SLIM 🔂

ML4Seismic

CO₂ plume

Example

0.250

0.250

0.250

Example CO₂ plume

CO₂ at depth

- CO₂ is stored at depths >800m to ensure that CO₂ is in a dense form
- This is also important for storage security, because storage seals become more effective with depth
- CO₂ properties are highly variable, f(P,T)

scf - standard-cubic feet

1 MMscf 10⁶ scf

1 Bscf - 10⁹ scf

page 29 Ringrose

At standard conditions (ISA) (1.013 Bar & 15°C)

- > 1 m³ of CO₂ has a mass of 1.87 kg
- \rightarrow 1bscf = 28.32 x10⁶ m³
- \triangleright Mass of 1bscf = 52959.5 tonnes
- Mass of 1MMscf = 52.96 tonnes
- ➤ So a single well injecting 20 MMscf per day is injecting about 1000 tonnes of CO₂ per day

Simplified CO₂ density versus depth diagram (from CO2CRC)

NB. Gas engineers tend to work in standard cubic feet (scf) while CO₂ projects prefer to report mass