TBFT 建模进度

摘要

版本 7:本文完善了 TBFT 共识机制的建模框架。1、完善了广播理想功能 \mathcal{F}_{BC} ,确保了信息在指定集合中的可靠传递以及对手的可见性。2、完善 \mathcal{F}_{TBFT} 功能描述,加入了随机交易剔除功能,使得系统在处理交易时更加灵活和安全。3、细化协议描述 π_{TBFT} ,加入了对各子功能的描述,为协议的实现提供了更加明确的指导。4、协议实现的 UC 建模完成度比例为 80%左右。

一、整体框架

图 1 TBFT 协议整体框架

二、功能描述

(一) 功能 \mathcal{F}_{Ch}

初始化: 定义一组参与方,其中 S 和 R 分别表示该组中的两个参与方,作为消息 m 的发送方和接收方。

- △ 根据功能参数定义如下。消息标识符 mid 由功能随机选择。
- 1. 当从 S 接收到输入 (Send,sid, \mathcal{R} ,m) 时,向 \mathcal{A} 输出 (Send,sid, Δ ,mid)。
- 2. 当从 $\mathcal A$ 接收到 (Ok,sid,mid) 时,向 $\mathcal R$ 发送 (Received,sid, $\mathcal S$,m)。 根据以下参数化函数设置 Δ :
- 对于 \mathcal{F}_{Ch}^{ac} , 设置 $\Delta = (S, \mathcal{R}, m)$ 。当从 \mathcal{A} 接收到 (Ok.Snd,sid,mid) 时,向 S^a 发送 (Continue,sid)。
- 对于 \mathcal{F}_{Ch}^{sra} , 设置 $\Delta = (\mathcal{S}, |m|)$ 。
- 对于 \mathcal{F}_{Ch}^{ssa} , 设置 $\Delta = (\mathcal{R}, |m|)$ 。
- 对于 \mathcal{F}_{Ch}^{fa} , 设置 $\Delta = |m|$ 。
- 对于 \mathcal{F}^{sc}_{Ch} , 设置 $\Delta = (\mathcal{S}, \mathcal{R}, |m|)$ 。当从 \mathcal{A} 接收到 (Ok.Snd,sid,mid) 时,向 \mathcal{S} 发送 (Continue,sid)。
- 对于 \mathcal{F}_{Ch}^{sa} , 设置 $\Delta = (\mathcal{R}, m)$ 。

- 1. 当从 A 接收到 (Ok,sid,mid) 时,向 R 发送 (Received,sid, m,mid)。当从 A 接收到 (Ok.Snd,sid,mid) 时,向 S 发送 (Continue,sid)。
- 2. 当从 \mathcal{R} 接收到 (Send,sid,mid, m') 时,向 \mathcal{A} 输出 (Send,sid, \mathcal{R} , m',mid)。当从 \mathcal{A} 接收到 (Ok.End,sid,mid) 时,向 \mathcal{S} 发送 (Received,sid, \mathcal{R} , m')。
- a 这赋予了对手 A 更多的权力,因为 UC 模型中需要顺序发送消息, A 决定发送方何时可以继续。

(二) 功能 $\mathcal{F}_{PROPOSAL}$

初始化: 设置 Proposal := 丄和 Round := 0。

- 当收到消息(startProposal)时,
 - 通过 Round-robin 规则选定提议者 Proposer ∈ H, H为 V 中诚实者的集合,
 - 初始化 Validator 的 votingPower 为其质押资金:

votingPowe
$$r_i = \text{stak}e_i, \forall i \in \{1, ..., N\}$$

- 按 Round-robin 规则依次选举 Proposer, 更新 Round := Round+1。
- 更新 votingPower:
 - 未被选中的 Validator 更新为:

$$votingPower_i \leftarrow votingPower_i + stake_i$$

■ 被选中的 Validator 更新为:

$$votingPower_i \leftarrow votingPower_i - \sum_{i \neq i} stake_i$$

- (超时处理): 当从敌手 A 接收到(timeout, T)消息时,如果 T 有效,设置 Round = Round + 1,并选择新的提议者。

(三) 功能 \mathcal{F}_{VOTE}

初始化:向 \mathcal{F}_{TIME} 发送(timeStart,δ)命令。若在任何阶段从 \mathcal{F}_{TIME} 收到(timeOver)消息,直接投票给 nil 块。

- 当从验证者v_i ∈ V传入(Prevote, Proposal)消息时,
 - 若收到 Proposal,则向 \mathcal{F}_{STATE} 发送(v_i , queryState),获取 PoLC。
 - 查询 PoLC, 若v_i锁定在上一轮 Proposal, 则签名并广播上一轮区块(v_i, *prevote*, Vote(B'))。
 - 否则,签名并广播当前轮区块(v_i, prevote, Vote(B))。
 - 否则,则签名并广播(v_i, prevote, Vote(nil))。
- 当从验证者v_i ∈ V传入(Precommit, Proposal)消息时,
 - 若收到超过 2f+1 的 prevote 投票,
 - 签名并广播 $(v_i, precommit, Vote(B))$,向 \mathcal{F}_{STATE} 发送 $(v_i, unlock, B')$ 解锁上一轮区块,然后向 \mathcal{F}_{STATE} 发送 $(v_i, lock, B)$ 锁定当前区块。
 - 若收到超过 2f+1 的空 prevote 投票,
 - 签名并广播 (v_i , precommit, Vote(nil)),向 \mathcal{F}_{STATE} 发送(v_i , unlock, ALL)释放 所有锁定的区块。
 - 否则,不锁定任何区块。

(四)功能 \mathcal{F}_{COMMIT}

初始化: 对于 $v_i \in V$,设置 $c_i \coloneqq 0$, $c_i \in C$ 。表示 Proposal 是否已 Commit。向 \mathcal{F}_{TIME} 发送 (timeStart, δ)命令。若在任何阶段从 \mathcal{F}_{TIME} 收到(timeOver)消息,向 \mathcal{F}_{STATE} 发送(newRound)。

- 当收到从验证者 v_i ∈ V传入(Commit,Proposal)消息时,
 - 若收到超过 2f+1 的 precommit 投票,
 - 签名并广播(v_i, commit, Vote(B)),同时收集全网的 commit 投票。
 - 若 v_i 己为区块 B 广播 commit 投票且收集到超过 2f+1 的 commit 投票,则设置

- $c_i \coloneqq 1$,向验证者发送(allowCommit,Proposal)消息,向 \mathcal{F}_{STATE} 发送(newHeight)。
 - 否则,向验证者发送(denyCommit,Proposal)消息,向*F_{STATE}*发送(newRound)。
- 否则,向 \mathcal{F}_{STATE} 发送(newRound),开启下一轮。
- 收到来自任意方 v_k 的消息(request status)时:
 - 返回集合 C 并指示区块 B 是否已完成。

(五)功能 \mathcal{F}_{STATE}

初始化: 设置 Height := 0, Round := 0 和 PoLC := 上。

- 当从任意验证者*v_i* ∈ *V*接收到(newHeight)消息时, 更新 Height := Height+1 并将 Round 重置为 0。
- 当从任意验证者*v_i* ∈ *V*接收到(newRound)消息时, 更新 Round := Round +1。
- 当从出块人 Proposer 接收到(getProposal, sid, *phase_p*, *)消息时, 从配置文件中获取 Proposals, 然后将其返回给调用者。
- 当从接收到 (updateProposal, sid, *phase_p*, Proposals)消息时,将 Proposals 更新到配置文件中。
- 当从 v_i 接收到(v_i ,lock,B)消息时,将 v_i 加入到 PoLC 中 (Height,Round,B)对应的 ValidatorSet 中。
- 当从 v_i 接收到(v_i ,unlock,B)消息时,将 v_i 在对应的 PoLC 中 (Height,Round,B)的 ValidatorSet 中删除。
- 当从 v_i 接收到(v_i ,unlock,ALL)消息时,设置 PoLC := \bot 。
- 当从 v_i 接收到(v_i ,queryState)消息时,返回 PoLC。

(六)功能 \mathcal{F}_{TIME}

初始化:设置 $t_i \in T$, $t_i := \bot$ 。

- 当收到(GetTime)请求时,将当前的 t_i 返回给请求方。
- 当收到(ResetTime)请求时, 将 t_i 重置为 $t_i \coloneqq \bot$,向调用者返回一个(timeOK)消息。
- 当收到(timeStart, sid, $phase_p$, δ)请求时, $将t_{sid}$ 更新为 t_{sid} ← δ,向理想功能 \mathcal{F}_{tbft} 返回一个(timeOK)消息,然后开始倒计时。
- 当从 $t_{sid} \in T$, $t_{sid} = 0$ 时, 会向对应的调用者发送一个(timeOver, sid, $phase_p$, δ)消息。

(七)功能 \mathcal{F}_{BC}

初始化: 由集合 $M = \{M_1, ..., M_D\}$ 参数化, 其执行过程如下:

- 当从参与方 P 接收到 (Broadcast,sid,m) 时,向集合 M 中的所有实体以及 \mathcal{A} 发送 (Broadcasted,sid,P,m)。

三、 理想功能 $\mathcal{F}_{\mathtt{TRFT}}$

Functionality $\mathcal{F}_{TBFT}^{V,\Delta,\Sigma}[\mathcal{F}_{TIME},\mathcal{F}_{BC},\mathcal{F}_{SYNC}]$

Parameters:

- V: Validator Set.
- Δ : Maximum network delay.
- Σ : Maximum delay in delay attack.
- \mathcal{F}_{TIME}: Ideal functionality for timing.
- \mathcal{F}_{BC} : Ideal functionality for broadcast.
- \mathcal{F}_{SYNC} : Ideal functionality for synchronization.

Symbol Explanation:

• δ : actual execution time, initialized by S, default value is Δ .

- σ : actual delay, initialized by S, default value is 0.
- h_p : current height, or consensus instance we are currently executing, initialized to 0.
- $round_p$: current round number, initialized to 0.
- $phase_p \in$

{propose, prevote, precommit, commit}: marks consensus phase within the current round, initialized to propose

- $count_{phase_n}$: record the number of votes cast at each phase, initialized to 0.
- $decision_p[$]: record the final consensus value reached by each node at various heights, initialized to nil.
- lockedValue_p: locked value, indicating the currently locked proposal, initialized to nil.
- lockedRound_p: locked round, indicating the round of locked value, initialized to -1.
- validValue_p: valid value, indicating the currently valid proposal, initialized to nil.
- $validRound_p$: valid round, indicating the round of valid value, initialized to -1.
- *isVote_{COMMIT}*: marks whether the commit phase itself has completed voting, initialized to false.
- * : empty parameter.
- *B* : Threshold for consecutive block production (blocksPerProposer).
- preProposer: Index of the proposer in the previous round, initialized to 0.
- |V| : Total number of nodes in the validator set.
- txID_{random}: Set of transaction IDs determined to be random.
- count_{random}(txID): Exclusion vote count for transaction txID.

Upon receiving message $\langle NEWROUND, h_p, round_p, * \rangle$ from S, while phase_p = propose:

- 1. Send $\langle \text{Sleep,sid}, \text{phase}_p \rangle$ to \mathcal{S} and wait for a response of the form $\langle \text{Wake,sid}, \text{phase}_p, \delta, \sigma \rangle$.
- 2. If $(\delta + \sigma > 2\Delta) \vee \sigma > \Sigma$:
 - o Return to step 1.
- 3. Otherwise:
 - \circ Send (timeStart,sid, phase_n, σ) to \mathcal{F}_{TIME} , and suspend execution.
 - 0 Upon receiving (timeOver, sid, phase_n, σ) from \mathcal{F}_{TIME} , resume execution.
 - o Send (timeStart,sid, phase_n, δ) to \mathcal{F}_{TIME} .
 - Send (CreateProposal,sid, phase_p) to S and wait for a response of the form (StartProposal,sid, phase_p).
 - Send (StartProposal,sid, phase_p) to Proposer(h_p , round_p) and wait for a response of the form (PROPOSAL,sid, phase_n, v).
 - o If Proposer $(h_p, round_p)$ is corrupted,
 - Send $\langle \text{Input,sid}, h_p, \text{round}_p, v \rangle$ to S.
 - o If valid(v) and no $\langle \text{timeOver, sid, phase}_n, \delta \rangle$ has been received from \mathcal{F}_{TIME} :
 - Broadcast $\langle PROPOSAL, h_p, round_p, v \rangle$.
 - Otherwise:
 - Return to step 1.
 - Update phase $_p$ ← prevote.

Upon receiving message $\langle PROPOSAL, h_p, round_p, v \rangle$ from $Proposer(h_p, round_p)$, while $phase_p = prevote$:

- 1. Send (Sleep,sid, phase_p) to S and wait for a response of the form (Wake,sid, phase_p, S, σ).
- 2. If $(\delta + \sigma > 2\Delta) \vee \sigma > \Sigma$:
 - o Broadcast (PREVOTE, h_p , round_p, nil).
- 3. Otherwise:
 - O Send (timeStart, sid, phase_n, σ) to \mathcal{F}_{TIME} , and suspend execution.
 - O Upon receiving $\langle \text{timeOver,sid, phase}_n, \sigma \rangle$ from \mathcal{F}_{TIME} , resume execution.

- Send $\langle \text{timeStart,sid, phase}_{p}, \delta \rangle$ to \mathcal{F}_{TIME} .
- o If $valid(v) \land (lockedRound_p = -1 \lor lockedValue_p = v)$ and no $\langle timeOver, sid, phase_p, \delta \rangle$ has been received from \mathcal{F}_{TIME} :
 - Broadcast (Execute, v.Transactions) and wait for a response (ReadWriteHash, H_{exec}).
 - If $H_{\text{exec}} \neq v.H_{\text{readWrite}}$:
 - Broadcast (IdentifyRandom, v.Transactions) and receive txID_{random}.
 - Broadcast (PREVOTE, h_p , round_p,nil, txID_{random}).
 - Otherwise:
 - If $valid(v) \land (lockedRound_p = -1 \lor lockedValue_p = v)$: Broadcast $(PREVOTE, h_p, round_p, id(v))$.
 - Otherwise: Broadcast (PREVOTE, h_p , round $_p$, nil).
- Otherwise:
 - Broadcast (PREVOTE, h_p , round_p,nil).
- 4. Send (RoundOK) to \mathcal{F}_{SYNC} .
- 5. Update phase $_n \leftarrow$ precommit.

Upon receiving message $\langle PREVOTE, h_p, round_p, nil, txID_{random} \rangle$ from Validator $(h_p, round_p)$, while phase_n = prevote:

- 1. For each $txID \in txID_{random}$:
 - Set $count_{random}(txID) \leftarrow count_{random}(txID) + 1$.
- 2. If there exists a txID such that count_{random}(txID) $\geq f + 1$:
 - Broadcast (RemoveTx,txID) t to remove the transaction from the transaction pool.
 - Reset count_{random}(txID) \leftarrow 0.

Upon receiving message $\langle PREVOTE, h_p, validRound_p, id(v) \rangle$ from $Validator(h_p, round_p)$, while $phase_p = prevote \wedge (validRound_p \geq 0 \wedge validRound_p < round_p)$:

- 1. Set $count_{prevote} \leftarrow count_{prevote} + 1$.
- 2. If $\operatorname{valid}(v) \land (\operatorname{count}_{\operatorname{prevote}} > 2f + 1) \land (\operatorname{lockedRound}_p \lor \operatorname{lockedValue}_p = v)$:
 - o Broadcast $\langle PREVOTE, h_n, round_n, id(v) \rangle$.
- 3. Otherwise:
 - o Broadcast $\langle PREVOTE, h_p, round_p, nil \rangle$.

Upon receiving message $\langle PREVOTE, h_p, round_p, id(v) \rangle$ from Validator $(h_p, round_p)$, while phase_p = precommit:

- 1. Set $count_{prevote} \leftarrow count_{prevote} + 1$.
- 2. Send $\langle \text{Sleep,sid, phase}_p \rangle$ to \mathcal{S} and wait for a response of the form $\langle \text{Wake,sid, phase}_n, \delta, \sigma \rangle$.
- 3. If $(\delta + \sigma > 2\Delta) \vee \sigma > \Sigma$:
 - o Broadcast (PRECOMMIT, h_p , round_p, nil).
- 4. Otherwise:
 - O Send (timeStart, sid, phase_n, σ) to \mathcal{F}_{TIME} , and suspend execution.
 - 0 Upon receiving $\langle \text{timeOver,sid, phase}_n, \sigma \rangle$ from \mathcal{F}_{TIME} , resume execution.
 - Send $\langle \text{timeStart,sid, phase}_n, \delta \rangle$ to \mathcal{F}_{TIME} .
 - o If valid(v) \land (count_{prevote} > 2f + 1) and no \land timeOver,sid, phase_p, $\delta \land$ has been received from \mathcal{F}_{TIME} :

- Set lockedValue_p $\leftarrow v$, lockedRound_p \leftarrow round_p.
- Broadcast $\langle PRECOMMIT, h_p, round_p, id(v) \rangle$.
- Set validValue_p $\leftarrow v$, validRound_p \leftarrow round_p.
- o Otherwise:
 - Broadcast $\langle PRECOMMIT, h_p, round_p, nil \rangle$.
- 5. Update phase_n \leftarrow commit.

Upon receiving message $\langle PRECOMMIT, h_p, round_p, id(v) \rangle$ from Validator $(h_p, round_p)$, while phase_n = commit:

- 1. Set $count_{precommit} \leftarrow count_{precommit} + 1$.
- 2. Send $\langle \text{Sleep,sid, phase}_p \rangle$ to \mathcal{S} and wait for a response of the form $\langle \text{Wake,sid, phase}_p, \delta, \sigma \rangle$.
- 3. If $(\delta + \sigma > 2\Delta) \vee \sigma > \Sigma$:
 - Broadcast (COMMIT, h_p , round_p, nil), and set is Vote_{COMMIT} \leftarrow false.
- 4. Otherwise:
 - o Send (timeStart,sid, phase_n, σ) to \mathcal{F}_{TIME} , and suspend execution.
 - 0 Upon receiving $\langle \text{timeOver,sid, phase}_{p}, \sigma \rangle$ from \mathcal{F}_{TIME} , resume execution.
 - o Send (timeStart, sid, phase_n, δ) to \mathcal{F}_{TIME} .
 - o If valid(v) \land (count_{precommit} > 2f + 1) and no \langle timeOver,sid, phase_p, $\delta \rangle$ has been received from \mathcal{F}_{TIME} :
 - Broadcast (COMMIT, h_p , round_p,id(v)), and set isVote_{COMMIT} ← true.
 - o Otherwise:
 - Update phase $_p \leftarrow \text{propose}$ and round $_p \leftarrow \text{round}_p + 1$.

Upon receiving message $\langle COMMIT, h_p, round_p, id(v) \rangle$ from Validator $(h_p, round_p)$, while phase_p = commit:

- 1. Set $count_{commit} \leftarrow count_{commit} + 1$.
- 2. If $valid(v) \land (count_{commit} > 2f + 1) \land isVote_{COMMIT}$:
 - Set decision_p[h_p] = v, and update isVote_{COMMIT} ← false, $h_p \leftarrow h_p + 1$.
- 3. Send (RoundOK) to \mathcal{F}_{SYNC} .
- 4. Send (RequestRound) to \mathcal{F}_{SYNC} , receive its response d_i :
 - $\circ \quad \text{If } d_i = 0:$
 - Update phase $_p \leftarrow$ propose and reset round $_p$, count $_p$, locked Round $_p$, locked Value $_p$, valid Round $_p$, valid Value $_p$.
 - Send (NEWROUND, h_p , round_p,*) to S.
 - o Otherwise re-execute this step.

Upon receiving message $\langle *, h_p, round, *, * \rangle$:

- 1. Set $count_{nextround} \leftarrow count_{nextround} + 1$.
- 2. If $(count_{nextround} > f + 1) \land round > round_p$:
 - Send (NEWROUND, h_p , round, *) to S.

四、协议描述

Tendermint-BFT 协议通过轮次机制和投票阶段确保多个验证者之间就区块达成一致,并最终提交区块。该协议支持容忍少量恶意节点,依赖于消息广播、延迟处理和投票收集来实现共识。

- Party Z:

StartProposal: 开始共识,调用 $\mathcal{F}_{PROPOSAL}$,选择并激活一个提议者 Proposer。

- Party Proposer:

Initialize: 向 \mathcal{F}_{TIME} 发送(timeStart,δ)命令。若从 \mathcal{F}_{TIME} 收到(timeOver)消息,则直接跳转执

行 RoundOK 部分。

Input: 从功能 \mathcal{F}_{STATE} 中接收并选择一个提案,确定其区块 B 有效后将其作为提议区块。 **Propose**: 将提议信息 L(|Proposal|)发送给敌手 A,然后签名并广播(Proposal)给验证者。 **Proposal** 是实际的 \mathcal{F}_{STATE} 是实际的 \mathcal{F}_{STATEE} 是实际的 \mathcal{F}_{STATEE

RoundOK: 调用 $\mathcal{F}_{PROPOSAL}$ 更新轮次,重新选择提议者,开始新的轮次。

- Party Validator:

Initialize: 向 \mathcal{F}_{STATE} 发送自己的提案。

Input: 在收到来自 Proposer 的 Proposal 后,验证 Proposal 的完整性和有效性。

Prevote:根据收到 Proposal 的,调用 $\mathcal{F}_{VOTE}(Prevote, Proposal)$ 。

Precommit: 根据收到的 Proposal, 调用 $\mathcal{F}_{VOTE}(Precommit, Proposal)$ 。若共识失败跳转执行 RoundOK 部分。

Commit: 根据收到的 Proposal,调用 $\mathcal{F}_{COMMIT}(Commit, Proposal)$ 。若共识失败跳转执行 RoundOK 部分。

RoundOK: 调用 $\mathcal{F}_{PROPOSAL}$ 更新轮次,重新选择提议者,开始新的轮次。

The Protocol π_{TRFT}

1 11	TI TOLOCOL ILTBET			
${\mathcal Z}$	Proposer	\mathcal{F}_{AUTH}	Validator	\mathcal{A}
\rightarrow	1: Send $\langle \text{timeStart,sid, phase}_{n}, \delta \rangle$	$ ightarrow \mathcal{F}_{TIME}$		
	to \mathcal{F}_{TIME} 2: Send $\langle \text{getProposal,sid, phase}_p, * \rangle$ to	$\to \mathcal{F}_{STATE}$		
	\mathcal{F}_{STATE} 3 : Get (proposalReceived, sid, phase $_p$, Prop	$\leftarrow \mathcal{F}_{STATE}$		
	from \mathcal{F}_{STATE} 4: Select a Proposal value v from the Proposals. 5: Send $\langle \text{Input,sid}, h_p, \text{round}_p, v \rangle$			\rightarrow
	to \mathcal{A} 6: If valid(v) and get $\langle \text{timeOver,sid, phase}_p, \delta \rangle$ from	$\leftarrow \mathcal{F}_{TIME} \\ \rightarrow \mathcal{F}_{PROPOSA}$		
	\mathcal{F}_{TIME} , then call $\mathcal{F}_{PROPOSAL}\langle \text{NewRound}, h_p, \text{round}_p \ 1 \rangle$			
	7: Otherwise: broadcast $\langle PROPOSAL, h_p, round_p, v \rangle$	→ Broadcası		
	(Tree ourse, np, roundp, v)	$\mathcal{F}_{TIME} \leftarrow$	8: Send $\langle \text{timeStart,sid}, \text{phase}_p, \delta \rangle$	
		Broadcast ← → Broadcast	to \mathcal{F}_{TIME} 9: If valid(v), then call \mathcal{F}_{VOTE} (Prevote,PROPOSAL 10: Send \langle timeStart,sid, phase $_p$, δ \rangle	\leftrightarrow
		Broadcast ←	to \mathcal{F}_{TIME} 11: If valid(v), then call \mathcal{F}_{VOTE} (Precommit, PROPOS	\leftrightarrow

Z Proposer			Validator	\mathcal{A}
		→ Broadcas	12: Send	
			$\langle \text{timeStart,sid, phase}_{n}, \delta \rangle$	
			to \mathcal{F}_{TIME}	
		Broadcast	13: If $valid(v)$, then call	
		←	\mathcal{F}_{COMMIT} (Commit, PROPO	S
← Output (Success, sid, id)	$\langle v \rangle$ to	$\mathcal{F}_{PROPOSAL}$	14: If get	
z		←	(allowCommit,PROPOSA)	Γ.
~			from \mathcal{F}_{COMMIT}	_
			Call	
			$\mathcal{F}_{PROPOSAL}$ (NewRound,	
			$h_p + 1$,round=0	
(Output /Egilum gid 1)	to 7	$\boldsymbol{\tau}$	n_p 1,10and 0/	
← Output (Failure,sid, ⊥)	10 2	$\mathcal{F}_{PROPOSAL}$	Call	
		←		
			$\mathcal{F}_{PROPOSAL}$ (NewRound,	
			h_p , round $_p + 1$	
The Functionality \mathcal{F}_{PRO}			_	
Z or Validators	\mathcal{F}_{AUTH}		$\mathcal{F}_{PROPOSAL}$	
1: Send	\rightarrow			
(NewRound, h_p , round) to				
$\mathcal{F}_{PROPOSAL}$				
	\mathcal{F}_{STATE}	2: Send (getI	Proposal, sid, phase $_n$, * \rangle to	
	\leftarrow	\mathcal{F}_{STATE}	r	
	\mathcal{F}_{STATE}	3 : Get		
	\rightarrow		eived,sid, phase _p ,Proposals)	•
			, ,1 p, 1 ,	
		from \mathcal{F}_{STATE}	lator <i>i</i> initializes their	
		votingPowe		M
		_	$er_i = stake_i \forall i \in \{1,, er_i\}$	1 V }
			tor v^* is chosen as the	
		proposer:	and the last	
	*		$= \operatorname{argmax}_{v_i \in H} \operatorname{stake}_i$	
			vRound) to \mathcal{F}_{STATE}	
	\leftarrow			
			ected validators $v_i \neq v^*$:	_
		•	$er_i \leftarrow votingPower_i + sta$	ke_i
			lected proposer v^* :	
		voting		
			$\leftarrow votingPower_{v^*}$	
			$\leftarrow votingPower_{v^*} \\ -\sum_{i=1}^{N} s \ take_i$	
			− ⟩ s takei	
			ι-1	
		-	roposals based on	
	_	votingPowe	r	
		10 : Send		
	\leftarrow	(updatePropo	sal,sid, phase _p ,Proposals) to	0
		\mathcal{F}_{STATE}	r	
		J.111 B		

The Functionality \mathcal{F}_{VOTE}

The Function	Unanty F _{VOTE}	_	_
	Validator	\mathcal{F}_{AUTH}	\mathcal{F}_{VOTE}
Prevote	1: Send	\rightarrow	
	(Prevote,PROPOSAL) to		
	\mathcal{F}_{VOTE}		
	VOIE	$\mathcal{F}_{TIME} \leftarrow$	2 · Send
		J TIME ~	
			$\langle \text{timeStart,sid}, \text{phase}_p, \delta \rangle$
			to \mathcal{F}_{TIME}
		Broadcast	3 : If no
		←	$\langle \text{timeOver,sid, phase}_p, \delta \rangle$
			•
			is received from \mathcal{F}_{TIME} :
			Sign and broadcast
			$\langle v_i$,prevote,Vote(nil) \rangle
		$\mathcal{F}_{STATE} \leftarrow$	4 : Otherwise, If
		317111	valid(v):
			Send $\langle v_i, \text{queryState} \rangle$ to
		D 14	\mathcal{F}_{STATE} to get PoLC
		Broadcast	5: If v_i is locked on
		\leftarrow	Proposal from the previous
			round:
			Sign and broadcast
			$\langle v_i$,prevote,Vote $(v_i')\rangle$
		Broadcast	6 : Otherwise:
		←	Sign and broadcast
		`	$\langle v_i, \text{prevote}, \text{Vote}(v_i) \rangle$
		D 14	· · · · · ·
		Broadcast	
		\leftarrow	Sign and broadcast
			$\langle v_i$,prevote,Vote(nil) \rangle
Precommit	1: Send	\rightarrow	
	(Precommit,PROPOSAL)		
	to \mathcal{F}_{VOTE}		
	TO VOIE	$\mathcal{F}_{TIME} \leftarrow$	2 · Send
		J TIME \	
			$\langle \text{timeStart,sid}, \text{phase}_p, \delta \rangle$
			to \mathcal{F}_{TIME}
		Broadcast	3 : If no
		←	$\langle \text{timeOver,sid, phase}_p, \delta \rangle$
			•
			is received from \mathcal{F}_{TIME} :
			Sign and broadcast
			$\langle v_i$,precommit,Vote(nil) \rangle
		Broadcast	4 : Otherwise, If
		←	valid(v):
			Upon receiving more than
			2f + 1 prevote votes:
			Sign and broadcast
			_
		σ	$\langle v_i, \text{precommit}, \text{Vote}(v_i) \rangle$
		$\mathcal{F}_{STATE} \leftarrow$	
			to \mathcal{F}_{STATE}

	Validator	\mathcal{F}_{AU}	TH	\mathcal{F}_{VOTE}
		$\mathcal{F}_{STATE} \leftarrow$		6 : Send $\langle v_i, lock, v_i \rangle$ to
		Broad ←	lcast	\mathcal{F}_{STATE} 7: Upon receiving more than $2f + 1$ null prevote votes:
	ı. V. T	\mathcal{F}_{STAT}	rE ←	Sign and broadcast $\langle v_i, \text{precommit,Vote(nil)} \rangle$ 8: Send $\langle v_i, \text{unlock,ALL} \rangle$ to \mathcal{F}_{STATE} 9: If no valid(v), Do not lock any blocks.
The Fun	ctionality \mathcal{F}_{COMMIT}	Œ		Œ
Commit	Validator	\mathcal{F}_{AUTH}		$\mathcal{F}_{\textit{COMMIT}}$
Commit	1: Send $\langle Commit, PROPOSAL \rangle$ to \mathcal{F}_{COMMIT}	\rightarrow		
	oo man	$\mathcal{F}_{TIME} \leftarrow$		
		$\mathcal{F}_{PROPOSAL}$	\mathcal{F}_{TIM} 3: It	
		←	reces Ser (New	wRound, h_p , round _p + 1 \rangle to
		Broadcast ←	4 : C If movote Sig	Otherwise, If valid(v): ore than $2f + 1$ precommits are received: on and broadcast commit, $Vote(v_i)$
		\rightarrow		Collect commit votes from
		←		network. f node has already broadcast
		·	a colle	mmit vote for v_i and ected more than $2f + 1$ mit votes:
		_	⟨allo Vali	owCommit,PROPOSAL) to dator
		$\mathcal{F}_{STATE} \leftarrow$	$7:S$ \mathcal{F}_{STA}	Send (newHeight) to
		←		Otherwise:
		_	Vali	yCommit,PROPOSAL) to dator
		$\mathcal{F}_{PROPOSAL} \leftarrow$	(Nev	Send wRound, h_p , round $p+1$ to opposal

The Functionality \mathcal{F}_{STATE}

	Proposer	\mathcal{F}_{AUTH}	\mathcal{F}_{STATE}
Get	1: Send	\rightarrow	X4.44. W
Proposa	(getProposal,sid, phase _p ,*) to		
s	\mathcal{F}_{STATE}		
	J STATE		2: Gat Proposals from
			2: Get Proposals from
		,	Configuration File 3: Send
		\leftarrow	
			(proposalReceived, sid, phase _p , P
			to Proposer
	$\mathcal{F}_{PROPOSAL}$		
Set	1 : Send	\rightarrow	
Proposa	(updateProposal,sid, phase _p ,Pro		
ls	to \mathcal{F}_{STATE}		
	511112		2: Update Proposals to
			Configuration File
	\mathcal{F}_{VOTE}		
GetPoL	1 : Send $\langle v_i, \text{queryState} \rangle$ to	\rightarrow	
C	\mathcal{F}_{STATE}		
	STAIL		2 : Return PoLC to the caller
	\mathcal{F}_{VOTE}		
UnLock	1: Send $\langle v_i, \text{unlock}, v_i' \rangle$ to	\rightarrow	
	\mathcal{F}_{STATE}		
	STATE		2 : Delete v_i from the
			ValidatorSet corresponding to
			$\langle h_p$, round, $v_i \rangle$ in PoLC
	1 · Cond /// unlook AII \ to		$\langle n_p \rangle$ outlie, $\nu_i \rangle$ in Folia
	1 : Send $\langle v_i$, unlock, ALL \rangle to	\rightarrow	
	\mathcal{F}_{STATE}		2 : Set PoLC := ⊥
Look	1 · Cand /21 look 21 to		2. Set FOLC I
Lock	1: Send $\langle v_i, lock, v \rangle$ to	\rightarrow	
	\mathcal{F}_{STATE}		2. Add as to the Walidates C.
			2 : Add v_i to the ValidatorSet
			corresponding to $\langle h_p, \text{round}, v_i \rangle$
	T.		in PoLC.
N I TT •	\mathcal{F}_{COMMIT}		
NewHei	1 : Send (newHeight) to	\rightarrow	
ght	\mathcal{F}_{STATE}		
			2 : Set $h_p := h_p + 1$,
			$round_p := 0$
	$\mathcal{F}_{PROPOSAL}$		
NewRou	1 : Send (newRound) to	\rightarrow	
nd	\mathcal{F}_{STATE}		
	- · · · · ·		2: Set $round_p := round_p + 1$
The Fund	ctionality ${\cal F}_{TIME}$		p p
. II. I UII	Proposer or Validator	T	${\cal F}_{TIME}$
Countdov		\mathcal{F}_{AUTH}	J TIME
Countant	$\langle \text{timeStart,sid, phase}_n, \delta \rangle$,	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
	to \mathcal{F}_{TIME}		

	Proposer or Validator	\mathcal{F}_{AUTH}	\mathcal{F}_{TIME}
		←	2: Set $t_{sid} \leftarrow \delta$, start the countdown.
			Return (timeOK)
		←	3: When $t_{sid} \in T$ and $t_{sid} = 0$:
			Send $\langle \text{timeOver,sid, phase}_p, \delta \rangle$
			to the caller
ResetTime	1: Send $\langle \text{ResetTime,sid, phase}_p, \delta \rangle$	\rightarrow	
	to \mathcal{F}_{TIME}		
		←	2 : Set $t_i \leftarrow \bot$, stop the countdown
			Return (timeOK)
GetTime	1: Send $\langle \text{getTime,sid}, \text{phase}_p, \delta \rangle$ to	\rightarrow	
	\mathcal{F}_{TIME}	,	2. Detum to the caller
		←	2 : Return t_i to the caller