1. [В пространстве] Выясните, параллельны ли прямые:

$$l_1$$
: $x = 5t - 1$, $y = -t + 3$, $z = 2t - 2$, if l_2 :
$$\begin{cases} x + 4z - 11 & = 0, \\ 3x - y + 2z - 5 & = 0. \end{cases}$$

- 2. [В пространстве] Плоскость α параллельна плоскости x-4y+3z+1=0 и отстоит от неё на расстоянии d=3. Найдите прямую, по которой пересекаются плоскость α и плоскость 2x+y+2z+2=0.
- 3. [$Ha\ nnockocmu$] Из вершины A(1,3) треугольника ABC проведена высота AH: x+2y-7=0. Длина стороны BC равна d. Требуется определить вершины B и C треугольника, если известен его центр тяжести: O(9,-3).

Вариант 2

- 1. [В пространстве] Дана прямая: $\begin{cases} x + (4-u)z 11 &= 0, \\ 3x y + 2z 5u &= 0. \end{cases}$ Выяснить, при каких значениях u она
 - а) параллельна плоскости 3x 2y + 4z 10 = 0;
 - b) перпендикулярна плоскости x 3y + 2z + 2 = 0.
- 2. [В пространстве] Найдите уравнение плоскости, проходящей через две прямые:

$$l_1: \frac{x-5}{1} = \frac{y-2}{-1} = \frac{z-7}{-1}, \qquad l_2: \begin{cases} x+2y-z+3 &= 0, \\ 3x+2y+z-10 &= 0. \end{cases}$$

3. [На плоскости] Составить уравнения сторон треугольника ABC, если даны одна из его вершин A(1,3) и уравнения двух медиан x-2y+1=0 и y-1=0.

- 1. [В пространстве] Выясните, как расположены прямая $\frac{x-3}{2} = \frac{y+3}{-1} = \frac{z-1}{-3}$ и плоскость 3x + y z + 5 = 0. Т. е. они пересекаются в одной точке, или они не пересекаются (параллельны), или прямая лежит в плоскости?
- 2. $[B\ npocmpancmbe]$ Через точку M(3,1,3) проведите плоскость так, чтобы она была параллельна прямой $\begin{cases} x+3y-2z+3&=0,\\ 2x+y+z-5&=0, \end{cases}$ и перпендикулярна плоскости 3x-2y+4z-10=0.
- 3. [$Ha\ nnockocmu$] Зная вершину A(3,-4) треугольника ABC и уравнения двух его высот, 7x-2y-1=0 и 2x-7y-6=0, написать уравнение стороны BC.

- 1. $[B\ npocmpancmse]$ Найдите плоскость, проходящую через прямую $\left\{ \begin{array}{ll} 2x+y-3z+3&=&0,\\ x+2y+3z-10&=&0, \end{array} \right.$ параллельно прямой $\frac{x-5}{1}=\frac{y-2}{-2}=\frac{z-7}{3}.$
- 2. [B npocmpancmse] Выясните, можно ли провести одну плоскость через следующие две прямые:

$$l_1$$
:
$$\begin{cases} 3x - y + 2z - 7 &= 0, \\ -2x - z + 4 &= 0, \end{cases}$$
 l_2 : $x = 3t + 1, y = t - 4, z = -2t - 2.$

Если да, то найдите эту плоскость.

3. [$Ha\ nnockocmu$] В треугольнике ABC проведена медиана AM. Из вершины B на медиану опущен перпендикуляр BH: x-3y+8=0. Сторона BC задана уравнением 2x-y+1=0. Известен также центр тяжести треугольника: O(3,5). Найдите все вершины и все стороны треугольника ABC.

Вариант 5

1. [В пространстве] Выясните, параллельны ли прямые:

$$l_1$$
: $x = 5t - 1$, $y = -t + 3$, $z = 2t - 2$, и l_2 :
$$\begin{cases} x + 4z - 11 & = 0, \\ 3x - y + 2z - 5 & = 0. \end{cases}$$

- 2. [В пространстве] Плоскость α параллельна плоскости x-4y+3z+1=0 и отстоит от неё на расстоянии d=3. Найдите прямую, по которой пересекаются плоскость α и плоскость 2x+y+2z+2=0.
- 3. [$Ha\ nnockocmu$] Из вершины A(1,3) треугольника ABC проведена высота AH: x+2y-7=0. Длина стороны BC равна d. Требуется определить вершины B и C треугольника, если известен его центр тяжести: O(9,-3).

Вариант 6

- 1. $[B\ npocmpancmee]$ Дана прямая: $\left\{ \begin{array}{ll} x+(4-u)z-11&=&0,\\ 3x-y+2z-5u&=&0. \end{array} \right.$ Выяснить, при каких значениях u она
 - а) параллельна плоскости 3x 2y + 4z 10 = 0;
 - b) перпендикулярна плоскости x 3y + 2z + 2 = 0.
- 2. [В пространстве] Найдите уравнение плоскости, проходящей через две прямые:

$$l_1: \frac{x-5}{1} = \frac{y-2}{-1} = \frac{z-7}{-1}, \qquad l_2: \begin{cases} x+2y-z+3 &= 0, \\ 3x+2y+z-10 &= 0. \end{cases}$$

- 1. [В пространстве] Выясните, как расположены прямая $\frac{x-3}{2} = \frac{y+3}{-1} = \frac{z-1}{-3}$ и плоскость 3x + y z + 5 = 0. Т. е. они пересекаются в одной точке, или они не пересекаются (параллельны), или прямая лежит в плоскости?
- 2. $[B\ npocmpancmee]$ Через точку M(3,1,3) проведите плоскость так, чтобы она была параллельна прямой $\begin{cases} x+3y-2z+3&=0,\\ 2x+y+z-5&=0, \end{cases}$ и перпендикулярна плоскости 3x-2y+4z-10=0.
- 3. [$Ha\ nnockocmu$] Зная вершину A(3,-4) треугольника ABC и уравнения двух его высот, 7x-2y-1=0 и 2x-7y-6=0, написать уравнение стороны BC.

Вариант 8

- 1. [В пространстве] Найдите плоскость, проходящую через прямую $\begin{cases} 2x+y-3z+3 &= 0, \\ x+2y+3z-10 &= 0, \end{cases}$ параллельно прямой $\frac{x-5}{1}=\frac{y-2}{-2}=\frac{z-7}{3}$.
- 2. [B npocmpancmse] Выясните, можно ли провести одну плоскость через следующие две прямые:

$$l_1$$
: $\begin{cases} 3x - y + 2z - 7 &= 0, \\ -2x - z + 4 &= 0, \end{cases}$ l_2 : $x = 3t + 1, y = t - 4, z = -2t - 2.$

Если да, то найдите эту плоскость.

3. [На плоскости] В треугольнике ABC проведена медиана AM. Из вершины B на медиану опущен перпендикуляр BH: x-3y+8=0. Сторона BC задана уравнением 2x-y+1=0. Известен также центр тяжести треугольника: O(3,5). Найдите все вершины и все стороны треугольника ABC.

Вариант 9

$$l_1\colon x=5t-1,\ y=-t+3,\ z=2t-2,\$$
и $l_2\colon \left\{ \begin{array}{ll} x+4z-11 &=& 0,\\ 3x-y+2z-5 &=& 0. \end{array} \right.$

- 2. [В пространстве] Плоскость α параллельна плоскости x-4y+3z+1=0 и отстоит от неё на расстоянии d=3. Найдите прямую, по которой пересекаются плоскость α и плоскость 2x+y+2z+2=0.
- 3. [$Ha\ nnockocmu$] Из вершины A(1,3) треугольника ABC проведена высота AH: x+2y-7=0. Длина стороны BC равна d. Требуется определить вершины B и C треугольника, если известен его центр тяжести: O(9,-3).

- 1. $[B\ npocmpancmee]$ Дана прямая: $\begin{cases} x+(4-u)z-11 &= 0, \\ 3x-y+2z-5u &= 0. \end{cases}$ Выяснить, при каких значениях u она
 - а) параллельна плоскости 3x 2y + 4z 10 = 0;
 - b) перпендикулярна плоскости x 3y + 2z + 2 = 0.
- 2. [В пространстве] Найдите уравнение плоскости, проходящей через две прямые:

$$l_1: \frac{x-5}{1} = \frac{y-2}{-1} = \frac{z-7}{-1}, \qquad l_2: \begin{cases} x+2y-z+3 &= 0, \\ 3x+2y+z-10 &= 0. \end{cases}$$

3. [На плоскости] Составить уравнения сторон треугольника ABC, если даны одна из его вершин A(1,3) и уравнения двух медиан x-2y+1=0 и y-1=0.

Вариант 11

- 1. [В пространстве] Выясните, как расположены прямая $\frac{x-3}{2} = \frac{y+3}{-1} = \frac{z-1}{-3}$ и плоскость 3x + y z + 5 = 0. Т. е. они пересекаются в одной точке, или они не пересекаются (параллельны), или прямая лежит в плоскости?
- 2. $[B\ npocmpancmbe]$ Через точку M(3,1,3) проведите плоскость так, чтобы она была параллельна прямой $\begin{cases} x+3y-2z+3&=0,\\ 2x+y+z-5&=0, \end{cases}$ и перпендикулярна плоскости 3x-2y+4z-10=0.
- 3. $[Ha\ n \land o c \kappa o c m u]$ Зная вершину A(3,-4) треугольника ABC и уравнения двух его высот, 7x-2y-1=0 и 2x-7y-6=0, написать уравнение стороны BC.

Вариант 12

- 1. $[B\ npocmpancmse]$ Найдите плоскость, проходящую через прямую $\left\{ \begin{array}{ll} 2x+y-3z+3&=&0,\\ x+2y+3z-10&=&0, \end{array} \right.$ параллельно прямой $\frac{x-5}{1}=\frac{y-2}{-2}=\frac{z-7}{3}.$
- 2. [*В пространстве*] Выясните, можно ли провести одну плоскость через следующие две прямые:

$$l_1$$
:
$$\begin{cases} 3x - y + 2z - 7 &= 0, \\ -2x - z + 4 &= 0, \end{cases}$$
 l_2 : $x = 3t + 1, y = t - 4, z = -2t - 2.$

Если да, то найдите эту плоскость.

1. [В пространстве] Выясните, параллельны ли прямые:

$$l_1$$
: $x = 5t - 1$, $y = -t + 3$, $z = 2t - 2$, if l_2 :
$$\begin{cases} x + 4z - 11 & = 0, \\ 3x - y + 2z - 5 & = 0. \end{cases}$$

- 2. [В пространстве] Плоскость α параллельна плоскости x-4y+3z+1=0 и отстоит от неё на расстоянии d=3. Найдите прямую, по которой пересекаются плоскость α и плоскость 2x+y+2z+2=0.
- 3. [$Ha\ nnockocmu$] Из вершины A(1,3) треугольника ABC проведена высота AH: x+2y-7=0. Длина стороны BC равна d. Требуется определить вершины B и C треугольника, если известен его центр тяжести: O(9,-3).

Вариант 14

- 1. [В пространстве] Дана прямая: $\begin{cases} x + (4-u)z 11 &= 0, \\ 3x y + 2z 5u &= 0. \end{cases}$ Выяснить, при каких значениях u она
 - а) параллельна плоскости 3x 2y + 4z 10 = 0;
 - b) перпендикулярна плоскости x 3y + 2z + 2 = 0.
- 2. [В пространстве] Найдите уравнение плоскости, проходящей через две прямые:

$$l_1: \frac{x-5}{1} = \frac{y-2}{-1} = \frac{z-7}{-1}, \qquad l_2: \begin{cases} x+2y-z+3 &= 0, \\ 3x+2y+z-10 &= 0. \end{cases}$$

3. [На плоскости] Составить уравнения сторон треугольника ABC, если даны одна из его вершин A(1,3) и уравнения двух медиан x-2y+1=0 и y-1=0.

- 1. [В пространстве] Выясните, как расположены прямая $\frac{x-3}{2} = \frac{y+3}{-1} = \frac{z-1}{-3}$ и плоскость 3x+y-z+5=0. Т. е. они пересекаются в одной точке, или они не пересекаются (параллельны), или прямая лежит в плоскости?
- 2. $[B\ npocmpancmse]$ Через точку M(3,1,3) проведите плоскость так, чтобы она была параллельна прямой $\left\{ \begin{array}{ll} x+3y-2z+3&=&0,\\ 2x+y+z-5&=&0, \end{array} \right.$ и перпендикулярна плоскости 3x-2y+4z-10=0.
- 3. [$Ha\ nnockocmu$] Зная вершину A(3,-4) треугольника ABC и уравнения двух его высот, 7x-2y-1=0 и 2x-7y-6=0, написать уравнение стороны BC.

- 1. $[B\ npocmpancmse]$ Найдите плоскость, проходящую через прямую $\left\{ \begin{array}{ll} 2x+y-3z+3&=&0,\\ x+2y+3z-10&=&0, \end{array} \right.$ параллельно прямой $\frac{x-5}{1}=\frac{y-2}{-2}=\frac{z-7}{3}.$
- 2. [B npocmpancmse] Выясните, можно ли провести одну плоскость через следующие две прямые:

$$l_1$$
:
$$\begin{cases} 3x - y + 2z - 7 &= 0, \\ -2x - z + 4 &= 0, \end{cases}$$
 l_2 : $x = 3t + 1, y = t - 4, z = -2t - 2.$

Если да, то найдите эту плоскость.

3. [$Ha\ nnockocmu$] В треугольнике ABC проведена медиана AM. Из вершины B на медиану опущен перпендикуляр BH: x-3y+8=0. Сторона BC задана уравнением 2x-y+1=0. Известен также центр тяжести треугольника: O(3,5). Найдите все вершины и все стороны треугольника ABC.

Вариант 17

1. [В пространстве] Выясните, параллельны ли прямые:

$$l_1$$
: $x = 5t - 1$, $y = -t + 3$, $z = 2t - 2$, и l_2 :
$$\begin{cases} x + 4z - 11 & = 0, \\ 3x - y + 2z - 5 & = 0. \end{cases}$$

- 2. [В пространстве] Плоскость α параллельна плоскости x-4y+3z+1=0 и отстоит от неё на расстоянии d=3. Найдите прямую, по которой пересекаются плоскость α и плоскость 2x+y+2z+2=0.
- 3. [$Ha\ nnockocmu$] Из вершины A(1,3) треугольника ABC проведена высота AH: x+2y-7=0. Длина стороны BC равна d. Требуется определить вершины B и C треугольника, если известен его центр тяжести: O(9,-3).

Вариант 18

- 1. $[B\ npocmpancmse]$ Дана прямая: $\left\{ \begin{array}{ll} x+(4-u)z-11&=&0,\\ 3x-y+2z-5u&=&0. \end{array} \right.$ Выяснить, при каких значениях u она
 - а) параллельна плоскости 3x 2y + 4z 10 = 0;
 - b) перпендикулярна плоскости x 3y + 2z + 2 = 0.
- 2. [В пространстве] Найдите уравнение плоскости, проходящей через две прямые:

$$l_1: \frac{x-5}{1} = \frac{y-2}{-1} = \frac{z-7}{-1}, \qquad l_2: \begin{cases} x+2y-z+3 &= 0, \\ 3x+2y+z-10 &= 0. \end{cases}$$

- 1. [В пространстве] Выясните, как расположены прямая $\frac{x-3}{2} = \frac{y+3}{-1} = \frac{z-1}{-3}$ и плоскость 3x+y-z+5=0. Т. е. они пересекаются в одной точке, или они не пересекаются (параллельны), или прямая лежит в плоскости?
- 2. $[B\ npocmpancmbe]$ Через точку M(3,1,3) проведите плоскость так, чтобы она была параллельна прямой $\begin{cases} x+3y-2z+3&=&0,\\ 2x+y+z-5&=&0, \end{cases}$ и перпендикулярна плоскости 3x-2y+4z-10=0.
- 3. [$Ha\ nnockocmu$] Зная вершину A(3,-4) треугольника ABC и уравнения двух его высот, 7x-2y-1=0 и 2x-7y-6=0, написать уравнение стороны BC.

Вариант 20

- 1. [В пространстве] Найдите плоскость, проходящую через прямую $\begin{cases} 2x+y-3z+3 &= 0, \\ x+2y+3z-10 &= 0, \end{cases}$ параллельно прямой $\frac{x-5}{1}=\frac{y-2}{-2}=\frac{z-7}{3}$.
- 2. [*В пространстве*] Выясните, можно ли провести одну плоскость через следующие две прямые:

$$l_1: \begin{cases} 3x - y + 2z - 7 = 0, \\ -2x - z + 4 = 0, \end{cases}$$
 $l_2: x = 3t + 1, y = t - 4, z = -2t - 2.$

Если да, то найдите эту плоскость.

3. [$Ha\ nnockocmu$] В треугольнике ABC проведена медиана AM. Из вершины B на медиану опущен перпендикуляр BH: x-3y+8=0. Сторона BC задана уравнением 2x-y+1=0. Известен также центр тяжести треугольника: O(3,5). Найдите все вершины и все стороны треугольника ABC.

Вариант 21

$$l_1\colon x=5t-1,\ y=-t+3,\ z=2t-2,\$$
и $l_2\colon \left\{ \begin{array}{ll} x+4z-11 &=& 0,\\ 3x-y+2z-5 &=& 0. \end{array} \right.$

- 2. [В пространстве] Плоскость α параллельна плоскости x-4y+3z+1=0 и отстоит от неё на расстоянии d=3. Найдите прямую, по которой пересекаются плоскость α и плоскость 2x+y+2z+2=0.
- 3. [$Ha\ nnockocmu$] Из вершины A(1,3) треугольника ABC проведена высота AH: x+2y-7=0. Длина стороны BC равна d. Требуется определить вершины B и C треугольника, если известен его центр тяжести: O(9,-3).

- 1. $[B\ npocmpancmee]$ Дана прямая: $\left\{ \begin{array}{ll} x+(4-u)z-11&=&0,\\ 3x-y+2z-5u&=&0. \end{array} \right.$ Выяснить, при каких значениях u она
 - а) параллельна плоскости 3x 2y + 4z 10 = 0;
 - b) перпендикулярна плоскости x 3y + 2z + 2 = 0.
- 2. [В пространстве] Найдите уравнение плоскости, проходящей через две прямые:

$$l_1: \frac{x-5}{1} = \frac{y-2}{-1} = \frac{z-7}{-1}, \qquad l_2: \begin{cases} x+2y-z+3 &= 0, \\ 3x+2y+z-10 &= 0. \end{cases}$$

3. [На плоскости] Составить уравнения сторон треугольника ABC, если даны одна из его вершин A(1,3) и уравнения двух медиан x-2y+1=0 и y-1=0.

Вариант 23

- 1. [В пространстве] Выясните, как расположены прямая $\frac{x-3}{2} = \frac{y+3}{-1} = \frac{z-1}{-3}$ и плоскость 3x + y z + 5 = 0. Т. е. они пересекаются в одной точке, или они не пересекаются (параллельны), или прямая лежит в плоскости?
- 2. $[B\ npocmpancmbe]$ Через точку M(3,1,3) проведите плоскость так, чтобы она была параллельна прямой $\left\{ \begin{array}{ll} x+3y-2z+3&=&0,\\ 2x+y+z-5&=&0, \end{array} \right.$ и перпендикулярна плоскости 3x-2y+4z-10=0.
- 3. $[Ha\ nnockocmu]$ Зная вершину A(3,-4) треугольника ABC и уравнения двух его высот, 7x-2y-1=0 и 2x-7y-6=0, написать уравнение стороны BC.

Вариант 24

- 1. $[B\ npocmpancmse]$ Найдите плоскость, проходящую через прямую $\left\{ \begin{array}{ll} 2x+y-3z+3&=&0,\\ x+2y+3z-10&=&0, \end{array} \right.$ параллельно прямой $\frac{x-5}{1}=\frac{y-2}{-2}=\frac{z-7}{3}.$
- 2. [*В пространстве*] Выясните, можно ли провести одну плоскость через следующие две прямые:

$$l_1$$
:
$$\begin{cases} 3x - y + 2z - 7 &= 0, \\ -2x - z + 4 &= 0, \end{cases}$$
 l_2 : $x = 3t + 1, y = t - 4, z = -2t - 2.$

Если да, то найдите эту плоскость.

1. [В пространстве] Выясните, параллельны ли прямые:

$$l_1$$
: $x = 5t - 1$, $y = -t + 3$, $z = 2t - 2$, if l_2 :
$$\begin{cases} x + 4z - 11 & = 0, \\ 3x - y + 2z - 5 & = 0. \end{cases}$$

- 2. [В пространстве] Плоскость α параллельна плоскости x-4y+3z+1=0 и отстоит от неё на расстоянии d=3. Найдите прямую, по которой пересекаются плоскость α и плоскость 2x+y+2z+2=0.
- 3. [$Ha\ nnockocmu$] Из вершины A(1,3) треугольника ABC проведена высота AH: x+2y-7=0. Длина стороны BC равна d. Требуется определить вершины B и C треугольника, если известен его центр тяжести: O(9,-3).

Вариант 26

- 1. [В пространстве] Дана прямая: $\begin{cases} x + (4-u)z 11 &= 0, \\ 3x y + 2z 5u &= 0. \end{cases}$ Выяснить, при каких значениях u она
 - а) параллельна плоскости 3x 2y + 4z 10 = 0;
 - b) перпендикулярна плоскости x 3y + 2z + 2 = 0.
- 2. [В пространстве] Найдите уравнение плоскости, проходящей через две прямые:

$$l_1: \frac{x-5}{1} = \frac{y-2}{-1} = \frac{z-7}{-1}, \qquad l_2: \begin{cases} x+2y-z+3 &= 0, \\ 3x+2y+z-10 &= 0. \end{cases}$$

3. [На плоскости] Составить уравнения сторон треугольника ABC, если даны одна из его вершин A(1,3) и уравнения двух медиан x-2y+1=0 и y-1=0.

- 1. [В пространстве] Выясните, как расположены прямая $\frac{x-3}{2} = \frac{y+3}{-1} = \frac{z-1}{-3}$ и плоскость 3x + y z + 5 = 0. Т. е. они пересекаются в одной точке, или они не пересекаются (параллельны), или прямая лежит в плоскости?
- 2. $[B\ npocmpancmbe]$ Через точку M(3,1,3) проведите плоскость так, чтобы она была параллельна прямой $\begin{cases} x+3y-2z+3&=0,\\ 2x+y+z-5&=0, \end{cases}$ и перпендикулярна плоскости 3x-2y+4z-10=0.
- 3. [$Ha\ nnockocmu$] Зная вершину A(3,-4) треугольника ABC и уравнения двух его высот, 7x-2y-1=0 и 2x-7y-6=0, написать уравнение стороны BC.

- 1. $[B\ npocmpancmse]$ Найдите плоскость, проходящую через прямую $\left\{ \begin{array}{ll} 2x+y-3z+3&=&0,\\ x+2y+3z-10&=&0, \end{array} \right.$ параллельно прямой $\frac{x-5}{1}=\frac{y-2}{-2}=\frac{z-7}{3}.$
- 2. [B npocmpancmse] Выясните, можно ли провести одну плоскость через следующие две прямые:

$$l_1$$
:
$$\begin{cases} 3x - y + 2z - 7 &= 0, \\ -2x - z + 4 &= 0, \end{cases}$$
 l_2 : $x = 3t + 1, y = t - 4, z = -2t - 2.$

Если да, то найдите эту плоскость.

3. [$Ha\ nnockocmu$] В треугольнике ABC проведена медиана AM. Из вершины B на медиану опущен перпендикуляр BH: x-3y+8=0. Сторона BC задана уравнением 2x-y+1=0. Известен также центр тяжести треугольника: O(3,5). Найдите все вершины и все стороны треугольника ABC.

Вариант 29

1. [В пространстве] Выясните, параллельны ли прямые:

$$l_1$$
: $x = 5t - 1$, $y = -t + 3$, $z = 2t - 2$, и l_2 :
$$\begin{cases} x + 4z - 11 & = 0, \\ 3x - y + 2z - 5 & = 0. \end{cases}$$

- 2. [В пространстве] Плоскость α параллельна плоскости x-4y+3z+1=0 и отстоит от неё на расстоянии d=3. Найдите прямую, по которой пересекаются плоскость α и плоскость 2x+y+2z+2=0.
- 3. [$Ha\ nnockocmu$] Из вершины A(1,3) треугольника ABC проведена высота AH: x+2y-7=0. Длина стороны BC равна d. Требуется определить вершины B и C треугольника, если известен его центр тяжести: O(9,-3).

Вариант 30

- 1. $[B\ npocmpancmse]$ Дана прямая: $\left\{ \begin{array}{ll} x+(4-u)z-11&=&0,\\ 3x-y+2z-5u&=&0. \end{array} \right.$ Выяснить, при каких значениях u она
 - а) параллельна плоскости 3x 2y + 4z 10 = 0;
 - b) перпендикулярна плоскости x 3y + 2z + 2 = 0.
- 2. [В пространстве] Найдите уравнение плоскости, проходящей через две прямые:

$$l_1: \frac{x-5}{1} = \frac{y-2}{-1} = \frac{z-7}{-1}, \qquad l_2: \begin{cases} x+2y-z+3 &= 0, \\ 3x+2y+z-10 &= 0. \end{cases}$$

- 1. [В пространстве] Выясните, как расположены прямая $\frac{x-3}{2} = \frac{y+3}{-1} = \frac{z-1}{-3}$ и плоскость 3x+y-z+5=0. Т. е. они пересекаются в одной точке, или они не пересекаются (параллельны), или прямая лежит в плоскости?
- 2. $[B\ npocmpancmbe]$ Через точку M(3,1,3) проведите плоскость так, чтобы она была параллельна прямой $\begin{cases} x+3y-2z+3&=&0,\\ 2x+y+z-5&=&0, \end{cases}$ и перпендикулярна плоскости 3x-2y+4z-10=0.
- 3. [$Ha\ nnockocmu$] Зная вершину A(3,-4) треугольника ABC и уравнения двух его высот, 7x-2y-1=0 и 2x-7y-6=0, написать уравнение стороны BC.

Вариант 32

- 1. [В пространстве] Найдите плоскость, проходящую через прямую $\begin{cases} 2x+y-3z+3 &= 0, \\ x+2y+3z-10 &= 0, \end{cases}$ параллельно прямой $\frac{x-5}{1}=\frac{y-2}{-2}=\frac{z-7}{3}$.
- 2. $[B\ npocmpancmee]$ Выясните, можно ли провести одну плоскость через следующие две прямые:

$$l_1$$
: $\begin{cases} 3x - y + 2z - 7 &= 0, \\ -2x - z + 4 &= 0, \end{cases}$ l_2 : $x = 3t + 1, y = t - 4, z = -2t - 2.$

Если да, то найдите эту плоскость.

3. [$Ha\ nnockocmu$] В треугольнике ABC проведена медиана AM. Из вершины B на медиану опущен перпендикуляр BH: x-3y+8=0. Сторона BC задана уравнением 2x-y+1=0. Известен также центр тяжести треугольника: O(3,5). Найдите все вершины и все стороны треугольника ABC.

Вариант 33

$$l_1\colon x=5t-1,\ y=-t+3,\ z=2t-2,\$$
и $l_2\colon \left\{ \begin{array}{ll} x+4z-11 &=& 0,\\ 3x-y+2z-5 &=& 0. \end{array} \right.$

- 2. [В пространстве] Плоскость α параллельна плоскости x-4y+3z+1=0 и отстоит от неё на расстоянии d=3. Найдите прямую, по которой пересекаются плоскость α и плоскость 2x+y+2z+2=0.
- 3. [$Ha\ nnockocmu$] Из вершины A(1,3) треугольника ABC проведена высота AH: x+2y-7=0. Длина стороны BC равна d. Требуется определить вершины B и C треугольника, если известен его центр тяжести: O(9,-3).

- 1. $[B\ npocmpancmee]$ Дана прямая: $\begin{cases} x+(4-u)z-11 &= 0, \\ 3x-y+2z-5u &= 0. \end{cases}$ Выяснить, при каких значениях u она
 - а) параллельна плоскости 3x 2y + 4z 10 = 0;
 - b) перпендикулярна плоскости x 3y + 2z + 2 = 0.
- 2. [В пространстве] Найдите уравнение плоскости, проходящей через две прямые:

$$l_1: \frac{x-5}{1} = \frac{y-2}{-1} = \frac{z-7}{-1}, \qquad l_2: \begin{cases} x+2y-z+3 &= 0, \\ 3x+2y+z-10 &= 0. \end{cases}$$

3. [На плоскости] Составить уравнения сторон треугольника ABC, если даны одна из его вершин A(1,3) и уравнения двух медиан x-2y+1=0 и y-1=0.

Вариант 35

- 1. [В пространстве] Выясните, как расположены прямая $\frac{x-3}{2} = \frac{y+3}{-1} = \frac{z-1}{-3}$ и плоскость 3x + y z + 5 = 0. Т. е. они пересекаются в одной точке, или они не пересекаются (параллельны), или прямая лежит в плоскости?
- 2. $[B\ npocmpancmbe]$ Через точку M(3,1,3) проведите плоскость так, чтобы она была параллельна прямой $\left\{ \begin{array}{ll} x+3y-2z+3&=&0,\\ 2x+y+z-5&=&0, \end{array} \right.$ и перпендикулярна плоскости 3x-2y+4z-10=0.
- 3. $[Ha\ nnockocmu]$ Зная вершину A(3,-4) треугольника ABC и уравнения двух его высот, 7x-2y-1=0 и 2x-7y-6=0, написать уравнение стороны BC.

Вариант 36

- 1. $[B\ npocmpancmse]$ Найдите плоскость, проходящую через прямую $\left\{ \begin{array}{ll} 2x+y-3z+3&=&0,\\ x+2y+3z-10&=&0, \end{array} \right.$ параллельно прямой $\frac{x-5}{1}=\frac{y-2}{-2}=\frac{z-7}{3}.$
- 2. [*В пространстве*] Выясните, можно ли провести одну плоскость через следующие две прямые:

$$l_1$$
:
$$\begin{cases} 3x - y + 2z - 7 &= 0, \\ -2x - z + 4 &= 0, \end{cases}$$
 l_2 : $x = 3t + 1, y = t - 4, z = -2t - 2.$

Если да, то найдите эту плоскость.

1. [В пространстве] Выясните, параллельны ли прямые:

$$l_1$$
: $x = 5t - 1$, $y = -t + 3$, $z = 2t - 2$, if l_2 :
$$\begin{cases} x + 4z - 11 & = 0, \\ 3x - y + 2z - 5 & = 0. \end{cases}$$

- 2. [В пространстве] Плоскость α параллельна плоскости x-4y+3z+1=0 и отстоит от неё на расстоянии d=3. Найдите прямую, по которой пересекаются плоскость α и плоскость 2x+y+2z+2=0.
- 3. [$Ha\ nnockocmu$] Из вершины A(1,3) треугольника ABC проведена высота AH: x+2y-7=0. Длина стороны BC равна d. Требуется определить вершины B и C треугольника, если известен его центр тяжести: O(9,-3).

Вариант 38

- 1. [В пространстве] Дана прямая: $\begin{cases} x + (4-u)z 11 &= 0, \\ 3x y + 2z 5u &= 0. \end{cases}$ Выяснить, при каких значениях u она
 - а) параллельна плоскости 3x 2y + 4z 10 = 0;
 - b) перпендикулярна плоскости x 3y + 2z + 2 = 0.
- 2. [В пространстве] Найдите уравнение плоскости, проходящей через две прямые:

$$l_1: \frac{x-5}{1} = \frac{y-2}{-1} = \frac{z-7}{-1}, \qquad l_2: \begin{cases} x+2y-z+3 &= 0, \\ 3x+2y+z-10 &= 0. \end{cases}$$

3. [На плоскости] Составить уравнения сторон треугольника ABC, если даны одна из его вершин A(1,3) и уравнения двух медиан x-2y+1=0 и y-1=0.

- 1. [В пространстве] Выясните, как расположены прямая $\frac{x-3}{2} = \frac{y+3}{-1} = \frac{z-1}{-3}$ и плоскость 3x + y z + 5 = 0. Т. е. они пересекаются в одной точке, или они не пересекаются (параллельны), или прямая лежит в плоскости?
- 2. $[B\ npocmpancmbe]$ Через точку M(3,1,3) проведите плоскость так, чтобы она была параллельна прямой $\left\{ \begin{array}{ll} x+3y-2z+3&=&0,\\ 2x+y+z-5&=&0, \end{array} \right.$ и перпендикулярна плоскости 3x-2y+4z-10=0.
- 3. [$Ha\ nnockocmu$] Зная вершину A(3,-4) треугольника ABC и уравнения двух его высот, 7x-2y-1=0 и 2x-7y-6=0, написать уравнение стороны BC.

- 1. $[B\ npocmpancmse]$ Найдите плоскость, проходящую через прямую $\left\{ \begin{array}{ll} 2x+y-3z+3&=&0,\\ x+2y+3z-10&=&0, \end{array} \right.$ параллельно прямой $\frac{x-5}{1}=\frac{y-2}{-2}=\frac{z-7}{3}.$
- 2. [B npocmpancmse] Выясните, можно ли провести одну плоскость через следующие две прямые:

$$l_1$$
:
$$\begin{cases} 3x - y + 2z - 7 &= 0, \\ -2x - z + 4 &= 0, \end{cases}$$
 l_2 : $x = 3t + 1, y = t - 4, z = -2t - 2.$

Если да, то найдите эту плоскость.

3. [$Ha\ nnockocmu$] В треугольнике ABC проведена медиана AM. Из вершины B на медиану опущен перпендикуляр BH: x-3y+8=0. Сторона BC задана уравнением 2x-y+1=0. Известен также центр тяжести треугольника: O(3,5). Найдите все вершины и все стороны треугольника ABC.

Вариант 41

1. [В пространстве] Выясните, параллельны ли прямые:

$$l_1$$
: $x = 5t - 1$, $y = -t + 3$, $z = 2t - 2$, и l_2 :
$$\begin{cases} x + 4z - 11 & = 0, \\ 3x - y + 2z - 5 & = 0. \end{cases}$$

- 2. [В пространстве] Плоскость α параллельна плоскости x-4y+3z+1=0 и отстоит от неё на расстоянии d=3. Найдите прямую, по которой пересекаются плоскость α и плоскость 2x+y+2z+2=0.
- 3. [$Ha\ nnockocmu$] Из вершины A(1,3) треугольника ABC проведена высота AH: x+2y-7=0. Длина стороны BC равна d. Требуется определить вершины B и C треугольника, если известен его центр тяжести: O(9,-3).

Вариант 42

- 1. $[B\ npocmpancmee]$ Дана прямая: $\left\{ \begin{array}{ll} x+(4-u)z-11&=&0,\\ 3x-y+2z-5u&=&0. \end{array} \right.$ Выяснить, при каких значениях u она
 - а) параллельна плоскости 3x 2y + 4z 10 = 0;
 - b) перпендикулярна плоскости x 3y + 2z + 2 = 0.
- 2. [В пространстве] Найдите уравнение плоскости, проходящей через две прямые:

$$l_1: \frac{x-5}{1} = \frac{y-2}{-1} = \frac{z-7}{-1}, \qquad l_2: \begin{cases} x+2y-z+3 &= 0, \\ 3x+2y+z-10 &= 0. \end{cases}$$

- 1. [В пространстве] Выясните, как расположены прямая $\frac{x-3}{2} = \frac{y+3}{-1} = \frac{z-1}{-3}$ и плоскость 3x+y-z+5=0. Т. е. они пересекаются в одной точке, или они не пересекаются (параллельны), или прямая лежит в плоскости?
- 2. $[B\ npocmpancmbe]$ Через точку M(3,1,3) проведите плоскость так, чтобы она была параллельна прямой $\begin{cases} x+3y-2z+3&=0,\\ 2x+y+z-5&=0, \end{cases}$ и перпендикулярна плоскости 3x-2y+4z-10=0.
- 3. [$Ha\ nnockocmu$] Зная вершину A(3,-4) треугольника ABC и уравнения двух его высот, 7x-2y-1=0 и 2x-7y-6=0, написать уравнение стороны BC.

Вариант 44

- 1. [В пространстве] Найдите плоскость, проходящую через прямую $\begin{cases} 2x+y-3z+3 &= 0, \\ x+2y+3z-10 &= 0, \end{cases}$ параллельно прямой $\frac{x-5}{1}=\frac{y-2}{-2}=\frac{z-7}{3}$.
- 2. [B npocmpancmse] Выясните, можно ли провести одну плоскость через следующие две прямые:

$$l_1$$
: $\begin{cases} 3x - y + 2z - 7 &= 0, \\ -2x - z + 4 &= 0, \end{cases}$ l_2 : $x = 3t + 1, y = t - 4, z = -2t - 2.$

Если да, то найдите эту плоскость.

3. [$Ha\ nnockocmu$] В треугольнике ABC проведена медиана AM. Из вершины B на медиану опущен перпендикуляр BH: x-3y+8=0. Сторона BC задана уравнением 2x-y+1=0. Известен также центр тяжести треугольника: O(3,5). Найдите все вершины и все стороны треугольника ABC.

Вариант 45

$$l_1\colon x=5t-1,\ y=-t+3,\ z=2t-2,\$$
и $l_2\colon \left\{ \begin{array}{ll} x+4z-11 &=& 0,\\ 3x-y+2z-5 &=& 0. \end{array} \right.$

- 2. [В пространстве] Плоскость α параллельна плоскости x-4y+3z+1=0 и отстоит от неё на расстоянии d=3. Найдите прямую, по которой пересекаются плоскость α и плоскость 2x+y+2z+2=0.
- 3. [$Ha\ nnockocmu$] Из вершины A(1,3) треугольника ABC проведена высота AH: x+2y-7=0. Длина стороны BC равна d. Требуется определить вершины B и C треугольника, если известен его центр тяжести: O(9,-3).

- 1. [В пространстве] Дана прямая: $\begin{cases} x + (4-u)z 11 &= 0, \\ 3x y + 2z 5u &= 0. \end{cases}$ Выяснить, при каких значениях u она
 - а) параллельна плоскости 3x 2y + 4z 10 = 0;
 - b) перпендикулярна плоскости x 3y + 2z + 2 = 0.
- 2. [В пространстве] Найдите уравнение плоскости, проходящей через две прямые:

$$l_1: \frac{x-5}{1} = \frac{y-2}{-1} = \frac{z-7}{-1}, \qquad l_2: \begin{cases} x+2y-z+3 &= 0, \\ 3x+2y+z-10 &= 0. \end{cases}$$

3. [На плоскости] Составить уравнения сторон треугольника ABC, если даны одна из его вершин A(1,3) и уравнения двух медиан x-2y+1=0 и y-1=0.

Вариант 47

- 1. [В пространстве] Выясните, как расположены прямая $\frac{x-3}{2} = \frac{y+3}{-1} = \frac{z-1}{-3}$ и плоскость 3x + y z + 5 = 0. Т. е. они пересекаются в одной точке, или они не пересекаются (параллельны), или прямая лежит в плоскости?
- 2. $[B\ npocmpancmbe]$ Через точку M(3,1,3) проведите плоскость так, чтобы она была параллельна прямой $\left\{ \begin{array}{ll} x+3y-2z+3&=&0,\\ 2x+y+z-5&=&0, \end{array} \right.$ и перпендикулярна плоскости 3x-2y+4z-10=0.
- 3. [$Ha\ nnockocmu$] Зная вершину A(3,-4) треугольника ABC и уравнения двух его высот, 7x-2y-1=0 и 2x-7y-6=0, написать уравнение стороны BC.

Вариант 48

- 1. $[B\ npocmpancmse]$ Найдите плоскость, проходящую через прямую $\left\{ \begin{array}{ll} 2x+y-3z+3&=&0,\\ x+2y+3z-10&=&0, \end{array} \right.$ параллельно прямой $\frac{x-5}{1}=\frac{y-2}{-2}=\frac{z-7}{3}.$
- 2. [*В пространстве*] Выясните, можно ли провести одну плоскость через следующие две прямые:

$$l_1$$
:
$$\begin{cases} 3x - y + 2z - 7 &= 0, \\ -2x - z + 4 &= 0, \end{cases}$$
 l_2 : $x = 3t + 1, y = t - 4, z = -2t - 2.$

Если да, то найдите эту плоскость.

1. [В пространстве] Выясните, параллельны ли прямые:

$$l_1$$
: $x = 5t - 1$, $y = -t + 3$, $z = 2t - 2$, if l_2 :
$$\begin{cases} x + 4z - 11 & = 0, \\ 3x - y + 2z - 5 & = 0. \end{cases}$$

- 2. [В пространстве] Плоскость α параллельна плоскости x-4y+3z+1=0 и отстоит от неё на расстоянии d=3. Найдите прямую, по которой пересекаются плоскость α и плоскость 2x+y+2z+2=0.
- 3. [$Ha\ nnockocmu$] Из вершины A(1,3) треугольника ABC проведена высота AH: x+2y-7=0. Длина стороны BC равна d. Требуется определить вершины B и C треугольника, если известен его центр тяжести: O(9,-3).

Вариант 50

- 1. [В пространстве] Дана прямая: $\begin{cases} x + (4-u)z 11 &= 0, \\ 3x y + 2z 5u &= 0. \end{cases}$ Выяснить, при каких значениях u она
 - а) параллельна плоскости 3x 2y + 4z 10 = 0;
 - b) перпендикулярна плоскости x 3y + 2z + 2 = 0.
- 2. [В пространстве] Найдите уравнение плоскости, проходящей через две прямые:

$$l_1: \frac{x-5}{1} = \frac{y-2}{-1} = \frac{z-7}{-1}, \qquad l_2: \begin{cases} x+2y-z+3 &= 0, \\ 3x+2y+z-10 &= 0. \end{cases}$$

3. [На плоскости] Составить уравнения сторон треугольника ABC, если даны одна из его вершин A(1,3) и уравнения двух медиан x-2y+1=0 и y-1=0.

- 1. [В пространстве] Выясните, как расположены прямая $\frac{x-3}{2} = \frac{y+3}{-1} = \frac{z-1}{-3}$ и плоскость 3x+y-z+5=0. Т. е. они пересекаются в одной точке, или они не пересекаются (параллельны), или прямая лежит в плоскости?
- 2. $[B\ npocmpancmse]$ Через точку M(3,1,3) проведите плоскость так, чтобы она была параллельна прямой $\left\{ \begin{array}{ll} x+3y-2z+3&=&0,\\ 2x+y+z-5&=&0, \end{array} \right.$ и перпендикулярна плоскости 3x-2y+4z-10=0.
- 3. [$Ha\ nnockocmu$] Зная вершину A(3,-4) треугольника ABC и уравнения двух его высот, 7x-2y-1=0 и 2x-7y-6=0, написать уравнение стороны BC.

- 1. $[B\ npocmpancmse]$ Найдите плоскость, проходящую через прямую $\left\{ \begin{array}{ll} 2x+y-3z+3&=&0,\\ x+2y+3z-10&=&0, \end{array} \right.$ параллельно прямой $\frac{x-5}{1}=\frac{y-2}{-2}=\frac{z-7}{3}.$
- 2. [B npocmpancmse] Выясните, можно ли провести одну плоскость через следующие две прямые:

$$l_1$$
:
$$\begin{cases} 3x - y + 2z - 7 &= 0, \\ -2x - z + 4 &= 0, \end{cases}$$
 l_2 : $x = 3t + 1, y = t - 4, z = -2t - 2.$

Если да, то найдите эту плоскость.

3. [$Ha\ nnockocmu$] В треугольнике ABC проведена медиана AM. Из вершины B на медиану опущен перпендикуляр BH: x-3y+8=0. Сторона BC задана уравнением 2x-y+1=0. Известен также центр тяжести треугольника: O(3,5). Найдите все вершины и все стороны треугольника ABC.

Вариант 53

1. [В пространстве] Выясните, параллельны ли прямые:

$$l_1$$
: $x = 5t - 1$, $y = -t + 3$, $z = 2t - 2$, и l_2 :
$$\begin{cases} x + 4z - 11 & = 0, \\ 3x - y + 2z - 5 & = 0. \end{cases}$$

- 2. [В пространстве] Плоскость α параллельна плоскости x-4y+3z+1=0 и отстоит от неё на расстоянии d=3. Найдите прямую, по которой пересекаются плоскость α и плоскость 2x+y+2z+2=0.
- 3. [$Ha\ nnockocmu$] Из вершины A(1,3) треугольника ABC проведена высота AH: x+2y-7=0. Длина стороны BC равна d. Требуется определить вершины B и C треугольника, если известен его центр тяжести: O(9,-3).

Вариант 54

- 1. $[B\ npocmpancmse]$ Дана прямая: $\left\{ \begin{array}{ll} x+(4-u)z-11&=&0,\\ 3x-y+2z-5u&=&0. \end{array} \right.$ Выяснить, при каких значениях u она
 - а) параллельна плоскости 3x 2y + 4z 10 = 0;
 - b) перпендикулярна плоскости x 3y + 2z + 2 = 0.
- 2. [В пространстве] Найдите уравнение плоскости, проходящей через две прямые:

$$l_1: \frac{x-5}{1} = \frac{y-2}{-1} = \frac{z-7}{-1}, \qquad l_2: \begin{cases} x+2y-z+3 &= 0, \\ 3x+2y+z-10 &= 0. \end{cases}$$

- 1. [В пространстве] Выясните, как расположены прямая $\frac{x-3}{2} = \frac{y+3}{-1} = \frac{z-1}{-3}$ и плоскость 3x+y-z+5=0. Т. е. они пересекаются в одной точке, или они не пересекаются (параллельны), или прямая лежит в плоскости?
- 2. $[B\ npocmpancmbe]$ Через точку M(3,1,3) проведите плоскость так, чтобы она была параллельна прямой $\begin{cases} x+3y-2z+3&=0,\\ 2x+y+z-5&=0, \end{cases}$ и перпендикулярна плоскости 3x-2y+4z-10=0.
- 3. [$Ha\ nnockocmu$] Зная вершину A(3,-4) треугольника ABC и уравнения двух его высот, 7x-2y-1=0 и 2x-7y-6=0, написать уравнение стороны BC.

Вариант 56

- 1. [В пространстве] Найдите плоскость, проходящую через прямую $\begin{cases} 2x+y-3z+3 &= 0, \\ x+2y+3z-10 &= 0, \end{cases}$ параллельно прямой $\frac{x-5}{1}=\frac{y-2}{-2}=\frac{z-7}{3}$.
- 2. $[B\ npocmpancmee]$ Выясните, можно ли провести одну плоскость через следующие две прямые:

$$l_1$$
: $\begin{cases} 3x - y + 2z - 7 &= 0, \\ -2x - z + 4 &= 0, \end{cases}$ l_2 : $x = 3t + 1, y = t - 4, z = -2t - 2.$

Если да, то найдите эту плоскость.

3. [$Ha\ nnockocmu$] В треугольнике ABC проведена медиана AM. Из вершины B на медиану опущен перпендикуляр BH: x-3y+8=0. Сторона BC задана уравнением 2x-y+1=0. Известен также центр тяжести треугольника: O(3,5). Найдите все вершины и все стороны треугольника ABC.

Вариант 57

$$l_1\colon x=5t-1,\ y=-t+3,\ z=2t-2,\$$
и $l_2\colon \left\{ \begin{array}{ll} x+4z-11 &=& 0,\\ 3x-y+2z-5 &=& 0. \end{array} \right.$

- 2. [В пространстве] Плоскость α параллельна плоскости x-4y+3z+1=0 и отстоит от неё на расстоянии d=3. Найдите прямую, по которой пересекаются плоскость α и плоскость 2x+y+2z+2=0.
- 3. [На плоскости] Из вершины A(1,3) треугольника ABC проведена высота AH: x+2y-7=0. Длина стороны BC равна d. Требуется определить вершины B и C треугольника, если известен его центр тяжести: O(9,-3).

- 1. [В пространстве] Дана прямая: $\begin{cases} x + (4-u)z 11 &= 0, \\ 3x y + 2z 5u &= 0. \end{cases}$ Выяснить, при каких значениях u она
 - а) параллельна плоскости 3x 2y + 4z 10 = 0;
 - b) перпендикулярна плоскости x 3y + 2z + 2 = 0.
- 2. [В пространстве] Найдите уравнение плоскости, проходящей через две прямые:

$$l_1: \frac{x-5}{1} = \frac{y-2}{-1} = \frac{z-7}{-1}, \qquad l_2: \begin{cases} x+2y-z+3 &= 0, \\ 3x+2y+z-10 &= 0. \end{cases}$$

3. [На плоскости] Составить уравнения сторон треугольника ABC, если даны одна из его вершин A(1,3) и уравнения двух медиан x-2y+1=0 и y-1=0.

Вариант 59

- 1. [В пространстве] Выясните, как расположены прямая $\frac{x-3}{2} = \frac{y+3}{-1} = \frac{z-1}{-3}$ и плоскость 3x + y z + 5 = 0. Т. е. они пересекаются в одной точке, или они не пересекаются (параллельны), или прямая лежит в плоскости?
- 2. $[B\ npocmpancmbe]$ Через точку M(3,1,3) проведите плоскость так, чтобы она была параллельна прямой $\begin{cases} x+3y-2z+3&=0,\\ 2x+y+z-5&=0, \end{cases}$ и перпендикулярна плоскости 3x-2y+4z-10=0.
- 3. $[Ha\ nnockocmu]$ Зная вершину A(3,-4) треугольника ABC и уравнения двух его высот, 7x-2y-1=0 и 2x-7y-6=0, написать уравнение стороны BC.

Вариант 60

- 1. $[B\ npocmpancmse]$ Найдите плоскость, проходящую через прямую $\left\{ \begin{array}{ll} 2x+y-3z+3&=&0,\\ x+2y+3z-10&=&0, \end{array} \right.$ параллельно прямой $\frac{x-5}{1}=\frac{y-2}{-2}=\frac{z-7}{3}.$
- 2. [*В пространстве*] Выясните, можно ли провести одну плоскость через следующие две прямые:

$$l_1$$
:
$$\begin{cases} 3x - y + 2z - 7 &= 0, \\ -2x - z + 4 &= 0, \end{cases}$$
 l_2 : $x = 3t + 1, y = t - 4, z = -2t - 2.$

Если да, то найдите эту плоскость.