A RESILIENT INTERFACE FOR APPROXIMATE DATA ACCESS

João Fabrício Filho^{1,2}

Isaías B. Felzmann¹

Rodolfo Azevedo 1

Lucas F Wanner 1

¹ University of Campinas

² Federal University of Technology - Paraná

isaias.felzmann@ic.unicamp.br

Trading power

- Problem: We want to save power!
- Solution 1: Make hardware smaller...
 - Physics says "not anymore".
- Solution 2: Trade power for Performance...
 - Large portions of hardware kept off Dark Silicon
- Solution 3: Trade power for Quality...
 - Not every application need a perfect result
 - Approximate Computing

Memory approximation

- SRAM Voltage Scaling
 - Reduces noise margins on read/write operations
 - Exposes data to errors
 - Error rate increases for lower voltage levels
 - Exponentially!

(Wang & Calhoun, TVLSI'2011)

- Alternatives:
 - DRAM Refresh rate
 - Precision scaling

Classifying Execution Crashes

Data Crash

 Illegal memory access while fetching data

 Illegal memory access while fetching instruction

Timeout

Application fails to converge

AxRAM: Preventing crashes

- Lightweight implementation
 - Avoid checkpoint & rollback
 - Avoid recovery software routines

- Find upper bounds for error rate
 - And lower bounds for energy

- Minimal user intervention for control
 - Less code to maintain
 - No expert knowledge required

Correcting Data Crashes

Preventing Control Crashes: Stack protection

- Stores some control pointers
 - E.g. function return addresses
- Also stores other critical data
 - Local variables, loop control indexes
- Stack addresses are identifiable without user intervention

How to protect?

- Architectural model
 - Voltage selector for each memory bank
- Voltage regulator to control approximate state
- Memory-mapped control registers

Experiments

```
Memory-bound
2mm
bunzip
bzip
dijkstra
floyd-warshall
qsort
```

CPU-bound
nbody
mandelbrot
spectralnorm

Signal processing jpeg fft reg_detect

- Error rates from 10⁻⁹ to 10⁻⁴
- Errors are probabilistic
- All results compared to unprotected scenario

Execution Crashes

Data crashes

Flow crashes

Timeouts

Quality

Quality/Energy

Probability of Quality < 80% Approx. Memory — AXRAM

Relative Energy, Quality > 80%

Final Remarks

Most quality depreciation results from crashes

- Applications tolerate higher error rates when crashes are mitigated
- AxRAM access protection prevents application crashes
 - Higher energy savings
 - Even higher if compared to traditional SW techniques

Thank You!

varchc.github.io/sbesc/

isaias.felzmann@ic.unicamp.br