Lecture 8 The Bipolar Junction Transistor

A bit of History

□ BJT was invented in 1948 at Bell Telephone Laboratories.

Ushered in a new era of solid-state circuits.

It was replaced by MOSFET as predominant transistor used in modern electronics.

The BJT structure and symbols

Two types of BJT:

npn. (most common, focus on it) pnp.

□ Three adjacent regions of doped Si (each connected to a lead):

Base. (thin layer, less doped).

Collector.

Emitter.

npn BJT transistor

N-type of emitter: more heavily doped than collector.

\square With $V_C > V_B > V_E$:

Base-Emitter junction forward biased, Base-Collector reverse biased.

Electrons diffuse from Emitter to Base (from n to p).

There's a <u>depletion layer</u> on the Base-Collector junction \rightarrow no flow of e⁻¹ allowed.

BUT the Base is thin and Emitter region is n^+ (heavily doped) \rightarrow electrons have enough momentum to cross the Base into the Collector.

The small base current I_B controls a large current I_C

$$I_{E} = I_{C} + I_{B}$$

$$V_{C} > V_{B} > V_{E}$$

$$V_{BE} = V_{B} - V_{E}$$

$$V_{CE} = V_{C} - V_{E}$$

$$I_{C} = \beta I_{B}$$

$$V_{C} = V_{C} - V_{E}$$

BJT characteristics

- \square All current which enters transistor must leave: $i_E = i_C + i_B$
- Current Gain:

α is the fraction of electrons that diffuse across the narrow Base region

1- α is the fraction of electrons that recombine with holes in the Base region to create base current

- \Box The current Gain is expressed in terms of the β (beta) of the transistor (often called h_{fe} by manufacturers).
- \square β (beta) is Temperature and Voltage dependent.
- □ It can vary a lot among transistors (common values for signal BJT: 20 200).

$$I_C = \alpha I_E$$

$$I_B = (1 - \alpha)I_E$$

$$\beta = \frac{I_C}{I_B} = \frac{\alpha}{1 - \alpha}$$

BJT characteristics (cont'd)

- common-emitter current gain (β) is influenced by two factors:
 - width of base region (W)
 - relative doping of base emitter regions (N_A/N_D)
- High Value of β
 - thin base (small W in nano-meters)
 - lightly doped base / heavily doped emitter (small N_A/N_D)

$$i_{C} = I_{s}e^{V_{BE}/V_{T}}$$
 $i_{E} = \frac{\beta + 1}{\beta}i_{C} = \frac{\beta + 1}{\beta}(I_{s}e^{V_{BE}/V_{T}})$

• common-base current gain (α)

$$i_C = \alpha I_E$$
 \Rightarrow $\alpha = \frac{\beta}{\beta + 1}$ $\beta = \frac{\alpha}{1 - \alpha}$

Modes of Operation

□ Transistor consists of two *pn*-junctions:

```
emitter-base junction (EBJ)
collector-base junction (CBJ)
```

Operating mode depends on biasing.
 active mode – used for amplification
 cutoff and saturation modes – used for switching.

Operation Region	I_B or V_{CE} Char.	BC and BE Junctions	Mode
Cutoff	<mark>I_B</mark> = Very small	Reverse & Reverse	Open Switch
Saturation	V _{CE} = Small	Forward & Forward	Closed Switch
Active Linear	V _{CE} = Moderate	Reverse & Forward	Linear Amplifier
Break-down	V _{CE} = Large	Beyond Limits	Overload

Summary of BJT C-V relationship in active mode ⁸

Summary of the BJT Current-Voltage Relationships in the Active Mode

$$i_{C} = I_{S}e^{v_{BE}/V_{T}}$$

$$i_{B} = \frac{i_{C}}{\beta} = \left(\frac{I_{S}}{\beta}\right)e^{v_{BE}/V_{T}}$$

$$i_{E} = \frac{i_{C}}{\alpha} = \left(\frac{I_{S}}{\alpha}\right)e^{v_{BE}/V_{T}}$$

Note: For the pnp transistor, replace v_{BE} with v_{EB} .

$$i_C = \alpha i_E$$
 $i_B = (1 - \alpha)i_E = \frac{i_E}{\beta + 1}$
 $i_C = \beta i_B$ $i_E = (\beta + 1)i_B$

$$\beta = \frac{\alpha}{1 - \alpha}$$
 $\alpha = \frac{\beta}{\beta + 1}$

$$V_T = \text{thermal voltage} = \frac{kT}{q} \simeq 25 \text{ mV at room temperature}$$

npn common emitter BJT circuits

- Emitter is grounded.
- Base-Emitter starts to conduct with V_{BE} =0.6V (for example), I_{C} flows and it's I_{C} =b* I_{B} .
- Increasing I_B, V_{BE} slowly increases to 0.7V (for example) but I_C rises exponentially.
- As I_C rises ,voltage drop across R_C increases and V_{CE} drops toward ground. (transistor in saturation, no more linear relation between I_C and I_B)

Common Emitter characteristics (input)

The i_C - v_{BE} characteristic for an npn transistor.

Effect of temperature on the i_C - v_{BE} characteristic.

Common Emitter characteristics (output)

The collector-emitter output characteristics of a BJT

Common Emitter characteristics - cont'd

I-V characteristic of common-emitter BJT circuit, showing Early voltage and the finite output resistance, of the transistor

BJT as switch (digital circuit)- example

- $V_{in}(Low) < 0.7 V$
 - BE junction <u>not</u> forward biased
 - Cutoff region
 - No current flows
 - $V_{out} = V_{CE} = V_{cc}$
- V_{out} = High

V_{in} (High)

- BE junction forward biased (V_{BE}=0.7V)
- Saturation region
- V_{CE} small (~0.2 V for saturated BJT)
- V_{out} = small
- $I_B = (V_{in} V_B)/R_B$
- **V**_{out} **= Low**

BJT as amplifier (analogue circuit) - example

- Common emitter mode
- Linear Active Region
- Significant current Gain

Example:

- Let Gain, β = 100
- Assume to be in active region

$$-> V_{BE} = 0.7V$$

• Find if it's in active region?

BJT as amplifier – example (cont'd)

$$\begin{split} & \underline{V_{BE}} = 0.7V \\ & \underline{I_E} = I_B + I_C = (\beta + 1)I_B \\ & \underline{I_B} = \frac{V_{BB} - V_{BE}}{R_B + R_E * 101} = \frac{5 - 0.7}{402} = 0.0107 mA \\ & \underline{I_C} = \beta * I_B = 100 * 0.0107 = 1.07 mA \\ & \underline{V_{CB}} = V_{CC} - I_C * R_C - I_E * R_E - V_{BE} = \\ & = 10 - (3)(1.07) - (2)(101 * 0.0107) - 0.7 = \\ & = 3.93V \end{split}$$

V_{CB}>0 so the BJT is in active region

BJT as amplifier – example 2

Calculate the collector and emitter currents, given the base current and current gain. Assume a common-base current gain $\alpha = 0.97$ and a base current of $i_B = 25 \, \mu A$. Also assume that the transistor is biased forward in the forward active mode.

Solution: The common-emitter current gain is $\beta = \frac{\alpha}{1-\alpha} = \frac{0.97}{1-0.97} = 32.33$

The collector current is $i_C = \beta i_B = 32.33 \times 25 = 808.25 \,\mu\text{A}$

And the emitter current is $i_E = i_B + i_C = 25 + 808.25 = 833.25 \,\mu\text{A}$

Acknowledgments

- □ Lecture slides are based on lecture materials from various sources, including book "Microelectronic Circuits" by Sedra and Smith (Oxford Publishing), Kirk Glazer (Gatech) and Nor Farahidah Za'bah (IIUM).
- □ Credit is acknowledged where credit is due. Please refer to the full list of references.