Problems for Signals and Systems

Chapter 9. Laplace Transform

Definition and Properties of Laplace Transform

1. Determine the Laplace transform and the associated region of convergence and pole-zero plot for each of the following functions of time (教材 9.21 题)

(a)
$$x(t) = e^{-2t}u(t) + e^{-3t}u(t)$$

(a)
$$x(t) = e^{-2t}u(t) + e^{-3t}u(t)$$
 (b) $x(t) = e^{-4t}u(t) + e^{-5t}(\sin 5t)u(t)$ (c) $x(t) = e^{2t}u(-t) + e^{3t}u(-t)$ (d) $x(t) = te^{-2|t|}$

(c)
$$x(t) = e^{2t}u(-t) + e^{3t}u(-t)$$

(d)
$$x(t) = te^{-2|t|}$$

(e)
$$x(t) = |t|e^{-2|t|}$$

(f)
$$x(t) = |t|e^{2t}u(-t)$$

$$(g) x(t) = \begin{cases} 1, & 0 \le t \le \\ 0, & \text{其余 } t \end{cases}$$

$$(e) \ x(t) = e^{-t}u(-t) + e^{-t}u(-t)$$

$$(e) \ x(t) = |t|e^{-2|t|}$$

$$(f) \ x(t) = |t|e^{2t}u(-t)$$

$$(g) \ x(t) = \begin{cases} 1, & 0 \le t \le 1 \\ 0, & \sharp \ge t \end{cases}$$

$$(h) \ x(t) = \begin{cases} t, & 0 \le t \le 1 \\ 2 - t, & 1 \le t \le 2 \end{cases}$$

(i)
$$x(t) = \delta(t) + u(t)$$

(i)
$$x(t) = \delta(3t) + u(3t)$$

2. Determine the Laplace transform for each of the following functions of time:

(a)
$$e^{-t} \sin 2t u(t)$$
;

(b)
$$te^{-(t-2)}u(t-1)$$
.

(c)
$$t[u(t-1)-u(t-2)]$$
.

(d)
$$\sin 2t \cdot u(t-1)$$
.

The Inverse Laplace Transform

3. Determine the function of time x(t) for each of the following Laplace transforms and their associated regions of convergence (教材 9.22 题)

(a)
$$\frac{1}{s^2+9}$$
, $\Re\{s\} > 0$ (b) $\frac{s}{s^2+9}$, $\Re\{s\} < 0$

(b)
$$\frac{s}{s^2+0}$$
, $\Re\{s\}<0$

(c)
$$\frac{s+1}{(s+1)^2+9}$$
, $\Re\{s\} < -1$

(c)
$$\frac{s+1}{(s+1)^2+9}$$
, $\Re\{s\} < -1$ (d) $\frac{s+2}{s^2+7s+12}$, $-4 < \Re\{s\} < -3$ (e) $\frac{s+1}{s^2+5s+6}$, $-3 < \Re\{s\} < -2$ (f) $\frac{(s+1)^2}{s^2-s+1}$, $\Re\{s\} > \frac{1}{2}$

(e)
$$\frac{s+1}{s^2+5s+6}$$
, $-3 < \Re\{s\} < -2$

(f)
$$\frac{(s+1)^2}{s^2-s+1}$$
, $\Re\{s\} > \frac{1}{2}$

(g)
$$\frac{s^2-s+1}{(s+1)^2}$$
, $\Re\{s\}>-1$

4. Determine the inverse Laplace transform for each of the following functions:

(a)
$$\frac{3s}{(s+4)(s+2)}$$
, $Re[s] > -2$;

(b)
$$\frac{s+3}{(s+1)^3(s+2)}$$
, $Re[s] > -1$;

(c)
$$\frac{e^{-s}}{4s(s^2+1)}$$
, $Re[s] > 0$.

5. Determine the inverse Laplace transform for each of the following functions:

(a)
$$\frac{1}{(s^2+3)^2}$$
, $Re[s] > 0$.

Solve Differential Equations Using Unilateral Laplace Transform

6. Consider a continuous-time LTI system for which the input x(t) and output y(t) are related by the differential equation

$$\frac{d^2}{dt^2}y(t) + 3\frac{d}{dt}y(t) + 2y(t) = \frac{d}{dt}x(t) + 4x(t).$$

Determine the zero-input response and zero-state response under each of the following conditions.

(a)
$$x(t) = u(t), y(0^{-}) = 0, y'(0^{-}) = 1;$$

(b)
$$x(t) = e^{-2t}u(t)$$
, $y(0^-) = 1$, $y'(0^-) = 1$.