MODELING AND CONTROL OF CYBER-PHYSICAL SYSTEMS

Modeling of Cyber-Physical Systems

Mathematical modeling for CPS

CPSs
$$\stackrel{\text{set of devices that}}{\longrightarrow} \begin{cases} \text{inter-communicate} \\ \text{compute} \\ \text{interact with the physical-world} \end{cases} \begin{cases} \text{Hybrid systems (dynamic switching)} \\ \text{CPSs under attacks (Part I)} \\ \text{Multi-agent systems (Part II)} \end{cases}$$

$$CPS \text{ under attacks (on the sensors)} \longrightarrow \begin{cases} x(k+1) = Ax(k) \\ y(k) = Cx(k) + a(k) \end{cases} \text{ no } u(k), \text{ no } b(k) \text{ (actuators)} \end{cases}$$

$$A \in \mathbb{R}^{n,n}, \quad C \in \mathbb{R}^{q,n} \quad a(k) \in \mathbb{R}^{q}, \quad q = \text{number of sensors} \end{cases}$$

CPS under attacks (on the sensors)
$$\longrightarrow \begin{cases} x(k+1) = Ax(k) \\ y(k) = Cx(k) + a(k) \end{cases}$$
 no $u(k)$, no $b(k)$ (actuators)
$$A \in \mathbb{R}^{n,n} \quad C \in \mathbb{R}^{q,n} \quad a(k) \in \mathbb{R}^q \quad a = \text{number of sensors}$$

Secure State Estimation of CPSs [FUSION CENTER]

<u>Without attacks</u> Observability $\iff rank(\mathcal{O}_n) = n, \ \mathcal{O}_n = [C \ CA \ ... \ CA^{n-1}]^T$ (observability $matrix) \Rightarrow x(0)$ found by pseudo-inversion of the system $y = \mathcal{O}_n x(0) \longrightarrow x(0) = \mathcal{O}_n^{\dagger} y$

matrix)
$$\Rightarrow x(0)$$
 found by pseudo-inversion of the system $y = \mathcal{O}_n x(0) \longrightarrow x(0) = \mathcal{O}_n^{\dagger} y$

Presence of attacks no model for the attacks \Longrightarrow

$$\begin{cases} y(0) = Cx(0) + a(0) \\ y(1) = CAx(0) + a(1) \\ \vdots & \vdots \\ y(T) = CA^{T-1}x(0) + a(T) \end{cases}$$
(∞ solutions)

Assumption (sparsity) $||a||_0 \le h \ll q$ (by adding this the problem may have a unique solution)

Under which conditions can we solve the problem?

— Simplification of the problem

$$A = I_n$$
 (the system is static) $\longrightarrow x(k+1) = x(k) = x \xrightarrow{\text{problem becomes}} y = Cx + a$ s.t. $||a||_0 \le h$

$$A = I_n$$
 (the system is static) $\longrightarrow x(k+1) = x(k) = x \xrightarrow{p} y = Cx + a$ s.t.
Prop(Correctability) (resilience to h attacks) $\iff \forall z \in \mathbb{R}^n, \ \|\mathcal{O}_T z\|_0 > 2h$

A necessary condition for correctability... $q \ge 2h + n$ $\begin{cases} \text{large } q \text{ is not sufficient} \\ \text{a minimum } q \text{ is required} \end{cases}$

How can I solve the problem? → Reformulation of the problem

- 0. if Correctable, the Decoder $\mathcal{D}_0 \doteq \min_{x \in \mathbb{R}^n, a \in \mathbb{R}^q} ||a||_0$ s.t. y = Cx + a corrects h attacks;
- 1. $y = Cx + a + \text{noise} \longrightarrow y \sim Cx + a \longrightarrow \min_{x \in \mathbb{R}^n} \frac{1}{2} ||y Cx||_2^2$ (Least-Squares problem)

2.
$$\ell_0$$
-norm \Rightarrow bad function $\Longrightarrow_{\text{convex relaxation}} \ell_1$ -norm (best convex approximation) \leftarrow **promotes sparsity**

$$(0)+(1)+(2)\Longrightarrow z=\underset{x\in\mathbb{R}^n,a\in\mathbb{R}^q}{\operatorname{argmin}}\,\frac{1}{2}\|y-Gz\|_2^2+\lambda\|a\|_1\quad G=(C\quad I),\ z=\begin{pmatrix}x\\a\end{pmatrix}\Longleftrightarrow\begin{cases}\text{convex and continuous}\\\text{unconstrained}\\\text{non differentiable in }0\end{cases}$$

(Partial) LASSO $\xrightarrow{\text{solved by using}} x(k+1) = \mathbb{S}_{\lambda\tau}[x(k) + \tau C^T(y - Cx(k))]$ (IST algorithm), $k \to \text{iteration}$ \Leftarrow derived from the alternating minimization of the surrogate functional $\mathcal{R}(x,b)$ In general for CPSs x is not sparse $\longrightarrow \Lambda = (0, 0, ..., 0, \lambda, \lambda, ..., \lambda), \lambda_i = 0, i = 1, ..., n$

(Indoor) Localization by RSS-fingerprinting [FUSION CENTER]

- 0. **Init**: cell-grid discretization (p=# of cells, q=# of sensors, $N_t=\#$ of targets)
- 1. Training phase: Dictionary $D \in \mathbb{R}^{q,n}$ is built. Target in each cell + measurement
- 2. Runtime phase: each sensor takes $y_i \longrightarrow$ Where are the targets? $y = Dx + \eta$, $x_i \in \{0, 1\}$ $x_i = 1 \rightarrow \text{in the } i\text{-th cell there is a target} \Longrightarrow \min_{x \in \{0,1\}^p} \|y - Dx\|_2^2 \text{ (mixed-integer} \rightarrow \text{NP-Hard)}$
 - (a) $x \in \{0,1\}^p \xrightarrow[\text{relaxation}]{} x \in \mathbb{R}^p$ so that the problem is feasible;
 - (b) $N_t \ll p \Rightarrow$ seeking of a sparse solution \Longrightarrow LASSO
- (#1) Localization without attacks $x^* = \min_{x \in \mathbb{R}^p} \frac{1}{2} \|y Dx\|_2^2 + \lambda \|x\|_1$ (ISTA can be used) (#2) Localization under sensor attacks $x^* = \min_{z \in \mathbb{R}^p} \frac{1}{2} \|y Gz\|_2^2 + \lambda \|z\|_1$, $G = (D\ I)$, $z = (x\ a)^T$

Dynamic Secure State Estimation of CPSs

[FUSION CENTER]

In general $A \neq I_n \Longrightarrow$ The system is moving and the static-batch approach is too slow How to dynamically estimate the state (attack-free)?

Luemberger Observer
$$\Longrightarrow \begin{cases} \hat{x}(k+1) = A\hat{x}(k) - L[\hat{y}(k) - y(k)] \\ \hat{y}(k) = C\hat{x}(k) \end{cases}$$
 $\xrightarrow{e(k) = \hat{x} - x} e(k+1) = (A - LC)e(k)$
 L is the observer-gain matrix, chosen such that $e(k+1)$ is asymptotically stable $\xrightarrow{k \to \infty} \hat{x}(k) = x(k)$

Online Gradient Descent (OGD) $L_g = \tau AC^T$, $\tau \leq ||C||_2^{-2}$

What about the attacks?

In general CPSs under attacks are not observable \longrightarrow NO Luemberger Observer, NO OGD

APPLICATION: LOCALIZATION UNDER SENSOR ATTACKS (WITH MOVING TARGETS)

Distributed Secure State Estimation of CPSs [NO FUSION CENTER]

Multi-agent system set of systems which cooperate in order to achieve a common goal.

 $\mathbf{Agents} \underset{\text{exchange}}{\Longrightarrow} \mathbf{local} \ \mathbf{estimate} \ x^{(i)}(k) \underset{\text{to the}}{\longrightarrow} \mathbf{neighbourhood}$

Graph $\mathcal{G} = (\mathcal{N}, \mathcal{E}) \to \text{math tool to model the inter-communication. It is made up of:$

- A set \mathcal{N} of agents or nodes or vertices;
- A set $\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N}$ of links or edges

Neighbourhood $\mathcal{N}_i \to \text{set of the nodes from which receives information.}$

Local mean $\bar{x}^{(i)}(k) = \frac{1}{|\mathcal{N}_i|} \sum_{j \in \mathcal{N}_i} x^{(j)}(k)$

CONSENSUS x(k+1) = Qx(k) \longrightarrow the system organized how Q dictates, achieves a **global common decision** if Q has got some properties.

Stochastic matrix Q is stochastic $\iff \forall i=1,...,q \quad \sum_{j=1}^{q} Q_{ij} = 1$ (row stochastic)

Doubly stochastic matrix Q is doubly stochastic \iff is symmetric (undirected graphs) Some important results:

$$\longrightarrow \lambda_1 = \lambda_{PF} > |\lambda_2| > \dots > |\lambda_q| \Longrightarrow \lim_{k \to \infty} x(k) = \alpha \mathbf{1}$$
 (suff. conditions for Consensus)

Some important results:

$$\longrightarrow \lambda_1 = \lambda_{PF} > |\lambda_2| > ... > |\lambda_q| \Longrightarrow \lim_{k \to \infty} x(k) = \alpha \mathbf{1} \text{ (suff. conditions for Consensus)}$$

 $\longrightarrow \lambda_{PF} > |\lambda_2| > ... > |\lambda_q|, Q \text{ doubly stochastic} \Longrightarrow \lim_{\text{average consensus } k \to \infty} \lim_{k \to \infty} x(k) = \alpha \mathbf{1}, \ \alpha = \frac{1}{q} \sum_{j=1}^{q} x^{(j)}(0)$
 $\Longrightarrow \text{Convergence rate of the consensus algorithm} \Longrightarrow \text{ogr}(Q) = \lambda_2$

- \longrightarrow Convergence rate of the consensus algorithm $\underset{\text{is related to}}{\longrightarrow} \operatorname{esr}(Q) = \lambda_2$ \longrightarrow If $Q^T = \operatorname{Adjacency}$ matrix describes a strongly connected graph $\Longrightarrow Q$ achieves consensus.

APPLICATIONS of CONSENSUS ALGORITHM

Distributed Least-Squares
$$\underset{\text{minimize}}{\longrightarrow} F(x) = \|y - Ax\|_2^2$$
, each sensor has $\begin{cases} y_i & \text{its own measurement} \\ A_i & i - \text{th row of the matrix A} \end{cases}$

Distributed Least-Squares
$$\longrightarrow_{\text{minimize}} F(x) = \|y - Ax\|_2^2$$
, each sensor has $\begin{cases} y_i & \text{its own measurement} \\ A_i & i - \text{th row of the matrix A} \end{cases}$

the solution can be found by using...

Distributed Gradient Descent (DGD) $\longrightarrow_{\forall i \in \{1, ..., q\}} \begin{cases} \bar{x}^{(i)}(k) = \sum_{j=1}^q Q_{ij} x^{(j)}(k) \\ x^{(i)}(k+1) = \bar{x}^{(i)}(k) - \tau \nabla F(x^{(i)}(k)) \end{cases}$

Distributed LASSO $\longrightarrow_{\forall i \in \{1, ..., q\}} F(x) = \|y - Ax\|_2^2 + \lambda \|y\|_2$

Distributed LASSO
$$\longrightarrow$$
 $F(x) = ||y - Ax||_2^2 + \lambda ||x||_1$

Distributed LASSO
$$\underset{\text{minimize}}{\longrightarrow} F(x) = \|y - Ax\|_2^2 + \lambda \|x\|_1$$

$$\Longrightarrow \text{Distributed ISTA(DISTA)} \underset{\forall i \in \{1,\dots,q\}}{\longrightarrow} x^{(i)}(k+1) = \mathbb{S}_{\lambda\tau} \left[\bar{x}^{(i)}(k) + \tau A_i^T(y - A_i x^i(k)) \right]$$

Note that... for these algorithms proofs of convergence have been provided.

2 Control of Cyber Physical Systems

Agents' experimental modeling (System Identification) Modeling of the communication network State Variable FeedBack control (SVFB) Formation control