

Shrimp Farm Monitoring System for Bangladesh based on IOT

Presented By

Mohd. Rasadin

Overview

- □ Background Study
- Consequence
- ☐ Motivation
- ☐ Objective
- ☐ Our Process
- ☐ Design & Methodology
- ☐ Conclusion
- ☐ Future Work

Background Study

Consequence

Motivation

Objective

- > To construct a real time IOT based monitoring device for shrimp farm in Bangladesh.
- > To develop a web application to monitor the farm remotely.

Our Process

Our Process (Cont.)

Design & Methodology

Hardware

- 1. Arduino Leonardo
- 2. Yún Shield
- 3. Lambda sensor (oxygen sensor)
- 4. E-201-C Probe (pH sensor)
- 5. DS18B20 temperature sensor
- **6. Turbidity Sensor**
- 6. Water Level Sensor
- 7. DS1307 I2C Real Time Clock Module

Software

- 1. Arduino IDE
- 2. CLOUD
- 3. Our developed web application using html, css, php, JavaScript and MySQL

Lambda Sensor

Others sensor

Circuit Diagram

Complete Device

Web Application

Our developed web application

Live Monitoring via Web

Now live monitoring is possible remotely

Graphical Representation

Live data Bucket

	WATER LEVEL	TURBIDITY	TEMPERATURE	PH	DISSOLVED OXYGEN	DATEY_M_D	Date
*	3.51562	233	27.625	0.860264	80.8	2018/12/3	2018-12-03T16;34:19.061+0600
	3.90625	234	27.625	0.841709	2.85	2018/12/3	2018-12-03T16:33:20.133+0600
	4,39453	234	27.625	0.813877	7.93	2018/12/3	2018-12-03T16:32:21,694+0600
	8.59375	235	27.625	0.850988	2.76	2018/12/3	2018-12-03T16:31:23.458+0600
	9.27734	236	27.625	0.869541	3.56	2018/12/3	2018-12-03T16:30:23.245+0600
	8.59375	236	27.625	0.823156	5.8	2018/12/3	2018-12-03T16:29:24.318+0600
	1.46484	236	27.625	0.855625	6.03	2018/12/3	2018-12-03T16:28:26.063+0600
	1,46484	237	27.625	0.888096	5.27	2018/12/3	2018-12-03T16:27:27.825+0600
	2.24609	237	27.625	0.841709	7.76	2018/12/3	2018-12-03T16:26:29.617+0600
	2.44141	238	27.625	0.864904	8.49	2018/12/3	2018-12-03T16:25:31.393+0600

Question

User Data Storage

Date wise Data Filtering

RECORDED DATA (FILTER BY DATE)

2018-11-15

2018-11-17

Filter By Date

HOME Print/PDF

Date	Dissolved Oxygen(Mg/L)	РН	Temperature(°C)	Turbidity(NTU)	Water Level(%)
2018-11-16	5.05	1.88541	27.37500	323.00000	7.51953
2018-11-16	7.84	1.76017	27.37500	319.00000	8.20312
2018-11-16	4.81	1.80191	27.37500	306.00000	7.91016
2018-11-15	6.76	1.81119	27.37500	293.00000	7.91016
2018-11-15	7.56	1.90396	27.43750	289.00000	7.91016
2018-11-15	4.38	1.63492	27.43750	295.00000	8.69141

Average Dissolved Oxygen(Mg/L)	Average PH	Average Temperature(°C)	Average Turbidity(NTU)	Activate Winds Average Water Level(%) Go to Settings to a
6.066667	1.799593333	27.395833333	304.166666667	8.024090000

Generate User Report

Conclusion

- To resolve Bangladeshi shrimp farmers troubles and difficulties during the time of farming.
- >To do the monitoring system real time and remotely.
- To maximize the shrimp production as well as country's foreign exchange earnings.

Future Work

- > System can be improved by using more sensor to measure the quality parameters of water more accurately.
- ➤ Incorporate alert system by sending sms to the users when the quality of water will be deviated from its minimum standard.
- **Add some prediction mechanism in the system.**

Thank