Perceptron_Shivani

October 17, 2021

```
[12]: %load_ext autoreload
%autoreload 2
%matplotlib inline

The autoreload extension is already loaded. To reload it, use:
    %reload_ext autoreload

[128]: import sys
    from pathlib import Path
    import matplotlib.pyplot as plt

[14]: if 'source' not in sys.path:
        sys.path.append('source')

[15]: import perceptron
    from perceptron import main

[167]: main()

starting with data point $x^{(1)}$ without outlier
        coef = [0. 1.], mistakes = 1
```


starting with data point $x^{(2)}$ without outlier coef = [0.5 2.], mistakes = 2

starting with data point $x^{(1)}$ with outlier coef = [0. 1.], mistakes = 1

starting with data point $x^{(2)}$ with outlier coef = [7. 6.], mistakes = 6

For [0, 0]

Inital Coef: [0, 0]
 coef = [6. 7.], mistakes = 7

For [1, 0]
Inital Coef: [1, 0]

coef = [0. 1.], mistakes = 1

[]: 2. For Initial coef = [0, 0], the trained coeffecients are [6. 7.]
For Initial coef = [1, 0], the trained coeffecients are [0. 1.]

The 2 training procedures is not converging to the same solution, becasuse of $_{\!\sqcup}$ $_{\!\to}$ the different initial coeffcient.

No the performance is different, 1st initial coef does 7 mistakes and $2nd_{\sqcup}$ \rightarrow initial coef does 1 mistake.

On the held out data set, it depends on the initall coef that we start with.