

MM54HC137/MM74HC137 3-to-8 Line Decoder With Address Latches (Inverted Output)

General Description

This device utilizes advanced silicon-gate CMOS technology, to implement a three-to-eight line decoder with latches on the three address inputs. When $\overline{\text{GL}}$ goes from low to high, the address present at the select inputs (A, B and C) is stored in the latches. As long as $\overline{\text{GL}}$ remains high no address changes will be recognized. Output enable controls, G1 and $\overline{\text{G2}}$, control the state of the outputs independently of the select or latch-enable inputs. All of the outputs are high unless G1 is high and $\overline{\text{G2}}$ is low. The HC137 is ideally suited for the implementation of glitch-free decoders in stored-address applications in bus oriented systems.

The 54HC/74HC logic family is speed, function and pin-out compatible with the standard 54LS/74LS logic family. All inputs are protected from damage due to static discharge by diodes to V_{CC} and ground.

Features

- Typical propagation delay: 20 ns
- Wide supply range: 2-6V
- Latched inputs for easy interfacing.
- Fanout of 10 LS-TTL loads.

Connection and Functional Block Diagrams

Absolute Maximum Ratings (Notes 1 & 2) If Military/Aerospace specified devices are required,

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Power Dissipation (PD)

(Note 3) 600 mW S.O. Package only 500 mW

Lead Temperature (T_L)

(Soldering 10 seconds) 260°C

Operating Condition	ons		
	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage (V_{IN}, V_{OUT})	0	V_{CC}	V
Operating Temp. Range (TA)			
MM74HC	-40	+85	°C
MM54HC	-55	+ 125	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	v _{cc}	T _A = 25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed	Limits	
V _{IH}	Minimum High Level Input Voltage		2.0V 4.5V 6.0V		1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	V V V
V _{IL}	Maximum Low Level Input Voltage**		2.0V 4.5V 6.0V		0.5 1.35 1.8	0.5 1.35 1.8	0.5 1.35 1.8	V V V
V _{OH}	Minimum High Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V		3.98 5.48	3.84 5.34	3.7 5.2	V V
V _{OL}	Maximum Low Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	0 0 0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V		0.26 0.26	0.33 0.33	0.4 0.4	V V
I _{IN}	Maximum Input Current	V _{IN} =V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$	6.0V		8.0	80	160	μΑ

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC}=5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

^{**}V_{IL} limits are currently tested at 20% of V_{CC}. The above V_{IL} specification (30% of V_{CC}) will be implemented no later than Q1, CY'89.

AC Electrical Characteristics $V_{CC} = 5V$, $T_A = 25^{\circ}C$, $C_L = 15$ pF, $t_r = t_f = 6$ ns

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PLH}	Maximum Propagation Delay, A, B or C to any Y Output		14	29	ns
t _{PHL}	Maximum Propagation Delay, A, B or C to any Y Output		20	42	ns
t _{PLH}	Maximum Propagation Delay G2 to any Y Output		12	22	ns
t _{PHL}	Maximum Propagation Delay G2 to any Y Output		15	34	ns
t _{PLH}	Maximum Propagation Delay G1 to any Output		13	25	ns
t _{PHL}	Maximum Propagation Delay GL to any Output		17	34	ns
t _{PLH}	Maximum Propagation GL to Output		15	30	ns
t _{PHL}	Maximum Propagation Delay GL to Output		22	34	ns
t _S	Minimum Setup Time at A, B and C Inputs			20	ns
t _H	Minimum Hold Time at A, B and C Inputs			0	ns
t _W	Minimum Pulse Width of Enabling Pulse at GL			16	ns

AC Electrical Characteristics C_L = 50 pF, t_r = t_f = 6 ns (unless otherwise specified)

Symbol	Parameter	Conditions	v _{cc}	T _A = 25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units		
				Тур		Guaranteed	teed Limits			
t _{PLH}	Maximum Propagation Delay A, B or C to any Y Output		2.0V 4.5V 6.0V	85 17 14	170 34 29	214 43 36	253 51 43	ns ns ns		
t _{PHL}	Maximum Propagation Delay A, B or C to any Y Output		2.0V 4.5V 6.0V	120 24 20	240 48 41	302 60 51	358 72 61	ns ns ns		
t _{PLH}	Maximum Propagation Delay G2 to any Y Output		2.0V 4.5V 6.0V	65 13 11	130 26 22	164 33 28	194 39 33	ns ns ns		
t _{PLH}	Maximum Propagation Delay G1 to Output		2.0V 4.5V 6.0V	75 15 13	150 30 26	189 38 32	224 45 38	ns ns ns		
t _{PHL}	Maximum Propagation Delay G1 to Output		2.0V 4.5V 6.0V	98 20 17	195 39 33	246 49 42	291 58 49	ns ns ns		
t _{PLH}	Maximum Propagation Delay GL to Output		2.0V 4.5V 6.0V	88 18 15	175 35 30	221 44 37	261 52 44	ns ns ns		
t _{PHL}	Maximum Propagation Delay GL to Output		2.0V 4.5V 6.0V	125 25 21	250 50 43	315 63 54	373 75 63	ns ns ns		
t _{PHL}	Maximum Propagation Delay G2, to any Y Output		2.0V 4.5V 6.0V	98 20 17	195 39 33	246 49 42	291 58 49	ns ns ns		
t _S	Minimum Setup Time at A, B and C inputs		2.0V 4.5V 6.0V		100 20 17	125 25 21	150 30 25	ns ns ns		
t _H	Minimum Hold Time at A, B and C inputs		2.0V 4.5V 6.0V		50 10 8	63 13 11	75 15 13	ns ns ns		
t _{TLH} , t _{THL}	Output Rise and Fall Time		2.0V 4.5V 6.0V	30 8 7	75 15 13	95 19 16	110 22 19	ns ns ns		
t _W	Minimum Pulse Width of Enabling Pulse at GL		2.0V 4.5V 6.0V		80 16 14	100 20 18	120 24 21	ns ns ns		
C _{PD}	Power Dissipation Capacitance (Note 5)			75				pF		
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF		

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$.

Typical Application

6-Line to 64-Line Decoder with Input Address Storage

Truth Table

		Input	s			Outputs							
Enable			Select			- Calputo							
GL	G1	G2	С	В	Α	Y0	Y1	Y2	Υ3	Y4	Y5	Υ6	Y7
X	X L	H X	X	X X	X X	H H	H H	H H	H H	H	H	H H	ΙI
L L L	H H H	L L L	L L L	L H H	L H L	H H H	H L H	H H L	H H H L	H H H	H H H	H H H	HHHH
L L L	H H H	L L L	H H H	L H H	L H L	H H H	H H H	H H H	H H H	L H H	H L H	H H L	T H H
Н	Н	L	х	Х	Х	Output corresponding to stored address L; all others, H							

H = high level, L = low level, X = irrelevant

Physical Dimensions inches (millimeters)

Ceramic Dual-In-Line Package (J) Order Number MM54HC137J or MM74HC137J NS Package J16A

Molded Dual-In-Line Package (N) Order Number MM74HC137N NS Package N16E

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tei: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.

Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408