Open Loop, Close Loop, Feedback (Op-Amp)

Open Loop/Closed Loop and Feedback

- Open loop
 - Very high gain (intrinsic gain) such high gain is not required in most applications
 - Poor stability
 - Open loop gain assumed to be infinite for ideal op amps
- Closed loop
 - Uses feedback to add stability
 - Reduces gain of the amplifier
 - Output is applied back into the inverting (-) input
 - Most amplifiers are used in this configuration

Closed-loop/Feedback Op-Amp configurations

- In order to reduce gain, a part of output signal is fed back to the inverting input terminal (called negative feedback)
- Many other OPAMP characteristics are improvised with this
- A close loop amplifier can represent by using two block:
 A) Op-Amp
 B) Feedback circuit

Feedback

- Negative Feedback
 - Part of the output signal is returned to the input in opposition to the source signal
- Positive Feedback
 - The signal returned from the output to the input aids the original source signal

Classification of Feedback Op-Amp

- 1. Voltage series feedback
- 3. Current series feedback
- 2. Voltage shunt feedback
- 4. Current shunt feedback

V_{in} Op-amp V_o R_L

Feedback circuit

(a) Voltage series feedback

(b) Voltage shunt feedback

(c) Current series feedback

(d) Current shunt feedback

Golden Rules of Op-Amp Analysis

• Rule 1: $V_A = V_B$

- The output attempts to do whatever is necessary to make the voltage difference between the inputs zero.
- The op-amp "looks" at its input terminals and swings its output terminal around so that the external feedback network brings the input differential to zero.

• Rule 2: $I_A = I_B = 0$

- The inputs draw no current
- The inputs are connected to what is essentially an open circuit

Steps in Analyzing Op-Amp Circuits

Analysis Method:

Two ideal Op-Amp Properties:

- (1) The voltage between V_{+} and V_{-} is zero $V_{+} = V_{-}$
- (2) The current into both V_{+} and V_{-} termainals is zero

For ideal Op-Amp circuit:

- (1) Write the kirchhoff node equation at the noninverting terminal V_{\perp}
- (2) Write the kirchhoff node eqaution at the inverting terminal V_{-}
- (3) Set $V_+ = V_-$ and solve for the desired closed-loop gain

Open-loop Differential configuration

Open-loop configuration

If
$$v_1 = 0$$
, then $v_0 = -A_{OL}v_2$

Inverting amplifier

If
$$v_2 = 0$$
, then $v_o = A_{OL}v_1$

Non inverting amp

- 1. Differential amplifier
- 2. Inverting amplifier
- 3. Noninverting amplifier

Cont...

- A_{OL} is the open-loop voltage gain of OPAMP
- Its value is very high
- **❖** Typical value is 0.5 million
- So, even if input is in micro volts, output will be in volts
- But output voltage cannot cross the value of power supply V_{cc}
- So, if input is in milli volts, output reaches saturation value $V_{sat} = V_{CC}$ (or V_{EE})

Open-loop configuration

- If $v_1 = v_2$, then ideally output should be zero
- But in practical Op-Amp, output is

$$v_o = A_{cm} \left(\frac{v_1 + v_2}{2} \right)$$

Where, A_{CM} is the common-mode gain of Op-Amp

So, final gain equation is:

$$\upsilon_o = A_d(\upsilon_1 - \upsilon_2) + A_{cm} \left(\frac{\upsilon_1 + \upsilon_2}{2} \right)$$

$$v_o = A_d v_{id} + A_{cm} v_{icm}$$

Cont...

- Common-mode rejection ratio
 - It is a measure of the ability of Op-Amp to reject the signals common to both input terminals (noise)
 - Defined as

$$CMRR = \frac{A_d}{A_{cm}}$$

$$(CMRR)_{dB} = 20 \log_{10} \left(\frac{A_d}{A_{cm}}\right)$$

Noninverting Amplifier

- (1) Kirchhoff node equation at V_+ yields, $V_+ = V_i$
- (2) Kirchhoff node equation at V_{-} yields, $\frac{V_{-}-0}{R_{a}} + \frac{V_{-}-V_{o}}{R_{f}} = 0$
- (3) Setting $V_{+} = V_{-}$ yields

$$\frac{V_i}{R_a} + \frac{V_i - V_o}{R_f} = 0 \quad \text{or} \quad \frac{V_o}{V_i} = 1 + \frac{R_f}{R_a}$$

Various Configuration of Noninverting Amplifier

Noninverting amplifier

$$v_o = (1 + \frac{R_f}{R_a})v_i$$

Noninverting input with voltage divider

$$v_o = (1 + \frac{R_f}{R_a})(\frac{R_2}{R_1 + R_2})v_i$$

Voltage follower $v_o = v_i$ $A = \frac{V_{out}}{V_o} = \frac{V_{out}}{V_o}$

High input impedance Low output impedance Buffer circuit

Less than unity gain

$$v_o = \frac{R_2}{R_1 + R_2} v_i$$

Inverting Amplifier

- (1) Kirchhoff node equation at V_+ yields, $V_+ = 0$
- (2) Kirchhoff node equation at V_{-} yields, $\frac{V_{in} V_{-}}{R_{a}} + \frac{V_{o} V_{-}}{R_{f}} = 0$
- (3) Setting $V_+ = V_-$ yields

$$\frac{V_o}{V_{in}} = \frac{-R_f}{R_a}$$

Notice: The closed-loop gain V_o/V_{in} is dependent upon the ratio of two resistors, and is independent of the open-loop gain. This is caused by the use of feedback output voltage to subtract from the input voltage.

Integrator Op-Amp

- Integrator is a circuit whose output voltage wave form is proportional to (negative) integral of the input voltage waveform with respect to time (known as integrator or integrator amplifier)
- It is basic inverting amplifier if the feedback resistor
 R_F is replaced by capacitor C_F.
- If input is sine wave output is cosine wave or input is square wave output by triangular wave.

Integrator

Now replace resistors R_a and R_f by complex components Z_a and Z_f , respectively, therefore

$$V_o = \frac{-Z_f}{Z_a} V_{in}$$

Supposing

(i) The feedback component is a capacitor C, i.e.,

$$Z_f = \frac{1}{j\omega C}$$

(ii) The input component is a resistor R, $Z_a = R$ Therefore, the closed-loop gain (V_o/V_{in}) become:

Where

$$v_i(t) = V_i e^{j\omega t}$$

$$v_o(t) = \frac{-1}{RC} \int v_i(t) dt$$

What happens if $Z_a = 1/j\omega C$ whereas, $Z_f = R$? Inverting differentiator

Understanding of Integrator

Integrator Circuits

Integrator Circuit

Integrator Circuit Analysis

The expression for the output voltage v_o can be obtained by writing Kirchhoff's current equation at node v_2 :

$$i_1 = I_B + i_F$$

Since I_B is negligibly small,

$$i_1 \cong i_F$$

Recall that the relationship between current through and voltage across the capacitor is

$$i_c = C \frac{dv_c}{dt}$$
 Therefore
$$\frac{v_{\rm in}-v_2}{R_1} = C_F \bigg(\frac{d}{dt}\bigg) \, (v_2-v_o)$$

However, $v_1 = v_2 \cong 0$ because A is very large. Therefore,

$$\frac{v_{\rm in}}{R_1} = C_F \frac{d}{dt} \left(-v_o \right)$$

The output voltage can be obtained by integrating both sides with respect to time:

$$\int_{0}^{t} \frac{v_{\text{in}}}{R_{1}} dt = \int_{0}^{t} C_{F} \frac{d}{dt} (-v_{o}) dt$$
$$= C_{F}(-v_{o}) + v_{o}|_{t=0}$$

Therefore,

$$v_o = -\frac{1}{R_1 C_F} \int_0^t v_{\rm in} \, dt + C$$

where C is the integration constant and is proportional to the value of the output voltage v_o at time t = 0 seconds.

(a) & (b) Input and Ideal output waveforms using a square wave & sine wave respectively

Differentiator

- Differentiator is circuit whose output is proportional to (negative) differential of input voltage with respect to time.
- Its application for mathematical operation of differentiation.
- The differentiator may be constructed from a basic inverting amplifier if an input resistance R₁ is replaced by a capacitor.
- If input is cosine wave output is sine wave or input is triangular wave output by square wave.

Differentiator

Time domain (like oscilloscope)

$$V_{out} = -R_f C_{in} \frac{dV_{in}}{dt}$$

Amplitude

factor of

 $\omega R_f C_{in}$

changes by a

analysis:

$$\frac{V_{out}}{V_{in}} = -\frac{Z_f}{Z_{in}} = -\frac{R_f}{1/j\omega C_{in}} = -j\omega R_f C_{in}$$

$$Frequency domain$$
(like AC sweep)

Differentiator Circuit

Differentiator

The expression for the output voltage can be derived from Kirchhoff's current equation written for node V_2 as follow:

$$i_C = I_B + i_F$$

Since $I_B \cong 0$,

$$i_C = i_F$$

$$C_1 \frac{d}{dt} (v_{\text{in}} - v_2) = \frac{v_2 - v_o}{R_F}$$

But $v_1 = v_2 \cong 0$ V, because A is very large. Therefore,

$$C_1 \frac{dv_{\rm in}}{dt} = -\frac{v_o}{R_F}$$

or

$$v_o = -R_F C_1 \frac{dv_{\rm in}}{dt}$$

Thus the output V_o is R_FC_1 times the negative instantaneous rate of change of input voltage V_{in} with time.

Comparison

	Differentiaion	Integration
original signal	$v(t)=A\sin(\omega t)$	$v(t)=A\sin(\omega t)$
mathematically	$dv(t)/dt = A\omega\cos(\omega t)$	$Iv(t)dt = -(A/\omega)cos(\omega t)$
mathematical	+90 (sine to cosine)	-90 (sine to –cosine)
phase shift		
mathematical	ω	$1/\omega$
amplitude change		
H(jw)	$H(j\omega) = -j\omega RC$	$H(j\omega) = -1/j\omega RC = j/\omega RC$
electronic phase	-90 (-j)	+90 (+j)
shift		
electronic	ωRC	1/ωRC
amplitude change		

 The op amp circuit will invert the signal and multiply the mathematical amplitude by RC (differentiator) or 1/RC (integrator)

The Comparator

- •A comparator, compares a signal voltage on one input of an Op-Amp with the a known voltage called reference voltage.
- •It is used for digital interfacing of devices.
- A specially designed op-amp, optimized to switch V_{out} <u>fast</u>
 - If V+ > V-, then V_{out} ≈ Vs
 - If V- > V+, then V_{out} ≈ 0 V
- But usually output is 'open collector'
 - Can pull low, but...
 - Needs external resistor (pull-up) to go high

LM339 Quad IC

Inside the LM339 comparator

Non Inverting Comparator

Schmitt Trigger Op-amp Circuit

- The open-loop comparator from the previous slides is very susceptible to noise on the input
 - Noise may cause it to jump erratically from + rail to rail voltages
- The Schmitt Trigger circuit (at the left) solves this problem by using positive feedback
 - It is a comparator circuit in which the reference voltage is derived from a divided fraction of the output voltage, and fed back as positive feedback.
 - The output is forced to either V_{POS} or V_{NEG} when the input exceeds the magnitude of the reference voltage
 - The circuit will remember its state even if the input comes back to zero (has memory)
- The transfer characteristic of the Schmitt Trigger is shown at the left
 - Note that the circuit functions as an inverter with hysteresis
 - Switches from + to rail when $v_{IN} > V_{POS}(R1/(R1 + R2))$
 - Switches from to + rail when $v_{IN} < V_{NEG}(R1/(R1 + R2))$

Schmitt Trigger Circuit

Schmitt Trigger (Inverting Comparator)

(a) Input and Output Wave forms of Schmitt Trigger

(b) Vo versus Vin plot of the hysteresis voltage

Limitations of Op-Amp

Saturation • Even with feedback,

- any time the output tries to go above V+ the op-amp will saturate positive.
- Any time the output tries to go below V- the op-amp will saturate negative.
- Ideally, the saturation points for an op-amp are equal to the power voltages, in reality they are 1-2 volts less.

$$-V \le V_{out} \le +V$$

Ideal:
$$-9V < V_{out} < +9V$$

Real:
$$-8V < V_{out} < +8V$$

- Current Limits

 If the load on the op-amp is very small,
 - Most of the current goes through the load
 - Less current goes through the feedback path
 - Op-amp cannot supply current fast enough
 - Circuit operation starts to degrade
- Slew Rate
 - The op-amp has internal current limits and internal capacitance.
 - There is a maximum rate that the internal capacitance can charge, this results in a maximum rate of change of the output voltage.
 - This is called the slew rate.