DIFFERENTIAL GEOMETRY

Contents

Ι	Prerequisites	1
1	Matrices	1
2 II	Vectors 2.1 GramSchmidt process Conics and Quadrics	1 2 2
3	Conics 3.1 Identification of the conics 3.2 Tangent to a conic at point B	3 3 4
4	Quadrics	5

Prerequisites

PART

Ι

transition matrices are

always square and invertible ($\det P \neq 0$)

Section 1

Matrices

Theorem 1

To prove a system of vectors $\{\vec{\mathbf{u}}_1, \vec{\mathbf{u}}_2, \dots, \vec{\mathbf{u}}_n\}$ is free we prove:

$$\det \begin{bmatrix} \begin{vmatrix} & & & & \\ \vec{\mathbf{u}}_1 & \vec{\mathbf{u}}_2 & \vec{\mathbf{u}}_3 & \cdots & \vec{\mathbf{u}}_1 \\ & & & & & \end{bmatrix} \neq 0.$$

Theorem 2

A transition matrix $P_{B\to B'}$ between 2 basis $B = \{\vec{\mathbf{u}}_1, \vec{\mathbf{u}}_2, \vec{\mathbf{u}}_3\}$ and $B' = \{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \vec{\mathbf{v}}_3\}$ we start by solving the system

$$\begin{bmatrix} \begin{vmatrix} & & & & \\ \vec{\mathbf{u}}_1 & \vec{\mathbf{u}}_2 & \vec{\mathbf{u}}_3 & \cdots & \vec{\mathbf{u}}_n \end{bmatrix} \begin{bmatrix} \alpha_n \\ \beta_n \\ \gamma_n \end{bmatrix} = \begin{bmatrix} \begin{vmatrix} & \\ \vec{\mathbf{v}}_n \\ & \end{vmatrix} \end{bmatrix}.$$

or in other words finding

$$\begin{cases} \vec{\mathbf{v}}_1 &= \alpha_1 \vec{\mathbf{u}}_1 + \beta_1 \vec{\mathbf{u}}_2 + \gamma_1 \vec{\mathbf{u}}_3 \\ \vec{\mathbf{v}}_2 &= \alpha_2 \vec{\mathbf{u}}_1 + \beta_2 \vec{\mathbf{u}}_2 + \gamma_2 \vec{\mathbf{u}}_3 \\ \vec{\mathbf{v}}_3 &= \alpha_3 \vec{\mathbf{u}}_1 + \beta_3 \vec{\mathbf{u}}_2 + \gamma_3 \vec{\mathbf{u}}_3 \end{cases}$$

Finally we say that

$$P_{B \to B'} = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \\ \gamma_1 & \gamma_2 & \gamma_3 \end{bmatrix}.$$

Remark

To find the transition matrix in the inverse direction (from B^\prime to B) we simply do

$$P_{B'\to B} = P_{B\to B'}^{-1}.$$

Section 2

Vectors

$$\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$$

$$\vec{\mathbf{u}}, \vec{\mathbf{v}} \longmapsto \langle \vec{\mathbf{u}}, \vec{\mathbf{v}} \rangle = \sum_{n=1}^n v_i \cdot u_i.$$

Definition 2 We define the usual norm on
$$\mathbb{R}$$
 to be

$$\begin{split} \|\cdot\|:\mathbb{R}^n &\longrightarrow \mathbb{R} \\ \vec{\mathbf{u}} &\longmapsto \|\vec{\mathbf{u}}\| = \sqrt{\langle \vec{\mathbf{u}}, \vec{\mathbf{u}} \rangle}. \end{split}$$

Theorem 3 The projection of a vector
$$\vec{\mathbf{u}}$$
 on to another vector $\vec{\mathbf{v}}$ is

$$\operatorname{proj}_{\vec{\mathbf{v}}}\left(\vec{\mathbf{u}}\right) = \frac{\left\langle \vec{\mathbf{u}}, \vec{\mathbf{v}} \right\rangle}{\|\vec{\mathbf{v}}\|^2} \vec{\mathbf{v}}.$$

Subsection 2.1

GramSchmidt process

The aim of this process is to find a new basis $\Gamma = \{\hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2, \dots, \hat{\mathbf{e}}_n\}$ derived from a basis $B = \{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \dots, \vec{\mathbf{v}}_n\}$ such that it is orthonormal or in other words

$$\forall \hat{\mathbf{x}}, \hat{\mathbf{y}} \in \Gamma : \langle \hat{\mathbf{x}}, \hat{\mathbf{y}} \rangle = 0 \text{ and } \|\hat{\mathbf{x}}\| = 1.$$

We find it as follows

$$\vec{\mathbf{u}}_{1} = \vec{\mathbf{v}}_{1}$$

$$\hat{\mathbf{e}}_{1} = \frac{\vec{\mathbf{u}}_{1}}{\|\vec{\mathbf{u}}_{1}\|}$$

$$\vec{\mathbf{u}}_{2} = \vec{\mathbf{v}}_{2} - \operatorname{proj}_{\vec{\mathbf{u}}_{1}}(\vec{\mathbf{v}}_{2})$$

$$\hat{\mathbf{e}}_{2} = \frac{\vec{\mathbf{u}}_{2}}{\|\vec{\mathbf{u}}_{2}\|}$$

$$\vec{\mathbf{u}}_{3} = \vec{\mathbf{v}}_{3} - \operatorname{proj}_{\vec{\mathbf{u}}_{1}}(\vec{\mathbf{v}}_{3}) - \operatorname{proj}_{\vec{\mathbf{u}}_{2}}(\vec{\mathbf{v}}_{3})$$

$$\hat{\mathbf{e}}_{3} = \frac{\vec{\mathbf{u}}_{3}}{\|\vec{\mathbf{u}}_{3}\|}$$

$$\vdots$$

$$\vec{\mathbf{u}}_{n} = \vec{\mathbf{v}}_{n} - \operatorname{proj}_{\vec{\mathbf{u}}_{1}}(\vec{\mathbf{v}}_{n}) - \operatorname{proj}_{\vec{\mathbf{u}}_{2}}(\vec{\mathbf{v}}_{n}) - \dots - \operatorname{proj}_{\vec{\mathbf{u}}_{n-1}}(\vec{\mathbf{v}}_{n})$$

$$\hat{\mathbf{e}}_{n} = \frac{\vec{\mathbf{u}}_{n}}{\|\vec{\mathbf{u}}_{n}\|}$$

Conics and Quadrics

PART

П

Section 3

Conics

We define a quadric form to be a mapping q

$$q: \mathbb{R}^n \longrightarrow \mathbb{R}$$

$$\vec{\mathbf{u}} \longmapsto q(\vec{\mathbf{u}}) = \left[\underline{}^T \vec{\mathbf{u}} \ \underline{} \right] A \begin{bmatrix} 1 \\ \vec{\mathbf{u}} \\ 1 \end{bmatrix}.$$

Where the matrix A is a symmetric matrix.¹ The conics under study are

¹symmetric matrices $(A = ^{\mathsf{T}} A)$ is always diagonalizable

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 ellipse (circle if $a = b$)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$$
 imaginary ellipse
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = \pm 1$$
 hyperbola with asymptote $y = \pm \frac{b}{a}x$

$$y^2 = \pm 2px \quad p > 0$$

$$x^2 = \pm 2py \quad p > 0$$
 parabolas
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$
 union of two straight lines
$$x = \text{const}$$

$$y = \text{const}$$

$$y = \text{const}$$

Subsection 3.1

Identification of the conics

Let the general equation of all conics be:

$$\Gamma : ax^2 + 2bxy + cy^2 + 2dx + 2ey + f = 0.$$

- $\overline{\text{if } b = 0}$: then we simply group together the terms x^2 and x as well as y^2 and y followed by completing the square to get an equation of a conic.
- $|\text{if } b \neq 0|$: in this case we have to introduce a new system of reference which eliminates the existence of xyWe do this by first defining a quadratic form $q(x,y) = ax^2 + 2bxy + ax^2 + bxy + bxy + ax^2 + bxy +$

 cy^2 using a matrix

$$q(x,y) = \left(x \ y\right) \begin{pmatrix} a \ b \\ b \ c \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

which we diagonalize in to an or the normal age-basis which we project our equation in to in order to get rid of the xy term

Example

Find the nature of the conic

$$\Gamma: 5x^2 - 4xy + 8y^2 + \frac{20}{\sqrt{5}}x - \frac{80}{\sqrt{5}}y + 4 = 0.$$

Let $q(x,y) = 5x^2 - 4xy + 8y^2 = {\begin{pmatrix} x \ y \end{pmatrix}} {\begin{pmatrix} 5 & -2 \ -2 & 8 \end{pmatrix}} {\begin{pmatrix} x \ y \end{pmatrix}} =^T \vec{\mathbf{u}} A \vec{\mathbf{u}}$. We find that the matrix A has eigenvalues $\lambda_1 = 4$ and $\lambda_2 = 9$ with eigenvalues $\vec{\mathbf{u}}_1 = {2 \choose 1}$ and $\vec{\mathbf{u}}_2 = {1 \choose -2}$, the age vectors are already orthogonal so we just find $\vec{\mathbf{e}}_1 = \frac{1}{\sqrt{5}} {2 \choose 1}$ and $\vec{\mathbf{e}}_2 = \frac{1}{\sqrt{5}} {1 \choose -2}$, finally

$$P = \begin{pmatrix} \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix} \quad D = \begin{pmatrix} 4 \\ 9 \end{pmatrix}.$$

We define $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ to be any vector with basis $\{\vec{\mathbf{e}}_1, \vec{\mathbf{e}}_2\}$

$$\begin{pmatrix} x \\ y \end{pmatrix} = P \begin{pmatrix} \alpha \\ \beta \end{pmatrix}.$$

$$x = \frac{2}{\sqrt{5}}\alpha - \frac{1}{\sqrt{5}}\beta = \frac{1}{\sqrt{5}}(2\alpha - \beta)$$
$$y = \frac{1}{\sqrt{5}}\alpha + \frac{2}{\sqrt{5}}\beta = \frac{1}{\sqrt{5}}(\alpha + 2\beta)$$

now we substitute x and y with α and β into Γ and we manipulate the expression until we get

$$\frac{(x-1)^2}{9} + \frac{(y-2)^2}{4} = 1.$$

 \therefore Γ is an ellipse.

Subsection 3.2

Tangent to a conic at point B

Theorem 4

The normal to vector to a conic Γ

$$\Gamma : ax^2 + 2bxy + cy^2 + 2dx + 2ey + f = 0.$$

at a point $B \in \Gamma$ is defined to be

$$\nabla f(B) = \begin{pmatrix} \frac{\partial f}{\partial x} \Big|_{(x_B, y_B)} \\ \frac{\partial f}{\partial y} \Big|_{(x_B, y_B)} \end{pmatrix}.$$

where
$$f(x,y) = ax^2 + 2bxy + cy^2 + 2dx + 2ey + f = 0$$

The equation of a tangent to a conic at a point B is

$$a(x - x_B) + b(y - y_B) = 0.$$

where a and b are respectively the x and y components of the normal vector at B

Section 4

Quadrics

Definition 3

A quadric is any surface in 3D space with an equation of the form:

$$\underbrace{ax^2 + by^2 + cz^2 + 2dyz + 2exy + 2fxy}_{q(x,y,z): \text{quadratic form of 3 variables}} + \underbrace{gx + hy + iz}_{\text{linear part}} + \underbrace{j}_{\text{constant}} = 0.$$

The quadrics under study are²

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
 Ellipsoid
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
 Hyperboliod of one sheet
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$
 Hyperboliod of 2 sheets
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$
 Asymptote cone
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2pz$$
 Hyperbolic paraboloid
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z^2$$
 Elliptic cone

 2 if a = b the surface is a surface of revolution of axis (Oz)

If a one of variables is missing in the equation then the surface is said to be "(Conic name)-ic Cylinder". For example "Hyperbolic cylinder", "Circular cylinder", and "Elliptical cylinder"