

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s):

EZUMI, et al.

Serial No.:

Not assigned

Filed:

January 25, 2002

Title:

FRICTION STIR WELDING METHOD, AND HOLLOW

SHAPE MEMBER FOR FRICTION STIR WELDING

Group:

Not assigned

LETTER CLAIMING RIGHT OF PRIORITY

Honorable Commissioner of Patents and Trademarks Washington, D.C. 20231 January 25, 2002

Sir:

Under the provisions of 35 USC 119 and 37 CFR 1.55, the applicant(s) hereby claim(s) the right of priority based on Japanese Application No.(s) 2001-117050 filed April 16, 2001.

A certified copy of said Japanese Application is attached.

Respectfully submitted,

ANTONELLI, TERRY, STOUT & KRAUS, LLP

William I. Solomon

Registration No. 28,565

WIS/amr

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2001年 4月16日

出 願 番 号

Application Number:

特願2001-117050

出 願 人 Applicant(s):

株式会社日立製作所

日立笠戸機械工業株式会社

2001年12月28日

特許庁長官 Commissioner, Japan Patent Office

特2001-117050

【書類名】

特許願

【整理番号】

160000131

【提出日】

平成13年 4月16日

【あて先】

特許庁長官 及川 耕造 殿

【国際特許分類】

B23K 20/12

【発明者】

【住所又は居所】 山口県下松市大字東豊井794番地 株式会社日立製作

所 笠戸事業所内

【氏名】

江角 昌邦

【発明者】

【住所又は居所】 山口県下松市大字東豊井794番地 日立笠戸機械工業

株式会社内

【氏名】

福寄 一成

【特許出願人】

【識別番号】

000005108

【氏名又は名称】 株式会社 日立製作所

【特許出願人】

【識別番号】

000125484

【氏名又は名称】 日立笠戸機械工業株式会社

【代理人】

【識別番号】 100095913

【弁理士】

【氏名又は名称】 沼形 義彰

【選任した代理人】

【識別番号】

【辞理七】

【氏名又は名称】 住吉 多喜男

【手数料の表示】

【予納台帳番号】 018061

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 摩擦攪拌接合方法

【特許請求の範囲】

【請求項1】 第1の中空形材の幅方向の端部と第2の中空形材の幅方向の端部とを突き合わせ、

前記第1の中空形材は、2つの面板と、両者を接続するものであって、少なくとも一端は前記端部を除いた位置に接続した第1の接続板と、前記2つの面板の端部同士を接続するものであって、前記面板に実質的に直交した第2の接続板と、前記第2の接続板と前記2つの面板とのそれぞれの接続部に設けられ、該中空形材の幅方向の外方および厚さ方向の外方にそれぞれ開口した凹部と、一方の前記凹部に設けた溝または凸部と、からなり、

前記第2の中空形材は、2つの面板と、両者を接続するものであって、少なくとも一端は前記端部を除いた位置に接続した第1の接続板と、該中空形材の前記端部において、一方の前記面板に設けた凸部または溝と、該中空形材の前記端部において、他方の前記面板に設けた凸部または溝と、からなり、

前記突き合わせたとき、それぞれの前記溝にそれぞれの前記凸部が入っており、このとき一方の中空形材が他方の中空形材に対して該中空形材の厚さ方向への 移動を実質的に抑制するように入っており、

前記第2の接続板の板厚の延長線上に、回転工具を位置させて、前記中空形材の厚さ方向の外方から、前記突き合わせた部分を摩擦攪拌接合すること、

を特徴とする摩擦攪拌接合方法。

【請求項2】 請求項1の摩擦攪拌接合方法において、前記摩擦攪拌接合によって、前記突き合わせた部分、および前記溝と前記凸部とをそれぞれ接合すること、を特徴とする摩擦攪拌接合方法

【請求項3】 第1 9中空形材の幅方向の端部と第2 9中空形材の幅方向の端部とを突き合わせ、

前記第1の中空形材は、2つの面板と、両者を接続するものであって、少なくとも一端は前記端部を除いた位置に接続した第1の接続板と、前記2つの面板の

端部同士を接続するものであって、前記面板に実質的に直交した第2の接続板と 、前記第2の接続板と前記2つの面板とのそれぞれの接続部に設けられ、該中空 形材の幅方向の外方および厚さ方向の外方にそれぞれ開口した凹部と、方の前記 凹部に設けた溝または凸部と、他方の前記凹部に設けた溝または凸部と、からな り、

前記第2の中空形材は、2つの面板と、両者を接続するものであって、少なくとも一端は前記端部を除いた位置に接続した第1の接続板と、該中空形材の前記端部において、一方の前記面板に設けられ、該中空形材の幅方向の外方に向けて突出した凸部または前記外方に向けて開口した溝と、該中空形材の前記端部において、他方の前記面板に設けられ、該中空形材の幅方向の外方に向けて突出した凸部または前記外方に向けて開口した溝と、からなり、

前記突き合わせたとき、それぞれの前記溝にそれぞれの前記凸部が入っており

前記第2の接続板の板厚の延長線上に、回転工具を位置させて、前記中空形材の厚さ方向の外方から、前記突き合わせた部分を摩擦攪拌接合すること、

を特徴とする摩擦攪拌接合方法。

【請求項4】 請求項3の摩擦攪拌接合方法において、前記摩擦攪拌接合は、前記突き合わせ部、および前記溝と前記凸部とを摩擦攪拌接合すること、を特徴とする摩擦攪拌接合方法。

【請求項5】 請求項4の摩擦攪拌接合方法において、前記中空形材に挿入 した前記回転工具の小径部の径の範囲内に、前記溝と前記凸部とを位置させた状態で、前記摩擦攪拌接合を行うこと、を特徴とする摩擦攪拌接合方法。

【請求項6】 請求項5の摩擦攪拌接合方法において、前記回転工具の軸心は前記溝の深さの範囲内に位置させて前記摩擦攪拌接合を行うこと、を特徴とする摩擦攪拌接合方法

【請求項7】 請求項4の摩擦攪拌接合方法において、前記回転工具の軸心は前記溝の深さの範囲内に位置させて前記摩擦攪拌接合を行うこと、を特徴とする摩擦攪拌接合方法。

【請求項8】 請求項3の摩擦攪拌接合方法において、

前記第1の中空形材のそれぞれの前記凹部の前記溝または前記凸部として、前 記溝があり、

前記第2の中空形材のそれぞれの前記面板の前記凸部または前記溝として、前 記凸部があること、

を特徴とする摩擦攪拌接合方法。

【請求項9】 第1の中空形材の幅方向の端部と第2の中空形材の幅方向の端部とを突き合わせ、

前記第1の中空形材はその幅方向の一端の2つの面板の端部に、前記幅方向に向けて開口する溝または前記幅方向に向けて突出する凸部を備え、

前記第2の中空形材はその幅方向の一端の2つの面板の端部に、前記幅方向に 向けて突出する凸部または前記幅方向に向けて開口する溝を備え、

前記突き合わせたとき、それぞれの前記溝にそれぞれの前記凸部が入っており

前記突き合わせた部分、および前記溝と前記凸部とを摩擦攪拌接合すること、 を特徴とする摩擦攪拌接合方法。

【請求項10】 請求項9の摩擦攪拌接合方法において、前記中空形材に挿入した前記回転工具の小径部内に、前記溝と前記凸部とを位置させた状態で、前記摩擦攪拌接合を行うこと、を特徴とする摩擦攪拌接合方法。

【請求項11】 請求項10の摩擦攪拌接合方法において、前記回転工具の軸心は前記溝の深さの範囲内に位置させて前記摩擦攪拌接合を行うこと、を特徴とする摩擦攪拌接合方法。

【請求項12】 請求項9の摩擦攪拌接合方法において、前記回転工具の軸心は前記溝の深さの範囲内に位置させて前記摩擦攪拌接合を行うこと、を特徴とする摩擦攪拌接合方法。

【発明の詳細な説明】

【発明の属する技術分野】

本発明は摩擦攪拌接合方法に係わり、特に、中空形材の摩擦攪拌接合に好適である。

[0002]

【従来の技術】

摩擦攪拌接合方法は、接合部に挿入した丸棒(回転工具という)を回転させながら接合線に沿って移動させ、接合部を発熱、軟化させて塑性流動させ、固相接合する方法である。回転工具は大径部と小径部からなる。小径部を接合すべき部材に挿入し、大径部の端面を前記部材に接触させている。小径部にはねじを設けている。

[0003]

接合すべき2つの部材の回転工具の挿入側に凸部を設け、この凸部の金属を原 資として2つの部材の間の隙間を埋めるようにしている。回転工具の大径部は凸 部内に入れている。

回転工具を接合部の金属に挿入しなければならないので、接合部には大きな力がかかる。このため、中空形材を接合する際には、中空形材の2つの面板を接続する接続板の部分を他方の中空形材との摩擦攪拌接合位置としている。これは前記接続板で前記力を支え、中空形材の変形を防止しながら摩擦攪拌接合するものである。

これらは特開平9-309164号公報(EP0797043A2)、特開平 11-90655号公報(USP6050474)に示されている。

[0004]

【発明が解決しようとする課題】

2つの板の突き合わせ部を溶接(または摩擦攪拌接合)すると、溶接熱によって変形する。その変形の1つとして板の厚さ方向に板が変形する。このため、溶接部の一方の板と他方の板との間に段差が生じ、平面度が悪くなりやすい。このため、中空形材においては、溶接部の近傍には並列な2つの面板を接続する板を設け、面板が厚さり向に変形する。ため、中空形材においては、溶接部の近傍には並列な2つの面板を接続する板を設け、面板が厚さり向に変形する。ため時中で、この接続板は面板に直交している。

[0005]

摩擦攪拌接合はアーク溶接に比べて接合温度は低いので、変形は少ないが、それなりの変形が考えられる。このため、前記特開平9-309164号公報(E

P0797043A2)、特開平11-90655号公報(USP6050474)でも前記接合板を設けている。前記特開平11-90655号公報(USP6050474)ではそれぞれの中空形材の端部に前記接続板を設けている。このため、強度を無視して議論すれば、接続板によって質量が増大する。

[0006]

なお、前記特開平9-309164号公報(EP0797043A2)では摩 擦攪拌接合する一対の中空形材の一方のみに接続板を設けている。

本発明の目的は、軽量で良好な接合ができる摩擦攪拌接合方法を提供することにある。

[0007]

【課題を解決するための手段】

上記目的の第1の解決方法は、第1の中空形材の幅方向の端部と第2の中空形 材の幅方向の端部とを突き合わせ、前記第1の中空形材は、2つの面板と、両者 を接続するものであって、少なくとも一端は前記端部を除いた位置に接続した第 1の接続板と、前記2つの面板の端部同士を接続するものであって、前記面板に 実質的に直交した第2の接続板と、前記第2の接続板と前記2つの面板とのそれ ぞれの接続部に設けられ、該中空形材の幅方向の外方および厚さ方向の外方にそ れぞれ開口した凹部と、一方の前記凹部に設けた溝または凸部と、他方の前記凹 部に設けた溝または凸部と、からなり、前記第2の中空形材は、2つの面板と、 両者を接続するものであって、少なくとも一端は前記端部を除いた位置に接続し た第1の接続板と、該中空形材の前記端部において、一方の前記面板に設けた凸 部または溝と、該中空形材の前記端部において、他方の前記面板に設けた凸部ま たは溝と、からなり、前記突き合わせたとき、それぞれの前記溝にそれぞれの前 記凸部が入っており、このとき一方の中空形材が他方の中空形材に対して該中空 形材で厚さ方向に 2移動を実質的に抑制するようにも (これ) 一節記第22接続 板の板厚の延長線上に、回転工具を位置させて、前記中空形材の厚さ万回の外方 から、前記突き合わせた部分を摩擦攪拌接合すること、である。

[0008]

上記目的の第2の解決方法は、第1の中空形材の幅方向の端部と第2の中空形

材の幅方向の端部とを突き合わせ、前記第1の中空形材は、2つの面板と、両者 を接続するものであって、少なくとも一端は前記端部を除いた位置に接続した第 1の接続板と、前記2つの面板の端部同士を接続するものであって、前記面板に 実質的に直交した第2の接続板と、前記第2の接続板と前記2つの面板とのそれ ぞれの接続部に設けられ、該中空形材の幅方向の外方および厚さ方向の外方にそ れぞれ開口した凹部と、方の前記凹部に設けた溝または凸部と、他方の前記凹部 に設けた溝または凸部と、からなり、前記第2の中空形材は、2つの面板と、両 者を接続するものであって、少なくとも一端は前記端部を除いた位置に接続した 第1の接続板と、該中空形材の前記端部において、一方の前記面板に設けられ、 該中空形材の幅方向の外方に向けて突出した凸部または前記外方に向けて開口し た溝と、該中空形材の前記端部において、他方の前記面板に設けられ、該中空形 材の幅方向の外方に向けて突出した凸部または前記外方に向けて開口した溝と、 からなり、前記突き合わせたとき、それぞれの前記溝にそれぞれの前記凸部が入 っており、前記第2の接続板の板厚の延長線上に、回転工具を位置させて、前記 中空形材の厚さ方向の外方から、前記突き合わせた部分を摩擦攪拌接合すること 、である。

[0009]

上記目的の第3の解決方法は、第1の中空形材の幅方向の端部と第2の中空形材の幅方向の端部とを突き合わせ、前記第1の中空形材はその幅方向の一端の2つの面板の端部に、前記幅方向に向けて開口する溝または前記幅方向に向けて突出する凸部を備え、前記第2の中空形材はその幅方向の一端の2つの面板の端部に、前記幅方向に向けて突出する凸部または前記幅方向に向けて開口する溝を備え、前記突き合わせたとき、それぞれの前記溝にそれぞれの前記凸部が入っており、前記突き合わせた部分、および前記溝と前記凸部とを摩擦攪拌接合することである。

100.01

【発明の実施の形態】

本発明の一実施例を図1から図3によって説明する。鉄道車両の車体500は 、側面を構成する側構体501、屋根を構成する屋根構体502、床を構成する 台枠503、長手方向の端部を構成する妻構体504からなる。側構体501、 屋根構体502、台枠504は、それぞれ複数の押し出し形材10、20を接合 して構成している。押し出し形材10、20の長手方向(押し出し方向)を車体 500の長手方向に向け、車体500の周方向に多数並べている。押し出し形材 10、20はアルミニウム合金製の中空形材である。

[0011]

側構体 5 0 1 を構成する中空形材 1 0 と 2 0 との接合部について説明する。他の箇所の中空形材の接合部も同様にできる。

中空形材10(20)は、実質的に平行な2枚の面板11(21)、12(22)と、この2枚の面板を接続する複数の接続板13(23)、14と、からなる。接続板13(23)は面板11(21)、12(22)に対して傾斜している。つまり、面板11(21)、12(22)、接続板13(23)によってトラスを構成している。中空形材10、20の使用個所によっては、一方の面板11、21は他方の面板12、22に対して傾斜したり、円弧状になったり、全体が円弧状になっている。

[0012]

中空形材10の幅方向の端部の接続板14は面板11、12に対して実質的に直交している。中空形材20の端部には面板21、22に対して直交する接続板はない。接続板14と面板11、12とのそれぞれの接続部には中空形材20の面板21、22の端部が重なる凹部がある。前記それぞれの接続部には面板21、22を支える突出片15がある。突出片15は接続板14から中空形材10の幅方向の端部側に突出している。前記凹部は面板11(12)、接続板14、突出片15から構成される。凹部は中空形材10の幅方向の外方および厚さ方向の外方に向けて開口している。凹部に面板21、22を重ねたとき、面板21、2

面板 1 1、1 2 (2 1、2 2) の端部には中空形材 1 0、2 0 の厚さ方向の外側に突出する凸部 1 7 (2 7) がそれぞれある。面板 1 1、1 2 (2 1、2 2) の端面および凸部 1 7 (2 7) の端面は中空形材 1 0 (2 0) の厚さ方向に沿っ

ている。面板11、12および凸部17の端面(中空形材10の幅方向の端部)は接続板14の板厚の中心Cの延長線上にある。面板21、22および凸部27の端面(中空形材20の幅方向の端部)は接続板14の板厚の中心Cの延長線上にある。

[0014]

中空形材10と中空形材20とを組み合わせたとき、接続板14の板厚の中心 Cの延長線上に、面板11、12、21、22および凸部17、17、27,2 7の端面がある。この組み合わせによって、中空形材10の面板11(12)お よび凸部17(17)の端面と中空形材20の面板21(22)および凸部27 (27)の端面とが突き合わせられる。このとき、突き合わせ部の隙間はできる だけ小さくなるように各部を設けている。すなわち、面板21、22の間隔、凹 部の間隔を定めている。

[0015]

中空形材10、20を突き合わせた時、面板11、12の外面と面板21、22の外面とは実質的に同一面にあり、凸部17、27の突出代は同一である。2つの凸部17、27を合わせた幅は回転工具50の大径部51の径よりも大きい。凸部17、27の金属は、突き合わせた部分の隙間を埋める金属の原資となる。

[0016]

中空形材10の突き合わせ部の端面(中空形材10の厚さ方向に沿った凹部の面(面板11、12に実質的に直交する面、中心Cに沿った面。))には中空形材10の長手方向に沿って溝18、18がある。中空形材20の突き合わせ部の端面(面板21、22に実質的に直交する面、中心Cに沿った面。)には中空形材20の長手方向に沿って凸部28、28がある。凸部28は溝18に入る。

* * - 1

西部28を溝上8に挿入しやすくするため、溝上8および凸部と8を台形状にしている。凸部28の幅は先端側が基部よりも小さい。溝18の幅は底部が開口部側よりも小さい。溝18、凸部28のそれぞれの角部は円弧状にしている。両者を組み合わせたとき、両者の間の隙間は小さくなるように、凸部28、溝18

の大きさを定めている。特に、中空形材10、20の厚さ方向における溝18と 凸部28との間の隙間は小さくしている。または、中空形材10、20の厚さ方 向において、溝18と凸部28とは接触していることが望ましい。

[0018]

中空形材10(20)の厚さ方向における溝18(凸部28)の位置は面板1 1、12(21、22)と凸部17、17(27、27)とを合わせた厚さの範 囲内にあればよい。

面板11、12、21、22の突き合わせ部の板厚は他の部分の厚さよりも厚くしている。中空形材の厚さ方向の外面側は実質的に平らにしなければならないので、面板の内面側に向けて突出させて、厚くしている。この厚さは突き合わせ部から遠ざかるにしたがって徐々に薄くしている。凹部の底面は面板11、12、21、22の外面に実質的に平行である。

[0019]

接合に当たって、2つの中空形材10、20を図1のように嵌め合わせる。凸部28、28が溝18、18に入る。溝18は中空形材の幅方向の端部側に向けて開口し、凸部は中空形材の幅方向の端部側に向けて突出しているので、嵌め合わせは容易にできる。

嵌め合わせたら、中空形材10、20を架台100に固定する。101は下面の凸部17、27が入る溝である。固定後、突き合わせ部の上面側を間欠的に仮止め溶接する。

[0020]

[0021]

回転工具50の軸心を接続板14の板厚の中心Cの延長線上に位置させたとき、溝18は小径部52の径の範囲内に位置する。凸部28は小径部52の径の範囲内に位置する。この状態で、回転工具50を回転させながら、突き合わせ部の接合線に沿って移動させる。

[0022]

一方の面側の摩擦攪拌接合が終了したら、中空形材10、20を上下に反転させ、同様に摩擦攪拌接合を行う。

[0023]

次に、車体500の外面側に位置する凸部17、27を切削して、接合部の外面を面板11、21(12,22)の外面と同一面にする。

これによれば、摩擦攪拌接合による摩擦熱によって面板21 (22) が変形しようとしても、凸部28と溝18とが嵌め合わせられているので、面板21 (22) の上下方向の移動を防止または抑制する。このため、面板11 (12) と面板21 (22) との間に段差の少ない接合ができる。

[0024]

このため、摩擦攪拌接合後、前記段差を少なくする切削作業を少なくできる。 このため、安価にできるものである。また、中空形材20の端部において面板2 1、22に直交する接続板を予め除くことができる。このため、中空形材20を 安価で、軽量にできるものである。

[0025]

回転工具50の軸心を接続板14の板厚の中心Cの延長線上に位置させたとき、溝18は小径部52の径の範囲内に位置する。凸部28は小径部52の径の範囲内に位置する。このため、溝18と凸部28との間に隙間があっても、隙間は埋められ、接合される。溝18と凸部28が小径部12万径の範囲内に位置しなくても、小径部52によって、溝18および凸部28が塑性流動するように、溝18および凸部28の位置および大きさを定める。

[0026]

回転工具50は接続板14の板厚の延長線上に位置するので、摩擦接合の際の

荷重は接続板14で支えられ、接合部が変形することが少ない。接続板14はこの荷重を支える剛性を有する。接続板14の板厚の中心Cの延長線上に回転工具50の軸心が位置するのがよい。

[0027]

面板11、21、12、22(凸部17、27の部分を除く)の外面の延長線よりも外面側の凸部17、27の部分(凸部17、27の突出代の部分)に、溝18および凸部28の一部を設置しているので、所要の大きさの溝18および凸部28を容易に設けることができるものである。

接続板14の板厚の中心Cの延長線上に、回転工具50の軸心、凸部17、2 7の端部が実質的に位置しているのが望ましい。

[0028]

上記実施例では中空形材10の凹部に溝18を設け、中空形材20に凸部28を設けているが、中空形材10の凹部に凸部28を設け、中空形材20の面板21、22の端部に溝18を設けることができる。しかし、前者の方が、押し出し形材を製作する際に正確にできると考えられる。

[0029]

また、一方の面板11側(一方の凹部側)に溝18を設け、他方の面板12側 (他方の凹部側)に凸部28を設け、一方の面板21に凸部28を設け、他方の 面板22に溝18を設けることができる。

[0030]

図4、図5の実施例を説明する。接続板14の板厚の中心Cの延長線上に、溝18の深さの中心が位置する。このため、面板11、12および凸部17の突き合わせ部の端面は接続板14の板厚の中心Cよりも中空形材10の端部側に突出している。中空形材20の突き合わせ部はこれに対応して設けている。すなわち面板21、22および凸部27の突き合わせ部の端面 中部23を除了 は接続板11の板厚の中心にの延長線上よりも中空形材1、の幅方向の他端側に突出している。このため、凸部17の幅が凸部27の幅よりも大きい。

[0031]

回転工具50の軸心を接続板14の板厚の中心じの延長線上に位置させて摩擦

攪拌接合を行う。摩擦攪拌接合に当たって、凸部17、27の突き合わせ部の位置を求め、その位置から中空形材10側に所定量偏寄させた位置を回転工具50の位置とする。

これによれば、溝18および凸部28に対する回転工具50(小径部52)の 軸心の位置ずれの許容量を大きくできるものである。

接続板14の板厚の中心Cの延長線上に、回転工具50の軸心、溝18の深さの中心が実質的に位置しているのが望ましい。

[0032]

上記各実施例では、摩擦攪拌接合時の荷重を支持するために、接続板14を設けている。しかし、面板11、12、21、22、および接続板13、23からなる空間に支持部材を配置して、前記荷重を支持するようにすれば、接続板14を除くことができる。中空形材10、20の幅方向の端部の位置(溝18、凸部28の位置、すなわち突き合わせ部の位置)は実質的に同一位置にある。支持部材は例えば下方の面板12、22に載る。

[0033]

本発明の技術的範囲は、特許請求の範囲の各請求項に記載の文言あるいは課題を解決するための手段の項に記載の文言に限定されず、当業者がそれから容易に置き換えられる範囲にも及ぶものである。

[0034]

【発明の効果】

本発明のよれば、軽量で良好な摩擦攪拌接合ができるものである。

【図面の簡単な説明】

【図1】

本発明の一実施例の中空形材の接合部の縦断面図。

['x! ::]

図上の中空形材の接合部の全体の縦断面図。

【図3】

鉄道車両の車体の斜視図。

【図4】

本発明の他の実施例の中空形材10の接合部の縦断面図。

【図5】

図4の接合部に用いる中空形材20の接合部の縦断面図。

【符号の説明】

10、20:中空形材、11、12、21、22:面板、15:突出片、17、27:凸部、18:溝、28:凸部、50:回転工具、51:大径部、52:小径部。

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

特2001-117050

【書類名】

【要約】

【課題】 軽量で良好な接合ができる摩擦攪拌接合方法を提供する。

要約書

【解決手段】 中空形材10の面板11、12と中空形材20の面板21、22とを突き合わせている。突き合わせ部の面板11、12の溝18に面板21、22の凸部28が入っている。接続板14は面板11、12に直交している。中空形材20の端部には面板21、22に直交する接続板はない。摩擦攪拌接合による熱によって、面板21(22)は中空形材10、20の厚さ方向に移動しようとするが、溝18と凸部28によって移動が抑制される。このため、突き合わせ部を平らに接合できる。中空形材20においては接続板14に相当する接続板を除くことができ、軽量にできる。

【選択図】 図1

出願人履歴情報

識別番号

[000005108]

1. 変更年月日 1990年 8月31日

[変更理由]

新規登録

住 所

東京都千代田区神田駿河台4丁目6番地

氏 名

株式会社日立製作所

出願人履歴情報

識別番号

[000125484]

1. 変更年月日 1999年11月 4日

[変更理由] 名称変更

住 所 山口県下松市大字東豊井794番地

氏 名 日立笠戸機械工業株式会社