

EXERCICES SUPPLEMENTAIRES CORRIGES DE TRAITEMENT DU SIGNAL Sciences du Numérique - Première année ECHANTILLONNAGE - QUANTIFICATION

Exercice 1 : Echantillonnage d'un signal passe-bande

On considère le signal $x(t) = x^+(t) + x^-(t)$, avec $x^+(t) = B \frac{\sin(\pi B t)}{\pi B t} e^{j2\pi f_0 t}$ et $x^-(t) = B \frac{\sin(\pi B t)}{\pi B t} e^{-j2\pi f_0 t}$, $f_0 = 8kHz$ et B = 2kHz.

1. Déterminer la transformée de Fourier du signal x(t) et la représenter graphiquement.

$$X(f) = X^{+}(f) + X^{-}(f) = \prod_{B}(f) * \delta(f - f_0) + \prod_{B}(f) * \delta(f + f_0) = \prod_{B}(f - f_0) + \prod_{B}(f + f_0)$$
 (voir figure 1)

FIGURE 1 – Transformée de Fourier de x(t).

- 2. Comment s'écrit la condition de Shannon pour le signal x(t)?
 - $F_e > 2F_{max}$ avec $F_{max} = f_0 + \frac{B}{2} = 9$ kHz ici.
- 3. On échantillonne le signal x(t) à la fréquence $F_e = 6kHz$.
 - (a) Représenter graphiquement la transformée de Fourier du signal échantillonné $x_e(t)$ dans la bande [-9kHz, 9kHz]Voir sur la figure 2

FIGURE 2 – Transformée de Fourier de x(t) avec $F_e = 8$ kHz.

- (b) On désire restituer le signal x(t) à partir de $x_e(t)$ par un filtrage de réponse en fréquence H(f).
 - 1^{ier} cas : $H(f) = \Pi_F(f)$ avec F = 6kHz. Quel sera le signal restitué par ce filtre? Voir la figure 3, on retrouvera $x(t) = B \frac{\sin(\pi Bt)}{\pi Bt} e^{j2\pi f_1 t} + B \frac{\sin(\pi Bt)}{\pi Bt} e^{-j2\pi f_1 t} = 2B \operatorname{sinc}(\pi Bt) \cos(2\pi f_1 t)$, avec $f_1 = -F_e + f_0 = 2$ kHz.
 - 2^{me} cas: $H(f) = \Pi_B(f + f_0) + \Pi_B(f f_0)$ avec $f_0 = 8kHz$ et B = 2kHz. Quel sera le signal restitué par ce filtre? Voir la figure 4, on retrouvera $x(t) = B\frac{sin(\pi Bt)}{\pi Bt}e^{j2\pi f_0t} + B\frac{sin(\pi Bt)}{\pi Bt}e^{-j2\pi f_0t} = 2Bsinc(\pi Bt)\cos(2\pi f_0t)$, avec $f_0 = 8$ kHz.
 - Conclusion?

Il est possible d'échantillonner un signal de type passe-bande sans respecter la condition de Shannon tout en assurant une reconstition parfaite (par filtrage passe-bande), à condition que les repliments se fassent dans les trous du spectre de départ.

Figure 3 -

Figure 4 -

Exercice 2: Echantillonneur bloqueur

L'échantillonneur bloqueur est un échantillonneur réalisable en pratique qui consiste à acquérir un échantillon du signal, x(t), toutes les T_e secondes (période d'échantillonnage) et à le bloquer pendant τ secondes ($\tau << T_e$).

- 1. Proposer une écriture du signal échantillonné de cette manière, $x_e(t)$, en fonction de l'expression du signal échantillonné de manière idéale : $x_{ei}(t) = \sum_{k \in \mathbb{Z}} x(kT_e)\delta(t-kT_e)$. Le signal échantillonné par bloqueur va être constitué d'une somme de fonctions porte espacées de T_e , de largeur τ et de hauteur $x(kT_e)$ si $x(kT_e)$ représente la valeur de l'échantillon prélevé sur le signal x(t) à l'instant kT_e . On peut donc écrire le signal échantillonné, $x_e(t)$, de la manière suivante : $x_e(t) = \sum_{k \in \mathbb{Z}} x(kT_e)\Pi_{\tau} \left(t \frac{\tau}{2} kT_e\right) = \Pi_{\tau} \left(t \frac{\tau}{2}\right) * \sum_{k \in \mathbb{Z}} x(kT_e)\delta(t-kT_e) = \Pi_{\tau} \left(t \frac{\tau}{2}\right) * x_{ei}(t)$.
- 2. Calculer la transformée de Fourier du signal échantillonné à l'aide de cette méthode. L'écrire en fonction de la transformée de Fourier, X(f), du signal de départ. $X_e(f) = \tau sinc(\pi f \tau) e^{-j\pi f \tau} * X_{ei}(f) = \tau sinc(\pi f \tau) e^{-j\pi f \tau} * F_e \sum_{k \in \mathbb{Z}} X(f kF_e)$, où $F_e = \frac{1}{T_e}$ représente la fréquence d'échantillonnage du signal.
- 3. Est-il possible de dimensionner τ pour que l'échantillonnage par bloqueur se rapproche d'un échantillonnage idéal. Si le critère de Shannon est vérifié, on pourra récupérer X(f) à condition que $\frac{1}{\tau} >> F_{max}$, en appelant F_{max} la fréquence maximale du signal x(t). On aura alors, en effet, $sinc(\pi f \tau) \simeq 1$ sur la bande du signal.

Exercice 3 : Signal à spectre non borné - Recherche de F_e

Soit le signal x(t) défini par :

$$x(t) = \begin{cases} e^{-at} & \text{si } t \ge 0, a > 0 \\ 0 & \text{si } t < 0. \end{cases}$$
 (1)

- 1. Déterminer la transformée de Fourier X(f) du signal x(t). Tracer |X(f)|. $X(f) = \int_0^{+\infty} e^{-(a+j2\pi f)t} dt = \frac{1}{a+j2\pi f}, |X(f)| = \frac{1}{\sqrt{a^2+4\pi^2 f^2}}.$
- 2. En théorie le signal x(t) est-il échantillonnable sans perte d'information? Expliquez votre réponse. Non car le spectre non borné \Rightarrow forcément du repliement quand on va échantillonner \Rightarrow signal distordu.
- 3. En considérant la transformée de Fourier comme négligeable pour une atténuation minimale de 40 dB par rapport à sa valeur maximum, dimensionner la fréquence d'échantillonnage, F_e , à utiliser.

 On a le maximum du spectre pour f = 0. On souhaite donc trouver F_{max} telle que :

$$10\log_{10}|X(F_{max})|^2 \le 10\log_{10}|X(0)|^2 - 10\log_{10}\left(10^4\right) = 10\log_{10}\frac{|X(0)|^2}{10^4}$$

D'où $\frac{1}{\sqrt{a^2+4\pi^2F_{max}^2}} \le \frac{1}{10^4a^2}$ et donc $F_{max}^2 \ge \frac{\left(10^4-1\right)a^2}{4\pi^2}$. Soit, en négligeant 1 devant $10^4: F_{max} \ge \frac{100a}{2\pi}$ et donc $F_e \ge \frac{100a}{\pi}$.

4. Une fois F_e déterminée, quel traitement doit-on appliquer au signal avant de l'échantillonner? Un filtre anti repliement afin de tronquer le spectre du signal à F_{max} .

Exercice 4: Quantification d'une sinusoïde

Soit un signal sinusoïdal $x(t) = A_0 \sin{(2\pi f_0 t + \phi)}$, avec $f_0 = 50Hz$, $A_0 = 220\sqrt{2}V$ et ϕ une phase aléatoire uniformément répartie entre 0 et 2π . On suppose que la quantification de cette sinusoïde est effectuée dans de bonnes conditions : pas d'écrétage du signal, pas de quantification $q = \frac{D}{2^{nb}}$ suffisament fin (D représentant la dynamique du signal et nb le nombre de bits de quantification). Elle est donc équivalente à l'ajout d'un bruit, $n_Q(t)$, sur le signal non quantifié de départ, bruit aléatoire, centré qui suit une loi uniforme sur $\left[-\frac{q}{2}, \frac{q}{2}\right]$. Déterminer le rapport signal à bruit de quantification en fonction de nb.

 $SNR_{dB}=10\log_{10}\left(\frac{P_{x}}{P_{n}}\right)$ si P_{x} représente la puissance du signal x(t) et P_{n} la puissance du bruit de quantification, $n_{Q}(t)$, qui vient s'ajouter au signal de départ. $P_{x}=\frac{A_{0}^{2}}{2}$ (résultat classique pour la puissance d'un sinus ou d'un cosinus, calculé en TD dans le cas d'un cosinus) et $P_{n}=E\left[n_{Q}^{2}(t)\right]=\int_{-\frac{q}{2}}^{\frac{q}{2}}\frac{1}{q}n_{Q}^{2}(t)dn_{Q}=\frac{1}{q}\left[\frac{n_{Q}^{3}(t)}{3}\right]_{-\frac{q}{2}}^{\frac{q}{2}}=\frac{q^{2}}{12}$, d'où $SNR_{dB}=10\log_{10}\left(\frac{3}{2}2^{2nb}\right)\simeq 1.76+6nb$

Rappels

Propriétés générales

	T.F.	
ax(t) + by(t)	\rightleftharpoons	aX(f) + bY(f)
$x(t-t_0)$	\rightleftharpoons	$X(f)e^{-i2\pi ft_0}$
$x(t)e^{+i2\pi f_0t}$	\rightleftharpoons	$X(f-f_0)$
$x^*(t)$	\rightleftharpoons	$X^*(-f)$
$x(t) \cdot y(t)$	\rightleftharpoons	X(f) * Y(f)
x(t) * y(t)	\rightleftharpoons	$X(f) \cdot Y(f)$
x(at+b)	\rightleftharpoons	$\frac{1}{ a }X\left(\frac{f}{a}\right)e^{i2\pi\frac{b}{a}f}$
$\frac{dx^{(n)}(t)}{dt^n}$	\rightleftharpoons	$(i2\pi f)^n X(f)$
$\left(-i2\pi t\right)^n x(t)$	\rightleftharpoons	$\frac{dX^{(n)}(f)}{df^n}$

Formule de Parseval	Série de Fourier	
$\int_{\mathbb{R}} x(t)y^*(t)dt = \int_{\mathbb{R}} X(f)Y^*(f)df$	$\sum_{n \in \mathbb{Z}} c_n e^{+i2\pi n f_0 t} \rightleftharpoons \sum_{n \in \mathbb{Z}} c_n \delta\left(f - n f_0\right)$	
$\int_{\mathbb{R}} x(t) ^2 dt = \int_{\mathbb{R}} X(f) ^2 df$		

Table de Transformées de Fourier

	T.F.	
1	\rightleftharpoons	$\delta\left(f\right)$
$\delta\left(t\right)$	\rightleftharpoons	1
$e^{+i2\pi f_0 t}$	\rightleftharpoons	$\delta\left(f-f_0\right)$
$\delta\left(t-t_{0} ight)$	\rightleftharpoons	$e^{-i2\pi f t_0}$
$\coprod_{T} (t) = \sum \delta (t - kT)$	\rightleftharpoons	$\frac{1}{T}\coprod_{1/T}(f)$
$k{\in}\mathbb{Z}$		
$\cos\left(2\pi f_0 t\right)$	\rightleftharpoons	$\frac{1}{2} \left[\delta \left(f - f_0 \right) + \delta \left(f + f_0 \right) \right]$
$\sin\left(2\pi f_0 t\right)$	\rightleftharpoons	$\frac{1}{2i}\left[\delta\left(f-f_0\right)-\delta\left(f+f_0\right)\right]$
$e^{-a t }$	\rightleftharpoons	$\frac{2a}{a^2+4\pi^2f^2}$
$e^{-\pi t^2}$	\rightleftharpoons	$\frac{\frac{2\pi}{a^2+4\pi^2f^2}}{e^{-\pi f^2}}$
$\Pi_{T}\left(t\right)$	\rightleftharpoons	$T\frac{\sin(\pi Tf)}{\pi Tf} = T\sin c \left(\pi Tf\right)$
$\Lambda_{T}\left(t ight)$	\rightleftharpoons	$T\sin c^2 \left(\pi T f\right)$
$B\sin c\left(\pi Bt\right)$	\rightleftharpoons	$\Pi_{B}\left(f ight)$
$B\sin c^2\left(\pi Bt\right)$	\rightleftharpoons	$\Lambda_{B}\left(f ight)$

!!!!!! Attention !!!!!

 $\Pi_T(t)$ note une fenêtre rectangulaire de support égal à T.

 $\Lambda_T(t)$ note une fenêtre triangulaire de support égal à 2T (de demi-base égale à T).

$$\Pi_T(t) * \Pi_T(t) = T \Lambda_T(t)$$