13ig () Notation I for worst case when hound $\frac{1}{f(n)} \leq (g(n))$ Constant of 2 Month

N=3n+8 $3n + 8 \leq Cq(n)$ 3n+8 < 40 3n+8=4n 3 8 1 is worker bound

 $+(n)=n^{2}+1$ (n^2) $n^2+1 \leq c(n)$ $n^2 + 1 \leq 2n^2$ -F88 NG (=) $n^2 + 1 - 2n^2$

$$f(n) = n' + 100n^{2} + 5$$

$$(n') \qquad n' + 100n^{2} + 5 \le cg(n)$$

$$n'' + 100n^{2} + 5 \le 2n^{4}$$

$$c = 2 \qquad n'' + 100n^{2} + 5 = 2n^{4}$$

$$f(n) = 2n^{3} - 2n^{2}$$

$$100n^{2} + 5 = n^{4}$$

$$(n'') = 2n^{3} - 2n^{2} \le 2n^{3}$$

$$(-1) = 2n^{3} - 2n^{2} \le 2n^{3}$$

$$(-1) = 2n^{3} - 2n^{2} \le 2n^{3}$$

Example-5 Find upper bound for f(n) = n

Solution: $n \le n$, for all $n \ge 1$

$$n = O(n)$$
 with $c = 1$ and $n_0 = 1$

Example-6 Find upper bound for f(n) = 410

Solution: 410 \leq 410, for all $n \geq 1$

$$\therefore$$
 410 = O(1) with $c = 1$ and $n_0 = 1$