Graph Neural Networks

Máster Deep Learning

Tema 2 - Shallow Encoders

Índice

1. Aprendizaje representacional para grafos

Aprendizaje tradicional

¿Qué características tiene el *nodo 4*?

Tiene grado 3.

Tiene **betweenness** 0.6.

Tiene closeness 0.625.

Tiene **neighborhood** 1.

••

Aprendizaje tradicional

Feature engineering manual

1. Extraer atributos especializados para una tarea concreta.

Grado, centralidad, vecindario, etc.

2. Entrenar un modelo en base a esas características.

SVM, RandomForest, XGBoost, etc.

Aprendizaje representacional

que respete que nodos similares tengan representaciones cercanas en el espacio latente

Feature engineering automático

 Extraer atributos especializados genéricos para una tarea concreta muchas tareas.

Embedding abstracto y genérico.

2. Entrenar un modelo en base a esas características.

SVM, RandomForest, XGBoost, etc.

2. Shallow embeddings

Shallow embeddings

Obtendremos representaciones vectoriales de nodos, aristas, sub-grafos, etc, de forma que estarán proyectadas en un espacio latente de cierta dimensión.

Para **nodos similares**, sus representaciones deberán tener también un **alto coeficiente de similitud**.

Shallow embeddings

Diseño manual

Las características (grado, centralidad, etc) deben ser seleccionadas y calculadas manualmente, lo que introduce cierto sesgo

Pérdida de información estructural

Aunque útiles, no siempre capturan relaciones complejas en los grafos

Especificidad al dominio

Algunas métricas podrán ser útiles en ciertos dominios pero no generalizar bien a otros.

Captura de patrones complejos

Flexibilidad en la integración y la captura de patrones tanto locales como globales de alta dimensión

¿Por qué usar shallow embeddings frente a vectores formados por características predefinidas como el grado o la centralidad?

Shallow embeddings

Este *embedding* deberá recoger la información posicional de un nodo y su contexto en el grafo

Dejaremos que un algoritmo de **machine learning** extraiga patrones de esta representación

3. Representación por caminos aleatorios

Máster

Caminos aleatorios

Un camino aleatorio que atraviesa un grafo nos da una perspectiva no sesgada del contexto de los nodos.

Nodos con patrones de conexión similares tienden a generar caminos con distribuciones parecidas.

Caminos aleatorios

Definiremos la similitud por caminos aleatorios entre dos nodos u y v como la probabilidad de que v aparezca en un camino aleatorio que empieza en u

Flexibilidad en la captura de patrones

Dependiendo de la longitud que fijemos permitiremos obtener tanto información local como global

Cómputo ridículamente eficiente

Su potencia está en su simpleza. Su complejidad es lineal y el algoritmo se reduce a generar números aleatorios.

Máster Deep Learning

Random Walk

- Fijamos una longitud máxima para el camino
- 2. Partimos de cierto nodo.
- Obtenemos sus vecinos directos.
- 4. Seleccionamos uno de manera aleatoria.
- 5. **Avanzamos** al nodo seleccionado.
- 6. Si ya hemos llegado a la longitud fijada **terminamos el algoritmo**, si no, **volvemos al paso 2**.

Todos los saltos son equiprobables!

DeepWalk = RandomWalk + Word2Vec

Para cada nodo podemos computar **múltiples Random Walks** de manera que todas esas secuencias **representen en su conjunto el contexto de ese nodo en el grafo**.

Podemos entender el camino como una secuencia (o incluso una frase) y aplicar Word2Vec para aprender representaciones de cada nodo basadas en su contexto.

$$[1, 2, 4, 6, 4] \rightarrow "1 2 4 6 4"$$

El objetivo de entrenamiento de Word2Vec es reconstruir un elemento de la frase (palabra/nodo) dado el resto.

DeepWalk

Con estas características hemos obtenido una *equivalencia tabular* y podemos usar cualquier algoritmo de machine learning para resolver una tarea de ...

node	feat_0	feat_1	 feat_n
1	0.213	-1.345	-1.324
2	1.231	-0.234	-0.324
3	-0.324	2.345	1.678
4	-0.121	1.234	2.453
5	1.234	-0.234	0.643
6	0.534	1.344	0.546

DeepWalk

Con estas características hemos obtenido una *equivalencia tabular* y podemos usar cualquier algoritmo de machine learning para resolver una tarea de clasificación

node	feat_0	feat_1	 feat_n	label
1	0.213	-1.345	-1.324	0
2	1.231	-0.234	-0.324	0
3	-0.324	2.345	1.678	1
4	-0.121	1.234	2.453	1
5	1.234	-0.234	0.643	0
6	0.534	1.344	0.546	1

DeepWalk

Con estas características hemos obtenido una *equivalencia tabular* y podemos usar cualquier algoritmo de machine learning para resolver una tarea de *regresión*

node	feat_0	feat_1	 feat_n	label
1	0.213	-1.345	-1.324	0.4
2	1.231	-0.234	-0.324	0.9
3	-0.324	2.345	1.678	O.1
4	-0.121	1.234	2.453	1.0
5	1.234	-0.234	0.643	0.5
6	0.534	1.344	0.546	0.3

4. Random Walk sesgado: Node2Vec

Limitaciones de Random Walk

No evita que se pueda volver al nodo anterior lo que puede suponer quedarse atrapado en zonas densas del grafo o a la realización de una exploración redundante.

Selecciona nodos de manera equiprobable lo que supone que con mayor facilidad se estanque en áreas cercanas y no pueda explorar patrones globales del grafo.

Node2Vec

Node2Vec es una generalización de Random Walk que introduce dos hiperparámetros:

p: Return parameter (BFS-like)

Controla la probabilidad de **volver al nodo anterior**, valores altos(>1) **reducen la probabilidad de regresar**.

q: In-out parameter (DFS-like)

Controla la probabilidad de visitar nodos no visitados recientemente, valores altos(>1) favorecen la exploración.

Máster Deep Learning

Node2Vec

- 1. Fijamos una **longitud máxima** para el camino, **p** y **q**.
- 2. Partimos de cierto nodo.
- 3. Obtenemos sus vecinos directos.
 - a. Si el vecino es el nodo previo, la probabilidad es 1/p.
 - b. Si es vecino directo del nodo previo, la probabilidad es **1**.
 - c. Si no es ninguna de ambas (vecino lejano), la probabilidad es de **1/q.**
- 4. **Avanzamos** al nodo seleccionado.
- Si ya hemos llegado a la longitud fijada terminamos el algoritmo, si no, volvemos al paso 2.

Este node2vec está realizado con p=5, q=2

Máster Deep Learning

Node2Vec

- Fijamos una longitud máxima para el camino, p y
 q.
- 2. Partimos de cierto nodo.
- 3. Obtenemos sus vecinos directos.
 - Si el vecino es el nodo previo, la probabilidad es 1/p.
 - b. Si es vecino directo del nodo previo, la probabilidad es **1**.
 - c. Si no es ninguna de ambas (vecino lejano),
 la probabilidad es de 1/q.
- 4. **Avanzamos** al nodo seleccionado.
- 5. Si ya hemos llegado a la longitud fijada **terminamos el algoritmo**, si no, **volvemos al paso 2**.

Simulemos un node2vec con p=5, q=2 empezando en el nodo 1...

5. Embeddings para aristas

Embeddings para aristas: enfoque trivial

- 1. Obtenemos **embeddings para los nodos**.
- 2. Los **agregamos** en función de las aristas que los conectan **mediante cierta operación**: suma, media, resta, máximo...

node	feat_O	feat_1	 feat_n
1	0.213	-1.345	-1.324
2	1.231	-0.234	-0.324
3	-0.324	2.345	1.678
4	-0.121	1.234	2.453
5	1.234	-0.234	0.643
6	0.534	1.344	0.546

add

edge	feat_O	feat_1	 feat_n
(1, 2)	0.213 + 1.231	-1.345 + (-0.234)	-1.324 + (-0.324)
(1, 4)	0.213 + (-0.121)	-1.345 + 1.234	-1.324 + 2.453
(2, 4)	1.231 + (-0.121)	-0.234 + 1.234	-0.324 + 2.453
(4, 6)	-0.121 + 0.534	1.234 + 1.344	2.453 + 0.546
(6, 5)	0.534 + 1.234	1.344 + (-0.234)	0.546 + 0.643
(3, 5)	-0.324 + 1.234	2.345 + (-0.234)	1.678 + 0.643

Embeddings para aristas: Line Graph

1. Generamos el LineGraph

Las **aristas pasan a ser los nodos**, estando conectados si entre las aristas existe un **nodo en común**.

2. Calculamos los embeddings sobre los nodos del LineGraph.

Embeddings para aristas: Edge2Vec

Optimiza dos funciones de pérdida simultáneamente:

- L global: optimizando la matriz de adyacencia como entrada y salida de un autoencoder
- L local: la función de pérdida de node2vec

Wang, C., Wang, C., Wang, Z., Ye, X., & Yu, P. S. (2020). Edge2vec: Edge-based social network embedding. *ACM Transactions on Knowledge Discovery from Data (TKDD)*, 14(4), 1-24.

6. Embeddings para grafos

Embeddings para grafos: enfoque trivial

- 1. Obtenemos **embeddings para los nodos**.
- 2. Los **agregamos** en función de **cierta operación**: suma, media, resta, máximo...

node	feat_O	feat_1	 feat_n
1	0.213	-1.345	-1.324
2	1.231	-0.234	-0.324
3	-0.324	2.345	1.678
4	-0.121	1.234	2.453
5	1.234	-0.234	0.643
6	0.534	1.344	0.546

feat_0	feat_1	 feat_n
0.213 + 1.231 + + 0.534	-1.345 + (-0.234) + + 1.344	-1.324 + (-0.324) + 0.546

Embeddings para grafos: nodo centinela

- Conectamos un nodo centinela a todos los nodos del grafo.
- 2. Obtenemos **embeddings para los nodos** incluido el **centinela**.
- El embedding del grafo será el obtenido para el centinela.

Embeddings para grafos: graph kernels

Un graph kernel es un vector de características que definimos manualmente que nos permite comparar grafos.

4-node graphlets

Embeddings para grafos: graph kernels

El conjunto de **graphlets** compone todas las posibles conexiones que se pueden dar con **n número de nodos.**

2-node

graphlet

3-node graphlets

Limitaciones de los Shallow Embeddings

Limitaciones

Estos métodos pertenecen al campo del transductive learning lo que significa que no pueden hacer predicciones sobre datos que no estaban presentes en el entrenamiento y siempre que queramos predecir un elemento nuevo deberemos reentrenar

Solo acumulan información posicional y no integran los atributos propios de los nodos (i.e en una red social acumularían la información de los seguidores de un usuario pero no de los datos del propio usuario)

Graph Neural Networks

Máster Deep Learning

Tema 2 - Shallow Embeddings

