Signal Flow Graph Solver

Control Systems Analysis

Khadija Assem Saad Hamad

ID: 27

Source Code:

https://github.com/khadijaAssem/SignalFlowGraph Solver

Overview

Signal flow graph is an alternative method to block diagram representation, It consists of a network in which nodes are connected by directed branches. Mason's rule is used for reducing the signal-flow graph to a single transfer function.

Mason's Formula states that :

$$\frac{C(s)}{R(s)} = \frac{\sum_{i=1}^{n} P_{i} \Delta_{i}}{\Delta}$$

where,

n = number of forward paths.

Pi = the i th forward-path gain.

 Δ = Determinant of the system

 Δi = Determinant of the ith forward path

Project Description

This project is the implementation of the Mason's Formula, it takes the signal flow graph as an input and outputs the corresponding transfer function.

Main Features:

- 1. You can draw the signal flow graph and put the nodes and paths in a very simple way.
- 2. You can also delete nodes easily.

- 3. The program supports both numerical and symbolic representation.
- 4. After finishing the program can give you clear details about the calculations and most of the intermediate calculations for calculating the transfer function.

Main Algorithms Used:

- 1. First the program uses the DFS (depth first search) algorithm to find all forward passes .
- 2. Combinations to find the non intersecting loops .

User Guide:

The detailed output is then displayed here :

■ Output	-		\times
Paths & Loops:			
Non Intersecting Loop	os:		
Non intersecting loop	s with p	oaths	s:
Result:			

Sample Runs:

For the numeric input:

Example 1

Example 2

For alphabetic input

Example 1

