

IUT GEII – Outils Mathématiques et Logiciels (OML1)

Trigonométrie

Andrés F. López-Lopera Laboratoire de Mathématiques pour l'Ingénieur (LMI) Université Polytechnique Hauts-de-France (UPHF) 2021 – 2022

Thèmes

- 1. Trigonométrie
- 2. Cercle trigonométrique
- 3. D'autres propriétés remarquables
- 4. Fonctions trigonométriques

Trigonométrie

Trigonométrie

- \cdot Des nombreux domaines scientifiques utilisent la trigonométrie :
 - La géographie
- L'électricité et l'électronique

- L'astronomie

- La mécanique

- La physique

- ...

$$\tan\alpha = \frac{h_1}{s_1} = \frac{h_2}{s_2}$$

$$v(t) = 3\sin(\omega t) \text{ [volt, } V\text{]}$$

 $i(t) = \cos(\omega t) \text{ [ampère, } A\text{]}$

Un rappel des fonctions trigonométriques usuelles

Rappel : $\pi=180^\circ$

$$\begin{split} &\text{angle [rad]} = \text{angle [deg]} \times \frac{\pi}{180^\circ} \\ &\text{angle [deg]} = \text{angle [rad]} \times \frac{180^\circ}{\pi} \end{split}$$

· On dénote :

 θ : angle [degré ou radian]

a : côté adjacent à l'angle θ

b: côté opposé à l'angle θ

h : hypoténuse

Un rappel des fonctions trigonométriques usuelles

· On dénote :

 θ : angle [degré ou radian]

a : côté adjacent à l'angle θ

b: côté opposé à l'angle θ

h : hypoténuse

Rappel :
$$\pi=180^{\circ}$$

angle [rad] = angle [deg]
$$\times \frac{\pi}{180^{\circ}}$$

angle [deg] = angle [rad] $\times \frac{180^{\circ}}{\pi}$

· Fonctions trigonométriques usuelles :

$$\cdot \sin \theta = \frac{b}{h}, \quad \theta = \arcsin \frac{b}{h}$$

$$\cdot \cos \theta = \frac{a}{h}, \quad \theta = \arccos \frac{a}{h}$$

$$\cdot \ \tan \theta = \frac{b}{a} = \frac{\sin \theta}{\cos \theta}, \quad \theta = \arctan \frac{b}{a}$$

Un rappel des fonctions trigonométriques usuelles

· On dénote :

 θ : angle [degré ou radian]

a : côté adjacent à l'angle θ

b : côté opposé à l'angle θ

h : hypoténuse

angle [rad] = angle [deg]
$$\times \frac{\pi}{180^{\circ}}$$

angle [deg] = angle [rad] $\times \frac{180^{\circ}}{\pi}$

· Fonctions trigonométriques usuelles :

$$\cdot \sin \theta = \frac{b}{h}, \quad \theta = \arcsin \frac{b}{h}$$

$$\cdot \cos \theta = \frac{a}{h}, \quad \theta = \arccos \frac{a}{h}$$

$$\cdot \ \tan \theta = \frac{b}{a} = \frac{\sin \theta}{\cos \theta}, \quad \theta = \arctan \frac{b}{a}$$

$$\cdot \sec \theta = \frac{h}{a} = \frac{1}{\cos \theta}, \quad \theta = \operatorname{arcsec} \frac{h}{a}$$

$$\cdot \ \csc \theta = \frac{h}{b} = \frac{1}{\sin \theta}, \quad \theta = \arccos \frac{h}{b}$$

$$\cdot \cot \theta = \frac{a}{b} = \frac{\cos \theta}{\sin \theta} = \frac{1}{\tan \theta}, \ \theta = \operatorname{arccot} \frac{a}{b}$$

D'autres relations entre fonctions trigonométriques

· Théorème de Pythagore :

$$h^2 = a^2 + b^2, (1)$$

d'où on obtient [Exercices] :

$$\cos^2 \theta + \sin^2 \theta = 1,$$

$$1 + \tan^2 \theta = \sec^2 \theta,$$

$$\cot^2 \theta + 1 = \csc^2 \theta.$$

Rappel:

$$\sin\theta = \frac{b}{h}, \quad \cos\theta = \frac{a}{h}$$

$$\tan\theta = \frac{\sin\theta}{\cos\theta}, \quad \cot\theta = \frac{\cos\theta}{\sin\theta}, \quad \sec\theta = \frac{1}{\cos\theta}, \quad \csc\theta = \frac{1}{\sin\theta}$$

Cercle trigonométrique

Construction du cercle trigonométrique

 \cdot Grâce au théorème de Pythagore, on peut construire le triangle :

· Pour $\theta \in \left]0, \frac{\pi}{2}\right[$, on obtient le quart de cercle (trigonométrique) :

θ [deg]	0	30°	45°	60°	90°
[rad]	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin heta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
an heta	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	-

Cercle trigonométrique

· Le quart de cercle trigonométrique peut être généralisé à un cercle complet :

Propriétés. Pour $k \in \mathbb{Z}$, on obtient :

$$-1 \le \cos(\theta) \le 1$$

$$-1 \le \cos(\theta) \le 1$$
 $\cos(\theta \pm 2k\pi) = \cos(\theta)$

$$-1 \leq \sin(\theta) \leq 1$$

$$-1 \le \sin(\theta) \le 1$$
 $\sin(\theta \pm 2k\pi) = \sin(\theta)$

Cercle trigonométrique – lien avec le 4ème cadran

Propriétés. Pour $k \in \mathbb{Z}$, on obtient :

$$\cos(-\theta) = \cos(\theta)$$
 $\cos(-\theta \pm 2k\pi) = \cos(-\theta)$

$$\cdot \sin(-\theta) = -\sin(\theta) \quad \cdot \sin(-\theta \pm 2k\pi) = \sin(-\theta)$$

Cercle trigonométrique – lien avec le 2ème cadran

Propriétés.

- $\cos(\pi \theta) = -\cos(\theta)$ $\cos(-\pi \theta) = \cos(\pi \theta)$
- $\cdot \sin(\pi \theta) = \sin(\theta)$ $\cdot \sin(-\pi \theta) = \sin(\pi \theta)$

Cercle trigonométrique – lien avec le 3ème cadran

Propriétés.

$$\cos(\pi + \theta) = -\cos(\theta)$$
 $\cos(-\pi + \theta) = \cos(\pi + \theta)$

$$\cdot \sin(\pi + \theta) = -\sin(\theta)$$
 $\cdot \sin(-\pi + \theta) = \sin(\pi + \theta)$

Cercle trigonométrique – déphasage de $\pi/2$

Propriétés.

$$\cos(\frac{\pi}{2} + \theta) = -\sin(\theta)$$
 $\cos(\frac{\pi}{2} - \theta) = \sin(\theta)$

$$\cdot \sin(\frac{\pi}{2} + \theta) = \cos(\theta)$$
 $\cdot \sin(\frac{\pi}{2} - \theta) = \cos(\theta)$

Cercle trigonométrique – valeurs remarquables

Cercle trigonométrique

Relations trigonométriques pour la fonction tangente

- $\cdot \ \tan(-\theta) = -\tan(\theta)$
- $\cdot \ \tan(\pm 2k\pi + \theta) = \tan(\theta)$
- $\cdot \ \tan(\pi \pm \theta) = \pm \tan(\theta)$
- $\cdot \ \tan(\frac{\pi}{2} \pm \theta) = \mp \cot(\theta)$

Exercices. Démontrer les relations précédentes.

Rappel:

$$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}, \qquad \sin(-\theta) = -\sin(\theta), \qquad \cos(-\theta) = \cos(\theta)$$
$$\cos(\theta \pm 2k\pi) = \cos(\theta), \quad \sin(\theta \pm 2k\pi) = \sin(\theta)$$
$$\cos(\pi \pm \theta) = -\cos(\theta), \quad \sin(\pi \pm \theta) = \mp\sin(\theta)$$
$$\cos\left(\frac{\pi}{2} \pm \theta\right) = \mp\sin(\theta), \quad \sin\left(\frac{\pi}{2} \pm \theta\right) = \cos(\theta)$$

Cercle trigonométrique

Solution.

$$\begin{aligned} & \cdot & \tan(-\theta) = \frac{\sin(-\theta)}{\cos(-\theta)} = \frac{-\sin(\theta)}{\cos(\theta)} = -\tan(\theta) \\ & \cdot & \tan(\pm 2k\pi + \theta) = \frac{\sin(\pm 2k\pi + \theta)}{\cos(\pm 2k\pi + \theta)} = \frac{\sin(\theta)}{\cos(\theta)} = \tan(\theta) \\ & \cdot & \tan(\pi - \theta) = \frac{\sin(\pi - \theta)}{\cos(\pi - \theta)} = \frac{\sin(\theta)}{-\cos(\theta)} = -\tan(\theta) \\ & \cdot & \tan(\pi + \theta) = \frac{\sin(\pi + \theta)}{\cos(\pi + \theta)} = \frac{-\sin(\theta)}{-\cos(\theta)} = \tan(\theta) \\ & \cdot & \tan(\frac{\pi}{2} - \theta) = \frac{\sin(\frac{\pi}{2} - \theta)}{\cos(\frac{\pi}{2} - \theta)} = \frac{\cos(\theta)}{\sin(\theta)} = \cot(\theta) \\ & \cdot & \tan(\frac{\pi}{2} + \theta) = \frac{\sin(\frac{\pi}{2} + \theta)}{\cos(\frac{\pi}{2} + \theta)} = \frac{\cos(\theta)}{-\sin(\theta)} = -\cot(\theta) \end{aligned}$$

Relations relatives à l'addition d'angles

- $\cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b)$
- $\cdot \sin(a \pm b) = \sin(a)\cos(b) \pm \cos(a)\sin(b)$
- $\cdot \ \tan(a \pm b) = \frac{\tan(a) \pm \tan(b)}{1 \mp \tan(a) \tan(b)}$

Application

· Considérons les tensions électriques

$$v_R(t) = 4\cos(\omega t), \quad v_L(t) = 3\sin(\omega t)$$

· Sachant que $v(t) = v_R(t) + v_L(t)$, on obtient :

$$v(t) = 4\cos(\omega t) + 3\sin(\omega t)$$

Application – circuit RL

· La tension $v(t) = 4\cos(\omega t) + 3\sin(\omega t)$ a la forme :

$$\cos(a)\cos(b) + \sin(a)\sin(b) = \cos(a-b)$$

· En réécrivant v(t) comme

$$v(t) = A \left[\frac{4}{A} \cos(\omega t) + \frac{3}{A} \sin(\omega t) \right],$$

et en comparant les deux expressions, on identifie que :

$$\cos(a) = \frac{4}{A}$$
, $\sin(a) = \frac{3}{A}$, $\cos(b) = \cos(\omega t)$, $\sin(b) = \sin(\omega t)$

· Grâce au théorème de Pythagore, on a :

$$A = \sqrt{4^2 + 3^2} = 5$$

$$a = \arctan\left(\frac{3}{4}\right) \approx 0.64$$

· Finalement:

$$v(t) = A\sin(\omega t + a) = 5\sin(\omega t - 0.64)$$

Relatives au produit de sinus et cosinus

$$\cdot \sin(a)\sin(b) = \frac{1}{2}[\cos(a-b) - \cos(a+b)]$$

$$\cdot \sin(a)\cos(b) = \frac{1}{2}[\sin(a-b) + \sin(a+b)]$$

$$\cdot \cos(a)\cos(b) = \frac{1}{2}[\cos(a-b) + \cos(a+b)]$$

Relatives à la somme de sinus et cosinus

$$\cdot \sin(a) \pm \sin(b) = 2\sin\left(\frac{a\pm b}{2}\right)\cos\left(\frac{a\mp b}{2}\right)$$

$$\cdot \cos(a) + \cos(b) = 2\cos\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right)$$

$$\cdot \cos(a) - \cos(b) = -2\sin\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right)$$

Linéarisation

 \cdot La linéarisation consiste à exprimer des fonctions trigonométriques élevées à une puissance donnée selon des fonctions trigonométriques de degré un.

$$\cdot \cos^2 \theta = \frac{1}{2}(1 + \cos(2\theta))$$

$$\cdot \sin^2 \theta = \frac{1}{2}(1 - \cos(2\theta))$$

$$\cdot \cos^3 \theta = \frac{3}{4}\cos(\theta) + \frac{1}{4}\cos(3\theta)$$

$$\cdot \sin^3 \theta = \frac{3}{4} \sin(\theta) - \frac{1}{4} \sin(3\theta)$$

Exercices. Démontrer les relations précédentes.

Solution.

$$\begin{split} \cos^2\theta &= \frac{1}{2}(1+\cos(2\theta)) \\ \cos(2\theta) &= \cos(\theta+\theta) = \cos(\theta)\cos(\theta) - \sin(\theta)\sin(\theta) \\ &= \cos^2(\theta) - \underbrace{\sin^2(\theta)}_{1-\cos^2(\theta)} \\ &= 2\cos^2(\theta) - 1 \\ \cdot \cos^3\theta &= \frac{3}{4}\cos(\theta) + \frac{1}{4}\cos(3\theta) \\ \cos^3(\theta) &= \cos(\theta)\cos^2(\theta) = \frac{1}{2}\cos(\theta)(1+\cos(2\theta)) \\ &= \frac{1}{2}\cos(\theta) + \frac{1}{2}\cos(2\theta)\cos(\theta) \\ &= \frac{1}{2}\cos(\theta) + \frac{1}{2}\left[\frac{1}{2}(\cos(2\theta-\theta) + \cos(2\theta+\theta))\right] \\ &= \frac{1}{2}\cos(\theta) + \frac{1}{4}(\cos(\theta) + \cos(3\theta)) \\ &= \frac{3}{4}\cos(\theta) + \frac{1}{4}\cos(3\theta) \end{split}$$

Résolution d'équations trigonométriques

- · Il s'agit de trouver les solutions de certaines égalités :
 - $\cdot \cos a = \cos b$ donne les solutions :

$$a = b + 2k\pi$$
, ou $a = -b + 2k\pi$, avec $k \in \mathbb{Z}$ [figure]

· $\sin a = \sin b$ donne les solutions :

$$a = b + 2k\pi$$
, ou $a = \pi - b + 2k\pi$, avec $k \in \mathbb{Z}$ [figure]

· Pour les autres cas, il s'agit de se ramener à l'une de ces deux formes.

Fonctions trigonométriques

Fonctions trigonométriques

 \cdot En génie électrique, les tensions v et les courants électriques i sont décrits par des fonctions trigonométriques, par exemple :

$$v(t) = 3\sin(\omega t) \text{ [volt, V]}, \qquad i(t) = \cos(\omega t) \text{ [ampère, A]}$$

- · Ici, l'argument de la fonction trigonométrique est donné par ωt :
 - · $t \in \mathbb{R}$: une variable représentant le temps (seconds [s])
 - · $\omega \in \mathbb{R}^+$: la pulsation du signal électrique [rad/s]

Lien avec le cercle trigonométrique

Fonction sinus

[animation 1] [animation 2]

Remarque. La fonction sin(t) est une *fonction périodique* de période $T=2\pi$:

$$f(t+T)=f(t)$$

Fonctions trigonométriques classiques

Remarque.

· Les fonctions $f(t) = \sin t$ et $f(t) = \tan t$ sont des *fonctions impaires*, i.e. :

$$f(-t) = -f(t)$$

· La fonction $f(t) = \cos t$ est une fonction paire, i.e. :

$$f(-t) = f(t)$$

Représentation de signaux

 \cdot De façon général, une fonction trigonométrique peut être de la forme :

$$f_1(t) = A\cos(\omega t \pm \varphi), \quad f_2(t) = A\sin(\omega t \pm \varphi), \quad f_3(t) = A\tan(\omega t \pm \varphi),$$

où

- · $t \in \mathbb{R}$: le temps [s]
- $\omega \in \mathbb{R}^+$: la pulsation du signal [rad/s]
- · $A \in \mathbb{R}^+$: l'amplitude du signal [volt ou ampère]
- · $\varphi \in \mathbb{R}$: le déphasage [rad]

· Les deux premières formes s'utilisent pour la représentation de signaux électriques

$$v_1(t) = 3\sin(\omega t) [V]$$

$$v_2(t) = 3\sin(\omega t - \frac{\pi}{2}) [V]$$

$$i(t) = \cos(\omega t) [A]$$

Représentation de signaux électriques

Transformation en somme de termes non déphasés

 \cdot Il est toujours possible de décomposer ce type de fonction en une somme de sinus et cosinus non déphasés :

$$A\cos(\omega t - \varphi) = A[\alpha\cos(\omega t) + \beta\sin(\omega t)]$$

· En utilisant la relation cos(a - b) = cos(a) cos(b) + sin(a) sin(b), on obtient :

$$\cos(\omega t - \varphi) = \cos(\omega t) \underbrace{\cos(\varphi)}_{\alpha} + \sin(\omega t) \underbrace{\sin(\varphi)}_{\beta}$$

· Finalement:

$$A\cos(\omega t - \varphi) = a\cos(\omega t) + b\sin(\omega t),$$

où

$$a = A\cos(\varphi), \qquad b = A\sin(\varphi)$$

Transformation inverse

· Ici on parte de l'expression

$$f(t) = a\cos(\omega t) + b\sin(\omega t) = A\cos(\omega t - \varphi)$$

· La fonction f peut être écrite de la forme :

$$f(t) = A \left[\frac{a}{A} \cos(\omega t) + \frac{b}{A} \sin(\omega t) \right]$$

· En sachant que $\cos(\omega t - \varphi) = \cos(\omega t)\cos(\varphi) + \sin(\omega t)\sin(\varphi)$, on obtient :

$$cos(\varphi) = \frac{a}{A}, \quad sin(\varphi) = \frac{b}{A}$$

· Grâce au théorème de Pythagore, on peut montrer :

$$A$$
 b $A=\sqrt{a^2+b^2}, \qquad \varphi=\arctanrac{b}{a}$

