Computability

June 27, 2021

Contents

1	Sun	mary 1
	1.1	Reductions
	1.2	Rice's theorem
2	Exe	cises on TMs
	2.1	Exercise 1
	2.2	TODO Exercise 2
	2.3	TODO Exercise 3
	2.4	TODO Exercise 4
	2.5	TODO Exercise 5
	2.6	TODO Exercise 6
	2.7	TODO Exercise 7
	2.8	TODO Exercise 8
	2.9	TODO Exercise 9
3	Exe	cises on undecidable properties 8

1 Summary

In computability we consider two main classes

- **RE**, collecting the *recursively enumerable* languages, meaning languages accepted by some TM.
- R, collecting all the recursive (or decidable) languages.

Obviously $R \subseteq RE$. Usually we are interested into proving the decidability of a given language L, and to do so we can rely on few theorems.

- $L \in \mathbb{R} \Rightarrow \overline{L} \in \mathbb{R}$, where language \overline{L} is the complement of L.
- $L, \bar{L} \in RE \Rightarrow L \in R$, and thus $\bar{L} \in \mathbf{R}$.

1.1 Reductions

Another tool we can rely on are many-one reductions: if $L_1 \leq L_2$ (L_1 reduces to L_2) then we can convert yes-instances of L_1 to yes-instances of L_2 and no-instances of L_1 to no-instances of L_1 .

Reductions allow to transfer different properties between languages. If $L1 \leq L_2$ and

- $L1 \notin R \Rightarrow L_2 \notin R$, and $L2 \in R \Rightarrow L_1 \in R$.
- $L1 \notin RE \Rightarrow L_2 \notin RE$, and $L2 \in RE \Rightarrow L_1 \in RE$.

Undecidable Decidable

A list of some relevant examples of decidable and undecidable languages.

- $L_{01} = \{w | w = 0^n 1^n, \ n \ge 0\}.$
- $L_u = \{(M, w) | M \text{ accepts } w\}$, the universal language.
- $L_d = \{w_i | M_i \text{ does not accept } w_i\}$, the diagonal language (where w_i represents a TM M_i).
- $HALT = \{(M, w) | M \text{ halts with input } w\}.$
- $HALT \epsilon = \{M|M \text{ halts with input } \epsilon\}.$
- $L_e = \{ < M > | L(M) = 0 \}.$

1.2 Rice's theorem

A property P is a language that collects all the (encoding of) TMs sharing a common characteristic: the Rice's Theorem states that if P is non-trivial and semantic then $P \notin R$.

• P is non-trivial if it is neither empty or the set of encodings fo all possible TMs.

• P is semantic if, having two TMs M_1, M_2 such that $L(M_1) = L(M_2)$, then either $< M_1 >, < M_2 > \in P$ or $< M_1 >, < M_2 > \notin P$.

2 Exercises on TMs

2.1 Exercise 1

First, we identify what is the *language* decided by the Turing machine represented by the scheme. To undestand the overall behaviour we explore the possible paths to reach q_a . First, we can reach q_a from q_1 in just one step, so the empty string _ is part of the language. Since y can't be part of the input string, the only remaining path is $q_1 \to q_{find1} \to q_{goback} \to q_1 \to q_{exit} \to q_a$. The following part is repeated until whole the string is in the form xxx...yyy.

- q_1 replaces the first 0 with an x.
- q_{find1} goes to the right and skips any 0 or y until a 1 is found, replaces the 1 with a y.
- q_{goback} goes to the right and skips any 0 or y until an x is found

The last part in q_{exit} just moves from the middle of the string to its end checking that only y appears and accepts. So the language decided by the TM is $L = \{0^n 1^n | n \ge 0\}$. The TM is

• Deterministic since, for any input, there can be only one ending state.

• Works in $O(n^2)$: the worst case is $w \in L$, where each scan requires (forward and back) |w| = n steps for a total of n/2 scans, plus n/2 for scanning any remaining y.

2.2 TODO Exercise 2

2.3 TODO Exercise 3

2.4 TODO Exercise 4

2.5 TODO Exercise 5

2.6 TODO Exercise 6

2.7 TODO Exercise 7

2.8 TODO Exercise 8

2.9 TODO Exercise 9

3 Exercises on undecidable properties

Consider the property $P = \{ \langle M \rangle | L(M) \text{ contains only strings of even length} \}$, is $P \notin R$?

- P is non-trivial, since $L = \{w|w = \{00\}\} \in P$ (P is non-empty) and $L = \{w|w = \{0\}\} \notin P$ (P doesn't contain all the TMs).
- P is semantic, since by definition if $K = L(M_1) = L(M_2)$ and
 - K contains only strings of even length then $< M_1 >, < M_2 > \in P$.
 - K contains some string of even odd length then $< M_1>, < M_2> \notin P.$

For Rice's Theorem, we can say that $P \notin R$. Consider the property $P = \{ \langle M \rangle | L(M) \text{ is finite} \}$, is $P \notin R$?

- P is non-trivial, since $L = \{w|w = \{1\}\} \in P$ (P is non-empty) and $L = \{w|w = 1^n, n > 0\} \notin P$ (P doesn't contain all the TMs).
- P is semantic, since by definition if $K = L(M_1) = L(M_2)$ and
 - K is finite then $\langle M_1 \rangle$, $\langle M_2 \rangle \in P$.
 - K is infinite then $\langle M_1 \rangle, \langle M_2 \rangle \notin P$.

For Rice's Theorem, we can say that $P \notin R$.

Consider the property $P = \{ \langle M \rangle | L(M) \text{ is infinite} \}$, is $P \notin R$?

- P is non-trivial, since $L = \{w|w=1^n, n>0\} \notin P$ (P is non-empty) and $L = \{w|w=\{1\}\} \in P$ (P doesn't contain all the TMs).
- P is semantic, since by definition if $K = L(M_1) = L(M_2)$ and
 - K is infinite then $\langle M_1 \rangle, \langle M_2 \rangle \in P$.
 - K is finite then $\langle M_1 \rangle$, $\langle M_2 \rangle \notin P$.

For Rice's Theorem, we can say that $P \notin R$.

Consider the property $P = \{ \langle M \rangle | L(M) \text{ is accepted only by TMs with 5 states} \}$, is $P \notin R$?

• P is trivial, since $P = \emptyset$: any language accepted by a 5-states machines can be accepted by a 6-states machine that only adds a dummy, unreachable state. So we can't use Rice's Theorem to prove its undecidability.