

A brief intro.

ZAHRA AKBARI ERFAN RAHBARI

 0°

90°

G should be closed under multiplication

- G should be closed under multiplication
- Multiplication must be associative

$$\overline{L}$$
, α , α^2 , $AB = BA$

- G should be closed under multiplication
- Multiplication must be associative
- There must be an identity operator in the group

- G should be closed under multiplication
- Multiplication must be associative
- There must be an identity
 operator in the group
 - For each element of the group must be an inverse

- G should be closed under multiplication
- Multiplication must be associative
- There must be an identity operator in the group
- For each element of the group must be an inverse

E.G.

E.G.

Coz

Symmetric operators

• I (E): Identity

• C_n : Propper rotation

• σ : Plane symmetry

• *i* : Inversion symmetry

• S_n : Improper symmetry

What does it have to with us?

What does it have to with us?

$$[\hat{O}, \hat{H}] = 0$$

How to determine what's what?

Character table x,y,z

Representation for atom displacement: H_2O as an example

The $C_{2\nu}$ character table

X

\						
	(E)	C_2	$\sigma_{_{\!\it ZX}}$	$\sigma_{\!y\!z}$	h=4	
A_1		1 7	+ 1	+ 1		x^2, y^2, z^2
A_2	1	1	-1	-1	R_z	<u>xy</u>
B_1	(1)	-1	1	-1	x, R_y	xz
B_2	1	-1	-1	1	(y, R_x)	yx
$\overline{\Box}$		1	4	2		

raman

Reducing representation formula

$$=\frac{1}{order}\sum_{i=1}^{\infty} \frac{1}{operations}$$
 in the class

$$\times$$
 characters of \times char. of reducible rep. \times irr. rep.

$$\begin{cases} \Gamma_{total} = 3A_1 + A_2 + 2B_1 + 3B_2 \end{cases}$$

$$-\Gamma_{translational} = A_1 + B_1 + B_2$$

$$\Gamma_{rotational} = +A_2 + B_1 + B_2$$

$$\Gamma_{vibrational} = 2A_1 + B_2$$

Representation for single orbitals

H2o as an example

	•			
	E	C_2	$\sigma_{_{\!\mathcal{Z}\mathcal{X}}}$	$\sigma_{\!\scriptscriptstyle yz}$
$\Gamma(P_z)$	1	1	1	1
$\Gamma(P_{\chi})$	1	-1	1	-1
$\Gamma(P_y)$	1	-1	-1	1
$\Gamma(red)$	2	0	0	2

Constructing a MO Diagram for water

Transition moment

$$\overrightarrow{M}_{21} = \int \Psi_2 \overrightarrow{\mu} \Psi_1 d\tau = 0 \qquad \text{if } X$$

$$\langle \Gamma_2 \otimes \Gamma \mu_{xyz} \otimes \Gamma_1 \rangle$$

$$\langle \Lambda_3 \wedge \Lambda_4 \wedge \Lambda_5 \rangle$$

For an electric transition to be allowed the integral must be non-zero

If the result of the direct product does not contain the totally irreducible rep. then the transition is forbidden

iR 2 42/n/4/> " RA 95 # 0 محار Au

$$\begin{pmatrix} \ell + 1 \\ m + 1 \end{pmatrix}$$