Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

Level 2 Certificate in Further Mathematics June 2015

Further Mathematics

8360/1

Level 2

Paper 1 Non-Calculator

Monday 15 June 2015 9.00 am to 10.30 am

For this paper you must have:

mathematical instruments.

You may **not** use a calculator.

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 70.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.

Formulae Sheet

Volume of sphere
$$=\frac{4}{3}\pi r^3$$

Surface area of sphere
$$=4\pi r^2$$

Volume of cone
$$=\frac{1}{3}\pi r^2 h$$

Curved surface area of cone
$$=\pi rl$$

In any triangle ABC

Area of triangle =
$$\frac{1}{2}ab \sin C$$

Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

The Quadratic Equation

The solutions of $ax^2 + bx + c = 0$, where $a \neq 0$, are given by

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

Trigonometric Identities

$$\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$$
 $\sin^2 \theta + \cos^2 \theta \equiv 1$

Answer all questions in the spaces provided.

1 *GH* is a straight line.

The coordinates of
$$G$$
 are $(-2, 8)$
The midpoint of GH is $(5, -3)_{\sim 1}$

Work out the coordinates of H.

$$=(5,-3)+(7,-(1))$$

= (2,-19

Answer (......)

Turn over for the next question

- 2 A straight line with equation
- y = mx + c
- has gradient m and y-intercept c.

Here are the equations of four straight lines, P, Q, R and S.

P 2y - 4x = 5

Q 5y = 2x - 4

R 2y - 4 = 5x

- S 4y = 5 2x
- **2 (a)** Circle the line that passes through (7, 2)

Ρ

R

S

2 (b) Circle the line with gradient $2\frac{1}{2}$

Ρ

Q

S

2 (c) Circle the line with *y*-intercept $2\frac{1}{2}$

Q

R

S

2 (d) Circle the line with a negative gradient.

Ρ

Q

R

2 (e) Circle a pair of perpendicular lines.

Q

[1 mark]

3	Solve	2(3x+1) > 3-4x 6x + 2 > 3 - 9x	[2 marks]
		(0)c>	
		>0.1 <u></u>	
		Answer	

Turn over for the next question

Turn over ▶

- 4 The equation of a curve is $y = x^2 5x$
- 4 (a) Work out $\frac{dy}{dx}$

[2 marks]

Answer

4 (b) *P* is a point on the curve.

The tangent to the curve at *P* has gradient 1

Work out the coordinates of P.

[2 marks]

ح>د- ړ

کر۔

y=x2-Jx =9-15

7 –6

Answer (....

(.........................)

5 In the expansion of $(x+2)(x^2+kx-3)$ the coefficient of	x^2 is zero
--	---------------

5 (a) Work out the value of k.

 $\frac{3+2x^{2}+kx^{2}+2kx-6-3x}{(2+k)x^{2}+(2k-3)x-6}$

Z-K=0 K=2

Answer

5 (b) Work out the coefficient of x.

[2 marks]

Answer

Turn over for the next question

6	A bag contains $5x$ red balls and $2x$ blue balls.					
	The number of red balls is decreased by $20\% = 2\%$ The number of blue balls is increased by $30\% = 2\%$ There are now 35 more red balls than blue balls in the bag.					
	Work out the value of x . [4 marks]					
	9x-35=135>c					
	1.9x=35 >c=25					

Answer

7 $3x^3 - 2x^2 - 147x + 98 \equiv (ax - c)(bx + d)(bx - d)$

where a, b, c and d are positive integers.

Work out the values of a, b, c and d. (.2 . Factorse that c so

F98=2x7x7

[3 marks]

f(x)=3x3-2x2-(47x+98

f(2) - 180 F(2)=360

'8=7 = (3x-7)(x+d)(x-d)=(3,2-7x+3dx-7d)(x-d)

= 3x2-7x2+3dx-7dx-3dx-7dx+3dx2(7d)-d non-neg sod=7

d=7 = (3x-1)(x+7)(x-7)(3)(x)(x2-99)

 $= 3x^3 - 197x - 6x^2 + 996$

= 3x3 -cx2-147x+99c

99×2=98

-(xS=-S

a = *b* =

b =

c =

 $d = \dots$

DOUBLE CHECK

Turn over for the next question

GOKES

8 Simplify fully

$$\frac{5x}{(x+4)(x-6)} - \frac{3}{(x-6)}$$

[4 marks]

$$= 5x(x6)-3(x49)(x6)$$

$$(x4)(x-6)(x6)$$

$$\frac{25x-30c-12}{(5c+9)(x-6)} = \frac{25e-12}{(5c+9)(x-6)}$$

= 2 (x6) (x49)(x6)

Answer

9 Given that $\begin{pmatrix} 3 & -1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} b \\ a+1 \end{pmatrix}$

work out the values of a and b.

$$= \begin{pmatrix} 3a-6 \\ 2x+6 \end{pmatrix} = \begin{pmatrix} 6 \\ 411 \end{pmatrix}$$

$$5a = 6$$

$$a = 2$$

$$a = \dots, b = \dots$$

10 This is a sketch of the curve y = f(x)

10 (a) For this curve $\frac{dy}{dx} = 3x^2 - 4x - 4$

Work out the range of values of x for which f(x) is a decreasing function. Write your answer as an inequality.

 $\frac{d^2y = 6x-4}{dx}$ for the [4 marks]

6x-4<6
6x<4
x<2/3

10 (b)	Work out the equation of the <u>normal</u> to the curve at the point $(1, -2)$
10 (b)	Give your answer in the form $y = mx + c$
	haven I done integration, but guess the [5 marks] Court's: y=xe^2-2xe-4xe+ey -2=1-2-4+e
	Court's: 4=23~2x2-4xc+cg
	-2-1-2-4+6
	C= 3
	tan m = 3>2- +>c- + where x=1
	¥ 3-4-9 = -5
	region = 15
	1 = 15 y = 5+C
	- 2 = 1/5 + C
	12,2
	Answer 4^{\pm} 5
	Answer Y - り

Turn over for the next question

11 Here is the graph of y = f(x)

It consists of a quadratic curve and two straight lines.

Define f(x), stating clearly the domain for each part.

[4 marks]

4	-4	X 1	۷
0	29	_к 4-	t C

$$f(x) = -1 < x < 2 ; y = -x$$

$$= 2 < x < 3 ; y = 4$$

12	Make y the subject of $\sqrt{\frac{3xy}{x+y}} = 4$	marks]
	> 3x4 = 16x4 16g > 3x4 - 16x4	
	Answer	

Turn over for the next question

13	$x^2 + 2ax + b$	≡ ((x-5)	$)^{2} - a$

Work out the values of a and b.

he values of
$$a$$
 and b .
$$(x-5)^2 - \alpha = x^2 - 10x + 25 - \alpha$$

[3 marks]

>c ² -10>c+25-a	= >c2+2 ase+6
•	· · · · · · · · · · · · · · · · · · ·

L a=5-J

$x^{2}-10x+30=$	2-102+6
<i>y</i>	JC JC

.....

.....

14	Write	$\frac{5\sqrt{2}}{3\sqrt{6}-7}$	in the form	$\sqrt{w} + \sqrt{k}$	where w and k	are integers.
	2	5 JZ	-735	-35 52 ·	JOG	[5 marks]
	_	7+356	-7-356	99-59		
	ر ح س	-35 Jz - 50 -5	13 7 7 Ja	1 + 6J3 = (J19 + J(8)	
			140	r <u> </u>		
				/	/ 	
		An	swer	<u> </u>		
				\		

The diagram shows two circles touching externally at T. Points X, Y and W lie on the larger circle.

RTS is a tangent to both circles.

XYRZ is a tangent to the smaller circle at Z.

ZTW is a straight line.

Angle YTR = a and angle ZTR = b

Not drawn accurately

15 (a)	Give reasons why angle RZT = b	targent equallength [2]	marks]
15 (b)	Angle $RZT = b$		
	Prove that angle $XTW = $ angle YTZ	<u>7</u>	markel
) [31	marks]

Turn over ▶

6	By factorising fully, simplify $\frac{x^4 - x^3 - 2x^2}{x^4 - 5x^2 + 4}$ [5 marks]
	$\frac{\chi^{2}(\chi^{2}-\chi^{2})}{\chi^{2}(\chi^{2}-3)} + \frac{\chi^{2}(\chi^{2}-1)(\chi^{2}-4)}{(\chi^{2}-1)(\chi^{2}-4)}$ [5 marks]
	?
	Answer

17	Prove that $2 \tan^2 \theta + 1 \equiv \frac{1 + \sin^2 \theta}{1 - \sin^2 \theta}$ where $\sin^2 \theta \neq 1$ $\tan \theta = \frac{\sin \theta}{\cos \theta} -\sin^2 \theta = \sin^2 \theta$ $\cos \theta = \sin^2 \theta = 1$ [3 marks]
	1-c20 = c326
	A^{2} A^{2} A^{2} A^{2}
	$= +\sin^2\theta = +\sin^2\theta = +\sin^2\theta $ $= -\sin^2\theta = +\sin^2\theta = +\sin^2\theta $ $= +\sin^2\theta = +\sin^2\theta = +\sin^2\theta $
	· · · · · · · · · · · · · · · · · · ·
	$=$ $+$ $tan \theta$
	(35 + Sin + Sin = (35 + 2 sin 2
	(03 ² (03 ² (23 ²

END OF QUESTIONS

