

本科实验报告

实验名称: ______通信电路与系统软件实验______

课程名称:	通信电路与系统软件实验	实验时间:	2018.5.11、5.16 晚
任课教师:	周波	实验地点:	理学楼 B-404
实验教师:	实验教师: 南方		■ 原理验证
学生姓名:	施念	实验类型:	□ 综合设计
子生姓石.	他心		□ 自主创新
学号/班级:	1120161302/05011609	组 号:	
学院:	院: 信息与电子学院		
专 业:	业: 电子信息工程		

第一部分 数字通信系统仿真分析

实验一 简单基带传输系统分析

一 实验目的

掌握观察系统时域波形,特别是眼图的操作方法。

二 实验原理

简单的基带传输系统原理框图如图所示,该系统并不是无码间干扰设计的,为使基带信号能量更为集中,形成滤波器采用高斯滤波器。

(图1 简单基带传输系统组成框图)

三 实验内容

构造一个简单示意性基带传输系统。以双极性 PN 码发生器模拟一个数据信源,码速率为 100bit/s,低通型信道噪声为加性高斯噪声(标准差=0.3v)。要求:

- 1. 观测接收输入和滤波输出的时域波形;
- 2. 观测接收滤波器输出的眼图。

四 分析步骤

第一步: 进入 System View 系统视窗,设置"时间窗"参数如下:

运行时间: Start Time:0 秒; Stop Time:0.5 秒。

采样频率: Sample Rate:10000Hz。

第二步: 调用图符块创建如下图所示的仿真分析系统:

其中各元件参数如"参数表"所示。Token1 为高斯脉冲形成滤波器: Token3 为高斯噪声发生器,设标准偏差 Std Deviation=0.3v,均值 Mean=0v; Token4 为模拟低通滤波器,它来自操作库中的"LinearSys"图符按钮,在设置参数时,将出现一个设置对话框,在"Design"栏中单击 Analog 按钮,进一步点击"Filter PassBand"栏中 Lowpass 按钮,选择 Butterworth 型滤波器,设置滤波器极点数目: No.of Poles=5,设置滤波器截止频率: LoCuttoff=200Hz。

参数表

编	图符块属性	类型	参数设置
号	(Attribute)	(Type)	(Parameters)
0	Source	PN Seq	Amp=1v,Offset=0v,Rate=100Hz,Levels=2,
U	0 Source	PN Seq	Phase=0 deg
1 Comm	Pulse Shape	Gaussian,Time Offset=0 sec,Pulse Width=0.01	
1	Comm	ruise shape	sec,Std Dev=0.3v.
2	Adder		
3	Source	Gauss Noise	Std Dev=0.3v,Mean=0v.
4	Operator	Linear Sys	Butterworth Lowpass IIR,5 Poles,Fc=200Hz.
5 Operator	Operator	Campler	Interpolating,Rate=100Hz,Aperture=0 sec,
	Sampler	Aperture Jitter=0 sec,	
6	Operator	Hold	Last Value ,Gain=2,Out Rate=10.e+3Hz
7 Operator		Compare	Comparison='>=',True Output=1V,False Output
,	7 Operator	Compare	=0v,A input=t6 Output0,B input=t8 Output0
8	Source	Sinusoid	Amp=0v,Freq=0Hz,Phase=0 deg
9	Sink	Analysis	Input from t0 Output Port0
10	Sink	Analysis	Input from t1 Output Port0
11	Sink	Analysis	Input from t4 Output Port0
12	Sink	Analysis	Input from t7 Output Port0

第三步:

单击运行按钮,运算结束后按"分析窗"按钮,进入分析窗后,单击"绘制新图"按钮,则 Sink9-Sink12 限时活动窗口分别显示出"PN 码输出"、"信道输入"、"信道输出"和"判决比较输出"时域波形。

第四步:

观察信源 PN 码和波形形成输出的功率谱。在分析窗下,单击信宿计算器按钮,在出现的"System Sink Calculator"对话框中单击 Spectrum 按钮,分别得到 Sink9 和 Sink10 的功率谱窗口后,可将这两个功率谱合成在同一个窗口中进行对比,具体操作为:在

"System Sink Calculator"对话框中单击 Operators 按钮和 Overlay Plots 按钮,在右侧窗口内按住左键选中 w4 和 w5 两个信息条,单击 OK 按钮即可显示出对比功率谱。

第五步:

观察信道输入和输出信号眼图。当屏幕上出现波形显示活动窗口 w1 和 w2 后,点击 "System Sink Calculator"对话框中的 Style 和 Time Slice 按钮,设置好"Start time[sec]"和"Length[sec]"栏内参数后单击该对话框内的 OK 按钮即可。

从上述仿真分析可以看出: 经高斯滤波器形成处理后的基带信号波形远比 PN 码信号平滑,信号能量主要集中于 10 倍码率以内,经低通型限带信道后信号能量损失相对较小,

由于信道的不理想和叠加噪声的影响,信道输出眼图将比输入的差些,改变信道特性和噪声强度,眼图波形将发生明显畸变,接收端误码率肯定相应增大。

可见,基带传输系统中不应直接传送方波码序列信号,应经过波形形成,从而使信号能量更为集中,并通过均衡措施达到或接近无码间干扰系统设计要求。另外,眼图观察法的确是评测基带系统传输质量的简便有效实验方法。

五 实验结果与分析

1. 系统框图

2. 实验结果

A. 代表信源的 PN 码输出波形

B. 经高斯脉冲形成滤波器后的码序列波形

分析: PN 码序列经过高斯脉冲形成滤波器后,其高频成分被滤除很大一部分,滤波输出信号明显比原信号平滑很多,表明其高频分量大量减少。

C. 信道输出的接收波形

D. 判决比较输出波形

分析: 加入高斯噪声后,信号仍能基本反映原信号的规律,但明显多了很多不规律的成分。反映在最后的判决比较输出波形,就产生了几处毛刺。并且,最后的波形与输入波形相比,在相位上有一定的延迟。

分析:由功率谱可见,高斯滤波形成输出信号的能量集中在低频附近。频率在 500Hz 左右时,功率谱线就有较大的下降,而 PN 码功率谱在高频段并没有明显衰减,能量比较分散。在经过低通滤波时,前者的大部分能量能通过滤波器,而后者在滤波器处的能量损耗较大。

F. 信道输入信号眼图

G. 信道输出信号眼图

分析:由于加入的高斯噪声,信道输出眼图相对于输入眼图发生了一定的畸变,使得误码率上升。但因为加入噪声较小,此实验中信道输出眼图波形仍能较为准确地进行判决。

3. 分析

从上述眼图可以看出,经高斯滤波器形成处理后的基带信号远比 PN 码信号平滑,信号能量主要集中于 10 倍码率以内,经低通型信道后信号能量损失相对小一些。由于信道的不理想和叠加噪声的影响,信道输出眼图将比输入的差些,改变信道特性和噪声强度,眼图会发生明显变化,甚至产生明显的接收误码。

第二部分 通信系统仿真分析上机实验

实验一 二进制键控系统分析(1)

(一) 相干接收 2ASK 系统分析

一 实验目的

由于本实验是利用 SystemView 进行仿真分析的第一个上机实验,故安排了较为简单的 2ASK 和 2FSK 系统分析内容,上机操作步骤介绍得也很详细。建议除按照实验的分析内容要求得到分析结果外,应进一步熟悉软件的主要操作步骤。

二 实验原理

相干接收 2ASK 系统组成如图所示

(图 1 2ASK 系统组成原理图)

三 实验内容

- 1. 在系统窗下创建仿真系统,观察指定分析点的波形、功率谱及谱零点带宽;
- 2. 改变元件设置参数,观察仿真结果:如果 PN 码改为双极性码 (Amp=1v,Offset=0v),能产生 2ASK 信号吗?此时产生的是什么数字调制信号?改变 高斯噪声强度,观察解调波形变化,体会噪声对数据传输质量的影响;
- 3. 进一步熟悉软件的主要操作步骤

四 分析步骤

根据下图所示系统,在 *SystemView* 系统窗下创建仿真系统,首先设置时间窗,运行时间: 0-0.3 秒,采样速率: 10000Hz。

① 组成系统如图所示:

② 图符块参数参数设置:

Talaaro	双极性二进制基带码源(PN码),参数:Amp=0.5v;Offset=0.5v;		
Token0	Rate=100Hz; No. of Level=2;		
Token1,5	乘法器;		
Token2	正弦载波信号源,参数: Amp=1V; F=3000Hz; Phase=0;		
Token3	加法器;		
Token4	高斯噪声源,参数: Std Deviation=0.3V; Mean=0V;		
Token5	乘法器;		
Token6	正弦本地同步载波信号源,参数设置同 Token2;		
Token7	Operator Linear Sys,参数: Butterworth_Lowpass IIR;		
Token?	No. of Poles=5; Fc=200Hz;		
Token11	Operator Sampler,参数: Interpolating, Rate=100Hz,		
TokeliTi	Aperture=0, Jitter=0;		
Token12	Operator Hold, 参数: Last Value,Gain=1		
Token13	Operator Compare, 参数: a>=b, True=1,False=0		
Token8, 9, 10, 15, 16, 17	信宿接收分析器(sink)		

五 实验结果与分析

1. 系统框图

2. 实验结果

① 调制信号为 PN 码

A. 各分析点波形

B. 功率谱 (基带信号)

C. 功率谱(调制信号)

分析:由功率谱可以看出,基带信号能量主要在低频段,而 2ASK 调制信号的能量则位于载频的 3KHz 左右,符合信号经过乘法器线性搬移的结果。同时,谱零点带宽约为 200Hz,也符合码元速率的两倍。

② 调制信号为双极性码(Amp=1v,Offset=0v)

A. 各分析点波形

B. 功率谱(基带信号)

C. 功率谱(调制信号)

分析:由 PN 码变为双极性码之后,调制波形不再是 2ASK,而是 BPSK,两者功率谱密度规律基本一致,谱零点带宽也均为 200Hz 左右。

③ 改变高斯噪声强度

A. 各分析点波形 (std Dev=0.85V)

B. 各分析点波形 (std Dev=1V)

C. 各分析点波形 (std Dev=2V)

分析: 将高斯噪声标准差逐渐由 0.85V 提高到 2V,发现输出信号与输入信号之间已有明显差别,发生了较为严重的误码。故信道噪声越大,误码率越高。

(二) 2FSK 系统分析

一 实验目的

由于本实验是利用 SystemView 进行仿真分析的第一个上机实验,故安排了较为简单的 2ASK 和 2FSK 系统分析内容,上机操作步骤介绍得也很详细。建议除按照实验的分析内容要求得到分析结果外,应进一步熟悉软件的主要操作步骤。

二 实验原理

以话带调制解调器中 CCITT V.23 建议规定的 2FSK 标准为例,该标准为:码速率 1200bit/s; f0=1300Hz 及 f1=2100Hz。要求创建符合 CCITT V.23 建议的 2FSK 仿真系统,调制采用"载波调频法"产生 CP-2FSK 信号,解调采用"锁相鉴频法"。系统组成如下所示。为了提高接收端的抗干扰能力,对于接受滤波器输出的模拟电压通常采用"采样+判决"的处理方法。在本实验中,可在同样噪声干扰时比较仅采用"判决"的波形整形方式与"采样+判决"的处理方式的效果。

(图 1 2FSK 系统组成原理图)

三 实验内容

- 1) 在系统窗下创建仿真系统,观察各接收分析器的时域波形,体会各图符块在系统中的它特殊作用;观察接收分析器 Token10 的功率谱,分析该 2FSK 信号的主要信号能量是否可以通过话带;
 - 2) 在高斯噪声强度较小时; 观察各接收分析器的时域波形;
- 3) 将 Token3 的标准偏差加大到 0.4v, 再观察 Token19 和 Token21 的时域波形, 思考并解释分析结果;
 - 4) 观察滤波器输出模拟信号波形和采样保持波形,体会"采样"处理环节的作用。

四 分析步骤

① 在 SystemView 系统窗下创建仿真系统,设置运行时间: 0-0.1 秒,采样速率: 10000Hz。组成系统如下图。

② 各元件参数如图符参数便笺

		II图付参数使	
Token	Attribute	Type	Parameters
0	Source	PN seq	Amp=1V, Offset=OV, Rate=1200Hz,
		1	Levels=2
1	Function	FM	Amp=1V, F=1700Hz, Mod Gain=400Hz/V
_			Wod Gam-400Hz/ v
2	Adder		
3	Source	Gauss Noise	Std Dev=0.1V, Mean=OV
4	Operator	Linear Sys	Butterworth Bandpass IIR, 5 Poles, Low Fc=300Hz, Hi Fc=3400Hz
5	Multiplier		
6	Operator	Linear Sys	Butterworth Lowpass IIR,
	1	Zilledi Sjo	1poles, Fc=600Hz
7	Function	FM	Amp=2V, F=1700Hz,
			Mod Gain=800Hz/V
8	Operator	Linear Sys	Butterworth Lowpass IIR, 9 Poles, Fc=1200Hz
9	Sink	Analysis	Input from token0
10	S ink	Analysis	Input from token1
11	Sink	Analysis	Input from token4
12	Sink	Analys is	Input from token6
13	Sink	Analysis	Input from token8
14	Operator	Sampler	Interpolating, Rate=1200Hz, Aperture=O Jitter=O

15	Operator	Hold	Last Value Gain=2, Out Rate=10000Hz	
16	Sink	Analysis	Input from token15	
17	Operator	Compare	Compare a>=b,True=1V, False=-1V, A input=token15, B input=token18	
18	Source	Sin usoid	Amp=0V, F=OHz	
19	Sink	Analysis	Input from token 17	
20	Operator	Compare	a>=b, True=1V, False=-1V A input=token8, B input=token18	
21	Sink	Analysis	Input from token20	

五 实验结果与分析

1. 系统框图

2. 实验结果

① 各分析点波形

分析: 由图可以看出输入信号与解调信号基本一致,只在相位上有差异。

② 功率谱

分析: 由功率谱可知,信号能量主要分布于 800Hz-2200Hz 之间,故基本能通过话带(300Hz-3400Hz)。

③ 高斯噪声较小时,各接收分析器时域波形 A. std Dev=0.08V

B. std Dev=0.05V

C. std Dev=0.02V

分析:上图表明, 当信道噪声减小后, 输出波形误码率减小。

③ 高斯噪声强度增大

A. 各分析点波形 (std Dev=0.85V)

B 输入输出波形 (std Dev=0.4V)

分析:上图表明,当信道噪声增强后,输出波形误码率增大。

④ 采样处理

A. 对比波形

分析:采样处理环节的作用在与将模拟信号离散化。一方面,在采样过程中,采样到噪声较大的点的概率较小,相当于滤除了大部分噪声。另一方面,采样后的信号进入波形判决比较器时,由于离散,判决时更准确,不会像模拟信号判决时受到噪声影响,信号波动而导致判决结果来回波动,出现误码。

实验二 二进制键控系统分析(2)

(一) 相干接收 2PSK 系统分析

一 实验目的

本实验安排了 2PSK 和 2DPSK 系统分析内容。在分析中,除巩固二进制移相键控系统的工作原理外,应特别注意 2DPSK 系统是如何解决同步载波 180°相位模糊问题的。

二 实验原理

相干接收 2PSK 系统工作原理相干接收 2PSK 系统组成如图所示:

图 3-2-1 2PSK 系统组成

对 2PSK 信号相干接收的前提是首先进行载波提取,可采用平方环或科斯塔斯环来实现。为分析方便起见,在本实验中可直接在收端设置一个与发送端同步的本地载波源。另外,本实验中暂不考虑位同步提取问题。

三 实验内容

- ①分析观察 Token"12、13、14、15、16、17 的时域波形,看解调是否正确?观察 Token13 的 2PSK 信号功率谱结构及谱零点带宽:
- ②从 2P 系统实际上与实验一中的 2A 系统的主要参数几乎相同,将高斯噪声源的标准偏差增大到 IV,将两种系统的输人码序列与解调输出码序列进行对比,观察各自的误码是否出现,看看宄意哪种传输系统的抗噪声新能更高:
- ③2Psk 系统中,接收提取的载波存在 180 度的相位模糊度,这是载波提取电路存在的故有问题,一旦接收端提取的载波与发送端调制找波倒相,解调出的码序列将全部倒相,重新设置接受载波源的参数,将其中的相位设置为 180 度,运行后观察解调的结果。

四 分析步骤

按照图 3-2-1 所示系统,创建仿真系统如图所示。设置系统运行时间: 0-0.3 秒;采样 频率 10000Hz。PN 码速率为 100Hz,载波频率为 1000Hz;收、发正弦载波源的相位均为 0。

各图幅块参数设置

Token 编号	Attribute 属性	Type 类型	Parameters 图幅参数	
0	Source	PN Seq	Amp=1V, Offset=Ov, Rate=100Hz, Levels=2	
1,5	Multiplier			
2, 6	Source	Sinusoid	Amp=1V, Freq=3000Hz, Phase =0, Output 1=Cosin	
3	Adder			
4	Source	Gauss Noise	Std Dev=5v, Mean=Ov	
7	Operator	Linear Sys	ar Sys Buttworth Lowpass IIR, 5 Poles, Fc=200Hz	
8	Operator	Sampler	Interpolating, Rate=100Hz, Apeture=O, Jitter=0	
9	Operator	Hold	Last Value,Gain=1	
10	Operator	Compare	a>=b,True Output=1, False Output=-1	
11	Source	Sinuslid	Amp=Ov, Freq=OHz	
12, 13, 14, 15, 16, 17	Sink	Analysis		

五 实验结果与分析

1. 系统框图

2. 实验结果

1

A. 时域波形

B. 功率谱

分析: 由上图可以看出,解调成功。功率谱中,信号能量主要在 3khz 左右,谱零点带宽约为 200Hz。

② 噪声强度 Std Dve=1V 时

A. 2PSK:

B. 2ASK:

分析:对比实验一中的 2ASK 可看出,其输出码中出现了误码;而相应的在此实验的 2PSK 中输入与输出波形基本一致,并没有出现误码,因此可得到结论,两种系统对比之下,此实验的 2PSK 的抗噪性能更好。

③ 180 度相位模糊

分析:观察第一个和最后一个可以看出,输出与输入相比发生了180度反相。

(二)相干接收 2DPSK 系统分析

一 实验目的

本实验安排了 2PSK 和 2DPSK 系统分析内容。在分析中,除巩固二进制移相键控系统的工作原理外,应特别注意 2DPSK 系统是如何解决同步载波 180°相位模糊问题的。

二 实验原理

2DPSK 系统组成原理如图 3-2-3 所示,系统中差分编、译码器是用来克服 2PSK 系统中接收提取载波的 180 度相位模糊度。

(图 1 2DPSK 系统组成原理图)

三 实验内容

- ① 观察对比各接收分析器的时域波形;
- ② 在 2DPSK 系统中,"差分编码/译码"环节的引入可以有效地克服接收提取的载波存在 180°相位模糊度,即使接收端同步载波与发送端调制载波之间出现倒相 180°的现象,差分译码输出的码序列不会全部倒相。重新设置接收载波源的参数,将其中的相位设为 180°,运行观察,体会 2DPSK 系统时如何克服同步载波与调制载波之间 180°相位模糊度的。

四 分析步骤

① 一种 2DPSK 系统的仿真系统方案如图所示。其中,Token23、1、2 组成差分编码器,Token13、14、15 为差分译码器,组成方式与前边 2.3 节介绍的组成方式有所不同,可按照 2.3 节介绍的方式构造差分编码、译码器。设置系统运行时间: 0-0.3 秒、采样速率为 10000Hz。

② 各元件参数如图符参数便笺

Token	Attribute	Type	Parameters
0-17	与上表完全相同	17	

18	Operator	Sampler	Interpolating, Rate=100Hz, Aperture=0 , Jitter=0
19,24	Operator	XOR	Threshold=OV, True Output=1V, False Output=-1V
20	Operator	Gain	Gain Units=Linear, Gain=1
21	Operator	Hold	Last Value, Gain=1
22	Operator	Sampler	Interpolating, Rate=10000Hz, Aperture=O, Jitter=O
23	Operator	Smpl Delay	Fill Last Register, Delay=100 samples
25,26	Sink	Analysis	

五 实验结果与分析

1. 系统框图

2. 实验结果

① 各分析点波形

② 各分析点波形 (相位更改后)

分析: 在 2DPSK 系统中,从上述分析可以看出,如果将接收端相位改成 180 度可以有效 地克服接收提取的载波存在 180°相位模糊度,即使接收端同步载波与发送端调制载波之间 出现倒相 180°的现象,那么差分译码输出的码序列不会全部倒相。

感想:

这次实验使用的 systemview 这个软件去做通信电路中一些电路的仿真设计,首先这个软件所见即所得的图形设计方式可以说是很方便了,让我们更加注重电路单元间的设计而不是怎么去实现一个单元电路。

这次电路让我更加了解了书本上的知识以及怎么去实现自己所想,加深了认识,提高了学习效率。很感谢这次实验,也感谢实验的老师~