Chapter 3: Random Vectors and Matrix Algebra

CZ

Fall, 2014

Definitions

•
$$\mathbf{y} = (y_1, \dots, y_n)^T$$
: $n \times 1$

- $E(y_i) = \mu_i$
- $Var(y_i) = \sigma_{ii} = \sigma_i^2$
- $Cov(y_i, y_j) = \sigma_{ij}$
- $E(y) = (E(y_1), ..., E(y_n))^T = (\mu_1, ..., \mu_n)^T : n \times 1$

Definitions

$$Var(\mathbf{y}) = \begin{pmatrix} Var(y_1) & Cov(y_1, y_2) & \cdots & Cov(y_1, y_n) \\ Cov(y_2, y_1) & Var(y_2) & \cdots & Cov(y_2, y_n) \\ \vdots & \vdots & \ddots & \vdots \\ Cov(y_n, y_1) & Cov(y_n, y_2) & \cdots & Var(y_n) \end{pmatrix}$$

$$Var(\mathbf{y}) = (\sigma_{ij})_{n \times n}$$

$$= E[(\mathbf{y} - E(\mathbf{y}))(\mathbf{y} - E(\mathbf{y}))^{T}]$$

$$= E[(y_i - \mu_i)(y_j - \mu_j)]_{n \times n}$$

 y_i independent of $y_j \Rightarrow Cov(y_i, y_j) = 0$

Basic Properties

$$\mathbf{A} = (a_{ij})_{m \times n}, \ \mathbf{b} = (b_1, \dots, b_m)^T, \ \mathbf{c} = (c_1, \dots, c_n)^T$$

$$i \ E(\mathbf{A}_{m \times n} \mathbf{y}_{n \times 1} + \mathbf{b}) = \mathbf{A}E(\mathbf{y}) + \mathbf{b}$$

$$ii \ Var(\mathbf{y}_{n \times 1} + \mathbf{c}) = Var(\mathbf{y})$$

$$iii \ Var(\mathbf{A}_{m \times n} \mathbf{y}_{n \times 1}) = \left(\mathbf{A}Var(\mathbf{y})\mathbf{A}^T\right)_{? \times ?}$$

$$iv \ Var(\mathbf{A}_{m \times n} \mathbf{y}_{n \times 1} + \mathbf{b}) = ?$$

Derivatives

i
$$f = f(\mathbf{y}) = f(y_1, \dots, y_n)$$

$$\frac{d}{d\mathbf{y}} = \left(\frac{d}{dy_1}f, \dots, \frac{d}{dy_n}f\right)^T$$

- ii $f = \mathbf{c}^T \mathbf{y} = \sum c_i y_i$ then $\frac{d}{d\mathbf{y}} f = \mathbf{c}$ $\mathbf{f} = \mathbf{A}\mathbf{y}$ then $\frac{d\mathbf{f}}{d\mathbf{y}} = \mathbf{A}^T$
- iii $f = \mathbf{y}^T \mathbf{A} \mathbf{y}$, where $\mathbf{A} = (a_{ij})_{m \times m}$ and $a_{ij} = a_{ji}$ $\frac{df}{d\mathbf{y}} = 2\mathbf{A} \mathbf{y}$ Verify (ii) and (iii).

- i Trace: $tr(\mathbf{A}_{m \times m}) = \sum a_{ii}$ $tr(\mathbf{B}_{m \times n} \mathbf{C}_{n \times m}) = tr(\mathbf{C}_{n \times m} \mathbf{B}_{m \times n})$
- ii Rank of a Matrix: rank(A) = # of linearly independent columns/rows
- iii Vectors $\mathbf{y}_1, \dots, \mathbf{y}_m$ are **linearly independent** if and only if $c_1 \mathbf{y}_1 + \dots + c_m \mathbf{y}_m = \mathbf{0} \Rightarrow c_1 = \dots = c_m = 0$
- iv Orthogonal Vectors and Matrices
 - ▶ Two vectors x and y are orthogonal if $x^Ty = 0$
 - $A_{m \times m}$ is an orthogonal matrix if $A^T A = A A^T = I$ and $A^T = A^{-1}$

v Eigenvalues & Eigenvectors of a square matrix

A non-zero vector $\mathbf{x}_{m\times 1}$ is called an eigenvector of $\mathbf{A}_{m\times m}$ if there exists a real number λ such that $\mathbf{A}\mathbf{x}=\lambda\mathbf{x}$, and we call λ the eigenvalue (with respect to \mathbf{x})

Note: If x is an eigenvector of A, so is cx for any real number $c \neq 0$

vi Decomposition of a symmetric matrix

 $\mathbf{A}_{m \times m}$ is symmetric if $\mathbf{A}^T = \mathbf{A}$

If $\mathbf{A}_{m \times m}$ is symmetric and real, then all its eigenvalues $\lambda_1, \dots, \lambda_m$ are real, and there exits an orthogonal matrix \mathbf{P} such that $\mathbf{A} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^T$, where $\mathbf{\Lambda}$ is diagonal with eigenvalues of \mathbf{A} on the diagonal

$$\mathbf{\Lambda} = \left(\begin{array}{ccc} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \end{array} \right)$$

 $\mathbf{P} = \begin{bmatrix} \mathbf{x}_1, \dots, \mathbf{x}_m \end{bmatrix}$, where \mathbf{x}_i is the eigenvalue corresponding to λ_i ; $i = 1, \dots, m$.

Note: For a symmetric matrix A, if x_1 corresponds to λ_1 , x_2 corresponds to λ_2 , and $\lambda_1 \neq \lambda_2$, then x_1 and x_2 are orthogonal

vii Idempotent Matrix

 $\mathbf{A}_{m \times m}$ is idempotent if $\mathbf{A}^2 = \mathbf{A}$

Note: If **A** is idempotent, then all its eigenvalues are either 1 or 0

Multivariate Normal Distributions

Why normal? Central limit theorem + nice properties.

The random vector $\mathbf{y} = (y_1, \dots, y_n)^T$ follows a multivariate normal distribution with pdf

$$f(\mathbf{y}) = \left(\frac{1}{2\pi}\right)^{n/2} |\Sigma|^{-1/2} \exp\left\{-\frac{1}{2}(\mathbf{y} - \boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{y} - \boldsymbol{\mu})\right\},\,$$

where $\mu = E(y)_{n \times 1}$ and $\Sigma = Var(y) = (\sigma_{ij})_{n \times n}$.

Multivariate Normal Distributions

- i We also write $\mathbf{y} \sim MVN(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.
- ii Marginal normality: $y_i \sim N(\mu_i, \sigma_{ii})$.
- iii y_1, \ldots, y_n are independent if and only if Σ is diagonal.
- iv If $\mathbf{y} \sim MVN(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $\mathbf{z}_{m \times 1} = \mathbf{A}_{m \times n} \mathbf{y}_{n \times 1}$, then $\mathbf{z} \sim MVN(\mathbf{A}\boldsymbol{\mu}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^T)$.
- v If $\mathbf{y} \sim MVN(\mathbf{0}, \sigma^2 \mathbf{I}_{n \times n})$, then $\frac{1}{\sigma^2} \mathbf{y}^T \mathbf{y} \sim \chi^2_{(n)}$.
- vi If $\mathbf{y} \sim MVN(\mu, \Sigma)$, then $\mathbf{A}\mathbf{y}$ and $\mathbf{B}\mathbf{y}$ are independent if and only if $\mathbf{A}\Sigma\mathbf{B}^T = \mathbf{0}$.