Numărul de puncte de pe curbe eliptice

Adrian Manea

GitHub @adimanea/sla/3-criptav/{current,beamer}

510, SLA

Curbe eliptice = obiecte geometrice cu structură algebrică;

Curbe eliptice = obiecte geometrice cu structură algebrică;

Pot fi studiate ca ecuații diofantice (peste Q);

Curbe eliptice = obiecte geometrice cu structură algebrică;

Pot fi studiate ca ecuații diofantice (peste \mathbb{Q});

Structura algebrică permite operații între soluții;

Curbe eliptice = obiecte geometrice cu structură algebrică;

Pot fi studiate ca ecuații diofantice (peste \mathbb{Q});

Structura algebrică permite operații între soluții;

Soluțiile se găsesc greu \Rightarrow operațiile cu ele sînt destul de sigure criptografic.

Curbe eliptice

Forma simplă (Weierstrass): $y^2 = x^3 + ax + b$;

Curbe eliptice

Forma simplă (Weierstrass): $y^2 = x^3 + ax + b$;

Ilustrație: Curbe eliptice [Wikipedia]

Puncte pe curbe eliptice

Exemplu: $E: y^2 = x^3 + 17$.

Puncte pe curbe eliptice

Exemplu:
$$E: y^2 = x^3 + 17.$$

$$P_1(-2,3), P_2(-1,4), P_3(2,5), P_4(4,9), P_5(8,23) \in E.$$

Puncte pe curbe eliptice

Exemplu: $E: y^2 = x^3 + 17.$

$$P_1(-2,3), P_2(-1,4), P_3(2,5), P_4(4,9), P_5(8,23) \in E.$$

Are loc $P_5 = -2 \cdot P_1$, $P_4 = P_1 - P_3$, cu operația următoare:

Grupul definit de o curbă eliptică

Ilustrație: Adunarea punctelor de pe o curbă eliptică [YT @CSBreakdown]

Depinde de corpul *K* peste care este definită curba *E*!

Depinde de corpul *K* peste care este definită curba *E*!

Exemplu simplu: peste \mathbb{F}_5 , $E: y^2 = x^3 + x + 1$:

Depinde de corpul K peste care este definită curba E! Exemplu simplu: peste \mathbb{F}_5 , $E: y^2 = x^3 + x + 1$:

X	x^2	$x^3 + x + 1$	у	Puncte
0	0	1	1, 4	(0,1),(0,4)
1	1	3	∄	∄
2	4	1	1, 4	(2,1),(2,4)
3	4	1	1, 4	(3,1),(3,4)
4	1	4	2, 3	(4,2),(4,3)

Depinde de corpul K peste care este definită curba E! Exemplu simplu: peste \mathbb{F}_5 , $E: y^2 = x^3 + x + 1$:

X	x^2	$x^3 + x + 1$	У	Puncte
0	0	1	1, 4	(0,1),(0,4)
1	1	3	∄	∄
2	4	1	1, 4	(2,1),(2,4)
3	4	1	1, 4	(3,1),(3,4)
4	1	4	2, 3	(4,2),(4,3)

Rezultă $\#E(\mathbb{F}_5) = 9$, calculat manual în O(5) pași.

Optimizări

În general, naiv avem $\#E(\mathbb{F}_q) \leq 2q + 1$.

• Teorema lui Hasse (1924 [E. Artin] - 1933) ([Soeten, 2013, Silverman, 2009]):

$$\left|\#E(\mathbb{F}_q)-q-1\right|\leq 2\sqrt{q};$$

Optimizări

În general, naiv avem $\#E(\mathbb{F}_q) \leq 2q + 1$.

• Teorema lui Hasse (1924 [E. Artin] - 1933) ([Soeten, 2013, Silverman, 2009]):

$$\left|\#E(\mathbb{F}_q)-q-1\right|\leq 2\sqrt{q};$$

• Baby Step, Giant Step (pentru log discret) $\Rightarrow 4\sqrt[4]{q}$;

Optimizări

În general, naiv avem $\#E(\mathbb{F}_q) \leq 2q + 1$.

• Teorema lui Hasse (1924 [E. Artin] - 1933) ([Soeten, 2013, Silverman, 2009]):

$$\left|\#E(\mathbb{F}_q)-q-1\right|\leq 2\sqrt{q};$$

- Baby Step, Giant Step (pentru log discret) $\Rightarrow 4\sqrt[4]{q}$;
- Algoritmul Schoof ([Silverman, 2009]) $\Rightarrow O(\log^8 q) = POLY$;

Observatii si concluzii

Pentru $q \simeq 2^{256}$, Schoof lucrează cu numere pe 16 kB!

Observatii si concluzii

Pentru $q \simeq 2^{256}$, Schoof lucrează cu numere pe 16 kB!

Continuare: Elkies, Atkin (cca. 1994) ([Galin, 2007]) $\Rightarrow O(\log^6 q)$.

Observatii si concluzii

Pentru $q \simeq 2^{256}$, Schoof lucrează cu numere pe 16 kB!

Continuare: Elkies, Atkin (cca. 1994) ([Galin, 2007]) $\Rightarrow O(\log^6 q)$.

Folosește unele presupuneri euristice (incl. ipoteza lui Riemann).

Bibliografie

Galin, B. (2007).
Schoof-Elkies-Atkin algorithm.
Master's thesis, Stanford University.

Silverman, J. (2009).

The Arithmetic of Elliptic Curves.

Springer.

Soeten, M. (2013).

Hasse's theorem on elliptic curves.

Master's thesis, Rijkuniversiteit Groningen.