DA-IICT, B.Tech, Sem III

Autumn2016

- 1. Find the electric field a distance z above the center of a flat circular disc of radius a which carries a uniform surface charge density σ . Work out the limits z << a and z >> a.
- 2. If $\vec{E} = kr^3\hat{r}$ in a region find the charge density in the region.
- 3. A hollow spherical shell carries a charge density $\rho = k/r^2$ in the region $a \le r \le b$. Find the electric field in the three regions, r < a, a < r < b, r > b.
- 4. Two infinite parallel planes carry equal but opposite uniform charge densities $\pm \sigma$. Find the electric field in the three regions, into which the planes partition the space.
- 5. Evaluate
 - (a) $\int (r^2 + \vec{\mathbf{r}} \cdot \vec{\mathbf{a}} + a^2) \delta^3(\vec{\mathbf{r}} \vec{\mathbf{a}}) dV$ over the whole space where $\vec{\mathbf{a}}$ is a fixed vector.
 - (b) $\int_V |\vec{\mathbf{r}} \vec{\mathbf{b}}|^2 \delta^3(5\vec{\mathbf{r}}) dV$ over a cube of side 2, centered at the origin, and $\vec{\mathbf{b}} = 4\hat{\mathbf{y}} + 3\hat{\mathbf{z}}$
- 6. We have seen that $\vec{\nabla} \cdot \left(\frac{\hat{r}}{r^2}\right) = 4\pi \delta^3(\vec{r})$. In a similar manner justify that

$$\vec{\nabla} \cdot \left(\frac{\hat{s}}{s}\right) = 2\pi \delta^2(\vec{s})$$

Here s is the distance from the z axis in cylindrical coordinates and $\delta^2(\vec{s})$ is a two dimensional delta function on the xy plane.

7. Prove that $\delta(r)=4\pi r^2\delta^3(\vec{r})$ and $\delta(s)=2\pi s\delta^2(\vec{s})$. Here $\int_0^\epsilon \delta(r)dr=1$ for any $\epsilon>0$. The integral is 0 otherwise. $\delta(s)$ is defined likewise. 8. The electric field in a region is given as

$$\vec{E} = \frac{\lambda}{2\pi\epsilon_0 s} \hat{s}$$

Find the charge densities in the region.