ЛАБОРАТОРНЫЕ РАБОТЫ

по дисциплине «Статистический анализ временных рядов»

лабораторные занятия - 34 ч. вид отчетности: *зачет*.

Преподаватель: Цеховая Татьяна Вячеславовна, к. ф. - м. н., доцент

ЧАСТЬ 1

СОДЕРЖАНИЕ

ИНДИВИДУАЛЬНАЯ РАБОТА № 1

- **Задание 1** Проверка гипотезы о нормальном распределении генеральной совокупности по критерию Пирсона (критерию χ^2).
- Задание 2 Основные выборочные характеристики.
- Задание 3 Измерение взаимной зависимости.
- Задание 4 Расчет коэффициентов линейного уравнения регрессии.
- Задание 5 Оценка адекватности регрессионной модели.

ИНДИВИДУАЛЬНАЯ РАБОТА № 2

- Задание 1 Построение автокорреляционной функции
- Задание 2 Анализ временной изменчивости ряда температуры воды.

Приложение 1. ИСХОДНЫЕ ДАННЫЕ К ИНДИВИДУАЛЬНЫМ РАБОТАМ.

Приложение 2. ОСНОВНЫЕ СТАТИСТИЧЕСКИЕ ТАБЛИЦЫ.

Приложение 3. ОБРАЗЕЦ ОФОРМЛЕНИЯ РАБОТЫ В ЕХСЕL.

Рекомендуемая литература

ИНДИВИДУАЛЬНАЯ РАБОТА № 1

Задание 1

Проверка гипотезы о нормальном распределении генеральной совокупности по критерию Пирсона (критерию χ^2)

Построить графики трех исходных рядов температуры воды (рисунок 1). Визуальный анализ графиков позволяет качественно оценить изменчивость рядов, наличие периодических колебаний и тренда.

Рисунок – 1 Временная изменчивость температуры поверхности океана в октябре, ноябре и декабре в точке 9 (55° с.ш. 30° з.д.)

Для первого из трех предложенных рядов X_1 , X_2 и X_3 проверить гипотезу о нормальном распределении генеральной совокупности по критерию Пирсона (критерию χ^2).

Для этого необходимо:

- 1. Руководствуясь рисунком 1 выдвинуть гипотезу о законе распределения исходных данных.
- 2. Произвести ранжирование ряда по возрастанию; определить минимальное и максимальное значение выборки:

$$x_{\min} = \min_{i=1,n} x_i,$$
 $x_{\max} = \max_{i=1,n} x_i,$

n – объем выборки.

Вычислить размах (диапазон) выборки:

$$R = x_{max} - x_{min}$$
.

3. Весь диапазон значений признака [x_{\min} , x_{\max}] разбить на N интервалов одинаковой длины. Число интервалов N определить по формуле Стерджеса:

$$N = 1 + [3,322 \text{ lg } n] = 1 + [\log_2 n],$$

где n – объем выборки, [.] – целая часть числа.

Вычислить величину интервалов h = R / N.

4. Определить границы интервалов (a_i, a_{i+1}) :

$$a_1 = x_{\min}$$
, $a_2 = a_1 + h = x_{\min} + h$, $a_3 = a_2 + h = x_{\min} + 2h$, ..., $a_{N+1} = a_N + h = x_{\min} + Nh$.

- 5. Построить интервальный вариационный ряд, указав абсолютные m_i и относительные w_i частоты. Проверить выполнение условий нормировки для абсолютных и относительных частот.
 - 6. Рассчитать середины $x_{(i)}$ интервалов (a_i, a_{i+1}) :

$$x_{(i)} = \frac{a_i + a_{i+1}}{2} \ .$$

- 7. По имеющемуся интервальному вариационному ряду с помощью *Мастера диаграмм МS Excel* построить гистограмму и полигон распределения абсолютных частот. Гистограмма представляет собой эмпирическую функцию распределения.
- 8. Вычислить выборочное среднее $\bar{x} = \frac{1}{n} \sum_{i=1}^{N} m_i x_{(i)}$ и выборочное среднее квадратическое отклонение $S_n = \sqrt{\frac{1}{n} \sum_{i=1}^{N} m_i (x_{(i)} \bar{x})^2}$, где n объем выборки, N число интервалов, m_i —

абсолютные частоты, $x_{(i)} = \frac{a_i + a_{i+1}}{2}$ — среднее арифметическое концов интервалов.

9. Перейти к нормированным величинам

$$z_i = \frac{a_i - \overline{x}}{S_n}, \qquad z_{i+1} = \frac{a_{i+1} - \overline{x}}{S_n},$$

причем значение z_1 полагают равным $-\infty$, а значение z_{N+1} полагают равным $+\infty$.

10. Вычислить теоретические частоты $m_i' = nP_i$, где n – объем выборки,

$$P_i = \Phi_0(z_{i+1}) - \Phi_0(z_i),$$

$$\Phi_0(z) = \frac{1}{\sqrt{2\pi}} \int_0^z e^{-u^2/2} du, \qquad \Phi_0(-z) = -\Phi_0(z), \qquad \Phi_0(-\infty) = -0.5; \qquad \Phi_0(\infty) = 0.5.$$

Значения функции $\Phi_0(z)$ найти по <u>Таблице 1</u> Приложения 2.

Замечание. Интервалы, содержащие малочисленные эмпирические частоты ($m_i < 5$), следует объединить, а частоты этих интервалов сложить. В этом случае и соответствующие им теоретические частоты также надо сложить. Если производилось объединение интервалов, то при определении числа степеней свободы по формуле k = N - 3 следует в качестве N принять число интервалов, оставшихся после объединения интервалов.

11. Для того чтобы оценить степень приближения выборочного распределения к теоретической кривой, вычислить наблюдаемое значение критерия $\chi^2_{\text{набл}}$:

$$\chi^2$$
набл = $\sum_{i=1}^{N} \frac{(m_i - m_i')^2}{m_i'}$.

12. По <u>Таблице 3</u> Приложения 2 критических точек распределения χ^2 , по заданному уровню значимости α и числу степеней свободы $k=N-3,\ N-$ число интервалов, найти критическую точку $\chi^2_{\rm kp}(\alpha;k)$ правосторонней критической области.

Указания:

- **a)** значение критической точки $\chi^2_{\kappa p}(\alpha; k)$ можно получить, применяя встроенную статистическую функцию **XИ2ОБР** приложения *MS Excel* .
- б) значения α уровней значимости выбрать из таблицы согласно номеру варианта:

№ варианта	1	2	3	4	5	6	7	8	9
α_1	0,01	0,02	0,025	0,05	0,05	0,02	0,01	0,01	0,02
α_2	0,05	0,001	0,09	0,025	0,02	0,01	0,05	0,025	0,05
№ варианта	10	11	12	13	14	15	16	17	18
α_1	0,025	0,05	0,025	0,01	0,09	0,01	0,02	0,025	0,05
α_2	0,01	0,001	0,065	0,025	0,01	0,05	0,01	0,05	0,08

13. Если $\chi^2_{\text{набл}} < \chi^2_{\text{кр}}$, то нет оснований отвергнуть гипотезу о нормальном распределении генеральной совокупности. Другими словами, эмпирические и теоретические частоты различаются незначимо. Если $\chi^2_{\text{набл}} > \chi^2_{\text{кр}}$ – гипотезу отвергают.

Задание 2

Основные выборочные характеристики

Рассчитать основные параметры трех статистических рядов:

1. Выборочное среднее (среднее арифметическое), характеризующее центр тяжести числового ряда

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} \sum_{i=1}^{k} m_i x_{(i)}$$

где n — длина ряда, k — число групп, m_i — абсолютные частоты, $x_{(i)}$ — i-ая варианта дискретного вариационного ряда.

Указание: правильность вычисления выборочного среднего проверить с помощью встроенной статистических функций **СРЗНАЧ** приложения *MS Excel*.

2. Выборочную дисперсию

$$S_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 = \frac{1}{n} \sum_{i=1}^k m_i (x_i - \bar{x})^2 = \overline{x^2} - (\bar{x})^2.$$

3. Исправленную выборочную дисперсию

$$s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2 = \frac{1}{n-1} \sum_{i=1}^k m_i (x_i - \bar{x})^2.$$

4. Стандартное отклонение (выборочное среднее квадратическое отклонение) $S_n = \sqrt{S_n^2}$.

Указание: правильность вычисления выборочной дисперсии, исправленной выборочной дисперсии и стандартного отклонения проверить с помощью встроенных статистических функций **ДИСПР**, **ДИСП** и **СТАНДОТКЛОНП** приложения *MS Excel*.

5. Коэффициент вариации

$$V_S = S_n / \overline{x}$$
.

Параметры S_n^2 , S_n и V_S характеризуют рассеивание ряда относительно центра тяжести числового ряда и отличаются друг от друга размерностью.

6. Коэффициент асимметрии, показывающий степень асимметричности ряда относительно его центра,

$$As = \frac{1}{nS_n^3} \sum_{i=1}^{n} (x_i - \bar{x})^3.$$

7. Коэффициент эксцесса, характеризующий крутость (островершинность и плосковершинность) эмпирической кривой распределения,

$$Ex = \frac{1}{nS_n^4} \sum_{i=1}^n (x_i - \bar{x})^4 - 3.$$

8. Медиану — центральное значение ранжированного ряда $x^*_{(1)} \le x^*_{(2)} \le \dots \le x^*_{(n)}$,

$$Me = \begin{cases} x *_{(l+1)}, & n = 2l+1, \\ (x *_{(l)} + x *_{(l+1)}) / 2, & n = 2l. \end{cases}$$

Указание: правильность вычисления медианы проверить с помощью встроенной статистической функции **МЕДИАНА** приложения *MS Excel*.

9. Моду (или моды), представляющую наиболее вероятное (часто встречающееся) значение исходного ряда. Мода может быть одна, две или несколько. Соответственно, распределение называют одномодальным, бимодальным или полимодальным.

Пример расчетов приводится в таблице 1.

Таблица 1. Основные статистические параметры температуры поверхности океана в октябре, ноябре, декабре (1957-1993 гг.) в точке 9 (55° с.ш. 30° з.д.)

	октябрь	ноябрь	декабрь	Вывод
Среднее арифметическое	10,56	9,27	8,60	
Выборочная дисперсия	0,27	0,28	0,38	
Выборочная исправленная дисперсия	0,28	0,29	0,39	
Стандартное отклонение	0,52	0,53	0,61	
Коэффициент вариации	0,05	0,06	0,07	Для трех рядов характерна высокая степень концентрации относительно среднего
Коэффициент асимметрии	0,31	-0,30	-0,48	Для трех рядов характерна умеренная асимметрия; для первого ряда распределение скошено вправо; для второго и третьего — распределение скошено влево.
Коэффициент эксцесса	0,09	0,70	-0,24	Эмпирические кривые распределений приближены к нормальному; для первого и второго ряда распределение имеет острый пик; для третьего — распределение имеет плосковершинную форму.
Мода (моды)	10,4	9,10	8,90	
медиана	10,50	9,30	8,60	

Провести анализ полученных результатов: сравнить основные статистические параметры для трех месяцев, указать физический смысл полученных значений коэффициента вариации, асимметрии, эксцесса, моды.

10. С использованием средств анализа данных пакета *MS Excel* (см. <u>Приложение 4</u>), найти основные характеристики трех исследуемых несгруппированных температурных рядов.

Задание 3 Измерение взаимной зависимости

- 1. Построить корреляционное поле для второго (обозначим через X) и третьего (обозначим через Y) рядов температуры воды (рисунок 2). Сделать предварительный вывод.
- 2. Оценить взаимосвязь рядов X и Y температуры воды путем расчета коэффициента корреляции между ними

$$r_{xy} = \frac{S_{xy}}{S_x S_y},$$

где
$$S_{\mathbf{x}} = \sqrt{S_{x}^{2}}$$
, $S_{y} = \sqrt{S_{y}^{2}}$, $S_{y}^{2} = \frac{1}{n} \sum_{j=1}^{n} (y_{j} - \overline{y})^{2}$, $S_{x}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$,

$$S_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$
. Сделать вывод.

Указание: правильность вычисления ковариации S_{xy} и коэффициента корреляции r_{xy} проверить с помощью встроенных статистических функций **КОВАР** и **ПИРСОН** приложения *MS Excel*.

- 3. Проверить гипотезу о значимости коэффициента корреляции r_{xy} . Для этого:
- а) вычислить среднеквадратическую ошибку σ_r линейного коэффициента корреляции:

$$\sigma_r = \sqrt{(1 - r_{xy}^2)/(n-2)}$$
;

б) выдвинуть нулевую гипотезу о равенстве нулю генерального коэффициента корреляции H_0 : r = 0, для проверки которой рассчитать критерий Стьюдента $t_{\text{pac-}}$:

$$t_{\text{pac}} = r_{xy} / \sigma_r$$
.

По статистической <u>Таблице 2</u> Приложения 2 критических точек t - распределения Стьюдента, по заданному уровню значимости α и числу степеней свободы k=n-2 найти критическую точку $t_{\kappa p}(k,\alpha)$ двусторонней критической области.

Если $|t_{\text{расч}}| < t_{\kappa p}(k, \alpha)$ — нет оснований отвергнуть нулевую гипотезу.

Если $|t_{\text{расч}}| > t_{\kappa p}(k, \alpha)$ — нулевую гипотезу отвергают, отклонение r от нуля носит неслучайный характер, и, следовательно, величина r_{xy} значима.

Указание: значение критической точки $t_{\kappa p}(k,\alpha)$ можно получить, применяя встроенную статистическую функцию **СТЬЮДРАСПОБР** приложения *MS Excel* .

4. Для коэффициента корреляции r_{xy} и случая двухмерного нормального распределения построить доверительный интервал ($\underline{\theta}$, $\overline{\theta}$) с надежностью $\gamma = 1 - \alpha$:

$$\underline{\theta} = \frac{e^{2\alpha} - 1}{e^{2\alpha} + 1} \le r_{xy} \le \frac{e^{2\beta} - 1}{e^{2\beta} + 1} = \overline{\theta},$$

где n — объем выборки,

$$\alpha = 0.5 \ln(\frac{1 + r_{xy}}{1 - r_{xy}}) - \frac{z_{\gamma}}{\sqrt{n - 3}},$$

$$\beta = 0.5 \ln(\frac{1 + r_{xy}}{1 - r_{xy}}) + \frac{z_{\gamma}}{\sqrt{n - 3}},$$

значения функции Лапласа

$$\Phi_0(z_\gamma) = \gamma/2$$
,

$$\Phi_0(z) \frac{1}{\sqrt{2\pi}} \int_0^z e^{-x^2/2} dx$$

приведены в Таблице 1 Приложения 2.

Указание: значения уровней значимости а выбрать самостоятельно: 0.01; 0.02; 0.10 и т.д.

Пример расчета представлен в таблице 2.

Модель линейной регрессии связи температуры воды в декабре и ноябре (1957-1983 гг.) в точке 9 (55° с.ш. 30° з.д.), ее параметры и оценка их значимости

	Выборочные характеристики												
S_x			0,53		S_y	C	S_{x_3}	,	0,23				
				Ур	равнение л	модели: у	$y^*(x) = 0.8 x + 1.2$	2					
лине	метры ейной ессии				Оцень	са значим	ости		Вывод				
r_{xy}	0,69)	σ_r			2,03	средняя прямая зависимость; значимый						
<u>θ</u>	0,47	7	α	0,514	γ	0,95	$z_{\gamma} = 1.90$		длина ДИ равна 0,36				
$\overline{\Theta}$	0,83	3	β	1,186			·						
$\sigma_{\epsilon}^{\ 2}$	0,197	7							> 20%				
а	0,8		σ_{a}	0,14	T_a	5,66	$t_{\kappa p}(35; 0.05)$	2,03	значимый				
b	1,2		σ_b	1,31	T_b	0,92	$t_{\kappa p}(35; 0.05)$	2,03	незначимый				
$\overline{\delta^2}$	0,18	3							значима				
\overline{D}	0,20)			F^*	32,47	$F_{ma6\pi}(1; 35; 0.05)$	4,12	(информативна)				
$\eta^2_{y(x)}$	$\eta^2_{y(x)} = 0.48$			$\eta^2_{y(x)} - r^2$	xy	0,0037		0,1	адекватна, несущественное отклонение				
σ_{ϵ}	σε 0,44			0,61	$0,67S_{y}$	0,41			$\sigma_{\varepsilon} > 0.67 S_{y}$				

Модель среднего качества и требует дополнительного уточнения.

Несмотря на адекватность и значимость основного коэффициента регрессии, дисперсии, описываемой моделью, недостаточно.

Незначим свободный член уравнения регрессии и стандартная ошибка модели $(0,44 \, ^{\circ}\mathrm{C})$ превышает допустимую $(0,41 \, ^{\circ}\mathrm{C})$.

Поскольку коэффициент детерминации < 0.7, то точность аппроксимации недостаточна и модель требует улучшения.

Задание 4

Расчет коэффициентов линейного уравнения регрессии

Рассчитать уравнение линейной регрессии y*(x) = ax + b. Для этого:

- 1. Найти оценки параметров а, b линейной регрессионной модели;
- 2. Построить график связи статистических рядов X и Y (рисунок 2). На графике провести уравнение регрессии y*(x) = ax + b;
 - 3. Вычислить дисперсию отклонения по формуле: $\sigma_{\varepsilon}^2 = S_y^2 (1 r_{xy}^2)$.
 - 4. Вычислить стандартные случайные погрешности параметров а, b

$$\sigma_a = \frac{\sigma_{\varepsilon}}{S_x \sqrt{n-2}}, \qquad \qquad \sigma_b = \frac{\sigma_{\varepsilon}}{\sqrt{n-2}} \sqrt{1 + \frac{\overline{x}^2}{S_x^2}}.$$

5. Оценить значимость коэффициентов регрессии. Для этого выдвинуть нулевую гипотезу

$$H_0$$
: $a = 0$, $b = 0$,

для проверки которой рассчитать критерии Стьюдента Т:

$$T_a = a / \sigma_a$$
, $T_b = b / \sigma_b$.

По статистической <u>Таблице 2</u> Приложения 2 определить $t_{\kappa p}(k,\alpha)$ — критическую точку t - распределения Стьюдента при заданном уровне значимости α и числе степеней свободы k=n-2.

Если $|T_a| > t_{\kappa p}(k, \alpha)$, то нулевая гипотеза отвергается и отклонение a от нуля носит неслучайный характер, и, следовательно, величина a значима.

Если $| T_b | > t_{\kappa p}(k, \alpha)$, то нулевая гипотеза отвергается, отклонение b от нуля носит неслучайный характер, и, следовательно, величина b значима.

Пример расчета представлен в таблице 2.

Рисунок 2 – График связи и линия регрессии для температуры поверхности океана в ноябре и декабре (1957 – 1993 г.г.) в точке 9 (55° с.ш. 30° з.д.)

Указание: С помощью встроенной *матричной* статистической функции **ЛИНЕЙН** приложения *MS Excel* проверить правильность вычисления коэффициентов *a*, *b* линейной регрессионной модели, а также получить дополнительную статистику по регрессии.

Задание 5 Оценка адекватности регрессионной модели

Оценить адекватность регрессионной модели:

- 1. Вычислить n значений температуры воды по уравнению регрессии $y^*(x) = ax + b$.
- 2. Построить график вычисленных y^* и фактических y значений температуры воды (рисунок 3).
- 3. Рассчитать дисперсию модели y^* , характеризующую изменчивость линии регрессии относительно среднего значения \bar{y} ,

$$\overline{\delta^2} = \frac{1}{n} \sum_{j=1}^{n} (y * (x_j) - \overline{y})^2,$$

 $\overline{\delta^2}$ – объясненная уравнением регрессии дисперсия.

4. Рассчитать остаточную дисперсию \overline{D} , характеризующую отклонение уравнения регрессии от результатов наблюдений v,

$$\overline{D} = \frac{1}{n} \sum_{j=1}^{n} (y_j - y^*(x_j))^2.$$

5. Вычислить коэффициент детерминации по формуле

$$\eta_{y(x)}^2 = \overline{\delta^2} / S_y^2.$$

Коэффициент детерминации показывает долю дисперсии исходного ряда, которая описывается моделью регрессии. Сделать вывод об адекватности регрессионной модели.

Применяя неравенство

$$\eta_{y(x)}^2 - r_{xy}^2 \le 0.1$$
,

сделать вывод об отклонении от линейности.

Рисунок 3 — Фактические и вычисленные по уравнению регрессии значения температуры воды в декабре в точке 9 (55° с.ш. 30° з.д.)

6. Оценить значимость (информативность) регрессионной модели. Для этого выдвинуть нулевую гипотезу о равенстве дисперсий

$$H_0: \overline{\delta^2} = \frac{\overline{D}}{(n-2)}.$$

Для ее проверки использовать F - критерий Фишера. Вычислить дисперсионное отношение

$$F_{\kappa pum} = (n-2)\overline{\delta^2}/\overline{D}$$
,

которое сравнивается с $F_{ma\delta n}(v_1, v_2, \alpha)$ при заданном уровне значимости α , $\alpha = 0.05$, и степенях свободы $v_1 = 1$, $v_2 = n - 2$ (см. Таблицу 4 Приложения 2).

Если $F_{\kappa pum} > F_{ma6n}$, то нулевая гипотеза о равенстве дисперсий отвергается, что означает в рассматриваемом случае значимость (информативность) регрессионной модели.

- 7. Проанализировать качество полученной регрессионной модели, учитывая, что для хорошей модели необходимо выполнение следующих условий:
 - 1) коэффициент корреляции должен быть значим;
 - 2) все коэффициенты регрессии должны быть значимы;
 - 3) модель должна быть значима (информативна);
 - 4) модель должна быть и адекватна: коэффициент детерминации должен быть больше 0.7;
- 5) стандартная ошибка модели σ_{ϵ} должна быть меньше 0.67 стандартного отклонения S_{y} исходного ряда Y.

Пример расчетов представлен в таблице 2.

ИНДИВИДУАЛЬНАЯ РАБОТА № 2

Задание 1

Построение автокорреляционной функции

Построить и проанализировать автокорреляционную функцию третьего временного ряда температуры воды (обозначим через y_t , $t = \overline{1,T}$). Для этого:

1. Вычислить автокорреляционную функцию r_s для каждого из сдвигов s по формуле

$$r_{s} = \frac{\frac{1}{T-s} \sum_{t=1}^{T-s} (y_{t} - \frac{1}{T-s} \sum_{l=1}^{T-s} y_{l})(y_{t+s} - \frac{1}{T-s} \sum_{l=1}^{T-s} y_{l+s})}{\sqrt{\frac{1}{T-s} \sum_{t=1}^{T-s} (y_{t} - \frac{1}{T-s} \sum_{l=1}^{T-s} y_{l})^{2} \sqrt{\frac{1}{T-s} \sum_{t=1}^{T-s} (y_{t+s} - \frac{1}{T-s} \sum_{l=1}^{T-s} y_{l+s})^{2}}},$$

где T – длина реализации, s – сдвиг, который меняется от 1 до максимума, например, $s_{max} = 13$.

В силу четности автокорреляционной функции временной ряд можно сдвигать в любую сторону (вперед или назад).

- 2. Построить график автокорреляционной функции.
- 3. Проанализировать полученные результаты. Указать на тип случайного процесса, характеризующий графики автокорреляционных функций («белый шум», «цветной шум», цикличность т.д.).

Задание 2

Анализ временной изменчивости ряда температуры воды

Выделить и проанализировать тренд временного ряда. Для этого необходимо выбрать третий временной ряд температуры воды (обозначим через y_t , $t = \overline{1,T}$). Далее:

- 1. Применить метод серий, основанный на медиане; метод восходящих и нисходящих серий для проверки наличия тренда.
- 2. Провести сглаживание ряда динамики методом скользящей средней с интервалом сглаживания l=7; построить график исходного и сглаженного ряда.
- 3. С помощью метода наименьших квадратов рассчитать линейное уравнение модели тренда

$$f(t) = y*(t) = at + b,$$

где t — условный параметр времени.

Расчет коэффициентов а и в осуществляется по формулам

$$a = \sum_{t=1}^{T} t y_t / \sum_{t=1}^{T} t^2, \qquad b = \overline{y},$$

где T – длина временного ряда.

Следует обратить внимание, что в качестве независимой переменной выступает время, а зависимой переменной является ряд температуры воды.

- 4. Осуществить расчет коэффициента корреляции r_{ty} , его стандартной ошибки σ_r , коэффициента детерминации $\eta^2_{y(t)}$, показывающего вклад тренда в описание дисперсии исходного ряда.
- 5. Выполнить оценку значимости коэффициента корреляции r_{ty} . Для этого выдвигается гипотеза

$$H_0$$
: $r_{ty} = 0$,

для проверки которой рассчитывается критерий Стьюдента

$$t_{\text{pacy}} = r_{tv} / \sigma_r$$
.

По статистической <u>Таблице 2</u> Приложения 2 критических точек t - распределения Стьюдента, по заданному уровню значимости α и числу степеней свободы k=n-2 определяется критическая точка $t_{\kappa\rho}(k,\alpha)$ двусторонней критической области.

Если $|t_{\text{расч}}| > t_{\kappa p}$, то нулевая гипотеза отвергается. Это означает, что тренд неслучайным образом отличается от нуля и вносит определенный вклад в формирование изменчивости исходного ряда.

6. Вычислить дисперсию отклонения по формуле: $\sigma_{\varepsilon}^2 = S_{v}^2 (1 - r_{tv}^2)$.

- 7. Оценить величину тренда в 1995 году.
- 8. Нанести уравнение тренда на график временного ряда и проанализировать полученные результаты. Указать характер тренда (положительный или отрицательный, т.е. рост или падение температуры воды) и возможные физические причины его формирования.

Пример расчетов представлен в таблице 3.

Таблица 3. Модель линейной регрессии связи температуры воды в декабре в период с1957 по 1993 гг. в точке 9 (55° с.ш. 30° з.д.), ее параметры и оценка их значимости

	Выборочные характеристики												
	$У$ равнение модели: $y*(t) = -0.02 \ t + 10.95$												
	Параметры линейной Оценка значимости регрессии												
а	-0,02												
b	10,95												
r_{ty}	-0,42	σ_r	0,15	$t_{ m pacq}$	-2,72	$t_{\kappa p}(35; 0.05)$	2,03	значимый					
$\overline{\delta^2}$	0,048	\overline{D}	0,225			$\eta^2_{y(t)}$	0,175	< 0,7					
${\sigma_\epsilon}^2$	> 20%												
σ_{ϵ}	$\sigma_{\varepsilon} > 0.67 S_{y}$												

Модель среднего качества и требует дополнительного уточнения. Несмотря на значимость коэффициента корреляции, дисперсия ошибки велика. Коэффициент детерминации не подтверждает адекватности выбранной модели тренда.

Приложение 1

ИСХОДНЫЕ ДАННЫЕ К ИНДИВИДУАЛЬНЫМ РАБОТАМ

В качестве исходных данных используются ряды среднемесячной температуре поверхности в разных точках акватории Атлантического океана с 1957 по 1993 гг.

В каждый вариант исходных данных включены 3 временных ряда. Для выполнения индивидуальных работ нужно исследовать или все три ряда, или один из них, что указано в каждом конкретном задании.

Варианты выбора исходных данных

Точки	Месяцы
3	1, 2, 3
3	4, 5, 6
3	7, 8, 9
3	10, 11, 12
4	1, 2, 3
4	4, 5, 6
4	7, 8, 9
4	10, 11, 12
7	1, 2, 3
7	4, 5, 6
7	7, 8, 9
8	10, 11, 12
8	1, 2, 3
8	4, 5, 6
8	7, 8, 9
9	10, 11, 12
9	1, 2, 3
9	4, 5, 6
	3 3 3 3 4 4 4 4 7 7 7 7 8 8 8 8

Таблица 1.

Таблица 2. Температура поверхности океана (°C) в точке 3 (60° с.ш. 30° з.д.)

год	месяц											
	1	2	3	4	5	6	7	8	9	10	11	12
1957	6.9	6.5	6.9	7.0	7.6	9.5	11.6	12.4	11.2	9.4	7.9	7.6
1958	6.5	7.1	6.7	7.8	7.8	9.9	11.9	12.2	11.5	9.5	7.8	7.5
1959	6.9	6.6	6.6	7.3	8.0	8.9	10.7	11.1	10.5	9.1	7.9	7.2
1960	7.0	6.5	6.9	7.2	8.0	9.3	10.9	11.9	10.8	10.2	8.7	7.4
1961	7.3	7.1	7.2	7.3	8.2	9.4	10.4	10.9	10.3	8.7	7.8	7.1
1962	6.6	6.9	6.8	6.7	7.5	8.9	10.2	11.1	10.5	8.8	7.8	7.0
1963	7.6	6.6	7.1	6.9	7.3	8.6	9.8	10.9	10.0	8.4	7.4	8.0
1964	7.3	7.1	7.3	7.0	8.1	9.5	10.3	11.1	10.7	9.2	8.5	8.1
1965	7.5	7.4	7.4	7.7	8.0	9.7	11.6	12.1	10.9	9.6	8.5	8.0
1966	7.7	7.6	7.8	7.6	8.1	9.4	10.5	12.2	11.3	10.1	9.0	7.7
1967	7.2	7.2	7.0	7.0	7.7	8.4	10.1	10.9	10.2	8.7	7.9	7.2
1968	7.2	7.0	6.7	6.8	7.5	8.8	11.3	11.5	10.7	9.4	8.4	7.7
1969	7.0	7.0	7.4	6.7	7.6	9.0	9.9	10.7	9.7	8.6	7.4	7.4
1970	7.1	6.7	7.0	7.0	7.5	8.1	9.5	10.4	10.5	8.9	7.6	7.0
1971	7.0	6.9	7.0	6.8	7.9	9.3	11.0	11.6	10.2	8.7	8.0	7.2
1972	6.6	6.5	6.4	6.5	7.1	8.1	9.0	9.8	9.5	8.7	7.4	6.8
1973	6.4	6.4	6.0	6.4	7.1	8.1	9.7	10.0	9.9	8.6	7.2	6.6
1974	6.3	6.3	6.3	5.8	7.0	8.8	9.7	10.9	9.9	8.8	7.6	7.0
1975	6.1	6.2	5.6	6.2	7.0	7.8	9.1	9.6	8.9	8.5	7.5	6.6
1976	5.8	5.8	7.0	5.7	6.4	7.2	9.7	9.4	9.6	8.6	7.0	5.7
1977	5.2	6.3	6.4	6.3	7.5	8.8	9.8	10.7	9.2	7.6	8.1	6.0
1978	5.0	6.2	6.7	6.3	7.4	8.6	9.5	9.9	9.6	8.4	6.4	5.1
1979	6.1	6.2	6.7	6.5	7.7	8.0	8.7	9.9	8.7	8.1	6.7	5.4
1980	6.3	6.8	6.3	5.5	8.1	9.2	9.8	11.0	10.5	8.5	7.8	7.1
1981	6.9	5.6	5.7	6.2	6.7	8.5	9.9	9.9	9.5	8.2	6.9	6.6
1982	6.3	6.3	6.1	6.2	7.1	8.3	9.9	10.1	8.9	8.2	7.6	7.5
1983	7.8	7.6	6.1	7.8	8.0	7.8	9.8	8.6	9.1	8.1	7.4	6.5
1984	6.4	5.8	5.7	6.1	6.5	7.6	10.0	10.2	9.4	8.3	7.5	7.1
1985	6.3	7.3	6.1	6.1	7.0	8.1	9.4	10.6	10.0	9.0	7.4	7.5
1986	6.7	6.6	7.4	6.5	6.8	7.8	9.4	10.5	9.5	8.7	7.6	5.8
1987	6.6	5.9	5.9	6.4	6.5	9.5	10.8	11.8	10.2	7.7	7.6	6.5
1988	7.0	6.7	6.5	6.2	7.3	8.1	9.2	9.9	9.9	8.9	8.1	7.5
1989	6.5	6.8	6.1	6.2	6.3	8.0	9.4	9.7	9.3	8.4	6.6	6.9
1990	5.7	5.9	6.2	6.4	6.5	8.0	9.5	10.4	9.6	7.8	7.5	6.0
1991	6.3	6.0	6.3	6.3	6.8	8.4	9.5	11.1	10.0	8.2	6.7	5.9
1992	6.6	6.7	6.1	6.7	6.7	7.7	8.9	9.6	9.1	8.4	7.2	6.4
1993	7.2	5.6	5.9	6.0	6.0	7.4	8.7	10.2	10.2	9.1	6.3	6.6

Температура поверхности океана (°C) в точке 4 (60° с.ш. 20° з.д.)

год	месяц											
	1	2	3	4	5	6	7	8	9	10	11	12
1957	8.6	7.9	8.5	9.1	9.6	11.3	12.8	13.3	11.8	10.4	9.6	9.1
1958	8.5	8.2	8.4	9.0	9.4	10.9	12.9	13.4	13.2	11.2	9.5	9.2
1959	8.6	8.3	8.5	9.3	10.1	10.4	12.1	12.4	11.7	11.0	9.6	9.2
1960	8.4	8.4	8.5	8.7	9.6	11.3	12.4	13.2	12.3	11.5	10.3	9.0
1961	8.9	8.4	8.8	8.7	9.9	10.4	11.8	12.0	11.5	9.9	9.0	8.7
1962	8.5	8.2	7.9	8.2	9.1	10.7	11.6	12.3	11.5	10.0	8.9	8.6
1963	8.3	8.2	8.5	9.0	8.8	9.8	11.5	12.1	11.3	9.8	8.9	9.1
1964	9.0	9.0	9.1	8.8	9.4	10.4	11.6	11.8	11.5	10.5	9.9	9.3
1965	8.4	9.0	8.9	8.9	9.3	10.9	12.3	12.7	11.7	11.2	9.5	9.0
1966	8.6	8.6	8.6	8.8	9.1	10.7	11.9	12.6	11.8	10.9	9.3	8.4
1967	8.4	8.8	7.9	8.6	9.1	10.5	11.6	12.0	11.6	10.0	9.1	8.1
1968	8.5	8.5	8.3	8.4	8.8	10.2	12.2	13.1	12.2	10.8	9.8	9.4
1969	8.8	8.2	8.2	8.5	9.1	10.6	11.4	11.8	11.4	10.6	8.9	8.9
1970	8.3	8.3	7.9	8.4	8.9	9.6	10.8	11.5	11.6	10.2	9.1	9.2
1971	8.3	7.8	7.8	8.5	9.4	10.9	11.8	12.9	11.9	10.9	9.9	9.0
1972	8.3	8.0	8.1	8.5	8.9	9.7	10.5	11.3	11.1	10.3	8.7	7.9
1973	8.2	7.7	7.8	7.8	8.6	10.0	10.7	11.5	11.2	10.1	9.0	8.1
1974	8.1	7.8	8.0	8.1	8.9	10.1	11.5	12.2	11.1	9.5	8.6	7.9
1975	7.4	7.2	7.3	7.9	7.9	9.2	10.5	11.2	10.5	9.6	9.2	8.1
1976	7.6	7.2	7.2	7.9	8.3	9.4	11.1	10.6	10.5	9.8	8.4	7.7
1977	6.4	7.3	8.1	7.2	8.9	9.9	11.8	11.6	11.0	9.8	8.6	6.9
1978	6.5	7.5	8.9	7.9	8.5	8.5	11.1	11.1	11.3	9.4	7.2	7.6
1979	9.2	7.9	7.1	7.4	8.9	9.4	10.5	10.7	11.0	9.7	9.2	8.0
1980	9.0	7.8	7.3	7.1	9.1	10.4	11.5	12.4	12.4	9.3	9.1	8.3
1981	8.2	6.3	7.3	8.5	8.8	10.1	11.3	11.1	11.5	9.9	8.5	9.0
1982	6.4	7.9	7.5	7.8	9.3	9.9	11.2	12.3	10.4	8.9	9.3	8.1
1983	9.0	9.0	7.9	9.3	9.6	9.5	10.6	11.2	11.0	10.0	9.2	8.2
1984	8.0	7.4	7.6	7.7	8.5	9.5	11.5	12.5	11.3	10.0	9.1	8.4
1985	8.5	7.9	8.3	7.8	8.9	9.7	11.0	11.8	11.1	10.0	9.4	8.8
1986	8.3	8.4	9.0	7.9	8.4	9.6	11.4	12.0	11.6	10.5	9.0	7.9
1987	8.0	7.7	8.1	7.7	8.5	9.0	11.9	13.1	11.5	9.8	8.8	8.1
1988	7.8	7.6	7.8	7.8	8.8	10.0	10.8	11.7	11.6	10.1	9.5	9.1
1989	8.3	7.9	8.1	8.0	8.7	9.9	11.5	12.0	11.0	10.2	8.5	8.5
1990	8.1	7.6	7.7	7.5	8.6	10.2	11.5	11.9	11.0	9.6	9.1	8.5
1991	7.5	7.6	8.0	7.6	8.6	10.8	12.7	12.9	11.6	9.5	8.7	8.3
1992	8.2	7.9	7.4	7.6	8.6	9.8	11.2	11.7	10.6	9.5	8.7	7.9
1993	7.6	7.6	7.6	7.4	8.4	9.3	10.4	11.6	11.6	10.5	9.3	7.9

Температура поверхности океана (°C) в точке 7 (55° с.ш. 50° з.д.)

год	месяц											
	1	2	3	4	5	6	7	8	9	10	11	12
1957	3.2	2.7	2.7	3.7	3.8	6.7	7.6	9.5	8.5	6.4	4.3	2.5
1958	2.6	3.4	2.8	3.5	3.2	5.9	7.8	9.0	7.4	5.2	3.5	2.9
1959	3.3	1.9	3.5	2.4	3.2	5.2	7.7	8.9	8.1	5.2	4.0	2.7
1960	2.7	2.7	2.5	2.6	3.5	4.8	7.8	10.2	7.9	6.1	4.2	2.8
1961	3.0	2.9	3.9	2.6	3.4	4.4	7.0	8.8	7.2	6.3	5.2	3.8
1962	3.6	3.3	3.7	3.6	5.5	4.8	7.4	9.1	7.9	5.9	5.7	6.9
1963	3.4	2.4	2.6	3.0	2.7	5.4	6.5	8.4	7.3	5.8	5.0	3.3
1964	2.5	2.4	2.3	2.4	3.2	5.6	7.5	8.3	7.6	5.7	5.0	3.3
1965	3.0	2.4	2.6	2.5	4.0	5.4	8.0	9.2	7.9	6.5	3.6	3.7
1966	3.3	3.2	3.2	3.3	4.5	5.5	6.8	9.9	9.2	6.8	5.2	3.9
1967	3.2	2.6	2.3	2.5	3.2	5.5	8.3	9.8	8.6	6.2	4.6	3.7
1968	2.9	2.4	2.0	1.9	3.0	4.3	6.8	8.5	8.2	6.8	4.8	3.4
1969	2.8	3.0	2.8	2.1	3.3	4.9	8.2	9.6	7.9	5.7	4.5	3.6
1970	3.2	2.5	1.6	2.2	3.1	4.5	6.8	8.9	8.3	6.7	4.8	3.3
1971	3.0	2.8	1.8	2.4	3.2	5.3	7.4	9.2	8.3	6.1	4.9	4.0
1972	1.9	1.8	1.9	2.2	2.4	3.9	6.4	8.4	6.9	4.2	3.4	3.2
1973	2.0	2.1	1.8	2.5	3.5	5.5	8.4	9.8	8.6	6.6	5.2	3.8
1974	2.4	1.9	1.9	2.3	3.4	4.8	6.8	8.8	8.4	6.3	4.5	3.7
1975	2.0	2.6	2.5	3.0	5.6	4.8	7.4	8.8	8.4	5.9	4.2	3.3
1976	2.6	2.1	2.0	3.9	2.5	3.5	7.1	7.0	7.7	5.2	3.7	2.8
1977	2.1	2.1	2.8	3.1	4.0	4.6	7.7	7.3	7.6	5.9	5.2	3.1
1978	1.8	2.8	4.1	3.1	2.6	3.1	6.8	7.8	7.9	4.8	3.8	2.4
1979	1.4	1.8	1.8	2.5	2.3	6.2	7.6	8.7	7.8	5.8	4.4	3.3
1980	3.1	1.9	2.4	2.1	1.5	5.3	7.6	9.6	8.7	5.2	4.7	2.8
1981	1.0	2.1	0.4	2.8	5.1	5.7	8.3	9.0	8.2	7.0	4.8	5.4
1982	2.2	1.9	3.0	2.9	3.9	5.8	6.1	9.0	7.0	5.1	3.3	3.1
1983	1.4	3.2	1.1	3.8	4.5	4.6	6.5	7.7	6.9	6.1	4.8	2.7
1984	2.9	4.8	2.1	2.0	4.5	4.9	6.3	9.3	7.2	5.4	4.1	2.6
1985	0.4	1.5	2.4	1.9	2.9	3.6	7.6	8.3	8.3	6.2	4.9	3.3
1986	1.6	0.5	4.0	4.6	4.1	5.4	7.7	9.8	8.6	5.1	2.7	2.7
1987	3.0	1.1	1.8	1.1	2.8	5.4	7.6	7.8	8.0	5.6	3.0	1.8
1988	1.9	1.6	1.8	2.4	3.2	5.1	6.1	8.3	8.0	5.2	2.6	3.9
1989	0.1	-0.1	0.8	4.9	2.9	4.7	6.8	8.6	6.2	5.1	3.2	2.9
1990	1.0	1.7	0.7	1.5	5.1	3.8	6.3	8.5	6.0	5.1	2.3	2.6
1991	-0.1	0.8	1.6	2.2	4.6	4.8	5.4	8.2	6.2	5.7	3.4	2.5
1992	0.2	2.5	0.4	1.6	2.5	4.6	6.1	7.3	6.3	5.6	3.0	1.7
1993	-0.9	1.2	2.7	1.3	3.5	5.9	7.2	8.1	7.8	5.0	3.0	2.7

Температура поверхности океана (°C) в точке 8 (55° с.ш. 40° з.д.)

год	месяц											
	1	2	3	4	5	6	7	8	9	10	11	12
1957	5.5	6.9	7.2	6.0	6.8	8.2	10.3	11.6	10.7	9.3	7.3	7.5
1958	6.2	6.1	6.4	6.5	8.0	9.0	11.1	12.2	10.7	8.5	7.2	7.2
1959	5.6	5.5	6.0	6.2	6.6	7.9	9.9	11.2	10.4	8.4	7.3	6.1
1960	5.8	5.6	5.6	5.7	7.4	8.0	9.7	11.8	10.1	9.0	7.4	6.8
1961	5.7	5.1	5.5	6.2	7.0	8.1	9.6	10.8	10.2	8.1	7.9	7.4
1962	7.0	6.1	6.4	6.4	7.1	7.6	10.2	10.6	10.0	8.2	7.9	7.8
1963	6.5	6.5	6.6	6.2	7.1	7.8	9.1	10.4	9.7	8.2	7.7	7.5
1964	6.4	6.2	6.6	6.2	7.1	9.0	9.8	10.9	10.5	8.6	8.0	7.1
1965	6.3	6.3	7.3	7.3	7.8	8.4	10.4	11.3	10.6	9.1	7.8	7.1
1966	6.8	7.1	6.7	7.2	7.6	8.2	10.3	12.5	11.6	9.9	8.6	7.4
1967	6.7	6.5	5.9	6.3	7.5	8.2	10.0	10.7	10.1	8.6	7.5	7.0
1968	6.3	5.7	5.4	5.9	6.8	8.0	9.6	10.1	10.1	8.9	7.9	6.4
1969	6.1	6.8	7.1	6.6	7.4	8.4	10.0	11.1	10.1	8.5	7.3	7.4
1970	7.0	6.2	6.4	6.7	7.1	7.4	9.3	10.8	10.4	9.3	7.6	6.8
1971	7.0	6.7	5.3	6.5	6.8	9.1	10.4	11.0	10.0	8.7	8.0	6.7
1972	5.2	5.1	4.9	5.5	5.9	7.5	8.7	10.0	9.9	8.4	7.1	6.0
1973	5.2	5.1	4.4	5.2	6.7	8.3	9.4	10.2	10.0	8.7	7.1	6.3
1974	5.4	5.3	5.1	4.8	6.9	7.9	9.0	10.3	9.5	8.7	7.5	6.2
1975	5.1	5.1	5.2	5.7	9.9	8.3	9.7	10.7	10.0	8.6	7.2	6.7
1976	5.7	5.6	4.4	3.9	6.1	6.9	8.3	9.7	9.4	7.9	6.5	5.6
1977	4.8	5.2	5.1	5.5	6.4	8.7	10.2	10.7	9.7	8.1	7.4	6.1
1978	4.2	5.0	6.8	5.6	6.1	7.7	9.1	9.9	9.8	8.8	6.9	5.1
1979	6.7	4.9	6.6	8.6	8.6	9.1	10.2	10.9	10.1	9.1	6.4	5.6
1980	5.9	5.9	5.4	5.7	6.7	8.8	10.3	10.7	11.0	8.4	7.7	6.6
1981	5.1	5.2	3.7	7.0	6.8	7.4	9.7	10.5	10.3	8.5	8.3	6.7
1982	4.6	5.9	5.4	5.3	5.5	7.2	9.1	12.1	9.2	8.4	6.5	5.9
1983	3.5	6.1	4.8	7.0	7.6	8.0	9.6	10.4	9.9	8.1	7.5	6.9
1984	5.0	5.6	5.0	4.4	6.1	7.3	9.2	10.1	9.5	7.4	6.0	5.4
1985	5.2	4.9	6.6	5.5	6.2	7.5	9.5	9.6	10.1	7.9	7.4	6.2
1986	4.9	4.9	6.3	4.7	6.4	7.2	8.7	10.1	11.3	7.9	6.3	5.3
1987	6.0	6.2	5.4	6.6	6.3	9.0	9.9	11.3	10.0	7.8	6.7	5.4
1988	6.5	5.4	5.6	5.7	6.8	7.9	9.6	9.5	10.2	8.5	7.8	6.7
1989	5.3	4.5	5.7	5.2	5.8	7.6	8.7	9.8	9.4	8.4	7.0	6.2
1990	4.7	5.0	4.8	5.5	5.3	6.6	7.6	9.2	9.2	8.2	7.4	6.6
1991	5.2	4.7	6.0	5.5	6.5	7.7	8.1	9.4	9.4	8.0	7.4	6.3
1992	6.7	5.4	3.6	5.6	5.0	6.6	9.0	9.7	8.9	8.5	7.8	5.8
1993	6.8	4.9	4.9	5.6	6.3	7.8	9.2	11.0	10.8	9.1	6.1	6.8

Температура поверхности океана (°C) в точке 9 (55° с.ш. 30° з.д.)

год	месяц											
.04	1	2	3	4	5	6	7	8	9	10	11	12
1957	8.5	7.6	8.7	8.5	9.1	11.4	12.5	13.8	13.1	11.9	9.8	9.6
1958	8.5	8.7	8.7	9.3	9.8	11.3	13.1	13.8	13.1	10.9	9.5	9.6
1959	8.9	7.8	7.6	8.6	9.5	10.4	11.7	12.7	12.6	10.5	9.5	8.6
1960	8.6	7.8	8.0	8.5	9.2	10.4	11.9	13.2	12.0	11.3	9.3	8.4
1961	8.2	7.9	8.4	8.4	9.3	10.5	12.0	12.7	11.9	9.8	8.9	9.0
1962	8.6	8.3	8.3	7.7	8.9	9.8	12.3	12.3	11.4	10.6	9.2	8.9
1963	9.1	8.2	8.3	8.5	8.8	10.0	11.8	12.3	11.8	10.4	9.3	9.3
1964	8.8	8.7	8.7	8.2	9.3	10.9	11.8	12.9	12.6	11.1	10.1	9.4
1965	8.6	8.9	9.0	9.5	9.7	10.9	12.6	13.0	12.5	11.2	10.0	9.1
1966	8.6	8.5	8.8	9.0	9.0	10.3	12.0	14.0	12.8	11.7	10.5	9.4
1967	8.7	8.3	8.1	8.7	9.5	10.2	11.5	12.3	11.9	10.3	9.4	8.9
1968	8.7	8.5	7.9	7.9	9.0	10.0	12.2	13.3	12.1	11.0	9.8	8.6
1969	8.1	8.2	9.0	8.0	9.2	10.3	11.3	12.1	11.8	10.5	9.4	8.9
1970	9.1	8.1	8.4	9.1	9.2	10.1	11.4	12.4	11.8	11.0	9.4	9.3
1971	8.5	8.3	8.3	8.5	9.5	10.9	12.8	13.1	12.0	11.0	10.2	9.0
1972	8.0	7.5	7.6	8.2	8.8	9.4	10.6	11.9	12.1	10.9	9.4	8.3
1973	7.8	7.2	7.4	7.9	9.1	10.3	11.0	11.8	11.5	10.5	9.2	8.8
1974	8.2	7.9	7.7	7.5	8.3	9.9	11.2	12.3	11.3	10.9	9.1	8.6
1975	7.2	7.2	7.6	7.8	8.7	10.4	11.3	11.9	11.4	10.2	8.7	8.4
1976	8.1	7.4	7.6	7.6	8.0	8.8	11.0	11.9	11.4	9.7	8.0	7.4
1977	6.8	6.5	7.3	7.7	9.2	10.6	11.7	12.3	11.1	10.1	9.4	8.0
1978	7.1	7.8	9.3	8.0	8.5	9.7	11.1	11.9	11.5	10.1	7.9	7.1
1979	8.8	7.9	9.2	8.8	10.6	10.3	11.6	12.1	11.7	9.9	9.0	7.9
1980	7.9	8.0	6.7	6.8	10.3	11.2	11.6	13.0	12.2	10.4	9.1	9.1
1981	8.0	7.2	7.7	8.0	8.9	10.4	11.7	12.5	12.4	10.5	9.1	8.9
1982	8.9	7.4	8.3	7.6	8.3	9.2	11.3	12.5	10.6	9.5	9.1	8.3
1983	9.2	9.1	7.3	9.6	10.2	10.3	12.5	12.1	10.3	10.7	9.5	8.5
1984	7.9	7.2	7.4	7.8	9.2	9.9	12.1	12.8	12.0	10.3	8.9	8.0
1985	8.6	8.5	7.5	7.5	8.7	10.2	11.0	11.5	11.5	10.4	8.9	8.9
1986	8.1	7.6	8.7	7.9	8.0	9.1	11.2	11.6	12.4	10.7	8.8	7.3
1987	7.6	7.1	7.4	7.8	9.1	11.4	13.0	14.1	12.2	9.8	9.1	8.2
1988	8.4	8.1	8.5	7.6	9.2	10.2	11.3	11.9	12.1	10.6	9.7	9.3
1989	8.4	8.2	6.7	7.5	8.1	10.0	11.9	11.9	11.7	10.6	9.0	7.9
1990	7.3	7.1	7.6	7.6	8.5	9.8	10.9	11.7	11.7	10.4	9.7	8.3
1991	7.5	7.2	8.1	7.8	8.8	9.1	10.8	12.0	11.8	10.0	9.1	8.2
1992	8.9	8.8	7.4	7.2	8.4	10.0	10.9	11.2	10.7	10.4	9.7	8.6
1993	7.2	8.0	6.3	7.4	8.7	9.1	11.0	12.4	12.6	11.0	8.4	8.2

ОСНОВНЫЕ СТАТИСТИЧЕСКИЕ ТАБЛИЦЫ

Таблица 1.

Значения функции Лапласа
$$\Phi_0(z) = \frac{1}{\sqrt{2\pi}} \int_0^z e^{-t^2/2} dt$$

z	0	1	2	3	4	5	6	7	8	9
0,0	0,000	0004	0080	0120	0159	0199	0239	0279	0319	0359
0,1	0398	0438	0478	0517	0556	0596	0636	0675	0714	0753
0,2	0792	0832	0871	0909	0948	0987	1025	1064	1103	1141
0,3	1179	1217	1255	1293	1331	1368	1406	1443	1480	1517
0,4	1554	1591	1628	1664	1700	1736	1772	1808	1844	1879
0,5	1915	1949	1985	2019	2054	2088	2126	2156	2190	2224
0,6	2257	2291	2324	2356	2389	2421	2453	2485	2517	2549
0,7	2580	2611	2642	2673	2704	2734	2764	2793	2823	2852
0,8	2881	2910	2939	2967	2995	3023	3051	3078	3105	3123
0,9	3159	3186	3212	3238	3264	3289	3315	3340	3364	3389
1,0	0,341	3437	3461	3485	3508	3531	3554	3577	3599	3621
1,1	3643	3665	3686	3707	3729	3749	3770	3790	3810	3830
1,2	3849	3869	3888	3906	3925	3943	3961	3980	3997	4015
1,3	4032	4049	4066	4082	4099	4115	4131	4147	4162	4177
1,4	4192	4207	4222	4236	4250	4265	4278	4292	4306	4319
1,5	4332	4345	4357	4370	4382	4394	4406	4418	4430	4441
1,6	4452	4463	4474	4484	4495	4505	4515	4525	4535	4544
1,7	4554	4563	4573	4582	4591	4599	4608	4616	4625	4633
1,8	4641	4648	4656	4664	4671	4678	4685	4693	4699	4706
1,9	4713	4719	4726	4732	4738	4744	4750	4755	4761	4767
2,0	0,477	4778	4783	4788	4793	4798	4803	4808	4812	4817
2,1	4821	4825	4830	4834	4838	4842	4846	4850	4854	4857
2,2	4861	4864	4868	4871	4874	4878	4881	4884	4887	4890
2,3	4893	4896	4898	4901	4904	4906	4909	4911	4913	4916
2,4	4918	4920	4922	4924	4927	4929	4930	4932	4934	4936
2,5	4938	4940	4941	4943	4945	4946	4948	4949	4951	4952
2.6	4953	4954	4956	4957	4958	4959	4961	4962	4963	4964
2.7	4965	4966	4967	4968	4969	4970	4971	4972	4973	4974
2,8	4974	4975	4976	4977	4977	4978	4979	4979	4980	4981
2,9	4981	4982	4982	4983	4984	4984	4985	4985	4986	4986

3,0	0,49865	3,1	0,49903	3,2	0,49931	3,3	0,49952
3,4	0.49966	3,5	0,49977	3,6	0,49984	3,7	0,49989
3,8	0,49993	3,9	0.49995	4,0	0,499968	5,0	0,4999999

Таблица 2.

Критические значения t-критерия Стьюдента при заданном уровне значимости α и степени свободы k $t_{\kappa p} = t_{\kappa p}(k,\alpha)$

Уровень значимости α (двусторонняя критическая область) k 0,1 0,05 0,02 0,01 0,005 0,002 0,001 6,314 12,706 31,821 63,657 127,321 318,309 636,619 1 2 2,920 4,303 6,965 9,925 14,089 22,327 31,599 3 2,353 3,182 4,541 5,841 7,453 10,214 12,924 4 2,132 2,776 3,747 4,604 5,597 7,173 8,610 5 2,015 2,571 3,365 4,032 4,773 5,893 6,869 6 1,943 2,447 3,143 3,707 4,317 5,208 5,959 7 1,895 2,365 2,998 3,499 4,029 4,785 5,408 8 1,860 2,306 2,896 3,355 3,833 4,501 5,041 9 2,262 2,821 4,297 1,833 3,250 3,690 4,781 10 1,812 2,228 2,764 3,169 3,581 4,144 4,587 11 1,796 2,201 2,718 3,106 3,497 4,025 4,437 12 1,782 2,179 2,681 3,055 3,428 3,930 4,318 13 1,771 2,160 2,650 3,012 3,372 3,852 4,221 14 2,145 1,761 2,624 2,977 3,326 3,787 4,140 15 1,763 2,131 2,602 2,947 3,286 3,733 4,073 1,746 2,120 4,015 16 2,583 2,921 3,252 3,686 **17** 2,110 3,222 3,985 1,740 2,567 2,898 3,645 18 1,734 2,101 2,552 2,878 3,197 3,610 3,922 19 1,729 2,093 2,540 3,174 3,579 2,861 3,883 20 1,725 22,086 2,528 2,845 3,153 3,552 3,849 22 1,717 2,074 2,508 2,819 3,119 3,505 3,792 24 1,711 2,064 2,492 2,797 3,091 3,467 3,745 26 1,706 2,056 2,479 2,779 3,067 3,435 3,707 28 1,701 2,048 2,467 2,763 3,047 3,408 3,674 **30** 1,697 2,042 2,457 2,750 3,030 3,385 3,646 35 1,690 2,030 2,440 2,720 2,996 3,340 3,591 36 1,688 2,028 2,434 2,719 2,990 3,333 3,582 40 1,684 2,021 2,423 2,704 2,971 3,307 3,551 **50** 1,676 2,009 2,403 2,678 2,937 3,261 3,496 100 1,660 1,984 2,364 2,626 2,871 3,174 3,390 1,645 1,960 2,326 2,576 2,807 3,090 3,291 ∞

Таблица 3.

Критические значения χ^2 — распределения с k степенями свободы при разных уровнях значимости $\alpha = 1 - \gamma$

				α			
k	0,01	0,02	0,025	0,05	0,95	0,98	0,99
1	6,635	5,412	5,024	3,841	0,004	0,001	0,000
2	9,210	7,824	7,378	5,991	0,103	0,040	0,020
3	11,345	9,837	9,348	7,815	0,352	0,185	0,115
4	13,277	11,668	11,143	9,488	0,711	0,429	0,297
5	15,086	13,388	12,833	11,070	1,145	0,752	0,554
6	16,812	15,033	14,449	12,592	1,635	1,134	0,872
7	18,475	16,622	16,013	14,067	2,167	1,564	1,239
8	20,090	18,168	17,535	15,507	2,733	2,032	1,646
9	21,666	19,679	19,023	16,919	3,325	2,532	2,088
10	23,209	21,161	20,483	18,307	3,940	3,059	2,558
11	24,725	22,618	21,920	19,675	4,575	3,609	3,053
12	26,217	24,054	23,337	21,026	5,226	4,178	3,571
13	27,688	25,472	24,736	22,362	5,892	4,765	4,107
14	29,141	26,873	26,119	23,685	6,571	5,368	4,660
15	30,578	28,259	27,488	24,996	7,261	5,985	5,229
16	32,000	29,633	28,845	26,296	7,962	6,614	5,812
17	33,409	30,995	30,191	27,587	8,672	7,255	6,408
18	34,805	32,346	31,526	28,869	9,390	7,906	7,015
19	36,191	33,687	32,852	30,144	10,117	8,567	7,633
20	37,566	35,020	34,170	31,410	10,851	9,237	8,260
21	38,932	36,343	35,479	32,671	11,591	9,915	8,897
22	40,289	37,659	36,781	33,924	12,338	10,600	9,542
23	41,638	38,968	38,076	35,172	13,091	11,293	10,196
24	42,980	40,270	39,364	36,415	13,848	11,992	10,856
25	44,314	41,566	40,646	37,652	14,611	12,697	11,524
26	45,642	42,856	41,923	38,885	15,379	13,409	12,198
27	46,963	44,140	43,195	40,113	16,151	14,125	12,879
28	48,278	45,419	44,461	41,337	16,928	14,847	13,565
29	49,588	46,693	45,722	42,557	17,708	15,574	14,256
30	50,892	47,962	46,979	43,773	18,493	16,306	14,953
31	52,191	49,226	48,232	44,985	19,281	17,042	15,655
32	53,486	50,487	49,480	46,194	20,072	17,783	16,362
33	54,776	51,743	50,725	47,400	20,867	18,527	17,074

Таблица 4. Критические значения F-критерия Фишера с k_1 и k_2 степенями свободы для уровня значимости $\alpha=0{,}05$

k_1	1	2	3	4	5	6	8	12	24	∞
1	161,5	199,5	215,7	224,6	230,2	233,9	238,9	243,9	249,0	254,3
2	18,51	19,00	19,16	19,25	19,30	19,33	19,37	19,41	19,45	19,50
3	10,13	9,55	9,28	9,12	9,01	8,94	8,84	8,74	8,64	8,53
4	7,71	6,94	6,59	6,39	6,26	6,16	6,04	5,91	5,77	5,63
5	6,61	5,79	5,41	5,19	5,05	4,95	4,82	4,68	4,53	4,36
6	5,99	5,14	4,76	4,53	4,39	4,28	4,15	4,00	3,84	3,67
7	5,59	4,74	4,35	4,12	3,97	3,87	3,73	3,57	3,41	3,23
8	5,32	4,46	4,07	3,84	3,69	3,58	3,44	3,28	3,12	2,93
9	5,12	4,26	3,86	3,63	3,48	3,37	3,23	3,07	2,90	2,71
10	4,96	4,10	3,71	3,48	3,33	3,22	3,07	2,91	2,74	2,54
11	4,84	3,98	3,59	3,36	3,20	3,09	2,95	2,79	2,61	2,40
12	4,75	3,88	3,49	3,26	3,11	3,00	2,85	2,69	2,50	2,30
13	4,67	3,80	3,41	3,18	3,02	2,92	2,77	2,60	2,42	2,21
14	4,60	3,74	3,34	3,11	2,96	2,85	2,70	2,53	2,35	2,13
15	4,54	3,68	3,29	3,06	2,90	2,79	2,64	2,48	2,29	2,07
16	4,49	3,63	3,24	3,01	2,85	2,74	2,59	2,42	2,24	2,01
17	4,45	3,59	3,20	2,96	2,81	2,70	2,55	2,38	2,19	1,96
18	4,41	3,55	3,16	2,93	2,77	2,66	2,51	2,34	2,15	1,92
19	4,38	3,52	3,13	2,90	2,74	2,63	2,48	2,31	2,11	1,88
20	4,35	3,49	3,10	2,87	2,71	2,60	2,45	2,28	2,08	1,84
21	4,32	3,47	3,07	2,84	2,68	2,57	2,42	2,25	2,05	1,81
22	4,30	3,44	3,05	2,82	2,66	2,55	2,40	2,23	2,03	1,78
23	4,28	3,42	3,03	2,80	2,64	2,53	2,38	2,20	2,00	1,76
24	4,26	3,40	3,01	2,78	2,62	2,51	2,36	2,18	1,98	1,73
25	4,24	3,38	2,99	2,76	2,60	2,49	2,34	2,16	1,96	1,71
26	4,22	3,37	2,98	2,74	2,59	2,47	2,32	2,15	1,95	1,69
27	4,21	3,35	2,96	2,73	2,57	2,46	2,30	2,13	1,93	1,67
28	4,20	3,34	2,95	2,71	2,56	2,44	2,29	2,12	1,91	1,65
29	4,18	3,33	2,93	2,70	2,54	2,43	2,28	2,10	1,90	1,64
30	4,17	3,32	2,92	2,69	2,53	2,42	2,27	2,09	1,89	1,62
35	4,12	3,26	2,87	2,64	2,48	2,37	2,22	2,04	1,83	1,57
40	4,08	3,23	2,84	2,61	2,45	2,34	2,18	2,00	1,79	1,51
45	4,06	3,21	2,81	2,58	2,42	2,31	2,15	1,97	1,76	1,48
50	4,03	3,18	2,79	2,56	2,40	2,29	2,13	1,95	1,74	1,44
60	4,00	3,15	2,76	2,52	2,37	2,25	2,10	1,92	1,70	1,39
70	3,98	3,13	2,74	2,50	2,35	2,23	2,07	1,89	1,67	1,35
80	3,96	3,11	2,72	2,49	2,33	2,21	2,06	1,88	1,65	1,31
90	3,95	3,10	2,71	2,47	2,32	2,20	2,04	1,86	1,64	1,28
100	3,94	3,09	2,70	2,46	2,30	2,19	2,03	1,85	1,63	1,26
125	3,92	3,07	2,68	2,44	2,29	2,17	2,01	1,83	1,60	1,21
150	3,90	3,06	2,66	2,43	2,27	2,16	2,00	1,82	1,59	1,18
200	3,89	3,04	2,65	2,42	2,26	2,14	1,98	1,80	1,57	1,14
300	3,87	3,03	2,64	2,41	2,25	2,13	1,97	1,79	1,55	1,10
400	3,86	3,02	2,63	2,40	2,24	2,12	1,96	1,78	1,54	1,07
500	3,86	3,01	2,62	2,39	2,23	2,11	1,96	1,77	1,54	1,06
1000	3,85	3,00	2,61	2,38	2,22	2,10	1,95	1,76	1,53	1,03
∞	3,84	2,99	2,60	2,37	2,21	2,09	1,94	1,75	1,52	1

ФИО, Вариант № ____

Задание 1. Проверка гипотезы о нормальном распределении генеральной совокупности по критерию Пирсона (критерию χ²)

Год	Месяц 1, Х1	нжиро- нный ряд	интер	Границы тервалов Середина интервалов, (a _i , a _{i+1}) x(i)		Абсолютн. частота, <i>т</i> і	Относит. частота, wi	Границы интервалов		$\Phi_0(z_i)$	$\Phi_0(z_{i+1})$	P_i	m' _i	$\frac{(m_i - m_i')^2}{m_i'}$
		Рап	a_i	<i>a</i> _{i+1}				Zi	<i>Zi</i> +1					
	•••	•••	•••		•••	•••	•••	•••					•••	•••
Итого														χ^2 набл

График трех температурных рядов

Гистограмма и полигон абсолютных частот

Гипотеза Но: формулировка

Вывод для уровня значимости а1:

формулировка

Вывод для уровня значимости α_2 :

формулировка

Объем выборки, <i>n</i>	
Минимальное значение, x_{min}	
Максимальное значение, x_{max}	
Размах, R	
Число интервалов, <i>N</i>	
Величина интервалов, h	
Выборочное среднее, \bar{x}	
Выборочное среднеквадратическое отклонение, S_n	
χ^2 набл	
Число степеней свободы, к	
Первый уровень значимости, α1	
$\chi^2_{\mathrm{kp}}(\alpha_1;k)$	
Второй уровень значимости, α2	
$\chi^2_{\rm kp}(\alpha_2;k)$	

ФИО, Вариант №

Задание 2. Основные выборочные характеристики

Год	Месяц 1	Месяц 2,	Месяц 3,	Абс	ол. час	стота	Абсол.	накопл.	частота	$(X_1 - X_{cp})^3$	$(X_2-X_{cp})^3$	$(X_3 - X_{cp})^3$	$(X_1 - X_{cp})^4$	$(X_2-X_{cp})^4$	$(X_3 - X_{cp})^4$	Y *	(Y*-Ycp)2	$(Y - Y^*)^2$
	X_1	\mathbf{X}_2	X_3	m_1	m_2	<i>m</i> ₃	m^c 1	m^{c}_{2}	m^c_3									
	•••																	
Ито	20																	

Основные статистические параметры температуры поверхности океана в

(1957-1993 гг.) в точке	$(55^{\circ}$	с.ш.	30° з.	д.)
-------------------------	---------------	------	--------	-----

	Месяц 1, Х1	Месяц 2, Х2	Месяц 3, Х3	Вывод
Среднее арифметическое				
Выборочная дисперсия				
Выборочная исправленная дисперсия				
Стандартное отклонение				
Коэффициент вариации				
Коэффициент асимметрии				
Коэффициент эксцесса				
Мода (моды)				
медиана	_		_	

Результаты с	редств анализа данных пак	ета MS Excel				
Месяц 1, Х1	Месяц 1, X ₁					

Индивидуальная работа № 1

Задание 5. Оценка адекватности регрессионной модели

			Вы	борочные	характери	стики		
S_x				S_y			S_{xy}	
СТАНДОТКЛОНП для Х		СТАНДОТКЛОНП для Ү КОВАР			КОВАР			
			Урав	внение мод	ели: у*(х) =	= a x + b		
Параметры линейной регре	ессии			О	Вывод			
r_{xy}		σ_r		$t_{ m pac ext{ iny q}}$		$t_{\kappa p}(k; \alpha)$		
ПИРСОН								
						СТЬЮД	ЦРАСПОБР	
<u>θ</u>		α		γ			Ζγ	
$\overline{\theta}$		β						
σ_{ϵ}^{2}								
а		σ_a		T_a		$t_{\kappa p}$	$(k; \alpha)$	
b		σ_b		T_b		$t_{\kappa p}$	$(k; \alpha)$	
$\overline{\delta^2}$				F*		F . (1	; 35; 0,05)	
\overline{D}				<i>I</i> '		I табл(1	., 33, 0,03)	
$\eta^2_{y(x)}$								
σε		S_y		$0,67S_{y}$				
Вывод								

лин	ЕЙН
а	b

Кор	рел	яцис	онно	е по	ле

График
вычисленных y^* и фактических y
значений температуры воды

				s = 1							s = 18									
				Вычисление числителя				ŗ	Знаменатель				Вычисле	Вычисление числителя Знаменатель				•		
Го	Д	y _t	Ск	обка 1	Скобка 2	Числитель	Скоб	ка 1	Скобка 2	Знаменате	ЛЬ	Ī	Скобка 1	Скоб	ка 2 ч	ислитель	Скобка	1 Скоб	бка 2 3	Внаменатель
195	57	y 1										Ī								
												Ī								
199	93	y 37																		
S	1		2	3	4	5	6	7	8	9	10		11	12	13	14	15	16	17	18
r_s																				

График автокорреляционной функции

ФИО, І	Вариант	$N_{\underline{0}}$
--------	---------	---------------------

Задание 2. Анализ временной изменчивости ряда температуры воды

Модель линейной регрессии связи температуры воды в месяце в период с1957 по 1993 гг. в точке (55° с.ш. 30° з.д.), ее параметры и оценка их значимости

Выборочные характеристики										
Уравнение модели тренда: $y*(t)=a\ t+b$										
Параметры линейной регресс	ии	Оценка значимости								
а										
b										
r_{ty}	σ_r	$t_{ m pac^{4}}$	$t_{\kappa p}(k;\alpha)$							
$\overline{\delta^2}$	\overline{D}		η^2 y(t)							
$\sigma_{\!\epsilon}^{2}$										
$\sigma_{\!\scriptscriptstyle E}$	S_y	$0,67S_{y}$								
Вывод	•									

Год	Наименование месяца, yt	Медианный метод, Ме =	Метод серий	Скользящая средняя	Условное время, t	Значения тренда, у*	$(y*-y_{cp})^2$	$(y-y^*)^2$
•••	•••							
•••	•••							
T =		Число серий $\nu(T) = $	Число серий $\nu(T) = $	Вывод по графику:				

График исходного и сглаженного ряда

График тренда и исходного временного ряда

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Основная

- 1. Елисеева И.И. Общая теория статистики / И.И. Елисеева, М.М. Юзбашев М.: Финансы и статистика, 1996. 368 с.
- 2. Шмойлова Р.А. Теория статистики / Р.А. Шмойлова, Е.Б. Бесфамильная, М.Ю. Глубокова и др. М.: Финансы и статистика, 1996. 464 с.
- 3. Ефимова М.Р. Общая теория статистики / М.Р. Ефимова, Е.В. Петрова, В.Н. Румянцев М:ИНФРА-М, 2002. 416 с.
- 4. Айвазян С.А. Прикладная статистика и основы эконометрики / С.А. Айвазян, В.С. Мхитарян М.: Изд. объедин. «ЮНИТИ», 1998. 1022 с.
- 5. Липпе П. Экономическая статистика / П. Липе Мн.: Дизайн ПРО, 1995. 302 с.
- 6. Кевеш П. Теория индексов и практика экономического анализа. М.: Финансы и статистика, 1990.-303 с.
- 7. Палий И.А. Прикладная статистика. М.: Высшая школа, 2004.— 176с.
- 8. Ефимова М.Р., Ганченко О.И., Петрова Е.В. Практикум по общей теории статистики. М: Финансы и статистика, 2007.—336 с.

Дополнительная

- 9. Ионин В.П. Статистика / В.П. Ионин М.: ИНФРА-М, 1997. 310 с.
- 10. Хацкевич Г.А. Сборник задач по статистике Мн.: НИУП, 2002. –214 с.
- 11. Хацкевич Г.А. Статистика. Описательный подход / Г.А. Хацкевич Мн.: НИУП, 2002. –268 с