286.18

THOMAS BREYDO

Problem. Suppose V is a real vector space and $T \in \mathcal{L}(V)$. Prove that the following are equivalent:

- (a) All the eigenvalues of $T_{\mathbf{C}}$ are real.
- (b) There exists a basis of V with respect to which T has an upper-triangular matrix.
- (c) There exists a basis of V consisting of generalized eigenvectors.

Claim. (c) implies (b)

Proof. Suppose there exists a basis of V consisting of generalized eigenvectors. By 8.13, each vector corresponds to just one eigenvalue. Reorder the vectors so that all vectors with eigenvalue λ_1 come first, then λ_2 , and so on. Within each λ group, sort the vectors v_i in increasing value of k_i , where

$$k_i := \text{smallest } m \text{ for which } (T - \lambda_{v_i} I)^m v_i = 0.$$

Suppose that the reordered basis is v_1, \ldots, v_n . We will now show that the matrix of T with respect thomas v_1, \ldots, v_n is upper-triangular. Suppose v_i has eigenvalue λ and $k_i = k$, and that

$$Tv_i = a_1v_1 + \dots + a_nv_n.$$

We must show that $a_{i+1} = \cdots = a_n = 0$. Since v_i is a generalized eigenvector with eigenvalue λ ,

$$0 = (T - \lambda I)^{k_i + 1} v_i$$

$$= (T - \lambda I)^{k_i} (T v_i - \lambda v_i)$$

$$= (T - \lambda I)^{k_i} (a_1 v_1 + \dots + a_n v_n - \lambda v_i)$$

$$= \sum_{j \neq i} (T - \lambda I)^{k_i} (a_j v_j)$$
see note¹

$$= \sum_{j \neq i} a_j (T - \lambda I)^{k_i} v_j$$

But v_1, \ldots, v_n is linearly independent, and so is the list

Since v_1, \ldots, v_n is a basis of V with respect to which T has an upper-triangular matrix, (c) implies (b).

¹Note, $(T - \lambda I)^{k_i}(a_i v_i) = (T - \lambda I)^{k_i}(-\lambda v_i) = 0$

Note. You can view the source code for this solution here.