film, and forming impurity diffused layers on both sides of the respective gate electrodes in the semiconductor substrate.

IN THE CLAIMS

Please amend Claims 1, 10 and 12 to read as follows:

1. (Twice Amended) A semiconductor device manufacturing method comprising:

forming a gate insulating film in an oxynitride form on a main surface of a semiconductor substrate;

forming gate electrodes on the gate insulating film;

removing the gate insulating film except under the gate electrodes to expose the main surface of the semiconductor substrate;

forming an insulating film on the exposed main surface of the semiconductor substrate by at least one of a vaporizer method using H2O as an oxidizer, an oxyhydrogen combustion method, and a wet oxidation method performed at temperatures not lower than 950°C; and

forming impurity diffused layers on both sides of the respective gate electrodes in the semiconductor substrate.

10. (Three Times Amended) A semiconductor device manufacturing method comprising:

forming a gate insulating film in an oxynitride form on a main surface of a semiconductor substrate;

forming gate electrodes on the gate insulating film;

making a nitrogen concentration of part of the gate insulating film except under the gate electrodes lower than a nitrogen concentration of part of the gate insulating film which lies under the gate electrodes by oxidizing the gate electrodes and the gate insulating film by at least one of a vaporizer method using H₂O as an oxidizer, an oxyhydrogen combustion method, and a wet oxidation method performed at temperatures not lower than 950°C; and

forming impurity diffused layers on both sides of the respective gate electrodes in the semiconductor substrate.

12. (Twice Amended) A semiconductor device manufacturing method comprising: forming a gate insulating film in an oxynitride form on a main surface of a semiconductor substrate;

forming gate electrodes on the gate insulating film;

forming a post oxidation film on the main surface of the semiconductor substrate except under the gate electrodes by at least one of a vaporizer method using H_2O as an oxidizer, an oxyhydrogen combustion method, and a wet oxidation method performed at temperatures not lower than 950°C;

oxynitrifying the post oxidation film; and

forming impurity diffused layers on both sides of the respective gate electrodes in the semiconductor substrate.

REMARKS

Favorable reconsideration of this application as presently amended and in light of the following discussion is respectfully requested.

Claims 1-4, 7, 10, 12-18, 20 and 22 are pending in the present application with Claims 1, 10 and 12 having been amended by the present amendment.