Universidade Paulista - UNIP

Leonardo Scherre Ragonha

VULNERABILIDADES EM APLICAÇÕES WEB

Limeira 2021

Universidade Paulista - UNIP

Leonardo Scherre Ragonha

VULNERABILIDADES EM APLICAÇÕES WEB

Trabalho de conclusão de curso apresentado à banca examinadora da Faculdade UNIP, como requisito parcial à obtenção do Bacharelado em ciência da computação sob a orientação do professor Me. Sergio Eduardo Nunes.

Limeira <mark>2021</mark> Leonardo Scherre Ragonha

VULNERABILIDADES EM APLICAÇÕES WEB

Trabalho de conclusão de curso apresentado à banca examinadora da Faculdade UNIP, como requisito parcial à obtenção do Bacharelado em ciência da Computação sob a orientação do professor Me. Sergio Eduardo Nunes.

Aprovada em XX de XXXXX de 201X.

Prof. Me. Nome completo Prof. Esp. Nome completo

DEDICATÓRIA

Dedico este trabalho aos meus professores, familiares e colegas que me apoiaram durante esta jornada...

"O sucesso é ir de fracasso em fracasso sem perder o entusiasmo".

(Winston Churchill)

RESUMO

Texto em parágrafo único, no máximo 500 palavras...

Palavra-Chave: até cinco palavras, separadas por ponto-e-vírgula.

Key Words: ...

LISTA DE FIGURAS

LISTA DE QUADROS

Ç)uadro	01 –	Tipos c	le C	Distribuiç	ção	Estatística	. 13	3
---	--------	------	---------	------	------------	-----	-------------	------	---

LISTA DE ABREVIATURAS

1.	INTRODUÇÃO	12						
1.	1 Objetivo	12						
1.	2 Justificativa	13						
1.	3 Metodologia	14						
2.	SEGURANÇA DA INFORMÇÃO	14						
2.	.1 Lei nº 13.709	14						
2.	.2 Lei nº 12.737	14						
3.	PROTOCÓLOS	14						
3.1	HTTP	14						
3.2	DNS	14						
4.	PENTEST	14						
4.	.1 Footprint	14						
4.	2 Fingerprint	15						
5.	KALI LINUX	15						
4.	.1 Nmap	15						
4.	.2 Brute Force	15						
4.	.3 SqlMap	15						
6. S	SQL INJECTION	15						
CON	CONCLUSÃO							
REF	REFERÊNCIAS BIBLIOGRÁFICAS15							

1. INTRODUÇÃO

Os estudos sobre as vulnerabilidades mais comuns em sites, terá como auxilio, a lista publicada pela OWASP¹ com o objetivo de alertar as empresas e programadores das falhas mais comuns em serviços de aplicação web.

Vulnerabilidade são fraquezas presentes nos ativos de informação, que podem causar, intencionalmente ou não, a quebra de um ou mais dos três princípios de segurança da informação: confidencialidade, integridade e disponibilidade. (CAMPOS, 2006,pag. 11).

Para que um site seja considerado seguro ele precisa garantir os seguintes pilares da segurança da informação.

Confidencialidade: A confidencialidade tem como princípio o acesso das informações apenas pelos usuários autorizados. (Fontes, 2000, pag. 21).

Integridade: O princípio da integridade é respeitado quando a informação acessada está completa, sem alterações e, portanto, confiável. (Campos, 2006,pag. 6)

Disponibilidade: Este fator tem como principal finalidade a garantia de que as informações sejam passadas levando a empresa a atingir o nível de segurança adequado ao seu negócio, de forma correta para os usuários, com a participação dos associados na organização. (Campos, 2006,pag. 6)

¹Open Web Application Security Project

1.1 Objetivo

O objetivo desse trabalho é utilizar um sistema operacional aberto com ferramentas de testes de invasão para realizar um escaneamento de um site em busca de falhas e atacar as vulnerabilidades existentes do site através do método de SQL Injection, avaliando o quanto de informações/dados é possível coletar ou alterar de uma aplicação web não programada nos melhores padrões de segurança.

Podendo então gerar um relatório do passo a passo e ferramentas utilizadas para conseguir invadir e obter informações do site estudado, que, segundo as normas de segurança e a lei geral de proteção de dados nenhum individuo a não ser o dono de tais dados deva ter acesso as mesmas.

Propondo assim, uma discussão a respeito dos parâmetros que alguns sites ainda possuem, mesmo com essas informações a respeito de falhas estando disponíveis na internet para pesquisa, reconhecimento e manutenção caso seja encontrada em seu site, desta forma podendo tornar determinado site mais seguro e passar uma segurança maior para seus usuários.

1.2 Justificativa

Com base na Lei Geral de Proteção de Dados, onde a função da mesma e garantir a proteção de dados pessoais sejam esses dados de pessoas fisícas, jurídicas ou privados, visando os direitos básicos de liberdade e privacidade do individuo, lei essa que já esta vigente desde setembro de 2020 e passará a ser sansionada a partir do dia 1º de agosto de 2021, tendo multas de até R\$50 milhões de acordo com a gravidade do caso.

Utilizando também a lei 12.737 para amparar usúarios onde tipificão como crime a invasão ou interrupção de dispositivos ligados ou não a rede, sancionada em 2012 ela vem como um meio de tentar proteger o usuário punindo o invasor mas não de fato cobrando uma segurança do fornecedor do serviço, a pena para este tipo de crime pode gerar reclusão de 3 meses a 2 anos de acordo com informações obtidas ou danos causados.

Sendo assim, com essas duas leis a favor da informatica onde tanto o infrator quanto o detentor da informações são punidos caso haja algum tipo de vazamento ou invasão, isto força os locais onde armazenamos nossos dados a se tornarem mais seguros e aptos para agir em caso de tentativa de obtenção ou destruição desses dados.

1.3 Metodologia

Para executar os testes de intrusão vamos utilizar o site www.bancocn.com, desenvolvido pela Solyd com intuito exclusivo para treinamentos do tipo. O sistema operacional a ser utilizado será o Kali-Linux, a escolha do Kali se da por ser um sistema operacional de código aberto específico para diversos testes na área de segurança da informação.

O primeiro passo para começar o ataque é fazer um footprint do alvo que queremos descobrir falhas, onde vamos analisar quais domínios estão atrelados ao http, se possui e-mails registrados para que possamos fazer ataques de engenharia social, procurar por brechas no código e assim podermos partir para segunda fase.

Na segunda fase vamos para o fingerprint, processo onde iremos reunir todas as informações que conseguimos no primeiro passo e utilizar para fazer os ataques, seja via ²URL, brute force em senhas de login ou campos que permitam entrada de dados, com isso veremos quais vulnerabilidades determinada aplicação web possui a partir da falta das boas práticas de segurança da informação, onde o acesso a qualquer usuário não permitido significa a quebra dos pilares.

2. SEGURANÇA DA INFORMÇÃO

2.1 Lei nº 13.709

2.2 Lei nº 12.737

3. PROTOCÓLOS

3.1 HTTP

3.2 DNS

4. PENTEST

- **4.1 Footprint**
- **4.2 Fingerprint**
- 5. KALI LINUX
 - **4.1 Nmap**
 - **4.2 Brute Force**
 - 4.3 SqlMap
- **6. SQL INJECTION**

CONCLUSÃO

O trabalho permitiu...

REFERÊNCIAS BIBLIOGRÁFICAS

CAMPOS, André L. N. **Sistema de Segurança da Informação: Controlando os Riscos**. Florianópolis: Visual Books, 2006.

FONTES, Edison. **Vivendo a segurança da informação: orientações práticas para pessoas e organizações**. São Paulo: Sicurezza, 2000.

OLIVEIRA, G. D; et. Al. ARAÚJO, F. A. N. G; Gestão da segurança da informação. Disponível em:https://brapci.inf.br/index.php/res/download/137280. Acesso em 10 de mar, de 2021.

PIMENTA, M. S.; QUARESMA, R. F. C; A segurança da informação e o comportamento dos usuarios. Disponível em:<<u>encurtador.com.br/afR48</u>>. Acesso em 10 de mar. de 2021.