Partiel (7 novembre 2015)

Apportez un soin particulier à la rédaction. Les exercices sont indépendants.

QUESTION 1 (6pts). — Réunion d'une famille de fermés.

- (1) Définir ce que sont les sous-ensembles ouverts et fermés d'un espace métrique.
- (2) Démontrer que dans un espace métrique X un ensemble A est fermé si et seulement si pour toute suite extraite de A qui converge vers $x \in X$, on a $x \in A$.
- (3) Montrer par un exemple qu'une réunion quelconque d'ensemble fermés n'est pas forcément fermée.
- (4) Dans un espace métrique X on dit d'une famille d'ensembles fermés $(A_i)_{i\in I}$ qu'elle est localement finie si pour chaque $x\in X$ il existe un voisinage V_x de x qui ne rencontre qu'un nombre de fini des A_i . Démontrer que la réunion d'une telle famille est fermée.

QUESTION 2 (7pts). — Non compacité pour la convergence uniforme d'ensembles fermés bornés de fonctions continues.

- (1) Donner trois définitions équivalentes de ce qu'est un espace métrique compact.
- (2) Définir ce que signifie converger simplement (resp. converger uniformément) pour une suite de fonctions à valeurs réelles définies sur un ensemble quelconque.
- (3) Montrer par un exemple que la convergence simple n'entraı̂ne pas la convergence uniforme.

On considère à présent l'ensemble $C([-1,1];\mathbb{R})$ des fonctions continues $f:[-1,1]\to\mathbb{R}$, muni de la distance

$$d(f,g) := \max\{|f(x) - g(x)| : x \in [-1,1]\}.$$

- (4) Donner un exemple d'une suite $(f_n)_{n\in\mathbb{N}}$ extraite de $C([-1,1];\mathbb{R})$ qui ne contient aucune sous-suite convergente (relativement à la distance d ci-dessus), et telle que $\sup_n d(f_n,0) < \infty$. Justifier toutes les étapes.
- (5) En déduire que les fermés bornés de $(C([-1,1];\mathbb{R}),d)$ ne sont pas forcément compacts.

QUESTION 3 (7pts). — Structure d'espace métrique d'un certain espace quotient. On considère l'ensemble \mathbb{R}/\mathbb{Z} des classes d'équivalence de réels pour la relation $x \sim y$ si et seulement si $x - y \in \mathbb{Z}$, ainsi que la surjection canonique $p : \mathbb{R} \to \mathbb{R}/\mathbb{Z}$. On définit

$$\delta(u,v) := \inf\{|x-y| : x \in p^{-1}\{u\} \text{ et } y \in p^{-1}\{v\}\},\,$$

 $u, v \in \mathbb{R}/\mathbb{Z}$. On peut penser à $\delta(u, v)$ comme à la «distance entre $p^{-1}\{u\}$ et $p^{-1}\{v\}$ ».

- (1) Montrer que δ est une distance sur \mathbb{R}/\mathbb{Z} . Dans la suite on considère les espaces métriques $(\mathbb{R}, d_{|.|})$ et $(\mathbb{R}/\mathbb{Z}, \delta)$.
- (2) Montrer que p est continue.
- (3) Montrer que $U \subseteq \mathbb{R}/\mathbb{Z}$ est ouvert si et seulement si $p^{-1}(U)$ est ouvert.
- (4) Montrer que $(\mathbb{R}/\mathbb{Z}, \delta)$ est compact.
- (5) On considère le cercle unité $\mathbb{S}^1 := \mathbb{R}^2 \cap \{(s,t) : t^2 + s^2 = 1\}$ muni de la distance induite par la distance euclidienne de \mathbb{R}^2 , ainsi que la fonction $f : \mathbb{R} \to \mathbb{S}^1 : x \mapsto \exp[ix2\pi]$. Montrer qu'il existe une application $g : \mathbb{R}/\mathbb{Z} \to \mathbb{S}^1$ telle que $f = g \circ p$, et que g est continue.
- (6) En déduire que \mathbb{R}/\mathbb{Z} et \mathbb{S}^1 sont homéomorphes, en justifiant toutes les étapes.