FACT in Al

Reproducing and Extending

Mitigating Unwanted Biases with Adversarial

Learning (Zhang et al., 2018)

Vanessa Botha Nithin Holla Azamat Omuraliev Leila Talha

University of Amsterdam

Overview

- Introduction
- Method
- Experiments & Results:
 - UCI Adult dataset
 - UCI Communities and Crime dataset
 - UTK Face dataset
- Discussion
- Conclusion
- Questions

Introduction

Mitigating Unwanted Biases with Adversarial Learning (Zhang et al., 2018)

- Paper on fairness
- In-processing method
- Fairness measures:
 - Demographic Parity
 - Equality of Odds
 - Equality of Opportunity
- Predictor and adversary

Method

Adversarial Network

$$\nabla_W L_P - \operatorname{proj}_{\nabla_W L_A} \nabla_W L_P - \alpha \nabla_W L_A$$

- Predictor
- Adversary
 - Demographic parity
 - Equality of Odds
- Gradient based optimisation
- Custom update predictor
 - projection
 - alpha and adversary loss

Experiments

UCI Adult Dataset

Task

Predict if annual income is above \$50k, based on 14 attributes. The protected variable is sex.

Predictor

$$\hat{y} = \sigma(w_1 \cdot x + b)$$

Adversary

$$s = \sigma((1+|c|)\sigma^{-1}(\hat{y}))$$

$$\hat{z} = w_2 \cdot [s, sy, s(1-y)] + b$$

Results UCI Adult Dataset

		Female		Male	
		Without	With	Without	With
Zhang <i>et al.</i> (2018)	FPR	0.0248	0.0647	0.0917	0.0701
	FNR	0.4492	0.4458	0.3667	0.4349
Faithful implementation	FPR	0.0287	0.1092	0.1072	0.1196
		± 0.0112	± 0.0478	± 0.0355	± 0.1707
	FNR	0.4491	0.3334	0.3803	0.7030
		± 0.0709	± 0.1007	± 0.0775	± 0.3852
Refined implementation	FPR	0.0287	0.0404	0.1072	0.0802
		± 0.0112	± 0.0020	± 0.0355	± 0.0030
	FNR	0.4491	0.4313	0.3803	0.4542
		± 0.0709	± 0.0120	± 0.0775	± 0.0080

Results UCI Adult Dataset

Accuracy Zhang et al.

- biased: 86.0%

debiased: 84.5%

Accuracy refined implementation

- biased: 84.95%

debiased: 84.45%

Experiments

UCI Communities and Crime
Dataset

Task

Predict rate of violent crimes within a community, based on 114 continuous attributes. The protected variable is the percentage of white citizens.

Predictor

$$\hat{y} = \sigma(w_1 \cdot x + b)$$

Adversary

$$s = \sigma((1+|c|)\sigma^{-1}(\hat{y}))$$

$$\hat{z} = w_2 \cdot [s, sy, s(1-y)] + b$$

Results UCI Communities and Crime Dataset

Predictor MSE: 0.017

Predictor MSE: 0.022, Adversary MSE: 0.043

Experiments

Age estimation on UTKFace Dataset

Task:

Predict age, based on images annotated with gender (protected variable) and race.

Predictor:

Deep convolutional neural network, regularized with Dropout

Adversary:

Satisfying demographic parity

$$s = \sigma((1+|c|)\sigma^{-1}(\hat{y}))$$

$$\hat{z} = w_2 \cdot s + b$$

Results

UTKFace Dataset

	Female		Male		
	Without	With	Without	With	
AUC mean	0.8632	0.8732	0.8702	0.8727	
AUC std	± 0.0013	$\pm~0.0040$	± 0.0003	$\pm~0.0045$	

- Difference before debiasing
 - >
 - Difference after debiasing
- Improved performance

Discussion

Reproducing scientific research

- Reproduced to certain degree
- Original research lacks specifications
 - Hyperparameters
 - Data splits
 - Unclear reporting metric
- Adversarial setup unstable

Discussion

Extending adversarial debiasing

- Model-agnostic debiasing method
- Works
 - on a different domain
 - for different debiasing scheme
 - for complex predictor
 - for continuous targets
- Tackling instability and sensitivity of adversarial learning

Conclusion

- Universal but not robust solution
- Results difficult to reproduce
- No standard for metrics capturing bias under different scenarios

Questions

References:

Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml

Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. 2018. Mitigating Unwanted Biases with Adversarial Learning. In *Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society* (New Orleans, LA, USA) (AIES '18). Association for Computing Machinery, New York, NY, USA, 335–340. https://doi.org/10.1145/3278721.3278779

Song Yang Zhang, Zhifei and Hairong Qi. 2017. Age Progression/Regression by Conditional Adversarial Autoencoder. In *IEEE Conference on Computer Visionand Pattern Recognition* (CVPR). IEEE.

Figure 2: Diagram illustrating the gradients in Eqn. 1 and the relevance of the projection term $\operatorname{proj}_h g$. Without the projection term, in the pictured scenario, the predictor would move in the direction labelled g+h in the diagram, which actually helps the adversary. With the projection term, the predictor will never move in a direction that helps the adversary.