

# **ROBOSTEM Project**



Agreement no: 2019-1-RO01-KA202-063965

## <u>Plan lekcji - Fizyka</u>

**Temat:** Zautomatyzowany pilot z ARDUINO. (6 h)

**Grupa docelowa:** 10

### Cele:

Cel.1. Modernizacja nauczania przedmiotów STEM w szkole średniej.

Cel.2. Zwiększenie efektywności nauczania przedmiotów STEM.

Cel.3. Rozbudzanie zainteresowania uczniów przedmiotami STEM.

Cel.4. Uzasadnienie zastosowania urządzenia. Zastosowanie urządzenia.

Cel.5. Łączenie obserwacji praktyczno-eksperymentalnych

z demonstrowaniem i definiowaniem określonych pojęć.

Cel.6. Właściwe użytkowanie sprzętu.

### Zastosowane podejście/metodologia:

Uczniowie wybierają urządzenia i elementy potrzebne do wykonania urządzenia na podstawie schematu. W pierwszym etapie łączy elementy, aby powstało urządzenie (mechatronika). W drugim etapie wykonują połączenia elektryczne między płytką ARDUINO a urządzeniami peryferyjnymi (elektronika). W trzecim etapie programuje urządzenie.

## Środki/narzędzia/technologia edukacyjna

- 2 silniki DC 3-6V
- -Płytka rozwojowa UNO kompatybilna z Arduino
- -Płytka prototypowa z okablowaniem fotograficznym 5x7 cm
- -moduł czujnika ultradźwiękowego czujnik odległości HC-SR04
- -H-Bridge L9110S dla silnika prądu stałego
- -Samochód z pilotem (koła)
- Bateria telefonu o pojemności 5000 mAh, 5V i 2A Na przykład. Kalkulatory, komputery, Internet, arkusz kalkulacyjny (np. Excel)

#### Plan pracy

| · · · · · · · · · · · · · · · · · · · |                                   |               |
|---------------------------------------|-----------------------------------|---------------|
| Czas                                  | Działania                         | Metody/środki |
| 10 min                                | Teoretyczne podejście do problemu | Projektor /   |
|                                       |                                   | tablica       |



## **ROBOSTEM Project**



Agreement no: 2019-1-RO01-KA202-063965

| 20 min  | Opis konfiguracji urządzenia.                                        | Schematy<br>mechaniczne<br>i elektroniczne                               |
|---------|----------------------------------------------------------------------|--------------------------------------------------------------------------|
| 20 min  | Opis obsługi używanego sprzętu, takiego jak: letcon, oscyloskop itp. | Urządzenia<br>mechaniczne,<br>elektroniczne,<br>pomiarowe<br>i kontrolne |
| 100 min | Wykonanie urządzenia                                                 | Stanowisko pracy                                                         |
| 100 min | Programowanie urządzeń                                               | Komputer                                                                 |
| 30 min  | Etap testowania urządzenia                                           | Dyskusje<br>z uczniami                                                   |
| 20 min  | Możliwości rozwoju urządzeń                                          | Dyskusje<br>z uczniami                                                   |

## Ocena/informacje zwrotne:

Nauczyciele i uczniowie, którzy wzięli udział w programie, rozwinęli się osobiście i zdobyli nową wiedzę. Uczniowie odnowili swoje zainteresowanie przedmiotami STEM, głównie dzięki ćwiczeniom laboratoryjnym, a w drugiej kolejności dzięki pracom syntetycznym. Dzięki praktycznemu szkoleniu w zakresie laboratoryjnych technik STEM uczniowie nabrali pewności siebie, zwiększając współpracę między sobą i wzmacniając umiejętność pracy w zespole oraz poprawiając komunikację między nauczycielem a uczniami.

## Bibliografia:

- 1. ARDUINO pentru toți / <a href="http://www.robofun.ro">http://www.robofun.ro</a>
- Îndrumător laboratoria microcontrolere ARDUINO / Sebastian Petru SABOU / U.T. PRESS CLUJ-NAPOCA, 2018 ISBN 978-606-737-341-7