Introduction to Bioinformatics

Git for Bioinformatics Analysis, Project Management and Collaboration

Introduction

- When performing bioinformatic analysis and starting a bioinformatics project you're expected to write codes
- Not only that, sometimes you also have to track the results of your experimentation for the analysis
- Let's start with a story

First Scenario

```
base_dir <- system.file("extdata", package = "minfiData")</pre>
base dir <- "recfon practice/data"
ann450k <- getAnnotation(IlluminaHumanMethylation450kanno.ilmn12.hg19)
targets <- read.metharray.sheet(base dir, pattern="SampleSheet.csv")</pre>
# read in the raw data from the IDAT files
rgSet <- read.metharray.exp(targets=targets)</pre>
rgSet
# give the samples descriptive names
targets$ID <- paste(targets$Sample Group, targets$Sample Name, sep=".")</pre>
sampleNames(rgSet) <- targets$ID</pre>
```

Imagine you're writing codes in R for your analysis, the code works perfectly and returned the expected results

```
base_dir <- system.file("extdata", package = "minfiData")
base_dir <- "recfon_practice/data"

# read in the raw data from the IDAT files
rgSet <- read.metharray.exp(targets=targets)
rgSet

# give the samples descriptive names
targets$ID <- paste(targets$Sample_Group,targets$Sample_Name,sep=".")
sampleNames(rgSet) <- targets$ID</pre>
```

The next day you realize that you didn't need some lines of code, so you remove it

```
base dir <- system.file("extdata", package = "minfiData")</pre>
base dir <- "recfon practice/data"
ann450k <- getAnnotation(IlluminaHumanMethylation450kanno.ilmn12.hg19)
targets <- read.metharray.sheet(base_dir, pattern="SampleSheet.csv")</pre>
# read in the raw data from the IDAT files
rgSet <- read.metharray.exp(targets=targets)
rgSet
# give the samples descriptive names
targets$ID <- paste(targets$Sample_Group,targets$Sample_Name,sep=".")</pre>
sampleNames(rgSet) <- targets$ID</pre>
```

Fast forward to day 14 of you're writing code it turned out that you have to go back to your initial code

```
base dir <- system.file("extdata", package = "minfiData")</pre>
base dir <- "recfon practice/data"
ann450k <- getAnnotation(IlluminaHumanMethylation450kanno.ilmn12.hg19)
targets <- read.metharray.sheet(base_dir, pattern="SampleSheet.csv")</pre>
# read in the raw data from the IDAT files
rgSet <- read.metharray.exp(targets=targets)
rgSet
# give the samples descriptive names
targets$ID <- paste(targets$Sample_Group,targets$Sample_Name,sep=".")</pre>
sampleNames(rgSet) <- targets$ID</pre>
```

Well for a shorter code like something above its easier, we know that we removed ann450k and target variable

But the truth is

```
3703
3704
      # Get all the CpG sites used in the analysis to form the background
3705
      all <- DMPs$Name
      # Total number of CpG sites tested
3706
      length(all)
3707
3708
      par(mfrow=c(1,1))
3709
3710
       gst <- gometh(sig.cpg=sigCpGs, all.cpg=all, plot.bias=TRUE)</pre>
3711
3712
      # Top 10 GO categories
      topGSA(gst, number=10)
3713
      gst[,gst$ONTOLOGY == "BP"]
3714
```

Turns out when you're doing bioinformatics project things can really get complicated

But the truth is

```
3703
3704
      # Get all the CpG sites used in the analysis to form the background
3705
      all <- DMPs$Name
      # Total number of CpG sites tested
3706
      length(all)
3707
3708
      par(mfrow=c(1,1))
3709
3710
       gst <- gometh(sig.cpg=sigCpGs, all.cpg=all, plot.bias=TRUE)</pre>
3711
3712
      # Top 10 GO categories
      topGSA(gst, number=10)
3713
      gst[,gst$ONTOLOGY == "BP"]
3714
```

Number of files will increase significantly, so are the results and the processed data

But the truth is

```
3703
3704
      # Get all the CpG sites used in the analysis to form the background
3705
      all <- DMPs$Name
3706
      # Total number of CpG sites tested
3707
      length(all)
3708
      par(mfrow=c(1,1))
3709
3710
       gst <- gometh(sig.cpg=sigCpGs, all.cpg=all, plot.bias=TRUE)</pre>
3711
3712
      # Top 10 GO categories
      topGSA(gst, number=10)
3713
      gst[,gst$ONTOLOGY == "BP"]
3714
```

It will be hard to track the changes you made and to go back to that point if you're not using any version control system (VCS)

Well we have the conventional way of doing that

analysis_result_first_revision.docx
analysis_result_fourth_revision.docx
analysis_result_second_revision.docx
analysis_result_third_revision.docx

We can create multiple files and put a date suffix at the end of it's name right?

Well we have the conventional way of doing that

analysis_result_first_revision.docx
analysis_result_fourth_revision.docx
analysis_result_second_revision.docx
analysis_result_third_revision.docx

But this one is not practical! Why? Not only it increases the file size but it will also make the project directory less tidier

Second Scenario

Collaboration

```
base_dir <- system.file("extdata", package = "minfiData")
base_dir <- "recfon_practice/data"

ann450k <- getAnnotation(IlluminaHumanMethylation450kanno.ilmn12.hg19)

targets <- read.metharray.sheet(base_dir, pattern="SampleSheet.csv")

# read in the raw data from the IDAT files
rgSet <- read.metharray.exp(targets=targets)
rgSet

# give the samples descriptive names
targets$ID <- paste(targets$5ample_Group,targets$5ample_Name,sep=".")
sampleNames(rgSet) <- targets$ID</pre>
```

Mbak Dwi's task

Mbak Zahra's task

Sometimes the project is big enough that it requires collaboration

Collaboration

```
base_dir <- system.file("extdata", package = "minfiData")
base_dir <- "recfon_practice/data"

ann450k <- getAnnotation(IlluminaHumanMethylation450kanno.ilmn12.hg19)

targets <- read.metharray.sheet(base_dir, pattern="SampleSheet.csv")

# read in the raw data from the IDAT files
rgSet <- read.metharray.exp(targets=targets)
rgSet

# give the samples descriptive names
targets$ID <- paste(targets$5ample_Group,targets$Sample_Name,sep=".")
sampleNames(rgSet) <- targets$ID</pre>
```

Mbak Dwi's task

Mbak Zahra's task

Not only codes but all of the things that are related to the project, like report writing etc

Version Control System solves this problem

So how do we overcome such problems and doing the best practice instead of the traditional way?

Yes we have this thing called Git

What is Git

- Git is a Version Control System
 - Helps handling changes and maintaining history of our projects
 - Not only that it also has more features like branch and merge
- Git helps us revert back to the older version of our work in case something didn't go well
- Git provides easier access for collaboration
- Git has been widely used by bioinformaticians, software developers and etc.

Installation

- There are multiple ways on how to install git
- The easier way when we're working with Windows computer is to download it from https://git-scm.com/downloads
- If you're using UNIX based system you should follow this instruction https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

GitHub account

- For this session we will be using GitHub to store our codes and analysis results
- To create an account go to github.com and register it with your email
- There are other providers for Git cloud but for now we will focus on using Github,
 they use the same command to so no worries with the commands

Repository

- A folder, usually used to organize a single project
- Repositories can contain folders and files, images, videos, spreadsheets, and data sets -- anything your project needs.
- Often, repositories include a README file, a file with information about your project. GitHub makes it easy to add one at the same time you create your new repository.

Let's start experimenting with Git!