퍼셉트론 (Perceptron)

퍼셉트론

- ➤ 퍼셉트론(perceptron) 알고리즘을 설명
- ➤ 프랑크 로젠블라트(Frank Rosenblatt)가 1957년에 고안한 알고리즘
- ▶ 신경망(딥러닝)의 기원이 되는 알고리즘
- ▶ 퍼셉트론의 구조를 배우는 것은 신경망과 딥러닝으로 나아가는 데 중요한 아이디어를 배우는 일

퍼셉트론이란?

- ➤ 퍼셉트론(perceptron : 인공 뉴런 / 단순 퍼셉트론)
 - 다수의 신호를 입력으로 받아 하나의 신호를 출력
 - 신호 : 전류나 강물처럼 흐름이 있는 것을 상상
 - 퍼셉트론 신호도 흐름을 만들고 정보를 앞으로 전달
 - 퍼셉트론 신호는 '흐른다(1로 표현) / 안 흐른다(0으로 표현)의 두 가지 값으로 표현

퍼셉트론이란?

- ▶ 입력으로 2개의 신호를 받은 퍼셉트론의 예
 - x1과 x2는 입력 신호
 - y는 출력 신호
 - w1과 w2는 가중치(weight) : 각 신호가 결과에 주는 영향력을 조절하는 요소로 작용
 - 뉴런(혹은 노드) : 그림의 원
 - θ(theta) : 임계값(뉴런의 활성화 기준값)

$$y = \begin{cases} 0 & (w_1 x_1 + w_2 x_2 \le \theta) \\ 1 & (w_1 x_1 + w_2 x_2 \ge \theta) \end{cases}$$

단순한 논리 회로 – AND 게이트

<i>x</i> ₁	<i>X</i> ₂	у
0	0	0
1	0	0
0	1	0
1	1	1

- ▶ 퍼셉트론을 활용한 간단한 문제 적용
 - AND 게이트를 퍼셉트론으로 표현하기
 - 즉, w1, w2, θ 의 값 구하기 사람이 매개변수 값을 정함.

단순한 논리 회로 - NAND 게이트

<i>x</i> ₁	<i>X</i> ₂	у
0	0	1
1	0	1
0	1	1
1	1	0

- ▶ 퍼셉트론을 활용한 간단한 문제 적용
 - NAND(Not AND) 게이트를 퍼셉트론으로 표현하기
 - 즉, w1, w2, θ 의 값 구하기 사람이 매개변수 값을 정함.

단순한 논리 회로 - OR 게이트

<i>x</i> ₁	<i>X</i> ₂	у
0	0	0
1	0	1
0	1	1
1	1	1

- ▶ 퍼셉트론을 활용한 간단한 문제 적용
 - OR 게이트를 퍼셉트론으로 표현하기
 - 즉, w1, w2, θ 의 값 구하기 사람이 매개변수 값을 정함.

$$y = \begin{cases} 0 & (b + w_1 x_1 + w_2 x_2 \le 0) \\ 1 & (b + w_1 x_1 + w_2 x_2 \ge 0) \end{cases}$$

퍼셉트론의 한계 - XOR 게이트

x_1	x_2	y
0	0	0
1	0	1
0	1	1
1	1	0

$$y = \begin{cases} 0 & (-0.5 + x_1 + x_2 \le 0) \\ 1 & (-0.5 + x_1 + x_2 > 0) \end{cases}$$

퍼셉트론의 시각화 - OR 게이트

퍼셉트론의 시각화 – XOR 게이트

퍼셉트론의 시각화 – XOR 게이트

다층 퍼셉트론 – 기존 게이트 조합

XOR 게이트의 진리표

\boldsymbol{x}_1	x_2	S 1	s_2	у
0	0	1	0	0
1	0	1	1	1
0	1	1	1	1
1	1	0	1	0

XOR 게이트 구현하기

XOR 게이트 구현하기

- ▶ 다층 퍼셉트론의 동작 설명
 - 1. 0층의 두 뉴런이 입력 신호를 받아 1층의 뉴런으로 신호를 보낸다.
 - 2. 1층의 뉴런이 2층의 뉴런으로 신호를 보내고, 2층의 뉴런은 이 입력신호를 바탕으로 y를 출력한다.
 - 3. 단층 퍼셉트론으로는 표현하지 못한 것을 층을 하나 늘려 구현 할 수 있었다.
 - 퍼셉트론은 층을 쌓아(깊게 하여) 더 다양한 것을 표현할 수 있다.