Семинар 1

(Темы: Спектральная последовательность. Дополнительные примеры.)

Ex 1.1 (Элементарный пример, нефильтрованный). Самым простым примером спектральной последовательности является любой комплекс $K_{\bullet} \in \text{Kom}(\mathcal{A})$. Он естественно имеет диффернциал $d_i^K \colon K_i \to K_{i+1}$, поэтому на нулевом листе $d_0 = d^K$. Пусть $E_0^{\bullet} = K_{\bullet}$, тогда $E_1^{\bullet} = H^{\bullet}(C_{\bullet})$, дифференциал индуцирует нулевые отображения на когомологиях, поэтому на первом листе мы имеем $d_1 = 0$. Из этого следует, что $E_2 = E_{\infty}^{\bullet}$ и $d_n = 0 \ \forall \ n \geqslant 2$, таким образом, получаем следующую спектральную последовательность:

- $E_0 = K_{\bullet}$
- $E_r = H(K_{\bullet}) \ \forall \ r \geqslant 1$

Такая спектральная последовательность стабилизируется на первом листе, так как нетривиальные дифференциалы присутствовали лишь на нулевом.

1.1 Доказательство пять-леммы с помощью спектральной последовательности

Ex 1.2 (Пять-лемма). Спектральная последовательность по столбцам сходится κ 0, поэтому средняя стрелка на второй диаграмме ниже – изоморфизм.

$$0 \longrightarrow A' \longrightarrow B' \longrightarrow C' \longrightarrow 0$$

$$\stackrel{\cong}{=} \uparrow \qquad \beta \uparrow \qquad \stackrel{\cong}{=} \uparrow$$

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

$$0 \longrightarrow 0 \longrightarrow \operatorname{coker} \beta \longrightarrow 0 \longrightarrow 0$$

$$\stackrel{\cong}{=} \uparrow \qquad \uparrow \qquad \stackrel{\cong}{=} \uparrow$$

$$0 \longrightarrow 0 \longrightarrow \ker \beta \longrightarrow 0 \longrightarrow 0$$

1.2 Доказательство леммы о змее с помощью спектральной последовательности

Ex 1.3. Докажем лемму о змее ??, используя спектральную последовательность. Диаграмма в этой лемме представляет собой двойной комплекс $C^{\bullet \bullet}$ с точными строками в абелевой категории.

Для такого комплекса существуют две спектральные последовательности, которые будут сходиться к когомологиям тотального комплекса $H^{p+q}(Tot(C^{\bullet \bullet}))$.

Нулевые листы этих последовательностей, естественно, $\mathsf{E}_0^{\mathsf{pq}} = \mathsf{C}^{\mathsf{pq}} \ u \ \mathsf{E}_0^{\mathsf{pq}} = \mathsf{C}^{\mathsf{qp}}$:

1.3 Доказательство расширенной пять-леммы с помощью спектральной последовательности

Ex 1.4.

При фильтрации по строкам получаем следующие листы спектральной последовательности: Теперь фильтрация по столбцам:

1.4 Что-то о нётеровых кольцах

Несколько примеров фильтрации из коммутативной алгебры.

Ex 1.5 (Фильтрация кольца). Убывающей мкльтипликативной фильрацией кольца R называется убывающая последовательность идеалов вида

$$R = I_0 \supset I_1 \supset I_2 \supset \dots$$

Удовлетворяющая условию $I_iI_j\subset I_{i+j}\ \forall\ i,j.$ Эта конструкция чаще всего используется, в случае, когда $I_j=I^j$ – степени одного идеала I, это называется I-адической фильтрацией. В приложениях чаще всего встречается ситуация локального нётерова кольца и его максимального идеала.

Полезно обобщить эту конструкцию на R-mod иизучать фильтрации модулей

$$M\supset IM\supset I^2M\supset\dots$$

Однако, пересекая члены такой фильтрации с некоторым подмодулем $M' \subset M$ в общем случае мы не получим I-адическую фильтрацию M'.

