Softvérové inžinierstvo

Analýza

Pokračovanie

Analýza balíčkov

Zoskupovanie tried

- Vlastný menný priestor
- Univerzálny mechanizmus zoskupovania prvkov a diagramov

Umožňujú

- Súbežnú prácu
- Zoskupovanie sémanticky súvisiacich prvkov
- Definovanie hraníc vo vnútri modelu
- Zapuzdrený menný priestor
- Vnáranie balíčkov

Package diagram

Architektonická analýza

- Zoskupovanie tried do množiny súdržných balíčkov
- Štruktúrované do oddielov a vrstiev
- Minimalizácia vzťahov hlavný cieľ
 - Minimalizácia závislostí medzi balíčkami
 - Minimalizácia verejných prvkov
 - Maximalizácia súkromných členov
- Špecifické a univerzálne vrstvy

Identifikácia balíčkov

- Skupiny prvkov silne sémanticky previazané
- Súdržné skupiny tried
- Hierarchie dedičnosti
- Môže pomôcť aj rozdelenie medzi prípadmi použitia
- Minimalizácia vzťahov
- Čo najjednoduchší model
- Zabrániť cyklickým závislostiam

Analýza prípadov použitia

Vstupy

- Doménový model
- Model požiadaviek
- Model prípadov použitia
- Popis architektúry

Výstupy

- Analytické triedy
- Realizácie prípadov použitia

Realizácia prípadov použitia

- Modelované interakcie medzi objektmi
- Popis spolupráce inštancií analytických tried za účelom dosiahnutia požadovaného chovania systému
 - Ciele:
 - Zistenie interakcií analytických tried
 - Zisťovanie zasielaných správ
 - Kľúčové operácie
 - Kľúčové atribúty
 - Kľúčové relácie
 - Aktualizácia modelov

Zloženie

Prvok	Popis
Diagramy analytických tried	Interakciu analytických tried
Diagramy interakcie -diagramy spolupráce -sekvenčné diagramy	Spolupráca a interakcia špecifických inštancií
Špeciálne požiadavky	Odhalenie nových požiadaviek
Spresnenie prípadov použitia	Aktualizácia prípadov použitia

- Definícia problému
 - Vytvorte softvér pre sieť bankomatov "Našej Banky".
 - Bankomaty budú komunikovať s centrálnym počítačom banky, ktorý transakcie autorizuje a uskutoční zmeny na účte.
 - Softvér centrálneho počítača dodá banka.
 - Systém vyžaduje uchovávanie záznamov o činnosti a zabezpečení.

- Uskutočníme doménovú analýzu s cieľom maximálneho porozumenia doméne aplikácie
- Navrhneme základné doménové triedy, t.j. triedy reprezentujúce objekty relevantné v aplikačnej doméne je potrené mať v aplikačnej doméne
 - Sledujú sa podstatné mená v definícii problému, veci a miesta v aplikačnej doméne, pre všetky vytvoríme predbežnú triedu
 - Eliminácia chybných a nepotrebných tried
 - Nerelevantné triedy zrušenie
 - Ak trieda popisuje jediný nesamostatný objekt –atribút
 - Trieda popisuje činnosť objektu operácia

- Predbežné triedy vyplývajúce z definície problému:
 - softvér, bankomat, centrálny počítač, banka,
 transakcia, účet, záznam o činnosti, zabezpečenie
- Predbežné triedy vyplývajúce z aplikačnej domény:
 - klient, platobná karta, potvrdenka, výplata
- Eliminácia vágnych tried:
 - softvér, zabezpečenie

- Realizácia zberu požiadaviek
 - Určenie aktérov
 - Primárni a sekundárni užívatelia, externé HW a SW systémy
 - Identifikácia prípadov použitia
 - Stručný popis účelu prípadov použitia
 - Rozloženie prípadov použitia na kroky
 - Základná postupnosť aktivít a alternatívna postupnosť aktivít
 - Prípady použitia a aktérov sa štruktúrujú pomocou extend a include
 - Ak je veľa prípadov použitia, zoskupujú sa do balíčkov
- Prípady použitia, ktoré je možné ľahko prehliadnuť
 - Štart a ukončenie systému
 - Administrácia systému, a pod.

- Prípad použitia:
 - Výber peňazí z bankomatu
- Aktéri:
 - Klient,
 - Centrálny počítač
- Stručný popis:
 - Zákazník vloží kartu a požiada o výber určitej čiastky.
 - Bankomat mu po potvrdení centrálnym počítačom požadovanú čiastku vydá.

- Popis jednotlivých krokov základného scenára
 - Klient vloží kartu. Bankomat kartu prečíta a zistí jej sériové číslo
 - Bankomat požiada užívateľa o zadanie PIN, užívateľ zadá 1234
 - Bankomat overí číslo karty a PIN v centrálnom počítači
 - Bankomat požiada o zadanie veľkosti čiastky, užívateľ zadá 1000 Sk
 - Bankomat požiada centrálny počítač o uskutočnenie transakcie, centrálny počítač transakciu uskutoční a vráti nový zostatok účtu
 - Bankomat vydá čiastku, vytlačí potvrdenku a vráti kartu.

- Entitné objekty v príklade bankomatu
 - klient a účet
- Výber peňazí je overený centrálny počítačom aktér
- Komunikácia s týmto aktérom prebieha v ATM sieti → rozhranie
 ATM hraničný objekt

stvrzenky

výdei

hotovosti

- Ďalšie hraničné objekty
 - klávesnica,
 - obrazovka,
 - čítačka platobných kariet,
 - výdajný automat bankomatu,
 - tlačiareň potvrdení a pod.

obrazovka

- Tvorba prototypu užívateľského rozhrania pre hraničné objekty
- Prototyp by mal byť abstraktný, nie veľmi konkrétny

čtečka karet

- Tvorba predbežných asociácií medzi triedami
 - Asociácia dlhší vzťah medzi inštanciami
 - Asociácie môžu zodpovedať fyzickému umiestneniu, vlastníckemu, riadiacemu alebo komunikačnému vzťahu
 - Asociácie by mali pomenované účelom asociácie
 - Zatiaľ nerozlišujeme medzi asociáciami, agregáciami, neuvádza sa násobnosť ani priechodnosť

Predbežné asociácie medzi triedami

- Optimalizácia asociácií:
 - Zrušenie nepodstatných asociácií a asociácií ktoré predstavujú popis implementácie
 - Zrušenie predbežných asociácií jednorazové akcie (bankomat prijíma platobnú kartu, ale medzi nimi nie je trvalý vzťah)
 - Vyhýbanie sa asociáciám medzi dvoma riadiacimi objektami a medzi hraničným a riadiacim objektom
 - Vyhýbanie sa ternárnym a viacnásobným asociáciám je možné ich preštruktúrovať na binárne asociácie

- Tvorba agregácií a kompozícií
 - Agregácia ak je objekt súčasťou alebo je podriadený inému objektu
 - Kompozícia ak jeden objekt vlastní iný objekt a majú rovnakú dobu života

- Hľadanie primárnych atribútov objektov a asociácií
 - Hľadáme najdôležitejšie logické atribúty, ktoré sú relevantné pre aplikáciu
 - Navonok viditeľné vlastnosti jednotlivých objektov, napr. meno, farba, rýchlosť a pod.

- Vytvára sa hierarchia dedičnosti
- Postupuje sa dvoma smermi:
 - Zdola na hor (zovšeobecnenie) hľadajú sa triedy so spoločnými vlastnosťami, ktoré sú vybraté do nadtriedy
 - Zdola nahor (špecializácia) existujúce triedy "zjemňujeme" pomocou podtried
- Vytvorená hierarchia by nemala byť veľmi hlboká

 Ak chceme využiť polymorfizmus, vytvárame asociácie k rodičovským triedam Ďakujem za pozornosť.