(18) Неопределенности и раскрытие нестределенностей. Typegen (1+x)\$ npm x > 0. $\lim_{x\to a} (f(x)-g(x)) \quad \text{m. } \kappa \quad \lim_{x\to a} f(x)=\infty \mid \Rightarrow [\infty-\infty] \quad \text{thegen else-cut} \quad \text{king } g(x)=\infty \mid \Rightarrow [\infty-\infty] \quad \text{the entre } g(x)=\infty$ Thump $\lim_{x\to 0} \left(\left(\frac{1}{x} + 1 \right) - \frac{1}{x} \right) = \lim_{x\to 0} 1 = 1$ pacuporeus reconpreg ms. $\lim_{x\to a^{-}} (f(x) - g(x)) = [0 - \infty] \lim_{x\to a^{-}} f(x) = 0 \quad \lim_{x\to a^{-}} g(x) = \infty$ [8] [8] [0°] [0°] [0°] Municipalin (1+x) = e [1] lim (1+ 1) = e [10] 1) x > 0+0 { xn} xn > 0 (n >0) 02 xn < 1 $Kn = \begin{bmatrix} 1 \\ x_n \end{bmatrix} \in \mathbb{N}, \quad Kn \leq \frac{1}{x_n} < Kn + 1; \quad \frac{1}{k_n} \geq x_n > \frac{1}{k_n + 1}; \quad \frac{1}{k_n + 1} < x_n \leq \frac{1}{k_n}.$ $(1+ kn)^{\frac{1}{kn}} \leq (1+ \frac{1}{kn})^{\frac{1}{kn+1}} = (1+ \frac{1}{kn})^{\frac{1}{kn}} (1+ \frac{1}{kn}) \rightarrow \ell$ $(1+ \frac{1}{kn+1})^{\frac{1}{kn}} \leq (1+ \frac{1}{kn})^{\frac{1}{kn}} \leq (1+ \frac{1}{kn})^{\frac{1}{kn+1}} = \ell$ $(1+ \frac{1}{kn+1})^{\frac{1}{kn}} \leq (1+ \frac{1}{kn})^{\frac{1}{kn}} \leq (1+ \frac{1}{kn})^{\frac{1}{kn+1}} = \ell$ $(1+ \frac{1}{kn+1})^{\frac{1}{kn}} \leq (1+ \frac{1}{kn})^{\frac{1}{kn}} \leq (1+ \frac{1$ 2) -1 < xn < 0 { $xn \neq 1$ $xn \rightarrow 0 - 0$ ($n \rightarrow 200$) yn = -xn { $yn \neq 0$ } $yn \rightarrow 0 + 0$ ($n \rightarrow +\infty$) $(1+x_n)^{\frac{1}{x_n}}=(1-y_n)^{\frac{1}{y_n}}$, $1+x_n=\frac{1}{1-y_n}$, $x_n=\frac{y_n}{1-y_n}\in(0,1)$ $1-y_n = \frac{1}{1+2n}$, $2n \rightarrow 0 (n \rightarrow \infty)$ $y_n = 1 - \frac{1}{1 + 2n} = \frac{2n}{1 + 2n}$ $(1+2n)^{\frac{1}{2}\pi} = (1+2n)^{\frac{1}{2}\pi} = (1+2n)^{\frac{1}{2}\pi} (1+2n) \rightarrow \ell(n\rightarrow\infty) = 1$ 27] lim (1+x) = e =>] lim (1+x) = e