Math 534 Spring 2015 Midterm Solutions

(1) (a) Find a explicit solution u to the problem (in \mathbb{R}^3)

$$\begin{cases} \Delta u = 0 \text{ in } B_2 \setminus B_1(0) \\ u = 1 \text{ on } \partial B_1(0) \\ u = 0 \text{ on } \partial B_2(0) \end{cases}$$

(b) Do the same for the slightly different problem (still in \mathbb{R}^3)

$$\begin{cases} \Delta u = -6 \text{ in } B_2 \setminus B_1(0) \\ u = 1 \text{ on } \partial B_1(0) \\ u = 0 \text{ on } \partial B_2(0) \end{cases}$$

Solution. a) Since the problem is posed on a spherically symmetric domain, and the data is itself rotationally symmetric, we look for a radially symmetric solution u. We know that the constant function 1 and the function $|x|^{-1}$ are harmonic in our domain, so it makes sense to look for a solution which is a linear combination of these two, so we guess

$$u(x) = A + B|x|^{-1}$$

Substituting for the boundary values for |x| = 1, 2

$$|x| = 1, A + B = 1$$

$$|x| = 2, A + B/2 = 0$$

This system of equations is solved by the pair A = -1, B = 2. So, the solution is

$$u(x) = -1 + 2|x|^{-1}$$

b) Again by symmetry, we look for a function that depends only on |x|, since we want the Laplacian to be constant, we guess u(x) should involve the quadratic function $|x|^2$. Now

$$\Delta(-|x|^2) = -6 \ \forall x$$

which is the right equation inside the domain but does not match the boundary values. Following the first case, we look for a solution of the form

$$u(x) = -|x|^2 + A + B|x|^{-1}$$

We check that it solves the equation in the domain (for any A and B)

$$\Delta u = \Delta(-|x|^2) + \Delta(A+B|x|^{-1}) = -6 + 0 = -6.$$

Now, we find A and B by using the boundary values we want at |x| = 1, 2,

$$|x| = 1, -1 + A + B = 1$$

$$|x| = 2, -4 + A + B/2 = 0$$

We get the system of equations A + B = 2, 2A + B = 8, which has A = 6 and B = -4 as solution. Then, the solution is given by

$$u(x) = -|x|^2 - 4\frac{1}{|x|} + 6.$$

1

- (2) Consider a function $\phi : \mathbb{R} \to \mathbb{R}$ having derivatives of order 2. Let $u(x) : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ be given by $u(x) = \phi(|x|)$
 - (a) Find a formula for Δu in terms of ϕ'' , ϕ' , |x| and the dimension n.
 - (b) Use the first part of the problem to compute

$$\Delta(\log(|x|))$$
 in $\mathbb{R}^2 \setminus \{0\}$
 $\Delta(|x|^{-2})$ in $\mathbb{R}^3 \setminus \{0\}$
 $\Delta(|x|^{-2})$ in $\mathbb{R}^4 \setminus \{0\}$.

Hint: Recall that when $x \neq 0$, then $\nabla(|x|) = \frac{x}{|x|}$.

Solution. a) By the chain rule and the formula given by the hint

$$\nabla u(x) = \phi'(|x|)\nabla(|x|) = \phi'(|x|)\frac{x}{|x|}, \text{ when } x \neq 0.$$

Then, by the Leibniz rule (and the chain rule, again)

$$\Delta u(x) = \operatorname{div}\left(\phi'(|x|)\frac{x}{|x|}\right) = \nabla(\phi'(|x|)) \cdot \frac{x}{|x|} + \phi'(|x|)\operatorname{div}\left(\frac{x}{|x|}\right)$$

$$= \phi''(|x|)\frac{x}{|x|} \cdot \frac{x}{|x|} + \phi'(|x|)\left(\frac{1}{|x|}\operatorname{div}(x) + x \cdot \nabla(-\frac{1}{|x|})\right)$$

$$= \phi''(|x|) + \phi'(|x|)\left(\frac{n}{|x|} - x \cdot (-\frac{x}{|x|^3})\right)$$

Since in dimension n, $\operatorname{div}(x) = n$. Simplyfying, we get the formula we wanted for Δu :

$$\Delta u(x) = \phi''(|x|) + \frac{n-1}{|x|}\phi'(|x|).$$

b) If
$$\phi(t) = \log(t)$$
, then $\phi'(t) = t^{-1}$, $\phi''(t) = t^{-2}$, so for $n = 2$

$$\Delta(\log(|x|)) = |x|^{-2} + \frac{2-1}{|x|} \frac{1}{|x|} = |x|^{-2} - |x|^{-2} = 0 \text{ when } x \neq 0.$$

If
$$\phi(t) = t^{-2}$$
, then $\phi'(t) = -2t^{-3}$, $\phi''(t) = 6t^{-4}$, so for $n = 3$,
$$\Delta(|x|^{-2}) = 6|x|^{-4} + \frac{3-1}{|x|}(-2|x|^{-3}) = 6|x|^{-4} - 4|x|^{-4} = 2|x|^{-4} \quad \text{when } x \neq 0.$$

Finally, if again $\phi(t) = t^{-2}$, but n = 4, then

$$\Delta(|x|^{-2}) = 6|x|^{-4} + \frac{4-1}{|x|}(-2|x|^{-3}) = 6|x|^{-4} - 6|x|^{-4} = 0 \text{ when } x \neq 0.$$

So, the inverse squared of the modulus of x is not harmonic in d=3, but it is so in d=4!

(3) Consider the functions (as usual, $x = (x_1, x_2)$)

$$u(x) = (x_1 - 1)(x_2 - 1) + \frac{1}{7}(x_1^2 - x_2^2) \text{ in } \mathbb{R}^2.$$
$$h(x) = \begin{cases} \frac{5}{3\pi}(1 - |x|^2) & \text{in } D_1(0) \\ 0 & \text{outside } D_1(0). \end{cases}$$

Find the exact value of the integral

$$\int_{\mathbb{R}^2} u(x)h(x) \ dx$$

Hint: Note that $\int_{\mathbb{R}^2} h(x) dx = 1$.

Solution. We note that the functions $(x_1 - 1)(x_2 - 1) = x_1x_2 - x_1x_2 + 1i$ is a sum of harmonic functions (a constant, a linear function, and x_1x_2 which is a second degree harmonic polynomial), thus itself harmonic. Also, $x_1^2 - x_2^2$ is also harmonic. Thus the function u(x) is harmonic (in the entire plane).

On the other hand, h(x) is a radially symmetric function with total integral 1. THUS, the mean value property applied to u (as done in one of the homework problems) shows that

$$\int_{\mathbb{R}^2} u(x)h(x) \ dx = u(0).$$

Since $u(0) = (0-1)(0-1)\frac{1}{7}(0^2-0^2) = 1$ we conclude that

$$\int_{\mathbb{R}^2} u(x)h(x) \ dx = 1.$$

(4) Solve (i.e. write as explicit a formula as you can) for the solution to the Dirichlet problem on

$$\begin{cases} \Delta u = 0 & \text{in } D_1(0) \\ u = g(x) & \text{on } \partial D_1(0) \end{cases}$$

when a) $g(x) = \sin(\theta)$ and b) $g(x) = 2\sin(2\theta) + 5\cos(3\theta)$.

Hint: Remember, Cartesian and polar coordinates are related by $x_1 = r\cos(\theta), x_2 = r\sin(\theta)$.

Solution. When we derived the Poisson kernel for the disc we learned that -for any $m \in \mathbb{N}$ - the functions given in polar coordinates by

$$r^m \sin(m\theta) \ r^m \cos(m\theta)$$
 (*)

are all harmonic. Now, the two Dirichlet boundary conditions given are linear combinations of these functions (with m = 1, 3,) evaluated at points where r = 1. Thus, the solution in both cases is the respective linear combinations of the functions (\star), and we get

a) $g(x) = \sin(\theta)$

$$u(x) = r\sin(\theta)$$

(note that this is a very simple function written in polar coordinates, namely $u(x) = x_2$)

b) $g(x) = 2\sin(2\theta) + 5\cos(3\theta)$

$$u(x) = 2r^2\sin(2\theta) + 5r^3\cos(3\theta)$$

(this function turns out to be also a polynomial in x_1 and x_2 , as can be seen by repeatedly applying the trigonometric identities for the sine and cosine of the sum of two angles and using as in **a**) that $x_1 = r\cos(\theta)$, $x_2 = r\sin(\theta)$.)

(5) A function u is harmonic in $D_1(0)$ and is such that

$$\int_{\partial D_1(0)} u(\nabla u \cdot n) \ d\sigma(x) = 0 \quad \text{and} \quad \int_{D_{1/2}(0)} u(x) \ dx = 0$$

Find u.

Solution. Since u is harmonic, the mean value property says that

$$u(0) = \frac{1}{\pi(1/4)} \int_{D_{1/2}(0)} u(x) \, dx = 0.$$

Since the integral on the right vanishes by assumption. So u is a harmonic function which is equal to zero at the origin.

On the other hand, the boundary integral is one the integrals appearing in the Green/integration by parts formulas, which suggests we use any of these formulas. For instance, using the divergence theorem (over the vector field $u\nabla u$), we see that

$$0 = \int_{\partial D_1(0)} u(\nabla u \cdot n) \ d\sigma(x) = \int_{D_1(0)} \operatorname{div}(u\nabla u) \ dx$$
$$= \int_{D_1(0)} |\nabla u|^2 + u\Delta u \ dx$$
$$= \int_{D_1(0)} |\nabla u|^2 \ dx$$

where we used the Leibniz rule and the assumption that $\Delta u = 0$ everywhere. Then

$$\int_{D_1(0)} |\nabla u|^2 dx = 0$$

which means that $|\nabla u|^2$ is always zero in $D_1(0)$, in other words, u is a constant. Since we already saw that u(0) = 0 we see that u is in fact equal to the constant 0, so, we found u:

$$u(x) = 0, \ \forall \ x \in D_1(0).$$

(6) The nonlinear boundary value problem (κ is some given constant)

$$\begin{cases} \Delta u = \kappa e^u \text{ in } D_1(0) \\ u = 0 \text{ on } \partial D_1(0) \end{cases}$$

is known as the **Yamabe problem**. Let u be the solution. Find the maximum value of u in $D_1(0)$ in the case when $\kappa \geq 0$ and find its minimum value in the case when $\kappa \leq 0$.

Solution. Whatever the solution u is, e^u is always a nonnegative function and by the equation for u it follows that Δu has always the same sign as the constant κ . Moreover, e^u is never zero, so in any case $\Delta u \neq 0$ which means that u cannot be a constant.

If $\kappa \geq 0$, then u is subharmonic and by the maximum principle it follows that it cannot achieve its maximum on the interior -we already know u cannot be a constant-. Therefore the only place where u can achieve its maximum is on the boundary, where it is always equal to zero. Then when $\kappa \geq 0$ we have $\max u = 0$.

If $\kappa \leq 0$, then u is superharmonic, in which case the maximum principle shows that u cannot achieve its minimum in the interior. Then, u achieves its minimum on the boundary, where it is always equal to zero. We conclude that $\min u = 0$ when $\kappa \leq 0$.

¹this means that the f on the right hand side is itself a nonlinear function of the unknown u!

(7) Consider functions u(x,y) and v(x,y) (for this problem x,y are real numbers so (x,y) is a point in the plane). The pair u,v is said to satisfy the "Cauchy-Riemann conditions" if

$$\partial_x u = \partial_y v$$
$$\partial_y u = -\partial_x v.$$

(a) Check by direct computation that the these conditions are satisfied by the pair

$$u(x,y) = \text{Re}(x+iy)^2, \ v(x,y) = \text{Im}(x+iy)^2$$

and by the pair

$$u(x,y) = \text{Re}(x+iy)^3, \ v(x,y) = \text{Im}(x+iy)^3$$

(b) If u, v is any pairing satisfying these conditions, find Δu and Δv .

Hint for b): Keep in mind that $\partial_{xy}u = \partial_{yx}u$ for any u with continuous derivatives.

Solution. a) Computations for the first pair (recall that $u(x,y) = x^2 - y^2$, v(x,y) = 2xy)

$$\partial_x u = \partial_x (x^2 - y^2) = 2x$$

$$\partial_y u = \partial_y (x^2 - y^2) = -2y$$

$$\partial_x v = \partial_x (2xy) = 2y = -\partial_y u$$

$$\partial_y v = \partial_y (2xy) = 2x = \partial_x u$$

and we see that the first pair (u, v) satisfies the Cauchy-Riemman conditions

Computations for the second pair (note that $(x+iy)^3 = x^3 + 3x^2iy + 3x(iy)^2 + (iy)^3$, so that $u(x,y) = x^3 - 3xy^2$ while $v(x,y) = 3x^2y - y^3$)

$$\partial_x u = \partial_x (x^3 - 3xy^2) = 3x^2 - 3y^2$$
$$\partial_y u = \partial_y (x^3 - 3xy^2) = -6xy$$
$$\partial_x v = \partial_x (3x^2y - y^3) = 6xy = -\partial_y u$$
$$\partial_y v = \partial_y (3x^2y - y^3) = 3x^2 - 3y^2 = \partial_x u$$

so the second pair (u, v) also satisfies the Cauchy-Riemann conditions.

b) We write Δu as $\partial_x(\partial_x u) + \partial_y(\partial_y u)$ and substitute the relations for the first derivatives of u and v, we get

$$\Delta u = \partial_x(\partial_y v) + \partial_y(-\partial_x v)$$
$$= \partial_{xy}v - \partial_{yy}v = 0$$

Therefore, $\Delta u = 0$. The same argument for Δv is

$$\Delta v = \partial_x (-\partial_y u) + \partial_y (\partial_x u)$$

= $-\partial_{xy} u + \partial_{yx} v = 0$

So $\Delta v = 0$ as well.

(8) To any function u in a domain Ω , we assing the following "energy"

$$E(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 + |x|^2 u^2 dx$$

Prove:

- (a) For any two functions u and ϕ : $E(u+\phi)=E(u)+E(\phi)+\int_{\Omega}\nabla u\cdot\nabla\phi\ dx+\int_{\Omega}|x|^2u\phi\ dx$
- (b) Suppose that among all functions vanishing on $\partial\Omega$ there is one u that minimizes E: u vanishes on $\partial\Omega$ and $E(u) \leq E(v)$ for any other v vanishing on $\partial\Omega$. Show that u solves the equation

$$-\Delta u + |x|^2 u = 0$$

Solution. a) This is simply the quadratic formula followed by splitting the resulting integral:

$$\begin{split} E(u+\phi) &= \frac{1}{2} \int_{\Omega} |\nabla (u+\phi)|^2 + |x|^2 (u+\phi)^2 \, dx \\ &= \frac{1}{2} \int_{\Omega} \left(|\nabla u|^2 + 2\nabla u \cdot \nabla \phi + |\nabla \phi|^2 \right) + |x|^2 (u^2 + 2u\phi + \phi^2) \, dx \\ &= \frac{1}{2} \int_{\Omega} |\nabla u|^2 + |x|^2 u^2 \, dx + \frac{1}{2} \int_{\Omega} |\nabla \phi|^2 + |x|^2 \phi^2 \, dx + \int_{\Omega} \nabla u \cdot \nabla \phi \, dx + \int_{\Omega} |x|^2 u\phi \, dx \\ &= E(u) + E(\phi) + \int_{\Omega} \nabla u \cdot \nabla \phi \, dx + \int_{\Omega} |x|^2 u\phi \, dx \end{split}$$

b) Let ϕ be any function that vanishes on $\partial\Omega$, then for any $t \in \mathbb{R}$ the function $u + t\phi$ has the same values as u on $\partial\Omega$, thus by the assumption

$$E(u+t\phi) \ge E(u), \ \forall t.$$

Using the formula from part a) with $t\phi$ as the function, the inequality above says that

$$E(u+t\phi) = E(u) + E(t\phi) + \int_{\Omega} \nabla u \cdot \nabla(t\phi) \ dx + \int_{\Omega} |x|^2 u(t\phi) \ dx \ge E(u), \ \forall \ t$$

So, the function of t of the right is always ≥ 0 (for all t) and is equal to 0 when t=0 -that is, it achieves its minimum at t=0. Its derivative with respect to t is

$$2tE(\phi) + \int_{\Omega} \nabla u \cdot \nabla \phi \ dx + \int_{\Omega} |x|^2 u \phi \ dx$$

Since this must vanish for t=0, we conclude: for any ϕ vanishing on $\partial\Omega$ we have

$$\int_{\Omega} \nabla u \cdot \nabla \phi \, dx + \int_{\Omega} |x|^2 u \phi \, dx = 0$$

Now, integerating by parts, this means that

$$0 = \int_{\Omega} \nabla u \cdot \nabla \phi \, dx + \int_{\Omega} |x|^2 u \phi \, dx = \int_{\Omega} (-\Delta u) \phi + |x|^2 u \phi \, dx$$
$$= \int_{\Omega} \phi (-\Delta u + |x|^2 u) \, dx$$

We conclude that the integral $\int_{\Omega} \phi(-\Delta u + |x|^2 u) dx$ is zero for **every** function ϕ vanishing on $\partial\Omega$, which can only happen if

$$-\Delta u + |x|^2 u = 0,$$

as we wanted.