ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ

2η ομάδα ασκήσεων

Έτος : 2020 - 2021 6° εξάμηνο

Ονοματεπώνυμο : Νίκος Μπέλλος ΑΜ : el18183

Θεωρητική μελέτη της ουράς Μ/Μ/1

M/M/1: <u>Αφίξεις Poisson (</u>Markov, Memoryless), ανεξάρτητοι χρόνοι εξυπηρέτησης εκθετικοί (Markov), <u>1</u> εξυπηρετητής, άπειρη χωρητικότητα συστήματος

(A) Για αφίξεις με παράμετρο λ (κατανομή poisson - E[x]=λ) και εξυπηρετήσεις με παράμετρο μ (εκθετική κατανομή - E[X]=1/μ) για να είναι εργοδική η ουρά θα πρέπει σε ένα μεγάλο χρονικό διάστημα οι εξυπηρετήσεις να είναι περισσότερες από τις αφίξεις ώστε να λειτουργεί ομαλά, δηλαδή να ισχύει:

$$\rho = \frac{\lambda}{\mu} < 1 \, Erlang$$

ΔΙΑΓΡΑΜΜΑ ΡΥΘΜΟΥ ΜΕΤΑΒΑΣΕΩΝ Μ/Μ/1

Από τις εξισώσεις ισορροπίας προκύπτουν:

$$\label{eq:continuous_problem} \ \square \ \ (\lambda + \mu) \ P_1 = \lambda \ P_0 + \mu P_2 \ \Rightarrow \ P_2 = \rho^2 \ P_0$$

(B) Εφαρμόζοντας τον τύπο του Little μπορούμε να υπολογίσουμε τον αντίστοιχο χρόνο καθυστέρησης του πελάτη στο σύστημα στη κατάσταση ισορροπίας :

$$E(T) = \frac{E[n(t)]}{\gamma} = \frac{E[n(t)]}{\lambda} = \frac{1}{\mu(1-\rho)}$$

(Γ) Από τη στιγμή που το σύστημά μας έχει άπειρη χωρητικότητα και απεριόριστο αριθμό πελατών υπάρχει μη μηδενική πιθανότητα σε κάποια στιγμή το σύστημά μας να έχει 57 πελάτες

Ανάλυση ουράς M/M/1 με Octave

- (A) Από το τύπο του προηγούμενου ερωτήματος (1α) θέλουμε η παράμετρος λ στη κατανομή των αφίξεων να είναι μικρότερη από τη παράμετρο μ της κατανομής των εξυπηρετήσεων προκειμένου το σύστημά μας να είναι εργοδικό. Επομένως για $\lambda = 5$ πελάτες/min οποιοσδήποτε ρυθμός εξυπηρέτησης μ ε $\mu \in (5, 10]$ πελάτες/min είναι αποδεκτός.
- (B) Για ρυθμούς μετάδοσης με $\mu \in$ (5, 10] πελάτες/min παρουσιάζονται παρακάτω τα 4 διαγράμματα που ζητούνται :

Βαθμός χρησιμοποίησης (utilization)

Μέσος χρόνος καθυστέρησης του συστήματος

Μέσος αριθμός πελατών στο σύστημα

Ρυθμαπόδοση (throughput)

(Γ) Με βάση το διάγραμμα του μέσου χρόνου καθυστέρησης θα επέλεγα το ρυθμό εξυπηρέτησης με το μεγαλύτερο συντελεστή κατανομής (μ=10) διότι η καμπύλη είναι φθίνουσα για τις συγκεκριμένες τιμές του μ και εμείς θέλουμε στο σύστημά μας ο χρόνος καθυστέρησης να ελαχιστοποιείται (αν λάβουμε υπόψη μόνο τη συγκεκριμένη καμπύλη).

(Δ) Δεδομένου ότι για αυτές τις τιμές του μ εξυπηρετούνται πάντα περισσότεροι πελάτες από ότι έρχονται νέοι και επειδή η ουρά μας έχει άπειρη χωρητικότητα περιμένουμε το throughput να είναι σταθερό όπως και παρατηρούμε στο παραπάνω διάγραμμα.

Διαδικασία γεννήσεων θανάτων (birth-death process): εφαρμογή σε σύστημα M/M/1/K

(A)

ΔΙΑΓΡΑΜΜΑ ΡΥΘΜΟΥ ΜΕΤΑΒΑΣΕΩΝ Μ/Μ/1/4

Όπου

λi = 5 / (i+1) πελάτες/sec μi = 10 πελάτες/sec

Από εργοδικές πιθανότητες καταστάσεων προκύπτουν:

$$\Box P_k = \rho^k P_o$$

$$P_0 + P_1 + ... + P_{n-1} + P_n = 1$$

$$\Box$$
 $\rho = \lambda/\mu$ Erlangs

$$\rho \neq 1$$
, $P_0 = (1-\rho)/(1-\rho^{n+1})$

$$\Box$$
 $\rho=1$, $P_0=1/(N+1)$

 \Box η πιθανότητα απώλειας πελάτη $P_{blocking} = P_n$

Υπολογίζοντας τις διακριτές εργοδικές πιθανότητες P; έχουμε:

- $P_0 = 0.60664$
- $P_1 = 0.30332$
- $P_2 = 0.075830$
- $P_3 = 0.012638$
- $P_4 = 0.0015798 \leftarrow \pi \iota \theta \alpha \nu \delta \tau \eta \tau \alpha \alpha \pi \omega \lambda \epsilon \iota \alpha \varsigma \pi \epsilon \lambda \delta \tau \eta$

(B)

Ι. Μήτρα ρυθμού μεταβάσεων

transition matrix =

ΙΙ. Εργοδικές πιθανότητες καταστάσεων

ΙΙΙ. Μέσος αριθμός πελατών (κατάσταση ισορροπίας)

Από το ορισμό του μέσου όρου πιθανοτήτων, γνωρίζοντας τα P_k από το ερώτημα (A) ο μέσος όρος πελατών θα ισούται με $E=\sum kP_k$, όπου $k\in[0,4]=0.49921$

ΙV. Πιθανότητα απόρριψης πελάτη (κατάσταση ισορροπίας)

Όπως υπολογίστηκε και στο ερώτημα (A) η πιθανότητα απόρριψης ενός πελάτη συμπίπτει με τη $P_4 = 0.0015798$

V. Πιθανότητες καταστάσεων

VI. Πιθανότητες καταστάσεων για (i) λ=5, μ=1, (ii) λ=5, μ=5, (iii) λ=5, μ=20

Από τα παραπάνω διαγράμματα παρατηρούμε ότι όσο μεγαλύτερη είναι η παράμετρος μ (δηλαδή όσο μικρότερος είναι ο λόγος λ/μ) τόσο μεγαλύτερη είναι η πιθανότητα για τις μικρότερες καταστάσεις στη κατάσταση ισορροπίας. Η ταχύτητα σύγκλισης στην εργοδική κατάσταση φαίνεται να είναι εκθετική λόγω της κυρτής καμπύλης.

*Οι κώδικες για τα 2 τελευταία μέρη βρίσκονται στα αρχεία lab2_2.m και lab2_3.m αντίστοιχα. Έχω παραλείψει να τα προσθέσω στο pdf της αναφοράς για λόγους οπτικού αποτελέσματος.