NOTES OF GAME THEORY

From Prof. Gianni Arioli's lectures for the MSc in Mathematical Engineering

by Teo Bucci

Politecnico di Milano A.Y. 2021/2022

Contents

	grammazione Lineare
1.1	Esercizio 1
1.2	Esercizio 2
	Esercizio 3
1.4	Esercizio 4
1.5	Esercizio 5
1.6	Esercizio 6
1.7	Esercizio 7
1.8	Esercizio 8
1.9	Esercizio 9
1.10	Esercizio 10

Chapter 1

Programmazione Lineare

1.1 Esercizio 1

Parametri

P porti, i = 1, 2, 3

 c_i costo per porto per ogni vettura (150, 250, 200)

 t_i costo fisso porto

S centri di smistamento, $j=1,\ldots,4$

 k_i costo di invio dal porto i al km

 a_{ij} distanza dal porto i al centro j

 r_i richiesta del centro j

 d_i capacità del porto i

Variabili

 $x_{ij} \geq 0, x_{ij} \in \mathbb{Z}$ numero di automobili dal porto i al centro j

 $y_i \in \{0,1\}$, uguali a 1 se uso il porto i

 $z_{ij} \in \{0,1\}$, uguali a 1 se il porto i rifornisce il centro j

Funzione obiettivo

$$\min \left\{ \underbrace{\sum_{ij} c_i x_{ij}}_{\text{auto}} + \underbrace{\sum_{i} t_i y_i}_{\text{porto}} + \underbrace{\sum_{ij} a_{ij} k_i x_{ij}}_{\text{trasporto}} \right\}$$

Vincoli

$$\sum_{i} x_{ij} \ge r_j, \forall j \in S$$

$$\sum_{j} x_{ij} \le d_i y_i, \forall i \in P$$

$$\sum_{i} z_{i,3} = 1$$

$$x_{ij} \le d_i z_{ij}, \forall i \in P, \forall j \in S$$

 $z_{22} \le z_{24}$

1.2 Esercizio 2

Parametri

A aeroporti

H hangar

 c_j, s_j, t_j operatori $\forall j \in H$

 g_1 costo squadra 1

 g_2 costo squadra 2

 g_3 costo squadra 3

1c	1s	1t
3c	1s	X
3c	2s	2t

Variabili

 $x_j \ge 0, x_j \in \mathbb{Z}$ squadre tipo 1

 $y_j \geq 0, y_j \in \mathbb{Z}$ squadre tipo 2

 $z_j \geq 0, z_j \in \mathbb{Z}$ squadre tipo 3

 $\varphi \in \{0,1\}$, uguale a 1 se uso 3 squadre di tipo 2

 $w_{ij} \in \{0,1\}$, uguale a 1 se aereo i in hangar $j, \forall i \in A, \forall j \in H$

Funzione obiettivo

$$\min \sum_{j} (x_j g_1 + y_j g_2 + z_j g_3)$$

Vincoli

$$\sum_{i} w_{ij} = 1, \forall i \in A$$

$$\left. \begin{array}{lll} x_j & +3y_j & +3z_j & \geq \sum_i c_j w_{ij} & \forall j \in H \\ x_j & +y_j & +2z_j & \geq \sum_i s_j w_{ij} & \forall j \in H \\ x_j & & +z_j & \geq \sum_i t_j w_{ij} & \forall j \in H \end{array} \right\} \text{ operai}$$

$$y_j \geq 3 \overset{\text{(A)}}{\Rightarrow} \varphi = 1 \overset{\text{(B)}}{\Rightarrow} z_j \geq 2$$

(A)
$$\sum_{j} y_{j} - 2 \leq M\varphi$$

(B)
$$2\varphi \leq \sum_{i} z_{i}$$

1.3 Esercizio 3

Parametri

 $p_j, j = 1, 2$

 r_j pretto vendita

 d_j domanda

I materie prime $i \in I$

 c_i disponibilità

 g_i costo unitario materie prima

 g_{ji} materia i necessaria per j

 o_1 ore p_1 da materia prima

 o_2 ore p_2 da materia prima

oppure ottengo p_2 con

bunità di p_1 per p_2

 o_3 ore lavorazione $(p_2 da p_1)$

k costo fisso attivazione

 ${\cal O}$ ore a disposizione

Variabili

1.4. Esercizio 4

 $x_j \geq 0, x_j \in \mathbb{Z}$ unità di prodotto j da materie prime $y \geq 0, y \in \mathbb{Z}$ unità di prodotto 2 da prodotto 1

 $z \in \{0,1\}$, uguale a 1 se attivo processo produttivo Funzione obiettivo

$$\max \left\{ [r_1(x_1 - by) + r_2(x_2 + y)] - \left[\sum_{ij} g_i q_{ji} x_j + kz \right] \right\}$$

Vincoli

 $y \leq Mz$

 $(x_1 - by) \ge d_1$

 $(x_2 - y) \ge d_2$

 $\sum_{i} q_{ji} x_j \leq c_i, \forall i \in I$

 $o_1 x_1 + o_2 x_2 + o_3 y \le O$

1.4 Esercizio 4

Parametri

Tgruppi $i \in T$

 p_i persone

Jaerei $j \in J$

 c_j costo noleggio

 B_j capienza aereo

A aeroporto $k \in A$

 G_k max voli per aeroporto

 l_{jk} costo di far partire j da k

R sottoinsiemi di aeroporti vicini

 S_r con $r=1,\ldots,R$, al più un aeroporto

Variabili

 $x_{ij} \in \{0,1\}$, uguale a 1 se gruppo i ad aereo j

 $y_{jk} \in \{0,1\}$, uguale a 1 se aereo j parte da k

 $z_j \in \{0,1\}$, uguale a 1 se uso aereo j

 $w_k \in \{0,1\}$, uguale a 1 se uso aeroporto k

Funzione obiettivo

$$\min\left\{\sum_{j}c_{j}z_{j}+\sum_{jk}l_{jk}y_{jk}\right\}$$

Vincoli

$$\sum_{i} x_{ij} \le M z_j, \forall j \in J$$

$$\sum_{i} p_i x_{ij} \le B_j, \forall j \in J$$

$$\sum_{j} y_{jk} \le G_k w_k, \forall k \in K$$

$$\sum_{k \in S_r} w_k \le 1, \forall r = 1, \dots, R$$

$$\sum_{i} x_{ij} = 1, \forall i \in I$$

$$\sum_{k} y_{jk} = z_j, \forall j \in J$$

1.5 Esercizio 5

Parametri

P domande iscrizione $i \in P$

 $M \subset P, F \subset P$, uomini, donne $(M \cup F = P, M \cap F = \emptyset)$

n max persone per classe

d massimo classi ($D = 1, \ldots, d$ insieme classi)

 b_i preparazione di i

q livello minimo per classe

C coppie formate $(i,j) \in C, i \in M, j \in F$

Variabili

 $x_{ik} \in \{0,1\},$ uguale a 1 se persona i in classe k

 $y_i \in \{0,1\}$, uguale a 1 se accetto domanda

Funzione obiettivo

$$\max \sum_{i} y_i$$

Vincoli

 $\sum_{i \in P} x_{ik} \leq n, \forall k \in D$ capacità classe

 $\sum_{i \in M} x_{ik} = \sum_{i \in F} x_{ik}, \forall k \in D$ ugualiM/F

 $\sum_{i \in P} x_{ik} b_i \ge q \sum_{i \in P} x_{ik}, \forall k \in D$ preparazione

 $y_i \leq \sum_{k \in D} x_{ik}, \forall i \in P \text{ bigM}$

 $\sum_{k \in D} x_{ik} \leq 1, \forall i \in P \text{ massimo } 1 \text{ corso per persona}$

 $x_{ik} = x_{jk}, \forall (i,j) \in C, \forall k \in D$ coppie

1.6 Esercizio 6

Parametri

A insieme altiforni $i = 1 \dots N, i \in A$

 m_i max quintali per altiforno

P prodotti $j \in P$

 q_{1j} prodotto j da 1 quintale di materia prime con processo 1 (prodotto/quintale)

 q_{2j} prodotto j da 1 quintale di materia prime con processo 2 (prodotto/quintale)

 r_i richiesto prodotto

 c_{1i} costo lavorazione al quintale in altiforno i con processo 1 (euro/quintale)

 c_{2i} costo lavorazione al quintale in altiforno i con processo 2 (euro/quintale)

 f_i costo attivazione processo 2 in altiforno iVariabili

 $w_i \in \{0,1\}$, uguale a 1 se lavoro più di q

 $y_i \in \{0,1\}$, uguale a 1 se uso processo 2

 $x_{ij1} \geq 0, x_{ij1} \in \mathbb{Z}$ prodotto j con processo 1 in altiforno i

 $x_{ij2} \geq 0, x_{ij2} \in \mathbb{Z}$ prodotto j con processo 2 in altiforno i

Funzione obiettivo

$$\min \left\{ \sum_{i} y_i f_i + \sum_{ij} \left[c_{1i} \frac{x_{ij1}}{q_{1j}} + c_{2i} \frac{x_{ij2}}{q_{2j}} \right] \right\}$$

1.7. Esercizio 7

Vincoli

 $\sum_{i} x_{ij2} \leq My_i, \forall i \in A \text{ bigM}$

$$\sum_{j} \left[\frac{x_{ij1}}{q_{1j}} + \frac{x_{ij2}}{q_{2j}} \right] \leq m_i, \forall i \in A$$
 capacità

$$\sum_{i}[x_{ij1}+x_{ij2}]\geq r_{j}, \forall j\in P$$
richiesta

 $\sum_i y_i \leq N-1$ no processo 2 su tutti gli altiforni

 $\sum_i w_i \geq 1$ almeno 1 usa più diq quintali

$$qw_i \leq \sum_{ij} \left[\frac{x_{ij1}}{q_{1j}} + \frac{x_{ij2}}{q_{2j}} \right], \forall i \in A$$
vincolo logico

1.7 Esercizio 7

Parametri

C cioccolatini $i \in C$

S confezioni regalo $j \in S$

 r_{ij} richieste cioccolatini i in confezione j

 g_i costo cioccolatino

 m_i max produzione

 p_i vendita cioccolatino sfuso i

 d_i vendita confezione j

 b_i costo scatola j**Variabili**

 $x_i \geq 0, x_i \in \mathbb{Z}$ numero cioccolatini i prodotti

 $y_j \geq 0, y_j \in \mathbb{Z}$ numero confezionij prodotte

 $z \in \{0,1\}$, uguale a 1 se acquisto almeno q scatole

Funzione obiettivo

$$\max \left\{ \underbrace{\sum_{j} d_{j} y_{j}}_{\text{confezioni}} + \underbrace{\sum_{i} p_{i} \left(x_{i} - \sum_{j} r_{ij} y_{j} \right)}_{\text{sfusi}} - \underbrace{\sum_{i} g_{i} x_{i}}_{\text{costo prod.}} - \underbrace{\sum_{j} b_{j} y_{j}}_{\text{costo scatole}} + \underbrace{zB}_{\text{sconto}} \right\}$$

Vincoli

 $x_i \geq \sum_j r_{ij} y_j, \forall i \in I$ richiesta

 $x_i \leq m_i, \forall i \in I$ capacità

 $\sum_{j} y_{j} \geq Qz$ sconto

 $x_1 \ge 0.2 \cdot \sum_i x_i$ quolità

1.8 Esercizio 8

Parametri

D difensori

A attaccanti

G giocatori $i \in G$

 $r_i \in \{0,1\}$, uguale a 1 se giocatore i è attaccante

 v_i valore giocatore

B valore complessivo formazione

q giocatori non giocanti

K formazioni |K|=2

Variabili

 $z \geq 0, z \in \mathbb{Z}$ valore formazione di minimo valore $x_{ik} \in \{0, 1\}$, uguale a 1 se giocatore i è nelle formazione k $y_i \in \{0, 1\}$, uguale a 1 se i gioca in entrambe

Funzione obiettivo

 $\max z$

Vincoli

$$\begin{split} &\sum_{i} r_{i} x_{ik} = A, \forall k \in K \\ &\sum_{i} (1 - r_{i}) x_{ik} = D, \forall k \in K \\ &\sum_{i} v_{i} x_{ik} \geq B, \forall k \in K \text{ minimo valore richiesto} \\ &(|G| - \sum_{i} y_{i}) \geq q \text{ almeno } q \text{ non giocanti entrambe} \\ &(\sum_{k} x_{ik} - 1) \leq M y_{i}, \forall i \in I \text{ bigM} \\ &z \leq \sum_{i} v_{i} x_{ik}, \forall k \in K \text{ bottleneck} \end{split}$$

1.9 Esercizio 9

Parametri

Bbeni $i \in B$

Mmagazzino $j \in M$

Aluoghi distribuzione $k \in A$

 c_i costo bene i

 \boldsymbol{v}_i spazio occupato da i in magazzino

 b_j capacità

 f_j costo fisso magazzino se usato

 g_{jk} costo trasporto bene da ja k

 d_{ik} richiesta bene i a k

Variabili

 $y_j \in \{0,1\}$, uguale a 1 se uso j $z_{ijk} \geq 0, z_{ijk} \in \mathbb{Z} \text{ numero di beni } i \text{ da } j \text{ a } k$

Funzione obiettivo

$$\min \left\{ \sum_{ijk} c_i z_{ijk} + \sum_j f_j y_j + \sum_{ijk} z_{ijk} g_{jk} \right\}$$

Vincoli

$$\sum_{j} z_{ijk} \ge d_{ik}, \forall i \in I, \forall k \in K \text{ richiesta}$$

$$\sum_{ik} v_i z_{ijk} \le b_j y_j, \forall j \in J \text{ bigM e capacità}$$

1.10 Esercizio 10

Parametri

$$C$$
 analisi $i \in C, i = 1, ..., 4$
 O ospedali $j \in O, j = 1, ..., 5$
 d_{ij} tempo da i a j

1.10. Esercizio 10 7

 \boldsymbol{r}_j richieste analisi

 b_i max analisi nel centro i

Variabili

 $x_{ij} \geq 0, x_{ij} \in \mathbb{Z}$ numero analisi al centro i per ospedale j $z_{2i} \in \{0,1\},$ uguale a 1 se 2 si serve da i

Funzione obiettivo

$$\min \sum_{ij} a_{ij} x_{ij}$$

Vincoli

$$\begin{split} & \sum_{j} x_{1j} \leq 0.8 \cdot \left(\sum_{j} x_{2j} + x_{3j}\right) \\ & \sum_{j} x_{2j} \leq 0.6 \cdot \left(\sum_{j} x_{ij} + x_{3j}\right) \\ & \sum_{j} (x_{3j} + x_{4j}) \leq 0.5 \cdot \sum_{ij} x_{ij} \end{split} \right\} \text{ qualità} \\ & \sum_{i} x_{ij} = r_{j}, \forall j \in J \text{ richiesta} \\ & \sum_{j} x_{ij} \leq b_{i}, \forall i \in I \text{ capacità} \\ & \sum_{j} z_{2i} = 1 \\ & x_{i2} \leq b_{i} z_{2i}, \forall i \in I \text{ bigM} \end{split}$$