Resiliencia de *Quercus pyrenaica* a dos eventos de sequía

Perez-Luque AJ; Gea-Izquierdo G; Zamora R; Bonet FJ

Introduccion

Sequía

- Aumento en la severidad y frecuencia de los eventos de sequías en las últimas décadas, especialmente para el sur de Europa¹⁻³
- Eventos extremos P. Ibérica: 1981, 1995, 2000, 2005, 2012⁴⁻⁶

Análisis adicionales

- SPEI (Standardised Precipitation-Evapotranspiration Index) para datos regionales y locales
- Precipitación acumulada del año hidrológico en curso
- Long term (>1950) y short-term (>2000)

Sequía (análisis adicionales): SPEI

Escala regional:

 Datos de SPEI Global Drought Monitor para Sierra Nevada (spatial resolution of 0.5°) Ver esto

Escala local:

- Calcular datos SPEI para tres estaciones de la red RIA durante el periodo 2000 - 2016: Cadiar, Padul y Jerez del Marquesado
- Curvas de precipitación acumulada RIA y datos base Aérea (obtenidos de la REDIAM) (desde 1950)
- Ver flexdashboard drought

Para la caracterización de los dos periodos de sequía ¿Incluir alguna referencia a estos análisis (quizá como supplementary materials) o solamente referencias bibliofrágicas?

Aquí deberíamos incluir los objetivos del paper y las preguntas

- Utilizar RS information and tree ring to evaluate el efecto de la sequía
- Resiliencia ..

Species study

Greenness data

Para caracterizar el verdor de la vegetación utilizamos *Enhanced Vegetation Index* (**EVI**)^{7–9}:

- Mas sensible que NDVI en áreas con mucha biomasa
- La influencia de las condiciones atmosféricas en el cálculo del índice de vegetación es menor en EVI que en NDVI
- EVI corrige las señales de fondo del dosel

Dataset

- 2000-2016: Una imagen cada 16 días (23 imágenes por año)
- 250 x 250 m
- Pixels cubriendo la distribución de los robledales en Sierra Nevada (n = 928 pixels)
- MODIS MOD13Q1 Collection 6

Filtrado de datos EVI

Quality Assesment (QA band) & VI Usefulness Indices

$$928 \times 20 \times 1 + 928 \times 23 \times 16 = 360064$$

- 208437 (57.89 %) Good Data
- Filter out: snow/ice (9268) + cloudy (25504) + NA (44) = 35176 (9.77 %)
- Marginal Data (32.33 %)
 - Explorar distribución temporal y analizar banda QA Detailed¹⁰
 - En zonas montañosas poner especial atención a datos de sombras¹⁰

Mas info del filtrado de datos

Tras el filtrado, nos quedamos con 286825 (79.65 %)

EVI anual medio

 Además del filtrado, EVI medio es estable frente a la pérdida de datos¹⁰

Anomalías estandarizadas EVI

- Computo pixel a pixel
- Proporcionan mas información sobre la magnitud de la anomalía¹¹

$$\mathrm{EVI}_{\mathrm{sa},i} = \frac{\mathrm{EVI}_{\mathrm{mean},i} - \mathrm{EVI}_{\mathrm{mean},\mathrm{ref}}}{\sigma_{\mathrm{ref}}}$$

FieldWork

- 2 localidades: SJ (norte) y CA (sur)
- 2 elevaciones por sitio (High-Low)
- Focal trees:
 - 10 15 árboles dominantes por cada sitio
 - 2 cores 5mm
 - dbh, altura
- Competencia:
 - Recuento todos los árboles (dbh > 7.5) dentro de un radio de 10 metros
 - dbh, altura, distancia árbol focal, rumbo
 - Índices de competencia dependientes e independientes de la distancia¹³
 - Resultados

Resilience metrics

To evaluate the effects of the disturbance events on greeennes and tree growth we used four resilience indices 14

 Resistance (Rt) quantifies the severity of the impact of the disturbance in the year it occurred.

$$Resistance = Drought/Predrought$$

 Recovery index (Rc) is the ability to recover from disturbance relative to its severity.

$$Recovery = Postdrought/Drought$$

 Resilience index (Rs) is the capacity to reach pre-disturbance performance levels.

$$Resilience = Postdrought/Predrought$$

 Relative Resilience (RRs) is the resilience weighted by the severity of the disturbance.

- Se calcularon los valores de cada índice de resilience para las variables
 EVI medio y Tree growth en cada evento de sequía
- Consideramos 2005 y 2012 como dos eventos de sequía
- Los valores PreDrought y PostDrought de cada variable (EVI medio y tree growth) se calcularon como la media durante un periodo de tres años antes y despues respectivamente del evento de sequía.
 Probamos con periodos de 2,3 y 4 años y obtuvimos resultados similares (Elegimos 3 años)
 - Ver gráficas para BAI
 - Ver gráficas para EVI

Analyses

EVI profile comparison

EVI anomalies

Notas anomalias

- EVI sa menores en 2005 *** (lowest) que en 2012, sobre todo para poblaciones del norte
- Criterio Samanta et al. > +1 greening |< -1 bronwing
- Más info anomalias EVI
- Heterogeneidad de anomalias estandarizadas

Mapa de anomalias estandarizadas

Trayectorias anomalias estandarizadas

Browing

clu_pop2	type	count_clu	per	у
Northern slope	browning	468	99.36	2005
Northern slope	no change	3	0.64	2005
Southern slope	browning	350	79.37	2005
Southern slope	greening	5	1.13	2005
Southern slope	no change	86	19.50	2005
Northern slope	browning	34	7.22	2012
Northern slope	greening	15	3.18	2012
Northern slope	no change	422	89.60	2012
Southern slope	browning	128	29.02	2012
Southern slope	greening	4	0.91	2012
Southern slope	no change	309	70.07	2012

Patrones generales del EVI medio anual

- El 78.95 % de los pixeles mostraron una tendencia positiva en cuanto al EVI medio anual (siendo significativa para el 31.67 % de los pixeles).
- Esta tendencia positiva fué sobre todo mayor en algunas de las poblaciones del suroeste
- Concuerda con datos de ontología (TODO comentar)

Trayectorias EVI medio anual

EVI Resilience metrics

	rc		rs	3	rt	
	F	р	F	р	F	р
Disturb	311.99	0.001	207.18	0.001	799.87	0.001
Site	105.41	0.001	29.82	0.001	153.22	0.001
Disturb X Site	364.31	0.001	6.14	0.014	234.70	0.001

var	disturb_year	site	n	M.Huber	ci	Letter
rc	2005	Ν	471	1.1689	(1.161,1.1768)	а
rc	2005	S	441	1.0662	(1.0584, 1.0741)	С
rc	2012	Ν	471	1.0417	(1.0364, 1.047)	b
rc	2012	S	441	1.0711	(1.0674, 1.0748)	С
rt	2005	Ν	471	0.8190	(0.8137, 0.8243)	а
rt	2005	S	441	0.9016	(0.8958, 0.9074)	С
rt	2012	Ν	471	0.9472	(0.9423, 0.9521)	b
rt	2012	S	441	0.9387	(0.9336, 0.9438)	b
rs	2005	Ν	471	0.9553	(0.9507, 0.9599)	а
rs	2005	S	441	0.9618	(0.9573, 0.9663)	а
rs	2012	Ν	471	0.9855	(0.9805, 0.9905)	b
rs	2012	S	441	1.0039	(0.9996, 1.0081)	С
rrs	2005	Ν	471	0.1362	(0.1304, 0.142)	а
rrs	2005	S	441	0.0582	(0.0514, 0.065)	С
rrs	2012	Ν	471	0.0388	(0.034, 0.0437)	b
rrs	2012	S	441	0.0662	(0.0629,0.0695)	С

var	disturb_year	n	M.Huber	ci	Letter
rc	2005	912	1.1197	(1.1131,1.1262)	а
rc	2012	912	1.0571	(1.0537, 1.0604)	b
rt	2005	912	0.8584	(0.8535, 0.8633)	а
rt	2012	912	0.9431	(0.9396, 0.9466)	b
rs	2005	912	0.9585	(0.9553, 0.9617)	а
rs	2012	912	0.9947	(0.9913, 0.998)	b
rrs	2005	912	0.0999	(0.0948, 0.1051)	а
rrs	2012	912	0.0533	(0.0502, 0.0563)	b

var	site	n	M.Huber	ci	Letter
rc	N	942	1.1021	(1.0958,1.1084)	а
rc	S	882	1.0690	(1.0652,1.0729)	b
rt	Ν	942	0.8835	(0.8777, 0.8893)	a
rt	S	882	0.9207	(0.9167, 0.9246)	b
rs	Ν	942	0.9701	(0.9666, 0.9737)	а
rs	S	882	0.9830	(0.9797, 0.9864)	b
rrs	N	942	0.0866	(0.0816, 0.0917)	а
rrs	S	882	0.0630	(0.0596,0.0664)	b

BAI Resilience metrics

	r	С	r	s	rt	
	F	р	F	р	F	р
Disturb	29.55	0.001	44.31	0.001	6.02	0.019
Site	53.08	0.001	1.31	0.534	59.25	0.001
Disturb X Site	4.40	0.134	30.01	0.001	32.24	0.001

	rc		rs	rs		rt	
	F	р	F	р	F	р	variable
Disturb	29.55	0.001	44.31	0.001	6.02	0.019	BAI
Site	53.08	0.001	1.31	0.534	59.25	0.001	BAI
Disturb X Site	4.40	0.134	30.01	0.001	32.24	0.001	BAI
Disturb	311.99	0.001	207.18	0.001	799.87	0.001	EVI
Site	105.41	0.001	29.82	0.001	153.22	0.001	EVI
Disturb X Site	364.31	0.001	6.14	0.014	234.70	0.001	EVI

OJO CON ESTA TABLA (revisar Tabla RS2)

		Northern	Southern		
vars	year	SJ	саН	caL	var
Rc	2005	1.1122	0.8866	0.8321	rc_2005_M.Huber
Rc	2005	(1.0004,1.2241)	(0.8003, 0.973)	(0.7326, 0.9315)	rc_2005_ci
Rc	2012	1.4457	1.1071	0.952	rc_2012_M.Huber
Rc	2012	(1.3223, 1.5691)	(1.0257,1.1885)	(0.8889, 1.015)	rc_2012_ci
Rc		1.2824	0.9962	0.8972	rc_2099_M.Huber
Rc		(1.1791,1.3856)	(0.9171,1.0753)	(0.8431,0.9514)	rc_2099_ci
Rt	2005	0.4888	0.7895	0.7303	rs_2005_M.Huber
Rt	2005	(0.4213, 0.5562)	(0.6913, 0.8878)	(0.6118, 0.8489)	rs_2005_ci
Rt	2012	1.031	0.8132	0.8761	rs_2012_M.Huber
Rt	2012	(0.93,1.1321)	(0.7413,0.8852)	(0.8394,0.9129)	rs_2012_ci
Rt		0.7694	0.7975	0.8172	rs_2099_M.Huber
Rt		(0.6524, 0.8864)	(0.7439, 0.8511)	(0.7553, 0.8791)	rs_2099_ci
Rs	2005	0.4454	0.8921	0.9012	rt_2005_M.Huber
Rs	2005	(0.3751, 0.5158)	(0.8091, 0.9751)	(0.8132, 0.9892)	rt_2005_ci
Rs	2012	0.7687	0.7534	0.9263	rt_2012_M.Huber
Rs	2012	(0.6839, 0.8534)	(0.6864,0.8204)	(0.9001, 0.9526)	rt_2012_ci
Rs		0.6116	0.8157	0.9209	rt_2099_M.Huber
Rs		(0.5387,0.6846)	(0.7549,0.8764)	(0.8834,0.9584)	rt_2099_ci

References

- 1. Vicente-Serrano, S. M. *et al.* Evidence of increasing drought severity caused by temperature rise in southern Europe. *Environmental Research Letters* **9**, 044001 (2014).
- 2. Spinoni, J., Naumann, G., Vogt, J. V. & Barbosa, P. The biggest drought events in europe from 1950 to 2012. *Journal of Hydrology: Regional Studies* **3,** 509–524 (2015).
- 3. Stagge, J. H., Kingston, D. G., Tallaksen, L. M. & Hannah, D. M. Observed drought indices show increasing divergence across Europe. *Scientific Reports* **7**, 14045 (2017).
- 4. García-Herrera, R. *et al.* The Outstanding 2004/05 Drought in the Iberian Peninsula: Associated Atmospheric Circulation. *Journal of Hydrometeorology* **8**, 483–498 (2007).
- 5. Gouveia, C. M., Ramos, P., Russo, A. & Trigo, R. M. Drought trends in the Iberian Peninsula over the last 112 years. in *EGU general assembly conference abstracts* **17**, 12680 (2015).
- 6. Trigo, R. M. *et al.* The record Winter drought of 2011-12 in the Iberian Peninsula [in "Explaining Extreme Events of 2012 from a Climate

Perspective [Peterson T C M P Hoerling P A Stott and S Herring