ค่ากลางของข้อมูล

ค่าเฉลี่ยเลขคณิต

ไม่แจกแจงความถึ่

$$\mu = \frac{x_1 + x_2 + x_3 + \dots + x_N}{N} = \frac{\sum_{i=1}^{N} x_i}{N}$$

แจกแจงความถึ่

โมแจกแจงความถึ แจกแจงความถึ มี นอกแจงความถึง
$$\mu = \frac{x_1 + x_2 + x_3 + \ldots + x_N}{N} = \frac{\sum_{i=1}^N x_i}{N}$$

$$\mu = \frac{f_1 x_1 + f_2 x_2 + f_3 x_3 + \ldots + f_k x_k}{f_1 + f_2 + f_3 + \ldots + f_k} = \frac{\sum_{i=1}^k f_i x_i}{\sum_{i=1}^k f_i}$$

 x_i คือค่ากึ่งกลางของอันตรภาคชั้น

ค่าเฉลี่ยเลขคณิตแบบถ่วงน้ำหนัก

$$\mu = \frac{w_1 x_1 + w_2 x_2 + w_3 x_3 + \dots + w_N x_N}{w_1 + w_2 + w_3 + \dots + w_N} = \frac{\sum_{i=1}^{N} w_i x_i}{\sum_{i=1}^{N} w_i}$$

ค่าเฉลี่ยเลขคณิตรวม

$$\mu_{\text{max}} = \frac{N_1 \mu_1 + N_2 \mu_2 + N_3 \mu_3 + ... N_k \mu_k}{N_1 + N_2 + N_3 + ... + N_k} = \frac{\sum_{i=1}^k N_i \mu_i}{\sum_{i=1}^k N_i}$$

ค่ากลางของข้อมูล (ต่อ)

ค่ามัธยฐาน

ค่ามัธยฐาน คือ ค่าที่แบ่งข้อมูลออกเป็นสองส่วนเท่าๆ กัน

ไม่แจกแจงความถี่ (ตัวๆ)	แจกแจงความถี่ (ช่วงๆ)	
หลักการหาค่า Med 1. เรียงข้อมูลจากน้อยไปมาก 2. หาตำแหน่งของ Med คือ $\frac{N+1}{2}$ 3. หาค่าที่ตำแหน่งนั้นคือ ค่า Med	หลักการหาค่า Med 1. เรียงข้อมูลจากน้อยไปมาก 2. หาตำแหน่งของ Med คือ $\frac{N}{2}$ 3. ค่า $Med = L + I \left(\frac{N}{2} - \sum f_L \right)$ L คือ ขอบล่างของชั้นที่ Med อยู่ $\sum f_L$ คือ ความถี่สะสมชั้นก่อนหน้า f_m คือ ความถี่ชั้นมัธยฐาน	

ค่าฐานนิยม

ค่าฐานนิยม คือ ค่าของข้อมูลที่ซ้ำกันมากที่สุด

ไม่แจกแจงความถี่ (ตัวๆ)

Mode คือ ค่าของข้อมูลที่ซ้ำกันมากที่สุด
Mode ของข้อมูลชุดหนึ่ง อาจมีได้
มากกว่า 1 ค่า หรือไม่มีก็ได้

ค่ากลางของข้อมูล (ต่อ)

ค่ากึ่งกลางพิสัย

ค่ากึ่งกลางพิสัย =
$$\frac{x_{\text{max}} + x_{\text{min}}}{2}$$

สมบัติของค่ากลาง

- 1. $\sum (x_i \mu)^2$ มีค่าน้อยสุด ; $\sum (x_i \mu) = 0$
- 2. $\sum |x_i$ -Med | มีค่าน้อยสุด
- 3. ถ้ามีข้อมูล 2 ชุด ซึ่งมีจำนวนเท่ากัน ชุดที่ 1 $x_1, x_2, ..., x_r, ..., x_N$ ชุดที่ 2 y_1 , y_2 , ..., y_r ..., y_N มีสมการความสัมพันธ์ $y_i = Ax_i + B$ จะได้ว่า $\mu_v = A\mu_x + B$

$$\mu_{y} = A\mu_{x} + B$$

$$Med_{y} = AMed_{x} + B$$

$$Mode_{y} = AMode_{x} + B$$

$$d_i = \frac{x_i - a}{I}$$

$$x_i = a + d_i I$$

$$\mu = a + I \overline{d}$$
 กรณี I ไม่เท่ากัน

$$d_i = x_i - a$$
$$x_i = a + d_i$$
$$\mu = a + \overline{d}$$

II. การวัดตำแหน่งของข้อมูล

 Q_r, D_r, P_r

ควอร์ไทล์ คือ การแบ่งข้อมูลออกเป็น 4 ส่วนเท่าๆ กัน หลังจากเรียงคะแนน จากน้อยไปมาก มีตัวแบ่งหลักอยู่ 3 ตัว Q_1, Q_2 และ Q_3 Q_1 Q_2 Q_3

เดไซล์ คือ การแบ่งข้อมูลออกเป็น 10 ส่วนเท่าๆ กัน หลังจากเรียงคะแนน จากน้อยไปมาก มีตัวแบ่งหลักอยู่ 9 ตัว $D_1,D_2,...,D_9$ $\overrightarrow{D_1}$ $\overrightarrow{D_2}$... $\overrightarrow{D_9}$

<u>เปอร์เซ็นต์ไทล์</u> คือ การแบ่งข้อมูลออกเป็น 100 ส่วนเท่าๆ กัน หลังจากเรียงคะแนน จากน้อยไปมาก มีตัวแบ่งหลักอยู่ 99 ตัว P_1,P_2 , ..., P_{99} $\overrightarrow{P_1}$ $\overrightarrow{P_2}$... $\overrightarrow{P_{99}}$

หลักการหาค่า Q_r, D_r, P_r เรียงข้อมูลจากน้อยไปมาก

ไม่แจกแจงความถี่ (ตัวๆ)	แจกแจงความถี่ (ช่วงๆ)	
หลักการหาค่า Q_r, D_r, P_r 1. เรียงข้อมูลจากน้อยไปมาก 2. หาตำแหน่งของ Q_r, D_r, P_r คือ $\frac{r(N+1)}{4}, \frac{r(N+1)}{10}, \frac{r(N+1)}{100}$ ตามลำดับ 3. หาค่าที่ตำแหน่งนั้น คือ ค่า Q_r, D_r, P_r	หลักการหาค่า Q_r, D_r, P_r 1. เรียงข้อมูลจากน้อยไปมาก 2. หาตำแหน่งของ Q_r, D_r, P_r คือ $\frac{rN}{4}, \frac{rN}{10}, \frac{rN}{100}$ ตามลำดับ 3. ค่า Q_r, D_r, P_r = $L + I \frac{(ตำแหน่ง - ความถี่สะสมชั้นก่อนหน้า)}{ความถี่ชั้น Q, D, P$	

NOTE

- $Q_2 = P_{50} = D_5 = Med$
- ถ้าตำแหน่งของ $P,\,Q,\,D$ เท่ากับความถี่สะสม แล้วค่า $P,\,Q,\,D$ จะเท่ากับขอบบน ของชั้นนั้น

III. การวัดการกระจาย

การกระจายสัมบูรณ์ การกระจายสัมพัทธ์

การกระจายสัมบูรณ์ ใช้วัดการกระจายข้อมูลเพียงชุดเดียว การกระจายสัมพัทธ์ ใช้เปรียบเทียบการกระจายของข้อมูลมากกว่า 1 ชุด

การกระจายสัมบูรณ์		การกระจายสัมพัทธ์	
พิสัย (<i>R</i>)	$x_{\text{max}} - x_{\text{min}}$	ส.ป.ส. การแปรผันพิสัย (C.R.)	$\frac{x_{\text{max}} - x_{\text{min}}}{x_{\text{max}} + x_{\text{min}}}$
ส่วนเบี่ยงเบน ควอร์ไทล์ (<i>Q.D</i> .)	$\frac{Q_3 - Q_1}{2}$	ส.ป.ส. ส่วนเบี่ยงเบน ควอร์ไทล์ (<i>C.Q</i> .)	$\frac{Q_3 - Q_1}{Q_3 + Q_1}$
ส่วนเบี่ยงเบน เฉลี่ย (<i>M.D.</i>)	$\frac{\sum x-\mu }{N}$	ส.ป.ส. ส่วนเบี่ยงเบน เฉลี่ย (<i>C.M</i> .)	<u>Μ.D.</u> μ
ส่วนเบี่ยงเบน มาตรฐาน	$\sqrt{\frac{\sum (x-\mu)^2}{N}}$ $\sqrt{\frac{\sum x^2}{N} - \mu^2}$	ส.ป.ส. การแปรผัน (<i>C.V.</i>)	$\frac{\sigma}{ \mu }$

NOTE

S.D. = ส่วนเบี่ยงเบนมาตรฐานกลุ่มตัวอย่าง =
$$\sqrt{\frac{\sum (x-\bar{x})^2}{N-1}} = \sqrt{\frac{\sum x^2 - n\bar{x}^2}{N-1}}$$

IV. การแจกแจง<mark>ปกติ</mark>กับค่ามาตรฐาน

การแจกแจงปกติ

ความสัมพันธ์ระหว่างค่ากลางกับการกระจายของข้อมูล

$$\sigma_1 < \sigma_2, rac{\sigma_1}{\mu_1} < rac{\sigma_2}{\mu_2}$$
 $rac{\sigma}{\mu}$ ยิ่งน้อยยิ่งดี

การแจกแจงไม่ปกติ NOTE

 $|\mu$ - $Mode|=3|\mu$ - Med|

IV. การแจกแจงปกติกับค่ามาตรฐาน (ต่อ)

การแจกแจงค่ามาตรฐาน

ค่ามาตรฐาน
$$z = \frac{x_i - \mu}{\sigma}$$

สมบัติของค่า Z

1.
$$\overline{Z} = 0 \rightarrow \sum Z = 0$$

2.
$$\sigma_z = 1 \rightarrow \sum Z^2 = N$$

3. พื้นที่ใต้เส้นโค้งมีค่าเท่ากับ I

The 95% rule

- จำนวนข้อมูลที่อยู่ในช่วง $(\mu$ 2σ , μ + 2σ) \approx 95%
- $R \approx 4\sigma \rightarrow \sigma \approx \frac{R}{4}$