Document summary of video

Chip Modelling (High-level design stage)

- Specs (C model):
 - The very first stage is writing a **functional model** of the chip in a high-level language like **C/C++**.
 - This acts as the **golden reference model** it describes what the chip should do, not how it will be implemented.
- Testbench in C:
 - A testbench is written in C to verify that the spec model works correctly.
- Output (O1):
 - A C model with testbench results is the first checkpoint before RTL coding starts.

RTL Architecture (RTL Design Stage)

- Soft copy of hardware (Verilog/VHDL):
 - The RTL architect takes the C model/specs and describes the **hardware behavior** using RTL (Verilog or VHDL).
 - This is called the **soft model of hardware**.
- Components designed at RTL:
 - Processor core
 - Peripherals / IPs (like UART, SPI, timers, etc.)
- Synthesis process:
 - The RTL is synthesized to generate a **Gate-level Netlist** (logic gates + flip-flops).
- Macros & Analog IPs:
 - **Macros:** Pre-synthesized blocks (like memories, multipliers) which can be instantiated as required.
 - **Analog IPs:** Functional blocks that are not purely digital (PLL, ADC, etc.) described in functional RTL but implemented as hard macros.
- Output (O2):
 - Verified RTL description of the entire SoC, ready for synthesis and integration.

SoC Integration (Chip-level assembly stage)

- Integration of all blocks:
 - Processor, peripherals, macros, and analog IPs are combined into one SoC.
 - **GPIOs** and bus interconnects are also added here.
- Backend (Physical design flow):
 - Steps like floorplanning, placement, clock tree synthesis (CTS), and routing are performed.
 - Uses hard macros (HM) for analog and large IPs.
 - The processor can be included as soft logic (synthesized) or as a hard macro depending on the case.
- Output (O3):
 - A fully integrated SoC netlist/layout.

Final ASIC Flow

- Conversion to GDSII:
 - The final physical layout is written out in **GDSII format** the industry standard for chip fabrication.
- Checks before tapeout:
 - DRC (Design Rule Check): Ensures layout follows foundry rules.
 - LVS (Layout vs. Schematic): Ensures the layout matches the logical netlist.
- Tapeout:
 - After clean DRC/LVS, the GDSII file is sent to the **fab** for manufacturing.