

FORM PTO-1390 (Modified) (REV 11-98)		U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE		ATTORNEY'S DOCKET NUMBER Bayer 10,131-KGB
TRANSMITTAL LETTER TO THE UNITED STATES DESIGNATED/ELECTED OFFICE (DO/EO/US) CONCERNING A FILING UNDER 35 U.S.C. 371		U.S. APPLICATION NO. (IF KNOWN, SEE 37 CFR 09/786635		
INTERNATIONAL APPLICATION NO. PCT/EP99/06991	INTERNATIONAL FILING DATE 21 September 1999 (21.09.99)	PRIORITY DATE CLAIMED 25 September 1998 (25.09.98)		
TITLE OF INVENTION ATP BINDING CASSETTE GENES AND PROTEINS FOR DIAGNOSIS AND TREATMENT OF LIPID DISORDERS AND INFLAMMATORY DISEASES				
APPLICANT(S) FOR DO/EO/US SCHMITZ, Gerd and KLUCKEN, Jochen				
Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:				
<ol style="list-style-type: none"> <input checked="" type="checkbox"/> This is a FIRST submission of items concerning a filing under 35 U.S.C. 371. <input type="checkbox"/> This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371. <input checked="" type="checkbox"/> This is an express request to begin national examination procedures (35 U.S.C. 371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(1). <input checked="" type="checkbox"/> A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date. <input checked="" type="checkbox"/> A copy of the International Application as filed (35 U.S.C. 371 (c) (2)) <ol style="list-style-type: none"> <input type="checkbox"/> is transmitted herewith (required only if not transmitted by the International Bureau). <input checked="" type="checkbox"/> has been transmitted by the International Bureau. <input type="checkbox"/> is not required, as the application was filed in the United States Receiving Office (RO/US). <input type="checkbox"/> A translation of the International Application into English (35 U.S.C. 371(c)(2)). <input checked="" type="checkbox"/> A copy of the International Search Report (PCT/ISA/210). <input type="checkbox"/> Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371 (c)(3)) <ol style="list-style-type: none"> <input type="checkbox"/> are transmitted herewith (required only if not transmitted by the International Bureau). <input type="checkbox"/> have been transmitted by the International Bureau. <input type="checkbox"/> have not been made; however, the time limit for making such amendments has NOT expired. <input type="checkbox"/> have not been made and will not be made. <input type="checkbox"/> A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)). <input type="checkbox"/> An oath or declaration of the inventor(s) (35 U.S.C. 371 (c)(4)). <input checked="" type="checkbox"/> A copy of the International Preliminary Examination Report (PCT/IPEA/409). <input type="checkbox"/> A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371 (c)(5)). 				
Items 13 to 20 below concern document(s) or information included:				
<ol style="list-style-type: none"> <input type="checkbox"/> An Information Disclosure Statement under 37 CFR 1.97 and 1.98. <input type="checkbox"/> An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included. <input type="checkbox"/> A FIRST preliminary amendment. <input type="checkbox"/> A SECOND or SUBSEQUENT preliminary amendment. <input type="checkbox"/> A substitute specification. <input type="checkbox"/> A change of power of attorney and/or address letter. <input checked="" type="checkbox"/> Certificate of Mailing by Express Mail <input type="checkbox"/> Other items or information: <div style="border: 1px solid black; height: 100px; width: 100%;"></div> 				

U.S. APPLICATION NO. IF KNOWN, SEE 37 CFR
097786635INTERNATIONAL APPLICATION NO.
PCT/EP99/06991ATTORNEY'S DOCKET NUMBER
Bayer 10,131-KGB

21. The following fees are submitted:

BASIC NATIONAL FEE (37 CFR 1.492 (a) (1) - (5)) :

<input type="checkbox"/> Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO and International Search Report not prepared by the EPO or JPO	\$1,000.00
<input type="checkbox"/> International preliminary examination fee (37 CFR 1.482) not paid to USPTO but International Search Report prepared by the EPO or JPO	\$860.00
<input type="checkbox"/> International preliminary examination fee (37 CFR 1.482) not paid to USPTO but international search fee (37 CFR 1.445(a)(2)) paid to USPTO	\$710.00
<input checked="" type="checkbox"/> International preliminary examination fee paid to USPTO (37 CFR 1.482) but all claims did not satisfy provisions of PCT Article 33(1)-(4)	\$690.00
<input type="checkbox"/> International preliminary examination fee paid to USPTO (37 CFR 1.482) and all claims satisfied provisions of PCT Article 33(1)-(4)	\$100.00

ENTER APPROPRIATE BASIC FEE AMOUNT =

Surcharge of \$130.00 for furnishing the oath or declaration later than months from the earliest claimed priority date (37 CFR 1.492 (e)).

CLAIMS	NUMBER FILED	NUMBER EXTRA	RATE	
Total claims	12 - 20 =	0	x \$18.00	\$0.00
Independent claims	5 - 3 =	2	x \$80.00	\$160.00
Multiple Dependent Claims (check if applicable).				\$270.00
TOTAL OF ABOVE CALCULATIONS =				\$1,120.00
Reduction of 1/2 for filing by small entity, if applicable. Verified Small Entity Statement must also be filed (Note 37 CFR 1.9, 1.27, 1.28) (check if applicable).				<input type="checkbox"/> \$0.00
SUBTOTAL =				\$1,120.00
Processing fee of \$130.00 for furnishing the English translation later than months from the earliest claimed priority date (37 CFR 1.492 (f)).				<input type="checkbox"/> 20 <input type="checkbox"/> 30 + \$0.00
TOTAL NATIONAL FEE =				\$1,120.00
Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31) (check if applicable).				<input type="checkbox"/> \$0.00
TOTAL FEES ENCLOSED =				\$0.00
				Amount to be: refunded \$ charged \$

- A check in the amount of to cover the above fees is enclosed.
- Please charge my Deposit Account No. 14-1263 in the amount of \$1,120.00 to cover the above fees. A duplicate copy of this sheet is enclosed.
- The Commissioner is hereby authorized to charge any fees which may be required, or credit any overpayment to Deposit Account No. 14-1263 A duplicate copy of this sheet is enclosed.

NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status.

SEND ALL CORRESPONDENCE TO:

Kurt G. Briscoe
 Norris, McLaughlin & Marcus, P.A.
 220 East 42d Street
 30th Floor
 New York, New York 10017

 SIGNATURE
 Kurt G. Briscoe
 NAME
 33,141
 REGISTRATION NUMBER
 3 - 7 - 0 1
 DATE

GT/GCT Read 7 MAR 2001

PC1/EF99/00991

ATP binding cassette genes and proteins for diagnosis and treatment of lipid disorders and inflammatory diseases

Background of the invention

5

Reverse cholesterol transport mediated by HDL provides a "protective" mechanism for cell membrane integrity and foam cell formation and cellular cholesterol is taken up by circulating HDL or its precursor molecules. The precise mechanism of reverse cholesterol transport however is currently not fully understood and the mechanism of cellular cholesterol efflux and transfer from the cell surface to an acceptor-particle, such as HDL, is yet unclear. Certain candidate gene products have been postulated playing a role in the process of reverse cholesterol transport [1]. Apolipoproteins (e.g. ApoA-I, ApoA-IV), lipid transfer proteins (e.g. CETP, PLTP) and enzymes (e.g. LCAT, LPL, HL) are essential to exchange cholesterol and phospholipids in lipoprotein-lipoprotein and lipoprotein-cell interactions. Different plasma membrane receptors, such as SR-BI [2; 3], HB1/2 [4], and GPI-linked proteins (e.g. 120 kDa and 80 kDa) [5] as well as the sphingolipid rich microdomains (Caveolae, Rafts) of the plasma membrane have been implicated being involved in the process of reverse cholesterol transport and the exchange of phospholipids. How these membrane-microdomains are organized is in the current focus of interest for the identification of therapeutic targets. In recent studies SR-BI function as receptor for uptake of HDL into the liver and steroidogenic tissues could be demonstrated and the effectivity of this process is highly dependent on the phospholipid environment [2].

10

cellular cholesterol efflux and transfer from the cell surface to an acceptor-particle, such as HDL, is yet unclear. Certain candidate gene products have been postulated playing a role in the process of reverse cholesterol transport [1]. Apolipoproteins (e.g. ApoA-I, ApoA-IV), lipid transfer proteins (e.g. CETP, PLTP) and enzymes (e.g. LCAT, LPL, HL) are essential to exchange cholesterol and phospholipids in lipoprotein-lipoprotein and lipoprotein-cell interactions. Different plasma membrane receptors, such as SR-BI [2; 3], HB1/2 [4], and GPI-linked proteins (e.g. 120 kDa and 80 kDa) [5] as well as the sphingolipid rich microdomains (Caveolae, Rafts) of the plasma membrane have been implicated being involved in the process of reverse cholesterol transport and the exchange of phospholipids. How these membrane-microdomains are organized is in the current focus of interest for the identification of therapeutic targets. In recent studies SR-BI function as receptor for uptake of HDL into the liver and steroidogenic tissues could be demonstrated and the effectivity of this process is highly dependent on the phospholipid environment [2].

15

lipoprotein-lipoprotein and lipoprotein-cell interactions. Different plasma membrane receptors, such as SR-B1 [2; 3], HB1/2 [4], and GPI-linked proteins (e.g. 120 kDa and 80 kDa) [5] as well as the sphingolipid rich microdomains (Caveolae, Rafts) of the plasma membrane have been implicated being involved in the process of reverse cholesterol transport and the exchange of phospholipids. How these membrane-

20

microdomains are organized is in the current focus of interest for the identification of therapeutic targets. In recent studies SR-BI function as receptor for uptake of HDL into the liver and steroidogenic tissues could be demonstrated and the effectivity of this process is highly dependent on the phospholipid environment [2].

25

Cholesterol and phospholipid homeostasis in monocytes/macrophages and other cells involved in the atherosclerotic process is a critical determinant in atherosclerotic vessel disease. The phagocytic function of macrophages in host defense, tissue remodelling, uptake and lysosomal degradation of atherogenic lipoproteins and membrane fragments or other lipid containing particles has to be balanced by effective release mechanisms to avoid foam cell formation. HDL mediated reverse

cholesterol transport, supported by endogenous ApoE and CETP synthesis and secretion provides an effective mechanism to release excessive cholesterol from macrophages and other vascular cells.

- 5 Alternatively, reduced cholesterol and triglyceride/fatty acid absorption by intestinal mucosa cells as well as increased lipid secretion from hepatocytes into the bile will lower plasma lipids and the concentration of atherosclerotic lipoproteins.

Summary of the invention

10

New cholesterol responsive genes were identified with differential display method in human monocytes from peripheral blood that were subjected to macrophage differentiation and cholesterol loading with acetylated LDL and subsequent deloading with HDL₃.

15

- In an initial screen ABCG1 (ABC8), a member of the rapidly growing family of ABC (ATP-Binding Cassette) transport systems, that couple the energy of ATP hydrolysis to the translocation of solutes across biological membranes, was identified as a cholesterol sensitive switch. ABCG1 is upregulated by M-CSF dependent phagocytic differentiation but expression is massively induced by cholesterol loading and almost completely set back to differentiation dependent levels by HDL₃.

20

- In a more detailed analysis 37 already characterised ABC members and 8 Fragment - sequences (Table 2) were analysed in monocyte/macrophage cells by RT-PCR (linear range) for differentiation dependent changes and cholesterol sensitivity.

25

Among the 45 tested ABC-transporter genes 18 of the characterized ABC transporters and 2 of the Fragment -sequence based ABC-transporters are cholesterol sensitive (Example 4).

30

The cholesterol sensitive ABC-transporter are named according to the new ABC-

Y02250 "SE99B26D"

nomenclature and listed in Table 3 with the new and the old designations, respectively.

The most sensitive gene was ABCG1. ABCG1 is the human homologue of the drosophila white gene. Sequencing of the promoter of ABCG1 (Example 7) shows important transcription factor binding sites relevant for phagocytic differentiation and lipid sensitivity.

Antisense treatment of macrophages during cholesterol loading and HDL₁-mediated deloading clearly identified ABCG1 as a cholesterol transporter and the efflux of choline-containing phospholipids (phosphatidylcholine, sphingomyelin) was also modulated. Northern- and Western blot analysis provided further support that inhibition of cholesterol transport is associated with lower ABCG1 mRNA expression and ABCG1 protein levels (Example 5).

Considerable evidence was derived from energy transfer experiments (Example 3) that ABCG1 in the cell membrane is in a regulated functional cooperation (e.g. cell differentiation, activation, cholesterol loading and deloading) with other membrane receptors that have either transport- (e.g. LRP-LDL receptor related protein) or signalling- and adhesion-function (e.g. integrins, integrin associated proteins) which is also supported by sequence homology of extracellular domains as well as other parts of the ABCG1 sequence. For example the protein sequence of the region of the third extracellular loop of ABCG1, i.e. aminoacid residues 580 through 644, shares homology with fibronectin (aa 317-327), integrin β 5 (aa 538-547), RAP (aa 119-127), LRP (aa 2874-2894), apoB-100 precursor (aa 4328-4369), glutathion-S-transferase (aa 54-78) and glucose transporter (aa 371-380). Sequence comparison of all cholesterol sensitive transporters indicates this as a general principle of ABC transporter function and regulation.

Among the other cholesterol sensitive genes ABCA1 (ABC1) was further characterized. ABCA1 was identified in the mouse as an IL-1 β transporter

involved also in apoptotic cell processing. We show here, by RT-PCR (Table 2) and confirmation by Northern analysis, based on the newly detected human ABCA1 cDNA sequence (Example 6), that ABCA1 follows the same regulation as ABCG1.

5 Moreover, the ABCA1-knockout mice (ABCA1^{-/-}) show massively reduced levels of serum lipids and lipoproteins. The expression of ABCA1 in mucosa cells of the small intestine and the altered lipoprotein metabolism in ABCA1^{-/-} mice allows the conclusion that ABCA1 plays a major role in intestinal absorption and translocation of lipids into the lymph-system

10 Analysis of genetic defects that affect macrophage cholesterol homeostasis identified dysregulated ABCA1 as a gene locus involved in the HDL-deficiency syndrome (Tangier-Disease). This disease is associated with hypertriglyceridemia and splenomegaly.

15 Another as yet not described HDL-deficiency syndrome associated with early onset of coronary heart disease and psoriasis showed a dysregulation of the chromosome 17 associated ABC-sequences (ABCC4 (MRP3); ABCC3 (MRP3); ABCA5 (Fragment 90625); ABCA6 (Fragment 155051) :17q21-24). This points to an association with the predicted gene locus for psoriasis at chromosome 17.

20 A recently sequenced human ABC-transporter (ABCA8, Example 9) shows high homology to ABCA1 and also belongs to the group of cholesterol sensitive ABC-transporter.

25 ABCC5 (MRP5, sMRP) is a member of the MRP-subfamily among which ABCC2 (MRP2, cMOAT) was characterized as the hepatocyte canalicular membrane transporter that is involved in bilirubin glucuronide secretion [9] and identified as the gene locus for Dubin-Johnson Syndrome [10] a disorder associated with mild chronic conjugated hyperbilirubinemia.

102250-52998760

Furthermore, the identification of ABCA1 as a transporter for IL-1 β identifies this gene as a candidate gene for treatment of inflammatory diseases including rheumatoid arthritis and septic shock. The cytokine IL-1 β is a broadly acting proinflammatory mediator that has been implicated in the pathogenesis of these

5 diseases.

Moreover, we could demonstrate, that glyburide as an inhibitor of IL-1 β secretion inhibits not only Caspase I mediated processing of pro-IL-1 β and release of mature IL-1 β but simultaneously inhibits ceramide formation from sphingomyelin mediated by neutral sphingomyelinase and thereby releases human fibroblasts from G₁-phase cell cycle arrest. These data provide a further mechanism indicative for a function of ABCA1 in signalling and cellular lipid metabolism.

10 Autoimmune disorders that are associated with the antiphospholipid syndrome (e.g. lupus erythematoses) can be related to dysregulation of B-cell and T-cell function, aberrant antigen processing, or aberrations in the asymmetric distribution of membrane phospholipids. ABC-transporters are, besides their transport function, candidate genes for phospholipid translocases, floppases and scramblases that regulate phospholipid asymmetry (outer leaflet: PC+SPM; inner leaflet: PS+PE) of 15 biological membranes [11]. There is considerable evidence for a dysregulation of the analysed ABC-transporters in patient cells. We conclude that these ABC-cassettes 20 are also candidate genes for a genetic basis of antiphospholipid syndromes such as in Lupus erythematoses.

25 In summary, the ABC genes ABCG1, ABCA1 and the other cholesterol-sensitive ABC genes as specified herein, can be used for diagnostic and therapeutic applications as well as for biochemical or cell-based assays to screen for pharmacologically active compounds which can be used for treatment of lipid disorders, atherosclerosis or other inflammatory diseases. Thus it is an objective of 30 the present invention to provide assays to screen for pharmacologically active compounds which can be used for treatment of lipid disorders, atherosclerosis or

T022501-SE998260

other inflammatory diseases. Further the invention provides tools to identify modulators of these genes and gene products. These modulators can be used for the treatment of lipid disorders, atherosclerosis or other inflammatory diseases or for the preparation of medicaments for treatment of lipid disorders, atherosclerosis or other inflammatory diseases. The medicaments comprise besides the modulator acceptable and usefull pharmaceutical carriers.

Abbreviations

aa	Amino acid
ABC	ATP-binding cassette
ABCA#	ATP-binding cassette, sub-family A (ABC1), member #
ABCB#	ATP-binding cassette, sub-family B (MDR/TAP), member #
ABCC#	ATP-binding cassette, sub-family C (CFTR/MRP), member #
ABCD#	ATP-binding cassette, sub-family D (ALD), member #
ABCE#	ATP-binding cassette, sub-family E (OABP), member #
ABCF#	ATP-binding cassette, sub-family F (GCN20), member #
ABCG#	ATP-binding cassette, sub-family G (WHITE), member #
ABCR	Homo sapiens rim ABC transporter
AcLDL	Acetylated LDL
ADP1	ATP-dependent permease
ALDP	Adrenoleukodystrophy protein
ALDR	Adrenoleukodystrophy related protein
ApoA	Apolipoprotein A
ApoE	Apolipoprotein E
ARA	Anthracycline resistance associated protein
AS	Antisense
ATP	Adenosine triphosphate
CETP	Cholesteryl ester transfer protein
CFTR	Cystic fibrosis transmembrane conductance regulator
CGT	ceramide glucosyl transferase
CH	Cholesterol
cMOAT	Canalicular multispecific organic anion transporter
dsRNA	Double stranded RNA
Fragment	Gen Fragment
FABP	plasma membrane fatty acid binding protein

FACS	Fluorescence activated cell sorter
FATP	intracellular fatty acid binding protein
FCS	foetal calf serum
FFA	free fatty acids
GAPDH	Glyceraldehyde-3-phosphate dehydrogenase
GCN20	protein kinase that phosphorylates the alpha-subunit of translation initiation factor 2
GPI	Glycosylphosphatidylinositol
HaCaT	keratinocytic cell line
HDL	High density lipoprotein
HL	Hepatic lipase
HlyB	haemolysin translocator protein B
HMT1	yeast heavy metal tolerance protein
HPTLC	High performance thin layer chromatography
IL	Interleukin
LCAT	Lecithin:cholesterol acyltransferase
LDL	Low density lipoprotein
LPL	Lipoprotein lipase
LRP	LDL receptor related protein
MDR	Multidrug resistance
MRP	Multidrug resistance-associated protein
PC	Phosphatidylcholine
PE	Phosphatidylethanolamin
PL	Phospholipid
PLTP	Phospholipid transferprotein
PMP	peroxisomal membrane protein
PS	Phosphatidylserine
RNA	Ribonucleic acid
RT-PCR	Reverse transcription – polymerase chain reaction
SDS	Sodium dodecyl sulfate

SL	Sphingolipid
sMRP	Small form of MRP
SPM	Sphingomyelin
SR-BI	Scavenger receptor BI
SUR	Sulfonylurea receptor
TAP	Antigen peptide transporter
TG	Triglycerides
TSAP	TNF-alpha stimulated ABC protein
UTR	untranslated region

References cited

1. FIELDING CJ, FIELDING PE: Molecular physiology of reverse cholesterol transport. *J.Lipid Res.* 1995, 36:211-228.
- 5 2. JI Y, JIAN B, WANG N, SUN Y, MOYA ML, PHILLIPS MC, ROTHBLAT GH, SWANEY JB, TALL AR: Scavenger receptor BI promotes high density lipoprotein-mediated cellular cholesterol efflux. *J.Biol.Chem.* 1997, 272:20982-20985.
- 10 3. JIAN B, DE LA LLERA-MOYA M, JI Y, WANG N, PHILLIPS MC, SWANEY JB, TALL AR, ROTHBLAT GH: Scavenger receptor class B type I as a mediator of cellular cholesterol efflux to lipoproteins and phospholipid acceptors. *J.Biol.Chem.* 1998, 273:5599-5606.
- 15 4. MATSUMOTO A, MITCHELL A, KURATA H, PYLE L, KONDO K, ITAKURA H, FIDGE N: Cloning and characterization of HB2, a candidate high density lipoprotein receptor. Sequence homology with members of the immunoglobulin superfamily of membrane proteins. *J.Biol.Chem.* 1997, 272:16778-16782.
- 20 5. NION S, BRIAND O, LESTAVEL S, TORPIER G, NAZIH F, DELBART C, FRUCHART JC, CLAVEY V: High-density-lipoprotein subfraction 3 interaction with glycosylphosphatidylinositol-anchored proteins. *Biochem.J.* 1997, 328:415-423.
6. CROOP JM, TILLER GE, FLETCHER JA, LUX ML, RAAB E, GOLDENSON D, SON D, ARGINIEGAS S, WU RL: Isolation and characterization of a mammalian homolog of the *Drosophila* white gene. *Gene* 1997, 185:77-85.
- 25 7. CHEN H, ROSSIER C, LALIOTI MD, LYNN A, CHAKRAVARTI A, PERRIN G, ANTONARAKIS SE: Cloning of the cDNA for a human homologue of the *Drosophila* white gene and mapping to chromosome 21q22.3. *Am J Hum Genet* 1996, 59:66-75.

8. SAVARY S, DENIZOT F, LUCIANI M, MATTEI M, CHIMINI G: Molecular cloning of a mammalian ABC transporter homologous to *Drosophila* white gene. *Mamm Genome* 1996, 7:673-676.
- 5 9. ELFERINK RP, TYTGAT GN, GROEN AK: Hepatic canalicular membrane 1: The role of mdr2 P-glycoprotein in hepatobiliary lipid transport. *FASEB J.* 1997, 11:19-28.
- 10 10. WADA M, TOH S, TANIGUCHI K, NAKAMURA T, UCHIUMI T, KOHNO K, YOSHIDA I, KIMURA A, SAKISAKA S, ADACHI Y, KUWANO M: Mutations in the canilicular multispecific organic anion transporter (cMOAT) gene, a novel ABC transporter, in patients with hyperbilirubinemia II/Dubin-Johnson syndrome. *Hum Mol Genet* 1998, 7:203-207.
- 15 11. ZWAAL R.F., SCHROIT AJ: Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. *Blood* 1997, 89:1121-1132.
12. FRUH K, AHN K, DJABALLAH H, SEMPE P, VAN ENDERT PM, TAMPE R, PETERSON PA, YANG Y: A viral inhibitor of peptide transporters for antigen presentation. *Nature* 1995, 375:415-418.
- 20 13. ALLIKMETS R, GERRARD B, HUTCHINSON A, DEAN M: Characterization of the human ABC superfamily: isolation and mapping of 21 new genes using the expressed sequence tags database. *Hum Mol Genet* 1996, 5:1649-1655.
14. SENIOR AE, GADSBY DC: ATP hydrolysis cycles and mechanism in P-glycoprotein and ABCC7 (CFTR) [In Process Citation]. *Semin.Cancer Biol.* 1997, 8:143-150.
- 25 15. HIGGINS CF: ABC transporters: from microorganisms to man. *Annu.Rev.Cell Biol.* 1992, 8:67-113:67-113.
16. DEAN M, ALLIKMETS R: Evolution of ATP-binding cassette transporter genes. *Curr.Opin.Genet.Dev.* 1995, 5:779-785.
17. GOTTESMAN MM, PASTAN I: Biochemistry of multidrug resistance mediated by the multidrug transporter. *Annu.Rev.Biochem.* 1993, 62:385-427:385-427.

18. MOSSER J, LUTZ Y, STOECKEL ME, SARDE CO, KRETZ C, DOUAR
AM, LOPEZ J, AUBOURG P, MANDEL JL: The gene responsible for
adrenoleukodystrophy encodes a peroxisomal membrane protein. *Hum.
Mol.Genet.* 1994, 3:265-271.
- 5 19. BASU SK, GOLDSTEIN JL, BROWN MS: Characterization of the low
density lipoprotein receptor in membranes prepared from human fibroblasts.
J Biol Chem 1978, 253:3852-3856.
- 10 20. LIANG P, PARDEE AB: Differential display of eukaryotic messenger RNA
by means of the polymerase chain reaction [see comments]. *Science* 1992,
257:967-971.
- 15 21. PIETZSCH A, BÜCHLER C, ASLANIDIS C, SCHMITZ G: Identification
and characterization of a novel monocyte/macrophage differentiation-depen-
dent gene that is responsive to lipopolysaccharide, ceramide, and lysophos-
phatidylcholine. *Biochem Biophys Res Commun* 1997, 235:4-9.
- 20 22. LOHMANN J, SCHICKLE H, BOSCH TC: REN display, a rapid and
efficient method for nonradioactive differential display and mRNA isolation.
Biotechniques 1995, 18:200-202.
23. VIRCA GD, NORTHEMANN W, SHIELS BR, WIDERÄ G, BROOME S:
Simplified northern blot hybridization using 5% sodium dodecyl sulfate.
Biotechniques 1990, 8:370-371.
24. CHIRGWIN JM, PRZYBYLA AE, MACDONALD RJ, RUTTER WJ:
Isolation of biologically active ribonucleic acid from sources enriched in
ribonuclease. *Biochemistry* 1979, 18:5294-5299.
25. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. Protein
meaABCC8 (SUR)ement with the folin phenol reagent. *J Biol Chem* 193,
265-275. 1951. (GENERIC) Ref Type: Generic
26. BLIGH EG, DYER WJ: A rapid method of total lipid extraction and
purification. *Can J Biochem Phys* 1959, 37:911-917.

27. ROGLER G, TRÜMBACH B, KLIMA B, LACKNER KJ, SCHMITZ G: HDL-mediated efflux of intracellular cholesterol is impaired in fibroblasts from Tangier disease patients. *Arterioscler Thromb Vasc Biol* 1995, 15:683-690.

4002256 * 56998760

Description of the Figures

Figures 1 to 5 are showing nucleotide and protein sequences described in this application. The sequences are repeated in the sequence listing.

5

Description of Tables:**Table 1:**

Levels of RNA transcripts of ABCG1 (ABC8), ABCA1 (ABC1) and ABCA8 in human tissues were determined by Northern blot analysis of a multiple tissue dot-blot (Human RNA MasterBlot, Clontech Laboratories, Inc., CA, USA). The relative amount of expression is indicated by different numbers of filled circles.

Table 2:

The expression pattern of ABC-transporters in monocytes, monocyte derived macrophages (3 days cultivated monocytes in serum free Macrophage-SFM medium containing 50 ng/ml M-CSF), AcLDL incubated monocytes (3 days with 100 µg/ml) followed by HDL₃ (100 µg/ml) incubated monocytes is shown. Expressed genes are tested for cholesterol sensitivity by semiquantitative PCR.

For known ABC-Transporter the chromosomal location and the transported molecules are also presented.

Table 3:

Disorders, that are associated with ABC-transporters are shown. The chromosomal location is indicated and the relevant accession number in OMIN (Online Mendelian Inheritance in Man).

Table 4:

Expression of ABC-Transporters in HaCaT keratinocytic cells during differentiation

30

T002250-055-0998/60

Table 1

<i>Tissue</i>	ABCG1 (ABC8)	ABCA1 (ABC1)
Adrenal gland	•••••	•••
Thymus	••••	••
Lung	••••	•••
Heart	•••	••
Skeletal	••	•
Brain	•••	••
Spleen	•••••	••
Lymphnode	•••	•
Pancreas	•	•
Placenta	•••••	•••••
Colon	••	•
Small intestine	••	•••••
Prostate	••	•
Testis	•	•
Ovary	••	•
Uterus	•	••
Mammary gland	••	•
Thyroid gland	••	••
Kidney	••	•
Liver	•••	•••
Bone marrow	•	•
Peripheral leukocytes	•	•
<i>Fetal tissue</i>		
Fetal brain	•	••
Fetal liver	•	••••
Fetal spleen	••	•••
Fetal thymus	••	••
Fetal lung	••	•••

Table 2: Cholesterol dependent gene regulation of human ABC transporters

Gene	chromosomal localization	peripheral blood monocytes	3 days old M-CSF MØ	cholesterol loading (acLDL)	cholesterol deloading (HDL3)	transported molecules
ABCG1 (ABC8)	21q22.3	+	↑	↑↑	↓↓	cholesterol / choline PL
ABCA1 (ABC1)	9q22-31	+	↑	↑↑	↓↓	cholesterol / IL-1Ø
ABCC5 (MRP5)	3q25-27	+	↑	↑↑	↓	
ABCD1 (ALDP, ALD)	Xq28	+	↑	↑	↓	very long chain fatty acids
ABCA5 (est90625)	17q21-25	+	↑	↑	↓	
ABCB11 (BSEP, SPGP)	2q24	+	↑	↑↑	↓	bile acids
ABCA8 (ABC-new)		+	+	↑	↓	
ABCC2 (MRP2)	10q23-24	+	+	↑	↓	bilirubin glucuronide
ABCB6 (est45597)	2q33-36	+	+	↑	↓	
ABCC1 (MRP1)	16p13.12	+	↓	↑	↓	eicosanoids
ABCA3 (ABC3)	16p13.3	+	↑	↑	nr	
est1133530		+	↑	↑	nr	
ABCB4 (MDR3)	7q21	+	↑	↓	↑	phosphatidylcholine
ABCG2 (est157481, ABCP)	4q22-23	+	↑	↓	↑	
ABCC4 (MRP4)	13q31	+	↑	↓	↑	
ABCB9 (est122234)	12q24	+	↑	↓	↑	
ABCD2 (ALDR)	12q11	+	↓	↓	↑	very long chain fatty acids
ABCB1 (MDR1)	7q21	+	+	↓	↑	phospholipids, amphiphiles
ABCA6 (est155051)	17q21	+	↑	↓	nr	
est640918		+	↑	↓	nr	
ABCD4 (P70R)	14q24.3	+	↑	nr	nr	
ABCA2 (ABC2)	9q34	+	↑	nr	nr	
ABCF2 (est133090)	7q35-36	+	↑	nr	nr	
ABCB7 (ABC7)	Xq13.1-3	+	↑	nr	nr	iron
ABCF1 (ABC50, TSAP)	6p21.33	+	↑	nr	nr	
ABCC6 (MRP6)	16p13.11	+	↓	nr	nr	
ABCB5 (est422562)	7p14	+	↓	nr	nr	
ABCC3 (MRP3)	17q11-21	+	nr	nr	nr	
ABCA4 (ABCR)	1p22	+	nr	nr	nr	retinoids, lipofuscin
ABCB2 (TAP1)	6p21.3	+	nr	nr	nr	peptides
ABCB3 (TAP2)	6p21.3	+	nr	nr	nr	peptides

Gene	chromosomal localization	peripheral blood monocytes	3 days old M-CSF MØ	cholesterol loading (acLDL)	cholesterol deloading (HDL3)	transported molecules
ABCF3 (est201864)	3q25.1-2	+	nr	nr	nr	
ABCB8 (est328128)	7q35-36	+	↑	nr	nr	
ABCE1 (OABP)	4q31	+	↑	nr	nr	
ABCB10 (est20237)	1q32	+	↑	nr	nr	
est698739		+	↑	nr	nr	
ABCC10 (est182763)	6p21	+	nr	nr	nr	
ABCC7 (CFTR)	7q31	∅	∅	∅	∅	ions
ABCC8 (SUR-1)	11p15.1	∅	∅	∅	∅	
ABCD3 (PMP70)	1p21-22	∅	∅	∅	∅	
Huwhitc2		∅	∅	∅	∅	
est1125168		∅	∅	∅	∅	
est1203215		∅	∅	∅	∅	
est168043		∅	∅	∅	∅	
est990006		∅	∅	∅	∅	

+ = expressed

∅ = not expressed

nr=not regulated

↑ = upregulated

↓= downregulated

half (hs) or full size (fs) transporter as deduced from the mRNA size

Table 3

<i>Disorders</i>	<i>Genomic location</i>	<i>Associated gene</i>	<i>OMIM-acc.nr.</i>
<i>Metabolic disorders:</i>			
Cystic fibrosis	7q31.3	ABCC7 (CFTR)	219700
Dubin Johnson syndrome (mild chronic conjugated hyperbilirubinemia)	10q24	ABCC2 (CMOAT)	237500
Progressive familial intrahepatic cholestasis type III (PIFC3)	7q21.1	ABCB4 (MDR3)	602347
<i>Byler disease (PFIC2)</i>	<i>2q24</i>	<i>ABCB11 (BSEP, sPGP)</i>	<i>601847</i>
Familial persistent hyperinsulinemic hypoglycemia	11p15.1	ABCC8 (SUR-1)	601820
IDDM	6p21.3	ABCB2 (TAP1)/ABCB3 (TAP2)	222100
<i>Neuronal disorders:</i>			
Adrenoleukodystrophy	12q11	ABCD2 (ALDR)	300100
Zellweger's syndrome	1p22-21	ABCD3 (PMP70)	214100
Multiple Sclerosis	6p21.3	ABCB2 (TAP1)/ABCB3 (TAP2)	126200
X-linked Sideroblastic anemia with spinocerebellar ataxia	Xq13.1-3	ABCB7 (ABC7)	301310
Menkes disease (altered homeostasis of metals)	Xq13	ABCB7 (ABC7)	309400
<i>Immune/Hemostats disorders:</i>			
Herpes simplex virus infection [12]	6p21.3	ABCB2 (TAP1)/ABCB3 (TAP2)	
Behcet's syndrome	6p21.3	ABCB2 (TAP1)/ABCB3 (TAP2)	109650
Bare lymphocyte syndrome type I	6p21.3	ABCB2 (TAP1)/ABCB3 (TAP2)	209920
Scott syndrome	7q21.1	ABCB1 (MDR1)	262890
<i>Retinal dystrophies:</i>			
Fundus flavimaculatus with macular dystrophy	1p13-21	ABCA4 (ABCR)	601691
Juvenile Stargardt disease	1p13-21	ABCA4 (ABCR)	248200
Age-related macular degeneration	1p13-21	ABCA4 (ABCR)	153800
Cone-rod dystrophy	1p13-21	ABCA4 (ABCR)	600110
Retinitis pigmentosa	1p13-21	ABCA4 (ABCR)	601718

<i>Diseases with evidence for involvement of ATP cassettes/translocases and floppases[80]</i>	<i>Assumed gene</i>		
BRIC (Benign recurrent intrahepatic obstructive jaundice)	18	Assumed	243300
Psoriasis	17q11-12 17q21-24	ABCA5 (Fragment 90625) ABCC3 (MRP3)	602723 177900 601454
Lupus erythematoses – Antiphospholipid Syndrome		Translocase Flippase	152700
PFIC (Prog. Fatal familial intrahepatic cholestasis)	PFIC1	18q21-22	ATP Transporters
<i>Neurological disorders mapped to gene locus of ABCG1 (ABC8)</i>			
Autosomal bipolar affective disorder	21q22.3	ABCG1 (ABC8)	125480
Autosomal recessive non-syndromic deafness	21q22.3	ABCG1 (ABC8)	601072
Down Syndrome (ABC-8 may be a candidate for the Brushfield spots – mottled, marble or speckled irides frequently seen in Down-Syndrome)	21q22.3	ABCG1 (ABC8)	190685
Linkage to phosphofructokinase (liver type)	21q22		171860
<i>HDL-deficiency syndromes,</i> Gen responsible for Tangier Disease	9q31	ABCA1 (ABC1)	205400

T02250 * 52998760

Table 4: Expression of ABC-Transporters in HaCaT keratinocytic cells during differentiation

Gene	chrom. localisation	initial expression	differentiation dependent expression	known or putative molecules transported
ABCG1 (ABC8)	21 q22.3	+++++	↑	cholesterol choline-PL
ABCC3 (MRP3)	17 q11-q12	+++++	↑	
ABCA8	19 p13	+++++	↑	
ABCC1 (MRP1)	16 p13	+++++	↗ ↘ (max. day 2)	PGA ₂ , LTC ₄ DNP-SG
ABCD4 (PMP69, P70R)	14 q24	+++++	↗ ↘ (max. day 2.4)	
ABCC2 (MRP2)	10 q24	+++	↗ ↘ (max. day 2)	bilirubin glucuronide
ABCA3 (ABC3)	16 p13	+	↗ ↘ (max. day 4.6)	
ABCA5 (ABCR)	1 p21	+	↗ ↘ (max. day 4)	retinoid, lipofuscin
ABCA1 (ABC1)	9 q22-q31	+	↗ ↘ (max. day 6)	
ABCC6 (MRP6)	16 p13.11	+	↗ ↘ (max. day 4)	
ABCC4 (MRP4)	13 q31	++++	↗ ↘ (max. day 2.4)	
ABCA2	9 q34	++++	↗ ↘ (max. day 6)	
ABCC5 (MRP5, SMRP)	3 q27	+++++	↗ ↘ (max. day 2.4)	

ABCB6 (est45597)	2	+++++	↗ ↘ (max. day 2,4)	
ABCB7 (ABC7)	X q13.1-3	+++++	↗ ↘ (max. day 4)	irons
TAP1 (ABCB1)	6 p21.3	+++++	↗ ↘ (max. day 4,6)	peptides
TAP2 (ABCB2)	6 p21.3	+++++	↗ ↘ (max. day 2,4)	
ABCB8 (est328128)	7 q35-36	+++++	↗ ↘ (max. day 2)	
EST640918	17 q24	+	↗ ↘ (max day 4)	
ABCC7 (CFTR)	7 q31	+++	↗ ↘ (max day 4)	
ABCB10 (est20237)	1 q32	+++	↗ ↘ (max. day 2)	
ABCF1 (TSAP)	6 p21.33	+++++	↓	
ABCC10 (est182763)	1 q32	+++++	↓	
ABCE1 (OABP)	4 q31	+++++	↓	
EST698739	17 q24	+++++	↓	
ABCF2 (est133090)	7 q35-q36	+++++	↓	
ALD (ABCD1,ALDP)	X q28	++++)	↓	VLCFA
ABCA5 (est90625)	17 q21-q24	+++	↓	
ABCB5 (est422562)	7 p14	++++	↓	
ABCB9 (est122234)	12 q24-qter	++	↓	
ABCD2 (ALDR)	12 q11	+	↓	VLCFA
ABCF3 (est201864)	3 q25.1-2	+++++	↓	
ABCG2 (ABC15,ABCP)	4 q22-q23	++++	↓	
EST1133530	4 p16pter	+++++	↓	

Huwhite	11 q23	+++++	↓	
ABCA6 (est155051)	17 q21	++	↓	
BSEP (ABCB11,SPGP)	2 q24	+	↓↑ (max day 6)	
ABCB4 (MDR3)	7 q21	not expressed		phosphatidyl-choline
ABCD3 (PMP70)	1 p22	not expressed		
ABCB1 (MDR1)	7 q21	not expressed		phospholipids amphiphiles
EST168043	2 p15-16	not expressed		
EST990006	17 q24	not expressed		
ABCC8(SUR1)	11 p15.1	not expressed		

+ relative expression n.d. not determined

↑: upregulated ↓: downregulated ↗↘: biphasic expression

Description of specific embodiments**Candidate gene identification during cholesterol loading and deloading of human monocyte derived macrophages**

5

In order to discover genes that are involved in the cholesterol loading and/or deloading in vitro assays were set up. Particularly, gene expression in human blood derived monocytes and macrophages elicited by cholesterol and its physiological transport formulation, i.e. various low density lipoprotein (LDL) particle species like AcLDL, was studied.

10

Elutriated human monocytes were cultivated in M-CSF containing but serum free macrophage medium supplemented with AcLDL (100 µg protein/ml medium) for three days, followed by cholesterol depletion replacing AcLDL by HDL₃ (100 µg protein/ml medium) for twelve hours. Differential display screening for new candidate genes, regulated by cholesterol loading/deloading, was performed (Example 1).

Identification of a new cholesterol sensitive gene

20

ABCG1 (ABC8) was discovered as a novel cholesterol sensitive gene. ABCG1 belongs to the ATP binding cassette (ABC) transporter gene family. ABCG1 was recently published as the human analogue of the drosophila white gene [6-8].

25

The gene is strongly upregulated by AcLDL-mediated cholesterol loading, and almost completely downregulated by HDL₃ mediated-cholesterol deloading, as confirmed by Northern blot (Example 2). Northern blot analysis of mRNA from human monocyte-derived macrophages obtained from the peripheral blood probands clearly show upregulation of ABCG1 mRNA formation upon AcLDL incubation. In sharp contrast, ABCG1 mRNA expression was decreased in such macrophages upon incubation with HDL₃ containing medium.

00250-3299260

ABCG1 expression in cholesterol loaded and deloaded cells after four days pre-differentiation

- 5 For effective cholesterol loading monocytes must be differentiated to phagocytic-macrophage like cells. During this period scavenger receptors are upregulated and promote AcLDL uptake leading to cholestryl ester accumulation. After four days preincubation period we have incubated the cells for one, two and three days with AcLDL (100 µg/ml) to show cholestryl ester accumulation. After two days of loading we deloaded the cells with HDL₃ for 12 hours, 24 hours and 48 hours, respectively. ABCG1 is time dependently upregulated during the AcLDL loading period and downregulated by HDL₃ deloading (Examples 2 and 3) In order to confirm time dependent increase of ABCG1 mRNA expression after AcLDL challenge in human monocyte derived macrophages, Nothern blot analyses for ABCG1 mRNA quantification were made, RNA samples from the macrophages were harvested at day zero and day four as controls and mRNA samples were taken one, two, and three days after AcLDL treatment of macrophages. which started at day four. A dramatic increase of ABCG1 mRNA content of the macrophages could be detected from day five through day seven by Nothern blot analyses.
- 10
- 15
- 20 This regulation shows the same pattern as changes of cellular cholestryl ester content (Example3). Cholesterol ester accumulation starts in monocyte-derived macrophages upon AcLDL stimulation from a base level below 5 nmol/mg cell protein at day four up to 120 nmol/mg cell protein at day seven (i.e. three days after AcLDL application).
- 25

Tissue expression

- 30 Besides cholesterol loaded macrophages ABCG1 is prominently expressed in brain, spleen, lung, placenta, adrenal gland, thymus and fetal tissues (Table 1).

Chromosomal location and associated genes and diseases

The ABCG1 gene maps to human chromosome 21q 22.3. Also localized in this region 21q 22.3 are the following genes: integrin β 2 (CD18), brain specific polypeptide 19, down syndrome cell adhesion molecule, dsRNA specific adenosine deaminase, cystathionine β synthase, collagen VI alpha-2, collagen XVIII alpha-1, autosomal recessive deafness, and amyloid beta precursor.

This chromosomal region is in close proximity to other regions involved in Down syndrome, autosomal dominant bipolar affective disorder, and autosomal recessive non-syndromic deafness.

Extracellular loop of ABCG1 (ABC8) for antibody generation

The putative structure of the hydrophobic transmembrane region of ABCG1 shows 6 transmembrane spanning domains, and 3 extracellular loops, two of them are 9- and 8-amino acids-long, respectively, while the third one is 66-amino acids-long.

The larger one of the two intracellular loops consists of 30 amino acids. Similarity-survey in protein databases for homologies the 3rd extracellular loop (IIIex) with other genes resulted in the identification of fibronectin, integrin β 5, RAP, LRP (LDL receptor related protein) apo-lipoprotein B 100 precursor protein, glutathion S-transferase and glucose transporter.

A polyclonal antiserum was generated against the 3rd extracellular loop (IIIex) of ABCG1 in order to perform flow cytometric analysis, energy transfer experiments and Western-blotting (see Example 3). In the amino acid sequence of ABCG1 the 3rd extracellular loop (IIIex) comprises 66 amino acids comprises 66 amino acids from amino acid 580 through 644. The peptide fragment for antibody generation comprises the amino acid residues 613 through 628 of ABCG1 polypeptide. ABCG1 obviously interacts with endogenous sequence motifs with other membrane receptors

involved in transport (e.g. LRP, RAP), signalling and adhesion (e.g. integrins, integrin associated proteins) as a basis of ABCG1-function and regulation. Moreover sequence comparisons of all ABC-transporters listed in Table 3 indicates functional cooperation with other membrane receptors as a general principle of the whole gene family.

Subfamily-Analysis

Evolutionary relationship studies with the whole ABC transporter family have shown that ABCG1 (ABC8) forms a subfamily together ABCG2 (est157481) and this subfamily is closely related to the full-size transporters ABCA1 (ABC1), ABCA2 (ABC2), ABCA3 (ABC3), ABCA4 (ABCR) and the half-size transporter ABCF1 (TSAP).

Recent studies by Allikmets et al. have identified 21 new genes as ABC transporters by expressed sequence tags database search [13].

General description of the ABC transporter family

The ATP-binding cassette (ABC) transporter superfamily contains some of the most functionally diverse proteins known. Most of the members of the ABC family (also called traffic ATP-ases) function as ATP-dependent active transporters (Table 3). The typical functional unit consists of a pair of ATP-binding domains and a set of transmembrane (TM) domains. The TM-domains determine the specificity for the type of molecule transported, and the ATP-binding domains provide the energy to move the molecule through the membrane [14; 15]. The variety of substrates handled by different ABC-transporters is enormous and ranges from ions to peptides. Specific transporters are found for nutrients, endogenous toxins, xenobiotics, peptides, aminoacids, sugars, organic/inorganic ions, vitamins, steroid hormones and drugs [16; 17].

102250-5E998Z60

ABC-transporter associated diseases

The search for human disease genes (Table 3) provided a number of previously undiscovered ABC proteins [16]. The best characterized disease caused by a mutation in an ABC transporter is cystic fibrosis (ABCC7 (CFTR)). Inherited disorders of peroxisomal metabolism as Adrenoleukodystrophy and Zellweger's syndrome also show alterations in ABC transporters. They are involved in peroxisomal beta-oxidation, necessary for very long chain fatty acid metabolism [18].

10 Antisense against ABCG1 inhibits cholesterol efflux to HDL₃

Since ABCG1 is a cholesterol sensitive gene and other ABC transporters are known to be involved in certain lipid transport processes, the question arises whether ABCG1 plays a role in transport of cholesterol, phospholipids, fatty acids or glycerols. Therefore antisense experiments were performed to test the influence of ABCG1 on lipid loading and deloading. The inhibition of ABCG1 with specific antisense oligonucleotides decreased the efflux of cholesterol and phosphatidyl-choline to HDL₃. (Example 5)

20 Other cholesterol sensitive ABC transporter

Cloning and sequencing of the human ABCA1 (ABC1) provided the information to characterize ABCA1 for cholesterol sensitivity, and tissue distribution (Example 6). Another cholesterol sensitive human ABC transporter (ABCA8) has been cloned and sequenced (Example 8)

Characterization of the ABCG1 promoter region

The ABCG1 promoter has the characteristic binding sites for transcription factors that are involved in the differentiation of monocytes into phagocytic macrophages. The cholesterol sensitivity of the expression of ABCG1 is represented by the transcription factor pattern that is relevant for phagocytic differentiation (Example 7).

002250 "5C998760

Examples**Example 1**5 **Identification of cholesterol loading and deloading candidate genes****Monocyte isolation and cell culture**

Monocytes were obtained from peripheral blood of healthy normolipidemic volunteers by leukapheresis and purified by counterflow elutriation. Purity of

10 isolated monocytes was >95% as revealed by FACS analysis. 10x10⁶ monocytes were seeded into 100 mm² diameters cell culture dishes under serum free conditions in macrophage medium for 12 hours in a humidified 37°C incubator maintained with a 5% CO₂, 95% air atmosphere. After 12 hours medium containing unattached cells was replaced by fresh macrophage medium supplemented with 50 ng/ml human
15 recombinant M-CSF (this medium is the standard medium for any further incubations).

Isolation of lipoproteins and preparation of AcLDL

Lipoproteins were prepared from human plasma from healthy volunteer donors by
20 standard sequential ultracentrifugation methods in a Beckman L-70 ultracentrifuge equipped with a 70 Ti rotor at 4°C to obtain LDL (d=1,006 to 1,063 g/ml) and HDL₃ (d=1,125 to 1,21 g/ml). All densities were adjusted with solid KBr. Lipoprotein fractions are extensively dialyzed with phosphate-buffered saline (PBS) containing 5 mM EDTA. The final dialysis step was in 0,15 mol/L NaCl in the absence of EDTA.
25 Lipoproteins were made sterile by filtration through a 0.45 µm (pore-size) sterile filter (Sartorius).

LDL was acetylated by repeated addition of acetic anhydride followed by dialysis against PBS [19]. Modified LDL showed enhanced mobility on agarose gel electrophoresis.

1322500-5E993269

Incubation of monocyte-macrophages with AcLDL and HDL₃

After 12 hours of preincubation cells were grown in the presence or absence (control) of 100 µg protein /ml AcLDL for further 3 day in medium. Then, the incubation medium was replaced with fresh medium and incubated with or without the addition of HDL₃ (100 µg/ml) for another 12 hours.

Differential display

Differential display screening was performed for new candidate genes that are regulated by cholesterol loading/deloading as described [20; 21]. In brief, 0,2 µg of total RNA isolated from monocytes at various incubations was reverse transcribed with specific anchored oligo-dT primers, using a commercially available kit (GeneAmp RNA PCR Core Kit, Perkin Elmer, Germany). The oligo-dT primers used had two additional nucleotides at their 3' end consisting of an invariable A at the second last position (3'-end) and A, C, G or T at the last position to allow a subset of mRNAs to be reverse transcribed. Here, a 13-mer oligo-dT (T101: 5'T11AG-2') was used in a 20-µl reaction at 2,5 µM concentration. One tenth of the cDNA was amplified in a 20-µl PCR reaction using the same oligo-dT and an arbitrary 10-mer upstream primer (D20 5'-GATCAATCGC-3'), 2,5 µM each, using 2,5 units of TAQ DNA Polymerase and 1.25 mM MgCl₂. Amplification was for 40 cycles with denaturation at 94°C for 30 sec, annealing at 41°C for 1 min and elongation at 72°C for 30 sec with a 5 min extension at 72°C following the last cycle. All PCR reactions were carried out in a Perkin Elmer 9600 thermocycler (Perkin Elmer, Germany). PCR-products were separated on ready to use 10% polyacrylamide gels with a 5% stacking gel (CleanGel Large-10/40 ETC, Germany) under non-denaturating conditions using the Multiphor II electrophoresis apparatus (Pharmacia, Germany). The DNA fragments were visualized by silverstaining of the gel as previously described [22].

T02250 "SE998260

Cloning and sequencing of differentially expressed cDNAs

cDNA bands of interest were cut out of the gel and DNA was isolated by boiling the gel slice for 10 min in 20 µl of water. A 4 µl aliquot was used for the following PCR-reaction in a 20µl volume. The cDNA was reamplified using the same primer set and PCR conditions as above, except, that the final dNTP concentration was 1mM each. Reamplified cDNAs were cloned in the pUC18-vector using ABCC8 (SUR)eClone-Kit (Pharmacia), sequenced on an automated fluorescence DNA sequencer using the AutoRead Sequencing Kit (Pharmacia, Germany) and used as probes for Northern blot analysis [23].

10

Example 2**Northern Blot analyses of monocytes and macrophages after 3 days AcLDL incubation followed by 12 hours HDL₃ incubation**

Elutriated monocytes were incubated with AcLDL (100 µg/ml medium) for 2.5 days or differentiated for the same time without the addition of AcLDL as control. ABCG1 (ABC8) expression is 4 times stronger upregulated with AcLDL incubation than in differentiated monocytes .After the AcLDL incubation period cells were washed and incubated with HDL₃ for the next 12 hours or with medium alone as control. ABCG1 expression is almost completely downregulated by HDL3 incubation and only moderately decreased in control incubation as confirmed by Northern blot. For effective cholesterol loading monocytes must be differentiated to macrophage like cells. During this period scavenger receptors are upregulated and promote AcLDL uptake leading to cholesterol ester accumulation. To differentiated the cells prior to AcLDL-dependent cholesterol loading, we cultured the cells for four days in standard medium. At day four, cells were washed and incubated with AcLDL (100µg/ml medium) or in the absence of AcLDL as control for further one, two and three days to load the cells with cholesterol. At each timepoint cells were lysed with 0.1 % SDS and lipid was extracted as described in materials and methods and cellular cholesterol ester was determined by HPTLC-separation. Cells were loaded time

T022503-5C998Z60

dependently up to 120 nmol/mg cell protein after 3 days AcLDL loading, whereas in unloaded cells no cholestryl ester accumulation could be observed.

To distinguish HDL₃ dependent and independent cholesterol efflux cells were pulsed with AcLDL (100 µg/ml) for three days with the coincubation of ¹⁴C-cholesterol (1.5 µCi/ml medium). Cells were washed and deloaded with HDL₃ (100 µg/ml) for 12 hours, 24 hours and 48 hours, respectively. Cells were incubated without the addition of exogenous lipid-acceptors as a control. After chase period the content of ¹⁴C-cholesterol was determined in the medium and in the cells by liquid scintillation as described in material and methods. The efflux of cholesterol is expressed in percent of cellular DPMs of total DPMs (counts in the cells plus medium) With HDL₃, the efflux is faster and more intense, than the efflux without the addition of HDL₃ as an endogenous lipid acceptor. After 12 hours cellular cholesterol content was reduced to 68 % with HDL₃-dependent deloading, and 86 % in HDL₃-independent deloading. After 48 hours only 35 % of loaded ¹⁴C-cholesterol was observed in the cells treated with HDL₃. In contrast, 70 % of loaded ¹⁴C-cholesterol was found in untreated cells

In AcLDL pulsed cells the RNA-expression of ABCG1 is upregulated whereas no upregulation appears in the cells that were not loaded with AcLDL. Cells that were loaded for two days with AcLDL were deloaded with HDL₃ for 12, 24 and 48 hours (12h; 24h; 48h), and in the absence of exogenous lipid acceptors. The RNA-expression is downregulated again, in HDL₃ treated cells more intense than in cells treatet without any exogenous lipid acceptor.

25 **Materials:**

Macrophage medium (Macrophage-SFM) was obtained from Gibco Life Technologies, Germany. Human recombinant M-CSF was obtained from Genzyme Diagnostics, Germany, and antisense phosphorothioate oligonucleotides were supplied by Biognostics, Germany. All other chemicals were purchased from Sigma. Nylon membranes and a32P-dCTP were obtained from Amersham, Germany. ¹⁴C-

cholesterol and 3H-choline chloride from NEN, Germany, and cell culture dishes are Becton Dickinson, Germany

Isolation of total RNA and northern blotting

5 Total RNA was isolated at each time-point, before and after AcLDL incubation, and after HDL₃ incubation, respectively. Washed cells were solubilized in guanidine isothiocyanate followed by sedimentation of the extract through cesium chloride [24]. For Northern analysis, 10 µg/lane of total RNA samples were fractionated by electrophoresis in 1,2% agarose agarose gel containing 6% formaldehyde and blotted onto nylon membranes (Schleicher & Schüll, Germany). After crosslinking with UV-irradiation (Stratalinker model 1800, Stratagene, USA), the membranes were hybridized with a cDNA probe for ABCG1 (ABC8). Hybridization and washing conditions were performed as recommended by the manufacturer of the membrane.

15 **Example 3**

Westernblot analysis of monocytes and macrophages after cholesterol loading and deloading

20 Protein expression of ABCG1 (ABC8) is upregulated in AcLDL-loaded and down-regulated in HDL₃-deloaded monocyte-derived macrophages. Western blotting with a peptide antibody against ABCG1 as described in materials and methods is performed with 40 µg of total protein for each lane of SDS-PAGE. ABCG1-protein expression is shown in freshly isolated monocytes (day zero) and in differentiated monocytes (day four). From day four to day seven (5d; 6d; 7d) monocyte-derived macrophages were loaded with AcLDL or without AcLDL as control. AcLDL loaded cells from day 6 (6d) were deloaded with HDL₃ for 12, 24, and 48 hours and without exogenous added HDL lipid-acceptor. AcLDL increases the protein-expression, whereas HDL₃ decreases the expression to normal levels again.

Protein isolation and determination

At each timepoint cells were lysed with 0.1% SDS and the protein content was determined by the method of Lowry et al. [25].

5 **Generation of ABCG1 specific antibodies**

ABCG1 specific peptide antibodies were generated by immunization of chickens and rabbits with a synthetic peptide (Fa. Pineda, Berlin). The peptide sequence was chosen from the extracellular domain exIII amino acid residues 613-628 of ABCG1 comprising the amino acids REDLHCDIDETCHFQ (see sequence listing ID No. 10 53). After 58 days of immunization western blotting was performed with 1:1000 diluted serum and 1:10000 secondary peroxidase labelled antibody.

Electrophoresis and immunoblotting

SDS-polyacrylamide gelectrophoresis was performed with 40 μ g total cellular protein per lane. Proteins were transferred to Immobilon as reported. Transfer was confirmed by Coomassie Blue staining of the gel after the electroblot. After blocking for at least 2 hours in 5% nonfat dry milk the blot was washed 3 times for 15 minutes in PBS. Antiserum generated as described was used at 1:1000 dilution in 5% nonfat dry milk in PBS. The blot was incubated for 1 hour. After 4 times washing with PBS at room-temperature a secondary peroxidase-labelled rabbit anti chicken IgG-antibody (1:10000 diluted, Sigma) was incubated in 5% nonfat dry milk in PBS for 1 hour. After 2 times washing with PBS, detection of the immune complexes was carried out with the ECL Western blot detection system (Amersham International PLC, UK).

25

Fluorescence resonance energy transfer:

Monocytes were labelled with the specific antibodies for 15 minutes on ice, one antibody is labelled by biotin, the other one is labelled by phycoerythrin. After washing the cells were incubated with a Cy5-conjugated streptavidin for another 15 minutes.

30

102250 * 513987/60

Distances between antibody labelled proteins on the cell surface is measured by energy transfer with a FACScan (Becton Dickinson). Following single laser excitation at 488 nm the Cy5 specific emmission represents an indirect excitation of Cy5 dependent on the proximity of the PE-conjugated antibody. The relative transfer efficiency was calculated following standardisation for the intensity of PE and Cy5 labelling and nonspecific overlap of fluorescence based on dual laser excitation and comparison to separately stained control samples.

Example 4

10

Cholesterol sensitivity of ABCG1 (ABC8) and other members of the ABC-transporter family

15

The influence of cholesterol loading and deloading on other members of the ABC-family was also investigated to find out the potential second half-size ABC transporter.

Further analysis has been performed to examine the expression pattern of all human ABC transporters in monocytes and monocyte derived macrophages as well as in cholesterol loaden and deloaden mononuclear phagocytes.

20

The experiments were performed by RT-PCR with cycle-variation to compare the expression in the quantitative part of the distinct PCR. Primer sets were generated from the published sequences of the ABC-transporters. A RT-PCR with GAPDH primers was used as control.

25

Several ABC-transporters are also cholesterol sensitive which further supports the function of ABC-transporters in cellular lipid trafficking (Table 2).

Semi-quantitative RT-PCR

30

All known ABC-transporters are tested for AcLDL/HDL₃ sensitive regulation of expression using RT-PCR with cycle-variation to compare the expression in the

quantitative part of the distinct PCR. 1 µg of total RNA was used in a 40 µl reverse transcription reaction, using the Reverse Transkription System (Promega, Corp. WI, USA). Aliquots of 5 µl of this RT-reaction was used in 50µl PCR reaction. After denaturing for 1,5 min at 94°C, 35 or less cycles of PCR were performed with 5 92,3°C for 44s, 60,8°C for 40s (standard annealing temperature differs in certain primer-combinations), 71,5°C for 46s followed by a final 5-min extension at 72°C. The Primer sets were generated from the published sequences of the ABC-transporters. A RT-PCR with primers specific for GAPDH was performed as control.

- 10 The expression pattern of ABC-transporters in monocytes, monocyte derived macrophages (3 days cultivated monocytes in serum free macrophage-SFM medium containing 50 ng/ml M-CSF), AcLDL incubated monocytes (3 days with 100 µg/ml) followed by HDL₃ (100 µg/ml) incubated monocytes is shown in Table 2. Expressed genes are tested for cholesterol sensitivity by semi-quantitative PCR.

15 **Example 5:**

Functional analyses of the cholesterol sensitive ABCG1 (ABC8) transporter gene by antisense oligonucleotide experiments

- 20 Antisense experiments were conducted in order to address the question, that beyond being regulated by cholesterol loading and deloading ABCG1 is directly involved in lipid loading and deloading processes.

In various experiments antisense oligonucleotides decreased the efflux of cholesterol and phosphatidylcholine to HDL₃. During the loading period with AcLDL the cells were coincubated with 17 different antisense oligonucleotides. To measure the efflux of cholesterol and phospholipids the cells were pulsed in the loading period with 1,5 25 µCi/ml ¹⁴C-cholesterol and 3µCi/ml ³H-choline chloride. The medium was changed and during the chase period cells were incubated with or without HDL₃ for 12 hours. The ¹⁴C-cholesterol and ³H-choline content in the medium and in the cell lysate was measured and the efflux was determined in percent of total ¹⁴C-cholesterol and ³H-choline loading.

The most effective antisense oligonucleotide (AS Nr.2) inhibited cholesterol and phospholipids efflux relative to cells that were treated with control antisense (AS control). A dose dependent decrease in cholesterol efflux of 16,79% (5nmol AS) and 32,01% (10 nmol AS) could be shown, respectively.

5 **Antisense incubation**

To inhibit the induction of ABCG1 cells were treated with three different antisense oligonucleotides targeting ABCG1 or one scrambled control-antisense oligonucleotide during the AcLDL-incubation period.

10 **Determination of cholesterol and phosphatidylcholine efflux from monocytes in dependency of antisense oligonucleotide treatment**

To measure the efflux of cholesterol and phospholipids the cells were pulsed in addition to AcLDL-incubation with 1,5 µCi/ml ¹⁴C-cholesterol and 3µCi/ml ³H-choline chloride. The medium was changed and in chase period the cells were incubated with or without HDL₃ for 12 hours. Lipid extraction was performed according to the method of Bligh and Dyer [26]. The ¹⁴C-cholesterol and ³H-choline content in the medium and in the cell lysate was measured by liquid scintillation counting and the efflux was determined in percent of total ¹⁴C-cholesterol and ³H-choline loading as described [27]

15 **Computer analyses**

20 DNA and protein sequence analyses were conducted using programs provided by HUSAR, Heidelberg, Germany: <http://genius.embnet.dkfz-heidelberg.de:8080>.

T02250 * 52998760

Example 6

Complete cDNA sequence of the human ATP binding cassette transporter 1 (ABCA1 (ABC1)) and assessing the cholesterol sensitive regulation of ABCA1 mRNA expression

5 cDNA Cloning and Primary Protein Structure

We have cloned a 6880-bp cDNA containing the complete coding region of the human ABCA1 gene (Figure 8). The open reading frame of 6603 bp encodes a 2201-amino acid protein with a predicted molecular weight of 220 kDa. This protein displays a 94% identity on the amino acid level in an alignment with mouse ABCA1 and can therefore be considered as the human ortholog.

Tissue Distribution of ABCA1 mRNA Expression

In order to examine the tissue-specific expression of ABCA1 a multiple tissue RNA master blot containing poly A⁺ RNA from 50 human tissues was carried out. Northern Blot analysis demonstrates the presence of a ABCA1 specific signal in all tissues. It is mostly prominent in adrenal gland, liver, lung, placenta and all fetal tissues examined so far (Table 1). The weakest signals are found in kidney, pancreas, pituitary gland, mammary gland and bone marrow.

Sterol Regulation of ABCA1 mRNA Expression

In order to determine the regulation of ABCA1 in monocytes/macrophages during cholesterol loading/depletion Northern Blot analysis was performed. The cloned 1000-bp DNA fragment derived from PCR amplification of RNA from five day differentiated monocytes with primers ABCA1 3622f (*CGTCAGCACTCTGATGATGGCCTG-3'*) and ABCA1 4620r (*TCTCTGCTATCTCCAACCTCA-3'*) was hybridized to Northern Blots containing RNA of differentially cultivated monocytes (figure 12) As can be seen in lanes one to five, the ABCA1 mRNA is increased during in vitro differentiation of freshly isolated monocytes until day five. Longer cultivation results in a total loss of

expression. When the cells were incubated in the presence of AcLDL to induce sterol loading (lanes 6-8) beginning at day four, a much stronger accumulation of mRNA can be detected in comparison to control cells (lanes 2-5). When these cells were cultured with HDL₃ as cholesterol acceptor for 12h, 24h and 48h (lanes 9-11) the ABCA1 signal significantly decreases with respect to control cells incubated in the absence of HDL₃ (lanes 12-14). Taken together, these results indicate that ABCA1 is a sterol-sensitive gene which is induced by cholesterol loading and downregulated by cholesterol depletion.

Cell culture.

Peripheral blood monocytes were isolated by leukapheresis and counterflow elutriation (19JBC). To obtain fractions containing >90% CD 14 positive mononuclear phagocytes, cells were pooled and cultured on plastic Petri dishes in macrophage SFM medium (Gibco BRL) containing 25 U/ml recombinant human M-CSF (Genzyme) for various times in 5% CO₂ in air at 37°C. The cells were incubated in the absence (differentiation control) or presence of AcLDL (100 µg/ml) to induce sterol loading. Following this incubation the cells were cultured in fresh medium supplemented with or without HDL₃ (100 µg/ml) for additional times in order to achieve cholesterol efflux from the cells to its acceptor HDL₃.

Preparation of RNA and Northern blot analysis.

Total cellular RNA was isolated from the cells by guanidium isothiocyanate lysis and CsCl centrifugation (Chirgwin). The RNA isolated was quantitated spectrophotometrically and 15 µg samples were separated on a 1.2% agarose-formaldehyde gel and transferred to a nylon membrane (Schleicher & Schüll). After crosslinking with UV-irradiation (Stratalinker model 1800, Stratagene), the membranes were hybridized with a 1000 bp DNA fragment derived from PCR amplification with primers ABCA1 3622f and ABCA1 4620r, stripped and subsequently hybridized with a human β-actin probe. In order to determine the tissue-specific expression of ABCA1 a multiple tissue RNA master blot containing

02250-5299876

poly A⁺ RNA from 50 human tissues was purchased from Clontech. The probes were radiolabeled with [γ -³²P]dCTP (Amersham) using the Oligolabeling kit from Pharmacia. Hybridization and washing conditions were performed following the method described previously (Virca).

5 cDNA cloning of human ABCA1

Based on sequence information of mouse ABCA1 cDNA we designed primers for RT-PCR analysis in order to amplify the human ABCA1 (ABC1) cDNA. Approximately 1 μ g of RNA from five day differentiated mononuclear phagocytes was reverse transcribed in a 20 μ l reaction using the RNA PCR Core Kit from Perkin 10 Elmer. An aliquot of the cDNA was used in a 100 μ l PCR reaction performed with AmpliTaq Gold (Perkin Elmer) and the following primer combinations: (primer names indicate the position in the corresponding mouse cDNA sequence):

15 *mABC1-144f* (5'-CAAACATGTCAGCTGTTACTGGA-3') and

15 *mABC1-643r* (5'-TAGCCTTGCAAA-AATACCTCTG-3'),

20 *mABC1-1221f* (5'-GTTGGAAAGATTCTCTATACACACCTG-3') and

20 *mABC1-1910r* (5'-CGTCAGCACTCTGATGATGGCCTG-3'),

25 *mABC1-3622f* (5'-TCTCTGCTATCTCCAACCTCA-3') and

25 *mABC1-4620r* (5'-ACGTCTTCACCAGGTAATCTGAA-3'),

30 *mABC1-5056f* (5'-CTATCTGTCATCTTGCGATG-3') and

30 *mABC1-5857r* (5'-CGCTTCCTCCTATAGATCTTGGT-3'),

35 *mABC1-6093f* (5'-AAGAGAGCATGTGGA-GTTCTTG-3') and

35 *mABC1-7051r* (5'-CCCTGTAATGGAATTGTGTTCTC-3'),

40 *hABC1-540f* (5'-AACCTCTCTGGGTTCTGTATC-3') and

40 *hABC1-1300r* (5'-AGTTCTGGAA-GGTCTTGTTCAC-3'),

45 *hABC1-1831f* (5'-GCTGACCCCTTGAGGACATGCG-3') and

102261-52998760

hABC1-3701r (5'-ATAGGTCAGCTCATGCCCTATGT-3'),

hABC1-4532f (5'-GCTGCC-TCCCTCCACAAAGAAAAC-3') and

hABC1-5134r (5'-GCTTGCTGACCCGCTCC-TGGATC-3').

hABC1-5800f (5'-GAGGCCAGAACATGACATCTTAGAA-3') and

hABC1-6259r (5'-CTTGACAACACTTAGGGCACAAAT-3').

5

All PCR products were cloned into the pUC18 plasmid vector and the nucleotide sequences were determined on a Pharmacia ALFexpress sequencer using the dideoxy chain-termination method and fluorescent dye-labeled primers.

10

Example 7

Identification of the 5'end of ABCG1

We could partially prove the 5'-end of ABCG1 published by Chen [7] that differs from the 5'-end published by Croop [6] obtained from the mRNA of human

15

monocytes/macrophages using a 5' RACE approach. In detail the sequence according to Chen et al. downstream of position 25 was in agreement with our own data. In contrast, our identified sequence differs from the one reported by Chen [7] and Croop [6] at a site upstream of position 25 (Chen [7]). The sequence SEQ ID NO: 32 shows the newly identified 5'-end followed by the sequence published by Chen [7] from position 25.

20

Molecular cloning and characterisation of the ABCG1 5'UTR

We identified several fragments by screening of a λ phage library which contained a total of app. 3 kb of the 5' UTR upstream sequence of the human ABCG1 gene. The

25

02250-53982/90

sequence that comprises the 5'UTR and part of exon 1 (described above) are given in SEQ ID NO: 54.

The promoter activity of this sequence was proven by luciferase reporter gene assays in transiently transfected CHO cells.

- 5 Putative transcription factor binding sites within the promoter region with the highest likelihood ratio for the matched sequence as deduced from the TransFac database, GFB, Braunschweig, Germany. Multiple binding sites for SP-1, AP-1, AP-2 and CCAAT-binding factor (C/EBP family) are present within the first 1 kb of the putative promoter region.
- 10 Additionally, a transcription factor binding site involved in the regulation of apolipoprotein B was identified.

Example 8

- 15 **Characterization of the human ABCA8 full length cDNA**
The putative ABCA8 coding sequence is app. 6.5 kb in size. We successfully cloned and sequenced a 1kb segment of the human ABCA8 cDNA that encodes the putative second nucleotide binding site of the mature polypeptide (the sequence is shown in the sequence listing). The nucleotide sequence exhibits a 73% homology with the known human ABCA1 (ABC1) cDNA sequence.

- 25 We identified an alternative transcript in the cloned 1 kb coding region which consists of a 72 bp segment (see sequence listing). Genomic analysis of this region revealed that the alternative sequence is identical with a complete intron suggesting that the alternative mRNA is generated by intron retention. The retained intron introduces a preterminal stop codon and thus may code for a truncated ABCA8 variant.

ABCA8 also shows a cholesterol sensitive regulation of the mRNA expression (Table 2).

5 Tissue expression of ABCA8 is shown in table 1.

Example 9

Characterisation of the regulation of ABC transporter during differentiation of keratinocytic cells (HaCaT)

Differentiation of epidermal keratinocytes is accompanied by the synthesis of specific lipids composed mainly of sphingolipids (SL), free fatty acids (FFA), cholesterol (CH), and cholesterol sulfate, all involved in the establishment of the epidermal permeability barrier. The skin and, in particular, the proliferating layer of the epidermis is one of the most active sites of lipid synthesis in the entire organism. Cholesterol synthesis in normal human epidermis is LDL-independent, and circulating cholesterol levels do not affect the cutaneous de novo cholesterol synthesis. Fully differentiated normal human keratinocytes lack LDL receptors or its expression is very low, whereas in the normal human epidermis only basal cells express LDL receptors.

During keratinocyte differentiation a shift from polar glycerophospholipids to neutral lipids (FFA, TG) and also a replacement of short chain FFA by long chain highly saturated FFA is observed. The most important lipids for the barrier function of the skin are sphingolipids that account for one third of the lipids in the cornified layer, and consist of a large ceramide fraction as a result of glucosylceramide degradation by intercellular glycosidases and de novo synthesis of ceramide .

Glucosylceramide is synthesized intracellularly and stored in lamellar bodies and glucosylceramide synthase expression was found up-regulated during the differentiation of human keratinocytes.

002250-52998760

Cholesterol sulfate is formed by the action of cholesterol sulfotransferase during keratinocyte differentiation . Cholesterol sulfate and the degrading enzyme steroid sulfatase are present in all viable epidermal layers, with the highest levels in the stratum granulosum. The gradient of cholesterol sulfate content across the stratum corneum (from inner to outer layers), and progressive desulfation of cholesterol sulfate regulate cell cohesiveness and normal stratum corneum keratinization and desquamation, respectively. Cholesterol sulfate induces transglutaminase 1 and the coordinate regulation of both factors is essential for normal keratinization .

- 10 The final step in lipid barrier formation involves lamellar body secretion and the subsequent post-secretory processing of polar lipids into their nonpolar lipid products through the action of hydrolytic enzymes that are simultaneously released (β -glucocerebrosidase, phospholipases, steroid sulfatase, acid sphingomyelinase).
- 15 Disruption of the permeability barrier results in an increased cholesterol, fatty acid, and ceramide synthesis in the underlying epidermis. It has been shown that mRNA levels for the key enzymes required for cholesterol, fatty acid, and ceramide synthesis increased rapidly after artificial barrier disruption .
- 20 Currently the lipid transport systems in keratinocytes are poorly characterized. Several fatty acid transport related proteins have been identified in keratinocytes: plasma membrane fatty acid transport proteins (FATPs) and intracellular fatty acid binding proteins (FABPs), most of them exhibiting high affinity for essential fatty acids. The expression of epidermal FABPs is up-regulated in hyperproliferative and inflammatory skin diseases, during keratinocyte differentiation and barrier disruption
- 25

30 Based on our data on macrophages, we propose several ABC transporters as putative candidates for cellular lipid export in keratinocytes. We have examined the expression of all known ABC transporters during HaCaT cells differentiation. The human HaCaT cell line has a full epidermal differentiation capacity. Keratinocytes grown in

vitro as a monolayer at low calcium concentration (< 0.1 mM) can be differentiated by increasing calcium concentration in the culture medium (1-2 mM). We cultured HaCaT cells as a monolayer in calcium-free RMPI (Gibco) medium mixed with standard Ham's F12 medium at a ratio 3:1 supplemented with 10% chelex-treated
5 FCS, Penicillin and Streptomycin. The final concentration of calcium in above medium was 0.06 mM. When the cells reached confluence (usually on 5th day of the culture), calcium concentration was enhanced up to the level of 1.2 mM. The cells were seeded at a density of $2 \times 10^5 / \text{cm}^2$ in 60 mm culture dishes. The culture medium was replaced every two day and the cells were harvested after 24 h, 48 h, 4 d, 6 da,
10 8 d and 10 d in culture, respectively. Total RNA from HaCaT cells was isolated using the isothiocyanate/cesium chloride-ultracentrifugation method.

The expression of all known human ABC transporters was examined during HaCaT cell differentiation (24 h, 48 h, 4 d, 6 d, 8 d, 10d, respectively) using a semi-quantitative RT-PCR approach (Table 6). The primer sets were generated from the published sequences of the ABC-transporters. Primers specific for GAPDH were used as a control. As a marker of keratinocyte differentiation CGT (ceramide glucosyl transferase) gene expression was assessed. Three of the transporters examined, ABCB1 (MDR1), ABCB4 (MDR3), ABCD3 (PMP70), were not expressed.
15 ABCC6 (MRP6), ABCA1 (ABC1),ABCD2 (ALDR and ABCB9 (est122234) were expressed at low levels (Table 6)

Most of the other transporters exhibited a biphasic expression pattern or were downregulated during keratinocyte differentiation. There was, however, a high expression of ABCG1 (ABC8), ABCA8 (new) and ABCC3 (MRP3) indicative for their involvement in terminal keratinocyte lipid secretion for cholesterol, FFAs and ceramide-backbone lipids.. The two peroxisomal ABC transporters, ABCD2 (ALDR) and ABCD1 (ALDP) that mediate the transport of very long chain fatty acids into peroxisomes were initially expressed at relatively low levels and subsequently downregulated during differentiation. This is in agreement with the replacement of
25
30

short chain fatty acids by very long chain fatty acids during keratinocyte differentiation.

Example 10:

- 5 Sequencing of ABCA1 cDNA and genomic structure in five families of patients with Tangier disease revealed different mutations in the ABCA1 gene locus. These patients have different mutations at different positions in the ABCA1 gene, that result in changes in the protein structure of ABCA1. Family members that are heterozygous for these mutations show lowered levels of serum HDL, whereas the
10 homocysteine patients have extremely reduced HDL serum levels.

Claims:

1. A polynucleotide comprising a member selected from the group consisting of:

- 5 (a) a polynucleotide encoding the polypeptide as set forth in SEQ ID NO:2;
- (b) a polynucleotide capable of hybridizing to and which is at least 70% identical to the polynucleotide of (a); and
- (c) a polynucleotide fragment of the polynucleotide of (a) or (b).

10 2. The polynucleotide of claim 1 wherein the polynucleotide is DNA.

15 3. A vector containing one or more of the polynucleotides of claim 1 and 2.

15 4. A host cell containing the vector of claim 3.

20 5. A process for producing a polypeptide comprising: expressing from the host cell of claim 4 the polypeptide encoded by said DNA.

20 6. A polypeptide selected from the group consisting of

- 25 (a) a polypeptide having the deduced amino acid sequence of SEQ ID NO:2 and fragments, analogs and derivatives thereof, and
- (b) a polypeptide comprising amino acid 1 to amino acid 2201 of SEQ ID NO:2.

25 7. An antibody capable to bind to the polypeptide of claim 6.

30 8. A diagnostic kit for the detection of the polypeptide of claim 6.

9. Use of a polypeptides encoded by a polynucleotide comprising a member selected from the group consisting of:

(a) a polynucleotide as set forth in SEQ ID NO:1, 3, 4 and 6 to 31;

- (b) a polynucleotide capable of hybridizing to and which is at least 70% identical to the polynucleotide of (a); and
- (c) a polynucleotide fragment of the polynucleotide of (a) or (b)

in an assay for detecting modulators of said polypeptides.

10. Modulator of a polypeptides encoded by a polynucleotide comprising a member selected from the group consisting of:

(a) a polynucleotide as set forth in SEQ ID NO:1, 3, 4 and 6 to 31;

- (b) a polynucleotide capable of hybridizing to and which is at least 70% identical to the polynucleotide of (a); and
- (d) a polynucleotide fragment of the polynucleotide of (a) or (b)

11. A pharmaceutical comprising the modulator of claim 10

12. An assay for detecting polypeptides encoded by a polynucleotide comprising a member selected from the group consisting of:

(a) a polynucleotide as set forth in SEQ ID NO:1, 3, 4 and 6 to 32 and 54;

(b) a polynucleotide capable of hybridizing to and which is at least 70% identical to the polynucleotide of (a); and

(c) a polynucleotide fragment of the polynucleotide of (a) or (b)

Figure 1

2588 GA TCAATCGCAT TCATTTAAG AAATTATACC TTTTAGTAC TTGCTGAAGA
 2641 ATGATTCAGG GTAAATCACA TACTTTGTT AGAGAGCGA GGGGTTAAC CCGAGTCACC
 2701 CAGCTGGCT CATACATAGA CAGCAGCTGT GAAGGATTGA ATGCAGGTT CAGGTGGAGG
 2761 GAACACGTCG ACACCATCTC CACTGAGCCA TGCAAGACATT TTTAAAGCT ATACACAAAAA
 2821 TTGTGAGAAG ACATGGCCA ACTCTTCAA AGTCTTCTT TTCCACGTG CTTCTTATT
 2881 TAACGAAAT ATATTGTTG TTCTTCTTA AAAAAAAA 2890

Figure 2

1 CAACACATGTCAGCTGTTACTGGAAGTGGCCTGGCCTCTATTATCTCCGTATGCCAACCCCC 60
 61 TCTGTTCCGGCTGAGCTACCCACCCATGAACAACTGAATGCCATTCCAAATAAGGCC 120
 121 ATGCCCTCTGCAGGAACACTTCCCTGGGTTCAAGGGGATTATCTGTAATGCCAACCCCC 180
 1 M P S A G T L P W V Q G I I C N A N N P 20
 181 TGTTTCCGTTACCCGACTCTGGGAGGCTCCCGGAGTGTGGAAACTTAAACAAATCC 240
 21 C F R Y P T P G E A P G V V G N F N K S 40
 241 ATTGTGGCTGCCCTGTTCTCAGATGCTGGAGGCTCTTTATACAGCCAGAAAGACACC 300
 41 I V A R L F S D A R R L L L Y S Q K D T 60
 301 AGCATGAAGGACATGCCAAAGTCTGAGAACATTACAGCAGATCAAGAAATCCAGCTCA 360
 61 S M K D M R K V L R T L Q Q I K K S S S 80
 361 AACCTGAAGGCTTACAGATTCCTGGTGGACATGAAACCTTCTCTGGGTTCCGTATCAC 420
 81 N L K L Q D F L V D N E T F S G F L Y H 100
 421 AACCTCTCTCTCCCAAAGTCTACTGTGGACAAGATGCTGAGGGCTGATGTCATTCTCC 480
 101 N L S L P K S T V D K M L R A D V I L H 120
 481 AAGGTATTTTCAAGGCTACCAAGTTACATTTGACAAGTGTGTCAATGGATCAAATCA 540
 121 K V F L Q G Y Q L H L T S L C N G S K S 140
 541 GAAGAGATGATTCAACTTGGTGACCAAGAAGTCTGAGCTTTGTCAGGCTACCAAGGGAG 600
 141 E E M I Q L G D Q E V S E L C G L P R E 160
 601 AAACCTGGCTGCAGCAGCGAGTACTCGTTCCAACATGGACATCCTGAAGCCAATCTG 660
 161 K L A A A E R V L R S N M D I L K P I L 180
 661 AGAACACTAAACTCTACATCTCCCTTCCCAGCAAGGAGCTGGCCGAAGGCCACAAAACA 720
 181 R T L N S T S P F P S K E L A E A T K T 200
 721 TTGCTGCATAGCTTGGGACTCTGGCCAGGAGCTTCAGCATGAGAAGCTGGAGTGAC 780
 201 L L H S L G T L A Q E L F S M R S W S D 220
 781 ATCGCACAGGAGGTGATGTTCTGACCAATGTGACACAGCTCCAGCTCCACCCAAATC 840
 221 M R Q E V M F L T N V N S S S S S T Q I 240
 841 TACCAAGGCTGTGCTCGTATTGCTGCAGGAGCTTCAGCATGAGAAGCTGGAGTGAC 900
 241 Y Q A V S R I V C G H P E G G G L K I K 260
 901 TCTCTCAACTGGTATGAGGACACAAACTACAAAGCCCTCTTGGAGGCAATGGCACTGAG 960
 261 S L N W Y E D N N Y K A L F G G N G T E 280

961 GAGATGCTAAACCTCTATGACAACCTACAACCTCCTTACTGCAATGATTGATGAG 1020
 281 E D A E T F Y D N S T T P Y C N D L M K 300
 1021 AATTGGAGTCAGTCCTCTTCCGCATTATCTGGAAAGCTCTGAAGCCGCTGCTCGTT 1080
 301 N L E S S P L S R I I W K A L K P L L V 320
 1081 GGGAGATCCTGTATAACACTGACACTCCAGCCAAGGCAGGTATGGCTGAGGTAAAC 1140
 321 G K I L Y T P D T P A T R Q V M A E V N 340
 1141 AACACCTCCAGGAACTGGCTGTGTTCCATGATCTGAGGCATGGGAGGAACCTCAC 1200
 341 K T F Q E L A V F H D L E G M W E E L S 360
 1201 CCAAGATCTGGACCTTCATGGAGAACAGCCAAGGAATGGACCTTGTCCGGATGCTGTT 1260
 361 P K I W T F M E N S Q E M D L V R M L L 380
 1261 GACAGCAGGGACAATGACCACTTTGGGAAACAGCAGTTGGATGGCTAGATTGGACAGCC 1320
 381 D S R D N D H F W E Q Q L D G L D W T A 400
 1321 CAAGACATCGTGGCGTTTGGCCAAGCACCCAGGAGTGTCCAGTCAGTAAATGGTCT 1380
 401 Q D I V A F P L A K H P E D V Q S S N G S 420
 1381 GTGTACACCTGGAGAGAAGCTTCACCGAGACTAACAGGCAATCCGGACCATACTCGC 1440
 421 V Y T W R E A F N E T N Q A I R T I S R 440
 1441 TTCATGGAGTCGTCAACCTGAAAGCTAGAACCCATAGCAACAGAACACTGGCTCATC 1500
 441 F M E C V N L N K L E P I A T E V V W L I 460
 1501 ACAAGTCCATGGAGCTGCTGGATGAGAGGAATCTGGGCTGGTATTGTGTTACTGGA 1560
 461 N K S M E L L D E R K F W A G I V F T G 480
 1561 ATTACTCCAGGCAGCATGGCTGCCCCATCATGTCAGTACAAGATCCGAATGGACATT 1620
 481 I T P G S I E L P H H V K Y K I R M D I 500
 1621 GACAATGTGGAGAGGACAAAATCAAGGATGGTACTGGGACCTGGTCTCGAGCT 1680
 501 D N V E R T N K I K D G Y W D P G P R A 520
 1681 GACCCCTTGAGGCCATGGGTACGTCGGGGGGCTTCGCTACTTGCAAGGATGTGTTG 1740
 521 D P F E D M R Y V W G G F A Y L Q D V V 540
 1741 GAGCAGGAATCATCAGGTGCTGACGGGACCCGAGAAGAAAATGGTGTATATGCAA 1800
 541 E Q A I I R V L T G T E K K T G V Y M Q 560
 1801 CAGATGCCCTATCCCTGTTACGGTGTGACATCTTCGCGGGTGTGAGCCGGTCATG 1860
 561 Q M P Y P C Y V D D I F L R V M S R S M 580
 1861 CCCCTTCATGACGCTGGCTGGATTTACTCAGTGGCTGTGATCATCAAGGGCATGTC 1920
 581 P L F M T L A W I Y S V A V I I K G I V 600
 1921 TATGAGAAGGGCAGGGCTGAAAGAGACATGGGATCATGGGCTGGACACAGCATC 1980
 601 Y E K E A R L K E T M R I M G L D N S I 620
 1981 CTCTGGTTAGCTGGTTCAATTAGTAGGCTCATTCCTCTTGTGAGCGCTGGCTGCTA 2040
 621 L W F S W F I S S L I P L L V S A G L L 640
 2041 GTGGTCATCCTGAAAGTTAGGAAACCTGCTGCCCTACAGTGATCCCAGCGTGGTGTGTC 2100
 641 V V I L K L G N L L P Y S D P S V V F V 660
 2101 TTCCCTGTCCGTGTTGCTGTGGTGACAATCCTGCAGTGCTTCCCTGATTAGCACACTCTTC 2160

661 F L S V F A V V T I L Q C F L I S T L F 680
 2161 TCCAGAGCCAACCTGGCAGCGCTGTGGGGCATCATCTACTTCACGCTGTACCTGCC 2220
 681 S R A N L A A A C G G I I Y F T L Y L P 700
 2221 TAGCTCTGTGTGGCATGGCAGGACTACGTGGCTTCACACTCAAGATCTCGCTAGC 2280
 701 Y V L C V A W Q D Y V G F T L K I F A S 720
 2281 CTGCTGTCTCTGTGGCTTTGGGTTGGCTGTGAGTACTTGCCCTTTTGAGGAGCAG 2340
 721 L L S P V A F G F G C E Y F A L F E E Q 740
 2341 GGCGATTGGAGTGCAGTGGGACAACCTGTTGAGACTCCGTGGAGGAAGATGGCTTAAT 2400
 741 G I G V Q W D N L F E S P V E E D G F N 760
 2401 CTCACCACCTCGGTCTCCATGATGCTGTTGACACCTTCCTCTATGGGTGATGACCTGG 2460
 761 L T T S V S M M L F D T F L Y G V M T W 780
 2461 TACATTGAGGTGCTCTTCCAGGGCAGTACCGAAATCCGAGGCCCTGGTATTTCCCTTG 2520
 781 Y I E A V F P G Q Y G I P R P W Y F P C 800
 2521 ACCAAGTCTACTGGTTGGCAGGAAAGTGTGAGAAGAGGCCACCTGGTCCAACAG 2580
 801 T K S Y W F G E E S D E K S H P G S N Q 820
 2581 AAGAGAAATATCGAAATCTGCATGGAGGAGGAACCCACCCACTGAAAGCTGGCGTGTCC 2640
 821 K R I S E I C M E E E P T H L K L G V S 840
 2641 ATTCAAGAACCTGGTAAAAGTCTACCGAGATGGGATGAAGGTGGCTGTGATGGCTGGCA 2700
 841 I Q N L V K V Y R D G M K V A V D G L A 860
 2701 CTGAATTTTATGAGGGCCAGATCACCTCTTCTGGCCACAATGGAGCGGGGAAGACG 2760
 861 L N F Y E G Q I T S F L G H N G A G K T 880
 2761 ACCACCATGTCAATCTGACCGGGTTGTCACCCCCCGACCTCGGGCACCGCTACATCTG 2820
 881 T T M S I L T G L F F P T S G T A Y I L 900
 2821 GGAAAGACATTGCTCTGAGATGAGCACCATTGGCAGAACCTGGGGTCTGTCCCCAG 2880
 901 G K D I R S E M S T I R Q N L G V C P Q 920
 2881 CATAACGTGCTGTTGACATGCTGACTGTGAGAACACATCTGGTTCTATGCCCGCTTG 2940
 921 H N V L F D M L T V E E H I W F Y A R 940
 2941 AAAGGGCTCTGTGAGAACGACGTGAAGGGAGATGGAGCAGATGCCCTGGATGTGCT 3000
 941 K G L S E K H V K A E M E Q M A L D V G 960
 3001 TTGCCATCAAGCAAGCTGAAAACCAAACAGCCAGCTGTGAGCTGAATGAGAGAAAG 3060
 961 L P S S K L K S K T S Q L S G G M Q R K 980
 3061 CTATCTGTGGCTTGGCTTGTGGGGATCTAAGGTGTCACTTCTGGATGAACCCACA 3120
 981 L S V A L A F V G G S K V V I L D E P T 1000
 3121 GCTGGTGTGGACCCCTACTCCCGCAGGGAAATGGGAGCTGCTCTGAAATACCGACAA 3180
 1001 A G V D P Y S R R G I W E L L L K Y R Q 1020
 3181 GGCGGCACCATATTCTCTCTACACACCATGGATGAAGCGGAGCTGTGGGGACAGG 3240
 1021 G R T I I L S T H H M D E A D V L G D R 1040
 3241 ATTGGCATCATCTCCCAGGGAGCTGCTGTGGCTCTCCCTGTTCTGAAGAAC 3300
 1041 I A I I S H G K L C C V G S S L F L K N 1060
 3301 CAGCTGGAACAGGCTACTACCTGACCTTGGTCAAGAAAGATGTGGAATCCTCCCTCAGT 3360

1061 Q L G T G Y Y L T L V K K D V E S S L S 1080
 3361 TCC TGC AGAA ACAGT AGTAG CACT GTG TCAT ACC TGA AAA AGG AGG ACG ATG TTT CTCA G 3420
 1081 S C R N S S S T V S Y L K K E D S V S Q 1100
 3421 ACC AGT TCT GAT CTG TGG CAG CG ACC ATG AGA GTG ACAC CCG TGA CC ATG ATC GTC 3480
 1101 S S S D A G L G S D H E S D T L T I D V 1120
 3481 TCT GCT ATC TCC AAC CT CAT CAG GA AGG ATG TG CTG TA AGG CCG GCT GG TG AA GACA TA 3540
 1121 S A I S N L I R K H V S E A R L V E D I 1140
 3541 GGG CAT GAG CTG AGC CT ATG TG CTG CC AT ATG AAG CTG TA AGG AGG GAG CCT TTG GAA 3600
 1141 G H E L T Y V L P Y E A A K E G A F V E 1160
 3601 CTCTT TCAT GAG ATT GAT GAC CGG CT TCAG ACAC TGG GAT TT CTA GTT ATG GC AT CTCA 3660
 1161 L F H E I D D R L S D L G I S S Y G I S 1180
 3661 GAG AC GAC CCT GG AA GAA AT TCC TCA AGG TGG CGA AGA GAG TGG GGT GG AT GCT GAG 3720
 1181 E T T L E E I F L K V A E E S G V D A E 1200
 3721 AC CT CAG AT GG TA CCT TGG CAG CA AGA AAC AGG CCG GCT TCC GG GAC AAG CAG AGC 3780
 1201 T S D G T L P A R R N R R A F G D K Q S 1220
 3781 TGT CTG CCG CGT TC ACT GAG AT GAT GCT GTC AT GCA AA AT GATT CTG AC AT AGAC CCA 3840
 1221 C L R P F T E D D A A D P N D S D I D P 1240
 3841 GA AT CC CAG AGA GAG ACAG ACT TG CT CAG TGG GAT GG AT GG CA AAG GG CT TAC CAG GTG AAA 3900
 1241 E S R E T D L L S G M D G K G S Y Q V K 1260
 3901 GG CT GG AA ACT TA CAC AG CA AC AG TGT GG CC CTT TGT GG AA AGA GACT GCT AAT GG C 3960
 1261 G W K L T Q Q Q F V A L L W K R L L I A 1280
 3961 AG AC GG ACT CGG AA AGG AT TTT TG CT CAG AT TG TCT GG CAG TGT GT TGT CTG CATT 4020
 1281 R R S R K G F F A Q I V L P A V F V C I 1300
 4021 G C C C T T G T G T C A G C C T G A T G T G C C A C C C T T G G C A A G T A C C C C A G C C T G G A A C T C A G 4080
 1301 A L V F S L I V P P F G K Y P S L E L Q 1320
 4081 C C T G G A T G T A C A C G A A C A G T A C A C T T G T C A G G C A A T G A T G T C C T G A G G A C A C G G G A 4140
 1321 P W M Y N E Q Y T F V S N D A P E D T G 1340
 4141 A C C C T G G A A C T T A A C G C C C T C A C C A A A G A C C T G G C T C G G G A C C C G T G T A T G G A 4200
 1341 T L E L L N A L T K D P G F G T R C M E 1360
 4201 G G G A A C C A A T C C C A G A C C G C C T G C C A G G C A C C G G A G G A A G A C T G G A C C A C T G C C C C A 4260
 1361 G N P I P D T P C Q A G E E E W T T A P 1380
 4261 G T T C C C C A G A C C A T C A T G G A C C T T C C A G A A T G G A A C T G G A C A A T G C A G A A C C C T C A 4320
 1381 V P Q T I M D L F Q N G N W T M Q N P S 1400
 4321 C C T G C A T G C C A G G T G A C G C G A C A A A T C A A G A A G A T G C T G C C T G T G T C C C C A G G G 4380
 1401 P A C Q C S S D K I K K M L P V C P P G 1420
 4381 G C A G G G G G G C T G C C T C C T C C A A A G A A A C A A A C T G C A G A T A T C C T C A G G A C C T G 4440
 1421 A G G L P P P Q R K Q N T A D I L Q D L 1440
 4441 A C A G G A A G A A A C A T T C G G A T T A C T G G T G A A G A C T A T G T G C A G A T C A T A G C C C A A A G C 4500
 1441 T G R N I S D Y L V K T Y V Q I I A K S 1460
 4501 T T A A A G A A C A A G A T C T G G G T G A A T G A G T T A C G T A T G G C G G T T T C C C T G G G T G C A G T 4560

1461 L K N K I W V N E F R Y G G F S L G V S 1480
 4561 AATACTCAAGCACCTCCTCGAGTCAGAAGTAAATGATGCCACAAACAAATGAAGAAA 4620
 1481 N T Q A L P P S Q E V N D A T K Q M K K 1500
 4621 CACCTAAAGCTGGCCAGGCACAGTCTGCAGATCGATTCTCAACAGCTTGGGAAGATT 4680
 1501 H L K L A K D S S A D R F L N S L G R F 1520
 4681 ATGACAGGACTGGACACCAGAAAATATGTCAGGTGTTCAATACAAGGGCTGGCAT 4770
 1521 M T G L D T R N N V K V W F N N K G W H 1540
 4741 GCAATCAGCTTTCCTGAAATGTCATCAACATGCCATTCTCCGGGCAACCTGCAAAG 4800
 1541 A I S S F L N V I N N A I L R A N L Q K 1560
 4801 GGAGAGAACCTCTAGCCATTATGGAATTACTGCITTCATCATCCCCCTGAATCTCACCAG 4860
 1561 G E N P S H Y G I T A F N H P L N L T K 1580
 4861 CAGCACCTCTCAGAGGTGGCTCCGATGACCAACTCATGGATGTGCTTGTGTCATCTGT 4920
 1581 Q Q L S E V A P M T T S V D V L V S I C 1600
 4921 GTCATCTTGCATGTCTCGTCCCAGCCAGCTTGTCGTATTCTGATCCAGGAGCGG 4980
 1601 V I F A M S F V P A S F V V F L I Q E R 1620
 4981 GTCAAGAACCAAACACCTGCACTTCATCATGGAGTGAAGCCTGTCATCTACTGGCTC 5040
 1621 V S K A K H L Q F I S G V K P V I Y W L 1640
 5041 TCTAATTGTCGGATATGTCGAATTACGTTGTCCTGCCACACTGGTCATTATCATC 5100
 1641 S N F V W D M C N Y V V P A T L V I I I 1660
 5101 TTCACTGCTTCAGCAGAAGTCATATGTCCTCCACCAATCTGCCGTGCTAGCCCTT 5160
 1661 F I C F Q Q K S Y V S S T N L P V L A L 1680
 5161 CTACTTTGCTGTATGGTGGTCATCACACCTCTCATGTAACCCAGCCTCTTGTTGTC 5220
 1681 L L L L Y G W S I T P L M Y P A S F V F 1700
 5221 AAGATCCCCACACAGCTATGTGGTGTCAACAGCGTGAACCTCTTCAATTGGCATTAAAT 5280
 1701 K I P S T A Y V V V L T S V N L F I G I N 1720
 5281 GGCGAGCGTGGCCACCTTGTCTGGAGCTGTCACCGACAATAAGCTGAATAATATCAAT 5340
 1721 G S V A T F V L E L F T D N K L N N I N 1740
 5341 GATATCCTGAAGTCCTGTCATTCACCTCCACATTGGCTGGAGCAGGGCTCATC 5400
 1741 D I L K S V F L I F P H F C L G R G L I 1760
 5401 GACATGGTAAAAACCAAGCCAATGGCTGATGCCCTGGAAAGGTTGGGGAGAACATCGCTT 5460
 1761 D M V K N Q A M A D A L E R F G E N R F 1780
 5461 GTGTCACCAATTATCTGGACTTGTGGACAAACCTCTGCCATGGCCGTGGAAAGGG 5520
 1781 V S P L S W D L V G R N L F A M A V E G 1800
 5521 GTGGTGTCTCCTCATTACTGTCATGCCAGTACAGATTCTCATCAGGCCAGACCT 5580
 1801 V V F F L I T V L I Q Y R F F I R P R P 1820
 5581 GTAAATGCAAAGCTATCTCTCTGAATGATGAAGATGAAGATGTGAGGCGGAAAGACAG 5640
 1821 V N A K L S P L N D E D E D V R R E R Q 1840
 5641 AGAATTCTGTGGTGGAGGCCAGATGACATCTAGAAATCAAGGAGTTGACGGAAAGATA 5700
 1841 R I L D G G G Q N D I L E I K E L T K I 1860
 5701 TATAGAAGGAAGCGGAAGCCTGCTGTTGACAGGATTGCGCTGGGCATTCCCTGGTGAG 5760

- 6/42 -

1861 Y R R K R K P A V D R I C V G I P P G E 1880
 5761 TGCTTGGGCTCCGGAGTTAATGGGCTGAAAATCATCAACTTCAGATGTTAAC 5820
 1881 C F G L L G V N G A G K S S T F K M L T 1900
 5821 GGAGATAACACTGTACCGAGGGATGCCTTCCTAACAGAAAATAGTATCTTATCAAAC 5880
 1901 G D T T V T R G D A F L N R N S I L S N 1920
 5881 ATCCATGAAGTACATCAGAACATGGCTACTGCCCTCAGTTGATGCCATCACAGAGCTG 5940
 1921 I H E V H Q N M G Y C P Q F D A I T E L 1940
 5941 TTGACTGGGAGAGAACACGTGGAGTTGGCTTGAGAGGAGTCCCAGAGAAAGAA 6000
 1941 L T G R E H V E F F A L L R G V P E K E 1960
 6001 GTTGGCAAGGTTGGTAGTGGGCACTGGAAACTGGGCTCGTGAAGTATGGAGAAAAA 6060
 1961 V G K V G E W A I R K L G L V K Y G E K 1980
 6061 TATGCTGGTAACCTATAGTGAGGGACACAAACGGCAAGCTCTACAGCCATGSCTTTGATC 6120
 1981 Y A G N Y S G G N K R K L S T A M A L I 2000
 6121 CGGGGCTCCCTGGTGTCTGGATGAAACCCACAGGGCATGGATCCCAAAGCCCG 6180
 2001 G G P P V V F L D E P T T G M D P K A R 2020
 6181 CGGTTCTGTGGATTGTGCCCTAACGTCTGTCAAGGAGGGAGATCACTAGTGCTTACA 6240
 2021 R F L W N C A L S V V K E G R S V V L T 2040
 6241 TCTCATAGTATGGAGAATGTGAAGCTTTGCACTAGGATGGCAATCATGGCAATGG 6300
 2041 S H S M E E C E A L C T R M A I M V N G 2060
 6301 AGGTTCAAGGTGCTTGGCAGTGTCCAGCATCTAAAAAATAGGTTGGAGATGGTTATACA 6360
 2061 R F R C L G S V Q H L K N R F G D G Y T 2080
 6361 ATAGTTGACGAATAGCAGGGTCAACCCGGACCTGAAGCCCTGTCAGGATTCTTGG 6420
 2081 I V V R I A G S N P D L K P V Q D F F G 2100
 6421 CTTGCATTTCTGGAGTGTCCAAGAGAACACCGGAACATGCTACAATACCGCTT 6480
 2101 L A F P G S V P K E K H R N M L Q Y Q L 2120
 6481 CCATCTTCATTATCTCTGGCAGGATATTCAAGCATCTCTCCAGAGCAAAAGCGA 6540
 2121 P S S L S S L A R I F S I L S Q S K K R 2140
 6541 CTCCACATAGAAGACTACTCTGTCTCAGACAAACATTGACCAAGTATTGTGAAC 6600
 2141 L H I E D Y S V S Q T T L D Q V F V N F 2160
 6601 GCGAAGGACCAAAACTGTATGACCACTTAAAGACCTCTCATACACAAAAACAGACA 6660
 2161 A K D Q S D D D H L K D L S L H K N Q T 2180
 6661 GTAGTGGACGTTGCAGTCTCACATCTTCTACAGGATGAGAAAGTGAAGAAAGCT 6720
 2181 V V D V A V L T S F L Q D E K V K E S Y 2200
 6721 GTATGAAGAATCTGTTACAGGGGGCTGAAAGTAAAGAGGGACTAGACTTCTT 6780
 2201 V *
 6781 GCACCATGTGAAGTGTGTGGAGAAAAGAGCCAGAACAGTTGATGTGGAGAAAGTAAACTG 6840
 6841 GATACTGTACTGATACTATTCAATGCAATGCAATTCAATG 6880

Figure 3

5' 1 GTACCCCCCT TGCCTGGTTG ATCCTCAGGG TTCTACTTAG AATGCCTCGA

51 AAAGTCTTGG CTGGACACCC ATGCCAGTC TTTCTGCAGG GTCCCATATTG
101 GGTAAACCTT CTCATTCTAT CCCATGTGAA CCAGGCCAGG CCCATCAGGG
151 TTGGCAACC CCCTGTGCA GTGGTTGCTG CCAGGTGACA GGAGCAAGCC
201 TGCACTGCT GGGGGCCAT CGAGAGACAG CCTGCCAGAG GGGAGAACAC
251 CTGGGAGGC CAGAGCGTG GAGACAGCAA GAGACCAGGG GCTGAGGACA
301 GAGTAGTACA GGTCTTGGT CCCAGTAGTC CTGAAACACAC TGCACCTCCGA
351 ACCTTTCTGT ACTTAGCTTA AGCCAGTTGG AGTTTCTGTC CTTTACAACC
401 AAGAGCTTG ATAGGAATGG GGTCTCTGTC TAGCTGACTG TTGGCTCTT
451 TCCCGATCGG CGCTGGAGG GGAACACAGC AGTGACTACA GTGGGTAGCT
501 TACTCGGTGCG TGGCGATGCT AGAAAGTGTG TGCCATGCTT TATTTCCCAC
551 GTGGTGGGGAA TTTTGACCCCC ACCTGTACAG ACAGATAAAGT GAGGACCCCTT
601 TTCACCTTAT CCTGCAACAG AAAATCCAGC AGCCAAAGCC AACAAAGGGCC
651 CAGCATAGCA TCTCCCTCT CTGACTTCAT CCTCACGCTC CACACACCAT
701 CCCCCCTGGCC ATTCCCAGCA GCCCAGTAAG CACTGCCTCA CACTTCCAGT
751 TCCGGACCCAG CCAGGATGGC CAGGCTGTGAT GGGGGCCATC CACCGGCTGA
801 AGCCAATTCG CTATTCCTGA GCTGAAGGTG AATCAATCCC GCATAAAATCT
851 TCAGGGACAGAG AACTNGGGTG GGGGGTAGAA GAGGGGGAT GTCTAGAAGG
901 AAATTCTGGG GCACATTCCCT GGAAAGTGGAGG AGGATGGATA TTGGACAGAAA
951 ATTATGTCAT TGCAAGGCACCT CTCACTTGGCC CTGGCCACAT GGCAAGTTCC
1001 TCCCCGGCTG TGTTCCGNNC CTCTCTGCTG GCTCCAGGGC CTGTCCTGTC
1051 CTGGAGCGAG ATGGGTCCCA GGGCTGGCA CCAGTCCCCA TCTCCAGCCA
1101 TCAGGCACCTT TCCTCTGCTG GTTTGGGT AAACACNTCC CTAGGTTGG
1151 GGATCTGAAT CCTCTCTCCA ACACACTCAA GCCTTGCTGG GCCTCCCTGC
1201 AGTGTATGTT TAAGGCACCA CACAGCCTCC AAGGCCTGGC ACCCGGGCAG
1251 TGCCCACCTG GTAAACACAG CAGTCAGATT TCCTCATTTC AGCCAAGTGT
1301 AAAATCAAGG TAATGGATAC ACNTTTTTT TTTTNTNTT TTTCCAGGGG
1351 GNTNNNTTTT TTTGAGAGC GAGTCCTACT CTGTCANCCC CGGCTCTGGAG
1401 TGCACTGGCT CAATCTGGC TCANCTGGCA AGTCCCGCT CCCAGGTTCA
1451 TGCCATTCTC CTGCTCTGAGC CTACATAGTA GCTGGGACTA CAGGTGCCG
1501 CCACCACACCC TAGCTAATTT TTTGTATTT TAGTAGAGAC GGGGGTTCTA
1551 CATGTTAGCC AGGATGGCT CGATCTCTG ACCTCCAAA GTGGTGGGAG
1601 TTACAGGTTG GAGCCACTGC GCNCCGGCTG GATGACTCTT GAGACAACAC
1651 CATTCAAGACA AAGGCAGGC CTCCCACCTTA AACTCATAAC CGTGTCTCCT
1701 TTCTCTCTT CGATTTGAGC GGCTGAATTG GTTACAGTC ATCTGACCTG
1751 TGGGTGTGAA NGTCCACCTG CCTGGCATAA AAAGCTGTG CTCCTTCTA
1801 GGTGAGGAGA AAGAGAGAGA CCTGGCTCAT CTGAGGTGTG GTGGGAGGG
1851 GGGACCCAGG TGTGCTGGAA ATGAAAAGAA ATGCATTCCT GTTTTCTCGT
1901 CCCAACATGC AAACAACCTGA ACAAAAGCAT TAGGGCTGA GACTGGGAGT
1951 AAAGAATTCC TTGTACCCAT GGATACCCAGG AAATGCCCACTTATATAT
2001 ATAAGGGCT TTAGAGATGC TGACCATCT GATATTCCAG CCTGGGGCCA
2051 CATGGGAGTG TGCCCTGGT TTATTCCTTA TACAGTTCCA TGAACATGGC
2101 TCTGGAAACA CCTCTGTCTG CAGAAATGA GGCTTTCTT TTTTGTCTG

2151 GGGGTGAACA GAGGGCAGAG GCCTGGGCAT CTTCACTCAG CACCCCTTG
 2201 TAACCCAGCA CTTAGCACCA TGGCTGGCC ACAGCAATGT CACATGTG
 2251 AGTGCACACG ATGCCCTACT GCCAGGGTC ACCCCACACC GGTGCTGTTG
 2301 GGGCGTTGG AGTGGTATC TCTTCTTAG TCCTCAAGCT CCTACCTGGC
 2351 AGAGAGCTGC CCAACACCGT CGGGGTGGGG TGGGCGGGAA GGGAAAGAC
 2401 AGCAGCAAGA AAGAACCCCCC CTGGCCCTCA CTCTCCCTCC CTGGACGCC
 2451 CCTCTTGAC CCCATCACAC AGCCGCTTGA GCCTGGAGN CAGTGGATT
 2501 CCAGCGCTGG GAACCCCCCCC CGTCTGTCCC GTGTCCCCC GGAGCCTCAC
 2551 CCNCGTGCTC CGGCAGCCCC CGCGAGTTCG GGACCCGGGG TTTCGGGGT
 2601 GGCAGGGGGT TCCCATGCCG CCTGGCAGGC CTGGCTCGG GCCGCTCCC
 2651 GAACCTGAC TTCAGGGGTC CTGGCTGCCG GCCCCAGCA GGAGCAAAC
 2701 AAGAGCACCG GCACCTGCCG GCCCGCCCG CCCCTTGGT CCGGCCAATC
 2751 GCGCGCTGG GGCGGGGTCG GGCGCGCTGG AACAGAGCC GGAGCCGGAT
 2801 CCCAGCCGGA GCCCAAGCGC AGCCCGCACC CGCGCAGCG GCTGAGCCGG
 2851 GAGCCAGGGC AGCCCTGCCG CCCAGCTCA AGCCTGCTCC CGCCCGCCNG
 2901 CCGCCGACG CGCCGCCCG CGCCCCCGGG GCATGGCTGT CTGATGCCG

EXON1/INTRON 1

2951 CTTCTCGGT CGGCACCGGG ATGGTGAAGTG AGCGCATCCT TCGTCCGCCG
 3001 GGAACGTTT TATTTCAAG GAGAGCAGGA AACACACAAA GACTCGCAAG
 3051 CTCGACCTGA CACCCCTCCC AGGAGCGCGT CCTCTGGGGC GCTGACCCAG
 3101 GGGCACCTTA GAGTGGCGCC CGGCTCCGAT CGCTGCCCT NNCCCTCCG
 3151 CCAGGCCAC CTGGGAGCCT CGGGGATGCC CCTTGACCCG GCAGAGNGCA
 3201 CGGACTAGGT GGAGGGNNCC GGGATTGGGG CGGGGGGCAG NCAGTTGCC
 3251 TACAAGTGG ACCGATGGCC TTGACCTGAT GGCTTCTGGG CGGGGGGGT
 3301 GGGGAGCTGG GGACCCGGG CGCACCTGGG ACTGGGGAGG GGCGCCAGCT
 3351 TGGGCCGAG GGAAGAGGGG ACTTGAGAA GGGGAGCCCC GCGCGCGGG
 3401 CTGTGGGCTT GGGGACCCGG GACTTCGCG GCCATCCCCA GGAAACGCCAG
 3451 GCAAGGTCTG GGGAACAAAA GAGGAAGCTG CCCCCAGAGA GCCGGAGCTC
 3501 GACTGNACTC CC 3'

Figure 4

5'

1 CTTGGTGCCG CATGCATCGT GTTGCTCATC TTTCTGGCCT TCCAGCAGAG
 51 GGCATATGTC GCCCCTGCCA ACCTGCCTGC TCTCTGCTG TTGCTACTAC
 101 TGATGGCTG GTGATCACA CCGCTCATGT ACCCAGCCTC CTTCTCTTC
 151 TCCGTGCCCA GCACACCTTA TGTGGTGCCTC ACCTGCATAA ACCTCTTTAT
 201 TGGCATCAAT GGAAGCATGG CCACCTTGTG GCTTGAGCTC TTCTCTGATC
 251 AGAAGCTGCA GGAGGTGAGC CGGATCTGA AACAGGTCTT CTTATCTTC
 301 CCCACTCTG CTTGGCCGG GGGCTTATTG ACATGGTGC GNAACCAGGC
 351 CATGGCTGAT GCCTTGTGANC CTTGGAAAG AAGGCAGTTC AAGTACCTG

401 NCTTGGAAAGG TGGCGGAAGA ACCTTTGGC ATGGGAACAG GCCCCCTTT
451 CCTTCTCTTC ACACTANTGT TCAAGCACCG AAGCCAACTC NTGCCACAAG
501 CCCAGGTAAG GTCTCTGCCA CTCCGGAGA GAGACGAGGA TGTAGCCCGT
551 GAACGGGAGC GGGTGGTCCA AGGAGGCCACC CAGGGGGATG TGTGGTGCT
601 GAGGAACATTG ACCAAGGTAT ACCGTGGGCA GAGGATGCCA GCTGTTGACC
651 GCTTGTGCCT GGGGATTCCC CCTGGTGAAGT GTTTGGGCT GTGGGTGTG
701 AACGGAGGAG GGAAGACCTC CACGTTTCGC ATGGTACGG GGGACACATT
751 GCCCAGCAGG GGGCAGGGCTG TGCTGGCAGG CCACACGGG CCGGGAAACC
801 CAGTGTGCGC ACCTCNAGGG CAGGCNCAGC GTGGCCCGGG AACCCAGTGC
851 TGCGCACCTA AGCATGGGAT ACTGCCCTNA ATCCGATGCC ATCTTGAGC
901 TGCTGACGGG CGGGAGCAC CTGGAGCTGC TTGGGGCCCT GCGCGGTGTC
951 CGGGAGGCC AGGTTGCCA NACCGNTGGC TCGGGCCTGG CGCGTCTGGG
1001 ACTCTCATGG TACGCAGACC GGCTGCAGG CACCTACAGG AACCTGCCCG
1051 GGCGGCCGCT CGAGCCNTA NNTGAAGTA 3'

Figure 4b

...CTCCTGCCAC AGTTAGTGAG GTCTATGGAG AGGGTGGCAG GGGCCAAGGA
CCTACTTTAA GCCCACAGAT ATTCTGTCCC CAGGCCAGG GTGAGGTCTC...

Figure 5

CDNA-sequences of lipid sensitive Genes:

ABCB9, ABCA6, ABCC4, ABCA1, ABCD2, ABCB1, ABCB4, ABCC2, ABCD1, ABCC1, ABCB6, ABCB11, ABCG2, ABCC5, ABCA5, ABCG1, ABCA3

ABCB9 GENBANK:U66676

GCCAATGNCACGGTTTCATCATGGAACTCCAGGACGGCTACAGCACAGAGACAGGGGAGA
 AGGGCGGCCAGCTGTCAAGGTGGCCAGAACGAGCGGGTGGCATGGCCNGGCCTGGTGC
 GGAACCCCCCAGTCCTCATCTCGGATGAAGCCACCAGCGCTTGGATGCCAGAGCGAGT
 ATCTGATCCAGCAGGCCATCCATGGCAACCTGTCAAGAGCACACGGTACTCATCATCGCG
 CACCGGTGAGCACCGTGAGCACCGCAGCCTATTGTGGTGTGGACAAGGGCCGGTA
 GTGCAGCAGGGCACCCACCCAGCAGCTTGCTTGCCCCAGGGCGGGCTTTAACGGCAAGCTN
 GTTGCAAGGGCAGATGTGGGTTCAAGGGCCAGACTTCACAGCTGGCCAACAGGCC
 TGTAACCAACAGGGTCAACAGGCTGATGGGGGGCCCTCCTCGCCCGGTGGCAGAGGAC
 CGGGTGGCTGGCAGATGTGCCAACCGAGGTTTCCAGCTGGCCCTACCGAGGCCAGGC
 CTGCAAGCAGTAAAGAACGACCTGCGATGTCCTCATGTCAGTCAACGGCTINTGCAATCTGGCCC
 TGGTCCCTGGCCCCATTCCCAAGGGCAGCTTCATCCCCNNCTGGGGATGTCCAAGAGCATA
 GTCCCTCTCCCCATACCCCTCCAGAACAGGGCTTCCCTGTCCGGAGGGAGACACGGGAA
 CGGGATTTCCGCTCTCCCTGTGCCAGCTGTGAGTCTGGCCAGGGGGTAGGGAG
 CGTGGAGGGCATCTGTCGCAATTGCCCTGCGCAACTTAAGCCAGTCTCACTGTGACC
 ACACGAAACCTCAACTGGGGAGTGAGGAGCTGGCCAGGTCTGGAGGGGCTCAGGTGCC
 CCCAGCCGGCACCCAGCTTCCGCCCTGTCAATCAACCCCTGGCTGGCAGCCGCC
 CCCACCCGCCCTGTGCTCTGTGCTGGAGGCCAGTGGACCTCATGAGATGCATT
 CTCTCTGTCTTGGTGGAGGGATGGTCAAAAGCCCAGGATCTGGCTTGGCAGGGTT
 GCAACATGTTGAGAGAACCCGGTCAATAAAGTGTACTACCTCTTACCCCT

ABCA6 GENBANK:U66680

TCTTAGATGAGAACCTGTTATAATTGCCAGCTGTCTACACAAAGAATATGCAGGCCAGA
 AGAAAAGTTGCTTTCAAGAGGAAGAAGAAAATAGCACGCAAGAAATATCTCTTCTGTG
 TTCAAGAAGGTGAAATTGGATTGCTAGGACCAAATGGTCTGTGAAAAGTTCATCTA
 TTAGAATGATATCTGGATCACAAAGCCAACTGCTGGAGGGTGGAACTGAAAGGTGCA
 GTTCAAGGTTGGGCCACCTGGGGTACTGCCCTCAAGAGAACGTGCTGTGGCCCATGCTGA
 CGTTGAGGGAACACCTGGAGGGTGTATGCTGCCGTCAAGGGGCTCAGGAAAGCGGACGC
 GGCTCGCCATGCCAGATTAGTGACTGCTTCAAAACTGCAATGAGCACTGAATCTTCTG
 TGCAAGAAATTAAAGCAGGAAATCACAGAGAAAGTTGTGTTTGCTGAGCTCTGGAA
 ACTCACCTGTCTGCTCTGGATGAACCATCTAGGCCATAACCCACAGGGCAGCAGCA
 AATGTTGGCAGGCAATCCAGGCACTGGTAAACACAGAGAGGGTGTCTCTGTGACCA
 CCCATAACCTGGCTAGGGCGAGGCTTGTGACCGTGTGGCCATCATGGTGTGGAA
 GGCTTAAAGTGCATTGGCTCATCCAAACCTGAAAAAAACACTTGGCAAGGATTACATT
 TAGAGCTAAAGTGAAGGAAACGTCAGTGAATTGGTCCACACTGAGGATTCTGAAGC

TTTTCCCCACAGGGCTGCAGGGCAGGAAAGGTATTCCCTTTGGTAACCTATAAGCTGCC
 GTGGCAGACGTTTACCCCTATCACAGACCTTCACAATTAGAACAGTGAAGCATAA
 CTTAACCTGGAAAGAATACAGCCCTTCCAGTGACACACTGGANAAGGTNTCCCTANAAC
 CTTAACCTAAAACAGGAAGTTAGGAATTGAAATGAAAANNNACCNCCCCCTCATTC
 AGGTGGAAACCTTAAACCTCAAAACCTAGTAATTTTGGATCTCTATAAAACTTATG
 TTTATGTAATAATTAAATAGTAGTTAAATTAAAGATCATTTAAATTAAACATCAGGT
 ATATTGGTAATTAACTGTGATAAAGGCAATACAAAATATTAAATTATTCTCTCAAACA
 TAGGGGTGATAGCAAACCTGTGATAAAGGCAATACAAAATATTAGTAAAGTCACCCAAAG
 AGTCAGGCACGTGGGTATTGTGGAATAAAACTATATAAACTTAA
ABCC4 GENBANK: U66682
 ATGGATAAGTTTAACTAGTGTGGCACATGGCGGATGTATAGATATACTAGGAGGACC
 TAGTTGTTACCTCTGTATGAAAAGCGCTCCCTGGTACTACAATAAGCTTCGTGAAAGG
 AGTGTAACTCTAACACAACACTCAGGAAGTATTGAAAGAACACTGGATAAGGAAAAAA
 CCTCAGCTACTCTGTATTCAGACATTGGCTACAAGTGGGTGGTGGTCTGTG
 GCTGTGGCCCGTGATTCTGGATCCAAATACCCCTGGTCCCTGGAAATCATTTCTT
 TTTCTGGGATAATTGGAAACGTCAGAGATGTGAAGCCCTGGAAATCTACAACT
 GAGTATGGAAACTCGGGGTGGTATAGACATGCTAGCTAGTTCCATTGCCATAAATT
 ACAGAGACCCCTGAAATTCCGGCAGACTCTGTCTCCAGAATTCTCTAACATTAGGTAA
 TTGAGCTATTGGCCATTGATCAACTTGTGCTTGAAGCATGTGGAATTGATAGCCT
 GCAAGCTAACTTGCATTGGAAATAGGAAGGAGTGAAGGCCATATGGGGAGTAAATAT
 TCTACAGGAATGTCAAGCACTGTGAAGACAGGGACTC

ABCA1 Acc. Nr. : AJ012376 GENBANK: HSA012376

CAAACATGTCAGCTGTACTGGAAAGTGGCCTGGCCTCTATTATCTTCTGATCCTGATC
 TCTGTTGGGCTGAGCTACCCACCCCTATGAAACAACATGAATGCCATTTCCTAAATAAGCC
 ATGCCCTCTGCGAGGAACACTCTCTGGGGTTCAGGGGATTATCTGTAATGCCAACACCC
 TGTTTCCCTTACCCGACTCTGGGGAGGCTCCCGGAGTTGGTGGAAACTTTAACAAATCC
 ATTGTTGGCTGCCTTCTCAGATGCTCGAGGCTTCTTTATACAGCCAGAAAGACACC
 AGCATGAAAGGACATCCGAAAGTTCTGAGAACATTACAGCAGATCAAGAAATCCAGCTCA
 AACTGAAAGCTTCAGATTTCTGGGACAACTGAAACCTTCTGGGTTCTGTATCAC
 AACCTCTCTCCCAGTCTACTGTGGACATGCTGGAGGCTGATGCAATTCTCCAC
 AAGGTATTGGCAAGGCTACAGTTACATTGAGAACGTCGTGCAATGGATCAAATCA
 GAAGAGATGATTCAACTTGTGGTACCAAGAAGTTCTGAGCTTGTGGCTTACCAAGGGAG
 AAACCTGGCTGCAGCAGCGAGTACTCTGTTCCAACATGGACATCCTGAAGCCAACTCTG
 AGAACACTAAACTCACATCTCCCTTCCGAGCAAGGAGCTGGCGAAGGCCAACAAACA
 TTGCTGCATAGTCTGGGACTCTGGCCAGGAGCTGTTCTGAGCATGAGAACGCTGGAGTGC
 ATGCGACAGGGAGGTGATGTTCTGACCAATGTGAACAGCTCCAGCTCCTCCACCCAAATC
 TACCAGGCTGTGCTCGTATTGTCGCGGCAATCCCGAGGGAGGGGGCTGAAGATCAAG
 TCTCTCAACTGGTATGAGGACAACAACACAAAGCCCTTGGAGGCAATGGCAGTGA

GAAGATGCTGAAACCTTCTATGACAACACTACAACACTCCTTACTGCATGATTGGATGAAG
AATTGGAGCTAGTCCCTTTCGGCATATCTGGAAAGCTCTGAAGCGCGCTGCTCGTGT
GGGAAGATCCTGTATAACCTTGACACACTCAGGCCAACAGGCAGGTCAATGGCTGAGGTGAAC
AAGACCTCCAGGAACCTGGCTGTGTTCCATGATCTGGAAAGGCATGTGGGAGGAACACTAGC
CCCAGAATCTGGACCTTCATGGAGAACAGCCAAGAAATGGACCTTGCCGGATGCTGTTG
GACAGCAGGGACAATGACCACCTTGGGAACAGCAGTGGATGGCTTAGATGGACAGCC
CAAGACATCGTGGCGTTTGGCAAGCACCCAGAGGAATGGCAGTCCAGTAATGGTCT
GTGTACACCTGGAGAGAAGCTTCAAGGAGACTAACCGAGCAATCCGGACCATATCTCGC
TTCATGGAGTGTCAACCTGACAAAGCTAGAACCCATAGCAACAGAACAGTCTGGCTCATC
AACAAAGTCCATGGAGCTGCTGGATGAGAGGAATTCCTGGCTGGTATTGTGTTCACTGG
ATTACTCCAGGCACTTGGAGGCTGCCCCATCATGTCAGTACAAAGATCCGAATGGACATT
GACAATGTGGAGAGGACAATAAAATCAAGGATGGCTACTGGGACCCCTGGCTCGAGCT
GACCCCTTGGAGGACATGGGGTACGCTGGGGGGCTCGCCACTTGCAGGATGTGGT
GAGCAGGAATCATCAGGGTGTGACGGGACCCAGAAGAAAATCTGGTGTATATGCAA
CAGATGCCCTATCCCTGGTACGGTGTGACATCTCTGGGGGTGATGAGCCGGTCAATG
CCCCCTTCATGACGGCTGGCTGGATTACTCAGGGCTGTGATCATCAAGGGCATCGT
TATGAGAAGGAGGGCACGGTGAAGAGGACATGGGGATCATGGGCTTGAGACACAGCATC
CTCTGGGTTAGGGCTGGTTCATTAGTAGGCTCATTCCTTCTTGAGCGCTGGCTGGCTA
GTGGTCACTCTGAAGTTAGGAAACCTGCTGGCTACAGTGAATCCCAGGGTGTGTTG
TTCCAGTCCGTGTTCTGGGTGACAATCTGCACTGGCTTCTGATTAGCACACTCTT
TCCAGAGCCAACCTGGCAGCAGGGCTGTGGGGCATCATCTACTTCAGGCTGTACCTGCC
TACGGCTCTGGTGTGGCATGGCAGGACTACGGGCTTCACACTCAAGATCTCGTAGC
CTGGCTGTCTGGCTGGCTTGGGGTTGGCTGTGAGTACTTGGCTTGGAGGAGCAG
GGCATTGGAGTGCAGTGGGACACCTGGTGTGAGATGAGTCTGGAGGAAGATGGCTTCAAT
CTCACCACTGGCTCCATGATGCTGTTGACACCTTCTCATGGGGTGTGACCTGG
TACATTGAGGCTGTCTGGCTGGCTGGGGTTGGCTGTGAGTACTTGGCTTGGAGGAGCAG
ACCAAGTCCACTGGTTGGCGAGGAAAGTGTGAGAAGAGGACCCCTGGTTCCAACCCAG
AAGAGAATATCAGAAATCTGCATGGAGGAGGAACCCACCCACTTGAAGGCTGGCGTGT
ATTCAAGAACCTGGTAAAGCTACGGAGATGGGTGAGGCTGTGATGGCCCTGGCA
CTGAAATTCTGGAGGGCCAGATCACCTCTTCCGGGCAACATGGAGCGGGGAAGACG
ACCACCATGTCATCTGGGGGGTGTCTGGGGGGGGACCTGGGCAACGGCTACATCTGG
GGAAAAGACATTCGCTGTGAGATGAGCAGGACCATGGGGCAGAACCTGGGGTGTG
CATACGGCTGTGTTGACATGCTGACTGTGAGAAGAACACATCTGGTCTATGCCCC
AAAGGGCTCTGTGAGAGAACAGCAGTGAAGGGAGATGGAGCAGATGGCCCTGGATGGT
TTGCCATCAAGCAAGCTGAAAAGCAAAACAGGCACTGTCAGGGTGGAAATGCAAGGAAG
CTATCTGTGGCTTGGCTTGTGAGGAGATCTAAGGTTGTGATCTGGATGAAACCCACA
GCTGGTGTGGACCCCTAATGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
ATTGCCATCATCTCCATGGGAAGCTGTGCTGTGTTGGGGCTCCCTGGTGTGTTCTGAAGAAC

CAGCTGGAACAGGCTACTACCTGACCTTGGCAAGAAAGATGTGGAATCCTCCCTCAGT
TCCCTGCAAAAACAGTAGTAGCACTGTTGTCATACCTGAAAAAAGAGGAGCACAGTGTTCAG
AGCAGTTCTGATGCTGGGCTGGGCAGCGACCATTGAGAGTGACACGCTGACCACATGATGTC
TCTGCTATCTCCAACCTCATCAGGAAGCATGTTGTCAGGCCCCGGCTGGTGGAAAGACATA
GGGCATGAGCTGACCTATGTTGCTGCCATATGAAAGCTGCTAAGGAGGGAGCCTTGTGGAA
CTCTTCATGAGATTGATGACCGGCTCTCAGACCTGGCATTCTAGTTATGGCATCTCA
GAGACGACCCCTGGAAAGAAATTCTCAAGGTGGCGAAGAGACTGGGGTGGATGCTGAG
ACCTCAGATGGTACCTTGCAGCAAGACGAAACAGGGGGCTTCGGGGACAAGCAGAGC
TGTCTTCGCCCCTGTCACTGAAGATGATGCTGCTGATCCTAATGATTCTGACATAGACCCA
GAATCCAGAGAGACAGACTTGCCTCAGTGGGATGGATGGCAAGGGTCTTACCCAGGTGAA
GGCTGGAAACTTACACAGCAACAGTGGTGGCCCTTTGTGGAAAGAGACTGCTAATTGCC
AGACGGAGTCGAAAAGGATTTTTGTCAGATTGTCAGCTTGGCAGCTGTTGTCAGCATT
GCCCTGGTCTTCAGCTGATCGTGCACCCCTTGGCAAGTACCCCAGCCTGGAAACTTCAG
CCCTGGATGTCACACGAAACAGTACACATTGTCAGCAATGATGCTCTGAGGACACGGGA
ACCCCTGGAAACTTAAACGGCCCTCACCAAAGACCCCTGGCTTGGGACCCGCTGTATGGAA
GGAAACCCACTCCAGACACCCCTGGCAGGGAGGAAGACTGGACACTGGCCCA
GTTCCCCAGACCATCATGGACCTTCTCCAGAAATGGGAACTGGACAAATGCAAAACCTTCA
CCTGCATGCCAGTGTAGCAGCAGAAAATCAAGAAGATGCTGCCGTGTTGTCAGGG
GCAGGGGGCTGCCCTCTCCAAGAAAACACTGCAGAATATCTTCAGGACCTG
ACAGGAAGAACATTCGGATTATGTTGAGACGTTGAGACTGGACATCATAGCCAAAGC
TTAAAGAACAGATCTGGGTAATGAGTTAGGTATGGCGGCTTTCCCTGGGTGCTAGT
AATACTCAAGCACTTCTCCAGTCAAGAAGTTAATGATGCCACAAACAAATGAAGAAA
CACCTAAAGCTGGCCAAGGACAGTTCTGCAGATCAGTTCTCAACAGCTTGGGAGATT
ATGACAGGACTGGACACAGAAATAATGTCAGGTTGTTCAATAACAAAGGGCTGGCAT
GCAATCAGCTTCTGAATGTCATCAGCAATGCCATTCTCCGGGCCACCTGCAAAAG
GGAGAGAACCTAGCATTATGGAATTACTGCTTCAATCATCCCTGAAATCTCACCAAG
CAGCAGCTCTCAGAGGTGGCTCGCATGACCCACATCAGTGGATGCTCTGTGTCATCTGT
GTCATCTTGCAATCTCCCTCGCCAGCCACTTGTGCTATTCTGATCCAGGAGCGG
GTCAAGCAAGAACAAACACTGCAGTTCACTAGTGGAGTGAGGCTGTCATCTACTGGCTC
TCTAATTTGTCTGGGATATGTCAGTACAGTGGTGTCCCTGCCACACTGGTCATTATCATT
TTCATCTGCTTCCAGCAGAAGTCTCATGTCCTCCACCAATCTGCCGTGCTAGCCCTT
CTACTTTGTCTGATGGGCTGCAATCACCTCTCATGTAACCCAGCTCCCTTGTGTC
AAGATCCCCAGCAAGCCATATGTTGCTCACAGCTGAAACCTCTTCATGGCATTAAAT
GGCAGCGTGGGCCACCTTGTGCTGGAGCTGTTCACCGACAATAAGCTGAATAATATCAAT
GATATCCTGAAGTCCCTGTTCTGATCTTCCACATTTCCTGGGACAGGGCTCATC
GACATGGTAAAAACACAGCAATGGCTGATGCCCTGGAAAGGTTGGGGAGAATCGCTTT
GTGTCACCAATTATCTGGACTTGGGAGCAGAACCTCTGCCATGGCGTGGAAAGGG
GTGGTGTCTCCCTCATTACTGTTGATCCAGTACAGATTCTCATCAGGCCAGACCT
GTAATGCAAAGCTATCTCCCTGAAATGATGAAGATGAAGATGTGAGGCGGGAAAGACAG

09/2002-09/2003
AGAATTCTTGTGGTGGAGGCCAGAACATGACATCTTAGAAATCAAGGAGTTGACGAAGATA
TATAGAAGGAAGCGGGAGGCCTGCTGTGACAGGAGTTTGCCTGGGCATTCCCTCTGGTGAG
TGCTTTGGGCTCTGGGACTTAATGGGGCTGGAAAATCATCAACTTCAGATGTTAAC
GGAGATACCCTGTTACACAGAGGAGATGCTTCCCTAACAGAAATAGTATCTTATCACAA
ATCCATGAAGTACATCAGAACATGGGCTACTGCCCTCAGTTGATGCCATCACAGAGCTG
TTGACTGGGAGAGAACACCGTGGAGTTCTTGCCTTTGAGAGGGAGTCCCAGAGAAAGAA
GTTGGCAAGGGTGGTGGAGTGGGCAATTGGGAAACTGGGCTCGTGAAGTATGGAGAAAA
TATGCTGGTAACATACTGGAGGAACAAACGCAAGCTCTACAGCCATGGCTTGTAC
GGCGGGCCTCTGTGGTTCTGGATGAAACCCACACAGGCATGGATCCCAAAGCCCCG
CGGTTCTTGTGGAAATTCTGCGCTAACGTGTTCAAGGAGGGAGATCAAGTACTGCTTACA
TCTCATAGTATGGAAAGATGTGAAGCTCTTGCACTAGGATGGCAATCATGGTCAATGG
AGGTTCAAGTGGCTTGCCTGGCAGTGTCCACACTTAAAAAAAGGTTGGAGATGGTTATACA
ATAGTTGTACGAATAGCAGGGTCCAACCCGGACCTGAAGGCTGTCCAGGAATTCTTGG
CTTGCAATTCTCTGGAAAGTGTCCAAAAGGAAACCCGGAAACATGCTACAAATACCGCTT
CCATCTTCAATTCTCTGGCAGGATATTGCACTGCATCTCTCCAGAGCAAAAGCGA
CTCCACATAGAACAGTACTCTGGTCAAGAACACTTGGCCAAGTATTGTGAACCTT
GCCAAGGACCAAAAGTGTGATGACCAACTTAAAGACCTCTCATTACACAAAAACAGACA
GTAGTGGACGGTGTGAGTCTCACATCTTCTACAGGATGAGAAAGTGAAGAAAGCTAT
GTATGAAAGATCTGTGTCATACGGGGTGGCTGAAAGTAAAGGGACTAGACTTCTT
GCACCATGTGAAGTGTGGAGAAAAGAGCCAGAACAGTTGATGTGGGAAGAAGTAAACTG
GATACTGACTGATACTATTCAATGCAATGCAATTCAATG
ABCD2 Acc.Nr.: AJ000327 GENBANK: HSALDR
AAAACACAACAGTGGAGAGAACGCTGCATACTATGGGACGCTGTAGGACTTTCTAAAA
CATTGCTGGGATTTCTGTGAAGCATGATCTTAAACGAATTCTTGGAAAGCCGGTT
TGGGTAACTGGGAAATGACACATATGCTAAATGCAGCAGCTGATCGAGTGAATGGACC
AGATGAGTGTGCTGAAGGGCTGCCTGCCCTGGCTGGCTGGCGCATATGCTCTGAAAACC
CTCTATCCCATATTGCAAGGGTTAAAGAACATCTGGCACCGAGACCATTTGTGAAAAA
GCTTACCTGTGCAAGAACAGAAAATCTGCATTGCACTGGCACGGAGACCATTTGTGAAAAA
CTTCCGCTGGAGTGAATGCAAGTCTTCTCAACAGCTACTAGAACCTTGGAAAATTCTG
TTTCCAAAATCTGTGACCAACTGAAACAGGGTGGCTCTGCCCTGCACTCAGTGGCTCTAATC
TCAAGAACCTTCTTCTATCTATGTGGCTGGCTGGATGGAAAATCGTGAAGAACGATT
GTGGAAAAGAGCTGGACTTCTCATCAAATTAACTAAGTGGCTTATGATGGCATC
CCTGCTACCTTGTCAACAGTGCATAAGTGTACCTGGAAATGCAAATTGGCTTGGCTTC
AGAACTCGCTTAGTAGACACAGCCTATGAAACCTTATTTACAAATCAGACTTATTA
GTGATCAATATGGATGGAGGAGCTGGCAACCCCTGACCAATCTCTTACGGAGGATATTG
ATGTTCTCCAACTGTGGCTCACTGTGTTCTGCAACTTCAATCTGACCAACCTTATTTAGATG
ATGCTGACCTCTTACACTCATCAAACAGTGCATACATCCAGAGGAGCAAGCCCAATTGG
CCCACCCCTACTAGCAGGACTTGTGGTGTATGCCACTGCTAAAGTGTAAAAGCCTGTTCT
CCCAAAATTGGCAAACTGGTGGCAGAGGAAGCACAATAGAAAAGGCTATTGCGGTATGTG

CACTCGAGAATTATAGCCAATGTAGAAGAAAATTGCCTTTACAGAGGACATAAGGGTAGAA
ATGAAACAACTTCAGAAAAGTTACAAGCTTAGCAGATGACCTCATTTATCC
AAACGTTTGTGGTACATCATGATAGAACAGTCTCTGATGAAGTATGTTGGAGCAGACT
GGACTTAATTATGGTGGCTATACTTATTACTGCAACTGGCTTGAGATGGTAGGGAT
GGCCAAAAGCAAGTTATGGTTAGTGAACGGACAGAACGCTTACACTGCTGAAATTAA
CTGGCCCTCTGGAGCTGATGCTATTGAAAGGATTATGCTTCATACAAAGAGGTCACTGAA
TTAGCAGGCTACACTGCTCGAGTGTACAATATGTTGGGCTTGTAGAAGTAAAAGA
GGCATTATAAGAGAACTGCTGTCATTCAAGAACTGCAAAGGCTAGCAAGAAATGGACCT
AAGGTTAGAATTACCTCTCAGTGCACATTGGCAATTAAAGGAAAAGTTATTGATGTGGAT
CACGGATTATTTGTGAAATGTGCCATAATTACACCCAGGAGAAGTGGCTTCC
AGGCTAAACTCAAAGTAAAGAGAACGATCTTTGATAACTGGTCCCAATGGTGT
GGGAAAAGTTCTCTTCAGAATTCTAAGTGGGCTCTGGCTCTGTATGAAGGAGTCCTC
TATAAACACCCTCTCAACATATGTTTATATTCACAAAGGCCATATATGCTCTTGG
AGTCTTGGGATCAAGTCATTACCTGTGATGGGATATGCACTGATAAAAGGTTAT
ACAGACCAAGATCTGGAACGTCATCTACAACTGTCATCTACATGTTCAAAGA
GAAGGGATGGGATGGCTGTGTTAGTGGACTGAAAGATGTCCTGTAGGAGGGAAAAGCAA
AGAATGGGATGGCTGTGTTAGTGGACTGAAAGATGTCCTGTAGGAGGGAAAAGCAA
ACCAGTGTGTCAGTCATGTGTCGAAGGAAAGATATTTCAGGCTGCAAAAGGGCTGGA
ATTTCCTTACTGCTATAACACACAGACTCTCTTGGAAATACACACACATTATA
CAGTTTGATGGTGAAGGAGGTTGGCGCTTGAACAATTGGATACTGCTATCCGTTGACA
TTGAGTGAAGAAAACAAAAGCTAGAACTCAGCTAGCTGAAATTCCAAAATGCAGCAG
AGACTCAATGAACATGTAATTTGGGAGAAGACTCAAGTGTGAAACAACTTAAAGG
GAAGATGAGACATCTTAAATTGTTGACATATTAAAAAGTTAATTATTAGATAAAGG
CTCAAGACATTCTGTATAGTCATGAAAGTATGTTAAGCTAACAGAGAAAAAAGG
CAGCAAGACATGTTTATAAGTTAGCTTAAGGAAGTATATGATCTGACTTTCTAGG
AGAAAATAACAAATGCAATTGTAAACAGGTTTCTAGGTGAATTCCGTGATGAAACAGGATT
TACTATGTTATGTGGTGTCTGAAGTCTTAAACAAACATGGGCAATTCTGGAAATG
AAACAAGTTATAACTGAGCACCCATTGGTTGATACCAAGTCATAAGATCAAACCTTG
AGTGCACATTAGTCCATTATGGTGTATTAGGTTTAACTAGTAAATTCAAATTGATT
ATTGCTAGTGGCCAACCTAAACCTGTACAAAATAGCTGACAGTTTATAACTAATTCAAAT
ATAAAAATTGTTTAATGGCATTGGTGAAGGAAAAGCATGGCTAAATGTATCAAAT
GCCNTATTAAATTGGACTTTAAAGCATCTTAAATGAGGGCATATAACAAATTAAATT
TAGTACAATCTTAAATTGTTAAATAACCTTCTATTAAAGGAAATTGCCAATAC
AGAAAAGGAGTATCCAAACATGTCTCAACCTGATAATTCCCTTAGCAGAATTACCTT
GCAACTCTGTGTCAGAAATACACAGCTTGTGAGGAGATGAGTCTACATT
AGAACTGCAATGGTATAAAGGAACCTAAGGATTCTGAGAATCATGTAATAACACATAC
GGAATAGTACTTTATAATTACAATCCCCATTACATCATTACCTTAAATGTTGAGGAC
AATGTTTGAAACAAATACTATTTCCTACTTTGCTTGTAGAAAATTGACACTCAGAC

TTGCCCTAATCATGCACCTTACTTAAGGAAAGATCGAGAAATCAAATGAAGTTCTCCTGA
CTCTCTGGTTAGTGTCTTTGTTATTATCCCTTAAATCAAACGGCTATAAGCAA
TAAAAGTTAGACGAAGTGAGAAAAATAAATAAATTTCAATGTTAAAAAAAAAAAA
AAAAAA

ABCB1 Acc. Nr. M14758 GENBANK: HUMMDR1
CTCTACTCTATTCAAGATATTCTCCAGATTCTTAAAGATTAGAGATCATTCTCATTCTCCT
AGGAGTACTCACTTCAGGAAGCAACCAGATAAAAGAGAGGTGCAACGGAAGCCAGAACAT
TCCTCTGGAAATTCAACCTGTTCGAGTTCTCGAGGAATCAGCATTCACTGCAATCCG
GGCCGGGAGCAGTCATCTGTTGAGGCTGATTGGCTGGCAGGAACAGGCCCGGGCGT
GGGCTGAGCACAGCGCTCGCTCTTGCACAGGAAGGCTGAGCTCATTGAGTAGCGC
GCTCTTCAAGCTCAAAGAACAGAGGCCGCTGTTGTTCTTGTAGGTCTTCACTAA
AGTCAGAGTATCTCTTCAAGATTTCACCTCTGGTGGCCGTTCCAAGGGAGCCGAGGT
CGGGATGGATCTGAGGGGAGCAGCAATGGAGGAGCAAAGAACAGAAACTTTTTAACT
GAACAATAAAAGTGAAGAAAGATAAGAAGGAAAGAACAACTGTCAGTGTATTTCAT
GTTTCGCTATTCAAATTGGCTGACAAAGTGTATATGGTGGGGAAACTTGGCTGCCAT
CATCAAATGGGGCTGGACTCTCTCATGATGCTGGTTGGAGAAATGACAGATATCTT
TGCAAAATGAGGAAATTAGAAGATCTGATGTCAAACATCACTAATAGAAGTGTATCAA
TGATACAGGGTTCTTCATGAATCTGGAGGAAGACATGACCAGGTATGCCTATTACAG
TGGAATTGGTGTGGGGTGTGGTTGCTTACATTGAGGTTTCATTGGCTGCCG
AGCTGAAAGACAAATACACAAAATTACAAAACAGTTTTCATGCTATAATGCCACAGGA
GATAGGCTGGTTGATGTCAGATGGGGAGCTTAAACACCGACTTACAGATGATGT
CTCTAAGATAATGAAGATTGGTGCACAAATTGGAAATGTTCTTCAGTCATGGCAAC
ATTTCCTACTGGGTTATAGTAGGATTACACGTTGTTGAGCTAACCCCTGTGATTTT
GGCCATCAGTCCTGTTCTGACTGTCACTGCTGCTGCTGGCAAGATACTATCTTATT
TACTGATAAGAACTCTAGCGTATGCACAAAGCTGGAGCAGTAGCTGAAGAGGTCTGGC
AGCAATTAGAACTGTGATGTCATTTGGAGGACAAAGAACAGAAACTTGAAAGGTACACAA
AAATTAGAAGAAGCTAAAAGAATTGGATAAGAACAGCTATTACAGCCAATATTCTAT
AGGTGCGCTTCTGCTGATCTATGCATCTTGTCTGGCTTCTGGTATGGGACACC
CTTGGCTCTCTCAGGGAAATTCTATTGGACAGGCATCTCAAGCATTGCAAG
AGGAGCAGCTTATGAACTTCAGATAATTGATAATAAGCCAAGTATTGACAGCTATT
GAAGAGTGGGCACAAACAGATAATTATAAGGAAATTGGAAATTCAAGAATGTTCACTT
CAGTTACCCATCTGAAAAGAGTTAACATCTGGAGGGCCTGAAACCTGAAGGTGAGAG
TGGGCAAGCGTGGCCCTGGTGGAAACAGTGGCTGTTGGAGAGGACACAAACTCCAGCT
GATGCGAGGGCTCATGACCCCCACAGAGGGGATGGTCACTGTTGATGGACAGGATATTAG
GACCATATAATGTAAGGTTCTACGGGAAATCATGGTGGGGTGAAGTCAGGAACCTGTATT
GTTTGCACACCGATAGCTGAAACATTGCTATGGCCGTGAAAATGTCACCATGGATGA
GATTGAGAAAGCTGTCAGGAAGGCAATGCCTATGACTTATCATGAAACTGCCTCATAA
ATTGACACCCCTGGTTGGAGAGAGAGGGGCCAGTTGAGTGGTGGGCAGAACAGAGGAT

CGCCATTGCACGTGCCCTGGTCGCAACCCCAAGATCCTCCCTGCTGGATGAGGCCACGTC
AGCCTGGACACAGAAAGCAGATGGTTCTGGATAAGGCCAGAAAAGG
TCGGACCAACATTGTGATAGCTCATGTTGCTCACAGTCGAATGCTGACGTCATGCG
TGGTTGATGATGGAGTCATTGTGGAGAAAAGGAAATCATGATGAACTCATGAAAGAGAA
AGGCATTACTCAACATTGCAATGCAAGCAGACAGCAGGAAATGAAAGTTGAATTAGAAAA
TGCAGCTGATGAATCCAAGAATGATGCCCTGGAAATGCTTCAAATGATTCAAG
ATCCAGTCTAATAAGAAAAGATCAACTCGTAGGAGTGTCGGATCACAGGCCAAGA
CAGAAAGCTTAGTACCAAAAGAGGCTCTGGATGAAAGTACCTCCAGTTCTTTGGAG
GATTATGAAGCTAAATTAACTGAATGCCCTATTTGTTGGTGTATTTGTCAT
TATAATGGAGGCCCTGCAACAGCATTGCAATAATATTTCAAAGATTAGGGGTTT
TACAAGAATTGATGATCCCTGAAACAAAAGCACAGAATAGTAACTTGTTTCACTATTGTT
TCTAGCCCTTGGATTATTCTTTATTACATTTCCTTCAGGGTTCACATTGGCAA
AGCTGGAGAGATCCCTCACCAAGCGGCTCGGATACATGGTTTCCGATCCATGCTCAGACA
GGATGTTGAGTTGGTTGTGACCCCTAAACACACTGGAGCATTTGACTACCAGGCTCGC
CAATGATGCTGCTCAAGTTAAAGGGCTATAGGTTCCAGGCTTGCTGTATTACCCAGAA
TATAGCAATCTTGGACAGGAATAATTATATCTTCATCTATGGTGGCAACTAACACT
GTTACTCTTAGCAATTGTAACCATTCATGCAATAGCAGGAGTTGTGAATGAAAATGTT
GTCTGGACAAAGCAGTAAAGAAGAAACTAGAAGGTGCTGGGAAGATCGCTACTGAA
AGCAATAGAAAATCTCGAACCGTTGTTCTTGACTCAGGAGCAGAAGTTGAACATAT
GTATGCTCAGATTGTCAGGTAACCAATCAGAAACTCTTGAGGAAAGCACAATCTTGG
AATTACATTTCTTACCCAGGCAATGATGTTATTCTTCTATGCTGGATGTTTCCGTT
TGGACGCCACTTGGTGGCACATAAAACTCATGACCTTGGAGGATGTTGCTGTAGTATTTC
AGCTGTTGCTTTGGTGCATGGCCATGGCGTGGGCAAGTCAGTTCTTGCTCTGACTATG
CAAAGCCAAAATATCAGCAGGCCACATCATGATCATGTTAAAACCCCTTGTATTGA
CAGCTACAGCAGGAAGGCCAATGCCAACACATTGGAAAGGAAATGTCACATTGGTGA
AGTTGTTATCAACTATCCCACCCGACGGGACATCCCAGTCGTTCTGCTGACTGAGCCTGG
GGTGAAGAAGGGCCAGACGCTGGCTCTGGTGGCAGCAGTGCTGTGGGAAGAGCACAGT
GGTCCAGCTCCCTGGAGCGGTTCTACGACCCCTTGGCAGGGAAATGCTGCTTGATGGCAA
AGAAATAAAAGCAGTAAATGTTCACTGGCTCCGAGCACACCTGGCATCGTGTCCCAGGA
GCCCATCCCTGTTGACTGCACTTGGTGAAGAACATTGGCTATGGAGAACACAGCGGGGT
GGTGTACAGGAAAGAGATCGTGAGGGCAGCAAAGGAGGCCAACATACATGCTTCTGCA
GTCACTGCTTAATAATAGCACTAAAGTAGGAGACAAAGGAACCTCAGCTCTGGTGG
CCAGAAACACGCAATTGCAATAGCTCGTGGCTTGTGAGACAGCTCATTTGCTTTT
GGATGAAAGCCACGTCAGCTCTGGATACAGAAAGTGAAAAGGTTGTCAGAAGGCCCTGG
CAAAGCCAGAGAAGGGCAGCTGCACTTGTGATGGCTACCGCCCTGTCACCATCAGAA
TGCAGACTTAATAGTGTGTTTCAAGATGGCAGAGTCAGGAGCATGGCACCCATCAGCA
GCTGCTGGCACAGAAAGGCACTATTGTTCAATGGTCACTGGTGGCAAGGCTGGACAAAGCG
CCAGTGAACCTGACTGTATGAGATGTTAAATACTTTAATATTGTTAGATGACA
TTTATTCAAAGTTAAAGCAAACACTTACAGAATTATGAAGAGGTATCTGTTAACATT

CCTCAGTCAGTTAGAGTCTTCAGAGACTTCGTAATTAAAGGAACAGAGTGAGAGACAT
CATCAAGTGGAGAGAAAATCATACTTTAAACTGCATTATAAATTATAACAGAAATTAAAG
TAGATTAAAAGATAAAATGTGTAATTGGTTATATTTCGACTTGAAATGTTGCATAAAGTGT
ACTGCCCTGCTAAAAGATTAGAAGTAGCAGAAAAAGTATTGAAATGTTGCATAAAGTGT
CTATAAAACTAAACTTTCATGTG
ABCB4 Acc. Nr.: M23234 GENE BANK: HUMMDR3
CTGCCAGACCGCGCAGGGTTCGAGGCTGAGATGGATCTTGAGGGCGCAAAGAACGGAA
CAGCCTGGCGCCCAACAGCGCGAGGGCGACTTGAACCTGGGATCAGCAGCAAACAA
AAAGGAAAAAAACGAAGACAGTAAAATGATTGGAGTTAACATTGTTGCATACTCCG
ATTGGCAGGATAAATTGTTATGCGCTGGGTACCCATCATGGCCATAGCTCACGGATCG
GTCTCCCCCTCATGTGATAGTATTGGAGAGTAGCTGACAATTGTTGATACTGCG
GAAACTCTCCTTCCAGTGAACCTTCCCTGCTGCTAAATCAGGCAAATTCTG
AAGAAGAAATGACTAGATACTGCAATTACTACTCAGGATTGGGTGCTGGAGTTCTGTTG
CTGCCTATATACAAAGTCTATTGGACTTGGCAGCTGGTGCAGACATCAGGAAAATT
GGCAGAAGTTTCTATGCTATTCTACAGCAGGAAATAGGGATGGTTGACATCAATGACA
CCACTAAGCTCAATACCCGCTAACAGATGACATTCTCAAATCAGTGAAGGAAATTGGTG
ACAAGGGTGGAAATGTTCTTCAGCAGTAGGCCACGTTTGCAGGATTCATAGGGAT
TCATCAGAGGATGGAACTCACCCCTGTGATAATGGCCATCAGGCCATTCTAGGACTCT
CTGCACCCGTTGGCAAGATACTCTGGCATTTAGTGACAAAGAACTAGCTGCTTATG
CAAAGCAGGCCGCGTGGCGAAGAGGCCCTGGGGCCATCAGGACTGTGATAGCTTCTG
GGGGCCAGAACAAAAGAGCTGGAAAGGTATCAGAAACATTAGAAAATGCCAAAGAGATTG
GAATTAAAAGCTATTGCAAGAACATTCCATGGGATTGGCTTCTGTTAATATATG
CATCATATGCACTGGCCTCTGGTATGGATGGACTCTAGTCATATCAAAGAATATACTA
TTGGAAATGCAATGACAGTTTTTCTAATCCTAATTGGAGCTTCTAGTGTGTTGGCCAGG
CTGCCCATGTATTGATGCTTTGCCATTGCAAGAGGAGCAGCATATGTGATCTTGT
TTATTGATAATAATCTAAATTGACAGTTTCAGAGAGGAGCACAAACAGACAGCA
TCAAAGGAAATTGGAGTCAATGATGTTCACTTTCTACCCCTCTGAGCTAACGTC
AGATCTGAGGGCTAACCTGAAGGGTGCAGAGTGGCAGACCGTGGCCCTGGTTGGAA
GTAGTGGCTGGGAAAGAGCACACGGTCAAGCTGATACAGAGGCTCTATGACCCCTGATG
AGGGCAACAAATTACATGATGGCAGGATATTAGGAACCTTAATGTAACATCTGAGGG
AAATCTGGTGTGGTAGCTCAGGAGCCGGTGCCTTCCACCAATTGCTGAAATA
TTTGTATGGCCGTGGAAATGTAACCATGGATGAGATAAGAAAGCTGTCAAAGAGGCCA
ACGCCATGACTTTATCATGAAATTACACAGAAAATTGACACCCCTGGTGGAGAGAG
GGGCCAGCTGAGTGGCGAGAAGCAGGAGATGCCATTGCACGTGCCCTGGTCTG
ACCCCAAGATCCTCTGCTGGATGAGGCCACGTCAGCATGGACACAGAAAGCTGAAACCTG
AGGTACAGGAGCTGGATAAGGCCAGAGAAGGCCAGACCATTGATGACAC
GACTGCTACGGTCCGAAATGCAAGATGTCATCGCTGGGTTGAGGATGGAGTAATTG
AGCAAGGAAGGCCACAGCGAACTGATGAAGAAGGAAGGGGTGACTTCAAAACTG
TGCAGACATCAGGAAGGCCAGATCCAGTCAGAAGAATTGAACTAAATGATGAAAAGGCTG

CCACTAGAATGGCCCCAAATGGCTGGAATTCGCCTATTAGGCATTCTACTCAGAAAA
ACCTTAAAAATTCAAAATGTGTCAGAA GACCCCTTGATGTGAAAACCGATGGACITGGAAG
CAAATGTGCCACCAGTGTCTTTCTGAAGGTCCTGAAACTGAATAAAAACAGAAATGGCCCT
ACTTTGTCGTGGAAACAGTATGTGCAATTGCAATTGGGGCCTTCAGCCGGCATTTTCAG
TCATATTCTCAGAGATCATAGCATTGGACAGGGCAGTGCAGTGAAGCAGCAGA
AGTGCACACATATTCTCTTGATTTCATTCTGGAAATTATTCCTTTTACTTCT
TCCTTCAGGGTTTCAGCTTGGAAAGCTGGCGAGATCCTCACAGAACAGACTGCGGCTCAA
TGGCTTTAAAGCAATGCTAACAGACAGGACATGAGCTGGTTGATGACCATAAAACAGTA
CTGGTGCACCTTCTACAAGACTTGCCACAGATGCTGCCAAGTCCAAGGGCCACAGGAA
CCAGGGTGGCTTTAAITGCAAGAAATATAGCTAACCTTGGAACTGGTATTATCATATCAT
TTATCTACGGTTGGCAGTTAACCTTATTGCTATTAGCAGTTGTTCCAATTATTGCTGTG
CAGGGATTGTTGAAATGAAATTGCTGGAAATGCCAAAGAGATAAAAAGAACCTGG
AAGCTCTGAAAGATTGCAACAGAGGAATAGAAAATTTAGGACAGTTGTTGCTTTG
CCCAGGAAAGAAAATTGTAATCCTAATGTTGAAAATTGTTGACCTTACAGGAATT
CTGTCAGAAGGCACACATCTGGAAATTACTTTAGTATCTCACAAGCATTATGTT
TTTCTCTATGTCGTTGTTGATTTGCAATTGCAATATCTCATGGAAATGCCATAGCGCT
TCAGAGATGTTATTCTGGTCTGCAATTGCTATTGGTGCAGTGGCTTAGGGACATG
CCAGTTCATTGCTCCAGACTATGCTAACGCTAACGCTGCTGCAGGCCACTTATTCTG
TGGTGAAGACAAACCTCTGATTGACAGCTACAGTGAAGAGGGGCTGAAGCTGATAAAAT
TTGAAGGAAATATAACATTAAATGAAGTCGTTGCAATTATCCACCCGAGCAAACGTC
CAGTGCCTCAGGGCTGAGCCTGGAGGTGAAGAAGGCCACAGCACTAGCCCTGGGCA
GCAGTGGCTGTGGAAAGAGCACGGTGGTCCAGCTCCTGGAGCGGTTCTACGACCCCTGG
CGGGGACAGTGCTCTCCTGATGGTCAAGAACGAAAGAAACTCAATGTCAGTGGCTCAGAG
CTCAACTCGGAATCGTCTCAGGAGCCATTCTATTGACTGCAGCATGGCAGAAATA
TTGCTATGGAGACAAACAGCGGGTTGTTGATCACAGGATGAAATTGAGTGCAGCCAAAG
CTGCCAACATACATCCTTCATCGAGACGTTACCCACAAATATGAAACAGAGTGGGAG
ATAAGGGGACTCAGCTCTCAGGAGGTCAAAAACAGAGGATTGCTATTGCCGGAGCCCTCA
TCAGACAACTCTCAATCTCTGTGGATGAAGCTACATCAGCTCTGGACTGAAAGTG
AAAGGGTTGTCAGAACGCCCCGAGCAAGGAGAACGGCCGACCTGCATTGTTGATTG
CTCAGCCCTGTCACATCCAGAACATGCAAGACTTAAATGTTGCTTCAAGATGGGAGAG
TCAAGGAGCATGGCACCATCAGCAGCTGCTGGCACAGAAAGGCATCTATTTCATGG
TCAGTGTCCAGGTGGACACAGAACATTATGCAACTTGTACAGTATATTAAAAATA
AAATCAAAATTCTACCCATT
ABCC2 Acc.Nr.: U49248 GENBANK: HSU49248
AGGATAATTCTGTCACCTTCTTGATGAAACAGTAAAGAAAGAAACACAACTCAT
ATTAATAGAAGAGTCTGTTCCAGACCCAGTCCAGGAATCATGCTGGAGAAGTCTGCA
ACTCTACTTTGGAAATTCCCTCATCCGGACAGTCGGAGGGCAGACCTGGCACTTGTG
TTGAGCAAACGTTCTGGTGTGGATTCCCTGGCTCCATGGCTCCCTGGCCCCCTGGC
AGCTTCTCCACGTGTATAAAATCCAGGACCAAGAGATCCTTACCCACAAACTCTATCTT

CTAACGAGGTATCGGGTTCTCTTATCTAGCAGGCCATAGAGCTGGCCCTTGAC
TCACAGAAGACTCTGGACAAGGCCACAGTCCCTGCTGTTGATATAACCAATCCAAGGCCCT
ACCTAGGCACATGGCTCTGGTTGCTGATCCAATACAGCAGAACATGGTGTGACAGA
AAAACCTCCGTTCTGCTCCATTCTGGATTCTCGAGTACTCTGTTGCACTTTCCAAAT
ITCAGACTCTGATCCGGACACTCTTACAGGGTGCACAACTCTAATCTAGCCACTCTGCCC
TGTTCTCATCTCCATCGGATTCCAGATCTCTGATCTCTGATCTTCTGAGCTTTCAGAAA
ATAATGAGTCATCAAATAATCCATCATCCATAGCTTCACTCCGAGTAGCATTACCTACA
GCTGGTATGACAGCATTCTGAAAGGCTACAGCGCTCTGACACTCGAGGAATGTC
GGGAAGTTGATGAAGAGATGAAAACCAAGACATTAGTGAGCAAGTTGAAACGCACATGA
AGAGAGAGCTGAGAAAGCCAGGCGGGCAGTCCAGAGACGGCAGGAGAAAGGCTCCAGC
AGAATCTGGAGGCCAGCTGGCTGGCTGAACAAGAAATCAGAGTCAAGGCCAAAGATGCC
TTGCTCTGGAGAGATGTTGAAAAGAAAAAAAGAGTCTGGGACCAAAAGGATGTTCCAA
AATCTCTGGTTGATGAAGCTCTGTTCAAACCTTCTACATGGTGTCTGAAATCATCC
TACTGAAGGCTATGTAATGACATCTTACGTTTGATGCTCTCAGCTGCTGAAATGCTG
TCTCCCTTGTCAAGTGCAGCTGACACATATTGTTGATTGGATATCTCTGTCATCTCT
TATTCACTCGGCTCTCATCTGACTCTTCTGCTTCTAGTGTATTTCTCAACTGTCCTCA
AGCTGGGTAAAAGTACGGCACAGCTATCTGCTTCTGTTATAAGAAGGCCATTGACCC
TATCCAACCTGGCCAGGAAGGAGTACACGGTTGGAAAACAGTGAACTGTAATGCTGG
ATGCCAGAACGCTATGGATGTCACCAACTCTCATGACATGCTGTTGTCAGTGTCTAC
AGATTGCTTATCTATCTCTCTCATGGAGAGTGTGGGACCCCTGAGTCTTACAGGAGTG
TTGGGGTATGGTGTGTTGAACTCCAAATTATCGAATCTGTCACAGGAGTAAAGCCA
TTCAAGGCTAAATATGAAGATAAAAGACAAACGTTTAAAGATCATGAATGAGATTCTTA
GTGGAATCAAGATCTGAAATATTTGCTGGAAACCTCTCATCGAGACCAACTACAAA
ACCTCCGGAAAGAAGAGCTCAAGAACCTGCTGGCCCTTACTGTCACACTAGTGTGAGTAA
TATTCGTCTTCCAGTTAACTCCAGTCTGGTATCTGTTGTCACATTCTGTTATGTC
TGGTGGATAGCNAACATATTGGATGTCACAAAGGCCCTTCACCTCCATTACCCCTTCA
ATATCTGCGCTTCTCCCTGAGCATGCTTCCCATGATGATCTCCCTCAATGCTCCAGGCC
GTGTTTCCACAGAGCGGCTAGAGAAGTACTTGGGAGGGGATGACTTGGACACATCTGCCA
TTCGACATGACTGCAATTGACAAAGCCATGCAAGTTCTGAGGCCCTTACTCTGGG
AACATGATTGGAAAGGCCACAGTCCGAGAGATGTAACCTGGACATTATGGCAGGCCAACTTG
TGGCTGTGATAGGCCCTGTCGGCTCTGGGAAATCTCTCTGATATCGCCATGCTGGAG
AAATGGGAAATGTCCACAGGGCACATCACCACGAGGCCACCAACTGCTTATGCTCCACAGC
AGTCTGGATTCTGAGAACATGGCACCATAAAGGACACATCTCTTGGAAACAGAGTTAAATG
AAAAGAGGTCTACAGCAAGTACTGGAGGGCTGTCCTCCCTCCAGACTTGGGAAATGCTG
CTGGAGGAGATTGGCTGAGATTGGAGAGAAGGGTATAAAATCTACTGTTGGGCTGCAAGGC
ACGGCAATCGGCCAGAGCTACCTACCAAAATTAGACATCTATCTCTGAGATGACCC
CCCTGCTGCACTGGATGTCATGTCAGGAAACATATTAAATGAGTCTTGGGCCCCA
ATGGCTGTGATGGAAAGGCCACAGTCACTCTGGTATCACATGACATCCTACTCTCT
AAAGTGGGATGAGATTGAGTTGAGTTCTGGGAAATGCAACAAATTGAGAGAAAGGATGCTCAACTG

CTCTCCCTGGCCAAAAAAGGAGAGTTGCTAAGAACTCTGAAGAACATTCTAAGACATACAG
GCCCTGAAGAGGAAGGCCACAGTCCTCATGTCAGTGAAGAAGAACAGCATGACTATGGGC
TGATATCCAGTGTGGAGAGATCCCCAAGATGCAGCCTCCATAACCATGAGAACAGAGA
ACAGCTTCGTCGAACACTTAGCCGCAGTTCTAGGTCCAATGGCAGGCACTGTGAAGTCCC
TGAGAAAACTCCTGAAAGACTCGGAATGTGAATAGCCTGAAGGAAGACGAAGAAACTAGTGA
AAGGACAAAAACTAATTAAGAAGGAATTCATAGAAAAGTGAAGGGAAAGGTGAAGTCTCCATCT
ACCTGGAGTACCTACAAGCAATAGGATTGTTTCGATATTCTTCATCATCCTTGCTTGTG
TGATGAATTCTGTGGCTTTATGGATCCAACCTCTGGCTCAGTGTGGACCAGTGACT
CTAAAATCTTCAATAGCACCGACTATCCAGCATCTCAGAGGGACATGAGAGTGGAGTCT
ACGGACCTCTGGGATTAGCCCAAGGTTATTTGTGTTCATAGCACATTCTGGAGTGCCT
TTGGTTCTGTCATGCATCAAATATCTTGACAAGCAACTGCTGAACAAATATCCTTCGAG
CACCTATGAGATTTTGACACACACCCACAGGCCGATTTGTGAACAGGTTGCCGGG
ATATTCCCAACTGGATGACACCCCTGGCTCAGTGTGGCGCAGCTGGATTACATGCTTCC
TGGGGATAATCAGCACCCCTTGTATGATCTGCATGGCACTCCTGCTTACCATCATCG
TCATCTCTCTGGCATATTATTTATGATCTGTCAGATTTATGTCACCTCCGGCC
AGCTGAGGCGCTCTGGACTCTGTCACCGTCCCAATCTACTCTCACTTCAGCGAGACCG
TATCAGGTTTGCCAGTTATCCGTGCTTGTGACCCAGCAGCGATTTCTGAAACACAATG
AGGAGAGGATTGACACCAACCAGAAAATGTCTTTCTGGATCACCTCCAAAGGTGGC
TTGCAATTCCGCTGGAGCTGGTTGGAACTGACTGTTCTTCTTGTGATGATGG
TTATTATAGAGATAACCTTAAGTGGGACACTGTTGGTTGTTCTGTCATGCACTCA
ATATCACACAAACCCCTGAACGGCTGGTGAGGATGACATCAGAAAATAGAACCAACATTG
TGGCTGTGAGCGAAATAACTGAGTACACAAAAGTGGAAATAGGGCACCTGGGTGACTG
ATAAGAGGCCCTCCGCCAGATTGGCCAGCAAAAGCAAGATCCAGTTAACAACTACCAAG
TGCCTGACCGACCTGAGCTGGATCTGGCTCAGAGGGACTACTGTGACATCGGTAGCA
TGGGAAGAATTGGTGTGGTGGCAGGGACAGGAGCTGGAAAGTCATCCCTCACAAACTGCC
TCTTCAGAACTTCTAGAGGCTGCCGGTGGCTCAGATTATCATTGATGGAGTAGATATTGCTT
CCATTGGGCTCCACGACCTCCGAGAGAACGCTGACCATCATCCCCCAGGACCCCATCCTGT
TCTCTGAAAGCCTGAGGATGAACTCGACCCCTTCACAAACTACTCAGATGAGGAGATT
GGAGGCTTGAGCTGGCTCACCTCAAGTCTTTGTGCCAGCCCTGCCACTTGGTTAT
CCCACGAGGTTACAGAGGCTGGCTGCCAACCTGAGCATAGGCCAGAGGAGCTGCTGTGCC
TGGCAGGGCTCTGCTTCCGGAATCCAAAGATCTGGTCTGGATGAGGCCACTGCTGCC
TGGATCTAGAGAACAGACAACACTCATTGAGCAGGACCATCCAAAACGAGTTGCCACTGCA
CAGTGAATCACATGCCAACAGGCTGCATACCATGAGAACGTAATGGTCC
TAGACAACGGGAAGATTATAGAGTACGGCAGGCCCTGAAGAACCTGCTACAAATCCCTGGAC
CTTTTACTTTATGCTAAGGAAGCTGGCATTGAGAATGTGAACAGCACAAATTCAGC
AGAAGGCCCATGGGTTAGAAAAGGACTATAAGAATAATTCTTATTTAATTTTATTTT
TATAAAATACAGAATAACATACAAAAGTGTGTATAAAATGTACGTTTAAAGGATAAG
TGAACACCCATGAAACCTACTACCCAGGTTAAGAAAATAAATGTACCGGACTTGAGAA
ACCCCTCGATTGCTACCTCGATCGTACTCCCTGCTACCCACCCCTCCAGGGACAACC

ACTGTCCTGAATTTACGATAATTATCCTTGCCTTCATTTCTGTGTTTATCACCTTG
TATGTATCTTTAAACACATAACCTTTTACTTATGTAATGGACTGACTCATCTG
CATACATCTCTATGACTGTGATTCTTTGTTCAATTATATCTGAGATTATCCATGGT
GATGCAAATAGGTGCAATTATTTTTCACTGCTCTGTGATTGCGATTGATGAATACA
GCACAAATGATCAGTTAATATGGGATCATTAGCATTATCTCAGGTTTAAAAAT
TATAAGCAGTACTACTATGG
ABCD1 Acc.Nr.: Z21876 GENBANK: HSXLA1DA
GCGGACGGACGCCCTGGTGCCTGGGGAGGGGGCGCACGGGGGAGGAGGAGGAGGAGA
AGGTGGAGAGGAAGAGACGCCCTCTGCCAGAACCTCTCAAGGCCCTGACCTCAAGGG
CCAGGGCACTGACAGGACAGGAGAGGCCAGTCTCCACCTGGGCTGCCGAAGAGGCCG
CGACCCCTGGAGGGCCCTGAGCCCACCGCACAGGGGCCAGCACACCCGGGGCCTA
AAGGGACAGTCTCAGGGCCATCGCAAGGTTTCCAGTCTCAGAACACAGGCCAGGGT
CAGAGCAACAAATCTTCCAGGCCACTGCTCAACTGCTGCCAGGCACAGGCCAGTC
CCTAGCGGCCAGGCCAGGGTGCACATGCCGGTCTCTCCAGGCCCGGCCCTGGGG
GGAACACGCTGAAGGCCAGGGCGTCTGCCCTCGCGGCCATGGAGGCCACAAAG
TCTACCCCTTGTGCGGCCAGTGCCTCGGCCCGGCCAGGGCTCTCAGGCCCGGCCGG
AGCCCACGCAAGGAGGCCCTCGGGGTGCGGCCAGGCCAAAGCTGGCATGAACGGGTATTCC
TGCAGCGGCTCTGTGGCTCTGCGCTGCTGTTCCCCGGGTCCTGTGCCGGAGACGG
GGCTGCTGCCCTGCACCTGGCGCTTGTGAGGCCACCTTCTGTGCCGTGTATGTGG
CCCGCCTGGACGGAAGGCTGGCCGCTGCATGCCCGCAAGGACCCGGGCTTTGGCT
GGCAGCTGCTGCAGTGGCTCTCATGCCCTCCCTGCTACCTTCGTCACAGTGCCTCC
GTTACCTGGAGGGCCAAGTGGCCCTGCTGGCTCCGAGCCGCTGGTGCCACGCCCTACC
GCCCTACTTCTCCACGACACTACTACCGGGTCAGCAACATGGACGGCGCTTCGCA
ACCCCTGACAGTCTCTGACGGAGGAGCTGGTGGCCCTTGCGGCCCTGTGCCACCTCT
ACTCCAACTGACCAAGCCACTCTGGACGTGGCTGTGACTTCTACACCCCTGCTTCGG
CGGCCGCTCCCGTGGAGGCCAGGCCACAGCTGGCCCTCGGCCATGCCGGGCTCTGGT
TCCTACGCCAACAGTGTGCTGCCGGCTTCTCGGCCAAAGTTCGGGGAGCTGGTGGCAAGGG
AGGCCGGGGAGGGAGCTGGCTACATGCACTCGGTGTGGTGCCAACTCGGGAG
AGATGCCCTCTATGGGGCATGAGGTGGAGCTGGCCCTGCTACAGCGCTCCACCAAG
ACCTGGCTCGCAGATCACCTCATCTTCTGGAAACGCCCTGTGGTATGTTATGCTGGAGC
AGTTCCATGAAGTAATGTGGAGGCCCTGGCTCATGGTGGCTGCTCCCCATCA
TCACGCCACTGCTACTCAGACTCAGATGCAAGGGCGGTGAAGAAGGCCCTGGAAA
AGAAGGAGGAGGAGCTGGTAGCGAGGCCACAGAACGCCCTCACTATTGCCGCCACCTCC
TGACACGCCCTGCAAGATGCCATTGAGGGATCATGTGCTGTACAAGGGAGTGAAGGAC
TGGCTGGCTACACAGGCCGGTGCACAGAGATGTCCAGGTTATTAAGAGATGTTCAAGCGCT
GTCACCTCAAGAGGCCAGGGAGCTAGAGGACGCTCAGGCCGGGCTGGGACCATAGGCC
GGCTGGTGTGGAGGCCCTGAGATGCCAGGGAGGTGGTGGATGTGGAAC
AGGGGATCATCTCGCAGAATGCCCATCGTCAGGCCCTCAGGAGGGAGGTGGTGGGCCA
GCCTCAACATCAGGGTGGAGGAAGGCAATGCACTGCTCATCACAGGCCCAATGGCTGCC

GCAAGAGGCTCCCTGTCCGGATCCTGGGGTGGGCTCTGGCCACGTACGGTGGTGTGCTCT
ACAAGCCCCCACCCCAGCGCATGTTCTACATCCCGCAGAGGCCCTACATGTCGTGCGCT
CCCTGCCTGACCAAGGTGATCTACCCGGACTCAGTGAGGACATGCAAAGGAAGGGCTACT
CGGAGCAGGACCTGGAAGGCCATCCCTGGACGTCGTGACCTGCACCTGACACCACATCTGCAGGGG
AGGGAGGTTGGGAGGCTATGTTGACTGGAAGGACGTGCTGTGGGCTGGCGAGAACAGA
GAATCGGCATGGGCCGATGTTCTACACAGGCCAAGTAGCAGCCCTCTGGATGAATGCA
CCAGCGGGTGGAGCATCGACGTGGAAGGCAAGATCTTCCAGGCCGCAAGGACGCCAG
TTGCCTGCTCTCCATCACCCACCGGCCCTCCCTGTGAAATACCAACACACTTGCTAC
AGTTCGATGGGAGGCGCTGGAAAGTTCGAGAACGCTGACTCAGCTGCCCGCTGAGCC
TGACGGAGGAGAACGAGGCCGCTGGAGCACAGCTGGGGGCAATTCCCAAGATGCAAGGCC
GCCTCCAGGAGCTCTGCCAGATCCTGGGGAGGCCGTTGGCCCAAGGCCATGTGCCGGCAC
CTAGCCCCCAAGGCCCTGGTGGCCCTCAGGGTGGCCACTGACACAAACGGTCCCCGGC
CCCTGCCCGGCCCAAGGCTCGAGATCACATGAAGGAGAACGCAAGGCCACCCATGCA
CACCCCGGCCATGGCTGGCCCTCTCTAGAAAACCTTCCCG
ABCC1 Acc.Nr.: L05628 GENBANK: HUMMRPX
CCAGGGGGCTTGGCGCCCGCCCGCCCGCCCTGGCCCGCCGCCGCCGCCGCCGCCGCC
GCCGCCGCCGCCGCCGCCAGCGCTAGGCCAGCAGCGGGGCCGATCACCCGCCGCCGCC
TGCCCGCCGCCGCCGCCAGCAACCGGGCCGAGTACCCGCCGCCGGTGGCCGCCGC
CGCCCGGCCCA CGGGCATGGCGCTCCGGGCTTCTGGAGGCCGATGGCTGGACCCGCT
CTGGGACTGGAAATGTCAGTGAATCACCGCAACCCGACTTACCAAGTGCTTCA
CACGGTCTCGTGTGGGTGCTTGTGTTTACCTCTGGGCTGTTCCCTCTACTCT
CTATCTCTCCGACATGACCGAGGCTACATTCAGATGACACCTCTCAACAAAACAAA
TGCTTGGGATTTTGTGTGGATCGTCTGCTGGAGACCTCTTCTACTCTTCTGGG
AAGAAGTCGGGCATATTCTGGCCCAAGTGTGTTCTGGTCAAGCCAACTCTTGGG
CACCACGCTGCTGCTACCTTTTAATTCAGCTGGAGAGGAGGAAGGGAGTCAGTCTC
AGGGATCATGCTCACTTTCTGGCTGGTAGGCCCTAGTGTGTGCCCTAGCCATCTGAGATC
AAAAATTATGACAGCCTTAAAGAGGATGCCAGGTGGACCTGTTCTGTCAGACATCA
CTACGCTACTTTCTCTTACTCATTCAGCTGCTTCTGCTGTTCTAGATCGCTC
ACCCCGTCTCGAACCATCCAGCACCTTAATCCCTGCCAGGTCACCGCTTCC
CTCTGGAGGATCACCTCTGGTGGATCACAGGGTTGATTGTCCGGGGCTACCGGCCAGCC
CTCTGGAGGGCAGTGCACCTCTGGCTTAAACAAGGAGGACAGCTGGAAACAGTCGTGCC
TGTTTTGGAAAAGAACCTGGAAAGAACCTGGCCAAGACTAGGAAGGACGCCGGTGAAGGT
TGTGACTCTCAAGGATCTGCCAGCCGAAGAGAGGTCCAGGTGGATGCAATGA
GGAGGTGGAGGCTTTGATCGTCAAGTCCCCACAGAAGGAGTGGAAACCCCTCTGTTAA
GGTGTATAACAAGCCTTGGGCCCTACTCTCATGAGCTTCTTCAAGGCAATCCA
CGACCTGATGATGTTCTGCCAGGCAAGATCTTAAAGTGTGTCATCAAGTGTGAATGA
CACGAAGGCCAGACTGGCAGGGCTACTCTACACCGTGTGCTGTTGTCACTGCC
CCTGCAGACCCCTCGTGTGACCCAGTACTTCCACATCTGCTTGTGCACTGGCATGAGGAT
CAAGACCGCTGTGATTGGGCTGTCTATCGGAAGGCCCTGGTGAATCACCAATTGAGGCCAG

AAAATCCTCCACGGTCGGGGAGATTGTCAACCTCATGTCGTGGACGCTCAGAGGTTCAT
GGACTTGGCACCGTACATTAACATGATCTGGTCAGCCCCCTGCAGTCAGTGCTGAGTGGCGGTGATGGTCT
CTACCTCCTGTGGCTGAATCTGGCCCTTCCGTCTGGCTGGAGTGGCGGTGATGGTCT
CATGGTGCCTGCTAACTGCTGTGATGGCGATGAAGACCAAGACGTATCAGGTGGCCCACAT
GAAGAGCAAAGAACATCGGATCAAGCTGAATGAACGAAATTCTCAATGGGATCAAAGTGCT
AAAGCTTTATGCCCTGGAGCTGGCATCAAGGACAAGGGTGTGGCCATCAGGCAGGAGGA
GCTGAAGGTGTGAAGAAGTCTGCCTACCTGTCAAGCCGTGGGACCTTCACCTGGTCTG
CACGCCCTTCTGGTGCCTGTGCACATTGCGCTACGTGACCATTGACGAGAACAA
CATCCTGGATGCCAGACGCCCTCGTGTCTTGGCTTGTCAACATCCTCCGGTTCC
CCTGAACATTCTCCCATGGTCAATCAGCAGCACTGTGAGGGCAGSTGTCTCCCTCAAACG
CCTGAGGATCTTCTCTCCCATAAGGAGACTGGAACTGCACAGCATCGAGGGACGGCTGT
CAAAGACGGCGGGGGCACGAAACGCACTACCGTGAAGGAATGCCACATTCACTGGCCAG
GAGCGACCCCTCCACACTGAATGCCATCACCTTCCTCCATCCCCGAAGGTGCTTGGTGGC
CGTGGTGGGGAGGTGGCTGCAGGAAAGTCGTCCTCGTCTCAGGCCCTTGGCTGAGAT
GGACAAAGTGGAGGGGGCACGGTCAACAGGCTCCGTTGGCTATGTGCCACAGCAGGC
CTGGGATCAGAATGATCTCTCGAGAAAACATCTTTTGGATGTGAGCTGGAGAAC
ATATTACAGGTGGCTGATACAGGCCCTGTGCCCCCTCCAGACCTGGAAATCTCTGCCAG
TGGGGATCGGAGAGGAGATGGCGAGAAGGGCGTGAACCTGTCTGGGGGCCAGAGCAGCG
CGTAGCCTGGCCGGGGCGTGTACTCAACGCTGACATTTACCTCTCGATGATCCCCCT
CTCAGCAGTGGATGCCATGTGGAAAACACATCTTGAAGATGTGATTGGGCCAGGG
GATGCTGAAGAACAGACGGGATCTGGTCAAGCACAGCATGAGCTACTGCCGCAGGT
GGACGCTCATCACTGCTCATGAGTGGCGGCAAGATCTCTGAGATGGGCTCTACCAGGAGCT
GCTGGCTCGAGACGCCGCCCTCGCTGAGTTCTCGCTGACCTATGCCAGCACAGAGCAGGA
GCAGGATCAGAGGAGAACGGGGTCAAGGGCGTCAAGGGCTCAGGGAGGAAGCAGAAC
AAATGGAGAATGGCATGCTGGTACGGACAGTCAGGAGAACACTGCAAGAGACAGCTCAG
CAGCTCTCCCTCTATAGTGGGGACATCAGCAGGCCAACACAGCACCCAGAACATGCA
GAAAGCTGAGGCCAAGAAGGAGGAGACCTGGAAAGCTGATGGAGGCTGACAAGGCGCAGAC
AGGGCAGGTCAGCTTCCGTGTACTGGGACTACATGAAGGCCATCGGACTCTCATCTC
CTTCTCTAGCATCTCTCTTCTATGTTAACCATGTTGCTGGCCTGCTTCAACTATTG
GCTGAGCCTCTGGACTGATGACCCCCATCGTCAACGGGACTCAGGAGCACAGCAAAGTCCG
GCTGAGCGTCTATGGAGCCCTGGGATCTTCAACAGGGATCGCCGTGTTGGCTCAT
GGCCGTTGCTCATGGGGGATCTTGGCTTCCCGCTGTCGCACTGGACCTGCTGCACAG
CATCCCTGGGTACCCATGAGCTTGTAGCGGACCCCCAGTGGAAACCTGGTGAACCG
CTTCTCCAAGGAGCTGGACACAGTGGACTCCATGATCCGGAGGTCACTCAAGATGTTCAT
GGGCTCCCTGTTCAACGCTATTGGTGCCTGCATGTTATCTCTGCTGGCACGCCATGCG
CGCCATCATCATCCCCCTTGGCTCATCTACTCTCTGCTCAAGGGTCTACGTGGC
TTCTCTGGGAGCTGAGCGCTCGAGTCGGTCAAGCCGCTCCCGGTCTATTCCCATTT
CAACAGAGCTGTGAGGTGGACGAGAACCAAGAGGCCATTACCCAGCATCGTGGC
CCACCAAGAGTGACCTGAGGTGGACGAGAACCAAGAGGCCATTACCCAGCATCGTGGC

CAACAGGTGGCTGGCGTGGAGTGTGTTGGCAACTGCATCGTCTGTTGCTGC
 CCTGTTGGGTGATC CAGGACACGCCCTCAGTGCTGGCTTGCTGGCCCTCAGTGTC
 TTACTCATTCAGGTACCCACGTA CTTGA ACTGGCTGGCTGGATGTCA TCTGAATGGA
 AACCAACATCGTGGCGTGGAGGCTCAAGGACTATTCAAGAGACTGAGAAGGAGGCC
 CTGGCAAATCCAGGAGACAGCTCCGCCAGCAGCTGGCCCAAGGTGGCCAGTGGAATT
 CGGAAACTACTGCCTCGCTACCGAGAGGGACTGGACTCTGTTCTCAGGCACATCAATGTC
 CACGATCAATGGGGGAGAAAAGGTGGCATCGTGGGGGGAGCTGGGAAGTGGAAAGTCGTC
 CCTGACCTGGCTTATTCGGATCAAGACTGCTGGCAAGGAGAGATCATCATCGATGG
 CATCAACATCGCCAAGATCGGCTGCACGACCTCCGCTCAAGATCACCATCATCCCCA
 GGACCTGTTTGTGTTGGGTTCCCTCCGAATGAACCTGGACCCATTCAAGCAGTACTC
 GGATGAGAAGTGTGGACGCTCCCTGGAGCTGGCCCACTGAAGGACTTCGTGTCAGCCCT
 TCCTGACAAGCTGACCATGAATGTGAGAAGGCCAGGAGAACCTCAGTGTGGCAGGG
 CCAGCTTGTGCTGCTAGCCGGGCCCTGCTGAGGAAGACGAAGATCCCTTGTGATGAG
 GGCACCGCAGCCGTTGGACCTGGAAACCGGACGACCTCATCCAGTCCACCATCCGGACACA
 GTTCAAGGACTGCACCGTCTCACCATCGGCCACGGCTCAACACCATCATGGACTACAC
 AAGGGTGATGCTGTTGGACAAAGGAGAAATCCAGGACTACGGCCCTCGGACCTCT
 GCAGCAGAGAGGTCTTCTACAGCATGCCAAAGACGCCGGCTTGGTGTGAGCCCCAGA
 GCTGGCATATGGCTGCAACTGCAGGGCTTATGCACGGCCCAAGGGAGGTCACTGA
 CCCCTGGAAACCAAGCTCCACACTGAAACAAAACATAAAAACAAAACCCAGACAC
 AAAACATATTCAAAAGCAGCAGGCCATCGGCCCCCTGCTGGAACTGGCTGTGA
 AGACCCAGGAGAGACAGAGATGCGAACCCACC

ABCB6 GENBANK: AF070598

CCTTCCTGTGGATCCGGGTGCAAGCATTCAGTCTCGCGGGTGGAGCTGCTCATCTCT
 CCCACCTGCACGAGCTCTCACTGCCTGGCACCTGGCACAGGGGGGGCTGC
 GGATCGGGATCGGGGCACATCCAGTGTCAAGGGCTGCTCAGCTACCTGGTGTCAATG
 TCATCCCCACGCTGGCGACATCATCATTCAGTGGCATCATCTACTTCAGCATGTTCTCAACG
 CCTGGTTTGGCTCATGTGTTCTGTGCACTGAGTCTTACCTCACCCGTACCCATTGG
 TCACAGTGGAGAACCAAGTTCTGTGCTATGAAACACACAGGAGAACGCTACCCGG
 CACGAGCAGTGGACTCTCTGCTAAACTCGAGACGGGAGAAGTATTACACGCCAGAGTT
 ACGAAGTGGAAACGCTATCGAGAGGGCCATCATCAAATATCAGGGTTGGAGTGGAAAGTCGA
 GCGCTTCACTGGTTTACTAAATCAGACCCAGAACCTGGTATTGGCTGGGCTCTCG
 CCGGCTCCCTGCTTTCGCGCATCTTGTCACTGAGCAGAAGCTACAGGTTGGGACTATG
 TGCTCTTGGCACCTACATATTCCAGCTGTACATGCCCTCAATTGGTTGGCACCTACT
 ACAGGATGATCCAGACCAACTTCATTGACATGGAGAACATGTTGACTTGTCAAGAAGAGG
 AGACAGAAGTGAAGGACCTTCCTGGAGCAGGGCCCTCGCTTCAAGAAGGCCATTG
 AGTTGAGAACGTCACCTCAGCTATGCCATGGGGAGACTCTGCAAGGACGCTGTCTT
 TCACTGTTGATGCCCTGGACAGACACTTGCCTGGTGGGCCCATCTGGGGCAGGAAAGGCA

CAATTTGCGCCTGCTGTTGCTTCTACGACATCAGCTCTGGCTGCATCCGAATAGATG
GGCAGGACATTCAACAGGTGACCCAGGGCTCTCTCCGGTCTCACATTGGAGTTGTGCC
AAGACACTGTCCTCTTAATGACACCACATCGCCGACAATATCCGTTACGGCCGTGTCACAG
CTGGGAATGATGAGGGTGGAGGCTGCTGCTCAGGCTGCAGGCATCCATGATGCCATTATGG
CTTTCCTGAGGGTACAGGACACAGGTGGCGAGCGGGGACTGAAGCTGAGCGGGGGGG
AGAACGAGCGCCTGCCTGCACATTGCCGACCATCCTCAAGGCTCCGGGCATCATTCTGCTGG
ATGAGGCAACGTCAGCCTGGATAACATCTAATGAGAGGGCATCCAGGCTCTCTGGCCA
AAAGCTGTGCCAACCGCACCACATCGTAGTGGCACACAGGCTCTCAACTGTGGTCAATG
CTGACCAGATCCTCGTCATCAAGGATGGCTGCATCGTGGAGAGGGGACGACACGAGGCTC
TGTTGTCCGGAGGTGGGGTGTATGCTGACATGTGGCAGCTGCAGCAGGGCAGGAAGAAA
CCTCTGAAGACACTAACGCTCAGACCATGGAACGGTGAACAAAGTTGGCCACTTCCCTG
TCAAAAGACTAACCGAGAAGGGATAAGATGTGTCCTCTGGCTTATTTCATCTG
GTCTGGGGTATGGTGTCTAGCTATGGTAGGGAAAGGGACCTTTCCGAAAAACATTTT
GGGGAAATAAAATGTGGACTGTGAAAAAAAAAAAAAAA
ABC B11 GENBANK: AF091592
GAATGATGAAAACCGAGGTTGGAAAGGTTGTGAAACCTTTAACTCTCACAGTGGAGT
CCATTATTCCTCTGGCTTCCCAAATTCAATTCAATTCAACAGGGCTGGCTGTGGGTTGCA
ATTACCATGTCGACTCAGTAATTCTCGAACTATAAAAGAAATTGGAGAGGAATGAT
GGTTTGTAGTCAGATAATTCAATTATGATAAGAAATCAAGGTTACAGATGAGAAG
AAAGGTGATGGCGTAGAGTTGGCTCTTCATTGGTTGGGTTCTCATCAACTGAC
ATTGGCTGATGGTTGGAGTTGTGTCATTTCTCCATGGAATAGCCAGGCCAGGC
GTGCTACTCATTTGGCACAATGACAGATGGTTTATTGACTACGACGTTGAGTTACAA
GAACCTCAGATTCAGGGAAAGCATGTGTGAATAACACCATGGACTAACAGTTCC
CTCAACCAGAACATGACAATGGAACACGGTGTGGGTTGCTGAACATCGAGAGCGAAATG
ATCAAATTGCCAGTTACTATGCTGGAATTGCTGTCAGTACTTATCACAGGATATT
CAAATATGCTTTGGGTATTGCGCAGCTCGTCAGATAACAGAAAATTGAGAAAATTTCAC
TTTAGGAGAATAATGAGAATGGAAATAGGGTGGTTGACTGCAATTCACTGGGGAGCTG
AATACAAGATTCTGATGATTTAAATAAAATCAATGATGCCATAGCTGACCAATGGCC
CTTTCATTCAGCGCATGACCTCGACCACTCTGGTTCTGCTGGGATTTCAGGGT
TGGAAACTGACCTTGGTTATTCTGCTGAGCTCGCAGCCCTCTCATTGGGATTGGAGCAGCC
ATTGGCTGAGTGTGTCAGTACGGACTATGAGCTGAAGGGCTATGCCAAAGCAGGG
GTGGGCTGATGAGTCATTTCAATGAGAACAGTGGCTGCTTTGGTGGTGAAGAAA
AGAGAGGGTGAAGGTTAGAGAAAATTCTGTTGCTGCCAGCGTTGGGAATTAGAAAA
GGAATAGTGTGGGATCTTTACTGGATTGCTGAGCTGCTCATCTTTTGTTATGCA
GTGGCCTTGTGTCAGGGCTCCACATTGCTCTGGATGAAGGAGAATAACACCGAGAAC
CTTGTCCAGATTTCCTGACATGTCATAGTAGGAGCTTAAATCTGGCAATGCCCTCTCCT
TGTTTGGAAAGCCTTGCACACTGGACGTGCAAGGATGGTTACAAGTTGGATGCAATCAAGGGT
GAAATTGAATTCCATAATGTCACCTTCATTATCCCTTCAGACCGAGGGTGAAGATTCTA

AATGACCTCAACATGGTCATTAAACCAGGGGAATGACAGCTCTGGTAGGACCCAGTGGAGCTGGAAAAAGTACAGCACTCACTCAGGGATCTATGACCCCTGTGAAGGAATG
GTGACCGTGGATGGCCATGACATTCGCTCTTAAACATTCACTGGCTTAGAGATCAGATT
GGGATAGTGGAGCAAGAGCCAGTTCTGTCTCTACCACCATTCGAGAAAATATTCCCTAT
GGCAGAGAAGATGCAACAAATGGAAGACATAGTCCAAGGCTGCCAAGGAGGCCATGCCCTAC
AACTTCATCATGGACCTGCCACAGCAATTGACACCCCTGGAGAAGGAGGAGGCCAG
ATGAGTGGTGGCCAGAAACAAAGGGTAGCTATGCCAGAGCCCTCATCGGAAATCCCAAG
ATTCTGCTTTGGACATGGCACCTCAGCTGGACAATGAGAGTGAGGCATGGTGCAA
GAAGTGTGAGTAAGATTCAAGGGCACACAATCATTCACTGGCTCATCGCTTGCT
ACGGTCAGAGCTGCAGATAACCATCATTGGTTTGAAACATGGCACTGCACTGGAAAGAGGG
ACCCATGAAGAATTACTGAAAGGAAGGGTCTTACTTCACACTGTGACTTGGCAAAGC
CAAGGAATCAAGCTCTTAATGAAAGAGGACATAAAGGATGCAACTGAAGATGACATGCTT
GCGAGGACCTTCTAGCAGAGGGAGCTAACAGGATAGTTTAAGGGCTTCCATCCGGCAACGC
TCCAAGTCTCAGCTTCTTACCTGGTCAGCACCTCATTAGCTGGTAGATCATAAG
TCTACCATGAAAGAAGTATAGAAGGACAAGGACATTCCTGTGCAGGAAGAAGTGAACCT
GCCCGACTTAGGGAGGTTCTGAATTCAGTGTCTCAGAATGGCCCTACATGCTGGTAGGG
TCTGTGGGTGAGCTGTGAACGGGACAGTCACACCCCTGTATGCCCTTTTATTCAGGCCAG
ATTCTGGGACTTTCAATTCCGTATAAGAGGAAACAAGGTCAAGATCAATGGTGTG
TGCTACTTTGTAGCAATGGCTGTGTATCTCTTACACCAATTCTACAGGGATAT
GCCTTCTAAATCTGGGGAGCTCTAACAAAAGGCTACGTAAATTGGTTCAAGGGCA
ATGCTGGGCAAGATAATGCTGGTTGATGACCTCAGAAAATAGCCCTGGAGCATTGACA
ACAAGACTTGTACAGATGCTTCCCAGTTCAAGGGGCTGCCGCTCTCAGATGGGATG
ATAGTCATTCCTTCACTAACGTCAGTGTGGCCATGATCATTGCCCTCTCTTGTG
AAGCTGAGCCTGGTCATCTGTGCTCTCCCTCTGGCTTATCAGGGACACAG
ACCAGGATGTTGACAGGATTGCTCTCGAGATAAGCAGGCCCTGGAGATGGTGGGACAG
ATTACAAATGAAGGCTCAGTAACATCCGCACTGTTGCTGAAATTGGAAAGGAGAGGCCG
TTCATTGAAGCACTTGAGACTGAGCTGGAGAAGCCCTCAAGACAGCCATTCAAGAAAGCC
AATATTACGGATTCTGCTTCTCCCTTGCCAGTGCACTATGTTATTGCGAATTCTGCT
TCTCAGACATGGAGGTTACTTAATCTCCAACTGAGGGCTCCATTTCACCTATGTGTT
AGGGTGTCTGCACTGGTACTGAGTGCAACAGCTCTGGAGAGGCCCTCTTACACC
CCAAGTTATGCAAAAGCTAAAATATCAGTCAGCTGCCAGCTTTTCAACTGCTGGACCC
CCCCCAACTCAGTGATAACATACTGAGGTGAAAATGGACAAACTTCCAGGGGAAGGATT
GATTTGTGTTGATTAATTACATATCTCTCTGACCTGACTCGCAAGTCTGAAATGGT
CTCTCAGTGTGCTTGTGAGCTGGCAGACACTGGCTTGTGGAGGACAGTGGATGTGG
AAAAGCACTAGCATTGCACTGGTGGAAAGCTTCTATGATCCTGATCAAGGGAAAGGTGATG
ATAGATGGTCATGACAGCAAAAGTAATGTCAGCTCTCCGCTCAAACATGGAAATT
GTTTCCCAGGAACCACTGGAAAGAGTCATAGCAGCTGCAAAACAGGCTCAGCTGCA
AACACCAAAGAAATTCCCATGGAAAGAGTCATAGCAGCTGCAAAACAGGCTCAGCTGCA
GATTTGTGTCATGTCACCTCCAGAGAAATATGAAACTAACGTTGGTCCCAGGGTCTCAA

09739635 • 9225704
CTCTCTAGGGGGAGAAACAACGATTGCTATTGCTCGGCCATTGTACGAGATCCTAAA
ATCTTGCTACTAGATGAACCCACTTCGCTTAGACACAGAAAAGTGAAGACGGTGCAG
GTTGCTCTAGACAAAGCCAGAGGGTCTGGACCTGCATTGCTATTGCCATCGCTTGCTC
ACCATCCAGAACCGGGATACTGCTTGCTATGGCACAGGGGGTGGTATTGAAAGGGG
ACCCATGAAGAAGTGTGGCCAAAAGGAGCCTACTACAAACTAGTCACCACTGGATCC
CCCACATGGTGAACCAATGCAAGAACTCAGACACACATGACGACCAGTTACAGGGGTT
GTTTTAAAGAAAAAAACATCCACAGCAGGGATTGCTGGATTGTTTCTTTAA
GAAGAAATNNNNNTATTTACTTTACNNNCNTTTCTACATCGGAATCCAANCTAATT
CTAATGGCTTCCATAAATATTCTGCTTAGATGTGTATACAGAAAATGAAAGAAACTAG
GGTCCATGTGAGGGAAAACCCATGTCAAGTGGCAGCTCAGCCACCACTCAGTGTCTC
TGTGCAGGAGCCAGTCCTGATTAATGTGGGAATTAGTGAAGACATCAGGGAGTAAGTGA
CACTTTGAACCTCTCAAAGCACAGAGAATGTCCTTCATTTTGAAACCCCTCGGTGACACA
GAGGGGGCTGTGAAACAGGCAATCAACAAACGTTCTGTGAGCTAGACCAAGGTCAAGATT
GAAAAGAACAGAAGGGACTGAAGGACCTGTGTTCTTAACCTAAATTGTCTTCAGTG
AAACCGACTCTCTCATCTCAAGGCTAAAGGATAGGGAAAGGGATGCTCTCANGCT
GAGGGAGGCAAAAGGAAAGTATTANCATGAGCTTCCANTTAGGGCTGTTGATTATG
CTTTAATTCANANTGAGTGTAGGGTGGTGANCTA
ABCG2 GENBANK: AF103796
TTTAGGAAACGCCCCACATGCTTGGTCTTGTAAAGTGGAAACTGCTGCTTCTAGA
GTTTGTGAAAGGTGGCTGGTACTCATCCAAACATTTCATCCTTAATTGTTAAAGC
TGCTCTCGAGCGCACGCACTCTGAGATCTGAGCTTGGTTAAAGACCGAGCTCTATTAA
GCTGAAAGATAAAACACTCCAGATGTCTTCCAGTAATGTCGAAGTTTATCCAGTG
TCACAAGGAAACACCAATGGCTCCCGCGACAGTTCCAATGACCTGAAGGCATTACT
GAAGGAGCTGTGTTAAGTTTCTACATCTGCTATCGAGTAAACTGAAGAGTGGCTT
CTACCTTGTCGAAACACAGTTGAGAAAGAAATTATCGAAATATCAATGGGATCATGAA
CCTGGTCTCAACGCCATCTGGGACCCAACAGGTGGAGGCAAATCTCGTTATTAGATGTC
TTAGCTGCAAGGAAAGATCCAAGTGGATTATCTGGAGATGTTCTGATAAATGGAGC
CGACCTGCCATTCAAATGTAATTCAAGTTACGTTACGTTGACAAGATGATGTTGATGGG
ACTCTGAGGGTGGAGGAAACCTACAGTCTCAGCAGCTCTGGCTTGCAACAACTATG
ACGAATCATGAAAAAAACGAGCGATTACAGGGTCTGATAAGAGTTAGGTCTGGATAAA
GTGGCAGACTCCAAGGTTGAACCTGTTATCTGGTGTGTTCTGGAGGAGAAGAAAA
AGGACTAGTATAGGAATTGGAGCTTACGTTGCTGTTGACAAGATGATGTTGATGGC
ACAACCTGGTTAGACTCAACCAACAGCAAATGCTGCTCTTTGCTCCCTGAAAGGATGTC
AAGCAGGGACGAAACATCCTCTCCATTCACTAGCCTCGATATTCCATCTTCAGTTG
TTTGATGCTCACCCTATTGGCTCAGGAAGACTTATGTTGTCACGGGCCCTGCTCAGGAG
GCCCTGGATCTTGAATCAGCTGGTATCACTGTTGAGGCTATAAATACCCCTGCAGAC
TTCTCTGGACATCTTAAATGGAGATTCCACTGCTGTTGCAAGGATAGCCACTCATG
TTAAAGGCCACAGAGATCATAGAGCCTCCAAGCAGGATAAGCCACTCATGAAAAAATTA
GCGGAGATTATGTCAACTCCCTCTACAAAGAGACAAAGCTGAATTACATCAACTT

TCCGGGGGTGAGAAGAAGAAGATCACAGTCTTCAAGGGAGATCAGCTAACCCACCTCC
TTCTGTATCAACTCAGATGGGTTTCCAAACCGTTCATCTCAAAACTTGTGGGTAATCCC
CAGGCCTCATAGCTCAGATCATTGTCAACAGTCGACTGGGACTGGTTATAGGTGCCCCATT
TACTTTGGGCTAAAATGATTCTACTGGATCAGAACAGAGCTGGGGTCTCTTCTTC
CTGACGCCAACAGTGTTTCAGCAGTGTTTCAAGCCGTGGAACCTTTGTGGTAGAGAAC
AAGCTCTCATACATGAATAACATCAGCGGAACTACAGAGTGTCTATCTTATTCCTGGAA
AAACTGTTATCTGATTATTACCCATGAGGATGTTACCAAGTATTATATTACCTGTATA
GTGTACTTCATGTTAGGATTGAAGCCAAAGGCAGATGCCCTCTCGTTATGATGTTTAC
CTTATGATGGGGCTTATTCAGGCCATGGCACTGCCATAGCAGCAGCTCAGAGT
GTGGGTTCTGTAGAACACTTCTCATGACCATCTGTTTGTGTTATGATGATTTTCA
GGTCTGTTGGTCAATCTCACACCCATTGCACTTGGCTGTCAATGGCTTCAGACTTCAGC
ATTCACAGATGGA TTACCGCTTGGCAAGCATATAATGAA TTTTTGGGACAAAACCTCTGC
CCAGGACTCAATGCCAACAGGAACATCTCTGTAACTGTCAACATGTACTGGCGAAGAA
TATTTGGTAAGCAGGGCATCGATCTCACCCTGGGGCTTGTTGGAAGAACATCAGTGGCC
TTGGCTTGTAGATTGTATTTCTCAACATTGCCCTACCTGAAATTGTTATTCCTAAA
AAATATTCTTAAATTCTCCCTAAATCTCATATGATTATCTCTCACATAAAAAGAAC
TTTGATTGAAGTATTCAATCAAGTTTTTGTTGTTCTGTTCCCTGCCATCACACTG
TTGCACAGCAGCAATTGTTTAAAGAGATACATTTTAGAAAATCAAACAAACTGAATTA
AACATGAAAGAACCCAAGACATCACTGATTCGCATATTAGTTAATCTCTCACAGTAAC
CATGGGAAAGAAATCTGGTCAATTATTAACTAAAAAGGAGAATTGAAATTCTGGAA
CTCCTGACAAGTTATTACTGTCCTGGCATTGTTCTCATCTTTAAATGAATAGGT
GGTTAGTAGCCCTCAGCTTAATACTTTATGATGCTATGGTTGCCATTATTTAATA
TGACAAATGTATTAATGCTAATCTGGAAATGAAAAATGAAAATGTTGGAAAAAGAT
TCTGCTTAATGGGTTAAAAAGGCCACCGGTATAGAAAAAAATCTTTGATAAGC
ATTAAAGTTAATAGAACCT
ABCC5 GENBANK:AF104942
CCGGCAGGTGGCTCATGTCGGGAGCGCTGGGGTGGAGCGGCTGGCGCGGGTGTCTGGAGC
AGGGGGCAGGAATTCTGTATGTAAGAACACTAACAGTCTGTGAGCCCTGGAACCTCCGCTCAG
AGAAGATGAAGGATATGCCACATAGGAAAAGAGTATATCACTCCCAAGTCCCTGGTATAGAA
GTGTGGGGAGAGAACCGCACCTCTGGGACAGCAGAGAACCGTGAAGATTCCTGG
GGAGAACCTCGACCGTGGAAATGCCAAGATGCCCTGGAAACAGCAGCCCGAGCCGAGGCC
TCTCTCTGTATGCCCTCATGCCATTCTCAGCTCAGAATCCTGGATGAGGAGCATTCCAAGG
GAAAGTACCATCATGGCTTGAGTGTCTGAAGGCCATCCGGACTACTTCCAACACCAAGC
ACCCAGTGGAAATGCTGGCTTTTCTGTATGACTTTCTGGCTTCTCTCTGG
CCCGTGTGGCCCAAGAAGGGGGAGCTCTCATGGAAAGACGTGTGGCTCTGCCAAC
ACGAGCTCTCTGACGTGAACCTGCAAGAACAGTAGAGAGAACCTGTGGCAAGAACAGCTGAATG
AAAGTTGGGCCAGACGCTGCTTCCCTGCCAGGGGTTGTGTTGGATCTCTGCCGACCAAGC
TCATCCTGTCCATCGTGTGCTGTATGATCAAGCAGCTGGCTGGCTTCAGTGGACCAGC
TCATGGTAAACACCTTGGAGTACCCAGCAACAGACTCTAACCTGCAAGTACAGCT

TGTTGTTAGTGCTGGGCTCCTCCTGACGGAAATCGTGC GGCTTGGTCGCTTGACTGA
CTTGGGCAATTGAATTACCGAACCGGTCTCGCTTGGGGGGCATCTTAACCATGGCAT
TTAAGAGATCCTTAAGTTAAAAGAACATTAAGAGAAATCCCTGGGTGAGCTCATCAACA
TTTGCTCCAACGATGGGAGAGAATGTTGGCAGGCAGCAGGGTTGGCAGCCTGCTGGCTG
GAGGACCCGGTTGGCCTTCTAGGCATGATTTAATGTAATTATTCTGGGACCAACAG
GCTTCTGGGATCAGCTGTTTTATCTCTTCTACCCAGCAATGATGTTGCTCACCGGC
TCACAGCATATTCAGGAGAAAATGCGTGGCGCACGGATGAACGTTGCTCAGAAGATGA
ATGAAGTTCTACTTACATTAATTATCAAATGTATGCCGGTCAAAGCATTTCTC
AGAGTGTCAAAAATCCGGAGGAGGAGCGTCGGAATTTGGAAAAGCCGGTACTTCC
AGGGTATCATCTGTTGGGTGCTCCATTGTTGGGTGATTTGCCAGCGTGGTGACCTTCT
CTGTTCATATGCCCTGGGCTTCGATCTGACAGCACAGGCTTCACAGTGGTGACAG
CTCTCAATTCCATGACTTTGCTTGAAAGTAACACCTTTCAAGTAAGTCCCCTCTAG
AAGCCTCAGTGGCTGTCAGAGATTTAGAGTTGTTCTAATGGAAGAGGTTCACATGA
TAAAGAACAAAACAGCCAGTCCTCACATCAAGATAGAGATGAAAATGCCACCTGGCAT
GGGACTCTCCATTCAGCACTCCAGAATCTGCCAGCTGGGCAAGCTGACCCCCAAAATGAAAAAG
ACAAGAGGGCTTCAGGGGCAAGAAAGAGAAGGTGAGCCAGCTGCAAGCCACTGAGCATE
AGGGCGGTGCTGGCAGACAGAAAAGGCCACCTCCCTGGACAGTGACGGGGCCAGTC
CCGAAAGGAAAGAAGCAAGCACATCCACCTGGGCCACCTGGCTTACAGAGGACACTGC
ACAGCATCGATCTGGAGATCCAAGAGGTTAACTGTGTTGGAACTCTGGCCTAGTGGAA
GTGGAAAAACCTCTCTCATTCAGCCATTAGGCCAGATGACGCTTAGAGGGCAGCA
TTGCAATCAGTGGAACCTTCGCTTATGTGGCCAGCAGGGCTGGATCCTCAATGCTACTC
TGAGAGACAAACATCTGTTGGGAGGAATATGATGAAGAAAGATAACACTCTGTGCTGA
ACAGCTGCTGCCTGAGGCCAGCTGGGCACTCTCCAGCAGCGACCTGACGGAGATTG
GAGAGCAGGGAGGCCACCTGAGCGTGGCAGCGCCAGGGATCAGCCTGGCCGGGCT
TGTATAGTGACAGGAGCATCTACATCTGGACGACCCCTCAGTGCCTTAGATGCCATG
TGGCAACCACATCTCAATAGTGTCTATCCGAAACATCTCAAGTCAAGACAGTTCTGT
TTGTTACCCCACTTACAGTACCTGGTGAATGTGAGTGAAGTGTCTTCAATGAAAGAGG
GCTGTATTACGGAAAGAGGCACCCATGGAGGAACCTGATGAAATTAAATGGTGAATCTGA
CCATTTTAAATAACCTGTTGCTGGGAGGACACCCCAAGTGGATCAATTCAAAGG
AAACCACTGGTCAAGAAGAACAGTCAAGACAGGGCTCTAAACAGGATCAGTAAGA
AGGAAAAAGCAGTAAACCCAGAGGAAGGGCAGCTGGCAGCTGGAAAGAGAAAGGGCAGG
GTTCACTGGCCCTGGTCACTATATGGTGTCTACATCCAGGCTGCTGGGGCCCTTGGCAT
TCTGGTTATTATGGCCCTTTCTAGCTGAATGTAGGAGCAGCACCGCTTCAAGCACCTGGT
GGTTGAGTTACTGGATCAGAAGGAAGCGGGAAACCCACTGACTGACTCGAGGGAAAGAGA
CCTCGGGAGGTGAGCATGAGGACATCCCTCATATGCACTGACTATGCCAGCATCTACG
CCCTCTCCATGGCAGTCATGCTGATCTGAAAGGCCATTCGAGGAGTTGCTTGTCAAGG
GCACGGCTGGAGCTTCCCTCCGGCTGCACTGAGCAGCTTCCGAAGGATCCTCGAAGGC
CTATGAAGTTTTGACAGCACCCCCACAGGGAGGATTCTCAACAGGTTTCCAAAGACAA
TGGATGAAGTTGACCTGGCCTGCCCTCCAGGGAGATGTTCATCCAGAACGTTATCC

TGGTGTTCCTCTGTGTGGGAATGATCGCAGGAGTCTCCGTGGTCCCTGTGGCAGTGG
GCCCTTGTCATCCCTTTCTAGTCCTGCACATTGTCCTCAGGGTCCCTGATTCTGGAGC
TGAAGCGTCTGGACAATATCACGCAGTCACCTTCCCTCTCCCACATCACGTCAGCATAC
AGGGCTTGCACCACATCACGCCTACAATAAGGGCAGGGAGTTCTGCACAGATACCAAGG
AGCTGCTGGATGACAACCAAGCTCTTTTTTGTTCAGTGTGCGATGCGGTGGCTGG
CTGTGCGGCTGGACCTCATCAGCATCGCCCTCATCACCACACGGGGCTGATGATCGTTC
TTATGCACGGGAGATTCCCCAGCCTATGCGGGTCTGCCATCTTATGCTGTCCAGT
TAACGGGGCTGTCACGTTACGGTCAGACTGGCATCTGAGACAGAACGCTCGATTCAACCT
CGGTGGAGAGGATCAAATCACTACATAAAGACTCTGTCTTGGAAAGCACCTGCCAGAATTA
AGAACAAAGGCTCCCTCCCTGACTGGCCCAAGGGAGGGAGGGTGAACCTTTGAGAACCGCAG
AGATGAGGTACCGAGAAAACCTCCCTTGTCTAAAGAAAGTATCCTCACCATCAAAC
CTAAAGAGAAAGATTGGCATTTGTCGGGGGGACAGGATCAGGGAAAGTCTCGCTGGGATGG
CCCTCTCCCTGGGGGAGTTATCTGGAGGCTGCATCAAAGATTGATGGAGTGAGAATCA
GTGATATTGGCCATTCGCGACCTCGAACGAAACTCTCTATCATTCCTCAAGGCCGGTGC
TGTTCAGTGGCACTGTCACTACATAAATTGGGGGCTTCAACCGAGTACACTGAAGAACAGA
TTGGAGATGCCCTGGAGGACACATGAAAGAATGTATTGCTCAAGCTACCTCTGAAAC
TTGAATCTGAAGTGTGGAGAATGGGGATAACTCTCAGTGGGGGAAACGCCAGCTCTGT
GCATAGCTAGAGCCCTGTCGCGCAACTGTAAAGATTCTGATTTAGATGAAGGCCACAGCTG
CCATGGACACAGAGACAGACTTATTGATCAAGAGACCATCCGAGAAGGATTGCAACT
GTACCATGCTGACCATGGCCATCGCTGCACACGGGCTTAGGGCTCCGATAGGATTATGG
TGCTGCCCAAGGGACAGGTGGGGAGTTTGACACCCCATCGGCTCTCTGTCACAGACA
GTTCCCGATTCTATGCACTGGTTCTGCTGCAAGAGAACAGGTCGCTGTCAGGGCTGAC
TCCTCCCTGTTGACGAAGTCTTTCTTAGAGCATTGCCATTCCCTGCCCTGGGGCGGG
CCCTCATCGCGTCTCTACCGAACCTTGCCTTCTGATTTATCTTCGACACAGCA
GTTCOGGGATTGGCTGTGTGTTCACTTTAGGGAGAGTCATATTGATTATTGATT
ATTCCATATTCATGTAACAAAATTAGTTTGTCTTAATTGCACTCTAAAGGTTCA
GGAAACCGTTTATAATTGATCAAGAGGCCATATAATGAAGCTTTACCTGTTAGCTATA
TCTATATATAATTCTGTACATAGGCATATAACAGTGAAGAAATGTAAGCTGTTATT
TATTAATAAAGCACTGTGCTAAACAGTCATATTCTCTATCATTTTGATAGCT
TTGCTGTTACTAGAGATCTGGTTCTGCTTCTGAGTTCTGGGTGTCACAGGAGAGTAGC
CTCTAGCTGGGGTTACGGTGGCCAGGTTCTGGGTGTCACAGGAGACAGTGTGGCA
ATAGTGGGCCCTGGCAACAGCCCCCTCTGCGCGCTCCCCACAGGCCCTGCCAGGGGGCTG
GAGACGGCTGGCGCTGGAGACATGCAAGAGGCCAGTCTGAGTTCTAGGGCTCTGCC
CTGCTCTGGTCACTTACTGTGTCAGGAGAGCAGGGGGCAAGGCCAGGGCCCT
TTTCACCTCCATCAAGAATGGGGATCACAGAGACATCCCTCGAGGCCGGGGAGTTTC
TTTCTGCTTCTCTCTGCTGTTCTAAACAAAGAATCAGTCATCCACAGAGAG
TCCCACTGCCCTCAGGGTCTATGGCTGCCACTGCAAGAGCTCCAGCTCCAAGACCT
GTTGGTTCAAGCCCTGGGCCACTGCTGCTTTTGAGGTGGCACTTTCTATTGCTT
ATTCCACACCTCCACAGTTCACTGGCAGGGCTCAGGATTCTGTTGCTGCTTCT

CTCACCGCAGTCGCGCACAGTCTCTCTCTCTCTCCCCCTCAAAGTCTGCAACTTTAAG
CAGCTCTTGCTAAATCAGTGTCTCACACTGGCGTAGAAGTTTTGTACTGTAAAGAGACCT
ACCTCAGGTTGCTGGTGTCTGTGGTTGTGGTGTGTTCCCGCAAACCCCTTGTGCTGT
GGGGCTGGTAGCTCAGGGCGGTGACTGCTGTCTCATCAGTTGAATGGTCAGCGTTGC
ATGTCGTGACCAACTAGACATTCTGCGCCCTAGCATGTTGCTGAACACCTTGTGGAAG
CAAAAATCTGAAAATGTGAATAAAAATTATTTGGATTTGTAAAAAAA
AAAAAAAAAAAAAAA

ABCA5 Acc.Nr.: AF000148 GENBANK:HSAF000148

GCCAGAGGCCGCTCTTAACGGCGTTATGCTCTTGTGCTGAGGGGGCTCAGCTCTGAC
CAATCTGGTCTTCGTTGGTCAATTAGCATGGCTTCGTGAGACAGATAACAGCTTTGCTC
TGGAGAACCTGGACCCCTCGGGAAAAGGCAAAAGATTGCTTTGTGGTGGAACTCGTGTGG
CCTTTATCTTATTCCTGGTCTGATCTGGTTAAGGAA TGCCAACCCGCTTACAGCCAT
CATGAATGCCATTTCCTCCAAACAGGCGATGCCCTCAGCAGGAATGCTGCCGTGGCTCCAG
GGGATCTCTGCAATGTGAACATACTCTGGTTTCAAAAGCCCACCCAGGAGAATCTCC
GGAATGTGTCAAACTATAACAACTCATCTGGCAAGGGTATATCGAGATTTCAGAA
CTCTCTCATGAATGCCACAGAGGCCAGCACCCCTGGCGTATTTGGACAGAGCTACACATC
TTGTCCTCATGGCAACCCCTCCGGACTCACCCGGAGAGAATTGCAAGGAAGAGGAATA
CGAATAAGGGATATCTGAAAAGATGAGAAAACACTGACACTATTTCTCATTTAAACATC
GGCTGCTGACTCAGTGTCTACCTCTGATCAACTCTCAAGTCCGTCAGAGCAGTTC
GCTCATGGAGTCCCGACCTGGCGCTGAAAGGACATGCCCTGCAAGCGAGGGCCCTCTGGAG
CGCTTCATCATCTTCAGCCAGAGACGGGGGCAAAAGACGGTGCCTATGCCCTGTGCTCC
CTCTCCAGGGCACCTACAGTGGATAAGAACACTCTGATGCCAACGTGGACTCTTC
AAGCTCTTCGCTGTGCTTCCCACACTCTAGACAGCGGTTCTCAAGGTATCAATCTGAGA
TCTGGGGAGGAATATTATCTGATATGTCACCAAGAATTCAAGAGTTATCCATGGCCG
AGTATGCAAGGACTCTGCTGGGTGACCAGGGCCCTCATGCAGAATGGTGGCCAGAGCC
TTTACAAGGACTGATGGGCATCCTGCTGACCTCTGTGTGGCTACCCCGAGGGAGGTGGC
TCTGGGTGCTCTCCTCAACTGGTATGAGACAATAACTATAAGGCTTCTGGGATT
GACTCCACAAGGAAGGATCTTATCTGATATGTCACAGAAGAACATCCTTTGTAAAT
GCATTGATCCAGGCCAGCTGGAGTCAAAATCTTTAACAAAATCGCTTGGAGGGCGCAAG
CCTTGTGCTGATGGGAAAAAATCTCTGACTCCTGATTCTCACCTGCAAGCACAGAGGAACTG
AAGAATGCCAACTCAACTTGGTGAAGAACCTGGTAGGAAGTGGCTAAAGGCTGG
GAAGAAGTAGGGGCCAGATCTGGTACTCTGGTACACACAGCACACAGATGAACATGATC
AGAGATAACCTGGGGACCCAAACAGTAAAGACTTTTGAAATAGGCACCTTGTGAAGAA
GGTATTACTGCTGAAGCCATCTTAAACTCTCTCATCAAGGGCCCTGGGAAAGCCAGGCT
GACGACATGCCAACCTCGACTGGAGGGACATATTAAACATCACTGATGCCACCCCTCCGC
CTGGTCAATCAATACCTGGACTGCTGGTCTGGATAAGTTGAAAGCTACAATGATGAA
ACTCAGCTCACCCAACTGGCCCTCTCTACTGGAGGGAAAACATGTTCTGGGCGAGTG
GTATTCCTGACATGATCCCTGGACCCAGCTCTCATACACCCACAGTGAAGTATAAGATC
CGAATGGACATAGACGTGGTGGAGAAAACCAATAAGATTAAGACAGGTATTGGGATTCT

GGTCCCAGAGCTGATCCCGTGGAAAGATTCCGGTACATCTGGGCGGGTTGCCTATCTG
CAGGACATGGTTAACAGGGGATCACAGGAGGCCAGGTGCAGGGCGAGGCTCCAGTTGG
ATCTACCTCCAGCAGATGCCCTACCCCTGCTTCGTCGGACGATTCTTCATGATCATCCTG
AACCGCTTCTCCCTATCTTATGGTCGGCATGGATCTACTCTGCTCCATGACTGTG
AAGAGCATCGTCTTGGAGAAGGAGTTGGCACTGAAGGAGACCTTGAAAATCAGGGTGT
TCCAATCAGTGATTGGTGTACCTGGTCTGGACAGCTCTCCATCATGTCGATGAGC
ATCTTCCCTCGACGATATTATCATCATGATGTAAGAATCTTACATTACAGCGACCCATT
ATCTCTCCCTGTTGGCTTCTCCACTGCCACCATCATGCTGTGCCTTCTGCTC
AGCACCTCTCTCCAAGGCCAGTCTGGCAGCAGCTGTAAGGGTGTATCTTACCC
CTCTACCTGCCACACATCTCTGTCCTCGCTGGCAGGACCCATGACCGCTGAGCTGAAG
AAGGCTGTGAGCTTACTGTCCTGGGATTTGGATTGGACTGAGTACCTGGTTCGC
TTTGAAGAGCAAGGCCCTGGGGCTGCACTGGAGCAACATCGGGAACAGTCCCACGGAAAGGG
GACCAAATCAGCTTCTGCTGTCATGCAAGATGATGCTCTTGATGCTGTGCTATGGC
TTACTCGCTTGGTACCTGATCAGGTGTTCCAGGAGACTATGGAACCCCCACTTCCCTGG
TACTCTCTTCTACAAGAGTCGATTGGCTGGCGGTGAAGGGTGTCAACCAGAGAAGAA
AGAGCCCTGGAAAAGAGCCAGGCCCTAACAGAGGAACCGAGGGATCCAGAGCACCCAGAA
GGAATACAGCAGCTCTTCTTGAACGTCAGCTGCCAGGGTGGGTTCTGGGTATGCGTG
AAGAATCTGGTAAAGATTTCAGGCCCTGGCGGCCAGCTGTGGACCGTCTGAACATC
ACCTCTCAGAGAACAGAACAGGCACTCTGGGACACATGGAGCTGGAAAACCACC
ACCTTGTCCATCTGACGGGCTGTGCAACACCTCTGGGACTGTGCTGTGGGAA
AGGGACATTGAAACAGGCTGGATGCACTGGCAGGCCATGTCATGTCACAGCAC
AACATCTGTTCCACCAACCTCACGGTGGCTGACCATGCTGTCTATGCCAGCTGAAA
GGAAAGTCCCAAGGAGGAGGCCAGCTGGAGATGGAAGGCCATGTTGGAGGACACAGGCC
CACCACAAAGCGGAATGAAGAGGCTCAGGACCTATCAGGGCATGCAAGAGAACGCTGCG
GTTGCCATTGCCCTTGTGGGAGATGCCAAGGGTGTGATCTGGACGAACCCACCTCTGGG
GTGGACCCCTTACTCGAGACGCTCAATCTGGGATCTGCTCTGAAAGTATCGCTCAGGGAGA
ACCATCATGTCACCTCACCAACATGGACGAGGCCGACCTCCCTGGGACCGCATTGCC
ATCATGGCCAGGGAAAGGCTCTACTGTCAGGACCCCCACTCTCCATGAAAGAACGCTT
GCCACGGCTGTACTTAACTCTGGTGCAGCAAGATGAAAACATCCAGAGCCAAAGGAAA
GCCAGCTGAGGGACCTGCACTGCTGCTCTAAGGGTTCTCCACCCAGTGCTCAGGCCAC
GTCGATGACCTAACTCCAGAACAGTCCTGGAGTGGGAGTGTAAATGAGCTGATGGATGTA
GTTCTCCACCATGTCAGAGGCAAAGCTGGTGGAGTGCATTGGTCAAGAACCTTATCTTC
CTTCTTCAAAATAAGAATCTCAAGCACAGACATGCACTCTGGGAGGAG
GAGACGGCTGGCTGACCTTGGTCTCAGCAGTTTGGAAATTCTGACACTCCCCCTGGAGAG
ATTTTCTGAAGGTCAAGGGAGATTCTGATTCTGAGGACCTCTGTTGGCCTGGCGCTCAG
CAGAAAAGAAAACGTCACCCCGACACCCCTGCTGGGCTCCAGAGAGAAGGGCTGGA
CAGACACCCAGGACTCCATGTCGTCCTCCCAGGGCGCCGGCTGCTCACCCAGGGC
CAGCCTCCCCAGGCCAGAGTGCCTGGCCAGGCCGAGCTAACACGGGACACAGCTGGTC
CTCCAGCATGTCAGGGCCTGCTGGTCAAGAGATTCCAACACACCATCCGAGGCCACAAG

GACTTCCCTGGCGCAGATCGTGCCTCCGGCTACCTTGTGTTTGCGCTGTGATGCTTCT
ATTGTTATCCCTCTTGGCAATACCCCGCTTGACCCCTCACCCCTGGATAATATGG
CAGCAGTACACCTCTTCAGCATGGATGAACCCAGGCAGTCAGTCAGGGTACTTGCA
GACGTCCTCTGAATAAGGCCAGGCTTGGCAACCGCTGCCTGAAGGAAGGGTGGCTTCCG
GAGTACCCCTGTGGCAACTCAACACCCCTGGAAGACTCCTCTGTGTCCCCCAACATCACC
CAGCTGTTCCAGAAGCAGAAATGGACACAGGTCAACCTTCAACATCCTGCAGGTGAGC
ACCAGGGAGAAGCTCACCATGTCGCCAGAGTGCCTGGAGGGTGCCTGGGGGCTCCGCC
CCCCAGAGAACACAGCGCAGCACGGAAATCTACAAGACCTGACGGACAGGAACATCTCC
GACTTCTGGTAAAACGTATCCTGCTCTTATAAGAAGCAGCTAAAGAGCAAATTCTGG
GTCAATGAACAGAGGTAATGGAGGAATTTCATGGAGGAAGCTCCCAGTCCTCCCCATC
ACGGGGAGAACACTTGTGGTTTTAAAGCACCTGGCCGGATCATGAATGTGAGCGGG
GGCCATACACTAGAAGAGGCTCTAAAGAAATACCTGATTCTCTAAACATCTAGAAA
GAAGACAAACATTAAAGGTGTGTTTAAATACAAAGGCTGGCATGCCCTGGTCAGCTTCTC
AAATGGTGGCCCAACAGGCATCTACGGGCCAGCCTGCCCTAAGGACAGGAGCCCCGAGGAG
TATGGAATCACCGTCATTAGCCAACCCCTGACACCTGACCAAGGAGCAGCTCTCAGAGATT
ACAGTGTGACCACTTCAGTGGATGCTGGTGTGCTATCTGTGATTTTCTCCATGTCC
TCCTGGCCAGGGCAGCTTGTCTTATTGATGCCATGGAGGGTGAACAAATCCAAGCAC
CTCCAGTTTATCAGTGGAGTGAGCCCCACCCACTGGGTGACCAACTTCCCTGGGAC
ATCGTGAATTATTCTGGTAGTGCTGGCTGGTGGGGCATCTTCATCGGGTTCAAGAAG
AAAGCTACACTCTCCAGAAAACCTTCTGCCCTTGCGCACTGCTCTGCTGTATGGA
TGGGGCTGATCCCATGATGTAACCCAGCATCTCCCTGTTGATGTCCTCCAGCACAGCC
TATGTTGGCTTATCTTGCTAATCTGTTCACTGGCATCGGCATACAGCAGTGCTTATTACCTTC
ATCTTGGAAATTATTGAGAATAACCGGACGCTGCTCAGGTTCAACGCCGTGCTGAGGAAG
CTGCTCATTGTCTCCCCACTCTGCCTGGCCGGGGCTCATTGACCTTGACTGAGC
CAGGGCTGACAGATGCTATGCCGGTTGGTAGGGACACTCTGCCAAATCCGTTCCAC
TGGGACCTGATGGGAAGAACCTGTTGCCATGGTAGGGTGAAGGGTGGGTACTTCTC
CTGACCCCTGCTGGTCCAGGCCACTCTCTCTCCATGGATTGCCGAGCCCAACTAAG
GAGCCCATTTGATGAAGATGATGATGCTGGTAGAAGAAAGACAAAGAAATTACTGGT
GGAAATAAAACTGACATTCTAAGGCTACATGACAACTAACCAAGATTATCCTGGCACCTCC
AGCCCAAGCAGTGGACAGGCTGTTGCTGGAGAGTGCCTGGAGAGTGCCTTGGCTCCTG
GGAGTGAATGGTGCCTGGCAAAACACCAACTTCAAGAGTCTCACTGGGGACAACACAGTG
ACCTCAGGGATGCCACCGTAGCAGGAAGAGTATTAAACCAATATTCTGAAGTCCAT
AAAAATATGGGACTCTGCTCTAGTTGATGCAATCGATGAGCTGCTCACAGACGAGAA
CATCTTACCTTATGCCGGCTTGGAGGTGACCGAGAAGAAATCGAAAAGGTTGCA
AACTGGGACTATTAAAGGCCCTGGCCCTGACTGCTACGCCGACTGCCCTGGCACGTAC
AGTGGGGCAACAGGGAAACTCTCCACAGCCATGCCACTATTGGCTGCCACCGCTG
GTGCTGCTGGATGAGCCCACCAAGGGATGGACCCCCAGGCAGCCGCTGCTGTGGAAAC
GTCATCGTAGGCACTGTCATCGAGAAGGGAGGGCTGTGGTCCCTCACATCCCACAGCATGGAA
GAATGTGAGGCACTGTCATCGAGAAGGGAGGGCTGTGGTCCCTCACATGGTAAAGGGCGCCTTCGATGTATG

GGCACCATTCAGCATCTCAAGTCAAATTGGAGATGGCTATACTGTCACAATGAAGATC
 AAATCCCGAAGGACACTGCTTCTGACCTGAAACCCCTGGAGCAGTTCTCCAGGGG
 AACTTCCCAGGCAGTGTGAGAGGGAGAGGCACTACAACATGCTCCAGTTCCAGGTCTCC
 TCCCTCCCTGGCAGGAGATCTTCAGCCTCTCTCTCCACAAGGACAGGCTGCTCATC
 GAGGAGTACTCAGTCACACAGACCACACTGGACCAGGTGTTGTAATTTGCTAAACAG
 CAGACTGAAAGTCATGACCTCCCTCTGCACCCCTCGAGCTGCTGGAGGCCAGTGCACAAGCC
 CAGGAAGTGTCTTCACACGGTCTGCTGAGCCAGAAAAGGAACCTGGGAGCTGG
 GGCGCAGGAGGCCGTGCCCCATGGTCATCCAATGGACTGGCCAGCGTAATGACCCCCA
 CTGCAGCAGAAAACAAACACAGGAGGAGCATGCAGCGAACCTGAGGGTAAAGGAGCTTTCAGA
 AGGAAACCGAAAAGTGCCTTGCTCACCTGAAACACCTGATGGTGAACACAAACAAATCAA
 ATACCTTCTCCAGACCCCCAGAACTAGAAAACCCCGGGCCATCCCACTAGCAGCTTGGCCT
 CCATACTGCTCTCATTTCAAGCAGAATCTGCTTCTGCTGATGTTGCTGTGCTGCTGGGT
 TGTTGTGATTTTCATGGAAAAATAAAATGCAATGCACTCATCACAAAAAA
 AAA

ABCG1 Acc.Nr.: U34919 GENBANK: HSU34919

GAATTCGGGATGTGAAACGGTCCAGGAGGCTCTACAAGCCCCATGAGCAAGGCTGTT
 CCCACTGACAGAGCTTCCAGGATGACAGAGACTGCGCTCTGCCCTCTGGGGTGTGCT
 AGCCCTACGAGGGCAATCGTAAGGCCATGTCACTGAAAGAACACAAGTGTCTTAAACA
 TGGAATCTGGCTTCTAGTCGAAATTCTCCACTCCACTGCCACTTCCATT
 ATATAAAAAACACAGTTGTTCTATGTTTGTCTTACTGTTTCTTGTGTTTGT
 AAGAATGCAATTCAAAATTGTTATTGTTAGAATAATCAGGCATTGCGTGGATG
 AGGTGGTGTCCAGCAACATGGAGGCCACTGAGACGGACCTGCTGAATGGACATCTGAAA
 AAGTAGATAATAAACCTCACCGAACCCAGCGCTTCTCCCTTGCCCTGGAGGGCAGCTG
 TGAACATTGAAATTCAAGGAGCTTCCATTGGTCTCTGAAAGGACCCCTGGTGGAGGAAGA
 AAGGATACAAGACCCCTCTGAAAGGAATTCCGGGAAGTCTAATAGTGGTGAGTTGGTGG
 CCATTATGGGTCTTCCGGGCCGGGAAGTCCACCGCTGATGAACATCTGGCTGGATACA
 GGGAGACGGGCATGAAAGGGGCCGCTCTCATCACCGGCCTGCCCGGGACCTGCGCTGCT
 TCCGGAGGTGCTCTGTCATCATGCAAGGATGACATGCTGCTGCCGCATCTCACTGTG
 AGGAGGCCATGATGTTGCTGCCACATCTGAAAGCTTCAGGAGAAGGATGAAGGCCAGAAGGG
 AAATGGTCAAAGGAGATGCAAGCGCTGGCTTGTCTTGCCTGAAACCGGGACCG
 GGAGCCCTGTCAGGTGGTCAAGCGCAAGGCCCATCGCGCTGGAGCTGGTGAACAAAC
 CTCCAGTCATGTTCTCGATGAGCCCCACAGCGGCCCTGGACAGGCCCTCTGCTTCCAGG
 TGGTCTGCTGATGAAAGGCTGCTCAAGGGGGTCTGCTTCCATCATTTGCAACATCCACC
 AGGCCAGGCCAAACTCTCGAGCTGTTGCAACCTTACGCTCTGACTCAAGGACAAT
 GTGTGTAACCGGGAAAAGTCTGCAATCTGTGCAATTGGAGGTTGCTGACT
 GCCCAACCTACCAACACCCAGCAGATTGTCATGGAGGTTGCTGACCGGGCAGTACGGTG
 ATCAGAACAGTCGGCTGGTGAAGAGCGGTTGGAGGGCATGTTGACTCAGACCAAGA
 GAGACCTCGGGGGTGTGCGCAGGGTGAACCCCTTCTTGGCACCGGCCCTCTGAAGAGG
 TAAAGCAGACAAAACGATAAAGGGTTGAGAAAGGACTCCTCGTCCATGGAAGGCTGCC

ACAGGCTTCTCTGCCAGCTGCCATCACGCAGTTCTGCATCCTCTTCAGAGGACCTTCCTCA
GCATCATGAGGGACTCGGTCTGCACACACCTCGCATCACCTCGCACATTGGGATCGGC
TCCTCATGGCCTGCTGTACTTGGGATCGGAAACGAAAGCCAGAAGGGCTTGAGCAACT
CCGGCTTCCCTCTCTCCATGCTTCTCATGTTGCGGGCCCTCATGCCACTGTTC
TGACATTTCCCCCTGGAGATGGGAGTCTTCTTCGGGAACACCTGAACACTACTGGTACAGCC
TGAAGGCCACTACCTGGCCAAGACCATGGCAGACGTGCCCTTCAGATCATGTTCCCAG
TGGCCTACTGCAGCATCGTGTACTGGATGACGTCGCAGCGTCCGACGCCGTGGCCCTTG
TGCTGTTGCCGCGTGGGACCATGACCTCCCTGGTGGCACAGTCCCCTGGGCTGCTGA
TCGGAGCCGCCCTCCACGTCCTCGCAGGTGGGACTTCTGTTGGGCCAGTGACGCCATCC
CGGTGCTCTGTTCTGGGGTCTCGTGTAGCTCGACACCATCCCCACGTACCTACAGT
GGATGTCCTACATCTCTATGTCAGGTATGGGTTGCAAGGGGTCATCCCTCCATCTATG
GCTTAGAACCGGGAAAGATCTGCACATGACATCGACGGAGCTGCCACTTCCAGAAGTCGG
AGGGACATCCCTGCCGGGAGCTGGACGTTGGAAAATGCCAAGCTGTACCTGGACTTCATCGTAC
TCGGGATTTCTCATCTCCCTGCCCTCATGGCTATTGGTCTCAGGTACAAAATCC
GGGAGAGGGATAAACACCTGAATGCCAGGAACAGGAAGATTAGACACTGTGCCGGAG
GGCACGCTAGAACTGAGAGGGACGCCCTGTGCCCGACCCAGAACAGAGACTCTCTG
ATCCAACCCCTAGAACCGGTTGGGTTTGTGGGTGTCCTGTGTCAGCCACTCTGCCAG
CTGGGTTGGATCTTCTCCATTCCCTTTAGCTTTAACTAGGAAGATGTAGGCAGAT
TGGTGGTTTTTTTTTTAAACATACAGAATTAAATACCAAACTGGGGCAGAAATT
TAAAGCTGCAACACAGCTGGTGTAGAGAGGCTCTCAGTCAGTCGCTCTTAGCACCA
GGCACCGTGGTCTGGATGGGAACTGCAAGCAGCCTCTCAGCTGATGGCTGCCAGTC
AGATGCTGGTGGCAGAGAGTCCGAGCATGGAGCGATTCCTTT
ABCA3 Acc.Nr.: U78735 GENBANK: HSU78735
CCGCCCCGGCGCCCAAGGCTCGGTGCTGGAGAGTCATGCCCTGGCACCTCC
GATGCTCTGCCGAGGTCAAGGTGTTCCAAAACCTCAGGGTGGCCCTGCCCACTCCAGGG
CTCTCAGGCCCCACCCCGAGGCCCTGTGCGGAGGCCCTCTGGCCAGTCCCCCA
GTACTCTGAAGGGAGACCTGCTGTGTTGGAGCCTCTCTGGACCCAGCATGAGTGTGG
AGCTGAGCAACTGAACCTGAAACTCTTCCACTCTGAGTCAGGAGGCTTCCGCACATG
AAGGGAGCTGAGCGGGAAAGGACTCTCTCTGCTGCAGTTGTAGCGAGTGGACAGCACC
AGGGGCTCTAGACTGCCCTCCCTCATGCCCTTCCCTGCCCTCCAGGACAGAGCAGC
CACGTCGCACACCTCGCCCTCTTACACTGAGGTCAGAGCACGTTCTCTTCT
TGCGGGTTGCAAGGGCTACTTGAAACTTACTGAGCACCCACTCTCTAGCAGCAACTGGG
CTCTCCCTCAGCAAGACGATGGCTGTGCTCAGGCAGCTGGCGCTCCCTCTCTGGAAAGAA
CTACACCCCTGCAAGACGCGGAAGGTCTGGTGAAGGCTCTGGAACTCTCTCTGCCATTGCT
GTTTCTGGGATCTCATCTGGCTCCCTGAAGATTCAGTCGGAAATGTGCCCAACGCG
CACCATCTACCCGGGGCAGTCCATCCAGGGAGCTGCCCTCTGTTCTCACCTCCCTCC
AGGAGACACCTGGGAGCTTGCCTACATCCCTCTCACAGTGACGCTGCCAAGACCGTCAC
TGAGACAGTGCAGGGCAGGCACTTGTGATCAACATGCGAGTGCAGCGGCTTCCCTCC
GGACTTGGAGGACTACATTAGGTACGACAACAGTCGCTGCCAGCGTGCCTGGCCGCCGTGGT

CTTCGAGCACCCCTTCAACCACAGCAAGGAGCCCCCTGCCGCTGGCGGTGAATAATCACCT
ACGGTTTCACTACACCGGAAATTACATGGAACCAAACAGGCTCCTTTCTGAA
AGAGACAGAAGGCTGGCACACTTCCCTTTCCGCTTTCCAAACCCAGGACCAAG
GGAACATACATCCCCCTGATGGCGGAGAACCTGGGTACATCCGGAGGCTCTGGCGT
GCAGCATGCTGTGGACCGGGCCATCATGGAGTACCATGCCATGCCGACACGCCAGCT
GTTCCAGAGACTGACGGTGACCATCAAGAGGTTCCCGTACCCGCCGTTCATCGCAGACCC
CTTCCCTGTTGGCCATCCAGTACCAAGCTGCCCTGCTGCTGCTCAGCTTCACAC
CGCGCTCACCATGCCGTGCTGCTGAGGAGAAGGAAAGGAGGCTGAAGGAGTACAT
GCGCATGATGGGGCTCAGCAGCTGGCTGCACTGGAGTGCCTGGTTCTCTGTTCTCC
CTTCCCTCATGCCGCCCTCCATGACCCCTGCTCTTCTGTGTCAAGGTGAAGCCAA
TGTAGCCGTGCTGTCCCCACGGACCCCTCCCTGCTGCTCGCTTCTCTGTGCTTC
CATCTACCATCTCCCTCACCTCAAGGACCCCTCTCAGCAAAGCCAAATGGC
AGCAGCTTCGGAGGCTCCCTCATCTTCACTCCATACATCCCCTACTCTTCTGTTGGCC
TCGGTACAACGGATGACTGAGCTGGCCAGAGCTCTGCTCTGCCCTCTGCTTAATGTCGC
CATGGCAATGGGAGGCCAGCTCATGGAAATTGGAGGCGAAAGGCATGGGCATCAGTG
GGAGGACTCTGGTACTGGCTGCTCATGGCTGGTACCTGGTACATGGAGGCCGCTT
CCCAGGGCAGTCGGCTGCCATGCCCTGGTACTCTTCTCATCATGCCCTCCATTGGTG
TGGGAAGCCAAGGGGGTTGAGGGAAAGGAGAAGACAGCTGACCCCGAAGAAAGCACT
CAGAAACGAGTACTTGAAGGCCAGGCCAGAGGACCTGGTGGGGGATCAAGATCAAGCA
CCTGTCAGGTGTTCAAGGTGGGAAATAAGGACAGGGGGCCGTCAGAGACCTGAAACCT
CAACCTGTACGGGGACAGATCACCGTCTCTGCTGGGCCACAACGGTGCCGGAAAGACAC
CACCCCTCCATGTCACAGGTCTTCCCCCACCAGTGGACGGGCATACATCAGCGG
GTATGAAATTCCCAAGGACATGGTTCAGATCGGAAGAGCCTGGGCTGTGCCCCGAGCA
CGACATCTGTGTTGACAACTTGACAGTCGAGAGCACCTTATTCAGGCCAGTGAA
GGGCCCTGTACGTCAGAACTGCCCCTGAAGAAGTCAGCAGATGCTGCACATCATCGG
GGAGGACAAGTGGAACTCACGGAGCGCTTCTGACCGGGGGCATGAGGCGCAAGCTCTC
CATCGGCACTGCCCTCATCGCACGGCTCAAGGTGCTGATACTGGACGAGCCCACCTCGG
CATGGACGGCATCTCCAGGAGGGCCATCTGGGATCTCTCACGGCAGAAAAGTGACCG
CACCATCGTGCTGACCAACCCACTTCATGGACGAGGCTGACCTGCTGGGAGACCGCATCGC
CATCATGGGCAAGGGGGAGCTGCACTGCTGCGGCTCTCGCTGTTCTCAAGCAGAAAC
CGGTGCCGGCTATCACATGACGGTGGTGAAGGAGGGCACTGCAACCCGGAAGACATCTC
CCAGCTGGTCCACCAACCGTGCACAGCCACGCTGAGAGCAGGCAAGGCTGGGCCAGCT
GTCTTCATCCTTCCAGAGAGAGCAGCAAGGTTGAGGCTCTTGTAAACTGGGA
GAAGAAGCAGAAAAGACCTGGGATTGCCAGCTTGGGGCATCCATCACCAACATGGAGGA
AGTCTCCCTGGGCTGGGAGCTGGTGGACAGCAGTAAGGACATCCAGGCCATCCAGCT
CCCTGCCCTGCACTGACAGCACGAGAGGGCGCGCAGCAGTGGGCTGTGGACAGCAACCC
CTGTGGGGCCATGGACCCCTCCGACGGCATTGGAGGCCATCATCGAGGAGGAGCGCACCGC
TGTCAAGCTAACACTGGGCTGCCCTGCACAGCAATTCTGGGCCATGTTCTGAA

GAAGGCCGCATACAGCTGGCGCGAGTGGAAAATGGTGGCGGCACAGGTCTGGTGCCTCT
GACCTGGCTCACCCCTGGCCCTCCTGGCCATCAACTACTCTCGGAGCTTCGACGACCC
CATGCTGAGGCTGACCTTGCGAGTAGCCAGAACCGCTGTGCCCTCTCAGTTCCCGG
GACCTCCAGCTGGGTCAAGCAGCTGTCAAGAGCATCTGAAAGACGCACTGCAGGCTGAGGG
ACAGGGAGCCCCCGAGGGTGTGCGGTGACCTGGAGGAGTTCTTGATCTTCAGGGCTTCTGT
GGAGGGGGCGGCTTTAATGAGCGGTGCCCTTGCGAGCCTCAGAGATGTGGGAGA
GCGCACGGTCTGCAACGCCCTGGTCAACAAACAGGCGTACCACTCTCCAGCCACTGCCCT
GGCCGTGTTGACAACCTCTGGTCAAGCTGCTGTGCCGGCCTCACGCCCTCATTGGTGGT
CTCCAACTTCCCCAGGCCCGAGCGCCCTGCAAGGCTGCCAAGGACAGTTAACGAGGG
CCGGAAAGGATTGCAATTGCCCTCAACCTGCTCTGCCATGGCATTCTGGCAGCAC
GTTCTCCATCTGGCGGTCAAGCGAGAGGGCGTCAAGGCCAAGCATGTGCAAGTTGGTGA
TGGAGTCACGTTGGCAGTTCTGGCTCTCTGCTCTGTTGGGACCTCATCTCTTCTT
CATCCCCAGTCTGCTGCTGCTGGTGGTTAAAGGCCCTGACGTGCGTGGCTTCAAGCGG
GGACGGGCCACATGGCGACCCCTGCTGCTGCTCTACGGCTGGGCCATCATCCC
CCTCATGTTACCTGTGAACTCTCTCTGGGGCGGCCACTGCCATACGAGGCTGAC
CATCTTCAACATCTGTCAGGCCATGCCAACCTTCTGTATGGTCACCATCATGCCATCCC
AGCTGTAAAATGGAAAGACTTCCAAAACCCTGGATCACCTGTTCTGGTGTGCCAA
CCACTGCTGGGGATGGCAGTCAGCAGTTCTAGAGAAACTACGAGACGCCAGGTTACTG
CACCTCTCGAGGTGCCGCCACTACTGCAAGAAAATAACATCCAGTACCGAGGAA
CTTCTATGCCCTGGAGGCCGCCGGGGTCCGGCGGTTTGTGGCTCCATGGCCGCTCAGG
GTGCGGCTTACCTCATCTGCTCTCCCTCATGGAGACCAACCTGCTTCAGAGACTCAGGGG
CATCTCTGGCCCTCCGGAGGGAGGGCAACTGACAGAAATTATACACCCGGATGCCCTG
GCTTCTGTGAGGACCAAGATGTAGCGGACGAGAGGACCCGATCTGGCCCCCAGGCCGG
CTCCCTGCTCCACACCTCTGATTATCAAGGAGCTCTCAAGGTGTACGAGCAGCGGGT
GCCCTCTGGCGTGGACAGGCTCTCCCTGCCGTGCAAGAAAGGGACTGCTTCGGCCT
GCTGGCTTCAATGGAGCCGGAAAGACCAAGCATTTCAAAATGCTGACCCGGAGGAGAG
CCCTCACCTCTGGGGATGCCCTTGTGCGGGGTACAGAACTGACGCTCTGATGTCGGAAAGGT
GCCGGAGCGGATCGGGTACTGCCCGAGTTGTGCTGCCAGCACATGACAGGCCG
GGAGAGTCTGTCATGTCAGCTCGCGCTCGGGGCACTCCCTGAGGCCACATCGGGGCTG
CGTGGAGAAACACTCTGGGGGCCATGCTGCTGGAGGCCACATGCCAACAGCTGGTCAGGAC
GTACAGTGGTGAACAAAGCGGAAAGCTGAGGCCAGGGCACTGCCCTGATCGGAGAGCCTGC
TGTGATCTCTGGACCGCGCTCACTGGCATGGACCCGGTGGCCGGCCCTGCTT
GGACACCGTGGCACAGGCCAGAGACTCTGGCAAGGCCACATCATCACCTCCACAGCAT
GGAGGACTGTGAGGCCCTGTGCAACCGCTGCCATCAAGGTGCAAGGGCAGTCAAGTG
CCTGGGAGGCCCAAGCACCTCAAGAGCAAGCTGGCAGCGGCTACTCTCTGCCGGGCAA
GGTGCAGAGTGAAGGGCAACAGGAGGGCTGGAGGAGTTCAAGGCCCTGCGGACCTGAC
CTTCTCAGGCCAGCGTCTGGAGATGTGAGCACCAAGGCATGGTCAATTACACCTGCCGG
CCGTGACCTCAGCTGGCGAAGGTTTCGGTATTCTGGAGAAAGCCAAGGAAAAGTACGG
CGTGGAGGACTACTCCGTGAGGCCAGATCTGCTGGAACAGGTCTTCTGAGCTTCGCCCA

CCTGCAGCCGCCACCGCAGAGGAGGGCGATGAGGGGTGGCGGCTGTCCTGCCATCAGG
 CAGGGACAGGACGGGCCAAGCAGGGCATCTTACATCCTCTCTCCAAAGTTTATCTCAT
 CCTTTATTTTAATCACTTTTCTATGATGGATATGAAAATTCAAGGCAGTATGCACA
 GAATGGACGAGTGCAGCCCCATGCCAGGATCAGCATGCCATGCCATGCTG
 CATACTCTGGAGTTCACTTCCCAGAGCTGGGGCAGGCCGGGAGCTGCCGGGAAGCTC
 CGGGGCTCTGGGGAGAGCTGACCCAGGAAGGGCTGCAGCTGAGCTGGGGGTTGAATT
 TCTCCAGGCACTCCCTGGAGAGAGGACCCAGTGACTTGTCCAAGTTACACAGACACTA
 ATCTCCCTGGGGAGGAAGCGGGAACCCAGGCTGAACTGTAGCGAGGCCAGGC
 CGCCAGGAATGGACCATGCAAGTCAGTGTCACTGGAGGGAAAGCTGCTGACTGTGATTAGG
 TGCTGGGGCTCTAGCGTCCAGCGCACGCCGGGGCATCCTGGAGGCTCTGCTCCCTTAGG
 GCATGGTAGTCACCGCGAAGCGGGCACCGTCCACAGCATCTCCCTAGAACGACGCCAGA
 CAGGAGGGAAAGCTGCCAGGCTCGAAGCAGTCTCTGGTCCAGCAGTGCACCCCTCAGGAA
 GTGCCCGCCCCCAGGACACGCCAGGGACACCCTAAGGGCTGGGTGCTCAAGGACAA
 CATTGAATACTGTGACCATCCAGAAAATAATGCTGAGGGGACACAAAAAA
 AAAAAAA

Fragment 640918

1 GAGATCCTGAGGCTTTCCCCAGGCTGTCAGCAGGAAAGGTTCTCCCTCCCTGATGGTC
 61 TATAAGTTGCCCTGTTGAGGATGTGGACCTTTATCAAGGCTTCTTCAAATTAGAGATA
 121 CTAAACAGAGTTGCCACCTGGAGGAGTACAGCCTCTCACAGTCTACCCCTGGAGCAGGTT
 181 TTCCCTGGAGCTCTCCAAGGAGCAGGAGCTGGGTGATCTTGAAGAGGACTTGTCCCTCG
 241 GTGAAGTGGAAACTCTCTGCCAGGAAGGCCAAAGCTCAAATACCCCTATATCTTC
 301 TTTAATCCTGTGACTCTTTAAAGATAATTTTATAGCCTTAATATGCTTATATCAGA
 361 GGTGGTACAAAATGCAATTGCAATTGCAATTATTC

Fragment 698739

1 GCTCTCCACACAGAGATTTGAAGCTTTCCCACAGGCTGCTGGCAGGAAAGATACTCC
 61 TCTTTAATGCCCTATAAGTTACCTGTGGAGGATGTCCACCCCTCTATCTCGGGCTTTTC
 121 AAGTTAGAGGCCATGAAACAGACCTTCAACCTGGAGGAATACAGCCTCTCTCAGGCTACC
 181 TTGGAGCAGGTATCTTGAAGACTCTGTAAGAGCAGGAGCTGGGAATGTTGATGATAAA
 241 ATTGATAACACAGTTGAATGAAACTCTCCACAGGAAGACCTTAAATGAAGAACCT
 301 CCTAACATTCATTTTGTGCTACTACATTGTTAGTTCTAAATTCTACAAGAATGTT
 361 TCTCTTACTCTCAGTTAACAAAAGAACATTAAACATTCAATAATGATTACAGTT
 421 TTCAATTAAAATTTAGGATGAAGGAAACAGGAATAATAGGAAAAGTAGAGACAA
 481 AATTAAACAAAATCAGACATTTTATTCACTCCCCAACATGGCTTATTGTTGCTTAA
 541 AATTAAAATCAATAAATTAGGTTGGTTATCG

Fragment 990006

1 GTGGAAGATGTGCAACCTTTAGGCCAAGCTTCTTCAAATTAGAGAAGGTTAACAGAGC
 61 TTTGACCTAGAGGAGTACAGCCTCTCACAGTCTACCCCTGGAGCAGGTTCTGGAGCTC
 121 TCCAAGGAGCAGGAGCTGGGTGATTTGAGGAGGATTTGATCCCTCAGTGAAGTGGAAAG

05789535-052201

181 CTCCCTCCCCAGGAAGAGCCTTAAAACCCCAAATTCTGTGTTCTGTTAACCCGTGGT
 241 TTTTTTAAATACATTATTTATAGCAGCAATGTTCTATTTTAGAAACTATATTATA

Fragment 1133530

1 TTTTCAGTTG CATGTAATAC CAAGAACATCG AATTGTTTC CGGTTCTTAT
 51 GGGAAATTGTT AGCAATGCC TTATTGGAAT TTTAACTTC ACAGAGCTTA
 101 TTCAAATGGA GAGCACCTTA TTTTTCTGTG ATGACATAGT GCTGGATCTT
 151 GTTGTATAG ATGGGTCCAT ATTTTGTG TGATCACAA ACTGCATTTC
 201 TCCTTATATT GCATTAAGCA GCATCAGTGA TTATT

Fragment 1125168

CTGGATT
 TGCTCTGCGG CAAGACCCGC GCCACCAGCG GCAGTATCCA GTTCGACGGC
 CAGGAACATCGA CAAAATCGG CGAACACAC ATCCTGCGG CGGGGGTAGG
 CGCGAAGTTT CAGAACCCGT CGATCTACGA AAACCTCACG GTGTTGAAA
 ACCTTGAGAT GTCTTATCGG GCTGGGGCGA AGGTCTGGGG TGCGCTGTTT
 TTCAAGCGCA ATGCCAGGT GGTCGGCGGG GTCGAG

Fragment 1203215

1 ATCGCCGATA TCTCCCCCTTC GGGCTGCGGC AAAGAGCACCT TCCTGAAAGT
 51 GCTCGCCGGG TTCTATGCCG TGGACACCGG GCGCTTCAGG ATCAACGGCC
 101 AGGCGATCGG GCATTTCCGGT TTGCGCTCGT ACCCGCCAGAG CGTGGCCTAT
 151 GTCAACGGCC ACAGCAGAGAT CATCGCCGGG ACCGGTATCG AGAACATCCT
 201 GATGACACAGC GACCCCGTGG ACGGCACGGG TTTGAGACAGC TGTCGAGC
 251 AGGCGGGTTT GCTGAAAGC ATCCTGAAAC TGAGCAATGG CTTCAATACC
 301 TTGCTCGGAC CCATGGCGGT GCAATTGTC TCGGGCCAGA AGCAACGCT
 351 GTTGATCGCC CGGGGGTCGAC GC

Fragment 168043

1 AAAACCAAAG ATTCTCCCTGG AGTTTTCTCT AACTGGGTG TTCTCCTGAG
 51 GAGAGTTGAC AAGAAACTTG GTGAGAAATA AGCTGGCAGT GATTACCGGT
 101 CTCCCTCAGA ATCTGATCAT GGGTTGTC CTCCCTTCTC TCCTGCTGCG
 151 GGTCTCGAACG AATGTCGCTAA AGGGTGTCTAT CCAGGACCCG GTAGGTCCTCC
 201 TTTACCAAGT TGTGGGCAGC ACCCCCGTACA CAGGCATGCT GAACGCTGTC
 251 AATCTGTTTC CGGTGCTCGC AGCTGTCAGC A

Huwhite2

1 ATGGCCGTGA CCCTGGAGGA CGGGGGCGAA CCCCTGTC TGACCCACGCA
 51 CCTGAAGAAG GTGGAGAACCC ACATCACTGQA AGCCCCAGCGC TTCTCCCACC
 101 TGCCCAAGCG CTCAGCGTG GACATCGAGT TCGTGGAGCT GTCCCTATTCC
 151 GTGCGGGAGG GCGCCCTGCTG CGCGAAAGG GTTATAAGA CCCCTCTCAA
 201 GTGCTCTCA GTAAATTCT CGCCGCCGGG GCTGATTGGC ATCATGGGCC
 251 CCTCAGGGGC TGGCAAGTCT ACATTCATGA ACATCTTGGC AGGATACAGG
 301 GAGTCTGGAA TGAAGGGCA GATCCTGGTT AATGGAAGGC CACGGGAGCT

351 GAGGACCTTC CGCAAGATGT CCTGCTACAT CATGCAAGAT GACATGCTGC
 401 TGCCGCACCT CACGGTGTG GAAGCCATGA TGGTCTCTGC TAACCTGAAT
 451 CTTACTGAGA ATCCCGATGT GAAAAACGAT CTGCTGACAG AGATCCTGAC
 501 GGCACGGGC CTGATGTCGT GCTCCCACAC GAGGACAGCC CTGCTCTGC
 551 GCGGGCAGAG GAAGCGCTCG GCCATGCCCG TGGAGCTGGT CAACAACCCG
 601 CCTGTCATGT TCTTGATGA GCCCACCAGT GGTCCTGGATA GGCCTCTTG
 651 TTCCAAGTG GTGCCCCCTCA TGAAGTCCCT GGCACAGGGG GGCGTACCA
 701 TCATCTGCAC CATCCACCAAG CCCAGTGCCTA AGCTCTTGA GATGTTTGAC
 751 AAGCTCTACA TCCCTGAGCCA GGGTCACTGC ATCTTCAAAG GCGTGGTCAC
 801 CAACCTGATC CCCTATCTAA AAGGACTCGG CTTGCATTGC CCCACCTACC
 851 ACAACCCGGC TGACTTCAGT GAGTGGGGT CTGTTGCCTC TGCGAGATAT
 901 GGACACCTGA ACCCCATGTT GTTCAGGGCT GTGCAGAATG GGCTGTGCGC
 951 TATGGCTGAG AAGAAGAGCA GCCCTGAGAA GAACGAGGTC CCTGCCCCAT
 1001 GCCCTCTTG TCCTCCGGAA TTGGATCCCA TTGAAAGCCA CACCTTTGCC
 1051 ACCAGCACCC TCACACAGTT CTGCATCCTC TTCAAGAGGA CCTTCCCTGTC
 1101 CATCCTCAGG GACACGGTC TGACCCACCT ACGGTTCACTG TCCACAGTGG
 1151 TTATTGGCGT GCTCATGGC CTCCCTTAC TGCATATTGG CGACGATGCC
 1201 AGCAAGGTCT TCAACAAACAC CGGCTGCCTC TTCTTCTCCA TGCTGTTCC
 1251 CATGTTGCC GCCTCATGC CAACTCTGCT CACCTTCCCC TTAGAGATGG
 1301 CGGCTCTCAT GAGGGAGCAC CTCAACTACT GGTACAGCCT CAAACGGTAT
 1351 TACCTGGCCA AGACCATGGC TGACGTGCCCT TTTCAGGTGG TGTGTCGGT
 1401 GGTCTACTGC AGCATTGTGT ACTGGATGAA CGGCCAGCCC GCTGAGACCA
 1451 GCCGCTTCTC GCTCTTCTCA GCCCTGGCCA CGGCCACCGC CTTGGTGGCC
 1501 CAATCTTGG GGCTGCTGAT CGGAGCTGCT TCCAACCTCC TACAGGTGGC
 1551 CACTTTGTG GGCCCAGTTA CGGCCATCCC TGTCTCTTG TTCTCCGGCT
 1601 TCTTTGTCAG CTTCAAGACC ATCCCCACTT ACCTGCAATG GAGCTCTAT
 1651 CTCTCCATG TCAGGTATGG CTTTGAGGGT GTGATCCTGA CGATCTATGG
 1701 CATGGAGCGA GGAGACCTGA CATGTTTAGA GGAACGCTGC CGTTCGGG
 1751 AGGCCACAGAG CATCCTCCGA GGCTCTGGATC TGGAGGATGC CAGCTCTAC
 1801 ATGGACTTCC TGGTCTTGGG CATCTTCTTC CTAGCCCTGC GGCTGCTGGC
 1851 CTACCTGTG CTGCGTTACC GGGTCAAGTC AGAGAGATAG AGGCTTGGCC
 1901 CAGCTGTAC CCCAGCCCT GCAGCAGGAA GCGCCAGTC CCAGCCCTT
 1951 GGGACTTTT TANCTCTATA CACTTGGCA CTGGTTCTG GCGGGCTAT
 2001 CCTCTCCCTC CTTGGCTCCT CCACAGGCTG GCTGTCGGAC TGCGCTCCCA
 2051 GCGCTGGCTC TGGAGTGGG GGCTCCAACC CTCCCCACTA TGCCCAGGAG
 2101 TCTTCCCAAG TTGATGGGT TTGATGGCTC CTCCCTACTC TCTCCAACAC
 2151 CTGCTGCAA AGACTACTGG GAGGCTGCTG CCTCCCTTCCT GCCCATGGCA
 2201 CCCTCCCTG CTGCTGCCT GGGAGCCCTA GGCTCTCTAT GGCCCCACTT
 2251 ACAACTGA

Fragment 20237

1 TTTAAGGATT TCAGCCTTTC CATTCCGTCA GGATCTGTCA CGGCACTGGT TGGCCCCAAGT
61 GGTCTGGCA AATCAACAGT GCTTTCACTC CTGCTGAGGT TGTACGACCC TGCTTCTGGA
121 ACTATTAGTC TTGATGGCCA TGACAATCCG TCAGCTAAAC CCAGTGTGTG GCTGAGATCC
181 AAAATTGGGA CAGTCAGTCA GGAACCCATT TTGTTTTCTT GCTCTATTGC TGAGAACATT
241 GCTTATGGTG CTGATGACCC TTCCCTCTGTG ACCGCTGAGG AAATCCAGAG AGTGGCTGAA
301 GTGGCCAATG CAGTGGCTTC TCCGGAATT CCCCCAAGGT TCAACACTGT GTTGGAGAA
361 AAGGGTGTTC TCCTCTCAGG TGGGCAGAAA CAGCGGATTG CGATTGCCCG TGCTCTGCTA
421 AAGAAATCCA AAATTCTTCT CCTAGATGAA GCAACCAGTG CGCTGGATGC CGAAAATGAG
481 TACCTTGTTA AAGAAGCTCT AGATCGCCTG ATGGATGGAA GAACGGTGTGTT AGTTATTGCC
541 CATAGCCTGT CCACCATTA GAATGCTAAT ATGGTTGCTG TTCTTGACCA AGGAAAAATT
601 ACTGAATATG GAAAACATGA AGAGCTGCCTT TCAAAACCAA ATGGGATATA CAGAAAACTA
661 ATGAAACAAAC AAAGTTTTAT TTCAGCATAA GGAAGCAATT ACTGGTAAAC AATATGAGAC
721 TTTAATGCAA AACAGTGTG CGAAAAAAAAA CTCAGAGACT ATGAAATACA TAAACCATAT
781 ATCAAGTTAT TTGAAAAATA CCTATTTTTT CCAAAGTGTG

COMBINED DECLARATION AND POWER OF ATTORNEY

ATTORNEY DOCKET NO

a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name. I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled

ATP BINDING CASSETTE GENES AND PROTEINS FOR DIAGNOSIS AND TREATMENT OF LIPID DISORDERS AND INFLAMMATORY DISEASES

the specification of which is attached hereto,

or was filed on **March 25, 2001**

as a PCT Application Serial No. PCT/EP99/06991 *U.S. SERIAL NO. 09/786,635
FILED MARCH 7, 2001*

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims.

I acknowledge the duty to disclose information which is material to the patentability of this application in accordance with Title 37, Code of Federal Regulations, §1.56.

I hereby claim foreign priority benefits under Title 35, United States Code, §119 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

Prior Foreign Application(s), the priority(ies) of which is/are to be claimed:

60/101,706 **USA** **September 25, 1998**
(Number) (Country) (Month/Day/Year Filed)

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose the material information as defined in Title 37, Code of Federal Regulations, §1.56 which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

(Application Serial No.)	(Filing Date)	(Status)
		(patented, pending, abandoned)

(Application Serial No.)	(Filing Date)	(Status)
		(patented, pending, abandoned)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorneys and/or agents to prosecute this application and transact all business in the Patent and Trademark Office connected therewith:

Kurt G. Briscoe, Reg. No. 33,141; William C. Gerstenzang, Reg. No. 27,552 and Stephen G. Ryan, Reg. No. 39,015, all of 220 East 42nd Street, 30th Floor, New York, New York 10017, and William R. Robinson, Reg. No. 27,224.

Davy E. Zoneraich, Reg. No. 37,267 and Mark A. Montana, Reg. No. 44,948, all of 721 Route 202-206, Bridgewater, New Jersey 08807, my attorneys with full power of substitution and revocation

Send Correspondence To: NORRIS, McLAUGHLIN & MARCUS 220 East 42nd Street, 30th Floor New York, New York 10017	Direct Telephone Calls To: (212) 808-0700
--	--

FULL NAME OF SOLE OR FIRST INVENTOR Gerd Schmitz	INVENTOR'S SIGNATURE <i>Gerd Schmitz</i>	DATE 10.3.2001
RESIDENCE D 93161 Sinzing, Germany	CITIZENSHIP German	
POST OFFICE ADDRESS Turmstr. 15a, D 93161 Sinzing, Germany		
FULL NAME OF SECOND INVENTOR Jochen Klucken	INVENTOR'S SIGNATURE <i>Jochen Klucken</i>	DATE 10.3.2001
RESIDENCE D 93047 Regensburg, Germany	CITIZENSHIP German	
POST OFFICE ADDRESS Silberne Fischgasse 13, D 93047 Regensburg, Germany		
FULL NAME OF THIRD INVENTOR	INVENTOR'S SIGNATURE	DATE
RESIDENCE	CITIZENSHIP	
POST OFFICE ADDRESS		
FULL NAME OF FOURTH INVENTOR	INVENTOR'S SIGNATURE	DATE
RESIDENCE	CITIZENSHIP	
POST OFFICE ADDRESS		
FULL NAME OF FIFTH INVENTOR	INVENTOR'S SIGNATURE	DATE
RESIDENCE	CITIZENSHIP	
POST OFFICE ADDRESS		
FULL NAME OF SIXTH INVENTOR	INVENTOR'S SIGNATURE	DATE
RESIDENCE	CITIZENSHIP	
POST OFFICE ADDRESS		
FULL NAME OF SEVENTH INVENTOR	INVENTOR'S SIGNATURE	DATE
RESIDENCE	CITIZENSHIP	
POST OFFICE ADDRESS		
FULL NAME OF EIGHTH INVENTOR	INVENTOR'S SIGNATURE	DATE
RESIDENCE	CITIZENSHIP	
POST OFFICE ADDRESS		

SEQUENCE LISTING

<110> Bayer AG

<120> ATP binding cassette genes and proteins for diagnosis
and treatment of lipid disorders and inflammatory
diseases

<130> ATP binding cassette genes and protein

<140>

<141>

<150> 101706

<151> 1998-09-25

<160> 54

<170> PatentIn Ver. 2.0

<210> 1

<211> 6880

<212> DNA

<213> Human

<220>

<223> cDNA of ABCA1 (ABC1)

<400> 1

caaacatgtc agctgttact ggaagtggcc tggcctctat ttatcttcgtatc 60
tctgttcggc tgagctaccc accctatgaa caacatgaat gccattttcc aaataaagcc 120
atgcctctcg caggaacact tccttgggtt caggggatttca tctgtaatgc caacaacccc 180
tgttccgtt acccgactcc tggggaggtt cccggagtttgc ttggaaacctt taacaatcc 240
attgtggctc gcctgttctc agatgttcgg aggcttcttttatacagcca gaaagacacc 300
agcatgaagg acatgcgca agttctgaga acattacagc agatcaagaa atccagctca 360
aacttgaagc ttcaagatcc cctggtgac aatgaaacctt tctctgggtt cctgtatcac 420

aacctctc tcccaaagtc tactgtggac aagatgctga gggctgatgt cattctccac 480
aaggataaaa tgcaaggtt ccagtatcat ttgacaagtc tgcataatgg atcaaaatca 540
gaagagatgtt tccaacttgg tgaccaagaa gtttttgagc tttgtggctt accaaaggag 600
aaactggctg cagcagagcg agtacttcgt tccaaatcatgg acatcctgaa gccaatctg 660
agaacactaa actctacatc tcccttcccc agcaaggagc tggccgaagc cacaaaaac 720
ttgctgcata gtcttgggac tctggcccgagc gagctgttca gcatgagaag ctggagtgtc 780
atgcacagg aggtgatgtt tctgaccaat gtgaacagct ccagtcctc cacccaaatc 840
taccaggctg tgcgttat tgcgtcgggg catcccgagg gaggggggct gaagatcaag 900
tctctcaactt ggtatgggaa caacaactac aaagccctt ttggaggccaa tggactgag 960
gaagatgctg aaaccttcta tgacaactctt acaactcctt actgcaatgtt tttgtatgaag 1020
aatttgaggtt ctatgttctt ttcccgcatt atctggaaat ctctgaaaggc gtcgtctgtt 1080
ggaaagatcc tgcataccatc tgacactcca gccacaaggc aggtcatggc tgaggtaac 1140
aagacccccc aggaactggc tgcgttccat gatctggaaag gcatgtgggaa ggaactcaagc 1200
cccaagatctt ggacccatcat ggagaacagc caaagaatgg accttgcctg gatgtctgtt 1260
gacagcaggg acaatgacca cttttgggaa cagcagttgg atggcttaga ttggacagcc 1320
caagacatcg tggcggtttt gccaaggcac ccagaggatg tccagtcctg taatggttct 1380
gtgtacaccc ggagagaagc ttcaacagc actaaccagg caatccggac catactctgc 1440
ttcatggagt gtgtcaacctt gaacaagcttta gaaccctatgg caacagaatgtt ctggctcatc 1500
aacaagtcacca tggagctgtt ggtatggagg aagttctggg ctggattttt gtgtactggtt 1560
attactccatcg cgacgttccat gctgccccat catgtcaatc acaagatccg aatggacatt 1620
gacaatgtgg agaggacaaa taaaatcaag gatgggtactt gggaccctgg tcctcgatgtt 1680
gacccttgg aggacatgcg gtacgtctgg gggggcttcg cctacttgca ggatgtgggtt 1740
gagcaggccaa tcatcagggt gctgacgggc accggaaaga aactgggtt ctatgttca 1800
cagatgcctt atccctgtt cgttgatgtc atctttctgc ggggtatgtt ccgggtcaatg 1860
cccccttca tgacgtggc ctggatttac tcagtggttgc tgatcatcaaa gggcatgttgc 1920
tatgagaagg aggacacggctt gaaagagatcc atgcggatca tggccctgg caacacgttcc 1980
ctctggtttta gctggttcat tagtagccctt attctcttc ttgtgagccg tggctgttca 2040
gtggtcattcc tgaaggatgg aaacctgttgc ccctacatgtt atcccagctg ggtgtttgtt 2100
ttctctgttcc tggatgttgcgtt ggtgacaaatc ctgcgttgtt ctctgtttagt cacactcttc 2160
tccagagccaa acctggcagc agccgttggg ggcattcatctt acctcacgtt gtacgttcc 2220
tacgttccgtt gtgtggcatgtt gcaggactac gtgggttca cactcaatgtt ctctgttgc 2280
ctgtgttccctt ctgtgttcc tgggtttggc tgcgttgtt ggtgttgtt cccttgcgttgc 2340
ggcattggag tgcgttgttgc caacctgtt gaggatctgtt tggaggaaaga tggcttcaat 2400
ctcaccactt cggatcttccat gatgttgtt gacacccttcc tctatgggtt gatgtactgg 2460
tacatttgagg ctgtttttccatggccatgtt ggaattccca ggcctgttca ttttccttgc 2520
accaaatgttcc actgggtttgg cgaggaaatgtt gatgagaaga gccaccctgg ttccaaaccat 2580
aagagaatataat cagaatctg catggaggag gacccaccc accttgaatgtt gggcgtgtcc 2640

T022501-52998262

attcagaacc tggtaaaaagt ctaccggat gggatgaagg tggctgtcgaa tggccctggca 2700
ctgaattttt atgagggcca gatcaccttc ttccctggcc acaatggagc gggaaagacg 2760
accaccaatgt caatccctgac cgggttggc ccccccaccc cgggcacccgc ctacatccctg 2820
ggaaaagaca ttgcgtctga gatgagcacc atccggcaga acctgggggt ctgtccccag 2880
cataacgtgc tggttgacat gctgactgtc gaagaacaca tctggttcta tgcccgctt 2940
aaagggtctt ctgagaagca cgtgaaggcg gagatggagc agatggccctt ggtatgttgg 3000
ttggccatcaa gcaagctgaa aagcaaaaca agccagctgt cagggtgaat gcagagaaag 3060
ctatctgtgg ccttggcctt tgccgggaa tctaagggtt tcattctgga tgaacccaca 3120
gctgggttgg acccttactc ccgcaggaa atatggagc tgctgtgaa atacccgacaa 3180
ggccgcacca ttattcttc tacacacccat atggatgaag cggacgtctt gggggacagg 3240
attggccatca tctcccatgg gaagctgtgc tggtgggctt cttccctgtt tctgaagaa 3300
cagctggaa caggctacta cctgacccctt gtcaagaaag atgtggaaatc ctccctcagt 3360
tcctgcagaa acatgttag cactgtgtca tacctgaaaa aggaggacag tgtttctcag 3420
agcagttctg atgctggctt gggcagcgc catgagagatc acacgctgac catcgatgtc 3480
tctgttatcc ccaacccatc caggaagcat gtgtctgaa cccggctgtt ggaagacata 3540
gggcgtatggc tgacccatgt gctgccccat gaagctgtca aggaggggac cttttgaa 3600
ctcttccatc agattgtatc ccggctctca gacctggca ttcttagttt tggcatctca 3660
gagacgaccc tggaaagaaatt atccctcaag tgccggcaag agatgtgggtt ggtatgtcag 3720
acccctggatc gtacccgtcc agcaagacga aacaggccgg cttccggggaa caagcagacg 3780
tgcttcgccc cggttactga agatgtatgt gctgatccaa atgattctga catagacccaa 3840
gaatcccgag agacacagactt gctcgtggg atggatggca aagggtctca ccagggtggaa 3900
ggctggaaac ttacacacga acagtttgtt gcccctttgtt ggaagagact gctaattggc 3960
agacggatc ggaaaggatttttgcgttgc atgttcttgc cagctgtgtt tgctgcatt 4020
gcccctgttgc tcaagctgtatc cttggcaactt acccccgatc ggaacttcgc 4080
ccctggatgtt acaacgacaa gtacacattt gtcagcaatg atgctcttgc ggacacgggg 4140
accctggaaatc tcttaaacgc cttccacccaa gaccctggctt ccggccccc ctgtatggaa 4200
ggaaacccaa tccccacac gcccgtcccg gcaggggagg aagagtgac cactgcccc 4260
gttccccaga ccatcatggaa ccttcccg aatgggaact ggacaatgca gaacccttca 4320
cctgcattttccatc agtgcgttgc cggacaaatc aagaagatgc tgccctgtgtt tccccccagg 4380
gcaggggggc tgccctctcc acaaagaaaa caaaacactg cagatatctt tcaggaccc 4440
acagggatc acatccgttgc ttatctgtgtt aagacgtatc tgccatcatc agccaaacgc 4500
ttaaagaaca agatctgggtt gaatggatgtt aggtatggcg gctttccctt ggggtgtatgt 4560
aataactcaag cacttccctcc gagtcaagaa gttaatgtatc ccaccaaaaca aatgaagaaaa 4620
cacctaaacgc tggccaaaggaa cagttctgc gatcgttgc tcaacacgtt gggaaagat 4680
atgacagacgc tggacacccatc aaataatgtc aaggtgtggt tcaataacaa gggctggcat 4740
gcaatcgatc ttccctgttgc tgcataacatc aatgcatttc tccggccaa cctgcaaaag 4800
ggagagaaacc ctagccatta tggattact gcttcaatc atccctgaa tctcaccacaa 4860

cagcagctct cagagggtggc tccgatgacc acatcagtgg atgtccttgt gtccatctgt 4920
gtcatcttgc caatgtcctt cgtcccagcc agctttgtcg tattctgtat ccaggagcgg 4980
gtcagcaaa caaaacacct gcagttcatc aytggagtgta agcctgtcat ctactggctc 5040
tctaattttt tctggatat gtgcattac gttgtccctc ccacacttgtt cattatcatc 5100
ttcatctgtc tccagcagaa gtcctatgtt tcetccacca atctgcctgt gtagcccc 5160
ctacttttgc tgtatgggtt gtcaatcaca cctctcatgtt acccagccctc ctttgggtc 5220
aagatccccca gcacagctta tgggtgtc accaggctga acctttcat tggcattaa 5280
ggcagcgtgg ccacctttgt gttggatgtt tcacccgaca ataagctgaa taatatcaat 5340
gatatcctgtc agtccgttgc ttgtatcttc ccacatttt gctggggacg agggtctatc 5400
gacatgggtc aaaaccaggc aatggctgtat gcccggaaa gtttggggaa gaatcgctt 5460
gtgtaccatc tatcttgggat cttgggtggaa cgaaacacctt tggccatggc cgtggaaagg 5520
gtgggtttct tcctcattac tgggtgtatc cagtagat tcttcattcag gcccagac 5580
gtaaatgc aaactatcttc tctgtatgtat gaagatgaaat atgtggggcg gaaaagac 5640
agaattcttgc atggggatggg ccagaatgac atctttagaaaa tcaaggaggat gacgaagata 5700
tatagaaggc agccggaaaggc tgggtgtac aggtttgtcg tggccatttc tcttgggtgag 5760
tgccttgggc tcctgggatgta taatggggatc ggaaaatcatc caacttcaa gatgttaaca 5820
ggagataccatc ctgttaccatc aggagatgtt tccctttaaca gaaatagtat cttatcaaac 5880
atccatgtatc tacatcagaa catgggtctac tgccctcagt ttgtatgcatc cacagagctg 5940
ttgactgggatc gagaacacgtt ggatgttttgc gccccttgc gaggagtccc agagaaaagaa 6000
gttggcaagg tgggtggatg ggcgattcgg aaactggggcc tcgtgaagta tggagaaaa 6060
tatgctgttactatgttggg aggcaacaaa cgcacgttctt ctacagccat ggctttgtatc 6120
ggcggggcttc ctgtgggttt tctgtatgaa cccaccacag gcatggatcc caaagcccc 6180
cggttcttgtt ggaatgtgtc cctaaatgtt gtcaggagggg ggagatcgtt agtgccttaca 6240
tctcatatgtt tggagaatgt tgaagttctt tgcacttaga tggcaatcat ggtcaatgaa 6300
agggttcagggtt gccttggcag tgcgttccatc cttttttttt gttttggaga tggttataca 6360
atagttgtatc gaatagcagg gtcaccccgac gacctgtatc ctgcgttccatc ggtttttttt 6420
cttgcatttc ctggaaatgtt tccaaatgggaa aacacccggaa acatgtatc ataccaggctt 6480
ccatcttcatc tatcttcttc ggcaggata ttcagcatcc tctcccgag caaaaaggca 6540
ctccacatag aagactacttc tgggttccatc acaacacttgc accaaggattt tgcgttccatc 6600
gccaaggacc aaagtgtatc tgaccacttta aacacccctt cattacacaa aaaccagaca 6660
gtatgtggatc ttgcgttctt ccatgttgc acatgtatc agaaatgtt gaaatgtatc 6720
gtatgttgc tccctgtatc acgggggtggc tgaaatgtt gagggtacttgc accttccctt 6780
gcaccatgtt gaaatgttgc gaaaaatggggcc gtcacccgtt gatgtggaaag aagtaacttgc 6840
gatactgtatc tgatactattt caatgtatc caattcaatc 6880

<210> 2

<211> 2201

<212> PRT

<213> Human

<220>

<223> Peptide sequence of ABCA1 (ABCI)

<400> 2

Met Pro Ser Ala Gly Thr Leu Pro Trp Val Gln Gly Ile Ile Cys Asn

1

5

10

15

Ala Asn Asn Pro Cys Phe Arg Tyr Pro Thr Pro Gly Glu Ala Pro Gly

20

25

30

Val Val Gly Asn Phe Asn Lys Ser Ile Val Ala Arg Leu Phe Ser Asp

35

40

45

Ala Arg Arg Leu Leu Leu Tyr Ser Gln Lys Asp Thr Ser Met Lys Asp

50

55

60

Met Arg Lys Val Leu Arg Thr Leu Gln Gln Ile Lys Lys Ser Ser Ser

65

70

75

80

Asn Leu Lys Leu Gln Asp Phe Leu Val Asp Asn Glu Thr Phe Ser Gly

85

90

95

Phe Leu Tyr His Asn Leu Ser Leu Pro Lys Ser Thr Val Asp Lys Met

100

105

110

Leu Arg Ala Asp Val Ile Leu His Lys Val Phe Leu Gln Gly Tyr Gln

115

120

125

Leu His Leu Thr Ser Leu Cys Asn Gly Ser Lys Ser Glu Glu Met Ile

130

135

140

Gln Leu Gly Asp Gln Glu Val Ser Glu Leu Cys Gly Leu Pro Arg Glu

145

150

155

160

T03250-5E998760

Lys Leu Ala Ala Ala Glu Arg Val Leu Arg Ser Asn Met Asp Ile Leu
165 170 175

Lys Pro Ile Leu Arg Thr Leu Asn Ser Thr Ser Pro Phe Pro Ser Lys
180 185 190

Glu Leu Ala Glu Ala Thr Lys Thr Leu Leu His Ser Leu Gly Thr Leu
195 200 205

Ala Gln Glu Leu Phe Ser Met Arg Ser Trp Ser Asp Met Arg Gln Glu
210 215 220

Val Met Phe Leu Thr Asn Val Asn Ser Ser Ser Ser Thr Gln Ile
225 230 235 240

Tyr Gln Ala Val Ser Arg Ile Val Cys Gly His Pro Glu Gly Gly Gly
245 250 255

Leu Lys Ile Lys Ser Leu Asn Trp Tyr Glu Asp Asn Asn Tyr Lys Ala
260 265 270

Leu Phe Gly Gly Asn Gly Thr Glu Glu Asp Ala Glu Thr Phe Tyr Asp
275 280 285

Asn Ser Thr Thr Pro Tyr Cys Asn Asp Leu Met Lys Asn Leu Glu Ser
290 295 300

Ser Pro Leu Ser Arg Ile Ile Trp Lys Ala Leu Lys Pro Leu Leu Val
305 310 315 320

Gly Lys Ile Leu Tyr Thr Pro Asp Thr Pro Ala Thr Arg Gln Val Met
325 330 335

Ala Glu Val Asn Lys Thr Phe Gln Glu Leu Ala Val Phe His Asp Leu
340 345 350

Glu Gly Met Trp Glu Glu Leu Ser Pro Lys Ile Trp Thr Phe Met Glu

002250-000998769

355 360 365

Asn Ser Gln Glu Met Asp Leu Val Arg Met Leu Leu Asp Ser Arg Asp
370 375 380

Asn Asp His Phe Trp Glu Gln Gln Leu Asp Gly Leu Asp Trp Thr Ala
385 390 395 400

Gln Asp Ile Val Ala Phe Leu Ala Lys His Pro Glu Asp Val Gln Ser
405 410 415

Ser Asn Gly Ser Val Tyr Thr Trp Arg Glu Ala Phe Asn Glu Thr Asn
420 425 430

Gln Ala Ile Arg Thr Ile Ser Arg Phe Met Glu Cys Val Asn Leu Asn
435 440 445

Lys Leu Glu Pro Ile Ala Thr Glu Val Trp Leu Ile Asn Lys Ser Met
450 455 460

Glu Leu Leu Asp Glu Arg Lys Phe Trp Ala Gly Ile Val Phe Thr Gly
465 470 475 480

Ile Thr Pro Gly Ser Ile Glu Leu Pro His His Val Lys Tyr Lys Ile
485 490 495

Arg Met Asp Ile Asp Asn Val Glu Arg Thr Asn Lys Ile Lys Asp Gly
500 505 510

Tyr Trp Asp Pro Gly Pro Arg Ala Asp Pro Phe Glu Asp Met Arg Tyr
515 520 525

Val Trp Gly Gly Phe Ala Tyr Leu Gln Asp Val Val Glu Gln Ala Ile
530 535 540

Ile Arg Val Leu Thr Gly Thr Glu Lys Lys Thr Gly Val Tyr Met Gln
545 550 555 560

002250-55998760

Gln Met Pro Tyr Pro Cys Tyr Val Asp Asp Ile Phe Leu Arg Val Met
565 570 575

Ser Arg Ser Met Pro Leu Phe Met Thr Leu Ala Trp Ile Tyr Ser Val
580 585 590

Ala Val Ile Ile Lys Gly Ile Val Tyr Glu Lys Glu Ala Arg Leu Lys
595 600 605

Glu Thr Met Arg Ile Met Gly Leu Asp Asn Ser Ile Leu Trp Phe Ser
610 615 620

Trp Phe Ile Ser Ser Leu Ile Pro Leu Leu Val Ser Ala Gly Leu Leu
625 630 635 640

Val Val Ile Leu Lys Leu Gly Asn Leu Leu Pro Tyr Ser Asp Pro Ser
645 650 655

Val Val Phe Val Phe Leu Ser Val Phe Ala Val Val Thr Ile Leu Gln
660 665 670

Cys Phe Leu Ile Ser Thr Leu Phe Ser Arg Ala Asn Leu Ala Ala Ala
675 680 685

Cys Gly Gly Ile Ile Tyr Phe Thr Leu Tyr Leu Pro Tyr Val Leu Cys
690 695 700

Val Ala Trp Gln Asp Tyr Val Gly Phe Thr Leu Lys Ile Phe Ala Ser
705 710 715 720

Leu Leu Ser Pro Val Ala Phe Gly Phe Gly Cys Glu Tyr Phe Ala Leu
725 730 735

Phe Glu Glu Gln Gly Ile Gly Val Gln Trp Asp Asn Leu Phe Glu Ser
740 745 750

Y02250-52998760

Pro Val Glu Glu Asp Gly Phe Asn Leu Thr Thr Ser Val Ser Met Met
755 760 765

Leu Phe Asp Thr Phe Leu Tyr Gly Val Met Thr Trp Tyr Ile Glu Ala
770 775 780

Val Phe Pro Gly Gln Tyr Gly Ile Pro Arg Pro Trp Tyr Phe Pro Cys
785 790 795 800

Thr Lys Ser Tyr Trp Phe Gly Glu Glu Ser Asp Glu Lys Ser His Pro
805 810 815

Gly Ser Asn Gln Lys Arg Ile Ser Glu Ile Cys Met Glu Glu Glu Pro
820 825 830

Thr His Leu Lys Leu Gly Val Ser Ile Gln Asn Leu Val Lys Val Tyr
835 840 845

Arg Asp Gly Met Lys Val Ala Val Asp Gly Leu Ala Leu Asn Phe Tyr
850 855 860

Glu Gly Gln Ile Thr Ser Phe Leu Gly His Asn Gly Ala Gly Lys Thr
865 870 875 880

Thr Thr Met Ser Ile Leu Thr Gly Leu Phe Pro Pro Thr Ser Gly Thr
885 890 895

Ala Tyr Ile Leu Gly Lys Asp Ile Arg Ser Glu Met Ser Thr Ile Arg
900 905 910

Gln Asn Leu Gly Val Cys Pro Gln His Asn Val Leu Phe Asp Met Leu
915 920 925

Thr Val Glu Glu His Ile Trp Phe Tyr Ala Arg Leu Lys Gly Leu Ser
930 935 940

Glu Lys His Val Lys Ala Glu Met Glu Gln Met Ala Leu Asp Val Gly

T0225D-SEC98/60

945	950	955	960
Leu Pro Ser Ser Lys Leu Lys Ser Lys Thr Ser Gln Leu Ser Gly Gly			
965	970	975	
Met Gln Arg Lys Leu Ser Val Ala Leu Ala Phe Val Gly Gly Ser Lys			
980	985	990	
Val Val Ile Leu Asp Glu Pro Thr Ala Gly Val Asp Pro Tyr Ser Arg			
995	1000	1005	
Arg Gly Ile Trp Glu Leu Leu Leu Lys Tyr Arg Gln Gly Arg Thr Ile			
1010	1015	1020	
Ile Leu Ser Thr His His Met Asp Glu Ala Asp Val Leu Gly Asp Arg			
1025	1030	1035	1040
Ile Ala Ile Ile Ser His Gly Lys Leu Cys Cys Val Gly Ser Ser Leu			
1045	1050	1055	
Phe Leu Lys Asn Gln Leu Gly Thr Gly Tyr Tyr Leu Thr Leu Val Lys			
1060	1065	1070	
Lys Asp Val Glu Ser Ser Leu Ser Ser Cys Arg Asn Ser Ser Ser Thr			
1075	1080	1085	
Val Ser Tyr Leu Lys Lys Glu Asp Ser Val Ser Gln Ser Ser Ser Asp			
1090	1095	1100	
Ala Gly Leu Gly Ser Asp His Glu Ser Asp Thr Leu Thr Ile Asp Val			
1105	1110	1115	1120
Ser Ala Ile Ser Asn Leu Ile Arg Lys His Val Ser Glu Ala Arg Leu			
1125	1130	1135	
Val Glu Asp Ile Gly His Glu Leu Thr Tyr Val Leu Pro Tyr Gly Al			
1140	1145	1150	

Ala Lys Glu Gly Ala Phe Val Glu Leu Phe His Glu Ile Asp Asp Arg
1155 1160 1165

Leu Ser Asp Leu Gly Ile Ser Ser Tyr Gly Ile Ser Glu Thr Thr Leu
1170 1175 1180

Glu Glu Ile Phe Leu Lys Val Ala Glu Glu Ser Gly Val Asp Ala Glu
1185 1190 1195 1200

Thr Ser Asp Gly Thr Leu Pro Ala Arg Arg Asn Arg Arg Ala Phe Gly
1205 1210 1215

Asp Lys Gln Ser Cys Leu Arg Pro Phe Thr Glu Asp Asp Ala Ala Asp
1220 1225 1230

Pro Asn Asp Ser Asp Ile Asp Pro Glu Ser Arg Glu Thr Asp Leu Leu
1235 1240 1245

Ser Gly Met Asp Gly Lys Gly Ser Tyr Gln Val Lys Gly Trp Lys Leu
1250 1255 1260

Thr Gln Gln Gln Phe Val Ala Leu Leu Trp Lys Arg Leu Leu Ile Ala
1265 1270 1275 1280

Arg Arg Ser Arg Lys Gly Phe Phe Ala Gln Ile Val Leu Pro Ala Val
1285 1290 1295

Phe Val Cys Ile Ala Leu Val Phe Ser Leu Ile Val Pro Pro Phe Gly
1300 1305 1310

Lys Tyr Pro Ser Leu Glu Leu Gln Pro Trp Met Tyr Asn Glu Gln Tyr
1315 1320 1325

Thr Phe Val Ser Asn Asp Ala Pro Glu Asp Thr Gly Thr Leu Glu Leu
1330 1335 1340

Leu Asn Ala Leu Thr Lys Asp Pro Gly Phe Gly Thr Arg Cys Met Glu
1345 1350 1355 1360

Gly Asn Pro Ile Pro Asp Thr Pro Cys Gln Ala Gly Glu Glu Trp
1365 1370 1375

Thr Thr Ala Pro Val Pro Gln Thr Ile Met Asp Leu Phe Gln Asn Gly
1380 1385 1390

Asn Trp Thr Met Gln Asn Pro Ser Pro Ala Cys Gln Cys Ser Ser Asp
1395 1400 1405

Lys Ile Lys Lys Met Leu Pro Val Cys Pro Pro Gly Ala Gly Gly Leu
1410 1415 1420

Pro Pro Pro Gln Arg Lys Gln Asn Thr Ala Asp Ile Leu Gln Asp Leu
1425 1430 1435 1440

Thr Gly Arg Asn Ile Ser Asp Tyr Leu Val Lys Thr Tyr Val Gln Ile
1445 1450 1455

Ile Ala Lys Ser Leu Lys Asn Lys Ile Trp Val Asn Glu Phe Arg Tyr
1460 1465 1470

Gly Gly Phe Ser Leu Gly Val Ser Asn Thr Gln Ala Leu Pro Pro Ser
1475 1480 1485

Gln Glu Val Asn Asp Ala Thr Lys Gln Met Lys Lys His Leu Lys Leu
1490 1495 1500

Ala Lys Asp Ser Ser Ala Asp Arg Phe Leu Asn Ser Leu Gly Arg Phe
1505 1510 1515 1520

Met Thr Gly Leu Asp Thr Arg Asn Asn Val Lys Val Trp Phe Asn Asn
1525 1530 1535

Lys Gly Trp His Ala Ile Ser Ser Phe Leu Asn Val Ile Asn Asn Ala

T0225D-SEG9B/260

102250-5C998Z60

1540	1545	1550
Ile Leu Arg Ala Asn Leu Gln Lys Gly Glu Asn Pro Ser His Tyr Gly		
1555	1560	1565
Ile Thr Ala Phe Asn His Pro Leu Asn Leu Thr Lys Gln Gln Leu Ser		
1570	1575	1580
Glu Val Ala Pro Met Thr Thr Ser Val Asp Val Leu Val Ser Ile Cys		
1585	1590	1595
1600		
Val Ile Phe Ala Met Ser Phe Val Pro Ala Ser Phe Val Val Phe Leu		
1605	1610	1615
Ile Gln Glu Arg Val Ser Lys Ala Lys His Leu Gln Phe Ile Ser Gly		
1620	1625	1630
Val Lys Pro Val Ile Tyr Trp Leu Ser Asn Phe Val Trp Asp Met Cys		
1635	1640	1645
Asn Tyr Val Val Pro Ala Thr Leu Val Ile Ile Ile Phe Ile Cys Phe		
1650	1655	1660
Gln Gln Lys Ser Tyr Val Ser Ser Thr Asn Leu Pro Val Leu Ala Leu		
1665	1670	1675
1680		
Leu Leu Leu Tyr Gly Trp Ser Ser Ile Thr Pro Leu Met Tyr Pro Ala		
1685	1690	1695
Ser Phe Val Phe Lys Ile Pro Ser Thr Ala Tyr Val Val Leu Thr Ser		
1700	1705	1710
Val Asn Leu Phe Ile Gly Ile Asn Gly Ser Val Ala Thr Phe Val Leu		
1715	1720	1725
Glu Leu Phe Thr Asp Asn Lys Leu Asn Asn Ile Asn Asp Ile Leu Lys		
1730	1735	1740

Ser Val Phe Leu Ile Phe Pro His Phe Cys Leu Gly Arg Gly Leu Ile
1745 1750 1755 1760

Asp Met Val Lys Asn Gln Ala Met Ala Asp Ala Leu Glu Arg Phe Gly
1765 1770 1775

Glu Asn Arg Phe Val Ser Pro Leu Ser Trp Asp Leu Val Gly Arg Asn
1780 1785 1790

Leu Phe Ala Met Ala Val Glu Gly Val Val Phe Phe Leu Ile Thr Val
1795 1800 1805

Leu Ile Gln Tyr Arg Phe Phe Ile Arg Pro Arg Pro Val Asn Ala Lys
1810 1815 1820

Leu Ser Pro Leu Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Gln
1825 1830 1835 1840

Arg Ile Leu Asp Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu
1845 1850 1855

Leu Thr Lys Ile Tyr Arg Arg Lys Arg Lys Pro Ala Val Asp Arg Ile
1860 1865 1870

Cys Val Gly Ile Pro Pro Gly Glu Cys Phe Gly Leu Leu Gly Val Asn
1875 1880 1885

Gly Ala Gly Lys Ser Ser Thr Phe Lys Met Leu Thr Gly Asp Thr Thr
1890 1895 1900

Val Thr Arg Gly Asp Ala Phe Leu Asn Arg Asn Ser Ile Leu Ser Asn
1905 1910 1915 1920

Ile His Glu Val His Gln Asn Met Gly Tyr Cys Pro Gln Phe Asp Ala
1925 1930 1935

T02250 * S2998760

Ile Thr Glu Leu Leu Thr Gly Arg Glu His Val Glu Phe Phe Ala Leu
1940 1945 1950

Leu Arg Gly Val Pro Glu Lys Glu Val Gly Lys Val Gly Glu Trp Ala
 1955 1960 1965

Ile Arg Lys Leu Gly Leu Val Lys Tyr Gly Glu Lys Tyr Ala Gly Asn
 1970 1975 1980

Tyr Ser Gly Gly Asn Lys Arg Lys Leu Ser Thr Ala Met Ala Leu Ile
 1985 1990 1995 2000

Gly Gly Pro Pro Val Val Phe Leu Asp Glu Pro Thr Thr Gly Met Asp
2005 2010 2015

Pro Lys Ala Arg Arg Phe Leu Trp Asn Cys Ala Leu Ser Val Val Lys
2020 2025 2030

Glu Gly Arg Ser Val Val Leu Thr Ser His Ser Met Glu Glu Cys Glu
2035 2040 2045

Ala Leu Cys Thr Arg Met Ala Ile Met Val Asn Gly Arg Phe Arg Cys
2050 2055 2060

Leu Gly Ser Val Gln His Leu Lys Asn Arg Phe Gly Asp Gly Tyr Thr
 2065 2070 2075 2080

Ile Val Val Arg Ile Ala Gly Ser Asn Pro Asp Leu Lys Pro Val Gln
2085 2090 2095

Asp Phe Phe Gly Leu Ala Phe Pro Gly Ser Val Pro Lys Glu Lys His
2100 2105 2110

Arg Asn Met Leu Gln Tyr Gln Leu Pro Ser Ser Ser Leu Ser Ser Leu Ala
2115 2120 2125

Arg Ile Phe Ser Ile Leu Ser Gln Ser Lys Lys Arg Leu His Ile Glu

2130

2135

2140

Asp Tyr Ser Val Ser Gln Thr Thr Leu Asp Gln Val Phe Val Asn Phe
2145 2150 2155 2160

Ala Lys Asp Gln Ser Asp Asp Asp His Leu Lys Asp Leu Ser Leu His
2165 2170 2175

Lys Asn Gln Thr Val Val Asp Val Ala Val Leu Thr Ser Phe Leu Gln
2180 2185 2190

Asp Glu Lys Val Lys Glu Ser Tyr Val
2195 2200

<210> 3
<211> 1130
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCB9

<400> 3
gccaatgnca cggtttcatc atggaactcc aggacggcta cagcacagag acaggggaga 60
aggggccccca gctgtcagggt ggccagaagc agccgggtggc catggccng gctctggtgc 120
ggAACCCCCC agtcctccatc ctggatgaag ccaccagcgc tttggatgcc gagagcgagt 180
atctgtatcca gcaggccatc catggcaacc tgtcagaagc acacggtaact catcatcgcg 240
caccggctga gcaccgtgga gcacgcgcac ctcattgtgg tgctggacaa gggccgcgta 300
gtgcagcagg gcacccacca gcagcttgtc tgcccccagg cgggccttta cggcaagctn 360
gttcagcaggc cagatgtgg gtttcaaggc cgcagacttc acagctggcc acaacgagcc 420
tgttagccaac gggtcacaag gcctgtatggg gggccccc ttcgcgggtt ggcagaggac 480
ccgggtccctg cctggcagat gtccccacgg aggttccag ctgccttacc gagcccaaggc 540
ctgcagcaact gaaaagacac ctgcctatgtc ccatgtatcac cgcttntgca atcttgcccc 600
tggtcccttc cccatttcca gggcaacttt accccnnct gggggatgtc caagagcata 660
gtctctccca catacccttc cagagaaggg gctccctgt ccggaggagg acacggggaa 720
cgggattttc cgtctctccc tcttgccagc tctgtgagtc tggccaggc gggtagggag 780

cgtggaggc atctgtctgc caattgcccc ctgccaatct aagccagtct cactgtgacc 840
acacgaaacc tcaactgggg gagtgaggag ctggccaggt ctggagggc ctcaggtgcc 900
cccagcccc cacccagtt tcgccccctcg tcaatcaacc cctggctgjc agccgcccc 960
cccacacccg cccctgtgt ctgtctgtc gagggccacgt ggacccatcat gagatgcatt 1020
cttttctgtc ttttgtggn gggatgggtc aaagcccagg atctggcttt gccagaggtt 1080
gcaacatgtt gagagaaccc ggtcaataaaa gtgtactacc tcttacccct 1130

<210> 4

<211> 1304

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCA6

<400> 4

tcttagatga gaaacctgtt ataattgcca gctgtctaca caaagaatat gcaggccaga 60
agaaaaatgg ctttcaaaag aggaagaaga aaatagcagc aaaaaatatac tctttctgt 120
ttcaagaagg taaaattttgg ggtatgtctag gacccaatgg tgctggaaaa agttcatcta 180
ttagaatgt atctgggatc acaaaggccaa ctgctggaga ggtggaaactg aaaggctgc 240
gttcagttt gggccacctg gggtaactgccc ctcaagagaa cgtgtgtgg cccatgtca 300
cggtgaggga acacctggag gtgtatgtcg cgtcaaggag gctcaggaaaa gcggacgcga 360
ggctcgcctat cgcaaggatgt gtgtatgtt taaaactgtca tgagcagctg aatgttctgt 420
tgcaaaaatt aacagcagga atcacagagaa agttgtgtt tggatgtcgc ctctctggaa 480
actcacctgt ctgtccctg gatgaaccat ctacggccat aaccccccac ggcagcagca 540
aatgttgcgc ggcatacccg gcaacttgcataaaaacaga gagagggtgc ctctctgacca 600
ccctataacct ggctgaggcg gaagcttgcgt gtgaccgtgt ggcatacatg gtgtctggaa 660
ggcttagatg cattggctcc atccaaacacc tgaaaaacaa acttggcaag gattatcc 720
tagagctaaa agtgaaggaa acgtctcaag tgactttgtt ccacacttag attctgaagc 780
ttttccacaa ggctcgaggc cagaaaggat ttccatctttt gttaaacctat aagctcccc 840
gtggcagacgt ttaccctt atcacagacc ttccacaat tagaaggcgtt gaagcataaa 900
ctttaacctg gaagaataca gcctttctcc agtgcacact gganaagtn tccttanaac 960
cttccttaaa aacaggaagt taggaatatt tgaatggaaa nnnacccccc ccccttattc 1020
aggtggaaacc tttaaaactctt aacccatgtat tttttttgtt gatctcttat aaaactttatg 1080
ttttatgtta taattaatag tatgtttat tttaaagatc atttaaaatt aacatcagg 1140
atattttgtt aatttatgtt acaaatacat aaattttaaa attattcttc ctctcaaaaca 1200
taggggtgtt agcaaaacctg tgataaaaggc aatacaaaaat attagtaag tcacccaaag 1260

agtccaggcac tgggtattgt ggaaataaaa ctatataaac tt aa 1304

<210> 5

<211> 65

<212> PRT

<213> Human

<220>

<223> Partial peptide sequence of ABCG1 (ABC8)

<400> 5

Val Ser Phe Asp Thr Ile Pro Thr Tyr Leu Gln Trp Met Ser Tyr Ile
1 5 10 15

Ser Tyr Val Arg Tyr Gly Phe Glu Gly Val Ile Leu Ser Ile Tyr Gly
20 25 30

Leu Asp Arg Glu Asp Leu His Cys Asp Ile Asp Glu Thr Cys His Phe
35 40 45

Gln Lys Ser Glu Ala Ile Leu Arg Glu Leu Asp Val Glu Asn Ala Lys
50 55 60

Leu

65

<210> 6

<211> 4864

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCC2 (MRP2)

<400> 6

atagaagagt cttcgttcca gacgcagtcc aggaatcatg ctggagaagt tctgcaactc 60

taccttttgg aattcctcat tcctggacag tccggaggca gacctgccac ttgtttga 120
gcaaaactgtt ctggtgtgga ttcccctggg cttcttatgg ctctggcccc cctggcagct 180
tctccacgtg tataaatcca ggaccaagag atcctctacc accaaaactct atcttgctaa 240
gcaggatattc gttggtttc ttcttattct agcagccata gagctggccc ttgtactcac 300
agaagactct ggacaaggca cagtcctgc tgttcgatat accaatccaa gcctctaccc 360
aggcacatgg ctccctggtt tgctgatcca atacagcaga caatggtgta tacagaaaaa 420
ctccctggttc ctgtccctat tctggattct ctcgatactc tggacttccatc tccaaattca 480
gactctgtatc cgacactct tacagggta caattctaat ctggctact cctgcctgtt 540
cttcatctcc tacggattcc agatcctgtat cctgtatctt tcagcatttt cagaaaataa 600
tgagtcatca aataatccat catccatagc ttccattctg agtagcatta cctacagctg 660
gtatgacagc atcattctga aaggctacaa gcgtccctgt acactcgagg atgtctggga 720
agttgatgaa gagatgaaaa ccaagacatt agtgagcaag ttggaaacgc acatgaagag 780
agagctgcag aaaggccaggc gggcacttca gagacggcag gagaagagct cccagcagaa 840
ctctggagcc aggctgcctg gcttgaacaa gaatcagagt caaagccaag atgccttgt 900
ccttggagat gttggaaaaga aaaaaaaaaa gtctggacc aaaaaagatg ttccaaaatc 960
cttggatgatc aaggctctgt tcaaaacttt ctatcatgtt ctccctgaaat cattctact 1020
gaagcttagt aatgacatct tcacgtttgt gaggcctcag ctgtgttgc ttgtgtatctc 1080
ctttgcaagt gaccgtgaca catatttgat gattggatct ctctgtgaa tcctcttatt 1140
caactcggtt ctcattcagt cttttgcct tcagtttat ttccaaactgt gttcaagct 1200
gggtgtaaaaa gtacggacag ctatcatggc ttctgtatata aagaaggcat tgaccctatc 1260
caacttggcc aggaaggagt acaccgttg agaaaacatg aacctgtatgt ctgtggatgc 1320
ccagaagctc atggatgtga ccaacttcat gcacatgtgt tggtcaagtg ttctacagat 1380
tgtcttatct atcttcttc tatggagaga gttggaccgc tcagtttagt cagggtttgg 1440
ggtgatgtgtt ctgtatacc caattatgtc qatactgtcc accaaagatgta agaccatca 1500
ggtcaaaaat atgaagaata aagacaaacg tttaaagatc atgaatgaga ttcttagtg 1560
aatcaagatc ctgaaatatt ttgcctggaa accttcattc agagaccaag tacaatcc 1620
ccggaaagaaa gagctcaaga acctgtgttgc cttagtcaa ctacatgtgt tagtaatatt 1680
cgcttccatg ttaactccatg tccctgtatc tggatcaca ttctgttt atgtctgtt 1740
ggatagcaac aatattttgg atgcacaaaaa ggccttcacc tccattaccc tcttcaatat 1800
ctctgcctttt cccctgagca tgcttccat gatgtatcc tccatgtcc aggccagtg 1860
ttccacacag cggttagaga agtacttggg agggatgac ttggacacat ctgcatttc 1920
acatagctgc aatttgaca aagccatgc gtttctgttgc gcttccttca cttggaaaca 1980
tgattcgaa gccacagtc gagatgtgaa cttggacatt atggcaggcc aacttgcgtt 2040
tgtgatggc cttgtcggtt ctggaaatc ctccctgtata tcagccatgc tgggagaaaat 2100
ggaaaatgtc cacggccaca tcaccatcaa gggcaccact gcttatgtcc cacagcgtc 2160
ctggatttagt aatggccaca taaggacaa catctttt ggaacagatg ttaatgaaaa 2220
gggttaccatg caaqacttggq aqccctgtgc tctcccttca gacttggaaa tgctqcctgg 2280

aggagatgg gctgagattt gagagaaggg tataaatctt agtgggggtc agaaggcagcg 2340
gatcagccctt gccagacta cctacaaaaa tttagacatc tatctctag atgacccttc 2400
gtctgcagt gatgctcatg taggaaaaca tatttttaat aaggcttgg gccccatgg 2460
ccttgtgaaa ggcaagactc gactcttgg tacacatagc atgcacttt tcctcaagt 2520
ggatgagattt gtagttctgg ggaatggaa aattttagag aaaggatccc acagtct 2580
cctggccaaa aaaggagatg ttgctaagaa tctgaagaca tttctaagac atacaggccc 2640
tgaaggagaa gccacagtcc atgatggcag tgaagaagaa gcagatgact atggctgat 2700
atccagtgtg gaagagatcc ccgaagatgc agcctccata accatgagaa gagagaacag 2760
ctttcgctga acacttagcc cgacttctag gtccaatggc aggcatctga agtcccgtg 2820
aaactccctt aaaactcgga atgtgaatag cctgaaggaa gacgaagaac tagtgaagg 2880
acaaaaacta attaagaagg aattcataga aactggaaag gtgaagttct ccatctact 2940
ggagactcta caagcaatacg gattgtttt gatattcttc atcatcttg cgtttgcgtat 3000
gaatttctgtg gcttttattt gatccaacctt ctggctcagt gcttggacca gtgactctaa 3060
aatcttcaat agcaccgact atccagcatc tcagagggac atgagatgt gagtctacgg 3120
agctctgggat ttagcccaag gtatattttt gttcatagca catttctgaa gtgcctttgg 3180
tttcgtccat gcatcaaaaata tcttgacacaa gcaactgctg aacaatatcc ttgcagcaccc 3240
tatgagattt ttggacacaa caccacagg ccggattttt aacaggatgg ccggcgatata 3300
ttccacagtg gatgacaccc tgccctcgtc ctggcgcacgg tggattacat gttcccttgg 3360
gataatcagc acccttgcata tgatctgtcat ggccactctt gtcttccatca tcatctgtat 3420
tcctcttgcg attattttatg tatctgttca gatgtttttt gtgtctaccc cccggcagct 3480
gaggcgctcg gactctgtca ccaggcccc aatctactt cacttcagcg agaccgtatc 3540
aggtttgcacca gttatccgtg ctttgagca ccacgcggca tttctgaaac acaatgaggt 3600
gaggatttgac accaaccacaa aatgtgtttt ttccctggatc acctccaaaca gttggcttgc 3660
aattccctcg gagctgggtt ggaacctgtac tgcctttttt tcgccttgc tgatgtttat 3720
ttatagagat accctaaatgtt gggacactgt tggctttttt ctgtccaaatg cactcaatata 3780
cacacaaaacc ctgaaactgac tggtgaggat gacatcgaaa atagagacca acattgtgc 3840
tgttgagcga ataaactgtt acacaaaatgtt gggaaatgtt gacccctggg tgactgtata 3900
gaggcgctcg ccaggatggc ccaggccaaagg caagatcccg tttacaactt accaagtgcg 3960
gtaccgactt gagctggatc tggctctcg agggatcatc tgcgtacatcg tgcgtatgg 4020
gaagattttt gttggggca ggacaggac tggaaagtca tccctccaaa actgccttt 4080
cagaatctt aaggctggcc gttggctcatg tattttttt gggatgtata ttgccttccat 4140
tgggcctccat gacccctcgag agaagctgtac catcatcccc caggccccca tccctgttcc 4200
tggaaagctcg aggatgtatc tcgaccctttt caacaactac tcagatgggg agatgtggaa 4260
ggccttggggat ctggctcacc tcaagtcttt tggctggccacgg ctgcacactt ggttacccca 4320
cgaaggatcaca gaggctgggtt gcaacactgtac cataggcccg aggcatgtgc tgccttggg 4380
cagggtctgtt ctggaaat ccaagatctt ggtccctggat gaggccactg ctgcgggtgg 4440
tcttagagaca gacaacactca ttccagacatc catccaaaac gagttcgcccc actgcacatgt 4500

gatccaccatc gcccacaggc tgcacaccat catggacagt gacaaggtaa tggccttaga 4560
caacggaaag attatagagt gcggcagccc tgaagaactg ctacaaatcc ctggaccctt 4620
ttactttatg gctaaggaaag ctggcattga gaatgtgaac agcacaaaat tctagcagaa 4680
ggccccatgg gttagaaaag gactataaga ataatttctt atthaatttt attttttata 4740
aaatacagaa tacatacataa agtgtgtata aaatgtacgt tttaaaaaag gataagtgaa 4800
caccatgaa cctactaccc aggttaagaa aataaatgtc accaggtact tgaaaaaaaaa 4860
aaaaa 4864

<210> 7

<211> 4646

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCB1 (MDR1)

<400> 7

cctacttat tcagatattc tccagattcc taaagattag agatcatttc tcattctct 60
aggagtagtc acttcaggaa gcaaccagat aaaagagagg tgcaacgaa gccagaacat 120
tcctcctgaa aattcaacct gtttcgcagt ttctcgagga atcagcattc agtcaatcc 180
ggccggggagc agtcatctgt ggtgaggctg attggctggg caggaacagc gccggggcgt 240
gggtctgagca cagcgcttcg ctctcttgc cacaggaagc ctgagctcat tcgagtagcg 300
gctttccaa gctcaaagaa gcaagggcc ctgttcgttt ccttttaggtc tttccacta 360
agtcggagta tcttcctcca agatccacg tcttggtgc cgttccaagg agcgcgaggt 420
cgggatggat cttgaagggg accgaatgg aggagcaaa aagaagaact tttttaaact 480
gaacaataaa agtggaaaag ataagaagga aaagaaacca actgtcagtg tattttcaat 540
gtttcgttat tcaatttggc ttgacaagtt gtatatgtg tggttgcattt tggctgcatt 600
catccatggc gctggacttc ctctcaatgt gctgggttt ggagaatgtc cagatatctt 660
tgcaaatgca ggaattttag aagatctgtat gtcacacatc actaatagaa gtgtatcaat 720
tgatcagggt ttcttcatgtat atctggagga agacatgacc aggtatgcctt attattacag 780
tggatttggt gctgggggtgc tgggtgc ttcatttcg gtttcatttt ggtgcctggc 840
agctggaaaga caaatacaca aaatttagaa acgtttttt catgtataa tgcgcacgg 900
gataggctgg tttgtatgtgc acgtgttgg ggagcttaac acccgactta cagatgtgt 960
ctctaaatgtt aatgttgcataa aattggatgtt ttcttcgtat caatggcaac 1020
atttttcaact gggtttataatgttgcataa aattggatgtt ttcttcgtat caatggcaac 1080
ggccatcgtt cctgttcttg gactgtcgc tgcgtgtctgg gcaaaagatac tatcttcattt 1140
tactgataaa gaactcttag cgtatgcaaa agctggagca gtagctgaag aggtcttggc 1200

T022501 • S098260

agcaattaga actgtgattt catttgagg aaaaaaaa gaacttggaa ggtacaacaa 1260
aaattttagaa gaagctaaaaaa gaatttggat aaagaaaagctt attacagccaa atatttcttat 1320
agggtctgt ttccctgtcata tcatacgatc ttatgtctgt gccttcgtt atgggaccac 1380
cttggcccttc tcaggggaat attctattttt acaagttactc actgtattttt tttctgttatt 1440
aattttgggtt ttttgttgc gacaggcatc tccaaaggattt gaagcattttt caaatgcag 1500
aggagcagt tatgtttatc tcaagataat tgataataag ccaagttt acagctttt 1560
gaagagtggg cacaaccatc ataataattttt gggaaattttt gaatttgcagaa atgttcaattt 1620
cagtttccca tcttcgaaaag aagtttgcattt ctggaggcctt ctggacacttgc aggtgcagag 1680
tgggcacagc gtggcccttgg ttggaaacag tggctgtttt aagagcacaag cagttccatgtt 1740
gtatgcagagg ctctatgacc ccacagagggtt gatgttgcattt gttgttgcac aggttattttt 1800
gaccataaaat gtaaggttt ttcggaaaat cattttttttt gttttttttt aacctgttattt 1860
gtttttccacc acgtatgttgc aaaacatttttgc ctatggccgtt gaaaatgttca ccatggatgtt 1920
gattttttttt gctgttcaagg aagccaatgttgc ctatgtttt atcatgaaac tgccttataaa 1980
atttttttttt gatgttgcacc ctgggttggat agagaggggc ccagtttgcattt gttttttttt gtcacatgtt 2040
cgccatgttca ctggcccttgg ttccaaaccc caagatccctt ctgttttttgc agggccacgtt 2100
agccttggac acagaaacgc aagcgttttgc tcagggttttgc ctggataagg ccagaaaaagg 2160
tcggaccacc atttttttttgc attttttttttgc ttccatgttgc ctgttttttgc acgttcatgtt 2220
tggtttgcattt gatgttgcattt ttggggatggaa agggaaatcat gatgttgcatttca tggaaagagaa 2280
aggcatttttgc ttccaaacttgc tcaatgttca gacagcaggatggaa aatgttgcattt aatggaaaaa 2340
tgcagtttgcattt gatgttcaaaaatggaaatttttgc ttcccttggaa atgttcttcaat gatgttcaag 2400
atccatgttca ataaagaaaaaaatggaaatttttgc ttttttttttgc ttccatgttgc ctgttttttgc aagcccaaga 2460
cagaaagctt agtaccaaaatggaaatttttgc ttccatgttgc ttccatgttgc ttccatgttgc 2520
gattatgttca ataaatggaaatttttgc ttccatgttgc ttccatgttgc ttccatgttgc ttccatgttgc 2580
tataatgttca ggcctgttcaac cagcatttttgc ataaatatttgc tcaatgttca gatgttcaat 2640
tacaagaattt gatgttgcattt gatgttcaaaaatggaaatttttgc ttccatgttgc ttccatgttgc ttccatgttgc 2700
tctagccctt gatgttcaaaaatggaaatttttgc ttccatgttgc ttccatgttgc ttccatgttgc ttccatgttgc 2760
agctggagatggatgttcaatgttca gacggcttgc atacatgttgc ttccatgttca tgcgttgcac 2820
ggatgttgcattt gatgttcaaaaatggaaatttttgc ttccatgttgc ttccatgttgc ttccatgttgc ttccatgttgc 2880
caatgttgc ttccatgttgc ttccatgttgc ttccatgttgc ttccatgttgc ttccatgttgc ttccatgttgc 2940
tataatgttca gatgttcaaaaatggaaatttttgc ttccatgttgc ttccatgttgc ttccatgttgc ttccatgttgc 3000
gttacttcaatgttca gcaatttttgc ttccatgttgc ttccatgttgc ttccatgttgc ttccatgttgc ttccatgttgc 3060
gtctggacaaatggatgttca gactgttgc ttccatgttgc ttccatgttgc ttccatgttgc ttccatgttgc ttccatgttgc 3120
agcaatgttca gatgttcaaaaatggaaatttttgc ttccatgttgc ttccatgttgc ttccatgttgc ttccatgttgc ttccatgttgc 3180
gtatgttgcattt gatgttcaaaaatggaaatttttgc ttccatgttgc ttccatgttgc ttccatgttgc ttccatgttgc ttccatgttgc 3240
aattacatgttca gatgttcaaaaatggaaatttttgc ttccatgttgc ttccatgttgc ttccatgttgc ttccatgttgc ttccatgttgc 3300
tggagccatgttca gatgttcaaaaatggaaatttttgc ttccatgttgc ttccatgttgc ttccatgttgc ttccatgttgc ttccatgttgc 3360
agctgttgcattt gatgttcaaaaatggaaatttttgc ttccatgttgc ttccatgttgc ttccatgttgc ttccatgttgc ttccatgttgc 3420

caaaggccaa atatcagcac cccacatcat catgtattt gaaaaaccctttgatgtga 3480
cagctacagc acggaggcc taatgcggaa cacattggaa ggaaaatgtca cattttgtga 3540
agtgttatttc aactatccca cccgaccggaa catcccagtgc tttagggac tgagccttgg 3600
ggtaagaaggg gcggcagacgc tggctctgg tggcagcagt ggctgtggaa agagcacagt 3660
ggtcacgctc ctggagcggt tctacgaccc cttggcaggaa aaagtgcgtc ttgatggcaa 3720
agaataaag cgactgaatg ttcatgttgc ctggacacac ctggcatcg tttccaggaa 3780
gccatcttgc ttcatgttgc gcattgttgc gaacatttgc tatggagaca acagccgggt 3840
gggtcactacagc gaagagatcg tgaggcggc aaaggaggcc aacatacatg ctttcatttgc 3900
gtcactgcctt aataaataata gcaactaaagt aggagacaaa ggaactcagc tctctgtgg 3960
ccaaacaa cgcatttgc tagctcggtc ctttgcatttgc ctttgcatttgc 4020
ggatgaagcc acgttcacgc tggatacaga aagtggaaaag gttgttcaag aagcccttgg 4080
caaaggccaga gaaggccgcga cctgcattttt gattgttgc cgcctgttca ccatccggaa 4140
tgcagactta atatgttgtt ttcatgttgc cagacttgc gagatggcgc cgcatttgc 4200
gtctgtggca cagaaggccaa tctatgttgc aatgttgcgtt gtccaggctg gaacaaacgc 4260
ccatgttgcact ctgactgttat gagatgtttaa atatgttgcatttgc atatgttgc 4320
tttatttcaaa gttaaaagc aacacttaca gaattatgg gaggtatctg tttatgttgc 4380
cctcgttgc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 4440
catcaatgttgc agagaaatc aatgttgcatttgc aatgttgcatttgc aatgttgcatttgc 4500
tagattttttt aagataaaat gttttttttt tttttttttt tttttttttt tttttttttt 4560
actgccttgc taaaaggat tttttttttt tttttttttt tttttttttt tttttttttt 4620
ctataataaa actaaactttt catgttgc 4646

<210> 8

<211> 864

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCD2 (ALDR)

<400> 8

aaatggacca gatccgggtgc tgctaaaggagg gctgccttgc ttggcgttgc ggcataatgtcttgc 60
ctggaaaaccc tctatccat cattggcaag cgtttaaagc aatctggcca cgggaagaaa 120
aaagcagcag cttacccttc tgcagagaac acagaataac tgcatttgc acgttgc 180
tgtggaaaac ctttcgttgc agtgaatgtca gatttttttca aacagctact agaacttgc 240
aaaattttgtt ttccaaaact tgcgttgc gttttttttt tttttttttt tttttttttt tttttttttt 300
gctctaatctt caagaacctt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 360

aaaagcattg tggaaaagaa gcctcgact ttcatcatca aattaatcaa gtggcttagt 420
atggccatcc ctgtcaccc cgtcaacagt gcaataaggt accttggaaatg caaattggct 480
ttggccctca gaactcgccc agtagaccac gccttatggaaa cctattttac aaatcagact 540
tattataaaag tgatcaatat ggatgggagg ctggccaaacc ctgaccaatc tcttacggag 600
gatattatga tggctccca atctgtggct cacttgttatt ccaatctgac caaaccttatt 660
tttagatgtaa tgctgaccc tcatacactc attcaaaactg ctacatccag aggagcaagc 720
ccaattgggc ccacccctact agcaggactt gtgggtatg ccactgctaa agtgtaaaaa 780
gcctgttctc ccaaatttgg caaactggtg gcagaggaag cacatagaaaa aggctattt 840
cggtatgtgc actcgagaat tata 864

<210> 9

<211> 2750

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCD1 (ALDP)

<400> 9

gcggacggac ggcgcctgggt ccccgggag gggcgccacc gggggaggag gaggaggaga 60
agggtggagag gaagagacgc cccctctgcc cgagacctt caaggccctg acctcagggg 120
ccaggcgact gacaggacag gagagccaaat ttccctccact tgggtctgcc gaaaggccgg 180
cgacccttgg aggcccttgg cccaccgcac cagggggcccc agcaccaccc cggggcccta 240
aagcgacagt ctcaggggcc atcgcacggt ttcccgatggc ctgacacaaca gccccaggg 300
cagagcaaca atccttcacg ccacctgcct caactgtgc cccaggcacc agccccagtc 360
cctacgcggc agccagccca ggtgacatgc cggtgcttc cagggccccc ccctggccgg 420
ggaacacgct gaagcgccacg gccgtctcc tggccctcgc ggcctatgg gccccaaag 480
tctaccctt ggtgcgcacg tgccctggccc cggccagggg tcttcaggcg cccgcgggg 540
agccccacgca ggaggccctcc ggggtcgccgg cggccaaagc tggcatgaac cgggtattcc 600
tgcagcgct cctgtggctc ctggggctgc tggccctcccttgg ggtctgtgc cggggacacgg 660
ggctgtgtgc cctgcactcg gccgccttgg tgacgcgcac cttctgtcg gtgtatgtgg 720
cccgcccttgg cggaaaggctg gcccgcgtca tggcccgccaa ggacccgcgg gctttggct 780
ggcagctgtct gcagtggctc ctcacgcggcc tccctgtctac cttctgtcaac agtgcaccc 840
gttaccttgg aggccaaactg gcccgtgtgt tccgcagccg tctgtgtgcc cacgcctacc 900
gccttactt ctcacgcacg acctacttacc gggtcagcaa catggacggg cggcttcgca 960
accctgacca gtctctgacg gaggacgtgg tggcccttgc ggcctctgtg gcccacccct 1020
actccaaacctt gaccaagccat ctcctggacg tggctgtgac ttcctacacc ctgcttcggg 1080

cggccccgctc ccgtggagcc ggacacgcct ggcccctcgcc catcgccggc ctctgtgggt 1140
tcctcacggc caacgtctg cgggccttct cgcccaagtt cggggagctg gtggcagagg 1200
aggcgcggcg gaagggggag ctgcgtaca tgcactcgcg tgggtggcc aactcgagg 1260
agatccgcctt ctatggggc catgaggatgg agctggccct gctacagcgc tccattaccagg 1320
acctggccctc gcagatcaac ctatccctt tggAACGCTC gtggtatgtt atgtcgaggc 1380
agtccctcat gaatgtatgtg tggagcgcct cgggcctgc catgggtggct gtcccccata 1440
tcactgccac tggctactca gagtcagatg cagaggccgt gaagaaggca gccttgaaa 1500
agaaggagga ggagctgggt agcgagcga cagaaggcctt cactattgcc cgcaaccc 1560
tgacagcgc tgcatgtgcc attgagcgaa tcatgtcgct gtacaaggag gtgacggagc 1620
tggctggcta cacagcccggt gtgcacgaga tggccaggat atttgaatgtt gttcagcgct 1680
gtcacttcaa gaggcccagg gagcttaggg acgctcaggc ggggtctggg accataggcc 1740
gggtctgggtt ccgtgtggag ggcccctgtt agatccgagg ccaggtgggt gatgtggac 1800
aggggatcat ctgcgagaac atccccatcg tcacgcctc aggagagggtg gtggtgccaa 1860
gcctcaacat cagggtggag gaaggcatgc atctgtccat cacaggcccc aatggctcg 1920
gcaagagctc ctgttcccg atctgggtt ggctctggcc cactgtacggt ggtgtgtct 1980
acaaggcccc accccagcgc atgttctaca tcccgagag gcccctacatg tctgtgggt 2040
ccctgcgtga ccagggtatc taccggact cagtgaggaa catgcaagg aagggtact 2100
cgagcagga ctggaaagcc atctggacg tcgtgcaccc tgcaccatc ctgcagcggg 2160
agggagggttggaggctatg tggacttggaa agaacgtccct gtgggtggc gagaaggcaga 2220
gaatccgcatttggccgcatttgcgttccatcaggccaaatgttccatcgatgttccatcg 2280
ccagccgcgt gaggatcgatc gtggaaaggca agatcttcca ggcggccaaag gacgcgggca 2340
ttggccctgttccatcacc caccggcccttccctgtggaa ataccacaca cacttgttac 2400
atgttgcattggggaggccatggaaatgttccatcgatgttccatcgatgttccatcg 2460
tgacggagga gaagcagccgg ctggagccggc agctggccggg catttccaaag atgcagccgc 2520
gcctccagga gtcctgtccatcgatgttccatcgatgttccatcgatgttccatcg 2580
ctagcccccaaggccctgttccatcgatgttccatcgatgttccatcgatgttccatcg 2640
ccctgcggcccccggccatcgatgttccatcgatgttccatcgatgttccatcg 2700
caccggcccttccatcgatgttccatcgatgttccatcgatgttccatcg 2750

<210> 10

<211> 5011

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCC1 (MRP1)

<400> 10

ccaggcggcg ttgcggcccc ggccccggct ccctgcgccc cggccgccc cgccgcgcc 60
gcccggcccg cggccgcacag cgctagccca agcagccggg cccgatcacc cgccgcggg 120
tgccgcggc cggccgcgc agcaaccggg cccgatcacc cgccgcggg tgccgcggc 180
cgccgcggcc accggcatgg cgctccggg ctctgcagc gccgatggct cccgaccgct 240
ctgggactgg aatgtcacgt ggaataccag caacccgac ttccacaagt gcttcagaa 300
cacggcttc gtgtgggtgc ttgttittta cctctggccc tgtttccct tctacttct 360
ctatctctcc cgacatgacc gaggctacat tcagatgaca cctctcaaca aaacaaaaac 420
tgccctggga ttttgcgtgt ggatgcgtc ctggcagac ctcttctact ctttctggga 480
aagaagtccgg ggcataattcc tggcccccagt gtttctggtc agcccaactc tcttgggcat 540
caccacgcgtc ttgtcacct ttttaattca gctggagagg aggaaggagtttcc 600
agggatcatg ctcaacttct ggctggtagc cctagtggtgatccctagcca tcctgagatc 660
caaaaattatg acacgcctaa aagaggatgc ccaggtggac ctgtttcgatc acatcaactt 720
ctacgtctac ttttccctt tactcattca gctgttctg tcctgtttct cagatgcgtc 780
acccctgttc tggaaacca tccacgaccc taatccctgc ccagagtcac ggccttccctt 840
cctgtcgagg atcaccttct ggtggatcac agggttgatt gtccggggct accggccagcc 900
cctggaggc agtgccttct ggtcttaaa caaggaggac acgtcgaaac aagtctgtgcc 960
tgttttggta aagaactgga agaagaatg cgccaaagact aggaagcagc cggtaaagg 1020
tgtgtactcc tcaaggatc ctggccagcc gaaagagagt tccaagggtgg atgcgaatga 1080
ggaggtggag gctttgatcg tcaagtcccc acagaaggag tggaaacctt ctctgtttaa 1140
ggtgttatac aagaccttgc ggcctactt cctcatgagc ttcttcttca aggccatcca 1200
cgacacctatcg atgtttcccg ggccgcagat cttaaagtgc ctcatcaatgt tcgtgaatga 1260
cacgaaggcc ccagactggc agggctactt ctacaccgtc ctgtgttttgc tcactgcctg 1320
cctgcagacc ctctgtgtc accagttactt ccacatctgc ttctgtcgtg gatgaggat 1380
caagaccgcgt gtcatgtggg ctgtctatcg gaaggccctg gtatcacca attcagccag 1440
aaaatctcc acggctgggg agatgtcaa cctcatgtct gtggacgcctc agaggctat 1500
ggacttggcc acgtacatca acatgatctg gtcaagcccc ctgcaagtc tccctgtct 1560
ctacctccctg tggctgaatc tggcccttc cgtctggct ggagtggccg tgatgtct 1620
catggtgccc gtcatgtcg tgatggcgat gaagaccaag acgtatcagg tggccacat 1680
gaagagcaa gacaatcgga tcaagctgtat gacgaaatt ctcatggta tcaaatgtct 1740
aaagctttat gcctggggac tggcattcaa ggacaagggtt ctggccatca ggcaggagga 1800
gctgaagggtt ctgaaagaatgt ctgcctacact gtcaaggctg ggcacattca cctgggtctg 1860
cacggccctt ctggggctc tggtgcacatt tgccgtctac gtgaccatgt acgagaaacaa 1920
catcctgtat gcccagacag ctttcgtgtc tttggccctt ttcacacatcc tccgggtttcc 1980
cctgaacatt ctccccatgg tcatcagcag catcgtgcag ggcaggatgtt cccctcaaaac 2040
cctgaggatc ttctctccatcc atgaggagat ggaacatgtac agcatcgagc gacggccctgt 2100
caaagacggc gggggcacga acagcatcac cgtgaggaaat gccacattca cctggccag 2160

T02250-52998760

gaggcaccct cccacactga atggcatcac ctctccatc cccgaaggta ctttgggtgc 2220
cggtggggc cagggggct gcggaaagtc gtccctgtc tcagccctct tggctgatgat 2280
ggacaatgt gaggggcacy tggctatcaa gggctccgtg gcctatgtgc cacagcaggc 2340
ctggattcag aatgattctc tccgagaaaa catctttt ggtatgtcagc tggagaacc 2400
atattacagg tccgtatac aggctgtgc cctctccca gacctggaaa tcctgcccag 2460
tggggatcg acagagattt gcgagaaggcg cgtgacactg tctggggcc agaagcagcg 2520
cgtgacgctg gccccggcc tgtaactccaa cgctgacatt taccttctcg atgatccct 2580
ctcagcagt gatgcccattt gggaaaaca catcttggaa aatgtgattt gccccaaagg 2640
gatgtgaaag aacaagacgc ggatcttggt cacgcacagc atgagctact tgccgcagg 2700
ggacgtcatac atcgtcatga gtggcgcaaa gatctcttagt atggctctt accaggagct 2760
gctggctcg aacggcgcc tgcgtgatgtt cctcgatcc tatccagca cagagcagg 2820
gcaggatcg aaggagaacg gggtacccgg cgtacgggtt ccagggaagg aacaaagca 2880
aatggagaat ggcatgtgg tgacggacag tgccggaaag caactgcaga gacagctcg 2940
cagctccctcc tcctataatgtt gggacatcg caggcaccac aacagcaccg cagaactgc 3000
gaaagcttag gccaagaagg aggagacttg gaactgtatg gaggctgaca aggccgcagac 3060
agggcaggc aagctttccg tgtaactggta ctacatgaag gccatcgac tcttcatttc 3120
cttcttcagc atcttcctt tcatgtgtaa ccattgtgtcc ggcgtggctt ccaactattt 3180
gctcagccctc tggactgtatg accccatgtt caacgggactt caggagcaca cggaaatgtcc 3240
gctgagcgtc tatggagcccc ttggcatttc acaagggtatc gccgtgtttt gctactccat 3300
ggccgtgtcc atcggggggat tcttggcttc ccgtgtctg caactggacc tgctgcacag 3360
catectgtggg tcaaccatga gcttttttga gggggcccccc agtgggaacc tggtgaaccg 3420
cttctccaaag gagctggaca cagtggactc catgtatccg gaggctatca agatgttcat 3480
gggctccctg ttcaacgtca ttgggtgtcc catgtttatc ctgtggcca cggccatcg 3540
cgccatcatc atcccccccccc ttggcctatc ctacttcttc gtccagaggt tctacgtgg 3600
ttctcccccgg cagctgaagc gcctcgagtc ggtcagccgc tccccggctt attccctatt 3660
caacgagacc ttgtgtggggc tcagctgtatc tcgagccctt gaggagcagg agcgttcat 3720
ccaccagagt gacctgaagg tggacggaaa ccagaaggcc tattacccca gcatgtggc 3780
caacagggtt ccgtgggtgc ggctggatgt tggtggacac tgcacgttc tggtgtgc 3840
cctgtttgcg gtatctcca ggcacagctt cagtgtggc ttgggtggcc tctcagtg 3900
ttactcattt caggtcaccatc cgtacttgaa ctggctgtt cggatgtatc ctgaaatgg 3960
aaccacatc gtggccgtgg agaggctaa ggatgttca gagactgaga aggaggcc 4020
ctggcaaatac caggagacag ctcccccag cagctggccc cagggtggcc gagggttggaaatt 4080
ccggaactac tgccctgcgtt accggagggc cctggacttc gtcttcaggc acatcaatgt 4140
cacgtatcat gggggagaaa aggtcggtatc cgtggggccg acgggagctg ggaagtgc 4200
cctgaccctg ggcttatttc ggtatcaacgtc gtctggccaa ggagagatca tcatcgatgg 4260
catcaacatc gccaagatcg gcctcgacgtc cctccgttc aagatcacca tcatccccca 4320
ggaccctgtt ttgtttccgg gttccctccg aatgttccctg gaccattca gccatgtactc 4380

ggatgaagaa gtctggacgt ccctggacgt ggcccacctg aaggacttg tgcagccct 4440
tcctgacaag ctagaccatg aatgtcaga aggccccggg aacctcagt tcggcagcg 4500
ccagcttgtg tgccctagccc ggccctgtct gaggaaagacg aagatccttgc 4560
ggccacggca gccgtggacc tggaaacggg cgcacccatc cagtcacca tcggacaca 4620
gttcgaggac tgccacgtcc tcaccatcgc ccacccggctc aacaccatca tggactacac 4680
aagggtgatc gtcttggaca aaggagaaaat ccagggtac ggcccccat cggacccct 4740
gcagcagaga ggttttttct acagcatggc caaagacggc ggcttgggtg gggccccaga 4800
gctggatat ctggtcgaa ctgcaggccc tatatggccat cgcccaaggaa ggagtca 4860
ccccctggtaa accaaggctc ccacactgaa accaaaaacat aaaaacccaa cccagacaa 4920
aaaaacatat tcaaaggcgc agccacccgc atccggtccc ctgcctggaa ctggctgtga 4980
agacccagga gagacagaga tgcaacccac c 5011

<210> 11

<211> 3924

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCB4 (MDR3)

<400> 11

cctgccagac acgcgcgagg ttgcaggctg agatggatct tgaggcggca aagaacggaa 60
cagcctggcg ccccacggc gcggaggaggc actttgaact gggcatcagc agcaaacaaa 120
aaaggaaaaa aacgaagaca gtaaaaatga ttggagtatt aacattgttt cgatactccg 180
atggcgagga taaattgttt atgtcgttgc gtaccatcat ggcatacgat cacggatcg 240
gtctcccccgt catgtatata gtatggag agatgactga caaatggat gatactgcag 300
gaaacttctc ctttcggatg aacttttccct tttcgatgtt aaatccggc aaaaatctgg 360
aagaagaaaat gactatggat gcatattact actcaggatt ggggtgttgc gttttttttt 420
ctgccttatatac acaagtttca ttttggactt tggcagctgg tcgcacatcaggatcaggatc 480
ggcagaagtttttcatgtt attctacgac aggaaatagg atggtttgc atcaatgaca 540
ccactgaact caataacggc ctaacatgtt acatctccaa aatcgttgc ggaattttgtt 600
acaagggttgg aatgttctttt caagcgttgc ccacgtttttt tgcaggattt atagttggat 660
tcatcagagg atggaaagctc acccttgcata taatggccat cagccctattt ctggactct 720
ctgcagccgt ttggccaaatg atactctgg cattttgttgc caaagaacta gctgtttatg 780
aaaaacggcagg cggccgtggca gaagaggctc tggggccat caggactgtt atagtttcg 840
ggggccagaa caaagagctg gaaaggatc agaaacattt agaaaatgcc aaagagatgg 900
gaattaaaaa agtatttca gcaaacattt ccatgggtat tgccttcctg ttaatatatg 960

102250 · 62998760

catcatatgc actggccttc tggatggat ccactctagt catatcaaaa gaataatacta 1020
ttggaaatgc aatgacagtt ttttttcaa tcctaattgg agctttcagt gttggccagg 1080
ctgccccatg tattgatgt tttgccaatg caagaggagc agcacatgtg atctttgata 1140
ttattgataa taatccctaaa attgacagtt tttcagagag aggacacaaa ccagacagca 1200
tcaaaggaa tttggagttc aatgatgttcc accttctca cccttctcg a gctaacgtca 1260
agatcttcaa gggcctcaac ctgaagggtc agagtggcc gacggtgcc ctggttggaa 1320
gtatgtggct tgggaagagc acaacggtcc agctgtatca gaggtcttat gaccctgatg 1380
agggcacaat taacattgtt gggcaggatc ttaggaaact taatgttaaac tatctgaggg 1440
aaatcattgg tgggtgagt caggagccgg tgctgtttt caccacaattt gctgaaaata 1500
tttgtttagt cctgtggaaat gtaaccatgg atgatggaaa gaaagctgtc aaagaggccaa 1560
acgcttcatgatgatgatgaaatccatc agaaatttgc caccctgtt ggagagagag 1620
ggggccagct gagtgggtgg cagaaggaga ggatccat tgcacgtgcc ctggttcqca 1680
accccaagat ctttctgtg tgcaggccca cgtcagcatt ggacacagaa agtgaagctg 1740
aggtacaggc agctctggat aaggccagag aaggccggac caccattgtg atagcacc 1800
gactgtctac ggttccaaat gcatgttca tgcgtgggtt tgaggatgaa gtaattgtgg 1860
agcaaggaa g ccacagcgaa ctgtatgaa aggaagggggt gtacttcaaa ttgtcaaca 1920
tgcagacatc aggaaggccat atccatgtc aagaatttgc actaaatgtt gaaaaggctg 1980
ccatagaat gggcccaat ggttccaaat ctgccttatt taggcattct actcagaaaa 2040
acctttaaaa ttccaaatg tgcgtatgaa gcttgcgtt gggaaaccat gggactgtaa 2100
caaattgtgcc accagtgtcc ttttgcgtt tgcgttccaaat gaaatggccct 2160
actttgtcg t gggaaacatgt tgcgttccaaat gtttgcgttccaaat gtttgcgttccaaat 2220
tcatatttc agagatcata gcatgttgc gaccaggcga tgatgttgc aagcagcaga 2280
agtgcacat atttctttt attttcttat ttctggaaat tattttttt ttactttct 2340
ttcttcaggg ttacgtt gggaaagctg gcatgttccat caccagaaga ctgcgttca 2400
tggttttaa agaatgtca agacaggaca tgatgttgc tgcgttccaaat gtttgcgttccaaat 2460
ctgggtcact ttctacaaga ctgcgttccaaat gtttgcgttccaaat gtttgcgttccaaat 2520
ccagggttggc ttatgttca cagaatatacg ttttgcgttccaaat gtttgcgttccaaat 2580
ttatcttacgg ttggcgttccaaat gtttgcgttccaaat gtttgcgttccaaat gtttgcgttccaaat 2640
caggaaatgtt gaaatggccaa ttttgcgttccaaat gtttgcgttccaaat gtttgcgttccaaat 2700
aagctgtcg aagatgtca acagaggcaaa tagaaatatacg ttttgcgttccaaat gtttgcgttccaaat 2760
cccaggaaatgtt gaaatggccaa ttttgcgttccaaat gtttgcgttccaaat gtttgcgttccaaat 2820
ctgtgcagaa ggcacacatc tatgttca ttttgcgttccaaat gtttgcgttccaaat gtttgcgttccaaat 2880
tttcctatgc cggttgcgttccaaat gtttgcgttccaaat gtttgcgttccaaat gtttgcgttccaaat 2940
tcagagatgtt ttttgcgttccaaat gtttgcgttccaaat gtttgcgttccaaat gtttgcgttccaaat 3000
ccagttcatt tgatgttccaaat gtttgcgttccaaat gtttgcgttccaaat gtttgcgttccaaat 3060
tggggaaatgtt gaaatggccaa ttttgcgttccaaat gtttgcgttccaaat gtttgcgttccaaat 3120
ttgttgcgttccaaat gtttgcgttccaaat gtttgcgttccaaat gtttgcgttccaaat 3180

cagtgcgtca ggggctgagc ctggagggtga agaaaggcca gacactagcc ctgggtggca 3240
gcagtggctg tggaaagagc acggtgttcc agtcctggta gcggttctac gacccttgg 3300
cggggacagt gcttctcgat ggtcaagaag caaaagaact caatgtccag tggctcagag 3360
ctcaactcg aatcggtct caggagccta tcctatttgta ctgcagcatt gccgagaata 3420
ttgcctatgg agacaacagc cgggttgtat cacaggatga aattgtgagt gcagccaaag 3480
ctgccaacat acatccccc atcgagacgt taccccccaa atatgaaaca agagtgggag 3540
ataaggggac tcagctctca ggaggtaaa aacagaggat tgctattgcc cgaccctca 3600
tcagacaacc tcaaattctc ctgttggat aagctacatc agctctggat actgaaatg 3660
aaaagggtgt ccaagaagcc ctggacaaag ccagagaagg ccgcacccgc attgtgatg 3720
ctcacccgcgt gtccaccatc cagaatgcg acttaatagt ggtgtttcag aatgggagag 3780
tcaaggagca tggcacccatc cagcagctgc tggcacagaa aggcatctat tttaaatgg 3840
tcagtgccca ggctggaca cagaacttat gaactttgc tacagtatat tttaaaaata 3900
aattcaaattt attctaccca tttt 3924

<210> 12

<211> 1725

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCB6

<400> 12

ccttcctgtg gatccgggtg cagcagtca cgtctcgccg ggtggagctg ctcatcttc 60
cccacctgcg ctagctctca ctgcgttgc acctggggc ccgcacaggag gaggtgtcgc 120
ggatcgccgat tcggggcaca tccagtgca cagggtctgc cagctacccgt gtgttcaatg 180
tcatccccac gctggccgcac atcatcatgg gcatcatcta cttcagcatg ttcttcaacg 240
cctgggttgg ctttcattgtt ttcattgtca tgagtcttta cttcacccctg accattgtgg 300
tcactgtatgtt gagaaccaag tttcgttgcgt ctatgaac acaggagaac gctacccgg 360
cacgagcgtt ggactctctg ctaaacttcg agacgggtaa gtattacaac gccgaggtt 420
acgaagtggaa acgctatcgaa gaggccatca tcaaataatca gggtttggag tggaaatgtca 480
gcgccttactt ggttttacta aatcagaccc agaacctgtt gattgggctc gggctctcg 540
ccggctccctt gcttgcgcata tactttgtca ctgagcagaa gctacaggtt gggactatg 600
tgctctttgg cacctacattt atccagctgtt acatggccctt caattggttt ggcacactt 660
acaggatgtt ccagaccaac ttcatgtaca tggagaacat gtttacttgc ctgaaagagg 720
agacagaagt gaaggacctt cctggagcag ggcccttcg ctttcagaag ggccgttattt 780
agtttgagaa cgtgcacttc agctatgcgg atgggcggga gactctgcag gacgtgtctt 840

tcactgtgat gcctggacag acacttgc 900
caattttcg cctgctgtt cgcttctacg acatcagctc tggctgc 960
ggcaggacat ttcacagggt acccaggct ctctccggtc tcacattgga 1020
aaagactgt cctcttaat gacaccatcg ccgacaataat ccgttacggc cgtgtcacag 1080
ctggaaatga tgaggtggag gctgctgctc aggctgcagg catccatgat gccattatgg 1140
ctttccctga agggtacagg acacagggtt gcgagcgggg actgaagctg agcggcgggg 1200
agaagcagcg cgtccgcatt gccccacca tccctcaaggc tccgggc 1260
ataggcacaac gtcagcgctg gatacatcta atgagaggc catccaggct tctctggcca 1320
aagtctgtgc caaccgcacc accatcgtag tggcacacag gctctcaact gtggtaatg 1380
ctgaccagat cctcgatc aaggatggct gcatcggtt gaggggacga cacgaggctc 1440
tgttgtcccg aggtgggggt tatgctgaca tggcagct gcagcaggga caggaagaaa 1500
ccctctgaaga cactaaggct cagaccatgg aacggtgaca aaagtttgc cacttccctc 1560
tcaaagacta acccagaagg gaataagatg tgcctctt cccctggctta ttcatcttg 1620
gtcttgggtt atggctgtat ctatgttggac ggaaggcctt cttccgaaa aacatcttt 1680
ggggaaataaa aaatgttggac tggaaaaaa aaaaaaaaaa aaaaa 1725

<210> 13

<211> 4776

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCB11

<400> 13

gaatgatgaa aaccgagggtt ggaaaagggtt gtgaaacctt ttaactctcc acagtggagt 60
ccattatttc ctctggcttc ctcaaattca tattcacagg gtcgtggct gtgggttgc 120
attaccatgt ctgactcagt aattttcgta agtataaaga aattttggaga ggagaatgtat 180
ggttttgagt cagataaatc atataataat gataagaat caaggttaca agatgagaag 240
aaaggtatgt gcgtagtggctt caattttttc ggttttcttc atcaactgtac 300
atttggctga tgtttgggg aagttttgtt gcatcttcc atgaaatgtc ccagccaggc 360
gtgctactca tttttggcac aatgacagat gtttttttggactacgacgt tgagttacaa 420
gaactccaga ttccaggaaa agcatgtgt aataaacccca ttgttatggac taacagtcc 480
ctcaaccaga acatgacaaa tggAACACGT tgggggttc tgaacatcgaa gagcggaaatg 540
atcaaatttg ccagttacta tgctggatt gctgtcgacgt tacttttac agatataatt 600
caaataatgtt tttgggtcat tgccgcacgt cgtcagatac agaaaatggg aaaaatttac 660
tttaggagaa taatgagaat gggaaatggg tggtttgact gcaatttcgtt gggggagctg 720

aataacaagat tctctgtatga tattataaaa atcaatgatg ccatagctga ccaaattggcc 780
cttttcattc agcgcatgac ctcgaccatc tgtggttcc tggtggatt tttcagggtt 840
tggaaactga ccttgggtat tatttctgtc agccctctca ttgggattgg agcagccacc 900
atggctgtga gtgtgtccaa gtttacggac tatgagctga aggcttatgc caaaggcagg 960
gtggtggtctg atgaagtcat ttcatcaatc agaacagtgg ctgctttgg tggtgagaaa 1020
agagagggtt aaaggatgtg aaaaaatctt gtgttcgccc agcgttgggg aatttagaaaa 1080
gaaatagtga tggatttctt tactggattc gtgtgggtc tcatctttt gtgttatgc 1140
gtggccttctt ggtacggctc cacacttgtc ctggatqaag gagaatatac accaggaacc 1200
cttgtccaga ttttccctcag tgcataatgta ggagetttaa atcttggca tgccctctct 1260
tgttttggaaag ccttgcac ac tggacgtgc gcagccacca gcattttga gacaatagac 1320
agaaacccca tcattgactg catgtcgaaa gatggttaca agttggatcg aatcaagggt 1380
gaaattgtaat tccataatgt gacccctcat tatcttcca gaccagaggt gaagattcta 1440
aatgacacctca acatggcat taaaccaggd gaaatgacag ctctggtagg accccagtgg 1500
gctggaaaaaa gtacagcact gcaactcatt cagcgattct atgacccttg tgaaggaatg 1560
gtgaccgtgg atggccatgat cattegctctt ctaacattc agtggcttag agatcagatt 1620
gggatagtgg agcaagagcc agttctgttc tctaccacca ttgcagaaaaa tattcgttat 1680
ggcagagaag atgcaacaat ggaagacata gtccaaagctg ccaaggaggg caatgcctac 1740
aacttcatca tggacctgccc acagcaattt gacaccctt tggagaagg aggaggccag 1800
atgagtgggtt gccagaaaca aagggttagct atgcggcagag ccctcatcg aaatccaaag 1860
attctgcttt tggacatggc cacctcgatc ctggacaatc agagtgaaagc catgtgca 1920
gaagtgcgtga gtaagattca gcatgggcac acaatcattt cagttgtca tcgctgtct 1980
acggtcagag ctgcagatac catcatgtt tttgaacatg gcaactgcagt gggaaaggg 2040
accatgtaa aattactgtt aaggaaagggtt gtttacttca ctcttagtgc tttgcaaaagc 2100
cagggaaatc aagctctta tgaagaggac ataaaggatg caactgaaga tgacatgtt 2160
gcgaggaccc ttagcagagg gagcttaccag gatagtttaa gggctccat ccggcaacgc 2220
tccaaagtctc agctttctta cctgggtcac gaaacctcat tagctgtgt agatcataag 2280
tctacctatg aagaagatag aaaggacaag gacattcttgc tgcaggaaga agttgaacct 2340
gccccagttt gggaggattctt gaaattcagttt gctccagaat ggccttcat gctggtaggg 2400
tctgtgggtt cagctgtgaa cgggacagtc acacccttgc atgcctttt attcagccag 2460
attcttggaa cttttcaat tcctgataaa gaggaaacaa ggtcacatg caatgggttgc 2520
tgcctactttt ttgttagcaat gggctgtgttca ttcctttca cccaaattttt acaggatgtt 2580
gccttgcata aatctgggg agttcaaca aaaaggctac gtaaaattgg tttcagggtca 2640
atgctggggc aagatattgc ctgggttgc gacccatgc atagccctgg agcattgaca 2700
acaagacttg ctacagatgc ttcccaagttt caagggtgtt ccggctctca gatcggatgtt 2760
atagtcaattt ctttacttca cgttactgttgc gccatgtca ttgccttctc ctttagtgc 2820
aagctgagcc tggtcatctt gtgtttcttcc ccccttttgg ctttatcagg agccacacag 2880
accaggatgt tgacaggattt tgccctctca gataaggcagg ccctggatgtt ggtggacag 2940

attacaat aagccctcg taacatccgc actgttgctg gaattggaaa ggagaggcgg 3000
ttcattgaag cacttgagac tgagctggag aagcccttca agacagccat tcagaagacc 3060
aatatttacg gattctgctt tgcccttgc cagtgcatac tgtttattgc gaattctgtc 3120
tcctacagat atggagggtta cttaatctcc aatgggggc tccatttcag ctatgtgttc 3180
agggtgatct ctgcagttgt actgagtgca acagcttgc gaagagcctt ctcttacacc 3240
ccaagttatg caaaagctaa aatatcagct gcacgcctt ttcaactgtc ggaccgacaa 3300
cccccaatca gtgtatacaa tactgcaggt gaaaaatggg acaacttcca ggggaagatt 3360
gattttgtt attgtaaatt tacatatcct tctcgaccc actgcgaagt tctgaatgtt 3420
ctctcagtgt cgatttagtcc agggcagaca ctggcgtttt ttgggagcag tggatgtggc 3480
aaaagacta gcattcagct gtggAACGT ttctatgatc ctgatcaagg gaaggtgtatc 3540
atagatggtc atgacagcaa aaaagtaaat gtccagttcc tccgcctcaaa cattggaatt 3600
gttcccagg aaccagtgtt gtggcctgt agcataatgg acaatataa gtatggagac 3660
aacaccaaaag aaattcccat ggaaagagtc atagcagctg caaaacaggc tcagctgcat 3720
gattttgtca tgcactccc agagaaatat gaaactaacc ttgggtccca ggggtctcaa 3780
ctctctagag gggagaaaca acgcattgtt attctcggtt ccattgtac agatcctaaa 3840
atcttgcata tagatgaagc cacttctgcc tttagacacag aaagtaaaa gacgggtcag 3900
gttgccttag acaaaggccag agagggtcg acctgcattt tcattgccc tcgcttgtcc 3960
accatccaga acgcggatata cattgctgtc atggcacagg ggggtgtat tgaaaagggg 4020
accatgaaag aactgatggc cccaaaggaa gcctactaca aactagtac cactggatcc 4080
cccatcagtt gaccaatgc aagaatctca gacacacatg acgcaccatg tacagggtt 4140
gtttttaaag aaaaaaaaaaa tcccgacacg agggattgtt gggattgtt ttctttaaa 4200
gaagaattnn nntattttac tttaacnnnc nttttccatc atcggatcc aanctaattt 4260
ctaattggct tccataataa ttctgcttta gatgtgtata cagaaaatga aagaaactag 4320
ggtccatgtg agggaaaacc caatgtcaag tggcagctca gccaccactc agtgcatttc 4380
tgtgcaggag ccagtcctga ttaatatgtt ggaatttagt agacatcagg gagtaagtga 4440
cactttgac tcctcaaggaa cagagaactg tcttcattt ttgacccctc ggtgtacaca 4500
gaggccgggtc tgtaacaggc aatcaacaaa cgtttctgtc gcttagacca ggtcagattt 4560
gaaaagaaca gaaggactga agaccagctg tgtttcttaa ctaaaattgtt cttaaactgt 4620
aaaccagtt ctttcatttc taaggctaa gataggggaaa ggggtggatc ctctcangt 4680
gagggaggca naaaggggaaa gtattancat gagcttcca nttagggctg ttgatttgc 4740
ctttaacttc anantgatq taggttqgtq anncta 4776

<210> 14

<211> 5838

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCC5 (MRP5)

<400> 14

ccgggcagggt ggctcatgtc cgggagcggt gttgagcgcc tggcgccgtt gtcctggagc 60
aggggcgcag gaattctgtat gtgaaactaa cagtctgtga gcccctggAAC ctccgcgtcAG 120
agaagatgaa ggatatcgac ataggaaaaAG agtatatacC ccccaGtcCt gggtaatAGAA 180
gtgtgaggGA gagaaccAGC acTTCTGGGA cgCACAGAGA ccgtGAAGAT tcCAAGTTC 240
ggagaactCG accGTTGGAA tgCCAAAGAT cCTTGGAAAC agcAGCCCAGA gCCGAGGGCC 300
tCTCTCTGTA tgCCCTCCATG cATTCTCAGC tcAGAAATCCT ggtAGGGAG catCCAAAGG 360
gaaagtacCA tCATGGCTTG AGTGTCTGA AGCCCATCCG GACTACTTC aaACACCAGC 420
acCCAGTGGA caATGCTGGG CTTTTTCCT GTATGACTTT ttCGTGGCTT tCTCTCTGG 480
cccgtgtggc ccacaAGAAAG gggggAGCTCT caATGGAAAGA cgtgtggCTC ctgtccaAGC 540
acgagtcttc tgacgtGAAC tgCAGAAAGAC tagAGAGACT gtggCAAGAA gagCTGAATG 600
aagtggccc agacGCTGTc tCCCTGCGAA gggttgtgtG gatCTCTGc cgcaccAGGC 660
tCATCTGTc catcgttgC ctgatGATCA cgcAGCTGGC tggCTTCAGt ggaccAGCCT 720
tCATGGTGAAC acACCTCTG gAGTATAACCC aggCAACAGA gtCTAAACCTG cAGTACAGCT 780
tgTTGTTAGt gCTGGGCTC CTCCTGACGc AAACtGTCGc gtCTTGGTcG CTTGACTG 840
cttgggcatt gaattaccGA accGGTGTCC gCTTGGGGG gGCCATCCtA accatGGCAT 900
ttaAGAAGAT cCTTAAGTtA aAGAACATTA aAGAGAAATC CCTGGGTGAG CTCATCAACA 960
tttgcTCCA CGATGGGcAG agaAtGTTG aggCAGCAGC cgtggcAGC ctgctggCTG 1020
gaggaccGt tgTTGCCATC ttAGGcATGA ttTATAATG aTTTATCTG ggACCAACAG 1080
gCTTCTGG atcAGCTGTT ttATCCTCT ttACCCAGC aATGATGTT gcatCACAGC 1140
tcacAGCATA ttCAGGAGA aAATGCGTGG cCGCCACGGA tGAACGTGTC cAGAAAGATGA 1200
atGAAGTTCT tacttACATT AAATTTCATCA aAATGTATGCTC tgggtcaAA gCATTTCCTC 1260
agAGTGTtCA AAAAATCCGc gaggAGGAGC gtcggatATT ggAAAAGCC ggttACTTCC 1320
agggtatcac tGTTGGTGTG gCTCCATTG tggTGTGTG tGCCAGCGTg tgAcCTT 1380
ctgttcatat gACCTGGGc ttCGATCTGA cAGCAGCACA ggCTTCACA gTGGTgACAG 1440
tCTTCATTt catGACTTTT gCTTGAAGA taACACCGTT tTCAGTAAAG tCCCTCTCAG 1500
aAGCCTAGT ggCTGTGAC aATTTAAGA gTTTGTtCT AATGGAAAGAG gttcACATGA 1560
taaAGAACAA accAGCCAGT CCTCACATCA AGATAGAGAT gAAAATGCC ACCTTGGCAT 1620
gggACTCCTC CCACtCCAGT atCCAGAAct CGCCCAAGT gACCCCAAA ATGAAAAAAG 1680
acaAGAGGGC ttCCAGGGC aAGAAAGAGA aggtGAGGCA gCTGcAGCAGC ACTGAGCATC 1740
aggCGGTGTGt ggCAGAGCAG aAAGGCCACC tCCCTCTGGA cAGTGCAGAG CGGCCCCAGTC 1800
ccGAAGAGGA AGAAGGCAAG CACATCCACC tGGGCCACCT gCGCTTACAG AGGACACTGC 1860
acAGCATCGA tCTGGAGATC CAAGAGGGTA aACTGGTTGG AATCTGCAGC AGTGTGGGAA 1920
gtggaaaaAC ctCTCTCATTt tCAGCCATTt TAGGCCAGAT gACGCTTCTA gAGGGCAGCA 1980

T0226045695760

tgcaatcg tggaaacctc gcttatgtgg cccagcaggc ctggatccct aatgtactc 2040
tgagagacaa catctgttt gggagaaggat atgatgaaga aagataacaac tctgtgtcga 2100
acagtctgtg cctggggct gacctggca ttcttcccag cagcgacctg acggagatt 2160
gagagcgagg agccaacctg agcgggtggc acgcggcagag gatcagcctt gccccggct 2220
tgtatagtga caggagcatc tacatcttgg acgaccctt cagtcctta gatgcccatt 2280
tggcaacca catcttcaat agtgcatacc ggaaacatct caagtccaaag acagtctgt 2340
ttgttaccca ccagttacag tacctgggtg actgtatgaa agtgcatttc atgaaagagg 2400
gctgtattac ggaaaagggc acccatgagg aactgtatgaa tttaaatggt gactatgcta 2460
ccatTTAA taacctgtt ctggagaga caccggcagg tgagatcaat tcaaaaaagg 2520
aaaccagtgg ttcacagaag aagtccaaag acaagggtcc taaaacacgaa tcagtaaaga 2580
agggaaaaggc agtaaaggca gggaaaggc acgttgcata gctggaaagag aaaggcagg 2640
gttcagtgtcc ctggtagtata tatgggttcat acatccaggc tgctggggc ccctggcat 2700
tcctgggtat tatggccctt ttcatgttga atgttggcag caccggcattc agcacccgtt 2760
ggttgagttt ctggatcaag caaggaaagc ggaacaccac tggacttcga gggaaacgaga 2820
cctcggttag tgacagcatg aaggacaattt ctcatatgc gtactatgcc agcatctacg 2880
ccctctccat ggcagttcatg ctgatcttgc aagccatttc agggttttc ttgtcaagg 2940
gcacgctgcg agcttccctc cggctgtatc acgagctttt cggaggatc ctggaaagcc 3000
ctatgaagtt ttttgacacg acccccccacag ggaggatttc caacaggattt tccaaagaca 3060
tggatgaagt tgacgtgcgg ctggcttcc agggccagat gttcatccat aacgttatcc 3120
ttgtgttctt ctgtgtggaa atgatgcag ggttcttcc ttgttctt gttgttctt gttgttctt 3180
ggcccttgcat cttctctt tcaagtcttc acattgttc cagggtcttc attcgaggc 3240
tgaagcgatc ggacaatatac acgcgttcac ctggcttc ccacatcag tccagcatac 3300
agggccttgc caccatccac gcctacaata aaggccaggaa gtttctgcac agataccagg 3360
agctgtgttgc tgacaaccaa gtttcttcc ttgttctt gttgttctt gttgttctt gttgttctt 3420
ctgtgtggct ggacatcattc acatcgcccc tcatcaccac cacggggctg atgatcgatc 3480
ttatgcacgg gcagattccc ccagcttgc cgggtcttc cattcttcat gttgttctt gttgttctt 3540
taacggggct gttccagttt acgggtcagac tggatcttgc gacagaagct cgattccatt 3600
cggtgtggatc gatcaatcac tacattaaga ctgtgttccat ggaaggaccc tccacatc 3660
agaacaaggc tccctccctt gactggcccc aggagggaga ggttgcattt gagaacgcag 3720
agatgaggtt ccggaaaaac ctcccttgc tccataaaaaa agtacccattt acgatcaac 3780
ctaaagagaa gattggcatt gtggggcgaa caggatcagg gaagtcctcg ctggggatgg 3840
ccctcttccg tctgtgtggat ttatcttgc gtttgcattt gtttgcattt gtttgcattt 3900
gtgtatattgg ctttgcgcac ctccgcaggc aactcttcat tattcttgc gtttgcattt gtttgcattt 3960
ttgttgcattt cactgtcaga tccaaattttt acccccttcaaa ccagttacat gtttgcattt gtttgcattt 4020
tttggatgc cttggagagg acacatcata aagaatgtat tgcgttgcattt gtttgcattt gtttgcattt 4080
tttgcattt gtttgcattt gtttgcattt gtttgcattt gtttgcattt gtttgcattt gtttgcattt 4140
gttgcattt gtttgcattt gtttgcattt gtttgcattt gtttgcattt gtttgcattt gtttgcattt 4200

ccatggacac agagacagac ttattgattc aagagaccat ccgagaagca tttgcagact 4260
gttaccatgct gaccattgcc categcctgc acacggttct aggctccgat aggattatgg 4320
tgctggccca gggacagggt gtgggatttt acaccccatc ggctcttcgt tccaacgaca 4380
gttcccgatt ctatgccatg tttgtctgtc cagagaacaa ggtcgctgtc aagggctgac 4440
tcctccctgt tgacaaagtc tcttttcttt agagcattgc cattccctgc ctggggcggg 4500
ccccctatcg cgtcctctta ccgaacacctt gccttctcg attttatctt tcgcacagca 4560
gttccggatt ggcttggtgt tttcactttt agggagagtc atatttgtat tattgtattt 4620
attccatatt catgtaaaca aaatttagtt ttgttctta attgcactct aaaaggttca 4680
gggaaaccgtt attataattt tattcagaggt ctataatgaa gctttatacg ttagctata 4740
tctatataatttctgtaca tagcctatata ttacagtgtaa aatgtaaatgtt gtttattttt 4800
tattaaaata agcaactgtgc taataacagt gcataattct ttctatcatt ttgtacagt 4860
tttgtgtact agagatctgg tttgtctatt agactgttagg aagagtagca ttcttattttt 4920
ctcttagctgg tggtttcacg gtgcaggtt ttctgggtgt ccaaaggaaag acgtgtggca 4980
atagtggcc ctccgacacg cccctctgc gcctccccc acgcgctcca ggggtggctg 5040
gagacgggtt ggcggctggaa gaccatgtcag agcgcggctga gttctcaggg ctctgcctt 5100
ctgtctgtt gtcacttact ttctgtca ggagagcagc ggggcgaagc ccaggccct 5160
tttcaactccc tccatcaaga atggggatca cagagacatt cttccgagcc ggggagttt 5220
tttctgtctt tttctttttt gctgtgtttt ctaaaacaaga atcagtctat ccacagagag 5280
tcccactgcc tcaggttctt atggctggcc actgcacaga gctctccagc tccaagacct 5340
gttggttcca agccctggag ccaactgtctg ctttttgagg tggcactttt tcattttgtt 5400
atccccacac ctccacagtt cagttggcagg gctcaggatt tcgtgggtct gttttccctt 5460
ctcacccgcg tcgtcgacca gtctctctct ctctctcccc tcaaagtctg caactttaag 5520
cagctttgc taatcgtgt ctccacactgg cgtagaagttt tttgtactgt aaagagacct 5580
acctcagggt gctgggtgt gtgtgttgc gttgtgtccc gcaaaaaacccc tttgtctgt 5640
ggggctggta gtcagggtgg gcgtggtcac tgctgtcatc agttgaatgg tcagcgttgc 5700
atgtcgatc caacttagaca ttctgtcgcc ttagcatgtt tgctgaacac cttgtggaaag 5760
aaaaaaaaatctg aaaatgtgaa taaaattttt ttggattttt taaaaaaaaaaaaaaa 5820
aaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 5880

5838

<210> 15

<211> 7323

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCA5

<400> 15

gacgtccccc tgaataagcc aggcttggc aaccgtgcc tgaaggaaagg gtggcttcgg 4440
gagtacctt gtggcaactc aacaccctgg aagactcctt ctgtgtcccc aaacatcacc 4500
cagctgtcc agaaggagaa atggacacag gtcaaccctt caccatctg caggtgcage 4560
accagggaga agctcaccaat gctgccagag tgccccgagg gtgcgggggg cttcccgccc 4620
ccccagagaa cacagcgcag cacggaaatt ctacaagacc tgacggacag gaacatctcc 4680
gacttcttgg taaaacgtta tcctgtctt ataagaagca gcttaaagag caaattctgg 4740
gtcaatgaac agaggatgg aggaatttcc attggaggaa agtcccccagt cgtccccatc 4800
acggggaaag cacttgttg gttttaaagc gaccttgccc ggatcatgaa tgtgagcggg 4860
ggccctatca cttagagggc ctctaaagaa atacctgatt tccttaaaca tctagaaact 4920
gaagacaaca ttaagggtgt gtttaataac aaaggctggc atgcccctgg cagcttctc 4980
aatgtggccc acaacccat cttacggcc accgtgccta aggacaggag ccccgaggag 5040
tatggatca ccgtcattag ccaaccctgt aacctgacca aggagcagct ctcagagat 5100
acagtgtca ccacttcagt ggatgtctgt gtgtccatct gtgtgatTTT ctccatgtcc 5160
ttcgccccag ccagtttgcg ctttatttg atccaggagc gggtaacaa atccaagcac 5220
ctccagtttta tcagtggagt gagccccacc acctactggg tgaccacatt cctctggac 5280
atcgtqaatt atccgtgg tgcgtggctg gtggggca tcctcatgg gttcagaag 5340
aaagcttaca ctctccaga aaaccttctt gccttgtgg cactgtctt gctgtatgg 5400
tggcggtca ttcccatgtat gtaccaggca tccttctgt ttgatgtccc cagcacagcc 5460
tatgtggctt tatcttgtc taatctgttc atcggtatca acagcagtgc tattacctt 5520
atcttggat tatttgagaa taaccggacg ctgctcaggat tcaacccgt gctgaggaag 5580
ctgctcatttgc tcttccccca ctctccgtg ggcggggcc tcattgtaccc tgcactgagc 5640
caggctgtca cagatgtcta tgcccggtt ggtgaggagc actctgcataa tcggccac 5700
tgggacccatca ttgggaagaa ctgtttggc atgggtgtgg aagggtgtgt gtaacttctc 5760
ctgaccctgc tggcccgacg ccacttcttc ctctccaaat ggattggca gcccactaag 5820
gagccccattt ttgatgttgc tgatgtgtg gctgaagaaa gacaaagaat tattactgtt 5880
ggaataaaaa ctgacatctt aaggctacat gaaactaaccat agatttatcc gggcacctcc 5940
agccccacgac tggacaggct gtgtgtccgaa gttccctggc gagactgttt tggccctctg 6000
ggagtgtatg gtcccgccaa aacaaccaca ttcaagatgc tcaactggga caacacagt 6060
acctcagggg atgcaccatgtt agcaggacg agtattttaa ccaatatttc tgaagtccat 6120
caaaatatgtt gctactgtcc tcagttgtat gcaatcgatc agtgcgtcac aggacagaa 6180
catcttacc ttatgtcccc gcttcggatgtt gtaaccacgac aagaaatcgaa aaagggtgtca 6240
aactggatgtt ttaagagccctt gggctgact gtctacccgtt actgctggc tggccactgt 6300
agtggggccaa acaacggaa actctccaca gccatcgac tcattggctg cccaccgtg 6360
gtgtgtctgg atgagccccc acagggtatg gaccccccagg caccgtccat gctgtggaa 6420
gtcatcgatca gcatcatcg agaaggaggg gctgtgtcc tcacatccca cagcatggaa 6480
gaatgtgagg cactgtgtac cccgtccatc atcatgttgcg aggccctt tgcgtgtatg 6540
ggcaccatccatc agcatctcaat gtccaaattt ggagatggctt atatcgatc aatgaagatc 6600

aaatccccoga aggacgacct gcttcctgac ctgaaccctg tggagcagtt cttccagggg 6660
aacttcccag gcagtgtca gagggagagg cactacaaca tgctccagtt ccaggtctcc 6720
tectctccg tggcgaggat cttccagctc ctccctccca acaaggacag cctgctcatc 6780
gaggagact cagtcacaca gaccacatg gaccaggtt ttgtaaaattt tgctaaacag 6840
cagactgaaa gtcatgacct ccctctgcac cctcgagctg ctggagccag tcgacaacgc 6900
caggactgtat cttcacacc gttcggtccgc gcagccagaa aggaactctg ggcaagctgaa 6960
ggcccgaggag cctgtgcccataatggact gccagcgta aatgacccca 7020
ctgcagcaga aaacaaac acgaggagca tgcagcgaat tcagaaagag gtcttcaga 7080
aggaaacgaa aactgacttg ctccatcgaa acacctgtat gtgaaaccaa acaaatacaa 7140
aatccctctc cagaccccgaa aactagaaac cccggccat cccactgca gcttggcct 7200
ccatattgtctcatttcaaa ctagatctgc tttctgtat gttgtctgt gtgtctgcgt 7260
tgtgtgtat tttcatggaa aaataaaatg caaatgcact catcacaaaa aaaaaaaaaa 7320
aaa 7323

<210> 16

<211> 2930

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCG1 (ABCG8)

<400> 16

gaattccgggt ttcttcctaa aaaatgtctg atggccgctt tctcggtcgcc acccgccatg 60
aatgccagca gttaactctgc agagatgacg gagcccaagt cggtgtgtt ctccgtggat 120
gaggtgggtt ccaccaatggggccact gagacgaccc tgcgtaatgg acatctgaaa 180
aaatgtatataaacccatc gaaagccagcg cgttctctt cttgcctcg gagggcagct 240
gtgaacatgtt aattcaggat ctttcctat tccgttccgtt aaggaccctg gtggaggaag 300
aaaggatataca agaccctctt gaaaggaaatt tccggaaatgt tcaatagtgg tgagttgggt 360
gcatttatgg gtccttcggggccggaaatccacgctgtat gaaacatctt ggctggatatac 420
agggagacgg gcatgaagggg ggcggctctt atcaacggcc tggccgggat cctgcgtctc 480
ttccggaaagg tgcgttctgtat catcatgtat gatgacatgtc tgcgtccgca tctcaactgt 540
caggaggccatc tgatgggttc ggcacatctg aagcttccagg agaaggatgtt agggcagaagg 600
gaaatgttca agaggatact gacagcgctgtt ggcttgcgtt cttgcgtccaa cacgcggacc 660
gggagccctgtt cagggtgtca ggcgaaggcgc ctggccatcg cgctggagctt ggtgaacaac 720
cctccagtcata tgatgggttc gtcgtccaa gggggcgtt ccatcatttgcgtt caccatccac 780
gtgtctcgatc tgatgaaagg gtcgtccaa gggggcgtt ccatcatttgcgtt caccatccac 840

<211> 400

<212> DNA

<213> Human

220

<223> human cDNA

<400> 17

gagatcctgaa ggctttcccc ccaggctgtc cagcaggaaa ggttcttcctc cctgtatggtc 60
tataagttgc ctgttgagga tgtgcaccc ttatcacagg ctttcttcaa attagagata 120
gttaaacaga gtttcgcacct ggaggagttac agccttcac agtcttccctt ggagcagggtt 180
ttcctggagc tctccaaggaa gcaggagctg ggtgtatcttg aagaggactt tgatccctcg 240
gtgaagtggaa aactccctct gcaggaagag cctttaaagct ccaaataccc tataatcttc 300
tttaatccctg tgactctttt aaagataata ttatatacgcc ttaatatgcc ttatatcaga 360
qqtgttacaa aatgcatttq aaactcatqc aataattatc 400

400

<210> 18

<211> 235

<212> DNA

<213> Human

220

<223> human cDNA

<400> 18

tttcagttt catgtataac caagaatcg aattgtttc cggttcttat gggaaatgtt 60
agcaatgccc ttatttggat ttttaacttc acagagctt aatccaaatggg aagcacctt 120
tttttcgtg atgacatagt gctggatctt gggtttatag atgggtccat attttttgtt 180
ttgtatcacaa actgcatttc tcctttatatt qgcataaagca qcatacqgtt ttattt 235

235

<210> 19

<211> 636

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCC4 (MRP4)

<400> 19

atggataagt ttatactagt gttggcacat ggccgcacatgt atagatatac taggaggacc 60
tagttgtatt ctttgtatga aaaagcgccc ctggtaactac aataagtctt tcgtgaaagg 120
agttaatcc taacaacaaac tcagggaaagt attttggaaa gaatactgga taaggaaaaa 180
cctcagacta ctcctgttat tcaagacat tgccctacaag tggttgggtgt ggtctctgtg 240
gtctgtggcc tgattccttg gatcgcaata cccttggttc cccttggaat cattttcatt 300
tttcttcggc gatattttt ggaaacgtca agagatgtga agccctggaa atctacaagt 360
gagttatggaa actcgggttg gtatagacat gctagctagt ttccatttat gccataaatt 420
acagagaccc cttggaaatcc ggcagactt gtcttccaga atttctctaa cattagttaa 480
ttgaacgtat tggccattat gaatcattgt gtcccttaga gcatgtggaa ttgatagcct 540
gcaacgtgtt acatttcatt tggataaagg aaggagtggaa ggccatatgg ggagtaatat 600
tctacaggaa tgtcagact gttttttttt ggactc 636

<210> 20

<211> 2911

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCA8 (ABC-new)

<400> 20

cgggngagca cgtctggttc tatggggcgc tgaagggtct gagtgccgt gtatgggcc 60
ccgagcagca ccgtctgtcg caggatgtgg ggctgggtctc caagcagagt gtgcagactc 120
gccacctctc tggggatgc caacggaaac tgcgggttgc cattgcctt gtggggcgct 180
cccaatgtt tatcttgcac gagcttacgg ctggcggttgc tcccttgcctc ccccgcggtt 240
tttggggatgt gctgtcaaa taccgagaag gtcgcacgtt gatcttgcctc acccaccacc 300
tggatggggc agagctgtcg ggagaccgtt tggctgtgtt ggcagggttgc cgcttgcgtt 360
gctgtggctt cccacttctc ctgcgcgttc acctgggttc cggctactac ctgacgcgtt 420
tgaaggccccg ctgcgcctgtt accaccaatg agaaggctgtt cactgacatg gaggcgatgt 480
tggacaccatg gcaggaaagg aagaatggca gccaggccag cagagtccgc actcctcagc 540
tgctggccctt ggtacacgtt tgggtggccgg gggcacgtt ggtggaggag ctggccacac 600
agctgtgtgtt ggtgtgtcccc tacacgggttgc cccatgacgg cagtttgcgc acacttctcc 660
gagaggttgc caccgcgtt gcccggatgtt ggttgcacttgc ctacggatc tccgacacca 720
gcctcgaggaa gatcttgcgtt aagggtgggtt gggatgtgttgc tggggacaca gatatggagg 780
atggcagactt cgggcacacat ctatgcacatg gcattgtgttgc cctagacgtt accctgcggc 840

122250 52998260

tcaagatgcc gccacaggag acagcgctgg agaacgggga accagctggg tcagccccag 900
agactgacca gggctctggg ccagacgcgg tggccgggt acagggctgg gcactgaccc 960
gccagcagt ccagggccctg cttctcaagc gccttcgtct tgccggccgc agccggcccg 1020
gcctgttcgc ccagatcggt ctgcgtcccttcttgcggg cctggccctc gtgttcagcc 1080
tcatcggtcc tcccttcggg cactaccggg ctctgcggct cagtcacccacc atgtacggtg 1140
ctcagggttc cttttcgtt gaggacgccc caggggaccc tggacgtgcc cggctgctcg 1200
aggcgctgt gcaggaggaa ggactggagg agcccccaagt gcagcatagc tcccacagg 1260
tctcgccacc agaaggcttctt gcttaaggatgg ccaaggcttgcgg aactggaccc 1320
cagagtctcc atccccaggcc tgccagtata gccagccggg tgccggccgc ctgctggcc 1380
actgccccggc tgcaagctggg ggtccccctc cgccccaggcc agtgcacccggc tctggggaaag 1440
tggttcagaa cctgacaggc cggaaacctgt ctgacttctt ggtcaagacc taccccgccc 1500
tggtgcgcca gggcctgaag actaagaagt gggtaatggatgg cgttcaggatgc ggaggcttct 1560
cgctgggggg ccgagaccca ggcctgcctt cggggcaaga gttggccgc tcagtgagg 1620
atgtgtgggc gctgctgagtt cccctgcctg cgccccccctt cgaccgtgtc ctgaaaacc 1680
tcacagccctg ggttcacacgc ctggacgcctc aggacagttt caagatctgg ttacaacaaca 1740
aaggctggca ctccatgggt gcctttgtca accggacccag caacgcatac ctccgtgc 1800
acctgccccc aggccggggcc cgccacgcggcc acagcatcac cacactcaac cacccttga 1860
accttcaccaa ggacgcgtt tttggggctt cattgtatggc ctcccteggtt gacgtctcg 1920
tctccatctg tttgggtttt gcatgttctt ttgtccggc cagcttactt ctgttcctca 1980
tttggggatggc agtcacccca gccaaggaccc tgcagctcat gggggccctg tccccccaccc 2040
tctactggct tggcaacttt ctctggaca tttgttactt cttgggttgc gcatgcac 2100
tggtgctcat ctttctggcc ttccaggcaga gggcatatgt ggccctgtcc aacctgtctg 2160
ctctccctgtt gttgtactt ctgtatggc ggtcgatcac accgcctatg tacccagct 2220
ccttccttctt ctccgtgcctt agcacaacccctt atgtgggtctt caccgtcata aaccttta 2280
ttggcatcaa tggaaaggatgc gcccacccctt tgcttgcgtt cttctctgtat cagaaggctgc 2340
aggagggttag ccggatcttgg aaacaggctt tccttatctt ccccaacttc tgcttggcc 2400
gggggcttat tgacatgggtt cggaaaccagg ccatggctga tgcccttgcgg cgttggggag 2460
acaggcagtt ccagtcaccc ctggcgctggg aggtggctgg caagaacccctt ttggccatgg 2520
tgatcatggg gccccttcc ctctcttca cactactgtt gcagcaccgg aaccaactcc 2580
tgccacagcc cagggttagg tctctgcac ccctgggaga ggaggacggatgtatggcc 2640
tgacacggga gccccgggttgc caaggagccca cccaggggga tttgttgcgg ctgaggaaact 2700
tgaccaaggat ataccgtggg cagaggatgc cagctgttgc ccgttgcgttgc ctggggatcc 2760
ccccctggta agtgtttgg gctgttgggt tgacacggag caggaaagac gtccacgtttt 2820
ccgtatggta cgggggacac attggccacgc agggggcggg ctgtgttgcaggccacacgc 2880
ggggccggga acccagtgttgc cgcacccctna g 2911

<211> 100
<212> DNA
<213> Human

<220>
<223> human Intron-Sequence of ABCA8 (ABC-new)

```
<400> 21
ctcctggcac agttagtgag gtctatggag agggtgttcag gggccaaagga cctactttaa 60
ccccacagat attctgtccc caggcccaagg qtqaqgtctc 100
```

<210> 22
<211> 15
<212> DNA
<213> Human

<400> 22
tgcggccggccg cggcg 15

<210> 23
<211> 372
<212> DNA
<213> Human

<220>

```
<400> 23  
atccggata tctccccttc gggctgcggc aagagcacct tcctgaaagt gctcgccgg 60  
tttcatgccc ttggacaccgg gcgcgttcagg atcaacggcc aggcgatgcg gcatttcgg 120  
tttcgtcgat accggccagag cgtggccatat gtacggccc acgacgagat catggccggg 180  
acggtgatcg agaacatctt gatggacagc gaccgcgtgg acggcacggg tttgcagagc 240  
tgtgtcgagc aggccgggtt gctggaaagc atcctgaaac tgagcaatgg cttcaataacc 300  
tttgcgtggac ccatggcggtt gcaattgtcc tcggggccaga agcaacgcct gttgatgcgc 360  
ccggatgcac qc 372
```

<210> 24

<211> 281

<212> DNA

<213> Human

<220>

<223> human cDNA

<400> 24

aaaaccaaag attctcctgg agtttctct aaactgggtt ttctccttag gagagttgac 60
aagaaaacctg gtgagaaaata agctggcagt gattacgcgt ctcccttcaga atctgtatcat 120
gggtttgttc ctccctttct tcgttctgcg ggtccgaagc aatgtgtctaa agggtgttat 180
ccaggaccgc gtaggtctcc ttaccagggt tttggggogcc accccgtaca caggcatgtc 240
gaacgctgtg aatctgttcc ccgtgtcg agctgtcago a 281

<210> 25

<211> 2258

<212> DNA

<213> Human

<220>

<223> human cDNA of Huwhite2

<400> 25

atggccgtga cgctggagga cggggcgaa cccctgtgc tgaccacgca cctgaagaag 60
gtggagaacc acatcaactga agcccagcgc ttctccacc tgcccaagcg ctgcggcgt 120
gacatcgagt tcgtggagct gtccttattcc gtgcgggggg gcgcctgtc ggcggaaagg 180
ggttataaga cccttctcaa gtgcctctca ggtaaattct ggcgcggga gctgattggc 240
atcatgggcc cctcaggggc tggcaagttt acattcatga acatcttggc aggatacagg 300
gagtctgaa tgaaggggca gatcttggtt aatggaaaggc cacgggaggt gaggacattc 360
cgcaagatgt cctgtacat catgcaagat gacatgtc tgccgcaccc cacgggttgt 420
gaagccatga tggtctctgc taacctgaat cttaactgaga atcccgatgt gaaaaacgt 480
ctcgtgacag agatctgtac ggcactgggc ctgatgtcgt gtcacccacac gggacaggg 540
ctgctctcg gcgggcagag gaagcgtctg gccatcgccc tggagctgtt caacaacccg 600
ctctgtatgt tctttatgtga gcccacccgt ggtctggata ggcgccttgc tttccaaatgt 660
gtgtccctca tgaagtccctt ggcacagggg ggcgttacca tcatctgcac catccaccag 720
cccacgtgcca agctctttaa gatgtttgac aagctctaca tcctgagcca gggtcagtc 780
atcttcaaaag ggcgtgttac caacctgtac ccctatctaa agggactcgg cttgcatttc 840

0022350 - 539382760

ccccacctacc acaaccggc tgacttcgt gagtgggggt ctgtgcctc tggcagat 900
ggacacctga accccatgtt gttagggct gtgcagaatg ggctgtgcgc tatggcttag 960
aagaagagca gccctgagaa gaacgaggc cctgccccat gcccctcttg tcctccgaa 1020
gtggatccca ttgaagcca cacctttgcc accagcaccc tcacacagtt ctgcacatc 1080
ttcaagagga ccttcctgtc catectcagg gacacggtcc tgaceccacct acggttcatg 1140
tcccacgtgg ttattggcgt gctcatcgcc ctcccttacc tgcatattgg cgacgatgcc 1200
agaaggctct tcaacaacac cggtgcctc ttcttctcca tgctgttctt catgtgcgc 1260
gcccctatgc caactgtgct caccttcccc tttagagatgg cggttctcat qaggagac 1320
ctcaactact ggtacagcct caaagcgtat tacctggca agaccatggc tgacgtgccc 1380
tttcaggtgg tgggtccgggt ggtctactgc agcattgtgt actggatgaa cggccagccc 1440
gctgagacca gccccttctt gctttctca gcccctggca cggccaccgc ttgggtggcc 1500
caatcttgg ggctgtctat cggagactgtt tccaaactccc tacagggtgc cacttttgt 1560
ggcccaagttt ccggccatccc tgggtcccttgc ttctccggct tctttgtcgtt cttcaagacc 1620
atccccactt acctgcaatg gagctccatg ctctccatgtg tcaggtatgg ctttgggggt 1680
gtgtatccctga cgatccatgg catggagcga ggagacccatgatgatgaa ggaacgctgc 1740
ccgttccggg agccacagag catctcccgaa ggcgtggatg tggaggatgc caagctctac 1800
atggacttcc tgggtcttggg catcttcttc ctggccctgc ggctgtggc ctacccgttgc 1860
ctcgcttacc gggtaagtc agagagatag aggctggcc cagctgtac cccagccccc 1920
gcagcaggaa gccccccatgc ccagccctt gggactgttt tanctctata cacttggcga 1980
ctgttccctg gccccggatcatc cttctcccttgc ctggcttgc ccacaggctg gctgtcgac 2040
tgcgtccca gcctgggctc tggggatggg ggcttccaaacc cttccctacta tgcccgagg 2100
tctcccaag ttgtatccgtt ttgtatccctc ctccctactc tctccaaacac ctgcatgc 2160
agactactgg gaggctgtg cctcccttgc gcccattggca ccctccctgtg ctgtctgcct 2220
qggqaccccta qggtctctat qgccccactt acaactgaa 2258

2258

<210> 26

<211> 820

<212> DNA

<213> Human

<220>

<223> human cDNA

<400> 26

```
ttaaggatt tcagcgttgc cattccgtca ggatctgtca cgccactgggt tggccaaagt 60  
ggttctggca aatcaacagt gctttcactc ctgtctgaggt tgtagcaccct tgcttctggaa 120  
actattatgtc ttgatggcca tgacaatcccg tcaqctaacc ccqatgtgtq qctqagatcc 180
```

aaaattggga cagtcagtca ggaacccatt ttgttttctt gctctattgc tgagaacatt 240
gcttatggtg ctgatgaccc ttccctctgt accgctgagg aaatccagag agtggctgaa 300
gtggccaatg cagtggcttc tccggaaattt cccccaaggt tcaaacactgt ggttggagaa 360
aagggtgttc tcctctcagg tgggcagaaa cagcgattg cgattgccc tgctctgcta 420
agaatccca aaatttcttct cctagatgaa gcaaccatgt cgctggatgc cgaaaatgag 480
tacctgttc aagaagctct agatcgctg atggatggaa gaacgggtt agttattgcc 540
catagcctgt ccaccattaa gaatgtaat atgggttgtt ttttgacca agaaaaaattt 600
actgaatatg gaaaacatga agagctgctt tcaaaaccaa atggatata cagaaaaacta 660
atgaacaaac aaagtttat tttagcataa ggaagcaatt actggtaaac aatatgagac 720
ttaatgcaa aacagtgttg cgaaaaaaaaa ctcagagact atgaaataca taaaccatat 780
atcaagttat ttggaaaaata cttttttt ccaaagtgtg 820

<210> 27

<211> 575

<212> DNA

<213> Human

<220>

<223> human cDNA

<400> 27

gctctccaca cagagatttt gaagcttttc ccacaggctg ctggcagga aagatattcc 60
tcttaatgg cgtataagtt acctgtggag gatgtccacc ctctatctcg ggccttttc 120
aagtttagagg cgtatggaaaca gaccttcaac ctggagaaat acagcctctc tcaggctacc 180
ttggagcagg tattctttaga actctgtaaa gacggagac tggaaatgt tgatgataaa 240
attgatacaa cagttgaatg gaaaccttctc ccacaggaaag acccttaaaa tgaagaacct 300
cctaacattc aatttttagt cttactacat ttttttttccataattcta caagaatgtt 360
tccctttact tcagttaca aaagaaaaca ttataataac attcaataat gattcagtt 420
ttcattttta aaaattttagt atgaaggaaa caaggaaata tagggaaaag tagtagacaa 480
aattaacaaa atcagacatg ttattcatcc ccaacatggg tctattttgt gcttaaaaat 540
aattttaaaaa tcataacaata tttaggttggt tatcg 575

<210> 28

<211> 300

<212> DNA

<213> Human

220

<223> human cDNA

<400> 28

<210> 29

<211> 2719

<212> DNA

<213> Human

53307

22202

<223> human cRNA of ABCC2

54007-20

tttagaacg caccgtgcac atgcttggt gtcttgtaa gtggaaactg ctgctttaga 60
gtttgttgg aaggtcggg tgactcatcc caacatttac atccttaattt gttaaagcgc 120
tgccctccag cgcacgcattc ctgagatctt gaggctttt ttaagccga gctcttattaa 180
gctaaaaaga taaaactctt ccagatgtctt tccagtaatg tcgaagttt tatcccagt 240
tcacaaggaa acaccaatgg cttcccccgcg acagtttcca atgcacctaa ggcattttact 300
gaaggagctg tgtaaagtttt tcataaactc tgctatcgag taaaactgaa gagttggctt 360
ctacccgttgc gaaaaccagt tgagaagaa attatatcgat atatcaatgg gatcatgaaa 420
cctggcttc acgccccatctt gggaccacca ggttgaggcga aatcttcgtt attagatgtc 480
tttagtgc当地 ggaagatcc aagtggatta ttctggatgt ttctgtataaa tggagcaccc 540
cgactgtccca atttcaaatg taatttcgtt tacgtggatc aagatgtatgt tggatggc 600
actctgacgg tgagaaaaa cttacagttc ttagcagtc ttccgccttc aacaactatg 660
acgaatcatg aaaaaaaacgaa acggatttaac agggccattt aaggtttagg tctgtataaa 720
gtggcagact ccaagggttgg aacttagtcc ttccgttggt tggatgggg agaaagaaaa 780
aggacttagta taggaatggaa gcttattactt gatcttccca tcttgcctt ggatgagctt 840
acaactgtctt tagactcaag cacagcaataa gatgtccctt tggctcttggaa aaggatgtctt 900
aaggcaggac gaaacaatcat ttcttcattt catcagcctt gatattccat tttcaatgtt 960

ttttagatgcc tcaccttatt ggccctcaggaa agacttatgt tccacgggcc tgctcaggag 1020
gccttggat actttgaatc agctggatt cactgtgagg cctataataa ccctgcagac 1080
ttcttcttg acatcattaa tggagattcc actgctgtgg cattaaacag agaagaagac 1140
tttaaagcca cagagatcat agagccttc aagcaggata agccactcat agaaaaatta 1200
gcggagattt atgtcaactc ctcccttac aaagagacaa aagctgaatt acatcaactt 1260
tccgggggtt agaagaagaa gaagatcaca gtcttcaagg agatcagcta caccaccc 1320
ttctgtcata aactcagatg ggttccaa cgttcattca aaaacttgtt gggtaatccc 1380
caggcctcta tagctcagat cattgtcaca gtcgtactgg gactggattt aggtgcatt 1440
tactttggc taaaaaatgtt ttctactggaa atccagaaca gagctgggtt tctcttcttc 1500
ctgacgacca accagtgttt cagcagtgtt tcagccgtt aactctttgtt ggttagagaag 1560
aagctttca tacatgaata catcagcgaa tactacagag tgcatctta ttcccttgg 1620
aaactgttattt ctgatttattt acccatgagg atgttaccaa gtattttattt tacctgtata 1680
gtgtacttca tgtaggattt gaagccaaag gcagatgcct tcttcgttat gatgtttacc 1740
cttatgtgg tggcttattt agccagttcc atggcactgg ccatagcgc aggtcagagt 1800
gtggttctg tagcaacact tctcatgacc atctgtttt tgtttatgtt gatttttca 1860
ggctctgtgg tcaatctcac accattgcata tcttggctgtt catggctca gtacttcgc 1920
attccacgat atggatttac ggctttgcag cataatgaat ttttggaca aaacttgc 1980
ccaggactca atgcaacagg aaacaatcc tctaactatg caacatgtac tggcgaagaa 2040
tattttgtttaa agcagggcat cgatcttcac ccctggggct tggaaagaa tcacgtggcc 2100
ttggctgtta tgattttat tttcctcaca attgcctacc tggaaattttt atttcttaaa 2160
aaatattctt aaattcccc ttaattcagt atgattttatc ctacacataaa aaagaagcac 2220
tttgattgaa gtattcaatc aagttttttt gttttttctt gtcccttgc catcacactg 2280
ttgcacacgca gcaattgttt taaagagata catttttaga aatcacaaca aactgaatta 2340
aacatgaaag aacccaagac atcatgtatc gcatattatgt taatcttcctc agacagtaac 2400
catggggaaat aatctggtc taattttatc atctaaaaaa ggagaatttga attctggaaa 2460
ctcctgacaa gttattactg tctctggcat ttgtttctc atctttttaa tgaataggtt 2520
ggtagtgc ctttcgtct taatacttta tggatgtatc gtttgcattt atttaatata 2580
tgacaaaatgtt attaatgttca tactggaaat gtaaaatttga aatatgtttt gaaaaaaatgtt 2640
tctgtctttaat aggtaaaaaa aagccaccgg tgatagaaaa aaaaatctttt tgataagcac 2700
attaaagtttta atagaactt 2719

<210> 30

<211> 6491

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCA3 (ABC3)

<400> 30

gcggccggc gcccaggctc ggtgtctggag agtcatgcct gtgagccctg ggcacccct 60
gatgtcttc gaggtaacgg tgccccaaa cctcagggtt gcccgtcccc actccagagg 120
ctctcaggcc ccaccccgga gcctctgtg cgagccgc tcctccctgc cagttccca 180
gtatgtctga aggagaccc gctgtgtga gcctcttgc ggaccaccc atgagtgtgg 240
agctgagcaa ctgaaacctgaa aactcttcca ctgtgagtca aggaggctt tccgcacatg 300
aaggacgtg agcgggaagg actctctct gcctgcgtt gtacgcgtg gaccagacc 360
aggggcttc tagactgccc ctctccatc gcctccctg ccttccagg acagacgac 420
cacgtctgca cacctcgccc tcttacact cagttttag acgacgttcc tcctattcc 480
tgccgggtgc agcgcctact tgaacttact cagaccaccc acttctctag cagcactggg 540
ctgtcccttc agcaagacga tggctgtgt caggcagctg ggcgcctcc tctggaaaga 600
ctacacccctg cagaagcgga aggtccctgtt gacgtcttg gaactcttcc tgccattgt 660
gtttccctggg atccctcatct ggctcccggtt gaaggatttag tcggaaaatg tgcccaaccc 720
caccatctac cggggccagt ccattccaggaa gctgccttg ttcttcaccc tccctccggc 780
aggagacacc tggagaccc cttacatccc ttctcacatgt gacgtgcacca agaccgtcac 840
tgagacagtgc cgccaggacat ttgtatcaa catgcgtgt cggcccttc cctccggaaaa 900
ggacttttag gactacattt ggtacgacaa ctgtctgtcc agcgtgtgg cggccgtgtt 960
cttcgagcac cccttcaacc acaccaaggaa gcccctgcgc ctggccgtga aatatcacct 1020
acggttcaact tacacacggaa gaaatttacat gtggacccaa acaggctctt tttccctgaa 1080
agagacagaa ggctggacaca ctacttccctt ttccctgggtt ttcccaaaacc caggaccaag 1140
ggaacttaaca tcccccgtat ggccggaaacc tgggtacatc cgggaaggct tcctggccgt 1200
gcagcatgtt gtggacccggg ccattcatggaa gtaccatgcc gatggccacca cacgcacgtt 1260
gttccagaga ctgacgggtt ccattcaagag gtccctgtac ccggccgttca tcgcagaccc 1320
cttcctctgtt gccatccaggat accagctgcc cctgtctgtt ctgtctcatgt tcacccatcac 1380
cgccgttacc attggccctgtt ctgtctgtca ggagaaggaa aggaggctgtt agaggatatacat 1440
gcgcgtatgtt ggggttcggca gctggctgtca ctggagtgtcc tgggtccctt tgggtttctt 1500
cttcctcttc atccggccctt cttcatgac cctgtcttc tgggtcaagg tgaagccaaa 1560
tgttagccgtt ctgtccggca ggcacccctt cctgtgttgc gcctccctgc tgggtttctgt 1620
catcttacc atcccttcatc gcttcatgtt cagcacccctt ttcagccaaatg ccaacatggc 1680
agcagccccc ggaggcttcc tctacttctt cacctacatc ccctacttct tcgtggcccc 1740
tcggtagacac tggatgacttc tgagccaaatg gctctgtcc tgggtccctgtt ctaatgtcc 1800
catggcaatgg gggccacccatgg tcaatggaa atttgaggcc aaaggcatgg gcatccatgt 1860
gcgcgttacc ctgtgtccctt tcaacgtgttgc cggacttcc tgggtccggc aggtgtgtggg 1920
gtatgtgtgtt ctggacttcc tgggtttcttgc cttgtgttgc tgggtatgttgc agggccgtt 1980
cccaaggccatgg ttcggccgttcc ctcacccctgtt gttacttccatccatgtccctt cttatgttq 2040

tggaaagcca agggcggtt cagggaaagga ggaagaagac agtaccccg agaaaagcact 2100
cagaaacgag tactttgaag ccgcggcaga ggacctggtg gcggggatca agatcaagca 2160
ctgtccaaag gtgttcaggg tggaaataa ggacaggccc ggcgtcagag acctgaacct 2220
caacctgtac gagggacaga tcaccgtcct gctggccac aacggtgccc ggaagaccac 2280
caccctctcc atgctcacag gtcttttc cccaccagt ggacgggcat acatcagcgg 2340
gtatgaaatt tccccaggaca tggttcagat ccggaaagacg ctggccctgt gcccgcagca 2400
cgacatctt tttgacaact tgacagtgcg agagcacctt tatttttacg cccagctgaa 2460
gggcgtca cgtcagaagt gcccgtaaaga agtcaagcag atgctgcaca tcacgcgcct 2520
ggaggacaag tggaaactcac ggagccgcgt cctgagcggg ggcgttgcggc gcaagctctc 2580
catcgccatc gcccgtcatcg caggctccaa ggtgtgtata ctggacgagc ccacccctggg 2640
catggacgcc atctccaggaa gggccatctg ggatcttctt cagcggcaga aaagtgcacg 2700
caccatctgt ctgaccaccc acttcatggaa cgaggctgac ctgtggggag accgcacatcgc 2760
catcatggcc aagggggagc tgcagtgtcg cgggtccctcg ctgttccctca agcagaataa 2820
cggtggccgc tatcacatga cgctgtgaa ggagccgcac tgcaacccgg aagacatctc 2880
ccagctgttc caccaccacg tgcccaacgc cacgttggag agcagcgtcg gggccgagct 2940
gtcttcatc cttcccagag agagcacgca caggttggaa ggtcttttgc tttaacttggaa 3000
gaagaagcag aaagagctgg gcatttgcgc ctttggggca tccatcacca ccatggagga 3060
agtcttcctt cgggtggggaa agctgtggaa cagcgtatg gacatccagg ccatccagct 3120
ccctggccctt cagtagccacg acgagaggcc cgccacgcac tgggtgtgg acagcaacct 3180
ctgtggggcc atggaccctt ccgcacgcac tggggccctc atcgaggagg agcgcacccgc 3240
tgtcaagctc aacactgggc tcgccttgcac ctgcaccaa ttctggggca ttttcttgc 3300
gaaggccgcac tacagctggc gcgagtggaa aatgtggccgc gcacagggtcc tgggtgcct 3360
gacactgcgtc accctggccc tcttgcacca caactacttcc tcggagctct tcgacgaccc 3420
catgttgcagg ctgacccttgc cgcgttgcacgg cagaaccgtc gtgccttctt cagttccgg 3480
gacactcccgat ctgggtcagc agctgtcaga gcatctggaa gacgcactgc aggctgagg 3540
acaggaggccc cgcgcagggtc tcgggtaccc ggaggaggttc ttatcttca gggcttctgt 3600
ggagggggccgc ggctttatgt agccgtgcct tgggtgcagg ctgttgcaggat atgtgggaga 3660
gcgcacggcgtc gtcaacgcct tggtaacaaa ccaggcgatc cactctccag ccactgcct 3720
ggccgtcgat gacaaccttc tggtaacgt gctgtgggg cctcactgcct ccattgtgg 3780
ctccaaacttc ccccgcccccc ggacgcgcctt gcacgggttcc aaggaccagt ttaacgagg 3840
ccggaaaggaa ttgcacatgt ccctcaacctt gctttcgcc atggcatttc tggccacgcac 3900
gttctccatc ctggcggtca gcgagaggcc cgtgcaggcc aacgtgtgc agtttgc 3960
tggagtccac tggccaggat tctggcttc tgcgttgcgtc tggacccatca tcttccttctt 4020
catccccatgt ctgtgtgttc tgggtgttt taaggccctc gacgtgcgtc ctttcacgcg 4080
ggacggccac atggcgtaca ccctgtgtgtc gtcctgtc tgggtgtgg ccacatcccc 4140
cctcatgtac ctgtacactt tcttccttgc gggggccgc acgtgcataca cgaggctgac 4200
catcttcaac atccctgtcag gcatcgccac ctggccatgt gtcaccatca tggcgtatccc 4260

agctgtaaaa ctggagaac tttccaaaac cctggatcac gtgttctgg tgctgccccaa 4320
ccactgtctg gggatggcag tcagcagttt ctacgagaac tacgagacgc ggaggtactg 4380
cacctccctcc gaggtcgccc cccactactg caagaaatat aacatccagt accaggagaa 4440
cttctatgcc tggagcgcggc cgggggttcgg cgggtttgtg gcctccatgg cgcgcctcagg 4500
gtgcgcctac ctcatccctgc tcttccatcg cgagaccaac ctgcttcaga gactcagggg 4560
catctctgc gcccctccggaa ggaggcggac actgacagaa ttatacaccg ggatgcctgt 4620
gttccctgag gaccaagatg tagcggacga gaggacccgc atctggccc ccagccggaa 4680
ctccctgtcc cacacacccctc tgattatcaa ggagcttc aagggttacg agcagcgggt 4740
gccccctctg gccgtggaca ggctctccct cgcgttcggaa aaagggggat gcttcggccct 4800
gtggggcttc aatggggcgc ggaagaccac gactttcaaa atgtgcaccc gggaggagag 4860
cctcaacttc gggatgcct ttgtcggggg tcacagaatc agctctgtatc tcggaaagggt 4920
gcggcagcgg atcggtactt gcccgcgtt tgatgccttg ctggaccaca tgacaggccg 4980
ggagatgtcg gtcatgtacg ctggcgtccgg gggcatccctt gacgcggccaa tcggggccctg 5040
cgtggagaaac actctgcggg gcctgtctgtt ggagccacat gccaacaacgc tggtcaggac 5100
gtacagtgtt ggtaacaacgc ggaagctgtgg caccggatccgc gcccgtatcg gagagcctgc 5160
tgtcatcttc ctggacgacgc cgtccacttg catggacccc gtggccggc gcctgttttgc 5220
ggacaccgtg gcacgagcccg gaggtctgg caaggccatccatc acatcaacctt cccacagcat 5280
ggaggagtgtt gaggccctgtt gcacccggctt ggccatcatg gtgcaggggc agttcaagtgc 5340
cctggggcggc cccacggaccc tcaagggaa gttcggcggc ggctactccc tgccggccaa 5400
ggtgccagatg gaagggcaac aggaggcgctt ggaggagtttcc aaggcccttc tgacccgtac 5460
ctttccaggc acgcgtccctgg aagatgcacca ccaaggcatg gtccattacc acctgcgggg 5520
cgtgtacccctt agctggcgaa aggtttctgg tattctggaa aaagccaaagg aaaagtacgg 5580
cgtgtacccctt agctccgtga gcccacatcc gctggaaacag gtcttccatgatc gcttcggccaa 5640
cctgcggccccc cccaccgcg aggaggggcg atgggggttgc ggggtgtctt cggccatcagg 5700
caggagcagg acggggcaacgc aggcccatttacatccctt tctctccaaatggatctcat 5760
cctttttttttaatcacttttttctatgtatggatatggaa aattcaaggc agtatgcacaa 5820
aatggacacgtt gtcagccca gcccacatgc ccaggatcatg catgcgtatccatcgtctg 5880
catactctgg agttcactttt cccacatgtt gggcaggccggc ggcgtctgc gggcaacgtctc 5940
cggggtctctt ggggtggagatg ctgacccagg aagggtctgc gctgagctgg ggggttgaatt 6000
tctccaggcata cttccctggag agaggacccaa gttcgttgc caagtttaca caccgacacta 6060
atctccctgtt gggaggaaacggc gggaaaggccac ccagggttgcatgtacgc gccccccaggc 6120
cgccaggaaatggacatgc gatcactgtc agtggggggaa agctgtctgatc tttgtttaggg 6180
tgctggggctt ttagcgtccaa ggcgcggccccc gggggcatctt ggaggctctg ctccctttagg 6240
gcgtgttagt caccgcgaag cggggcaccc tcccacagca tctctcttgc gacgcggca 6300
caggaggggaaatggggcagg ctgcacatgc tctctgttttgc caccatgcacccatggaa 6360
gtcggccggccccc ccaggacacgc caggacccatc cttcaagggttgc ggggtggctgtt ctcacaggaca 6420
cattgaataatc gttgtaccaatc tccagaaat aatgtgttagt gggacacaaaaaaa 6480

aaaaaaaaaa a 6491

<210> 31

<211> 2923

<212> DNA

E2133 Human

<220>

<223> human genomic DNA of 5'-UTR of ABCG1

<400> 31

ttggcctggtt gatccctcagg gttctactta gaatgcctcg aaaagtcttg gctggacacc 60
catgcccaagt ctttctgcag ggccccattt gggtaaacct tcttcatttca tcccatgtga 120
accaggccag gcccatcagg gtttggcaac cccctgtatgc agtgggtgct gccagggtac 180
aggagcaagc ctgcagctgc tgggggccca tgcagagaca gcctgcccaga gggagagacca 240
cctggggagg ccagagccgt ggagacagca agagaccagg ggctgaggac agagtagtac 300
aggctttgg tcccaagtatc cctgaaacca ctgcactccg aaccccttctg tacttagtt 360
aagccagttt gagtttctgt cctttacaac caagacccct gataggaatg gggccctgtg 420
ctacgctact gttggcttct ttcccgatcg ggcctggag gggAACACAG cagtactac 480
agtgggatgc ttactcggtg ctgggcatgc tagaaagtgc ttgcctatcc ttatccca 540
cgtggggggg attttgaccc cacctgtaca gacagataag tgaggaccct ttccacccctt 600
tcctgcaaca gaaaatccag cagccaaagc caacaaggcc ccagcatagc atctcccttc 660
tctgacttca tcctcacgct ccacacacca tccccctggc cattccacg agccagttaa 720
gcactgcctc acacttccag ttccggacca gccaggatgg ccaggctgg tggggccat 780
ccaccggctg aagccaattt cctattctcg agctgaaggat gaatcaatcc cgccataaattc 840
ttcggcaga gaactnggtt ggggggtaga agaggggaa tgcttagaa gaaattctgg 900
ggcacattcc tggaaatgtgag gaggatggat attggacaga aattatgtca ttgcaggcac 960
cctcaatttc cctggccaca tggacagttc cttcccggt gtgttccngt cctcccttcg 1020
tgctccaggc cctgtctgtt cctggagcga gatgggtccc agggctggc accagtcccc 1080
atctccagcc atcaggcaact ttccctctcg tgttttggcg taaacacntc ccttagtttg 1140
tggatctgaa tcctcttccc aacacactca agctttgtg ggcctccctg cagtgtatgt 1200
ttaaggcacc acacagccctc caaggccctgg caccggggca gtggccacctt gttaaacaca 1260
gcagtcagat ttccctcattt cagccaaatgtg taaaatcaag gtaatggatc tachntttt 1320
tttttnntt ttttccagggg ggntnntttt tttttggac gggatctcact tctgtcancc 1380
ccggctctgg a gtgcagtgcc tcaatctcg ctcancgtgc aagctccgccc tcccaagggtc 1440
atgcattctt cctgcctcag cctacatagt agctggact acagggtgcc gcccaccacac 1500
ctagctaatt ttttgttattt ttaqtqagaa cqqqtttca tcatgttadcc caggatgttc 1560

tcgatctcc gacctcccaa agtggggg ttacagggtg gacccactgc gcccggctgg 1620
 atgactcttg agacaacacc attcagacaa aggcaaggcc tcccaactta actcataacc 1680
 gtgttcctt tctctcttc gatttggcg gctgaatttg gttacagtca tctgacctgt 1740
 gggtgtaa gtcacccgtcc tggcataaaa agctgtgcct cctttctagg tgaggagaaa 1800
 gagagagacc tggctcatct gagggtgtgg tgggaggggg gaccagggtg tgctggaaat 1860
 gaaaagaaat gcattctgt tttcgtccc aacatgaaaa caactgaaca aaagcattag 1920
 ggcctgagac tgggagtaaa gaattcttg taaccatgg taccaggaaa tggccccact 1980
 tatataaat aagggttta gagatgtgg accatctgtatccagect gggccacat 2040
 gggagtgtgc cctgggttta ttcccttatac agttccatga acatggctt gaaacacat 2100
 ctgtctgcag aaaatgggc ttttctttt ttgttgggg gtgaacagag ggcagaggcc 2160
 tggcatctt cactcagcac cccttggtaa cccagactt agcaccatgg ctggcgcaca 2220
 gcaatgtcac atgtgtgagt gcacacgtg ctcactgcg agggtgcacc ccacccgg 2280
 gctgtgggg gcgttggagt gtttatctt tcttttagtcc tcaagctctt acctggcaga 2340
 gagctggcca acaccgtcg ggtgggggtgg gggggagg aagaagcagc agcaagaaag 2400
 aagccccctg gccctacttccctg gacccccccttccgacccatcc 2460
 cgcttgcgc ttggagnacg tggatttccg agcctggaa ccccccggctt ctgtcccggt 2520
 gtccccccgcg gcttcacccn cgtgtggcc cagcccccgcg gatgtggga cccgggttt 2580
 cccgggtggc agggggttcc catggccctc ggcggccctc ggctcggcc gctccggaa 2640
 ctgcacttc aggggtccctg gtccgcgc cccagcagga gaaaaacaag agcacgcgc 2700
 ctgcggccgc cggccgcggcc cttgggtccg gccaatcgccg cgctcgccggc ggggtcgcc 2760
 ggcgtggAAC caagcggga gccggatccc agccggagcc caagcgcagc ccgcaccccg 2820
 cgcagcgcgt gaggccggag ccagcgcagc ctggcccccagctcaagc ctgcgtcccg 2880
 cccggccgcg cgcacgcgcg cggccgcgc cccggggcat ggc 2923

<210> 32

<211> 13

<212> DNA

<213> Human

<220>

<223> human DNA of 5'-end of ABCG1 cDNA

<400> 32

ccggggcatg gcc

13

<210> 33

<211> 24

<212> DNA
<213> Human

<220>
<223> Primer

<400> 33
cgtcagcact ctgatgtatgg cctg

24

<210> 34
<211> 21
<212> DNA
<213> Human

<220>
<223> Primer

<400> 34
tctctgctat ctccaaacctc a

21

<210> 35
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 35
caaacatgtc agctgttact gga

23

<210> 36
<211> 23
<212> DNA
<213> Human

<220>

T03225B * 5C998Z60

<223> Primer

<400> 36

tagccttgca aaaataccctt ctg

23

<210> 37

<211> 25

<212> DNA

<213> Human

<220>

<223> Primer

<400> 37

gttggaaaga ttctctatac acctg

25

<210> 38

<211> 24

<212> DNA

<213> Human

<220>

<223> Primer

<400> 38

cgtcagcact ctgatgatgg cctg

24

<210> 39

<211> 21

<212> DNA

<213> Human

<220>

<223> Primer

<400> 39

tctctgttat ctccaaacctc a

21

T03250 52998260

<210> 40
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 40
acgtttcac caggtatct gaa

23

<210> 41
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 41
ctatctgtgt catctttgcg atg

23

<210> 42
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 42
cgtttcctcc tatacatctt ggt

23

<210> 43
<211> 23
<212> DNA

<213> Human

5220>

<223> Primer

<400> 43

aagaaqagcat qtggagttct ttq

23

<210> 44

<211> 23

<212> DNA

<213> Human

<220>

<223> Primer

<400> 44

ccctgttaatg aaatttgttt ctc

23

<210> 45

<211> 22

<212> DNA

<213> Human

5220

<223> Primer

<400> 45

aaccttctct qqgttcctqt at

22

<210> 46

<211> 23

<212> DNA

<213> Human

<220>

<223> Primer

<400> 46
agttcctgga aggtcttggtt cac

23

<210> 47
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 47
gctgaccctt ttgaggacat gcg

23

<210> 48
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 48
ataggtcagc tcatgcccta tgt

23

<210> 49
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 49
gctgcctcct ccacaaaagaa aac

23

<210> 50
<211> 24
<212> DNA
<213> Human

<220>
<223> Primer

<400> 50
gctttgtctga cccgctcctg gatc

24

<210> 51
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 51
gaggccagaa tgacatctta gaa

23

<210> 52
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 52
cttgacaaca ctttagggcac aat

23

<210> 53
<211> 15
<212> PRT
<213> Human

T022500-SE998260

<220>

<223> amino acid residues 613-628 of ABCG1

<400> 53

Arg	Glu	Asp	Leu	His	Cys	Asp	Ile	Asp	Glu	Thr	Cys	His	Phe	Gln
1		5					10						15	

<210> 54

<211> 2923

<212> DNA

<213> Human

<220>

<223> human genomic DNA of 5'-UTR of ABCG1

<400> 54

tgcctgtt gatcctcagg gttctactta gaatgcctcg aaaagtcttg gctggacacc 60
catgcccagt ctttctgcag gttccattg gggtaacct ttcatttca tccatgtga 120
accaggccag gccccatcagg gtttggcaac ccctgtatgc agtgggttgc gccaggtgac 180
aggagaacgc ctgcagctgc tggggggcca tgcagagaca gcctgccaga ggggagacca 240
ctggggagg ccagagccgt ggagacacga agagaccagg ggctgaggac agagtagtac 300
aggcttttgtt tcccaatgtt cctgaaacca ctgcactccg aaccttttgt tacttagctt 360
aagccatgtt gagtttctgtt cttttacaac caagagccgtt gataggaatg gggctctgt 420
ctacgcgtact gttggctctt ttcccgatcg ggcgctggag gggAACACAG cagtgtactac 480
agtgggtatgc ttacttcggt ctggccatgc tagaaatgtc ttgcattgc ttatccca 540
ctgggtgggg attttgcacc cacctgtaca gacagataag tgaggaccctt tttcacctta 600
ttctgcacaca gaaaatccag cagccaaacg caacaaggcc ccagcatagc atctccctc 660
tctgacttca tcctcacgc ccacacacca tccccctggc cattccacgc agcccaatgg 720
gcactgcctc acacttcgg ttcggccacca gccaggatgg ccaggctggta tggggccat 780
ccacccggctt aagccaaattt cctattctcg agctgaaggat gaatcaatcc cgccataatcc 840
ttcggccatgg gaaactnggtt ggggggtatgg agagggggaa tgcgtatggaa gaaattctgg 900
ggcacatccc tggaaatgtt gaggatggat attggacaga aattatgtca ttgcaggcac 960
cctcaatgc cctggccacca tggacatgtt ctccccggctt gtgttccggm cctccctctcg 1020
tgctccaggg cctgtctgtt cctggccatgg gatgggttccc agggctgggc accagttcccc 1080
atctccacggcc atcaggactt ttcctctctgt tgtttggcg taaacacntc cctaggttt 1140

T0225052993760

tggatctcaa tcctttcccc aacacactca agctttgctg ggcccccctg cagtgtatgt 1200
ttaaggcacc acacgcctc caaggcctgg caccgggca gtggccacct ggttaacaca 1260
gcagtcagat ttccctcatt cagccaagtg taaaatcaag gtaatggatc tacnntttt 1320
ttttntntt ttttccaggg ggntnnntttt tttttgagac ggagtctcac tctgtcancc 1380
ccggctctggaa gtgcagtggc tcaatctcg ctcancggc aagetccgccc tcccaagggtc 1440
atgcattctt cctgcctcag cctcatatgt agctggact acaggtgcccc gccaccacac 1500
ctagtaattt ttttgttattt tttagtagaga cggggtttca tcatgttagc caggatggc 1560
tcgatctctt gaccccttca agtgggtggg ttacagggtt gageccactgc gcccggctgg 1620
atgacttgg agacaacacc attcagacaa aggcaaggcc tcccaacttaa actcataacc 1680
gtgtctctt tcttccttc gatttgagcg gctgaatttg ttacagtca tetgacactgt 1740
gggtgtgaag tccacactgca tggcataaaa agctgtgcct cttttctagg tgaggagaaa 1800
gagagagacc tggctcatctt gaggtgtggg tggggggggg gaccagggtg tgctggaaat 1860
gaaaagaaat gcatctctgt ttttcgtccc aacatgcaaa caactgaaca aaagcattag 1920
ggcctgagac tggggagtaaa gaattccctt tcaccatgga taccaggaaa tggcccccact 1980
tatataataat aagggttttta gagatgtgg accatctgtt attcacgcctt gggccacat 2040
gggagttgtgc cttgggttta ttccttatac agttccatga acatggctctt gaaacacct 2100
ctgtctgcag aaaatgggc ttttcttttt ttgttggggg gtgaacagag ggcagaggcc 2160
tgggcattttt cactcagcac ccctttgtaa cccagcactt agcaccatgg ctggcgacca 2220
gcaatgtcac atgtgtggat gcacacatgg cttcaactgcg agggtgtacc ccacacgggt 2280
gtgttgggg gctgtggagt gtttatctt tcttttagtcc tcaagctctt acctggcaga 2340
gactgtccca acaccgtcg ggtgggggtgg gcgccggggg aagaaggcgc agcaagaaag 2400
aagccccctg gcccctcactt tccctccctg gacccccctt cttcgacccc atcacacacgc 2460
cgcttgagcc ttggagmcag tggatttccg agctggaa ccccccggcgt ctgtcccggt 2520
gtccccccgca gcctcacccn cgtgtcgccc cagccccccgc gagttcggtt cccgggggtt 2580
ccgggggtggc aggggggtcc catgcccgcct gcgaggccctt ggctcgccccc gctcccgaa 2640
cctgcacttc aggggtcttg gtcccgccccc cccagcaggaa gcaaaacaag agcacgcgc 2700
cctgcggccgc cgccccccccc ctgtgtggcc gccaatcgcc cgctcgccggc ggggtcgccg 2760
gctgtggaaac cagagccggaa gccggatccc agccggagcc caagcgcgc ggcaccccg 2820
cgcaagcggtt gacccggggg ccagcgcgc ctcggccccc cagctcaagc ctcgtccccg 2880
ccggccggccgc cgcacgcgc cggccggccccc cccggggcat ggc 2923