Dr. Yu-Ting Shen

in yu-ting-shen-6b730b160⊠ ytatus94@yahoo.com.tw

O ytatus94

1 (405).200.2633

SKILLS

- Programming language: Python, C/C++, Bash shell script, Scala,
- o Machine learning: scikit-learn, Apache Spark, Keras, TensorFlow, PyTorch,
- o Reinforcement learning: Gym, Stable-Baselines, Ray,
- o Database: SQL, Big Query, PostgreSQL, TablePlus, Incorta,
- o Visualization & Dashboard: matplotlib, seaborn, bokeh, DataStudio, Tableau, Power BI
- o Big Data: Apache Hadoop, Hive, Cloudera
- Cloud: GCP, Azure,
- o Others: Git, Jira, Docker,

EXPERIENCE

Seeloz Inc San Jose, CA

 $Data\ Scientist$

2019/04 - present

- o Developed and maintained the essential deep-Q learning network (DQN) models for inventory control to optimize profitability and minimize supply chain inefficiencies. The annual total inventory values are reduced from \$7.82M to \$5.77M (26% lower) and the annual turnover rate is increased 44% from 15.42 to 22.27.
- o Reduced the inventory levels $30\% \sim 70\%$, which varies by warehouses and products, and retained low stock-outs by introducing the purchase-procurement splitting and postponed action methods into the model-based reinforcement learning (RL).
- Analyzed supply chain data from various clients by writing SQL queries on the Google Big Query and PostgreSQL.
- o Built interactive dashboards for visualizations and quick inspections. The dashboards were constructed on the Google DataStudio at the beginning, and then ported to Python with Bokeh package now.
- o Implemented an abstraction layer (API), called Cloud I/O, on top of Azure and GCP to access the Azure storage account and Google Cloud storage. This Python-based API provides the AP&I cross-platform functionalities.
- o Designed a Python-based universal interface to submit batch jobs to Google AI platform, GKE, Azure VMSS, Azure ML, AKS, on-premises cluster, and local docker container.
- o Applied the time series analysis and forecasting methods using Python and predicted customers' demands and orders. The models been used including ETS, ARIMA/SARIMA, VAR, long-short term memory (LSTM), and double random forest (double RF). The r^2 score was improved from 0.15 (using ETS model) up to 0.92 (using double RF) and the number of supported products have been increased by a factor of 20 times.

CERN (Organisation Européenne pour la Recherche Nucléaire)

Geneva, Switzerland

Data Scientist

2015/03 - 2018/03

- o Improved the electron isolation efficiency from 93% to 98% by introducing the momentum distributions in spherical coordinate. The study was done using C++. This results became a new standard for all analysis at CERN.
- Analyzed 400 TB data from the LHC computing Grid using C++ with ROOT and Python with PyROOT, built
 decision tree and regression models, applied statistical methods to extract the signal within 95% confidence interval.

Academia Sinica Taipei, Taiwan

Research Scientist

2009/07 - 2011/07

• Developed a new Monte Carlo simulation program in C++ and GEANT4 for germanium detector and implemented decision tree models in C++ and ROOT for particle classifications with an accuracy of 96%.

TSMC (Taiwan Semiconductor Manufacturing Company)

Hsinchu, Taiwan

R&D Engineer

2006/12 - 2009/02

o Improved 40% of the performance by creating and deploying on-prem analysis pipeline, which includes high level data cleaning, engineering, visualization, statistical model building, and MC simulation using Bash shell script and Excel VBA.

EDUCATION

University of Oklahoma

Ph.D. in Physics

2011 - 2018