Corso di Linguaggi di Programmazione — Parziale di fine modulo Prova scritta **A** del 19 Dicembre 2014.

Tempo a disposizione: 2 ore e 30 minuti.

1. La seguente espressione

$$\mathcal{I}_{L_1}^{L_0}(\mathcal{C}_{L_0,L_1}^{L_1},\mathcal{I}_{L_1}^{L_0})$$

ha senso? Se si, che cosa calcola?

- 2. Descrivere le regole di semantica operazionale strutturata per l'espressione booleana b_0 and b_1 , secondo la disciplina di valutazione esterna-destra (ED). Mostrare un esempio di una espressione di quel tipo tale che la valutazione ED e quella ES (esterna-sinistra) non sono uguali.
- 3. Si consideri il seguente NFA $M = (\Sigma, Q, \delta, q_0, F)$, dove $\Sigma = \{a\}$, $Q = \{q_0, q_1, q_2, q_3\}$, $F = \{q_3\}$ e la funzione di transizione $\delta : Q \times (\Sigma \cup \{\epsilon\}) \to \mathcal{P}(Q)$ è cosí definita: $\delta(q_0, a) = \{q_1\}$, $\delta(q_0, \epsilon) = \{q_2, q_3\}$, $\delta(q_1, a) = \{q_0\}$, $\delta(q_1, \epsilon) = \{q_1\}$, $\delta(q_2, a) = \{q_1\}$, $\delta(q_2, \epsilon) = \emptyset$, $\delta(q_3, a) = \emptyset$, $\delta(q_3, \epsilon) = \emptyset$.

Si fornisca una rappresentazione grafica di M. Si costruisca il DFA M' associato, secondo la costruzione per sottoinsiemi. Qual è il linguaggio riconosciuto da M'?

- 4. Considerando il DFA M' determinato al punto precedente, si verifichi che M' è minimo; quindi si ricavi da M' la grammatica lineare-destra associata, seguendo la costruzione vista a lezione; infine, si ricavi da quella grammatica l'espressione regolare associata.
- 5. Classificare il linguaggio $L = \{a^n a^n \mid n \geq 0\}$, ovvero dire se L è regolare, oppure libero ma non regolare, oppure non libero, giustificando adeguatamente la risposta.
- 6. Dati due DFA $M_1 = (\Sigma, Q_1, \delta_1, q_{01}, F_1)$ e $M_2 = (\Sigma, Q_2, \delta_2, q_{02}, F_2)$ tali che $Q_1 \cap Q_2 = \emptyset$, sia $M = (\Sigma, Q_1 \times Q_2, \delta, (q_{01}, q_{02}), F_1 \times F_2)$ con $\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$. Dire se M è un DFA. Qual è il linguaggio riconosciuto da M se $L_1 = L[M_1]$ e $L_2 = L[M_2]$?
- 7. Dimostrare che il linguaggio $L=\{a^{n^3}\mid n\geq 0\}$ non è regolare. A quale classe appartiene il linguaggio L^* ?
- 8. Mostrare che $L_1 = \{a^n b^m a^n \mid n, m \ge 1\}$ è libero deterministico, costruendo un opportuno DPDA. Sapendo che anche $L_2 = \{a^n b^n a^m \mid n, m \ge 1\}$ è libero deterministico, è vero che $L_1 \cap L_2$ è un linguaggio libero deterministico?
- 9. Si consideri la seguente grammatica G con simbolo iniziale S:

$$\begin{array}{ccc} S & \rightarrow & A \mathsf{c} B \\ A & \rightarrow & \epsilon \mid \mathsf{a} A \\ B & \rightarrow & \epsilon \mid \mathsf{b} B \mid B \mathsf{c} \end{array}$$

Si calcolino i First e i Follow per tutti i nonterminali. La grammatica G è di classe LL(1)? Si rimuovano le produzioni epsilon per ottenere una grammatica equivalente G' senza produzioni epsilon.

10. Si consideri la grammatica G con simbolo iniziale S:

$$\begin{array}{ccc} S & \rightarrow & A \mathtt{a} A \mathtt{b} \mid B \mathtt{b} B \mathtt{a} \\ A & \rightarrow & \epsilon \\ B & \rightarrow & \epsilon \end{array}$$

- (i) Determinare il linguaggio generato L(G). (ii) Verificare se G sia di classe LL(1). (iii) Mostrare che G non è di classe SLR(1).
- 11. Si consideri la grammatica G con simbolo iniziale S:

$$\begin{array}{ccc} S & \rightarrow & SA \mid A \\ A & \rightarrow & \mathbf{a} \end{array}$$

(i) Eliminare la ricorsione sinistra immediata, per ottenere una grammatica equivalente G'. (ii) Verificare che G' è di classe LL(1). (iii) Costruire la tabella di parsing LL(1). (iv) Mostrare il funzionamento del parser LL(1) sull'input aa.