Assignment 9

Due April 8^{th} 2019

- 1. Self-grade Homework 8.
- 2. Read Ch. 5 Oppenheim and Schafer, 3rd ed.
- 3. Oppenheim and Schafer Exercise 4.61
- 4. From Midterm II, sp'11:

Design a system that takes a band-limited discrete time input x[n] sampled at a rate $f_{s,1} = 1$ sample/second, and outputs the same signal sampled at $f_{s,2} = 1.5$ samples/second.

The processing blocks you have are shown below, you can choose to connect them in any order, but you can use each block only once.

These are

- A compressor that reduces the sampling rate by a factor of M. It keeps one out of every M samples, and throws the others away.
- An expander that increases the sampling rate by a factor of N. It inserts N-1 zeros after every input sample.
- An ideal filter, for which you must specify the frequency response.
- a) Draw a block diagram of your system, and specify M, N and $H(e^{j\omega})$:

b) The input spectrum looks like this

Sketch the output spectrum after each block of your system. Label your axes. Use radian frequencies ω . If aliasing occurs, overlay it with dashed lines.

i) Spectrum after Block 1:

ii) Spectrum after Block 2:

iii) Spectrum after Block 3:

Find the impulse respons	e $h[n]$ of the filter.	You can assume it is ideal instead of a	an FII
h[n] =			

d) Instead of using the ideal h[n] FIR filter, you decide to use a triangular window (linear interpolation) with a gain a.

$$h[n] = \begin{cases} a(1 - |n/N|) & |n| < N \\ 0 & \text{otherwise} \end{cases}, \qquad H(e^{j\omega}) = a \frac{\sin^2(\frac{\omega}{2}(N+1))}{(N+1)\sin^2(\frac{\omega}{2})}$$

Sketch the output spectrum after the second and third blocks of your system. Label your axes. If aliasing occurs, overlay it with dashed lines.

i) Spectrum after Block 2:

ii) Spectrum after Block 3:

- 5. Problem 5.24, Oppenheim and Schafer, 3rd ed.
- 6. Problem 5.45, Oppenheim and Schafer, 3rd ed. Part (e) is optional.
- 7. From Final, Fall 11:

Consider a causal LTI with the following magnitude frequency response:

The system is an **order** M = 500 **FIR** filter.

The following signal, composed of narrowband pulses is passed through the system. The x-axis is samples.

The following signals are possible outputs of the system:

a) Is Output 1 a valid output of the system? Explain why.

* If the output is valid, draw the group-delay $\operatorname{grp}\{H(e^{j\omega})\}$. Explain! group delay:

b) Is Output 2 a valid output of the system? Explain why.

valid / not valid

* If the output is valid, draw the group-delay $grp\{H(e^{j\omega})\}$. Explain!

group delay:

c) Is Output 3 a valid output of the system? Explain why.

valid / not valid

* If the output is valid, draw the group-delay $\operatorname{grp}\{H(e^{j\omega})\}$. Explain!

group delay: