Linear Algebra 2: Direct sums of vector spaces

Thursday 3 November 2005

Lectures for Part A of Oxford FHS in Mathematics and Joint Schools

- Direct sums of vector spaces
- Projection operators
- Idempotent transformations
- Two theorems
- Direct sums and partitions of the identity

Important note: Throughout this lecture F is a field and V is a vector space over F.

Direct sum decompositions, I

Definition: Let U, W be subspaces of V. Then V is said to be the **direct sum** of U and W, and we write $V = U \oplus W$, if V = U + W and $U \cap W = \{0\}$.

Lemma: Let U, W be subspaces of V. Then $V = U \oplus W$ if and only if for every $v \in V$ there exist unique vectors $u \in U$ and $w \in W$ such that v = u + w.

Proof.

Projection operators

Suppose that $V=U\oplus W$. Define $P:V\to V$ as follows. For $v\in V$ write v=u+w where $u\in U$ and $w\in W$: then define P(v):=u.

Observations:

- (1) P is well-defined;
- (2) P is linear;
- (3) $\operatorname{Im} P = U$, $\operatorname{Ker} P = W$;
- (4) $P^2 = P$.

Proofs.

Terminology: P is called the **projection** of V onto U along W.

Notes on projection operators

Note 1. Suppose that V is finite-dimensional. Choose a basis u_1, \ldots, u_r for U and a basis w_1, \ldots, w_m for U. Then the matrix of P with respect to the basis $u_1, \ldots, u_r, w_1, \ldots, w_m$ of V is

$$\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$$
.

Note 2. If P is the projection onto U along W then I-P is the projection onto W along U.

Idempotent operators: a theorem

Terminology: An operator T such that $T^2 = T$ is said to be idempotent.

Theorem. Every idempotent operator is a projection operator. Proof.

A theorem about projections

Theorem. Let $P: V \to V$ be the projection onto U along W. Let $T: V \to V$ be a linear transformation. Then PT = TP if and only if U and W are T-invariant (that is $TU \leq U$ and $TW \leq W$).

Proof.

Direct sum decompositions, II

Definition: V is said to be **direct sum** of subspaces U_1, \ldots, U_k , and we write $V = U_1 \oplus \cdots \oplus U_k$, if for every $v \in V$ there exist unique vectors $u_i \in U_i$ for $1 \leq i \leq k$ such that $v = u_1 + \cdots + u_k$.

Note:
$$U_1 \oplus U_2 \oplus \cdots \oplus U_k = (\cdots ((U_1 \oplus U_2) \oplus U_3) \oplus \cdots \oplus U_k)$$
.

Note: If $U_i \leqslant V$ for $1 \leqslant i \leqslant k$ then $V = U_1 \oplus \cdots \oplus U_k$ if and only if $V = U_1 + U_2 + \cdots + U_k$ and $U_r \cap \sum_{i \neq r} U_i = \{0\}$ for $1 \leqslant r \leqslant k$.

It is **NOT** sufficient that $U_i \cap U_j = \{0\}$ whenever $i \neq j$.

Note: If $V = U_1 \oplus U_2 \oplus \cdots \oplus U_k$ and B_i is a basis of U_i then $B_1 \cup B_2 \cup \cdots \cup B_k$ is a basis of V. In particular, $\dim V = \sum_{i=1}^k \dim U_i$.

Partitions of the identity

Let P_1, \ldots, P_k be linear mappings $V \to V$ such that $P_i^2 = P_i$ for all i and $P_iP_j = 0$ whenever $i \neq j$. If $P_1 + \cdots + P_k = I$ then $\{P_1, \ldots, P_k\}$ is known as a **partition of the identity on** V.

Example: If P is a projection then $\{P, I - P\}$ is a partition of the identity.

Theorem. Suppose that $V = U_1 \oplus \cdots \oplus U_k$. Let P_i be the projection of V onto U_i along $\bigoplus_{j \neq i} U_j$. Then $\{P_1, \ldots, P_k\}$ is a partition of the identity on V. Conversely, if $\{P_1, \ldots, P_k\}$ is a partition of the identity on V and $U_i := \operatorname{Im} P_i$ then $V = U_1 \oplus \cdots \oplus U_k$.

Proof.