

AZ-104T00A Module 09: Serverless Computing

© Copyright Microsoft Corporation. All rights reserved.

Module Overview

Lesson 01: Azure App Service Plans

Azure App Service Overview

App Service Plan Scale Out

Demonstration – Create an App Service Plan

Azure App Service Plans

App Service Plan Pricing Tiers

Selected Features	Free	Shared (dev/test)	Basic (dedicated dev/test)	Standard (production workloads)	Premium (enhanced scale and performance)	Isolated (high-performance, security and isolation)
Web, mobile, or API apps	10	100	Unlimited	Unlimited	Unlimited	Unlimited
Disk space	1 GB	1 GB	10 GB	50 GB	250 GB	1 TB
Auto Scale	_	_	_	Supported	Supported	Supported
Deployment Slots	0	0	0	5	20	20
Max Instances	_	_	Up to 3	Up to 10	Up to 30	Up to 100

Shared compute

(Free and Shared). Run apps on the same Azure VM as other App Service apps, and the resources cannot scale out

Dedicated compute

(Basic, Standard, Premium). Run apps in the same plan in dedicated Azure VMs **Isolated**. Runs apps on dedicated Azure VMs in dedicated Azure virtual networks

App Service Plan Scaling

Scale up (change the App Service plan):

More hardware (CPU, memory, disk)

More features (dedicated virtual machines, staging slots, autoscaling)

Scale out (increase the number of VM instances):

Manual (fixed number of instances)

Auto scale (based on predefined rules and schedules)

App Service Plan Scale Out

Default Auto created scale condition 🖉										
ı	Delete w	varning	1 The very last or default recurrence rule cannot be deleted. Instead, you can disable autoscale to turn off autoscale.							
2	Scale mo	ode	Scale based on a metric Scale to a specific instance count							
Rules Instance limits Schedule		No metric rules defined; click hyperlink Add a rule to scale out and scale in your instances based on rules. For example: 'Add a rule that increases instance count by 1 when CPU percentage is above 70%'.								
		+ Add a rule								
		Minimum i		Maximum ①	Default ①					
		е	This scale condition is executed when none of the other scale condition(s) match							
Adjust available resources based on the current demand	d		oves bility and tolerance	a met perce	based on ric (CPU ntage, memory ntage, HTTP ests)	Scale according to a schedule (weekdays, weekends, times, holidays)	Can implement multiple rules – combine metrics and schedules	Don't forget to scale in		

Lesson 02: Azure App Services

Azure App Service

Includes Web Apps, API Apps, Mobile Apps, and Function apps

Fully managed environment enabling high productivity development

Platform-as-a-service (PaaS) offering for building and deploying highly available cloud apps for web and mobile

Platform handles infrastructure so developers focus on core web apps and services

Developer productivity using .NET, .NET Core, Java, Python and a host of others

Provides enterprise-grade security and compliance

Creating an App Service

Name must be unique Access using azurewebsites.net – can map to a custom domain Publish Code (Runtime Stack) **Publish Docker Container Linux or Windows** Region closest to your users App Service Plan

Continuous Deployment

Work in a single source control

Whenever code updates are pushed to the source control, then the website or web app will automatically pick up the updates

A continuous deployment workflow publishes the most recent updates from a project

Use the portal for continuous deployments from GitHub, Bitbucket, or Azure DevOps

Deployment Slots

Service Plan	Slots
Free, Shared, Basic	0
Standard	Up to 5
Premium	Up to 20
Isolated	Up to 20

Deploy to a different deployment slots (depends on service plan)

Validate changes before sending to production Deployment slots are live apps with their own hostnames Avoids a cold start – eliminates downtime Fallback to a last known good site

Auto Swap when pre-swap validation is not needed

Creating Deployment Slots

A new slot can be empty or cloned

When you clone, pay attention to the settings:

- Slot-specific app settings and connection strings
- Continuous deployment settings
- App Service authentication settings

Not all settings are sticky (endpoints, custom domain names, SSL certificates, scaling)

Review and edit your settings before swapping

Securing an App Service

Authentication:

Enable authentication – default anonymous Log in with a third-party identity provider

Security:

Troubleshoot with Diagnostic Logs – failed requests, app logging

Add an SSL certificate – HTTPS

Define a priority ordered allow/deny list to control network access to the app

Store secrets in the Azure Key Vault

Custom Domain Names

Redirect the default web app URL

Validate the custom domain in Azure

Use the DNS registry for your domain provider – create a CNAME or A record with the mapping

Ensure App Service plan supports custom domains

Backup an App Service

Create app backups manually or on a schedule

Backup the configuration, file content, and database connected to the app

Requires Standard or Premium plan

Backups can be up to 10 GB of app and database content

Configure partial backups and exclude items from the backup

Restore your app on-demand to a previous state, or create a new app

Application Insights

Request rates, deny rates, response time and failure rates

Page views and load performance

User and session counts

Performance counters

Diagnostics and Exceptions

Lesson 03: Container Services

Container Services Overview

Azure Container Instances

Container Groups

Docker

Containers vs Virtual Machines

Feature	Containers	Virtual Machines
Isolation	Typically provides lightweight isolation from the host and other containers but doesn't provide as strong a security boundary as a virtual machine	Provides complete isolation from the host operating system and other VMs. This is useful when a strong security boundary is critical, such as hosting apps from competing companies on the same server or cluster
Operating system	Runs the user mode portion of an operating system and can be tailored to contain just the needed services for your app, using fewer system resources.	Runs a complete operating system including the kernel, thus requiring more system resources (CPU, memory, and storage)
Deployment	Deploy individual containers by using Docker via command line; deploy multiple containers by using an orchestrator such as Azure Kubernetes Service	Deploy individual VMs by using Windows Admin Center or Hyper-V Manager; deploy multiple VMs by using PowerShell or System Center Virtual Machine Manager
Persistent storage	Use Azure Disks for local storage for a single node, or Azure Files (SMB shares) for storage shared by multiple nodes or servers	Use a virtual hard disk (VHD) for local storage for a single VM, or an SMB file share for storage shared by multiple servers
Fault tolerance	If a cluster node fails, any containers running on it are rapidly recreated by the orchestrator on another cluster node	VMs can fail over to another server in a cluster, with the VM's operating system restarting on the new server

Hypervisors create and manage virtual machines

Dedicated server

Application code

Dependencies

Kernel

Hardware

Deployment ~months Low utilization Not portable

Deployment ~days (mins)
Hypervisor-specific
Low isolation; tied to OS

Running multiple apps on a single VM

Deployment ~months Low utilization Not portable

Deployment ~days (mins)
Hypervisor-specific
Low isolation; tied to OS

The VM-centric way to solve this problem

Dedicated server
Application code
Dependencies
Kernel
Hardware

Deployment ~months

Not portable

Low utilization

Deployment ~days (mins)
Hypervisor-specific
Low isolation; tied to OS

Deployment ~days (mins)
Hypervisor-specific
Redundant OS

User space abstraction and containers

Deployment ~months Not portable Low utilization

Deployment ~days (mins)
Hypervisor-specific
Low isolation; tied to OS

Deployment ~days (mins)
Hypervisor-specific
Redundant OS

Containers are structured in layers

Dockerfile
FROM ubuntu:18.04
COPY . /app
RUN make /app
CMD python /app/app.py

Containers promote smaller shared images

Azure Container Instances

PaaS Service

Fast startup times

Public IP connectivity and DNS name

Isolation features

Custom sizes

Persistent storage

Linux and Windows Containers

Co-scheduled Groups

Virtual network Deployment

Container Groups

Top-level resource in Azure Container Instances

A collection of containers that get scheduled on the same host The containers in the group share a lifecycle, resources, local network, and storage volumes

Docker

Enables developers to host applications within a container

A container is a standardized "unit of software" that contains everything required for an application to run Available on both Linux and Windows and can be hosted on Azure

Lesson 04: Azure Kubernetes Service

AKS Security

Azure Kubernetes Service

AKS Terminology

Term	Description
Pools	Groups of nodes with identical configurations
Nodes	Individual VM running containerized applications
Pods	Single instance of an application. A pod can contain multiple containers
Deployment	One or more identical pods managed by Kubernetes
Manifest	YAML file describing a deployment

AKS Clusters and Nodes

Azure-managed node provides core Kubernetes services and orchestration

Customer-managed nodes run applications and supporting services

Each individual node is an Azure virtual machine

AKS Networking

connectivity

direct traffic

non-direct traffic

AKS Storage

Local storage on the node is fast and simple to use

Local storage might not be available after the pod is deleted

Multiple pods may share data volumes

Storage could potentially be reattached to another pod

AKS Security

Implement security across the entire AKS infrastructure

Managed service – Limit access with authorized IP ranges, create a private cluster, use RBAC and Azure AD access

Cluster upgrades – Upgrade the AKS cluster with cordon and drain

Node – Automatic OS security patches, Azure managed disks, pod security policies

Networks – Define ingress controllers with private internal IP addresses, filter the flow of traffic with network security groups

Data – Kubernetes secrets for credentials and keys

AKS and Azure Active Directory

Use Azure AD as an integrated identity solution

Use service accounts, user accounts, and role-based access control

AKS Scaling

Applications might grow beyond the capacity of a single pod

Kubernetes has built-in autoscalers

Cluster autoscaler scales based on compute resources

Horizontal pod autoscaler scales based on metrics

AKS Scaling to ACI

If you need to rapidly grow your AKS cluster, you can create new pods in Azure Container Instances

© Copyright Microsoft Corporation. All rights reserved.

Virtual Kubelet

Virtual kubelet is an open-source Kubernetes kubelet implementation

The virtual kubelet registers itself as a node and allows developers to deploy pods and containers with their own APIs Supported by an ecosystem of providers

Lesson 06: Module Labs and Review

Lab 09a – Implement web apps

Lab scenario

You need to evaluate the use of Azure Web apps for hosting Contoso's web sites, hosted currently in the company's on-premises data centers. The web sites are running on Windows servers using PHP runtime stack. You also need to determine how you can implement DevOps practices by leveraging Azure web apps deployment slots

Objectives

_		a	
las	K	Т	٠

Create an Azure web app

Task 4:

Deploy code to the staging deployment slot

Task 2:

Create a staging deployment slot

Task 5:

Swap the staging slots

Task 3:

Configure web app deployment settings

Task 6:

Configure and test autoscaling of the Azure web app

Next slide for an architecture diagram (\rightarrow)

Lab 09a – Architecture diagram

Lab 09b – Implement Azure Container Instances

Lab scenario

Contoso wants to find a new platform for its virtualized workloads. You identified several container images that can be leveraged to accomplish this objective. Since you want to minimize container management, you plan to evaluate the use of Azure Container Instances for deployment of Docker images

Objectives

Task 1:

Deploy a Docker image by using the Azure **Container Instance**

Task 2:

Review the functionality of the Azure Container Instance

Next slide for an architecture diagram (\rightarrow)

Lab 09b – Architecture diagram

Lab 09c – Implement Azure Kubernetes service

Lab scenario

Contoso has several multi-tier applications that are not suitable to run by using Azure Container Instances. To determine whether they can be run as containerized workloads, you want to evaluate using Kubernetes as the container orchestrator. To minimize management overhead, you want to test Azure Kubernetes Service, including its simplified deployment experience and scaling

Objectives

Task 1:

Deploy an Azure Kubernetes Service cluster

Task 2:

Deploy pods into the Azure Kubernetes Service cluster

Task 3:

Scale containerized workloads in the Azure Kubernetes service cluster

Next slide for an architecture diagram (\rightarrow)

Lab 09c – Architecture diagram

Module Review

Module Review Questions

Microsoft Learn Modules (docs.microsoft.com/Learn)

Host a web application with Azure App service	
Stage a web app deployment for testing and rollback by using App Service deployment slots	
Scale an App Service web app to efficiently meet demand with App Service scale and scale out	e up
Dynamically meet changing web app performance requirements with autoscale	rules
Capture and view page load times in your Azure web app with Application Insig	nts
Build a containerized web application with Docker	
Run Docker containers with Azure Container Instances	
Introduction to the Azure Kubernetes Service © Copyright Microsoft Corporation. All	rights reserved
© Copyright Microsoft Corporation. All	ngnis reserveu.

End of presentation