1. Evaluation Metric/Visualization

Weighted F_β-score:

A weighted version of F1-score where β determines the importance of recall relative to precision.

$$F_{\beta} = (1 + \beta^2) \frac{Precision \cdot Recall}{\beta^2 \cdot Precision + Recall}$$

- If recall is more important, use $\beta > 1$ (e.g., $\beta = 2$).
- If precision is more important, user β < 1 (e.g., β = 0.5).

Why using Weighted F β -score: Recall is key for retrieval models.

- 4-star (or higher) ratings are labeled as "interested" and 3-star (or lower) as "not interested." However, some marginal ratings may still be acceptable.
- Ensuring the retrieval model returns enough relevant items makes recall critical.

F1-score:

When it is difficult to determine the best β for Weighted F β -score, standard F1-score can be used by setting thresholds for precision and recall.

Mean Reciprocal Rank (MRR):

 Reciprocal Rank (RR) measures the rank of the fist relevant item in the recommended list:

$$RR = \frac{1}{rank \ of \ the \ first \ relevant \ item}$$

- MRR is the average of reciprocal ranks across all users:

$$MRR = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{rank \ of \ the \ first \ relevant \ item \ for \ user \ i}$$

- Example:
 - User A: Relevant item at rank 3 \rightarrow Reciprocal Rank = $\frac{1}{3}$
 - User B: Relevant item at rank 1 \rightarrow Reciprocal Rank = $\frac{1}{1}$
 - User C: No relevant item → Reciprocal Rank = 0
 - $MRR = \frac{1}{3}(\frac{1}{3} + 1 + 0) = 0.44$

Visualization:

- Precision-Recall curves.
- Bar chart of MRR for different users.

2. Advance Metric

a. Coverage

- **Definition**: Measures the proportion of the catalog (items or users) that the system can recommend:

$$Item\ Coverage = \frac{Number\ of\ unique\ items\ recommended}{Total\ number\ of\ items\ in\ the\ catalog}$$

- **Importance**: High coverage ensures a variety of items are recommended, not just popular ones.

b. Diversity

- Definition: Measures the dissimilarity among items in a single user's recommendation list.
- Use a similarity metric (e.g., cosine similarity) to calculate pairwise distances between items in the list:

$$Diversity = 1 - \frac{\sum_{i \neq j} Similarity(i, j)}{Number\ of\ item\ pairs}$$

- Why It Matters: Balances personalization with exploration.

c. Novelty

- **Definition**: Assesses how unexpected or unique recommendations are. Less popular items contribute more to novelty.
- Example Metric: Inverse Popularity Score:

Novelty =
$$\frac{1}{N} \sum_{i=1}^{N} -\log_2(popularity \ of \ item \ i)$$

d. Serendipity

- **Definition:** Evaluates how surprising and delightful recommendations are beyond relevance.
- Example: Measure the difference between expected recommendations (e.g., predicted by collaborative filtering) and actual recommendations.

e. User Effort

- Definition: Measures the effort required by users to find relevant items.
- Example Metric: Average position of relevant items in the recommended list.

$$Effort = \frac{\sum_{i=1}^{N} Position \ of \ relevant \ item}{N}$$

f. Fairness

- Definition: Evaluates whether recommendations are equitably distributed among different user groups or item categories.

3. Optimizing Models

a. Improving Item Similarity Metric

- 1. Cosine Similarity: Measure angular similarity (baseline).
- 2. **Jaccard Index**: Focus on overlap of interaction sets, effective for binary interaction data.
- 3. Adjusted Cosine Similarity: Account for user biases.
- 4. Pearson Correlation Coefficient: Linear correlation for numerical ratings.
- 5. Combine Multiple Metrics: Weight each based on performance contribution.

b. Features Engineering

- 1. **Enhanced Weighting Schemes**: Assign higher weights to recent interactions or higher ratings.
- 2. **Incorporate Additional Parameters**: Add user demographics, business categories, or sentiment analysis of reviews. Consider contextual factors like time of interaction, user location, or session data.

3. Timeliness and Time Decay:

- Exclude older reviews or apply decay factors (e.g., exponential decay).
- Example:

$$Weight = e^{-\lambda \cdot Age \cdot of \ Interaction}$$

• λ controls the rate of decay (e.g., 0.01 for gradual decay).

c. Negative Sampling

- Why: Enhances model training by focusing on harder-to-classify items.
- Dynamically generate negative samples during training/testing to address bias.

d. Loss Functions

- Experiment with ranking-specific loss functions like Bayesian Personalized Ranking (BPR) or Listwise Loss.

e. Hyperparameter Tuning

- Optimize parameters like learning rate or embedding dimensions via grid search or Bayesian optimization.

4. Testing Template

Stage	Retrieval			
Model	Item Collaborative Filtering			
Dataset	Yelp (sampled)			
Train Size	80% of dataset for normal case			
Evaluation Metric	Metric		Rationale	
	Accurac	y N	Measures the overall correctness	
	Recall		Most important metric in retrieval	
	Precisio	n E	Ensures retrieved items are relevant	
	F1-score	e F	Provides a balanced view of recall and	
		l p	precision	
	Mean Reciproc	al Rank N	Measures ranking of relevant items	
	Weighted Fβ-		Adjusts the trade-off for recall and	
		l p	precision dynamically	
Baseline Model	Simplest Item Collaborative Filtering Model - Item Similarity: Cosine Similarity			
	- Prediction Function:			
	$\sum_{j} j \ like(user, item_j) \times sim(item_j, item)$			
	Features: Total of 1 feature is used			
	- Rate in Review Table			
Evaluation	Strategy 1: K-Nearest Neighbors (KNN)			
Strategies/Steps	Set-up:			
otratogroof otopo	1. Prepare user and business index tables.			
	2. Split 80/20 for train/test data.			
	3. Exclude test data during KNN computation.			
	4. Compute KNN results for evaluation.			
	Evaluation:			
	1. Take a pair of user_id and business_id as input.			
	2. Compute the list of item similarity with the user recent			
	interacted items (some may be 0, max case will have N			
	similarities).			
	3. Compute all the interest scores.			
	4. Compute the evaluation metric.			
	Accuracy	True Positive	User gave a rate of 4 or higher for	
			business, predicted interest score	
			is in top K results.	
		True Negative	User gave a rate of 3 or lower for	
			business, predicted interest score	
			is not in top K results.	
		(Tri	(True Positive + True Negative)	
		Total		
	Precision	False Positive	User gave a rate of 3 or below for	
			business, predicted interest score	
			are in top K results.	

	True Positive		
	$\overline{True\ Positive + False\ Positive}$		
Recall	True Positive		
	Total Positive		
F1-Score	$2 \times precision \times recall$		
	precision + recall		
Mean		The respective rank of True	
Reciprocal	RR	Positive business in the top K	
Rank		results.	
Weighted	β	β >1 as recall is important here.	
Fβ-score	$(1+\beta^2) \times precision \times recall$		
	<u>`</u>	$\beta^2 \times precision \times recall$	

Strategy 2: Leave-One-Out Cross-Validation (LOOCV) Set-up:

- 1. Set up the user and business index tables.
- 2. For each user, leave one interaction out of the training set and treat it as the test case.
- 3. Exclude this data from training.
- 4. Compute KNN results for evaluation.

Evaluation: Same metrics as Strategy 1, ensuring robust testing for individual interactions.