	CATEGORICAL DATA ANALYSIS
	ASSIGNMENT II
	Solution Set
(2.1)	The statement converge P(-10) = 1/4, P(+10) = 3/3.
	Sensitivity = P(+10) = 1-P(-10) = 3/4
	Specificity = P(-10) = 1-P(+10)= 15
(2.2)	Disease Test Result
	Status + -
·	Disease 0.80 0.20
:	No Disease 0.20 0.80
	(080)(080)
	$0 = \frac{(0.80)(0.80)}{(0.20)(0.20)} = 16$
(2.3)	(latal) autata yongini ai estainon earogeen ett
	menfatal).
	Difference in Proportions
	= \hat{\pi_{112}} = \hat{(1601/164,128)} - (510/412,878)
	= 0.008519
	Relative Risk
	= \hat{\pi}_{111} / \hat{\pi}_{112} = (1601/164,128) \div (510/412,878)
	= 7.897

Odds Ratio 三 113年/111元 M11 M22 (1601) (412,368) M12 M21 (162,527) (510) = 7.965 For Florida vehicle accidents in 1988: o the Difference in Proportions indicates a difference of 0.001183 between the probability graniasas tem fi granjai lataf a graniatous fo a seat dult and the consequencing polability the tail a source of " the Relative Risk indicates that the probability oninary tem of junying later a coninications for at not which aimst 7.88.7 a that taxa a the tree a gains of Lilibolary guildray and the Odds Rotio indicates that the odds of sustaining a fatal injury of mot wraning a seat belt are 7.965 times digher than the that took a prince of solo sindregamos no sites able it bus dais saitales all SHIF bus 111 remark emad et pletomiranges lotof fo enclosing ett . 9.1: Mama storl us and a square that tase that in countins

2.7	(a) Difference in Proportions = 0.001304 - 0.000121 = 0.001183
	Relative Risk = 0.001304/0.000121 = 10.78
	For women in the US over the age of 35: " the Difference in Proportions indicates a difference of 0.001183 lecturem the annual particularly of deging from lung concer if a current smaker and the corresponding probability if a monomoder. " the Relative Rick indicates that the annual probability of deging from lung concer if a current smaker is 10.78 times higher than the corresponding probability if a
	noshmann with sair south LT water south left south and south left (a) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d

	For women in the US over the age of 35, the
	Odds Ratio indicates that the annual odds of
	dying from lung concer if a current amober on
	abbo sombragames at not relaid cenit PT.01
	Je a moramana p
	The relative side and the odds natio take
	sitilitiations essayed at esuased seeles rolinia
	are little small.
(2.12)	AG Conditional Odds Ratios
	OAG(A) - (512)(19) - 0.349 (313)(89)
	(313)(89)
	O AG(B) - (353) (8) - 0.803 (207) (17)
	(207) (17)
	ÔAG(C) = (120)(391) = 1.133
	(205) (202)
	$\hat{\Theta}_{AG(0)} = \frac{(138)(244)}{(279)(131)} = 0.921$
	(279) (131)
	$\hat{\Theta}_{AG(E)} = \frac{(53)(299)}{(138)(94)} = 1.222$
	(138) (94)
	ÔAG(F) = (22)(317) = 0.828
	OAG(F) = (251)(24) = 0.828

AG Marginal Odds Ratio

OAG = (1198) (1278) = 1.842 (1493) (557)

that describe and sold sometimes and the transfer on second that proceed on the describe of the the second of the describe of a formal which a for allowed the describe of a formal sold of a formal sold of a formal sold of a formal sold of a formal of a formal of a for a formal of a for a formal of a for a for a for a formal of a for a formal of a forma

The AG marginal odds ratio indicates that male are forward in the admission graces. over all degartments, the odds of a male bring admitted exceed the odds of a female bring admitted.

The garadex can be usedned by nating that females tend to apply more often than males to competitive defaitments where admission notes are how manually, C, D, E, and F

(2.14)	(a) Gender	Race	Murder Vict	(Y) inst
	(Z)	(X)	Yes	No
	Male	Nonwhite	0.0263	7579.0
		White	0.0049	0.9951
	Female	Nonwhite	0.0072	0.9928
	·	White	0.0023	0.9977
			and the state of t	
	6x4(1) = (0	.0263) (0.99	51) = 5.	485
		0.0) (1579.0	0497	
	BXY(2) = (0.00727 (0.99	777) = 3	.146
	OX1(2) - (0.99287 (0.0	023)	
	each gender, the odds of being a musder wi are higher for monthites than for whites.			
	itaisaaa AT x 6 \$ 10 xx 6		rewedning.	samie
	(b) Race	Murder	Victim (Y))
	(x)	Yes	No	
	Nonwhit	ce 0.01675	0.9832	5
	White	0.00360	0.9964	3
	111	/	04.5	
	$\hat{\Theta}_{XY} = \frac{(0.0)}{1}$	1675) (0.99	5 (076)	4.715

(2-19)

Fince the new and column revisible on both ordinal, Gamma presides on appropriate measure of contained satisfaces

$$C = 7(8+3+7+5+4+9+8+9+14)$$

$$+2(5+4+9+8+9+14)$$

$$+1(8+9+14)$$

$$+7(3+7+4+9+9+14)$$

$$+8(4+9+9+14)$$

$$+5(9+14)$$

$$+2(7+9+14)$$

$$+3(9+14)$$

$$+4(14)$$

$$+4(14)$$

$$D = 2(7+2+3)$$

$$+ 1(7+2+3+8+3+7)$$

$$+ 2(7+2+3+8+3+7+5+4+9)$$

$$+ 8(2+3)$$

$$+ 5(2+3+3+7)$$

$$+ 8(2+3+3+7+4+9)$$

$$+ 3(3)$$

$$+ 4(3+7)$$

$$+ 9(3+7+9)$$

$$= 709$$

$$\hat{\gamma} = \frac{C-D}{C+D} = +0.360$$

Jo nataisaca saities a sel at analgo und sifin a bono abnorbent a monted at anothe standam - my lauxua fo faitar

Let X careopend to Defendant's Race, Y correspond to Death Penalty, and Z careopend to Victim's Race.

inagmi? to startanemed but some of consons of austinas selected and marginal abbo lanitions.

Conditional Odds Ratios (at each level of 2):

$$\hat{\Theta}_{XYUN} = \frac{(19)(52)}{(132)(11)} = 0.680$$

$$O = \frac{(PP)(O)}{(O)(P)} = O$$

The conditional above ration indicate that for graining above of receiving above of receiving the the grant fractional at some of the black than it the defendants race is white.

Marginal Odds Ratio (collapsed over Z):

$$\hat{\Theta}_{XY} = \frac{(19)(149)}{(141)(17)} = 1.181$$

of toth setasibni siter abbo lanigram etT grinicaer fo abbo ut, benilmo sesser sinitism stock strabuled ut fi redgick ero getlaneg stack ut saar strabnefed et fi natt stike ai esser

Simpson's paradox is illustrated by the fact that $\hat{\Theta}_{XY(G)}$, $\hat{\Theta}_{XY(G)}$ and that said that one and get $\hat{\Theta}_{XY}(G)$, $\hat{\Theta}_{XY(G)}(G)$ and $\hat{\Theta}_{XY}(G)$ and $\hat{\Theta}_{XY}(G)$ and $\hat{\Theta}_{XY}(G)$ are some one.

test (writigam) switised a stasibni () + th (a) (sancela) someone stasibni () () () theorem the solution () season by the

$$P(D|+) = \frac{P(+|D)P(D)}{P(+|D)P(D) + P(+|D)P(D)}$$
 (Bayes'
$$= \frac{\pi_1 p}{\pi_1 p + \pi_2 (1-p)}$$

(b)
$$P(D1+) = \frac{(.95)(.005)}{(.95)(.005) + (1-.95)(1-.005)}$$

$$= 0.0872$$

(2.21)

$$P(+ \text{ ond } D) = P(+1D)P(D)$$

= (.95) (.005) = 0.00475

$$P(+ and D) = P(+|D)P(D)$$

= $(1-.95)(1-.005) = 0.04975$

$$P(-and D) = P(-1D) P(D)$$

= $(1-.95)(.005) = 0.00025$

$$P(-and \overline{D}) = P(-1\overline{D}) P(\overline{D})$$

= $(.95)(1-.005) = 0.94525$

It this stagilles betat et to team tot stop .

test sentices a smak who atazilua betat est of live test suitiens with publications at the sent of autota -VIH and a gul beinggrasso sel est filledolog est so high so semit OL 1000. estata +VIH ent a fil beinggrasso al live test

(a) m_{11} m_{12} m_{11} m_{21} m_{22} m_{12} m_{22} m_{22} Table A Table B

Note that Table B results from interchanging rows with columns in Table A.

		To	able A		Table	B
0992	Ratio		112 M21		$\frac{m_{11} m_{2}}{m_{21} m}$	
Differ in Pro	ence oportion		/(m11+m12) m21/(m21+			$n_{11} + m_{21}$ $(m_{12} + m_{22})$
Relativ	e Risk		1 / (m11 + m1 21 / (m21 + m			$(m_{12} + m_{22})$
(P)	Mu	MIZ		Cwii	M12	
	M ₂₁	M ₂₂		Cm21	m ₂₂	
	Table	A	•	Table B		

Note that Table B results from multiplying the counts in column I of Table A by c.

	Table A	Table B
Odds Ratio	M11 M22	(em,) m22
0000 110010	M12 M21	m12 (em21)

Difference	$m_{11}/(m_{11}+m_{12})$	$(cm_{11})/((cm_{11})+m_{12})$
in Proportions	- m21/(m21+ m22)	- (cm21) ((cm21+ m22)
5	m11 / (m11+ m12)	(cm11)/((cm11)+m12)
Relative Risk	$m_{21}/(m_{21}+m_{22})$	(cm21)/((cm21)+ m22)

wil	M12
M21	M ₂₂

Table A

Cmii	CM ₁₂
m ₂₁	M22

Table B

Note that Table B selling from multiplying the counts in row I of Table A by c.

	Table A	Table B
Odds Ratio	M12 M21	(Em11) m22 (Em12) m21
Difference In Proportions	$m_{11}/(m_{11}+m_{12})$ - $m_{21}/(m_{21}+m_{22})$	$(em_{11})/((em_{11})+(em_{12}))$ - $m_{21}/(m_{21}+m_{22})$
Relative Risk	$\frac{m_{11}/(m_{11}+m_{12})}{m_{21}/(m_{21}+m_{22})}$	$\frac{(em_{11})/((em_{11})+(em_{12}))}{m_{21}/(m_{21}+m_{22})}$

Note = Here, all three measures one imprisont to the operation -

$$\frac{\pi_{111} \, \pi_{221}}{\pi_{121} \, \pi_{211}} = \frac{\pi_{112} \, \pi_{222}}{\pi_{122} \, \pi_{212}} \quad (a)$$

$$\frac{\mathcal{T}_{111} \, \mathcal{T}_{122}}{\mathcal{T}_{112} \, \mathcal{T}_{121}} = \frac{\mathcal{T}_{211} \, \mathcal{T}_{222}}{\mathcal{T}_{221}} \quad (6)$$

Note that we can obtain (6) from (a) by multiplying both sides of (a) by

. trustoriuge ero (d) ano (o) coult

/		\
	2.36	1
/		/

(a)	П,	T12
	T721	W22

(E) A) may togilue a relacion

Let Aiz denote the event that subject A falls in cell (i,i). Let Biz denote the event that subject B falls in cell (i,i).

$$TT_{c} = P((A_{11} \text{ and } B_{22}) \text{ or } (A_{22} \text{ and } B_{11}))$$

$$= P(A_{11}) P(B_{22}) + P(A_{22}) P(B_{11})$$

$$= T_{11} T_{22} + T_{22} T_{11} = 2T_{11} T_{22}$$

$$TT_d = P((A_{12} \text{ and } B_{21}) \text{ an } (A_{21} \text{ and } B_{12}))$$

$$= P(A_{12}) P(B_{21}) + P(A_{21}) P(B_{12})$$

$$= T_{12} T_{21} + T_{21} T_{12} = 2T_{12} T_{21}$$

$$Q = \frac{\pi_c - \pi_d}{\pi_c + \pi_d} = \frac{\pi_{11} \pi_{22} - \pi_{12} \pi_{21}}{\pi_{11} \pi_{22} + \pi_{12} \pi_{21}}$$

(b)
$$-\pi_{12}\pi_{21} \leq +\pi_{12}\pi_{21}$$

 $\pi_{11}\pi_{22} - \pi_{12}\pi_{21} \leq \pi_{11}\pi_{22} + \pi_{12}\pi_{21}$
 $\frac{\pi_{11}\pi_{22} - \pi_{12}\pi_{21}}{\pi_{11}\pi_{22} + \pi_{12}\pi_{21}} \leq +1$
 $Q \leq +1$

$$-\pi_{11}\pi_{22} \leq +\pi_{11}\pi_{22}$$

$$-\pi_{11}\pi_{22} - \pi_{12}\pi_{21} \leq \pi_{11}\pi_{22} - \pi_{12}\pi_{21}$$

$$(-1)(\pi_{11}\pi_{22} + \pi_{12}\pi_{21}) \leq \pi_{11}\pi_{22} - \pi_{12}\pi_{21}$$

$$-1 \leq \frac{\pi_{11}\pi_{22} - \pi_{12}\pi_{21}}{\pi_{11}\pi_{22} + \pi_{12}\pi_{21}}$$

$$-1 \leq Q$$

(c) When $T_{11} = 0$ or $T_{22} = 0$, we have $T_{12} = 0$ and Q = +1. When $T_{12} = 0$ or $T_{21} = 0$, we have $T_{12} = 0$ and Q = -1.

(d)
$$Q = \frac{\pi_{11}\pi_{22} - \pi_{12}\pi_{21}}{\pi_{11}\pi_{22} + \pi_{12}\pi_{21}}$$

$$= \frac{\pi_{11}\pi_{22} - \pi_{12}\pi_{21}}{\pi_{12}\pi_{21}}$$

$$= \frac{\pi_{11}\pi_{22} - \pi_{12}\pi_{21}}{\pi_{12}\pi_{21}}$$

$$= \frac{\pi_{11}\pi_{22} + \pi_{12}\pi_{21}}{\pi_{12}\pi_{21}}$$

$$= \frac{\Theta - 1}{\Theta + 1}$$