Математическая модель истечения жидкости из резервуара при разгерметизации

Введение

Данная математическая модель описывает процесс истечения жидкости из резервуара через отверстие разгерметизации при наличии газовой подушки. Модель учитывает изменение давления газовой подушки в процессе истечения и основывается на фундаментальных уравнениях гидродинамики.

Основные уравнения модели

1. Скорость истечения

Скорость истечения жидкости определяется по обобщенному уравнению Бернулли:

$$v = \sqrt{2\left(\frac{\Delta P}{\rho} + gh\right)}$$

где: - v - скорость истечения, м/с - ΔP - перепад давления (P_газа - P_атм), Па - ρ - плотность жидкости, кг/м³ - g - ускорение свободного падения, м/с² - h - высота столба жидкости, м

2. Массовый расход

Массовый расход жидкости через отверстие рассчитывается по формуле:

$$Q = \mu A \nu \rho$$

где: - Q - массовый расход, кг/с - μ - коэффициент расхода - A - площадь отверстия, м² - v - скорость истечения, м/с - ρ - плотность жидкости, кг/м³

Площадь отверстия вычисляется через заданный диаметр:

$$A = \pi \left(\frac{d}{2}\right)^2$$

где d - диаметр отверстия, м

3. Изменение давления газовой подушки

Процесс расширения газа в подушке считается адиабатическим и описывается уравнением:

$$P_1V_1^k = P_2V_2^k$$

где: - P_1 , P_2 - начальное и текущее давление газа, Π а - V_1 , V_2 - начальный и текущий объем газа, M^3 - k - показатель адиабаты (1.4 для воздуха)

4. Изменение высоты жидкости

Скорость изменения высоты жидкости определяется уравнением:

$$\frac{dh}{dt} = -\frac{Q}{\rho A_{tank}}$$

где: - $\frac{dh}{dt}$ - скорость изменения высоты, м/с - A_{tank} - площадь поперечного сечения резервуара, м²

5. Масса вытекшей жидкости

Масса вытекшей жидкости определяется интегрированием массового расхода по времени:

$$m(t) = \int_{0}^{t} Q(\tau) d\tau$$

Численная реализация

Для численного решения системы уравнений используется явная схема интегрирования по времени с постоянным шагом $d\,t$. На каждом временном шаге:

- 1. Рассчитывается текущий объем газовой подушки
- 2. Определяется давление газа из уравнения адиабаты
- 3. Вычисляется скорость истечения
- 4. Рассчитывается массовый расход
- 5. Обновляется высота жидкости
- 6. Вычисляется масса вытекшей жидкости

Основные допущения модели

- 1. Жидкость считается идеальной и несжимаемой
- 2. Процесс расширения газа считается адиабатическим
- 3. Коэффициент расхода принят постоянным (μ = 0.61 для острой кромки)
- 4. Не учитываются потери на трение в отверстии
- 5. Процесс считается изотермическим для жидкости

- 6. Не учитывается теплообмен между газом и жидкостью
- 7. Геометрия резервуара считается цилиндрической
- 8. Отверстие истечения считается круглым

Входные параметры модели

- 1. Геометрические параметры:
 - Диаметр отверстия разгерметизации, мм
 - Диаметр резервуара, м
 - Начальная высота жидкости, м
 - Начальная высота газовой подушки, м
- 2. Физические параметры:
 - Плотность жидкости, кг/м³
 - Начальное избыточное давление, МПа
 - Показатель адиабаты газа
- 3. Параметры моделирования:
 - Время моделирования, с
 - Шаг по времени, с

Выходные параметры модели

- 1. Зависимости от времени:
 - Высота жидкости
 - Давление газовой подушки
 - Массовый расход
 - Масса вытекшей жидкости

Литература

- 1. Идельчик И.Е. Справочник по гидравлическим сопротивлениям. М.: Машиностроение, 1992.
- 2. Альтшуль А.Д. Гидравлика и аэродинамика. М.: Строиздат, 1987.
- 3. Емцев Б.Т. Техническая гидромеханика. М.: Машиностроение, 1987.
- 4. Дейч М.Е., Зарянкин А.Е. Гидрогазодинамика. М.: Энергоатомиздат, 1984.

5. Чугаев Р.Р. Гидравлика. Л.: Энергоиздат, 1982.