

Fundamentals

Lesson Preview

- Means-ends analysis
- Problem solving with means-ends analysis
- Problem reduction

State spaces

Move the blocks from the initial state to the goal state while obeying these rules:

- 1. You may only move one block at a time.
- 2. You may only move blocks that have nothing on top of them.

Goal State

A

B

C

A on B
B on C
C on Table

Move(C, B)
moves C onto B

For each operator that can be applied:

· Apply the operator to the current state

· Calculate difference between new state and goal state

Prefer state that minimizes distance between new state and goal state

Means-Ends Analysis

A on B
B on C
C on D
D on Table

7

How many of those states reduce the difference to the goal?

1

A on B
B on C
C on D
D on Table

Assignment

How would you use means-ends analysis to design an agent that could answer Raven's Progressive Matrices?

Current State Subgoal

B on C C on Table

D on Table

 $\Delta = 1$

Assignment

How would you use problem reduction to design an agent

that could answer Raven's Progressive Matrices?

To recap...

State spaces

- Means-ends analysis
- · Problem solving with means-ends analysis

- Problem reduction

Initial State Goal State delete wove expand

