13章 統計的言語モデルを作ろう

- 統計的言語モデルとは
 - P(単語列)を言語統計から計算
 - 正しい文には高い確率を与えたい
 - 誤っている文には低い確率を与えたい
 - 音響的に似ている単語との置換誤りを除外する
 - 例) × 駅の規格のホテルを探して
 - △ 駅の死角のホテルを探して
 - 駅の近くのホテルを探して

- 言語モデルの作り方
 - 1.コーパスを準備する
 - 大量の電子化された文章を集める例)新聞記事データ, web, Wikipedia, etc.
 - 2.単語に区切る
 - 形態素解析処理
 - 3.単語列の出現確率を求める
 - スパースネスの問題を解決することが必要

- ・コーパスとは
 - 自然言語文の文例集
- コーパスの例
 - 新聞記事
 - 毎日新聞 各年度約 10 万記事
 - Wikipedia (日本語, 2019年12月現在)
 - 約 118 万記事
 - 青空文庫(日本語, 2019年12月現在)
 - 著作権のないものを中心に 約 16,000 作品

- 形態素解析ソフト Juman
 - http://nlp.kuee.kyoto-u.ac.jp/nl-resource/juman.html

• 単語列 w の生成確率

$$P(\mathbf{w}) = P(w_1, \dots, w_n)$$

= $P(w_1)P(w_2|w_1)P(w_3|w_1, w_2) \dots P(w_n|w_1, \dots, w_{n-1})$

- P(w_i): 単語の出現確率
 - 単語の頻度なので容易に推定可能
- $P(w_i|w_{i-1})$: 単語の連接確率
 - ある程度の規模のコーパスがあれば推定可能
- 条件部が長い条件付き確率
 - 推定は困難

13.2 N- グラム言語モデル

13.2.1 N- グラムによる近似

- N- グラム言語モデルとは
 - 単語の生起を (N-1) 重マルコフ過程で近似したモデル
 - ある時点での単語の生起確率は直前の (N-1) 単語 にのみ依存すると仮定
 - $P(w_i|w_1,\ldots,w_{i-1})$ の近似
 - 1- グラム: $P(w_i)$
 - 2- グラム: $P(w_i|w_{i-1})$
 - 3- グラム: $P(w_i|w_{i-2},w_{i-1})$

13.2.1 N- グラムによる近似

- 単語列 w の生成確率
 - 3- グラムによる近似

$$P(w_1, \dots, w_n) = P(w_1)P(w_2|w_1) \prod_{k=3}^{n} P(w_k|w_{k-2}, w_{k-1})$$

• 確率の最尤推定

$$P(w_i) = \frac{C(w_i)}{\sum_{w_i} C(w_i)}$$

$$P(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i)}{C(w_{i-1})}$$

$$P(w_i|w_{i-2}, w_{i-1}) = \frac{C(w_{i-2}, w_{i-1}, w_i)}{C(w_{i-2}, w_{i-1})}$$

13.2.2 言語モデルの評価

- よい言語モデルとは
 - タスク内の文に対しては高い確率、そうでない文に 対しては低い確率を出力するもの
- 評価式 (パープレキシティ)

$$PP = P(w_1, \dots, w_n)^{\frac{1}{n}}$$

- ある単語の後に出現し得る単語数の平均
- 学習データとは別の評価データで評価する

13.2.3 ゼロ頻度問題

- ゼロ頻度問題とは
 - 妥当な単語列であっても偶然コーパスに出現しなければ、最尤推定値が 0 になる
 - → その単語列を含む文の出現確率も 0 になる
- 対処法
 - 観測された情報を使って,観測されていない情報の 確率を推定する
- ・アプローチ
 - 頻度のスムージングによる方法(13.3 節)
 - 補間法による方法(13.4節)

13.3 一度も出現しないものの確率は?

- 頻度のスムージングの問題設定
 - 学習コーパス中に 1 回も出現しない N- グラムは, 未知 コーパスで平均何回出現すると期待されるか
- 加算法
 - すべての N- グラムに一定値を加算
- 削除推定法
 - 出現回数ごとの予測出現数を評価用データを用いて推定
- Good-Turing 法
 - 出現 0 回の確率の和が、出現 1 回の確率の和と等しく なるように全体を調整

13.3.1 一定値を加えることによるスムージング

• 加算法

 すべての N- グラムの頻度計 算の際に,あらかじめ一定 の値 α を加えておく

$$P(w_i|w_{i-2},w_{i-1}) = \frac{C(w_{i-2},w_{i-1},w_i) + \alpha}{C(w_{i-2},w_{i-1}) + \alpha \cdot v}$$

v: 語彙数

単語列	出現回数	
明日の雨	1	
明日 天気 は	1	初期値 1
雨の明日	1 <	から開始
天気 雨 晴れ	1	(α=1)
•	•	_

単語列	出現回数
明日の雨	3
明日 天気 は	5
雨の明日	1
天気 雨 晴れ	1
	•

13.3.2 削除推定法

- 削除推定法の考え方
 - 出現回数の少ないものが、未 知データで平均的に何回出現 することが期待できるか
 - 交差確認法の手順を使うこと も可能

出現回数 <i>k</i>	種類数 R_k (学習用)	出現数 T_k (評価用)	推定 $r_k = \frac{T_k}{R_k}$
0	7,500	25	0.0033
1	1,500	900	0.6
2	300	450	1.5
3	100	270	2.7

:

13.3.3 Good-Turing 法

- グッド・チューリングの推定
 - 出現回数 0 回の事象の確率と出 現回数 1 回の事象の確率とを等 しくする
 - 出現回数の推定法

$$r_n = (n+1)\frac{R_{n+1}}{R_n}$$

- ただし R_n は、n回出現する 3- グラムの種類数

13.3.3 Good-Turing 法

r_nの性質

$$r_0=1\frac{R_1}{R_0},\quad r_1=2\frac{R_2}{R_1},\quad r_2=3\frac{R_3}{R_2},\quad r_3=4\frac{R_4}{R_3},\dots$$
 比較的小さな値 徐々に1に近づく

13.4 信頼できるモデルの力を借りる

- 線形補間法
 - 複数の確率を重み付きで足し合わせて、観測されないデータの確率を補間

13.4 信頼できるモデルの力を借りる

• バックオフ・スムージングの考え方

13.4 信頼できるモデルの力を借りる

- バックオフ・スムージング
 - 学習データ中に出現しない N グラムの値を (N-1)グラムの値から推定する

$$P_3^{BO}(w_i|w_{i-2},w_{i-1}) = \begin{cases} d(w_{i-2},w_{i-1})P_3(w_i|w_{i-2},w_{i-1}) & (C(w_{i-2},w_{i-1},w_i) > 0) \\ \alpha(w_{i-2},w_{i-1})P_2^{BO}(w_i|w_{i-1}) & (C(w_{i-2},w_{i-1},w_i) = 0) \end{cases}$$

- バックオフ係数 d の求め方
 - Witten-Bell, Kneser-Ney, Modified Kneser-Ney

13.5 ニューラルネットワークを用いた言語モデル

- フィードフォワード型
 - 過去 N 単語から次単語の確率分布を求める

13.5 ニューラルネットワークを用いた言語モデル

- リカレント型
 - フィードバックで仮想的にすべての履歴を表現

