

glideinWMS – Dynamic Glideins Across National Infrastructures

Mats Rynge - USC Information Sciences Institute

Gideon Juve - USC Information Sciences Institute

Bruce Berriman - Infrared Processing and Analysis Center, Caltech

Ewa Deelman - USC Information Sciences Institute

Krista Larson - Fermilab

Igor Sfiligoi - University of California San Diego

Motivation

 Show that a researcher can bring in and combine local and national infrastructures to her/his desktop

computer

- Local Condor pool
- Open Science Grid
- TeraGrid

glideinWMS with the Corral frontend

-

Credit: NASA

Kepler / Periodograms

- Calculates the significance of different frequencies in time-series data to identify periodic signals.
 - Light curve -> Periodogram -> Event -> Event database
 - Mostly FFT
 - Three different algorithms

BLS periodogram for Kepler -4b, the smallest transiting exoplanet discovered by Kepler to date.

Desktop Machine

- Why desktop machine? Where the data is!
- Desktop is the submit host and central manager
 - GSI authentication
 - 10 Slave collectors

glideinWMS setup

- Corral frontend
 - Simpler than the VO frontend
 - No concept of VOs
 - Single users, personal grid proxy

 Corral monitors the Condor queue, if the demand exceeds available resources, asks the factory for more glideins

Infrastructure Differences

Local/Campus	OSG	TeraGrid
Small – but easily prioritizable	Opportunistic use	Allocations
Manually managed grid user mappings	Virtual Organization mapping (many VO users to one local UID)	Automatically mapped (one VO, individual accounts)
One glidein per core	One glidein per core	One glidein for many cores (chunking)

The glideins are submitting as Condor-G jobs (Globus GRAM)

Run in numbers

- Inputs
 - 210664 input light curves
 - 61 GB
- Jobs mapped into 11 dags,
 - Total jobs: 8264
 - Job restarts: 1384
- Outputs
 - 790 GB

We guessed the run would take 24 hours – it took approximate 10 hours!

Workflow Details

- Pegasus Workflow Manager
 - 11 dags, ~ 50000 tasks each
 - Wall time based job clustering Target: 1 hour
 - ~ 800 jobs per dag

Glideins can only abstract to a certain level

Conclusion

- Running across national cyber infrastructures is getting easier!
- Data is a limiting factor for these kind of runs