Lecture 6:

Hypothesis Testing – 2

- A nonparametric method for testing whether two distributions are the same. It is "exact" – not based on large sample approximations.
- Let $X_1, ..., X_m \sim F_X$ and $Y_1, ..., Y_n \sim F_Y$ be two independent samples. Hypotheses are: $H_0: F_X = F_Y$ versus $H_1: F_X \neq F_Y$ Let $T(x_1, ..., x_m, y_1, ..., y_n)$ be some test statistic, i.e:

$$T(X_1, ..., X_m, Y_1, ..., Y_n) = |\overline{X}_m - \overline{Y}_n|$$

Let N=m+n and consider forming all N! permutations of the data $X_1, ..., X_m, Y_1, ..., Y_n$. For each permutation, compute the test statistic T.

Let N=m+n and consider forming all N! permutations of the data $X_1, \ldots, X_m, Y_1, \ldots, Y_n$. For each permutation, compute the test statistic T.

Denote these values $T_1, \ldots, T_{N!}$. Under H_0 , each of these values is equally likely. The distribution that puts mass 1/N! at each T_j is called the **permutation distribution**. Let $t_{\rm obs}$ be the observed value of the test statistic. We reject when T is large, so the p-value is:

p-value =
$$\frac{1}{N!} \sum_{i=1}^{N!} I(T_i > t_{obs})$$

• **Example**: The data are: $(X_1, X_2, Y_1) = (1,9,3)$. Let $T(X_1, X_2, Y_1) = |\overline{X} - \overline{Y}| = 2$. The permutations are:

permutation	value of T	probability	
(1,9,3)	2	1/6	
(9,1,3)	2	1/6	
(1,3,9)	7	1/6	
(3,1,9)	7	1/6	
(3,9,1)	5	1/6	
(9,3,1)	5	1/6	

So the p-value is $\mathbb{P}(T > 2) = 4/6$.

- Of course, it is impractical to evaluate all N! permutations for a large sample. We can approximate the p-value by randomly sampling from the set of permutations:
- So, the Algorithm for the permutation test is:
 - 1. Compute the observed value of the test statistic, $t_{\rm obs}$
 - 2. Randomly permute the data. Compute the statistic again.
 - 3. Repeat the previous step B times. That gives T_1, \ldots, T_B
 - 4. Approximate the p-value with $\frac{1}{B} \sum_{j=1}^{B} I(T_j > t_{obs})$

The Likelihood Ratio test

The Likelihood Ratio Test

- The Wald test is useful for testing a scalar parameter. The likelihood ratio test is more general and can be used for testing a vector-valued parameter.
- Consider testing $H_0: \theta \in \Theta_0$ versus $H_1: \theta \notin \Theta_0$. The likelihood ratio statistic is

$$\lambda = 2 \log \left(\frac{\sup_{\theta \in \Theta} \mathcal{L}(\theta)}{\sup_{\theta \in \Theta_0} \mathcal{L}(\theta)} \right) = 2 \log \left(\frac{\mathcal{L}(\hat{\theta})}{\mathcal{L}(\hat{\theta}_0)} \right)$$

where $\widehat{\theta}$ is the MLE and $\widehat{\theta}_0$ is the MLE when θ is restricted to Θ_0

• There are other ways to define λ , but this is the most practical!

The Likelihood Ratio Test

- The LR test is most useful when Θ_0 consists of all θ values such that some coordinates of it are fixed at particular values:
- Theorem: Let $\theta=(\theta_1,\ldots,\theta_q,\theta_{q+1},\ldots,\theta_r)$. Let $\Theta_0=\left\{\theta:\ (\theta_{q+1},\ldots,\theta_r)=(\tilde{\theta}_{q+1},\ldots,\tilde{\theta}_r)\right\}$. Let λ be the LR test statistic. Under $H_0:\ \theta\in\Theta_0$, we have $\lambda(x^n)\stackrel{d}{\to}\chi^2_{r-q,\alpha}$ where r-q= (dimension of Θ)-(dimension of Θ_0). The p-value is $\mathbb{P}(\chi^2_{r-q}>\lambda)$.
- For example, $\theta=(\theta_1,\theta_2,\theta_3,\theta_4,\theta_5)$, and we want to test that $\theta_4=\theta_5=0$. Then the limiting distribution has 5-3=2 d.o.f.

The Likelihood Ratio Test

• **Example**: (Recall Mendel's peas). Mendel bred peas of 4 types. The number of each type is multinomial with $p=(p_1,p_2,p_3,p_4)$. His theory predicts that p equals $p_0 \equiv \frac{1}{16} \, (9,3,3,1)$. In n=556 trials he observed X=(315,101,108,32). For LR test, we have:

$$\lambda = 2\sum_{j=1}^{4} X_j \log \frac{\hat{p}_j}{p_{0j}} = 2\left(315 \log \left(\frac{315/556}{9/16}\right) + \dots\right) = 0.48$$

Under H_1 , there are 4 parameters. But they sum to 1, so the dim. of param. space = 3. Under H_0 , there are no free params. So the limiting distribution of λ is χ_3^2 , so p-value is $\mathbb{P}(\chi_3^2 > 0.48) = 0.92$

- Suppose we conduct several hypothesis tests, each at level α . For any one test, the chance of false rejection of the null is α . But the chance for **at least one** false rejection is much higher. This is the **multiple testing problem**. We will cover 2 methods to deal with this problem
- Consider m hypothesis tests: H_{0i} versus H_{1i} for $i=1,\ldots,m$ and let P_1,\ldots,P_m denote the m p-values for these tests.
- The **Bonferroni Method**: Given p-values P_1, \ldots, P_m , reject the null hypothesis H_{0i} , if $P_i < \frac{\alpha}{m}$

• **Theorem**: Using the Bonferroni method, the probability of falsely rejecting **any** null hypotheses is $\leq \alpha$.

Proof idea:
$$\mathbb{P}(\bigcup_i R_i) \leq \sum_i \mathbb{P}(R_i)$$

 The Bonferroni method is very conservative, trying to make it unlikely that you make even one false rejection. Sometimes it is more reasonable to control the **false discovery rate** (FDR) – the average fraction of false rejections among all rejections.

Summarise everything in a table:

	H_0 Not Rejected	H_0 Rejected	Total
H_0 True	U	V	m_0
H_0 False	T	S	m_1
Total	m-R	R	\overline{m}

• **Define** the **false discovery proportion** (FDP) as V/R, if R > 0, and 0 if R = 0. Then FDR = $\mathbb{E}(\text{FDP})$.

- The Benjamini-Hochberg (BH) Method is:
 - 1. Let $P_{(1)} < \ldots < P_{(m)}$ ordered p-values.
 - 2. Define $\mathcal{C}_i = \frac{i\alpha}{C_m m}$ where $C_m = \begin{cases} 1, & \text{if p-values indep} \\ \sum_{i=1}^m (1/i) & \text{otherwise} \end{cases}$ and $R = \max \left\{ i: \; P_{(i)} < \mathcal{C}_i \right\}$.
 - 3. Let $T = P_{(R)}$ be the **BH rejection threshold**.
 - 4. Reject all null hypotheses H_{0i} for which $P_i \leq T$.

 Theorem: If the BH procedure is applied, then regardless of how many nulls are true, and regardless of the distribution of the pvalues, when the null hypothesis is false,

$$\mathsf{FDR} = \mathbb{E}(\mathsf{FDP}) \le \frac{m_0}{m} \alpha \le \alpha$$

Example: Suppose we have 6 tests, so 6 ordered p-values (vertical lines). 1) Without correcting for multiple testing, we would reject those with pvalues $< \alpha$ – then 4 rejected. 2) Bonferroni rejects all whose pvalues $< \alpha/m$ – then 0 rejected. 3) The BH threshold = last pvalue under the line with slope α - then 2 rejected.

- Testing also arises when we want to check whether the data come from the assumed parametric model. There are many such tests, here is one.
- Let $\mathscr{F}=\left\{f(x;\theta):\ \theta\in\Theta\right\}$ be the parametric model. Suppose the data takes values on \mathbb{R} . Divide \mathbb{R} into k disjoint intervals I_1,\ldots,I_k and let $p_j(\theta)=\int_{I_j}f(x;\theta)\,dx$ probability of falling in the

interval I_j under assumed model. Let N_j observations fall into I_j .

The likelihood of counts N_j is **multinomial**: $Q(\theta) = \prod_{j=1}^n p_j(\theta)^{N_j}$

Maximizing it yields estimates $\tilde{\theta} = (\tilde{\theta}_1, ..., \tilde{\theta}_s)$ of θ .

The test statistic is
$$Q = \sum_{j=1}^k \frac{(N_j - np_j(\tilde{\theta}))^2}{np_j(\tilde{\theta})}$$

- **Theorem**: Let H_0 be the null-hypothesis that the data are IID draws from our model $\mathscr{F} = \{f(x;\theta): \theta \in \Theta\}$. Under H_0 , the statistic Q converges in distribution to χ^2_{k-1-s} . (This also gives an appropriate p-value).
- It is tempting to replace $\tilde{\theta}$ with the MLE, $\hat{\theta}$. But this does not result in a statistic with χ^2_{k-1-s} limiting distribution. Although, some good things can be said in this case a bound on the p-value due to Chernoff-Lehmann theorem, for example.

• Goodness-of-fit testing has limitations: if we reject H_0 , we conclude we should not use the model; but if we do not reject H_0 , we can not conclude that the model is correct – as always, we may have rejected because the test had low power. This is why it is generally better to use **nonparametric methods** when possible.

The Neyman-Pearson Lemma

The Neyman-Pearson Lemma

- In the special case of a simple test: H_0 : $\theta=\theta_0$ versus H_1 : $\theta=\theta_1$ we can say precisely what the most powerful test is
- . Theorem: Let $T = \frac{\mathscr{L}(\theta_1)}{\mathscr{L}(\theta_0)} = \frac{\prod_{i=1}^n f(x_i; \theta_1)}{\prod_{i=1}^n f(x_i; \theta_0)}$. Suppose we reject

 H_0 when T>k. If we choose k so that $\mathbb{P}_{\theta_0}(T>k)=\alpha$, then this test is the most powerful size- α test.

The t-test

The t-test

The t-test is due to Student's t-distribution:

$$f(t) = \frac{\Gamma\left(\frac{k+1}{2}\right)}{\sqrt{k\pi} \Gamma\left(\frac{k}{2}\right) \left(1 + \frac{t^2}{k}\right)^{(k+1)/2}}$$
 which, with d.o.f.

 $k \to \infty$, tends to Normal, and with k = 1 reduces to Cauchy.

• If we want to test H_0 : $\mu = \mu_0$ where $\mu = \mathbb{E}(X_i)$, we can use the Wald test. When the data is assumed **Normal** and **sample is small**, it is more common to use the t-test.

The t-test

- If we want to test H_0 : $\mu = \mu_0$ where $\mu = \mathbb{E}(X_i)$, we can use the Wald test. When the data is assumed **Normal** and **sample is small**, it is more common to use the t-test.
- Let $X_1, ..., X_n \sim \mathcal{N}(\mu, \sigma)$, where μ, σ are both unknown. We want

to test
$$\mu=\mu_0$$
 versus $\mu\neq\mu_0$. Let $T=\frac{\sqrt{n}(\overline{X}_n-\mu_0)}{S_n}$ where S_n^2 is

the sample variance. For large samples, $T \approx \mathcal{N}(0,1)$ under H_0 . But the exact distribution of T under H_0 is t_{n-1} (t-distribution with n-1 degrees of freedom).