1. Examen Octubre 2020

1.1. TEORÍA

Pregunta 1. (1 punto) Un dispositivo cilindro-pistón de 24 m^3 contiene 8 kg de Helio a 288 K. Se suministra trabajo desde el exterior hasta que el volumen específico se reduce a 0.5 $\frac{m^3}{kg}$ y la temperatura alcanza los 353 K. La temperatura ambiental es de 25 °C. Calcular: la variación de exergía del Helio expresada en kJ. Considere los calores específicos del Helio constantes a temperatura de 300 K y la presión ambiental 1 bar.

Pregunta 2. (1 punto) Un flujo másico de $2\frac{kg}{s}$ de vapor se expansiona de forma irreversible en una tobera que funciona en estado estacionario. El vapor entra en la tobera a 40 bar y 400 °C y con una velocidad de 10 $\frac{m}{s}$. La tobera se puede considerar adiabática y la variación de energía potencial de vapor despreciable. A la salida la presión del vapor es de 14 bar y su velocidad es de $665\frac{m}{s}$. Determine el área de la sección de salida de la tobera en m^2 .

Pregunta 3. (1 punto) Un tanque rígido contiene agua a 16 MPa y 360 °C. Calcule:

- El volumen específico del agua usando la ley de los gases.
- El volumen específico usando el factor de compresibilidad.
- El error que se comete usando las aproximadciones de los apartados anteriores.

Pregunta 4. (1 punto)

- La irradiación total sobre un cuerpo es de $2200\frac{W}{m^2}$. De esta cantidad, $450\frac{W}{m^2}$ los refleja y $900\frac{W}{m^2}$ los absorbe. Determine la transmisividad.
- La superficie de un cuerpo negro está a 115C. Determine la potencia emisiva espectral a la que la longitud de onda máxima $\frac{W}{m^2\mu m}$

1.2. PROBLEMAS

Problema 1. (**2 puntos**) Un dispositivo cilindro-pistón contiene aire a 1250 kPa y 60 $^{\circ}$ C, el cual puede considerarse gas ideal con calores específicos constantes ($c_P = 1,005 \frac{kJ}{kg \cdot K}$, $C_V = 0,718 \frac{kJ}{kg \cdot K}$). El aire sufre un proceso de expansión hasta alcanzar los 140 kPa, el cual se puede considerar adiabático pero irreversible,, con un rendimiento isoentrópico de la expansión del 95 %. Considere el ambiente a 25 $^{\circ}$ C y 1 bar. Determine:

- Dibuje el diagrama T-s de la transformación y halle la temperatura final K de la misma.
- La variación de exergía específica que sufre el aire en $\frac{kJ}{kg}$.
- El trabajo útil específico en $\frac{kJ}{kq}$.
- La eficiciencia exergética de la expansión y energía disponible perdida específica en $\frac{kJ}{kg}$.

Problema 2. (**2 puntos**) Un motor de 4 tiempos y 4 cilindros realiza un ciclo ideal Otto. Se conocen los siguientes datos:

Determine:

Carrera Pistón	40 mm	Diámetro Pistón	60 mm
Rendimiento Volumétrico	0.9	Rendimiento Mecánico	0.8
Relación de compresión	12	Presión de admisión	1 bar
Coeficiente adiabático	1.4	Presión media indicada	15 bar
Dosado	20	Poder calorífico del combustible	45000
Velocidad angular	1600 rev/min	Densidad del aire	1.293

- Las presiones y volúmenes de cada punto del ciclo.
- La potencia efectiva.
- El par efectivo.
- La velocidad media del émbolo

Problema 3. (**2 puntos**) En la figura se esquematiza una sección de 1 m de caldera diseñada para suministrar agua de calefacción a un edificio de 50 viviendas. El cuerpo de la caldera, cuya resistencia térmica es despreciable, está fabricado en hierro fundido (negro en la imagen) y está aislado exteriormente mediante un calorifugado de lana de roca. Determine:

- El flujo de calor que se evacua hacia el exterior a través del calorifugado.
- La temperatura del cuerpo de la caldera T_{cc} .
- El flujo de calor radiante y de calor convetivo en el interior de la caldera.
- El flujo de calor que se evacua por el agua.
- La longitud que debería tener la caldera para suministrar 500 kW de calefacción.

Figura 1: Caldera

Datos: $R_1 = 0.3m$, $R_2 = 0.5m$, $R_3 = 0.6m$, $h_e = 12\frac{W}{m^2K}$, $h_i = 150\frac{W}{m^2K}$, $h_r = 60\frac{W}{m^2K}$, $k_{lana} = 0.05\frac{W}{m^2K}$, $T_{llama} = 1900$ °C, $T_i = 700$ °C, $T_e = 35$ °C, $T_0 = 25$ °C.