SEC. 5.3 DE MOIVRE'S THEOREM

RECALL
$$Z_1 Z_2 = \Gamma_1 \Gamma_2 \left(\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2) \right)$$
 $\left(3 + 5i \right)^2 = \Gamma_1 \Gamma_1 \left(\cos \theta_1 + \theta_1 \right) + i \sin(\theta_1 + \theta_2)$
 $\left(a + bi \right)^2$
 $Z^2 = \Gamma^2 \left(\cos 2\theta + i \sin 2\theta \right)$
 $\left(a + bi \right)^3$
 $Z^3 = \Gamma^3 \left(\cos 3\theta + i \sin 3\theta \right)$

DE MOIVRES $Z^n = \Gamma^n \left(\cos n\theta + i \sin n\theta \right)$

THEOREM $Z^n = \Gamma^n \left(\cos n\theta + i \sin n\theta \right)$

EX. $\left(2 \left(\cos 3\theta + i \sin 3\theta \right) \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 5\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 6\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 6\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 6\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 6\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 6\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 6\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 6\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 6\theta \right)$
 $Z^5 = 2^5 \left(\cos 5 \cdot 3\theta + i \sin 6\theta \right)$

DE MOIVRÉ'S THEOREM FOR FINDING ROOTS

LET
$$Z = r(\cos \phi + i \sin \phi)$$
 $Z^{\frac{1}{N}} = r^{\frac{1}{N}}(\cos \frac{\phi + 3\omega r}{N} + i \sin \frac{\phi + 3\omega r}{N})$
 $V = 0, 1, 2, 3, 4 \dots$

EX. $27(\cos \phi + i \sin \phi)$

FIND $3 = n$
 $\cos \phi = \sin \phi$
 $\cos \phi = \cos \phi$
 $\cos \phi =$