MATHEMATICAL REASONING Chapter 3

RAZONAMIENTO INDUCTIVO

HELICOMOTIVACIÓN

Kelly recibe de parte de su amigo Daniel 1 rosa el día lunes, 3 rosas el día martes, 5 rosas el día miércoles... y así sucesivamente. ¿Cuántas rosas habrá recibido Kelly de parte de su amigo Daniel el sexto día?

DÍA	1 × 2	2 × 2	3 × 2	6 × 2
CANTIDAD DE ROSAS	1 - 1	3 - 1	5	11 - 1

RPTA.: 11 rosas

Razonamiento inductivo

Se refiere al tipo de razonamiento que inicia de situaciones particulares (de menor a mayor complejidad) y se obtiene una conclusión, una veracidad el de tipo probable.

CASOS PARTICULARES

Ejemplo 1

Calcule la suma de las cifras del resultado de M. $M = \underbrace{(6666 \cdots 666)^2}_{100 \ cifras}$

Iniciamos el análisis desde lo más simple de la

expresitencifras en cada resultado

$$M = \underbrace{(6)^{2}}_{1 \text{ cifra}} = 36$$

$$M = \underbrace{(66)^{2}}_{2 \text{ cifras } 4356} = 2 \times 9$$

$$\underbrace{(666)^{2}}_{3 \text{ cifras } 443556} = 3 \times 9$$

$$\underbrace{(666)^{2}}_{100 \text{ cifras }} = 3 \times 9$$

$$\underbrace{(6666 \cdots 666)^{2}}_{100 \text{ cifras }} = 3 \times 9$$

$$\underbrace{(8666 \cdots 666)^{2}}_{100 \text{ cifras }} = 3 \times 9$$

$$\underbrace{(8666 \cdots 666)^{2}}_{100 \text{ cifras }} = 3 \times 9$$

$$\underbrace{(8666 \cdots 666)^{2}}_{100 \text{ cifras }} = 3 \times 9$$

$$\underbrace{(8666 \cdots 666)^{2}}_{100 \text{ cifras }} = 3 \times 9$$

$$\underbrace{(8666 \cdots 666)^{2}}_{100 \text{ cifras }} = 3 \times 9$$

$$\underbrace{(8666 \cdots 666)^{2}}_{100 \text{ cifras }} = 3 \times 9$$

$$\underbrace{(8666 \cdots 666)^{2}}_{100 \text{ cifras }} = 3 \times 9$$

900

Calcule la suma de los números de la fila 1

Analizamos progresivamente el

gráfico

Suma de números en cada fila

Ejemplo 3

Halle el total de BOLITAS de:

Números triangulares

Respuesta 55

Halle el número de triángulos que tiene la figura 25.

Fig. 1

Fig. 2

Fig. 3

RESOLUCIÓN:

N° de triángulos

$$F_1 \rightarrow 1 = 1 \times 4 - 3$$

$$F_2 \rightarrow 5 = 2 \times 4 - 3$$

$$F_3 \rightarrow 9 = 3 \times 4 - 3$$

Por lo tanto, para la figura 25 diremos:

$$25 \times 4 - 3$$

Calcule la suma de cifras de $M = (666 ... 666)^2$ 200 cifras

 $9 = 9 \times 1$

(1 cifra)

2 cifras

RESOLUCIÓN:

 $6^2 = 36 \implies Suma \ de \ cifras = 9$

 $66^2 = 4356 \implies Suma\ de\ cifras = 18$

 $666^2 = 443556 \Longrightarrow Suma\ de\ cifras = 27$

Por lo tanto, la suma de cifras de:

(666 ... 666)² sera: 200 cifras

 $27 = 9 \times 3$

9 × 200 (3 cifras)

Halle el número total de palitos del siguiente arreglo:

RESOLUCIÓN: Cantidad de palitos

Por lo tanto, para nuestro arreglo 2 diremos: 80

Daniel es un alumno muy observador, al estar desarrollando su tarea semanal en su cuaderno, se da cuenta que es cuadrada hoja cada cuadriculada con 20 cuadraditos por lado, y que si le traza una diagonal principal podría contar de cantidad máxima una triángulos. ¿Cuántos triángulos podrá máximo contar como Daniel en la cara de una hoja de su cuaderno?

Calcule la suma de todos los términos de la fila 50.

$$F_1 \rightarrow 1$$
 $F_2 \rightarrow 3$
 $F_3 \rightarrow 7$
 $F_4 \rightarrow 13$
 $F_5 \rightarrow 17$
 $F_6 \rightarrow 17$
 $F_7 \rightarrow 19$
 $F_8 \rightarrow 17$
 $F_8 \rightarrow 17$
 $F_8 \rightarrow 17$
 $F_8 \rightarrow 19$

RESOLUCIÓN:

$$F_1 \rightarrow 1 = 1 = 1^3$$
 $F_2 \rightarrow 3 + 5 = 8 = 2^3$
 $F_3 \rightarrow 7 + 9 + 11 = 27 = 3^3$

Entonces diremos para la fila 50: 50³

RESOLUCIÓN:

PROBLEMA 6

Calcule la suma de todos los elementos del siguiente arreglo

Rpta.: 2 \times 10³

De acuerdo a la secuencia de las figuras, ¿Cuántos cuadraditos no sombreados habrá en la figura 150?

RESOLUCIÓN:

CUADRADITOS NO SOMBREADOS

$$F_1 : = \frac{1(2)}{2}$$

$$F_2$$
: $=\frac{2(3)}{2}$

$$F_3$$
: $=\frac{3(4)}{2}$

Para
$$F_{150}$$
: $\frac{150(151)}{2}$