Erőrendszerek

Hatásvonalak alapján

Síkbeli

Térbeli

Általános helyzetű

Párhuzamos hatásvonalú Közös támadás pontú

Erőrendszerek

EGYENSÚLYI ERŐRENDSZER

$$\sum_{i=1}^{n} \underline{F_i} = 0$$

$$\sum_{i=1}^{n} \underline{M_{i0}} = 0$$

EGYENÉRTÉKŰ ERŐRENDSZER

EREDŐ ERŐRENDSZER

Merev test elmozdulása

Merev test elmozdulása

Térbeli elmozdulás

Elmozdulás szabadság foka:

Hány skalár adattal írható le az elmozdulás

Definíció:

Két test között létesített olyan kapcsolat, amely a testek egymáshoz viszonyított szabad mozgását korlátozza.

Kényszer fokszáma:

Hány adattal megadható mozgást korlátoz.

Támasztás

Megakadályozza a két érintkező test egymásba nyomulását. Első fokú kényszer.

<u>F</u>_N - normális erő

 \underline{F}_{S} - súrlódó erő (0, ha a két felület tökéletesen sima) \underline{F}_{S} = μ * \underline{F}_{N}

<u>F</u>_R - a paralelogramma módszerrel kiszerkesztett reakció erő

Támasztási esetek

Súrlódás

Nyugvó súrlódás

Nyugvó súrlódási tényező meghatározása

$$tg \rho_0 = \frac{F_S}{F_N} = \mu_0$$

$$S - G \cdot \sin \propto = 0$$

$$\mu_0 \cdot G \cdot \cos \alpha = G \cdot \sin \alpha$$

$$N - G \cdot cos \propto = 0$$

$$N = G \cdot cos \propto$$

$$S = \mu_0 \cdot N$$

$$S = \mu_0 \cdot G \cdot cos\alpha$$

$$\mu_0 = \frac{\sin \alpha}{\cos \alpha} = \operatorname{tg} \alpha$$

Súrlódás

Mozgásbeli súrlódás

	μ_0	μ
acél - jégen	0.03-0.05	
acél – acélon	0.14	0.06
alumínium - alumínium	1.1 - 1.7	
fa - fán	0.30 - 0.70	0.4
fa- fémen	0.6	0.4
acél - bronzon	0.19	0.18

Gördülő ellenállás

 $|\Gamma| \leq \lambda \cdot N$

$$\sum M_C = G \cdot k - F \cdot r$$

$$F = \frac{G \cdot k}{r}$$

Gördül vagy csúszik?

$$r = 0.5 [m]$$
 $G = 3 [kN]$
 $μ_0 = 0.2$
 $λ = 0.02 [mm]$

$$-F_S + F_{max} = 0$$

$$G - N = 0 \qquad G = N$$

$$-\Gamma + F_{max} \cdot r = 0 \qquad F_{max} = \frac{\Gamma}{r} \qquad \text{(0,12 kN)}$$

$$\Gamma = \lambda \cdot N = 0, \qquad \Gamma = \lambda \cdot G \qquad \text{(0,06 kNm)}$$

$$F_{max} = F_s = N \cdot \mu = 3 \cdot 0.2 = 0.6 \ge 0.12$$

Csukló

Gömbcsukló

Síkbeli csukló

Statikai rúd

A rúd két végén csuklóval kapcsolódik a támasztott szerkezethez és a teherviselő elemhez

Adott:

F (aktív erő) nagyság, irány a, b, c (geometriai adatok)

Feladat:

Határozzuk meg a reakció erőket! (Nagyság, irány) vagy (komponensei)

1. lépés

Koordináta rendszer felvétel

2. lépés

Reakció erők berajzolása

3. lépés

Vizsgált test kiválasztása

4. lépés Erők felbontása komponenseikre és az egyensúlyi egyenletek felírása

$$\sum F_{\chi} = 0 \qquad -F_{A_{\chi}} + \underbrace{F_{C} \cdot \cos \alpha}_{F_{C_{\chi}}} = 0 \tag{1}$$

$$\sum F_{y} = 0 \qquad F_{A_{y}} + \underbrace{F_{C} \cdot \sin \alpha}_{F_{C_{y}}} - F = 0 \tag{2}$$

$$\sum M_A = 0 \qquad \underbrace{F_C \cdot \sin \alpha}_{F_{C_y}} \cdot b - F \cdot (b + c) = 0 \tag{3}$$

5. lépés

Egyenletek megoldása

$$\underbrace{F_C \cdot \sin \alpha}_{F_{C_V}} \cdot b - F \cdot (b+c) = 0$$

$$F_C = \frac{F \cdot (b+c)}{b \cdot \sin \alpha}$$

A (2) egyenletből
$$F_{A_y} + \underbrace{F_C \cdot \sin \alpha}_{F_{C_y}} - F = 0$$

$$F_{A_y} = F - F_c \cdot \sin \alpha$$

$$-F_{A_x} + \underbrace{F_C \cdot \cos \alpha}_{F_{C_x}} = 0$$

$$F_{A_x} = F_c \cdot \cos \alpha$$

$$F_{A_y} = F - F_c \cdot \sin \alpha = F - \frac{F \cdot (b+c)}{b \cdot \sin \alpha} \sin \alpha = F \left(1 - \frac{(b+c)}{b} \right)$$

$$F_{A_y} = -\frac{b}{c}F$$

Változatok

Kötél

Kötél súrlódás

Befogás

Kényszerek összefoglalás

Kényszer	Kényszer	Reakció erő		
fokszáma	típusa			
		nagysága	iránya	hatásvonala
elsőfokú	támasztás	?	$\sqrt{}$	$\sqrt{}$
	kötél	?	$\sqrt{}$	$\sqrt{}$
	görgő	?	$\sqrt{}$	$\sqrt{}$
	statikai rúd	?	$\sqrt{}$	$\sqrt{}$
harmadfokú	gömb csukló	?	?	\checkmark
ötödfokú	síkbeli csukló	?	?	$\sqrt{}$
hatodfokú	befogás	?	?	?