$\mathbf{MTH375} :$ Mathematical Statistics - Homework #5

Cason Konzer

February 26, 2022

Key Concepts: MOM and MLE estimators.

1. Let X_1, \ldots, X_n be a sample of *iid Negative Binomial* $(r = 4, p = \theta)$ random variables with $\theta \in [0, 1]$. Determine the MLE and the MOM estimators of θ .

Solution:

We will first find the likelihood and log-likelihood function then sent the derivative to zero to find the MLE.

•
$$p_X(x) = {x-1 \choose r-1} p^r (1-p)^{x-r} = {x-1 \choose 3} \theta^4 (1-\theta)^{x-4} = \frac{(x-1)(x-2)}{3!} \theta^4 (1-\theta)^{x-4}.$$

•
$$L(\theta) = \frac{(x_1 - 1)(x_1 - 2)}{6} \cdot \frac{(x_2 - 1)(x_2 - 2)}{6} \cdot \frac{(x_n - 1)(x_n - 2)}{6} \theta^{4n} (1 - \theta)^{(x_1 - 4) + (x_2 - 4) + \dots + (x_n - 4)}$$
.

•
$$L(\theta) = \frac{\prod_{i=1}^{n} (x_i - 1)(x_i - 2)}{6^n} \theta^{4n} (1 - \theta)^{\sum_{i=1}^{n} x_i - 4}$$
; Let $\prod_{i=1}^{n} (x_i - 1)(x_i - 2) = \prod_x \& \sum_{i=1}^{n} x_i = \sum_x$.

•
$$L(\theta) = \frac{\prod_x}{6^n} \theta^{4n} (1 - \theta)^{\sum_x - 4n}$$
.

•
$$\ell(\theta) = \ln(L(\theta)) = \ln(\Pi_x) - n\ln(6) + 4n\ln(\theta) + (\Sigma_x - 4n)\ln(1 - \theta)$$
.

•
$$\ell_{\theta} = \frac{d\ell}{d\theta} = \frac{4n}{\theta} - \frac{\Sigma_x - 4n}{1 - \theta}$$
.

•
$$\ell_{\theta} = 0 \Rightarrow \frac{4n}{\hat{\theta}} = \frac{\Sigma_x - 4n}{1 - \hat{\theta}} \Rightarrow 4n - 4n\hat{\theta} = \Sigma_x \hat{\theta} - 4n\hat{\theta} \Rightarrow 4n = \Sigma_x \hat{\theta} \Rightarrow 4 = \overline{X}\hat{\theta}.$$

$$\bullet \ \hat{\theta}_{MLE} = \frac{4}{\overline{X}}.$$

We will now find the expected value, $E(X_i)$ then set equal to \overline{X} to find the MOM.

•
$$E(X_i) = \frac{r}{p} = \frac{4}{\hat{\theta}} = \overline{X} \Rightarrow 4 = \overline{X}\hat{\theta}.$$

$$\bullet \ \hat{\theta}_{MOM} = \frac{4}{\overline{X}}.$$

In this problem the MLE and MOM estimators of θ are the same.

2. Let X_1, \ldots, X_n be a sample of *iid* $Normal(\mu = 0, \sigma^2 = \theta)$ random variables with $\theta > 0$. Determine ...

(a) The MLE $\hat{\theta}$ of θ .

Solution:

We will first find the likelihood and log-likelihood function then sent the derivative to zero to find the MLE.

•
$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2} = \frac{1}{\sqrt{2\pi\theta}} e^{-x^2/2\theta}.$$

•
$$L(\theta) = \frac{1}{(2\pi\theta)^{n/2}} e^{-(x_1^2 + x_2^2 + \dots + x_n^2)/2\theta} = \frac{1}{(2\pi\theta)^{n/2}} e^{-\Sigma_{x^2}/2\theta}$$
; Where $\Sigma_{x^2} = \sum_{i=1}^n x_i^2$.

•
$$\ell(\theta) = -\frac{n}{2}\ln(2\pi\theta) - \frac{\Sigma_{x^2}}{2\theta}$$
.

•
$$\ell_{\theta} = -\frac{2n\pi}{4\pi\theta} + \frac{\Sigma_{x^2}}{2\theta^2} = \frac{\Sigma_{x^2}}{2\theta^2} - \frac{n}{2\theta} = \frac{1}{2\theta^2} \left[\Sigma_{x^2} - n\theta \right].$$

•
$$\ell_{\theta} = 0 \Rightarrow \Sigma_{x^2} = n\hat{\theta}$$
.

$$\bullet \ \hat{\theta}_{MLE} = \frac{\Sigma_{x^2}}{n}.$$

We now have the MLE $\hat{\theta}$ of θ is $\frac{\sum_{x^2}}{n}$.

(b) $E(\hat{\theta})$ and $V(\hat{\theta})$.

Solution:

First find $E(X_i)$, then $E(X_i)^2$, $V(X_i)$ and $E(X_i^2)$ to last find $E(\hat{\theta})$.

•
$$E(X_i) = 0$$
; $E(X_i)^2 = 0^2$; $V(X_i) = \theta$.

•
$$E(X_i^2) = V(X_i) + E(X_i)^2 = \theta$$
.

•
$$E(\hat{\theta}) = E\left(\frac{\sum_{x^2}}{n}\right) = E(X_i^2) = \theta.$$

Next find the mgf of X_i , then find $E(X_i^4)$ and $V(X_i^2)$, to last find $V(\hat{\theta})$.

$$\bullet \ E(X_i^2)^2 = \theta^2.$$

•
$$M_{X_i}(t) = e^{\theta t^2/2}$$
.

$$\bullet \ M'_{X_i}(t) = \theta t e^{\theta t^2/2}.$$

•
$$M_{X_i}''(t) = \theta e^{\theta t^2/2} + \theta^2 t^2 e^{\theta t^2/2}$$
.

•
$$M_{X_i}^{(3)}(t) = \theta^2 t e^{\theta t^2/2} + 2\theta^2 t e^{\theta t^2/2} + \theta^3 t^3 e^{\theta t^2/2}$$
.

•
$$M_{X_i}^{(4)}(t) = \theta^2 e^{\theta t^2/2} + \theta^3 t^2 e^{\theta t^2/2} + 2\theta^2 e^{\theta t^2/2} + 2\theta^3 t^2 e^{\theta t^2/2} + 3\theta^3 t^2 e^{\theta t^2/2} + \theta^4 t^4 e^{\theta t^2/2}$$
.

•
$$M_{X_i}^{(4)}(0) = \theta^2 e^0 + 2\theta^2 e^0 = 3\theta^2 = E(X_i^4).$$

•
$$V(\hat{\theta}) = V(\frac{\Sigma_{x^2}}{n}) = \frac{1}{n^2} \cdot V(\Sigma_{x^2}) = \frac{1}{n^2} \cdot nV(X_i^2) = \frac{V(X_i^2)}{n}.$$

•
$$V(X_i^2) = E(X_i^4) - E(X_i^2)^2 = 3\theta^2 - \theta^2 = 2\theta^2 \Rightarrow V(\hat{\theta}) = \frac{2\theta^2}{n}$$
.

Thus we have $E(\hat{\theta}) = \theta$ and $V(\hat{\theta}) = \frac{2\theta^2}{n}$.

(c) The
$$MLE$$
 of $SD(X_i) = \sqrt{\theta}$.

Solution:

By the invariance principal, as $\hat{\theta}$ is the MLE of θ , $\tau(\hat{\theta})$ is the MLE of $\tau(\theta)$.

$$\bullet \ \hat{\theta}_{MLE} = \frac{\Sigma_{x^2}}{n}.$$

$$\bullet \ \sqrt{\hat{\theta}} = \sqrt{\frac{\sum_{x^2}}{n}}$$

Thus $\sqrt{\frac{\sum_{x^2}}{n}}$ is the MLE of $SD(X_i) = \sqrt{\theta}$.

3. Recall the family of distributions with
$$pmf$$
: $p_X(x) = \begin{cases} p & \text{if } x = -1\\ 2p & \text{if } x = 0\\ 1 - 3p & \text{if } x = 1 \end{cases}$

Here p is an unknown paramater and $0 \le p \le \frac{1}{3}$.

Let X_1, \ldots, X_n be *iid* with common pmf be a member of this family.

A =the number of i with $X_i = -1$, B =the number of i with $X_i = 0$, C =the number of i with $X_i = 1$.

(i) Find the MOM estimator of p.

Solution:

Find the expected value, $E(X_i)$ then set equal to \overline{X} to find the MOM.

•
$$E(X_i) = p \cdot -1 + 2p \cdot 0 + (1 - 3p) \cdot 1 = -p + 1 - 3p = 1 - 4p$$

•
$$1 - 4\hat{p} = \overline{X} \Rightarrow \hat{p} = \frac{\overline{X} - 1}{-4}$$

$$\bullet \ \hat{p}_{MOM} = \frac{1 - \overline{X}}{4}$$

Thus $\frac{1-\overline{X}}{4}$ is the MOM estimator of p.

(ii) Find the MLE estimator of p.

Solution:

Find the likelihood and log-likelihood function then sent the derivative to zero to find the MLE.

•
$$L(p) = 2^2 \cdot p^{A+B} \cdot (1-3p)^C$$
.

•
$$\ell(p) = 2\ln(2) + (A+B)\ln(p) + C\ln(1-3p)$$
.

$$\bullet \ \ell_p = \frac{A+B}{p} - \frac{3C}{1-3p}.$$

•
$$\ell_p = 0 \Rightarrow \frac{A+B}{\hat{p}} = \frac{3C}{1-3\hat{p}} \Rightarrow A+B-3A\hat{p}-3B\hat{p} = 3C\hat{p} \Rightarrow A+B = 3\hat{p}(A+B+C) = 3\hat{p}n.$$

$$\hat{p}_{MLE} = \frac{A+B}{3n}.$$

Thus $\frac{A+B}{3n}$ is the MLE estimator of p.

(iii) A random sample of size 100 from this distribution produced 23: -1's, 38: 0's and 39: 1's. Evaluate the MOM and MLE estimates of p for this data set.

Solution:

This problem is plug and play ...

•
$$\hat{p}_{MOM} = \frac{1 - \overline{X}}{4} = \frac{1 - \frac{39 + 0 - 23}{100}}{4} = \frac{1}{4} - \frac{16}{400} = \frac{84}{400} = 0.21.$$

•
$$\hat{p}_{MLE} = \frac{A+B}{3n} = \frac{23+38}{3\cdot 100} = \frac{61}{300} \approx 0.2033.$$

The MOM estimator of p evaluates to 0.21 while the MLE estimator of p evaluates to ≈ 0.2033 .

We can see they estimate similar values of p for this dataset.

4. Let X_1, \ldots, X_n be a sample of *iid* $Gamma(\alpha = \alpha, \beta = \theta)$ random variables with α know and $\theta > 0$. Determine ...

(a) The $MLE \hat{\theta}$ of θ .

Solution:

We will first find the likelihood and log-likelihood function then sent the derivative to zero to find the MLE.

•
$$f_X(x) = \frac{1}{\beta^{\alpha}\Gamma(\alpha)}x^{\alpha-1}e^{-x/\beta} = \frac{1}{\theta^{\alpha}\Gamma(\alpha)}x^{\alpha-1}e^{-x/\theta}.$$

•
$$L(\theta) = \frac{1}{\theta^{n\alpha} \Gamma(\alpha)^n} x_1^{\alpha-1} \cdot x_2^{\alpha-1} \cdots x_n^{\alpha-1} e^{-(x_1 + x_2 + \cdots + x_n)/\theta}$$
.

•
$$L(\theta) = \frac{1}{\theta^{n\alpha}\Gamma(\alpha)^n} \Pi_x^{\alpha-1} e^{-\Sigma_x/\theta}$$
; Where $\Pi_x = \prod_{i=1}^n x_i \& \Sigma_x = \sum_{i=1}^n x_i$.

•
$$\ell(\theta) = -n\alpha \ln(\theta) - n \ln(\Gamma(\alpha)) + (\alpha - 1) \ln(\Pi_x) - \frac{\Sigma_x}{\theta}$$
.

•
$$\ell_{\theta} = -\frac{n\alpha}{\theta} + \frac{\Sigma_x}{\theta^2} = \frac{n}{\theta^2} \left[\overline{X} - \alpha \theta \right].$$

•
$$\ell_{\theta} = 0 \Rightarrow \overline{X} = \alpha \hat{\theta}$$
.

$$\bullet \ \hat{\theta} = \frac{\overline{X}}{\alpha}.$$

Thus $\frac{\overline{X}}{\alpha}$ is the MLE estimator of θ .

(b) $E(\hat{\theta})$.

Solution:

First find $E(X_i)$ then use to find $E(\hat{\theta})$.

• $E(X_i) = \alpha \beta = \alpha \theta$

•
$$E(\hat{\theta}) = E\left(\frac{\overline{X}}{\alpha}\right) = E\left(\frac{\Sigma_x}{n\alpha}\right) = \frac{1}{\alpha}E(X_i) = \frac{\alpha\theta}{\alpha}$$

• $E(\hat{\theta}) = \theta$

We can see the expected value of the MLE estimator of θ is θ .

(c) If $\hat{\theta}$ is UMVUE for θ .

Solution:

We will first ensure $\hat{\theta}$ is a sufficient statistic for θ .

• $L(\theta) = \frac{1}{\theta^{n\alpha}\Gamma(\alpha)^n} \Pi_x^{\alpha-1} e^{-\Sigma_x/\theta} = c(\theta) \cdot h(x_1, \dots, x_n) \cdot e^{q(\theta)t(x_1, \dots, x_n)}.$

• $c(\theta) = \frac{1}{\theta^{n\alpha}\Gamma(\alpha)^n}$.

 $\bullet \ h(x_1,\ldots,x_n) = \prod_x^{\alpha-1}.$

• $q(\theta) = \frac{1}{\theta}$.

• $t(x_1,\ldots,x_n)=-\Sigma_x$.

Thus Σ_x being sufficient implies $\hat{\theta}$ is sufficient.

Then as $E(\hat{\theta}) = \theta$, $\hat{\theta}$ is UMVUE for θ .

5. Let X_1, \ldots, X_n be a sample of *iid* random variables with common pdf $f(x_i; \theta_1, \theta_2)$.

$$f(x_i; \theta_1, \theta_2) = \frac{1}{\theta_1} e^{-(x_i - \theta_2)/\theta_1}$$
 for $x_i > \theta_2$.

Here $\theta_1 > 0$, and θ_2 can be any real number.

Determine the MLE and the MOM estimators of (θ_1, θ_2) .

Solution:

We will first find the likelihood and log-likelihood function, then sent the parital derivatives to zero, last solve the system of equations to find the MLE.

•
$$L(\theta_1, \theta_2) = \frac{1}{\theta_1^n} e^{n\theta_2/\theta_1 - \Sigma_x/\theta_1}$$
 for $x_i > \theta_2$, Where $\Sigma_x = \sum_{k=1}^n x_k$.

•
$$\ell(\theta_1, \theta_2) = -n \ln(\theta_1) + \frac{n\theta_2}{\theta_1} - \frac{\sum_x}{\theta_1}$$
.

$$\bullet \ \ell_{\theta_1} = -\frac{n}{\theta_1} - \frac{n\theta_2}{\theta_1^2} + \frac{\Sigma_x}{\theta_1^2} = \frac{-n}{\theta_1^2} \Big[\theta_1 + \theta_2 - \overline{X} \Big].$$

•
$$\ell_{\theta_1} = 0 \Rightarrow \hat{\theta}_1 + \hat{\theta}_2 = \overline{X} \Rightarrow \hat{\theta}_1 = \overline{X} - \hat{\theta}_2.$$

•
$$\ell(\theta_2) = -n \ln(\overline{X} - \theta_2) + \frac{n\theta_2}{\overline{X} - \theta_2} - \frac{\Sigma_x}{\overline{X} - \theta_2}$$

•
$$\ell_{\theta_2} = \frac{n}{\overline{X} - \theta_2} + \frac{n\overline{X}}{(\overline{X} - \theta_2)^2} - \frac{\Sigma_x}{(\overline{X} - \theta_2)^2} = \frac{n}{(\overline{X} - \theta_2)^2} \left[\overline{X} - \theta_2 + \overline{X} - \overline{X} \right].$$

•
$$\ell_{\theta_2} = 0 \Rightarrow \overline{X} - \hat{\theta}_2 = 0.$$

- As we have the constraint $x_i > \theta_2$ we know that $\overline{X} \theta_2 > 0$.
- We minimize $\overline{X} \hat{\theta}_2$ such that $x_i > \hat{\theta}_2$ when $\hat{\theta}_2 = \min\{X_1, \dots, X_n\} = X_{(1)}$.
- Thus $\hat{\theta}_2 = X_{(1)} \& \hat{\theta}_1 = \overline{X} X_{(1)}$.

We have $\overrightarrow{\theta}_{MLE} = (\overline{X} - X_{(1)}, X_{(1)}).$

Find the expected value, $E(X_i)$ then set equal to \overline{X} , and find the expected squared value, $E(X_i^2)$ then set equal to $\frac{\Sigma_{x^2}}{n}$, last solve the system of equations to find the MOM.

•
$$E(X_i) = \hat{\theta}_2 + \hat{\theta}_1 = \overline{X} \Rightarrow \hat{\theta}_2 = \overline{X} - \hat{\theta}_1$$

•
$$E(X_i^2) = \int_{\theta_2}^{\infty} \frac{x_i^2}{\theta_1} e^{\theta_2/\theta_1 - x_i/\theta_1} dx = -(x_i^2 + 2\theta_1 x_i + 2\theta_1^2) e^{\theta_2/\theta_1 - x_i/\theta_1} \Big|_{\theta_2}^{\infty}$$
.

•
$$E(X_i^2) = (\theta_2^2 + 2\theta_1\theta_2 + 2\theta_1^2)e^{\theta_2/\theta_1 - \theta_2/\theta_1} - (\infty^2 + 2\theta_1\infty + 2\theta_1^2)e^{\theta_2/\theta_1 - \infty/\theta_1}$$
.

$$\bullet \ E(X_i^2) = (\theta_2^2 + 2\theta_1\theta_2 + 2\theta_1^2)e^0 - (\infty)e^{-\infty} = \theta_2^2 + 2\theta_1\theta_2 + 2\theta_1^2 - \frac{\infty}{e^{\infty}} \ ; \ Note: \lim_{x_i \to \infty} \frac{x_i}{e^{x_i}} = 0.$$

•
$$E(X_i^2) = \hat{\theta}_2 + 2\hat{\theta}_1\hat{\theta}_2 + 2\hat{\theta}_1^2 = (\hat{\theta}_2 + \hat{\theta}_1)^2 + \hat{\theta}_1^2 = \overline{X}^2 + \hat{\theta}_1^2 = \frac{\Sigma_{x^2}}{n} \Rightarrow \hat{\theta}_1^2 = \frac{\Sigma_{x^2}}{n} - \overline{X}^2$$
.

•
$$\hat{\theta}_1 = \sqrt{\frac{\Sigma_{x^2}}{n} - \overline{X}^2} \Rightarrow \hat{\theta}_2 = \overline{X} - \sqrt{\frac{\Sigma_{x^2}}{n} - \overline{X}^2}$$
.

We have
$$\overrightarrow{\theta}_{MOM} = \left(\sqrt{\frac{\Sigma_{x^2}}{n} - \overline{X}^2}, \overline{X} - \sqrt{\frac{\Sigma_{x^2}}{n} - \overline{X}^2}\right)$$
.