FFT's

Fast Fourier Transform
Algorithms

What is a Fourier Transform

Well What is a Transform?

In this specific case it maps a function from its original function space into another function space via integration, where some of the properties of the original function might be more easily characterized and manipulated than in the original function space.

So what is a Fourier Transform?

A transform that decomposes a function into its constituent sinusoidal frequencies. Given the fact any function can be reproduced by adding sinusoidal functions together this can be useful for making sense of complex functions.

A great example of this is interpreting the waveform(signal or amplitude over time) of a musical chord and expressing it instead in terms of the volumes and frequencies of its constituent notes.

$$F(w) := F\{f(t)\} := \int_{-\infty}^{\infty} e^{-iwt} f(t) dt$$

The function

$$F^{-1}{F(w)} := \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{iwx} F(w) dw$$

Is called an inverse Fourier transform of F(w).

Some clarification...

Up top and to the right here we have a simple sine wave. The sound we hear is generally made up of many of these layered together such that it results in something a little like this below.

This can be hard to make sense of and interpret but if we go back to the simple sine wave and apply a fourier transform to it you can see off to our right a visible spike highlighting the frequency of the sine wave above. You apply this a more complex signal and what you get is a series of spikes that indicate the volume of all the contributing sinusoidal frequencies that make up the complete sound.

Applications

So how do you pull this off as an algorithm

At their simplest a Fast Fourier
Transform creates a discrete Fourier
transform of the input by using a
recursive divide and conquer approach

This approach generally results in O(NlogN). There exists FFT algorithms that avoid recursion such as the iterative radix-2 variant listed to the left. This is the variation I decided to try and make parallel as it's design allows for better optimization than some of the simpler FFT's.

Use Case Demonstration

```
jkl@funRuiner:~/Documents/final_proj/src$ make
g++ -g -Wall -o serial_fft serial_fft.cpp
g++ -g -Wall -fopenmp -o omp_fft omp_fft.cpp -lm
jkl@funRuiner:~/Documents/final_proj/src$ []
```


Use Case Elaborated Pt 1

```
jkl@funRuiner:~/Documents/final proj/src$ ./serial fft -sine 60 12000
FFT perfomed on 60 second sample of 12000 cycles per second in 3.627292067 seconds.
jkl@funRuiner:~/Documents/final proj/src$ ./serial fft -sine 60 12000
FFT perfomed on 60 second sample of 12000 cycles per second in 3.912764727 seconds.
jkl@funRuiner:~/Documents/final proj/src$ ./serial fft -sine 60 12000
FFT perfomed on 60 second sample of 12000 cycles per second in 3.622689726 seconds.
jkl@funRuiner:~/Documents/final proj/src$ ./serial fft -sine 60 12000
FFT perfomed on 60 second sample of 12000 cycles per second in 3.826525657 seconds.
jkl@funRuiner:~/Documents/final proj/src$ ./serial fft -sine 60 12000
FFT perfomed on 60 second sample of 12000 cycles per second in 3.858961935 seconds.
jkl@funRuiner:~/Documents/final_proj/src$ ./serial_fft -octaves 60 10000
FFT perfomed on 60 second sample of 10000 cycles per second octaves in 3.684357854 seconds.
ikl@funRuiner:~/Documents/final proi/src$ ./serial fft -octaves 60 10000
FFT perfomed on 60 second sample of 10000 cycles per second octaves in 3.781128308 seconds.
jkl@funRuiner:~/Documents/final_proj/src$ ./serial_fft -octaves 60 10000
FFT perfomed on 60 second sample of 10000 cycles per second octaves in 3.912142807 seconds.
jkl@funRuiner:~/Documents/final_proj/src$ ./serial_fft -octaves 60 10000
FFT perfomed on 60 second sample of 10000 cycles per second octaves in 4.77342253 seconds.
jkl@funRuiner:~/Documents/final_proj/src$ ./serial_fft -octaves 60 10000
FFT perfomed on 60 second sample of 10000 cycles per second octaves in 3.655579133 seconds.
jkl@funRuiner:~/Documents/final_proj/src$
```

No way to tell the frequency by looking at raw waveform when the cps gets too high Easy to see it's 12000 cycles per second now after taking the FFT

We can even identify octaves in noise!

```
jkl@funRuiner:~/Documents/final_proj/src$ ./serial_fft -noisy 60 5000
FFT perfomed on 60 second sample of 5000 cycles per second octaves burried in noise in 3.849277698 seconds.
jkl@funRuiner:~/Documents/final_proj/src$ ./serial_fft -noisy 60 5000
FFT perfomed on 60 second sample of 5000 cycles per second octaves burried in noise in 3.820664707 seconds
    funRuiner:~/Documents/final_proj/src$ ./serial_fft -noisy 60 5000
FFT perfomed on 60 second sample of 5000 cycles per second octaves burried in noise in 3.664786936 seconds
ikl@funRuiner:~/Documents/final proi/src$ ./serial fft -noisy 60 5000
FFT performed on 60 second sample of 5000 cycles per second octaves burried in noise in 3.847364550 seconds
iklefunRuiner:~/Documents/final proj/src$ ./serial fft -noisy 60 5000
FFT perfomed on 60 second sample of 5000 cycles per second octaves burried in noise in 3.735507265 seconds
ikl@funRuiner:~/Documents/final proi/src$ gnuplot
        Copyright (C) 1986-1993, 1998, 2884, 2887-2828
        Thomas Williams, Colin Kelley and many others
        gnuplot home: http://www.gnuplot.info
        fag, bugs, etc: type "help FAO"
        immediate help: type "help" (plot window: hit 'h')
Terminal type is now 'qt'
gnuplot> plot "fft.txt" using 1:2 with lines linestyle 1
                                                                                                    ...
```


Let's speed it up!

jkl@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000									jkl
FFT perfomed on 240 second sample of 12000 cycles per second octaves	burried			19.506524789	seconds,	using		hreads	FFT
jkl@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000									jkl
FFT perfomed on 240 second sample of 12000 cycles per second octaves jkl@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000		in noise	ın	19.513/25324	seconds,	using	1 t	hreads	jkl
FFT perfomed on 240 second sample of 12000 cycles per second octaves		in noise		20 259118321	seconds	usina	1 +		
jkl@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000				20.239110321	seconds,	useng			ikl
FFT perfomed on 240 second sample of 12000 cycles per second octaves		in noise		19.216030616	seconds,	using		hreads	FFT
jkl@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000									jkl
FFT perfomed on 240 second sample of 12000 cycles per second octaves		in noise		17.782944781	seconds,	using			
<pre>jkl@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000 FFT perfomed on 240 second sample of 12000 cycles per second octaves</pre>				40 074470677					jkl
jkl@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000		th hotse		10.0/44/00//	seconds,	ustng			jkl
FFT perfomed on 240 second sample of 12000 cycles per second octaves		in noise		18.261632267	seconds.	usina	1 t	hreads	FET
jkl@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000									ikl
FFT perfomed on 240 second sample of 12000 cycles per second octaves				19.554291544	seconds,	using		hreads	FFT
jkl@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000									jkl
FFT perfomed on 240 second sample of 12000 cycles per second octaves jkl@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000	burried	in noise	in!	9./80394001 :	seconds,	using 2	2 tn	reads	FFT
FFT perfomed on 240 second sample of 12000 cycles per second octaves		in noise		10 75858671	caronde	usina 2) +h		jkl
jkl@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000				10.75050071	seconos,	ustrig 2			FFT
FFT perfomed on 240 second sample of 12000 cycles per second octaves				9.770660120 :	seconds,	using 2	th ?		jkl
jkl@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000									jkl
FFT perfomed on 240 second sample of 12000 cycles per second octaves		in noise		9.951716283	seconds,	using 2	? th		FFT
jkl@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000		in mains		10 57367030					jkl
FFT perfomed on 240 second sample of 12000 cycles per second octaves jkl@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000		tii iiotse		10.5/30/026	seconus,	ustrig 2	ı un	reaus	FFT
FFT perfomed on 240 second sample of 12000 cycles per second octaves		in noise		10.49084386	seconds.	usina 2	2 th		jkl
jkl@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000									FFT
FFT perfomed on 240 second sample of 12000 cycles per second octaves				9.998158684	seconds,	using 2	th?		jkl FFT
jkl@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000									
FFT perfomed on 240 second sample of 12000 cycles per second octaves jkl@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000	burried	in noise		10.58736048	seconds,	using 2	? th	reads	jkl
FFT perfomed on 240 second sample of 12000 cycles per second octaves		in noise		5 456307754	caronde	usina A	1 +h		
jkl@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000					seconds,	ustrily -		reads	jkl
FFT perfomed on 240 second sample of 12000 cycles per second octaves		in noise		5.349337857	seconds,	using 4	l th	reads	FFT
jkl@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000									jkl
FFT perfomed on 240 second sample of 12000 cycles per second octaves		in noise		5.141493177	seconds,	using 4	l th		
<pre>jkl@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000 FFT perfomed on 240 second sample of 12000 cycles per second octaves</pre>				E 3220047E4 .	cocondo				jkl
<pre>jkl@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000</pre>		tii iiotse		3.233984731 :	seconus,	ustrig 4			ikl
FFT perfomed on 240 second sample of 12000 cycles per second octaves		in noise	in :	5.248330684	seconds.	usina 4	l th		
jkl@funRuiner:~/Documents/final_proj/src\$./omp fft -noisy 240 12000									jkl
FFT perfomed on 240 second sample of 12000 cycles per second octaves				5.135879229	seconds,	using 4	l th	reads	FFT
jkl@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000									jkl
FFT perfomed on 240 second sample of 12000 cycles per second octaves		in noise	in!	5.388392753	seconds,	using 4	l th		
<pre>jkl@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000 FFT perfomed on 240 second sample of 12000 cycles per second octaves</pre>		in noise		5 /89//3589	sarands	usina A	ı th		jkl
jkl@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000						usting -			FFT
FFT perfomed on 240 second sample of 12000 cycles per second octaves		in noise		3.158437997	seconds,	using 8	3 th		jkl FFT
jkl@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000									jkl
FFT perfomed on 240 second sample of 12000 cycles per second octaves		in noise		3.74729105 se	econds, u	sing 8	thr		FFT
jkl@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000									jkl
FFT perfomed on 240 second sample of 12000 cycles per second octaves jkl@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000		in noise		3.10228//26	seconas,	using a	s tn		FFT
FFT perfomed on 240 second sample of 12000 cycles per second octaves		in noise		3.69184363 se	econds. u	sina 8			jkl
jkl@funRuiner:~/Documents/final_proj/src\$./omp fft -noisy 240 12000									FFT
FFT perfomed on 240 second sample of 12000 cycles per second octaves				3.114802134	seconds,	using 8	th:	reads	jkl FFT
jkl@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000									jkl
FFT perfomed on 240 second sample of 12000 cycles per second octaves		in noise		3.119166466	seconds,	using 8	th		FFT
<pre>jkl@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000 FFT perfomed on 240 second sample of 12000 cycles per second octaves</pre>	burried	in noise	in	3.112531433	seconds	usina 8	1 th		
jkl@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000									FFI
FFT perfomed on 240 second sample of 12000 cycles per second octaves	burried			3.231941785	seconds,	using 8	th.	reads	jkl

@funRuiner:~/Documents/final proj/src\$./omp fft -noisy 240 12000 12 T perfomed on 240 second sample of 12000 cycles per second octaves burried in noise in 2.718229529 seconds, using 12 threads l@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000 12 perfomed on 240 second sample of 12000 cycles per second octaves burried in noise in 2.690864004 seconds, using 12 threads ofunRuiner:~/Documents/final proj/src\$./omp fft -noisy 240 12000 12 perfomed on 240 second sample of 12000 cycles per second octaves burried in noise in 2.693267943 seconds, using 12 threads ofunRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000 12 perfomed on 240 second sample of 12000 cycles per second octaves burried in noise in 2.678237528 seconds, using 12 threads @funRuiner:~/Documents/final proj/src\$./omp fft -noisy 240 12000 12 perfomed on 240 second sample of 12000 cycles per second octaves burried in noise in 2.734589907 seconds, using 12 threads efunRuiner:~/Documents/final proj/src\$./omp fft -noisy 240 12000 12 perfomed on 240 second sample of 12000 cycles per second octaves burried in noise in 2.633008943 seconds, using 12 threads @funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000 12 perfomed on 240 second sample of 12000 cycles per second octaves burried in noise in 2.642461730 seconds, using 12 threads @funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000 12 perfomed on 240 second sample of 12000 cycles per second octaves burried in noise in 2.701403514 seconds, using 12 threads @funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000 16 perfomed on 240 second sample of 12000 cycles per second octaves burried in noise in 2.387494679 seconds, using 16 threads @funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000 16 perfomed on 240 second sample of 12000 cycles per second octaves burried in noise in 2.704629000 seconds, using 16 threads l@funRuiner:~/Documents/final proj/src\$./omp fft -noisy 240 12000 16 T perfomed on 240 second sample of 12000 cycles per second octaves burried in noise in 2.364861097 seconds, using 16 threads @funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000 16 perfomed on 240 second sample of 12000 cycles per second octaves burried in noise in 2.364800174 seconds, using 16 threads @funRuiner:~/Documents/final proj/src\$./omp fft -noisy 240 12000 16 perfomed on 240 second sample of 12000 cycles per second octaves burried in noise in 2.390741552 seconds, using 16 threads [@funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000 16 perfomed on 240 second sample of 12000 cycles per second octaves burried in noise in 2.420838258 seconds, using 16 threads @funRuiner:~/Documents/final proj/src\$./omp fft -noisy 240 12000 16 perfomed on 240 second sample of 12000 cycles per second octaves burried in noise in 2.364809566 seconds, using 16 threads @funRuiner:~/Documents/final proj/src\$./omp fft -noisy 240 12000 16 @funRuiner:~/Documents/final proj/src\$./omp fft -noisy 240 12000 12 perfomed on 240 second sample of 12000 cycles per second octaves burried in noise in 2.718229529 seconds, using 12 threads @funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000 12 perfomed on 240 second sample of 12000 cycles per second octaves burried in noise in 2.690864004 seconds, using 12 threads @funRuiner:~/Documents/final proj/src\$./omp fft -noisy 240 12000 12 perfomed on 240 second sample of 12000 cycles per second octaves burried in noise in 2.693267943 seconds, using 12 threads @funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000 12 perfomed on 240 second sample of 12000 cycles per second octaves burried in noise in 2.678237528 seconds, using 12 threads funRuiner:~/Documents/final proj/src\$./omp fft -noisy 240 12000 12 perfomed on 240 second sample of 12000 cycles per second octaves burried in noise in 2.734589907 seconds, using 12 threads funRuiner: ~/Documents/final_proj/src\$./omp_fft -noisy 240 12000 12 perfomed on 240 second sample of 12000 cycles per second octaves burried in noise in 2.633008943 seconds, using 12 threads funRuiner: ~/Documents/final_proj/src\$./omp_fft -noisy 240 12000 12 perfomed on 240 second sample of 12000 cycles per second octaves burried in noise in 2.642461730 seconds, using 12 threads @funRuiner:~/Documents/final proj/src\$./omp fft -noisy 240 12000 12 perfomed on 240 second sample of 12000 cycles per second octaves burried in noise in 2.701403514 seconds, using 12 threads @funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000 16 perfomed on 240 second sample of 12000 cycles per second octaves burried in noise in 2.387494679 seconds, using 16 threads @funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000 16 perfomed on 240 second sample of 12000 cycles per second octaves burried in noise in 2,704629000 seconds, using 16 threads @funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000 16 perfomed on 240 second sample of 12000 cycles per second octaves burried in noise in 2.364861097 seconds, using 16 threads @funRuiner:~/Documents/final proj/src\$./omp fft -noisy 240 12000 16 perfomed on 240 second sample of 12000 cycles per second octaves burried in noise in 2.364800174 seconds, using 16 threads @funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000 16 perfomed on 240 second sample of 12000 cycles per second octaves burried in noise in 2.390741552 seconds, using 16 threads @funRuiner:~/Documents/final proj/src\$./omp fft -noisy 240 12000 16 perfomed on 240 second sample of 12000 cycles per second octaves burried in noise in 2.420838258 seconds, using 16 threads @funRuiner:~/Documents/final_proj/src\$./omp_fft -noisy 240 12000 16 perfomed on 240 second sample of 12000 cycles per second octaves burried in noise in 2.364809566 seconds, using 16 threads @funRuiner:~/Documents/final proj/src\$./omp fft -noisy 240 12000 16

Speed Up: A Closer Look

					S(n) = 1/ ((1-P) + P/n)							
						Amhdahls Law Speed	UP at					
			Action Time	Actual Speed up	85% Assumed	90% Assumed	95% Assumed					
		1	18.867	1		1 1	. 1	1 :	1			
		2	10.133	1.861	1.74	1.82	2 1.9	9				
		4	5.245	3.597	2.70	3.08	3.48	В				
		8	3.14	6.008	3.9	4.71	5.93	3				
		12	2.69	7.013	4.50	5.73	7.74	4				
		16	2.382	7.92	4.92	2 6.4	9.14	4				
						8 Cores + SMT	8 Cores + SMT	AMD SMT == INT	== INTEL HYPERTHREADING. First Generation AMD Ryzen Processesors 1300/1500/1700 took			
240 seconds(4min song)	ong)	1 Thread	2 Threads	4 Threads	8 Threads	12 Threads	16 Threads	a small but meas	surable single threaded hit with SMT enabled. Any time we push over 8 threads there is			
		19.506	9.78	5.178	3.158	2.718	2.387	potentially risk f	or single thread performance degredation. Not sure if this will come into play but making	g notes of it.		
		19.513	10.12	5.349	3.114	2.69	2.382					
		18.23	9.77	5.141	3.162	2.693	2.364					
		19.216	9.951	5.233	3.114	2.782	2.364		Notes on Data Selection			
		17.782	10.573	5.248	3.114	2.734	2.39		After doing 8 consecutive runs per thread alotment I did another set of runs			
		18.874	10.49	5.135	3.119	2.633	2.42		for outlier replacement. Selectively replacing any obvious high point outliers from each categories	ory		
		18.261	9.998	5.388	3.112	2.642	2.364		The idea is there is unlikely to be serious error of measurement in the negative direction			
		19.554	10.383	5.28	3.231	2.701	2.392		but competing resources on my machine and the scheduler could skew the data high.			
									I didn't bother doing a Standard deviation check, just intuitively removed obvious outliers.			
	AVG OF 8 RUNS						2.382 Seconds					
		18.867 seconds	10.133 seconds	5.245 seconds	3.1405 seconds	s 2.69 Seconds						

I used a table to estimate parallelization against my real world data and kept adjusting P until I reached the best fit I could. There was no perfect P that fit all data points perfectly but 94% seems to be the sweet spot. It's notable performance curve worsens as thread count gets closer to the total cores available. There is still improvement but lets and less as we go further.

Matching Each Point to an Efficiency Curve

Comparative Speed Analysis.

My 94% parallelization vs 100%

My 94% parallelization vs theoretical best case scenario for FFTS of 96.7% according to https://lirias.kuleuven.be/retrieve/200966

