

A Comparative Analysis of Recommendation Systems between Matrix Factorization & Deep Learning Techniques

Introduction

- Goal: Comparing the strengths and limitations of Matrix Factorization Techniques with AutoRec & GNN
- MF Techniques state of the art Collaborative Filtering techniques since Netflix Context (2006)
 - > Addresses **sparsity** issue
 - > Better **scalability** than content based
 - > Better **predictions** than content based
- MF faces cold start problem, poor interpretability, loss of information and scalability issues with very large datasets
- **Deep Learning** Recommender Systems **Pros**:
 - > Non linear transformation
 - Representation learning (underlying factors)
- Deep Learning Recommender Systems Cons:
 - Interpretability
 - ➤ Large Data Requirement
 - > Extensive Hyperparameter Tuning

Matrix Factorization Recommender Systems

Predicting ratings of user u for item i $\hat{r}_{ui} = x_u^T \cdot y_i = \sum_k x_{uk} y_{ki}$ Goal: Loss Function Minimization $L = \sum_{u,i \in S} (r_{u,i} - x_u^T \cdot y_i)^2 + \lambda_x \sum_u ||x_u||^2 + \lambda_y \sum_u ||y_i||^2$ $\text{Alternating Least Square (ALS)} \qquad \text{Stochastic Gradient Descent (SGD)}$ $\frac{\partial L}{\partial x_u} = -2 \sum_i (r_{ui} - x_u^T \cdot y_i) y_i^T + 2\lambda_x x_u^T \\ x_u^T = r_u Y (Y^T Y + \lambda_x I)^{-1} \qquad \text{U vector derived}$ $\frac{\partial L}{\partial y_i} = -2 \sum_i (r_{iu} - y_i^T \cdot x_u) x_u^T + 2\lambda_y y_i^T \\ y_i^T = r_i X (X^T X + \lambda_y I)^{-1} \qquad \text{I vector derived}$ $\frac{\partial L}{\partial y_i} = -e_{ui} + \lambda_{xb} b_u \qquad \text{Derivotive for user bias}$ $\frac{\partial L}{\partial y_i} = r_i X (X^T X + \lambda_y I)^{-1} \qquad \text{I vector derived}$ $\frac{\partial L}{\partial y_i} = r_i X (X^T X + \lambda_y I)^{-1} \qquad \text{I vector derived}$ $\frac{\partial L}{\partial y_i} = r_i X (X^T X + \lambda_y I)^{-1} \qquad \text{I vector derived}$ $\frac{\partial L}{\partial y_i} = r_i X (X^T X + \lambda_y I)^{-1} \qquad \text{I vector derived}$ $\frac{\partial L}{\partial y_i} = r_i X (X^T X + \lambda_y I)^{-1} \qquad \text{I vector derived}$ $\frac{\partial L}{\partial y_i} = r_i X (X^T X + \lambda_y I)^{-1} \qquad \text{I vector derived}$ $\frac{\partial L}{\partial y_i} = r_i X (X^T X + \lambda_y I)^{-1} \qquad \text{I vector derived}$ $\frac{\partial L}{\partial y_i} = r_i X (X^T X + \lambda_y I)^{-1} \qquad \text{I vector derived}$ $\frac{\partial L}{\partial y_i} = r_i X (X^T X + \lambda_y I)^{-1} \qquad \text{I vector derived}$ $\frac{\partial L}{\partial y_i} = r_i X (X^T X + \lambda_y I)^{-1} \qquad \text{I vector derived}$ $\frac{\partial L}{\partial y_i} = r_i X (X^T X + \lambda_y I)^{-1} \qquad \text{I vector derived}$ $\frac{\partial L}{\partial y_i} = r_i X (X^T X + \lambda_y I)^{-1} \qquad \text{I vector derived}$ $\frac{\partial L}{\partial y_i} = r_i X (X^T X + \lambda_y I)^{-1} \qquad \text{I vector derived}$ $\frac{\partial L}{\partial y_i} = r_i X (X^T X + \lambda_y I)^{-1} \qquad \text{I vector derived}$ $\frac{\partial L}{\partial y_i} = r_i X (X^T X + \lambda_y I)^{-1} \qquad \text{I vector derived}$ $\frac{\partial L}{\partial y_i} = r_i X (X^T X + \lambda_y I)^{-1} \qquad \text{I vector derived}$ $\frac{\partial L}{\partial y_i} = r_i X (X^T X + \lambda_y I)^{-1} \qquad \text{I vector derived}$ $\frac{\partial L}{\partial y_i} = r_i X (X^T X + \lambda_y I)^{-1} \qquad \text{I vector derived}$ $\frac{\partial L}{\partial y_i} = r_i X (X^T X + \lambda_y I)^{-1} \qquad \text{I vector derived}$ $\frac{\partial L}{\partial y_i} = r_i X (X^T X + \lambda_y I)^{-1} \qquad \text{I vector derived}$ $\frac{\partial L}{\partial y_i} = r_i X (X^T X + \lambda_y I)^{-1} \qquad \text{I vector derived}$ $\frac{\partial L}{\partial y_i} = r_i X (X^T X$

Experiments & Details

	Movie Lens 100k	Movie Lens 1M	Movie Lens 2.5 M	Amazon 89k
MF1 RMSE	ALS:2.95	ALS:2.99	NA	KNN: 1.34
MF2 RMSE	SGD:0.96	SGD:0.95	NA	NA
AutoRec RMSE	1.02	0.90	0.78	0.0847
GNN RMSE	0.9041	NA	NA	NA
MF1 Hyperparameters	Regularization = 100, Latent Factors = 80, 25 iterations	Regularization = 100, Latent Factors = 80, 50 iterations	NA	K=5 Metric: Pearson_baseline Type: Item_based
MF2 Hyperparameters	α = 0.001, Latent Factors = 40, 200 iterations, regularization = 0.01	α = 0.01, Latent Factors = 40, 200 iterations, regularization = 0.01	NA	NA
AutoRec HyperParameters	Adam Optimizer, Layer = 1, α = 0.001, batch size = 512, λ = 1, hidden neurons = 500, epochs = 500, activation: sigmoid			Adam Optimizer, α = 0.0001, Activation: SELU, Dropout=0.8, Layers = 4
GNN	4 R-GCN (32.32. 32.32) 1 MLP (128) 1-hop enclosing subgraph			

Deep Learning Techniques

Autoencoder Recommender Systems

Input Image Reconstructed Image Latent space Representation Encoder Reconstructed Image Decoder

- 1. Reduce dimensionality of sparse data into a latent space representation
- 2. High level features are learned
- 3. Encode the matrix as a probability distribution
- 4. Reconstruction based on sampling from the distribution

GNN Recommender Systems

Hyperparameters

- Instead of learning transductive latent features, IGMC learns local graph patterns related to ratings inductively based on graph neural networks.
- 2. It does not rely on using side information of users/items.
- The model learns mixed local graph patterns (such as average ratings, paths, etc.), adding new idea to matrix completion and recommendation systems.

Takeaways

- Stochastic Gradient Descent Matrix Factorization provides the best performance amongst MF but becomes computationally intensive the larger the dataset
- MF methods are O(M + N) given users do not have a lot of ratings. Choosing the number of latent factors k is key to avoid overfitting.
- Autorec generates better performance than MF in larger datasets
- In larger datasets, the autoencoder allows for the implicit learning of latent features
- AutoRec is more computationally demanding than MF but the gap closes with larger datasets
- Autorec and GNN both capture implicit features without using extra side information
- Most recommendation data have graph properties. GNN (IGMC) utilizes these properties by enabling inductive matrix completion and increases its generalization