DATA SCIENCE INDUSTRY COMPENSATION ANALYSIS

Project Report by Group 3

Anushka Mondal Ananyaa Shahi Bhakti Kate Vivid Liu

INTRODUCTION

For our Data Science Industry Compensation Analysis, we delve into the "Data Science Salaries 2023" on Kaggle, exploring salary details across the data science and related professions from 2020 to 2023. The comprehensive dataset consists of 3755 rows and 11 columns with no missing values in each. It provides a wide range of variables including the work year, job titles, level of experience, type of employment, employee's country of residence, the amount of work done remotely, salary amount paid, salary currency, company location, and size. We chose this dataset because it perfectly aligns with our career aspirations in data science and analytics, offering tailored and valuable insights relevant to our field. Sourced from aijobs.net, a reputable platform focusing on AI, Machine Learning, and Data Science jobs, this dataset ensures quality and reliability.

DRIVING QUESTION

The driving questions for our analysis are: What are the key elements that influence the variation in salaries for professionals in the data science and related fields in 2023? Also, can we predict or analyze salary trends based on these attributes for 2024? The goal of our project is to extract insights and actionable recommendations, empowering us to make better career decisions. By analyzing the dataset, we aim to uncover the variables, patterns, and trends that drive the salary components in this fast-evolving Data field.

DATA CLEANING

The following steps were performed for cleaning the dataset:

- 1. **Data Type Transformation:** Converted the data type of the column 'work_year' from int64 to string (object) to prevent arithmetic operations on this column.
- 2. **Duplicate Rows Removal:** Dropped 1171 duplicate rows, resulting in 2584 unique rows.
- 3. **Whitespace Removal:** Eliminated leading and trailing white spaces from the data to ensure consistency for analysis, sorting, and filtering purposes.
- 4. **Job Titles Standardization:** Identified similar job titles ('Machine Learning Engineer' and 'ML Engineer') and replaced the abbreviation ('ML Engineer') with its full form ('Machine Learning Engineer') using a map function, resulting in 92 unique job titles.

- Check for Newly Created Duplicates: After modifying job titles, checked for new duplicate rows and found 8. Removed these duplicates, resulting in 2576 unique rows.
- 6. **Abbreviated Values Replacement:** Replaced abbreviated values in the 'experience_level' column ('EN', 'EX', 'MI', 'SE') with their expanded forms ('Entry Level', 'Executive', 'Mid Level', 'Senior').
- 7. **Abbreviated Employment Type Replacement:** Replaced abbreviated values in the 'employment_type' column ('FT', 'CT', 'FL', 'PT') with their expanded forms ('Full Time', 'Contractor', 'Freelancer', 'Part Time').

This is the screenshot of the final cleaned dataset:

ds_	salaries_	df.head(5)									
	work_year	experience_level	employment_type	job_title	salary	salary_currency	salary_in_usd	employee_residence	remote_ratio	company_location	comp
0	2023	Senior	Full-Time	Principal Data Scientist	80000	EUR	85847	ES	Fully Remote	ES	
1	2023	Mid-Level	Contractor	Machine Learning Engineer	30000	USD	30000	US	Fully Remote	US	
2	2023	Mid-Level	Contractor	Machine Learning Engineer	25500	USD	25500	US	Fully Remote	US	
3	2023	Senior	Full-Time	Data Scientist	175000	USD	175000	CA	Fully Remote	CA	
4	2023	Senior	Full-Time	Data Scientist	120000	USD	120000	CA	Fully Remote	CA	
4											-

EXPLORATORY DATA ANALYSIS

Trendiest Job Title: Which is the trendiest job title by country?

The first step in finding out the trendiest job title was to create series that categorizes each country's job titles along with their corresponding salary lists. This was done by using groupby function.

```
# Group the dataframe by company location and job title, and aggregate the salaries into a list salary_data_by_country = ds_salaries_df.groupby(['company_location', 'job_title'])['salary_in_usd'].apply(list)
print (salary_data_by_country)
company_location job_title
                     Lead Data Scientist
                                                                                                           [115000]
ΑE
                     Machine Learning Engineer
                                                                                                   [120000, 65000]
AL
                     3D Computer Vision Researcher
                                                                                                            [10000]
                     Machine Learning Engineer
ΔR
                     Data Analyst
US
                     Product Data Analyst
                                                                                                  [100000, 140000]
                     Research Engineer
                                                           [189110, 139000, 203000, 133000, 230000, 20000...
                     Research Scientist
                                                           [220000, 130000, 110000, 210000, 136000, 21000...
                     Staff Data Scientist
                                                                                                           [105000]
                     Data Engineer
                                                                                                            [12000]
Name: salary_in_usd, Length: 352, dtype: object
```

Following that we converted the series into a data frame called df_salary_data. To find the most common job title in each country we followed a step-by-step approach. First, apply function was used to go through all rows in order to count how many times each job title was reported. We then added a new column showing the maximum salary for each job for respective country. For a cleaner output we got rid of individual salary columns by using drop function. To locate the most common job title and its corresponding salary for each country, we used the idxmax function, which gives us the index value. Finally, we reset the index to ensure that the column names were correctly assigned to their respective headers.

The Output displays the trendiest job as per country and also, it's corresponding salaries. This analysis helps us make informed decision about the job market in our "Dream work location"

	Country	Most Common Job Title	Most Common Job	Salary (USD)
0	AE	Machine Learning Engineer	2	120000.0
1	AL	3D Computer Vision Researcher	1	10000.0
2	AM	Machine Learning Engineer	1	50000.0
3	AR	Data Analyst	1	50000.0
4	AS	3D Computer Vision Researcher	1	20000.0
67	TH	Data Science Consultant	1	29453.0
68	TR	Data Scientist	3	25000.0
69	UA	Al Developer	2	108000.0
70	US	Data Engineer	487	324000.0
71	VN	Data Engineer	1	12000.0

72 rows × 4 columns

<u>Lucrative Job Title: Which is the most lucrative job title by country?</u>

Here, we group the data by company location in which we look at salary for job titles and find the index for highest paid job title. Create separate data frame using that index for each country. Then we rename the columns for better representation. This analysis empowers us with the knowledge necessary to target our "Dream Salary".

	Country	Highest Paying Job Title	Salary (USD)
0	AE	Machine Learning Engineer	120000.0
1	AL	3D Computer Vision Researcher	10000.0
2	AM	Machine Learning Engineer	50000.0
3	AR	Data Analyst	50000.0
4	AS	Business Data Analyst	50000.0
67	TH	Data Science Consultant	29453.0
68	TR	Data Engineer	28016.0
69	UA	Al Developer	108000.0
70	US	Research Scientist	450000.0
71	VN	Data Engineer	12000.0

72 rows × 3 columns

By Country, Most Common Job V/S Highest paid Job

Here we merge the above two data frames and generate the output to visualize most common job and highest paying job for respective country. This analysis guides us to make optimal job choice with respect to salary. Best used during job switching.

	Country	Most Common Job Title	Most Common Job Salary (USD)	Highest Paying Job Title	Highest Paid Job Salary (USD)
0	AE	Machine Learning Engineer	120000.0	Machine Learning Engineer	120000.0
1	AL	3D Computer Vision Researcher	10000.0	3D Computer Vision Researcher	10000.0
2	AM	Machine Learning Engineer	50000.0	Machine Learning Engineer	50000.0
3	AR	Data Analyst	50000.0	Data Analyst	50000.0
4	AS	3D Computer Vision Researcher	20000.0	Business Data Analyst	50000.0
67	TH	Data Science Consultant	29453.0	Data Science Consultant	29453.0
68	TR	Data Scientist	25000.0	Data Engineer	28016.0
69	UA	Al Developer	108000.0	Al Developer	108000.0
70	US	Data Engineer	324000.0	Research Scientist	450000.0
71	VN	Data Engineer	12000.0	Data Engineer	12000.0

72 rows × 5 columns

<u>Demographic Pay Gaps: Are there any pay gaps related to most common job title in the world?</u>

In order to identify the presence of demographic pay-gap, we choose to use the most common job title in the world to be our reference. To find that we used loc and idmax function. This helped locate the index of the job title. As per the data, Data Engineer was the most common job title.

Country US
Worlds Most Common Job Title Data Engineer
Most Common Job 487
Salary (USD) 324000.0
Name: 70, dtype: object

Further, we sort all countries with Data engineer roles, in a descending order of salary. Head and Tail provides us with the top 3 and bottom 3 countries. We use this information to plot graph.

- We see that there is definite pay-gap for the most common job title in the world.
- Data Engineer: US highest paying country (\$325k), Vietnam lowest paying country (\$12k)

For most common job title in each country we find the corresponding highest paying country. Here we use nested for loop to go thorugh df_salary_data dataframe to find the corresponding highest paying country. Further we create a data frame to store our values and then merge it with df_most_common_job via index matching.

Co	ountry	Most Common Job Title	Salary (USD)	Highest Paying Country	Highest Paying Country Salary
0	AE	Machine Learning Engineer	120000.0	US	342300.0
1	AL	3D Computer Vision Researcher	10000.0	CR	50000.0
2	AM	Machine Learning Engineer	50000.0	US	342300.0
3	AR	Data Analyst	50000.0	GB	430967.0
4	AS	3D Computer Vision Researcher	20000.0	CR	50000.0
67	TH	Data Science Consultant	29453.0	US	145000.0
68	TR	Data Scientist	25000.0	US	412000.0
69	UA	Al Developer	108000.0	IN	300000.0
70	US	Data Engineer	324000.0	US	324000.0
71	VN	Data Engineer	12000.0	US	324000.0

72 rows × 5 columns

<u>Impact of remote ratio column: Does work modality have any significant impact on salaries?</u>

We opted to reclassify the 'remote_ratio' column values for better categorization. The numerical values were substituted with descriptive terms to enhance clarity:

- 100: Replaced by 'Fully Remote'
- 50: Updated to 'Hybrid'
- 0: Transformed into 'In-person'

	work_year	experience_level	employment_type	job_title	salary	salary_currency	salary_in_usd	employee_residence	remote_ratio	company_location	ţ
0	2023	Senior	Full-Time	Principal Data Scientist	80000	EUR	85847	ES	Fully Remote	ES	
1	2023	Mid-Level	Contractor	Machine Learning Engineer	30000	USD	30000	US	Fully Remote	US	
2	2023	Mid-Level	Contractor	Machine Learning Engineer	25500	USD	25500	US	Fully Remote	US	
3	2023	Senior	Full-Time	Data Scientist	175000	USD	175000	CA	Fully Remote	CA	
4	2023	Senior	Full-Time	Data Scientist	120000	USD	120000	CA	Fully Remote	CA	
3750	2020	Senior	Full-Time	Data Scientist	412000	USD	412000	US	Fully Remote	US	

Firstly, the dataset is filtered to include only US locations. Then, the data is grouped by 'remote_ratio' and 'work_year', calculating the median salary for each group. Finally, a line plot is generated using Seaborn and Matplotlib, showcasing salary trends across different remote work ratios over the years, allowing for visual comparison and analysis of salary trends based on remote work practices.

In analyzing Salary Trends Over the Years based on Remote Work Ratio in the US, we chose to employ the median salary over the mean. This decision was influenced by the median's resilience to outliers, making it a more robust measure for skewed distributions and scenarios where extreme values can significantly impact the average. The median's interpretability and simplicity enhance its effectiveness in representing a central tendency, especially in salary comparisons, ensuring a more representative measure of typical salary values across different remote work ratios.

- •During the peak pandemic years of 2020 and 2021, remote workers' median salaries surged. Surprisingly, in 2022 and 2023, despite the return to in-person work, remote job compensation continued to rise.
- •By 2023, median salaries for in-person and remote work equalized, showing no difference. However, hybrid work experienced a sharp decline in median salary, becoming the least lucrative option.

Highest paid remote ratio entry level positions: Which are the highest paid entry level jobs in US in 2023 as per work modality?

NOTE: We have chosen the US company location because we believe that the majority of our classmates would want to work in the US after graduation.

The analysis first involved grouping the dataset by 'remote_ratio' and 'job_title', computing median salaries, and pinpointing the highest and lowest-paid job titles for each remote work ratio in 2023. Following this, a specific focus on Entry-Level positions entailed data filtering, median salary calculation based on 'remote_ratio' and 'job_title', identification, and display of the highest-paid Entry-Level job titles in 2023. Additional job information was merged and duplicate rows were dropped to streamline the results for clarity and precision in understanding the highest-paid roles within different remote work scenarios for Entry-Level positions.

	remote_ratio	job_title	salary_in_usd	company_size	experience_level	employment_type
0	Fully Remote	Machine Learning Scientist	225000.0	L	Entry-Level	Full-Time
1	Hybrid	Research Scientist	220000.0	L	Entry-Level	Full-Time
2	Hybrid	Research Scientist	220000.0	M	Entry-Level	Full-Time
5	In-person	Computer Vision Engineer	172500.0	M	Entry-Level	Full-Time

Lowest paid remote ratio entry level positions: Which are the lowest paid entry level jobs in US in 2023 as per work modality?

The process is initiated by selecting essential columns from the 'lowest_paid_jobs_entry_level' DataFrame, including 'remote_ratio', 'job_title', and 'salary_in_usd'. Subsequently, this data was merged with 'us_data_entry_level' to incorporate supplementary job information like 'company_size', 'experience_level', and 'employment_type', ensuring a comprehensive view. To ensure clarity and uniqueness, duplicate rows were dropped, resulting in a refined dataset. Finally, the resulting lowest-

paid Entry-Level job titles across various remote work ratios were displayed, offering a concise overview of these roles within distinct remote work scenarios.

	remote_ratio	job_title	salary_in_usd	company_size	experience_level	employment_type
0	Fully Remote	Al Scientist	12000.0	M	Entry-Level	Full-Time
1	Fully Remote	Al Scientist	12000.0	M	Entry-Level	Part-Time
2	Fully Remote	Al Scientist	12000.0	S	Entry-Level	Part-Time
3	Fully Remote	Bl Analyst	12000.0	L	Entry-Level	Part-Time
4	Fully Remote	Bl Analyst	12000.0	L	Entry-Level	Full-Time
5	Hybrid	Business Data Analyst	48000.0	L	Entry-Level	Full-Time
6	Hybrid	Business Data Analyst	48000.0	L	Entry-Level	Contractor
7	In-person	Data Analyst	62500.0	M	Entry-Level	Full-Time
16	In-person	Data Analyst	62500.0	L	Entry-Level	Full-Time
19	In-person	Data Analyst	62500.0	S	Entry-Level	Part-Time
25	In-person	Data Analyst	62500.0	S	Entry-Level	Full-Time
26	In-person	Data Analyst	62500.0	L	Entry-Level	Part-Time

<u>Impact of experience and remote_ratio: Did experience levels play a role in salary trends as per different work modes?</u>

The process involved analyzing the impact of experience levels and remote work ratios on salary trends in the US. Initially, the dataset was filtered for US locations, and a specific order for experience levels ('Entry-Level', 'Mid-Level', 'Senior', 'Executive') was defined. The data was then grouped by 'work_year', 'experience_level', and 'remote_ratio', calculating median salaries for each group. Subsequently, a line plot was generated using Seaborn and Matplotlib, displaying salary trends across different remote work ratios and experience levels.

Entry and executive-level median salaries declined significantly during the peak pandemic years from 2020 to 2021 and showed minimal growth from 2022 to 2023. Meanwhile, senior-level salaries consistently increased and mid-level salaries grew from 2021 to 2022 as the pandemic eased.

<u>Salary variation based on company size: Do salaries vary by company size (small, medium, and large)?</u>

Our objective of doing this analysis was to explore the distribution of salaries in the field of Data Science across different company sizes. Our aim was to identify any patterns or trends that may emerge, particularly in relation to the size of the companies.

We utilized the Seaborn library in Python for data visualization, specifically focusing on box plots to visualize the distribution of salaries across various company sizes. We plotted 'company_size' on x-axis, 'salary_in_usd' on y-axis, and 'company_size' as hue. Additionally, we incorporated strip plots to display individual data points, providing a more comprehensive view of the salary distribution.

<Axes: xlabel='company_size', ylabel='salary_in_usd'>

- 1) Company Size Impact on Salaries: By comparing the box plots for Small, Medium, and Large sized companies, we were able to identify a noticeable impact of company size on Data Science salaries. Medium sized companies demonstrated a leading position in the employment rate within the field of data science, accompanied by higher median salary ranges when contrasted with both large and small firms.
- 2) Individual Data Points: The strip plot complements the box plot by displaying individual data points. This allows for a more granular examination of salary distribution within each company size category.

<u>Salary variation based on company size: How is salary distributed across companies based on their sizes?</u>

Our objective of this analysis is to examine the distribution of experience levels within different company sizes in the field of Data Science. We aim to understand the count of individuals at various experience levels across diverse company size categories.

We decided that grouping the data based on two categorical variables: 'experience_level' and 'company_size' would come in handy for this section. The value_counts() function is then applied to determine the count of occurrences for each combination of these variables. The resulting data is structured into a Data Frame named 'exp size df'.

Furthermore, we have utilized the Seaborn library in Python to create a grouped bar chart that visualizes this. Our plot consists of x-axis as 'experience_level', y-axis as 'Count', and hue as 'company_size' The bar chart allows for a clear comparison of the count of individuals in each category.

The grouped bar chart represents the count of individuals at different experience levels within each company size category.

- 1. In mid-sized companies, the grouped bar chart suggests a structure where the number of seniors is highest, followed by mid-level professionals, entry-level employees, and executives.
- 2. Similarly, large-sized companies exhibit a comparable pattern with seniors with a higher number, followed by mid-level and entry-level roles, and finally executives.
- Conversely, small-sized companies present a distinctive structure, emphasizing a balance between entry-level and mid-level positions, followed by seniors and executives.

<u>Salary variation based on company size: How is salary distributed across companies based on their sizes?</u>

The goal of this analysis is to explore the relationship between median salaries and company sizes in the field of Data Science.

We decided to do the analysis by grouping the data based on the variable 'company_size.' We are calculating the median salary for each company size category and putting it in a series named 'salary_vs_company_size'.

We utilized the Matplotlib library in Python to create a bar chart. The x-axis represents different company sizes, and the y-axis represents median salaries. Three distinct bar colors are employed to distinguish between company size categories: 'small,' 'medium,' and 'large.'

We are clearly able to see median salary distribution across company sizes. The bar chart provides a clear visual representation of the median salaries within each company size category. We can see that medium-sized companies surpass both large and small companies in providing higher median salaries.

Employment types and experience: Do employment types have a dependency on experience?

The objective of this analysis is to explore the distribution of employment types across different experience levels in the Data Science field. The count of individuals for each combination of experience level and employment type is examined to provide insights into workforce composition.

We used the 'groupby' function to group the data based on two categorical variables: 'experience_level' and 'employment_type.' The value_counts() function is then applied to calculate the count of occurrences for each combination of these variables. The resulting data is structured into a DataFrame named employment_vs_experience_dt.

Additionally, we utilized seaborn and matplotlib libraries in Python to create a grouped bar chart. The x-axis represents different experience levels, the y-axis represents the count of individuals, and different colors represent distinct employment types.

From the grouped bar chart, we can see the count of individuals at different experience levels, categorized by employment types. Colors distinguish between employment types, providing a clear comparison. Most of the companies are offering full time roles for data science jobs. The number of full-time roles is highest among senior-level positions, followed sequentially by mid-level, entry-level, and executive roles. Job roles for part-time, contractors and freelancers are low.

Correlation between Employment and Experience types

The objective of this analysis is to assess the association between experience levels and employment types in the Data Science field using a Chi-Square test.

The analysis employs the chi2_contingency function from the scipy.stats module in Python. A contingency table is created using the pd.crosstab function, with experience levels as rows and employment types as columns. The Chi-Square test is then performed on this contingency table to assess the independence of the two categorical variables.

Observation:

H0 - The two columns are not correlated.

H1 - The two columns are correlated.

Result - The probability of H0 being true.

In this case, since p-value is very less (in comparison of alpha, say 0.05), we will reject the H0 and conclude that the two columns are correlated.

Finding correlation between numerical values of the dataset

The objective of this analysis is to explore the correlation between salary, work year, and remote work ratio in the Data Science field. A correlation matrix is computed and visualized using a heatmap to identify potential relationships between these continuous variables.

The analysis focuses on a subset of the dataset, including the variables 'salary_in_usd,' 'work_year,' and 'remote_ratio.' The 'work_year' variable is converted to integers to facilitate correlation calculations. The correlation matrix is computed using the corr() function, and a heatmap is generated using the Seaborn library to visualize the strength and direction of correlations.

Observation:

The analysis reveals that both remote work ratio and work year exhibit weak correlations with salary in USD within the Data Science sector. The correlation coefficients of 0.24 for remote ratio and -0.083 for work year suggest limited predictive strength, indicating that these variables have relatively low influence on salary variations.

Compensation Trends: Are organizations staying up-to-date with the compensation trends in the industry? What kind of talent are companies looking for based on the highest paying job title?

We developed two key questions centering around compensation trends. Firstly, we wanted to understand whether companies have been staying up-to-date with the compensation trends in the industry. To tackle this, we grouped the data by company size (L, M, S) and year and calculated average salaries using the mean function. Visualizing these averages on a line plot showcased a gradual increase in overall average salaries over the years. Notably, companies with small and medium sizes saw a spike and a decline in 2021 respectively, distinguishing them within this pattern.

The second question looked into the type of talent sought by companies based on the highest paying job title. To accomplish this, we followed a two-step process. Initially, we grouped data by job title to determine each title's average salary, arranging them in descending order to identify the highest paying role. The Data Science Tech Lead appeared as the highest paying job title. Filtering out data by the job title "Data Science Tech Lead" revealed it as a senior position at a large company, working as a full-time

employee based in the US. This output gave us insight on the kind of talent holding the highest compensation in the Data Science industry.

The Highest Paying Job Title

_year experience_level employment_type job_title salary salary_currency salary_in_usd employee_residence remote_ratio company_location company_size

2022 SE FT Data Science_Tech_Lead 375000 USD 375000 US 50 US L

Salary trends over the years: Can we identify trends in salaries over time, such as year-over-year growth or fluctuations? What does the salary trend for Data Analysts and BI (Data) Analysts look like over the years?

To dig deeper into compensation trends in a different perspective, we decided to look at salary trends over time, focusing on identifying patterns of year-over-year growth or fluctuation. This involved grouping data by work year using the .groupby() function and calculating the average yearly salaries with the .mean() method. We visualized the shifts of the average yearly salaries via a line graph. Notably, we saw a substantial increase in salaries in 2022, indicating significant growth within the data science domain.

Next, we narrowed our focus to look at the salary trends in specific job titles that are more relevant to us and our peers: Data Analysts and BI Analysts/BI Data Analysts. For Data Analysts, we filtered data specific to this role, calculated average salaries by year, and illustrated the numbers on a line graph. The visualization showed a remarkable doubling of Data Analyst salaries from 2020 to 2022.

On the other hand, analyzing salary trends for BI Analysts/BI Data Analysts required more steps when filtering out the data due to the different job titles. We stored the BI Analyst and BI Data Analyst job titles in a list as one single variable. Then, the .isin() method was implemented to find rows of data that contain "BI Analysts" and "BI Data Analysts" in the "job_title" column. After these initial steps, the following steps were the same as finding out the average salary trend for Data Analysts. Therefore, we applied the same procedure, resulting in a line graph of the year-over-year average salary trend of BI Analysts and BI Data Analysis. Interestingly, we noted a decline from 2020 to 2022 followed by an upward trend from 2022 to 2023 for BI Analysts and BI Data Analysts, offering a unique perspective on these roles across time.

DATA MODELING

Chosen Model: Multiple Linear Regression

Purpose: The purpose of utilizing the Multiple Linear Regression model is to predict average salaries associated with various job titles in the United States for the year 2024. This predictive analysis aims to uncover the relationships between categorical factors, such as job titles, and their influence on salary outcomes.

Benefits: By employing the Multiple Linear Regression model, we aim to gain a comprehensive understanding of how different categorical factors impact average salaries. This analysis will provide valuable insights into the key predictors influencing salary outcomes, enabling a deeper comprehension of the factors driving compensation variations across various job titles.

Insights: The primary goal is to offer clear insights into how categorical factors, including job titles, experience levels, employment types, and other variables, influence the average salary. Through this analysis, we seek to highlight the significance and relative impact of each predictor on salary determination.

Aim: This report aims to support classmates and individuals seeking employment opportunities in the United States during the year 2024. By considering a comprehensive array of factors and their influence on average salaries, the aim is to provide informed guidance to assist in making well-rounded career decisions. This analysis intends to empower individuals by presenting a holistic view of factors affecting salaries, thereby aiding them in making informed choices during their job hunt.

DATA MODELING STEPS

1) Prepare Data

- ❖ Filtering Data for Specific Criteria: The dataset (ds_salaries_df) was filtered to include only records related to companies located in the United States during the years 2020 to 2023.
- Grouping and Calculating Average Salary: The filtered data was grouped by various columns such as 'job_title', 'work_year', 'experience_level', 'employment_type', 'employee_residence', 'remote_ratio', and 'company_location'. Then, the average salary (salary_in_usd) for each group was calculated.
- Creating a Feature for 2024: A new feature for the year 2024 was created by making a copy of the processed data for the prediction year ('work_year' column was updated to 2024).
- Encoding Categorical Variables: Categorical variables ('job_title', 'work_year', 'experience_level', 'employment_type', 'employee_residence', 'remote_ratio', 'company_location') were encoded using one-hot encoding via pd.get_dummies(), with drop_first=True to avoid multicollinearity issues. This process is essential for transforming categorical variables into a format suitable for machine learning models.

	job_title	work_year	experience_level	employment_type	employee_residence	remote_ratio	company_location	salary_in_usd
0	Al Developer	2023	Mid-Level	Full-Time	US	Fully Remote	US	200000.000000
1	Al Scientist	2021	Entry-Level	Part-Time	BR	Fully Remote	US	12000.000000
2	Al Scientist	2021	Entry-Level	Part-Time	PK	Fully Remote	US	12000.000000
3	Al Scientist	2022	Entry-Level	Full-Time	US	Fully Remote	US	50000.000000
4	Al Scientist	2022	Experienced	Full-Time	US	Fully Remote	US	200000.000000
320	Research Scientist	2023	Mid-Level	Full-Time	US	Fully Remote	US	193633.333333
321	Research Scientist	2023	Mid-Level	Full-Time	US	In-person	US	116250.000000

2) Fitting the Multiple Linear Regression model

- Importing Necessary Libraries: The required libraries from the scikit-learn (sklearn) package were imported. Specifically, the linear_model module was imported to access the LinearRegression class.
- ❖ Initializing the Linear Regression Model: An instance of the LinearRegression class was created and assigned to the variable Ir. This model serves as the chosen algorithm for fitting a linear regression to the data.
- ❖ Fitting the Model: The fit() method from the linear regression model (Ir) was utilized to train the model. The training data (X=avg_salary_encoded) and the target variable (y=avg_predict_salary['salary_in_usd']) were passed as arguments to the fit() function. The X parameter represents the independent variables (features), while y represents the dependent variable (target variable) that the model aims to predict.

3) Predict average salaries for 2024

Data Preparation for 2024 Prediction:

- ➤ Similar to the previous encoding step during the training phase, categorical variables ('job_title', 'work_year', 'experience_level', 'employment_type', 'employee_residence', 'remote_ratio', 'company_location') from the avg_salary_2024 dataset were encoded using one-hot encoding via pd.get_dummies().
- drop_first=True was utilized to ensure consistency with the encoding structure applied during the training phase.

❖ Making Predictions for 2024:

- ➤ The pre-trained linear regression model (Ir) was employed to predict salaries for the year 2024 based on the prepared encoded dataset (avg_salary_2024_encoded).
- The predict() method from the linear regression model was utilized to generate salary predictions for the year 2024 using the encoded features of job titles, work year, experience level, employment type, employee residence, remote ratio, and company location.

Displaying Predictions:

➤ The predicted salaries for the year 2024 were printed or displayed using print(predictions_2024).

Ensuring Consistency:

➤ It's essential to maintain consistency in data preprocessing steps, including encoding, between the training and prediction phases. Therefore, one-hot encoding was applied again during the prediction phase (avg_salary_2024_encoded) to

ensure that the model interprets and predicts accurately based on the encoding structure it learned during the training phase. This consistency helps in correctly transforming new data ('avg_salary_2024') into a format suitable for the model's predictions.

	job_title	work_year	avg_salary
0	Al Developer	2024	193372.605697
1	Al Scientist	2024	2035.750801
2	Al Scientist	2024	-7882.182908
3	Al Scientist	2024	118344.392849
4	Al Scientist	2024	209293.998827
320	Research Scientist	2024	170997.905079
321	Research Scientist	2024	174823.005377
322	Research Scientist	2024	193281.524666
323	Research Scientist	2024	197106.624964
324	Staff Data Scientist	2024	85117.817092

325 rows × 3 columns

This data frame displays the average salaries for 2024 for data science job titles based in the US.

Analyzing Salary Trends: 2023 vs. 2024 for US-based Data Science Job Titles

Following the development of a predictive model for forecasting average salaries in 2024 for data science job titles situated in the US, the subsequent step involved a comparative analysis with average salaries from 2023. The aim was to discern distinct trends among job titles, identifying those exhibiting upward, stable, or declining salary trajectories.

To figure out the trends, we first prepared the data in the following ways:

- Merging Datasets: Combined average salaries for 2023 and cleaned average salaries for 2024 based on job titles using an inner merge operation via pd.merge() on the 'job_title' column.
- 2. **Comparison and Calculation:** Calculated the differences ('salary_diff') between 2023 and 2024 salaries by subtracting 2023 salaries ('avg_salary_2023') from 2024 salaries ('salary_in_usd') within the merged DataFrame ('comparison_df').

US	200000.000000	0.000000
US	130000.000000	-37162.307692
US	130000.000000	0.000000
US	423000.000000	333000.000000
US	181963.636364	-12987.363636
US	76000.000000	-56500.000000
	US	US 130000.000000 US 423000.000000 US 181963.636364

The following job titles all have an upward salary trend in 2024, of which **Applied Machine Learning Scientist** being the highest.

The following job titles all have a downward salary trend in 2024, of which **Computer Vision Engineer** being the lowest.

The following job titles have a constant salary trend:

CONCLUSION

During this project, we were able to gain a comprehensive understanding of Python as a programming language, particularly in its application to various aspects of data science. The practical utilization of Python for tasks such as Exploratory Data Analysis (EDA), data modeling, cleaning, visualization, and descriptive analysis has been an important learning aspect for us. Moreover, despite coming from humble technical backgrounds, the course of this project has taught us to successfully navigate and write code. The experience has not only equipped us with practical coding ability but has also provided us with invaluable insights into the data analytics landscape. Additionally, our sense of adaptability and teamwork was enhanced via this project, as it has taught us the importance of effective collaboration and accommodation of diverse skill sets and needs within a team environment.

Throughout the project, we encountered various challenges that enriched our learning experience. One significant obstacle was the presence of incomplete data in the dataset, which hindered our chance to conduct a year-over-year analysis and visualization. The vast scope of the project made us look carefully into prioritization and establishing boundaries to effectively incorporate desired features into our code. The introduction of a new programming language, for most of us, posed a formidable challenge, given our non-technical background. Furthermore, materializing our thoughts into code required an active effort, often involving seeking additional resources online to overcome coding hurdles. The diverse schedules and varying levels of technical understanding among team members made us harmonize our pace, facilitating effective collaboration and ensuring everyone's contribution aligned with each other. Despite these challenges, the experience has been instrumental in honing our problem-solving skills, adaptability, and teamwork, essential attributes in the dynamic landscape of data science projects.