FITTING PARAMETERS OF ANALYTIC SOLUTIONS

EXTRA

What is the difference between growth models of autocatalytic change processes and:

Repeated Measures Analysis

Multiple Regression

Latent Growth Curve Analysis

The Multilevel Model for Change

??????

The Multilevel Model for Change can model 'individual' growth and nonlinear growth, assuming that:

- 'True' growth / change trajectories: X=T+E
- Deviations to the true trajectory are treated as (random) noise, measurement error: E
- Time is treated as a predictor: Y = f(X), NOT an *autocatalytic* process
- Parameters (f.i r) = random variable

However:

Model parameters are estimated from data...

<u>Structural portion</u>, which embodies our hypothesis about the shape of each person's true trajectory of change over time

Stochastic portion, which allows for the effects of random error from the measurement of person i on occasion j. Usually assume $\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2)$

$$COG_{ij} = \left[\pi_{0i} + \pi_{1i}(AGE_{ij} - 1)\right] + \left[\varepsilon_{ij}\right]$$

- i indexes persons (i=1 to 103)
- j indexes occasions (j=1 to 3)

© Singer & Willett, page 15

<u>Structural portion</u>, which embodies our hypothesis about the shape of each person's true trajectory of change over time

Individual i's hypothesized true

Stochastic portion, which allows for the effects of random error from the measurement of person i on occasion j. Usually assume $\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2)$

Key assumption: In the population, COG_{ij} is a linear function of child i's AGE on occasion j

$$COG_{ij} = \left[\pi_{0i} + \pi_{1i}(AGE_{ij} - 1)\right] + \left[\varepsilon_{ij}\right]$$

- i indexes persons (i=1 to 103)
- j indexes occasions (j=1 to 3)

π_{0i} is the <u>intercept</u> of i's true change trajectory, his true value of COG at AGE=1, his "true initial status"

π_{li} is the <u>slope</u> of i's true change trajectory, his yearly rate of change in true COG, his true "annual rate of change"

© Singer & Willett, page 15

$$g(x) = x^2 - 2x + 2$$

$$h(x) = x^3 - 2x$$

Polynomial functions:

Any curve you like, just add (+) independent components

$$F(x) = 2x^4 - 4x^2 + x - 1$$

$$G(x) = x^5 - 5x^3 + 4x + 1$$

$$H(x) = x^6 - 7x^4 + 14x^2 - x - 5$$

Looking for explained variance of polynomial components, NOT based on a theoretical process

© Singer & Willett

A logistic S-shape would require
4 fixed polynomial parameters

		Parameter	Model A No change	Model B Linear change	Model C Quadratic change	Model D Cubic change
Fixed Effects						
Composite model	Intercept (1st grade status) TIME (linear term) TIME ² (quadratic term) TIME ³ (cubic term)	γοο γιο γ ₂₀ γ ₃₀	12.96***	13.29*** -0.13	13.97*** -1.15 0.20	13.79*** -0.35 -0.23 0.06
Variance Components	S	Marie 100 (100 (100 (100 (100 (100 (100 (100				
Level-1: Level-2:	Within-person In 1st grade status Linear term	$oldsymbol{\sigma}_{\!\!\!\!p}^2 \ oldsymbol{\sigma}_{\!\!\!p}^2$	70.20*** 87.42***	53.72*** 123.52***	41.98*** 107.08***	40.10*** 126.09***
	variance covar with 1st grade status	$oldsymbol{\sigma_{01}^2}{oldsymbol{\sigma_{01}}}$		4.69** -12.54*	24.60* -3.69	88.71 -51.73
	Quadratic term variance covar with 1st grade status covar with linear term	$egin{array}{c} oldsymbol{\sigma_{2}^2} \ oldsymbol{\sigma_{02}} \ oldsymbol{\sigma_{12}} \end{array}$			1.22* -1.36 -4.96*	11.35 22.83~ -31.62
	Cubic term variance covar with 1st grade status covar with linear term covar with quadratic term	$egin{array}{c} \sigma_3^2 \ \sigma_{03} \ \sigma_{13} \ \sigma_{23} \end{array}$				0.08 -3.06~ 2.85 -0.97
Goodness-of-fit	1					
Occurred of In	Deviance statistic AIC BIC		2010.3 2016.3 2021.9	1991.8 2003.8 2015.0	1975.8 1995.8 2014.5	1967.0 1997.0 2025.1

 $[\]sim p < .10; \ *p < .05; \ ***p < .01; \ ****p < .001.$

Fitting parameters to mathematical models

The normal distribution is a mathematical function with 2 parameters μ and σ that assigns **probabilities to** values the random variable X takes on due to outcomes of a random process (coin toss, random sample, etc.)

$$\mathcal{N}(\mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Change according to a process: Exponential growth

The growth rate is proportional to the current growth level:

$$Y_{i+1} = r \cdot Y_i$$

$$Y_i = r^i \cdot Y_0$$

Analytic Solution

Difference equation: Map ...

$$\frac{dY}{dt} = r \cdot Y$$

Analytic Solution

$$Y(t) = Y_0 \cdot e^{rt}$$

Differential equation: Flow ~

Exponential growth (Flow ~)

Restricted growth

Introduce a carrying capacity K: Upper limit for growth

The growth rate is now proportional to what is left to grow (K-Y):

$$\frac{dY}{dt} = r \cdot (K - Y)$$

$$Y(t) = K - (K - Y_0) \cdot e^{-rt}$$

Restricted growth

Logistic growth

If we combine these linear models we get nonlinear restricted (logistic) growth

$$Y_{i+1} = rY_i(K-Y_i)$$

$$Y_{i+1} = rY_i(K - Y_i)$$

no analytic solution

$$\frac{dY}{dt} = rY(K - Y)$$

$$Y(t) = \frac{KY_0}{Y_0 + (K - Y_0)e^{-Krt}}$$

Logistic Growth (Flow ~)

$$Y_{ij} = 1 + \frac{19}{1 + \pi_{0i}e^{-(\pi_{1i}TIME_{ij})} + \epsilon_{ij}} + \epsilon_{ij}$$

$$\frac{dY}{dt} = rY(K - Y)$$

$$Y(t) = \frac{KY_0}{Y_0 + (K - Y_0)e^{-Krt}}$$

The Ergodic Bait and Switch

Assumptions of statistical models (GLM)

Compound Symmetry

The compound symmetry assumption requires that the variances (pooled within-group) and covariances (across subjects) of the different repeated measures are homogeneous (identical). This is a sufficient condition for the univariate F test for repeated measures to be valid (i.e., for the reported F values to actually follow the F distribution). However, it is not a necessary condition.

Sphericity

The sphericity assumption is a necessary and sufficient condition for the F test to be valid; it states that the within-subject "model" consists of independent (orthogonal) components.

The nature of these assumptions, and the effects of violations are usually not well-described in ANOVA textbooks

