CURS 12

Vectori proprii și valori proprii

Fie K un corp comutativ și V un K-spațiu vectorial.

Definiția 1. Fie $f: V \to V$ o transformare liniară, adică $f \in End_K(V)$. Un vector nenul $x \in V$ se numește **vector propriu al lui** f dacă există $\lambda \in K$ astfel încât $f(x) = \lambda x$. Scalarul λ se numește **valoare proprie** a lui f corespunzătoare lui f. Mulțimea tuturor valorilor proprii ale lui f se numește **spectrul** lui f.

Observațiile 2. a) Unui vector propriu îi corespunde o singură valoare proprie.

Într-adevăr, dacă $x \in V$, $x \neq 0$ este un vector propriu al lui f şi λ , λ' sunt valori proprii ale lui f corespunzătoare lui x, atunci

$$f(x) = \lambda x \text{ si } f(x) = \lambda x' \Rightarrow \lambda x = \lambda x' \Rightarrow (\lambda - \lambda') x = 0 \stackrel{x \neq 0}{\Longrightarrow} \lambda - \lambda' = 0 \Rightarrow \lambda = \lambda'.$$

b) Dacă $\lambda \in K$ este o valoare proprie a lui f și $V(\lambda)$ este submulțimea lui V formată din vectorul nul și din vectorii proprii corespunzători valorii proprii λ , adică

$$V(\lambda) = \{ x \in V \mid f(x) = \lambda x \},\$$

atunci $V(\lambda)$ este un subspațiu al lui V numit **subspațiul propriu** al lui f corespunzător lui λ . Într-adevăr

$$x \in V(\lambda) \Leftrightarrow f(x) = \lambda x \Leftrightarrow (f - \lambda 1_V)(x) = 0 \Leftrightarrow x \in \operatorname{Ker}(f - \lambda 1_V)$$

ceea ce demonstrează că $V(\lambda) = \operatorname{Ker}(f - \lambda 1_V)$. Întrucât nucleul unei transformări liniare este un subspațiu rezultă că $V(\lambda)$ este un subspațiu al lui V.

- c) Dacă $\lambda \in K$ este o valoare proprie a lui $f \in End_K(V)$, atunci dim $V(\lambda) \geq 1$. Într-adevăr, cum $V(\lambda) \leq_K V$ este nenul, dim $V(\lambda) > 0$, prin urmare, dim $V(\lambda) \geq 1$.
- d) Dacă $\lambda \in K$ este o valoare proprie a lui $f \in End_K(V)$, atunci $f(V(\lambda)) \subseteq V(\lambda)$. Într-adevăr,

$$x \in V(\lambda) \Rightarrow f(x) = \lambda x \Rightarrow f(f(x)) = \lambda f(x) \Rightarrow f(x) \in V(\lambda).$$

În continuare considerăm că V are dimensiunea finită și $\dim V = n (\in \mathbb{N}^*)$.

Teorema 3. Fie $f \in End_K(V)$, $v = (v_1, ..., v_n)$ o bază ordonată a lui V şi $A = (a_{ij}) \in M_n(K)$ matricea lui f în baza v, adică $A = [f]_v$. Atunci valorile proprii λ ale lui f coincid cu rădăcinile din K ale ecuației $\det(A - \lambda I_n) = 0$, adică ale ecuației

$$\begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix} = 0$$
 (1)

numită ecuația caracteristică a matricei A. Dacă $\lambda \in K$ este o rădăcină a ecuației (1), atunci coordonatele x_1, \ldots, x_n în baza v ale vectorilor din $V(\lambda)$ sunt date de soluțiile sistemului liniar omogen

$$\begin{cases}
(a_{11} - \lambda)x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\
a_{21}x + (a_{22} - \lambda)x_2 + \dots + a_{2n}x_n = 0 \\
\dots \\
a_{n1}x_1 + a_{n2}x_2 + \dots + (a_{nn} - \lambda)x_n = 0
\end{cases}$$
(2)

Demonstrație. Un scalar $\lambda \in K$ este valoare proprie a lui f dacă și numai dacă există un vector nenul $x \in V$ astfel încât $f(x) = \lambda x$ ceea ce se poate scrie sub forma $(f - \lambda 1_V)(x) = 0$ unde 1_V , respectiv 0 este endomorfismul identic al lui V, respectiv vectorul nul din V.

Dacă $x = x_1v_1 + \cdots + x_nv_n$ este scrierea lui x în baza v, cum coordonatele imaginii vectorului x prin $f - \lambda 1_V$ sunt combinații liniare de coordonatele lui x cu coeficienții din liniile matricei $[f - \lambda 1_V]_v$,

$$(f - \lambda 1_V)(x) = 0 \iff [f - \lambda 1_V]_v \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Dar $[f - \lambda 1_V]_v = [f]_v - \lambda [1_V]_v$ și $[1_V]_v = I_n$. Astfel, egalitatea de mai sus se rescrie

$$\begin{pmatrix}
a_{11} - \lambda & a_{12} & \dots & a_{1n} \\
a_{21} & a_{22} - \lambda & \dots & a_{2n} \\
\dots & \dots & \dots & \dots \\
a_{n1} & a_{n2} & \dots & a_{nn} - \lambda
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
\vdots \\
0
\end{pmatrix}.$$
(3)

Ecuația matriceală (3) este echivalentă cu sistemul liniar și omogen (2), sistem care are soluții nenule dacă și numai dacă determinantul său este zero, adică λ este rădăcină a ecuației (1). \square

Definiția 4. Calculând determinantul $\det(A - \lambda I_n)$ din membrul întâi al ecuației (1) obținem o expresie polinomială $p_A(\lambda)$ de gradul n în λ numită polinomul caracteristic al transformării liniare (endomorfismului) f în baza v sau polinomul caracteristic al matricei $A = [f]_v$. Mai exact polinomul caracteristic se obține înlocuind în $\det(A - \lambda I_n)$ scalarul λ cu nedeterminanta X.

Teorema 5. Dacă A și B sunt matricele lui $f \in End_K(V)$ în două baze, atunci $p_A(\lambda) = p_B(\lambda)$.

Demonstrație. Fie u, v baze ale lui V, S matricea de trecere de la v la u, $A = [f]_v$ şi $B = [f]_u$. Atunci $S \in GL_n(K)$ şi $B = S^{-1}AS$. Prin urmare,

$$p_B(\lambda) = \det(B - \lambda I_n) = \det(S^{-1}AS - \lambda S^{-1}I_nS) = \det(S^{-1}(A - \lambda I_n)S) = \det(S^{-1})\det(A - \lambda I_n)\det(S)$$

Folosind comutativitatea lui K și $\det S^{-1} = (\det S)^{-1}$ avem,

$$p_B(\lambda) = \det(S^{-1}) \det(S) \det(A - \lambda I_n) = \det(A - \lambda I_n) = p_A(\lambda).$$

Observațiile 6. a) Teorema 5 ne arată că polinomul caracteristic al unui endomorfism f într-o bază nu depinde de bază, de aceea se numește și **polinomul caracteristic al lui** f și se notează uneori cu $p_f(\lambda)$. Calculând determinantul din membrul întâi al lui (1) primim

$$p_f(\lambda) = (-1)^n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0$$

unde

$$a_{n-1} = (-1)^{n-1}(a_{11} + a_{22} + \dots + a_{nn})$$
 şi $a_0 = p_f(0) = \det A$.

Întrucât polinomul p_f nu depinde de bază rezultă că suma $\text{Tr}(A) = a_{11} + a_{22} + \cdots + a_{nn}$ (numită **urma** lui A) și det A sunt invarianți ai lui f. De aceea $a_{11} + a_{22} + \cdots + a_{nn}$ se mai numește și **urma** lui f și det A se numește **determinantul lui** f.

- b) Polinomul caracteristic al lui $f \in End_K(V)$ are gradul $n = \dim V$.
- c) Un endomorfism $f \in End_K(V)$ are cel mult $n = \dim V$ valori proprii diferite.
- d) Dacă $K = \mathbb{C}$, $f \in End_K(V)$ și $n = \dim V$, atunci polinomul caracteristic al lui f are n rădăcini (nu neapărat diferite) în K. Această afirmație nu este adevărată în cazul $K = \mathbb{R}$.

Definiția 7. O matrice din $M_n(K)$ de forma

$$\begin{pmatrix}
\lambda_1 & 0 & 0 & \dots & 0 \\
0 & \lambda_2 & 0 & \dots & 0 \\
\dots & \dots & \dots & \dots & \dots \\
0 & 0 & 0 & \dots & \lambda_n
\end{pmatrix}$$
(4)

se numește matrice diagonală.

Definiția 8. Fie V un K-spațiu vectorial de dimensiune n. Un **endomorfism** f al lui V se numește **diagonalizabil** dacă există o bază $v = (v_1, \ldots, v_n)$ a lui V în care matricea lui f este diagonală. O **matrice** $A \in M_n(K)$ se numește **diagonalizabilă** dacă există un endomorfism diagonalizabil $f \in End_K(V)$ și o bază v a lui V astfel încât $[f]_v = A$.

Observația 9. O matrice $A \in M_n(K)$ este diagonalizabilă dacă și numai dacă există $S \in GL_n(K)$ astfel încât $S^{-1}AS$ are forma (4).

Teorema 10. Un endomorfism $f \in End_K(V)$ este diagonalizabil dacă și numai dacă V are o bază $v = (v_1, \ldots, v_n)$ formată numai din vectori proprii ai lui f.

Demonstrație. Un $f \in End_K(V)$ este diagonalizabil dacă și numai dacă există o bază ordonată $v = (v_1, \ldots, v_n)$ a lui V în care matricea $[f]_v$ are forma (4) ceea ce este echivalent cu

$$\begin{cases} f(v_1) = \lambda_1 v_1 + 0 \cdot v_2 + 0 \cdot v_3 + \dots + 0 \cdot v_n \\ f(v_2) = 0 \cdot v_1 + \lambda_2 v_2 + 0 \cdot v_3 + \dots + 0 \cdot v_n \\ \dots \\ f(v_n) = 0 \cdot v_1 + 0 \cdot v_2 + 0 \cdot v_3 + \dots + \lambda_n v_n \end{cases}$$

adică cu faptul că fiecare v_i $(i=1,\ldots,n)$ este vector propriu al lui f cu valoare proprie λ_i . \square

Corolarul 11. Dacă $f \in End_K(V)$ este diagonalizabil, atunci polinomul caracteristic al lui f are toate rădăcinile în K.

Într-adevăr, dacă există o bază v a lui V pentru care $[f]_v$ are forma (4), atunci

$$p_f(\lambda) = \det([f]_v - \lambda I_n) = (\lambda_1 - \lambda)(\lambda_2 - \lambda)\dots(\lambda_n - \lambda)$$

ceea ce ne arată că cele n rădăcini ale lui $p_f(\lambda)$ sunt $\lambda_i \in K$ (i = 1, ..., n).

Definiția 12. Fie $f \in End_K(V)$ și $\lambda_i \in K$ o rădăcină a polinomului $p_f(\lambda)$. Ordinul de multiplicitate m_i al lui λ_i în polinomul caracteristic $p_f(\lambda)$ se numește **multiplicitatea algebrică** a lui λ_i , iar $n_i = \dim V(\lambda_i)$ se numește **multiplicitatea geometrică** a lui λ_i .

Propoziția 13. Fie $f \in End_K(V)$ și $\lambda_i \in K$ o rădăcină a polinomului $p_f(\lambda)$. Dacă m_i este multiplicitatea algebrică a lui λ_i , atunci dim $V(\lambda_i) \leq m_i$ (adică multiplicitatea geometrică a lui λ_i este cel multiplicitatea algebrică a lui λ_i).

Demonstrație. (facultativă)

Dacă $v=(v_1,\ldots,v_{n_i})$ este o bază a lui $V(\lambda_i)$ şi $v'=(v_1,\ldots,v_{n_i},v_{n_i+1},\ldots,v_n)$ este o completare a lui v la o bază a lui V, atunci $f(v_1)=\lambda_i v_1,\ldots,f(v_{n_i})=\lambda_i v_{n_i}$. Prin urmare, notând cu B_1 matricea diagonală din $M_{n_i}(K)$ care are pe diagonala principală scalarul λ_i , adică $B_1=\lambda_i I_{n_i}$, avem

$$[f]_{v'} = \begin{pmatrix} B_1 & B_2 \\ O & B_3 \end{pmatrix} \tag{5}$$

unde O este matrice zero. Din (5) rezultă

$$p_f(\lambda) = \det(B_1 - \lambda I_{n_i}) \cdot \det(B_3 - \lambda I_{n-n_i}) = (\lambda_i - \lambda)^{n_i} \cdot \det(B_3 - \lambda I_{n-n_i})$$

ceea ce ne arată că

$$p_f(\lambda) = (\lambda_i - \lambda)^{n_i} \cdot p_{B_3}(\lambda). \tag{6}$$

Din (6) urmează $n_i \leq m_i$. \square

Corolarul 14. Fie $f \in End_K(V)$ și $\lambda_i \in K$ o rădăcină simplă a polinomului $p_f(\lambda)$. Atunci multiplicitatea geometrică a lui λ_i este egală cu multiplicitatea algebrică a lui λ_i și ambele sunt 1.

Într-adevăr, dacă m_i și n_i sunt multiplicitățile algebrică, respectiv geometrică ale lui λ_i , atunci

$$1 \le \dim V(\lambda_i) = n_i \le m_i = 1 \implies m_i = n_i = 1.$$

Vom vedea că vectorii proprii corespunzători la valori proprii distincte sunt liniar independenți.

Teorema 15. Dacă $f \in End_K(V)$ şi $v_1, \ldots, v_k \in V$ sunt vectori proprii ai lui f care au valorile proprii două câte două diferite, atunci v_1, \ldots, v_k sunt liniar independenți.

Demonstrație. Fie λ_i valoarea proprie corespunzătoare lui v_i $(i=1,\ldots,k)$.

Demonstrăm teorema prin inducție după k. Pentru k = 1, din $v_1 \neq 0$ rezultă că dacă $\alpha_1 v_1 = 0$ cu $\alpha_1 \in K$, atunci $\alpha_1 = 0$. Deci pentru k = 1 afirmația din teoremă este adevărată.

Presupunem afirmația adevărată pentru $k \geq 1$ și o demonstrăm pentru k+1 valori proprii distincte. Dacă $\alpha_1, \ldots, \alpha_k, \alpha_{k+1} \in K$ și

$$\alpha_1 v_1 + \dots + \alpha_k v_k + \alpha_{k+1} v_{k+1} = 0 \tag{7}$$

atunci aplicând pe f obținem

$$\alpha_1 \lambda_1 v_1 + \dots + \alpha_k \lambda_k v_k + \alpha_{k+1} \lambda_{k+1} v_{k+1} = 0. \tag{8}$$

Înmulțind pe (7) cu $-\lambda_{k+1}$ și adunând cu (8) primim

$$\alpha_1(\lambda_1 - \lambda_{k+1})v_1 + \dots + \alpha_k(\lambda_k - \lambda_{k+1})v_k = 0$$

de unde conform ipotezei inducției rezultă

$$\alpha_1(\lambda_1 - \lambda_{k+1}) = \cdots = \alpha_k(\lambda_k - \lambda_{k+1}) = 0$$

ceea ce împreună cu $\lambda_1 \neq \lambda_{k+1}, \ldots, \lambda_k \neq \lambda_{k+1}$ implică $\alpha_1 = \cdots = \alpha_k = 0$. Acum din (7) rezultă şi $\alpha_{k+1} = 0$. Deci vectorii $v_1, \ldots, v_k, v_{k+1}$ sunt liniar independenți. \square

Corolarul 16. Dacă $f \in End_K(V)$, $n = \dim V$ și f are n valori proprii două câte două diferite, atunci V are o bază formată din vectori proprii, deci f este diagonalizabil.

Teorema 17. Fie $n = \dim V$, $f \in End_K(V)$. Sunt echivalente următoarele afirmații:

- a) f este diagonalizabil.
- b) Polinomul caracteristic $p_f(\lambda)$ are toate rădăcinile în K, iar dacă $\lambda_1, \ldots, \lambda_k$ sunt aceste rădăcini (două câte două diferite) și m_i , respectiv n_i este multiplicitatea algebrică, respectiv geometrică a lui λ_i , atunci $m_i = n_i$ pentru toți $i \in \{1, \ldots, k\}$.

(fără demonstrație)

După cum am văzut în Corolarul 14, pentru λ_i cu $m_i = 1$ egalitatea multiplicităților este automat verificată. În practică, pentru a testa diagonalizabilitatea lui f folosim următorul corolar:

Corolarul 18. Cu notațiile din teorema 17, f este diagonalizabil dacă și numai dacă toate rădăcinile lui $p_f(\lambda)$ sunt în K și

$$m_i = n - \operatorname{rang}(f - \lambda_i 1_V), \ \forall \ i \in \{1, \dots, k\}.$$

$$(9)$$

Condiția (9) se obține din $m_i = n_i$ având în vedere că $V(\lambda_i) = \text{Ker}(f - \lambda_i 1_V)$ astfel:

$$n_i = \dim V(\lambda_i) = \dim \operatorname{Ker}(f - \lambda_i 1_V) = \dim V - \dim(f - \lambda_i 1_V)(V) = n - \operatorname{rang}(f - \lambda_i 1_V).$$

Teorema Cayley-Hamilton

Fie K un corp comutativ, $f = a_0 + a_1 X + \cdots + a_m X^m \in K[X]$ și $A \in M_n(K)$. Matricea

$$f(A) = a_0 I_n + a_1 A + \dots + a_m A^m$$

se numește valoarea polinomului f în A iar dacă $f(A) = O_n$, atunci spunem că A e rădăcină a lui f. Dacă $f, g \in K[X], \alpha \in K$, atunci

$$(f+g)(A) = f(A) + g(A), \ (fg)(A) = f(A)g(A),$$

$$(\alpha f)(A) = \alpha f(A), f(A)g(A) = g(A)f(A).$$

Teorema 19. (Teorema Cayley-Hamilton). Orice matrice $A \in M_n(K)$ este rădăcină a polinomului său caracteristic, adică $p_A(A) = O$, unde $O = O_n$ este matricea nulă din $M_n(K)$.

Demonstrație. (facultativă)

Să observăm că orice matrice $C \in M_n(K[X])$ se scrie în mod unic sub forma

$$C = C_0 + C_1 X + \dots + C_m X^m$$
, unde $C_i \in M_n(K)$ $(i = 0, 1, \dots, m)$.

Dacă B este matricea adjunctă a matricei $A - XI_n$, atunci

$$B \cdot (A - XI_n) = p_A(X) \cdot I_n \tag{10}$$

pentru că $p_A(X) = \det(A - XI_n)$. Polinomul caracteristic este de forma

$$p_A(X) = a_0 + a_1 X + \dots + a_n X^n. \tag{11}$$

Elementele lui B fiind complemenții algebrici ai elementelor matricei $A - XI_n$ urmează că aceste elemente sunt polinoame din K[X] de grad cel mult n-1. Deci B se poate scrie sub forma

$$B = B_0 + B_1 X + \dots + B_{n-1} X^{n-1} \tag{12}$$

unde $B_i \in M_n(K)$ $(i=0,1,\ldots,n-1)$. Din (10), (11) şi (12) rezultă

$$(B_0 + B_1X + \dots + B_{n-1}X^{n-1})(A - XI_n) = (a_0 + a_1X + \dots + a_nX^n)I_n$$

ceea ce are loc dacă

$$\begin{cases}
-B_{n-1} = a_n I_n \\
B_{n-1}A - B_{n-2} = a_{n-1}I_n \\
\vdots \\
B_1A - B_0 = a_1I_n \\
B_0A = a_0I_n
\end{cases}$$

Înmulțind la dreapta prima egalitate cu A^n , a doua cu A^{n-1} , ..., penultima cu A și adunând egalitățile obținute cu ultima egalitate primim

$$a_n A^n + a_1 A^{n-1} + \dots + a_1 A + a_0 I_n = O (13)$$

adică $p_A(A) = O$. \square

Corolarul 20. Dacă $A \in M_n(K)$ este o matrice inversabilă, atunci din (13) rezultă

$$A^{-1} = -\frac{1}{\det A}(a_1 I_n + a_2 A + \dots + a_n A^{n-1}).$$