Achmad Imam Kistijantoro Anggrahita Bayu Sasmita Yudistira Dwi Wardhana Asnar Rahmat Mulyawan Infall Syafalni

IF2130/II2130 – Organisasi dan Arsitektur Komputer

sumber: Greg Kesden, CMU 15-213, 2012

Representasi Informasi – Floating Point Operations

Floating Point Operations: Basic Idea

- $x +_f y = Round(x + y)$
- $\triangleright x \times_f y = Round(x \times y)$
- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding)

•		\$1.40	\$1.60	\$1.50	\$2.50	- \$1.50
	Towards zero	\$ I	\$	\$	\$2	-\$
	Round down $(-\infty)$	\$I	\$	\$1	\$2	-\$2
	Round up $(+\infty)$	\$2	\$2	\$2	\$3	-\$
	Nearest Even(default))\$I	\$2	\$2	\$2	-\$2

Closer Look at Round-To-Even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

```
1.23499991.23(Less than half way)1.23500011.24(Greater than half way)1.23500001.24(Half way—round up)1.24500001.24(Half way—round down)
```


Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value Value	Binary	Rounded	Action	Rounded
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.001102	10.012	(>1/2—up)	2 1/4
2 7/8	10.111002	11.002	(I/2—up)	3
2 5/8	10.101002	10.102	(1/2—down)	2 1/2

FP Multiplication

- $(-1)^{s1} M1 2^{E1} \times (-1)^{s2} M2 2^{E2}$
- ► Exact Result: (-I)^s M 2^E
 - ▶ Sign s: s1 ^ s2
 - ▶ Significand M: M1 x M2
 - Exponent E: E1 + E2

Fixing

- ▶ If $M \ge 2$, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Implementation

Biggest chore is multiplying significands

Floating Point Addition

- $(-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}$
 - Assume E1 > E2
- ► Exact Result: (-I)^s M 2^E
 - Sign s, significand M:
 - ▶ Result of signed align & add
 - Exponent E: E1

- Fixing
 - If $M \ge 2$, shift M right, increment E
 - ▶if M < I, shift M left k positions, decrement E by k
 - Overflow if E out of range
 - ▶Round M to fit **frac** precision

Floating Point in C

- C Guarantees Two Levels
 - •float single precision
 - double double precision
- Conversions/Casting
 - Casting between int, float, and double changes bit representation
 - ▶ double/float → int
 - ▶ Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - ▶ int → double
 - Exact conversion, as long as int has ≤ 53 bit word size
 - ▶ int → float
 - Will round according to rounding mode

Summary

- ▶ IEEE Floating Point has clear mathematical properties
- ▶ Represents numbers of form $M \times 2^{E}$
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

End of Segment

