The Team

FSP4

Team - 9

Tejas

Arushi

Raghav

FORECASTING CRYPTOCURRENCY TRENDS

While comparing the effectiveness of different LSTMs

PROBLEM STATEMENT

Given the volatility of cryptocurrencies, how can we forecast the trend in order to make informed investment decisions?

DATASET

The Alpha Vantage API offers historical and real-time data for stocks, forex, and cryptocurrencies. Several time frames are available ranging from 1-minute bars up to monthly.

Data Collection and Data Cleaning

Step 1

Extracted data from Alpha Vantage

$$x_{scaled} = rac{x - x_{min}}{x_{max} - x_{min}}$$

Step 2

Organised data as per requirements

Step 3

Feature Scaling using MinMaxScaler

Cryptocurrencies by relevance and market cap:

Enter which cryptocurrency you would like to forecast (Integer between 1 and 10):

- Bitcoin (BTC)
- 2. Ethereum (ETH)
- 3. Binance Coin (BNB)
- 4. Ripple (XRP)
- 5. Cardano (ADA)
- 6. Litecoin
- 7. Lumen (XLM)
- 8. EOS.IO (EOS)
- 9. QTUM (QTUM)
- 10. TRON (TRX)


```
In [52]: cryptolist ar = ['BTC', 'ETH', 'BNB', 'XRP', 'ADA', 'LTC', 'XLM', 'EOS', 'QTUM', 'TRX']
In [53]: import itertools
           for (i, j) in zip(cryptolist ar, crypto dflist):
                cleaned data[i + ' close(USD)'] = j['close (USD)']
                cleaned data[i + ' mktcap(USD)'] = j['market cap (USD)']
In [54]:
           cleaned_data.head()
Out[54]:
                                             BTC
                                                        ETH
                                                                     ETH
                                                                                BNB
                                                                                             BNB
                                                                                                        XRP
                                                                                                                     XRP
                                                                                                                                               LTC
                               BTC
                                                                                                                                ADA
               timestamp
                                                                                                                                         close(USD) mktcap(
                          close(USD)
                                      mktcap(USD)
                                                   close(USD)
                                                              mktcap(USD)
                                                                           close(USD)
                                                                                     mktcap(USD)
                                                                                                   close(USD)
                                                                                                              mktcap(USD)
                                                                                                                           close(USD)
                2021-04-
                            56395.68
                                      1609.784422
                                                      2350.71 4,141744e+04
                                                                             576.7544
                                                                                        426547.695
                                                                                                                              1.26773 ...
                                                                                                      1,40664 3,694768e+07
                                                                                                                                             267.23 6.471902
                 2021-04-
                            56425.00
                                     72744.482151
                                                                                                                                             260.68 2.111225
                                                      2330.03 9.922408e+05
                                                                             586.3635
                                                                                       5730895.325
                                                                                                      1.38501
                                                                                                             1.522196e+09
                                                                                                                              1.26689 ...
                      20
                2021-04-
                            55633.14
                                     78229.042267
                                                     2161.12 8.205923e+05
                                                                             504.0322
                                                                                       5031325.713
                                                                                                      1.30945 1.608074e+09
                                                                                                                              1.19450 ...
                                                                                                                                             261.38 1.973512
                 2021-04-
            3
                            56150.01
                                                                                                                                             273.36 3.346590
                                     124882.131824
                                                      2235.64 1.475384e+06
                                                                             481.4367
                                                                                       4468597.460
                                                                                                              2.048345e+09
                                                                                                                              1.27693 ....
                 2021-04-
                            60006.66
                                      58912.256128
                                                      2317.60 6.242323e+05
                                                                             514.6861
                                                                                       2949040.221
                                                                                                             1.108826e+09
                                                                                                                              1.36802 ...
                                                                                                                                             300.86 2.574520
                                                                                                      1.53896
```

5 rows x 21 columns

Data Cleaning

EXPLORATORY DATA ANALYSIS

Market Capitalisation of Cryptocurrencies

BIVARIATE STATISTICS

Poor correlation between market cap and closing price.

DATA VISUALIZATION

Pairplot shows a correlation between closing prices of different cryptocurrencies.

Correlation Heat map of Cryptocurrency closing prices

DEP LEARING

Long Short-Term Memory Neural Networks For Time Series

Forecasting

What is an LSTM?

Long short-term memory (LSTM) is an artificial recurrent neural network (RNN) architecture used in the field of deep learning.

- Effective for time series forecasting
- Unlike standard feedforward neural networks, LSTM has feedback connections

Simple LSTM

Single LSTM with hidden dense layer.

Convolutional LSTM

LSTM with convolutional layers.

Stacked LSTMs

Multiple LSTMs working concurrently

Bi-directional LSTM

LSTM which utilizes, both, previous and future data to perform accurate forecasting


```
#Convolutional LSTM

#The shape of input data must be: [samples, timesteps, rows, columns, features]

trainX = trainX.reshape((trainX.shape[0], 1, 1, 1, seq_size))

testX = testX.reshape((testX.shape[0], 1, 1, 1, seq_size))

model = Sequential()
model.add(ConvLSTM2D(filters=64, kernel_size=(1,1), activation='relu', input_shape=(1, 1, 1, seq_size)))
model.add(Flatten())
model.add(Dense(32))
model.add(Dense(32))
model.compile(optimizer='adam', loss='mean_squared_error')
model.summary()

#Stacked LSTM with 1 hidden dense layer
# The shape of the input data must be: [samples, time steps, features]

#Bidirectional LSTM
# reshape input to be [samples, time steps, features]
```

```
#Stacked LSTM with 1 hidden dense layer
# The shape of the input data must be: [samples, time steps, features]

#trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))

#testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1]))

#model = Sequential()
#model.add(LSTM(50, activation='relu', return_sequences=True, input_shape=(None, seq_size)))
#model.add(LSTM(50, activation='relu'))
#model.add(Dense(32))
#model.add(Dense(1))
#model.compile(optimizer='adam', loss='mean_squared_error')
#model.summary()
```

```
#Bidirectional LSTM
# reshape input to be [samples, time steps, features]
#trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
#testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1]))
#
##For some sequence forecasting problems we may need LSTM to learn
## sequence in both forward and backward directions
#from keras.layers import Bidirectional
#model = Sequential()
#model.add(Bidirectional(LSTM(50, activation='relu'), input_shape=(None, seq_size)))
#model.add(Dense(1))
#model.compile(optimizer='adam', loss='mean_squared_error')
#model.summary()
```


WHY LSTMS?

Reason 1

Allows previous outputs to be used as inputs

Reason 2

Accurate for Time Series forecasting

^

DATA DRIVEN INSIGHTS

Bi-directional LSTM:

seq_size=10,epochs=50
Train Score: 354.02 RMSE
Test Score: 2421.81 RMSE

seq_size=15,epochs=50
Train Score: 373.15 RMSE
Test Score: 6189.28 RMSE

seq_size=7,epochs=50
Train Score: 358.74 RMSE
Test Score: 2735.18 RMSE

seq_size=10, epochs=100
Train Score: 323.52 RMSE
Test Score: 2654.81 RMSE

Convolutional LSTM:

seq_size=40, epochs=100
Train Score: 324.20 RMSE
Test Score: 3463.53 RMSE

seq_size=10,epochs=50
Train Score: 354.33 RMSE

Test Score: 3981.06 RMSE

Best Case:

seq_size=10, epochs=100
Train Score: 323.22 RMSE
Test Score: 1537.83 RMSE

*Comparisons were performed on data for Bitcoin (BTC)

Single LSTM with Hidden Dense Layer:

seq_size=10, epochs=100
Train Score: 334.80 RMSE
Test Score: 5394.96 RMSE

seq_size=10, epochs=50
Train Score: 347.99 RMSE
Test Score: 3222.51 RMSE

Stacked LSTMs:

seq_size=10,epochs=100
Train Score: 353.35 RMSE
Test Score: 2899.92 RMSE

seq_size=7,epochs=100
Train Score: 318.81 RMSE
Test Score: 3310.89 RMSE

seq_size=15,epochs=100
Train Score: 392.87 RMSE
Test Score: 4119.80 RMSE

seq_size=10,epochs=50
Train Score: 339.17 RMSE
Test Score: 2191.39 RMSE

seq_size=10,epochs=35
Train Score: 443.97 RMSE
Test Score: 5269.84 RMSE

Convolutional LSTM Model Summary:

Layer (type)	Output Shape	Param #
conv_lst_m2d (ConvLSTM2D)	(None, 1, 1, 64)	21760
flatten (Flatten)	(None, 64)	0
dense (Dense)	(None, 32)	2080
dense_1 (Dense)	(None, 1)	33
Total params: 23,873 Trainable params: 23,873 Non-trainable params: 0		

Actual Closing Value
 Predicted Values on Train Data
 Predicted Values on Test Data

RESULTS

- Compared RMSE values of various LSTM techniques
- Convolutional LSTM produces reliable results in most cases
- Sequence size between 7-20, #of Epochs 50-100
- Current closing values (uni-variate) are good indicators of future closing values for cryptocurrencies

Beyond The Course

- Neural Networks
- Feature Normalization
- Long Short-Term Memory Neural Networks
- Time series Forecasting
- Overfitting

Team Contributions

Tejas

- 1. Data Analysis
- 2. Deep learning
- 3. Data Cleaning
- 4. Voice over

Raghav

- 1. Brainstorming
- 2. Data cleaning
- 3. Exploratory Analysis

Arushi

- 1. Brainstorming
- 2. Create data frames
- 3. Slide design & video presentation

References

- 1.https://www.3blue1brown.com/
- 2. https://youtu.be/aircAruvnKk
- 3.Using a Keras Long Short-Term Memory (LSTM) Model to Predict Stock Prices kdnuggets https://www.kdnuggets.com/2018/11/keras-long-short-term-memory-lstm-model-predict-stock-prices.html#:~:text=
- (%2018%3An45%20)-,Using%20a%20Keras%20Long%20Short%2DTerm%20Memory%20(LSTM),Model%20to%20Predict%20Stock%20Prices&text=LSTMs%20are%20very%20powerful%20in,in%20predicting%20its%20future%20price.
- 4.https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks