Gas Law's

Outline

Introduction

Charles' Law

Boyle's Law

Introduction

Gas Law's

There are three gas laws, let start with ideal gas equation.

PV = nRT

- **P** is pressure of gas
- V volume of gas
- **n** is number of moles

T is temperature & R is universal gas constant its value is 8.3145J/mol.

Charles' Law

Introduction to Charles' Law.

Charles' law states that at a constant pressure, the volume of a fixed mass varies directly with the absolute temperature.

V = Const. T

P = constant

- When T increase V increased (T↑, V↑)
- When T reduce V reduced (T↓, V↓)

Experimental setup

- Equipment Required
- 1) Gas Law Apparatus
- I. Base apparatus
- II. air chamber
- **III.**Tube for connection
- 1) container of hot water
- 2) container of ice water
- 3) Thermometer

Verification of Charles law.

- 1)Position base apparatus in horizontal direction.
- 2)Connect tube with base apparatus and then to air chamber.
- 3)Put air chamber into hot water.
- 4) Note down position or height of piston (h) and temperature (T).
- 5)Add cold water or ice if available into hot water to lower its temperature.
- 6) Note new temperature and height of piston.
- 7)Repeat **step 5** until you get 6 to 7 values of (T & h) to make graph.

Verification of Charles law.

- V = Const. T
- we need values for Temperature and their corresponding volume.
- We will note down values of compression or expansion to find V by using formula (3.14 r²h) piston.

Diameter of the piston = 32.5 mm

Serial number	Extension mm	Volume mm³	Temperature κ
1.	18.3	15204	348
2.	16.1	1/3390	340
3.	14.5	12028	333
4.	13	10784	327
5.	11.7	9680	322
6.	9.5	7880	313

Verification of Charles law.

Experimental Results

Theoretical Results

Verification of Boyle's Law

Introduction to Boyle's Law.

•Boyle's law states that the product of the volume of a gas times its pressure is a constant at a fixed temperature, pressure will be inversely related to the volume

V = Const. 1 / P

T = constant

- •When V increase P reduced (P↓, V↑)
- •When V reduce P increased (P↑, V↓)

Apparatus

- Syringe
- Pipe for connection
- Pressure sensor
- Interface
- Computer with data studio

Verification of Boyle's law.

- 1)Setup will be arranged by lab assistant according to figure.
- 2)Open "Data Studio" on computer to which interface is connected.
- 3)Click on create experiment.
- 4) Click on 'start' button on screen, screen will show graph for **P** and **t**.
- 5)As plunger of syringe pushed pressure increased.
- 6)Note value of volume from syringe and pressure from computer screen.
- 7)Repeat **step 5 to 6** until you get 6 to 7 values of (V & P) to make graph.

Results

Experimental

Theoretical

Results

- Graph shown on right is plotted for inverse of Volume.
- There is direct relation between P and 1/V

Assignment

- Why we have placed base apparatus in horizontal position in charle's law experiment?
- Define 3rd gas law "Gay-Lussac's law"?

Dead line: 22-04-2020 Time 2 O'clock

Email: sperveen.msphy17sns@student.nust.edu.pk

Note

(Do not forget to mention in subject section while composing

email)

Group in lab

School & section

Experiment name

