Studio della dissociazione del catione idrogenonio (H_3^+) attraverso l'uso di computer quantistici

Relatore: Dr. Andrea Giachero

Correlatore: Stefano Barison

Candidato: Rodolfo Carobene

Matricola: 838092

R. Feynman, 1982

L. Grover, 1996

P. Shor, 1997

A. Peruzzo, 2014

R. Feynman, 1982

L. Grover, 1996

P. Shor, 1997

A. Peruzzo, 2014

Noisy
Intermediate
Scale
Quantum

R. Feynman, 1982

L. Grover, 1996

P. Shor, 1997

A. Peruzzo, 2014

Variational

Quantum

Eigensolver

Analisi con metodi computazionali classici

Scelta della base

Approssimazione di Hartree-Fock

$$\widehat{H}|\varphi\rangle = (\widehat{T}_N + \widehat{H}_{EL})|\varphi\rangle$$

Approssimazione adiabatica

Approssimazione di Hartree-Fock Basi minimali: STO-nG

Basi di Pople: l-mnG

Basi correlate: cc-PVX

Approssimazione adiabatica

Scelta della base

$$V_H \varphi_i(x) = \frac{e_0^2}{4\pi\epsilon_0} \int d^3x \sum \frac{\varphi_i^*(x')\varphi_i(x)}{|x-x'|} \varphi_i(x)$$

$$V_F(x) = \frac{e_0^2}{4\pi\epsilon_0} \int d^3x' \sum \frac{\varphi_i^*(x')\varphi_i(x)}{|x-x'|} \varphi_i(x')$$

Møller-Plesset

Full Configuration Interaction

Coupled Cluster

Analisi con metodi computazionali quantistici

Isomorfismi

VQE

VQE

Jordan-Wigner

Parità

Bravyi-Kitaev

Isomorfismi

- 1. Si calcola l'Hamiltoniana
- 2. Si considera un ansatz variazionale: $|\varphi'\rangle = \widehat{U}|\varphi_{HF}\rangle$
- 3. Si calcola il valore di aspettazione di H e le sue derivate
- 4. Un ottimizzatore classico varia i parametri di \widehat{U}
- 5. Si reiterano 3 e 4

Isomorfismi

Problem inspired: qUCCSD

Problem agnostic: TwoLocal

Simulazioni e misure

Simulazioni VQE con TwoLocal

Misure hardware

Simulazioni VQE con qUCCSD

Misure hardware

Simulazioni VQE con qUCCSD

Simulazioni VQE con TwoLocal

- VQE su quantum computer
- VQE con rumore NISQ
- FCI con base minimale
- sperimentale
- FCI con base correlata

Risultati

Grazie per l'attenzione!

Fonti di rumore

• Errori SPAM (State Preparation And Mesurement)

• Errori sui Gate

• Errori di decoerenza

Quantum Volume

$$V_Q = \min[N, d(N)]^2$$

$$\log_2 V_Q = \underset{n \le N}{\operatorname{arg\,max}} \{ \min[n, d(n)] \}$$

TRANSMON Qubit

