

Contents

1	Introduction	1
2	The language	2
Ι	Module Fusion	4
3	Primitive Inference Rules	5
	3.1 REFL	5
	3.2 TRANS	5
	3.3 MK_COMB	5
	3.4 ABS	5
	3.5 BETA	6
	3.6 ASSUME	6
	3.7 EQ.MP	6
	3.8 DEDUCT_ANTISYM_RULE	6
	3.9 INST	6
	3.10 INST_TYPE	7
II	Module Equal	8
4	BETA_CONV	9
5	Derived equality rules	10
	5.1 AP_TERM	10
	5.2 AP_THM	10
	5.3 SYM	10
	5.4 ALPHA	11
6	Conversions	12
	6.1 ALPHA CONV	12

CONTENTS

	6.2	GEN_	ALPHA_CON	IV												12
Ш	M	odule l	Bool													13
7	Usefull derived rules														14	
		7.0.1	PROVE_HY	P: the	Cut Ru	ıle										14
8	Derived rules for classical connectives													15		
	8.1	Rules	on Truth													15
		8.1.1	T_DEF													15
		8.1.2	TRUTH													15
		8.1.3	EQT_ELIM													15
		8.1.4	EQT_INTR	O												16
	8.2	Rules	on And													16
		8.2.1	AND_DEF													16
		8.2.2	CONJ										•	 •	•	16
IV	M	odule S	Simp													18
9	mk_	rewrite	S													19
	9.1	IMP_C	CONJ_CONV													19
10	The	orems F	Proofs													20
	10.1	EQ_RI	E FL													20

Introduction

This is an attempt to describe the growing logical system of hol_light and Nhol through the modules in the order they are evaluated. Rules, theorems and proofs are introduced in a graphical way as consisely as possible to be easier to memorize.

Errors could be find because I write this document as my notes while I'm learning the system. Most of all, the document is absolutely not complete even in the chapters already written.

Some notes are based on the hol_light official documentation, while proofs, where present, are rebuilt through an analysis of the code.

I've used the fitch syle for the proofs, probably in an odd way: mixing the sequent format on which hol_light is based with the fitch style. The sequent format carries the assumptions with the conclusion so there should be no reason to indent for showing that a statement is derived from a prevous assumption, because this is already visible in the same line of the statement. Anyway I wanted to mantain the indentation to give a graphical hint of the flow of the proof.

The language

Module	Types			Consta	ants	Infixes				
Module	Name	Arity	Name	Туре	Notes	Constant Name	Infix hand			
fusion	bool	0								
fusion	fun	2								
fusion			=	$\alpha \to \alpha \to bool$						
bool						=	12	right		
bool			<=>	bool o bool o bool	$(=): bool \rightarrow bool \rightarrow bool$		2	right		
bool			T	bool						

Part I Module Fusion

Primitive Inference Rules

3.1 REFL

val REFL : term \rightarrow thm

$$\frac{}{\vdash s = s}$$
 REFL

 $s:\alpha$

3.2 TRANS

val TRANS : thm \rightarrow thm \rightarrow thm

$$\frac{\Gamma \vdash s = t \quad \Delta \vdash t = u}{\Gamma \cup \Delta \vdash s = u} \ \text{TRANS}$$

 $s,t,u:\alpha$

3.3 MK_COMB

val MK_COMB : (thm * thm) \rightarrow thm

$$\frac{\Gamma \vdash s = t \quad \Delta \vdash u = v}{\Gamma \cup \Delta \vdash s(u) = t(v)} \ \text{MK-COMB}$$

 $s,t:\alpha
ightarrow \beta$ and $u,v:\alpha$

3.4 ABS

val ABS : term \rightarrow thm \rightarrow thm

$$\frac{\Gamma \vdash s = t}{\Gamma \vdash (\lambda x.\ s) = (\lambda x.\ t)} \ \text{ABS}$$

3.9 INST 6

$$s, t: \alpha \text{ and } x: \beta$$

3.5 BETA

val BETA : term \rightarrow thm

$$\overline{\vdash (\lambda x. t) x = t}$$
 BETA

 $t: \alpha \text{ and } x: \beta$

3.6 ASSUME

 $val \; ASSUME: term \rightarrow thm$

$$\frac{1}{\{p\} \vdash p}$$
 ASSUME

p:bool

3.7 **EQ**_**MP**

val EQ_MP : thm \rightarrow thm \rightarrow thm

$$\frac{\Gamma \vdash p = q \quad \Delta \vdash p}{\Gamma \cup \Delta \vdash p} \ \text{EQ-MP}$$

p, q : bool

3.8 DEDUCT_ANTISYM_RULE

val DEDUCT_ANTISYM_RULE : thm \rightarrow thm \rightarrow thm

$$\frac{\Gamma \vdash p \quad \Delta \vdash q}{(\Gamma - \{q\}) \cup (\Delta - \{p\}) \vdash p = q} \ \ \mathsf{DEDUCT_ANTISYM_RULE}$$

p, q: bool

3.9 INST

val INST : (term * term) list \rightarrow thm \rightarrow thm

$$\frac{\Gamma[x_1,\ldots,x_n] \vdash p[x_1,\ldots,x_n]}{\Gamma[t_1,\ldots,t_n] \vdash p[t_1,\ldots,t_n]} \text{ INST}$$

p:bool and $t_i, x_i:\alpha$

3.10 INST_TYPE 7

3.10 INST_TYPE

val INST_TYPE : (hol_type * hol_type) list \rightarrow thm \rightarrow thm

$$\frac{\Gamma[\alpha_1,\ldots,\alpha_n] \vdash p[\alpha_1,\ldots,\alpha_n]}{\Gamma[\gamma_1,\ldots,\gamma_n] \vdash p[\gamma_1,\ldots,\gamma_n]} \text{ INST-TYPE}$$

p:bool

Part II Module Equal

BETA_CONV

General case of beta conversion: BETA is the special case where the argument is the same as the bound variable

val BETA_CONV : term \rightarrow thm

 $\frac{}{\vdash (\lambda x. \, u) \, v = u[v/x]} \; \text{ BETA_CONV}$

 $v:\sigma,u: au$ and x:v

Derived equality rules

5.1 AP_TERM

Applies a function to both sides of an equational term.

val AP_TERM : term \rightarrow thm \rightarrow thm

$$\frac{\Gamma \vdash x = y}{\Gamma \vdash f \; x = f \; y} \; \; \text{AP_TERM}$$

$$f:\sigma \to \tau \text{ and } x,y:\sigma$$

$$\begin{array}{c|cccc} 1 & & \Gamma \vdash x = y & \text{given} \\ 2 & & \vdash f = f & \text{REFL} \\ 3 & & \Gamma \vdash f \ x = f \ y & \text{MK_COMB, 1,2} \\ \end{array}$$

5.2 AP_THM

Proves equality of equal functions applied to a term

val AP_THM : thm \rightarrow term \rightarrow thm

$$\frac{\Gamma \vdash f = g}{\Gamma \vdash f \; x = g \; x} \; \; \text{AP_THM}$$

$$f,g:\sigma\to\tau$$
 and $x:\sigma$

$$\begin{array}{c|cccc} 1 & & \Gamma \vdash f = g & \text{given} \\ 2 & & \vdash x = x & \text{REFL} \\ 3 & & \Gamma \vdash f \; x = g \; x & \text{MK.COMB, 1,2} \\ \end{array}$$

5.3 SYM

Swaps left-hand and right-hand sides of an equation.

5.4 ALPHA 11

val SYM : thm \rightarrow thm

$$\frac{\Gamma \vdash t_1 = t_2}{\Gamma \vdash t_2 = t_1} \text{ SYM}$$

$$t_1, t_2 : \sigma$$

5.4 ALPHA

Proves equality of alpha-equivalent terms.

val ALPHA : term \rightarrow term \rightarrow thm

$$\overline{\vdash t_1 = t_2}$$
 ALPHA

where $t_1, t_2: \sigma$ are alpha-equivalent term (i.e. they are different only for the name of their bound variables)

1
$$\vdash t_1 = t_1$$
 REFL
2 $\vdash t_2 = t_2$ REFL
3 $\vdash t_1 = t_2$ TRANS, 1,3

Note that TRANS succeeds because t_1 and t_2 are alpha-equivalent.

Conversions

6.1 ALPHA_CONV

val ALPHA_CONV : term \rightarrow term \rightarrow thm

$$\overline{\vdash (\lambda x. t) = (\lambda y. t[y/x])} \text{ ALPHA_CONV}$$

where $x, y : \alpha$ and y does not occur free in t.

1
$$\vdash (\lambda x. t) = (\lambda y. t[y/x])$$
 ALPHA_CONV
2 $\vdash b (\lambda x. t) = b (\lambda y. t[y/x])$ AP_TERM b

6.2 GEN_ALPHA_CONV

Provides alpha conversion for lambda abstraction of the form λx . t as well as for terms of the form b (λx . t) such as quantifiers and other binders.

val GEN_ALPHA_CONV : term \rightarrow term \rightarrow thm

$$\frac{1}{} \vdash (\lambda x.\ t) = (\lambda y.\ t[y/x]) \text{ GEN_ALPHA_CONV}$$

$$\overline{\vdash b\left(\lambda x.\,t\right) = b\left(\lambda y.\,t[y/x]\right)} \;\; \text{GEN_ALPHA_CONV}$$

$$\begin{array}{c|c} 1 & \vdash (\lambda x.\ t) = (\lambda y.\ t[y/x]) & \text{ALPHA_CONV} \\ 2 & \vdash b\ (\lambda x.\ t) = b\ (\lambda y.\ t[y/x]) & \text{AP_TERM}\ b \end{array}$$

Part III Module Bool

Usefull derived rules

7.0.1 PROVE_HYP: the Cut Rule

Eliminates a provable assumption from a theorem.

Note that for this rule to be usefull the conclusion of the first theorem should be the same as an assumption of the second theorem.

val PROVE_HYP : thm \rightarrow thm \rightarrow thm

$$\frac{\Gamma \vdash p \quad \Delta, p \vdash q}{\Gamma \cup \Delta \vdash q} \ \text{PROVE_HYP}$$

If the conclusion of first theorem is not in the assumption of the second.

$$\frac{\Gamma \vdash p \quad \Delta \vdash q}{\Delta \vdash q} \ \, \text{PROVE_HYP}$$

Proof of the significant case (the other is trivial since the derived is one of the given theorems):

Derived rules for classical connectives

Classical connectives are introduced as definitions

8.1 Rules on Truth

8.1.1 T_DEF

```
\vdash \top \Leftrightarrow (\lambda p. p) = (\lambda p. p)
p:bool
```

8.1.2 TRUTH

 $val\;TRUTH:thm$

$$\overline{\vdash \top}$$
 TRUTH

$$\begin{array}{c|cccc} 1 & & \vdash \top \Leftrightarrow (\lambda p.\ p) = (\lambda p.\ p) & \text{T_DEF} \\ 2 & & \vdash \lambda p.\ p = \lambda p.\ p & \text{REFL} \\ 3 & & \vdash (\lambda p.\ p) = (\lambda p.\ p) \Leftrightarrow \top & \text{SYM, 1} \\ 4 & & \vdash \top & \text{EQ_MP, 3,2} \\ \end{array}$$

8.1.3 EQT_ELIM

val EQT_ELIM : thm \rightarrow thm

$$\frac{\Gamma \vdash p \Leftrightarrow \top}{\Gamma \vdash p} \ \text{EQT_ELIM}$$

p:bool

8.2 Rules on And 16

$$\begin{array}{c|cccc} 1 & & & & & & & & \text{given} \\ \hline 2 & & & \vdash \top & & & & & \\ \hline 2 & & & \vdash \top & & & & \\ \hline 3 & & & & & & & \\ \hline 4 & & & & & & & \\ \hline 4 & & & & & & & \\ \hline \end{array} \qquad \begin{array}{c} \Gamma \vdash p & \Leftrightarrow T & \text{given} \\ \hline \hline 3 & & & & \\ \hline \hline 3 & & & & \\ \hline \end{array} \qquad \begin{array}{c} \Gamma \vdash T \Leftrightarrow p & \text{SYM, 1} \\ \hline \hline 4 & & & & \\ \hline \end{array} \qquad \begin{array}{c} \Gamma \vdash p & \text{EQ_MP, 3,2} \\ \hline \end{array}$$

8.1.4 EQT_INTRO

val EQT_INTRO : thm \rightarrow thm

$$\frac{\Gamma \vdash p}{\Gamma \vdash p \Leftrightarrow \top} \ \, \text{EQT-INTRO}$$

p:bool

8.2 Rules on And

8.2.1 **AND_DEF**

```
\vdash \land \Leftrightarrow \lambda p \ \lambda q. \ (\lambda f. \ f \ p \ q) = (\lambda f. \ f \ \top \ \top)f : bool \rightarrow bool \rightarrow bool \ and \ p, \ q : bool
```

8.2.2 **CONJ**

 $val\;CONJ:thm\to thm\to thm$

$$\frac{\Gamma \vdash th1, \Delta \vdash th2}{\Gamma \cup \Delta \vdash th1 \wedge th2} \ \text{CONJ}$$

p:bool

8.2 Rules on And 17

```
1
                \Gamma \vdash th1
                                                                                                                        given
                     \Delta \vdash th2
 2
                                                                                                                        given
 3
                          p \vdash p
                                                                                                                        ASSUME
 4
                          p \vdash p \Leftrightarrow \top
                                                                                                                        EQT_INTRO, 3
 5
                          p \vdash f \; p = f \; \top
                                                                                                                        AP_TERM f, 4
 6
                               q \vdash q
                                                                                                                        ASSUME
 7
                                                                                                                        EQT_INTRO, 6
                               q \vdash q \Leftrightarrow \top
 8
                               p,q \vdash f \; p \; q \Leftrightarrow f \top \top
                                                                                                                        MK_COMB, 5,7
 9
                               p, q \vdash (\lambda f. f p q) = (\lambda f. f \top \top)
                                                                                                                        ABS f, 8
10
                               \vdash (\land) = (\lambda p \ \lambda q. \ (\lambda f. \ f \ p \ q) = (\lambda f. \ f \ \top \ \top))
                                                                                                                        AND_DEF
11
                               \vdash (\land) \ p = (\lambda p \ \lambda q. \ (\lambda f. \ f \ p \ q) = (\lambda f. \ f \ \top \ \top)) \ p
                                                                                                                        AP_THM p, 10
12
                               \vdash p \land q \Leftrightarrow (\lambda p \ \lambda q. \ (\lambda f. \ f \ p \ q) = (\lambda f. \ f \ \top \top)) \ p \ q
                                                                                                                        AP_THM q, 11
13
                               \vdash p \land q \Leftrightarrow (\lambda f. \ f \ p \ q) = (\lambda f. \ f \ T \ T)
                                                                                                                        BETA_RULE, 12
14
                               \vdash (\lambda f. \ f \ p \ q) = (\lambda f. \ f \ \top \ \top) \Leftrightarrow p \land q
                                                                                                                        SYM, 13
15
                              p,q \vdash p \land q
                                                                                                                        EQ_MP, 14,9
16
                     th1, th2 \vdash th1 \land th2
                                                                                                                        INST, 15
                     \Gamma \cup \{th2\} \vdash th1 \land th2
17
                                                                                                                        PROVE_HYP, 1,16
18
                     \Gamma \cup \Delta \vdash th1 \land th2
                                                                                                                        PROVE_HYP, 2,17
```

Part IV Module Simp

mk_rewrites

9.1 IMP_CONJ_CONV

```
ASSUME
 1
                       p \Rightarrow q \Rightarrow r \vdash p \Rightarrow q \Rightarrow r
 2
                                                                                    ASSUME
                           p \wedge q \vdash p \wedge q
                            p \wedge q \vdash p
 3
                                                                                   CONJUCNT1, 2
 4
                            p \land q, p \Rightarrow q \Rightarrow r \vdash q \Rightarrow r
                                                                                    MP, 1,3
                                                                                   CONJUCNT2, 2
 5
 6
                           p \land q, p \Rightarrow q \Rightarrow r \vdash r
                                                                                    MP, 4,5
 7
                       p \Rightarrow q \Rightarrow r \vdash p \land q \Rightarrow r
                                                                                    DISCH (p \wedge q),6
 8
                 \vdash (p \Rightarrow q \Rightarrow r) \Rightarrow (p \land q \Rightarrow r)
                                                                                    DISCH (p \Rightarrow q \Rightarrow r),7
                      p \land q \Rightarrow r \vdash p \land q \Rightarrow r
                                                                                    ASSUME
 9
10
                           p \vdash p
                                                                                    ASSUME
11
                                 q \vdash q
                                                                                    ASSUME
12
                                 p, q \vdash p \land q
                                                                                   CONJ, 10,11
13
                                 p,q,p \land q \Rightarrow r \vdash r
                                                                                   MP, 9,12
14
                            p,p \land q \Rightarrow r \vdash q \Rightarrow r
                                                                                   DISCH q, 13
15
                      p \land q \Rightarrow r \vdash p \Rightarrow q \Rightarrow r
                                                                                   DISCH p, 14
16
                 \vdash (p \land q \Rightarrow r) \Rightarrow (p \Rightarrow q \Rightarrow r)
                                                                                   DISCH p \land q \Rightarrow r, 15
17
                 \vdash p \Rightarrow (q \Rightarrow r) \Leftrightarrow p \land q \Rightarrow r
                                                                                   IMP_ANTISYM_RULE, 8, 16
```

Theorems Proofs

10.1 EQ_REFL

```
 \begin{array}{c|c} 1 & x:\alpha=x & \text{REFL} \\ 2 & \forall x:\alpha.\ x=x & \text{GEN}, 1 \end{array}
```