In Silico Optimization of Biochemical Pathways Using Elementary Conversion Modes in Microbial Community Models

Bachelor Thesis of Julia Jasovski

Course of studies: Computational Engineering Science

Supervisors: Dr. Zita Soons, Katharina Ebeling

Examiners:

Prof. Alexander Mitsos, Ph.D,

Prof. Lars Küpfer, Ph.D,

Prof. Dr. Adel Mhamdi

Background and Aim

Introduction to constraint-based metabolic modelling

Metabolism can be understood as a network of reactions

- Reaction network are expressed in a stoichometric matrix S with n metabolites and m reactions [1]•
- The concentration change for every metabolite is given by \dot{c}_j for j=1,...,n

$$\begin{pmatrix} \dot{c_1} \\ \vdots \\ \dot{c_n} \end{pmatrix} = \begin{pmatrix} s_{1,1} & \cdots & s_{1,m} \\ \vdots & \ddots & \vdots \\ s_{n,1} & \cdots & s_{n,m} \end{pmatrix} \cdot \begin{pmatrix} v_1 \\ \vdots \\ v_m \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$S \qquad \text{Flux vector } v$$

Possible objective: $maximize \ v_{Biomass}$

- Flux Balance Analysis (FBA) is currently used to optimize such constraint-based metabolic models [2]
- Problem: It requires prior knowledge of metabolic uptake rates and only considers optimal pathways

We are interested in all possible pathways

Motivation Elementary Conversion Mode

- Elementary Flux Mode (EFM) analysis enumerates all possible pathways in a network
- Problem: Huge number of EFMs and often infeasible with a lot of redundancy in the conversion
- Elementary Conversion Mode (ECM) analysis identifys all overall conversions from nutrients to products ^[1]
 ⇒ focuses only on external metabolites
- The internal metabolites $j \in Int$ are assumed to be steady state $\Rightarrow \dot{c}_j = 0$ for all $j \in Int$
- The conic combination of every ECM can be described as a steady-state conversion cone:

$$C = \{\dot{c}_{ext} \in \mathbb{R}^l : \dot{c}_{ext} = Ev, v \ge 0\}, \quad l = \text{\# of external metabolites}$$

Visualization of an ECM-Matrix

Thermodynamic Feasibilty

Solution Spaces Thermodynamic Feasibility

Case Study

- Genome Scale Metabolic Models of OMM19 strain were not available yet
- Data from three microbes of an community in a phototrophic microbial mats were used [1]
 - Filamentous anoxygenic phototrophs (FAP)
 - Synechococcus (SYN)
 - Sulfate reducing bacteria (SRB)
- Unicellular models were already build [2]
- ECMs were computed with the software ecmtool [3] and analyzed in this heatmap
- These models and all further models were build with the python library COBRApy

Community Model

Compartmentalized Model

- All community members share a common internal space to exchange metabolites
- Every metabolite is keyed to its microbe

9 of 14

Pooled Model

- Every reaction and every metabolite is merged to one pooled organism
- Metabolites are unkeyed

Nested Model

Taffs et al. [1] applied these community model types on EFM

Community Model: Nested Model

Community Model: Nested Model

Community Model Comparison

Modeltype		+		-
Compartmentalized	•	Detailed interaction network	•	High computation cost
Pooled	•	Low computation cost	•	Hardly any interaction information
Nested	•	Low computation cost Focussed on relevant information	•	Dependent on efficiency factors Dependent on number of choosen ECMs

Comparison of ECM Solution Spaces

Conclusion and Outlook

Conclusion

- Analyzed ECMs
- Reduced solution space by thermodynamic feasibility
- Solved optimization with thermodynamic feasible ECM
- Built and compared 3 types of community models
- Data vizualisation

Outlook

- Validation of thermodynamic feasibility with concentration data
- Verify ECM models with BIOLOG data
- Application on Genome Scale Metabolic Models of the OMM19 strain

Thank you for your attention

