51A7 1979

STUDENT PORTFOLIO

IAS 101 – Information Assurance and Security

2nd Term, A.Y. 2024-2025

Name: Javier, Godfrey	Year & Section: <u>3D</u>	
Activity: 1	Subject: IAS101	
Taulia Countaniana		

Topic: Cryptography

1. Choose one of the following cryptographic algorithms:

SHA-1 (Secure Hash Algorithm 1)

MD5 (Message Digest 5)

• DES (Data Encryption Standard)

2. Find a sample code written in either Java or Python that demonstrates the use of your chosen algorithm. You may:

• Search for open-source code on GitHub, tutorial sites, or documentation.

• Write your own simple implementation (optional for bonus points).

3. Copy the code into your document or attach it as a separate file. Be sure to:

- Add brief comments to explain each step of the code (either your own or the one you found).
 - Highlight which part is performing encryption, decryption, or hashing.

4. Answer the following questions below the code:

- a) What does this code do?
- b) What inputs are required and what outputs does it produce?
- c) Why is this algorithm considered important in cryptography?
- d) Are there any security concerns or limitations with this algorithm?
- 5. Cite your sources if you used any website, book, or article.

DATA ENCRYPTION STANDARD (Implemented by Godfrey)

4.) Questions

- a) What does this code do?
 - This code can encrypt and decrypt the text input by user using Data Encryption Standard.
- b) What inputs are required and what outputs does it produce?
 - The required inputs here are the user message and the key must be "DES" in order to use the DES algorithm
- c) Why is this algorithm considered important in cryptography?
 - DES was the first standardized encryption algorithm widely accepted and used by the U.S. government and commercial industries. It was adopted by NIST in 1977 as a federal standard.
- d) Are there any security concerns or limitations with this algorithm?
 - Yes, first security concern is that there are only about 72 quadrillion possible keys in DES, modern computer can brute-force attack this in hours. Another reason is that DES is not good for encrypting large volumes of sensitive data due to short key size.
- 5.) Conceptualized and programmed with the help of ChatGPT.

Sample Output with same text input

卓	exec:3.1.0:exec (default-cli) @ ias
	Enter a word to encrypt: Assignment In IAS DES algo
	The encrypted word is: uE1KXa20TBXvlxax4nXi1Z2k3mOfyr5dFPsNit7FpWI=
L	Decrypted Text: Assignment In IAS DES algo
	BUILD SUCCESS
i	
F	exec:3.1.0:exec (default-cli) @ ias
	Enter a word to encrypt: Assignment In IAS DES algo
	The encrypted word is: 0xs/0ajKzWLyN04yuDCjju8jJNPbbQmmjYKpNYDazYk=
L	Decrypted Text: Assignment In IAS DES algo