

4.1.4 Potenz-, Wurzel- und Polynomfunktionen

1 Wiederholung - Quadratische Funktion

Übung 1 Für die folgende Parabel, geben Sie die 3 Formen der Funktionsgleichung an.

Übung 2 Geben Sie die 3 allgemeine Formen einer Parabel an. Was stellen die verschieden Buchstaben graphisch dar?

Schuitelform:
$$y = \alpha (x-R)^2 + R$$

Schuitelform: $y = \alpha (x-R)^2 + R$

Grund form: $y = \alpha x^2 + bx + C$

Py (o; c) To Rann man mich ableson; ocacl Portabel

Produkt form: $y = \alpha (x-x_1)(x-x_2)$

Px (x; o) Px (x; o)

2 Potenzfunktionen

Potenzfunktionen sind Funktionen der Form $y=x^n$ für $n\in\mathbb{N}$.

Falls A Regaliv

Die quadratische Funktion $y = x^2$ ist eine Potenzfunktion.

n=-2 = y=x

Wir analysieren jetzt was passiert wenn die Hochzahl n grösser wird. Hierzu unterscheiden wir zwischen geraden und ungeraden Hochzahlen.

andore Trushion

2.1 Gerade Potenzfunktionen

Übung 3 Anhand des Taschenrechners oder GeoGebra, zeichnen Sie folgende Funktionen in das gegebene Koordinatensystem ein.

a)
$$y = x^2$$

b)
$$y = x^4$$

c)
$$y = x^6$$

Was stellen Sie fest? Wie verhalten sich diese Funktionen wenn n, für n gerade, immer grösser wird? Bestimmen Sie D und W.

Scheiklpunkt S(0;0)

falls n grösser wird, plat wird die Portabel flacher um den Schildpunht und Steiler für x>1

Ungerade Potenzfunktionen

Übung 4 Anhand des Taschenrechners oder GeoGebra, zeichnen Sie folgende Funktionen in das gegebene Koordinatensystem ein.

b)
$$y = x^5$$

c)
$$y = x^7$$

Was stellen Sie fest? Wie verhalten sich diese Funktionen wenn n, für n ungerade, immer grösser wird? Bestimmen Sie D und W.

Wendepunhl W(0;0)

$$\mathcal{D} = \mathbf{G}$$

O<x<1: immer flacher

2.3 Funktionsgleichung einer Potenzfunktion

Die Funktionsgleichung einer Potenzfunktion sieht folgendermassen aus :

$$y = \pm a(x-h)^n + k$$

Wie wir vorhin festgestellt haben, sehen die Graphen für n gerade oder ungerade nicht gleich aus.

- Gerade Potenzfunktion Eigenschaften
 - o Die gerade Potenzfunktion ist symmetrisch, eine Spiegelung an der y-Achse hat keinen Einfluss auf den Graphen, da $a(-(x-h))^n = a(x-h)^n$ für n gerade.
 - o Die gerade Potenzfunktion besitzt einen Scheitelpunkt mit den Koordinaten S(h;k).

$$y = +a(x-h)^n + k$$

$$D = \mathbb{R} \text{ und } W = [k; +\infty[$$

$$y = -a(x-h)^n + k$$

$$D = \mathbb{R} \text{ und } W =]-\infty; k]$$

- Ungerade Potenzfunktion Eigenschaften
 - o Die ungerade Potenzfunktion ist nicht symmetrisch, aber eine Spiegelung an der x-Achse oder an der y-Achse ergibt den gleichen Graphen, da $a(-(x-h))^n = -a(x-h)^n$ für nungerade. $\mathcal{G} = (-\times + \mathbb{S})^3 = (-(\times - \mathbb{S}))^3$ o Die ungerade Potenzfunktion besitzt einen Wendepunkt mit den Koordinaten S(h;k). $= -(\times - \mathbb{S})^3$

$$y = +a(x-h)^n + k$$

$$D = \mathbb{R}$$
 und $W = \mathbb{R}$

$$y = -a(x-h)^n + k$$

 $D = \mathbb{R} \text{ und } W = \mathbb{R}$

2.4 Übungen

Bemerkung: In den Übungen werden wir nur Potenzfunktionen für n=2,3 oder n=4 behandeln. Die Achsensysteme sind zu klein um andere zu zeichnen.

Übung 5 Geben Sie die Funktionsgleichung folgender Graphen an. Bestimmen Sie ausserdem D, W und S.

$$S(5;\lambda) D = \omega = B$$

 $y = (x-5)^3 + \lambda$

$$y = -3(x+u)^{3} - 2$$

$$y = 3(-(x+u))^{3} - 2$$

$$= 3(-x-u)^{3} - 2$$

Übung 6 Zeichnen Sie die Graphen folgender Funktionen.

$$(\lambda - x) = (-(x-1))^3$$

a)
$$y = -(x+3)^3 + 1$$

c)
$$y = -2(1-x)^3 + 2$$

= $2(x-\lambda)^3 + 2$

$$(-x+5)^4 = (-(x-5))^4 = (x-5)^4 = (-(x+4))^4 = (x+4)^4$$

$$(-X-4)^4 = (-(X+4))^4 = (X+4)^4$$

b)
$$y = (-x+5)^4 - 3 = (x-5)^4 - 3$$

b)
$$y = (-x+5)^4 - 3 = (x-5)^4 - 3$$
 d) $y = \frac{1}{2}(-x-4)^4 - 5 = \frac{\lambda}{2}(x+u)^4 - 5$

$$y = \frac{1}{2}x'$$

$$x \quad 0 \quad x' \quad 2$$

$$y \quad 0 \quad \frac{1}{2} \quad 8$$

Wurzelfunktionen 3

Wurzelfunktionen sind Funktionen der Form $y = \sqrt[n]{x}$ für $n \in \mathbb{N}$.

Wir analysieren jetzt was passiert wenn die Wurzel n verschiedene Werte annimmt. Hierzu unterscheiden wir zwischen geraden und ungeraden Wurzeln.

Gerade Wurzelfunktionen 3.1

Übung 7 Füllen Sie folgende Tabelle für die Funktion $f(x) = \sqrt{x}$ aus :

a	;	0	1	4	9	16	25	-1
y	/	0	7	2	3	4	5	/

V-1 = undef

Anhand dieser Tabelle und dem Taschenrechner, zeichnen Sie folgende Funktionen:

a)
$$y = \sqrt{x}$$

b)
$$y = \sqrt[4]{x}$$

c)
$$y = \sqrt[6]{x}$$

Was stellen Sie fest? Wie verhalten sich diese Funktionen wenn n, für n gerade, immer grösser wird? Bestimmen Sie D und W.

D= D+ W= D+ Im=D+

Anfangspunh! S(0.0) point de départ

3.2 Ungerade Wurzelfunktionen

Übung 8 Füllen Sie folgende Tabelle für die Funktion $f(x) = \sqrt[3]{x}$ aus :

2	x	0	1	- 8	27	-1	-8	-27
	y	0	1	2	3	ال -	- 2	-3

Anhand dieser Tabelle und dem Taschenrechner, zeichnen Sie folgende Funktionen:

a)
$$y = \sqrt[3]{x}$$

b)
$$y = \sqrt[5]{x}$$

c)
$$y = \sqrt[7]{x}$$

Was stellen Sie fest? Wie verhalten sich diese Funktionen wenn n, für n ungerade, immer grösser wird? Bestimmen Sie D und W.

3.3 Funktionsgleichung einer Wurzelfunktion

Die Funktionsgleichung einer Wurzelfunktion sieht folgendermassen aus :

$$y = \pm a \sqrt[n]{\pm (x-h)} + k$$

Wie wir vorhin festgestellt haben, sehen die Graphen für n gerade oder ungerade nicht gleich aus.

- Gerade Wurzelfunktion Eigenschaften
 - o Die gerade Wurzelfunktion kann an den zwei Achsen gespiegelt werden.
 - o Die gerade Wurzelfunktion besitzt einen Anfangspunkt mit den Koordinaten S(h;k).

$$y = +a\sqrt[n]{x-h} + k$$

$$D = [h; +\infty[\text{ und } W = [k; +\infty[$$

$$y = -a\sqrt[n]{x-h} + k$$

$$D = [h; +\infty[\text{ und } W =] -\infty; k]$$

$$y = +a\sqrt[n]{-(x-h)} + k$$

$$D =]-\infty; h]$$
 und $W = [k; +\infty[$

$$y = -a\sqrt[n]{-(x-h)} + k$$

$$D =]-\infty; h]$$
 und $W =]-\infty; k]$

- Ungerade Wurzelfunktion Eigenschaften
 - o Die ungerade Wurzelfunktion ist nicht symmetrisch, aber eine Spiegelung an der x-Achse oder an der y-Achse ergibt den gleichen Graphen, da $a\sqrt[n]{-(x-h)} = -a\sqrt[n]{x-h}$.
 - o Die ungerade Wurzelfunktion besitzt einen Wendepunkt mit den Koordinaten S(h;k).
 - o Die Definitionsmenge ist $D = \mathbb{R}$ und der Wertebereich ist $W = \mathbb{R}$.

$$y = +a\sqrt[n]{x-h} + k$$

$$y = -a\sqrt[n]{x-h} + k$$

3.4 Übungen

Bemerkung: In den Übungen werden wir nur 2te und 3te Wurzeln behandeln. Die Achsensysteme sind zu klein um andere zu zeichnen.

Übung 9 Geben Sie die Funktionsgleichung folgender Graphen an. Bestimmen Sie ausserdem D, W und S.

a) Spiegelung $3\sqrt{2}$ D = W = D

$$y = -\frac{3}{x-3} - 1$$

$$= \frac{3}{-(x-3)} - 1$$

$$= \frac{3}{-x+3} - 1$$

$$y = -2\sqrt{-(x-4)} + 3$$

$$= -2\sqrt{-x+4} + 3$$

$$y = -\frac{1}{2} \sqrt[3]{x + \lambda} + 3$$

$$= \frac{1}{2} \sqrt[3]{-(x + \lambda)} + 3$$

$$= \frac{1}{2} \sqrt[3]{-x - \lambda} + 3$$

a)
$$y = \sqrt[3]{x+2} - 5$$

c)
$$y = -\sqrt{x-3} - 2$$

a)
$$y = \sqrt[3]{x+2} - 5$$
 S(-2:-5) c) $y = -\sqrt{x-3} - 2$ S(3:-2)

5(4:2)

=
$$2\sqrt{-(x+s)} + \lambda$$

b) $y = 2\sqrt{-x-5}+1$ $S(-s+\lambda)$

d)
$$y = -3\sqrt[3]{-x+4} + 2 = +3\sqrt[3]{x-4} + 2$$

Polynomfunktionen Röckste Pokenz

4x3+ 7x4- 2x+1 =) Grad 3

Polynomfunktionen des n-ten Gerades sind Funktionen der Form:

$$y = \pm a(x - x_1)(x - x_2)(x - x_3) \cdot \ldots \cdot (x - x_n) + k$$

Die quadratische Funktion ist eine Polynomfunktion der Form $y = a(x - x_1)(x - x_2)$.

Übung 11 Wenn Sie mit der Produktform einer Parabel vergleichen, was entspricht $x_1,\,x_2,\,\dots\,,\,x_n$ graphisch?

Übung 12 Anhand des Taschenrechners oder GeoGera, skizzieren Sie folgende Graphen:

a)
$$y = (x - 2)(x + 1)$$

c)
$$y = \frac{1}{2}(x-1)x(x+2)$$

Wir werden diese Funktionen nicht zeichnen, sondern nur ablesen:

- a) k bestimmen indem man schaut ob die Funktion nach oben oder nach verschoben ist.
- **b)** x_1, x_2, \dots bestimmen.
- c) a anhand eines weiteren Punktes berechnen. =) durch Ensel ten

4.1 Übungen

Übung 13 Geben Sie die Funktionsgleichung folgender Graphen an, so wie D und W

a) y = 2(x+2)(x-4) $P_{3}(0,-4)$

Py (0; -4) einselzen:
-4 =
$$a \cdot 2 \cdot (-1)$$

-4 = -2 $a = 1 \cdot a = 2$

b)

$$Y = \Delta (x+2) \times (x-1) (x-3)$$

$$P(2;8)$$

$$C) 8 = \Delta (4 \cdot 2 \cdot 1 \cdot (-1))$$

$$8 = -8\Delta$$

$$\Delta = -1$$

$$Y = -(x+2) \times (x-1) (x-3)$$