游走

问题描述

给定一个长度为 n 的数列 A_i ,你扮演一个小机器人,你的初始位置在 1 到 n 中等概率选取。每一步你都可以选择如下两种动作中的一种:

- 见好就收: 在当前所在的位置结束游走,假设你当前的位置在i,那么你的收益是 A_i 。
- 得寸进尺: 如果你在位置 1 或 n, 那么你不能选择这个动作。设你当前的位置是 i, 那么你有 50% 的概率走到 i-1, 50% 的概率走到 i+1。

值得注意的是,由于动作二只有在中间的位置时才能被选择,因此可以证明,对于任意的 策略都有 $\lim_{m\to\infty} f(m) = 0$,其中 f(m) 为移动了 m 次还没停下的概率。

你希望在游走结束后,你的收益最大。令 w(A) 为在数组 A 上游走的最大期望概率。现在给定一个数列 A,你需要对 A 的每一个前缀 P_i (表示长度为 i 的前缀),计算 $w(P_i)$ 。

输入格式

第一行一个整数 n。 第二行输入 n 个整数描述 A_i 。

输出格式

输出一行 n 个整数, 第 i 个数表示 $w(P_i)$, 对 998244353 取模后输出。

输入输出样例 1

input	output
3 3 1 2	3 2 499122179

输入输出样例 2

input	output
6	6 499122180 4 499122182 5
6 1 2 5 3 4	582309211

数据范围与约定

子任务编号	n	分值
1	≤ 18	11
2	≤ 300	29
3	$\leq 5 \times 10^3$	26
4	$\leq 5 \times 10^5$	34

对于 100% 的数据,保证 $1 \le n \le 5 \times 10^5, \, 1 \le A_i \le 10^{12}$ 。