Задачи к лекции 2

- **1.** Найдите все подгруппы в группах S_3 и A_4 .
- **2.** Пусть G группа и $H \subset G$ подгруппа индекса 2. Докажите, что H нормальна в G.
- **3.** Проверьте, что подгруппы $A_n \subset S_n$ и $\mathrm{SL}_n(\mathbb{R}) \subset \mathrm{GL}_n(\mathbb{R})$ нормальны. Опишите факторгруппы S_n/A_n и $\mathrm{GL}_n(\mathbb{R})/\mathrm{SL}_n(\mathbb{R})$.
- **4.** Докажите, что подгруппа H группы G является нормальной тогда и только тогда, когда H является ядром некоторого гомоморфизма $\varphi \colon G \to F$.
- **5.** Приведите пример гомоморфизма групп $\varphi \colon G \to F$, для которого подгруппа $\operatorname{Im} \varphi$ не является нормальной в F.
- **6.** Найдите все изоморфизмы между группами $(\mathbb{Z}_4, +)$ и $(\mathbb{Z}_5 \setminus \{0\}, \times)$.
- **7.** Найдите все гомоморфизмы из группы \mathbb{Z}_{12} в группу \mathbb{Z}_{15} .
- 8. Изоморфны ли группы
 - (a) $(\mathbb{R}, +)$ и $(\mathbb{R} \setminus \{0\}, \times)$?
 - (б) $(\mathbb{Q}, +)$ и $(\mathbb{Q} \setminus \{0\}, \times)$?
- **9.** Докажите, что группы $(\mathbb{R},+)$ и $(\mathbb{Q},+)$ не допускают сюръективных гомоморфизмов в группу $(\mathbb{Z},+)$.
- 10. Докажите, что
 - (a) подгруппа $V_4 = \{e, (12)(34), (13)(24), (14)(23)\}$ в группе S_4 является нормальной;
 - (6) $S_4/V_4 \simeq S_3$.
- **11.** Приведите пример цепочки групп $H_1 \subset H_2 \subset G$, где H_1 нормальна в H_2 , H_2 нормальна в G, но H_1 не нормальна в G.
- **12.** Для каждой группы G определим множество $Z(G) = \{a \in G \mid ag = ga \text{ для всех } g \in G\}$, называемое её *центром*.
 - (a) Докажите, что Z(G) является нормальной подгруппой в G.
 - (б) Найдите центры групп $S_n, A_n, \operatorname{GL}_n(\mathbb{R})$ и $\operatorname{SL}_n(\mathbb{R})$.

Домашнее задание

- **1.** Пусть G группа всех невырожденных нижнетреугольных (2×2) -матриц с коэффициентами из \mathbb{R} . Докажите, что все содержащиеся в G матрицы вида $\begin{pmatrix} a & 0 \\ b & a^2 \end{pmatrix}$ образуют нормальную подгруппу в G.
- **2.** Найдите все гомоморфизмы из группы \mathbb{Z}_{20} в группу \mathbb{Z}_{16} .
- **3.** Пусть H подгруппа всех элементов конечного порядка в группе ($\mathbb{C} \setminus \{0\}, \times$). Докажите, что $H \simeq \mathbb{Q}/\mathbb{Z}$, где группы \mathbb{Q} и \mathbb{Z} рассматриваются с операцией сложения.
- **4.** Пусть $m, n \in \mathbb{N}$. Докажите, что следующие условия эквивалентны:
 - (1) m, n взаимно просты;
 - (2) для всякой группы G, всякой подгруппы $A\subseteq G$ порядка m и всякой погруппы $B\subseteq G$ порядка n выполняется условие $A\cap B=\{e\}.$