ASSEMBLER

Alberto Willian Mascarenhas
https://sites.google.com/site/awmascarenhas/
awmascarenhas@gmail.com.

Conteúdo

Conjunto de instruções Conjunro reduzido de instruções Trinta e cinco.

Diretivas Assembler

Descrição da instrução

1. Conjunto de instruções

W: work (registrador de trabalho ou acumulador)

F: file (registradores especiais e/ou de uso geral | posição de memória)

L: literal (constante, número qualquer) Utilizado como L nas instruções e k nos argumentos

D: destination (local onde o resultado de uma operação será armazenado).

B: bit (bits dentro dos registradores, dentro de um byte, flags)

T: test (utilizado para teste de bits)

S: skip (pulo, salto, desvio condicional)

S: set (setar, tornar nível alto)

C: clear (limpar, tornar nível baixo)

Z: zero (testar se é equivalente a zero)

Representação Numérica

Decimal: D'??' ou .??

Ex: D'20' ou .20

Hexadecimal: H'??', 0X?? ou ??H

Ex: H'2F' ou 2FH 0X2F

Binário: B'???????

Ex: B'01101101'

Uma instrução do PIC é normalmente da seguinte forma:

INST OP1, OP2

Onde INST é o OPCODE da instrução e OP1 e OP2 são os operandos. Uma instrução pode ter zero, um ou dois operandos.

Um operando pode ser um Literal (k), um registrador (f), bit (b onde 0≤b≤7) ou um destino (d), onde d=0 work e d=1 file;

O nome das instruções do PIC são construídos de acordo com certa lógica. Entender essa lógica pode facilitar muito o trabalho do programador, pois com esse entendimento é mais fácil decorar o set de instruções do PIC e os seus operandos, e diminuir eventuais consultas a documentação na hora de ler um código. Os termos abaixo são usados na construção dos nomes de instrução:

(W)ork – Refere-se ao **registrador temporário W**. Observando o esquema interno do PIC é possível perceber que esse registrador está localizado na <u>saída da ULA</u>. Quase todas as operações sobre bytes, de alguma forma, envolvem esse registrador. As instruções que manipulam esse registrador diretamente tem o W na sua formação.

Ex.: Para fazer uma atribuição do tipo:

A=25

É necessário carregar W com o valor do literal 25 e depois carregar o conteúdo do registrador W na posição representada por A.

A equ H'007'

. .

MOVLW d'25' ;Move o (L)iteral (25 no caso) para (W)ork

MOVWF A ; move (W)ork para (F)ile (A no caso)

Observe que as referencias a W, são implícitas, ou seja, não aparecem nos operandos.

(L)iteral – Refere-se a um valor numérico. Pode ser escrito na forma binária, decimal ou hexadecimal. As instruções que operam com literais apresentam o L na sua formação.

(F)ile – Refere-se a uma **posição de memória** (File Register). As instruções que operam diretamente com registrador apresentam um F na sua formação.
(B)it – Refere-se a um bit específico do registrador F, as instruções que operam diretamente com bit tem um B na sua formação.

(S)et/(C)lear – Refere-se a ação de por em nível lógico um (set) ou zero (clear) um determinado registrador (neste caso o pic só permite zerar um registrador específico) ou bit específico do registrador.

As instruções que setam um determinado bit **apresentam S na sua formação.** São exemplos:

BCF 0x5h,3 ; Bit Clear File – zera Bit 3 de 0x5h

BSF 0x5h,3; Bit Set File- Faz o bit 3 de 0x5h igual a 1

(**T**)est – Refere-se ao ato de testar uma determinada condição que está associada a um um bit específico do registrador F. As instruções que fazem testes tem o T na sua formação.

(S)kip – Refere-se ao ato de promover algum desvio no fluxo sequencia de instrução com base em alguma condição. A instruções que realizam saltos tem um S na sua formação.

OBS.: Para desvios incondicionais normais existem as instruções GOTO e CALL.

(**Z**)ero – Refere-se ao teste se o resultado de uma operação especifica é zero, normalmente verificando o registrador de STATUS (03h,2). As instruções que fazem esse tipo de teste apresentam Z na sua formação. Essas instruções normalmente trabalham com bytes.

Exemplos:

BTFSC 0x3h,2 ;Bit Test File Skip Clear – se bit 2 de 3h igual a a zero

;salta a próxima instrução

DECFSZ 0x7h ;Decrementa (DEC) File Skip Zero – se o resultado do

;decremento for zero salta a próxima instrução

Combinando os termos acima com um dos termos seguir com os termos acima formam-se as instruções do PIC que trabalham com bytes:

ADD Adiciona dois operandos que podem ser W, F ou L. O resultado sempre será armazenado em W ou F

AND Faz o E lógico entre dois operandos que podem ser W, F ou L. O resultado sempre será armazenado em W ou F

CLR Torna zero Work ou um determinado registrador F

COM Complemento de registrador F

DEC Decrementa

INC Incrementa

IOR OU inclusivo

MOV Move um dado ou literal

RL Rotaciona para a esquerda (x2)

RR Rotaciona para a direita (x2)

SUB Subtração

SWAP Troca interna entre o bits mais ou menos significativos

XOR OU exclusivo

PIC 16F628

O microcontrolador PIC16F628A apresenta em seu nível ISA 35 instruções, A maioria das instruções são executadas em apenas um ciclo de máquina, lembrando que o um ciclo de máquina, corresponde ao clock de entrada divido por 4. O Datasheet do PIC16F628A, divide o conjunto de instruções do PIC em três tipos:

- •Orientadas a bit (Bit-Oriented): Operam com bits de um determinado registador;
- •Orientadas a byte (Byte-Oriented): Operam com registradores completos (bytes);
- •Literal ou controle (Literal and control): Instruções que usam literais (números ou endereços) como operando.

Formato do conjunto de instruções

Cada instrução do PIC16F628A tem o tamanho de 14 bits, onde alguns destes bits são usados para especificar o **OPCODE** (nome dado ao "comando" assembly), e de zero até dois operandos. Por conveniência, neste material a ultima categoria foi dividida em literal e controle.

O formato das instruções pode variar de acordo com o tipo, abaixo o formato da instrução do PIC para cada tipo. A figura abaixo mostra os formatos de instrução do PIC16F628A.

Instruções do PIC16F628A, com os seus respectivos operandos

Orientadas a bit

			13	12	11	10	9	8	7	6	5	4	3	2	1	0			
Mnemônico	ciclos	s Descrição		OPCODE -				BIT			REGISTRADOR								
Winemonico	cicios	Descrição	OI CODE				(0-7)												
BCF f,b	1	Limpa (zera) o bit b do registrador f	0	1	0	0	В	В	В	F	F	F	F	F	F	F			
BSF f,b	1	Seta (iguala a 1) o bit b do registrador f	0	1	0	1	В	В	В	F	F	F	F	F	F	F			
BTFSC f,b	1(2)	Testa o Bit b de f, pula se zero(clear)	0	1	1	0	В	В	В	F	F	F	F	F	F	F			
BTFSS f,b	1(2)	Testa o Bit b de f, pula se um(set)	0	1	1	1	В	В	В	F	F	F	F	F	F	F			

Legenda:

X = não importa o valor do bit

k = o bit pertence a um literal

f = O bit pertence a um endereço de registrador

d = onde o resultado será armazenado W(d=0) ou F(d=1)

Instruções do PIC16F628A, com os seus respectivos operandos

Orientadas a byte

			13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Mnemônico	ciclos	Descrição		OPCODE					D	REGISTRADOR								
Winemonico	Cicios	Descrição								(00h - 127h)								
NOP	1	Gasta um ciclo	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
CLRWDT	1	Zera o timer watch dog	0	0	0	0	0	0	0	1	1	0	0	1	0	0		
MOVWF f	1	Copia o conteudo de w em f	0	0	0	0	0	0	1	F	F	F	F	F	F	F		
CRLW	1	Zera o conteudo do resgistrador W	0	0	0	0	0	1	0	X	X	X	X	X	X	X		
CLRF f	1	Zera o conteudo de f	0	0	0	0	0	1	1	F	F	F	F	F	F	F		
SUBWF f,d	1	subtrai W de f e armazena em $d(d \le f - W)$	0	0	0	0	1	0	D	F	F	F	F	F	F	F		
DECF f,d	1	decrementa f e armazena em $d(d \le f - 1)$	0	0	0	0	1	1	D	F	F	F	F	F	F	F		
IORWF f,d	1	OU normal (Inclusivo) de W com F (d <= f OR W)	0	0	0	1	0	0	D	F	F	F	F	F	F	F		

Legenda:

X = não importa o valor do bit

k = o bit pertence a um literal

f = O bit pertence a um endereço de registrador

d = onde o resultado será armazenado W(d=0) ou F(d=1)

Instruções do PIC16F628A, com os seus respectivos operandos

Orientadas a byte

			13	12	11	10	9	8	7	6	5	4	3	3	2	1 (
Mnemônico	OPCODE D						REGISTRADOR									
		Descrição		ST CODE						(00h - 127h)						
ANDWF f,d	1	E entre W e F (d <= f AND W)	0	0	0	1	0	1	D	F	F	F	F	F	F	F
XORWF f,d	1	OU exclusivo entre W e F (d <= f XOR W)	0	0	0	1	1	0	D	F	F	F	F	F	F	F
ADDWF f,d	1	Adiciona W com F (d <= f + W)	0	0	0	1	1	1	D	F	F	F	F	F	F	F
MOVF f,d	1	Move $F(d \le f)$	0	0	1	0	0	0	D	F	F	F	F	F	F	F
COMF f,d	1	Complemento de f (d <= NOT f)	0	0	1	0	0	1	D	F	F	F	F	F	F	F
INCF f,d	1	incrementa f e armazena em $d(d \le f - 1)$	0	0	1	0	1	0	D	F	F	F	F	F	F	F
DECFSZ f,d	1(2)	Decrementa $f(d \le f - 1)$ e salta se zero	0	0	1	0	1	1	D	F	F	F	F	F	F	F
RRF f,d	1	Rotaciona F para direita com carry out	0	0	1	1	0	0	D	F	F	F	F	F	F	F
RLF f,d	1	Rotaciona F para esquerda com carry out	0	0	1	1	0	1	D	F	F	F	F	F	F	F
SWAPF f,d	1	Troca os nibbles mais e menos significativos de f	0	0	1	1	1	0	D	F	F	F	F	F	F	F
INCFSZ f,d	1(2)	incrementa $f(d \le f - 1)$ e salta se zero	0	0	1	1	1	1	D	F	F	F	F	F	F	F

Instruções do PIC16F628A, com os seus respectivos operandos

De controle (quando efetuam desvios gastam 2 ciclos)

			13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Mnemônico	ciclos	Descrição	OPCOI	DE					K literal								
RETURN	2	Retorna de uma subrotina chamada por CALL	0	0	0	0	0	0	0	0	0	0	1	0	0	0	
<u>RETFIE</u>	2	Retorna de uma interrupção	0	0	0	0	0	0	0	0	0	0	1	0	0	1	
SLEEP	0	Põe o controlador em stand-by	0	0	0	0	0	0	0	1	1	0	0	0	1	1	
Mnemônico	ciclos	Descrição	(OPCODE	Ξ				K posição de memória								
CALL k	2	Salva PC+1 na pilha e faz PC=k (salta a execução para o endereço k)	1	1	0	K	K	K	K	K	K	K	K	K	K	K	
GOTO k	2	Pula para o endereço k (11 bits) usa 2 ciclos	1	0	1	K	K	K	K	K	K	K	K	K	K	K	

Legenda:

X = não importa o valor do bit

k = o bit pertence a um literal

f = O bit pertence a um endereço de registrador

d = onde o resultado será armazenado W(d=0) ou F(d=1)

Instruções do PIC16F628A, com os seus respectivos operandos

De controle (quando efetuam desvios gastam 2 ciclos)

			13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Mnemônico	ciclos	Descrição			OPC	ODE			K literal								
MOVLW k	1	Move literal to $W(W = k)$	1	1 1 0 0 X X K					K	K	K	K	K	K	K	K	
RETLW K	1	faz W=k e retorna de uma subrotina	1	1	0	1	X	X	K	K	K	K	K	K	K	K	
IORLW k	1	W = k OR W	1	1	1	0	0	0	K	K	K	K	K	K	K	K	
ANDLW k	1	W = k AND W	1	1	1	0	0	1	K	K	K	K	K	K	K	K	
XORLW k	1	W = k AND W	1	1	1	0	1	0	K	K	K	K	K	K	K	K	
SUBLW k	1	W = k - W	1	1	1	1	0	X	K	K	K	K	K	K	K	K	
ADDLW k	1	W = k + W	1	1	1	1	1	X	K	K	K	K	K	K	K	K	

Conjunto de instruções

Mnemonic,		Description	Cuelee		14-Bit (Opcode		Status	Mataa
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE REGIS	TER OPE	RATIO	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	XXXX	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1 (2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1 (2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	ìí	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f. d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
		BIT-ORIENTED FILE REGIST	ER OPER	RATION	IS				
BCF	f. b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
	-	LITERAL AND CONTROL		ONS					
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO.PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11		kkkk			
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO.PD	
SUBLW	k	Subtract W from literal	1	11		kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

Mneumônicos

Bibliografia

www.microchip.com/

Créditos

http://www.boscojr.com/programacao/PIC/pic4.html

FIGURE 3-2: PIC16C73/73A/76 BLOCK DIAGRAM

Voltar para Mnemônicos

Prof.:

Alberto Willian Mascarenhas

awmascarenhas@gmail.com

https://sites.google.com/site/awmascarenhas/

OBRIGADO!

Perguntas?

