Aufgabe der Woche

zur Analysis in einer Variable für das Lehramt

für 22.06.2020

Integrieren zum Zweiten

Berechne das Integral in (a) mittels Substitution und das Integral in (b) mithilfe partieller Integration:

(a)
$$\int_1^2 \frac{e^x}{e^{2x} + 2e^x + 1} dx$$

(b)
$$\int_1^2 \sqrt{x} \log(x) dx$$

Lösung:

(a) Substitution: wir setzen $u = e^x$ und erhalten somit $\frac{du}{dx} = e^x$, also $dx = \frac{du}{e^x}$. Wir passen außerdem noch die Grenzen an und erhalten durch die Üngleichung

die neuen Grenzen

$$e^1 \le u \le e^2$$
.

Für unser Integral erhalten wir also

$$\int_{1}^{2} \frac{e^{x}}{e^{2x} + 2e^{x} + 1} dx \stackrel{Sub.}{=} \int_{e}^{e^{2}} \frac{u}{(u^{2} + 2u + 1)u} du = \int_{e}^{e^{2}} \frac{1}{(u + 1)^{2}} du = \int_{e}^{e^{2}} (u + 1)^{-2} du$$
$$= -(u + 1)^{-1} \Big|_{e}^{e^{2}} = -\frac{1}{e^{2} + 1} + \frac{1}{e + 1}$$

(b) Zur Berechnung des Integrals mithilfe partieller Integration interpretieren wir $f(x) = \log(x)$ und $g'(x) = \sqrt{x}$. Somit ist also $f'(x) = \frac{1}{x}$ und $g(x) = \frac{2}{3}x^{\frac{3}{2}}$. Nun brauchen wir nur noch Einsetzen in die in der VO bewiesene Formel für partielle Integration:

$$\int_{1}^{2} \sqrt{x} \log(x) dx = \frac{2}{3} x^{\frac{3}{2}} \log(x) \Big|_{1}^{2} - \int_{1}^{2} \frac{2}{3} x^{\frac{3}{2}} \frac{1}{x} dx = \frac{2}{3} x^{\frac{3}{2}} \log(x) \Big|_{1}^{2} - \frac{2}{3} \int_{1}^{2} x^{\frac{1}{2}} dx$$
$$= \left(\frac{2}{3} x^{\frac{3}{2}} \log(x) - \frac{4}{9} x^{\frac{3}{2}} \right) \Big|_{1}^{2} = \frac{2}{3} \sqrt{2^{3}} \left(\log(2) - \frac{2}{3} \right) + \frac{4}{9}.$$

Zusatzaufgaben zum Üben für die Prüfung: Untersuche, ob die Reihen

(a)
$$\sum_{n=0}^{\infty} \frac{n^4}{3^n}$$

(b)
$$\sum_{n=0}^{\infty} \frac{2^n}{(2n)!}$$

absolut konvergieren.

Lösung:

Für (1) eignet sich sowohl Wurzel- als auch Quotiententest.

Wurzeltest:

$$\sqrt[n]{\frac{n^4}{3^n}} = \frac{\sqrt[n]{n^4}}{3} \quad \stackrel{n \to \infty}{\longrightarrow} \quad \frac{1}{3}$$

Quotiententest:

$$\frac{(n+1)^4}{3^{n+1}} \frac{3^n}{n^4} = \frac{(n+1)^4}{3n^4} = \frac{1}{3} \left(\frac{n+1}{n}\right)^4 \xrightarrow{n \to \infty} \frac{1}{3}.$$

Da $\frac{1}{3}$ < 1 konvergiert die Reihe absolut.

Für (2) verwenden wir den Quotiententest. Es gilt

$$\frac{2^{n+1}}{(2(n+1)!}\frac{(2n)!}{2^n} = \frac{2(2n)!}{(2n+2)!} = \frac{2}{(2n+2)(2n+1)} = \frac{2}{4n^2 + 6n + 2} \xrightarrow{n \to \infty} 0.$$

Da 0 < 1 ist, konvergiert die Reihe absolut.