Série 13

L'exercise 1 sera discuté pendant le cours le lundi 19 decembre. L'exercice 5 (*) peut être rendu le jeudi 22 decembre aux assistants jusqu'à 15h.

Exercice 1 - QCM

Déterminer si les énoncés proposés sont vrais ou faux.

• Soit n un entier positif et $A \in M_{n \times n}(\mathbb{C})$ une matrice hermitienne. Alors les valeurs propres de A sont réelles.
○ vrai ○ faux
• Soit n un entier positif et $A \in M_{n \times n}(\mathbb{C})$ une matrice symétrique. Alors les valeurs propres de A sont réelles.
○ vrai ○ faux
• Soit n un entier positif et $A \in M_{n \times n}(\mathbb{C})$. Alors A et A^H ont les mêmes valeurs propres.
○ vrai ○ faux
• Soit n un entier positif et $A \in M_{n \times n}(\mathbb{C})$. Alors A et A^T ont les mêmes valeurs propres.
○ vrai ○ faux
• Soit n un entier positif, K un corps et $A \in M_{n \times n}(K)$. Si λ est une valeur propre de A , alors λ^2 est une valeur propre de A^2 .
○ vrai ○ faux
• Soit n un entier positif, K un corps et $A \in M_{n \times n}(K)$. S'il existe $k \in \mathbb{N}$ tel que $A^k = 0$, alors toutes les valeurs propres de A sont nulles.
○ vrai ○ faux
• Soit V un \mathbb{C} -espace vectoriel, $T:V\to V$ une application linéaire, $I:V\to V$ l'application identité et $\lambda\in\mathbb{C}$. Alors l'application $T-\lambda\cdot I$ est injective, sauf pour un nombre fini de valeurs de λ .
○ vrai ○ faux

Exercice 2

i) Calculer le polynôme caractéristique et les valeurs propres des matrices suivantes :

•
$$A = \begin{pmatrix} \alpha & \beta \\ -\gamma & \alpha \end{pmatrix} \in M_{2\times 2}(K), \ \alpha, \beta, \gamma \in \mathbb{R}, \ \beta\gamma > 0, \text{ pour } K = \mathbb{R} \text{ et } K = \mathbb{C}.$$

•
$$B = \begin{pmatrix} 2 & 2 & 3 \\ 1 & 2 & 1 \\ 2 & -2 & 1 \end{pmatrix} \in M_{3\times 3}(\mathbb{R}).$$

ii) Calculer le polynôme caractéristique, les valeurs propres et les vecteurs propres des matrices suivantes :

•
$$C = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \in M_{3 \times 3}(\mathbb{R}).$$

•
$$D = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \in M_{3\times 3}(\mathbb{F}_2).$$

Exercice 3

Soit K un corps et n un entier positif. Montrer que la matrice $A \in M_{n \times n}(K)$, donnée par

$$A = \begin{pmatrix} 0 & \dots & \dots & 0 & -\alpha_0 \\ 1 & \ddots & & \vdots & -\alpha_1 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & \dots & \dots & 0 & 1 & -\alpha_{n-1} \end{pmatrix},$$
(1)

a comme polynôme caractéristique $p_A(t) = t^n + \alpha_{n-1}t^{n-1} + \cdots + \alpha_1t + \alpha_0$.

Exercice 4

Soit K un corps et $\lambda_1, \lambda_2, \dots, \lambda_n \in K$ les valeurs propres (comptées avec leur multiplicité) de $A \in M_{n \times n}(K)$. Démontrer les assertions suivantes :

- i) $\det(A) = \prod_{i=1}^n \lambda_i$,
- ii) trace $(A) = \sum_{i=1}^{n} \lambda_i$,
- iii) trace $(P^{-1}AP) = \text{trace}(A)$, où P est une matrice inversible.

Exercice 5 (\star)

Soit K un corps, n, m des entiers positifs et $A \in M_{n \times n}(K)$, $B \in M_{n \times m}(K)$, $C \in M_{m \times n}(K)$ et $D \in M_{m \times m}(K)$.

i) Montrer que

$$\det \left(\begin{array}{cc} A & B \\ 0 & D \end{array} \right) = \det \left(\begin{array}{cc} A & 0 \\ C & D \end{array} \right).$$

ii) Exprimer le polynôme caractéristique de $\begin{pmatrix} A & B \\ 0 & D \end{pmatrix}$ en fonction de $p_A(t)$ et $p_D(t)$.

Exercice 6

Soit n un entier positif et $A, B \in M_{n \times n}(\mathbb{R})$. Soient $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{R}$ les valeurs propres de A et $\mu_1, \mu_2, \dots, \mu_n \in \mathbb{R}$ les valeurs propres de B. Soit $F: M_{n \times n}(\mathbb{R}) \to M_{n \times n}(\mathbb{R})$ l'application linéaire définie par $F: X \mapsto AX - XB^T$. Montrer que les valeurs propres de F sont $\lambda_i - \mu_j, i, j, = 1, \dots, n$.

Exercice 7

i) Vérifier le Théorème de Hamilton-Cayley par rapport à la matrice

$$A = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ -2 & 1 & 0 \end{pmatrix} \in M_{3\times 3}(\mathbb{R}).$$

- ii) Soit K un corps et $A \in M_{2\times 2}(K)$. Soit $p_A(t) = t^2 + a_1t + a_0$ avec $a_0 \neq 0$. Calculer l'inverse de A à l'aide du Théorème d'Hamilton-Cayley.
- iii) Considérer le Théorème de Hamilton-Cayley et la note de bas de page correspondante. Justifier pourquoi il n'est pas possible d'utiliser l'argumentation $p_A(A) = \det(A \cdot I A) = 0$ pour montrer le Théorème de Hamilton-Cayley.

Exercice 8

Définition: Soit K un corps, n un entier positif et $A \in M_{n \times n}(K)$. On dit que A est nilpotente s'il existe $m \in \mathbb{N}$ tel que $A^m = 0$.

Soit $n \geq 2$ un entier positif et $N \in M_{n \times n}(K)$ une matrice nilpotente.

- i) Montrer que $\det(I+N)=1$, montrer que I-N est inversible et exprimer son inverse en fonction de N.
- ii) Soit $A \in M_{n \times n}(K)$ telle que AN = NA. Montrer que si A est inversible alors AN et NA^{-1} sont nilpotentes et $\det(A + N) = \det(A)$.