

## Statistical Model Checking and Uppaal SMC

Formal Methods for Concurrent and Real-Time Systems, A.Y. 20/21

Livia Lestingi 25 MAY 2021 Introduction 1,

Why Statistical Model Checking?

(Some) Issues with numerical techniques:

- If the system has complex dynamics, basic problems may not have efficient solution methods
- They require an explicit description of system implementation
- They do not scale!

Introduction 22

## Why Statistical Model Checking?

Statistical techniques to the rescue!

- Applicable to any system, as long as its behavior is stochastic...
- ...and we have samples
- The state-space explosion problem can often be elided

Introduction

### Some facts about SMC:

- Research active for more than 15 years since 2002-2005 (but some key ideas can be traced back to a decade before)
- Many dedicated tools developed (14 surveyed by Agha and Palmskog<sup>1</sup>)
- Areas of application ranging from computer science to biology

<sup>&</sup>lt;sup>1</sup>Agha, Gul, and Karl Palmskog. "A survey of statistical model checking." ACM Transactions on Modeling and Computer Simulation (TOMACS) 28.1 (2018): 1-39.

## SMC Workflow



### 1. Input model of system



- 1. Input model of system
- 2. Formal property specification



- 1. Input model of system
- 2. Formal property specification
- 3. Trace-generator (out-of-scope for this lecture)



- 1. Input model of system
- 2. Formal property specification
- 3. Trace-generator (out-of-scope for this lecture)
- 4. Statistical technique



SMC is applicable to any process that can be considered a *stochastic discrete event system*: DTMCs (Discrete-Time Markov Chains) (Fig.1) are often used as a reference, but results carry over to other types of systems.

SMC is applicable to any process that can be considered a *stochastic discrete event system*: DTMCs (Discrete-Time Markov Chains) (Fig.1) are often used as a reference, but results carry over to other types of systems.



**Fig.1.** An example of DTMC.

### Definition

Let AP be a finite set of atomic propositions. A DTMC is a tuple  $\mathcal{M}=(S,s_i,M,L)$  where S is a finite set of states,  $s_i \in S$  is the initial state,  $M:S \times S \to [0,1]$  is a transition probability function s.t. for all  $s \in S$ ,  $\sum_{s' \in S} M(s,s') = 1$ , and  $L:S \to 2^{AP}$  is a *labeling function* associating states with their respective true atomic propositions.

SMC is applicable to any process that can be considered a *stochastic discrete event system*: DTMCs (Discrete-Time Markov Chains) (Fig.1) are often used as a reference, but results carry over to other types of systems.



**Fig.1.** An example of DTMC.

### Definition

Let AP be a finite set of atomic propositions. A DTMC is a tuple  $\mathcal{M}=(S,s_i,M,L)$  where S is a finite set of states,  $s_i \in S$  is the initial state,  $M:S \times S \to [0,1]$  is a transition probability function s.t. for all  $s \in S$ ,  $\sum_{s' \in S} M(s,s') = 1$ , and  $L:S \to 2^{AP}$  is a labeling function associating states with their respective true atomic propositions.

A path is an infinite sequence  $s_1, s_2, ...$  of elements of S, and a trace is a finite non-empty prefix of a path.



- Qualitative properties of a system are expressed in temporal logics (typically Computational Tree Logic)
- If the process is stochastic, we require a logic with which we can express quantitative properties about time and probability
- We will see Probabilistic Computational Tree Logics (PCTL)

The semantics of a PCTL formula are defined w.r.t a DTMC M and a state  $s \in S$ . Syntax can be found in Fig.2.

| $\phi ::= \top \mid a \mid \neg \phi \mid \phi \land \phi' \mid P_{\geq \theta}(\psi)$ | $a \in AP$                  | atomic proposition |
|----------------------------------------------------------------------------------------|-----------------------------|--------------------|
| $\psi ::= \phi \mid X \phi \mid \phi  U^{\leq t}  \phi' \mid \phi  U  \phi'$           | $\theta \in [0,1]$          | probability bound  |
|                                                                                        | $t \in \mathbb{Z}^{\geq 0}$ | time bound         |

Fig.2. PCTL Syntax.

The semantics of a PCTL formula are defined w.r.t a DTMC M and a state  $s \in S$ . Syntax can be found in Fig.2.

| $\phi ::= \top \mid a \mid \neg \phi \mid \phi \land \phi' \mid P_{\geq \theta}(\psi)$ | $a \in AP$                 | atomic proposition |
|----------------------------------------------------------------------------------------|----------------------------|--------------------|
| $\psi ::= \phi   X \phi   \phi U^{\leq t} \phi'   \phi U \phi'$                        | $\theta \in [0,1]$         | probability bound  |
|                                                                                        | $t\in \mathbb{Z}^{\geq 0}$ | time bound         |

**Fig.2.** PCTL Syntax.

The "unusual" operators are:

 $lacksquare P_{\geq heta}(\psi)$  : true when the probability that  $\psi$  holds on paths starting from s is  $\geq heta$ 

The semantics of a PCTL formula are defined w.r.t a DTMC M and a state  $s \in S$ . Syntax can be found in Fig.2.

| $\phi ::= \top \mid a \mid \neg \phi \mid \phi \land \phi' \mid P_{\geq \theta}(\psi)$ | $a \in AP$                 | atomic proposition |
|----------------------------------------------------------------------------------------|----------------------------|--------------------|
| $\psi ::= \phi   X \phi   \phi U^{\leq t} \phi'   \phi U \phi'$                        | $\theta \in [0,1]$         | probability bound  |
|                                                                                        | $t\in \mathbb{Z}^{\geq 0}$ | time bound         |

**Fig.2.** PCTL Syntax.

### The "unusual" operators are:

- $lacksquare P_{\geq heta}(\psi)$  : true when the probability that  $\psi$  holds on paths starting from s is  $\geq heta$
- $\phi U^{\leq t} \phi'$ : true for a path  $\pi = s_1, s_2...$  if  $\exists s_{k+1}, k+1 \leq t$  in  $\pi$  where  $\phi'$  holds, and  $\phi$  holds in all the states up to  $s_k$

**Fig.3.** A path where  $\phi U^{\leq t} \phi'$  holds.



Given a stochastic discrete event system (e.g., a DTMC M) and a property in stochastic logic (e.g.,  $P_{\geq \theta}(\psi)$ ), how can we establish if the property holds for some specific case?

Given a stochastic discrete event system (e.g., a DTMC M) and a property in stochastic logic (e.g.,  $P_{\geq \theta}(\psi)$ ), how can we establish if the property holds for some specific case?

■ With SMC, the system is simulated multiple times and the property  $\psi$  is checked on every path prefix (trace): a checked trace constitutes a sample point of a Bernoulli variable X, with:

$$X = \begin{cases} 1, & \text{if } \psi \text{ holds} \\ 0, & \text{if } ! \psi \text{ holds} \end{cases} \tag{1}$$

Given a stochastic discrete event system (e.g., a DTMC M) and a property in stochastic logic (e.g.,  $P_{\geq \theta}(\psi)$ ), how can we establish if the property holds for some specific case?

■ With SMC, the system is simulated multiple times and the property  $\psi$  is checked on every path prefix (trace): a checked trace constitutes a sample point of a Bernoulli variable X, with:

$$X = \begin{cases} 1, & \text{if } \psi \text{ holds} \\ 0, & \text{if } ! \psi \text{ holds} \end{cases} \tag{1}$$

■ Therefore,  $P(\psi) = E[X] = p$ : the value p can be measured and compared with threshold  $\theta \to \text{Hypothesis}$  Testing or Estimation

and  $H_1: p < \theta$ , we evaluate the probability of obtaining such set of samples (the so-called p-value), assuming  $H_0$  was true. If the p-value is smaller than a significance level  $\alpha$ , we reject  $H_0$ , otherwise we accept it. If we reject  $H_0$  when it is true we make a Type I error (probability  $\alpha$ ), in the mirrored case we make a Type II error (probability  $\beta$ ), as in Fig.4

|                                          | Decision                    |                             |  |
|------------------------------------------|-----------------------------|-----------------------------|--|
| Truth                                    | accept $H_0$ , reject $H_1$ | reject $H_0$ , accept $H_1$ |  |
| $p \ge \theta$ : $H_0$ true, $H_1$ false | correct (>1 $-\alpha$ )     | type I error (≤α)           |  |
| $p < \theta$ : $H_0$ false, $H_1$ true   | type II error (≤β)          | correct (>1 $-\beta$ )      |  |

D . .

The conditions inside parentheses are on the probability for the given outcome.

Fig.4. Schema of errors in Hypothesis Testing.

**Estimation**: Given a set of observations that represents a random sample, this can be used to estimate the parameters of the distribution, such as the value of p in a Bernoulli process. In this case, the proposed approximation, with m sample points, is  $p' = \frac{\sum_{i=1}^m x_i}{m}$ . Given a precision  $\epsilon$ , p is guaranteed to belong to  $[p' - \epsilon, p' + \epsilon]$ .



- $P(\psi) = p \ge \theta$ ?
- Hypothesis Testing: accept  $H_0 o p \ge \theta$ , reject  $H_0 o p < \theta$
- **E**stimation: approximate value of p and compare it with threshold  $\theta$

# Uppaal SMC

- Uppaal developers have recently (2012) released an Uppaal extension that allows us to model systems with stochastic features and run SMC experiments;
- Reading the Uppaal SMC Tutorial<sup>2</sup> is highly suggested if you choose to pursue the stochastic path for the project.
- If you do, make sure you download the latest build (v.4.1) that includes the SMC extension.

<sup>&</sup>lt;sup>2</sup>https://link.springer.com/content/pdf/10.1007/s10009-014-0361-y.pdf



- Uppaal SMC extends the formalism underlying the tool to Stochastic Hybrid Automata (SHA):
  - stochastic features replace plain non-determinism with probabilistic choices;
  - hybrid systems are an extension of Timed Automata where clock rates can be given as general expressions (i.e., a differential equation)<sup>3</sup>

<sup>&</sup>lt;sup>3</sup>No time to look into hybrid systems today (and they are not required by the project) but, if you are interested, we got theses!



- We want to apply the following changes to previous coffee machine model:
  - ▶ When time T required to brew coffee elapses, with a 1% probability the machine shuts down and enters a deadlock *error* state;
  - When the user is idle, the probability of them performing an action is distributed according to an *exponential* distribution with fixed rate  $\lambda = 1$ .
  - When the coffee is ready, the probability of the user picking up the coffee is distributed according to an *exponential* distribution with fixed rate  $\lambda=1$ .



### Stochastic Coffee Machine:





Stochastic User:



■ The model will be uploaded on Beep.



- Uppaal queries are also extended to include PCTL operators:
  - ▶  $\Pr[<= \text{TAU}; \mathbb{N}](\psi)$  is equivalent to PCTL formula  $P^{\leq \tau}(\psi)$  and yields a probability range for formula  $\psi$  holding within time-bound  $\tau$ . Optional parameter  $\mathbb{N}$  bounds the number of runs generated for the SMC experiment (decreasing its value might save you some time, but it may also reduce the degree of confidence!)



- Uppaal queries are also extended to include PCTL operators:
  - ▶  $\Pr[<= \text{TAU}; \mathbb{N}](\psi)$  is equivalent to PCTL formula  $P^{\leq \tau}(\psi)$  and yields a probability range for formula  $\psi$  holding within time-bound  $\tau$ . Optional parameter  $\mathbb{N}$  bounds the number of runs generated for the SMC experiment (decreasing its value might save you some time, but it may also reduce the degree of confidence!)
  - ▶ simulate[<= TAU; N]{E<sub>1</sub>, ..., E<sub>m</sub>} generates N runs of the system (that you can plot or export), each TAU time instants long, where  $E_1, ..., E_m$  are the monitored expressions (this is a precious tool to test your system!).



- Let us run some queries on the updated coffee machine model:
  - Pr[<= TAU](<> u.waiting\_for\_coffee) yields a probability range for the user eventually ordering coffee;
  - Pr[<= TAU](<> m.coffee\_is\_ready) yields a probability range for the machine eventually producing a cup of coffee (play around to see how this changes in relation to the probability that the user will actually order coffee);
  - Pr[<= TAU](<> m.error) yields a probability range for the coffee machine eventually shutting down;



- Let us run some queries on the updated coffee machine model:
  - Pr[<= TAU](<> u.waiting\_for\_coffee) yields a probability range for the user eventually ordering coffee;
  - Pr[<= TAU](<> m.coffee\_is\_ready) yields a probability range for the machine eventually producing a cup of coffee (play around to see how this changes in relation to the probability that the user will actually order coffee);
  - Pr[<= TAU](<> m.error) yields a probability range for the coffee machine eventually shutting down;
  - simulate[<= TAU; 1]{u.idle \* 2, u.waiting\_for\_coffee \* 2, u.picking\_coffee \* 2, m.x/m.T, m.making\_coffee, m.coffee\_is\_ready} generates a trace monitoring user/machine states (the \*2 is purely for visualization purposes).