MFC CDT Probability and Statistics Coursework

Leo Collins

December 30, 2024

1 Model

The model will be a two-dimensional linear Gaussian state space model

$$\mathbf{x}_t = \mathbf{A}\mathbf{x}_{t-1} + \mathbf{w}_t \tag{1}$$

where $\mathbf{x}_t \in \mathbb{R}^2$ is the state vector at time t, \mathbf{A} is the state transition matrix, and $\mathbf{w}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{Q})$ is the process noise at time t with covariance matrix \mathbf{Q} . At each time t the state is observed according to

$$\mathbf{y}_t = \mathbf{C}\mathbf{x}_t + \mathbf{v}_t \tag{2}$$

where $\mathbf{y}_t \in \mathbb{R}^2$ is the observation vector at time t, \mathbf{C} is the observation matrix, and $\mathbf{v}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{R})$ is the observation noise at time t with covariance matrix \mathbf{R} .

- 2 Kalman Filter
- 3 Particle Filter
- 4 Results