In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import metrics
```

In [2]:

```
df=pd.read_csv("insurance.csv")
```

Out[2]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31.920	0	no	northeast	2205.98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

In [3]:

df.head()

Out[3]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

```
In [4]:

df.shape

Out[4]:
(1338, 7)

In [6]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
```

```
Data columns (total 7 columns):
#
    Column
              Non-Null Count Dtype
              -----
     ----
                             ----
              1338 non-null
                             int64
0
    age
 1
    sex
              1338 non-null
                            object
                            float64
 2
    bmi
              1338 non-null
 3
    children 1338 non-null
                            int64
 4
    smoker
              1338 non-null
                             object
 5
    region
              1338 non-null
                             object
                            float64
    charges
              1338 non-null
dtypes: float64(2), int64(2), object(3)
memory usage: 73.3+ KB
```

In [7]:

```
df.isnull().sum()
```

Out[7]:

age 0 sex 0 bmi 0 children 0 smoker 0 region 0 charges 0 dtype: int64

In [9]:

df.describe()

Out[9]:

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

In [11]:

```
sns.set()
plt.figure(figsize=(6,6))
sns.distplot(df['age'])
plt.title('Age Distribution')
plt.show()
```

D:\Anaconda\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

In [12]:

```
plt.figure(figsize=(6,6))
sns.countplot(x='sex', data=df)
plt.title('Sex Distribution')
plt.show()
```


In [13]:

df['sex'].value_counts()

Out[13]:

male 676 female 662

Name: sex, dtype: int64

In [14]:

```
plt.figure(figsize=(6,6))
sns.distplot(df['bmi'])
plt.title('BMI Distribution')
plt.show()
```

D:\Anaconda\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

In [16]:

```
plt.figure(figsize=(6,6))
sns.countplot(x='children', data=df)
plt.title('Children')
plt.show()
```


In [17]:

```
df['children'].value_counts()
```

Out[17]:

- 0 5741 3242 2403 157
- 4 25 5 18

Name: children, dtype: int64

In [18]:

```
plt.figure(figsize=(6,6))
sns.countplot(x='smoker', data=df)
plt.title('smoker')
plt.show()
```


In [19]:

```
df['smoker'].value_counts()
```

Out[19]:

no 1064 yes 274

Name: smoker, dtype: int64

In [20]:

```
plt.figure(figsize=(6,6))
sns.countplot(x='region', data=df)
plt.title('region')
plt.show()
```


In [21]:

```
df['region'].value_counts()
```

Out[21]:

southeast 364 southwest 325 northwest 325 northeast 324

Name: region, dtype: int64

In [22]:

```
plt.figure(figsize=(6,6))
sns.distplot(df['charges'])
plt.title('Charges Distribution')
plt.show()
```

D:\Anaconda\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

In [24]:

```
# encoding sex column
df.replace({'sex':{'male':0,'female':1}}, inplace=True)

3 # encoding 'smoker' column
df.replace({'smoker':{'yes':0,'no':1}}, inplace=True)

# encoding 'region' column
df.replace({'region':{'southeast':0,'southwest':1,'northeast':2,'northwest':3}}, inplace=Tr
```

In [25]:

```
X = df.drop(columns='charges', axis=1)
Y = df['charges']
```

In [27]:

```
print(X)
                    bmi
                         children
                                    smoker
                                             region
      age
           sex
                 27.900
0
       19
              1
                                          0
1
       18
              0
                 33.770
                                 1
                                          1
                                                  0
2
       28
              0
                33.000
                                 3
                                          1
                                                  0
3
                22.705
                                 0
                                                  3
       33
              0
                                          1
4
       32
              0
                 28.880
                                 0
                                          1
                                                  3
. . .
      . . .
                    . . .
                 30.970
1333
       50
             0
                                 3
                                          1
                                                  3
1334
       18
             1
                 31.920
                                 0
                                          1
                                                  2
1335
       18
              1
                 36.850
                                 0
                                          1
                                                  0
                                 0
                                          1
                                                  1
1336
       21
             1
                 25.800
1337
       61
             1
                 29.070
                                 0
                                          0
                                                  3
[1338 rows x 6 columns]
In [28]:
print(Y)
0
        16884.92400
1
         1725.55230
2
         4449.46200
3
        21984.47061
         3866.85520
1333
        10600.54830
1334
         2205.98080
1335
         1629.83350
1336
         2007.94500
1337
        29141.36030
Name: charges, Length: 1338, dtype: float64
In [29]:
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=2)
In [30]:
print(X.shape, X_train.shape, X_test.shape)
(1338, 6) (1070, 6) (268, 6)
In [31]:
regressor = LinearRegression()
In [32]:
regressor.fit(X_train, Y_train)
Out[32]:
LinearRegression()
```

```
In [33]:
```

```
training_data_prediction =regressor.predict(X_train)
```

In [34]:

```
r2_train = metrics.r2_score(Y_train, training_data_prediction)
print('R squared vale : ', r2_train)
```

R squared vale : 0.751505643411174

In [35]:

```
test_data_prediction =regressor.predict(X_test)
```

In [36]:

```
r2_test = metrics.r2_score(Y_test, test_data_prediction)
print('R squared vale : ', r2_test)
```

R squared vale : 0.7447273869684077

In [37]:

```
input_data = (31,1,25.74,0,1,0)

# changing input_data to a numpy array
input_data_as_numpy_array = np.asarray(input_data)

# reshape the array
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)

prediction = regressor.predict(input_data_reshaped)
print(prediction)

print('The insurance cost is USD ', prediction[0])
```

[3760.0805765]

The insurance cost is USD 3760.080576496046

In []: