#11 XGB 명령어 기본?

2021년 2월 5일 금요일 오후 4:03

Counter는 신호(Pulse)와 관계가 있고 Timer는 상태(Status)와 관계가 있다 사칙연산은 결과값의 저장위치에 주의 한다.

따라서 Counter는 a접점(-||-) 신호 보다는 상승(-|P|-) 또는 하강엣지(-|N|-) 신호와 연관이 있다

XGB Model 에서 Counter 란?

Counter 값은 C로시작되는 변수 명을 갖는다.

입력조건의 Rising Edge (Off→On)에서 카운트하며 Reset 입력에서 카운터의 동작을 중지하고 현재치를 0 으로 소거하거나 설정치로 대치합니다.

4 종의 명령어 (CTU, CTD, CTUD, CTR) 에 따라 각 계수 방법이 다르고 최대 설정치는 hffff 까지

카운터 종류	처리내용	계수방법	타임차트
СТИ	Up 카운터	가 산	Reset Count Pulse 설정치
CTD	Down 카운터	감 산	Reset Count Pulse 설정치
	I In/Down		Reset 가산 Pulse 감산

CTUD	Up/Down 카운터	가산/감산	가산 Pulse 감산 Pulse 현재치 출 력
CTR	Ring 카운터	가 산	Reset Count Pulse 설정치

그림 2.4 카운터 종류 및 계수방법

XGB Model 에서 Timer 란?

기본주기 0.1ms(XGB 는 지원안함), 1ms, 10ms, 100ms 의 4 종류가 있으며 5 종의 명령어 (TON,TOFF, TMR, TMON, TRTG)에 따라 계수 방법이 각각 다르게 됩니다.

최대 설정치는 hFFFF(65535)까지 10 진 또는 16 진수로 설정가능 합니다. 아래(그림 2.3)에 타이머 종류와 계수방법을 나타냅니다.

그림 2.3 타이머 종류 및 계수방법

XGB Model 에서 사칙연산 이란?

1) ADD (Signed Binary Add)

- (1) 워드데이터 S1 과 S2 를 더한 후 결과를 D 에 저장합니다.
- (2) 이 때 Signed 연산을 실행합니다. 연산결과가 32,767(h7FFF)를 초과하거나 -32,768(h8000) 미만
- 일 때 캐리 플래그는 셋(Set)되지 않습니다.

2) SUB (Signed Binary Subtract)

- (1) 워드데이터 S1 에서 S2 를 감산후 결과를 D(16bit)에 저장합니다.
- (2) 이 때 Signed 연산을 실행합니다.
- (3) 연산결과가 32,767(h7FFF)을 초과하거나 -32,768(h8000) 미만일 때 캐리 플래그는 셋(Set)되지 않습니다.

3) MUL (Signed Binary Multiply)

- (1) 워드데이터 S1 과 S2 를 곱한 후 결과를 (D+1,D)(32bit)에 저장합니다.
- (2) 이 때 Signed 연산을 실행합니다.

4) DIV (Signed Binary Divide)

- (1) 워드데이터 S1 을 S2 로 나눈 후 몫을 D(16bit)에 나머지를 D+1 에 저장합니다.
- (2) 이 때 signed 연산을 실행합니다

5) INC(Increment)

- (1) D 에 1 을 더한 결과를 다시 D 에 저장합니다.
- (2) Signed 연산을 수행합니다.

6) DEC(Decrement)

- (1) D 에 1 을 뺀 결과를 다시 D 에 저장합니다.
- (2) D는 Signed int 의 값으로 처리됩니다.

