Quiz 4

EEE 4774 & 6777 Data Analytics

1 Gaussian Generative Model, QDA, LDA, Gaussian Naive Bayes

Consider the binary classification problem with d-dimensional training data points $\{x_1, \ldots, x_N\}$ and labels $\{y_1, \ldots, y_N\}$. Starting with the Gaussian generative model for the two classes, $\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$ (likelihood for class 1), $p(C_1)$ (prior for class 1), $\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$ (likelihood for class 2), $p(C_2)$ (prior for class 2), answer the following questions.

- a) Derive the Quadratic Discriminant Analysis (QDA) classifier, which compares $\mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{x}^T \mathbf{b}$ with a threshold to make the classification decision (i.e., derive the expressions for \mathbf{A} , \mathbf{b} , and the threshold). [20 pts]
- b) Show the assumption to derive the Linear Discriminant Analysis (LDA) from QDA. LDA chooses class 1 if $\boldsymbol{x}^T\boldsymbol{w} > h$ and class 2 otherwise. Show the expressions for \boldsymbol{w} and the threshold h. [20 pts]
- c) Through another simplifying assumption on the QDA we can obtain the Gaussian Naive Bayes classifier. Explain what that assumption is and how it yields the Gaussian Naive Bayes classifier. [20 pts]

Extra Credit: Show the final simplified (hint: univariate) decision function of the Gaussian Naive Bayes classifier. [15 pts]

2 SVM

Explain the SVM algorithm considering its objective, loss function, kernel trick, training procedure, and testing procedure. [20 pts]

3 Ensemble Methods

Explain the differences between the boosting and bagging methods. [20 pts]