RefVision: CV assisted judging for powerlifting

Michael Kingston

michael.kenneth.kingston@gmail.com

LinkedIn: Michael Kingston

Agenda

- 1. Introduction
- 2. Problem Statement
- 3. Proposed Solution
- 4. Deep Dive into Serverless Components
- 5. Architecture Walkthrough
- 6. Challenges and Solutions
- 7. Future Enhancements & Roadmap
- 8. **Q&A**

1. Introduction & Story

Context

- Video Assistant Referees (VAR) are common in sports like football and tennis.
- Powerlifting faces frequent disputes over "No Lift" decisions, but lacks an appeal system.

Short Story

• A lifter's squat gets turned down by judges. The lifter disagrees, losing a record attempt and \$20k prize money—no recourse, no replay system.

Goal

 Leverage serverless AWS components to orchestrate a computer vision and natural language processing system for impartial video analysis and real-time feedback.

A Real-World Example

<video width="800" height="450" controls> <source
src="Keeta_squat_1.mp4" type="video/mp4"> Your browser does not support the
video tag. </video>

2. Problem Statement

- **Contentious Calls**: Disagreements on squat depth or other reasons for failing a lift.
- No Appeals Mechanism: Lifters have no mechanism to challenge a decision.
- Rising Stakes: large and growing prize money and records magnify the importance of disputes.
- **Sport Integrity**: Unresolved and unexplained controversies diminish trust and viewer engagement.
- **Engagement**: experience from other sports show that the strategic introduction of VAR improves viewer engagement.

3. Proposed Solution: RefVision Virtual Referee

Key Concepts

- 1. **Supplement, Not Replace**: Works with referees, providing an objective second opinion.
- 2. **Appeal Mechanism**: One VAR appeal per meet encourages strategic usage without disrupting flow.
- 3. **Impartial Analysis**: Pose estimation + classification provide a quantitative and verifiable mechanism to judge "Good" vs. "No Lift."
- 4. **Engagement**: Live overlays and natural-language explanations for the audience to understand the reasons for a decision.

Basic Architecture

<img src="refvision_quick_overview.png"
width="800" height="556" alt="Process flow diagram">

Why Serverless? And the Main Challenges

Benefits

- Cost Efficiency: Pay ~\$0 when idle; scale up for meet day.
- Zero Maintenance: No servers to patch or manage.
- **Elasticity**: Automatically handle spikes in traffic or # of lifts.

BUT

- Accelerators Needed: Real-time CV inference demands accelerators.
- **No Native Serverless accelerators**: AWS Bedrock does this for LLMs, but not for computer vision.
- **Compromise Solution**: SageMaker endpoints for accelerator tasks.

4. Deep Dive: Key Components

4.1: Ingention & Preprocessing

- **Kinesis + Firehose**: Streams and on-the-fly and transforms (e.g., to .MOV to .MP4).
- **\$3**: Stores raw video.
- **DynamoDB**: Records critical data for each lift attempt and metadata.

5.2 DynamoDB

- Central "store of state" for each attempt:
 - Preprocessing status
 - Inference results
 - Explanation text
 - Timestamps, lifter info

Data Model

- Partition Key: LifterID_LiftID
- **Sort Key**: datatype_timestamp

Partition Key	Sort Key	Metadata
12345_Squat1	Video_20240216T123456	Preprocessed frame data
12345_Squat1	Inference_20240216T123456	Inference results
12345_Squat1	Decision_20240216T123456	"Good Lift" / "No Lift"
12345_Squat1	Explanation_20240216T123456	LLM explanation

5.3 AWS Step Functions: Orchestrator

- Orchestrator:
 - i. Waits for preprocessed frames
 - ii. Triggers inference
 - iii. Collects results, triggers explanation
 - iv. Updates final status in DynamoDB
- Built-in retries & parallelisation if needed

5.3 Inference (SageMaker)

1. Inference (SageMaker)

- YOLO11 Pose run on accelerator.
- Output: Keypoints (hip, knee) and classification.
- Writes "Good Lift" or "No Lift" to DynamoDB.
- 2. Identify turnaround frame for squat depth analysis.
- 3. perform depth analysis on the turnaround frame.

5.4 Explanation Generation (Bedrock)

Explanation (Bedrock)

- Bedrock is a joy to work with.
- Lambda is invoked once inference is done.
- Passes keypoints + classification → LLM for a short explanation of decision.
- Example:

The squat was a 'No Lift' because the hip was 2cm above knee depth at the bottom."

4.6 Web App & Delivery (Flask + CloudFront)

Flask

- Serves a simple UI for judges & audience.
- Pulls annotated video from S3.
- Fetches classification + explanation from DynamoDB.

CloudFront

Caches static media (annotated videos) for fast delivery.

5. Flow Diagram:

<img src="refVision_flow_diagram.png" width="900"
height="636" alt="Process flow diagram">

Output: Annotated video with skeleton overlay

<video width="800" height="450" controls> <source
src="theo_maddox_squat_2.mp4" type="video/mp4"> Your browser does not
support the video tag. </video>

6. Challenges & Solutions

1. Serverless Accelerator Gap

Solution: SageMaker endpoints scale to near-zero usage/cost off-peak.

2. Asynchronous Coordination

Solution: Step Functions + DynamoDB to orchestrate and track statuses.

3. Accuracy & Multi-Person Scenes

Solution: Fine-tune YOLO or add a classifier for "who is the lifter?"

4. Human Trust & Acceptance

Solution: Position it as an assistive tool, not a referee replacement.

7. Future Technical Improvements

1. Multi-Camera Integration

Emulate the three judges' perspectives simultaneously.

2. Fine tuning Models

- Distinguish the lifter from handlers, audience, or background clutter.
- capture the more nuanced rules of powerlifting

3. **Broader Sports & Markets**

- Expand to Olympic weightlifting (snatch, clean & jerk).
- Exercise physiology and rehabilitation

4. RefVision as a Service

Subscription-based API for other sports or rehab contexts.

Business Model

- Licensing RefVision to powerlifting federations.
- Offering an on-demand API service for coaches & lifters.
- Expand into other sports (Olympic weightlifting).
- Expand into exercise physiology and rehabilitation.

Q&A

If you're interested, please check out the code on GitHub:

<img src="refvision_qrcode.png" width="400"
height="400" alt="Process flow diagram">

Thank You!

Contact: michael.kenneth.kingston@gmail.com