MATH-338 Midterm 2 Cheat Sheet

THEORY

Day 14: probability density function is represented an integral with function f(x). Our probability lies within the curve and is always 1. Density curve \rightarrow bell curve. Z-Score allows us to have a universal standard for density curves with different scales. They are directly proportional to the standard deviation and the delta from the mean of the graph.

Day 15: unimodal: one hump, bimodal: two humps. Mean is resistant whereas the mean is subject to change. Density curves decay to histograms (integral \rightarrow to Reimann Sum). Whisker plots are an effective method to determine if a data set contains outliers (data points not belonging to the sample set)

Day 16: error: since there is some error while taking sample data, we do allow for some buffer. We also do not measure exact but to a tolerance which is influenced by the buffer above. Central Limit Theorem: when population size is "large enough" \bar{x} is an approximation. Higher skew and outliers suggest a larger

Day 18: As $n \uparrow$, $SEM \downarrow$. Two-tailed tests take the upper and lower limit of the curve and the significance level (α) is the cut off point of being statistically significant. Treat as critical region. If in CR, then accept alt. Else accept null.

Day 19: H_1 : $\mu < \mu_0 \leftarrow$ left side. H_1 : $\mu \neq \mu_0 \leftarrow$ n σ on both side but no middle. H_1 : $\mu > \mu_0 \leftarrow$ lower.tail = TRUE. Population distribution normality \Longrightarrow sample population distribution normality. Matched pairs design: paired subjects receives their respective treatment or an individual gets two treatments. Also a subset of block design. Common hypothesis: H_0 : $\mu_d = 0$ (no difference) and H_a : $\mu_d \neq 0$ (difference). Matched-pairs t-test reqs: large population, normal

Day 20: Two Independent Samples t-Test: two unrelated treatments into one numerical response variable measured in two independent groups. Two different μ_1 and μ_2 . NHST approach; identify μ_i

FORMULAS

- $\sqcap = width \times \frac{1}{width}$ (finite curve)
- $Z = \frac{x-\mu}{\sigma}$ (z-score) $X \sim N(\mu, \sigma)$
- $\bar{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$
- $SEM = \frac{s}{\sqrt{n}}$

- $t = \frac{\bar{X} \mu}{\frac{\pi}{\sqrt{n}}}$ $t = \frac{\bar{x}}{\sigma_{\bar{x}}}$ $t = \frac{(\bar{x}_1 \bar{x}_2)}{\sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}}} \sim t(K) \text{ [NHST]}$

- $IQR = Q_3 Q_1$
- K = 1.5• Lower fence: $Q_1 - K \times IQR$
- Upper fence: $Q_3 + K \times IQR$