Sobre el código de la PDF de la amplitud

Evelyn G. Coronel Tesis de Maestría en Ciencias Físicas Instituto Balseiro

(20 de diciembre de 2020)

I. COMO ES LA PDF DE LA AMPLITUD

La función de densidad de probabilidad tiene la siguiente forma:

$$p(s) = \frac{r}{\sigma^2} \exp\left(-\frac{(r^2 + s^2)}{2\sigma^2} + \frac{rs}{\sigma^2}\right) K_0(\frac{rs}{\sigma^2})$$
 (1)

Para alcanzar un nivel del confianza del $\mathrm{CL}[\%]$ [1], se toma el valor de amplitud r^{UL} y la integral de la función 1 desde 0 hasta r^{UL} , donde el resultado debe ser el nivel de confianza CL .

$$CL = \int_0^{r^{UL}} dr \frac{r}{\sigma^2} \exp\left(-\frac{(r^2 + s^2)}{2\sigma^2} + \frac{rs}{\sigma^2}\right) K_0(\frac{rs}{\sigma^2})$$
 (2)

El gráfico de la función se muestra a continuación:

Fig. 1

II. HACIENDO LA CUENTA

Los pasos que sigo son los siguientes:

- 1. Calculo la probabilidad asociada a $r_{maz}=r+10\sigma$. Dado que está tan alejada del valor de amplitud obtenida, el CL \simeq 1, por lo que uso este valor para normalizar la Ec. 1 en el código.
- 2. Una vez que tengo la función normalizada, finalmente hago la integral de la ecuación 2 hasta un valor inicial de $r_1=r$
- 3. Si $CL(r_1) < 0.683$, aumento un 1 % el valor de r_1 , es decir $r_2 \leftarrow r_1 + 0.001r_1$
- 4. Repito lo anterior hasta obtener $CL \simeq 0.683$ en la iteración N con $r^{UL} = r_N$
- 5. Ahora tengo el error superior de r con $\sigma^+ = r^{UL} r$. La figura siguiente es una idea de como se calcula el límite superior:

Fig. 2

[1] Donde CL=.99 para un 99 % o CL=0.68 para un 68 %,.