武汉大学 2015-2016 第一学期线性代数 B 期末试题 A

一、(8分) 设
$$P$$
, A 均为 3 阶矩阵,且 $P^{T}AP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, 若 $P = (\sigma_{1}, \sigma_{2}, \sigma_{3})$,

 $Q = (\sigma_1 + \sigma_2, \sigma_2, \sigma_3), RQ^T A Q.$

二、
$$(10\, 分)$$
 设 $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$,矩阵 X 满足 $AX + I = A^2 + X$, 其中 I 为三阶单位矩阵,求矩

阵 X .

三、
$$(10 分)$$
 若 3 阶方阵 A 与对角矩阵 $B = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$ 相似, 计算矩阵

$$C = (A - \lambda_1 E)(A - \lambda_2 E)(A - \lambda_3 E)$$

四、(8分)设矩阵
$$\mathbf{A} = \begin{bmatrix} 2 & 2 & 0 \\ 8 & 2 & a \\ 0 & 0 & 6 \end{bmatrix}$$
相似于对角矩阵 Λ ,求 a .

五、 $(12 \, \text{分})$ 求向量组 $\boldsymbol{\alpha}_1 = (1,1,1,4)$, $\boldsymbol{\alpha}_2 = (2,1,3,5)$, $\boldsymbol{\alpha}_3 = (1,-1,3,-2)$, $\boldsymbol{\alpha}_4 = (3,1,5,6)$ 的一个极大无关组,并把其余的向量用该极大无关组线性表出.

六、
$$(10\, eta)$$
 若 2 阶实矩阵 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ 的两个特征值都是 λ_0 ,且 $b \neq 0$,证明:矩 $C = \begin{bmatrix} b & 0 \\ \lambda_0 - a & 1 \end{bmatrix}$

满足
$$C^{-1}AC = \begin{pmatrix} \lambda_0 & 1 \\ 0 & \lambda_0 \end{pmatrix}$$
.

七、(8分) 若二次型 $f(x_1,x_2,\cdots,x_n)=X^TAX$ (式中 $X=(x_1,x_2,\cdots,x_n)^T$), 适合 |A|<0.

求证: 必存在向量 $\alpha = (a_1, a_2, \dots, a_n)^T$, 使 $f(a_1, a_2, \dots, a_n) = \alpha^T A \alpha < 0$.

八、 $(8 \, \mathcal{H})$ 若 $n \times r$ 矩阵 A 的秩为 r , 其 r 个列向量为某一齐次线性方程组的一个基础解系, B 为 r 阶可逆方阵, 证明 AB 的 r 个列向量也是该齐次线性方程组一个基础解系.

九、(16 分) 对线性方程组
$$\begin{cases} x_1 + a_1x_2 + a_1^2x_3 = a_1^3, \\ x_1 + a_2x_2 + a_2^2x_3 = a_2^3, \\ x_1 + a_3x_2 + a_3^2x_3 = a_3^3, \\ x_1 + a_4x_2 + a_4^2x_3 = a_4^3. \end{cases}$$

- (2) 若 $a_1 = a_3 = b$, $a_2 = a_4 = -b$ ($b \neq 0$),且已知方程的两个解 $\boldsymbol{\xi}_1 = (1,1,-1)^{\mathrm{T}}$, $\boldsymbol{\xi}_2 = (-1,1,1)^{\mathrm{T}}$,试给出方程组的通解.

十、(10 分)设二次曲面的方程
$$axy + 2xz + 2byz = 1$$
) $a > 0$ 经正交变换 $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \mathbf{Q} \begin{bmatrix} \xi \\ \eta \\ \zeta \end{bmatrix}$, 化成 $\mathcal{E}^2 + \eta^2 - 2\zeta^2 = 1$,求 $a \setminus b$ 的值及正交矩阵 \mathbf{Q} .

武汉大学 2015-2016 第一学期线性代数 B 期末试题 A 解答

$$-,(8 分) 设 A, P均为 3 阶矩阵,且 $\mathbf{P}^{\mathrm{T}} \mathbf{A} \mathbf{P} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, 若 \mathbf{P} = (\boldsymbol{\sigma_{1}}, \boldsymbol{\sigma_{2}}, \boldsymbol{\sigma_{3}}),$$$

$$Q = (\sigma_1 + \sigma_2, \sigma_2, \sigma_3), \Re Q^T A Q.$$

$$Q = (\sigma_1 + \sigma_2, \sigma_3, \pi_Q, \Lambda_Q)$$

 AQ :
 AQ :

于是
$$\mathbf{Q}^{T}\mathbf{A}\mathbf{Q} = \begin{pmatrix} \mathbf{P} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix}^{T} \mathbf{A} \begin{pmatrix} \mathbf{P} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{P}^{T}\mathbf{A}\mathbf{P} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

二、
$$(10\ eta)$$
 设 $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$,矩阵 X 满足 $AX + I = A^2 + X$, 其中 I 为三阶单位矩阵,求矩

阵 X .

解 由题知 $(A-I)X = A^2 - I = (A-I)(A+I)$,

$$A-I = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
可逆,故 $X = (A-I)^{-1}(A-I)(A+I) = A+I = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 2 \end{bmatrix}$

三、
$$(10\ \mathcal{G})$$
 若 3 阶方阵 A 与对角矩阵 $B=\begin{bmatrix}\lambda_1 & 0 & 0\\ 0 & \lambda_2 & 0\\ 0 & 0 & \lambda_3\end{bmatrix}$ 相似,计算矩阵

$$C = (A - \lambda_1 E)(A - \lambda_2 E)(A - \lambda_3 E).$$

解 因 $A \sim B$,故存在可逆矩阵 P 使 $P^{-1}AP = B$ 则 $P^{-1}CP = P^{-1}(A - \lambda_1 E)(A - \lambda_2 E)(A - \lambda_3 E)P$ $= P^{-1}(A - \lambda_1 E)PP^{-1}(A - \lambda_2 E)PP^{-1}(A - \lambda_3 E)P = (B - \lambda_1 E)(B - \lambda_2 E)(B - \lambda_3 E) = 0$,故C = 0

四、
$$(8\,
eta)$$
 设矩阵 $A = \begin{bmatrix} 2 & 2 & 0 \\ 8 & 2 & a \\ 0 & 0 & 6 \end{bmatrix}$ 相似于对角矩阵 Λ ,求 a .

解: $\mathbf{h} |A - \lambda I| = 0$,得 A 的三个特征值 $\lambda_1 = \lambda_2 = 6, \lambda_3 = -2$. 由于 A 相似于对角矩阵,

$$R(A-6I)=1$$
,即 $\begin{bmatrix} -4 & 2 & 0 \\ 8 & -4 & a \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 & 0 \\ 0 & 0 & a \\ 0 & 0 & 0 \end{bmatrix}$,显然,当 $a=0$ 时, $R(A-6I)=1$, A 的二

重特征值 6 对应两个线性无关的特征向量,所以当a=0时,A 相似于对角矩阵 $A=\begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & -2 \end{bmatrix}$.

五、(12 分)求向量组 α_1 = (1,1,1,4), α_2 = (2,1,3,5), α_3 = (1,-1,3,-2), α_4 = (3,1,5,6) 的一个极大无关组,并把其余的向量用该极大无关组线性表出.

解:极大无关组 α_1, α_2 , $\alpha_3 = 2\alpha_2 - 3\alpha_1$, $\alpha_4 = 2\alpha_2 - \alpha_1$.

六、 $(10\ \ \ \ \ \)$ 若 2 阶实矩阵 $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ 的两个特征值都是 λ_0 , 且 $b\neq 0$, 证明:矩阵

$$C = \begin{bmatrix} b & 0 \\ \lambda_0 - a & 1 \end{bmatrix}$$
满足 $C^{-1}AC = \begin{pmatrix} \lambda_0 & 1 \\ 0 & \lambda_0 \end{pmatrix}$.

$$\text{iff} \quad C^{-1} = \frac{1}{b} \begin{pmatrix} 1 & 0 \\ a - \lambda_0 & b \end{pmatrix}, \quad C^{-1}AC = \frac{1}{b} \begin{pmatrix} 1 & 0 \\ a - \lambda_0 & b \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} b & 0 \\ \lambda_0 - a & 1 \end{pmatrix} = \begin{pmatrix} \lambda_0 & 1 \\ 0 & \lambda_0 \end{pmatrix}$$

(用到 $bc = (a - \lambda_0)(d - \lambda_0)$ 及 $a + b = 2\lambda_0$

七、(8分) 若二次型 $f(x_1, x_2, \dots, x_n) = X'AX$ (式中 $X = (x_1, x_2, \dots, x_n)'$), 适合 |A| < 0.

求证: 必存在向量 $\alpha = (a_1, a_2, \dots, a_n)'$, 使 $f(a_1, a_2, \dots, a_n) = \alpha' A \alpha < 0$.

证 设 A 的特征值为 $\lambda_1, \lambda_2, \cdots, \lambda_n$ 因 $|A| = \lambda_1 \cdot \lambda_2 \cdot \cdots \cdot \lambda_n < 0$,故至少有一个特征值取负值,不妨设 $\lambda_1 < 0$, 存在正交矩阵 $T \Leftrightarrow X = TY, (Y = (y_1, y_2, \cdots, y_n)')$ 则 $X'AX = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \cdots + \lambda_n y_n^2$ $= F(y_1, y_2, \cdots, y_n)$, 取 $Y_0 = (1, 0, \cdots, 0)$ 则 $F(1, 0, \cdots, 0) = \lambda_1 < 0$, 令 $\alpha = TY_0$ 则 $\alpha' A \alpha = \lambda_1 < 0$ 八、(8 分) 若 $n \times r$ 矩阵 A 的秩为 r,其 r 个列向量为某一齐次线性方程组的一个基础解系,B 为 r 阶可逆方阵,证明 AB 的 r 个列向量也是该齐次线性方程组一个基础解系.

证 : 记 A 的列向量为 $A_1, A_2, \cdots A_r$, 记 AB 列向量为 $\alpha_1, \alpha_2, \cdots \alpha_r$, 则

$$(\alpha_1, \alpha_2, \cdots \alpha_r) = (A_1, A_2, \cdots A_r)B \cdots \cdots \bigcirc$$

即 $\alpha_1, \cdots \alpha_r$ 可由 $A_1, \cdots A_r$ 线性表出. 又 $:: A_1, \cdots A_r$ 为某一齐次方程组的解, $:: \alpha_1, \cdots \alpha_r$ 也为其解. 又 :: B 可逆, :: ①式可得 $: (A_1, \cdots, A_r) = (\alpha_1, \cdots \alpha_r) B^{-1}$,即 A_1, \cdots, A_r ,可由 $\alpha_1, \cdots, \alpha_r$ 线性表出 $:: A_1, \cdots, A_r$,与 $\alpha_1, \cdots, \alpha_r$ 等价,从而 $\alpha_1, \cdots \alpha_r$ 亦为该齐次方程组的基础解系. .

九、(16 分) 对线性方程组
$$\begin{cases} x_1 + a_1 x_2 + a_1^2 x_3 = a_1^3, \\ x_1 + a_2 x_2 + a_2^2 x_3 = a_2^3, \\ x_1 + a_3 x_2 + a_3^2 x_3 = a_3^3, \\ x_1 + a_4 x_2 + a_4^2 x_3 = a_4^3. \end{cases}$$

- (1) 若 a_1, a_2, a_3, a_4 两两不等,问方程组是否有解,为什么?
- (2) 若 $a_1=a_3=b$, $a_2=a_4=-b$ ($b\neq 0$) ,且已知方程的两个解 $\boldsymbol{\xi}_1=(1,1,-1)^{\mathrm{T}}$, $\boldsymbol{\xi}_2=(-1,1,1)^{\mathrm{T}}$,试给出方程组的通解.

$$\widetilde{\mathbb{R}}: (1) \begin{vmatrix}
1 & a_1 & a_1^2 & a_1^3 \\
1 & a_2 & a_2^2 & a_2^3 \\
1 & a_3 & a_3^2 & a_3^3 \\
1 & a_4 & a_4^2 & a_4^3
\end{vmatrix} = (a_2 - a_1)(a_3 - a_1)(a_3 - a_2)(a_4 - a_1)(a_4 - a_2)(a_4 - a_3) \neq 0,$$

 $R(A:b) \neq R(A)$, 无解

(2)
$$R(\mathbf{A}) = 2$$
, $n = 3$, 故通解 $\mathbf{x} = k(\xi_2 - \xi_1) + \xi_1 = k \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$, $(k \in \mathbf{R})$.

十、(10 分)设二次曲面的方程 axy+2xz+2byz=1) a>0 经正交变换 $\begin{bmatrix} x\\y\\z\end{bmatrix}=\mathbf{Q}\begin{bmatrix}\xi\\\eta\\\zeta\end{bmatrix}$, 化

成 $\xi^2 + \eta^2 - 2\zeta^2 = 1$, 求a、b的值及正交矩阵 \boldsymbol{Q} .

解: 设
$$\mathbf{A} = \begin{bmatrix} 0 & \frac{a}{2} & 1 \\ \frac{a}{2} & 0 & b \\ 1 & b & 0 \end{bmatrix}$$
, 由 $|\mathbf{A} - \mathbf{E}| = 0$, $|\mathbf{A} + 2\mathbf{E}| = 0$ 知 $a = 2$, $b = -1$.

当
$$\lambda = -2$$
时, $\mathbf{A} + 2\mathbf{E} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \boldsymbol{\xi}_3 = (-1,1,1)^{\mathrm{T}}.$ 故正交阵 $\mathbf{Q} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix}$.