Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Проектування алгоритмів»

"Проектування і	• •	•	. •	NID	199
TINAARTVAAHII	і апашіз апгл	питмір ппа	DUUNIIIAUU	- N Р_СК ПОПЦИУ	рапац ц г
	ı ananın anıv			THE COMMANDER	задан н.

Виконав(ла)	<i>III-13 Вдовиченко С.Ю.</i> (шифр, прізвище, ім'я, по батькові)	
Перевірив		

3MICT

1	MET	А ЛАБОРАТОРНОЇ РОБОТИ	3
2	ЗАВД	[АННЯ	4
3	вик	ОНАННЯ	. 10
	3.1 ПР	ОГРАМНА РЕАЛІЗАЦІЯ АЛГОРИТМУ	. 10
	3.1.1	Вихідний код	. 10
	3.1.2	Приклади роботи	. 12
	3.2 TE	СТУВАННЯ АЛГОРИТМУ	. 14
	3.2.1	Значення цільової функції зі збільшенням кількості ітерацій .	. 14
	3.2.2	Графіки залежності розв'язку від числа ітерацій	. 15
В	виснов	ЗОК	. 16
К	РИТЕР	ІЇ ОЦІНЮВАННЯ	. 17

1 МЕТА ЛАБОРАТОРНОЇ РОБОТИ

Мета роботи — вивчити основні підходи формалізації метаеврестичних алгоритмів і вирішення типових задач з їхньою допомогою.

2 ЗАВДАННЯ

Згідно варіанту, розробити алгоритм вирішення задачі і виконати його програмну реалізацію на будь-якій мові програмування.

Задача, алгоритм і його параметри наведені в таблиці 2.1.

Зафіксувати якість отриманого розв'язку (значення цільової функції) після кожних 20 ітерацій до 1000 і побудувати графік залежності якості розв'язку від числа ітерацій.

Зробити узагальнений висновок.

Таблиця 2.1 – Варіанти алгоритмів

№	Задача і алгоритм
1	Задача про рюкзак (місткість Р=250, 100 предметів, цінність
	предметів від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)),
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1
	різному предмету, оператор схрещування одноточковий по 50 генів,
	мутація з ймовірністю 5% змінюємо тільки 1 випадковий ген).
	Розробити власний оператор локального покращення.
2	Задача комівояжера (100 вершин, відстань між вершинами випадкова
	від 5 до 50), мурашиний алгоритм (α = 2, β = 4, ρ = 0,4, Lmin знайти
	жадібним алгоритмом, кількість мурах М = 30, починають маршрут в
	різних випадкових вершинах).
3	Задача розфарбовування графу (200 вершин, степінь вершини не
	більше 20, але не менше 1), бджолиний алгоритм АВС (число бджіл
	30 із них 2 розвідники).
4	Задача про рюкзак (місткість Р=200, 100 предметів, цінність
	предметів від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)),
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1
	різному предмету, оператор схрещування двоточковий порівну генів,
	мутація з ймовірністю 10% змінюємо тільки 1 випадковий ген).
	Розробити власний оператор локального покращення.

5	Задача комівояжера (150 вершин, відстань між вершинами випадкова		
	від 5 до 50), мурашиний алгоритм (α = 2, β = 3, ρ = 0,4, Lmin знайти		
	жадібним алгоритмом, кількість мурах М = 35, починають маршрут в		
	різних випадкових вершинах).		
6	Задача розфарбовування графу (250 вершин, степінь вершини не		
	більше 25, але не менше 2), бджолиний алгоритм АВС (число бджіл		
	35 із них 3 розвідники).		
7	Задача про рюкзак (місткість Р=150, 100 предметів, цінність		
	предметів від 2 до 10 (випадкова), вага від 1 до 5 (випадкова)),		
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1		
	різному предмету, оператор схрещування рівномірний, мутація з		
	ймовірністю 5% два випадкові гени міняються місцями). Розробити		
	власний оператор локального покращення.		
8	Задача комівояжера (200 вершин, відстань між вершинами випадкова		
	від 0(перехід заборонено) до 50), мурашиний алгоритм ($\alpha = 3$, $\beta = 2$, ρ		
	= 0,3, Lmin знайти жадібним алгоритмом, кількість мурах M = 45,		
	починають маршрут в різних випадкових вершинах).		
9	Задача розфарбовування графу (150 вершин, степінь вершини не		
	більше 30, але не менше 1), бджолиний алгоритм АВС (число бджіл		
	25 із них 3 розвідники).		
10	Задача про рюкзак (місткість Р=150, 100 предметів, цінність		
	предметів від 2 до 10 (випадкова), вага від 1 до 5 (випадкова)),		
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1		
	різному предмету, оператор схрещування рівномірний, мутація з		
	ймовірністю 10% два випадкові гени міняються місцями). Розробити		
	власний оператор локального покращення.		
11	Задача комівояжера (250 вершин, відстань між вершинами випадкова		
	від 0(перехід заборонено) до 50), мурашиний алгоритм ($\alpha = 2$, $\beta = 4$, ρ		

	= 0,6, Lmin знайти жадібним алгоритмом, кількість мурах M = 45,
	починають маршрут в різних випадкових вершинах).
12	Задача розфарбовування графу (300 вершин, степінь вершини не
	більше 30, але не менше 1), бджолиний алгоритм АВС (число бджіл
	60 із них 5 розвідники).
13	Задача про рюкзак (місткість Р=250, 100 предметів, цінність
	предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)),
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1
	різному предмету, оператор схрещування одноточковий 30% і 70%,
	мутація з ймовірністю 5% два випадкові гени міняються місцями).
	Розробити власний оператор локального покращення.
14	Задача комівояжера (250 вершин, відстань між вершинами випадкова
	від 1 до 40), мурашиний алгоритм (α = 4, β = 2, ρ = 0,3, Lmin знайти
	жадібним алгоритмом, кількість мурах М = 45 (10 з них дикі,
	обирають випадкові напрямки), починають маршрут в різних
	випадкових вершинах).
15	Задача розфарбовування графу (100 вершин, степінь вершини не
	більше 20, але не менше 1), класичний бджолиний алгоритм (число
	бджіл 30 із них 3 розвідники).
16	Задача про рюкзак (місткість Р=250, 100 предметів, цінність
	предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)),
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1
	різному предмету, оператор схрещування двоточковий 30%, 40% і
	30%, мутація з ймовірністю 10% два випадкові гени міняються
	місцями). Розробити власний оператор локального покращення.
17	Задача комівояжера (200 вершин, відстань між вершинами випадкова
	від 1 до 40), мурашиний алгоритм (α = 2, β = 4, ρ = 0,7, Lmin знайти
	жадібним алгоритмом, кількість мурах М = 45 (15 з них дикі,

	обирають випадкові напрямки), починають маршрут в різних	
	випадкових вершинах).	
18	Задача розфарбовування графу (300 вершин, степінь вершини не	
	більше 50, але не менше 1), класичний бджолиний алгоритм (число	
	бджіл 60 із них 5 розвідники).	
19	Задача про рюкзак (місткість Р=250, 100 предметів, цінність	
	предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)),	
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1	
	різному предмету, оператор схрещування триточковий 25%, мутація з	
	ймовірністю 5% два випадкові гени міняються місцями). Розробити	
	власний оператор локального покращення.	
20	Задача комівояжера (200 вершин, відстань між вершинами випадкова	
	від 1 до 40), мурашиний алгоритм ($\alpha = 3$, $\beta = 2$, $\rho = 0.7$, Lmin знайти	
	жадібним алгоритмом, кількість мурах М = 45 (10 з них елітні,	
	подвійний феромон), починають маршрут в різних випадкових	
	вершинах).	
21	Задача розфарбовування графу (200 вершин, степінь вершини не	
	більше 30, але не менше 1), класичний бджолиний алгоритм (число	
	бджіл 40 із них 2 розвідники).	
22	Задача про рюкзак (місткість Р=250, 100 предметів, цінність	
	предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)),	
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1	
	різному предмету, оператор схрещування триточковий 25%, мутація з	
	ймовірністю 5% змінюємо тільки 1 випадковий ген). Розробити	
	власний оператор локального покращення.	
23	Задача комівояжера (300 вершин, відстань між вершинами випадкова	
	від 1 до 60), мурашиний алгоритм (α = 3, β = 2, ρ = 0,6, Lmin знайти	
	жадібним алгоритмом, кількість мурах М = 45 (15 з них елітні,	

	подвійний феромон), починають маршрут в різних випадкових
	вершинах).
24	Задача розфарбовування графу (400 вершин, степінь вершини не
	більше 50, але не менше 1), класичний бджолиний алгоритм (число
	бджіл 70 із них 10 розвідники).
25	Задача про рюкзак (місткість Р=250, 100 предметів, цінність
	предметів від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)),
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1
	різному предмету, оператор схрещування одноточковий по 50 генів,
	мутація з ймовірністю 5% змінюємо тільки 1 випадковий ген).
	Розробити власний оператор локального покращення.
26	Задача комівояжера (100 вершин, відстань між вершинами випадкова
	від 5 до 50), мурашиний алгоритм (α = 2, β = 4, ρ = 0,4, Lmin знайти
	жадібним алгоритмом, кількість мурах М = 30, починають маршрут в
	різних випадкових вершинах).
27	Задача розфарбовування графу (200 вершин, степінь вершини не
	більше 20, але не менше 1), бджолиний алгоритм АВС (число бджіл
	30 із них 2 розвідники).
28	Задача про рюкзак (місткість Р=200, 100 предметів, цінність
	предметів від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)),
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1
	різному предмету, оператор схрещування двоточковий порівну генів,
	мутація з ймовірністю 10% змінюємо тільки 1 випадковий ген).
	Розробити власний оператор локального покращення.
29	Задача комівояжера (150 вершин, відстань між вершинами випадкова
	від 5 до 50), мурашиний алгоритм ($\alpha = 2$, $\beta = 3$, $\rho = 0.4$, Lmin знайти
	жадібним алгоритмом, кількість мурах М = 35, починають маршрут в
	різних випадкових вершинах).

30	Задача розфарбовування графу (250 вершин, степінь вершини не	
	більше 25, але не менше 2), бджолиний алгоритм АВС (число бджіл	
	35 із них 3 розвідники).	
31	Задача про рюкзак (місткість Р=250, 100 предметів, цінність	
	предметів від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)),	
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1	
	різному предмету, оператор схрещування одноточковий по 50 генів,	
	мутація з ймовірністю 5% змінюємо тільки 1 випадковий ген).	
	Розробити власний оператор локального покращення.	
32	Задача комівояжера (100 вершин, відстань між вершинами випадкова	
	від 5 до 50), мурашиний алгоритм ($\alpha = 2$, $\beta = 4$, $\rho = 0,4$, Lmin знайти	
	жадібним алгоритмом, кількість мурах М = 30, починають маршрут в	
	різних випадкових вершинах).	
33	Задача розфарбовування графу (200 вершин, степінь вершини не	
	більше 20, але не менше 1), бджолиний алгоритм АВС (число бджіл	
	30 із них 2 розвідники).	
34	Задача про рюкзак (місткість Р=200, 100 предметів, цінність	
	предметів від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)),	
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1	
	різному предмету, оператор схрещування двоточковий порівну генів,	
	мутація з ймовірністю 10% змінюємо тільки 1 випадковий ген).	
	Розробити власний оператор локального покращення.	
35	Задача комівояжера (150 вершин, відстань між вершинами випадкова	
	від 5 до 50), мурашиний алгоритм ($\alpha = 2$, $\beta = 3$, $\rho = 0.4$, Lmin знайти	
	жадібним алгоритмом, кількість мурах М = 35, починають маршрут в	
	різних випадкових вершинах).	

3 ВИКОНАННЯ

3.1 Програмна реалізація алгоритму

3.1.1 Вихідний код

```
def generate items(num items):
        items.append(Item(value, weight))
def generate population(num individuals, items):
        population.append(knapsack)
parent2.items[crossover point:]
        new_item = random.choice(items)
individual.items.append(new_item)
def local improvement(individual, items):
    knapsack_items = individual.items.copy()
             knapsack_items.append(item)
```

```
def print population(population):
           new population.append(child)
```

3.1.2 Приклади роботи

На рисунках 3.1 і 3.2 показані приклади роботи програми.

```
E:\ads_lab4\venv\Scripts\python.exe E:/ads_lab4/main.py
Enter number of generations:
Knapsack : weight = 232, value = 635
Best knapsack value: 635
Mean fitness: 577
Max fitness: 635
Knapsack items:
Item: value = 11, weight = 4
Item: value = 19, weight = 8
Item: value = 19, weight = 8
Item: value = 6, weight = 8
Item: value = 7, weight = 8
Item: value = 7, weight = 8
Item: value = 4, weight = 8
Item: value = 15, weight = 4
Item: value = 18, weight = 3
Item: value = 12, weight = 10
Item: value = 18, weight = 6
Item: value = 8, weight = 8
Item: value = 12, weight = 5
Item: value = 16, weight = 9
Item: value = 11, weight = 9
Item: value = 16, weight = 9
Item: value = 16, weight = 9
Item: value = 16, weight = 3
Item: value = 16, weight = 3
```

Рисунок 3.1 – Робота програми для 100 ітерацій

```
E:\ads_lab4\venv\Scripts\python.exe E:/ads_lab4/main.py
Enter number of generations: 1000
Knapsack : weight = 330, value = 837
Best knapsack value: 837
Mean fitness: 718
Max fitness: 837
Knapsack items:
Item: value = 19, weight = 10
Item: value = 19, weight = 10
Item: value = 19, weight = 10
Item: value = 11, weight = 5
Item: value = 11, weight = 5
Item: value = 18, weight = 5
Item: value = 2,     weight = 1
Item: value = 7,     weight = 1
Item: value = 7,
                  weight = 1
Item: value = 2, weight = 1
                   weight = 5
Item: value = 5,
Item: value = 5, weight = 5
Item: value = 12, weight = 5
Item: value = 11, weight = 1
Item: value = 11, weight = 1
```

Рисунок 3.2 – Робота програми для 1000 ітерацій

3.2 Тестування алгоритму

3.2.1 Значення цільової функції зі збільшенням кількості ітерацій

У таблиці 3.1 наведено значення цільової функції зі збільшенням кількості ітерацій.

Ітерації	Середнє значення цільової функції
0	11
20	431
40	651
60	465
80	674
100	641
120	634
140	797
160	521
180	787
200	533
260	381
300	592
320	742
420	722
520	677
620	824
720	767
820	621
840	722
920	776
940	624
980	648
1000	761
	<u>l</u>

3.2.2 Графіки залежності розв'язку від числа ітерацій

На рисунку 3.3 наведений графік, який показує якість отриманого розв'язку.

Рисунок 3.3 – Графіки залежності розв'язку від числа ітерацій

ВИСНОВОК

В рамках даної лабораторної роботи я реалізував генетичний алгоритм на прикладі задачі про рюкзак. Генетичний алгоритм в умовах даної задачі складався з вирахування цільової функції, вибірки генів для подальшого кросинговеру, сам кросинговер безпосередньо та можливі мутації генів з ймовірністю 10 відсотків. Суть мутації полягає в тому, що бінарне значення хромосоми буде змінене на протилежне ($1 => 0 \mid 0 => 1$). Було проаналізовано алгоритм при різних значеннях вхідних параметрів та побудовано графік залежності значення цільової функції від кількості ітерацій.

КРИТЕРІЇ ОЦІНЮВАННЯ

При здачі лабораторної роботи до 27.11.2021 включно максимальний бал дорівню ϵ – 5. Після 27.11.2021 максимальний бал дорівню ϵ – 1.

Критерії оцінювання у відсотках від максимального балу:

- програмна реалізація алгоритму 75%;
- тестування алгоритму– 20%;
- висновок -5%.