Particle spectrograph

Wave operator and propagator

${\mathfrak r}_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{i}{k(1+2k^2)(r_1+r_5)}$	$\frac{i(6k^2(r_1+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(r_1+r_5)t_1}$	0	$\frac{6k^2(r_1+r_5)+t_1}{(1+2k^2)^2(r_1+r_5)t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{1}{\sqrt{2} (k^2 + 2 k^4) (r_1 + r_5)}$	$\frac{6k^2(r_1+r_5)+t_1}{2(k+2k^3)^2(r_1+r_5)t_1}$	0	$-\frac{i(6k^2(r_1+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(r_1+r_5)t_1}$
$\sigma_{1^-}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{k^2 \left(r_1 + r_5 \right)}$	$-\frac{1}{\sqrt{2}\;(k^2+2k^4)\;(r_1+r_5)}$	0	$\frac{i}{k(1+2k^2)(r_1+r_5)}$
$\tau_{1}^{\#1}_{+\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_1+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_1+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}_{+}$		$\frac{-2k^2(2r_1+r_5)+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3(2r_1+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$+\alpha\beta \frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0

.5) <i>t</i> 1									(1)#1
$(1+2k^2)^2 (r_1+r_5)t_1$			$\sigma_{2}^{\#1}$	αβ	$ au_{2}^{\#1}$	αβ	$\sigma_2^{\#1}$	αβχ	$f_{\perp}^{\#1}$
$(1+2k^2)$	$\sigma_{2}^{\#1}$	$+^{\alpha\beta}$	2 (1+2 k ²	$\frac{1}{(t_1)^2 t_1}$	$-\frac{2i\sqrt{1+2k}}{(1+2k)}$		C		ω_{\perp}^{*1} , f
<u> </u>	$ au_2^{\#1}$	$+^{\alpha\beta}$	$2i\sqrt{2}$	$\frac{\overline{2} k}{(t_1)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2}$	$\frac{2}{(2)^2t_1}$	C)	$\mathcal{E}_{\mathcal{A}}$
5) †1	$\sigma_2^{\#1}$	$\dagger^{lphaeta\chi}$	0		0		$\frac{2}{2k^2r}$	$\frac{2}{1+t_1}$	
² (r ₁ +r		_				t_1			1
$\sqrt{2} k(1+2k^2)^2 (r_1+r_5)t_1$	$f_{1^{-}}^{\#2}$	0	0	0	<u>ikt1</u> 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$	
	$f_{1^-}^{\#1}{}_{lpha}$	0	0	0	0	0	0	0	
$k(1+2k^2)(r_1+r_5)$	$\omega_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>f1</u> 3	0	$-\frac{1}{3}i\sqrt{2}kt_1$	
)	$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$k^2 (r_1 + r_5) + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}$ \bar{l} kt_1	
	$c_1^{\#1}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0	
)	$\omega_{1}^{\#2}_{+\alpha\beta}\ f_{1}^{\#1}_{+\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0	
)	$\omega_{1}^{\#1}_{\alpha\beta}$	$\omega_{1}^{\#1} + \alpha \beta \left[k^2 (2 r_1 + r_5) - \frac{t_1}{2} \right]$	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	
 - ;;		$\omega_1^{#1} + \alpha^{\beta} k$	$\omega_1^{#2} + \alpha \beta$	$f_1^{#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_{1}^{#2} +^{\alpha}$	$f_{1}^{#1} + \alpha$	$f_1^{#2} + \alpha$	

	1
uadratic (free) action	#
==	$\omega_2^{:}$
$\iiint(\frac{1}{6}\left(2t_{1}\;\omega^{\alpha\prime}_{\;\alpha}\;\omega_{'\;\theta}^{\;\theta}+6f^{\alpha\beta}\;\tau_{\alpha\beta}+6\;\omega^{\alpha\beta\chi}\;\sigma_{\alpha\beta\chi}-4t_{1}\;\omega_{\alpha}^{\;\theta}\;\partial_{i}f^{\alpha\prime}+4t_{1}\;\omega_{'\;\theta}^{\;\theta}\right)$	$f_2^{#1}$
$'f^{\alpha}_{a}-2t_{1}\partial_{i}f^{\theta}_{a}\partial^{i}f^{\alpha}_{a}-2t_{1}\partial_{i}f^{\alpha i}\partial_{\theta}f^{\theta}_{a}+4t_{1}\partial^{i}f^{\alpha}_{a}\partial_{\theta}f^{\theta}_{a}-6t_{1}\partial_{\alpha}f_{i\theta}\partial^{\theta}f^{\alpha i}-$	ω_2^{*1} †
$t_1 \partial_\alpha f_{\theta_I} \partial^\theta f^{\alpha I} + 3 t_1 \partial_I f_{\alpha \theta} \partial^\theta f^{\alpha I} + 3 t_1 \partial_\theta f_{\alpha I} \partial^\theta f^{\alpha I} + 3 t_1 \partial_\theta f_{I\alpha} \partial^\theta f^{\alpha I} +$	
$(t_1 \ \omega_{\alpha \theta_1} \ (\omega^{\alpha \iota \theta} + 2 \partial^{\theta} f^{\alpha \iota}) - 8 r_1 \partial_{\beta} \omega_{\alpha \iota \theta} \partial^{\theta} \omega^{\alpha \beta \iota} + 4 r_1 \partial_{\beta} \omega_{\alpha \theta_{\iota}} \partial^{\theta} \omega^{\alpha \beta \iota} - 16 r_1)$	O#1+
$_{eta}\omega_{,etalpha}\partial^{ heta}\omega^{lphaeta_{\prime}}$ - $_{4}r_{1}\partial_{,}\omega_{lphaetaeta}\partial^{ heta}\omega^{lphaeta_{\prime}}$ + $_{4}r_{1}\partial_{ heta}\omega_{lphaeta_{\prime}}\partial^{ heta}\omega_{lphaeta_{\prime}}$ + $_{4}r_{1}\partial_{ heta}\omega_{lpha^{\prime}eta_{\prime}}$ + $_{4}r_{1}\partial_{ heta}\omega_{lpha^{\prime}eta_{\prime}}$ + $_{4}r_{1}\partial_{ heta}\omega_{lpha^{\prime}eta_{\prime}}$ + $_{4}r_{1}\partial_{ heta}\omega_{lpha^{\prime}eta_{\prime}}$	+ 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
$r_5\partial_i\omega_{\theta^{\ K}}^{\ K}\partial^\theta\omega^{\alpha i}_{\ \alpha}-6r_5\partial_\theta\omega_{i^{\ K}}^{\ K}\partial^\theta\omega^{\alpha i}_{\ \alpha}-6r_5\partial_\alpha\omega^{\alpha i\theta}\partial_\kappa\omega_{i^{\ K}}^{\ K}+12r_5\partial^\theta\omega^{\alpha i}_{\ \alpha}$	0 · σ τ ^{#2} †
$_{\kappa}\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	$\sigma_{0}^{\#1}$

0

0

 $\frac{i\,k\,t_1}{\sqrt{2}}$

•	0	0	0	¹ 7-
•	0	0	0	0
•	0	0	0	0
•	0	0	0	0
	$\omega_{0}^{\#1}\dagger$	$f_{0}^{\#1}$ †	$f_{0}^{#2} \dagger$	$\omega_{0}^{\#1}$ \dagger
v	n I	ı	1	ı

source constraints/gauge generators	iuge generators	#
SO(3) irreps	Multiplicities	$\omega_0^{*\ddagger}$ †
$\sigma_{0+}^{\#1} == 0$	1	$f_{0}^{\#1}$ \dagger
$t_0^{\#1} == 0$	1	$f_{0}^{\#2}$ \dagger
$\tau_{0+}^{\#2} == 0$	1	$\omega_{0^{\text{-}}}^{\#1}\dagger$
$t_1^{\#2}{}^{\alpha} + 2ik \sigma_1^{\#2}{}^{\alpha} == 0$	3	
$t_1^{\#_1^{-1}\alpha} == 0$	3	
$t_1^{\#1}{}^{\alpha\beta} + ik \ \sigma_1^{\#2}{}^{\alpha\beta} == 0$	3	
$t_{2^{+}}^{\#1}\alpha\beta - 2ik \sigma_{2^{+}}^{\#1}\alpha\beta = 0$ 5	5	
Total constraints:	17	

Massive and massless spectra

Massive particle
Pole residue:
$$-\frac{1}{r_1} > 0$$
Polarisations: 5
Square mass: $-\frac{t_1}{2r_1} > 0$
Spin: 2
Parity: Odd

? k^{μ}	?
	?
?	?

Quadratic pole				
Pole residue:	$-\frac{1}{(r_1+r_5)t_1^2} > 0$			
Polarisations:	2			

Unitarity conditions

 $r_1 < 0 \&\& r_5 < -r_1 \&\& t_1 > 0$