

Fitting of the effective mass

Rongzhen Chen

Royal Institute of Technology

January 14, 2013

Backgroundaaa

Program Flow

Result

Future

In solid state physcis, the effective mass is defined as follows:

$$\frac{1}{m_{\alpha\beta}^*} = \frac{1}{\hbar^2} \frac{d^2 E(\mathbf{k})}{dk_{\alpha} dk_{\beta}} \tag{1}$$

where m^* is effective mass, and E(k) is the band dispersion relation between energy E and k. And the effective mass reflects the band curvature, the flatter of band, the larger effective mass.

In this report, I will fit the effective mass around the Γ point for the semiconductor material $CuInSe_2$ by taking advantage of least-squares fitting in Python.

Energy E is as follows:

$$E = \frac{\hbar^2}{2m_{xy}^*} (k_x^2 + k_y^2) + \frac{\hbar^2}{2m_z^*} (k_z^2)$$
 (2)

which means that we want to know the value m_{xy}^* and m_z^* by given the value of E and k_x, k_y and k_z .

Figure: Flow chart of fitting energy band dispersion

Here are the results from fitting, I compare my fitting results (value inside the parentheses in red color) with the paper [C. Persson, Appl. Phys. Lett. 93, 072106 (2008)], where I find out there are quite similar, so the code is reliable to be used.

Table: Effective mass for CulnSe₂

	<i>c</i> 1	v1	v2	<i>v</i> 3
,	0.08 (<mark>0.08</mark>) 0.09 (0.09)	` ,	` ,	` ,

And following figures are the fitting result from v1 as one example, also with testing results.

Figure: Fitting results for band v1

Figure: Testing results for band v1

There are several places I can improve this code, for example, I can creat a graphical user interface to convenient user, or make this code more flexible, or find the maximum valence band index automatically.

Thank you for your time!