Rajalakshmi Engineering College

Name: bhagawath narayanan n

Email: 241501034@rajalakshmi.edu.in

Roll no: 241501034 Phone: 6374835866

Branch: REC

Department: I AIML AD

Batch: 2028

Degree: B.E - AI & ML

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 4

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

John, a computer science student, is learning about binary search trees (BST) and their properties. He decides to write a program to create a BST, display it in post-order traversal, and find the minimum value present in the tree.

Help him by implementing the program.

Input Format

The first line of input consists of an integer N, representing the number of elements to insert into the BST.

The second line consists of N space-separated integers data, which is the data to be inserted into the BST.

Output Format

Sample Test Case

if (root == NULL) {

) if (data < root->data) {

return createNode(data);

root->left = insert(root->left, data);

The first line of output prints the space-separated elements of the BST in postorder traversal.

The second line prints the minimum value found in the BST.

Refer to the sample output for formatting specifications.

```
Input: 3
5 10 15
Output: 15 10 5
The minimum value in the BST is: 5
Answer
#include <stdio.h>
#include <stdlib.h>
struct Node {
   int data:
   struct Node* left;
   struct Node* right;
struct Node* createNode(int data) {
   struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
   newNode->data = data;
   newNode->left = newNode->right = NULL;
   return newNode;
}
static int is_first_element_post_order = 1;
struct Node* insert(struct Node* root, int data) {
```

```
241501034
                                                       24,150,1034
       } else if (data > root->data) {
         root->right = insert(root->right, data);
       return root;
    void displayTreePostOrder(struct Node* root) {
       if (root == NULL) {
         return;
       }
       displayTreePostOrder(root->left);
       displayTreePostOrder(root->right);
                                                                                  247501034
       if (is_first_element_post_order) {
         printf("%d", root->data);
         is_first_element_post_order = 0;
       } else {
         printf(" %d", root->data);
       }
    }
    int findMinValue(struct Node* root) {
       if (root == NULL) {
         return -1;
       struct Node* current = root;
                                                       247507034
       while (current->left != NULL) {
         current = current->left;
       return current->data;
     int main() {
       struct Node* root = NULL;
       int n, data;
       scanf("%d", &n);
       for (int i = 0; i < n; i++) {
                                                                                  241501034
                                                       241501034
         scanf("%d", &data);
        root = insert(root, data);
247507
```

```
241501034
                                                   241501034
playTree
printf("\n");
       displayTreePostOrder(root);
       int minValue = findMinValue(root);
       printf("The minimum value in the BST is: %d", minValue);
       return 0;
     }
     Status: Correct
                                                                      Marks: 10/10
24,150,1034
                         24,50,1034
241501034
                                                                            24,150,1034
                         24,150,1034
                                                   24,150,1034
```

24,150,1034

24,150,1034

24,150,1034

24,150,1034