Amendments to the Claims:

This listing of claims replaces all prior versions, and listings, of claims in the captioned application.

Listing of Claims:

- 1,-20 (cancelled)
- 21. (Previously presented) A product containing (a) a compound as defined in claim 25, and (b) another antiretroviral compound, as a combined preparation for simultaneous, separate or sequential use in the treatment of HIV infection.
- 22. (Previously presented) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and as active ingredients (a) a compound as defined in claim 25 and (b) another antiretroviral compound.
- 23. (Previously presented) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and as active ingredient a therapeutically effective amount of a compound as claimed in claim 25.
- 24. (currently amended) A process for preparing a pharmaceutical composition aeeording to claim 23 comprising mixing a therapeutically effective amount of a compound as claimed in claim 25 intimately mixed with a pharmaceutically acceptable carrier.

25. (previously presented) A compound selected from the group consisting of:

or a pharmaceutically acceptable addition salt, or stereochemically isomeric forms thereof.

Claim 26. (previously presented) A compound of formula

or a pharmaceutically acceptable addition salt, or a stereochemically isomeric form thereof, wherein

A and B each represents a radical of formula

ring E represents phenyl, pyridyl, pyridazinyl, pyrimidinyl or pyrazinyl; ring F represents phenyl, pyridyl, pyridazinyl, pyrimidinyl or pyrazinyl;

R1 represents hydrogen; aryl; formyl; C1-6alkylcarbonyl; C1-6alkyloxycarbonyl;

C1-6alkyl optionally substituted with formyl, C1-6alkylcarbonyl,

C1_6alkyloxycarbonyl, C1_6alkylcarbonyloxy; or C1_6alkyloxyC1_6alkylcarbonyl substituted with C1_6alkyloxycarbonyl;

 R^2 represents cyano; C_{1-6} alkyl substituted with cyano, aminocarbonyl or mono- or $di(C_{1-4}$ alkyl)aminocarbonyl; C_{2-6} alkenyl substituted with cyano, aminocarbonyl or mono- or $di(C_{1-4}$ alkyl)aminocarbonyl; or C_{2-6} alkynyl substituted with cyano, aminocarbonyl or mono- or $di(C_{1-4}$ alkyl)aminocarbonyl;

 X_1 represents $-NR^5$ -; -NH-NH-; -N=N-; -O-; -C(=O)-; $-C_{1-4}$ alkanediyl-; -CHOH-; -S-; -S(=O)-; $-X_2$ - $-C_{1-4}$ alkanediyl-; $-C_{1-4}$ alkanediyl- $-C_{1-4}$

-C1-4alkanediyl-X2-C1-4alkanediyl-;

 X_2 represents $-NR^5$ -; -NH-NH-; -N=N-; -O-; -C(=O)-; -CHOH-; -S-; or -S(=O) $_p$ -; m represents an integer of value 1, 2, 3 or 4;

R³ represents cyano; aminocarbonyl; amino; halo; NHR¹³; NR¹³R¹⁴; -C(=O)-NHR¹³;
-C(=O)-NR¹³R¹⁴; -C(=O)-R¹⁵; -CH=N-NH-C(=O)-R¹⁶; C₁₋₆alkyl optionally substituted with one or more substituents each independently selected from R^{1a};

 $C_{1.6}$ alkyloxy optionally substituted with one or more substituents each independently selected from R^{3a} , $C_{1.6}$ alkyloxy $C_{1.6}$ alkyl optionally substituted with one or more

substituents each independently selected from R^{3a} ; C_{2-6} alkenyl optionally substituted with one or more substituents each independently selected from R^{3a} ; C_{2-6} alkynyl optionally substituted with one or more substituents each independently selected from R^{3a} ; $-C(=N-O-R^8)-C_{1-4}$ alkyl; R^7 or $-X_3-R^7$;

R^{3a} represents halo, cyano, hydroxy, NR⁹R¹⁰, -C(=O)-NR⁹R¹⁰, -C(=O)-C₁₋₆alkyl, -C(=O)-O-C₁₋₆alkyl, -C(=O)-nolyhaloC₁₋₆alkyl, -C(=O)-O-nolyhaloC₁₋₆alkyl, -C(=O)-O-nolyhaloC₁₋₆alkyl, -C(=O)-NolyhaloC₁₋₆alkyl, -C(=O)-NolyhaloC₁₋₆alkyl

X₃ represents -NR⁵-; -NH-NH-; -N=N-; -O-; -C(=O)-; -S-; -S(=O)_p-;

 $-X_{4a}$ - $C_{1.4}$ alkanediyl-; $-C_{1.4}$ alkanediyl- X_{4b} -; $-C_{1.4}$ alkanediyl- X_{4a} - $C_{1.4}$ alkanediyl-; or $-C(=N-OR^8)$ - $C_{1.4}$ alkanediyl-:

 X_{4a} represents $-NR^5$ -; -NH-NH-; -N=N-; -C(=O)-; -S-; or $-S(=O)_0$ -;

X_{4b} represents -NH-NH-; -N=N-; -O-; -C(=O)-; -S-; or -S(=O)₀-;

each R^4 independently represents hydroxy; halo; $C_{1\text{-}6}$ alkyl optionally substituted with one or more substituents each independently selected from R^{4a} ; $C_{2\text{-}6}$ alkenyl optionally substituted with one or more substituents each independently selected from R^{4a} ;

 $C_{2:6} alkynyl\ optionally\ substituted\ with\ one\ or\ more\ substitutents\ each\ independently\ selected\ from\ R^{4a};\ C_{3:7} cycloalkyl;\ C_{1-6} alkyloxy;\ C_{1-6} alkyloxycarbonyl;$

$$\begin{split} &C_{1\text{-}6}\text{alkylcarbonyloxy; carboxyl; formyl; cyano; nitro; amino; mono- or \\ &di(C_{1\text{-}6}\text{alkyl})\text{amino; polyhalo}C_{1\text{-}6}\text{alkyl; polyhalo}C_{1\text{-}6}\text{alkyloxy; polyhalo}C_{1\text{-}6}\text{alkylthio;} \\ &-S(=O)_pR^6; -NH-S(=O)_pR^6; -C(=O)R^6; -NHC(=O)H; -C(=O)NHNH_2; NHC(=O)R^6; \\ &C(=NH)R^6; \text{ or } R^7; \end{split}$$

R^{4a} represents halo, cyano, NR⁹R¹⁰, hydroxy or -C(=O)R⁶;

R⁵ represents hydrogen; aryl; formyl; C₁-6alkylcarbonyl; C₁-6alkylcarbonyl; C₁-6alkyl optionally substituted with formyl, C₁-6alkylcarbonyl, C₁-6alkyloxycarbonyl or C₁-6alkylcarbonyloxy; or C₁-6alkyloxyC₁-6alkylcarbonyl

substituted with C₁₋₆alkyloxycarbonyl;

 $R^6 \ \text{represents} \ C_{1\text{-}6} \text{alkyl, amino, mono- or di} (C_{1\text{-}4} \text{alkyl}) \text{amino or polyhalo} C_{1\text{-}4} \text{alkyl};$

R⁷ represents a monocyclic, bicyclic or tricyclic saturated carbocycle; a monocyclic, bicyclic or tricyclic partially saturated carbocycle; a monocyclic, bicyclic or tricyclic aromatic carbocycle; a monocyclic, bicyclic or tricyclic saturated heterocycle; a monocyclic, bicyclic or tricyclic partially saturated heterocycle; or a monocyclic,

bicyclic or tricyclic aromatic heterocycle; wherein each of said carbocyclic or heterocyclic ring systems may, whenever possible, optionally be substituted with one, two, three, four or five substituents each independently selected from halo, hydroxy, mercapto, C_{1-6} alkyl, hydroxy C_{1-6} alkyl, amino C_{1-6} alkyl, mono or di(C_{1-6} alkyl)amino C_{1-6} alkyl, formyl, C_{1-6} alkylcarbonyl, C_{3-7} cycloalkyl, C_{1-6} alkyloxy, C_{1-6} alkyloxycarbonyl, C_{1-6} alkylthio, cyano, nitro, polyhalo C_{1-6} alkyloxy, aminocarbonyl, C_{1-6} Alkyloxy, C_{1-6} Alkyloxy, aminocarbonyl, C_{1-6} Alkyloxy-aminocarbonyl, C_{1-6} Alkyloxy-aminocarbon

R^{7a} represents a monocyclic, bicyclic or tricyclic saturated carbocycle; a monocyclic, bicyclic or tricyclic partially saturated carbocycle; a monocyclic, bicyclic or tricyclic aromatic carbocycle; a monocyclic, bicyclic or tricyclic saturated heterocycle; a monocyclic, bicyclic or tricyclic partially saturated heterocycle; or a monocyclic, bicyclic or tricyclic aromatic heterocycle; wherein each of said carbocyclic or heterocyclic ring systems may optionally be substituted with one, two, three, four or five substituents each independently selected from halo, hydroxy, mercapto, C1-6alkyl, hydroxyC1-6alkyl, aminoC1-6alkyl, mono or di(C1-6alkyl)aminoC1-6alkyl, formyl, C1-6alkylcarbonyl, C2-7cycloalkyl, C1-6alkyloxy, C1-6alkyloxycarbonyl, C1-6alkylthio, cyano, nitro, polyhaloC16alkyl, polyhaloC16alkyloxy, aminocarbonyl, -CH(=N-O-R8); R8 represents hydrogen, C, alkyl optionally substituted with aryl, or aryl; R⁹ and R¹⁰ each independently represent hydrogen; hydroxy; C₁₋₆alkyl; C₁₋₆alkyloxy; C1-6alkylcarbonyl; C1-6alkyloxycarbonyl; amino; mono- or di(C1-6alkyl)amino; monoor di(C_{1.6}alkyl)aminocarbonyl: -CH(=NR¹¹) or R⁷, wherein each of the aforementioned CLsalkyl groups may optionally and each individually be substituted with one or two substituents each independently selected from hydroxy. CLalkyloxy, hydroxyCLalkyloxy, carboxyl, CLalkyloxycarbonyl, cyano, amino. imino, mono- or di(C1-4alkyl)amino, polyhaloC1-4alkyl, polyhaloC1-4alkyloxy, polyhaloC₁₋₄alkylthio, -S(=O)_pR⁶, -NH-S(=O)_pR⁶, -C(=O)R⁶, -NHC(=O)H, -C(=O)NHNH2, -NHC(=O)R⁶, -C(=NH)R⁶, or R⁷; or

R9 and R10 may be taken together to form a bivalent radical of formula

-CH ₂ -CH ₂ -CH ₂ -	(d-1);
-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -	(d-2);
-CH ₂ -CH ₂ -O-CH ₂ -CH ₂ -	(d-3);
-CH ₂ -CH ₂ -S-CH ₂ -CH ₂ -	(d-4);
-CH ₂ -CH ₂ -NR ¹² -CH ₂ -CH ₂ -	(d-5); or
-CH ₂ -CH=CH-CH ₂ -	(d-6);

R¹¹ represents cyano; C₁₋₄alkyl optionally substituted with C₁₋₄alkyloxy, cyano, amino, mono- or di(C₁₋₄alkyl)amino or aminocarbonyl; C₁₋₄alkylcarbonyl;

C1-4alkyloxycarbonyl; aminocarbonyl; mono- or di(C1-4alkyl)aminocarbonyl;

- R12 represents hydrogen or C1-4alkyl;
- R^{13} and R^{14} each independently represent $C_{1\text{-}6}$ alkyl optionally substituted with cyano, aminocarbonyl or mono- or $di(C_{1\text{-}4}$ alkyl)aminocarbonyl; $C_{2\text{-}6}$ alkenyl optionally substituted with cyano, aminocarbonyl or mono- or $di(C_{1\text{-}4}$ alkyl)aminocarbonyl; $C_{2\text{-}6}$ alkynyl optionally substituted with cyano, aminocarbonyl or mono- or $di(C_{1\text{-}4}$ alkyl)aminocarbonyl;
- R¹⁵ represents C₁₋₆alkyl optionally substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl;
- R¹⁶ represents C₁₋₆alkyl optionally substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl; or R⁷;
- -C-D- represents a bivalent radical of formula

R¹⁷ represents hydrogen; C₁₋₄alkyl optionally substituted with hydroxy, cyano, aminocarbonyl, mono-or di(C₁₋₄alkyl)aminocarbonyl, C₁₋₄alkyloxycarbonyl or aryl; p represents an integer of value 1 or 2:

aryl represents phenyl or phenyl substituted with one, two, three, four or five substituents each independently selected from halo, hydroxy, mercapto, C₁-6alkyl, hydroxyC₁-6alkyl, aminoC₁-6alkyl, mono or di(C₁-6alkyl)aminoC₁-6alkyl,

C1-6alkylcarbonyl, C3-7cycloalkyl, C1-6alkyloxy, C1-6alkyloxycarbonyl,

 C_{1-6} alkylthio, cyano, nitro, polyhalo C_{1-6} alkyl, polyhalo C_{1-6} alkyloxy, aminocarbonyl, R^7 or $-X_3$ - R^7 ;

provided that when A represents a radical of formula (a) then B represents a radical of formula (b) and when A represents a radical of formula (b) then B represents a radical of formula (a).

(Previously presented) A compound according to claim 26 wherein the compound has the formula

$$(\mathbf{R}^4)_{\mathbf{M}} = \mathbf{R}^3$$

$$(\mathbf{I} - \mathbf{A})$$

$$\mathbf{R}^1 = \mathbf{R}^2$$

or a pharmaceutically acceptable addition salt, or a stereochemically isomeric form thereof,

wherein R^1 , R^2 , R^3 , R^4 , ring E, ring F, C, D, X_1 and m are as defined in claim 26.

(Previously presented) A compound according to claim 27 wherein the compound of formula (I-A) has the formula

$$\begin{array}{c|c} R^4 & F \\ \hline \\ K & R^4 \\ \hline \\ D & N & R^4 \\ \hline \\ R^1 & E & R^2 \\ \end{array}$$

or a pharmaceutically acceptable addition salt, or a stereochemically isomeric form thereof,

wherein R¹, R², R³, R⁴, ring E, ring F, C, D and X₁ are as defined in claim 26.

 (Previously presented) A compound according to claim 26 wherein the compound has the formula

$$\begin{array}{c|c} & & & \\ & & &$$

or a pharmaceutically acceptable addition salt or a stereochemically isomeric form thereof,

wherein R¹, R², R³, R⁴, ring E, ring F, C, D, X₁ and m are as defined in claim 26.

 (Previously presented) A compound according to claim 29 wherein the compound of formula (I-B) has the formula

$$\begin{array}{c|c}
R^1 & E \\
\hline
R^2 & (I-B-2)
\end{array}$$

$$\begin{array}{c|c}
R^4 & (I-B-2)
\end{array}$$

$$\begin{array}{c|c}
R^3 & (I-B-2)
\end{array}$$

or a pharmaceutically acceptable addition salt, or a stereochemically isomeric form thereof.

wherein $R^1,\,R^2,\,R^3,\,R^4,$ ring E, ring F, C, D and X_1 are as defined in claim 26.

31. (Previously Presented) A compound according to claim 26 wherein ring E is phenyl.

- 32 (Previously Presented) A compound according to claim 26 wherein ring F is phenyl.
- 33. (Previously presented) A compound according to claim 26 wherein the compound has the formula

$$(R^4)_{m_{N}} = \begin{bmatrix} R^3 \\ b^4 \\ b^4 \end{bmatrix} = b^3$$

$$N = \begin{bmatrix} N \\ N \end{bmatrix} = \begin{bmatrix} N$$

or a pharmaceutically acceptable addition salt, or a stereochemically isomeric form thereof, wherein

-a¹=a²-C(R²)=a³-a⁴= represents a bivalent radical of formula

-CH=CH-C(R2)=CH-CH= (a-1):

 $-N=CH-C(R^2)=CH-CH=$ (a-2);

-CH=N-C(R^2)=CH-CH= (a-3);

 $-N=CH-C(R^2)=N-CH=$ (a-4);

-N=CH-C(R²)=CH-N= (a-5);

-CH=N-C(R^2)=N-CH= (a-6); or

-N=N-C(R²)=CH-CH= (a-7):

 $-b^1=b^2-b^3=b^4$ - represents a bivalent radical of formula

-CH=CH-CH=CH- (b-1);

-N=CH-CH=CH- (b-2);

-N=CH-N=CH- (b-3);

-N=CH-CH=N- (b-4); or

-N=N-CH=CH- (b-5);

-C-D- represents a bivalent radical of formula

-N=CH-NR¹⁷- (c-1); or

-NR¹⁷-CH=N- (c-2);

- m represents an integer of value 1, 2, 3 and in case $-b^1=b^2-b^3=b^4$ is (b-1), then m may also be 4:
- R¹ represents hydrogen; aryl; formyl; C1_6alkylcarbonyl; C1_6alkyloxycarbonyl; C1_6alkyl optionally substituted with formyl, C1_6alkylcarbonyl, C1_6alkyloxycarbonyl, C1_6alkylcarbonyloxy; or C1_6alkyloxyC1_6alkylcarbonyl substituted with C1_6alkyloxycarbonyl;
- R² represents cyano; C₁₋₆alkyl substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl; C₂₋₆alkenyl substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl; or C₂₋₆alkynyl substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl;
- X_1 represents $-NR^5$ -, -NH-NH-, -N=N-, -O-, -C(=O)-, C_{1-i} alkanediyl, -CHOH-, -S-, $-S(=O)_0$ -, $-X_2$ - C_{1-i} alkanediyl- or $-C_{1-i}$ alkanediyl- X_2 -;
- X₂ represents -NR⁵-, -NH-NH-, -N=N-, -O-, -C(=O)-, -CHOH-, -S-, -S(=O)₀-;
- R³ represents NHR¹³, NR¹³R¹⁴, -C(=O)-NHR¹³, -C(=O)-NR¹R¹¹, -C(=O)-R¹⁵, -CH=N-NH-C(=O)-R¹⁶, cyano; halo; C¹_6alkyl; polyhaloC¹_6alkyl; C¹_6alkyl substituted with one or more substituents each independently selected from cyano, NR²R¹⁰, -C(=O)-NR²R¹⁰, -C(=O)-C¹_6alkyl or R², C¹_6alkyl substituted with hydroxy and a second substituent selected from cyano, NR²R¹⁰, -C(=O)-NR²R¹⁰, -C(=O)-C¹_6alkyl or R², C¹_6alkyl oxyC¹_6alkyl optionally substituted with one or more substituents each independently selected from cyano, NR²R¹⁰, -C(=O)-NR²R¹⁰, -C(=O)-C¹_6alkyl or R², C¹_6alkyl oxy optionally substituted with one or more substituents each independently selected from cyano, NR²R¹⁰, -C(=O)-NR²R¹⁰, -C(=O)-C¹_6alkyl or R², C²_6alkenyl optionally substituted with one or more substituents each independently selected from halo, cyano, NR²R¹⁰, -C(=O)-NR²R¹⁰, -C(=O)-C¹_6alkyl or R², C²_6alkynyl optionally substituted with one or more substituents each independently selected from halo, cyano, NR²R¹⁰, -C(=O)-NR²R¹⁰, -C(=O)-C¹_6alkyl or R², C²_6alkynyl optionally substituted with one or more substituents each independently selected from halo, cyano, NR²R¹⁰, -C(=O)-NR²R¹⁰, -C(=O)-C¹_6alkyl or R², C²_6alkynyl optionally substituted with one or more substituents each independently selected from halo, cyano, NR²R¹⁰, -C(=O)-NR²R¹⁰, -C(=O)-C¹_6alkyl or R², -C(=O)-C¹_6alkyl or R², -C(=N-O-R³)-C¹_6alkyl or R², -C(=N-O-R³)-C¹_6alky
- $$\begin{split} X_3 \text{ is } -NR^5, -NH-NH-, -N=N-, -O-, -C(=O)-, -S-, -S(=O)_p-, -X_{4p}-C_{1-4}\text{alkanediyl-}, \\ -C_{1-4}\text{alkanediyl-}X_{4a^*}, -C_{1-4}\text{alkanediyl-}X_{4p}-C_{1-4}\text{alkanediyl-}, \\ -C(=N-OR^8)-C_{1-4}\text{alkanediyl-}; \end{split}$$

with X_{4a} being -NH-NH-, -N=N-, -O-, -C(=O)-, -S-, -S(=O)_p-; and with X_{4b} being -NH-NH-, -N=N-, -C(=O)-, -S-, -S(=O)_p-;

- each R4 independently represents halo, hydroxy, C1-6alkyl, C3-7cycloalkyl,
 - C_{1-6} alkyloxy, hydroxy C_{1-6} alkyl, amino C_{1-6} alkyl, cyano, nitro, polyhalo C_{1-6} alkyl, polyhalo C_{1-6} alkyloxy, aminocarbonyl, mono- or di(C_{1-4} alkyl)aminocarbonyl, C_{1-6} alkyloxycarbonyl, C_{1-6} alkyloxycarbonyloxycarbonyloxycarbonyloxycarbonyloxycarbonyloxycarbonyloxycarbonyloxycarbonyloxycarbonyloxycarbonyloxycarbo
- R⁵ is hydrogen; aryl; formyl; C₁₋₆alkylcarbonyl; C₁₋₆alkylcaycarbonyl; C₁₋₆alkyl optionally substituted with formyl, C₁₋₆alkylcarbonyl, C₁₋₆alkylcarbonyloxy; or C₁₋₆alkylcarbonyl substituted with C₁₋₆alkylcarbonyl;
- R6 is C1_alkyl, amino, mono- or di(C1_alkyl)amino or polyhaloC1_alkyl;
- R⁷ is a monocyclic, bicyclic or tricyclic saturated, partially saturated or aromatic carbocycle or a monocyclic, bicyclic or tricyclic saturated, partially saturated or aromatic heterocycle, wherein each of said carbocyclic or heterocyclic ring systems may optionally be substituted where possible with one, two, three, four or five substituents each independently selected from halo, hydroxy, mercapto, C1-6alkyl, hydroxyC1-6alkyl, aminoC1-6alkyl, mono or di(C1-6alkyl)aminoC1-6alkyl, formyl, C1-6alkylcarbonyl, C3-7cycloalkyl, C1-6alkyloxy, C1-6alkyloxycarbonyl, C1-6alkylthio, cyano, nitro, polyhaloC1-6alkyl, polyhaloC1-6alkyloxy, aminocarbonyl, -CH(=N-O-R⁸), R^{7a} X3-R^{7a} or R^{7a}-C1-8alkyloxylicitics.
- R^{7a} is a monocyclic, bicyclic or tricyclic saturated, partially saturated or aromatic carbocycle or a monocyclic, bicyclic or tricyclic saturated, partially saturated or aromatic heterocycle, wherein each of said carbocyclic or heterocyclic ring systems may optionally be substituted where possible with one, two, three, four or five substituents each independently selected from halo, hydroxy, mercapto, C1-6alkyl, hydroxyC1-6alkyl, aminoC1-6alkyl, mono or di(C1-6alkyl)aminoC1-6alkyl, formyl, C1-6alkylcarbonyl, C3-7cycloalkyl, C1-6alkyloxy, C1-6alkyloxycarbonyl, C1-6alkylthio, cyano, nitro, polyhaloC1-6alkyl, polyhaloC1-6alkyloxy, aminocarbonyl, or -CH(=N-O-R⁸);

R8 is hydrogen, C1,4alkyl optionally substituted with aryl, or aryl;

 R^9 and R^{10} each independently are hydrogen; $C_{1\text{-}6}alkyl;\,C_{1\text{-}6}alkylcarbonyl;$

C₁₋₆alkyloxycarbonyl; amino; mono- or di(C₁₋₆alkyl)amino; mono- or

 $di(C_{1\text{--}6}alkyl)aminocarbonyl;$ -CH(=NR $^{11})$ or R $^{7},$ wherein each of the aforementioned

 $C_{1:6}$ alkyl groups may optionally and each individually be substituted with one or two substituents each independently selected from hydroxy, $C_{1:6}$ alkyloxy.

 $\label{eq:continuous} \mbox{hydroxyC}_{1\text{-}6} alkyloxy, carboxyl, $C_{1\text{-}6} alkyloxycarbonyl, cyano, amino, imino, mono- or $$di(C_{1\text{-}4} alkyl)amino, polyhaloC_{1\text{-}4} alkyl, polyhaloC_{1\text{-}4} alkyloxy,$

R9 and R10 may be taken together to form a bivalent radical of formula

-CH ₂ -CH ₂ -CH ₂ -CH ₂ -	(d-1);
-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -	(d-2);
-CH ₂ -CH ₂ -O-CH ₂ -CH ₂ -	(d-3);
-CH ₂ -CH ₂ -S-CH ₂ -CH ₂ -	(d-4);
-CH ₂ -CH ₂ -NR ¹² -CH ₂ -CH ₂ -	(d-5); or
-CH ₂ -CH=CH-CH ₂ -	(d-6);

- R¹¹ represents cyano; C₁₋₄alkyl optionally substituted with C₁₋₄alkyloxy, cyano, amino, mono- or di(C₁₋₄alkyl)amino or aminocarbonyl; C₁₋₄alkylcarbonyl; C₁₋₄alkyloxycarbonyl; aminocarbonyl; mono- or di(C₁₋₄alkyl)aminocarbonyl;
- R12 represents hydrogen or C1-4alkyl;
- R¹³ and R¹⁴ each independently represent C₁₋₆alkyl optionally substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl; C₂₋₆alkenyl optionally substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl; C₂₋₆alkynyl optionally substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl:
- R¹⁵ represents C₁₋₆alkyl substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl;
- R¹⁶ represents C₁₋₆alkyl optionally substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl; or R⁷;
- R¹⁷ represents hydrogen; C_{1.6}alkyl; or C_{1.6}alkyl substituted with aryl;

p is 1 or 2;

aryl represents phenyl or phenyl substituted with one, two, three, four or five substituents each independently selected from halo, hydroxy, mercapto, C₁-6alkyl, hydroxyC₁-6alkyl, aminoC₁-6alkyl, mono or di(C₁-6alkyl)aminoC₁-6alkyl, C₁-6alkylcarbonyl, C_{3.7}cycloalkyl, C₁-6alkyloxy, C₁-6alkyloxycarbonyl, C₁-6alkylthio, cyano, nitro, polyhaloC_{1.6}alkyl, polyhaloC_{1.6}alkyloxy, aminocarbonyl, R⁷ or -X₃-R⁷.

- 34. (Previously presented) A compound according to claim 26 wherein R² represents cyano.
- 35. (Previously presented) A compound according to claim 26 wherein R³ is cyano; aminocarbonyl; C₁₋₆alkyl optionally substituted with cyano or aminocarbonyl; C₁₋₆alkyloxy optionally substituted with cyano or aminocarbonyl; C₂₋₆alkenyl substituted with cyano or aminocarbonyl.
- 36. (previously presented) A compound according to claim 26 wherein m is 2; R¹ represents hydrogen; R² represents cyano; R³ represents cyano;
 - C1-6alkyl; C1-6alkyl substituted with cyano; C1-6alkyloxy optionally substituted with cyano; C2-6alkenyl substituted with cyano or -C(=O)-NR 9 R 10 ; each R 4 independently represents halo, C1-6alkyl or C1-6alkyloxy; X1 represents -NR 5 or -O-; R 5 represents hydrogen; R 9 and R 10 each independently are hydrogen or C1-6alkyl; or R 9 and R 10 may be taken together to form a bivalent radical of formula -CH2-CH2-CH2-CH2- (d-3); R 17 is hydrogen; C1-6alkyl optionally substituted with hydroxy, cyano, aminocarbonyl, C1-4alkyloxycarbonyl or aryl; aryl is phenyl substituted with C1-6alkyloxy.
- (Previously presented) A pharmaceutical composition comprising a pharmaceutically
 acceptable carrier and a therapeutically effective amount of a compound of claim 26.

38. (currently amended) A process for preparing a pharmaccutical composition aeeerding to claim 37 comprising mixing a therapeutically effective amount of a compound of claim 26 with a pharmaccutically acceptable carrier.

39. (cancelled)

- 40. (Previously presented) A product containing (a) a compound as defined in claim 26, and (b) another antiretroviral compound, as a combined preparation for simultaneous, separate or sequential use in the treatment of HIV infection.
- 41. (Previously presented) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and as active ingredients (a) a compound as defined in claim 26, and (b) another antiretroviral compound.