Math 104 Spring 2016

Assignment #6

Nikhil Unni

11.1 Let $a_n = 3 + 2(-1)^n$ for $n \in \mathbb{N}$.

(a) List the first eight terms of the sequence (a_n) .

$$a_1 = 1, a_2 = 5, a_3 = 1, a_4 = 5, a_5 = 1, a_6 = 5, a_7 = 1, a_8 = 5$$

(b) Give a subsequence that is constant [takes a single value]. Specify the selection function σ .

The selection function $\sigma(k) = 2k$ will be the subsequence of only even-indexed terms, so that $t(\sigma(n)) = 5$, for all $n \in \mathbb{N}$.

11.2 Consider the sequences defined as follows:

$$a_n = (-1)^n, b_n = \frac{1}{n}, c_n = n^2, d_n = \frac{6n+4}{7n-3}$$

(a) For each sequence, give an example of a monotone subsequence.

For (a_n) , with the selection function $\sigma(k) = 2k$, we get a constant sequence of 1, which is monotonic, since $1 \ge 1$.

For (b_n) , the trivial subsequence, $\sigma(k) = k$ is monotonic, since each term is decreasing.

For (c_n) , is monotonic as well, the trivial subsequence is monotonic. For (d_n) , like $\frac{1}{n}$, this sequence is monotonically decreasing, so we can, again, select the original sequence as the subsequence.

(b) For each sequence, give its set of subsequential limits.

For (a_n) , the only limits it can possibly have are 1 and -1, and both are possible, if you just select even or odd indeces. So $\{-1,1\}$.

For (b_n) , since the limit of the entire sequence is 0, by Theorem 11.3, all subsequences converge to 0, so the set is just $\{0\}$.

For (c_n) , again, since the limit is $+\infty$, the set is $\{+\infty\}$.

For (d_n) , the limit of the sequence is $\frac{6}{7}$, so the set is $\{\frac{6}{7}\}$.

(c) For each sequence, give its lim sup and lim inf.

For (a_n) , regardless of how large N is, the sup is 1, since the only possible values of $a_{n>N}$ are -1 and 1, with an arbitrarily large N. Similarly, the lim sup is -1.

For (b_n) , by Theorem 10.7, both the $\lim \inf b_n = \lim \sup b_n = \lim b_n = 0$.

Nikhil Unni 2

For (c_n) , by Theorem 10.7, $\lim \inf c_n = \lim \sup c_n = \lim c_n = +\infty$. For (d_n) , by Theorem 10.7, $\lim \inf d_n = \lim \sup d_n = \frac{6}{7}$.

(d) Which of the sequences converges? diverges to $+\infty$? diverges to $-\infty$?

 (a_n) is not convergent, and does not diverge to $+\infty$ or $-\infty$.

 (b_n) is convergent to 0, and thus not divergant to anything.

 (c_n) is not convergant, but is divergant to $+\infty$.

 (d_n) is convergant to $\frac{6}{7}$, and is not divergant to anything.

(e) Which of the sequences is bounded?

 (a_n) is bounded, (b_n) is bounded, (c_n) is unbounded, and (d_n) is bounded.

- 11.5 Let (q_n) be an enumeration of all the rationals in the interval (0,1].
 - (a) Give the set of subsequential limits for (q_n) .

Since there are an infinite amount of rationals between real numbers, by the Denseness of \mathbb{Q} Theorem, the set includes every value between 0 and 1. Even though 0 is not in (q_n) , there are an infinite amount of rationals close to 0, so 0 is a valid limit. Concretely, the set is [0,1].

(b) Give the values of $\lim \sup q_n$ and $\lim \inf q_n$.

$$\limsup q_n = 1$$

$$\lim\inf q_n=0$$

The reasoning being that, if you include enough terms in the subsequence (selected by indices n > N), you'll include rational numbers arbitrarily close to 0 and 1.

11.6 Show every subsequence of a subsequence of a given sequence is itself a subsequence of the given sequence.

Let's define a subsequence t(k) as the composition of the given sequence s_n with some selection function $\sigma(k)$ so that:

$$t(k) = s(\sigma_1(n)), \text{ for } n \in \mathbb{N} \text{ (from Definition 11.1)}.$$

Then, the subsequence of a subsequence would be:

$$u(k) = t(\sigma_2(n)) = s(\sigma_1(\sigma_2(n)))$$

But note that $\sigma_3 = \sigma_1 \circ \sigma_2$ is a valid function as well. Then, the subsequence's subsequence, u(k) is a subsequence of the given sequence s(k) by selection function $\sigma_3 = \sigma_1 \circ \sigma_2$. In other words:

$$u = s \circ \sigma_3(k) = s \circ (\sigma_1 \circ \sigma_2)(k)$$

Nikhil Unni 3

11.9 (a) Show the closed interval [a, b] is a closed set.

If we can find a sequence (s_n) where the set of subsequential limits is [a, b], then we've showed that [a, b] is closed. But we've already found this in 11.5 part (a). Let (q_n) be an enumeration of all the rationals in the interval (a, b]. Then, as we showed in 11.5, the set of subsequential limits is [a, b]. Thus [a, b] is a closed set.

(b) Is there a sequence (s_n) such that (0,1) is its set of subsequential limits?

There cannot possibly be one, since (0,1) is an open set.

- 11.10 Let (s_n) be the sequence of numbers in Fig. 11.2 listed in the indicated order.
 - (a) Find the set S of subsequential limits of (s_n) .

All the values are $\frac{1}{n}$, $n \in \mathbb{N}$. And there are a countably infinite amount of each $\frac{1}{n}$. We can also just select $t_n = \frac{1}{n}$ as a valid subsequence. So the set of subsequential limits is given by:

$$\{\frac{1}{n}: n \in \mathbb{N}\} \cup \{0\}$$

(b) Determine $\limsup s_n$ and $\liminf s_n$.

$$\limsup s_n = 1$$

$$\lim\inf s_n=0$$

This is evident by the same reasoning as 11.5.

11.11 Let S be a bounded set. Prove there is an increasing sequence (s_n) of points in S such that $\lim s_n = \sup S$. Compare Exercise 10.7. **Note:** if $\sup S$ is in S, it's sufficient to define $s_n = \sup S$ for all n.

As shown in the hint, if $\sup S$ is in S, $s_n = \sup S$ is a valid increasing sequence. So, assume $\sup S$ is not in S. But the set is upper bounded by $\sup S$, so there must be an infinite number of points less than $\sup S$.

So let s_1 be some arbitrary element in S. And let every following s_k be some element larger than all $s_{n < k}$. Since it's the supremum, there has to be an infinite number of points between s_1 and $\sup S$. So just call a countably finite **ordered** subset of them (s_n) .