45202314

Formelblatt ELT 1 - Grundlagen, DC-Netzwerke & Strömungsfelder

Konstanten		$e = 1.602 \times 10^{-19}\mathrm{C}$	$\approx 1.6\times 10^{-19}\mathrm{C}$
	$\begin{array}{l} {\rm Masse~des~Elektrons} \\ {\rm (Ruhemasse,} \ v \ll c_0) \end{array}$	$m_e = 9.109 \times 10^{-31}\mathrm{kg}$	$\approx 9\times 10^{-31}\mathrm{kg}$
	Avogadro-Konstante (Anzahl für molare Masse)	$N_A = 6.022 \times 10^{23}\mathrm{mol}^{-1}$	$\approx 6\times 10^{23}\mathrm{mol}^{-1}$
	Boltzmann-Konstante	$k_B = 1.3806 \times 10^{-23} \text{J/K}$	$\approx 1.4 \times 10^{-23} \text{J/K}$
	Lichtgeschwindigkeit (in Vakuum)	$c_0 = 299792458\mathrm{m/s}$	$\approx 3\times 10^8\text{m/s}$

undgesetze	Kirchhoffscher Knotensatz KH-1 (Kontinuität)	$\sum_{n} I_{n} = 0$	$\mathring{I} = \oint_{H\"ulle} \mathbf{J} \cdot d\mathbf{s} = 0$
	Kirchhoffscher Maschensatz KH-2 (Konservativität)	$\sum_{n} U_n = 0$	$\mathring{U} = \oint_{C = \partial A} \mathbf{E} \cdot d\mathbf{l} = 0$
Gru	Ohmsches Gesetz	$R = \frac{U}{I} \text{bzw.} G = \frac{I}{U} = \frac{1}{R}$	$[R]=\Omega, [G]={\sf S}$

_			
	Stromstärke	$I = \left. \frac{dQ}{dt} \right _{\text{durch } A} = \int_A \mathbf{J} \cdot \underbrace{\hat{\mathbf{n}}}_{\text{ds}} \underbrace{ds}_{\text{bomogen}} \ \mathbf{J} \cdot \mathbf{A}$	$[I] = \frac{C}{s} = A$
Grundlagen	Stromdichte <i>Bewegte Ladungsdichte</i>	$\mathbf{J} = \frac{dI}{dA}\hat{\mathbf{n}} = \rho\mathbf{v} = \sigma\mathbf{E} \qquad (\hat{\mathbf{n}} \perp A, \mathbf{A} = \hat{\mathbf{n}}A)$	$[J] = rac{A}{m^2}$
	Driftgeschwindigkeit (der Ladungsträger)	$\mathbf{v} = \frac{\mathbf{J}}{q n} = \frac{\mathbf{J}}{\rho}$	$\label{eq:continuous_section} \begin{split} [v] &= m/s, [q] = C = As, \\ [n] &= 1/m^3, [\rho] = As/m^3 \end{split}$
	Elektrische Leitfähigkeit und spez. Widerstand ϱ	$\sigma = \frac{1}{\varrho} = q n \mu$	$\begin{split} [\sigma] &= \text{S/m}, [\varrho] = \Omega \text{m}, \\ [\mu] &= \frac{\text{m/s}}{\text{V/m}} = \text{A s}^2 / \text{kg} \end{split}$
	Temperaturabhängigkeit von Widerständen	$\Delta R = (\alpha \Delta T + \beta \Delta T^2 + \dots) R_{T_0} (\Delta T =$	$T - T_0$) $[\alpha] = 1/K$ $[\beta] = 1/K^2$
	Elektrisches Potential normalisierte pot. Energie	$\varphi = \frac{W}{Q}$	$[\varphi] = V = \frac{J}{C} = \frac{kgm^2}{As^3}$
	Elektrische Spannung Potentialdifferenz	$U_{AB} = \varphi_{A} - \varphi_{B} = \frac{\Delta W}{Q} = \int_{A}^{B} \mathbf{E} \cdot \underbrace{d\mathbf{l}}_{\widehat{l}dl} \stackrel{hom.}{=} \mathbf{E} \cdot$	$\mathbf{l}_{AB} \qquad [U] = V$
	Leistung Arbeit pro Zeiteinheit	$P = \frac{\Delta W}{\Delta t} = UI = \int_V p dv \stackrel{\text{homogen}}{=} pV$	$[P] = \frac{J}{s} = W$
	Leistungsdichte des el. Strömungsfelds	$p = \frac{dP}{dv} = \mathbf{J} \cdot \mathbf{E} = \sigma E^2 = \varrho J^2$	$[p] = rac{W}{m^3}$
	Wirkungsgrad Effizienz	$\eta = \frac{\Delta W_{\rm ab}}{\Delta W_{\rm zu}} {\rm bzw.} \eta = \frac{P_{\rm ab}}{P_{\rm zu}} = \frac{P_{\rm ab}}{P_{\rm ab} + P_{\rm ver}}$	$[\eta]=1$ (bzw. %)
	Ladungsänderung (aus Stromfluss)	$Q(t_2) = \Delta Q + Q(t_1) = \int_{t_1}^{t_2} I(t) dt + Q(t_1)$	[Q] = C = As

$\begin{array}{l} \textbf{Graph} \\ G(V,E) \text{ bzw. } G(K,Z) \end{array}$	Ein Graph G besteht aus je einer Menge k Knoten, K , und einer Menge z Zweige (Verbindungen zwischen Knoten), Z .	
Baum verzweigter Pfad	Ein Baum ist ein (verzweigter) Pfad/Linienzug (zusammenhängende Zweige bzw. Verbindungen von Knoten) ohne Zyklen/Kreise.	
verzweigter Pfad Spannbaum vollständiger Baum Masche	Ein Spannbaum ist ein Baum, welcher alle Knoten verbindet; er besteht aus $k\!-\!1$ Baumzweigen (daneben $z\!-\!k\!+\!1$ Verbindungszweige).	
Masche innerer/äusserer Kreis	Eine Masche ist ein Kreis (einzelner Zyklus, d.h. Pfad mit gleichem Start- und Endknoten) ohne innere \underline{oder} äussere Zweige; Anzahl: m .	
Eulerscher Polyedersatz für <i>planare</i> Graphen	Anz. Maschen $m=z-k+2$ $z=$ Anz. Zweige $k=$ Anz. Knoten	

