Matemática atuarial

Aula 18 Comutação

Danilo Machado Pires danilo.pires@unifal-mg.edu.br Leonardo Henrique Costa leonardo.costa@unifal-mg.edu.br

https://atuaria.github.io/portalhalley/

Tábua de Mortalidade, Tábua de Vida ou Tábua Atuarial

Idade (x)	q_x	p_x	l_x
25	0,00077	0,99923	100000
26	0,00081	0,99919	99923
27	0,00085	0,99915	99842
28	0,00090	0,99910	99757
29	0,00095	0,99905	99667
30	0,00100	0,99900	99572
31	0,00107	0,99893	99472
32	0,00114	0,99886	99365
33	0,00121	0,99879	99251
34	0,00130	0,99870	99131
35	0,00139	0,99861	99002
ω	1	0	0

- Utilizada para calcular as probabilidades de vida e morte de uma população, em função da idade.
 - As tábuas são criadas a partir de dados provenientes de:
 - Censos Populacionais,
 - Levantamentos sobre apólices de seguros de vida,
 - Experiência de fundos de pensão,
 - Registro civil,
- Livros de batismo e enterro ...
- Apresenta probabilidade de morte e sobrev ida de um determinado número de indivíduos em uma certa idades, entre outros dados que variam conforme a tábua.
- Aproximações.

Lei de mortalidade

Descreve matematicamente o comportamento da mortalidade ao longo da vida de x.

- ightharpoonup Lei de Moivre $l_x = k(\omega x)$
- \blacktriangleright Lei de Gomperzt $l_x=kg^{c^x}$ ${}_xp_0=g^{c^x-1}, \quad k=\frac{l_0}{g} \quad , \ c=e^k$
- ho Lei de Makeham $l_x = ks^x g^{c^x}$ $S = e^{-A}$

Em que a constante A é responsável pela morte por causas acidental.

Comutação

- Comutação é a troca de ordem dos elementos, todavia, sem perder a sua realidade.
- No contexto atuarial esse processo é utilizado como forma de simplificar o cálculo do prêmio puro de diversos produtos atuariais
- As funções de comutação são propositadamente elaboradas de forma que seus resultados ao serem combinados levam a alguns valores atuariais conhecidos.
- Essas funções são organizadas numa tabela chamada de Tábua de comutação.

Tábuas de comutação

- > Johanes Nikolaus Tetens (Alemanha, 1736 1807).
 - Matemática e atuário, (1785).

- ➤ Griffith Davies (Inglaterra- 1750-1833).
 - ➤ Atuário, (1825).

Tábuas de comutação

- A necessidade de se trabalhar com uma taxa de juros constante, ...
- A tábua de comutação não é adequada ao uso com Tábuas geracionais.
- ➤ Perde-se a noção da natureza aleatória dos quais se originam os produtos, ...

 \triangleright É o resultado das operações com os dados obtidos das colunas dos valores de l_x e d_x associados algebricamente com o valor da taxa de juros.

Principais funções de comutação (Sistema moderno)

$$D_x$$
, N_x , S_x , C_x , M_x , R_x

Uma tábua de comutação é constituída a partir de dois elementos:

- i) Tábua de vida
- ii) Taxa de juros

Idade x, q_x , p_x , d_x e l_x

 q_x : Probabilidade de morte de uma pessoa com idade x antes de completar a idade de x+1 anos.

 p_x : $1 - q_x$: Probabilidade de sobrevivência de uma pessoa com idade x antes de completar a idade x + 1.

VARIAÇÕES

 $_{n}q_{x}$: Probabilidade de uma pessoa com idade x morrer antes de completar a idade de x + n anos.

 $_{n}p_{x}$: Probabilidade que uma pessoa com idade x, sobreviva pelo menos mais n anos.

Idade
$$x$$
, q_x , p_x , d_x e l_x

 d_x : Número de pessoas que faleceram entre a idade x e x + 1.

 l_x : Número (hipotético) de pessoas vivas com idade x.

$$l_x = l_0 x p_0 = l_0 S_{T_0}(x)$$

$$S_{T_0}(x) = \frac{l_x}{l_0}$$

$$d_{x} = l_{x} - l_{x+1}$$

$$_{n}p_{x} = \frac{l_{x+n}}{l_{x}}$$

Demonstração:

$$_{n}p_{x} = P(T_{x} > n) = P(T_{0} > n + x | T_{0} > x) = \frac{S_{T_{0}}(n + x)}{S_{T_{0}}(x)}$$

$${}_{n}p_{x} = \frac{\frac{l_{x+n}}{l_{0}}}{\frac{l_{x}}{l_{0}}} = \frac{l_{x+n}}{l_{x}}$$

consequentemente

$$_{n}q_{x} = \frac{l_{x} - l_{x+n}}{l_{x}}$$

É fácil notar que:

$$_{m+l}p_{x}=(_{m}p_{x})(_{l}p_{x+m})$$

pois

$$_{m+l}p_{x} = \frac{l_{x+m+l}}{l_{x}} \times \frac{l_{x+m}}{l_{x+m}} = \frac{l_{x+m}}{l_{x}} \times \frac{l_{x+m+l}}{l_{x+m}}$$

$$_{m+l}p_x = {}_{m}p_x \times {}_{l}p_{x+m}$$

$$d_{x} = l_{x} - l_{x+1}$$

$$nq_{x} = \frac{l_{x} - l_{x+n}}{l_{x}}$$

$$np_{x} = \frac{l_{x+n}}{l_{x}}$$

$$m+lp_{x} = (mp_{x})(l_{x+m})$$

$$\mu(x) \approx \frac{1}{2}[\ln(l_{x-1}) - \ln(l_{x+1})]$$

Coluna D_{x}

$$D_{x} = l_{x}v^{x} = \frac{l_{x}}{(1+i)^{x}}$$

Funções de comutação- D_{χ}

Suponha
$$i = 3\%$$
 então $D_x = l_x v^x = \frac{l_x}{(1,03)^x}$

X	qx	рх	lx	dx	VX	Dx
0	0,00404	0,99596	100000	404	1	100000
1	0,00158	0,99842	99596	157,36168	0,961538	95765,3846
2	0,00089	0,99911	99438,6383	88,500388	0,924556	91936,6109
3	0,00072	0,99928	99350,1379	71,532099	0,888996	88321,9109
4	0,00063	0,99937	99278,6058	62,545522	0,854804	84863,7683
5	0,00057	0,99943	99216,0603	56,553154	0,821927	81548,3694
6	0,00053	0,99947	99159,5072	52,554539	0,790315	78367,1989
7	0,0005	0,99950	99106,9526	49,553476	0,759918	75313,1387
8	0,00049	0,99951	99057,3991	48,538126	0,73069	72380,2713
9	0,00048	0,99952	99008,861	47,524253	0,702587	69562,3125
10	0,00048	0,99952	98961,3368	47,501442	0,675564	66854,7332
11	0,00049	0,99951	98913,8353	48,467779	0,649581	64252,5413
12	0,0005	0,99950	98865,3675	49,432684	0,624597	61751,0169
13	0,00051	0,99949	98815,9349	50,396127	0,600574	59346,2898
14	0,00052	0,99948	98765,5387	51,35808	0,577475	57034,6377
15	0,00054	0,99946	98714,1807	53,305658	0,555265	54812,4804
16	0,00055	0,99945	98660,875	54,263481	0,533908	52675,8478

$$D_4 = \frac{99278,6058}{(1,03)^4}$$

$$D_{10} = \frac{98961,3368}{(1,03)^{10}}$$

TÁBUA DE	SOBREVIV	ÊNCIA - AT	-49						
X	qx	рх	lx	dx	VX	Dx			
0	0,00404	0,99596	100000	404	1	100000			
1	0,00158	0,99842	99596	157,3617	0,970874	96695,15			
2	0,00089	0,99911	99438,64	88,50039	0,942596	93730,45			
3	0,00072	0,99928	99350,14	71,5321	0,915142	90919,45			
4	0,00063	0,99937	99278,61	62,54552	0,888487	88207,76		Fator de a	tualização
5	0,00057	0,99943	99216,06	56,55315	0,862609	85584,65		i	3%
6	0,00053	0,99947	99159,51	52,55454	0,837484	83044,53			
7	0,0005	0,99950	99106,95	49,55348	0,813092	80583,02			
8	0,00049	0,99951	99057,4	48,53813	0,789409	78196,83			
9	0,00048	0,99952	99008,86	47,52425	0,766417	75882,05	D_{j}	$c = v^x l_x$	
10	0,00048	0,99952	98961,34	47,50144	0,744094	73636,53			
11	0,00049	0,99951	98913,84	48,46778	0,722421	71457,46	nax.	1	
12	0,0005	0,99950	98865,37	49,43268	0,70138	69342,18	- 70 -	$\overline{(1+i)^x}$	
13	0,00051	0,99949	98815,93	50,39613	0,680951	67288,84			
14	0,00052	0,99948	98765,54	51,35808	0,661118	65295,66			
15	0,00054	0,99946	98714,18	53,30566	0,641862	63360,88			
16	0,00055	0,99945	98660,87	54,26348	0,623167	61482,2			

Coluna N_x

$$N_{x} = \sum_{t=0}^{\omega - x} D_{(x+t)} = \frac{l_{x}}{(1+i)^{x}} + \frac{l_{x+1}}{(1+i)^{x+1}} + \frac{l_{x+2}}{(1+i)^{x+2}} + \dots + \frac{l_{\omega - x}}{(1+i)^{\omega - x}}$$

 ω corresponde a idade máxima atingida

Funções de comutação- N_{χ}

Suponha
$$i = 3\%$$
 então: $N_x = \sum_{t=0}^{\omega - x} D_{(x+t)} = \sum_{t=0}^{\omega - x} \frac{l_{x+t}}{(1,03)^{x+t}}$

					7.4		
Х	qx	рх	lx	dx	VX	Dx	Nx
0	0,00404	0,99596	100000	404	1	100000	2407336,151
1	0,00158	0,99842	99596	157,36168	0,961538	95765,3846	2307336,151
2	0,00089	0,99911	99438,6383	88,500388	0,924556	91936,6109	2211570,767
3	0,00072	0,99928	99350,1379	71,532099	0,888996	88321,9109	2119634,156
4	0,00063	0,99937	99278,6058	62,545522	0,854804	84863,7683	2031312,245
5	0,00057	0,99943	99216,0603	56,553154	0,821927	81548,3694	1946448,477
6	0,00053	0,99947	99159,5072	52,554539	0,790315	78367,1989	1864900,107
7	0,0005	0,99950	99106,9526	49,553476	0,759918	75313,1387	1786532,908
8	0,00049	0,99951	99057,3991	48,538126	0,73069	72380,2713	1711219,77
9	0,00048	0,99952	99008,861	47,524253	0,702587	69562,3125	1638839,498
10	0,00048	0,99952	98961,3368	47,501442	0,675564	66854,7332	1569277,186
11	0,00049	0,99951	98913,8353	48,467779	0,649581	64252,5413	1502422,453
12	0,0005	0,99950	98865,3675	49,432684	0,624597	61751,0169	1438169,912
13	0,00051	0,99949	98815,9349	50,396127	0,600574	59346,2898	1376418,895
14	0,00052	0,99948	98765,5387	51,35808	0,577475	57034,6377	1317072,605
15	0,00054	0,99946	98714,1807	53,305658	0,555265	54812,4804	1260037,967
					6 L. Y		
115	1	0,00000	0	0	0,010994	0	0

$$N_3 = \sum_{t=0}^{112} D_{(3+t)} = D_3 + D_4 + \dots D_{115}$$

$$N_{10} = \sum_{t=0}^{105} D_{(10+t)} = D_{10} + D_{11} + \dots + D_{115}$$

$$N_{115} = \sum_{t=0}^{0} D_{(115+t)} = D_{115}$$

3	X	qx	рх	lx	dx	VX	Dx	Nx		_
91	87	0,16033	0,83967	16325,58		0,076412	1247,47			
92	88	0,17512	0,82488	13708,1	-	0,074186				
93	89	0,19115	0,80885	11307,53	2161,435	-	-			
94	90	0,20849	0,79151	9146,1	1906,87					
95	91	0,22719	0,77281		1644,68		-			
96	92	0,24733	0,75267	5594,549	1383,7					
97	93	0,26896	0,73104	4210,849	1132,55		-			115–98
98	94	0,29212	0,70788	3078,299	899,2327		191,2545		$N_{\alpha\alpha} =$	$\sum_{t=0}^{\infty} D_{(98+t)} = D(98) + [D(99) + \cdots D(115)]$
99	95	0,31683	0,68317	2179,066		0,06032	131,442		90	t=0
100	96	0,34312	0,65688	1488,673	510,7934	0,058563	87,18177			,
101	97	0,37097	0,62903	977,8794	362,7639	0,056858	55,59996			
102	98	0,40035	0,59965	615,1154	246,2615		33,95538	=H103+G1	02	
103	99	0,4312	0,56880	368,854	159,0498	0,053594	19,7683	41,2531		A. Z.
104	100	0,46342	0,53658	209,8041	97,22744	0,052033	10,91671	21,48481		N_{99}
105	101	0,49687	0,50313	112,5767	55,93599	0,050517	5,687074	10,5681		
106	102	0,53139	0,46861	56,64072	30,09831	0,049046	2,777997	4,881027		115 114
107	103	0,56676	0,43324	26,54241	15,04317	0,047617	1,263881	2,103029		115–114
108	104	0,60271	0,39729	11,49923	6,930702	0,046231	0,531615	0,839148	N_1	$D_{114} = \sum_{t=0}^{\infty} D_{(114+t)} = D(114) + D(115)$
109	105	0,63896	0,36104	4,56853	2,919108	0,044884	0,205054	0,307533		t=0
110	106	0,67514	0,32486	1,649422	1,113591	0,043577	0,071876	0,102479		
111	107	0,7109	0,28910	0,535831	0,380922	0,042307	0,02267	0,030603		
112	108	0,74582	0,25418	0,154909	0,115534	0,041075	0,006363	0,007933		
113	109	1	0,00000	0,039375	0,039375	0,039879	0,00157	0,00157		
114	110	1	0,00000	0	0	0,038717	0	0		
115	111	1	0,00000	0	0	0,03759	0	0		ω -x
116	112	1	0,00000	0	0	0,036495	0	0		$N_{115} = \sum_{t=0}^{\omega - x} D_{(115+t)} = D(115)$
117	113	1	0,00000	0	0	0,035432	0	0		
118	114	1	0,00000	0	0	0,0344	0	0		t=0
119	115	1	0,00000	0	0	0,033398	0	0		

 \triangleright Coluna S_x

$$S_x = \sum_{t=0}^{\omega - x} N_{x+t} = N_x + N_{x+1} + N_{x+2} + \dots + N_{\omega - x}$$

 ω corresponde a idade máxima atingida.

$$S_{x} = \sum_{t=0}^{\omega - x} N_{x+t} = \sum_{t=0}^{\omega - x} \left(\sum_{k=0}^{\omega - x+k} D_{(x+k+t)} \right) = \sum_{t=0}^{\omega - x} \left(\sum_{k=0}^{\omega - x+k} l_{x+k+t} v^{x+k+t} \right)$$

A utilização de S_x pertence ao cálculo de rendas crescentes, ...

 \triangleright Coluna C_{χ}

$$C_{x} = v^{x+1}d_{x}$$

Lembrando que $d_x = l_x - l_{x+1}$ e $q_x = \frac{d_x}{l_x}$, logo:

$$C_{x} = v^{x+1}d_{x} = v^{x+1}q_{x}l_{x}$$

Suponha
$$i = 3\%$$
 então $C_x = v^{x+1}d_x$

x	qx	рх	VX	lx	dx	Dx	Nx	Sx	Сх
0	0,00404	0,99596	1,00000	1000000	4040	1000000	29828309	7,44E+08	3922,33
1	0,00158	0,99842	0,97087	995960	1573,62	966951,5	28828309	7,14E+08	1483,285
2	0,00089	0,99911	0,94260	994386	885,004	937304,5	27861357	6,85E+08	809,9039
3	0,00072	0,99928	0,91514	993501	715,321	909194,5	26924053	6,58E+08	635,5534
4	0,00063	0,99937	0,88849	992786	625,455	882077,6	26014858	6,31E+08	539,5232
5	0,00057	0,99943	0,86261	992161	565,532	855846,5	25132781	6,05E+08	473,6238
6	0,00053	0,99947	0,83748	991595	525,545	830445,3	24276934	5,79E+08	427,3165
7	0,00050	0,99950	0,81309	991070	495,535	805830,2	23446489	5,55E+08	391,1797
8	0,00049	0,99951	0,78941	990574	485,381	781968,3	22640659	5,32E+08	372,0043
9	0,00048	0,99952	0,76642	990089	475,243	758820,5	21858690	5,09E+08	353,6251
10	0,00048	0,99952	0,74409	989613	475,014	736365,3	21099870	4,87E+08	343,1605
11	0,00049	0,99951	0,72242	989138	484,678	714574,6	20363505	4,66E+08	339,9433
12	0,00050	0,99950	0,70138	988654	494,327	693421,8	19648930	4,46E+08	336,6125
13	0,00051	0,99949	0,68095	988159	503,961	672888,4	18955508	4,26E+08	333,1778
14	0,00052	0,99948	0,66112	987655	513,581	652956,6	18282620	4,07E+08	329,648
15	0,00054	0,99946	0,64186	987142	533,057	633608,8	17629663	3,89E+08	332,1832
16	0,00055	0,99945	0,62317	986609	542,635	614822	16996055	3,71E+08	328,303

$$C_5 = v^{5+1}(l_5 - l_6) = q_5 l_5(v^6)$$

$$C_{10} = v^{10+1} (l_{10} - l_{11}) = q_{10} l_{10} v^{11}$$

Funções de comutação- C_{χ}

	Α	В	С	D	Е	F	G	Н	1	J	K	L	M
1	χ	qx	рх	lx	vx	Dx	Nx	Sx	Сх				
2	0	0,00231	0,99769	100000	1	100000	2031767,454	39001334,26	=B2*D2*E3				
3	1	0,00091	0,99909	99768,9	0,952381	95018	1931767,454	36969566,81	81,98696				
4	2	0,00050	0,99950	99678,51	0,907029	90411,35	1836749,454	35037799,36	43,39745			Fator de	atualização
5	3	0,00041	0,99959	99628,27	0,863838	86062,65	1746338,107	33201049,9	33,44149			i	5%
6	4	0,00036	0,99964	99587,62	0,822702	81930,98	1660275,46	31454711,8	27,85653				
7	5	0,00032	0,99968	99552,07	0,783526	78001,65	1578344,477	29794436,34	24,06908				
8	6	0,00030	0,99970	99519,82	0,746215	74263,22	1500342,825	28216091,86	21,28879				
9	7	0,00029	0,99971	99489,86	0,710681	70705,59	1426079,606	26715749,04	19,25885				
10	8	0,00033	0,99967	99461,41	0,676839	67319,39	1355374,02	25289669,43	21,0293			10.1	
11	9	0,00036	0,99964	99428,78	0,644609	64092,68	1288054,625	23934295,41	22,09671		$C_{10} =$	$v^{10+1}c$	$q_{10}l_{10}$
12	10	0,00039	0,99961	99392,79	0,613913	61018,55	1223961,946	22646240,78	22,66403				
13	11	0,00041	0,99959	99354,03	0,584679	58090,24	1162943,395	21422278,84	22,84883				
14	12	0,00043	0,99957	99312,99	0,556837	55301,19	1104853,154	20259335,44	22,69982				
15	13	0,00045	0,99955	99270,19	0,530321	52645,1	1049551,963	19154482,29	22,36163				
16	14	0,00046	0,99954	99225,91	0,505068	50115,83	996906,8625	18104930,33	21,86005				
17	15	0,00047	0,99953	99180,47	0,481017	47707,5	946791,0329	17108023,46	21,35479				
18	16	0,00048	0,99952	99133,85	0,458112	45414,36	899083,5315	16161232,43	20,8041				
40	47	0.00050	0.00054	0000647	0 405007	*****	050550 4707	450504400	20 20024				

Funções de comutação- M_{χ}

 \triangleright Coluna M_x

$$M_x = C_x + C_{x+1} + C_{x+2} + \dots + C_{\omega-x} = \sum_{t=0}^{\omega-x} C_{x+t}$$

$$M_{x} = v^{x+1}q_{x}l_{x} + v^{x+2}q_{x+1}l_{x+1} + v^{x+3}q_{x+2}l_{x+2} + \cdots$$

Funções de comutação- M_χ

	Α	В	С	D	F	F	G	Н	1	1	К	1	M	N	0	
1	X	qx	рх	lx	VX	Dx	Nx	Cx	Mx	,	K	L	IVI	14		•
89	87	0,09696	0,90304	36000.82	0,014339	516.2302	2909,279962									_
90	88	0,10563	0,89437	-		-	2393,049748	-								
91	89	0,11486	0,88514		0,013006		1949,071114	41,36771								
92	90	0,12461	0,87539	•	0,012387	-	1570,898994	37,83413								
93	91	0,13486		22529,45			1252,102778	34,1367								
94	92	0,14558	0,85443	19491,11	0,011235	218,9884	986,3214621	30,36117								
95	93	0,15673		16653,69	0,0107	-	767,3330982									
96	94	0,16829	0,83171	14043,61	0,010191		589,1339241	22,9379								
97	95	0,18025	0,81976	11680,21	0,009705	113,3619	446,0191126	19,45992								7
98	96	0,19257	0,80744	9574,91	0,009243	88,50381	332,6571889	16,23118			$M_{102} =$	$= C_{102}$	+ [<i>C</i> ₁₀₃	₃ + ··· +	- C ₁₁₅]	
99	97	0,20523	0,79477	7731,117	0,008803	68,05817	244,1533757	13,30239					- 20.			
100	98	0,21868	0,78132	6144,468	0,008384	51,51491	176,0952078	10,72899								
101	99	0,23337	0,76663	4800,777	0,007985	38,33284	124,5802952	8,519783						V		
102	100	0,24974	0,75026	3680,415	0,007604	27,98768	86,24746001	6,65683						1/1		
103	101	0,26824	0,73176	2761,264	0,007242	19,9981	58,25978086	5,108792		K				M_{101}		
104	102	0,28931	0,71070	2020,591	0,006897	13,93702	38,26167783	3,840047	12,11497							
105	103	0,31339	0,68661	1436,024	0,006569	9,433306	24,32465701	2,815536	8,274926							
106	104	0,34094	0,65906	985,987	0,006256	6,168564	14,89135129	2,002962	5,45939							
107	105	0,37240	0,62760	649,8246	0,005958	3,871861	8,722786896	1,373213	3,456427							
108	106	0,40821	0,59179	407,8312	0,005675	2,314274	4,850925899	0,899724	2,083215							
109	107	0,44882	0,55118	241,3504	0,005404	1,304347	2,536651893	0,557544	1,183491							
110	108	0,49468	0,50532	133,0268	0,005147	0,684691	1,232305022	0,322575	0,625947							
111	109	0,54623	0,45377	67,22098	0,004902	0,329512	0,547613599	0,171419	0,303372		1/	- C	1 C			
112	110	0,60392	0,39608	30,5028	0,004668	0,142402	0,218101612	0,081904	0,131954		W ₁₁	$L_4 = C_1$	14 + 61	115		
113	111	0,66819	0,33181	12,08164	0,004446	0,053717	0,075699399	0,034184	0,05005							
114	112	0,73948	0,26052	4,008857	0,004234	0,016975	0,021982164	0,011955	0,015866							
115	113	0,81825	0,18175	1,044375	0,004033	0,004212	0,005006802	0,003282	0,003911	./		K				
116	114	0,90495	0,09506	0,189811	0,003841	0,000729	0,000795021	0,000628	0,000628	K	M_{11}	$L_{5} = C_{1}$	15			
117	115	1,00000	0,00000	0,018042	0,003658	6,6E-05	6,59974E-05	0	0				-			
118																~
H 4	▶ ▶ Plar	n1 / Plan2	Plan3 🥂]/								IIII			-	
Pront	0												1009	% 🗩	-0-	+

 \triangleright Coluna R_x

$$R_{x} = \sum_{t=0}^{\omega - x} M_{x+t} = M_{x} + M_{x+1} + M_{x+2} + \dots + M_{\omega - x}$$

A utilização de R_x pertence ao cálculo de seguro contra morte de capital crescente, ...

	Α	В	С	D	Е	F	G	Н	1	J	K	L	М
1	Х	qx	рх	lx	VX	Dx	Nx	Sx	Сх	Mx	Rx		
2	0	0,00231	0,99769	100000	1	100000	2031767,454	39001334,26	220,0952	3249,169	174561,1		
3	1	0,00091	0,99909	99768,9	0,952381	95018	1931767,454	36969566,81	81,98696	3029,074	171311,9		
4	2	0,00050	0,99950	99678,51	0,907029	90411,35	1836749,454	35037799,36	43,39745	2947,087	168282,8	Fator de at	tualização
5	3	0,00041	0,99959	99628,27	0,863838	86062,65	1746338,107	33201049,9	33,44149	2903,689	165335,7	i	5%
6	4	0,00036	0,99964	99587,62	0,822702	81930,98	1660275,46	31454711,8	27,85653	2870,248	162432		
7	5	0,00032	0,99968	99552,07	0,783526	78001,65	1578344,477	29794436,34	24,06908	2842,391	159561,8		
8	6	0,00030	0,99970	99519,82	0,746215	74263,22	1500342,825	28216091,86	21,28879	2818,322	156719,4		
9	7	0,00029	0,99971	99489,86	0,710681	70705,59	1426079,606	26715749,04	19,25885	2797,033	153901,1		
10	8	0,00033	0,99967	99461,41	0,676839	67319,39	1355374,02	25289669,43	21,0293	2777,774	151104		
11	9	0,00036	0,99964	99428,78	0,644609	64092,68	1288054,625	23934295,41	22,09671	2756,745	148326,3		
12	10	0,00039	0,99961	99392,79	0,613913	61018,55	1223961,946	22646240,78	22,66403	2734,648	145569,5		
13	11	0,00041	0,99959	99354,03	0,584679	58090,24	1162943,395	21422278,84	22,84883	2711,984	142834,9		
14	12	0,00043	0,99957	99312,99	0,556837	55301,19	1104853,154	20259335,44	22,69982	2689,136	140122,9		
15	13	0,00045	0,99955	99270,19	0,530321	52645,1	1049551,963	19154482,29	22,36163	2666,436	137433,8		
16	14	0,00046	0,99954	99225,91	0,505068	50115,83	996906,8625	18104930,33	21,86005	2644,074	134767,3		
17	15	0,00047	0,99953	99180,47	0,481017	47707,5	946791,0329	17108023,46	21,35479	2622,214	132123,2		
18	16	0,00048	0,99952	99133,85	0,458112	45414,36	899083,5315	16161232,43	20,8041	2600,859	129501		
19	17	0,00050	0,99951	99086,17	0,436297	43230,97	853669,1707	15262148,9	20,38031	2580,055	126900,2		
20	18	0,00051	0,99949	99037,12	0,415521	41151,97	810438,2026	14408479,73	19,9881	2559,675	124320,1		
21	19	0,00053	0,99947	98986,61	0,395734	39172,36	769286,2323	13598041,53	19,6981	2539,687	121760,4		
22	20	0,00055	0,99945	98934,35	0,376889	37287,32	730113,8678	12828755,29	19,49594	2519,989	119220,8		
22	04	0.00057	0.00040	22222	0.00040	25 402 22	C0000C FF0	*******	40.0000	2500 400	4467000		

$$D_{x} = l_{x}v^{x}$$

$$C_{x} = v^{x+1}d_{x}$$

$$N_{x} = \sum_{t=0}^{\omega - x} D_{(x+t)}$$

$$M_{x} = \sum_{t=0}^{\omega - x} C_{x+t}$$

$$S_{x} = \sum_{t=0}^{\omega - x} N_{x+t}$$

$$R_{x} = \sum_{t=0}^{\omega - x} M_{x+t}$$

- Portal Halley: https://atuaria.github.io/portalhalley/
- Bowers et al. Actuarial Mathematics, 2ª edição. SOA, 1997.
- D. C. M. Dickson, M. R. Hardy and H. R. Waters.
 Actuarial Mathematics for Life Contingent Risks. Cambridge University Press, 2019.
- CORDEIRO FILHO, Antônio. Cálculo Atuarial Aplicado: teoria e aplicações, exercícios resolvidos e propostos. São Paulo: Atlas, 2009.
- GARCIA, J. A.; SIMÕES, O. A. Matemática actuarial Vida e pensões. 2. ed. Coimbra: Almedina, 2010.

 PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUES, R. Fundamentos da matemática atuarial: vida e pensões. Curitiba :CRV,2022.

