Creating and Using Arrays

Tae Eun Kim, Ph.D.

Monday, January 14, 2019

3.1. Creating and Using Arrays

Introduction to Arrays

Vectors and matrices are often collectively called arrays.

Definition (Spaces of Column Vectors and Matrices)

Let \mathbb{R}^m (or \mathbb{C}^m) denote the set of all real (or complex) column vectors with m elements. Let $\mathbb{R}^{m\times n}$ (or $\mathbb{C}^{m\times n}$) denote the set of all real (or complex) $m\times n$ matrices.

Notation

If $\mathbf{v} \in \mathbb{R}^m$ with $\mathbf{v} = (v_1, v_2, \dots, v_m)^T$, then for $1 \le i \le m$, $v_i \in \mathbb{R}$ is called the *i*th *element* or the *i*th *index* of \mathbf{v} .

Similarly, if $A \in \mathbb{R}^{m \times n}$ with $A = (a_{i,j})$, then for $1 \leq i \leq m$ and $1 \leq j \leq n$, $a_{i,j} \in \mathbb{R}$ is the element in the ith row and jth column of A.

Creating Vectors

A row vector is created by

```
x = [2 \ 3 \ -6];
or
x = [2, 3, -6];
```

• A column vector is created by

$$w = [2; 3; -6];$$

• Alternately, one can *transpose* a row vector to obtain a column vector:

$$w = [2 \ 3 \ -6].';$$

• The MatLab expression "x.'" means \mathbf{x}^T while "x'" means $\mathbf{x}^H = (\mathbf{x}^*)^T.$

Creating Matrices

A matrix is formed by

```
» A = [1 2 3; 4 5 6; 7 8 9];
or
» A = [1, 2, 3; 4, 5, 6; 7, 8, 9];
```

Caution

You can form A by typing

using $\langle ENTER \rangle$, but it is not recommended when working in the **Command Window**.

Accessing Elements of Arrays

ullet To access the $i^{
m th}$ element of a vector ${f x}$:

```
» x(i)
```

• To access the (i, j)-element of a matrix A:

• To assign values to a specific element:

```
x(i) = 7
or
A(i,j) = -sqrt(5)
```

• Indices start at 1 in MATLAB, not at 0!

Question

Let A be a 3 by 3 matrix in MATLAB. What is the value of A (4)?

Operations Involving Arrays

- Addition/subtraction: "+/-"
 - a matrix and a matrix: $\mathbb{R}^{m \times n} + \mathbb{R}^{m \times n} = \mathbb{R}^{m \times n}$
 - a matrix and a scalar: $c + \mathbb{R}^{m \times n} = \mathbb{R}^{m \times n}$

- Multiplication: "*"
 - ullet a matrix by a matrix: $\mathbb{R}^{m \times n} imes \mathbb{R}^{n imes p} = \mathbb{R}^{m imes p}$
 - a matrix by a scalar: $c \cdot \mathbb{R}^{m \times n} = \mathbb{R}^{m \times n}$

- Inner and outer products of vectors: For a column vector x,
 - inner product $(x' \star x)$: $\mathbb{R}^{1 \times m} \times \mathbb{R}^{m \times 1} = \mathbb{R}$
 - outer product $(x \star x')$: $\mathbb{R}^{m \times 1} \times \mathbb{R}^{1 \times m} = \mathbb{R}^{m \times m}$

More Operations Involving Arrays

• Elementwise operations: ".*", "./", ".^"

Example: For
$$\mathbf{v} = (v_1, v_2, \dots, v_n)$$
 and $\mathbf{w} = (w_1, w_2, \dots, w_n)$,

$$v. * w = (v_1 w_1, v_2 w_2, \dots, v_n w_n).$$

Square matrix to a positive integral power: "^"

Example: For an m by m matrix A, the MatLab commands

yield the same result.

• Inversion of a square matrix: "inv"

Example: For an m by m matrix A,

$$inv(A)$$
 and $A^{(-1)}$

produce the same answer.

Arithmetic Progressions

Colon (:) operator

- a:b creates [a,a+1,a+2,...,a+m] where m=fix(b-a).
- a:d:b creates [a,a+d,a+2*d,...,a+m*d] where m=fix((b-a)/d).

linspace command

• linspace (a, b, n) creates the arithmetic progression of n terms starting at a and ending at b.

Note: The colon operator is more appropriate when the difference between successive elements is known; linspace is more suitable when the number of elements is known.

Do this: Compare linspace (0, 1, 10) and linspace (0, 1, 11).

Arithmetic Progressions: Examples

Example: We can create an *periodic* arithmetic progressions using the colon operator and mod function. For instance, to create an array

$$(1,2,3,4,0,1,2,3,4,0,1,2,3,4,0)$$
,

we simply type:

```
>> m = 5;
>> n = 15;
>> mod([1:n], m)
```

Exercise

Create the following vectors using **ONE** MATLAB statement.

- $\mathbf{v} = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0)$
- $\mathbf{w} = (1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4)$

Geometric and Other Progressions

Elementwise operations such as ".*", "./", and ".^" are useful in generating progressions other than arthmetic ones. By way of examples:

Exercise

Create

- $\mathbf{v} = (1, 2, 4, 8, \dots, 1024)$
- $\mathbf{w} = (1, 4, 9, 16, \dots, 100)$

using ONE MATLAB statement.

Answer:

$$>> v = 2.^{[0:10]}$$

 $>> w = [1:10].^2$

Alternately,

Geometric and Other Progressions (cont'd)

When mathematical functions such as sin, sind, log, exp are applied to arrays, they perform elementwise operations.

Exercise

Create the following vectors using **ONE** MATLAB statement.

- $\mathbf{v} = (\sin 0^{\circ}, \sin 30^{\circ}, \sin 60^{\circ}, \dots, \sin 180^{\circ})$
- $\mathbf{w} = (e^1, e^4, e^9, \dots, e^{64})$

Answer:

>>
$$v = sind(0:30:180)$$

>> $w = exp([1:8].^2)$

Building an Array out of Arrays

reshape and repmat commands

- reshape (A, m, n) reshapes the array A into an $m \times n$ matrix whose elements are taken *columnwise* from A.
- repmat (A, m, n) replicates the array A, m times vertically and n times horizontally.
- \bullet If the arrays ${\tt A}$ and ${\tt B}$ have comparable sizes, then we can concatenate them:
 - vertically by [A; B]
 - horizontally by [A B]

Example: See what happens:

- reshape(1:30, 6, 5)
- repmat([1 2; 3 4], 2, 3)

DIY: Type help flip to learn about flip command. Do the same with flipud and flilr.

The Size of Vectors and Matrices

It is easy to determine the size of a vector or a matrix.

length, size, and numel commands

Let $\mathbf{v} \in \mathbb{R}^m$ and $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then

- length (v) gives the number of elements of v, which is m.
- size (A, 1) gives the number of rows of A, which is m.
- size (A, 2) gives the number of colums of A, which is n.
- size (A) outputs a two-vector (m, n).
- \bullet numel (A) returns the total number of elements in A, which is mn.

Note: The result of size (A) can be stored in two different ways:

$$szA = size(A) or [mA, nA] = size(A).$$

How are they different?

Example (Empty arrays): What are the sizes of [], [1:0], and [1:0]'? What are their numel values?

Creating an Entire Matrix in One Statement

The following commands come in handy in many situations.

zeros, ones, and eye commands

Let $m, n \in \mathbb{N}$. Then

- zeros (m) creates an $m \times m$ zero matrix; zeros (m, n) an $m \times n$ zero matrix.
- ones behaves similarly creating a matrix consisting of all ones.
- ullet eye (m) creates an $m \times m$ identity matrix.

Notes:

- zeros([m,n]) yields the same result as zeros(m,n).
- zeros (size (A)) creates a zero matrix of the same size as A.
- The same applies to ones.

Creating Matrices Using Diagonals

We can create a matrix matrix by specifying the diagonal elements; the diagonal entries of a certain matrix can be extracted as a vector as well.

diag command: insertion

Let $\mathbf{v}=(v_1,v_2,\ldots,v_n).$ Then the statement $\mathbf{D}=\mathrm{diag}\left(\mathbf{v}\right)$ creates the diagonal matrix

$$D = \begin{pmatrix} v_1 & 0 & 0 & \cdots & 0 \\ 0 & v_2 & 0 & \cdots & 0 \\ 0 & 0 & v_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & v_n \end{pmatrix}.$$

For $k \in \mathbb{N}$,

- ullet diag(v,k) puts the elements of v on the kth super-diagonal.
- diag(v,-k) puts the elements of v on the kth sub-diagonal.

Creating Matrices Using Diagonals (cont'd)

We can create a matrix matrix by specifying the diagonal elements; the diagonal entries of a certain matrix can be extracted as a vector as well.

diag, triu, and tril commands: extraction

Given a (full) matrix $A \in \mathbb{R}^{m \times m}$ and -m < k < m,

- diag(A, k) extracts the kth diagonal of A.
- triu(A, k) extracts the upper triangular entries above and including the kth diagonal of A.
- tril(A, k) extracts the lower triangular entries below and including the kth diagonal of A.

Note:

- The commands also work for non-square matrices.
- To create a block diagonal structure, use blkdiag.

Indices as Vectors

We can access multiple elements of an array using vectors. Let v be a vector and A be a matrix.

- v(i:j) returns *i*th through *j*th entries.
- ullet A (i:j, k:l) returns the intersection of rows form i to j and columns from k to l.
- v (end) outputs the last element of v, which is the same as v (length (v)).
- We may assign values to the elements specified by indicial-vectors.
- A(:) turns A into a column vector.

Random Vectors and Matrices

rand, randi, and randn commands

To generate an $m \times n$ matrix of:

- rand (m, n): uniform random numbers in (0,1)
- randi (k, m, n): uniform random integers in [1, k]
- randn (m, n): Gaussian random numbers with mean 0 and standard deviation 1

Random Vectors and Matrices (cont'd)

- To generate uniform random numbers in (a,b), use $\mathbf{a} + (\mathbf{b} \mathbf{a}) * \mathbf{rand}(\mathbf{m},\mathbf{n})$.
- To generate uniform random integers in $[k_1, k_2]$, use randi([k1, k2], m, n).
- To generate Gaussian random numbers with mean μ and standard deviation σ , use $\mathtt{mu} + \mathtt{sig} * \mathtt{randn}(\mathtt{m},\mathtt{n}).$

Question: What does MATLAB return when you type, say, rand (5)?

The find Function

In case we want to locate all the elements of a certain array satisfying simple conditions, we can use find command.

Basic Usage of find

Let v be an array of numbers. Then find (<condition>) returns the (linear) indices of v satisfying <condition>. In case v is a matrix, the indices correspond to those of the column vector v (:).

Some examples of <condition> are

- \bullet v > k or v >= k
- \bullet v < k or v <= k
- \bullet v == k or v \sim = k

In order to combine more than two conditions, use

- "&" for and
- "|" for **or**

Vector Norms

The "length" of a vector \mathbf{v} can be measured by its **norm**.

Definition (p-norm of a vector)

Let $p \in [1,\infty).$ The p-norm of $\mathbf{v} \in \mathbb{R}^m$ is denoted by $\|\mathbf{v}\|_p$ and is defined by

$$\|\mathbf{v}\|_{p} = \left(\sum_{i=1}^{m} |v_{i}|^{p}\right)^{1/p}.$$

When $p = \infty$,

$$\|\mathbf{v}\|_{\infty} = \max_{1 \le i \le m} |v_i| .$$

The most commonly used p values are 1, 2, and ∞ and these norms can be calculated by the following MATLAB commands:

- norm(v, 1) for $\|\mathbf{v}\|_1$
- norm (v, 2) for $\|\mathbf{v}\|_2$ (Alternately, one can use norm (v).)
- ullet norm(v, inf) for $\|\mathbf{v}\|_{\infty}$

Matrix Norms

Definition (p-norm of a matrix)

Let $p \in [1, \infty]$. The p-norm of $A \in \mathbb{R}^{m \times n}$ is given by

$$||A||_p = \max_{\mathbf{x} \neq 0} \frac{||A\mathbf{x}||_p}{||\mathbf{x}||_p} = \max_{||\mathbf{x}||_p = 1} ||A\mathbf{x}||_p.$$

(The following details can be skipped at the first reading.) The commonly used p-norms (for $p=1,2,\infty$) can also be calculated by

$$\mathtt{norm}(\mathtt{A},\mathtt{1}): \qquad \|A\|_1 = \max_{1 \leq j \leq n} \sum_{i=1}^m \left|a_{ij}\right|$$

$$\operatorname{norm}(\mathtt{A},\mathtt{2}): \qquad \|A\|_2 = \sqrt{\lambda_{\max}(A^*A)} = \sigma_{\max}(A)$$

$$\mathtt{norm}(\mathtt{A},\inf): \qquad \|A\|_{\infty} = \max_{1 \leq i \leq m} \sum_{i=1}^n \left|a_{ij}\right| \,.$$

Frobenius Norm of a Matrix

Another commonly used matrix norm, other than p-norms, is the Frobenius norm.

Definition (Frobenius norm of a matrix)

The Frobenius norm of $A \in \mathbb{R}^{m \times n}$ is given by

$$||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{1/2}.$$

Notes:

- It can be shown that $||A||_2 \leq ||A||_F$.
- norm(A, 'fro') calculates the Frobenius norm of A in MATLAB.
- Alternately, we can use norm (A(:)). Think about why.

Tables Using Matrices in MATLAB

It is easy to store lots of data in ${\rm MATLAB}$ using matrices viewing them as a way of organizing a two-dimensional list of numbers in a tabular form.

Example: Stirling's formula revisited

```
1 % script m-file: stirn
_{2} | n = 20;
n \text{ vec} = (2:2:n)';
4 | fact = factorial(n_vec);
s \mid stir = sqrt(2*pi*n_vec).*(n_vec/exp(1)).^(n_vec);
6 abs err = stir - fact;
rel_err = stir./fact - 1;
8 T = [n_vec, fact, stir, abs_err, rel_err];
g disp('
                            n! stirling
      abs_err rel_err');
10 | format short q;
11 | disp(T);
```

Note: The table header positions (line 9) are obtained by trial and error.

Tables Using Matrices in MATLAB (cont'd)

The output of stirn.m on the COMMAND WINDOW:

```
>> stirn
2
3
                        n!
                               stirling
                                             abs err
                                                          rel_err
            n
                        2
                                  1.919
                                           -0.080996
                                                         -0.040498
5
                        24
                                 23.506
                                          -0.49382
                                                        -0.020576
            6
                       72.0
                                 710.08
                                             -9.9218
                                                         -0.01378
7
            8
                     40320
                                  39902
                                              -417.6
                                                        -0.010357
           10
                3.6288e+06
                           3.5987e+06
                                              -30104
                                                        -0.008296
           12
                  4.79e + 0.8
                           4.7569e+08 -3.3141e+06
                                                       -0.0069188
10
               8.7178e+10
                           8.6661e+10 -5.1729e+08
                                                       -0.0059337
           14
11
           16
               2.0923e+13 2.0814e+13 -1.0868e+11
                                                      -0.0051941
12
               6.4024e+15
                          6.3728e+15 -2.9569e+13
                                                      -0.0046185
          18
13
           20
                2.4329e+18
                           2.4228e+18 -1.0115e+16
                                                      -0.0041577
14
15
  >> diary off
16
```