DISCRETE SEMICONDUCTORS

DATA SHEET

BFQ67WNPN 8 GHz wideband transistor

Product specification
File under Discrete Semiconductors, SC14

September 1995

BFQ67W

FEATURES

- High power gain
- Low noise figure
- High transition frequency
- Gold metallization ensures excellent reliability
- SOT323 envelope.

DESCRIPTION

NPN transistor in a plastic SOT323 envelope.

It is designed for wideband applications such as satellite TV tuners and RF portable communications equipment up to 2 GHz.

PINNING

PIN DESCRIPTION							
	Code: V2						
1	base						
2	emitter						
3	collector						

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter	_	_	20	٧
V _{CEO}	collector-emitter voltage	open base	_	_	10	V
I _C	DC collector current		_	_	50	mA
P _{tot}	total power dissipation	up to T _s = 118 °C; note 1	_	_	300	mW
h _{FE}	DC current gain	$I_C = 15 \text{ mA}; V_{CE} = 5 \text{ V}; T_j = 25 ^{\circ}\text{C}$	60	100	_	
f _T	transition frequency	$I_C = 15 \text{ mA}; V_{CE} = 8 \text{ V}; f = 2 \text{ GHz};$ $T_{amb} = 25 \text{ °C}$	_	8	-	GHz
G _{UM}	maximum unilateral power gain	I_c = 15 mA; V_{CE} = 8 V; f = 1 GHz; T_{amb} = 25 °C	_	13	_	dB
F	noise figure	I _c = 5 mA; V _{CE} = 8 V; f = 1 GHz	_	1.3	_	dB

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter	_	20	V
V _{CEO}	collector-emitter voltage	open base	_	10	V
V _{EBO}	emitter-base voltage	open collector	_	2.5	V
Ic	DC collector current		_	50	mA
P _{tot}	total power dissipation	up to T _s = 118 °C; note 1	_	300	mW
T _{stg}	storage temperature		-65	150	°C
Tj	junction temperature		_	175	°C

Note

1. T_s is the temperature at the soldering point of the collector tab.

Philips Semiconductors Product specification

NPN 8 GHz wideband transistor

BFQ67W

THERMAL RESISTANCE

SYMBOL	PARAMETER	CONDITIONS	THERMAL RESISTANCE
R _{th j-s}	thermal resistance from junction to soldering point	up to $T_s = 118$ °C; note 1	190 K/W

Note

1. $\,\,T_s$ is the temperature at the soldering point of the collector tab.

CHARACTERISTICS

 T_j = 25 °C, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _{CBO}	collector cut-off current	I _E = 0; V _{CB} = 5 V	_	_	50	nA
h _{FE}	DC current gain	I _C = 15 mA; V _{CE} = 5 V	60	100	_	
C _c	collector capacitance	$I_E = i_e = 0$; $V_{CB} = 8 \text{ V}$; $f = 1 \text{ MHz}$	_	0.7	_	pF
C _e	emitter capacitance	$I_C = I_C = 0$; $V_{EB} = 0.5 \text{ V}$; $f = 1 \text{ MHz}$	-	1.3	_	pF
C _{re}	feedback capacitance	I _C = 0; V _{CB} = 8 V; f = 1 MHz	_	0.5	_	pF
f _T	transition frequency	I_C = 15 mA; V_{CE} = 8 V; f = 2 GHz; T_{amb} = 25 °C	_	8	_	GHz
G _{UM}	maximum unilateral power gain (note 1)	$I_C = 15 \text{ mA}; V_{CE} = 8 \text{ V}; f = 1 \text{ GHz}$ $T_{amb} = 25 \text{ °C}$	_	13	_	dB
		I_C = 15 mA; V_{CE} = 8 V; f = 2 GHz; T_{amb} = 25 °C	_	8	_	dB
F	noise figure	$\Gamma_{\text{S}} = \Gamma_{\text{opt}}$; $I_{\text{C}} = 5$ mA; $V_{\text{CE}} = 8$ V; $f = 1$ GHz	_	1.3	_	dB
		$\Gamma_{\rm S} = \Gamma_{\rm opt}$; I _C = 15 mA; V _{CE} = 8 V; f = 1 GHz	_	2	_	dB
		$\Gamma_{\rm S} = \Gamma_{\rm opt}$; $I_{\rm C} = 5$ mA; $V_{\rm CE} = 8$ V; $f = 2$ GHz	_	2.2	_	dB
		$I_C = 5 \text{ mA}; V_{CE} = 8 \text{ V};$ $f = 2 \text{ GHz}; Z_s = 60 \Omega$	_	2.5	_	dB
		$\Gamma_{\text{S}} = \Gamma_{\text{opt}}$; $I_{\text{C}} = 15$ mA; $V_{\text{CE}} = 8$ V; $f = 2$ GHz	_	2.7	_	dB
		$I_C = 5 \text{ mA}; V_{CE} = 8 \text{ V};$ $f = 2 \text{ GHz}; Z_s = 60 \Omega$	_	3	_	dB

Note

1. $\,\,G_{UM}$ is the maximum unilateral power gain, assuming S_{12} is zero and

$$G_{UM} = 10 \log \frac{\left|S_{21}\right|^2}{\left(1 - \left|S_{11}\right|^2\right)\!\!\left(1 - \left|S_{22}\right|^2\right)} \, dB.$$

BFQ67W

In Figs 6 to 9, G_{UM} = maximum unilateral power gain; MSG = maximum stable gain; G_{max} = maximum available gain.

Philips Semiconductors Product specification

NPN 8 GHz wideband transistor

Philips Semiconductors Product specification

NPN 8 GHz wideband transistor

BFQ67W

PACKAGE OUTLINE

Plastic surface mounted package; 3 leads

SOT323

DIMENSIONS (mm are the original dimensions)

UNIT	Α	A ₁ max	bp	C	D	E	е	e ₁	HE	Lp	Q	v	w
mm	1.1 0.8	0.1	0.4 0.3	0.25 0.10	2.2 1.8	1.35 1.15	1.3	0.65	2.2 2.0	0.45 0.15	0.23 0.13	0.2	0.2

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT323			SC-70			97-02-28

Product specification Philips Semiconductors

NPN 8 GHz wideband transistor

BFQ67W

DEFINITIONS

Data Sheet Status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.