

U.F.R SCIENCES ET TECHNIQUES

Département d'Informatique B.P. 1155 64013 PAU CEDEX

Téléphone secrétariat : 05.59.40.79.64 Télécopie : 05.59.40.76.54

II-PROBLEME DE RECOUVREMENT MINIMUM

I- ARBRE ET GRAPHE
II- PROBLEME DE RECOUVREMENT MINIMUM

QUEL EST LE PROBLEME ?

Soit l'ensemble des sommets :

S3

Graphe non orienté valué de connexité

Graphe de recouvrement minimum

I- ARBRE ET GRAPHE

Soit **n** la taille d'un graphe non orienté G = (S,A),

$$n = |S|$$
.

Soit m le nombre d'arêtes de G,

$$\mathbf{m} = |A|$$
.

Le nombre **cyclomatique** de G est estimé à partir de **n**, **m** et du nombre **p** de ses composantes connexes:

$$v(G) = m-n+p$$

 $\nu(G)$ estime le nombre de cycles que possède le graphe :

$$v(G) \ge 0$$

1- Arbre

Un arbre est un graphe connexe :

$$p=1 \implies v(G) = m-n+1 \ge 0$$

Un arbre est un graphe sans cycle.

$$v(G) = m-n+1$$

= 0

Le nombre d'arêtes d'un arbre est donc :

$$m = n-1$$

Un arbre est un graphe qui connecte tous les sommets entre eux avec un minimum d'arêtes.

2-Théorème d'arbre

Les propositions suivantes sont équivalentes pour tout graphe **non orienté** G à **n** sommets :

- 1- G est un arbre,
- 2- G est sans cycles et connexe,
- 3- G est sans cycles et comporte n-1 arêtes,
- 4- G est connexe et comporte n-1 arêtes,
- 5- chaque paire (u, v) de sommets distincts est reliée par une seule chaîne simple.

3-Arbre couvrant

Un arbre couvrant ou arbre maximal est un graphe partiel qui est aussi un arbre.

Conséquences

 L'ajout de la moindre arête supplémentaire dans un arbre crée un cycle. Un graphe connexe possède toujours un graphe partiel qui est un arbre.

. Un arbre couvrant est construit en enlevant suffisamment d'arêtes de façon à supprimer tous les cycles.

Exemple

Soit le graphe orienté connexe:

On peut en extraire les arbres couvrants suivants :

4- Forêt

On appelle forêt un graphe dont chaque composante connexe est un arbre.

Un graphe sans cycle mais non connexe est appelé une forêt.

Exemple de forêt

5- Racine - Antiracine

Un sommet r d'un graphe orienté G est une racine de G :

- s'il existe un chemin
- joignant r à chaque sommet du graphe G.

Un sommet a d'un graphe G est une anti-racine de G :

- s'il existe un chemin
- joignant chaque sommet du graphe G à a.

Exemple

- 2 est une racine du graphe.
- 7 est une anti-racine du graphe

6- Arborescence, anti-arborescence

Un graphe G est une arborescence de racine r si :

- G est un arbre
- et si r est une racine.

Un graphe G est une anti-arborescence d'anti-racine a si :

- G est un arbre
- et si a est une anti-racine.

Arborescence de racine 2

Anti-arborescence d'anti-racine 7

II- ARBRE DE RECOUVREMENT MINIMUM

Soit G est un graphe non orienté : G= (S,A)

Imaginons que l'on associe :

- à chaque arête a∈A,
- une valeur, notée c(a), appelée coût ou poids.

G est appelé graphe valué.

On appelle coût d'un graphe partiel G' généré par :

$$A' = \{a_1, a_2, ..., a_p\}$$

et on note coût (G'), la somme :

$$c(a_1) + c(a_2) + ... + c(a_p)$$

des coûts des arêtes de G'.

Position du problème

Le problème de recouvrement minimum consiste à trouver :

- -un arbre couvrant de G,
- -dont le coût est minimum.

Exemple d'un cas réel

Minimiser le coût du câblage électrique pour alimenter les différents «postes» d'un avion peut se ramener à la recherche :

- -d'un arbre couvrant,
- -de coût minimum.

En effet, on cherche à:

- connecter tous les postes entres eux: connexité
- sans générer de lignes de câblage inutiles.

D'où la recherche d'un arbre : absence de cycle

Ensuite, on veut utiliser le moins de câble possible: coût minimum

Aussi on:

- associe à chaque possibilité de connexion la longueur de câble nécessaire,

- cherche à minimiser la **longueur totale** de câble utilisée.

Existence d'une solution

Soit un graphe non orienté connexe G; on **peut toujours** trouver un **arbre couvrant** en supprimant de G les arêtes qui forment un cycle.

Il existe un nombre fini d'arbres couvrants pour G.

Si G est valué, l'existence d'un arbre couvrant de coût minimum est donc assurée.

Condition d'unicité

En général, il peut y avoir, pour G, plusieurs arbres couvrants de coût minimum.

Si les coûts des arêtes satisfont la condition suivante:

$$\forall u,v \in A \bullet c(u) \neq c(v)$$

alors l'unicité est assurée.

Algorithme de construction

Deux algorithmes de construction d'arbre couvrant de coût minimum seront étudiés.

Leur efficacité dépend :

- du choix de représentation du graphe
- de la structure même du graphe.

Dans les deux cas:

- on part d'un graphe vide,
- on construit progressivement l'arbre couvrant de coût minimum par adjonctions d'arêtes (arcs).

La différence est que, pendant la construction :

- l'algorithme de Kruskal assure l'absence de cycle,
- alors que l'algorithme de **Prim** en assure la **connexité**.

1- Algorithme de KRUSKAL

Soit G= (S,A,C), un graphe non orienté valué et connexe tel que : |S| = n et |A|= m.

Le problème consiste à construire l'arbre, noté G', de recouvrement minimum.

ldée

Deux points:

- l'arbre G' est construit partant d'une forêt,
- une arête compatible est une arête de coût minimum reliant deux arbres de la forêt.

Comment trouver la (une) arête de coût minimum reliant deux arbres de la forêt G' ?

Graphe original

Forêt initiale selon Kruskal

Au départ : graphe vide

Forêt après ajout de arête (q3,q6)

Forêt après ajout de arête (q2,q4)

Forêt après ajout de arête (q5,q8)

Forêt après ajout de arête (q₀,q₁)

Forêt après ajout de arête (q₁,q₄)

Forêt après ajout de arête (q₁,q₃)

Forêt après ajout de arête (q₆,q₈)

Forêt après ajout de arête (q2,q7)

Arbre couvrant minimum

Principe

L'algorithme impose d'abord de trier les m arêtes de G par ordre croissant de leur coût.

Soit σ la suite induite:

$$\sigma$$
= $a_1, a_2, ..., a_i, a_{i+1}, ..., a_m$

La procédure pour construire l'arbre de recouvrement minimum part d'un graphe vide G':

G'← GrapheVide()

Ensuite, les arêtes sont considérées, une par une, dans l'ordre du tri.

Si l'ajout d'une arête ai dans G' n'introduit pas de cycle:

- alors on l'ajoute : G'← AddArc(x,y, ai ,G)
- sinon, on passe à l'arête suivante ai+1.

Ainsi l'arbre de recouvrement minimum est construit, progressivement, par ajout d'arêtes.

Lorsqu'on a ajouté **n-1** arêtes, sans créer de cycle, on a fini de construire l'arbre de recouvrement minimum.

Procédure

Procédure: Kruskal

Entrées: G = (S,A): GRAPHE.

Sortie: G' = (S,A'): GRAPHE

Kruskal(G: GRAPHE) G': GRAPHE

Début

/*Initialisation */

 $n \leftarrow |S|$; $m \leftarrow |A|$;

```
trier(A) /*trier les m arêtes de G dans l'ordre croissant des coûts;*/
/* On les notera : a_1, a_2, ..., a_m avec: c(a_1) \le c(a_2) \le ... c(a_{m-1}) \le c(a_m) */
 A' \leftarrow \emptyset; /* on part d'un graphe G' vide */
 pour i \leftarrow 1 à m
                    si A' \cup {a<sub>i</sub>} ne génère pas de cycle
                                 alors A' \leftarrow A' \cup \{a_i\};
                    fin si
 fin_pour;
```

Justification de l'algorithme

Supposons que l'algorithme avait effectué quelques itérations pour construire l'arbre **G**'.

Considérons maintenant l'ajout de la prochaine arête a = (x,y) dans l'arbre G'.

On suppose que cet ajout de a n'introduit pas de cycle: G' demeure alors un arbre.

Cependant, est-on certain que a garantit la construction de l'arbre avec un coût minimum ?

En fait, x et y doivent être connectés d'une manière ou d'une autre.

Car dans un arbre, chaque paire de sommets distincts est reliée par une seule chaîne simple.(propriété P5)

Si ce n'est pas a qui relie x et y, ce sera une certaine chaîne C.

Soit:

$$\mathbf{C} = (\mathbf{x}, \mathbf{s}, t, u, \mathbf{y})$$

la chaîne qui relie x à y.

Comme *a* n'introduit pas de cycle cela signifie que la chaîne **C** n'est pas encore construite: **elle ne le sera que plus tard**!

Cela signifie qu'une arête, **au moins**, de cette chaîne, soit a', n'a pas été encore prélevée de la liste

$$\sigma$$
= a₁, a₂,..., a_i, a_{i+1},..., a_m

Donc a' qui sera choisie ultérieurement à a a un coût supérieur ou égal à celui de a :

$$cout(a') \ge cout(a)$$

A fortiori, le fait de choisir la chaîne C pour connecter x à y est donc plus coûteux que de connecter x à y par a.

En conclusion, l'arête choisie a garantit d'obtenir un arbre de coût plus faible.

Cela **justifie** le choix de **a** et donc la démarche globale de l'algorithme de Kruskal.

Exemple

Soit le graphe non orienté valué connexe:

La liste des arêtes est triée dans l'ordre de coût croissant:

$$\sigma$$
= [(S₃, S₄), (S₅, S₆), (S₁, S₆), (S₃, S₅), (S₄, S₅), (S₂, S₃), (S₂, S₅), (S₁, S₅), (S₁, S₂)]

On sélectionne l'arête de (S3,S4) de coût:

$$c(S3,S4) = 1$$

On l'ajoute car il n'y pas de cycle.

On sélectionne ensuite l'arête (S5,S6) de coût : c(S5,S6) = 1

Pas de cycle, donc ajout de l'arête (S5,S6)

On sélectionne ensuite l'arête (S1,S6) de coût : c(S1,S6) = 2

Pas de cycle, donc ajout de l'arête (S1,S6)

On sélectionne ensuite l'arête (S3,S5) de coût : c(S3,S5) = 2

Pas de cycle, donc ajout de l'arête (S3,S5)

On sélectionne ensuite l'arête (S4,S5) de coût : c(S4,S5) = 3

Formation d'un cycle donc pas d'ajout de l'arête (S4,S5)

On sélectionne ensuite l'arête (S2,S3) de coût : c(S2,S3) = 4

Pas de cycle, donc ajout de l'arête (S2,S3)

A ce stade, la construction de l'arbre de recouvrement minimum est terminée.

Pourquoi ?:

Le nombre d'arêtes pouvant être ajoutées est m': m'= n-1= 6-1=5

2- Algorithme de PRIM

ldée

A chaque étape de la construction de G':

 G' est formé d'un arbre et un ensemble de sommets isolés;

• l'algorithme doit choisir une arête de coût minimal qui relie l'arbre à l'un des sommets isolés.

Graphe initial

Graphe de départ selon Prim

Principe

Le principe de l'algorithme de **Prim** consiste à :

- « fusionner», deux par deux, les sommets de G

- pour obtenir finalement un seul sommet représentant l'arbre couvrant à construire.

Par fusionner, on entend remplacer deux sommets par un seul.

Toutes les arêtes adjacentes à l'un ou l'autre des anciens sommets deviennent adjacentes au nouveau sommet.

Procédure de fusion

Le choix des sommets que l'on fusionne est fait en :

- en choisissant au hasard un sommet x,
- en cherchant, ensuite, une arête adjacente u= (x,y) de **coût mimimun**.

L'autre extrémité, soit y, de l'arête le fournit le deuxième sommet de la fusion.

Procédure

Titre: Prim

Entrées: G = (S, A): GRAPHE.

Sortie: G' = (S, A'): GRAPHE.

Variables intermédiaires: x: SOMMET, a:ARETE.

```
Prim (G:GRAPHE) G': GRAPHE
```

Début

```
/* initialisation */
```

$$n \leftarrow |S|$$
; $m \leftarrow |A|$

 $A' \leftarrow \emptyset$; /* l'arbre recherché G' est initialement vide! */

```
tant_que |A'| < n - 1 / * car G' sera un arbre */
      faire
      choisir x \in S; / * le choix de x est arbitraire */
      choisir a \in A tel que c(a) = min\{c(x-y) \mid (x-y) \in A \land y \neq x\};
     A' \leftarrow A' \cup \{a\};
     fusionner(x,y); /*x et y deviennent un seul sommet */
fin_tant_que;
```

Justification

Nous allons raisonner par récurrence.

Initialisation

Tout d'abord, on choisit une arête u = (x-y) où x et y sont deux sommets ne résultant pas d'une fusion.

$$\mathbf{X} = (\mathbf{x}, \mathbf{y})$$

On peut affirmer que le graphe résultant:

$$(\{x,y\},\{{\color{red} {\color{blue} {\color{b} {\color{blue} {\color{b} {\color{$$

est un arbre de coût minimum.

Hypothèse de récurrence :

Supposons, ensuite, par hypothèse (de récurrence) qu'à une étape donnée, les deux sommets x et y résultent des fusions précédentes.

En fait, **x** et **y** représentent selon cette hypothèse des arbres de coût minimum:

$$\mathbf{X} = (\mathbf{X}, \mathbf{y})$$

$$\mathbf{Y}$$

$$\mathbf{Y}$$

Si on choisit une arête = (x-y) de coût minimum alors le graphe obtenu sera un arbre de coût minimum.

Donc à la dernière étape (lorsque tous les sommets seront fusionnés) de l'algorithme, on obtiendra bien :

- un arbre de coût minimum
- -qui est un graphe partiel de G incluant n-1 arêtes

Exemple

Soit le graphe non orienté valué connexe:

Choisir le sommet x=S1, le sommet le plus proche est y=S6

Le sommet le plus proche de {S1, S6} est y= S5

Le plus sommet le proche de x= {S1,S5, S6} est y= S3

Le sommet le plus proche de $x = \{S1,S3,S5,S6\}$ est y = S4

Le sommet le plus proche de $x=\{S, S3,S4, S5,S6\}$ est y=S2

Comme on a finalement:

$$X = \{S1,S2,S3,S4,S5,S6\}$$

= S

la construction de l'arbre de recouvrement minimum est **terminée**.

Remarques:

L'analyse de la complexité des deux algorithmes sera abordée en TP lors de leur application.

1-Complexité de l'algorithme de Kruskal

L'algorithme de Kruskal est dominé par le tri. Sa complexité est donc celle d'un tri de m arêtes: elle est en O(mlog(m)).

La rapidité de l'algorithme de Kruskal est fonction de la **structure du graphe**.

Le nombre m d'arêtes d'un graphe connexe peut varier de n-1 à n(n-1)/2.

L'algorithme de Kruskal est d'autant plus rapide que le graphe connexe est pauvre en arêtes.(graphe de degré faible)

Complexité de l'algorithme de Prim

Il y a exactement n itérations principales et une boucle d'au plus n itérations à l'intérieur, c'est donc un algorithme polynomial en $O(n^2)$.

L'algorithme de Kruskal est donc plus intéressant quand il y a peu d'arêtes dans le graphe G.

L'algorithme de Prim ne dépend pas du nombre d'arêtes et a une complexité constante lorsque le nombre n de sommets est fixé.