Project_Mercedes-Benz Greener Manufacturing

May 25, 2022

1 Mercedes-Benz Greener Manufacturing

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
[2]: import warnings
warnings.filterwarnings('ignore')
```

1.0.1 Load the Train and Test dataset

```
[3]: # Load the "Train.csv" file

data_train = pd.read_csv('train.csv')
data_train.head()
```

```
[3]:
                                                            X377
                                                                  X378
                y X0 X1 X2 X3 X4 X5 X6 X8
                                                X375
                                                      X376
                                                                        X379
    0
        0
           130.81
                    k v
                          at
                                 d
                                    u
                                                   0
                                                         0
                                                               1
                                                                     0
                                                                           0
            88.53
                                                         0
                                                               0
    1
        6
                    k t
                                 d
                                    у
                                       1
                                                   1
                                                                     0
                                                                           0
                          av
    2
            76.26 az w
                                       j
                                                         0
                                 d
                                    х
                                                   0
                                                                           0
                           n
                              С
                                                               0
            80.62
                              f
                                 d x
                                                         0
                                                                     0
                   az t
                           n
                                      l e ...
                                                   0
                                                                           0
            78.02 az v
                              f d h d n ...
                                                                           0
       13
                           n
```

```
X380
        X382 X383
                      X384
                             X385
             0
0
      0
                   0
                          0
                                0
1
      0
             0
                   0
                          0
                                0
2
      0
             1
                   0
                          0
                                0
3
      0
             0
                   0
                          0
                                0
                   0
                          0
                                0
```

[5 rows x 378 columns]

```
[4]: # Load the "Test.csv" file
```

```
data_test = pd.read_csv('test.csv')
     data_test.head()
[4]:
                                                X375
                                                      X376
                                                            X377
                                                                   X378
                                                                         X379
                                                                               X380
        ID XO X1
                   X2 X3 X4 X5 X6 X8
                                       X10
                           d
                                         0
                                                   0
                                                         0
                                                                0
                                                                      1
                                                                            0
            az
                V
                    n
                       f
                              t
                                 a
                                    W
                                                                                   0
                   ai
                                                         0
                                                                      0
                                                                            0
     1
         2
             t
               b
                           d
                              b
                                          0
                                                   0
                                                                1
                                                                                   0
                        a
                                 g
                                    У
     2
         3
                                         0
                                                   0
                                                         0
                                                                0
                                                                            0
                                                                                   0
                        f
                           d
                                    j
                                                                      1
            az v
                   as
                              а
                                 j
         4
                        f
                                         0
                                                         0
                                                                0
                                                                            0
                                                                                   0
     3
            az 1
                    n
                           d
                              Z
                                 1
                                                   0
                                                                      1
                                    n
                                                         0
                                                                0
                                                                      0
                                                                            0
                                                                                   0
                           d y
                                         0
                                                   1
         5
                       С
                                 i m
                S
                   as
              X383
                    X384
        X382
                           X385
     0
           0
                 0
                        0
                              0
     1
           0
                 0
                        0
                              0
     2
           0
                 0
                        0
                              0
     3
           0
                 0
                        0
                              0
                        0
                              0
           0
                 0
     [5 rows x 377 columns]
[5]: print('Train Data Size:',data_train.shape)
     print('Test Data Size:',data_test.shape)
    Train Data Size: (4209, 378)
    Test Data Size: (4209, 377)
    1.0.2 Exploratory Data Analysis:
[6]: # Check the columns in Train dataset
     data_train.columns
[6]: Index(['ID', 'y', 'X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8',
            'X375', 'X376', 'X377', 'X378', 'X379', 'X380', 'X382', 'X383', 'X384',
            'X385'],
           dtype='object', length=378)
[7]: # Check the columns in Test dataset
     data test.columns
[7]: Index(['ID', 'X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8', 'X10',
```

'X385'],

dtype='object', length=377)

'X375', 'X376', 'X377', 'X378', 'X379', 'X380', 'X382', 'X383', 'X384',

[8]: # Check the information of train dataset data_train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4209 entries, 0 to 4208
Columns: 378 entries, ID to X385

dtypes: float64(1), int64(369), object(8)

memory usage: 12.1+ MB

[9]: # Check the information of test dataset

data_test.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4209 entries, 0 to 4208
Columns: 377 entries, ID to X385
dtypes: int64(369), object(8)

memory usage: 12.1+ MB

[10]: data_train.describe()

[10]:		ID	У	X10	X11	X12 \			
	count	4209.000000	4209.000000	4209.000000	4209.0 42	09.000000			
	mean	4205.960798	100.669318	0.013305	0.0	0.075077			
	std	2437.608688	12.679381	0.114590	0.0	0.263547			
	min	0.000000	72.110000	0.000000	0.0	0.000000			
	25%	2095.000000	90.820000	0.000000	0.0	0.000000			
	50%	4220.000000	99.150000	0.000000	0.0	0.000000			
	75%	6314.000000	109.010000	0.000000	0.0	0.00000			
	max	8417.000000	265.320000	1.000000	0.0	1.000000			
		X13	X14	X15	X1	6 X1	7.	•••	\
	count	4209.000000	4209.000000	4209.000000	4209.00000	0 4209.00000	0 .	•••	
	mean	0.057971	0.428130	0.000475	0.00261	3 0.00760	3 .	•••	
	std	0.233716	0.494867	0.021796	0.05106	1 0.08687	2 .	•••	
	min	0.000000	0.000000	0.000000	0.00000	0.00000	0 .	•••	
	25%	0.000000	0.000000	0.000000	0.00000	0.00000	0 .	•••	
	50%	0.000000	0.000000	0.000000	0.00000	0.00000	0 .	•••	
	75%	0.000000	1.000000	0.000000	0.00000	0.00000	0 .	•••	
	max	1.000000	1.000000	1.000000	1.00000	0 1.00000	0 .	•••	
		X375	X376	X377	Х37	8 X37	9	\	
	count	4209.000000	4209.000000	4209.000000	4209.00000	0 4209.00000	0		
	mean	0.318841	0.057258	0.314802	0.02067	0.00950	3		
	std	0.466082	0.232363	0.464492	0.14229	4 0.09703	3		
	min	0.000000	0.000000	0.000000	0.00000	0.00000	0		

25%	0.000000	0.000000	0.000000	0.000000	0.000000
50%	0.000000	0.000000	0.000000	0.000000	0.000000
75%	1.000000	0.000000	1.000000	0.000000	0.000000
max	1.000000	1.000000	1.000000	1.000000	1.000000
	X380	X382	X383	X384	X385
count	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000
mean	0.008078	0.007603	0.001663	0.000475	0.001426
std	0.089524	0.086872	0.040752	0.021796	0.037734
min	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.000000	0.000000	0.000000	0.000000	0.000000
50%	0.000000	0.000000	0.000000	0.000000	0.000000
75%	0.000000	0.000000	0.000000	0.000000	0.000000
max	1.000000	1.000000	1.000000	1.000000	1.000000

[8 rows x 370 columns]

[11]: data_test.describe()

[11]:		ID	X10	X11	X12	X13	\	
	count	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000		
	mean	4211.039202	0.019007	0.000238	0.074364	0.061060		
	std	2423.078926	0.136565	0.015414	0.262394	0.239468		
	min	1.000000	0.000000	0.000000	0.000000	0.000000		
	25%	2115.000000	0.000000	0.000000	0.000000	0.000000		
	50%	4202.000000	0.000000	0.000000	0.000000	0.000000		
	75%	6310.000000	0.000000	0.000000	0.000000	0.000000		
	max	8416.000000	1.000000	1.000000	1.000000	1.000000		
		X14	X15	X16	X17	X18	•••	\
	count	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000	•••	
	mean	0.427893	0.000713	0.002613	0.008791	0.010216	•••	
	std	0.494832	0.026691	0.051061	0.093357	0.100570	•••	
	min	0.000000	0.000000	0.000000	0.000000	0.000000	•••	
	25%	0.000000	0.000000	0.000000	0.000000	0.000000	•••	
	50%	0.000000	0.000000	0.000000	0.000000	0.000000	•••	
	75%	1.000000	0.000000	0.000000	0.000000	0.000000	•••	
	max	1.000000	1.000000	1.000000	1.000000	1.000000	•••	
		X375	X376	Х377	Х378	Х379	\	
	count	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000		
	mean	0.325968	0.049656	0.311951	0.019244	0.011879		
	std	0.468791	0.217258	0.463345	0.137399	0.108356		
	min	0.000000	0.000000	0.000000	0.000000	0.000000		
	25%	0.000000	0.000000	0.000000	0.000000	0.000000		
	50%	0.000000	0.000000	0.000000	0.000000	0.000000		
	75%	1.000000	0.000000	1.000000	0.000000	0.000000		

max	1.000000	1.000000	1.000000	1.000000	1.000000
	X380	Х382	Х383	Х384	X385
count	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000
mean	0.008078	0.008791	0.000475	0.000713	0.001663
std	0.089524	0.093357	0.021796	0.026691	0.040752
min	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.000000	0.000000	0.000000	0.000000	0.000000
50%	0.000000	0.000000	0.000000	0.000000	0.000000
75%	0.000000	0.000000	0.000000	0.000000	0.000000
max	1.000000	1.000000	1.000000	1.000000	1.000000

[8 rows x 369 columns]

2 1. If for any column(s), the variance is equal to zero, then you need to remove those variable(s).

```
[12]: # Check the variance of train dataset
      data_train.var()
[12]: ID
              5.941936e+06
              1.607667e+02
      У
     X10
              1.313092e-02
     X11
              0.000000e+00
     X12
              6.945713e-02
     X380
              8.014579e-03
      X382
              7.546747e-03
      X383
              1.660732e-03
      X384
              4.750593e-04
      X385
              1.423823e-03
     Length: 370, dtype: float64
[13]: # Check the variance of test dataset
      data_test.var()
[13]: ID
              5.871311e+06
      X10
              1.865006e-02
     X11
              2.375861e-04
     X12
              6.885074e-02
     X13
              5.734498e-02
      X380
              8.014579e-03
      X382
              8.715481e-03
```

```
X384
              7.124196e-04
      X385
              1.660732e-03
      Length: 369, dtype: float64
[14]: # Check variance is equal to zero variables from train dataset
      data_train.var()[data_train.var() == 0].index.values
[14]: array(['X11', 'X93', 'X107', 'X233', 'X235', 'X268', 'X289', 'X290',
             'X293', 'X297', 'X330', 'X347'], dtype=object)
[15]: # Check variance is equal to zero variables from test dataset
      data_test.var()[data_test.var() == 0].index.values
[15]: array(['X257', 'X258', 'X295', 'X296', 'X369'], dtype=object)
[16]: # Removed the variance is equal to zero variables from train dataset
      data_train = data_train.drop(['X11', 'X93', 'X107', 'X233', 'X235', 'X268', __
      \hookrightarrow 'X289', 'X290',
                                     'X293', 'X297', 'X330', 'X347'],axis=1)
      data_train.head()
[16]:
         ID
                  y X0 X1 X2 X3 X4 X5 X6 X8 ... X375
                                                          X376
                                                                X377
                                                                      X378
                                                                            X379 \
                                 a d u
             130.81
                      k v
                            at
                                          j
                                             0
              88.53
                                 e d
                                          1
                                                             0
      1
          6
                      k t
                                      У
                                                       1
                                                                                0
                            av
                                             0
                                               •••
              76.26 az w
      2
          7
                              n
                                 С
                                    d x
                                          j
                                             Х
                                                       0
                                                             0
                                                                                0
              80.62 az t
      3
                                    d \times 1 e \dots
                                                       0
                                                             0
                                                                   0
                                                                          0
                                                                                0
                                 f
                              n
              78.02 az v
        13
                                 f
                                    d h d n ...
                                                       0
                                                             0
                                                                   0
                                                                          0
                                                                                0
                              n
         X380 X382 X383 X384 X385
      0
            0
                  0
                        0
                               0
                                     0
                  0
                        0
      1
            0
                               0
                                     0
      2
            0
                  1
                        0
                               0
                                     0
      3
            0
                  0
                        0
                               0
                                     0
            0
                  0
                        0
                                     0
      [5 rows x 366 columns]
[17]: # Removed the variance is equal to zero variables from test datase
      data_test = data_test.drop(['X11', 'X93', 'X107', 'X233', 'X235', 'X268', \_
       \hookrightarrow 'X289', 'X290',
                                     'X293', 'X297', 'X330', 'X347'],axis=1)
      data test.head()
```

X383

4.750593e-04

```
[17]:
         ID X0 X1 X2 X3 X4 X5 X6 X8
                                       X10
                                                X375
                                                      X376
                                                            X377
                                                                  X378
                                                                         X379
                                                                               X380
             az
                 V
                     n
                        f
                           d
                              t
                                          0
                                                   0
                                                         0
                                                               0
                                                                      1
                                                                            0
                                                                                  0
                                 a
      1
          2
                                                         0
                                                               1
                                                                      0
              t b
                    ai
                           d
                                          0
                                                   0
                                                                            0
                                                                                  0
                        a
                              b
                                    У
      2
                        f
                                                   0
                                                         0
                                                               0
          3
                    as
                           d
                                     j
                                          0
                                                                      1
                                                                                  0
             az
                 V
                              а
                        f
                           d z
      3
             az
                 1
                     n
                                 1
                                          0
                                                   0
                                                         0
                                                               0
                                                                                  0
                                          0
                                                         0
                                                               0
                                                                                  0
                 s
                    as
                        С
                             У
                                                   1
         X382
               X383
                     X384
                           X385
      0
            0
                  0
                        0
                              0
      1
            0
                  0
                        0
                              0
      2
            0
                        0
                              0
                  0
      3
            0
                  0
                        0
                              0
                        0
            0
                  0
                              0
      [5 rows x 365 columns]
[18]: # After removal variance is equal to zero check the shape of the train dataset
      data_train.shape
[18]: (4209, 366)
[19]: # After removal variance is equal to zero check the shape of the test dataset
      data_test.shape
[19]: (4209, 365)
[20]: data_train.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 4209 entries, 0 to 4208
     Columns: 366 entries, ID to X385
     dtypes: float64(1), int64(357), object(8)
     memory usage: 11.8+ MB
         2. Check for null and unique values for test and train sets.
[21]: # Check the unique value of train dataset.
      for columns in data_train:
          print('Train data Unique Values:',columns,data_train[columns].unique(),
```

Train data Unique Values: y [130.81 88.53 76.26 ... 85.71 108.77 87.48]

6

Train data Unique Values: ID [

Unique Value Shape: (4209,)

'Train data Unique Value Shape: ', data_train[columns].unique().shape)

7 ... 8412 8415 8417] Train data

```
Train data Unique Value Shape: (2545,)
Train data Unique Values: XO ['k' 'az' 't' 'al' 'o' 'w' 'j' 'h' 's' 'n' 'ay' 'f'
'x' 'y' 'aj' 'ak' 'am'
'z' 'q' 'at' 'ap' 'v' 'af' 'a' 'e' 'ai' 'd' 'aq' 'c' 'aa' 'ba' 'as' 'i'
'r' 'b' 'ax' 'bc' 'u' 'ad' 'au' 'm' 'l' 'aw' 'ao' 'ac' 'g' 'ab'] Train data
Unique Value Shape: (47,)
Train data Unique Values: X1 ['v' 't' 'w' 'b' 'r' 'l' 's' 'aa' 'c' 'a' 'e' 'h'
'z' 'j' 'o' 'u' 'p' 'n'
'i' 'y' 'd' 'f' 'm' 'k' 'g' 'q' 'ab'] Train data Unique Value Shape: (27,)
Train data Unique Values: X2 ['at' 'av' 'n' 'e' 'as' 'aq' 'r' 'ai' 'ak' 'm' 'a'
'k' 'ae' 's' 'f' 'd'
'ag' 'ay' 'ac' 'ap' 'g' 'i' 'aw' 'y' 'b' 'ao' 'al' 'h' 'x' 'au' 't' 'an'
'z' 'ah' 'p' 'am' 'j' 'q' 'af' 'l' 'aa' 'c' 'o' 'ar'] Train data Unique Value
Shape: (44,)
Train data Unique Values: X3 ['a' 'e' 'c' 'f' 'd' 'b' 'g'] Train data Unique
Value Shape: (7,)
Train data Unique Values: X4 ['d' 'b' 'c' 'a'] Train data Unique Value Shape:
Train data Unique Values: X5 ['u' 'y' 'x' 'h' 'g' 'f' 'j' 'i' 'd' 'c' 'af' 'ag'
'ab' 'ac' 'ad' 'ae'
'ah' 'l' 'k' 'n' 'm' 'p' 'q' 's' 'r' 'v' 'w' 'o' 'aa'] Train data Unique Value
Shape: (29,)
Train data Unique Values: X6 ['j' 'l' 'd' 'h' 'i' 'a' 'g' 'c' 'k' 'e' 'f' 'b']
Train data Unique Value Shape: (12,)
Train data Unique Values: X8 ['o' 'x' 'e' 'n' 's' 'a' 'h' 'p' 'm' 'k' 'd' 'i'
'v' 'j' 'b' 'q' '\" 'g'
'v' 'l' 'f' 'u' 'r' 't' 'c'] Train data Unique Value Shape: (25,)
Train data Unique Values: X10 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X12 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X13 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X14 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X15 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X16 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X17 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X18 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X19 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X20 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X21 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X22 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X23 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X24 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X26 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X27 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X28 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X29 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X30 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X31 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X32 [0 1] Train data Unique Value Shape: (2,)
```

```
Train data Unique Values: X33 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X34 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X35 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X36 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X37 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X38 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X39 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X40 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X41 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X42 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X43 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X44 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X45 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X46 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X47 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X48 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X49 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X50 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X51 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X52 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X53 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X54 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X55 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X56 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X57 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X58 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X59 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X60 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X61 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X62 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X63 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X64 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X65 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X66 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X67 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X68 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X69 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X70 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X71 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X73 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X74 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X75 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X76 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X77 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X78 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X79 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X80 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X81 [0 1] Train data Unique Value Shape: (2,)
```

```
Train data Unique Values: X82 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X83 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X84 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X85 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X86 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X87 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X88 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X89 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X90 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X91 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X92 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X94 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X95 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X96 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X97 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X98 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X99 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X100 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X101 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X102 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X103 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X104 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X105 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X106 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X108 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X109 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X110 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X111 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X112 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X113 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X114 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X115 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X116 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X117 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X118 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X119 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X120 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X122 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X123 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X124 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X125 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X126 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X127 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X128 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X129 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X130 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X131 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X132 [0 1] Train data Unique Value Shape: (2,)
```

```
Train data Unique Values: X133 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X134 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X135 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X136 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X137 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X138 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X139 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X140 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X141 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X142 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X143 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X144 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X145 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X146 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X147 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X148 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X150 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X151 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X152 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X153 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X154 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X155 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X156 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X157 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X158 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X159 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X160 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X161 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X162 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X163 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X164 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X165 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X166 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X167 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X168 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X169 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X170 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X171 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X172 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X173 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X174 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X175 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X176 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X177 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X178 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X179 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X180 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X181 [0 1] Train data Unique Value Shape: (2,)
```

```
Train data Unique Values: X182 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X183 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X184 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X185 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X186 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X187 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X189 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X190 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X191 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X192 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X194 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X195 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X196 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X197 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X198 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X199 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X200 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X201 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X202 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X203 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X204 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X205 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X206 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X207 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X208 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X209 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X210 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X211 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X212 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X213 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X214 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X215 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X216 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X217 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X218 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X219 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X220 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X221 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X222 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X223 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X224 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X225 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X226 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X227 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X228 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X229 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X230 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X231 [0 1] Train data Unique Value Shape: (2,)
```

```
Train data Unique Values: X232 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X234 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X236 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X237 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X238 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X239 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X240 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X241 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X242 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X243 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X244 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X245 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X246 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X247 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X248 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X249 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X250 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X251 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X252 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X253 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X254 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X255 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X256 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X257 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X258 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X259 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X260 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X261 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X262 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X263 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X264 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X265 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X266 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X267 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X269 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X270 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X271 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X272 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X273 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X274 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X275 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X276 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X277 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X278 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X279 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X280 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X281 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X282 [0 1] Train data Unique Value Shape: (2,)
```

```
Train data Unique Values: X283 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X284 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X285 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X286 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X287 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X288 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X291 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X292 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X294 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X295 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X296 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X298 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X299 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X300 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X301 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X302 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X304 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X305 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X306 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X307 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X308 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X309 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X310 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X311 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X312 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X313 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X314 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X315 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X316 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X317 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X318 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X319 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X320 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X321 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X322 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X323 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X324 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X325 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X326 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X327 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X328 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X329 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X331 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X332 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X333 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X334 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X335 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X336 [0 1] Train data Unique Value Shape: (2,)
```

```
Train data Unique Values: X337 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X338 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X339 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X340 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X341 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X342 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X343 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X344 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X345 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X346 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X348 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X349 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X350 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X351 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X352 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X353 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X354 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X355 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X356 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X357 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X358 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X359 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X360 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X361 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X362 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X363 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X364 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X365 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X366 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X367 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X368 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X369 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X370 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X371 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X372 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X373 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X374 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X375 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X376 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X377 [1 0] Train data Unique Value Shape: (2,)
Train data Unique Values: X378 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X379 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X380 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X382 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X383 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X384 [0 1] Train data Unique Value Shape: (2,)
Train data Unique Values: X385 [0 1] Train data Unique Value Shape: (2,)
```

```
for columns in data_test:
    print('Test Data Unique Values:',columns,data_test[columns].unique(),
           'Test Data Unique Value Shape: ',data_test[columns].unique().shape)
Test Data Unique Values: ID [
                                          3 ... 8413 8414 8416] Test Data Unique
                              1
                                     2
Value Shape: (4209,)
Test Data Unique Values: X0 ['az' 't' 'w' 'y' 'x' 'f' 'ap' 'o' 'ay' 'al' 'h' 'z'
'ai' 'd' 'v' 'ak'
 'ba' 'n' 'j' 's' 'af' 'ax' 'at' 'aq' 'av' 'm' 'k' 'a' 'e' 'ai' 'i' 'ag'
 'b' 'am' 'aw' 'as' 'r' 'ao' 'u' 'l' 'c' 'ad' 'au' 'bc' 'g' 'an' 'ae' 'p'
 'bb'] Test Data Unique Value Shape: (49,)
Test Data Unique Values: X1 ['v' 'b' 'l' 's' 'aa' 'r' 'a' 'i' 'p' 'c' 'o' 'm'
'z' 'e' 'h' 'w' 'g' 'k'
'y' 't' 'u' 'd' 'j' 'q' 'n' 'f' 'ab'] Test Data Unique Value Shape: (27,)
Test Data Unique Values: X2 ['n' 'ai' 'as' 'ae' 's' 'b' 'e' 'ak' 'm' 'a' 'aq'
'ag' 'r' 'k' 'aj' 'ay'
'ao' 'an' 'ac' 'af' 'ax' 'h' 'i' 'f' 'ap' 'p' 'au' 't' 'z' 'y' 'aw' 'd'
'at' 'g' 'am' 'j' 'x' 'ab' 'w' 'q' 'ah' 'ad' 'al' 'av' 'u'] Test Data Unique
Value Shape: (45,)
Test Data Unique Values: X3 ['f' 'a' 'c' 'e' 'd' 'g' 'b'] Test Data Unique Value
Shape: (7,)
Test Data Unique Values: X4 ['d' 'b' 'a' 'c'] Test Data Unique Value Shape: (4,)
Test Data Unique Values: X5 ['t' 'b' 'a' 'z' 'y' 'x' 'h' 'g' 'f' 'j' 'i' 'd' 'c'
'af' 'ag' 'ab' 'ac'
'ad' 'ae' 'ah' 'l' 'k' 'n' 'm' 'p' 'q' 's' 'r' 'v' 'w' 'o' 'aa'] Test Data
Unique Value Shape: (32,)
Test Data Unique Values: X6 ['a' 'g' 'j' 'l' 'i' 'd' 'f' 'h' 'c' 'k' 'e' 'b']
Test Data Unique Value Shape: (12,)
Test Data Unique Values: X8 ['w' 'y' 'j' 'n' 'm' 's' 'a' 'v' 'r' 'o' 't' 'h' 'c'
'k' 'p' 'u' 'd' 'g'
'b' 'q' 'e' 'l' 'f' 'i' 'x'] Test Data Unique Value Shape: (25,)
Test Data Unique Values: X10 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X12 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X13 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X14 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X15 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X16 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X17 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X18 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X19 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X20 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X21 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X22 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X23 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X24 [0 1] Test Data Unique Value Shape: (2,)
```

[22]: # Check the unique value of test dataset.

```
Test Data Unique Values: X26 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X27 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X28 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X29 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X30 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X31 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X32 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X33 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X34 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X35 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X36 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X37 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X38 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X39 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X40 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X41 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X42 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X43 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X44 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X45 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X46 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X47 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X48 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X49 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X50 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X51 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X52 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X53 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X54 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X55 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X56 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X57 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X58 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X59 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X60 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X61 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X62 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X63 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X64 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X65 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X66 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X67 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X68 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X69 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X70 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X71 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X73 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X74 [1 0] Test Data Unique Value Shape: (2,)
```

```
Test Data Unique Values: X75 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X76 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X77 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X78 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X79 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X80 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X81 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X82 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X83 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X84 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X85 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X86 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X87 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X88 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X89 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X90 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X91 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X92 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X94 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X95 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X96 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X97 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X98 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X99 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X100 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X101 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X102 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X103 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X104 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X105 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X106 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X108 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X109 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X110 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X111 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X112 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X113 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X114 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X115 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X116 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X117 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X118 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X119 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X120 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X122 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X123 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X124 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X125 [0 1] Test Data Unique Value Shape: (2,)
```

```
Test Data Unique Values: X126 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X127 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X128 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X129 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X130 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X131 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X132 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X133 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X134 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X135 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X136 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X137 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X138 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X139 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X140 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X141 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X142 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X143 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X144 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X145 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X146 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X147 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X148 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X150 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X151 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X152 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X153 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X154 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X155 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X156 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X157 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X158 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X159 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X160 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X161 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X162 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X163 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X164 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X165 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X166 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X167 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X168 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X169 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X170 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X171 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X172 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X173 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X174 [0 1] Test Data Unique Value Shape: (2,)
```

```
Test Data Unique Values: X175 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X176 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X177 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X178 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X179 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X180 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X181 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X182 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X183 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X184 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X185 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X186 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X187 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X189 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X190 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X191 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X192 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X194 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X195 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X196 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X197 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X198 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X199 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X200 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X201 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X202 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X203 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X204 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X205 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X206 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X207 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X208 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X209 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X210 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X211 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X212 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X213 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X214 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X215 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X216 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X217 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X218 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X219 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X220 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X221 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X222 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X223 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X224 [0 1] Test Data Unique Value Shape: (2,)
```

```
Test Data Unique Values: X225 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X226 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X227 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X228 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X229 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X230 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X231 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X232 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X234 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X236 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X237 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X238 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X239 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X240 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X241 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X242 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X243 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X244 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X245 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X246 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X247 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X248 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X249 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X250 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X251 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X252 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X253 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X254 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X255 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X256 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X257 [0] Test Data Unique Value Shape: (1,)
Test Data Unique Values: X258 [0] Test Data Unique Value Shape: (1,)
Test Data Unique Values: X259 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X260 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X261 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X262 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X263 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X264 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X265 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X266 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X267 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X269 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X270 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X271 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X272 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X273 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X274 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X275 [0 1] Test Data Unique Value Shape: (2,)
```

```
Test Data Unique Values: X276 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X277 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X278 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X279 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X280 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X281 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X282 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X283 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X284 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X285 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X286 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X287 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X288 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X291 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X292 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X294 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X295 [0] Test Data Unique Value Shape: (1,)
Test Data Unique Values: X296 [0] Test Data Unique Value Shape: (1,)
Test Data Unique Values: X298 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X299 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X300 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X301 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X302 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X304 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X305 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X306 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X307 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X308 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X309 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X310 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X311 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X312 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X313 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X314 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X315 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X316 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X317 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X318 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X319 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X320 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X321 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X322 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X323 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X324 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X325 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X326 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X327 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X328 [1 0] Test Data Unique Value Shape: (2,)
```

```
Test Data Unique Values: X329 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X331 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X332 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X333 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X334 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X335 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X336 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X337 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X338 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X339 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X340 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X341 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X342 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X343 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X344 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X345 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X346 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X348 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X349 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X350 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X351 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X352 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X353 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X354 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X355 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X356 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X357 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X358 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X359 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X360 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X361 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X362 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X363 [1 0] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X364 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X365 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X366 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X367 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X368 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X369 [0] Test Data Unique Value Shape: (1,)
Test Data Unique Values: X370 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X371 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X372 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X373 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X374 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X375 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X376 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X377 [0 1] Test Data Unique Value Shape: (2,)
Test Data Unique Values: X378 [1 0] Test Data Unique Value Shape: (2,)
```

```
Test Data Unique Values: X379 [0 1] Test Data Unique Value Shape: (2,)
     Test Data Unique Values: X380 [0 1] Test Data Unique Value Shape: (2,)
     Test Data Unique Values: X382 [0 1] Test Data Unique Value Shape: (2,)
     Test Data Unique Values: X383 [0 1] Test Data Unique Value Shape: (2,)
     Test Data Unique Values: X384 [0 1] Test Data Unique Value Shape: (2,)
     Test Data Unique Values: X385 [0 1] Test Data Unique Value Shape: (2,)
[23]: # Check null (NaN) or Missing value in train dataset.
      data_train.isna().any()
[23]: ID
              False
              False
      У
      XΟ
              False
      Х1
              False
      Х2
              False
      X380
              False
      X382
              False
      X383
              False
      X384
              False
      X385
              False
      Length: 366, dtype: bool
[24]: data_train.isna().sum().any()
[24]: False
[25]: # Check null (NaN) of Missing value in test dataset.
      data_test.isna().any()
[25]: ID
              False
      ΧO
              False
      Х1
              False
      Х2
              False
      ХЗ
              False
     X380
              False
      X382
              False
     X383
              False
      X384
              False
      X385
              False
     Length: 365, dtype: bool
[26]: data_test.isna().sum().any()
```

[26]: False

• As we can say that there is no Null (NaN or Missing values) values available in Train as well as Test dataset.

```
[27]: data_train.isna().any()[data_train.isna().any()].index.values
[27]: array([], dtype=object)
[28]: data_test.isna().any()[data_test.isna().any()].index.values
[28]: array([], dtype=object)
[29]: # Find out the outliers in dataset
```

[29]: <AxesSubplot:xlabel='y'>

sns.boxplot(data_train['y'])


```
[30]: # Treatment on outliers

#Import required library

from scipy import stats
```

```
iqr = stats.iqr(data_train['y'])
q1 = data_train['y'].quantile(0.25)
q3 = data_train['y'].quantile(0.75)

upperbound = q3 + 1.5*(iqr)
lowerbound = q1 - 1.5*(iqr)

print('Q1 is:',q1)
print('Q3 is:',q3)
print('Upper Bound is:',upperbound)
print('Lower Bound is:',lowerbound)
```

Q1 is: 90.82 Q3 is: 109.01

Upper Bound is: 136.29500000000002 Lower Bound is: 63.53499999999975

```
[31]: data_train = data_train[(data_train['y']<136.295)]
```

```
[32]: sns.boxplot(data_train['y'])
```

[32]: <AxesSubplot:xlabel='y'>

• Outliers found in higher side in y column hence removed the outliers from the train dataset

```
[33]: # Check the correlation between the train dataset.
      data_train.corr()
[33]:
                  ID
                                    X10
                                              X12
                                                        X13
                                                                  X14
                                                                            X15 \
                           У
           1.000000 -0.050630 0.001390 0.059408 -0.035614 -0.026758 0.002207
          -0.050630 1.000000 -0.024244 0.089837 0.052033 0.216901 0.026882
      У
     X10
           0.001390 \ -0.024244 \ 1.000000 \ -0.033155 \ -0.028975 \ -0.101005 \ -0.002563
     X12 0.059408 0.089837 -0.033155 1.000000 0.215648 -0.245361 -0.006225
     X13 -0.035614 0.052033 -0.028975 0.215648 1.000000 -0.085463 -0.005440
              •••
                      •••
                                                      •••
                                                              •••
                              •••
                                      •••
                                              •••
     X380 -0.013824 0.050207 -0.010606 -0.005432 0.023198 0.007861 -0.001991
     X382 -0.038549 -0.173845 -0.010287 -0.024990 -0.021839 0.012860 -0.001931
     X383 -0.006331 -0.002986 -0.004053 -0.009846 -0.008605 0.026104 -0.000761
     X384 -0.015481 -0.004021 -0.002563 -0.006225 0.041500 0.025370 -0.000481
     X385 0.029146 -0.022945 -0.004441 -0.010787 -0.009427 0.043964 -0.000834
                X16
                          X17
                                    X18 ...
                                                X375
                                                          X376
                                                                    X377 \
         -0.036778 -0.038549 -0.030057 ... 0.046756 -0.083687 -0.023784
      ID
           0.057175 -0.173845 -0.008593 ... 0.031648 0.125295 0.065368
      У
     X10 -0.006016 -0.010287 -0.010287 ... 0.166474 -0.028719 -0.074593
      X12 -0.014614 -0.024990 -0.024990 ... -0.111403 -0.069763 0.030725
     X13 -0.012772 -0.021839 -0.010061 ... -0.169490 -0.060967 0.357497
     X380 -0.004675 -0.007994 -0.007994 ... -0.062043 -0.022318 -0.061460
     X382 -0.004535 1.000000 0.086723 ... -0.060176 -0.021646 -0.059610
     X383 -0.001787 -0.003055 -0.003055 ... -0.008814 -0.008528 0.021355
     X384 -0.001130 -0.001931 -0.001931 ... -0.014990 -0.005392 0.008776
     X385 -0.001957 -0.003347 -0.003347 ... 0.055620 -0.009344 -0.025731
               X378
                         X379
                                   X380
                                             X382
                                                       X383
                                                                 X384
                                                                           X385
      TD
           0.030264 0.022330 -0.013824 -0.038549 -0.006331 -0.015481 0.029146
          -0.281230 0.069033 0.050207 -0.173845 -0.002986 -0.004021 -0.022945
      X10 -0.017077 -0.011367 -0.010606 -0.010287 -0.004053 -0.002563 -0.004441
      X12 -0.015895 -0.027612 -0.005432 -0.024990 -0.009846 -0.006225 -0.010787
      X13 -0.036252 -0.024130 0.023198 -0.021839 -0.008605 0.041500 -0.009427
     X380 -0.013270 -0.008833 1.000000 -0.007994 -0.003150 -0.001991 -0.003451
     X382 -0.012871 -0.008567 -0.007994 1.000000 -0.003055 -0.001931 -0.003347
     X383 -0.005071 -0.003375 -0.003150 -0.003055 1.000000 -0.000761 -0.001319
     X384 -0.003206 -0.002134 -0.001991 -0.001931 -0.000761 1.000000 -0.000834
     X385 -0.005556 -0.003698 -0.003451 -0.003347 -0.001319 -0.000834 1.000000
      [358 rows x 358 columns]
```

27

[34]: # Check the correlation between the test dataset.

```
[34]:
                ID
                         X10
                                  X12
                                            X13
                                                     X14
                                                              X15
     ID
           1.000000 -0.016166 0.043162 0.017910 -0.036099 0.005100 -0.024482
        -0.016166 1.000000 -0.039453 -0.035496 -0.120379 -0.003717 -0.007125
     X12
           0.043162 -0.039453 1.000000 0.283228 -0.245127 -0.007570 -0.014509
     X13
           0.017910 - 0.035496 \quad 0.283228 \quad 1.000000 - 0.076145 - 0.006811 - 0.013054
     X14 -0.036099 -0.120379 -0.245127 -0.076145 1.000000 -0.023097 -0.044269
     X380 0.012520 -0.012561 -0.025578 0.054582 0.007787 -0.002410 -0.004619
     X382 -0.021581 -0.013108 -0.016991 -0.024015 0.000864 -0.002515 -0.004821
     X383 -0.001625 -0.003035 -0.006180 -0.005560 0.025212 -0.000582 -0.001116
     X384 0.013948 -0.003717 -0.007570 -0.006811 0.030881 -0.000713 -0.001367
     X17
                         X18
                                  X19
                                             X375
                                                       X376
                                                                X377 \
          -0.021581 -0.010920 -0.020800 ... 0.024007 -0.087891 0.004271
     ID
     X10 -0.013108 -0.014142 -0.049351 ... 0.189023 -0.031817 -0.086214
     X12 -0.016991 -0.028796 -0.100493 ... -0.148812 -0.064790 0.080843
     X13 -0.024015 -0.025908 -0.090413 ... -0.177340 -0.058291 0.359450
     X14
         0.000864 -0.087862 -0.306620 ... 0.107496 0.043260 -0.139742
     X382 1.000000 0.066366 -0.033389 ... -0.065490 -0.021526 -0.063411
     X383 -0.002053 -0.002215 -0.007730 ... -0.015163 -0.004984 0.008850
     X384 -0.002515 -0.002713 -0.009469 ... 0.000420 -0.006105 0.020448
     X385 -0.003844 -0.004147 -0.014471 ... 0.058691 -0.009330 -0.027482
               X378
                        X379
                                 X380
                                           X382
                                                    X383
                                                             X384
                                                                       X385
     ID
         -0.002939 0.031762 0.012520 -0.021581 -0.001625 0.013948 0.026357
     X10 -0.019498 -0.015262 -0.012561 -0.013108 -0.003035 -0.003717 -0.005681
     X12 -0.006747 -0.022720 -0.025578 -0.016991 -0.006180 -0.007570 -0.011569
     X13 -0.035722 -0.027961 0.054582 -0.024015 -0.005560 -0.006811 -0.010408
     X14 -0.051238 0.113487 0.007787 0.000864 0.025212 0.030881 0.047195
     X380 -0.012641 -0.009895 1.000000 -0.008498 -0.001968 -0.002410 -0.003683
     X382 -0.013192 -0.010326 -0.008498 1.000000 -0.002053 -0.002515 -0.003844
     X383 -0.003054 -0.002391 -0.001968 -0.002053 1.000000 -0.000582 -0.000890
     X384 -0.003741 -0.002928 -0.002410 -0.002515 -0.000582 1.000000 -0.001090
     X385 -0.005717 -0.004475 -0.003683 -0.003844 -0.000890 -0.001090 1.000000
     [357 rows x 357 columns]
[35]: # ID column not required for modeling hence removed from both dataset.
     data_train.drop('ID',axis=1,inplace=True)
     data_test.drop('ID',axis=1,inplace=True)
```

data_test.corr()

```
[36]: # Shuffle or Split the train dataset in input and output feature.

features = data_train.drop('y',axis=1)
target = data_train[['y']]
```

4 3. Apply label encoder.

4.0.1 Train Dataset

```
[37]: # Find out the categorical values in train datatset.

dictionary={}
dictionary['categorical']=features.dtypes[features.dtypes=='object'].index
dictionary
```

```
[37]: {'categorical': Index(['X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8'], dtype='object')}
```

• In train data found some columns in categorical form so convert in numerical form by using Label Encoder

```
[38]: # Categorical value convert in numeric form for modeling by using Label Encoder

→ (Ordinal)

from sklearn.preprocessing import LabelEncoder
```

```
[39]: le_X0 = LabelEncoder()
    le_X1 = LabelEncoder()
    le_X2 = LabelEncoder()
    le_X3 = LabelEncoder()
    le_X4 = LabelEncoder()
    le_X5 = LabelEncoder()
    le_X6 = LabelEncoder()
    le_X8 = LabelEncoder()
```

```
[40]: features['X0'] = le_X0.fit_transform(features['X0'])
    features['X1'] = le_X1.fit_transform(features['X1'])
    features['X2'] = le_X2.fit_transform(features['X2'])
    features['X3'] = le_X3.fit_transform(features['X3'])
    features['X4'] = le_X4.fit_transform(features['X4'])
    features['X5'] = le_X5.fit_transform(features['X5'])
    features['X6'] = le_X6.fit_transform(features['X6'])
    features['X8'] = le_X8.fit_transform(features['X8'])
```

```
[41]: features.head(10)
```

```
[41]:
                                                                   X375
           XΟ
               Х1
                     X2
                          ХЗ
                               Х4
                                    Х5
                                         Х6
                                              Х8
                                                   X10
                                                         X12
                                                                          X376
                                                                                  X377
                                                                                          X378
           32
                23
                                    24
                                                                       0
       0
                     16
                           0
                                3
                                          9
                                              14
                                                     0
                                                            0
                                                                              0
                                                                                      1
                                                                                             0
       1
           32
                21
                     18
                           4
                                3
                                    28
                                              14
                                                            0
                                                                       1
                                                                              0
                                                                                      0
                                                                                             0
                                         11
                                                     0
       2
           20
                24
                     33
                           2
                                3
                                    27
                                          9
                                              23
                                                     0
                                                            0
                                                                       0
                                                                              0
                                                                                      0
                                                                                             0
       3
           20
                21
                                    27
                                               4
                                                                                      0
                     33
                           5
                                3
                                         11
                                                     0
                                                            0
                                                                       0
                                                                              0
                                                                                             0
       4
           20
                23
                     33
                           5
                                3
                                          3
                                              13
                                                            0
                                                                       0
                                                                              0
                                                                                      0
                                                                                             0
                                    12
       5
           40
                 3
                     24
                           2
                                3
                                    11
                                          7
                                              18
                                                            0
                                                                       0
                                                                              0
                                                                                      1
                                                                                             0
       6
            9
                19
                     24
                           5
                                3
                                    10
                                          7
                                              18
                                                     0
                                                            0
                                                                       0
                                                                              0
                                                                                      0
                                                                                             0
       7
                           5
                                3
                                                            0
                                                                                      0
           36
                13
                     15
                                    10
                                          9
                                               0
                                                     0
                                                                       0
                                                                              0
                                                                                             0
       8
           43
                20
                     15
                           4
                                3
                                    10
                                          8
                                               7
                                                     0
                                                            0
                                                                       1
                                                                              0
                                                                                      0
                                                                                             0
       9
                 3
                                3
                                               4
                                                            0
                                                                       0
                                                                              0
                                                                                      1
                                                                                             0
           31
                     13
                           2
                                    10
                                          0
                                                     0
```

	X379	X380	X382	X383	X384	X385
0	0	0	0	0	0	0
1	0	0	0	0	0	0
2	0	0	1	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0
7	0	0	0	0	0	0
8	0	0	0	0	0	0
9	0	0	0	0	0	0

[10 rows x 364 columns]

4.0.2 Test Dataset

```
[42]: dictionary={} dictionary['cat']=data_test.dtypes[data_test.dtypes=='object'].index dictionary
```

```
[42]: {'cat': Index(['X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8'], dtype='object')}
```

• In test data found some columns in categorical form so convert in numerical form by using Label Encoder

```
[43]: le_X0 = LabelEncoder()
le_X1 = LabelEncoder()
le_X2 = LabelEncoder()
le_X3 = LabelEncoder()
le_X4 = LabelEncoder()
le_X5 = LabelEncoder()
le_X6 = LabelEncoder()
le_X8 = LabelEncoder()
```

```
[44]: data_test['X0'] = le_X0.fit_transform(data_test['X0'])
      data_test['X1'] = le_X1.fit_transform(data_test['X1'])
      data_test['X2'] = le_X2.fit_transform(data_test['X2'])
      data_test['X3'] = le_X3.fit_transform(data_test['X3'])
      data_test['X4'] = le_X4.fit_transform(data_test['X4'])
      data_test['X5'] = le_X5.fit_transform(data_test['X5'])
      data_test['X6'] = le_X6.fit_transform(data_test['X6'])
      data_test['X8'] = le_X8.fit_transform(data_test['X8'])
[45]: data_test.head(10)
[45]:
         XΟ
              Х1
                  X2
                       ХЗ
                           Х4
                                Х5
                                    Х6
                                         Х8
                                             X10
                                                   X12
                                                            X375
                                                                  X376
                                                                         X377
                                                                                X378
         21
              23
                   34
                        5
                                26
                                         22
                            3
                                     0
                                                0
                                                               0
                                                                      0
                                                                                   1
      1
         42
               3
                   8
                        0
                            3
                                 9
                                     6
                                         24
                                                0
                                                     0
                                                               0
                                                                      0
                                                                             1
                                                                                   0
      2
         21
              23
                  17
                        5
                            3
                                 0
                                     9
                                         9
                                                0
                                                     0
                                                               0
                                                                      0
                                                                             0
                                                                                   1
      3
         21
              13
                  34
                        5
                            3
                                31
                                         13
                                                0
                                                     0
                                                               0
                                                                      0
                                                                             0
                                                                                   1
                                    11
      4
         45
              20
                  17
                        2
                            3
                                30
                                         12
                                                                             0
                                                                                   0
                                     8
                                                0
                                                     0
                                                               1
                                                                      0
         47
                                29
                                                                                   0
      5
               1
                   8
                        4
                            3
                                     6
                                         18
                                                0
                                                     0
                                                               1
                                                                      0
                                                                             0
      6
         46
               3
                   4
                        3
                            3
                                29
                                     3
                                         24
                                                     0
                                                                             0
                                                                                   0
                                                               0
                                                                      0
      7
         29
              20
                   4
                        2
                            3
                                14
                                     3
                                         0
                                                     0
                                                               0
                                                                      0
                                                                             1
                                                                                   0
      8
         12
              13
                  38
                        2
                            3
                                14
                                     9
                                         13
                                                0
                                                     0
                                                               0
                                                                      0
                                                                             0
                                                                                   0
         38
              23
                  17
                             3
                                13
                                         21
                                                               0
                                                                      0
                                                                             0
                                                                                   0
         X379
                X380
                       X382
                             X383
                                    X384
                                           X385
      0
             0
                    0
                          0
                                 0
                                        0
                                              0
      1
             0
                    0
                          0
                                 0
                                        0
                                              0
      2
                    0
                          0
                                        0
                                              0
             0
                                 0
      3
             0
                          0
                                 0
                                        0
                                              0
      4
             0
                    0
                          0
                                 0
                                        0
                                              0
      5
             0
                    0
                          0
                                        0
                                              0
                                 0
      6
             0
                    1
                          0
                                 0
                                        0
                                              0
      7
             0
                    0
                          0
                                 0
                                        0
                                              0
      8
             0
                    0
                          0
                                              0
                                 0
                                        0
      9
             0
                    0
                          0
                                 0
                                        0
                                              0
      [10 rows x 364 columns]
[46]: # More variation in dataset hence rescaling the values by using standard scaler
       \rightarrow (range 0 to 1).
      from sklearn.preprocessing import StandardScaler
      scaler = StandardScaler()
      features = scaler.fit_transform(features)
```

```
[47]: # Import required library
      from sklearn.model_selection import train_test_split
      # Split the train dataset in traning and testing from.
      xtrain,xtest,ytrain,ytest = train_test_split(features,target,test_size=0.
       \rightarrow25,random_state=10)
[48]: # Check shape of the data.
      print(xtrain.shape)
      print(xtest.shape)
      print(ytrain.shape)
      print(ytest.shape)
     (3119, 364)
     (1040, 364)
     (3119, 1)
     (1040, 1)
         4. Perform dimensionality reduction (PCA).
[49]: # Import required library
      from sklearn.decomposition import PCA
[50]: pca = PCA(n_components=0.95)
[51]: xtrain_transform = pca.fit_transform(xtrain)
      xtest_transform = pca.transform(xtest)
[52]: pca.explained_variance_ratio_
[52]: array([0.07019274, 0.05729392, 0.04609237, 0.03515298, 0.03375958,
             0.03292353, 0.02905596, 0.02185832, 0.02104466, 0.0177154 ,
             0.01656399, 0.01553658, 0.01492109, 0.01405254, 0.01393377,
             0.01305241, 0.01184265, 0.01118177, 0.01083652, 0.01068139,
             0.01012464, 0.00943591, 0.0088153 , 0.00873972, 0.00813892,
             0.00795704, 0.00786851, 0.00752673, 0.0074265, 0.00727647,
             0.00693622, 0.00674369, 0.00669274, 0.00652471, 0.00644761,
             0.00623725, 0.00609012, 0.00592114, 0.00580969, 0.00577976,
             0.00556441, 0.00549373, 0.00542699, 0.00520633, 0.00516627,
             0.0050948, 0.00497358, 0.00495062, 0.00489009, 0.00471821,
             0.00466741, 0.00463163, 0.00453932, 0.00444688, 0.00435878,
             0.00430327, 0.00423754, 0.00416412, 0.00412734, 0.00409017,
```

```
0.00406457, 0.00400174, 0.00396979, 0.0039042, 0.00385469,
             0.00381901, 0.0037737, 0.00373333, 0.00366122, 0.00358136,
             0.0035554, 0.00349281, 0.00348558, 0.00340535, 0.00337646,
             0.00334585, 0.00333005, 0.00328155, 0.00320043, 0.00317289,
             0.00314952, 0.00311033, 0.00309291, 0.0030509, 0.00302206,
             0.00297985, 0.00292358, 0.00287127, 0.00282779, 0.00281652,
             0.00278533, 0.00275123, 0.00272304, 0.00268221, 0.00266552,
             0.00263688, 0.00260685, 0.00256342, 0.00255046, 0.00252926,
             0.00251445, 0.0024949, 0.00245533, 0.00244842, 0.00242278,
             0.00239232, 0.00236028, 0.00234539, 0.00230195, 0.00228297,
             0.00226582, 0.00221066, 0.00220342, 0.00215847, 0.00211229,
             0.00211003, 0.00207315, 0.00204617, 0.00199182, 0.00195448,
             0.00194303, 0.00191564, 0.00187583, 0.0018657, 0.0018458,
             0.00181042, 0.00177961, 0.0017544, 0.0017379, 0.00171343,
             0.00168156, 0.00167204, 0.00164478, 0.00161469, 0.00159322,
             0.00155612, 0.0015177, 0.00149996, 0.00146936, 0.00143128,
             0.00140798, 0.00139064, 0.00137898])
[53]: print(xtrain_transform.shape)
      print(xtest_transform.shape)
     (3119, 143)
     (1040, 143)
[54]: xtrain transform
[54]: array([[10.61283975, -2.47702013, 0.82357088, ..., 0.53083803,
               0.29588805, -1.14707981,
             [-2.17584734, -1.08495605, 0.59481737, ..., -0.12867998,
               0.01131092, 0.4324378],
             [-2.73604686, 0.15089878, 2.7461672, ..., 0.40397308,
             -0.07231659, -0.28202867],
             [-2.12381216, -3.91014979, -6.81306636, ..., -0.53600069,
               0.27311935, 0.23946768],
             [-1.09391938, 0.32794205, 2.96897123, ..., -0.56746158,
             -0.6645795 , -1.05995913],
             [-0.29338825, -1.43396707, -3.31466989, ..., 0.85925952,
               0.24446146, -0.60080401]
[55]: # Linear Regression applied
      #Import required library
      from sklearn.linear_model import LinearRegression
[56]: model = LinearRegression()
```

```
model.fit(xtrain_transform,ytrain)
      ypred = model.predict(xtest_transform)
[57]: from sklearn.metrics import
       →mean_absolute_error,mean_squared_error,r2_score,accuracy_score
[58]: print('Mean Absolute Error = ',mean_absolute_error(ytest,ypred))
      print('Mean Squared Error = ',mean_squared_error(ytest,ypred))
      print('Root Mean Squared Error = ',np.sqrt(mean_squared_error(ytest,ypred)))
      print('R2 Score = ',r2_score(ytest,ypred))
     Mean Absolute Error = 5.159089114357101
     Mean Squared Error = 51.137287254097004
     Root Mean Squared Error = 7.151033998947075
     R2 Score = 0.6069512538830951
        • Got R2 score is 0.6069 by applying Linear Regression.
     6 5. Predict your test df values using XGBoost.
[59]: #Import required library
      from xgboost import XGBRegressor
[60]: xgb_rg = XGBRegressor(booster = 'gblinear')
[61]: xgb_rg.fit(xtrain_transform, ytrain)
[61]: XGBRegressor(base_score=0.5, booster='gblinear', colsample_bylevel=None,
                   colsample_bynode=None, colsample_bytree=None,
                   enable_categorical=False, gamma=None, gpu_id=-1,
                   importance_type=None, interaction_constraints=None,
                  learning_rate=0.5, max_delta_step=None, max_depth=None,
                  min_child_weight=None, missing=nan, monotone_constraints=None,
                  n_estimators=100, n_jobs=4, num_parallel_tree=None, predictor=None,
                  random_state=0, reg_alpha=0, reg_lambda=0, scale pos_weight=1,
                   subsample=None, tree_method=None, validate_parameters=1,
                  verbosity=None)
[62]: xgb_preds = xgb_rg.predict(xtest_transform)
[63]: print('Mean Absolute Error = ',mean_absolute_error(xgb_preds,ytest))
      print('Mean Squared Error = ',mean_squared_error(xgb_preds, ytest))
      print('Root Mean Squared Error = ',np.sqrt(mean_squared_error(xgb_preds,_
      →ytest)))
      print('R2 Score = ',r2_score(ytest,xgb_preds))
```

```
Mean Absolute Error = 5.159087237724891
Mean Squared Error = 51.13726496280257
Root Mean Squared Error = 7.151032440340526
R2 Score = 0.6069514252172781

• Got R2 score is 0.6069 by applying XGBoost (XGBRegressor).

[64]: # Applied Ridge Regressor (for checking R2 score)
from sklearn.linear_model import Ridge

[65]: ridge_model = Ridge()

[66]: ridge_model.fit(xtrain_transform,ytrain)

[66]: Ridge()

[67]: ridge_preds = ridge_model.predict(xtest_transform)

[68]: print('Mean Absolute Error = ',mean_absolute_error(ridge_preds,ytest))
print('Mean Squared Error = ',mean_squared_error(ridge_preds, ytest))
print('Root Mean Squared Error = ',np.sqrt(mean_squared_error(ridge_preds,_u))
```

Mean Absolute Error = 5.159036828040949

Mean Squared Error = 51.135617930582214

Root Mean Squared Error = 7.1509172789637425

R2 Score = 0.6069640845502967

print('R2 Score = ',r2_score(ytest,ridge_preds))

ytest)))

- Got R2 score is 0.6069 by applying Ridge Regressor.
- R2 score values found same in Linear Regressor, XGBoost and Ridge Regressor.

6.0.1 Find out the predicted values by using XGBoost on test data

```
[69]: pca.fit(data_test)
[69]: PCA(n_components=0.95)
[70]: test_transform = pca.transform(data_test)
[71]: pred_xgbr = xgb_rg.predict(test_transform)
[72]: pred_xgbr
[72]: array([112.495605, 103.38444 , 85.74017 , ..., 81.08352 , 104.7797 , 91.61079 ], dtype=float32)
```

```
[73]: pred_xgbr.shape
[73]: (4209,)
[74]: preds_xgbreg = pd.DataFrame(pred_xgbr, index = data_test.index)
      preds_xgbreg = preds_xgbreg.rename(columns = {0:'Predict_values'})
[75]: # Predicted values by using XGBoost
      preds_xgbreg
[75]:
             Predict_values
                  112.495605
      0
      1
                  103.384438
      2
                   85.740173
      3
                  107.230255
      4
                  104.222031
      4204
                  97.012054
      4205
                  93.501297
      4206
                  81.083519
      4207
                  104.779701
      4208
                  91.610786
      [4209 rows x 1 columns]
[76]: test_predict = pd.concat([data_test,preds_xgbreg],axis = 1)
      test_predict
                                                 X10
                                                               X376
[76]:
             ΧO
                 Х1
                      Х2
                          ХЗ
                               Х4
                                   Х5
                                        Х6
                                            Х8
                                                      X12
                                                                      X377
                                                                             X378
                                                                                    X379
                                                                                          \
                 23
                           5
                                            22
                                                                                1
      0
             21
                      34
                                3
                                   26
                                                   0
                                                         0
                                                                   0
                                                                         0
                                                                                       0
                                                                                0
      1
             42
                  3
                       8
                           0
                                3
                                    9
                                         6
                                            24
                                                   0
                                                         0
                                                                   0
                                                                         1
                                                                                       0
      2
             21
                 23
                      17
                           5
                                3
                                    0
                                         9
                                             9
                                                   0
                                                         0
                                                                         0
                                                                                       0
                                                                   0
                                                                                1
      3
                      34
                            5
                                3
             21
                 13
                                   31
                                        11
                                            13
                                                   0
                                                         0
                                                                   0
                                                                         0
                                                                                1
                                                                                       0
             45
                 20
                      17
                            2
                                3
                                   30
                                         8
                                            12
                                                   0
                                                         0
                                                                   0
                                                                         0
                                                                                0
                                                                                       0
                                                                                0
                                                                                       0
      4204
              6
                  9
                      17
                            5
                                         9
                                             4
                                                                   0
                                                                         0
                                3
                                     1
                                                   0
                                                         0
      4205
             42
                   1
                       8
                            3
                                3
                                     1
                                         9
                                            24
                                                   0
                                                         0
                                                                         0
                                                                                0
                                                                                       0
      4206
             47
                 23
                      17
                            5
                                3
                                     1
                                         3
                                            22
                                                   0
                                                         0
                                                                   0
                                                                         0
                                                                                0
                                                                                       0
      4207
              7
                 23
                      17
                            0
                                3
                                     1
                                         2
                                            16
                                                   0
                                                         0
                                                                                0
                                                                                       0
                                                                   0
                                                                         1
      4208
             42
                            2
                                3
                                     1
                                         6
                                            17
                                                                         0
                                                                                0
                                                                                       0
                   1
                       8
                                                   0
                                                         0
                                              Predict_values
             X380
                    X382
                          X383
                                 X384
                                        X385
                0
                              0
                                    0
                                           0
      0
                       0
                                                   112.495605
      1
                0
                       0
                              0
                                    0
                                           0
                                                   103.384438
      2
                0
                       0
                              0
                                           0
                                     0
                                                    85.740173
      3
                0
                       0
                              0
                                     0
                                           0
                                                   107.230255
```

4		0	()	0	0	0	104.222031
•••	•••	•••	•••	•••	•••		•••	
4204		0	()	0	0	0	97.012054
4205		0	()	0	0	0	93.501297
4206		0	()	0	0	0	81.083519
4207		0	()	0	0	0	104.779701
4208		0	()	0	0	0	91.610786

[4209 rows x 365 columns]

[]: