K-means

Tuan Nguyen

Ngày 8 tháng 2 năm 2023

Overview

Unsupervised Learning

K-means

Choose k

Unsupervised Learning

Hình 1: Supervised vs Unsupervised

Clustering

Hình 2: Clustering

Clustering (cont.)

- Given the dataset x₁, x₂,...,x_N, each x_i ∈ R^D, partition the dataset into K clusters.
- Intuitively, a cluster is a group of points, which is close together and far from other.

Distortion Measure

- Formally, introduce cluster center $\mu_k \in \mathbb{R}^D$.
- Use binary r_{nk} , 1 if point n is in cluster k, 0 otherwise (1 of K coding scheme again).
- Find $\{\mu_k\}$, $\{r_{nk}\}$ to minimize distortion measure:

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||^2 \qquad (1)$$

e.g. two clusters

$$J = \sum_{x_n \in C_1} \|x_n - \mu_1\|^2 + \sum_{x_n \in C_2} \|x_n - \mu_2\|^2$$
(2)

Minimizing Distortion Measure

Minimizing J directly is hard. Why?

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|x_n - \mu_k\|^2$$
 (3)

However, two things are easy:

- ▶ if we know μ_k , minimizing J wrt r_{nk}
- ▶ if we know r_{nk} , minimizing J wrt mu_k
- ⇒ Iterative procedure
 - ▶ Start with initial guess for μ_k
 - ► Iteration of two steps:
 - Minimizing J wrt r_{nk}
 - Minimizing J wrt muk

Minimizing J wrt r_{nk}

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||^2 \qquad (4)$$

Loss for each item

$$J_n = \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||^2 \qquad (5)$$

- \Rightarrow find r_{nk} to minimize J
- ▶ Simply set $r_{nk} = 1$ for the cluster center μ_k with smallest distance

• Minimizing J wrt μ_k

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||^2$$
 (6)

we can minimize wrt each μ_k separately

$$\frac{\partial J}{\partial \mu_k} = 2\sum_{n=1}^N r_{nk}(x_n - \mu_k) = 0$$

$$\Leftrightarrow \mu_k = \frac{\sum_n r_{nk} x_n}{\sum_n r_{nk}} (7)$$

mean of datapoints x_n assigned to cluster k

Hình 3: Initialize the cluster center

Hình 4: Initialize the cluster center

Hình 5: Assign points to the cluster

Hình 6: Update cluster center

Hình 7: Assign points to the cluster again

Hình 8: Update cluster center again

Elbow method

- ► Calculate the Within-Cluster-Sum of Squared Errors (WSS) for different values of k
- ► Choose the k for which WSS becomes first starts to diminish. In the plot of WSS-versus-k, this is visible as an elbow.

Hình 9: Elbow method

Silhouette analysis

The silhouette coefficient or silhouette score kmeans is a measure of how similar a data point is within-cluster (cohesion) compared to other clusters (separation)

$$S(i) = \frac{b(i) - a(i)}{\max(\{a(i), b(i)\})}$$
(8)

- ► S(i) is the silhouette coefficient of the data point i.
- a(i) is the average distance between i and all the other data points in the cluster to which i belongs.
- ▶ b(i) is the average distance from i to all clusters to which i does not belong.

Silhouette analysis (cont.)

a(i): avg distance between i and all other datapoints within cluster

b(i): avg distance between i and all other datapoints outside/neighboring cluster

Silhouette analysis (cont.)

19 / 19

Line plot between K and Silhouette score