EC 425/525, Set 8

Edward Rubin 08 May 2019

Prologue

Schedule

Last time

Mathching and propensity-score methods

- Conditional independence
- Overlap

Today

Instrumental variables (and two-stage least squares)

Upcoming

- Admin: Assignment/project proposal this weekend
- Admin: Midterm very soon

Selection on observables and/or unobservables

We've been focusing on **selection-on-observables designs**, i.e.,

$$(\mathbf{Y}_{0i},\,\mathbf{Y}_{1i}) \perp \!\!\! \perp \mathbf{D}_i | \mathbf{X}_i$$

for **observable** variables X_i .

Selection on observables and/or unobservables

We've been focusing on **selection-on-observables designs**, i.e.,

$$(\mathbf{Y}_{0i},\,\mathbf{Y}_{1i}) \perp \!\!\! \perp \mathbf{D}_i | \mathbf{X}_i$$

for **observable** variables X_i .

Selection-on-unobservable designs replace this assumption with two new (but related) assumptions

- 1. $(Y_{0i}, Y_{1i}) \perp Z_i$
- 2. $Cov(\mathbf{Z}_i, \mathbf{D}_i) \neq 0$

Selection on observables and/or unobservables

Our main goal in causal-inference minded (applied) econometrics boils down to isolating **"good" variation** in D_i (exogenous/as-good-as-random) from **"bad" variation** (the part of D_i correlated with Y_{0i} and Y_{1i}).

Selection on observables and/or unobservables

Our main goal in causal-inference minded (applied) econometrics boils down to isolating **"good" variation** in D_i (exogenous/as-good-as-random) from **"bad" variation** (the part of D_i correlated with Y_{0i} and Y_{1i}).

(We want to avoid selection bias.)

Selection on observables and/or unobservables

Our main goal in causal-inference minded (applied) econometrics boils down to isolating **"good" variation** in D_i (exogenous/as-good-as-random) from **"bad" variation** (the part of D_i correlated with Y_{0i} and Y_{1i}).

(We want to avoid selection bias.)

• Selection-on-observables designs assume that we can control for all bad variation (selection) in D_i through a known (observed) X_i .

Selection on observables and/or unobservables

Our main goal in causal-inference minded (applied) econometrics boils down to isolating **"good" variation** in D_i (exogenous/as-good-as-random) from **"bad" variation** (the part of D_i correlated with Y_{0i} and Y_{1i}).

(We want to avoid selection bias.)

- Selection-on-observables designs assume that we can control for all bad variation (selection) in D_i through a known (observed) X_i .
- Selection-on-unobservables designs assume that we can extract part of the good variation in D_i (generally using some Z_i) and then use this good part of D_i to estimate the effect of D_i on Y_i .

Selection on observables and/or unobservables

Our main goal in causal-inference minded (applied) econometrics boils down to isolating **"good" variation** in D_i (exogenous/as-good-as-random) from **"bad" variation** (the part of D_i correlated with Y_{0i} and Y_{1i}).

(We want to avoid selection bias.)

- Selection-on-observables designs assume that we can control for all bad variation (selection) in D_i through a known (observed) X_i .
- Selection-on-unobservables designs assume that we can extract part of the good variation in D_i (generally using some Z_i) and then use this good part of D_i to estimate the effect of D_i on Y_i . We throw away the bad variation in D_i (it's bad).

Which route?

Which route?

So set of research designs is more palatable?

1. There are plenty of bad applications of both sets.

Violated assumptions, bad controls, etc.

Which route?

- 1. There are plenty of bad applications of both sets. Violated assumptions, bad controls, etc.
- 2. **Selection on observables** assumes we know *everything* about selection into treatment—we can identify *all* of the good (or bad) variation in D_i .

Which route?

- 1. There are plenty of bad applications of both sets. Violated assumptions, bad controls, etc.
- 2. **Selection on observables** assumes we know *everything* about selection into treatment—we can identify *all* of the good (or bad) variation in \mathbf{D}_i . Tough in non-experimental settings. Difficult to validate in practice.

Which route?

- 1. There are plenty of bad applications of both sets. Violated assumptions, bad controls, etc.
- 2. **Selection on observables** assumes we know *everything* about selection into treatment—we can identify *all* of the good (or bad) variation in \mathbf{D}_i . Tough in non-experimental settings. Difficult to validate in practice.
- 3. **Selection on unobservables** assumes we can isolate *some* good/clean variation in D_i , which we then use to estimate the effect of D_i on Y_i .

Which route?

- 1. There are plenty of bad applications of both sets. Violated assumptions, bad controls, etc.
- 2. **Selection on observables** assumes we know *everything* about selection into treatment—we can identify *all* of the good (or bad) variation in \mathbf{D}_i . Tough in non-experimental settings. Difficult to validate in practice.
- 3. **Selection on unobservables** assumes we can isolate *some* good/clean variation in D_i , which we then use to estimate the effect of D_i on Y_i . Seems more plausible. Possible to validate. May be underpowered.

Introduction

Instrumental variables (IV)[†] is the canonical selection-on-unobservables design—isolating good variation in D_i via some magical instrument Z_i .

[†] For the moment, we're lumping together IV and two-stage least squares (2SLS) together—as many people do—even though they are technically different.

Introduction

Instrumental variables (IV)[†] is the canonical selection-on-unobservables design—isolating good variation in D_i via some magical instrument Z_i .

Consider some model (structural equation)

$$\mathbf{Y}_i = \beta_0 + \beta_1 \mathbf{D}_i + \varepsilon_i \tag{1}$$

To guarantee consistent OLS estimates for β_1 , want $Cov(D_i, \varepsilon_i) = 0$. In general, this is a heroic assumption.

[†] For the moment, we're lumping together IV and two-stage least squares (2SLS) together—as many people do—even though they are technically different.

Introduction

Instrumental variables (IV)[†] is the canonical selection-on-unobservables design—isolating good variation in D_i via some magical instrument Z_i .

Consider some model (structural equation)

$$\mathbf{Y}_i = \beta_0 + \beta_1 \mathbf{D}_i + \varepsilon_i \tag{1}$$

To guarantee consistent OLS estimates for β_1 , want $Cov(D_i, \varepsilon_i) = 0$. In general, this is a heroic assumption.

Alternative: Estimate β_1 via instrumental variables.

[†] For the moment, we're lumping together IV and two-stage least squares (2SLS) together—as many people do—even though they are technically different.

Definition

For our model

$$Y_i = \beta_0 + \beta_1 D_i + \varepsilon_i \tag{1}$$

1.
$$Cov(\mathbf{Z}_i, \mathbf{D}_i) \neq 0$$

Definition

For our model

$$Y_i = \beta_0 + \beta_1 D_i + \varepsilon_i \tag{1}$$

A valid **instrument** is a variable Z_i such that

1. $Cov(\mathbf{Z}_i, \mathbf{D}_i) \neq 0$ our instrument correlates with treatment

Definition

For our model

$$Y_i = \beta_0 + \beta_1 D_i + \varepsilon_i \tag{1}$$

A valid **instrument** is a variable \mathbf{Z}_i such that

1. $\operatorname{Cov}(\mathbf{Z}_i,\,\mathbf{D}_i) \neq 0$

our instrument correlates with treatment (so we can keep part of D_i)

Definition

For our model

$$Y_i = \beta_0 + \beta_1 D_i + \varepsilon_i \tag{1}$$

- 1. $Cov(\mathbf{Z}_i, \mathbf{D}_i) \neq 0$ our instrument correlates with treatment (so we can keep part of \mathbf{D}_i)
- 2. $Cov(\mathbf{Z}_i, \varepsilon_i) = 0$

Definition

For our model

$$Y_i = \beta_0 + \beta_1 D_i + \varepsilon_i \tag{1}$$

- 1. $Cov(\mathbf{Z}_i, \mathbf{D}_i) \neq 0$ our instrument correlates with treatment (so we can keep part of \mathbf{D}_i)
- 2. $\text{Cov}(\mathbf{Z}_i, \, \varepsilon_i) = 0$ our instrument is uncorrelated with other (non- \mathbf{D}_i) determinants of \mathbf{Y}_i

Definition

For our model

$$Y_i = \beta_0 + \beta_1 D_i + \varepsilon_i \tag{1}$$

- 1. $Cov(\mathbf{Z}_i, \mathbf{D}_i) \neq 0$ our instrument correlates with treatment (so we can keep part of \mathbf{D}_i)
- 2. $Cov(\mathbf{Z}_i, \, \varepsilon_i) = 0$ our instrument is uncorrelated with other (non- \mathbf{D}_i) determinants of \mathbf{Y}_i , i.e., \mathbf{Z}_i is excludable from equation (1).

Definition

For our model

$$Y_i = \beta_0 + \beta_1 D_i + \varepsilon_i \tag{1}$$

- 1. $Cov(\mathbf{Z}_i, \mathbf{D}_i) \neq 0$ our instrument correlates with treatment (so we can keep part of \mathbf{D}_i)
- 2. $Cov(\mathbf{Z}_i, \, \varepsilon_i) = 0$ our instrument is uncorrelated with other (non- \mathbf{D}_i) determinants of \mathbf{Y}_i , i.e., \mathbf{Z}_i is excludable from equation (1). (exclusion restriction)

Example

Back to the returns to a college degree,

$$\mathrm{Income}_i = \beta_0 + \beta_1 \mathrm{Grad}_i + \varepsilon_i$$

OLS is likely biased.

Example

Back to the returns to a college degree,

$$Income_i = \beta_0 + \beta_1 Grad_i + \varepsilon_i$$

OLS is likely biased.

What if that state conducts a (random) lottery for scholarships?

Example

Back to the returns to a college degree,

$$Income_i = \beta_0 + \beta_1 Grad_i + \varepsilon_i$$

OLS is likely biased.

What if that state conducts a (random) **lottery** for scholarships?

Let $Lottery_i$ denote an indicator for whether i won a lottery scholarship.

Example

Back to the returns to a college degree,

$$\mathrm{Income}_i = \beta_0 + \beta_1 \mathrm{Grad}_i + \varepsilon_i$$

OLS is likely biased.

What if that state conducts a (random) **lottery** for scholarships?

Let Lottery, denote an indicator for whether i won a lottery scholarship.

1. $Cov(Lottery_i, Grad_i) \neq 0 \ (> 0)$ if scholarships increase grad. rates.

Example

Back to the returns to a college degree,

$$\mathrm{Income}_i = \beta_0 + \beta_1 \mathrm{Grad}_i + \varepsilon_i$$

OLS is likely biased.

What if that state conducts a (random) **lottery** for scholarships?

Let $Lottery_i$ denote an indicator for whether i won a lottery scholarship.

- 1. $Cov(Lottery_i, Grad_i) \neq 0 \ (> 0)$ if scholarships increase grad. rates.
- 2. $Cov(Lottery_i, \varepsilon_i) = 0$ since the lottery is randomized.

The IV estimator

The IV estimator for our model

$$\mathbf{Y}_i = \beta_0 + \beta_1 \mathbf{D}_i + \varepsilon_i \tag{1}$$

with (valid) instrument Z_i is

$$\hat{eta}_{\mathrm{IV}} = \left(\mathrm{Z'D} \right)^{-1} \left(\mathrm{Z'Y} \right)$$

The IV estimator

The IV estimator for our model

$$Y_i = \beta_0 + \beta_1 D_i + \varepsilon_i \tag{1}$$

with (valid) instrument Z_i is

$$\hat{eta}_{ ext{IV}} = \left(ext{Z'D}
ight)^{-1} \left(ext{Z'Y}
ight)$$

If you have no covariates, then

$$\hat{eta}_{ ext{IV}} = rac{ ext{Cov}(\mathbf{Z}_i,\,\mathbf{Y}_i)}{ ext{Cov}(\mathbf{Z}_i,\,\mathbf{D}_i)}$$

The IV estimator

The IV estimator for our model

$$Y_i = \beta_0 + \beta_1 D_i + \varepsilon_i \tag{1}$$

with (valid) instrument Z_i is

$$\hat{eta}_{ ext{IV}} = \left(ext{Z'D}
ight)^{-1} \left(ext{Z'Y}
ight)$$

If you have additional (exogenous) covariates X_i , then

$$\mathbf{Z} = [egin{array}{cc} \mathbf{Z}_i & \mathbf{X}_i \end{array}]$$

$$\mathbf{D} = [\mathbf{D}_i \quad \mathbf{X}_i]$$

Proof: Consistency

With a valid instrument \mathbf{Z}_i , \hat{eta}_{IV} is a consistent estiamtor for eta_1 in

$$\mathbf{Y}_i = \beta_0 + \beta_1 \mathbf{X}_i + \varepsilon_i \tag{1}$$

$$\operatorname{plim}\!\left(\hat{\boldsymbol{\beta}}_{IV}\right)$$

Proof: Consistency

With a valid instrument \mathbf{Z}_i , $\hat{\boldsymbol{\beta}}_{\mathrm{IV}}$ is a consistent estiamtor for $\boldsymbol{\beta}_1$ in

$$\mathbf{Y}_i = \beta_0 + \beta_1 \mathbf{X}_i + \varepsilon_i \tag{1}$$

$$ext{plim} \Big(\hat{eta}_{IV} \Big)$$
 $= ext{plim} \Big(egin{pmatrix} ext{Z'D} \end{pmatrix}^{-1} egin{pmatrix} ext{Z'Y} \end{pmatrix}$

Proof: Consistency

With a valid instrument \mathbf{Z}_i , \hat{eta}_{IV} is a consistent estiamtor for eta_1 in

$$\mathbf{Y}_i = \beta_0 + \beta_1 \mathbf{X}_i + \varepsilon_i \tag{1}$$

$$\operatorname{plim}\left(\hat{eta}_{IV}
ight)$$

$$=\operatorname{plim}\Bigl(\left(\operatorname{Z'D}
ight)^{-1} \left(\operatorname{Z'Y}
ight) \Bigr)$$

$$= ext{plim}\Big(ig(ext{Z'D}ig)^{-1}ig(ext{Z'D}eta+ ext{Z'}arepsilon\Big)\Big)$$

Proof: Consistency

With a valid instrument \mathbf{Z}_i , \hat{eta}_{IV} is a consistent estiamtor for eta_1 in

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i \tag{1}$$

$$\operatorname{plim} \left(\hat{\beta}_{IV} \right)$$

$$= \operatorname{plim}\Bigl(\left(\operatorname{Z'D}
ight)^{-1} \left(\operatorname{Z'Y}
ight) \Bigr)$$

$$= ext{plim}\Big(ig(ext{Z'D}ig)^{-1}ig(ext{Z'D}eta+ ext{Z'}arepsilon\Big)\Big)$$

$$egin{aligned} &= \mathrm{plim}\Big(ig(\mathrm{Z'D}ig)^{-1} ig(\mathrm{Z'D}ig) eta \Big) + \mathrm{plim} \left(rac{1}{N}\mathrm{Z'D}
ight)^{-1} \mathrm{plim}\Big(rac{1}{N}\mathrm{Z'}arepsilon \Big) \end{aligned}$$

Proof: Consistency

With a valid instrument \mathbf{Z}_i , $\hat{\boldsymbol{\beta}}_{\mathrm{IV}}$ is a consistent estiamtor for $\boldsymbol{\beta}_1$ in

$$\mathbf{Y}_i = \beta_0 + \beta_1 \mathbf{X}_i + \varepsilon_i \tag{1}$$

$$\operatorname{plim}\!\left(\hat{\beta}_{IV}\right)$$

$$=\operatorname{plim}\Bigl(\left(\operatorname{Z'D}
ight)^{-1} \left(\operatorname{Z'Y}
ight) \Bigr)$$

$$= ext{plim}\Big(ig(ext{Z'D}ig)^{-1}ig(ext{Z'D}eta+ ext{Z'}arepsilon\Big)\Big)$$

$$egin{aligned} &= \operatorname{plim} \Big(egin{aligned} \left(\mathbf{Z}' \mathbf{D}
ight)^{-1} \left(\mathbf{Z}' \mathbf{D}
ight) eta \Big) + \operatorname{plim} \left(rac{1}{N} \mathbf{Z}' \mathbf{D}
ight)^{-1} \operatorname{plim} \left(rac{1}{N} \mathbf{Z}' arepsilon
ight) \end{aligned}$$

$$=\beta$$

Setup

You'll commonly see IV implemented as a two-stage process known as two-stage least squares (2SLS).

Setup

You'll commonly see IV implemented as a two-stage process known as two-stage least squares (2SLS).

First stage Estimate the effect of the instrument Z_i on our endogenous variable D_i and (predetermined) covariates X_i . Save \widehat{D}_i .

$$\mathrm{D}_i = \gamma_1 \mathbf{Z}_i + \gamma_2 \mathbf{X}_i + u_i$$

Setup

You'll commonly see IV implemented as a two-stage process known as two-stage least squares (2SLS).

First stage Estimate the effect of the instrument Z_i on our endogenous variable D_i and (predetermined) covariates X_i . Save \widehat{D}_i .

$$\mathrm{D}_i = \gamma_1 \mathbf{Z}_i + \gamma_2 \mathbf{X}_i + u_i$$

Second stage Estimate model we wanted—but only using the variation in D_i that correlates with Z_i , *i.e.*, \widehat{D}_i .

$$\mathbf{Y}_i = \beta_1 \widehat{\mathbf{D}}_i + \beta_2 \mathbf{X}_i + \varepsilon_i$$

Note The controls X_i must match in the first and second stages.

IV estimation

This two-step procedure, with a valid instrument, produces an estimator $\hat{\beta}_1$ that is consistent for β_1 .

$$\hat{eta}_{
m 2SLS} = \left({
m D}' {
m P}_{
m Z} {
m D}
ight)^{-1} \left({
m D}' {
m P}_{
m Z} {
m Y}
ight)$$
 ${
m P}_{
m Z} = {
m Z} \left({
m Z}' {
m Z}
ight)^{-1} {
m Z}'$

where \mathbf{D} is a matrix of our treatment and predetermined covariates (\mathbf{X}_i) and Z is a matrix of our instrument and our predetermined covariates.

IV estimation

Important notes

- The controls (X_i) must match in the first and second stages.
- If you have exactly **one instrument** and exactly **one endogenous variable**, then 2SLS and IV are identical.
- Your second-stage standard errors are not correct.

Table of contents

Admin

1. Schedule

Instrumental variables

- 1. Research designs
- 2. Introduction
- 3. Definition
- 4. Example
- 5. IV estimator

Two-stage least squares

1. Setup