

Leaf classification

CNN supervised machine learning

Dataset description

- 54303 images
- size: 256x256
- RGB space
- 13 species
- 38 categories
- healthy and unhealthy plant leaves
- unbalanced categories

- Apple
- Blueberry
- Cherry
- Corn
- Grape
- Orange
- Peach
- Pepper
- Potato
- Raspberry
- Squash
- Strawberry
- Tomato
- Empty background

Dataset: index of labels

1.Apple scab	11.Corn northern leaf blight	21.Pepper healthy	31.Tomato early blight
2.Apple black rot	12.Corn healthy	22.Potato early blight	32.Tomato healthy
3.Apple cedar apple rust	13.Grape black rot	23.Potato healthy	33.Tomato late blight
4.Apple healthy	14.Grape black measles	24.Potato late blight	34.Tomato leaf mold
5.Background without leaves	15.Grape leaf blight	25.Raspberry healthy	35.Tomato septoria leaf spot
6.Blueberry healthy	16.Grape healthy	26.Soybean healthy	36.Tomato spider mites
7.Cherry powdery mildew	17.Orange haunglongbing	27.Squash powdery mildew	two-spotted spider mite
8.Cherry healthy	18.Peach bacterial spot	28.Strawberry healthy	37.Tomato target spot
9.Corn gray leaf spot	19.Peach healthy	29.Strawberry leaf scorch	38.Tomato mosaic virus
10.Corn common rust	20.Pepper bacterial spot	30.Tomato bacterial spot	39.Tomato yellow leaf curl virus

Dataset distribution

Dataset sample images

Tomato - Target Spot

Orange - Haunglongbing (Citrus greening)

Tomato - Late blight

Potato - Early blight

Apple - healthy

Apple - Cedar apple rust

Pepper, bell - healthy

Tomato - Spider mites Two-spotted spider mite

Tomato - Bacterial spot

Tomato - Late blight

Squash - Powdery mildew

Tomato - healthy

Cherry - Powdery mildew

Tomato - Spider mites Two-spotted spider mite

Tomato - Tomato mosaic virus

Dataset processing

- Split:
 - o train 80%
 - validation 15%
 - o test 5%
- Random data augmentation:
 - brightness
 - contrast
 - o flip
- Class weighting
- Image scaling surprisingly counterproductive! It was not implemented.

Class weighting

class weight =
$$\frac{n_{samples}}{n_{classes} \times \text{bincount}(y)}$$

Class unbalance is compensated through a class weight using the values of:

- n_samples
- n_classes
- bincount(y): a function that counts the number of occurrences of each value in an array y
- y: the array of the data labels

Source: https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html

The model

- Custom architecture composition:
 - Three CNN blocks
 - A classification block
- Loss function: Sparse Categorical Cross-entropy, because data is discrete multiclass
- Optimizer: Adam, computationally efficient, has little memory requirement, invariant to diagonal rescaling of gradients, and is well suited for problems that are large in terms of data/parameters

CNN block

- 2D convolutional layer
- respectively 16, 32 and 64 filters per block
- Kernel size: 3
- ReLU activation
- L2 kernel regularizer
- stride equal to 2 for image size reduction
- Batch Normalization
- Dropout with probability 0.25 to handle overfitting

Classification block

- Composition: two feedforward, fully connected MLP
- Dimensions: 64 and 38 (as number of categories)
- Dropout with probability 0.5

The optimizer: Adam

- stands for: adaptive moment estimation
- basically an extended version of stochastic gradient descent
- learning rate: 10e-4
- decay = learning rate / number of epochs

Model training

- Trained for 150 epochs
- 30,662 number of parameters
- Metric: Sparse Categorical Accuracy
- Hardware: Intel Xeon CPU @2.20 GHz, 13 GB RAM, Tesla P100 accelerator, and 12 GB GDDR5 VRAM
- Training time is circa one hour, with 20 seconds circa for each epoch
- Test performance: loss: 0.8939 sparse categorical accuracy: 0.793

References

- Dataset source
- Machine learning software library
- Jupyter notebook of the project