

LES CONCEPTS DE BASE

LA DUPLICATION ET LA RÉPARATION DE L'ADN

LA TRANSCRIPTION DES GÈNES

LA TRADUCTION ET LA SYNTHÈSE DES PROTÉINES

La Biologie Moléculaire utilisée comme outil

EVOLUTION DES SYSTÈMES MOLÉCULAIRES

PROMOTEUR BACTÉRIEN

L'ARN polymérase bactérienne est composée de 6 sous unités (ω , 2 α , β , β' et σ) et se fixe aux boites -35 et -10 du promoteur.

Initiation de la transcription sur un promoteur bactérien

TRANSCRIPTION: ARN POLYMÉRASE

TRANSCRIPTION: ARN POLYMÉRASE

L'initiation de la transcription est la première étape de l'expression des gènes: régulation transcriptionelle

RÉGULATION PAR LA FIXATION DE L'ARNPOL

La sous unité σ de l'ARN polymerase bactérienne reconnait les boites -35 et -10 du promoteur

Il existe différentes sous-unités σ qui reconnaissent différents promoteurs

Sigma 32 se fixe et il y a transcription

RÉGULATION DE L'OPERON LACTOSE

RÉGULATION DE L'OPÉRON MALTOSE

Culture en absence de maltose

LES RÉGULATEURS TRANSCRIPTIONNELS

Le régulateur (R) module la fixation de l'ARNpol via une courbure de l'ADN qui peut être induite (ou non) par une protéine médiatrice (M)

Le régulateur (R) peut lui aussi être régulé. Par exemple il peut être en compétition pour occuper son site de fixation sur l'ADN

LES RÉGULATEURS TRANSCRIPTIONNELS

Exemple de l'effet d'un régulateur sur l'ADN

Molecular Biology of the Cell (© Garland Science 2008)

Ce type de régulateur (protéine de type histone) a deux effets:

- Structuration du nucléoïde bactérien
- Activation/inhibition de la transcription

LRP

FIS

LES RÉGULATEURS CIS ET TRANS

Le régulateur TRANS se fixe au régulateur CIS = blocage stérique de la transcription des gènes adjacents

Si on déplace le régulateur CIS vers un autre locus, c'est le nouveau locus qui va être régulé

PROMOTEUR EUCARYOTE: MÊME PRINCIPE

REMANIER LA CHROMATINE POUR RÉGULER

Structure A Nucléosomes espacés régulièrement Structure B Nucléosomes repositionnés

Le repositionnement des nucléosomes permet la régulation de l'initiation de la transcription

Les insulateurs «sectorisent» les effets des régulateurs

ELONGATION TRANSCRIPTIONNELLE

TERMINAISON DE LA TRANSCRIPTION

Après transcription, l'ARN se replie et forme une «tige boucle» qui est plus stable que le polyA-polyU qui retient l'ARN sur sa matrice.

La transcription s'arrête.

TERMINAISON DE LA TRANSCRIPTION PAR RHO

Après transcription, l'ARN se replie et forme une «tige boucle» stable. L'hélicase Rho dénature alors l'hybride ARN-ADN en aval de cette tige boucle. La transcription s'arrête.

STRUCTURE DES ARN SYNTHÉTISÉS

SYNTHÈSE ET DEVENIR DES ARNS

MODIFICATION DES ARNS

Les ARN sont modifiés après la transcription: modifications post-transcriptionnelles

MODIFICATION DES ARNS DE TRANSFERT

De nombreuses modifications: Environ 10 par ARNt

Environ 90 modifications différentes possibles Rôles dans la flexibilité, la stabilité et la traduction

5' GCGGAUUUAGCUC<mark>AGDDGGGA</mark>GAGCGCCAGA<mark>CUGAAY</mark>AΨCUGGAGGUCCUGUG<mark>TΨCGAUC</mark>CACAGAAUUCGCA<mark>CCA</mark> 3'
(D) anticodon

Les ARNs ribosomiques sont abondamment modifiés également

« CAPPING » CHEZ LES EUCARYOTES

Protéger le 5'-P contre les nucléases

POLYADÉNYLATION CHEZ LES EUCARYOTES

EPISSAGE CHEZ LES EUCARYOTES

