Matrix theory Assignment 11

K R Sai Pranav

Abstract—This document contains the concept of sub space.

Download all python codes from

https://github.com/saipranavkr/EE5609/codes

and latex-tikz codes from

https://github.com/saipranavkr/EE5609

1 Problem

Find the range, rank, null space, and nullity for the zero transformation and the identity transformation on a finite-dimensional space V.

2 Solution

Suppose vector space ${\bf V}$ has dimension n. Table 0 provides the properties of range, rank, null space and nullity of zero and identity transformation on a vector space ${\bf V}$

3 Example

Let T_0 , T_I be the zero and identity transformation on the vector space **V** of dimension 2. Let,

$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

be a vector in V. Now,

$$T_0 \mathbf{v} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{3.0.1}$$

From (3.0.1) we can tell that, it has range of $\{0\}$, Rank of Zero, Null space as **V** and nullity as 2(The dimension of **V**) Now,

$$T_I \mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \tag{3.0.2}$$

From (3.0.2) we can tell that, it has range of V, Rank of 2, Null space as $\{0\}$ and nullity as 0(The dimension of zero subspace). Because identity transformation is the transformation $T_I : \mathbf{R}_n \to \mathbf{R}_n$ defined by $T_I(x) = x$ for every vector x

1

$\mathbf{v}^T = \begin{pmatrix} v_1 & v_2 & \cdots & v_n \end{pmatrix}$		
Properties	Zero Transformation	Identity Transformation
Transformation	$T_0 \mathbf{v} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$	$T_I \mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$
Range	Zero subspace {0}	whole vector space V
Rank	Zero	n
Null space	whole vector space V	Zero subspace {0}
Nullity	whole vector space \mathbf{V} $\implies n$	Zero subspace $\{0\}$ $\implies 0$

TABLE 0: Properties of Zero and Identity transformation