1 Řady

1.1 Úvod

Definice 1.1

Nechť $\{a_n\}_{n\in\mathbb{N}}$ je posloupnost. Číslo $s_m=a_1+a_2+\ldots+a_m$ nazveme m-tým částečným součtem řady $\sum a_n$. Součtem nekonečné řady $\sum_{n=1}^\infty a_n$ nazveme limitu posloupnosti $\{s_m\}_{m\in\mathbb{N}}$, pokud tato limita existuje. Je-li tato limita konečná, pak řekneme, že řada je konvergentní. Je-li tato limita nekonečná nebo neexistuje, pak řekneme, že řada je divergentní. Tuto limitu budeme značit $\sum_{n=1}^\infty a_n$.

Věta 1.1 (Nutná podmínka konvergence)

Jestliže je $\sum_{n=1}^{\infty} a_n$ konvergentní, pak $\lim_{n\to\infty} a_n = 0$.

 $D\mathring{u}kaz$

$$\sum_{n=1}^{\infty} a_n \text{ konverguje} \implies \exists \lim_{m \to \infty} s_m = s \in \mathbb{R}. \ a_n = s_n - s_{n-1}. \lim_{n \to \infty} a_n = \lim_{n \to \infty} s_n - s_{n-1}. \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_n - s_{n-1} = s - s = 0$$

Pozor

Tato věta je pouze a jen implikace.

Věta 1.2 (konvergence součtu řad)

Necht $\alpha \in \mathbb{R} \setminus \{0\}$, pak $\sum_{n=1}^{\infty} a_n$ konverguje $\Leftrightarrow \sum_{n=1}^{\infty} \alpha \cdot a_n$ konverguje.

Nechť $\sum_{n=1}^{\infty} a_n$ konverguje a $\sum_{n=1}^{\infty} b_n$ konverguje, pak $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$.

 $D\mathring{u}kaz$

 $\sum_{n=1}^{\infty} a_n$ konverguje \exists limita z $s_m \to s \in \mathbb{R}$ a to je z AL právě tehdy, když konverguje $\alpha s_m \to \alpha \cdot s \in \mathbb{R}$, tedy $\sum_{n=1}^{\infty} \alpha \cdot a_n$ konverguje.

 $\sum_{n=1}^{\infty} a_n = s \in \mathbb{R} \text{ i } \sum_{n=1}^{\infty} b_n = \sigma \in \mathbb{R} \text{ konvergují, tedy konverguje i } s_m + \sigma_m \to s + \sigma \in \mathbb{R}.$

1.2 Řady s nezápornými členy

Pozorování

Nechť $\{a_n\}_{n=1}^{\infty}$ je řada s nezápornými členy. Pak $\sum_{n=1}^{\infty} a_n$ konverguje, nebo má součet $+\infty$.

Věta 1.3 (Srovnávací kritérium)

 $\frac{1}{Necht \sum_{n=1}^{\infty} a_n \ a \sum_{n=1}^{\infty} b_n \ jsou \ \check{r}ady \ s \ nez\acute{a}porn\acute{y}mi \ \check{c}leny \ a \ necht \ \exists n_0 \in \mathbb{N} \ tak, \ \check{z}e \ \forall n \in \mathbb{N}, \ n \geq n_0 \ plati \ a_n \leq b_n. \ Pak \ a) \sum_{n=1}^{\infty} b_n \ konverguje \implies \sum_{n=1}^{\infty} a_n \ konverguje \ b) \sum_{n=1}^{\infty} a_n \ diverguje \implies \sum_{n=1}^{\infty} b_n \ diverguje.$

Důkaz

a) Označme $s_n = a_1 + \ldots + a_n$ a $\sigma_n = b_1 + \ldots + b_n$. Pro každé $n \in \mathbb{N}, n \geq n_0$ platí

$$s_n = a_1 + \ldots + a_{n_0} + a_{n_0+1} + \ldots + a_n \le a_1 + \ldots + a_{n_0} + b_{n_0+1} + \ldots + b_n \le a_1 + \ldots + a_{n_0} + \sigma_n \le a_1 + \ldots + a_{n_0} + \alpha \le a_1 + \ldots + a_{n$$

A to je konečné, neboť $\sum_{n=1}^{\infty} b_n$ konverguje, tedy $\sigma \in \mathbb{R}$. s_n neklesající a omezená $\Longrightarrow \exists \lim_{n \to \infty} s_n \in \mathbb{R}$.

b) Nepřímím důkazem z a).

Věta 1.4 (Limitní srovnávací kritérium)

Nechť $\sum_{n=1}^{\infty} a_n$ a $\sum_{n=1}^{\infty} b_n$ jsou řady s nezápornými členy a nechť $\lim_{n\to\infty} \frac{a_n}{b_n} = A \in \mathbb{R}^*$. Jestliže $A \in (0,\infty)$, pak $\sum_{n=1}^{\infty} b_n$ konverguje $\Leftrightarrow \sum_{n=1}^{\infty} a_n$ konverguje. Jestliže A = 0, pak $\sum_{n=1}^{\infty} b_n$ konverguje $\Rightarrow \sum_{n=1}^{\infty} a_n$ konverguje. Jestliže $A = \infty$, pak $\sum_{n=1}^{\infty} a_n$ konverguje $\Rightarrow \sum_{n=1}^{\infty} b_n$ konverguje.

Důkaz

(i) Z $\lim_{n\to\infty} \frac{a_n}{b_n} = K \in (0,\infty)$ plyne, k $\varepsilon = \frac{K}{2} \exists n_0 \ \forall n \geq n_0 : \left| \frac{a_n}{b_n} - K \right| < \varepsilon = \frac{K}{2}$, tedy $\frac{K}{2} \leq \frac{a_n}{b_n} \leq \frac{3}{2}K$.

 $\sum_{n=1}^{\infty} b_n \text{ konverguje} \overset{\text{konvergence součtu řad}}{\Longrightarrow} \sum_{n=1}^{\infty} \frac{3}{2} K \cdot b_n \text{ konverguje} \land a_n \leq \frac{3}{2} K \cdot b_n \overset{\text{Srov. kritérium}}{\Longrightarrow} \sum_{n=1}^{\infty} a_n \text{ konverguje}.$

 $\sum_{n=1}^{\infty} a_n$ konverguje $\wedge \frac{K}{2} \cdot b_n \leq a_n \implies \sum_{n=1}^{\infty} \frac{K}{2} \cdot b_n$ konverguje $\implies \sum_{n=1}^{\infty} b_n$ konverguje.

(ii) Z $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ plyne, k $\varepsilon = 1 \exists n_0 \ \forall n \geq n_0 : \left| \frac{a_n}{b_n} - K \right| < \varepsilon = 1$, tedy $a_n < b_n$, a pokud $\sum_{n=1}^{\infty} b_n$ konverguje, tak $\sum_{n=1}^{\infty} a_n$ konverguje podle srovnávacího kritéria.

(iii) Úplně stejně jako (ii).

Věta 1.5 (Cauchyovo odmocninové kritérium)

 $Necht \sum_{n=1}^{\infty} a_n$ je řada s nezápornými členy, potom

$$(i)\exists q \in (0,1) \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : \sqrt[n]{a_n} < q \implies \sum_{n=1}^{\infty} a_n \ konverguje,$$

$$(ii) \limsup_{n \to \infty} \sqrt[n]{a_n} < 1 \implies \sum_{n=1}^{\infty} a_n \text{ konverguje},$$

$$(iii) \lim_{n \to \infty} \sqrt[n]{a_n} < 1 \implies \sum_{n=1}^{\infty} a_n \text{ konverguje},$$

$$(iv) \limsup_{n \to \infty} \sqrt[n]{a_n} > 1 \implies \sum_{n=1}^{\infty} a_n \ diverguje,$$

$$(v) \lim_{n \to \infty} \sqrt[n]{a_n} > 1 \implies \sum_{n=1}^{\infty} a_n \ diverguje.$$

Důkaz

(i) $b_n = q^n$. Víme, že $a_n < b_n \ \forall n \ge n_0$, tedy použijeme srovnávací kritérium.

$$(i) \implies (ii): b_n = \left\{\sqrt[n]{a_n}, \sqrt[n+1]{a_n}, \ldots\right\}. \lim_{n \to \infty} b_n = \limsup_{n \to \infty} \sqrt[n]{a_n} < 1. \text{ Nalezneme } q \in \mathbb{R}$$

 $\left(\limsup_{n\to\infty}\sqrt[n]{a_n},1\right). \text{ Z definice } \lim_{n\to\infty}b_n \text{ pro } \varepsilon=q-\limsup_{n\to\infty}\sqrt[n]{a_n} \text{ je } \exists n_0 \ \forall n\geq n_0: b_n< q, \text{ tedy } \forall n\geq n_0: \sqrt[n]{a_n}< q, \text{ tedy podle } (i) \sum_{n=1}^\infty a_n \text{ konverguje.}$

$$(ii) \implies (iii) : \exists \lim_{n \to \infty} \sqrt[n]{a_n} \implies \limsup_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{a_n} < 1$$
, tedy podle (ii) $\sum_{n=1}^{\infty} a_n$ konverguje.

(iv): podobně jako v $(i) \Longrightarrow (ii)$ dostaneme $\forall n_0 > n_k : b_{n_0} > q > 1$, tedy $\forall n_0 \exists n > n_0 : \sqrt[n]{a_n} > q > 1 \Longrightarrow a_n > 1 \Longrightarrow \lim_{n \to \infty} a_n \neq 0$, tedy podle nutné podmínky konvergence $\sum_{n=1}^{\infty} a_n$ diverguje.

$$(iv) \implies (v) : \lim_{n \to \infty} \sqrt[n]{a_n} = \limsup_{n \to \infty} \sqrt[n]{a_n}.$$

Věta 1.6 (d'Alambertovo podílové kritérium)

Necht $\sum_{n=1}^{\infty} a_n$ je řada s kladnými členy. Potom:

$$(i) \exists q \in (0,1) \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : \frac{a_{n+1}}{a_n} < q \implies \sum_{n=1}^{\infty} a_n \ konverguje,$$

$$(ii) \limsup_{n \to \infty} \frac{a_{n+1}}{a_n} < 1 \implies \sum_{n=1}^{\infty} a_n \text{ konverguje},$$

$$(iii) \lim_{n \to \infty} \frac{a_{n+1}}{a_n} < 1 \implies \sum_{n=1}^{\infty} a_n \ konverguje,$$

$$(iv) \lim_{n \to \infty} \frac{a_{n+1}}{a_n} > 1 \implies \sum_{n=1}^{\infty} a_n \ diverguje,$$

 $D\mathring{u}kaz$

- (i) Víme indukcí $a_{n_0+k} < q^k a_{n_0}$ a z konvergence geometrické řady $\sum_{k=1}^{\infty} q^k a_n$ konverguje $\Longrightarrow \sum_{k=1}^{\infty} a_{n_0+k}$ konverguje $\Longrightarrow \sum_{n=1}^{\infty} a_n$ konverguje.
- $\begin{array}{lll} (i) & \Longrightarrow & (ii) \colon b_n = \sup \left\{ \frac{a_{n+1}}{a_n}, \frac{a_{n+2}}{a_{n+1}}, \ldots \right\} \colon \lim_{n \to \infty} b_n = \limsup_{\substack{n \to \infty \\ a_n}} \frac{a_{n+1}}{a_n} < 1. \text{ Zvolíme} \\ q \in (\lim_{n \to \infty} b_n, 1). \text{ Tedy } \exists n_0 \ \forall n \geq n_0 : b_n < q \implies \forall n \geq n_0 : \frac{a_{n+1}}{a_n} < q, \text{ tudíž podle } (i) \\ \sum_{n=1}^{\infty} a_n \text{ konverguje.} \end{array}$
 - $(ii) \implies (iii) \lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \limsup_{n\to\infty} \frac{a_{n+1}}{a_n} < 1$, tedy podle $(ii) \sum_{n=1}^{\infty} a_n$ konverguje.
- (iv): Z $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} > 1$ definicí limity pro $\varepsilon < \lim_{n\to\infty} \frac{a_{n+1}}{a_n} 1$ vyplývá $\exists n_0 \ \forall n \geq n_0$: $\frac{a_{n+1}}{a_n} > 1 \implies a_{n+1} > a_n$. Máme rostoucí posloupnost kladných čísel $\implies \lim_{n\to\infty} a_n \neq 0$, tedy podle nutné podmínky konvergence $\sum_{n=1}^{\infty} a_n$ diverguje.

Věta 1.7 (Kondenzační kritérium)

Necht $\sum_{n=1}^{\infty} a_n$ je řada s nezápornými členy splňující $a_n \geq a_{n+1}$, $\forall n \in \mathbb{N}$. Pak $\sum_{n=1}^{\infty} a_n$ konverguje $\Leftrightarrow \sum_{n=1}^{\infty} 2^n \cdot a_{2^n}$ konverguje.

 $D\mathring{u}kaz$

Pro
$$k \in \mathbb{N}$$
: $s_k = \sum_{j=1}^k a_j \ t_k = \sum_{j=0}^k 2^j \cdot a_{2^j}$.

 \Leftarrow : Označme $A=\sum_{j=0}^k 2^j\cdot a_{2^j}$, pak $A\in\mathbb{R}$. Nechť $m\in\mathbb{N}$ a nalezneme $kin\mathbb{N},\ m<2^k$. Pak $t_k\leq A$ a:

$$s_m \le a_1 + (a_2 + a_3) + (a_4 + a_5 + a_6 + a_7) + \ldots + (a_{2^{k-1}} + \ldots + a_{2^k-1}) \le t_{k-1} \le A.$$

Tedy s_m je shora omezená a rostoucí $\Longrightarrow \exists \lim_{m\to\infty} s_m \in \mathbb{R} \implies \sum_{n=1}^{\infty} a_n$ konverguje.

 \Longrightarrow : Označme $B=\sum_{n=1}^\infty a_n\in\mathbb{R}.$ Zvolme $k\in\mathbb{N}$ a nalezneme $m\in\mathbb{N},$ aby $2^k\leq m.$ Pak $s_m\leq B$ a platí:

$$s_m \ge a_1 + a_2 + (a_3 + a_4) + (a_5 + a_6 + a_7 + a_8) + \ldots + (a_{2^{k-1}+1} + \ldots + a_{2^k}) \ge a_1 + \frac{1}{2} (t_k - 1 \cdot a_1) \le \frac{1}{2} t_k \implies$$

 t_k je shora omezená rostoucí posloupnost $\implies \sum_{n=1}^{\infty} 2^n a_{2^n}$ konverguje.

1.3 Neabsolutní konvergence řad

Definice 1.2

Nechť pro řadu $\sum_{n=1}^{\infty} a_n$ platí, že $\sum_{n=1}^{\infty} |a_n|$ konverguje. Pak říkáme, že $\sum_{n=1}^{\infty} a_n$ konverguje absolutně.

Věta 1.8 (Bolzano-Cauchyova podmínka pro konvergenci řad)

 $\check{R}ada \sum_{n=1}^{\infty} a_n$ konverguje právě tehdy, když je splněna následující podmínka:

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall m, n \in \mathbb{N}, m \ge n_0, n \ge n_0 : \left| \sum_{n=j}^m a_n \right| < \varepsilon.$$

 $\begin{array}{l} D\mathring{u}kaz\\ \sum_{n=1}^{\infty}a_n \text{ konverguje} \Leftrightarrow \exists \lim_{n\to\infty}s_n\in\mathbb{R} \stackrel{\mathrm{BC}}{\Leftrightarrow} \forall \varepsilon>0 \ \exists n_0\in\mathbb{N} \ \forall m,n\in\mathbb{N}, m\geq n_0, n\geq n_0:\\ |s_m-s_{n-1}|<\varepsilon. \ \mathrm{Co\check{z}} \ \mathrm{je} \ \mathrm{p\check{r}esn\check{e}} \ \mathrm{v\acute{y}raz} \ \mathrm{(po} \ \mathrm{ode\check{c}ten\acute{i}} \ s_m-s_{n-1}) \ \mathrm{ve} \ \mathrm{v\check{e}t\check{e}}. \end{array}$

Věta 1.9 (Vztah konvergence a absolutní konvergence)

Nechť řada $\sum_{n=1}^{\infty} a_n$ konverguje absolutně, pak řada $\sum_{n=1}^{\infty} a_n$ konverguje.

Důkaz

Z BC podmínky: $\sum_{n=1}^{\infty} a_n$ konverguje $\Longrightarrow \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall m, n \in \mathbb{N}, m \geq n_0, n \geq n_0 : \sum_{j=n}^{m} |a_j| < \varepsilon$. Chceme dokázat, že $\sum_{n=1}^{\infty} a_n$ konverguje. Stačí ověřit BC podmínku. K $\varepsilon > 0$ volme n_0 jako výše, pak $\forall m, n \geq n_0 : \left|\sum_{j=n}^{m} a_j\right| \leq \sum_{j=n}^{m} |a_j| \leq \varepsilon \Longrightarrow \sum_{n=1}^{\infty} a_n$ konverguje.

Věta 1.10 (Leibnitzovo kritérium (T5.10))

Nechť $\{a_n\}_{n=1}^{\infty}$ je nerostoucí posloupnost nezáporných čísel, pak $\sum_{n=1}^{\infty} (-1)^n a_n$ konverguje $\Leftrightarrow \lim_{n\to\infty} a_n = 0$.

Důkaz

 \implies : z nutné podmínky (V5.1) $\lim_{n\to\infty} (-1)^n \cdot a_n = 0 \implies \lim_{n\to\infty} a_n = 0$.

 $\iff: s_{2k+2} - s_{2k} = (-1)^{2k+2} \cdot a_{2k+2} + (-1)^{2k+1} \cdot a_{2k+1} = a_{2k+2} - a_{2k+1} \le 0 \implies s_{2k}$ je nerostoucí. Obdobně $s_{2k+1} - s_{2k-1} = a_{2k+1} - a_{2k} \ge 0 \implies s_{2k+1}$ je neklesající. Navíc $s_2k = (-a_1 + a_2) + \ldots + (-a_{2k-1} + a_{2k}) \le 0 + \ldots + 0 = 0$. Analogicky $s_{2k+1} \ge -a_1$.

Nyní $0 \ge s_{2k} = s_{2k+1} + a_{2k+1} \ge -a_1 + a_{2k+1} \ge -a_1$. Analogicky $-a_1 \le s_{2k+1} \le 0$. Tedy obě vybrané podposloupnosti jsou omezené a monotónní, tedy konvergují. $\lim_{n\to\infty} s_{2k} = S_1 \in \mathbb{R}$ a $\lim_{n\to\infty} s_{2n+1} = S_2 \in \mathbb{R}$. Navíc

$$S_2 = \lim_{n \to \infty} s_{2k+1} = \lim_{n \to \infty} s_{2k} - a_{2k+1} \stackrel{\text{AL}}{=} S_1 - 0 = S_1.$$

Tedy jelikož existuje limita sudých i lichých členů a rovnají se, existuje i limita s_n . \square

Lemma 1.11 (Abelova parciální sumace)

Nechť $m, n \in \mathbb{N}$ a $m \le n$ a nechť $a_m, \ldots, a_n, b_m, \ldots, b_n \in \mathbb{R}$. Označme $s_k = \sum_{i=m}^k a_i$. Pak platí

$$\sum_{i=m}^{n} a_i \cdot b_i = \sum_{i=m}^{n} s_i \cdot (b_i - b_{i+1}) + s_n \cdot b_n.$$

 $D\mathring{u}kaz$

$$= a_m \cdot b_m + a_{m+1} \cdot b_{m+1} + \dots + a_n \cdot b_n = s_m \cdot b_m + (s_{m+1} - s_m) \cdot b_{m+1} + \dots + (s_n - s_{n-1}) \cdot b_n = \sum_{i=m}^n s_i \cdot (b_i - b_{i+1}) + s_n \cdot b_n$$

Věta 1.12 (Abel-Dirichletovo kritérium)

Nechť $\{a_n\}_{n=1}^{\infty}$ je posloupnost reálných čísel a $\{b_n\}_{n=1}^{\infty}$ je nerostoucí posloupnost nezáporných čísel. Nechť je splněna alespoň jedna z následujících podmínek:

(A) $\sum_{n=1}^{\infty} a_n$ je konvergentní. (D) $\lim_{n\to\infty} b_n = 0$ a $\sum_{n=1}^{\infty} a_n$ má omezené částečné součty (tj. $\exists K > 0 \ \forall m \in \mathbb{N} : |s_m| = |\sum_{n=1}^m a_n| < K$).

Pak je $\sum_{n=1}^{\infty} a_n \cdot b_n$ konvergentní.

 $D\mathring{u}kaz$

Podle V 5.8 budeme ověřovat BC podmínku pro $\sum_{n=1}^{\infty} a_n \cdot b_n$. Označme $s_k = \sum_{n=m}^k a_n$. b_n je nerostoucí a $b_n > 0 \implies \forall i : b_i - b_{i+1} \ge 0$ a $\exists K \ \forall n : |b_n| \le K$.

(A): $\sum_{n=1}^{\infty} a_n$ konverguje

$$\implies \forall \varepsilon > 0 \ \exists n_0 \ \forall i \ge m \ge n_0 |\sum_{n=m}^i a_n| = |s_i| < \varepsilon.$$

Nyní k $\varepsilon > 0$ volme n_0 jako výše a nechť $n \ge m \ge n_0$:

$$\left|\sum_{i=m}^{n} a_{i} \cdot b_{i}\right| \stackrel{\text{Abel PS}}{\leq} \sum_{i=m}^{n-1} \left|s_{i} \cdot (b_{i} - b_{i+1})\right| + \left|s_{n}\right| \cdot \left|b_{n}\right| \leq \varepsilon \cdot \sum_{n=1}^{\infty} (b_{i} - b_{i+1}) + \varepsilon \cdot b_{n} = \varepsilon \cdot (b_{m} - b_{n}) + \varepsilon \cdot b_{n} \leq \varepsilon \cdot K$$

A podle BC podmínky máme $\sum_{n=1}^{\infty} a_n \cdot b_n$ konverguje.

(D) Z předpokladů víme, že $\exists M>0 \ \forall i\geq m: |s_i|=|\sum_{n=1}^i a_n-\sum_{n=1}^{m-1} a_n|\leq M$ (volme M=2K). Z $\lim_{n\to\infty}b_n=0$ k $\varepsilon>0$ $\exists n_0 \ \forall n\geq n_0: |b_n|<\varepsilon$. Nyní

$$\forall n \geq m \geq n_0 : |\sum_{i=m}^n a_i \cdot b_i| \leq \sum_{i=m}^{n-1} |s_i(b_i - b_{i+1})| + |s_n| \cdot |b_n| \leq \sum_{i=m}^{n-1} M \cdot (b_i - b_{i+1}) + M \cdot b_n = M \cdot (b_m - b_n) + M \cdot b_n \leq \sum_{i=m}^{n-1} |s_i(b_i - b_{i+1})| + |s_n| \cdot |b_n| \leq \sum_{i=m}^{n-1} |s_i(b_i$$

A podle BC podmínky máme $\sum_{n=1}^{\infty} a_n \cdot b_n$ konverguje.

Příklad

 $\sin n$ a $\cos n$ má omezené částečné součty.

 $D\mathring{u}kaz$

Buď sečtením $\sin 1 + \sin 2 + \ldots + \sin n = \text{vzoreček}$.

Nebo dokážeme dokonce $\forall x \neq 2k\pi \sin nx$ a $\cos nx$ má omezené částečné součty.

$$e^{i}x = \cos x + i \cdot \sin x \implies \sum_{k=0}^{n} e^{i \cdot k \cdot x} = \sum_{k=0}^{n} \cos k \cdot x + i \cdot \sum_{k=0}^{n} \sin k \cdot x.$$

Z geometrické řady ale víme, že

$$\sum_{k=0}^{n} e^{i \cdot k \cdot x} = \frac{1 - (e^{ix})^{n+1}}{1 - e^{ix}} = \frac{1 - \cos x \cdot (n+1) - i \cdot \sin x \cdot (n+1)}{1 - \cos x - i \sin x} \cdot \frac{1 - \cos x + i \cdot \sin x}{1 - \cos x + i \cdot \sin x} = \frac{A_n \cdot B}{(1 - \cos x)^2 + (1 - \cos x)^2} = \frac{A_n \cdot B}{(1 - \cos x)^2} = \frac{A_n \cdot B}{($$

Zřejmě $|A_n| \le 3$ a $|B| \le 3$, jmenovatel je nenulový a není závislý na n, tedy pro všechna n je výraz omezen konstantou.

1.4 Přerovnání a součin řad

Definice 1.3 (Přerovnání řady)

Nechť $\sum_{n=1}^{\infty} a_n$ je řada a $p: \mathbb{N} \to \mathbb{N}$ bijekce. Řadu $\sum_{n=1}^{\infty} a_{p(n)}$ nazýváme přerovnáním řady $\sum_{n=1}^{\infty} a_n$.

Věta 1.13 (O přerovnání absolutně konvergentní řady)

 $Necht\sum_{n=1}^{\infty}a_n$ je absolutně konvergentní řada a $\sum_{n=1}^{\infty}a_{p(n)}$ je její přerovnání. $Pak\sum_{n=1}^{\infty}a_{p(n)}$ je absolutně konvergentní a má stejný součet.

 $D\mathring{u}kaz$

 $\sum_{n=1}^{\infty} |a_n|$ konverguje \Longrightarrow splňuje BC podmínku. Tedy

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall n \ge m \ge n_0 | \sum_{i=n}^m a_i | < \varepsilon \implies \sum_{i=n_0}^\infty |a_i| \le \varepsilon.$$

Zvolme $n'_0 = \max \{p(1), p(2), \dots, p(n_0)\}$. Pak $\forall n' \geq n'_0 : p^{-1}(n') \geq n_0$. Tedy

$$\forall n' \ge m' \ge n'_0 : \sum_{i=m'}^{n'} |a_{p(i)}| \le \sum_{i=n_0}^{\infty} |a_i| < \varepsilon.$$

Tedy podle BC podmínky $\sum_{n=1}^{\infty}|a_{p(n)}|$ konverguje, tedy i $\sum_{n=1}^{\infty}a_{p(n)}$ konverguje.

Konverguje k tomu samému? $\sum_{n=1}^{\infty} a_n = A$, $\sum_{n=1}^{\infty} a_{p(n)} = A'$. Víme, že k $\varepsilon > 0$ $\exists n_0 \sum_{i=n_0}^{\infty} |a_i| \le \varepsilon$. Zvolme $n'_0 \ge \max_{i \le n_0} p(i)$, aby $\sum_{i=n'_0}^{\infty} |a_{p(i)}| \le \varepsilon$. Pak $|\sum_{i=1}^{n_0} a_i - A| \le \varepsilon$ a $|\sum_{i=1}^{n'_0} a_{p(i)} - A'| \le \varepsilon$. Nyní

$$|A - A'| \leq |\sum_{i=1}^{n_0} a_i - A| + |\sum_{i=1}^{n_0'} a_{p(i)} - A'| + |\sum_{i=1}^{n_0} a_i - \sum_{i=1}^{n_0'} a_{p(i)}| \leq \varepsilon + \varepsilon + \sum_{i=n_0}^{\infty} |a_i| \leq 3\varepsilon$$

Věta 1.14 (Rieman)

Neabsolutně konvergentní řadu lze přerovnat k libovolnému součtu $s \in \mathbb{R}^*$.

 $D\mathring{u}kaz$

Bez důkazu (idea: rozdělíme na kladné a záporné členy (mají součty $+\infty$ a $-\infty$) a jdeme nahoru dolu nahoru dolu (vždy alespoň o 1 prvek), abychom se co nejvíce blížili s). \square

Definice 1.4 (Cauchyovský součin)

Nechť $\sum_{n=1}^{\infty} a_n$ a $\sum_{n=1}^{\infty} b_n$ jsou řady. Cauchyovským součinem těchto řad nazveme řadu $\sum_{k=2}^{\infty} \sum_{i=1}^{k-1} (a_{k-i} \cdot b_i)$.

Věta 1.15 (O součinu řad)

Necht $\sum_{n=1}^{\infty} a_n \ a \sum_{n=1}^{\infty} b_n \ konverguji \ absolutně. \ Pak \left(\sum_{n=1}^{\infty} a_n\right) \cdot \left(\sum_{n=1}^{\infty} b_n\right) = \sum_{k=2}^{\infty} \sum_{i=1}^{k-1} (a_{k-i} \cdot b_i).$

 $D\mathring{u}kaz$

Označme $s_n = \sum_{i=1}^n a_i \to A \in \mathbb{R}$, $\sigma_n = \sum_{i=1}^n b_i \to B \in \mathbb{R}$ a $\varrho_n = \sum_{k=2}^n \left(\sum_{i=1}^{k-1} a_{k-i}b_i\right) \overset{\text{Chceme}}{\to} A \cdot B \in \mathbb{R}$. Nechť $\varepsilon > 0$. Pak $\exists n_0 : \sum_{i=n_0}^{\infty} |a_i| < \varepsilon$ a $\sum_{j=n_0}^{\infty} |b_j| < \varepsilon$ (z BC podmínky) a zároveň $|s_{n_0} \cdot \sigma_{n_0} - A \cdot B| < \varepsilon$. Nechť $n \geq 2n_0$, pak

$$|\varrho_n - A \cdot B| \le |\varrho_n - s_{n_0} \cdot \sigma_{n_0}| + |s_{n_0} \cdot \sigma_{n_0} - A \cdot B| \le$$

$$\leq |(a_1b_1)+(a_1b_2+a_2b_1)+\ldots+(a_{n-1}\cdot b_1+\ldots+a_1\cdot b_{n-1})-(a_1+\ldots+a_{n_0})\cdot(b_1+\ldots+b_{n_0})|+\varepsilon\leq$$

$$\leq \sum_{i\geq n_0 \vee j\geq n_0} |a_ib_j| + \varepsilon \leq \sum_{i=1}^{\infty} |a_i| \cdot \sum_{j=n_0}^{\infty} |b_j| + \sum_{i=n_0}^{\infty} |a_i| \cdot \sum_{j=1}^{\infty} |b_j| + \varepsilon \leq A\varepsilon + B\varepsilon + \varepsilon = \varepsilon \cdot \text{konst.}$$

1.5 Limita posloupnosti a součet řady v C

Definice 1.5

Nechť $\{a_n\}_{n=1}^{\infty}$ a $\{b_n\}_{n=1}^{\infty}$ jsou dvě reálné posloupnosti. Pak $c_n=a_n+ib_n$ je komplexní posloupnost.

Řekneme, že $\lim_{n\to\infty} c_n = A + iB$, pokud existují $\lim_{n\to\infty} a_n = A \in \mathbb{R}$ a $\lim_{n\to\infty} b_n = B \in \mathbb{R}$.

Definice 1.6

Necht $\{a_n\}_{n=1}^{\infty}$ a $\{b_n\}_{n=1}^{\infty}$ jsou dvě reálné posloupnosti a $c_n = a_n + ib_n$. Řekneme, že komplexní řada $\sum_{n=1}^{\infty} c_n$ konverguje k A + iB, pokud konvergují řady $\sum_{n=1}^{\infty} a_n = A$ a $\sum_{n=1}^{\infty} b_n = B$.

Věta 1.16 (Vztah konvergence a absolutní konvergence pro komplexní řady)

Nechť $\{c_n\}_{n=1}^{\infty}$ je komplexní posloupnost a řada $\sum_{n=1}^{\infty} |c_n|$ konverguje. Pak řada $\sum_{n=1}^{\infty} c_n$ konverguje.

Důkaz

Z BC podmínky pro konvergenci $\sum_{n=1}^{\infty} |c_n|$ dostaneme

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall m \ge n \ge n_0 : \sum_{j=n}^m |c_j| < \varepsilon.$$

Víme $c_n = a_n + ib_n$. Nyní $\forall m \ge n \ge n_0$:

$$\sum_{j=n}^{m} |a_j| \le \sum_{j=n}^{m} |c_j| < \varepsilon \wedge \sum_{j=n}^{m} |b_j| \le \sum_{j=n}^{m} |c_j| < \varepsilon.$$

Tedy $\sum_{n=1}^{\infty} |a_n|$ a $\sum_{n=1}^{\infty} |b_n|$ splňují BC podmínku, tedy konvergují. Podle V5.9 (vztah KaAK), tedy $\sum_{n=1}^{\infty} a_n$ a $\sum_{n=1}^{\infty} b_n$ konvergují, tedy konverguje i $\sum_{n=1}^{\infty} c_n$.

2 Primitivní funkce

2.1 Základní vlastnosti

Definice 2.1 (Primitivní funkce, integrál)

Nechť je funkce f definována na otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k funkci f, pokud pro každé $x \in I$ existuje F'(x) a F'(x) = f(x).

Množinu všech primitivních funkcí k f na I značíme $\int f(x) dx$

Věta 2.1 (O jednoznačnosti primitivní funkce až na konstantu)

Nechť F a G jsou primitivní funkce k f na otevřeném intervalu I. Pak existuje $c \in \mathbb{R}$ tak, že F(x) = G(x) + c pro všechna $x \in I$.

 $D\mathring{u}kaz$

Označme H(x) = F(x) - G(x). Pak (H(x))' = (F(x) - G(x))' = f(x) - f(x) = 0. Tedy (např. z Lagrangeovy věty) $\exists c \in \mathbb{R} : H(x) = c$ na I.

Poznámka

Značíme $\int f(x) dx = F(x) + C$. Necht F je primitivní funkce k f. Pak F je spojitá (protože má všude vlastní derivaci).

Věta 2.2 (O vztahu spojitosti a existence primitivní funkce)

Nechť I je otevřený interval a f je spojitá funkce na I. Pak f má na I primitivní funkci.

 $D\mathring{u}kaz$ Později.

Věta 2.3 (Linearita primitivní funkce)

Nechť f má primitivní funkci F a g má primitivní funkci G na otevřeném intervalu I a nechť $\alpha, \beta \in \mathbb{R}$. Pak $\alpha \cdot f + \beta \cdot g$ má primitivní funkci $\alpha F + \beta G$.

 $D\mathring{u}kaz$

L

$$(\alpha \cdot F(x) + \beta \cdot G(x))' \stackrel{\text{AD}}{=} \alpha \cdot F'(x) + \beta \cdot G'(x) = \alpha \cdot f + \beta \cdot g.$$

Poznámka (Tabulkové integrály)

- $\int x^n dx = \frac{x^n}{n+1} + C$, $((x \in \mathbb{R} \land n \in \mathbb{N}) \lor (x \in \mathbb{R} \setminus \{0\} \land n \in \mathbb{Z} \setminus \{1\}))$.
- $\int \frac{1}{x} dx = \log|x| + C, (x \in \mathbb{R} \setminus \{0\}).$
- $\int e^x dx = e^x + C, (x \in \mathbb{R}).$
- TODO

Věta 2.4 (Nutná podmínka existence primitivní funkce)

Nechť f má na otevřeném intervalu I primitivní funkci. Pak f má na I Darbouxovu vlastnost, tedy pro každý interval $J \subseteq I$ je f(J) interval.

 $D\mathring{u}kaz$

Nechť $J \in I$ je interval. Nechť $y_1, y_2 \in f(J)$ a $y_1 < z < y_2$. Chceme ukázat $z \in f(J)$. Nechť F je primitivní funkce k funkci f na intervalu I. Definujeme $H(x) = F(x) - z \cdot x$ pro $x \in I$. Pak H je spojitá na I a $\forall x \in I : (H(x))' = f(x) - z$. Nalezneme $x_1, x_2 \in J$ tak, že $f(x_1) = y_1$ a $f(x_2) = y_2$. Nechť $x_1 < x_2$, v opačném případě je důkaz analogický. Funkce H je spojitá na $[x_1, x_2]$, a tedy tam nabývá minima.

Víme $H'(x_1) = f(x_1) - z < f(x_1) - y_1 = 0$, tedy $\exists \delta > 0$, že $\forall x \in [x_1, x_1 + \delta], H(x) < H(x_1)$, tedy v x_1 není minimum. Obdobně v x_2 není minimum. Tedy minimum je v $x_0 \in (x_1, x_2) \stackrel{\text{Fermat}}{\Longrightarrow} 0 = H'(x_0) = f(x_0) - z$, tj. $f(x_0) = z$.

Věta 2.5 (Integrace per partes)

Nechť I je otevřený interval a funkce f a g jsou spojité na I. Nechť F je primitivní k f a G je primitivní k g na I. Pak platí $\int g(x) \cdot F(x) dx = G(x) \cdot F(x) - \int G(x) \cdot f(x) dx$ ne I.

 $D\mathring{u}kaz$

G je spojitá, tedy $G(x) \cdot f(x)$ je spojitá (tedy integrál vpravo existuje). Mějme funkci $G \cdot F - H$, kde H je primitivní k $G \cdot f$, pak

$$(G(x) \cdot F(x) - H(x))' = g(x) \cdot F(x) + G(x) \cdot f(x) - G(x) \cdot f(x) = g(x) \cdot F(x),$$

neboli
$$\int g(x) \cdot F(x) dx = G(x) \cdot F(x) - H(x)$$
.

Věta 2.6 (1. o substituci)

Nechť F je primitivní funkce k f na a, b. Nechť φ je funkce definovaná na (α, β) s hodnotami v intervalu (a,b), která má v každém bodě (α,β) vlastní derivaci. Pak $\int f(\varphi(t)) \cdot \varphi'(t) dt = F(\varphi(t))$ na (α,β) .

 $D\mathring{u}kaz$

Podle věty o derivaci složené funkce

$$(F(\varphi(t)))' = F'(\varphi(t)) \cdot \varphi'(t) = f(\varphi(t)) \cdot \varphi'(t) \ \forall t \in (\alpha, \beta).$$

$\mathbf{V\check{e}ta}$ 2.7 (2. o substituci)

Nechť funkce φ má v každém bodě intervalu α, β vlastní nenulovou derivaci a $\varphi((\alpha, \beta)) = (a, b)$. Nechť funkce f je definována na intervalu (a, b) a platí $\int f(\varphi(t)) \cdot \varphi'(t) dt = G(t)$ ne (α, β) . Pak $\int f(x) dx = G(\varphi^{-1}(x))$ na (a, b).

Důkaz

Podle V6.4 φ' nabývá mezihodnot (a je všude nenulová), tudíž φ' je na (α, β) buď kladná nebo záporná a φ je tím pádem ryze monotónní a spojitá. Tedy lze použít větu o derivaci inverzní funkce a dostaneme $(\varphi^{-1}(x)) = \frac{1}{\varphi'(\varphi(x))}$. Nyní na (a, b)

$$(G(\varphi^{-1}(x)))' = G'(\varphi^{-1}(x)) \cdot (\varphi^{-1}(x))' = f(\varphi(\varphi^{-1}(x))) \cdot \varphi'(\varphi^{-1}(x)) \cdot \frac{1}{\varphi'(\varphi^{-1}(x))} = f(x).$$

 $\varphi'(arphi^{-1}(x))$

2.2 Integrace racionálních funkcí

Definice 2.2 (Racionální funkce)

Racionální funkcí rozumíme podíl dvou polynomů $\frac{P}{Q}$, kde Q není nulový polynom.

Věta 2.8 (Základní věta algebry)

Nechť $P(x) = a_n x^n + \ldots + a_0 x^0$, $a_i \in \mathbb{R}$, $a_n \neq 0$. Pak existují $x_1, \ldots, x_n \in \mathbb{C}$ tak, že $P(x) = a_n \cdot (x - x_1) \cdot \ldots \cdot (x - x_n)$, $x \in \mathbb{R}$.

Lemma 2.9 (O komplexních kořenech polynomu)

Nechť P je polynom s reálnými koeficienty a $z \in \mathbb{C}$ je kořen P násobnosti $k \in \mathbb{N}$. Pak i \overline{z} je kořen násobnosti k.

 $D\mathring{u}kaz$

Nejprve pozorování: $(\overline{z})^k = \overline{z^k}$ (dokážeme přes goniometrický tvar).

Důkaz provedeme matematickou indukcí podle k. k=1: z je kořen, tj. $P(z)=0=\overline{P(z)}=\overline{a_n\cdot z^n+\ldots+a_0z^0}=a_n\overline{z^n}+\ldots+a_0\overline{z^0}=P(\overline{z}) \implies \overline{z}$ je kořen. Dále předpokládejme, že $z\notin\mathbb{R}$ (jinak je důkaz triviální.)

Nyní nechť tvrzení platí pro k-1 a z je kořen násobnosti alespoň k, potom z IP víme, že \overline{z} je k-1násobný kořen. Tedy $P(x)=(x-z)^{k-1}\cdot(x-\overline{z})^{k-1}\cdot Q(x)=(x^2-(z+\overline{z})\cdot x+z\cdot\overline{z})^{k-1}\cdot Q(x)$, tedy Q má reálně koeficienty a Q(z)=0. Podle 1. kroku indukce je tudíž \overline{z} kořenem Q, tedy knásobným kořenem P.

Věta 2.10 (O rozkladu na parciální zlomky)

Nechť P a Q jsou polynomy s reálnými koeficienty takové, že stupeň P je ostře menší než stupeň Q a $Q(x) = a_n \cdot (x - x_1)^{p_1} \cdot \ldots \cdot (x - x_k)^{p_k} \cdot (x^2 + \alpha_1 x + \beta_1)^{q_1} \cdot \ldots \cdot (x^2 + \alpha_l x + \beta_l)^{q_l}$, kde $a_n, x_1, \ldots, x_k, \alpha_1, \ldots, \alpha_l, \beta_1, \ldots, \beta_l \in \mathbb{R}, a_n \neq 0, p_1, \ldots, p_k, q_1, q_l \in \mathbb{N}$, žádné dva z mnohočlenů nemají společný kořen a mnohočleny $x^2 + \alpha_i x + \beta_i$ nemají reálný kořen.

Pak existují jednoznačně určená čísla $A_j^i \in \mathbb{R}$, $i \in [k]$, $j \in [p_i]$ a $B_j^i, C_j^i \in \mathbb{R}$, $i \in [l]$, $j \in [q_i]$ tak, že platí:

$$\frac{P(x)}{Q(x)} = \frac{A_1^1}{x - x_1} + \ldots + \frac{A_{p_1}^1}{(x - x_1)^{p_1}} + \ldots + \frac{A_1^k}{x - x_k} + \ldots + \frac{A_{p_k}^k}{(x - x_k)^{p_k}} + \frac{B_1^1 x + C_1^1}{(x^2 + \alpha_1 x + \beta_1)^1} + \ldots$$

 $D\mathring{u}kaz$

Bez důkazu (velmi obtížný a docela zbytečný).

Poznámka (Postup při integraci racionální funkce)

- 1. Vydělit polynomy.
- 2. Rozklad na parciální zlomky podle předchozí věty.

2.3 Substituce, převádějící na racionální funkce

Viz přednáška. $(R(e^{ax}) \to t = e^{ax}, R(\log x) \cdot \frac{1}{x} \to t = \log(x)).$

2.4 Integrace trigonometrických funkcí

Definice 2.3 (Racionálni funkce 2 proměnných)

Racionální funkcí dvou proměnných rozumíme podíl dvou polynomů $R(a,b) = \frac{P(a,b)}{Q(a,b)}$, kde P(a,b) a Q(a,b) jsou polynomy dvou proměnných a Q není identicky nulový.

Poznámka

Při integraci funkcí $R(\sin x, \cos x)$ používáme substituce:

- Pokud $R(-\sin x, \cos x) = -R(\sin x, \cos x)$, pak používáme $t = \cos x$.
- Pokud $R(\sin x, -\cos x) = -R(\sin x, \cos x)$, pak používáme $t = \sin x$.
- Pokud $R(-\sin x, -\cos x) = R(\sin x, \cos x)$, pak používáme $t = \tan x$.
- Vždy funguje $t = \tan \frac{x}{2}$. (Nepoužívat není-li nutné, těžký výpočet!)

2.5 Integrace funkcí obsahujících odmocniny

Viz přednáška. $(q \in \mathbb{N}, ad \neq bc, R(x, \left(\frac{ax+b}{cx+d}\right)^{\frac{1}{q}}) \to t = \left(\frac{ax+b}{cx+d}\right)^{\frac{1}{q}}).$

Poznámka (Eulerovy substituce)

Nechť $a \neq 0$. Při integraci funkcí typu $R(x, \sqrt{ax^2 + bx + c})$ používáme substituce:

- polynom $ax^2 + bx + c$ má dvojnásobný kořen a a > 0, pak $\sqrt{ax^2 + bx + c} = \sqrt{a}|x \alpha|$ a řešíme na $x > \alpha$ a $x < \alpha$ jako racionální funkce.
- polynom $ax^2 + bx + c$ má dva reálné kořeny α_1 a α_2 . Pak úpravou převedeme na tvar $\sqrt{a\frac{x-\alpha_1}{x-\alpha_2}}$ nebo $\sqrt{a\cdot\frac{\alpha_1-x}{x-\alpha_2}}$.
- polynom ax^2+bx+c nemá reálný kořen a a>0. Pak používáme substituci $\sqrt{ax^2+bx+c}=\sqrt{a}\cdot x+t$.

Pozor

Substituce $\tan x$, $\tan \frac{x}{2}$ a poslední předchozí jsou substituce 2. druhu a je vždy potřeba ověřit, že vnitřní funkce je monotónní a na.

3 Určitý integrál

3.1 Riemannův integrál

Definice 3.1 (Dělení, zjemnění dělení)

Konečnou posloupnost $\{x_j\}_{j=0}^n$ nazýváme dělením intervalu [a,b], jestliže $a=x_0 < x_1 < \ldots < x_{n-1} < x_n = b$.

Řekneme, že dělení D' intervalu [a,b] zjemňuje dělení D intervalu [a,b], jestliže každý bod dělení D je i bodem dělení D'.

Definice 3.2 (Horní a dolní součty, Riemanovy integrály)

Necht f je omezená funkce definovaná na intervalu [a,b] a D je dělení [a,b], definujme horní a dolní součty

$$S(f,d) = \sum_{i=1}^{n} \sup \{f(x) | x \in [x_{i-1}, x_i]\} \cdot (x_i - x_{i-i}),$$

$$s(f,d) = \sum_{i=1}^{n} \inf \{ f(x) | x \in [x_{i-1}, x_i] \} \cdot (x_i - x_{i-i}).$$

Horní a dolní Riemannův integrál definujeme jako

$$(R)$$
 $\int_a^b f(x) dx = \inf \{ S(f, D) | D \text{ je dělení } [a, b] \},$

$$(R) \int_a^b f(x) \, dx = \sup \left\{ s(f,D) | D \text{ je dělení } [a,b] \right\}.$$

Definice 3.3

Řekneme, že f je Riemanovsky integrovatelná, jestliže $(R)\underline{\int_a^b}f(x)\,dx=(R)\overline{\int_a^b}f(x)\,dx$. Tuto hodnotu pak označujeme $(R)\int_a^bf(x)\,dx$.

Množinu funkcí mající Riemannův integrál značíme R([a, b]).

Poznámka

Omezenost f je nutnou podmínkou.

Věta 3.1 (O zjemnění dělení)

Nechť f je omezená funkce na [a,b], D a D' jsou dělení intervalu [a,b] a D' zjemňuje D. $Pak\ s(f,D) \le s(f,D') \le S(f,D') \le (f,D)$.

Důkaz

Prostřední nerovnost je triviální z sup \geq inf.

Předpokládejme, že $D = \{x_0, x_1, \dots, x_n\}$ a $D' = \{x_0, x_1, \dots, x_{j-1}, z, x_{x_j}, \dots, x_n\}$. Pak inf $\{f(x), x \in [x_{j-1}, x_j]\} \le \inf\{f(x), x \in [x_{j-1}, z]\}$ a inf $\{f(x), x \in [x_{j-1}, x_j]\} \le \inf\{f(x), x \in [z, x_j]\}$. Vynásobením $(z - x_{j-1})$ a $(x_j - z)$ dostaneme

$$\inf\{f(x), x \in [x_{j-1}, x_j]\} \cdot (x_j - x_{j-1}) \le \inf\{f(x), x \in [x_{j-1}, z]\} \cdot (z - x_{j-1}) + \inf\{f(x), x \in [z, x_j]\} \cdot (x_j - z) = 0$$

Pokud se Da D'liší o více bodů, pak postupujeme indukcí. Analogicky pro horní součty. $\hfill\Box$

Věta 3.2 (O dvou děleních)

Nechť f je omezená funkce na [a,b] a D_1,D_2 jsou dělení intervalu [a,b]. Pak $s(f,D_1) \leq S(f,D_2)$.

 $D\mathring{u}kaz$

Nechť D zjemňuje D_1 i D_2 ($D=D_1\cup D_2$). Potom D je jemnější než D_1 i D_2 a podle předchozí věty:

$$s(f, D_1) \le s(f, D) \le S(f, D) \le S(f, D_2).$$

Důsledek

Necht f je omezená na [a,b], D_1 a D_2 jsou dělení [a,b], $m=\inf\{f(x)|x\in[a,b]\}$ a $M=\sup\{f(x)|x\in[a,b]\}$. Pak:

$$m \cdot (b-a) \le s(f,D_1) \le \underline{\int_a^b} f(x) dx \le \overline{\int_a^b} f(x) dx \le S(f,D_2) \le M \cdot (b-a).$$

Definice 3.4 (Norma dělení)

Nechť D je dělení [a,b]. Číslo $\ni (D) = \max_{j=1,\dots,n} |x_j - x_{j-1}|$ nazveme normou dělení D.

Věta 3.3 (Aproximace R. integrálu pomocí součtů)

Nechť f je omezená funkce na [a,b] a $\{D_n\}_{n=1}^{\infty}$ je posloupnost dělení [a,b] taková, že $\lim_{n\to\infty} \ni (D_n) = 0$. Potom $(R) \overline{\int_a^b} f(x) \, dx = \inf_{n\in\mathbb{N}} S(f,D_n) \, a(R) \underline{\int_a^b} f(x) \, dx = \sup_{n\in\mathbb{N}} s(f,D_n)$.

 $D\mathring{u}kaz$

BÚNO $f\geq 0$ (jinak přičteme k f konstantu). Stačí dokázat druhá rovnost, první je analogická. Nechť D je libovolné dělení a $\varepsilon>0$. Stačí dokázat, že $\exists n_0:s(f,D_{n_0})\geq s(f,D)-\varepsilon$. Pak

$$(R) \int_{\underline{a}}^{\underline{b}} f(x) \, dx = \sup_{D} S(f, D) \ge \sup_{D_n} s(f, D_n) \ge \sup_{D} (s(f, D) - \varepsilon) = (R) \int_{\underline{a}}^{\underline{b}} f(x) \, dx - \varepsilon.$$

Nechť $0 \le f \le K$ a zvolme n_0 , aby $\ni (D_{n_0}) \le \frac{\varepsilon}{K \cdot 4 \cdot \# \text{interval} \mathring{u} D}$. Označme H = intervaly vzniklé dělením $P = D \cup D_{n_0}$ a $\gamma = \text{intervaly z } P$, v kterých není žádný bod dělení D. P je jemnější než D, a proto z věty výše dostáváme

$$s(f,D) \le s(f,P) = \sum_{L \in \mathcal{H}} \inf_{L} f \cdot \text{délka } L = \sum_{L \in \gamma} \inf_{L} f \cdot \text{délka } L + \sum_{L \in \mathcal{H} \setminus \gamma} \inf_{L} f \cdot \text{délka } L \le s(f,D_{n_0}) + 2 \cdot \# \text{interval} = \sum_{L \in \mathcal{H}} \inf_{L} f \cdot \text{délka } L \le s(f,D_{n_0}) + 2 \cdot \# \text{interval} = \sum_{L \in \mathcal{H}} \inf_{L} f \cdot \text{délka } L \le s(f,D_{n_0}) + 2 \cdot \# \text{interval} = \sum_{L \in \mathcal{H}} \inf_{L} f \cdot \text{délka } L \le s(f,D_{n_0}) + 2 \cdot \# \text{interval} = \sum_{L \in \mathcal{H}} \inf_{L} f \cdot \text{délka } L \le s(f,D_{n_0}) + 2 \cdot \# \text{interval} = \sum_{L \in \mathcal{H}} \inf_{L} f \cdot \text{délka } L \le s(f,D_{n_0}) + 2 \cdot \# \text{interval} = \sum_{L \in \mathcal{H}} \inf_{L} f \cdot \text{délka } L \le s(f,D_{n_0}) + 2 \cdot \# \text{interval} = \sum_{L \in \mathcal{H}} \inf_{L} f \cdot \text{délka } L \le s(f,D_{n_0}) + 2 \cdot \# \text{interval} = \sum_{L \in \mathcal{H}} \inf_{L} f \cdot \text{délka } L \le s(f,D_{n_0}) + 2 \cdot \# \text{interval} = \sum_{L \in \mathcal{H}} \inf_{L} f \cdot \text{délka } L \le s(f,D_{n_0}) + 2 \cdot \# \text{interval} = \sum_{L \in \mathcal{H}} \inf_{L} f \cdot \text{délka } L \le s(f,D_{n_0}) + 2 \cdot \# \text{interval} = \sum_{L \in \mathcal{H}} \inf_{L} f \cdot \text{délka } L \le s(f,D_{n_0}) + 2 \cdot \# \text{interval} = \sum_{L \in \mathcal{H}} \inf_{L} f \cdot \text{délka } L \le s(f,D_{n_0}) + 2 \cdot \# \text{interval} = \sum_{L \in \mathcal{H}} \inf_{L} f \cdot \text{délka } L \le s(f,D_{n_0}) + 2 \cdot \# \text{interval} = \sum_{L \in \mathcal{H}} \inf_{L} f \cdot \text{délka } L \le s(f,D_{n_0}) + 2 \cdot \# \text{interval} = \sum_{L \in \mathcal{H}} \inf_{L} f \cdot \text{délka } L \le s(f,D_{n_0}) + 2 \cdot \# \text{interval} = \sum_{L \in \mathcal{H}} \inf_{L} f \cdot \text{délka } L \le s(f,D_{n_0}) + 2 \cdot \# \text{interval} = \sum_{L \in \mathcal{H}} \inf_{L} f \cdot \text{délka } L \le s(f,D_{n_0}) + 2 \cdot \# \text{interval} = \sum_{L \in \mathcal{H}} \inf_{L} f \cdot \text{délka } L \le s(f,D_{n_0}) + 2 \cdot \# \text{interval} = \sum_{L \in \mathcal{H}} \inf_{L} f \cdot \text{délka } L \le s(f,D_{n_0}) + 2 \cdot \# \text{interval} = \sum_{L \in \mathcal{H}} \inf_{L} f \cdot \text{délka } L \le s(f,D_{n_0}) + 2 \cdot \# \text{interval} = \sum_{L \in \mathcal{H}} \inf_{L} f \cdot \text{délka } L \le s(f,D_{n_0}) + 2 \cdot \# \text{interval} = \sum_{L \in \mathcal{H}} \inf_{L} f \cdot \text{délka } L \le s(f,D_{n_0}) + 2 \cdot \# \text{interval} = \sum_{L \in \mathcal{H}} \inf_{L} f \cdot \text{délka } L \le s(f,D_{n_0}) + 2 \cdot \# \text{interval} = \sum_{L \in \mathcal{H}} \inf_{L} f \cdot \text{délka } L \le s(f,D_{n_0}) + 2 \cdot \# \text{interval} = \sum_{L \in \mathcal{H}} \inf_{L} f \cdot \text{délka } L \le s(f,D_{n_0}) + 2 \cdot \# \text{interval} = \sum_{L \in \mathcal{H}} \inf_{L} f \cdot \text{délka } L \le s(f,D_{n_0}) + 2 \cdot \# \text{interval} = \sum_{L \in$$

Věta 3.4 (Kritérium existence R integrálu)

Necht f je omezená funkce na [a,b]. Pak $f \in R([a,b]) \Leftrightarrow \forall \varepsilon > 0 \exists$ dělení D intervalu [a,b], že $S(f,D) - s(f,D) < \varepsilon$.

 $D\mathring{u}kaz$

 \implies : Zvolme libovolnou posloupnost dělení, že $\ni |D_n| \to 0$ (D_{n+1} je jemnější než D_n). Pak

$$\lim_{n \to \infty} S(f, D_n) = (R) \overline{\int_a^b} f(x) dx = (R) \int_a^b f(x) dx,$$

$$\lim_{n \to \infty} s(f, D_n) = (R) \int_{a}^{b} f(x) \, dx = (R) \int_{a}^{b} f(x) \, dx.$$

Tedy $\exists n_0 \ \forall n \geq n_0 : S(f, D_n) - s(f, D_n) < \varepsilon$.

 \Rightarrow : Zvolme $\varepsilon>0$ a k němu nalezneme Dz předpokladu.

$$0 \le (R) \overline{\int_a^b} f(x) \, dx - (R) \underline{\int_a^b} f(x) \, dx \le S(f, D) - s(f, D) < \varepsilon \implies (R) \overline{\int_a^b} f(x) \, dx = (R) \underline{\int_a^b} f(x) \, dx.$$

Definice 3.5 (Stejnoměrná spojitost)

Řekneme, že funkce f je stejnoměrně spojitá na intervalu I, jestliže

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in I : |x - y| < \delta \implies |f(x) - f(y)| < \varepsilon.$$

Věta 3.5 (O vztahu spojitosti a stejnoměrné spojitosti)

Nechť f je spojitá na omezeném uzavřeném intervalu [a,b], pak f je stejnoměrně spojitá na [a,b].

 $D\mathring{u}kaz$

Sporem. Nechť f je spojitá na [a, b], ale

$$\exists \varepsilon > 0 \ \forall \delta = \frac{1}{n} \ \exists x_n, y_n \in I : |x_n - y_n| < \frac{1}{n} \land |f(x_n) - f(y_n)| \ge \varepsilon.$$

Interval a, b je omezený, tedy z x_n lze vybrat konvergentní posloupnost podle Weirstrassovy věty. Tedy $\lim_{k\to\infty} x_{n_k} = x_0$. Dále $\lim_{k\to\infty} y_{n_k} = x_0$, neboť

$$|y_{n_k} - x_0| \le |y_{n_k} - x_{n_k}| + |x_{n_k} - x_0| < \frac{1}{n_k} + |x_{n_k} - x_0| \to 0.$$

Víme, že f je spojitá v x_0 (vzhledem k [a,b]). Tedy k našemu $\varepsilon>0$ $\exists \delta>0$ tak, že $\forall z\in (x_0-\delta,x_0+\delta)\cap [a,b]: |f(z)-f(x_0)|<\frac{\varepsilon}{3}$. Nalezneme $j\in\mathbb{N}$, aby $x_{n_k},y_{n_k}\in (x_0-\delta,x_0+\delta)$. Nyní

$$\varepsilon \leq |f(x_{n_k} - f(y_{n_k}))| \leq |f(x_{n_k} - f(x_0))| + |f(x_0) - f(y_{n_k})| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} < \varepsilon.4.$$

Věta 3.6 (O vztahu spojitosti a Riemannovské integrovatelnosti)

Nechť f je spojitá na omezeném intervalu [a,b], pak $f \in R([a,b])$.

 $D\mathring{u}kaz$

Podle věty ze zimy je spojitá funkce na omezeném intervalu spojitá. Z předchozí věty víme, že f je dokonce stejnoměrně spojitá na [a,b]. Pak

$$\exists \delta > 0: \forall x,y \in [a,b]: |x-y| < \delta \implies |f(x)-f(y)| < \varepsilon.$$

Zvolme dělení D intervalu [a,b] tak, že \ni (D) < δ . Nechť $D = \{x_j\}_{j=0}^n$. Označme $M_j = \sup_{x_j,x_{j+1}} f$, $m_j = \inf_{x_j,x_{j+1}} f$. Pak platí $M_j \le m_j + \varepsilon \forall j \in [n]$.

$$S(f,D) - s(f,D) = \sum_{j=1}^{n} M_j(x_j - x_{j-1}) - \sum_{j=1}^{n} m_j(x_j - x_{j-1}) = \sum_{j=1}^{n} (M_j - m_j) \cdot (x_j - x_{j-1}) \le \varepsilon \cdot \sum_{j=1}^{n} (x_j - x_{j-1}) = \sum_{j=1}^{n} (x_j - x_{$$

Podle věty výše tedy $f \in R([a, b])$.

Věta 3.7 (Vztah monotonie a Riemanovské integrovatelnosti)

Necht f je (omezená) monotonní funkce na intervalu [a,b]. Pak $f \in R([a,b])$.

 $D\mathring{u}kaz$

BÚNO f je neklesající. Budeme kritérium existence R integrálu. Nechť $\varepsilon>0$. Zvolme ekvidistantní dělení $D=\left\{a+(b-a)\frac{j}{n}\right\}_{j=0}^n$ a volíme n, aby $n>\frac{1}{\varepsilon}(b-a)\cdot(f(b)-f(a))$. Nyní

$$S(f,D) = \sum_{j=1}^{n} \sup_{[x_{j-1},x_j]} f \cdot (x_j - x_{j-1}) = \sum_{j=1}^{n} f(x_j) \cdot (x_j - x_{j-1}) = \frac{b-a}{n} \sum_{j=1}^{n} f(x_j),$$

$$s(f,D) = \sum_{j=1}^{n} \inf_{[x_{j-1},x_j]} f \cdot (x_j - x_{j-1}) = \sum_{j=1}^{n} f(x_{j-1}) \cdot (x_j - x_{j-1}) = \frac{b-a}{n} \sum_{j=1}^{n} f(x_{j-1}).$$

Odtud

L

$$S(f, D) - s(f, D) = \frac{b - a}{n} \sum_{j=1}^{n} f(x_j) - f(x_{j-1}) \le \frac{b - a}{n} (f(b) - f(a)) < \varepsilon.$$

Věta 3.8 (Vlastnosti R integrálu)

 $a)\ Linearita:\ f,g\in R([a,b]),\alpha\in\mathbb{R} \implies f+g\in R([a,b]) \land \alpha f\in R([a,b])\ a$

$$(R)\int_a^b f + g = (R)\int_a^b f + (R)\int_a^b g \wedge (R)\int_a^b \alpha \cdot f = \alpha \cdot (R)\int_a^b g.$$

b) Monotonie: $f, g \in R([a, b]), f \leq g$, pak $(R) \int_a^b f \leq (R) \int_a^b g$.

c) Aditivita vzhledem k intervalům: Nechť a < c < b. Pak $f \in R([a,b]) \Leftrightarrow f \in R([a,c]) \land f \in R([c,b])$ a platí $(R) \int_a^b f(x) \, dx = (R) \int_a^c f(x) \, dx + (R) \int_c^b f(x) \, dx$.

Důkaz (a)

 $f,g\in R([a,b])\Longrightarrow f$ a g jsou omezené na $[a,b]\Longrightarrow f+g$ je omezená a αf je omezená na [a,b]. Je-li $I\subseteq [a,b]$ interval, pak $\sup_I (f+g)\le \sup_I f+\sup_I g$, $\inf_I (f+g)\le \inf_I f+\inf_I g$. Proto pro libovolné dělení D intervalu [a,b] platí

$$s(f, D) + s(g, D) \le s(f + g, D) \le S(f + g, D) \le S(f, D) + S(g, D).$$

Zvolme posloupnost dělení $\{D_n\}$ intervalu [a,b] tak, že $\ni (D_n) \to 0$ (a D_{n+1} jemnější než D_n). Podle věty výše

$$\lim_{n \to \infty} S(f, D_n) + S(g, D_n) = (R) \int_a^b f(x) \, dx + (R) \int_a^b g(x) \, dx,$$

$$\lim_{n \to \infty} s(f, D_n) + s(g, D_n) = (R) \int_a^b f(x) \, dx + (R) \int_a^b g(x) \, dx.$$

Spolu s nerovností výše je to

$$\lim_{n \to \infty} s(f+g, D_n) = \lim_{n \to \infty} S(f+g, D_n) \stackrel{\text{POLICIE}}{=} (R) \int_a^b f(x) \, dx + (R) \int_a^b g(x) \, dx.$$

Tedy podle věty výše $f+g\in R([a,b])$ a $(R)\int_a^b f+g=(R)\int_a^b f+(R)\int_a^b g.$

Je-li $f \in R([a,b]), \alpha \geq 0$, je $\alpha \cdot f$ omezená na [a,b]. Pro každý interval $I \subseteq [a,b]$

$$\sup_{I} \alpha \cdot f = \alpha \cdot \sup_{I} f, \qquad \inf_{I} \alpha \cdot f = \alpha \cdot \inf_{I} f \implies$$

$$S(\alpha f, D) = \alpha \cdot S(f, D), \qquad s(\alpha \cdot f, D) = \alpha \cdot s(f, D).$$

Nechť $\{D_n\}$ je posloupnost dělení [a,b], že $\nu|D_n|\to 0$ a D_{n+1} je jemnější než D_n . Pak

$$\lim_{n \to \infty} S(\alpha f, D_n) = \lim_{n \to \infty} \alpha \cdot S(f, D_n) = \alpha \cdot (R) \int_a^b f(x) \, dx,$$

$$\lim_{n \to \infty} s(\alpha f, D_n) = \lim_{n \to \infty} \alpha \cdot s(f, D_n) = \alpha \cdot (R) \int_a^b f(x) \, dx.$$

Podle věty výše je pro $\alpha f : \alpha f \in R([a,b])$ a $(R) \int_a^b \alpha f = \alpha(R) \int_a^b f$.

Zbývá $\alpha < 0$. Stačí $\alpha = -1$ (jelikož pak můžeme násobit kladným). Pak \forall interval $I \sup_{I} (-f) = -\inf_{I} f$ a $\inf_{I} (-f) = -\sup_{I} f$. Tedy \forall posloupnost dělení $\{D_n\}$, kde $\nu(D_n) \to 0$ a D_{n+1} je jemnější než D_n :

$$\lim_{n \to \infty} S(-f, D_n) = \lim_{n \to \infty} -s(f, D_n) = -(R) \int_a^b f(x) \, dx,$$

$$\lim_{n \to \infty} s(-f, D_n) = \lim_{n \to \infty} -S(f, D_n) = -(R) \int_a^b f(x) \, dx,$$

tudíž
$$-f \in R([a,b])$$
a $(R) \int_a^b (-f) = -(R) \int_a^b f.$

Důkaz (b)

Nechť D_n je posloupnost dělení, $\nu(D_n) \to 0$ a D_{n+1} je jemnější než D_n . Pak $\sup_I f \le \sup_I g$. Tedy víme, že

$$\int_a^b f(x) dx = \lim_{n \to \infty} S(f, D_n) \le \lim_{n \to \infty} S(g, D_n) = (R) \int_a^b g(x) dx.$$

Důkaz (c)

Necht $\{D_n^1\}$ a $\{D_n^2\}$ jsou posloupnosti dělení [a,c] respektive [c,b] splňující $\nu(D_n^1) \to 0$ a $\nu(D_n^2) \to 0$ a D_{n+1}^1 je jemnější než D_n^1 a D_{n+1}^2 je jemnější než D_n^2 . Necht $D_n = D_n^1 \cup D_n^2$. Pak D_n je dělení [a,b] a $\nu(D_n) \to 0$ a D_{n+1} je jemnější než D_n .

Necht $f \in R([a,c])$ a $f \in R([c,b])$. Pak podle věty výše

$$\lim_{n\to\infty} S(f, D_n^1) = \lim_{n\to\infty} s(f, D_n^1) = (R) \int_a^c f(x) \, dx,$$

$$\lim_{n\to\infty} S(f, D_n^2) = \lim_{n\to\infty} s(f, D_n^2) = (R) \int_c^b f(x) \, dx.$$

Tedy

$$\lim_{n \to \infty} S(f, D_n) = \lim_{n \to \infty} S(f, D_n^1) + S(f, D_n^2) = (R) \int_a^c f(x) \, dx + (R) \int_c^b f(x) \, dx,$$

$$\lim_{n \to \infty} s(f, D_n) = \lim_{n \to \infty} s(f, D_n^1) + s(f, D_n^2) = (R) \int_a^c f(x) \, dx + (R) \int_c^b f(x) \, dx.$$

Podle věty výše je $f \in R([a,b])$ a $(R) \int_a^b f(x) dx = (R) \int_a^c f(x) dx + (R) \int_c^b f(x) dx$.

Nechť $f \in R([a,b])$. Pak

$$0 \le S(f, D_n^1) - s(f, D_n^1) \le S(f, D_n^1) - s(f, D_n^1) + S(f, D_n^2) - s(f, D_n^2) = S(f, D_n) - s(f, D_n) \to 0 \implies \lim_{n \to \infty} S(f, D_n^1) - s(f, D_n^1) = 0 \implies f \in R([a, c]).$$

Analogicky $f \in R([c,b])$. Rovnost $(R) \int_a^b f(x) \, dx = (R) \int_a^c f(x) \, dx + (R) \int_c^b f(x) \, dx$ plyne z předchozí části důkazu.

Poznámka (Úmluva)

1. Necht b < a, pak definujeme $\int_a^b f(x) dx = -\int_b^a f(x) dx$.

Věta 3.9 (O derivaci integrálu podle horní meze)

Nechť J je neprázdný interval a $f \in R([\alpha, \beta])$ pro každé $\alpha, \beta \in J$. Nechť $c \in J$ je libovolný pevný bod. Definujme na J funkci $F(x) = (R) \int_c^x f(t) dt$. Pak platí: 1) F je spojitá na J,

2) je-li f spojitá v $x_0 \in J$, pak $F'(x_0) = f(x_0)$.

Důsledek

Je-li f spojitá na (a, b), pak má na (a, b) primitivní funkci.

Důsledek

Nechť f je spojitá na $[\alpha, \beta], \alpha, \beta \in \mathbb{R}$. Pak

$$(R) \int_{a}^{b} f(t) dt = \lim_{x \to \beta^{-}} F(x) - \lim_{x \to a^{+}} F(x),$$

kde F je primitivní funkce k f na (α, β) .

Důkaz (Věty o defivaci integrálu ...)

1) Nechť $y_0 \in J$ není pravým krajním bodem J. Chceme dokázat $\lim_{y \to y_0 +} F(y) = F(y_0)$. Nyní

$$F(y) - F(y_0) = (R) \int_c^y f(t) dt - (R) \int_c^{y_0} f(t) dt = (R) \int_{y_0}^y f(t) dt \le |y - y_0| K \to 0,$$

jelikož f je Riemannovsky integrovatelná, tedy je omezená f(t) < K. Policií dokážeme $F(y) - F(y_0) \to 0$. Analogicky pro limitu zleva.

2) Víme

$$F'(x_0) = \lim_{h \to 0} \frac{F(x_0 + h) - F(x_0)}{h} = \lim_{h \to 0} \frac{(R) \int_0^{x_0 + h} f(t) dt - (R) \int_0^{x_0} f(t) dt}{h} = \lim_{h \to 0} \frac{1}{h} \cdot \int_{x_0}^{x_0 + h} f(t) dt.$$

Nyní

$$\frac{1}{h} \cdot \int_{x_0}^{x_0+h} f(t) dt - f(x_0) = \frac{1}{h} \cdot \int_{x_0}^{x_0+h} (f(t) - f(x_0)) dt.$$

Zvolme $\varepsilon > 0$. K němu nalezneme $\delta > 0$ tak, že $\forall t \in [x_0 - \delta, x_0 + \delta]$ platí $|f(t) - f(x_0)| < \varepsilon$. Pak platí

$$\left| \frac{1}{h} \int_{x_0}^{x_0+h} (f(t) - f(x_0)) dt \right| \le \frac{1}{h} \cdot \varepsilon \cdot h = \varepsilon.$$

Tedy $F'(x_0) - f(x_0) = 0$ z policie.

3.2 Newtonův integrál

Definice 3.6 (Newtonův integrál)

Řekneme, že funkce f má na intervalu (a,b) Newtonův integrál, jestliže má na (a,b) primitivní funkci F a existují $\lim_{x\to a+} F(x)$ a $\lim_{x\to b-} F(x)$ vlastní. Hodnotou Newtonova

integrálu rozumíme číslo

$$(N) \int_{a}^{b} f(t) dt = \lim_{x \to b-} F(x) - \lim_{x \to a+} F(x).$$

Množinu funkcí mající Newtonův integrál značíme N(a, b).

Dusledek

Je-li f spojitá na [a, b], pak existují oba (v budoucnu všechny) integrály a rovnají se.

Existují i funkce integrovatelné pouze N a pouze R: $\int_0^1 \frac{1}{\sqrt{x}} dx$ a $\int_{-1}^1 \operatorname{sgn} x dx$.

Věta 3.10 (Per partes pro určitý integrál)

Necht f, f', g, g' jsou spojité na intervalu [a, b]. Potom $\int_a^b f(x)g'(x) dx = [f \cdot g]_a^b - \int_a^b f'(x)g(x) dx$, $kde \ [fg]_a^b = f(b)g(b) - f(a)g(a) \ a \ obecněji \lim_{x \to b_+} f(x)g(x) - \lim_{x \to a_-} f(x)g(x)$.

Důkaz

Víme, že f je primitivní k f' a g je primitivní k g'. Tedy pro primitivní funkci platí $\int f \cdot g' = f \cdot g - \int f' \cdot g$. Dále $\int_a^b f(x) \cdot g'(x) \, dx = Primit(b) - Primit(a) = f(b) \cdot g(b) - f(a) \cdot g(a) - \int_a^b f'(x)g(x) \, dx$. Všechny integrály existují ze spojitosti.

Věta 3.11 (O substituci pro určitý integrál)

Nechť f je spojitá na intervalu [a,b] a $\varphi:[\alpha,\beta] \to [a,b]$ je funkce, která má na $[\alpha,\beta]$ spojitou první derivaci. Pak

$$\int_{\alpha}^{\beta} f(\varphi(t)) \cdot \varphi'(t) dt = \int_{\varphi\alpha}^{\varphi\beta} f(x) dx.$$

Nechť f je spojitá na intervalu [a,b] a $\varphi:[\alpha,\beta] \to [a,b]$ je na a má na $[\alpha,\beta]$ vlastní spojitou nenulovou derivaci. Pak

$$\int_a^b f(x) \, dx = [\Phi(\varphi^{-1}(t))]_a^b = [\Phi(t)]_{\varphi^{-1}(a)}^{\varphi^{-1}(b)} = \int_{\varphi^{-1}(a)}^{\varphi^{-1}(b)} f(\varphi(t)) \cdot \varphi'(t) \, dt,$$

 $kde \Phi je primitivní funkce k (f \circ \varphi) \cdot \varphi'.$

 $D\mathring{u}kaz$

Bez důkazu.

Pozorování

Nechť f je spojitá na (a, b) a a < c < b. Pak

$$1)f \in N(a,c) \land f \in N(c,b) \implies f \in N(a,b).$$

$$2)f \in N(a,b) \implies f \in N(a,c).$$

3.3 Konvergence integrálu

Věta 3.12 (Srovnávací kritérium pro konvergenci integrálů)

Nechť $a \in \mathbb{R}, b \in \mathbb{R}^*$ a a < b. Nechť jsou funkce $f, g : [a, b) \to \mathbb{R}$ spojité na [a, b) a nechť $0 \le f(x) \le g(x) \ \forall x \in [a, b)$. Pak $g \in N(a, b) \implies f \in N(a, b)$.

 $D\mathring{u}kaz$

Zvolme $c \in (a,b)$ a označme G a F primitivní funkce k f a g. BÚNO G(c) = F(c) (jinak odečti konstantu). $(G-F)'(x) = (g-f)(x) \ge 0$ na $[c,b) \Longrightarrow G-F$ je neklesající na [c,b). Dále $G(c) = F(c) \Longrightarrow \forall x \in [c,b) : G(x) \ge F(x)$. Dále $G' = g \ge 0$ a $F' = f \ge 0$, tedy jsou neklesající. $g \in N(a,b) \Longrightarrow \lim_{x\to b_-} G(x) \in \mathbb{R}$. F je neklesající a omezená $\lim_{x\to b_-} G(x)$, tedy $\lim_{x\to b_-} F(x) \in \mathbb{R} \Longrightarrow f \in N(c,b)$. f je spojitá na [a,c], tj. $f \in N(a,c)$. Tudíž $f \in N(a,b)$.

Poznámka

Platí analogie pro (a, b].

Věta 3.13 (Limitní srovnávací kritérium pro konvergenci integrálu)

Nechť $a \in \mathbb{R}, b \in \mathbb{R}^*$ a a < b. Nechť jsou funkce $f, g : [a, b) \to \mathbb{R}$ spojité a nezáporné na [a, b). Jestliže existuje $\lim_{x \to b_-} \frac{f(x)}{g(x)} \in (0, \infty)$, pak $g \in N(a, b) \Leftrightarrow f \in N(a, b)$.

Důkaz

Označme $A = \lim_{x \to b_{-}} \frac{f(x)}{g(x)}$. Z definice limity pro

$$\varepsilon = \frac{A}{2} \ \exists \delta > 0 \ \forall x \in P_{-}(b, \delta) : \left| \frac{f(x)}{g(x)} - A \right| < \varepsilon = \frac{A}{2}.$$

Neboli $\exists x_0 \in (a,b) \ \forall x \in [x_0,b] : \frac{3}{2}A \geq \frac{f(x)}{g(x)} \geq \frac{1}{2}A$. Tudíž $\frac{3}{2}A \cdot g(x) \geq f(x) \geq \frac{1}{2}A \cdot g(x)$. $g \in N(a,b) \implies \frac{2}{3}A \cdot g(x) \in N(a,b) \implies \frac{3}{2}A \cdot g(x) \in N(x_0,b) \implies f \in N(x_0,b)$ podle předchozí věty. f je spojitá na $[a,x_0]$, tedy $f \in N(a,x_0) \implies f \in N(a,b)$.

Pokud naopak $f \in N(a, b)$, pak $f(x) \in N(x_0, b) \Longrightarrow \frac{1}{2}A \cdot g(x) \in N(x_0, b) \Longrightarrow g(x) \in N(x_0, b)$. g je spojitá na $[a, x_0]$, tedy $g \in N(a, x_0) \Longrightarrow g \in N(a, b)$.

Poznámka

Platí i analogie pro (a, b].

Lemma 3.14 (Odhad Newtonova integrálu součinu dvou funkcí)

Necht $a,b \in \mathbb{R}$ a a < b. Necht f je spojitá funkce na [a,b] a $g:[a,b] \in \mathbb{R}$ je nerostoucí, nezáporná a spojitá. Potom $g(a) \cdot \inf_{x \in [a,b]} \int_a^x f(t) \, dt \le \int_a^b f(t) \cdot g(t) \, dt \le g(a) \cdot \sup_{x \in [a,b]} \int_a^x f(t) \, dt$.

Speciálně platí $|\int_a^b f(t) \cdot g(t) dt| \le g(a) \cdot \sup_{x \in [a,b]} |\int_a^x f(t) dt|$.

Věta 3.15 (Abelovo-Dirichletovo kritérium konvergence integrálu)

Nechť $a \in \mathbb{R}, b \in \mathbb{R}^*$ a a < b. Nechť $f : [a,b) \to \mathbb{R}$ je spojitá a F je primitivní funkce k f na (a,b). Dále nechť $g : [a,b) \to \mathbb{R}$ je na [a,b] monotónní a spojitá. Pak platí:

- (A) Je-li $f \in N(a,b)$ a g je omezená, pak $f \cdot g \in N(a,b)$.
- (D) Je-li F(x) omezená na (a,b) a $\lim_{x\to b_-} g(x) = 0$, pak $f\cdot g \in N(a,b)$.

Důkaz (Odhad Newtonova integrálu součinu dvou funkcí)

Dokážeme druhou nerovnost (první je analogická). Nechť $\varepsilon > 0$. Z V7.5 (spojitost na kompaktu a stejnoměrná spojitost) plyne stejnoměrná spojitost f a $f \cdot g$ na [a, b].

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x,y \in [a,b] : |x-y| < \delta \implies |f(x)-f(y)| < \varepsilon \wedge |f(x)\cdot g(x)-f(y)\cdot g(y)| < \varepsilon.$$

Označme $F(x) = \int_a^x f(t) \, dt, x \in [a,b]$. Pak F(a) = 0. Zvolme dělení D intervalu [a,b] s normou $<\delta$. Ze stejnoměrné spojitosti $\forall i \in \{1,\ldots,n\} \ \forall t \in [x_{i-1},x_i]: f(t) \geq f(x_{i-1}) - \varepsilon$. Tedy $\int_{x_{i-1}^x f(t) \, dt \geq f(x_{i-1} \cdot (x_i - x_{i-1}) - \varepsilon \cdot (x_i - x_{i-1}))}$. Analogicky z $f(t) \cdot g(t) \leq f(x_{i-1}) \cdot g(x_{i-1}) + \varepsilon$ dostaneme $\int_{x_{i-1}}^{x_i} f(t)g(t) \, dt \leq f(x_{i-1}) \cdot g(x_{i-1}) \cdot (x_i - x_{i-1}) + \varepsilon \cdot (x_i - x_{i-1})$. Nyní aplikujeme předchozí nerovnost:

$$\leq g(x_{i-1}) \cdot \left(\int_{x_{i-1}}^{x_i} f(t) dt + \varepsilon \cdot (x_i - x_{i-1}) \right) + \varepsilon \cdot (x_i - x_{i-1}) \leq$$

g nerostoucí

$$\leq g(x_{i-1}) \cdot \left(\int_{x_{i-1}}^{x_i} f(t) dt \right) + g(a) \cdot \varepsilon \cdot (x_i - x_{i-1}) + \varepsilon \cdot (x_i - x_{i-1}) \leq g(x_{i-1}) \cdot \left(\int_{x_{i-1}}^{x_i} f(t) dt \right) + \frac{x_i - x_{i-1}}{a - b} \tilde{\varepsilon},$$

kde $\tilde{\varepsilon} = \varepsilon(g(a) + 1) \cdot (b - a)$.

Nyní

$$\int_{a}^{b} f(t) \cdot g(t) dt = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} f(t) \cdot g(t) dt \le \sum_{i=1}^{n} g(x_{i-1}) \cdot \int_{x_{i-1}}^{x_{i}} +\tilde{\varepsilon} =$$

$$\sum_{i=1}^{n} g(x_{i-1}) \cdot (F(x_i) - F(x_{i-1})) + \tilde{\varepsilon}.$$

Přes Abelovu parciální sumaci:

$$= \sum_{i=1}^{n-1} F(x_i) \cdot (g(x_{i-1} - g(x_i))) + g(x_{n-1}) \cdot F(x_n) + \tilde{\varepsilon} \le$$

$$\leq \sup_{t \in [a,b]} F(t) \cdot \sum_{i=1}^{n-1} (g(x_{i-1}) - g(x_i) + g(x_{n-1})) + \tilde{\varepsilon} = g(a) \cdot \sup_{t \in [a,b]} F(t) + \varepsilon \cdot (g(a) + 1) \cdot (b - a).$$

Toto platí $\forall \varepsilon > 0$, tedy požadovaná nerovnost platí.

Důkaz (Abelovo-Dirichletovo kritérium konvergence integrálu)

 $f \cdot g$ spojitá na $(a,b) \Longrightarrow \exists$ primitivní funkce H. BÚNO je g nerostoucí. Jinak vezmeme -g a konvergence $\int f \cdot g$ se nezmění.

(A) BÚNO $g \geq 0$: víme, že g je omezená $\exists K > 0 \ \forall x \in [a,b): |g(x)| < K$. Vezmeme funkci $g(x)+K \geq 0$ a konvergence se nám nezmění. $g \geq 0$ omezená, tedy $\exists c > 0 \ \forall x \in [a,b): 0 \leq g(x) < c.$ $f \in N(a,b) \implies \lim_{x \to b_{-}} F(x) \in \mathbb{R}$. Nechť $\varepsilon > 0$. Z Bolzano-Cauchyovy podmínky pro limitu funkce k tomuto

$$\varepsilon > 0 \; \exists \delta > 0 \; \forall x, y \in P_{-}(b, \delta) : -\varepsilon < F(x) - F(y) < \varepsilon.$$

Necht $x, y \in P_{-}(b, \delta)$, podle lemmatu:

$$H(y) - H(x) = \int_x^y f(t) \cdot g(t) \, dt \le g(x) \cdot \sup_{z \in [x,y]} \int_x^s f(t) \, dt = g(x) \cdot \sup_{z \in [x,y]} (F(z) - F(x)) \le g(x) \cdot \varepsilon \le \varepsilon \cdot \varepsilon.$$

$$H(y) - H(x) = \int_{x}^{y} f(t) \cdot g(t) dt \ge g(x) \cdot \inf_{z \in [x,y]} \int_{x}^{s} f(t) dt = g(x) \cdot \inf_{z \in [x,y]} (F(z) - F(x)) \ge -g(x) \cdot \varepsilon \ge -c \cdot \varepsilon.$$

Tedy $\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x \in P_{-}(b, \delta) : |H(x) - H(y)| < c \cdot \varepsilon$. Tedy z BC podmínky pro limitu funkce $\exists \lim_{x \to b_{-}} H(x)$. Necht $u \in (a, b)$, $f \cdot g$ je spojitá na $[a, u] \implies f \cdot g \in N(a, c)$. H je spojitá v $u \implies \exists \lim_{x \to u_{-}} H(x) \implies f \cdot g \in N(u, b)$. Tudíž $f \cdot g \in N(a, b)$.

(D) Víme g nerostoucí a $\lim_{x\to b_-} g(x)=0 \implies g\geq 0$. F(x) omezená, tj. $\exists K>0 \ \forall x\in (a,b): |F(x)|\leq K$. Nechť $\varepsilon>0$:

$$Z \lim_{x \to b_{-}} g(x) = 0 \ \exists \delta > 0 \ \forall x \in P_{-}(b, \delta) : |g(x)| < \varepsilon.$$

Nyní $\forall x,y \in P_{-}(b,\delta), \ x < y$ platí

$$H(y) - H(x) = \int_{x}^{y} f(t)g(t) dt \le g(x) \cdot \sup_{z \in [x,y]} \int_{x}^{z} f(t) dt = g(x) \cdot \sup_{z \in [x,y]} (F(z) - F(x)) \le \varepsilon \cdot \sup_{z \in [x,y]} F(z) - F(x) \le \varepsilon \cdot \sup_{z \in [x,y]} F(z) - F(z) - F(z) \le \varepsilon \cdot \sup_{z \in [x,y]} F(z) - F$$

Analogicky

$$H(y) - H(x) = \int_x^y f(t)g(t) dt \ge g(x) \cdot \inf_{z \in [x,y]} \int_x^z f(t) dt = g(x) \cdot \inf_{z \in [x,y]} (F(z) - F(x)) \ge \varepsilon \cdot \inf_{z \in [x,y]} F(z) - F(x) \ge \varepsilon \cdot \inf_{z \in [x,y]} F(z) - F(z) - F(z)$$

Tedy H splňuje BC podmínku a $\exists \lim_{x\to b_-} H(x)$. A z toho dostaneme $f\cdot g\in N(a,b)$.

Věta 3.16 (O střední hodnotě integrálního počtu)

Nechť $a, b \in \mathbb{R}, a < b$. Nechť f je spojitá funkce na intervalu [a, b], g je nezáporná na $[a, b], g \in N(a, b)$ a $f \cdot g \in (a, b)$. Potom existuje $c \in [a, b]$ tak, že $\int_a^b f(x) \cdot g(x) \, dx = f(c) \cdot \int_a^b g(x) \, dx$.

 $D\mathring{u}kaz$

f je spojité na [a,b], tedy nabývá mezihodnot. Také je na [a,b] omezená. Označme $m=\min_{x\in[a,b]}f(x)$ a $M=\max_{x\in[a,b]}f(x)$. Pak $m\cdot g(x)\leq f(x)\cdot g(x)\leq M\cdot g(x)$. Je-li $\int_a^bg=0$, volíme g0 ibovolně. Necht $\int_a^bg(x)\,dx>0$. Pak

$$m \le \frac{\int_a^b f(x) \cdot g(x) \, dx}{\int_a^b g(x) \, dx} \le M.$$

f nabývá mezihodnot, a proto $\exists c \in [a, b]$ tak, že $f(c) = \frac{\int_a^b g(x) \cdot f(x) dx}{\int_a^b g(x) dx}$.

3.4 Aplikace určitého integrálu

Definice 3.7 (Obsah)

Nechť $f:[a,b]\to\mathbb{R}$ je nezáporná spojitá funkce, pak obsahem plochy pod grafem funkce nazveme

$$Obsah(f, [a, b]) = (R) \int_{a}^{b} f(x) \, dx = (N) \int_{a}^{b} f(x) \, dx.$$

Definice 3.8 (Délka křivky)

Nechť $f:[a,b]\to\mathbb{R}$ je spojitá funkce a nechť $D=\{x_j\}_{j=0}^n$ je dělením intervalu [a,b]. Označme $L(f,D)=\sum_{j=1}^n\sqrt{(x_j-x_{j-1})^2+(f(x_j)-f(x_{j-1}))^2}$. Délkou křivky f nazveme $L(f,[a,b])=\sup_D L(f,D)$.

Věta 3.17

Necht f má na intervalu [a, b] spojitou první derivaci. Pak $L(f, [a, b]) = \int_a^b \sqrt{1 + (f'(x))^2} dx$.

 $D\mathring{u}kaz$

Označme $g(x) = \sqrt{1 + (f'(x))^2}$. Mějme dělení $D = \{x_j\}_{j=0}^n$. Pak

$$L(f, [a, b]) = \sum_{j=1}^{n} \sqrt{(x_j - x_{j-1})^2 + (f(x_j) - f(x_{j-1}))^2} = \sum_{j=1}^{n} (x_j - x_{j-1}) \sqrt{1 + \left(\frac{f(x_j) - f(x_{j-1})}{x_j - x_{j-1}}\right)^2} = \sum_{j=1}^{n} (x_j - x_{j-1}) \sqrt{1 + \left(\frac{f(x_j) - f(x_{j-1})}{x_j - x_{j-1}}\right)^2} = \sum_{j=1}^{n} (x_j - x_{j-1}) \sqrt{1 + \left(\frac{f(x_j) - f(x_{j-1})}{x_j - x_{j-1}}\right)^2} = \sum_{j=1}^{n} (x_j - x_{j-1}) \sqrt{1 + \left(\frac{f(x_j) - f(x_{j-1})}{x_j - x_{j-1}}\right)^2} = \sum_{j=1}^{n} (x_j - x_{j-1}) \sqrt{1 + \left(\frac{f(x_j) - f(x_{j-1})}{x_j - x_{j-1}}\right)^2} = \sum_{j=1}^{n} (x_j - x_{j-1}) \sqrt{1 + \left(\frac{f(x_j) - f(x_{j-1})}{x_j - x_{j-1}}\right)^2} = \sum_{j=1}^{n} (x_j - x_{j-1}) \sqrt{1 + \left(\frac{f(x_j) - f(x_{j-1})}{x_j - x_{j-1}}\right)^2} = \sum_{j=1}^{n} (x_j - x_{j-1}) \sqrt{1 + \left(\frac{f(x_j) - f(x_{j-1})}{x_j - x_{j-1}}\right)^2} = \sum_{j=1}^{n} (x_j - x_{j-1}) \sqrt{1 + \left(\frac{f(x_j) - f(x_{j-1})}{x_j - x_{j-1}}\right)^2} = \sum_{j=1}^{n} (x_j - x_{j-1}) \sqrt{1 + \left(\frac{f(x_j) - f(x_{j-1})}{x_j - x_{j-1}}\right)^2} = \sum_{j=1}^{n} (x_j - x_{j-1}) \sqrt{1 + \left(\frac{f(x_j) - f(x_{j-1})}{x_j - x_{j-1}}\right)^2} = \sum_{j=1}^{n} (x_j - x_{j-1}) \sqrt{1 + \left(\frac{f(x_j) - f(x_{j-1})}{x_j - x_{j-1}}\right)^2} = \sum_{j=1}^{n} (x_j - x_{j-1}) \sqrt{1 + \left(\frac{f(x_j) - f(x_{j-1})}{x_j - x_{j-1}}\right)^2} = \sum_{j=1}^{n} (x_j - x_{j-1}) \sqrt{1 + \left(\frac{f(x_j) - f(x_{j-1})}{x_j - x_{j-1}}\right)^2} = \sum_{j=1}^{n} (x_j - x_{j-1}) \sqrt{1 + \left(\frac{f(x_j) - f(x_{j-1})}{x_j - x_{j-1}}\right)^2} = \sum_{j=1}^{n} (x_j - x_{j-1}) \sqrt{1 + \left(\frac{f(x_j) - f(x_{j-1})}{x_j - x_{j-1}}\right)^2} = \sum_{j=1}^{n} (x_j - x_{j-1}) \sqrt{1 + \left(\frac{f(x_j) - f(x_{j-1})}{x_j - x_{j-1}}\right)^2} = \sum_{j=1}^{n} (x_j - x_{j-1}) \sqrt{1 + \left(\frac{f(x_j) - f(x_{j-1})}{x_j - x_{j-1}}\right)^2} = \sum_{j=1}^{n} (x_j - x_{j-1}) \sqrt{1 + \left(\frac{f(x_j) - f(x_{j-1})}{x_j - x_{j-1}}\right)^2} = \sum_{j=1}^{n} (x_j - x_{j-1}) \sqrt{1 + \left(\frac{f(x_j) - f(x_{j-1})}{x_j - x_{j-1}}\right)^2} = \sum_{j=1}^{n} (x_j - x_{j-1}) \sqrt{1 + \left(\frac{f(x_j) - f(x_{j-1})}{x_j - x_{j-1}}\right)^2} = \sum_{j=1}^{n} (x_j - x_{j-1}) \sqrt{1 + \left(\frac{f(x_j) - f(x_{j-1})}{x_j - x_{j-1}}\right)^2} = \sum_{j=1}^{n} (x_j - x_{j-1}) \sqrt{1 + \left(\frac{f(x_j) - f(x_{j-1})}{x_j - x_{j-1}}\right)^2} = \sum_{j=1}^{n} (x_j - x_{j-1}) \sqrt{1 + \left(\frac{f(x_j) - f(x_{j-1})}{x_j - x_{j-1}}\right)^2} = \sum_{j=1}^{n} (x_j - x_{j-$$

podle Lagrangeovy věty o střední hodnotě, kde $\zeta_j \in (x_{j-1}, x_j)$. Odtud snadno odvodíme, že $s(g, D) \leq L(f, D) \leq S(g, D)$. Tedy $\sup_D s(g, D) = \int_a^b g \leq \sup_D L(f, D) = L(f)$.

Sporem: Nechť $L(f) > \int_a^b g(x) \, dx$. Tedy \exists dělení D, že $L(f,D) > \int_a^b g(x) \, dx$. Zvolme posloupnost dělení $\{D_n\}$ tak, že D_1 zjemňuje D, D_{n+1} zjemňuje D_n a $\lim_{n\to\infty} \nu(D_n) = 0$. Pak $L(f,D) \leq L(f,D_1) \leq L(f,D_2) \leq \ldots$ (jemnější dělení dává delší "délku"). Z nerovnosti v prvním odstavci je $L(f,D_n) \leq S(g,D_n)$, tedy $\lim_{n\to\infty} S(g,D_n) \geq L(f,D)$. 4. \square

Věta 3.18 (Délka křivky v \mathbb{R}^n)

Nechť $\varphi:[a,b]\to\mathbb{R}^n$ je spojitá a má spojitou první derivaci. Pak

$$L(\varphi([a,b])) = \int_a^b \sqrt{(\varphi'_1(x))^2 + \ldots + (\varphi'_n(x))^2} dx.$$

 $D\mathring{u}kaz$

Bez důkazu.

Poznámka

Délka křivky nezávisí na parametrizaci.

Věta 3.19 (Objem a povrch rotačního tělesa)

 $\overline{Necht f: [a,b] \to \mathbb{R} \text{ je spojitá a nezáporná. Označme } T = \Big\{ [x,y,z] \in \mathbb{R}^2 | x \in [a,b] \land \sqrt{y^2 + z^2} \Big| \le f(x) \Big\}.$ $Pak \ Objem(T) = \pi \cdot \int_a^b (f^x)^2 \, dx.$

Je-li navíc f spojitá na [a,b], pak Obsahpovrchu $(T) = 2\pi \cdot \int_a^b f(x) \cdot \sqrt{1 + (f'(x))^2} dx$.

 $D\mathring{u}kaz$

Bez důkazu.

Věta 3.20 (Integrální kritérium konvergence řad)

Nechť f je nezáporná, nerostoucí a spojitá na $n_0 - 1, \infty$ pro nějaké $n_0 \in \mathbb{N}$. Nechť pro posloupnost a_n platí $a_n = f(n)$ pro všechna $n \geq n_0$. Pak

$$(N) \int_{n_0}^{\infty} f(x) dx < +\infty \Leftrightarrow \sum_{n=1}^{\infty} a_n \text{ konverguje.}$$

Důkaz

Nechť $n_1 \ge n_0$ a mějme $D = \{n_0, n_0 + 1, \dots, n_1\}$ intervalu $[n_0, n_1]$. Funkce f je nerostoucí, a tedy

$$S(f, D) = a_{n_0} + \ldots + a_{n_1 - 1} = \sum_{i = n_0}^{n_1 - 1} a_i,$$

$$s(f, D) = a_{n_0+1} + \ldots + a_{n_1} = \sum_{i=n_0+1}^{n_1} a_i.$$

Protože f je spojitá na $[n_0, n_1]$, platí

$$\sum_{i=n_0+1}^{n_1} a_i = s(f,D) \le (R) \int_{n_0}^{n_1} f(x) \, dx = (N) \int_{n_0}^{n_1} f(x) \, dx \le S(f,D) = \sum_{i=n_0}^{n_1-1} a_i.$$

Nechť $\int_{n_0}^{\infty} f(x) dx$ konverguje. Pak je $F(x) = \int_{n_0}^{x} f(t) dt$, $t \in [n_0, \infty)$ je primitivní k f(x) na (n_0, ∞) (z derivace integrálu podle mezí). Tedy $\forall n_1 \geq n_0$ (z nerovnosti výše):

$$\int_{n_0}^{\infty} f(x) dx = \lim_{x \to \infty} F(x) - F(n_0) = \lim_{x \to \infty} \int_{n_0}^{x} f(t) dt \ge$$

$$\geq \lim_{n\to\infty} \sum_{i=n_0+1}^n a_i = \sum_{i=n_0+1}^\infty a_i \implies \sum_{n=1}^\infty a_n$$
konverguje.

Obráceně: Nechť $\sum_{i=1}^{\infty} a_i$ konverguje $\implies \sum_{i=n_0+1}^{\infty} a_i$ konverguje. Z nerovnosti výše:

$$\sum_{i=n_0+1}^{\infty} a_i = \lim_{n \to \infty} \sum_{i=n_0+1}^{n} a_i \ge \lim_{n \to \infty} \int_{n_0}^{\infty} f(t) dt = \lim_{n \to \infty} F(n) = \lim_{x \to \infty} F(x).$$

Tedy
$$\lim_{x\to\infty} F(x) \in \mathbb{R} \implies \int_{n_0}^{\infty} f(x) dx$$

Příklad (Stirlingova formule, nezkouší se)

$$\lim_{n \to \infty} \frac{n!}{\sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n} = 1.$$

 $D\mathring{u}kaz$ (Nástřel)

Vytknout konstanty, zlogaritmovat, upravit a použít Abelovu parciální sumaci. Následně použít Lagrangeův tvar zbytku TP. Následně podle předchozí věty dokážeme konvergenci. Následně si pomocí Wallisovy formule (Per partes na $\sin^n x$, $\frac{1}{2n+1}$.

$$\left(\frac{(2n)!!}{(2n-1)!!}\right)^2 \to \frac{\pi}{2}$$
) "odvodíme" hodnotu π . Potom si do Wallisovy formule dosadíme limitu Stirlingovi (jako nějaké a) a dopočítáme.

4 Obyčejné diferenciální rovnice

4.1 Řešení, existence a jednoznačnost

Definice 4.1 (ODR)

Nechť $\Phi: \Omega \subseteq \mathbb{R}^{n+2} \to \mathbb{R}$. Obyčejnou diferenciální rovnicí (ve zkratce ODR) *n*-tého řádu nazveme $\Phi(x, y(x), y'(x), \dots, y^{(n)}(x)) = 0$.

Definice 4.2 (Řešení ODR)

Řešení ODR na intervalu $I \subseteq \mathbb{R}$ je funkce y(x) splňující:

- Existuje $y^{(k)}(x)$ vlastní pro k = 1, ..., n v I a všechna $x \in I$.
- Rovnice ODR platí pro všechna $x \in I$.

Definice 4.3

Řekneme, že (\tilde{y}, \tilde{I}) je rozšířením řešení (y, I), pokud \tilde{y} je řešení na $\tilde{I}, I \subset \tilde{I}, y = \tilde{y}$ na I.

Řekneme, že (y, I) je maximální řešení, pokud nemá rozšíření.

Definice 4.4 (Otevřený interval)

Řekneme, že $I \subseteq \mathbb{R}^n$ je otevřený interval, pokud existují otevřené intervaly I_1, I_2, \dots, I_n tak, že $I = I_1 \times \dots \times I_n$.

Definice 4.5 ((Otevřená) koule)

Nechť $c \in \mathbb{R}^n$ a r > 0. Definujeme (otevřenou) kouli jako

$$B(c,r) = \left\{ x \in \mathbb{R} |||x - c|| = \sqrt{\sum_{i=1}^{n} (x_i - c_1)^2} < r \right\}.$$

Definice 4.6

Necht $I \subseteq \mathbb{R}^n$ je otevřený interval a $f: I \to \mathbb{R}$ je funkce. Řekneme, že f je spojitá v bodě $x_0 \in I$, pokud

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in B(x_0, \delta) \cap I : |f(x) - f(x_0)| < \varepsilon.$$

Řekneme, že f je spojitá na I, pokud je spojitá ve všech bodech I.

Věta 4.1 (Peano s $y^{(n)}$)

Nechť $I \subset \mathbb{R}^{n+1}$ otevřený interval, $f: I \to \mathbb{R}$ je spojitá. $a[x_0, y_0, \dots, y_{n-1}] \in I$. Pak existuje $\delta > 0$ a okolí x_0 a funkce y(x) definovaná na $(x_0 - \delta, x_0 + \delta)$ tak, že y(x) splňuje ODR

$$y^{(n)}(x) = f(x, y(x), y'(x), \dots, y^{(n-1)}(x)) \forall x \in (x_0 - \delta, x_0 + \delta)$$

s počáteční podmínkou $y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1}.$

 $D\mathring{u}kaz$

Později.

Pozor

Tato věta je lokální a nedává jednoznačnost řešení.

Definice 4.7

Nechť $I \subseteq \mathbb{R}^2$ je otevřený interval. Řekneme, že funkce $f: I \to \mathbb{R}$ je lokálně lipschitzovská vůči y, pokud $\forall U \subseteq I$ omezené existuje $K \in \mathbb{R}$ tak, že

$$|f(x,y) - f(x,\tilde{y})| \le K \cdot (y - \tilde{y}) \ \forall [x,y] \in U \land [x,\tilde{y}] \in U.$$

Věta 4.2 (Picard)

Nechť $I \subseteq \mathbb{R}^2$ je otevřený interval a $[x_0, y_0] \in I$. Nechť $f: I \to \mathbb{R}$ je spojitá a lokálně lipschitzovská vůči y. Pak existuje $(x_0 - \delta, x_0 + \delta)$ a funkce y(x) definována na $(x_0 - \delta, x_0 + \delta)$ tak, že y(x) splňuje ODR y'(x) = f(x, y(x)) pro $x \in (x_0 - \delta, x_0 + \delta)$ s počáteční podmínkou $y(x_0) = y_0$. Navíc y je jediné řešení na $(x_0 - \delta, x_0 + \delta)$.

 $D\mathring{u}kaz$

Později.

4.2 Rovnice prvního řádu

Definice 4.8

Necht $I \subseteq \mathbb{R}^2$ je otevřený interval a $f : \mathbb{R} \to \mathbb{R}$ je spojitá, kde $\omega \subseteq \mathbb{R}$. V této kapitole studujeme pouze rovnice typu y'(x) = f(x, y(x)).

Poznámka (Speciální tvary)

$$y' = f(x) \implies y(x) = c + \int_{x_0}^x f(t) dt,$$
$$y'(x) = g(y(x)),$$

 $y'(x) = g(y(x)) \cdot h(x)$ (separované proměnné),

$$y'(x) = h\left(\frac{y(x)}{x}\right)$$
 (homogenní rovnice) (substitucí převedeme na předchozí),

$$y'(x) = a(x) \cdot y + b(x)$$
(lineární rovnice 1. řádu),

 $y'(x) = a(x) \cdot y(x) + b(x) \cdot y^{\alpha}(x)$ (Bernouliho rovnice) (substitucí převedeme na předchozí).

Věta 4.3 (O existenci řešení separované rovnice)

Nechť $h:(a,b)\to\mathbb{R}$ je spojitá, $g:(c,d)\to\mathbb{R}$ je spojitá a nenulová. Potom každým bodem $[x_0,y_0]\in(a,b)\times(c,d)$ prochází právě jedno řešení rovnice $y'(x)=g(y(x))\cdot h(x)$.

Důkaz

g je spojitá a nenulová \Longrightarrow nemění znaménko. Můžeme definovat $H(x)=\int_{x_0}^x h(t)\,dt$ a $G(y)=\int_{y_0}^y \frac{1}{g(s)}\,ds.$ g nemění znaménko, tedy G je monotónní, tj. $\exists G^{-1}$. Chceme ukázat, že $y(x)=G^{-1}(H(x))$ je řešení. h,g spojité $\Longrightarrow H',G',(G^{-1})'$ je spojitá. Podle derivace složené funkce a derivace inverzní funkce

$$y'(x) = \left(G^{-1}(H(x))\right)' = (G^{-1})'(H(x)) \cdot H'(x) = \frac{1}{G'(G^{-1}(H(x)))} \cdot h(x) = \frac{1}{\frac{1}{g(y(x))}} h(x) = g(y(x)) \cdot h(x).$$

Ověříme, že splňuje počáteční podmínku: $H(x_0)=0,$ $G(y_0)=0,$ $g(x_0)=G^{-1}(H(x_0))=G^{-1}(0)=y_0.$

Jednoznačnost: Nechť y(x) a a(x) jsou řešení: $y'(x) = g(y(x)) \cdot h(x), \ a'(x) = g(a(x)) \cdot h(x), \ y(x_0) = y_0 = a(x_0) \implies (g \text{ nenulov\'e}) \frac{y'(x)}{g(y(x))} = h(x) = \frac{a'(x)}{g(a(x))}.$

$$G(y(x)) - G(y(x_0)) = \int_{x_0}^x \frac{y'(x)}{g(y(x))} dx = \int_{x_0}^x \frac{a'(x)}{g(a(x))} = G(a(x)) - G(a(x_0)) \implies$$

$$\implies G(y(x)) = G(a(x)) \implies (G \text{ monotónni})y(x) = a(x).$$

Věta 4.4 (O řešení lineární diferenciálni rovnice prvního řádu)

Nechť $(c,d) \subseteq \mathbb{R}$ je interval, $x_0 \in (c,d)$ a $a,b:(c,d) \to \mathbb{R}$ jsou spojité funkce. Maximální řešení rovnice $y'(x) = a(x) \cdot y(x) + b(x)$ s počáteční podmínkou $y(x_0) = y_0$ má tvar

$$y(x) = \left(\int_{x_0}^x b(t) \cdot e^{-A(t)} dt\right) \cdot e^{A(x)} = y_0 \cdot e^{A(x)},$$

pro $x \in (c,d)$, kde A je primitivní k a splňující $A(x_0) = 0$.

Důkaz

Zřejmě $y(x_0) = 0 \cdot e^{A(x_0)} + y_0 \cdot e^{A(x_0)} = y_0$. Z věty o derivaci podle horní meze $\left(\int_{x_0}^x b(t) \cdot e^{-A(t)} dt \right)' = b(x) \cdot e^{-A(x)}$, tedy

$$y'(x) = b(x) \cdot e^{-A(x)} \cdot e^{A(x)} + \left(\int_{x_0}^x b(t) \cdot e^{-A(t)} dt \right) \cdot e^{A(x)} \cdot a(x) + y_0 \cdot e^{A(x)} \cdot a(x),$$

$$a(x) \cdot y(x) + b(x) = a(x) \cdot \left(\int_{x_0}^x b(t) \cdot e^{-A(t)} dt \right) \cdot e^{A(x)} + a(x) \cdot y_0 \cdot e^{A(x)} + b(x).$$

Tyto výrazy se rovnají, tudíž y řeší naši ODR s počáteční podmínkou $y(x_0) = y_0$ na celém (c, d).

Jednoznačnost: Nechť y(x) a z(x) řeší naši ODR, pak u(x) = y(x) - z(x). Dosazením y, z do ODR a odečtením dostaneme $u'(x) = a(x) \cdot u(x), u(x_0) = 0$. Tj.

$$\frac{u'(x)}{u(x)} = (\ln u(x))' = a(x) \implies \ln u(x) = A(x) + C \implies e^{A(x)} \cdot \tilde{C}.$$

$$Z u(x_0) = 0$$
 je $\tilde{C} = 0$, tedy $u \equiv 0 = y(x) - z(x)$.

4.3 Systémy lineárních ODR a linearní rovnice n-tého řádu

Definice 4.9

Nechť Ije interval a mějme funkce $a_0,a_1,\dots,a_{n-1},b:I\to\mathbb{R}.$ Lineární ODR řádunnazveme rovnici

$$y^{(n)} + a_{n-1}(x) \cdot y^{(n-1)} + \ldots + a_1(x) \cdot y' + a_0 \cdot y = f(x), \qquad x \in I.$$

Je-li $b \equiv 0$ na I, pak se rovnice nazývá homogenní.

Definice 4.10

Nechť $I \subseteq \mathbb{R}$ je interval. Mějme funkce $\mathbf{b}, \mathbf{y}: I \to \mathbb{R}^n$ a mějme maticovou funkci $A: I \to \mathbb{R}^{n^2}$. Systémem ODR prvního řádu rozumíme systém rovnic

$$y'_{i} = a_{i,1} \cdot y_{1} + \ldots + a_{i,n} \cdot y_{n} + b_{i}.$$

Neboli v maticovém zápisu $\mathbf{y}' = A \cdot \mathbf{y} + \mathbf{b}$.

Je-li $\mathbf{b} \equiv \mathbf{o}$, pak se systém nazývá homogenní.

Poznámka

Řešení jedné rovnice řádu n lze převést na řešení systému n rovnic řádu 1 (zavedeme si funkce $u_i = y^{(i-1)}$ a řekneme, že musí splňovat $u'_i = u_{i+1}$, poslední rovnice pak vznikne z původní rovnice).

Věta 4.5 (O existenci řešení systému ODR 1. řádu)

Nechť $I \subseteq \mathbb{R}$ je interval a mějme spojité funkce $b_j, a_{ij} : I \to \mathbb{R}$ pro $i, j \in [n]$. Nechť $x_0 \in I$, $\mathbf{y}^0 \in \mathbb{R}^n$ a $A = (a_{ij})_{i,j=1}^n$ je spojitá maticová funkce. Pak existuje právě jedno řešení rovnice $\mathbf{y}' = A\mathbf{y} + \mathbf{b}$ s počáteční podmínkou $\mathbf{y}(x_0) = \mathbf{y}^0$ definované na celém I.

Důkaz

Později.

Definice 4.11

 $C^1(I,\mathbb{R}^n) := \{ \mathbf{y} : I \to \mathbb{R}^n : \mathbf{y}_i' \text{ je spojitá funkce z } I \text{ do } \mathbb{R} \ \forall i \in [n] \}$

Věta 4.6 (Prostor řešení ODR 1. řádu)

Nechť $I \subseteq \mathbb{R}$ je interval a mějme spojité funkce $b_j, a_{ij} : I \to \mathbb{R}$, pro $i, j \in [n]$. Označme

$$L(\mathbf{y}) = \mathbf{y}' - A\mathbf{y}, \qquad H = \operatorname{Ker} L = \left\{ \mathbf{y} \in C^1(I, \mathbb{R}^n) : L(\mathbf{y}) = 0 \text{ na } I \right\}.$$

Pak H je vektorový prostor dimenze n. Označme M množinu všech řešení nehomogenního systému rovnic $L(\mathbf{y}) = \mathbf{y}' - A\mathbf{y} = \mathbf{b}$ a nechť \mathbf{y}_0 je jedno pevné řešení $L(\mathbf{y}_0) = \mathbf{b}$. Pak $M = \mathbf{y}_0 + \operatorname{Ker} L$.

□ Důkaz

Necht $x_0 \in I$. Podle předchozí věty existuje řešení $\mathbf{y}_1, \ldots, \mathbf{y}_n$ rovnice $\mathbf{y}' = A\mathbf{y}$ takové, že $\mathbf{y}_i(x_0) = \mathbf{e}_i$. Tvrdíme, že $\mathbf{y}_1, \ldots, \mathbf{y}_n$ tvoří bázi H. Zřejmě jsou to řešení. Jsou lineárně nezávislé, protože kdyby ne, pak $\exists c_1, \ldots, c_n \in \mathbb{R}$ tak, že $c_1\mathbf{y}_1(x) + \ldots + c_n\mathbf{y}_n(x) \equiv \mathbf{o}$. Speciálně pro $x = x_0 : c_1\mathbf{e}_1 + c_2\mathbf{e}_2 + \ldots + c_n\mathbf{e}_n = \mathbf{o}$, tedy $c_i = 0 \forall i \in [n]$.

Navíc tvoří bázi: Necht $y \in M$ tj. $\mathbf{y}' = A\mathbf{y}$. Pak $\mathbf{y}(x_0) = [\alpha_1, \dots, \alpha_n] = \alpha_1 \mathbf{y}_1(x_0) + \dots + \alpha_n \mathbf{y}_n(x_0)$. Podle předchozí věty existuje právě jedno řešení $\mathbf{y}' = A\mathbf{y}$ s počáteční podmínkou $\mathbf{y}(x_0) = [\alpha, \dots, \alpha_n]$. Ale $\alpha_1 \mathbf{y}_1(x) + \dots + \alpha_n \mathbf{y}_n(x)$ řeší $\mathbf{y}' = A\mathbf{y}$. Z jednoznačnosti řešení $\mathbf{y}(x) = \alpha_1 \mathbf{y}_1(x) + \dots + \alpha_n \mathbf{y}_n(x)$.

Podle předchozí věty existuje řešení \mathbf{y}_0 rovnice $\mathbf{y}' = A\mathbf{y} + \mathbf{b}$. $\mathbf{y}_0 + \operatorname{Ker} L \subseteq M$: Nechť $\mathbf{y} \in H$, pak $(\mathbf{y}_0 + \mathbf{y})' = A\mathbf{y}_0 + \mathbf{b} + A\mathbf{y} = A \cdot (\mathbf{y}_0 + \mathbf{y}) + \mathbf{b} \implies \mathbf{y}_0 + \mathbf{y} \in M$. $\mathbf{y}_0 + \operatorname{Ker} L \supseteq M$: Nechť $\mathbf{y}_1 \in M$, \mathbf{y}_1 řeší $\mathbf{y}_1' = A \cdot \mathbf{y}_1 + \mathbf{b}$. Označme $\mathbf{y} = \mathbf{y}_1 - \mathbf{y}_0$. Pak $\mathbf{y}' = \mathbf{y}_1' - \mathbf{y}_0' = A\mathbf{y}_1 + \mathbf{b} - (A\mathbf{y}_0 + \mathbf{b}) = A(\mathbf{y}_1 - \mathbf{y}_0) = A\mathbf{y} \implies \mathbf{y} \in H$.

Definice 4.12 (Fundamentální systém řešení)

Libovolnou bázi $\{\mathbf{y}_1, \dots, \mathbf{y}_n\}$ prostoru $H = \mathrm{Ker}(\mathbf{y}' - A\mathbf{y})$ (tj. libovolných n lineárně nezávislých řešení homogenní rovnice $\mathbf{y}' = A\mathbf{y}$) nazýváme fundamentálním systémem řešení (FSŘ) homogenní rovnice $\mathbf{y}' = A\mathbf{y}$.

4.4 Rovnice n-tého řádu s konstantními koeficienty

Definice 4.13 (Charakteristický polynom)

Nechť $a0, a_1, \ldots, a_{n-1} \in \mathbb{R}$. Pak $\lambda^n + a_{n-1} \cdot \lambda^{n-1} + \ldots + a_1 \lambda + a_0 = 0$ nazveme charakteristickým polynomem rovnice $y^{(n)} + a_{n-1} y^{(n-1)} + \ldots + a_1 y' + a_0 y = 0$.

Věta 4.7 (FSŘ pro rovnici *n*-tého řádu s konstantními koeficienty)

Mějme zadány $a_0, \ldots, a_{n-1} \in \mathbb{R}$ a nechť $\lambda_1, \ldots, \lambda_k$ jsou kořeny charakteristického polynomu s násobností s_1, \ldots, s_k . Pak funkce

$$e^{\lambda_1 x}, x \cdot e^{\lambda_1 x}, \dots, x^{s_1 - 1} \cdot e^{\lambda_1 x}, \dots, e^{\lambda_k x}, \dots, x^{s_k - 1} \cdot e^{\lambda_k x}$$

tvoří fundamentální systém řešení $y^{(n)} + \ldots + a_1 y' + a_0 y = 0$ na \mathbb{R} .

 $D\mathring{u}kaz$

Podle věty výše stačí ukázat, že tyto funkce řeší ODR a jsou lineárně nezávislé. 1. krok: Označme $L(y) = y^{(n)} + \ldots + a_1 y' + a_0 y$ a $Q(\lambda)$ charakteristický polynom. Chceme $Q(\lambda) = 0 \implies L(e^{\lambda x}) = e^{\lambda}Q(\lambda) = 0$. To dostaneme snadno z derivace $(e^{\lambda x})' = \lambda \cdot e^{\lambda x}$ atd.

2. krok Nechť $\lambda=0$ je s-násobný kořen $Q(\lambda)$. Chceme ukázat, že $1,x,\ldots,x^{s-1}$ patří do FSŘ. 0 je s-násobný kořen $\Longrightarrow Q(\lambda)=\lambda^s P(\lambda)=\lambda^n+a_{n-1}\lambda^{n-1}+\ldots+a_s\lambda^s+0+\ldots+0$. Derivace $1,\ldots,x^{s-1}$ řádu s a vyšší jsou $0\Longrightarrow$ tyto funkce jsou řešením L(y)=0.