Musterlösung zum Aufgabenblatt 2 der Vorlesung Logik und Diskrete Strukturen

Erstellt von Marcel Prinz

Aufgabe 1: Relationen und Abbildungen

Sei $A = \{0, 1\}.$

a) Geben Sie eine explizite Darstellung des kartesischen Produkts $A \times A$ an.

Lösung:

Das kartesische Produkt zweier Mengen A und B ist definiert als: $A \times B := \{x \mid \exists a \in A, b \in B : x = (a, b)\}$. Sprich, die Menge aller Paare (a, b) für die gilt, dass a aus A ist, und b aus B ist.

$$\Rightarrow A \times A := \{x \mid \exists a \in A, b \in A : x = (a, b)\}\$$
$$= \{(0, 0), (0, 1), (1, 0), (1, 1)\}\$$

b) Geben Sie eine explizite Darstellung der Menge aller 2-stelligen Relationen auf A an.

Lösung:

Eine n-stellige Relation R ist wie folgt definiert: Seien A_1, A_2, \ldots, A_n Mengen. Dann heißt eine Teilmenge R von $\times_{i=1}^n A_i$ n-stellige Relation.

Oder anders: R ist n-stellige Relation auf A_1, A_2, \ldots, A_n wenn gilt: $R \subseteq A_1 \times A_2 \times \ldots \times A_n$ Sei M die Menge aller 2-stelligen Relationen auf A:

$$\Rightarrow M := \{R \mid R \subseteq A_1 \times A_2\}$$

$$:= \{R \mid R \subseteq A \times A\}$$

$$= \{R \mid R \subseteq \{(0,0), (0,1), (1,0), (1,1)\}\}$$

Somit ist M die Potenzmenge des kartesischen Produkts $A \times A$. Es sind also $2^4 = 16$ Elemente in M enthalten.

```
\begin{split} M &= \{\\ \emptyset,\\ \{(0,0)\}, \{(0.1)\}, \{(1.0)\}, \{(1.1)\},\\ \{(0,0), (0,1)\}, \{(0,0), (1,0)\}, \{(0,0), (1,1)\}, \{(0,1), (1,0)\}, \{(0,1), (1,1)\}, \{(1,0), (1,1)\}\\ \{(0,0), (0,1), (1,0)\}, \{(0,0), (0,1), (1,1)\}, \{(0,0), (1,0), (1,1)\}, \{(0,1), (1,0), (1,1)\},\\ \{(0,0), (0,1), (1,0), (1,1)\}\\ \} \end{split}
```

c) Geben Sie eine explizite Darstellung der Menge aller Abbildungen von A nach A an.

Lösung:

Eine Relation f auf $A \times B$ heißt Abbildung wenn folgende Bedingungen erfüllt sind.

- i) $\forall a \in A \ \exists b \in B : (a, b) \in f$
- ii) $\forall a \in A \ \forall b, b' \in B : (a, b) \in f \ \text{und} \ (a, b') \in f \Rightarrow b = b'$

Gesucht ist eine Teilmenge von M aus Teilaufgabe b), die die Bedingungen einer Abbildung erfüllen. Die erste Bedingung fordert, dass alle Elemente aus A abgebildet werden. Das heißt, es müssen nur alle zweielementigen Teilmengen aus M betrachtet werden. Genauer müssen die zweielementigen Teilmengen jeweils ein Tupel mit 0 und eines mit 1 an der ersten Stelle besitzen. Die zweite Bedingung bedeutet, dass ein Element nur auf genau ein Element abgebildet werden kann.

Sei F die Menge aller Abbilungen:

$$F = \{ f \mid f \subseteq M \text{ und } \forall a \in A \exists b \in B : (a, b) \in f \}$$

= $\{ \{(0, 0), (1, 0)\}, \{(0, 0), (1, 1)\}, \{(0, 1), (1, 0)\}, \{(0, 1), (1, 1)\} \}$

Jedes Element aus F (z.B. $\{(0,0),(1,1)\}$) beschreibt eine Abbildung

d) Geben Sie eine explizite Darstellung der Menge aller Abbildungen von $A \times A$ nach A an.

Lösung:

Eine Relation f auf $A \times B$ heißt Abbildung, wenn folgende Bedingungen erfüllt sind:

- i) $\forall a \in A \ \exists b \in B : (a, b) \in f$
- ii) $\forall a \in A \ \forall b, b' \in B : (a, b) \in f \ \text{und} \ (a, b') \in f \Rightarrow b = b'$

Gesucht ist eine Menge von Relationen, die auf $A \times A$ und A arbeitet. Sei G die Menge aller Abbilungen von $A \times A$ nach A:

$$G = \{f \mid f \subseteq (A \times A) \times A \ und \ \forall (a,b) \in A \times A \ \exists c \in A : ((a,b),c) \in f\}$$

```
= {
    \{((0,0),0),((0,1),0),((1,0),0),((1,1),0)\},\
    \{((0,0),0),((0,1),0),((1,0),0),((1,1),1)\},\
    \{((0,0),0),((0,1),0),((1,0),1),((1,1),0)\},\
    \{((0,0),0),((0,1),0),((1,0),1),((1,1),1)\},\
    \{((0,0),0),((0,1),1),((1,0),0),((1,1),0)\},\
    \{((0,0),0),((0,1),1),((1,0),0),((1,1),1)\},\
    \{((0,0),0),((0,1),1),((1,0),1),((1,1),0)\},\
    \{((0,0),0),((0,1),1),((1,0),1),((1,1),1)\},\
    \{((0,0),1),((0,1),0),((1,0),0),((1,1),0)\},\
    \{((0,0),1),((0,1),0),((1,0),0),((1,1),1)\},\
   \{((0,0),1),((0,1),0),((1,0),1),((1,1),0)\},\
    \{((0,0),1),((0,1),0),((1,0),1),((1,1),1)\},\
    \{((0,0),1),((0,1),1),((1,0),0),((1,1),0)\},\
    \{((0,0),1),((0,1),1),((1,0),0),((1,1),1)\},\
    \{((0,0),1),((0,1),1),((1,0),1),((1,1),0)\},\
    \{((0,0),1),((0,1),1),((1,0),1),((1,1),1)\},\
   }
```

Jede Zeile beschreibt eine Abbildung

Aufgabe 2: Potenzmenge

Für jede Menge M bezeichnen wir, wie in der Vorlesung mit $\mathcal{P}(M) = \{M' : M' \subseteq M\}$ die Potenzmenge von M, also die Menge aller Teilmengen von M.

a) Berechnen Sie $\mathcal{P}(\{x\})$ und $\mathcal{P}(\mathcal{P}(\{x\}))$.

Lösung:

Die Teilmengen von $\{x\}$ sind die leere Menge \emptyset und $\{x\}$ selber.

$$\begin{array}{rcl} \mathcal{P}(\{x\}) & = & \{\emptyset, \{x\}\} \\ \mathcal{P}(\mathcal{P}(\{x\})) & = & \mathcal{P}(\{\emptyset, \{x\}\}) \\ & = & \{\emptyset, \{\emptyset\}, \{x\}, \{\emptyset, x\}\} \} \end{array}$$

b) Beweisen oder widerlegen Sie, dass für alle Mengen A, B die Gleichheit $\mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(A \cup B)$ gilt.

Lösung:

Diese Behauptung lässt sich mittels eines kleinen Gegenbeispiels widerlegen. Seien die Mengen $A = \{1, 2\}$ und $B = \{3\}$ gegeben.

$$\mathcal{P}(A) = \{\emptyset, \{1\}, \}2\}, \{1, 2\}\}$$

$$\mathcal{P}(B) = \{\emptyset, \{3\}\}\}$$

$$\Rightarrow \mathcal{P}(A) \cup \mathcal{P}(B) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}\}\}$$
(1)

$$A\cup B=\{1,2,3\}$$

$$\Rightarrow \mathcal{P}(A \cup B) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$$
 (2)

Aus 1 und 2 folgt dann $\mathcal{P}(A) \cup \mathcal{P}(B) \neq \mathcal{P}(A \cup B)$

4

c) Beweisen oder widerlegen Sie, dass für alle Mengen A, B die Gleichheit $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$ gilt.

Lösung:

Diese Behauptung lässt sich kurz durch ein paar Äquivalenzumformungen beweisen. Sei \mathcal{X} ein Element aus dem Schnitt der Potenzmengen $\mathcal{P}(A)$ und $\mathcal{P}(B)$. Hierbei sei gesagt, dass \mathcal{X} eine Menge ist, da der Schnitt der Potenzmengen eine Menge von Mengen ist.

$$\mathcal{X} \in \mathcal{P}(A) \cap \mathcal{P}(B)$$

$$\Leftrightarrow \quad \mathcal{X} \in \mathcal{P}(A) \land \mathcal{X} \in \mathcal{P}(B)$$

$$\Leftrightarrow \quad \mathcal{X} \subseteq A \land \mathcal{X} \subseteq B$$

$$\Leftrightarrow \quad \mathcal{X} \subseteq A \cap B$$

$$\Leftrightarrow \quad \mathcal{X} \in \mathcal{P}(A \cap B)$$

d) Beweisen oder widerlegen Sie:

Die Mengen A,B sind genau dann gleich, wenn ihre Potenzmengen $\mathcal{P}(A)$ und $\mathcal{P}(B)$ gleich sind.

Lösung:

Mit anderen Worten: Es soll folgende Äquivalenz bewiesen oder widerlegt werden: $\mathcal{P}(A) = \mathcal{P}(B) \Leftrightarrow A = B$

Diese Behauptung ist korrekt. Der Beweis teilt sich in zwei Teile auf, da man zeigt, dass sich beide Folgerungen zeigen lassen.

1. \mathfrak{Z} : $A = B \Rightarrow \mathcal{P}(A) = \mathcal{P}(B)$

Aus der Vorlesung weiß man, dass Folgendes gilt: $A = B \Leftrightarrow A \subseteq B \land A \supseteq B$ Sei M eine Teilmenge von A, dann ist nach Vorrausetzung M auch eine Teilmenge von B. Daraus folgt M ist in $\mathcal{P}(B)$ enthalten.

$$M \in \mathcal{P}(A) \Rightarrow M \subseteq A \Rightarrow M \subseteq B \Rightarrow M \in \mathcal{P}(B) \Rightarrow \mathcal{P}(A) \subseteq \mathcal{P}(B)$$

$$M \in \mathcal{P}(B) \Rightarrow M \subseteq B \Rightarrow M \subseteq A \Rightarrow M \in \mathcal{P}(A) \Rightarrow \mathcal{P}(B) \subseteq \mathcal{P}(A)$$

Zusammen erhält man unter der Voraussetzung A=B:

$$\mathcal{P}(A) \subseteq \mathcal{P}(B) \land \mathcal{P}(B) \subseteq \mathcal{P}(A) \Rightarrow \mathcal{P}(A) = \mathcal{P}(B)$$

2. \mathfrak{Z} : $\mathcal{P}(A) = \mathcal{P}(B) \Rightarrow A = B$ Es gilt $A \in \mathcal{P}(A)$ und $B \in \mathcal{P}(B)$

$$A \in \mathcal{P}(A) \Rightarrow A \in \mathcal{P}(B) \Rightarrow A \subseteq B$$

$$B \in \mathcal{P}(B) \Rightarrow B \in \mathcal{P}(A) \Rightarrow B \subseteq A$$

Zusammen erhält man unter der Voraussetzung $\mathcal{P}(A) = \mathcal{P}(B)$:

$$A\subseteq B\wedge B\subseteq A\Rightarrow A=B$$

$$\Rightarrow A = B \Leftrightarrow \mathcal{P}(A) = \mathcal{P}(B)$$

Aufgabe 3: Eigenschaften von Abbildungen

Seien A, B endliche, aber nichtleere Mengen. Beweise oder widerlegen Sie:

a) (A, \emptyset, B) ist eine Abbildung.

Lösung:

Hierzu noch einmal die Definition einer Abbildung:

Eine Relation f auf $A \times B$ heißt Abbildung, wenn folgende Bedingungen erfüllt sind.

i) $\forall a \in A \ \exists b \in B : (a, b) \in f$

ii) $\forall a \in A \ \forall b, b' \in B : (a, b) \in f \ \text{und} \ (a, b') \in f \Rightarrow b = b'$

Man schreibt für eine solche Abbildung kurz : (A, f, B)

Da A als nichtleer gegeben ist, muss in der Relation f mindestens ein Tupel (a,b) mit $a \in A$ und $b \in B$ enthalten sein. Hier wurde für die Relation die leere Menge angegeben, was dazu führt das (A,\emptyset,B) keine Abbildung sein kann.

4

b) Ist $f:A\longrightarrow B$ eine Abbildung und $A'\supset A$, dann gibt es eine Abbildung $g:A'\longrightarrow B$, so dass für alle $a\in A$ f(a)=g(a) gilt.

Lösung:

Aus der Definition einer Abbildung weiß man, dass für jede Abbildung (A', g, B) gilt : $g \subseteq A' \times B$.

Die Abbildung (A, f, B) ist gegeben. Daraus folgt $f \subseteq A \times B$. Da A echte Teilmenge von A' ist gilt: $A \times B \subset A' \times B$. Draus folgt wiederum $f \subset A' \times B$.

Das heißt es gibt eine Abbildung (A', g, B), so dass für alles $a \in A$ f(a) = g(a) gilt.

c) Ist $f: A \longrightarrow B$ eine Abbildung und $B' \supset B$, dann gibt es eine Abbildung $g: A \longrightarrow B'$, so dass für alle $a \in A$ f(a) = g(a) gilt.

Lösung:

Aus der Definition einer Abbildung weiß man, dass für jede Abbildung (A, g, B') gilt : $g \subseteq A \times B'$.

Die Abbildung (A, f, B) ist gegeben. Daraus folgt $f \subseteq A \times B$. Da B echte Teilmenge von B' ist gilt: $(A \times B \subset A \times B')$. Draus folgt wiederum $f \subset A \times B'$.

Das heißt es gibt eine Abbildung (A, g, B'), so dass für alles $a \in A$ f(a) = g(a) gilt.

d) Ist $f: A \longrightarrow B$ eine Abbildung und $B' \subset B$, dann gibt es eine Abbildung $g: A \longrightarrow B'$, so dass für alle $a \in A$ f(a) = g(a) gilt.

Lösung:

Aus der Definition einer Abbildung weiß man, dass für jede Abbildung (A, g, B') gilt : $g \subseteq A \times B'$.

Die Abbildung (A, f, B) ist gegeben. Daraus folgt $f \subseteq A \times B$. Da B' echte Teilmenge von B ist, gilt: $A \times B' \subset A \times B$. Draus folgt, dass es ein Tupel $(a, b) \in A \times B$ gibt, welches nicht in $A \times B'$ enthalten ist. Das heißt es gibt eine Abbildung (A, f, B), so dass $\forall g \in A \times B' : g \neq f$ gilt.

Damit ist die Aussage widerlegt.

4

Aufgabe 4: Beispiel einer Abbildung

Wir definieren eine Abbildung:

$$f: \mathbb{R} \longrightarrow \mathbb{Z}$$

$$x \longrightarrow \text{Die größte Zahl z mit } z \leq x$$

a) Sind $x, y \in \mathbb{R}$ und $x \leq y$, dann $f(x) \leq f(y)$.

Lösung:

Sei x_1 die größte ganze Zahl für die gilt $x_1 \leq x$ und sei x_2 die kleinste ganze Zahl für die gilt $x \leq x_2$. Das heißt $f(x) = x_1 \leq x \leq x_2$.

Des Weiteren sei y_1 die größte ganze Zahl für die gilt $y_1 \leq y$.

Nun können zwei Fälle eintreten

1.
$$y \ge x_2$$

2.
$$y < x_2$$

Aus 1. folgt:

$$f(x) = x_1 \le x \le x_2 \le y$$

Da x_2 eine ganze Zahl ist muss $x_2 \leq f(y)$ gelten. Daraus folgt:

$$f(x) = x_1 \le x \le x_2 \le f(y)$$

 $\Leftrightarrow f(x) \le f(y)$

Aus 2. folgt:

$$f(x) = x_1 \le x \le y < x_2$$

Daraus folgt f(y) = f(x). Daraus folgt die Aussage ist wahr.

b) Sind $x, y \in \mathbb{R}$ und x < y, dann f(x) < f(y).

Lösung:

Dies wird durch ein kleines Gegenbeispiel widerlegt. Sei x = 1.2 und y = 1.5. Es gilt zwar x < y aber nicht f(x) < f(y), weil f(x) = f(y) = 1.

c) Sind $x \in \mathbb{R}$, $y \in \mathbb{Z}$ und x < y, dann f(x) < f(y).

Lösung:

Da y eine ganze Zahl ist gilt f(y) = y. Weiterhin gilt $f(x) \le x$

$$f(x) \le x < y = f(y)$$

$$\Rightarrow f(x) < f(y)$$

d) Sind $x \in \mathbb{R}$, $y \in \mathbb{Z}$, dann $f(y \cdot x) = y \cdot f(x)$.

Lösung:

Dies wird durch ein kleines Gegenbeispiel widerlegt. Sei x=2.5 und y=2. Daraus folgt:

$$f(2 \cdot 2.5) = 2 \cdot f(2.5)$$
$$5 = 4$$

4

4