Discrete Mathematics Propositions

H. Turgut Uyar Ayşegül Gençata Yayımlı Emre Harmancı

2001-2013

Licence

©2001-2013 T. Uyar, A. Yayımlı, E. Harmancı

- to Share to copy, distribute and transmit the work
 to Remix to adapt the work

Under the following conditions:

- Attribution You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
- Noncommercial You may not use this work for commercial purposes.
 Share Alike If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one.

Legal code (the full license):

http://creativecommons.org/licenses/by-nc-sa/3.0/

Topics

Propositions

Introduction Compound Propositions Well-Formed Formulas Metalanguage

Propositional Calculus

Introduction Laws of Logic Rules of Inference Proposition

Definition

proposition (or statement):

a declarative sentence that is either true or false

- ► law of the excluded middle:
 - a proposition cannot be partially true or partially false
- ▶ law of contradiction:
 - a proposition cannot be both true and false

Proposition Examples

Example (proposition)

- ► The Moon revolves around the Earth.
- ► Elephants can fly.
- ► 3 + 8 = 11

Example (not a proposition)

- ▶ What time is it?
- ► Ali, throw the ball!
- ► *x* < 43

Proposition Variable

Definition

proposition variable:

- a name that represents the proposition
 - ▶ can take on the values *True* (*T*) or *False* (*F*)

Example

- ▶ p_1 : The Moon revolves around the Earth. (T)
- \triangleright p_2 : Elephants can fly. (F)
- ▶ p_3 : 3 + 8 = 11 (T)

Compound Propositions

- compound propositions are obtained by
 - ▶ negating a proposition, or
 - combining two or more propositions using logical connectives
- primitive propositions can not be decomposed into smaller units
- ► truth table:

a table that lists the truth value of the compound proposition for all possible values of its proposition variables

Negation (NOT)

Example

Table: ¬p

р	$\neg p$
Τ	F
F	T

▶ $\neg p_1$: The Moon does not revolve around the Earth.

 $\neg T$: False

▶ $\neg p_2$: Elephants cannot fly.

 $\neg F$: True

7 / 63

Conjunction (AND)

Table: $p \wedge q$

р	q	$p \wedge q$
Т	T	T
Т	F	F
F	T	F
F	F	F

Example

• $p_1 \wedge p_2$: The Moon revolves around the Earth and elephants can fly. $T \wedge F$: False

Disjunction (OR)

Table: $p \lor q$

р	q	$p \lor q$
T	T	T
T	F	T
F	T	T
F	F	F

Example

• $p_1 \lor p_2$: The Moon revolves around the Earth or elephants can fly. $T \lor F$: True

10 / 63

Exclusive Disjunction (XOR)

Table: $p \vee q$

р	q	$p \vee q$
T	T	F
T	F	T
F	T	T
F	F	F

Example

▶ $p_1 \veebar p_2$: Either the Moon revolves around the Earth or elephants can fly. $T \veebar F$: *True*

Implication (IF)

Table: $p \rightarrow q$

	2	q	$p \rightarrow q$
	Γ	Τ	T
	Γ	F	F
I	=	T	T
	=	F	T

p: hypothesis

q: conclusion

► read:

ightharpoonup if p then q

p is sufficient for qq is necessary for p

 $ightharpoonup \neg p \lor q$

Implication Examples

Example

- ▶ p_4 : 3 < 8, p_5 : 3 < 14, p_6 : 3 < 2
- ightharpoonup p_7 : The Sun revolves around the Earth.
- ▶ $p_4 \rightarrow p_5$: If 3 is less than 8, then 3 is less than 14.

 $T \rightarrow T$: True

p₄ → p₆: If 3 is less than 8, then 3 is less than 2.

 $T \rightarrow F$: False

▶ $p_2 \rightarrow p_1$: If elephants can fly then the Moon revolves around the Earth.

 $F \rightarrow T$: True

▶ $p_2 \rightarrow p_7$: If elephants can fly then the Sun revolves around the Earth.

 $F \rightarrow F$: True

Implication Examples

Example

▶ "If I weigh over 70 kg, then I will exercise."

Table: $p \rightarrow q$

▶ p: I weigh over 70 kg.

▶ q: I exercise.

▶ when is this claim false?

р	q	$p \rightarrow q$
Т	T	T
T	F	F
F	T	T
F	F	T

14 / 63

Biconditional (IFF)

Table: $p \leftrightarrow q$

р	q	$p \leftrightarrow q$
Т	T	T
Т	F	F
F	T	F
F	F	T

- read:
 - ightharpoonup p if and only if q
 - \triangleright p is necessary and sufficient for q
- $\blacktriangleright (p \to q) \land (q \to p)$
- $ightharpoonup \neg (p \vee q)$

Example

Example

- ► The parent tells the child: "If you do your homework, you can play computer games."
- ▶ s: The child does her homework.
- ▶ t: The child plays computer games.
- ▶ what does the parent mean?
- \triangleright $s \rightarrow t$
- $ightharpoonup s\leftrightarrow t$

16 / 63

Well-Formed Formula

syntax

- ▶ which rules will be used to form compound propositions?
- ► formula that obeys these rules: well-formed formula (WFF)

semantics

- interpretation: calculating the value of a compound proposition by assigning values to its primitive propositions
- ▶ truth table: all interpretations of a proposition

Formula Examples

Example (not well-formed)

- ▶ ∨p
- ▶ p ∧ ¬
- ▶ p¬ ∧ q

18 /

17/63

Operator Precedence

- 1. ¬
- 2. ^
- 3 \
- .
- 5 ←
- ▶ parentheses are used to change the order of calculation

Precedence Examples

Example

- ▶ s: Phyllis goes out for a walk.
- ▶ *t*: The Moon is out.
- ▶ *u*: It is snowing.
- ▶ what do the following WFFs mean?
- ▶ $t \land \neg u \rightarrow s$
- $t \to (\neg u \to s)$
- $\neg (s \leftrightarrow (u \lor t))$
- $ightharpoonup \neg s \leftrightarrow u \lor t$

19 / 63

20 / 63

Formula Attributes

1. tautology: true for all interpretations

2. contradiction: false for all interpretations

 $3.\ \textit{valid}$: true for some interpretations

Tautology Example

Example

Table: $p \land (p \rightarrow q) \rightarrow q$

р	q	$p \rightarrow q$		$B \rightarrow q$
		(A)	(B)	
T	Т	T	T	T
T	F	F	F	T
F	T	T	F	T
F	F	T	F	T

Contradiction Example

Example

Table: $p \wedge (\neg p \wedge q)$

р	q	$\neg p$	$\neg p \land q$	$p \wedge A$
			(A)	
T	T	F	F	F
T	F	F	F	F
F	T	T	T	F
F	F	T	F	F

Metalanguage

Definition

target language:

the language being worked on $% \left\{ 1,2,...,n\right\}$

Definition

metalanguage:

the language used when talking about the properties of the target language

validity, contradiction and tautology are defined in the metalanguage

23 / 63

Metalanguage Examples

Example

- ▶ a native Turkish speaker learning English

 - target language: Englishmetalanguage: Turkish

Example

- ► a student learning programming
 - ▶ target language: C, Python, Java, . . .
 - ► metalanguage: English, Turkish, . . .

Metalogic

- $\triangleright P_1, P_2, \ldots, P_n \vdash Q$ There is a proof which infers the conclusion Qfrom the assumptions P_1, P_2, \dots, P_n .
- $\triangleright P_1, P_2, \ldots, P_n \vDash Q$ Q must be true if P_1, P_2, \ldots, P_n are all true.

Formal Systems

Definition

consistent: for all well-formed formulas P and Qif $P \vdash Q$ then $P \vDash Q$

▶ each provable proposition is actually true

 $\overline{\text{complete}}$: for all well-formed formulas P and Qif $P \models Q$ then $P \vdash Q$

▶ every true proposition can be proven

Approaches in Propositional Calculus

1. semantic approach: truth tables

2. syntactic approach: rules of inference

using logical implications 3. axiomatic approach: Boolean algebra

▶ too complicated when the number of primitive statements grow

▶ obtaining new propositions from existing propositions

substituting equivalent formulas in equations

Gödel's Theorem

Propositional logic is consistent and complete.

Gödel's Theorem

► Any logical system that is powerful enough to express ordinary arithmetic must be either inconsistent or incomplete.

Truth Table Example

- ightharpoonup p
 ightharpoonup q
 - contrapositive: $\neg q \rightarrow \neg p$
 - ► converse: $q \rightarrow p$ ► inverse: $\neg p \rightarrow \neg q$

Example

р	q	$p \rightarrow q$	$\neg q ightarrow eg p$	$q \rightarrow p$	$\neg p \rightarrow \neg q$
T	T	T	T	T	T
T	F	F	F	T	T
F	T	T	T	F	F
F	F	T	T	T	T

Logical Equivalence

Definition

if $P \leftrightarrow Q$ is a tautology, then P and Q are logically equivalent: $P \Leftrightarrow Q$

Logical Equivalence Example

Example

$$\blacktriangleright \neg p \Leftrightarrow p \to F$$

Table: $\neg p \leftrightarrow p \rightarrow F$

p	$\neg p$	$p \rightarrow F$	$\neg p \leftrightarrow A$
		(A)	
T	F	F	T
F	T	T	T

31 / 63

Logical Equivalence Example

Example

$$\blacktriangleright p \rightarrow q \Leftrightarrow \neg p \lor q$$

Table: $(p \rightarrow q) \leftrightarrow (\neg p \lor q)$

р	q	$p \rightarrow q$	$\neg p$	$\neg p \lor q$	$A \leftrightarrow B$
		(A)		(B)	
T	Т	T	F	T	T
T	F	F	F	F	T
F	T	T	T	T	T
F	F	T	T	T	T

Laws of Logic

Double Negation (DN)

 $\neg(\neg p) \Leftrightarrow p$

Commutativity (Co)

 $p \land q \Leftrightarrow q \land p$ $p \lor q \Leftrightarrow q \lor p$

Associativity (As)

 $(p \land q) \land r \Leftrightarrow p \land (q \land r) \quad (p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$

Idempotence (Ip)

 $p \land p \Leftrightarrow p$ $p \lor p \Leftrightarrow p$

Inverse (In)

 $p \land \neg p \Leftrightarrow F$ $p \lor \neg p \Leftrightarrow T$

33 / 63

Laws of Logic

Identity (Id)

 $p \land T \Leftrightarrow p$ $p \lor F \Leftrightarrow p$

Domination (Do)

 $p \land F \Leftrightarrow F$ $p \lor T \Leftrightarrow T$

Distributivity (Di)

 $p \wedge (q \vee r) \Leftrightarrow (p \wedge q) \vee (p \wedge r) \quad p \vee (q \wedge r) \Leftrightarrow (p \vee q) \wedge (p \vee r)$

Absorption (Ab)

 $p \land (p \lor q) \Leftrightarrow p$ $p \lor (p \land q) \Leftrightarrow p$

DeMorgan's Laws (DM)

 $\neg(p \land q) \Leftrightarrow \neg p \lor \neg q \qquad \neg(p \lor q) \Leftrightarrow \neg p \land \neg q$

Equivalence Example

Example

 $\begin{array}{ccc} p \rightarrow q \\ \Leftrightarrow & \neg p \lor q \\ \Leftrightarrow & q \lor \neg p & Co \\ \Leftrightarrow & \neg \neg q \lor \neg p & DN \\ \Leftrightarrow & \neg q \rightarrow \neg p \end{array}$

36 /

Equivalence Example

Example

Duality

Definition

If s contains no logical connectives other than \land and \lor , then the dual of s, denoted s^d , is the statement obtained from s by replacing each occurrence of \land by \lor , \lor by \land , T by F, and F by T.

Example (dual proposition)

 $s: (p \land \neg q) \lor (r \land T)$ $s^d: (p \lor \neg q) \land (r \lor F)$

38 / 63

Principle of Duality

principle of duality

Let s and t be statements that contain no logical connectives other than \wedge and $\vee.$

If $s \Leftrightarrow t$ then $s^d \Leftrightarrow t^d$.

Rules of Inference

Definition

if $P \to Q$ is a tautology, then P logically implies Q: $P \Rightarrow Q$

40 / 63

Logical Implication Example

Example

Table:
$$p \land (p \rightarrow q) \rightarrow q$$

р	q	$p \rightarrow q$	$p \wedge A$	$B \rightarrow q$
		(A)	(B)	
T	T	T	T	T
T	F	F	F	T
F	T	T	F	T
F	F	T	F	T

Inference

 establishing the validity of an argument, starting from a set of propositions which are assumed or proven to be true

notation

$$\begin{array}{ccc}
\rho_1 \\
\rho_2 \\
\dots \\
\rho_1 \wedge \rho_2 \wedge \dots \wedge \rho_n \Rightarrow q \\
\hline
\vdots & q
\end{array}$$

41/6

Trivial Rules

Identity (ID)

Contradiction (CTR)

 $\frac{F}{\cdot p}$

Basic Rules

OR Introduction (Orl)

AND Elimination (AndE)

$$\frac{p}{\therefore p \lor c}$$

 $p \wedge q$

AND Introduction (AndI)

$$\frac{p}{q}$$

$$\therefore p \land q$$

43 / 63

Implication Elimination

Modus Ponens (ImpE)

Modus Tollens (MT)

$$\begin{array}{c}
p \to q \\
\hline
p \\
\hline
\vdots q
\end{array}$$

$$\begin{array}{c}
p \to q \\
\neg q \\
\hline
\vdots \neg p
\end{array}$$

Implication Elimination Example

Example (Modus Ponens)

- ▶ If Ali wins the lottery, he will buy a car.
- ► Ali has won the lottery.
- ► Therefore, Ali will buy a car.

Example (Modus Tollens)

- ▶ If Ali wins the lottery, he will buy a car.
- ► Ali did not buy a car.
- ► Therefore, Ali did not win the lottery.

45 / 63

Fallacies

affirming the conclusion

denying the hypothesis

$$\begin{array}{c}
p \to q \\
q \\
\hline
\vdots p
\end{array}$$

$$\begin{array}{c}
p \to q \\
\neg p \\
\hline
\vdots \neg a
\end{array}$$

$$(p \rightarrow q) \land q \not\Rightarrow p:$$

$$(F \rightarrow T) \land T \rightarrow F$$

$$(p \to q) \land \neg p \not\Rightarrow \neg q: (F \to T) \land T \to F$$

Fallacy Examples

Example (affirming the conclusion)

- ▶ If Ali wins the lottery, he will buy a car.
- ► Ali has bought a car.
- $\,\blacktriangleright\,$ Therefore, Ali has won the lottery.

Example (denying the hypothesis)

- ▶ If Ali wins the lottery, he will buy a car.
- ► Ali has not won the lottery.
- ► Therefore, Ali will not buy a car.

48 / 6

46 / 63

Provisional Assumptions

Implication Introduction (Impl)

$$\frac{p \vdash q}{\therefore \vdash p \to q}$$

- ▶ if it can be shown that q is true assuming p is true, then $p \rightarrow q$ is true $without\ assuming\ p\ is\ true$
- ▶ p is a provisional assumption (PA)
- ► PAs have to be discharged

OR Elimination (OrE)

$$p \lor q$$

$$p \vdash r$$

$$q \vdash r$$

ightharpoonup p and q are PAs

Implication Introduction Example

Example (Modus Tollens)

ID:7

Disjunctive Syllogism

Disjunctive Syllogism (DS)

$$\begin{array}{c}
p \lor q \\
\neg p \\
\hline
\therefore q
\end{array}$$

1. $p \lor q$

ID : 2

4*a*1.

4*a*2. ImpE: 3,4a1

CTR: 4a2

4*b*1.

ID: 4b1 4*b*.

OrE:1,4a,4b5.

Disjunctive Syllogism Example

Example

- ▶ Ali's wallet is either in his pocket or on his desk.
- ► Ali's wallet is not in his pocket.

► Therefore, Ali's wallet is on his desk.

Hypothetical Syllogism

Hypothetical Syllogism (HS)

$$\frac{p \to q}{q \to r}$$
$$\therefore p \to r$$

PA

ImpE:1,2

ImpE:3,4

6. $p \rightarrow r$ Impl: 1, 5

Hypotetical Syllogism Example

Example (Star Trek)

Spock to Lieutenant Decker:

It would be a suicide to attack the enemy ship now. Someone who attempts suicide is not psychologically fit to command the Enterprise.

Therefore, I am obliged to relieve you from duty.

Hypotetical Syllogism Example

Example (Star Trek)

- ▶ p: Decker attacks the enemy ship.
- ▶ q: Decker attempts suicide.
- ightharpoonup r: Decker is not psychologically fit to command the Enterprise.
- ▶ s: Spock relieves Decker from duty.

Hypotetical Syllogism Example

Example

$$\begin{array}{c}
p \\
p \to q \\
q \to r \\
r \to s
\end{array}$$

1.
$$p \rightarrow q$$
 A

2.
$$q \rightarrow r$$
 A

3.
$$p \rightarrow r$$
 $HS: 1, 2$

4.
$$r \rightarrow s$$
 A
5. $p \rightarrow s$ HS: 3, 4

57 / 63

Inference Examples

Example

$$p \rightarrow r$$

$$r \rightarrow s$$

$$x \lor \neg s$$

$$u \lor \neg x$$

 $\neg u$

∴ ¬p

1.
$$u \lor \neg x A$$

6.
$$r \rightarrow s$$
 A

7.
$$\neg r$$
 $MT: 6, 5$

$$\begin{array}{ccc}
 & \neg u & A \\
 & \neg x & DS : 1, 2
\end{array}$$

8.
$$p \rightarrow r$$
 A

4.
$$X \lor \neg S A$$

9.
$$\neg p$$
 $MT: 8, 7$

5.
$$\neg s$$
 DS: 4, 3

Inference Examples

Example

$$\frac{(\neg p \lor \neg q) \to (r \land s)}{r \to x} \\
\frac{\neg x}{\therefore p}$$

7.

6.
$$(\neg p \lor \neg q) \to (r \land s)$$
 A

$$2. \quad \neg x \quad A$$

$$\neg (\neg p \vee \neg q)$$

р

3.
$$\neg r \qquad MT:1,2$$

4.
$$\neg r \lor \neg s$$
 $Orl : 3$
5. $\neg (r \land s)$ $DM : 4$

AndE: 8

Inference Examples

Example

$$p \to (q \lor r)$$

$$s \to \neg r$$

$$q \to \neg p$$

$$p$$

$$s$$

$$\therefore F$$

1.
$$q \rightarrow \neg p$$

3.
$$\neg q$$
 MT : 1, 2

7.
$$p \rightarrow (q \lor r)$$
 A

8.
$$q \lor r$$
 $ImpE : 7, 2$

10.
$$q \wedge \neg q : F \quad Andl : 9, 3$$

Inference Examples

Example

If there is a chance of rain or her red headband is missing, then Lois will not mow her lawn. Whenever the temperature is over $20^{\circ}\mathrm{C}\text{,}$ there is no chance for rain. Today the temperature is 22°C and Lois is wearing her red headband. Therefore, Lois will mow her lawn.

Inference Examples

Example

- ▶ p: There is a chance of rain.
- ▶ q: Lois' red headband is lost.
- ▶ r: Lois mows her lawn.
- ▶ s: The temperature is over 20°C.

Inference Examples

Example

$$(p \lor q) \to \neg r$$

$$s \to \neg p$$

$$s \land \neg q$$

$$\therefore r$$

1.

$$s \land \neg q$$
 A

 2.
 s
 $AndE: 1$

 3.
 $s \rightarrow \neg p$
 A

 4.
 $\neg p$
 $ImpE: 3, 2$

 5.
 $\neg q$
 $AndE: 1$

 6.
 $\neg p \land \neg q$
 $AndI: 4, 5$

7. $\neg (p \lor q)$ *DM*: 6 8. $(p \lor q) \rightarrow \neg r$ *A*

9. ? 7,8

61/6

References

Required Reading: Grimaldi

- ► Chapter 2: Fundamentals of Logic
 - ▶ 2.1. Basic Connectives and Truth Tables
 - ▶ 2.2. Logical Equivalence: The Laws of Logic
 - ▶ 2.3. Logical Implication: Rules of Inference

Supplementary Reading: O'Donnell, Hall, Page

▶ Chapter 6: Propositional Logic