CHAPTER I : $SL_2(\mathbb{R})$

February 20, 2025

In this chapter, I will give an exposition on the structure of $SL_2(\mathbb{R})$ as the spaces of lattice, this space plays the role of a toy model before exploring the space of lattice in the higher rank. The exposition follows the paper [?] and [?] closely.

1 $\mathrm{SL}_2(\mathbb{R})$ and its action on the upper half plane \mathfrak{H}

A priori, the upper half plane

$$\mathfrak{H} = \{z : \Im z > 0\} \subset \mathbb{C}$$

has no group structure on its. However, we will show below that it can identify topologically with the space with the space of cosets $SO_2(\mathbb{R}) \setminus SL_2(\mathbb{R})$, and thus we can study the spaces \mathfrak{H} via the spac of lattices $SO_2(\mathbb{R}) \setminus SL_2(\mathbb{R})$. We define the action of $G = SL_2(\mathbb{R})$ on \mathfrak{H} as follows

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \circ (z) = \frac{az+b}{cz+d}$$

Proposition 1.1. The group $SL_2(\mathbb{R})$ stabilizes \mathfrak{H} and acts transitively on it. In particular,

$$\begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{y} & 0 \\ 0 & \frac{1}{\sqrt{y}} \end{bmatrix} (i) = x + iy \quad (for \ x \in \mathbb{R}, \ y > 0)$$

Further, for $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{R})$ and $z \in \mathfrak{H}$,

$$\Im g(z) = \frac{\Im z}{|cz+d|^2}.$$

Proof. The first formula is clear. The second formula would imply that the upper half-plane is stabilized. Compute directly:

$$2i \cdot \Im\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}(z)\right) = \frac{az+b}{cz+d} - \frac{d\overline{z}+b}{c\overline{z}+d} = \frac{(az+b)(c\overline{z}+d) - (a\overline{z}+b)(cz+d)}{|cz+d|^2}$$
$$= \frac{adz - bc\overline{z} - bcz + ad\overline{z}}{|cz+d|^2} = \frac{z - \overline{z}}{|cz+d|^2}$$

since ad - bc = 1.

The point z = i is special, in the sense that its stability group is the orthogonal group $K = SO_2(\mathbb{R})$.

Indeed, for any $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{R})$ we have that

$$g \circ i = i \Leftrightarrow \frac{ai+b}{ci+d} = i \Leftrightarrow a = d \text{ and } b = -c$$

Combinining with the fact that ad - bc = 1, we must have $a^2 + b^2 = 1$. This implies that there is a θ such that $a = \cos \theta$ and $b = \sin \theta$. Since G acts on \mathfrak{H} transitively, we know from group theory that there is a bijection between the collection of cosets of $\mathrm{Stab}(i)$ in G and the orbits of i. In particular

Proposition 1.2. We have an isomorphism of $SL_2(\mathbb{R})$ -spaces

$$SO_2(\mathbb{R}) \setminus SL_2(\mathbb{R}) \approx \mathfrak{H} \quad via \quad SO(2)g \to g^{-1}(i)$$

That is, the map respects the action of $SL_2(\mathbb{R})$, in the sense that

$$(SO_2(\mathbb{R})g) \cdot h \longrightarrow h^{-1}(g^{-1}i)$$

Proof. This is because of associativity:

$$(SO_2(\mathbb{R}) g) \cdot h = (SO_2(\mathbb{R})) \cdot (gh) \longrightarrow (gh)^{-1}(i) = h^{-1}(g^{-1}(i))$$

giving the result.

2 Fundamental domain for $\Gamma = SL_2(\mathbb{Z})$ on \mathfrak{H}

Here is a picture of the fundamental domain \mathfrak{H}/Γ .

The goal of this section is to prove that under the action of the $\Gamma = \operatorname{SL}_2(\mathbb{Z})$, we can "move" every points on the upper half plane to a domain, under an equivalence given by a specific action. This is similar to the fundamental domain given by the translation action of \mathbb{Z} to \mathbb{R} is the half-open unit interval [0,1). In general, this give a simpler description to the homogenous space of lattice. Not that when we try to compute the fundamental domain of $\mathbb{Z}\backslash\mathbb{R}$, we have \mathbb{Z} plays a role of "discrete" subset of \mathbb{R} . We give a precise definition of discreteness as follows

Definition 2.1. Let a group G act continuously on a topological space X. A subset $\Gamma \subset G$ is called **discrete** if for any two compact subse A, B in X, there are only finitely many $g \in \Gamma$ such that $g \circ A \cap B \neq \emptyset$.

We will prove that the set

$$\Gamma = \mathrm{SL}_2(\mathbb{Z}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{SL}_2(\mathbb{R}) : a, b, c, d \in \mathbb{Z} \right\}$$

is a discrete subgroup of $G = \mathrm{SL}_2(\mathbb{R})$. To prove this, we first need the following lemma

Lemma 2.1. Fix a real number r > 0 and $0 < \delta < 1$. We denote $R_{r,\delta}$ the rectangle

$$R_{r,\delta} = \left\{ z = x + iy : -r \leqslant x \leqslant r, 0 < \delta \leqslant y \leqslant \delta^{-1} \right\}$$

Then for any $\epsilon > 0$ and any fixed set \mathbb{S} of coset representatives for $\Gamma_{\infty} \backslash \Gamma$, there are finitely many $g \in \mathbb{S}$ such that $\Im(g \circ z) > \epsilon$ for some $z \in R_{r,\delta}$.

In the above lemma, the notation Γ_{∞} is defined to be the set

$$\Gamma_{\infty} = \left\{ \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} : n \in \mathbb{Z} \right\}.$$

It can be seen easily that this is the stability group of ∞ in \mathfrak{H} .

Proof. Let
$$g = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Then for $z \in R_{r,\delta}$,

$$\operatorname{Im}(g \circ z) = \frac{y}{c^2 y^2 + (cx+d)^2} < \epsilon$$

if $|c| > (y\epsilon)^{-\frac{1}{2}}$. On the other hand, for $|c| \leq (y\epsilon)^{-\frac{1}{2}} \leq (\delta\epsilon)^{-\frac{1}{2}}$, we have

$$\frac{y}{(cx+d)^2} < \epsilon$$

if the following inequalities hold:

$$|d| > |c|r + (y\epsilon^{-1})^{\frac{1}{2}} \ge |c|r + (\epsilon\delta)^{-\frac{1}{2}}.$$

Consequently, $\Im(g \circ z) > \epsilon$ only if

$$|c| \le (\delta \epsilon)^{-\frac{1}{2}}$$
 and $|d| \le (\epsilon \delta)^{-\frac{1}{2}} (r+1)$,

and the total number of such pairs (not counting $(c,d)=(0,\pm 1),(\pm 1,0)$) is at most $\frac{4(r+1)}{(\epsilon\delta)}$. This proves the lemma.

It follows from Lemma 1.1.6 that $\Gamma = SL(2,\mathbb{Z})$ is a discrete subgroup of $SL(2,\mathbb{R})$. This is because:

- 1. It is enough to show that for any compact subset $A \subset \mathfrak{h}$ there are only finitely many $q \in$ $SL(2,\mathbb{Z})$ such that $(g \circ A) \cap A \neq \phi$;
- 2. Every compact subset of $A \subset \mathfrak{h}$ is contained in a rectangle $R_{r,\delta}$ for some r > 0 and $0 < \delta <$ δ^{-1} :
- 3. $((\alpha g) \circ R_{r,\delta}) \cap R_{r,\delta} = \phi$, except for finitely many $\alpha \in \Gamma_{\infty}$, $g \in \Gamma_{\infty} \backslash \Gamma$.

To prove (3), note that Lemma 2.1 implies that $(g \circ R_{r,\delta}) \cap R_{r,\delta} = \phi$ except for finitely many $g \in \Gamma_{\infty} \backslash \Gamma$. Let $S \subset \Gamma_{\infty} \backslash \Gamma$ denote this finite set of such elements g. If $g \notin S$, then Lemma 1.1.6 tells us that it is because $\Im(g \circ z) < \delta$ for all $z \in R_{r,\delta}$. Since $\Im(\alpha g \circ z) = \Im(g \circ z)$ for $\alpha \in \Gamma_{\infty}$, it is enough to show that for each $g \in S$, there are only finitely many $\alpha \in \Gamma_{\infty}$ such that $((\alpha g) \circ R_{r,\delta}) \cap R_{r,\delta} \neq \phi$. This last statement follows from the fact that $g \circ R_{r,\delta}$ itself lies in some other rectangle $R_{r',\delta'}$, and every $\alpha \in \Gamma_{\infty}$ is of the form $\alpha = \begin{bmatrix} 1 & m \\ 0 & 1 \end{bmatrix}$ $(m \in \mathbb{Z})$, so that

$$\alpha = \begin{bmatrix} 0 & 1 \end{bmatrix}$$
 (m e \mathbb{Z}), so that

$$\alpha \circ R_{r',\delta'} = \{ x + iy \mid -r' + m \leqslant x \leqslant r' + m, \ 0 < \delta' \leqslant \delta''^{-1} \},$$

which implies $(\alpha \circ R_{r',\delta'}) \cap R_{r,\delta} = \phi$ for |m| sufficiently large.