PSALTer results panel

 $S = \iiint \left(\frac{1}{16} \left(8 \, a_{0}^{\cdot} \, \mathcal{A}_{\alpha}^{\beta} \, \mathcal{A}_{\beta\chi}^{\chi} - 8 \, \mathcal{A}_{\alpha}^{\beta\chi} \, \left(a_{0}^{\cdot} \, \mathcal{A}_{\beta\chi}^{\alpha} - 2 \, \mathcal{W}_{\alpha\beta\chi}\right) + 16 \, \mathcal{T}_{\alpha\beta}^{\beta} \, h_{\alpha\beta}^{\alpha} - 4 \, a_{0}^{\cdot} \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, c_{4}^{\cdot} \, \partial_{\beta} \mathcal{A}_{\alpha\beta}^{\beta} - 2 \, c_{4}^{\cdot} \, \partial_{\beta} \mathcal{A}_{\alpha\beta}^{\beta} - 2 \, c_{4}^{\cdot} \, \partial_{\beta} \mathcal{A}_{\alpha\beta}^{\beta} + 2 \, c_{4}^{\cdot} \, \partial_{\beta} \mathcal{A}_{\alpha\beta}^{\beta} - 2$

Wave operator

	0.+ h ⁺	0.+h	\mathcal{A}_{a}^{+}	^{0,+} ℋ _s ^{⊥t}	${}^{0^+}\mathcal{R}_{S}{}^{\parallel}$	${}^{0,^{+}}\mathcal{A}_{S}{}^{\perph}$	⁰⁻ Æa [∥]	ī																
0.+ h.+ +	0	0	0	0	$\frac{i a. k}{0}$	$-\frac{i a \cdot k}{4 \sqrt{2}}$	0																	
0. ⁺ h †	0	0	$\frac{i a. k}{2 \sqrt{2}}$	0	$-\frac{i a. k}{4 \sqrt{3}}$	$\frac{i a. k}{4 \sqrt{6}}$	0																	
^{0,+} \mathcal{A}_a †	0	$-\frac{i a. k}{2 \sqrt{2}}$	$-\frac{a}{2}$	0	0	0	0																	
${}^{0,^{+}}\mathcal{A}_{S}{}^{\scriptscriptstyle{\perp}t}\dagger$	0	0	0	0	$\frac{a}{0}$	$-\frac{a}{2} \sqrt{2}$	0																	
${}^{0^+}\mathcal{R}_{S}{}^{\parallel}$ †	$-\frac{1}{4}ia_0k$	$\frac{i a_0 k}{4 \sqrt{3}}$	0	$\frac{a}{0}$	0	$-\frac{a_0}{2\sqrt{2}}$	0																	
${}^{0^+}\mathcal{A}_{S}{}^{{\scriptscriptstyle \perp}h}\dagger$	$\frac{i a. k}{4 \sqrt{2}}$	$-\frac{{\stackrel{i}{\scriptstyle a}}{\stackrel{.}{\scriptstyle k}}{\stackrel{k}{\scriptstyle 0}}}{4\sqrt{6}}$	0	$-\frac{a_0}{2\sqrt{2}}$	$-\frac{a_{0}}{2\sqrt{2}}$	$\frac{a}{0}$	0																	
^{0⁻} ℋ _a "†	0	0	0	0	0	0	$-\frac{a}{0}$		${}^{1^+}_{\cdot}\mathcal{F}_{a^{\perp}_{lphaeta}}$	$^{1.}\mathcal{A}_{S^{\perp}\alpha\beta}$	$^{1}\cdot h^{\perp}{}_{lpha}$	${}^{1}\mathcal{A}_{a}{}^{\parallel}{}_{\alpha}$	${}^{1}\mathcal{A}_{a^{\perp}\alpha}$	${}^{1}\mathcal{A}_{S}{}^{Lt}{}_{\alpha}$	${}^{1}\mathcal{A}_{S}{}^{\parallelt}{}_{\alpha}$	${}^{1}\mathcal{A}_{S}{}^{\perph}{}_{\alpha}$	${}^{1}\mathcal{A}_{S}{}^{\parallelh}{}_{\alpha}$	1						
							$^{1.}\mathcal{A}_{a}^{\parallel}\dagger^{\alpha\beta}$	$\frac{1}{4} \left(-a - c \right) k$	$-\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0	0	0							
							$^{1^+}\mathcal{A}_{a^\perp}\dagger^{\alpha\beta}$	$-\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0	0	0	0							
							$^{1^+}\mathcal{A}_{S^{\perp}} \dagger^{\alpha\beta}$	0	0	a. 0 4	0	0	0	0	0	0	0							
							$\frac{1}{2}h^{\perp} + \alpha$	0	0	0	0	$\frac{i a \cdot k}{4 \sqrt{2}}$	0	$-\frac{\frac{\pi a_0 \kappa}{6}}{4 \sqrt{6}}$	$\frac{1}{4} i \sqrt{\frac{5}{6}} a_0 k$	$-\frac{i a \cdot k}{4 \sqrt{3}}$	$-\frac{ia.k}{4\sqrt{6}}$							
							${}^{1}\mathcal{A}_{a}{}^{\parallel}\dagger^{\alpha}$	0	0	0	$-\frac{i a. k}{4 \sqrt{2}}$	$\frac{1}{4} \left(-a_{0} - c_{1} k^{2} \right)$	$\frac{a_0}{2\sqrt{2}}$	0	0	0	0							
							${}^{1}\mathcal{A}_{a}{}^{\perp}\dagger^{\alpha}$	0	0	0	0	$\frac{a_{0}}{2\sqrt{2}}$	0	0	0	0	0							
							$\mathcal{F}_{S^{\perpt}}$	0	0	0	$\frac{{\stackrel{ia.k}{\circ}}{\stackrel{k}{\circ}}}{4\sqrt{6}}$	0	0	$-\frac{a}{0}$	$\frac{\sqrt{5} \ a_{0}}{6}$	$-\frac{a_0}{6\sqrt{2}}$	$-\frac{a}{6}$							
							$\mathcal{F}_{S}^{I^{T}}$	0	0	0	$-\frac{1}{4} \bar{l} \sqrt{\frac{5}{6}} a_{.0} k$	0	0	$\frac{\sqrt{5} \ a_{0}}{6}$	$\frac{a}{0}$ 3	$-\frac{1}{6} \sqrt{\frac{5}{2}} a_0$	$-\frac{\sqrt{5} a_{0}}{6}$							
							${}^{1}\mathcal{A}_{S}{}^{\mathtt{h}}t^{lpha}$	0	0	0	$\frac{i a. k}{4 \sqrt{3}}$	0	0	$-\frac{a_0}{6\sqrt{2}}$	$-\frac{1}{6} \sqrt{\frac{5}{2}} a_0$	$\frac{a}{0}$	$\frac{a_{0}}{6\sqrt{2}}$							
							$^{1}\mathcal{A}_{S}^{\parallelh}\dagger^{\alpha}$	0	0	0	$\frac{i a. k}{4 \sqrt{6}}$	0	0	$-\frac{a}{6}$	$-\frac{\sqrt{5} \ a_{0}}{6}$	$\frac{a_0}{6\sqrt{2}}$	$\frac{5 a}{12}$	$^{2^{+}}h^{\parallel}_{\alpha\beta}$	$^{2^{+}}\mathcal{R}_{a}{}^{\parallel}{}_{\alpha\beta}$	$^{2.}\mathcal{H}_{S}^{\parallel}{}_{\alpha\beta}$	$^{2.^{+}}\mathcal{F}_{S^{^{\perp}}lphaeta}$	$^{2}\mathcal{A}_{a}^{\parallel}_{\alpha\beta\chi}$	$^{2}\mathcal{H}_{S}^{\parallel}_{\alpha\beta\chi}$	
																	$2.^{+}h^{\parallel} + ^{\alpha\beta}$	0	$-\frac{i a. k}{4 \sqrt{2}}$	$-\frac{i a.k}{0}$	$\frac{i a. k}{4 \sqrt{6}}$	0	0	
																	$^{2^{+}}\mathcal{A}_{a}{}^{\parallel}\dagger^{lphaeta}$	$\frac{i a. k}{4 \sqrt{2}}$	$\frac{a}{0}$	0	0	0	0	
																	$^{2,+}\mathcal{R}_{s}^{\parallel}\dagger^{lphaeta}$		0	$-\frac{a_{0}}{2}$	0	0	0	
																	$^{2,+}\mathcal{A}_{s}^{\perp}\dagger^{\alpha\beta}$	l.	0	0	$\frac{a}{0}$	0	0	
																	$2^{-}\mathcal{A}_{a}^{\parallel} \uparrow^{\alpha\beta\chi}$		0	0	0	$\frac{a}{\frac{0}{4}}$	0	
																	$2^{-}\mathcal{A}_{s}^{\parallel} + \alpha \beta \chi$		0	0	0	0	$\frac{a}{4}$.	$3^{-}\mathcal{A}_{s}^{\parallel}_{\alpha\beta}$
																							$3^{-}\mathcal{A}_{s}^{\parallel} + ^{\alpha\beta\chi}$	$-\frac{a}{2}$

Saturated propagator

	$\overset{0^+}{\cdot}\mathcal{T}^{\scriptscriptstyle \perp}$	$^{0,^{+}}\mathcal{T}^{\parallel}$	$^{0^+}\mathcal{W}_a{}^{\parallel}$	$^{0^+}\mathcal{W}_{s}{}^{\scriptscriptstyle \perp t}$	$^{0^+}\mathcal{W}_{S}{}^{\parallel}$	${}^{0^+}_{\cdot}W_{s}^{\perph}$	$0^{-}W_{a}^{\parallel}$
$\overset{0^+}{\cdot}\mathcal{T}^{\scriptscriptstyle \perp}$ †	$-\frac{36 k^2}{a_0 (16+3 k^2)^2}$	$\frac{4 \sqrt{3}}{16 a + 3 a k^2}$	$\frac{2 i \sqrt{6} k}{16 a + 3 a k^{2}}$	$-\frac{72 i k}{a \cdot (16+3 k^2)^2}$	$\frac{8 i k (19+3 k^2)}{a \cdot (16+3 k^2)^2}$	$-\frac{4 i \sqrt{2} k (10+3 k^2)}{a_0 (16+3 k^2)^2}$	0
^{0,+} ∕T †	$\frac{4 \sqrt{3}}{16 a_0 + 3 a_0 k^2}$	$\frac{4}{a \cdot k^2}$	$\frac{2i\sqrt{2}}{a.k\atop 0}$	$\frac{8 i \sqrt{3}}{16 a_0 k + 3 a_0 k^3}$	$-\frac{8i}{\sqrt{3} (16a.k+3a.k^3)}$	$-\frac{8i\sqrt{\frac{2}{3}}}{16a.k+3a.k^{3}}$	0
^{0,+} W _a †	$-\frac{2 i \sqrt{6} k}{16 a + 3 a k^{2}}$	$-\frac{2i\sqrt{2}}{a.k\atop 0}$	0	$\frac{4 \sqrt{6}}{16 a + 3 a k^2}$	$-\frac{4\sqrt{\frac{2}{3}}}{16a_0+3a_0k^2}$	$-\frac{8}{\sqrt{3} (16 a. + 3 a. k^2)}$	0
${}^{0^+}\mathcal{W}_{S}{}^{\scriptscriptstyle{\perp}t}\dagger$	$\frac{72 i k}{a \cdot (16 + 3 k^2)^2}$	$-\frac{8i \sqrt{3}}{16a.k+3a.k^{3}}$	$\frac{4 \sqrt{6}}{16 a_0 + 3 a_0 k^2}$	$-\frac{144}{a_{\cdot 0}(16+3k^2)^2}$	$\frac{16(19+3k^2)}{a(16+3k^2)^2}$	$-\frac{8\sqrt{2}(10+3k^2)}{a_0(16+3k^2)^2}$	0
0.+Ws †	$-\frac{8 i k (19+3 k^2)}{a \cdot (16+3 k^2)^2}$	$\frac{8i}{\sqrt{3} (16a.k+3a.k^3)}$	$-\frac{4\sqrt{\frac{2}{3}}}{16a_0+3a_0k^2}$	$\frac{16(19+3k^2)}{a\cdot (16+3k^2)^2}$	$-\frac{16(35+6k^2)}{3a.(16+3k^2)^2}$	$-\frac{8\sqrt{2}(22+3k^2)}{3a.(16+3k^2)^2}$	0
^{0,+} W _s ^{±h} †	$\frac{4i\sqrt{2}k(10+3k^2)}{a.(16+3k^2)^2}$	$\frac{8 i \sqrt{\frac{2}{3}}}{16 a_0 k + 3 a_0 k^3}$	$-\frac{8}{\sqrt{3}(16a_{.}+3a_{.}k^{2})}$	$-\frac{8\sqrt{2}(10+3k^2)}{a\cdot(16+3k^2)^2}$	$-\frac{8\sqrt{2}(22+3k^2)}{3a.(16+3k^2)^2}$	$\frac{32 (13+3 k^2)}{3 a_0 (16+3 k^2)^2}$	0
⁰⁻ Wa †	0	0	0	0	0	0	$-\frac{2}{a}$

$-\frac{2}{a}$	$^{1.}^+W_a^{\parallel}_{\alpha\beta}$	1 $\mathcal{W}_{a^{\perp}\alpha\beta}$	$^{\mathrm{l}^+}_{\cdot}\mathcal{W}_{S^{^\perp}lphaeta}$	${}^1{\mathcal T}^{\scriptscriptstyle \perp}{}_\alpha$	$\mathbb{R}^{-1}\mathcal{W}_{a}^{\parallel}_{\alpha}$	$^1\mathcal{W}_{a^_lpha}$	${}^{1}\mathcal{W}_{S}{}^{\mathtt{Lt}}{}_{lpha}$	1 $W_{s}^{\parallel t}{}_{\alpha}$	1 $W_{s}^{\perp h}{}_{\alpha}$	${}^1\mathcal{W}_{s}{}^{lh}{}_{\alpha}$	
$^{1^{+}}\mathcal{W}_{a}{}^{\parallel}\dagger^{\alpha\beta}$	0	$-\frac{2\sqrt{2}}{a_0}$	0	0	0	0	0	0	0	0	
$^{1.}W_{a}^{\perp}\dagger^{\alpha\beta}$	$-\frac{2\sqrt{2}}{\overset{a}{\circ}}$	$\frac{2(a.+c.k^2)}{a.^2_0}$	0	0	0	0	0	0	0	0	
$1^+_{\cdot}W_{S}^{\perp}\dagger^{lphaeta}$	0	0	$\frac{4}{a}$	0	0	0	0	0	0	0	
$\frac{1}{2}\mathcal{T}^{\perp} \dagger^{\alpha}$	0	0	0	$\frac{2 k^2 (a + c k^2)}{a^2 (2 + k^2)^2}$	$\frac{2i\sqrt{2}k}{a\cdot(2+k^2)}$	$\frac{i k (4+k^2) (a.+c.k^2)}{a^2 (2+k^2)^2}$	$-\frac{i(2c_{.}k^{5}+a_{.}k(6+5k^{2}))}{\sqrt{6}a_{.}^{2}(2+k^{2})^{2}}$	$\frac{i \sqrt{\frac{5}{6}} k}{2 a + a \cdot k^2}$	$\frac{i k (c_{.} k^{4}-2 a_{.} (3+k^{2}))}{\sqrt{3} a_{.0}^{2} (2+k^{2})^{2}}$	$\frac{i \sqrt{\frac{2}{3}} k}{2 a + a k^2}$	
1 · W_{a} $^{\parallel}$ † $^{\alpha}$	0	0	0	$-\frac{2i\sqrt{2}k}{2a_0+a_0k^2}$	0	$\frac{\sqrt{2} (4+k^2)}{a_0(2+k^2)}$	$-\frac{2 k^2}{\sqrt{3} (2 a_0 + a_0 k^2)}$	0	$\frac{\sqrt{\frac{2}{3}} k^2}{2 a_0 + a_0 k^2}$	0	
$\frac{1}{2}W_{a}^{\perp}\dagger^{\alpha}$	0	0	0	$-\frac{i k (4+k^2) (a.+c. k^2)}{a.^2 (2+k^2)^2}$	$\frac{\sqrt{2} (4+k^2)}{a_0(2+k^2)}$	$\frac{(4+k^2)^2 (a.+c.k^2)}{2 a.^2 (2+k^2)^2}$	$\frac{k^2 \left(a_0 \cdot (-2+k^2) - 2c \cdot k^2 \cdot (4+k^2)\right)}{2 \sqrt{6} a_0^{-2} (2+k^2)^2}$	$-\frac{\sqrt{\frac{5}{6}} k^2}{4 a. + 2 a. k^2}$	$\frac{10 a_0 k^2 + 4 (a_0 + c_1) k^4 + c_1 k^6}{2 \sqrt{3} a_0^2 (2 + k^2)^2}$	$-\frac{k^2}{\sqrt{6} (2a_0 + a_0 k^2)}$	
$\frac{1}{2} \mathcal{W}_{S}^{Lt} t^{\alpha}$	0	0	0	$\frac{i(2c_{\cdot}k^{5}+a_{\cdot}k(6+5k^{2}))}{\sqrt{6}a_{\cdot}^{2}(2+k^{2})^{2}}.$	$-\frac{2 k^2}{\sqrt{3} (2 a_0 + a_0 k^2)}$	0	$\frac{4c_{.}k^{6}-a_{.}(76+52k^{2}+3k^{4})}{12a_{.0}^{2}(2+k^{2})^{2}}$	$\frac{\sqrt{5} (10+3 k^2)}{12 a_0 (2+k^2)}$	$\frac{-c_{.k}^{6} k^{6} + a_{.k}^{6} (-2 + k^{2})}{3 \sqrt{2} a_{.k}^{2} (2 + k^{2})^{2}}$	$\frac{1}{-2 a\frac{8 a.}{0} -\frac{9 a.}{2+3 k^2}}$	
\mathcal{L}_{S}^{I}	0	0	0	$-\frac{i \sqrt{\frac{5}{6}} k}{2 a_0 + a_0 k^2}$	0	$-\frac{\sqrt{\frac{5}{6}} k^2}{4 a + 2 a k^2}$	$\frac{\sqrt{5} (10+3 k^2)}{12 a_0 (2+k^2)}$	$\frac{1}{12a}$	$-\frac{\sqrt{\frac{5}{2}}}{6 a_0 + 3 a_0 k^2}$	$-\frac{\sqrt{5}}{6a}_{0}$	
$1^{-}W_{s}^{\perp h} \uparrow^{\alpha}$	0	0	0	$\frac{i k (-c. k^4 + 2 a. (3+k^2))}{\sqrt{3} a.^2 (2+k^2)^2}$	$\frac{\sqrt{\frac{2}{3}} k^2}{2 a_0 + a_0 k^2}$	$\frac{10 a_0 k^2 + 4 (a_0 + c_1) k^4 + c_1 k^6}{2 \sqrt{3} a_0^2 (2 + k^2)^2}$	$\frac{-c_{.k}^{6} + a_{.0}^{6} (-2 + k^{2})}{3 \sqrt{2} a_{.0}^{2} (2 + k^{2})^{2}}$	$-\frac{\sqrt{\frac{5}{2}}}{6 a_0 + 3 a_0 k^2}$	$\frac{c_{.k}^{6}+4 a_{.} (17+14 k^{2}+3 k^{4})}{6 a_{.0}^{2} (2+k^{2})^{2}}$	$-\frac{\sqrt{2} (7+3 k^2)}{3 a_0 (2+k^2)}$	
$\mathcal{X}_{s}^{lh} t^{\alpha}$	0	0	0	$-\frac{i \sqrt{\frac{2}{3}} k}{2 a + a \cdot k^2}$	0	$-\frac{k^2}{\sqrt{6} (2 a_0 + a_0 k^2)}$	$\frac{1}{-2 a_0 - \frac{8 a_0}{0 - \frac{8 a_0}{2 + 3 \kappa^2}}}$	$-\frac{\sqrt{5}}{6a_0}$	$-\frac{\sqrt{2} (7+3 k^2)}{3 a_0 (2+k^2)}$	$\frac{5}{3a}$	2,+9

3 a. 0	$2^+\mathcal{T}^{\parallel}{}_{\alpha\beta}$	$^{2^{+}}W_{a}^{\parallel}{}_{\alpha\beta}$	$^{2,+}W_{s}^{\parallel}_{\alpha\beta}$	$^{2^{+}}W_{s^{\perp}\alpha\beta}$	$^{2}W_{a}^{\parallel}_{\alpha\beta\chi}$	${}^{2}\mathcal{W}_{S}^{\parallel}{}_{\alpha\beta\chi}$	
$^{2.}\mathcal{T}^{\parallel}$ † lphaeta		$-\frac{4i\sqrt{2}}{a.k}$	$\frac{4i}{\sqrt{3}}a_{0}k$	$\frac{4i\sqrt{\frac{2}{3}}}{a.k}$	0	0	
$^{2^{+}}W_{a}^{\parallel}\dagger^{lphaeta}$	$\frac{4i\sqrt{2}}{a.k}$	0	$\frac{2\sqrt{\frac{2}{3}}}{a.0}$	$\frac{4}{\sqrt{3}}a_{0}$	0	0	
$^{2^{+}}W_{s}^{\parallel}\dagger^{lphaeta}$	$-\frac{4i}{\sqrt{3}} a_{0k}$	$\frac{2\sqrt{\frac{2}{3}}}{a_{0}}$	$-\frac{8}{3a}$	$-\frac{2\sqrt{2}}{3a}$	0	0	
$^{2^{+}}W_{s}^{\perp}\dagger^{lphaeta}$	$-\frac{4i\sqrt{\frac{2}{3}}}{a.k}$	$\frac{4}{\sqrt{3}}a_{0}$	$-\frac{2\sqrt{2}}{3a}_{0}$	$\frac{8}{3a}$	0	0	
$2^{-}W_{a}^{\parallel} + ^{\alpha\beta\chi}$	0	0	0	0	$\frac{4}{a}$	0	
$2^{-}W_{s}^{\parallel} +^{\alpha\beta\chi}$	0	0	0	0	0	$\frac{4}{a}$	(1)
						$3^{-}W_{s}^{\parallel} + ^{\alpha\beta\chi}$	
							_

Source constraints

Spin-parity form	Covariant form	Multiplicities
$k^{0+}W_s^{\parallel} + 2k^{0+}W_s^{\perp h} - 6i^{0+}T^{\perp} == 0$	$2 \partial_{\beta} \partial_{\alpha} \mathcal{T}^{\alpha\beta} + \partial_{\chi} \partial^{\chi} \partial_{\alpha} \mathcal{W}^{\alpha\beta}_{\beta} = \partial_{\chi} \partial_{\beta} \partial_{\alpha} \mathcal{W}^{\alpha\beta\chi}$	1
$k^{0+}W_{s}^{\perp t} + 2i^{0+}T^{\perp} == 0$	$2\partial_{\beta}\partial_{\alpha}\mathcal{T}^{\alpha\beta} == \partial_{\chi}\partial_{\beta}\partial_{\alpha}\mathcal{W}^{\alpha\beta\chi}$	1
$6k {}^{1}\mathcal{W}_{a}^{1\alpha} + 2k {}^{1}\mathcal{W}_{s}^{\parallel h^{\alpha}} + k {}^{1}\mathcal{W}_{s}^{\parallel t^{\alpha}} + 3k {}^{1}\mathcal{W}_{s}^{1t^{\alpha}} + 12i {}^{1}\mathcal{T}^{1\alpha} == 0$	$4 \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{T}^{\beta \chi} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \mathcal{W}^{\beta \alpha \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \mathcal{W}^{\alpha \beta}{}_{\beta} = 4 \partial_{\chi} \partial^{\chi} \partial_{\beta} \mathcal{T}^{\alpha \beta} + 2 \partial_{\delta} \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{W}^{\beta \chi \delta} + \partial_{\delta} \partial^{\delta} \partial_{\beta} \partial^{\alpha} \mathcal{W}^{\beta \chi}{}_{\chi}$	3
$k {}^{1}\mathcal{W}_{s}^{\perp h^{\alpha}} - 6 i {}^{1}\mathcal{T}^{\perp \alpha} == k (3 {}^{1}\mathcal{W}_{a}^{\perp \alpha} + {}^{1}\mathcal{W}_{s}^{\perp t^{\alpha}})$	$2 \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{T}^{\beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \mathcal{W}^{\beta \alpha \chi} = 2 \partial_{\chi} \partial^{\chi} \partial_{\beta} \mathcal{T}^{\alpha \beta} + \partial_{\delta} \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{W}^{\beta \chi \delta}$	3
Total expected gauge generators:		8

Massive spectrum

(No particles)

Massless spectrum

Massless particle

Pole residue: $\left| -\frac{p^2}{a} \right| > 0$ Polarisations: 2

Unitarity conditions