MAP569 Machine Learning II

PC4: Convergence rates in optimization

1 Convergence rates for Projected Gradient Descent

We consider a convex function $f: \mathbb{R}^d \to \mathbb{R}$, a closed convex set $\mathcal{C} \subset \mathbb{R}^d$ and the optimisation problem

$$\min_{x \in \mathcal{C}} f(x). \tag{1}$$

We denote by $\pi_{\mathcal{C}}x = \operatorname{argmin}_{u \in \mathcal{C}} ||x - u||^2$ the projection of x onto the convex set \mathcal{C} . To solve (1), we can apply the Projected Gradient Descent algorithm (with $\eta > 0$):

For k = 1, ..., K - 1,

$$y_{k+1} = x_k - \eta \nabla f(x_k) ,$$

$$x_{k+1} = \pi_{\mathcal{C}} y_{k+1} ,$$

Return $f(x_K)$.

1.1 Basic facts

- 1. Let $u \in \mathcal{C}$ and 0 < t < 1. Why do we have $||z (tu + (1-t)\pi_{\mathcal{C}}z)||^2 \ge ||z \pi_{\mathcal{C}}z||^2$?
- 2. Investigating this inequality for t small, prove that

$$\langle u - \pi_{\mathcal{C}} z, z - \pi_{\mathcal{C}} z \rangle \le 0$$
 and $\|\pi_{\mathcal{C}} z - z\|^2 + \|u - \pi_{\mathcal{C}} z\|^2 \le \|u - z\|^2$.

3. Assume that f differentiable and convex. For any $x, h \in \mathbb{R}^d$ and $t \in [0, 1]$, we set F(t) = f(x+th). Prove that $F(1) - F(0) \ge F'(0)$. Conclude that $f(y) - f(x) \ge \langle \nabla f(x), y - x \rangle$ for all x, y.

1.2 Rate for Lipschitz convex functions

We assume here that $\mathcal{C} \subset B(x_1, R)$. Let x^* be a minimizer of (1) and define $\bar{x}_K = (x_1 + \ldots + x_K)/K$. In this section, we will prove that if $\|\nabla f(x)\| \leq L$ for all $x \in \mathcal{C}$, and $\eta = R/(L\sqrt{K})$, then

$$f(\bar{x}_K) - f(x^*) \le \frac{LR}{\sqrt{K}}$$

1. Using question 1.1.3, prove that

$$f(x_k) - f(x^*) \le \frac{1}{\eta} \langle x_k - y_{k+1}, x_k - x^* \rangle = \frac{\eta}{2} \|\nabla f(x_k)\|^2 + \frac{1}{2\eta} \left(\|x_k - x^*\|^2 - \|y_{k+1} - x^*\|^2 \right).$$

2. Using question 1.1.2, prove that

$$\frac{1}{K} \sum_{k=1}^{K} f(x_k) - f(x^*) \le \frac{\eta L^2}{2} + \frac{\|x_1 - x_*\|^2}{2\eta K} .$$

3. Conclude.

1.3 Rate for strongly convex functions

When the function f is strongly convex, then the PGD converges much faster. In the following, we assume that f is α -strongly convex:

$$f(y) - f(x) \le \langle \nabla f(y), y - x \rangle - \frac{\alpha}{2} ||y - x||^2.$$
 (2)

We also assume that ∇f is β -Lipschitz. We will prove that, for $\eta = 1/\beta$,

$$||x_{K+1} - x^*||^2 \le ||x_1 - x^*||^2 e^{-\rho K}$$
,

with $\rho = \alpha/\beta$.

Define $g(x) = \beta \left(x - \pi_{\mathcal{C}}(x - \frac{1}{\beta} \nabla f(x)) \right)$. The key of the proof is the inequality:

$$\forall (x,y) \in \mathcal{C}^2 , \ f\left(\pi_{\mathcal{C}}(x - \frac{1}{\beta}\nabla f(x))\right) - f(y) \le \langle g(x), x - y \rangle - \frac{1}{2\beta} \|g(x)\|^2 - \frac{\alpha}{2} \|x - y\|^2 , \ (3)$$

which evaluates the progress made by one step of the PGD algorithm.

1. Assume first that (3) holds. Prove the following (in)equalities:

$$||x_{k+1} - x^*||^2 = ||x_k - x^*||^2 - \frac{2}{\beta} \langle g(x_k), x_k - x^* \rangle + \frac{1}{\beta^2} ||g(x_k)||^2 ,$$

$$\leq (1 - \rho) ||x_k - x^*||^2 \leq e^{-\rho k} ||x_1 - x^*||^2 .$$

2. It remains to prove (3). With the mean value theorem, prove that

$$f(y) - f(x) = \int_0^1 \langle \nabla f(x + t(y - x)), y - x \rangle dt \le \langle \nabla f(x), y - x \rangle + \frac{\beta}{2} ||y - x||^2. \tag{4}$$

3. Set $x^+ = \pi_{\mathcal{C}}(x - \frac{1}{\beta}\nabla f(x))$. Using (2) and (4), check that

$$f(x^{+}) - f(y) \le \langle \nabla f(x), x^{+} - x \rangle + \frac{\beta}{2} ||x^{+} - x||^{2} + \langle \nabla f(x), x - y \rangle - \frac{\alpha}{2} ||y - x||^{2}.$$

- 4. With question 1.1.2, prove that $\langle \nabla f(x), x^+ y \rangle \leq \langle g(x), x^+ y \rangle$ for all $y \in \mathcal{C}$.
- 5. Conclude that

$$f(x^{+}) - f(y) \le \langle g(x), x^{+} - y \rangle + \frac{1}{2\beta} \|g(x)\|^{2} - \frac{\alpha}{2} \|y - x\|^{2},$$

$$= \langle g(x), x - y \rangle - \frac{1}{2\beta} \|g(x)\|^{2} - \frac{\alpha}{2} \|y - x\|^{2}.$$