Chapitre 1. Random Variables

Prof. REMITA Mohamed Riad

National Higher School of Artificial Intelligence.

2022-2023

Example

A coin is tossed twice.

Example

A coin is tossed twice. The possible results are $\{PP, PF, FP \text{ et } FF\}$. We define variable X representing the number of tails P obtained.

Example

A coin is tossed twice. The possible results are $\{PP, PF, FP \text{ et } FF\}$. We define variable X representing the number of tails P obtained. Then the values of X are $\{0,1 \text{ and } 2\}$.

Example

A coin is tossed twice. The possible results are $\{PP, PF, FP \text{ et } FF\}$. We define variable X representing the number of tails P obtained. Then the values of X are $\{0,1 \text{ and } 2\}$.

Example

A die is rolled until a 6 is rolled.

Example

A coin is tossed twice. The possible results are $\{PP, PF, FP \text{ et } FF\}$. We define variable X representing the number of tails P obtained. Then the values of X are $\{0,1 \text{ and } 2\}$.

Example

A die is rolled until a 6 is rolled. The possible outcomes are $\{6, (1, 6), (2, 6), \cdots, (5, 6), (1, 1, 6), \cdots, (5, 5, 6), \cdots\}$. We define a variable X representing the number of throws needed until a 6 is obtained.

Example

A coin is tossed twice. The possible results are $\{PP, PF, FP \text{ et } FF\}$. We define variable X representing the number of tails P obtained. Then the values of X are $\{0,1 \text{ and } 2\}$.

Example

A die is rolled until a 6 is rolled. The possible outcomes are $\{6, (1, 6), (2, 6), \cdots, (5, 6), (1, 1, 6), \cdots, (5, 5, 6), \cdots\}$. We define a variable X representing the number of throws needed until a 6 is obtained. Then the values of X are $\{1, 2, 3, \cdots\} = \mathbb{N}^*$.

Example

A coin is tossed twice. The possible results are $\{PP, PF, FP \text{ et } FF\}$. We define variable X representing the number of tails P obtained. Then the values of X are $\{0,1 \text{ and } 2\}$.

Example

A die is rolled until a 6 is rolled. The possible outcomes are $\{6, (1, 6), (2, 6), \cdots, (5, 6), (1, 1, 6), \cdots, (5, 5, 6), \cdots\}$. We define a variable X representing the number of throws needed until a 6 is obtained. Then the values of X are $\{1, 2, 3, \cdots\} = \mathbb{N}^*$.

Example

The service life of a spare part can be represented by a r.r.v.

We have a probabilized space $(\Omega, \mathcal{A}, \mathbb{P})$ and a probabilizable space $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$.

We have a probabilized space $(\Omega, \mathcal{A}, \mathbb{P})$ and a probabilizable space $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$.

Definition

We call a real random variable, noted r.r.v. any application X of (Ω, \mathcal{A}) in $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ such that:

We have a probabilized space $(\Omega, \mathcal{A}, \mathbb{P})$ and a probabilizable space $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$.

Definition

We call a real random variable, noted r.r.v. any application X of (Ω,\mathcal{A}) in $(\mathbb{R},\mathcal{B}_{\mathbb{R}})$ such that:

$$\forall B \in \mathcal{B}_{\mathbb{R}}, X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{A}.$$

We have a probabilized space $(\Omega, \mathcal{A}, \mathbb{P})$ and a probabilizable space $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$.

Definition

We call a real random variable, noted r.r.v. any application X of (Ω,\mathcal{A}) in $(\mathbb{R},\mathcal{B}_{\mathbb{R}})$ such that:

$$\forall B \in \mathcal{B}_{\mathbb{R}}, X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{A}.$$

We have a probabilized space $(\Omega, \mathcal{A}, \mathbb{P})$ and a probabilizable space $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$.

Definition

We call a real random variable, noted r.r.v. any application X of (Ω, \mathcal{A}) in $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ such that: $\forall B \in \mathcal{B}_{\mathbb{R}}, X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{A}.$

• If
$$B =]a, b] : X^{-1}(B) = \{a < X \le b\}$$

We have a probabilized space $(\Omega, \mathcal{A}, \mathbb{P})$ and a probabilizable space $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$.

Definition

We call a real random variable, noted r.r.v. any application X of (Ω,\mathcal{A}) in $(\mathbb{R},\mathcal{B}_{\mathbb{R}})$ such that:

 $\forall B \in \mathcal{B}_{\mathbb{R}}, X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{A}.$

- If $B =]a, b] : X^{-1}(B) = \{a < X \le b\}$
- If $B = \{a\} : X^{-1}(B) = \{X = a\}$

We have a probabilized space $(\Omega, \mathcal{A}, \mathbb{P})$ and a probabilizable space $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$.

Definition

We call a real random variable, noted r.r.v. any application X of (Ω,\mathcal{A}) in $(\mathbb{R},\mathcal{B}_{\mathbb{R}})$ such that:

$$\forall B \in \mathcal{B}_{\mathbb{R}}, X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{A}.$$

- If $B =]a, b] : X^{-1}(B) = \{a < X \le b\}$
- If $B = \{a\} : X^{-1}(B) = \{X = a\}$
- If $B = [a, +\infty[: X^{-1}(B) = \{X \ge a\}]$

We have a probabilized space $(\Omega, \mathcal{A}, \mathbb{P})$ and a probabilizable space $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$.

Definition

We call a real random variable, noted r.r.v. any application X of (Ω,\mathcal{A}) in $(\mathbb{R},\mathcal{B}_{\mathbb{R}})$ such that:

$$\forall B \in \mathcal{B}_{\mathbb{R}}, X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{A}.$$

- If $B =]a, b] : X^{-1}(B) = \{a < X \le b\}$
- If $B = \{a\} : X^{-1}(B) = \{X = a\}$
- If $B = [a, +\infty[: X^{-1}(B) = \{X \ge a\}]$
- If $B =]-\infty$, $a]: X^{-1}(B) = \{X \le a\}$

Since the Borel σ -algebra is generated by all the intervals $]-\infty,x]$, then a random variable can be defined by the following definition:

Since the Borel σ -algebra is generated by all the intervals $]-\infty,x]$, then a random variable can be defined by the following definition:

Definition

The application X of (Ω, \mathcal{A}) in $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ is a real random variable if for all $x \in \mathbb{R}$ and $\forall B \in \mathcal{B}_{\mathbb{R}}$ the subset

$$A_{x} = X^{-1}(]-\infty, x]) = \{\omega \in \Omega : X(\omega) \le x\} \in \mathcal{A}.$$

Since the Borel σ -algebra is generated by all the intervals $]-\infty,x]$, then a random variable can be defined by the following definition:

Definition

The application X of (Ω, \mathcal{A}) in $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ is a real random variable if for all $x \in \mathbb{R}$ and $\forall B \in \mathcal{B}_{\mathbb{R}}$ the subset

$$A_{x}=X^{-1}\left(\left] -\infty,x\right] \right) =\left\{ \omega\in\Omega:X\left(\omega\right) \leq x\right\} \in\mathcal{A}.$$

Example

We throw two coins and let X be the number of tails obtained. We know that $\Omega = \{(F,F); (F,P); (P,F); (P,P)\}$ and the values of X are $\{0,1,2\}$.

Since the Borel σ -algebra is generated by all the intervals $]-\infty,x]$, then a random variable can be defined by the following definition:

Definition

The application X of (Ω, \mathcal{A}) in $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ is a real random variable if for all $x \in \mathbb{R}$ and $\forall B \in \mathcal{B}_{\mathbb{R}}$ the subset

$$A_{x}=X^{-1}\left(\left] -\infty,x\right] \right) =\left\{ \omega\in\Omega:X\left(\omega\right) \leq x\right\} \in\mathcal{A}.$$

Example

We throw two coins and let X be the number of tails obtained. We know that $\Omega = \{(F,F); (F,P); (P,F); (P,P)\}$ and the values of X are $\{0,1,2\}$.

1. Show that X is a random variable on Ω endowed with the algebra $\mathcal{P}\left(\Omega\right)$.

Since the Borel σ -algebra is generated by all the intervals $]-\infty,x]$, then a random variable can be defined by the following definition:

Definition

The application X of (Ω, \mathcal{A}) in $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ is a real random variable if for all $x \in \mathbb{R}$ and $\forall B \in \mathcal{B}_{\mathbb{R}}$ the subset

$$A_{x}=X^{-1}\left(\left]-\infty,x\right]\right)=\left\{ \omega\in\Omega:X\left(\omega\right)\leq x\right\} \in\mathcal{A}.$$

Example

We throw two coins and let X be the number of tails obtained. We know that $\Omega = \{(F,F); (F,P); (P,F); (P,P)\}$ and the values of X are $\{0,1,2\}$.

- 1. Show that X is a random variable on Ω endowed with the algebra $\mathcal{P}\left(\Omega\right)$.
- 2. Show that X is not a random variable on Ω endowed with the algebra $\mathcal{A}_1 = \{\Omega, \emptyset, \{(F, F)\}, \{(F, F); (F, P); (P, F)\}\}$.

Let Ω be the space of trials associated to a Bernoulli random experiment and let $I_A\left(\cdot\right)$ be the function from Ω to $\left\{0,1\right\}$ defined by

$$I_A(\cdot) = \left\{ \begin{array}{l} 1 \text{ if } \omega \in A \\ 0 \text{ if } \omega \notin A \end{array} \right.$$

Let Ω be the space of trials associated to a Bernoulli random experiment and let $I_A\left(\cdot\right)$ be the function from Ω to $\left\{0,1\right\}$ defined by

$$I_A\left(\cdot\right) = \left\{ \begin{array}{l} 1 \text{ if } \omega \in A \\ 0 \text{ if } \omega \notin A \end{array} \right.$$

 $I_{A}\left(\cdot\right)$ is called indicator function (or Dirac measure) of the event A.

Let Ω be the space of trials associated to a Bernoulli random experiment and let $I_A\left(\cdot\right)$ be the function from Ω to $\left\{0,1\right\}$ defined by

$$I_{A}\left(\cdot\right)=\left\{ \begin{array}{ll} 1 \ \ \text{if} \ \omega\in A \\ 0 \ \ \text{if} \ \ \omega\notin A \end{array} \right.$$

 $I_{A}\left(\cdot
ight)$ is called indicator function (or Dirac measure) of the event A. We can show easily that $I_{A}\left(\cdot
ight)$ is a random variable for the algebra $\mathcal{A}_{I_{A}\left(\cdot
ight)}=\left\{\Omega,\varnothing,A,\overline{A}
ight\}$.

Let Ω be the space of trials associated to a Bernoulli random experiment and let $I_A\left(\cdot\right)$ be the function from Ω to $\left\{0,1\right\}$ defined by

$$I_{A}\left(\cdot\right)=\left\{ \begin{array}{ll} 1 \ \ \text{if} \ \omega\in A \\ 0 \ \ \text{if} \ \ \omega\notin A \end{array} \right..$$

 $I_{A}\left(\cdot\right)$ is called indicator function (or Dirac measure) of the event A. We can show easily that $I_{A}\left(\cdot\right)$ is a random variable for the algebra $\mathcal{A}_{I_{A}\left(\cdot\right)}=\left\{ \Omega,\varnothing,A,\overline{A}\right\}$.

Let Ω be the space of trials associated to a Bernoulli random experiment and let $I_A\left(\cdot\right)$ be the function from Ω to $\left\{0,1\right\}$ defined by

$$I_{A}\left(\cdot\right)=\left\{ \begin{array}{l} 1 \text{ if }\omega\in A\\ 0 \text{ if }\omega\notin A \end{array}
ight..$$

 $I_{A}\left(\cdot\right)$ is called indicator function (or Dirac measure) of the event A. We can show easily that $I_{A}\left(\cdot\right)$ is a random variable for the algebra $\mathcal{A}_{I_{A}\left(\cdot\right)}=\left\{ \Omega,\varnothing,A,\overline{A}\right\}$.

1.
$$I_{A}\left(\omega\right)=1-I_{\overline{A}}\left(\omega\right)$$
 , $orall A\in\mathcal{A}$,

Let Ω be the space of trials associated to a Bernoulli random experiment and let $I_A\left(\cdot\right)$ be the function from Ω to $\left\{0,1\right\}$ defined by

$$I_{A}\left(\cdot\right)=\left\{ \begin{array}{l} 1 \text{ if }\omega\in A\\ 0 \text{ if }\omega\notin A \end{array}
ight..$$

 $I_{A}\left(\cdot\right)$ is called indicator function (or Dirac measure) of the event A. We can show easily that $I_{A}\left(\cdot\right)$ is a random variable for the algebra $\mathcal{A}_{I_{A}\left(\cdot\right)}=\left\{ \Omega,\varnothing,A,\overline{A}\right\}$.

1.
$$I_{A}\left(\omega\right)=1-I_{\overline{A}}\left(\omega\right)$$
 , $orall A\in\mathcal{A}$,

2.
$$I_{\cap A_i}(\omega) = \prod_i I_{A_i}(\omega)$$
, $\forall A_i \in \mathcal{A}$,

Let Ω be the space of trials associated to a Bernoulli random experiment and let $I_A\left(\cdot\right)$ be the function from Ω to $\left\{0,1\right\}$ defined by

$$I_{A}\left(\cdot\right)=\left\{ \begin{array}{l} 1 \text{ if }\omega\in A\\ 0 \text{ if }\omega\notin A \end{array} \right.$$

 $I_{A}\left(\cdot\right)$ is called indicator function (or Dirac measure) of the event A. We can show easily that $I_{A}\left(\cdot\right)$ is a random variable for the algebra $\mathcal{A}_{I_{A}\left(\cdot\right)}=\left\{ \Omega,\varnothing,A,\overline{A}\right\}$.

- 1. $I_{A}\left(\omega\right)=1-I_{\overline{A}}\left(\omega\right)$, $orall A\in\mathcal{A}$,
- 2. $I_{\cap A_i}(\omega) = \prod_i I_{A_i}(\omega)$, $\forall A_i \in \mathcal{A}$,
- 3. $\mathbb{P}\left(I_{A}\left(\omega\right)=1\right)=\mathbb{P}\left(A\right)$, $orall A\in\mathcal{A}$,

Let Ω be the space of trials associated to a Bernoulli random experiment and let $I_A\left(\cdot\right)$ be the function from Ω to $\left\{0,1\right\}$ defined by

$$I_{A}\left(\cdot\right)=\left\{ \begin{array}{l} 1 \text{ if }\omega\in A\\ 0 \text{ if }\omega\notin A \end{array} \right.$$

 $I_{A}\left(\cdot\right)$ is called indicator function (or Dirac measure) of the event A. We can show easily that $I_{A}\left(\cdot\right)$ is a random variable for the algebra $\mathcal{A}_{I_{A}\left(\cdot\right)}=\left\{ \Omega,\varnothing,A,\overline{A}\right\}$.

- 1. $I_{A}\left(\omega\right)=1-I_{\overline{A}}\left(\omega\right)$, $orall A\in\mathcal{A}$,
- 2. $I_{\cap A_{i}}(\omega) = \prod_{i} I_{A_{i}}(\omega)$, $\forall A_{i} \in \mathcal{A}$,
- 3. $\mathbb{P}\left(I_{A}\left(\omega\right)=1\right)=\mathbb{P}\left(A\right)$, $\forall A\in\mathcal{A}$,
- 4. $\mathbb{P}\left(I_{A}\left(\omega\right)=0\right)=1-\mathbb{P}\left(A\right)=\mathbb{P}\left(\overline{A}\right)$, $\forall A\in\mathcal{A}$.

Theorem

Let X be a r.r.v. defined on probabilized space $(\Omega, \mathcal{A}, \mathbb{P})$ with values in a probabilizable space $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$. The application \mathbb{P}_X of $\mathcal{B}_{\mathbb{R}}$ in \mathbb{R} defined by $\mathbb{P}_X(B) = \mathbb{P}\left(X^{-1}(B)\right)$, is a probability on $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$.

Theorem

Let X be a r.r.v. defined on probabilized space $(\Omega, \mathcal{A}, \mathbb{P})$ with values in a probabilizable space $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$. The application \mathbb{P}_X of $\mathcal{B}_{\mathbb{R}}$ in \mathbb{R} defined by $\mathbb{P}_X(B) = \mathbb{P}\left(X^{-1}(B)\right)$, is a probability on $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$.

Remark

The definition is due to the existence of \mathbb{P} on (Ω, \mathcal{T}) , hence the notion of induced probability.

Proof.

It is obvious that \mathbb{P} is an application with values in [0,1].

Proof.

It is obvious that $\mathbb P$ is an application with values in [0,1]. Moreover $\mathbb P$ verifies these conditions:

$$\mathbb{P}_{X}\left(\mathbb{R}\right) = \mathbb{P}\left(X^{-1}\left(\mathbb{R}\right)\right) = \mathbb{P}\left(\Omega\right) = 1$$

Let $(B_i)_{i\geq 1}$ be two by two incompatible borelean sequences.

Proof.

It is obvious that $\mathbb P$ is an application with values in [0,1]. Moreover $\mathbb P$ verifies these conditions:

$$\mathbb{P}_{X}\left(\mathbb{R}\right) = \mathbb{P}\left(X^{-1}\left(\mathbb{R}\right)\right) = \mathbb{P}\left(\Omega\right) = 1$$

Let $(B_i)_{i\geq 1}$ be two by two incompatible borelean sequences. Then

$$\mathbb{P}_{X}\left(\bigcup_{i\geq1}B_{i}\right) = \mathbb{P}\left(X^{-1}\left(\bigcup_{i\geq1}B_{i}\right)\right) = \mathbb{P}\left(\bigcup_{i\geq1}X^{-1}\left(B_{i}\right)\right)
= \sum_{i\geq1}\mathbb{P}\left(X^{-1}\left(B_{i}\right)\right) = \sum_{i\geq1}\mathbb{P}_{X}\left(B_{i}\right),$$

Proof.

It is obvious that $\mathbb P$ is an application with values in [0,1]. Moreover $\mathbb P$ verifies these conditions:

$$\mathbb{P}_{X}\left(\mathbb{R}\right) = \mathbb{P}\left(X^{-1}\left(\mathbb{R}\right)\right) = \mathbb{P}\left(\Omega\right) = 1$$

Let $(B_i)_{i\geq 1}$ be two by two incompatible borelean sequences. Then

$$\mathbb{P}_{X}\left(\bigcup_{i\geq1}B_{i}\right) = \mathbb{P}\left(X^{-1}\left(\bigcup_{i\geq1}B_{i}\right)\right) = \mathbb{P}\left(\bigcup_{i\geq1}X^{-1}\left(B_{i}\right)\right)
= \sum_{i\geq1}\mathbb{P}\left(X^{-1}\left(B_{i}\right)\right) = \sum_{i\geq1}\mathbb{P}_{X}\left(B_{i}\right),$$

noting that $X^{-1}(B_i)$ and $X^{-1}(B_i)$ are incompatible $\forall i \neq j$.

Cumulative distribution function of a random variable

Definition

The cumulative ditribution function of a r.r.v. is the function F or F_X defined by:

$$F(x) = F_X(x) = \mathbb{P}(X \le x)$$
.

Definition

The cumulative ditribution function of a r.r.v. is the function F or F_X defined by:

$$F(x) = F_X(x) = \mathbb{P}(X \le x)$$
.

Properties of a cumulative distribution function

Definition

The cumulative ditribution function of a r.r.v. is the function F or F_X defined by:

$$F(x) = F_X(x) = \mathbb{P}(X \le x)$$
.

Properties of a cumulative distribution function

Definition

A sequence of events $(A_n)_{n\geq 1}$ is increasing (resp. decreasing) if $A_n\subset A_{n+1}$ (resp. $A_{n+1}\subset A_n$) for all $n\geq 1$. $(A_n)_{n\geq 1}$ is said to monotonic if it is increasing or decreasing.

Definition

The cumulative ditribution function of a r.r.v. is the function F or F_X defined by:

$$F(x) = F_X(x) = \mathbb{P}(X \le x)$$
.

Properties of a cumulative distribution function

Definition

A sequence of events $(A_n)_{n\geq 1}$ is increasing (resp. decreasing) if $A_n\subset A_{n+1}$ (resp. $A_{n+1}\subset A_n$) for all $n\geq 1$. $(A_n)_{n\geq 1}$ is said to monotonic if it is increasing or decreasing. In this case we put $\lim_{n\to\infty}A_n=\bigcup_{n\geq 1}A_n$ if it is increasing (resp. $\lim_{n\to\infty}A_n=\bigcap_{n\geq 1}A_n$ if it is decreasing).

Remark

 $\lim_{n\to\infty}A_n$ exists if and only if the sequence $(A_n)_{n\geq 1}$ is monotonic.

Remark

 $\lim_{n\to\infty}A_n$ exists if and only if the sequence $(A_n)_{n\geq 1}$ is monotonic.

Lemma

(Property of the continuity of \mathbb{P}) If $(A_n)_{n>1}$ is a monotonic sequence of events, then we have:

$$\underset{n\to\infty}{\lim}\mathbb{P}\left(A_{n}\right)=\mathbb{P}\left(\underset{n\to\infty}{\lim}A_{n}\right).$$

Theorem

Ifi F is the cumulative distibution function of X then

Theorem

Ifi F is the cumulative distibution function of X then

1.
$$\forall x \in \mathbb{R} \ 0 \le F(x) \le 1$$
;

Theorem

If F is the cumulative distibution function of X then

- 1. $\forall x \in \mathbb{R} \ 0 \le F(x) \le 1$;
- 2. F is an increasing function;

Theorem

If F is the cumulative distibution function of X then

- 1. $\forall x \in \mathbb{R} \ 0 \le F(x) \le 1$;
- 2. F is an increasing function;
- 3. F is right continuous;

Theorem

If F is the cumulative distibution function of X then

- 1. $\forall x \in \mathbb{R} \ 0 \le F(x) \le 1$;
- 2. F is an increasing function;
- 3. F is right continuous;
- 4. $\lim_{x\to\infty} F(x) = 1$ and $\lim_{x\to-\infty} F(x) = 0$.

1. Obvious because $F(X) = \mathbb{P}(X \le x)$

1. Obvious because $F(X) = \mathbb{P}(X \le x)$ so $0 \le F(X) \le 1$.

- 1. Obvious because $F(X) = \mathbb{P}(X \le x)$ so $0 \le F(X) \le 1$.
- 2. Suppose that $x_1 \leq x_2$, hence $]-\infty, x_1] \subset]-\infty, x_2]$

- 1. Obvious because $F(X) = \mathbb{P}(X \le x)$ so $0 \le F(X) \le 1$.
- 2. Suppose that $x_1 \le x_2$, hence $]-\infty, x_1] \subset]-\infty, x_2]$ and $X^{-1}(]-\infty, x_1]) \subset X^{-1}(]-\infty, x_2])$.

- 1. Obvious because $F(X) = \mathbb{P}(X \le x)$ so $0 \le F(X) \le 1$.
- 2. Suppose that $x_1 \leq x_2$, hence $]-\infty, x_1] \subset]-\infty, x_2]$ and $X^{-1}(]-\infty, x_1]) \subset X^{-1}(]-\infty, x_2])$. It follows that $\mathbb{P}\left(X^{-1}(]-\infty, x_1]\right)) \leq \mathbb{P}\left(X^{-1}(]-\infty, x_2]\right))$ hence $F\left(x_1\right) \leq F\left(x_2\right)$.

- 1. Obvious because $F(X) = \mathbb{P}(X \le x)$ so $0 \le F(X) \le 1$.
- 2. Suppose that $x_1 \leq x_2$, hence $]-\infty, x_1] \subset]-\infty, x_2]$ and $X^{-1}(]-\infty, x_1]) \subset X^{-1}(]-\infty, x_2])$. It follows that $\mathbb{P}\left(X^{-1}(]-\infty, x_1]\right)) \leq \mathbb{P}\left(X^{-1}(]-\infty, x_2]\right)$ hence $F\left(x_1\right) \leq F\left(x_2\right)$.
- 3. Let us show that for any real sequence (ε_n) decreasing and converging to 0, $\lim_{n\to\infty} F(x+\varepsilon_n) = F(x)$.

- 1. Obvious because $F(X) = \mathbb{P}(X \le x)$ so $0 \le F(X) \le 1$.
- 2. Suppose that $x_1 \leq x_2$, hence $]-\infty, x_1] \subset]-\infty, x_2]$ and $X^{-1}(]-\infty, x_1]) \subset X^{-1}(]-\infty, x_2])$. It follows that $\mathbb{P}\left(X^{-1}(]-\infty, x_1]\right)) \leq \mathbb{P}\left(X^{-1}(]-\infty, x_2]\right))$ hence $F\left(x_1\right) \leq F\left(x_2\right)$.
- 3. Let us show that for any real sequence (ε_n) decreasing and converging to 0, $\lim_{n\to\infty} F(x+\varepsilon_n) = F(x)$. We set $A_n = [x, x+\varepsilon_n]$.

- 1. Obvious because $F(X) = \mathbb{P}(X \le x)$ so $0 \le F(X) \le 1$.
- 2. Suppose that $x_1 \leq x_2$, hence $]-\infty, x_1] \subset]-\infty, x_2]$ and $X^{-1}(]-\infty, x_1]) \subset X^{-1}(]-\infty, x_2])$. It follows that $\mathbb{P}\left(X^{-1}(]-\infty, x_1]\right)) \leq \mathbb{P}\left(X^{-1}(]-\infty, x_2]\right))$ hence $F\left(x_1\right) \leq F\left(x_2\right)$.
- 3. Let us show that for any real sequence (ε_n) decreasing and converging to 0, $\lim_{n\to\infty} F\left(x+\varepsilon_n\right) = F\left(x\right)$. We set $A_n = [x, x+\varepsilon_n]$. The (A_n) are decreasing and $\lim_{n\to\infty} A_n = \emptyset$, hence from the lemma $\lim_{n\to\infty} \mathbb{P}_X\left(A_n\right) = \mathbb{P}_X\left(\lim_{n\to\infty} A_n\right) = \mathbb{P}_X\left(\emptyset\right) = 0$.

- 1. Obvious because $F(X) = \mathbb{P}(X \le x)$ so $0 \le F(X) \le 1$.
- 2. Suppose that $x_1 \leq x_2$, hence $]-\infty, x_1] \subset]-\infty, x_2]$ and $X^{-1}(]-\infty, x_1]) \subset X^{-1}(]-\infty, x_2])$. It follows that $\mathbb{P}(X^{-1}(]-\infty, x_1])) \leq \mathbb{P}(X^{-1}(]-\infty, x_2]))$ hence $F(x_1) \leq F(x_2)$.
- 3. Let us show that for any real sequence (ε_n) decreasing and converging to 0, $\lim_{n\to\infty} F(x+\varepsilon_n) = F(x)$. We set $A_n = [x, x+\varepsilon_n]$. The (A_n) are decreasing and $\lim_{n\to\infty} A_n = \emptyset$, hence from the lemma $\lim_{n\to\infty} \mathbb{P}_X(A_n) = \mathbb{P}_X(\lim_{n\to\infty} A_n) = \mathbb{P}_X(\emptyset) = 0$. Since

$$\mathbb{P}_{X}(A_{n}) = \mathbb{P}(x < X \le x + \varepsilon_{n}) = \mathbb{P}(X \le x + \varepsilon_{n}) - \mathbb{P}(X \le x)$$
$$= F(x + \varepsilon_{n}) - F(x),$$

- 1. Obvious because $F(X) = \mathbb{P}(X \le x)$ so $0 \le F(X) \le 1$.
- 2. Suppose that $x_1 \leq x_2$, hence $]-\infty, x_1] \subset]-\infty, x_2]$ and $X^{-1}(]-\infty, x_1]) \subset X^{-1}(]-\infty, x_2]$. It follows that $\mathbb{P}(X^{-1}(]-\infty, x_1])) \leq \mathbb{P}(X^{-1}(]-\infty, x_2])$ hence $F(x_1) \leq F(x_2)$.
- 3. Let us show that for any real sequence (ε_n) decreasing and converging to 0, $\lim_{n\to\infty} F(x+\varepsilon_n) = F(x)$. We set $A_n = [x, x+\varepsilon_n]$. The (A_n) are decreasing and $\lim_{n\to\infty} A_n = \emptyset$, hence from the lemma $\lim_{n\to\infty} \mathbb{P}_X(A_n) = \mathbb{P}_X(\lim_{n\to\infty} A_n) = \mathbb{P}_X(\emptyset) = 0$. Since

$$\mathbb{P}_{X}(A_{n}) = \mathbb{P}(x < X \leq x + \varepsilon_{n}) = \mathbb{P}(X \leq x + \varepsilon_{n}) - \mathbb{P}(X \leq x)
= F(x + \varepsilon_{n}) - F(x),$$

then
$$\lim_{n\to\infty} F(x+\varepsilon_n) = F(x)$$
.

4. Let $B_n =]-\infty, x_n]$ where the x_n is decreasing and converging to $-\infty$.

4. Let $B_n =]-\infty, x_n]$ where the x_n is decreasing and converging to $-\infty$. We deduce that (B_n) is a decreasing sequence and $\lim B_n = \emptyset$, and according to the lemma

$$\lim_{n\to\infty}\mathbb{P}_{X}\left(B_{n}\right)=\mathbb{P}_{X}\left(\lim_{n\to\infty}B_{n}\right)=\mathbb{P}_{X}\left(\emptyset\right)=0$$

4. Let $B_n =]-\infty, x_n]$ where the x_n is decreasing and converging to $-\infty$. We deduce that (B_n) is a decreasing sequence and $\lim B_n = \emptyset$, and according to the lemma

$$\lim_{n\to\infty} \mathbb{P}_X (B_n) = \mathbb{P}_X \left(\lim_{n\to\infty} B_n \right) = \mathbb{P}_X (\emptyset) = 0$$

or
$$\lim_{n\to\infty} \mathbb{P}_X (B_n) = \lim_{n\to\infty} \mathbb{P}_X (X \le x_n) = \lim_{n\to\infty} F(x_n) = 0.$$

4. Let $B_n =]-\infty, x_n]$ where the x_n is decreasing and converging to $-\infty$. We deduce that (B_n) is a decreasing sequence and $\lim B_n = \emptyset$, and according to the lemma

$$\lim_{n\to\infty} \mathbb{P}_X (B_n) = \mathbb{P}_X \left(\lim_{n\to\infty} B_n \right) = \mathbb{P}_X (\emptyset) = 0$$

or
$$\lim_{n\to\infty}\mathbb{P}_X\left(\mathcal{B}_n\right)=\lim_{n\to\infty}\mathbb{P}_X\left(X\leq x_n\right)=\lim_{n\to\infty}F\left(x_n\right)=0.$$
 Let us consider the sequence defined by $C_n=\left]-\infty,y_n\right]$ where (y_n) is an increasing real sequence such that $\lim_{n\to\infty}y_n=+\infty.$

4. Let $B_n =]-\infty$, $x_n]$ where the x_n is decreasing and converging to $-\infty$. We deduce that (B_n) is a decreasing sequence and $\lim B_n = \emptyset$, and according to the lemma

or $\lim_{n\to\infty} \mathbb{P}_X (B_n) = \lim_{n\to\infty} \mathbb{P}_X (X \leq x_n) =$

$$\lim_{n\to\infty} \mathbb{P}_X (B_n) = \mathbb{P}_X \left(\lim_{n\to\infty} B_n \right) = \mathbb{P}_X (\emptyset) = 0$$

 $\lim_{n\to\infty} F\left(x_n\right)=0$. Let us consider the sequence defined by $C_n=]-\infty$, $y_n]$ where (y_n) is an increasing real sequence such that $\lim_{n\to\infty} y_n=+\infty$. We deduce that the (C_n) are increasing and $\lim_{n\to\infty} C_n=\mathbb{R}$.

4. Let $B_n =]-\infty, x_n]$ where the x_n is decreasing and converging to $-\infty$. We deduce that (B_n) is a decreasing sequence and $\lim B_n = \emptyset$, and according to the lemma

$$\lim_{n\to\infty} \mathbb{P}_X (B_n) = \mathbb{P}_X \left(\lim_{n\to\infty} B_n \right) = \mathbb{P}_X (\emptyset) = 0$$

or
$$\lim_{n\to\infty} \mathbb{P}_X (B_n) = \lim_{n\to\infty} \mathbb{P}_X (X \le x_n) = \lim_{n\to\infty} F(x_n) = 0.$$

Let us consider the sequence defined by $C_n =]-\infty, y_n]$ where (y_n) is an increasing real sequence such that

 $\lim_{n\to\infty} y_n = +\infty$. We deduce that the (C_n) are increasing and $\lim_{n\to\infty} C_n = \mathbb{R}$.

We have
$$\lim_{n\to+\infty} F(y_n) = \lim_{n\to+\infty} \mathbb{P}(X \leq y_n) = \lim_{n\to+\infty} \mathbb{P}_X(C_n) = \mathbb{P}_X(\lim_{n\to+\infty} C_n) = \mathbb{P}_X(\mathbb{R}) = 1.$$

