万有引力常数G的测量

黄晨

物理英才 1801 班, U201810116

2021年6月1日

② 数据测量

3 测量结果

对于一个自由悬挂的扭秤, 它的运动方程为

$$I\ddot{\theta} + \gamma \dot{\theta} + K\theta = 0 \tag{1}$$

I为扭秤的转动惯量。K是扭丝的弹性系数且假设为常数。

如果在扭秤附近放置大的吸引质量,需要考虑引力力矩沿扭丝方向的分量 τ_g ,则扭秤运动方程变为

$$I\ddot{\theta} + \gamma \dot{\theta} + K\theta = \tau_g \tag{2}$$

其中 $\tau_g = -\partial U_g/\partial \theta$ 。实验中扭秤偏转角 θ 非常小 (10^{-3} rad),可以看作小量,因此在扭秤平衡位置 $\theta = 0$ 附近 τ_g 可近似按 θ 展开取至一阶项:

$$\tau_{\mathrm{g}} = -\frac{\partial U_{\mathrm{g}}}{\partial \theta} \approx \left(-\frac{\partial U_{\mathrm{g}}}{\partial \theta}\right)_{\theta=0} + \left(-\frac{\partial^2 U_{\mathrm{g}}}{\partial \theta^2}\right)_{\theta=0} \theta$$

由于吸引质量是对称放置的,当扭秤处于平衡位置时,引力力矩为 0,即 Eq.(3) 第一项为零。定义 $K_g = (\partial^2 U_g/\partial\theta^2)_{\theta=0}$, K_g 为引力力矩的等效扭转系数,则有

$$\tau_g \approx -K_g \theta \tag{4}$$

代入扭秤运动方程,有

$$I\ddot{\theta} + \gamma \dot{\theta} + (K + K_g) \theta = 0 \tag{5}$$

图: 左图为有球配置, 右图为无球配置。

图: 左图为有球配置, 右图为无球配置。

有、无吸引质量下的响应频率分别记为 ω_n 和 ω_f

$$\omega_n^2 = \frac{K + K_g}{I} - \left(\frac{\gamma}{2I}\right)^2 \tag{6}$$

$$\omega_f^2 = \frac{K}{I} - \left(\frac{\gamma}{2I}\right)^2$$

频率平方差

(7)

万有引力常数 G 可从 K_g 中提取出来,即 $K_g = GC_g$,其中 C_g 为引力耦合系数。实验场景中, C_g 的表达式为 $C_g =$

$$\rho M \iiint \mathrm{d}x \mathrm{d}y \mathrm{d}z \left\{ \frac{x x_0 + y y_0}{\left[(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 \right]^{3/2}} - \frac{3 (x y_0 - x_0 y)^2}{\left[(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 \right]^{5/2}} \right\}$$

由此,万有引力常数 G 可以表示为

$$G = \frac{I\Delta\omega^2}{C_g} \tag{9}$$

测量几何、质量参数以及扭秤和球的空间关系可以得到I和 C_g ,测量周期可以得到 $\Delta\omega^2$ 。

2 数据测量

3 测量结果

• 位置探测器 PSD

• 位置探测器 PSD

输出不稳定, 抗干扰能力弱。

• 位置探测器 PSD

输出不稳定, 抗干扰能力弱。

• 自准直仪

• 位置探测器 PSD

输出不稳定, 抗干扰能力弱。

• 自准直仪

2 数据测量

③ 测量结果

测量结果

分类	项目	平均值	A 类	B类	不确定度	对G的不确定
			不确定度	不确定度		度贡献 (10-11)
	长 a(mm)	90.5609	0.0022	0.006	0.0023	0
扭秤	宽 b(mm)	5.6166	0.0036	0.0006	0.0036	0
	高 c(mm)	25.7353	0.0016	0.0006	0.0017	0.0001
	质量 $M_0(g)$	62.1910	0.0002	0.0006	0.0006	
套管	质 量 M _t (g)	0.6790	0.0003	0.0006	0.0007	
	质 量 <i>M_i</i> (g)	1.3604	0.0006	0.0006	0.0008	
	长度 (mm)	25.0446	0.0004	0.0006	0.0007	
	上端长度 (mm)	15.0532	0.0029	0.0006	0.0031	
夹具	下端长度 (mm)	9.9914	0.0030	0.0006	0.0030	
	上端直径 (mm)	4.2398	0.0103	0.0006	0.0103	
	下端直径 (mm)	6.0224	0.0006	0.0006	0.0009	
	直径 D ₁ (mm)	125.0916	0.0063	0.0058	0.0085	
1号球	质量 M ₁ (g)	8181.40	0.15	5.00	5.00	0.0019
	高度 <i>H</i> ₁ (mm)	75.7346	0.0179	0.020	0.0268	
	直径 D ₂ (mm)	125.2312	0.0192	0.0058	0.0076	
2 号球	质量 M ₂ (g)	8177.50	0.05	5.00	5.00	0.0019
	高度 $H_2(mm)$	75.6544	0.0201	0.020	0.0283	
	球心距 <i>D</i> ₁₂ (mm)	395.0678	0.0115	0.020	0.0231	# #///

表: 位置信息记录表 (□)(□)(□)(□)(□)

2 数据测量

3 测量结果

(a) 有球第一组

(d) 无球第一组

(b) 有球第二组

(e) 无球第二组

图: 扭秤运动原始曲线

扭秤运动周期

实验室所提供的周期计算程序对每组数据的周期估计值 T_{guess} 的精度要求比较高。倘若 T_{guess} 的取值偏离真实周期大于 3s 以上,那么程序所给出的计算结果很有可能是错误的。

扭秤运动周期

实验室所提供的周期计算程序对每组数据的周期估计值 T_{guess} 的精度要求比较高。倘若 T_{guess} 的取值偏离真实周期大于 3s 以上,那么程序所给出的计算结果很有可能是错误的。对于采样频率为 F_s ,长度为 N 的离散数据,经过离散 Fourier 变换后,频谱中两个相邻位置的频率差为:

$$\Delta f = \frac{F_s}{2N} \tag{10}$$

 Δf 的存在,会使最终算出来的周期数据存在 ΔT 的误差范围

$$\Delta T = \frac{1}{f^2} \Delta f \tag{11}$$

扭秤运动周期

实验室所提供的周期计算程序对每组数据的周期估计值 T_{guess} 的精度要求比较高。倘若 T_{guess} 的取值偏离真实周期大于 3s 以上,那么程序所给出的计算结果很有可能是错误的。对于采样频率为 F_s ,长度为 N 的离散数据,经过离散 Fourier 变换后,频谱中两个相邻位置的频率差为:

$$\Delta f = \frac{F_s}{2N} \tag{10}$$

 Δf 的存在,会使最终算出来的周期数据存在 ΔT 的误差范围

$$\Delta T = \frac{1}{f^2} \Delta f \tag{11}$$

实际实验中,采样率 $F_s=1$ Hz,每组数据的记录时长约为 24 小时,这对应的周期误差接近 2s。尽管使用离散 Fourier 变换可以获得周期数据,但我们仍拥有更精确的方法,即直接使用如下函数对实验数据进行

$$F(t; A, f, \varphi_0) = A \sin(2\pi f t + \varphi_0)$$

函数拟合效果

在拟合函数的基础上, 可以定义平均损失函数

$$L(A,f,\varphi_0) = \frac{1}{N} \sum_{i} [F(t_i; A,f,\varphi_0) - y_i]^2$$
 (13)

将 FFT 变换所得的结果作为参数 f 的初始值,然后通过梯度下降算法可以得到 L 取极小值时候的参数 A,f,φ_0 的取值。

图: 扭秤运动曲线及拟合曲线(以有球第一组数据为例)

测量结果

计算方法		FFT		Phase Method		平均值(s)	不确定度 (ms)
配置情况	日期	周期 (s)	误差(s)	周期 (s)	误差 (ms)	一十均值(s)	小州及及(IIIS)
无球	4月24日	486.357	5.43	484.744326	5.44325	484.72	45
	4月26日	486.254	5.47	484.721248	3.18471		
	4月28日	486.346	5.71	484.694426	5.76234		
有球	4月25日	485.562	5.49	484.052437	6.76372	484.01	24
	4月27日	485.621	5.63	483.932652	4.21432		
	4月29日	485.592	5.46	484.044911	5.35463		
*以FFT 的结果作为 GD Fitting 的初始值, GD Fitting 的结果作为 Phase Method 的初始猜测值							

表: 拟合结果

得到扭秤运动周期:

● 无球: *T*₁ = 484.72 s

• 有球: $T_2 = 484.01 \text{ s}$

根据所得数据进行计算, 最终得到

$$G = (6.680 \pm 0.003) \times 10^{-11} \text{ m}^3 \cdot \text{kg}^{-1} \cdot \text{s}^{-2}$$

致谢

- 感谢黎卿老师的指导和实验室师兄在实验中的帮助;
- 感谢我的队友赵国燚和时延昊同学,与你们的合作非常愉快;
- 感谢在场各位老师同学的聆听。

