Mip-Splatting: Alias-free 3D Gaussian Splatting

Revis@r

Arqueólog@

Hacker

Doutorand@

Nanci

Fabricio

Fernanda

Davi

Revisão

3D Gaussian Splatting

Representação fiel

Representação degenerada

Amostragem reduzida

Amostragem aumentada

Mip-Splatting

3D smoothing filter

3D smoothing filter

$$\hat{\nu}_k = \max\left(\left\{\mathbb{1}_n(\mathbf{p}_k) \cdot \frac{f_n}{d_n}\right\}_{n=1}^N\right)$$

$$\mathcal{G}_k(\mathbf{x})_{\text{reg}} = (\mathcal{G}_k \otimes \mathcal{G}_{\text{low}})(\mathbf{x})$$

$$\mathcal{G}_k(\mathbf{x})_{\text{reg}} = \sqrt{\frac{|\mathbf{\Sigma}_k|}{|\mathbf{\Sigma}_k + \frac{s}{\hat{\nu}_k} \cdot \mathbf{I}|}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{p}_k)^T (\mathbf{\Sigma}_k + \frac{s}{\hat{\nu}_k} \cdot \mathbf{I})^{-1} (\mathbf{x} - \mathbf{p}_k)}$$

2D mip filter

	Mip Filter		

$$\mathcal{G}_k^{2D}(\mathbf{x})_{\text{mip}} = \sqrt{\frac{|\mathbf{\Sigma}_k^{2D}|}{|\mathbf{\Sigma}_k^{2D} + s\mathbf{I}|}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{p}_k)^T (\mathbf{\Sigma}_k^{2D} + s\mathbf{I})^{-1} (\mathbf{x} - \mathbf{p}_k)}$$

Treinamento e avaliação multi-escala

Resultados

Pontos positivos

- Propostas embasadas no Teorema de amostragem de Nyquist-Shannon;
- Alterações simples que geram melhorias significativas;
- Destaque à operação de Dilatação, não mencionada no artigo 3DGS;
- Treinamento e avaliação multi-escala;
- Experimentação extensa:
 - Múltiplas resoluções + reavaliação dos métodos concorrentes;
 - Dois datasets: Blender, Mip Nerf 360;
 - Múltiplas configurações (Ablation);

Pontos negativos

- Overhead de treinamento;
- Adição da distância focal como parâmetro de entrada;
- Falta de explicação para a parametrização dos filtros;
- Erros de grafia no resumo e no material complementar;

Avaliação e justificativa

- Propostas simples e bem embasadas que geram melhorias significativas quando comparado ao método original e outras técnicas concorrentes baseadas em NeRF. Tais ganhos são obtidos em troca de tempo de treinamento maior e overhead desprezível na renderização;

Arqueólogo

Compreendendo onde Mip Splatting se encontra na história da computação e visão gráfica

Mip-Splatting?

Quais foram os maiores

influenciadores de

EWA Volume Splatting

- Combinação de Elliptical Gaussian reconstruction kernels para renderização suavizada;
- Filtro passa-baixa 2D: responsável por reduzir o aliasing na imagem renderizada através de uma operação de convolução;
- Mip Splatting herda o conceito de utilizar filtro passa-baixa para
 limitar a frequência ao sampling rate, mas aplica-o no espaço 3D;

Mip-NeRF

- Cone tracing para suavizar detalhes em diferentes escalas;
- Integrated Positional Encoding (IPE):

 considera-se seções retas do cone como
 gaussianas e calcula-se a esperança (Substituto
 do Positional Encoding do NeRF);
- Mip-splatting herda a ideia de suavização de detalhes por meio de técnicas de pré filtragem;

E agora? Para onde

Mip-Splatting nos leva?

MipMap-GS – Abordando Multi-Scale Aliasing

 Filtros gaussianos fixos não se adaptam bem à mudança de escala;

 Uso de Gaussianas precomputadas para se adaptar dinamicamente ao zoom;

Mipmap-GS

Figure 2. Comparison of 3DGS, Mip-Splatting and ours in zoom-out and zoom-in scenarios. 3DGS (top) lacks scale sensitivity and exhibits strong degradation. Mip-Splatting (middle) introduces a 2D Mip filter and 3D smooth filter to regulate scales heuristically while leaving 3D Gaussians unaware of the varying footprint in pixel space. Ours (bottom) adopts scale-adaptive Gaussians for explicit pixel coverage optimization. The projection in previous pixel coverage is illustrated in the dashed line.

Analytic-Splatting – Abordando Frequency Aliasing

- Dificuldade de captura de detalhes finos, especialmente texturas complexas e objetos pequenos;
- Computação analítica dos valores dos pixels, mantendo a imagem simultaneamente alias-free e detalhada;

Analytic-Splatting

Hacker

Alun@ procurando um novo projeto na mesma área...

HACKER - Reprodutibilidade do método

→ O método usa a integração potencial no pipeline de rasterização padrão de GPUs.

→ Replica o processo de imagem física, onde os fótons que atingem um pixel no sensor da câmera são integrados sobre a área do pixel.

EWA

Embora o filtro Mip compartilhe semelhanças com o filtro EWA, seus princípios subjacentes são distintos:

→ O filtro Mip é projetado para replicar o filtro de caixa no processo de imagem, visando uma aproximação exata de um único pixel.

→ Na função do filtro EWA o filtro é escolhido empiricamente, ocupando efetivamente uma região de 3x3 pixels na tela.

IMPLEMENTAÇÃO DO MODELO

→ O modelo foi treinado para 30K iterações em todas as cenas.

→ Utilizaram a mesma função de perda, estratégia de controle de densidade gaussiana, cronograma e hiperparâmetros.

→ Para eficiência, recalcularam a taxa de amostragem de cada gaussiana 3D a cada m = 100 iterações.

→ Escolheram a variância do filtro Mip 2D como 0,1, aproximando um único pixel

TREINAMENTO DO MODELO

"All models are trained on images down sampled by a factor of eight and rendered at full resolution to demonstrate zoom-in/moving closer effects.

In contrast to prior work, Mip-Splatting renders images that closely approximate ground truth. Please also note the high-frequency artifacts of 3DGS + EWA"

Mip-NeRF 360 Dataset

- → Avaliamos ainda o Mip-Splatting no conjunto de dados Mip-NeRF 360
- → Na primeira configuração, os modelos são treinados e avaliados na mesma escala
- → Na segunda configuração, os modelos são treinados em dados reduzidos por um fator de 8 e renderizados em resoluções sucessivamente maiores (1×, 2×, 4× e 8×) para simular efeitos de zoom.
- → O Mip-Splatting elimina efetivamente artefatos de alta frequência, produzindo renderizações de alta qualidade que se assemelham mais à verdade básica.

Avaliação no Blender dataset

- → O modelo foi treinado e avaliado com dados em múltiplas escalas
- → A amostragem foi através de 40% de imagens de resolução total e 20% de outras resoluções de imagem cada.
- → A abordagem atinge desempenho comparável ou superior em comparação com métodos de última geração como Mip-NeRF e Tri-MipRF
- → O método supera 3DGS e 3DGS + EWA por uma margem substancial, devido ao seu filtro Mip 2D.

Single-scale Training and Multi-scale Testing

Avaliaram os efeitos de zoom-out renderizando imagens de menor resolução no conjunto de dados e simulando os efeitos de zoom-in renderizando imagens de maior resolução no conjunto de dados Mip-NeRF 360

Single-scale Training and Multi-scale Testing

O Mip-Splatting supera significativamente 3DGS e 3DGS + EWA na qualidade de renderização ao aumentar e diminuir o zoom.

Além disso, remover o seu filtro de suavização 3D leva a artefatos de alta frequência, enquanto remover o seu filtro Mip 2D resulta em artefatos de aliasing

	PSNR ↑				SSIM ↑					LPIPS ↓								
	1/4 Res.	1/2 Res.	1× Res.	2× Res.	4× Res.	Avg.	1/4 Res.	1/2 Res.	1× Res.	2× Res.	4× Res.	Avg.	1/4 Res.	1/2 Res.	1× Res.	2× Res.	4× Res.	Avg.
3DGS [18]	20.85	24.66	28.01	25.08	23.37	24.39	0.681	0.812	0.834	0.766	0.735	0.765	0.203	0.158	0.166	0.275	0.383	0.237
3DGS [18] + EWA [59]	27.40	28.39	28.09	26.43	25.30	27.12	0.888	0.871	0.833	0.774	0.738	0.821	0.103	0.126	0.171	0.276	0.385	0.212
Mip-Splatting (ours)	28.98	29.02	28.09	27.25	26.95	28.06	0.908	0.880	0.835	0.798	0.800	0.844	0.086	0.114	0.168	0.248	0.331	0.189
Mip-Splatting (ours) w/o 3D smoothing filter	28.69	28.94	28.05	27.06	26.61	27.87	0.905	0.879	0.833	0.790	0.780	0.837	0.088	0.115	0.168	0.261	0.359	0.198
Mip-Splatting (ours) w/o 2D Mip filter	26.09	28.04	28.05	27.27	27.00	27.29	0.815	0.856	0.834	0.798	0.802	0.821	0.167	0.132	0.167	0.249	0.335	0.210

Table 7. Single-scale Training and Multi-scale Testing on the Mip-NeRF 360 Dataset [2]. All methods are trained on the middle scale $(1\times)$ and evaluated across four scales $(1/4\times, 1/2\times, 1\times, 2\times, \text{ and } 4\times)$, with evaluations at higher sampling rates simulating zoom-in effects. While our method yields comparable results at the training resolution, it significantly surpasses all previous work at all other scales. Omitting the 3D smoothing filter results in high-frequency artifacts when rendering higher resolution images, while removing the 2D Mip filter results in aliasing artifacts when rendering lower resolution images, as shown in Figure 7.

Resultado Final

https://youtu.be/YGhV5rrkTt8

Script que altera o tamanho e tem um efeito de borrar as gaussianas

https://www.youtube.com/watch?v=OIDq7qKt7tk

https://colab.research.google.com/drive/1HnjqiKHdKSQMBwwZnXDF5ZSacM3j7NNT?usp=sharing

Estudante de doutorado

Alun@ procurando um novo projeto na mesma área...

Proposta de projeto de pesquisa

Pyramidal Data Structure on 3D Gaussians

Objetivos

- A proposta é usar a estrutura piramidal discutida em Pyramidal
 Parametrics [2] com as gaussianas 3D.
- Em vez de manter as gaussianas fixas, elas iriam variar de acordo com a distância em relação a câmera (d) e o zoom aplicado (f).
- Como a quantidade de gaussianas varia com esses dois fatores, o filtro usado também iria variar.

Pros

 Objetos distantes precisam de menos gaussianas para serem representados, logo podemos diminuir sua quantidade de gaussianas para um melhor rendering! (quando possível)

Cons

 É possível que isso resulte em um treinamento mais demorado (mas nem tanto).

Referências

- [1] Yu, Z., Chen, A., Huang, B., Sattler, T., & Geiger, A. (2024).
 Mip-splatting: Alias-free 3d gaussian splatting. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition* (pp. 19447-19456).
- [2] Lance Williams. 1983. Pyramidal parametrics. SIGGRAPH Comput.
 Graph. 17, 3 (July 1983), 1–11. https://doi.org/10.1145/964967.801126
- [3] Gomes, Jonas, Luiz Velho, and Mario Costa Sousa. Computer graphics: theory and practice. CRC Press, 2012.

Discussão

Todos...