P3057

[4660]-1197

[Total No. of Pages :2

M.E. (E&TC) (VLSI & Embedded Systems) ANALOG CMOS DESIGN

(2013 Credit Pattern) (Semester - II) (504207)

Time: 3 Hours] Instructions to the candidates:		[Max. Marks:50
1) 2) 3)	Answer any FIVE questions. Neat diagrams must be drawn wherever necessary. Assume suitable data if necessary.	
Q1) a)	Explain in detail MOS as a active diode and resistor.	[4]
b)	Write short note on CMOS inverter as an amplifier.	[3]
c)	Draw and explain single MOSFET current sink.	[3]
Q2) a)	Draw cascade current sink. What are the techniques to in	nprove vmin.[4]
b)	Justify the necessity of band gap reference. Give the principle of BGR & conventional BGR. Give the necessar	
c)	Explain in detail common source amplifier.	[3]
Q3) a)	Draw and explain CMOS OPAMP.	[5]
b)	Explain the concept of low noise OPAMP.	[3]
c)	Explain in brief the output amplifier of CMOS OPAMP.	[2]
Q4) a)	Write short note on micro power OPAMP.	[5]
b)	Write short note on weak inversion, MOS small signal a channel regine.	models & short [3]
c)	Draw and explain differential amplifier.	[2]

Q5)	a)	Explain in detail switched capacitor.	[4]
	b)	Write short note on trends in RF chip design.	[4]
	c)	What are the techniques to improve the bandwidth.	[2]
Q6)	a)	Explain the concept of Zero as bandwidth enhancers.	[4]
	b)	Explain in detail open circuit and short circuit method.	[4]
	c)	Write short note on Tuned amplifier.	[2]
Q7)	a)	Explain the concept of power constrained noise optimization.	[5]
	b)	Derive the expression for intrinsic MOSFET of two port noise parameters	ter. [5]
Q8)	a)	Explain in detail Low noise amplifier.	[5]
	b)	Explain in detail the LNA topologies.	[5]