Fallstudien II

Laura Kampmann, Christian Peters, Alina Stammen

12. Dezember 2020

Inhalt

- 1. Einleitung
- 2. Task I: Data Rate Prediction

Gradient Boosted Trees

ARIMA

Validierung

3. TaskII

DatentransformationTaskII

XGboostTaskII

Einleitung

Einleitung

Hier stehen ein paar Dinge über die Einleitung:

- Dies
- und
- das

- Ziel: Evaluation von neuen anticipatory vehicular communication systems durch möglichst realitätsnahe Simulationen [3]
 - ⇒ Ansatz: Data-Driven Network Simulation
- Durch Machine Learning Modelle sollen möglichst realistische Vorhersagen der Datenraten generiert werden
- Hoffnung: Bessere Aussagekraft der Simulationen durch Einsatz echten Datenmaterials

Gradient Boosted Trees

Gradient Boosted Trees

- Kann man aus vielen "schwachen" Lernern einen starken Lerner konstruieren?
 - ⇒ Ja, Boosting ist eines der m\u00e4chtigsten Konzepte des Machine Learning [2]
- Kombination von einfachen CART Bäumen zu einem starken Ensemble
 - ⇒ Ähnlich zu Random Forest
- Der Unterschied zum Random Forest liegt im Training!

Training von Gradient Boosted Trees

- Bäume werden nacheinander zum Ensemble hinzugefügt
- Jeder neue Baum versucht, die Schwächen seiner Vorgänger "auszubügeln"
 - ⇒ Additives Training
- Je mehr Bäume aufgenommen werden, desto geringer wird der Training-Error (das Modell wird aber komplexer)
 - ⇒ Kontrolle des Bias-Variance Tradeoffs
 - ⇒ Zusätzlich gibt es Regularisierungs-Parameter

Implementierung: XGBoost

- Liefert state-of-the-art Performance in einer Vielzahl von ML-Problemen
- In 2015 haben 19/25 Gewinner von Kaggle-Competitions XGBoost eingesetzt
- Kann problemlos auf mehrere Milliarden Training Samples skaliert werden
- Lässt sich aber auch hervorragend auf ressourcenbegrenzten Systemen einsetzen [1]

ARIMA

Figure 1: Grafik der auf der ersten Testfahrt im Szenario "Highway" gemessenen Datenübertragungsrate.

- Zeitreihe $y_1, ..., y_n$ (Zielvariable)
- k Zeitreihen $x_{i,1},...,x_{i,n}$ für i=1,...,k (Einflussvariablen)

Lineares Regressionsmodell

$$y_t = c + \beta_1 x_{1,t} + ... + \beta_k x_{k,t} + \epsilon_t$$
 mit Fehler ϵ_t und Konstante c

Annahmen an Fehler:

- $\forall t \in \{1, ..., n\} : E(\epsilon_t) = 0$
- $\forall s, t \in \{1, ..., n\} s \neq t : Cov(\epsilon_s, \epsilon_t) = 0$
- $Cov((\epsilon_1, ..., \epsilon_n)^T) = \sigma^2 \mathbb{1}_n$

Annahmen sind in unserer Situation nicht einhaltbar!

ARMA(p, q) Zusammengesetzes Modell aus

- AR(p) (Auto Regressive): $y_t = c + \phi_1 y_{t-1} + ... + \phi_p y_{t-p} + e_t$ mit Fehler e_t und Konstantec
- MA(q) (Moving Average): $y_t = c + e_t + \theta_1 e_{t-1} + ... + \theta_q e_{t-q}$ mit White Noise $e_t, e_{t-1}, ..., e_{t-q}$ und Konstante c

Zusammengesetzt:

$$y_t = c + \underbrace{\phi_1 y_{t-1} + \ldots + \phi_p y_{t-p}}_{AR(p)} + \underbrace{\theta_1 e_{t-1} + \ldots + \theta_q e_{t-q}}_{MA(q)} + e_t$$

9

Anwendung auf Regressionsfehler

<u>Erinnerung</u>: Fehler ϵ_t des linearen Modells sind autokorreliert \Rightarrow erfüllen Voraussetzungen nicht

Lösung: Wende ARMA-Modell auf Fehler an

$$\epsilon_t = c + \phi_1 \epsilon_{t-1} + \dots + \phi_p \epsilon_{t-p} + \theta_1 e_{t-1} + \dots + \theta_q e_{t-q} + e_t$$

Modellgleichung Regression mit ARMA-Fehlern:

$$y_t = c + \sum_{i=1}^k \beta_i x_{i,t} + \sum_{j=1}^p \phi_j \epsilon_{t-j} + \sum_{\substack{k=1 \ \text{vergangene Fehler LM}}}^q \theta_k e_{t-k} + e_t$$

h-Schritt Punktvorhersage

- Ersetze Beobachtungen zu zukünftigen Zeitpunkten mit deren Vorhersagen
- Ersetze Fehler an vergangenen Zeitpunkten durch das entsprechende Residuum
- Ersetze Fehler an zukünftigen Zeitpunkten durch 0

Beispiel:
$$h = 2, k = 1, p = 2, q = 2$$

$$\begin{aligned} y_t &= c + \beta_1 x_t + \epsilon_t \text{ mit } & \epsilon_t &= \phi_1 \epsilon_{t-1} + \phi_2 \epsilon_{t-2} + \theta_1 e_{t-1} + \theta_2 e_{t-2} + e_t \\ \widehat{y_{t+1}} &= c + \beta_1 x_t + \widehat{\epsilon_{t+1}} \text{ mit } \widehat{\epsilon_{t+1}} &= \phi_1 \epsilon_t + \phi_2 \epsilon_{t-1} + \theta_1 e_t + \theta_2 e_{t-1} + \underbrace{\widehat{e_{t+1}}}_{=0} \\ \widehat{y_{t+2}} &= c + \beta_1 x_t + \widehat{\epsilon_{t+2}} \text{ mit } \widehat{\epsilon_{t+2}} &= \phi_1 \widehat{\epsilon_{t+1}} + \phi_2 \epsilon_t + \theta\underbrace{\widehat{e_{t+1}}}_{=0} + \theta e_t + \underbrace{\widehat{e_{t+2}}}_{=0} \end{aligned}$$

Validierung

k-fache Kreuzvalidierung

- beachtet Abhängigkeit der Datenpunkte nicht
- zerstört zeitliche Komponente
- verwendet eventuell zukünftige Beobachtungen für Prognose der Gegenwart
- ⇒ Kreuzvalidierung für Zeitreihen

Validierung

Figure 2: Grafik der auf der ersten Testfahrt im Szenario "Highway" gemessenen Datenübertragungsrate.

Validierung

Task I: Data Rate Prediction

frame

hallo

TaskII

frame

hallo

TaskII

DatentransformationTaskII

frame

hallo

TaskII

XGboostTaskII

frame

hallo

Literatur i

T. Chen and C. Guestrin.

Xgboost: A scalable tree boosting system.

CoRR, abs/1603.02754, 2016.

T. Hastie, R. Tibshirani, and J. Friedman.

The elements of statistical learning: data mining, inference and prediction.

Springer, 2 edition, 2009.

B. Sliwa and C. Wietfeld.

Data-driven network simulation for performance analysis of anticipatory vehicular communication systems.

IEEE Access, 7:172638-172653, 2019.