设计报告

课程名称: EDA 原理及应用

设计内容: 13 进制计数器

 学
 院:
 信息科学与技术学院

 专业班级:
 信工 1702 班

 姓
 名:
 黄玥

 学
 号:
 2017040481

2019 年 11 月 8 日

北京化工大学

一.设计要求

使用有限自动状态机和基本的逻辑门、触发器资源(不得直接使用专用计数器芯片)实现 13 进制的计数器,并在七段数码管上以十进制数的形式显示计数器的计数功能。

注: 必须要有详细设计过程, 真值表, 状态图等

二.设计过程

设计所需器件

和逻辑门器件若干。

由于需要实现13进制计数器,可以画出状态图

由于需要设计 13 进制加法计数器,考虑使用触发器实现,0-12 的二进制编码为 0000 到 1100,所以用四个触发器即可实现。

因为需要在两个七段数码管上显示,所以还需要两个译码器芯片。因此共需要时钟输入沿、四个触发器芯片、两个七段数码管译码芯片

设计思路

考虑使用 JK 触发器实现,由于 JK 触发器的状态图为

可根据有限自动状态机列出状态转换真值表

Q ₃ ⁿ	Q ₂ ⁿ	Q ₁ ⁿ	Q ₀ ⁿ	Q ₃ ⁿ⁺¹	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	J ₃	J ₂	J_1	Jo	K ₃	K ₂	K ₁	K ₀
0	0	0	0	0	0	0	1	0	0	0	1	X	X	Χ	X
0	0	0	1	0	0	1	0	0	0	1	Χ	Χ	X	Χ	1
0	0	1	0	0	0	1	1	0	0	Χ	1	Χ	Χ	0	Χ
0	0	1	1	0	1	0	0	0	1	Χ	Χ	Χ	Χ	1	1
0	1	0	0	0	1	0	1	0	Χ	0	1	Χ	0	Χ	Χ
0	1	0	1	0	1	1	0	0	Χ	1	Χ	Χ	0	Χ	1
0	1	1	0	0	1	1	1	0	Χ	Χ	1	Χ	0	0	Χ
0	1	1	1	1	0	0	0	1	Χ	Χ	Χ	Χ	1	1	1
1	0	0	0	1	0	0	1	Χ	0	0	1	0	Χ	Χ	Χ
1	0	0	1	1	0	1	0	Χ	0	1	Χ	0	X	Χ	1
1	0	1	0	1	0	1	1	Χ	0	Χ	1	0	Χ	0	Χ
1	0	1	1	1	1	0	0	Χ	1	Χ	Χ	0	X	1	1
1	1	0	0	0	0	0	0	Χ	Χ	0	0	1	1	Χ	Χ

根据真值表可以画出 $J_3J_2J_1J_0K_3K_2K_1K_0$ 关于 Q_3 Q_2 Q_1 Q_0 的卡诺图并

化简 J_3 、 J_2 、 J_1 、 J_0 、 K_3 、 K_2 、 K_1 、 K_0 。

J₃卡诺图

Q_3 Q_2 Q_1 Q_0	00	01	11	10
00	0	0	0	0
01	0	0	1	0
11	X	X	X	X

10	Х	Х	Х	Х

 $J_3 {=} Q_2 \; Q_1 \; Q_0$

J₂卡诺图

Q ₃ Q ₂ Q ₁ Q ₀	00	01	11	10
00	0	0	1	0
01	X	X	X	X
11	Х	X	X	X
10	0	0	1	0

 $J_2 = Q_1 \; Q_0$

J₁卡诺图

Q_3 Q_2 Q_1 Q_0	00	01	11	10
00	0	1	X	X
01	0	1	X	X
11	0	X	X	X
10	0	1	X/	Х

 $J_1 = Q_0$

J₀卡诺图

Q ₃ Q ₂ Q ₁ Q ₀	00	01	11	10
00	1	X	Х	1
01	1	Х	X	1
11	0	X	X	X
10	1	X	Х	1

 $J_0 {=} \overline{Q}_3 {+} \overline{Q}_2$

K₃卡诺图

Q ₃ Q ₂ Q ₁ Q ₀	00	01	11	10
00	X	Χ	Χ	X
01	X	Х	Х	X
11	1	Х	Х	X
10	0	0	0	0

 $K_3 = Q_2$

K2卡诺图

Q_3 Q_2 Q_1 Q_0	00	01	11	10
00	X	X	X	X
01	0	0	1	0
11	1	X	X	X
10	X	Х	X	X

 $K_2 = Q_3 + Q_1Q_0$

K₁卡诺图

Q ₃ Q ₂ Q ₁ Q ₀	00	01	11	10
00	X	X	1	0
01	Х	X	1	0
11	Х	X	X	X
10	Х	X	1/	0

 $K_1 = Q_0$

K₀卡诺图

$Q_3 Q_2 Q_1 Q_0$	00	01	11	10
00	X	1	1	X
01	X	1	1	Χ
11	Х	X	X	X
10	Х	1	1	Х

 $K_0 = 1$

根据 J_3 、 J_2 、 J_1 、 J_0 、 K_3 、 K_2 、 K_1 、 K_0 与 Q_3 、 Q_2 、 Q_1 、 Q_0 的关系可写出触发器的驱动方程为

$$J_0 = \overline{Q}_3 + \overline{Q}_2$$
, $K_0 = 1$

$$J_1 = K_1 = Q_0$$

$$J_2 = Q_1 Q_0$$
, $K_2 = Q_3 + Q_1 Q_0$

$$J_3 {=} \, Q_2 \; Q_1 \; Q_0 \; , \quad {K_3} {=} \, Q_2$$

而在将 Q₃Q₂ Q₁ Q₀ 输入译码器, 再将译码器输出连接数码管, 以点亮数码管时,由于有两位数码管,但只有一个四位二进制数,因此需要根据这 13 个状态和两位数码管显示的关系,向译码器输入高低位各四位二进制数 DCBA,不能直接输入 Q₃ Q₂Q₁ Q₀ 对低位的数码管,译码器输入的 DCBA 在 0-9 时与 Q₃ Q₂Q₁ Q₀ 数值相同,但是在大于 9 即 10、11、12 三个状态时,低位数码管的输入 DCBA 实际应为 0-2,因此可列真值表如下

Q ₃ ⁿ	Q ₂ ⁿ	Q ₁ ⁿ	Q ₀ ⁿ	D	С	В	А
0	0	0	0	0	0	0	0

0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	1
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	1
0	1	1	0	0	1	1	0
0	1	1	1	0	1	1	1
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	1
1	0	1	0	0	0	0	0
1	0	1	1	0	0	0	1
1	1	0	0	0	0	1	0

画出 D 的卡诺图

Q ₃ Q ₂ \ Q ₁ Q ₀	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	Х	Х	Х
10	1	1	0	0

 $D = \, Q_3 \; \overline{Q}_2 \overline{Q}_1$

画出 C 的卡诺图

Q ₃ Q ₂ \ Q ₁ Q ₀	00	01	11	10
00	0	0	0	0

01	1	1	1	
11	0	X	X	X
10	0	0	0	0

 $C = \overline{Q}_3 \; Q_2$

画出 B 的卡诺图

Q ₃ Q ₂ \ Q ₁ Q ₀	00	01	11	10
00	0	0	1)
01	0	0	1	1
11		Χ	Х	X
10	0	0	0	0

 $B = \overline{Q}_3 \ Q_1 + \ Q_3 \ Q_2$

画出 A 的卡诺图

Q ₃ Q ₂ \ Q ₁ Q ₀	00	01	11	10
00	0	1	1	0
01	0	1	1	0
11	0	X	X	Х
10	0	1	1/	0

 $A = Q_0$

对高位的数码管,在 0-9 时显示一直为 0,但在 10、11、12 这三个状态时,显示为 1,因此译码器输入的 DCBA 与 Q_3 Q_2 Q_1 Q_2 关系如下

Q ₃ ⁿ	Q ₂ ⁿ	Q_1^n	Q_0^n	D	С	В	А

0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	0	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0
1	0	1	0	0	0	0	1
1	0	1	1	0	0	0	1
1	1	0	0	0	0	0	1

由图知 D=C=B=0

画出 A 的卡诺图

Q ₃ Q ₂ \ Q ₁ Q ₀	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	X	X	X
10	0	0	1	1

 $A = Q_3 Q_2 + Q_3 Q_1$

通过逻辑门电路分别将输入高位和低位数码管的译码器芯片的

DCBA 用 Q₃ Q₂Q₁ Q₀ 之间的关系表示,即可画出电路。

完整电路图

注:在数码管和译码器之间添加负载电阻是因为仿真后发现加上负载电阻能够使数码管的显示更加稳定。不加虽然也可以正常运行,但数字有时会会出现闪烁。

将 Q₃ Q₂Q₁ Q₀分别定义为 d 端口、c 端口、b 端口、a 端口,对 其做瞬态分析,如下图,可知计数器确实起到了从 0000 到 1100 再跳变回 0000 的计数过程。

具体 Multisim 文件见附件。

三.思考与改进

如果不要求使用有限自动状态机,可以使用异步 13 进制清零法,比较容易理解,使用的逻辑门器件也较少,电路图如下。

即将前一个触发器的输出输入到后一个触发器作为时钟沿以实现计数,再控制触发器的清零端使之整体置零即可。

四.总结与心得

这次设计 13 进制计数器的过程中, 在复习和巩固了数电知识的同时, 理解了有限自动状态机的重要性。锻炼了列写真值表和通过卡诺图化简的能力。也对逻辑门器件的使用有了更深的理解。