ISCC Paper Presentation

Deep Evidential Fusion with Uncertainty Quantification for Multimodal Medical Image Segmentation

Group G Hudie Sun - Jinxing Lai

University of Technology of Compiègne

November 3, 2024

- Introduction
- 2 Proposed Framework
 - Architecture
 - Feature Extraction (FE)
 - Evidence Mapping (EM)
 - Multi-modality Evidence Fusion (MMEF)
 - Loss Function
 - Training Process
- Experiments & Results
 - Dataset Description
 - Evaluation Metrics
 - Results
- Summary & Future Direction

- Introduction
- 2 Proposed Framework
- Experiments & Results
- Summary & Future Direction

Introduction

Multimodal Medical Imaging:

- PET/CT/MRI: Provides complementary information.
 - ▶ **PET**: Highlights metabolic activity.
 - CT: Shows anatomical structures.
 - ▶ **Combined**: Allows for more accurate diagnoses.

Problem:

- Traditional fusion methods assume equal reliability across modalities.
- Real-world data variation:
 - Quality, resolution, and reliability differ between modalities.
- Result: Potential segmentation errors.

Aim:

- Propose a deep evidential fusion framework.
- Utilise Dempster-Shafer Theory (DST):
 - Model uncertainty and reliability.
 - ▶ Aim for more accurate and explainable segmentation.

- Introduction
- Proposed Framework
 - Architecture
 - Loss Function
 - Training Process
- 3 Experiments & Results
- 4 Summary & Future Direction

Proposed Framework (Architecture)

Key Components of the Framework:

- The proposed framework consists of three main modules:
 - Feature Extraction module (FE)
 - Evidence Mapping module (EM)
 - Multi-modality Evidence Fusion module (MMEF)
- Each modality has its own FE and EM module.

- Introduction
- 2 Proposed Framework
 - Architecture
 - Feature Extraction (FE)
 - Evidence Mapping (EM)
 - Multi-modality Evidence Fusion (MMEF)
 - Loss Function
 - Training Process
- Experiments & Results
 - Dataset Description
 - Evaluation Metrics
 - Results
- Summary & Future Direction

- Proposed Framework
 - Architecture
 - Feature Extraction (FE)
 - Evidence Mapping (EM)
 - Multi-modality Evidence Fusion (MMEF)
 - Loss Function
 - Training Process
- - Dataset Description
 - Evaluation Metrics
 - Results

Feature Extraction (FE)

- Deep learning models: UNet, nnUnet, nnFormer, etc.
- Independent feature extraction per modality.
- Example:
 - ▶ Input: $128 \times 128 \times 128$ single-channel image.
 - Output: H-channel image (same spatial size).
- H values used in the paper:
 - ▶ PET-CT lymphoma dataset: H = 2
 - ► Multi-MRI BraTS2021 dataset: H = 4

Figure: U-NET Structure

- Introduction
- 2 Proposed Framework
 - Architecture
 - Feature Extraction (FE)
 - Evidence Mapping (EM)
 - Multi-modality Evidence Fusion (MMEF)
 - Loss Function
 - Training Process
- Experiments & Results
 - Dataset Description
 - Evaluation Metrics
 - Results
- Summary & Future Direction

Evidential Neural Network (ENN) as the EM Module

- Transforming extracted features using Evidential Neural Network (ENN).
- Output: mass functions representing evidence about the class of each voxel.
- Tensor Size: $128 \times 128 \times 128 \times (K+1)$
 - ▶ One mass for each class θ_k
 - ▶ One mass for Θ

Figure: EM-ENN Module Overview

Figure: Evidential Neural Network (ENN) Structure

Architecture

Prototypes p_1^t in Feature Space

- Modalities: $t \in \{1, \dots, T\}$
- Prototypes: p_1^t, \ldots, p_l^t
- Prototypes are obtained using k-means in the feature space extracted by the Feature Extraction (FE) module.
- Number of Prototypes (I):
 - ▶ PET-CT Lymphoma Dataset: *I* = 10
 - ▶ Multi-MRI BraTS2021 Dataset: *I* = 20

Similarity Measure s_i^t

• (First Layer) Activation of Unit i:

$$s_i^t = \alpha_i^t \exp\left(-\gamma_i^t ||x - p_i^t||^2\right)$$

- Learnable parameters:
 - $\gamma_i^t > 0, \quad \alpha_i^t \in [0, 1]$
 - ▶ Initialisation used in this paper:
 - $\star \gamma_i^t$: 0.5
 - ★ α^t_i: 0.01
- s_i^t reflects the similarity between input feature vector x and prototype p_i^t .

m_i^t : mass function with discount rate $(1-s_i^t)$

- **Second Layer**: Computes mass function m_i^t derived from the prototype p_i^t .
- Focal Sets:
 - ▶ Singletons θ_k , k = 1, ..., K
 - Universal set Θ
- Mass Calculation:

$$m_i^t(\{\theta_k\}) = u_{ik}^t s_i^t, \quad k = 1, \dots, K$$
 $m_i^t(\Theta) = 1 - s_i^t$

- Learnable parameter:
 - Membership Degree u^t_{ik}
 - ► Initialised with uniform random numbers and normalization (in this paper)

$m^t = \bigoplus_{i=1}^l m_i^t$: mass function fusion

- Third Layer: Combine I mass functions using **Dempster's Rule**.
- Fusing mass functions to summarise evidence provided by I prototypes
- Dempster's Rule:

$$(m_1 \oplus m_2)(A) = \frac{1}{1-\kappa} \sum_{B \cap C = A} m_1(B) m_2(C)$$

$$\kappa = \sum_{B \cap C = \emptyset} m_1(B) m_2(C)$$

- Introduction
- 2 Proposed Framework
 - Architecture
 - Feature Extraction (FE)
 - Evidence Mapping (EM)
 - Multi-modality Evidence Fusion (MMEF)
 - Loss Function
 - Training Process
- Experiments & Results
 - Dataset Description
 - Evaluation Metrics
 - Results
- Summary & Future Direction

Multi-modality Evidence Fusion (MMEF)

- To fuse the evidence gathered from each modality.
- MMEF performs fusion at the contour function level, not the mass function level.
- Helps facilitate plausibility-probability transformation.
- **T** discounting vectors $\beta = (\beta^1, \dots, \beta^T)$, $\beta^t = (\beta_1^t, \dots, \beta_K^t)$, represent reliability of modality t for class θ_k .
- Initialisation used in this paper: **KT reliability coefficients** β_{k}^{t} set to 0.5.

Multi-modality Evidence Fusion (MMEF) (continued)

- 1. Evidence Fusion on Contour Function Level
 - 1.1 Contour Function for Voxel n and Modality t:

$$pl_n^t(\theta_k) = m_k^t(\{\theta_k\}) + m_n^t(\Theta)$$

1.2 Discounted Contour Function for Voxel n and Modality t:

$$eta^t extstyle extstyle eta^t extstyle extstyle eta^t_k extstyle extstyle extstyle extstyle eta^t_k extstyle extstyle extstyle extstyle eta^t_k extstyle ex$$

1.3 Combined Contour Function at Voxel n:

$${}^{eta} extstyle extstyle eta_n(heta_k) \propto \prod_{t=1}^T {}^{eta^t} extstyle extstyle extstyle extstyle extstyle extstyle eta_n(heta_k), \quad k=1,\ldots,K$$

2. Transform Plausibility to Predicted Probability

$$^{eta}
ho_n(heta_k) = rac{^{eta}
ho l_n(heta_k)}{\sum_{l=1}^K {}^{eta}
ho l_n(heta_l)} = rac{\prod_{t=1}^T \left(1-eta_k^t+eta_k^t
ho l_n^t(heta_k)
ight)}{\sum_{l=1}^K \prod_{t=1}^T \left(1-eta_l^t+eta_l^t
ho l_n^t(heta_l)
ight)}, \quad k=1,\ldots,K$$

- Introduction
- 2 Proposed Framework
 - Architecture
 - Feature Extraction (FE)
 - Evidence Mapping (EM)
 - Multi-modality Evidence Fusion (MMEF)
 - Loss Function
 - Training Process
- Experiments & Results
 - Dataset Description
 - Evaluation Metrics
 - Results
- 4 Summary & Future Direction

Loss Function

Optimisation Loss Function:

$$loss = loss_s + loss_f$$

loss_s: Evaluates segmentation performance of each modality and aggregates results.

$$\textit{loss}_{s} = \sum_{t=1}^{T} \left[1 - \frac{2\sum_{n=1}^{N} \sum_{k=1}^{K} \textit{m}_{n}^{t}(\{\theta_{k}\}) \times \textit{G}_{kn}}{\sum_{n=1}^{N} \sum_{k=1}^{K} \left(\textit{m}_{n}^{t}(\{\theta_{k}\}) + \textit{G}_{kn}\right)} \right]$$

 $loss_f$: Quantifies segmentation performance after combining all T modalities.

$$loss_f = 1 - \frac{2\sum_{n=1}^{N}\sum_{k=1}^{K}{}^{\beta}p_n(\theta_k) \times G_{kn}}{\sum_{n=1}^{N}\sum_{k=1}^{K}{}^{\beta}p_n(\theta_k) + G_{kn}}$$

Note:

- N: Number of voxels.
- $G_{kn} = 1$ if voxel n belongs to class θ_k , otherwise $G_{kn} = 0$.

- Introduction
- Proposed Framework
 - Architecture
 - Feature Extraction (FE)
 - Evidence Mapping (EM)
 - Multi-modality Evidence Fusion (MMEF)
 - Loss Function
 - Training Process
- Experiments & Results
 - Dataset Description
 - Evaluation Metrics
 - Results
- Summary & Future Direction

Training Process

Learnable Parameters:

• FM Module: Weights of the deep learning models

• EM Module: $\alpha_i^t, \gamma_i^t, u_{ik}^t$

MMEF Module: β

Training Steps:

- 1 Train the FE module independently.
- Fix FE weights, optimise EM and MMEF modules.
- § Fine-tune the combined model (FE + EM + MMEF) for a few epochs.

- Introduction
- 2 Proposed Framework
- 3 Experiments & Results
 - Dataset Description
 - Evaluation Metrics
 - Results
- 4 Summary & Future Direction

- Introduction
- 2 Proposed Framework
 - Architecture
 - Feature Extraction (FE)
 - Evidence Mapping (EM)
 - Multi-modality Evidence Fusion (MMEF)
 - Loss Function
 - Training Process
- Experiments & Results
 - Dataset Description
 - Evaluation Metrics
 - Results
- Summary & Future Direction

Dataset Description: PET-CT Lymphoma

PET-CT Lymphoma Dataset:

Modalities: PET and CT

Data: 173 patients with large B-cell lymphoma

• Split: 138 training, 17 validation, 18 testing

• Labels: Background, lymphoma region

Figure: Example of PET-CT Lymphoma Image

Dataset Description: Multi-MRI Brain Tumor

Multi-MRI Brain Tumor Dataset (BraTS2021):

- Modalities: FLAIR, T1Gd, T1, T2
- Split: 834 training, 208 validation, 209 testing
- Labels: Peritumoral edema (ED, green), Enhancing Tumor (ET, yellow), necrotic tumor core or non-enhancing tumor (NCR/NET, red).

Figure: Example of MRI Brain Tumor Image

University of Technology of Compiègne

- Introduction
- 2 Proposed Framework
 - Architecture
 - Feature Extraction (FE)
 - Evidence Mapping (EM)
 - Multi-modality Evidence Fusion (MMEF)
 - Loss Function
 - Training Process
- Experiments & Results
 - Dataset Description
 - Evaluation Metrics
 - Results
- Summary & Future Direction

Evaluation Metrics

Segmentation Accuracy: Dice Score

- Measures overlap between predicted and ground truth regions.
- Formula: Dice = $\frac{2TP}{FP + 2TP + FM}$

Uncertainty Quantification: Calibration Metrics

- Expected Calibration Error (ECE):
 - Measures the gap between predicted probability and actual accuracy.
 - \triangleright Output probabilities are binned; for each bin E_b , calculate:
 - Accuracy: $\operatorname{acc}(E_b) = \frac{1}{|E_b|} \sum_{n \in E_b} \mathbb{1}(S_n = G_n)$
 - ► Confidence: $conf(E_b) = \frac{1}{|E_b|} \sum_{n \in E_b} P_n$
 - ► ECE: ECE = $\sum_{b=1}^{B} \frac{|E_b|}{N} |\operatorname{acc}(E_b) \operatorname{conf}(E_b)|$
- Brier Score (BS):
 - ► Measures the accuracy of probability predictions. ► Formula: $BS = \frac{1}{N} \sum_{n=1}^{N} (P_n G_n)^2$
- Negative Log-Likelihood (NLL):
 - Penalizes incorrect predictions, more for higher-confidence errors.
 - Formula: $NLL = -\frac{1}{N} \sum_{n=1}^{N} [G_n \log P_n + (1 G_n) \log (1 P_n)]$

- Introduction
- 2 Proposed Framework
 - Architecture
 - Feature Extraction (FE)
 - Evidence Mapping (EM)
 - Multi-modality Evidence Fusion (MMEF)
 - Loss Function
 - Training Process
- Experiments & Results
 - Dataset Description
 - Evaluation Metrics
 - Results
- Summary & Future Direction

Models for PET-CT Lymphoma Segmentation

- 1. UNet with Softmax (Baseline):
 - ▶ Standard UNet with a softmax layer for voxel classification.
- 2. UNet with Monte-Carlo (MC) Dropout and Deep Ensemble:
 - Uses MC dropout and deep ensembling to enhance uncertainty quantification.

3. ENN-UNet:

- ▶ UNet with Evidential Neural Network (ENN) as decision module.
- ► Replaces softmax layer with EM (Evidential Mapping) module.

4. RBF-UNet:

- ▶ UNet with Radial Basis Function (RBF) module for decision-making.
- ▶ Produces output belief functions similar to ENN-UNet.

• 5. MMEF-UNet(ours):

▶ It consists of encoder–decoder feature extraction (FE) modules for deep feature representation, evidence mapping (EM) modules to convert features into mass functions, and a multimodal evidence fusion (MMEF) module to integrate evidence across modalities.

Results for PET-CT Lymphoma Segmentation

Table 1 Means and standard errors of segmentation quality and reliability measures for MMUF-UNet and the referenced uncertainty quantification methods on the loundstons dataset. The best results are in bidd and the second best are underlined.					
Model	ECE;	Brier score	NLL	Dice score †	
UNet	0.056 ± 3.6 × 10 ⁻³	$0.065 \pm 3.9 \times 10^{-3}$	0.310 ± 8.8 × 10 ⁻²	0.770 ± 3.2 × 10 ⁻²	
UNet-MC	$0.063 \pm 4.6 \times 10^{-3}$	$0.062 \pm 4.9 \times 10^{-3}$	$0.400 \pm 8.7 \times 10^{-2}$	$0.801 \pm 1.1 \times 10^{-2}$	
UNet-Ensemble	$0.063 \pm 7.6 \times 10^{-2}$	$0.064 \pm 4.0 \times 10^{-3}$	$0.343 \pm 7.2 \times 10^{-2}$	$0.802 \pm 6.7 \times 10^{-3}$	
ENN-UNet	$0.050 \pm 3.5 \times 10^{-5}$	$0.062 \pm 3.9 \times 10^{-3}$	$0.191 \pm 1.4 \times 10^{-2}$	$0.805 \pm 7.1 \times 10^{-3}$	
RBF-UNet	$0.061 \pm 3.3 \times 10^{-3}$	$0.061 \pm 0.9 \times 10^{-3}$	$0.193 \pm 1.3 \times 10^{-2}$	$0.802 \pm 6.9 \times 10^{-3}$	
MMEF-UNet (ours)	$0.045 + 1.3 \times 10^{-3}$	$0.056 + 2.7 \times 10^{-3}$	$0.180 \pm 1.3 \times 10^{-3}$	$9.811 + 3.4 \times 10^{-2}$	

Figure: Benchmark

Figure: Examples of visualized segmentation results

Figure: Calibration plots for probabilistic(left) and evidential (right) deep segmentation models

Analysis of reliability coefficients.

to greater contribution to the segmentation.

Table 2 Estimated reliability coefficient θ_k^i (means and standard errors) after training for the background and lymphoma classes and the two modalities. Higher values correspond

β_k^t	Background	Lymphomas
PET	$0.999 \pm 8.9 \times 10^{-3}$	$0.996 \pm 4.5 \times 10^{-3}$
CT	$0.863 \pm 1.8 \times 10^{-2}$	$0.975 \pm 8.9 \times 10^{-3}$

Figure: Estimated reliability coefficients β_k after training of MMEF-nnFormer for classes ED, ET, and NRC/NET in the four modalities

- Introduction
- 2 Proposed Framework
- Experiments & Results
- Summary & Future Direction

Summary and Future Directions

Summary

- Proposed a decision-level fusion architecture for multi-modality medical image segmentation.
- Extracts UNet features from each modality, maps them to Dempster-Shafer mass functions, applies contextual discounting for reliability, and fuses using Dempster's rule.
- Evaluated on PET-CT (lymphoma) and multi-MRI (brain tumor) datasets, showing improved segmentation accuracy and uncertainty quantification over pixel-level fusion methods and models with softmax layers.
- Reliability coefficients align with domain knowledge, offering insights into the fusion process.

Future Directions

- **Broader Applications**: Extend DST-based fusion to other biomedical data (signals, biomarkers, genomics) and fields like remote sensing (e.g., fusion of Lidar, SAR, hyperspectral data) and human–machine interaction.
- Enhanced Fusion Methods: Consider combining entire mass functions rather than only contour functions, enabling richer outputs for mæe advanced decision strategies (e.g., partial classification)