Chapter: 1

Introduction

Introduction to Algorithms

- Algorithm: It is the finite sequence of operations/instructions which transform the given input to correct output.
- Algorithmics: it is the branch that performs the study of algorithms

Properties of algorithms

- •Input from a specified set,
- Output from a specified set (solution),
- Definiteness of every step in the computation,
- Correctness of output for every possible input,
- Finiteness of the number of calculation steps,
- Effectiveness of each calculation step and
- Generality for a class of problems.

Problems & Instance

- Problem: Multiply two positive integers
- >Instance:
 - \geq (10,2) is proper instance for above problem
 - \triangleright (-5,2) is not proper instance
 - \geq (10,2.5) is again not proper instance
- ➤ Algorithm must work correctly on every instance it claims to solve
- > How to show that it works incorrect?
 - Find any one instance for which it doesn't work correctly

Problems & Instance (contd..)

➤ Domain of definition (The set of instances):

To prove the correctness of the algorithm, one needs to limit the size of instance.

Any real computing device has a limit on the size of instances it can handle, either because the numbers involved get too big or because we run out of storage.

Size of instance

- ➤If we are searching an array, the "size" of the input could be the size of the array
- ➤If we are merging two arrays, the "size" could be the sum of the two array sizes
- ➤If we are computing the nth Fibonacci number, or the nth factorial, the "size" is n
- ➤ We choose the "size" to be the parameter that most influences the actual time/space required
 - >It is usually obvious what this parameter is
 - >Sometimes we need two or more parameters

Efficiency of Algorithms

➤ Which algorithm needs to be chosen when more than one algorithm is available?

Three Approaches:

- Empirical (Posteriori) programming all the techniques and trying them of different instances.
- Theoretical (Priori): determining mathematically the quantity of resources needed as a function of the size of instance. Resources: computing time, storage space.
- Hybrid approach: Algo's efficiency is determined theoretically and required numerical parameters are determined empirically.

Limitations of Empirical Approach

- The algorithm has to be implemented, which may take a long time and could be very difficult.
- ➤ Results may not be indicative for the running time on other inputs that are not included in the experiments.
- In order to compare two algorithms, the same hardware and software must be used.

Theoretical Approach

- ➤ Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, *n*.
- Takes into account all possible inputs
- ➤ Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

Principle of Invariance

- ➤ What is the unit for storage space measurement?
- > What is the unit for time measurement?
- Principle of Invariance: Two different implementations of the same algorithms will not differ in efficiency by more than some multiplicative constant.
- Example: $t_1(n)$ and $t_2(n)$ are the time for any algorithm for different implementations, then there exist "c" & "d" such that ..

$$t_1(n) \le c * t_2(n)$$

 $t_2(n) \le d * t_1(n)$

Means, the running time of either implementation is bounded by a constant multiple of the running time of the other.

Principle of Invariance (contd..)

>Principle suggest that there is no such unit exist.

We only express the time taken by an algorithm within a multiplicative constant.

In the order of t(n)

Frequently occurring orders:

- -Linear
- -Quadratic
- -Cubic
- -Polynomial
- -Exponential, etc.

Hidden constants:

n² days and n³ seconds

Common time complexities

The Growth Rate of the Six Popular functions

n	$\log n$	n	nlog n	n^2	n^3	2^n
4	2	4	8	16	64	16
8	3	8	24	64	512	256
16	4	16	64	256	4,096	65,536
32	5	32	160	1,024	32,768	4,294,967,296
64	6	64	384	4,094	262,144	$1.84*10^{19}$
128	7	128	896	16,384	2,097,152	$3.40*10^{38}$
256	8	256	2,048	65,536	16,777,216	$1.15*10^{77}$
512	9	512	4,608	262,144	134,217,728	$1.34 * 10^{154}$
1024	10	1,024	10,240	1,048,576	1,073,741,824	1.79 * 10 ³⁰⁸

Average, Best and Worst Case

- ➤ Usually we would like to find the *average* time to perform an algorithm
- ➤ However, Sometimes the "average" isn't well defined
 - Example: Sorting an "average" array
 - Time typically depends on how out of order the array is
- ➤ Sometimes finding the average is too difficult
- ➤Often we have to be satisfied with finding the *worst* (longest) time required
 - Sometimes this is even what we want (say, for time-critical operations)
- The best (fastest) case is seldom of interest

Why to look for efficiency?

What to choose: Better hardware or better algorithm?

```
Case 1: Algo1 on machine1 (takes 10<sup>-4</sup> * 2<sup>n</sup> seconds)
```

```
for n=10, t=1/10 sec
for n=20, t\approx 2 minutes
for n=30, t\geq 1 day
for n=38, t\geq 1 year
```

Case 2: Algo1 on machine2 (takes $10^{-6} * 2^n$ seconds, 100x faster)

```
for n=10, t=1/1000 \text{ sec}
....
for n=45, t \ge 1 \text{ year}
```

Why to look for efficiency?

What happens with better algorithm?

```
Case 3: Algo2 on machine1 (takes 10<sup>-2</sup> * n<sup>3</sup> seconds)
```

```
for n=10, t=10 sec
for n=20, t\approx 1 or 2 minutes
for n=30, t\approx 4.5 minutes
....
for n=200, t\geq 1 day
for n=1500, t\approx 1 year
```

Case 4: Algo2 on machine2 even faster than case 3..!!