Hiba Talat Artificial Intelligence Final Project

What is a Support Vector Machine?

The objective of the support vector machine algorithm is to find a hyperplane in N-dimensional space that distinctly classifies the data points.

To distinguish between these two classes of data points, there are a lot of possible hyperplanes that could be taken into account. Our goal is to find a plane that has the maximum margin, that is the maximum distance between data points of both classes.

Hyperplane

Hyperplanes are decision boundaries that help classify the data points.

If the input feature is 2, then the hyperplane is just a line. If the number of input is 3, then the hyperplane becomes a two-dimensional plane. It results into difficult to imagine when the number of inputs is more than 3.

Support Vector

Support vectors are data points that are near to the hyperplane and influence the position/orientation of the hyperplane

Data Collected

This is the South African Lottery results from year 2000 when it started to 2015. I was interested in predicting whether there will be winners or not given the following publicly available information prior to betting:

- 1. Prize Payable
- 2. Rollover
- 3. Rollover Count
- 4. Next Estimated Jackpot

The above-mentioned features attract quite a lot of consumers and with an increase in the betters increase the chances of winning. The winner is 1 and the no-winner is 0.

```
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas_profiling as pp
%matplotlib inline
%reload_ext autoreload
%autoreload 2
```

Data Loading

```
↑ ↓ □ ∴ :
       #Loading Data
       df= pd.read_csv("../input/south-african-powerball-results-lottery/POWERBALL.csv")
       #View Datafram
       df.head()
                                                                                                                                               ×
Out[12]:
                                                                                          Western Northern Eastern
                         Ball
                              Ball Ball Ball Ball
                                                                         Powerbal Gauteng
                                                                                                                  Mpumalanga Limpopo Freestate
                Draw Date
                                                Powerball Div1
                                                                 Div2 ...
                                                                                            Cape
                                                                                                    Cape
                                                                                                            Cape
                                2
                                                                          Ball Set
                                                                                 Winners
                                                                                                                      Winners
                                                                                                                              Winners
                                                                                                                                       Winners Winr
                                                                                          Winners
                                                                                                  Winners
                                                                                                          Winners
           577 29/05/2015
                           4 12
                                    17
                                        25
                                                            0 138020 ...
                                                                             PB5
                                                                                                                                            0
                                                                             PB4
                                                                                       0
                                                                                                                                            0
           576 26/05/2015
                           12
                              13
                                    20
                                        31
                                                            0 203470 ...
                                                                                               0
                                                                                                        0
                                                                                                                           0
           575 22/05/2015
                              31
                                    32
                                        40
                                                            0 397954 ...
                                                                             PB2
           574 19/05/2015
                           3 21
                                                            0 236728 ...
                                                                             PB5
                                                                                       0
                                                                                                       0
                                                                                                                           0
                                                                                                                                            0
           573 15/05/2015
                           8 26
                                  40 44 45
                                                            0 273026 ...
                                                                             PB4
                                                                                                                           0
       5 rows × 43 columns
```

Data Description

Null Values

```
[17]:
       df.isnull().sum()
Out[17] Draw No
      Draw Date
                                0
      Ball 1
      Ball 2
      Ball 3
      Ball 4
      Ball 5
      Powerball
      Div1
                                0
      Div2
                                0
      Div3
      Div4
      Div5
      Div6
      Div7
      Div8
                                0
      Div1 No Win
      Div2 No Win
                                0
      Div3 No Win
      Div4 No Win
      Div5 No Win
      Div6 No Win
      Div7 No Win
      Div8 No Win
                                0
      Prize Payable
      Rollover
      Rollover Count
      Next Estimated Jackpot
      Next Guaranteed Jackpot
      Total Sales
      Draw Machine
                                0
      Ball Set
                                0
```

Question to solve

We will use SVM to predict if Division 1 winner or not.

Columns used to predict are Prize Payable, Rollover, Rollover count, and Next Estimated Jackpot

```
#| Division 1 winner or not

#Columns used to predict are Prize Payable, Rollover, Rollover count and Next Estimated Jackpot

y = df.iloc[:, 16:17].values

X = df.iloc[:, 24:28].values

y1 = np.where(y>=1, 1, 0)
```

Apply Support Vector Machine

```
[54]: # Splitting the dataset into the Training set and Test set
    from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(X, y1, test_size = 0.25, random_state = 0)

[55]: # Feature Scaling
    #Standardize features by removing the mean and scaling to unit variance

    from sklearn.preprocessing import StandardScaler
    sc = StandardScaler()
    X_train = sc.fit_transform(X_train)
    X_test = sc.transform(X_test)

D # Fitting Kernel SVM to the Training set
    from sklearn.svm import SVC
    classifier = SVC(kernel = 'linear', C = 8, random_state = 0)
    classifier.fit(X_train, y_train.ravel())

Out[56]

SVC(C=8, kernel='linear', random_state=0)
```

```
[57]:
      # Predicting the Test set results
      y_pred = classifier.predict(X_test)
```

```
#Comparing the Test Data to the predicted data. This is a 100% Match.
\triangleright
     #Turn both arrays to pandas DataFrames and concantenate
     y_{test} = pd.DataFrame(y_{test})
     y_pred = pd.DataFrame(y_pred)
     result_df = pd.concat([y_test, y_pred], axis = 1, sort = False)
     result_df
```

Out[58]:

		_	
0	0	0	
1	0	0	
2	0	0	
3	0	0	
4	0	0	
140	0	0	
141	0	0	
142	0	0	
143	0	0	
144	0	0	
145 rows × 2 columns			

0 0

າຣ

8

```
# Making the Confusion Matrix for Visualization of the data
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
score = classifier.score(X_test, y_test)
score
```

Out[59] 1.0

```
#Plotting the Confusion Matrix
import matplotlib.pyplot as plt
plt.matshow(cm)
plt.title('Confusion matrix')
plt.colorbar()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.show()
```



```
from sklearn.metrics import accuracy_score
rf_acc_score = accuracy_score(y_test, y_pred)
print("Accuracy of SVM :",rf_acc_score*100,'\n')
```

Accuracy of SVM : 100.0

```
# Applying k-Fold Cross Validation to check for mean and Variance
from sklearn.model_selection import cross_val_score
accuracies = cross_val_score(estimator = classifier, X = X_train, y = y_train.ravel(), cv = 10)
Mean = accuracies.mean()#Mean close to 1
Variance = accuracies.std()#Low Variance
print("Variance and Mean is {0} and {1} ".format(Variance, Mean))
```

Variance and Mean is 0.0 and 1.0

Comparing with Logistic Regression

```
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y1, test_size = 0.25, random_state = 0)
```

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
model = LogisticRegression()
model.fit(X, y)
predicted_classes = model.predict(X)
accuracy = accuracy_score(y.flatten(),predicted_classes)
parameters = model.coef_
accuracy*100
```

/opt/conda/lib/python3.7/site-packages/sklearn/utils/validation.py:63: DataConversionWarning: A column-vector y was pass
ed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
 return f(*args, **kwargs)

Out[21

98.44020797227037

Conclusion

- SVM gives 100 % result vs Logistic regression 98%
- Data has zero null values
- SVM is better where variance variance is 0 and mean is 1

References

11

Lotto Historical Result. (n.d.). Lotto Historical Result. https://www.nationallottery.co.za/lotto-history/?game=Lotto

Contributor, T. (2017, November 29). support vector machine (SVM). WhatIs.Com. https://whatis.techtarget.com/definition/support-vector-machine-SVM