```
In [309]: import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings("ignore")
```

In [310]: data= pd.read_csv('/home/placement/Desktop/fiat500.csv')
 data

Out[310]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	pop	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	pop	73	3074	106880	1	41.903221	12.495650	5700
1533	1534	sport	51	3712	115280	1	45.069679	7.704920	5200
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870	4600
1535	1536	pop	51	2223	60457	1	45.481541	9.413480	7500
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270	5990
1537	1538	pop	51	1766	54276	1	40.323410	17.568270	7900

1538 rows × 9 columns

In [311]: data.describe()

Out[311]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361	11.563428	8576.003901
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518	2.328190	1939.958641
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839	7.245400	2500.000000
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990	9.505090	7122.500000
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096	11.869260	9000.000000
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960	12.769040	10000.000000
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612	18.365520	11100.000000

Removing the unwanted data

In [312]: data1=data.drop(columns=["ID","lat","lon"])
 data1

Out[312]:

	model	engine_power	age_in_days	km	previous_owners	price
0	lounge	51	882	25000	1	8900
1	pop	51	1186	32500	1	8800
2	sport	74	4658	142228	1	4200
3	lounge	51	2739	160000	1	6000
4	pop	73	3074	106880	1	5700
1533	sport	51	3712	115280	1	5200
1534	lounge	74	3835	112000	1	4600
1535	pop	51	2223	60457	1	7500
1536	lounge	51	2557	80750	1	5990
1537	pop	51	1766	54276	1	7900

1538 rows × 6 columns

In [313]: data1.head(5)

Out[313]:

	model	engine_power	age_in_days	km	previous_owners	price
0	lounge	51	882	25000	1	8900
1	pop	51	1186	32500	1	8800
2	sport	74	4658	142228	1	4200
3	lounge	51	2739	160000	1	6000
4	pop	73	3074	106880	1	5700

In [314]: data1.tail(5)

Out[314]:

	model	engine_power	age_in_days	km	previous_owners	price
1533	sport	51	3712	115280	1	5200
1534	lounge	74	3835	112000	1	4600
1535	pop	51	2223	60457	1	7500
1536	lounge	51	2557	80750	1	5990
1537	pop	51	1766	54276	1	7900

getting Dummies to the data

In [315]: data2=pd.get_dummies(data1)
 data2

Out[315]:

	engine_power	age_in_days	km	previous_owners	price	model_lounge	model_pop	model_sport
0	51	882	25000	1	8900	1	0	0
1	51	1186	32500	1	8800	0	1	0
2	74	4658	142228	1	4200	0	0	1
3	51	2739	160000	1	6000	1	0	0
4	73	3074	106880	1	5700	0	1	0
1533	51	3712	115280	1	5200	0	0	1
1534	74	3835	112000	1	4600	1	0	0
1535	51	2223	60457	1	7500	0	1	0
1536	51	2557	80750	1	5990	1	0	0
1537	51	1766	54276	1	7900	0	1	0

1538 rows × 8 columns

```
In [316]: data2.shape
```

Out[316]: (1538, 8)

Getting the Lounge data as 1's

In [317]: data3=data2.loc[(data2.model_lounge==1)]
 data3

Out[317]:

	engine_power	age_in_days	km	previous_owners	price	model_lounge	model_pop	model_sport
0	51	882	25000	1	8900	1	0	0
3	51	2739	160000	1	6000	1	0	0
6	51	731	11600	1	10750	1	0	0
7	51	1521	49076	1	9190	1	0	0
11	51	366	17500	1	10990	1	0	0
1528	51	2861	126000	1	5500	1	0	0
1529	51	731	22551	1	9900	1	0	0
1530	51	670	29000	1	10800	1	0	0
1534	74	3835	112000	1	4600	1	0	0
1536	51	2557	80750	1	5990	1	0	0

1094 rows × 8 columns

Removing Unwanted columns from the data

```
In [318]: y=data3['price']
x=data3.drop(['price','model_pop','model_sport'],axis=1) #unwanted columns removed
```

In [319]: X

Out[319]:

	engine_power	age_in_days	km	previous_owners	model_lounge
0	51	882	25000	1	1
3	51	2739	160000	1	1
6	51	731	11600	1	1
7	51	1521	49076	1	1
11	51	366	17500	1	1
1528	51	2861	126000	1	1
1529	51	731	22551	1	1
1530	51	670	29000	1	1
1534	74	3835	112000	1	1
1536	51	2557	80750	1	1

1094 rows × 5 columns

```
In [320]: y
Out[320]: 0
                    8900
                    6000
           3
           6
                   10750
                    9190
           7
          11
                   10990
                   . . .
          1528
                    5500
          1529
                    9900
          1530
                   10800
          1534
                    4600
                    5990
          1536
          Name: price, Length: 1094, dtype: int64
  In [ ]:
```

Splitting the data into training data set and testing dat set

```
In [321]: from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test =train_test_split(x,y,test_size=0.33,random_state=42) #66 & 33
```

In [322]: x_train

Out[322]:

	engine_power	age_in_days	km	previous_owners	model_lounge
441	51	762	36448	1	1
701	51	701	27100	1	1
695	51	3197	51083	1	1
1415	51	670	33000	1	1
404	51	456	14000	1	1
459	51	397	15628	1	1
654	51	3227	95554	1	1
189	51	1431	81900	1	1
1455	51	701	33942	1	1
1218	51	882	25000	1	1

732 rows × 5 columns

In [323]: x_test

Out[323]:

	engine_power	age_in_days	km	previous_owners	model_lounge
676	51	762	18609	1	1
215	51	701	25000	1	1
146	51	4018	152900	1	1
1319	51	731	20025	1	1
1041	51	640	38231	1	1
757	51	4018	102841	1	1
167	51	397	15341	1	1
156	51	1858	35304	1	1
1145	51	456	14970	1	1
1393	51	609	32665	2	1

362 rows × 5 columns

```
In [324]: y_train
```

Out[324]: 441

Name: price, Length: 732, dtype: int64

```
In [325]: y_test
Out[325]: 676
                   10250
          215
                    9790
          146
                    5500
          1319
                    9900
          1041
                    8900
                   . . .
          757
                    6000
          167
                   10950
                    8000
          156
                   10700
          1145
          1393
                    9400
          Name: price, Length: 362, dtype: int64
 In [ ]:
```

Ridge Regression

```
In [327]: ridge_regressor.best_params_
Out[327]: {'alpha': 30}
In [328]: ridge=Ridge(alpha=30)
    ridge.fit(x_train,y_train)
    y_pred=ridge.predict(x_test)

In [329]: Ridge_Error=mean_squared_error(y_pred,y_test)
    Ridge_Error
Out[329]: 519771.8129989745

In []:
In []:
In [330]: from sklearn.metrics import r2_score  # to know the effency b/w the predicted price and actual price
    r2_score(y_test,y_pred)  # y_test is the actual price and y_pred is the predicted pric
Out[330]: 0.8373030813683994
```

Calculating Mean Square Error

```
In [331]: from sklearn.metrics import mean_squared_error #calculating Mean Square Error (MSR)
mean_squared_error(y_test,y_pred)
```

Out[331]: 519771.8129989745

Square root for MSE

```
In [332]: import math
a=583024.0067625743
print(math.sqrt(a))
```

763.5600871984957

```
In [333]: |y_test.head(10)
Out[333]: 676
                  10250
          215
                   9790
          146
                   5500
          1319
                   9900
          1041
                   8900
          1425
                   9500
          409
                  10450
          617
                   9790
          1526
                   9300
          1010
                   4600
          Name: price, dtype: int64
In [352]: Results=pd.DataFrame(columns=['Actual', 'Predicted'])
          Results['Actual']=y_test
          Results['Predicted']=y pred
```

```
In [335]: Results
```

Out[335]:

	Price	Predicted
676	10250	10045.347779
215	9790	9989.171535
146	5500	4769.099603
1319	9900	10048.683238
1041	8900	9813.944798
757	6000	5640.378648
167	10950	10431.681162
156	8000	8765.506865
1145	10700	10384.884273
1393	9400	9929.721685

362 rows × 2 columns

```
In [354]: Results['Difference']=Results.apply(lambda row:row.Actual-row.Predicted ,axis=1)
```

```
In [355]: Results['Id']=Results.index
```

Final Result

In [356]: Results

Out[356]:

	Actual	Predicted	Difference	ld
676	10250	10045.347779	204.652221	676
215	9790	9989.171535	-199.171535	215
146	5500	4769.099603	730.900397	146
1319	9900	10048.683238	-148.683238	1319
1041	8900	9813.944798	-913.944798	1041
757	6000	5640.378648	359.621352	757
167	10950	10431.681162	518.318838	167
156	8000	8765.506865	-765.506865	156
1145	10700	10384.884273	315.115727	1145
1393	9400	9929.721685	-529.721685	1393

362 rows × 4 columns

Line Graph plotted for the Result

```
In [359]: import seaborn as sns
import matplotlib.pyplot as plt

sns.lineplot(x='Id',y='Actual',data=Results.head(50))
sns.lineplot(x='Id',y='Predicted',data=Results.head(50))
plt.show()
```



```
In [ ]:
```

In []: