#### Lecture 3

Tian Han

#### Outline

Support Vector Machine (SVM)

Regularization

Convex optimization basics

**Question**: how to project **z** onto the hyperplane?



**Question**: how to project **z** onto the hyperplane?

**Solution**: find **x** on the hyperplane such that  $\left| \left| \mathbf{z} - \mathbf{x} \right| \right|_{2}^{2}$  is minimized.

• 
$$\min_{\mathbf{x}} ||\mathbf{z} - \mathbf{x}||_2^2$$
; s.t.  $\mathbf{w}^T \mathbf{x} + b = 0$ 

x is arbitrary points on the hyperplane and are trying to minimize the distance between z and x to get the projection on to the hyperplane



Hyperplane  $\mathbf{w}^T \mathbf{x} + b = 0$ 

**Question**: how to project **z** onto the hyperplane?

**Solution**: find **x** on the hyperplane such that  $\left| \left| \mathbf{z} - \mathbf{x} \right| \right|_{2}^{2}$  is minimized.

• 
$$\min_{\mathbf{x}} ||\mathbf{z} - \mathbf{x}||_2^2$$
; s.t.  $\mathbf{w}^T \mathbf{x} + b = 0$ 

• Solve the problem using the Lagrange multiplier:

$$\begin{cases} \frac{\partial \left|\left|\mathbf{z} - \mathbf{x}\right|\right|_{2}^{2}}{\partial \mathbf{x}} + \lambda \frac{\partial \left(\mathbf{w}^{T} \mathbf{x} + b\right)}{\partial \mathbf{x}} = 0; \\ \mathbf{w}^{T} \mathbf{x} + b = 0. \end{cases}$$





Hyperplane  $\mathbf{w}^T \mathbf{x} + b = 0$ 

Question: how to project z onto the hyperplane?

distance =  $||\mathbf{z} - \mathbf{x}||_2$ 

**Solution**: find **x** on the hyperplane such that  $\left| |\mathbf{z} - \mathbf{x}| \right|_2^2$  is minimized. this is the x with the smallest distance

- Solution:  $\mathbf{x} = \mathbf{z} \frac{\mathbf{w}^T \mathbf{z} + b}{||\mathbf{w}||_2^2} \mathbf{w}$
- The  $\ell_2$  distance between **z** and the hyperplane is

$$\sqrt{\phantom{a}}$$

$$\left|\left|\mathbf{z}-\mathbf{x}\right|\right|_2 = \frac{\left|\mathbf{w}^T\mathbf{z}+b\right|}{\left|\left|\mathbf{w}\right|\right|_2}.$$

w is the model weights

b is the bias

Hyperplane  $\mathbf{w}^T \mathbf{x} + b = 0$ equation

Separate data by a hyperplane (assume the data are separable)



An arbitrary hyperplane.

The hyperplane that maximizes the margin.

within this margin there are no training points

Separate data by a hyperplane (assume the data are separable)



it can be called as minimum distance of training data points from the classifier hyperplane

this can be computed for every training sample

Hyperplane  $\mathbf{w}^T \mathbf{x} + b = 0$ 

Separate data by a hyperplane (assume the data are separable)



Separate data by a hyperplane (assume the data are separable)



Hyperplane  $\mathbf{w}^T \mathbf{x} + b = 0$ 

• The distance between any feature vector, **x**, and the hyperplane is  $dist = \frac{|\mathbf{w}^T \mathbf{x} + b|}{||\mathbf{w}||}.$ 

The margin is the smallest distance:

$$\min_{j} \frac{\left|\mathbf{w}^{T}\mathbf{x}_{j}+b\right|}{\left|\left|\mathbf{w}\right|\right|_{2}}$$

Separate data by a hyperplane (assume the data are separable)



 The distance between any feature vector, x, and the hyperplane is

$$\operatorname{dist} = \frac{\left|\mathbf{w}^{T}\mathbf{x} + b\right|}{\left|\left|\mathbf{w}\right|\right|_{2}}.$$

The margin is the smallest distance:

$$\min_{j} \frac{|\mathbf{w}^{T} \mathbf{x}_{j} + b|}{||\mathbf{w}||_{2}} = \min_{j} \frac{y_{j}(\mathbf{w}^{T} \mathbf{x}_{j} + b)}{||\mathbf{w}||_{2}}$$

+ve for positive class as both positive +ve for negative class as well

as both negative

hence for correct prediction it is +ve

Hyperplane  $\mathbf{w}^T \mathbf{x} + b = 0$ > 0 for positive class

< 0 for negative class

 $(y_i = -1)$ 

it is the multiplication between the target value label and its response divided by the weight

Margin = 
$$\min_{j} \frac{y_j(\mathbf{w}^T \mathbf{x}_j + b)}{||\mathbf{w}||_2}$$
; we want to maximize the margin.

Margin = 
$$\min_{j} \frac{y_{j}(\mathbf{w}^{T}\mathbf{x}_{j}+b)}{||\mathbf{w}||_{2}}$$
; we want to maximize the margin.

Define 
$$\overline{\mathbf{x}}_j = [\mathbf{x}_j; 1] \in \mathbb{R}^{d+1}$$
  
Define  $\overline{\mathbf{w}} = [\mathbf{w}, b] \in \mathbb{R}^{d+1}$   
 $\mathbf{x}_j^T \mathbf{w} + b = \overline{\mathbf{x}}_j^T \overline{\mathbf{w}}$ 

Margin = 
$$\min_{j} \frac{y_j \mathbf{w}^T \mathbf{x}_j}{||\mathbf{w}||_2}$$
; we want to maximize the margin.



minimise while going over all model samples

Support Vector Machine (SVM): 
$$\max_{\mathbf{w}} \min_{j} \frac{y_j \mathbf{w}^T \mathbf{x}_j}{||\mathbf{w}||_2}$$

Support Vector Machine (SVM):  $\max_{\mathbf{w}} \min_{j} \frac{y_j \mathbf{w}^T \mathbf{x}_j}{||\mathbf{w}||_2}$ 

Support Vector Machine (SVM):  $\max_{\mathbf{w}} \frac{\mathbf{y}_{j}\mathbf{w}^{T}\mathbf{x}_{j}}{||\mathbf{w}||_{2}}$ 

$$\underset{\mathbf{w}}{\operatorname{argmax}} \min_{j} \frac{\mathbf{y}_{j} \mathbf{w}^{T} \mathbf{x}_{j}}{||\mathbf{w}||_{2}} = \underset{\mathbf{w}}{\operatorname{argmax}} \frac{\min_{j} \mathbf{y}_{j} \mathbf{w}^{T} \mathbf{x}_{j}}{||\mathbf{w}||_{2}}$$

Support Vector Machine (SVM):  $\max_{\mathbf{w}} \min_{j} \frac{y_j \mathbf{w}^T \mathbf{x}_j}{||\mathbf{w}||_2}$ 

$$\underset{\mathbf{w}}{\operatorname{argmax}} \min_{j} \frac{y_{j} \mathbf{w}^{T} \mathbf{x}_{j}}{||\mathbf{w}||_{2}} = \underset{\mathbf{w}}{\operatorname{argmax}} \frac{\min_{j} y_{j} \mathbf{w}^{T} \mathbf{x}_{j}}{||\mathbf{w}||_{2}}$$

$$= \underset{\mathbf{w}}{\operatorname{argmax}} \frac{1}{||\mathbf{w}||_{2}}, \quad \text{s.t.} \quad \left(\min_{j} y_{j} \mathbf{w}^{T} \mathbf{x}_{j}\right) = 1$$

fix the numerator to do the maximisation of the other term

Support Vector Machine (SVM):  $\max_{\mathbf{w}} \min_{j} \frac{y_j \mathbf{w}^T \mathbf{x}_j}{||\mathbf{w}||_2}$ 

$$\underset{\mathbf{w}}{\operatorname{argmax}} \min_{j} \frac{y_{j} \mathbf{w}^{T} \mathbf{x}_{j}}{\left||\mathbf{w}|\right|_{2}} = \underset{\mathbf{w}}{\operatorname{argmax}} \frac{\underset{j}{\min} y_{j} \mathbf{w}^{T} \mathbf{x}_{j}}{\left||\mathbf{w}|\right|_{2}}$$

$$= \underset{\mathbf{w}}{\operatorname{argmax}} \frac{1}{\left||\mathbf{w}|\right|_{2}}, \quad \text{s.t.} \quad \left(\underset{j}{\min} \ y_{j} \mathbf{w}^{T} \mathbf{x}_{j}\right) = 1$$

$$= \underset{\mathbf{w}}{\operatorname{argmin}} \left||\mathbf{w}|\right|_{2}^{2}, \quad \text{s.t.} \quad \left(\underset{j}{\min} \ y_{j} \mathbf{w}^{T} \mathbf{x}_{j}\right) = 1$$

inverse so max becomes minimization

Support Vector Machine (SVM):

$$\underset{\mathbf{w}}{\operatorname{argmax}} \min_{j} \frac{y_{j} \mathbf{w}^{T} \mathbf{x}_{j}}{||\mathbf{w}||_{2}} = \underset{\mathbf{w}}{\operatorname{argmax}} \frac{\min_{j} y_{j} \mathbf{w}^{T} \mathbf{x}_{j}}{||\mathbf{w}||_{2}}$$

= 
$$\underset{\mathbf{w}}{\operatorname{argmax}} \frac{1}{||\mathbf{w}||_2}$$
, s.

= 
$$\underset{\mathbf{w}}{\operatorname{argmax}} \frac{1}{||\mathbf{w}||_2}$$
, s.t.  $\left(\underset{j}{\min} \ \mathbf{y}_j \mathbf{w}^T \mathbf{x}_j\right) = 1$ 

= argmin 
$$||\mathbf{w}||_2^2$$
,

= 
$$\underset{\mathbf{w}}{\operatorname{argmin}} ||\mathbf{w}||_{2}^{2}$$
, s.t.  $\left(\underset{j}{\min} \ y_{j}\mathbf{w}^{T}\mathbf{x}_{j}\right) = 1$ 

= 
$$\underset{\mathbf{w}}{\operatorname{argmin}} ||\mathbf{w}||_{2}^{2}$$

= argmin 
$$||\mathbf{w}||_2^2$$
, s.t.  $y_j \mathbf{w}^T \mathbf{x}_j \ge 1$  for all  $j$ 

consider n data points a1, a2.... an if it is said that min of these points is 1 and lets say a1 is 1 this tells us that other points are greater than or equal to 1

$$\min_{\mathbf{w}} ||\mathbf{w}||_2^2, \quad \text{s.t.} \quad y_j \mathbf{w}^T \mathbf{x}_j \ge 1 \text{ for all } j \in \{1, \dots, n\}.$$

important assumption that data is linearly separable

**Equivalent form of SVM** 

$$\min_{\mathbf{w}} ||\mathbf{w}||_2^2, \quad \text{s.t.} \quad y_j \mathbf{w}^T \mathbf{x}_j \ge 1 \text{ for all } j \in \{1, \dots, n\}.$$



$$\min_{\mathbf{w}} ||\mathbf{w}||_2^2, \quad \text{s.t.} \quad y_j \mathbf{w}^T \mathbf{x}_j \ge 1 \text{ for all } j \in \{1, \dots, n\}.$$



$$\min_{\mathbf{w}} ||\mathbf{w}||_2^2, \quad \text{s.t.} \quad 1 - y_j \mathbf{w}^T \mathbf{x}_j \le 0 \text{ for all } j \in \{1, \dots, n\}.$$



$$\min_{\mathbf{w}, \boldsymbol{\xi_j}} ||\mathbf{w}||_2^2 + \lambda \sum_j [\boldsymbol{\xi_j}]_+, \quad \text{s.t.} \quad 1 - y_j \mathbf{w}^T \mathbf{x}_j = \boldsymbol{\xi_j} \text{ for all } j \in \{1, \dots, n\}.$$

• 
$$\left[\xi_{j}\right]_{+} = \max\left\{\xi_{j}, 0\right\}$$

called slack variable which is also like a penalty for breaking the constraints when data isnt linearly separable

if you have negative value then u have original constraints

if its positive clearly it needs to be minimised with the new variable

$$\min_{\mathbf{w}} ||\mathbf{w}||_2^2, \quad \text{s.t.} \quad 1 - y_j \mathbf{w}^T \mathbf{x}_j \leq \mathbf{0} \text{ for all } j \in \{1, \dots, n\}.$$



$$\min_{\mathbf{w}, \boldsymbol{\xi_j}} ||\mathbf{w}||_2^2 + \lambda \sum_j [\boldsymbol{\xi_j}]_+, \quad \text{s.t.} \quad 1 - y_j \mathbf{w}^T \mathbf{x}_j = \boldsymbol{\xi_j} \text{ for all } j \in \{1, \dots, n\}.$$

- $\left[\xi_{j}\right]_{+} = \max\left\{\xi_{j}, 0\right\}$
- $\xi_j \leq 0$  means the constraint  $1 y_j \mathbf{w}^T \mathbf{x}_j \leq \mathbf{0}$  is satisfied
  - no penalty!
- $\xi_i > 0$  means the constraint is violated (because the data is inseparable)
  - $\rightarrow$  penalize the violation  $\xi_i$ .

mis classification gives larger penalty where as if the data point is within the margin but on the right class side then smaller penalty

kasai > 1 large penealty 0< kasai < 1 then small penalty

$$\min_{\mathbf{w}} ||\mathbf{w}||_2^2, \quad \text{s.t.} \quad 1 - y_j \mathbf{w}^T \mathbf{x}_j \leq \mathbf{0} \text{ for all } j \in \{1, \dots, n\}.$$



objective function also given penalty

$$\min_{\mathbf{w}, \boldsymbol{\xi_j}} ||\mathbf{w}||_2^2 + \lambda \sum_j [\boldsymbol{\xi_j}]_+, \quad \text{s.t.} \quad 1 - y_j \mathbf{w}^T \mathbf{x}_j = \boldsymbol{\xi_j} \text{ for all } j \in \{1, \dots, n\}.$$



$$\min_{\mathbf{w},b} ||\mathbf{w}||_2^2 + \lambda \sum_j [1 - y_j \mathbf{w}^T \mathbf{x}_j]_+.$$

SVM: 
$$\min_{\mathbf{w}} ||\mathbf{w}||_2^2 + \lambda \sum_j g(y_j \mathbf{w}^T \mathbf{x}_j)$$
.

Hinge loss:  $g(z) = [1 - z]_+$ .



SVM: 
$$\min_{\mathbf{w}} ||\mathbf{w}||_2^2 + \lambda \sum_j g(y_j \mathbf{w}^T \mathbf{x}_j)$$
.

Hinge loss: 
$$g(z) = [1 - z]_+$$
.



Hard thresholding: 
$$h(z) = \begin{cases} 1, & \text{if } z < 0; \\ 0, & \text{if } z \ge 0. \end{cases}$$

SVM: 
$$\min_{\mathbf{w}} ||\mathbf{w}||_2^2 + \lambda \sum_j g(y_j \mathbf{w}^T \mathbf{x}_j)$$
.

Hinge loss: 
$$g(z) = [1 - z]_+$$
.



Hard thresholding: 
$$h(z) = \begin{cases} 1, & \text{if } z < 0; \\ 0, & \text{if } z \ge 0. \end{cases}$$

Logistic loss: 
$$l(z) = log(1 + e^{-z})$$
.



- Convexity
  - Hinge loss and logistic loss are convex.
  - Global optima can be efficiently found.
- Smoothness
  - Hinge loss is non-smooth.
  - Logistic loss is smooth.



- Convexity
  - Hinge loss and logistic loss are convex.
  - Global optima can be efficiently found.
- Smoothness
  - Hinge loss is non-smooth.
  - Logistic loss is smooth.
- Logistic regression is easier to solve than SVM.
  - GD for logistic regression has linear convergence.
  - Algorithms for SVM have sub-linear convergence.

# Regularizations

#### The $\ell_2$ -Norm Regularization

### **Linear Regression**

**Input:** feature matrix  $\mathbf{X} \in \mathbb{R}^{n \times d}$  and labels  $\mathbf{y} \in \mathbb{R}^n$ .

**Output:** vector  $\mathbf{w} \in \mathbb{R}^d$  such that  $\mathbf{X}\mathbf{w} \approx \mathbf{y}$ .



## Linear Regression

**Input:** feature matrix  $\mathbf{X} \in \mathbb{R}^{n \times d}$  and labels  $\mathbf{y} \in \mathbb{R}^n$ .

**Output:** vector  $\mathbf{w} \in \mathbb{R}^d$  such that  $\mathbf{X}\mathbf{w} \approx \mathbf{y}$ .



• Least squares regression:

$$\min_{\mathbf{w}} \frac{1}{n} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_{2}^{2}.$$

• Ridge regression:

$$\min_{\mathbf{w}} \frac{1}{n} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_{2}^{2} + \gamma ||\mathbf{w}||_{2}^{2}.$$





Loss Function

Regularization

Methods

## Ridge Regression:

**Algorithms** 

- Analytical solution:  $\mathbf{w}^* = (\mathbf{X}^T \mathbf{X} + n \gamma \mathbf{I}_d)^{-1} \mathbf{X}^T \mathbf{y}$ .
  - Time complexity:  $O(nd^2 + d^3)$ .

# Ridge Regression:

### **Algorithms**

- Analytical solution:  $\mathbf{w}^* = (\mathbf{X}^T \mathbf{X} + n \gamma \mathbf{I}_d)^{-1} \mathbf{X}^T \mathbf{y}$ .
  - Time complexity:  $O(nd^2 + d^3)$ .
- Derivations:
  - The objective function is  $Q(\mathbf{w}) = \frac{1}{n} ||\mathbf{X}\mathbf{w} \mathbf{y}||_2^2 + \gamma ||\mathbf{w}||_2^2$ .
  - The gradient is  $\nabla Q(\mathbf{w}) = \frac{2}{n} \mathbf{X}^T (\mathbf{X} \mathbf{w} \mathbf{y}) + 2\gamma \mathbf{w}$ .
  - Set  $\nabla Q(\mathbf{w}^*) = 0$  leads to  $\frac{2}{n} (\mathbf{X}^T \mathbf{X} + n \gamma \mathbf{I}_d) \mathbf{w}^* = \frac{2}{n} \mathbf{X}^T \mathbf{y}$ .
- Time complexity:
  - $O(nd^2)$  time for the multiplication  $\mathbf{X}^T\mathbf{X}$ .
  - $O(d^3)$  time for the inversion of the  $d \times d$  matrix  $\mathbf{X}^T \mathbf{X} + n \gamma \mathbf{I}_d$ .

# Ridge Regression:

### Algorithms

- Conjugate gradient (CG)
  - $O\left(\sqrt{\kappa}\log\frac{n}{\epsilon}\right)$  iterations to reach  $\epsilon$  precision.
  - Hessian matrix:  $\nabla^2 Q(\mathbf{w}) = \frac{2}{n} (\mathbf{X}^T \mathbf{X} + n \gamma \mathbf{I}_d)$ .
  - $\kappa = \frac{\lambda_{\max}(\mathbf{X}^T\mathbf{X}) + n\gamma}{\lambda_{\min}(\mathbf{X}^T\mathbf{X}) + n\gamma}$  is the condition number of the Hessian.

# Usefulness of Regularization

**Question:** Why do we use the  $\ell_2$ -norm regularization?

# Usefulness of Regularization

**Question:** Why do we use the  $\ell_2$ -norm regularization?

- Reason 1: easier to optimize.
  - Conjugate gradient (CG) requires  $O\left(\sqrt{\kappa}\log\frac{n}{\epsilon}\right)$  iterations to reach  $\epsilon$  precision.
  - Least squares:  $\kappa = \frac{\lambda_{\max}(\mathbf{X}^T\mathbf{X})}{\lambda_{\min}(\mathbf{X}^T\mathbf{X})}$ .
  - Ridge regression:  $\kappa = \frac{\lambda_{\max}(\mathbf{X}^T\mathbf{X}) + n\gamma}{\lambda_{\min}(\mathbf{X}^T\mathbf{X}) + n\gamma}$ .  $(\gamma \uparrow, \kappa \downarrow)$ .
  - $\longrightarrow$  CG converges faster as  $\gamma$  increases.

# Usefulness of Regularization

**Question:** Why do we use the  $\ell_2$ -norm regularization?

- Reason 1: easier to optimize.
- Reason 2: better generalization.
  - Least squares has better training error (due to the optimality).
  - Ridge regression makes better prediction on test set.



# The $\ell_1$ -Norm Regularization



Fact 1: y can be independent of some of the d feature.

**Fact 2:** if  $d \gg n$ , linear models are likely to overfit.

$$\mathbf{x} \in \mathbb{R}^d \xrightarrow{\text{prediction}} y \in \mathbb{R}$$

Fact 1: y can be independent of some of the d feature.

**Fact 2:** if  $d \gg n$ , linear models are likely to overfit.

**Example:** Use genomic data to predict disease.

- d is huge: human have 20K protein-coding genes.
- n is small: tens or hundreds of human participants in an experiment.
- Most genes are irrelevant to a specific disease.

$$\mathbf{x} \in \mathbb{R}^d \xrightarrow{\text{prediction}} y \in \mathbb{R}$$

Fact 1: y can be independent of some of the d feature.

**Fact 2:** if  $d \gg n$ , linear models are likely to overfit.

**Goal 1:** Select the features relevant to y.

$$\mathbf{x} \in \mathbb{R}^d \xrightarrow{\text{prediction}} y \in \mathbb{R}$$

Fact 1: y can be independent of some of the d feature.

**Fact 2:** if  $d \gg n$ , linear models are likely to overfit.

**Goal 1:** Select the features relevant to y.

**Goal 2:** Prevent overfitting for large d, small n problems.

• LASSO:  $\min_{\mathbf{w}} \frac{1}{2n} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_{2}^{2}$ ; s.t.  $||\mathbf{w}||_{1} \le t$ .

The feasible set  $\{\mathbf{w}: \ ||\mathbf{w}||_1 \le t\}$  is convex.



- LASSO:  $\min_{\mathbf{w}} \frac{1}{2n} ||\mathbf{X}\mathbf{w} \mathbf{y}||_{2}^{2}$ ; s.t.  $||\mathbf{w}||_{1} \le t$ .
  - It is a convex optimization model.
  - The optimal solution  $\mathbf{w}^*$  is **sparse** (i.e., most entries are zeros).
  - Smaller  $t \rightarrow$  sparser  $\mathbf{w}^*$ .

• LASSO: 
$$\min_{\mathbf{w}} \frac{1}{2n} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_{2}^{2}$$
; s.t.  $||\mathbf{w}||_{1} \le t$ .

- It is a convex optimization model.
- The optimal solution  $\mathbf{w}^*$  is **sparse** (i.e., most entries are zeros).
- Smaller  $t \rightarrow$  sparser  $\mathbf{w}^{\star}$ .
- Sparsity ← feature selection. Why?
  - Let x' be a test feature vector.
  - The prediction is  $\mathbf{x}'^T \mathbf{w}^* = w_1^* x_1' + w_2^* x_2' + \dots + w_d^* x_d'$ .
  - If  $w_1^* = 0$ , then the prediction is independent of  $x_1'$ .

# The $\ell_1$ -Norm Regularization

• LASSO: 
$$\min_{\mathbf{w}} \frac{1}{2n} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_{2}^{2}$$
; s.t.  $||\mathbf{w}||_{1} \le t$ .

• Another form:  $\min_{\mathbf{w}} \frac{1}{2n} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_{2}^{2} + \gamma ||\mathbf{w}||_{1}$ .





**Loss Function** 

Regularization

# Summary

# Regularized ERM

Regularized empirical risk minimization:

$$\min_{\mathbf{w}\in\mathbb{R}^d} \quad \frac{1}{n}\sum_{i=1}^n L(\mathbf{w}; \mathbf{x}_i, y_i) + R(\mathbf{w}).$$

## Regularized ERM

Regularized empirical risk minimization:

$$\min_{\mathbf{w} \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n L(\mathbf{w}; \mathbf{x}_i, y_i) + R(\mathbf{w}).$$



**Loss Function** 

• Linear regression: 
$$L(\mathbf{w}; \mathbf{x}_i, y_i) = \frac{1}{2} (\mathbf{w}^T \mathbf{x}_i - y_i)^2$$

• Logistic regression: 
$$L(\mathbf{w}; \mathbf{x}_i, y_i) = \log(1 + \exp(-y_i \mathbf{w}^T \mathbf{x}_i))$$

• SVM: 
$$L(\mathbf{w}; \mathbf{x}_i, y_i) = \max\{0, 1 - y_i \mathbf{w}^T \mathbf{x}_i\}$$

### Regularized ERM

Regularized empirical risk minimization:

$$\min_{\mathbf{w} \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n L(\mathbf{w}; \mathbf{x}_i, y_i) + R(\mathbf{w}).$$



Regularization

• 
$$\ell_1$$
-norm:  $R(\mathbf{w}) = \gamma ||\mathbf{w}||_1$ 

• 
$$\ell_2$$
-norm:  $R(\mathbf{w}) = \gamma ||\mathbf{w}||_2^2$ 

• Elastic net: 
$$R(\mathbf{w}) = \gamma_1 ||\mathbf{w}||_1 + \gamma_2 ||\mathbf{w}||_2^2$$

for exams wont ask proof but good to know concepts

# **Basics of Convex Optimization**

### **Convex Sets**

### **Convex Set**

#### **Definition** (Convex Set).

A set  $\mathcal{C}$  is convex if and only if for any  $\mathbf{x}, \mathbf{y} \in \mathcal{C}$  and any  $\eta \in (0, 1)$ , the point  $\eta \mathbf{x} + (1 - \eta)\mathbf{y}$  is also in  $\mathcal{C}$ .



if entire line in set then its convex

By definition, the line segment between  $\mathbf{x}$  and  $\mathbf{y}$  is in  $\mathcal{C}$ .

A convex set  $\mathcal{C}$ .

### **Convex Set**

#### **Definition** (Convex Set).

A set  $\mathcal{C}$  is convex if and only if for any  $\mathbf{x}, \mathbf{y} \in \mathcal{C}$  and any  $\eta \in (0, 1)$ , the point  $\eta \mathbf{x} + (1 - \eta)\mathbf{y}$  is also in  $\mathcal{C}$ .



A convex set  $\mathcal{C}$ .



A non-convex set.

### Convex Set: Examples

### **Definition** (Convex Set).

A set  $\mathcal{C}$  is convex if and only if for any  $\mathbf{x}, \mathbf{y} \in \mathcal{C}$  and any  $\eta \in (0, 1)$ , the point  $\eta \mathbf{x} + (1 - \eta)\mathbf{y}$  is also in  $\mathcal{C}$ .



# Convex Set: Examples

**Example:** The 
$$\ell_1$$
-norm ball  $\left\{\mathbf{x}: \ \left|\left|\mathbf{x}\right|\right|_1 \leq 1\right\}$ .



## Convex Set: Examples

**Example:** The 
$$\ell_2$$
-norm ball  $\left\{\mathbf{x}: \ \left|\left|\mathbf{x}\right|\right|_2 \le 1\right\}$ .



### **Convex Functions**

### **Convex Function**

### **Definition** (Convex Function).

- Let  $\mathcal{C}$  be a convex set and  $f:\mathcal{C}\mapsto\mathbb{R}$  be a function.
- f is convex if for any  $\mathbf{w}_1$ ,  $\mathbf{w}_2 \in \mathcal{C}$  and any  $\eta \in (0,1)$ ,

$$f(\eta \mathbf{w}_1 + (1 - \eta)\mathbf{w}_2) \leq \eta f(\mathbf{w}_1) + (1 - \eta)f(\mathbf{w}_2).$$



### **Convex Function: Properties**

#### Properties of convex function:

1. 
$$f(\mathbf{w}_0) + \nabla f(\mathbf{w}_0)^T(\mathbf{w} - \mathbf{w}_0) \le f(\mathbf{w})$$
. (Assume  $f$  is differentiable).



### **Convex Function: Properties**

#### Properties of convex function:

- 1.  $f(\mathbf{w}_0) + \nabla f(\mathbf{w}_0)^T(\mathbf{w} \mathbf{w}_0) \le f(\mathbf{w})$ . (Assume f is differentiable).
- 2. The Hessian matrix is everywhere positive semi-definite:  $\nabla^2 f(\mathbf{w}) \geq \mathbf{0}$ .
  - Assume *f* is twice differentiable.
  - $\mathbf{H} \in \mathbb{R}^{d \times d}$  is positive semi-definite  $\longleftrightarrow$  for all  $\mathbf{x} \in \mathbb{R}^d$ ,  $\mathbf{x}^T \mathbf{H} \mathbf{x} \geq 0$ .

### **Convex Functions**

#### **Question:** Are they convex functions?

- $f(w) = w^2 + w 1$ , for  $w \in \mathbb{R}$ .
- $f(w) = w^4$ , for  $w \in \mathbb{R}$ .
- $f(w) = \log_e w$ , for w > 0.
- $f(\mathbf{w}) = \frac{1}{2} ||\mathbf{w}||_2^2$ , for  $\mathbf{w} \in \mathbb{R}^d$ .
- $f(\mathbf{w}) = \frac{1}{2} ||\mathbf{X}\mathbf{w} \mathbf{y}||_2^2$ , for  $\mathbf{w} \in \mathbb{R}^d$ .

### **Convex Function: Property**

**Property:** Combination of convex functions is convex function.

- Let  $f_1, \dots, f_k$  be convex functions.
- Then  $f(\mathbf{w}) = \lambda_1 f_1(\mathbf{w}) + \dots + \lambda_k f_k(\mathbf{w})$  is convex function for  $\lambda_i \ge 0$ .

### **Convex Function: Property**

**Property:** Combination of convex functions is convex function.

- Let  $f_1, \dots, f_k$  be convex functions.
- Then  $f(\mathbf{w}) = \lambda_1 f_1(\mathbf{w}) + \dots + \lambda_k f_k(\mathbf{w})$  is convex function for  $\lambda_i \ge 0$ .

#### **Example:**

- $f_1(\mathbf{w}) = ||\mathbf{X}\mathbf{w} \mathbf{y}||_2^2$  is convex function.
- $f_2(\mathbf{w}) = ||\mathbf{w}||_2^2$  is convex function.
- $\rightarrow f_1(\mathbf{w}) + \lambda f_2(\mathbf{w}) = ||\mathbf{X}\mathbf{w} \mathbf{y}||_2^2 + \lambda ||\mathbf{w}||_2^2$  is convex function.

# **Convex Optimization**

# **Convex Optimization**

#### **Definition** (Convex Optimization).

- Optimization:  $\min_{\mathbf{w}} f(\mathbf{w})$ ; s.t. $\mathbf{w} \in C$ .
- It is convex optimization if it has two properties:
  - 1.  $\mathcal{C}$  (feasible set) is convex set,
  - 2. *f* (objective function) is convex function.

• Least squares regression:  $\min_{\mathbf{w}} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2$ .

- Least squares regression:  $\min_{\mathbf{w}} ||\mathbf{X}\mathbf{w} \mathbf{y}||_2^2$ .
- Logistic regression:  $\min_{\mathbf{w}} \sum_{j} \log(1 + \exp(-y_j \mathbf{w}^T \mathbf{x}_j))$ .

- Least squares regression:  $\min_{\mathbf{w}} ||\mathbf{X}\mathbf{w} \mathbf{y}||_2^2$ .
- Logistic regression:  $\min_{\mathbf{w}} \sum_{j} \log(1 + \exp(-y_j \mathbf{w}^T \mathbf{x}_j))$ .
- SVM:  $\min_{\mathbf{w},b} ||\mathbf{w}||_2^2 + \lambda \sum_j [1 y_j(\mathbf{w}^T \mathbf{x}_j + b)]_+$ .

- Least squares regression:  $\min_{\mathbf{w}} ||\mathbf{X}\mathbf{w} \mathbf{y}||_2^2$ .
- Logistic regression:  $\min_{\mathbf{w}} \sum_{j} \log(1 + \exp(-y_j \mathbf{w}^T \mathbf{x}_j))$ .
- SVM:  $\min_{\mathbf{w},b} ||\mathbf{w}||_2^2 + \lambda \sum_j [1 y_j(\mathbf{w}^T \mathbf{x}_j + b)]_+$ .
- LASSO:  $\min_{\mathbf{w}} \left| \left| \mathbf{X} \mathbf{w} \mathbf{y} \right| \right|_{2}^{2}$ ;  $s.t. \left| \left| \mathbf{w} \right| \right|_{1} \leq t$ .

## **Local and Global Optima**



# **Convex Optimization: Properties**

**Property:** For convex optimization, every local minimum is global minimum.



# **Optimization: Properties**

#### First-order optimality condition (necessary condition):

- Consider the unconstrained optimization:  $\min f(\mathbf{w})$ .
- If  $\mathbf{w}^*$  is local minimum, then the gradient  $\frac{\partial f(\mathbf{w})}{\partial \mathbf{w}}$  at  $\mathbf{w}^*$  is zero.



# **Convex Optimization: Properties**

#### First-order optimality condition (necessary condition):

- Consider the unconstrained optimization:  $\min_{\mathbf{w}} f(\mathbf{w})$ .
- If  $\mathbf{w}^*$  is local minimum, then the gradient  $\frac{\partial f(\mathbf{w})}{\partial \mathbf{w}}$  at  $\mathbf{w}^*$  is zero.

#### Property of convex optimization (sufficient condition):

- Let  $\min f(\mathbf{w})$  be convex optimization.
- If  $\frac{\partial f(\mathbf{w})}{\partial \mathbf{w}}$  at  $\mathbf{w}^*$  is zero, then  $\mathbf{w}^*$  is global minimum.

# Subgradient and Subdifferential

### Non-Differentiable Functions

• Example of non-differentiable functions: f(w) = |w|

$$\frac{\partial f}{\partial w} = \begin{cases} +1, & \text{if } w > 0; \\ \text{undefined,} & \text{if } w = 0; \\ -1, & \text{if } w < 0. \end{cases}$$



# **Subgradient of Convex Function**

**Definition** (Subgradient). A vector  $\mathbf{v}$  is called a subgradient of  $\mathbf{f}$  at  $\mathbf{w}_0$  if for any  $\mathbf{w}$ ,  $f(\mathbf{w}) \geq f(\mathbf{w}_0) + \mathbf{v}^T(\mathbf{w} - \mathbf{w}_0)$ .



# Subgradient of Convex Function

**Definition** (Subgradient). A vector  $\mathbf{v}$  is called a subgradient of  $\mathbf{f}$  at  $\mathbf{w}_0$  if for any  $\mathbf{w}$ ,  $\mathbf{f}(\mathbf{w}) \geq \mathbf{f}(\mathbf{w}_0) + \mathbf{v}^T(\mathbf{w} - \mathbf{w}_0)$ .



# Subgradient of Convex Function

**Definition** (Subgradient). A vector  $\mathbf{v}$  is called a subgradient of  $\mathbf{f}$  at  $\mathbf{w}_0$  if for any  $\mathbf{w}$ ,  $\mathbf{f}(\mathbf{w}) \geq \mathbf{f}(\mathbf{w}_0) + \mathbf{v}^T(\mathbf{w} - \mathbf{w}_0)$ .



**Definition** (Subgradient). A vector  $\mathbf{v}$  is called a subgradient of  $\mathbf{f}$  at  $\mathbf{w}_0$  if for any  $\mathbf{w}$ ,  $\mathbf{f}(\mathbf{w}) \geq \mathbf{f}(\mathbf{w}_0) + \mathbf{v}^T(\mathbf{w} - \mathbf{w}_0)$ .

**Definition** (Subdifferential). The set containing all the subgradients of f at  $\mathbf{w}_0$  is called the subdifferential. Denote the set by  $\partial f(\mathbf{w}_0)$ .

**Definition** (Subgradient). A vector  $\mathbf{v}$  is called a subgradient of  $\mathbf{f}$  at  $\mathbf{w}_0$  if for any  $\mathbf{w}$ ,  $\mathbf{f}(\mathbf{w}) \geq \mathbf{f}(\mathbf{w}_0) + \mathbf{v}^T(\mathbf{w} - \mathbf{w}_0)$ .

**Definition** (Subdifferential). The set containing all the subgradients of f at  $\mathbf{w}_0$  is called the subdifferential. Denote the set by  $\partial f(\mathbf{w}_0)$ .

Example: f(w) = |w|

•  $\partial f(3) = \{1\}.$ 



**Definition** (Subgradient). A vector  $\mathbf{v}$  is called a subgradient of  $\mathbf{f}$  at  $\mathbf{w}_0$  if for any  $\mathbf{w}$ ,  $\mathbf{f}(\mathbf{w}) \geq \mathbf{f}(\mathbf{w}_0) + \mathbf{v}^T(\mathbf{w} - \mathbf{w}_0)$ .

**Definition** (Subdifferential). The set containing all the subgradients of f at  $\mathbf{w}_0$  is called the subdifferential. Denote the set by  $\partial f(\mathbf{w}_0)$ .

Example: f(w) = |w|

- $\partial f(3) = \{1\}.$
- $\partial f(-0.1) = \{-1\}.$



**Definition** (Subgradient). A vector  $\mathbf{v}$  is called a subgradient of  $\mathbf{f}$  at  $\mathbf{w}_0$  if for any  $\mathbf{w}$ ,  $\mathbf{f}(\mathbf{w}) \geq \mathbf{f}(\mathbf{w}_0) + \mathbf{v}^T(\mathbf{w} - \mathbf{w}_0)$ .

**Definition** (Subdifferential). The set containing all the subgradients of f at  $\mathbf{w}_0$  is called the subdifferential. Denote the set by  $\partial f(\mathbf{w}_0)$ .

Example: f(w) = |w|

- $\bullet \quad \partial f(3) = \{1\}.$
- $\partial f(-0.1) = \{-1\}.$
- $\partial f(0) = [-1, 1].$



# A Property of Convex Optimization

```
Let f be a convex function.

Property: \mathbf{w}^* = \min_{\mathbf{w}} f(\mathbf{w}) \longleftrightarrow 0 \in \partial f(\mathbf{w}^*).
```

```
Example: \min_{w} \{ f(w) = |w + 5| \}
```

- $\partial f(-5) = [-1, 1].$
- Obviously  $0 \in \partial f(-5)$ .
- $w^* = -5$  minimizes f.