Section 11: Introduction to Bootstrap

Yotam Shem-Tov Fall 2014

The bootstrap

- The bootstrap yields consistent variance estimates under very mild conditions
- Let $(z_1, ..., z_n)$ be the realized sample observations (our data)
- Let $F_{\mathbf{z}}(\cdot)$ be the distribution of \mathbf{z} .
- Each observation \mathbf{z}_i is a vector of length p, where p is the number of covariates
- Let $T_n \equiv T_n(\mathbf{z}_1, \dots, \mathbf{z}_n, F_{\mathbf{z}})$ be a test statistic that is some function of the realized sample observations and the population distribution function of the data $F_{\mathbf{z}}$

The bootstrap

• Let $G_n(t, F_z)$ be the distribution of the test statistic (T_n) ,

$$G_n(t, F_z) = Pr(T_n \le t|F_z)$$

- How can we find the distribution of T_n ?
 - Assume a distribution of the data (z ~ F_z) and derive the distribution of T_n.
 - 2 Asymptotic distribution of T_n ,

$$G_n(t,F) \stackrel{d}{\to} G(t,F) \Leftrightarrow \lim_{n \to \infty} G_n(t,F) = G(t,F)$$

Bootstrap

Let $G_n^*(t, F_z)$ be the bootstrap approximation of $G_n(t, F_z)$

Example: Lalonde 1986

- We consider as a data example the NSW randomized control trail of job training, analysed by Lalonde (1986).
- We restrict the sample to observation with information on prior earnings (re74, re75).
- Link to the data is here

Example: Lalonde (1986)

Experimental balance table

T-test Wilcoxon KS
0.000 0.015 0.740
0.266 0.215 0.748
0.150 0.056 0.063
0.647 0.649 1.000
0.064 0.077 0.963
0.334 0.327 0.999
0.002 0.001 0.063
0.982 0.361 0.970
0.385 0.061 0.164

Example: Lalonde (1986)

```
Call:
lm(formula = re78 ~ (.), data = d)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.070e+02 4.808e+03 -0.064 0.94911
treat
         1.676e+03 6.393e+02 2.621 0.00907 **
         1.417e+02 2.744e+02 0.516 0.60578
age
ed
         3.850e+02 2.301e+02 1.673 0.09501 .
black
          -2.156e+03 1.170e+03 -1.842 0.06617 .
hisp
          1.873e+02 1.553e+03 0.121 0.90406
married
          -1.849e+02 8.924e+02 -0.207 0.83597
nodeg
          -5.554e+01 1.007e+03 -0.055 0.95602
          8.148e-02 7.753e-02 1.051 0.29389
re74
re75
       5.082e-02 1.358e-01 0.374 0.70835
age2
          -1.435e+00 4.495e+00 -0.319 0.74966
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 6520 on 434 degrees of freedom
Multiple R-squared: 0.05505, Adjusted R-squared: 0.03328
F-statistic: 2.528 on 10 and 434 DF, p-value: 0.005737
```

Lalonde (1986): Non-parametric bootstrap code

```
B=1000
beta.boot = rep(NA,B)
for (b in c(1:B)){
   if(b %% 50==0){cat("Iteration: ",b,"\n")}
   index = sample(rownames(d),length(rownames(d)),
     replace=TRUE)
   d0 = d[index,]
   beta.boot[b] = coef(lm(re78~(.),data=d0))[2]
}
```

Lalonde (1986): Bootstrap distribution of the ATE

Lalonde (1986): Parametric bootstrap code

```
B=1000
n = dim(d)[1]
beta.boot.parm = rep(NA,B)
for (b in c(1:B)){
  if(b %% 50==0){cat("Iteration: ",b,"\n")}
  epsilon.b = sample(lm1$res,n,replace=TRUE)
  y.b = as.matrix(cbind(rep(1,n),treat,x,x[,"age"]^2))
  %*% matrix(coef(lm1),ncol=1) +epsilon.b
  beta.boot.parm[b] = coef(lm(y.b~(.),data=d))[2]
```

Lalonde (1986): Comparison of CI estimations

	2.5%	97.5%
Non-parametric bootstrap	393.45	3099.37
Parametric bootstrap	536.45	2926.94
Analytical	419.27	2932.46

Implementation in R

Always know how to write your own code!

- The "boot" package in CRAN implements bootstrap
- The "boot" function allows for parallel computing, bias adjustment and other options.

```
f.lm = function(data,index){
  return(coef(lm(re78~(.),data=data[index,]))[2])
}
boot0 = boot(data=d,statistic=f.lm,R=1000)
```

Implementation in R

```
Call:
boot(data = d, statistic = f.lm, R = 1000)

Bootstrap Statistics :
    original bias std. error
t1* 1675.862 8.535902 684.6722
```

Implementation in R

Histogram of t

