NATIONAL UNIVERSITY OF SINGAPORE

MA1508E - LINEAR ALGEBRA FOR ENGINEERING

 $(Semester\ 2:\ AY2017/2018)$

Time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. Please write your matriculation/student number only. Do not write your name.
- 2. This examination paper contains **FIVE** questions and comprises **FOUR** printed pages.
- 3. Answer **ALL** questions.
- 4. Please start each question on a new page.
- 5. This is a CLOSED BOOK examination.
- 6. Candidates may use scientific calculators. However, they should lay out systematically the various steps in the calculations.

PAGE 2 MA1508E

Question 1 [20 marks]

- (a) Let $V = \{(a+b-c, b+2c, 2a-b+c, c, a-3b) \mid a, b, c \in \mathbb{R}\}$ be a subset of \mathbb{R}^5 .
 - (i) Show that V is a subspace of \mathbb{R}^5 by writing it as a linear span.
 - (ii) Use your answer in (i) to find a basis for V. Hence, state the dimension of V.
 - (iii) Find all vectors orthogonal to V. Express your answer as a linear span.
 - (iv) Show that (1, 1, 1, 0, 1) does not belong to V.
 - (v) Find a subspace W of \mathbb{R}^5 such that $\dim(W) = 4$ and $V \subseteq W$. Justify your answer.
- (b) Let

$$\boldsymbol{B} = \begin{pmatrix} s & 0 & 1 \\ -t & -1 & 0 \\ 0 & t & -s \end{pmatrix}$$

where s, t are real numbers. By computing the determinant of \mathbf{B} , find all values of s and t such that $\mathbf{B}\mathbf{x} = \mathbf{0}$ has infinitely many solutions.

Question 2 [20 marks]

(a) For the following matrix A, compute A^{-1} and express A^{-1} as a product of exactly 5 elementary matrices.

$$\mathbf{A} = \begin{pmatrix} 1 & 3 & 0 \\ -1 & -2 & 1 \\ 0 & 4 & 3 \end{pmatrix}.$$

(b) (i) Let

$$S = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 3 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$
 and $T = \frac{1}{8} \begin{pmatrix} a & 2 & 1 \\ 2 & b & 2 \\ 1 & 2 & c \end{pmatrix}$.

Suppose we know that ST = I. Find the values of a, b, c.

(ii) We would like to study the flexibility of a horizontal elastic beam shown in the figure below, which shows that when forces of f_1 , f_2 , f_3 (in the direction specified by the arrows) are applied at the 3 points #1, #2 and #3, the amount of deflection of the beam observed at the 3 points are y_1, y_2, y_3 respectively.

A series of experiments were conducted to determine the forces required to be applied at the 3 points in order to observe various desired deflections at the 3 points. The results of the experiments are given in the table below.

PAGE 3 MA1508E

	Force applied			Deflection observed		
	f_1	f_2	f_3	y_1	y_2	y_3
Experiment 1	0.25	-0.125	0	1	0	0
Experiment 2	-0.125	0.375	-0.125	0	1	0
Experiment 3	0	-0.125	0.25	0	0	1

For example, in order to produce 1 unit of deflection at point #1 and no deflection and points #2 and #3, we need to apply a force of 0.25 units downwards at point #1, a force of 0.125 units **upwards** at point #2 and no force at point #3.

Find the flexibility matrix D of the elastic beam.

(Hint: Use part (i).)

- (iii) Determine f_1, f_2, f_3 if we wish to observe the deflection $y_1 = y_2 = y_3 = 1$.
- (iv) The beam will snap if $\max\{y_1, y_2, y_3\} \ge 3$ or $y_1 + y_2 + y_3 \ge 5$. Determine whether the beam snaps when the forces applied to the 3 points is given by

$$\mathbf{f} = \begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix} = \begin{pmatrix} 0.5 \\ -0.2 \\ 0.3 \end{pmatrix}.$$

Question 3 [20 marks]

- (a) Let $S = \{(1, -1, 0, 2), (0, 2, 1, 1), (2, -2, -3, 1)\}.$
 - (i) Show that S is a basis, but not an orthogonal basis for span(S).
 - (ii) Use Gram-Schmidt Process to find an orthogonal basis for span(S). You may let $u_1 = (1, -1, 0, 2)$, $u_2 = (0, 2, 1, 1)$ and $u_3 = (2, -2, -3, 1)$.
 - (iii) Compute the orthogonal projection of $\mathbf{w} = (1, 1, 1, 1)$ onto span(S).
- (b) It is believed that two physical quantities x and y are linearly related according to the equation y = cx + d where c and d are constants. A series of experiments are conducted to determine the values of c and d. Different values of x were used in the experiments and the corresponding values of y were observed. The results of the experiments are shown in the table below.

\boldsymbol{x}	1	2	3	4
y	1	2	3	3

- (i) Based on the data set obtained from the experiments, write down a (over-determined) linear system Ax = b with 4 equations and the 2 unknowns c and d.
- (ii) Show that Ax = b is inconsistent. Does b belong to the column space of A?
- (iii) Find a least squares solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$. Using your least squares solution, predict the value of y when x = 5.
- (iv) Compute the orthogonal projection of b onto the column space of A.

Question 4 [20 marks]

- (a) Let $S = \{(1, -3, 2), (0, 1, -3), (-2, 4, 4)\}.$
 - (i) Show that S is a linearly independent set.
 - (ii) Let $\boldsymbol{w} = (-1, 0, 4)$. Using Cramer's Rule or otherwise, find $(\boldsymbol{w})_S$, the coordinate vector of \boldsymbol{w} relative to S.

- (b) Let v_1, v_2, v_3, v_4 be 4 points in \mathbb{R}^3 .
 - (i) Suppose for each j = 1, 2, 3, 4, an object with mass m_j is located at point v_j as given in the table below. Show that the center of gravity (or center of mass) of the system is located at v = (9/5, 1, 3/5).

Point	Mass
$v_1 = (2, 1, 0)$	2g
$v_2 = (1, 1, -1)$	1g
$v_3 = (3, 1, 1)$	1g
$v_4 = (1, 1, 3)$	1g

(ii) Suppose we are allowed to change the values of m_j , j = 1, 2, 3, 4 to any **positive integer** values such that $m_1 + m_2 + m_3 + m_4 \leq 10$. Find **all** (m_1, m_2, m_3, m_4) such that the location of the center of gravity remains unchanged.

Question 5 [20 marks]

(a) Let

$$\mathbf{A} = \begin{pmatrix} 2 & 0 & 0 & 8 \\ 1 & -7 & -5 & 0 \\ 3 & 8 & 6 & 12 \\ 0 & 7 & 5 & 4 \end{pmatrix}.$$

- (i) Find a basis for the row space of **A**. What is the rank of **A**?
- (ii) Find a basis for the column space of A.
- (iii) Find a basis for the nullspace of A. What is the nullity of A?
- (iv) For each of the following, determine if such a matrix \boldsymbol{B} exists. If it does, find one such \boldsymbol{B} and if it does not, explain why.
 - (I) \mathbf{B} is a 3×3 matrix and the nullspace of \mathbf{B} is equal to the column space of \mathbf{A} .
 - (II) B is a 4×4 matrix and the nullspace of B is equal to the row space of A.
- (b) Two species of fish, species A and species B, live in the same ecosystem (e.g. a pond) and compete with each other for food, water and space. Let the population of species A and B at time t years be given by a(t) and b(t) respectively.

In the absence of species B, species A's growth rate is 4a(t) but when species B are present, the competition slows the growth of species A to a'(t) = 4a(t) - 2b(t). In a similar manner, when species A is absent, species B's growth rate is 3b(t) but in the presence of species A, the growth rate reduces to b'(t) = 3b(t) - a(t).

- (i) Write down a system of linear differential equations involving a(t), b(t), a'(t) and b'(t).
- (ii) Represent the system in (i) as x'(t) = Ax(t) where

$$m{A}$$
 is a 2×2 matrix and $m{x}(t) = \begin{pmatrix} a(t) \\ b(t) \end{pmatrix}$, $m{x'}(t) = \begin{pmatrix} a'(t) \\ b'(t) \end{pmatrix}$.

(iii) Solve the system using the initial condition a(0) = 60, b(0) = 120.