Gear Basics

李岱峰, 17机器人工程 2020.07.22

Updated by July 24,2020

Content

- Types of gear
- Calculate gear transmission
- 渐开线 Involute curves
- Nomenclature/Terminology

Types of Gears

Parallel Axes

Spur Gear

Rack

Internal Gear

Helical Gear

Intersecting Axes

Bevel Gear

Miter Gear

Spiral Bevel Gear

Nonparallel, Nonintersecting Axes

Worm & Worm Wheel

Screw Gear

Types of Gears

Calculate gear transmission

$$\frac{\omega_2}{\omega_1} = -\frac{R_1}{R_2}$$

$$\frac{\omega_n}{\omega_1} = (-1)^{(n-1)} \frac{R_1}{R_n} = (-1)^{(n-1)} \frac{N_1}{N_n}$$

Where N means the number of teeth

More explanation on the next slide -->

Calculate gear transmission

$$\frac{\omega_{out}}{\omega_{in}} = \left(-\frac{N_2}{N_3}\right) \left(-\frac{N_3}{N_4}\right) \left(-\frac{N_4}{N_5}\right) \left(-\frac{N_5}{N_6}\right) = +\frac{N_2}{N_6} = (-1)^n \frac{N_{in}}{N_{out}}$$

Calculate gear transmission-Compound Gear Trains

$$\frac{\omega_{out}}{\omega_{in}} = \left(-\frac{N_2}{N_3}\right) \left(-\frac{N_4}{N_5}\right) = \pm \frac{\text{prod. of } N_{drive}}{\text{prod. of } N_{driven}}$$

输出速度/输入速度=驱动齿轮齿数乘积/被驱动齿轮齿数乘积

Calculate gear transmission-Planetary Gear Set

(a) Conventional gearset

参考系:站在arm 1上面观察

$$\frac{\omega_{out}}{\omega_{in}} = \frac{\omega_3}{\omega_2} = -\frac{N_2}{N_3}$$

转换参考系

(b) Planetary or epicyclic gearset

参考系: 从arm 1上面跳下来

$$\frac{\omega_{1,3}}{\omega_{1,2}} = \frac{\omega_3 - \omega_1}{\omega_2 - \omega_1} = -\frac{N_2}{N_3}$$

 ω_1 , ω_2 , ω_3 represent ω_{arm} , ω_{sun} , ω_{planet} . $\omega_{1,3}$ means velocity of 3 relative to 1.

Calculate gear transmission-Planetary Gear Set

$$\frac{\omega_{1,4}}{\omega_{1,2}} = \frac{\omega_4 - \omega_1}{\omega_2 - \omega_1} = -\frac{N_2}{N_4}$$

https://www.bilibili.com/video/BV1iW41187vZ/?spm_id_from=333.788.videocard.0

Calculate gear transmission-Planetary Gear Set

Three modes

$$\frac{0 - \omega_D}{\omega_A - \omega_D} = -\frac{N_A}{N_C} \qquad \frac{\omega_C - \omega_D}{0 - \omega_D} = -\frac{N_A}{N_C}$$

$$\frac{\omega_D}{\omega_A} = \frac{N_A}{N_c + N_A}$$

$$\frac{\omega_C - \omega_D}{0 - \omega_D} = -\frac{N_A}{N_C}$$

$$\frac{\omega_C}{\omega_D} = 1 + \frac{N_A}{N_C}$$

$$\frac{\omega_C - \omega_D}{\omega_A - \omega_D} = -\frac{N_A}{N_C}$$

$$\frac{\omega_C - 0}{\omega_A - 0} = -\frac{N_A}{N_C}$$

$$\frac{\omega_C}{\omega_A} = -\frac{N_A}{N_C}$$

If the pitch point moves, then the angular speed of the driven gear changes

渐开线 Involute curves

$$\begin{cases} \theta_K = \tan \alpha_K - \alpha_k = inv\alpha_K \\ r_K = \frac{r_b}{\cos \alpha_K} \end{cases}$$

极坐标方程

其中: $inv\alpha_k$ 称为渐开线函数

$$X_a(t) = r(\cos t + (t - a)\sin t)$$

$$Y_a(t) = r(\sin t + (t - a)\cos t)$$

笛卡尔坐标系方程 a代表起始位置

Nomenclature/Terminology

• Circular pitch 齿距 p_c

$$p_c = \frac{2\pi r_{p_1}}{N_1} = \frac{2\pi r_{p_2}}{N_2} \Rightarrow \boxed{\frac{\omega_2}{\omega_1} = -\frac{r_{p_1}}{r_{p_2}} = -\frac{N_1}{N_2}}$$

 N_1 , N_2 : teeth number of gear 1 and 2.

压力角 • Pressure angle ϕ (usually 14.5° or 20°)

基圆齿距• Base pitch $p_b=p_c\cos\phi=2\pi r_{b_1}/N_1=2\pi r_{b_2}/N_2$

模数 • Module $m = 2r_{p_1}/N_1 = 2r_{p_2}/N_2$

齿顶高 • Addendum a (usually chosen to be m or 0.8m)

齿根高 • **Dedendum** d (usually chosen to be 1.25m or m)

空隙 • Clearance d-a

齿厚• Tooth thickness (usually $0.5p_c$)

• Width of space (usually $0.5p_c$; always larger than tooth)

• **Backlash** = width of space — tooth thickness

Standard modules m (SI, mm/tooth; larger is bigger)

Preferred	1, 1.25, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10, 12, 16, 20, 25, 32, 40, 50
Next choice	1.125, 1.375, 1.75, 2.25, 2.75, 3.5, 4.5, 5.5, 7, 9, 11, 14, 18, 22, 28, 36, 45

演示: SW Toolbox和今日制造插件

Reference

- 中国大学MOOC,西安交通大学,机械设计基础: https://www.icourse163.org/course/XJTU-1001595002?tid=1206706204
- SUSTech ME303 Introduction to Mechanical Design, Chaoyang Song: https://ancorasir.com/?page_id=2159
- SUSTech SDM232 Mechanical Design and Manufacturing, Yuanqing Wu.
- - https://www.bilibili.com/video/BV1dT4y1J7eM?t=110&tdsourcetag=s_pctim_aiomsg