Асиметрична криптографія

Проблеми симетричної криптографії

- Проблема розповсюдження криптографічних ключів;
- Проблема зберігання ключів;
- Велика кількість ключів для розгалуженої криптосистеми: K=N(N-1)/2.
- Чи можна подолати такі недоліки?
- Чи можна розробити таку криптосистему, де зашифровують одним ключем, а розшифровують іншим?

«Механічна» аналогія

• Нехай ми живемо в країні, де спецслужби на пошті читають усі листи, якщо можуть зробити це непомітно.

 Якщо не можуть непомі не читають його.

 Щоби не прочитали нат кладемо його в скриньк замок.

«Механічна» аналогія

- Спецслужби не можуть відкрити замок без ключа.
- Адресат також не може відкрити замок без ключа – треба якось передати йому ключ.
- Передавати не хочеться можуть перехопити спецслужби.
 - Як зробити так, щоби скринька закривалася одним ключем, а відкривалася іншим?

«Механічна» аналогія

• Відповідь:

- Зачинити скриньку на замок і відправити отримувачу;
- Отримувач навішує ще один замок і відправляє відправнику;
- Відправник відчиняє свій замок і відправляє скриньку отримувачу;
- Отримувач відчиняє скриньку і читає листа.

Отже, принципово можна зачинити скриньку одним ключем, а відчинити — іншим.

Асиметрична криптографія

рілд Діффі та Ма статтю «Нов

> іропоновано абс ифрування на іх» функцій.

• Односторонні функції — такі функції, які в прямому напрямку обчислюються легко, а для знаходження оберненої функції треба розв'язати задачу надзвичайної обчислювальної складності.

Асиметрична криптографія

- Приклади односторонніх функцій:
- у=рq перемножити два великих простих числа легко, а розкласти велике число на прості множники – складна задача, складність якої зростає експоненційно зі зростанням розрядності числа.
- $y = a^x mod n$ в прямому напрямі обчислюється легко, а знаходження x наштовхується на дуже складну задачу дискретного логарифмування: $x = (log_a y) mod n$.

Особливості систем АК

- Суб'єкт інформаційного обміну генерує два ключі: **приватний** і **публічний**.
- <u>Приватний ключ</u> використовується для розшифрування інформації. Він не розповсюджується, а зберігається в таємниці у власника.
- <u>Публічний ключ</u> використовується для зашифрування інформації. Розшифрувати за його допомогою зашифровану інформацію неможливо (в усякому разі, дуже складно). Публічний ключ розміщується на публічному ресурсі і доступний для усіх.

Особливості систем АК

- Перетворення відкритого тексту повинно бути незворотним без можливості його відновлення на публічному ключі;
- Обчислення приватного ключа на основі публічного також повинно бути неможливим на сучасному технологічному рівні. При цьому бажаною є точна нижня оцінка трудомісткості розкриття шифру.

Використання АК

- Як самостійних засобів захисту інформації;
- Як засобів аутентифікації користувачів;
- Як засоби розповсюдження криптографічних ключів у складі комбінованих криптосистем.

Недоліки АК:

- Мала швидкість (приблизно в 1000 разів) порівняно з симетричними системами;
- Математично не доведено, що не існує простого способу отримання приватного ключа з публічного. Стійкість АК грунтується, в принципі, на багаторічному практичному досвіді

Елементи теорії чисел

- Функція Ейлера: $\varphi(n)$ визначає кількість цілих чисел, взаємно простих з n множини [1,n-1].
- Доведено (теорема Ейлера), що якщо n просте число, то $\varphi(n)=n-1$. Продемонструємо це для множини [1,11]:

n	2	3	4	5	6	7	8	9	10	11
$\varphi(n)$	1	2	2	4	2	6	4	6	4	10

Елементи теорії чисел

- Мала теорема Ферма: Якщо n просте число то $(x^{n-1} \mod n)=1$ для будь-яких x, взаємно простих з n.
- Теорема 2. Нехай число n просте. Для будьякого A та $1 \le B \le (n-1)$ знайдеться таке $1 \le X \le (n-1)$, що $A^x \mod n = B$. Іншими словами, стверджується, що функція $A^x \mod n = B$ однозначна на проміжку 0...n-1.

Приклад

Розглянемо функцію: $y = a^x mod 7$

a∖x	0	1	2	3	4	5	6
0							
1		1	1	1	1	1	1
2		2	4	1	2	4	1
3		3	2	6	4	5	1
4		4	2	1	4	2	1
5		5	4	6	2	3	1
6		6	1	6	1	6	1

Приклад

- Значення *а*, для яких встановюється однозначна залежність, називаються **первісними коренями** за модулем 7.
- Такі корені саме й використовують для створення криптосистем.

Автори RSA

Poн Piвест Ron <mark>R</mark>ivest

Аді Шамір Adi Shamir

Леон Аделман Leon Addleman

Криптостійкість RSA грунтується на задачі розкладання великого цілого числа на прості множники – задачі факторизації великих чисел.

- Для того, щоби розгорнути криптосистему RSA, необхідно виконати такі кроки:
- <u>Крок 1</u>. Обираються два цілих числа, *p* і *q*, з таким розрахунком, щоби їхній добуток був величини 1024 біти. Тим чи іншим методом перевіряємо, чи обрані числа прості.
- Для цього використовують тести простоти:
 - Решето Ератосфена;
 - Тест Міллера;
 - Вихор Мерсенна;
 - Теорем Вільсона та ін.
- Обчислюємо добуток $n=p \times q$. n модуль криптосистеми.

- <u>Крок 2</u>. З числа первісних коренів за модулем криптосистеми обираємо один, який буде публічним ключем криптосистеми.
- Первісний корінь шукати не обов'язково: достатньо, щоби для обраного публічного ключа e виконувалося: НСД (e, n)=1.
- Пара чисел (e, n) буде **публічним ключем** криптосистеми.
- Публічний ключ розміщується на доступному для усіх ресурсі.

- Публічний ключ використовується для шифрування інформації.
- Його неможливо (в усякому разі, обчислювально складно) використати для розшифрування зашифрованої інформації.

Таким чином, кожен, хто бажає зашифрувати інформацію, може взяти з ресурсу ключ та виконати процес шифрування.

- <u>Крок 3</u>. Обчислюємо приватний ключ d. Для цього необхідно розв'язати рівняння: $(d \times e)$ mod n = 1.
- Для цього використовують метод Евкліда розв'язку рівняння Діофанта.
- Для малих чисел можна використати просту формулу:

$$d = \frac{1+k\varphi(n)}{e} = \frac{1+k(p-1)(q-1)}{e}$$
, де $k = 1,2,3...$ - ціле число, а $\varphi(n) = \varphi(pq) = \varphi(p)\varphi(q) = (p-1)(q-1)$.

• Практично це підбирання приватного ключа.

- Число (d, n) називається **приватним ключем** криптосистеми.
- Приватний ключ не розповсюджується, а зберігається у його власника в таємниці.
- Приватний ключ використовується для розшифрування інформації, зашифрованої на парному йому публічному ключі.
- Для іншого публічного ключа цей приватний ключ не підходить.
- Криптосистема RSA симетрична відносно використання ключів: можна шифрувати публічним і розшифровувати приватним, і **навпаки.**

- Публічний ключ ще називається:
 - Public key;
 - Открытый ключ.
- Приватний ключ ще називається:
 - Private key;
 - Закрытый ключ;
 - Секретный ключ.

- *Крок 4*. Шифрування інформації:
 - Шифруються десяткові числа з діапазону [1, n-1], наприклад, коди літер алфавіту (або груп літер, якщо використовуються великі числа).
 - Шифрування виконується в такий спосіб:

$$C_i = (M_i)^e mod n$$

- Результат шифрування відправляється у канал зв'язку.
- <u>Крок 5</u>. Розшифрування інформації.

$$M_i = (C_i)^d mod n$$

• Доведемо, що в результаті ми отримаємо розшифроване повідомлення: $(C_i)^d \mod n = ((M_i)^e)^d \mod n = (M_i)^{ed} \mod n = M_i$ оскільки $ed \mod n = 1$.

Таким чином, пряме та обернене перетворення еквівалентні.

- Розглянемо простий приклад:
- Нехай p=11; q=7 n=77 модуль криптосистеми;
- Знаходимо публічний ключ: e=13;
- НСД (e, n) = 1, тобто e, n -взаємно прості числа.
- Таким чином, публічний ключ буде (13, 77).
- Тепер треба обчислити приватний ключ:
- $(d \times e) \mod n = 1$:

•
$$d = \frac{1+k\varphi(n)}{e} = \frac{1+k\varphi(pq)}{e} = \frac{1+k\varphi(p)\varphi(q)}{e} = \frac{1+k(p-1)(q-1)}{e} = \frac{1+k\times10\times6}{13} = \frac{1+k\times60}{13};$$

- Для k=8 отримаємо:
- $d = \frac{1+8\times60}{13} = \frac{481}{13} = 37.$
- Таким чином, приватний ключ (37,77).

Шифруються десяткові числа з діапазону [1, n-1], тобто від 1 до 76.

_	A	Б	В	Γ	Д	E	ϵ	Ж	3	И	Ι	Ï	Й	К	Л	M	Н	O	П	P	C	T	y	Φ	X	Ц	Ч	Ш	Ш	Ь	Ю	R
-	1	2	3	4	5	6	7	8																								3
										0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2

Оскільки ми маємо дуже маленькі числа, ми будемо шифрувати літери по одній.

Зашифруємо слово «БАНК». Замінимо літери за цією таблицею заміни: 02 01 17 14.

Шифруємо публічним ключем:

 $C_{1}=2^{13} \mod 77 = 30;$

 $C_{2}=1^{13} \mod 77 = 01;$

 $C_3 = 17^{13} \mod 77 = 73;$

 $C4=14^{13} \mod 77 = 49;$

Послідовність 30 01 73 49 – в канал зв'язку.

A	Б	В	Γ	Д	E	ϵ	Ж	3	И	Ι	Ï	Й	К	Л	M	Н	O	П	P	C	T	\mathbf{y}	Φ	X	Ц	Ч	Ш	Ш	Ь	Ю	Я
1	2	3	4	5	6	7	8																								3
									0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2

Отримали з каналу зв'язку послідовність: 30 01 73 49:

Розшифровуємо за допомогою приватного ключа:

$$M_{1}=30^{37} \mod 77 = 02;$$

$$M2=137 \mod 77 = 01;$$

$$M_3 = 73^{37} \mod 77 = 17;$$

$$M4=49^{37} \mod 77 = 14;$$

Замінюємо числа на літери за таблицею замін, будемо мати «БАНК».

Алгоритм RSA

• З наведеного прикладу видно недоліки запропонованої схеми: числа 00, 01 та 76 не шифруються. Тому для покращення стійкості необхідно зменшити діапазон до [2,n-2].

- Криптосистема Ель Гамаля була розроблена у 1985 році.
- В основі криптостійкості лежить задача дискретного логарифмування:
- $y= a^x \mod n$ \longrightarrow $x=(\log_a y) \mod n$.
- Ця задача вважається складнішою за задачу факторизації, яка використовується в криптосистемі RSA.
- Для того, щоби розгорнути криптосистему
 Ель Гамаля, необхідно зробити таке.

- Крок 1. Підготовчі обчислення.
 - За допомогою криптостійкого генератора випадкових чисел генеруємо модуль криптосистеми, п порядку 1024 біти.
 - □ Генеруємо випадкові числа g та а з діапазону
 [1, n-1] порядку 160 бітів.
 - □ Обчислюємо число h=ga mod n.
 - □ (n, g, h) публічний ключ;
 - □ (n, a) приватний ключ.

- Крок 2. Шифрування інформації. Шифруються числа від о до n-1. Нехай m відкрите повідомлення. Тоді:
 - □ Генерується сеансовий ключ r з діапазону 1- n-1
 - Обчислюються два числа: C1=g^r mod n, C2=mh^r mod n.
 - С1 та С2 будуть зашифрованим повідомленням: (С1, С2).

- Крок 3. Розшифрування інформації.
 - [•] Розшифрування інформації виконується за наступною формулою: $m=C_2(C_1^a)^{-1} \mod n$.
 - Доведемо, що пряме та обернене перетворення еквівалентні.
 - Підставимо значення С1 та С2:
 - $m = C_2(C_1^a)^{-1} \mod n = mh^r(g^{ra})^{-1} \mod n = mh^r(g^{ar})^{-1} \mod n = mh^r(h)^{-r} = m.$
 - Отже, операції шифрування та розшифрування взаємно обернені.

Приклад КС Ель Гамаля

- Розглянемо простий приклад:
- Hexaй n=29, g=2, a=5.
- Обчислимо $h=2^5 \mod 29 = 3$.
- Тоді публічний ключ (29, 2, 3), приватний –
 (29, 5).
- Нехай повідомлення m=11. Тоді:
- Генеруємо сеансовий ключ: r=8.
- Обчислюємо: C1=2⁸ mod 29= 24; C2=11(3⁸) mod 29 = 19. Отже зашифроване повідомлення буде (24, 19).

Приклад КС Ель Гамаля

- Розшифровування:
- $C_2(C_1^a) \mod 29 = 19(24^5)^{-1} \mod 29 = 11$.