import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

df = pd.read_csv('aerofit_treadmill.csv')

df.head()

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	
0	KP281	18	Male	14	Single	3	4	29562	112	
1	KP281	19	Male	15	Single	2	3	31836	75	
2	KP281	19	Female	14	Partnered	4	3	30699	66	
3	KP281	19	Male	12	Single	3	3	32973	85	
4	KP281	20	Male	13	Partnered	4	2	35247	47	

df.describe()

	Age	Education	Usage	Fitness	Income	Miles	
count	180.000000	180.000000	180.000000	180.000000	180.000000	180.000000	
mean	28.788889	15.572222	3.455556	3.311111	53719.577778	103.194444	
std	6.943498	1.617055	1.084797	0.958869	16506.684226	51.863605	
min	18.000000	12.000000	2.000000	1.000000	29562.000000	21.000000	
25%	24.000000	14.000000	3.000000	3.000000	44058.750000	66.000000	
50%	26.000000	16.000000	3.000000	3.000000	50596.500000	94.000000	
75%	33.000000	16.000000	4.000000	4.000000	58668.000000	114.750000	
max	50.000000	21.000000	7.000000	5.000000	104581.000000	360.000000	

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180 entries, 0 to 179
Data columns (total 9 columns):

- 01 0 01	00200000	2 00 00 00 00 00 00	
#	Column	Non-Null Count	Dtype
0	Product	180 non-null	object
1	Age	180 non-null	int64
2	Gender	180 non-null	object

3	Education	180	non-null	int64
4	MaritalStatus	180	non-null	object
5	Usage	180	non-null	int64
6	Fitness	180	non-null	int64
7	Income	180	non-null	int64
8	Miles	180	non-null	int64

dtypes: int64(6), object(3)
memory usage: 12.8+ KB

df.shape

(180, 9)

2. Detect outliers

```
sns.boxplot(x=df['Product'], y=df['Age'])
plt.show()
```


The KP281 is an entry-level treadmill that sells for

1,500 is majorly bought by the majority of the ages between 23 to 34 and has a peak for the ages whereas the The KP481 is form id-level runners that sell for

1,750 is bought by people of ages ranging from 25 to to 34 majorly. The KP781 treadmill is having

advanced features that sell for \$2,500 is comparitively less in sales and is mostly bought by people between the age 26 and 30 and a very few till the age of 45

difference between mean and median for numerical columns

print(df.describe())

	Age	Education	Usage	Fitness	Income	\
count	180.000000	180.000000	180.000000	180.000000	180.000000	
mean	28.788889	15.572222	3.455556	3.311111	53719.577778	
std	6.943498	1.617055	1.084797	0.958869	16506.684226	
min	18.000000	12.000000	2.000000	1.000000	29562.000000	
25%	24.000000	14.000000	3.000000	3.000000	44058.750000	
50%	26.000000	16.000000	3.000000	3.000000	50596.500000	
75%	33.000000	16.000000	4.000000	4.000000	58668.000000	
max	50.000000	21.000000	7.000000	5.000000	104581.000000	
	Miles					
count	180.000000					
mean	103.194444					
std	51.863605					
min	21.000000					
25%	66.000000					
50%	94.000000					
75%	114.750000					
max	360.000000					

Exploring the effect of features on product purchased

```
# Countplot for marital status and product purchased
sns.countplot(x='MaritalStatus', hue='Product', data=df)
plt.show()
```


The people purchasing the tredmills are mostly the partnered once when compared to single one's as seen from the graph

```
# Histplot for age and product purchased
sns.histplot(x='Age', hue='Product', data=df, multiple='stack')
plt.show()
```


The entry level KP281 is amongst the most selling tredmills especially between at the age of 25 and also overall as it tops the sales amongst all age group because of its pricing and also the KP481 and KP781 is also having the most sales amongst people pf age 25 as they are the ones into fitness and want an upgraded device which is shown clearly

4. Represent marginal probabilities

```
# Pandas crosstab for marginal probabilities
marginal_prob = pd.crosstab(index=df['Product'], columns='count', normalize=True)
print(marginal_prob)
```

col_0	count
Product	
KP281	0.44444
KP481	0.333333
KP781	0.22222

From this we can easily conclude that the one with the lower price has the higher number of sales and the others following them in a lesser percentage

5. Check correlation

```
# Heatmap for correlation
sns.heatmap(df.corr(), annot=True, cmap='coolwarm', fmt=".2f")
plt.show()
```

<ipython-input-16-387dae86a4ad>:2: FutureWarning: The default value of numeric_only in [
 sns.heatmap(df.corr(), annot=True, cmap='coolwarm', fmt=".2f")

Pairplot for visualizing relationships
sns.pairplot(df, hue='Product')
plt.show()

Unique values and counts for categorical variables

```
for column in df.select_dtypes(include=['object']).columns:
   print(f"Attribute: {column}")
   print(df[column].value_counts())
   print("\n")
    Attribute: Product
    KP281 80
    KP481 60
    KP781
            40
    Name: Product, dtype: int64
    Attribute: Gender
    Male 104
    Female
             76
    Name: Gender, dtype: int64
    Attribute: MaritalStatus
    Partnered
                 107
    Single
                 73
    Name: MaritalStatus, dtype: int64
```

Univariate analysis for continuous variables

```
10/01/2024, 18:03
```

```
sns.distplot(df['Age'])
plt.show()
sns.distplot(df['Income'])
plt.show()
```


<ipython-input-14-057200d01f76>:4: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

