Statistical Inference: Case Study

Session Pedagogy

- Data Understanding
- Business Objective given
- Class Discussion to
 - Conceptualize the Output
 - Approach the Analysis in R
- Participants Create the R code independently
- Final code and output shown

Background

- Large FMCG company
- Pan country presence
- 3 business lines- Ice Cream, Chocolates and Cakes-Biscuits
- Large amount of data is available

Supply Chain

Data Snapshots

Customer Profile Data NPS Data

CUSTID	REGION
10000	North
10001	South
10002	West
10003	South
10004	East
10005	West
10006	West
10007	South
10008	East

CUSTID	NPS
22929	6
12089	5
19120	6
10155	8
13085	9
14784	4
17714	5
19735	6
23779	2
10477	9
22958	3
21552	9
10594	3

Market survey data is available for 107 customers(NPS Data). The survey recorded 'Net promoter Score'.

Net Promoter Scores are based on response to single question (0-10 scale) How likely is it that you would recommend [brand] to a friend or colleague?

Get Started

- Import data sets: CUST_PROFILE and NPSDATA.
- CUST_PROFILE data has custid and region.
- NPSDATA has custid and Net Promoter Score measured on 0-10 scale.
- Import and check dimensions and number of unique customers in each data set.
- Merge two data sets.

Get Started- R codes and output

```
custprofile<-read.csv(file.choose(),header=T)
npsdata<-read.csv(file.choose(),header=T)
dim(custprofile)
[1] 15001 2
dim(npsdata)
[1] 107 2
length(unique(custprofile$CUSTID))
[1] 15001
length(unique(npsdata$CUSTID))
[1] 107
```


Get Started- R codes and output Merging Two Data Sets

```
npsregion<-merge(npsdata,custprofile,by="CUSTID",all.x=T)
head(npsregion)
  CUSTID NPS REGION
 10155
               South
  10211
               West
  10271
              North
               South
 10477
  10535
               West
6 10564
          7 South
```


1. Assessing Net Promoter Score

• What is the Net Promoter Score on an average?

Suggestion: Use median as well as mean since the measurement scale is ordinal.(median is better measure)

- Describe NPS graphically.
- Suggestion: Use Box-Whisker plot or bar chart to plot median

Assessing Net Promoter Score R Code and Output

2. Is NPS significantly more than '6'?

- Which test to be used?
- Can we assume 'Normality' of the distribution?
- Is NPS significantly more than '6'?

Can we assume 'Normality' of the distribution? R Code and Output

boxplot(npsregion\$NPS,col="blue")

qqnorm(npsregion\$NPS,col="blue")

shapiro.test(npsregion\$NPS)

Shapiro-Wilk normality test

data: NPS

W = 0.94709, p-value = 0.000326

library(nortest)

lillie.test(npsregion\$NPS)

Lilliefors (Kolmogorov-Smirnov) normality test

data: NPS

D = 0.12501, p-value = 0.0002978

Is NPS significantly more than '6'? R Code and Output

wilcox.test(npsregion\$NPS,mu=6,alternative="greater")

Wilcoxon signed rank test with continuity correction

data: NPS

V = 2166, p-value = 0.0989

alternative hypothesis: true location is greater than 6

Conclusion: Do not reject H0. Average NPS is not significantly more than '6'.

3. Compare NPS Region-wise

• Which region has on an average highest NPS?

Suggestion: Use mean as well as median.

- Is region wise difference in NPS significantly different?
- Present region wise NPS graphically.

Which region has on an average highest NPS? R Code and Output

```
aggregate(NPS~REGION,data=npsregion,FUN=mean)
REGION
        NPS
        6.250000
  East
2 North 6.208333
3 South 6.057143
4. West 6.321429
aggregate(NPS~REGION,data=npsregion,FUN=median)
REGION NPS
  East 6
2 North 6
3 South 6
4 West 7
```


Is region wise difference in NPS significantly different? R Code and Output

kruskal.test(NPS~REGION,data=npsregion)

Kruskal-Wallis rank sum test

data: NPS by REGION

Kruskal-Wallis chi-squared = 0.52336, df = 3, p-value = 0.9137

Region wise difference in NPS is not significant.

Median NPS -Bar Diagram

4. Detractors vs. Non-detractors

• What percentage of customers are 'detractors'?

Detractor: NPS score of less than or equal to 6

Suggestion: Derive a new variable 'detractor' having values 'YES' or 'NO'.

• Is percentage of detractors significantly greater than 40%?

What percentage of customers are 'detractors'? R Code and Output

```
npsregion$detractor[npsregion$NPS<=6]<-"YES"
npsregion$detractor[npsregion$NPS>6]<-"NO"
head(npsregion)
t<-table(npsregion$detractor)
detractor
NO YES
48 59
prop.table(t)
                                        55% are
detractor
                                        detractors
   NO
         YES
0.4485981 0.5514019
```


Is percentage of detractors significantly greater than 40%? R Code and Output

prop.test(t["YES"],sum(t),0.4,alternative='greater')

1-sample proportions test with continuity correction

data: t["YES"] out of sum(t), null probability 0.4

X-squared = 9.5985, df = 1, p-value = 0.0009737

alternative hypothesis: true p is greater than 0.4

95 percent confidence interval:

0.4673912 1.0000000

sample estimates:

p

0.5514019

% of detractors significantly more than 40%.

5. Association between region and detractor(Y/N)

- Summarize 'detractor' by region.
- Test for association between region and detractor(Y/N)

Suggestion: Use 'gmodels' package.

Testing Association R Code and Output

library(gmodels)

CrossTable(npsregion\$REGION, npsregion\$detractor,prop.c=FALSE,prop.t=FALSE, prop.chisq=FALSE,chisq=TRUE)

Statistics for All Table Factors

No association between Region and 'detractor'

Pearson's Chi-squared test

 $Chi^2 = 1.711052$ d.f. = 3 p = 0.6344795

