DISCRETE SEMICONDUCTORS

DATA SHEET

KMZ52Magnetic Field Sensor

Product specification

2000 Jun 09

Magnetic Field Sensor

KMZ52

FEATURES

- · High sensitivity
- · Integrated compensation coil
- · Integrated set/reset coil.

APPLICATIONS

- Navigation
- · Current and earth magnetic field measurement
- · Traffic detection.

DESCRIPTION

The KMZ52 is an extremely sensitive magnetic field sensor, employing the magnetoresistive effect of thin-film permalloy. The sensor contains two magnetoresistive Wheatstone bridges physically offset from one another by 90° and integrated compensation and set/reset coils. The integrated compensation coils allow magnetic field measurement with current feedback loops to generate outputs that are independent of drift in sensitivity. The orientation of sensitivity may be set or changed (flipped) by means of the integrated set/reset coils. A short current pulse should be applied to the compensation coils to recover (set) the sensor after exposure to strong disturbing magnetic fields. A negative current pulse will reset the sensor to reversed sensitivity. By use of periodically alternated flipping pulses and a lock-in amplifier, the output is made independent of sensor and amplifier offset.

PINNING

SYMBOL	PIN	DESCRIPTION
+I _{flip2}	1	flip coil
V _{CC2}	2	bridge supply voltage
GND2	3	ground
+I _{comp2}	4	compensation coil
GND1	5	ground
+I _{comp1}	6	compensation coil
-I _{comp1}	7	compensation coil
-V _{O1}	8	bridge output voltage
+V _{O1}	9	bridge output voltage
-I _{flip1}	10	flip coil
+I _{flip1}	11	flip coil
V _{CC1}	12	bridge supply voltage
-I _{comp2}	13	compensation coil
-V _{O2}	14	bridge output voltage
+V _{O2}	15	bridge output voltage
-I _{flip2}	16	flip coil

Magnetic Field Sensor

KMZ52

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{CC}	bridge supply voltage	_	5	8	V
S	sensitivity (uncompensated)	12	16	_	mV/V kA/m
V _{offset}	offset voltage per supply voltage	-1.5	0	+1.5	mV/V
R _{bridge}	bridge resistance	1	2	3	kΩ
R _{comp}	compensation coil resistance	100	170	300	Ω
A _{comp}	field factor of compensation coil; note 1	19	22	25	A/m mA
R _{flip}	resistance of set/reset coil	1	2	3	Ω
I _{flip}	recommended flipping current for stable operation; note 2	±800	±1000	±1200	mA
t _{flip}	flip pulse duration; note 2	1	3	100	μs

Notes

- 1. The compensation coil generates a field $H_{comp} = A_{comp} \times I_{comp}$ in addition to the external field H_{ext} . Sensor output will become zero if $H_{ext} = H_{comp}$.
- 2. Average power consumption of the flipping coil, defined by current, pulse duration and pulse repetition rate may not exceed the specified limit, see Chapter "Limiting values".

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 60134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _{CC}	bridge supply voltage	_	8	V
P _{tot}	total power dissipation	_	130	mW
T _{stg}	storage temperature	-65	+150	°C
T _{amb}	maximum operating temperature	-40	-125	°C
I _{comp}	maximum compensation current	_	15	mA
I _{flip (max)}	maximum flipping current	_	1500	mA
P _{flip (max)}	maximum flipping power dissipation	_	50	mW
V _{isol}	voltage between isolated systems: flip coil and Wheatstone bridge; compensation coil and Wheatsone bridge; flip coil and compensation coil	_	60	V

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
R _{th j-a}	terminal resistance from junction to ambient	105	K/W

Magnetic Field Sensor

KMZ52

CHARACTERISTICS

 T_{bridge} = 25 °C; V_{CC1} = V_{CC2} = 5 V; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{CC}	bridge supply voltage	note 1	_	5	8	V
Н	field strength operating range in sensor plane		-0.2	_	+0.2	kA/m
S	sensitivity	open circuit	12	16	_	$\frac{\text{mV/V}}{\text{kA/m}}$
TCS	temperature coefficient of sensitivity	$T_s = -25 \text{ to } +125 ^{\circ}\text{C}$	_	0.31	_	%/K
k _{SX}	sensitivity synchronism	note 2	92	100	108	%
TCV _O	temperature coefficient of output voltage	V _{CC} = 5 V; T _{bridge} = -25 to +125 °C	_	-0.4	_	%/K
R _{bridge}	bridge resistance	note 3	1	2	3	kΩ
TCR _{bridge}	temperature coefficient of bridge resistance	$T_{bridge} = -25 \text{ to } +125 \text{ °C};$ note 4	-	0.3	_	%/K
V _{offset}	offset voltage per supply voltage		-1.5	0	+1.5	mV/V
TCV _{offset}	temperature coefficient of offset voltage	$T_{bridge} = -25 \text{ to } +125 \text{ °C};$ note 5	-3	0	+3	<u>μV/V</u>
FH	hysteresis of output voltage		_	<u> </u>	2	%FS
R _{comp}	resistance of compensation coil	note 6	100	170	300	Ω
A _{comp}	field factor of compensation coil		19	22	25	A/m mA
R _{flip}	resistance of set/reset coil	note 7	1	2	3	Ω
TCR _{flip}	temperature coefficient of resistance of set/reset coil	$T_{flip} = -25 \text{ to } +125 ^{\circ}\text{C}$	_	0.39	_	%/K
I _{flip}	recommended flipping current for stable operation		±800	±1000	±1200	mA
t _{flip}	flip pulse duration		1	3	100	μs
R _{isol}	isolating resistance	note 8	1	<u> </u>	_	МΩ
V _{isol}	voltage between isolated systems	note 8	_	_	50	V
R _{isol_dice}	isolating resistance between dice	die 1 to die 2	1	_	_	МΩ
f	operating frequency		0	_	1	MHz
α	angle die-to-die	note 9	88	90	92	deg
β	angle dice-to-package	note 9	-5	0	+5	deg

Notes

1. Due to the ratiometric output, the same supply voltage (V_{CC}) must be applied to both dice in one KMZ52 device.

$$2. \quad k_{SX} = 100 \times \frac{A_{comp1} \times S_1}{A_{comp2} \times S_2} \%$$

3. Bridge resistance die 1: between pins 5 and 12; bridge resistance die 2: between pins 2 and 3.

$$4. \quad TCR_{bridge} = 100 \; \frac{R_{bridge(T_2)} - R_{bridge(T_1)}}{R_{bridge(T_1)} \left(T_2 - T_1\right)} \qquad \text{Where } T_1 = -25 \,^{\circ}\text{C} \; ; \; T_2 = 125 \,^{\circ}\text{C} \; .$$

Magnetic Field Sensor

KMZ52

$$5. \quad TCV_{offset} = \frac{V_{offset(T_2)} - V_{offset(T_1)}}{(T_2 - T_1)} \qquad \quad Where \ T_1 = -25^{\circ}C; \ T_2 = 125^{\circ}C \ .$$

- 6. Resistance of compensation coil die 1: between pins 6 and 7; resistance of compensation coil die 2: between pins 4 to 13.
- 7. Resistance of set/reset coil die 1: between pins 10 and 11; resistance of set/reset coil die 2: between pins 1 to 16.
- 8. Isolating resistance die 1: pins 7 and 8, 7 and 10 and 8 to 10; isolating resistance die 2: pins 1 to 2, 1 to 4 and 2 to 4.
- 9. Angle die-to-die: die 2 is turned by 90 \pm 2 degrees in anticlockwise direction with respect to die 1; angle dice-to-package: both dice in their fixed die-to-die position are tilted towards the package edges by 0 \pm 5 degrees.

Magnetic Field Sensor

KMZ52

APPLICATION INFORMATION

If the angle α between external magnetic field H and the long axis of the package is zero, H is parallel to the most sensitive direction of die 2 and perpendicular to the sensitive direction of die 1. A magnetic field turning clockwise (see Fig.2) thus yields an output proportional to $\cos\alpha$ (Vout2) and an output proportional to $\sin\alpha$ (Vout1).

