Performance Characteristics of Lithium-lon Prototype Batteries for Mars Surveyor Program 2001 Lander

M. C. Smart, B. V. Ratnakumar, L. Whitcanack and S. Surampudi Jet Propulsion Laboratory, Pasadena, California

Lockheed Martin Astronautics Corporation, Denver, CO, and J. Byers

R. A. Marsh Wright-Patterson Air Force Base, Dayton, OH

Supported by Mars 2001 Surveyor and NASA Code S Battery Programs NASA Battery Workshop, Huntsville, Alabama., Nov. 17, 1999

Lithium-Ion Cells for Mars Surveyor 2001 Lander Outline

- Introduction
- **Cell Performance and Battery Requirements**
- Overview of Performance Evaluation Tests
- Cycle Life Performance Tests
- Low Temperature Performance Tests
- · Cell Charge Characteristics
- Cell Storage Characteristics
- Summary and Conclusions

Mars Surveyor 2001 Lander- Scientific Payload

Mars Surveyor 2001 Lander

4

Mars Surveyor 2001 Lander

- Scheduled launch date April 10, 2001; Expected landing Jan 22, 2002.
- Lander has an imager to picture the surrounding terrain of the landing site during rocket-assisted descent.
- Platform for instruments and technology experiments designed to provide key insights to decisions regarding human missions to Mars.
- In-situ demonstration test of rocket propellant production.
- Martial soil properties and surface radiation environment

7

Mars Surveyor 2001 Lander- Components

MSP 2001 Lander Battery

Battery Envelope

- Two 25 Ah, 8-Cell Li Ion Batteries (N+1)
- Individual Cell Monitoring and control via Cell Bypass Unit (CBU) to prevent overcharge
- Individual Charge Control Unit (CCU)
- Constant Voltage Charging at 32.8 Vdc
- 16 Selectable V/T curves.
- Amp Hour Integration.

MSP 2001 Lander Power System Battery Challenges

- High specific Energy
- 800 Wh in 7.94 Kg (100 Wh/kg)
- Low Temperature Performance
- Op. Temperature : -20 to +40°C
- Capacity of 25 Ah -20°C at C/5
- **Good Cycle Life**
- 200 Cycles @ 70%
- Long Calendar Life
- Two years of storage (1 year cruise) before battery operation
- Low temperature performance after storage (final phase of the mission)

15

NASA-DOD Interagency Li-Ion Program

Objectives

DEVELOP HIGH SPECIFIC ENERGY **LONG CYCLE LIFE LI -ION** BATTERIES AND

- **ESTABLISH U.S. PRODUCTION** SOURCES
- DEMONSTRATE TECHNOLOGY READINESS
- **LANDERS BY 2001**
- **ROVERS BY2003**
- **GEO MISSIONS BY 2003**

AVIATION/UAV's BY 2001

- **MILITARY TERRESTRIAL**
- APPLNS's BY 2001
- **LEO MISSIONS BY 2003**

ELECTROCHEMICAL TECHNOLOGIES GROUP

Technology Drivers

Mission	Technology Driver
Lander	Low Temperature Operation
Rover	High rate Pulse Capability
GEO S/C	10-20 Year Operating life
	Large Capacity cells (50-200
	Ah)
LEO	Long Cycle life(30,000)
PlanetaryS/C	Medium Capacity Cells (50 Ah
Aircraft	Low temperature Operation
	High Voltage Batteries (270 V)
UAV	Large Capacity cells (200 Ah)
	High Voltage Batteries (100V)

-ithium-lon Cells for Mars Surveyor 2001 Lander Program Objectives

- lithium-ion technology for future Aerospace applications. using of viability Assess
- Demonstrate applicability of using lithium-ion Lander 2001 MSP the for application. technology

Lithium-Ion Cells for Mars Surveyor 2001 Lander

Performance Evaluation Tests

Cycle Life Performance

Room temperature cycle life (23° +/- 2°C)

Low temperature cycle life (-20°C)

High temperature cycling (40°C)

Variable temperature cycling

Electrical Performance Characterization

Range of charge and discharge rates (C/2, C/3.3, C/5 and C/10)

Range of temperatures (-30, -20, 0, 23, 40°C)

Pulse capability (40 and 60A)

Impedance measurements

Storage Characteristics

* 2 Month storage test (0 and 40°C, 50 and 100% SOC)

* Accelerated storage test: at different SOC (50, 70,100% SOC), temperatures (25, 40, 55°C), and storage conditions.

Quality Control

Cell to cell performance performance variations Reproducibility of cell results

Cycle Life Performance Tests

Requirement: Deliver > 200 cycles on surface of Mars

- 100% DOD cycling (3.0-4.1V, C/5-C/10)
- Wide temperature range (-20°C to 40°C)
- At end of life should deliver 25 Ah

Approach:

100 % DOD cycling @ -20°C (C/10 charge, C/5 discharge) 100 % DOD cycling @ 40°C (C/5 charge, C/5 discharge) 100 % DOD cycling @ 23°C (C/5 charge, C/5 discharge) Variable temperature cycling (temperature extremes) Mission simulation cycling

Possible Evaluation Criteria:

Initial capacity (must exceed 25 Ah) Capacity after 200 cycles (Ah)

Capacity fade rates

Lithium-Ion Session II

Capacity delivered over range of temperatures

ELECTROCHEMICAL TECHNOLOGIES GROUP

Lithium-Ion Cells for Mars Surveyor 2001 Lander

Comparison of Different Cell Designs and Sizes Room Temperature Cycle Life Performance

Lithium-Ion Cells for Mars Surveyor 2001 Lander Cycle Life Performance at Varying Temperatures

Lithium-Ion Cells for Mars Surveyor 2001 Lander Cycle Life Performance at Varying Temperatures

ithium-lon Cells for Mars Surveyor 2001 Lander Cycle Life Performance at Different Temperatures

Lithium-Ion Cells for Mars Surveyor 2001 Lander Low Temperature Performance Evaluation

Requirement:

- Provide 25 Ah over wide range of temperatures (-20°C to 40°C)
 - Provide 25 Ah at C/2 rate C/10 rate
- Should be capable of meeting mission profile

Approach:

Rate characterization at various temperatures (-20, 0, 20 and 40°C) Range of charge and discharge rates (C/2, C/3.3, C/5 and C/10)

Possible Evaluation Criteria:

Capacity delivered over range of temperatures Low temperature discharge capacity (@ -20°C) Watt-hour efficiency (round-trip efficiency) Effect of cell history upon rate capability Low temperature charge characteristics Discharge energy (Wh/Kg) Heat generation

Lithium-Ion Cells for Mars Surveyor 2001 Lander Rate Capability at Different Temperatures

ELECTROCHEMICAL TECHNOLOGIES GROUP

Lithium-Ion Cells for Mars Surveyor 2001 Lander

ELECTROCHEMICAL TECHNOLOGIES GROUP

Lithium-Ion Cells for Mars Surveyor 2001 Lander Rate Capability at Different Temperatures

Cell Charge Characteristics

Charge acceptance at various rates and temperatures

Effect of cycle life upon charge characteristics

Effect of charge voltage upon cell performance V/T characterization

Effect of charge methodology

Lithium-Ion Cells for Mars Surveyor 2001 Lander Low Temperature Charge Characteristics

Lithium-Ion Cells for Mars Surveyor 2001 Lander Room Temperature Charge Characteristics

Lithium-lon Cells for Mars Surveyor 2001 Lander Charge Characteristics

ELECTROCHEMICAL TECHNOLOGIES GROUP

Lithium-Ion Cells for Mars Surveyor 2001 Lander

Large Capacity Lithium-lon Cells for Mars Lander Applications Room Temperature Charge Characteristics

ELECTROCHEMICAL TECHNOLOGIES GROUP

Lithium-Ion Cells for Mars Surveyor 2001 Lander Effect of Cycle Life on Charge Characteristics

ithium-lon Cells for Mars Surveyor 2001 Lander Effect of Cycle Life on Charge Characteristics

Lithium-Ion Cells for Mars Surveyor 2001 Lander Effect of Cell Life Upon Charge Characteristics

Effect of Taper Current Upon Charge Characteristics Lithium-lon Cells for Mars Surveyor 2001 Lander

ELECTROCHEMICAL TECHNOLOGIES GROUP

Effect of Charge Voltage Upon Cycle Life Characteristics Lithium-Ion Cells for Mars Surveyor 2001 Lander

ELECTROCHEMICAL TECHNOLOGIES GROUP

V/T Curves of Li Ion Cells

- Are higher charge voltages justified at lower temperature?
- Need to define specific conditions under which lithium plating can occur (rate and system dependent).

Lithium-Ion Cells for Mars Surveyor 2001 Lander Capacity Retention Characterization Tests

Requirement:

Should be capable of meeting all other requirements after prolonged storage period (>10 months)

Approach:

- Identify optimum storage conditions
- 2 Month storage test (0 and 40°C, 50 and 100% SOC) Quantify performance degradation due to storage
- 10 Month storage test (0 and 40°C, 50 and 100% SOC)
- Accelerated storage test: (at different SOC (50, 70,100% SOC),
 - temperatures (0, 25, 40, 50°C), and storage conditions.

Possible Evaluation Criteria:

- · Self-discharge of stored capacity
- Permanent loss of reversible capacity
- Impact upon low temperature performance

1

Lithium-Ion Cells for Mars Surveyor 2001 Lander Storage Characteristics - Capacity Retention

- **1**2

Lithium-Ion Cells for Mars Surveyor 2001 Lander Self Discharge Characteristics

Lithium-Ion Cells for Mars Surveyor 2001 Lander Storage Characteristics

4

Lithium-Ion Cells for Mars Surveyor 2001 Lander Storage Characteristics - Capacity Retention 25 Ah Prototype Cells

Reversible Capacity	98.4 %	97.1 %	99.4 %	% 0.86	
Capacity Loss (Ah)	12.03 Ah	6.10 Ah	14.00 Ah	2.37 Ah	
State of Charge	% 09	100 %	% 09	100 %	
Storage Temp (°C)	0	0	40	40	

Lithium-lon Cells for Mars Surveyor 2001 Lander Design Experiments for Cruise Conditions

Experiment	Experiment Storage time, Storage	Storage	State	
#	weeks	Temp	of	Storage condition
			charge	
_	2	25	50	Open Circuit
2	2	40	70	On Buss
es es	2	55	100	Cycling
4	4	25	70	Cycling
2	4	40	100	Open Circuit
9	4	55	50	On Buss
7	9	25	100	On Buss
ω	9	40	50	Cycling
O	9	55	70	Open Circuit

Parametric Storage Studies

Capacity loss, %

SUMMARY

- Li Ion cells meet the MSP 2001 Lander mission requirements in
- Cycle Life Performance
- Room Temperature = Excellent (>90% @ 200 cycles)
- Low Temperature (-20) = Sufficient
- High Temperature (40°C) = Sufficient (>70% @ 200 cycles)
- Discharge Rate Capability at Various Temperatures
- Room Temperature = Excellent
- Low Temperature (-20) = Sufficient (~ 24 Ah @ C/5 rate)
- High Temperature (40°C) = Excellent
- Storage Characteristics
- Demonstrated minimal reversible capacity loss (2 months)
- Identified temperature as most crucial storage parameter
- Demonstrated efficacy of storage "on the buss"
- Mission simulation (Variable Temperature Cycling)
- Identified potential performance limiting conditions (worst case)
- Implemented characterization test to quantify behavior

Acknowledgments

Propulsion Laboratory (JPL), California Institute of Code S Battery Programs under contract with the Technology, for the Mars 2001 Surveyor and NASA Space Administration The work described here was carried out at the Jet and National Aeronautics (NASA).