Problem (1.7)

Let $X = (X_1, ..., X_d)$ and $Y = (Y_1, ..., Y_m)$ be d- and m- dimensional stochastic vectors defined on the probability field (Ω, \mathcal{F}, P) . Further consider the usual inner products, $\langle \cdot, \cdot \rangle_d$ and $\langle \cdot, \cdot \rangle_m$ on \mathbb{R}^d and \mathbb{R}^m .

- (a) Assume d = m. Show, that $X \sim Y$, if and only if $\langle t, X \rangle_d \sim \langle t, Y \rangle_d$ for all vectors $t = (t_1, \ldots, t_d)$ in \mathbb{R}^d
- (b) Show, that X and Y are independent, if and only if the stochastic variables $\langle t, \mathsf{X} \rangle_d$ and $\langle s, \mathsf{Y} \rangle_m$ are independent for all vectors $t = (t_1, \ldots, t_d)$ in \mathbb{R}^d and $s = (s_1, \ldots, s_m)$ in \mathbb{R}^m .

Solution

(a) We first assume $X \sim Y$. Then it holds that $\langle t, X \rangle_d \sim \langle t, Y \rangle_d$ for $t \in \mathbb{R}^d$, since this will be the result of multiplying by some scalar.

We now assume $\langle t, \mathsf{X} \rangle_d \sim \langle t, \mathsf{Y} \rangle_d$ for $t \in \mathbb{R}^d$. We calculate:

$$\varphi_{\mathsf{X}}(t) = \mathbb{E}\left[e^{i\langle t,\mathsf{X}\rangle_d}\right] = \mathbb{E}\left[e^{i(t,\mathsf{Y}\rangle_d}\right] = \varphi_{\mathsf{Y}}(t) \forall t \in \mathbb{R}^d$$

Since their characteristic functions are equal, by 1.2.5(i) they must be identically distributed. So in conclusion:

$$X \sim Y \Leftrightarrow \langle t, X \rangle_d \sim \langle t, Y \rangle_d \forall t \in \mathbb{R}^d$$

(b) Assume that X and Y are independent. Then it again follows, that $\langle t, \mathsf{X} \rangle_d \sim \langle s, \mathsf{Y} \rangle_m$ also are independent $\forall t \in \mathbb{R}^d, \forall s \in \mathbb{R}^m$.

We now assume $\langle t, \mathsf{X} \rangle_d \sim \langle s, \mathsf{Y} \rangle_m$ are independent $\forall t \in \mathbb{R}^d, \forall s \in \mathbb{R}^m$. We once again calculate the characteristic functions:

$$\varphi_{(\mathsf{X},\mathsf{Y})}(t,s) = \mathbb{E}\left[e^{i((t,s),(\mathsf{X},\mathsf{Y})\rangle_{d+m}}\right] = \mathbb{E}\left[e^{i((t,\mathsf{X})_d + (s,\mathsf{Y})_m)}\right] = \mathbb{E}\left[e^{i(t,\mathsf{X})_d}e^{i(s,\mathsf{Y})_m}\right]$$

$$\stackrel{\perp}{=} \mathbb{E}\left[e^{i(t,\mathsf{X})_d}\right] \mathbb{E}\left[e^{i(s,\mathsf{Y})_m}\right] = \phi_X(t)\phi_Y(s), \forall t \in \mathbb{R}^d, \forall s \in \mathbb{R}^m$$

Which by 1.2.7 means that X and Y are independent. We have thus shown that

$$X \perp Y \Leftrightarrow \langle t, X \rangle_d \perp \langle t, Y \rangle_d$$