Register								
Number								

Set - A

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu

Academic Year: 2022-23 (ODD)

Test: CLA-T1 Date: 07-09-2022
Course Code & Title: 18CSC302J – Computer Networks Duration: 1 Hour
Year & Sem: III Year / V Sem Max. Marks: 25

Course Articulation Matrix:

S.No.	Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	CO1	1	3	-	3	1	-	-	-	1	1	-	3

Part – A $(15 \times 1 = 15 \text{ Marks})$

Q.	Question	Marks	BL	CO	PO	PI
No						Code
1	There are the following statements that are given	1	L1	1	1	1.6.1
	below, which of them are correct OP code used in ARP					
	message format? *					
	a. the OP code is used to specify the type of ARP message.					
	b. the OP code is part of only the ARP request message.					
	c. the OP code 1 is used for ARP request.					
	d. the OP code 0 is used for ARP reply.					
2	Which of the following is correct about User Datagram	1	L1	1	1	1.6.1
	Protocol					
	a. UDP has flow control mechanism					
	b. There is window mechanism in UDP					
	c. There is no robust error control mechanism in UDP					
	d. UDP provides error correction					
3	Size of TCP segment header ranges between	1	L1	1	1	1.6.1
	a. 16 and 32 bytes					
	b. 16 and 32 bits					
	c. 20 and 60 bytes					
1	d. 20 and 60 bits	1	T 1	1	1	1 (1
4	During error reporting, ICMP always reports error	1	L1	1	1	1.6.1
	messages to a. Destination					
	b. Source					
	c. Next router					
	d. Previous router					
5	In the algorithm of TCP, the size of the	1	L1	1	1	1.6.1
	congestion window increases exponentially until it	1	ГЛ	1	1	1.0.1
	reaches a threshold.					
	reaches a un eshviu.	l				

_				T	1	Т
	a. slow-start					
	b. congestion avoidance					
	c. congestion detection					
	d. Congestion control					
6	Transport layer aggregates data from different	1	L1	1	1	1.6.1
	applications into a single stream before passing it to					
	a network layer					
	b. data link layer					
	c. application layer					
	d. physical layer					
7	UDP perform functions.	1	L1	1	1	1.6.1
	a. end-to-end reliable data delivery					
	b. process-to-process communication					
	c. host-to-host communication					
	d. host-to-server communication					
8	is a technique that refers to a congestion	1	L1	1	1	1.6.1
	control mechanism in which a congested node stops					
	receiving data from the immediate upstream node or					
	nodes.					
	a. Backpressure					
	b. Discard					
	c. Choke					
	d. Explicit					
9	The address, also known as the link address,	1	L1	1	1	1.6.1
	is the address of a node as defined by its LAN or WAN.					
	a. Physical					
	b. IP					
	c. Port					
	d. Specific					
10	In IPv4, service type of service in header field, first 3	1	L1	1	1	1.6.1
	bits are called					
	a. Type of service					
	b. Code bits					
	c. Sync bits					
	d. Precedence bits					

Register								
Number								

Set - A

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu

Academic Year: 2022-23 (ODD)

Test: CLA-T1 Date: 07-09-2022
Course Code & Title: 18CSC302J – Computer Networks Duration: 1 Hour
Year & Sem: III Year / V Sem Max. Marks: 25

	Part – B					
	$(1 \times 15 = 15 \text{ Marks})$					
Instru	actions: Answer ANY One questions					
Q.	Question	Marks	BL	CO	PO	PI
No						Code
11	i) An IP packet has arrived in which the offset value is	5	L3	1	2	2.6.3
	100, the value of HLEN is 5 and the value of the total					
	length field is 100. What is the number of the first byte					
	and the last byte?					
	ii) Explain TCP Connection establishment process in	10	L2	1	1	1.6.1
	detail with a neat diagram					
	(OR)					
12	i) List out the components of ARP packages and How the	5	L2	1	1	1.6.1
	cache-control module is responsible for maintaining the					
	cache table.					
	ii) Calculate the checksum for the following IP packet:	10	L3	1	2	2.6.3
	4500 003c 1c46 4000 4006 b1e6 ac10 0a63 ac10 0a0c					

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

CO1 - 100%

L1 – 25% (10 Marks) L2 – 37.5% (15 Marks)

L3 - 37.5% (15 Marks)

SET - A

School of Computing

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2022 - 2023 (ODD)

Test: CLA - T1
Course Code & Title: 18CSC302J – Computer Networks
Pear & Sem: III / V
Date: 07-09-2022
Duration: 1 Hrs
Max. Marks: 25

S.No.	Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	CO1	1	3	-	3	1	-	-	ı	1	1	-	3

	Part - A					
	$(15 \times 1 = 15 \text{ Marks})$					
	actions: Answer all		•	1	1	T
Q.	Answer with choice variable	Marks	\mathbf{BL}	CO	PO	PI
No						Code
1	a. the OP code is used to specify the type of ARP	1	L1	1	1	1.6.1
	message.					
	c. the OP code 1 is used for ARP request.					
2	c. There is no robust error control mechanism in	1	L1	1	1	1.6.1
	UDP					
3	c. 20 and 60 bytes	1	L1	1	1	1.6.1
4	b. Source	1	L1	1	1	1.6.1
5	a. slow-start	1	L1	1	1	1.6.1
6	a. network layer	1	L1	1	1	1.6.1
7	b. process-to-process communication	1	L1	1	1	1.6.1
8	a. Backpressure	1	L1	1	1	1.6.1
9	a. Physical	1	L1	1	1	1.6.1
10	d. Precedence bits	1	L1	1	1	1.6.1

	Part – B					
	$(5 \times 2 = 10 \text{ Marks})$					
11	i) An IP packet has arrived in which the offset value	5	L3	1	2	2.6.3
	is 100, the value of HLEN is 5 and the value of the					
	total length field is 100. What is the number of the					
	first byte and the last byte?					
	Each step carry 1 marks					
	Total length = 100					
	HLEN = 5*4 = 20					
	Data length = total length $-$ HLEN = $100-20 = 80$					
	First byte = 100 *8 =800					
	Last byte = $800 + 80 - 1 = 879$					
	ii) Explain TCP Connection establishment process	10	L2	1	1	1.6.1
	in detail with a neat diagram.					
	Diagram: 3marks					
	Explanation: 7 marks					
	The three handshakes are discussed in the below steps:					
	Step 1: SYN					
	SYN is a segment sent by the client to the server. It acts					
	as a connection request between the client and server.					

	1	1		1		1
	It informs the server that the client wants to establish a					
	connection. Synchronizing sequence numbers also					
	helps synchronize sequence numbers sent between any					
	1 1 1					
	two devices, where the same SYN segment asks for the					
	sequence number with the connection request.					
	Host SYN (SEQ = X)					
	SYN (SEQ = Y, ACK = X + 1)					
	A SEQ = X + 1, ACK = y + 1 B					
	Time Time					
	Client Server					
	Three way Handshake					
	Step 2: SYN-ACK					
	=					
	It is an SYN-ACK segment or an SYN + ACK segment					
	sent by the server. The ACK segment informs the client					
	that the server has received the connection request and					
	it is ready to build the connection. The SYN segment					
	informs the sequence number with which the server is					
	ready to start with the segments.					
	Step 3: ACK					
	±					
	ACK (Acknowledgment) is the last step before					
	establishing a successful TCP connection between the					
	client and server. The ACK segment is sent by the					
	client as the response of the received ACK and SN					
	from the server. It results in the establishment of a					
	reliable data connection.					
	After these three steps, the client and server are ready					
1						
	<u> </u>					
	for the data communication process. TCP connection					
	for the data communication process. TCP connection and termination are full-duplex, which means that the					
	for the data communication process. TCP connection and termination are full-duplex, which means that the data can travel in both the directions simultaneously.					
	for the data communication process. TCP connection and termination are full-duplex, which means that the data can travel in both the directions simultaneously. OR					
12	for the data communication process. TCP connection and termination are full-duplex, which means that the data can travel in both the directions simultaneously. OR i) List out the components of ARP packages and	5	L2	1	1	1.6.1
12	for the data communication process. TCP connection and termination are full-duplex, which means that the data can travel in both the directions simultaneously. OR	5	L2	1	1	1.6.1
12	for the data communication process. TCP connection and termination are full-duplex, which means that the data can travel in both the directions simultaneously. OR i) List out the components of ARP packages and	5	L2	1	1	1.6.1
12	for the data communication process. TCP connection and termination are full-duplex, which means that the data can travel in both the directions simultaneously. OR i) List out the components of ARP packages and How the cache-control module is responsible for maintaining the cache table.	5	L2	1	1	1.6.1
12	for the data communication process. TCP connection and termination are full-duplex, which means that the data can travel in both the directions simultaneously. OR i) List out the components of ARP packages and How the cache-control module is responsible for maintaining the cache table. 1 marks for list of components	5	L2	1	1	1.6.1
12	for the data communication process. TCP connection and termination are full-duplex, which means that the data can travel in both the directions simultaneously. OR i) List out the components of ARP packages and How the cache-control module is responsible for maintaining the cache table. 1 marks for list of components 4 marks for cache control module explanation	5	L2	1	1	1.6.1
12	for the data communication process. TCP connection and termination are full-duplex, which means that the data can travel in both the directions simultaneously. OR i) List out the components of ARP packages and How the cache-control module is responsible for maintaining the cache table. 1 marks for list of components 4 marks for cache control module explanation Address Resolution Protocol Package has five	5	L2	1	1	1.6.1
12	for the data communication process. TCP connection and termination are full-duplex, which means that the data can travel in both the directions simultaneously. OR i) List out the components of ARP packages and How the cache-control module is responsible for maintaining the cache table. 1 marks for list of components 4 marks for cache control module explanation Address Resolution Protocol Package has five components:	5	L2	1	1	1.6.1
12	for the data communication process. TCP connection and termination are full-duplex, which means that the data can travel in both the directions simultaneously. OR i) List out the components of ARP packages and How the cache-control module is responsible for maintaining the cache table. 1 marks for list of components 4 marks for cache control module explanation Address Resolution Protocol Package has five components: Cache table.	5	L2	1	1	1.6.1
12	for the data communication process. TCP connection and termination are full-duplex, which means that the data can travel in both the directions simultaneously. OR i) List out the components of ARP packages and How the cache-control module is responsible for maintaining the cache table. 1marks for list of components 4 marks for cache control module explanation Address Resolution Protocol Package has five components: Cache table. Queues.	5	L2	1	1	1.6.1
12	for the data communication process. TCP connection and termination are full-duplex, which means that the data can travel in both the directions simultaneously. OR i) List out the components of ARP packages and How the cache-control module is responsible for maintaining the cache table. 1 marks for list of components 4 marks for cache control module explanation Address Resolution Protocol Package has five components: Cache table. Queues. Output module.	5	L2	1	1	1.6.1
12	for the data communication process. TCP connection and termination are full-duplex, which means that the data can travel in both the directions simultaneously. OR i) List out the components of ARP packages and How the cache-control module is responsible for maintaining the cache table. 1 marks for list of components 4 marks for cache control module explanation Address Resolution Protocol Package has five components: Cache table. Queues. Output module.	5	L2	1	1	1.6.1
12	for the data communication process. TCP connection and termination are full-duplex, which means that the data can travel in both the directions simultaneously. OR i) List out the components of ARP packages and How the cache-control module is responsible for maintaining the cache table. 1 marks for list of components 4 marks for cache control module explanation Address Resolution Protocol Package has five components: Cache table. Queues. Output module. Input module.	5	L2	1	1	1.6.1
12	for the data communication process. TCP connection and termination are full-duplex, which means that the data can travel in both the directions simultaneously. OR i) List out the components of ARP packages and How the cache-control module is responsible for maintaining the cache table. Imarks for list of components 4 marks for cache control module explanation Address Resolution Protocol Package has five components: Cache table. Queues. Output module. Input module. Cache-control module.	5	L2	1	1	1.6.1
12	for the data communication process. TCP connection and termination are full-duplex, which means that the data can travel in both the directions simultaneously. OR i) List out the components of ARP packages and How the cache-control module is responsible for maintaining the cache table. 1 marks for list of components 4 marks for cache control module explanation Address Resolution Protocol Package has five components: Cache table. Queues. Output module. Input module. Cache-control module maintains the cache	5	L2	1	1	1.6.1
12	for the data communication process. TCP connection and termination are full-duplex, which means that the data can travel in both the directions simultaneously. OR i) List out the components of ARP packages and How the cache-control module is responsible for maintaining the cache table. 1 marks for list of components 4 marks for cache control module explanation Address Resolution Protocol Package has five components: Cache table. Queues. Output module. Input module. Cache-control module maintains the cache table. It checks the cache table entry by entry	5	L2	1	1	1.6.1
12	for the data communication process. TCP connection and termination are full-duplex, which means that the data can travel in both the directions simultaneously. OR i) List out the components of ARP packages and How the cache-control module is responsible for maintaining the cache table. 1 marks for list of components 4 marks for cache control module explanation Address Resolution Protocol Package has five components: Cache table. Queues. Output module. Input module. Cache-control module maintains the cache table. It checks the cache table entry by entry periodically, i.e. five seconds.	5	L2	1	1	1.6.1
12	for the data communication process. TCP connection and termination are full-duplex, which means that the data can travel in both the directions simultaneously. OR i) List out the components of ARP packages and How the cache-control module is responsible for maintaining the cache table. 1marks for list of components 4 marks for cache control module explanation Address Resolution Protocol Package has five components: Cache table. Queues. Output module. Input module. Cache-control module maintains the cache table. It checks the cache table entry by entry periodically, i.e. five seconds. • If the state field of the entry is FREE, it checks	5	L2	1	1	1.6.1
12	for the data communication process. TCP connection and termination are full-duplex, which means that the data can travel in both the directions simultaneously. OR i) List out the components of ARP packages and How the cache-control module is responsible for maintaining the cache table. 1 marks for list of components 4 marks for cache control module explanation Address Resolution Protocol Package has five components: Cache table. Queues. Output module. Input module. Cache-control module maintains the cache table. It checks the cache table entry by entry periodically, i.e. five seconds.	5	L2	1	1	1.6.1
12	for the data communication process. TCP connection and termination are full-duplex, which means that the data can travel in both the directions simultaneously. OR i) List out the components of ARP packages and How the cache-control module is responsible for maintaining the cache table. 1marks for list of components 4 marks for cache control module explanation Address Resolution Protocol Package has five components: Cache table. Queues. Output module. Input module. Cache-control module maintains the cache table. It checks the cache table entry by entry periodically, i.e. five seconds. • If the state field of the entry is FREE, it checks	5	L2	1	1	1.6.1
12	for the data communication process. TCP connection and termination are full-duplex, which means that the data can travel in both the directions simultaneously. OR i) List out the components of ARP packages and How the cache-control module is responsible for maintaining the cache table. 1marks for list of components 4 marks for cache control module explanation Address Resolution Protocol Package has five components: Cache table. Queues. Output module. Input module. Cache-control module maintains the cache table. It checks the cache table entry by entry periodically, i.e. five seconds. If the state field of the entry is FREE, it checks another entry. If the state field of the entry is PENDING, the	5	L2	1	1	1.6.1
12	for the data communication process. TCP connection and termination are full-duplex, which means that the data can travel in both the directions simultaneously. OR i) List out the components of ARP packages and How the cache-control module is responsible for maintaining the cache table. Imarks for list of components 4 marks for cache control module explanation Address Resolution Protocol Package has five components: Cache table. Queues. Output module. Input module. Cache-control module maintains the cache table. It checks the cache table entry by entry periodically, i.e. five seconds. If the state field of the entry is FREE, it checks another entry. If the state field of the entry is PENDING, the cache-control module increases the attempt	5	L2	1	1	1.6.1
12	for the data communication process. TCP connection and termination are full-duplex, which means that the data can travel in both the directions simultaneously. OR i) List out the components of ARP packages and How the cache-control module is responsible for maintaining the cache table. Imarks for list of components 4 marks for cache control module explanation Address Resolution Protocol Package has five components: Cache table. Queues. Output module. Input module. Cache-control module maintains the cache table. It checks the cache table entry by entry periodically, i.e. five seconds. If the state field of the entry is FREE, it checks another entry. If the state field of the entry is PENDING, the cache-control module increases the attempt field's value by 1. It then checks the value of	5	L2	1	1	1.6.1
12	for the data communication process. TCP connection and termination are full-duplex, which means that the data can travel in both the directions simultaneously. OR i) List out the components of ARP packages and How the cache-control module is responsible for maintaining the cache table. Imarks for list of components 4 marks for cache control module explanation Address Resolution Protocol Package has five components: Cache table. Queues. Output module. Input module. Cache-control module maintains the cache table. It checks the cache table entry by entry periodically, i.e. five seconds. If the state field of the entry is FREE, it checks another entry. If the state field of the entry is PENDING, the cache-control module increases the attempt field's value by 1. It then checks the value of the attempt field. If the attempt field's value is	5	L2	1	1	1.6.1
12	for the data communication process. TCP connection and termination are full-duplex, which means that the data can travel in both the directions simultaneously. OR i) List out the components of ARP packages and How the cache-control module is responsible for maintaining the cache table. Imarks for list of components 4 marks for cache control module explanation Address Resolution Protocol Package has five components: Cache table. Queues. Output module. Input module. Cache-control module maintains the cache table. It checks the cache table entry by entry periodically, i.e. five seconds. If the state field of the entry is FREE, it checks another entry. If the state field of the entry is PENDING, the cache-control module increases the attempt field's value by 1. It then checks the value of the attempt field. If the attempt field's value is greater than the maximum limit that is allowed,	5	L2	1	1	1.6.1
12	for the data communication process. TCP connection and termination are full-duplex, which means that the data can travel in both the directions simultaneously. OR i) List out the components of ARP packages and How the cache-control module is responsible for maintaining the cache table. Imarks for list of components 4 marks for cache control module explanation Address Resolution Protocol Package has five components: Cache table. Queues. Output module. Input module. Cache-control module maintains the cache table. It checks the cache table entry by entry periodically, i.e. five seconds. If the state field of the entry is FREE, it checks another entry. If the state field of the entry is PENDING, the cache-control module increases the attempt field's value by 1. It then checks the value of the attempt field. If the attempt field's value is	5	L2	1	1	1.6.1

.1 1'					
the corresponding queue.					
If the state field of the entry is RESOLVED, the cache-					
control module decreases the time outfield value by 1.					
It then checks the value of the time outfield. If the time					
outfield value is less than or equal to zero, it updates					
the state field of entry to FREE and destroys the					
corresponding queue.					
ii) Calculate the checksum for the following IP	10	L3	1	2	2.6.3
packet:					
4500 003c 1c46 4000 4006 b1e6 ac10 0a63 ac10 0a0c					
Initially checksum value initialized as 0 and find					
checksum					
4500 -> 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0					
003c -> 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0					
1c46 -> 0 0 0 1 1 1 0 0 0 1 0 0 0 1 1 0					
4000 -> 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
4006 -> 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0					
0000 -> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
ac10 -> 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0					
0a63 -> 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1					
ac10 -> 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0					
0a0c -> 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0					
24E17 - >1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 1 1 1 SUM					
4E19 -> 0 1 0 0 1 1 1 0 0 0 0 1 1 0 0 1 Sum+carry					
B1E6 -> 1 0 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 // IP Checksum					
(OR)					
· · ·					
Checksum value included in IP packet sequence					
solution becomes					
4500 -> 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0					
$003c \rightarrow 000000000111100$					
$1c46 \rightarrow 00011100011000110$					
4000 -> 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
4006 -> 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0					
ble6 -> 1 0 1 1 0 0 0 1 1 1 1 0 0 1 1 0 //checksum field					
ac10 -> 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0					
0a63 -> 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1					
ac10 -> 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0					
0a0c -> 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0					
2EBF5 -> 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 SUM					
EBF7 -> 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 Sum+carry					
1408 -> 000101000000000000000000000000000000					
-					
Sum Erwan accoung in above peaket accoungs					
Error occurs in above packet sequence					
If students done both give full mark					
If students any one either checksum calculation or					
verification					

 $[\]mbox{*}$ Performance Indicators are available separately for Computer Science and Engineering in AICTE examination reforms policy.

Register								
Number								

Set - B

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu

Academic Year: 2022-23 (ODD)

Test: CLA-T1 Date: 07-09-2022
Course Code & Title: 18CSC302J – Computer Networks Duration: 1 Hour
Year & Sem: III Year / V Sem Max. Marks: 25

Course Articulation Matrix:

S.No.	Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	CO1	1	3	-	3	1	-	-	1	1	1	ı	3

Part – A $(15 \times 1 = 15 \text{ Marks})$

answ	er encircle appropriately) 4) if any of the questions * indicate	es cnoose	multi	pie ans	swers.	
Q.	Question	Marks	BL	CO	PO	PΙ
No						Code
1	How many bytes are reserved for target hardware	1	L1	1	1	1.6.1
	address in ARP message format?					
	a. 4 bytes					
	b. 6 bytes					
	c. 8 bytes					
	d. 16 bytes					
2	The transport layer protocol used for real time	1	L1	1	1	1.6.1
	multimedia, file transfer, e-mail and DNS respectively					
	are					
	a. UDP,TCP,TCP and UDP					
	b. TCP,UDP,UDP and TCP					
	c. UDP,TCP,TCP AND UDP					
	d. TCP,UDP,TCP AND UDP					
3	Connection establishment in TCP is done by which	1	L1	1	1	1.6.1
	mechanism?					
	a. Flow control					
	b. Three-Way Handshaking					
	c. Forwarding					
	d. Synchronization					
4	Which of these is not a type of error-reporting	1	L1	1	1	1.6.1
	message?					
	a. Destination unreachable					
	b. Source quench					
	c. Router error					
	d. Time exceeded					
5	To accomplish flow control, TCP uses a	1	L1	1	1	1.6.1
	window protocol.					
	a. limited-size					
	b. sliding					
	c. fixed-size					

	d. variable					
6	Which of the following is false with respect to UDP?	1	L1	1	1	1.6.1
	a. Connection-oriented					
	b. Unreliable					
	c. Transport layer protocol					
	d. Low overhead					
7	The value of acknowledgement field in a segment	1	L1	1	1	1.6.1
	defines					
	a. sequence number of the byte received previously					
	b. total number of bytes to receive					
	c. sequence number of the next byte to be received					
	d. sequence of zeros and ones					
8	In case of time exceeded error, when the datagram	1	L1	1	1	1.6.1
	visits a router, the value of time to live field is					
	a. Remains constant					
	b. Decremented by 2					
	c. Incremented by 1					
	d. Decremented by 1					
9	Which field helps to check rearrangement of the	1	L1	1	1	1.6.1
	fragments?					
	a. offset					
	b. flag					
	c. ttl					
	d. identifier					
10	In IPv4 layer, datagram is of	1	L1	1	1	1.6.1
	a. Fixed length					
	b. Variable length					
	c. Global length					
	d. Zero length					

Register								
Number								

Set - B

SRM Nagar, Kattankulathur — 603203, Chengalpattu District, Tamil Nadu

Academic Year: 2022-23 (ODD)

Test: CLA-T1 Date: 07-09-2022
Course Code & Title: 18CSC302J – Computer Networks Duration: 1 Hour
Year & Sem: III Year / V Sem Max. Marks: 25

	Part – B					
	$(1 \times 15 = 15 \text{ Marks})$					
Instru	uctions: Answer ANY One questions					
Q.	Question	Marks	BL	CO	PO	PI
No						Code
11	i) An IP datagram is carrying 1024 bytes of data. If	5	L3	1	2	2.6.3
	there is no option information, what is the value of the					
	header length field? What is the value of the total					
	length field?					
	ii) With a neat diagram Illustrate the various fields in	10	L2	1	1	1.6.1
	TCP Header					
	(OR)					
12	i) Brief about how error control mechanism is achieved	5	L2	1	1	1.6.1
	through retransmission of segments.					
	ii) Calculate the checksum for the following ICMP	10	L3	1	2	2.6.3
	packet: Type: Echo Request					
	Identifier: 123					
	Sequence number : 20					
	Message : COMPUTING					

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

CO1 - 100%

L1 - 25% (10 Marks)

L2 - 37.5% (15 Marks)

L3 - 37.5% (15 Marks)

SET - B

School of Computing

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2022 - 2023 (ODD)

Test: CLA - T1
Course Code & Title: 18CSC302J – Computer Networks
Pear & Sem: III / V
Date: 07-09-2022
Duration: 1 Hrs
Max. Marks: 25

S.No.	Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	CO1	1	3	-	3	1	-	-	-	1	1	-	3

	Part - A					
	$(15 \times 1 = 15 \text{ Marks})$					
	ections: Answer all	1		1	1	
Q.	Answer with choice variable	Marks	\mathbf{BL}	CO	PO	PI
No						Code
1	b. 6 bytes	1	L1	1	1	1.6.1
2	a. UDP,TCP,TCP and UDP	1	L1	1	1	1.6.1
3	b. Three-Way Handshaking	1	L1	1	1	1.6.1
4	c. Router error	1	L1	1	1	1.6.1
5	b. sliding	1	L1	1	1	1.6.1
6	a. Connection-oriented	1	L1	1	1	1.6.1
7	c. sequence number of the next byte to be received	1	L1	1	1	1.6.1
8	d. Decremented by 1	1	L1	1	1	1.6.1
9	a. offset	1	L1	1	1	1.6.1
10	b. Variable length	1	L1	1	1	1.6.1

	Part – B					
	$(5 \times 2 = 10 \text{ Marks})$					
11	i) An IP datagram is carrying 1024 bytes of data. If	5	L3	1	2	2.6.3
	there is no option information, what is the value of					
	the header length field? What is the value of the					
	total length field?					
	Data-size = 1024 bytes.					
	Header-size = 20 bytes (since no option bytes present)					
	HLEN = 20/4 = 5.					
	Total length of datagram = $1024 + 20 = 1044$ bytes					
	ii) With a neat diagram Illustrate the various fields	10	L2	1	1	1.6.1
	in TCP Header.					
	Diagram: 3 marks					
	Explanation: 7 marks					
	Let's walk through all these fields:					
	Source port: this is a 16 bit field that specifies the port					
	number of the sender.					
	Destination port: this is a 16 bit field that specifies the					
	port number of the receiver.					
	Sequence number: the sequence number is a 32 bit					
	field that indicates how much data is sent during the					
	TCP session.					

	Sourc	e port	Destination Port					
		Sequenc	e number					
		Acknowledg	ment number					
DO	RSV	Flags	Window					
	Chec	ksum	Urgent pointer					
		Opt	tions					
the receivalue with the header RSV: the header RSV: the unused Flags: control send date URG: should ACK: pSH: the application immediate entire of RST: the you have is only it is not SYN: with and it is FIN: the TCP is FIN bits method windout bytes the Checks if the Turgent bit has where option	eiver to will be to is is the der lend so that hese and and are there are bits. We at a and urgent plus be treatused for his is that in the interest of the used we used the used to end the receive to the used to end the used to end the used the urgent pointer been set the urgents of the urg	he sequence nute 4 bit data offset gth. It indicates we know where 3 bits for the etalways set to be 9 bits for flag Ve use them to be terminate connection. When the data should that we done gment. It is the connection then there are used the initial that is used to plex so both paths for the initial his great the connection we end an connection we end an connection we end an connection where is willing the bits are used for these 16 bits are used for the urgent potent data ends.	establish connections, ections: his bit is set, the data over other data. Idgment. h. This tells an ld be transmitted 't want to wait to fill the on, when you receive this nection right away. This nrecoverable errors and he the TCP connection. al three way handshake sequence number. end the TCP connection. rties will have to use the he. This is the normal ection. Gield specifies how many or receive. or a checksum to check ot. are used when the URG ointer is used to indicate and can be anywhere					
i) Brief	about l	how error contr nsmission of seg		5	L2	1	1	1.6.
			gment is missing, er, corrupted when it is					

		1	1	1	1	1
	ed by the receiver then that segment is					
	smitted again. Segments are retransmitted only					
	g two events: when the sender receives three					
duplic	ate acknowledgements (ACK) or when a					
retrans	smission timer expires.					
	Retransmission after RTO: TCP always					
	preserves one retransmission time-out (RTO)					
	timer for all sent but not acknowledged					
	segments. RTT is the time duration needed for					
	a segment to reach the receiver and an					
	acknowledgement to be received by the					
	sender.					
2	Retransmission after Three duplicate ACK					
۷.						
	segments: RTO method works well when the					
	value of RTO is small. If it is large, more time					
	is needed to get confirmation about whether a					
	segment has been delivered or not. Sometimes					
	one segment is lost and the receiver receives					
	so many out-of-order segments that they					
	cannot be saved. In order to solve this					
	situation, three duplicate acknowledgement					
	method is used and missing segment is					
	retransmitted immediately instead of					
	retransmitting already delivered segment. This					
	is a fast retransmission because it makes it					
	possible to quickly retransmit lost segments					
	instead of waiting for timer to end.					
;;) Cal	culate the checksum for the following ICMP	10	L3	1	2	2.6.3
	t: Type: Echo Request	10	LS	1		2.0.3
	ifier: 123					
_	ence number: 20					
wiessa	age: COMPUTING					
1						
0 4414	->0000010000000000000000000000000000000					
	-> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
_	-> 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 -> 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0					
	-> 01000010101111					
	-> 0 1 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 -> 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0					
	-> 0 1 0 1 0 1 0 1 0 1 0 1 0 0					
I&N	-> 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 1 1 0					
G&Pad	1-> 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0					
7400	-> 0 1 1 1 1 0 1 0 1 1 0 1 0 0 0 0 // SUM					
	> 10111101011010000 // SOM > 1000010101011111 // Checksum					
0021 -	- 100001010101111 // Checksum	l	l	I		l

 $[\]ast$ Performance Indicators are available separately for Computer Science and Engineering in AICTE examination reforms policy.

Register								
Number								

Set - C

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu

Academic Year: 2022-23 (ODD)

Test: CLA-T1 Date: 07-09-2022
Course Code & Title: 18CSC302J – Computer Networks Duration: 1 Hour
Year & Sem: III Year / V Sem Max. Marks: 25

Course Articulation Matrix:

S.No.	Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	CO1	1	3	-	3	1	-	-	-	1	1	-	3

Part - A $(15 \times 1 = 15 \text{ Marks})$

Q. NoQuestionMarksBLCOPO1Which of the following number is assigned for IPv4 in1L111	PI Code 1.6.1
1 Which of the following number is assigned for IPv4 in 1 L1 1 1	1.6.1
the protocol type field of ARP message format?	
A. 0x400	
B. 0x100	
C. 0x800	
D. 0x200	
2 In socket programming, the sequence of the system 1 L1 1	1.6.1
calls used in the UDP echo server at the server side	
(i) sendto()	
(ii) recvfrom()	
(iii) socket()	
(iv) bind()	
a. (iii),(iv),(ii),(i)	
b. (ii),(iv),(iii),(i)	
c. (i),(iii),(ii),(i)	
d. (iii),(iv),(i),(ii)	
3 In Three-Way Handshaking process, the situation 1 L1 1	1.6.1
where both the TCP's issue an active open is	
a. Mutual open	
b. Mutual Close	
c. Simultaneous open	
d. Simultaneous close	
4 When a router cannot route a datagram or host cannot 1 L1 1 1	1.6.1
deliver a datagram, the datagram is discarded and the	
router or the host sends a message back	
to the source host that initiated the datagram.	
a. Destination unreachable	
b. Source quench	
c. Router error	
d. Time exceeded	

	T /1 /1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	Т 1	1	1	1 (1
5	In the congestion avoidance algorithm, the size of the	1	L1	1	1	1.6.1
	congestion window increases until					
	congestion is detected.					
	a. exponentially					
	b. additively					
	c. multiplicatively					
	d. suddenly					
6	Beyond IP, UDP provides additional services such as	1	L1	1	1	1.6.1
	a. Routing and switching					
	b. Sending and receiving of packets					
	c. Multiplexing and demultiplexing					
	d. Demultiplexing and error checking					
7	UDP length = – IP header's length	1	L1	1	1	1.6.1
	a. IP length					
	b. Total length					
	c. Packet Header length					
	d. UDP length					
8	A bit can be set in a packet moving in the direction	1	L1	1	1	1.6.1
	opposite to the congestion is called					
	a. Implicit Signaling					
	b. Explicit Signaling					
	c. Backward Signaling					
	d. Forward Signaling					
9	The TTL field has value 10. How many routers (max)	1	L1	1	1	1.6.1
	can process this datagram?					
	a. 11					
	b. 5					
	c. 10					
	d. 1					
10	Which of these is not a type of error-reporting	1	L1	1	1	1.6.1
	message?					
	a. Destination unreachable					
	b. Source quench					
	c. Router error					
	d. Time exceeded					
	ı	1				

Register								
Number								

Set - C

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu

Academic Year: 2022-23 (ODD)

Test: CLA-T1 Date: 07-09-2022
Course Code & Title: 18CSC302J – Computer Networks Duration: 1 Hour
Year & Sem: III Year / V Sem Max. Marks: 25

	Part – B					
	$(1 \times 15 = 15 \text{ Marks})$					
Instru	actions: Answer ANY One questions					
Q.	Question	Marks	BL	CO	PO	PI
No						Code
11	i) An IP packet has arrived in which the offset value is 200,	5	L3	1	2	2.6.3
	the value of HLEN is 5 and the value of the total length field					
	is 100. What is the number of the first byte and the last					
	byte?					
	ii) Describe about the error-reporting messages and query	10	L2	1	1	1.6.1
	messages.					
	(OR)					
12	i) Write short notes on Silly Window Syndrome in TCP	5	L2	1	1	1.6.1
	flow control.					
	ii) How do I calculate the checksum for a sample IPv4	10	L3	1	2	2.6.3
	packet received like this:					
	4500 062A 42A1 8001 4210 XXXX C0A8 0001 C0A8 0003					
	Where xxxx is the checksum that needs to be sent with the					
	packet.					

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

CO1 - 100%

L1 - 25% (10 Marks)

L2 - 37.5% (15 Marks)

L3 - 37.5% (15 Marks)

SET - C

School of Computing

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2022 - 2023 (ODD)

Test: CLA - T1
Course Code & Title: 18CSC302J – Computer Networks
Year & Sem: III / V
Date: 07-09-2022
Duration: 1 Hrs
Max. Marks: 25

S.No.	Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	CO1	1	3	-	3	1	-	ı	ı	1	1	-	3

	Dout A					
	Part - A $(15 \times 1 = 15 \text{ Marks})$					
Instru	actions: Answer all					
Q. No	Answer with choice variable	Marks	BL	СО	PO	PI Code
1	C. 0x800	1	L1	1	1	1.6.1
2	d. (iii),(iv),(i),(ii)	1	L1	1	1	1.6.1
3	c. Simultaneous open	1	L1	1	1	1.6.1
4	a. Destination unreachable	1	L1	1	1	1.6.1
5	b. additively	1	L1	1	1	1.6.1
6	d. Demultiplexing and error checking	1	L1	1	1	1.6.1
7	a. IP length	1	L1	1	1	1.6.1
8	c. Backward Signaling	1	L1	1	1	1.6.1
9	c. 10	1	L1	1	1	1.6.1
10	c. Router error	1	L1	1	1	1.6.1
	Part – B					
11	($5 \times 2 = 10 \text{ Marks}$) i) An IP packet has arrived in which the offset value is 200, the	5	L3	1	2	2.6.3
11	value of HLEN is 5 and the value of the total length field is 100	_	LS	1		2.0.3
	What is the number of the first byte and the last byte?					
	Each step carry 1 marks					
	Total length = 200 HLEN = 5*4 = 20					
	Data length = total length – HLEN = 200-20 = 180					
	First byte = 100 *8 =800					
	Last byte = 800 + 180 -1 =979					
	ii) Describe about the error-reporting messages and quer	y 10	L2	1	1	1.6.1
	messages.					
	5marks for error reporting message types with					
	explanation 5 marks for Query message types with explanation					
	ICMP messages					
	Error-reporting Query					
	Type Message Type Message					
	3 Destination unreachable 8/0 Echo (request/reply)					
	4 Source quench 13/14 Timestamp (req./rep.) 11 Time exceeded 18/18 Address mask (req./rep.)					
	12 Parameter problem 10/9 Router					
	5 Redirection solicitation/advertisement					
			ı	1		

	OR		I			
12	 i) Write short notes on Silly Window Syndrome in TCP flow control. Silly Window Syndrome is a problem that arises due to poor implementation of TCP. It degrades the TCP performance and makes the data transmission extremely inefficient. The problem is called so because: 1. It causes the sender window size to shrink to a silly value. 2. The window size shrinks to such an extent that the data being transmitted is smaller than TCP Header. The two major causes of this syndrome are as follows: 	5	L2	1	1	1.6.1
	 Sender window transmitting one byte of data repeatedly. Receiver window accepting one byte of data repeatedly. 					
	ii) How do I calculate the checksum for a sample IPv4 packet received like this: 4500 062A 42A1 8001 4210 XXXX C0A8 0001 C0A8 0003 Where xxxx is the checksum that needs to be sent with the packet. 4500: 01000101000000000000000000000000000	10	L3	1	2	2.6.3

 $[\]mbox{*}$ Performance Indicators are available separately for Computer Science and Engineering in AICTE examination reforms policy.

Register								
Number								

Set - D

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu

Academic Year: 2022-23 (ODD)

Test: CLA-T1 Date: 07-09-2022
Course Code & Title: 18CSC302J – Computer Networks Duration: 1 Hour
Year & Sem: III Year / V Sem Max. Marks: 25

Course Articulation Matrix:

S.No.	Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	CO1	1	3	1	3	1	1	-	1	1	1	ı	3

Part - A $(15 \times 1 = 15 \text{ Marks})$

appro	priately) 4) if any of the questions * indicates choose multiple answ	vers.				
Q.	Question	Marks	BL	CO	PO	PI
No						Code
1	What command allows a user to view the ARP cache, and to	1	L1	1	1	1.6.1
	add and delete entries?					
	a. ping					
	b. ifconfig					
	c. arp					
	d. cp					
2	What is the size of UDP header in bit?	1	L1	1	1	1.6.1
	a. 20					
	b.64					
	c.40					
	d. 8					
3	The sizes of source and destination port address in TCP	1	L1	1	1	1.6.1
	header are respectively.					
	a. 16-bits and 32-bits					
	b. 16-bits and 16-bits					
	c. 32-bits and 16-bits					
	d. 32-bits and 32-bits					
4	Two machines can use the timestamp request and	1	L1	1	1	1.6.1
	timestamp replay messages to determine the					
	needed for an IP datagram to travel between them.					
	a. Half-trip time					
	b. Round-trip time					
	c. Travel time for the next router					
	d. Time to reach the destination/source					
5	The packet sent by a node to the source to inform it of	1	L1	1	1	1.6.1
	congestion is called options					
	a. Explicit					
	b. Discard					
	c. Choke					
	d. Backpressure					
6	The port number is "ephemeral port number", if the source	1	L1	1	1	1.6.1
	host is					
	a. NTP					
	b. Echo					

d. Client					
What allows TCP to detect lost segments and in turn	1	L1	1	1	1.6.1
recover from that loss?					
a. Sequence number					
b. Acknowledgment number					
c. Checksum					
d. Both Sequence & Acknowledgment number					
During debugging, we can use the program to	1	L1	1	1	1.6.1
find if a host is alive and responding.					
a. traceroute					
b. shell					
c. ping					
d. java					
ICMP error message will not be generated for a datagram	1	L1	1	1	1.6.1
a. 12.1.2.2					
b. 11.1					
c. 127					
d. 127.0.0.0					
Port number used by Network Time Protocol (NTP) with	1	L1	1	1	1.6.1
b. 123					
c. 162					
	recover from that loss? a. Sequence number b. Acknowledgment number c. Checksum d. Both Sequence & Acknowledgment number During debugging, we can use the program to find if a host is alive and responding. a. traceroute b. shell c. ping d. java ICMP error message will not be generated for a datagram having a special address such as a. 12.1.2.2 b. 11.1 c. 127 d. 127.0.0.0 Port number used by Network Time Protocol (NTP) with UDP is a. 161 b. 123	d. Client What allows TCP to detect lost segments and in turn recover from that loss? a. Sequence number b. Acknowledgment number c. Checksum d. Both Sequence & Acknowledgment number During debugging, we can use the program to find if a host is alive and responding. a. traceroute b. shell c. ping d. java ICMP error message will not be generated for a datagram having a special address such as a. 12.1.2.2 b. 11.1 c. 127 d. 127.0.0.0 Port number used by Network Time Protocol (NTP) with UDP is a. 161 b. 123 c. 162	d. Client What allows TCP to detect lost segments and in turn recover from that loss? a. Sequence number b. Acknowledgment number c. Checksum d. Both Sequence & Acknowledgment number During debugging, we can use the program to find if a host is alive and responding. a. traceroute b. shell c. ping d. java ICMP error message will not be generated for a datagram having a special address such as a. 12.1.2.2 b. 11.1 c. 127 d. 127.0.0.0 Port number used by Network Time Protocol (NTP) with UDP is a. 161 b. 123 c. 162	d. Client What allows TCP to detect lost segments and in turn recover from that loss? a. Sequence number b. Acknowledgment number c. Checksum d. Both Sequence & Acknowledgment number During debugging, we can use the program to find if a host is alive and responding. a. traceroute b. shell c. ping d. java ICMP error message will not be generated for a datagram having a special address such as a. 12.1.2.2 b. 11.1 c. 127 d. 127.0.0.0 Port number used by Network Time Protocol (NTP) with UDP is a. 161 b. 123 c. 162	d. Client What allows TCP to detect lost segments and in turn recover from that loss? a. Sequence number b. Acknowledgment number c. Checksum d. Both Sequence & Acknowledgment number During debugging, we can use the program to find if a host is alive and responding. a. traceroute b. shell c. ping d. java ICMP error message will not be generated for a datagram having a special address such as a. 12.1.2.2 b. 11.1 c. 127 d. 127.0.0.0 Port number used by Network Time Protocol (NTP) with UDP is a. 161 b. 123 c. 162

Register								
Number								

Set - D

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu

Academic Year: 2022-23 (ODD)

Test: CLA-T1 Date: 07-09-2022
Course Code & Title: 18CSC302J – Computer Networks Duration: 1 Hour
Year & Sem: III Year / V Sem Max. Marks: 25

	Part – B							
	$(1 \times 15 = 15 \text{ Marks})$							
Instr	uctions: Answer ANY One questions							
Q.	Question	Marks	BL	CO	PO	PI		
No						Code		
11	i) An IP datagram is carrying 2048 bytes of data. If	5	L3	1	2	2.6.3		
	there is no option information, what is the value of the							
	header length field? What is the value of the total							
	length field?							
	ii) With a neat diagram Illustrate the various fields in	10	L2	1	1	1.6.1		
	ARP Header							
	(OR)							
12	i) write short notes on Error control in TCP and show	5	L2	1	1	1.6.1		
	how it is achieved through the use of three simple tools							
	ii) Calculate the checksum for the following UDP	10	L3	1	2	2.6.3		
	packet:							
	Source IP: 153.18.8.105							
	Destination IP: 171.2.14.10							
	Reserve bytes: 0							
	Protocol: 17							
	UDP pseudo header total length: 15							
	Source port address:1087							
	Destination port address:13							
	UDP header length:15							
	Checksum: Initial							
	Message: TESTING							

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

CO1 – 100%

L1 – 25% (10 Marks) L2 – 37.5% (15 Marks) L3 – 37.5% (15 Marks)

SET - D

School of Computing

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2022 - 2023 (ODD)

Test: CLA - T1
Course Code & Title: 18CSC302J – Computer Networks
Pear & Sem: III / V
Date: 07-09-2022
Duration: 1 Hrs
Max. Marks: 25

S.No.	Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	CO1	1	3	-	3	1	-	-	ı	1	1	-	3

	Part - A (15 x 1 = 15 Marks)					
Instru	uctions: Answer all					
Q.	Answer with choice variable	Marks	BL	CO	PO	PI
No						Code
1	c. arp	1	L1	1	1	1.6.1
2	b.64	1	L1	1	1	1.6.1
3	b. 16-bits and 16-bits	1	L1	1	1	1.6.1
4	b. Round-trip time	1	L1	1	1	1.6.1
5	c. Choke	1	L1	1	1	1.6.1
6	d. Client	1	L1	1	1	1.6.1
7	b. Acknowledgment number	1	L1	1	1	1.6.1
8	c. ping	1	L1	1	1	1.6.1
9	d. 127.0.0.0	1	L1	1	1	1.6.1
10	b. 123	1	L1	1	1	1.6.1

	Part – B					
	$(5 \times 2 = 10 \text{ Marks})$					
11	i) An IP datagram is carrying 2048 bytes of data. If	5	L3	1	2	2.6.3
	there is no option information, what is the value of					
	the header length field? What is the value of the					
	total length field?					
	Data-size = 2048 bytes.					
	Header-size = 20 bytes					
	HLEN = $20/4 = 5$.					
	Total length of datagram = $2048 + 20 = 2068$ bytes	10		-		1.61
	ii) With a neat diagram Illustrate the various fields	10	L2	1	1	1.6.1
	in ARP Header. Diagram: 3marks					
	Explanation: 7marks					
	• Hardware Type –It is 1 for Ethernet.					
	• Protocol Type —It is a protocol used in the					
	network layer.					
	Hardware Address Length—It is the length in					
	bytes so that it would be 6 for Ethernet.					
	• Protocol Address Length – Its value is 4					
	bytes.					
	Operation Code indicates that the packet is					
	an ARP Request (1) or an ARP Response (2).					

	 Senders Hardware Address – It is a hardware address of the source node. Senders Protocol Address - It is a layer 3 address of the source node. Target Hardware Address – It is used in a RARP request, which response impact both the destination's hardware and layer 3 addresses. Target Protocol Address – It is used in an ARP request when the response carries both layer 3 addresses and the destination's hardware. 					
	Hardware Length (PLEN) Operational request (1), reply (2)					
	Sender Hardware Address (SHA)					
	Sender Protocol Address (SPA)					
	Target Hardware Address (THA)					
	Target Protocol Address (TPA)					
	OR		•	1	1	
12	i) write short notes on Error control in TCP is achieved through the use of three simple tools Error control also includes a mechanism for correcting errors after they are detected. Error detection and correction in TCP is achieved through the use of three simple tools: checksum, acknowledgment, and time-out. Checksum: Each segment includes a checksum field which is used to check for a corrupted segment. Acknowledgment: TCP uses acknowledgments to confirm the receipt of data segments. Retransmission: The heart of the error control mechanism is the retransmission of segments. When a segment is corrupted, lost, or delayed, it is retransmitted.	5	L2	1	1	1.6.1
	ii) Calculate the checksum for the following UDP packet: Source IP: 153.18.8.105 Destination IP: 171.2.14.10 Reserve bytes: 0 Protocol: 17 UDP pseudo header total length: 15 Source port address:1087 Destination port address:13 UDP header length:15 Checksum: Initial Message: TESTING	10	L3	1	2	2.6.3

153 & 18: 1 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0	
08& 105: 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 1	
171 & 2: 1010101100000010	
14 & 10: 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0	
0 & 17 : 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1	
15 : 00000000001111	
1087 : 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1	
13 : 00000000001101	
15 : 00000000001111	
0 : 0000000000000000000000000000000000	
T&E:0101010001000101	
S&T : 0101001101010100	
I&N : 010010010101110	
G & Pad: 0100011100000000	
SUM : 1001011011101011	
Checksum: 0 1 1 0 1 0 0 1 0 0 0 1 0 1 0 0	

 $[\]ensuremath{^*}$ Performance Indicators are available separately for Computer Science and Engineering in AICTE examination reforms policy.