

Behavioral Context Recognition

Praktikum Mustererkennung

1. Adversarial Autoencoder (AAE)

1. Adversarial Autoencoder (AAE)

Probleme bei den Sensordaten

- fehlende Sensordaten
 - keine WLAN-Verbindung
 - ► Entscheidung, keine Smartwatch zu tragen
 - Verbot, Bewegungsdaten auszuwerten
- unbalancierte Datenlage
 - "at the beach" seltenere Aktivität als "standing"

Lösungsansatz:

- Adversarial Autoencoder [Saeed et al. 18]
 - Rekonstruktion fehlender Sensordaten
 - Generierung von realistischen synthetischen Daten

Adversarial Autoencoder

Abbildung: Framework für Kontextklassifizierung mit fehlenden Sensordaten [Saeed et al. 18]

Evaluierung

- ► Klassifizierungsergebnisse vergleichbar mit leichteren Standardtechniken (Mean, Fill-1, PCA) ⇒ liegt vermutlich an zu geringem Umfang der fehlenden Daten
- eingebautes GAN kann komplette realistische Datensätze synthetisieren
 - Training nur auf synthetischen Daten liefert fast so gute Ergebnisse wie Training auf echten Daten (0.715 zu 0.752)
 - Ergänzung von Daten für seltene Label könnte Klassifikation robuster machen
- ▶ Möglichkeit sich mit interessanten Techniken (GAN, Autoencoder) auseinanderzusetzen

[Saeed et al. 18] Aaqib Saeed, Tanir Ozcelebi und Johan Lukkien. "Synthesizing and Reconstructing Missing Sensory Modalities in Behavioral Context Recognition". In: Sensors18. NCBI, 2018.