$E(X) = \mu$ Population First $\sum X_i/n = \overline{X}$. Sample Let X_1, X_2, \ldots, X_n be a random sample from a distribution with pmf or pdf $f(x; \theta_1, \ldots, \theta_m)$, where $\theta_1, \ldots, \theta_m$ are parameters whose values are unknown. Then the **moment estimators** $\hat{\theta}_1, \ldots, \hat{\theta}_m$ are obtained by equating the first m sample moments to the corresponding first m population moments and solving for $\theta_1, \ldots, \theta_m$. The Method of Moments Second $\hat{\theta}$ ("theta hat") $\hat{\lambda} = 1/\overline{X}$. exponential $\hat{\theta} = \theta + \text{error of estimation}$ $\frac{1}{n}\sum X_i^2 = \alpha(\alpha + 1)\beta^2$ point estimate expected or mean square error MSE = $E[(\hat{\theta} - \theta)^2]$. $\hat{\beta} = \frac{(1/n)\sum X_i^2 - \overline{X}^2}{}$ gamma distribution $\hat{\alpha} = \frac{\Lambda}{(1/n)\sum X_i^2 - \overline{X}^2}$ Trade off: Bias? Efficient? Center: Expected value, not mean or medium $\hat{p} = \frac{X}{(1/n)\sum X_i^2 - \overline{X}^2}$ $\hat{r} = \frac{\Lambda}{(1/n)\sum X_i^2 - \overline{X}^2 - \overline{X}}$ negative binomial Prefer unbiased estiminator Natural log of the joint pmf is often easier $\hat{\sigma}^2 = S^2 = \frac{\sum (X_i - \overline{X})^2}{}$ Let X_1, X_2, \ldots, X_n have joint pmf or pdf $V(Y) = E(Y^2) - [E(Y)]^2,$ **unbiased estimator** of θ if $E(\hat{\theta}) = \theta$ $f(x_1, x_2, \ldots, x_n; \theta_1, \ldots, \theta_m)$ (6.6)where the parameters $\theta_1, \ldots, \theta_m$ have unknown values. When x_1, \ldots, x_n are the observed sample values and (6.6) is regarded as a function of $\theta_1, \ldots, \theta_m$, it is called the **likelihood function**. The maximum likelihood estimates (mle's) $\hat{\theta}_1, \ldots, \hat{\theta}_m$ are those values of the θ_i 's that maximize the likelihood function, so \widetilde{X} and any trimmed mean continuous and symmetric $f(x_1, \ldots, x_n; \hat{\theta}_1, \ldots, \hat{\theta}_m) \ge f(x_1, \ldots, x_n; \theta_1, \ldots, \theta_m)$ for all $\theta_1, \ldots, \theta_m$ Bias: E[theta_hat] - theta When the X_i 's are substituted in place of the x_i 's, the **maximum likelihood** estimators result. i.i.d Method $\hat{p} =$ X/n is an unbiased estimator of p. Maximum Likelihood Estimation $\lambda = n/\sum x_i = 1/\overline{x}$ Binomial, n and p $\sigma_{\hat{p}} = \sqrt{V(X/n)} = \sqrt{\frac{V(X)}{n^2}} = \sqrt{\frac{npq}{n^2}} = \sqrt{\frac{pq}{n}}$ exponential $\ln[f(x_1,...,x_n;\mu,\sigma^2)] = -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum (x_i - \mu)^2$ the interval from 0 to an unknown upper limit θ Unbiased estimator **Normal Distribution** $\hat{\theta}_1 = \max(X_1, \ldots, X_n).$ sigma is biased $\hat{\theta}_2 = \frac{n+1}{n} \cdot \max(X_1, \dots, X_n)$ Uniform distribution $\hat{\lambda} = \sum X_i / \sum a(R_i).$ Poisson unbiased Concept W06 Weibull $V(X) = \sigma^2 =$ $(B-A)^2/12$. The Invariance Principle Let $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m$ be the mle's of the parameters $\theta_1, \theta_2, \dots, \theta_m$. Then the $\hat{\sigma}^2 = S^2 = \frac{\sum (X_i - \overline{X})^2}{1}$ mle of any function $h(\theta_1, \theta_2, \dots, \theta_m)$ of these parameters is the function $h(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m)$ of the mle's. Estimating functions of parameters Under very general conditions on the joint distribution of the sample, when the sample size n is large, the maximum likelihood estimator of any parameter θ is approximately unbiased $[E(\hat{\theta}) \approx \theta]$ and has variance that is either as small Normal distribution as or nearly as small as can be achieved by any estimator. Stated another way, the mle $\hat{\theta}$ is approximately the MVUE of θ . Large Sample Behavior of the MLE Preferred Some Complications $\hat{\mu} = X$ is the MVUE for μ . Add-on: Solver Excel Estimator with min Variance **MVUE:** minimum variance unbiased estimator The best estimator for mu depends on distribution parameter λ so that expected lifetime is $\mu = 1/\lambda$. Complicated situation $T_r = \sum_{i=1}^r Y_i + (n-r)Y_r$ Exponential $\hat{\mu} = T_r/r$ $V(T_r/r) = 1/(\lambda^2 r),$ $\sigma_{\hat{\theta}} = \sqrt{V(\hat{\theta})}.$ The standard error normal distribution: 2 sigma estimated standard error 4 sigma

Boostrap

Let X_1, \ldots, X_n be a random sample from a pmf or pdf f(x). For $k = 1, 2, 3, \ldots$, the *k*th population moment, or *k*th moment of the distribution

f(x), is $E(X^k)$. The kth sample moment is $(1/n)\sum_{i=1}^n X_i^k$.