Mathematics for Neural Network implementation

Martin Lazo

April 2022

1 Notation

\odot	Hadamard (element-wise) product
\mathbf{v}	Vector, vectors are denoted in lower case and bold
\mathbf{M}	Matrix, matrices are denoted in upper case and bold
\mathbf{v}_i	i th element of a vector ${f v}$
$\mathbf{M}_{i,j}$	Element in the <i>i</i> th row and <i>j</i> th column of a matrix \mathbf{M}
$\mathbf{M}_{i,}$	i th row of a matrix \mathbf{M}
$\mathbf{M}_{,i}$	i th column of a matrix ${\bf M}$
\mathbf{o}_i	Vector which preserves only the i th element of a vector

$$\mathbf{o}_3 \mathbf{v} = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = c$$

 \mathbf{O}_i Square matrix which preserves only the *i*th element of a vector

$$\mathbf{O}_3\mathbf{v} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ c \end{pmatrix}$$

Hidden layers are indexed from 0 to n with n being the output layer and 0 being the input layer.

Λ	reatures
\mathbf{Y}	Labels
\mathbf{b}^m	Bias vector of the m th layer
\mathbf{W}^m	Weights matrix of the m th layer
\mathbf{v}^m	Node values of the m th layer
ϕ^m	Activation function of the mth layer

2 Overview

Neural network output for input \mathbf{x}_i :

$$\hat{\mathbf{y}}_i = \phi^n(\mathbf{W}^n \phi^{n-1}(..\phi^0(\mathbf{W}^0 \mathbf{x}_i + \mathbf{b}^0)..) + \mathbf{b}^n)$$

$$\begin{split} \frac{\partial \hat{\mathbf{y}}_k}{\partial \mathbf{W}_{i,j}^m} &= \phi^{n\prime}(..) \odot .. \odot (\mathbf{W}^{m+2}(\phi^{m+1\prime} \odot (\mathbf{W}^{m+1}(\mathbf{O}_i \phi^{m\prime}(..) \mathbf{o}_j \phi^{m-1}(..))))) \\ \frac{\partial \hat{\mathbf{y}}_k}{\partial \mathbf{W}_{i,j}^n} &= \mathbf{O}_i \phi^{n\prime}(..) \mathbf{o}_j \phi^{n-1}(..) \end{split}$$