How severe weather events can cause public health and economic problems

How severe weather events can cause public health and economic problems

Synopsis - Summary

Storms and severe weather can have big health and economic consequences. The understanding of the specific types of events associated with the greatest consequences can help inform disaster preparedness policies that can potentially mitigate damages and help target limited resources. The purpose of the current study is to identify the specific weather-related events that are associated witht the greatest amount of economic and health consequence. Data for this analysis come from the U.S. National Oceanic and Atmospheric Administration's (NOAA) storm database. Based on an exploratory analysis of the NOAA storm database, the storm related events associated with the greatest number of fatalities were tornados and heat. The greatest amount of economic damage was due to winds (e.g., tropical storm, storm surge, hurricane, and typhoons) and flooding.

Phase 1 - Data Processing

Read Data

rawdata <- read.csv(bzfile("C:/Users/hsofoian/Desktop/DataScience/Course 5 - Reproducible Ro

Relevant fields + Homogenous

```
data$evtype <- factor(toupper(data$evtype))
data$propdmgexp <- factor(toupper(data$propdmgexp))
data$cropdmgexp <- factor(toupper(data$cropdmgexp))</pre>
```

Convert the values of the columns propding

```
exponents <- data.frame(c("", "0", "H", "K", "M", "B"), c(1, 1, 10^2, 10^3, 10^6, 10^9))
colnames(exponents) <- c("validexp", "multiplier")

data <- subset(data, (cropdmgexp %in% exponents$validexp) & (propdmgexp %in% exponents$validexp))

# convert damage values in number
colnames(exponents) <- c("validexp", "propdmgmultiplier")
data <- merge(data, exponents, by.x = "propdmgexp", by.y = "validexp")
data$propdmg <- (data$propdmg * data$propdmgmultiplier")

colnames(exponents) <- c("validexp", "cropdmgmultiplier")
data <- merge(data, exponents, by.x = "cropdmgexp", by.y = "validexp")
data$cropdmg <- (data$cropdmg * data$cropdmgmultiplier)</pre>
```

A - Calculation of economic impact

Calculation of the **economic impact** of different weather events.

```
data$totalCost <- data$propdmg + data$cropdmg #define total cost
economicData <- subset(data, totalCost > 0) #select only events with cost > 0
economicData <- economicData[, c("state", "evtype", "totalCost")]
library(reshape2)
library(plyr)
economicData <- dcast(economicData, state ~ evtype, fun.aggregate = sum, value.var = "totalceconomicData <- melt(economicData, id = "state")
economicData <- arrange(economicData, state, desc(value))</pre>
```

The event that generated the higher **totalCost**:

```
economicData <- split(economicData, economicData$state)
economicData <- lapply(economicData, function(x) x[1, ])
economicData <- melt(economicData, id = "state", id.vars = "variable", measure.vars = "value")</pre>
```

B - Calculation of health impact

Calculation of the **health impact** of fatalities and injuries caused by each event.

```
# define total health cost through pca
pca <- data[, c("fatalities", "injuries")]</pre>
pca <- princomp(pca)</pre>
summary(pca)
## Importance of components:
##
                          Comp.1 Comp.2
## Standard deviation
                          5.4379 0.72389
## Proportion of Variance 0.9826 0.01741
## Cumulative Proportion 0.9826 1.00000
data$totalHealthCost <- pca$scores[, 1]</pre>
healthData <- subset(data, totalHealthCost > 0) #select only events with cost > 0
healthData <- healthData[, c("state", "evtype", "totalHealthCost")]
# sum over states by type of event and arrange for decreasing costs
healthData <- dcast(healthData, state ~ evtype, fun.aggregate = sum, value.var = "totalHealthData"
healthData <- melt(healthData, id = "state")
healthData <- arrange(healthData, state, desc(value))
healthData <- split(healthData, healthData$state)</pre>
healthData <- lapply(healthData, function(x) x[1, ])
healthData <- melt(healthData, id = "state", id.vars = "variable", measure.vars = "value")
```

Phase 2 - Results

Economic impact

```
Costs in Bn $
colnames(economicData) <- c("eventType", "totalCost_Bn", "state")</pre>
economicData <- economicData[, c("state", "eventType", "totalCost_Bn")]</pre>
# convert in Bn$
economicData$totalCost_Bn <- economicData$totalCost_Bn/10^9
economicData[!is.na(economicData$totalCost Bn), ]
      state
##
                            eventType totalCost_Bn
## 1
         AK
                                FLOOD 1.571e-01
## 2
         ΔΤ.
                              TORNADO
                                         6.378e+00
```

	0	434		TIA TELD COLUT	F 400 00
##	3	AM		WATERSPOUT	5.102e-03
##	4		MARINE	THUNDERSTORM WIND	1.690e-04
##	5	AR		TORNADO	2.592e+00
##	6	AS		TSUNAMI	8.102e-02
##	7	ΑZ		HAIL	2.829e+00
##	8	CA		FL00D	1.174e+02
##	9	CO		HAIL	1.515e+00
##	10	CT		TORNADO	5.962e-01
##	11	DC		TROPICAL STORM	1.276e-01
##	12	DE		COASTAL FLOOD	4.015e-02
##	13	FL		HURRICANE/TYPHOON	2.855e+01
##	14	GA		TORNADO	3.272e+00
##	15	GM		MARINE TSTM WIND	3.226e-03
##	16	GU		TYPHOON	6.011e-01
##	17	ΗI		FLASH FLOOD	1.571e-01
##	18	ΙA		FLOOD	2.970e+00
##	19	ID		FLOOD	1.142e-01
##	20	IL		RIVER FLOOD	1.003e+01
##	21	IN		TORNADO	2.595e+00
##	22	KS		TORNADO	2.682e+00
##	23	KY		TORNADO	8.907e-01
##	24	LA		STORM SURGE	3.174e+01
##	26	LE	MARINE	THUNDERSTORM WIND	2.500e-05
##	28	${\tt LM}$		MARINE TSTM WIND	1.205e-03
##	29	LO		MARINE TSTM WIND	5.000e-05
##	30	LS		MARINE TSTM WIND	4.000e-04
##	31	$\mathtt{M}\mathtt{A}$		TORNADO	7.560e-01
##	32	MD		TROPICAL STORM	5.392e-01
##	33	ME		ICE STORM	3.182e-01
##	34	MH		HIGH SURF	5.000e-03
##	35	MI		TORNADO	1.073e+00
##	36	MN		TORNADO	1.917e+00
##	37	MO		TORNADO	4.823e+00
##	38	${\tt MS}$		HURRICANE/TYPHOON	1.501e+01
##	39	MT		HAIL	1.291e-01
##	40	NC		HURRICANE	6.405e+00
##	41	ND		FLOOD	3.990e+00
##	42	NE		TORNADO	1.746e+00
##	43	NH		ICE STORM	6.493e-02
##	44	NJ		FLOOD	2.112e+00
##	45	NM		WILD/FOREST FIRE	1.510e+00
##		NV		FLOOD	6.839e-01
##		NY		FLASH FLOOD	1.835e+00
##		ОН		TORNADO	2.285e+00
##		OK		TORNADO	3.319e+00
##		OR		FLOOD	7.410e-01
				1 2302	

```
## 51
         PA
                              TORNADO
                                          1.796e+00
## 53
         PΚ
                     MARINE HIGH WIND
                                          3.100e-05
## 55
         PR
                            HURRICANE
                                          2.275e+00
                   MARINE STRONG WIND
## 56
         PZ
                                          7.600e-05
## 57
         RI
                                FLOOD
                                          9.286e-02
## 58
         SC
                              TORNADO
                                          5.368e-01
## 59
         SD
                              TORNADO
                                          2.319e-01
## 60
                     MARINE TSTM WIND
         SL
                                          1.500e-05
## 62
         TN
                                FLOOD
                                          4.250e+00
## 63
         TX
                              DROUGHT
                                          6.722e+00
                                FLOOD
## 64
         UT
                                          3.319e-01
                    HURRICANE/TYPHOON
## 65
         VA
                                          5.266e-01
## 66
         VI
                            HURRICANE
                                          2.822e-02
## 67
         VT
                                FLOOD
                                          1.112e+00
## 68
                                 HAIL
                                          2.199e-01
         WA
## 69
         WI
                          FLASH FLOOD
                                          1.188e+00
## 70
         WV
                          FLASH FLOOD
                                          4.865e-01
## 71
         WY
                                 HAIL
                                          1.131e-01
library(maps)
economicData <- economicData[!is.na(economicData$totalCost_Bn), ]</pre>
data(state.fips)
tmp <- state.fips</pre>
tmp <- data.frame(tmp$abb, tmp$polyname)</pre>
colnames(tmp) <- c("state", "stateName")</pre>
economicData <- merge(economicData, tmp)</pre>
economicData$totalCost_Bn <- (economicData$totalCost_Bn)^(1/3)</pre>
economicData$normCost <- (economicData$totalCost_Bn - min(economicData$totalCost_Bn))/(max(
    min(economicData$totalCost_Bn))
# plot
pal <- colorRamp(c("white", "black"))</pre>
map("state", regions = economicData$stateName, lty = 1, lwd = 1, boundary = TRUE,
    fill = TRUE, col = rgb(pal(economicData$normCost)/255))
title(main = "Most harmed states by weather events with economic impact\n (white: least harm
```

Most harmed states by weather events with economic impact (white: least harmed, black: most harmed)

Health impact

colnames(healthData) <- c("eventType", "totalHealthCost", "state")
healthData <- healthData[, c("state", "eventType", "totalHealthCost")]
healthData[!is.na(healthData\$totalHealthCost),]</pre>

##		state	eventType	${\tt totalHealthCost}$
##	1	AK	ICE STORM	33.4125
##	2	AL	TORNADO	7877.1258
##	3	AM	MARINE THUNDERSTORM WIND	21.2689
##	4	AN	MARINE STRONG WIND	17.4015
##	5	AR	TORNADO	5064.5173
##	6	AS	TSUNAMI	130.1814
##	7	AZ	DUST STORM	176.8428
##	8	CA	WILDFIRE	611.4135

##	9	CO	TORNADO	253.2910
##	10	CT	TORNADO	699.6226
##	11	DC	EXCESSIVE HEAT	315.6478
##	12	DE	TORNADO	70.9818
##	13	FL	TORNADO	3283.4283
##	14	GA	TORNADO	3867.7126
##	16	GU	HURRICANE/TYPHOON	332.3795
##	17	HI	HIGH SURF	20.4146
##	18	IA	TORNADO	2175.5368
##	19	ID	THUNDERSTORM WIND	73.4522
##	20	IL	TORNADO	4099.1294
##	21	IN	TORNADO	4187.3505
##	22	KS	TORNADO	2688.0431
##	23	KY	TORNADO	2774.4141
##	24	LA	TORNADO	2580.4577
##	28		MARINE THUNDERSTORM WIND	0.9347
##	31	MA	TORNADO	1756.8414
##	32	MD	EXCESSIVE HEAT	461.5193
##	33	ME	LIGHTNING	64.2321
##	34	MH	HIGH SURF	0.8426
##	35	MI	TORNADO	3340.9094
##	36	MN	TORNADO	1952.4496
##	37	MO	TORNADO	4287.0509
##	38	MS	TORNADO	6191.3236
## ##	39 40	MT	WILD/FOREST FIRE	31.5576
##	41	NC ND	TORNADO TORNADO	2501.9325 318.3618
##	42		TORNADO	1136.1336
##	43	NE NH	LIGHTNING	78.3421
##	44	NJ	EXCESSIVE HEAT	299.5644
##	45	NM	TORNADO	151.4231
##	46	NV	FLOOD	49.8827
##	47	NY	TORNADO	304.1441
##	48	OH	TORNADO	4407.0040
##	49	OK	TORNADO	4767.5576
##	50	OR	HIGH WIND	49.1107
##		PA	TORNADO	1221.4486
##		PR	HEAVY RAIN	9.6124
##		PZ	MARINE STRONG WIND	2.7763
##		RI	TORNADO	22.6628
		SC	TORNADO	1288.2890
##		SD	TORNADO	439.4989
##	62	TN	TORNADO	4706.3186
##	63	TX	TORNADO	8105.6196
##	64	UT	WINTER STORM	411.2769
##	65	VA	TORNADO	901.2121

```
## 66
         VI
                                                0.8887
                            LIGHTNING
## 67
         VT
                            TSTM WIND
                                               22.6593
## 68
         WA
                              TORNADO
                                              302.3291
                                             1571.1703
## 69
         WI
                              TORNADO
## 70
         WV
                            TSTM WIND
                                              135.0149
## 71
         WY
                         WINTER STORM
                                              117.6506
library(maps)
healthData <- healthData[!is.na(healthData$totalHealthCost), ]</pre>
data(state.fips)
tmp <- state.fips</pre>
tmp <- data.frame(tmp$abb, tmp$polyname)</pre>
colnames(tmp) <- c("state", "stateName")</pre>
healthData <- merge(healthData, tmp)</pre>
healthData$normCost <- (healthData$totalHealthCost - min(healthData$totalHealthCost))/(max(l
    min(healthData$totalHealthCost))
# plot
pal <- colorRamp(c("white", "blue"))</pre>
map("state", regions = healthData$stateName, lty = 1, lwd = 1, boundary = TRUE,
    fill = TRUE, col = rgb(pal(healthData$normCost)/255))
title(main = "Most harmed states by weather events with health impact\n (blue: most harmed,
```

Most harmed states by weather events with health impact (blue: most harmed, white: least harmed)

