Contents

1	Flor	v Chart	1
2	Firs	t-order ODEs	2
	2.1	Separable Equations	3
	2.2	Linear Equations	3
	2.3	Exact Equations	3
	2.4	Exact Equations with Integration Constant	4
	2.5	Homogeneous Equations	5
	2.6	Bernoulli's Equation	5
	2.7	Reduction to Separation of Variables	5
	2.8	Riccati's Equation	6
3	Hig	ner-order ODEs	6
	3.1	Initial Value Problems	6
	3.2	Linear Independence	6
	3.3	Linear Equations	7
		3.3.1 Homogeneous Linear <i>n</i> th-Order Equations	7
		3.3.2 Nonhomogeneous Linear n th-Order Equations	7
		3.3.3 Reduction of Order	7
		3.3.4 Homogeneous Linear Equations with Constant Coefficients	8
		3.3.5 Method of Undetermined Coefficients	8
		3.3.6 Variation of Parameters	9
		3.3.7 Cauchy-Euler Equations	10
		3.3.8 Green's Functions for IVPs	10
		3.3.9 Green's Functions for BVPs	11
	3.4	Nonlinear Equations	12
		3.4.1 Reducation of Order	12
		3.4.2 Taylor Series	12

1 Flow Chart

- Ordinary
 - First order
 - \bullet Linear
 - ullet Homogeneous
 - Separation of variables
 - Nonhomogeneous
 - Bernoulli
 - Exact
 - \bullet Exact with integration constant
 - Homogeneous substitution

- Reduction to separation of variables
- Riccati
- Variation of parameters
- Nonlinear
 - Separable
 - Separation of variables
- Second order
 - Linear
 - Homogeneous
 - Auxiliary/characteristic equation
 - Cauchy/Euler
 - Reduction of order
 - Nonhomogeneous
 - Cauchy/Euler
 - Green's function
 - Undetermined coefficients
 - Variation of parameters
 - Nonlinear
 - Reduction of order
 - Taylor series
- Higher order
 - Linear
 - Homogeneous
 - Auxiliary/characteristic equation
 - Cauchy/Euler
 - Nonhomogeneous
 - Cauchy/Euler
 - Undetermined coefficients
 - Variation of parameters
 - \bullet Nonlinear
 - Taylor series
- Partial

2 First-order ODEs

Form: IVP

$$\frac{dy}{dx} = f(x, y)$$
$$y(x_0) = y_0$$

Test: f(x,y) and $\partial f/\partial y$ are continuous over I **Property:** A unique solution is guaranteed over I

2.1 Separable Equations

Form:

$$\frac{dy}{dx} = g(x)h(y)$$

Solution: Divide by h(y) then integrate with respect to x.

$$\frac{dy}{dx} = g(x)h(y)$$

$$\frac{1}{h(y)}\frac{dy}{dx} = g(x)$$

$$\int \frac{1}{h(y)}\frac{dy}{dx} dx = \int g(x) dx$$

$$\int \frac{1}{h(y)} dy = \int g(x) dx$$

$$H(y) = G(x) + c$$

2.2 Linear Equations

Form:

$$\frac{dy}{dx} + P(x)y = f(x)$$

Solution:

- 1. Determine the integrating factor $e^{\int P(x) dx}$
- 2. Multiply by the integrating factor
- 3. Recognise that the left hand side of the equation is the derivative of the product of the integrating factor and y
- 4. Integrate both sides of the equation
- 5. Solve for y

2.3 Exact Equations

Form:

$$z = f(x, y) = c$$

$$dz = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = M(x, y) dx + N(x, y) dy = 0$$

Test:

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Solution:

1. Integrate M(x,y) with respect to x to find an expression for z=f(x,y)

$$\frac{\partial f}{\partial x} = M(x, y)$$

$$f(x, y) = \int M(x, y) dx + g(y)$$

2. Differentiate f(x,y) with respect to y and equate it to N(x,y) to find g'(y)

$$\frac{\partial f}{\partial y} = N(x, y) = \frac{\partial}{\partial y} \int M(x, y) \, dx + g'(y)$$
$$g'(y) = N(x, y) - \frac{\partial}{\partial y} \int M(x, y) \, dx$$

- 3. Integrate g'(y) with respect to y to find g(y) and substitute it into f(x,y)
- 4. Equate f(x,y) with an unknown constant c

Note: The steps can be performed with x and y reversed, i.e. start by integrating N(x, y) with respect to y, etc.

2.4 Exact Equations with Integration Constant

Form:

$$M(x,y) dx + N(x,y) dy = 0$$

Test: $(M_y - N_x)/N$ is a function of x alone or $(N_x - M_y)/M$ is a function of y alone

Solution:

1. Compute the integrating factor

$$\mu(x) = e^{\int \frac{M_y - N_x}{N} \, dx}$$

or

$$\mu(y) = e^{\int \frac{N_x - M_y}{M} \, dy}$$

as appropriate

- 2. Multiple the equation by this factor
- 3. The equation is now exact and can be solved as above

2.5 Homogeneous Equations

Form:

$$M(x, y) dx + N(x, y) dy = 0$$

Test: M and N are homogeneous functions of the same degree **Solution:**

1. Rewrite as

$$M(x,y) = x^{\alpha}M(1,u)$$
 and $N(x,y) = x^{\alpha}N(1,u)$ where $u = y/x$

or

$$M(x,y) = y^{\alpha}M(v,1)$$
 and $N(x,y) = y^{\alpha}N(v,1)$ where $v = x/y$

- 2. Substitute y = ux and dy = u dx + x du or x = vy and dx = v dy + y dv as appropriate
- 3. Solve the resulting first-order separable DE
- 4. Substitude u = y/x or v = x/y as appropriate

2.6 Bernoulli's Equation

Form:

$$\frac{dy}{dx} + P(x)y = f(x)y^n$$

Test: $n \neq 0$ and $n \neq 1$

Solution:

- 1. Substitude $y=u^{1/(1-n)}$ and $\frac{dy}{dx}=\frac{d}{dx}(u^{1/(1-n)})$
- 2. Solve the resulting linear equation
- 3. Substitude $u = y^{1-n}$

2.7 Reduction to Separation of Variables

Form:

$$\frac{dy}{dx} = f(Ax + By + C), B \neq 0$$

Solution:

1. Substitute

$$Ax + By + C = u$$

- 2. Solve the resulting separable equation
- 3. Substitute

$$u = Ax + By + C$$

2.8 Riccati's Equation

Form:

$$\frac{dy}{dx} = P(x) + Q(x)y + R(x)y^2$$

Test: You know a particular solution y_1 of the equation Solution:

- 1. Substitute $y = y_1 + u$ and $y' = y'_1 + u'$
- 2. Solve the resulting Bernoulli equation
- 3. Substitude $u = y y_1$

3 **Higher-order ODEs**

3.1 Initial Value Problems

Form: *n*-th order IVP

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1} y}{dx_{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

subject to

$$y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1}$$

Test: $a_n(x), a_{n-1}(x), \ldots, a_0(x),$ and g(x) are continuous on an interval I and $a_n(x) \neq 0$ for every x in I

Property: A unique solution exists for every $x = x_0$ in I

3.2 Linear Independence

Form: A set of functions $f_1, f_2, ..., f_n$ **Test:** The Wronskian $W(f_1, f_2, ..., f_n) \neq 0$ for every x in an interval I where

$$W(f_1, f_2, \dots, f_n) = \begin{vmatrix} f_1 & f_2 & \dots & f_n \\ f'_1 & f'_2 & \dots & f'_n \\ \vdots & \vdots & & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \dots & f_n^{(n-1)} \end{vmatrix}$$

Property: The functions are linearly independent in I

3.3 Linear Equations

3.3.1 Homogeneous Linear nth-Order Equations

The general solution is of the form

$$y = c_1 y_1 + c_2 y_2 + \dots + c_n y_n$$

where c_i are arbitrary constants and y_i are a fundamental set of solutions (i.e. a set of n linearly independent solutions).

3.3.2 Nonhomogeneous Linear nth-Order Equations

The general solution is of the form

$$y = y_c + y_p = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x) + y_p(x)$$

where y_c is the complementary function (i.e. the general solution of the associated homogeneous equation) and y_p is a particular solution.

3.3.3 Reduction of Order

Form:

$$y'' + P(x)y' + Q(x)y = 0$$

Test: A non-trivial solution $y_1(x)$ is known **Solution:**

1. Recognise that the ratio of two linearly independent functions isn't constant, i.e.

$$u(x) = \frac{y_1(x)}{y_2(x)}$$
 or $y_2(x) = u(x)y_1(x)$

- 2. Substitute $y_2(x)=u(x)y_1(x)$ into the DE this will result in a DE involving only u'' and u' which can be treated as a linear first-order DE in u'=w
- 3. Solve for w
- 4. Substitute w = u'
- 5. Integrate to find u
- 6. Multiply by y_1 to find y_2

or equivalently

$$y_2 = y_1(x) \int \frac{e^{-\int P(x) dx}}{y_1^2(x)} dx$$

3.3.4 Homogeneous Linear Equations with Constant Coefficients

Form:

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = 0$$

Solution:

1. Assume the equation has a solution of the form $y = e^{mx}$, giving

$$a_n m^n e^{mx} + a_{n-1} m^{n-1} e^{mx} + \dots + a_1 m e^{mx} + a_0 e^{mx} = 0$$

2. Divide by e^{mx} , giving the auxiliary/characteristic equation

$$a_n m^n + a_{n-1} m^{n-1} + \dots + a_1 m + a_0 = 0$$

3. Solve for m, where

• A real root m corresponds to a solution

$$y = ce^{mx}$$

• Complex roots $\alpha \pm i\beta$ correspond to solutions

$$y = e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x)$$

 \bullet A root m of multiplicity k corresponds to the solutions

$$e^{mx}$$
, xe^{mx} , x^2e^{mx} , ..., $x^{k-1}x^{mx}$

3.3.5 Method of Undetermined Coefficients

Form: A nonhomogeneous linear DE where the input function (g(x)) is comprised of constants, polynomials, exponentials $e^{\alpha x}$, sines, and cosines **Solution**:

- 1. Solve the associated homogeneous equation
- 2. Assume the particular solution has the same form as the input function
- 3. If a term in the proposed solution is present in the complementary function, multiply it by x^n where n is the smallest positive integer that removes the duplication
- 4. Substitute the proposed solution into the DE
- 5. Solve for the unknown constants

3.3.6 Variation of Parameters

Form: A nonhomogeneous linear DE **Solution:**

- 1. Solve the homogeneous equation to find the complementary function
- 2. Assume the solution has the form

$$y_p = u_1(x)y_1(x) + \dots + u_n(x)y_n(x)$$

where n is the order of the equation and y_i are the fundamental set of solutions from the complementary equation

3. Convert to standard form by dividing by the leading coefficient

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = f(x)$$

4. Solve the system of linear equations

$$y_1u'_1 + \dots + y_nu'_n = 0$$

$$y'_1u'_1 + \dots + y'_nu'_n = 0$$

$$\vdots$$

$$y_1^{(n-1)}u'_1 + \dots + y_n^{(n-1)}y'_n = 0$$

$$y_1^{(n)}u'_1 + \dots + y_n^{(n)}u'_n = f(x)$$

via Cramer's method:

(a) Compute the Wronskian of y_i

$$W = \begin{vmatrix} y_1 & \cdots & y_n \\ y'_1 & \cdots & y'_n \\ \vdots & \ddots & \vdots \\ y_1^{(n)} & \cdots & y_n^{(n)} \end{vmatrix}$$

(b) Compute u_i' for i = 1, ..., n where

$$u_i' = \frac{W_i}{W}$$

and W_i is the determinant of the matrix formed by replacing the *i*th column of the Wronskian matrix with the column vector

$$\begin{bmatrix} 0 \\ \vdots \\ 0 \\ f(x) \end{bmatrix}$$

9

5. Integrate each u'_i to find u_i

3.3.7 Cauchy-Euler Equations

Form:

$$a_n x^n \frac{d^n y}{dx^n} + a_{n-1} x^{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1 x \frac{dy}{dx} + a_0 y = g(x)$$

Solution:

- If the equation is homogeneous:
 - 1. Assume the equation has a solution of the form $y = x^m$, giving

$$a_n x^n \frac{d^n y}{dx^n} = a_n x^n m(m-1)(m-2) \cdots (m-n+1) x^{m-n}$$

= $a_n m(m-1)(m-2) \cdots (m-n+1) x^m$

and the equation then becomes

$$f(m)x^m = 0$$

where f(m) is a polynomial in m known as the auxiliary or characteristic equation, the roots of which form the general solution

- 2. Solve the auxiliary equation where
 - A real root *m* corresponds to a solution

$$y = cx^m$$

• Complex roots $\alpha \pm i\beta$ correspond to solutions

$$x^{\alpha}(c_1\cos(\beta\ln x) + c_2\sin(\beta\ln x))$$

 \bullet A root m of multiplicity k corresponds to solutions

$$x^{m}, x^{m} \ln x, x^{m} (\ln x)^{2} \dots, x^{m} (\ln x)^{k-1}$$

- If the equation is nonhomogeneous:
 - 1. Solve the associated homogeneous equation
 - 2. Find a particular solution via variation of parameters

3.3.8 Green's Functions for IVPs

Form: The IVP

$$y'' + P(x)y' + Q(x) = f(x)$$

subject to $y(x_0) = y_0$ and $y'(x_0) = y_1$

Solution:

1. Solve the homogeneous equation with nonhomogeneous conditions

$$y'' + P(x)y' + Q(x)y = 0, y(x_0) = y_0, y'(x_0) = y_1$$

giving the solution y_h and the fundamental set of solutions y_1 and y_2

2. Solve the nonhomogeneous equation with homogeneous conditions

$$y'' + P(x)y' + Q(x)y = f(x), y(x_0) = 0, y'(x_0) = 0$$

using the formula

$$y_p(x) = \int_{x_0}^x G(x, t) f(t) dt$$

where G(x,t) is the Green's function for the differential equation

$$G(x,t) = \frac{y_1(t)y_2(x) - y_1(x)y_2(t)}{W(t)}$$

and W(t) is the Wronskian

$$W(t) = \begin{vmatrix} y_1(t) & y_2(t) \\ y_1'(t) & y_2'(t) \end{vmatrix}$$

3. The solution is $y = y_h + y_p$

3.3.9 Green's Functions for BVPs

Form: The BVP

$$y'' + P(x)y' + Q(x)y = f(x)$$

subject to

$$A_1 y(a) + B_1 y(a) = 0$$

and

$$A_2 y(b) + B_2 y(b) = 0$$

Solution:

- 1. Solve the associated homogeneous equation to find the fundamental set of solution y_1 and y_2 valid on [a, b]
- 2. Ensure y_1 and y_2 satisfy the boundary conditions

$$A_1 y_1(a) + B_1 y_1(a) = 0$$

and

$$A_2 y_2(b) + B_2 y_2(b) = 0$$

• It's important that y_1 satisfies the starting boundary condition and y_2 satisfies the ending!

3. Then a particular solution is

$$y_p(x) = \int_a^b G(x, t) f(t) dt$$

where G(x,t) is the Green's function for the differential equation

$$G(x,t) = \begin{cases} \frac{y_1(t)y_2(x)}{W(t)} & a \le t \le x\\ \frac{y_1(x)y_2(t)}{W(t)} & x \le t \le b \end{cases}$$

and W(t) is the Wronskian

$$W(t) = \begin{vmatrix} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{vmatrix}$$

3.4 Nonlinear Equations

3.4.1 Reducation of Order

Form: Nonlinear second-order DE

$$F(x, y', y'') = 0$$

i.e. y is missing

Solution:

- 1. Substitute u = y' (and thus u' = y'')
- 2. Solve the resulting DE for u
- 3. Integrate to find y

Form: Nonlinear second-order DE

$$F(y, y', y'') = 0$$

i.e. x is missing

Solution:

1. Substitute u = y' and

$$y'' = \frac{du}{dy}\frac{dy}{dx} = u\frac{du}{dy}$$

- 2. Solve the resulting DE for u
- 3. Integrate to find y

3.4.2 Taylor Series

Form: Nonlinear initial value problem

Solution:

- 1. Substitute the initial conditions into a Taylor series centred at x_0
- 2. Take further derivatives of the equation and substitute the initial conditions in to find additional terms for the Taylor series