인공지능응용 기계공학 텀프로젝트

세종 랜드마크 챌린지 (Sejong Landmark Challenge)

4조

14011541 김 형준

16011504 임 진욱

18011230 배 대위

목차

- Sejong Landmark Challenge (SLC)
- II SLC Dataset
- Ⅲ 작업 환경
- Ⅳ 파이프라인
- V 모델학습
- VI Neptune 시각화
- Ⅶ 모델 평가
- VIII 개선 방안
- IX 참고 자료

I. Sejong Landmark Challenge (SLC)

Sejong Landmark Challenge란?

• 세종대학교 건물 이미지를 분류하는 알고리즘 제작

이미지를 6개의 라벨로 분류

II. SLC Dataset

Validation: 직접찍은 이미지 + 웹크롤링

Test: <mark>직접찍은 이미지</mark>

II. SLC Dataset

Test set에 회전, 광도, 스케일, 방해물등 노이즈를 넣어 Challenging하게 구성

Ⅲ. 작업 환경

텐서플로우 vs 파이토치

Github상 논문 구현언어 파이토치 점유율 [11]

→ 이와 더불어 디버깅상의 이점으로 <mark>파이토치</mark> 사용

1) 데이터 로드 및 가공

(1) 커스텀 데이터로더

```
class Custom dataloader(Dataset):
  def __init__(self, mode , datapath, img_w, img_h, transform=None):
     → 클래스 호출시 실행되는 init함수
  def full load(self):
     → 이미지가 저장된 폴더로부터 전체이미지 불러오기
  def csv exist(self):
     → 이미지가 저장된 csv파일이 있으면 호출
  def len (self):
    return len(self.images)
     → 저장된 이미지의 길이 반환
  def __getitem__(self, idx):
    data = { ' image ' :img, ' label ' :label}
    return data
    → index값을 받아 해당 index의 이미지와 라벨을 딕셔너리 형태로 반환
```

(2) Data Augmentation

	A 0.4.2	Imgaug 0.3.0	Torchvision 0.4.1	Keras 2.3.1	Augmentor 0.2.6	Solt 0.1.8
HorizontalFlip	2183	1403	1757	1068	1779	1031
VerticalFlip •	4217	2334	1538	4196	1541	3820
Rotate	456	368	163	32	60	116
ShiftScaleRotate	800	549	146	34	-	-
Brightness	2209	1288	405	211	403	2070
Contrast	2215	1387	338	-	337	2073
BrightnessContrast	2208	740	193	-	193	1060
ShiftRGB	2214	1303	-	407	-	-
ShiftHSV	468	443	61	-	-	144
Gamma	2281	-	730	-	-	925
Grayscale	5019	436	788	-	1451	4191
RandomCrop64	173,877	3340	43,792	-	36,869	36,178
PadToSize512	2906	-	553	-	-	2711
Resize512	663	506	968	-	954	673
RandomSizedCrop64_512	2565	933	1395	-	1353	2360
Equalize	759	457	-	-	684	-

2020년 발표된 [4] 논문 참고 ImageNet의 validation set 2000장에 대한

→ <mark>이미지 처리속도</mark>가 가장 빠른 Albumentations 사용

(2) Data Augmentation

Torchvision 코드

```
torchvision_transform = transforms.Compose([
    transforms.Resize((256, 256)),
    transforms.RandomCrop(224),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
])
```


Albumentations 코드

```
albumentations_transform = albumentations.Compose([ albumentations.Resize(256, 256), albumentations.RandomCrop(224, 224), albumentations.HorizontalFlip(), albumentations.pytorch.transforms.ToTensor()
])
```

→ torchvision 라이브러리랑 호환성이 좋음

2. Standardization으로 데이터 표준화

$$\frac{x-\mu}{\sigma}$$
 $(\mu: 평균, \sigma: 표준편차)$

Train + validation 데이터 CSV파일로 가공 numpy사용 평균과 표준편차

- → 평균: [124.5, 125.58, 118.67]
- → 표준편차: [70.97, 70.39, 78.2]

3. Timm 라이브러리 사용 Backbone 교체실험

참고사항

- ① 구글랜드마크 1등 팀 논문 [2]
- ② ImageNet 기준 모델 순위 [5]
- ③ 코랩 작업환경 고려 실험모델 선정
- → [5]참고 ImagNet 기준 상위에 랭크된 모델 중 너무 무겁지않은 모델들 사용

4. GeM Pooling 사용

$$\mathbf{f}^{(g)} = [\mathbf{f}_1^{(g)} \dots \mathbf{f}_k^{(g)} \dots \mathbf{f}_K^{(g)}]^\top, \quad \mathbf{f}_k^{(g)} = \left(\frac{1}{|\mathcal{X}_k|} \sum_{x \in \mathcal{X}_k} x^{p_k}\right)^{\frac{\widehat{p_k}}{k}}.$$

 $P_k \rightarrow \infty$: Max pooling

 $P_k = 1$: Average pooling

미분가능 → 🖳 학습가능

Normalized Weights

$\begin{array}{c} x_i \\ \hline \\ Normalized Feature \\ \hline \\ W_j \\ \hline \\ W \in \mathbb{R}^{d \times n} \end{array} \\ \begin{array}{c} w_{y_i} \\ \hline \\ \theta_{y_i} \\ \hline \\ Softmax \\ \hline \\ Softmax \\ \hline \\ S * cos\theta_j \\ \\ Cosumo Truth \\ Cross-entropy \\ Cose \\ One Hot Vector \\ Cross-entropy \\ Cose \\$

[9] 논문 참고 Arc margin 부분적 구현

State of the Art(SOTA) 논문들에 주로 등장

[5] 모델 순위, [2] 논문 기반 Backbone 선정

ImageNet 기준 모델 성능 순위[5]

Freezing을 이용한 학습기법

Freezing을 이용한 학습기법 (코드)

1. 모델의 파라미터들 확인 names_pram=[] (파라미터들의 이름을 저장할 리스트) for name_pram, _ in model.named_parameters(): names_pram.append(name_pram) pprint(names pram) 2. names pram에 저장된 파라미터 중 맨 뒤에서 9개만 빼고 나머진 Freeze for name_pram, param in model.named_parameters(): param.requires_grad = False if name_pram in names_pram[-9:]: param.requires grad = True 'global_pool.p', 'neck.2.weight', 'neck.0.weight', 'neck.3.weight', 'neck.0.bias', 'neck.3.bias'.

'neck.1.weight',

'neck.1.bias',

해당 파라미터제외 Freeze

'head.weight'

앙상블

Softmax 결과를 더하여 argmax를 취해주었음

앙상블에 쓰일 모델들에 대한 Test Accuracy

- resnet152_v1s 90.21 %
- seresnext101_64x4d 88.04 %
- → 실험을 통해 얻은 2개에 모델을 <u>앙상블</u>하여 <mark>92.38 %</mark>

Neptune의 장점

- •실험조건, 매트릭 백업 및 트랙킹
- •코드 백업
- •GPU, CPU 사용량 기록
- •에러메시지 기록
- •원하는 변수로 실시간 Plotting
- •다양한 visulalization tool과 연동가능
- •코업환경에서 코업자와 교류가능

사용방법 소개

M neptune.ai

1. 초기화

```
import neptune
# Neptune parameters
api_token="ANONYMOUS",
project_qualified_name='사용자명/저장소이름'
api_token='API 토큰 번호'
upload_source_files = '파일명.py' #백업할 파일
지정
# Neptune initialize
neptune.init(
  api_token=api_token,
  project_qualified_name=project_qualified_
name,
```

넵튠 공식사이트에서 회원가입 및 토큰발급 필요

사용방법 소개

2. 실험생성 및 실험변수 업데이트

```
def create_exp(name, params, upload_source_files):
    neptune.create_experiment(
    name=name,
    params=params,
    upload_source_files = upload_source_files
)
```

3. 태그생성 및 매트릭 트랙킹

```
def create_tag(tag):
    return neptune.append_tags(tag)

def create_log_metric(name, val):
    return neptune.log_metric(name, val)
```


실험 날짜, 조건, 변수, 주석 등 넵튠에 업데이트

원하는 변수 Tracing 및 실시간 plot

정량적 평가

실험No.	모델명	주요 변동사항	Test Acc
1	gluon_resnext101_64x4d	Standardization 적용	90.22 %
2	gluon_resnext101_64x4d	Data augmentation 적용	67.39 %

지나친 Data Augmentation으로 성능 감소 발생 확률값 p 낮춤

실험No.	모델명	주요 변동사항	Test Acc
3	gluon_resnext101_64x4d	Data agumentation 수정	84.78 %
4	gluon_resnext101_64x4d	Data agumentation 수정 Normalize로 변경	81.52 %
5	gluon_seresnext101_64x4d	Standardization로 다시 변경 백본 모델 변경	88.04 %
6	gluon_seresnext101_64x4d	Augmentation 수정	86.96 %

정량적 평가

실험No.	모델명	주요 변동사항	Test Acc
7	efficientnet_b3	Batch size 2	66.30 %

Efficientnet[8]은 Resolution과 Depth가 커야 성능이 좋음

But 코랩에서 GPU 메모리부족으로 성능↓

실험No.	모델명	주요 변동사항	Test Acc
8	gluon_resnet152_v1s	모델변경, batch size 128	90.21 %
9	gluon_resnet152_v1s	[12]근거 Test set 사이즈 2배	73.91 %
10	gluon_resnet152_v1s + gluon_seresnext101_64x4d	확률합 기반 앙상블 (exp5+exp8)	92.39 %
11	gluon_resnet152_v1s + gluon_seresnext101_64x4d + gluon_resnext101_64x4d	확률합 기반 앙상블 (exp1+exp5+exp8)	92.39 %

정량적 평가

실험No.	모델명	주요 변동사항	Test Acc
12	gluon_resnet152_v1d	모델 변경	<mark>95.65 %</mark>
13	gluon_resnet152_v1s + gluon_seresnext101_64x4d + gluon_resnet152_v1d	확률합 기반 앙상블 (exp5+exp8+exp12)	93.48 %

앙상블을 했음에도 성능이 더 떨어짐

∵ 성능이 낮은 모델과 높은모델의 조합

실험결과: 가장 좋은 성능을 낸 모델은 "실험12"로 95.65% 기록

정량적 평가

Experiment 8: gluon_resnet152_v1s에 대한 그래프 예시

- ▶ Validation loss를 기준으로 Best model을 저장
- 모든 실험에 대하여 파라미터, 그래프, 체크포인트, CSV파일을 저장
 - Learning curve를 참고하여 추가학습여부를 결정

정성적 평가

정성적 평가

정성적 평가

VIII. 개선방안

개선 방안

- 1. 다른 앙상블기법을 이용
 - 각 모델마다 나온 feature를 L2 norm 적용 후 concatenate하여 새로운 feature로 사용
 - 다른 앙상블기법 (Voting, Bagging, Boosting) 사용
- 2. Cos similarity를 이용한 이미지유사도 비교
 - Trainset에서 Non-landmark 이미지 제거
- 3. Multi-GPU, 메모리 사용
 - 이미지해상도, Depth, Batch size를 키워서 efficientnet 학습
 - Metric learning 기반 loss 사용시 batch size 영향도 있을거라 예측
- 4. 데이터로더 설계시 파일경로만을 CSV로 가공하여 메모리 절약
 - 메모리 확보로 좀 더 다양한 실험가능
 - 데이터로더 선언부가 훨씬 빠르게 돌아감

참고 자료

앱인벤터로 개발한 안드로이드 어플 데모영상 (라이트모델 엣지 컴퓨팅)

IX. 참고 자료

- [1] https://neptune.ai (넵튠 공식사이트)
- [2] Henkel, Christof, and Philipp Singer. "Supporting large-scale image recognition with out-of-domain samples." arXiv preprint arXiv:2010.01650 (2020) (구글랜드마크 챌린지 2020 1등 논문)
- [3] https://albumentations.readthedocs.io/en/latest/ (albumentation 라이브러리 다큐먼트)
- [4] Buslaev, Alexander, et al. "Albumentations: fast and flexible image augmentations." Information 11.2 (2020): 125. (data augmentation 관련 논문)
- [5] <u>https://paperswithcode.com/sota/image-classification-on-imagenet</u> (ImageNet 기준 모델 성능 순위)
- [6] https://amaarora.github.io/2020/08/30/gempool.html#gem-pooling (GeM pooling 관련 설명)
- [7] https://realblack0.github.io/2020/03/29/normalization-standardization-regularization.html (Normalize관련 설명)
- [8] Tan, Mingxing, and Quoc V. Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." arXiv preprint arXiv:1905.11946 (2019) (Efficientnet 논문)
- [9] Deng, Jiankang, et al. "Arcface: Additive angular margin loss for deep face recognition." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019 (Arcface 관련 논문)
- [10] http://www.aitimes.com/news/articleView.html?idxno=132756 (파이토치 관련 기사)
- [11] https://docs.google.com/presentation/d/1ZUimafgXCBSLsgbacd6-a-dq07yLyzIl1ZJbiCBUUT4/edit#slide=id.g8b560ae0a6_0_49 (파이토치 관련 자료)
- [12] Touvron, Hugo, et al. "Fixing the train-test resolution discrepancy: FixEfficientNet." arXiv preprint arXiv:2003.08237 (2020) (Test set의 resolution 변화에 따른 성능에 관한 논문)
- [13] <u>https://appinventor.mit.edu/</u> (MIT에서 제공하는 앱인벤터 공식사이트)

감사합니다

해당 깃허브에 코드공개됨, 데이터는 이메일문의

https://github.com/rgw117/Sejong-Landmark-Challeng-ME-termproject-

rgw117@naver.com

4조 14011541 김 형준 16011504 임 진욱 18011230 배 대위