## CLUSTERING

Nur Fitriyah Ayu M.Cs.



## Pokok Bahasan

### APA ISI MATERI INI

Pengertian Clustering
Implementasi Clustering
Kategori Algoritma Clustering
Algoritma Clustering
Distance Space (Rumus Jarak)
Studi Kasus

## Apa itu Clustering

- Proses mengelompokkan data (pola, entitas, kejadian, unit,hasil observasi) menjadi beberapa kategori/cluster berdasarkan ciri-ciri atau kesamaan tertentu.
- Menemukan cluster yang berkualitas ->
   memaksimalkan kesamaan antar anggota satu
   cluster dan meminimalkan kesamaan antar
   cluster.
- Tidak memiliki label kelas di awal (unsupervised learning).





## Implementasi Clustering

- 1. Segmentasi wilayah (kasus covid)
- 2. Memahami perilaku pembeli
- 3. Mengetahui peluang produk baru
- 4. Segmentasi pelanggan

# Kategori Algoritma Clustering

#### Metode Partisi

- ✓ Menentukan n partisi kemudian setiap data diuji untuk dimasukkan pada salah satu partisi.
- ✓ Satu data hanya masuk ke dalam 1 partisi.
- ✓ Contoh: K-Means, K-Medoids dan DBSCAN



# Kategori Algoritma Clustering

#### Metode Hierarki

✓ Suatu data dapat memiliki *cluster* lebih dari satu (bersarang).

✓ Bottom-up dan Top-down.

memecah cluster besar
menjadi cluster yang lebih
kecil

menggabungkan cluster
yang lebih kecil menjadi

*cluster* besar



## Algoritma *K-Means*

- Termasuk di dalam algoritma dalam teknik non hierarki (partisi).
- Membagi data ke dalam beberapa n cluster.
- Data yang berkarakteristik sama dimasukkan ke dalam satu kelompok sementara data yang berkarakteristik berbeda dimasukkan dalam kelompok yang lain.



## Algoritma K-Means





## Rumus Jarak

- Manhattan
- Minkowski
- Euclidean Distance
  - ✓ Menghasilkan jarak terpendek dari dua titik yang diperhitungkan.
  - ✓ Bernilai mutlak -> nilai selalu positif.

$$d(i,j) = \sqrt{(x_{1i} - x_{1j})^2 + (x_{2i} - x_{2j})^2 + \dots + (x_{ki} - x_{kj})^2}$$

d(i,j) = jarak data ke i ke pusat cluster (centroid)

 $X_{ki}$  = data ke i pada atribut data ke k

 $X_{kj}$  = titik pusat ke j pada atribut ke k



## Contoh Kasus

Clustering data nasabah sebagai berikut:

| No | Jumlah Rumah | Jumlah Mobil |  |
|----|--------------|--------------|--|
| А  | 1            | 3            |  |
| В  | 3            | 3            |  |
| С  | 4            | 3            |  |
| D  | 5            | 3            |  |
| E  | 1            | 2            |  |
| F  | 4            | 2            |  |
| G  | 1            | 1            |  |
| Н  | 2            | 1            |  |

Dimana:

Titik pusat *cluster* B dan F



### TUGAS

Lakukan *clustering* apabila diketahui data sebagai berikut:

| Mahasiswa | BD | IMK | Alpro | Sister | Web |
|-----------|----|-----|-------|--------|-----|
| Α         | 75 | 71  | 71    | 81     | 72  |
| В         | 80 | 72  | 75    | 73     | 72  |
| С         | 73 | 80  | 74    | 81     | 72  |
| D         | 74 | 82  | 80    | 73     | 88  |
| Е         | 78 | 78  | 77    | 87     | 74  |
| F         | 71 | 71  | 66    | 78     | 86  |
| G         | 73 | 71  | 71    | 85     | 71  |
| Н         | 73 | 72  | 66    | 73     | 76  |
| 1         | 75 | 72  | 71    | 80     | 73  |
| J         | 76 | 71  | 71    | 71     | 73  |
| K         | 72 | 67  | 71    | 71     | 71  |
| L         | 76 | 73  | 74    | 74     | 74  |

Titik pusat cluster: C1 adalah data ketiga C2 adalah data keenam