PAT-NO:

JP410099083A

DOCUMENT-IDENTIFIER: JP 10099083 A

TITLE:

GLUTAMATE TRANSPORTER

PUBN-DATE:

April 21, 1998

INVENTOR-INFORMATION: NAME KONO, TSUYOSHI TAKUWA, KYOKO

INT-CL (IPC): C12N015/09, C07H021/04, C07K014/435

ABSTRACT:

PROBLEM TO BE SOLVED: To obtain a new gene coding a glutamic acid transporter of arthropod, thus to be used for producing a glutamic transporter useful for developing reagents for neural transmission system research to study cerebral nerve system, medicines and agrochemicals or the like.

SOLUTION: This new gene, which codes a glutamic acid transporter of arthropod including Diptera insects such as Drosophila melanogaster, as a reagent for neural transmission system research to widely study cerebral nerve system, or as a reagent affording new approaches for developing medicines and agrochemicals using glutamic acid analogs. This gene is obtained screening the cDNA library of Drosophila melanogaster by the use of

an indicator, i.e., glutamic acid intake when Xenopus oocyte is expressed and then by recovering the aimed DNA from the positive clones.

COPYRIGHT: (C)1998,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-99083

(43)公開日 平成10年(1998) 4月21日

(51) Int.Cl. ⁶	識別記号	FI
C 1 2 N 15/09	ZNA	C12N 15/00 ZNAA
C 0 7 H 21/04		C 0 7 H 21/04 B
C 0 7 K 14/435		C 0 7 K 14/435
// (C12N 15/09	ZNA	
C 1 2 R 1:91)		
		Administration Proceedings of the Process of the Company of the Co

審査請求 未請求 請求項の数11 書面 (全 15 頁)

(21)出願番号

(22)出顧日

特顯平8-290990

平成8年(1996) 9月27日

(71)出顧人 000001904

サントリー株式会社

大阪府大阪市北区堂島浜2丁目1番40号

(72)発明者 河野 強

大阪府三島郡島本町若山台1丁目1番1号 財団法人サントリー生物有機科学研究所

内

(72)発明者 宅和 京子

大阪府三島郡島本町若山台1丁目1番1号 財団法人サントリー生物有機科学研究所

内

(54) 【発明の名称】 グルタメートトランスポーター

(57)【要約】

【課題】 新たなグルタミン酸トランスポーターの提供 【解決手段】 ショウジョウバエ(D. melanog aster)のcDNAライブラリーより、アフリカツ メガエルの卵母細胞に発現させた際のグルタミン酸の取 り込みを指標として、配列番号1および2の配列式で示 される、グルタミン酸トランスポーターをコードするc DNAを単離した。

【効果】 本発明によれば、新たなグルタミン酸トランスポーター遺伝子およびこれらのcDNAでコードされるグルタミン酸トランスポーターを提供することができ、脳神経系を研究するための神経伝達系研究用の試薬として用いることができる。また本発明のcDNAを、常法に従ってCHO細胞等の動物培養細胞中で発現させ、そのグルタミン酸トランスポーター活性を測定することにより、グルタミン酸トランスポーターのアッセイ系を構築することができ、本発明はグルタミン酸アナログを用いた医薬および農薬等の開発に新たなアプローチを与えるものである。

【特許請求の範囲】

【請求項1】節足動物のグルタミン酸トランスポーター 遺伝子。

【請求項2】節足動物が昆虫綱に属する昆虫である特許 請求の範囲第1項に記載のグルタミン酸トランスポータ 一遺伝子。

【請求項3】節足動物が双翅目昆虫である、特許請求の 範囲第1項に記載のグルタミン酸トランスポーター遺伝 子。

【請求項4】節足動物がショウジョウバエ (Droso 10 phila melanogaster)である、特許 請求の範囲第1項に記載のグルタミン酸トランスポータ 一遺伝子。

【請求項5】配列番号1のDNA配列で示されるDNA を含む特許請求の範囲第1項に記載のグルタミン酸トラ ンスポーター遺伝子。

【請求項6】配列番号2のDNA配列で示されるDNA を含む特許請求の範囲第1項に記載のグルタミン酸トラ ンスポーター遺伝子。

【請求項7】配列番号3のアミノ酸配列を含むグルタミ 20 ン酸トランスポーター。

【請求項8】配列番号3のアミノ酸配列に対して、1~ 数個のアミノ酸の付加、除去または置換により修飾され ているアミノ酸配列を含むグルタミン酸トランスポータ

【請求項9】配列番号4のアミノ酸配列を含むグルタミ ン酸トランスポーター。

【請求項10】配列番号4のアミノ酸配列に対して、1 ~数個のアミノ酸の付加、除去または置換により修飾さ れているアミノ酸配列を含むグルタミン酸トランスポー 30 ター。

【請求項11】特許請求の範囲第1項ないし第6項に記 載のグルタミン酸トランスポーター遺伝子を培養細胞中 で発現させ、そのグルタミン酸トランスポーター活性を 測定することを特徴とする、グルタミン酸トランスポー ター活性阻害物質のスクリーニング方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、節足動物のグルタミン 酸トランスポーターと、それをコードする遺伝子および 40 その遺伝子の利用に関する。

[0002]

【従来の技術】興奮性アミノ酸であるグルタミン酸の能 動輸送を担うグルタミン酸トランスポーターは、脳神経 系に関する研究のターゲットとして、哺乳動物を中心と して精力的に研究されている。

【0003】例えば、ヒト、ラット、ウサギ、ウシよ り、分子生物学的手法を用いて、グルタミン酸トランス ポーターの構造が明らかにされている。(Biochi

1-164, 1993, Nature vol. 36 0,464-467,1992, Nature Vo 1. 360, 467-471, 1992, Mol. Br ain Res. Vol. 28, 343-348, 19 95)

2

【0004】一方、無脊椎動物は、その神経系が哺乳動 物に較べて単純であることから、神経生理学的な研究に 広く用いられているが、その無脊椎動物のグルタミン酸 トランスポーターに関する研究は、殆ど報告されておら ず、わずかに、本発明者らによる線虫のグルタミン酸ト ランスポーターに関する特許出願(特願平8-0818 33) がある程度にすぎない。

[0005]

【発明が解決しようとする課題】脳神経系の研究に際し ては、さらに多くの動物種を研究材料とすることが必要 とされている現状に鑑み、全く研究の行われていない節 足動物のグルタミン酸トランスポーターの構造を明らか にし、グルタミン酸の輸送機構を研究する上での新たな 手段を与えると共に、農薬等の開発のための新たなアプ ローチを与えることが、本発明が解決しようとする課題 である。

[0006]

【課題を解決するための手段】本発明者等は、ショウジ ョウバエ(Drosophila melanogas ter)のcDNAライブラリーより、アフリカツメガ エルの卵母細胞に発現させた際のグルタミン酸の取り込 みを指標として、グルタミン酸トランスポーターをコー ドする遺伝子を単離すべく鋭意研究を行い、配列番号3 および4のペプチドをコードする、配列番号1および2 の配列を含むcDNAを単離し、その生物活性を確認し て、本発明を完成した。

【0007】即ち、本発明によれば、無脊椎動物のグル タミン酸トランスポーター遺伝子として、配列番号1お よび2の配列を含むcDNAを提供することができ、ま たこのcDNAでコードされるアミノ酸配列を含む、グ ルタミン酸トランスポーターを提供することができる。 また、本発明中には、配列番号3または4のアミノ酸配 列に対して、1~数個のアミノ酸の付加、除去または置 換により修飾されているアミノ酸配列を含むペプチド も、グルタミン酸トランスポーター活性を有する限り、 含むことができる。

【0008】さらに、本発明のc DNAは、常法に従っ てこれをCHO細胞等の動物培養細胞中で発現させ、そ のグルタミン酸トランスポーター活性を測定することに より、グルタミン酸トランスポーター阻害剤のアッセイ 系を構築することができる。

[0009]

【発明の実施の形態】この遺伝子にコードされる新規タ ンパク質は、グルタミン酸トランスポーター活性を有す m. Biophys. Act Vol. 1216, 16 50 るタンパク質であり、ショウジョウバエ (D. mel

anogaster)を材料として、以下の方法により その構造を明らかにできる。例えば、ショウジョウバエ よりmRNAを調製し、2本鎖cDNAを合成する。次 いで、このcDNAをプロモーター配列を有するベクタ ーに挿入し、cDNAライブラリーを構築する。このラ イブラリーより約100から500クローンからなるプ ールを作製し、それぞれのプールよりDNAを調製す る。得られたDNAを鋳型としてcRNAを合成する。 【0010】合成したcRNAをコラゲナーゼ処理した アフリカツメガエルの卵母細胞に注入し、ND96バッ 10 ファー中で20度で24~48時間培養する。続いて、 卵母細胞を14Cラベルされたグルタミン酸を含むND 96バッファーに移し、20度で約1時間培養後、洗浄 し、液体シンチレーションカウンターで1 4 Cラベルさ れたグルタミン酸の取り込み量を測定する。有意にグル タミン酸の取り込みを上昇させたプールより、上述の検 定法を用いて単一のクローンを得る。得られたクローン の塩基配列を決定することにより、遺伝子にコードされ ているタンパク質の構造を明らかにする。

[0011]

【作用】本発明のタンパク質は、アフリカツメガエルの 卵母細胞に発現させた場合に、グルタミン酸の取り込み を上昇させるをタンパク質であり、同様の活性を有する 哺乳動物由来のタンパク質との相同性は低い。さらに、 本タンパク質は、グルタミン酸の取り込みを上昇させる ものとしては節足動物において最初の例である。このこ とから、本発明のタンパク質は、広く脳神経系を研究す るための神経伝達系研究用の試薬としてだけでなく、医 薬および農薬等への新たなアプローチを与える有用な試 薬として利用することができる。

[0012]

【実施例】次に実施例によって本発明をさらに説明するが、本発明の範囲はこれらのみに限定されるものではない。

【0013】実施例1. グルタミン酸トランスポーター をコードするショウジョウバエ遺伝子の単離

a. cDNAライブラリーの構築

ショウジョウバエの成虫約2gを液体窒素中で急速冷凍した後、粉砕し、AGPC法を用いてtotal cellular RNAを調製した。次いで、oligotex(dT)ョの(宝酒造)を用いて、mRNAを調製した。この様にして得られたmRNA5μgより、TimeSaverTM cDNA Synthesis KitおよびDirectional Cloning Toolbox (Pharmacia社)を用いて2本鎖cDNAを合成後、挿入部位の上流に発現プロモーターでSP6配列を有するファージベクター入ExCellのEcoRIおよびNotI部位に連結し、GIGA PAK GOLD(Stratagene社)を用いてファージ約子を形成させ、CDNAライブラリ

ーを得た。得られたライブラリーの一部を用いてライブ ラリーサイズを決定したところ、約2×10⁶ p f uで あった。

4

【0014】b. ファージプールの作製

a. で得られたcDNAライブラリーより、約500pfuを宿主菌である大腸菌NM522に感染させ、37℃で約20分間培養した。次いで、50℃に保温してある0.7%のアガロースを含むNZCY培地3m1を加え、円形シャーレ中の1.5%のアガロースを含むNZCY培地に重層し、37℃で14時間培養した。続いて、5m1のSM培地を重層し、4℃で14時間緩やかに浸透した後、ファージ粒子を含むSM培地を回収し、ファージプールとした。同様にして上記のファージプールを100個作製した。

【0015】c.ファージDNAの調製

各ファージプールより約10000pfuを宿主菌NM522に感染させ、37℃で約20分間培養した。次いで、50℃に保温してある0.7%のアガロースを含むNZCY培地3mLを加え、円形シャーレ中の1.5%のアガロースを含むNZCY培地に重層し、37℃で8時間培養した。続いて、5m1のSM培地を重層し、4℃で14時間緩やかに浸透した後、ファージ粒子を含むSM培地を回収した。次いで、Lambda Kit (Qiagen社)を用いてファージDNAを調製した。

【0016】d. cRNAの合成

c.で得られたファージDNAを制限酵素Not I (宝酒造)で消化し、プロテアーゼK(Boehrin ger Mannheim社)を用いてタンパク質を分 30 解した。次いで、フェノール/クロロホルム抽出を2回 行い、イソプロピルアルコール沈殿を経て、DNAを精 製した。このDNAを鋳型として、mMESSAGE mMACHINETM(Ambion社)を用いてcR NAを合成し、フェノール/クロロホルム抽出、イソプロピルアルコール沈殿を経てcRNAを精製した。得られたcRNAをジエチルピロカーバネート処理した滅菌水に1mg/mlになるように溶解した。

【0017】e.アフリカツメガエル卵母細胞の調製アフリカツメガエルのメスの腹部を切開し、卵母細胞の塊を取り出した。この卵塊をND96培地をいれたシャーレ内に入れ、卵塊の房を裂いた後、培地を除去し、コラゲナーゼTypeII(Sigma社)を0.2%含むND96培地を加え、室温で約1時間処理した。コラゲナーゼ溶液を除去し、ND96培地で3回卵母細胞を洗浄した後、ピンセットで卵母細胞のfollicular cellsを除いた。

【0018】f. アフリカツメガエル卵母細胞へのcRNAの注入

IGA PAK GOLD(Stratagene社) d.で調製したcRNAを70℃で10分間熱処理し、 を用いてファージ粒子を形成させ、cDNAライブラリ 50 氷上で急冷した後、e.で調製した卵母細胞に約50m 1ずつ注入した。cRNA注入にはオートインジェクターピペット NANOJECT 203-X型 (Drummond社)を用い、各試料につき15個の卵母細胞に注入した。cRNAを注入した卵母細胞をND96 培地中で20度で2-3日間培養した。

【0019】g. グルタミン酸の取り込み量の測定 f. で培養した卵母細胞を各試料につき5個選び、Nu clon60穴プレート(Nunc社)に移し、ND96培地を0.5mlずつ加える。次いで、Lー(Uー14C)グルタミン酸(Amersham社;CFB65)を30μlずつ加え混合し、約1時間室温で培養した。続いて、培養液を除去後、氷冷したND96培地で5回洗浄し、個々の卵母細胞を1.5ml容エッペンドルフチューブに移し、0.1%SDSを0.5ml加えて、ホモジネートした。これを液体シンチレーションカウンター用のバイアルLSC VIAL(Packard社)に移し、液体シンチレーターACSII(Amersham社)10mlを加え、撹拌後、液体シンチレーションカウンターにて14Cーグルタミン酸を計測した。

【0020】h. クローンの単離

a.からf.の操作によって得られた活性を示すファージプールより、任意に2000個のファージを拾い、個々について同様にDNAを調製後、先述の手順と同様にして、活性を示す単一のクローンを複数個得た。

【0021】i. 塩基配列の決定

得られたクローンより、M13ユニバーサルプライマーを用いて挿入断片をPCR法によって増幅し、MicroSpinTM S-400HR カラム (Pharmacia社製)を用いて増幅されたDNAを精製した。続いて、精製したDNA溶液4μ1を鋳型とし、M13ユニバーサルプライマーおよびDye Deixy Terminator Cycle Sequencing Kit (Applied Biosystems社製)を用いてダイデオキシ反応を行った。次いで、反応物をQuich SpinTM (TE)カラム (Boehringer Mannheim社製)を用いて精製し、乾固後、95%ホルムアミド溶液4m1に溶解した。この溶液を90℃で3分間加熱し、米冷後、電気泳

動に供した。電気泳動は、373A-18型 DNA Sequencer (Applied Biosystems社製)を用いて実施した。全長の塩基配列を得るために、得られた塩基配列を基にプライマーDNAを392型 DNA/RNA Synthesizer (Applied Biosystems社製)を用いて合成し、同様に塩基配列分析を行った。

6

【0022】j. 塩基配列の解析

6 培地を0.5m 1ずつ加える。次いで、L-(U-14C) 得られた塩基配列は、遺伝子情報処理ソフトウェアGE 14 C) グルタミン酸(Amersham社; CFB6 10 NETYX-MAC (ソフトウェア開発株式会社)を用 5)を $30\mu 1$ ずつ加え混合し、約1時間室温で培養し いて解析し、コードされているタンパク質のアミノ酸配 た。続いて、培養液を除去後、氷冷したND96培地で 列を決定した。

[0023]

【発明の効果】本発明のDNAは、ショウジョウバエ (D. melanogaster)由来のグルタミン酸トランスポーターをコードする遺伝子であり、アフリカツメガエル卵母細胞に発現させた場合に、グルタミン酸の取り込みを増強するトランスポーター活性を示す。また、本発明のDNAがコードするタンパク質は、節足20動物において得られた最初のグルタミン酸トランスポーターの例である。

【0024】また、本発明のDNAは、グルタミン酸トランスボーター遺伝子を培養細胞中で発現させ、そのグルタミン酸トランスボーター活性を測定することにより、グルタミン酸トランスボーター活性阻害物質のスクリーニング方法を提供することができる。さらに、本発明のDNAがコードするタンパク質は、広く脳神経系を研究するための神経伝達系研究用の試薬としてだけでなく、グルタミン酸アナログを用いた医薬および農薬等の開発に新たなアプローチを与える有用な試薬として利用することができる。

【配列表】

【 0 0 2 5 】配列番号:1 配列の長さ:1 4 1 9

配列の型:核酸

配列の種類:cDNA

起源:

生物名:ショウジョウバエ (Drosophila melanogaster)

配列	l :															
ATG	GCG	GCA	AGT	TCA	AGG	CTT	TCA	TGC	AGG	AGA	ATG	TCC	TCA	CCA	TGG	48
Me t	Ala	Ala	Ser	Ser	Arg	Lea	Ser	Cys	Arg	Årg	Met	Ser	Ser	Pro	Trp	16
CCA	CCG	TTA	TCG	GTG	TGT	TTG	TTG	GTG	GAC	TCA	TCG	GCT	TCA	TCA	TCA	96
Pro	Pro	Leu	Ser	Val	Cys	Leu	Lev	Val	Asp	Ser	Ser	Ala	Ser	Ser	Ser	32
AAA	ATA	GCA	CTG	GCG	AGT	GCT	CGA	AGA	GAG	AGA	TÇA	TGT	ACA	TAT	ССТ	144
Lys	Ile	Ala	Leu	Ala	Ser	Gly	Arg	Arg	Glu	Årg	Ser	Cys	Thr	Tyr	Pro	48
TCC	CCG	GCG	AAG	ATT	TTC	TTG	CGA	ATG	СТТ	AAA	TGT	TTG	ATT	GTG	CCG	192
Ser	Pro	Ala	Lys	He	Phe	Leu	Arg	Met	Leu	Lys	Cys	Leu	Ile	Val	Pro	64
CTT	TTG	GTC	TCA	TCA	ATC	ACC	AGT	GCC	۸TT	CCT	GGA	CTC	GAC	CTG	AGC	240
Leu	Leu	Val	Ser	Ser	He	Thr	Ser	Ala	Ile	Gly	Gly	Leu	Asp	Leu	Ser	80
ATG	TCC	AGC	AAG	ATT	GCT	ACC	AGA	GCC	ATT	ACT	TAC	TAC	TTT	GTG	ACC	288
Met	Ser	Ser	L y s	He	Ala	Thr	Arg	Ala	He	Thr	Tyr	Tyr	Phe	Va l	Thr	96
ACC	ATA	TOG	CCC	GTG	ATT	CTG	GGA	ATA	TGT	CTG	GTG	ACC	ACA	CTG	CGT	336

	(•														
Thr	-		Ala	Val	He	Leu	Gly	Ile	Cys	Leu	Val	Thr	Thr	Leu	Arg	112
ccc	GGC	CAG	GGA	GCC	AAG	ATC	GTG	GAG	ACC	CAG	ACG	GAG	ACC	ХТТ	GAT	384
Pro	Gly	Gln	Gly	Ala	Lys	Ile	Val	Glu	Thr	Gla	Thr	Glu	Ser	He	Asp	128
AAG	GCA	TCG	AAG	GTG	CTC	ACC	CCA	GAC	ACG	CTT	ATG	GAT	TTG	GTG	CGA	432
Lys	Ala	Ser	Lys	Val	Leu	Thr	Pro	Asp	Thr	Leu	Met	Asp	Leu	Val	Arg	144
AAC	ATG	TTC	ACG	GAC	AAC	ATC	ATT	CAG	TCG	ACC	ATG	TTC	CAG	CAC	CGC	480
Asn	Met	Phe	Thr	Asp	Asn	He	Ile	Gln	Ser	Tbr	Met	Phe	Gln	His	Arg	160
ACT	GAG	ATC	TAT	GAG	AAC	ACT	AGC	ATT	AGC	CCA	GCA	CAG	CCT	ATG	GAA	528
				Glu												176
AAC	TGG	GAG	TTC	AAG	TCG	GCT	CAG	CGC	GAG	GGT	TCT	AAT	GTC	CTG	GGT	57(
															Gly	199
CTT	CTG	ATG	TTC	AGT	CTT	ATC	CTA	GGT	ACC	ACC	ATT	GGA	AGA	ATG	CGG	624
				Ser												201
GAG	AAG	GGA	CAA	СТТ	CTG	CAG	GAT	TTC	TTC	ACC	ACA	CTG	AGC	GAA	GCA	672
				Leu												224
ATG	ATG	ACC	ATC	ACC	TCA	TGG	GTI	ATT	' TGC	ATT	TCC	CCG	CTG	GGT	GTT	720
				Thr												24
COO	TTO	e CTG	ATA	GCC	GCC	AAG	ATT	· ATT	' GAG	ATG	GAA	TCG	ATA	GCA	GCA	76
												_			Ala	25

	1	1														1301
ACG		CAG	TCA	TTA	CGA	TGG	TAT	TTC	ATA	ACG	GTC	ATG	ATA	GGT	CTA	816
Thr	Ile	Gin	Ser	Leu	Gly	Trp	Tyr	Phe	Ile	Thr	Val	Met	lle	Gly	Leu	272
	_		_	•											ACC	864
Phe	Leu	His	Gly	Phe	Gly	Thr	He	Ala	Val	Ile	Phe	Phe	Leu	Gly	Thr	288
CGA	CGT	CTC	CCG	TAC	CGC	TAT	ATT	ccc	AAG	стт	AGT	CAG	GTC	CTG	GCA	912
			Pro													304
ACT	GCA	ПТ	GGA	ACA	GGT	TCC	AGC	TCG	GCC	ACC	ATG	CCG	CTG	ACC	ATC	960
Thr	Ala	Phe	Gly	Thr	Gly	Ser	Ser	Ser	Ala	Thr	Met	Pro	Leu	Thr	Ile	320
			640		A TO C	000				600	ama					1000
			GAC Asp													1008 336
LJ3	Uys	LGu	nsy	поп	MG L	Uly	116	чен	110	VI R	101	1111	ия	1 1116	rai	900
ATT	CCC	GTG	GGT	GCC	ACT	ATT	AAC	ATG	GAC	GGA	ACG	GCT	CTC	TAT	GAG	1056
He	Pro	Yal	Gly	Ala	Thr	Ile	Asn	Met	Asp	Gly	Thr	Ala	Leu	Tyr	Glu	352
			GCT													1104
Ala	Val	Ala	Ala	Leu	Phe	He	Ala	GIn	Туг	Arg	Glu	Met	Ser	Tyr	Ser	368
TTC	GGC	ACC	ATT	GTG	GCC	GTC	AGC	ATA	ACA	GCC	ACG	GCG	GCA	TCG	ATT	1152
			lle													384
GGA	GCT	GCT	GGA	ATC	CCG	CAG	GCT	GGA	CTT	GTT	ACC	ATG	GTC	ATG	GTG	1200
Gly	Ala	Ala	Gly	He	Pro	Gln	Ala	Gly	Leu	Val	Thr	Met	Val	Met	Val	400
(VTC	CYC	ACA	GTG	ccc	TTC	CAC	ccc	440	CAT	CTC	ም ርር	C-TrC	A TO	ATA	ccc	1248
			Val													416
			CTA Leu													1296 432
	шр		Dou	DC.	nop	nr 9	ш	ui g	1111	1111	116	กงแ	101	arc t	Uys	402
GAT	GCT	CTA	GGC	ACT	ATT	TTC	GTT	AAC	CAT	CTG	TCG	AAA	AAT	GAT	TTG	1344
Asp	Ala	Leu	Gly	Thr	Ile	Leu	Val	Asn	His	Leu	Ser	Lys	Asn	Asp	Leu	448
								,							•	
			GAT													1392
Ala	Ser	Val	Asp	Arg	Leu	Asn	Ala	Glu	.Pro	His	Glu	Leu	Leu	Glu	Leu	464
GGA	CCC	AAT	GGC	CAC	GAC	ATT:	AAC:	GAA								1419
			Clv													1413

13

【0026】配列番号:2

配列の長さ:954

* 起源:

生物名:ショウジョウバエ (Drosophila m

14

elanogaster)

配列の型:核酸 配列の種類:cDNA

配列	J :															
ATG	TTC	CAG	CAC	CGC	ACT	GAG	ATC	TAT	GAG	AAC	ACT	AGC	ATT	AGC	CCA	48
Met	Phe	Gln	His	Arg	Thr	Glu	Ile	Tyr	Glu	Asn	Thr	Ser	Ile	Ser	Pro	16
					AAC											96
Ala	Gln	Pro	Met	Glu	Asn	Trp	Glu	Phe	Lys	Ser	Ala	Gln	Arg	Gla	Gly	32
mc=		OFF	~	a.c.	~	Ver-		men.	40=		1000	~	~~-	400	100	,,,
					CTT											144
Ser	Asn	Val	Leu	Gly	Leu	Ya 1	Met	Phe	Ser	Val	He	Leu	Gly	Thr	Thr	48
V den	nn •	101	170	ore.	Cic		CC+	C 1 1	(Aprile	Colors	nin.	4 0	Table.		100	100
					GAG											192
116	G1Y	ACB	met	VLR	Glu	Lys	AIÀ	UIB	reu	ren	ψŧΠ	uzh	LTE	LTG	ш	64
ACA	CTG	AGC:	GAA	GCA	ATG	ATG	ACC	ATC	ACC	TCA	TGG	GTT	ATT	TGG	ATT	240
					Met											80
							-		_		•	·	=	•		
TCC	CCC	CTG	GGT	GTT	GCC	TTC	CTG	ATA	GCC	GCC	AAG	ATT	ATT	GAG	ATG	288
Ser	Pro	Leu	Gly	Val	Ala	Phe	Leu	He	Ala	Ala	Lys	Ile	He	Glu	Met	96
GAA	TCG	ATA	GCA	GCA	ACG	ATT	CAG	TCA	TTA	GGA	TGG	TAT	TTC	ATA	ACG	336
Glu	Ser	Ile	Ala	Ala	Thr	Ile	Gln	Ser	Leu	Gly	Trp	Tyr	Phe	He	Tbr	112
			~~				٥			nn a.			non		4000	901
					TTC											384
181	met	118	UIŸ	reu	Phe	Leu	п15	ulÿ	rae	VIŸ	ıar	116	RIA	181	116	128
Ш	TTC	CTG	GGC	ACC	CGA	CGT	CTC	CCG	TAC	CGC	TAT	ATT	GCC	AAG	CTT	432
					Arg				_		_			_		144
			-							_						
AGT	CAG	GTC	CTG	GCA	ACT	GCA	TTT	GGA	ACA	GGT	TCC	AGC	TCG	GCC	ACC	480
Ser	Gln	Val	Leu	Ala	Thr	Ala	Phe	Gly	Thr	Gly	Ser	Ser	Ser	Ala	Thr	160
				•												
ATG	CCG	CTG	ACC	ATC	AAG	TGC	TTG	GAC	AAC	ATG	GGC	ATC	GAT	CCG	CGG	528
Met	Pro	Leu	Thr	Ile	Lys	Cys	Leu	Asp	Asa	Met	Gly	He	Asp	Pro	Arg	176
					ATT											576
Val	Thr	Arg	Phe	Val	He	Pro	Val	Gly	Ala	Thr	He	Asn	Met	Asp	Gly	192

									` `	- ,							סדוממה	22002
		1														16		
AC	G G	CT	CTC	TAT	GAG	GCT	GTG	GCT	GCT	CTG	TTC	ATC	CCC	CAA	TAÇ	CGT	624	
Th	r A	la	Leu	Туг	Glu	Ala	Val	Ala	Ala	Leu	Phe	He	Ala	Gla	Tyr	Arg	208	
GA	G A1	TG	AGC	TAT	TCC	TTC	GGC	ACC	ATT	GTG	CCC	GTC	AGC	ATA	ACA	GCC	672	
G1	u Ma	et	Ser	Tyr	Ser	Phe	Gly	Thr	Ile	Val	Ala	Va 1	Ser	He	Thr	Ala	224	
AC	G GI	CG	GCA	TCG	ATT	GGA	GCT	GCT	GGA	ATC	COG	CAG	GCT	GGA	CTT	CTT	720	
														Gly			240	
111		10	N13	001	110	VIJ	MIG	nia	U1,	110		OIH	NIG.	uly	bcu	101	240	
40	r	TC	CTC.	.TC	CTC	o r c	C4.C	404	ር-ሞ ር	ccc	TTC	CAC	00 C		CATE	(MIN)	700	
														AAG			768	
Th	C MI	et	Val	Met	Vai	Leu	ASP	Thr	Val	GLY	rea	Glu	Pro	Lys	Asp	Val	256	
TC	C C	TC	ATC	ATA	GCC	GTC	CAT	TGG	CTA	CTG	GAT	CGC	TTC	CGC	ACC	ACC	816	
Se	r L	eu	He	He	Ala	Val	Asp	Trp	Leu	Leu	Asp	Arg	Phe	Arg	Thr	Thr	272	
AT	T A	AT	GTA	ATG	TGC	GAT	GCT	CTA	GGC	ACT	ATT	TTG	GTT	AAC	CAT	CTG	864	
11	e A:	sn	Yal	Met	Cys	Asp	Ala	Leu	Gly	Thr	He	Leu	Val	Asn	His	Leu	288	
TC	G A	٨٨	AAT	GAT	TTG	GCC	AGC	GTG	GAT	AGG	CTG	AAT	GCC	GAG	CCC	CAT	912	
Se	r Ly	ys	Asn	Asp	Leu	Ala	Ser	Val	Asp	Arg	Leu	Asn	Ala	Glu	Pro	His	304	
				_					_	•						-		
GA	c c	TC:	CTC	GAC	CTG	4DD	CCC	AAT	GGC	CAC	CAC	ATG	AAC	CAA			954	
			-									Met						
番号			rcu	GIU	rea	OI À	1.10	ven	ari	_	67u 3.演:		r) y	aid			318	
3		•							36				/ m P	フミジェ	, ללו	ረተ (ከ	rosoph	ilia

【0027】配列番

配列の長さ:473

配列の型:アミノ酸 配列の種類:ペプチド 30 生物名:ショウジョウバエ (Drosophilia

melanogaster)

17

. 1 1101

Met Ala Ala Ser Ser Arg Leu Ser Cys Arg Arg Met Ser Ser Pro Trp 16 1 5 10 15

Pro Pro Leu Ser Val Cys Leu Leu Val Asp Ser Ser Ala Ser Ser Ser 32

Lys IIe Ala Leu Ala Ser Gly Arg Arg Glu Arg Ser Cys Thr Tyr Pro 48
35 40 45

Ser Pro Ala Lys Ile Phe Leu Arg Met Leu Lys Cys Leu Ile Val Pro 64
50 55 60

Lcu Leu Val Ser Ser Ile Thr Ser Ala Ile Gly Gly Leu Asp Leu Ser 80 65 70 75 80

Met Ser Ser Lys IIe Ala Thr Arg Ala IIe Thr Tyr Tyr Phe Val Thr 96 85 90 95

Thr Ile Ser Ala Val Ile Leu Gly Ile Cys Leu Val Thr Thr Leu Arg 112

Pro Gly Gln Gly Ala Lys Ile Val Glu Thr Gln Thr Glu Ser Ile Asp 128

Lys Ala Ser Lys Val Leu Thr Pro Asp Thr Leu Met Asp Leu Val Arg 144

	130					135					140					
Asn 145	Met	Phe	Thr	Asp	Asa 150	He	He	Gln		Thr 155	Met	Phe	Gln	His	Arg 160	160
Thr	Glu	Ile	Tyr	G1u 165	Asn	Thr	Ser	He	Ser 170	Pro	Ala	Gln	Рго	M et 175	Glu	176
Asn	Trp	Glu	Phe 180	Lys	Ser	Ala	Gln	Arg 185	Glu	Gly	Ser	Asn	Val 190	Leu	Gly	192
Leu	Va l	Met 195	Phe	Ser	Val	He	Leu 200	Gly	Thr	Thr	Ile	G1 y 205	Arg	Met	Arg	208
Glu	Lys 210		Gln	Leu	Leu	Gln 215	Asp	Phe	Phe	Thr	Thr 220	Leu	Ser	Glu	Ala	224
Me t 225		Thr	Ile	Thr	Ser 230	Trp	Va1	Ile	Trp	11e 235	Ser	Pro	Leu	Gly	Va.1 240	24 0
Ala	Phe	Leu	Ile	A1a 245	Ala	Lys	Ile	Ile	G1u 250	Met	Glu	Ser	Ile	A1a 255	Ala	256
Thr	lle	Gln	Ser 260		Gly	Trp	Tyr	Phe 265		Thr	Val	Met	I le 270		Leu	272
Phe	Leu	His 275		Phe	Gly	Ţhr	11e 280		Yal	He	Phe	Phe 285		Gly	Thr	288

Arg Arg Leu Pro Tyr Arg Tyr Ile Ala Lys Leu Ser Gin Val Leu Ala 304 290 295 200 Thr Ala Phe Gly Thr Gly Ser Ser Ser Ala Thr Met Pro Leu Thr Ile 320 305 310 315 320
290 295 200 Thr Ala Phe Gly Thr Gly Ser Ser Ser Ala Thr Met Pro Leu Thr Ile 320
Thr Ala Phe Gly Thr Gly Ser Ser Ser Ala Thr Met Pro Leu Thr Ile 320
305 310 320
Lys Cys Leu Asp Asp Met Gly Lie Asp Pro Arg Val Thr Arg Phe Val 336
210 072 255 157 152 255 077
325 330 335
He Pro Val Gly Ala Thr He Asn Met Asp Gly Thr Ala Leu Tyr Glu 352
· · · · · · · · · · · · · · · · · · ·
340 345 350
Ala Val Ala Ala Leu Phe Ile Ala Glu Tyr Arg Glu Met Ser Tyr Ser 368
355 360 365
000
Phe Gly Thr Ile Val Ala Val Ser Ile Thr Ala Thr Ala Ala Ser Ile 384
370 375 380
Gly Ala Ala Gly Ile Pro Gln Ala Gly Leu Val Thr Met Val Met Val 400
385 390 395 400
Leu Asp Thr Val Gly Leu Glu Pro Lys Asp Val Ser Leu Ile Ile Ala 416
405 410 415
Val Asp Trp Leu Leu Asp Arg Phe Arg Thr Thr Ile Asn Val Met Cys 432
420 425 430
Asp Ala Leu Gly Thr lle Leu Yal Asn His Leu Ser Lys Asn Asp Leu 448
435 440 445
Ala Ser Val Asp Arg Leu Asp Ala Clu Pro His Glu Leu Leu Glu Leu 464
450 455 460
Gly Pro Asn Gly His Glu Met Lys Glu 473
465 470 473
【0028】配列番号: 4 *起源:
配列の長さ: 318 生物名: ショウジョウバエ (Drosophila m
配列の型: アミノ酸 elanogaster)

配列の種類:ペプチド

配列: Met Phe Gln His Arg Thr Glu Ile Tyr Glu Asn Thr Ser Ile Ser Pro

Ala Cln Pro Met Glu Asn Trp Glu Phe Lys Ser Ala Gln Arg Glu Gly

Ser Asn Val Leu Gly Leu Val Met Phe Ser Val IIe Leu Gly Thr Thr

Ile Gly Arg Met Arg Glu Lys Gly Gln Leu Leu Gln Asp Phe Phe Thr

The Leu Ser Glu Ala Met Met The Ile The Ser Trp Val Ile Trp Ile

65 70 75 80

Ser Pro Leu Gly Val Ala Phe Leu IIe Ala Ala Lys IIe IIe Glu Met 96

Glu Ser Ile Ala Ala Thr Ile Glu Ser Leu Gly Trp Tyr Phe Ile Thr 112

Val Met Ile Gly Leu Phe Leu His Gly Phe Gly Thr Ile Ala Val Ile 128

Phe Phe Leu Gly Thr Arg Arg Leu Pro Tyr Arg Tyr Ile Ala Lys Leu 144
130 135 140

 Ser Gln Val Leu Ala Thr Ala Phe Gly Thr Gly Ser Ser Ser Ala Thr
 160

 145
 150
 155
 160

Met Pro Leu Thr Ile Lys Cys Leu Asp Asn Met Gly Ile Asp Pro Arg 176

Val Thr Arg Phe Val Ile Pro Val Gly Ala Thr Ile Asn Met Asp Gly 192

Thr Ala Leu Tyr Glu Ala Val Ala Ala Leu Phe IIe Ala Gln Tyr Arg 208 195 100 205

Glu Met Ser Tyr Ser Phe Gly Thr Ile Val Ala Val Ser Ile Thr Ala 224 210 215 220

Thr 225		7 Ala	Ser	Ile	G1y 230	Ala	Ala	Gly	Ile	Pro 235	Gln	Λla	Gly	Leu	Va 1 240	240
Thr	Met	Val	Met	Va 1 245	Leu	Asp	Thr		G1y 250	Leu	Glu	Pro	Lys	Asp 255	Val	256
Ser	Leu	lle	11e 260	Ala	Val	Asp	Тгр	Leu 265	Leu	Asp	Arg	Phe	Arg 270	Thr	Thr	272
Ile	Asn	Val 275	Met	Cys	Asp	Ala	Leu 280	Gly	Thr	He	Leu	Val 285	Asn	His	Leu	288
Ser	Lys 290	Asn	Asp ·	Leu	Ala	Ser 295	Val	Asp	Arg	Leu	Asa 300	Ala	Glu	Pro	His	304
Glu 305	Leu	Leu	Glů	Leu	Gly 310	Рго	Asn	Gly	His	Glu 315	Met	Lys	Glu 318			318