

Universidade do Minho Mestrado Integrado em Engenharia Informática 3ºano - 2º Semestre

Comunicações por Computador

Trabalho Prático Nº.1 – Protocolos da Camada de Transporte

Grupo 1 - PL4

a
83732 – Gonçalo Rodrigues Pinto a
84197 – João Pedro Araújo Parente a
84829 – José Nuno Martins da Costa

4 de Março de 2020

Conteúdo

1	Introdução				
2	Que	estões e	e Respostas	3	
	2.1	Uso da	a camada de transporte por parte das aplicações	3	
	2.2	Instala	ção, configuração e utilização de serviços de transferência		
		de fich	eiros	4	
		2.2.1	Representação num diagrama temporal das transferências		
			da file1 por FTP e TFTP	5	
		2.2.2	Distinção e comparação das quatro aplicações de trans-		
			ferência de ficheiros utilizadas	7	
		2.2.3	Influência de situações de perda ou duplicação de pa-		
			cotes IP no desempenho global de Aplicações fiáveis	8	
3	Cor	nclusão		9	

Lista de Figuras

1	Topologia de Rede (backbone, acesso e local)	4
2	Diagrama temporal da transferência da file1 por FTP	5
3	Captura Wireshark da transferência da file1 por FTP	5
4	Diagrama temporal da transferência da file1 por TFTP	6
5	Captura Wireshark da transferência da file1 por TFTP	6

1 Introdução

O objectivo deste trabalho foi estudar os Protocolos da Camada de Transporte.

O serviço dos Protocolos de Transporte é disponibilizar uma ligação lógica entre aplicações (processos) que estão a ser executadas em Sistemas Terminais diferentes.

Os protocolos de transporte são executados nos Sistemas Terminais, na medida em que o emissor parte a mensagem gerada pela aplicação em segmentos que passa à camada de rede por outro o lado o receptor junta os diferentes segmentos que constituem uma mensagem que passa à respectiva aplicação.

A Camada de Transporte é fulcral pois fornece uma comunicação lógica entre processos e usa e melhora os serviços disponibilizados pela camada de Rede.

2 Questões e Respostas

2.1 Uso da camada de transporte por parte das aplicações

Executando numa linha de comando: *sudo wireshark*. Foi capturado o tráfego em determinados instantes que se considerou adequados, observando a forma como as várias aplicações utilizam os serviços da camada inferior. Foi possível preencher a seguinte tabela.

Comando usado (aplicação)	Protocolo de aplicação (se aplicável)	Protocolo de transporte (se aplicável)	Porta de atendimento (se aplicável)	Overhead de transporte em bytes (se aplicável)
Ping				
traceroute		UDP	33434	8 (40-32)
telnet	TELNET	TCP	23	20
ftp	FTP	TCP	21	20
Tftp	TFTP	UDP	69	8
browser/http	HTTP	TCP	80	20
nslookup	DNS	UDP	53	8
ssh	SSH	TCP	22	20
Outras:				

2.2 Instalação, configuração e utilização de serviços de transferência de ficheiros

Nesta fase utilizou-se como o recomendado a topologia CC-Topo-2020.imn que se apresenta na figura 1 que descarregou-se da plataforma *elearning*.

Pretendeu-se transferir o mesmo ficheiro usando 4 serviços diferentes: SFTP, FTP, TFTP e HTTP, capturando todos os pacotes trocados durante a transferência utilizando o software Wireshark.

Figura 1: Topologia de Rede (backbone, acesso e local).

De forma atingir esse objectivo foi necessário verificar se o software (cliente e servidor) estava instalado; preparar uma pasta com os ficheiros a transferir (um ficheiro de texto e um ficheiro binário); executar o core com a topologia virtual CC-Topo-2020.imn.

Após as acções acima descritas foi possível transferir o mesmo ficheiro usando 4 serviços diferentes, como o pretendido.

${f 2.2.1}$ Representação num diagrama temporal das transferências da file1 por FTP e TFTP

Figura 2: Diagrama temporal da transferência da file1 por FTP.

54 74.244474	10.1.1.1	10.3.3.1	FTP	74 Request: TYPE I
55 74.244972	10.3.3.1	10.1.1.1	FTP	97 Response: 200 Switching to Binary mode.
56 74.245255	10.1.1.1	10.3.3.1	FTP	89 Request: PORT 10,1,1,1,223,189
57 74.245860	10.3.3.1	10.1.1.1	FTP	117 Response: 200 PORT command successful. Consider using PASV.
58 74.246273	10.1.1.1	10.3.3.1	FTP	78 Request: RETR file1
59 74.246961	10.3.3.1	10.1.1.1	TCP	74 20 - 57277 [SYN] Seq=0 Win=14600 Len=0 MSS=1460 SACK_PERM=1 TSval=490655 TSecr=0 WS=16
69 74.247983	10.1.1.1	10.3.3.1	TCP	74 57277 - 20 [SYN, ACK] Seq=0 Ack=1 Win=14480 Len=0 MSS=1460 SACK_PERM=1 TSval=490655 TSecr=490655 WS=16
61 74.247296	10.3.3.1	10.1.1.1	TCP	66 20 - 57277 [ACK] Seq=1 Ack=1 Win=14608 Len=0 TSval=498655 TSecr=490655
62 74.247238	10.3.3.1	10.1.1.1	FTP	130 Response: 150 Opening BINARY mode data connection for file1 (193 bytes).
63 74.247240	10.3.3.1	10.1.1.1	FTP-DATA	259 FTP Data: 193 bytes (PORT) (RETR file1)
64 74.247280	10.3.3.1	10.1.1.1	TCP	66 20 - 57277 [FIN, ACK] Seq=194 Ack=1 Win=14608 Len=0 TSval=490655 TSecr=490655
65 74.248190	10.1.1.1	10.3.3.1	TCP	66 57277 20 [ACK] Seq=1 Ack=194 Win=15552 Len=0 TSval=490655 TSecr=490655
66 74.248293	10.1.1.1	10.3.3.1	TCP	66 57277 → 20 [FIN, ACK] Seq=1 Ack=195 Win=15552 Len=0 TSval=490655 TSecr=490655
67 74.248483	10.3.3.1	10.1.1.1	TCP	66 20 - 57277 [ACK] Seq=195 Ack=2 Win=14608 Len=0 TSval=490655 TSecr=490655
68 74.249294	10.3.3.1	10.1.1.1	FTP	90 Response: 226 Transfer complete.

Figura 3: Captura Wireshark da transferência da file1 por FTP.

Figura 4: Diagrama temporal da transferência da file1 por TFTP.

54 74.244474	10.1.1.1	10.3.3.1	FTP	74 Request: TYPE I
55 74.244972	10.3.3.1	10.1.1.1	FTP	97 Response: 200 Switching to Binary mode.
56 74.245255	10.1.1.1	10.3.3.1	FTP	89 Request: PORT 10,1,1,1,23,189
57 74.245860	10.3.3.1	10.1.1.1	FTP	117 Response: 200 PORT command successful. Consider using PASV.
58 74.246273	10.1.1.1	10.3.3.1	FTP	78 Request: RETR file1
59 74.246961	10.3.3.1	10.1.1.1	TCP	74 20 57277 [SYN] Seq=0 Win=14600 Len=0 MSS=1460 SACK_PERM=1 TSval=490655 TSecr=0 WS=16
69 74.247983	10.1.1.1	10.3.3.1	TCP	74 57277 - 20 [SYN, ACK] Seq=0 Ack=1 Win=14480 Len=0 MSS=1460 SACK_PERM=1 TSval=490655 TSecr=490655 WS=16
61 74.247296	10.3.3.1	10.1.1.1	TCP	66 20 57277 [ACK] Seq=1 Ack=1 Win=14608 Len=0 TSval=490655 TSecr=490655
62 74.247238	10.3.3.1	10.1.1.1	FTP	130 Response: 150 Opening BINARY mode data connection for file1 (193 bytes).
63 74.247240	10.3.3.1	10.1.1.1	FTP-DATA	259 FTP Data: 193 bytes (PORT) (RETR file1)
64 74.247280	10.3.3.1	10.1.1.1	TCP	66 20 - 57277 [FIN, ACK] Seq=194 Ack=1 Win=14608 Len=0 TSval=490655 TSecr=490655
65 74.248190	10.1.1.1	10.3.3.1	TCP	66 57277 - 20 [ACK] Seq=1 Ack=194 Win=15552 Len=0 TSval=490655 TSecr=490655
66 74.248293	10.1.1.1	10.3.3.1	TCP	66 57277 - 20 [FIN, ACK] Seq=1 Ack=195 Win=15552 Len=0 TSval=490655 TSecr=490655
67 74.248483	10.3.3.1	10.1.1.1	TCP	66 20 - 57277 [ACK] Seq=195 Ack=2 Win=14608 Len=0 TSval=490655 TSecr=490655
68 74.249294	10.3.3.1	10.1.1.1	FTP	90 Response: 226 Transfer complete.
69 74 250048	10 1 1 1	10 3 3 1	TCD	66 55898 - 21 [ACK] Sen=130 Ack=390 Win=14608 Len=0 TSval=490656 TSecr=490655

Figura 5: Captura Wireshark da transferência da file1 por TFTP.

2.2.2 Distinção e comparação das quatro aplicações de transferência de ficheiros utilizadas

• SFTP

O Secure File Transfer Protocol (SFTP) é uma versão mais pesada e encriptada do FTP, que utiliza o protocolo de comunicação TCP. Por isso mesmo este protocolo é menos rápido que o FTP mas, em termos de segurança é superior.

• FTP

FTP (File Transfer Protocol) é um protocolo de transferência de ficheiros rápido e seguro que lhe permite através de um programa, enviar ficheiros e páginas web para o servidor. É um protocolo cliente/servidor que permite a transferência de ficheiros de um computador para outro, através de uma rede TCP/IP. Com o FTP, o utilizador tem à disposição uma configuração para login de acesso e senha e permite enviar directórios de documentos inteiros e de uma única vez, não tendo a menor necessidade de enviar documento por documento, o que leva a ganhar em velocidade e eficiência. Algo que torna a velocidade de transferência rápida em relação aos outros protocolos é que o FTP não coloca meta-data/overhead aos ficheiros enviadas é puro binário. Uma desvantagem do FTP em relação aos outros protocolos é cria duas conexões TCP, uma para envio de comandos e a segunda para o envio de a informação em si.

• TFTP

Trivial File Transfer Protocol (TFTP) é um protocolo que devido ao seu design simples é fácil de implementar, é um FTP mais simples que não proporciona autenticação de utilizadores e que usa UDP e por isso mesmo é um protocolo mais susceptível a perda de informações.

• HTTP

O Hypertext Transfer Protocol ao contrário do FTP reutiliza conexões TCP. Em transferência de ficheiros pequenos o HTTP é bastante eficiente, até mais eficiente do que o FTP, o mesmo não acontece em ficheiros de tamanho consideravelmente grande. Ao contrário de o FTP, o HTTP não requer nenhuma autenticação.

2.2.3 Influência de situações de perda ou duplicação de pacotes IP no desempenho global de Aplicações fiáveis

As características das ligações de rede têm uma enorme influência nos níveis de Transporte e de Aplicação. A perda de pacotes ocorre quando um determinado pacote não chega ao destino, isto pode acontecer devido a várias causas, se estivermos a falar de uma aplicação que use o protocolo de transporte TCP, como é o caso do FTP, este deteta as perdas, e se identificar uma, encarrega-se de fazer o pedido de retransmissão, isto leva a que bastantes pacotes sejam retransmitidos e assim sendo possivelmente provocar impacto no desempenho da aplicação, contudo é algo necessário para manter a informação fiável. No caso de uma aplicação que utilize UDP se existir uma perda de pacotes, não é possível recuperá-lo, isto em algumas aplicações como o caso do streaming não faz muita diferença mas em relação a aplicações fiáveis pode ser relevante.

Algo que também influencia o desempenho global de aplicações fiáveis são os pacotes duplicados. Este fator pode acontecer por várias razões, um cenário possível pode ser por exemplo termos um emissor e um recetor, o emissor envia dois pacotes para o recetor, o pacote 1 vai por um caminho na rede e o pacote 2 vai por outro caminho devido a routing, e por acaso o pacote 2 chega primeiro que o pacote 1, o recetor ao receber o pacote 2 antes do 1 deteta que lhe falta o pacote 1 e envia um ACK para notificar o emissor que lhe falta o pacote 1. O recetor ao receber este ACK envia de novo o pacote 1 tendo assim enviado dois pacotes do pacote 1. Se tivermos a falar de uma aplicação que use o protocolo de transporte TCP o recetor ao receber pela segunda vez o pacote 1, deteta que é duplicado e ignora-o simplesmente, se não for este caso e usar o protocolo de transporte UDP, o protocolo não tem forma de detetar que se trata de um pacote duplicado e entrega-o como informação válida á aplicação, o que claramente para aplicações fiáveis não é aconselhável.

3 Conclusão

O presente relatório descreveu, de forma sucinta, a resolução das questões propostas utilizando os softwares disponibilizados pelos docentes.

Após a realização deste trabalho, ficamos conscientes dos vários aspectos do Protocolos da Camada de Transporte.

Consideramos que os principais objectivos foram cumpridos.

Sentimos que a realização deste trabalho prático consolidou os nossos conhecimentos dos Protocolos da Camada de Transporte..