

Armed Forces College of Medicine AFCM

Diuretics (1)

By
Yosra Magdy
Associate Professor of clinical
pharmacology
Dermatology and Andrology
Specialist /ASU

INTENDED LEARNING OBJECTIVES (ILO)

By the end of this lecture the student will be able to:

- 1. Identify the site of action of diuretics
- 2. Identify different members of diuretics
- Explain the mechanism of action and adverse effects of different diuretics

DIURETI CS

Afferent Efferent arteriole arteriole Afferent Efferent **PG**→ VD Angiotensin II → arteriole arteriole VC Glomerular Secretion capillaries 4. Excretion Bowman's capsule Peritubular capillaries Renal

Maintenance of Glomerular Filtration in Hypoperfusion States

Urinary excretion

In renal hypoperfusion, glomerular pressure is \uparrow to maintain GFR through: \uparrow Ag II \rightarrow VC of efferent arteriole & \uparrow PG \rightarrow VD of afferent arteriole \rightarrow \uparrow blood flow

 In renal hypoperfusion states (hypovolemia, diuretic therapy, heart failure), administration of $\frac{ACEIs}{ACEIs}$ (\rightarrow inhibit efferent VC) or administration of the PG synthesis inhibitors NSAIDs (→ inhibit afferent VD) causes marked reduction in glomerular filtration \rightarrow acute renal failure.

Transport of water and electrolytes through the nephron

Aldosterone

Medullary hypertonicity:

is created by active reabsorption of Na⁺ coupled with passive transport of urea at this segment. It provides osmotic driving forces for water reabsorption from collecting tubules under the effect of ADH to conserve body water & concentrate urine.

Renal PG interfere with medullary hypertonicity by inhibiting Na reabsorption leading to diuresis

Diuretics

Diuretics are drugs that cause a net loss of sodium and water from the body through the kidney resulting in contraction of the extracellular fluid.

Osmotic diuretics Mannitol

DIURETICS

Diuretic	Site of action
 Carbonic 	Proximal tubule
anhydrase	
Inhibitors	
 Osmotic 	Proximal tubule &
diuretics	loop of Henle
 Loop diuretics 	Loop of Henle
Thiazides	Early Distal tubule
 Amiloride 	Distal tubule and
 Triamterene 	collecting duct
 Spironolactone 	

General principles in diuretic therapy

Aldosterone

Diuretics interfering with reabsorption of Na+ at earlier (more proximal) sites lead to enhanced Na+ reabsorption in exchange with K+ & H+ at distal tubule (aldosterone-dependent Na+/K+/H+ exchange site)

→ hypokalemia and alkalosis.

A. K[±]-losing diuretics

- Loop diuretics.
- Thiazides.
- Osmotic diuretics.
- Carbonic anhydrase inhibitors.

B. <u>K</u>±-sparing diuretics

- Spironolactone
- Amiloride
- triamterene.

General principles in diuretic therapy

Diuretics act by different mechanisms and at different sites along the nephron Thus, they have a synergistic effect if they are combined.

General principles in diuretic therapy

All diuretics (except spironolactone) have to reach their site of action in the lumen of the nephron, by organic acid or organic base secretory systems.

Therefore, any defect in delivery of diuretics to their sites of action (e.g. in renal impairment) will result in diminished diuretic response.

Diuretic	Route of access to site of action
Carbonic anhydrase Inhibitors	Organic acid secretion
Osmotic diuretics	Glomerular filtration
 Loop diuretics 	Organic acid secretion
 Thiazides 	Organic acid secretion
 Amiloride 	Organic base secretion
 Triamterene 	Organic base secretion
 Spironolactone 	Peritubular circulation

Lecture quiz

- Which of the following diuretics is associated with hyperkalemia?
- A. Thiazides
- B. Loop diuretics
- C. Osmotic diuretics
- D. Carbonic anhydrase inhibitors
- E. Spironolactone

SUGGESTED

TEXTBOOKS

- Whalen, K., Finkel, R., & Panavelil, T. A. (2018) Lippincott's Illustrated Reviews: Pharmacology (7th edition.). Philadelphia: Wolters Kluwer
- 2. Katzung BG, Trevor AJ. (2018). Basic & Clinical Pharmacology (14th edition) New York: McGraw-Hill Medical.

Thank You