Visualización

1. Dependencias

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import plotly.express as px
import pandoc as pdc
import seaborn as sns
```

2. Importar data

```
#Se define la ruta en la que quardamos la data que usaremos
In [130...
          ruta = "D:/Users/Camilo 323/Desktop/Universidad/Python Repositorio/Corredores_Davivier
          students = pd.read csv(ruta+'StudentsPerformance.csv')
In [131...
In [133...
          #Cambiamos el nombre de la columna para evitar problemas con el "/"
          students.rename(columns = {'race/ethnicity':'ethnicity'},inplace=True)
In [134...
          students.isna().sum()
          #No hay Na's
          gender
                                          0
Out[134]:
          ethnicity
                                          0
          parental level of education
          lunch
                                          0
          test preparation course
          math score
          reading score
                                          0
          writing score
          dtype: int64
In [135...
          students.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 1000 entries, 0 to 999
          Data columns (total 8 columns):
               Column
                                             Non-Null Count Dtype
               ____
           0
               gender
                                             1000 non-null
                                                              object
                                                              object
           1
               ethnicity
                                             1000 non-null
               parental level of education 1000 non-null
                                                              object
               lunch
                                             1000 non-null
                                                              object
               test preparation course
                                             1000 non-null
                                                              object
           5
               math score
                                             1000 non-null
                                                              int64
                                             1000 non-null
           6
               reading score
                                                              int64
               writing score
                                             1000 non-null
                                                              int64
          dtypes: int64(3), object(5)
          memory usage: 62.6+ KB
```

```
students.loc[students["parental level of education"] == "associate's degree", "parental
students.loc[students["parental level of education"] == "bachelor's degree", "parental
students.loc[students["parental level of education"] == "high school", "parental level
students.loc[students["parental level of education"] == "master's degree", "parental level
students.loc[students["parental level of education"] == "some college", "parental level
students.loc[students["parental level of education"] == "some high school", "parental
```

In [137... students.head()

Out[137]:

•		gender	ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
	0	female	group B	5	standard	none	72	72	74
	1	female	group C	3	standard	completed	69	90	88
	2	female	group B	6	standard	none	90	95	93
	3	male	group A	4	free/reduced	none	47	57	44
	4	male	group C	3	standard	none	76	78	75

3. Estadística descrptiva y visualización

```
In [139... students['mean score']= students[['math score', 'reading score', 'writing score']].mean(
In [120... #Tabla de estadística descriptiva
    #Unicamente para variables cuantitativas
    students.describe()
```

Out[120]:

	math score	reading score	writing score	mean score
count	1000.00000	1000.000000	1000.000000	1000.000000
mean	66.08900	69.169000	68.054000	67.770667
std	15.16308	14.600192	15.195657	14.257326
min	0.00000	17.000000	10.000000	9.000000
25%	57.00000	59.000000	57.750000	58.333333
50%	66.00000	70.000000	69.000000	68.333333
75%	77.00000	79.000000	79.000000	77.666667
max	100.00000	100.000000	100.000000	100.000000

plt.pie(students.ethnicity.value_counts().values, labels = students.ethnicity.value_co plt.title('Porcentaje de estudiantes por etnicidad')

Out[60]: Text(0.5, 1.0, 'Porcentaje de estudiantes por etnicidad')

Porcentaje de estudiantes por etnicidad


```
In [96]: plt.figure(figsize = (6,6))
    pd.pivot_table(students, index = 'gender', aggfunc = 'mean', values = ('math score','r
    plt.title('Puntajes por género')
    plt.ylabel('Puntajes')
Out[96]: Text(0, 0.5, 'Puntajes')
```

<Figure size 600x600 with 0 Axes>


```
In [85]: pd.pivot_table(students, index = 'ethnicity', columns= 'gender',aggfunc = 'mean', value plt.title('Puntajes por etnia y género para lectura')
    plt.ylabel('Puntajes')
Taut(0, 0.5 | 'Duntajes')
```

ethnicity

Out[85]: Text(0, 0.5, 'Puntajes')

Puntajes por etnia y género para lectura


```
plt.figure(figsize = (6,6))
pd.pivot_table(students, index = 'ethnicity', columns= 'gender',aggfunc = 'mean', valu
plt.title('Puntajes por etnicidad y género para escritura')
plt.ylabel('Puntajes')
Out[123]:
Text(0, 0.5, 'Puntajes')
```

<Figure size 600x600 with 0 Axes>

Según esta muestra, las mujeres tienen mejores puntajes en lectura y escritura que los hombres y los hombres mejores en lasmatemáticas que las mujeres. Estos resultados son consistentes para todos los grupos étnicos, además vale la pensa agregar que el grupo E es mejor que todos los otros en las 3 pruebas y el grupo A es el peor en todas las pruebas.

In [154... #Scatter plot
sns.scatterplot(students['mean score'], students['parental level of education'], hue =

C:\Users\Camilo 323\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarn ing: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[154]: <AxesSubplot:xlabel='mean score', ylabel='parental level of education'>

In [156... #Scatter plot 2
sns.scatterplot(students['mean score'], students['parental level of education'], hue =

C:\Users\Camilo 323\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarn
ing: Pass the following variables as keyword args: x, y. From version 0.12, the only
valid positional argument will be `data`, and passing other arguments without an expl
icit keyword will result in an error or misinterpretation.
 warnings.warn(

Out[156]: <AxesSubplot:xlabel='mean score', ylabel='parental level of education'>

