## Final Exam

Circuit Analysis
June 25, 2015

- A. (4×12=48 points) Answer each of the following statements.
  - 1. Comparison between "transfer function" and "frequency response".
  - 2. Comparison between "impulse response" and "transfer function".
  - 3. Comparison between "convolution" and "multiplication".
  - 4. Comparing convolutions by "mathematics" and "physics".
  - 5. Comparison between "causal input" and "causal system".
  - 6. Comparison between "Fourier" and "Laplace" transforms in transient response.
  - 7. Comparison between "Fourier" and "Laplace" transforms in time function.
  - 8. Comparison between "Fourier" and "Laplace" transforms in s plane.
  - 9. Comparison between "zero" and "pole" in frequency response.
  - 10. Comparison between the Fourier transforms of " $\sin \omega_0 t$ " and " $\cos \omega_0 t$ ".
  - 11. Comparison between " $\delta(\omega)$ " and "1" in frequency-domain by Fourier transform.
  - 12. Comparison between the "RC" and "LCR" circuits.

Fig. 1



- B. (4+6+4+8+4+3+3=32 points)  $v_1(t) = 5\sin(\omega t)u(t)$  V voltage with  $\omega = 100$  rad/s is applied to the op amp circuit and +2 V is across the capacitor at t = 0 in Fig. 1. Find the (a) impulse response, (b) transfer function, and (c) frequency response between the output voltage  $v_0(t)$  and the input voltage  $v_1(t)$ . Find the (d) natural response, and the forced response of  $v_0(t)$ . Also, indicate the (e) transient response and the steady-state response in  $v_0(t)$ . Compute the (f) closed-loop gain and phase shift. Now, if  $\omega = 10$  rad/s, find the (g) closed-loop gain and phase shift.
- C. (10+5=15 points): Find the (a) current  $i_o(t)$  in the circuit in Fig. 2, give that  $i_s(t) = 5\cos 4t$  A and indicate the (b) gain and phase change.
- D. (5+10=15 points) (a) Explain the Bode plots. Assume the frequency response of the system is

 $H(\omega) = \frac{10 - 5\omega^2}{(5 + j\omega)(10 + j\omega)(100 + j\omega)}.$  (b) Please plot the Bode diagram of the system using Matlab.



Have a Nice Summer!

Fig. 2