В. О. Рыбинцев, В. Л. Широков

ПОСТРОЕНИЕ ДОМАШНИХ ЛОКАЛЬНЫХ ВЫЧИСЛИТЕЛЬНЫХ СЕТЕЙ Лабораторные работы № 1-3

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МЭИ»

В. О. РЫБИНЦЕВ, В. Л. ШИРОКОВ

ПОСТРОЕНИЕ ДОМАШНИХ ЛОКАЛЬНЫХ ВЫЧИСЛИТЕЛЬНЫХ СЕТЕЙ Лабораторные работы № 1-3

Методические указания

по курсу «Сети и телекоммуникации» для студентов, обучающихся по направлению «Информатика и вычислительная техника»

Москва Издательский дом МЭИ 2023 Утверждено учебным управлением НИУ МЭИ в качестве производственно-практического издания

Подготовлено на кафедре вычислительных машин, систем и сетей

Рецензент — докт. техн. наук, проф. Л. И. Абросимов

Рыбинцев, В.О.

Р 935 Построение домашних локальных вычислительных сетей. Лабораторные работы № 1-3: метод. указания / Рыбинцев В.О., Широков В.Л. – М.: Издательский дом МЭИ, 2023. — 32 с.

Методические указания содержат описание трех лабораторных работ по курсу «Сети и телекоммуникации», который читается студентам, обучающимся по направлению 09.03.01 «Информатика и вычислительная техника» на кафедре вычислительных машин, систем и сетей НИУ «МЭИ».

Предназначены для студентов при изучении локальных вычислительных сетей в целях формирование навыков их исследования, разработки структуры, выбора состава комплекса технических средств и подключения к сети Internet.

СОДЕРЖАНИЕ

Общие положения	5
Лабораторная работа № 1. Подключение к Internet домашней локальной сети.	7
Лабораторная работа № 2. Организация домашней Wi-Fi сети	11
Лабораторная работа № 3. Исследование пропускной способности домашней Wi-Fi сети	13
Приложение 1. Способы подключения к Internet домашней локальной сети	21
Приложение 2. Способы организации домашней Wi-Fi сети	
Приложение 3. Способы подключения компьютера к домашней Wi-Fi сети	29

Общие положения

В данные методические указания в виде лабораторного практикума вошёл цикл из трех лабораторных работ по курсу «Сети и телекоммуникации».

Лабораторные работы базируются на курсе «Передача информации», который читается студентам направления 09.03.01 «Информатика и вычислительная техника» на кафедре вычислительных машин, систем и сетей НИУ «МЭИ».

Целями практикума является детальное изучение студентами вопросов практического построения, использования и исследования домашних локальных вычислительных сетей.

Данный цикл состоит из трех связанных между собой лабораторных работ, выполняемых каждым студентом индивидуально.

Выполнению каждой лабораторной работы предшествует домашняя подготовка, в рамках которой студенты изучают технические средства и программное обеспечение, необходимые для построения домашней локальной сети, демонстрируют способности к самостоятельному поиску и усваиванию информации, которая необходима для выполнения лабораторного задания, но не представлена в курсе лекций и рекомендованной литературе. Результатом домашней подготовки к выполнению лабораторной работы является выбор варианта реализации лабораторного задания и подготовка необходимых исходных данных.

Первая лабораторная работа посвящена подключению к Internet домашней локальной вычислительной сети. В процессе выполнения работы студенты определяют состав и структуру оборудования, проводят эксперименты и определяют базовые сетевые параметры подключения.

Вторая лабораторная работа посвящена организации домашней беспроводной Wi-Fi локальной вычислительной сети и определению ее базовых характеристик в зависимости от используемого стандарта связи (IEEE 802.11a/b/g/n/ac).

Третья лабораторная работа посвящена экспериментальному определению реальной пропускной способности домашней Wi-Fi сети в зависимости от ее базовых параметров и качества сигнала.

Данные методические указания могут быть полезным студентам при прохождении производственной практики, выполнении научно-исследовательских и выпускных квалификационных работ.

Результат выполнения каждой лабораторной работы оформляется в виде отдельного отчёта и предоставляется преподавателю на проверку не позднее даты соответствующего контрольного мероприятия. Допустимо

предоставление отчёта о выполнении лабораторной работы в электронном виде по электронной почте или на бумажном носителе.

На титульном листе отчёта должны быть указаны:

название и номер лабораторной работы;

Ф.И.О. студента полностью;

шифр группы.

Преподаватель проверяет отчёт, задает уточняющие вопросы и определяет общее качество выполнения лабораторной работы. По итогам проверки студент допускается к защите данной работы, по результату которой преподаватель ставит оценку. При обнаружении ошибок отчёт возвращается студенту на доработку.

Отчеты принимаются в формате Open/Libre Office, MS Word и Adobe Acrobat. Применение архиваторов не допускается.

Содержание отчёта определяется лабораторным заданием и результатами его выполнения.

Отчёт может оформляться как от руки, так и с использованием общедоступных программных средств. Оформление отчёта с применением или без применения программных средств не влияет на оценку.

Лабораторная работа № 1

ПОДКЛЮЧЕНИЕ К INTERNET ДОМАШНЕЙ ЛОКАЛЬНОЙ СЕТИ

Цель работы: определение структуры, состава оборудования, сетевых и технических параметров домашней локальной вычислительной сети при различных вариантах её подключения к глобальной сети Internet.

Домашняя подготовка

Изучите соответствующие разделы курса лекций и рекомендованной литературы для освоения формата и назначения следующих сетевых параметров:

- МАС-адресов;
- IP-адресов версии 4 (IPv4);
- масок для ІР-адресов;
- протокола TELNET (RFC 854).

Изучите назначение и формат следующих терминальных команд MS Windows/Linux/MacOS:

- ping
- ipconfig/ifconfig
- tracert/traceroute

Выберите из перечисленных ниже в лабораторном задании вариантов любые два для подключения компьютера к сети Internet.

Ответьте на контрольные вопросы.

Лабораторное задание

По согласованию с преподавателем допускается объединение студентов в бригады, состоящие из двух человек.

Подключение домашней локальной сети к Internet может быть осуществлено множеством способов с помощью следующего оборудования:

- маршрутизатора, подключенного кабелем к сети провайдера Internet (наиболее распространенный вариант);
- маршрутизатора с USB-модемом сотовой сети 4G/LTE;
- USB-модема сотовой сети 4G/LTE;

- беспроводной Wi-Fi точки доступа с встроенным модемом сотовой сети 4G/LTE:
- смартфона в качестве беспроводной Wi-Fi точки доступа через сотовую сеть 4G/LTE;
- смартфона в качестве USB-модема сотовой сети 4G/LTE;
- непосредственно кабелем UTP к сети провайдера Internet;
- конвертера GPON-Ethernet;
- спутникового абонентского терминала и антенны VSAT.

Описание особенностей перечисленных вариантов подключения приведено в Приложении 1.

Если для подключения к сети Internet используется какой-то другой способ, то по согласованию с преподавателем он может быть использован при выполнении лабораторной работы.

Одним из распространенных вариантов подключения компьютера к сети Internet является использование смартфона в сети 4G/LTE в качестве устройства доступа. Если такой способ подключения к Internet является единственно возможным, необходимо выполнить лабораторное задание с использованием двух разных провайдеров сотовой связи.

На Рис. 1 показан пример подключения к Internet домашней локальной сети, состоящей из одного компьютера и одного устройства доступа.

Рис. 1. Пример подключения к Internet домашней локальной сети

Порядок выполнения работы

1. Для первого выбранного варианта подключения к сети Internet составить перечень всех используемых устройств, включая компьютер.

Определить и указать в отчете следующие характеристики:

- модель устройства доступа;
- МАС-адрес устройства доступа;
- внешний интерфейс взаимодействия устройства доступа с провайдером Internet (поставщиком услуг);
- внутренний интерфейс взаимодействия устройства доступа с компьютером в домашней сети;
- тип и количество других физических интерфейсов устройства доступа (при наличии);
- внешний IP-адрес и маску, предоставленные провайдером Internet, класс этого IP-адреса;
- внутренний IP-адрес и маску устройства доступа, класс этого IPадреса;
- МАС-адрес компьютера;

- ІР-адрес и маску компьютера, класс этого ІР-адреса.
- 2. Выполнить на компьютере в консольном режиме следующие команды:
 - ipconfig -a
 - ping <IP-адрес> (полученный от провайдера)
 - ping 8.8.8.8
 - tracert <IP-адрес> (полученный от провайдера),
 - tracert 8.8.8.8

Если команда tracert 8.8.8.8 выполняется слишком долго, завершите её принудительно. Для этого необходимо выполнить команду <Ctrl> + <C> (удерживая клавишу <Ctrl>, кратковременно нажать клавишу <C>). Результаты выполнения команд в виде копии экрана (команда Print Screen на компьютере или смартфоне) сохранить и вставить в отчёт с кратким пояснением.

По результатам выполнения указанных команд необходимо определить все MAC-адреса и IP-адреса, которые отмечены на Рис. 1 знаком «?».

- 3. Выполнить на компьютере в консольном режиме команду:
 - telnet <IP-адрес маршрутизатора>.

После ввода login и password (они указаны в руководстве по эксплуатации устройства или установлены в процессе настройки маршрутизатора) последовательно выполнить следующие команды:

- <?>
- <|s>
- <whoami>

Результаты выполнения отобразить в отчете.

- 4. Выбрать любой другой способ подключения к сети Internet и выполнить nn. 1 3.
- 5. Оформить отчёт о выполнении лабораторной работы. Отчёт предоставить преподавателю на проверку (см. раздел «Общие положения»). Если какие-то пункты задания выполнить не удаётся, необходимо отметить это в отчёте с кратким указанием причины.

Контрольные вопросы

- 1. Перечислите способы подключения компьютера к сети Internet?
- 2. Каково назначение и формат МАС-адреса?
- 3. Каково назначение и формат адреса IPv4?
- 4. Каково назначение и формат маски IPv4?

- 5. Каково назначение и формат команды ping?
- 6. Каково назначение и формат команды ipconfig/ifconfig?
- 7. Каково назначение и формат команды tracert/traceroute?
- 8. Каково назначение и формат команды telnet?
- 9. Каково назначение сетевой службы DNS?

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

1. Олифер, В.Г. Компьютерные сети. Принципы, технологии, протоколы: учебник / Олифер В.Г., Олифер Н.А. – СПб.: Питер, 2020.

Лабораторная работа № 2

ПОСТРОЕНИЕ ДОМАШНЕЙ WI-FI СЕТИ

Цель работы: определение сетевых характеристик и технических параметров домашней Wi-Fi сети.

Домашняя подготовка

Изучите рекомендованную литературу, соответствующие разделы курса лекций, варианты построения домашней Wi-Fi сети и варианты подключения домашнего компьютера к сети Wi-Fi. Ответьте на контрольные вопросы.

Установите на компьютер свободно распространяемое программное обеспечение Wi-Fi Scanner или аналогичное. Вместо компьютера для выполнения лабораторной работы возможно использование смартфона с установленным на него свободно распространяемым программным обеспечением Wi-Fi Analyzer или аналогичным.

Лабораторное задание

Выберите один из перечисленных ниже вариантов построения сети Wi-Fi:

- а) использование встроенной в домашний маршрутизатор точки доступа Wi-Fi (базовый вариант);
- b) использование автономной точки доступа Wi-Fi;
- с) использование встроенной в 4G/LTE модем точки доступа Wi-Fi;
- d) использование смартфона в качестве точки доступа Wi-Fi.

Особенности применения перечисленных вариантов организации сети Wi-Fi рассмотрены в Приложении 2.

Выберите один из перечисленных ниже вариантов подключения компьютера к домашней сети Wi-Fi:

- а) использование внутреннего контроллера Wi-Fi в компьютере;
- b) использование внешнего USB-контроллера Wi-Fi;
- с) использование смартфона в качестве внешнего USB-контроллера Wi-Fi.

Особенности применения перечисленных вариантов подключения к сети Wi-Fi рассмотрены в Приложении 3.

На Рис. 2 показан пример изображения экрана, полученного с помощью анализатора Wi-Fi Scanner.

Рис.

2. Пример вывода информации с помощью Wi-Fi Scanner

Тем студентам, у которых подключить компьютер к сети Wi-Fi не представляется возможным, необходимо установить программное обеспечение Wi-Fi Analyzer на смартфон, и с его помощью выполнить лабораторное задание, сохранив изображение с экрана смартфона для последующего его использования при оформлении отчёта о выполнении лабораторной работы.

Порядок выполнения работы

- 1. Организовать сеть Wi-Fi в диапазоне 2,4 ГГц, используя установленные по умолчанию параметры точки доступа.
- 2. С помощью Wi-Fi Scanner определить:
 - количество сетей, работающих в диапазоне 2,4 ГГц;
 - версию стандарта Wi-Fi, которую использует установленная точка доступа;
 - частотный канал, на котором работает установленная сеть Wi-Fi;
 - количество других сетей Wi-Fi, пересекающихся по частоте с установленной сетью.
- 3. Отобразить максимальную (по стандарту) и достижимую скорость передачи информации. Сравнить максимальную и достижимую скорости передачи. Объяснить результат.
- 4. Визуально определить наиболее загруженные частотные каналы. Выяснить и отразить в отчете, имеется ли смысл в изменении частотного канала, используемого по умолчанию созданной сетью Wi-Fi.
- 5. Организовать точку доступа с помощью смартфона в частотном диапазоне 2,4 ГГц.
- 6. Выполнить пп. 2, 3 и 4.
- 7. Организовать любым доступным способом точку доступа в частотном диапазоне 5 ГГц.
- 8. Выполнить пп. 2, 3 и 4.
- 9. Оформить отчёт о выполнении лабораторной работы. Если какие-то пункты задания выполнить не удалось, необходимо отметить это в отчёте с кратким указанием причины. Отчёт предоставить преподавателю на проверку (см. раздел «Общие положения»).

Контрольные вопросы

- 1. Какие преимущества и недостатки имеет сеть Wi-Fi?
- 2. В чём состоит отличие версий Wi-Fi IEEE 802.11a/b/g/n/ac/ax?
- 3. Сколько частотных каналов используются в сети Wi-Fi в диапазоне 2,4 ГГц?

- 4. Какую полосу частот по стандарту использует один Wi-Fi канал, и какая по ширине полоса частот необходима для передачи информации?
- 5. Сколько неперекрывающихся по частоте сетей Wi-Fi можно организовать в диапазоне 2,4 ГГц?
- 6. В чем преимущества и недостатки использования частотного диапазона 5 ГГц?

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

1. Олифер, В.Г. Компьютерные сети. Принципы, технологии, протоколы: учебник / Олифер В.Г., Олифер Н.А. – СПб.: Питер, 2020.

Лабораторная работа № 3

ИССЛЕДОВАНИЕ ПРОПУСКНОЙ СПОСОБНОСТИ ДОМАШНЕЙ WI-FI СЕТИ

Цель работы — экспериментальное измерение параметров и определение реальной (фактической) пропускной способности домашней беспроводной Wi-Fi сети.

Домашняя подготовка

Изучите рекомендованную литературу и соответствующие разделы курса лекций. Ответьте на контрольные вопросы.

Выберите вариант организации домашней Wi-Fi сети и вариант подключения к ней компьютера и смартфона, как это было рекомендовано в лабораторной работе № 2.

Подготовьте на компьютере файл размером порядка 100 Мбайт для передачи между компьютером и смартфоном через точку доступа Wi-Fi сети.

Изучите особенности применения протокола FTP для копирования файла с одного устройства на другое по сети.

Установите на смартфоне свободно распространяемое программное обеспечение Wi-Fi FTP-сервер для операционной системы Android или iOStiny FTP Server Application для операционной системы iOS.

При отсутствии контроллера Wi-Fi в компьютере возможно использование двух смартфонов для передачи файла между ними по протоколу FTP. В этом случае один смартфон будет функционировать в качестве FTP-сервера, а другой в качестве FTP-клиента.

Для проведения измерений реальной пропускной способности сети Wi-Fi возможно использование в качестве FTP-клиента свободно распространяемого программного обеспечения Filezilla, которое доступно для различных версий операционных систем.

Лабораторное задание

Для исследования реальной пропускной способности Wi-Fi сети необходимо:

Организовать домашнюю сеть Wi-Fi, состоящую из:

- точки доступа Wi-Fi (см. Приложение 2);
- компьютера с подключением к сети Wi-Fi;
- смартфона с подключением к сети Wi-Fi.

Структура экспериментальной сети Wi-Fi показана на Рис. 3.

Рис. 3. Экспериментальная сеть Wi-Fi

Произвести измерение времени передачи подготовленного файла между FTP-клиентом и FTP-сервером для любых трех доступных стандартов сети Wi-Fi (IEEE 802.11a/b/g/n/ac).

Для точек доступа, работающих только в диапазоне 2,4 ГГц, рекомендуется проводить измерения для стандартов IEEE 802.11b, IEEE 802.11g и IEEE 802.11n.

Для точек доступа, поддерживающих работу в диапазоне 5 ГГц, рекомендуется проводить измерения для стандартов IEEE 802.11a, IEEE 802.11n и IEEE 802.11ac.

Повторить измерения и расчёт скорости передачи файла при высоком и низком уровне сигнала для стандарта IEEE 802.11 с максимальной из исследованных сетей Wi-Fi теоретической пропускной способностью (IEEE 802.11n или IEEE 802.11ac).

Некоторые точки доступа позволяют изменять мощность сигнала в настройках. Если это невозможно, для снижения мощности сигнала необходимо установить точку доступа или смартфон с FTP-сервером на максимальном расстоянии друг от друга, или закрыть точку доступа или смартфон металлическим экраном. Определить уровень сигнала Wi-Fi можно с помощью программного обеспечения Wi-Fi Analyzer (см. лабораторную работу № 2).

Порядок выполнения работы

- 1. Включить оборудование экспериментальной Wi-Fi сети.
- 2. Запустить FTP-сервер на смартфоне и FTP-клиент на компьютере. Определить IP-адреса и порт TCP, необходимые для передачи данных по протоколу FTP. Пример выполнения указанных действий для операционной системы Android показан на Puc. 4 и Puc. 5.

Рис. 4. Запуск приложения Wi-Fi FTP-сервер на смартфоне

Рис. 5. Определение IP-адреса и порта TCP для Wi-Fi FTP-сервера на смартфоне

Для операционной системы iOS результат выглядит аналогичным образом.

3. Выполнить настройку стандарта IEEE 802.11 точки доступа. Пример выбора версии стандарта IEEE 802.11 показан на Рис. 6.

Точка доступа 2.4 ГГц

Укажите имя для вашей беспроводной сети, по которому можно будет найти ее при подключении. безопасности и введите сетевой ключ (пароль) для доступа к сети. Рекомендуется использовать и используйте только при необходимости подключения устаревших устройств, не поддерживающих Включить точку доступа: <a>✓

Рис. 6. Настройка версий стандарта IEEE 802.11

4. Выполнить передачу подготовленного файла с использованием FTP-клиента и измерить время передачи. Для этого в браузере выполнить команду копирования на FTP-сервер ftp://ip:port (параметры ip:port определены в п. 2) ранее заготовленного для передачи файла в директорию ForFTP. Измерить время передачи данного файла можно вручную или с помощью FTP-клиент FileZilla.

На Рис. 7 приведен пример размещения файлов на смартфоне.

Содержание /

Имя	Danier	Последнее изменение
	Размер	
043 нак Каина Иван Грозный mp3/		15.03.2016, 03:00:00
Android/		23.02.2017, 03:00:00
DCIM/		29.01.2017, 03:00:00
ForFTP/		10.02.2021, 01:22:00
LOST.DIR/		24.09.2016, 03:00:00
Sounds/		28.01.2019, 03:00:00
System Volume Information/		16.10.2018, 03:00:00
☐ Из Viber/		31.07.2020, 03:00:00
Из Whatsapp/		08.01.2020, 03:00:00
android_secure	0 E	01.01.1970, 03:00:00

Рис. 7. Пример размещения файлов на смартфоне, включая директорию ForFTP

- 5. Выполнить пункты 3-4 для второй выбранной версии стандарта 802.11.
- 6. Выполнить пункты 3-4 для третьей выбранной версии стандарта 802.11.
- 7. Результаты измерений отобразить в таблице 1:

Таблица 1 Результаты измерений реальной скорости передачи файла

Версия стандарта IEEE 802.11	Максимальная скорость передачи по стандарту, Мбит/с	Объём файла, Мбит	Время передачи, с	Реальная скорость передачи, Мбит/с
a				
b				
g				
n				
ac				

8. Сравнить полученные результаты с максимальной и достижимой скоростями передачи, полученной в лабораторной работе № 2. Объяснить отличие полученной скорости передачи от максимальной и достижимой.

9. Произвести измерения времени передачи файла при высоком и низком уровне сигнала для сети с максимальной из исследованных стандартов IEEE 802.11 теоретической скоростью передачи. Результаты измерений отобразить в таблице 2.

Таблица 2 Результаты измерений реальной скорости передачи файла при разных значениях уровня сигнала

Версия стандарта IEEE 802.11	Уровень сигнала	Объём файла, Мбит	Время передачи, с	Реальная скорость передачи, Мбит/с
	Высокий			
	Низкий			

Объясните полученный результат.

Контрольные вопросы

- 1. Что понимается под архитектурой «клиент-сервер»?
- 2. Для чего предназначены и используются FTP-серверы и FTP-клиенты?
- 3. Какова максимальная скорость передачи данных для различных версий стандарта Wi-Fi 802.11a/b/g/n/ac?
- 4. В чем отличие достижимой и реальной скорости передачи информации в сети Wi-Fi?
- 5. Почему уровень сигнала в сети Wi-Fi приводит к изменению достижимой скорости передачи данных?
- 6. От каких основных факторов зависит реальная скорость передачи данных по сети Wi-Fi?

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

1. Олифер, В.Г. Компьютерные сети. Принципы, технологии, протоколы: учебник / Олифер В.Г., Олифер Н.А. – СПб.: Питер, 2020.

СПОСОБЫ ПОДКЛЮЧЕНИЯ К INTERNET ДОМАШНЕЙ ЛОКАЛЬНОЙ СЕТИ

Подключение по абонентской телефонной линии

Подключение по абонентской телефонной линии осуществляется с помощью xDSL-модема (Digital Subscriber Line – цифровая абонентская линия) и частотного разделителя (сплиттера).

В обозначении xDSL-модема буква «х» относится к разновидности используемой абонентской линий:

- ADSL (Asymmetric DSL);
- VDSL (Very high speed DSL).

Модемы ADSL и VDSL отличаются максимальной скоростью обмена информацией по абонентской линии. Обмен осуществляется с различной скоростью передачи информации в двух разных направлениях:

- в нисходящем потоке, т.е. из линии к абонентскому модему (Down Stream);
- в восходящем потоке, т.е. в линию от абонентского модема (Up Stream).

Сплиттер выполняет функции частотного разделителя для телефона, работающего на низких частотах, и xDSL модема, работающего на высоких частотах. За счёт разделения по частоте сплиттер позволяет телефону работать одновременно с передачей цифровых данных и доступом в Internet через общую телефонную линию связи.

Схема соединений и внешний вид ADSL-сплиттера и ADSL-модема показан на Рис. П-1.

Рис. П-1. Схема подключения и вид ADSL- модема и сплиттера

Сплиттер имеет один входной разъём типа RJ-11 для подключения к абонентской телефонной линии и два выходных разъёма для телефона и модема (RJ-11 и RJ-45 соответственно).

Выходной интерфейс xDSL-модема может быть в виде интерфейса USB или Ethernet, и подключаться к аналогичному разъёму компьютера, маршрутизатора или точки доступа сети Wi-Fi.

Подключение с помощью пассивной оптической сети GPON

Пассивная оптическая сеть GPON (Gigabit Passive Optical Network) – это гигабитная сеть, обеспечивающая передачу данных по оптоволокну с гигабитной скоростью.

Подключение к сети GPON осуществляется с помощью медиаконвертера, осуществляющего преобразование оптических сигналов в электрические в соответствии со стандартом Ethernet.

Схема подключения медиаконвертера GPON-Ethernet и его внешний вид показаны на Рис. П-2.

Рис. П-2. Схема подключения и вид медиаконвертера GPON-Ethernet

К медиаконвертеру GPON-Ethernet может быть подключён непосредственно компьютер или домашняя локальная сеть с помощью маршрутизатора.

Подключение с помощью спутникового канала связи

В данном варианте подключения используются спутниковые каналы, предназначенные для организации доступа в Internet через геостационарные спутники.

Типичный комплект подключения состоит из параболической антенны типа VSAT (Very Small Aperture Terminal), усилителя сигнала и спутникового модема. Внешний вид абонентского комплекса спутниковой связи представлен на Рис. П-3.

Рис. П-3. Спутниковый комплекс для подключения к сети Internet

Высокочастотный сигнал от усилителя передается по коаксиальному кабелю в модем, который осуществляет преобразование поступающих данных в формат Ethernet. Антенна настраивается на геостационарный спутник по максимуму принимаемого сигнала. К спутниковому модему непосредственно подключается компьютер или маршрутизатор.

Такой комплекс рекомендуется использовать в тех местах, где отсутствует возможность подключения к провайдеру Internet, а также когда скорость обмена данными другими способами недостаточна. Например, в компании «Газпром» доступ в Internet на скорости до 100 Мбит/с обеспечивается через геостационарный спутник Ямал 601.

Подключение с помощью модема сотовой сети 4G/LTE

Сети сотовой связи 4G/LTE обеспечивают достаточно высокую скорость обмена данными (до 100 Мбит/с) и позволяют подключать к Internet не только отдельные компьютеры, но и локальные сети.

Для подключения к Internet через сеть сотовой связи 4G/LTE используются:

- радиомодем 4G/LTE с SIM-картой и интерфейсом USB;
- внешняя радиоантенна диапазона 4G/LTE (2,5-2,7 ГГц), если уровень сигнала сотовой связи недостаточен для применения антенны, встроенной в модем;
- коаксиальный кабель для подключения внешней антенны к модему.

Внешний вид указанных элементов и схема их соединения показаны на Рис. П-4. USB-модем показан со снятой крышкой для демонстрации места установки SIM-карты.

Внешние антенны подключаются непосредственно к модему коаксиальным кабелем с помощью специальных разъемов. Существует несколько типов подобных разъемов, поэтому при подключении следует убедиться в их совместимости.

Рис. П-4. Схема соединений и внешний вид элементов для подключения компьютера к Internet через модем сети сотовой связи 4G/LTE

Если необходимо с помощью 4G/LTE-модема организовать доступ в Internet домашней локальной сети, модем должен быть подключён к интерфейсу USB маршрутизатора.

Некоторые модемы могут комплектоваться встроенной точкой доступа Wi-Fi. В этом случае нет необходимости в непосредственном подключении модема к компьютеру через порт USB. Для функционирования такого устройства необходимо только обеспечить ему электропитание с помощью блока питания с разъемом USB. Пример такого подключения показан на Рис. П-5.

Блок питания USB Модем 4G/LTE со встроенной точкой доступа Wi-Fi

Рис. П-6. Схема подключения локальной сети к Internet через модем 4G/ LTE с встроенной точкой доступа Wi-Fi

Подключение с помощью смартфона

Данный вариант подключения удобен в дороге или в том случае, когда кабельное подключение к поставщику услуг (провайдеру Internet) не представляется возможным. Схема подключения к Internet с помощью смартофона показана на Рис. П-6.

Рис. П-6. Схема подключения к Internet с помощью смартфона

Смартфон может выполнять функции модема 4G/LTE или модема 4G/LTE с встроенной точкой доступа Wi-Fi. При этом возможны следующие варианты подключения смартфона к компьютеру:

- по кабелю USB;
- по радиоканалу BlueTooth;
- по радиоканалу Wi-Fi.

Как легко видеть, в данном случае смартфон выполняет функции модема сотовой связи с встроенной точкой доступа Wi-Fi.

СПОСОБЫ ОРГАНИЗАЦИИ ДОМАШНЕЙ WI-FI СЕТИ

Использование встроенной в маршрутизатор точки доступа Wi-Fi

Внешний вид маршрутизатора с встроенной точкой доступа Wi-Fi и компьютеры домашней локальной сети показаны на Рис. П-7.

Рис. П-7. Внешний вид маршрутизаторов со встроенной точкой доступа Wi-Fi

Маршрутизатор, с одной стороны, обеспечивает подключение к сети Internet через соответствующий интерфейс, как это рассмотрено в Приложении 1 и исследуется в Лабораторной работе № 1. С другой стороны, он формирует беспроводную локальную сеть за счёт встроенной в него точки доступа Wi-Fi.

Стандарты Wi-Fi (IEEE 802.11a/b/g/n/ac), по которым работает беспроводная сеть, и возможность одновременного функционирования в частотных диапазонах 2.4 ГГц и 5 ГГц, определяются конкретной моделью маршрутизатора.

Использование автономной точки доступа Wi-Fi

Автономные точки доступа Wi-Fi используются для построения домашней беспроводной локальной сети в том случае, когда для доступа в Internet применяется маршрутизатор, в котором отсутствует встроенная точка доступа Wi-Fi или такая точка доступа не обеспечивает требуемую зону покрытия для беспроводной сети.

Примеры внешнего вида автономных точек доступа Wi-Fi показаны на Рис. П-8.

Рис. П-8. Внешний вид автономных точек доступа Wi-Fi

Автономные точки доступа Wi-Fi могут иметь несколько конструктивных исполнений:

- с внешними или встроенными антеннами;
- для диапазона радиочастот 2.4 ГГц, или 5 ГГц, или для обоих диапазонов;
- для установки на стену, потолок или на кронштейн;
- для установки в помещении (Indoor) и вне помещений (Outdoor);
- с электропитанием по кабелю сети Ethernet (Power over Ethernet PoE) или от стандартной сети 220B/50Гц.

Интерфейсом связи точки доступа Wi-Fi с проводной локальной сетью или с устройством доступа в Internet служит разъём Ethernet RJ-45 (см. Рис. П2-2). Как и встроенные в маршрутизатор точки доступа, автономные точки доступа поддерживают различные стандарты Wi-Fi (IEEE 802.11a/b/g/n/ac) и могут функционировать в двух частотных диапазонах одновременно.

Использование встроенной в 4G/LTE модем точки доступа Wi-Fi

В ряде случаев для осуществления подключения к сети Internet используются модемы сотовой связи 4G/LTE. Некоторые модели таких модемов оснащаются встроенными точками доступа Wi-Fi, что позволяет им функционировать в качестве примитивных маршрутизаторов,

обеспечивая передачу информации между сетью сотовой связи и сетью Wi-Fi.

Для функционирования модема с встроенной точкой доступа необходимо обеспечить его электропитание с помощью стандартного блока питания с USB-разъемом. Схема использования модема 4G/LTE в качестве точки доступа Wi-Fi показана на Рис. П-9.

Рис. П-9. Схема использования 4G/LTE модема со встроенной точкой доступа Wi-Fi

Модем 4G/LTE изображен без блока питания и без антенн, со снятой крышкой, чтобы показать место установки SIM-карты. Таким образом, такой модем обеспечивает подключение к нему через встроенную точку доступа Wi-Fi нескольких беспроводных устройств (планшетов, смартфонов, компьютеров). Как правило, из-за ограниченности ресурсов модема и возможностей встроенной в него точки доступа Wi-Fi количество одновременно работающих устройств не превышает 10, а функционирование беспроводной сети обеспечивается только в одном частотном диапазоне (как правило, 2.4 ГГц).

Использование смартфона в качестве точки доступа Wi-Fi

Современные модели смартфонов поддерживают функцию точки доступа Wi-Fi и могут использоваться в этом качестве. Схема использования такого смартфона как точки доступа Wi-Fi приведена на Рис. П-10. Данный вариант подключения функционально эквивалентен предыдущему.

Рис. П-10. Схема использования смартфона в качестве точки доступа Wi-Fi

Приложение 3

СПОСОБЫ ПОДКЛЮЧЕНИЯ КОМПЬЮТЕРА К WI-FI СЕТИ

Использование внутреннего контроллера Wi-Fi

Внутренние контроллеры Wi-Fi сети могут быть интегрированы на материнскую плату компьютера, что характерно для ноутбуков, или установлены в компьютер в виде отдельной платы с интерфейсом РСI-E. Внешний вид контроллеров Wi-Fi, выполненных в виде отдельной платы, показан на Рис. П-11.

Рис. П-11. Внешний вид внутренних контроллеров Wi-Fi

Контроллеры для подключения компьютера к сети Wi-Fi различаются по следующим параметрам:

- поддерживаемые стандарты Wi-Fi;
- возможность одновременного функционирования в частотных диапазонах 2.4 ГГц и 5 ГГц;
- наличие, тип и количество антенн;
- конструкция и размеры платы.

Использование внешних контроллеров Wi-Fi

Если внутренние контроллеры недоступны, для подключения к сети Wi-Fi следует применять внешние контроллеры. Наиболее

распространенными и простыми в использовании являются внешние контроллеры, подключаемые по интерфейсу USB. Такие контроллеры чаще всего используют внутреннюю антенну, но могут комплектоваться и внешней антенной для расширения зоны покрытия сети Wi-Fi. Как и внутренние контроллеры, данные устройства могут поддерживать несколько стандартов Wi-Fi (IEEE 802.11a/b/g/n/ac) и функционировать одновременно в двух частотных диапазонах.

Примеры внешних USB-контроллеров для подключения компьютера к сети Wi-Fi показаны на Рис. П-12.

Рис. П-12. Примеры внешних USB-контроллеров Wi-Fi

Наряду с внешними USB-контроллерами для подключения к сети Wi-Fi могут использоваться внешние контроллеры, подключаемые к компьютеру по интерфейсу Ethernet (разъем RJ-45). В этом случае такой контроллер функционирует в качестве моста между проводной и беспроводной локальной сетью. Пример такого внешнего контроллера приведен на Рис. П-13.

RJ-45 Электропитание Ethernet

Рис. П-13. Пример внешнего контроллера Wi-Fi с подключением по интерфейсу RJ-45 Ethernet

Использование смартфона в качестве внешнего контроллера Wi-Fi

Если перечисленные варианты подключения компьютера к сети Wi-Fi реализовать не удается, возможно применение смартфона в качестве внешнего USB-контроллера Wi-Fi.

Схема такого подключения показана на Рис. П-14.

Рис. П-14. Использование смартфона в качестве внешнего USBконтроллера для подключения к сети Wi-Fi

Функционально такое подключение эквивалентно использованию внешнего USB контроллера Wi-Fi, но может не поддерживаться некоторыми моделями смартфонов.

Производственно-практическое издание

Рыбинцев Владимир Олегович Широков Владимир Леонидович

ПОСТРОЕНИЕ ДОМАШНИХ ЛОКАЛЬНЫХ ВЫЧИСЛИТЕЛЬНЫХ СЕТЕЙ Лабораторные работы № 1-3

Методические указания

Редактор ххххххххх Компьютерная вёрстка хххххххххх

Подписано в печать дд.мм.2023 Печать цифровая Формат 60х84/16 Физ. печ. л. х,у Тираж 100 экз Изд. № nn-ууу Заказ ххх/И

Оригинал-макет подготовлен РИО НИУ МЭИ, 111250, Москва, Красноказарменная ул., д. 14 Отпечатано в типографии НИУ МЭИ, 111250, Москва, Красноказарменная ул., д. 13