Formulaire SysElec

Kenzi Antonin

3 janvier 2023

2

La quantification

unipolaire : $q = \frac{Dyn}{2^n}[V]$

bipolaire : $q = \frac{2Dyn}{2^n}[V]$

 $Code = \frac{U_i n}{q} [-]$ division entière

 $Xq = Code \cdot q[V]$

L'erreur de quanti. est bornée entre -q/2 et +q/2

Echantillonage

Si pleine gamme dynamique avec sinus :

$$SNRQ = 6.02N + 10.8 + 20log(\frac{V_{rms}}{2U_{ref}})$$

 $\Delta SNRQ = SNRQ1 - SNRQ2 = 10log(N_{OSR})$

Tension efficace du bruit de quantification :

$$\sigma_{nQ} = \frac{Vref}{2^{n-1} \cdot \sqrt{12}}$$

Densité spectrale de puissance :

$$S(f) = k_Q^2 = \frac{\sigma_{nQ^2}}{FS} = \frac{q^2}{12FS} [V^2/Hz]$$

Rapport signal sur bruit de quantification

$$S(f) = 10log(\frac{\sigma_x^2}{\sigma_{nQ}^2}) = 20$$

Si surechantillonage ajout d'un filtre et d'un OSR

Mode Commun et Différentiel :

1. Commun: par rapport à la GND

2. Différentiel: entre deux potentiels

Schéma bloc

Tension mode commun :
$$U_{MC} = \frac{(U_{in+}) + (U_{in-})}{2}$$

$$U_{MC_0} = I_{MC} \cdot Z_{MC}$$

Tension différentielle:

$$U_D = (U_{in+}).(U_{in-})$$

Commun Mode Rejection Ratio: CMRR

Cette grandeur donne l'atténuation d'un signal en entrée en MC sur la sortie :

$$CMRR = 20log_{10} \frac{U_{in,MC}(f)}{U_{out}(f)}$$

Formule Importantes pour les exercices :

Étage d'entrée :

Faire un tableau,

$$V_{RL} = AD \cdot U_{gMc}$$

$$SNRQ = 6.02N + 10.8 + 20log(\frac{V_{rms}}{2U_{ref}})$$

$$V_{rms} = \frac{\hat{U}_{RL}}{\sqrt{2}}$$

3

$$Pente = \frac{\Delta dB}{log_{10}(\frac{f_e}{2 \cdot f_c})} [dB/dec]$$

Cas	Vin1	Vin1	Vout1	Vout2
1	0	0	y1.1	y1.2
2	Х	0	y2.1	y2.2
3	0	Х	y3.1	y3.2
4	Х	Х	y4.1	y4.2

$$4 \mid x \mid x \mid y4.1 \mid y4$$

$$(Vin(+) - Vin(-)) = \frac{VCC - Vref}{G}$$

 $V_{outD} = Vout1 - Vout2$

Quantification

4

Code	Uin Idéal	Uin réel	DNL	INL
0	U_{0i}	U_{0r} _	$\smile (U_{1r}-U_{0r})-q$	$(U_{0i}-U_{0r})$
1	U_{1i}	U_{1r} =) h	$(U_{1i}-U_{1r})$
2	U_{2i}	U_{2r} =	$(U_{2r}-U_{1r})-q$	$(U_{2i}-U_{2r})$
3	U_{3i}	U_{3r} -		$(U_{3i}-U_{3r})$