$$\frac{1}{\sqrt{1 - \alpha_{1}}} = \frac{1}{\sqrt{1 - \alpha_{1}}} \times \frac{1 - \alpha_{1}}{\sqrt{1 - \alpha_{1}}} \times \frac$$

3
$$\frac{dL}{dw^{crj}} = \frac{dZ^{crj}}{dL} \times \frac{dZ^{crj}}{dw^{crj}}$$

$$= \frac{d}{d} \left(w^{[2]} \left(u^{[2]} \right) = a^{[2]}$$

$$\frac{dw^{Ci}}{dw^{Ci}} = \frac{d}{dz^{Ci}} \left(w^{Ci} \right) \left(w^{Ci} \right) \left(w^{Ci} \right) = a^{Ci}$$

$$\frac{dw^{Ci}}{dw^{Ci}} = \frac{d}{dw^{Ci}} \left(w^{Ci} \right) \left(w^{Ci} \right) \left(w^{Ci} \right) = a^{Ci}$$

$$\frac{dw^{Ci}}{dw^{Ci}} = \frac{d}{dw^{Ci}} \left(w^{Ci} \right) \left(w^{Ci} \right) \left(w^{Ci} \right) = a^{Ci}$$

$$\frac{dw^{Ci}}{dw^{Ci}} = \frac{d}{dw^{Ci}} \left(w^{Ci} \right) \left(w^{Ci} \right) \left(w^{Ci} \right) = a^{Ci}$$

$$\frac{dw^{Ci}}{dw^{Ci}} = \frac{d}{dw^{Ci}} \left(w^{Ci} \right) \left(w^{Ci} \right) \left(w^{Ci} \right) = a^{Ci}$$

$$\frac{dw^{Ci}}{dw^{Ci}} = \frac{d}{dw^{Ci}} \left(w^{Ci} \right) \left(w^{Ci} \right) = a^{Ci}$$

$$\frac{1}{100} = \frac{1}{2} \frac{1}{100} \left[w \alpha + b \right] = \frac{1}{100} \frac{1}{100$$

$$\frac{dL}{dw^{c2}} = \left(a^{c2} \frac{1}{y}\right) \times a^{c1} \frac{1}{y} \frac{1}{y} \frac{1}{y} \times a^{c1} \frac{1}{y} \frac{1}{y} \times a^{c1} \frac{1}{y} \frac{1}{y} \frac{1}{y} \times a^{c1} \frac{1}{y} \frac{1}{y} \frac{1}{y} \frac{1}{y} \times a^{c1} \frac{1}{y} \frac{1}$$

$$9 \frac{dL}{db} = \frac{dL}{db} + \frac{d2cv}{db}$$

$$\frac{2}{2} = \frac{d}{d} \left(w^{2} a + b^{2} \right) = 1.$$

$$\frac{dZ^{C2\overline{J}}}{db^{C2\overline{J}}} = \frac{d}{db^{C2\overline{J}}} \left(w^{C2\overline{J}} a^{C1\overline{J}} b^{C2\overline{J}} \right) = 1.$$

$$\frac{dL}{db^{C2}} = \left(a^{C2} - y\right) \times 1 \rightarrow \frac{db^{C2}}{db^{C2}} = \frac{1}{m} dz^{C2}$$
 dements

Similarly,
$$dL = dL$$
 $dz^{(2)}$ $da^{(3)}$ $dz^{(4)}$ $dz^{(5)}$ $dz^{(5)}$

$$\frac{d^{CI}}{dz^{CO}} = \frac{d}{dz^{CO}} \left(\frac{1+e^{-8i}}{1+e^{-8i}} \right)$$

$$\frac{dL}{dz^{CO}} = \frac{d}{dz^{CO}} \left(\frac{1+e^{-8i}}{1+e^{-8i}} \right)$$

Pappagation Dimensional Analysis! - Forward Input x -> ncol MB. of features. Hidden layer >n Ci] Butput layer -> hCDT=1 weid = (n cid n cod). ZCD = WCIJ X + b=> single element Ba and costs into (NCI]) (VC1) (VC1) (VC0]) ACID = g(z CIS) (N (1) (nCi] 1) MCSJ (UCSJ UCS) ZCIJ = WCIJ ACIJ + bCIJ (MCSJ) (NCO] (NCO] (NCO] (NCO] ACD = 9 (2 CD) (nc2), D (NCD) 1)

Dimensional Analysis !-Backward Propogation: 42 (2) = ACIJ - Y cu(sz], () (u(sz], 1) (u(sz], 1) dwczj = Im dzczj, Acjt (n(2],1) (n(2),10) (1, nC) 36[2] = 1 np.sum(32[2]) 12CD = WEDT * 12 [2], * 9 (2 [3]) (NCO, 1) (NCO, NCO) (NCO, 1) (NCO, 1) apci] = Im Noisum (pg2 [1]) (1,1) (1,1)