The Weekly Progress

Starting in Nov. 10, 2018

In the autumn semester, hopefully I'll record my progress every Thursday morning

SO FAR

- 1. Understand why X-ray cause profound effects to ISM
- 2. Aquire the X-ray spectra emitted the SMBH in the center of Milky Way Galaxy several mys ago
- 3. Decide to focus on a cold dense cloud 8 kpc from the SMBH, thus fixing the flux
- 4. Figure out how KROME works, especially its X-ray module (details on https://github.com/slowdivePTG/X
 -ray-chemistry/tree/master)
- 5. Be able to calculate primary X-ray ionizations according to a X-ray spectra and the cross sections of certain species.

$$\zeta_k^p = \int_{E_{min}}^{E_{max}} rac{F_X(E)}{E} \sigma_k(E) \mathrm{d}E$$

$$F_X(E): \ \mathrm{erg}\cdot \ \mathrm{cm}^{-2}\cdot \ \mathrm{s}^{-1}$$

6. Learn about the cosmic ray ionization

Nov. 10, 2018

1. Trace the most important reactions using the Jacobian Matrix pd(i,j)

$$pd(i,j) = rac{\partial}{\partial n(j)} igg(rac{\mathrm{d}n(i)}{\mathrm{d}t}igg)$$

$$\left(\frac{\mathrm{d}n(i)}{\mathrm{d}t}\right)_j = n(j) \cdot pd(i,j)$$

2. Test a simple model but consider a mixture of H/He rather than ${
m H_2/He}$. $J_{X21}=0.1$ for 1 mys then turn off the X-ray radiation. Plot the abundance of ${
m CH_4}$ with time.

For this molecular cloud test we choose the osu_01_2007 network and the initial conditions proposed by $\it Wakelam~\&~Herbst~(2008)$: a constant temperature of $\rm T=10~K, H_2$ density of $\rm 10^4~cm^{-3}$, cosmic rays ionization rate of $\rm 1.3\times10^{-17}~s^{-1}$, and a visual extinction of 10. The initial conditions of the species are listed in Table 7 and correspond to the EA2 model of $\it Wakelam~\&~Herbst~(2008)$, an high-metal environment observed in the diffuse cloud $\it \zeta~Ophiuchi$

```
Tgas = 1d1 !gas temperature (K)
xH = 2d4 !Hydrogen density
!user commons for opacity and CR rate
call krome_set_user_av(1d1) !opacity Av (#)E11.3,
```

```
call krome set user crate(1.3d-17) !CR rate (1/s)
  call krome set user gas dust ratio(7.57d11) !gas/dust
 call krome init()
 j21xs = 0d0
 call krome_set_J21xray(j21xs)
 print *,"J21 Xray = ",j21xs
 x(:) = 1.d-20
 !initial densities (model EA2 Wakelam+Herbst 2008)
 x(KROME idx H2) = 0.5d0 * xH !In this case we actually use <math>x(KROME idx H) =
0.5d0 * xH, which is not true
 x(KROME idx He) = 9d-2 * xH
 x(KROME idx N) = 7.6d-5 * xH
 x(KROME idx O) = 2.56d-4 * xH
 x(KROME idx Cj) = 1.2d-4 * xH
 x(KROME idx Sj) = 1.5d-5 * xH
 x(KROME idx Sij) = 1.7d-6 * xH
 x(KROME idx Fej) = 2d-7 * xH
 x(KROME_idx_Naj) = 2d-7 * xH
 x(KROME_idx_Mgj) = 2.4d-6 * xH
 x(KROME idx Clj) = 1.8d-7 * xH
 x(KROME idx Pj) = 1.17d-7 * xH
 x(KROME idx Fj) = 1.8d-8 * xH
 !calculate elctrons (neutral cloud)
 x(KROME_idx_e) = krome_get_electrons(x(:))
```

Nov. 15, 2018

1. (From Prof. Du) The secondary ionization rate of molecular hydrogen can be approximately considered as 2 hydrogen atoms.

Related readings:

X-ray chemistry in the envelopes around young stellar objects, Stäuber 2005

X-Ray--irradiated Molecular Gas. I. Physical Processes and General Results, Maloney 1996

According to Maloney 1996, the main process in the X-ray (secondary) ionization of H_2 is:

$$\mathrm{H_2} + \mathrm{e^-} \longrightarrow \mathrm{H_2^+} + 2\,\mathrm{e^-}$$

We can assume the rate coefficient is twice the ionization rates of H, and thus include it in the network.

INCLUDE means when calculating the secondary ionization rates, we take the abundance of H:

$$n_t(\mathrm{H}) = n(\mathrm{H}) + 2n(\mathrm{H}_2)$$

The modification of Fortran code in krome_subs.f90 is shown here

```
!H2 -> H2+ + E
```

Some results are:

Obviously the ionization of ${\bf H}_2$ becomes more significant, and the profile of ${\bf CH}_4$ changes a lot. If we don't take $n_t({\bf H})$ the effect is even more profound.

• (NOT AT PRESENT) For heavier atoms or other molecules, we can apply the approximation with the energy *E* fixed, neglecting the dependence of the cross sections on energy:

$$\zeta_i = \zeta_{
m H_2} rac{\sigma_i(E)}{\sigma_{
m H_2}(E)}$$

2. Species observants most interested in:

经常观测的分子包括CO、HCO⁺、 N_2H^+ 、HCN、各种碳氢化合物 C_2H 、 C_3H_3 等等。可以关注一下代表了电离度的电子丰度 x_e ,以及 H_3^+ 、C⁺、OH⁺、 H_2O^+ 等离子的丰度;OH、CH、NH $_3$ 、 H_2O 等也可以看看。还可以看更复杂一些的CH $_3$ CN、CH $_3$ OH等

 x_e is important because it decides the chemical composition and whether the heating process is sufficient

- 3. The simple H/He model used before:
 - Abundance of CH₄ too low
 - \circ Not enough time to form ${
 m H_2}$
 - $\circ~$ Does not include \boldsymbol{H}_2 formation on $\boldsymbol{\mathsf{grains}}$

Therefore it is not reasonable enough, and I shall focus on the new $\rm H_2/He$ model to see what will happen if I turn off the X-ray after 1 mys.

Without ${
m H_2}$ formation on **grains**, there seems no jump in the abundance of ${
m CH_4}$, which is shown in the plot.

Nov. 22, 2018

1. More details on secondary ionization

The secondary ionization rate for H (Stäuber 2005, Maloney 1996,):

$$egin{align} \zeta_H^{(2)} &= \int_{E_{min}}^{E_{max}} rac{F(E)}{E} N_{sec}(E,x_e) \sigma(E) \mathrm{d}E \ N_{sec}(E,x_e) &= rac{E-E_{th}}{W(E)} pprox rac{E}{W(E)} \end{aligned}$$

 $N_{sec}(E)$ is the number of secondary **ionizations** per unit energy produced by primary photoelectrons W(E) is the mean energy expended to produce an ion pair through rapid electron process

A BIG MISTAKE HERE LAST WEEK!

 $N_{sec}(E)$ is not the number of secondary electrons but the number of ion pairs produced by a secondary electron. **WE DON'T COUNT ELECTRONS HERE!**

More comments on the formula

- $\circ \ W(E)$ is nearly independent of E if $E>200~{
 m eV}$, which is easy to satisfied in our case
- o $N_{sec}(E,x_e)$ is dependent on x_e . When $x_e>1\%$, the energy in photoelectrons will be mainly lost to Coulomb Interaction with ambient thermal electrons. In our case, $n_e/n_{\rm H}<10^{-4}$. For weakly ionized gases, $\approx 40\%$ of the primary electron energy will be used for ionization (Krolik 1983, Shull 1985), then for a secondary electron with energy $1~{\rm keV}$, the number of ${\rm H}$ it can ionize is:

$$N = rac{0.40 imes 1 ext{ keV}}{13.6 ext{ eV}} pprox 30$$

More precise calculation (Glassgold & Langer 1973, Dalgarno 1999, Glassgold 2012) shows that in ${
m H_2}+{
m He}$ neutral gas, 47% of energy goes to ionization, 47% in ${
m H_2}$ and ${
m He}$ excitation, the rest goes for heating. $N_{sec}(E)\approx 27$ and thus we can take $W(E)\approx 37~{
m eV}$.

The formula I actually use

$$\zeta_{ ext{tot}}^i = \zeta_{ ext{p}}^i + \sum_{j= ext{H.He}} rac{n_j}{n_i} \zeta_{ ext{p}}^j \left\langle \phi^i
ight
angle$$

 $\circ~$ The numbers of secondary ionization of H and He per primary ionization are taken from Shull 1985

$$\phi^{ ext{H}}\left(E,x_{ ext{e}}
ight) = \left(rac{E}{13.6 ext{eV}} - 1
ight) 0.3908 ig(1 - x_{ ext{e}}^{0.4092}ig)^{1.7592} \ \phi^{ ext{He}}\left(E,x_{ ext{e}}
ight) = \left(rac{E}{24.6 ext{eV}} - 1
ight) 0.0554 ig(1 - x_{ ext{e}}^{0.4014}ig)^{1.660}$$

o Can be rewritten like this:

$$egin{aligned} \zeta_{tot}^{
m H} &= \zeta_p^{
m H} (1 + \langle \phi^{
m H}
angle) + \zeta_p^{
m He} rac{n_{
m He}}{n_{
m H}} \langle \phi^{
m H}
angle \ \zeta_{tot}^{
m He} &= \zeta_p^{
m He} (1 + \langle \phi^{
m He}
angle) + \zeta_p^{
m H} rac{n_{
m H}}{n_{
m He}} \langle \phi^{
m He}
angle \end{aligned}$$

which average ϕ over the X-ray spectrum F(E)

2. Test all the species listed last week

Nov. 29, 2018

1. Recalculate the ionization rate using the primal formula

$$\zeta_{tot}^{\mathrm{H}} = \zeta_p^{\mathrm{H}} + rac{n_{\mathrm{He}}}{n_{\mathrm{H}}} \int_{E_{min}}^{E_{max}} rac{F(E)}{E} e^{- au(E)} \phi^{\mathrm{H}} \sigma_{\mathrm{He}}(E) \mathrm{d}E + \int_{E_{min}}^{E_{max}} rac{F(E)}{E} e^{- au(E)} \phi^{\mathrm{H}} \sigma_{\mathrm{H}}(E) \mathrm{d}E$$

rather than the simplified one

$$\zeta_{tot}^{
m H} = \zeta_p^{
m H} (1 + \langle \phi^{
m H}
angle) + \zeta_p^{
m He} rac{n_{
m He}}{n_{
m H}} \langle \phi^{
m H}
angle$$

and compare the results.

When we set $n_{
m H}=2 imes 10^4~{
m cm^{-3}}, n_{
m He}=2 imes 10^3~{
m cm^{-3}}, J_{X21}=0.1, T=160~{
m K}$, we get

$$\begin{split} \zeta_{\rm H} &= 4.09 \times 10^{-18}~{\rm s}^{-1}, \quad \zeta_{\rm He} = 3.61 \times 10^{-18}~{\rm s}^{-1} \quad \text{(Primal)} \\ \zeta_{\rm H}' &= 7.23 \times 10^{-18}~{\rm s}^{-1}, \quad \zeta_{\rm He}' = 6.07 \times 10^{-18}~{\rm s}^{-1} \quad \text{(Simplified)} \\ \frac{\zeta_{\rm H}}{\zeta_{\rm H}'} &\approx \frac{\zeta_{\rm He}}{\zeta_{\rm He}'} \approx 0.56 \end{split}$$

Since we take $E_{min}=2~{\rm keV}, E_{max}=10~{\rm keV}$, and in our case, $F(E)\propto E^{-1.5}$, $\sigma(E)\propto E^{-3}$, $\phi(E,x_e)\propto E$, $e^{-\tau(E)}\sim 1$, we have

$$\zeta^{(2)} = \int_{E_{min}}^{E_{max}} rac{F(E)}{E} \phi(E) \sigma(E) \mathrm{d}E = F_0 \phi_0 \sigma_0 \cdot \int_2^{10} E^{-4.5} \mathrm{d}E = rac{2^{-3.5} - 10^{-3.5}}{3.5} F_0 \phi_0 \sigma_0 pprox 0.025 F_0 \phi_0 \sigma_0$$

and

$$egin{aligned} \int_{E_{min}}^{E_{max}} rac{F(E)}{E} \sigma(E) \mathrm{d}E &= F_0 \sigma_0 \int_2^{10} E^{-5.5} \mathrm{d}E pprox 0.0098 F_0 \sigma_0 \ \int_{E_{min}}^{E_{max}} F(E) \phi(E) \mathrm{d}E &= F_0 \phi_0 \int_2^{10} E^{-0.5} \mathrm{d}E pprox 3.50 F_0 \phi_0 \ \int_{E_{min}}^{E_{max}} F(E) \mathrm{d}E &= F_0 \int_2^{10} E^{-1.5} \mathrm{d}E pprox 0.078 F_0 \ &\Rightarrow \zeta^{(2)'} pprox rac{0.0098 F_0 \sigma_0 \cdot 3.50 F_0 \phi_0}{0.078 F_0} pprox 0.044 F_0 \phi_0 \sigma_0 pprox 0.57 \zeta^{(2)} \end{aligned}$$

- 2. Why does KROME use a simplified formula to calculate the total ionization rate?
 - $\circ \zeta_p^{\mathrm{H}}, \zeta_p^{\mathrm{He}}$ are stored in data-files rateH.dat and rateHe.dat (column density *v.s.* primary ionization rate)
 - \circ To calculate $\zeta^{(2)}$ the program needs to read $x_e, n_{
 m H}, n_{
 m He}$ for each calculation
 - o By using the simplified formula, we may avoid integration

Here is part of codes (krome subs.f90):

```
T = Tgas
   Trad = 2d4
   ncolH = num2col(n(idx H), n(:))
   ncolHe = num2col(n(idx He),n(:)) !number density to column density
   logHe = log10(ncolHe) !take log
   logH = log10 (ncolH)
   xe = min(n(idx e) / (get Hnuclei(n(:)) + 1d-40), 1d0)
   user xray H = fit anytab2D(user xray H anytabx(:), &
        user xray H anytaby(:), &
       user xray H anytabz(:,:), &
       user_xray_H_anytabxmul, &
        user xray H anytabymul, &
        logH, logHe-logH)
        !linear interpolation to find the proper rate for the column density
   phiH = .3908d0*(1e0-xe**.4092)**1.7592* 327.832286034056d0! avoid
integration
   ratexH = 1d1**user xray H
   user xray He = fit anytab2D(user xray He anytabx(:), &
        user xray He anytaby(:), &
        user_xray_He_anytabz(:,:), &
```

```
user_xray_He_anytabxmul, &
    user_xray_He_anytabymul, &
    logH,logHe-logH)
phiHe = .0554d0*(1d0-xe**.4614)**1.666 * 180.793458763612d0
ratexHe = 1d1**user_xray_He
k(:) = small !inizialize coefficients
!H -> H+ + E
k(1) = small + ((ratexH &
   * (1d0+phiH) + n(idx_He)&
   /(n(idx H)+1d-40) * ratexHe * phiH)&
    * J21xray)
!HE -> HE+ + E
k(2) = small + ((ratexHe &
   * (1d0+phiHe) + n(idx_H)&
   /(n(idx_He)+1d-40) * ratexH * phiHe)&
    * J21xray)
print '(a10,E15.8)',"XrateH:",log10(k(1))
print '(a10,E15.8)',"XrateHe:",log10(k(2))
coe(:) = k(:) !set coefficients to return variable
```