

Linguaggio SQL: fondamenti

Gestione delle tabelle

Gestione delle tabelle

- Dizionario dei dati

Gestione delle tabelle

Creazione di una tabella

Creazione di una tabella (1/5)

∑ Si utilizza l'istruzione di SQL DDL (Data Definition Language)

CREATE TABLE

- □ Permette di
 - definire tutti gli attributi (le colonne) della tabella
 - definire vincoli di integrità sui dati della tabella

Creazione di una tabella (2/5)

```
CREATE TABLE NomeTabella
(NomeAttributo Dominio [ValoreDiDefault]
[Vincoli]
{ , NomeAttributo Dominio [ValoreDiDefault]
[Vincoli]}
AltriVincoli
);
```


Creazione di una tabella (3/5)

Dominio Dominio

- definisce il tipo di dato dell'attributo
 - domini predefiniti del linguaggio SQL (domini elementari)
 - domini definiti dall'utente a partire dai domini predefiniti

> Vincoli

- permette di specificare vincoli di integrità sull'attributo
- - permette di specificare vincoli di integrità di tipo generale sulla tabella

Creazione di una tabella (4/5)

 permette di specificare il valore di default dell'attributo

DEFAULT

< Generico Valore | USER | CURRENT_USER | SESSION_USER | SYSTEM_USER | NULL>

Creazione di una tabella (5/5)

- □ Generico Valore
 - valore compatibile con il dominio
- > *USER
 - identificativo dell'utente
- > NULL
 - valore di default di base

Domini elementari (1/6)

Carattere: singoli caratteri o stringhe, anche di lunghezza variabile

CHARACTER [VARYING] [(*Lunghezza*)] [CHARACTER SET *NomeFamigliaCaratteri*]

- abbreviato con VARCHAR
- □ Bit singoli (booleani) o stringhe di bit

BIT [VARYING] [(Lunghezza)]

Domini elementari (2/6)

NUMERIC [(Precisione, Scala)]

DECIMAL [(Precisione, Scala)]

INTEGER

SMALLINT

Domini elementari (3/6)

NUMERIC [(*Precisione, Scala*)] DECIMAL [(*Precisione, Scala*)]

- numero totale di cifre (digits)
- per il dominio NUMERIC la precisione rappresenta un valore esatto
- per il dominio DECIMAL la precisione costituisce un requisito minimo

Domini elementari (3/6)

NUMERIC [(*Precisione, Scala*)] DECIMAL [(*Precisione, Scala*)]

- - numero di cifre dopo la virgola
- □ Esempio: per il numero 123.45
 - la precisione è 5, mentre la scala è 2

Domini elementari (4/6)

FLOAT [(*n*)]

REAL

DOUBLE PRECISION

- □ n specifica la precisione
 - è il numero di bit utilizzati per memorizzare la mantissa di un numero float rappresentato in notazione scientifica
 - è un valore compreso tra 1 e 53
 - il valore di default è 53

Domini elementari (5/6)

INTERVAL *PrimaUnitàDiTempo*[TO *UltimaUnitàDiTempo*]

- De unità di tempo sono divise in due gruppi
 - anno, mese
 - giorno, ora, minuti, secondi
- □ Esempio: INTERVAL year TO month
 - memorizza un periodo di tempo utilizzando i campi anno e mese
- □ Esempio: INTERVAL day TO second
 - memorizza un periodo di tempo utilizzando i campi giorno, ore, minuti e secondi

Domini elementari (6/6)

☐ TIMESTAMP [(Precisione)] [WITH TIME ZONE]

- memorizza i valori che specificano l'anno, il mese, il giorno, l'ora, i minuti, i secondi ed eventualmente la frazione di secondo
- utilizza 19 caratteri più i caratteri per rappresentare la precisione
- notazione
 - YYYY-MM-DD hh:mm:ss:p

Definizione di domini (1/2)

- □ Istruzione CREATE DOMAIN
 - definisce un dominio utilizzabile nelle definizioni di attributi

- ∑ Sintassi
 CREATE DOMAIN NomeDominio AS TipoDiDato
 [ValoreDiDefault] [Vincolo]

Definizione di domini (2/2)

CREATE DOMAIN Voto AS SMALLINT

DEFAULT NULL

CHECK (Voto >= 18 and Voto <=30)

Definizione del DB fornitori prodotti

```
F
CodF NomeF NSoci Sede
```

```
CREATE TABLE F (CodF CHAR(5),

NomeF CHAR(20),

NSoci SMALLINT,

Sede CHAR(15));
```


Definizione del DB fornitori prodotti

□ Creazione della tabella prodotti

P				
CodP	NomeP	Colore	Taglia	Magazzino

CREATE TABLE P (CodP CHAR(6),

NomeP CHAR(20),

Colore CHAR(6),

Taglia SMALLINT,

Magazzino CHAR(15));

Definizione del DB fornitori prodotti

□ Creazione della tabella forniture


```
CREATE TABLE FP (CodF CHAR(5), CodP CHAR(6), Qta INTEGER);
```


Gestione delle tabelle

Modifica della struttura di una tabella

Istruzione ALTER TABLE (1/3)

- ∑ Sono possibili le seguenti "alterazioni"
 - aggiunta di una nuova colonna
 - definizione di nuovo valore di default per una colonna (attributo) esistente
 - per esempio, sostituzione del precedente valore di default
 - eliminazione di una colonna (attributo) esistente
 - definizione di un nuovo vincolo di integrità
 - eliminazione di un vincolo di integrità esistente

Istruzione ALTER TABLE (2/3)

```
ALTER TABLE NomeTabella
< ADD COLUMN < Definizione-Attributo > |
 ALTER COLUMN NomeAttributo
    < SET < Definizione-Valore-Default> | DROP DEFAULT> |
 DROP COLUMN NomeAttributo
    < CASCADE | RESTRICT > |
 ADD CONSTRAINT [NomeVincolo]
    < definizione-vincolo-unique > |
    < definizione-vincolo-integrità-referenziale > |
    < definizione-vincolo-check > |
 DROP CONSTRAINT [NomeVincolo]
    < CASCADE | RESTRICT >
```

Istruzione ALTER TABLE (3/3)

□ RESTRICT

- l'elemento (colonna o vincolo) non è rimosso se è presente in qualche definizione di un altro elemento
- opzione di default

 tutti gli elementi che dipendono da un elemento rimosso vengono rimossi, fino a quando non esistono più dipendenze non risolte (cioè non vi sono elementi nella cui definizione compaiono elementi che sono stati rimossi)

□ Aggiungere la colonna numero dipendenti alla tabella dei fornitori

Aggiungere la colonna numero dipendenti alla tabella dei fornitori

F

CodF NomeF NSoci Sede NDipendenti

ALTER TABLE F
ADD COLUMN NDipendenti SMALLINT;

□ Eliminare la colonna NSoci dalla tabella dei fornitori

```
F

CodF NomeF NSoci Sede
```


 □ Eliminare la colonna NSoci dalla tabella dei fornitori

ALTER TABLE F
DROP COLUMN NSoci RESTRICT;

 □ Aggiungere il valore di default 0 alla colonna quantità della tabella delle forniture

FP					
CodF	CodP	Qta			

 □ Aggiungere il valore di default 0 alla colonna quantità della tabella delle forniture

ALTER TABLE FP
ALTER COLUMN Qta SET DEFAULT 0;

Gestione delle tabelle

Cancellazione di una tabella

Cancellazione di una tabella

DROP TABLE *NomeTabella*[RESTRICT | CASCADE];

- □ Tutte le righe della tabella sono eliminate insieme alla tabella
- **□** RESTRICT
 - la tabella non è rimossa se è presente in qualche definizione di tabella, vincolo o vista
 - opzione di default
- **□** CASCADE
- $D_{M}^{B}G$

 se la tabella compare in qualche definizione di vista anche questa è rimossa

Cancellazione di una tabella: esempio

F

CodF NomeF NSoci Sede

Cancellazione di una tabella: esempio

□ Cancellare la tabella fornitori

DROP TABLE F;

Gestione delle tabelle

Dizionario dei dati

Dizionario dei dati (1/2)

- □ I metadati sono informazioni (dati) sui dati
 - possono essere memorizzati in tabelle della base di dati
- - contiene informazioni sugli oggetti della base di dati
 - è gestito direttamente dal DBMS relazionale
 - può essere interrogato con istruzioni SQL

Dizionario dei dati (2/2)

○ Contiene diverse informazioni

- descrizione di tutte le strutture (tabelle, indici, viste) della base di dati
- stored procedure SQL
- privilegi degli utenti
- statistiche
 - sulle tabelle della base di dati
 - sugli indici della base di dati
 - sulle viste della base di dati
 - sulla crescita della base di dati

Informazioni sulle tabelle

- □ Il dizionario dei dati contiene per ogni tabella della base di dati
 - nome della tabella e struttura fisica del file in cui è memorizzata
 - nome e tipo di dato per ogni attributo
 - nome di tutti gli indici creati sulla tabella
 - vincoli di integrità

Tabelle del dizionario dati

- □ Le informazioni del dizionario dati sono memorizzate in alcune tabelle
 - ogni DBMS utilizza nomi diversi per tabelle diverse

Dizionario dati in Oracle (1/2)

- □ In Oracle sono definite 3 collezioni di informazioni per il dizionario dati
 - USER_*: metadati relativi ai dati dell'utente corrente
 - ALL_*: metadati relativi ai dati di tutti gli utenti
 - DBA_*: metadati delle tabelle di sistema

Dizionario dati in Oracle (2/2)

- □ USER_* contiene diverse tabelle e viste, tra le quali:
 - USER_TABLES contiene metadati relativi alle tabelle dell'utente
 - USER_TAB_STATISTICS contiene le statistiche calcolate sulle tabelle dell'utente
 - USER_TAB_COL_STATISTICS contiene le statistiche calcolate sulle colonne delle tabelle dell'utente

Interrogazione del dizionario dati n.1

➤ Visualizzare il nome delle tabelle definite dall'utente e il numero di tuple memorizzate in ciascuna di esse

Interrogazione del dizionario dati n.1

➤ Visualizzare il nome delle tabelle definite dall'utente e il numero di tuple memorizzate in ciascuna di esse

SELECT Table_Name, Num_Rows FROM USER_TABLES;

Interrogazione del dizionario dati n.1

➤ Visualizzare il nome delle tabelle definite dall'utente e il numero di tuple memorizzate in ciascuna di esse

SELECT Table_Name, Num_Rows FROM USER_TABLES;

R

Table_Name	Num_Rows
F	5
Р	6
FP	12

Interrogazione del dizionario dati n.2 (1/2)

Per ogni attributo della tabella delle forniture, visualizzare il nome dell'attributo, il numero di valori diversi e il numero di tuple che assumono valore NULL

Interrogazione del dizionario dati n.2 (1/2)

Per ogni attributo della tabella delle forniture, visualizzare il nome dell'attributo, il numero di valori diversi e il numero di tuple che assumono valore NULL

SELECT Column_Name, Num_Distinct, Num_Nulls
FROM USER_TAB_COL_STATISTICS
WHERE Table_Name = 'FP'
ORDER BY Column_Name;

Interrogazione del dizionario dati n.2 (2/2)

SELECT Column_Name, Num_Distinct, Num_Nulls
FROM USER_TAB_COL_STATISTICS
WHERE Table_Name = 'FP'
ORDER BY Column_Name;

R

Column_Name	Num_Distinct	Num_Nulls
CodF	4	0
CodP	6	0
Qta	4	0

Gestione delle tabelle

Integrità dei dati

Vincoli di integrità

- □ I dati all'interno di una base di dati sono corretti se soddisfano un insieme di regole di correttezza
 - le regole sono dette *vincoli di integrità*
 - esempio: Qta >=0
- □ Le operazioni di modifica dei dati definiscono un nuovo stato della base dati, non necessariamente corretto

Verifica dell'integrità

- - dalle procedure applicative, che effettuano tutte le verifiche necessarie
 - mediante la definizione di vincoli di integrità sulle tabelle
 - mediante la definizione di trigger

Procedure applicative

 □ All'interno di ogni applicazione sono previste tutte le verifiche di correttezza necessarie

Procedure applicative

- □ All'interno di ogni applicazione sono previste tutte le verifiche di correttezza necessarie
- - approccio molto efficiente

Procedure applicative

- - approccio molto efficiente
- - è possibile "aggirare" le verifiche interagendo direttamente con il DBMS
 - un errore di codifica può avere un effetto significativo sulla base di dati
 - la conoscenza delle regole di correttezza è tipicamente "nascosta" nelle applicazioni

Vincoli di integrità sulle tabelle (1/2)

- □ I vincoli di integrità sono
 - definiti nelle istruzioni CREATE o ALTER TABLE
 - memorizzati nel dizionario dati di sistema
- Durante l'esecuzione di qualunque operazione di modifica dei dati il DBMS verifica automaticamente che i vincoli siano osservati

Vincoli di integrità sulle tabelle (2/2)

- definizione dichiarativa dei vincoli, la cui verifica è affidata al sistema
 - il dizionario dei dati descrive tutti i vincoli presenti nel sistema
- unico punto centralizzato di verifica
 - impossibilità di aggirare la verifica dei vincoli

Vincoli di integrità sulle tabelle (2/2)

- definizione dichiarativa dei vincoli, la cui verifica è affidata al sistema
 - il dizionario dei dati descrive tutti i vincoli presenti nel sistema
- unico punto centralizzato di verifica
 - impossibilità di aggirare la verifica dei vincoli

- possono rallentare l'esecuzione delle applicazioni
- non è possibile definire tipologie arbitrarie di vincoli

esempio: vincoli su dati aggregati

Trigger (1/2)

- ☑ I trigger sono procedure eseguite in modo automatico quando si verificano opportune modifiche dei dati
 - definiti nell'istruzione CREATE TRIGGER
 - memorizzati nel dizionario dati del sistema
- Quando si verifica un evento di modifica dei dati sotto il controllo del trigger, la procedura viene eseguita automaticamente

Trigger (2/2)

- permettono di definire vincoli d'integrità di tipo complesso
 - normalmente usati insieme alla definizione di vincoli sulle tabelle
- unico punto centralizzato di verifica
 - impossibilità di aggirare la verifica dei vincoli

Trigger (2/2)

- permettono di definire vincoli d'integrità di tipo complesso
 - normalmente usati insieme alla definizione di vincoli sulle tabelle
- unico punto centralizzato di verifica
 - impossibilità di aggirare la verifica dei vincoli

- applicativamente complessi
- possono rallentare l'esecuzione delle applicazioni

Riparazione delle violazioni

- Se un'applicazione tenta di eseguire un'operazione che violerebbe un vincolo, il sistema può
 - impedire l'operazione, causando un errore di esecuzione dell'applicazione
 - eseguire un'azione compensativa tale da raggiungere un nuovo stato corretto
 - esempio: quando si cancella un fornitore, cancellare anche tutte le sue forniture

Vincoli d'integrità in SQL-92

- ➤ Nello standard SQL-92 è stata introdotta la possibilità di specificare i vincoli di integrità in modo dichiarativo, affidando al sistema la verifica della loro consistenza
 - vincoli di tabella
 - restrizioni sui dati permessi nelle colonne di una tabella
 - vincoli d'integrità referenziale
 - gestione dei riferimenti tra tabelle diverse
 - basati sul concetto di chiave esterna

Vincoli di tabella (1/2)

- ∑ Sono definiti su una o più colonne di una tabella
- ∑ Sono definiti nelle istruzioni di creazione di
 - tabelle
 - domini
- □ Tipologie di vincolo
 - chiave primaria
 - ammissibilità del valore nullo
 - unicità
 - vincoli generali di tupla

Vincoli di tabella (2/2)

- Sono verificati dopo ogni istruzione SQL che opera sulla tabella soggetta al vincolo
 - inserimento di nuovi dati
 - modifica del valore di colonne soggette al vincolo
- ∑ Se il vincolo è violato, l'istruzione SQL che ha causato la violazione genera un errore di esecuzione

Chiave primaria

- □ La chiave primaria è un insieme di attributi che identifica in modo univoco le righe di una tabella
- Può essere specificata una sola chiave primaria per una tabella

Chiave primaria

- □ La chiave primaria è un insieme di attributi che identifica in modo univoco le righe di una tabella
- Può essere specificata una sola chiave primaria per una tabella
- Definizione della chiave primaria
 - composta da un solo attributo

NomeAttributo Dominio PRIMARY KEY

Chiave primaria: esempio n. 1

CREATE TABLE F (CodF CHAR(5) PRIMARY KEY,

NomeF CHAR(20),

NSoci SMALLINT,

Sede CHAR(15));

Chiave primaria

- □ La chiave primaria è un insieme di attributi che identifica in modo univoco le righe di una tabella
- Può essere specificata una sola chiave primaria per una tabella
- Definizione della chiave primaria
 - composta da uno o più attributi

PRIMARY KEY (*ElencoAttributi*)

Chiave primaria: esempio n. 2

```
CREATE TABLE FP (CodF CHAR(5),

CodP CHAR(6),

Qta INTEGER

PRIMARY KEY (CodF, CodP));
```


Ammissibilità del valore nullo

- □ Il valore NULL indica l'assenza di informazioni
- Quando è obbligatorio specificare sempre un valore per l'attributo

NomeAttributo Dominio NOT NULL

• il valore nullo non è ammesso

NOT NULL: esempio

CREATE TABLE F (CodF CHAR(5),

NomeF CHAR(20) NOT NULL,

NSoci SMALLINT,

Sede CHAR(15));

Unicità

- Un attributo o un insieme di attributi non può assumere lo stesso valore in righe diverse della tabella
 - per un solo attributo
 NomeAttributo Dominio UNIQUE
 - per uno o più attributo

UNIQUE (ElencoAttributi)

 ≥ È ammessa la ripetizione del valore NULL (considerato sempre diverso)

Chiave candidata

- □ La chiave candidata è un insieme di attributi che potrebbe assumere il ruolo di chiave primaria
 - è univoca
 - può non ammettere il valore nullo
- □ La combinazione UNIQUE NOT NULL permette di definire una chiave candidata che non ammette valori nulli

NomeAttributo Dominio UNIQUE NOT NULL

Unicità: esempio

CREATE TABLE P (CodP CHAR(6),

NomeP CHAR(20) NOT NULL UNIQUE,

Colore CHAR(6),

Taglia SMALLINT,

Magazzino CHAR(15));

Vincoli generali di tupla

- Permettono di esprimere condizioni di tipo generale su ogni tupla
 - vincoli di tupla o di dominio
 NomeAttributo Dominio CHECK (Condizione)
 - possono essere indicati come condizione i predicati specificabili nella clausola WHERE
- ∑ La base di dati è corretta se la condizione è vera

Vincoli generali di tupla: esempio

CREATE TABLE F (CodF CHAR(5) PRIMARY KEY,

NomeF CHAR(20) NOT NULL,

NSoci SMALLINT

CHECK (NSoci>0),

Sede CHAR(15));

Vincoli d'integrità referenziale

 □ Permettono di gestire il legame tra tabelle mediante il valore di attributi

- la colonna CodF di FP può assumere valori già presenti nella colonna CodF di F
 - CodF in FP: colonna referenziante (o chiave esterna)
 - CodF in F: colonna referenziata (tipicamente la chiave primaria)

Definizione della chiave esterna

□ La chiave esterna è definita nell'istruzione
 □ CREATE TABLE della tabella referenziante

FOREIGN KEY (*ElencoAttributiReferenzianti*) REFERENCES

NomeTabella [(ElencoAttributiReferenziati)]

Definizione della chiave esterna

□ La chiave esterna è definita nell'istruzione
 □ CREATE TABLE della tabella referenziante

FOREIGN KEY (*ElencoAttributiReferenzianti*) REFERENCES

NomeTabella [(ElencoAttributiReferenziati)]

∑ Se gli attributi referenziati hanno lo stesso nome di quelli referenzianti, non è obbligatorio specificarli

Definizione della chiave esterna: esempio

```
CREATE TABLE FP (CodF CHAR(5),

CodP CHAR(6),

Qta INTEGER,

PRIMARY KEY (CodF, CodP),

FOREIGN KEY (CodF)

REFERENCES F(CodF),

FOREIGN KEY (CodP)

REFERENCES P(CodP));
```


□ Tabella FP (referenziante)

- □ Tabella FP (referenziante)
 - insert (nuova tupla)

- □ Tabella FP (referenziante)
 - insert (nuova tupla) -> No

- □ Tabella FP (referenziante)
 - insert (nuova tupla) -> No
 - update (CodF)

- □ Tabella FP (referenziante)
 - insert (nuova tupla) -> No
 - update (CodF) -> No

- □ Tabella FP (referenziante)
 - insert (nuova tupla) -> No
 - update (CodF) -> No
 - delete (tupla)

- □ Tabella FP (referenziante)
 - insert (nuova tupla) -> No
 - update (CodF) -> No
 - delete (tupla)-> Ok

- □ Tabella FP (referenziante)
 - insert (nuova tupla) -> No
 - update (CodF) -> No
 - delete (tupla)-> Ok
- □ Tabella F (referenziata)

- □ Tabella FP (referenziante)
 - insert (nuova tupla) -> No
 - update (CodF) -> No
 - delete (tupla)-> Ok
- □ Tabella F (referenziata)
 - insert (nuova tupla)

- □ Tabella FP (referenziante)
 - insert (nuova tupla) -> No
 - update (CodF) -> No
 - delete (tupla)-> Ok
- □ Tabella F (referenziata)
 - insert (nuova tupla) -> Ok

- □ Tabella FP (referenziante)
 - insert (nuova tupla) -> No
 - update (CodF) -> No
 - delete (tupla)-> Ok
- □ Tabella F (referenziata)
 - insert (nuova tupla) -> Ok
 - update (CodF)

- □ Tabella FP (referenziante)
 - insert (nuova tupla) -> No
 - update (CodF) -> No
 - delete (tupla)-> Ok
- □ Tabella F (referenziata)
 - insert (nuova tupla) -> Ok
 - update (CodF) -> aggiornare in cascata (cascade)

- □ Tabella FP (referenziante)
 - insert (nuova tupla) -> No
 - update (CodF) -> No
 - delete (tupla)-> Ok
- □ Tabella F (referenziata)
 - insert (nuova tupla) -> Ok
 - update (CodF) -> aggiornare in cascata (cascade)
 - delete (tupla)

- □ Tabella FP (referenziante)
 - insert (nuova tupla) -> No
 - update (CodF) -> No
 - delete (tupla)-> Ok
- □ Tabella F (referenziata)
 - insert (nuova tupla) -> Ok
 - update (CodF) -> aggiornare in cascata (cascade)
 - delete (tupla)-> aggiornare in cascata (cascade)

- □ Tabella FP (referenziante)
 - insert (nuova tupla) -> No
 - update (CodF) -> No
 - delete (tupla)-> Ok
- □ Tabella F (referenziata)
 - insert (nuova tupla) -> Ok
 - update (CodF) -> aggiornare in cascata (cascade)
 - delete (tupla)-> aggiornare in cascata (cascade)

impedire l'azione (no action)

- □ Impiegati (Matr, NomeI, Residenza, DNum)
- Dipartimenti (<u>DNum</u>, DNome, Sede)

□ Impiegati (referenziante)

- □ Impiegati (referenziante)
 - insert (nuova tupla)

- □ Impiegati (referenziante)
 - insert (nuova tupla) -> No

- □ Impiegati (referenziante)
 - insert (nuova tupla) -> No
 - update (DNum)

- □ Impiegati (referenziante)
 - insert (nuova tupla) -> No
 - update (DNum) -> No

- □ Impiegati (referenziante)
 - insert (nuova tupla) -> No
 - update (DNum) -> No
 - delete (tupla)

- □ Impiegati (referenziante)
 - insert (nuova tupla) -> No
 - update (DNum) -> No
 - delete (tupla)-> Ok

□ Dipartimenti (referenziata)

- □ Dipartimenti (referenziata)
 - insert (nuova tupla)

- □ Dipartimenti (referenziata)
 - insert (nuova tupla) -> Ok

- □ Dipartimenti (referenziata)
 - insert (nuova tupla) -> Ok
 - update (DNum)

- □ Dipartimenti (referenziata)
 - insert (nuova tupla) -> Ok
 - update (DNum) -> aggiornare in cascata (cascade)

- □ Dipartimenti (referenziata)
 - insert (nuova tupla) -> Ok
 - update (DNum) -> aggiornare in cascata (cascade)
 - delete (tupla)

- □ Dipartimenti (referenziata)
 - insert (nuova tupla) -> Ok
 - update (DNum) -> aggiornare in cascata (cascade)
 - delete (tupla)-> aggiornare in cascata (cascade)

- □ Dipartimenti (referenziata)
 - insert (nuova tupla) -> Ok
 - update (DNum) -> aggiornare in cascata (cascade)
 - delete (tupla)-> aggiornare in cascata (cascade)

impedire l'azione (no action)

- □ Dipartimenti (referenziata)
 - insert (nuova tupla) -> Ok
 - update (DNum) -> aggiornare in cascata (cascade)
 - delete (tupla)

-> aggiornare in cascata (cascade) impedire l'azione (no action) impostare a valore ignoto (set null)

□ Dipartimenti (referenziata)

- insert (nuova tupla) -> Ok
- update (DNum) -> aggiornare in cascata (cascade)
- delete (tupla)

-> aggiornare in cascata
 (cascade)
 impedire l'azione (no action)
 impostare a valore ignoto
 (set null)
 impostare a valore di

default (set default)

Politiche di gestione dei vincoli (1/3)

 □ I vincoli d'integrità sono verificati dopo ogni istruzione SQL che potrebbe causarne la violazione

Politiche di gestione dei vincoli (1/3)

- □ I vincoli d'integrità sono verificati dopo ogni istruzione SQL che potrebbe causarne la violazione
- Non sono ammesse operazioni di inserimento e modifica della tabella referenziante che violino il vincolo

Politiche di gestione dei vincoli (2/3)

- Operazioni di modifica o cancellazione dalla tabella referenziata causano sulla tabella referenziante:
 - CASCADE: propagazione dell'operazione di aggiornamento o cancellazione
 - SET NULL/DEFAULT: null o valore di default in tutte le colonne delle tuple che hanno valori non più presenti nella tabella referenziata
 - NO ACTION: non si esegue l'azione invalidante

Politiche di gestione dei vincoli (3/3)

○ Nell'istruzione CREATE TABLE della tabella referenziante

```
FOREIGN KEY (ElencoAttributiReferenzianti)
REFERENCES
NomeTabella [(ElencoAttributiReferenziati)]
[ON UPDATE]
<CASCADE | SET DEFAULT | SET NULL |
 NO ACTION>]
[ON DELETE
<CASCADE | SET DEFAULT | SET NULL |
 NO ACTION>]
```


Base dati di esempio (1/6)

DB forniture prodotti

- tabella P: descrive i prodotti disponibili
 - chiave primaria: CodP
 - nome prodotto non può assumere valori nulli o duplicati
 - taglia è sempre maggiore di zero

Base dati di esempio (2/6)

CREATE TABLE P (CodP CHAR(6) PRIMARY KEY,

NomeP CHAR(20) NOT NULL UNIQUE,

Colore CHAR(6),

Taglia SMALLINT

CHECK (Taglia > 0),

Magazzino CHAR(15));

Base dati di esempio (3/6)

- DB forniture prodotti
 - tabella F: descrive i fornitori
 - chiave primaria: CodF
 - nome fornitore non può assumere valori nulli
 - numero di soci è sempre maggiore di zero

Base dati di esempio (4/6)

CREATE TABLE F (CodF CHAR(5) PRIMARY KEY,

NomeF CHAR(20) NOT NULL,

NSoci SMALLINT

CHECK (NSoci>0),

Sede CHAR(15));

Base dati di esempio (5/6)

□ DB forniture prodotti

- tabella FP: descrive le forniture, mettendo in relazione i prodotti con i fornitori che li forniscono
 - chiave primaria: (CodF, CodP)
 - quantità non può assumere il valore null ed è maggiore di zero
 - vincoli di integrità referenziale

Base dati di esempio (6/6)

```
CREATE TABLE FP (CodF
                         CHAR(5),
                  CodP CHAR(6),
                         INTEGER
                  Ota
                   CHECK (Qta IS NOT NULL and Qta>0),
                  PRIMARY KEY (CodF, CodP),
                  FOREIGN KEY (CodF)
                         REFERENCES F(CodF)
                  ON DELETE NO ACTION
                  ON UPDATE CASCADE,
                  FOREIGN KEY (CodP)
                         REFERENCES P(CodP)
                  ON DELETE NO ACTION
                  ON UPDATE CASCADE);
```