DM-Spring-2020-Q2-Grade

17 Questions

- **1.** Select the intercept-only models, if any:
- 1/12 **A** y=b0+b1*x
- 0/12 **B** y=b0+b1*x1+b2*x2
- 0/12 **D** $y=e^{(b1*x)}$
- 1/12 E I do not know
 - **2.** The interpretation of adjusted R^2 for multiple linear regression is the same as the interpretation of R^2 for simple linear regression.
- **5/12 A** True
- **7/12 B** False
- 0/12 C I do not know
 - **3.** Which one is observable ("visible")?
- 10/12 A e (residuals)
 - 1/12 **B** ϵ (regression error)
- 0/12 C neither
- 1/12 D I do not know
 - **4.** The estimation of β is distributed as:
- **0/12 A** $b \sim N(0, \sigma^2)$
- **2/12 B** $b \sim N(\beta, \sigma^2)$
- 7/12 **C** $b \sim N(\beta, \sigma^2(X^TX)^{-1})$
- 1/12 **D** It does not have distribution
- 2/12 E I do not know

5.	. Но	w many parameters are estimated by OLS in the case of simple linear regression?
3/12	A	1
7/12	В	2
2/12	C	3
0/12	D	I do not know
_	_	
		timation of e (residuals) is distributed as:
		$e \sim N(0, \sigma^2)$
5/12		$e \sim N(0, \sigma^2 M)$ (M is a matrix)
1/12		It does not have distibution
0/12	D	I do not know
7.	. bp	parameters can be computed using only
9/12	A	OLS
0/12	В	ML
3/12	C	Neither
0/12	D	I do not know
8.	. In	the case of multiple linear regression
3/12	A	adj R^2 < 1 (always)
9/12	В	adj R^2 <= 1 (always)
0/12	C	I do not know
9.	. b=	
10/12	A	$(X'X)^{-1}X'Y$
2/12	В	$(X'X)^{-1}Y'X$
0/12	C	$(Y'X)^{-1}Y'X$
0/12	D	I do not know
10.	. Th	e total sum of squares equals
12/12	A	Sum((y-mean(y))^2)
0/12	В	Sum((y_hat-mean(y))^2)
0/12	C	Sum((y-y_hat)^2)

0/12 D I do not know

11.	Th	e regression sum of squares equals
1/12	A	Sum((y-mean(y))^2)
7/12	В	Sum((y_hat-mean(y))^2)
4/12	C	Sum((y-y_hat)^2)
0/12	D	I do not know
12.	. If F	RSS is the regression sum of squares and ESS is the error sum of squares then
7/12	A	R2 = 1 - ESS/TSS
4/12	В	R2 = ESS/TSS
1/12	C	R2 = ESS/RSS
0/12	D	I do not know
13.	Мι	ulticollinearity occurs when
10/12	A	rank(X) <m (m="" explanatory="" is="" number="" of="" th="" the="" variables)<=""></m>
0/12	В	$var(\varepsilon) = \sigma^2 I$
0/12	C	E(ε)=0
1/12	D	cov(ɛi,ɛj)=const
1/12	E	I do not know
14.	. In	simple linear regression model response variable (y) can be
0/12	A	binary
0/12	В	categorical
12/12	C	numeric
0/12	D	ordinal
0/12	E	I do not know
15.	. In	a simple linear regression model, explanatory variables can be
0/12	A	binary
0/12	В	categorical
7/12	C	numeric
0/12	D	ordinal
0/12	E	I do not know
5/12	F	all answers are correct

0/12 G Neither

- **16.** If A is a matrix, X is the vector of random variables, then var(AX) = 5/12 A 'var(X)A
- **4/12 B** A^2var(X)
- **1/12 C** var(x)
- 0/12 D Can not be calculated
- 2/12 E I do not know
 - 17. Which of the answers can be used to conclude about the significance of variables (if any)?
- 8/12 A t values
- 0/12 **B** Estimated coefficients (only)
- 4/12 **c** SE of estimated coefficients (only)
- 0/12 D I do not know