Last Time

Last Time

- Does value iteration always converge?
- Is the value function unique?

Guiding Questions

Guiding Questions

- What are the differences between *online* and *offline* solutions?
- Are there solution techniques that require computation time *independent* of the state space size?

1 dimension, 5 segments

$$|\mathcal{S}|=5$$

1 dimension, 5 segments

$$|\mathcal{S}|=5$$

2 dimensions, 5 segments

$$|\mathcal{S}|=25$$

1 dimension, 5 segments $|\mathcal{S}|=5$

2 dimensions, 5 segments
$$|\mathcal{S}|=25$$

3 dimensions, 5 segments $|\mathcal{S}|=125$

1 dimension, 5 segments

$$|\mathcal{S}|=5$$

2 dimensions, 5 segments

$$|\mathcal{S}|=25$$

3 dimensions, 5 segments

$$|\mathcal{S}|=125$$

n dimensions, k segments $o |\mathcal{S}| = k^n$

<u>Offline</u>

<u>Offline</u>

• Before Execution: find V^*/Q^*

Offline

- Before Execution: find V^*/Q^*
- During Execution: $\pi^*(s) = \operatorname{argmax} Q^*(s,a)$

<u>Offline</u>

- Before Execution: find V^*/Q^*
- During Execution: $\pi^*(s) = \operatorname{argmax} Q^*(s, a)$

→	→	→	→	→	1	1	→	1	1
-	-	→	→	→	1	1	→	1	Ţ
→	-	→	→	→	1	1	t	1	1
-	t	t	→	→	→	1	1	1	ı
1	1	1	t	-	-	1	1	ţ	1
1	-	→	→	→	→	→	1	1	1
1	1	→	→	→	→	→	→	1	1
1	1	1	t	-	-	-	-	t	-
1	1	1	-	-	-	→	→	t	t
-	-	→	→	-	→	-	t	t	t

<u>Offline</u>

- Before Execution: find V^*/Q^*
- During Execution: $\pi^*(s) = \operatorname{argmax} Q^*(s, a)$

→	→	→	→	→	1	1	→	1	1
-	→	→	→	-	1	1	→	1	1
-	→	→	→	-	1	1	t	1	1
-	t	t	→	-	-	1	1	1	1
1	1	1	t	-	-	1	1	1	1
1	→	→	→	-	→	→	1	1	1
1	1	→	→	→	→	→	→	1	1
1	1	1	t	-	→	→	→	t	-
1	1	1	→	→	→	→	→	t	t
-	→	→	→	-	→	→	t	t	t

Online

Before Execution: <nothing>

<u>Offline</u>

- Before Execution: find V^*/Q^*
- During Execution: $\pi^*(s) = \operatorname{argmax} Q^*(s, a)$

-	→	→	→	→	1	1	→	1	1
-	-	→	→	-	1	1	-	1	1
-	→	→	→	-	1	1	t	1	1
-	t	t	→	-	→	1	1	1	1
1	1	1	t	-	→	1	1	1	1
1	→	→	→	→	→	→	1	1	1
1	1	→	→	→	→	→	→	1	1
1	1	1	t	-	-	-	→	t	-
1	1	1	→	-	→	→	→	t	t
-	→	→	→	-	→	→	t	t	t

- Before Execution: <nothing>
- During Execution: Consider actions and their consequences (everything)

<u>Offline</u>

- Before Execution: find V^*/Q^*
- During Execution: $\pi^*(s) = \operatorname{argmax} Q^*(s, a)$

-	→	→	→	→	1	1	-	1	1
-	-	→	-	-	1	1	-	1	1
-	-	-	-	-	1	1	t	1	1
-	t	t	-	-	-	1	1	1	Ţ
1	1	1	t	-	-	1	1	1	1
1	→	→	-	-	→	→	1	1	1
1	1	-	-	-	→	→	-	1	1
1	1	1	t	-	-	-	-	t	-
1	1	1	-	-	-	-	-	t	t
-	-	-	-	-	-	-	t	t	t

- Before Execution: <nothing>
- During Execution: Consider actions and their consequences (everything)

<u>Offline</u>

- Before Execution: find V^*/Q^*
- During Execution: $\pi^*(s) = \operatorname{argmax} Q^*(s, a)$

→	-	-	-	-	1	1	-	1	1
→	-	→	-	-	1	1	-	1	ţ
→	-	-	-	-	1	1	t	1	ţ
→	t	t	-	-	-	1	1	1	ţ
Ţ	1	1	t	-	-	1	1	1	1
1	→	→	-	-	→	→	1	1	1
1	1	-	-	→	→	→	-	1	1
Ţ	1	1	t	-	-	-	-	t	-
1	1	1	-	-	→	-	→	t	1
→	-	-	-	-	-	-	t	t	t

<u>Online</u>

- Before Execution: <nothing>
- During Execution: Consider actions and their consequences (everything)

Why?

<u>Offline</u>

- Before Execution: find V^*/Q^*
- During Execution: $\pi^*(s) = \operatorname{argmax} Q^*(s, a)$

→	→	→	-	→	1	1	→	1	1
-	-	-	-	-	1	1	-	1	1
→	→	-	-	-	1	1	t	1	1
-	t	t	-	-	→	1	1	1	1
1	1	Ţ	t	-	→	1	1	1	1
1	→	→	-	→	→	→	1	1	1
1	1	→	-	→	→	→	→	1	1
1	1	1	1	-	→	→	→	t	-
1	1	1	-	-	→	→	→	t	t
-	→	-	-	→	→	→	t	t	t

- Before Execution: <nothing>
- During Execution: Consider actions and their consequences (everything)

- Why?
- Online methods are insensitive to the size of S!

One Step Lookahead

```
randstep(\mathcal{P}::MDP, s, a) = \mathcal{P}.TR(s, a)

function rollout(\mathcal{P}, s, \pi, d)

ret = 0.0

for t in 1:d

a = \pi(s)

s, r = randstep(\mathcal{P}, s, a)

ret += \mathcal{P}.\gamma^{\wedge}(t-1) * r

end

return ret

end

function (\pi::RolloutLookahead)(s)

U(s) = rollout(\pi.\mathcal{P}, s, \pi.\pi, \pi.d)

return greedy(\pi.\mathcal{P}, U, s).a

end
```

```
function greedy(P::MDP, U, s)
    u, a = findmax(a→lookahead(P, U, s, a), P.A)
    return (a=a, u=u)
end
```

Forward Search

```
function forward_search(₱, s, d, U)
    if d \leq 0
        return (a=nothing, u=U(s))
    end
    best = (a=nothing, u=-Inf)
    U'(s) = forward_search(P, s, d-1, U).u
    for a in \mathcal{P}.\mathcal{A}
        u = lookahead(P, U', s, a)
        if u > best.u
             best = (a=a, u=u)
        end
    end
    return best
end
```

$$O\left((|S| imes |A|)^d
ight)$$

Forward Search depth

Forward Search depth

Forward Search depth


```
function sparse_sampling (P, s, d, m, U)
    if d \leq 0
        return (a=nothing, u=U(s))
    end
    best = (a=nothing, u=-Inf)
    for a in \mathcal{P}.\mathcal{A}
        u = 0.0
        for i in 1:m
             s', r = randstep(P, s, a)
             a', u' = sparse\_sampling(P, s', d-1, m, U)
             u += (r + P.\gamma*u') / m
        end
        if u > best.u
            best = (a=a, u=u)
        end
    end
    return best
end
```

```
function sparse_sampling (P, s, d, m, U)
    if d \leq 0
         return (a=nothing, u=U(s))
    end
    best = (a=nothing, u=-Inf)
    for a in \mathcal{P}.\mathcal{A}
         u = 0.0
         for i in 1:m
             s', r = randstep(P, s, a)
             a', u' = sparse\_sampling(P, s', d-1, m, U)
             u += (r + \mathcal{P}.\gamma*u') / m
         end
         if u > best.u
             best = (a=a, u=u)
         end
    end
    return best
end
```

```
function sparse_sampling (P, s, d, m, U)
    if d \leq 0
        return (a=nothing, u=U(s))
    end
    best = (a=nothing, u=-Inf)
    for a in \mathcal{P}.\mathcal{A}
        u = 0.0
        for i in 1:m
             s', r = randstep(P, s, a)
             a', u' = sparse\_sampling(P, s', d-1, m, U)
             u += (r + P.\gamma*u') / m
        end
        if u > best.u
             best = (a=a, u=u)
        end
    end
    return best
end
```

$$O\left((m|A|)^d
ight) \qquad |V^{ ext{SS}}(s)-V^*(s)| \leq \epsilon$$

```
function sparse_sampling (P, s, d, m, U)
    if d \leq 0
         return (a=nothing, u=U(s))
    end
    best = (a=nothing, u=-Inf)
    for a in \mathcal{P}.\mathcal{A}
         u = 0.0
         for i in 1:m
             s', r = randstep(P, s, a)
             a', u' = sparse\_sampling(P, s', d-1, m, U)
             u += (r + \mathcal{P}.\gamma*u') / m
         end
         if u > best.u
             best = (a=a, u=u)
         end
    end
    return best
end
```

$$O\left((m|A|)^d\right)$$

$$|V^{ ext{SS}}(s) - V^*(s)| \leq \epsilon$$

m, ϵ , and d related, but independent of |S|

```
function sparse_sampling (P, s, d, m, U)
    if d \leq 0
         return (a=nothing, u=U(s))
    end
    best = (a=nothing, u=-Inf)
    for a in \mathcal{P}.\mathcal{A}
         u = 0.0
         for i in 1:m
             s', r = randstep(P, s, a)
             a', u' = sparse\_sampling(P, s', d-1, m, U)
             u += (r + \mathcal{P}.\gamma*u') / m
         end
         if u > best.u
             best = (a=a, u=u)
         end
    end
    return best
end
```

$$O\left((m|A|)^d\right)$$

$$|V^{ ext{SS}}(s) - V^*(s)| \leq \epsilon$$

m, ϵ , and d related, but independent of |S|

Break

Draw the trees produced by the following algorithms for a problem with 2 actions and 3 states:

- 1. One-step lookahead with rollout
- 2. Forward search (d=2)
- 3. Sparse sampling (d=2, m=2)

```
function branch_and_bound(₱, s, d, Ulo, Qhi)
    if d \leq 0
        return (a=nothing, u=Ulo(s))
    end
    U'(s) = branch_and_bound(P, s, d-1, Ulo, Qhi).u
    best = (a=nothing, u=-Inf)
    for a in sort(\mathcal{P}.\mathcal{A}, by=a\rightarrowQhi(s,a), rev=true)
        if Qhi(s, a) < best.u</pre>
             return best # safe to prune
         end
        u = lookahead(P, U', s, a)
        if u > best.u
             best = (a=a, u=u)
         end
    end
    return best
end
```

Assume you have $\underline{V}(s)$ and $\bar{Q}(s,a)$

¥(s) ()

```
function branch_and_bound(₱, s, d, Ulo, Qhi)
    if d \leq 0
        return (a=nothing, u=Ulo(s))
    end
    U'(s) = branch_and_bound(P, s, d-1, Ulo, Qhi).u
    best = (a=nothing, u=-Inf)
    for a in sort(\mathcal{P}.\mathcal{A}, by=a\rightarrowQhi(s,a), rev=true)
        if Qhi(s, a) < best.u</pre>
             return best # safe to prune
         end
        u = lookahead(P, U', s, a)
        if u > best.u
             best = (a=a, u=u)
         end
    end
    return best
end
```



```
function branch_and_bound(₱, s, d, Ulo, Qhi)
    if d \leq 0
        return (a=nothing, u=Ulo(s))
    end
    U'(s) = branch_and_bound(P, s, d-1, Ulo, Qhi).u
    best = (a=nothing, u=-Inf)
    for a in sort(\mathcal{P}.\mathcal{A}, by=a\rightarrowQhi(s,a), rev=true)
        if Qhi(s, a) < best.u</pre>
             return best # safe to prune
         end
        u = lookahead(P, U', s, a)
        if u > best.u
             best = (a=a, u=u)
         end
    end
    return best
end
```



```
function branch_and_bound(₱, s, d, Ulo, Qhi)
    if d \leq 0
         return (a=nothing, u=Ulo(s))
    end
    U'(s) = branch_and_bound(P, s, d-1, Ulo, Qhi).u
    best = (a=nothing, u=-Inf)
    for a in sort(\mathcal{P}.\mathcal{A}, by=a\rightarrowQhi(s,a), rev=true)
         if Qhi(s, a) < best.u</pre>
             return best # safe to prune
         end
         u = lookahead(P, U', s, a)
         if u > best.u
             best = (a=a, u=u)
         end
    end
    return best
end
```



```
function branch_and_bound(₱, s, d, Ulo, Qhi)
    if d \leq 0
         return (a=nothing, u=Ulo(s))
    end
    U'(s) = branch\_and\_bound(P, s, d-1, Ulo, Qhi).u
    best = (a=nothing, u=-Inf)
    for a in sort(\mathcal{P}.\mathcal{A}, by=a\rightarrowQhi(s,a), rev=true)
         if Qhi(s, a) < best.u</pre>
             return best # safe to prune
         end
         u = lookahead(P, U', s, a)
         if u > best.u
             best = (a=a, u=u)
         end
    end
    return best
end
```



```
function branch_and_bound(₱, s, d, Ulo, Qhi)
    if d \leq 0
         return (a=nothing, u=Ulo(s))
    end
    U'(s) = branch\_and\_bound(P, s, d-1, Ulo, Qhi).u
    best = (a=nothing, u=-Inf)
    for a in sort(\mathcal{P}.\mathcal{A}, by=a\rightarrowQhi(s,a), rev=true)
         if Qhi(s, a) < best.u</pre>
             return best # safe to prune
         end
         u = lookahead(P, U', s, a)
         if u > best.u
             best = (a=a, u=u)
         end
    end
    return best
end
```



```
function branch_and_bound(₱, s, d, Ulo, Qhi)
    if d \leq 0
        return (a=nothing, u=Ulo(s))
    end
    U'(s) = branch\_and\_bound(P, s, d-1, Ulo, Qhi).u
    best = (a=nothing, u=-Inf)
    for a in sort(\mathcal{P}.\mathcal{A}, by=a\rightarrowQhi(s,a), rev=true)
         if Qhi(s, a) < best.u</pre>
             return best # safe to prune
         end
         u = lookahead(P, U', s, a)
        if u > best.u
             best = (a=a, u=u)
         end
    end
    return best
end
```

Branch and Bound

Assume you have $\underline{V}(s)$ and $\bar{Q}(s,a)$


```
function branch_and_bound(₱, s, d, Ulo, Qhi)
    if d \leq 0
        return (a=nothing, u=Ulo(s))
    end
    U'(s) = branch\_and\_bound(P, s, d-1, Ulo, Qhi).u
    best = (a=nothing, u=-Inf)
    for a in sort(\mathcal{P}.\mathcal{A}, by=a\rightarrowQhi(s,a), rev=true)
         if Qhi(s, a) < best.u</pre>
             return best # safe to prune
         end
         u = lookahead(P, U', s, a)
        if u > best.u
             best = (a=a, u=u)
         end
    end
    return best
end
```

Branch and Bound

Assume you have $\underline{V}(s)$ and $\bar{Q}(s,a)$


```
function branch_and_bound(₱, s, d, Ulo, Qhi)
    if d \leq 0
        return (a=nothing, u=Ulo(s))
    end
    U'(s) = branch\_and\_bound(P, s, d-1, Ulo, Qhi).u
    best = (a=nothing, u=-Inf)
    for a in sort(\mathcal{P}.\mathcal{A}, by=a\rightarrowQhi(s,a), rev=true)
         if Qhi(s, a) < best.u</pre>
             return best # safe to prune
         end
         u = lookahead(P, U', s, a)
        if u > best.u
             best = (a=a, u=u)
         end
    end
    return best
end
```

Search

Search Expansion

Search Expansion Rollout

Search Expansion Rollout Backup

Search Expansion Rollout Backup

Search Expansion Rollout Backup

Search

Expansion

Rollout

Search

Expansion

Rollout

$$Q(s,a) + c\sqrt{rac{\log N(s)}{N(s,a)}} \;\; ext{ or } \;\; Q(s,a) + crac{N(s)^{eta}}{\sqrt{N(s,a)}}$$

low
$$N(s,a)/N(s)$$
 = high bonus start with $c=2(ar{V}-\underline{V})$, $\beta=1/4$

Search

Expansion

Rollout

Backup

$$Q(s,a) + c\sqrt{rac{\log N(s)}{N(s,a)}} \;\; ext{ or } \;\; Q(s,a) + crac{N(s)^{eta}}{\sqrt{N(s,a)}}$$

Search

Expansion

Rollout

Backup

$$Q(s,a) + c\sqrt{rac{\log N(s)}{N(s,a)}} \;\; ext{ or } \;\; Q(s,a) + crac{N(s)^{eta}}{\sqrt{N(s,a)}}$$

Search

Expansion

Rollout

Backup

$$Q(s,a)+c\sqrt{rac{\log N(s)}{N(s,a)}} \quad ext{or} \quad Q(s,a)+crac{N(s)^{eta}}{\sqrt{N(s,a)}}$$
 for $Q(s,a)+c$

Search

Expansion

Rollout

Backup

$$Q(s,a)+c\sqrt{rac{\log N(s)}{N(s,a)}} \quad ext{or} \quad Q(s,a)+crac{N(s)^{eta}}{\sqrt{N(s,a)}}$$
 low $N(s,a)/N(s)= ext{high horus}$

Search

Expansion

Rollout

$$Q(s,a) + c\sqrt{rac{\log N(s)}{N(s,a)}} \;\; ext{ or } \;\; Q(s,a) + crac{N(s)^{eta}}{\sqrt{N(s,a)}}$$

low
$$N(s,a)/N(s)$$
 = high bonus start with $c=2(ar{V}-\underline{V})$, $eta=1/4$

Search

Expansion

Rollout

$$Q(s,a) + c\sqrt{rac{\log N(s)}{N(s,a)}} \;\; ext{ or } \;\; Q(s,a) + crac{N(s)^{eta}}{\sqrt{N(s,a)}}$$

low
$$N(s,a)/N(s)$$
 = high bonus start with $c=2(ar{V}-\underline{V})$, $eta=1/4$

Search

Expansion

Rollout

$$Q(s,a) + c\sqrt{rac{\log N(s)}{N(s,a)}} \;\; ext{ or } \;\; Q(s,a) + crac{N(s)^{eta}}{\sqrt{N(s,a)}}$$

low
$$N(s,a)/N(s)$$
 = high bonus start with $c=2(ar{V}-\underline{V})$, $\beta=1/4$

Guiding Questions

Guiding Questions

- What are the differences between online and offline solutions?
- Are there solution techniques that are *independent* of the state space size?