Построение матрицы попарных потенциалов для решения задачи обратного фолдинга

А.Р. Рубинштейн *Руководитель:* М.Е. Карасиков

Московский физико-технический институт Факультет управления и прикладной математики

Москва, 2019

- Задача обратного фолдинга: предсказание последовательностей аминокислот, которые сворачиваются в заданную пространственную структуру белок
- **Актуальность:** результаты исследования способствуют определению молекул, обладающих необходимыми свойствами

Построение ранжирующей функции для оценивания третичной структуры белка

- Извлечение признаков, основанных на попарном взаимодействии атомов
- Подбор адекватных методов нормализации для признаков разных типов
- Обучение модели

Построение матрицы попарных потенциалов

- Составление попарных потенциалов на основе обученных весов модели
- Построение матрицы свободной энергии для всех рассматриваемых пар аминокислот
- Постановка задачи оптимизации

Проблемы

- Огромная размерность
- NP-трудная задача дискретной оптимизации
- Необходимость лаборатрных экспериментов для проверки качества

Литература

- * [Andrii Riazanov, Mikhail Karasikov, and Sergei Grudinin, 2016]
 Inverse protein folding problem via quadratic programming Постановка задачи оптимизации
- * [Карасиков М.Е., Стрижов В.В, 2017] Построение ранжирующей функции для прогнозирования третичной структуры белка Создание скоринговой функции и извлечение признаков

Задача структурной биологии

Amino Acids $(AA) = \{ALA, ARG, ...TYR, VAL\}$

Atoms of AA:

(основная часть, скелет)[N, CA, C, H, O] + (боковая цепь)[HA, CB, HB1, HB2, SY, HY]

Нас интересует отображение подмножества скелетов в подмножество аминокислот. То есть прогнозирование первичной последовательности аминокислот по третичной структуре белка.

Постановка задачи

Пусть белок состоит из N аминокислот. Множество $\mathcal{C} = \{1, 2, \dots, 20\}$ содержит индексы, которые соответствуют различным типам аминокислот.

Пусть $\vec{a}=(a_1,\ldots,a_N)$ последовательность остатков белка, причем $a_i\in\mathcal{C}$. Третичная структура белка с заданным положением основных атомов (скелет) - \vec{b} , а попарный потенциал межатомных взаимодействий - $E(\vec{a},\vec{b})$.

Постановка задачи

Каждой оптимальной последовательности аминокислот a^* соответствует скелет $\vec{b_0}$:

$$\vec{b}_0 = \arg\min_{\vec{b}} E(\vec{a^*}, \vec{b}). \tag{1}$$

Мы можем сформулировать задачу обратного фолдинга как оптимизационную:

$$\|\vec{b}_0 - \arg\min_{\vec{b}} E(\vec{a}, \vec{b})\| \rightarrow \min_{\vec{a}}.$$
 (2)

Положим, что $E_{kl}: \mathcal{C}^2 \to \mathbb{R}$ определяет симметричный попарный потенциал, выражающий взаимодействие между остатками белка k и l.

Постановка задачи

Тогда задачу можно переформулировать следующим образом:

$$\phi_{\vec{b}}(a) := E(\vec{a}, \vec{b}) = \sum_{j=1}^{N} \sum_{i=1}^{N} E_{ij}(a_i, a_j) \to \min_{a_1, a_2, \dots, a_N \in \mathcal{C}}.$$
(3)

Структура матрицы попарных потенци<u>алов</u>

$$\mathbf{Q} = \begin{bmatrix} [E_{11}] & [E_{12}] & \cdots & [E_{1N}] \\ [E_{21}] & [E_{22}] & \cdots & [E_{2N}] \\ \vdots & \vdots & \ddots & \vdots \\ [E_{N1}] & [E_{N2}] & \cdots & [E_{NN}] \end{bmatrix},$$

$$E_{ij} = \begin{bmatrix} E_{ij}(c_1, c_1) & E_{ij}(c_1, c_2) & \cdots & E_{ij}(c_1, c_{20}) \\ E_{ij}(c_2, c_1) & E_{ij}(c_2, c_2) & \cdots & E_{ij}(c_2, c_{20}) \\ \vdots & \vdots & \ddots & \vdots \\ E_{ij}(c_{20}, c_1) & E_{ij}(c_{20}, c_2) & \cdots & E_{ij}(c_{20}, c_{20}) \end{bmatrix},$$

 $\mathbf{Q} \in \mathbb{R}^{20N \times 20N}, \quad E_{ij} \in \mathbb{R}^{20 \times 20}.$

Метод построения матрицы

- Получение элементов матрицы для каждого из типов признаков
 - ✓ Блоки соответствуют парам аминокислот белка
 - ✓ Мы варьируем типы этих аминокислот
 - ✓ Каждому типу признаков соответствует вектор-гистограмма
 - ✓ Гистограммы нормализуются так же, как в обученной модели
 - ✓ Обученные веса домножаются на элементы гистограммы и соотносятся с ячейками матрицы
- Построена матрица попарных потенциалов
- Сформулирована задача оптимизации для полученной матрицы

Заключение и результаты

- Рассмотрена функция, ранжирующая 3D структуры белка
 - ✓ Парно-сепарабельная скоринговая функция
 - ✓ Использует только основные атомы белка
- Построена матрица попарных потенциалов
- Сформулирована задача оптимизации для полученной матрицы

Спасибо за внимание!