

Binary Decoder

For circuit design

A decoder is a code converter

 A binary decoder converts binary information into a different binary form

Decoder logic circuit

- A decoder is a special logic circuit that converts a n-bit binary input code into m = 2ⁿ output lines...
- such that each output will be activated for only one possible combination of the inputs.

Decoder: Block diagram

n-m line decoder

Decoder: Main Characteristic

Only one output is high (1) for each input code

n-m line decoder

Design a 2-4 line Decoder

Only one output is high (1) for each input code

Only one output (diagonal) is high (1) for each input code

A 1	A 0	Дз	D2	D ₁	Do
0	0	0	0	0	1
0	1		0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Only one output (diagonal) is high (1) for each input code

Logic equations

	Ao					
0	O 1 O 1	0	0	0	1	$D_0 = \overline{A}_1 \overline{A}_0$
0	1	0	0	1	0	$D_1 = \overline{A}_1 A_0$
1	0	0	1	0	0	$D_2 = A_1 \overline{A}_0$
1	1	1	0	0	0	$D_3 = A_1 A_0$

Logic diagram

Logic diagram

Design a 3-8 line decoder

-	Inputs		H DESERTE	Lindboo	PROFIL	Out	puts	Signal Signal		Syder
A ₂	A 1	A ₀	D ₇	D ₆	D ₅	D ₄	. D ₃	D ₂	D ₁	D _o
0	0	0								
0	0	1								
0	1	0								
0	1	1								
1	0	0								
1	0	1								
1	1	0								
1	1	1								

199	Inputs		Outputs					1997		
A ₂	A ₁	A ₀	D ₇	D_6	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
0	0	0	Q	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	-0	0	0	0	0

Logic equations and circuit

Sometimes a decoder needs to be disabled ...therefore ... we need to

Design a 2-4 line decoder, with enable input

Design a 2-4 line decoder, with enable input

E	A 1	A 0	Dз	D2	D ₁	Do
1	0	0				
1	0	1				
1	1	0				
1	1	1				
0	X	X				

E	A 1	A 0	Дз	D2	D ₁	Do	
1	0	0	0	0	0 1 0	1	
1	0	1	0	0	1	0	
1	1	0	0	1	0	0	
1	1	1		0	0	0	
0	X	X	0	0	0	0	

Logic equations

E	A 1	A o	Дз	D2	D ₁	Do
1	0	0	0			1
1	0	1	0	0	1	0
1	1	0	0	1	0	0
1	1	1	1	0	0	0
0	X	X	0	0	0	0

Do =	E	A 1 A 0
D1 = 1	E	A 1 A 0
D2 =	E	$A_1 \overline{A}_0$
D3 =	E	A 1 A 0

Logic equations

If E = 1, the decoder is enabled.

If E = 0, the decoder is disabled.

Decoder application

- A decoder can select one of the several output lines
- Are used in memory-systems

Memory

1D Memory-Decoder

2D Memory-Decoder

Memory ... "chip selector"

- Decoders are used to select memory chips
- Suppose that we have eight 1K memory chips and only 2-4 decoder.
 How can we put together the decoders in order to access or select data in the eight (1K) memory chips?

Will be solved in a future lecture (Memory Design)

A decoder can also be used to implement logic functions

Basic idea of PLD's

A decoder can also be used to implement logic functions

Decoder (2-4)

Application

 Design a binary half-adder, using a Decoder and OR Gates.

Truth table

Truth table

A 1	A o	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Logic equations

A 1	A o	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$C = A_0 A_1$$

 $S = A_0 \overline{A_1} + \overline{A_0} A_1$

What is the size of the Decoder?

A 1	A 0	С	5
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$C = A_0 A_1$$

 $S = A_0 \overline{A_1} + \overline{A_0} A_1$

Decoder

$$C = A_0 A_1$$

 $S = A_0 \overline{A_1} + \overline{A_0} A_1$

Size of the decoder = 2 - 4

Logic Circuit

$$C = A_0 A_1$$

 $S = A_0 \overline{A_1} + \overline{A_0} A_1$

Logic Circuit: C

Logic Circuit: 5

$$C = A0 A1$$

$$S = A0 \overline{A1} + \overline{A0} A1$$

Boolean expressions can be implemented with a Decoder and Gates

$$C = A_0 A_1$$

 $S = A_0 \overline{A_1} + \overline{A_0} A_1$

Binary Encoder

For circuit design

Encoder

- An encoder performs the inverse operation of a decoder...
- ... encodes binary information into another more compact binary form
- An encoder is a special logic circuit that converts
 2ⁿ input lines into n output lines. The input lines
 are activated for only one possible combination
 of the output lines.

Design a 4-2 line encoder

Truth Table

Truth Table

D 3	D2	D1	Do	A 1 A 0
0	0	0	1	
0	0	1	0	
0	1	0	0	
1	0	0	0	

Truth Table

D 3	D2	D1	Do	A 1	A 0
0	_	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

Logic Equations

			Do			
0	0	0	1 0 0	0	0	
0	0	1	0	0	1	A0 = D1 + D3
0	1	0	0	1	0	
1	0	0	0	1	1	A1 = D2 + D3

Logic Diagram

Logic Diagram

Logic Circuit

Limitation:

 Only one input can be active at any time. If more than one input is needed to be activated a priority encoder has to be used.

Application: Keyboard

 Design an interface to encode 10 separate input switches and to output the binary value corresponding to each input switch.

Decimal numbers

Application: Keyboard

Decimal numbers

Application: Keyboard

Decimal number to BCD Encoder

Truth Table: Decimal number to BCD Encoder

BCD

			BCI	J	
0123456789	1	4	В	С	D
1000000000					
0100000000					
0010000000					
0001000000					
0000100000					
0000010000					
0000001000					
0000000100					
0000000010					
0000000001					

Truth Table: Decimal number to BCD Encoder

		ВС	D	
0 1 2 3 4 5 6 7 8 9	Α	В	С	D
1000000000	0	0	0	0
0100000000	0	0	0	1
0010000000	0	0	1	0
0001000000	0	0	1	1
0000100000	0	1	0	0
0000010000	0	1	0	1
0000001000	0	1	1	0
000000100	0	1	1	1
000000010	1	0	0	0
0000000001	1	0	0	1

When an input is activated, the 4-bit output is the binary equivalent of the decimal number

Implementation: Encoder

0123456789	ABCD	
1000000000	0 0 0 0	A = 8 + 9
0100000000	0 0 0 1	B = 4 + 5 + 6 + 7
0010000000	0 0 1 0	C = 2 + 3 + 6 + 7
0001000000	0 0 1 1	D = 1 + 3 + 5 + 7 + 9
0000100000	0 1 0 0	
0000010000	0 1 0 1	
0000001000	0 1 1 0	
0000000100	0 1 1 1	
0000000010	1 0 0 0	
0000000001	1 0 0 1	

Logic Circuit

....

The encoder chip (74LS147)

7-Segment-display application

