Statistique inférentielle

Intervalles de confiance

A. Godichon-Baggioni

Intervalles de confiance

•0000000

I. Intervalles de confiance

INTERVALLES DE CONFIANCE

Soient $X_1, ..., X_n$ des variables aléatoires indépendantes et identiquement distribuées.

Soit $\alpha \in (0,1)$, un intervalle de confiance pour le paramètre θ au niveau de confiance $1-\alpha$ est un intervalle de la forme

$$IC_{1-\alpha}(\theta) = [a(X_1,\ldots,X_n);b(X_1,\ldots,X_n)]$$

avec

$$\mathbb{P}\left[\theta \in \left[a\left(X_{1},\ldots,X_{n}\right);b\left(X_{1},\ldots,X_{n}\right)\right]\right]=1-\alpha.$$

Attention! Cela ne signifie pas que $\theta \in IC_{1-\alpha}(\theta)$. **Attention!** On ne peut pas dire que la probabilité que θ appartienne à la réalisation de $IC_{1-\alpha}(\theta)$ est de $1-\alpha$.

Exemple 1: On considère des variables aléatoires i.i.d X_1, \ldots, X_n de densité

$$f_{\theta}(x) = \frac{\theta}{x^2} \mathbf{1}_{x^2 \ge \theta}$$

Cas Gaussien

avec $\theta > 0$. Soit $\alpha \in (0,1)$, un intervalle de confiance de niveau $1 - \alpha$ pour θ est donné par

$$IC_{1-\alpha}(\theta) = \left[X_{(1)} \alpha^{1/n}; X_{(1)} \right].$$

Exemple 2 : loi uniforme. On considère des variables aléatoires i.i.d X_1, \ldots, X_n avec $X_1 \sim \mathcal{U}([0, \theta])$ et $\theta > 0$. Soit $\alpha \in (0,1)$, un intervalle de confiance de niveau $1-\alpha$ pour θ est donné par

$$IC_{1-\alpha}(\theta) = \left[X_{(n)}; X_{(n)}\alpha^{-1/n}\right].$$

Intervalles de confiance

00000000

Souvent, on cherche des intervalles tels que

$$\mathbb{P}\left[\theta \leq a\left(X_{1},\ldots,X_{n}\right)\right] = \mathbb{P}\left[\theta \geq b\left(X_{1},\ldots,X_{n}\right)\right] = \alpha/2.$$

Cas Gaussien

Exemple 1: On obtient un intervalle de la forme (si $\alpha < 1/2$)

$$IC_{1-\alpha}(\theta) = \left[X_{(1)}\left(\frac{\alpha}{2}\right)^{1/n}; X_{(1)}\left(1-\frac{\alpha}{2}\right)^{1/n}\right].$$

Exemple 2 : On obtient un intervalle de la forme (si $\alpha < 1/2$)

$$IC_{1-\alpha}(\theta) = \left[X_{(n)} \left(1 - \frac{\alpha}{2} \right)^{-1/n}; X_{(n)} \left(\frac{\alpha}{2} \right)^{-1/n} \right]$$

REMARQUE

Un intervalle de confiance pour le paramètre θ au niveau de confiance au moins $1-\alpha$ est un intervalle de la forme

$$IC_{1-\alpha}(\theta) = [a(X_1,\ldots,X_n);b(X_1,\ldots,X_n)]$$

avec

$$\mathbb{P}\left[\theta\in\left[a\left(X_{1},\ldots,X_{n}\right);b\left(X_{1},\ldots,X_{n}\right)\right]\right]\geq1-\alpha.$$

Exemple : loi de Bernoulli. Soit X_1, \ldots, X_n des variables aléatoires i.i.d avec $X_1 \sim \mathcal{B}(\theta)$ et $\theta \in (0,1)$. Un intervalle de confiance de niveau au moins $1 - \alpha$ est donné par

$$IC_{1-\alpha}(\theta) = \left[\overline{X}_n - \frac{1}{2\sqrt{\alpha n}}; \overline{X}_n + \frac{1}{2\sqrt{\alpha n}}\right].$$

BILATÈRE VS UNILATÈRE

Remarque: Pour les intervalles précédents, on parle d'intervalles de confiances bilatères.

Remarque: On peut également construire des intervalles de confiances de la forme

Cas Gaussien

$$]-\infty,b(X_1,\ldots,X_n)]$$
 et $[a(X_1,\ldots,X_n),+\infty[$.

On parle alors d'intervalles de confiance unilatères.

Cas Gaussien

QUANTILES

On considère une variable aléatoire X et on note F sa fonction de répartition.

Définition

Pour tout $\alpha \in (0,1)$, on appelle quantile d'ordre α le réel q_{α} tel que

$$q_{\alpha} = \inf \{ x \in \mathbb{R}, \quad F(x) \ge \alpha \}.$$

Si la fonction de répartition F est strictement croissante, elle est inversible et on a alors

$$F(q_{\alpha}) = \alpha \Leftrightarrow q_{\alpha} = F^{-1}(\alpha).$$

Cas Gaussien

EXEMPLES

Exemple 1 : la loi uniforme. Soit $X \sim \mathcal{U}([a,b])$. Soit $\alpha \in (0,1)$, le quantile q_{α} d'ordre α de X est donné par

$$q_{\alpha} = a + \alpha(b - a).$$

Exemple 2 : la loi exponentielle. Soit $X \sim \mathcal{E}(1)$. Soit $\alpha \in (0,1)$, le quantile q_{α} d'ordre α de X est donné par

$$q_{\alpha} = -\ln(1-\alpha).$$

Exemple 3 : la loi de Bernoulli. Soit $X \sim \mathcal{B}(\theta)$. On a

$$q_{\alpha} = \begin{cases} 0 & \text{si } \alpha \in (0, 1 - \theta] \\ 1 & \text{sinon} \end{cases}$$
 (1)

II. Rappels sur la loi normale

RAPPELS SUR LA LOI NORMALE

Soient X_1, \ldots, X_n des variables aléatoires suivant des lois normales de moyennes μ_1, \ldots, μ_n et de variances $\sigma_1^2, \ldots, \sigma_n^2$. On rappelle que la fonction caractéristique de X_i est définie pour tout $t \in \mathbb{R}$ par

$$\Phi_{X_i}(t) = \exp\left(\mu_i i t - rac{t^2 \sigma_i^2}{2}
ight)$$

RAPPELS SUR LA LOI NORMALE

Proposition

Soient X_1, \ldots, X_n des variables aléatoires indépendantes suivant des lois normales de moyennes μ_1, \ldots, μ_n et de variances $\sigma_1^2, \ldots, \sigma_n^2$ Alors toute combinaison linéaire des X_i suit une loi normale. Plus précisément, soient $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$, alors

Cas Gaussien

$$\sum_{i=1}^{n} \lambda_i X_i \sim \mathcal{N}\left(\mu, \sigma^2\right)$$

ачес

$$\mu = \sum_{i=1}^{n} \lambda_i \mu_i$$
$$\sigma^2 = \sum_{i=1}^{n} \lambda_i^2 \sigma_i^2$$

LOI DU CHI-DEUX

Définition

Soient X_1, \ldots, X_n des variables aléatoires indépendantes suivant une loi normale centrée réduite. Alors la variable aléatoire

Cas Gaussien

$$Z_n = \sum_{i=1}^n X_i^2$$

suit une loi du Chi-deux à n degrés de liberté (χ_n^2) .

Loi du Chi-deux

FIGURE – Densité d'une chi deux à n=2,5,10 degrés de liberté

LOI DE STUDENT

Définition

Soient Z, U deux variables aléatoires indépendantes telles que $Z \sim \mathcal{N}(0,1)$ et $U \sim \chi_n^2$, alors

$$\frac{Z}{\sqrt{U/n}} \sim T_n$$

Cas Gaussien

où T_n suit une loi de Student à n degrés de liberté.

LOI DE STUDENT

FIGURE – Densité d'une loi de Student à n = 5, 15, 30 degrés de liberté.

LOI DE STUDENT

Proposition

Soit T_n une variable aléatoire suivant une loi de Student à n degrés *de liberté. Si* $n \geq 2$, *alors* :

- ► *T_n* admet un moment d'ordre 1
- ightharpoonup $\mathbb{E}\left[T_{n}\right]=0.$
- ► La loi de Student est symétrique en 0.
- ► On a la convergence en loi

$$T_n \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}(0,1).$$

Intervalles de confiance

III. Cas Gaussien

Cas Gaussien

•0000000

CAS GAUSSIEN

Soient X_1, \ldots, X_n des variables aléatoires indépendantes suivant une loi normale d'espérance μ et de variance σ^2 .

Proposition

On a

$$\overline{X}_n \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$

Cas Gaussien

0000000

CAS OU LA VARIANCE EST CONNUE

Proposition

Pour tout $\alpha \in (0,1)$,

$$\mathbb{P}\left[\overline{X}_n - q_{1-\alpha/2}\frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X}_n + q_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\right] = 1 - \alpha,$$

Cas Gaussien 0000000

où $q_{1-\alpha/2}$ est le quantile d'ordre $1-\alpha/2$ de la loi normale centrée réduite, i.e si $Z \sim \mathcal{N}(0,1)$,

$$\mathbb{P}\left[Z \le q_{1-\alpha/2}\right] = 1 - \alpha/2.$$

On obtient donc l'intervalle de confiance de niveau $1-\alpha$

$$IC_{1-\alpha}(\mu) = \left[\overline{X}_n - q_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}; \overline{X}_n + q_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$$

INTERVALLES UNILATÈRES

On peut également obtenir les intervalles de confiances unilatères suivants:

$$IC_{1-\alpha}(\mu) = \left] -\infty; \overline{X}_n + q_{1-\alpha} \frac{\sigma}{\sqrt{n}} \right]$$

$$IC_{1-\alpha}(\mu) = \left[\overline{X}_n - q_{1-\alpha} \frac{\sigma}{\sqrt{n}}; +\infty \right]$$

Cas où la variance est inconnue

Proposition

Soient
$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 et $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$, alors

Cas Gaussien 00000000

1.
$$\frac{n-1}{\sigma^2}S_n^2 \sim \chi_{n-1}^2$$
.

2. S_n et \overline{X}_n sont indépendants.

Corollaire

On a

$$\sqrt{n}\frac{\overline{X}_n-\mu}{S_n}\sim T_{n-1},$$

où T_{n-1} suit une loi de Student à n-1 degrés de liberté.

CAS OÙ LA VARIANCE EST INCONNUE

Corollaire (Intervalles de confiance)

Soit $\alpha \in (0,1)$, alors

$$\mathbb{P}\left[\overline{X}_n - t_{n-1,1-\alpha/2} \frac{S_n}{\sqrt{n}} \le \mu \le \overline{X}_n + t_{n-1,1-\alpha/2} \frac{S_n}{\sqrt{n}}\right] = 1 - \alpha$$

Cas Gaussien 00000000

où $t_{n-1,1-\alpha/2}$ est le quantile d'ordre $1-\alpha/2$ de la loi de Student à n-1 degrés de liberté, i.e si $T \sim T_{n-1}$,

$$\mathbb{P}\left[T \le t_{n-1,1-\alpha/2}\right] = 1 - \alpha/2.$$

On obtient donc l'intervalle de confiance au niveau $1-\alpha$

$$IC_{1-\alpha}(\mu) = \left[\overline{X}_n - t_{n-1,1-\alpha/2} \frac{S_n}{\sqrt{n}}; \overline{X}_n + t_{n-1,1-\alpha/2} \frac{S_n}{\sqrt{n}}\right]$$

INTERVALLES UNILATÈRES

On peut également obtenir les intervalles de confiances unilatères suivants:

$$IC_{1-\alpha}(\mu) = \left[-\infty; \overline{X}_n + t_{n-1,1-\alpha} \frac{S_n}{\sqrt{n}} \right]$$

$$IC_{1-\alpha}(\mu) = \left[\overline{X}_n - t_{n-1,1-\alpha} \frac{S_n}{\sqrt{n}}; +\infty \right]$$

ESTIMATION DE LA VARIANCE

Proposition

Soit $\alpha \in (0,1)$, *alors*

$$\mathbb{P}\left[\frac{(n-1)S_n^2}{k_{1-\alpha/2}} \leq \sigma^2 \leq \frac{(n-1)S_n^2}{k_{\alpha/2}}\right] = 1 - \alpha$$

Cas Gaussien

où $k_{\alpha/2}$ et $k_{1-\alpha/2}$ sont les quantiles d'ordre $\alpha/2$ et $1-\alpha/2$ d'une loi du Chi-deux à n-1 degrés de liberté, i.e si $Z \sim \chi^2_{n-1}$,

$$\mathbb{P}\left[Z \le k_{\alpha/2}\right] = \alpha/2 \qquad \mathbb{P}\left[Z \le k_{1-\alpha/2}\right] = 1 - \alpha/2.$$

On obtient donc l'intervalle de confiance au niveau $1-\alpha$

$$IC_{1-\alpha}(\sigma^2) = \left[\frac{(n-1)S_n^2}{k_{1-\alpha/2}}; \frac{(n-1)S_n^2}{k_{\alpha/2}}\right].$$

Intervalles de confiance

INTERVALLES DE CONFIANCE ASYMPTOTIQUES

On s'intéresse à l'estimation d'une caractéristique ou d'un paramètre θ d'une variable aléatoire X. On dispose d'un estimateur $\hat{\theta}_n$ asymptotiquement normal, i.e il existe $\sigma^2 > 0$ tel que

$$\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}\left(0,\sigma^{2}\right).$$

On supposera également que l'on a un estimateur consistant $\hat{\sigma}_n^2$ de σ^2 .

INTERVALLES DE CONFIANCE ASYMPTOTIQUES

Cas Gaussien

Proposition

Soit $\alpha \in (0,1)$,

$$\mathbb{P}\left[\hat{\theta}_n - q_{1-\alpha/2} \frac{\hat{\sigma}_n}{\sqrt{n}} \le \theta \le \hat{\theta}_n + q_{1-\alpha/2} \frac{\hat{\sigma}_n}{\sqrt{n}}\right] \xrightarrow[n \to +\infty]{} 1 - \alpha,$$

où $q_{1-\alpha/2}$ est le quantile d'ordre $1-\alpha/2$ de la loi normale centrée réduite.

On obtient donc l'intervalle de confiance asymptotique de niveau $1-\alpha$

$$IC_{1-\alpha}(\theta) = \left[\hat{\theta}_n - q_{1-\alpha/2} \frac{\hat{\sigma}_n}{\sqrt{n}}; \hat{\theta}_n + q_{1-\alpha/2} \frac{\hat{\sigma}_n}{\sqrt{n}}\right].$$

Exemple 1 : le lancer de pièce. On considère une variable aléatoire X suivant une loi de Bernoulli de paramètre $\theta \in (0,1)$. Pour tout $\alpha \in (0,1)$, un intervalle de confiance asymptotique de niveau $1 - \alpha$ de θ

$$IC_{1-\alpha}(\theta) = \left[\hat{\theta}_n - q_{1-\alpha/2} \frac{\sqrt{\hat{\theta}_n \left(1 - \hat{\theta}_n\right)}}{\sqrt{n}}; \hat{\theta}_n + q_{1-\alpha/2} \frac{\sqrt{\hat{\theta}_n \left(1 - \hat{\theta}_n\right)}}{\sqrt{n}}\right].$$

Exemple 2 : la loi exponentielle. On considère une variable aléatoire X suivant une loi exponentielle de paramètre $\theta > 0$. Pour tout $\alpha \in (0,1)$, un intervalle de confiance asymptotique de niveau $1-\alpha$ de θ

$$IC_{1-\alpha}(\theta) = \left[\hat{\theta}_n - q_{1-\alpha/2} \frac{\hat{\theta}_n}{\sqrt{n}}; \hat{\theta}_n + q_{1-\alpha/2} \frac{\hat{\theta}_n}{\sqrt{n}}\right].$$

Exemple 2bis : la loi exponentielle. En réalité, pour la loi exponentielle, on peut être malin et obtenir un intervalle de confiance asymptotique de niveau $1 - \alpha$ de θ

$$IC_{1-\alpha}(\theta) = \left[\frac{\hat{\theta}_n}{1 + \frac{q_{1-\alpha/2}}{\sqrt{n}}}; \frac{\hat{\theta}_n}{1 - \frac{q_{1-\alpha/2}}{\sqrt{n}}}\right].$$