Lecture 20

Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Last Lecture

Energy Balance Fundamentals

$$\sum F_{i0}E_{i0} - \sum F_{i}E_{i} + \dot{Q} - \dot{W} = \frac{dE_{sys}}{dt}$$

Substituting for \dot{W}

$$\sum F_{i0} \underbrace{\left[U_{i0} + P_0 \tilde{V}_{i0} \right]}_{H_{i0}} - \sum F_i \underbrace{\left[U_i + P \tilde{V}_i \right]}_{H_{i0}} + \dot{Q} - \dot{W}_S = \frac{dE_{sys}}{dt}$$

$$\sum F_{i0} H_{i0} - \sum F_{i} H_{i} + \dot{Q} - \dot{W}_{S} = \frac{dE_{sys}}{dt}$$

$$\dot{Q} - \dot{W}_S + \sum F_{i0} H_{i0} - \sum F_i H_i = 0$$

Web Lecture 20 Class Lecture 16-Thursday 3/14/2013

- Reactors with Heat Exchange
- User friendly Energy Balance Derivations
 - Adiabatic
 - Heat Exchange Constant T_a
 - Heat Exchange Variable T_a Co-current
 - Heat Exchange Variable T_a Counter Current

Adiabatic Operation CSTR

Elementary liquid phase reaction carried out in a CSTR

The feed consists of both - Inerts I and Species A with the ratio of inerts I to the species A being 2 to 1.

Adiabatic Operation CSTR

- Assuming the reaction is irreversible for CSTR, A → B, (K_C = 0) what reactor volume is necessary to achieve 80% conversion?
- If the exiting temperature to the reactor is 360K, what is the corresponding reactor volume?
- Make a Levenspiel Plot and then determine the PFR reactor volume for 60% conversion and 95% conversion. Compare with the CSTR volumes at these conversions.
- Now assume the reaction is reversible, make a plot of the equilibrium conversion as a function of temperature between 290K and 400K.

$$F \downarrow A0 = 5 mol/min$$

$$T \downarrow 0 = 300 K$$

$$F \downarrow I = 10 mol/min$$

$$A \implies B$$

$$T = ?$$

$$X = ?$$

1) Mole Balances:
$$V = \frac{r_{A0}X}{-r_A}$$

2) Rate Laws:

$$-r_{A} = k \left[C_{A} - \frac{C_{B}}{K_{C}} \right]$$

$$k = k_1 e^{\frac{E}{R} \left(\frac{1}{T_1} - \frac{1}{T}\right)}$$

$$K_{C} = K_{C1} \exp \left[\frac{\Delta H_{Rx}}{R} \left(\frac{1}{T_{2}} - \frac{1}{T} \right) \right]$$

3) Stoichiometry:

$$C_{A} = C_{A0}(1 - X)$$

$$C_B = C_{A0}X$$

4) Energy Balance

Adiabatic, $\Delta C_p = 0$

$$T = T_0 + \frac{(-\Delta H_{Rx})X}{\sum \Theta_i C_{P_i}} = T_0 + \frac{(-\Delta H_{Rx})X}{C_{P_A} + \Theta_I C_{P_I}}$$

$$T = 300 + \left[\frac{-(-20,000)}{164 + (2)(18)} \right] X = 300 + \frac{20,000}{164 + 36} X$$

$$T = 300 + 100 X$$

Irreversible for Parts (a) through (c)

$$-r_{A} = kC_{A0}(1-X)(i.e., K_{C} = \infty)$$

(a) Given X = 0.8, find T and V

Given
$$X \xrightarrow{Calc} T \xrightarrow{Calc} k \xrightarrow{Calc} -r_A \xrightarrow{Calc} V$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Given X, Calculate T and V

$$V = \frac{F_{A0}X}{-r_{A}|_{exit}} = \frac{F_{A0}X}{kC_{A0}(1-X)}$$

$$T = 300 + 100(0.8) = 380K$$

$$k = 0.1 \exp \frac{10,000}{1.989} \left[\frac{1}{298} - \frac{1}{380} \right] = 3.81$$

$$V = \frac{F_{A0}X}{-r_A} = \frac{(5)(0.8)}{(3.81)(2)(1-0.8)} = 2.82 \text{ dm}^3$$

Given T, Calculate X and V

(b) Given
$$X \xrightarrow{\text{Calc}} T \xrightarrow{\text{Calc}} k \xrightarrow{\text{Calc}} -r_A \xrightarrow{\text{Calc}} V$$

$$\longrightarrow \text{Calc } K_C \xrightarrow{\text{(if reversible)}}$$

$$-r_A = kC_{A0}(1-X)$$
(Irreversible)

$$T=360K$$

$$X = \frac{T - 300}{100} = 0.6$$

$$k = 1.83 \,\mathrm{min}^{-1}$$

$$V = \frac{(5)(0.6)}{(1.83)(2)(0.4)} = 2.05 \, dm^3$$

(c) Levenspiel Plot

$$\frac{F_{A0}}{-r_{A}} = \frac{F_{A0}}{kC_{A0}(1-X)}$$
$$T = 300 + 100X$$

Choose
$$X \xrightarrow{Calc} T \xrightarrow{Calc} k \xrightarrow{Calc} -r_A \xrightarrow{Calc} \xrightarrow{F_{A0}} -r_A$$

(c) Levenspiel Plot

		$\frac{F_{A0}}{-r}$ (dm ³)	
$\underline{\mathbf{X}}$	<u>T(K)</u>	$-r_A$	
0	300	25	
0.1	310	14.4	
0.2	320	9.95	
0.4	340	5.15	
0.6	360	3.42	
0.8	380	3.87	
0.9	390	4.16	
0.95	395	8.0	

CSTR
$$X = 0.6$$
 $T = 360 K$

CSTR
$$X = 0.95$$
 $T = 395$ K

CSTR: Adiabatic Example - Summary

CSTR	X = 0.6	T = 360	$V = 2.05 \text{ dm}^3$
PFR	X = 0.6	$T_{\text{exit}} = 360$	$V = 5.28 \text{ dm}^3$
CSTR	X = 0.95	T = 395	$V = 7.59 \text{ dm}^3$
PFR	X = 0.95	T _{exit} = 395	$V = 6.62 \text{ dm}^3$

Energy Balance in terms of Enthalpy

$$\sum_{i} F_{i} H_{i} \Big|_{V} - \sum_{i} F_{i} H_{i} \Big|_{V + \Delta V} + Ua(T_{a} - T) \Delta V = 0$$

$$\frac{-d\sum_{i} F_{i}H_{i}}{dV} + Ua(T_{a} - T) = 0$$

$$\frac{-d\sum_{i}F_{i}H_{i}}{dV} = -\left[\sum_{i}F_{i}\frac{dH_{i}}{dV} + \sum_{i}H_{i}\frac{dF_{i}}{dV}\right]$$

PFR Heat Effects

$$\frac{dF_i}{dV} = r_i = \upsilon_i (-r_A)$$

$$H_i = H_i^0 + C_{Pi} (T - T_R)$$

$$dH_i = G dT$$

$$\frac{dH_i}{dV} = C_{Pi} \frac{dT}{dV}$$

$$\frac{-d\sum_{i} F_{i} H_{i}}{dV} = -\left[\sum_{i} F_{i} C_{Pi} \frac{dT}{dV} + \sum_{i} H_{i} v_{i} (-r_{A})\right]$$
$$\sum_{i} v_{i} H_{i} = \Delta H_{Rx}$$

PFR Heat Effects

$$-\left[\sum_{i} C_{Pi} F_{i} \frac{dT}{dV} + \Delta H_{Rx} \left(-r_{A}\right)\right] + Ua\left(T_{a} - T\right) = 0$$

$$\sum F_i C_{Pi} \frac{dT}{dV} = \Delta H_{Rx} r_A - Ua(T - T_a)$$

$$\frac{dT}{dV} = \frac{\left(\Delta H_{Rx}\right)\left(-r_A\right) - Ua\left(T - T_a\right)}{\sum F_i C_{Pi}}$$

Need to determine T_a

Heat Exchange:

$$\frac{dT}{dV} = \frac{(-r_A)(-\Delta H_{Rx}) - Ua(T - T_a)}{\sum F_i C_{P_i}}$$

$$\sum F_i C_{P_i} = F_{A0} \left[\sum \Theta_i C_{P_i} + \Delta C_P X \right]$$
, if $\Delta C_P = 0$ then

$$\frac{dT}{dV} = \frac{(-r_A)(-\Delta H_{Rx}) - Ua(T - T_a)}{F_{A0} \sum \Theta_i C_{P_i}}$$

Need to determine T_a

Heat Exchange Example:

Case 1 - Adiabatic

Energy Balance:

Adiabatic (Ua=0) and $\Delta C_P = 0$

$$T = T_0 + \frac{\left(-\Delta H_{Rx}\right)X}{\sum \Theta_i C_{P_i}} \qquad (16A)$$

User Friendly Equations

A. Constant Ta e.g., Ta = 300K

B. Variable T_a Co-Current

$$\frac{dT_a}{dV} = \frac{Ua(T - T_a)}{\dot{m}C_{P_{cool}}}, V = 0 \qquad T_a = T_{ao} \qquad (17C)$$

C. Variable T_a Counter Current

$$\frac{dT_a}{dV} = \frac{Ua(T_a - T)}{\dot{m}C_{P_{cool}}} \qquad V = 0 \qquad T_a = ? \quad \text{Guess}$$

Guess T_a at V = 0 to match $T_{a0} = T_{a0}$ at exit, i.e., V = V

Heat Exchanger Energy Balance Variable T_a Co-current

Coolant Balance:

In - Out + Heat Added = 0

$$\begin{split} \dot{m}_C H_C \big|_V - \dot{m}_C H_C \big|_{V + \Delta V} + Ua\Delta V \big(T - T_a \big) &= 0 \\ - \dot{m}_C \frac{dH_C}{dV} + Ua \big(T - T_a \big) &= 0 \\ H_C &= H_C^0 + C_{PC} \big(T_a - T_r \big) \\ \frac{dH_C}{dV} &= C_{PC} \frac{dT_a}{dV} \end{split}$$

$$\frac{dT_a}{dV} = \frac{Ua(T - T_a)}{\dot{m}_C C_{PC}}, \ V = 0 \quad T_a = T_{a0}$$

Heat Exchanger Energy Balance Variable T_a Counter-current

In - Out + Heat Added = 0

$$\dot{m}_C H_C \big|_{V+\Lambda V} - \dot{m}_C H_C \big|_V + Ua\Delta V (T - T_a) = 0$$

$$\dot{m}_C \frac{dH_C}{dV} + Ua(T - T_a) = 0$$

$$\frac{dT_a}{dV} = \frac{Ua(T_a - T)}{\dot{m}_C C_{PC}}$$

Elementary liquid phase reaction carried out in a PFR

The feed consists of both inerts I and species A with the ratio of inerts to the species A being 2 to 1.

$$(1) \quad \frac{\mathrm{dX}}{\mathrm{dV}} = -r_{\mathrm{A}}/F_{\mathrm{A0}}$$

$$(2) \quad r_{A} = -k \left| C_{A} - \frac{C_{B}}{K_{C}} \right|$$

(3)
$$k = k_1 \exp \left[\frac{E}{R} \left(\frac{1}{T_1} - \frac{1}{T} \right) \right]$$

(4)
$$K_C = K_{C2} \exp \left| \frac{\Delta H_{Rx}}{R} \left(\frac{1}{T_2} - \frac{1}{T} \right) \right|$$

3) Stoichiometry:
$$C_A = C_{A0}(1-X)$$
 (5)

$$C_{\rm B} = C_{\rm A0} X \tag{6}$$

4) Heat Effects:
$$\frac{dT}{dV} = \frac{(\Delta H_R)(-r_A) - Ua(T - T_a)}{F_{A0} \sum \theta_i C_{Pi}}$$
 (7)

$$\left(\Delta C_{P} = 0\right)$$

$$X_{eq} = \frac{k_C}{1 + k_C} \quad (8)$$

$$\sum_{i} \theta_{i} C_{Pi} = C_{PA} + \theta_{I} C_{PI} \quad (9)$$

Parameters: ΔH_R , E, R, T_1 , T_2 , $k_1, \ k_{C2}, \ Ua, \ T_a, \ F_{A0},$ $C_{A0}, \ C_{PA}, \ C_{PI}, \ \theta_I,$ $rate = -r_A$

PFR Heat Effects

Heat Heat generated removed

$$\frac{dT}{dV} = \frac{Q_g - Q_r}{\sum F_i C_{Pi}}$$

$$\sum F_i C_{Pi} = \sum F_{A0} (\theta_i + \upsilon_i X) C_{Pi} = F_{A0} \left[\sum \theta_i C_{Pi} + \Delta C_P X \right]$$

$$\frac{dT}{dV} = \frac{(\Delta H_R)(r_A) - Ua(T - T_a)}{F_{A0} \left[\sum \theta_i C_{Pi} + \Delta C_P X\right]}$$

Heat Exchanger – Example Case 2 – Adiabatic

Mole Balance:

$$\frac{dX}{dV} = \frac{-r_A}{F_{A0}}$$

Energy Balance:

Adiabatic and $\Delta C_P = 0$ Ua=0

$$T = T_0 + \frac{\left(-\Delta H_{Rx}\right)X}{\sum \Theta_i C_{P_i}} \qquad (16A)$$

Additional Parameters (17A) & (17B)

$$T_0, \sum \Theta_i C_{P_i} = C_{P_A} + \Theta_I C_{P_I}$$

Adiabatic PFR

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Differential equations

1 d(X)/d(V) = -ra/Fao

Explicit equations

1 k1 = 0.1

 $2 \quad \text{Cao} = 2$

3 DH = -20000

4 To = 300

5 CpI = 18

6 Cpa = 164

7 ThetaI = 2

8 sumCp = Cpa+ThetaI*CpI

9 T = To+(-DH)*X/sumCp

10 Fao = 5

11 E = 10000

12 R = 1.987

13 T1 = 298

 $14 \text{ Ca} = \text{Cao}^*(1-X)$

15 k = k1*exp(E/R*(1/T1-1/T))

Example: Adiabatic

Find conversion, X_{eq} and T as a function of reactor volume

Heat Exchange

$$\frac{dT}{dV} = \frac{(-r_A)(-\Delta H_{Rx}) - Ua(T - T_a)}{\sum F_i C_{P_i}}$$

$$\sum F_i C_{P_i} = F_{A0} \left[\sum \Theta_i C_{P_i} + \Delta C_P X \right]$$
, if $\Delta C_P = 0$ then

$$\frac{dT}{dV} = \frac{\left(-r_A\right)\left(-\Delta H_{Rx}\right) - Ua\left(T - T_a\right)}{F_{A0}\sum\Theta_i C_{P_i}}$$
(16B)

Need to determine T_a

User Friendly Equations

A. Constant Ta (17B) Ta = 300K

Additional Parameters (18B – (20B):

$$T_a$$
, $\sum \Theta_i C_{P_i}$, Ua

B. Variable T_a Co-Current

$$\frac{dT_a}{dV} = \frac{Ua(T - T_a)}{\dot{m}C_{P_{cool}}} \qquad V = 0 \qquad T_a = T_{ao} \qquad (17C)$$

C. Variable T_a Countercurrent

$$\frac{dT_a}{dV} = \frac{Ua(T_a - T)}{\dot{m}C_{P_{cool}}} \qquad V = 0 \qquad T_a = ?$$

Guess T_a at V = 0 to match $T_{a0} = T_{a0}$ at exit, i.e., $V = V_f$

Heat Exchange Energy Balance

Variable T_a Counter-current

Coolant balance:

In - Out + Heat Added = 0

$$\dot{m}_C H_C \big|_V - \dot{m}_C H_C \big|_{V + \Delta V} + Ua\Delta V (T - T_a) = 0$$
$$- \dot{m}_C \frac{dH_C}{dV} + Ua(T - T_a) = 0$$

$$H_C = H_C^0 + C_{PC} (T_a - T_r)$$

$$\frac{dH_{C}}{dV} = C_{PC} \frac{dT_{a}}{dV}$$

$$\frac{dT_a}{dV} = \frac{Ua(T - T_a)}{\dot{m}_C C_{PC}}, \ V = 0 \quad T_a = T_{a0}$$

All equations can be used from before except T_a parameter, use differential T_a instead, adding m_C and C_{PC}

Heat Exchange Energy Balance Variable T_a Co-current

In - Out + Heat Added = 0

$$\dot{m}_C H_C|_{V+\Delta V} - \dot{m}_C H_C|_V + Ua\Delta V (T - T_a) = 0$$

$$\dot{m}_C \frac{dH_C}{dV} + Ua(T - T_a) = 0$$

$$\frac{dT_a}{dV} = \frac{Ua(T_a - T)}{\dot{m}_C C_{PC}}$$

All equations can be used from before except dT_a/dV which must be changed to a negative. To arrive at the correct integration we must guess the T_a value at V=0, integrate and see if T_{a0} matches; if not, re-guess the value for T_a at V=0

$$\int_{0}^{W} \frac{Ua}{\rho_{D}} (T_{a} - T) dW + \sum_{i} F_{i0} H_{i0} - \sum_{i} F_{i} H_{i} = 0$$

Differentiating with respect to W:

$$\frac{Ua}{\rho_{B}}(T_{a}-T)+0-\sum \frac{dF_{i}}{dW}H_{i}-\sum F_{i}\frac{dH_{i}}{dW}=0$$

Mole Balance on species i:

$$\frac{dF_{i}}{dW} = r_{i}' = v_{i} \left(-r_{A}'\right)$$

Enthalpy for species i:

$$H_{i} = H_{i}^{o}(T_{R}) + \int_{T_{R}}^{T} C_{Pi} dT$$

Differentiating with respect to W:

$$\frac{dH_i}{dW} = 0 + C_{Pi} \frac{dT}{dW}$$

$$\frac{Ua}{\rho_{\rm B}} (T_{\rm a} - T) + r_{\rm A}' \sum v_{\rm i} H_{\rm i} - \sum F_{\rm i} C_{\rm Pi} \frac{dT}{dW} = 0$$

$$\frac{Ua}{\rho_B} (T_a - T) + r_A' \sum v_i H_i - \sum F_i C_{Pi} \frac{dT}{dW} = 0$$

$$\sum v_i H_i = \Delta H_R(T)$$

$$F_{i} = F_{A0} (\Theta_{i} + \upsilon_{i} X)$$

Final Form of the Differential Equations in Terms of Conversion:

A:

$$\frac{dT}{dW} = \frac{\frac{Ua}{\rho_B} (T_a - T) + r_A' \Delta H_R(T)}{F_{A0} \left[\sum \Theta_i \widetilde{C}_{Pi} + \Delta \hat{C}_P X \right]} = f(X, T)$$

Final form of terms of Molar Flow Rate:

$$\frac{dT}{dW} = \frac{\frac{Ua}{\rho_B} (T_a - T) + r_A' \Delta H}{F_i C_{Pi}}$$

B:

$$\frac{dX}{dW} = \frac{-r_A'}{F_{A0}} = g(X, T)$$

$$A + B \Leftrightarrow C + D$$

The rate law for this reaction will follow an elementary rate law.

$$-r_{A} = k \left(C_{A}C_{B} - \frac{C_{C}C_{D}}{K_{C}} \right)$$

Where K_e is the concentration equilibrium constant. We know from Le Chaltlier's law that if the reaction is exothermic, K_e will decrease as the temperature is increased and the reaction will be shifted back to the left. If the reaction is endothermic and the temperature is increased, K_e will increase and the reaction will shift to the right.

$$K_{\rm C} = \frac{K_{\rm P}}{(RT)^{\delta}}$$

Van't Hoff Equation:

$$\frac{d \ln K_{P}}{dT} = \frac{\Delta H_{R}(T)}{RT^{2}} = \frac{\Delta H_{R}^{o}(T_{R}) + \Delta \hat{C}_{P}(T - T_{R})}{RT^{2}}$$

For the special case of $\Delta C_P = 0$

Integrating the Van't Hoff Equation gives:

$$K_{P}(T_{2}) = K_{P}(T_{1}) \exp \left[\frac{\Delta H^{o}_{R}(T_{R})}{R} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}} \right) \right]$$

End of Lecture 20