TD4 Analyse

Félix Yvonnet

25 octobre 2023

Ex 8 TD2

- 1. $L_n(b) = \sum_{k=0}^n a_k b_k$, L_n clairement linéaire et continue pour Holder : $|L_n(b)| \le \sum_{k=0}^n |a_k| |b_k| \le \left(\sum_{k=0}^n |a_k|^p\right)^{\frac{1}{p}} \left(\sum_{k=0}^n |b_k|^p\right)^{\frac{1}{q}}$. On a donc bien la continuité avec $||L_n|| \le ($ et même en prenant $b_k = \overline{a_k} a_k^{\frac{p}{q}-1} =) \left(\sum_{k=0}^n |a_k|^p\right)^{\frac{1}{p}}$. L_n simplement bornée car pour $b \in l^q$, $L_n(b)$ bornée car $\sum a_n b_n$ converge. Banach-Steinhauss $\Rightarrow ||L_n|| < \infty \Rightarrow a \in l^p$
- 2. $T_f: g \mapsto fg$ est C^0 . $T_{f_n} \longrightarrow T_f$. Si on borne cette suite alors c'est bon. On prend $f_n = \frac{f}{|f_n|} \min(|f|, n)$ sur $\{f \neq 0\}$ et 0 sinon. Alors T_{f_n} existe (car f_n est bornée donc $\forall g \in L^2$, $f_n g \in L^2$), est continue (de norme $\leq n$ car $f_n^2 \leq n^2$. Autrement, $T_{f_n}(g+\varepsilon) = gf_n + \varepsilon f_n \xrightarrow[\varepsilon \to 0]{} gf_n$) et vu que $f_n \xrightarrow[n \to +\infty]{} f$ alors $T_{f_n} \xrightarrow[n \to +\infty]{} T_f$ simplement. Finalement, Banach-Steinhauss $\Rightarrow T_f$ est continue.

Ex 2 : Graphes fermés, opérateur possédant un adjoint

Si on a un graphe fermé alors T Continue ssi son graphe est fermé. Soit $(x_n,T_{x_n}) \to (x,y) \in H_1 \times H_2$. $z \in H_2: {}_{x_n},z\rangle_2 = \langle x_n,Sz\rangle_1 \Rightarrow \langle y,z\rangle_2 = \langle x,Sz\rangle_1 = \langle Tx,z\rangle$. Comme vrai pour tout z alors y=Tx.

Ex 1 : Existence d'un inverse à droite

- 1. $X = X_1 + X_2, \varphi: \frac{X_1 \times X_2 \longrightarrow X}{(v_1, v_2) \longmapsto v_1 + v_2}$ linéaire, surjective, continue pour $\|(v_1, v_2)\| = \|v_1\| + \|v_2\|$. Par th de l'application ouverte (les espaces sont bien complets) $\exists C > 0, \ B_X(0, C) \subset \varphi(B_{X_1 \times X_2}(0, 1).$ Alors $B_X(0, 1) \subset \varphi(B_{X_1 \times X_2}(0, \frac{1}{C}))$ finalement $\forall v \in X, \ \|v\| = 1 \Rightarrow \|v_1\| + \|v_2\| \leq \frac{1}{C}$. Ainsi $\|v_1\| \leq \frac{1}{C}$ donc pour $\frac{v}{\|v\|}$ on retrouve le résultat demandé avec $C = \frac{1}{C}$.
- 2. (a) Y_0 est un Hilbert car fermé dans un complet donc complet.

- (b) $y \in Y_0$, $G_0(y) = 0 = G(y) \Rightarrow y \in Ker(G) \cap Ker(G)^{\perp} = \{0\}$ donc G_0 est inductive (th du rang). $Im(_0) \subset Im(G)$, $z = G(y) \in Im(G)$, $y = y_1 + y_2$, $y_1 \in Ker(G)$, $y_2 \in Ker(G)^{\perp} = Y_0$. $z = G(y) = G(y_2) = G_0(y_2) \Rightarrow z \in Im(G_0)$.
- (c) G_0 réalise une bijection de Y_0 sur Im(G), on ne peut pas appliquer l'isomorphisme de Banach car Im(G) n'est pas nécessairement fermé.
- (d) Y,Y sont complets. $(x_n,y_n)\in X_0,Y_0$ suite du graphe de $G_0^{-1}\circ F$ ie $y_n=G_0^{-1}\circ F(x_n)$ tq $(x_n,y_n)\to (x,y)\in X_0,Y_0$. Alors $G_0(y)=G(y)\leftarrow G(y_n)=G_0(y_n)=F(x_n)\to F(x)$. On a donc bien $y=G_0^{-1}\circ F(x)$ donc par le graphe fermé l'application est continue. On prend $\phi=G_0^{-1}\circ F$.
- 3. $X = Z, F = Id, Im(F) \subset Im(G)$ dès que G est surjective.
- 4. $X = Z, Y = X_1 \times X_2, F = Id, G(v_1, v_2) = v_1 + v_2$. alors $G^{-1}: v = v_1 + v_2 \mapsto (v_1, v_2)$.

Ex 4 : Somme de fermés

- 1. $A \times B$ est compact, + est continue donc A + B est compact comme image par une fonction continue d'un compact.
- 2. $x \in (A+B)^c$ pour $a \in A, x-a \notin B$ (sinon +a dans A+B) donc $x-a \in B^c$ ouvert. Par C^0 de l'application -, on a U_a, V_a ouverts to $x \in U_a$ et $a \in V_a$ et $U_a + V_a \subset B^c$. $A \subset \bigcup_{a \in A} V_a$ recouvrement d'ouverts

donc $\exists a_1, \dots, a_n$ sous recouvrement fini avec $U = \bigcap_{i=1}^n U_{a_i}$ alors $x \in U$. Finalement $U \cap (A+B) = \emptyset$, $(A+B)^c$ ouvert $\Rightarrow A+B$ fermé.

3. $A=\mathbb{N}^-,\,B=\{-n+\frac{1}{n}\mid n\geq 2\}$ Alors $0\in\overline{A+B}$ mais $O\not\in A+B$ donc A+B fermé $\not\Rightarrow A+B$ fermé

Ex 5 : Compactifications du plan euclidien

1. On cherche l'intersection et on obtient $i(x,y) = \left(\frac{2x}{x^2+y^2+1}, \frac{2y}{x^2+y^2+1}, \frac{x^2+y^2-1}{x^2+y^2+1}\right)$ i continue de \mathbb{R}^2 dans $S^2 \setminus \{N\}$. alors $i^{-1}(a,b,c) = \left(\frac{a}{1-c}, \frac{b}{1-c}\right)$ avec i^{-1} continue. $S^2 \setminus \{N\}$ dense dans S^2 . C'est ma compactification d'Alexandrov. $i(x_n,y_n) \to N \Leftrightarrow \|x_n,y_n\| \to \infty$