Първо контролно

за разширения национален отбор Разград, 29. април 2013 г.,

Група А

ЗАДАЧА А1. МАКСИМАЛНО КОНСЕНСУСНО ДЪРВО

Всички познати ни биологични видове имат общ произход, но редът на видообразуването им е сложна задача, която учените решават от десетилетия. Текущите видове имат общи предшественици, чиято история може да бъде представена като дърво, в което коренът обозначава най-ранния единствен вид. Движейки се към листата, всеки от съществувалите видове се е подразделял на по два наследствени вида, завършвайки разделянето си при текущо-наблюдаваните видове в листата на дървото. Сложността при изследването на такива дървета идва от това, че цялото дърво не ни е известно. Затова учените използват сходството между различните наблюдавани видове в листата на дървото, за да построят различни дървета, които биха могли да обясняват произлязлата еволюция. При дадени две различни дървета, интерес представлява изборът на максимално подмножество S от видовете, записани в листата на всяко от дърветата, така че и двете дървета да предлагат едно и също обяснение за еволюцията на видовете S.

Термини:

- <u>двоично дърво</u> ще наричаме свързан ацикличен граф (без обособен корен), в който всеки от върховете има 1 или 3 съседа (върховете с 1 съсед наричаме листа);
- филогенетично дърво ще наричаме двоично дърво, в което всяко от листата притежава уникално име (т.е. в същото дърво няма друго листо с такова име);
- <u>поддърво</u> на филогенетичното дърво T наричаме филогенетично дърво, което може да бъде получено като от T последователно се премахнат върхове с по 1 или 2 съседни върха. При премахването на връх се премахват и инцидентните му ребра, а съседните му върхове (ако съществуват) се свързват с ребро;
- изоморфни наричаме дърветата P и Q, ако чрез взаимно-еднозначно отъждествяване на върховете на P с върховете от Q, ребро между два върха в едното дърво съществува тогава и само тогава, когато реброто между съответните върхове в другото дърво също съществува;
- консенсусно дърво между две филогенетични дървета P и Q ще наричаме такова филогенетично дърво, което е изоморфно както на поддърво на P, така и на поддърво на Q, а имената на съответните листа в консенсусното дърво и в поддърветата съвпадат.

Напишете програма **mas**, която, по дадени две филогенетични дървета P и Q, определя максималния брой листа в някое консенсусно дърво между P и Q. Вход

От стандартния вход се въвеждат последователно две дървета с еднаква структура:

първи ред: брой на върховете $N_i(N_i < 1000)$ на дървото i, където $i \in \{P,Q\}$;

следващи N_{i}-1 реда: два номера от 1 до N_{i} , указващи на върхове, свързани с ребро;

следващ ред: брой на листата L_i на i-тото дърво;

следващи L_i реда: номер на листото от 1 до N_i и име на листото, включващо от 1 до 10 символа от множеството [A-Z,0-9].

Изход

Изведете на стандартния изход максималния брой на листата в някое консенсусно дърво на P и Q.

Първо контролно

за разширения национален отбор Разград, 29. април 2013 г., Група А

Първо контролно

за разширения национален отбор Разград, 29. април 2013 г., Група А

ЗАДАЧА А2. КАРТИ

Ели играе на следната игра с карти за един човек. В началото от стандартно тесте с 52 карти се раздават 5 карти, а част от останалите (възможно е всички) се оставят в купчинка до играча. На всеки ход играчът прави следните неща:

- 1. Избира някоя от петте карти в себе си и я изхвърля (тази карта повече не участва в играта)
- 2. Тегли най-горната карта от тестето, така че отново да е с пет карти
- 3. Брои коя е най-често срещаната по сила карта в своите пет и колко пъти се среща тя. Ако се среща k пъти, той печели R_k точки.
- 4. Брои кой цвят е най-често срещан в своите пет карти и колко пъти се среща той. Ако той се среща k пъти, той печели S_k точки.

Играта продължава докато в купчинката не останат карти за теглене. Целта на играта е да се съберат максимален брой точки.

Ели обича да послъгва, като преглежда купчинката с карти преди да започне играта и използва своята феноменална памет за да запомни кои карти са там и в какъв ред са те. Напишете програма **cards**, която намира колко най-много точки може да спечели тя ако играе оптимално.

Вход

На първия ред ще бъде зададено едно цяло число N - броя карти в купчинката. На втория ред има четири цели числа R_1 , R_2 , R_3 , и R_4 , описващи колко точки би спечелила Ели на всяка стъпка, ако най-често срещаната по сила карта се среща 1, 2, 3, или 4 пъти. На третия ред ще има пет цели числа S_1 , S_2 , S_3 , S_4 , и S_5 , описващи колко точки би спечелила Ели на всяка стъпка, ако най-често срещаната боя се среща 1, 2, 3, 4, или 5 пъти. Следва ред с петте карти, с които започва Ели. На последния ред са зададени N-те карти, които има в купчинката, в реда, в който ще бъдат изтеглени.

Всяка карта е описана като стринг от 2 букви — първата, описваща силата на картата ('2', '3', '4', '5', '6', '7', '8', '9', 'T', 'J', 'Q', 'K', или 'A'), а втората — нейната боя ('S' (спатии), 'D' (кари), 'H' (купи), или 'C' (пики)). Гарантирано е, че всички карти във входа ще са различни.

Изход

На стандартния изход изведете едно цяло число, указващо максималния брой точки, които може да спечели Ели, ако играе оптимално.

Ограничения

- **♦** $1 \le N \le 47$
- **♦** $1 \le R_i, S_i \le 1000$

Пример

Вход	Изход
10	152
2 4 9 7	
3 5 8 9 11	
TC TH 6D 5D JD	
TD 7H 2C 3H KS JS 8D AD 7D 9C	

Обяснение на примера

Ако на първата стъпка Ели изхвърли 10-ка пика или 10-ка купа, тя ще спечели 13 точки: 4 точки за сила (ще има две десетки) и 9 точки за боя (ще има 4 кари). Ако, обаче,

Първо контролно

за разширения национален отбор Разград, 29. април 2013 г.,

Група А

реши да изхвърли някоя от карите, ще спечели 17 точки: 9 точки за сила (три десетки) и 8 точки за боя (3 кари).

ЗАДАЧА АЗ. ОЦВЕТЯВАНЕ

Пешо отново е намислил как да тормози Станчо. Взел лист хартия и го разграфил на квадратчета с хоризонтални и вертикални линии през един сантиметър. После избрал N от пресечните точки на правите и поискал от Станчо да оцвети всяка от избраните точки в черно или в червено така, че върху всяка права точките, оцветени в единия цвят, да са най-много с една повече от точките оцветени в другия цвят.

– Нищо по лесно от това! – изхвърлил се Станчо и се заел с задачата.

Напишете и вие програма **points**, която по зададени точки с целочислени координати намира едно възможно оцветяване с горното свойство.

Вход

На първия ред на стандартния вход ще бъде зададен броят N на точките, $N \le 500000$. На всеки от следващите N реда ще бъдат зададени координатите на една от точките – цели числа в интервала от 0 до 1023 включително.

Изход

На отделен ред на стандартния изход програмата трябва да изведе за всяка от точките координатите ѝ и цвета, в който е оцветена – буквата **B**, ако точката е оцветена в черно или **R**, ако е оцветена в червено. Програмата трябва да изведе кое да е от възможните оцветявания.

Пример

Вход	Изход
8	3 3 B
1 1	2 1 R
4 4	4 2 B
1 2	4 4 R
2 1	2 4 B
1 5	1 2 R
2 4	1 1 B
3 3	1 5 R
4 2	