Real-valued function with real variable Asymptotic expansion

5.1. Taylor's formulas.

Theorem 5.1 (Taylor's formula with Lagrange's remainder*). Let $]a,b[\subset \mathbb{R} \text{ and } f \in \mathscr{C}^{n+1}(]a,b[,\mathbb{R})$. Then, for every $x,x_0\in]a,b[$ there exists c between x and x_0 such that

$$f(x) = f(x_0) + \left(\sum_{k=1}^{n} \frac{(x - x_0)^k}{k!} f^{(k)}(x_0)\right) + \frac{(x - x_0)^{n+1}}{(n+1)!} f^{(n+1)}(c).$$
 (5.1)

Example 5.1. Let the function $f(x) = e^x$, see that f is \mathscr{C}^{∞} over \mathbb{R} and $f^{(k)}(x) = e^x$ for any $k \in \mathbb{N}^*$ and every $x \in \mathbb{R}$. Thus, for any $x \in \mathbb{R}$ and $x \in \mathbb{N}$ we have the existence of $x \in \mathbb{R}$ between 0 and $x \in \mathbb{R}$ and $x \in$

$$f(x) = f(0) + \left(\sum_{k=1}^{n} \frac{(x-0)^k}{k!} f^{(k)}(0)\right) + \frac{(x-0)^{n+1}}{(n+1)!} f^{(n+1)}(c),$$

therefore

$$e^{x} = \underbrace{1 + \left(\sum_{k=1}^{n} \frac{x^{k}}{k!}\right)}_{S} + \underbrace{\frac{x^{n+1}}{(n+1)!}e^{c}}_{R}.$$

See that the sum S approximates e^x near $x_0 = 0$, and R represents this approximation's error. If we work over [-1, +1], the fact that c is between 0 and x gives $c \in]-1, +1[$; hence

$$|R| = \left| \frac{x^{n+1}}{(n+1)!} e^c \right| \le \frac{1}{(n+1)!} \le \frac{1}{2^n}.$$
 (5.2)

Thus, to approximate e^x over [-1, +1] with a precession of $10^{-\alpha}$, it suffices to impose the condition $1/2^n \le 10^{-\alpha}$ (this leads immediately to $|R| \le 10^{-\alpha}$); hence, $n \ge \alpha \text{Ln}(10)/\text{Ln}(2)$. The value

$$N = \text{floor}\left(\alpha \frac{\text{Ln}(10)}{\text{Ln}(2)}\right) + 1,$$

represents the minimum iteration to do to reach an approximative value of e^x with an error less than $10^{-\alpha}$ for any $x \in [-1, +1]$.

Figure 5.1 represent over [-1, +1] the following functions

$$- e^x$$

$$- 1 + x + (x^2/2!) + (x^3/3!)$$

$$- 1 + x + (x^2/2!)$$

-1 + x

Δ

^{*} When $x_0 = 0$, Taylor's formula is also know as MacLaurin's formula.

Remark 5.1. Since c is between x and x_0 ; then, there exists $\theta \in]0,1[$ such that $c=(1-\theta)x+\theta x_0$. Hence, the expression (5.1) becomes as

$$f(x) = f(x_0) + \left(\sum_{k=1}^n \frac{(x - x_0)^k}{k!} f^{(k)}(x_0)\right) + \frac{(x - x_0)^{n+1}}{(n+1)!} f^{(n+1)} ((1 - \theta)x + \theta x_0).$$

Definition 5.1 (Landau's notation *). Let f and g be functions defined on some neighbourhood v(a) of $a \in \mathbb{R} \cup \{-\infty; +\infty\}$. If g does not vanish on v(a), we say that f is negligible compared to g if

$$\lim_{n \to a} \frac{f(x)}{g(x)} = 0,$$

and we write $f(x) = \underset{x \to a}{\circ} (g(x))$ (read "f(x) is little-o of g(x)" near a). If $g(x) = (x - a)^n$, we write $f(x) = \circ ((x - a)^n)$.

Example 5.2. Let f, g be the functions defined near zero as

$$f(x) = \sin(x) - x + \frac{x^3}{6}, \quad g(x) = x^3.$$

By applying L'Hôpital's rule, we get

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{\sin(x) - x}{x^3} + \frac{1}{6} = \lim_{x \to 0} \frac{\cos(x) - 1}{3x^2} + \frac{1}{6} = \lim_{x \to 0} -\frac{\sin(x)}{6x} + \frac{1}{6} = 0.$$

Thus, f = o(g); hence

$$\sin(x) = x - \frac{x^3}{6} + o(x^3).$$

Lemma 5.1.

(a) Let $\lambda, x, x_0 \in \mathbb{R}^*$ and $n, m \in \mathbb{N}$ such that $n \leq m$, we set $x_1 = x - x_0$. Then

$$\lambda \circ (x_1^n) = \circ (x_1^n), \quad \circ (x_1^n) + \circ (x_1^m) = \circ (x_1^n), \quad \circ (x_1^n) \circ (x_1^m) = \circ (x_1^{n+m}) = \circ (x_1^n) = \circ (x_1^n).$$

(b) For any $x_0 \in \mathbb{R}$ and X near x_0 we have

$$\int_{x_0}^{X} o((x - x_0)^n) dx = o((X - x_0)^{n+1}).$$
 (5.3)

(c) For any bounded function g near x_0 we have

$$g(x) \circ ((X - x_0)^{n+1}) = \circ ((X - x_0)^{n+1}).$$
 (5.4)

Theorem 5.2 (Taylor—Young's formula). Let $x_0 \in \mathbb{R}$, $v(x_0)$ be a neighbourhood and f be a continuous function n—times differentiable over $v(x_0)$. Then

$$\forall x \in v(x_0): \quad f(x) = f(x_0) + \left(\sum_{k=1}^n \frac{(x - x_0)^k}{k!} f^{(k)}(x_0)\right) + o((x - x_0)^n).$$

If the function f is differentiable n-times at x_0 only (and not near x_0), the induction proof of Theorem 5.2 does not work. More precisely, if we consider the previous hypotheses, there is a problem in applying the induction for the case n=2. Indeed, in this case, contrary to the argument mentioned above, we do not know if $f^{(1)}$ is continuous (while for n>2, there is no problem since f is differentiable (n-1)-times, thus $f^{(1)}$ is (n-2)-times differentiable, hence continuous for any $n\geq 2$). Theorem 5.3 gives same result as the Theorem 5.2 with fewer constraints (Theorem 5.2 becomes a particular case of Theorem 5.3).

^{*} Know also as "Bachmann-Landau notation", as well as "asymptotic notation".

5.1. Taylor's formulas

Theorem 5.3 (Taylor—Young's formula with less conditions). Let $x_0 \in \mathbb{R}$, $v(x_0)$ be a neighbourhood of x_0 and f be a continuous function (n-1)—times differentiable on $v(x_0)$ and n—times differentiable at x_0 . Then

$$\forall x \in v(x_0): \quad f(x) = f(x_0) + \left(\sum_{k=1}^n \frac{(x - x_0)^k}{k!} f^{(k)}(x_0)\right) + o((x - x_0)^n).$$

The following table summarises Taylors-Young's formulas near $x_0 = 0$ of the usual function.

$$e^{x} = \sum_{k=0}^{n} \frac{x^{k}}{k!} + o(x^{n}) = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3!} + o(x^{3})$$

$$\frac{1}{1-x} = \sum_{k=0}^{n} x^{k} + o(x^{n}) = 1 + x + x^{2} + x^{3} + o(x^{3})$$

$$\operatorname{Ln}(1-x) = -\sum_{k=0}^{n} \frac{x^{k}}{k} + o(x^{n}) = -x - \frac{x^{2}}{2} - \frac{x^{3}}{3} + o(x^{3})$$

$$(1+x)^{\alpha} = \sum_{k=0}^{n} \frac{\alpha_{k}}{k!} x^{k} + o(x^{n}), \quad \alpha_{0} = 1, \quad \forall k \in \mathbb{N}_{n}^{*} : \quad \alpha_{k} = \prod_{l=0}^{k-1} (\alpha - l)$$

$$\sqrt{1+x} = 1 + \sum_{k=1}^{n} \frac{(-1)^{k-1}(2k-2)!}{2^{2k-1}(k-1)!k!} x^{k} + o(x^{n}) = 1 + \frac{x}{2} - \frac{3}{8}x^{2} + \frac{1}{16}x^{3} + o(x^{3})$$

$$\sin(x) = \sum_{k=0}^{n} (-1)^{k} \frac{x^{2k}}{(2k+1)!} + o(x^{2n+1}) = x - \frac{x^{3}}{3!} + o(x^{3})$$

$$\cos(x) = \sum_{k=0}^{n} (-1)^{k} \frac{x^{2k}}{(2k)!} + o(x^{2n}) = 1 - \frac{x^{2}}{2!} + o(x^{3})$$

$$\operatorname{ch}(x) = \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + o(x^{2n}) = 1 + \frac{x^{2}}{2!} + o(x^{3})$$

$$\operatorname{arcsin}(x) = \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+1}) = x + \frac{x^{3}}{3!} + o(x^{3})$$

$$\operatorname{arccsin}(x) = \sum_{k=0}^{n} \frac{(2k)!}{4^{k}(k!)^{2}} \frac{x^{2k+1}}{2k+1} + o(x^{2n+2}) = \frac{\pi}{2} - x - \frac{x^{3}}{6} + o(x^{3})$$

$$\operatorname{arccsin}(x) = \sum_{k=0}^{n} (-1)^{k} \frac{x^{2k+1}}{4^{k}(k!)^{2}} \frac{x^{2k+1}}{2k+1} + o(x^{2n+2}) = x - \frac{x^{3}}{6} + o(x^{3})$$

$$\operatorname{arccsh}(x) = \sum_{k=0}^{n} (-1)^{k} \frac{x^{2k+1}}{4^{k}(k!)^{2}} \frac{x^{2k+1}}{2k+1} + o(x^{2n+2}) = x - \frac{x^{3}}{6} + o(x^{3})$$

$$\operatorname{arccsh}(x) = \sum_{k=0}^{n} (-1)^{k} \frac{x^{2k+1}}{4^{k}(k!)^{2}} \frac{x^{2k+1}}{2k+1} + o(x^{2n+2}) = x - \frac{x^{3}}{6} + o(x^{3})$$

$$\operatorname{arccsh}(x) = \sum_{k=0}^{n} \frac{x^{2k+1}}{4^{k}(k!)^{2}} \frac{x^{2k+1}}{2k+1} + o(x^{2n+2}) = x - \frac{x^{3}}{6} + o(x^{3})$$

TABLE 5.2: Taylor—Young's asymptotic table

5.2. Asymptotic expansion.

Let f be the function defined over \mathbb{R} by the following expression

$$\forall x \in \mathbb{R}^*: \quad f(x) = x + x^3 \sin\left(\frac{1}{x}\right), \quad f(0) = 0.$$

On the one hand, f is continuous over \mathbb{R}^* and f(x) goes to 0 = f(0) as x does; thus f is a \mathscr{C}^0 function over \mathbb{R} . On the other hand,

$$\forall x \in \mathbb{R}^* : \quad f^{(1)}(x) = 1 + 3x^2 \sin\left(\frac{1}{x}\right) - x\cos\left(\frac{1}{x}\right), \quad \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = 1,$$

therefore, f is differentiable over \mathbb{R} and

$$\forall x \in \mathbb{R}^*: f^{(1)}(x) = 1 + 3x^2 \sin\left(\frac{1}{x}\right) - x\cos\left(\frac{1}{x}\right), f^{(1)}(0) = 1.$$

See that $f^{(1)}$ is continuous over \mathbb{R}_+^* , over \mathbb{R}_+^* and $f^{(1)}(x)$ goes to $1 = f^{(1)}(0)$ as x does; thus $f^{(1)}$ is a a \mathcal{C}^0 function over \mathbb{R} ; thus, f is \mathcal{C}^1 over \mathbb{R} . On the other hand

$$\lim_{x \to 0} \frac{f^{(1)}(x) - f^{(1)}(0)}{x - 0} = \lim_{x \to 0} 3x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) = -\lim_{x \to 0} \cos\left(\frac{1}{x}\right).$$

The previous limit does not exists; indeed, let $(u_n)_n$ and $(v_n)_n$ be the sequences defined as

$$\forall n \in \mathbb{N}^* : u_n = \frac{2}{(4n+1)\pi}, v_n = \frac{1}{2\pi n}.$$

See that both previous sequences go to zero as n goes to infinity and

$$\lim_{n \to +\infty} \cos \left(\frac{1}{u_n} \right) = 0 \neq 1 = \lim_{n \to +\infty} \cos \left(\frac{1}{v_n} \right).$$

This ensures that $\cos(1/x)$ does not have at zero. Thus, f does not have a second derivative at zero. Hence, we can not apply Taylor's formula to approximate f with a polynomial of degree two near zero. Now, see that f can be rewritten as

$$f(x) = x + x^{2}\varepsilon(x), \quad \varepsilon(x) = \begin{cases} x\sin\left(\frac{1}{x}\right)if & x \neq 0\\ 0 & if & x = 0 \end{cases}$$

moreover, $\varepsilon(x)$ goes to zero as x does; thus $f(x) = x + o(x^2)$. In conclusion, there exist functions that do not satisfy the condition of Taylor's theorem but can be approximated by polynomials.

Definition 5.2 (asymptotic expansion). Let f be a real-valued function with a real variable and $x_0 \in \mathbb{R}$, we say that f has an asymptotic expansion of order $n \in \mathbb{N}$ near x_0 , if there exists a neighbourhood $v(x_0)$ of x_0 and constants c_k with $k \in \mathbb{N}_n$ such as

$$\forall x \in v(x_0): \quad f(x) = \sum_{k=0}^{n} c_k (x - x_0)^k + o((x - x_0)^n). \tag{5.5}$$

The previous definition affirms that if f has an asymptotic expansion near x_0 , then f has a finite limit at x_0 equal to c_0 ; therefore, if the limit of f at x_0 does not exist or is infinite, then f does not have an asymptotic expansion near x_0 . On the other hand, Lemma 5.1 page 2 (assertion (a)) ensures that $o((x-x_0)^n) = o((x-x_0)^p)$ for every $p \in \mathbb{N}$ such as $p \le n$; Thus, if f has an asymptotic expansion near x_0 given by the expression (5.5); then, f has an asymptotic expansion of order f near f for every integer f and

$$f(x) = \sum_{k=0}^{p} c_k (x - x_0)^k + o((x - x_0)^p).$$

It is easy to notice that if f satisfying Taylor's theorem conditions; then, f has an asymptotic expansion.

Remark 5.2. The terminology "asymptotic expansion of order n of f near x_0 " refers to the formulas

$$f(x) = \sum_{k=1}^{n} c_k \psi_k(x) + o((x - x_0)^n),$$

such as ψ_1, \dots, ψ_n are given functions and c_1, \dots, c_n are constants. We consider the case where $\psi_k(x) = (x - x_0)^k$; hence, in this chapter, the "asymptotic expansion of order n of f near x_0 " terminology refers to the expression (5.5).

Theorem 5.4 (uniqueness of asymptotic expansion). Let f be a real-valued function with a real variable and $x_0 \in \mathbb{R}$. Then, asymptotic expansion of order n near x_0 of f, when it exists, is unique.

It is easy to check that if f has an asymptotic expansion of order one near x_0 of the form

$$f(x) = c_0 + c_1(x - x_0) + o(x - x_0),$$

then c_0 is the value of f (respectively: of the continuous extension of f) at x_0 and a_1 is the derivative of f (respectively: the derivative of the continuous extension of f) at x_0 . On the other hand, if f has an asymptotic expansion of order two near x_0 of the form

$$f(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)^2 + o((x - x_0)^2),$$

we can't affirm that f has a second derivative at x_0 (see the example at the beginning of the current section).

Proposition 5.1. Let $x_0, \lambda \in \mathbb{R}$ and f, g be functions have asymptotic expansion of order n near x_0 of the form

$$f(x) = \sum_{k=0}^{n} c_k (x - x_0)^k + o((x - x_0)^n), \quad g(x) = \sum_{k=0}^{n} d_k (x - x_0)^k + o((x - x_0)^n).$$
 (5.6)

Then

(a) λf has asymptotic expansion of order n near x_0 and

$$(\lambda f)(x) = \sum_{k=0}^{n} \lambda c_k (x - x_0)^k + o((x - x_0)^n).$$

(b) f + g has asymptotic expansion of order n near x_0 and

$$(f+g)(x) = \sum_{k=0}^{n} (c_k + d_k)(x - x_0)^k + o((x - x_0)^n).$$

(c) fg has asymptotic expansion of order n near x_0 and

$$(fg)(x) = \left(\sum_{k=0}^{n} c_k (x - x_0)^k\right) \left(\sum_{k=0}^{n} d_k (x - x_0)^k\right) + o((x - x_0)^n)$$
 (5.7)

Example 5.3. Let f and g be defined near 0 by

$$f(x) = \sin(x), \quad g(x) = \cos(x).$$

The asymptotic expansion of order 3 of f and g near zero is

$$f(x) = \sin(x) = x - \frac{x^3}{3!} + o(x^3), \quad g(x) = \cos(x) = 1 - \frac{x^2}{2!} + o(x^3).$$

- Asymptotic expansion of order 3 near 0 of f + g:

$$f(x) + g(x) = \left(x - \frac{x^3}{3!}\right) + \left(1 - \frac{x^2}{2!}\right) + o(x^3) = 1 + x - \frac{x^2}{2!} - \frac{x^3}{3!} + o(x^3).$$

- Asymptotic expansion of order 3 near 0 of fg:

$$f(x)g(x) = \left(x - \frac{x^3}{3!}\right)\left(1 - \frac{x^2}{2!}\right) + o(x^3) = x - \frac{x^3}{2!} - \frac{x^3}{3!} + \frac{x^5}{3!2!} + o(x^3) = x - \frac{4}{3}x^3 + o(x^3).$$

Proposition 5.2. Let $x_0 \in \mathbb{R}$ and f be a function satisfies $f(x_0) \neq 0$ and has asymptotic expansion of order n near x_0 of the form

$$f(x) = \sum_{k=0}^{n} c_k (x - x_0)^k + o((x - x_0)^n).$$
 (5.8)

Then

$$\frac{1}{f(x)} = c_0 \sum_{l=0}^{n} (-1)^l \left(\sum_{k=1}^{n} \frac{c_k}{c_0} (x - x_0)^k \right)^l + o((x - x_0)^n).$$
 (5.9)

Example 5.4. We want to find the asymptotic expansion of order 3 near 0 of the function f defined near zero by the expression :

$$f(x) = \frac{1}{2 - \sin(x)}.$$

Since $X = \sin(x)/2$ goes to zero as x does, and when X is near 0 we have

$$\frac{1}{1-X} = 1 + X + X^2 + X^3 + o(X^3),$$

then

$$f(x) = \frac{1}{2} \frac{1}{1 - \frac{\sin(x)}{2}} = \frac{1}{2} \left[1 + \frac{\sin(x)}{2} + \left(\frac{\sin(x)}{2}\right)^2 + \left(\frac{\sin(x)}{2}\right)^3 \right] + o(x^3).$$
 (5.10)

Using the asymptotic expansion of order 3 near 0 of sin(x) (see Table 5.2) transforms (5.10) to

$$f(x) = \frac{1}{2} \left[1 + \frac{1}{2} \left(x - \frac{x^3}{3!} \right) + \frac{1}{2^2} \left(x - \frac{x^3}{3!} \right)^2 + \frac{1}{2^3} \left(x - \frac{x^3}{3!} \right)^3 \right] + o(x^3)$$

$$= \frac{1}{2} \left[1 + \frac{1}{2} \left(x - \frac{x^3}{3!} \right) + \frac{1}{2^2} \left(x^2 + \frac{x^6}{3!^2} - 2\frac{x^5}{3!} \right) + \frac{1}{2^3} \left(x^3 - 3\frac{x^5}{3!} + 3\frac{x^7}{3!^2} - \frac{x^9}{3!^3} \right) \right] + o(x^3)$$

$$= \frac{1}{2} + \frac{x}{4} + \frac{x^2}{8} + \frac{x^3}{48} + o(x^3).$$

Proposition 5.3. Let $x_0 \in \mathbb{R}$, g be a function has asymptotic expansion of order n near x_0 and f be a function has asymptotic expansion of order m near $y_0 = g(x_0)$. We set

$$f(y) = \sum_{l=0}^{n} c_l (y - y_0)^l + o((y - y_0)^n), \quad g(x) = \sum_{k=0}^{n} d_k (x - x_0)^k + o((x - x_0)^n).$$
 (5.11)

Then $f \circ g$ has asymptotic expansion of order n near x_0 and

$$(f \circ g)(x) = \sum_{k=0}^{n} c_k \left(\sum_{l=1}^{n} d_l (x - x_0)^l \right)^k + o((x - x_0)^n).$$
 (5.12)

Δ

Example 5.5. We want to find the asymptotic expansion of order 3 near 0 of $f \circ g$ such that

$$f(x) = \sin(x), \quad g(x) = \cos(x).$$

The asymptotic expansion of order 3 of f and g near zero is

$$f(x) = \sin(x) = x - \frac{x^3}{3!} + o(x^3), \quad g(x) = \cos(x) = 1 - \frac{x^2}{2!} + o(x^3). \tag{5.13}$$

Thus

$$(f \circ g)(x) = \sin\left(1 - \frac{x^2}{2!} + o(x^3)\right) = \sin\left(1 - \frac{x^2}{2!}\right) + o(x^3).$$

Δ

Δ

See that $1 - x^2/2!$ does not go to zero as x does; therefore, we can not apply the expansion of f given by (5.13). For solve this problem recall that $\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \sin(\beta)\cos(\alpha)$, thus

$$(f \circ g)(x) = \sin\left(1 - \frac{x^2}{2!}\right) + o(x^3) = \sin(1)\cos\left(\frac{x^2}{2!}\right) + \cos(1)\sin\left(\frac{x^2}{2!}\right) + o(x^3).$$

Using the expression (5.13) we get

$$(f \circ g)(x) = \sin(1) \left[1 - \frac{1}{2!} \left(\frac{x^2}{2!} \right)^2 \right] + \cos(1) \left[\frac{x^2}{2!} - \frac{1}{3!} \left(\frac{x^2}{2!} \right)^3 \right] + o(x^3)$$

$$= \sin(1) - \frac{\sin(1)}{8} x^4 + \frac{\cos(1)}{2!} x^2 - \frac{\cos(1)}{24} x^6 + o(x^3)$$

$$= \sin(1) + \frac{\cos(1)}{2!} x^2 + o(x^3).$$

Proposition 5.4. Let $x_0 \in \mathbb{R}$ and f be a function that has asymptotic expansion of order n near x_0 of the form

$$f(x) = \sum_{k=0}^{n} c_k (x - x_0)^k + o((x - x_0)^n).$$
 (5.14)

Then

$$\int_{x_0}^{X} f(x)dx = \sum_{k=0}^{n} \frac{c_k}{k+1} (x - x_0)^{k+1} + o((x - x_0)^{n+1}).$$
 (5.15)

Example 5.6. See that near 0 and for any $n \in \mathbb{N}$ we have

$$\frac{1}{1-x} = \sum_{k=0}^{n} x^k + o(x^n).$$

Thus

$$\operatorname{Ln}(1-X) = -\int_0^X \frac{1}{1-x} dx = -\sum_{k=0}^n \int_0^X x^k dx + \operatorname{o}(X^{n+1}) = -\sum_{k=0}^n \frac{X^{n+1}}{n+1} + \operatorname{o}(X^{n+1}).$$

Proposition 5.5. Let $x_0 \in \mathbb{R}$ and f be a \mathcal{C}^n function on a neighbourhood of x_0 and has asymptotic expansion of order n near x_0 of the form

$$f(x) = \sum_{k=0}^{n} c_k (x - x_0)^k + o((x - x_0)^n).$$
 (5.16)

Then, $f^{(1)}$ has an asymptotic expansion of order n-1 near x_0 of the form

$$f^{(1)}(x) = \sum_{l=1}^{n} k c_k (x - x_0)^{k-1} + o((x - x_0)^{n-1}).$$
 (5.17)

Definition 5.3. Let $a \in \mathbb{R}^* +$ and f be a function defined over $]-\infty,-a]$, or $[a,+\infty[$ or $]-\infty,-a] \cup [a,+\infty[$. We say that f has an asymptotic expansion of order n near infinity if the function g(x) = f(1/x) has an asymptotic expansion of order n near zero.

Example 5.7. Let f be the function defined as

$$\forall x \in \mathbb{R}^* \setminus \{-2\}: \quad f(x) = \frac{x^2 - 2}{x^2 + 2x}.$$

We set X = 1/x and we defined the function g as

$$\forall X \in \mathbb{R} \setminus \left\{ -\frac{1}{2} \right\} : \quad g(X) = f\left(\frac{1}{X}\right) = \frac{1 - 2X^2}{1 + 2X} = 1 - X - X \frac{1}{1 + 2X}.$$

See that as X goes to zero 2X does; thus, near zero we have

$$\frac{1}{1+2X} = \sum_{k=0}^{n} (-2)^k X^k + o(X^n),$$

hence

$$g(X) = 1 - X - \sum_{k=0}^{n} (-2)^k X^{k+1} + o(X^{n+1}) = 1 - 2X + \sum_{k=1}^{n} (-2)^k X^{k+1} + o(X^{n+1}).$$

Now we change X by 1/x and we use the information that g(X) = f(1/X) we get

$$f(x) = 1 - \frac{2}{x} + \sum_{k=1}^{n} \frac{(-2)^k}{x^{k+1}} + o\left(\frac{1}{x^{n+1}}\right).$$

Δ

5.3. Application of asymptotic expansion.

Definition 5.4. Let f, g be functions defined near x_0 . We say that f is equivalent to g near x_0 , and we set $f \sim g$ (or $f \sim g$ if there is no confusion), if f(x)/g(x) goes to one as x_0 tends to x_0 .

Lemma 5.2. Let f be a function with an asymptotic expansion of order n near x_0 of the form

$$f(x) = \sum_{k=0}^{n} a_k (x - x_0)^k + o((x - x_0)^n), \quad \exists k \in \mathbb{N}_n : \quad a_k \neq 0.$$

Then, near x_0 we have

$$f(x) \sim \sum_{k=0}^{n} a_k (x - x_0)^k$$
.

Proposition 5.6. *Let* f, g be functions such that

$$f(x) = \sum_{k=0}^{n} a_k (x - x_0)^k + o((x - x_0)^n), \quad g(x) = \sum_{k=0}^{n} b_k (x - x_0)^k + o((x - x_0)^n),$$

such that for some $k_1, k_2 \in \mathbb{N}_n$ we have $a_{k_1} \neq 0$, and $b_{k_2} \neq 0$. Then

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \left(\sum_{k=0}^n a_k (x - x_0)^k \right) / \left(\sum_{k=0}^n b_k (x - x_0)^k \right).$$

Remark 5.3. See that if f and g is as in Proposition 5.6, then we have an indeterminate form when calculating the limit of f(x)/g(x) as x goes to x_0 . Thus, the asymptotic expansion combined with the Proposition 5.6 helps remove the indeterminate form 0/0.

Example 5.8.

- See that $(1 - \cos(x))/\sin(x)$ gives an indeterminate form at 0; on the other hand, Table 5.2 page 3 gives

$$\sin(x) = x + o(x^2), \quad 1 - \cos(x) = \frac{x^2}{2} + o(x^2).$$

Therefore

$$\lim_{x \to 0} \frac{1 - \cos(x)}{\sin(x)} = \lim_{x \to 0} \frac{\frac{x^2}{2}}{x} = 0.$$

- See that $((1+x)^{1/x} - e)/x$ gives an indeterminate form at 0; on the other hand, using Table 5.2 we get

$$(1+x)^{1/x} = e^{\operatorname{Ln}(1+x)/x} = e^{1-(x/2)+o(x)} = e^{-(x/2)} + o(x) = e - e^{\frac{x}{2}} + o(x).$$

Therefore

$$\lim_{x \to 0} \frac{(1+x)^{1/x} - e}{x} = \lim_{x \to 0} \frac{\left(e - e^{\frac{x}{2}}\right) - e}{x} = \frac{1}{2}.$$

Let f be a function that has an asymptotic expansion of order one near x_0 of the form

$$f(x) = c_0 + c_1(x - x_0) + o(x - x_0). (5.18)$$

The function f has a continuous extension at x_0 defined as

$$\tilde{f}(x) = \begin{cases} c_0 + c_1(x - x_0) + o(x - x_0) & \text{if } x \neq x_0, \\ c_0 & \text{if } x = x_0. \end{cases}$$
 (5.19)

If f is defined at x_0 , then f equals \tilde{f} .

Proposition 5.7. Let f be a function that has an asymptotic expansion of order one near x_0 as in (5.18) and continuous extension defined as in (5.19). Then, $y = c_0 + c_1(x - x_0)$ is the equation of the graph's tangent of \tilde{f} at (x_0, c_0) . Moreover, if f has an asymptotic expansion of order k_0 near x_0 , for some $k_0 \in \mathbb{N}^* \setminus \{1\}$, of the form

$$f(x) = c_0 + c_1(x - x_0) + c_{k_0}(x - x_0)^{k_0} + o((x - x_0)^{k_0}), \quad c_{k_0} \neq 0.$$
 (5.20)

Then

- (a) If k_0 is even and $a_{k_0} > 0$ (respectively $a_{k_0} < 0$), the graph of \tilde{f} is locally above (respectively bellow) the tangent at (x_0, c_0) .
- (b) If k_0 is odd, then the \tilde{f} curve intersects the tangent at (x_0, c_0) (we say that we have an inflexion point tangent).

Example 5.9. Let f be the function defined over \mathbb{R} as

$$\forall x \in \mathbb{R}^*: \quad f(x) = \frac{\sin(x)}{x}, \quad f(0) = 1.$$

See that f has an asymptotic expansion of order two near zero of the form :

$$f(x) = 1 - \frac{x}{2!} + \frac{x^2}{3!} + o(x^2).$$

Thus, the equation of the tangent to the curve of f at (0, f(0)) = (0, 0) is y = 1 - (x/2); on the other hand, since the coefficient of $x^2/3!$ is positive near zero; then, locally near zero the curve of f is above this tangent. \triangle