

Experiment:-1

Student Name: Jitesh Kumar UID: 20BCS2334

Branch: CSE Section/Group: 20BCS_WM_903/A

Semester: 5th Date of Performance: Aug. 10,2022

Subject Code: 20CSP-317

Subject Name: MACHINE LEARNING LAB

- 1.1 Aim/Overview of the practical: Exploratory Data Analysis on any data set.
- 1.2. Task to be done: Perform EDA on any given data set.
- 1.3 Apparatus/Simulator used:
 - •Jupyter Notebook
 - Python
 - Pandas Library
 - Data Set

1.3. Code:

import pandas as pd
import numpy as np
cars_data=pd.read_csv('Toyota.csv',index_col=0,na_values=["??","????"])

a. cars_data

In [8]: cars_data

Out[8]:

	Price	Age	KM	FuelType	HP	MetColor	Automatic	CC	Doors	Weight
0	13500	23.0	46986.0	Diesel	90.0	1.0	0	2000	three	1165
1	13750	23.0	72937.0	Diesel	90.0	1.0	0	2000	3	1165
2	13950	24.0	41711.0	Diesel	90.0	NaN	0	2000	3	1165
3	14950	26.0	48000.0	Diesel	90.0	0.0	0	2000	3	1165
4	13750	30.0	38500.0	Diesel	90.0	0.0	0	2000	3	1170
	***	1870		577		1354		777	223	110
1431	7500	NaN	20544.0	Petrol	86.0	1.0	0	1300	3	1025
1432	10845	72.0	NaN	Petrol	86.0	0.0	0	1300	3	1015
1433	8500	NaN	17016.0	Petrol	86.0	0.0	0	1300	3	1015
1434	7250	70.0	NaN	NaN	86.0	1.0	0	1300	3	1015
1435	6950	76.0	1.0	Petrol	110.0	0.0	0	1600	5	1114

1436 rows × 10 columns

b. pd.crosstab(index=cars_data['FuelType'],columns='count',dropna=True)

c. pd.crosstab(index=cars_data['Automatic'],columns=cars_data['FuelType'],dropna=True)

```
In [12]: pd.crosstab(index=cars_data['Automatic'],columns=cars_data['FuelType'],dropna=True)

Out[12]:

FuelType CNG Diesel Petrol

Automatic

0 15 144 1104

1 0 0 73
```

d. pd.crosstab(index=cars_data['Automatic'],columns=cars_data['FuelType'],normalize=Tru e,dropna=True)


```
num data=cars data.select dtypes(exclude=[object])
In [14]:
In [15]:
          corr_matrix=num_data.corr()
In [16]: corr matrix
Out[16]:
                         Price
                                    Age
                                               KM
                                                        HP MetColor Automatic
                                                                                       CC
                                                                                             Weight
                      1.000000
                               -0.878407 -0.574720
                                                    0.309902
                                                              0.112041
                                                                        0.033081
                                                                                  0.165067
                                                                                            0.581198
                 Age -0.878407
                                1.000000 0.512735
                                                   -0.157904 -0.099659
                                                                        0.032573 -0.120706
                                                                                           -0.464299
                 KM -0.574720
                                0.512735
                                         1.000000 -0.335285 -0.093825
                                                                       -0.081248
                                                                                 0.299993
                                                                                          -0.026271
                     0.309902 -0.157904 -0.335285
                                                   1.000000 0.064749
                                                                        0.013755 0.053758
                                                                                            0.086737
            MetColor
                      0.112041 -0.099659 -0.093825
                                                    0.064749
                                                             1.000000
                                                                       -0.013973
                                                                                  0.029189
                                                                                            0.057142
           Automatic 0.033081
                                0.032573
                                         -0.081248
                                                    0.013755 -0.013973
                                                                        1.000000
                                                                                 -0.069321
                                                                                            0.057249
                      0.165067 -0.120706
                                          0.299993
                                                    0.053758
                                                              0.029189
                                                                        -0.069321
                                                                                  1.000000
                                                                                            0.651450
```

0.057142

0.057249

0.651450

1.000000

Learning outcomes (What I have learnt):

Weight 0.581198 -0.464299 -0.026271

- 1. To understand Data Visualization.
- 2. Learn about pandas', matplotlib and seaborn library/package ofpython.

0.086737

- 3. Learn about the different methods/functions that are needed to generate different types of graphs, charts and plots of the given dataset.
- 4. Leaned about regression line, KDE.

