Neural networks and their connections with differential equations

Neural networks

▶ Neural networks are typically visualized as something like this

Neural networks

▶ Neural networks are typically visualized as something like this

▶ Mathematically, a neural network is just a **parametric map** $\mathcal{N}_{\theta}: \mathbb{R}^{c} \to \mathbb{R}^{d}$, which is usually defined by composing L functions, called **layers**, as $\mathcal{N}_{\theta} = F_{\theta_{L}} \circ ... \circ F_{\theta_{1}}$, $F_{\theta_{i}}: \mathbb{R}^{c_{i}} \to \mathbb{R}^{c_{i+1}}$, $c_{1} = c$, $c_{L+1} = d$.

Neural networks

▶ Neural networks are typically visualized as something like this

- ▶ Mathematically, a neural network is just a **parametric map** $\mathcal{N}_{\theta}: \mathbb{R}^{c} \to \mathbb{R}^{d}$, which is usually defined by composing L functions, called **layers**, as $\mathcal{N}_{\theta} = F_{\theta_{L}} \circ ... \circ F_{\theta_{1}}$, $F_{\theta_{i}}: \mathbb{R}^{c_{i}} \to \mathbb{R}^{c_{i+1}}$, $c_{1} = c$, $c_{L+1} = d$.
- ▶ The parametrisation strategy behind \mathcal{N}_{θ} is defined by the so-called **neural network** architecture.

▶ It is common practice to define layers by alternating linear maps, with non-linear functions applied entrywise:

$$F_{\theta_i}(\mathbf{x}) = \Sigma \circ L_i(\mathbf{x}), \ \Sigma(\mathbf{x}) := \begin{bmatrix} \sigma(x_1) \\ \vdots \\ \sigma(x_{c_i}) \end{bmatrix}.$$

With a slight abuse of notation, from now on we will use σ both for the scalar function and for the vector function.

▶ It is common practice to define layers by alternating linear maps, with non-linear functions applied entrywise:

$$F_{\theta_i}(\mathbf{x}) = \Sigma \circ L_i(\mathbf{x}), \ \ \Sigma(\mathbf{x}) := egin{bmatrix} \sigma(x_1) \\ \vdots \\ \sigma(x_{c_i}) \end{bmatrix}.$$

With a slight abuse of notation, from now on we will use σ both for the scalar function and for the vector function.

▶ σ is called **activation function**. Common examples are $\sigma(x) = \text{ReLU}(x) = \max\{0, x\}$, $\sigma(x) = \tanh(x)$, $\sigma(x) = \frac{1}{1+e^{-x}}$.

▶ It is common practice to define layers by alternating linear maps, with non-linear functions applied entrywise:

$$F_{ heta_i}(\mathbf{x}) = \Sigma \circ L_i(\mathbf{x}), \,\, \Sigma(\mathbf{x}) := egin{bmatrix} \sigma(x_1) \ dots \ \sigma(x_{c_i}) \end{bmatrix}.$$

With a slight abuse of notation, from now on we will use σ both for the scalar function and for the vector function.

- ▶ σ is called **activation function**. Common examples are $\sigma(x) = \text{ReLU}(x) = \max\{0, x\}$, $\sigma(x) = \tanh(x)$, $\sigma(x) = \frac{1}{1+e^{-x}}$.
- ► Choosing $L_i(\mathbf{x}) = A_i\mathbf{x} + \mathbf{b}_i$, we recover the layer $F_{\theta_i}(\mathbf{x}) = \sigma(A_i\mathbf{x} + \mathbf{b}_i)$, typical of the so-called **fully-connected neural networks**.

▶ It is common practice to define layers by alternating linear maps, with non-linear functions applied entrywise:

$$F_{ heta_i}(\mathbf{x}) = \Sigma \circ L_i(\mathbf{x}), \ \ \Sigma(\mathbf{x}) := egin{bmatrix} \sigma(x_1) \ dots \ \sigma(x_{c_i}) \end{bmatrix}.$$

With a slight abuse of notation, from now on we will use σ both for the scalar function and for the vector function.

- ▶ σ is called **activation function**. Common examples are $\sigma(x) = \text{ReLU}(x) = \max\{0, x\}$, $\sigma(x) = \tanh(x)$, $\sigma(x) = \frac{1}{1+e^{-x}}$.
- ▶ Choosing $L_i(\mathbf{x}) = A_i\mathbf{x} + \mathbf{b}_i$, we recover the layer $F_{\theta_i}(\mathbf{x}) = \sigma(A_i\mathbf{x} + \mathbf{b}_i)$, typical of the so-called **fully-connected neural networks**.
- We can also choose $L_i(\mathbf{x}) = k_i * \mathbf{x} + \mathbf{b}_i$, so realise the linear layer by convolution, and get a map that shows up in **convolutional neural networks**

▶ The weights θ of the neural network \mathcal{N}_{θ} are usually found by approximately solving a suitable optimisation problem. This optimisation process is called **network training**.

- ▶ The weights θ of the neural network \mathcal{N}_{θ} are usually found by approximately solving a suitable optimisation problem. This optimisation process is called **network training**.
- ▶ The cost function which is minimised, called **loss function** in machine learning, is defined thanks to the data one has available, or thanks to properties we would like the approximation to satisfy.

- ▶ The weights θ of the neural network \mathcal{N}_{θ} are usually found by approximately solving a suitable optimisation problem. This optimisation process is called **network training**.
- ▶ The cost function which is minimised, called **loss function** in machine learning, is defined thanks to the data one has available, or thanks to properties we would like the approximation to satisfy.
- ▶ One of the simplest loss functions we can work with is the **mean-squared error**. Say that we want to approximate the function $F: \Omega \to \mathbb{R}^d$, $\Omega \subset \mathbb{R}^c$, and we have the dataset $\{(\mathbf{x}_i, \mathbf{y}_i = F(\mathbf{x}_i))\}_{i=1}^N$, $\mathbf{x}_i \in \Omega$, then we can work with the loss function

$$L(\theta) = \frac{1}{N} \sum_{i=1}^{N} \|\mathcal{N}_{\theta}(\mathbf{x}_i) - \mathbf{y}_i\|_2^2.$$

- ▶ The weights θ of the neural network \mathcal{N}_{θ} are usually found by approximately solving a suitable optimisation problem. This optimisation process is called **network training**.
- ▶ The cost function which is minimised, called **loss function** in machine learning, is defined thanks to the data one has available, or thanks to properties we would like the approximation to satisfy.
- ▶ One of the simplest loss functions we can work with is the **mean-squared error**. Say that we want to approximate the function $F: \Omega \to \mathbb{R}^d$, $\Omega \subset \mathbb{R}^c$, and we have the dataset $\{(\mathbf{x}_i, \mathbf{y}_i = F(\mathbf{x}_i))\}_{i=1}^N$, $\mathbf{x}_i \in \Omega$, then we can work with the loss function

$$L(\theta) = \frac{1}{N} \sum_{i=1}^{N} \|\mathcal{N}_{\theta}(\mathbf{x}_i) - \mathbf{y}_i\|_2^2.$$

▶ After minimising the loss function, we hopefully have a good set of parameters θ^* and we can use \mathcal{N}_{θ^*} to make new predictions, for unseen inputs.

Universal approximation theorems

Theorem

Let $\Omega \subset \mathbb{R}^c$ be a compact set and assume $\sigma : \mathbb{R} \to \mathbb{R}$ is not a polynomial. For any continuous function $F : \Omega \to \mathbb{R}$ and for any $\varepsilon > 0$ there is a single-layer neural network

$$\mathcal{N}_{\theta}(\mathbf{x}) := \mathbf{w}^T \sigma(\mathbf{a}\mathbf{x} + \mathbf{b}), \ \mathbf{a}, \mathbf{b}, \mathbf{w} \in \mathbb{R}^h,$$

with $h \in \mathbb{N}$ large enough, such that

$$\max_{\mathbf{x} \in \Omega} |F(\mathbf{x}) - \mathcal{N}_{\theta}(\mathbf{x})| \leq \varepsilon.$$

Universal approximation theorems

Theorem

Let $\Omega \subset \mathbb{R}^c$ be a compact set and assume $\sigma : \mathbb{R} \to \mathbb{R}$ is not a polynomial. For any continuous function $F : \Omega \to \mathbb{R}$ and for any $\varepsilon > 0$ there is a single-layer neural network

$$\mathcal{N}_{\theta}(\mathbf{x}) := \mathbf{w}^T \sigma(\mathbf{a}\mathbf{x} + \mathbf{b}), \ \mathbf{a}, \mathbf{b}, \mathbf{w} \in \mathbb{R}^h,$$

with $h \in \mathbb{N}$ large enough, such that

$$\max_{\mathbf{x} \in \Omega} |F(\mathbf{x}) - \mathcal{N}_{\theta}(\mathbf{x})| \leq \varepsilon.$$

This theorem extends to vector-valued functions, and similar results exist also for deeper networks.

Residual Neural Networks (ResNets)

▶ A particularly interesting network architecture is the one of ResNets. The layers of these networks are of the from

$$F_{\theta_i}(\mathbf{x}) = \mathbf{x} + X_{\theta_i}(\mathbf{x}),$$

where an example could be $X_{\theta_i}(\mathbf{x}) = B_i^T \sigma(A_i \mathbf{x} + \mathbf{b}_i), A_i, B_i \in \mathbb{R}^{h \times c_i}, \mathbf{b}_i \in \mathbb{R}^h$.

▶ The reason why they were introduced is because they are much easier to train when the network has a high number of layers.

Why ResNets?

Recall that to minimise the loss function $L(\theta)$ we have to use some numerical method, like gradient descent

$$\theta_{k+1} = \theta_k - \tau \nabla L(\theta_k).$$

If $\|\nabla L(\theta_k)\|_2$ is very large or very small, we will struggle to find a meaningful set of weights.

ResNets as dynamical systems

lacktriangle Residual Neural Networks (ResNets) are networks of the form $\mathcal{N}_{ heta}=\mathit{f}_{ heta_{L}}\circ...\circ\mathit{f}_{ heta_{1}}$ with

$$f_{\theta_i}(\mathbf{x}) = \mathbf{x} + B_i^{\top} \sigma (A_i \mathbf{x} + \mathbf{b}_i) \in \mathbb{R}^d, \ \mathbf{x} \in \mathbb{R}^d,$$
$$A_i, B_i \in \mathbb{R}^{h \times d}, \ \mathbf{b}_i \in \mathbb{R}^h, \ \theta_i = \{A_i, B_i, \mathbf{b}_i\}.$$

ResNets as dynamical systems

lacktriangle Residual Neural Networks (ResNets) are networks of the form $\mathcal{N}_{ heta}=f_{ heta_L}\circ...\circ f_{ heta_1}$ with

$$f_{\theta_i}(\mathbf{x}) = \mathbf{x} + B_i^{\top} \sigma \left(A_i \mathbf{x} + \mathbf{b}_i \right) \in \mathbb{R}^d, \ \mathbf{x} \in \mathbb{R}^d,$$
$$A_i, B_i \in \mathbb{R}^{h \times d}, \ \mathbf{b}_i \in \mathbb{R}^h, \ \theta_i = \left\{ A_i, B_i, \mathbf{b}_i \right\}.$$

▶ The layer

$$f_{\theta_i}(\mathbf{x}) = \mathbf{x} + B_i^{ op} \sigma \left(A_i \mathbf{x} + \boldsymbol{b}_i
ight) = \mathbf{x} + \mathcal{F}_{\theta_i}(\mathbf{x}) \in \mathbb{R}^d$$

is an explicit Euler step of size 1 for the initial value problem

$$egin{cases} \dot{\mathbf{y}}(t) = B_i^ op \sigma(A_i \mathbf{y}(t) + oldsymbol{b}_i) = \mathcal{F}_{ heta_i}(\mathbf{y}(t)), \ \mathbf{y}(0) = \mathbf{x} \end{cases}$$

ResNet-like archtectures

• We can define ResNet-like neural networks by choosing a family of parametric functions $\mathcal{S}_{\Theta} = \left\{ \mathcal{F}_{\theta} : \mathbb{R}^d \to \mathbb{R}^d : \theta \in \Theta \right\}$ and a numerical method $\Psi^h_{\mathcal{F}}$, like explicit Euler defined as $\Psi^h_{\mathcal{F}}(\mathbf{x}) = \mathbf{x} + h\mathcal{F}(\mathbf{x})$, and set

$$\mathcal{N}_{\theta}(\mathbf{x}) = \Psi_{\mathcal{F}_{\theta_L}}^{h_L} \circ \cdots \circ \Psi_{\mathcal{F}_{\theta_1}}^{h_1}(\mathbf{x}), \ \mathcal{F}_{\theta_1}, ..., \mathcal{F}_{\theta_L} \in \mathcal{S}_{\Theta}.$$

We could also combine these residual blocks with lifting and projection layers, as for usual neural networks.

Neural networks for dynamical systems discovery

▶ Apart from using dynamical systems and numerical analysis to study neural networks, we can also use neural networks to solve and discover differential equations.

Neural networks for dynamical systems discovery

- ▶ Apart from using dynamical systems and numerical analysis to study neural networks, we can also use neural networks to solve and discover differential equations.
- ▶ The task of dynamical systems discovery can be summarised as follows:

ightharpoonup To train the overall model \mathcal{N}_{θ} we can minimise the loss function

$$\mathcal{L}(heta) = rac{1}{\mathit{NM}} \sum_{n=1}^{\mathit{N}} \sum_{m=1}^{\mathit{M}} \left\| \left(\Psi^h_{\mathcal{N}_{ heta}}
ight)^m \left(\mathbf{x}^n_0
ight) - \mathbf{y}^n_m
ight\|_2^2,$$

where $\mathbf{x}_0^n \in \Omega \subset \mathbb{R}^{2n}$, and $\mathbf{y}_m^n \approx \phi^{mh}(\mathbf{x}_0^n)$.

Example with Hamiltonian system

$$H(q,p)=rac{1}{2}egin{bmatrix} p_1 & p_2 \end{bmatrix}^Tegin{bmatrix} 5 & -1 \ -1 & 5 \end{bmatrix}egin{bmatrix} p_1 \ p_2 \end{bmatrix}+rac{q_1^4+q_2^4}{4}+rac{q_1^2+q_2^2}{2}.$$

Neural networks solving differential equations

▶ We can also use neural networks to solve differential equations. In this case we suppose to have access to the ODE

$$\dot{\mathbf{x}}(t) = \mathcal{F}(\mathbf{x}(t)) \in \mathbb{R}^d.$$

Neural networks solving differential equations

▶ We can also use neural networks to solve differential equations. In this case we suppose to have access to the ODE

$$\dot{\mathbf{x}}(t) = \mathcal{F}(\mathbf{x}(t)) \in \mathbb{R}^d$$
.

▶ We can define a network $\mathcal{N}_{\theta}: \mathbb{R} \times \mathbb{R}^{d} \to \mathbb{R}^{d}$. We can also enforce the initial condition, so that $\mathcal{N}_{\theta}(0, \mathbf{x}_{0}) = \mathbf{x}_{0}$ for every $\mathbf{x}_{0} \in \mathbb{R}^{d}$. This can be done for example by defining

$$\mathcal{N}_{ heta}(t, \mathbf{x}) = \mathbf{x} + \widetilde{\mathcal{N}}_{ heta}(t, \mathbf{x}) - \widetilde{\mathcal{N}}_{ heta}(0, \mathbf{x}),$$

for an arbitrary network $\widetilde{\mathcal{N}}_{\theta}: \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d$.

Neural networks solving differential equations

▶ We can also use neural networks to solve differential equations. In this case we suppose to have access to the ODE

$$\dot{\mathbf{x}}(t) = \mathcal{F}(\mathbf{x}(t)) \in \mathbb{R}^d.$$

▶ We can define a network $\mathcal{N}_{\theta}: \mathbb{R} \times \mathbb{R}^{d} \to \mathbb{R}^{d}$. We can also enforce the initial condition, so that $\mathcal{N}_{\theta}(0, \mathbf{x}_{0}) = \mathbf{x}_{0}$ for every $\mathbf{x}_{0} \in \mathbb{R}^{d}$. This can be done for example by defining

$$\mathcal{N}_{ heta}(t, \mathbf{x}) = \mathbf{x} + \widetilde{\mathcal{N}}_{ heta}(t, \mathbf{x}) - \widetilde{\mathcal{N}}_{ heta}(0, \mathbf{x}),$$

for an arbitrary network $\widetilde{\mathcal{N}}_{\theta}: \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d$.

ightharpoonup To train \mathcal{N}_{θ} we can minimise the loss function

$$\mathcal{L}(heta) = rac{1}{N_r} \sum_{i=1}^{N_r} \left\| rac{d}{dt} \mathcal{N}_{ heta} \left(t, \mathbf{x}_0^i
ight)
ight|_{t=t_i} - \mathcal{F} \left(\mathcal{N}_{ heta} \left(t_i, \mathbf{x}_0^i
ight)
ight)
ight\|_2^2$$

at sufficiently many collocation points $t_i \in [0, T]$ and $\mathbf{x}_0^i \in \mathbb{R}^d$.

Example: Hénon-Heiles

Equations of motion

$$\dot{x} = p_x, \ \dot{y} = p_y, \ \dot{p}_x = -x - 2xy, \ \dot{p}_y = -y - (x^2 - y^2).$$

Solution predicted using SympFlow with Hamiltonian Matching

