GPT1

Improving Language Understanding by Generative Pre-Training

GPT란?

- Generative (생성하는) Pre-trained (사전 학습된) Transformer (트랜스포머)
- Generative model (생성모델)

Generative models – generate new data instances.

Discriminative models – discriminate between different kinds of data instances.

0인지 1인지 구별 / 데이터 공간에서 실제와 가까운 숫자(0,1) 생성

GPT란?

- pre-training
- semi-supervised approach
- -> unsupervised pre-training + supervised fine-tuning
- => unlabeled text data의 활용 문제를 개선하기 위한
 - Semi-supervised language model, GPT 제안
- unlabeled data 활용 문제 : 1. 어떠한 목적함수가 unlabeled text data를 학습하기 위해 가장 효과적인지 확실하게 밝았다.

GP**T**란?

- Transformer의 decoder block 구조
- 기계번역이나 문서 생성, 구문 분석과 같은 task에서 강력한 성능
- 최소한의 fine-tuning 구조변화로 target task에 transfer 가능
- Encoder-Decoder Attention이 제거된 Transformer Decoder의 variation 구조

Framework - 1: Unsupervised pre-training

learning a high-capacity language model on a large corpus of text

unlabeled token U = {u1, . . . , un} 을 통해 일반적인 언어모델의 목적함수
 Likelihood L1(U) 를 최대화 하는 과정

$$L_1(\mathcal{U}) = \sum_i \log P(u_i|u_{i-k}, \dots, u_{i-1}; \Theta)$$

k는 context window의 크기이며, 조건부 확률 P는 Θ를 parameter로 갖는 신경망으로 모델링

Framework - 1: Unsupervised pre-training

Transformer의 decoder block

1)
$$h_0 = UW_e + W_p$$
 - Masked self-Attention을 위한 input h0

input token Matrix U * embedding Matrix We + Positional embedding Wp

$$h_l = \texttt{transformer_block}(h_{l-1}) orall i \in [1, n]$$

12개의 decoder block을 stack, h1은 이전 decoder block의 hidden state h0을 입력으로 받아 계산

3)
$$P(u) = \operatorname{softmax}(h_n W_e^T)$$
 - output probability P(u)

n번째 decoder block의 hidden state output hn에 transposed embedding Matrix WeT를 곱하여 softmax 함수를 적용

Framework - 2 : supervised fine-tuning

- target task에 맞게 parameter를 조정하는 단계
- input token sequence {x1 , . . . , xm}과 label y로 구성된 target task의 labeled dataset C 통해 학습 진행

- 1) C의 input token에 대한 GPT의 마지막 decoder block hidden state h 얻기 위해 pretrained model에 input token 통과
- 2) $P(y|x^1,...,x^m) = \text{softmax}(h_l^m W_y)$ softmax probability
- 파라미터 Wy를 갖는 하나의 linear layer에 h를 통과시켜 softmax probability 계산
- -> token probability distribution

Framework - 2 : supervised fine-tuning

3)
$$L_2(\mathcal{C}) = \sum_{(x,y)} \log P(y|x^1, \dots, x^m)$$

label y에 대해 지도학습 진행

지도학습의 목적함수L2(C) 또한 일련의 구조로 모델링된 조건부확률 P를 통해 계산

4) unsupervised pre-training의 목적함수 L1 추가 (auxiliary objective)

Labeled dataset C에 대해 L1(C)로 계산

$$L_3(\mathcal{C}) = L_2(\mathcal{C}) + \lambda * L_1(\mathcal{C})$$

λ는 L1(C)의 반영 정도 정하기 위한 weight hyper parameter

-> fine tuning 과정에서 추가로 필요한 parameters는 Wy와 delimiter토큰을 위한임베딩뿐

Framework - 3 : Task-specific input transformations

Framework - 3 : Task-specific input transformations

- Entailment 전제 Premise를 통해 가설
 Hypothesis의 참, 거짓을 밝히는 task
- -> 전제 p 와 가설 h 토큰 시퀀스를 delimiter token으로 concat
 - Similarity 문장 유사도 측정 task
- -> 가능한 문장 순서를 모두 포함하도록 입력 시퀀스를 delimiter token과 함께 수정하고 두 문장의 h를 각각 생성한 후 linear layer에 들어가기 전 더함
 - QA, Multiple choice
- -> [z; q; \$; ak] (z: context document, q: question, ak: 가능한 답변 set)
- delimiter token을 사용해 각 z,q와 답변을 concat
- 각 시퀀스 별로 독립적으로 처리 후 가능한 답변의 분포 생성 위해 soft layer에 전달

Experiments - setup

- **Unsupervised pre-training** BooksCorpus dataset
 - : 다양한 장르의 출간되지 않은 책 7000권 이상 포함
 - -> allows the generative model to learn to condition on long-range information
- Model specifications 12-layer decoder-only transformer with masked self-attention heads (768 dimensional states and 12 attention heads)
- BPE(Byte pair encoding) :서브워드 분리(subword segmentation)
- fine tuning pre train에 사용한 하이퍼파라미터 그대로 사용, dropout 추가
- dropout: Masked Attention Layer 에 들어갈 Input 을 만들기 위해 0.1의 확률로
 Input tensor의 각 값이 0으로 바뀜

● Natural Language Inference (Entailment - 문장 관계 수반/모순/중립 파악)

정부리포트(MNLI) 이미지캡션(SNLI) Science exams (SciTail) 위키피디아기사 (QNLI) 뉴스기사 (RTE)

Method	MNLI-m	MNLI-mm	SNLI	SciTail	QNLI	RTE
ESIM + ELMo [44] (5x)	_	-	89.3	-	_	_
CAFE [58] (5x)	80.2	79.0	89.3	-	-	-
Stochastic Answer Network [35] (3x)	80.6	<u>80.1</u>	-	-	-	-
CAFE [58]	78.7	77.9	88.5	83.3		
GenSen [64]	71.4	71.3	-	-	82.3	59.2
Multi-task BiLSTM + Attn [64]	72.2	72.1	-	-	82.1	61.7
Finetuned Transformer LM (ours)	82.1	81.4	89.9	88.3	88.1	56.0

-> RTE제외한 데이터 셋에서 모두 다른 모델보다 우수한 성능

RTE dataset은 크기가 작은 데이터셋, 상대적으로 데이터셋이 클수록 좋은 성능

Question answering and commonsense reasoning

RACE (영어로 구성된 중/고등학교 시험 문제) Story Cloze(네 문장의 스토리의 올바른 결말 선택)

Method	Story Cloze	RACE-m	RACE-h	RACE
val-LS-skip [55]	76.5	-	-	-
Hidden Coherence Model [7]	<u>77.6</u>		1 <u>228</u> 1227	-
Dynamic Fusion Net [67] (9x)		55.6	49.4	51.2
BiAttention MRU [59] (9x)	-	<u>60.2</u>	<u>50.3</u>	<u>53.3</u>
Finetuned Transformer LM (ours)	86.5	62.9	57.4	59.0

long range context 잘 처리

^{-&}gt; 모두 우수한 성능

Classification과 Similarity task

CoLA (문법적으로 올바른지) SST2(영화 코멘트 긍/부정)

Method	Classification		Seman	GLUE		
	CoLA (mc)	SST2 (acc)	MRPC (F1)	STSB (pc)	QQP (F1)	
Sparse byte mLSTM [16]	-	93.2	-	-		=
TF-KLD [23]	-	13-	86.0	H		-
ECNU (mixed ensemble) [60]	=	-	-	81.0	1. -	1.5
Single-task BiLSTM + ELMo + Attn [64] Multi-task BiLSTM + ELMo + Attn [64]	35.0 18.9	90.2 91.6	80.2 83.5	55.5 72.8	66.1 63.3	64.8 68.9
Finetuned Transformer LM (ours)	45.4	91.3	82.3	82.0	70.3	72.8

layer 수에 따른 유의미한 성능 향상 / 각각 task의 Zero-shot 성능 비교(점선 LSTM)

Method	Avg. Score	(mc)	(acc)	(F1)	(pc)	(F1)	(acc)	(acc)	(acc)
Transformer w/ aux LM (full)	74.7	45.4	91.3	82.3	82.0	70.3	81.8	88.1	56.0
Transformer w/o pre-training	59.9	18.9	84.0	79.4	30.9	65.5	75.7	71.2	53.8
Transformer w/o aux LM	75.0	47.9	92.0	84.9	83.2	69.8	81.1	86.9	54.4
LSTM w/ aux LM	69.1	30.3	90.5	83.2	71.8	68.1	73.7	81.1	54.6

1)보조 목적함수 aux LM- NLI task와 QQP에서 도움을 준다는 것을 확인 (1.3)

전반적으로 큰 데이터셋은 보조 목적함수로부터 도움을 받는 반면, 작은

CCTO

MDDC

CTCD

COD

MANIT T

DTE

ONITI

데이터셋에서는 도움을 받지 못함

Mathad

2) LSTM과 Transformer 비교 (1,4)

LSTM - 평균 약 5.6점 낮음, 오직 MRPC데이터셋에서만 Transformer보다 더 나은 성능

3)사전학습 효과 (1,2) - w/o pre training 모두 성능 저하

Arra Canta

COLA