MA-106 Linear Algebra

H. Ananthnarayan

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 1st February 2018 D1 - Lecture 13

Random Attendance

1	170050019	Akshat Chugh
2	170050048	Manaswi Rajpurohit
3	170050055	Yash Jain
4	170050064	Anurag Maurya
5	170050080	Chagam Dileep Kumar Reddy
6	170050086	Ranjana B Kasangeri
7	170050092	Pothula Sai Vishal
8	170070019	Titas Chakraborty
9	170070034	Gaurav Anand
10	170070036	Nilesh Kumar
①	170070044	Varrey Rishi
12	17D070020	Rushil Shyam Heda
13	17D070023	Karan Suresh Chate
14	17D070025	Sammed Mukesh Mangale
15	170050025	Yash Khemchandani
16	170050046	Nirmal Raiput

Properties of Linear transformations

Let $\mathcal{B} = \{v_1, \dots, v_n\} \subseteq V$, $T: V \to W$ be linear. Then:

- T takes linear combinations to linear combinations. In particular, T(0) = 0.
- N(T) is a subspace of V. Why? C(T) is a subspace of W. Why?
- If $\operatorname{Span}(\mathcal{B}) = V$, is $\operatorname{Span}\{T(v_1), \dots, T(v_n)\} = W$?

Observe: Span $\{T(v_1), \ldots, T(v_n)\} = C(T)$. Why?

Conclusion: (i) If dim (V) = n, then dim $(C(T)) \le n$.

- (ii) T is onto \Leftrightarrow Span $\{T(v_1), \ldots, T(v_n)\} = C(T) = W$.
- $T(u) = T(v) \Leftrightarrow u v \in N(T)$.

Conclusion: *T* is one-one $\Leftrightarrow N(T) = 0$.

• If $\mathcal{B} \subseteq V$ is linearly independent, is $\{T(v_1), \dots, T(v_n)\} \subseteq W$ linearly independent?

HINT: $a_1 T(v_1) + \cdots + a_n T(v_n) = 0 \Rightarrow a_1 v_1 + \cdots + a_n v_n \in N(T)$.

• If $S: U \to V$, $T: V \to W$ are linear, then the composition $T \circ S: U \to W$ is linear. **Exercise:** Show that $N(S) \subseteq N(T \circ S)$. How are $C(T \circ S)$ and C(T) related?

Isomorphism of vector spaces

A linear map $T:V\to W$ is an *isomorphism* if T is one-one and onto, i.e., T is a linear bijection. **Notation**: $V\simeq W$.

Q: If $T: V \to W$ is an isomorphism, is $T^{-1}: W \to V$ linear?

Recall: T is one-one $\Leftrightarrow N(T) = 0$ and T is onto $\Leftrightarrow C(T) = W$.

Thus T is an isomorphism $\Leftrightarrow N(T) = 0$ and C(T) = W.

Example: If V is the subspace of convergent sequences in \mathbb{R}^{∞} , then $L:V\to\mathbb{R}$ given by $L(x_1,x_2,\ldots)=\lim_{n\to\infty}(x_n)$ is linear.

What is N(L)? C(L)? Is L one-one or onto?

Exercise: Given $A \in \mathcal{M}_{m \times n}$, let T(x) = Ax for $x \in \mathbb{R}^n$.

Then T is an isomorphism $\Leftrightarrow m = n$ and A is invertible.

Exercise: In the previous examples, identify linear maps which are one-one, and those which are onto.

Example: $S\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = (a, b, c, d)^T$ is an isomorphism since N(S) = 0 and $C(S) = \mathbb{R}^4$. Thus $\mathcal{M}_{2\times 2} \simeq \mathbb{R}^4$. What is S^{-1} ?

4/9

Linear Maps and Basis

ullet Consider $S:\mathcal{M}_{2 imes2} o\mathbb{R}^4$ given by $S\left(egin{pmatrix}a&b\\c&d\end{pmatrix}
ight)=(a,b,c,d)^T.$

Recall that $\{e_{11},e_{12},e_{21},e_{22}\}$ is a basis of $\mathcal{M}_{2\times 2}$ such that

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ae_{11} + be_{12} + ce_{21} + de_{22}.$$

Observe that $S(e_{11}) = e_1$, $S(e_{12}) = e_2$, $S(e_{21}) = e_3$, $S(e_{22}) = e_4$.

Thus, $S(A) = aS(e_{11}) + bS(e_{12}) + cS(e_{21}) + dS(e_{22})$

$$= ae_1 + be_2 + ce_3 + de_4 = (a, b, c, d)^T.$$

General case:

If $\{v_1, \ldots, v_n\}$ is a basis of V, $T: V \to W$ is linear, $v \in V$, then $v = a_1v_1 + \cdots + a_nv_n \Rightarrow T(v) = a_1T(v_1) + \cdots + a_nT(v_n)$. Why? Thus, T is determined by its action on a basis.

Finite-dimensional Vector Spaces

Important Observation:

```
Let dim (V) = n, and \mathcal{B} = \{v_1, \dots, v_n\} be a basis of V. Define T: V \to \mathbb{R}^n by T(v_i) = e_i.
e.g., If v = v_1 + v_n, then T(v) = ?
If v = 3v_2 - 5v_3, then T(v) = ?
If v = a_1v_1 + \dots + a_nv_n, then T(v) = ?
Thus T(v) = [v]_{\mathcal{B}}.
What is N(T)? What is C(T)?
Conclusion: If dim (V) = n, then V \simeq \mathbb{R}^n.
```

What is the isomorphism?

How many such isomorphisms can you construct?

Exercise: Find 3 isomorphisms each from \mathcal{P}_3 and $\mathcal{M}_{2\times 2}$ to \mathbb{R}^4 .

Linear maps from \mathbb{R}^n to \mathbb{R}^m

Example:
$$T(e_1) = \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \ T(e_2) = \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \ T(e_3) = \begin{pmatrix} -5 \\ 0 \end{pmatrix}$$

defines a linear map $T: \mathbb{R}^3 \to \mathbb{R}^2$.

If
$$x = (x_1, x_2, x_3)^T$$
, then $T(x) = T(x_1e_1 + x_2e_2 + x_3e_3) =$

$$x_1 T(e_1) + x_2 T(e_2) + x_3 T(e_3) = x_1 \begin{pmatrix} 3 \\ 1 \end{pmatrix} + x_2 \begin{pmatrix} 2 \\ -1 \end{pmatrix} + x_3 \begin{pmatrix} -5 \\ 0 \end{pmatrix}$$
, i.e.,

$$T(x) = Ax$$
, where $A = \begin{pmatrix} 3 & 2 & -5 \\ 1 & -1 & 0 \end{pmatrix}$. Question: $A_{*j} = T(e_j)$.

General case: If $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear, then

for
$$x = (x_1, \dots, x_n)^T$$
 in \mathbb{R}^n ,

$$T(x) = x_1 T(e_1) + \cdots x_n T(e_n) = Ax,$$

where
$$A = (T(e_1) \cdots T(e_n)) \in \mathcal{M}_{m \times n}$$
, i.e., $A_{*j} = T(e_j)$.

Defn. A is called the *standard matrix* of T. Thus

Linear transformations from \mathbb{R}^n to \mathbb{R}^m

are in one-one correspondence with $m \times n$ matrices.

Q: Can you imitate this if V and W are not \mathbb{R}^n and \mathbb{R}^m ? THINK!

1st February 2018

7/9

Matrix Associated to a Linear Map: Example

 $S: \mathcal{P}_2 \to \mathcal{P}_1$ given by $S(a_0 + a_1x + a_2x^2) = a_1 + 4a_2x$ is linear.

Question: Is there a matrix associated to S?

Expected size: 2×3 . Why?

IDEA: Construct an associated linear map $\mathbb{R}^3 \to \mathbb{R}^2$.

Use coordinate vectors! Fix bases $\mathcal{B} = \{1, x, x^2\}$ of \mathcal{P}_2 , and $\mathcal{C} = \{1, x\}$ of \mathcal{P}_1 to do this.

Identify
$$f = a_0 + a_1 x + a_2 x^2 \in \mathcal{P}_2$$
 with $[f]_{\mathcal{B}} = (a_0, a_1, a_2)^T \in \mathbb{R}^3$, and $S(f) \in \mathcal{P}_1$ with $[S(f)]_{\mathcal{C}} = (a_1, 4a_2)^T \in \mathbb{R}^2$.

The associated linear map $\mathcal{S}':\mathbb{R}^3\to\mathbb{R}^2$ is defined by

$$S'(a_0, a_1, a_2)^T = (a_1, 4a_2)^T$$
, i.e., $S'([f]_B) = [S(f)]_C$, i.e.,
 S' is defined by $S'(e_1) = (0, 0)^T$, $S'(e_2) = (1, 0)^T$, $S'(e_3) = (0, 4)^T \Rightarrow$

the standard matrix of
$$S'$$
 is $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$.

Q: How is A related to S?

Observe:
$$A_{*1} = [S(1)]_{\mathcal{C}}, A_{*2} = [S(x)]_{\mathcal{C}}, A_{*3} = [S(x^2)]_{\mathcal{C}}.$$

Matrix Associated to a Linear Map

Example: The matrix of $S(a_0 + a_1x + a_2x^2) = a_1 + 4a_2x$, w.r.t. the bases $\mathcal{B} = \{1, x, x^2\}$ of \mathcal{P}_2 and $\mathcal{C} = \{1, x\}$ of \mathcal{P}_1 is A =

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix} \text{ and } \boxed{A_{*1} = [S(1)]_{\mathcal{C}}, A_{*2} = [S(x)]_{\mathcal{C}}, A_{*3} = [S(x^2)]_{\mathcal{C}}.}$$

General Case: If $T: V \to W$ is linear, then the matrix of T w.r.t. the ordered bases $\mathcal{B} = \{v_1, \dots, v_n\}$ of V, and $\mathcal{C} = \{w_1, \dots, w_m\}$ of W, denoted $[T]_{\mathcal{C}}^{\mathcal{B}}$, is

$$A = \big([T(v_1)]_{\mathcal{C}} \ \cdots \ [T(v_n)]_{\mathcal{C}}\big) \in \mathcal{M}_{m \times n}.$$

Example: Projection onto the line $x_1 = x_2$

$$P\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \frac{x_1 + x_2}{2} \\ \frac{x_1 + x_2}{2} \end{pmatrix}$$
 has standard matrix $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$.

This is the matrix of P w.r.t. the standard basis.

Q: What is $[P]_{\mathcal{B}}^{\mathcal{B}}$ where $\mathcal{B} = \{(1,1)^T, (-1,1)^T\}$?

Conclusion: The matrix of a transformation depends on the chosen basis. Some are better than others!