

Pamięć masowa

- Pamięć masowa to trwały nośnik pamięci, który w odróżnieniu do pamięci operacyjnej, może przechowywać (bez podtrzymywania elektrycznego) informacje przez długi czas.
- Adresowanie pamięci masowej zależy od jej typu, ale nie jest to adresowanie bezpośrednie, jak w przypadku pamięci operacyjnej.
- Rodzaje:
 - Pamięć magnetyczna: dysk twardy (HDD, ang. hard disk drive), ale też dyskietka (ang. floppy disk drive), taśma magnetyczna (ang. magnetic tape).
 - Pamięć optyczna: dysk CD (ang. compact disk), dysk DVD (ang. Digital Video Disc lub Digital Versatile Disc), dysk
 BD (ang. Blu-ray Disc).
 - Pamięć półprzewodnikowa: dysk SSD (ang. Solid State Drive), NVM (ang. Non-volatile memory): pamięć typu flash, pamięć USB, karty pamięci.

Budowa dysku twardego

- Dysk twardy składa się z:
 - Talerz (ang. platter): 1.8-3.5" dwustronna powierzchnia magnetyczna.
 - o Głowica czytająco-pisząca (ang. head).
 - Ramię z głowicami (ang. arm).
- Powierzchnia talerza:
 - Ścieżki (ang. tracks), które podzielone są na:
 - Sektory (ang. sectors), których zbiór przy danej pozycji ramienia to:
 - Cylinder (ang. cylinder).
- Każdy sektor posiada stały rozmiar i jest to najmniejsza jednostka transferu (obecnie najczęściej 4KB).
- Prędkość obrotowa: 5'400, 7'200, 10'000, 15'000.

Źródło: A. Silberschatz, Operating Systems Concepts Essentials

Odczyt własności dysku twardego: NVMe

```
Disk /dev/nvme0n1: 1953525168 sectors, 931.5 GiB
Model: KINGSTON SA2000M81000G
Sector size (logical/physical): 512/512 bytes
Disk identifier (GUID): 15F70755-2100-47E8-B0DF-F5D42D92599B
Partition table holds up to 128 entries
Main partition table begins at sector 2 and ends at sector 33
First usable sector is 34, last usable sector is 1953525134
Partitions will be aligned on 2048-sector boundaries
Total free space is 28013 sectors (13.7 MiB)
# hdparm -q /dev/nvme0n1
             = 953869/64/32, sectors = 1953525168, start = 0
geometry
```

gdisk -l /dev/nvme0n1

Odczyt własności dysku twardego: SSD

```
Disk /dev/sda: 937703088 sectors, 447.1 GiB
Model: KINGSTON SUV500M
Sector size (logical/physical): 512/4096 bytes
Disk identifier (GUID): 2025DC72-437D-425C-A561-4D4EEB1FDB61
Partition table holds up to 128 entries
Main partition table begins at sector 2 and ends at sector 33
First usable sector is 34, last usable sector is 937703054
Partitions will be aligned on 2048-sector boundaries
Total free space is 9139 sectors (4.5 MiB)
# hdparm -g /dev/sda
geometry = 58369/255/63, sectors = 937703088, start = 0
```

gdisk -l /dev/sda

Odczyt własności dysku twardego: HDD

```
Disk /dev/sdb: 3907029168 sectors, 1.8 TiB
Model: ST2000DM008-2FR1
Sector size (logical/physical): 512/4096 bytes
Disk identifier (GUID): AB46240F-CCFF-4768-9379-8C1FAC47CD7B
Partition table holds up to 128 entries
Main partition table begins at sector 2 and ends at sector 33
First usable sector is 34, last usable sector is 3907029134
Partitions will be aligned on 2048-sector boundaries
Total free space is 3907029101 sectors (1.8 TiB)
# hdparm -g /dev/sdb
             = 243201/255/63, sectors = 3907029168, start = 0
geometry
```

gdisk -l /dev/sdb

Informacje diagnostyczne o dysku twardym

```
# smartctl -a /dev/sdb
```

- Reallocated_Sector_Ct liczba realokowanych sektorów w miejsce zapasowe.
- Reallocated_Event_Count liczba operacji realokowania (po kilka sektorów).
- Current_Pending_Sector liczba sektorów oczekujących na remapowanie.
- Offline_Uncorrectable liczba błędów, których nie można naprawić.

System plików - wprowadzenie

- System plików umożliwia na dostęp do przechowywanych:
 - programów i danych,
 - dla systemu operacyjnego i użytkowników.
- System plików składa się z dwóch części:
 - kolekcji plików do bezpośredniego przechowywania danych,
 - struktury katalogów, która organizuje pliki i przechowuje informacje o nich.
- Zwykle system plików znajduje się na urządzeniach z pamięcią nieulotną, ale w szczególnych przypadkach może to być np. pamięć RAM.

Koncepcja pliku

- Komputer może przechowywać informacje na różnych nośnikach: dysk twardy, taśma magnetyczna, dysk optyczny, pamięć USB, urządzenie NVM.
- System operacyjny dostarcza mechanizm nadający logiczny widok na przechowywane informacje tworzy abstrakt między własnościami fizycznymi urządzenia do przechowywania, a logiczną strukturą pliku. W ten sposób pliki są mapowane przez system operacyjny na urządzenie fizyczne.
- Dla użytkownika plik to kolekcja informacji zapisana w pamięci zapasowej, która nie może być zapisana dopóki nie jest zawarta do postaci pliku.
- Pliki zwykle reprezentują programy (zarówno źródłowe, jak i binarne) oraz dane.
- Pliki mogą być w formie luźnej, jak pliki tekstowe, albo ściśle ustrukturyzowane (źródła, binaria).

Atrybuty plików

- Nazwa pliku (kwestia wielkości liter, kwestia rozszerzenia).
- Plik jest bytem niezależnym od procesu, użytkownika, a nawet systemu operacyjnego plików.
- Atrybuty plików zależą od systemu plików, zwykle są to:
 - Nazwa symboliczna nazwa pliku, jedyna informacja o pliku w zrozumiałym dla człowieka zapisie.
 - o Identyfikator unikalne oznaczenie, zwykle liczba, która identyfikuje plik w systemie plików.
 - o Typ rozróżnienie pliku.
 - o Położenie informacja o położeniu pliku na dysku.
 - o Rozmiar bieżący rozmiar pliku (w bajtach, słowach lub blokach).
 - Zabezpieczenia informacje o kontroli dostępu dotyczące czytania, pisania i uruchamiania (itp.).
 - Znacznik czasu informacje o znacznikach czasu mogą obejmować utworzenie, ostatnią modyfikację oraz ostatnie użycie pliku.
 - Identyfikator użytkownika i grupy informacje dot. właściciela pliku.
- Informacje o plikach przechowywane są w strukturze katalogów (w pliku katalogu).

Operacje na plikach

- Tworzenie pliku dwa kroki: rezerwacja miejsca, wpis w katalogu.
- Otwieranie sprawdzenie uprawnień, itp. i wywołanie open ().
- Zapis wywołanie systemowe z danymi do zapisu oraz open (). Zapis odbywa się sekwencyjnie, więc system musi przechowywać informację o wskaźniku miejsca do zapisu.
- Czytanie wywołanie systemowe z wskaźnikiem do pliku oraz informacją, gdzie do pamięci zawartość pliku ma zostać wczytana. Podobnie, jak przy zapisie, system potrzebuje wskaźnika odczytu (i zwykle jest to ten sam wskaźnik).
- Pozycjonowanie w pliku wskaźnik położenia w pliku, ang. seek.
- Usuwanie pliku znalezienie pliku w katalogu, zwolnienie miejsca, oznaczenie w katalogu (wymazanie wpisu). Niektóre systemy plików: kwestia twardych dowiązań.
- Obcinanie pliku np. usuwanie zawartości, ale zachowanie atrybutów.

Typy plików

• Typ pliku rozpoznawany po rozszerzeniu nie jest tym samym, co typ pliku rozpoznawany w atrybutach pliku.

file type	usual extension	function
executable	exe, com, bin or none	ready-to-run machine- language program
object	obj, o	compiled, machine language, not linked
source code	c, cc, java, perl, asm	source code in various languages
batch	bat, sh	commands to the command interpreter
markup	xml, html, tex	textual data, documents
word processor	xml, rtf, docx	various word-processor formats
library	lib, a, so, dll	libraries of routines for programmers
print or view	gif, pdf, jpg	ASCII or binary file in a format for printing or viewing
archive	rar, zip, tar	related files grouped into one file, sometimes com- pressed, for archiving or storage
multimedia	mpeg, mov, mp3, mp4, avi	binary file containing audio or A/V information

Struktura katalogu

Operacje:

- Szukanie pliku.
- Tworzenie pliku.
- Usuwanie pliku.
- Listowanie zawartości katalogu.
- Zmiana nazwy pliku.
- Trawers systemu plików.

Zaawansowane struktury katalogów

Rodzaje dostępu

Podstawowe:

- Read odczyt.
- Write zapis.
- Execute wykonywanie.
- **Append** dopisywanie na końcu.
- **Delete** usuwanie.
- **List** listowanie nazwy i atrybutów pliku.
- Attribute change zmiana wartości atrybutów.

A także:

- Renaming zmiana nazwy.
- Copying kopiowanie.
- Editing edycja.

Uprawnienia do plików w Linux ext

```
krz@zinc:~/abc$ ls -al
razem 44
drwxrwxr-x 2 krz krz 4096 paź 9 18:40 .
drwx----- 98 krz krz 28672 paź 9 18:40 .
-rw-rw-r-- 1 krz krz 0 paź 9 18:40 file.txt
krz@zinc:~/abc$
```

- Katalog bieżący: ~/abc oraz .
- Katalog nadrzędny: . .

Ustawianie uprawnień:

\$ chmod uprawnienia plik
\$ chmod 644 file.txt
\$ chmod a+rx,a-w directory

Uprawnienia, przykład:

```
drwxr-x---
0123456789
```

Pozycja 0: d (dir), I (link), b (block), c (character) Pozycja 1, 2 i 3: uprawnienia właściciela 'u' Pozycja 4, 5 i 6: uprawnienia grupy 'g' Pozycja 7, 8 i 9: uprawnienia pozostałych 'o' Pozycje 1..9: uprawnienia wszystkich 'a'

```
rwx - read, write, eXecute
421 - zapis binarny, np. r-x = 5, rw- = 6, r-- = 4.
```

Uprawnienia do plików w Linux ext

```
blokada
--- brak uprawnień
                                   nieprzydatne
--x wykonywanie
                                   zbieranie sekretnych logów
-w- zapis
-wx zapis i wykonywanie
                                   nieprzydatne
                                   stała konfiguracja
r-- odczyt
r-x odczyt i uruchamianie
                                   pliki wykonywalne, katalogi
                              pliki edytowalne
rw- odczyt i zapis
rwx odczyt, zapis i uruchamianieskrypty i katalogi usera :-)
??s bit suid
                                   programy specjalne
                                   katalog specjalny
??t sticky bit
```

Struktura systemu plików

Założenia:

- Dysk może być nadpisywany w miejscu; możliwy jest odczyt bloku, modyfikacja bloku zapis bloku w to samo miejsce.
- 2. Możliwe jest sięgnięcie w dowolne miejsce dysku, czyli dostęp do pliku może być realizowany sekwencyjnie lub swobodnie.

Transfer danych z/na dysk zorganizowany jest w bloki wielkości zwykle 512 lub 4096 bajtów.

Struktura systemu plików

- I/O sterownik urządzenia oraz przerwań do transferu danych.
- Podstawowy system plików blokowy sybsystem I/O w Linux.
- Moduł organizacji plików posiada wiedzę na temat plików oraz logicznych bloków, a także wolnego miejsca.
- Logiczny system plików zarządza metadanymi, strukturą katalogów, wykorzystuje FCB (file control block) w np. Linux poprzez inode.

Operacje systemu plików

- Blok kontrolny ładowania (ang. *Boot control block*), Główny rekord rozruchowy (ang. *Master Boot Record*) informacje zapisane w pierwszym sektorze dysku (CHS = 0,0,1), zajmuje jeden sektor, czyli 512 bajtów i zawiera (w przypadku Linux) program rozruchowy systemu operacyjnego (446 bajtów) oraz tablicę partycji.
 - Polecenie podglądu MBR: hd -n 512 /dev/sda
 Polecenie podglądu partycji: cat /proc/partitions
- GPT, ang. Globally Unique Partition Table nowszy typ rekordu ładowania.
- Blok kontrolny wolumenu (ang. *Volume control block*) informacje o partycji/wolumenie, jak liczbę bloków w wolumenie, rozmiar bloków, liczba wolnych bloków, itp.
- Struktura katalogów zawierająca informacje o organizacji plików.
- Blok kontrolny pliku (ang. *File Control Block*) zawiera wiele informacje o pliku. Posiada unikalny identyfikator.

Otwarcie/odczyt pliku

- (a) Otwarcie pliku
- (b) Odczyt pliku

Źródło: A. Silberschatz, Operating Systems Concepts Essentials

Metody alokacji plików

Na kolejnych slajdach:

- Alokacja ciągła ang. Contiguous Allocation
- Alokacja połączona ang. Linked Allocation
- Alokacja indeksowana ang. Indexed Allocation

Alokacja ciągła

directory

start	length
0	2
14	3
19	6
28	4
6	2
	0 14 19 28

Alokacja połączona

Alokacja indeksowana

Dziękuję za uwagę;)