Notes on Optimziation

Convex and Nonconvex Optimization January 30, 2017

ARSHAK MINASYAN

1 Basic Optimization

1.1 Convex sets

Define a set \mathcal{A} to be affine when $\forall x_1, x_2 \in \mathcal{A}$ the point $x = \alpha x_1 + (1 - \alpha)x_2$, for any $\alpha \in \mathbb{R}$. An easy example of affine set is the set of solutions of Ax = b for $x \in \mathbb{R}^n$, $A \in \mathbb{M}^{m \times n}(\mathbb{R})$ and $b \in \mathbb{R}^m$, since if $x_1, x_2 \in \{x : Ax = b\}$ then for any α it holds $x = \alpha x_1 + (1 - \alpha)x_2 \in \{x : Ax = b\}$.

The definition of a set \mathcal{A} being *convex* is as follows $\forall x_1, x_2 \in \mathcal{A}$ the point $x = \alpha x_1 + (1 - \alpha)x_2$, for any $\alpha \in [0, 1]$. The geometrical meaning of a convex set is a set of points of a line segment between given two given points.

Remark 1.1. Note that all affine sets are convex as well.

Remark 1.2. example of ball, which loses it's convexity

We call a set a *convex combination* of points x_1, \ldots, x_k the set of all points x:

$$x = \sum_{i=1}^{k} \alpha_i x_i, \quad \alpha_i \ge 0 \,\forall i \in [1, k], \quad \sum_{i=1}^{k} = 1$$
 (1)

Remark 1.3. example of triangle from 3 points

Define convex hull to be a set of all convex combinations of given points. In case a set is convex then it coincides with it's convex hull. We denote the convex hull of set C as $\operatorname{\mathbf{conv}} C$, which is also known to be the minimal convex set that contains C.

The $convex\ cone$ is a set of points x:

$$x = \theta_1 x_1 + \theta_2 x_2, \quad \theta_1, \theta_2 \ge 0 \tag{2}$$

Exercise 1.1. Classify the objects using the above definitions:

- Hyperplane $\{x:(a,x)=b\}$. affine, convex, not a cone.
- Half-space $\{x:(a,x)\leq b\}\equiv \{x:(a,x-x^\circ)\leq 0\}.$ not affine, convex, not a cone.
- Euclidean Balls. The ball with radius r and center x_{\circ} we denote the following set $B_r(x_{\circ})$:

$$B_r(x_\circ) = \{x : ||x - x_\circ|| \le r\} = \{x : x_\circ + ru, ||u||_2 \le 1\}$$
(3)

• Euclidean Ellipsoid. The ellipsoid with center x_{\circ} and matrix P we denote the following set $E_{P}(x_{\circ})$:

$$E_P(x_\circ) = \{x : (x - x_\circ)^T P^{-1} (x - x_\circ) \le 1\} = \{x : x_\circ + Au, ||u||_2 \le 1\},\tag{4}$$

where P is a symmetric and positive definite matrix. Note that the second

• Euclidean norm cone (ice-cream cone, light cone):

$$\mathcal{K} = \{(x, t) : ||x||_2 \le t\},\tag{5}$$

where $x \in \mathbb{R}^n$ and $t \in \mathbb{R}$.

Remark 1.4. plot of the set

We call a set \mathcal{P}

$$\mathcal{P} = \{ x \in \mathbb{R}^n : Ax \le b, Cx = d \}$$
 (6)

a polyhedron. Note that the set \mathcal{P} can be empty.

Now, let's dig deeper into the convex sets. The natural question is how to check whether a given set is convex or not?

The possible ways are:

- (a) Apply definition.
- (b) Derive your set using a simple (convex) set and operations preserving convexity.
- (c) Intersection of two or more convex sets.
- (d) The image of a convex set is convex as well using an affine function $f: \mathbb{R}^n : \to \mathbb{R}^m$, f(x) = Ax + b.

If $S \subset \mathbb{R}^n$ is convex then

$$f(s) = \{f(x) : x \in S\} \quad \text{is convex as well} \tag{7}$$

If $C \subset \mathbb{R}^m$ is convex then

$$f^{-1}(c) = \{x : f(x) \in C\} \quad \text{is convex as well}$$
 (8)

- (e) Projection.
- (f) Perspective function. A function $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$

$$P(x,t) = \frac{x}{t} \tag{9}$$

with $\operatorname{dom} P = \{(x, t) : t > 0\}$ is called a perspective function.

Note that applying an affine function and a perspective function along with the property (c) of checking a set to be convex one can derive that the function $f: \mathbb{R}^n \to \mathbb{R}^m$

$$f(x) = \frac{Ax + b}{(c, x) + d} \tag{10}$$

is convex as well.

1.2 Convex Functions

We call a function $f: \mathbb{R}^n \to \mathbb{R}$ convex if

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y),\tag{11}$$

holds $\forall \alpha \in [0, 1]$.

Remark 1.5. picture of illustration of a convex function in \mathbb{R}

Note that the definition is formally given for $x \in \mathbb{R}^n$, but there are some issues with checking whether the function in \mathbb{R}^n are convex or not. For this purpose one can apply so called *line-search*, which states that if $g : \mathbb{R} \to \mathbb{R}$ defined as follows

$$g(t) = f(x+d \cdot t) \text{ if } x, d \in \mathbb{R}^n, x+td \in \mathbf{dom}f.$$
 (12)

is convex then then $f(\cdot)$ is convex as well in argument $x \in \mathbb{R}$.

1.2.1 Operations of preserving convexity

Here we list some operations that preserve the convexity of given function

- (a) $\sum_{i=1}^{n} \alpha_i f_i$, $\alpha_i \ge 0$.
- (b) Composition with affine function.
- (c) Point-wise maximum: $f = \max_i f_i(x)$, where f_i 's are convex.

Example 1.1. An interesting example of convex function is

$$f(x) = \sum_{i=1}^{r} x_{[i]},$$
(13)

where $x_{[i]}$ is i-th order statistics, i.e. $x_{[1]} \ge x_{[2]} \ge \cdots \ge x_{[n]}$. To see this take

$$f(x) = \max_{i} \{x_{1i} + \dots + x_{ri}\} \quad i = 1, \dots, C_n^r,$$
(14)

hence by the point-wise maximum property the function in (13) is convex.

(d) Minimization. The function g(y) is convex if

$$g(y) = \min_{x \in C(y)} f(x), \tag{15}$$

if the initial function f(x) is convex and the set C parametrized on y is convex as well.

(e) Perspective.