

Algebraic Identities Ex 4.2 Q1

Answer:

In the given problem, we have to find expended form

(i) Given
$$(a+2b+c)^2$$

We shall use the identity
$$(x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$$

Here
$$x = a$$
, $y = 2b$, $z = c$

By applying in identity we get

$$(a+2b+c)^2 = a^2 + (2b)^2 + c^2 + 2a \times 2b + 2 \times 2 \times b \times c + 2 \times c \times a$$

= $a^2 + 4b^2 + c^2 + 4ab + 4bc + 2ca$

Hence the expended form of $(a+2b+c)^2$ is $a^2+4b^2+c^2+4ab+4bc+2ca$

(ii) Given
$$(2a-3b-c)^2$$

We shall use the identity $(x - y - z)^2 = x^2 + y^2 + z^2 - 2xy + 2yz - 2zx$

Here
$$x = 2a$$
, $y = 3b$, $z = c$

By applying in identity we get

$$(2a-3b-c)^{2} = (2a)^{2} + (3b)^{2} + (c)^{2} - 2(2a)(3b) + 2(3b)(c) + 2(c)(2a)$$

$$= 2a \times 2a + 3b \times 3b + c \times c - 2(2a)(3b) + 2(3b)(c) + 2(c)(2a)$$

$$= 4a^{2} + 9b^{2} + c^{2} - 12ab + 6bc - 4ca$$

Hence the expended form of $(2a-3b-c)^2$ is $4a^2+9b^2+c^2-12ab+6bc-4ca$

(iii) Given $(-3x + y + z)^2$

We shall use the identity $(a+b+c)^2 = a^2+b^2+c^2+2ab+2bc+2ca$

Here
$$a = 3x, b = y, c = z$$

By applying in identity we get

$$(-3x + y + z)^{2} = (-3x)^{2} + y^{2} + z^{2} - 2 \times 3x \times y + 2yz - 2 \times (-3x) \times z$$

= $3x \times 3x + y^{2} + 3z \times 3z - 2 \times 3x \times y + 2 \times y \times z - 2 \times 3x \times z$
= $9x^{2} + y^{2} + z^{2} - 6xy + 2yz - 6xz$

Hence the expended form of $(-3x+y+z)^2$ is $9x^2+y^2+z^2-6xy+2yz-6xz$

(iv) Given
$$(m+2n-5p)^2$$

We shall use the identity $(x + y - z)^2 = x^2 + y^2 + z^2 + 2xy - 2yz - 2zx$

Here
$$x = m, y = 2n, z = 5p$$

By applying in identity we get

$$(m+2n-5p)^{2} = m^{2} + (2n)^{2} + (5p)^{2} + 2 \times m \times 2n - 2 \times 2n \times 5p - 2 \times 5p \times m$$

$$= m \times m + 2n \times 2n + 5p \times 5p + 2 \times m \times 2n - 2 \times 2n \times 5p - 2 \times 5p \times m$$

$$= m^{2} + 4n^{2} + 25p^{2} + 4mn - 20np - 10mp$$

Hence the expended form of $(m+2n-5p)^2$ is $m^2+4n^2+25p^2+4mn-20np-10mp$

(v) Given
$$(2+x-2y)^2$$

We shall use the identity $(a+b+c)^2 = a^2+b^2+c^2+2ab+2bc+2ca$

Here
$$a = 2, b = x, c = -2y$$

By applying in identity we get

$$(2+x-2y)^{2} = 2^{2} + x^{2} + (2y)^{2} + 2 \times 2 \times x - 2 \times x \times 2y - 2 \times 2y \times 2$$

$$= 2 \times 2 + x \times x + 2y \times 2y + 2 \times 2x \times - 2 \times x \times 2y - 2 \times 2y \times 2$$

$$= 4 + x^{2} + 4y^{2} + 4x - 4xy - 8y$$

Hence the expended form of $(2+x-2y)^2$ is $4+x^2+4y^2+4x-4xy-8y$

(vi) Given
$$\left(a^2 + b^2 + c^2\right)^2$$

We shall use the identity $(x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$

Here
$$x = a^2$$
, $y = b^2$, $z = c^2$

By applying in identity we get

$$(a^{2} + b^{2} + c^{2})^{2} = (a^{2})^{2} + (b^{2})^{2} + (c^{2})^{2} + 2 \times a^{2} \times b^{2} + 2 \times b^{2} \times c^{2} + 2 \times c^{2} \times a^{2}$$

$$= a^{2} \times a^{2} + b^{2} \times b^{2} + c^{2} \times c^{2} + 2 \times a^{2} \times b^{2} + 2 \times b^{2} \times c^{2} + 2 \times c^{2} \times a^{2}$$

$$= a^{4} + b^{4} + c^{4} + 2a^{2}b^{2} + 2b^{2}c^{2} + 2c^{2}a^{2}$$

Hence the expended form of $(a^2 + b^2 + c^2)^2$ is $a^4 + b^4 + c^4 + 2a^2b^2 + 2b^2c^2 + 2c^2a^2$

(vii) Given $(ab+bc+ca)^2$

We shall use the identity $(x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$

Here
$$x = ab$$
, $y = bc$, $z = ca$

By applying in identity we get

$$(ab+bc+ca)^{2} = (ab)^{2} + (bc)^{2} + (ca)^{2} + 2 \times ab \times bc + 2 \times bc \times ca + 2 \times ca \times ab$$

$$= ab \times ab + bc \times bc + ca \times ca + 2 \times ab \times bc + 2 \times bc \times ca + 2 \times ca \times ab$$

$$= a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2} + 2ab^{2}c + 2bc^{2}a + 2ca^{2}b$$

Hence the expended form of $(ab + bc + ca)^2$ is $a^2b^2 + b^2c^2 + c^2a^2 + 2ab^2c + 2bc^2a + 2ca^2b$

(viii) Given
$$\left(\frac{x}{y} + \frac{y}{z} + \frac{z}{x}\right)$$

We shall use the identity $(a+b+c)^2 = a^2 + b^2 + c^2 - 2ab - 2bc - 2ca$

Here
$$a = \frac{x}{y}, b = \frac{y}{z}, c = \frac{z}{x}$$

By applying in identity we get

$$\left(\frac{x}{y} + \frac{y}{z} + \frac{z}{x}\right)^{2} = \left(\frac{x}{y}\right)^{2} + \left(\frac{y}{z}\right)^{2} + \left(\frac{z}{x}\right)^{2} + 2 \times \frac{x}{y} \times \frac{y}{z} + 2 \times \frac{y}{z} \times \frac{z}{x} + 2 \times \frac{z}{x} \times \frac{x}{y}$$

$$= \frac{x}{y} \times \frac{x}{y} + \frac{y}{z} \times \frac{y}{z} + \frac{z}{x} \times \frac{z}{x} + 2 \times \frac{x}{y} \times \frac{y}{z} + 2 \times \frac{y}{z} \times \frac{z}{x} + 2 \times \frac{z}{x} \times \frac{x}{y}$$

$$= \frac{x^{2}}{y^{2}} + \frac{y^{2}}{z^{2}} + \frac{z^{2}}{z^{2}} + 2 \times \frac{x}{z} \times \frac{y}{z} + 2 \times \frac{y}{z} \times \frac{z}{z} + 2 \times \frac{z}{z} \times \frac{x}{z}$$

$$= \frac{x^{2}}{y^{2}} + \frac{y^{2}}{z^{2}} + \frac{z^{2}}{z^{2}} + \frac{2x}{z} + \frac{2y}{z} + \frac{2z}{z}$$

Hence the expended form of $\left(\frac{x}{y} + \frac{y}{z} + \frac{z}{x}\right)^2$ is $\left[\frac{x^2}{y^2} + \frac{y^2}{z^2} + \frac{z^2}{x^2} + \frac{2x}{z} + \frac{2y}{x} + \frac{2z}{y}\right]$

(ix) Given
$$\left(\frac{a}{bc} + \frac{b}{ca} + \frac{c}{ab}\right)^2$$

We shall use the identity $(x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$

Here
$$x = \frac{a}{bc}$$
, $y = \frac{b}{ca}$, $z = \frac{c}{ab}$

By applying in identity we get

$$\begin{split} \left(\frac{a}{bc} + \frac{b}{ca} + \frac{c}{ab}\right)^2 &= \left(\frac{a}{bc}\right)^2 + \left(\frac{b}{ca}\right)^2 + \left(\frac{c}{ab}\right)^2 + 2 \times \frac{a}{bc} \times \frac{b}{ca} + 2 \times \frac{b}{ca} \times \frac{c}{ab} + 2 \times \frac{a}{ab} \times \frac{a}{bc} \\ &= \frac{a}{bc} \times \frac{a}{bc} + \frac{b}{ca} \times \frac{b}{ca} + \frac{c}{ab} \times \frac{c}{ab} + 2 \times \frac{a}{bc} \times \frac{b}{ca} + 2 \times \frac{b}{ca} \times \frac{c}{ab} + 2 \times \frac{c}{ab} \times \frac{a}{bc} \\ &= \frac{a^2}{b^2c^2} + \frac{b^2}{c^2a^2} + \frac{c^2}{a^2b^2} + 2 \times \frac{A}{bc} \times \frac{B}{ca} + 2 \times \frac{B}{ca} \times \frac{A}{ab} + 2 \times \frac{A}{bc} \times \frac{A}{bc} \\ &= \frac{a^2}{b^2c^2} + \frac{b^2}{c^2a^2} + \frac{c^2}{a^2b^2} + \frac{2}{c^2} + \frac{2}{a^2} + \frac{2}{b^2} \end{split}$$

Hence the expended form of $\left(\frac{a}{bc} + \frac{b}{ca} + \frac{c}{ab}\right)^2$ is $\left(\frac{a^2}{b^2c^2} + \frac{b^2}{c^2a^2} + \frac{c^2}{a^2b^2} + \frac{2}{c^2} + \frac{2}{a^2} + \frac{2}{b^2}\right)$

(x) Given $(x+2y+4z)^2$

We shall use the identity $(a+b+c)^2 = a^2+b^2+c^2+2ab+2bc+2ca$

Here a = x, b = 2y, c = 4z

By applying in identity we get

$$(x+2y+4z)^{2} = x^{2} + (2y)^{2} + (4z)^{2} + 2 \times x \times 2y + 2 \times 2y \times 4z + 2 \times 4z \times x$$

= $x \times x + 2y \times 2y + 4z \times 4z + 2 \times x \times 2y + 2 \times 2y \times 4z + 2 \times 4z \times x$
= $x^{2} + 4y^{2} + 16z^{2} + 4xy + 16yz + 8xy$

Hence the expended form of $(x+2y+4z)^2$ is $x^2+4y^2+16z^2+4xy+16yz+8xy$

(xi) Given $(2x-y+z)^2$

We shall use the identity $(a+b+c)^2 = a^2+b^2+c^2+2ab+2bc+2ca$

Here a = 2x, b = y, c = z

By applying in identity we get

$$(2x - y + z)^{2} = (2x)^{2} + y^{2} + z^{2} - 2 \times 2x \times y - 2 \times y \times z + 2 \times z \times 2x$$
$$= 2x \times 2x + y \times y + z \times z - 2 \times 2x \times y - 2 \times y \times z + 2 \times z \times 2x$$
$$= 4x^{2} + y^{2} + z^{2} - 4xy - 2yz + 4xy$$

Hence the expended form of $(2x-y+z)^2$ is $4x^2+y^2+z^2-4xy-2yz+4xy$

(xii) Given $(-2x+3y+2z)^2$

We shall use the identity $(a+b+c)^2 = a^2+b^2+c^2+2ab+2bc+2ca$

Here a = -2x, b = 3y, c = 2z

By applying in identity we get

$$(-2x+3y+2z)^{2} = (-2x)^{2} + (3y)^{2} + (2z)^{2} - 2 \times 2x \times 3y + 2 \times 3y \times 2z - 2 \times 2z \times 2x$$
$$= 2x \times 2x + 3y \times 3y + 2z \times 2z - 2 \times 2x \times 3y + 2 \times 3y \times 2z - 2 \times 2z \times 2x$$
$$= 4x^{2} + 9y^{2} + 4z^{2} - 12yx + 12yz - 8xz$$

Hence the expended form of $(-2x+3y+2z)^2$ is $[4x^2+9y^2+4z^2-12yx+12yz-8xz]$

******* END *******