# Efficient Computation of DFT Fast Fourier Transform

Phan Duy Hùng

### Fast Fourier Transform?

#### Divide-and-Conquer Approach to Computation of the DFT



Figure 8.1.1 Two dimensional data array for storing the sequence x(n),  $0 \le n \le N-1$ .





Figure 8.1.2 Two arrangements for the data arrays.



Figure 8.1.3 Computation of N=15-point DFT by means of 3-point and 5-point DFTs.

#### Radix-2 FFT Algorithms



Figure 8.1.4 First step in the decimation-in-time algorithm.



Figure 8.1.5 Three stages in the computation of an N=8-point DFT.



Figure 8.1.6 Eight-point decimation-in-time FFT algorithm.



Figure 8.1.7 Basic butterfly computation in the decimation-in-time FFT algorithm.



Figure 8.1.8 Shuffling of the data and bit reversal.



Figure 8.1.9 First stage of the decimation-in-frequency FFT algorithm.



Figure 8.1.10 Basic butterfly computation in the decimation-in-frequency FFT algorithm.



Figure 8.1.11 N = 8-point decimation-in-frequency FFT algorithm.

## Implementation of FFT Algorithms?

#### Applications of FFT Algorithms

- Efficient computation of the DFT of two real sequences
- Efficient computation of the DFT of a 2N point real sequence
- Use of FFT Algorithm in Linear Filtering and Correlation