NA 565 - Fall 2023

Vehicle Dynamics & Control

September 27, 2023

Tire-Contact Patch

Tire-contact patch of the Volkswagen Golf GTI.

Tire-Contact Patch

- ► All that is available to control a passenger vehicle through its environment safely are the forces transmitted through the contact patches between the four tires and the road.
- Each of these is no larger than the size of a hand.

Beyond the Limits: MARTYkhana

https://www.youtube.com/watch?v=3x3SqeSdrAE

Trajectory planning for automated vehicles is still challenging, as it is computationally complex, while highly dynamic environments require fast optimization for real-time applications.

- Route planner, including graph search (e.g., A*), Sampling-based (e.g., RRT), Optimization (vehicle routing via linear programming).
- ² Trajectory optimization (often nonlinear programming).
- Tracking controller (MPC).

Route planner, including graph search (e.g., A*), Sampling-based (e.g., RRT), Optimization (vehicle routing via linear programming).

At this level, the planner can be agnostic of the vehicle dynamics. The algorithms can work on a variety of vehicles with no to minimal changes, e.g., Google Maps Platform.

- Trajectory optimization (often nonlinear programming).
- Tracking controller (MPC).

Trajectory optimization (often nonlinear programming).

Offline or Online?

- 2 Trajectory optimization.
- Given start and end points, this level is responsible for generating reference trajectories that are kinematically and dynamically (kinodynamic) feasible for the vehicle to track.
- ► High-fidelity models are often complicated and lead to nonlinear nonconvex problems.
- Solving nonlinear nonconvex problems is difficult both in terms of runtime and finding a satisfactory solution (can get stuck in local minima).

Bicycle Model

Let the state be $s:=[x,y,\psi,v]^\mathsf{T}$ where (x,y) is the position, ψ is the yaw angle, and v is the velocity. The vehicle is controlled by the steering angle of the front wheel δ and the acceleration a.

The equations of motion of the vehicle are given by

$$\frac{d}{dt} \begin{bmatrix} x \\ y \\ \psi \\ v \end{bmatrix} = \begin{bmatrix} v \cos(\psi + \beta) \\ v \sin(\psi + \beta) \\ \frac{v}{L_r} \sin \beta \\ a \end{bmatrix}, \text{ with } \beta := \arctan(\frac{L_r}{L_r + L_f} \arctan \delta),$$

where L_r and L_f are the distance from the rear or front axes to the center of the vehicle (given data).

Bicycle Model

What's missing!? The real world has dynamics.

$$\frac{d}{dt} \begin{bmatrix} x \\ y \\ \psi \\ v \end{bmatrix} = \begin{bmatrix} v \cos(\psi + \beta) \\ v \sin(\psi + \beta) \\ \frac{v}{L_r} \sin \beta \\ a \end{bmatrix}, \text{ with } \beta := \arctan(\frac{L_r}{L_r + L_f} \arctan \delta),$$

- https://www.youtube.com/watch?v=RqajKat0v-4
- https://www.youtube.com/watch?v=Aup4W1s1otk
- https://www.youtube.com/watch?v=tsnYqCRWTbE

Vehicle Slip Angle

- ightharpoonup Longitudinal speed U_x
- ightharpoonup Lateral speed U_u
- Yaw rate r
- ► Total velocity V
- \triangleright Sideslip angle β
- Longitudinal force on the front and rear tire F_{x_f} , F_{x_r}
- Lateral axle forces F_{y_f} , F_{y_r}
- ightharpoonup Steering angle δ
- \triangleright Disturbance force F_d
- Mass m, inertial I_{zz}
- ightharpoonup distance along a reference path s
- ightharpoonup Lateral distance to the path e
- ightharpoonup Heading error $\Delta \psi$

Equation of motion (recall "F = ma and $\tau = I\alpha$ "):

$$\dot{U}_x = \frac{-F_{y_f} \sin \delta + F_{x_f} \cos \delta + F_{x_r} - F_d}{m} + rU_y$$

$$\dot{U}_y = \frac{F_{y_f} \cos \delta + F_{x_f} \sin \delta + F_{y_r}}{m} - rU_x$$

$$\dot{r} = \frac{a(F_{y_f} \cos \delta + F_{x_f} \sin \delta) - bF_{y_r}}{I_{zz}}$$

$$\dot{s} = \frac{U_x \cos \Delta \psi - U_y \sin \Delta \psi}{1 - \kappa e}$$

$$\dot{e} = U_x \sin \Delta \psi + U_y \cos \Delta \psi$$

$$\Delta \dot{\psi} = r - \kappa \dot{s}$$

$$\begin{split} \dot{U}_x &= \frac{-F_{y_f}\sin\delta + F_{x_f}\cos\delta + F_{x_r} - F_d}{m} + rU_y \\ \dot{U}_y &= \frac{F_{y_f}\cos\delta + F_{x_f}\sin\delta + F_{y_r}}{m} - rU_x \\ \dot{r} &= \frac{a(F_{y_f}\cos\delta + F_{x_f}\sin\delta) - bF_{y_r}}{I_{zz}} \\ \dot{s} &= \frac{U_x\cos\Delta\psi - U_y\sin\Delta\psi}{1 - \kappa e} \\ \dot{e} &= U_x\sin\Delta\psi + U_y\cos\Delta\psi, \quad \Delta\dot{\psi} = r - \kappa\dot{s} \end{split}$$

Remark

The controlled inputs are steering angle δ and longitudinal (tractive) force F_x . The distribution of F_x on the front and rear wheels, i.e., F_{x_f} and F_{x_r} , are vehicle-dependent, e.g., FWD, RWD, AWD, or 4WD.

Tire Model

- ► Tire forces and moments are highly nonlinear and difficult to model.
- Common empirical models are the Brush or Pacejka "Magic Formula" models.

Brush-Tire Model for Pure Lateral Forces

This model derives the lateral tire force from the lateral deflection and sliding of the rubber elements in a tire.

Slip angle is the angle between the tire's heading and its direction of travel.

$$\alpha_f = \arctan\left(\frac{U_y + ar}{U_x}\right) - \delta, \quad \alpha_r = \arctan\left(\frac{U_y - br}{U_x}\right)$$

Brush-Tire Model for Pure Lateral Forces

Pure lateral tire force as a function of slip angle α , cornering stiffness C_{α} , normal load F_{z} , and tire-road friction coefficient μ :

$$F_y = \begin{cases} -C_\alpha \tan\alpha + \frac{C_\alpha^2}{3\mu F_z} |\tan\alpha| \tan\alpha - \frac{C_\alpha^3}{27\mu^2 F_z^2} \tan^3\alpha & \text{ if } |\alpha| < \alpha_{sl} \\ -\mu F_z \operatorname{sgn}\alpha & \text{ otherwise} \end{cases}$$

where α_{sl} is the peak slip angle at which total sliding of the tire-contact patch occurs:

$$\alpha_{sl} = \arctan\left(\frac{3\mu F_z}{C_\alpha}\right)$$

Brush-Tire Model for Pure Lateral Forces

Measured and modeled lateral forces at (a) the front axle and (b) the rear axle (b) in a ramp-steer maneuver with the Audi TTS research vehicle

Friction

Drag Forces and the Effect of Road Topography

Drag Forces and the Effect of Road Topography

- \blacktriangleright Normal loads at the axles F_{z_f} , F_{z_r}
- ightharpoonup Total commanded longitudinal force F_r
- Distance of the center of gravity
 h_{cg}
- ightharpoonup Road grade (vehicle pitch) θ
- ightharpoonup Road bank (vehicle roll) ϕ
- $lack A_{V^2}$ captures the speed effect on the vehicle's total normal load

$$A_{V^2} = -\frac{d\theta}{ds}\cos\varphi - \kappa\sin\varphi\cos\theta$$

- ightharpoonup Rolling resistance F_{rr}
- Aerodynamic drag $F_{aero} = C_D U_r^2$
- ightharpoonup Aerodynamic drag coefficient C_D

Drag Forces and the Effect of Road Topography

$$\begin{split} F_{z_f} &= \frac{b}{L} m \left(g \cos \theta \cos \varphi + A_{V^2} U_x^2\right) - \frac{h_{cg}}{L} F_x \\ F_{z_r} &= \frac{a}{L} m \left(g \cos \theta \cos \varphi + A_{V^2} U_x^2\right) + \frac{h_{cg}}{L} F_x \\ \dot{U}_y &= \frac{F_{y_f} \cos \delta + F_{x_f} \sin \delta + F_{y_r} + F_l}{m} - r U_x \\ \begin{bmatrix} F_{g_x} \\ F_{g_y} \\ F_{g_z} \end{bmatrix} = {}^P R^N \begin{bmatrix} 0 \\ 0 \\ -mg \end{bmatrix} \\ F_l &= F_{g_y} = -mg \cos \theta \sin \varphi \\ F_d &= F_{rr} + F_{aero} + F_{g_x} = F_{rr} + C_D U_x^2 - mg \sin \theta \end{split}$$

Nonlinear MPC

minimize

Objective subject to State limits Input limits Tire model Initial state **Dynamics** Friction limits

Next Time

- ► CasADi; supports automatic differentiation.
- ▶ Nonlinear MPC Examples in Python with CasADi

References and Further Reading

- V. A. Laurense, Integrated motion planning and control for automated vehicles up to the limits of handling. Stanford University, 2019. (and references therein).
- Rajamani, R., 2011. Vehicle dynamics and control. Springer Science
 & Business Media.