

Strong and Simple Baselines for Multimodal Utterance Embeddings

Paul Pu Liang*, **Yao Chong Lim***, Yao-Hung Hubert Tsai, Ruslan Salakhutdinov and Louis-Philippe Morency

Human Language is often multimodal

Language

- Word choice
- Syntax
- Pragmatics

Acoustic

- Tone
- Prosody
- Phrasing

Visual

- Facial expressions
- Body language
- Eye contact
- Gestures

Sentiment

- Positive/Negative
- Intensity

Emotion

- Anger
- Happiness
- Sadness
- Confusion
- Fear
- Surprise

Meaning

- Sarcasm
- Humor

Human Language is often multimodal

+

Sentiment Intensity

"This movie is great"

Neutral expression

Human Language is often multimodal

Sentiment Intensity

"This movie is great"

"This movie is great"

Smile

1. Intramodal interactions

Smile + Head nod vs. Smile + Head shake

1. Intramodal interactions

2. Crossmodal interactions

```
Bimodal "This movie is great" + Smile
```


1. Intramodal interactions

2. Crossmodal interactions

Multimodal Language Embedding

"This is unbelievable!"

Intramodal + crossmodal interactions Downstream Tasks Utterance Sentiment Analysis Embedding • Emotion Recognition • Speaker Trait Recognition •••

Multimodal Language Embedding

"This is unbelievable!"

Intramodal + crossmodal interactions Downstream Tasks Utterance Sentiment Analysis Embedding • Emotion Recognition • Speaker Trait Recognition •••

Why fast models?

- Applications
- Robots, virtual agents, intelligent personal assistants
- Processing large amounts of multimedia data

Research Question

Can we make principled but simple models for multimodal utterance embeddings that perform competitively?

Research Question

Can we make principled but simple models for multimodal utterance embeddings that perform competitively?

Research Question

Can we make principled but simple models for multimodal utterance embeddings that perform competitively?

Our models:

- Fewer parameters
- Has a closed-form solution
- Linear functions
- Competitive with SOTA!

A language-only solution

Arora et al. (2016, 2017):

A language-only solution

Arora et al. (2016, 2017):

A language-only solution

Arora et al. (2016, 2017):

Fast: No learnable parameters.

Utterance embedding m_s

Utterance embedding m_s

Utterance-level feature distributions:

Visual Audio

(Arora et al)

Gaussian parameters

Gaussian parameters

Small number of additional parameters!

Crossmodal interactions

"It didn't help"

Neutral face

Emotion

Disappointment

"It didn't help"

Sad face

+ Shaky voice

Stable voice

Sadness

MMB2: Incorporating crossmodal interactions

Concatenated inputs

MMB2: Incorporating crossmodal interactions

Unimodal Utterance embedding m_s

MMB2: Incorporating crossmodal interactions

Coordinate ascent-style

Two steps each iteration:

Coordinate ascent-style

Two steps each iteration:

Coordinate ascent-style

1. Fix transformation parameters, solve for $m_{\scriptscriptstyle S}$

Two steps each iteration:

- 1. Fix transformation parameters, solve for $m_{\scriptscriptstyle S}$
- 2. Fix m_s , update transformation parameters by gradient descent

Coordinate ascent-style

Datasets

CMU-MOSI (Zadeh et al. 2016)

- Multimodal Sentiment Analysis dataset
- 2199 English opinion segments (monologues) from online videos

Datasets

POM (Park et al., 2014)

- Multimodal Speaker Traits Recognition
- 903 English videos annotated for speaker traits such as confidence, dominance, vividness, relaxed, nervousness, humor etc.

Compared Models

Deep neural models

- Early Fusion: EF-LSTM
- DF (Nojavanasghari et al., 2016)
- Multi-view Learning: MV-LSTM (Rajagopalan et al., 2016)
- Contextual LSTM: BC-LSTM (Poria et al., 2017)
- Tensor Fusion: TFN (Zadeh et al., 2017)
- Memory Fusion: MFN (Zadeh et al., 2018)

POM Speaker Traits Recognition

Speed Comparisons

Conclusion

- Proposed two simple but strong baselines for learning embeddings of multimodal utterances
- Try strong baselines before working on complicated models!

Github: yaochie/multimodal-baselines

Our baselines

The End!

Email: pliang@cs.cmu.edu yaochonl@cs.cmu.edu

Additional Results

	~~	1.50.07				
Dataset	CMU-MOSI					
Task	Senti	ment				
Metric	A(2)	F1				
Majority	50.2	50.1				
RF	56.4	56.3				
THMM	50.7	45.4				
EF-HCRF ^(*)	65.3	65.4				
MV-HCRF ^(*)	65.6	65.7				
SVM-MD	71.6	72.3				
C-MKL	72.3	72.0				
DF	72.3	72.1				
SAL-CNN	73.0	72.6				
EF-LSTM ^(*)	74.3	74.3				
MV-LSTM	73.9	74.0				
BC-LSTM	73.9	73.9				
TFN	74.6	74.5				
MFN	77.4	77.3				
MMB1	73.6	73.4				
MMB2	75.2	75.1				

Dataset	POM Personality Trait Recognition, measured in MAE										
Task	Con	Voi	Dom	Viv	Res	Tru	Rel	Out	Tho	Ner	Hum
Majority	1.483	1.089	1.167	1.158	1.166	0.743	0.753	0.872	0.939	1.181	1.774
SVM	1.071	0.938	0.865	1.043	0.877	0.536	0.594	0.702	0.728	0.714	0.801
DF	1.033	0.899	0.870	0.997	0.884	0.534	0.591	0.698	0.732	0.695	0.768
EF-LSTM ^(*)	1.035	0.911	0.880	0.981	0.872	0.556	0.594	0.700	0.712	0.706	0.762
MV-LSTM	1.029	0.971	0.944	0.976	0.877	0.523	0.625	0.703	0.792	0.687	0.770
BC-LSTM	1.016	0.914	0.859	0.905	0.888	0.564	0.630	0.708	0.680	0.705	0.767
TFN	1.049	0.927	0.864	1.000	0.900	0.572	0.621	0.706	0.743	0.727	0.770
MFN	0.952	0.882	0.835	0.908	0.821	0.521	0.566	0.679	0.665	0.654	0.727
MMB2	1.015	0.878	0.885	0.967	0.857	0.522	0.578	0.685	0.705	0.692	0.726

Dataset	POM Personality Trait Recognition, measured in $\it r$										
Task	Con	Voi	Dom	Viv	Res	Tru	Rel	Out	Tho	Ner	Hum
Majority	-0.041	-0.104	-0.031	-0.044	0.006	-0.077	-0.024	-0.085	-0.130	0.097	-0.069
SVM	0.063	-0.004	0.141	0.076	0.134	0.168	0.104	0.066	0.134	0.068	0.147
DF	0.240	0.017	0.139	0.173	0.118	0.143	0.019	0.093	0.041	0.136	0.259
EF-LSTM ^(*)	0.221	0.042	0.151	0.239	0.268	0.069	0.092	0.215	0.252	0.159	0.272
MV-LSTM	0.358	0.131	0.146	0.347	0.323	0.237	0.119	0.238	0.284	0.258	0.317
BC-LSTM	0.359	0.081	0.234	0.417	0.450	0.109	0.075	0.078	0.363	0.184	0.319
TFN	0.089	0.030	0.020	0.204	-0.051	-0.064	0.114	0.060	0.048	-0.002	0.213
MFN	0.395	0.193	0.313	0.431	0.333	0.296	0.255	0.259	0.381	0.318	0.386
MMB2	0.350	0.220	0.333	0.434	0.332	0.176	0.224	0.318	0.394	0.296	0.366

CMU-MOSI Sentiment

CMU-MOSI Sentiment

