	PAGE NO.
	DATE
	Assignment -6
	Passameter Estimation and Hypothesis Testing
Oyestion !	Let (X1, X2,, Xn) be a sundom sample of size in taken from a Mosemal population with parameter mean = 0, and variance = 0. find the maximum likelihood estimates of these two parameters
Answer:	$O_1 = \mu$ $O_2 = \sigma^2$ $O_1 = \mu$ $O_2 = \sigma^2$ $O_3 = \mu$ $O_4 = \mu$ $O_5 = \mu$ $O_5 = \mu$ $O_6 = \mu$ $O_7 =$
	Now, $\{(n, \theta_1, \theta_2) - \sqrt{e^2 \theta_2} \right]$
	0, \(\(\(\cdot \) \) \(\omega \) \(\omeg
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	taking natural log on both sides,
	$\ln L(0_1,0_2) = -n \ln (2\pi \theta_2) - \sum_{2 \in \mathbb{Z}_2} (\pi_i - \theta_i)^2$

PAGE NO.
DATE
Differentiating w. A. F. Q.
$\frac{dl}{d\theta} = \frac{1}{2} \sum_{i=1}^{n} (n_i - \theta_i) = 0$
$\frac{Q_1=1}{N}\sum_{i=1}^{N}x_i - 0$
Differentiating w. 4.1. 02
$\frac{dl}{d\theta_2} = -\frac{n}{2\theta_2} + \frac{1}{2\theta_2} \sum_{i=1}^{n} (n_i - \theta_1)^2 = 0$
Solving for O2:
$0_{2} = \frac{1}{n} \sum_{i=1}^{n} (\pi i - \theta_i)^2 \qquad 2$
: Maximum likelihood estimatores are:
$\theta_1 = \sum_{i=1}^{n} x_i$ and $\theta_2 = \sum_{i=1}^{n} (x_i - \theta_1)^2$

	DATE
Ouestion 2:	Let X1, X2,, Xn be a seendom sample from B(m, 0) distribution where O E O= (0,1) is unknown and 'm' is a known positive integer (compute value of O using the M.L.E.
	B(m, 0) = m(2 0 (1-0) m-2
	$f(\pi i) = m(\pi i) m = \pi i$ $m = \pi i$ $m = \pi i$ $m = \pi i$ $m = \pi i$
	L(0 x1, x2,, xn) = \(\frac{\tau}{121}\) \(\tau(x)\) \(\frac{\tau}{121}\) \(\tau(x)\) \(\tau(x)\)
	Taking log on both sides,
	l(0 x1, x2, xn) = \frac{\sum \left[log (m \substack xi) + xi log (0) + (m-xi) log (1-1)}{i=i}
	derivative w. 4. t. a
	$\frac{dl}{do} = \sum_{i=1}^{N} \left[\frac{x_i}{0} - \left(\frac{m - x_i}{1 - 0} \right) \right] = 0$
4	Solving for 0 , $\sum_{i=1}^{\infty} \left[\frac{ni}{0} - \frac{m}{1-0} \right] = 0$
	$\left(\frac{1}{0}\right)\sum_{i=1}^{n}\pi_{i}-\left(\frac{nm}{1-0}\right)=0$
	\Rightarrow onm = $(1-0)$ $\stackrel{\sim}{\sum}$ χ_i
	ME SE MI
	nm //

PAGE NO.