Cuplaje

- Problema seratei (perechilor) sec XIX
 - n băieţi, n fete
 - Un băiat cunoaște exact k fete
 - O fată cunoaște exact k băieţi

Problema seratei (perechilor)

- Problema seratei (perechilor) sec XIX
 - Se poate organiza o repriză de dans astfel încât fiecare participant să danseze cu o cunoştinţă a sa?

- Problema seratei (perechilor) sec XIX
 - Se poate organiza o repriză de dans astfel încât fiecare participant să danseze cu o cunoştinţă a sa?
 - Se pot organiza k reprize de dans în care fiecare participant să danseze câte un dans cu fiecare cunoştinţă a sa?

Problema seratei (perechilor)

$$\begin{array}{c} n=4 \\ k=3 \end{array}$$

$$\begin{array}{c} b1 \\ b2 \\ \hline \\ b3 \\ \hline \\ b4 \\ \end{array}$$

$$\begin{array}{c} f2 \\ \hline \\ b4 \\ \end{array}$$

$$\begin{array}{c} f3 \\ \hline \\ f4 \\ \end{array}$$

$$\begin{array}{c} n \text{ băieţi} \\ \end{array}$$

$$\begin{array}{c} n \text{ fete} \\ \end{array}$$

O repriză de dans

A doua repriză de dans

A doua repriză de dans

A treia repriză de dans

Descompunere în cuplaje = colorări proprii de muchii

- Organizarea meciurilor unui turneu
 - Două echipe cu câte n jucători
 - Sistem "fiecare cu fiecare" (fiecare jucător dintr-o echipă trebuie să joace cu fiecare din cealaltă echipă)

- Organizarea meciurilor unui turneu
 - Două echipe cu câte n jucători
 - Sistem "fiecare cu fiecare" (fiecare jucător dintr-o echipă trebuie să joace cu fiecare din cealaltă echipă)

Graf bipartit complet

- Probleme de repartiţie
 - lucrători locuri de muncă
 - profesori examene /conferințe

- Probleme de repartiţie
 - lucrători locuri de muncă
 - profesori examene /conferințe
 - Programarea examenelor în sesiune astfel încât numărul zilelor de sesiune să fie cât mai mic + examene repartizate cât mai uniform
 - Problema orarului

Acoperirea unei table cu piese de domino

Acoperirea unei table cu piese de domino

Definiţii

Fie G = (V, E) un graf simplu şi $M \subseteq E$.

M s.n cuplaj dacă orice două muchii din M sunt neadiacente

Fie G = (V, E) un graf simplu şi $M \subseteq E$.

- M s.n cuplaj dacă orice două muchii din M sunt neadiacente
- V(M) = mulţimea vârfurilor M−saturate
- V(G) − V(M) = mulţimea vârfurilor M-nesaturate

Fie G = (V, E) un graf simplu şi $M \subseteq E$.

Notăm [M] = graful indus de mulţimea de muchii M

$$= (V(M), M)$$

[M]: \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

Un cuplaj M* s.n cuplaj de cardinal maxim (cuplaj maxim):

 $| M^* | \ge |M|, \forall M \subseteq E \text{ cuplaj}$

Un cuplaj M* s.n cuplaj de cardinal maxim (cuplaj maxim):

 $| M^* | \ge |M|, \forall M \subseteq E \text{ cuplaj}$

cuplaj de cardinal maxim

cuplaj de cardinal maxim

Un cuplaj M s.n cuplaj perfect dacă orice vârf este M-saturat

Un cuplaj M s.n cuplaj perfect dacă orice vârf este M-saturat

Nu orice graf admite un cuplaj perfect

Fie $\mathbf{M} \subseteq \mathbf{E}$ cuplaj.

 Un lanţ elementar P s.n. lanţ M-alternant dacă muchiile sale aparţin alternativ lui M şi E - M

Fie $M \subseteq E$ cuplaj.

 Un lanţ elementar P s.n. lanţ M-alternant dacă muchiile sale aparţin alternativ lui M şi E - M

$$P = [4, 3, 2]$$
 $P = [3, 4, 5, 6, 7]$
 $P = [1, 3, 4, 5, 6, 7]$

Fie $\mathbf{M} \subseteq \mathbf{E}$ cuplaj.

 Un lanţ M-alternant P s.n. lanţ M-alternant deschis dacă extremităţile sale sunt M-nesaturate

$$P = [1, 3, 4, 5, 6, 7]$$

$$P = [2, 3, 4, 5, 6, 7]$$

Ciclu M-alternant

Fie P un lanţ M-alternant deschis

Operaţie de transfer de-a lungul lanţului P = obţinerea unui nou cuplaj M' din M astfel:

$$M' = M \Delta E(P) = (M - E(P)) \cup (E(P) - M)$$

Fie P un lanţ M-alternant deschis

Operaţie de transfer de-a lungul lanţului P = obţinerea unui nou cuplaj M' din M astfel:

$$M' = M \Delta E(P) = (M - E(P)) \cup (E(P) - M)$$

Fie P un lanţ M-alternant deschis

Operaţie de transfer de-a lungul lanţului P = obţinerea unui nou cuplaj M' din M astfel:

$$M' = M \Delta E(P) = (M - E(P)) \cup (E(P) - M)$$

Observaţie

$$|\mathbf{M'}| = |\mathbf{M}| - \left\lfloor \frac{|\mathbf{E}(\mathbf{P})|}{2} \right\rfloor + \left\lceil \frac{|\mathbf{E}(\mathbf{P})|}{2} \right\rceil = |\mathbf{M}| + 1$$

M:

$$P = [2, 3, 4, 5, 6, 7]$$

M:

$$P = [2, 3, 4, 5, 6, 7]$$

M':

- Condiţii necesare şi suficiente ca un cuplaj să fie de cardinal maxim
- Algoritmi de determinare a unui cuplaj maxim / cuplaj perfect

Condiții necesare și suficiente ca un cuplaj să fie de cardinal maxim

Teorema lui BERGE

Fie G=(V, E) un graf simplu cu $E \neq \emptyset$, şi $M \subseteq E$ un cuplaj. Avem echivalenţa:

M este **cuplaj de cardinal maxim** în G ⇔

nu există nici un lanț M-alternant <u>deschis</u> în G

Fie G = (V, E) un graf simplu şi $M_1, M_2 \subseteq E$ cuplaje.

• Considerăm $[M_1 \triangle M_2]$ graful indus de diferența simetrică a celor două cuplaje

Fie G = (V, E) un graf simplu şi $M_1, M_2 \subseteq E$ cuplaje.

Fie G = (V, E) un graf simplu şi $M_1, M_2 \subseteq E$ cuplaje.

 $d_{[M_1 \Delta M_2]}(v) \le d_{[M_1]}(v) + d_{[M_2]}(v) \le 2, \forall v \in V$

Fie G = (V, E) un graf simplu şi $M_1, M_2 \subseteq E$ cuplaje.

- $d_{[M_1 \Delta M_2]}(v) \le d_{[M_1]}(v) + d_{[M_2]}(v) \le 2, \forall v \in V$
- $[M_1 \triangle M_2]$ are 4 tipuri de componente conexe:

Fie G = (V, E) un graf simplu şi $M_1, M_2 \subseteq E$ cuplaje.

- $d_{[M_1 \Delta M_2]}(v) \le d_{[M_1]}(v) + d_{[M_2]}(v) \le 2, \forall v \in V$
- $[M_1 \triangle M_2]$ are 4 tipuri de componente conexe:
 - Cicluri M₁, M₂-alternante

Lanţuri M₁, M₂-alternante de tip:

$$\cdot$$
 (M₁, M₂) \circ

Propoziție

Fie G = (V, E) un graf simplu şi $M_1, M_2 \subseteq E$ cuplaje.

Avem:

$$|M_1| - |M_2| =$$

numărul de componente conexe ale grafului $[M_1 \triangle M_2]$ care sunt lanțuri de tip (M_1, M_1) –

numărul de componente conexe ale grafului $[M_1 \triangle M_2]$ care sunt lanțuri de tip (M_2, M_2)

Consecință

Fie G = (V, E) un graf simplu şi $M_1, M_2 \subseteq E$ cuplaje.

Dacă $|\mathbf{M}_1| > |\mathbf{M}_2|$, atunci în graful $[\mathbf{M}_1 \triangle \mathbf{M}_2]$ există cel puţin o componentă conexă care este lanţ \mathbf{M}_1 , \mathbf{M}_2 – alternant de tip $(\mathbf{M}_1, \mathbf{M}_1)$

Teorema lui BERGE

Fie G=(V, E) un graf simplu cu $E \neq \emptyset$, şi $M \subseteq E$ un cuplaj. Avem echivalenţa:

M este **cuplaj de cardinal maxim** în G ⇔ nu există nici un lanţ M-alternant <u>deschis</u> în G

Demonstraţie

⇒ Reducere la absurd; folosim operaţia de transfer

Teorema lui BERGE

Fie G=(V, E) un graf simplu cu $E \neq \emptyset$, şi $M \subseteq E$ un cuplaj. Avem echivalenţa:

M este **cuplaj de cardinal maxim** în G ⇔ nu există nici un lanţ M-alternant <u>deschis</u> în G

Demonstraţie

- ⇒ Reducere la absurd; folosim operaţia de transfer
- \leftarrow Folosim consecința propoziției anterioare pentru a demonstra că $|M| = |M^*|$

Idee algoritm de determinare a unui cuplaj maxim

- Fie M un cuplaj arbitrar în G (exp. ∅)
- Cât timp există un lanţ M-alternant deschis P în G
 - determină un astfel de lanţ P
 - $M = M \Delta E(P)$

Cum determinăm un lanţ M-alternant deschis?

Prin parcurgerea grafului, vector tata...

Prin parcurgere nu determinăm toate lanţurile elementare dintr-un graf.

Dacă există un lanţ M-alternant deschis, va fi sigur el găsit printr-o parcurgere?

Prin parcurgere (BF sau DF) din 1 nu găsim lanțul M-alternant deschis, deoarece 2 este deja vizitat ca fiu al lui 1

Prin parcurgere nu putem determina toate lanţurile elementare dintr-un graf.

Dacă există un lanţ M-alternant deschis, va fi sigur el găsit printr-o parcurgere?

Grafuri bipartite

