HW2 in 046203 Planning and Reinforcement Learning

Submitter 1: David Valensi 342439643 Submitter 2: Yaniv Galron 206765646

Question 1 (Markov Chain):

1. P is the transition matrix for some Markov Chain (MC), so $p_{i,j}$ is the transition probability from state I to j. Thus, $p_{i,j} \geq 0$ for all i,j.

Each row in P sums up to 1 (i.e. P is row stochastic):

The first equality holds since we consider a time-homogeneous MC as defined in class:

$$\forall i \colon \sum_{j=1}^{n} P_{i,j} = \sum_{j=1}^{n} P(X_1 = j | X_0 = i) = \frac{1}{P(X_0 = i)} \sum_{j=1}^{n} P(X_1 = j, X_0 = i) = \frac{P(X_0 = i)}{P(X_0 = i)} = 1$$

2. We show that $P\vec{1} = \vec{1}$.

P is row stochastic, then for each row $i, \sum_{j=1}^n P_{i,j} = 1 \Longrightarrow P \vec{1} = \lambda \vec{1}, with \ \lambda = 1$. It means that $\lambda = 1$ is one of the eigenvalues of P and the corresponding eigenvector is

$$\vec{1} = \begin{pmatrix} 1 \\ ... \\ 1 \end{pmatrix}$$
. Since the right eigenvalues and left eigenvalues are the same for square

matrices, 1 is also a left eigenvalue of P.

$$\Rightarrow \exists x : x^T P = x^T.$$

3. Let λ be a P eigenvalue with x the corresponding eigenvector. We show that $|\lambda| \leq 1$. Suppose by contradiction that $|\lambda| > 1$. Let's denote x_i the largest element in x. Since any αx holds the equation, then we assume $x_i > 0$.

We have
$$Px = \lambda x \Rightarrow (Px)_i = \sum_{j=1}^n P_{i,j} x_j = \lambda x_i > x_i (|\lambda| > 1)$$

But in the second hand, P rows sum to 1 and each element in λx is a convex combination of x. Thus, no entry in λx can be larger than x_i . Contradiction. $\Rightarrow |\lambda| \leq 1$.

Question 3 (The Secretary Problem)

1. $g_t(s=0)$ is the probability that the tth candidate has the highest score while s=0, meaning that the current candidate is not the best. So obviously, the tth candidate has not the highest score: $g_t(s=0)=0$.

For s=1, we have seen so far t-1 candidates, and we are interested in the probability that the tth candidate has highest score. Of course if the tth candidate has highest score, it has particularly the highest among first t candidates and that's the information we are given (as interviewers)

 $g_t(s=1) = P(t^{th} candidate \ has \ highest \ score \mid t^{th} candidate \ is \ the \ best \ among \ first \ t)$

From uniform sampling we have:

$$g_t(s=1) = \frac{P(t^{th} candidate \ has \ highest \ score\)}{P(\ t^{th} candidate \ is \ the \ best \ among \ first \ t)} = \frac{\frac{1}{N}}{\frac{1}{t}} = \frac{t}{N}$$

2. Now we are interested in $P_t(1|s)$. It is the probability that the t+1th candidate is the best one given that we already interviewed t candidates. Each candidate is uniformly sampled, thus $P_t(1|s) = \frac{1}{t+1}$.

And
$$P_t(0|s) = 1 - P_t(1|s) = \frac{t}{t+1}$$
.

3. To compute $V_t^*(s)$, we need to consider two options at time t and state s: hire tth candidate or continue interviewing.

The first option to pick the t^{th} candidate after interviewing t candidates and we are in state s, that it $g_t(s)$.

The second option is to continue searching and act according to $V_{t+1}^*(s_{next})$. In the next step, we may be in two different states. So, if we continue searching V holds the following.

$$V_t^*(1) = P_t(1|1)V_{t+1}^*(1) + P_t(0|1)V_{t+1}^*(0)$$

$$V_t^*(0) = P_t(1|0)V_{t+1}^*(1) + P_t(0|0)V_{t+1}^*(0)$$

Of course, we'll act greedily at each time step and take the maximum between the two options:

$$V_t^*(1) = \max\{g_t(1), P_t(1|1)V_{t+1}^*(1) + P_t(0|1)V_{t+1}^*(0)\}$$

$$V_t^*(0) = \max\{g_t(0), P_t(1|0)V_{t+1}^*(1) + P_t(0|0)V_{t+1}^*(0)\}$$

 $V_{t=N}^*(1) = 1$ since at time N if we have not chosen any candidate and the last one is the best, then the probability to choose the best is 1.

 $V_{t=N}^*(0) = 0$ from similar considerations, at last time step, if the last candidate is not the best, then the probability to choose the best is 0.

4. Since $g_t(s = 0) = 0$:

$$\begin{split} V_t^*(0) &= \max \left\{ g_t(0), P_t(1|0) V_{t+1}^*(1) + P_t(0|0) V_{t+1}^*(0) \right\} \\ V_t^*(0) &= P_t(1|0) V_{t+1}^*(1) + P_t(0|0) V_{t+1}^*(0) \\ V_t^*(0) &= \frac{1}{t+1} V_{t+1}^*(1) + \frac{t}{t+1} V_{t+1}^*(0) \end{split}$$

$$V_t^*(1) = \max \left\{ g_t(1), P_t(1|1) V_{t+1}^*(1) + P_t(0|1) V_{t+1}^*(0) \right\} = \max \left\{ \frac{t}{N}, V_t^*(0) \right\}$$

The code of the plot appears at the end. The plot if V values for N=10 is:

5. We observe that the values of Vt(1) and Vt(0) are the same until $\tau=t=4$. It means that there is no value to choose a candidate before interviewing at least 4 candidates. Then $V_t^*(1)=\frac{t}{N}$ meaning that the best option was to choose the tth candidate if he's better than the previous ones.

```
import numpy as np
import matplotlib.pyplot as plt
v1 = [1]
v0 = [0]
N=10
for t in range(N-1, 0, -1):
    v0.append(1/(t+1)* v1[-1] + t/(t+1)* v0[-1])
    v1.append(max(t/N, v0[-1]))
v0.reverse()
v1.reverse()
x_axis = range(1, N+1)
fig, ax = plt.subplots()
ax.plot(x_axis, v0, label='Vt(0)')
ax.plot(x_axis, v1, label='Vt(1)')
ax.set(xlabel='Number of steps', ylabel='V(0), V(1) probabilities')
ax.grid()
ax.legend()
fig.savefig("v_over_time.png")
plt.show()
```

Question 5 (MDP with Non-Linear Objectives)

a) Let's suggest the following reward function. The rest of the MDP parameters are the same as the original MDP.

$$\hat{r}(s) = \alpha r_1(s) + \beta r_2(s)$$

From Expectation linearity:

$$J^{\pi} = E^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} (\alpha r_{1}(s_{t}) + \beta r_{2}(s_{t})) | s_{0} = s_{init} \right] = \alpha J_{1}^{\pi} + \beta J_{2}^{\pi}$$

$$J^{*} = \max f(J_{1}^{\pi}, J_{2}^{\pi}) = \max \alpha J_{1}^{\pi} + \beta J_{2}^{\pi}$$

We got the same discounted reward $\alpha J_1^{\pi} + \beta J_2^{\pi}$ with the suggested reward function $\hat{r}(s)$.

Thus, the optimal policy for the suggested MDP is as expected:

$$\pi^* \in argmax J^{\pi}$$

- b) With $J^\pi=f(J_1^\pi,J_2^\pi)=\frac{J_1^\pi}{J_2^\pi}$, the standard approaches like VI or PI cannot be applied. We know $r_1< r_2$, then $J_1^\pi \leq J_2^\pi$. Thus, we also have that $\frac{J_1^\pi}{J_2^\pi} \leq 1$. In fact, maximizing $\frac{J_1^\pi}{J_2^\pi}$, means that we want each of the discounted rewards J_1^π , J_2^π to be as close as possible to the other. The approaches maximize the discounted reward with respect to a specific reward function and not with respect to the whole discounted reward. When we optimize the factor $\frac{J_1^\pi}{J_2^\pi}$, the game is different: if we increase J_1^π , we will also increase J_2^π according to the observation above. But the greater J_2^π , the lower $\frac{J_1^\pi}{J_2^\pi}$.
- c) $J_{\rho}^{\pi} = J_{1}^{\pi} \rho J_{2}^{\pi} = 0 \rightarrow J_{1}^{\pi} = \rho J_{2}^{\pi} \rightarrow J^{\pi} = \frac{J_{1}^{\pi}}{J_{2}^{\pi}} = \rho$
- d) We want to prove $\pi_{\rho}^* \in argmax \frac{J_1^{\pi}}{J_2^{\pi}}$

Let's assume in contrary that $\exists \pi' s. t. J^{\pi'} = \frac{J_1^{\pi'}}{J_2^{\pi'}} > \rho$:

$$\begin{split} \frac{J_1^{\pi'}}{J_2^{\pi'}} &> \rho \to J_1^{\pi\prime} > \rho J_2^{\pi\prime} \to J_\rho^{\pi\prime} = J_1^{\pi\prime} - \rho J_2^{\pi\prime} > 0 \text{ . In contradiction with optimality of } \pi_\rho^*. \end{split}$$
 Thus, $J_1^{\pi'} = \frac{J_1^{\pi\prime}}{J_1^{\pi\prime}} \leq \rho$. Under the same policy $\pi_\rho^*, J_1^{\pi_\rho^*} = \rho$ as we proved.

Thus $\pi_{\rho}^* \in \underset{\pi}{argmax} \frac{J_1^{\pi}}{J_2^{\pi}}$.

e) We are given that $0 < r_{min} < r_1(s)$

$$\Rightarrow \forall \pi, J_{\rho=0}^{\pi} = E^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} (r_{1}(s_{t})) | s_{0} = s_{init} \right] \geq E^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r_{min} | s_{0} = s_{init} \right] > 0$$

f) We are given that $\forall s,\ 0 < r_{min} < r_1(s) < r_2(s) \Rightarrow r_1(s) - r_2(s) < 0$. Let's denote $\epsilon < 0$ s. t. $\forall s, r_1(s) - r_2(s) < \epsilon$

$$\Rightarrow \forall \pi, J_{\rho=1}^{\pi} = E^{\pi} \left[\sum_{t=0}^{\infty} \gamma^t \left(r_1(s_t) - r_2(s_t) \right) \middle| \ s_0 = s_{init} \right] < E^{\pi} \left[\sum_{t=0}^{\infty} \gamma^t(\epsilon) \middle| \ s_0 = s_{init} \right] < 0$$

g) Let's start for a fixed policy: $\forall \rho' > \rho$, $J^\pi_\rho > J^\pi_{\rho'>\rho}$, $i.e.J^\pi_\rho - J^\pi_{\rho'>\rho} > 0$

$$\begin{split} J_{\rho}^{\pi} - J_{\rho' > \rho}^{\pi} &= E^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} \big(r_{1}(s_{t}) - \rho r_{2}(s_{t}) \big) | \ s_{0} = s_{init} \right] \\ &- E^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} \big(r_{1}(s_{t}) - \rho' r_{2}(s_{t}) \big) | \ s_{0} = s_{init} \right] \end{split}$$

From expectation linearity:

$$= E^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} (r_{1}(s_{t}) - \rho r_{2}(s_{t}) - r_{1}(s_{t}) + \rho' r_{2}(s_{t})) | s_{0} = s_{init} \right] =$$

$$E^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} ((\rho' - \rho) r_{2}(s_{t})) | s_{0} = s_{init} \right] > 0$$
Since $\rho' > \rho$

Now we need to prove that for $\forall \rho > \rho'$, $J_{\rho}^* > J_{\rho > \rho'}^*$

From the fixed policy explanation from above: $J_{\rho'}^* = J_{\rho'}^{\pi^*} > J_{\rho>\rho'}^{\pi^*}$

It is obvious that the optimal policy $\pi^{*'}$ for ρ' in $M_{\rho'}$ gives at least the same reward as the optimal policy π^* for ρ in $M_{\rho'}$: $J_{\rho'}^{\pi^*} \leq J_{\rho'}^{\pi^{*'}}$

Unifying both sides give:

$$J_{\rho > \rho'}^{\pi^*} < J_{\rho'}^{\pi^*} \le J_{\rho'}^{\pi^{*'}}$$

As required.

h) We're given that J_{ρ}^{π} is continuous in ρ .

And we showed that for ho=0, $J^\pi_
ho>0$, and for ho=1, $J^\pi_
ho<0$

From the intermediate value theorem: $\exists \ 0 < \rho < 1: J_{\rho}^{\pi} = 0$

Let's define $0<\rho<1$, and let's use one of the standard approaches to solve the M_{ρ} MDP (Policy Iteration, Value Iteration). Let's denote J_{ρ}^* the optimal value in M_{ρ} and π_{ρ}^* the optimal policy.

If $J_{\rho}^{*}=0$, return π_{ρ}^{*} .

Else, let's find $0<\rho'<1$ s.t. $J_{\rho'}^*=0$ using binary search and executing PI or VI algorithms on $M_{\rho'}$. If $J_{\rho'}^*=0$ return $\pi_{\rho'}^*$.

The binary search will surely find some ρ' s.t. $J_{\rho'}^* = 0$ from the monotonicity and from the intermediate value theorem above.

Question 4:

We want to show that

$$V^{T}(s) \triangleq E^{T}(s, a_{e}) \mid s_{o} = s$$
)

 $= \underbrace{T}(s_{o}^{0}) \quad \underbrace{S^{k}}(s_{o}, a_{e}) \mid s_{o} = s$)

 $= \underbrace{T}(s_{o}^{0}) \quad \underbrace{S^{k}}(s_{o}, a_{e}) \mid s_{o} = s$)

We can prove this limina by assumption that T is

 $S(a_{i} = n \circ r) \quad \underbrace{S(a_{i} = n \circ r)}_{s_{o} = n \circ r} \quad \underbrace{S(s_{o} = n \circ r)}_{s_{o} =$

non we get Pi, = P(Se, = S) | Se = S) = P(S, |S;, a1) P(a1) tp(S, S, oz) P(az) = 0 s(P(S; \S, on) + P(S; \S, O2)) and with that we get 0 0.3123 0.6815 V = 0.5833 0 0.416+ 0.15 0.25 0.3125 0.5833 0.25 0.25 0.25 0.4/64 0.4/64 0.56461now the expected reward for each state is V = 0.45, 0.5, 0.5 and the Estal expected reward 1) ET & RE = 1(So) + (0.3125 1(S1) + (0.68 15 1(S2)) 16.3125.0.5833+0.6875.0.15) r(So) +0.6815.0.25r(51) + 0.3125. 0.4162 N(S2) = 1.415

C. lets write the bellow equation for 3 rounds

$$V_3(s) = 0$$
 $V_4(s) = 0$
 $V_8(s) = 0$
 $V_8(s) = 0$
 $V_8(s) = 0$
 $V_8(s, a) = 0$
 $V_8(s$

d. The Probability to stay in the casina Aster 6 rounds is (1-B)t honce the indinite herizan Chaylogive reword: JB (S) = ETT, So (Story After + Pounds)-Re) = E TSO(2(1-B) tR6) = E T, SO(2(1-B) tr(S6,06)) ≥ 1-B 2. defines the connection between the discount factor and the death rate C. for the insinite horizon case we have the following bellman equations: $V(s) = \max_{\alpha \in \{\alpha, \alpha\}} | r(s, \alpha) + (1-\beta) = p(s'|s, \alpha) \cdot V(s') |$ $= \max_{\alpha \in \{\alpha, \alpha\}} | r(s, \alpha) + (1-\beta) = p(s'|s, \alpha) \cdot V(s') |$