Higman 定理

对于有限群 G, 若域 K 的特征是零,则由 Maschke 定理知,群代数 KG 是半单代数,进而 KG 是有限表示型的. 以下 C_n 表示 n 阶循环群,p 为素数.

定理 1 (D.G Higman,1954) 设 K 是特征为 p 域, 其中 p 是素数, G 是有限群,则群代数 KG 是有限表示型的当且仅当 G 的 Sylow p- 子群是循环群.

引理 1 设域 K 的特征是素数 p, 则代数 $K[X,Y]/(X^p,Y^p)$ 是无限表示型的.

证明: 因为 $(X^p, Y^p) \subseteq (X, Y)^2 = (X^2, XY, Y^2)$, 从而有满的代数同态 $K[X, Y]/(X^p, Y^p) \longrightarrow K[X, Y]/(X^2, XY, Y^2)$, 因此只需证明 $K[X, Y]/(X^2, XY, Y^2)$ 是无限表示型即可.

令 $V_n = K^{2n}$, $\alpha_X = \begin{pmatrix} 0 & 0 \\ I_n & 0 \end{pmatrix}$, $\alpha_Y = \begin{pmatrix} 0 & 0 \\ J_n(0) & 0 \end{pmatrix}$, 其中 $J_n(0)$ 是 0 对应的 n 阶若当块,定义

$$X.v = \alpha_X(v), \ Y.v = \alpha_Y(v).$$

因为 $\alpha_X^2 = 0\alpha_Y^2, \alpha_X\alpha_Y = 0 = \alpha_Y\alpha_X$, 则 V_n 是 $K[X,Y]/(X^2, XY, Y^2)$ — 模,又因为 $\dim V_n = 2n$, 则当 $m \neq n$ 时, V_n 与 V_m 不同构. 下面证明 V_n 是不可分解的 $K[X,Y]/(X^2, XY, Y^2)$ — 模.

设
$$\varphi = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix} : V_n \longrightarrow V_n$$
 为模同态, 其中 $A_i \in M_n(K)$. 则

$$\varphi \alpha_X = \alpha_X \varphi \Rightarrow \begin{cases} A_2 = 0 \\ A_1 = A_4 \end{cases}$$

$$\varphi \alpha_Y = \alpha_Y \varphi \Rightarrow \begin{cases} A_2 = 0 \\ A_1 J_n(0) = J_n(0) A_4 \end{cases}$$

则 $\varphi = \begin{pmatrix} A_1 & 0 \\ A_3 & A_1 \end{pmatrix}$, 其中 $A_1 J_n(0) = J_n(0) A_1$. 从而存在多项式 $f(x) \in K[X]$ 使得 $A_1 = f(J_n(0))$. 若 $\varphi^2 = \varphi$, 则有

$$\begin{pmatrix} A_1^2 & 0 \\ A_3A_1 + A_1A_3 & A_1^2 \end{pmatrix} = \begin{pmatrix} A_1 & 0 \\ A_3 & A_1 \end{pmatrix} \Rightarrow \begin{cases} A_1^2 = A_1 \\ A_3A_1 + A_1A_3 = A_3 \end{cases}$$

则 $f^2(J_n(0)) - f(J_n(0)) = 0$,即 $f^2(X) - f(X)$ 零化 $J_n(0)$,进而 $X^n \mid f(X)(f(X) - 1)$,故 $X^n \mid f(X)$ 或 $X^n \mid f(X) - 1$. 因此 $A_1 = 0$ 或 $A_1 = I_n$. 则 $A_3 = 0$,即得 $\varphi = 0$ 或 I_{2n} . 因此 V_n 是不可分解的,故 $K[X,Y]/(X^2,XY,Y^2)$ 是无限表示型的,因此 $K[X,Y]/(X^p,Y^p)$ 是无限表示型的.

引理 2 (近世代数标准的习题) 设 G 是群, G 的中心为 $Z(G) = \{a \in G | ag = ga, \forall g \in G\}$, 若 G/Z(G) 是循环群, 则 G 是交换群.

引理 3 (p 群有非平凡的中心) 设 G 是有限 p 群,则 |Z(G)| > 1,进一步,有 p | |Z(G)|.

引理 4 p^2 阶群都是交换群, 同构意义下只有两个: $C_{p^2}, C_p \times C_p$.

引理 5 设 G 是有限 p 群,并且 G 不是循环群,则 G 存在正规子群 N 使得 $G/N\cong C_p\times C_p$.

证明: 若 G 是交换群,则由有限生成交换群的结构定理知

$$G \cong C_{p^{m_1}} \times C_{p^{m_2}} \times \cdots \times C_{p^{m_r}}, \ m_1 \leq m_2 \leq \cdots \leq m_r.$$

由于 G 不是循环群,则 $r \geq 2$. 从而 G 有正规子群 N 使得 $G/N \cong C_p \times C_p$.

若 G 不是交换群. 设 $|G| = p^n$, 由引理4知 $n \ge 3$.

当 n=3 时,则有 |Z(G)|=p,从而 $G/Z(G)\cong C_p\times C_p$. 假设结论对 $n\geq 3$ 都成立,则当 $|G|=p^{n+1}$ 时,则 G/Z(G) 是 $p^m(m\leq n)$ 阶群,不妨设 G/Z(G) 是非交换的 (交换的情形自然成立),由归纳假设,G/Z(G) 存在正规子群 N/Z(G) 使得 $\frac{G/Z(G)}{N/Z(G)}\cong C_p\times C_p$,则 $G/N\cong C_p\times C_p$. 综上,引理成立.

引理 6 设域 K 的特征为 p, 则有代数同构 $K(C_p \times C_p) \cong K[X,Y]/(X^p,Y^p)$. 进而 $K(C_p \times C_p)$ 是无限表示型的.

证明: 设 $C_p \times C_p = \{(g^i, h^j) | 0 \le i, j \le p-1\}$. 定义

$$\varphi: K[X,Y] \longrightarrow K(C_p \times C_p), \ X^i Y^j \longmapsto (g^i,h^j)$$

线性延拓至 K[X,Y]. 则 φ 是满的 K- 代数同态,又 $\dim K(C_p \times C_p) = p^2$,则有代数同构 $K(C_p \times C_p) \cong K[X,Y]/(X^p,Y^p)$.

引理 7 设 G 是有限 p 群,域 K 的特征为 p,则 KG 是有限表示型的当且仅当 G 是循环群.

证明: \Rightarrow : 若 G 不是循环群,则由引理5知 G 存在正规子群 N 使得 $G/N \cong C_p \times C_p$. 考虑

$$f: KG \longrightarrow K(G/N), \ \sum_{g \in G} a_g g \longmapsto \sum_{a \in G} a_g \bar{g}$$

则 f 是满的代数同态,而由引理6知 K(G/N) 是无限表示型的,进而 KG 是无限表示型的,矛盾! 故 G 是循环群.

 \Leftarrow : 若 G 是循环群,则 $KG \cong K[X]/(X^{p^n})$,其中 $|G| = p^n$,因此 KG 是有限表示型.

引理 8 设 K 为域, G 是有限群, H 是 G 的子群. 则

- (1) 若 KG 是有限表示型的,则 KH 也是有限表示型的.
- (2) 若 [G:H] 在 K 中可逆,则对于每个不可分解的 KG— 模 W, W 都是 $KG \otimes_{KH} W$ 的直和项. 进一步,若 KH 是有限表示型的,则 KG 也是有限表示型的.

证明: (1) 考虑映射

$$\rho: KG \longrightarrow KH, \ \sum_{g \in G} a_g g \longmapsto \sum_{h \in H} a_h h$$

则 ρ 是 KH-KH 双模同态,并且 ρ 是可裂满的,对任意不可分解的有限维 KH- 模 N,有 KH- 模同态 $1\otimes \rho: N\otimes_{KH}KG\longrightarrow N\otimes_{KH}KH\cong N$ 也是可裂满的,则 N 同 构于 $N\otimes_{KH}KG$ (视为 KH- 模) 的直和项,又 KG 是有限表示型的,则可设全部有限 维不可分解的 KG- 模 (同构意义下) 为 $\{M_1,M_2,\cdots,M_t\}$. 则 KG- 模 $N\otimes_{KH}KG$ 有分解

$$N \otimes_{KH} KG \cong a_1 M_1 \oplus a_2 M_3 \oplus \cdot \oplus a_t M_t, \ a_i \in \mathbb{Z}_{>0}$$

上述同构作为 KH- 模也是成立的,即 N 同构于 $a_1M_1 \oplus a_2M_3 \oplus \cdot \oplus a_tM_t$ (作为 KH- 模) 的直和项,由 Krull- Schmidt 定理,N 同构于某个 M_i (作为 KH- 模) 的直和项,而 M_i (作为 KH- 模) 的直和项只有有限个,因此 KH 是有限表示型的.

(2) 记 s = [G:H], 设 G 关于 H 的左陪集代表元系为 T, 考虑

$$f: W \longrightarrow KG \otimes_{KH} W, \ w \longmapsto \sum_{t \in T} t \otimes t^{-1} w$$

 $g: KG \otimes_{KH} W \longrightarrow W, \ g \otimes w \longmapsto s^{-1}gw.$ (由张量积泛性质诱导).

注意到 $\sum_{t \in T} t \otimes t^{-1}w$ 与左陪集代表元系选取是无关的. 则 f 是 KG- 模同态,并且

$$gf(w) = g(\sum_{t \in T} t \otimes t^{-1}w) = \sum_{t \in T} g(t \otimes t^{-1}w) = w.$$

亦即 $gf = \mathrm{id}_W$,故 g 是可裂满的,因此 W 是 $KG \otimes_{KH} W$ 的直和项. 下面再证明: 若 KH 是有限表示型的,则 KG 也是有限表示型的.

设有限维不可分解 KH- 模的同构类为 $\{N_1,N_2,\cdots,N_r\}$. 则 W 作为 KH- 模,有直和分解

$$W \cong \bigoplus_{i=1}^{r} a_i N_i, \ a_i \in \mathbb{Z}_{\geq 0}.$$

则有

$$KG \otimes_{KH} W \cong \bigoplus_{i=1}^{r} a_i (KG \otimes_{KH} N_i).$$

因此 W 同构于 $\bigoplus_{i=1}^{r} a_i(KG \otimes_{KH} N_i)$ 的直和项,而 W 是不可分解的,由 Krull – Schmidt 定理,W 同构于某个 $KG \otimes_{KH} N_i$ 的直和项,因此 KG 是有限表示型的.

注 1 (2) 的证明事实上给出了求 KG 所有有限维不可分解模的方法.

下面来证明定理1:

证明: 必要性: 设 $H \in G$ 的 Sylow p— 子群,由于 KG 是有限表示型的,则由引理8知 KH 也是有限表示型的,再由引理7知 H 是循环群.

充分性: 设 $|G| = p^r m$, 其中 $p \mid / m$, 对于 G 的 Sylow p- 子群 H, 有 [G:H] = m, 则 [G:H] 在 K 中可逆,而 H 是循环群,则 KH 是有限表示型的,由引理8知 KG 也是有限表示型的.

例 1 设 $G = S_3 = \langle r, s | r^3 = s^2 = (rs)^2 = 1 \rangle$, 考虑域 K 的特征为 2, 则 G 有 Sylow 2- 子群 $H = \{1, s\}$ 为循环群,则 KG 是有限表示型的. 取 G 关于 H 的左陪集代表元系 $T = \{1, r, r^2\}$.

由于 $KH \cong K[X]/(X^2)$, 则 KH 同构意义下只有两个不可分解模: $W_1 = \text{span}\{w\}$, $sw = w 与 W_2 = KH$ 正则模.(对应群 H 的两个不可分解 K- 表示: 单位表示与正则表示).

$$(1)M = KG \otimes_{KH} W_1 = \operatorname{span}\{1 \otimes w, r \otimes w, r^2 \otimes w\}.$$
 it

$$V_1 = \text{span}\{(1+r+r^2) \otimes w\}, V_2 = \text{span}\{(1+r) \otimes w, (1+r^2) \otimes w\}$$

可以验证 V_1,V_2 是 M 的子模,并且 $M=V_1\oplus V_2$,以及 V_1,V_2 都是单模,进而也是不可分解的.

$$(2)M = KG \otimes_{KH} KH \cong KG = \operatorname{span}\{1, r, r^2, s, sr, sr^2\}.$$
 注

$$U_1 = \text{span}\{1 + r + r^2, s(1 + r + r^2)\}$$

 $U_2 = \mathrm{span}\{1+s+(1+s)r^2, r(1+r)+s(1+r)\}, U_3 = \mathrm{span}\{r+r^2+s(r+r^2), 1+r^2+s(1+r)\}$ 可以验证: U_1, U_2, U_3 都是子模, $KG = U_1 \oplus U_2 \oplus U_3$,且 $U_2 \cong U_3 \cong V_2, U_1$ 是不可分解的但不是单模.

综上: 同构意义下, KG 的有限维不可分解模为: V_1, V_2, U_1 . 对应于群 $G = S_3$ 的 K— 表示: 单位表示, $(K^2, \rho), (K^2, \eta)$. 其中

$$\rho(r) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \rho(s) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\eta(r) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \eta(s) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

参考文献

[1] I. ASSEM, D. SIMSON, A. SKOWRONSKI. Elements of the Representation Theory of Associative Algebras Volume 1 Techniques of Representation Theory [M]. the United States of America by Cambridge University Press,: New York, 2006:175.

[2] K.Erdmann, T.Holm. Algebras and Representation Theory [M]. Springer, 2010:150. https://doi.org/10.1007/978-3-319-91998-0