SoccTracc

hier geiler Subtitel

anteilige Prüfungsleistung im Modul Machine Perception & Tracking

im Sommersemester 2025

Prof. Dr. Dennis Müller

R. Bihlmeier, J. Bollien, J. Hartlieb, E. Ötting

Überblick

- Anforderungen
- Detector
- Optical Flow
- Shirt Classifier
- Tracker

Anforderungsanalyse

Anforderungsanalyse

Anforderungen

- Fußballspieler in Video erkennen
- Bildverschiebung durch Kamerabewegung bestimmen
- Teams erkennen und erkannte Spieler diesen zuordnen
- Spieler individuell erkennen und verfolgen

Erkennung mit YOLO

Detektor

- Nutzung von YOLOv8
- Nachtrainiert spezialisiert auf Erkennung von Spielern, Bällen, Schiedsrichtern
- übergibt Grenzen erkannter Objekte in Form [Mittelpunktkoordinaten, Höhe, Weite]
- zusätzlich vorhergesagte Objektklasse

Detektionen

Detektor

Bildverschiebung

Optischer Fluss

- 1. Ermittlung prägnanter Ecken (initialer Frame)
- 2. Lokalisieren von Ecken in akt. und vorherigen Frame
- 3. Bildung Differenz der Positionen
- 4. Bildung Median um eine Gesamtverschiebung zu erhalten

Features

Optischer Fluss

Shi-Tomasi Eckenerkennung

Anforderungen

Shirt Classifier

Ziele:

- 1. Teams korrekt identifizieren
- 2. neue Objekte einem
 Team zuordnen
 Klassifikation
- 3. Teamfarben ermitteln

Generalisierung

- Aufgabentyp: Klassifizierungsproblem
- Generalisierbarkeit erfordert Kenntnis über jedes Spieler-Outfit unpraktisch
- Besser: erst Clustering, dann Klassifikation
- Vorteil: wenn Trikots unterschiedlich genug
 - **ständiges Nachtrainieren entfällt**

Trikotfarben

Shirt Classifier

Die beiden Teams tragen Farben, durch die sie sich klar voneinander sowie den Spieloffiziellen unterscheiden

Classifier Pipeline

Numerische Spieler

Shirt Classifier

Spieler ausschneiden

Oberkörper behalten

Hintergrund entfernen

Mittelwert bilden

Beispiel

Clustering

- Anforderungen: schnell & 3 Cluster
- Mittlere Pixelwerte der Oberkörper
- Clustering im CIE-LAB Farbraum
- wie vom Menschen wahrgenommen
- euklidische Distanz sinnvoll nutzbar
- Teams für Mensch & Maschine klar unterscheidbar

CIE-LAB nach [7]

KMeans Clustering

- Startet mit *K* vielen Cluster-Zentren
- verwendet euklidische Distanz
- iteratives anpassen d. Zentren:
 - 1. jeden Datenpunk zu nächstem Zentrum
 - 2. Zentrum neu berechnen
- endet, wenn Zentren sich nicht mehr als bestimmte Distanz bewegen

KMeans Clustering

Klassifikator

- KMeans Clusterer auch Klassifikator
- Vorteile:
 - 1. per se sehr leichtgewichtig
 - 2. bereits über Clustering trainiert
- neue Datenpunkte klassifiziert über nächstes Cluster-Zentrum

Classifier Centroids

Classifier Centroids

Übersicht

Tracker

Tracker Klasse

- Verwaltet Tracks und Detektionen
- Ordnet den Tracks passende Detektionen zu
- Führt Vorhersage/Update durch

Filter Klasse

- Verwaltet Tracks mit Kalman Filter
- Schätzt Position, Größe und Geschwindigkeit

Pipeline

Tracker

Pro Filter: Track vorhersagen Detektionen ihrem Filter zuordnen

Filter mit
Detektionen
aktualisieren

Neuer Filter für Detektionen ohne Track

Vorhersage

- Zustandsvektor: [x, y, w, h, vx, vy]
 - Position, Größe, Geschwindigkeit
- Prozessmodell: Geschwindigkeit & Größe konstant,
 Position abhängig von Geschwindigkeit
- Kovarianzmatrix:
 - Detektionen: kleine Unsicherheit
 - Geschwindigkeit: große Unsicherheit

Vorhersage

- Prozessrauschen: relativ sicher bei Position und Größe,
 Schwankungen bei Geschwindigkeit
- Optical Flow ist Kontrollinput
- Zustandsvektor und Kovarianzmatrix werden vorhergesagt
- Alter und Zeit seit letztem Update + 1

Matches finden

- Ungarischer Algorithmus Kostenmatrix
- · Kostenmatrix: Ähnlichkeit zw. Track und Detektionen
 - \longrightarrow Klassenkosten + (1 IoU)
- Klassenkosten: 0 bei gleicher Klasse, 1000 bei unterschiedlichen Klassen
- Nur gültig, wenn loU > 0.1

Update

Tracker

- Innovation,
 Innovationsrauschen und
 Kalman Gain wird berechnet
- Zustandsvektor und Kovarianzmatrix werden aktualisiert

Messrauschen R

Track Verwaltung

- Neue Tracks f
 ür nicht zugeordnete Detektionen
- Alle Tracks werden vorhergesagt
- Alter und Zeit seit letztem update + 1
- Tracks mit match aktualisiert
- Treffer + 1, Zeit seit letztem update = 0
- Tracks nach 30 Frames ohne match gelöscht
- Tracks nach 3 Treffern validiert

Vielen Dank

und jetzt: Live-Demo!

Referenzen

- [1] Ultralytics. (n.d.). Ultralytics | Revolutionizing the world of Vision AI. Letzter Zugriff am 11.7.2025. https://www.ultralytics.com/
- [3] Complete Soccer Guide. (2010, May 25). 7 types of soccer shots. Letzter Zugriff am 11.7.2025. https://completesoccerguide.com/types-of-soccer-shots/
- [4] Deutscher Fußball-Bund. (2023)Fußball Regeln 2023/2024]. Letzter Zugriff am 11.7.2025 https://www.dfb.de/fileadmin/ dfbdam/287914-AU2300707 PL Broschuere.pdf
- [5] FIFA equipment regulations. (2025). In FIFA Equipment
- Regulations. https://digitalhub.fifa.com/m/7474d3addab97747/original/FIFA-Equipment-Regulations_2021_EN.pdf
- [6] Lab-Farbraum. (n.d). Letzter Zugriff am 11.7.2025. https://de.wikipedia.org/wiki/Lab-Farbraum
- [7] Ly, B. C. K., Dyer, E. B., Feig, J. L., Chien, A. L. & Del Bino, S. (2019). Research Techniques Made Simple: Cutaneous Colorimetry: A Reliable Technique for Objective Skin Color Measurement. Journal Of Investigative Dermatology, 140(1), 3-12.e1. https://doi.org/10.1016/j.jid.2019.11.003
- [8] Wüthrich, Charles A. 2017. Fundamentals of Imaging Colour Spaces. PowerPoint-Präsentation, Bauhaus-Universität Weimar
- [9] scikit-learn. (n.d.). 2.3. Clustering (Version 1.7.0). Letzter Zugriff am 11.7.2025. https://scikit-learn.org/stable/modules/clustering.html#k-means
- [10] Lokare, K. (2021, July 25). Letzter Zugriff am 11.7.2025. K-means clustering use cases. LinkedIn. https://www.linkedin.com/pulse/k-means-clustering-use-cases-kartik-lokare-1f/