonsäure-
Carboxylic acid halides	Carbonsäure-bromide, -chloride, -fluoride
Carboxylic acids, branched	Carbonsäuren, verzweigte
Caro's acid	Sulfopersäure
Chain lengthening	Kettenverlängerung
Chichibabin	Tschitschibabin
Chlorine	Chlor
Chloro-	Chlor-
Chloroacetic acid	Chloressigsäure
Chromium	Chrom
Chugaeff	Tschugaeff
Cleavage	Spaltung
Compounds	Verbindungen
Copper	Kupfer
Coumarin	Cumarin
Coupling	Kupplung

	<i>see under</i>
Cyanogen bromide	Bromcyan
Cyclic ethers	Aether
Cyclization	Ringschluß
Deacylation	Verseifung
Degradation	Abbau
Dehydration	Dehydratisierung
Dehydrogenation	Dehydrierung
Diazo coupling	Diazokupplung
Displacement	Umlagerung, Wanderung
Disulfurdicarbothionates	Thiokohlensäuredisulfide
Earths, alkaline	Erdalkalien
Elimination	Abspaltung
Epoxides	Oxidoverbindungen
Esterification	Veresterung
Ether	Aether
Ethynyl derivatives	Acetylenderivate
Ethyl-	Aethyl-
Exchange	Austausch
Ferric, Ferrous	Eisen
Formic acid	Ameisensäure
Glycerols	Glycerine
Halogen compounds	Halogenide
Heterocyclic compounds	Heterocyclen
Hydrazoic acid	Stickstoffwasserstoffsäure
Hydrocarbons	Kohlenwasserstoffe
Hydrogenation	Hydrierung
Hydrogen fluoride	Fluorwasserstoffsäure
Hydrogen halide	Halogenwasserstoff
Hydrogen iodide	Jodwasserstoffsäure
Hydrogen peroxide	Wasserstoffperoxyd
Hydrogen sulfide	Schwefelwasserstoff
Hydrolysis	Hydrolyse, Verseifung
Hydroxy-	Oxy-
Hypohalites	Hypohalogenite
Hypophosphorous acid	Unterphosphorigsäure
Introduction of functional groups	Austausch von Wasserstoff
Iod-	Jod-
Iodine	Jod
Iodine bromide	Bromjod
Iodine monochloride	Chlorjod
Iron	Eisen
Isocyclic compounds	Isocyclen
Isothioureas	Iothioharnstoffe
Lead	Blei
Manganese	Mangan
Mercury	Quecksilber

	<i>see under</i>
Migration	Wanderung
Molecular compounds	Molekülverbindungen
Nitric acid	Salpetersäure
Nitrogen	Stickstoff
Nitrous acid esters	Salpetrigsäureester
Nucleus	Kern
Oxidation	Oxydation
Peracetic acid	Peressigsäure
Perbenzoic acid	Benzopersäure
Peroxymonosulfuric acid	Sulfopersäure
Phosphonic acids	Aethylenphosphinsäuren
Polymerization	Polymerisierung
Position shift	Stellungswechsel
Potassium	Kalium
Pyruvic acids	Brenztraubensäuren
Quin-	Chin-
Racemates	Razemate
Rare earths	Seltene Erden
Rearrangement	Umlagerung
Removal	Abspaltung
Replacement	Austausch
Ring closure	Ringschluß
Ring contraction	Ringverengung
Ring enlargement	Ringerweiterung
Ring opening	Ringöffnung
Saccharic acids	Zuckersäuren
Side chains	Seitenketten
Separation	Spaltung
Silica	Siliciumdioxyd
Sodium	Natrium
Sodium ethoxide	Natriumäthylat
Stannic, Stannous	Zinn
Sugars	Kohlehydrate
Sulfamic acids	Sulfaminsäuren
Sulfur	Schwefel
Sulfur monochloride	Chlorschwefel
Synthesis	Aufbau
Thiourea	Thioharnstoff
Tin	Zinn
Transacylation	Umacylierung
Transesterification	Umesterung
Triple bond	Acetylenderivate
Urea	Harnstoff
Uric acids	Harnsäuren

Systematische Uebersicht

Reaktions-zeichen	Seite	Reaktions-zeichen	Seite	Reaktions-zeichen	Seite
HO ↓ HC	1	OÜ ↓ OÜ	55	NC ↓ ON	131
HO ↓ O	1	OÜ ↓ OC	56	NC ↓ OC	131
HO ↓ ON	1	OÜ ↑ H	56	NC ↓ NN	132
HO ↓ OC	1	OÜ ↑ Hal	56	NC ↓ NC	132
HO ↑ N	1	OÜ ↑ C	57	NC ↓ SC	137
HO ↑ Hal	2	OC ↓ HO	58	NC ↓ CC	137
HO ↑ S	2	OC ↓ HC	58	NC ↗ HN	141
HO ↑ C	3	OC ↓ OO	59	NC ↗ ON	141
HO ↑ O	7	OC ↓ ON	60	NC ↗ OC	141
HN ↓ ON	8	OC ↓ OC	60	NC ↗ NS	142
HN ↓ NN	8	OC ↓ NC	63	NC ↗ CC	142
HN ↓ NC	9	OC ↓ CC	65	NC ↑ H	143
HN ↑ O	9	OC ↗ HO	71	NC ↑ O	148
HN ↑ N	13	OC ↗ HC	71	NC ↑ N	172
HN ↑ S	13	OC ↗ ON	73	NC ↑ Hal	174
HN ↑ C	14	OC ↗ OC	73	NC ↑ S	188
HS ↑ Hal	18	OC ↗ NC	74	NC ↑ C	190
HS ↑ C	18	OC ↗ CC	74	NC ↑ H	193
HC ↓ OC	19	OC ↑ H	75	NC ↑ O	194
HC ↓ NC	23	OC ↑ O	79	NC ↑ N	196
HC ↓ CC	24	OC ↑ N	88	NC ↑ Hal	197
HC ↗ OC	28	OC ↑ Hal	97	NC ↑ S	198
HC ↑ O	29	OC ↑ S	109	NC ↑ C	199
HC ↑ N	34	OC ↑ C	111	HalHal ↓ Hal	200
HC ↑ Hal	36	OC ↑ H	116	HalS ↑ H	201
HC ↑ S	39	OC ↑ O	118	HalS ↑ O	201
HC ↑ C	41	OC ↑ N	119	HalS ↑ S	201
HC ↑ O	44	OC ↑ Hal	119	HalS ↑ C	202
HC ↑ N	46	OC ↑ C	119	HalÜ ↑ O	202
HC ↑ C	46	NN ↑ H	121	HalÜ ↑ Hal	203
ON ↓ N	49	NN ↑ O	123	HalÜ ↑ C	203
ON ↑ H	50	NN ↑ N	124	HalC ↓ OC	203
ON ↑ O	51	NN ↑ C	125	HalC ↓ NC	204
ON ↑ N	51	NN ↑ H	125	HalC ↓ CC	204
ON ↑ H	52	NN ↑ O	126	HalC ↑ H	206
OHal ↓ Hal	52	NN ↑ C	126	HalC ↑ O	213
OHal ↑ Hal	52	NHal ↑ H	127	HalC ↑ N	221
OS ↓ HO	53	NS ↑ O	128	HalC ↑ Hal	223
OS ↓ S	53	NS ↑ Hal	128	Hal ↑ S	224
OS ↑ Hal	54	NÜ ↑ H	130	HalC ↑ C	225
OS ↑ C	55	NÜ ↑ Hal	130	SS ↓ S	226

Reaktions-zeichen	Seite	Reaktions-zeichen	Seite	Reaktions-zeichen	Seite
SS $\uparrow\downarrow$ C	226	$\ddot{U}C \downarrow CC$	247	CC $\uparrow\downarrow$ S	319
SS $\uparrow\downarrow$ H	227	$\ddot{U}C \uparrow\downarrow H$	247	CC $\uparrow\downarrow$ C	319
SÜ $\uparrow\downarrow$ O	227	$\ddot{U}C \uparrow\downarrow O$	248	CC $\uparrow\downarrow$ H	324
SC \downarrow OC	227	$\ddot{U}C \uparrow\downarrow N$	249	CC $\uparrow\downarrow$ O	328
SC \downarrow NC	228	$\ddot{U}C \uparrow\downarrow Hal$	250	CC $\uparrow\downarrow$ N	343
SC \downarrow SC	228	$\ddot{U}C \uparrow\downarrow S$	252	CC $\uparrow\downarrow$ Hal	345
SC \downarrow CC	229	$\ddot{U}C \uparrow\downarrow C$	252	CC $\uparrow\downarrow$ S	351
SC \cap NS	232	CC \downarrow HC	253	CC $\uparrow\downarrow$ C	351
SC $\uparrow\downarrow$ H	232	CC \downarrow OC	253	EIN $\uparrow\downarrow$ H	353
SC $\uparrow\downarrow$ O	235	CC \downarrow NC	261	EIN $\uparrow\downarrow$ O	354
SC $\uparrow\downarrow$ N	237	CC \downarrow SC	264	EIN $\uparrow\downarrow$ C	354
SC $\uparrow\downarrow$ Hal	239	CC \downarrow CC	264	EIHal $\uparrow\downarrow$ O	355
SC $\uparrow\downarrow$ C	244	CC \cap HC	269	EIU $\uparrow\downarrow$ O	355
SC $\uparrow\downarrow$ H	244	CC \cap OC	272	EIU $\uparrow\downarrow$ Hal	355
SC $\uparrow\downarrow$ S	245	CC \cap NC	273	EIC $\uparrow\downarrow$ H	356
SC $\uparrow\downarrow$ C	245	CC \cap HalC	274	Het \downarrow N	356
ÜÜ $\uparrow\downarrow$ O	245	CC \cap CC	274	Het \downarrow Hal	358
ÜÜ $\uparrow\downarrow$ Hal	246	CC $\uparrow\downarrow$ H	274	Het \downarrow S	358
ÜÜ $\uparrow\downarrow$ C	246	CC $\uparrow\downarrow$ O	276	Het $\uparrow\downarrow$	358
ÜÜ $\uparrow\downarrow$ Hal	246	CC $\uparrow\downarrow$ N	302	So	359
ÜC \downarrow HalC	247	CC $\uparrow\downarrow$ Hal	307		

Hochleistungs-Eindampfanlagen

mit und ohne Thermokompression

Vakuum-Destillations-Anlagen

Einrichtungen für die Lack- und Firnisindustrie

Trocknungseinrichtungen

mit Lüftung und unter Vakuum arbeitend

**Kombinierte Vakuum-Desinfektions- und
Entwesungsanlagen**

Beheizung industrieller Apparate mit Dowtherm

bis 360° C

Verschraubungen aus Chromnickelstahl

Kessel, Apparate und Rohrleitungen in Flußeisen, rostfreien und
plattierten Stählen, Kupfer, Aluminium, Reinnickel usw.

HCH. BERTRAMS AG., BASEL 13

Die

Triumphator

Feinklär-Zentrifuge

für Oel-, Lack- und Farben-Fabriken,
sowie für die chemische Industrie.

Beste in- und ausländische Referenzen!

Kostenlose und unverbindliche Beratung

MASCHINENFABRIK CHAM A.G., CHAM

BEZUGSQUELLENVERZEICHNIS

Analysenwaagen

Dr. N. Gerber Sohn & Co., Nüscherstrasse 45, Zürich
Max Keller, Waagenfabrik, Kräuelgasse 9, Zürich
E. Mettler, Künacht, Verkaufsbureau Zürich, Pelikanstrasse 19

Anlagen und Apparate für die chem. Nahrungsmittel- und Getränke-Industrie

Hch. Bertrams A.-G., Vogesenstrasse 101, Basel

Durchflusßmesser

Dr. H. Müller, Ing., Scheuchzerstrasse 71, Zürich

Hochvakuum-Technik

Novelectric A.-G., Claridenstrasse 25, Zürich

Glasgeräte

Dr. N. Gerber Sohn & Co., Nüscherstrasse 45, Zürich

Klimaanlagen

Paul Schenk, „Im Schermen“, Ittigen (Bern)

Kolorimeter

A.-G. für Meßapparate, Bundesgasse 33, Bern

Laborwaagen

Dr. N. Gerber Sohn & Co., Nüscherstrasse 45, Zürich
Max Keller, Waagenfabrik, Kräuelgasse 9, Zürich
E. Mettler, Künacht, Verkaufsbureau Zürich, Pelikanstrasse 19

Lack-Zentrifugen

Maschinenfabrik Cham A.-G., Cham

Luftbefeuhter

Paul Schenk, „Im Schermen“, Ittigen (Bern)

Meßgeräte (elektr.)

A.-G. für Meßapparate, Bundesgasse 33, Bern

Mikroskope

A.-G. für Präzisionsmechanik, Alpenstrasse 12, Zug

Mikrotome

A.-G. für Präzisionsmechanik, Alpenstrasse 12, Zug

Rührwerke

Dr. H. Müller, Ing., Scheuchzerstrasse 71, Zürich

Dr. N. Gerber Sohn & Co., Nüscherstrasse 45, Zürich

Säure-Pumpen

WEKA GmbH., Wetzikon

Vibrationsförderer (elektr.)

Max Keller, Waagenfabrik, Kräuelgasse 9, Zürich

Vibrationsrührwerke

Chemie-Apparatebau A.-G., Scheuchzerstrasse 71, Zürich

Zentrifugen

A.-G. für Präzisionsmechanik, Alpenstrasse 12, Zug

Dr. N. Gerber Sohn & Co., Nüscherstrasse 45, Zürich

Fortschritte der Biochemie

1938-1947

von Prof. Dr. F. Haurowitz

VIII und 364 Seiten mit 5 Abbildungen. 1948. Preis sFr. 40.—

Das Werk ist eine Fortsetzung der vom gleichen Verfasser in den Jahren 1925, 1931 und 1938 herausgegebenen Fortschrittsberichte gleichen Titels. Es vermittelt Medizinern, Chemikern, Pharmazeuten, Biologen und Naturwissenschaftlern die bedeutenden Fortschritte der Biochemie des Menschen und der Tiere von 1938 bis 1947 und enthält über 2200 Literaturzitate!

Die neuen Forschungsergebnisse sind möglichst elementar dargestellt und das Neue stets vom Bekannten ausgehend aufgebaut, um das Verständnis zu erleichtern. — Berücksichtigung fand erstmals die Thermodynamik in einem besonderen Kapitel, was sicher allgemein begrüßt werden wird.

Auch dieser Band stellt wieder einen aufschlußreichen Querschnitt durch die gesamte biochemische Forschung der letzten Jahre dar.

Aus dem Inhalt:

I. Verwendung von Isotopen in der Biochemie. II. Verteilung der Mineralstoffe. III. Bildung organischer Substanzen aus anorganischen Verbindungen. IV. Kohlehydrate. V. Polysaccharidsäuren, Aminopolysaccharide und Glukoproteide. VI. Konstitution und Stoffwechsel der Fettsäuren und ihrer Verbindungen. VII. Karotinoide. VIII. Sterine und Steroide. IX. Chemie der Proteine. X. Eiweißstoffwechsel. XI. Der Blutfarbstoff und seine Derivate. XII. Hormonproteine. XIII. Vitamine und Wuchsstoffe. XIV. Bakterielle und pflanzliche Wirkstoffe. XV. Nukleinsäuren und ihre Derivate. XVI. Zwischenmolekulare Kräfte in der lebenden Substanz. XVII. Hydrolasen. XVIII. Oxydoreduktionen. XIX. Thermodynamik und Kinetik bei biochemischen Reaktionen. XX. Chemie der Muskelkontraktion. XXI. Chemie der Nervenerregung. XXII. Immunochemie. XXIII. Zytchemie. XXIV. Methodik.

Schweiz. Med. Wochenschr. (Nr. 46, 1944) : «Der vorliegende Band, der die wesentlichen Ergebnisse der physiologischen Chemie während des vergangenen Jahrzehnts in einem Bande von beschränktem Umfang zusammenfaßt, wird einem weiten Kreis von Interessenten sehr willkommen sein. Bei einer derartigen Publikation besteht die wesentliche Leistung in der geeigneten Auswahl aus der Überfülle des vorhandenen Stoffes. Der Verfasser hat diese Auswahl mit großer Sachkenntnis getroffen. Man vermißt in seinem Bericht keine der wichtigen Fragen, mit denen sich die biochemische Forschung in neuerer Zeit befaßt hat. In den einzelnen Kapiteln ist auf einem Minimum von Seiten ein großes Material zu einer gut lesbaren Darstellung verarbeitet worden.»

Il Farmaco (Anno 3º, N. 5) : «L'A. ha assolto brillantemente l'arduo compito di riassumere in poco spazio una mole così considerevole dei lavori in forma piana e comprensibile, coordinando in modo organico e logico le ricerche eseguite nei diversi campi dando al lettore un quadro aggiornato e completo delle moderne conoscenze sui vari argomenti. Ottima e molto curata la veste tipografica.»

BASEL (Schweiz)

S. KARGER

NEW YORK

Structure et Activité Pharmacodynamique des

Médicaments du Système Nerveux Végétatif

Adrénaline, Acétylcholine, Histamine et leurs Antagonistes

par D. Bovet et F. Bovet-Nitti

Institut Pasteur, Paris — Istituto Superiore di Sanità, Roma

849 pages avec 32 figures. 1948. sFr. 85.—

Extrait de la table des matières :

I. L'adrénaline et les substances sympathomimétiques. II. Les poisons sympatholytiques, antagonistes de l'Adrénaline. III. La fonction parasympathomimétique de l'Acétylcholine et les poisons muscariniques. IV. L'Esérine et les inhibiteurs de la choline-estérase. V. L'Atropine et les substances parasympatholytiques. VI. La fonction synaptique de l'Acétylcholine et les poisons nicotiniques et curarisants. VII. L'Histamine et les poisons histaminiques. VIII. Antagonistes de l'Histamine et Antihistaminiques.

Confinia Neurologica (IX, 1949): «The authors who collaborated with Fourneau at the Pasteur Institute of Paris for 16 years are extremely well qualified for this task and have presented a very lucid outline, stressing the importance of the chemical structure for the pharmacodynamic activity. This volume deserves the most careful study not only by research workers but by all who are interested in the numerous practical applications of these drugs.»

Revue Suisse de Pathologie et de Bactériologie (Vol. XII, № 2): «... Ce bref résumé ne peut donner qu'une idée incomplète de la richesse de ce livre qui est certainement un des ouvrages les plus importants parus récemment en médecine. Il se base non seulement sur une connaissance approfondie de la littérature, mais encore sur de nombreux travaux personnels, en partie inédits, et le lecteur retrouvera à chaque page l'idée maîtresse des auteurs selon laquelle les rapports entre la constitution chimique des corps et leur action sont l'aboutissement et la justification de toute recherche pharmacodynamique.»

Bollettino Chimico Farmaceutico (Anno 88, Num. 5—6, 15/30 Marzo 1949): «... Bovet in questo nuovissimo volume ha raccolto si può dire tutto quanto è stato pubblicato sull'argomento con una ammirabile concisione e precisione: tavole, quadri sinottici e diagrammi fissano di frequente in maniera direi plastica le varie tappe ed i vari gradi attraverso cui gli studiosi sono giunti a conclusioni che ormai sono ritenute incontroverse.

... L'importanza dell'opera richiedeva una particolare cura editoriale e tipografica, cui la casa Karger ha brillantemente assolto con molta signorilità e precisione.»

Journal de Genève (13 janvier 1949): «C'est sous ce titre que vient de paraître un ouvrage d'une rare valeur qui marquera une date dans l'histoire de la physiologie et de la pharmacodynamie.»

BALE (Suisse)

S. KARGER

NEW YORK

