Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики»

Факультет математики

Минасян Левон Лерментович

О некоторых решеточных тета-рядах

Курсовая работа студента 3 курса образовательной программы бакалавриата «Математика»

Научный руководитель: Дунин-Барковский Петр Игоревич

1 Введение

В этой статье мы описываем тета-функции и тета-ряды различных решеток, а также устанавливаем их модулярность относительно различных подгрупп модулярной группы $SL_2(\mathbb{Z})$.

1.1 Историческая справка

1.2 Почему интересно

1.3 Результаты

2 Тета-функции

В данной главе мы определим тета-функции Якоби, а также тета-функции с рациональными характеристиками. Получим выражения для рядов тета-функций с полуцелыми характеристиками.

Определение 2.1.

Tema-функцией (Якоби) $\theta(z,\tau)$ называется функция

$$\theta(z,\tau) = \sum_{n \in \mathbb{Z}} \exp(2\pi i n z + \pi i n^2 \tau) \tag{1}$$

 $r de \ z \in \mathbb{C} \ u \ au \in H = \{\Im \tau > 0\}$ - верхняя полуплоскость.

Часто бывает удобно рассмотреть z=0 и заменить аргумент τ на $q=e^{i\pi\tau}$. В таких случаях будем писать $\theta(q)$ вместо $\theta(0,\tau)$.

Определение 2.2.

Tema-функцией $\theta_{a,b}$ с рациональными характеристиками $a,b\in \frac{1}{l}\mathbb{Z},l\in\mathbb{N}$ называется

$$\theta_{a,b}(z,\tau) = T_a S_b \theta(z,\tau) \tag{2}$$

где T_a,S_b суть преобразования сдвига аргумента $z\colon$ для $f=f(z):\mathbb{C}\to\mathbb{C}$ при фиксированном $au\in H$

$$S_b f(z) = f(z+b) \tag{3}$$

$$T_a f(z) = \exp\left(\pi i a^2 \tau + 2\pi i a z\right) f(z + a \tau) \tag{4}$$

Легко показать, что S_b и T_a задают однопараметрические семейства преобразований $S_{b_1+b_2}=S_{b_1}S_{b_2}$ и $T_{a_1+a_2}=T_{a_1}T_{a_2}$. Что не менее важно, они не коммутируют между собой:

$$T_a S_b f(z) = T_a f(z+b) = \exp(\pi i a^2 \tau + 2\pi i a(z+b)) f(z+a\tau+b) = \exp(2\pi i a b) S_b T_a f(z)$$
 (5)

т.е. $T_aS_b = \exp(2\pi iab)S_bT_a$

Определение 2.3.

Тета-функциями с полуцелыми характеристиками называются 4 функции

$$\theta_{1}(q) = \theta_{1/2,1/2}(0,\tau)$$

$$\theta_{2}(q) = \theta_{1/2,0}(0,\tau)$$

$$\theta_{3}(q) = \theta_{0,0}(0,\tau)$$

$$\theta_{4}(q) = \theta_{0,1/2}(0,\tau)$$
(6)

 $r \partial e$, как и ранее, $q = e^{\pi i \tau}$.

Теорема 2.4.

Имеют место следующие равенства

$$\theta_1(q) = -\sum_{n \in \mathbb{Z}} (-1)^{n-1/2} q^{(n+1/2)^2}$$

$$\theta_2(q) = \sum_{n \in \mathbb{Z}} q^{(n+1/2)^2}$$

$$\theta_3(q) = \sum_{n \in \mathbb{Z}} q^{n^2}$$

$$\theta_4(q) = \sum_{n \in \mathbb{Z}} (-1)^n q^{n^2}$$

r de, как и ранее, $q = e^{\pi i \tau}$

Доказательство.

$$\theta_4(q) = \theta_{0,1/2}(0,\tau) = \sum_{n \in \mathbb{Z}} \exp(2\pi i n(0 + \frac{1}{2}) + \pi i n^2 \tau) = \sum_{n \in \mathbb{Z}} (-1)^n \exp(\pi i n^2 \tau) = \sum_{n \in \mathbb{Z}} (-1)^n q^{n^2}$$

$$\theta_2(q) = \theta_{1/2,0}(0,\tau) = \exp\left(\pi i (1/2)^2 \tau + 2\pi i (1/2) \cdot 0\right) \sum_{n \in \mathbb{Z}} \exp\left(2\pi i n (0 + \frac{1}{2}\tau) + \pi i n^2 \tau\right) = \sum_{n \in \mathbb{Z}} \exp\left(\pi i (n^2 + n + 1/4)\tau\right) = \sum_{n \in \mathbb{Z}} q^{(n+1/2)^2}$$

$$\theta_1(q) = \theta_{1/2,1/2}(0,\tau) = \exp\left(\pi i (1/2)^2 \tau + 2\pi i (1/2) \cdot (0+1/2)\right) \sum_{n \in \mathbb{Z}} \exp\left(2\pi i n (0+1/2 + \frac{1}{2}\tau) + \pi i n^2 \tau\right) = \sum_{n \in \mathbb{Z}} \exp\left(\pi i (n+1/2)\right) \exp\left(\pi i (n^2 + n + 1/4)\tau\right) = \sum_{n \in \mathbb{Z}} (-1)^{n+1/2} q^{(n+1/2)^2}$$

Отныне для удобства $\theta_{0,0}, \theta_{0,1/2}, \theta_{1/2,0}, \theta_{1/2,1/2}$ будем обозначать как $\theta_{00}, \theta_{01}, \theta_{10}, \theta_{11}$ соответственно.

3 Модулярные формы

3.1 Определения и базовые свойства

Определим понятие модулярных форм и докажем базовые утверждения.

Рассмотрим набор проекций

$$\gamma_N : SL_2(\mathbb{Z}) \to SL_2(\mathbb{Z}/n\mathbb{Z})$$
 (7)

Обозначим $\Gamma_N := \ker \gamma_N$. Ясно, что ядра Γ_N таких отображений состоят из матриц $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, где $a,b,c,d \in \mathbb{Z}$ и $a \equiv d \equiv 1 \pmod{N}, \ b \equiv c \equiv 0 \pmod{N}$.

Определение 3.1.

Модулярной формой веса k уровня N называется голоморфная функция $f: H \to \mathbb{C}$, удовлетворяющая следующим условиям:

(M1):
$$\forall \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma_N$$
 верно:

$$f\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k f(\tau) \tag{8}$$

(M2): $\exists c, d > 0 \text{ makue}, \text{ umo } |f(\tau)| \leq c \text{ npu } \Im \tau \geq d$

(M3): $\forall s \in \mathbb{Q} \exists c_s, d_s > 0$:

$$|f(\tau)| \le \frac{c_s}{|\tau - s|^k} \tag{9}$$

 $npu |\tau - (s + i \cdot d_s)| \le d_s$

Модулярные формы веса k уровня N будем обозначать $\operatorname{Mod}_k^{(N)}$.

Введем обозначение $e_{\gamma}=(c\tau+d)^k$ для $\gamma=\begin{bmatrix} a & b \\ c & d \end{bmatrix}\in SL_2(\mathbb{Z}).$ Вес k будет определяться из контекста.

Утверждение 3.1.

 $\mathit{Mod}_k^{(N)}$ образуют векторное пространство над $\mathbb C$

Доказательство. Пусть $f,g\in \mathrm{Mod}_k^{(N)}$. Тогда $f(\gamma\tau)=e_\gamma(\tau)f(\tau)$ и $g(\gamma\tau)=e_\gamma(\tau)g(\tau)$. Значит,

$$(f+g)(\gamma\tau) = f(\gamma(\tau)) + g(\gamma(\tau)) = e_{\gamma}(\tau)f(\tau) + e_{\gamma}(\tau)g(\tau) = e_{\gamma}(\tau)(f(\tau) + g(\tau))$$

Проверим (M2):

$$|f(\tau) + g(\tau)| \le C_f + C_g$$
 при $\Im \tau \ge \max(D_f, D_g)$

где $(C_f, D_f), (C_g, D_g)$ константы из (M2) для f, g.

Проверим (M3). Фиксируем произвольный $s \in \mathbb{Q}$. Тогда для некоторых $c_s^f, d_s^f, c_s^g, d_s^g > 0$:

$$|f(au)| \leq rac{c_s^f}{| au - s|^k}$$
 при $| au - s - i \cdot d_s^f| \leq d_s^f$

$$|g(au)| \leq rac{c_s^g}{| au - s|^k}$$
 при $| au - s - i \cdot d_s^g| \leq d_s^g$

Обозначим $c_s := c_s^f + c_s^g, d_s := \min(d_s^f, d_s^g)$. Тогда

$$|f(au) + g(au)| \le rac{c_s}{| au - s|^k}$$
 при $| au - s - i \cdot d_s| \le d_s$

Для $\lambda \in \mathbb{C}$ все три условия (M1), (M2), (M3), очевидно, выполняются.

Теорема 3.2.

 $Mod^{(N)}$ образует градуированную алгебру:

$$Mod^{(N)} \stackrel{def}{=} \bigoplus_{k>0} Mod_k^{(N)}$$

Доказательство. Пусть $f \in \operatorname{Mod}_k^{(N)}, g \in \operatorname{Mod}_l^{(N)}$. Достаточно показать, что $fg \in \operatorname{Mod}_{k+l}^{(N)}$. Условия (M1), (M2), (M3) для $f \cdot g$ проверяются аналогично f + g из утверждения выше.

Определение 3.3.

Голоморфная функция $f: H \to \mathbb{C}$ называется модулярной формой веса k относительно подгруппы $\Gamma \subset SL_2(\mathbb{Z})$, если она удовлетворяет условию (M1) для всех элементов $\gamma \in \Gamma$.

Утверждение 3.2.

$$e_{\gamma_1\gamma_2}(\tau) = e_{\gamma_1}(\gamma_2(\tau))e_{\gamma_2}(\tau)$$

Доказатель ство. Достаточно разделить и умножить левую часть на $e_{\gamma_2(\tau)}$

Утверждение 3.3.

Если функция f удовлетворяет условию модулярности (M1) для $\gamma_1, \gamma_2 \in SL_2(Z)$, то она удовлетворяет (M1) и для $\gamma_1\gamma_2$.

Доказательство. Запишем условие (M1) для γ_1 и γ_2 :

$$f(\gamma_1(\tau)) = e_{\gamma_1}(\tau)f(\tau)$$

$$f(\gamma_2(\tau)) = e_{\gamma_2}(\tau)f(\tau)$$

Сразу следует нужное равенство:

$$f(\gamma_1(\gamma_2(\tau))) = e_{\gamma_1}(\gamma_2(\tau))f(\gamma_2(\tau)) = e_{\gamma_1}(\gamma_2(\tau))e_{\gamma_2}(\tau)f(\tau) = e_{\gamma_1\gamma_2}(\tau)f(\tau)$$

Следствие 3.1.

Функция f модулярна относительно $\Gamma \subset SL_2(\mathbb{Z})$ тогда и только тогда, когда она удовлетворяет (M1) для генераторов Γ .

3.2 Действие $SL_2(\mathbb{Z})$ на тета-функции

Выведем вспомогательное функциональное уравнение, которое в дальнейшем поможет нам установить модулярность тета-функций.

Теорема 3.4.

Для тета-функции $\theta(z,\tau)$ и любого набора целых $a,b,c,d\in\mathbb{Z},\ ad-bc=1,\ ab\ u\ cd\ четны,\ верны следуещие функциональные равенства:$

(F1):

$$\theta\left(\frac{z}{c\tau+d}, \frac{a\tau+b}{c\tau+d}\right) = \zeta(c\tau+d)^{1/2} \exp\left(\frac{\pi i c z^2}{c\tau+d}\right) \theta(z,\tau)$$

 $\epsilon de\ \zeta^8=1\ u\ \zeta$ определяется в зависимости от четности $c,\ d$:

1. с четно, д нечетно

$$\zeta = i^{(d-1)/2} \cdot \left(\frac{c}{|d|}\right)$$

2. с нечетно, д четно

$$\zeta = \exp\left(-\pi i c/4\right) \cdot \left(\frac{d}{c}\right)$$

 $\epsilon \partial e\left(rac{x}{y}
ight)$ — символ Якоби для $x,\ y$

Доказатель ство. При c=0 равенство, очевидно, выполняется: $d=\pm 1, a=\pm 1.$ Отныне будем считать c>0. Рассмотрим функцию

$$\Psi(y,\tau) = \exp(\pi i c(c\tau + d)y^2)\theta((c\tau + d)y,\tau)$$

Она будет периодичной относительно сдвигов $y\mapsto y+1$ и квазипериодичной относительно сдвига $y\mapsto y+(a\tau+b)/(c\tau+d)$:

$$\Psi(y + \frac{a\tau + b}{c\tau + d}) = \exp(-\pi i \frac{a\tau + b}{c\tau + d} - 2\pi i y) \cdot \Psi(y, \tau)$$
$$\Psi(y, \tau) = \phi(\tau)\theta(y, (a\tau + b)/(c\tau + d))$$

где $\phi(\tau)$ – некоторая неизвестная функция. Оба эти равенства показать нетрудно, см. [1] §7.

$$\theta(z,\tau) = \phi(\tau) \exp(-\pi i c z^2 / (c\tau + d)) \theta(z / (c\tau + d), ())$$

Проинтегрируем обе части нижнего равенства по y на отрезке [0,1]:

$$\int_{[0,1]} \Psi(y,\tau) dy = \phi(\tau) \cdot \int_{[0,1]} \theta(y, (a\tau + b)/(c\tau + d)) = \phi(\tau)$$

$$\phi(\tau) = \int_{[0,1]} \exp(\pi i c(c\tau + d)y^2) \theta((c\tau + d)y, \tau) dy$$

$$= \sum_{n \in \mathbb{Z}} \exp(-\pi i n^2 d/c) \int_{[0,1]} \exp(\pi i (cy + n)^2 (\tau + d/c)) dy$$

$$= \sum_{n=1}^{\infty} \exp(-\pi i n^2 d/c) \int_{\mathbb{R}} \exp(\pi i c^2 y^2 (\tau + d/c)) dy$$

$$\int_{\mathbb{R}} (\pi i c^2 y^2 (\tau + d/c)) dy = |\tau = it - d/c|$$

$$= \int_{\mathbb{R}} \exp(-\pi c^2 y^2 t) dy = |u = ct^{1/2} y| = \frac{1}{ct^{1/2}} \int_{\mathbb{R}} \exp(-\pi u^2) du = \frac{1}{ct^{1/2}}$$

Значит,

$$\phi(\tau) = \frac{1}{c \cdot ((\tau + d/c)/i)^{1/2}} \sum_{n=1..c} \exp(-\pi i n^2 d/c)$$
$$= \frac{1}{c\tau + d} \zeta$$

где $\zeta^8 = 1$

Индукцией по |c| нетрудно показать, что ζ равен в точности тому, о чем говорится в утверждении, см. [1] §7.

Следствие 3.2.

$$\theta_{00}(z,\tau+1) = \theta_{01}(z,\tau)$$

$$\theta_{01}(z,\tau+1) = \theta_{00}(z,\tau)$$

$$\theta_{10}(z,\tau+1) = \exp(\pi i/4)\theta_{10}(z,\tau)$$

$$\theta_{11}(z,\tau+1) = \exp(\pi i/4)\theta_{11}(z,\tau)$$

Доказательство. Формулы слева получаются прямой подстановкой в соответствующий ряд. Формулы справа получаются подстановкой в уравнение (F1). □

3.3 Другое действие $SL_2(\mathbb{Z})$ на модулярные формы

До этого мы рассматривали действие $SL_2(\mathbb{Z})$ на голоморфных функциях $f: H \to \mathbb{C}$ в виде дробно-линейного преобразования аргумента. Оно "портило" f в том смысле, что если $f(\tau)$ была модулярной формой, то $f(\gamma(\tau)) = (c\tau + d)^k f(\tau)$, вообще говоря, модулярной формой уже не являлась.

Для произвольного $\gamma \in SL_2(\mathbb{Z})/\Gamma_N, \, f \in \mathrm{Mod}_k^{(N)}$ рассмотрим

$$[f(\tau)]^{\gamma} = e_{\gamma}^{-1}(\tau)f(\gamma\tau)$$

Утверждение 3.4.

 $[f(au)]^{\gamma}$ будет модулярной формой того же веса и уровня, что и $f(au) \in \mathit{Mod}_k^{(N)}$.

Доказательство.

$$[f(\alpha \tau)]^{\gamma} = \frac{f(\gamma \alpha \tau)}{e_{\gamma}(\alpha \tau)} = \frac{f(\gamma \alpha \tau)}{e_{\gamma \alpha}(\tau)} \cdot e_{\alpha}(\tau)$$

но $\gamma \alpha \in \Gamma_N$, поэтому

$$f(\gamma \alpha \tau) = e_{\gamma \alpha}(\tau) f(\tau)$$

Утверждение 3.5.

$$\begin{split} [\theta_{00}^2(0,\tau)]^\alpha &= \theta_{01}^2(0,\tau) \\ [\theta_{00}^2(0,\tau)]^\alpha &= \theta_{00}^2(0,\tau) \\ [\theta_{00}^2(0,\tau)]^\alpha &= i\theta_{10}^2(0,\tau) \\ [\theta_{00}^2(0,\tau)]^\alpha &= i\theta_{10}^2(0,\tau) \\ \end{split}$$

$$\begin{aligned} [\theta_{00}^2(0,\tau)]^\beta &= -i\theta_{10}^2(0,\tau) \\ [\theta_{00}^2(0,\tau)]^\beta &= -i\theta_{01}^2(0,\tau) \\ [\theta_{00}^2(0,\tau)]^\beta &= -i\theta_{01}^2(0,\tau) \end{aligned}$$

Доказатель ство. Достаточно подставить z=0 в нужные уравнения утверждения 6.5.

3.4 Как строить модулярные формы с помощью тета-функций

Установим факт модулярности тета-функций, а также покажем, как построить функцию, модулярную относительно всей $SL_2(\mathbb{Z})$.

Утверждение 3.6.

Квадраты $\theta_{00}(z=0,\tau)^2, \theta_{01}(z=0,\tau)^2, \theta_{10}(z=0,\tau)^2$ тета-констант являются модулярными формами веса 1 уровня 4.

Доказатель ство. Из равенства (F1) для тета-константы $\theta_{00}(0,\tau)$ следует:

$$\theta_{00} \left(0, \frac{a\tau + b}{c\tau + d} \right)^2 = \zeta^2 (c\tau + d)\theta_{00}(0, \tau)^2$$

и в силу $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma_4$ можно заключить $\zeta=\pm 1.$

Теперь, в силу равенств из утверждения выше, $\theta_{01}(0,\tau)$, $\theta_{10}(0,\tau)$ являются модулярными формами того же веса и уровня, что и $\theta_{00}(0,\tau)$.

Более того, пространство $\langle \theta_{00}^2(0,\tau), \theta_{01}^2(0,\tau), \theta_{10}^2(0,\tau) \rangle \subset \operatorname{Mod}_1^{(4)} SL_2(\mathbb{Z})$ -инвариантно, поэтому для проверки условий ограниченности (M2), (M3) в $s \in \mathbb{Q} \cup \infty$ достаточно ограниченности всех трех функций вблизи $s = \infty$, т.к. всегда можно найти подходящее преобразование $\gamma \in SL_2(\mathbb{Z})$ т.ч. $\gamma(s) = \infty$.

$$\begin{split} |\theta_{00}(0,\tau)| &= |\sum_{n \in \mathbb{Z}} \exp(\pi i n^2 \tau)| \leq \sum_{n \in \mathbb{Z}} \exp(-\pi i n^2 \cdot \Im \tau) \\ &= 1 + 2 \sum_{n \in \mathbb{N}} \exp(-\pi i \cdot \Im \tau)^{n^2}. \\ &\sum_{n \in \mathbb{N}} \exp(-\pi i \cdot \Im \tau)^{n^2} \leq \frac{t}{1-t} = O(t) \quad \text{при} \quad \Im \tau \to \infty, \end{split}$$

где $t = \exp(-\pi i \cdot \Im \tau) \to 0$ при $\Im \tau \to \infty$.

Точно так же, как и для θ_{00} получаем ограниченность при $\Im \tau \to \infty$:

$$\theta_{01}(0,\tau) = 1 + O(\exp(-\pi\Im\tau))$$

$$\theta_{10}(0,\tau) = O(\exp(-\pi\Im\tau))$$

Утверждение 3.7.

 $heta^8_{00}(0, au)+ heta^8_{01}(0, au)+ heta^8_{10}(0, au)$ является модулярной формой веса 4 относительно всей модулярной группы $SL_2(\mathbb{Z}).$

Доказатель ство. По-прежнему, $\alpha = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \beta = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ – генераторы $SL_2(\mathbb{Z})$.

Из утверждения выше: $\theta_{00}^8(0,\alpha\tau) = \theta_{01}^8(0,\tau), \ \theta_{01}^8(0,\alpha\tau) = \theta_{00}^8(0,\tau), \ \theta_{00}^8(0,\alpha\tau) = \theta_{01}^8(0,\tau), \ a$ также:

$$\theta_{00}^{8}(0,\beta\tau) = \left(\theta_{00}^{2}(0,\beta\tau)\right)^{4} = \left(-i\tau\theta_{00}^{2}(0,\tau)\right)^{4} = \tau^{4}\theta_{00}^{8}(0,\tau).$$

Аналогично $\theta_{01}^8(0,\beta\tau)=\tau^4\theta_{10}^8(0,\tau)$ и $\theta_{00}^8(0,\beta\tau)=\tau^4\theta_{10}^8(0,\tau)$. Значит,

$$\theta_{00}^8(0,\beta\tau) + \theta_{01}^8(0,\beta\tau) + \theta_{10}^8(0,\beta\tau) = \tau^4(\theta_{00}^8(0,\tau) + \theta_{01}^8(0,\tau) + \theta_{10}^8(0,\tau))$$

4 Решеточные тета-ряды

Определим решеточные тета-ряды и для некоторых решеток выразим их тета-ряды через тета-функции с полуцелыми характеристиками.

Определение 4.1.

Pешеточным тета-рядом для целочисленной решетки $\Lambda \subset \mathbb{R}^k$ называется функция

$$\theta_{\Lambda}(q) = \sum_{x \in \Lambda} q^{x \cdot x}$$

где $x\cdot y$ означает скалярное произведение в смысле $\sum_i x_i y_i$. Мы будем обозначать $N(x)=x\cdot x$.

Например, для решетки $\Lambda=\mathbb{Z}$ соответствующий тета-ряд $\theta_{\mathbb{Z}}$ будет равен

$$\theta_{\mathbb{Z}}(q) = \sum_{x \in \mathbb{Z}} q^{x \cdot x} = \sum_{x \in \mathbb{Z}} \exp(\pi i x^2 \tau) = \theta_{00}(0, \tau)$$

Утверждение 4.1.

 $\Lambda\subset\mathbb{R}^k,\Omega\subset\mathbb{R}^l$. Тогда тета-ряд решетки $\Lambda\oplus\Omega\subset\mathbb{R}^{k+l}$ есть произведение тета-рядов решеток Λ и Ω .

Доказательство. Заметим, что если $x=(x_1,x_2)$, где $x_1\in\Lambda, x_2\in\Omega$, то $x\cdot x=x_1\cdot x_1+x_2\cdot x_2$. Тогда

$$\sum_{x\in\Lambda\oplus\Omega}q^{x\cdot x}=\sum_{x_1\in\Omega,x_2\in\Lambda}q^{x_1\cdot x_1+x_2\cdot x_2}=\sum_{x_1\in\Omega}q^{x_1\cdot x_1}\cdot\sum_{x_2\in\Omega}q^{x_2\cdot x_2}$$

Утверждение 4.2.

$$\theta_{\mathbb{Z}^n} = \theta_{\mathbb{Z}}^n = \theta_{00}^n(0,\tau)$$

Доказательство.

Определение 4.2.

 $\mathit{Усредненный тета-ряд решетки \Lambda }$ склеенной по векторам $u_l, l=1...s$

$$\partial = \cup_{l=0}^{s} (u_l + \Lambda)$$

$$\theta_{\triangleright}(q) = \frac{1}{s} \sum_{l=1}^{s} \sum_{k=1}^{s} \sum_{x \in \Lambda} q^{N(x+u_l - u_k)} = \theta_{\Lambda}(q) + \frac{2}{s} \sum_{l < k} \sum_{x \in \Lambda} q^{N(x+u_l - u_k)}$$

Определение 4.3.

$$D_n = \{ x \in \mathbb{Z}^n | \sum_i x_i = 0 \pmod{2} \}$$

Лемма 4.1.

Tema-ряд $pewemku D_n$ равен

$$\frac{1}{2} \cdot (\theta_3^n(q) + \theta_4^n(q))$$

Доказательство. Сначала индукцией по n покажем, что если a_k – коэффициент при q^k у ряда $\theta_3^n(q)$, то у ряда $\theta_4^n(q)$ коэффициент при q^k равен $(-1)^k a_k$.

База n=1 сразу следует из определения. Обозначим $\theta_3(q)=\sum_{k=0}^\infty b_k q^k$. Шаг индукции: $\theta_3^{n-1}(q)=\sum_{k=0}^\infty a_k q^k$, $\theta_4^{n-1}(q)=\sum_{k=0}^\infty (-1)^k a_k q^k$

$$\theta_3^n = \sum_{k=0}^{\infty} a_k q^k \cdot \sum_{k=0}^{\infty} b_k q^k = \sum_{k=0}^{\infty} \left(\sum_{j=0}^k a_j b_{k-j} \right) q^k$$

$$\theta_4^n = \sum_{k=0}^{\infty} (-1)^k a_k q^k \cdot \sum_{k=0}^{\infty} (-1)^k b_k q^k = \sum_{k=0}^{\infty} \left(\sum_{j=0}^k (-1)^j a_j (-1)^{k-j} b_{k-j} \right) q^k = \sum_{k=0}^{\infty} \left(\sum_{j=0}^k a_j b_{k-j} \right) (-1)^k q^k$$

Теперь рассмотрим произвольный $x \in \mathbb{Z}^n$. Очевидно, что $\sum x_i = 0 \mod 2 \iff \sum x_i^2 = 0 \mod 2$. Это означает, что тета-ряд D_n есть тета-ряд \mathbb{Z}^n с вычтенными нечетными степенями, что в точности равно

$$1/2 \cdot (\theta_3^n(q) + \theta_4^n(q))$$

Лемма 4.2.

Тета-ряд решетки $(1/2,...,1/2) + D_n$ равен $\frac{1}{2} \cdot \theta_2^n(q)$

 \mathcal{A} оказатель ство. Рассмотрим множество векторов $x \in D^n$ т.ч. $\sum_i (x_i+1/2)^2 = k$. Покажем, что оно биективно множеству $y \in \mathbb{Z}^n$ т.ч. $\sum_i y_i = 1 \mod 2$ и $\sum_i (y_i+1/2)^2 = k$. Отображение $\phi(x_1, x_2, ..., x_n) = (-x_1-1, x_2, ..., x_n)$ является искомой биекцией:

$$(-x_1 - 1 + 1/2) = (-x_1 - 1/2) = (x_1 + 1/2)^2 \implies \phi(x) \cdot \phi(x) = x \cdot x = k$$

Если $x \neq \xi$, то $\exists i$ т.ч. $x_i \neq \xi_i$ и тогда очевидно $\phi(x)_i \neq \phi(\xi)_i$.

Пусть y т.ч. $\sum_i y_i = 1 \mod 2$. Тогда взяв $x = (-y_1 - 1, y_2, ..., y_n) \in D_n$, получим $\phi(x) = y$. В силу конечности множества $\{x \in D_n | (x + (\frac{1}{2}^n)) \cdot (x + (\frac{1}{2}^n)) = k\}$ мы получили, что

$$\#\{x \in \mathbb{Z}^n | N(x + (\frac{1}{2}^n)) = k\} =$$

$$= \#\{x \in \mathbb{Z}^n | \sum_{x_i} = 0 \mod 2, N(x + (\frac{1}{2}^n)) = k\} +$$

$$+ \#\{x \in \mathbb{Z}^n | \sum_{x_i} = 1 \mod 2, N(x + (\frac{1}{2}^n)) = k\} =$$

$$= 2 \cdot \#\{x \in D_n | N(x + (\frac{1}{2}^n)) = k\}$$

Где в левой части стоит коэффициент перед q^k в разложении $\theta_2^n(q)$ (или тета-ряда \mathbb{Z}^n), а в правой части удвоенный коэффициент перед q^k в разложении тета-ряда решетки $D_n + (1/2, ..., 1/2)$, что и требовалось.

Теорема 4.4.

Tema-ряд $pewem \kappa u$

$$D_n^+ = D_n \cup (D_n + (\frac{1}{2}^n))$$

равен

$$\frac{1}{2} \cdot (\theta_2^n(q) + \theta_3^n(q) + \theta_4^n(q))$$

Доказательство. По определению,

$$\theta_{D_n^+}(q) = \theta_{D_n}(q) + \sum_{x \in D_n} q^{N(x + (\frac{1}{2}^n))} = \theta_{D_n} + \theta_{D_n + (\frac{1}{2}^n)}$$

5 Тета-ряды как модулярные формы

Покажем, относительно каких подгрупп $SL_2(\mathbb{Z})$ тета-ряды решеток \mathbb{Z}^{16} , $\mathbb{Z}^4 \oplus D_{12}^+$, D_{16}^+ , интересных с точки зрения теории суперструн, будут модулярными формами:

Теорема 5.1.

Tema-ряды решеток $\mathbb{Z}^{16}, \mathbb{Z}^4 \oplus D_{12}^+$ будут модулярными формами веса 8 относительно подгруппы $\Gamma_2 \subset SL_2(\mathbb{Z})$. Tema-ряд решетки D_{16}^+ будет модулярной формой веса 8 относительно всей $SL_2(\mathbb{Z})$.

Доказательство. Для начала рассмотрим действие $\gamma \in \Gamma_2$ на тета-ряд решетки \mathbb{Z}^2 :

$$\theta_{\mathbb{Z}^2}(\gamma(\tau)) = \theta_{00}^2(0, \gamma(\tau)) = \zeta^2 e_{\gamma}(\tau) \theta_{00}^2(0, \gamma(\tau))$$

где $\zeta^8=1,\,e_\gamma(\tau)=c\tau+d.$ Отсюда сразу вытекает требуемое равенство для тета-ряда $\mathbb{Z}^{16}.$

Для решетки D_{16}^+ модулярность тета-ряда относительно всей $SL_2(\mathbb{Z})$ очевидна в силу Утверждения XXX и равенства:

 $\theta_{D_{16}^{+}} = \frac{1}{2}(\theta_{00}^{16}(0,\tau) + \theta_{01}^{16}(0,\tau) + \theta_{10}^{16}(0,\tau))$

Его вес равен 8, потому что каждый из весов $\theta_{00}^2, \theta_{01}^2, \theta_{10}^2$ равен 2.

Теперь займемся решеткой $\mathbb{Z}^4\oplus D_{12}^+$. Ее тета-ряд равен $\theta_{\mathbb{Z}^4}\cdot\theta_{D_{12}^+}=\theta_{00}^4\cdot(\theta_{00}^{12}+\theta_{01}^{12}+\theta_{10}^{12})$. Посмотрим, как $\gamma\in\Gamma_2$ действует на нем:

$$\theta_{\mathbb{Z}^4}(\gamma(\tau)) \cdot \theta_{D_{12}^+}(\gamma(\tau)) = \\ \zeta^4 e_{\gamma}(\tau) \theta_{00}^4(\tau) \cdot (\zeta^{12} e_{\gamma}^3(\tau) \theta_{00}^{12}(0,\tau) + \zeta^{12} e_{\gamma}^3(\tau) \theta_{01}^{12}(0,\tau) + \zeta^{12} e_{\gamma}^3(\tau) \theta_{10}^{12}(0,\tau))$$

где $\zeta^8 = 1$ и $e_{\gamma}(\tau) = (c\tau + d)^2$.

Окончательно получаем:

$$\theta_{\mathbb{Z}^4}(\gamma(\tau)) \cdot \theta_{D_{12}^+}(\gamma(\tau)) = e_{\gamma}^4(\tau) \cdot \theta_{00}^4 \cdot (\theta_{00}^{12} + \theta_{01}^{12} + \theta_{10}^{12})$$

$\mathbf{6}$ $\theta(x,it)$ как сумма дельта-функций

Рассмотрим функцию $\theta(x,it), x,t \in \mathbb{R}, t \geq 0$. Она является вещественнозначной:

$$\theta(x,it) = \sum_{n \in \mathbb{Z}} \exp(2\pi i nx - \pi n^2 t) = 1 + 2\sum_{n \in \mathbb{N}} \exp(-\pi n^2 \tau) \cos(2\pi nx)$$

Рассмотрим предел ее действие при $t \to 0$ как обобщенной функции на пространстве периодических $\mathbb{R} \to \mathbb{R}$:

$$f(x) = \sum_{m \in \mathbb{Z}} a_m \exp(2\pi i m x)$$

$$\int_{\mathbb{R}} dx \cdot \theta(x, it) f(x) = \sum_{k \in \mathbb{Z}} \int_{[k, k+1]} dx \cdot \theta(x, it) f(x) = \sum_{k \in \mathbb{Z}} \int_{[0, 1]} dx \cdot \theta(x + k, it) f(x + k) = \sum_{k \in \mathbb{Z}} \int_{[0, 1]} dx \cdot \theta(x, it) f(x + k)$$

7 Открытые вопросы

- 1. Верно ли, что любая параболическая форма веса $n \geq 3$ равна полиному степени 2n от функций $\theta_{a,b}(0,\tau)$.
- 2. Можно ли записать модулярные формы $\theta_{a,b}(0,n au)$ в виде

квадратичный полином от
$$\theta_{c,d}$$
 ? линейная комбинация $\theta_{c,d}$

Список литературы

- [1] Д. Мамфорд. Лекции о тета-функциях.
- [2] Дж. Конвей, Н. Слоэн. Упаковки шаров, решетки и группы.
- [3]