浙江大学普通物理学I

2024.6.22

大题

- 1. 飞船从地面竖直向上发射,飞船的质量为 m ,初速度为 v_0 。飞船发射时所在的星球质量 $M_E >> m$,半径 R_E 。已知引力常量 G ,求:
- 1) 高度 h 处的引力势能;
- 2) 高度 h 处的速度 v ;
- 3) 飞船可以上升的最大高度 H ;

在 H 处,飞船开始沿星球切向喷气(横向喷气),主体质量为 m_s ,燃料质量 m_f ,飞船恰沿高 H 圆轨转动。

- 4) 求 v_s ;
- 5) 若燃料至无穷远处速度为零,求 m_s, m_f ,用 m 表示。
- 2. 列车以 v 向右运动,Mary 在车里,Frank 在地上。已知洛伦兹变换公式为: $x'=\gamma(x-vt)$ $t'=\gamma\left(t-\frac{vx}{c^2}\right)$ 其中 $\gamma=\frac{1}{\sqrt{1-v^2/c^2}}$
- 1) 在 Mary 系下 u'_x, u'_y 运动物体在 Frank 看来 u_x, u_y 是多少?
- 2) Mary 向上投一光束,运用(1)中的结果,计算 u_x,u_y 是多少,并验证光速是不变的。
- 3) Mary 系里由两相邻波前 $(x',t')=(0,0),(\lambda,T)$,求 Frank 系下的时空坐标。该波频率为 $\frac{1}{T}=f_0$,求因多普勒效应在 Frank 看来的 f 是多少。
- 4) Mary 在车内向前发送一束光,求 Frank 看来光抵达前端的时间。
- 3. 粒子1静质量为 m ,动能为 $2mc^2$ 。粒子2静质量为 2m ,目前保持静止。两粒子发生碰撞,碰撞后合并为一个粒子 M ,以速度 v 继续运动。
- 1) 求 M 和 V;
- 2) 计算动能的变化;
- 3) 解释为什么 M > 3m 时能量也是守恒的;
- 4) 求在质心系下(即在碰撞发生后 M 静止的系下),碰撞发生前粒子1的速度。
- 4. 如图为一个热机的循环过程。其中, $3 \to 1$ 是等温过程,吸热 $Q_h \ge 0$; $2 \to 3$ 是绝热过程; $1 \to 2$ 是等容过程,放热 $Q_c \ge 0$.

- 1) 求 1 o 2 的熵变 $\Delta S_c = S_2 S_1$;
- 2)设 V_2 下定容热容 C_v (与 T 无关),求 $Q_c, \Delta S_c$,请利用 T_H, T_L ; 3)计算 W 并求出热效率 $\eta = \frac{W}{Q_h}$ 。同时说明,满足什么条件时, η 可接近卡诺热机 $\eta_c = 1 \frac{T_c}{T_H}$.

选择

- 1. 不考虑相对论,非弹性碰撞下,以下哪些内容不守恒?
- a. 动能; b. 总能量; c. 动量; d. 相对固定点角动量
- 2. 在所示的闵可夫斯基图中:

- a. $t_3>t_2=t_1$; b. $t_3=t_1>t_2$; c. $t_1>t_2>t_3$; d. $t_2>t_3=t_1$.
- 3. 理想气体的绝热过程中,测得 $T^2V^3=C$,那么 $\frac{C_v}{C_p}=$?:
- a. $\frac{3}{5}$; b. $\frac{5}{3}$; c. $\frac{7}{5}$; d. $\frac{5}{7}$.
- 4. 求五个线性原子振动的自由度
- a. 9; b. 10; c. 11; d. 12.
- 5. 根据图中内容,以下说法正确的是:

- a. C处不同事件可以同时发生(换系后)
- b. B处不同事件可以同时发生(换系后)
- c. A与B可以接触
- d. B中事件有因果