Applied Statistical Methods II

Introduction to the Design of Experimental and Observational Studies

Looking forward:

- A very broad overview of issues in design that we will cover in more detail for the rest of the semester.
 - Experimental vs. Observational
 - Basic concepts of experimental studies.
 - Most popular experimental studies.
 - Some topics in observational studies.

Experimental vs. Observational Studies

Experimental Studies:

- We have control over the assignment of treatments.
- Randomization can be used to limit the effect of potential confounders.
- Well designed experimental studies can be statistically easy to analyze.
- Observational Studies:
 - We have no (or little) control over the assignment of treatments.
 - Confounding variables almost always effect observed difference between treatment groups.
 - Need more complicated statistical machinery to determine treatment effects.

Experimental Study Example

- Study to determine the effect of baking temperature on the volume of a bread from a packaged mix.
 - Experimental factor is temperature.
 - Factor is the design equivalent for predictor and independent variables in linear models.
- We are interested in four different temperatures: low, medium, high, and very high.
 - There are four factor levels for temperature.
 - We have four treatment groups. Unique pattern of factors.
- There are 20 packages of mix which we can use in our experiment.
 - Objects to which treatments are assigned are called experimental units.
 - Randomization is essential in assigning treatments to experimental units.
 - Potential confounders, such as age on shelf, should be independent of treatment assignment.

Observational Study Example

- A business school wants to know the effectiveness of a teaching seminar.
- All of the 110 faculty are invited, but not required to attend.
 - 63 attend, 47 do not.
 - Independent variable of interest is attendance.
- At the end of the semester, students rate each professor's performance.
 - On a scale from 1-7 with 7 being optimal.
- Naive approach is to compare the mean score among attendees vs. non-attendees.
- If goal is to understand effectiveness of teaching seminar, what could go wrong here?
 - Would have to control for potential confounders.
 - Maybe the non-attendees dislike teaching a priori.

Observational Study Example

- A business school wants to know the effectiveness of a teaching seminar.
- All of the 110 faculty are invited, but not required to attend.
 - 63 attend, 47 do not.
 - Independent variable of interest is attendance.
- At the end of the semester, students rate each professor's performance.
 - On a scale from 1-7 with 7 being optimal.
- Naive approach is to compare the mean score among attendees vs. non-attendees.
- If goal is to understand effectiveness of teaching seminar, what could go wrong here?
 - Would have to control for potential confounders.
 - Maybe the non-attendees dislike teaching a priori.

- Studies can include both experimental and observational factors.
- A study to compare performance of two different training programs.
 - Outcome is employee performance.
 - The company has 3 different plants.
 - Randomly assign training programs to employees.
- Are you awake: What are independent variable(s)?
 Dependent variable? Experimental units?
 - Experimental units are the employees.
 - Training program is an experimental factor.
 - Plant where the employee works can be an observational factor.
- What if you randomly assign training programs to plants instead of employees? What are experimental units? Potential confounder(s)?
- Certain randomization designs can be used to eliminate biases from the observational factor.

- Studies can include both experimental and observational factors.
- A study to compare performance of two different training programs.
 - Outcome is employee performance.
 - The company has 3 different plants.
 - Randomly assign training programs to employees.
- Are you awake: What are independent variable(s)?
 Dependent variable? Experimental units?
 - Experimental units are the employees.
 - Training program is an experimental factor.
 - Plant where the employee works can be an observational factor.
- What if you randomly assign training programs to plants instead of employees? What are experimental units? Potential confounder(s)?
- Certain randomization designs can be used to eliminate biases from the observational factor.

- Studies can include both experimental and observational factors.
- A study to compare performance of two different training programs.
 - Outcome is employee performance.
 - The company has 3 different plants.
 - Randomly assign training programs to employees.
- Are you awake: What are independent variable(s)?
 Dependent variable? Experimental units?
 - Experimental units are the employees.
 - Training program is an experimental factor.
 - Plant where the employee works can be an observational factor.
- What if you randomly assign training programs to plants instead of employees? What are experimental units? Potential confounder(s)?
- Certain randomization designs can be used to eliminate biases from the observational factor.

- Studies can include both experimental and observational factors.
- A study to compare performance of two different training programs.
 - Outcome is employee performance.
 - The company has 3 different plants.
 - Randomly assign training programs to employees.
- Are you awake: What are independent variable(s)?
 Dependent variable? Experimental units?
 - Experimental units are the employees.
 - Training program is an experimental factor.
 - Plant where the employee works can be an observational factor.
- What if you randomly assign training programs to plants instead of employees? What are experimental units?
 Potential confounder(s)?
- Certain randomization designs can be used to eliminate biases from the observational factor.

Single vs Multi -factor studies

- First two examples are single factor studies.
- Last example is a two-factor study.
 - For now we will only concentrate on multi-factor experimental studies.
- Two-factor crossed study:
 - Want to know how temperature and concentration affect a chemical reaction.
 - Temperature has three factor levels: low, medium, high.
 - Concentration has two factor levels: low, high.
 - Want to explore different concentrations under different temperatures.
 - Have 2x3=6 treatment combinations.
- Usually addressed with an ANOVA model with interaction.
- Let's write out full model. Potential issues?

Nested Factors

- Want to know the effect of a human operator on productivity.
- We have three different plants.
- We select three operators from each plant.
- Two-factor study:
 - Plant has three factor levels.
 - Operator has nine factor levels (i.e. 9 people).
 - Each operator works at only 1 plant.
- What is the problem with a standard linear model here?
- Operator is said to be nested within plant.
 - Each operator only operates in one plant.
 - Have 9 different treatment conditions.
 - How do we want to compare these conditions?
- Will extend the ANOVA models to include random effects.

Nested Factors

- Want to know the effect of a human operator on productivity.
- We have three different plants.
- We select three operators from each plant.
- Two-factor study:
 - Plant has three factor levels.
 - Operator has nine factor levels (i.e. 9 people).
 - Each operator works at only 1 plant.
- What is the problem with a standard linear model here?
- Operator is said to be nested within plant.
 - Each operator only operates in one plant.
 - Have 9 different treatment conditions.
 - How do we want to compare these conditions?
- Will extend the ANOVA models to include random effects.

Power and Sample Size

- Assume you conducted a single-factor study with four treatment groups.
- Your goal is to determine if there are any differences among the four groups.
- Fundamental question: how many subjects do you need to achieve a certain power? Let's investigate...
 - Recall that power is the probability of detecting any differences given that the amount of difference between the groups is Δ .
- The power will depend on:
 - The effect size Δ .
 - The error variance σ^2 .
 - The number of subjects n.
 - Number of replicates per treatment group.
 - From simple example: it appears a balanced design leads to estimates with minimal variance.
- When asking someone for money to do an experiment, these are important issues that must be addressed.

Power and Sample Size

- Assume you conducted a single-factor study with four treatment groups.
- Your goal is to determine if there are any differences among the four groups.
- Fundamental question: how many subjects do you need to achieve a certain power? Let's investigate...
 - Recall that power is the probability of detecting any differences given that the amount of difference between the groups is Δ .
- The power will depend on:
 - The effect size Δ.
 - The error variance σ^2 .
 - The number of subjects n.
 - Number of replicates per treatment group.
 - From simple example: it appears a balanced design leads to estimates with minimal variance.
- When asking someone for money to do an experiment, these are important issues that must be addressed.

Randomization for Assigning Treatments

- Consider the bread example.
- We have n=20 experimental units (mixes).
- We have 4 treatments: low, medium, high, & very high temperature.
- Want to have five replicates per treatment.
- Should we just pull the packages off the shelf and give the first five low heat, next five medium, ...?

Simple Randomization

- Randomly generate a number for each observation.
- Sort these numbers from lowest to highest.
- Assign low temperature to the lowest 5, medium to the next lowest 5,
- Can be done with a random number generator.
- SAS has PROC PLAN that can be used for different randomization.

```
data randomize;
do bag=1 to 20;
        rand num=ranuni(54877);
         output;
                                          proc sort data=randomize; by bag; run;
end:
run;
                                          PROC FORMAT;
proc sort data=randomize;
                                            VALUE fortemp 0="Low"
by rand_num;
                                                            1 = "Med"
run;
                                                            2="High"
                                                            3="Very High";
data randomize;
                                          run;
set randomize;
temp = 0;
                                          proc print data=randomize;
if _n_ >= 6 then temp=1;
                                          FORMAT temp fortemp.;
if n >= 11 then temp =2;
                                          var bag temp;
if _n >= 16 then temp = 3;
                                          run;
run;
```

- Med
- 2 High
- 2 3 Med
- 4 Low
- 5 Very High
- 6 6 Low
- Low
- 8 8 High
- 9 9 High
- 10 10 Very High
- 11 11 Very High
- 12 12 Med
- 13 13 High
- 14 14 Very High
- 15 15 High
- 16 16 Low
- 17 17 Med
- 18 18 Med
- 19 19 Very High
- 20 20 Low

Block Randomization

- Block randomization is a tool to eliminate the effect of possible confounders through design.
- Vitamin C example: we are interested in the reduction in the number of colds when children take vitamin C. We randomly assign treatment (vitamin C or not) to children, and record the number of colds. Independent variable? Dependent variable? Experimental units?
 - Experimental unit: child.
 - Treatments: taking vitamin C or not. X_{i1}
 - Outcome is the number of colds.
- Fit the model $Y_i = \beta_0 + \beta_1 X_{i1} + \epsilon_i$.
- For equal group sizes, $var(b_1) = \frac{\sigma^2}{\sum (X_{i1} \overline{X})^2} = \frac{4\sigma^2}{n}$
- For a fixed n, how can we reduce the variance?
 - Think of where the variance comes from?
 - Maybe males and females differ in the amount of colds they get in general \Rightarrow accounting for sex would reduce σ^2 .

Block Randomization

- Block randomization is a tool to eliminate the effect of possible confounders through design.
- Vitamin C example: we are interested in the reduction in the number of colds when children take vitamin C. We randomly assign treatment (vitamin C or not) to children, and record the number of colds. Independent variable? Dependent variable? Experimental units?
 - Experimental unit: child.
 - Treatments: taking vitamin C or not. X_{i1}
 - Outcome is the number of colds.
- Fit the model $Y_i = \beta_0 + \beta_1 X_{i1} + \epsilon_i$.
- For equal group sizes, $var(b_1) = \frac{\sigma^2}{\sum (X_{i1} \overline{X})^2} = \frac{4\sigma^2}{n}$
- For a fixed n, how can we reduce the variance?
 - Think of where the variance comes from?
 - Maybe males and females differ in the amount of colds they get in general \Rightarrow accounting for sex would reduce σ^2 .

Block Randomization (cont.)

- Separate the data in different blocks.
 - These are the homogenous groups.
 - Males and females in our example.
- Randomize inside each block.
- Why do this? Wouldn't complete randomization work?
 Consider extreme case when n = 4.
 - With large samples, about 50% of males and females should receive vitamin C.
 - In practice, even if you work for Google, n is ALWAYS limited.
 - Are not guaranteed to have these groups balanced unless you do block randomization.

Six Popular Designs

- Completely Randomized Design
- Factorial Experiments
- Randomized Complete Block Designs
- Nested Designs
- Repeated Measures Designs
- Incomplete Bock Designs

Completely Randomized Design

- The simplest of all designs.
- You have c treatment groups.
- Each experimental subject is assigned to a treatment with an equal probability.
- Y_{ij} is the j^{th} replicate for the i^{th} treatment group.
- Analysis of variance model:
 - $Y_{ij} = \beta_i + \epsilon_{ij}$, $\epsilon_{ij} \sim N(0, \sigma^2)$
 - Test hypotheses regarding β_i 's.
- Ch 16-18 in KNNL.

Factorial Experiments

- Consider completely randomized designs for multi-factor studies.
- These are called factorial designs.
 - If we have 3 factors with levels f₁, f₂ and f₃
 - have $f_1 \times f_2 \times f_3$ treatment groups.
 - Called an $f_1 \times f_2 \times f_3$ design.
- Analysis of variance model can still hold.
 - Usually write it as main and interaction effects.
 - Testing of interactions is usually of interest.
 - Also have "hidden replication". Useful when all combinations are only collected once.
- Ch 19 and 24

Randomized Complete Block Designs

- You are interested in one factor.
- There is imbalance across another factor.
- Randomize within this other factor (Blocking).
- Consider the vitamin C example (block was sex, which had 2 levels). Fit:
 - $Y_{ij} = \beta_0 + \beta_1 X_{ij1} + \beta_2 X_{ij2} + \epsilon_{ij}$
 - Y_{ij} is the number of colds for i^{th} child in block j
 - X_{ij1} is an indicator for treatment.
 - X_{ij2} is an indicator for block.
- Would want to test H_0 : $\beta_1 = 0$.
- Ch 21

Nested Designs

- Nested designs differ from cross designs (or factorial designs) in that:
 - certain levels of one factor can only occur for levels of another factor.
- Recall the operator example.
 - Operators 1,2,3 only work at plant 1.
 - Operators 4,5,6 only work at plant 2, etc.
- We typically analyze these using a mixed effects model.
 Will talk about this later...
- Ch 26

Incomplete Block Designs

- Block sizes are smaller than the number of treatments.
- Used when you physically cannot do all of the experiments on each block.
 - Often when the block is a subject.
 - Cannot have a person try all 36 types of ice cream a store makes.
 - Have all subjects taste a subset of possibilities.
- Ch 28

Mixed-Effects Models:repeated measures design

- Conditional on factors, your data are correlated.
- Ignoring correlation is common, and leads to spurious results.

• Example:

- We use HRV to measure the balance of the sympathetic to parasympathetic nervous system that is associated with acute stress.
- We enroll 100 Ph.D. students in the study.
- The students are from different schools.
- We tell 50 students that they have funding next year and 50 that they do not.
- We measure this score every night for 30 days after finding out the news.
- How does stress change over time?
- Observations from the same subject are correlated.
- Observations from the same school are correlated.

- $Y_{ijkt} = (\beta_0 + \beta_1 t) + (\beta_2 + \beta_3 t) I(j = 0) + \alpha_i + \gamma_{ijk} + \epsilon_{ijkt}$
- kth student in the ith school that has j = 1 if they have money and j = 0 otherwise.
- α_i are random effects for school, and γ_{ijk} is the random effect for subject.
- ϵ_{ijkt} is correlated with $\epsilon_{ijkt'}$.
- Chapter 25. We will look at this in more depth than the book.

Observational Studies

- There are three main classes of observation studies.
- Cross-Sectional Studies look at a single time interval.
 - Look at public records for the number of homicides in Philadelphia in 2006 and if the victim lived near an alcohol seller.
- Prospective studies have the treatment precede the response.
 - Students select if they want to take vitamin C throughout the year or not.
 - You record how many colds they receive in the year.
 - Could have confounders, but temporal relationship helps in terms of possible causality.

- Retrospective studies select experimental units based on outcome.
 - Look at Pittsburghers who were diagnosed with lung cancer in 1975.
 - Look at Pittsburghers who were not diagnosed with lung cancer in 1975.
 - Compare if they worked in a Steel Mill or not.
 - Often used if an event is rare.