

A Guide to MP Volume 35

1996 Subject Index

This is an alphabetical list of topics included in Volume 35 of *MP*. Subject classifications are followed by issue number, then page number.

ACIDS

See also HYDROGEN SULFIDE;
SOUR SERVICE

Phosphinocarboxylic (PCA), inhibitor,
7-48

Phosphonocarboxylic (POCA),
multifunctional inhibitor, 6-41

ADHESIVES: Rubber linings, 1-33**AIRCRAFT:** Corrosion surveillance,
12-50**ALKALINE ENVIRONMENTS**

See CAUSTIC

ALUMINUM AND ALLOYS

Al-Zn coatings on sheet steel, 4-30
Thermal sprayed coatings for subsea
piping systems, 7-32

AMMONIUM CARBAMATE**DECOMPOSERS**

See also UREA REACTORS

Weld overlay repair, 5-69

ANODES

Abandoned tank bottom as, 5-17
Composite (Mg-Al), for CP of offshore
structures, 2-29
Conductive polymer loop system for
tank, 5-17
Galvanic

for double bottom tanks, 5-25
for steel reservoir tanks, 9-13

Impressed current, optimization of, 4-19
Resistor controlled CP, 7-17

Retrofitting in offshore structure, 4-19,
10-11

Sacrificial metallized Zn, 9-18

Sacrificial Zn mesh, 12-11

Sleds, replacement in offshore platforms,
1-23

ATMOSPHERIC CORROSION

Al-Zn coated sheet steel, 4-30

Carbon steel in tropical marine
environments, 10-44

SS eaves in coastal environment,
12-58

BIOCIDES

See also CHLORINE

BWR standby service water system, 3-53

Remedial treatment of occupied building,
6-54

Sodium bromide, activated, 7-42

BIOFILMS

See also MICROBIOLOGICAL
ATTACK

BWR standby service water system, 3-53
Hydrocarbon leaks and, 8-46
Polymeric composites, 2-79
Wastewater treatment piping, 9-41

BOILERS

See also HEAT EXCHANGERS

CO₂ distribution in steam-water cycle,
12-35

Inhibitors for deposit control, 7-48
On-line measurement of water quality,
5-49
Superheater tube failures, 1-46

BRIDGES

Moisture-cured PUR coatings, 12-25

Prestressed concrete box girder,
radiographic examination, 10-61

Reinforced concrete pilings

CP of, 8-14, 12-11
induced tension polymer wraps, 10-32

CARBON DIOXIDE

CO-CO₂ SCC failures in heat exchangers,
8-64

Distribution measurement in steam-water
cycle, 12-35

CAST IRONS: High-Cr and high-Si, 2-93**CATHODIC PROTECTION**

Aboveground storage tanks

in Arctic environment, 5-17

double bottom, 5-25

Bridge pilings, 8-14, 12-11

Coated pipelines, computer modeling,
6-16

Current density surveys, 4-19

Current testing for large plant structures,
7-22

Electrical isolating flange gaskets, 3-30

Internal, seawater piping, 7-17

Offshore structures

anode retrofit design, 4-19, 10-11

composite sacrificial anodes, 2-29

tension leg platform, 4-12

underwater maintenance and

inspection, 1-23

Pipeline groundbed reconstruction in

wetlands, 10-17

Potential measurement, 6-21

Proton beam piping, 3-25

Reinforced concrete

bridge pilings, 8-14, 12-11

data analysis, 2-36

sacrificial metallized Zn, 9-18

sacrificial Zn mesh, 12-11

Remote monitoring

advances in, 6-27

rectifier, 2-42

Resistor controlled method, 7-17

Steel reservoir interiors, 9-13

System design, for tension leg platform,
4-12

CAUSTIC: Cu alloy resistance, 2-97**CEMENT**

Epoxy portland cement mortars for
concrete repair, 10-55

Grout in concrete bridges, radiographic
examination, 10-61

CHLORINE

Biocide in cooling tower, 7-42

Condenser SCC, 6-58

CLIMATIC CONDITIONS

Arctic environment, aboveground storage
tanks, 5-17

Coating application and cure, 8-25

COATINGS

Al, thermal sprayed, for subsea piping
systems, 7-32

Al-Zn, and atmospheric corrosion of
sheet steel, 4-30

Climatic effect on application and cure,
8-25

Dehumidification during application, 5-34

Extruded PE, performance in soil, 3-39

FBE, performance in soil, 3-39

Induced tension polymer wraps, 10-32

Lead-based paint

dispute resolution, 7-38

EPA model inspection program,

12-17

hydroblasting for removal, 4-38

overcoating vs removal, 2-58

specifications, 7-38

Metalized Zn, for sacrificial CP of

concrete overpass, 9-18

Microbial attack in soils, 3-39

Moisture-curing polyurethane, 12-25

Organic, thermally applied, in marine
environment, 2-51

PE tape, performance in soil, 3-39

Solvents, 6-31

Transmission pipeline, coating

degradation, 3-18

Zero VOC technology, 6-31

COMPOSITES: Future trends, 11-17

A Guide to MP Volume 35

1996 Subject Index

This is an alphabetical list of topics included in Volume 35 of *MP*. Subject classifications are followed by issue number, then page number.

ACIDS

See also HYDROGEN SULFIDE;
SOUR SERVICE

Phosphinocarboxylic (PCA), inhibitor, 7-48

Phosphonocarboxylic (POCA), multifunctional inhibitor, 6-41

ADHESIVES: Rubber linings, 1-33

AIRCRAFT: Corrosion surveillance, 12-50

ALKALINE ENVIRONMENTS

See CAUSTIC

ALUMINUM AND ALLOYS

Al-Zn coatings on sheet steel, 4-30
Thermal sprayed coatings for subsea piping systems, 7-32

AMMONIUM CARBAMATE**DECOMPOSERS**

See also UREA REACTORS

Weld overlay repair, 5-69

ANODES

Abandoned tank bottom as, 5-17
Composite (Mg-Al), for CP of offshore structures, 2-29
Conductive polymer loop system for tank, 5-17
Galvanic

for double bottom tanks, 5-25
for steel reservoir tanks, 9-13

Impressed current, optimization of, 4-19
Resistor controlled CP, 7-17

Retrofitting in offshore structure, 4-19, 10-11

Sacrificial metallized Zn, 9-18

Sacrificial Zn mesh, 12-11

Sleds, replacement in offshore platforms, 1-23

ATMOSPHERIC CORROSION

Al-Zn coated sheet steel, 4-30

Carbon steel in tropical marine environments, 10-44

SS eaves in coastal environment, 12-58

BIOCIDES

See also CHLORINE

BWR standby service water system, 3-53

Remedial treatment of occupied building, 6-54

Sodium bromide, activated, 7-42

BIOFILMS

See also MICROBIOLOGICAL ATTACK

BWR standby service water system, 3-53
Hydrocarbon leaks and, 8-46
Polymeric composites, 2-79
Wastewater treatment piping, 9-41

BOILERS

See also HEAT EXCHANGERS

CO₂ distribution in steam-water cycle, 12-35

Inhibitors for deposit control, 7-48

On-line measurement of water quality, 5-49

Superheater tube failures, 1-46

BRIDGES

Moisture-cured PUR coatings, 12-25

Prestressed concrete box girder, radiographic examination, 10-61

Reinforced concrete pilings

CP of, 8-14, 12-11

induced tension polymer wraps, 10-32

CARBON DIOXIDE

CO-CO₂ SCC failures in heat exchangers, 8-64

Distribution measurement in steam-water cycle, 12-35

CAST IRONS: High-Cr and high-Si, 2-93**CATHODIC PROTECTION**

Aboveground storage tanks

in Arctic environment, 5-17

double bottom, 5-25

Bridge pilings, 8-14, 12-11

Coated pipelines, computer modeling, 6-16

Current density surveys, 4-19

Current testing for large plant structures, 7-22

Electrical isolating flange gaskets, 3-30

Internal, seawater piping, 7-17

Offshore structures

anode retrofit design, 4-19, 10-11

composite sacrificial anodes, 2-29

tension leg platform, 4-12

underwater maintenance and

inspection, 1-23

Pipeline groundbed reconstruction in wetlands, 10-17

Potential measurement, 6-21

Proton beam piping, 3-25

Reinforced concrete

bridge pilings, 8-14, 12-11

data analysis, 2-36

sacrificial metallized Zn, 9-18

sacrificial Zn mesh, 12-11

Remote monitoring

advances in, 6-27

rectifier, 2-42

Resistor controlled method, 7-17

Steel reservoir interiors, 9-13

System design, for tension leg platform, 4-12

CAUSTIC: Cu alloy resistance, 2-97**CEMENT**

Epoxy portland cement mortars for concrete repair, 10-55

Grout in concrete bridges, radiographic examination, 10-61

CHLORINE

Biocide in cooling tower, 7-42

Condenser SCC, 6-58

CLIMATIC CONDITIONS

Arctic environment, aboveground storage tanks, 5-17

Coating application and cure, 8-25

COATINGS

Al, thermal sprayed, for subsea piping systems, 7-32

Al-Zn, and atmospheric corrosion of sheet steel, 4-30

Climatic effect on application and cure, 8-25

Dehumidification during application, 5-34

Extruded PE, performance in soil, 3-39

FBE, performance in soil, 3-39

Induced tension polymer wraps, 10-32

Lead-based paint

dispute resolution, 7-38

EPA model inspection program, 12-17

hydroblasting for removal, 4-38

overcoating vs removal, 2-58

specifications, 7-38

Metalized Zn, for sacrificial CP of concrete overpass, 9-18

Microbial attack in soils, 3-39

Moisture-curing polyurethane, 12-25

Organic, thermally applied, in marine environment, 2-51

PE tape, performance in soil, 3-39

Solvents, 6-31

Transmission pipeline, coating degradation, 3-18

Zero VOC technology, 6-31

COMPOSITES: Future trends, 11-17

<p>COMPUTER MODELING <i>See also MODELING</i> Aircraft corrosion, 12-50 CP of coated pipelines, 6-16 CP of offshore structures, 4-19 Induced AC voltage mitigation, 8-9</p> <p>CONCRETE Elastomeric waterproofing membranes for parking garage decks, 10-24 Induced tension polymer wraps for pilings, 10-32 Prestressed box girder bridges, radiographic examination, 10-61 Steel reinforced all-polymer encapsulation repair process, 9-28 CP of bridge pilings, 8-14, 12-11 CP by sacrificial metallized Zn, 9-18 CP by sacrificial Zn mesh anodes, 12-11 CP system data analysis, 2-36 epoxy portland cement mortars for repair, 10-55</p> <p>CONDENSERS: SCC, 6-58</p> <p>COPPER AND ALLOYS Alkaline environments, 2-97 Statue of Liberty, restoration update, 11-5 Steam-side heat exchanger tubes, SCC and erosion-corrosion, 1-67 Water tube systems, 9-53 Yellow metal (UNS C69100) for sour service, 4-60</p> <p>DATA ANALYSIS: Reinforced concrete CP system, 2-36</p> <p>DEAERATORS: Reinspection, 8-39</p> <p>DEHUMIDIFICATION: Closed loop systems, 5-34</p> <p>DESIGN Corrosion management, 11-13 Corrosion resistant alloys, 7-57 CP system coated pipelines, 6-16 large plants, 7-22 offshore structure retrofit, 4-19, 10-11 seawater piping, 7-17 steel reservoir tanks, 9-13 tension leg platform, 4-12 Electrical isolating flange gaskets, 3-30 Fiberglass pipe for oilfields, 5-65 Filler metal, for high-Mo superaustenitic SS, 2-87 Induced tension polymer wraps, 10-32 Laboratory tests, relevance of, 10-67</p> <p>ECONOMICS Corrosion management, 11-13 Corrosion resistant alloys vs low alloy steel, 7-57 Moisture-curing PUR coatings for cost savings, 12-25</p>	<p>EDUCATION Annual education supplement, 9-71 Corrosion management manuals, 11-13 Schools offering corrosion courses, 9-71</p> <p>ELASTOMERS <i>See also RUBBER</i> Waterproofing membranes for parking garage decks, 10-24</p> <p>EPOXY RESINS <i>See also POLYMERICs</i> Electrical isolating flange gaskets, 3-30 Epoxy portland cement mortars for concrete repair, 10-55 Future trends, 11-17</p> <p>EROSION-CORROSION <i>See also FLOW ACCELERATED CORROSION</i> Ammonium carbamate decomposers, 5-69 LWR piping, 7-63 SS urea reactors, 9-64 Steam-side heat exchanger tubes, 1-67</p> <p>EXTERNAL CORROSION: Transmission pipelines, 3-18</p> <p>FLOW ACCELERATED CORROSION <i>See also EROSION-CORROSION</i> Inhibitor performance, effect on, 4-47</p> <p>GALVANIC CORROSION: Resistor controlled CP and, 7-17</p> <p>GAS CHROMATOGRAPHY: Hydrocarbon leak detection, 8-46</p> <p>HEAT EXCHANGERS <i>See also BOILERS; CONDENSERS</i> Biofouling, 3-53 CO-CO₂ SCC failures, 8-64 Hydrocarbon leaks in refinery cooling water systems, 8-46 Pitting attack, 12-39 Steam-side tubes, SCC and erosion-corrosion, 1-67</p> <p>HYDROGEN ATTACK: Corrosion resistant alloys, 7-57</p> <p>HYDROGEN SULFIDE <i>See also SOUR SERVICE</i> Thiosulfate reduction by anaerobic bacteria, 3-60</p> <p>INHIBITORS Boiler deposit control, 7-48 Flow accelerated corrosion and inhibitor performance, 4-47 Flow loop test, 4-47 Multifunctional, for cooling water, 6-41 Phosphinocarboxylic acid (PCA), 7-48 Phosphonocarboxylic acid (POCA), 6-41 Rotating cylinder electrode test, 4-47 Water, SCC of Zr, 3-67</p> <p>INSPECTION <i>See also OSHA</i> Aircraft corrosion surveillance, 12-50</p>	<p>Corrosion management, 11-13 Deaerators, reinspection of, 8-39 In-line, ILI pigs, 12-17 Radiographic, prestressed concrete box girder bridges, 10-61 Reinforced concrete bridge pilings, 8-14 Statue of Liberty, restoration update, 11-5 Underwater, offshore platforms, 1-23</p> <p>INTERGRANULAR ATTACK: BWR piping, 7-63</p> <p>IRON, CAST <i>See CAST IRONS</i></p> <p>LEAD Lead paint hydroblasting for removal, 4-38 overcoating vs removal, 2-58 OSHA regulations, overview, 10-36 OSHA Review Commission, function of, 1-38 Specifications and dispute resolution, 7-38 Title X requirements, 8-30</p> <p>LEAK DETECTION: Hydrocarbons, activated carbon filter and gas traps, 8-46</p> <p>LINE PIPE <i>See PIPELINES</i></p> <p>LININGS Dehumidification during cure, 5-34 Double bottom tank, for vacuum leak detection, 5-40 Elastomeric waterproofing membranes, 10-24 Rubber, 1-33 Urea reactor, lining repair, 9-64 Wastewater treatment piping, 9-41 Zero VOC technology, 6-31</p> <p>MAINTENANCE Moisture-cured PUR coatings for structure refurbishment, 12-25 Pipelines, integrity analysis program, 1-19 Underwater, offshore platforms, 1-23 Zero VOC technology, 6-31</p> <p>MANAGEMENT, CORROSION Aircraft corrosion surveillance, 12-50 Model and overview, 11-13</p> <p>MARINE ENVIRONMENTS <i>See also SEAWATER</i> All-polymer encapsulation process for structure repair, 9-28 Organic coatings, thermally applied, 2-51 SS eaves, atmospheric corrosion, 12-58 Statue of Liberty, restoration update, 11-5 Tropical, MIC of carbon steel, 10-44</p> <p>MATERIALS SELECTION <i>See DESIGN</i></p>
--	--	--

MEASUREMENT	NUCLEAR POWER PLANTS	PIPES
Electrochemical carbon steel heat exchanger tubes, 12-39 reinforced concrete bridge pilings, 8-14 Field, distribution of CO ₂ in steam-water cycle, 12-35 On-line high purity water, 5-49 pitting of carbon steel, 12-39 Potential, cathodically protected structures, 6-21	Biofouling in BWR standby service water system, monitoring, 3-53 LWR corrosion control, 7-63	Proton beam, CP of, 3-25 SS corrosion in high-Mn fresh water, 9-59 MIC damage, 2-69 SCC in BWRS, 7-63 Wastewater treatment, MIC, 9-41
MICROBIOLOGICAL ATTACK <i>See also BIOFILMS</i> Activated sodium bromide and, 7-42 BWR standby service water system, monitoring, 3-53 Carbon steel in tropical marine environments, 10-44 Coatings in soil, 3-39 Cooling tower, 7-42 Hydrocarbon leaks and, 8-46 Non-SRB sulfidogenic bacteria, 3-60 Oil pipeline, 3-60 Remedial treatment of occupied building, 6-54 Transmission pipeline, 3-18 Wastewater treatment plants, 9-41 Water coolant header, 2-69	OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION <i>See OSHA</i> OFFSHORE STRUCTURES	PITTING ATTACK Cooling water systems, 12-39 Deaerators, 8-39 Growth model, 12-39 Heat exchangers, 12-39 Oil pipeline, 3-60 On-line measurement, 12-39 Solder flux induced, Cu water tubing, 9-53 SS eaves, 12-58 SS pipe in high-Mn water, 9-59
MICROBIOLOGICALLY INFLUENCED CORROSION (MIC) <i>See MICROBIOLOGICAL ATTACK</i>	OIL <i>See also OIL AND GAS PRODUCTION</i> Pipelines fiberglass, 5-65 MIC, 3-60	POLLUTION CONTROL Composites for, 11-17 Lead regulations, 10-36
MODELING <i>See also COMPUTER MODELING</i> Pit growth process, 12-39	OIL AND GAS INDUSTRY Corrosion management, 11-13 Oil/water systems, corrosion in, 8-61	POLYMERIC <i>See also EPOXY RESINS</i> All-polymer encapsulation process for repair of marine structures, 9-28 Fiber-reinforced, biodegradation, 2-79 Future trends, 11-17 Induced tension wraps, 10-32 Moisture-cured PUR coatings, 12-25 Phosphino-carboxylic acid (PCA), inhibitor, 7-48 Phosphonocarboxylic acid (POCA), inhibitor, 6-41
MONITORING SYSTEMS Aircraft corrosion surveillance, 12-50 Biocide treatment of occupied building, 6-54 Biofouling in BWR standby service water system, 3-53 Climatic variables, coating application and cure, 8-25 On-line, pitting of carbon steel, 12-39 Psychrometric charts, 8-25 Remote advances in, 6-27 CP rectifiers, 2-42 Vacuum leak detection in double bottom tanks, 5-40	OIL AND GAS PRODUCTION <i>See also OFFSHORE STRUCTURES</i> Corrosion resistant alloys, 7-57 Duplex SS weldments, SCC, 4-65 Non-SRB sulfidogenic bacteria, 3-60 Yellow metal (UNS C69100), SSC resistance, 4-60	REBAR <i>See CONCRETE</i> REGULATIONS DOT, in-line ILI pigs, 12-17 EPA lead paint inspection program, 12-17 Title X, 8-30 Lead-Copper Rule of 1991, 9-53 OSHA, lead regulations, overview, 10-36
NATURAL GAS <i>See also OIL AND GAS PRODUCTION</i> Pipelines CP groundbed reconstruction in wetlands, 10-17 external corrosion, 3-18	OSHA <i>See also REGULATIONS, OSHA</i> Lead regulations, overview, 10-36 Review Commission, function of, 1-38	RUBBER <i>See also ELASTOMERS</i> Linings, 1-33
NICKEL AND ALLOYS: Corrosion resistant alloys for deep gas wells, 7-57	PAINT <i>See COATINGS</i> PETROLEUM INDUSTRY <i>See OIL AND GAS INDUSTRY</i>	SAFETY <i>See OSHA</i> SALINE ENVIRONMENTS: Reinforced concrete bridge pilings, CP of, 8-14
	PIPE FITTINGS: Sulfide stress cracking, 1-64 PIPELINES Coated, CP of, 6-16 CP groundbed reconstruction in wetlands, 10-17 External corrosion, 3-18 Fiberglass, for oilfields, 5-65 Induced AC voltages, 8-9 In-line inspection, 12-17 Maintenance, integrity analysis program, 1-19 Seawater, CP by resistor controlled method, 7-17 Sour oil-transporting, MIC, 3-60 Subsea, thermal sprayed Al coatings, 7-32	SEAWATER <i>See also MARINE ENVIRONMENTS</i> Piping, CP by resistor controlled method, 7-17 Steam-side heat exchanger tubes, SCC and erosion-corrosion, 1-67 Thermal sprayed Al coatings for subsea piping systems, 7-32

SOUR SERVICE <i>See also HYDROGEN SULFIDE; SULFIDE STRESS CRACKING</i> Definitions, review of, 8-54 Duplex SS weldments, SCC, 4-65 Pipe fittings and, 1-64 Yellow metal (UNS C69100) for, 4-60
STANDARDS <i>See also TESTS</i> Corrosion management, 11-13 CSA Z662, sour service definitions, 8-54 EFC, sour service definitions, 8-54 NACE MR0175 and pipe fittings failure, 1-64 sour service definitions, 8-54
STATUE OF LIBERTY: Restoration update, 11-5
STEELS, CARBON All-polymer encapsulation repair process, 9-28 Al-Zn coatings for sheet, 4-30 Ammonium carbamate decomposers, 5-69 Cold-forged pipe fittings, failure of, 1-64 Heat exchanger tube, CO-CO ₂ SCC, 8-64 MIC and atmospheric corrosion in tropical marine environments, 10-44 Moisture-cured PUR coatings, 12-25 Pitting, growth model and on-line measurement, 12-39 Tension leg platform, CP of, 4-12 Wastewater treatment piping, MIC, 9-41
STEELS, STAINLESS Chloride SCC, 12-65 CO-CO ₂ SCC resistance, 8-64 Coolant piping in BWRs, SCC, 7-63 Corrosion resistant alloys for deep gas wells, 7-57 Duplex SS weldments in sour service, 4-65 Eaves, atmospheric corrosion, 12-58 High-Mo superaustenitic, welding, 2-87 Piping in high-Mn fresh water, 9-59 MIC attack, 2-69 Seawater piping, internal CP, 7-17 Statue of Liberty armature, 11-5 Urea reactor linings, repair, 9-64 Wire, for weld overlay repair of ammonium carbamate decomposers, 5-69
STRESS CORROSION CRACKING Chloride SCC, 12-65 Condenser, 6-58 Duplex SS weldments in sour service, 4-65 Heat exchanger tube, CO-CO ₂ failure, 8-64 SS coolant piping in BWRs, 7-63 Steam-side heat exchanger tubes, 1-67 Steam turbines, 12-35 Zr, water as inhibitor, 3-67

SULFIDE STRESS CRACKING <i>See also HYDROGEN SULFIDE; SOUR SERVICE</i> Pipe fittings, 1-64 Yellow metal (UNS C69100), resistance of, 4-60
SUPERHEATERS <i>See BOILERS</i>
TANKS Aboveground storage, CP of, 5-17, 5-25 Double bottom CP of, 5-25 vacuum leak detection, 5-40 Linings, zero VOC technology, 6-31 Steel water reservoirs, CP of, 9-13
TESTS <i>See also STANDARDS</i> CP current testing for large plant structures, 7-22 Flow loop tests for inhibitor performance, 4-47 Hydrocarbon leak detection, 8-46 Laboratory, relevance of, 10-67 Potential measurement on cathodically protected structures, 6-21 Rotating cylinder electrode tests for inhibitor performance, 4-47 Vacuum leak detection in tanks, 5-40
TUBING Cu, water tube systems, 9-53 Superheater failures, 1-46
UNIVERSITIES and colleges offering corrosion courses, 9-71
UREA REACTORS <i>See also AMMONIUM CARBAMATE DECOMPOSERS</i> Lining repair, 9-64
VOLTAGE MITIGATION: Statistical approach, 8-9
WASTE PLANTS: Boiler tube failures, 1-46
WATER, COOLING Activated sodium bromide for biocontrol, 7-42 Biofouling in BWR standby service water system, 3-53 Growth model of pitting, 12-39 Hydrocarbon leaks in refinery systems, 8-46 Inhibitor, multifunctional, 6-41 MIC attack of water coolant header, 2-69
WATER, FRESH: High-Mn, corrosion of SS piping, 9-59
WATER, HIGH PURITY: On-line measurements, 5-49
WATER, POTABLE CP of steel reservoir tank interiors, 9-13 Treatment plant, SS pipe corrosion, 9-59

WATER, SEA <i>See SEAWATER</i>
WATER TREATMENT Cu water tube systems, 9-53 Portable water treatment plant, SS pipe corrosion, 9-59 Wastewater treatment plants, MIC, 9-41

WELDS AND WELDING Ammonium carbamate decomposers, overlay repair, 5-69 Deaerators, pitting attack, 8-39 Duplex SS in sour service, SCC, 4-65 High-Mo superaustenitic SS, 2-87 SS pipe in high-Mn water, pitting, 9-59 Underwater, Al anode attachment, 10-11 Urea reactor lining repair, 9-64

ZINC AND ALLOYS Al-Zn coatings on sheet steel, 4-30 Primers, zero VOC, 6-31 Sacrificial metallized Zn coatings, 9-18 Sacrificial Zn mesh anodes, 12-11 Zn-rich moisture-cured PUR coatings, 12-25

ZIRCONIUM AND ALLOYS: Water as SCC inhibitor, 3-67

Do you have a unique product or special service you want others to know about?

If so, there's no better way than to advertise in **MP**

Call the NACE Advertising Dept. at 281/492-0535, ext. 258, for rates and deadlines.

1996 MP Author Index

- | | | |
|---|---|--|
| <p>Albornoz, J.A., 9-64
 Anderson, T., 11-17
 Apicella, F., 9-28
 Arévalo, A., 1-67
 Arias Albornoz, J., 9-64
 Ault, J.P., 2-51
 Avery, R.E., 9-59</p> <p>Babolian, R., 11-5
 Baldock, B., 9-18
 Bapu, R.H.S., 10-61
 Barletta, T., 5-17
 Bayle, R., 5-17
 Benedetti, L., 2-29
 Blakset, T.J., 4-19
 Boah, J.K., 8-54
 Bonora, P.L., 2-29
 Borzillo, A.R., 4-30
 Bradshaw, R., 4-65
 Bravo, J., 8-14
 Brousseau, R., 9-18</p> <p>Carpio, J.J., 10-44
 Chang, K.Y., 7-48
 Clark, T., 4-60
 Cliver, E.B., 11-5
 Cohen, A., 9-53
 Collins, J., 5-25
 Contreras, D., 8-14
 Corish, J., 12-35
 Cottis, R.A., 4-65
 Craig, B.D., 8-61
 Craigie, L., 11-17
 Crolet, J.-L., 3-60
 Crowe, A.R., 5-34</p> <p>Dabkowski, J., 8-9
 Daley, J.C., 1-23
 Davies, M., 6-54
 Degerstedt, R.M., 6-16
 Degnan, T.F., 6-58
 de Rincón, O.T., 8-14, 10-55
 De Romero, M.F., 5-69, 8-14,
 9-64
 de Sánchez, S.R., 1-67
 Dillon, C.P., 2-97, 12-65
 Dougherty, J.A., 4-47
 Draghetti, M., 2-29
 Drugli, J.M., 7-17</p> <p>Esparza, P., 1-67
 Esteban, J.M., 6-16</p> <p>Farschon, C.L., 2-51
 Fernández, R., 10-55</p> | <p>Fitzgerald, J.H., III, 3-25, 10-17
 Fowler, C.M., 4-60
 Freeman, S.R., 3-66</p> <p>Galban, J.P., 5-69, 9-64
 Gartland, P.O., 7-17
 Gervais, M., 2-42
 Glass, G.K., 2-36
 Golson, G.L., 7-42
 Gomis Bas, C., 1-67
 González, S., 1-67
 Goolsby, A.D., 4-12
 Gray, D.M., 5-49
 Grenier, L., 12-50
 Gu, P., 9-18</p> <p>Hagen, T., 5-40
 Harris, A.M., 8-46
 Hart, K., 2-79
 Herfiord, B.O., 4-19
 Holtzclaw, B., 11-17</p> <p>Iimura, A., 12-39
 Inglis, W., 4-60
 Ingraham, D., 1-23
 Iyer, Y.M., 10-61</p> <p>Jack, T.R., 3-18, 3-39
 Jelinek, J., 4-19
 Jenkins, C.F., 2-69
 Johnsen, R., 7-17
 Jones, R.L., 7-63</p> <p>Kalyanasundaram, R.M.,
 10-61
 Kane, R.D., 10-67
 Kapali, V., 10-61
 Kennelley, K.J., 5-17, 6-16
 Kessler, R.J., 12-11
 Kirkham, K.K., 8-64
 Koseki, T., 2-87
 Krause, H.H., 1-46</p> <p>Lasa, I.R., 12-11
 Lever, G., 4-38
 Lewis, M., 9-13
 Lewis, R.K., 1-33
 Little, B., 2-79
 Ludovic, J., 8-14
 Lutey, R.W., 9-59
 Lyons, J.M., 12-35</p> <p>McIntyre, D.R., 1-64, 8-54
 Madhavamayandi, A., 10-61
 Magot, M.F., 3-60</p> | <p>Mahadeva Iyer, Y., 10-61
 Mailvaganam, N.P., 10-24
 Martinez, L., 10-44
 Mauri, A., 1-33
 Maynard, R.J., 7-22
 Mayne, L.L., 3-53
 Mehra, L., 1-33
 Milliams, D.E., 11-13
 Moore, E.M., Jr., 1-64
 Moore, R.M., 7-42
 Morales, J., 1-67
 Morgan, R.E., 6-31
 Morón, O., 8-14, 10-55
 Morton, D., 4-19
 Music, J., 9-59
 Myers, J.R., 9-53</p> <p>Nalepa, C.J., 7-42
 Nayak, N.U., 10-61
 Neilson, H.L., 3-53
 Nekoksa, G., 6-21
 Nickelsen, G., 9-28
 Nicol, A.J., 6-41</p> <p>Ogawa, T., 2-87
 Orazem, M.E., 6-16
 Os voll, H., 4-19
 Oswald, K.J., 5-65</p> <p>Parra, A., 10-44
 Pasinetti, R., 2-29
 Patel, S., 6-41, 7-48
 Pikas, J., 3-30
 Pinnow, K.E., 9-59
 Pirela Galban, J., 5-69, 9-64
 Polski, E.L., 1-33
 Powers, R.G., 12-11
 Puckorius, P.R., 7-42
 Pye, G., 9-18</p> <p>Rau, J.F., 1-19
 Ray, R., 2-79
 Rengaswamy, N.S., 10-61
 Reynaud, A., 2-93
 Rhodes, P.R., 7-57
 Rials, R., 5-40
 Rincón, A., 10-55
 Ringas, C., 12-50
 Roberge, P.R., 12-50
 Rodrigues, P., 6-27
 Rossi, S., 2-29</p> <p>Sacco, E., 2-29
 Saldaña, B.J., 3-68
 Saravanan, K., 10-61</p> <p>Takahashi, K., 12-39
 Thielsch, H., 3-66
 Tochihara, M., 12-58
 Townsend, H.E., 4-30
 Tullmin, M.A.A., 12-50
 Turnipseed, S.P., 6-21, 10-11
 Tuthill, A.H., 9-59
 Twigg, R.J., 8-39</p> <p>Uchida, T., 12-39
 Ujiro, T., 12-58
 Ulrich, L.W., 12-17</p> <p>Valen, S., 7-17
 Van Boven, G., 3-39
 van Gelder, K., 11-13
 Vernon, L.S., 2-58, 7-38,
 8-30, 10-36
 Villasmil, M., 10-55
 Vollmer, H.R., 11-17</p> <p>Wagner, P., 2-79
 Wallace, T.C., 3-30
 Wang, F., 9-28
 Whitaker, J.M., 3-53
 Whitsett, L.A., 1-38
 Wilmott, M.J., 3-18, 3-39
 Wolfe, T.W., 7-42
 Wolfson, S.L., 7-32
 Worthingham, R.G., 3-18,
 3-39
 Wright, I.G., 1-46
 Wyatt, C.H., 5-34</p> <p>Yazawa, Y., 12-58
 Yolo, R.A., 9-41</p> <p>Zisson, P.S., 3-53</p> |
|---|---|--|

