L2 Norm Preservation Under Monotonic Substitutions

BY STEPHEN CROWLEY
July 25, 2025

Theorem 1. [L2 Norm Preservation via Square Root Jacobian Factor] Let $g: I \to J$ be a strictly monotonic and differentiable function between intervals I, $J \subseteq \mathbb{R}$ (possibly unbounded), with $g'(y) \neq 0$ for all $y \in I$. For any $f \in L^2(J, dx)$, define the transformed function $\tilde{f}: I \to \mathbb{C}$ by

$$\tilde{f}(y) = f(g(y))\sqrt{|g'(y)|}.$$

Then $\tilde{f} \in L^2(I, dy)$ and

$$\|\tilde{f}\|_{L^2(I,dy)} = \|f\|_{L^2(J,dx)}.$$

Proof. Without loss of generality, assume g is strictly increasing (the decreasing case follows by considering -g).

First, establish the change of variables formula. For any measurable set $E \subseteq J$:

$$\int_E |f(x)|^2 dx = \int_{g^{-1}(E)} |f(g(y))|^2 |g'(y)| dy.$$

This follows from the standard change of variables theorem, since g is strictly monotonic and differentiable with $g'(y) \neq 0$.

To handle potentially unbounded intervals, consider the norm computation:

$$\|\tilde{f}\|_{L^{2}(I,dy)}^{2} = \int_{I} |\tilde{f}(y)|^{2} dy$$
 (1)

$$= \int_{I} |f(g(y))\sqrt{|g'(y)|}|^{2} dy$$
 (2)

$$= \int_{I} |f(g(y))|^{2} |g'(y)| dy.$$
 (3)

By the change of variables formula applied to J = g(I):

$$\int_I |f(g(y))|^2 |g'(y)| \, dy = \int_I |f(x)|^2 \, dx = ||f||_{L^2(J,dx)}^2.$$

For unbounded intervals, this equality holds by the monotone convergence theorem: approximate I by an increasing sequence of bounded intervals $I_n \uparrow I$, apply the result to each I_n , and take the limit.

Therefore:

$$\|\tilde{f}\|_{L^2(I,dy)} = \|f\|_{L^2(J,dx)}.$$

The integrability of \hat{f} follows immediately from the norm equality and the assumption that $f \in L^2(J, dx)$.

Lemma 2. [Density of Transformed Functions] Under the conditions of Theorem 1, the set $\{f(g(\cdot)): f \in L^2(J, dx)\}$ is dense in $L^2(I, |g'(y)| dy)$, where $L^2(I, |g'(y)| dy)$ denotes the space of square-integrable functions with respect to the measure |g'(y)| dy.

Proof. The map $f \mapsto f \circ g$ is an isometric isomorphism from $L^2(J, dx)$ to $L^2(I, |g'(y)| dy)$ by the change of variables formula. Since $L^2(J, dx)$ is complete, its image under an isometry is also complete, hence dense in itself.

Theorem 3. [Necessity of Square Root Factor] Under the same conditions as Theorem 1, the factor $\sqrt{|g'(y)|}$ is necessary for L2 norm preservation. That is, if $h(y) = f(g(y)) \cdot \phi(y)$ for some measurable function $\phi: I \to \mathbb{R}^+$ satisfies $||h||_{L^2(I,dy)} = ||f||_{L^2(J,dx)}$ for all $f \in L^2(J,dx)$, then $\phi(y) = \sqrt{|g'(y)|}$ almost everywhere.

Proof. Suppose $||f(g(\cdot))\cdot\phi(\cdot)||_{L^2(I,dy)} = ||f||_{L^2(J,dx)}$ for all $f \in L^2(J,dx)$.

Then for any $f \in L^2(J, dx)$:

$$\int_I |f(g(y))|^2 |\, \phi(y)\,|^2\, d\,y = \|f\|_{L^2(J,dx)}^2 = \int_I |\, f(g(y))|^2 |\, g'(y)|\,\, d\,y,$$

where the second equality follows from the change of variables formula.

Therefore:

$$\int_{I} |f(g(y))|^{2} (|\phi(y)|^{2} - |g'(y)|) dy = 0$$

for all $f \in L^2(J, dx)$.

By Lemma 1, functions of the form f(g(y)) are dense in $L^2(I, |g'(y)| dy)$. For any $u \in L^2(I, |g'(y)| dy)$, there exists a sequence $f_n \in L^2(I, dx)$ such that $f_n(g(y)) \to u(y)$ in $L^2(I, |g'(y)| dy)$.

Since $|\phi(y)|^2 - |g'(y)|$ is integrable with respect to |g'(y)| dy (by the boundedness of the norm-preserving property), we have:

$$\int_{I} |u(y)|^{2} (|\phi(y)|^{2} - |g'(y)|) dy = 0$$

for all $u \in L^2(I, |g'(y)| dy)$.

In particular, taking $u(y) = \text{sgn}(|\phi(y)|^2 - |g'(y)|) \cdot 1_{\{|\phi(y)|^2 \neq |g'(y)|\}}(y)$, we obtain:

$$\int_{I} || \phi(y) |^{2} - |g'(y)| || g'(y)| dy = 0.$$

Since |g'(y)| > 0 almost everywhere, this implies $|\phi(y)|^2 = |g'(y)|$ almost everywhere.

Taking $\phi(y) > 0$, we conclude $\phi(y) = \sqrt{|g'(y)|}$ almost everywhere.

Theorem 4. [Extension to General Measures] Let μ and ν be σ -finite measures on I and J respectively, and let $g: I \to J$ be a measurable bijection. If $\nu = \mu \circ g^{-1}$ (i.e., $\nu(E) = \mu(g^{-1}(E))$ for all measurable $E \subseteq J$), then for $f \in L^2(J, d\nu)$:

$$\tilde{f}(y) = f(g(y)) \sqrt{\frac{d (\mu \circ g^{-1})}{d \mu}(y)}$$

satisfies $\|\tilde{f}\|_{L^2(I,d\mu)} = \|f\|_{L^2(J,d\nu)}$, where $\frac{d(\mu \circ g^{-1})}{d\mu}$ is the Radon-Nikodym derivative.

Proof. When μ and ν are both Lebesgue measure and g is differentiable, the Radon-Nikodym derivative is |g'(y)|, reducing to Theorem 1. The general case follows by the same change of variables argument using the definition of the pushforward measure.