SVKM's D. J. Sanghvi College of Engineering

Program: B.Tech in Mechanical Academic Year: 2022 Duration: 3 hours

Engineering Date: 19.01.2023

Time: 09:00 am to 12:00 pm

Subject: Engineering Mathematics III (Semester III)

Marks: 75

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover page of the Answer Book, which is provided for their use.

- (1) This question paper contains 02 pages.
- (2) All Questions are Compulsory.
- (3) All questions carry equal marks.
- (4) Answer to each new question is to be started on a fresh page.
- (5) Figures in the brackets on the right indicate full marks.
- (6) Assume suitable data wherever required but justify it.
- (7) Draw the neat-labelled diagrams, wherever necessary.

Question No.		Max. Marks
Q1(A)	Find the Fourier expansion for $f(x) = x\sin(x)$ in $(0,2\pi)$	07
	OR	
	Obtain half rang cosine series for $f(x) = \begin{cases} x & 0 < x < (\frac{\pi}{2}) \\ (\pi - x) & (\frac{\pi}{2}) < x < \pi \end{cases}$	07
Q1(B)	Evaluate using Laplace transform $\int_0^\infty e^{-t} (\int_0^t u^2 \sinh(u) \cosh(u) du) dt$	08
Q2(A)	Find the Bilinear transformation which maps the points $2, i, -2$ onto the points $1, i, -1$ by using cross – ratio property.	07
	OR	
	Find the analytic function $f(z) = u + iv$ such that	07
	$u + v = \frac{2\sin(2x)}{e^{2y} + e^{-2y} - 2\cos(2x)}$	
Q2(B)	Solve Using Laplace transform $\frac{d^2y}{dt^2} + 9y = 18t$ given that y (0) = 0 and	08
	$y(\pi/2)=0.$	
Q3(A)	Evaluate $\int_C \frac{z^2}{z^4-1} dz$ where C is the circle	
	$ (i) z = \frac{1}{2}$	03
	(i) $ z = \frac{1}{2}$ (ii) $ z - 1 = 1$	04

******* 1 *******

	OR	
	Evaluate using residues $\int_0^{2\pi} \frac{\cos(3\theta)}{5-4\cos(\theta)} d\theta$	07
Q3(B)	Obtain Taylor's and Laurent's expansion of $f(z) = \frac{(z-1)}{(z^2-2z-3)}$ indicating regions of convergence.	08
Q4(A)	Obtain complex form of Fourier series of $f(x) = \cosh(3x) + \sinh(3x)$ in (-3,3)	07
	Show that the set of functions $\{\sin\left(\frac{\pi x}{2L}\right), \sin\left(\frac{3\pi x}{2L}\right), \sin\left(\frac{5\pi x}{2L}\right),\}$ is orthogonal over $(0, L)$ Hence Construct corresponding orthonormal set.	07
Q4(B)	Using Crank-Nicholson method Solve $\frac{\partial^2 u}{\partial t^2} - 16 \frac{\partial u}{\partial t} = 0$ $0 < x < 1$, $t > 0$ given $u(x, 0) = 0$, $u(0, t) = 0$, $u(1, t) = 200t$	08
	Compute u for one step in division taking $h = \frac{1}{4}$.	
Q5(A)	x 0 1 2 3 4 y 1.0 1.5 1.5 2.5 3.5	07
	OR	
	Find Karl Pearson's correlation coefficient from the following data X 23 27 28 29 30 31 33 35 36 39 Y 18 22 23 24 25 26 28 29 30 32	07
Q5(B)	i) Find Spearman's rank correlation coefficient from the following data	04
	0, $u(4,t) = 0$, $u(x,0) = x(4-x)$, Assume $h = 1$ and find the values of u upto $t = 3$.	04

All the Best!