

# Master Mathématiques, Vision, Apprentissage 2018-2019

#### MP 2 - Deep Learning

Grégoire Boussac

#### 1 Multilingual word embeddings

#### Question:

Minimizing  $||WX - Y||_F$  is equivalent to minimizing  $||WX - Y||_F^2$ .

But:

$$||WX - Y||_F^2 = Tr((WX)^T WX) - 2Tr((WX)^T Y) + Tr(Y^T Y)$$
  
$$||WX - Y||_F^2 = Tr(X^T X) + Tr(Y^T Y) - 2Tr((WX)^T Y)$$

because  $W^TW = Id$ , because  $W \in O_d(\mathbb{R})$ .

The two first terms are constant. Thus, minimizing  $||WX-Y||_F$  is equivalent to maximizing  $Tr(X^TW^TY)$ .

Let's use the SVD of  $Y^TX$ :

$$Tr(X^TW^TY) = Tr(W^TYX^T) = Tr(W^TU\Sigma V^T) = Tr(\Sigma V^TW^TU)$$

But 
$$U, V, W \in O_d(\mathbb{R})$$
, thus  $P = V^T W^T U \in O_d(\mathbb{R})$ , and  $\arg \min_{W \in O_d(\mathbb{R})} ||WX - Y||_F = \arg \max_{W \in O_d(\mathbb{R})} (Tr(\Sigma P))$ .

 $P^* = Id$  maximizes this last quantity, because  $\Sigma$  is a symetric matrix with positive coefficients, and P is orthogonal.

Thus, 
$$V^T W^T U = P^* \implies W^* = UV^T$$
. Hence the result.

#### 2 Sentence classification with BoV

#### Question:

What we can see from our experiments is that using idf weighted-average degrades the performance of the logistic regression.

| Accuracy             | Train | Test  |
|----------------------|-------|-------|
| Average              | 0.489 | 0.436 |
| IDF weighted-average | 0.291 | 0.301 |

The performances are summarized in the table above.

## 3 4 - Deep Learning models for classification

#### Question:

I used the categorical cross-entropy which is well suited for multiclass classification. The formula of this loss is :

$$-\frac{1}{N} \sum_{i=1}^{N} \sum_{c=1}^{5} \mathbb{1}_{y_i \in C_c} logp(y_i \in C_c)$$

### Question:



FIGURE 1 – Performances