

Tutorial rápido da plataforma NI Elvis

- 1. Ligar a placa e certificar que o cabo USB esta conectado ao computador
- 2. Iniciar barra de ferramentas dos instrumentos virtuais através do ícone

A seguinte barra de ferramentas será aberta:

Sugere-se testar os instrumentos virtuais no num circuito RC como mostrado abaixo:

Funções apresentadas neste manual:

- A Gerador de função (FGEN)
- B Osciloscópio (Scope)
- C Multimetro Digital (DMM)
- D- Analisador de Impedância (Imped.)
- E Fonte de Tensão Variável (Variable Power Supply VPS)
- F Diagrama de Bode: Ganho e Fase (Bode)
- Anexos

A - Gerador de função (FGEN)

- 1. Conectar o cabo BNC-Protoboard na saída FGEN no lado esquerdo da placa;
- 2. Abrir o NI Elvis instrument launcher;
- 3. Clicar em 'FGEN';
- 4. Escolher a forma da onda (seno, triangular ou quadrada);
- 5. Escolher a frequência;
- 6. Escolher a amplitude da forma de onda escolhida e um "DC Offset";
- 7. Em Signal Route, escolher a opção FGEN BNC;
- 8. RUN.

Obs. 1: Também é possível gerar o sinal através do borne FGEN do protoboard bastando para isso selecionar a opção "*Prototyping board*" na opção Signal Route.

Obs. 2: Pode-se controlador manualmente a frequência e a amplitudo do sinal através do protoboard selecionando a opção *Manual Mode*.

B - Osciloscópio (Scope)

Após ligar a placa e certificar que o cabo USB esta conectado ao computador:

- 1. Abrir o NI Elvis instrument launcher;
- 2. Clicar em 'SCOPE';
- 3. Selecionar o tipo de entrada em Source (SCOPE CH0, SCOPE CH1)
- 4. Conectar o cabo BNC-Protoboard nas saídas CH0 e CH1 no lado esquerdo da placa;
- 5. Permitir a visualização dos canais que quiser, marcando a caixa 'Enabled';
- 6. Selecione o acoplamento desejado (Coupling);
- 7. Configure o trigger (Edge);
- 8. Configurar aquisição (Run Continuously);
- 9. RUN;
- Ajuste a escala e a visualização utilizando os botões 'scale volts/div' e 'time/div', para melhor visualização.

Obs.: Também é possível utilizar as entradas digitais AI 0 até AI 7 para leitura dos sinais no osciloscópio bastando configurar a opção *Source* e conectar os sinais nas bornes (+) e (-).

Exemplo:

C - Multimetro Digital (DMM)

 Clicar no ícone DMM para selecionar o multímetro digital. Pode ser utilizado para operações de tensão, corrente, resistência, capacitância entre outros. Conforme dito, as ligações dos fios corretas são mostradas no painel, conforme figura abaixo;

Medição de Tensão e Resistência:

- 2. Conectar duas (2) bananas para realização a medição, nas entradas de tensão (V) e comum (COM), encontradas do lado esquerdo do NI Elvis.
- 3. Clicar no ícone Ohm (Ω) para medição de resistência.
- 4. Clicar na seta verde "Run" para medir a resistência.

Medição de Corrente:

5.

6. Conectar duas (2) bananas para realização a medição, nas entradas de corrente (A) e comum (COM), encontradas do lado esquerdo do NI Elvis.

D-Impedância (Imped)

Complete os seguintes passos para visualizar o fasor em tempo real:

- Selecione Impedance Analyzer (Imped) na janela Ni Elvis Instruments Launcher;
- 2. Coloque seus componentes na protoboard do NI ELVIS II
- 3. Conecte as entradas do analisador de impedância DUT+ e DUT- nos terminais do circuito ou componente
- 4. Ligue a protoboard do ELVIS II e clique em RUN
- 5. Ajuste o valor da frequência aplicada ao circuito e observe a mudança da reatância (módulo) quando a frequência é aumentada ou diminuída
- 6. Mude a frequência aplicada ao circuito para 100, 500, 1000, 1500 Hz e verifique a movimentação do fasor.

E - Fonte de Tensão Variável (Variable Power Supply - VPS)

- 1. A partir do instrumento NI ELVIS II, selecionar o ícone de VPS.
- 2. Selecione amplitude em Supply + e/ou Supply -
- RUN
- 4. A saída de tensão DC será no bornes do protoboard (Supply+)-(Ground) ou (Supply+)-(Supply -) do *Variable Power Supplies*, conforme indicado na figura abaixo.

Obs.: Pode-se controlador manualmente as amplitudes de Supply + e Supply – pelo protoboard selecionando a opção *Manual*.

F - Diagrama de Bode: Ganho e Fase (Bode)

- 1. A partir do instrumento NI ELVIS II, selecionar o ícone de Bode.
- 2. Selecione a faixa de frequência (Start / Stop Frequency)
- 3. Conectar a saída de sinal FGEN (**FGEN BNC** ou borne FGEN do protoboard) a entrada do circuito e ao borne Al 1+.
- 4. A saída do circuito vai de Al 0+ para o terra.
- 5. O terra é conectado ao Al 1- e Al 0-.
- 6. Verificar se o circuito está correto. Clicar no botão [Run].
- 7. Clicar no botão [Log] e salvar os dados.

ANEXOS

IX. Dynamic Signal Analyzer

Purpose: To display the input signals in the frequency domain.

Connections: Choose between one of eight sets of +/- analog channels on the top-left corner of the breadboard.

Operation: Any voltage signal can be connected to an analog channel and analyzed with this instrument. It will display the signal in the frequency domain, as well as a smaller display in the time domain.

X. Arbitrary Waveform Generator

Purpose: To produce arbitrary voltage waveforms as designed by NI's waveform editor.

Connections: The two sets of analog output holes labeled DAC0 and DAC1 on the lower-left side of the breadboard.

Operation: The two output channels are between either DAC0 and ground or DAC1 and ground. It is assumed that ground is found elsewhere. In order to produce a waveform, the user must first be create a .wdt file using NI's Waveform Editor. There is a shortcut to this program just below the display.

XIV. Two-Wire Current-Voltage Analyzer

Purpose: To analyze the current-voltage characteristic of a twoterminal element or simple circuit.

Connections: Uses either the Current Hi/Lo holes on the lower-left side of the breadboard or the same banana plugs on the front of the breadboard.

Operation: Connect Current Hi to one side of the element or simple circuit, and Current Lo to the other. The instrument sweeps through several voltages and measures the current for each.

XV. Three-Wire Current-Voltage Analyzer

Purpose: To analyze the current-voltage characteristic of a threeterminal device or simple circuit.

Connections: Uses the Current Hi, Current Lo and 3-Wire holes on the lower-left side of the breadboard.

Operation: Connect the device as shown in the lower-left corner. B, C and E nodes are G, D and S in MOSFETs.

The instrument sweeps through collector voltages for a number of base currents and measures the collector current. Each base current lends a different colored curve on the plot.