Algebra - Algebra 1 - Algebra 2 - Complementi di algebra - index

April 4, 2017

1 Prerequisites

- Teoria degli insiemi, funzioni, applicazione, prodotto cartesiano.
- Elementi di calcolo delle probabilità
- Assiomatizzazione del calcolo delle probabilità
- Matrici

2 Syllabus

- Cartesian product
- Relation between to sets
- Funzione suriettiva (o surgettiva, o suriezione)
- Permutazione
- Ciclo di una permutazione, l-ciclo
- Cicli disgiunti
- Decomposizione in cicli disgiunti
- Ordine (o periodo) di un ciclo
- Ordine (o periodo) di una permutazione
- TEOREMA: Ogni permutazione si può scrivere come una composizione di cicli disgiunti in modo unico a meno dell'ordine dei cicli stessi
- Permutazione senza punti fissi, Derangement, partial derangement
- Trasposizione di una permutazione
- Segno di una permutazione
- Orbita di una permutazione
- \bullet Sottogruppo ciclico del gruppo simmetrico S_n Sottogruppo ciclico generato da una permutazione

- Coefficienti binomiali: definizione e proprietà
- Principio di inclusione-esclusione
- Gruppo
- Elemento neutro di un gruppo
- Sottogruppo
- Gruppo abeliano
- Order of a group
- Teorema di Lagrange e sue conseguenze
- Gruppo ciclico
- Gruppo generale lineare
- Gruppo simmetrico
- Gruppo classi resto modulo n rispetto alla somma
- Gruppo di permutazioni
- Omomorfismo di gruppi
- Nucleo, nucleo di una funzione, nucleo di applicazione lineare
- Nucleo di omomorfismo di gruppi
- Insieme degli omomorfismo di gruppi (dati due gruppi G e H in simboli: Hom(G,H))

3 Esercizi

- \bullet Esercizio 1: Dimostrare che una matrice è sottogruppo di GL_n
- Esercizio 2: Dimostrare che una funzione è omomorfismo di gruppi
- Esercizio 3: Trovare il nucleo di un omomorfismo di gruppi
- Esercizio 4: Applicazione delle formule per il derangement, partial derangement
- \bullet Esercizio 5: Calcolare le permutazioni di S_8 , periodo e segno, inversa di una permutazione, Sottogruppo ciclico dell permutazioni