Алгоритм Прима

Алгоритм Прима (англ. Prim's algorithm) — алгоритм поиска минимального остовного дерева (англ. $minimum\ spanning\ tree,\ MST$) во взвешенном неориентированном связном графе.

Содержание

- 1 Идея
- 2 Реализация
- 3 Пример
- 4 Корректность
- 5 Оценка производительности
- 6 См. также
- 7 Источники информации

Идея

Данный алгоритм очень похож на алгоритм Дейкстры. Будем последовательно строить поддерево F ответа в графе G, поддерживая приоритетную очередь Q из вершин $G\setminus F$, в которой ключом для вершины V является $\min_{u\in V(F),uv\in E(G)}w(uv)$ — вес минимального ребра из вершин F в вершины

 $G\setminus F$. Также для каждой вершины в очереди будем хранить p(v) — вершину u, на которой достигается минимум в определении ключа. Дерево F поддерживается неявно, и его ребра — это пары (v,p(v)), где $v\in G\setminus \{r\}\setminus Q$, а r — корень F. Изначально F пусто и значения ключей у всех вершин равны $+\infty$. Выберём произвольную вершину r и присвоим её ключу значение 0. На каждом шаге будем извлекать минимальную вершину v из приоритетной очереди и релаксировать все ребра vu, такие что $u\in Q$, выполняя при этом операцию decreaseKey над очередью и обновление p(v). Ребро (v,p(v)) при этом добавляется к ответу.

Реализация

key[u] = w(v, u)Q. decreaseKey(u, key[u])

Ребра дерева восстанавливаются из его неявного вида после выполнения алгоритма.

Чтобы упростить операцию decreaseKey можно написать кучу на основе сбалансированного бинарного дерева поиска. Тогда просто удалим вершину и добавим ее обратно уже с новым ключом. Асимптотика таких преобразований $O(\log n)$. Если же делать с бинарной кучей, то вместо операции decreaseKey, будем всегда просто добавлять вершину с новым ключом, если из кучи достали вершину с ключом, значение которого больше чем у нее уже стоит, просто игнорировать. Вершин в куче будет не больше n^2 , следовательно, операция extractMin будет выполняться за $O(\log n^2)$, что равно $O(\log n)$. Максимальное количество вершин, которое мы сможем достать, равняется количеству ребер, то есть m, поэтому общая асимптотика составит $O(m \log n)$, что хорошо только на разреженных графах.

Пример

Рассмотрим работу алгоритма на примере графа. Пусть произвольно выбранная вершина — это вершина а.

Изображение	Множество вершин	Описание
a 1 e 3 4 6 7 b 5 c 2 d	abcde 0∞∞∞∞	Извлечём из множества вершину a , так как её приоритет минимален. Рассмотрим смежные с ней вершины b , c , и e . Обновим их приоритеты, как веса соответствующих рёбер ab , ac и ae , которые будут добавлены в ответ.
a 1 e	a b c d e 0 3 4 ∞ 1	Теперь минимальный приоритет у вершины e . Извлечём её и рассмотрим смежные с ней вершины a , c , и d . Изменим приоритет только у вершины d , так как приоритеты вершин a и c меньше, чем веса у соответствующих рёбер ea и ec , и установим приоритет вершины d равный весу ребра ed , которое будет добавлено в ответ.
a 1 e 7 b 5 c 2 d	a b c d e 0 3 4 7 1	После извлечения вершины b ничего не изменится, так как приоритеты вершин a и c меньше, чем веса у соответствующих рёбер ba и bc . Однако, после извлечения следующей вершины — c , будет обновлён приоритет у вершины d на более низкий (равный весу ребра cd) и в ответе ребро ed будет заменено на cd .
a 1 e	a b c d e 0 3 4 2 1	Далее будет рассмотрена следующая вершина — d , но ничего не изменится, так как приоритеты вершин e и c меньше, чем веса у соответствующих рёбер de и dc . После этого алгоритм завершит работу, так как в заданном множестве не останется вершин, которые не были бы рассмотрены

Корректность

По поддерживаемым инвариантам после извлечения вершины v ($v \neq r$) из Q ребро (v, p(v)) является ребром минимального веса, пересекающим разрез (F, Q). Значит, по лемме о безопасном ребре, оно безопасно. Алгоритм построения MST, добавляющий безопасные ребра, причём делающий это ровно |V|-1 раз, корректен.

Оценка производительности

Производительность алгоритма Прима зависит от выбранной реализации приоритетной очереди, как и в алгоритме Дейкстры. Извлечение минимума выполняется V раз, релаксация — O(E) раз.

Структура данных для приоритетной очереди	Асимптотика времени работы
Наивная реализация	$O(V^2 + E)$
Двоичная куча	$O(E \log V)$
Фибоначчиева куча	$O(V\log V + E)$

См. также

- Алгоритм Краскала
- Алгоритм Борувки

Источники информации

- Томас X. Кормен, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн Алгоритмы: построение и анализ, 2-е издание. Пер. с англ. М.:Издательский дом "Вильямс", 2010. с.653 656.— ISBN 978-5-8459-0857-5 (рус.)
- Википедия Алгоритм Прима (http://ru.wikipedia.org/wiki/%D0%90%D0%BB%D0%B3%D0%B E%D1%80%D0%B8%D1%82%D0%BC_%D0%9F%D1%80%D0%B8%D0%BC%D0%B0)
- Wikipedia Prim's algorithm (http://en.wikipedia.org/wiki/Prim%27s_algorithm)
- MAXimal :: algo :: Минимальное остовное дерево. Алгоритм Прима (http://e-maxx.ru/algo/mst_prim)

Источник — «http://neerc.ifmo.ru/wiki/index.php?title=Алгоритм_Прима&oldid=66031»

■ Эта страница последний раз была отредактирована 15 июня 2018 в 21:14.