

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 57-072266
(43)Date of publication of application : 06.05.1982

(51)Int.CI. H01M 4/50
H01M 4/06

(21)Application number : 55-149225 (71)Applicant : MATSUSHITA ELECTRIC IND CO LTD

(22)Date of filing : 23.10.1980 (72)Inventor : ITO RYOICHI
MOMOSE KEIGO
SAWAI TADASHI
SHIRAI IWAO

(54) ALKALINE MANGANESE BATTERY

(57)Abstract:

PURPOSE: To enhance the strong-load discharge characteristic, and increase the discharge capacity of an alkaline manganese battery by using a positive electrode prepared by adding given amounts of γ -nickel oxyhydroxide and a conductive matter to γ -manganese dioxide used as an active material before the mixture is molded.

CONSTITUTION: A molded positive mixture 2, a separator 3, an electrolyte holding material 4 and a gel-like negative zinc electrode 5 are placed in a positive case 1. After that, a sealing plate 6 also serving as a negative terminal is placed on the electrode 5, with an insulating gasket 7 interposed between the case 1 and the plate 6, to seal the battery, thereby constituting a button-type alkaline manganese battery. The molded positive mixture 2 principally consists of γ -manganese dioxide used as a positive active material, and contains 5 ~30wt% of γ -nickel oxyhydroxide. In addition, the mixture 2 contains a given amount of a conductive material such as micro graphite powder or micro nickel metal powder.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

⑨ 日本国特許庁 (JP) ⑩ 特許出願公開
 ⑪ 公開特許公報 (A) 昭57-72266

⑤ Int. Cl.³
 H 01 M 4/50
 4/06

識別記号

厅内整理番号
 2117-5H
 6821-5H

⑥公開 昭和57年(1982)5月6日
 発明の数 1
 審査請求 未請求

(全 3 頁)

⑦アルカリマンガン電池

⑧特 願 昭55-149225

⑨出 願 昭55(1980)10月23日

⑩発明者 伊東良一

門真市大字門真1006番地松下電
器産業株式会社内

⑪発明者 百瀬敬吾

門真市大字門真1006番地松下電
器産業株式会社内

⑫発明者 沢井忠

門真市大字門真1006番地松下電
器産業株式会社内

⑬発明者 白井巖

門真市大字門真1006番地松下電
器産業株式会社内

⑭出願人 松下電器産業株式会社

門真市大字門真1006番地

⑮代理 弁理士 中尾敏男 外1名

明細書

1、発明の名称

アルカリマンガン電池

2、特許請求の範囲

陽極にニッケルマンガン、陰極に亜鉛粉末、電解液にか性アルカリを用いたアルカリ電池において、前記陽極はニッケルマンガンを主剤とし、これに合剤容量の6～80重量%のカーボキシ水酸化マグネルと所定量の導電性物質を混合した合剤成形体からなることを特徴とするアルカリマンガン電池。

3、発明の詳細な説明

本発明はアルカリマンガン電池の改良に関するもので、開路電圧の上昇と内部抵抗の減少による強負荷放電特性の向上及び放電容量の増加を図ることを目的とするものである。

アルカリマンガン電池は、主に筒形のタイプあるいはボタン型のタイプが作られている。最近、価格が比較的安値としているため、アルカリマンガン電池が見直されており、電車用、カメラ用、テ

ィター用を中心として、精密電子機器の電源として広く用いられるようになってきた。

アルカリマンガン電池は通常、ニッケルマンガン（以下「 Ni-MnO_2 」という）を主剤とし、これに導電性物質として微粉リン状黒鉛を混合し、圧縮成形して陽極合剤を形成している。この陽極合剤は、一般に鉄にニッケルメッキしたケース底面に圧着され、電解液を吸収させた後、その上に耐アルカリ性のセバレータ、および電解液合液体を配置する。その上部にさらに陰極体として、二氧化錫粉末中に増粘剤を均一に分散し、電解液を吸収させたものを配する。

この陰極体は、一般には射口体を兼ねた陰極架電容器に入れられている。さらに陽極ケース上部を、プラスサック型のガスケットを介して内方に折り曲げ圧着して電池を構成する。

しかし、既存の製法によるものでは、陽極合剤として「 Ni-MnO_2 」を単独で用いるため、「 Ni-MnO_2 」の特徴として保存時ににおける開路電圧の劣化が起こり、放電維持電圧を下げるため、強負荷

特開昭57- 72266 (2)

γ -NiO(OH)を添加することによって、開路電圧は上昇し、かつ内部抵抗は減少するが、添加量が6重量%よりも少ないとその効果は小さい。表-1に γ -NiO(OH)の添加量と電池の開路電圧と内部抵抗の変化の関係を示した。

表 - 1

γ -NiO(OH)の添加量	開路電圧	内部抵抗
1wt%	1.69(V)	2.3(Ω)
2wt%	1.61(V)	1.5(Ω)
6wt%	1.64(V)	1.4(Ω)
10wt%	1.67(V)	1.4(Ω)

逆に γ -NiO(OH)の添加量が増えるにしたがって同一重量の陽極合剤を同一寸法に成型する際の成型圧力が上昇していく。その関係を表-2に示した。

(以 下 余 白)

表 - 2

γ -NiO(OH)の添加量	成型圧力	成型条件
10wt%	1.6kg/cm ²	荷重 600kg (リン酸鉄鉱 10wt%含む)
30wt%	2.2kg/cm ²	直 径 10.9mm
60wt%	3.0kg/cm ²	高 度 2.35mm
70wt%	3.8kg/cm ²	

本発明者はこれまでに陽極合剤の多孔度と内部抵抗との関係から、内部抵抗を極く抑えるためには、陽極合剤の多孔度を約30%前後にすることが好ましいことを見い出しており、そのためには成型圧力を約20kg/cm²以下にすることが望ましいことを確認している。従って表-2からすると γ -NiO(OH)添加量は30重量%以下が適していることがわかる。

さらに陽極合剤にか性アルカリ電解液を注液し、含浸させると、 γ -NiO(OH)の添加量が多いもの程陽極合剤の崩壊が起り、陽極合剤成形体として目をなさないことが判明した。この γ -NiO

(OH)添加量と注液時における陽極合剤の崩壊率との関係を表-3に示した。

表 - 3

γ -NiO(OH)の添加量	陽極合剤崩壊率
10wt%	0% (0/100)
20wt%	2% (2/100)
30wt%	11% (11/100)
60wt%	100% (100/100)

従って工業的には γ -NiO(OH)添加量を30重量%以下、さらには60重量%以下に制御することは極めて重要な意味を持っている。

以下本発明の具体的な実施例を示す。

γ -MnO₂ 7.8gに γ -NiO(OH) 10g、さらにリン酸鉄鉱粉末 1.5gを混合し均一化した後、60°Cを所定し、20kg/cm²の圧力で陽極合剤を乗ねた金属容器中に直径 10.9mm、厚さ 2.35mmに成型する。この陽極合剤に濃度 40重量%のアルカリ電解液を 40mlを吸液させる。第1回

示す如く陽極容器1内の陽極合剤成形体2上に耐アルカリ性のセパレータ3と耐アルカリ性樹脂からなる電解液合被材4を置き、その上に聚化亜鉛粉末に電解液を注液しゲル化してなるゲル状亜鉛電池5を配置し、陰極端子を兼ねた封口板6をおく。この封口板6の周辺には合成樹脂からなる絕縁ガスケット7をとりつけこのガスケット7を介して陽極容器1の上部を内方にカールし密封口してボタン型アルカリマンガン電池を作成した。本作電池Aはレコード44型(直徑11.0mm, 高さ5.4mm)とした。

この試作電池Aの20°Cにおける0.1Ωの連続放電時の放電維持電圧(1.0Vカット)の変化を第2図に示す。従来品Bと比較して本発明品Aの効果は顕著である。

また1.6Vの連続放電時の放電維持電圧(1.0Vカット)の変化も第3図に示した。この図から放電容量の差が明らかである。

またこの日、B両電池の開路電圧・内部抵抗についても表-4に示した。

表-4

電池	初期	6ヶ月後	1年後
A	1.67(V) 1.4 (Ω)	1.66(V) 1.7 (Ω)	1.62(V) 1.8 (Ω)
B	1.57(V) 2.6 (Ω)	1.65(V) 2.7 (Ω)	1.63(V) 2.6 (Ω)

以上のように本発明によれば、開路電圧の上昇と内部抵抗の減少による強負荷放電特性の向上及び放電容量の増加がなされたアルカリマンガン電池を得ることができるとができる。

4. 図面の簡単な説明

第1図は本発明の一実施例におけるボタン型アルカリマンガン電池の半断面図、第2図は6102連続放電特性電示す図、第3図は1.6V連続放電特性を示す図である。

1 ……陽極容器、2 ……陽極合剤成形体、
3 ……セパレータ、4 ……電解液合被材、5 ……ゲル状亜鉛電池、6 ……封口板。

第1図

第2図

図の説明

