Unsupervised Learning - FIFA 23

Project Agenda

- 1. Project Introduction
- 2. Data Cleaning
- 3. Exploratory Data Analysis
- 4. Cluster and Classification
- 5. Conclusion

1. Project Introduction

Dataset

- ☐ FIFA23 1st Edition Player Database
- □ From Kaggle Website
- ☐ Players' Information and Attributes

Goal

Explore the positions of players based on their attributes and accurately predict them.

2.2 Cleaning Steps

Feature Selection

Checking Missing Value

```
missing_values = df1.isna().sum()
missing_values.info()

<class 'pandas.core.series.Series'>
Index: 11 entries, ID to PhysicalityTotal
Series name: None
Non-Null Count Dtype
------
11 non-null int64
dtypes: int64(1)
memory usage: 176.0+ bytes
```

Delete Duplicates

```
duplicate_rows = df1[df1.duplicated()]
duplicate_rows.shape

(119, 11)
```

Subset Selection

```
# Remove Goalkeeper
df3 = df2[df2['BestPosition'] != 'GK']
print(df3. shape)

(16367, 11)
```

3. Exploratory Data Analysis

Distribution

Correlation

3.1 Attribute Distribution

■ General attribute is very likely to be able to predict the position.

3.2 Position Distribution

■ Based on the understanding of the real world, many positions on the soccer field are similar to each other.

3.3 Position Correlation

- Heat Map shows the strong correlation between positions.
- ☐ Positions should be clustered by the nature of similarities within the dataset.

4.1 First K-means Clustering

- The significant difference in the average Overall Rating among the five clusters of players indicates that:
- K-means algorithm prioritizes the classification of players with different overall levels rather than grouping them based on the distribution of their attributes.

4.2 Second K-means Clustering

- Narrow Down the number of players to Top 1000.
- K-means algorithm perfectly grouped the players into five categories, and each category of players has different tendencies in their attributes.

4.3 Double Checking

Name	Kmeans
A. Rebi ć	0
O. Giroud	0
Z. Ibrahimovi ć	0
D. Origi	0
D. Calabria	1
P. Kalulu	1
S. Dest	1
T. Hernández	1
S. Kjær	2
F. Tomori	2
I. Bennacer	3
S. Tonali	3
R. Kruni ć	3
C. De Ketelaere	3
Rafael Leão	4
A. Florenzi	4
A. Saelemaekers	4
Junior Messias	4
Brahim	4

Name	Kmeans
R. Lukaku	0
L. Martínez	0
E. D ž eko	0
M. Darmian	1
D. Dumfries	1
R. Gosens	1
D. D'Ambrosio	1
F. Dimarco	1
M. Škriniar	2
F. Acerbi	2
S. de Vrij	2
A. Bastoni	2
H. Çalhano ğ lu	3
N. Barella	3
M. Brozovi ć	3
H. Mkhitaryan	4
J. Correa	4

4.4 Compare to Hierarchy Clustering

- In K-means clustering, the positions of players in each cluster are very focused and concentrated.
- In Hierarchy, Cluster 0 and 2 intersect with each other, and cluster 5 has no meaning.

	Position Distribution in Kmeans(%)						Position Distribution in Hierarchy(%)					
	ST	81.9	0.7	0.0	1.4	15.9	ST	1.4	0.0	21.0	76.8	0.7
	СВ	0.0	18.3	79.2	2.5	0.0	CB	9.1	90.9	0.0	0.0	0.0
	CF	0.0	0.0	0.0	13.3	86.7	CF	6.7	0.0	86.7	6.7	0.0
(CAM	1.9	1.3	0.0	29.5	67.3	CAM	19.2	0.0	53.8	1.3	25.6
	LM	7.3	7.3	0.0	7.3	78.0	LM	17.1	0.0	68.3	7.3	7.3
_	RM	4.3	17.0	0.0	4.3	74.5	_ RM	27.7	0.0	66.0	0.0	6.4
sitio	LW	8.3	0.0	0.0	4.2	87.5	Sition rw	0.0	0.0	91.7	8.3	0.0
BestPosition	RW	3.2	0.0	0.0	12.9	83.9	BestPosition M3 (T	12.9	0.0	80.6	3.2	3.2
ă	LWB	0.0	94.4	0.0	5.6	0.0	[™] LWB	100.0	0.0	0.0	0.0	0.0
F	RWB	0.0	96.0	0.0	4.0	0.0	RWB	88.0	12.0	0.0	0.0	0.0
ı	LB	0.0	74.5	0.0	23.4	2.1	LB	91.5	8.5	0.0	0.0	0.0
ı	RB	0.0	83.0	2.1	8.5	6.4	RB	83.0	12.8	0.0	0.0	4.3
	CM	0.0	9.1	0.0	86.4	4.5	CM	72.7	0.0	0.9	0.0	26.4
C	CDM	0.0	29.8	17.3	52.9	0.0	CDM	78.8	21.2	0.0	0.0	0.0
		0	1	2 Cluster	3	4		0	1	2 Cluster	3	4

4.5 Label Clusters

>>cluster0 = Striker

>>cluster1 = Wing-defender

>>cluster2 = Center-back

>>cluster3 = Mid-field

>>cluster4 = Wing-attacker

4.6 Random Forest Classifier

- Random Forest achieved an overall accuracy of 94%.
- For each position, the precision and recall were both over 90%.

best parameter best score: 0.			'n_estimato	ors': 200}	
	precision	recall	f1-score	support	
Center-back	0.91	1.00	0.95	29	
Mid-field	0.98	0.93	0.95	55	
Striker	0.96	0.93	0.95	28	
Wing-attacker	0.90	0.98	0.94	45	
Wing-defender	0.97	0.91	0.94	43	
accuracy			0.94	200	
macro avg	0.94	0.95	0.95	200	
weighted avg	0. 95	0.94	0.95	200	

4.7 AdaBoost Classifier

- Adaboost did not perform well on this dataset.
- There was a large prediction bias for wing players, and there were significant misclassifications compared to forwards.

best parameters: {'learning_rate': 0.5, 'n_estimators': 300} best score: 0.85875							
best score. o.	precision	recall	f1-score	support			
Center-back	0.89	0.83	0.86	29			
Mid-field	0.88	0.89	0.88	55			
Striker	1.00	0.75	0.86	28			
Wing-attacker	0.84	0.96	0.90	45			
Wing-defender	0.84	0.88	0.86	43			
accuracy			0.88	200			
macro avg	0.89	0.86	0.87	200			
weighted avg	0.88	0.88	0.87	200			

4.6 Gradient Boosting Classifier

- The overall prediction accuracy of Gradient Boosting reached 94%.
- However, the accuracy for wing-defender positions is relatively low.

best parameters: {'learning_rate': 1, 'max_depth': 5, 'n_estimators': 100} best score: 0.92875							
	precision	recall	f1-score	support			
Center-back	0.97	1.00	0.98	29			
Mid-field	0.96	0.87	0.91	55			
Striker	1.00	0.89	0.94	28			
Wing-attacker	0.94	1.00	0.97	45			
Wing-defender	0.85	0.93	0.89	43			
accuracy			0.94	200			
macro avg	0.94	0.94	0.94	200			
weighted avg	0.94	0.94	0.93	200			

4.8 Model Summary

Clustering

K-means performs better to explore the relationship between player attributes and positions.

Classification

Random Forest and Gradient Boosting successfully predicted the results of K-means clustering.

5. Final Conclusion

Data

The attributes of players in FIFA23 are consistent with the real world, and we can use classification to predict and prove the rationality of clustering.

Method

The natural distribution of the dataset may affect our analysis, but through continuous attempts and elimination, there is always a way to achieve or approach the goal.

Unsupervised Learning - FIFA 23

