Лабораторная работа № 6

Модель хищник-жертва

Дворкина Ева Владимировна

Содержание

1	Цель работы	4	
2	Задание	5	
3	Теоретическое введение	6	
	3.1 Математическая модель	6	
4	Выполнение лабораторной работы	7	
	4.1 Реализация модели в xcos	7	
	4.2 Реализация модели с помощью блока Modelica в xcos	12	
	4.3 Реализация модели в OpenModelica	16	
5	Выводы	19	
Сп	Список литературы		

Список иллюстраций

4.1	Задать переменные окружения в xcos	7
4.2	Модель хищник-жертва в xcos	8
4.3	Задать начальное значение в блоке интегрирования для х	9
4.4	Задать начальное значение в блоке интегрирования для у	9
4.5	Параметры блока CSCOPE	10
4.6	Параметры блока CSCOPXY	11
4.7	Задать конечное время интегрирования в хсоз	11
4.8	Решение модели хищник-жертва при $a=2, b=1, c=0.3, d=1,$	
	$x(0) = 2, y(9) = 1 \dots \dots$	12
4.9	Фазовый портрет модели хищник-жертва при $a=2, b=1, c=0.3,$	
	$d = 1, x(0) = 2, y(9) = 1 \dots \dots$	12
4.10	Модель хищник-жертва в xcos с применением блока Modelica	13
4.11	Ввод значений входных параметров блока Modelica для модели	14
4.12	Ввод функции блока Modelica для модели	15
4.13	Решение модели хищник-жертва при $a=2, b=1, c=0.3, d=1,$	
	$x(0) = 2, y(9) = 1 \dots \dots$	15
4.14	Фазовый портрет модели хищник-жертва при $a=2, b=1, c=0.3,$	
	$d = 1, x(0) = 2, y(9) = 1 \dots \dots$	16
4.15	Модель в OpenModelica	16
	Параметры моделирования в OpenModelica	17
4.17	Решение модели хищник жертва при $a=2, b=1, c=0.3, d=1,$	
	x(0) = 2, y(9) = 1. OpenModelica	17
4.18	Фазовый портрет модели хищник жертва при $a=2, b=1, c=0.3,$	
	d = 1, x(0) = 2, y(9) = 1. OpenModelica	18

1 Цель работы

Цель данной лабораторной работы - исследование модели хищник–жертва с помощью xcos и OpenModelica.

2 Задание

Реализовать классическую систему хищник–жертва - в xcos - в xcos с помощью блока Modelica - в OpenModelica

3 Теоретическое введение

3.1 Математическая модель

$$\begin{cases} \frac{dx}{dt} = ax(t) - bx(t)y(t) \\ \frac{dy}{dt} = -cy(t) + dx(t)y(t) \end{cases}$$

В этой модели x – число жертв, y - число хищников.

Коэффициент a описывает скорость естественного прироста числа жертв в отсутствие хищников, c - естественное вымирание хищников, лишенных пищи в виде жертв.

Вероятность взаимодействия жертвы и хищника считается пропорциональной как количеству жертв, так и числу самих хищников. Каждый акт взаимодействия уменьшает популяцию жертв, но способствует увеличению популяции хищников (члены -bxy и dxy в правой части уравнения) [1].

4 Выполнение лабораторной работы

4.1 Реализация модели в хсоѕ

Для работы в хсоз будем использовать дополнительные материалы [2].

Зафиксируем начальные параметры в меню *Моделирование, Задать переменные окружения* (рис. 4.1).

Рис. 4.1: Задать переменные окружения в хсоз

Затем построим модель при помощи блоков моделирования (рис. 4.2).

Рис. 4.2: Модель хищник-жертва в хсоѕ

Для реализации модели (6.1) в дополнение к блокам CLOCK_c, CSCOPE, TEXT_f, MUX, INTEGRAL_m, GAINBLK_f, SUMMATION, PROD_f потребуется блок CSCOPXY—регистрирующее устройство для построения фазового портрета.

Первое уравнение модели задано верхним блоком интегрирования, блоком произведения и блоками задания коэффициентов а и b.

Второе уравнение модели задано нижним блоком интегрирования и блоками задания коэффициентов с и d.

Для суммирования слагаемых правых частей уравнений используем блоки суммирования с соответствующими знаками перед коэффициентами. Выходы блоков суммирования соединяем с входами блоков интегрирования. Выходы блоков интегрирования соединяем с мультиплексором, который в свою очередь позволяет вывести на один график сразу обе кривые: динамику численности жертв и динамику численности хищников.

Зафиксируем начальные значения интеграторов (рис. 4.3, 4.4).

Рис. 4.3: Задать начальное значение в блоке интегрирования для х

Рис. 4.4: Задать начальное значение в блоке интегрирования для у Зададим параметры в блоках регистрирующих устройств (рис. 4.5, 4.6).

Рис. 4.5: Параметры блока CSCOPE

Рис. 4.6: Параметры блока CSCOPXY

Также зададим время интегрирования равное 30 единиц модельного времени (рис. 4.7).

Рис. 4.7: Задать конечное время интегрирования в хсоз

В результате получим решение системы хищник-жертва и фазовый портрет

(рис. 4.8, 4.9).

Рис. 4.8: Решение модели хищник-жертва при $a=2,\,b=1,\,c=0.3,\,d=1,\,x(0)=2,\,y(9)=1$

Рис. 4.9: Фазовый портрет модели хищник-жертва при a=2, b=1, c=0.3, d=1, x(0)=2, y(9)=1

4.2 Реализация модели с помощью блока Modelica в xcos

Для реализации модели с помощью языка Modelica помимо блоков CLOCK_c, CSCOPE, TEXT_f, MUX и CSCOPXY требуются блоки CONST_m – задаёт константу;

MBLOCK(Modelica generic) – блок реализации кода на языке Modelica (рис. 4.10).

Рис. 4.10: Модель хищник-жертва в xcos с применением блока Modelica

Задаём значения переменных a, b, c, d в параметры блока Modelica как переменные на входе, а на выходе ("X", "Y"). Все переменные блока заданы как внешние ("E"). Затем прописываем дифференциальное уравнение в следующем окне (рис. 4.11, 4.12).

Рис. 4.11: Ввод значений входных параметров блока Modelica для модели

Рис. 4.12: Ввод функции блока Modelica для модели

В результате получим решение системы хищник-жертва и фазовый портрет такие же, как при моделировании без блока Modelica (рис. 4.13, 4.14).

Рис. 4.13: Решение модели хищник-жертва при a=2, b=1, c=0.3, d=1, x(0)=2, y(9)=1

Рис. 4.14: Фазовый портрет модели хищник-жертва при a=2, b=1, c=0.3, d=1, x(0)=2, y(9)=1

4.3 Реализация модели в OpenModelica

Реализуем модель в OpenModelica. Для этого создадим файл модели, пропишем там параметры и начальные условия, а также систему дифференциальных уравнений (рис. 4.15).

Рис. 4.15: Модель в OpenModelica

Затем укажем параметры моделированиф, время так же как и при моделировании в хсоs поставим равным 30 единиц модельного времени (рис. 4.16).

Рис. 4.16: Параметры моделирования в OpenModelica

В результате получим график, аналогичный графикам в хсоз (рис. 4.17, ~ 4.18).

Рис. 4.17: Решение модели хищник жертва при a=2, b=1, c=0.3, d=1, x(0)=2, y(9)=1. OpenModelica

Рис. 4.18: Фазовый портрет модели хищник жертва при a=2, b=1, c=0.3, d=1, x(0)=2, y(9)=1. OpenModelica

5 Выводы

При выполнении данной лабораторной работы я исследовала модель хищник-жертва с помощью xcos и OpenModelica.

Список литературы

- 1. Королькова А.В., Кулябов Д.С. Лабораторная работа 6. Модель "Хищникжертва" [Электронный ресурс].
- 2. Королькова А.В., Кулябов Д.С. Компонентное моделирование. Scilab, подсистема xcos [Электронный ресурс].