Session 39: Big-Omega and Big-Theta

- Lower bounds on growth
- Equal growth
- little-o

Big-Omega Notation

Definition: Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say that f(x) is $\Omega(g(x))$ if there are constants C and k, with C > 0, such that $|f(x)| \ge C|g(x)|$ when x > k.

- We say that "f(x) is big-Omega of g(x)."
- Big-O gives an upper bound on the growth of a function, while Big-Omega gives a lower bound
- Big-Omega tells us that a function grows at least as fast as another.
- f(x) is $\Omega(g(x))$ if and only if g(x) is O(f(x))

Example

$$f(x) = 8x^3 + 5x^2 + 7 \text{ is } \Omega(x^3)$$

since $g(x) = x^3 \text{ is } O(8x^3 + 5x^2 + 7)$

Big-Theta Notation

Definition: Let *f* and *g* be functions from the set of integers or the set of real numbers to the set of real numbers.

The function f(x) is $\Theta(g(x))$ if f(x) is O(g(x)) and f(x) is $\Omega(g(x))$.

- We say that "f is big-Theta of g(x)" or "f(x) is of order g(x) or "f(x) and g(x) are of the same order."
- f(x) is $\Theta(g(x))$ if and only if there exist positive constants C_1 , C_2 and k such that $C_1/g(x)/<|f(x)|<|C_2/g(x)|$ if x>k.

Example

$$f(x) = 8x^3 + 5x^2 + 7 \text{ is } \Omega(x^3)$$

$$g(x) = x^3 \text{ is } \Omega(8x^3 + 5x^2 + 7)$$

Therefore f(x) is $\Theta(g(x))$

Big-Theta Notation

Some further points to pay attention

- When f(x) is $\Theta \big(g(x) \big)$ then also g(x) is $\Theta \big(f(x) \big)$
- f(x) is $\Theta \big(g(x) \big)$ if and only if f(x) is $O \big(g(x) \big)$ and g(x) is $O \big(f(x) \big)$
- Sometimes people are careless and use the big-O notation with the same meaning as big-Theta.

Big-Theta Estimates for Polynomials

Theorem: Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x^1 + a_0$ where a_0, a_1, \ldots, a_n are real numbers with $a_n \neq 0$.

Then f(x) is of order x^n (or $\Theta(x^n)$)

Example:

The polynomial $8x^3 + 5x^2 + 7$ is order of x^3 (or $\Theta(x^3)$)

Little-o

"
$$f(x)$$
 is $o(g(x))$ " if $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$

We also say that "f is little-o of g"

Example

$$x^2$$
 is $o(x^3)$ but $x^2 + x + 1$ is not $o(x^2)$

$$\lim_{x \to \infty} \frac{x^2}{x^3} = 0 \text{ but } \lim_{x \to \infty} \frac{x^2 + x + 1}{x^2} = 1$$

Little-o and Big-O

If f(x) and g(x) are functions such that f(x) is o(g(x)), then f(x) is O(g(x)).

However: if f(x) and g(x) are functions such that f(x) is O(g(x)), then it does not necessarily follow that f(x) is o(g(x)).

Example: $x^2 + x + 1$ is $O(x^2)$, but not $o(x^2)$

Summary

- Lower bounds on growth: Big-Omega
- Equal growth: Big-Theta
- little-o: different from Big-O

 \times^d is $O(b^{\times})$, for b>1, d>0Roof: Lool from analysis: Hopidal's Rule if f, g are differentiable, and lim f(x) = 00, lim f(x) = 00 $\lim_{x\to\infty} \frac{f(x)}{g(x)} = \lim_{x\to\infty} \frac{f'(x)}{g'(x)}$ $\lim_{x\to\infty} \frac{x^d}{b^x} = \lim_{x\to\infty} \frac{dx^{d-1}}{\log(b)b^x} = \dots = \lim_{x\to\infty} \frac{d(d-1)\cdots 2\cdot 1}{\log(b)^d b^x} = 0$ Therefore x d is o (bx) and thus x d is O(bx)