Géométrie différentielle et théorie de jauge, 14/01/2020

1. In $\mathbb{R}^2 \setminus \{0\}$, express the vector fields $\frac{\partial}{\partial r}$ and $\frac{\partial}{\partial \theta}$ in terms of $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$. What is $\left[\frac{\partial}{\partial r}, \frac{\partial}{\partial \theta}\right]$?

2. Observe that in local coordinates $[X,Y](x)=d_xY(X(x))-d_xX(Y(x))$. Is there an intrinsic operation $X\cdot Y$ on vector fields given by the formula in local coordinates $X\cdot Y=dY(X)$, that is $(X\cdot Y)^j=X^i\frac{\partial Y^j}{\partial x^i}$?

3. Consider the map $X: S^3 \to \mathbb{R}^4$ defined by $X(x^0, x^1, x^2, x^3) = (-x^1, x^0, -x^3, x^2)$. Prove that X is actually a vector field on S^3 . Prove that its trajectories are the fibers of the Hopf fibration $S^3 \to \mathbb{C}P^1$.

4. Let $v \in \mathbb{R}^n$, and define the **interior product** by $v, i_v : \Lambda^p(\mathbb{R}^n)^* \longrightarrow \Lambda^{p-1}(\mathbb{R}^n)^*$, by the formula

$$(i_{\upsilon}\alpha)(X_1,\ldots,X_{p-1})=\alpha(\upsilon,X_1,\ldots,X_{p-1}).$$

Prove that

$$i_{\upsilon}(\alpha \wedge \beta) = (i_{\upsilon}\alpha) \wedge \beta + (-1)^{|\alpha|}\alpha \wedge i_{\upsilon}\beta,$$

and, if $\alpha_1, \ldots, \alpha_p$ are 1-forms,

$$i_{\upsilon}(\alpha_1 \wedge \cdots \wedge \alpha_p) = \sum_{1}^{p} (-1)^{i-1} \alpha_i(\upsilon) \alpha_1 \wedge \cdots \wedge \widehat{\alpha_i} \wedge \cdots \wedge \alpha_p.$$

Calculate the volume form $i_{\vec{n}}(dx^1 \wedge \cdots \wedge dx^n)$ of $S^{n-1} \subset \mathbb{R}^n$.

5. Calculate the volume form of S^2 in angular coordinates (ϕ, θ) , where ϕ is the angle with the vertical axis, and θ the angle in the horizontal plane. Calculate the area of S^2 .

6. Use Stokes formula and the inequality $\int_0^L x^2(s)ds \le \frac{L^2}{(2\pi)^2} \int_0^L \dot{x}^2(s)ds$ for any *L*-periodic function such that $\int_0^L x(s)ds = 0$ (this inequality follows from decomposition in Fourier series), to prove the isoperimetric inequality for a smooth domain $D \subset \mathbb{R}^2$:

$$\operatorname{area}(D) \le \frac{1}{2\pi} \operatorname{length}(\partial D)^2.$$

7. Show that the projective space $\mathbb{R}P^n$ is orientable if and only if n is even (use the projection $p: S^n \to \mathbb{R}P^n$ and use $\tau^*p^*\omega = p^*\omega$, where τ is the antipodal map of S^n). Show that the Möbius band $(S^1 \times \mathbb{R})/\{(z,x) \mapsto (-z,-x)\}$ is not orientable.

8. Let X be a vector field generating the flow of diffeomorphism $(\phi_t)_{t \in \mathbb{R}}$, defined by $\phi_0(x) = x$ and $\frac{d}{dt}\phi_t(x) = X(\phi_t(x))$. For a p-form α define the p-form $\mathcal{L}_X \alpha = \frac{d}{dt}\Big|_{t=0} \phi_t^* \alpha$. Prove that $\mathcal{L}_X \circ d = d \circ \mathcal{L}_X$, $\mathcal{L}_X(\alpha \wedge \beta) = (\mathcal{L}_X \alpha) \wedge \beta + \alpha \wedge \mathcal{L}_X \beta$. Deduce the **Cartan formula**

$$\mathscr{L}_X \alpha = i_X d\alpha + d(i_X \alpha).$$

9. Let M^n be an oriented compact manifold with boundary ∂M . Prove that there is no retraction of M on its boundary, that is no smooth map $r:M\to \partial M$ such that r(x)=x if $x\in \partial M$. (Apply Stokes theorem to $r^*\omega$, where ω is a (n-1)-form on ∂M of nonzero integral).

10. Let $p: M \to N$ be a smooth submersion with connected fibers. A tangent vector $v \in T_x M$ is vertical if $d_x p(v) = 0$. Let α be a p-form on M. Prove that there exists a p-form β on N such that $\alpha = p^*\beta$ if and only if for any vertical vector v one has $i_v \alpha = 0$ and $i_v d\alpha = 0$. (Begin by the case of the submersion $(x^1, \ldots, x^n) \mapsto (x^1, \ldots, x^k)$).