

Mathématiques

Classe: BAC

Chapitre: Fonctions Réciproques

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Le plan P étant muni d'un repère orthonormé $\left(0,\vec{i},\vec{j}\right)$ le graphique ci-joint représente C la courbe

- de la fonction f définie sur $\left]-\infty, -\frac{1}{2}\right] \cup \left[2, +\infty\right[$.
- \bullet Les droites D et \varDelta deux asymptotes à C.
- La droite T est tangente à la courbe $\, C_{\, \text{au}} \,$ point d'abscisse $\, -\frac{3}{2} \, .$
- 1°) Par une lecture graphique :

Déterminer :

$$\lim_{x \to -\infty} f(x) \; ; \; \lim_{x \to +\infty} \frac{f(x)}{x} \; ; \; \lim_{x \to +\infty} \left[\frac{2}{3} f(x) - x \right] \; ; \quad \stackrel{D}{\longrightarrow} T$$

$$\lim_{x\to(2)^+} \frac{f(x)}{x-2} ; \lim_{x\to\left(-\frac{1}{2}\right)^-} \frac{2f(x)+4}{2x+1} ;$$

$$\lim_{x\to+\infty}\frac{2f(x)}{2f(x)-3x+3}$$

- **2°)** Soit g la restriction de la fonction f à l'intervalle $\left]-\infty, -\frac{1}{2}\right]$.
 - a) Montrer que g admet une fonction réciproque g^{-1} définie sur un intervalle J que l'on précisera.
 - **b)** Montrer que g^{-1} est dérivable sur J.
 - c) Montrer qu'il existe un unique réel $x_0 \in [-2;1[$ tel $g^{-1}(x_0) = x_0$ et vérifier que $x_0 \in]-2,0[$.
 - **d)** Calculer $(g^{-1})'(0)$ et tracer la courbe de g^{-1} dans le même plan P.
- **3°)** On considère la fonction F définie sur $\left]0,\pi\right]$ par : $F(x)=g^{-1}(\cos x)$.
 - a) Montrer que F est dérivable sur $]0,\pi]$.
 - **b)** Montrer que F réalise une bijection de $\left]0,\pi\right]$ sur un intervalle K que l'on précisera.

Exercice 2

(5) 30 min

6 pt

Soit f une fonction définie sur $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ par : $f(x) = \tan(x)$.

1°) a) Montrer que f admet une fonction réciproque f^{-1} définie sur IR.

- **b)** Montrer que f^{-1} est dérivable sur IR et que pour tout $x \in IR$, $\left(f^{-1}(x)\right)' = \frac{1}{1+x^2}$.
- **2°)** Soit g une fonction définie sur IR par $g(x) = f^{-1}(x) + f^{-1}(-x)$.
 - a) Calculer g'(x).
 - **b)** En déduire que f^{-1} est une fonction impaire.
- **3°)** Soit le nombre complexe z=1+xi, avec x un réel, fixé, strictement positif et $\beta\in\left]-\frac{\pi}{2};\frac{\pi}{2}\right[$ tel que $\tan\beta=x$.
 - a) Prouver que $\cos(\beta) = \frac{1}{\sqrt{1+x^2}}$; En déduire $\sin(\beta)$ en fonction de x.
 - **b)** Ecrire z sous la forme exponentielle.
 - c) En déduire que $arg(1+xi) \equiv f^{-1}(x)[2\pi]$.
- **4°)** a) Ecrire (1+2i)(1+3i) sous la forme algébrique et sous la forme exponentielle.
 - **b)** En déduire $f^{-1}(2) + f^{-1}(3)$.

Exercice 3

6 pt

Soit f la fonction définie sur l'intervalle $I = \left[-\frac{\pi}{4}; \frac{\pi}{2} \right]$ par $f(x) = \sqrt{1 + tg(x)}$.

- (C_f) désigne la courbe de f dans un repère orthonormé (O,\vec{i},\vec{j}) .
- **1°) a)** Montrer que f est dérivable sur $\left| -\frac{\pi}{4}; \frac{\pi}{2} \right|$ et calculer f'(x).
 - **b)** Etudier la dérivabilité de f à droite en $\left(-\frac{\pi}{4}\right)$.
- 2°) Montrer que f réalise une bijection de I dans un intervalle J à préciser.
- 3°) Montrer que f^{-1} est dérivable sur J et que $(f^{-1})'(x) = \frac{2x}{x^4 2x^2 + 2}$.
- **4°)** Soit la suite (u_n) définie sur IN par : $u_n = \frac{1}{n+1} \sum_{k=n}^{2n} f^{-1}(k)$; pour tout $n \in IN$.
 - a) Montrer que pour tout $n \in IN$; $f^{-1}(n) \le U_n \le f^{-1}(2n)$.
 - **b)** En déduire que (u_n) converge vers un réel que l'on précisera.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000