Machine Learning 2017 Final Exam

13 December 2017

Name:						
Question 1: 2 points Consider a regression task in one dimension x_1 , and let $\mathcal{D} = \{(0,1), (1,2)\}$ be a dataset of input-output pairs on the form (x_1,y) . If we perform linear regression, what is the optimal weight vector \mathbf{w}_{lin} ? Recall that each input (x_0,x_1) is extended with a dummy attribute $x_0=1$.						
Question 2: 1 point The three most common problems in supervised learning are classification, regression, and logistic regression. For each problem, give a practical example, including a description of the input and output.						

Name:	hat is the role of the erro	or measure in supervised lo	earning? How can the
		different error measures f	
		a popular technique for a g time compared to regular	
		ntly used to find the minim t descent depend on the lea	
	hat is the kernel trick? machines to learn a clas	Explain why the kernel transition.	ick is often combined

Name:
Question 7: 1 point The Policy Iteration algorithm for Markov decision processes iteratively computes a sequence of policies $\pi_1, \pi_2, \dots, \pi_k$ and a sequence of value functions V_1, V_2, \dots, V_k . In a given iteration k of the election what is the relation between π and V_1 and
In a given iteration k of the algorithm, what is the relation between π_k and V_{k+1} ?
Question 8: 1 point Describe the TD(0) algorithm for policy evaluation in a discounted Markov
decision process. Name one advantage and one disadvantage of TD(0) over the Least-
Squares temporal difference (LSTD) learning algorithm.
Question 9: 2 point Consider the Explore-then-commit (ETC) algorithm for a two-armed bandit problem with mean rewards μ_1 and $\mu_2 = \mu_1 - \Delta$, with rewards bounded in $[0,1]$. Let $\widehat{\mu}_1$
and $\hat{\mu}_2$ be the empirical mean rewards obtained from the two arms in the exploration phase of ETC, respectively. Give a lower bound on the sample size m necessary for guaranteeing
$\widehat{\mu}_1 \geq \widehat{\mu}_2$ with probability at least $1 - \delta!$
Hint: Use Hoeffding's inequality that guarantees
$\frac{1}{m} \sum_{t=1}^{m} X_t - \mathbb{E}\left[X_1\right] \le \sqrt{\frac{\log(1/\delta)}{m}}$
with probability at least $1 - \delta$ if $X_t \in [0, 1]$ for all t .

Nama				
maille.	 	 	 	

Question 10: 2 point

• Consider the Bayesian network depicted below. Write down the corresponding factor graph using squared nodes to denote factors and circle nodes to denote variables.

•	Assuming that x_1 can take three discrete values and that x_3 is a binary variable, explain
	a possible way to compute the marginal $p(x_1, x_3)$ using the least possible number of
	runs of the belief propagation algorithm. You don't need to write down the messages,

just state, for each run, which variables do you need to clamp, and what is the result

you want to obtain.

Question 1	11: 2 point	
•	Continuous random variables x come independently from a probability distribution is	oution.
	$P(x m, \mathcal{H}_1) = \frac{1}{2}(1+mx),$ $x \in (-1, +1),$	(1)
	where m is the only model parameter, with value between -1 and $+1$. After observing three data points of x , $D=\{\frac{1}{3},\frac{1}{2},\frac{3}{5}\}$, find m analytically (assumiform prior for m).	ume a
•	A simpler explanation \mathcal{H}_0 for observing D is that those variables come from a unprobability distribution	iiform
	$P(x m,\mathcal{H}_0) = \frac{1}{2}.$	(2)
	Given the data D , what is the evidence for \mathcal{H}_0 ? What is the evidence for \mathcal{H}_1 ? Remember that $\int_a^b m^n dm = \left(\frac{m^{n+1}}{n+1} + C\right)\Big _a^b$	
The tot	ral score is:/15.	

Name: