Lecture 5 – Malware

University of Illinois ECE 422/CS 461

Goals

- By the end of this lecture you should:
 - Understand malware motives and means of attacks
 - Be able to classify malware by motives and means
 - know common malware defenses

Malware: Definition and Goals

 "Malware" is short for malicious software and is typically used as a catch-all term to refer to any software designed to cause damage to a computer, server, or computer network

• Examples: computer viruses, worms, trojans, ransomware, spyware, backdoors, rootkits, ...

Malware Damage and Prevalence

- What can malware do? Pretty much anything:
 - Destroy data
 - Encrypt data
 - Steal data (record video/audio/screen/keystrokes)
 - Harass users
 - Show ads
 - Launch external activity (e.g., email spam)
- ~ 6 billion malware encounters per year
- 200 million new malware developed per year

Malware Classifications

Malware Categories

Propagation Behaviors (How does it run?)

Payload Behaviors (What does it do?)

- Trojan Horses
- Computer Viruses
- Internet Worms
- Exploit Kits

- Backdoors
- Logic Bombs
- Ransomware
- Spyware
- Droppers
- Botnets

Trojan Horses

- Software that masquerades as legitimate / useful programs but actually performs malicious functions
- Propagation behavior: trick users into installing them

Trojan Horses

- Exacerbated by app repackaging
 - Android apps typically written in Java are easy to reverse engineer (there are tools to decompile an .apk installation package)
 - Add malicious payload, recompile and publish
- A major reason to avoid 3rd party app markets
 - Less likely (though still possible) for malicious apps to appear on official app store

Computer Viruses

Share some properties with biological viruses:

Computer Viruses

- A computer virus is computer code that replicates itself by modifying other files or programs to insert code that is capable of further replication
 - Typically need user interaction to replicate, e.g.,
 opening an email attachment or using a USB drive.

Internet Worms

- A worm is malware that replicates and propagates across systems automatically
 - No user interaction required

Virus vs. Worm

- Both replicate and propagate
- Virus: have itself eventually executed
 - Generally infects by altering stored code
 - Hence, requires user interaction to activate
- Worm: have itself immediately executed
 - Generally infects by exploiting software bugs
 (e.g., buffer overflow) to alter running code
 - Hence, no user interaction required
 - Thus, usually spreads faster than virus

^{*} Some people use the two terms interchangeably

 1949: John von Neumann lectures on their theoretical existence (at U of Illinois)

- 1970: appeared in a science fiction
 - Origin of the term "worm"

- 1971: first worm "Creeper" written by Bob Thomas and Ray Tomlinson
 - Deployed on ARPANET (28 machines at that time)
 - Benign, caused no damage, just displayed

- 1971: first worm "Creeper" written by Bob Thomas and Ray Tomlinson
 - Deployed on ARPANET (28 machines at that time)
 - Benign, caused no damage, just displayed

- 1972: "Reaper" by Ray Tomlinson
 - A worm that propagated to delete Creeper
 - Can be considered the first anti-virus software

- 1988: "Morris Worm", aka "Internet Worm"
 - Written by Robert Morris, then a graduate student in CS at Cornell
 - A landmark event in the history of Internet
 - ~60,000 machines then
 - Paralyzed thousands of machines, partitioned Internet for days

Morris Worm

- Employed a series of sophisticated techniques
 - Multiple buffer overflow attacks
 - Guessed weak passwords (or no passwords)
 - Many tricks to find new targets
 - Scan local network, look through network config files, and user files that mention other hosts

Morris Worm

- Likely not intended to be malicious
 - Does not do anything other than infecting hosts
 - Tried to check if a host had already been infected
 - But decided to re-infect a host with a 14% probability even if it had been infected
- That last small tweak made it out of control ...
 - Each host infected with many copies of the worm
 - ... and each copy tried to infect other hosts
 - And this kept amplifying

Morris Worm Aftermath

- Morris became the first person convicted under the Computer Fraud and Abuse Act (CFAA, 1986)
 - 3 years of probation, 400
 hours of community service,
 and a fine of \$10,500

Exploit Kits

- Automatically choose an exploit
- Exploit-as-a-Service, often sold on black markets

Malware Categories

Propagation Behaviors (How does it run?)

Payload Behaviors (What does it do?)

- Trojan Horses
- Computer Viruses
- Internet Worms
- Exploit Kits

- Backdoors
- Logic Bombs
- Ransomware
- Spyware
- Droppers
- Botnets

Backdoor

 An undocumented way of gaining access to a system (bypass normal authentication process)

 Often inserted into code or supply chain (by developers or attacks) prior to distribution

Logic Bomb

- A piece of code that set off a malicious function when specified conditions are met
 - Often laying dormant for a long period

PRESS RELEASE

Siemens Contract Employee Intentionally Damaged Computers by Planting Logic Bombs into Programs He Designed

Ransomware

- Encrypts victim's data (delete plaintext version),
 promise to decrypt only if a ransom is paid
- On the rise, account for 20%~70% of attacks
- Average ransom is now 2.73 million dollars

WannaCry (May 2017)

- Worm + ransomware
- Exploited vulnerabilities in Windows that were patched by Microsoft in March
 - Some Windows versions were no longer supported (e.g., Windows XP and Windows 2003)

- Affected > 300,000 computers in > 150 countries
- Total damage might be billions of dollars

Spyware

- Software that gathers information without victim's knowledge
 - Keyloggers
 - Take screenshots
 - Record and transmit GPS locations
 - Record and transmit videos & pictures
 - **–**

Droppers

Malware whose main purpose is to install another malware

- Why would a dropper be useful?
 - May want to decide the concrete attack later
 - Sell the victim to the highest bidder
- Persistent vs. non-persistent: whether it is erased after installation of another malware

Botnets

 A network of compromised machines (bots) under (unified) control of attacker (botmaster)

- A new bot "phones home" to rendezvous with botnet command-and-control (C&C)
- Botmaster uses C&C to push out commands
 - Common example: distributed denial of service, email spam, cryptocurrency mining

Rootkits

- A rootkit subverts / modifies the operating system to hide its existence
 - Hard to detect using software that relies on OS itself (e.g., anti-virus software that monitors system calls)
 - Hard to disable / remove / uninstall

Sony XCP Rootkit

- In 2005, Sony distributed CDs with auto-installed rootkitbased DRM software
 - Not disclosed, even in licensing agreement
 - Also spyware: sent user listening habits
 - Sony paid \$5.75M to settle multiple class-action lawsuits

Malware Defense

Malware Defense Overview

- Proactive security
 - Better design and better coding to avoid bugs
 - Find and fix bugs (e.g., software testing)
 - Anticipate bugs, isolate untrusted software

- Reactive security
 - Identify malware (e.g., intrusion detection)
 - Investigate incidents and respond quickly

Intrusion Detection System (IDS)

- Device or software that monitors networks or systems for malicious or suspicious activities
 - "Intrusion" & "activities" are broader than malware

- Three main types:
 - Signature-based: What does malware look like?
 - Heuristic-based: How does malware behave?
 - Anomaly-based: How does normal software behave?

Signature-based IDS

(Not to confuse with digital signatures in cryptography)

- Scan the analyzed object, compare with a dataset of malware features (signatures)
 - E.g., a sequence of instructions

Virus Name	String Pattern (Signature)
Accom.128	89C3 B440 8A2E 2004 8A0E 2104 BA00
0	05CD 21E8 D500 BF50 04CD
Die.448	B440 B9E8 0133 D2CD 2172 1126 8955
	15B4 40B9 0500 BA5A 01CD
Xany.979	8B96 0906 B000 E85C FF8B D5B9 D303
	E864 FFC6 8602 0401 F8C3

Rad et al.. Evolution of Computer Virus Concealment and Anti-Virus Techniques: A Short Survey. 2011

Signature-based IDS Challenges

- Polymorphic malware
 - Decryption engine + (randomized) encrypted body
 - Look for decryption engine in detection?
- Metamorphic malware
 - Contains a code rewriter to generate functionally equivalent but semantically different code
- Over 90% of malware have these capabilities

Heuristic/Rule-based IDS

- Detect malware based on what it does
 - Modern jargon: Endpoint Detection & Response (EDR)

- Resilient to minor changes in malware
- Rely on (proprietary) datasets, like signaturebased IDS

ATT&CK Enterprise Matrix

Anomaly-based IDS

- Enumerating malware behavior is hard
 - New malware comes out every week
 - Arms race between attacker and defender

 Instead, describe a program's normal behavior and alert if deviating from normal behaviors

Monitoring System Calls

Used by both rule- and anomaly-based IDS

- System calls are the bridge between users processes and the OS
 - e.g., creating a new process, accessing a file, etc.

Malware cannot cause significant damage without using system calls

Forrest IDS: N-Gram Monitoring

- "A Sense of Self for Unix Processes"
 - [Forrest et al. 1996]

 Describes normal behaviors for a process using short sequences of system calls (N-Grams)

Forrest IDS: Training

 Slide a window over a given system call trace and extract unique sequences of length N

Example (N=3): open, read, mmap, open, read, mmap System Call trace

Unique Sequences

open, read, mmap read, mmap, mmap mmap, mmap, open mmap, open, read

Database

Forrest IDS: Runtime Monitoring

 Monitor the system call trace as the program issues them; Raise alert if detecting a sequence not seen during training

Example (N=3): mmap, open, read, mmap, read, ...

Unique Sequences

open, read, mmap read, mmap, mmap mmap, mmap, open mmap, open, read

Database

Intrusion Detection Systems

 Typically combine all three styles, and recently, more advanced machine learning techniques

- Overall accuracy still a problem in practice
 - False negatives: lose security
 - False positives: alert fatigue

Summary

- Common malware types and classification
 - By propagation behaviors: trojan, virus, worm, ...
 - By payload behaviors: backdoor, ransomware, spyware, botnet, rootkit, ...

- Common (reactive) defense: IDS
 - Signature-, heuristic-/rule-, anomaly-based