Import the necessary libraries

import pandas as pd

Step 2. Import the dataset from this address.

Step 3. Assign it to a variable called users and use the 'user_id' as index

user =

```
pd.read csv("https://raw.githubusercontent.com/justmarkham/DAT8/master
/data/u.user", sep="|", index col = "user id") user
                        occupation zip code
         age gender
user id
                            85711
24
              technician
2
          53
                  F
                             other
                                      94043
3
          23
                  Μ
                            writer
                                      32067
                        technician
4
          24
                  Μ
                                      43537
                                      15213 ...
5
          33
                  F
                             other
                  . . .
                  F
          26
                                      33319
939
                           student
940
          32
                  M administrator
                                    02215
          20
                           student
                                      97229
941
                         librarian
942
          48
                  F
                                      78209
943
          22
                           student
                                      77841
                  Μ
[943 rows x 4 columns] Step 4.
```

See the first 25 entries

366 ti	116 11	1136 23	Citties	
user.he	ad (25)			
		_		
	_	gender	occupation	zip_code
user_id				1
24	M	technici	an 85711	
2	53	F	other	94043
3	23	M	writer	32067
4	24	M	technician	43537
5	33	F	other	15213
6	42	M	executive	98101
7	57	М а	dministrator	91344
8	36	М а	dministrator	05201
9	29	M	student	01002
10	53	М	lawyer	90703

	-			
11	39	F	other	30329
12	28	F	other	06405
13	47	М	educator	29206
14	45	M	scientist	55106
15	49	F	educator	97301
16	21	М	entertainment	10309
17	30	M	programmer	06355
18	35	F	other	37212
19	40	M	librarian	02138
20	42	F	homemaker	95660
21	26	M	writer	30068
22	25	M	writer	40206
23	30	F	artist	48197
24	21	F	artist	94533
	25 39		M engineer	
	55107			

Step 5. See the last 10 entries

Data Mining Lab-2

	use	r.tail(10)	
	age (gender	occupation	zip code
user id	J .		•	
934	61	M	engineer	22902
935	42	M	doctor	66221
936	24	М	other	32789
937	48	M	educator	98072
938	38	F	technician	55038
939	26	F	student	33319
940	32	М	administrator	02215
941	20	М	student	97229
942	48	F	librarian	78209
943	22	M	student	77841

Step 6. What is the number of observations in the dataset?

```
user.shape[0]
943
```

Step 7. What is the number of columns in the dataset?

```
user.shape[1]
```

4

Step 8. Print the name of all the columns.

is the data type of each column?

```
user.dtypes
age int64
gender object
occupation object
zip_code object
dtype: object
```

Step 11. Print only the occupation column

```
user.occupation
user id
1
               technician
2
               other
3
               writer
4
               technician
5
               other
939
             student
940
             administrator
941
             student
942
             librarian
             student
Name: occupation, Length: 943, dtype: object
```

Step 12. How many different occupations are in this dataset?

```
user.occupation.unique
<bound method Series.unique of user id</pre>
1
               technician
2
               other
3
               writer
               technician
               other
939 student 940
     administrator
941
              student
942
             librarian
943
              student
Name: occupation, Length: 943, dtype: object>
```

Step 13. What is the most frequent occupation?

```
user['occupation'].value_counts().idxmax()
'student'
```

Step 14. Summarize the DataFrame.

```
user.occupation.mode()[0]
'student'
```

Step 15. Summarize all the columns

Step 16. Summarize only the occupation column

```
user.occupation.describe()

count 943

unique 21

top student

freq 196

Name: occupation, dtype: object
```

Step 17. What is the mean age of users?

```
int(user.age.mean())
73
```

Step 18. What is the age with least occurrence?

```
user.age.value counts().tail()
```

```
age
7
      1
66
     1
11
     1
10
      1
73
      1
Name: count, dtype: int64
user.age.value counts()[u ser.age.value_counts()
user.age.value_counts().m == in()]
age
     1
66
     1
11
     1
10
      1
73
Name: count, dtype: int64
```