HN analysis part 2 - ANALYSIS 15-12-2016

December 15, 2016

```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        %matplotlib inline
        from scipy import stats
        from scipy.stats import wilcoxon # must import explicitly
        import seaborn as sns
        sns.set(style="whitegrid", palette="pastel", color_codes=True)
0.1 Helper functions
In [2]: def diff_percent(Dm, AAA):
            return 100 * ((Dm-AAA)/AAA)
        print (diff_percent (105.0, 100.0))
5.0
In [3]: def my_wilcox(data):
                                                 # helper function to return p-value
            z_stat, p_val = wilcoxon(data) # if only 1 value passed
            #z_stat, p_val = wilcoxon(data.as_matrix()) # if only 1 value passed
            return p_val
In [4]: my_wilcox([1,2,3,4,6,7,2,352,3])
C:\Users\RCole02.ROYALSURREY\AppData\Local\Continuum\Anaconda3\lib\site-packages\sc
 warnings.warn("Warning: sample size too small for normal approximation.")
Out [4]: 0.0075792819433897285
In [5]: def query_data(df, Col, structure, metric): # helper function to get data
            return df[Col][(df['structure'] == structure) & (df['metric'] == metric
```

1 Start analysis

```
In [6]: HN_df = pd.read_csv('HN_df_clean_28_11.csv') # read in the cleaned data
       HN_df['Dm-AAA'] = HN_df['Dm'] - HN_df['AAA'] # get abs diff
       HN_df['Dm-AAA%'] = diff_percent(HN_df['Dm'], HN_df['AAA'])
  Exclude Case5 which has 54 Gy prescription
In [7]: to_exclude = ['Case5', 'Case7'] # has prescription of 54 Gy
       to_include = list(set(HN_df['Case'].unique()) - set(to_exclude))
       HN_df = HN_df[HN_df['Case'].isin(to_include)]
       HN_df['Case'].unique()
Out[7]: array(['Case1', 'Case2', 'Case3', 'Case4', 'Case6', 'Case8', 'Case9',
               'Case10'], dtype=object)
In [8]: HN_df.head()
          Case structure metric
                                        AAA
                                                    Dm
                                                          Dm-AAA
                                                                   Dm-AAA%
       0 Case1
                     PTV2
                             D2% 65.392496 64.671451 -0.721045 -1.102642
       1 Case1
                     PTV2
                             D5% 61.221910 60.574434 -0.647476 -1.057589
                            D50% 56.935482 56.306392 -0.629090 -1.104918
       2 Case1
                     PTV2
       3 Case1
                     PTV2 D95% 52.908380 53.783883 0.875503 1.654753
        4 Case1
                     PTV2
                            D99% 38.261698 45.021250 6.759552 17.666628
```

Everything imported OK

1.1 Get mean dose differences

```
In [9]: mean_diff_table = HN_df.groupby(['structure', 'metric'], as_index=False).mea
In [10]: #metrics_of_interest = [ 'D95%', 'D50%', 'D99%', 'D0.1CC', 'DMAX'] # use
    metrics_of_interest = mean_diff_table.columns # use a
In [11]: plt.figure(figsize=(14, 8))
    ax1 = sns.heatmap(mean_diff_table[metrics_of_interest], annot=True, linew:
    ax1.set_title('H&N Mean dose differences (%, (Dm-AAA)/AAA)', size='xx-lar
    plt.savefig('H&N Mean dose difference.png', dpi=200)
```


1.2 Get wilcoxon p value of differences

```
In [12]: metrics_of_interest = [ 'D95%', 'D50%', 'D0.1CC', 'DMAX'] # use limited s
    #HN_df['structure'].unique() # all structures
    structures_of_interest = ['PTV1', 'PTV2', 'CTV65', 'L Parotid', 'R Parotid']
In [13]: i = len(structures_of_interest)
    j = len(metrics_of_interest)
    wilcox_data = np.zeros((i,j)) # init an empty array
In [14]: d = HN_df # for convenience just copy

j = 0
    for structure in structures_of_interest:
    i = 0
    for metric in metrics_of_interest:
    A = d[(d['structure'] == structure) & (d['metric'] == metric)]
    D = A['Dm-AAA%']
    wilcox_data[j][i] = my_wilcox(D.values)
    i = i + 1
    j = j+ 1
```

C:\Users\RCole02.ROYALSURREY\AppData\Local\Continuum\Anaconda3\lib\site-packages\so
warnings.warn("Warning: sample size too small for normal approximation.")

```
In [15]: wilcox_data_df = pd.DataFrame(data=wilcox_data, # values
                         index=structures_of_interest,
                                                         # 1st column as index
                         columns=metrics_of_interest) # 1st row as the column nam
         . . .
In [16]: # Keep for plotting all p-vals
         \#confidence = 1.0
         #plt.figure(figsize=(16, 8))
         #ax2 = sns.heatmap(wilcox_data_df[wilcox_data_df<confidence], annot=True,</pre>
         #ax2.set_title('HN p- value for mean dose differences (%) by structure and
         #plt.savefig('HN p value for mean dose differences.png', dpi=500)
In [17]: sub_diff_table = mean_diff_table[metrics_of_interest].loc[structures_of_in
In [18]: plt.figure(figsize=(18, 8))
        data = sub_diff_table[wilcox_data_df<0.05]</pre>
        mask = np.zeros_like(data, dtype=np.bool) # create a mask
        mask[np.triu_indices_from(mask)] = True
        ax3 = sns.heatmap(data, annot=True, linewidths=.5, center=0) # mask=mask,
        ax3.set_title('HN significant (p<0.05) mean dose differences by metric', s
         #plt.savefig('HN significant mean dose differences by metric.png', dpi=500
        print('Mean differences')
        print(sub_diff_table)
        print('*************')
        print('p-vals of differences')
        print(wilcox_data_df)
Mean differences
metric
                D95%
                          D50%
                                  D0.1CC
                                              DMAX
structure
PTV1
            2.104196 -1.041277 0.674281 1.666932
PTV2
            2.514504 -0.665242 0.377605 0.819839
CTV65
           -1.239658 -1.039090 0.496371 1.584108
L Parotid -2.725370 -1.549682 -1.059832 -0.545207
R Parotid -3.243811 -1.857180 -0.934542 -0.076388
Brain Stem -5.783298 -5.783946 -2.001884 -1.487810
Spinal Cord -3.117142 -1.316931 -1.364837 -0.534718
******
p-vals of differences
                D95%
                          D50%
                                  D0.1CC
                                              DMAX
             0.400814 0.011719 0.011719 0.035692
PTV1
PTV2
             0.092892 0.035692 0.483840 0.123485
CTV65
             0.017290 0.011719 0.035692 0.017290
            0.035692 0.011719 0.011719 0.035692
L Parotid
R Parotid
            0.035692 0.017290 0.017290 0.483840
Brain Stem 0.017290 0.011719 0.011719 0.068704
```


2 Investigate differences

```
In [22]: def AAA_diff_plot(Dm, AAA, structure, metric, *args, **kwargs):
                    = np.asarray(Dm)
                                       # convert to arrays
                   = np.asarray(AAA)
             z_stat, p_val = wilcoxon(Dm, AAA)
             diff_pct = diff_percent(Dm, AAA)
             AAA_norm_pct = diff_percent(AAA, AAA.mean()) # how far is a measurement
             plt.scatter(AAA_norm_pct, diff_pct, linewidths=3, *args, **kwargs)
             plt.axhline(diff_pct.mean(), color='red', linestyle='--') # horitz 1
             plt.axvline(0, color='k', linestyle='--') # v line
             plt.title('Dm ' + str(np.round(diff_pct.mean(), decimals = 3)) + ' % r
             plt.ylabel('Dm - AAA difference (%)')
             plt.xlabel('AAA - AAA.mean difference (%)')
In [23]: structure = 'PTV1'
         metric = 'D50%'
         plt.figure(figsize=(6, 4))
         #bland_altman_plot(query_data(HN_df, 'Dm', structure, metric), query_data
         AAA_diff_plot(query_data(HN_df, 'Dm', structure, metric), query_data(HN_di
```

```
plt.show()
HN_df[(HN_df['structure'] == structure) & (HN_df['metric'] == metric)]
```

C:\Users\RCole02.ROYALSURREY\AppData\Local\Continuum\Anaconda3\lib\site-packages\sowname warnings.warn("Warning: sample size too small for normal approximation.")

Case structure metric

Out [23]:

```
20
                Case1
                           PTV1
                                  D50% 68.559571
                                                   67.733731 -0.825840 -1.204558
         164
                                  D50% 68.250510
                                                   67.725632 -0.524878 -0.769047
                Case2
                           PTV1
         308
                Case3
                           PTV1
                                  D50% 68.372452
                                                   67.693337 -0.679114 -0.993257
         452
                                  D50% 68.388653
                Case4
                           PTV1
                                                   67.734436 -0.654217 -0.956616
         740
                Case 6
                           PTV1
                                  D50% 67.787586
                                                   66.948429 -0.839157 -1.237922
         1028
                                  D50% 68.116240
                                                   67.405729 -0.710511 -1.043086
                Case8
                           PTV1
                Case9
         1262
                           PTV1
                                  D50% 67.705087
                                                   67.176668 -0.528418 -0.780471
         1406
              Case10
                           PTV1
                                  D50%
                                       67.973479
                                                   67.059061 -0.914418 -1.345257
In [24]: structure = 'PTV1'
         metric = 'DMAX'
         plt.figure(figsize=(6, 4))
         AAA_diff_plot(query_data(HN_df, 'Dm', structure, metric), query_data(HN_di
         #bland_altman_plot(query_data(HN_df, 'Dm', structure, metric), query_data
         plt.show()
         HN_df[(HN_df['structure'] == structure) & (HN_df['metric'] == metric)]
```

AAA

Dm-AAA

Dm

Dm-AAA%

C:\Users\RCole02.ROYALSURREY\AppData\Local\Continuum\Anaconda3\lib\site-packages\so
warnings.warn("Warning: sample size too small for normal approximation.")

Out[24]:		Case	structure	metric	AAA	Dm	Dm-AAA	Dm-AAA%
	25	Case1	PTV1	DMAX	73.32000	72.99500	-0.32500	-0.443262
	169	Case2	PTV1	DMAX	75.28158	76.19172	0.91014	1.208981
	313	Case3	PTV1	DMAX	74.16500	74.83000	0.66500	0.896649
	457	Case4	PTV1	DMAX	72.92000	73.83500	0.91500	1.254800
	745	Case6	PTV1	DMAX	72.16110	76.38675	4.22565	5.855856
	1033	Case8	PTV1	DMAX	72.68118	73.52631	0.84513	1.162791
	1267	Case9	PTV1	DMAX	72.68118	75.34659	2.66541	3.667263
	1411	Case10	PTV1	DMAX	72.87621	72.68118	-0.19503	-0.267618

In []: