



FIG. 1



- 91-Reflector Super Elements, 22
- Reflector Super Element, 22
- Width: 4.45 m
- Focal length: 2.225 m
- Feed: 37 element array, 34

Fig. 2

3/18



FIG. 3

BD - 99 - 091  
1215 - 399P

4118



a. Details of single cell,  $\alpha_{22}$   
b. Group of 7 cells,  $\alpha_{22}, \dots, \alpha_{27}$

Fig. 4 A  
Fig. 4 B

5/18



Fig. 7

Fig. 6

Fig. 5

7-Elements  
Turned on  
for Tx & Rx

## Examples of Feed Selection



Fig. 8 a.



Fig. 8 b.



Fig. 8 c.

Power is Distributed to a Similar Group  
of 7 Elements in Each Feed

6/18

BD - 99-091  
1215-399P

# Optimum Beam For Central Feed Group Time Delay Units Steer Array Factor to $0^\circ$

Group selected steers  
'super element' beam  
to  $0^\circ$



Fig. 9B Composite Antenna Pattern



Fig. 9A

BD-99-091  
1215-399P

7/18

# Beam at Limit For Central Feed Group Time Delay Units Steer Array Factor to 1.1°

Group selected steers  
'super element' beam  
to 0°



Fig. 10A



Fig. 10B

8/18

BD-99-091  
1215-3991

# Optimum Beam For Offset Feed Group Time Delay Units Steer Array Factor to $2.4^\circ$

Group selected steers  
'super element' beam  
to  $2.4^\circ$



Fig. III.A



Fig. III.B

## Scan Limit For Outer Most Feed Group Time Delay Units Steer Array Factor to 6°

Group selected steers  
'super element' beam  
to 4.8°



Fig. 12A  
Note: Only 1.5 dB Off-  
Boresight Loss at 6° Scan

11/18

BD-99-091  
1215-399P

## An Example of the Grating Lobe Problem Steer Array Factor in Elevation to $1.386^\circ$

Group selected steers  
'super element' beam  
 $\frac{3}{4}^\circ$   
to  $0^\circ$



Fig. 13A

Fig. 13B

BD - 99 - C9,  
1215 - 3991<sup>12</sup>

12/18

## The Grating Lobe is Reduced By Selecting a Reduced Element Set at the Right Location

Reduced off-center group selected steers 'super element' beam to  $1.386^\circ$



Fig. 14 A

Fig. 14 C



Fig. 14 B

# The Grating Lobe is Reduced by Randomly Selecting Groups About the Optimum Position

Randomly select feed groups from 3-groups



Fig. 15D



## Gradual Transition is a Way to Translate Between Beams



FIG. 16A

FIG. 16B

FIG. 16C

FIG. 16D

Advantage is it uses the same number  
of feed elements

14/18

BD - 99 - 091  
1215 - 39912

## Random Positioning Feed Array on Focal Axis



FIG. 17A

FIG. 17B

FIG. 17C

BD - 99-091  
1215 - 399P

卷之三

# Overlapping Feed Distributions to Steer Horizontally Half Way Between Nominal Beam Positions



16/18

BD-99-091  
215-399P



Overlapping Feed Distributions to Steer Vertically Between  
Nominal Beam Positions



FIG. 19 C



FIG. 19 B



FIG. 19 A

FIG. 19 D

17/18

BD - 99 - 091  
1215 - 399P

BD-99-091  
15-349P

18/18



FIG. 20