WHAT IS CLAIMED IS:

ì	1. A compression connector, comprising.			
2	a conductive compression member including a predetermined composition of			
3	conductive material and an elastomeric material; and			
4	an electrostatically dissipative base member including a conductive material for			
5	dissipating charge developed on the conductive compression member.			
1	2. The compression connector of claim 1 further comprising a ground			
2	connection to dissipate the charge from the electrostatically dissipative base member that			
3.	is generated when tension is applied to or released from the conductive compression			
4	member.			
1	3. The compression connector of claim 1, wherein the resistance of the			
2	conductive compression member is selected to be higher than the resistance of the			
3	electrostatically dissipative base member.			
1	4. The compression connector of claim 1, wherein the conductive			
2	compression member is vulcanized to the electrostatically dissipative base member.			
1	5. The compression connector of claim 1, wherein the conductive			
2	compression member includes a conductive material blended with a base elastomer stock			
3	and a cross-linking agent.			

- 1 6. The compression connector of claim 1, wherein the conductive compression material comprises conductive carbon black material.
- 7. The compression connector of claim 6, wherein the conductive carbon black material comprises a concentration of substantially 2.5 percent by weight of the compression member.
- 1 8. The compression connector of claim 6, wherein the conductive carbon
 2 black material comprises a concentration of substantially 3.0 percent by weight of the
 3 compression member.

I	9. A storage device, comprising:		
2	a storage element;		
3	an electronics assembly, operatively coupled to the storage element, for		
4	processing electrical signals for enabling storage of data on the storage element;		
5	a magnetic transducer;		
6	a cable for providing a signal path between the magnetic transducer and the		
7	electronics assembly; and		
8	a compression connector having electrostatic discharge dissipative properties, the		
9	compression connector compressively engaging the cable and the electronics assembly,		
10	the compression connector further comprising:		
11	a conductive compression member including a predetermined composition		
12	of conductive material and an elastomeric material; and		
13	an electrostatically dissipative base member including a conductive		
14	material for dissipating charge developed on the conductive compression member.		
1.	10. The storage device of claim 9 further comprising a ground connection to		
2	dissipate the charge from the electrostatically dissipative base member that is generated		
3	when tension is applied to or released from the conductive compression member.		
1	11. The storage device of claim 9, wherein the resistance of the conductive		
2	compression member is selected to be higher than the resistance of the electrostatically		
3	dissipative base member.		

1 .	12.	The storage device of claim 9, wherein the conductive compression		
2	member is vu	lcanized to the electrostatically dissipative base member.		
1	13.	The storage device of claim 9, wherein the conductive compression		
2	member includes a conductive material blended with a base elastomer stock and a cross-			
3	linking agent.			
1	14.	The storage device of claim 9, wherein the conductive compression		
2	material comp	orises conductive carbon black material.		
1	15.	The storage device of claim 14, wherein the conductive carbon black		
2	material comprises a concentration of substantially 2.5 percent by weight of the			
3	compression i	member.		
•				
1	16.	The storage device of claim 14, wherein the conductive carbon black		
2	material comp	orises a concentration of substantially 3.0 percent by weight of the		
3	compression i	member.		

1	17. A method for forming a compressive connection with electrostatic
2	discharge dissipative properties, comprising:
3	forming a conductive compression member including a predetermined
4	composition of conductive material and an elastomeric material; and
5	forming an electrostatically dissipative base member, coupled to the conductive
6	compression member, the electrostatically dissipative base member including a
7	conductive material for dissipating charge developed on the conductive compression
8	member.
1	18. The method of claim 17, wherein the forming the conductive compression
2	member and the electrostatically dissipative base member further comprises forming the
3	conductive compression member with a resistance selected to be higher than a resistance
4	of the electrostatically dissipative base member.
1	19. The method of claim 17, wherein the forming the conductive compression
2	member further comprises forming the conductive compression member using a
3	conductive carbon black material comprising a concentration of substantially 2.5 percent
4	by weight.
1	20. The method of claim 17, wherein the forming the conductive compression
2	member further comprises forming the conductive compression member using a
3	conductive carbon black material comprising a concentration of substantially 3.0 percent
4	by weight.