1.7 Peculiar Statistics of the Forward and Reverse Half-Strands

7 out of 11 steps passed 0 out of 5 points received

Since we don't know the location of ori in a circular genome, let's linearize it (i.e., select an arbitrary position and pretend that the genome begins here), resulting in a linear string Genome. We define $Skew_i(Genome)$ as the difference between the total number of occurrences of G and the total number of occurrences of G in the first i nucleotides of Genome. The **skew diagram** is defined by plotting $Skew_i(Genome)$ (as i ranges from 0 to |Genome|), where $Skew_0(Genome)$ is set equal to zero. The figure below shows a skew diagram for the DNA string CATGGGCCATACGCC.

Note that we can compute $Skew_{i+1}(Genome)$ from $Skew_i(Genome)$ according to the nucleotide in position i of Genome. If this nucleotide is G, then $Skew_{i+1}(Genome) = Skew_i(Genome) + 1$; if this nucleotide is G, then $Skew_{i+1}(Genome) = Skew_i(Genome) = Skew_i(Genome)$.

Exercise Break: Give all values of Skew_i (GAGCCACCGCGATA) for i ranging from 0 to 14.

Sample Input:

CATGGGCATCGGCCATACGCC

Sample Output:

To solve this problem please visit https://stepik.org/lesson/240220/step/8