Section 10.4: Taylor Series and Taylor Polynomials

In this section, we will learn how to use polynomial functions to approximate other elementary functions.

Before we can find a polynomial function P to approximate another function f, we need to decide "where" we want the two functions to be similar. That is, our task is to find a polynomial whose graph resembles the graph of f near some point a.

One way to do this is require that

$$P(a) = f(a)$$
 and $P'(a) = f'(a)$.

With these two requirements, we can obtain a linear approximation of the function f. We say that the approximating polynomial is "expanded about a or centered at a."

The Picture:

Is there any way to improve our approximation? If we impose the additional requirement that P''(a) = f''(a), will our approximation improve? How about higher derivatives?

Example: Find a 2nd degree polynomial $P_2(x)$ that approximates the function $f(x) = e^x$ near x = 0. Take a look at their graphs.

The polynomial approximation of $f(x) = e^x$ given above is expanded about a = 0. For expansions about an arbitrary value of a, it is convenient to write the polynomial in the form

$$P_n(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + \dots + c_n(x-a)^n.$$

In this form, repeated differentiation produces

$$P_n'(x) =$$

$$P_n''(x) =$$

$$P_n''(x) =$$

:

$$P_{n}^{(n)}(x) =$$

By letting x = a, we obtain

$$P_n(a) = c_0$$
 $P'_n(a) = c_1$ $P''_n(a) = 2c_2$... $P_n^{(n)}(a) = n!c_n$

Since the value of f and its first n derivatives must agree with the value of P_n and its first n derivatives at x = a, it follows that

$$f(a) = c_0$$
 $f'(a) = c_1$ $\frac{f''(a)}{2!} = c_2$... $\frac{f^{(n)}(a)}{n!} = c_n$

Using these coefficients, we obtain the following definition.

Definition of n**th Taylor Polynomial and** n**th Maclaurin Polynomial:** If f has n derivatives at a, then the polynomial

$$P_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

is called the *nth Taylor polynomial for f at c*. If a = 0, then we have the *nth Maclaurin polynomial for f*

$$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n.$$

The Picture:

Example: Find the 5th degree Maclaurin polynomial for $f(x) = e^x$. Use this polynomial to approximate e^{01} . How close are we?

Note: We can use $P_n(x)$ to approximate f(x) "near" x = a. State 2 requirements for a good approximation.

1.

2.

Since $P_n(x)$ is only an approximation, there is an error term (also called the *remainder*):

$$\boxed{R_n(x) = f(x) - P_n(x)}.$$

Without justification, we state the following theorem.

Theorem 2 (Taylor's Formula): Suppose that the (n+1)th derivative of the function f exists on an interval I containing a. Then

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \frac{f^{(n+1)}(z)}{(n+1)!}(x-a)^{n+1}$$

for some *z* between *a* and *x* (where *x* is also in the interval *I*).

That is, we have

$$R_n(x) = \frac{f^{(n+1)}(z)}{(n+1)!} (x-a)^{n+1},$$

for some z between a and x.

Example: Compute Taylor's Formula for $f(x) = \ln x$ at a = 1 with n = 4.

Note: What happens if n = 0?

Now, suppose that the function f has derivatives of all orders. Also, suppose that $R_n(x)$ gets smaller as n gets larger (in fact, we want $\lim_{n\to\infty} R_n(x) = 0$). Then we can define the Taylor Series of the function f at x = a:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n .$$

If we let a = 0 above, then we get the Maclaurin series of the function f at x = a.

Some Maclaurin Series Worth Mentioning:

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n)!} = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \cdots$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)!} = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \cdots$$

Note:

- Cosine is an _____ function.
 Sine is an _____ function.

Example:

(a) Derive the Maclaurin Series for $f(x) = \cos x$.

(b) Using one of the known Maclaurin formulas, find the Maclaurin series of $f(x) = e^{2x}.$