\sim	Contents			11
-	Data		8.1 Cutpoints and bridges	11
T	Data structures	2	8.2 Topological sort	11
	1.1 DSU rollback	$\frac{2}{2}$	8.3 Kosaraiu	11
	1.2 Monotone queue	3	1 8.4 Tarian	11
	1.3 Stack queue $\mathcal{O}(n)$	$\begin{bmatrix} 3 \\ 3 \end{bmatrix}$	0 5 Igomownhiam	11
	1.4 In-Out trick	$\begin{bmatrix} 3 \\ 3 \end{bmatrix}$	0.6 17	
	1.6 Mos $\mathcal{O}((n+q)\cdot\sqrt{n})$	$\frac{3}{3}$	O. H. J. CA	
	1.7 Hilbert order	$\begin{vmatrix} 3 \\ 4 \end{vmatrix}$		
	1.8 Sqrt decomposition	4		
	1.9 Sparse table	4		
	1.10 Fenwick	$\frac{1}{4}$	` ,	
	1.11 Dynamic segtree	$\frac{1}{4}$	` ,	
	1.12 Persistent segtree	5	0.12 Elik-Cut tice $\mathcal{O}(n \ togn)$	1,
	1.13 Li Chao	5		14
	1.14 Wavelet	5	0 1105	
	1.15 Ordered tree	5	5.1 Hoperon Kaip C(cy 0)	
	1.16 Treap	5	9.2 Hungarian $\mathcal{O}(n \cdot m) \cdot \dots \cdot \dots \cdot \dots$	
	•		9.3 Dinic $\mathcal{O}(\min(e \cdot flow, v^2 \cdot e))$	
2	V 1 18 1 8	6	9.4 Min-Cost flow $\mathcal{O}(\min(e \cdot flow, v^2 \cdot e))$	Ιŧ
	2.1 All submasks of a mask	6	10.0	1,
	2.2 Convex hull trick $\mathcal{O}(n^2) \Rightarrow \mathcal{O}(n) \dots \dots$	6	10.1 C 1 1	16
	2.3 Digit dp	6		10
	2.4 Divide and conquer $\mathcal{O}(k \cdot n^2) \Rightarrow \mathcal{O}(k \cdot nlogn)$.	7		16
	2.5 Knapsack 01 $\mathcal{O}(n \cdot MaxW)$	7	44.4 700	
	2.6 Knuth $\mathcal{O}(n^3) \Rightarrow \mathcal{O}(n^2) \dots \dots$	7	44.0 Dt.	
	2.7 Matrix exponentiation	7		
	2.8 SOS dp	7	v v	
3	Geometry	7	11.4 Simplex	
J	3.1 Geometry	7	11.5 AOr pasis	17
	3.2 Radial order	7		1 P
	3.3 Sort along line	7	12 Combinatories	17
		.	12.1 Catalan	
1			12.2 Factorial	
-	Point	7		
-1	Point 4.1 Point	7	12.3 Factorial mod small prime	
7	4.1 Point		12.3 Factorial mod small prime	18
4	4.1 Point	7	12.3 Factorial mod small prime	18
4	4.1 Point	7 8	12.3 Factorial mod small prime	18 18
	4.1 Point	7 8 8 8	12.3 Factorial mod small prime 12.4 Choose 12.5 Pascal 12.6 Stars and bars 12.7 Lucas	18 18 18
5	4.1 Point 4.2 Angle between vectors 4.3 Closest pair of points $\mathcal{O}(nlogn)$ 4.4 KD Tree Lines and segments	7 8 8 8	12.3 Factorial mod small prime 12.4 Choose 12.5 Pascal 12.6 Stars and bars 12.7 Lucas 12.8 Burnside lemma	18 18 18
	4.1 Point 4.2 Angle between vectors 4.3 Closest pair of points $\mathcal{O}(nlogn)$ 4.4 KD Tree Lines and segments 5.1 Line	7 8 8 8 8	12.3 Factorial mod small prime 12.4 Choose 12.5 Pascal 12.6 Stars and bars 12.7 Lucas 12.8 Burnside lemma	18 18 18
	4.1 Point 4.2 Angle between vectors 4.3 Closest pair of points $\mathcal{O}(nlogn)$ 4.4 KD Tree Lines and segments 5.1 Line 5.2 Segment	7 8 8 8 8 8	12.3 Factorial mod small prime 12.4 Choose 12.5 Pascal 12.6 Stars and bars 12.7 Lucas 12.8 Burnside lemma 13 Number theory	18 18 18 18 18
	4.1 Point 4.2 Angle between vectors 4.3 Closest pair of points $\mathcal{O}(nlogn)$ 4.4 KD TreeLines and segments 5.1 Line 5.2 Segment 5.3 Projection	7 8 8 8 8 9	12.3 Factorial mod small prime 12.4 Choose 12.5 Pascal 12.6 Stars and bars 12.7 Lucas 12.8 Burnside lemma 13 Number theory 13.1 Amount of divisors $\mathcal{O}(n^{1/3})$	18 18 18 18 18
	4.1 Point 4.2 Angle between vectors 4.3 Closest pair of points $\mathcal{O}(nlogn)$ 4.4 KD TreeLines and segments 5.1 Line 5.2 Segment 5.3 Projection 5.4 Distance point line 5.4 Distance	7 8 8 8 8 8 9 9	12.3 Factorial mod small prime 12.4 Choose 12.5 Pascal 12.6 Stars and bars 12.7 Lucas 12.8 Burnside lemma 13 Number theory 13.1 Amount of divisors $\mathcal{O}(n^{1/3})$ 13.2 Chinese remainder theorem	18 18 18 18 18
	4.1 Point 4.2 Angle between vectors 4.3 Closest pair of points $\mathcal{O}(nlogn)$ 4.4 KD Tree Lines and segments 5.1 Line 5.2 Segment 5.3 Projection 5.4 Distance point line 5.5 Distance point segment	7 8 8 8 8 9 9	12.3 Factorial mod small prime 12.4 Choose 12.5 Pascal 12.6 Stars and bars 12.7 Lucas 12.8 Burnside lemma 13 Number theory 13.1 Amount of divisors $\mathcal{O}(n^{1/3})$ 13.2 Chinese remainder theorem 13.3 Fuclid $\mathcal{O}(log(a,b))$	18 18 18 18 18 18
	4.1 Point 4.2 Angle between vectors 4.3 Closest pair of points $\mathcal{O}(nlogn)$ 4.4 KD TreeLines and segments 5.1 Line 5.2 Segment 5.3 Projection 5.4 Distance point line 5.4 Distance	7 8 8 8 8 8 9 9	12.3 Factorial mod small prime 12.4 Choose 12.5 Pascal 12.6 Stars and bars 12.7 Lucas 12.8 Burnside lemma 13 Number theory 13.1 Amount of divisors $\mathcal{O}(n^{1/3})$ 13.2 Chinese remainder theorem 13.3 Fuclid $\mathcal{O}(log(a,b))$	18 18 18 18 18 18 18
5	4.1 Point 4.2 Angle between vectors 4.3 Closest pair of points $\mathcal{O}(nlogn)$ 4.4 KD Tree Lines and segments 5.1 Line 5.2 Segment 5.3 Projection 5.4 Distance point line 5.5 Distance segment 5.6 Distance segment segment	7 8 8 8 8 8 9 9 9	12.3 Factorial mod small prime 12.4 Choose 12.5 Pascal 12.6 Stars and bars 12.7 Lucas 12.8 Burnside lemma 13 Number theory 13.1 Amount of divisors $\mathcal{O}(n^{1/3})$ 13.2 Chinese remainder theorem 13.3 Euclid $\mathcal{O}(log(a \cdot b))$ 13.4 Factorial factors	18 18 18 18 18 18 18 18
	4.1 Point 4.2 Angle between vectors 4.3 Closest pair of points $\mathcal{O}(nlogn)$ 4.4 KD Tree Lines and segments 5.1 Line 5.2 Segment 5.3 Projection 5.4 Distance point line 5.5 Distance segment Circle	7 8 8 8 8 8 9 9 9 9	12.3 Factorial mod small prime 12.4 Choose 12.5 Pascal 12.6 Stars and bars 12.7 Lucas 12.8 Burnside lemma 13 Number theory 13.1 Amount of divisors $\mathcal{O}(n^{1/3})$ 13.2 Chinese remainder theorem 13.3 Euclid $\mathcal{O}(log(a \cdot b))$ 13.4 Factorial factors 13.5 Factorize sieve	18 18 18 18 18 18 18 18 18 18
5	4.1 Point 4.2 Angle between vectors 4.3 Closest pair of points 𝒪(nlogn) 4.4 KD Tree Lines and segments 5.1 Line 5.2 Segment 5.3 Projection 5.4 Distance point line 5.5 Distance point segment 5.6 Distance segment Circle 6.1 Circle	7 8 8 8 8 8 9 9 9	12.3 Factorial mod small prime 12.4 Choose 12.5 Pascal 12.6 Stars and bars 12.7 Lucas 12.8 Burnside lemma 13 Number theory 13.1 Amount of divisors $\mathcal{O}(n^{1/3})$ 13.2 Chinese remainder theorem 13.3 Euclid $\mathcal{O}(\log(a \cdot b))$ 13.4 Factorial factors 13.5 Factorize sieve 13.6 Sieve	18 18 18 18 18 18 18 18 18 18
5	4.1 Point 4.2 Angle between vectors 4.3 Closest pair of points 𝒪(nlogn) 4.4 KD Tree Lines and segments 5.1 Line 5.2 Segment 5.3 Projection 5.4 Distance point line 5.5 Distance point segment 5.6 Distance segment Circle 6.1 Circle 6.2 Distance point circle	7 8 8 8 8 8 9 9 9 9 9 9	12.3 Factorial mod small prime 12.4 Choose 12.5 Pascal 12.6 Stars and bars 12.7 Lucas 12.8 Burnside lemma 13 Number theory 13.1 Amount of divisors $\mathcal{O}(n^{1/3})$ 13.2 Chinese remainder theorem 13.3 Euclid $\mathcal{O}(\log(a \cdot b))$ 13.4 Factorial factors 13.5 Factorize sieve 13.6 Sieve 13.7 Phi $\mathcal{O}(\sqrt{n})$	18 18 18 18 18 18 18 18 18 19
5	4.1 Point 4.2 Angle between vectors 4.3 Closest pair of points 𝒪(nlogn) 4.4 KD Tree Lines and segments 5.1 Line 5.2 Segment 5.3 Projection 5.4 Distance point line 5.5 Distance point segment 5.6 Distance segment Circle 6.1 Circle 6.2 Distance point circle 6.3 Common area circle circle	7 8 8 8 8 8 9 9 9 9 9 9	12.3 Factorial mod small prime 12.4 Choose 12.5 Pascal 12.6 Stars and bars 12.7 Lucas 12.8 Burnside lemma 13 Number theory 13.1 Amount of divisors $\mathcal{O}(n^{1/3})$ 13.2 Chinese remainder theorem 13.3 Euclid $\mathcal{O}(\log(a \cdot b))$ 13.4 Factorial factors 13.5 Factorize sieve 13.6 Sieve 13.7 Phi $\mathcal{O}(\sqrt{n})$ 13.8 Phi sieve	18 18 18 18 18 18 18 18 18 19 19
5	 4.1 Point 4.2 Angle between vectors 4.3 Closest pair of points O(nlogn) 4.4 KD Tree Lines and segments 5.1 Line 5.2 Segment 5.3 Projection 5.4 Distance point line 5.5 Distance point segment Circle 6.1 Circle 6.2 Distance point circle 6.3 Common area circle circle 	7 8 8 8 8 8 9 9 9 9 9 9	12.3 Factorial mod small prime 12.4 Choose 12.5 Pascal 12.6 Stars and bars 12.7 Lucas 12.8 Burnside lemma 13 Number theory 13.1 Amount of divisors $\mathcal{O}(n^{1/3})$ 13.2 Chinese remainder theorem 13.3 Euclid $\mathcal{O}(\log(a \cdot b))$ 13.4 Factorial factors 13.5 Factorize sieve 13.6 Sieve 13.7 Phi $\mathcal{O}(\sqrt{n})$ 13.8 Phi sieve 13.9 Miller rabin $\mathcal{O}(Witnesses \cdot (logn)^3)$	18 18 18 18 18 18 18 18 18 19 19 19
5	4.1 Point4.2 Angle between vectors4.3 Closest pair of points $\mathcal{O}(nlogn)$ 4.4 KD TreeLines and segments5.1 Line5.2 Segment5.3 Projection5.4 Distance point line5.5 Distance point segment5.6 Distance segment segmentCircle6.1 Circle6.2 Distance point circle6.3 Common area circle circle6.4 Minimum enclosing circle $\mathcal{O}(n)$ wow!!	7 8 8 8 8 8 9 9 9 9 9 9	12.3 Factorial mod small prime 12.4 Choose 12.5 Pascal 12.6 Stars and bars 12.7 Lucas 12.8 Burnside lemma 13 Number theory 13.1 Amount of divisors $\mathcal{O}(n^{1/3})$ 13.2 Chinese remainder theorem 13.3 Euclid $\mathcal{O}(\log(a \cdot b))$ 13.4 Factorial factors 13.5 Factorize sieve 13.6 Sieve 13.7 Phi $\mathcal{O}(\sqrt{n})$ 13.8 Phi sieve 13.9 Miller rabin $\mathcal{O}(Witnesses \cdot (\log n)^3)$ 13.10Pollard Rho $\mathcal{O}(n^{1/4})$	18 18 18 18 18 18 18 18 18 19 19 19
5	4.1 Point4.2 Angle between vectors4.3 Closest pair of points $\mathcal{O}(nlogn)$ 4.4 KD TreeLines and segments5.1 Line5.2 Segment5.3 Projection5.4 Distance point line5.5 Distance point segment5.6 Distance segment segmentCircle6.1 Circle6.2 Distance point circle6.3 Common area circle circle6.4 Minimum enclosing circle $\mathcal{O}(n)$ wow!!Polygon7.1 Area polygon	7 8 8 8 8 8 8 9 9 9 9 9 9 9 9 10 10	12.3 Factorial mod small prime 12.4 Choose 12.5 Pascal 12.6 Stars and bars 12.7 Lucas 12.8 Burnside lemma 13 Number theory 13.1 Amount of divisors $\mathcal{O}(n^{1/3})$ 13.2 Chinese remainder theorem 13.3 Euclid $\mathcal{O}(log(a \cdot b))$ 13.4 Factorial factors 13.5 Factorize sieve 13.6 Sieve 13.7 Phi $\mathcal{O}(\sqrt{n})$ 13.8 Phi sieve 13.9 Miller rabin $\mathcal{O}(Witnesses \cdot (logn)^3)$ 13.10 Pollard Rho $\mathcal{O}(n^{1/4})$	18 18 18 18 18 18 18 18 19 19 19
5	4.1 Point 4.2 Angle between vectors 4.3 Closest pair of points $\mathcal{O}(nlogn)$ 4.4 KD Tree Lines and segments 5.1 Line 5.2 Segment 5.3 Projection 5.4 Distance point line 5.5 Distance point segment 5.6 Distance segment Circle 6.1 Circle 6.2 Distance point circle 6.3 Common area circle circle 6.4 Minimum enclosing circle $\mathcal{O}(n)$ wow!! Polygon 7.1 Area polygon 7.2 Perimeter	7 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10	12.3 Factorial mod small prime 12.4 Choose 12.5 Pascal 12.6 Stars and bars 12.7 Lucas 12.8 Burnside lemma 13 Number theory 13.1 Amount of divisors $\mathcal{O}(n^{1/3})$ 13.2 Chinese remainder theorem 13.3 Euclid $\mathcal{O}(\log(a \cdot b))$ 13.4 Factorial factors 13.5 Factorize sieve 13.6 Sieve 13.7 Phi $\mathcal{O}(\sqrt{n})$ 13.8 Phi sieve 13.9 Miller rabin $\mathcal{O}(Witnesses \cdot (\log n)^3)$ 13.10Pollard Rho $\mathcal{O}(n^{1/4})$	18 18 18 18 18 18 18 18 19 19 19
5	4.1 Point 4.2 Angle between vectors 4.3 Closest pair of points $\mathcal{O}(nlogn)$ 4.4 KD Tree Lines and segments 5.1 Line 5.2 Segment 5.3 Projection 5.4 Distance point line 5.5 Distance point segment 5.6 Distance segment Circle 6.1 Circle 6.2 Distance point circle 6.3 Common area circle circle 6.4 Minimum enclosing circle $\mathcal{O}(n)$ wow!! Polygon 7.1 Area polygon 7.2 Perimeter 7.3 Cut polygon line	7 8 8 8 8 8 8 9 9 9 9 9 9 9 9 10 10 10	12.3 Factorial mod small prime 12.4 Choose 12.5 Pascal 12.6 Stars and bars 12.7 Lucas 12.8 Burnside lemma 13 Number theory 13.1 Amount of divisors $\mathcal{O}(n^{1/3})$ 13.2 Chinese remainder theorem 13.3 Euclid $\mathcal{O}(log(a \cdot b))$ 13.4 Factorial factors 13.5 Factorize sieve 13.6 Sieve 13.7 Phi $\mathcal{O}(\sqrt{n})$ 13.8 Phi sieve 13.9 Miller rabin $\mathcal{O}(Witnesses \cdot (logn)^3)$ 13.10Pollard Rho $\mathcal{O}(n^{1/4})$ 14 Polynomials 14.1 Berlekamp Massey	18 18 18 18 18 18 18 18 19 19 19 19
5	4.1 Point 4.2 Angle between vectors 4.3 Closest pair of points $\mathcal{O}(nlogn)$ 4.4 KD Tree Lines and segments 5.1 Line 5.2 Segment 5.3 Projection 5.4 Distance point line 5.5 Distance point segment 5.6 Distance segment Circle 6.1 Circle 6.2 Distance point circle 6.3 Common area circle circle 6.4 Minimum enclosing circle $\mathcal{O}(n)$ wow!! Polygon 7.1 Area polygon 7.2 Perimeter 7.3 Cut polygon line 7.4 Common area circle polygon $\mathcal{O}(n)$	7 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10	12.3 Factorial mod small prime 12.4 Choose 12.5 Pascal 12.6 Stars and bars 12.7 Lucas 12.8 Burnside lemma 13 Number theory 13.1 Amount of divisors $\mathcal{O}(n^{1/3})$ 13.2 Chinese remainder theorem 13.3 Euclid $\mathcal{O}(\log(a \cdot b))$ 13.4 Factorial factors 13.5 Factorize sieve 13.6 Sieve 13.7 Phi $\mathcal{O}(\sqrt{n})$ 13.8 Phi sieve 13.9 Miller rabin $\mathcal{O}(Witnesses \cdot (\log n)^3)$ 13.10Pollard Rho $\mathcal{O}(n^{1/4})$ 14 Polynomials 14.1 Berlekamp Massey 14.2 Lagrange $\mathcal{O}(n)$	18 18 18 18 18 18 18 18 19 19 19 19 20
5	4.1 Point 4.2 Angle between vectors 4.3 Closest pair of points $\mathcal{O}(nlogn)$ 4.4 KD Tree Lines and segments 5.1 Line 5.2 Segment 5.3 Projection 5.4 Distance point line 5.5 Distance point segment 5.6 Distance segment segment Circle 6.1 Circle 6.2 Distance point circle 6.3 Common area circle circle 6.4 Minimum enclosing circle $\mathcal{O}(n)$ wow!! Polygon 7.1 Area polygon 7.2 Perimeter 7.3 Cut polygon line 7.4 Common area circle polygon $\mathcal{O}(n)$ 7.5 Point in polygon	7 8 8 8 8 8 8 9 9 9 9 9 9 9 9 10 10 10 10 10 10	12.3 Factorial mod small prime 12.4 Choose 12.5 Pascal 12.6 Stars and bars 12.7 Lucas 12.8 Burnside lemma 13 Number theory 13.1 Amount of divisors $\mathcal{O}(n^{1/3})$ 13.2 Chinese remainder theorem 13.3 Euclid $\mathcal{O}(\log(a \cdot b))$ 13.4 Factorial factors 13.5 Factorize sieve 13.6 Sieve 13.7 Phi $\mathcal{O}(\sqrt{n})$ 13.8 Phi sieve 13.9 Miller rabin $\mathcal{O}(Witnesses \cdot (\log n)^3)$ 13.10Pollard Rho $\mathcal{O}(n^{1/4})$ 14 Polynomials 14.1 Berlekamp Massey 14.2 Lagrange $\mathcal{O}(n)$ 14.3 FFT	18 18 18 18 18 18 18 18 18 19 19 19 20 20
5	4.1 Point 4.2 Angle between vectors 4.3 Closest pair of points $\mathcal{O}(nlogn)$ 4.4 KD Tree Lines and segments 5.1 Line 5.2 Segment 5.3 Projection 5.4 Distance point line 5.5 Distance point segment 5.6 Distance segment 5.7 Circle 6.1 Circle 6.2 Distance point circle 6.3 Common area circle circle 6.4 Minimum enclosing circle $\mathcal{O}(n)$ wow!! Polygon 7.1 Area polygon 7.2 Perimeter 7.3 Cut polygon line 7.4 Common area circle polygon $\mathcal{O}(n)$ 7.5 Point in polygon 7.6 Convex hull $\mathcal{O}(nlogn)$	7 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10	12.3 Factorial mod small prime 12.4 Choose 12.5 Pascal 12.6 Stars and bars 12.7 Lucas 12.8 Burnside lemma 13 Number theory 13.1 Amount of divisors $\mathcal{O}(n^{1/3})$ 13.2 Chinese remainder theorem 13.3 Euclid $\mathcal{O}(\log(a \cdot b))$ 13.4 Factorial factors 13.5 Factorize sieve 13.6 Sieve 13.7 Phi $\mathcal{O}(\sqrt{n})$ 13.8 Phi sieve 13.9 Miller rabin $\mathcal{O}(Witnesses \cdot (\log n)^3)$ 13.10Pollard Rho $\mathcal{O}(n^{1/4})$ 14 Polynomials 14.1 Berlekamp Massey 14.2 Lagrange $\mathcal{O}(n)$ 14.3 FFT 14.4 Fast Walsh Hadamard Transform	18 18 18 18 18 18 18 19 19 19 20 20 20
5	4.1 Point 4.2 Angle between vectors 4.3 Closest pair of points $\mathcal{O}(nlogn)$ 4.4 KD Tree Lines and segments 5.1 Line 5.2 Segment 5.3 Projection 5.4 Distance point line 5.5 Distance point segment 5.6 Distance segment 5.6 Distance segment Circle 6.1 Circle 6.2 Distance point circle 6.3 Common area circle circle 6.4 Minimum enclosing circle $\mathcal{O}(n)$ wow!! Polygon 7.1 Area polygon 7.2 Perimeter 7.3 Cut polygon line 7.4 Common area circle polygon $\mathcal{O}(n)$ 7.5 Point in polygon 7.6 Convex hull $\mathcal{O}(nlogn)$	7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	12.3 Factorial mod small prime 12.4 Choose 12.5 Pascal 12.6 Stars and bars 12.7 Lucas 12.8 Burnside lemma 13 Number theory 13.1 Amount of divisors $\mathcal{O}(n^{1/3})$ 13.2 Chinese remainder theorem 13.3 Euclid $\mathcal{O}(\log(a \cdot b))$ 13.4 Factorial factors 13.5 Factorize sieve 13.6 Sieve 13.7 Phi $\mathcal{O}(\sqrt{n})$ 13.8 Phi sieve 13.9 Miller rabin $\mathcal{O}(Witnesses \cdot (\log n)^3)$ 13.10Pollard Rho $\mathcal{O}(n^{1/4})$ 14 Polynomials 14.1 Berlekamp Massey 14.2 Lagrange $\mathcal{O}(n)$ 14.3 FFT 14.4 Fast Walsh Hadamard Transform 14.5 Primitive root	18 18 18 18 18 18 18 19 19 19 20 20 20 20

15 Strings 2	L do {
15.1 KMP	·
15.2 KMP automaton $\mathcal{O}(Alphabet*n)$. alsa
15.3 Z	cout << blue << s[0] << reset:
15.4 Manacher	s = s.substr(1);
15.5 Hash	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
15.7 Suffix array $\mathcal{O}(nlogn)$	ii (ok) cout (purple (ii (reset,
15.8 Aho Corasick $\mathcal{O}(\sum s_i)$	P(-)
15.9 Eertree $\mathcal{O}(\sum s_i)$	- Table - Ta
15.10Suffix automaton $\mathcal{O}(\sum s_i)$	#define debug() print(#VA_ARGS,VA_ARGS)
	Randoms
Think twice, code once	mt19937 rng(chrono::steady_clock::now().time_since_epoch()
Template.cpp	count());
<pre>#pragma GCC optimize("Ofast,unroll-loops,no-stack-protector</pre>	Compilation (gedit /.zshenv)
")	touch in{19} // make files in1, in2,, in9
<pre>#include <bits stdc++.h=""></bits></pre>	tee {az}.cpp < tem.cpp // make files with tem.cpp
using namespace std;	rm - r a.cpp // deletes file a.cpp :'(
#define fore(i, 1, r) for (auto i = (1) - ((1) > (r)); i !=	red = '\x1B[0;31m'
(r) - ((1) > (r)); i += 1 - 2 * ((1) > (r)))	green = '\x1B[0;32m'
<pre>#define sz(x) int(x.size())</pre>	removeColor = '\x1B[0m'
<pre>#define all(x) begin(x), end(x)</pre>	compile() {
#define f first #define s second	alias flags='-Wall -Wextra -Wfatal-errors -Wshadow -w -
#define pb push_back	mcmodel=medium'
parameter parame	g++-11std=c++17 \$2 \${flags} \$1.cpp -o \$1
#ifdef LOCAL	}
#include "debug.h"	go() {
<pre>#else #define debug()</pre>	file=\$1
#endif	name="\${file%.*}"
	input=\$2
using ld = long double;	<pre>moreFlags=\$3 compile \${name} \${moreFlags}</pre>
using lli = long long;	./\${name} < \${input}
<pre>using ii = pair<int, int="">; using vi = vector<int>;</int></int,></pre>	}
the state of the s	
<pre>int main() {</pre>	run() { go \$1 \$2 "" } debug() { go \$1 \$2 -DLOCAL }
cin.tie(0)->sync_with_stdio(0), cout.tie(0);	debug() { go \$1 \$2 DLOCAL }
return 0; }	<pre>random() { # Make small test cases!!!</pre>
Debug.h	file=\$1
#include <bits stdc++.h=""></bits>	name="\${file%.*}"
using namespace std;	compile \${name} "" compile gen ""
	compile brute ""
template <class a,="" b="" class=""></class>	
<pre>ostream& operator<<(ostream& os, const pair<a, b="">& p) { return os << "(" << p.first << ", " << p.second << ")";</a,></pre>	for ((i = 1; i <= 300; i++)); do
}	<pre>printf "Test case #\${i}" ./gen > tmp</pre>
	diff -ywi <(./name < tmp) <(./brute < tmp) > \$nameDiff
template <class a,="" b,="" c="" class=""></class>	if [[\$? -eq 0]]; then
basic_ostream <a, b="">& operator<<(basic_ostream<a, b="">& os,</a,></a,>	<pre>printf "\${green} Accepted \${removeColor}\n"</pre>
const C& c) { os << "[";	<pre>else printf "\${red} Wrong answer \${removeColor}\n"</pre>
for (const auto& x : c) os << ", " + 2 * (&x == &*begin(c	break
)) << x;	fi
return os << "]";	done
}	}
<pre>void print(string s) { cout << endl; }</pre>	1 Data structures
template <class class="" h,="" t=""></class>	1.1 DSU rollback
<pre>void print(string s, const H& h, const T& t) {</pre>	struct Dsu {
<pre>const static string reset = "\033[0m", blue = "\033[1;34m</pre>	<pre>vector<int> par, tot;</int></pre>
", purple = "\033[3;95m"; bool ok = 1;	<pre>stack<ii> mem;</ii></pre>
0001 UK = 1,	

```
Dsu(int n = 1) : par(n + 1), tot(n + 1, 1) { iota(all(par))}
                                                                       >>
       ), 0); }
                                                                  struct Queue {
                                                                    Stack<T> a, b;
   int find(int u) { return par[u] == u ? u : find(par[u]);
                                                                    F f;
                                                                    Queue(const F& f) : a(f), b(f), f(f) {}
   void unite(int u, int v) {
     u = find(u), v = find(v);
                                                                    void push(T x) { b.push(x); }
     if (u != v) {
       if (tot[u] < tot[v]) swap(u, v);</pre>
                                                                    T pop() {
       mem.emplace(u, v);
                                                                      if (a.empty())
       tot[u] += tot[v];
                                                                        while (!b.empty()) a.push(b.pop());
       par[v] = u;
                                                                       return a.pop();
     } else {
       mem.emplace(-1, -1);
     }
                                                                    T query() {
                                                                      if (a.empty()) return b.query();
   }
                                                                      if (b.empty()) return a.query();
   void rollback() {
                                                                      return f(a.query(), b.query());
     auto [u, v] = mem.top();
                                                                    }
     mem.pop();
                                                                  };
     if (u != -1) {
                                                                 1.4
                                                                       In-Out trick
       tot[u] -= tot[v];
                                                                  vector<int> in[N], out[N];
       par[v] = v;
                                                                  vector<Query> queries;
     }
   }
                                                                  fore (x, 0, N) {
 };
                                                                    for (int i : in[x]) add(queries[i]);
1.2
      Monotone queue
                                                                    for (int i : out[x]) rem(queries[i]);
 template <class T, class F = less<T>>>
                                                                  }
 struct MonotoneQueue {
   deque<pair<T, int>> q;
                                                                 1.5
                                                                       Parallel binary search \mathcal{O}((n+q) \cdot log n)
   Ff;
                                                                  int lo[Q], hi[Q];
                                                                  queue<int> solve[N];
   void add(int pos, T val) {
                                                                  vector<Query> queries;
     while (q.size() && !f(q.back().f, val)) q.pop_back();
     q.emplace_back(val, pos);
                                                                  fore (it, 0, 1 + __lg(N)) {
   }
                                                                    fore (i, 0, sz(queries))
                                                                      if (lo[i] != hi[i]) {
   void trim(int pos) { // >= pos
                                                                         int mid = (lo[i] + hi[i]) / 2;
     while (q.size() && q.front().s < pos) q.pop_front();</pre>
                                                                         solve[mid].emplace(i);
                                                                      }
                                                                    fore (x, 0, n) { // 0th-indexed
  T query() { return q.empty() ? T() : q.front().f; }
                                                                      // simulate
                                                                      while (!solve[x].empty()) {
                                                                         int i = solve[x].front();
       Stack queue \mathcal{O}(n)
                                                                         solve[x].pop();
 template <class T, class F = function<T(const T&, const T&)
                                                                         if (can(queries[i]))
                                                                          hi[i] = x;
 struct Stack : vector<T> {
                                                                         else
   vector<T> s;
                                                                          lo[i] = x + 1;
   Ff;
                                                                      }
                                                                    }
  Stack(const F& f) : f(f) {}
                                                                  }
   void push(T x) {
                                                                       Mos \mathcal{O}((n+q)\cdot\sqrt{n})
                                                                 1.6
     this->pb(x);
                                                                 Mo's in a tree, extended euler tour tin[u] = ++timer, tout[u]
     s.pb(s.empty() ? x : f(s.back(), x));
                                                                 = ++timer
                                                                   • u = lca(u, v), query(tin[u], tin[v])
   T pop() {
     T x = this->back();
                                                                   • u \neq lca(u, v), query(tout[u], tin[v]) + query(tin[lca],
     this->pop_back();
                                                                      tin[lca])
     s.pop_back();
                                                                  struct Query {
     return x;
                                                                    int 1, r, i;
   }
                                                                  };
  T query() { return s.back(); }
                                                                  vector<Query> queries;
 };
 template <class T, class F = function<T(const T&, const T&)</pre>
                                                                  const int BLOCK = sqrt(N);
```

```
sort(all(queries), [&](Query& a, Query& b) {
                                                                      return f(sp[k][1], sp[k][r - (1 << k) + 1]);
   const int ga = a.1 / BLOCK, gb = b.1 / BLOCK;
                                                                    }
   if (ga == gb) return a.r < b.r;</pre>
                                                                  };
   return ga < gb;</pre>
                                                                 1.10
                                                                          Fenwick
 });
                                                                  template <class T>
 int 1 = queries[0].1, r = 1 - 1;
                                                                  struct Fenwick {
                                                                    vector<T> fenw;
 for (auto& q : queries) {
   while (r < q.r) add(++r);
   while (r > q.r) rem(r--);
                                                                    Fenwick(int n) : fenw(n, T()) {} // 0-indexed
   while (1 < q.1) \text{ rem}(1++);
                                                                    void update(int i, T v) {
   while (1 > q.1) add(--1);
                                                                      for (; i < sz(fenw); i |= i + 1) fenw[i] += v;</pre>
   ans[q.i] = solve();
                                                                    T query(int i) {
       Hilbert order
                                                                      T v = T();
                                                                      for (; i >= 0; i &= i + 1, --i) v += fenw[i];
 11i hilbert(int x, int y, int pw = 21, int rot = 0) {
   if (pw == 0) return 0;
   int hpw = 1 << (pw - 1);
   int k = ((x < hpw ? y < hpw ? 0 : 3 : y < hpw ? 1 : 2) +
                                                                    int lower_bound(T v) {
       rot) & 3:
                                                                      int pos = 0;
   const int d[4] = \{3, 0, 0, 1\};
                                                                      for (int k = __lg(sz(fenw)); k >= 0; k--)
   11i a = 1LL \ll ((pw \ll 1) - 2);
                                                                        if (pos + (1 << k) <= sz(fenw) && fenw[pos + (1 << k)
   lli b = hilbert(x & (x ^h hpw), y & (y ^h hpw), pw - 1, (
                                                                              -1] < v) {
       rot + d[k]) & 3);
                                                                          pos += (1 << k);
   return k * a + (d[k] ? a - b - 1 : b);
                                                                          v = fenw[pos - 1];
 }
1.8
       Sqrt decomposition
                                                                      return pos + (v == 0);
 const int BLOCK = sqrt(N);
                                                                    }
 int blo[N]; // blo[i] = i / BLOCK
                                                                  };
                                                                 1.11
                                                                          Dynamic segtree
 void update(int i) {}
                                                                  template <class T>
 int query(int 1, int r) {
                                                                  struct Dyn {
                                                                    int 1, r;
   while (1 \le r)
     if (1 % BLOCK == 0 && 1 + BLOCK - 1 <= r) {
                                                                    Dyn *left, *right;
       // solve for block
                                                                    T val;
       1 += BLOCK;
     } else {
                                                                    Dyn(int 1, int r) : l(1), r(r), left(0), right(0) {}
       // solve for individual element
       1++:
                                                                    void pull() { val = (left ? left->val : T()) + (right ?
     }
                                                                         right->val : T()); }
 }
                                                                    template <class... Args>
1.9 Sparse table
                                                                    void update(int p, const Args&... args) {
 template <class T, class F = function<T(const T&, const T&)</pre>
                                                                      if (1 == r) {
                                                                        val = T(args...);
 struct Sparse {
                                                                        return;
   vector<T> sp[25];
                                                                      }
   Ff;
                                                                      int m = (1 + r) >> 1;
                                                                      if (p <= m) {
                                                                        if (!left) left = new Dyn(1, m);
   Sparse(T* begin, T* end, const F& f) : Sparse(vector<T>(
                                                                        left->update(p, args...);
       begin, end), f) {}
                                                                      } else {
                                                                        if (!right) right = new Dyn(m + 1, r);
   Sparse(const vector<T>& a, const F& f) : f(f), n(sz(a)) {
                                                                        right->update(p, args...);
                                                                      }
     for (int k = 1; (1 << k) <= n; k++) {
                                                                      pull();
       sp[k].resize(n - (1 << k) + 1);
       fore (1, 0, sz(sp[k])) {
        int r = 1 + (1 << (k - 1));
                                                                    T query(int 11, int rr) {
         sp[k][1] = f(sp[k - 1][1], sp[k - 1][r]);
                                                                      if (rr < 1 || r < 11 || r < 1) return T();</pre>
       }
                                                                      if (ll <= 1 && r <= rr) return val;</pre>
     }
                                                                      int m = (1 + r) >> 1;
   }
                                                                      return (left ? left->query(ll, rr) : T()) + (right ?
                                                                           right->query(ll, rr) : T());
   T query(int 1, int r) {
 #warning Can give TLE D:, change it to a log table
                                                                  };
     int k = _{-}lg(r - 1 + 1);
```

1.12 Persistent segtree

```
template <class T>
 struct Per {
   int 1, r;
   Per *left, *right;
  T val:
  Per(int 1, int r) : 1(1), r(r), left(0), right(0) {}
   Per* pull() {
     val = left->val + right->val;
     return this:
   void build() {
    if (1 == r) return;
     int m = (1 + r) >> 1;
     (left = new Per(1, m))->build();
     (right = new Per(m + 1, r))->build();
     pull();
   template <class... Args>
   Per* update(int p, const Args&... args) {
     if (p < 1 || r < p) return this;
     Per* tmp = new Per(1, r);
     if (1 == r) {
       tmp->val = T(args...);
       return tmp;
     }
     tmp->left = left->update(p, args...);
     tmp->right = right->update(p, args...);
     return tmp->pull();
  T query(int 11, int rr) {
     if (r < 11 || rr < 1) return T();</pre>
     if (11 <= 1 && r <= rr) return val;</pre>
     return left->query(ll, rr) + right->query(ll, rr);
   }
};
1.13 Li Chao
 struct LiChao {
  struct Fun {
     lli m = \emptyset, c = -INF;
     1li operator()(lli x) const { return m * x + c; }
   } f;
   lli 1, r;
   LiChao *left, *right;
   LiChao(lli 1, lli r, Fun f) : 1(1), r(r), f(f), left(0),
       right(0) {}
   void add(Fun& g) {
     lli m = (1 + r) >> 1;
     bool bl = g(1) > f(1), bm = g(m) > f(m);
     if (bm) swap(f, g);
     if (1 == r) return;
     if (bl != bm)
       left = left ? (left->add(g), left) : new LiChao(l, m,
     else
       right = right ? (right->add(g), right) : new LiChao(m
            + 1, r, g);
   }
   lli query(lli x) {
     if (1 == r) return f(x);
     lli m = (l + r) >> 1;
```

```
if (x \le m) return max(f(x), left ? left > query(x) : -
     return max(f(x), right ? right->query(x) : -INF);
   }
};
1.14
       Wavelet
 struct Wav {
   int lo, hi;
   Wav *left, *right;
   vector<int> amt;
   template <class Iter>
   Wav(int lo, int hi, Iter b, Iter e) : lo(lo), hi(hi) { //
        array 1-indexed
     if (lo == hi || b == e) return;
     amt.reserve(e - b + 1);
     amt.pb(∅);
     int mid = (lo + hi) >> 1;
     auto leq = [mid](auto x) { return x <= mid; };</pre>
     for (auto it = b; it != e; it++) amt.pb(amt.back() +
         leq(*it));
     auto p = stable_partition(b, e, leq);
     left = new Wav(lo, mid, b, p);
     right = new Wav(mid + 1, hi, p, e);
   int kth(int 1, int r, int k) {
     if (r < 1) return 0;</pre>
     if (lo == hi) return lo;
     if (k <= amt[r] - amt[l - 1]) return left->kth(amt[l -
          1] + 1, amt[r], k);
     return right->kth(l - amt[l - 1], r - amt[r], k - amt[r
          ] + amt[1 - 1]);
   int count(int 1, int r, int x, int y) {
     if (r < 1 || y < x || y < lo || hi < x) return 0;</pre>
     if (x <= lo && hi <= y) return r - l + 1;</pre>
     return left->count(amt[l - 1] + 1, amt[r], x, y) +
         right->count(1 - amt[1 - 1], r - amt[r], x, y);
   }
};
        Ordered tree
1.15
 #include <ext/pb_ds/assoc_container.hpp>
 #include <ext/pb_ds/tree_policy.hpp>
 using namespace __gnu_pbds;
 template <class K, class V = null_type>
 using OrderedTree = tree<K, V, less<K>, rb_tree_tag,
     tree_order_statistics_node_update>;
 #define rank order_of_key
 #define kth find_by_order
1.16
        Treap
 struct Treap {
   static Treap* null;
   Treap *left, *right;
   unsigned pri = rng(), sz = 0;
   int val = 0;
   void push() {
     // propagate like segtree, key-values aren't modified!!
   }
   Treap* pull() {
     sz = left->sz + right->sz + (this != null);
     // merge(left, this), merge(this, right)
     return this;
```

```
Treap() { left = right = null; }
  Treap(int val) : val(val) {
   left = right = null;
    pull();
  template <class F>
  pair<Treap*, Treap*> split(const F& leq) { // {<= val, >
    if (this == null) return {null, null};
    push();
    if (leq(this)) {
      auto p = right->split(leq);
      right = p.f;
      return {pull(), p.s};
    } else {
      auto p = left->split(leq);
      left = p.s;
      return {p.f, pull()};
    }
  }
  Treap* merge(Treap* other) {
    if (this == null) return other;
    if (other == null) return this;
    push(), other->push();
    if (pri > other->pri) {
      return right = right->merge(other), pull();
      return other->left = merge(other->left), other->pull
  }
  pair<Treap*, Treap*> leftmost(int k) { // 1-indexed
    return split([&](Treap* n) {
      int sz = n->left->sz + 1;
      if (k >= sz) {
        k = sz;
        return true;
      }
      return false;
    });
  }
  auto split(int x) {
    return split([&](Treap* n) { return n->val <= x; });</pre>
  }
  Treap* insert(int x) {
    auto&& [leq, ge] = split(x);
    // auto &&[le, eq] = split(x); // uncomment for set
    return leq->merge(new Treap(x))->merge(ge); // change
        leg for le for set
  }
  Treap* erase(int x) {
    auto&& [leq, ge] = split(x);
    auto&& [le, eq] = leq->split(x - 1);
    auto&& [kill, keep] = eq->leftmost(1); // comment for
    return le->merge(keep)->merge(ge); // le->merge(ge) for
         set
 }
}* Treap::null = new Treap;
```

2 Dynamic programming

2.1 All submasks of a mask

```
for (int B = A; B > 0; B = (B - 1) & A)
               Convex hull trick \mathcal{O}(n^2) \Rightarrow \mathcal{O}(n)
2.2
dp[i] = \min_{j < i} (dp[j] + b[j] * a[i])
dp[i][j] = \min_{k < j} (dp[i-1][k] + b[k] * a[j])
b[j] \ge b[j+1] optionally a[i] \le a[i+1]
   // for doubles, use INF = 1/.0, div(a,b) = a / b
  struct Line {
       mutable lli m, c, p;
       bool operator<(const Line& 1) const { return m < 1.m; }</pre>
       bool operator<(lli x) const { return p < x; }</pre>
       1li operator()(lli x) const { return m * x + c; }
  };
   template <bool MAX>
   struct DynamicHull : multiset<Line, less<>>> {
       11i div(11i a, 11i b) { return a / b - ((a ^ b) < 0 && a</pre>
                 % b); }
       bool isect(iterator i, iterator j) {
           if (j == end()) return i \rightarrow p = INF, 0;
           if (i->m == j->m)
                i - p = i - c > j - c ? INF : -INF;
           else
                i->p = div(i->c - j->c, j->m - i->m);
           return i->p >= j->p;
       void add(lli m, lli c) {
           if (!MAX) m = -m, c = -c;
           auto k = insert(\{m, c, \emptyset\}), j = k++, i = j;
           while (isect(j, k)) k = erase(k);
           if (i != begin() && isect(--i, j)) isect(i, j = erase(j
           while ((j = i) != begin() && (--i)->p >= j->p) isect(i, -i) + begin(i, -i) + be
                        erase(i));
       }
       lli query(lli x) {
           if (empty()) return 0LL;
           auto f = *lower_bound(x);
           return MAX ? f(x) : -f(x);
      }
 };
               Digit dp
2.3
Counts the amount of numbers in [l, r] such are divisible by
k. (flag nonzero is for different lengths)
It can be reduced to dp(i, x, small), and has to be solved like
f(r) - f(l-1)
   #define state [i][x][small][big][nonzero]
   int dp(int i, int x, bool small, bool big, bool nonzero) {
       if (i == sz(r)) return x % k == 0 && nonzero;
       int& ans = mem state;
       if (done state != timer) {
           done state = timer;
           ans = 0;
           int lo = small ? 0 : 1[i] - '0';
           int hi = big ? 9 : r[i] - '0';
           fore (y, lo, max(lo, hi) + 1) {
               bool small2 = small | (y > 1o);
               bool big2 = big | (y < hi);
               bool nonzero2 = nonzero | (x > 0);
               ans += dp(i + 1, (x * 10 + y) % k, small2, big2,
                         nonzero2);
```

}

}

```
return ans;
                                                                      assert(sz(a[0]) == sz(b));
 }
                                                                      vector<T> c(sz(a), T());
                                                                      fore (i, 0, sz(a))
                                                                        fore (j, 0, sz(b)) c[i] += a[i][j] * b[j];
       Divide and conquer \mathcal{O}(k \cdot n^2) \Rightarrow \mathcal{O}(k \cdot n \log n)
                                                                      return c;
Split the array of size n into k continuous groups. k \le n
cost(a,c) + cost(b,d) \le cost(a,d) + cost(b,c) with a \le b \le a
                                                                    template <class T>
c \leq d
                                                                    Mat<T> fpow(Mat<T>& a, lli n) {
                                                                      Mat<T> ans(sz(a), vector<T>(sz(a)));
 void solve(int cut, int 1, int r, int optl, int optr) {
                                                                      fore (i, 0, sz(a)) ans[i][i] = 1;
   if (r < 1) return;</pre>
                                                                      for (; n > 0; n >>= 1) {
   int mid = (1 + r) / 2;
                                                                        if (n \& 1) ans = ans * a;
   pair<lli, int> best = {INF, -1};
                                                                        a = a * a;
   fore (p, optl, min(mid, optr) + 1) best = min(best, {dp[~
                                                                      }
        cut & 1][p - 1] + cost(p, mid), p);
                                                                      return ans;
   dp[cut & 1][mid] = best.f;
                                                                    }
   solve(cut, 1, mid - 1, optl, best.s);
   solve(cut, mid + 1, r, best.s, optr);
                                                                   2.8
                                                                         SOS dp
                                                                    // N = amount of bits
                                                                    // dp[mask] = Sum of all dp[x] such that 'x' is a submask
 fore (i, 1, n + 1) dp[1][i] = cost(1, i);
                                                                        of 'mask
 fore (cut, 2, k + 1) solve(cut, cut, n, cut, n);
                                                                    fore (i, 0, N)
                                                                      fore (mask, 0, 1 << N)
                                                                        if (mask >> i & 1) { dp[mask] += dp[mask ^ (1 << i)]; }</pre>
       Knapsack 01 \mathcal{O}(n \cdot MaxW)
2.5
                                                                   3
                                                                        Geometry
 fore (i, 0, n)
   for (int x = MaxW; x \ge w[i]; x--) umax(dp[x], dp[x - w[i]
                                                                   3.1
                                                                          Geometry
        ]] + cost[i]);
                                                                    const ld EPS = 1e-20;
       Knuth \mathcal{O}(n^3) \Rightarrow \mathcal{O}(n^2)
                                                                    const ld INF = 1e18;
                                                                    const ld PI = acos(-1.0);
dp[l][r] = \min_{l \le k \le r} \{dp[l][k] + dp[k][r]\} + cost(l, r)
                                                                    enum { ON = -1, OUT, IN, OVERLAP };
 11i dp[N][N];
 int opt[N][N];
                                                                    #define eq(a, b) (abs((a) - (b)) \leftarrow +EPS)
                                                                    #define neq(a, b) (!eq(a, b))
 fore (len, 1, n + 1)
                                                                    #define geq(a, b) ((a) - (b) >= -EPS)
   fore (1, 0, n) {
                                                                    #define leq(a, b) ((a) - (b) <= +EPS)
     int r = 1 + len - 1;
                                                                    #define ge(a, b) ((a) - (b) > +EPS)
     if (r > n - 1) break;
                                                                    #define le(a, b) ((a) - (b) < -EPS)
     if (len <= 2) {</pre>
       dp[1][r] = 0;
                                                                    int sgn(ld a) { return (a > EPS) - (a < -EPS); }</pre>
       opt[1][r] = 1;
                                                                          Radial order
       continue:
                                                                    struct Radial {
                                                                      Pt c;
     dp[1][r] = INF;
                                                                      Radial(Pt c) : c(c) {}
     fore (k, opt[l][r - 1], opt[l + 1][r] + 1) {
       lli cur = dp[1][k] + dp[k][r] + cost(1, r);
                                                                      int cuad(Pt p) const {
       if (cur < dp[l][r]) {</pre>
                                                                        if (p.x > 0 \&\& p.y >= 0) return 0;
         dp[1][r] = cur;
                                                                        if (p.x \le 0 \& p.y > 0) return 1;
         opt[l][r] = k;
                                                                        if (p.x < 0 && p.y <= 0) return 2;
       }
                                                                        if (p.x \ge 0 \& p.y < 0) return 3;
     }
                                                                        return -1;
   }
                                                                      bool operator()(Pt a, Pt b) const {
       Matrix exponentiation
                                                                        Pt p = a - c, q = b - c;
 template <class T>
                                                                        if (cuad(p) == cuad(q)) return p.y * q.x < p.x * q.y;</pre>
 using Mat = vector<vector<T>>;
                                                                        return cuad(p) < cuad(q);</pre>
                                                                      }
 template <class T>
                                                                    };
 Mat<T> operator*(Mat<T>& a, Mat<T>& b) {
   Mat<T> c(sz(a), vector<T>(sz(b[0])));
                                                                          Sort along line
   fore (k, 0, sz(a[0]))
                                                                    void sortAlongLine(vector<Pt>& pts, Line 1) {
     fore (i, 0, sz(a))
                                                                      sort(all(pts), [\&](Pt a, Pt b) \{ return a.dot(l.v) < b. \}
       fore (j, 0, sz(b[0])) c[i][j] += a[i][k] * b[k][j];
                                                                           dot(1.v); });
   return c:
                                                                    }
 }
                                                                         Point
                                                                   4
 template <class T>
 vector<T> operator*(Mat<T>& a, vector<T>& b) {
                                                                          Point
                                                                   4.1
```

```
struct Pt {
                                                                    return acosl(max(-1.0, min(1.0, x)));
   ld x, y;
                                                                 }
   explicit Pt(ld x = 0, ld y = 0) : x(x), y(y) {}
                                                                 4.3
                                                                       Closest pair of points \mathcal{O}(nlogn)
                                                                 pair<Pt, Pt> closestPairOfPoints(vector<Pt>& pts) {
   Pt operator+(Pt p) const { return Pt(x + p.x, y + p.y); }
                                                                    sort(all(pts), [&](Pt a, Pt b) { return le(a.y, b.y); });
                                                                    set<Pt> st;
   Pt operator-(Pt p) const { return Pt(x - p.x, y - p.y); }
                                                                    ld ans = INF;
                                                                    Pt p, q;
   Pt operator*(ld k) const { return Pt(x * k, y * k); }
                                                                    int pos = 0;
                                                                    fore (i, 0, sz(pts)) {
   Pt operator/(ld k) const { return Pt(x / k, y / k); }
                                                                      while (pos < i && geq(pts[i].y - pts[pos].y, ans)) st.</pre>
                                                                           erase(pts[pos++]);
   ld dot(Pt p) const {
                                                                      auto lo = st.lower_bound(Pt(pts[i].x - ans - eps, -INF)
     // 0 if vectors are orthogonal
                                                                          );
     \ensuremath{//} - if vectors are pointing in opposite directions
                                                                      auto hi = st.upper_bound(Pt(pts[i].x + ans + eps, -INF)
    \ensuremath{//} + if vectors are pointing in the same direction
                                                                          );
    return x * p.x + y * p.y;
                                                                      for (auto it = lo; it != hi; ++it) {
                                                                        ld d = (pts[i] - *it).length();
                                                                        if (le(d, ans)) ans = d, p = pts[i], q = *it;
   ld cross(Pt p) const {
     // 0 if collinear
                                                                      st.insert(pts[i]);
     // - if b is to the right of a
     // + if b is to the left of a
                                                                    return {p, q};
     // gives you 2 * area
                                                                  }
    return x * p.y - y * p.x;
                                                                 4.4 KD Tree
                                                                  struct Pt {
   ld norm() const { return x * x + y * y; }
                                                                     // Geometry point mostly
                                                                    ld operator[](int i) const { return i == 0 ? x : y; }
   ld length() const { return sqrtl(norm()); }
                                                                 };
   Pt unit() const { return (*this) / length(); }
                                                                  struct KDTree {
                                                                    Pt p;
   ld angle() const {
                                                                    int k:
    1d ang = atan2(y, x);
                                                                    KDTree *left, *right;
     return ang + (ang < 0 ? 2 * acos(-1) : 0);
                                                                    template <class Iter>
                                                                    KDTree(Iter 1, Iter r, int k = 0) : k(k), left(0), right(
   Pt perp() const { return Pt(-y, x); }
                                                                        0) {
                                                                      int n = r - 1;
   Pt rotate(ld angle) const {
                                                                      if (n == 1) {
     // counter-clockwise rotation in radians
                                                                        p = *1;
     // degree = radian * 180 / pi
                                                                        return;
     return Pt(x * cos(angle) - y * sin(angle), x * sin(
                                                                      }
         angle) + y * cos(angle));
                                                                      nth\_element(1, 1 + n / 2, r, [\&](Pt a, Pt b) { return a}
   }
                                                                          [k] < b[k]; });
                                                                      p = *(1 + n / 2);
   int dir(Pt a, Pt b) const {
                                                                      left = new KDTree(1, 1 + n / 2, k ^ 1);
     // where am {\tt I} on the directed line ab
                                                                      right = new KDTree(1 + n / 2, r, k^1);
     return sgn((a - *this).cross(b - *this));
   }
                                                                    pair<ld, Pt> nearest(Pt x) {
   bool operator<(Pt p) const { return eq(x, p.x) ? le(y, p.</pre>
                                                                      if (!left && !right) return {(p - x).norm(), p};
       y) : le(x, p.x); }
                                                                      vector<KDTree*> go = {left, right};
                                                                      auto delta = x[k] - p[k];
   bool operator==(Pt p) const { return eq(x, p.x) && eq(y,
                                                                      if (delta > 0) swap(go[0], go[1]);
       p.y); }
                                                                      auto best = go[0]->nearest(x);
                                                                      if (best.f > delta * delta) best = min(best, go[1]->
   bool operator!=(Pt p) const { return !(*this == p); }
                                                                          nearest(x)):
                                                                      return best;
   friend ostream& operator<<(ostream& os, const Pt& p) {</pre>
                                                                   }
       return os << "(" << p.x << ", " << p.y << ")"; }
                                                                 };
   friend istream& operator>>(istream& is, Pt& p) { return
                                                                 5
                                                                      Lines and segments
       is \gg p.x \gg p.y; }
 };
                                                                5.1
                                                                      Line
                                                                  struct Line {
4.2
       Angle between vectors
                                                                    Pt a, b, v;
 double angleBetween(Pt a, Pt b) {
   double x = a.dot(b) / a.length() / b.length();
                                                                    Line() {}
```

```
Line(Pt a, Pt b) : a(a), b(b), v((b - a).unit()) {}
                                                                ld distance(Seg a, Seg b) {
                                                                  if (a.intersects(b)) return 0.L;
   bool contains(Pt p) { return eq((p - a).cross(b - a), 0);
                                                                  return min({distance(a.a, b), distance(a.b, b), distance(
        }
                                                                       b.a, a), distance(b.b, a)});
                                                                }
   int intersects(Line 1) {
                                                                     Circle
                                                               6
     if (eq(v.cross(1.v), 0)) return eq((1.a - a).cross(v),
         0) ? INF : 0;
     return 1;
                                                               6.1
                                                                      Circle
                                                                struct Cir : Pt {
                                                                  ld r:
   int intersects(Seg s) {
                                                                  Cir() {}
     if (eq(v.cross(s.v), 0)) return eq((s.a - a).cross(v),
                                                                  Cir(1d x, 1d y, 1d r) : Pt(x, y), r(r) {}
         0) ? INF : 0;
                                                                  Cir(Pt p, ld r) : Pt(p), r(r) {}
     return a.dir(b, s.a) != a.dir(b, s.b);
   }
                                                                  int inside(Cir c) {
                                                                    ld l = c.r - r - (*this - c).length();
   template <class Line>
                                                                    return ge(1, 0) ? IN : eq(1, 0) ? ON : OVERLAP;
   Pt intersection(Line 1) { // can be a segment too
     return a + v * ((1.a - a).cross(1.v) / v.cross(1.v));
                                                                  int outside(Cir c) {
                                                                    ld l = (*this - c).length() - r - c.r;
  Pt projection(Pt p) { return a + v * proj(p - a, v); }
                                                                    return ge(1, 0) ? OUT : eq(1, 0) ? ON : OVERLAP;
   Pt reflection(Pt p) { return a * 2 - p + v * 2 * proj(p -
        a, v); }
                                                                  int contains(Pt p) {
};
                                                                    ld l = (p - *this).length() - r;
5.2
      Segment
                                                                    return le(1, 0) ? IN : eq(1, 0) ? ON : OUT;
 struct Seg {
  Pt a, b, v;
                                                                  Pt projection(Pt p) { return *this + (p - *this).unit() *
                                                                        r; }
   Seg() {}
   Seg(Pt a, Pt b) : a(a), b(b), v(b - a) {}
                                                                  vector<Pt> tangency(Pt p) {
                                                                    // point outside the circle
   bool contains(Pt p) { return eq(v.cross(p - a), ∅) && leq
                                                                    Pt v = (p - *this).unit() * r;
       ((a - p).dot(b - p), 0); }
                                                                    1d d2 = (p - *this).norm(), d = sqrt(d2);
                                                                    if (leq(d, ∅)) return {}; // on circle, no tangent
   int intersects(Seg s) {
                                                                    Pt v1 = v * (r / d), v2 = v.perp() * (sqrt(d2 - r * r)
     int d1 = a.dir(b, s.a), d2 = a.dir(b, s.b);
     if (d1 != d2) return s.a.dir(s.b, a) != s.a.dir(s.b, b)
                                                                    return {*this + v1 - v2, *this + v1 + v2};
     return d1 == 0 && (contains(s.a) || contains(s.b) || s.
         contains(a) || s.contains(b)) ? INF : 0;
                                                                  vector<Pt> intersection(Cir c) {
   }
                                                                    ld d = (c - *this).length();
                                                                    if (eq(d, 0) || ge(d, r + c.r) || le(d, abs(r - c.r)))
   template <class Seg>
                                                                         return {}; // circles don't intersect
  Pt intersection(Seg s) { // can be a line too
                                                                    Pt v = (c - *this).unit();
     return a + v * ((s.a - a).cross(s.v) / v.cross(s.v));
                                                                    1d a = (r * r + d * d - c.r * c.r) / (2 * d);
   }
                                                                    Pt p = *this + v * a;
};
                                                                    if (eq(d, r + c.r) || eq(d, abs(r - c.r))) return {p};
5.3
     Projection
                                                                         // circles touch at one point
ld proj(Pt a, Pt b) { return a.dot(b) / b.length(); }
                                                                    ld h = sqrt(r * r - a * a);
                                                                    Pt q = v.perp() * h;
     Distance point line
                                                                    return {p - q, p + q}; // circles intersects twice
 ld distance(Pt p, Line 1) {
   Pt q = 1.projection(p);
   return (p - q).length();
                                                                  template <class Line>
 }
                                                                  vector<Pt> intersection(Line 1) {
                                                                    // for a segment you need to check that the point lies
      Distance point segment
                                                                         on the segment
 ld distance(Pt p, Seg s) {
                                                                    1d h2 = r * r - 1.v.cross(*this - 1.a) * 1.v.cross(*
   if (le((p - s.a).dot(s.b - s.a), ∅)) return (p - s.a).
                                                                         this - 1.a) / 1.v.norm();
       length();
                                                                    Pt p = 1.a + 1.v * 1.v.dot(*this - 1.a) / 1.v.norm();
   if (le((p - s.b).dot(s.a - s.b), 0)) return (p - s.b).
                                                                    if (eq(h2, 0)) return {p}; // line tangent to circle
       length();
                                                                    if (le(h2, 0)) return {}; // no intersection
   return abs((s.a - p).cross(s.b - p) / (s.b - s.a).length
                                                                    Pt q = 1.v.unit() * sqrt(h2);
                                                                    return {p - q, p + q}; // two points of intersection (
 }
                                                                         chord)
5.6
      Distance segment segment
                                                                  }
```

```
if (geq(1.v.cross(pts[i] - 1.a), 0)) // left
   Cir(Pt a, Pt b, Pt c) {
                                                                        ans.pb(pts[i]);
                                                                     Seg s(pts[i], pts[j]);
     // find circle that passes through points a, b, c
     Pt mab = (a + b) / 2, mcb = (b + c) / 2;
                                                                      if (l.intersects(s) == 1) {
     Seg ab(mab, mab + (b - a).perp());
                                                                       Pt p = 1.intersection(s);
     Seg cb(mcb, mcb + (b - c).perp());
                                                                        if (p != pts[i] && p != pts[j]) ans.pb(p);
     Pt o = ab.intersection(cb);
     *this = Cir(o, (o - a).length());
                                                                   }
   }
                                                                   return ans;
 };
6.2
                                                                       Common area circle polygon \mathcal{O}(n)
       Distance point circle
                                                                 ld commonArea(Cir c, const vector<Pt>& poly) {
 ld distance(Pt p, Cir c) { return max(0.L, (p - c).length()
                                                                    auto arg = [&](Pt p, Pt q) { return atan2(p.cross(q), p.
       - c.r); }
                                                                        dot(q)); };
6.3
       Common area circle circle
                                                                    auto tri = [&](Pt p, Pt q) {
 ld commonArea(Cir a, Cir b) {
                                                                     Pt d = q - p;
   if (le(a.r, b.r)) swap(a, b);
                                                                     1d a = d.dot(p) / d.norm(), b = (p.norm() - c.r * c.r)
   ld d = (a - b).length();
                                                                          / d.norm();
   if (leq(d + b.r, a.r)) return b.r * b.r * PI;
                                                                     ld det = a * a - b;
   if (geq(d, a.r + b.r)) return 0.0;
                                                                      if (leq(det, 0)) return arg(p, q) * c.r * c.r;
   auto angle = [\&](ld x, ld y, ld z) \{ return acos((x * x +
                                                                     1d s = max(0.L, -a - sqrt(det)), t = min(1.L, -a + sqrt)
        y * y - z * z) / (2 * x * y)); };
                                                                          (det));
   auto cut = [\&](\mathbf{ld} \ x, \ \mathbf{ld} \ r) \ \{ \ \mathbf{return} \ (x - \sin(x)) * r * r 
                                                                      if (t < 0 || 1 <= s) return arg(p, q) * c.r * c.r;</pre>
       / 2; };
                                                                     Pt u = p + d * s, v = p + d * t;
   ld a1 = angle(d, a.r, b.r), a2 = angle(d, b.r, a.r);
                                                                      return u.cross(v) + (arg(p, u) + arg(v, q)) * c.r * c.r
   return cut(a1 * 2, a.r) + cut(a2 * 2, b.r);
                                                                    1d sum = 0;
       Minimum enclosing circle \mathcal{O}(n) wow!!
                                                                    fore (i, 0, sz(poly)) sum += tri(poly[i] - c, poly[(i + 1
 Cir minEnclosing(vector<Pt>& pts) { // a bunch of points
                                                                        ) % sz(poly)] - c);
   shuffle(all(pts), rng);
                                                                   return abs(sum / 2);
   Cir c(0, 0, 0);
                                                                 }
   fore (i, 0, sz(pts))
                                                                7.5
     if (!c.contains(pts[i])) {
                                                                      Point in polygon
       c = Cir(pts[i], 0);
                                                                 int contains(const vector<Pt>& pts, Pt p) {
       fore (j, 0, i)
                                                                    int rays = 0, n = sz(pts);
         if (!c.contains(pts[j])) {
                                                                    fore (i, 0, n) {
           c = Cir((pts[i] + pts[j]) / 2, (pts[i] - pts[j]).
                                                                     Pt a = pts[i], b = pts[(i + 1) % n];
               length() / 2);
                                                                      if (ge(a.y, b.y)) swap(a, b);
           fore (k, 0, j)
                                                                      if (Seg(a, b).contains(p)) return ON;
             if (!c.contains(pts[k])) c = Cir(pts[i], pts[j
                                                                     rays ^= (leq(a.y, p.y) && le(p.y, b.y) && p.dir(a, b) >
                 ], pts[k]);
         }
                                                                    }
     }
                                                                    return rays & 1 ? IN : OUT;
   return c;
                                                                 }
                                                                      Convex hull \mathcal{O}(nlogn)
     Polygon
                                                                 vector<Pt> convexHull(vector<Pt> pts) {
                                                                    vector<Pt> hull;
                                                                    sort(all(pts), [&](Pt a, Pt b) { return a.x == b.x ? a.y
       Area polygon
                                                                        < b.y : a.x < b.x; \});
 ld area(const vector<Pt>& pts) {
                                                                    pts.erase(unique(all(pts)), pts.end());
   1d sum = 0;
                                                                    fore (i, 0, sz(pts)) {
   fore (i, 0, sz(pts)) sum += pts[i].cross(pts[(i + 1) % sz
                                                                     while (sz(hull) >= 2 && hull.back().dir(pts[i], hull[sz
       (pts)]);
                                                                          (hull) - 2]) < 0) hull.pop_back();</pre>
   return abs(sum / 2);
                                                                     hull.pb(pts[i]);
7.2 Perimeter
                                                                    hull.pop_back();
 ld perimeter(const vector<Pt>& pts) {
                                                                    int k = sz(hull);
   1d sum = 0;
                                                                    fore (i, sz(pts), 0) {
                                                                     while (sz(hull) \ge k + 2 \& hull.back().dir(pts[i],
   fore (i, 0, sz(pts)) sum += (pts[(i + 1) \% sz(pts)] - pts
       [i]).length();
                                                                          hull[sz(hull) - 2]) < 0) hull.pop_back();</pre>
   return sum;
                                                                     hull.pb(pts[i]);
 }
                                                                    hull.pop_back();
      Cut polygon line
                                                                    return hull:
 vector<Pt> cut(const vector<Pt>& pts, Line 1) {
   vector<Pt> ans;
                                                                7.7
                                                                       Is convex
   int n = sz(pts);
                                                                 bool isConvex(const vector<Pt>& pts) {
   fore (i, 0, n) {
```

int n = sz(pts);

int j = (i + 1) % n;

```
bool pos = 0, neg = 0;
                                                                   order.pb(u);
   fore (i, 0, n) {
                                                                 }
    Pt a = pts[(i + 1) % n] - pts[i];
                                                                 void dfs2(int u, int k) {
     Pt b = pts[(i + 2) % n] - pts[(i + 1) % n];
                                                                   vis[u] = 2, scc[u] = k;
     int dir = sgn(a.cross(b));
     if (dir > 0) pos = 1;
                                                                   for (int v : rgraph[u]) // reverse graph
    if (dir < 0) neg = 1;</pre>
                                                                     if (vis[v] != 2) dfs2(v, k);
   }
                                                                 }
   return !(pos && neg);
                                                                 void kosaraju() {
                                                                   fore (u, 1, n + 1)
7.8
       Point in convex polygon O(logn)
                                                                     if (vis[u] != 1) dfs1(u);
 bool contains(const vector<Pt>& a, Pt p) {
                                                                   reverse(all(order));
   int lo = 1, hi = sz(a) - 1;
                                                                   for (int u : order)
   if (a[0].dir(a[lo], a[hi]) > 0) swap(lo, hi);
                                                                     if (vis[u] != 2) dfs2(u, ++k);
   if (p.dir(a[0], a[lo]) >= 0 || p.dir(a[0], a[hi]) <= 0)</pre>
       return false;
   while (abs(lo - hi) > 1) {
                                                                8.4
                                                                       Tarjan
     int mid = (lo + hi) >> 1;
                                                                 int tin[N], fup[N];
     (p.dir(a[0], a[mid]) > 0 ? hi : lo) = mid;
                                                                 bitset<N> still;
   }
                                                                 stack<int> stk;
   return p.dir(a[lo], a[hi]) < 0;</pre>
                                                                 int timer = 0;
 }
                                                                 void tarjan(int u) {
8
     Graphs
                                                                   tin[u] = fup[u] = ++timer;
                                                                   still[u] = true;
       Cutpoints and bridges
                                                                   stk.push(u);
 int tin[N], fup[N], timer = 0;
                                                                   for (auto& v : graph[u]) {
                                                                     if (!tin[v]) tarjan(v);
 void weakness(int u, int p = -1) {
                                                                     if (still[v]) fup[u] = min(fup[u], fup[v]);
   tin[u] = fup[u] = ++timer;
   int children = 0;
                                                                   if (fup[u] == tin[u]) {
   for (int v : graph[u])
                                                                     int v;
     if (v != p) {
                                                                     do {
       if (!tin[v]) {
                                                                       v = stk.top();
         ++children;
                                                                       stk.pop();
         weakness(v, u);
                                                                       still[v] = false;
         fup[u] = min(fup[u], fup[v]);
                                                                       // u and v are in the same scc
         if (fup[v] >= tin[u] \&\& !(p == -1 \&\& children < 2))
                                                                     } while (v != u);
               // u is a cutpoint
                                                                   }
           if (fup[v] > tin[u]) // bridge u -> v
                                                                 }
       }
       fup[u] = min(fup[u], tin[v]);
                                                                       Isomorphism
                                                                8.5
                                                                 11i dp[N], h[N];
 }
                                                                 lli f(lli x) {
8.2
       Topological sort
                                                                   // K * n <= 9e18
 vector<int> order;
                                                                   static uniform_int_distribution<lli>uid(1, K);
 int indeg[N];
                                                                   if (!mp.count(x)) mp[x] = uid(rng);
                                                                   return mp[x];
 void topologicalSort() { // first fill the indeg[]
                                                                 }
   queue<int> qu;
   fore (u, 1, n + 1)
                                                                 lli hsh(int u, int p = -1) {
     if (indeg[u] == 0) qu.push(u);
                                                                   dp[u] = h[u] = 0;
   while (!qu.empty()) {
                                                                   for (auto& v : graph[u]) {
    int u = qu.front();
                                                                     if (v == p) continue;
    qu.pop();
                                                                     dp[u] += hsh(v, u);
     order.pb(u);
     for (auto& v : graph[u])
                                                                   return h[u] = f(dp[u]);
       if (--indeg[v] == 0) qu.push(v);
                                                                 }
   }
 }
                                                                     Two sat
                                                                8.6
8.3
      Kosaraju
                                                                 // 1-indexed
 int scc[N], k = 0;
                                                                 struct TwoSat {
 char vis[N];
                                                                   int n;
 vector<int> order;
                                                                   vector<vector<int>> imp;
 void dfs1(int u) {
                                                                   TwoSat(int k) : n(k + 1), imp(2 * n) {}
  vis[u] = 1;
   for (int v : graph[u])
                                                                   // a || b
     if (vis[v] != 1) dfs1(v);
                                                                   void either(int a, int b) {
```

```
a = max(2 * a, -1 - 2 * a);
     b = max(2 * b, -1 - 2 * b);
     imp[a ^ 1].pb(b);
     imp[b ^ 1].pb(a);
   }
   // if a then b
   // a b a \Rightarrow b
   // F F
   void implies(int a, int b) { either(~a, b); }
   // setVal(a): set a = true
   // setVal(~a): set a = false
   void setVal(int a) { either(a, a); }
   optional<vector<int>>> solve() {
     int k = sz(imp);
     vector<int> s, b, id(sz(imp));
     function<void(int)> dfs = [&](int u) {
       b.pb(id[u] = sz(s)), s.pb(u);
       for (int v : imp[u]) {
         if (!id[v])
           dfs(v);
         else
           while (id[v] < b.back()) b.pop_back();</pre>
       if (id[u] == b.back())
         for (b.pop_back(), ++k; id[u] < sz(s); s.pop_back()</pre>
              ) id[s.back()] = k;
     };
     vector<int> val(n);
     fore (u, 0, sz(imp))
       if (!id[u]) dfs(u);
     fore (u, 0, n) {
       int x = 2 * u;
       if (id[x] == id[x ^ 1]) return nullopt;
       val[u] = id[x] < id[x ^ 1];
     return optional(val);
   }
 };
8.7
       LCA
 const int LogN = 1 + _{-}lg(N);
 int par[LogN][N], depth[N];
 void dfs(int u, int par[]) {
   for (auto& v : graph[u])
     if (v != par[u]) {
       par[v] = u;
       depth[v] = depth[u] + 1;
       dfs(v, par);
     }
 }
 int lca(int u, int v) {
   if (depth[u] > depth[v]) swap(u, v);
   fore (k, LogN, 0)
     if (dep[v] - dep[u] >= (1 << k)) v = par[k][v];
   if (u == v) return u;
   fore (k, LogN, 0)
     if (par[k][v] != par[k][u]) u = par[k][u], v = par[k][v
         ];
   return par[0][u];
 int dist(int u, int v) { return depth[u] + depth[v] - 2 *
```

```
depth[lca(u, v)]; }
 void init(int r) {
   dfs(r, par[0]);
   fore (k, 1, LogN)
     fore (u, 1, n + 1) par[k][u] = par[k - 1][par[k - 1][u]
 }
8.8
     Virtual tree \mathcal{O}(n \cdot logn)
vector<int> virt[N];
 int virtualTree(vector<int>& ver) {
   auto byDfs = [&](int u, int v) { return tin[u] < tin[v];</pre>
       };
   sort(all(ver), byDfs);
   fore (i, sz(ver), 1) ver.pb(lca(ver[i - 1], ver[i]));
   sort(all(ver), byDfs);
   ver.erase(unique(all(ver)), ver.end());
   for (int u : ver) virt[u].clear();
   fore (i, 1, sz(ver)) virt[lca(ver[i - 1], ver[i])].pb(ver
       [i]);
   return ver[0];
}
       Euler-tour + HLD + LCA \mathcal{O}(n \cdot log n)
Solves subtrees and paths problems
 int par[N], nxt[N], depth[N], sz[N];
 int tin[N], tout[N], who[N], timer = 0;
 int dfs(int u) {
   sz[u] = 1:
   for (auto& v : graph[u])
     if (v != par[u]) {
       par[v] = u:
       depth[v] = depth[u] + 1;
       sz[u] += dfs(v);
       if (graph[u][0] == par[u] || sz[v] > sz[graph[u][0]])
             swap(v, graph[u][0]);
   return sz[u];
 }
 void hld(int u) {
   tin[u] = ++timer, who[timer] = u;
   for (auto& v : graph[u])
     if (v != par[u]) {
       nxt[v] = (v == graph[u][0] ? nxt[u] : v);
       hld(v);
   tout[u] = timer;
 template <bool OverEdges = 0, class F>
 void processPath(int u, int v, F f) {
   for (; nxt[u] != nxt[v]; u = par[nxt[u]]) {
     if (depth[nxt[u]] < depth[nxt[v]]) swap(u, v);</pre>
     f(tin[nxt[u]], tin[u]);
   if (depth[u] < depth[v]) swap(u, v);</pre>
   f(tin[v] + OverEdges, tin[u]);
 }
 void updatePath(int u, int v, lli z) {
   processPath(u, v, [&](int 1, int r) { tree->update(1, r,
       z); });
 }
 void updateSubtree(int u, 1li z) { tree->update(tin[u],
      tout[u], z); }
```

8.10 Centroid $\mathcal{O}(n \cdot log n)$

Solves "all pairs of nodes" problems

```
int cdp[N], sz[N];
bitset<N> rem;
int dfsz(int u, int p = -1) {
  sz[u] = 1:
  for (int v : graph[u])
    if (v != p && !rem[v]) sz[u] += dfsz(v, u);
  return sz[u];
int centroid(int u, int size, int p = -1) {
 for (int v : graph[u])
    if (v != p && !rem[v] && 2 * sz[v] > size) return
        centroid(v, size, u);
  return u;
}
void solve(int u, int p = -1) {
  cdp[u = centroid(u, dfsz(u))] = p;
  rem[u] = true;
  for (int v : graph[u])
    if (!rem[v]) solve(v, u);
}
```

8.11 Guni $\mathcal{O}(n \cdot log n)$

Solve subtrees problems

```
int cnt[C], color[N];
int sz[N];
int guni(int u, int p = -1) {
  sz[u] = 1;
  for (auto& v : graph[u])
   if (v != p) {
      sz[u] += guni(v, u);
      if (sz[v] > sz[graph[u][0]] \mid\mid p == graph[u][0]) swap
           (v, graph[u][0]);
    }
  return sz[u];
void update(int u, int p, int add, bool skip) {
 cnt[color[u]] += add;
  fore (i, skip, sz(graph[u]))
    if (graph[u][i] != p) update(graph[u][i], u, add, 0);
void solve(int u, int p = -1, bool keep = 0) {
```

```
fore (i, sz(graph[u]), 0)
   if (graph[u][i] != p) solve(graph[u][i], u, !i);
   update(u, p, +1, 1); // add
   // now cnt[i] has how many times the color i appears in
        the subtree of u
   if (!keep) update(u, p, -1, 0); // remove
}
```

8.12 Link-Cut tree $\mathcal{O}(n \cdot log n)$

Solves dynamic trees problems, can handle subtrees and paths maybe with a high constant

```
struct LinkCut {
  struct Node {
   Node *left{0}, *right{0}, *par{0};
   bool rev = 0;
   int sz = 1;
   int sub = 0, vsub = 0; // subtree
   11i path = 0; // path
   1li self = 0; // node info
   void push() {
     if (rev) {
        swap(left, right);
        if (left) left->rev ^= 1;
        if (right) right->rev ^= 1;
        rev = 0;
    }
   void pull() {
      sz = 1;
      sub = vsub + self:
     path = self;
      if (left) {
        sz += left->sz;
        sub += left->sub;
        path += left->path;
      if (right) {
        sz += right->sz;
        sub += right->sub;
        path += right->path;
      }
    }
    void addVsub(Node* v, lli add) {
      if (v) vsub += 1LL * add * v->sub;
  };
  vector<Node> a;
  LinkCut(int n = 1) : a(n) {}
  void splay(Node* u) {
    auto assign = [&](Node* u, Node* v, int d) {
      if (v) v \rightarrow par = u;
      if (d \ge 0) (d = 0) (u - left : u - right) = v;
    auto dir = [&](Node* u) {
      if (!u->par) return -1;
      return u->par->left == u ? 0 : (u->par->right == u ?
           1:-1);
    auto rotate = [&](Node* u) {
     Node *p = u->par, *g = p->par;
      int d = dir(u);
      assign(p, d ? u->left : u->right, d);
```

```
assign(g, u, dir(p));
   assign(u, p, !d);
   p->pull(), u->pull();
 };
 while (~dir(u)) {
   Node *p = u-par, *g = p-par;
    if (~dir(p)) g->push();
   p->push(), u->push();
    if (~dir(p)) rotate(dir(p) == dir(u) ? p : u);
   rotate(u);
 u->push(), u->pull();
}
void access(int u) {
 Node* last = NULL;
 for (Node* x = &a[u]; x; last = x, x = x->par) {
   splay(x);
   x-addVsub(x-right, +1);
   x->right = last;
   x->addVsub(x->right, -1);
   x \rightarrow pull();
 }
  splay(&a[u]);
}
void reroot(int u) {
 access(u);
 a[u].rev ^= 1;
void link(int u, int v) {
 reroot(v), access(u);
 a[u].addVsub(v, +1);
 a[v].par = &a[u];
 a[u].pull();
}
void cut(int u, int v) {
 reroot(v), access(u);
 a[u].left = a[v].par = NULL;
 a[u].pull();
}
int lca(int u, int v) {
 if (u == v) return u;
 access(u), access(v);
 if (!a[u].par) return -1;
 return splay(&a[u]), a[u].par ? -1 : u;
}
int depth(int u) {
 access(u);
  return a[u].left ? a[u].left->sz : 0;
}
// get k-th parent on path to root
int ancestor(int u, int k) {
 k = depth(u) - k;
 assert(k \ge 0);
  for (;; a[u].push()) {
   int sz = a[u].left->sz;
    if (sz == k) return access(u), u;
    if (sz < k)
      k = sz + 1, u = u - ch[1];
    else
      u = u - ch[0];
 }
 assert(₀);
}
```

```
1li queryPath(int u, int v) {
     reroot(u), access(v);
     return a[v].path;
   }
   1li querySubtree(int u, int x) {
     // query subtree of u, x is outside
     reroot(x), access(u);
     return a[u].vsub + a[u].self;
   void update(int u, lli val) {
     access(u);
     a[u].self = val;
     a[u].pull();
   Node& operator[](int u) { return a[u]; }
 };
     Flows
9
     Hopcroft Karp \mathcal{O}(e\sqrt{v})
 struct HopcroftKarp {
   int n, m;
   vector<vector<int>>> graph;
   vector<int> dist, match;
   HopcroftKarp(int k) : n(k + 1), graph(n), dist(n), match(
        n, 0) {} // 1-indexed!!
   void add(int u, int v) { graph[u].pb(v), graph[v].pb(u);
       }
   bool bfs() {
     queue<int> qu;
     fill(all(dist), -1);
     fore (u, 1, n)
       if (!match[u]) dist[u] = 0, qu.push(u);
     while (!qu.empty()) {
       int u = qu.front();
       qu.pop();
       for (int v : graph[u])
         if (dist[match[v]] == -1) {
           dist[match[v]] = dist[u] + 1;
           if (match[v]) qu.push(match[v]);
     return dist[0] != -1;
   bool dfs(int u) {
     for (int v : graph[u])
       if (!match[v] || (dist[u] + 1 == dist[match[v]] &&
            dfs(match[v]))) {
         match[u] = v, match[v] = u;
         return 1;
     dist[u] = 1 << 30;
     return 0;
   int maxMatching() {
     int tot = 0;
     while (bfs())
       fore (u, 1, n) tot += match[u] ? 0 : dfs(u);
     return tot;
```

```
};
       Hungarian \mathcal{O}(n^2 \cdot m)
9.2
n jobs, m people
 template <class C>
 pair<C, vector<int>> Hungarian(vector<vector<C>>& a) { //
                                                                         }
     max assignment
   int n = sz(a), m = sz(a[0]), p, q, j, k; // n \le m
   vector<C> fx(n, numeric_limits<C>::min()), fy(m, 0);
   vector\langle int \rangle x(n, -1), y(m, -1);
   fore (i, ∅, n)
     fore (j, 0, m) fx[i] = max(fx[i], a[i][j]);
   fore (i, 0, n) {
     vector\langle int \rangle t(m, -1), s(n + 1, i);
     for (p = q = 0; p \le q \&\& x[i] \le 0; p++)
       for (k = s[p], j = 0; j < m && x[i] < 0; j++)
         if (abs(fx[k] + fy[j] - a[k][j]) < EPS && t[j] < 0)
           s[++q] = y[j], t[j] = k;
           if (s[q] < 0)
              for (p = j; p \ge 0; j = p) y[j] = k = t[j], p =
                    x[k], x[k] = j;
                                                                             }
                                                                           }
         }
     if (x[i] < 0) {</pre>
                                                                         }
       C d = numeric_limits<C>::max();
       fore (k, 0, q + 1)
         fore (j, 0, m)
           if (t[j] < \emptyset) d = min(d, fx[s[k]] + fy[j] - a[s[k
       fore (j, 0, m) fy[j] += (t[j] < 0 ? 0 : d);
       fore (k, 0, q + 1) fx[s[k]] -= d;
       i--;
     }
   }
                                                                       }
   C cost = 0;
   fore (i, 0, n) cost += a[i][x[i]];
   return make_pair(cost, x);
                                                                       }
                                                                     };
       Dinic \mathcal{O}(\min(e \cdot flow, v^2 \cdot e))
 template <class F>
 struct Dinic {
   struct Edge {
                                                                     struct Mcmf {
     int v, inv;
     F cap. flow:
     Edge(int v, F cap, int inv) : v(v), cap(cap), flow(0),
          inv(inv) {}
   };
                                                                         C cost:
   F EPS = (F)1e-9;
   int s, t, n;
   vector<vector<Edge>> graph;
   vector<int> dist, ptr;
   Dinic(int n) : n(n), graph(n), dist(n), ptr(n), s(n - 2),
         t(n - 1) \{ \}
   void add(int u, int v, F cap) {
     graph[u].pb(Edge(v, cap, sz(graph[v])));
     graph[v].pb(Edge(u, 0, sz(graph[u]) - 1));
   }
   bool bfs() {
     fill(all(dist), -1);
     queue<int> qu({s});
     dist[s] = 0;
                                                                       }
     while (sz(qu) && dist[t] == -1) {
       int u = qu.front();
       qu.pop();
```

```
for (Edge& e : graph[u])
        if (dist[e.v] == -1)
          if (e.cap - e.flow > EPS) {
            dist[e.v] = dist[u] + 1;
            qu.push(e.v);
   return dist[t] != -1;
 F dfs(int u, F flow = numeric_limits<F>::max()) {
    if (flow <= EPS || u == t) return max<F>(0, flow);
    for (int& i = ptr[u]; i < sz(graph[u]); i++) {</pre>
      Edge& e = graph[u][i];
      if (e.cap - e.flow > EPS \&\& dist[u] + 1 == dist[e.v])
        F pushed = dfs(e.v, min<F>(flow, e.cap - e.flow));
        if (pushed > EPS) {
          e.flow += pushed;
          graph[e.v][e.inv].flow -= pushed;
          return pushed;
   return 0;
 F maxFlow() {
   F flow = 0;
   while (bfs()) {
      fill(all(ptr), 0);
      while (F pushed = dfs(s)) flow += pushed;
   return flow;
 bool leftSide(int u) {
   // left side comes from sink
   return dist[u] != -1;
     Min-Cost flow \mathcal{O}(\min(e \cdot flow, v^2 \cdot e))
template <class C. class F>
 struct Edge {
    int u, v, inv;
   F cap, flow;
   Edge(int u, int v, C cost, F cap, int inv) : u(u), v(v)
         , cost(cost), cap(cap), flow(∅), inv(inv) {}
 F EPS = (F)1e-9;
 int s, t, n;
 vector<vector<Edge>> graph;
 vector<Edge*> prev;
 vector<C> cost;
 vector<int> state;
 Mcmf(int n) : n(n), graph(n), cost(n), state(n), prev(n),
       s(n - 2), t(n - 1) {}
 void add(int u, int v, C cost, F cap) {
   graph[u].pb(Edge(u, v, cost, cap, sz(graph[v])));
   graph[v].pb(Edge(v, u, -cost, 0, sz(graph[u]) - 1));
 bool bfs() {
   fill(all(state), 0);
```

```
fill(all(cost), numeric_limits<C>::max());
    deque<int> qu;
    qu.push_back(s);
    state[s] = 1, cost[s] = 0;
    while (sz(qu)) {
      int u = qu.front();
      qu.pop_front();
      state[u] = 2;
      for (Edge& e : graph[u])
        if (e.cap - e.flow > EPS)
          if (cost[u] + e.cost < cost[e.v]) {</pre>
            cost[e.v] = cost[u] + e.cost;
            prev[e.v] = &e;
            if (state[e.v] == 2 || (sz(qu) && cost[qu.front
                 ()] > cost[e.v]))
              qu.push_front(e.v);
            else if (state[e.v] == 0)
              qu.push_back(e.v);
            state[e.v] = 1;
    }
    return cost[t] != numeric_limits<C>::max();
  pair<C, F> minCostFlow() {
    C cost = 0;
    F flow = 0;
    while (bfs()) {
      F pushed = numeric_limits<F>::max();
      for (Edge* e = prev[t]; e != nullptr; e = prev[e->u])
            pushed = min(pushed, e->cap - e->flow);
      for (Edge* e = prev[t]; e != nullptr; e = prev[e->u])
            {
        e->flow += pushed;
        graph[e->v][e->inv].flow -= pushed;
        cost += e->cost * pushed;
      flow += pushed;
    return make_pair(cost, flow);
  }
};
```

10 Game theory

10.1 Grundy numbers

If the moves are consecutive $S = \{1, 2, 3, ..., x\}$ the game can be solved like $stackSize \pmod{x+1} \neq 0$

```
int mem[N];
int mex(set<int>& st) {
    int x = 0;
    while (st.count(x)) x++;
    return x;
}
int grundy(int n) {
    if (n < 0) return INF;
    if (n == 0) return 0;
    int& g = mem[n];
    if (g == -1) {
        set<int> st;
        for (int x : {a, b}) st.insert(grundy(n - x));
        g = mex(st);
    }
    return g;
}
```

11 Math

11.1 Bits

	$\mathrm{Bits}{++}$		
Operations on int	Function		
x & -x	Least significant bit in x		
lg(x)	Most significant bit in x		
c = x&-x, r = x+c;	Next number after x with same		
(((r ^x) » 2)/c)	number of bits set		
r			
builtin_	Function		
popcount(x)	Amount of 1's in x		
clz(x)	0's to the left of biggest bit		
ctz(x)	0's to the right of smallest bit		

11.2 Bitset

	Bitset <size></size>		
Operation	Function		
_Find_first()	Least significant bit		
_Find_next(idx)	First set bit after index idx		
any(), none(), all()	Just what the expression says		
set(), reset(), flip()	Just what the expression says x2		
to_string('.', 'A')	Print 011010 like .AA.A.		

11.3 Probability

Conditional

The event A happens and the event B has already happened

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

If independent events

$$P(A|B) = P(A), P(B|A) = P(B)$$

Bayes theorem

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

Binomial

$$B = \binom{n}{x} \cdot p^x \cdot (1-p)^{n-x}$$

n = number of trials

x = number of success from n trials

p = probability of success on a single trial

Geometric

Probability of success at the nth-event after failing the others

$$G = (1 - p)^{n-1} \cdot p$$

n = number of trials

p = probability of success on a single trial

Poisson

$$Po = \frac{\lambda^k \cdot e^{-\lambda}}{k!}$$

 λ = number of times an event is expected (occurs / time)

k = number of occurring events in the limited period of time

Example: The event happens 4 times per minute and we want k events to happen in 10 minutes, then $\lambda = 4 \cdot 10 = 40$

$$E_x = \sum_{\forall x} x \cdot p(x)$$

11.4 Simplex

```
// maximize c^t x s.t. ax <= b, x >= 0
template <class T>
pair<T, vector<T>> simplex(vector<vector<T>> a, vector<T> b
     , vector<T> c) {
  const T EPS = 1e-9;
  T sum = 0;
  int n = b.size(), m = c.size();
  vector<int> p(m), q(n);
  iota(all(p), ∅), iota(all(q), m);
  auto pivot = [&](int x, int y) {
    swap(p[y], q[x]);
    b[x] /= a[x][y];
    fore (i, 0, m)
      if (i != y) a[x][i] /= a[x][y];
    a[x][y] = 1 / a[x][y];
    fore (i, 0, n)
      if (i != x && abs(a[i][y]) > EPS) {
        b[i] -= a[i][y] * b[x];
        fore (j, 0, m)
          if (j != y) a[i][j] -= a[i][y] * a[x][j];
        a[i][y] = -a[i][y] * a[x][y];
      }
    sum += c[y] * b[x];
    fore (i, 0, m)
      if (i != y) c[i] -= c[y] * a[x][i];
    c[y] = -c[y] * a[x][y];
  while (1) {
    int x = -1, y = -1;
    1d mn = -EPS;
    fore (i, 0, n)
      if (b[i] < mn) mn = b[i], x = i;</pre>
    if (x < 0) break;
    fore (i, 0, m)
      if (a[x][i] < -EPS) {</pre>
        y = i;
        break;
    assert(y \geq= 0); // no solution to Ax \leq= b
    pivot(x, y);
  while (1) {
    int x = -1, y = -1;
    1d mx = EPS;
    fore (i, 0, m)
      if (c[i] > mx) mx = c[i], y = i;
    if (y < 0) break;
    1d mn = 1e200;
    fore (i, 0, n)
      if (a[i][y] > EPS && b[i] / a[i][y] < mn) { mn = b[i]</pre>
           / a[i][y], x = i; }
    assert(x \ge 0); // c^T x is unbounded
    pivot(x, y);
  }
  vector<T> ans(m);
  fore (i, 0, n)
    if (q[i] < m) ans[q[i]] = b[i];</pre>
  return {sum, ans};
}
```

12.1Catalan

11.5Xor basis

```
template <int D>
 struct XorBasis {
   using Num = bitset<D>;
   array<Num, D> basis, keep;
   vector<int> from;
   int n = 0, id = -1;
   XorBasis() : from(D, -1) { basis.fill(0); }
   bool insert(Num x) {
    Num k;
     fore (i, D, 0)
      if (x[i]) {
         if (!basis[i].any()) {
           k[i] = 1, from[i] = id, keep[i] = k;
           basis[i] = x, n++;
           return 1;
         x ^= basis[i], k ^= keep[i];
       }
    return 0;
   }
   optional<Num> find(Num x) {
     // is x in xor-basis set?
     // v ^ (v ^ x) = x
    Num v;
     fore (i, D, 0)
       if (x[i]) {
         if (!basis[i].any()) return nullopt;
         x ^= basis[i];
         v[i] = 1;
    return optional(v);
   optional<vector<int>>> recover(Num x) {
    auto v = find(x);
     if (!v) return nullopt;
    Num tmp;
     fore (i, D, 0)
      if (v.value()[i]) tmp ^= keep[i];
     vector<int> ans;
     for (int i = tmp._Find_first(); i < D; i = tmp.</pre>
         _Find_next(i)) ans.pb(from[i]);
    return ans;
   optional<Num> operator[](lli k) {
     lli tot = (1LL \ll n);
     if (k > tot) return nullopt;
    Num v = 0;
     fore (i, D, 0)
       if (basis[i]) {
         11i low = tot / 2;
         if ((low < k && v[i] == 0) || (low >= k && v[i])) v
              ^= basis[i];
         if (low < k) k = low;
         tot /= 2;
    return optional(v);
  }
};
       Combinatorics
12
 catalan[0] = 1LL;
```

fore (i, 0, N) { catalan[i + 1] = catalan[i] * lli(4 * i +

```
2) % mod * fpow(i + 2, mod - 2) % mod; }
```

12.2 Factorial

```
fac[0] = 1LL;
fore (i, 1, N) fac[i] = lli(i) * fac[i - 1] % mod;
ifac[n - 1] = fpow(fac[n - 1], mod - 2, mod);
for (int i = N - 1; i >= 0; i--) ifac[i] = lli(i + 1) *
    ifac[i + 1] % mod;
```

12.3 Factorial mod small prime

```
lli facMod(lli n, int p) {
    lli r = 1LL;
    for (; n > 1; n /= p) {
        r = (r * ((n / p) % 2 ? p - 1 : 1)) % p;
        fore (i, 2, n % p + 1) r = r * i % p;
    }
    return r % p;
}
```

12.4 Choose

12.5 Pascal

12.6 Stars and bars

Enclosing n objects in k boxes

$$\binom{n+k-1}{k-1} = \binom{n+k-1}{n}$$

12.7 Lucas

}

Changes $\binom{n}{k}$ mod p, with $n \geq 2e6, k \geq 2e6$ and $p \leq 1e7$

12.8 Burnside lemma

$$|classes| = \frac{1}{|G|} \cdot \sum_{x \in G} f(x)$$

13 Number theory

```
Amount of divisors \mathcal{O}(n^{1/3})
ull amountOfDivisors(ull n) {
   ull cnt = 1;
   for (auto p : primes) {
     if (1LL * p * p * p > n) break;
     if (n % p == 0) {
       ull k = 0;
       while (n > 1 \& n \% p == 0) n /= p, ++k;
       cnt *= (k + 1);
   }
   ull sq = mysqrt(n); // the last x * x <= n</pre>
   if (miller(n))
     cnt *= 2;
   else if (sq * sq == n && miller(sq))
     cnt *= 3;
   else if (n > 1)
     cnt *= 4;
   return cnt;
 }
        Chinese remainder theorem
pair<lli, lli> crt(pair<lli, lli> a, pair<lli, lli> b) {
   if (a.s < b.s) swap(a, b);
   auto p = euclid(a.s, b.s);
   lli g = a.s * p.f + b.s * p.s, l = a.s / g * b.s;
   if ((b.f - a.f) % g != 0) return {-1, -1}; // no solution
   p.f = a.f + (b.f - a.f) \% b.s * p.f \% b.s / g * a.s;
   return {p.f + (p.f < 0) * 1, 1};
 }
        Euclid \mathcal{O}(log(a \cdot b))
 pair<lli, lli> euclid(lli a, lli b) {
   if (b == 0) return {1, 0};
   auto p = euclid(b, a % b);
   return {p.s, p.f - a / b * p.s};
13.4
        Factorial factors
 vector<ii> factorialFactors(lli n) {
   vector<ii> fac;
   for (auto p : primes) {
     if (n < p) break;</pre>
     11i mul = 1LL, k = 0;
     while (mul <= n / p) {</pre>
       mul *= p;
       k += n / mul;
     fac.emplace_back(p, k);
   }
   return fac;
 }
13.5
       Factorize sieve
 int factor[N]:
 void factorizeSieve() {
   iota(factor, factor + N, 0);
   for (int i = 2; i * i < N; i++)</pre>
     if (factor[i] == i)
       for (int j = i * i; j < N; j += i) factor[j] = i;</pre>
 map<int, int> factorize(int n) {
   map<int, int> cnt;
   while (n > 1) {
     cnt[factor[n]]++;
     n /= factor[n];
```

return cnt;

```
}
13.6
        Sieve
 bitset<N> isPrime;
 vector<int> primes;
 void sieve() {
   isPrime.set();
   isPrime[0] = isPrime[1] = 0;
   for (int i = 2; i * i < N; ++i)
     if (isPrime[i])
       for (int j = i * i; j < N; j += i) isPrime[j] = 0;</pre>
   fore (i, 2, N)
     if (isPrime[i]) primes.pb(i);
 }
13.7 Phi \mathcal{O}(\sqrt{n})
 1li phi(lli n) {
   if (n == 1) return 0;
   lli r = n;
   for (lli i = 2; i * i <= n; i++)
     if (n % i == 0) {
       while (n % i == 0) n /= i;
       r = r / i;
   if (n > 1) r -= r / n;
   return r:
13.8 Phi sieve
 bitset<N> isPrime;
 int phi[N];
 void phiSieve() {
   isPrime.set();
   iota(phi, phi + N, ∅);
   fore (i, 2, N)
     if (isPrime[i])
       for (int j = i; j < N; j += i) {
         isPrime[j] = (i == j);
         phi[j] = phi[j] / i * (i - 1);
       }
 }
        Miller rabin \mathcal{O}(Witnesses \cdot (logn)^3)
 ull mul(ull x, ull y, ull mod) {
   11i ans = x * y - mod * ull(1.L / mod * x * y);
   return ans + mod * (ans < 0) - mod * (ans >= 11i(mod));
 }
 // use mul(x, y, mod) inside fpow
 bool miller(ull n) {
   if (n < 2 || n % 6 % 4 != 1) return (n | 1) == 3;</pre>
   ull k = \_builtin\_ctzll(n - 1), d = n >> k;
   for (ull p: {2, 325, 9375, 28178, 450775, 9780504, 17952
        65022}) {
     ull x = fpow(p % n, d, n), i = k;
     while (x != 1 \&\& x != n - 1 \&\& p \% n \&\& i--) x = mul(x,
           x, n);
     if (x != n - 1 && i != k) return 0;
   }
   return 1;
 }
        Pollard Rho \mathcal{O}(n^{1/4})
13.10
 ull rho(ull n) {
   auto f = [n](ull x) \{ return mul(x, x, n) + 1; \};
   ull x = 0, y = 0, t = 30, prd = 2, i = 1, q;
   while (t++ % 40 || __gcd(prd, n) == 1) {
     if (x == y) x = ++i, y = f(x);
     if (q = mul(prd, max(x, y) - min(x, y), n)) prd = q;
     x = f(x), y = f(f(y));
```

```
}
return __gcd(prd, n);
}

// if used multiple times, try memorization!!
// try factoring small numbers with sieve
void pollard(ull n, map<ull, int>& fac) {
   if (n == 1) return;
   if (miller(n)) {
     fac[n]++;
   } else {
     ull x = rho(n);
     pollard(x, fac);
     pollard(n / x, fac);
   }
}
```

14 Polynomials

14.1 Berlekamp Massey

For a linear recurrence of length n you need to feed at least 2n terms into Berlekamp-Massey to guarantee getting the same or equivalent recurrence.

```
struct BerlekampMassey {
  int n;
  vector<T> s, t, pw[20];
  vector<T> combine(vector<T> a, vector<T> b) {
    vector\langle T \rangle ans(sz(t) * 2 + 1);
    for (int i = 0; i <= sz(t); i++)
      for (int j = 0; j \le sz(t); j++) ans[i + j] += a[i] *
            b[i];
    for (int i = 2 * sz(t); i > sz(t); --i)
      for (int j = 0; j < sz(t); j++) ans[i - 1 - j] += ans
           [i] * t[j];
    ans.resize(sz(t) + 1);
    return ans;
  BerlekampMassey(const vector<T>& s) : n(sz(s)), t(n), s(s
       ) {
    vector < T > x(n), tmp;
    t[0] = x[0] = 1;
    T b = 1;
    int len = 0, m = 0;
    fore (i, 0, n) {
      T d = s[i];
      for (int j = 1; j <= len; j++) d += t[j] * s[i - j];</pre>
      if (d == 0) continue;
      tmp = t;
      T coef = d / b;
      for (int j = m; j < n; j++) t[j] -= coef * x[j - m];
      if (2 * len > i) continue;
      len = i + 1 - len;
      x = tmp;
      b = d;
      m = 0;
    t.resize(len + 1);
    t.erase(t.begin());
    for (auto& x : t) x = -x;
    pw[0] = vector < T > (sz(t) + 1), pw[0][1] = 1;
    fore (i, 1, 20) pw[i] = combine(pw[i - 1], pw[i - 1]);
  T operator[](lli k) {
    vector < T > ans(sz(t) + 1);
    ans[0] = 1;
```

```
fore (i, 0, 20)
                                                                  vector<T> convolution(const vector<T>& a, const vector<T>&
       if (k & (1LL << i)) ans = combine(ans, pw[i]);</pre>
                                                                    if (a.empty() || b.empty()) return {};
     fore (i, 0, sz(t)) val += ans[i + 1] * s[i];
     return val;
                                                                    int n = sz(a) + sz(b) - 1, m = n;
   }
                                                                    while (n != (n & -n)) ++n;
 };
                                                                    vector<complex<double>> fa(all(a)), fb(all(b));
                                                                    fa.resize(n), fb.resize(n);
                                                                    FFT(fa, false), FFT(fb, false);
        Lagrange \mathcal{O}(n)
                                                                    fore (i, 0, n) fa[i] *= fb[i];
 template <class T>
                                                                    FFT(fa, true);
 struct Lagrange {
   int n;
                                                                    vector<T> ans(m);
   vector<T> y, suf, fac;
                                                                    fore (i, 0, m) ans[i] = round(real(fa[i]));
                                                                    return ans;
   Lagrange(vector<T>& y) : n(sz(y)), y(y), suf(n + 1, 1),
                                                                  }
     fore (i, 1, n) fac[i] = fac[i - 1] * i;
                                                                  template <class T>
                                                                  vector<T> convolutionTrick(const vector<T>& a,
                                                                                              const vector<T>& b) { // 2 FFT's
   T operator[](lli k) {
                                                                                                    instead of 3!!
     for (int i = n - 1; i \ge 0; i--) suf[i] = suf[i + 1] *
                                                                    if (a.empty() || b.empty()) return {};
          (k - i);
                                                                    int n = sz(a) + sz(b) - 1, m = n;
     T pref = 1, val = 0;
                                                                    while (n != (n & -n)) ++n;
     fore (i, 0, n) {
       T \text{ num} = pref * suf[i + 1];
                                                                    vector<complex<double>> in(n), out(n);
       T den = fac[i] * fac[n - 1 - i];
                                                                    fore (i, 0, sz(a)) in[i].real(a[i]);
       if ((n - 1 - i) \% 2) den *= -1;
                                                                    fore (i, 0, sz(b)) in[i].imag(b[i]);
       val += y[i] * num / den;
      pref *= (k - i);
                                                                    FFT(in, false);
     }
                                                                    for (auto\& x : in) x *= x;
     return val:
                                                                    fore (i, 0, n) out[i] = in[-i & (n - 1)] - conj(in[i]);
   }
                                                                    FFT(out, false);
 };
                                                                    vector<T> ans(m);
14.3 FFT
                                                                    fore (i, 0, m) ans[i] = round(imag(out[i]) / (4 * n));
 template <class Complex>
                                                                    return ans;
 void FFT(vector<Complex>& a, bool inv = false) {
                                                                  }
   const static double PI = acos(-1.0);
   static vector<Complex> root = {0, 1};
                                                                          Fast Walsh Hadamard Transform
   int n = sz(a);
                                                                  template <char op, bool inv = false, class T>
   for (int i = 1, j = 0; i < n - 1; i++) {
                                                                  vector<T> FWHT(vector<T> f) {
     for (int k = n \gg 1; (j ^{=}k) < k; k \gg 1)
                                                                    int n = f.size();
                                                                    for (int k = 0; (n - 1) >> k; k++)
     if (i < j) swap(a[i], a[j]);</pre>
                                                                      for (int i = 0; i < n; i++)
   }
                                                                        if (i >> k & 1) {
   int k = sz(root);
                                                                          int j = i ^ (1 << k);
   if (k < n)
                                                                          if (op == '^') f[j] += f[i], f[i] = f[j] - 2 * f[i
     for (root.resize(n); k < n; k <<= 1) {</pre>
       Complex z(cos(PI / k), sin(PI / k));
                                                                          if (op == '|') f[i] += (inv ? -1 : 1) * f[j];
       fore (i, k >> 1, k) {
                                                                          if (op == '&') f[j] += (inv ? -1 : 1) * f[i];
         root[i << 1] = root[i];
                                                                        }
         root[i << 1 | 1] = root[i] * z;
                                                                    if (op == '^' && inv)
       }
                                                                      for (auto& i : f) i /= n;
     }
                                                                    return f;
   for (int k = 1; k < n; k <<= 1)
                                                                  }
     for (int i = 0; i < n; i += k << 1)
                                                                         Primitive root
       fore (j, 0, k) {
         Complex t = a[i + j + k] * root[j + k];
                                                                  int primitive(int p) {
         a[i + j + k] = a[i + j] - t;
                                                                    auto fpow = [\&](11i \times, int n) {
         a[i + j] = a[i + j] + t;
                                                                      lli r = 1;
                                                                      for (; n > 0; n >>= 1) {
      }
   if (inv) {
                                                                        if (n & 1) r = r * x % p;
     reverse(1 + all(a));
                                                                        x = x * x % p:
     for (auto\& x : a) x /= n;
                                                                      }
   }
                                                                      return r;
 template <class T>
                                                                    for (int g = 2; g < p; g++) {
```

```
bool can = true;
                                                                      if (s[i] == s[j]) j++;
     for (int i = 2; i * i < p; i++)
                                                                      p[i] = j;
       if ((p - 1) % i == 0) {
                                                                   }
         if (fpow(g, i) == 1) can = false;
                                                                    return p;
         if (fpow(g, (p-1) / i) == 1) can = false;
                                                                  }
    if (can) return g;
                                                                  // positions where t is on s
   }
                                                                  template <class T>
                                                                  vector<int> kmp(T& s, T& t) {
   return -1;
                                                                    vector<int> p = lps(t), pos;
                                                                    for (int j = 0, i = 0; i < sz(s); i++) {
       NTT
14.6
                                                                      while (j && s[i] != t[j]) j = p[j - 1];
 template <const int G, const int M>
                                                                      if (s[i] == t[j]) j++;
 void NTT(vector<Modular<M>>& a, bool inv = false) {
                                                                      if (j == sz(t)) pos.pb(i - sz(t) + 1);
   static vector<Modular<M>> root = {0, 1};
                                                                    }
   static Modular<M> primitive(G);
                                                                    return pos;
   int n = sz(a);
                                                                  }
   for (int i = 1, j = 0; i < n - 1; i++) {
                                                                        KMP automaton \mathcal{O}(Alphabet * n)
     for (int k = n \gg 1; (j ^= k) < k; k \gg = 1)
                                                                  template <class T, int ALPHA = 26>
     if (i < j) swap(a[i], a[j]);</pre>
                                                                  struct KmpAutomaton : vector<vector<int>>> {
   }
                                                                    KmpAutomaton() {}
   int k = sz(root);
                                                                    KmpAutomaton(T s) : vector<vector<int>>>(sz(s) + 1, vector
   if (k < n)
                                                                        <int>(ALPHA)) {
     for (root.resize(n); k < n; k <<= 1) {</pre>
                                                                      s.pb(0);
       auto z = primitive.pow((M - 1) / (k << 1));
                                                                      vector<int> p = lps(s);
       fore (i, k >> 1, k) {
                                                                      auto& nxt = *this;
         root[i << 1] = root[i];
                                                                      nxt[0][s[0] - 'a'] = 1;
         root[i \ll 1 \mid 1] = root[i] * z;
                                                                      fore (i, 1, sz(s))
                                                                        fore (c, 0, ALPHA) nxt[i][c] = (s[i] - 'a' == c ? i +
       }
                                                                              1 : nxt[p[i - 1]][c]);
    }
   for (int k = 1; k < n; k <<= 1)
                                                                   }
    for (int i = 0; i < n; i += k << 1)
                                                                 };
       fore (j, 0, k) {
                                                                 15.3
         auto t = a[i + j + k] * root[j + k];
                                                                  // z[i] is the length of the longest substring starting
         a[i + j + k] = a[i + j] - t;
                                                                      from i which is also a prefix of s
         a[i + j] = a[i + j] + t;
                                                                  template <class T>
                                                                  vector<int> zalgorithm(T& s) {
   if (inv) {
                                                                    vector<int> z(sz(s), ∅);
     reverse(1 + all(a));
                                                                    for (int i = 1, l = 0, r = 0; i < sz(s); i++) {
     auto invN = Modular<M>(1) / n;
                                                                      if (i \le r) z[i] = min(r - i + 1, z[i - 1]);
     for (auto& x : a) x = x * invN;
                                                                      while (i + z[i] < sz(s) \&\& s[i + z[i]] == s[z[i]]) ++z[
   }
 }
                                                                      if (i + z[i] - 1 > r) l = i, r = i + z[i] - 1;
                                                                    }
 template <int G = 3, const int M = 998244353>
                                                                    return z;
 vector<Modular<M>> convolution(vector<Modular<M>> a, vector
                                                                  }
     <Modular<M>> b) {
   // find G using primitive(M)
                                                                        Manacher
                                                                 15.4
   // Common NTT couple (3, 998244353)
                                                                  template <class T>
   if (a.empty() || b.empty()) return {};
                                                                  vector<vector<int>>> manacher(T& s) {
                                                                    vector<vector<int>> pal(2, vector<int>(sz(s), 0));
   int n = sz(a) + sz(b) - 1, m = n;
                                                                    fore (k, 0, 2) {
   while (n != (n & -n)) ++n;
                                                                      int 1 = 0, r = 0;
   a.resize(n, ₀), b.resize(n, ₀);
                                                                      fore (i, 0, sz(s)) {
                                                                        int t = r - i + !k;
   NTT < G, M > (a), NTT < G, M > (b);
                                                                        if (i < r) pal[k][i] = min(t, pal[k][l + t]);</pre>
   fore (i, 0, n) a[i] = a[i] * b[i];
                                                                        int p = i - pal[k][i], q = i + pal[k][i] - !k;
   NTT<G, M>(a, true);
                                                                        while (p \ge 1 \& q + 1 < sz(s) \& s[p - 1] == s[q + 1]
                                                                            ]) ++pal[k][i], --p, ++q;
   return a;
                                                                        if (q > r) 1 = p, r = q;
 }
                                                                      }
                                                                    }
15
       Strings
                                                                    return pal;
       _{\mathrm{KMP}}
15.1
 template <class T>
                                                                 15.5
                                                                         Hash
 vector<int> lps(T s) {
                                                                Primes
   vector<int> p(sz(s), ∅);
                                                                   bases = [1777771, 10006793, 10101283,
   for (int j = 0, i = 1; i < sz(s); i++) {
                                                                                                                     10101823.
     while (j && s[i] != s[j]) j = p[j - 1];
                                                                10136359, 10157387, 10166249
```

```
SuffixArray(const T& x) : n(sz(x) + 1), s(x), sa(n), pos(
1000009999, 1000027163, 1070777777
 using Hash = int; // maybe an arrray<int, 2>
                                                                     s.pb(₀);
Hash pw[N], ipw[N];
                                                                     fore (i, 0, n) sa[i] = i, pos[i] = s[i];
                                                                     vector<int> nsa(sa), npos(n), cnt(max(260, n), 0);
 struct Hashing {
                                                                     for (int k = 0; k < n; k ? k *= 2 : k++) {
   static constexpr int P = 10166249, M = 1070777777;
                                                                       fill(all(cnt), 0);
   vector<Hash> h;
                                                                       fore (i, 0, n) nsa[i] = (sa[i] - k + n) % n, cnt[pos[
                                                                            i]]++;
   static void init() {
                                                                       partial_sum(all(cnt), cnt.begin());
    const int Q = inv(P, M);
                                                                       for (int i = n - 1; i >= 0; i--) sa[--cnt[pos[nsa[i
     pw[0] = ipw[0] = 1;
                                                                            ]]]] = nsa[i];
     fore (i, 1, N) {
                                                                       for (int i = 1, cur = 0; i < n; i++) {
       pw[i] = 1LL * pw[i - 1] * P % M;
                                                                         cur += (pos[sa[i]] != pos[sa[i - 1]] || pos[(sa[i]
       ipw[i] = 1LL * ipw[i - 1] * Q % M;
                                                                              + k) % n] != pos[(sa[i - 1] + k) % n]);
                                                                         npos[sa[i]] = cur;
   }
                                                                       }
                                                                       pos = npos;
   Hashing(string& s) : h(sz(s) + 1, 0) {
                                                                       if (pos[sa[n - 1]] >= n - 1) break;
     fore (i, 0, sz(s)) {
       lli x = s[i] - 'a' + 1;
                                                                     dp[0].assign(n, 0);
       h[i + 1] = (h[i] + x * pw[i]) % M;
                                                                     for (int i = 0, j = pos[0], k = 0; i < n - 1; ++i, ++k)
    }
   }
                                                                       while (k \ge 0 \& s[i] != s[sa[j - 1] + k]) dp[0][j] =
                                                                            k--, j = pos[sa[j] + 1];
   Hash query(int 1, int r) { return 1LL * (h[r + 1] - h[1]
                                                                     }
       + M) * ipw[1] % M; }
                                                                     for (int k = 1, pw = 1; pw < n; k++, pw <<= 1) {
                                                                       dp[k].assign(n, 0);
   static pair<Hash, int> merge(vector<pair<Hash, int>>&
                                                                       for (int 1 = 0; 1 + pw < n; 1++) dp[k][1] = min(dp[k])
       cuts) {
                                                                            - 1][1], dp[k - 1][1 + pw]);
     pair<Hash, int> ans = {0, 0};
                                                                     }
     fore (i, sz(cuts), 0) {
       ans.f = (cuts[i].f + 1LL * ans.f * pw[cuts[i].s] % M)
            % M;
                                                                   int lcp(int 1, int r) {
      ans.s += cuts[i].s;
                                                                     if (1 == r) return n - 1;
                                                                     tie(1, r) = minmax(pos[1], pos[r]);
     return ans;
                                                                     int k = __lg(r - 1);
   }
                                                                     return min(dp[k][1 + 1], dp[k][r - (1 << k) + 1]);
 };
                                                                   auto at(int i, int j) { return sa[i] + j < n ? s[sa[i] +</pre>
       Min rotation
15.6
                                                                        j] : 'z' + 1; }
 template <class T>
 int minRotation(T& s) {
                                                                   int count(T& t) {
   int n = sz(s), i = 0, j = 1;
                                                                     int 1 = 0, r = n - 1;
  while (i < n \&\& j < n) \{
                                                                     fore (i, 0, sz(t)) {
    int k = 0:
                                                                       int p = 1, q = r;
     while (k < n \& s[(i + k) % n] == s[(j + k) % n]) k++;
                                                                       for (int k = n; k > 0; k >>= 1) {
     (s[(i + k) \% n] \le s[(j + k) \% n] ? j : i) += k + 1;
                                                                         while (p + k < r \&\& at(p + k, i) < t[i]) p += k;
     j += i == j;
                                                                         while (q - k > 1 \&\& t[i] < at(q - k, i)) q -= k;
  }
   return i < n ? i : j;
                                                                       l = (at(p, i) == t[i] ? p : p + 1);
 }
                                                                       r = (at(q, i) == t[i] ? q : q - 1);
                                                                       if (at(1, i) != t[i] && at(r, i) != t[i] || 1 > r)
        Suffix array \mathcal{O}(nlogn)
                                                                            return 0;
  • Duplicates \sum_{i=1}^{n} lcp[i]
                                                                     }
                                                                     return r - 1 + 1;
  • Longest Common Substring of various strings
    Add notUsed
                      characters between strings,
    a + \$ + b + \# + c
                                                                   bool compare(ii a, ii b) {
    Use two-pointers to find a range [l, r]
                                                         such
                                                                     // s[a.f...a.s] < s[b.f...b.s]
    that all notUsed characters are present,
                                                         then
                                                                     int common = lcp(a.f, b.f);
    query(lcp[l+1],..,lcp[r]) for that window is the
                                                                     int szA = a.s - a.f + 1, szB = b.s - b.f + 1;
    common length.
                                                                     if (common >= min(szA, szB)) return tie(szA, a) < tie(</pre>
                                                                          szB, b);
 template <class T>
                                                                     return s[a.f + common] < s[b.f + common];</pre>
 struct SuffixArray {
                                                                   }
  int n;
                                                                 };
   Ts:
```

mods = [999727999, 1000000123, 1000002193, 1000008223,

vector<int> sa, pos, dp[25];

```
15.8 Aho Corasick \mathcal{O}(\sum s_i)
 struct AhoCorasick {
   struct Node : map<char, int> {
     int link = 0, up = 0;
     int cnt = 0, isw = 0;
   };
   vector<Node> trie;
   AhoCorasick(int n = 1) { trie.reserve(n), newNode(); }
   int newNode() {
     trie.pb({});
     return sz(trie) - 1;
   void insert(string& s, int u = 0) {
     for (char c : s) {
       if (!trie[u][c]) trie[u][c] = newNode();
       u = trie[u][c];
     trie[u].cnt++, trie[u].isw = 1;
   int next(int u, char c) {
     while (u && !trie[u].count(c)) u = trie[u].link;
     return trie[u][c];
   void pushLinks() {
     queue<int> qu;
     qu.push(∅);
     while (!qu.empty()) {
       int u = qu.front();
       qu.pop();
       for (auto& [c, v] : trie[u]) {
         int l = (trie[v].link = u ? next(trie[u].link, c) :
         trie[v].cnt += trie[l].cnt;
         trie[v].up = trie[l].isw ? l : trie[l].up;
         qu.push(v);
       }
     }
   template <class F>
   void goUp(int u, F f) {
     for (; u != 0; u = trie[u].up) f(u);
   int match(string& s, int u = 0) {
     int ans = 0;
     for (char c : s) {
       u = next(u, c);
       ans += trie[u].cnt;
     }
     return ans;
   Node& operator[](int u) { return trie[u]; }
 };
15.9 Eertree \mathcal{O}(\sum s_i)
 struct Eertree {
   struct Node : map<char, int> {
     int link = 0, len = 0;
   };
   vector<Node> trie;
   string s = "$";
```

```
Eertree(int n = 1) {
     trie.reserve(n), last = newNode(), newNode();
     trie[0].link = 1, trie[1].len = -1;
   int newNode() {
     trie.pb({});
     return sz(trie) - 1;
   int next(int u) {
     while (s[sz(s) - trie[u].len - 2] != s.back()) u = trie
          [u].link;
     return u;
   }
   void extend(char c) {
     s.push_back(c);
     last = next(last);
     if (!trie[last][c]) {
       int v = newNode();
       trie[v].len = trie[last].len + 2;
       trie[v].link = trie[next(trie[last].link)][c];
       trie[last][c] = v;
     }
     last = trie[last][c];
   Node& operator[](int u) { return trie[u]; }
   void substringOccurrences() {
     fore (u, sz(s), 0) trie[trie[u].link].occ += trie[u].
          occ:
   1li occurences(string& s, int u = 0) {
     for (char c : s) {
       if (!trie[u].count(c)) return 0;
       u = trie[u][c];
     return trie[u].occ;
   }
 };
15.10 Suffix automaton \mathcal{O}(\sum s_i)
  • sam[u].len - sam[sam[u].link].len = distinct strings
  • Number of different substrings (dp) \mathcal{O}(\sum s_i)
         diff(u) = 1 + \sum_{v \in trie[u]} diff(v)
  • Total length of all different substrings (2 x dp)
         totLen(u) = \sum_{v \in trie[u]} diff(v) + totLen(v)
  • Leftmost occurrence \mathcal{O}(|s|) trie[u].pos = trie[u].len - 1
    if it is clone then trie[clone].pos = trie[q].pos
  • All occurrence positions
  • Smallest cyclic shift \mathcal{O}(|2*s|) Construct sam of s+s,
```

find the lexicographically smallest path of sz(s)

 $nonAppearing(u) = \min_{v \in trie[u]} nonAppearing(v) + 1$

• Shortest non-appearing string $\mathcal{O}(|s|)$

struct SuffixAutomaton {

struct Node : map<char, int> {

int link = -1, len = 0;

int last;

```
};
vector<Node> trie;
int last:
SuffixAutomaton(int n = 1) { trie.reserve(2 * n), last =
    newNode(); }
int newNode() {
  trie.pb({});
  return sz(trie) - 1;
void extend(char c) {
 int u = newNode();
  trie[u].len = trie[last].len + 1;
  int p = last;
  while (p != -1 && !trie[p].count(c)) {
    trie[p][c] = u;
    p = trie[p].link;
  }
  if (p == -1)
    trie[u].link = 0;
  else {
    int q = trie[p][c];
    if (trie[p].len + 1 == trie[q].len)
      trie[u].link = q;
    else {
      int clone = newNode();
      trie[clone] = trie[q];
      trie[clone].len = trie[p].len + 1;
      while (p != -1 && trie[p][c] == q) {
        trie[p][c] = clone;
        p = trie[p].link;
      trie[q].link = trie[u].link = clone;
    }
 }
  last = u;
string kthSubstring(lli kth, int u = 0) {
  // number of different substrings (dp)
  string s = "";
  while (kth > 0)
    for (auto& [c, v] : trie[u]) {
      if (kth <= diff(v)) {</pre>
        s.pb(c), kth--, u = v;
        break:
      kth -= diff(v);
  return s;
void substringOccurrences() {
  // trie[u].occ = 1, trie[clone].occ = 0
  vector<int> who(sz(trie) - 1);
  iota(all(who), 1);
  sort(all(who), [&](int u, int v) { return trie[u].len >
       trie[v].len; });
  for (int u : who) {
    int l = trie[u].link;
    trie[1].occ += trie[u].occ;
  }
}
lli occurences(string& s, int u = 0) {
  for (char c : s) {
    if (!trie[u].count(c)) return 0;
```

```
u = trie[u][c];
    }
    return trie[u].occ;
  int longestCommonSubstring(string& s, int u = 0) {
    int mx = 0, len = 0;
    for (char c : s) {
      while (u && !trie[u].count(c)) {
        u = trie[u].link;
        len = trie[u].len;
      if (trie[u].count(c)) u = trie[u][c], len++;
      mx = max(mx, len);
    }
    return mx;
  }
  string smallestCyclicShift(int n, int u = 0) {
    string s = "";
    fore (i, 0, n) {
      char c = trie[u].begin()->f;
      s += c;
      u = trie[u][c];
    }
    return s;
  }
  int leftmost(string& s, int u = 0) {
    for (char c : s) {
      if (!trie[u].count(c)) return -1;
      u = trie[u][c];
    return trie[u].pos - sz(s) + 1;
  Node& operator[](int u) { return trie[u]; }
};
```