Apuntes - Tópicos en matemática discreta

Enzo Giannotta

5 de noviembre de 2023

Índice general

1.	Teoría extremal de grafos		
	1.1.	Teoría extremal de grafos	2
	1.2.	Números extremales en grafos bipartitos	6
	1.3.	Números extremales para árboles	9
	1.4.	Estabilidad y supersaturación	12
	1.5.	Teorema de Erdös-Stone	14
	1.6.	Ejercicios	20
	1.7.	Regularidad	23
2.	Teoría de Ramsey		
	2.1.	Números de Ramsey	36
	2.2.	El problema con un final feliz	45

Capítulo 1

Teoría extremal de grafos

En este curso trabajaremos con grafos simples, usualmente denotados: G = (V, E).

1.1. Teoría extremal de grafos

¿Cuál es la máxima cantidad de aristas que puede tener un grafo de *n* vértices sin que aparezca una cierta estructura?

¿Cómo lucen estos grafos maximales?

Ejemplo 1.1.1. 1. Cuando la estructura es un ciclo, la cantidad de aristas es n-1 y los grafos maximales son los árboles.

2. Cuando la estructura es un ciclo impar. ¿Cómo lucen los grafos sin ciclos impares y que tienen una cantidad máxima de aristas? Son los completos balanceados $K_{\left\lceil \frac{n}{2}\right\rceil,\left\lceil \frac{n}{2}\right\rfloor}$. En efecto, para que un grafo bipartito con n vértices tenga una cantidad máxima de aristas, tiene dos partes |X|,|Y| con |X|+|Y|=n y si maximiza la cantidad de aristas es un grafo $K_{|X|,|Y|}$. Es decir, tiene $|X|\cdot|Y|$ aristas y si maximizamos, hay que maximizar la función f(y)=(n-y)y con $1\leqslant y\leqslant n-1$ e y entero; esto sucede sii $y=\left\lfloor \frac{n}{2}\right\rfloor$ o $y=\left\lceil \frac{n}{2}\right\rceil$.

Definición 1.1.2. Sean G y H dos grafos. Decimos que G es H-libre (o **libre de** H) si $H \not = G$. El **número extremal** de H es la cantidad

$$ex(n,H) = máx\{e(G)|G \text{ es un grafo de } n \text{ vértices } H\text{-libre}\},$$

donde e(G) siempre denotará el número de aristas de G.

Si G es H-libre y ||G|| = ex(n,H), decimos que G es **extremal** respecto de n y H.

Teorema 1.1.3 (Mantel, 1907). Sea $n \in \mathbb{N}$, G un grafo K_3 -libre con n vértices. Entonces, $e(G) \leq \left\lceil \frac{n}{2} \right\rceil \left\lfloor \frac{n}{2} \right\rfloor$. Además, $e(G) = \left\lceil \frac{n}{2} \right\rceil \left\lfloor \frac{n}{2} \right\rfloor \Leftrightarrow G = K_{\left\lceil \frac{n}{2} \right\rceil, \left\lceil \frac{n}{2} \right\rceil}^{1}$.

Demostración. Por inducción en n. Los casos n=1, n=2 son un vértice, un 1-camino respectivamente. Luego vale para n=1,2. Ahora, supongamos que $n \ge 3$. Sea G un grafo K_3 -libre con n vértices, y $uv \in E(G)$ (si G no tuviera aristas, podríamos agregar una arista y seguiría siendo K_3 -libre); consideremos $G' = G \setminus \{u, v\}$.

 $^{^{1}}$ Cuando n=1,2 tenemos que G es el completo K_{n}

Tenemos que G' también es K_3 -libre y tiene n-2 vértices. Por inducción, G' satisface

$$e(G') \leqslant \left\lceil rac{n-2}{2}
ight
ceil \left\lfloor rac{n-2}{2}
ight
floor.$$

Más aún, como G es K_3 -libre, no existen vértices $w \in G'$ tal que sea adyacente a u y v al mismo tiempo. Luego existen a lo más n-2 aristas en $E(G)\backslash E(G')$ sin contar la arista uv. Es decir,

$$e(G) \leqslant e(G') + n - 1 \leqslant \left\lceil \frac{n}{2} \right\rceil \left\lfloor \frac{n}{2} \right\rfloor.$$

Figura 1.1.1: Ilustración

Para la segunda parte, $e(G) = \left\lceil \frac{n}{2} \right\rceil \left\lfloor \frac{n}{2} \right\rfloor \Leftrightarrow G = K_{\left\lceil \frac{n}{2} \right\rceil, \left\lfloor \frac{n}{2} \right\rfloor}$. Es claro que si $G = K_{\left\lceil \frac{n}{2} \right\rceil, \left\lfloor \frac{n}{2} \right\rfloor}$ luego $e(G) = \left\lceil \frac{n}{2} \right\rceil, \left\lfloor \frac{n}{2} \right\rfloor$. Veamos la recíproca. Sea G con n vértices y cantidad máxima de aristas tal que es K_3 -libre. Los casos n = 1, 2 son triviales, luego podemos suponer que $|G| \geqslant 3$. Como G es K_3 -libre, existen una aristas $uv \in E(G)$ por maximalidad. Por inducción, $G' := G \setminus \{u,v\}$ es un $K_{\left\lceil \frac{n-2}{2} \right\rceil, \left\lfloor \frac{n-2}{2} \right\rfloor}$, digamos con partición $X', Y' \subset V(G')$ de sus vértices. Como G es K_3 -libre, ni u ni v pueden tener vecinos en G' que estén en ambas particiones X', Y', además, no puede haber una partición que no tenga a u y v como vecinos en G pues podríamos agregar aristas entre vértices de esa particiones: contradiciendo maximalidad. Sin pérdida de generalidad, los vecinos de u en G' están en X y los de v en Y. Más aún, por maximalidad, todos los vértices de X son vecinos con u y todos los de Y con v. Así, G es un X,Y bigrafo tomando $X:=X'\cup \{v\}$ e $Y:=Y'\cup \{u\}$. Notar que esto prueba que G es un $K_{\left\lceil \frac{n}{2} \right\rceil, \left\lceil \frac{n}{2} \right\rceil}$.

Definición 1.1.4. El **grafo de Turán** $T_k(n)$ es el grafo k-partito completo con la mayor cantidad de aristas, es decir, los cardinales de las particiones difieren a lo más en 1 entre sí (por maximalidad). Notamos

$$t_k(n) := e(T_k(n)).$$

Observación 1.1.5. Podemos calcular $t_k(n)$. Sea $\alpha \in \mathbb{N}$ el cardinal más grande de una partición de $T_k(n)$. Entonces las demás particiones tienen cardinal α o $\alpha-1$. Sea r la cantidad de particiones con cardinal $\alpha-1$ y k-r de cardinal α . Tenemos que sumando los cardinales de todas las particiones:

$$\alpha k - r = n$$
.

Como $0 \le r < k$, r es el resto de la división de n por k y α es el cociente. Despejando obtenemos que $\alpha = \frac{n+r}{k}$ es decir, $\alpha = \left\lceil \frac{n}{k} \right\rceil$. En particular $\alpha - 1 = \left\lfloor \frac{n}{k} \right\rfloor$. Juntado todo, tenemos que la cantidad total de aristas es:

$$\alpha^2 \binom{k-r}{2} + \alpha(\alpha-1)(k-r)r + (\alpha-1)^2 \binom{r}{2},$$

i.e.,

$$t_k(n) = \lceil \frac{n}{k} \rceil^2 \binom{k-r}{2} + \lceil \frac{n}{k} \rceil \lfloor \frac{n}{k} \rfloor (k-r)r + \lfloor \frac{n}{k} \rfloor^2 \binom{r}{2}.$$

Teorema 1.1.6 (Turán, 1941). Sean $n, k \in \mathbb{N}$, G un grafo K_{k+1} -libre con n vértice. Entonces

$$e(G) \leq t_k(n)$$
.

Además,
$$e(G) = t_k(n) \Leftrightarrow G = T_k(n)^2$$
.

Demostración. Hagamos inducción en n. Para $n \leq k$ es trivial. Sea ahora G con $n \geq k+1$ que a su vez es K_{k+1} -libre y arista maximal. Esto implica que agregar cualquier arista hace aparecer un K_{k+1} como subgrafo. Entonces G contiene un K_k . Sea A el conjunto de vértices de un subgrafo K_k en G. Consideremos luego $G' = G \setminus A$. El grafo G' es K_{k+1} -libre y tiene n-k vértices. Cada $x \in V(G')$ tiene a lo más k-1 vecinos en A dentro del grafo G, pues G es K_{k+1} -libre. Luego por hipótesis inductiva:

$$e(G') \leqslant t_k(n-k).$$

Si juntamos esto con la hipotesis inductiva, tenemos que

$$e(G)\leqslant e(G')+(n-k)(k-1)+\binom{k}{2}\leqslant t_k(n-k)+(n-k)\cdot(k-1)+\binom{k}{2}=t_k(n),$$

donde el segundo término es la cantidad de aristas entre A y V(G').

Veamos ahora la segunda afirmación. Por definición, $G=T_k(n)$ tiene $t_k(n)$ aristas. Recíprocamente, supongamos que G con n vértices y cantidad máxima de aristas e(G) tal que es K_{k+1} -libre. Los casos $n \leq k$ son triviales, luego supongamos que $n \geq k+1$. Por maximalidad, G contiene un K_k como subgrafo; llamemos A a su conjunto de vértices en G y consideremos $G' := G \setminus A$. Notar que

$$e(G') \geqslant e(G) - \left((n-k)(k-1) + \binom{k}{2}\right) = t_k(n) - (n-k)(k-1) - \binom{k}{2} = t_k(n-k),$$

pues cada vértice de G' tiene a lo más k-1 vecinos en A. Como G' es K_{k+1} -libre, en realidad vale la igualdad: $e(G') = t_k(n-k)$, por la primera parte que ya demostramos. Llamemos X_1, X_2, \ldots, X_k a las particiones de G'. Como vale la igualdad arriba, tenemos que cada vértice de G' tiene exactamente k-1 vecinos en A. Para cada $x' \in G'$ llamemos $\alpha(x')$ al único vértice de A que no es adyacente a x' en G. Más formalmente, $\alpha: V(G') \to A$ es una función; afirmamos que:

²Cuando $n=1,2,\ldots,k-1$ tenemos que G es el completo K_n

- (I) α es sobreyectiva.
- (II) Si $x_i' \in X_i$ y $x_j' \in X_j$ para $i \neq j$, entonces $\alpha(x_i') \neq \alpha(x_j')$.

Antes de probar la afirmación, notemos que esta prueba que $\alpha|_{X_i}$ es constante para cada $i=1,\ldots,k$ (y por lo tanto tiene sentido el abuso de notación $\alpha(X_i)$ para denotar al único vértice de A que no es adyacente a ningún vértice $x'\in X_i$). Veamos entonces la afirmación:

- (I) Supongamos que α no es sobreyectiva: existe un $a_0 \in A$ tal que para todo i = 1, ..., k existe $x_i' \in X_i$ adyacente a a_0 en G. Pero esto implica entonces que los vértices $x_1', ..., x_k', a_0$ forman un K_{k+1} en G, absurdo.
- (II) En efecto, si $\alpha(x_i') = a_0 = \alpha(x_j')$, entonces x_i, x_j y los vértices de $A \setminus \{a_0\}$ juntos forman un K_{k+1} en G, absurdo.

Así, podemos extender la partición de G' a todo G: definimos $\tilde{X}_i := X_i \cup \{\alpha(X_i)\}$. Es claro que de esta manera G es un grafo k-partito completo. Como G es maximal en su cantidad de aristas, entonces $G = T_k(n)$.

Teorema 1.1.7 (Erdös - segunda demostración del teorema). Sean $n, k \in \mathbb{N}$ y G un grafo K_{k+1} -libre con n vértices. Entonces existe un grafo H que es k-partito con V(H) = V(G) tal que:

$$d_H(v) \geqslant d_G(v), \quad \forall v \in V(G).$$

 $Erd\ddot{o}s$. Haremos inducción en k. Para k=1 no hay que hacer nada. Sea ahora $k\geqslant 2$. Sea $v\in V(G)$ con $d_G(v)=\Delta(G)$. La vecindad de $v,G':=G[N_G(v)]$ debe ser K_k -libre. Sea $A:=G\backslash N_G(v)$. Notar que

$$d_G(u) \leqslant d_{G'}(u) + |A|.$$

Por hipótesis inductiva existe un grafo H' que es (k-1)-partito con V(H')=V(G') y

$$d_{H'}(u) \geqslant d_{G'}(u), \quad \forall u \in V(G').$$

Sea H el grafo obtenido a paratir de H' añadiendo los vértices de A y conectando todos los vértices entre A y V(H'). Observar que H es k+1-partito y como v tiene grado máximo en G, tenemos que para cada $u \in A$:

$$d_G(u) \leqslant d_G(v) = |V(H')| = d_H(u)$$

y para $u \in V(H')$ sabemos que:

$$d_G(u)\leqslant d_{G'}(u)+|A| \leqslant d_{H'}(u)+|A|=d_H(u).$$

Ejercicio 1.1.8. A partir de la demostración deducir que el grafo K_{k+1} -extremal es $T_k(n)$ y es único.

Solución. Sea G un grafo K_{k+1} -extremal y H el grafo r-partito obtenido por el Teorema anterior. Así, V(H)=V(G) y $d_H(v)\geqslant d_G(v)$ para todo vértice v. Esta desigualdad implica que

$$e(H) \geqslant e(G)$$
,

y por lo tanto, H también es K_{r+1} -extremal. Pero por definición, $t_k(n) \ge e(H)$. Pero ya vimos que los grafos K_{r+1} extremales tienen $\ge t_k(n)$ aritas. Con lo cual, en realidad e(G) = e(H) y más aún, $d_H(v) = d_G(v)$ para todo v.

Esto nos indica que inspeccionando la demostración más detalladamanete, se tiene que G' es un $T_{k-1}(\Delta)$ (con $\Delta := \delta(G)$) y que G es luego $T_k(n)$.

Observación 1.1.9. Sea H un grafo con $\chi(H) \ge 3$, es decir no bipartito, entonces

$$ex(n,H) = \Theta(n^2).$$

Demostraci'on. En primer lugar, si G es un grafo que contiene a H, luego no puede ser bipartito. En particular, si $G=K_{\left\lceil\frac{n}{2}\right\rceil,\left\lfloor\frac{n}{2}\right\rfloor}$, entonces es H-libre al ser bipartito; de hecho tiene n vértices y $e(G)=\left\lceil\frac{n}{2}\right\rceil\left\lfloor\frac{n}{2}\right\rfloor$. Consecuentemente

$$(n-1)^2/4 \leqslant \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n}{2} \right\rceil \leqslant \operatorname{ex}(n,H).$$

Por otro lado, la cantidad de aristas maxima de G es $\binom{n}{2}$ (en general para cualquier grafo con n vértices) y por lo tanto $\operatorname{ex}(n,H) = \Theta(n^2)$.

1.2. Números extremales en grafos bipartitos

Recuerdo 1.2.1 (Desigualdad de Jensen). *Vamos a usar la desigualdad de Jensen:* $si \ \varphi es \ una \ función \ convexa \ entonces:$

$$\varphi(\mathbb{E}(X)) \leqslant \mathbb{E}(\varphi(X)).$$

Ejercicio 1.2.2. Probar las siguientes dos desigualdades elementales para el binomio de Newton:

$$\left(\frac{n}{k}\right)^k \overset{\text{Cota 1}}{\leqslant} \binom{n}{k} \overset{\text{Cota 2}}{\leqslant} \left(\frac{n \cdot e}{k}\right)^k.$$

Solución.

Cota 1: Notar que

$$egin{pmatrix} n \ k \end{pmatrix} = rac{n}{k} \cdot rac{n-1}{k-1} \cdots rac{n-k+1}{1} \geqslant \left(rac{n}{k}
ight)^k,$$

pues $\frac{n}{k} \leqslant \frac{n-j}{k-j}$ para todo $j = 0, \dots, k$.

Cota 2: Notar que se tiene una mejor cota:

$$\binom{n}{k} = \frac{n \cdot (n-1) \cdots (n-k+1)}{k!} \leqslant \frac{n^k}{k!}.$$

Por lo tanto, como $e^x = \sum_{k=0}^{\infty} rac{x^k}{k!}$, se sigue que $e^k \geqslant rac{k^k}{k!}$, y luego

$$\frac{n^k}{k!} \leqslant \frac{n^k e^k}{k^k},$$

como queríamos.

Teorema 1.2.3 (Erdös, 1938). *Para todo n* $\in \mathbb{N}$

$$\operatorname{ex}(n,C_4) \leqslant n^{\frac{3}{2}}.$$

Definición 1.2.4. Una **cereza** es un 2-camino $x_0x_1x_2$. Llamaremos a x_1 el **centro** y a x_0, x_2 las **hojas**.

Figura 1.2.2: Dibujo de cereza.

Demostración. Sea G un grafo C_4 -libre con n vértices. Contaremos cereza en G para acotar el número de aristas e(G).

Para cada vértice $v \in V(G)$ hay exactamente

$$egin{pmatrix} d_G(v) \ 2 \end{pmatrix}$$
 cerezas con centro en $v.$

Por lo tanto, en G hay

$$\sum_{v \in V(G)} inom{d_G(v)}{2}$$
 cerezas en G .

Por la desigualdad de Jensen la sumatoria se minimiza cuando todos los grados son iguales:

$$\begin{split} \sum_{v \in V(G)} \binom{d_G(v)}{2} \geqslant n \cdot \binom{2e(g)/n}{2} \\ & \stackrel{Cota1}{\geqslant} n \cdot \left(\frac{e(G)}{n}\right)^2 = \frac{e(G)^2}{n}. \end{split}$$

Por otro lado, dado un par $\{u,v\}$ de hojas de cerezas distintas, entonces tendríamos un subgrafo C_4 en G, absurdo; por lo tanto hay a lo más

$$\binom{n}{2}$$
 cerezas en G .

Juntando todo:

$$\frac{e(G)^2}{n} \leqslant \binom{n}{2} = \frac{n(n-1)}{2},$$

consecuentemente $e(G)^2 \le n^3$, i.e., $e(G) \le n^{\frac{3}{2}}$.

Teorema 1.2.5 (Kövani, Sós, Turán). Sean $s,t \in \mathbb{N}$, $s \leq t$. Entonces existe una constante c = c(s,t) > 0 tal que

$$\operatorname{ex}(n,K_{s,t}) \leqslant c \cdot n^{2-\frac{1}{s}}, \quad \forall n \in \mathbb{N}.$$

Definición 1.2.6. Una s-cereza es un $K_{1,s}$. Similarmente tenemos la noción de centro y hojas (las cuales son s).

Figura 1.2.3: Dibujo de s-cereza.

Demostración. Sea G un grafo $K_{s,t}$ -libre en n vértices. Para cada $v \in V(G)$ hay $\binom{d_G(v)}{s}$ s-cerezas. Por lo tanto en G hay

$$\sum_{v \in V(G)} inom{d_G(v)}{s}$$
 s-cerezas,

con lo cual

$$\sum_{v \in V(G)} \binom{d_G(v)}{s} \overset{\text{Cota 1}}{\geqslant} \sum_{v \in V(G)} \frac{d_G(v)^s}{s^s} \overset{\text{Jensen}}{\geqslant} \frac{n}{s^s} \left(\frac{2e(G)}{n}\right)^s.$$

Procediendo de manera análoga a la demostración del teorema anterior, tenemos que un conjunto de s vértices del grafo puede ser conjunto de hojas de a lo más (t-1) cerezas, pues de lo contrario habría una copia de $K_{s,t}$. Por lo tanto, hay en total a lo más

$$(t-1)\cdot \binom{n}{s}$$
 s-cerezas.

Juntando todo:

$$n \left(\frac{2e(G)}{sn}\right)^s \leqslant (t-1) \cdot \binom{n}{s} \stackrel{\text{Cota 2}}{\leqslant} (t-1) \cdot \left(\frac{ne}{s}\right)^s,$$

luego

$$\frac{2e(G)}{sn} \leqslant \frac{(t-1)^{\frac{1}{s}}}{n^{\frac{1}{s}}} \cdot \frac{ne}{s},$$

equivalentemente,

$$e(G)\leqslant rac{(t-1)^{rac{1}{s}}se}{2s}\cdot n^{2-rac{1}{s}}=c(s,t)\cdot n^{2-rac{1}{s}}.$$

Ejercicio 1.2.7. Demostrar que

$$ex(n,H) = o(n^2) \Leftrightarrow H \text{ es bipartito.}$$

Solución. Como H es bipartito, existen $s,t \in \mathbb{N}$, digamos $s \leq t$, tales $H \subset K_{s,t}$. Así, por el Teorema de 1.2.5,

$$\operatorname{ex}(n,H) \leqslant c(s,t) \cdot n^{2-\frac{1}{s}},$$

pues si G no contiene a H, tampoco contiene a $K_{s,t}$. Así, obtenemos que $\operatorname{ex}(n,H) = o(n^2)$.

Recíprocamente, supongamos que H no es bipartito, luego por la Observación 1.1.9, $\operatorname{ex}(n,H) = \Theta(n^2)$. Con lo cual, $\operatorname{si} \operatorname{ex}(n,H) = o(n^2)$, necesariamente H es bipartito.

1.3. Números extremales para árboles

Teorema 1.3.1. Sean $n, k \in \mathbb{N}$ y T un árbol con k+1 vértices. Entonces,

$$ex(n,T) \leq (k-1) \cdot n$$
.

Lema 1.3.2. Sean $k \in \mathbb{N}$ y T un árbol con k+1 vértices. Entonces si G es un grafo con $\delta(G) \ge k$, luego contiene a T como subgrafo.

Demostración. Haremos inducción en k. Para k=1 es claro, pues existe un vértice con al menos un vecino. En general, supongamos que $k\geqslant 2$. Sea k una hoja de k y consideremos el árbol k el k el único vecino de k en k i.e. k el único vecino de k en k i.e. k el único k el único en k el úni

Lema 1.3.3. Todo grafo G contiene un subgrafo H con $\delta(H) > \varepsilon(H) \geqslant \frac{e(G)}{n}$, donde n = |G|.

Demostración. Construiremos una secuencia de subgrafos de G:

$$G =: G_0 \supset G_1 \supset \cdots$$

de la siguiente manera, si $v_i \in G_i$ es un vértice con $d_{G_i}(v_i) \leqslant \varepsilon(G_i) := \frac{e(G_i)}{|G_i|}$, entonces definimos $G_{i+1} := G_i \setminus \{v_i\}$. Eventualmente esta secuencia termina, digamos en $H := G_{j_0}$.

Notar que $\varepsilon(G_{i+1}) \geqslant \varepsilon(G_i)$, y por lo tanto $\varepsilon(H) \geqslant \varepsilon(G)$. En efecto,

$$\varepsilon(G_{i+1}) = \frac{e(G_{i+1})}{|G_{i+1}|} = \frac{e(G_i) - d_{G_i}(v_i)}{|G_i| - 1},$$

que es mayor o igual que $\frac{e(G_i)}{|G_i|}$ si y solo si

$$(e(G_i) - d_{G_i}(v_i)) |G_i| \geqslant e(G_i)(|G_i| - 1),$$

equivalentemente,

$$e(G_i) \geqslant |G_i| d_{G_i}(v_i),$$

i.e.,

$$rac{e(G_i)}{|G_i|} \geqslant d_{G_i}(v_i),$$

que es cierto por construcción. Por otro lado, por minimalidad de H, se sigue que $\delta(H) > \varepsilon(H)$.

 $Demostraci\'on\ del\ teorema$. Sea G un grafo con $\geqslant (k-1)\cdot n+1$ aristas. Por el segundo lema, G contiene H con

$$\delta(H)\geqslant rac{e(G)}{n}>rac{(k-1)n}{n},$$

y por el primer lema $T \subset H \subset G$.

Conjetura 1.3.4 (Erdös, Sós, 1963). Se conjetura que en el teorema anterior se tiene una mejor cota:

$$\operatorname{ex}(n,T) \leqslant \frac{1}{2}(k-1)n.$$

Notar que de ser verdadera la conjetura, entonces esta cota es tight cuando n es un múltiplo de k: Sea G el grafo obtenido al unir $\frac{n}{k}$ copias de K_k , así $e(G) = \frac{n}{k} {k \choose 2} = \frac{n}{2} (k-1)$.

Esta conjetura es verdadera en el caso T un camino:

Teorema 1.3.5 (Erdös & Gallai, 1959). *Sean* $n, k \in \mathbb{N}$. *Entonces*,

$$\operatorname{ex}(n, P_k) \leqslant \frac{(k-1) \cdot n}{2}$$

Ejercicio 1.3.6. A partir de la demostración de este teorema, obtenga que los grafos extremales son únicos.

Lema 1.3.7. Todo grafo conexo G con n vértices contiene un camino de largo

$$k := \min\{2\delta(G), n-1\}.$$

Demostraci'on. Tomemos $P:=v_0,\ldots,v_l$ camino de largo máximo. Sabemos que $N_G(v_0),N_G(v_l)\subset V(P)$ por maximalidad de P. Si V(P)=V(G) ganamos. Así que supongamos que no; supongamos también que $l< k \leqslant 2\delta(G)$. Demostraremos que existe un ciclo de longitud l contenido en G[V(P)], así llegaremos a una contradicción pues al existir un vértice x fuera de G[V(P)] en G, podríamos extender el ciclo a un camino de longitud al menos k+1 en G conectándolo con x.

Figura 1.3.4: Notar que en este caso $v_0Pv_{i-1}v_lPv_iv_0$ es un ciclo de longitud |P| en G[V(P)].

En efecto, supongamos que no existe tal ciclo, luego para cada $i \in \{1, ..., l-1\}$ se tiene que $v_{i-1}v_l \notin E(G)$ o $v_0v_i \notin E(G)$. Entonces

$$2\delta(G) \leqslant d_G(v_0) + d_G(v_l) \leqslant l < 2\delta(G),$$

absurdo. \Box

 $Demostración\ del\ teorema.$ Haremos inducción en n. Afirmamos que G es P_k -libre en n vérties, entonces

$$e(G) \leqslant rac{(k-1) \cdot n}{2}.$$

El caso base es $n\leqslant k$, luego $e(G)\leqslant \binom{n}{2}=\frac{n(n-1)}{2}\leqslant \frac{n(k-1)}{2}$. Luego supongamos que $n\geqslant k+1$. Si G no es conexo: sean G_1,\ldots,G_r las componentes conexas, por hipótesis

$$e(G_i) \leqslant \frac{|G_i|(k-1)}{2},$$

entonces

$$e(G) = \sum_{i=1}^r e(G_i) \leqslant rac{k-1}{2} \sum_{i=1}^r |G_i| = rac{n(k-1)}{2}.$$

Ahora, supongamos que G es conexo. Si $n-1\leqslant 2\delta(G)$, entonces por el Lema 1.3.7, G contiene un camino de largo $n-1\geqslant k$, absurdo. Con lo cual, podemos asumir que $2\delta(G)\leqslant n-1$, y por el Lema, G contiene un camino de largo $2\delta(G)$ que debe cumplir

$$2\delta(G) < k \quad \Leftrightarrow \quad \delta(G) \leqslant \frac{k-1}{2}.$$

Sea v un vértice de grado $\leq \frac{k-1}{2}$, consideremos $G' := G \setminus \{v\}$. Por hipótesis inductiva

$$e(G') \leqslant \frac{(n-1)(k-1)}{2}$$
,

con lo cual,

$$e(G) \leqslant e(G') + \frac{k-1}{2} \leqslant \frac{(n-1)(k-1)}{2} + \frac{k-1}{2} = \frac{n(k-1)}{2}.$$

1.4. Estabilidad y supersaturación

Teorema 1.4.1 (Füredi, 2015). Sean $n, t \in \mathbb{N}$, $y \in G$ con n vértices. Si G está t-**lejos** de ser bipartito³, entonces hay al menos

$$\frac{n}{6}\left(e(G)-\frac{n^2}{4}+t\right)$$

triángulos en G.

Demostración. Para cada $u \in V(G)$, definimos

$$B_u := N_G(u) \quad ext{y} \quad A_u := V(G) ackslash B_u.$$

Luego la cantidad de tríangulos de G es:

$$k_3(G) = \frac{1}{3} \sum_{u \in V(G)} e(B_u).$$

Para cada $u \in V(G)$, si borro las aristas de $G[B_u]$ y las de $G[A_u]$, obtengo un subgrafo bipartito de G: el (A_u, B_u) -bigrafo; luego tuvimos que haber quitado al menos t aristas porque G está t-lejos de ser bipartito, es decir:

$$e(B_u) + e(A_u) \geqslant t$$
.

Además, para cada $u \in V(G)$

$$\sum_{v\in A_u} d_G(v) = e(B_u,A_u) + 2e(A_u).$$

Como

$$e(G) = e(A_u) + e(A_u, B_u) + e(B_u),$$

se sigue que $e(A_u)=e(B_u)-e(G)+\sum_{v\in A_u}d_G(v)$ (juntando ambas ecuaciones). Ahora, por la desigualdad $e(B_u)+e(A_u)\geqslant t$, se tiene que

$$e(B_u) \geqslant t - e(A_u) = t + e(G) - e(B_u) - \sum_{v \in A_u} d_G(v)$$

y por lo tanto

$$2e(B_u)\geqslant t+e(G)-\sum_{v\in A_u}d_G(v).$$

³Esto significa que si H es un subgrafo bipartito de G, entonces $e(H) \leq e(G) - t$.

Sumando sobre todos los $u \in V(G)$ y utilizando que $k_3(G) = \frac{1}{3} \sum_{u \in V(G)} e(B_u)$, concluimos:

$$k_3(G) \geqslant \frac{1}{2} \cdot \frac{1}{3} (nt + ne(G) - \sum_{u \in V(G)} \sum_{v \in A_u} d_G(v));$$

sin embargo, afirmamos que vale la siguiente igualdad:

$$\sum_{u\in V(G)}\sum_{v\in A_u}d_G(v)=\sum_{x\in V(G)}d_G(x)(n-d_G(x));$$

ya que cada término de la sumatoria se acota inferiormente por $\frac{n}{2} \cdot (n - \frac{n}{2}) = \frac{n^2}{2}$, concluimos el resultado.

Veamos la afirmación: notar que para cada $x \in V(G)$, su cantidad de aristas $d_G(x)$ es contada exactamente $|A_x| = n - d_G(x)$ veces del lado izquierdo de la sumatoria.

Como corolario, se prueban los siguientes dos teoremas:

Teorema 1.4.2 (Estabilidad). Sean $n, t \in \mathbb{N}$, $y \ G$ es K_3 -libre con n vértices. Si $e(G) \geqslant \frac{n^2}{4} - t$, entonces G contiene un grafo bipartito con al menos e(G) - t aristas.

Demostración. Si G no tuviera un grafo bipartito con al menos e(G) - t aristas, entonces G estaría (t+1)-lejos de ser bipartito. Por el Teorema 1.4.1 tiene al menos

$$rac{n}{6}\left(e(G)-rac{n^2}{4}+(t+1)
ight)\geqslant rac{n}{6}$$

triángulos, i.e., al menos uno, lo cual es absurdo.

Teorema 1.4.3 (Supersaturación). Sean $n, t \in \mathbb{N}$, y G un grafo con n vértices. Si $e(G) \ge \frac{n^2}{4} + t$, entonces G contiene al menos $t \cdot n/3$ triángulos.

Demostración. Notar que G está t-lejos de ser bipartito, en efecto, un grafo bipartito de orden $m \le n$ tiene a lo más $\frac{m^2}{4} \le \frac{n^2}{4}$ aristas, pero G tiene al menos $\frac{n^2}{4} + t \ge \frac{m^2}{4} + t$ aristas. Luego por el Teorema 1.4.1, G tiene

$$\frac{n}{6}\left(e(G)-\frac{n^2}{4}+(t+1)\right)\geqslant \frac{n}{3}t$$

triángulos.

Teorema 1.4.4 (Füredi, 2015 – Estabilidad). Sean $n, k \in \mathbb{N}$, $t \ge 0$ y G un grafo K_{k+1} -libre en n-vértices. Si $e(G) \ge t_k(n) - t$, entonces G contiene un subgrafo generador k-partito con al menos e(G) - t aristas.

Demostraci'on. Haremos inducci\'on en k. El caso k=1 tenemos que $t_k(n)=0$ y siempre se cumple. Entonces supongamos que $k\geqslant 2$. Tomemos $u\in V(G)$ con $d_G(u)=\Delta(G)$. Definamos G':=G[B] con $B=N_G(u)$. Sea $A=V(G)\backslash B$. El grafo G' es K_k -libre porque G es K_{k+1} -libre, luego por el Teorema de Turán 1.1.6, $e(G')\leqslant t_{k-1}(d)$ con d:=|B| y entonces podemos definir $t':=t_{k-1}(d)-e(G')\geqslant 0$ y aplicar hipótesis

inductiva al grafo G'. Así, G' contiene un subgrafo H' generador (k-1)-partito con al menos $e(G')-t'=2e(G')-t_{k-1}(d)$ aristas.

Probemos que

$$H := \Big(V(H') \cup A, E(H') \cup E(A,B)\Big)$$

tiene al menos e(G)-t aristas, y así H es un subgrafo k-partito generador de G con al menos e(G)-t aristas. En efecto, queremos probar que

$$e(H') + e(A,B) \geqslant e(G) - t;$$

como e(G) = e(A,B) + e(G') + e(A), la desigualdad de arriba es equivalente a

$$e(H') \geqslant e(G') + e(A) - t \quad \Leftrightarrow \quad e(H') - e(G') + t \geqslant e(A).$$

Ya que $e(H') \geqslant e(G') - t'$, nos queda que la última desigualdad es cierta si $e(A) \leqslant t - t'$.

Sabemos que

$$2e(A)+e(A,B)=\sum_{v\in A}d_G(v)\leqslant d\cdot (n-d),$$

donde la desigualdad sale de que la sumatoria tiene (n-d) términos y cada grado $d_G(v) \leq \Delta(G) = d_G(u) = |B| = d$; y reemplacemos e(A,B) = e(G) - e(A) - e(G') y nos queda

$$e(A) + e(G) - e(G') \leq d \cdot (n - d).$$

Ahora, notar que

$$t_k(n) \geqslant t_{k-1}(d) + d \cdot (n-d),$$

pues el lado izquierdo es la cantidad de aristas de un grafo de Turán (la cual es máxima) y el lado derecho es la cantidad de aristas de un grafo k-partito en n-vértices: el obtenido a patir del grafo de turán $T_{k-1}(d)$ agregando n-d vértices y conectándolos a las k-1 particiones de $T_{k-1}(d)$. Juntando todo,

$$e(A) \leqslant d \cdot (n-d) - e(G) + e(G') \leqslant d \cdot (n-d) - t_k(n) + t + t_{k-1}(d) - t' \leqslant t - t'$$

como queríamos probar.

1.5. Teorema de Erdös-Stone

Notación 1.5.1. Notaremos por $K_s(t)$ al grafo de Turán $T_s(t \cdot s)$.

Teorema 1.5.2 (Erdös-Stone, 1946). Sea H un grafo con $e(H) \geqslant 1$. Entonces

$$\operatorname{ex}(n,H) \leqslant \left(1 - \frac{1}{\chi(H) - 1} + o(1)\right) \cdot \frac{n^2}{2} \quad (n \to \infty).$$

Observación 1.5.3. Sea H un grafo con $e(H) \ge 1$. Entonces

$$t_{\gamma(H)-1}(n) \leqslant \operatorname{ex}(n,H),$$

pues todo grafo G necesita de al menos $\chi(H)$ colores para tener a H incrustado, por lo tanto $T_{\chi(H)-1}(n)$ es H-libre.

Observación 1.5.4.

$$t_{\chi(H)-1}(n) \sim \left(1-rac{1}{\chi(H)-1}
ight)rac{n^2}{2}.$$

Con lo cual, la desigualdad de Erdös-Stone es asintóticamente justa.

Demostración. En efecto, esto equivale a probar que

$$t_k(n) \sim \left(1 - \frac{1}{k}\right) \frac{n^2}{2} \quad (n \to \infty),$$

para $k \ge 2$ fijo. Escribiendo $n = qk + r \text{ con } 0 \le r < k$, tenemos que

$$t_k(qk) \leqslant t_k(n) \leqslant t_k((q+1)k),$$

pero para cualquier $q \in \mathbb{N}$ es fácil de calcular el número de aristas del grafo de Turán $T_k(qk)$:

$$t_k(qk) = \left(1 - \frac{1}{k}\right) \frac{(qk)^2}{2},$$

con lo cual $t_k(qk), t_k((q+1)k) \sim \left(1-\frac{1}{k}\right)\frac{n^2}{2}$ y por lo tanto $t_k(n)$ también. \Box

Lema 1.5.5. Sea $c \in (0,1)$ y sea $\varepsilon > 0$. Si G es un grafo con n vértices, con n lo suficientemente grande tal que

$$e(G)\geqslant crac{n^2}{2},$$

entonces existe un subgrafo $G' \subset G$ con

$$|G'|\geqslant \varepsilon n$$
 y $\delta(G')\geqslant (c-\varepsilon)|G'|$.

Demostración. Sea $G_n, G_{n-1}, G_{n-2}, \ldots, G_t$ la secuencia de subgrafos de G obtenida de la siguiente manera: $G_n := G$ y el grafo $G_{n-(i+1)}$ se obtiene a partir de G_{n-i} borrando un vértice $v \in V(G_{n-i})$ con $d_{G_{n-i}}(v) < (c-\varepsilon) \cdot |G_{n-i}|$; además, G_t es el último grafo de la secuencia. Notar que $|G_{n-i}| = n-i$.

Afirmamos que $t \geqslant \varepsilon n$ para n lo suficientemente grande, y por ende, G_t será el subgrafo que buscabamos: por construcción $\delta(G_t) \geqslant (c-\varepsilon) |G_t|$. Para eso, calculamos la cantidad total de aristas borradas para la obtención de G_t :

$$\sum_{i=0}^{n-(t+1)} d_{G_{n-i}}(v_i) < (c-\varepsilon) \sum_{i=0}^{n-(t+1)} n-i = (c-\varepsilon)(n-t)(n+t+1)/2,$$

y como G_t tiene a lo más $\binom{t}{2}$ aristas, tenemos que

$$e(G) \leqslant (c-\varepsilon)(n-t)(n+t+1)/2 + \binom{t}{2}.$$

Supongamos por el absurdo que $t \leq \varepsilon n$. Nuestro objetivo es acotar el lado derecho:

$$\begin{split} e(G) \leqslant (c-\varepsilon)(n-t)(n+t+1)/2 + \binom{t}{2} &= (c-\varepsilon)\frac{(n^2+n-(t^2+t))}{2} + \frac{t(t-1)}{2} \\ &\leqslant (c-\varepsilon)\frac{n^2+n}{2} + \frac{\varepsilon n(\varepsilon n-1)}{2} \\ &= (c-\varepsilon+\varepsilon^2)\frac{n^2}{2} + (c-2\varepsilon)\frac{n}{2}. \end{split}$$

Notar que el lado derecho es un polinomio cuadrático en la variable n con coeficiente principal $\frac{c-\varepsilon+\varepsilon^2}{2}<\frac{c}{2}$ y por lo tanto para n lo suficientemente grande, se contradice la desigualdad $c^{\frac{n^2}{2}}\leqslant e(G)$. Así, $t\geqslant \varepsilon n$.

Lema 1.5.6. Para todo $r, t \in \mathbb{N}$ y $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que si G es un grafo con $n \ge n_0$ vértices y

$$\delta(G)\geqslant \left(1-rac{1}{r}+arepsilon
ight)n$$

luego $K_{r+1}(t) \subset G$.

Demostraci'on. Procedemos por inducci\'on en r. Para r=1, tenemos que $K_2(t)=K_{t,t}$ y sabemos que en este caso $\operatorname{ex}(n,K_{t,t})=o(n^2)$. Como n es lo suficientemente grande, $K_{t,t}\subset G$. En efecto, se tendrá que

$$e(G) = rac{1}{2} \sum_{v \in G} d_G(v) \geqslant rac{\delta(G)n}{2} \geqslant \left(1 - rac{1}{r} + arepsilon
ight) rac{n^2}{2}.$$

Ahora, supongamos que $r \ge 2$. Primero, encontraremos por hipótesis inductiva, una copia de $K_r(q)$ con $q \ge t/\varepsilon$; escribamos $A := \bigcup_{i=1}^r A_i$ a la partición de los vértices de $K_r(q)$.

Luego, definimos $X \subset B := V(G) \setminus A$, el conjunto de todos los vértices que tienen al menos t vecinos en cada A_i . Mostramos que $|X| \to \infty$ cuando $n \to \infty$. Para esto, acotamos e(A,B) por abajo:

$$egin{aligned} e(A,B) &= \sum_{v \in A} d_G(v) - 2e(A) \ &\geqslant qr\left(1 - rac{1}{r} + arepsilon
ight)n - 2rac{(qr)^2}{2}. \end{aligned}$$

Y acotamos por arriba:

$$e(A,B) \leq |X| qr + (|B| - |X|)(q(r-1) + t - 1).$$

Juntando ambas desigualdades, tenemos:

$$n\underbrace{\left(\underline{qr\varepsilon}-\underline{t+1}\right)}_{>0}+q^2(-r^2+r-1)-q(t-1)\leqslant |X|\underbrace{\left(\underline{q-t+1}\right)}_{>0}$$

Por lo tanto, se sigue lo que queremos cuando $n \to \infty$.

Finalmente, demostramos que existen conjuntos

$$B_i \subset A_i$$
 con $|B_i| = t$ y t vértices $x \in X$ que satisfacen $N_G(x) \supset B_i$,

de donde concluiremos que $K_{r+1}(t) \subset G$. Sea $x \in X$, existen a lo más $\binom{q}{t}$ formas de elegir B_i^x en A_i , donde B_i^x satisface $\left|B_i^x\right| = t$ y $N_G(x) \subset B_i^x$. Si $|X| > \binom{q}{t}^r \cdot (t-1)$, entonces por el principio del palomar tenemos lo que queremos.

Demostración del Teorema. Observemos que H está contenido en el grafo $\chi(H)$ partito, completo y con partes de tamaño |H|, es decir, en $K_{\gamma(H)}(|H|)$. Con lo cual,

basta probar el teorema para $H' := K_r(t)$ con $r := \chi(H)$ y t := |H|. De hecho, probaremos que para cualquier $r \ge 2$, $t \in \mathbb{N}$, $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que:

$$\operatorname{ex}(n,K_r(t)) \leqslant \left(1 - \frac{1}{r-1} + \varepsilon\right) \frac{n^2}{2} \quad (n \geqslant n_0).$$

Sea $\varepsilon>0$ arbitrariamente pequeño. Sea n lo suficientemente grande, y G con n vértices tal que

$$e(G)\geqslant \left(1-rac{1}{r-1}+arepsilon
ight)rac{n^2}{2}.$$

Aplicamos el primer lema 1.5.5 con $c=1-\frac{1}{r-1}+\varepsilon$ y $\frac{\varepsilon}{2}$. Así, obtenemos un subgrafo $G'\subset G$ con

$$|G'|\geqslant rac{arepsilon}{2}n \quad ext{y} \quad \delta(G')\geqslant \left(1-rac{1}{r-1}+rac{arepsilon}{2}
ight)|G'|\,.$$

Como n es lo suficientemente grande: $\frac{\varepsilon}{2}n \ge n_0$, y por el segundo lema 1.5.6, G' contiene a $K_r(t)$, y por lo tanto G también. El resultado se sigue.

Definición 1.5.7. G está t-cerca de ser r-partito si existe un subgrafo r-partito de G con al menos e(G)-t aristas.

Teorema 1.5.8 (Teorema de Estabilidad de Erdös-simonovits). *Para todo grafo H* con $e(H) \ge 1$, para todo $\varepsilon > 0$ existe $\delta > 0$ tal que: si G es H-libre en n-vertices g

$$e(G)\geqslant \left(1-rac{1}{\chi(H)-1}-\delta
ight)inom{n}{2}.$$

Entonces G está (εn^2) -cerca de ser $(\chi(H)-1)$ -partito.

Haremos la demostración con $H=K_{r+1}$ y para H general lo haremos con el Lema de Regularidad 1.7.5.

Para todo $\varepsilon > 0$ lo suficientemente chico, existe $\delta > 0$ tal que: si G es K_{r+1} -libre en n-vértices y

$$e(G)\geqslant \left(1-rac{1}{r}-\delta
ight)inom{n^2}{2},$$

entonces G está (εn^2) -cerca de ser r-partito.

Requerimos probar dos lemas previos:

Lema 1.5.9. Sea $r \in \mathbb{N}$ y $\delta > 0$ y n suficientemente grande. Si G es K_{r+1} -libre con n vértices y

$$e(G)\geqslant \left(1-rac{1}{r}-\delta^2
ight)rac{n^2}{2},$$

entonces existe $G' \subset G$ con $|G'| \geqslant (1 - \delta)n$ y

$$\delta(G')\geqslant \left(1-rac{1}{r}-\delta
ight)|G'|\,.$$

Demostración. De la demostración del Lema 1.5.5 se deduce un enunciado más fuerte:

Dados $r \in \mathbb{N}$ y $c \in (0,1)$. Para todo $\varepsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que para todo grafo G con $n \ge n_0$ vértices y

$$e(G)\geqslant crac{n^2}{2},$$

existe un subgrafo $G_t \subset G$ con $|G_t|=t\geqslant \varepsilon n$ y $\delta(G_t)\geqslant (c-\varepsilon)\,|G_t|;$ más aún,

$$e(G) \leqslant e(G_t) + (c - \varepsilon)(n - t)(n + t + 1)/2.$$

Ahora, dado $\delta > 0$, el cual sin pérdida de generalidad lo podemos asumir $\delta < \frac{1}{2}$, tomamos $c := \left(1 - \frac{1}{r} - \delta^2\right) > 0$ y $\varepsilon = \delta - \delta^2 > 0$. Supongamos que G es un grafo con n vértices K_{r+1} -libre, y

$$e(G)\geqslant \left(1-rac{1}{r}-\delta^2
ight)rac{n^2}{2}=crac{n^2}{2},$$

luego existe un subgrafo $G_t \subset G$ con $t \geqslant (\delta - \delta^2)n$ vértices. Como en la demostración de la Observación 1.5.4 se ve que $t_r(t) \sim \left(1 - \frac{1}{r}\right) \frac{t^2}{2} \ (t \to \infty)$, podemos suponer que existe $n_0 \in \mathbb{N}$ tal que si $n \geqslant n_0$, entonces $t_r(t) \leqslant \left(1 - \frac{1}{r} + \gamma\right) \frac{t^2}{2}$, para $\gamma := \frac{\delta^2}{2}$.

Ahora, como G es K_{r+1} -libre, entonces G_t también y se tiene que

$$e(G_t) \leqslant \operatorname{ex}(t, K_{r+1}) \leqslant t_r(t) \leqslant \left(1 - \frac{1}{r} + \frac{\delta^2}{2}\right) \frac{t^2}{2},$$

por el Teorema de Turán 1.1.6. Juntando esto con lo mencionado al principio, tenemos que

$$\begin{split} c\frac{n^2}{2} \leqslant e(G) \leqslant e(G_t) + (c-\varepsilon)(n-t)(n+t+1)/2 \\ \leqslant \left(1 - \frac{1}{r} + \frac{\delta^2}{2}\right)\frac{t^2}{2} + (c-\varepsilon)(n-t)(n+t+1)/2 \\ = \left(1 - \frac{1}{r} + \frac{\delta^2}{2}\right)\frac{t^2}{2} + (c-\varepsilon)\frac{(n^2+n-t^2-t)}{2}, \end{split}$$

esto implica que para n lo suficientemente grande de tal suerte que $\frac{(c-\varepsilon)}{2}n\leqslant \frac{\varepsilon}{2}\frac{n^2}{2}$,

$$arepsilon rac{n^2}{4} \leqslant (\delta + rac{\delta^2}{2}) rac{t^2}{2}.$$

Reemplazando $\varepsilon = \delta - \delta^2$ en la última desigualdad, y despejando t:

$$\sqrt{rac{\delta-\delta^2}{2\delta+\delta^2}}n\leqslant t.$$

Como la expresión de la izquierda es más grande que $(1-\delta)$ cuando $\delta < \frac{1}{2}$, se sigue que para todo n lo suficientemente grande,

$$|G_t|=t\geqslant (1-\delta)n$$
.

Es decir, G_t es el subgrafo G' de G que cumple las propiedades deseadas del enunciado.

Lema 1.5.10. Para todo $r \in \mathbb{N}$, para todo $\varepsilon > 0$, existe $\delta > 0$ tal que si G es K_{r+1} -libre con n vértices y

$$\delta(G) \geqslant \left(1 - \frac{1}{r} - \delta\right) n,$$

entonces existe una partición $V(G) = A_0 \coprod A_1 \coprod \cdots \coprod A_r$ tal que $|A_0| \leq \varepsilon n$ y A_i son conjuntos independientes para todo $i \geq 1$.

Demostración. Si tomamos $\delta > 0$ lo suficientemente pequeño, entonces G contiene una copia de K_r por el Teorema de Turán 1.1.6 (esto ocurre si $e(G) \geqslant \left(1 - \frac{1}{r-1}\right) \frac{n^2}{2}$; tomar $\delta < \frac{1}{r-1} - \frac{1}{r}$ y notar que en la demostración de la Observación 1.5.4 se ve que $t_r(t) \sim \left(1 - \frac{1}{r}\right) \frac{t^2}{2}$ $(t \to \infty)$).

Sea A un conjunto de vértices que induce un K_r en G. Sean $B:=V(G)\backslash A$ y $X:=\{v\in V(G)\mid |N_G(v)\cap A|\leqslant r-2\}$, vamos a mostrar que X es pequeño.

$$\left(1-rac{1}{r}-\delta
ight)nr-r(r-1)\leqslant e(A,B) \qquad \left(2e(A)+e(A,B)=\sum_{v\in A}d_G(v)\geqslant r\left(1-rac{1}{r}-\delta
ight)n
ight) \ \leqslant (r-1)((n-r)-|X|)+(r-2)\left|X
ight|=(r-1)(n-r)-|X|\,,$$

manipulando la desigualdad, obtenemos:

$$|X| \leq \delta nr$$
.

Tomando $\delta < \min\{\frac{\varepsilon}{r}, \frac{1}{r-1} - \frac{1}{r}\}$, el A_0 será X y los consjuntos independientes son:

$$A_u = \{u\} \cup \{v \in B \setminus X | vu \notin E(G)\}$$

para cada $u \in A$.

Ahora estamos en condiciones de demostrar el Teorema de Estabilidad de Erdos-Simonovits para $H = K_{r+1}$ 1.5:

Demostración del Teorema de Estabilidad de Erdos-Simonovits para $H=K_{r+1}$ 1.5. Sea $\varepsilon>0$ chico, tomemos $\delta=(\delta')^2$ donde δ' se obtiene del Lema 1.5.10 con $\varepsilon'<\frac{\varepsilon}{2}$. Notar que de la demostración podemos suponer que si $\varepsilon>0$ es chico, luego $\delta'<\frac{\varepsilon'}{2}$ también. Por hipótesis

$$e(G)\geqslant \left(1-rac{1}{r}-(\delta')^2
ight)rac{n^2}{2},$$

entonces por el Lema 1.5.9: existe $G' \subset G$ con $n' := |G'| \geqslant (1 - \delta') n$ y $\delta(G') \geqslant \left(1 - \frac{1}{r} - \delta'\right) |G'| = n'$. Por el Lema 1.5.10: para $\varepsilon' < \frac{\varepsilon}{2}$ se tiene que existe A_0, A_1, \ldots, A_r partición de G' con $|A_0| < \varepsilon' n' \leqslant \varepsilon' n$ y A_i conjuntos independientes para todo $i \geqslant 1$. Así el subgrafo generado por los A_i con $i \geqslant 1$ es r-partito. Además, para obtener este subgrafo, hay que quitar a lo más

$$\varepsilon' n^2 + \varepsilon' n^2 < \varepsilon n^2$$
 $(\delta, \delta' \ll 1)$

aristas de G, es decir, G está εn^2 -cerca de ser r-partito. En efecto, las aristas de $G[V(G)\backslash V(G')]$ junto con $E_G(V(G'),V(G)\backslash V(G'))$ aportan $\leqslant {\delta'n\choose 2}+n'\cdot(n-n')\leqslant \delta'n^2+\delta'n^2\leqslant \varepsilon'n^2$, y las de $G[V(A_0)]$ junto con $E_G(V(A_0),V(G)\backslash V(A_0))$ aportan

$$\leqslant \left(rac{arepsilon' n}{2}
ight) + (arepsilon' n) \cdot (\delta') n \leqslant arepsilon' n^2.$$

1.6. Ejercicios

Ejercicio 1.6.1. Puebe el teorema de Mantel de manera alternativa. Considere un conjunto independiente B de tamaño máximo en un grafo K_3 -libre y la suma de los grados de los vértices que no están en B.

Solución. Sea G un grafo K_3 -libre con orden n y B un conjunto independiente de G de tamaño máximo; consideremos $A := V(G) \setminus B$. Inspeccionemos la sumatoria

$$\sum_{v \in A} d_G(v);$$

notar que $d_G(v) = |N_G(v)|$ y que $N_G(v)$ es un conjunto de vértices aislados en G: si x,y son dos vecinos de v entonces $xy \notin E(G)$ porque de lo contrario G tendría un triángulo xyv. Así, como |B| es máximo, se sigue que $|N_G(v)| \leq |B|$. Esto implica que

$$\sum_{v\in A}d_G(v)\leqslant |A|\,|B|\,.$$

Más aún, como A,B particionan V(G): |A|+|B|=n. Luego $|A|\cdot |B|$ se maximiza cuando $|A||B|=\left\lfloor \frac{n}{2}\right\rfloor \left\lceil \frac{n}{2}\right\rceil =t_2(n)$. Así,

$$e(G) = e(A,B) + e(A) \leqslant e(A,B) + 2e(A) = \sum_{v \in A} d_G(v) \leqslant t_2(n),$$

П

como queríamos probar.

Comentario 1.6.2. Que $|A| \cdot |B|$ con |A| + |B| = n se maximiza cuando $|A| \cdot |B| = \lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil$ se deduce de que reemplazando |B| = n - |A|, el problema equivale a maximizar $|A| \cdot (n - |A|)$. Más formalmente, el problema equivale a maximizar f(x) = x(n-x) con x número natural en el intervalo [0,n]. Simplemente notemos que f'(x) = n - 2x, luego f es creciente en $[0,\frac{n}{2}]$ y decreciente en $[\frac{n}{2},n]$, pero como $\lfloor \frac{n}{2} \rfloor$ es el mayor número entero $\leq \frac{n}{2}$, f alcanza máximo en $[0,\frac{n}{2}]$ cuando $x = \lfloor \frac{n}{2} \rfloor$, similarmente, f alcanza máximo en $[\frac{n}{2},n]$ cuando $x = \lceil \frac{n}{2} \rceil$. Como $f(\lfloor \frac{n}{2} \rfloor) = f(\lceil \frac{n}{2} \rceil)$, se sigue que f se maximiza en $x = \lfloor \frac{n}{2} \rfloor$ y $x = \lceil \frac{n}{2} \rceil$, es decir, el valor máximo de f es $f(\lfloor \frac{n}{2} \rfloor) = \lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil$.

Ejercicio 1.6.3. Demuestre que si G es un grafo con n=2k+1 vértices, entonces G contiene un camino de largo k, digamos P_k , o el complemento de G tiene un triángulo.

Soluci'on. Supongamos por el absurdo que ninguna de las dos situaciones pasa. Por un lado, si el complemento \overline{G} de G no contiene triángulos, el Teorema de Mantel nos dice que

$$e(\overline{G}) \leqslant ex(n,K_3) \leqslant k(k+1).$$

Como $(2k+1)k={n\choose 2}=e(G)+e(\overline{G}),$ deducimos que

$$k^2 \leq e(G)$$
.

Por otro lado, si G no contiene P_k -caminos, el Teorema de Erdös & Gallai dice que

$$e(G)\leqslant \operatorname{ex}(n,P_k)\leqslant rac{(k-1)n}{2}=rac{(k-1)(2k+1)}{2}.$$

Juntando ambas desigualdades, llegamos al absurdo:

$$k^2 \stackrel{\text{!!!}}{\leqslant} \frac{(k-1)(2k+1)}{2}.$$

Por lo tanto, G contiene un P_k -camino o \overline{G} un triángulo.

Ejercicio 1.6.4. Demuestre que si T es un árbol con k vértices, entonces $T \subseteq G$ o el complemento de G contiene un triángulo si n := |G| = 2k - 1.

Solución. Supongamos por el absurdo que G es un grafo con n=2k-1 vértices que no contiene a un árbol T con k vértices, y que \overline{G} , su complemento, no contiene triángulos. En particular, la primera suposición implica que $\delta(G) \leq k-2$ por el siguiente lema, cuya demostración vimos en clase:

Sean $t \in \mathbb{N}$ y T un árbol con t+1 vértices. Entonces si G es un grafo con $\delta(G) \geqslant t$, luego contiene a T como subgrafo.

Mientras que la segunda suposición (\overline{G} no tiene triángulos), implica que dado un vértice $w \in V(G)$, entonces para cada par de vértices w',w'' no adyacentes a w se tiene que $w'w'' \in E(G)$. En otras palabras, para todo $w \in V(G)$, el subgrafo $G[A_w]$ inducido por el conjunto $A_w := V(G) \setminus \{N_G(w) \cup \{w\}\}$ es completo; notar que como $|A_w| = n - (d_G(w) + 1)$, este grafo es isomorfo a $K_{n-d_G(w)-1}$.

Finalmente, para llegar al absurdo, consideremos $v \in V(G)$ un vértice con grado $d_G(v) = \delta(G) \leqslant k-2$, entonces $G[A_v]$ es un subgrafo de G isomorfo a $K_{n-\delta(G)-1}$, i.e. un completo con al menos

$$n - \delta(G) - 1 = (2k - 1) - \delta(G) - 1 \geqslant (2k - 1) - (k - 2) - 1 = k$$

vértices, luego contiene una copia de T, con lo cual G también: absurdo. Consecuentemente, G contiene una copia de T o \overline{G} tiene triángulo(s).

Solución. [Segunda solución] Otra manera de resolver el ejercicio es haciendo inducción $k \geqslant 1$: supongamos que G es un grafo de orden 2k-1 con \overline{G} libre de triángulos, probaremos que $T \subset G$ para cualquier árbol T de orden k. El caso k=1 es trivial.

En general, supongamos que $k \geqslant 2$ y tomemos una hoja h de T, consideremos $T' := T \setminus \{h\}$ y escribamos $p \in T'$ para el padre de h en T. Ahora, si G es completo ya ganamos, pues $K_{2k-1} \supset T$, con lo cual podemos suponer que existen $v, w \in V(G)$ tales que $vw \notin G$, y consideremos $G' := G \setminus \{v, w\}$. Notar que \overline{G}' es K_3 -libre y G' tiene orden 2(k-1)-1, luego por hipótesis inductiva G' contiene a T'. Por otro lado, $p \in T'$ tiene que ser vecino de w o de v en G, de lo contrario \overline{G} tendría un triángulo! Esto prueba que $T \subset G$.

Ejercicio 1.6.5. Pruebe que si $e(G) > n^2/4$, entonces G contiene al menos $\lfloor n/2 \rfloor$ triángulos.

Solución. El Teorema de Füredi (2015) dice:

Sean $n, t \in \mathbb{N}$, y G con n vértices. Si G está t-lejos de ser bipartito, entonces hay al menos

$$\frac{n}{6}\left(e(G)-\frac{n^2}{4}+t\right)$$

triángulos en G.

Sea $H \subset G$ el subgrafo bipartito con cantidad de aristas e(H) máxima de G. Como $e(H) \leq \frac{n^2}{2} < e(G)$, tenemos que $H \subsetneq G$; y podemos escribir $t := e(G) - e(H) \geqslant$ 1. En particular, como e(H) es máximo, tenemos que G está t-lejos de ser bipartito. Con lo cual, el Teorema de Füredi implica que G contiene al menos

$$\frac{n}{6}\left(e(G)-\frac{n^2}{4}+t\right)$$

triángulos; en particular, si $e(G) - \frac{n^2}{4} + t \geqslant 3$ ganamos, pues en este caso habrían al menos $\frac{n}{2} \geqslant \left\lfloor \frac{n}{2} \right\rfloor$ triángulos. Por otro lado, esta cantidad es menor que 3 si y solo si t=1 y $H=T_2(n)$. En este caso, $H=K_{\left\lfloor \frac{n}{2} \right\rfloor, \left\lceil \frac{n}{2} \right\rceil}$. Tomemos una aristas $f \in E(G) \setminus E(H)$, con lo cual f tiene sus extremos en una de las dos particiones de H; en el peor de los casos está en la partición más grande, es decir, para todo vértice v de la partición de H con menor cantidad de vértices: $\left\lfloor \frac{n}{2} \right\rfloor$, se forma un triángulo distinto con vértices v y los extremos de f. En particular, G contiene en este caso al menos $\left\lfloor \frac{n}{2} \right\rfloor$ triángulos.

Ejercicio 1.6.6. Sean G y H grafos. Demuestre que si G tiene n vértices y al menos $2 \cdot ex(n,H)$ aristas, entonces G contiene al menos ex(n,H) copias de H.

Solución. Supongamos que G no contiene $e:=\operatorname{ex}(n,H)$ copias de H, luego quitando una arista por cada copia de H en G obtenemos un grafo H-libre con al menos $e(G)-(e-1)\geqslant 2e-(e-1)=e+1$ aristas. Sin embargo, por definición de e, se sigue que este grafo tiene a lo más e aristas, absurdo. Esto prueba que G tiene al menos e copias de G.

Ejercicio 1.6.7. Sea $k \in \mathbb{N}$ y $n \in \mathbb{N}$ suficientemente grande. Demuestre que todo grafo G con n vértices y al menos $n^2/4$ aristas contiene un grafo H con al menos k vértices y $\delta(H) \geqslant \frac{|H|}{2}$.

Solución. Probaremos un enunciado más fuerte:

Sea $k \in \mathbb{N}$ y $n \in \mathbb{N}$ suficientemente grande. Entonces todo grafo G con n vértices y al menos $\frac{n^2}{4}$ aristas contiene a $H := K_{k,k}$.

Esto prueba el ejercicio pues el grafo $H:=K_{k,k}$ tiene $2k\geqslant k$ vértices y $\delta(H)=k=rac{v(H)}{2}.$

Ahora probemos este enunciado más fuerte. Para eso utilizaremos el Teorema de Kövani, Sós, y Turán (abreviado "KST"):

Sean $s, t \in \mathbb{N}$, $s \le t$. Entonces existe una constante c = c(s, t) > 0 tal que

$$\operatorname{ex}(n, K_{s,t}) \leqslant c \cdot n^{2-\frac{1}{s}}, \quad \forall n \in \mathbb{N};$$

lo aplicamos al caso s = t = k.

Así, el Teorema de KST dice que

$$\operatorname{ex}(n,H) \leqslant c \cdot n^{2-\frac{1}{k}}, \quad \forall n \in \mathbb{N}$$

con c>0 una constante que depende solo de k. Tomando $n_0 \in \mathbb{N}$ para que $\frac{n^2}{4} > cn^{2-\frac{1}{k}}$ valga para todo $n \geqslant n_0$, se sigue que G siempre debe tener a H como subgrafo: de lo contrarío se llegaría al absurdo:

$$\frac{n^2}{4} \leqslant e(G) \leqslant \operatorname{ex}(n,H) \leqslant c n^{2-\frac{1}{k}}.$$

Solución. [Segunda solución] Por el Lema 1.3.3, G contiene un subgrafo H' tal que

$$\delta(H') > \varepsilon(H') \geqslant \varepsilon(G)$$
.

Como $\varepsilon(G)=\frac{e(G)}{|G|}\geqslant \frac{n}{4}$, se tiene que para n lo suficientemente grande, H' contiene a $K_{1,k}$, y por lo tanto $H:=K_{1,k}$ sirve. En efecto,

$$\delta(H)=k\geqslantrac{k+1}{2}=rac{|H|}{2}.$$

1.7. Regularidad

Definición 1.7.1. Dada una partición de los vértices de un grafo G, digamos $V(G) = X \ [Y, definimos la$ **densidad**del par <math>(X,Y) como la cantidad

$$d(X,Y) := \frac{e(X,Y)}{|X|\,|Y|}.$$

Definición 1.7.2. Dado $\varepsilon > 0$. Sean $A, B \subset V(G)$ con G un grafo. Diremos que el par (A,B) es ε -regular si para todo $X \subset A$, $Y \subset B$ con

$$|X| \geqslant \varepsilon |A|$$
 e $|Y| \geqslant \varepsilon |B|$

tenemos

$$|d(X,Y)-d(A,B)| \leq \varepsilon$$
.

Definición 1.7.3. Sea G un grafo. Una partición $V(G) = V_0 \coprod V_1 \coprod \cdots \coprod V_k$, se dice **equipartición**, si

$$|V_0| \leq |V_1| = |V_2| = \cdots = |V_k|$$
.

Al conjunto V_0 lo llamamos **conjunto excepcional**.

Definición 1.7.4. Sea G un grafo con n vértices y $\varepsilon > 0$. Diremos que una partición $V(G) = V_0 \coprod V_1 \coprod \cdots \coprod V_k$ es ε -regular, si $|V_0| \le \varepsilon n$ y a lo más εk^2 pares (V_i, V_j) con $1 \le i, j \le k$ no son ε -regulares.

Teorema 1.7.5 (Lema de Regularidad de Szemerédi). Para todo $\varepsilon > 0$, $m \in \mathbb{N}$, existe $M = M(\varepsilon, m) \in \mathbb{N}$ tal que para cualquier grafo G con $|G| \geqslant M$, existe una equipartición ε -regular

$$V(G) = V_0 \prod V_1 \prod \cdots \prod V_k$$

 $con \ m \leq k \leq M$.

Demostración.

Definición 1.7.6. Dado un grafo G con n vértices y partición de sus vértices $\mathscr{P} = \{V_1, \ldots, V_k\}$, definimos la **media cuadrática** del par (V_i, V_j) para cada $i \neq j$ como

$$d_2(V_i,V_j) := rac{e(V_i,V_j)^2}{|V_i|\,|V_i|\,n^2},$$

y la media cuadrática de la partición P como

$$d_2(\mathscr{P}) = \sum_{1\leqslant i < j \leqslant k} d_2(V_i,V_j) = \sum_{1\leqslant i < j \leqslant k} rac{|V_i||V_j|}{n^2} d(V_i,V_j)^2 \leqslant 1.$$

Definición 1.7.7. Una partición \mathscr{P}' de G se dice que **refina** a una partición \mathscr{P} (o que es un **refinamiento** de \mathscr{P}) si cada parte de \mathscr{P} es una unión de algunas partes de \mathscr{P}' .

Lema 1.7.8. Si \mathscr{P}' es un refinamiento de \mathscr{P} , entonces

$$d_2(\mathcal{P}') \geqslant d_2(\mathcal{P}).$$

Lema 1.7.9. Sea G un grafo y $\mathscr P$ una partición de V(G). Si (X,Y) es un par no ε -regular en $\mathscr P$. Entonces, existen particiones $\{X_1,X_2\}$ de X y particiones $\{Y_1,Y_2\}$ de Y tales que

$$\sum_{1 \leq r} rac{|X_r|\,|Y_s|}{n^2} \cdot d(X_r,Y_s)^2 \geqslant d(X,Y)^2 + arepsilon^4.$$

Lema 1.7.10. Sea G un grafo con n vértices y \mathscr{P} partición de G que no es ε -regular. Entonces existe un refinamiento \mathscr{P}' de \mathscr{P} tal que:

- (I) $d_2(\mathscr{P}') \geqslant d_2(\mathscr{P}) + \varepsilon^5$.
- (II) $\#\mathscr{P}' \leqslant k \cdot 2^{k-1}$.

Ahora, veamos la demostración del teorema. Sea $\mathscr{P}_0=\{V_0,V_1,\ldots,V_m\}$ una partición de G con $|V_0|=n-n\left\lfloor\frac{n}{m}\right\rfloor$ y $|V_i|=\left\lfloor\frac{n}{m}\right\rfloor$ para todo $i=1,\ldots,m$. Si \mathscr{P}_0 no $1\leqslant |V_0|\leqslant m-1$

es arepsilon-regular, existe \mathscr{P}_1 refinamiento de \mathscr{P}_0 tal que $d_2(\mathscr{P}_1)\geqslant d_2(\mathscr{P}_0)+arepsilon^5$ y

$$|\mathscr{P}_1| \leqslant m \cdot 2^m$$
.

Ahora, obtenemos una equipartición de \mathscr{P}'_1 a partir de \mathscr{P}_1 : particionando cada parte de \mathscr{P}_1 en conjuntos de tamaño

$$\frac{\frac{\varepsilon^6}{2}n}{\#\mathscr{P}_1}$$

y un conjunto despreciable de tamaño $<\frac{\frac{\varepsilon^6}{2}n}{\#\mathscr{P}_1}$. En total, el conjunto de los vértices despreciados lo agregamos al *conjunto excepcional* V_0 , es decir, agregamos $<\frac{\varepsilon^6}{2}n$ vértices. Afirmamos que \mathscr{P}_1' está acotado por arriba por algo que depende de ε y m:

$$\#\mathscr{P}_1'\leqslant \frac{n}{\frac{\varepsilon^6n}{2}}\big/\#\mathscr{P}_1=\frac{2\#\mathscr{P}_1}{\varepsilon^6}\leqslant \frac{m2^{m+1}}{\varepsilon^6}.$$

Por el primer lema, $d_2(\mathscr{P}_1') \geqslant d_2(\mathscr{P}_1) \geqslant d_2(\mathscr{P}_0) + \varepsilon^5$.

Si no obtenemos una partición ε -regular, entonces continuamos refinando, para así obtener una secuencia de equiparticiones:

$$\mathscr{P}_0, \mathscr{P}'_1, \mathscr{P}'_2, \dots, \mathscr{P}'_k.$$

Como $d_(\mathcal{Q}) \leq 1$ para cualquier partición \mathcal{Q} de G, y $d_2(\mathcal{P}_{i+1}) \geqslant d_2(\mathcal{P}_i') + \varepsilon^5$, tenemos que $k \leq \varepsilon^{-5}$. Entonces, luego de a lo más ε^{-5} iteraciones, habremos encontrado una partición ε -regular con una cantidad de partes acotada por M que solamente depende de m y ε . Por último, el conjunto excepcional de dicha partición es

$$\leqslant (m-1) + rac{arepsilon^6 n}{2} arepsilon^{-5} < arepsilon n.$$

Corolario 1.7.11. Se puede probar el Teorema de Erdös-Stone 1.5.2:

Dado un grafo H, para todo $\delta > 0$ existe $n_0 \in \mathbb{N}$ tal que si G es un grafo con $n \ge n_0$ vértices y

$$e(G)\geqslant \left(1-rac{1}{r}+\delta
ight)rac{n^2}{2},$$

entonces $H \subset G$, donde $r = \chi(H) - 1$.

La idea de la demostración del corolario será la siguiente:

Tomemos $\delta>0$ arbitrariamente pequeño, aplicamos el Lema de Regularidad de Szemeredi con ε lo suficientemente pequeño y $m>\frac{1}{\varepsilon}$. Así existe $M\in\mathbb{N}$, y obtenemos una equipartición ε -regular

$$V(G) = V_0 \prod V_1 \prod V_k,$$

 $\operatorname{con} M \geqslant k \geqslant m > \frac{1}{\varepsilon}$, de cualquier grafo G $\operatorname{con} |G| \geqslant M$.

Borramos de G todas las aristas sobre las que "no hay control":

- (a) Las que ven a V_0 .
- (b) Aristas dentro de las partes V_i con $i \ge 1$.
- (c) Las aristas entre pares no ε -regulares.
- (d) Aristas entre pares no densos, i.e., "tenemos menos que $\delta/2$ densidad".

Después, obtenemos el gafo reducido R: dado por contraer cada V_i a un vértice w_i con $i \ge 1$, y borrar aristas múltiples. Así, R tiene conjunto de vértices w_1, \ldots, w_r donde $w_i w_j \in E(R)$ sii (V_i, V_j) es ε -regular y denso.

Aplicamos lemas de inmersión en "aristas" de grafo - grafo reducido:

$$Si H \subset R \Rightarrow H \subset G$$
.

Lema 1.7.12. Sea $V_0 \coprod V_1 \coprod \cdots \coprod V_k$ una partición ε -regular de un grafo G de n vértices, con $k \geqslant \frac{1}{\varepsilon}$. Entonces, hay un máximo de:

- (a) εn^2 aristas con un extremo en V_0 .
- (b) εn^2 aristas dentro de una parte V_i con $i \geqslant 1$.
- (c) εn^2 aristas entre pares (con $i, j \neq 0$) que no son ε -regulares.
- (d) δn^2 aristas entre pares (con $i, j \neq 0$) de densidad $< \delta$.

Demostración. (a) Como $|V_0| \le \varepsilon n$ entonces hay a lo más

$$arepsilon n (1-arepsilon) n + inom{arepsilon n}{2} < arepsilon n^2 ext{ aristas en (a)}.$$

- (b) Cada V_i tiene $\leq \frac{n}{k}$ vértices (pues estamos en una equipartición), y entonces hay a lo más $k \cdot {n \choose 2} \leq \frac{\varepsilon}{2} n^2$ aristas para (b).
- (c) Hay a lo más εk^2 pares que no son ε -regulares y cada par tiene a lo más $\left(\frac{n}{k}\right)^2$ aristas entre sí. Consecuentemente, aportan a lo más $\varepsilon k^2 \cdot \left(\frac{n}{k}\right)^2 = \varepsilon n^2$ aristas en (c).
- (d) En el peor caso, los $\binom{k}{2}$ pares son poco densos. En este caso, por definiciónde densidad:

$$e(V_i, V_j) \leqslant \delta\left(\frac{n}{k}\right)^2, \quad \forall 1 \leqslant i, j \leqslant k,$$

y entonces, hay a lo más $\delta\left(\frac{n}{k}\right)^2\binom{k}{2}\leqslant \delta n^2$ aristas en pares "poco densos", i.e., en (d).

Lema 1.7.13. Sea $\varepsilon > 0$, y sea (A,B) un par ε -regular de un grafo G. Entonces,

$$\left(d(A,B)-\varepsilon\right)|B|\leqslant |N_G(v)\cap B|\leqslant \left(d(A,B)+\varepsilon\right)|B|$$

para todo $v \in A$, salvo a lo más $2\varepsilon |A|$.

Demostración. Consideremos el conjunto $X \subset A$ de los vértices que no cumplen alguna de las dos desigualdades. Probaremos que $|X| < 2\varepsilon |A|$ por el absurdo. Si este no fuera el caso, tendríamos que $|X| \ge 2\varepsilon |A|$ y por lo tanto hay al menos $\varepsilon |A|$ vértices que no cumplen la primera desigualdad o la segunda. Supongamos que estamos en el perimer caso, el segundo caso es análogo. Es decir, supongamos que existe un conjunto $X' \subset A$ con $|X'| \ge \varepsilon |A|$ tal que para todo $v \in X'$,

$$ig(d(A,B)-arepsilonig)|B|>|N_G(v)\cap|B||$$
 .

Sumando en la desigualdad anterior sobre todos los $v \in X'$, tenemos que

$$(d(A,B)-\varepsilon)|B||A|>e(X',B),$$

por lo tanto $(d(A,B)-\varepsilon)>d(X',B)$, i.e.,

$$|d(A,B)-d(X',B)|>\varepsilon.$$

Consideremos ahora Y'=B, en particular $|Y'|\geqslant \varepsilon\,|B|\,$ si $\varepsilon>0$ es chico. Luego por ε -regularidad del par (A,B), tenemos que

$$|d(A,B)-d(X',B)| \leq \varepsilon,$$

absurdo. \Box

Lema 1.7.14 (Slicing). Sea $\alpha \ge \varepsilon > 0$, y sea (A,B) un par ε -regular en un grafo G. Para cualquier $X \subset A, Y \subset B$ con

$$|X|\geqslant lpha\,|A|$$
 y $|Y|\geqslant lpha\,|B|$

se tiene que el par (X,Y) es máx $\{\frac{\varepsilon}{\alpha},2\epsilon\}$ -regular. Además, por ε -regularidad del par (A,B), se tiene que

$$|d(X,Y)-d(A,B)| \leq \varepsilon$$
.

Demostraci'on. La última afirmaci\'on es clara. Veamos la primera, para eso consideremos $\varepsilon' = \max\{\frac{\varepsilon}{\alpha}, 2\varepsilon\}$. Sean $Z \subset X$ y $W \subset Y$ tales que $|Z| \geqslant \varepsilon' |X|$ y $|W| \geqslant \varepsilon' |Y|$, entonces $|Z| \geqslant \varepsilon |A|$ y $|W| \geqslant \varepsilon |B|$. Luego por ε -regularidad del par (A,B), se tiene que

$$|d(Z,W)-d(A,B)| \leq \varepsilon$$
.

Además, por ε -regularidad del par (A,B), se tiene que

$$|d(X,Y)-d(A,B)| \leq \varepsilon$$
.

Juntando ambas desigualdades tenemos que:

$$|d(Z,W)-d(X,Y)| \leq |d(Z,W)-d(A,B)| + |d(X,Y)-d(A,B)|$$
$$\leq \varepsilon + \varepsilon \leq 2\varepsilon \leq \varepsilon'.$$

Definición 1.7.15 (Reducido). Dado un grafo H, $n \in \mathbb{N}$, $\varepsilon, \delta > 0$, definimos

$$\mathcal{G}(H, n, \varepsilon, \delta)$$

como la familia de grafos G, tales que existe una equipartición $V(G) = A_1 \coprod \cdots \coprod A_l$ con A_i de cardinal n e independiente, y un etiquetamiento de los vértices $V(H) = \{w_1, \ldots, w_l\}$ tal que para cada $w_i w_j \in E(G)$, el par (A_i, A_j) es un par ε -regular y además $d(A_i, A_j) \geqslant \delta$.

Lema 1.7.16 (Lema de inmersión general). *Para todo grafo H y todo \delta > 0, existen* $\varepsilon > 0$ y $n_0 \in \mathbb{N}$ tales que

$$G \in \mathcal{G}(H, n, \varepsilon, \delta), n \geqslant n_0 \Rightarrow H \subset G.$$

Demostraci'on. Haremos inducci\'on en |H|. Cuando |H|=1 es trivial. Supongamos entonces que $|H|\geqslant 2$. Escribamos $V(H)=\{w_1,\ldots,w_l\}$ y sea $V(G)=A_1\coprod\cdots\coprod A_l$ una partición de acuerdo a la definición de $\mathscr{G}(H,n,\varepsilon,\delta)$: (A_i,A_j) ε -regular y $d(A_i,A_j)\geqslant \delta$ para cada $i\leqslant l-1$ tal que $w_iw_l\in E(H)$.

Elijamos ε lo suficientemente pequeño y apliquemos el Lema 1.7.13 a cada (A_i, A_l) con $w_i w_l \in E(H)$: todos, excepto a lo más $2\varepsilon |A_l|$ vértices $v \in A_l$ satisfaciendo:

$$|N_G(v) \cap A_i| \geqslant (\delta - \varepsilon) \cdot |A_i|$$

Figura 1.7.5

Como $2\varepsilon |A_l|(l-1) < n$, existe $v \in A_l$ tal que

$$|N_G(v) \cap A_i| \geqslant (\delta - \varepsilon) |A_i|, \quad \forall i \leqslant l - 1$$

con $w_i w_l \in E(H)$. Definimos

$$ilde{X}_i = egin{cases} A_i \cap N_G(v) & ext{ si } w_i \in N_H(w_l) \ A_i & ext{ si no,} \end{cases}$$

y por cada \tilde{X}_i construimos un subgrafo X_i , de manera que todos los X_i tengan el mismo cardinal.

Ahora, tomando $\alpha = \delta - \varepsilon \geqslant \varepsilon > 0$, podemos aplicar el Lema de Slicing 1.7.14 en X_i, X_j cuando $w_i w_j \in E(H)$ para asegurar que son pares máx $\{\frac{\varepsilon}{\delta - \varepsilon}, 2\varepsilon\}$ -regulares y densidad al menos $\delta - \varepsilon$. Luego queremos usar la hipótesis inductiva: sea $H' := H \setminus \{w_l\}$ y $G' := G[\bigcup_{i=1}^{l-1} X_i]$. Así, existen $\varepsilon' > 0$ y $n_0' \in \mathbb{N}$ tales que

$$G' \in \mathcal{G}(H', n', \varepsilon', \delta - \varepsilon), n' \geqslant n'_0 \implies H' \subset G'$$

Con lo cual, si escogemos ε tal que máx $\{\frac{2\varepsilon}{\delta-\varepsilon},2\varepsilon\}<\varepsilon'$ y n_0 lo suficientemente grande, de tal suerte que $(\delta-\varepsilon)n_0\geqslant n_0'$, tenemos por hipótesis inductiva que $H'\subset G'$. Por lo tanto, $H\subset G$.

Lema 1.7.17 (Lema de inmersión aplicable). *Sea H un grafo y* $\delta > 0$. *Defina r* = $\chi(H)$. *Entonces, existen* $\varepsilon > 0$ *y* $n_0 \in \mathbb{N}$ *tales que*

$$G \in \mathcal{G}(K_r, n, \varepsilon, \delta), n \geqslant n_0 \Rightarrow H \subset G.$$

Demostración. El Lema 1.7.16 garantiza que para todo $\delta'>0$ existen ε',n_0' tales que

$$G \in \mathcal{G}(K_r(t), n', \varepsilon', \delta'), n' \geqslant n_0' \quad \Rightarrow \quad K_r(t) \subset G,$$

donde t := |H|. Como $H \subset K_r(t)$, se tiene que en este caso $H \subset G$.

Concluimos gracias al siguiente ejercicio:

Ejercicio 1.7.18.

(1) Demostrar que para todo $\delta>0,\,n'\in\mathbb{N}$ y $\varepsilon'>0,$ existen ε y δ' tales que

$$\mathscr{G}(K_r, n't, \varepsilon, \delta) \subset \mathscr{G}(K_r(t), n', \varepsilon', \delta').$$

(2) Demostrar que para todo $\delta > 0$, $\varepsilon > 0$ y $n' \in \mathbb{N}$ es lo suficientemente grande, se tiene que si

$$G \in \mathcal{G}(K_r, n, \varepsilon, \delta)$$
 con $n't \leq n < (n'+1)t$,

entonces existe un subgrafo $G' \subset G$ tal que $G' \in \mathcal{G}(K_r, n't, 2\varepsilon, \delta - \varepsilon)$.

Solución.

(1) Tomemos n=n't. Fijemos un etiquetamiento $K_r=\{w_1,\ldots,w_r\}$ tal que $K_r(t)=\{w_i^j\}_{1\leqslant i\leqslant r}^{1\leqslant j\leqslant t}$ con $w_i^jw_{i'}^{j'}\in E(K_r(t))$ si y solo si $w_iw_{i'}\in E(K_r)$. Entonces si $G\in \mathcal{G}(K_r,n,\varepsilon,\delta)$, con equipartición $V(G)=\coprod_{i=1}^r V_i$. Se sigue que podemos subdividir la partición: cada $V_i=\coprod_{j=1}^t V_i^j$ en otra equipartición con partes de cardinal n'.

Ahora busquemos ε y δ' tales que $G \in \mathcal{G}(K_r(t), n', \varepsilon', \delta')$. Pero si $w_i^j w_{i'}^{j'} \in E(K_r(t))$, entonces $w_i w_{i'} \in E(K_r)$, y por lo tanto el par $(V_i, V_{i'})$ es ε regular y como $\left|V_i^j\right| = \frac{1}{t} |V_i|$ para todo $1 \leqslant j \leqslant t$, el Lema de Slicing 1.7.14 garantiza que los pares $(V_i^j, V_{i'}^{j'})$ para $1 \leqslant j, j' \leqslant t$ son máx $\{t\varepsilon, 2\varepsilon\}$ -regularaes si ε es lo suficientemente pequeño, i.e. $\frac{1}{t} > \varepsilon$. En cuanto a la densidad, nuevamente el Lema de Slicing garantiza que

$$d(A_i^j, A_{i'}^{j'}) \geqslant d(A_i, A_{i'}) - \varepsilon \geqslant \delta - \varepsilon.$$

Por lo tanto, tomamos $\varepsilon < \min\{\varepsilon'/2, \frac{1}{t}\varepsilon', \frac{1}{t}, \delta/2\}$ y $\delta' = \delta/2$ y funciona.

(2) Sea $G \in \mathcal{G}(K_r,n,\varepsilon,\delta)$. Luego $V(G) = V_1 \coprod \cdots \coprod V_k$ es una equipartición de G con $|V_i| = n$. Consiederemos cualquier subgrafo G' de G dado por quitar a cada conjunto V_i los suficientes elementos tales que los vértices de G' se equiparticionan en partes de tamaño $n't \geqslant \frac{n'}{n'+1}n = (1-\frac{1}{n'+1})n = \left(1-\frac{1}{\left\lceil \frac{n}{t} \right\rceil}\right)n = \alpha n,$ con $\alpha \geqslant \frac{1}{2}$ para n' lo suficientemente grande (t está fijo). Luego por el Lema de Slicing 1.7.14,

$$G' \in \mathcal{G}(K_r, n't, 2\varepsilon, \delta - \varepsilon).$$

En efecto, para todo $\delta > 0$, el primer ítem dice que

$$\mathscr{G}(K_r, n't, \varepsilon, \delta'),$$

para algún ε y todo $n' \geqslant n'_0$. Luego, por el segundo ítem, existe $n_0 \in \mathbb{N}$ lo sufientemente grande tal que si

$$G \in \mathcal{G}(K_r, n, \varepsilon, \delta)$$
,

entonces existe un subgrafo $G' \subset G$ tal que $G' \in \mathcal{G}(K_r, n't, 2\varepsilon, \delta - \varepsilon)$. Juntando ambas cosas obtenemos que

$$G \in \mathcal{G}(K_r, n, \varepsilon, \delta), n \geqslant n_0 \Rightarrow H \subset G.$$

Teorema 1.7.19 (Regularidad de Erdös-Stone). *Para todo grafo H con* $e(H) \ge 1$ *y* $cada \ \delta > 0$, existe $n_0 \in \mathbb{N}$ tales que para todo grafo G con $n \ge n_0$ vértices g

$$e(G)\geqslant \left(1-rac{1}{\chi(H)-1}+4\delta
ight)rac{n^2}{2},$$

entonces $H \subset G$.

Comentario 1.7.20. Como $\delta > 0$ es arbitrario, podríamos reemplazar 4δ por $\delta' > 0$ arbitrario en el enunciado.

Demostración. Tomamos $\varepsilon>0$ lo suficientemente pequeño dado por el Lema de inmersión aplicable 1.7.17, y aplicamos Regularidad 1.7.5 para el caso $m\geqslant \frac{1}{\varepsilon}$ al grafo G con $r=\chi(H)-1$ satisfaciendo la hipótesis del enunciado. Obtenemos una partición $V(G)=V_0\coprod V_1\coprod \cdots \coprod V_k$ con $m\leqslant k\leqslant M$ una equipartición ε -regular. Sea G' el grafo obtenido a partir de G borrando todas "las aristas sobre las que no hay control" con parámetro ε (regularidad) y δ (densidad). Así, tenemos que G' tiene al menos $e(G)-(3\varepsilon+\delta)n^2$ aristas por el Lema 1.7.12. Sea R el "grafo reducido", se tiene

$$G' \in \mathscr{G}(R, n', \varepsilon, \delta)$$

con $n':=\frac{n-|V_0|}{k}$. Por lo tanto, si $K_{r+1} \subset R$, entonces por el lema de inmersión aplicable 1.7.17 tendríamos que $H \subset G'$. En efecto, quitando algunas particiones de V(G'), obtenemos un subgrafo $G'' \subset G'$ tal que $G'' \in \mathscr{G}(K_{r+1}, n', \varepsilon, \delta)$.

Supongamos ahora que $K_{r+1}
otin R$. Luego por el Teorema de Turán 1.1.6:

$$e(R) \leqslant t_r(k) \sim \left(1 - \frac{1}{r}\right) \frac{k^2}{2} \quad (k \to \infty),$$

es decir, achicando ε de ser necesario para que k sea grande y $t_r(k) \leqslant \left(1 - \frac{1}{r} + \delta\right) \frac{k^2}{2}$. Se tiene que

$$e(G') \leqslant \left(1 - rac{1}{r} + \delta
ight) rac{k^2}{2} \cdot rac{n^2}{k^2} = \left(1 - rac{1}{r} + \delta
ight) rac{n^2}{2}.$$

Consecuentemente,

$$egin{align} e(G) &\leqslant \left(1-rac{1}{r}+\delta
ight)rac{n^2}{2}+2(3arepsilon+\delta)rac{n^2}{2} \ &= \left(1-rac{1}{r}+6arepsilon+3\delta
ight)rac{n^2}{2} \ &< \left(1-rac{1}{r}+4\delta
ight)rac{n^2}{2}, \end{split}$$

absurdo.

Segunda aplicación del Lema de Regularidad de Szémeredi 1.7.5:

Teorema 1.7.21 (Erdös-Simonovits). Para todo grafo H, y para todo $\delta > 0$, existe $n_0 \in \mathbb{N}$ tal que G es un grafo H-libre con $n \ge n_0$ vértices y

$$e(G)\geqslant \left(1-rac{1}{\gamma(H)-1}-\delta
ight)rac{n^2}{2},$$

entonces G está $(5\delta n^2)$ -cerca de ser $(\chi(H)-1)$ -partito.

Comentario 1.7.22. Notar que este enunciado es equivalente al enunciado que vimos antes: 1.5.8.

Demostración. Sea $\varepsilon > 0$ lo suficientemente pequeño (que depende de H y δ). Aplicamos el Lema de Regularidad de Szémeredi 1.7.5 para ε y $m \geqslant \frac{1}{\varepsilon}$; obtenemos la equipartición ε -regular $V(G) = V_0 \coprod V_1 \coprod \cdots \coprod V_k$ con $m \leqslant k \leqslant M$ para todo grafo con $|G| \geqslant M$.

Luego consideramos el "grafo reducido" R con parámetros ε y δ , y vértices w_1, \ldots, w_k . Sea $r = \chi(H) - 1$. Si $K_{r+1} \subset R$, entonces $H \subset G$ por el Lema de Inmersión aplicable 1.7.17, lo cual nos lleva a una contradicción. Es decir, R es K_{r+1} -libre.

Elijamos $t = 3\delta k^2$. Si $e(R) < t_r(k) - t$, entonces por el Lema 1.7.12, tenemos:

$$\begin{split} e(G) &\leqslant (\delta + 3\varepsilon)n^2 + e(R) \cdot \left(\frac{n}{k}\right)^2 \\ &< (\delta + 3\varepsilon)n^2 + \left((1 - \frac{1}{r})\frac{k^2}{2} - 3\delta k^2\right)\frac{n^2}{k^2} \\ &= (1 - \frac{1}{r})\frac{n^2}{2} + \underbrace{\left(3\varepsilon - 2\delta\right)}_{<-\frac{\delta}{2}}n^2 \\ &< (1 - \frac{1}{r})\frac{n^2}{2} - \frac{\delta}{2}n^2, \end{split}$$

contradicción.

Con lo cual, el Teorema de Estabilidad de Füredi 1.4.4 nos permite suponer que R está t-cerca de ser r-partito. Es decir, hay una r-partición

$$V(R) = A_1 \coprod \cdots \coprod A_r$$

con a lo más t aristas dentro de las partes. Utilizando nuevamente el Lema 1.7.12 para acotar las aristas despecriables de la partición de G, y acotando las aristas dentro de las partes de la partición de R, concluimos que es posible borrar a lo más

$$\underbrace{t \cdot \left(\frac{n}{k}\right)^2}_{\leqslant 3\delta n^2} + \underbrace{\left(\delta + 3\varepsilon\right)n^2}_{\leqslant 2\delta n^2} \leqslant 5\delta n^2$$

aristas para obtener una r-partición de G.

Lema 1.7.23 (Lema de conteo general). *Para todo grafo H, y todo \delta > 0, existen* $\varepsilon > 0$ y $M \in \mathbb{N}$ tales que si

$$G \in \mathcal{G}(H, n, \varepsilon, \delta)$$

para algún $n \ge M$, entonces G contiene al menos

$$\frac{\delta^{e(H)} \cdot n^{|H|}}{2}$$

copias de H.

Demostración. Haremos inducción en |H|, y de hecho nuestra hipótesis inductiva será más fuerte:

Para todo grafo H, y todo $\delta > 0$, existen $\varepsilon > 0$ y $M \in \mathbb{N}$, tales que si

$$G \in \mathcal{G}(H, n, \varepsilon, \delta)$$

para algún $n \ge M$, y más aún, dada una equipartición $G = V_1 \coprod \cdots \coprod V_l$ indexada según $H = \{w_1, \ldots, w_l\}$ con (V_i, V_j) ε -regular y $d(v_i, V_j) \ge \delta$ siempre y cuando que $w_i w_j \in E(H)$, se tiene que hay al menos

$$\frac{\delta^{e(H)} \cdot n^{|H|}}{2}$$

copias de H, de tal forma que los vértices x_j correspondientes a un w_j vía un isomorfismo con H pertenezcan a V_j para todo j = 1, ..., l.

Si |H|=1, la afirmación es inmediata. Si |H|=2 y no tiene aristas también es fácil. Si |H|=2 y e(H)=1, luego basta probar que existen al menos $\delta \frac{n^2}{2}$ aristas en $E(V_0,V_1)$. Pero tomando $\varepsilon < \min\{\delta/4,1/8\}$, la ε -regularidad del par (V_0,V_1) junto con $d(V_0,V_1)$ implican que existen vértices $v \in V_1$ tales que

$$(\delta - \varepsilon)n \leq |N_G(v) \cap V_0|$$

salvo $2\varepsilon n$ vértices por el Lema 1.7.13. Es decir, $E(V_0, V_1)$ tiene al menos

$$(\delta - \varepsilon)(1 - 2\varepsilon)n^2 \geqslant (\frac{3}{4} \cdot \frac{3}{4})\delta n^2 \geqslant \frac{1}{2}\delta n^2$$

aristas, como queríamos.

En general, supongamos que $|H| \geqslant 3$. Si $G \in \mathcal{G}(H, n, \varepsilon, \delta)$ para $n \geqslant M$, entonces $G = V_1 \coprod \cdots \coprod V_l$ con V_i todos de cardinal n y para la escritura $H = \{w_1, \ldots, w_l\}$, $w_i w_j \in E(H)$ si y solo si (V_i, V_j) es ε -regular y $d(V_i, V_j) \geqslant \delta$.

Consideremos $H' = H \setminus \{w_l\}$ y $G' := G \setminus V_l$, entonces $G' \in \mathcal{G}(H', n, \varepsilon, \delta)$ y por hipótesis inductiva existe M' tal que si $n \ge M'$, entonces G' contiene al menos

$$\frac{\delta^{e(H')} \cdot n^{|H'|}}{2}$$

copias de H', donde cada copia tiene su vértice correspondiente a w_j en la parte V_j para cada j < l. Ahora, por el Lema 1.7.13, para todo $v \in V_l$, salvo $2\varepsilon n$ vértices, se tiene que

$$(\delta - \varepsilon)n \leqslant |N_G(v) \cap V_j|, \quad \forall j < l.$$

Por lo tanto, tenemos al menos $(1-2\varepsilon(l-1))n$ vértices en V_l , cada uno con al menos $(\delta-\varepsilon)n$ vecinos en cada V_j con j < l, y por lo tanto, $(\delta-\varepsilon)n(l-1)$ vecinos en G.

En el peor de los casos, todos los vértices que no son vecinos de v en V_j pertenecen a una de estas copias de H' para cada j < l, luego este v forma al menos $\frac{\delta^{e(H')} \cdot n^{l-1}}{2} - (1 - (\delta - \varepsilon)) n(l-1) \text{ copias de } H \text{ en } G. \text{ Es decir, } G \text{ tiene al menos}$

$$\left(\frac{\delta^{e(H')} \cdot n^{l-1}}{2} - (1 - (\delta - \varepsilon))n(l-1)\right) (1 - 2\varepsilon(l-1))n$$

copias de H, donde cada copia tiene su vértice correspondiente a w_j en la parte V_j para cada $1 \le j \le l$. Así, basta probar que tomando $M \gg M'$ y $\varepsilon > 0$ lo suficientemente chico, esta cantidad es $\ge \frac{\delta^{e(H)} \cdot n^l}{2}$.

En efecto, esto equivale a que

$$\left(\frac{\delta^{e(H')} \cdot n^{l-1}}{2} - (1 - (\delta - \varepsilon))n(l-1)\right)(1 - 2\varepsilon(l-1)) \geqslant \frac{\delta^{e(H)} \cdot n^{l-1}}{2}$$

si y solo si,

$$\frac{\delta^{e(H')} \cdot n^{l-1}(1-2\varepsilon(l-1))}{2} - \frac{\delta^{e(H)} \cdot n^{l-1}}{2} \geqslant (1-(\delta-\varepsilon))(l-1)(1-2\varepsilon(l-1))n.$$

Es decir, hay que probar

$$\left(\delta^{e(H')}(1-2\varepsilon(l-1))-\delta^{e(H)}\right)\frac{n^{l-2}}{2}\geqslant (1-(\delta-\varepsilon))(l-1)(1-2\varepsilon(l-1)).$$

Pero como $l \ge 3$, se sigue que si $\varepsilon > 0$ es lo suficientemente chico (por ejemplo $\varepsilon < \frac{1-\delta^{e(H)-e(H')}}{2(l-1)}$), existe M con $M \ge M'$ lo suficientemente grande, tal que si $n \ge M$, el lado izquierdo ess más grande que el lado derecho (que no depende de n) pues

$$\left(\delta^{e(H')}(1-2\varepsilon(l-1))-\delta^{e(H)}\right)>0.$$

П

Apliación 3 del Lema de Regularidad de Szemeredi 1.7.5:

Teorema 1.7.24 (Teorema de Roth). Para todo $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que si $n \ge n_0$ $y \in A \subset \{1, ..., n\}$ con $|A| > \varepsilon n$, entonces A contiene una 3-progresión aritmética⁴.

Lema 1.7.25 (Lema de remoción de triángulos). Para todo $\alpha > 0$, existe $\beta > 0$ tal que todo grafo G con n vértices y a lo más βn^3 triángulos, puede ser K_3 -libre borrando a lo más αn^2 aristas

Demostraci'on. Tomemos $0<\delta<rac{lpha}{3}$ y $\varepsilon<rac{\delta}{9}$ lo suficientemente chico. Aplicamos el Lema de Regularidad de Szémeredi 1.7.5 con parámetros ε y $m\geqslant rac{1}{\varepsilon}$, obteniendo una partición de un grafo G con $|G|\geqslant M\geqslant k\geqslant m$,

$$V(G) = V_0 \prod V_1 \prod \cdots \prod V_k$$
.

Consideremos el grafo reducido R con parámetros ε y δ . Notar que el subgrafo $G':=G\setminus V_0\subset G$ cumple que $G'\in \mathscr{G}(R,n',\varepsilon,\delta)$ con $n'\geqslant \frac{(1-\varepsilon)n}{k}\geqslant \frac{1-\varepsilon}{M}n$.

Supongamos que R tiene al menos un triángulo K_3 . Entonces G' tiene un subgrafo G'' dado por quedarnos solamente con las partes V_i, V_j, V_k correspondientes a vértices w_i, w_j, w_k que forman un triángulo en R; en particular, $G'' \in \mathcal{G}(K_3, n', \varepsilon, \delta)$. Aplicando el Lema de conteo general 1.7.23 para $H = K_3$ y el subgrafo $G'' \in \mathcal{G}(H, n', \varepsilon, \delta)$, tenemos que G'', y por lo tanto G, tiene al menos:

$$\delta^3 \cdot \left(\frac{(1-\varepsilon)n}{k}\right)^3 > \frac{\delta^3}{2} \frac{(1-\varepsilon)^3}{M^3} \cdot n^3 > \beta n^3$$

⁴En general, una k-progresión aritmética es una secuencia de enteros $a, a+d, a+2d, \ldots, a+(k-1)d$.

triángulos para n lo suficientemente grande, donde $\beta < \frac{\delta^3}{2} \frac{(1-\epsilon)^3}{M^3}$. Achicando β de ser necesario, podemos asumir que n es arbitrario.

Con lo cual, si G tiene a lo más βn^3 triángulos, el párrafo anterior nos dice que R no tiene triángulos. Así, al remover $\leq (\delta + 3\varepsilon)n^2 < \alpha n^2$ aristas de G (ver Lema 1.7.12), nos quedamos sin triángulos.

Teorema 1.7.26 (Teorema de Roth). Para todo $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que si $n \ge n_0$ $y \in A \subset \{1, ..., n\}$ con $|A| > \varepsilon n$, entonces A contiene una 3-progresión aritmética.

Demostración. Vamos a probar que si A no contiene una 3-progresión aritmética, entonces |A| = o(n).

Sea $\varepsilon > 0$, y n lo suficientemente grande, supongamos que $|A| \ge \varepsilon n$ y que no contiene 3-progresiones aritméticas. Definimos un grafo G con $V(G) = X \coprod Y \coprod Z$, disjuntos y |X| = |Y| = |Z| = 3n cada conjunto X, Y, Z es una copia de $\{1, \ldots, 3n\}$.

$$\begin{split} E(X,Y) &= \big\{ \, xy \mid x \in X, y \in Y, y = x + a \, \text{ para algún } a \in A \, \big\} \,. \\ E(Y,Z) &= \big\{ \, yz \mid y \in Y, z \in Z, z = y + a \, \text{ para algún } a \in A \, \big\} \,. \\ E(X,Z) &= \big\{ \, xz \mid x \in X, z \in Z, z = x + 2a \, \text{ para algún } a \in A \, \big\} \,. \end{split}$$

Si xyz es un triángulo en G, entonces existen $a,a',a'' \in A$ tales que

$$\left\{egin{array}{ll} y=x+a, & a\in A\ z=y+a', & a'\in A\ z=x+2a'', & a''\in A, \end{array}
ight.$$

y esto es una 3-progresión aritmética a,a''=a+(a'-a''),a'=a+2(a'-a'') si a,a',a'' son distintos. Como A no tiene 3-progresiones aritméticas, entonces cada triángulo en G es de la forma xyz con y=x+a, z=x+2a. Lo cual implica que cada triángulo queda completamente determinado por x y a. Consecuentemente G tiene a lo más

$$3n|A| \leqslant 3n^2 = o(n^3)$$

triángulos.

Por el Lema de Remoción de Triángulos 1.7.25, es posible borrar $o(n^2)$ aristas de G para obtener un grafo libre de triángulos. Ahora, vamos a obtener una cota por abajo de la cantidad de triángulos arista disjunto que tiene G: consideremos el conjunto de tripletas de la forma (x,x+a,x+2a), con $x \in X$, $a \in A$. Observar que cada tripleta corresponde con un triángulo de G y todos son arista-disjuntos entre sí, por lo tanto G contiene al menos $3n|A|>3\varepsilon n^2$ triángulos disjuntos y por lo tanto si o si deben ser quitados para que G sea libre de triángulos. Contradiciendo el Lema de Remoción de Triángulos.

Capítulo 2

Teoría de Ramsey

Notación 2.0.1. Cuando nos refiramos a una r-coloración de un grafo G, será una función $c: E(G) \to \{1, ..., r\}$ que a cada arista $e \in E(G)$, le asigna un **color** c(e) (No necesariamente la coloración es propia, es decir, pueden existir aristas adyacentes con el mismo color).

Notación 2.0.2. Sea G un grafo con una coloración c. Entonces dado un vértice $v \in V(G)$, podemos considerar los vecinos w de v tales que c(vw) = i. Notaremos a este subconjunto de vecinos de v como $N_G^i(v)$, o simplemente $N^i(v)$ cuando el contexto sea claro.

La teoría de Ramsey se motiva mediante el siguiente ejemplo:

Ejemplo 2.0.3. Toda 2-coloración de K_6 genera un triángulo monocromático.

Demostración. Sea $v \in V(K_6)$. Hay al menos 3 aristas incidentes a v que tienen el mismo color, digamos rojo, por el principio del palomar. Si en $N^{\mathrm{rojo}}(v)$ hay aristas rojas, entonces hay un triángulo rojo. Si no, todas las aristas entre vértices de $N^{\mathrm{rojo}}(v)$ son azules. Como, $|N^{\mathrm{rojo}}(v)| \geqslant 3$, entonces hay un triángulo azul en $K_6[N^{\mathrm{rojo}}(v)]$, y por lo tanto había un triángulo azul en K_6 .

Teorema 2.0.4 (Teorema de Ramsey (1930)). Para todo $k,r \in \mathbb{N}$, existe un $n \in \mathbb{N}$ tal que toda r-coloración de K_n genera un K_k monocromático.

Demostración. Sea $v_1 \in V(K_n)$. Existe algún color $c_1 \in \{1, ..., r\}$ tal que las aristas incidentes a v_1 de color c_1 son al menos

$$\frac{n-1}{r}$$
,

escribamos $A_1:=N_{K_n}^{c_1}(v_1)$. Similarmente, sea $v_2\in K_n[A_1]$, existe un color $c_2\in\{1,\ldots,r\}$ tal que las aristas incidentes a v_2 en $K_n[A_1]$ son de color c_2 y por lo menos hay

$$\frac{|A_1|-1}{r}$$
,

escribamos $A_2:=N^{c_2}_{K_n[A_1]}(v_2)$. Continuando este procedimiento, para n lo suficientemente grande, obtenemos una secuencia

$$v_1, c_1, v_2, c_2, v_3, c_3, \dots, v_t, c_t,$$

en donde si $t \ge rk$, se sigue que existe un color que se repite al menos k veces en esta secuencia, y por lo tanto, sus vértices v_{i_1}, \ldots, v_{i_k} correspondientes forman un K_k monocromático de se color.

Ejercicio 2.0.5. Calcular una cota inferior para n.

Soluci'on. Escribamo a_1,a_2,\ldots para la secuencia de cardinales de los conjuntos A_1,A_2,\ldots Inspeccionando la demostración anterior, vemos que $a_1\geqslant \frac{n-1}{r}$ y que recursivamente $a_{t+1}\geqslant \frac{a_t-1}{r}$, $t\geqslant 1$. Por lo tanto, tenemos que inductivamente:

$$a_{t+1} \geqslant \frac{n}{r^{t+1}} - \sum_{i=1}^{t+1} \frac{1}{r^i} = \frac{n}{r^{t+1}} - \frac{1}{r} \frac{1-r^{t+1}}{1-r}, \quad t \geqslant 0.$$

Con lo cual, si $t \ge rk$ como en la demostración de arriba, se sigue que

$$n \geqslant a_{rk} \geqslant \frac{n}{r^{rk}} - \frac{1}{r} \frac{1 - r^{rk}}{1 - r},$$

y consecuentemente,

$$n \geqslant \frac{r^{rk-1}}{1-r}.$$

2.1. Números de Ramsey

Definición 2.1.1. El número de Ramsey R(k), es el mínimo n tal que cualquier 2-coloración de K_n contiene una copia monocromática de K_k .

Ejemplo 2.1.2. En el Ejemplo 2.0.3 vimos que $R(3) \le 6$. Pero de hecho, es fácil encontrar una 2-coloración de K_5 que no contiene triángulos monocromáticos, y por lo tanto, R(3) = 6:

Figura 2.1.1: 2-coloración de K_5 libre de triángulos monocromáticos.

Definición 2.1.3. Sean G, H_1 y H_2 grafos, escribimos $G \to (H_1, H_2)$ si toda 2-coloración de G con rojo-azul de E(G) contiene una copia de H_1 rojo o una copia de H_2 azul.

Para $s, t \in \mathbb{N}$ definimos

$$R(s,t) := \min\{n \in \mathbb{N} | K_n \rightarrow (K_s, K_t)\}.$$

(En particular, R(k) = R(k,k)).

Teorema 2.1.4 (Erdös-Szekeres (1935)). Para todo $k \ge 1$, se tiene que

$$R(k) \leqslant inom{2k-2}{k-1} \leqslant rac{4^{k-1}}{\sqrt{\pi(k-1)}}.$$

Demostración. La segunda desigualdad se deduce de una aplicación inmediata de las desigualdades probadas en [Rob55]. Concentrémonos en la primera desigualdad, y de hecho, probaremos una versión un poco más general:

$$R(s,t) \leqslant inom{s+t-2}{s-1}.$$

Notar que tomando s = t = k se prueba la primera desigualdad del teorema.

Para eso, necesitamos un lema previo:

Lema 2.1.5. Para todo $s, t \ge 2$, se tiene

$$R(s,t) \leq R(s-1,t) + R(s,t-1).$$

Demostración. En efecto, sea c una coloración de $E(K_n)$ con n = R(s-1,t) + R(s,t-1). Queremos probar que hay una copia roja de K_s o una copia azul de K_t . Sea $v \in K_n$, entones hay dos casos:

Caso 1: Existen al menos R(s-1,t) aristas rojas incidentes a v, o

Caso 2: Existen al menos R(s, t-1) aristas azules incidentes a v.

En cualquier caso extendemos completos monocromáticos en el vecindario de v a un K_s rojo o un K_t azul, respectivamente.

Ahora, probemos la desigualdad por inducción en s+t, el caso base es R(1,t)=R(s,1)=1. En general, si mín $\{s,t\}\geqslant 2$, tenemos que por el lema de arriba

$$\begin{split} R(s,t) \leqslant & \, R(s-1,t) + R(s,t-1) \\ \leqslant & \, \binom{s+t-3}{s-2} + \binom{s+t-3}{s-1} = \binom{s+t-2}{s-1}. \end{split}$$

Observación 2.1.6. Existe una cota inferior muy mala, para valores de k grandes, del número de Ramsey:

$$R(k) \geqslant 2(k-1), \quad k \geqslant 2.$$

Demostración. Supongamos k > 3, pues el caso k = 2 es trivial.

En efecto, sea n=2(k-1), entonces particionando los vértices de K_n en dos conjuntos A_1,A_2 de tamaño k-1, y pintando las aristas de $K_n[A_1]$ y $K_n[A_2]$ de azul, pero las aristas entre A_1 y A_2 de rojo, obtenemos una coloración libre de K_k monocromáticos. En efecto, si existiera un K_k monocromático, entonces no puede ser azul porque cada A_i tiene k-1 vértices; por otro lado no puede ser rojo porque en una partición hay almenos un vértice y en otra almenos 2 (estamos en el caso k>3), digamos en A_1 y A_2 respectivamente, entonces en $K_n[A_2]$ debería haber una arista color rojo, absurdo.

El siguiente teorema confirma que la cota anterior es muy poco óptima.

Teorema 2.1.7 (Erdös (1947)).

$$R(k)\geqslant 2^{k/2}, \quad orall k\geqslant 2.$$

Demostración. Consideremos K_n con $n = \lceil 2^{k/2} \rceil$ y supongamos que $k \ge 6$, notar que los casos k = 2, ..., 5 valen por la cota de la Observación anterior 2.1.6 (que es mejor para k chico).

Tenemos exactamente

$$2^{\binom{n}{2}}$$

2-coloraciónes de $E(K_n)$. Vamos a mostrar que la cantidad de 2-coloraciones de $E(K_n)$ que contienen a K_k monocromático es $<2^{\binom{n}{2}}$. Para eso, notar que en este caso tenemos $\binom{n}{k}$ formas de elegir una copia de K_k y luego $2^{\binom{n}{2}-\binom{k}{2}+1}$ formas de colorear el resto de las aristas. Por lo tanto, la cantidad de 2-coloraciones que contienen un K_k monocromático es menor o igual que

$$egin{split} \binom{n}{k} 2^{\binom{n}{2} - \binom{k}{2} + 1} &\leqslant \left(rac{en}{k}
ight)^k 2^{\binom{n}{2} - \binom{k}{2} + 1} \ &\leqslant \left(rac{e(2^{k/2} + 1)}{k}
ight)^k 2^{-rac{k(k-1)}{2}} 2 \cdot 2^{\binom{n}{2}}, \end{split}$$

pero notar que si $k \ge 6$, entonces

$$\left(\frac{e(2^{k/2}+1)}{k}\right)^k 2^{\frac{k(k-1)}{2}} \cdot 2 \leqslant \left(\frac{2^{k/2}+1}{2}\right)^k 2^{-\frac{k(k-1)}{2}} \cdot 2 < 1,$$

de donde se sigue lo que queríamos. En efecto, se puede realizar un estudio cualitativo de la función para $k \in \mathbb{R}_{\geq 6}$ utilizando cálculo elemental.

Definición 2.1.8. En general, el **número de Ramsey con** r **colores** $R_r(k)$ es el mínimo n tal que todo r-coloreo de K_n tiene un K_k monocromático.

Teorema 2.1.9. Para todo $r \ge 2$, se tiene que

$$2^r \leqslant R_r(3) \leqslant 3 \cdot r!$$
.

Demostración. Primero veamos la cota inferior, para eso consideremos $n := 2^r$ y encontraremos una r-coloración de K_n sin triángulos monocromáticos. Haremos inducción en r, si r = 2 vale, pues podemos considerar la siguiente coloración:

Figura 2.1.2

Para el paso inductivo, consideremos una partición en dos partes de 2^{r-1} vértices, donde el conjunto A y el B tienen (r-1)-coloraciones sin triángulos monocromáticos, por hipótesis inductiva, y luego pintamos las aristas entre A y B de color r que nunca fue utilizado.

Figura 2.1.3

Ahora veamos la cota superior. En el Ejemplo 2.0.3 vimos que $R_2(3) \leqslant 6 = 3 \cdot 2!$, así vale el caso r=2. Supongamos ahora que $r \geqslant 3$, y que $n=3 \cdot r!$, sea $v_0 \in K_n$ fijo, y c una r-coloración de K_n . Entonces existe un color $i \in \{1,\ldots,r\}$ tal que

$$E_i^0 = |\{uv_0 \in K_n \mid c(uv) = i\}| \geqslant \frac{3 \cdot r!}{r} = 3 \cdot (r-1)!$$

y sea $A:=N^i_{K_n}(v_0).$ Pueden ocurrir dos casos:

Caso 1: El color i aparece en una arista de $K_n[A]$, luego tenemos un triángulo de color i.

Caso 2: En $K_n[A]$ no aparece el color i, entonces la coloración c inducida en $K_n[A]$ es una (r-1)-coloración, con lo cual por hipótesis inductiva existe un triángulo monocromático en $K_n[A]$, en particular en K_n .

Figura 2.1.4: Ilustración del Caso 1.

Definición 2.1.10. El **número de Ramsey de** H_1 **versus** H_2 está definido por:

$$r(H_1,H_2) = \min\{n|K_n \to (H_1,H_2)\}.$$

En particular, escribimos r(H) := r(H, H).

Teorema 2.1.11.

$$r(K_3, P_k) = 2k + 1.$$

Demostraci'on. Primero acotaremos por abajo: sea n=2k, consideramos la siguiente coloraci\'on de K_n :

Particionamos K_n en dos partes de k vértices cada uno y pintamos las aristas de color azúl, y las aristas entre ambas particiones las pintamos de rojo. Claramente no hay caminos de longitud k de color azul porque las particiones tienen k vértices y no hay triángulos rojos porque las aristas rojas inducen un grafo bipartito.

Para la cota superior, consideremos K_n con n=2k+1. Sea P un camino maximal de color azul; supongamos que $|V(P)| \leq k$ y entonces $B := V(K_n) \setminus V(P)$ tiene al menos k+1 vértices. Sea v_0 un extremo de P, por maximalidad v_0 está conectado a cada vértice de B por aristas rojas. Tenemos dos casos:

Caso 1: Si en $K_n[B]$ hay aristas rojas entonces hay un triángulo de color rojo (con un vértice v_0).

Caso 2: Si en $K_n[B]$ no hay aristas rojas, entonces todas las aristas son azules y por lo tanto hay una copia de K_{k+1} azul, y por lo tanto contiene a P_k de color azul.

Teorema 2.1.12. Sea T_k un árbol con k aristas (i.e., k+1 vértices). Entonces

$$r(K_3, T_k) = 2k + 1.$$

Demostración. Para la primera desigualdad se puede aplicar un razonamieneto similar a la demostración del teorema anterior. Veamos entonces solo la cota superior.

Sea n=2k+1 y consideremos K_n con una coloración. Supongamos entonces que existe un vértice v de grado rojo al menos k+1. Entonces la vecindad $N^{\rm rojo}(v)$ induce un K_{k+1} que si tiene alguna arista roja entonces existe un triángulo rojo en K_n , y si no, K_n contiene un K_{k+1} con aristas azules y en particular contiene un T_k azul.

Figura 2.1.6

Ahora, supongamos que todo vértice tiene grado rojo $\leq k$. Esto implica que el grado mínimo del subgrafo azul inducido es $\geq k$, y por lo tanto el Lema 1.3.2 nos permite encontrar una copia de T_k en el subgrafo azul inducido, en particular K_n tiene una copia azul de T_k .

Teorema 2.1.13 (Chvátal (1977)). Sea T_k un árbol con k aristas, y sea $s \ge 2$. Entonces

$$r(K_{s+1},T_k)=s\cdot k+1.$$

Demostración. Primero veamos la cota inferior: sea $n = s \cdot k$, consideremos la siguiente coloración de K_n : el grafo azul consiste de s copias de K_k y las aristas rojas son las aristas entre los vértices de las copias de K_k .

Figura 2.1.7

Para la cota superior, haremos inducción en $s \ge 2$. Si s = 2, tenemos que $r(K_3, T_k) \le 2k+1$ por el teorema anterior. Supongamos ahora que $s \ge 3$. Sea $n = s \cdot k + 1$. Sea v un vértice con grado rojo $\ge (s-1)k+1$, y sea A la vecindad roja de v. Por hipótesis inductiba en $K_n[A]$, hay una copia de K_s rojo, o una copia de T_k azul y ganamos. Así, podemos asumir que el grado rojo de cada vértice es $\le (s-1)k$. Esto implica que el grafo azul tendrá grado mínimo $\ge (s \cdot k + 1) - 1 - (s + 1)k \ge k$. Con lo cual contiene una copia de T_k por el Lema 1.3.2.

Teorema 2.1.14. *Para todo* $k \in \mathbb{N}$ *se tiene que*

$$r(P_k) = \left\lceil rac{3k}{2}
ight
ceil.$$

Demostraci'on. Veamos primero la cota inferior. Sea $n:=\left\lceil \frac{3k}{2}\right\rceil-1$. Consideremos un K_k azul en K_n y escribamos A al conjunto de sus vértices; el resto de las aristas las pintamos de rojo. Notar que $B:=V(K_n)\backslash V(K_k)$ cumple

$$|B|<rac{k}{2}.$$

Así, K_n no tiene un P_k azul. Veamos que tampoco tiene un rojo:

Tomemos un camino rojo P, luego no puede tener dos vértices adyacentes de A (pues $K_n[A]$ es un completo azul). Por lo tanto en el peor de los casos P tiene |B|

vértices de B tales que entre cada par consecutivos de estos hay un vértice de A. O sea,

$$|P| \le 2|B| + 1 < k + 1.$$

Es decir, tampoco tiene un P_k rojo.

Figura 2.1.8: Ilustración de esta situación.

Veamos ahora la cota superior. Vamos a probar un resultado un poco más general haciendo inducción en k:

Sea
$$k\geqslant l\geqslant 1$$
 y sea $n=k+\left\lceil rac{l}{2}
ight
ceil$, entonces $K_n \longrightarrow (P_k,P_l)$

Notar que el caso k = l implica la cota superior.

Consideremos una coloración de K_n . Sea P un camino rojo maximal y supongamos que $|P| \leq k$. Por maximalidad, cada extremo forma aristas azules con cada vértice de $V(G) \backslash V(P)$.

Nuestro caso base es $1 \le l \le k \le 3$, donde vale la afirmación:

Figura 2.1.9

Ahora veamos el paso inductivo. Supongamos que $4 \le l < k$. Por hipótesis inductiva, tenemos que $K_n \longrightarrow (P_{k-1}, P_l)$ y por lo tanto sin pérdida de generalidad podemos suponer que existe un (k-1)-camino rojo en K_n , digamos $P = v_1 v_2 \cdots v_k$. Escribamos $U := V(K_n) \setminus V(P)$; sabemos que $|U| = \left\lceil \frac{l}{2} \right\rceil$. Notemos lo siguiente:

- (I) Las aristas entre v_1, v_k y U son azules.
- (II) Para cada par de vértices consecutivos v_iv_{i+1} en P y cada $u \in U$, existe una arista azul en $\{v_iu,v_{i+1}u\}$, pues de lo contrario habríamos encontrado un P_k rojo.

Sean Q_1 y Q_2 caminos azules vértice-disjuntos de longitud impar (i.e., cantidad par de vértices) que alternan vértices de $v_2, ..., v_k$ y U. Tomemos Q_1 maximal, y sujeto a esto, tomemos Q_2 maximal. Por paridad de la longitud de Q_1 y Q_2 , ambos tienen exactamente un extremo en U, digamos x e y, respectivamente. Tenemos dos casos:

Caso 1: Q_1 y Q_2 cubren U, es decir, $U \subset Q_1 \cup Q_2$. Con lo cual, podemos construir un l-camino azul considerando $Q_1xv_1yQ_2$. Luego supongamos que estamos en:

Caso 2: Existe $z \in U \setminus (Q_1 \cup Q_2)$.

Observemos que $v_k \in Q_1$, de lo contrario podríamos extender Q_1 con las aristas azules $v_k z$ y $v_k x$. Notemos que $Q_1 \cup Q_2$ contiene a lo más |U| - 1 vértices de P, y

$$|U|-1<\frac{k-1}{2}.$$

Con lo cual, en $\{v_2,\dots,v_{k-1}\}$ hay $\frac{k-1}{2}-2<\left\lfloor\frac{k-2}{2}\right\rfloor$ vértices de $Q_1\cup Q_2$. Así, existe un par de vértices consecutivos v_i,v_{i+1} con $2\leqslant i\leqslant k-2$ tales que $v_i,v_{i+1}\notin Q_1\cup Q_2$. Sin embargo, por el ítem (ii), existen existen dos aristas azules entre v_i o v_{i+1} y alguno de los siguientes conjuntos: $\{x,y\};\{y,z\};$ o $\{x,z\}$. Esto contradice la maximalidad de Q_1 y Q_2 , ya que podríamos extender algunos de estos caminos, y por ende el caso 2 no puede ocurrir.

Finalmente veamos el caso $k=l\geqslant 4$. Por hipótesis inductiva, tenemos que $K_n\longrightarrow (P_k,P_{k-1})$ y y por simetría se tiene $K_n\longrightarrow (P_{k-1},P_k)$. Con lo cual, existe un (k-1)-camino rojo, digamos $P_r=v_1\cdots v_k$, y un (k-1)-camino azul, digamos $P_a=w_1\cdots w_k$. Si alguno de estos caminos se pudiera extender monocromáticamente habríamos terminado, con lo cual supongamos que son maximales monocromáticos. Notar que por maximalidad, debe ser que $\{v_1,v_k\}=\{w_1,w_k\}$, de lo contrario podríamos extender monocromáticamente alguno de los dos caminos; digamos que $v_1=w_1$ y $v_k=w_k$.

Ahora bien, tenemos que

$$n=k+\left\lceil\frac{k}{2}\right\rceil\geqslant |V(P_r)\cup V(P_a)|=|V(P_r)|+|V(P_a)|-|V(P_r)\cap V(P_a)|=2k-|V(P_r)\cap V(P_a)|\,.$$

Consecuentemente, $|V(P_r) \cap V(P_a)| \ge \left|\frac{k}{2}\right|$. Hay dos opciones:

Opción 1: $|V(P_r) \cap V(P_a)| > \left\lfloor \frac{k}{2} \right\rfloor$. En este caso existe $z \in V(K_n) \setminus (V(P_r) \cup V(P_a))$, y por lo tanto $zv_1 = zw_1$ es una arista de color rojo o azul, y en cualquier caso podemos extender P_r o P_a monocromáticamente, contradiciendo la maximalidad de los caminos.

Opción 2: $|V(P_r) \cap V(P_a)| = \left\lfloor \frac{k}{2} \right\rfloor$. En este caso $P_r \cup P_a = K_n$ y de hecho, deben existir dos vértices interiores consecutivos de P_r , digamos $v_i v_{i+1}$ con 1 < i < k, tales que no son vértices de P_a ; similarmente, existen dos vértices interiores consecutivos de P_a , digamos $w_j w_{j+1}$ con 1 < j < k, tales que no son vértices de P_r .

Más aún, la arista $v_1v_k=w_1w_k$ es de color rojo o azul, digamos rojo (el otro caso es análogo). Con lo cual, tenemos un ciclo rojo $C_r:=v_1P_rv_kv_1$ de longitud k, y por lo tanto, podemos suponer que todas las aristas incidentes a C_r tienen que ser azules, si no habríamos encontrado un k-camino rojo. Pero luego las aristas w_jv_i y $w_{j+1}v_i$ son azules, y podemos alargar P_a a un k-camino azul:

$$w_1 \cdots w_j v_i w_{j+1} \cdots w_k$$
,

contradiciendo la maximalidad de P_a . Como hemos agotado todos los casos, se concluye la demostración.

2.2. El problema con un final feliz

Proposición 2.2.1 (El problema de E. Klein (1930)). Para todo $k \in \mathbb{N}$, existe $n = n(k) \in \mathbb{N}$ tal que dados n puntos en posición general del plano (i.e. no hay 3 puntos colineales). Entonces el conjunto de puntos contiene k puntos en posición convexa.

Demostración del caso k = 4 y n = 5. Ella probó este caso¹. Consideramos la cápsula convexa de los 5 puntos, si los vértices son 4 o 5 de estos puntos ya ganamos, si no, existen dos puntos que están contenidos en el interior del triángulo convexo (formado por 3 de estos puntos como vértices). Luego simplemente consideramos la recta que une a estos dos puntos interiores, la cual interseca a dos lados distintos del triángulo, y por lo tanto hay 4 puntos en posición convexa:

El caso general se resolvió utilizando el *Teorema de Ramsey Generalizado*, que enunciamos luego de algunas definiciones:

¹El cual fue bautizado como "El problema con un final feliz" por Paul Erdős, debido a que llevó al casamiento de George Szekeres y Esther Klein.

Notación 2.2.2. Dado $n \in \mathbb{N}$, notamos al conjunto $[n] := \{1, ..., n\}$.

Notación 2.2.3. Sea A un conjunto arbitrario, y $s \in \mathbb{N}$, notamos al conjunto:

$$egin{pmatrix} A \ s \end{pmatrix} := \left\{ \left. S \subset A \mid \left| S
ight| = s \,
ight\}.$$

Definición 2.2.4. Una r-coloración de subconjuntos de [n] de tamaño s, es una función

 $c: \binom{[n]}{s} \longrightarrow \{1, \dots, r\}.$

Diremos que $A \in \binom{[n]}{s}$ es **monocromático** (respecto de c), si c(S) = c(S') para todo $S \in \binom{A}{s}$.

Teorema 2.2.5 (Teorema de Ramsey Generalizado). Para todo $k, r, s \in \mathbb{N}$, existe $n \in \mathbb{N}$ tal que toda r-coloración de $\binom{[n]}{s}$ contiene un conjunto monocromático de tamaño k.

Comentario 2.2.6. Nosotros probamos el caso K_n en lugar de $\binom{[n]}{s}$ con s=2 y K_k monocromático.

Continuación de la demostración del problema de E. Klein. Falta probar el caso $k \ge 5$. Tomemos una coloración rojo-azul c del conjunto $\binom{[n]}{4}$. Y coloreemos c(S) de rojo si y solo si los puntos de S están en posición convexa. Por el Teorema de Ramsey Generalizado 2.2.5, existe n tal que $B \subset [n]$ es monocromático y |B| = k. Hay dos casos:

Caso 1: *B* es rojo, y por lo tanto todos los subconjuntos de tamaño 4 de *B* tienen color rojo, i.e., están en posición convexa. Ahora, los puntos de *B* están en posición convexa, de lo contrario, podríamos encontrar un punto de *B* en el interior de un triángulo con vértices de *B* (notar que esto vale por no-colinealidad: trazamos las diagonales entre vértices del polígono convexo; el punto no puede estar en ninguna de estas rectas, i.e., está dentro de un triángulo), absurdo.

Caso 2: B es azul, como $k \ge 5$, por el resultado preliminar de Klein, existen 4 puntos en posición convexa, absurdo.

Teorema 2.2.7 (Seidenberg). Toda secuencia de $k^2 + 1$ números reales contiene una subsecuencia monótona de largo k + 1.

Demostración. Sea $a_1, ..., a_n$ una secuencia de números reales con $n = k^2 + 1$. Para cada $i \in [n]$, definimos un par:

$$(x_i,y_i),$$

donde x_i es el largo de la subsecuencia no decreciente más larga que termina en a_i ; y_i es el largo de la subsecuencia no creciente más larga que termina en a_i .

Para $i \neq j$, veamos que $(x_i, y_i) \neq (x_j, y_j)$. Para eso, sin pérdida de generalidad, supongamos que i < j. Tenemos dos casos:

Caso 1: $a_i \leq a_j$. Acá se tiene que $x_i < x_j$.

Caso 2: $a_i \leq a_i$. Acá se tiene que $y_i < y_i$.

Ahora por contradicción, si $x_i, y_i \leq k$ para todo $i \in [n]$, entonces hay a lo más k^2 pares distintos, sin embargo $n = k^2 + 1$, por lo que hay almenos un par repetido, absurdo.

El siguiente ejercicio dice que el teorema anterior es preciso:

Ejercicio 2.2.8. Encontrar secuencia de números reales de largo k^2 sin subsecuencias monótonas de largo k+1.

Teorema 2.2.9 (Chrátal, Rödl, Szemeredi & Trotter (1983)). *Para todo* $\Delta \in \mathbb{N}$, *existe una constante* $c = c(\Delta) > 0$ *tal que todo grafo* H *con* $\Delta(H) \leq \Delta$, *satisface*

$$r(H) \leqslant c(\Delta) \cdot |H|$$
.

En particular, para $n \ge c(\Delta) \cdot |H|$, toda 2-coloración de K_n contiene un H monocromático.

Demostración. La idea será aplicar el Lema de Regularidad de Szémeredi 1.7.5 y el siguiente lema de inmersión:

Lema 2.2.10 (Un lema de inmersión). Dados $d \in \mathbb{N}$ y $\delta > 0$, existe $\varepsilon > 0$ y $\gamma > 0$ tales que si $n \in \mathbb{N}$ y H es un grafo con $\Delta(H) \leq d$ y $|H| \leq \gamma n$, entonces

$$G \in \mathcal{G}(K_{d+1}, n, \varepsilon, \delta) \implies H \subset G.$$

Sea $\Delta > 0$ y H con $\Delta(H) \leq \Delta$. Aplicamos este lema de inmersión con $d = \Delta$ y $\delta = \frac{1}{2}$, y obtenemos parámetros ε y γ , tales que se cumple la conclusión del enunciado. Consideremos K_n con $n \geq c(\Delta) \cdot |H|$ donde $c(\delta)$ es lo suficientemente grande.

Tomemos una coloración con rojo y azul de K_n , y sean G_r y G_a los subgrafos inducidos de color rojo y azul, respectivamente. Sea $m:=r(K_{d+1})$. Aplicamos el Lema de Regularidad de Szémeredi 1.7.5 en G_r con parámetro m y ε . Obtenemos una partición ε -regular

$$V(G_r) = V_0 \prod V_1 \prod V_k,$$

con $m \le k \le M$. Notar que esta partición también es $\varepsilon regular$ para G_a TAREA.

Sea R el grafo reducido con parámetros ε y densidad 0 (no nos interesa la densidad). Entonces,

$$e(R)\geqslant inom{k}{2}-arepsilon k^2>t_{m-1}(k)=\left(1-rac{1}{m-1}+o(1)
ight)rac{k^2}{2}\quad (k\longrightarrow 1),$$

y por lo tanto el Teorema de Turán 1.1.6, $R \supset K_m$. Sean ahora A_1, \ldots, A_m las partes que corresponden a los vértices de K_m en R. Vamos a definir una 2-coloración f de las aristas de K_m :

$$f(ij) = ext{rojo} \quad \Leftrightarrow \quad d_{G_r}(V_i, V_j) \geqslant rac{1}{2}.$$

Como $m=r(K_{d+1})$, existe un K_{d+1} rojo o azul, sin pérdida de generalidad supongamos que es rojo en K_m . Reindexando los A_i , podemos suponer que A_1, \ldots, A_{d+1} corresponden a las partes de K_{d+1} de K_m . El grafo inducido

$$G' = G_r[A_1 \cup \cdots \cup A_{d+1}]$$

satisface que $G' \in \mathscr{G}(K_{d+1}, n', \varepsilon, \delta)$, con

$$n'=|V_1|=\cdots,|V_k|\geqslant rac{n}{M}.$$

Así, elegimos $c=c(\Delta)$ suficientemente grande (en particular, $c\geqslant M/\gamma$), entonces

$$|(|H) \leqslant \frac{n}{c(\Delta)} \leqslant \frac{\gamma n}{M} \leqslant \gamma n',$$

con lo cual se tiene la conclusión del teorema por el lema de inmersión de arriba. \qed

Bibliografía

[Rob55] Herbert Robbins. A remark on stirling's formula. The American Mathematical Monthly, 62(1):26-29, 1955.