Notes for Differential Galois Theory by P. Jossen

Texed by Lin-Da Xiao

October 7, 2017

Contents

1 The Ring of Partial Differential Operators

 $\mathbf{2}$

1 The Ring of Partial Differential Operators

Definition 1.1. A Δ -ring \mathcal{R} is a commutative ring with unit equipped with a set of commutative derivations $\Delta = \{\partial_1, ..., \partial_r\}$. A Δ -ideal $I \subset \mathcal{R}$ is an ideal of \mathcal{R} s.t. $\partial_i I \subset I$ for all i = 1, ..., r. If \mathcal{R} is a Δ -ring, the set of constants is $\{c \in \mathcal{R} | \partial_i(c) = 0, \forall i\}$. Through out the expository article, we will assume that for any Δ -ring, $\mathbb{Q} \subset \mathcal{R}$ and \mathcal{C} is algebraically closed field.

Example 1.2. C be an algebraically closed with $t_1, ..., t_r$ indeterminates. And the derivations are define to by $\partial_i t_j = \delta_{ij}$

Definition 1.3. Let K be a Δ -field. The ring of partial differential operators $K[\partial_1, ..., \partial_r]$ with coefficients in K is the noncommutative polynomial ring in the variables ∂_i , where $[\partial_i, \partial_j] = 0$ but $[\partial_i, a] = \partial_i(a)$

Definition 1.4. A $K[\partial_1, ..., \partial_r]$ -module \mathcal{M} is a finite dimensional K-vector space that is a left module for the ring $K[\partial_1, ..., \partial_r]$.

But in this case a quotient \mathcal{R}/I of Δ