

engineering & management examinations, december - 2008 OPERATING SYSTEM SEMESTER - 5

Time: 3 Hours]		[Full Marks : 70
ime.orional		i an mans. /

GROUP - A

(Multiple Choice Type Questions)

					• • • • • • • • • • • • • • • • • • •	4
1.	Cho	ose th	e correct alternatives fo	or the following		10 × 1 = 10
,	1)					
		a)	FCFS	b)	SJF	
**		√6)	RR	d)	Priority scheduling.	
	ii)	Tota	al time taken by a proce	ess to complete	execution is	
		a)	waiting time	√b)	turnaround time	
		c)	response time	d)	throughput.	
	iii)	The	time spent by a proces	s in the ready q	ueue is	
		ÞΪ	waiting time	b)	turnaround time	
		c)	response time	d)	throughput.	
	iv)	The	optimal scheduling alg	orithm is		
		a)	FCFS	b /	SJF	
		c)	RR	d)	None of these.	
	v)	In D	MA transfer		en de la Maria de la Companya de la Companya de la Companya de la Compa	
		a)	CPU is involved active	ely during data	transfer	
		b)	CPU is involved partia	illy during data	transfer	
		iring data transfer				
	14	d)	Both (b) and (c).			

vi) Find the average time in the Round Robin Scheduling for the following. Assume a time slice of 4 ms

		Process	CPU T	ime (in ms)	
Taraka Nasa		P1		24		
		P2		3		
		P3		3		
	· a)	7 × 1		√b)	5.66	
	c)	6.66		d)	none of these.	
vii)	Fix	ed partition	nemory alloca	ion suppor	ts	
*	a)	Multiprogr	ramming	b)	Uniprogramming	
	c)/	Both of the	cse	d)	None of these.	
viii)	Var	iable partitio	n memory allo	cation can	lead to	
	(a ()	External fr	agmentation	b)	Internal fragmentation	
	c)	Both of the	ese	d)	None of these.	
ix)	Virt	ual memory o	concept is sup	ported by		
j∓vor s(c	a)	demand pag	ging	b)	simple segmentation	
	c)	simple page	allocation	√ á)	both (a) and (c).	
x)	Virt	ual memory n	neans			
•	a)/	the job size	is not bounded	i by the ph	ysical memory limit	
	b)	the job size	is bounded by	the physic	al memory limit	
	c)	independent	t of physical m	emory limi		
,	d)	none of thes	e.			

 $3 \times 5 = 15$

 $3 \times 15 = 45$

GROUP - B

(Short Answer Type Questions) Answer any three of the following.

2.	What are co-operating processes? Discuss the advantages of co-operating process	ses. 5
3.	What is a CPU scheduler? Discuss in brief, the different types of schedulers.	2 + 3
4.	Give details of how paging is implemented in hardware. Explain what is a Trans	slation
	Lookaside Buffer (TLB) and give details of how it is implemented.	5
5.	Distinguish between "starvation" and "deadlock".	5
6.	What is the problem of fragmentation and how can it be solved?	5

GROUP - C

(Long Answer Type Questions)

7. a) Explain what is Contiguous Allocation of file space on disk. What are the advantages and disadvantages of contiguous allocation?

Answer any three of the following questions.

- b) Explain how a File Allocation Table (FAT) is implemented.
- c) Free disk space can be kept track of using a free list or a bit map. Disk addresses require D-bits. For a disk with B-blocks, F of which are free, state the condition under which the free list uses less space than the bit-map. For D having the value 16-bits. Express your answer as a percentage of the disk space that must be free.6
- 8. a) What is swapping? What is its purpose?
 - b) Consider the following sequence of memory references generated by a single program in a pure paging system:
 - 10, 11, 104, 104, 170, 173, 177, 309, 245, 246, 247, 458, 364.

Determine the no. of page faults for each of the following page replacement policies assuming three (3) page frames are available and all are initially empty.

The size of a page is 100 words:

- i) LRU
- ii) FIFO
- tii) Optimal page replacement

4+4+4

- a) What is Bankar's safety algorithm?
 - b) What are the necessary conditions for deadlock?
 - c) Consider the following snapshot of a system:

		Allocation				Мах			Available			
	A	В	С	D	A	В	С	D	A	В	С	D
PO	0	0	1	2	0	0	1	2	1	5	2	0
P1	1	0	0	0	1	7	5	0				
P2	1	3	5	4	2	3	5	6	*	ř.		
Р3	0	6	3	2	. 0	6	5	2	inf		m.	
P4	0	0	1	4	0	6	5	6	e de la			

- i) What is the content of the need matrix?
- ii) Is the system in safe state? (If any safe state is present.)
- iii) If a request from process P1 arrive for 0, 4, 2, 0, CAN the request be granted immediately?

 5 + 2 + 2 + 3 + 3
- 10. a) What is the difference between logical address and physical address?
 - b) What is fragmentation? How is external fragmentation solved? What is compaction? What are the drawbacks of compaction? 2+3+1+2

- c) What is effective memory access time? A paging system with the table stored in the memory.
 - i) If memory reference takes 200 ns, how long does a paged memory reference take?
 - ii) If we add TLBs and 75% hit is successful, what is the effective memory reference time? (Assume that finding page-table entry in the TLBs take zero time, if the entry is there).
- 11. Write short notes on the following:

5.×3

- a) Threads
- b) Priority Scheduling
- c) DMA and its utility
- d) Boot block and Bad block
- e) Thrashing.

END