7 Задача 12. Встреча

Имя входного файла: input.in
Имя выходного файла: output.out
Ограничение по времени: 1 с
Ограничение по памяти: нет

В городе n домиков и m дорог. Домики пронумерованы числами от 1 до n. Каждая дорога определяется тройкой чисел: двумя номерами домиков, которые являются концами этой дороги, и длиной дороги (длины дорог — положительные целые числа). В каждом домике живёт по одному человеку.

Необходимо найти точку (место встречи всех людей), от которой суммарное расстояние по дорогам до всех домиков будет минимальным. Место встречи следует искать среди точек, в которых расположены домики, а также точек, лежащих на дороге и отстоящих от домиков на целое число единиц длины.

Если точка лежит на дороге, то в ответе указать номера домиков, которые являются концами этой дороги, и расстояние от первого из этих домиков. Если точка совпадает с домиком, то указать его номер и искомую минимальную сумму.

Гарантируется, что решение существует. Если решений несколько, выведите любое.

Формат входных данных

Первая срока содержит число n домиков (1 $\leq n \leq$ 100) и число m дорог (0 $\leq m \leq n \cdot (n-1)$ / 2). Затем идут m строк, по три числа в каждой, которые задают дороги: номера u и v домиков (1 $\leq u$, $v \leq n$), которые являются концами дороги, и длина w дороги (1 $\leq w \leq$ 100 000). Гарантируется, что никакая дорога не соединяет домик с самим собой. Между любой парой домиков есть не более одной дороги. По дорогам можно двигаться в обе стороны.

Все числа в строках разделены одним пробелом.

Формат выходных данных

Если точка встречи лежит на дороге, то выведите три целых числа: номера конечных домиков этой дороги и расстояние от первого из этих домиков до этой точки. Если точка совпадает с домом, то выведите номер этого домика и суммарное расстояние от всех домиков до этого домика.

Пример

input.in	output.out
6 9	3 37
1 2 2	
2 3 3	
3 4 15	
4 5 5	
5 6 6	
6 1 20	
1 3 7	
3 6 5	
4 6 8	
2 1	1 2 5
1 2 10	