Romero Martín, Pablo Manuel (UO221220)

Fecha: 20-11-2020

Examen de Arquitectura de Computadores - Teoría 2

Instrucciones generales para la realización de este examen

La respuesta debe escribirse en el hueco existente a continuación de cada pregunta con **letra clara**. Cada respuesta incorrecta, ilegible o vacía no suma ni resta. En el caso de preguntas teóricas se valorará la capacidad de síntesis.

1 🗆	Responde a la siguiente pregunta relacionada con la fabricación de procesadores.
	a — (1 punto) ¿Qué nombre recibe el término que describe que el incremento de la potencia computacional, así como el decremento del costo siguen un ratio exponencial?
	Una CPU puede estar en diferentes estados de ejecución, estableciendo qué instrucciones puede y qué instrucciones no puede ejecutar en cad nomento.
	a— (0.5 puntos) ¿Cómo se denomina al nivel de privilegio con el que se debe ejecutar el sistema operativo?
	b— (0.5 puntos) ¿Qué sucede si una tarea de usuario intenta ejecutar una instrucción y en el estado actual de la CPU no se dispone de suficiente privilegios para hacerlo?
_ 3□	El sistema de memoria de un computador que direcciona al byte está compuesto por la siguiente jerarquía de sistemas:
~ —	■ Un sistema de memoria caché SRAM de 32 KiB de tamaño con un tamaño de línea de 32 bytes y con un tiempo medio de acceso de 0.9 mexclusivamente para código.

Un sistema de memoria principal DRAM de 32 GiB de capacidad con un tiempo medio de acceso a cada posición de 17 ηs.
 La memoria caché se ha configurado con una estrategia de escritura write through y una política write no allocate ante fallos de escritura.

Para conocer los parámetros del sistema de memoria se analizaron los accesos durante un período de tiempo y se obtuvieron los siguientes datos:

■ Un sistema de memoria caché SRAM con exactamente las mismas características físicas que el anterior pero exclusivamente para datos.

- 1. Se realizaron 40 000 000 accesos a memoria.
- 2. El 70% de los accesos fueron a código de programas.
- 3. En 27 860 000 de los accesos a la caché de código, la instrucción se encontraba en la memoria caché.
- 4. En 11 856 000 de los accesos a la caché de datos, el dato se encontraba en la memoria caché.

Teniendo todo esto en cuenta, responde a las siguientes preguntas:

a — (0.25 puntos) Calcula la tasa de aciertos de la caché (A_{cod}) de código y de la caché de datos (A_{dat}) . Expresa el resultado en tanto por ciento redondeado al segundo decimal y escribe la expresión matemática utilizada para realizar el cálculo.

$A_{cod} =$	$A_{dat} =$	

b— (0.75 puntos) ¿Cuál es el tiempo medio de lectura en un acceso a código, tr_c , y en un acceso a datos, tr_d , en esta jerarquía de memoria? Responde en nanosegundos redondeado a tres decimales. Escribe la expresión matemática utilizada para realizar el cálculo.

```
tr_c =
tr_d =
```

c— (0.75 puntos) Suponiendo que la CPU no escribe en el área de memoria en la que se encuentra el código de un programa. ¿Cuál es el tiempo medio de escritura, tw_d , en esta jerarquía de memoria? Responde en nanosegundos redondeado a dos decimales. Escribe la expresión matemática utilizada para realizar el cálculo.

$tw_d =$			

 \mathbf{d} — (0.25 puntos) ¿Cuál es el tiempo medio de acceso para lecturas, tr_{cd} , en esta jerarquía de memoria? Responde en nanosegundos redondeado a tres decimales. Escribe la expresión matemática utilizada para realizar el cálculo.

$tr_{cd} =$

	Vía 0	Vía 1	Vía 2
	v d a etiq. 7 6 5 4 3 2 1 0	v d a etiq. 7 6 5 4 3 2 1 0	v d a etiq. 7 6 5 4 3 2 1 0
0	1 0 0 01011 08 07 34 8F D4 15 94 2A	1 1 1 11000 <mark>79 5A A1 AF 31 DF 6F AB</mark>	1 0 2 00000 EA A8 00 08 01 8E B5 2D
1	1 0 2 10001 FC BF 1A 43 F0 10 D6 98	1 1 0 00111 D7 29 EC 54 0B C9 98 1C	1 0 1 11111 6F 64 F7 C0 6F C4 86 3C
2	0 1 1 00111 33 83 49 66 5D 7E 53 9C	0 0 2 01111 A2 00 9F E7 6E 07 AB 0F	0 1 0 10010 3A 07 5B 45 42 74 57 53
3	0 1 1 10110 B4 EB 38 C0 62 40 77 F6	1 1 0 10100 5F 03 B2 BB 85 42 14 22	0 0 2 10110 35 0A D0 D1 71 2B 5A 71
4	1 1 2 00111 E2 84 A6 B8 5E 26 5B 79	1 0 1 10101 A0 E5 17 CA 73 E2 A4 C6	1 1 0 01011 48 21 7F 4C A1 3E A7 08
5	1 1 2 10111 47 AB 3E FC 7E CF D0 1C	0 1 0 01000 82 55 51 31 00 DF 0A F1	1 1 1 11111 89 6D DD 0D B5 D0 39 8C
6	1 1 2 10001 A0 9E 37 31 2C 53 B0 6F	1 1 1 11011 FD 02 15 66 99 DB 90 8B	1 1 0 00011 2A 2B F7 81 7C E7 F9 B3
7	0 1 1 10000 0C 8B 3C 19 0F 73 60 DB	0 0 2 00101 79 D6 60 34 2B 80 19 F3	0 1 0 00010 <mark>07 65 A5 8D E0 2D 6A 4E</mark>

5	1 1 2 10111 47 AB 3E FC 7E CF D0 1C 0 1 0 01000 82 55 51 31 00 DF 0A F1 1 1 1 11111 89 6D DD 0D B5 D0 39 8C
6	1 1 2 10001 A0 9E 37 31 2C 53 B0 6F 1 1 1 1 11011 FD 02 15 66 99 DB 90 8B 1 1 0 00011 2A 2B F7 81 7C E7 F9 B3
7	0 1 1 1 10000 0C 8B 3C 19 0F 73 60 DB 0 0 2 00101 79 D6 60 34 2B 80 19 F3 0 1 0 00010 07 65 A5 8D E0 2D 6A 4E
na etiquet	muestra el estado de una caché unificada. Cada línea de caché tiene asociado un bit de validez v, un bit de <i>dirty</i> d, un valor a de Lla de 5 bits. La línea con mayor valor de LRU es la que ha sido accedida más recientemente.
а— (1 р	unto) genal es el talitado en bytes del espacio de memoria direccionable por el computador que usa esta caene.
	ounto) ¿Qué valor devuelve la caché cuando la CPU trata de leer de la dirección 7E9h? Indica «desconocido» si crees que se pro de caché.
c— (1 p	unto) ¿Cuántos bloques de memoria se encuentran pendientes de actualización?
	ounto) Indica la dirección de memoria más alta que al ser accedida produce la actualización de un bloque en memoria. Indica «ning existe tal dirección. Debes responder en hexadecimal
	unto) Indica el bloque de memoria más bajo que puede ser reemplazado cuando se produce un acceso a memoria. Indica «ningun iste tal bloque. Debes responder en hexadecimal.
	unto) Indica el estado del bit v de la línea de caché que se ve afectada por la escritura de la dirección de memoria 0F3h por parte az de un periférico con capacidad de DMA. Indica asimismo el conjunto y vía en el que se encuentra esa línea.
men	
	conjunto: vía: