QUADERNO2 FEDERICO BUSSOLINO S317641

1.

a.L'attributo più selettivo è node-caps;

b.L'altezza massima dell' albero è 7 (maxdepth contando radice-foglia, 6 non contando radice o foglia);

c.partizionamento puro:

node-caps: no

irradiat: no

tumor-size:10-14

→25 casi in cui il tumore non si è ripresentato

Tree

```
node-caps = 'no'
| irradiat = 'no'
| tumor-size = '0-4'
| | menopause = 'ge40': 'no-recurrence-events' {'recurrence-events'=0, 'no-recurrence-events'=4}
| | menopause = 'premeno'
| | | age = '30-39': 'recurrence-events' {'recurrence-events'=1, 'no-recurrence-events'=1}
| | age = '40-49': 'no-recurrence-events' {'recurrence-events'=0, 'no-recurrence-events'=2}
| tumor-size = '10-14': 'no-recurrence-events' {'recurrence-events'=0, 'no-recurrence-events'=25}
```

2.

Osservazioni:

a)Maxilmal-depth può essere portato fino a 7 con min-gain 0.01 senza modificare l'albero

b)con mingain=0.001 ottengo il massimo numero di ripartizioni tenendo invariato 2 come minimo numero di attributi per foglia, diminuendo ulteriormente mingain gli attributi non vengono ulteriormente suddivisi

e)Mingain=0.01 Maximal-depth=5 → ottengo un albero in cui vi sono ancora partizioni pure, anche se sono di meno, vi sono più attributi per foglia → casi + generali (si può settare il numero di attributi per foglia, ragionevolmente almeno 2 per evitare che un caso specifico di 1 tupla influenzi le decisioni su tutte le tuple aventi gli stessi valori di attributi → rischio overfitting da verificare in fase di test)

(riporto rappresentazione testuale perché più comprensibile)

a)Mingain=0.01, maxdepth=7 →albero uguale a maxdepth=10

b)Mingain=0.001, maxdepth=10 → la foglia a profondità max è 7(maxdepth 8)

```
tumor-size = '30-34'
| deg-malig = '1'
| deg-malig = '1'
| breast = 'left': 'no-recurrence-events' {'recurrence-events'=0, 'no-recurrence-events'=6}
| breast = 'right'
| menopause = 'ge40': 'no-recurrence-events' {'recurrence-events'=0, 'no-recurrence-events'=4}
| menopause = 'ge40': 'recurrence-events' {'recurrence-events'=1, 'no-recurrence-events'=1}
| deg-malig = '2'
| menopause = 'gremeno': 'recurrence-events' {'recurrence-events'=0, 'no-recurrence-events'=2}
| menopause = 'gremeno'
| menopause = 'gremeno': 'recurrence-events' {'recurrence-events'=2, 'no-recurrence-events'=2}
| breast-quad = 'left_up': 'recurrence-events' {'recurrence-events'=2, 'no-recurrence-events'=2}
| deg-malig = '3'
| inv-nodes = '0-2'
| breast = 'left'
| breast = 'left'
| menopause = 'ge40': 'recurrence-events' {'recurrence-events'=1, 'no-recurrence-events'=1}
| menopause = 'ge40': 'recurrence-events' {'recurrence-events'=1, 'no-recurrence-events'=1}
| menopause = 'gremeno': 'no-recurrence-events' {'recurrence-events'=1, 'no-recurrence-events'=1}
```

c)Mingain=0.001, maxdepth=5 → la parte di albero precedente ha meno nodi (3)

```
| content of the cont
```

d)Mingain=0.05, maxdepth=10 →tutto l'albero è rappresentabile in un immagine (pochi split)

e)Mingain=0.01, maxdepth=5 → buon albero 7 nodi foglia con 2 soli attributi su 35 foglie

```
node-caps = 'no'
| frradist 'no'
| frradist 'no'
| tradist 'no'
|
```

3.

a)

accuracy: 66.35% +/- 4.40% (micro average: 66.35%)

	true 'recurrence-events'	true 'no-recurrence-events'	class precision		
pred. 'recurrence-events'	135	193	41.16%		
pred. 'no-recurrence-events'	161	563	77.76%		
class recall	45.61%	74.47%			

b)

accuracy: 65.78% +/- 4.07% (micro average: 65.78%)							
true 'recurrence-events' true 'no-recurrence-events' class precision							
pred. 'recurrence-events'	136	200	40.48%				
pred. 'no-recurrence-events'	160	556	77.65%				
class recall	45.95%	73.54%					

c)

accuracy: 67.87% +/- 3.95% (micro average: 67.87%)

accuracy. Or.or % 1/2 0.50% (interestive age. Or.or %)			
	true 'recurrence-events'	true 'no-recurrence-events'	class precision
pred. 'recurrence-events'	125	167	42.81%
pred. 'no-recurrence-events'	171	589	77.50%
class recall	42.23%	77.91%	

d)

accuracy: 72.65% +/- 4.06% (micro average: 72.72%)

	true 'recurrence-events'	true 'no-recurrence-events'	class precision
pred. 'recurrence-events'	78	69	53.06%
pred. 'no-recurrence-events'	218	687	75.91%
class recall	26.35%	90.87%	

e)

accuracy: 67.96% +/- 3.92% (micro average: 67.97%)

true 'recurrence-events' true 'no-recurrence-events' class precision				
	true 'recurrence-events'	true 'no-recurrence-events'	class precision	
pred. 'recurrence-events'	125	166	42.96%	
pred. 'no-recurrence-events'	171	590	77.53%	
class recall	42 23%	78 04%		

a) k=2 → considerazioni: se si vuole intervenire in ottica preventiva rispetto al ripresentarsi dei tumori conviene prendere un classificatore con alto recall per recurrence-events

accuracy: 67.22% +/- 4.20% (micro average: 67.21%)	accuracy: 67.22% +/- 4.20% (micro average: 67.21%)		
	true 'recurrence-events'	true 'no-recurrence-events'	class precision
pred. 'recurrence-events'	134	183	42.27%
pred. 'no-recurrence-events'	162	573	77.96%
class recall	45.27%	75.79%	

b) k=5 \rightarrow per non allarmare inutilmente le persone coniene scegliere un classificatore con + accuracy

accuracy: 72.63% +/- 3.76% (micro average: 72.62%)			
	true 'recurrence-events'	true 'no-recurrence-events'	class precision
pred. 'recurrence-events'	112	104	51.85%
pred. 'no-recurrence-events'	184	652	77.99%
class recall	37.84%	86.24%	

c) $k=10 \rightarrow$ accuracy elevata, buon class recall per recurrence-events

accuracy: 75.04% +/- 2.31% (micro average: 75.00%)							
true 'recurrence-events' true 'no-recurrence-events' class precision							
pred. 'recurrence-events'	107	74	59.12%				
pred. 'no-recurrence-events'	189	682	78.30%				
class recall	36.15%	90.21%					

d) k=15 \rightarrow perdita di class recall per recurrence-events

accuracy: 74.39% +/- 2.84% (micro average: 74.43%)				
	true 'no-recurrence-events'	class precision		
pred. 'recurrence-events'	86	59	59.31%	
pred. 'no-recurrence-events'	210	697	76.85%	
class recall	29.05%	92.20%		

e) k=8 → alternativa migliore di k=5: buon compromesso accuracy e class recall recurrence-events

accuracy: 73.55% +/- 3.32% (micro average: 73.48%)				
	true 'recurrence-events'	true 'no-recurrence-events'	class precision	
pred. 'recurrence-events'	113	96	54.07%	
pred. 'no-recurrence-events'	183	660	78.29%	
class recall	38.18%	87.30%		

naïve-bayes ottiene prestazioni migliori: ottimo recall per recurrence-events e buona precisione

accuracy: 73.27% +/- 3.87% (micro average: 73.19%)						
	true 'recurrence-events' true 'no-recurrence-events'					
pred. 'recurrence-events'	143	129	52.57%			
pred. 'no-recurrence-events'	153	627	80.38%			
class recall	48.31%	82.94%				

5. MATRICE DI CORRELAZIONE

Attributes	age	menopa	tumor-s	inv-nod	node-ca	deg-malig	breast	breast	irradiat
age	1	0.241	-0.045	-0.001	0.052	-0.043	0.067	-0.024	-0.011
menopau	0.241	1	0.019	-0.011	0.130	-0.161	0.077	-0.096	-0.075
tumor-size	-0.045	0.019	1	-0.131	0.058	0.133	-0.022	-0.056	-0.022
inv-nodes	-0.001	-0.011	-0.131	1	-0.465	-0.213	0.040	0.063	0.399
node-caps	0.052	0.130	0.058	-0.465	1	0.098	0.024	-0.036	-0.197
deg-malig	-0.043	-0.161	0.133	-0.213	0.098	1	-0.073	0.018	-0.074
breast	0.067	0.077	-0.022	0.040	0.024	-0.073	1	0.175	-0.019
breast-qu	-0.024	-0.096	-0.056	0.063	-0.036	0.018	0.175	1	-0.005
irradiat	-0.011	-0.075	-0.022	0.399	-0.197	-0.074	-0.019	-0.005	1

Gli attributi sono incorrelati, alcuni sono debolmente correlati → si può applicare l'ipotesi naïve

La coppia di attributi maggiormente correlata è: inv-nodes e node-caps