TTI2I3 Pengolahan Sinyal Waktu Kontinyu

Bab 2. Sistem Waktu Kontinyu

Sistem Waktu Kontinyu

- 1. Definisi Sistem
- 2. Klasifikasi Sistem
 - 2.1 Sistem Waktu Kontinyu dan Sistem Waktu Diskrit
 - 2.2 Sistem dengan Memori dan Sistem tanpa Memori
 - 2.3 Sistem Kausal dan Sistem Tidak Kausal
 - 2.4 Sistem Linier dan Sistem Tidak Linier
 - Superposisi
 - Homogen
 - Sistem Tidak Berubah Terhadap Waktu (*Time In variance*) dan Berubah Terhadap Waktu (*Time Variance*)
 - 2.6 Sistem Stabil dan Sistem Tidak Stabil
- 3. Integral Konvolusi

Sistem Waktu Kontinyu

- 4. Solusi Persamaan Differensial
 - 4.1 Solusi Homogen
 - 4.2 Solusi Partikular
 - 4.3 Solusi Komplit
- 5. Diagram Blok Sistem Waktu Kontinyu

1. Definisi Sistem

- Sistem adalah sebuah model matematika dari suatu proses yang menghubungkan sinyal masukan (eksitasi) dengan sinyal keluaran (respons).
- ▶ Bila x(t) adalah sinyal masukan dan y(t) adalah sinyal keluaran, maka sistem dapat dilihat sebagai transformasi (pemetaan) dari x(t) ke y(t). Dituliskan dalam notasi matematis menjadi:

$$\mathbf{y} = \mathbf{T} \left\{ \mathbf{x} \left(\mathbf{t} \right) \right\} \tag{1}$$

Dimana T adalah operator yang merepresentasikan aturan-aturan bagaimana x(t) ditransformasikan ke y(t).

2. Klasifikasi Sistem

Materi diambil dari Slide Pembelajaran [Dr. Suhartono Tjondronegoro, Slide Pembelajaran PSWK]

2.1. Sistem Waktu Kontinyu dan Sistem Waktu Diskrit

- Bila sinyal masukan x(t) dan sinyal keluaran y(t) adalah sinyal waktu kontinyu, maka sistem disebut sistem waktu kontinyu.
- Sebaliknya, Bila sinyal masukan x[n] dan sinyal keluaran y[n] adalah sinyal waktu diskrit, maka sistem disebut sistem waktu diskrit.

2.2. Sistem Dengan Memori dan Tanpa Memori

- Sistem disebut tanpa memori bila sinyal keluaran y(t) pada waktu sembarang hanya tergantung kepada nilai sinyal masukan x(t) saat itu.
- Disebut dengan memori bila sinyal keluaran y(t) pada waktu sembarang tergantung kepada nilai sinyal masukan x(t) pada waktu yang lalu atau waktu yang akan datang.

Contoh:

- 1. Arus melalui resistor R sebesar $i(t) = \frac{1}{R}v(t)$. Maka, resistor disebut komponen tanpa memori.
- 2. Arus melalui induktor L sebesar $i(t) = \frac{1}{L} \int_{-\infty}^{t} v(\tau) d\tau$. Maka, induktor disebut komponen dengan memori.
- 3. Tegangan melalui kapasitor C sebesar $v(t) = \frac{1}{C} \int_{-\infty}^{t} i(\tau) \ d\tau$. Maka, kapasitor disebut komponen dengan memori.

2.3. Sistem Kausal dan Tidak Kausal

- Sistem disebut kausal bila untuk t_0 , respons sistem y(t) pada waktu t_0 hanya tergantung kepada masukan x(t) untuk $t \le t_0$.
- Untuk sistem kausal, maka keluaran tidak dapat mendahului masukan.

2.4. Sistem Linear dan Tidak Linear

Sistem dikatakan linear jika memenuhi dua syarat, yaitu Superposisi dan Homogen.

Superposisi (Additif) Respons sistem terhadap penjumlahan masukan sama dengan penjumlahan respons sistem terhadap masing-masing masukan. Sistem disebut additif bila:

$$T\{x_1(t) + x_2(t)\} = T\{x_1(t)\} + T\{x_2(t)\}$$
 (2)

Homogen Scaling terhadap masukan akan menghasilkan scaling terhadap keluaran. Sistem disebut homogen bila:

$$T\{C x(t)\} = C T\{x(t)\}$$
 (3)

2.5. Sistem Tidak Berubah Terhadap Waktu dan Sistem Berubah dengan waktu

- Bila y(t) adalah respons sistem terhadap x(t), maka y(t) = Tx(t).
- Sistem disebut tidak berubah terhadap waktu bila respons sistem terhadap x(t - t₀) adalah y(t - t₀), artinya:

$$Tx(t-t_0)=y(t-t_0)$$

Bila h(t) adalah respons sistem terhadap δ(t), maka ditulsikan h(t) = Tδ(t). Bila sistem tidak berubah terhadap waktu:

$$T\delta(t-\tau)=h(t-\tau)$$

2.6. Sistem Stabil dan Tidak Stabil

Sebuah sistem disebut Stabil bounded- input, bounded-output (BIBO) jika dan hanya jika setiap sinyal masukan terbatas menghasilkan sinyal keluaran terbatas. Keluaran sistem tersebut tidak akan divergen bila masukan tidak divergen.

3. Operasi Konvolusi

Misalkan sebuah sinyal masukkan $\mathbf{x}(\mathbf{t})$ diberikan respons sistem $\mathbf{h}(\mathbf{t})$, maka keluaran sistem $\mathbf{y}(\mathbf{t}) = \mathbf{x}(\mathbf{t}) * \mathbf{h}(\mathbf{t})$.

Persamaan integral konvolusi:

$$\mathbf{y}(\mathbf{t}) = \int_{-\infty}^{\infty} \mathbf{x}(\tau) \mathbf{h}(\mathbf{t} - \tau) d\tau$$
 (4)

Prosedur yang dilakukan dalam integral konvolusi:

- 1. Gambar sinyal $\mathbf{x}(\tau)$ dan $\mathbf{h}(\mathbf{t} \tau)$ sebagai fungsi variabel bebas τ .
- 2. Mulai dengan nilai t besar dan negatif.
- 3. Tuliskan persamaan $\mathbf{y_t}(\tau)$
- 4. Perbesar nilai \mathbf{t} , yang menyebabkan sinyal $\mathbf{h}(\mathbf{t} \tau)$ semakin bergeser kekanan, persamaan $\mathbf{y_t}(\tau)$ akan berubah
- 5. Ulangi langkah (3) dan (4)

Contoh 1.

Sebuah sistem diberikan masukan sinyal sebesar

$$\mathbf{x}(\mathbf{t}) = \mathbf{u}(\mathbf{t} - \mathbf{1}) - \mathbf{u}(\mathbf{t} - \mathbf{3})$$
 dan respon sistem adalah

$$\mathbf{h}(\mathbf{t}) = \mathbf{u}(\mathbf{t}) - \mathbf{u}(\mathbf{t} - \mathbf{2})$$
. Tentukan persamaan sinyal keluaran

$$y(t) = x(t) * h(t)$$
 beserta gambarnya?

Penyelesaian:

Gambar sinyal masukan x(t) dan respon sistem h(t) adalah:

▶ Gambar sinyal $\mathbf{x}(\tau)$ dan $\mathbf{h}(-\tau)$ adalah:

- ▶ Lakukan pergeseran terhadap nilai t
 - $\qquad \qquad \mathbf{0} \leq \mathbf{t} < \mathbf{1}$

Maka persamaan sinyal keluaran:

$$y(t) = \begin{cases} 0 & , t < 1 \\ t - 1 & , 1 \le t < 3 \\ 5 - t & , 3 \le t < 5 \\ 0 & , t \ge 5 \end{cases}$$

Contoh 2.

Sebuah sistem diberikan masukan sinyal sebesar $\mathbf{x}(\mathbf{t}) = \mathbf{u}(\mathbf{t}) - \mathbf{u}(\mathbf{t} - \mathbf{2})$ dan respon sistem adalah $\mathbf{h}(\mathbf{t}) = \mathbf{u}(\mathbf{t} - \mathbf{1}) - \mathbf{u}(\mathbf{t} - \mathbf{3})$. Tentukan persamaan sinyal keluaran $\mathbf{y}(\mathbf{t}) = \mathbf{x}(\mathbf{t}) * \mathbf{h}(\mathbf{t})$ beserta gambarnya?

Penyelesaian:

Gambar sinyal masukan x(t) dan respon sistem h(t) adalah:

▶ Gambar sinyal $\mathbf{x}(\tau)$ dan $\mathbf{h}(-\tau)$ adalah:

- ► Lakukan pergeseran terhadap nilai t
 - $\quad \bullet \quad 0 \leq t < 1$

 $\blacktriangleright \quad \blacktriangleright \quad 1 \leq t < 2$

 $\blacktriangleright \quad \blacktriangleright \quad 2 \leq t < 3$

 $\blacktriangleright \quad \blacktriangleright \quad 3 \leq t < 4$

 $\blacktriangleright \quad 4 \le t < 5$

▶ 5 ≤ t < 6

Maka persamaan sinyal keluaran:

$$y(t) = egin{cases} 0 & , & t < 1 \ t - 1 & , & 1 \leq t < 3 \ 5 - t & , & 3 \leq t < 5 \ 0 & , & t \geq 5 \end{cases}$$

Contoh 3.

Sebuah sistem diberikan masukan sinyal sebesar $\mathbf{x}(\mathbf{t}) = \mathbf{u}(\mathbf{t}+\mathbf{1}) - \mathbf{u}(\mathbf{t}-\mathbf{1})$ dan respon sistem adalah $\mathbf{h}(\mathbf{t}) = \mathbf{u}(\mathbf{t}-\mathbf{2}) + \mathbf{u}(\mathbf{t}-\mathbf{4}) - 2\mathbf{u}(\mathbf{t}-\mathbf{5})$. Tentukan persamaan sinyal keluaran $\mathbf{y}(\mathbf{t}) = \mathbf{x}(\mathbf{t}) * \mathbf{h}(\mathbf{t})$ beserta gambarnya?

Penyelesaian:

Gambar sinyal masukan x(t) dan respon sistem h(t) adalah:

▶ Gambar sinyal $\mathbf{x}(\tau)$ dan $\mathbf{h}(-\tau)$ adalah:

- Lakukan pergeseran terhadap nilai t
 - $\quad \bullet \ 0 \leq t < 1$

▶ 1 ≤ t < 2

▶ 2 ≤ t < 3

$\blacktriangleright \quad \blacktriangleright \quad 3 \leq t < 4$

▶ 4 ≤ t < 5

$$y_t(\tau) = \int_{t-5}^{t-4} 1 \cdot 2 \ d\tau + \int_{t-4}^{1} 1 \cdot 1 \ d\tau$$
$$y_t(\tau) = 2\tau \Big|_{t-5}^{t-4} + \tau \Big|_{t-4}^{1} = 7 - t$$

▶ 5 ≤ t < 6

▶ 6 ≤ t < 7

Maka persamaan sinyal keluaran:

$$y(t) = \begin{cases} 0 & , t < 1 \\ t - 1 & , 1 \le t < 4 \\ 7 - t & , 4 \le t < 5 \\ 12 - 2t & , 5 \le t < 6 \\ 0 & , t \ge 6 \end{cases}$$

Contoh 4.

Sebuah sistem diberikan masukan sinyal sebesar

$$\mathbf{x}(\mathbf{t}) = \mathbf{u}(\mathbf{t}) - \mathbf{u}(\mathbf{t} - \mathbf{2})$$
 dan respon sistem adalah

 $\mathbf{h}(\mathbf{t}) = \mathbf{e}^{-2\mathbf{t}}\mathbf{u}(\mathbf{t})$. Tentukan persamaan sinyal keluaran

y(t) = x(t) * h(t) beserta gambarnya?

Penyelesaian:

Gambar sinyal masukan x(t) dan respon sistem h(t) adalah:

▶ Gambar sinyal $\mathbf{x}(\tau)$ dan $\mathbf{h}(-\tau)$ adalah:

Lakukan pergeseran terhadap nilai t

Catatan:
$$h(t) = e^{-2t}u(t)$$
,

$$\mathsf{makah}(\mathbf{t} - \tau) = e^{-2(\mathbf{t} - \tau)}\mathbf{u}(\mathbf{t} - \tau)$$

▶
$$0 \le t < 1$$

$$y_t(\tau) = \int_0^t 1 \cdot e^{-2(t-\tau)} d\tau = \frac{1}{2} e^{-2(t-\tau)} \Big|_0^t = \frac{1}{2} \left[1 - e^{-2t} \right]$$

 $\blacktriangleright \quad \ \, 1 \leq t < 2$

Maka persamaan sinyal keluaran:

$$y(t) = \begin{cases} 0 & , t < 0 \\ \frac{1}{2} \left[1 - e^{-2t} \right] & , 0 \le t < 2 \\ \frac{1}{2} \left[e^{-2t+4} - e^{-2t} \right] & , t \ge 2 \end{cases}$$

Latihan 1.

Sebuah system dengan respon impuls h(t) = u(t-1) + 2u(t-4) - 3u(t-5) mendapatkan masukan x(t) = u(t-1) - u(t-4).

- a. Gambarkan sinyal h(t)
- b. Gambarkan sinyal x(t)
- Carilah persamaan sinyal keluaran system beserta gambarnya

$$\mathbf{y}(\mathbf{t}) = \mathbf{x}(\mathbf{t}) * \mathbf{h}(\mathbf{t}) = \int_{-\infty}^{\infty} \mathbf{x}(\tau) \ \mathbf{h}(\mathbf{t} - \tau) \ \mathbf{d}\tau$$

$$\mathbf{y(t)} = \mathbf{h(t)} * \mathbf{x(t)} = \int_{-\infty}^{\infty} \mathbf{h(au)} \ \mathbf{\dot{x}(t- au)} \ \mathbf{d au}$$

Latihan 2.

Sebuah system dengan respon impuls $h(t) = e^{-2t}u(t)$ mendapatkan masukan x(t) = u(t).

- a. Gambarkan sinyal h(t)
- b. Gambarkan sinyal x(t)
- Carilah persamaan sinyal keluaran system beserta gambarnya

$$\mathbf{y(t)} = \mathbf{x(t)} * \mathbf{h(t)} = \int_{-\infty}^{\infty} \mathbf{x(au)} \; \mathbf{\dot{h(t- au)}} \; \mathbf{d au}$$

$$\mathbf{y}(\mathbf{t}) = \mathbf{h}(\mathbf{t}) * \mathbf{x}(\mathbf{t}) = \int_{-\infty}^{\infty} \mathbf{h}(au) \mathbf{x}(\mathbf{t} - au) d au$$

Latihan 3.

Sebuah system dengan respon impuls $h(t) = e^{-2t}u(t)$ mendapatkan masukan x(t) = u(t) - u(t-2).

- a. Gambarkan sinyal h(t)
- b. Gambarkan sinyal x(t)
- Carilah persamaan sinyal keluaran system beserta gambarnya

$$\mathbf{y}(\mathbf{t}) = \mathbf{x}(\mathbf{t}) * \mathbf{h}(\mathbf{t}) = \int_{-\infty}^{\infty} \mathbf{x}(\tau) \mathbf{h}(\mathbf{t} - \tau) d\tau$$

$$\mathbf{y(t)} = \mathbf{h(t)} * \mathbf{x(t)} = \int_{-\infty}^{\infty} \mathbf{h(\tau)} \mathbf{\dot{x}(t-\tau)} \ \mathbf{d}\tau$$

Latihan 4.

Sebuah system dengan respon impuls h(t) = u(t) - u(t-3) mendapatkan masukan $x(t) = \delta(t+1) + 2\delta(t)$.

- a. Gambarkan sinyal h(t)
- b. Gambarkan sinyal u(t)
- Carilah persamaan sinyal keluaran system beserta gambarnya

$$\mathbf{y(t)} = \mathbf{x(t)} * \mathbf{h(t)} = \int_{-\infty}^{\infty} \mathbf{x(au)} \; \mathbf{\dot{h(t- au)}} \; \mathbf{d au}$$

$$\mathbf{y(t)} = \mathbf{h(t)} * \mathbf{x(t)} = \int_{-\infty}^{\infty} \mathbf{h(au)} \ \mathbf{\dot{x}(t- au)} \ \mathbf{d au}$$

4. Diagram Blok Sistem Waktu Kontinyu

Adder

Multiplier

$$x(t)$$
 $y(t) = a x(t)$

Diferensiator

$$x(t)$$
 $y(t) = \frac{d}{dt}x(t)$

$$x(t) \longrightarrow \boxed{\frac{d}{dt}} \longrightarrow y(t) = \frac{d}{dt}x(t)$$

$$x(t) \longrightarrow \boxed{\frac{d}{dt}} \longrightarrow y(t) = \frac{d^{(2)}}{dt^{(2)}}x(t)$$

Integrator

Menggambarkan blok diagram sistem waktu kontinyu dapat dilakukan dengan dua cara, yaitu dengan menggunakan Diferensiator atau Integrator.

Contoh 5:

Gambarkan realisasi sistem untuk persamaan diferensial berikut:

$$\frac{d}{dt}y(t) = x(t) - 5y(t)$$

Penyelesaian:

Dengan Diferensiator

$$5 y(t) = x(t) - \frac{d}{dt}y(t)$$

$$y(t) = \frac{1}{5} x(t) - \frac{1}{5} \frac{d}{dt} y(t)$$

▶ Dengan Integrator

$$5 y(t) = x(t) - \frac{d}{dt}y(t)$$
$$\frac{d}{dt} y(t) = x(t) - 5y(t)$$

Contoh 6:

Gambarkan realisasi sistem untuk persamaan diferensial berikut:

$$4 x(t) = \frac{d^{(2)}}{dt^{(2)}}y(t) + 2 \frac{d}{dt}y(t) - 2y(t)$$

Penyelesaian:

Dengan Diferensiator

$$2 y(t) = \frac{d^{(2)}}{dt^{(2)}}y(t) + 2 \frac{d}{dt}y(t) - 4 x(t)$$

$$y(t) = -2 x(t) + \frac{1}{2} \frac{d^{(2)}}{dt^{(2)}} y(t) + \frac{d}{dt} y(t)$$

Dengan Integrator

$$\frac{d^{(2)}}{dt^{(2)}}y(t) = -2 \frac{d}{dt}y(t) + 2 y(t) + 4 x(t)$$

5. Solusi Persamaan Diferensial

Bentuk umum persamaan diferensial untuk sinyal waktu kontinyu dituliska sebagai:

$$\sum_{k=0}^{N} a_k \frac{d^k}{dt^k} y(t) = \sum_{k=0}^{M} b_k \frac{d^k}{dt^k} x(t)$$
 (5)

Dimana $\mathbf{a_k}$ dan $\mathbf{b_k}$ adalah koefesien konstan sistem. Solusi persamaan diferensila terdiri dari:

- $\qquad \qquad \textbf{Solusi Homogen} \rightarrow \textbf{y}^{(\textbf{h})}(\textbf{t})$
- ▶ Solusi Partikular $\rightarrow y^{(p)}(t)$
- ▶ Solusi Komplit → y(t)

5.1. Solusi Homogen

Bentuk homogen dari persamaan differensial ialah dengan membuat semua masukan $\mathbf{x}(\mathbf{t})$ dan turunannya menjadi **nol**. Untuk sistem waktu kontinyu, $\mathbf{y}^{(h)}(\mathbf{t})$ dituliskan kedalam bentuk persamaan:

$$\sum_{k=0}^{N} a_k \frac{d^k}{dt^k} y^{(h)}(t) = 0$$
 (6)

Sehingga solusi persamaan homogen dituliskan menjadi:

$$y^{(h)}(t) = \sum_{i=1}^{N} c_i e^{r_i t}$$
 (7)

dimana $\mathbf{r_i}$ adalah \mathbf{N} akar-akar persamaan karakteristik sistem (PKS):

$$\sum_{k=0}^{N} a_k r^k = 0 \tag{8}$$

5.2. Solusi Partikular

- Solusi partikular y^(p)(t) adalah solusi persamaan differensial yang akan bersesuaian dengan sinyal masukan yang diberikan.
- y^(p)(t) tidak unik, diperoleh dengan asumsi bahwa sinyal keluaran sama dengan sinyal masukan.
- Diasumsikan masukan ada untuk seluruh waktu \mathbf{t} , bila masukan ada setelah $\mathbf{t}=\mathbf{0}$, solusi tergantung kondisi awal, solusi partikular hanya berlaku untuk $\mathbf{t}>\mathbf{0}$.

Sinyal Masukan	Solusi Partikular
1	С
t	c_1t+c_2t
e ^{-at}	c e ^{-at}
$cos(\Omega t + \phi)$	$a cos(\Omega t) + b sin(\Omega t)$
$sin(\Omega t + \phi)$	$a cos(\Omega t) + b sin(\Omega t)$

5.3. Solusi Komplit

Solusi komplit persamaan differensial diperoleh dengan menjumlahkan solusi partikular $\mathbf{y}^{(p)}(\mathbf{t})$ dengan solusi homogen $\mathbf{y}^{(h)}(\mathbf{t})$ dan mendapatkan nilai koefisien pada solusi homogin yang belum ditemukan sebelumnya, sehingga solusi komplit (SK) memenuhi kondisi awal. Prosedur menentukan solusi komplit:

- 1. Dapatkan solusi homogen $\mathbf{y^{(h)}(t)}$
- 2. Dapatkan solusi partikular $\mathbf{y}^{(p)}(\mathbf{t})$
- Tentukan nilai koefisien pada solusi homogen sehingga solusi komplit memenuhi syarat kondisi awal.

$$\mathbf{y}(\mathbf{t}) = \mathbf{y}^{(\mathbf{h})}(\mathbf{t}) + \mathbf{y}^{(\mathbf{p})}(\mathbf{t}) \tag{9}$$

Contoh 7:

Sebuah sistem dengan persamaan differensial sebagai berikut:

$$\frac{d^2}{dt^2}y(t) + 3\frac{d}{dt}y(t) + 2y(t) = x(t)$$

- a. Tentukan solusi homogen
- b. Tentukan solusi partikular (khusus) bila mendapatkan masukkan $\mathbf{x}(\mathbf{t}) = \mathbf{cos}(\mathbf{t})$
- c. Tentukan solusi total bila $y(0^-)=0$, $\frac{d}{dt}y(t)\Big|_{t=0}=0$ dan masukkan x(t)=cos(t) u(t).

Penyelesaian:

 Solusi homogen sistem dilakukan dengan cara membuat masukkan x(t) menjadi nol.

$$\frac{d^2}{dt^2}y(t) + 3\frac{d}{dt}y(t) + 2y(t) = 0$$

Orde tertinggi keluaran 2, sehingga untuk mencari nilai ri digunakan:

$$\sum_{k=0}^{2} a_k r^k = 0$$

$$a_0 r^0 + a_1 r^1 + a_2 r^2 = 0$$

$$2r^0 + 3r^1 + 1r^2 = 0$$

Diperoleh $\mathbf{r_1} = -\mathbf{1}$ dan $\mathbf{r_2} = -\mathbf{2}$, solusi homogen dapat dituliskan menjadi:

$$y^{(h)}(t) = \sum_{i=1}^{2} c_i e^{r_i t} = c_1 e^{r_1 t} + c_2 e^{r_2 t} = c_1 e^{-t} + c_2 e^{-2t}$$

b. Solusi partikular (khusus) untuk x(t) = cos(t), maka:

$$y^{(p)}(t) = a \cos(t) + b \sin(t)$$

 $y^{(p)'}(t) = -a \sin(t) + b \cos(t)$

$$y^{(p)'}(t) = -a \sin(t) + b \cos(t)$$

$$y^{(p)''}(t) = -a \cos(t) - b \sin(t)$$

Sehingga persamaan:

$$\frac{d^2}{dt^2}y(t) + 3\frac{d}{dt}y(t) + 2y(t) = x(t)$$

Menjadi:

$$[-a \cos(t) - b \sin(t)] + 3[-a \sin(t) + b \cos(t)] + 2[a \cos(t) + b \sin(t)] = \cos(t)$$

$$cos(t)[-a+3b+2a] + sin(t)[-b-3a+2b] = cos(t)$$

Diperoleh:

$$a + 3b = 1 \tag{10}$$

$$-3a + 3b = 0 (11)$$

Dari substitusi persamaan (10) dan (11) diperoleh $\mathbf{a}=\frac{\mathbf{1}}{\mathbf{10}}$ dan $\mathbf{b}=\frac{\mathbf{3}}{\mathbf{10}}$.

Sehingga solusi partikular $\mathbf{y}^{(p)}(\mathbf{t}) = \mathbf{a} \, \cos(\mathbf{t}) + \mathbf{b} \, \sin(\mathbf{t})$ dapat dituliskan menjadi:

$$y^{(p)}(t) = \frac{1}{10} \, \cos(t) + \frac{3}{10} \, \sin(t)$$

c. Solusi total bila $\mathbf{y}(\mathbf{0}^-) = \mathbf{0}, \ \frac{d}{dt}\mathbf{y}(\mathbf{t})\Big|_{\mathbf{t}=\mathbf{0}} = \mathbf{0}$ dan masukkan $\mathbf{x}(\mathbf{t}) = \cos(\mathbf{t}) \ \mathbf{u}(\mathbf{t}).$

$$y(t) = y^{(h)}(t) + y^{(p)}(t)$$

$$y(t) = \left[c_1 e^{-t} + c_2 e^{-2t}\right] + \left[\frac{1}{10} \cos(t) + \frac{3}{10} \sin(t)\right]$$

▶ Saat y(0⁻) = 0

$$y(0) = \left[c_1e^{-0} + c_2e^{-2\cdot 0}\right] + \left[\frac{1}{10}\cos(0) + \frac{3}{10}\sin(0)\right]$$

$$0 = c_1 + c_2 + \frac{1}{10} \tag{12}$$

► Saat
$$\frac{d}{dt}y(t)\Big|_{t=0} = 0$$

$$y(t) = \left[c_1e^{-t} + c_2e^{-2t}\right] + \left[\frac{1}{10}\cos(t) + \frac{3}{10}\sin(t)\right]$$

$$y'(t) = \left[-c_1e^{-t} - 2c_2e^{-2t}\right] + \left[-\frac{1}{10}\sin(t) + \frac{3}{10}\cos(t)\right]$$

$$y'(0) = \left[-c_1e^{-0} - 2c_2e^{-2\cdot 0}\right] + \left[-\frac{1}{10}\sin(0) + \frac{3}{10}\cos(0)\right]$$

$$0 = -c_1 - 2c_2 + \frac{3}{10} \tag{13}$$

Dari persamaan (12) dan (13) diperoleh $c_1 = -\frac{1}{2}$ dan $c_2 = \frac{2}{5}$.

Sehingga solusi komplit menjadi:

$$y(t) = \left[c_1 e^{-t} + c_2 e^{-2t}\right] + \left[\frac{1}{10} \cos(t) + \frac{3}{10} \sin(t)\right]$$

$$y(t) = \left[-\frac{1}{2}e^{-t} + \frac{2}{5}e^{-2t} \right] + \left[\frac{1}{10} \cos(t) + \frac{3}{10} \sin(t) \right]$$

References

- Alan V. Oppenheim & George C. Vergheseu, "Signals, Systems & Inference", Pearson Education, Inc.
- Dr. Suhartono Tjondronegoro, "Slide Pembelajaran Pengolahan Sinyal Waktu Kontinyu."