COSE222: Computer Architecture Design Lab #3

Due: Nov 11, 2020 (Wednesday) 11:59pm on Blackboard

Total score: 30

In the previous design lab you designed the datapath elements: instruction memory, register file, ALU, and data memory. In this lab you are requested to complete the single-cycle processor design using the datapath elements. The single-cycle processor in this lab will support just 7 instructions listed in the textbook: 1d, sd, add, sub, or, and, beq.

1. Single-cycle processor design

As you already designed the major datapath elements in the design lab #2, you can just instantiate your design blocks in the top design of the single-cycle processor. We also provide the complete designs for the instruction memory, register file, ALU, and data memory. If you failed to complete the design lab #2, you can use the provided design files. The required interfaces are also provided in the incomplete top design of the single-cycle processor. In the provided top design of the single-cycle processor, you are to include the following items.

The instruction memory already includes the following RISC-V assembly code. (Note that lw is used instead of ld in the code, but it is not critical for our single-cycle processor design.)

Assembly code	Binary data in imem
start: lw x4, 0(x0)	000000000000000000100010000000011
lw x5, 8(x0)	0000000100000000010001010000011
lw x6, 16(x0)	0000001000000000010001100000011
T1: add x7, x5, x4	0000000010000101000001110110011
sub x8, x5, x4	01000000010000101000010000110011
and x9, x5, x4	0000000010000101111010010110011
or x10, x5, x4	0000000010000101110010100110011
beq x7, x8, T1	11111110100000111000100011100011
sw x7, 24(x0)	0000000011100000010110000100011
lw x11, 24(x0)	000000011000000000100101100000011
beq x7, x11, T1	11111110101100111000001011100011

- (1) Simple datapath elements such as MUXes, a shifter, and an immediate generator
- (2) The main control unit as described in the textbook
- (3) The ALU control unit as described in the textbook
- (4) Connecting datapath elements and control signals

You can find the more detailed instructions in the incomplete top design file (single_cycle_cpu.sv) and the testbench file (tb_single_cycle_cpu.sv). Please complete the design and the testbench file. Verify your design using ModelSim.

2. What to do

- (a) Complete the top design of the single-cycle processor (single_cycle_cpu.sv).
- (b) Verify your design with testbenches. The incomplete testbench file is provided. Set the clock frequency as 100 MHz and instantiate the top design file as "dut" (design under test). (Please find the provided testbench "tb_single_cycle_cpu.sv").
- (d) Create the ModelSim project "Lab3" in your workspace folder. Copy all design files and *.mem files to the project folder. The mem files include the initial memory data for the instruction memory and the data memory. Verify your design using ModelSim. Run the testbench for 240 ns, then you will find the generated "report.txt" file, which will print the contents of the register file and the data memory.
- (c) Compress your completed all the design files (imem.sv, regfile.sv, alu.sv, dmem.sv, and single_cycle_cpu.sv), the testbench (tb_single_cycle_cpu.sv), and the report file (report.txt) in **one zip file**. You must name your zip file as "FirstName_LastName.zip". (e.g. Gildong_Hong.zip for Gildong Hong) If your submission file does not meet this rule, we will reduce 1 point from your score.