Let \mathbb{F} be any field.

Lemma 0.1. $\forall a \in \mathbb{F} : a \cdot 0 = 0$

Proof.

$$\Rightarrow a \cdot (0+0) = a \cdot 0 + a \cdot 0$$

$$= a \cdot 0$$

$$(a \cdot 0 + a \cdot 0) - (a \cdot 0) = a \cdot 0 - (a \cdot 0)$$

$$\Rightarrow a \cdot 0 + (a \cdot 0 - a \cdot 0) = 0$$
Definition of =
$$(4)$$
Associative Law
$$and Existence of an Additive Inverse$$

$$\Rightarrow a \cdot 0 + 0 = 0$$
Existence of an Additive Inverse
$$\Rightarrow a \cdot 0 = 0$$
Existence of an Additive Inverse
$$\Rightarrow a \cdot 0 = 0$$
Existence of an Additive Inverse
$$\Rightarrow a \cdot 0 = 0$$
Existence of an Additive Inverse

Existence of an Additive Identity

(1)

Lemma 0.2. $\forall a, b \in \mathbb{F} : ab = 0 \Leftrightarrow a = 0 \lor b = 0$

0 + 0 = 0

Proof. By Commutative Law and Lemma 0.1, $a = 0 \Rightarrow ab = ba = b \cdot 0 = 0$.

Similarly, $b=0 \Rightarrow ab=a\cdot 0=0$. If ab=0 and $b\neq 0$, $\exists \ b^{-1}:abb^{-1}=0\cdot b^{-1}$, hence by Commutative Law and Existence of a Multiplicative Inverse $a\cdot 1=b^{-1}\cdot 0$, then by Existence of a Multiplicative Identity and Lemma 0.1 a=0.

If ab=0 and $a\neq 0$, $\exists \ a^{-1}: a^{-1}ab=a^{-1}\cdot 0$, hence by Commutative Law and Lemma 0.1 $aa^{-1}b=0$, then by Existence of a Multiplicative Inverse $1\cdot b=0$, and by Commutative Law and Existence of a Multiplicative Identity $b\cdot 1=b=0$.

If
$$a = 0 \land b = 0$$
, then by Lemma 0.1 $ab = 0 \cdot 0 = 0$

Theorem 0.3. $1+1+1+1=0 \in \mathbb{F} \Rightarrow 1+1=0$

Proof. Consider $(1+1) \cdot (1+1)$.

$$(1+1)(1+1) = (1+1) \cdot 1 + (1+1) \cdot 1$$
 Distributive Law (1)

$$1 \cdot (1+1) + 1 \cdot (1+1) = 1+1+1+1$$
 Distributive Law and Commutative Law (2)

Therefore, 1 + 1 + 1 + 1 = (1 + 1)(1 + 1) = 0 by assumption.

Now, since
$$(1+1)(1+1) = 0$$
 and $1+1 = 1+1$, by Lemma 0.2 $1+1 = 0$ as required.