

Gps Tracker

Fejlesztői Dokumentáció

Győr, 2023. 01. 06.

Tartalomjegyzék

Projekt leírása, tervezési fázis	3
Felhasznált modulok	3
TTGO T-Display ESP32 Development Board with 1.	
Gsm Sim800l Module	5
V.KEL GPS RECEIVER MODULE ANTENNA VK2828L	J7G5LF TTL
	6
Áramköri rajzok, prototípus elkészítése	7
A kód telepítése és használata	8
Kód részletezés	11
mikro_gps_tracker	11
eeprom	12
gps	12
gsm	12
serial	12
wifi	12
Led fények jelentései	
Bővítési lehetőségek	
Források	
Köszönetnyilvánítás	13

Projekt leírása, tervezési fázis

Egy Gps nyomkövetőt szerettünk volna létrehozni, amely képes a helyzetét meghatározni, amit el is lehet tárolni. Később ezeket az adatokat le lehessen kérdezni, vagy akár SMS-t használva tudjuk meghatározni a pillanatnyi helyzetét az eszköznek.

A projekt alapjáraton véve egy Arduino kisprojekt melynek a szívét egy TTGO ESP32 board adja.

A fejlesztés az Arduino IDE-ben készült melybe az ESP32 különleges beállításaira is szükség volt. Továbbá felhasználásra kerültek GPS és GSM modulok is. Ezek breadboardhoz kötése után egy lithium akkumlátor segítségével jött létre a kész prototípus.

A projekt célját a modulok megfelelő alkalmazása határozta meg, melyekkel minden, a tervezési fázisban leírt kívánságok teljesíthetőek.

Felhasznált modulok

TTGO T-Display ESP32 Development Board with 1.14" IPS LCD

SPECIFICATIONS

- Chipset ESPRESSIF-ESP32 240MHz Xtensa® single-/dual-core 32-bit LX6 microprocessor
- FLASH QSPI flash 4MB
- SRAM 520 kB SRAM
- Button Reset
- USB to TTL Silicon Labs CP2104
- Modular interface UART, SPI, SDIO, I2C, LED PWM, TV PWM, I2S, IRGPIO, ADC, Capacitive Touch Sensor, DACLNA Pre-Amplifier
- Display IPS ST7789V 1.14 Inch
- Working voltage 2.7V-4.2V
- Working current About 67MA
- Sleep current About 350uA
- Working temperature range -40°C ~ +85°C
- Size & Weight 51.49mmx25.09mm (7.81g)

- Power Supply Specifications
- Power Supply USB 5V/1A
- Charging current 500mA
- Battery 3.7V lithium battery
- JST Connector 2Pin 1.25mm
- USB Type-C

Wi-Fi

- Standard FCC/CE-RED/IC/TELEC/KCC/SRRC/NCC (ESP32 chip)
- Protocol 802.11 b/g/n (802.11n, speed up to150Mbps) A-MPDU and A-MSDU polymerization, support 0.4μS Protection interval
- Frequency range 2.4GHz~2.5GHz(2400M~2483.5M)
- Transmit Power 22dBm
- Communication distance approximately 300m

Software Specifications

- Wi-Fi Mode Station/SoftAP/SoftAP+Station/P2P
- Security mechanism WPA/WPA2/WPA2-Enterprise/WPS
- Encryption Type AES/RSA/ECC/SHA
- Firmware upgrade UART download/OTA (Through network/host to download and write firmware)
- Software Development Support cloud server development /SDK for user firmware development
- Networking protocol IPv4, IPv6, SSL, TCP/UDP/HTTP/FTP/MQTT
- User Configuration AT + Instruction set, cloud server, android/iOSapp
- OS FreeRTOS

A TTGO mikroprocesszorhoz tartozik egy LCD kijelző, WiFi és Bluetooth modul is. A kód feltelepítéséhez pedig egy USB-C Type csatlakozóval kapcsolódhatunk. Ezen felül a 3 gombnak bármilyen funkciót beprogramozhatunk.

Gsm Sim800l Module

- Supports Quad-band: GSM850, EGSM900, DCS1800 and PCS1900
- Connect onto any global GSM network with any 2G SIM
- Make and receive voice calls using an external 8Ω speaker & electret microphone
- Send and receive SMS messages
- Send and receive GPRS data (TCP/IP, HTTP, etc.)
- Scan and receive FM radio broadcasts
- Transmit Power:
 - Class 4 (2W) for GSM850
 - Class 1 (1W) for DCS1800
- Serial-based AT Command Set
- FL connectors for cell antennae
- Accepts Micro SIM Card

A GSM modul lehetővé teszi a kommunikációt akár hívásban vagy SMS-ben. A projektben az SMS szolgáltatást használtuk, mely oda és vissza is megtörtént.

A modulon található villogó led jelentései:

- gyors (másodpercenként) villogáskor a kapcsolat még nem jött létre.
- lassú (3 másodpercenként) villogáskor a kapcsolat létrejött és tud fogadni és küldeni SMS-t

V.KEL GPS RECEIVER MODULE ANTENNA VK2828U7G5LF TTL

GPS

Specification

- 1Hz(default) ~ 10Hz output
- 9600bps(default) [support:4800, 9600, 19200,
 38400, 57600, 115200, 230400, 460800,921600]
 TTL serial interface
- 5v @ 30mA (support 3.3~5v)
- 56-Channel receiver
- Extremely high sensitivity: -161dBm
- Accuracy: 2.5m (Autonomous) / <2m[SBAS]
- Operating temperature: -40°C to 85°C
- Hot Start : 1s
- Warm Start : 28s
- Cold Start : 29s
- Module Size 28*28*8.6mm
- LED indicator
- Comes with cable connector

A fentnevezett GPS modul képes meghatározni saját helyzetét hosszósági és szélességi fokok pontos megadásával. Ezen kívül a műholdas kommunikációjával a dátumot és az időt is képes lekérdezni. Természetesen a sebességet is ez az eszköz határozza meg. A frekvenciájának köszönhetően akár felhasználhatjuk gyors járművek sebesség mérésére is, mivel akár egy másodperc alatt többször is tudná frissíteni a helyzeti információkat.

Áramköri rajzok, prototípus elkészítése

A cél a készülék létrejöttekor elsősorban az egyszerűség volt. Tisztában voltunk azzal, hogy a piacon léteznek már hasonló célra kifejlesztett eszközök, amiket egyszerűen csak meg lehetne venni, de mi a sajátunkat szerettük volna. Így méretben ekkorára sikerült.

A kód telepítése és használata

A projekthez szükséges forráskódot Githubról tudjuk klónozni az alábbi linkről: https://github.com/tornyilaci/Mikro-Gpstracker

A kód az Arduino IDE-ban lett teljes egészében megírva C++ nyelven. Mivel az ESP32 mikroprocesszor nem egy arduino board ezért szükséges volt hozzáadni az ehhez szükséges információkat.

A kód teljeskörű működéséhez szükséges minden felsorolt könyvtárat telepíteni a "manage libraries" menüpontból.

Az "src" mappában található két további könyvtár, melyek szükségesek voltak a mikroprocesszor megfelelő működéséhez.

Miután a könyvtárakat és a board konfigurációkat telepítettük, fontos, hogy megfelelően tudjuk csatlakoztatni az eszközünket az Arduino IDE-hez.

Itt már látszik, a Board neve, az adatátviteli sebesség, frekvencia, továbbá, hogy melyik Porton csatlakoztattuk az eszközt.

Ezt ellenőrizni a jobb alsó sarokban is tudjuk.

A setup és a loop függvények előtt vannak beállítva az alapértékek és alapváltozók a fizikai egységhez. Itt láthatjuk, hogy melyik modul melyik pinhez van csatlakoztatva a breadboardon és milyen adatátviteli sebességet alkalmaznak.

További beállításokat alkalmazhatunk még a Serial monitor segítségével, mely csak abban az esetben működik, hogyha csatlakoztattuk a Gps Trackert. A Serial monitort megnyithatjuk a CTRL+Shift+M billentyűkombinációval vagy a Tools menüből megnyitva.

```
COM5
                                                                                                    \times
                                                                                                   Send
Usage:
help - this page
gps info - print gps information
gps save - write gps info to location.csv
gps delete - remove location.csv
gps show - print location.csv to serial
dir - list spiffs filesystem
gsm sms - send gps information in sms
gsm receive - switch to receive mode
gsm number - print SIM800L gsm number
ssid - print current ssid
ssid=<your ssid> - set your ssid
pass - print current password
pass=<your passs> - set your password
phone - print current phone number
phone=<your phone number> - set your phone number, format: +36309988777
save - save ssid/pass to eeprom
load - load ssid/pass from eeprom
                                                                              ∨ 115200 baud
✓ Autoscroll ☐ Show timestamp
```

A piros keretben lévő baud érték nagyon fontos, hiszen, ha nem erre az értékre van állítva a kommunikációs sebesség, akkor NEM LEHET HASZNÁLNI a serial monitort.

A monitoron látott utasításokat beírva közvetlenül kommunikálunk az ESP32-vel, így akár innen is irányíthatjuk az eszközt, de ehhez mindenképpen szükséges a csatlakoztatás

Kód részletezés

A kód felépítése nagyon egyszerű, és a jó olvashatóság kedvéért objektum orientáltnak tűnő megoldás lett alkalmazva. (A különböző lapok nem header fájlok. Az egy sketchbe tartozó lapok, akár egyetlen lapra is le lehetett volna írni.)

A teljes kódban a könyvtárak által nyújtott osztályok lettek alkalmazva, így a felépítés nagyon könnyen olvasható.

mikro_gps_tracker

Az éppen megnyitott lap a főmodul [mikro_gps_tracker], hiszen itt található a setup és a loop függvény. A setup érdekessége, hogy a kód feltöltése során csak egyszer fut le az eszközön. Ezután csak a loop függvényben leírtak fognak végbe menni.

A könyvtárak incluedolása után láthatjuk az alapértékek beállítását (a memória méretét, az időzóna beállítását, a boardon lévő pinek értékét és a különböző modulok csatlakozási értékeit). Nagyon fontos megjegyezni, hogy mivel az ESP32-ben van beépített WiFi modul, így annak a beállításánál rendkívül fontos, hogy a jelszónak MINIMUM 8 karakterből kell állnia, különben működne megfelelően.

A Setup függvényben szintén beállítási értékeket láthatunk. Itt a képernyő kinézete lett inicializálva, a memória kezelési hibák deklarálva, a fájlrendszer hibakezelése is itt lett beállítva. Továbbá itt kapcsolódnak a modulok a pinekre és a gombok inicializálása is itt történik.

A Loop függvény teszi lehetővé, hogy a képernyőn lévő adatok folyamatosan frissüljenek és az adatokat annak függvényében, hogy melyik gombot, hogyan nyomjuk meg, hogyan jelenjenek meg a képernyőn.

A képernyőn való megjelenést is ebben a modulban láthatjuk inicializálva, továbbá a gombok funkciói (amik fontos szerepet játszanak a használati utasítás leírásában) is ebben a modulban vannak részletezve.

eeprom

Az eszköz memóriájába az eeprom modulban "égetjük" bele az ssid, a password és a gsmPhoneNumber értékeit.

gps

A gps modulban vannak deklarálva a helyzetmeghatározással kapcsolatos utasítások, mind az eszköz használata során alkalmazott függvényeknél, mind a serial monitor alkalmazásánál használt függvényeknél. A gpsSaveToFile, a gpsDeleteFile és a gpsShowFile beszédes függvényelnevezéseket hívjuk meg a főmodulban a gombok használatánál és láthatjuk a serial monitor help deskjénél is.

gsm

A gps modul mintájára ebben a modulban is a megírt függvényeket felhasználjuk mind a serial monitornál, mind a gombok alkalmazásánál. Érdekes függvény a gsmReceiveMode, hiszen ez teszi lehetővé, hogy folyamatosan legyen arra lehetőségünk, hogy SMS-t küldjünk az eszköznek. Ebbe a módba minden felhasznált függvény után (ami ezt a módot megváltoztatná) vissza kell kapcsolnunk, hiszn nem tudna SMS-t fogadni az eszköz. A gsmSendSMS függvényben leírtak alapján van megfogalmazva, hogy az SMS-ben mi szerepeljen, hogyan küldje el, és ezen információkat ugyanúgy a serial monitoron is megjelenítse.

serial

A serial modulban érdekes megoldásokat kellett alkalmazni, ahhoz, hogy megfelelően működjenek a serial monitorba beírt utasítások. A serialInput függvény segítségével olvassuk be a karaktereket, melyeket hozzáfűzünk egy stringhez, amit használunk a parseSerialInput függvény utasításainak ellenőrzésére, hogy melyiket használjuk. Amennyiben szeretnénk a teljes utasítás könyvtárat látni, elég egy "help" szócskát vagy egy "?" karaktert beírnunk a serial sávba. A serial modulban történik továbbá a fájlrendszer serial monitorba való kiíratása is.

wifi

A CSV fájlrendszer eléréséhez és a boardhoz való vezeték nélküli csatlakozásához szükséges a WiFi kapcsolat megfelelő működése. Ennek inicializálása a wifi modulban látható. Itt történik az adatok mentése a fájlrendszerbe, és a csatlakozási paraméterek megadása.

Led fények jelentései

• GPS modul

- Piros led: csatlakoztatva van.
- Zöld villogó led: a GPS jel elérhető.

GSM modul

- o Piros led másodperceként villogása: nincs csatlakozás.
- Piros led 3 másodpercenként villog: van csatlakozás.

TTGO ESP32

- Kék led erős fény: van csatlakozás és tölt.
- Kék led gyenge fény: van csatlakozás, de nem tölt.

Bővítési lehetőségek

A projektnek vannak sajnos hátrányai, ami kiküszöbölhető még több ráfordított fejlesztési idővel. A továbbfejlesztésnél gondolkodtunk újabb funkciók bevezetésével, mint például a lopásgátló funkció beépítésével, mely bizonyos sebesség elérése után sípoló hangot adna egy hangszóró segítségével. Vagy esetleg a gps koordináták alapján egy meghatározott útvonal kirajzolásával is.

A projekt során belemélyedtünk az Arduino rejtelmeibe és a mikroprocesszor/modulok világába.

Források

https://mikroelectron.com/Product/V-KEL-GPS-Receiver-module-antenna-VK2828U7G5LF-TT

https://lastminuteengineers.com/sim800l-gsm-module-arduino-tutorial/

https://myduino.com/product/tgo-007/

https://www.youtube.com/watch?v=iGCU0ynkl M

https://www.youtube.com/watch?v=b8254--ibmM

https://www.youtube.com/watch?v=WFVjsxFMbSM

Köszönetnyilvánítás

A projekt nem jöhetett volna létre mentorunk segítsége nélkül, aki készségesen válaszolt minden kérdésünkre, kérésünkre. Köszönjük H. GY.!