

GRADES-NDA 2020

Context-Free Path Querying with Single-Path Semantics by Matrix Multiplication

Arseniy Terekhov, Artyom Khoroshev, Semyon Grigorev, Rustam Azimov

JetBrains Research, Programming Languages and Tools Lab Saint Petersburg University

June 14, 2020

Context-Free Path Querying

Navigation through a graph

- Are nodes A and B on the same level of hierarchy?
- Is there a path of form Upⁿ Downⁿ?
- Find all paths of form
 Upⁿ Downⁿ which start from the node A

- $\mathbb{G} = (\Sigma, N, P)$ context-free grammar in normal form
 - ▶ $A \rightarrow BC$, where $A, B, C \in N$
 - ▶ $A \rightarrow x$, where $A \in N, x \in \Sigma \cup \{\varepsilon\}$
 - $L(\mathbb{G}, A) = \{ \omega \mid A \Rightarrow^* \omega \}$

- $\mathbb{G} = (\Sigma, N, P)$ context-free grammar in normal form
 - ▶ $A \rightarrow BC$, where $A, B, C \in N$
 - ▶ $A \rightarrow x$, where $A \in N, x \in \Sigma \cup \{\varepsilon\}$
 - $L(\mathbb{G}, A) = \{ \omega \mid A \Rightarrow^* \omega \}$
- G = (V, E, L) directed graph
 - $v \stackrel{l}{\rightarrow} u \in E$
 - L ⊆ Σ

- $\mathbb{G} = (\Sigma, N, P)$ context-free grammar in normal form
 - ▶ $A \rightarrow BC$, where $A, B, C \in N$
 - ▶ $A \rightarrow x$, where $A \in N, x \in \Sigma \cup \{\varepsilon\}$
 - $L(\mathbb{G},A) = \{\omega \mid A \Rightarrow^* \omega\}$
- G = (V, E, L) directed graph
 - $\mathbf{v} \stackrel{l}{\rightarrow} u \in E$
 - $L \subset \Sigma$
- $\omega(\pi) = \omega(v_0 \xrightarrow{l_0} v_1 \xrightarrow{l_1} \cdots \xrightarrow{l_{n-2}} v_{n-1} \xrightarrow{l_{n-1}} v_n) = l_0 l_1 \cdots l_{n-1}$

- $\mathbb{G} = (\Sigma, N, P)$ context-free grammar in normal form
 - ▶ $A \rightarrow BC$, where $A, B, C \in N$
 - ▶ $A \rightarrow x$, where $A \in N, x \in \Sigma \cup \{\varepsilon\}$
 - $L(\mathbb{G}, A) = \{ \omega \mid A \Rightarrow^* \omega \}$
- G = (V, E, L) directed graph
 - $\mathbf{v} \stackrel{l}{\rightarrow} u \in E$
 - $L \subset \Sigma$
- $\omega(\pi) = \omega(v_0 \xrightarrow{l_0} v_1 \xrightarrow{l_1} \cdots \xrightarrow{l_{n-2}} v_{n-1} \xrightarrow{l_{n-1}} v_n) = l_0 l_1 \cdots l_{n-1}$
- $R_A = \{(n, m) \mid \exists n\pi m, \text{ such that } \omega(\pi) \in L(\mathbb{G}, A)\}$

Matrix-Based Algorithm: Relational Query Semantics

Algorithm Context-free path querying algorithm

- 1: function EVALCFPQ($D = (V, E, L), G = (\Sigma, N, P)$) 2: $n \leftarrow |V|$
- 3: $T \leftarrow \{T^{A_i} \mid A_i \in N, T^{A_i} \text{ is a matrix } n \times n, T^{A_i}_{k,l} \leftarrow \text{false}\}$
- 4: for all $(i, x, j) \in E$, $A_k \mid A_k \to x \in P$ do $T_{i,j}^{A_k} \leftarrow \text{true}$
- 5: for all $A_k \mid A_k \to \varepsilon \in P$ do
- 6: for all $i \in \{0, \dots, n-1\}$ do $T_{i,i}^{A_k} \leftarrow \text{true}$
- 7: while any matrix in T is changing do
- 8: for $A_i \rightarrow A_j A_k \in P$ do $T^{A_i} \leftarrow T^{A_i} + (T^{A_j} \times T^{A_k})$
- 9: **return** *T*

Context-Free Path Querying: Single-Path Query Semantics

• $R_A = \{(n, m) \mid \exists n\pi m$, such that $\omega(\pi) \in L(\mathbb{G}, A)\}$ — answers for the relational query semantics

Context-Free Path Querying: Single-Path Query Semantics

- $R_A = \{(n, m) \mid \exists n\pi m$, such that $\omega(\pi) \in L(\mathbb{G}, A)\}$ answers for the relational query semantics
- For all $A \in N$, for all $(n, m) \in R_A$ also return some such path $n\pi m$
 - usually the shortest path is returned
 - returned path can be used as a proof of existence

Research Questions

- Can we extend the matrix-based CFPQ algorithm to single-path query semantics?
- What the cost of such extension?
- Can we achieve high performance of CFPQ integrated with existing graph database?
- Does using GPGPU still improve performance over CPU versions?

• PathIndex = (left, right, middle, height, length)

- PathIndex = (left, right, middle, height, length)
- $\bot = (0, 0, 0, 0, 0)$

- PathIndex = (left, right, middle, height, length)
- $\bullet \perp = (0,0,0,0,0)$

$$PI_1 \otimes PI_2 = (PI_1.left, PI_2.right, PI_1.right, max(PI_1.height, PI_2.height) + 1,$$

 $PI_1.length + PI_2.length).$

- PathIndex = (left, right, middle, height, length)
- $\bullet \perp = (0,0,0,0,0)$

$$PI_1 \otimes PI_2 = (PI_1.left, PI_2.right, PI_1.right, max(PI_1.height, PI_2.height) + 1,$$

 $PI_1.length + PI_2.length).$

$$PI_1 \oplus PI_2 = \begin{cases} PI_1, & \text{if } PI_1.height \leq PI_2.height \\ PI_2, & \text{otherwise} \end{cases}$$

Matrix-Based Algorithm: Single-Path Query Semantics

Algorithm CFPQ algorithm w.r.t. single-path query semantics

- 1: function EVALCFPQ($D = (V, E), G = (N, \Sigma, P)$)
- 2: $n \leftarrow |V|$
- 3: $T \leftarrow \{T^{A_i} \mid A_i \in \mathbb{N}, T^{A_i} \text{ is a matrix } n \times n, T^{A_i}_{k,l} \leftarrow \bot \}$
- 4: for all $(i, x, j) \in E$, $A_k \mid A_k \rightarrow x \in P$ do $T_{i,j}^{A_k} \leftarrow (i, j, i, 1, 1)$
- 5: for $A_k \mid A_k \to \varepsilon \in P$ do $T_{i,i}^{A_k} \leftarrow (i,i,i,1,0)$
- 6: while any matrix in T is changing do
- 7: for $A_i \rightarrow A_j A_k \in P$ do $T^{A_i} \leftarrow T^{A_i} + (T^{A_j} \odot T^{A_k})$
- 8: **return** *T*

Matrix-Based Algorithm: Technical Details

- We can remove *length* or *height* to reduce memory consumption
- The PathIndex operations can be represented as bitwise atomic operations
- We still can use existing high-performance libraries for matrix operations if they support the creation of custom operations

• After constructing a set of matrices with PathIndexes, we can extract the required path $i\pi j$ for every node pair i,j and non-terminal A if such path exists

- After constructing a set of matrices with PathIndexes, we can extract the required path $i\pi j$ for every node pair i,j and non-terminal A if such path exists
 - ▶ The path which forms a string with minimal height of derivation tree

- After constructing a set of matrices with PathIndexes, we can extract the required path $i\pi j$ for every node pair i,j and non-terminal A if such path exists
 - ▶ The path which forms a string with minimal height of derivation tree
 - ▶ The shortest path

- After constructing a set of matrices with PathIndexes, we can extract the required path $i\pi j$ for every node pair i,j and non-terminal A if such path exists
 - ▶ The path which forms a string with minimal height of derivation tree
 - ► The shortest path
- Linear complexity in the length of the extracted path

• We use RedisGraph graph database as storage

- We use RedisGraph graph database as storage
- CPU-based implementations use SuiteSparse implementation of GraphBLAS, which provides a set of sparse matrix operations
 - ▶ RG_CPU_{rel} for the relation query semantics

- We use RedisGraph graph database as storage
- CPU-based implementations use SuiteSparse implementation of GraphBLAS, which provides a set of sparse matrix operations

 - ▶ RG_CPU_{rel} for the relation query semantics
 ▶ RG_CPU_{path} for the single-path query semantics

- We use RedisGraph graph database as storage
- CPU-based implementations use SuiteSparse implementation of GraphBLAS, which provides a set of sparse matrix operations
 - ▶ RG_CPU_{rel} for the relation query semantics
 - ► RG_CPU for the single-path query semantics
- GPGPU-based implementations with sparse matrix representation
 - RG_CUSP_{rel} relational query semantics, utilizes a CUSP library for matrix operations

- We use RedisGraph graph database as storage
- CPU-based implementations use SuiteSparse implementation of GraphBLAS, which provides a set of sparse matrix operations
 - ▶ RG_CPU_{rel} for the relation query semantics
 - ► RG_CPU ret for the single-path query semantics
- GPGPU-based implementations with sparse matrix representation
 - RG_CUSP_{rel} relational query semantics, utilizes a CUSP library for matrix operations
 - ► RG_SPARSE_{rel} relational query semantics, uses low-latency on-chip shared memory for the hash table of each row of the result matrix

- We use RedisGraph graph database as storage
- CPU-based implementations use SuiteSparse implementation of GraphBLAS, which provides a set of sparse matrix operations
 - ▶ RG_CPU_{rel} for the relation query semantics
 - ► RG_CPU^{rer}_{path} for the single-path query semantics
- GPGPU-based implementations with sparse matrix representation
 - RG_CUSP_{rel} relational query semantics, utilizes a CUSP library for matrix operations
 - ► RG_SPARSE_{rel} relational query semantics, uses low-latency on-chip shared memory for the hash table of each row of the result matrix
 - RG_SPARSE path single-path query semantics, operating over PathIndex semiring

Dataset¹

RDF Name	#V	#E			
univ-bench	179	413			
pizza	671	2,604			
wine	733	2,450			
core	1,323	8,684			
pathways	6,238	37,196			
go-hierarchy	45,007	1,960,436			
enzyme	48,815	219,390			
eclass_514en	239,111	1,047,454			
go	272,770	1,068,622			
geospecies	450,609	4,622,922			

¹Queries is based on the context-free grammars for nested parentheses

Evaluation

OS: Ubuntu 18.04

• CPU: Intel core i7 6700 3,4GHz

• RAM: DDR4 64 Gb

• GPGPU: NVIDIA GeForce 1070 (8Gb RAM)

Evaluation: CFPQ²

	Relational semantics index					Single path semantics index				
Name	RG_CPU _{rel} RG_C		RG_C	_CUSP _{rel} RG_SPARSE _{rel}		RG_CPU _{path}		RG_SPARSE _{path}		
	Time	Mem	Time	Mem	Time	Mem	Time	Mem	Time	Mem
core	0.004	0.3	0.022	2.0	0.010	0.1	0.002	0.3	0.016	0.1
eclass 514en	0.067	13.8	0.075	14.0	0.166	16.0	0.195	31.2	0.496	26.0
enzyme	0.018	5.9	0.021	0.1	0.018	4.0	0.029	8.1	0.043	6.0
go-hierarchy	0.091	16.3	0.433	650.0	0.108	121.2	0.976	92.0	0.336	125.0
go	0.604	28.8	0.590	70.0	0.365	30.2	1.286	75.7	0.739	45.4
pathways	0.011	0.1	0.019	0.1	0.007	0.1	0.021	0.5	0.021	2.0
univ-bench	0.002	0.3	0.010	0.1	0.005	0.1	0.013	0.3	0.007	0.1
pizza	0.030	1.8	0.021	4.0	0.006	0.1	0.075	5.5	0.009	0.1
wine	0.017	3.5	0.032	6.0	0.009	0.1	0.117	7.1	0.015	0.2
geospecies	7.146	16934.2		_	0.856	5274	15.134	35803.6	1.935	5282

²Time in seconds and memory is measured in megabytes

Evaluation: Path Extraction Time For go

Evaluation: Path Extraction Time For geospecies

 GPGPUs utilization significantly increases the performance of CFPQ for both query semantics

- GPGPUs utilization significantly increases the performance of CFPQ for both query semantics
- Implementations with sparse matrix representation are significantly faster than others

- GPGPUs utilization significantly increases the performance of CFPQ for both query semantics
- Implementations with sparse matrix representation are significantly faster than others
- The cost of computing matrices with PathIndexes for single-path query semantics is not high

- GPGPUs utilization significantly increases the performance of CFPQ for both query semantics
- Implementations with sparse matrix representation are significantly faster than others
- The cost of computing matrices with PathIndexes for single-path query semantics is not high
- The additional running time of the path extraction is small and linear in the length of the path

- GPGPUs utilization significantly increases the performance of CFPQ for both query semantics
- Implementations with sparse matrix representation are significantly faster than others
- The cost of computing matrices with PathIndexes for single-path query semantics is not high
- The additional running time of the path extraction is small and linear in the length of the path
- The matrix-based algorithm paired with a suitable database is a promising way to make CFPQ applicable for real-world data analysis

- GPGPUs utilization significantly increases the performance of CFPQ for both query semantics
- Implementations with sparse matrix representation are significantly faster than others
- The cost of computing matrices with PathIndexes for single-path query semantics is not high
- The additional running time of the path extraction is small and linear in the length of the path
- The matrix-based algorithm paired with a suitable database is a promising way to make CFPQ applicable for real-world data analysis
- Dataset is published: both graphs and queries
 - ► Link: https://github.com/JetBrains-Research/CFPQ_Data
- Implementations are available on GitHub
 - ► Link: https://github.com/YaccConstructor/RedisGraph

Future Research

• Extend the matrix-based CFPQ algorithm to all-path query semantics

Future Research

- Extend the matrix-based CFPQ algorithm to all-path query semantics
- Update the query results dynamically when data changes

Future Research

- Extend the matrix-based CFPQ algorithm to all-path query semantics
- Update the query results dynamically when data changes
- Improve the dataset
 - Include real-world cases from the area of static code analysis
 - ▶ Find new applications that required CFPQ, such as graph segmentation

Acknowledgments

- We thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions
- Special thanks to
 - Габору
 - Флетчеру
 - Рою

Contact Information

- Semyon Grigorev:
 - s.v.grigoriev@spbu.ru
 - ► Semen.Grigorev@jetbrains.com
- Rustam Azimov:
 - rustam.azimov19021995@gmail.com
 - Rustam.Azimov@jetbrains.com
- Arseniy Terekhov: simpletondl@yandex.ru
- Artyom Khoroshev: arthoroshev@gmail.com
- Dataset: https://github.com/JetBrains-Research/CFPQ_Data
- Algorithm implementations: https://github.com/YaccConstructor/RedisGraph

Thanks!