Chapitre 8

Orthogonalité et distance dans l'espace

I. Orthogonalité dans l'espace

1) Orthogonalité de deux droites

Définition:

Deux droites sont **orthogonales** signifie que leurs parallèles menées d'un point quelconque sont perpendiculaires.

Exemple:

Dans ce cube ABCDEFGH, les droites (BF) et (EH) sont orthogonales, car la parallèle à (EH) passant par B et (FB) sont perpendiculaires : (EH) // (BC) et (BC) \perp (BF).

2) Orthogonalité d'une droite et d'un plan

Définition:

Dire qu'une droite d et un plan \mathcal{P} sont **orthogonaux** signifie que la droite d est orthogonale à toutes les droites du plan \mathcal{P} .

Propriété:

Dire qu'une droite d et un plan \mathcal{P} sont **orthogonaux** signifie que la droite d est orthogonale à deux droites sécantes du plan \mathcal{P} .

Plan médiateur

Définition:

Le **plan médiateur** d'un segment [AB] est le plan orthogonal à (AB) qui passe par le milieu de [AB].

Propriété:

Le plan médiateur d'un segment [AB] est aussi l'ensemble des points de l'espace équidistants de A et B.

Projection orthogonale sur un plan

Définition:

 \mathscr{S} est un plan et M est un point.

Il existe une unique droite Δ_M passant par M et orthogonale à \mathscr{P} .

On dit que le point M' d'intersection de Δ_M et \mathcal{P} est le **projeté orthogonal** du point M sur le plan \mathcal{P} .

Projection orthogonale sur une droite

Définition:

d est une droite et M est un point.

Il existe un unique plan \mathcal{P}_M passant par M et orthogonale à d.

On dit que le point M' d'intersection de \mathcal{P}_M et d est le **projeté orthogonal** du point M sur la droite d.

3) Orthogonalité de deux plans

Définition:

Deux plans sont perpendiculaires lorsque l'un d'eux contient une droite orthogonale à l'autre.

II. Produit scalaire

1) Produit scalaire dans l'espace

Définition:

Soient \vec{u} et \vec{v} deux vecteurs de l'espace et A, B, C trois points tels que $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$.

Les points A, B, C appartiennent à un plan \mathscr{P} et le produit scalaire $\vec{u} \cdot \vec{v}$ dans l'espace est, par définition, égal au produit scalaire des vecteurs \overrightarrow{AB} et \overrightarrow{AC} calculé dans le plan \mathscr{P} .

Remarque:

 $\vec{u} \cdot \vec{v}$ ne dépend pas des représentants \vec{AB} et \vec{AC} choisis.

Propriété:

Si $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$ sont deux vecteurs non nuls de l'espace, alors

$$\vec{u} \cdot \vec{v} = AB \times AC \times \cos \theta$$
 avec $\theta = \widehat{BAC}$.

Lorsque l'un des vecteurs est nul, alors $\vec{u} \cdot \vec{v} = 0$

Exemple:

Soit le tétraèdre régulier ABCD de côté 4 cm.

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos(\widehat{BAC}) = 4 \times 4 \times \cos(\frac{\pi}{3}) = 8$$

4

Remarque:

En particulier, $\vec{u} \cdot \vec{u} = ||\vec{u}|| \times ||\vec{u}|| \times \cos(\widehat{BAB}) = ||\vec{u}||^2 \times \cos(0) = ||\vec{u}||^2$.

Le carré scalaire d'un vecteur \vec{u} de l'espace est le réel noté \vec{u}^2 , vérifiant $\vec{u}^2 = \vec{u} \cdot \vec{u}$.

On a, comme dans le plan : $\vec{u}^2 = ||\vec{u}||^2$ et par suite $||\vec{u}|| = \sqrt{\vec{u}^2}$.

Propriété:

Soit H le projeté orthogonal de C sur la droite (AB).

- $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AH \text{ si } \overrightarrow{AB} \text{ et } \overrightarrow{AH} \text{ ont le même sens.}$
- $\overrightarrow{AB} \cdot \overrightarrow{AC} = -AB \times AH \text{ si } \overrightarrow{AB} \text{ et } \overrightarrow{AH} \text{ sont de sens contraire.}$

2) Propriétés algébriques du produit scalaire

Toutes les propriétés du produit scalaire dans le plan sont conservées dans l'espace.

Propriétés:

Pour tous vecteurs \vec{u} , \vec{v} et \vec{w} et pour tout réel λ , on a :

Le produit scalaire de deux vecteurs est symétrique :

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$
.

Le produit scalaire de deux vecteurs est bilinéaire, c'est-à-dire que :

$$(\lambda \vec{u}) \cdot \vec{v} = \lambda \times (\vec{u} \cdot \vec{v})$$

$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$$

•
$$(\vec{u} + \vec{v})^2 = \vec{u}^2 + 2 \vec{u} \cdot \vec{v} + \vec{v}^2$$

$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 + 2\vec{u} \cdot \vec{v}$$

•
$$(\vec{u} - \vec{v})^2 = \vec{u}^2 - 2\vec{u} \cdot \vec{v} + \vec{v}^2$$

•
$$(\vec{u} - \vec{v})^2 = \vec{u}^2 - 2\vec{u} \cdot \vec{v} + \vec{v}^2$$
 soit $||\vec{u} - \vec{v}||^2 = ||\vec{u}||^2 + ||\vec{v}||^2 - 2\vec{u} \cdot \vec{v}$

•
$$(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v}) = \vec{u}^2 - \vec{v}^2$$

soit
$$(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v}) = ||\vec{u}||^2 - ||\vec{v}||^2$$

Exemple:

ABCD est un tétraèdre régulier de côté a.

I et J sont les milieux respectifs des arêtes [AD] et [BC].

Pour calculer la longueur IJ, on peut procéder ainsi :

$$IJ^2 = \overrightarrow{IJ}^2 = (\overrightarrow{IA} + \overrightarrow{AJ})^2$$
 (d'après la relation de Chasles)

$$(\overrightarrow{IA} + \overrightarrow{AJ})^2 = (\overrightarrow{AJ} - \overrightarrow{AI})^2$$
 (car *I* est le milieu de [AD])

Donc
$$IJ^2 = AJ^2 - 2\overrightarrow{AJ} \cdot \overrightarrow{AI} + AI^2$$

Or dans le triangle équilatéral ABC, on sait que $AJ = a \frac{\sqrt{3}}{2}$

Or,
$$\overrightarrow{AB} \cdot \overrightarrow{AD} = AB \times AD \times \cos \frac{\pi}{3} = \frac{1}{2}a^2$$
 et de même $\overrightarrow{AC} \cdot \overrightarrow{AD} = \frac{1}{2}a^2$. Donc $\overrightarrow{AJ} \cdot \overrightarrow{AI} = \frac{1}{4}a^2$.

Ainsi
$$IJ^2 = \frac{3}{4}a^2 - 2 \times \frac{1}{4}a^2 + \frac{1}{4}a^2 = \frac{1}{2}a^2$$
 et $IJ = a\frac{\sqrt{2}}{2}$.

Propriétés (formules de polarisation) :

Pour tous vecteurs \vec{u} et \vec{v} :

•
$$\vec{u} \cdot \vec{v} = \frac{1}{2} (\|\vec{u} + \vec{v}\|^2 - \|\vec{u}\|^2 - \|\vec{v}\|^2)$$

•
$$\vec{u} \cdot \vec{v} = \frac{1}{2} (\|\vec{u}\|^2 + \|\vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2)$$

•
$$\vec{u} \cdot \vec{v} = \frac{1}{4} (\|\vec{u} + \vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2)$$

3) Orthogonalité de deux vecteurs

Définition:

Deux vecteurs sont orthogonaux lorsque leur produit scalaire est nul.

Remarque:

Le vecteur nul est orthogonal à tous les vecteurs de l'espace car, pour tout vecteur \vec{u} , $\vec{u} \cdot \vec{0} = \vec{0} \cdot \vec{u} = 0$.

III. Orthogonalité dans l'espace

1) Orthogonalité de deux droites

Propriété:

Deux droites \mathcal{D} et \mathcal{D} ' de vecteurs directeurs \vec{u} et \vec{u}' sont **orthogonales** si, et seulement si, $\vec{u} \cdot \vec{u}' = 0$.

<u>Démonstration</u>:

A est un point de l'espace.

 Δ et Δ' sont les droites qui passent par A et de vecteurs directeurs respectifs \vec{u} et \vec{u}' .

La définition de deux droites orthogonales permet d'affirmer que :

 \mathcal{D} et \mathcal{D} ' sont orthogonales si, et seulement si, Δ et Δ ' sont perpendiculaires en A.

Or, on sait que dans le plan, Δ et Δ' sont perpendiculaires si, et seulement si, $\vec{u} \cdot \vec{u}' = 0$.

On en déduit que \mathcal{D} et \mathcal{D} ' sont orthogonales si, et seulement si, $\vec{u} \cdot \vec{u}' = 0$.

Exemple:

Dans le cube ABCDEFGH:

- $\vec{u} = \vec{BF}$ et $\vec{v} = \vec{AC}$ sont orthogonaux.
- Les droites (AE) et (FG) sont orthogonales, car : $\overrightarrow{AE} \cdot \overrightarrow{FG} = \overrightarrow{AE} \cdot \overrightarrow{AD} = 0$

2) Orthogonalité d'une droite et d'un plan

Propriété :

d est une droite de vecteur directeur \vec{u} .

 \mathscr{P} est un plan dirigé par un couple $(\vec{v}; \vec{v}')$ de vecteurs non colinéaires.

La droite d et le plan \mathcal{P} sont **orthogonaux** si, et seulement si,

$$\vec{u} \cdot \vec{v} = 0$$
 et $\vec{u} \cdot \vec{v}' = 0$

Démonstration:

Par définition, dire que d et \mathscr{P} sont orthogonaux signifie que d est orthogonale à toutes les droites du plan \mathscr{P} , ce qui équivaut à $\vec{u} \cdot \overrightarrow{MN} = 0$ quels que soient les points M et N du plan \mathscr{P} .

• La condition est nécessaire

En effet, si d et $\mathscr P$ sont orthogonaux, alors quels que soient les points M et N de $\mathscr P$, $\overrightarrow{u} \cdot \overrightarrow{MN} = 0$.

Donc, en particulier $\vec{u} \cdot \overrightarrow{AB} = 0$ et $\vec{u} \cdot \overrightarrow{AC} = 0$

• La condition est suffisante

En effet, quels que soient les points M et N de \mathscr{P} , il existe des nombres réels α et β tels que $\overline{MN} = \alpha \vec{v} + \beta \vec{v}$ car le couple (\vec{v}, \vec{v}) dirige \mathscr{P} .

Donc
$$\vec{u} \cdot \overrightarrow{MN} = \vec{u} (\alpha \vec{v} + \beta \vec{v}') = \alpha \vec{u} \cdot \vec{v} + \beta \vec{u} \cdot \vec{v}' = 0$$
.

Remarques:

• Le produit scalaire permet donc de démontrer la propriété :

Une droite est orthogonale à toute droite d'un plan si, et seulement si, elle est orthogonale à deux droites sécantes de ce plan.

• Tout plan admet au moins une droite qui lui est orthogonale.

Propriétés:

- Si deux droites sont parallèles alors tout plan orthogonal à l'une est orthogonal à l'autre.
- Si deux droites sont orthogonales à un même plan alors elles sont parallèles entre elles.

Propriétés:

- Si deux plans sont parallèles alors toute droite orthogonale à l'un est orthogonal à l'autre.
- Si deux plans sont orthogonaux à une même droite alors ils sont parallèles entre eux.

Remarque: projection orthogonale sur un plan

On ne change pas le produit scalaire de deux vecteurs \overrightarrow{AB} et \overrightarrow{CD} en remplaçant l'un d'entre eux (par exemple \overrightarrow{CD}) par le vecteur $\overrightarrow{C'D'}$ tel que C' et D' sont les projetés orthogonaux de C et D sur un plan $\mathcal P$ contenant la droite (AB).

 $\overrightarrow{AB} \cdot \overrightarrow{CD} = \overrightarrow{AB} \left(\overrightarrow{CC'} + \overrightarrow{C'D'} + \overrightarrow{D'D} \right) = \overrightarrow{AB} \cdot \overrightarrow{CC'} + \overrightarrow{AB} \cdot \overrightarrow{C'D'} + \overrightarrow{AB} \cdot \overrightarrow{D'D} .$ Or $\overrightarrow{AB} \cdot \overrightarrow{CC'} = \overrightarrow{AB} \cdot \overrightarrow{D'D} = 0 \text{ donc } \overrightarrow{AB} \cdot \overrightarrow{CD} = \overrightarrow{AB} \cdot \overrightarrow{C'D'} .$

IV. Vecteur normal à un plan

1) <u>Définition</u>

Définition:

Dire qu'un vecteur \vec{n} non nul est **normal** à un plan \mathcal{P} signifie que toute droite de vecteur directeur \vec{n} est orthogonale au plan \mathcal{P} .

Propriété:

A est un point de l'espace et \vec{n} un vecteur non nul.

L'ensemble des points M de l'espace tels que $\overline{AM} \cdot \vec{n} = 0$ est le plan \mathscr{P} passant par A et de vecteur normal \vec{n} .

Démonstration:

On note $\vec{n} = \overrightarrow{AB}$ et *H* le projeté orthogonal d'un point *M* sur la droite (AB).

$$\overrightarrow{AM} \cdot \overrightarrow{n} = \overrightarrow{AM} \cdot \overrightarrow{AB} = \overrightarrow{AH} \cdot \overrightarrow{AB}$$
.

Ainsi $\overrightarrow{AM} \cdot \overrightarrow{n} = 0$ si, et seulement si, $\overrightarrow{AH} \cdot \overrightarrow{AB} = 0$ c'est-àdire A = H car les vecteurs \overrightarrow{AH} et \overrightarrow{AB} sont colinéaires.

Autrement dit, $\overrightarrow{AM} \cdot \overrightarrow{n} = 0$ si, et seulement si, A est le projeté orthogonal de M sur la droite (AB).

L'ensemble cherché est donc le plan passant par A et orthogonal à (AB).

2) Propriétés

Propriété:

Deux plans sont **parallèles** si, et seulement si, un vecteur normal de l'un est colinéaire à un vecteur normal de l'autre.

Propriété:

 \mathscr{P} et \mathscr{P} ' sont deux plans de vecteurs normaux respectifs \vec{n} et \vec{n} '.

Dire que les plans \mathscr{P} et \mathscr{P} ' sont **perpendiculaires** signifie que $\vec{n} \cdot \vec{n}' = 0$.

V. Calcul de distances

1) Repère orthonormé de l'espace

Définition:

Un repère (O; I, J, K) de l'espace est **orthonormé** lorsque les droites (OI), (OJ) et (OK) sont **deux à deux perpendiculaires** et qu'on a les égalités de distances OI = OJ = OK = 1.

Remarque:

Lorsque le repère (O; I, J, K) de l'espace est orthonormé, chaque axe est perpendiculaire à toute droite passant par le point O et contenue dans le plan défini par les deux autres axes.

Ainsi la droite (OI) est perpendiculaire à toute droite du plan (OJK) passant par O.

Propriété :

Soit (O; I, J, K) un **repère orthonormé** de l'espace et M un point de coordonnées (x; y; z) dans ce repère.

La longueur OM est la norme du vecteur \overrightarrow{OM} . Elle vérifie :

$$OM = \|\overrightarrow{OM}\| = \sqrt{x^2 + y^2 + z^2}$$

<u>Démonstration</u>:

Soit M le point de coordonnées (x; y; z).

On note M' le projeté orthogonal de M sur le plan (xOy).

Done M'(x; y; 0).

Le repère est orthonormé donc $OM^2 = OM'^2 + MM'^2$, c'est-à-dire :

Remarque:

Si
$$A(x_A; y_A; z_A)$$
 et $B(x_B; y_B; z_B)$ alors $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$

Exemple:

Un cube dont l'arête mesure une unité de longueur fourni un modèle de repère orthonormé de l'espace.

On note le repère
$$(O; I, J, K)$$
 ou $(O; \overrightarrow{OI}, \overrightarrow{OJ}, \overrightarrow{OK})$.

$$OM = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3}$$

2) Expression analytique du produit scalaire

Propriété:

Dans un repère orthonormé de l'espace, si $\vec{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ sont deux vecteurs, alors : $\vec{u} \cdot \vec{v} = xx' + yy' + zz$

<u>Démonstration:</u>

Dans l'espace muni d'un repère orthonormé.

$$\|\vec{u}\|^2 = x^2 + y^2 + z^2$$
, $\|\vec{v}\|^2 = x'^2 + y'^2 + z'^2$ et $\|\vec{u} - \vec{v}\|^2 = (x - x')^2 + (y - y')^2 + (z - z')^2$.

Ainsi
$$\vec{u} \cdot \vec{v} = \frac{1}{2} (\|\vec{u}\|^2 + \|\vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2) = \frac{1}{2} [(x^2 + y^2 + z^2) + (x'^2 + y'^2 + z'^2) - ((x - x')^2 + (y - y')^2 + (z - z')^2)].$$

En développant le membre de droite, il vient :

$$\vec{u} \cdot \vec{v} = \frac{1}{2} (x^2 + y^2 + z^2 + x'^2 + y'^2 + z'^2 - x^2 + 2xx' - x'^2 - y^2 + 2yy' - y'^2 - z^2 + 2zz' - z'^2)$$

$$\vec{u} \cdot \vec{v} = \frac{1}{2} (2xx' + 2yy' + 2zz') = xx' + yy' + zz'$$

Exemple:

Si
$$\vec{u} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -4 \\ 5 \\ 7 \end{pmatrix}$ alors $\vec{u} \cdot \vec{v} = 1 \times (-4) + 2 \times 5 + 3 \times 7 = 27$

Remarques:

- Si $\vec{u} = \vec{v}$ la formule donne $\vec{u} \cdot \vec{u} = x^2 + y^2 + z^2$. On retrouve $||\vec{u}|| = \sqrt{x^2 + y^2 + z^2}$.
- Si $A(x_A; y_A; z_A)$ et $B(x_B; y_B; z_B)$ alors:

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$

La formule est fausse si le repère n'est pas orthonormé.

Propriété:

Dans un repère orthonormé, une équation de la sphère de centre $\Omega(a;b;c)$ et de rayon R est :

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2$$

Exemple:

La sphère de centre $\Omega(1; -3; 4)$ et de rayon 2 admet pour équation cartésienne :

$$(x-1)^2 + (y-(-3))^2 + (z-4)^2 = 2^2 \operatorname{soit} x^2 - 2x + 1 + y^2 + 6y + 9 + z^2 - 8z + 16 = 4 \text{ ou bien encore}$$
:
 $x^2 + y^2 + z^2 - 2x + 6y - 8z + 22 = 0$

Équation cartésienne d'un plan 3)

Propriétés :

L'espace est muni d'un repère orthonormé.

- Un plan de vecteur normal $\vec{n} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ a une équation de la forme ax + by + cz + d = 0, où ddésigne un nombre réel. On dit que c'est une équation cartésienne de ce plan.
- Réciproquement a, b, c et d étant quatre nombres réels donnés avec a, b et c non tous nuls, l'ensemble des points M(x;y;z) tels que ax+by+cz+d=0 est un plan de vecteur

Démonstration :

- Un point M(x;y;z) appartient au plan $\mathscr P$ passant par $A(x_A;y_A;z_A)$ et de vecteur normal \vec{n} si, et seulement si, $\vec{AM} \cdot \vec{n} = 0$, c'est-à-dire $a(x - x_A) + b(y - y_A) + c(z - z_A) = 0$. En posant $d = -(ax_A + by_A + cz_A)$, on obtient ax + by + cz + d = 0.
- & est l'ensemble des points M(x;y;z) qui vérifient ax+by+cz+d=0 où a, b et c sont des nombres réels non tous nuls.

On peut supposer, par exemple, a non nul.

Le point $A\left(\frac{-d}{a};0;0\right)$ est alors un point de $\mathscr E$ et l'équation équivaut à : $a\left(x+\frac{d}{a}\right)+by+cz=0$, c'est-à-dire $\overrightarrow{AM}\cdot \overrightarrow{n}=0$ avec $\overrightarrow{n}\begin{pmatrix} a\\b\\c \end{pmatrix}$. $\mathscr E$ est donc le plan passant par A et de vecteur normal $\overrightarrow{n}\begin{pmatrix} a\\b\\c \end{pmatrix}$.

12

Remarque:

Tout vecteur orthogonal à \vec{n} est un vecteur du plan \mathcal{P} .

Exemples:

Dans un repère orthonormé on donne le point A(2;-1;0) et le vecteur $\vec{n} \begin{bmatrix} -1\\2\\3 \end{bmatrix}$

Le plan \mathscr{P} passant par A et de vecteur normal \vec{n} a pour équation :

$$-1(x-2)+2(y+1)+3z=0$$
 soit $-x+2y+3z+4=0$

x=0 est une équation du plan (yOz) : ceci signifie qu'un point appartient au plan (yOz) si, et seulement si, ses coordonnées sont de la forme (0; y; z), y et z réels.

L'ensemble des points M(x; y; z) tels que 4x+y+2z-4=0 est un plan \mathcal{P} de

vecteur normal $\vec{n} \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix}$

A(0;0;2), B(0;4;0) et C(1;0;0)sont des points non alignés de \mathscr{P} .

 \mathscr{P} est le plan (ABC)

4) Équations cartésiennes d'une droite

Propriété:

Si les triplets (a;b;c) et (a';b';c') ne sont pas proportionnels,

le système $\begin{cases} ax+by+cz+d=0\\ a'x+b'y+c'z+d'=0 \end{cases}$ caractérise une droite et il est appelé **système d'équations** cartésiennes de cette droite.

<u>Démonstration:</u>

Si les vecteurs $\vec{n} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ et $\vec{n}' \begin{pmatrix} a' \\ b' \\ c' \end{pmatrix}$ ne sont pas colinéaires, alors les

plans \mathcal{P}_1 et \mathcal{P}_2 d'équations respectives :

$$ax+by+cz+d=0$$
 et $a'x+b'y+c'z+d'=0$

sont sécants en une seule droite

VI. Applications

1) <u>Intersection de droites et de plans</u>

Propriétés:

Soit \mathscr{P} un plan de vecteur normal \vec{n} et d une droite passant par un point A et de vecteur directeur \vec{u}

- Si \vec{u} et \vec{n} ne sont pas orthogonaux, alors la droite d et le plan \mathcal{P} sont sécants.
- Si \vec{u} et \vec{n} sont orthogonaux :
 - Si A appartient à \mathcal{P} alors la droite est incluse dans le plan \mathcal{P} .
 - \circ Si A n'appartient pas à \mathcal{P} , alors la droite est strictement parallèle à \mathcal{P} .

2) Distance d'un point à un plan

Définition:

Soient \mathcal{P} un plan de l'espace et A un point.

La distance du point A au plan \mathcal{P} est la plus petite des longueurs AM ou $M \in \mathcal{P}$.

Propriété:

Si on note H le projeté orthogonal de A sur le plan \mathcal{P} , alors $d(A, \mathcal{P}) = AH$.

<u>Démonstration:</u>

Soit M un point quelconque du plan \mathscr{P} . Pour tout M \neq H, le triangle AHM est rectangle en H, donc AM > AH.

Ainsi, AH est bien la plus petite des longueurs et $d(A, \mathcal{P}) = AH$.

Propriété:

Soient \mathcal{P} un plan d'équation cartésienne ax + by + cz + d = 0 et $A(x_A; y_A; z_A)$ un point.

Si on note \vec{n} un vecteur normal de \mathscr{P} et M(x; y; z) un point de \mathscr{P} , alors:

$$d(\mathbf{A}, \mathcal{P}) = \frac{|\overrightarrow{AM} \cdot \overrightarrow{n}|}{\|\overrightarrow{n}\|} = \frac{|ax_A + by_A + cz_A + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Exemple:

La distance entre A(-1; 3; 2) et $\mathscr{P}: x - 3y + 2z - 4 = 0$ est $d(A, \mathscr{P}) = \frac{|-1 - 3 \times 3 + 2 \times 2 - 4|}{\sqrt{1^2 + (-3)^2 + 2^2}}$.

Donc
$$d(A, \mathcal{P}) = \frac{|-10|}{\sqrt{14}} = \frac{10}{\sqrt{14}} = \frac{10\sqrt{14}}{14} = \frac{5\sqrt{14}}{7} \approx 2,67$$
.

3) Distance d'un point à une droite

Définition:

Soient \mathcal{D} une droite de l'espace et A un point.

La distance du point A à la droite \mathcal{D} est la plus petite des longueurs AM ou $M \in \mathcal{D}$.

Propriété :

Si on note H le projeté orthogonal de A sur la droite \mathcal{D} , alors $d(A, \mathcal{D}) = AH$.

Démonstration:

Pour tout $M \in \mathcal{D}$, $AM \ge AH$ donc $d(A, \mathcal{D}) = AH$.

Propriété:

Soient A un point de l'espace et \mathcal{D} une droite passant par le point B et de vecteur directeur \vec{u} .

La distance du point A à la droite \mathcal{D} est :

$$d(\mathbf{A}, \mathcal{D}) = \left\| \overrightarrow{AB} - \frac{\overrightarrow{AB} \cdot \overrightarrow{u}}{\left\| \overrightarrow{u} \right\|^2} \overrightarrow{u} \right\|$$