國立清華大學

碩士論文

積體化電路設計之矽基體奈米線

An Integrated Circuit Design for Silicon-Nanowire

系所別:電機工程學系研究所

學生姓名: 103061608 張永忱 (Young-Chen Chang)

指導教授:陳 新 博士 (Prof. Hsin Chen)

中華民國 106年3月

Abstract

Poly-silicon nanowire (SiNW) is a well-studied and interesting one-dimensional nanostructure. Since it was introduced to the biosensor field in 2001, it has become a promising candidate for ultra-sensitive, real-time and label-free sensor device. Nevertheless, many physical and chemical challenges constrain nanowire from being robust and practical. Nowadays, many studies adopt the integrated-circuit techniques to solve the problems. Circuits with different design concepts and purposes are proposed to meet practical needs.

In this thesis, based on the nanowire designed by Prof. Yang (National Chiao Tong University), we design our own read-out circuit. This research first analyzes biological experiments results (From Prof. Yang) and the electrical characteristics of the nanowires. The circuit specification and design is then based on these data analysis.

The circuit is capable of performing both DC-sweep (I_D - V_G sweep) and transient measurement. Moreover, we proposed a measurement method a combining of these two functions. We believe this method mitigates the device variability induced by the fabrication process. Currently, most operations in this method are manual. We hope to make them automatic in the future by inducing digital circuits and constructing a system-level structure.

中 文 摘 要

Contents

Abstract

中文摘要

1	Int	roduc	tion	1
	1.1	Motiv	ation	1
	1.2	Design	Overview	2
	1.3	Design	n Overview	3
2	Lit	eratu	re Review & Theory Description	4
	2.1	DC Sv	veep: I_D - V_G Curves	4
		2.1.1	I_D - V_G and Transconductance	4
		2.1.2	Source Follower	5
	2.2	Small	Signal (AC) Measurement Method Review	7
		2.2.1	RC Time Delay Measuring	8
		2.2.2	Complex Impedance Solving	10
		2.2.3	Comparison and Conclusion	11
	2.3	Two a	ssumption for Dealing with Disparity Problem	13
		2.3.1	Transconductance and I_D	14
		2.3.2	A Simple Model for Concentration Effect	14
3	Na	nowir	e Structure and Measurement	16
	3.1	Brief 1	Description of Nanowire Structure	16

CONTENTS

	3.2	Biolog	gy Experiment	17
		3.2.1	Appropriate operation region	20
		3.2.2	g_m - I_D Plot	21
	3.3	Electr	ical Measurements	23
		3.3.1	Front Gate and Back Gate	24
		3.3.2	Transconductance	24
		3.3.3	Drain-to-source impedance (r_{ds})	24
		3.3.4	Device variability Problem exists	27
	3.4	Conclu	usion and Design Specification	2 9
4	Dis	screte	Circuitry Design 3	1
	4.1	Transf	forming the design from p-type measuring into n-type measuring 3	31
	4.2	Circui	t Description	31
	4.3	Discre	te Element	33
	4.4	Circui	t Performance and Conclusion	34
			5 7 7 7	
5	Int	egrate	ed Circuitry Design 3 ed Circuit Design 3	8
	5.1	Fronte	ed Circuit Design	38
		5.1.1	The DC-sweep mode	38
		5.1.2	Transient Measurement mode	3 9
		5.1.3	Dealing with the device variability Problem	10
		5.1.4	Design Description	11
			5.1.4.1 Strategies for lowering current detecting limits 4	11
			5.1.4.2 TIA (Transimpedance Amplifier) Design 4	13
			5.1.4.3 Feedback Mechanism	15
			5.1.4.4 Input Impedance (DC-sweep mode)	16
			5.1.4.5 Stability and Feedback OP Design	17
		5.1.5	The Post-simulation Result of the DC-sweep mode circuit 4	19
			5.1.5.1 DC Current (Ibias) Sweep	19
			5.1.5.2 Bode Plot of Loop Gain and Phase	50
	5.2	The S	ocond Stago Circuit	59

CONTENTS

		5.2.1	The Analog Subtractor	53
		5.2.2	Non-inverting Resistor-based Amplifier	54
	5.3	Post-s	imulation Result of the Transient Measurement mode	58
		5.3.1	Detecting signals of biomolecules at the gate	58
		5.3.2	Modulating biomolecule signals from the source terminal	60
6	Cir	cuit I	Results Discussion and Summary	63
	6.1	Fronte	ed Circuit and DC-sweep mode	63
		6.1.1	Ibias	63
		6.1.2	Ibias	65
		6.1.3	TIA	65
		6.1.4	OP	65
		6.1.5	Measurement with the DC-sweep Mode Circuit and the Low-	
			current Defect Problem	66
		6.1.6	The Design and Layout Problems of OP	69
			6.1.6.1 The Possible Reasons for Insufficient Gain	70
	6.2	Transi	ient Measurement Mode 🔭	70
	6.3	Dealin	ng with the Device Variability Problem	70
			Thursday of the same of the sa	

List of Figures

2.1	Sorce Follower
2.2	ISFET readout circuit in [10]
2.3	Sorce Follower with parasitic capacitance
2.4	(a) Schematic of [1]
2.5	Schematic of [3]
2.6	Block diagram of the lock-in amplifier in [13]
2.7	Concentration-dependent electric response $(I_D - V_G)$ of biotin-modified
	poly-Si NWFET following biotin-streptavidin interaction.[5] 15
3.1	Nanowire Structure. (a) A nanowire device with two poly-silicon
	channels. (b) is the sectional view of the cutting plane in (a) 17
3.2	Concentration-dependent I_D - V_G curves of two equivalent nanowire
	devices. In (a), the measurement result of 1fM and 100fM biomolecule $$
	solution is distinguishable. There is no overlap between two curves.
	This is not true in (b)
3.3	Concentration-dependent I_D - V_G curves with concentration of Na_PB(Buffe
	solution only), 100aM, 10pM, 1pM. Since the biomolecule is negative-
	charged, the lower the concentration is, the higher the curve is. To
	be noticed, the 10fM curve is closer to the curve of 1pM than 100aM. 19
3.4	The normalized variation of Fig.3.3. The normalized variation is
	obtained by dividing SD by Mean
3.5	

3.6	The g_m - I_D curve obtained by the I_D - V_G curve in Fig.3.3. The	
	curves start splitting after $I_D > 1 \mu { m A}$ where the device may enter	
	into strong inversion region	23
3.7	Comparison between the DC sweep of voltage on the floating gate	
	and back gate. (a) I_D (b) Transconductance (g_m) : the derivative	
	of I_D . The transconductance of the floating gate is larger than the	
	back gate	25
3.8	Eelectrical response of a nanowire device. (a) Sweep V_G and measure	
	the I_D changes. And by finding the transconductance (g_m) : the	
	derivative of I_D with respect to V_G , we plot (b) the g_m - I_D curve	26
3.9	I_D -transconductance with V_{DS} variance	27
3.10	I_D - r_{ds} plot	28
3.11	Device variability problem cause nanowire devices with same envi-	
	ronment can exhibit different electrical responses	28
4.1	The schematic of read-out circuit from [10]. The ISFET is a p-type	
1.1	device. It is controlled by the current source I_b whose sub-circuit is	
	shown at right	32
4.2	Our circuit schematic transformed from Fig.4.1. The device under	
	test (DUT) is a n-type device. It is controlled by the current source	
	I_b whose sub-circuit is shown at right	32
4.3	LM334: The discrete element we use for current source Is. It has	
	three terminals: R, V_+, V . The output current (I_s) flows from V_+	
	to V . The resistor R_{SET} connected to V and R is for adjusting	
	the output current	33
4.4	The measurement result ("SF_measurement") compares with the di-	
	rect I_D - V_G sweep ("Id-Vg sweep")	35
4.5	Input impedance of transistor ("1/gm") and output impedance of Ib	
	circuit ("N * Rs"). The former is found by the derivative of I_D of	
	V_{Gs} . The latter is obtained by Eq.4.1	36
5.1	The fronted circuit operated in DC-sweep mode	30
J	mode of the control of the cont	90

5.2	Two usage ((a), (b)) of the fronted circuit operatd in transient mea-	
	surement mode	39
5.3	(a) The transimpedance block (TIA) of the read-out circuit from	
	[13]. The circuit input a voltage signal into resistive nanowire element	
	R_{NW} . To compare it with our circuit (Fig.5.4), we transform the	
	voltage input into an equivalent current input in (b). The $I_{NW}=$	
	$(V_{Ref} - V_{in})/R_{NW}$ and $\Delta i = \Delta vi/R_{NW}$	41
5.4		42
5.5	(a)The transimpedance block and the (b) schematic	43
5.6	The dc simulation results of TIA. The x-axis represents positive/negative	
	input current (log scale). (a) is the V_{out} responding to the positive	
	input current while (c) is to the negative input current. (b) and	
	(d) are the derivative of V_{out} of input current $(\frac{\partial V_{out}}{\partial I_{in}})$ from (a) and	
	(c) respectively	44
5.7	The ac simulation results of TIA. The x-axis is the input signal fre-	
	quency. (a) is the V_{out} and (b) is the output-referred noise	44
5.8	Block diagram of the DC-sweep mode. The Iin refers to the Ibias	
	and $Vout$ refers to the output voltage of OP, which is also the gate	
	voltage of nanowire (Fig.5.1). The $gm(I_D)$ is the transconductance	
	of nanowire whose values depends on I_D	46
5.9		46
5.10		48
5.11	(a) The feedback OP block and its (b) schematic	48
5.12	Post-simulation result of the dc sweep of Ibias in Fig.5.1. (a) is the	
	I_D - V_G curves of I_D and I_bias . (b) is the g_m - V_G curves of intrinsic	
	g_m and measured g_m . (c) is the ratio of the difference between two	
	g_m s (error)	50
5.13		
	with different g_m value (200 n , $2u$, $20u$). These g_m value is selected	
	according to the DC-sweep mode specification we set in chapter 3	
	(section.3.4)	51

5.14	The current mirror structure of the current source Ibias	52
5.15	Block diagram of the second stage circuit	53
5.16	Block diagram of the second stage circuit	53
5.17	DC response of the output of our analog subtractor. (a)The x-axis is	
	the difference between positive input and negative input $(V_x - V_{Ref})$.	
	(b) The x-axis is the voltage of V_z	55
5.18	Five corners output DC response (vout) and derivative $(dvout/dvin)$	
	when being operated under the amplification rate of (a)1, (b)10, (c)100.	57
5.19	The block diagram of the Transient Measurement circuit. We simu-	
	late it by sending ac signal through the voltage source Vg	58
5.20	The gain of $\frac{V_{out}}{I_{in}}$ when the voltage gain of the second stage is 100	59
	stage is 100	59
5.22	The block diagram of the Transient Measurement circuit. We simu-	
	late it by sending ac signal to the source of the nanowire	60
5.23	The transient analysis. The gain of A_{amp} is 10. The g_m is swept	
	from 1μ to 10μ	61
5.24	The ac analysis of the transient simulation result in Fig.5.23	61
5.25	The transient analysis. The gain of A_{amp} is 100. The g_m is swept	
	from 1μ to 6μ . There are two curves have the output saturation	
	problem. This is because of the offset current flowing through R_{TIA} .	
	One may solve it by increasing the current provided by Ibias	62
5.26	The ac analysis of the transient simulation result in Fig.5.25. $$. $$. $$.	62
6.1		63
6.2	The fronted circuit	
6.3	The fronted circuit	
6.4	The output voltage of the OP when the negative input is applied	
	with a sinusoidal signal. This input sinusoidal signal has frequency	
	of 1Hz and amplitude of $1mV$. The positive input of OP is biased	
	with a constant voltage generated by the chip. The output signal has	
	amplitude around $2V$, which means that the gain of OP is about $2k$.	65
		50

6.5	DC-sweep mode circuit	66
6.6	The measurement result of the DC-sweep mode circuit. I_{bias} is the	
	biasing current. I_D is the current flowing through the nanowire de-	
	vice. One can observe a separation between two curves in low current	
	section ($< 1\mu A$)	67
6.7	The g_m - I_D curve. It is obtained from the I_D - V_G curve in Fig.6.6.	
	"Circuit fails" means the two curves in Fig.6.6 are separated where	
	"circuit works" means they are overlapped	67
6.8		68
6.9	The V_{TIA} . The x-axis is the corresponding gate voltage. With the	
	information from Fig.6.6, we found that the V_{TIA} is not equal to	
	V_{Ref} no matter feedback mechanism works well or not	69
6.10	The schematics of the OP. The right section (three MOSFETs and a	
	current source) is a global circuit for generating the two global biasing	
	voltage: V_{bi}, V_{Ref}	70

Chapter 1

Introduction

1.1 Motivation

Poly-silicon nanowire (SiNW) is a well-studied and promising one-dimensional nanostructure. It was first introduced to the biosensor field in 2001[4] and has become a potential candidate for various features such as high surface-to-volume ratio, ultra sensitivity, label-free electrical detection and real-time measurement.

Although there have been substantial advances on nanowire structure design [6], the work on the system-level engineering is still insufficient. Systems designed for a specific purpose can help the device to meet practical needs such as noise reduction, real-time measurement, and analog-to-digital conversion. Moreover, there are still several challenges that may be overcome through a better signal acquisition system [6].

One of the challenges is that the mass production of robust nanowire device is still improbable. Device variability may be the main reason among others. This problem also happens to the measurement of our nanowire (Fig. 3.11). The nanowire we use is made by Professor Yang's team (National Chiao Tong University). And according to them, the nanowire uses thick gate dielectric and have non-regular cross-sectional shape, which results in the problem of fabrication uncertainty [8].

1.2 Design Overview

In this project, we design a nanowire read-out circuit with two modes: DC-sweep mode and Transient Measurement mode. In the DC-sweep mode, one can use the circuit to perform a DC sweep of drain-to-source current (I_D) to show how the gate voltage (V_G) changes, or gives nanowire a constant I_D and measures the V_G response to different solution concentration. In the Transient Measurement mode, the circuit detects and amplifies the variance of drain current (I_D) with constant bias voltages applied (V_D, V_G, V_S) . We also combine two modes to implement a proposed method that may mitigate the device variability problem.

Dealing with the Device Variability Problem

We proposed a variability-resisting method of measurement. It is based on two assumptions:

- 1. The nanowire transconductance $(g_m = \frac{\partial I_D}{\partial V_{GS}})$ depends on I_D and independent on V_{GS} .
- 2. The change of biomolecule concentrations can induce potential change on the surface of the gate of a nanowire.

The first assumption implies one can control the nanowire transconductance by its I_D . The second assumption means that as long as different nanowire elements have the same transconductance, the output current induced by a concentration difference should be same.

The method works as follows:

Initial stage At the beginning of each measurement event, we perform a DC sweep with the DC-sweep mode. By analyzing the sweep results with numerical method, we keep all nanowire devices under a selected transconductance by controlling their I_D and corresponding V_G .

Measurement stage We bias the circuit in the Transient Measurement mode at this stage. Since the transconductance of all devices are same, they should behave uniformly based on assumption 2. At the end of the stage, we return to the DC-sweep mode to reset I_D of the elements. The circuit adjusts their V_G to do so.

At the beginning of each measurement stage, a device always has the same I_D but different V_G . Based on assumption 1, its transconductance is kept constant.

The other details are reviewed in chapter 5. Currently, most operations are manual. We hope to make them automatic in the future, which may require digital circuits.

1.3 Design Flow and Chapter Layout

In this thesis, there are six chapters sorted according to the design flow.

Chapter 2 reviews the basic theories and the literature that are related to our work. Most of those are the drain current of nanowire sweeping along the gate voltage (Id-Vg curves). We present some of the raw data and the analysis results in this part.

Chapter 3 gives a brief description of nanowire structure. It is then followed by two sections about some measurement and data analysis. The data of the first one is from the biological experiments while the second one is from the electrical measurement. We use the analysis results to design the read-out circuit.

Chapter 4 is an "accessory". This chapter contains the discrete circuit which was designed for ion-sensitive field-effect transistor (ISFET) [10]. We construct it and perform some electrical measurement. The purpose of this process is to practice the constant-current constant-voltage method. The outcomes of this chapter underpin our integrated circuit design.

Chapter 5 talks about the schematic, design process and the simulation results of the read-out circuit.

Chapter 6 presents the measurement results of our integrated circuit and the conclusion of this project.

Chapter 2

Literature Review & Theory Description

As previously mentioned in the introduction section, the read-out circuit we proposed has two operation mode (DC and AC). The DC-sweep mode control the drain current (I_D) of nanowire while the Transient Sweep mode is for current variance measurement. Each of them refers to different sources. In section 2.1, we first talk about the reason why we perform I_D - V_G sweep. Then we review the literature related to our DC-sweep mode circuit design. The literature related to the Transient Sweep mode circuit design is in section 2.2. In the last section, we discuss the two assumptions mentioned in section 1.2.

2.1 DC Sweep: I_D - V_G Curves

In this section, we review the knowledge and an article that is related to our design of large signal mode (DC).

2.1.1 I_D - V_G and Transconductance

A common method for examining nanowire electrical properties is to perform DC sweep. Among all kinds of sweep method, we choose the I_D - V_G in respect of the physical characteristic. In the n-type transistor, the binding of negatively charged biomolecules induces surface-near silicon ions discharged and thus increase

the threshold voltage. It is straightforward to think of these binding molecules as a voltage signal input to the gate with its value depends on the concentration. And this voltage signal effect nanowire in the same way V_G does. So by plotting I_D - V_G curves, we can have a thumbnail of how concentration affects the I_D .

2.1.2 Source Follower

Figure 2.1: Sorce Follower

As one of the basic single stage amplifier, source follower (common drain) are employed to transfer voltage signal from gate to source while keeping drain current constant. The transfer function can be derived as:

$$\frac{V_{out}}{V_{in}} = \frac{r_{ds}g_m}{1 + r_{ds}g_m} \tag{2.1}$$

$$\approx 1 \quad \text{for} \quad r_{ds}g_m >> 1$$
 (2.2)

 g_m is the transconductance $(\frac{\partial I_d}{\partial V_{gs}})$ and r_{ds} is the drain-to-source resistance. Although we have not seen the structure being applied to the nanowire, there have been several applications in the read-out circuits of ISFET (Ion-sensitive Field-effect Transistor)[10, 12] for a long time.

The read-out circuit in [10] employed ISFET as a biological transducer that converts detected bio-signals into electrical signals, which resembles our nanowire biosensor. It adopts the source follower structure as its analog front-end. The potential change induces by the biomolecules at the gate of ISFET is converted to the source. This structure requires a biasing current which needs to be stable, noiseless

or wide-range on demand. Since the biasing current is usually under micro-scale or even nano-scale, it is impractical to use an external current source. The article [10] used two resistors and an op-amp to design a current scale down circuit. As in Fig.2.2, bias current decreases in proportional to the resistance ratio (N) as the current source circuit I_B .

Figure 2.2: ISFET readout circuit in [10]

The circuit in Fig.2.2 also removes the short channel effect by keeping V_{DS} at a constant value (0.5v). It adopts two op-amp based unit gain buffer to force the voltage at drain follows the source.

Attention should be paid to the impedance matching between the device-undertest (DUT) and the current source circuit. The output impedance of current source should be much larger than the input impedance of the DUT. By using nanowire as the DUT, the input impedance of it is:

$$\frac{r_{ds}}{1 + g_m r_{ds}} \tag{2.3}$$

This equation can be simplified as:

$$\frac{1}{g_m} \quad \text{for} \quad g_m r_{ds} >> 1 \tag{2.4}$$

The output impedance of the current source I_B is:

$$N \times Z_{DS} \tag{2.5}$$

 Z_{DS} is the impedance of the current source I_{DS} in Fig.2.2. In the integrated circuit, Z_{DS} is non-ideal but usually close to the r_{ds} of a single MOSFET.

As mentioned, Eq.(2.5) should be far larger than Eq.(2.4). However, g_m is proportional to I_B , which means Eq.(2.4) is inversely proportional to N. When the biasing current decreases, the output impedance of I_B decreases while the input impedance at the source of ISFET increases. This relationship determines the current. We observed this boundary when we construct this circuit with discrete elements. These will be presented and discussed in chapter 4.

The source follower structure provides a direct signal transition method. It is a good candidate for the read-out circuit with the aim of detecting transconductance or threshold voltage variance. Nevertheless, post-processing such as amplification and filtering is necessary. The experiment results in [10] are untreated. Significant signal attenuation exists, which is mainly caused by low-frequency noise and ISFET drift [9]. The drift problem is dealt with by signal processing techniques while noise problems are left untreated.

2.2 Small Signal (AC) Measurement Method Review

In the previous section, the source follower we mentioned exhibited compelling advantages as a signal processing structure of nano-device. However, the structure faces obstacles when being applied to the small signal detection. Parasitic capacitors and resistors can severely influence the results.

As the parasitic elements are included in figure 2.3, we modify the transfer function Eq.(2.2) as:

$$\frac{V_{out}}{V_{in}} = \frac{r_{ds}(sC_{gs} + gm)}{1 + r_{ds}(gm + s(C_{gs} + C_s))}$$
(2.6)

The equation can be similar to Eq.(2.2) which roughly equals to 1 as long as C_s is far smaller than C_{gs} . Unfortunately, C_s can be as large as the output of the source

Figure 2.3: Sorce Follower with parasitic capacitance

follower is connected to a next stage input or a pad. In that case, the parasitic capacitors may attenuate the signal.

We want to build another circuit structure that can not only perform AC signal measurement but also disregard parasitic capacitance. We started by reviewing the works trying to measure the parasitic capacitance. Below, the works from two teams aim to measure the drain-to-source resistance (R_{NW}) and the drain-to-source capacitance (C_{NW}) . The review focuses on the function and design theory of their read-out circuits.

2.2.1 RC Time Delay Measuring

Figure 2.4: (a) Schematic of [1].

The measurement system for ZnO-nanowire based sensor array from [1] applies the

Time-over-Threshold technique to its read-out circuit (Fig.2.4). The circuit alternatively charges an on-chip capacitor (C_{int}) with a constant current and discharges it through the nano-material resistance (nanowire). An inverter with its output switches from on to off when the capacitor is charged to its input threshold voltage, and vice versa. This behavior converts information of nanowire such as capacitance and resistance into time information. Both C_{int} and C_{NW} affect charging time, while the R_{NW} affect the discharging time.

The work presented in [1] does not have enough explanation of how they interpret the capacitance and resistance information. It merely mentioned that a microcontroller is responsible for the calculation. Besides, the work lacks simulation and experiment of measuring complex devices. Most of the results are the measurement a concrete resistor as the substitute for nanowire, and C_{NW} is regarded as 0pF. The only nanowire experiment does not have good performance. It seems that the design may only be applied to a device with pure resistance or pure capacitance.

The recent publican [3] by the team is more elaborate and contains the measurement of complex devices (A device composed of a discrete resistor and a discrete capacitor).

Figure 2.5: Schematic of [3].

In Fig.2.5, nanowire appends between point A and B. The charging current can

be applied from Mp1 or Mp2, which is determined by the "sel" signal with the aid from MUXs. We simply assume sel = 1 and point B is virtually ground. (When the sel = 0, the circuit measures the device with a reversed biasing current.) Now, we can see that the circuit design concept is the same as [1]. The current charge both C_{int} and C_{NW} . When the voltage at A exceed the threshold voltage, the output switches off and causes Mp1 to turn off. (It is notable that the inverter at the output stage in [1] is replaces by a Schmitt trigger in [3]) Then the capacitor discharges through nanowire (r_{ds}) .

The bottom-right plot in Fig.2.5 defines T_0 as the charging time and T_1 as the discharging time. The calculation of the R_{NW} and C_{NW} can be simplified as:

$$C_{NW} = T_0 - C_{base} (2.7)$$

$$R_{NW} = \frac{T_1 R_{par}}{(C_{NW} + C_{base}) R_{par} - T_1}$$
 (2.8)

$$R_{NW} = \frac{T_1 R_{par}}{(C_{NW} + C_{base}) R_{par} - T_1}$$
where
$$R_{NW} || R_{par} = \frac{T_1}{C_{NW} + C_{base}}$$

$$(2.8)$$

 C_{base} are the C_{int} plus parasitic capacitance and R_{par} the parasitic resistance. These parasitic elements come from the transistor in the integrated circuit block such as MUX and Mp. It is notable that we do not consider the hysteresis of the Schmitt trigger here owing to simplicity.

Complex Impedance Solving 2.2.2

The nanowire-based hydrogen sensor measurement system in [13] adopts another method. It uses a lock-in amplifier to realize both resistive and capacitive impedance measurement.

As the previous method, it treats nanowire as a device with complex impedance. The nanowire is modeled as a resistor and a capacitor in parallel connection. The system applies a sinusoidal voltage signal to one end of the device. Another end of the device is virtually grounded by a transimpedance amplifier (TIA). The TIA then converts the current variance into a voltage output which depends on the complex impedance of the nanowire. The resistance is in the real part while the capacitance

Figure 2.6: Block diagram of the lock-in amplifier in [13]

is in the virtual part.

$$V_{out} = I_{NW} R_{TIA} (2.10)$$

$$I_{NW} = V_{in} \left(\frac{1}{R_{NW}} + j2\pi f C_{NW}\right)$$
 (2.11)

f is the frequency of input signal.

The output of TIA is followed by a controllable bandpass filter (BP). The BP removes high-order harmonic interferences. Then the signal is demodulated. The resistive and capacitive impedance values are resolved through two channels: I and Q with their phase different by 90 degrees. A mixer which is a linear multiplier performs the demodulation. With a radio frequency (RF) input and a local oscillator (LO) input, it produce an output signal that consists of signals with frequencies $f_{RF} + f_{LO}$ and $f_{RF} - f_{LO}$. Incidentally, the signal is immune to the perturbation of low-frequency noise which is a common problem for the biosensor.

2.2.3 Comparison and Conclusion

We compare the Method 1 (Sec.2.2.1) and Method 2 (Sec.2.2.2) here. Both of them focus on detecting the R_{NW} difference. According to the comparison table below (2.1), we can see the resistor measurement range of Method 1 is different from

Method 2 by a large extent. This is because the biasing current of nanowires that the circuits provide are limited differently. The current in Method 1 is limited by the pmos(I charge) and the leakage current. In Method 2, it is limited by the TIA. Our method adopts this TIA block and will discuss this problem in section.5.1.4.1.

Method 2 performs well when it comes to noise suppression. In fact, the circuit in Method 1 does not provide noise reduction ability. The particular structure it uses (The article [1] mentioned it as Micro-for-Nano (M4N) approach [2].) is the one responsible for that.

Method 1 has lower power consumption. However, it does not include the power of microcontroller and may be underestimated.

	[3]	[13]
R meas range	1M - 1G	10 - 40k
R meas error	< 2.5%	< 2%
C meas range	100fF - 1uF	0.5 - 1.8nF
C meas error	< 3%	< 3%
SNR	> 45dB	3
Input refered noise	S	190 nV/sqrt(Hz) @ 5 kHz
CMOS Technology	0.13um	0.18um
Power consumption	14.82uW	2mW

Table 2.1: Specification Summary

In our project, capacitance measurement is not our object. But we still need to consider the parasitic capacitor effect in our circuit design. Method 1 converts the resistance information into time (frequency) information. If one wants to avoid the effect of the parasitic capacitor, he should apply a C_{int} that is much larger than C_{NW} . However, it is not practical in integrated design because the chip size is limited.

Method 2 uses a TIA to measure resistance and capacitance together first and then resolves the complex value. We can write the complex impedance value

as:

$$\frac{R_{NW}}{1 + i2\pi f R_{NW} C_{NW}} \tag{2.12}$$

In Eq.(2.12), i is the imaginary unit and f is the signal frequency. The equation can be simplified as R_{NW} when $i2\pi f R_{NW}C_{NW} < 0.1$. The simplification can be applied when the signal frequency or $C_{NW}R_{NW}$ is small enough. Thus, one needs to select the appropriate signal frequency or to determine the R_{NW} detecting range.

Another reason that makes Method 2 more attractive is that it is more flexible. One can add other analog blocks such as a noise filter or an amplifier to it.

Overall, Method 1 has the advantage in detecting range and accuracy while Method 2 has better noise suppression and flexibility.

2.3 Two assumption for Dealing with Disparity Problem

In chapter 1, to deal with disparity problem, we assume that:

- 1. The nanowire transconductance $(g_m = \frac{\partial I_D}{\partial V_{GS}})$ depends on I_D and is independent of V_{GS} .
- 2. The changing of the biomolecule concentration can be viewed as a voltage signal input to the gate end of a transistor.

We discuss them in this section.

2.3.1 Transconductance and I_D

With the MOSFET model of weak and strong inversion, we have the I_D equations of MOSFET:

weak inversion:
$$I_D = I_0 e^{\kappa V_{GS}/\phi_t} (1 - e^{-V_{DS}/\phi_t})$$
 (2.13)

$$=I_0 e^{\kappa V_{GS}/\phi_t}$$
 where $V_{DS} > 4\phi_t$ (2.14)

strong inversion:
$$I_D = \mu C_{ox} \frac{W}{L} ((V_{GS} - V_{th})V_{DS} - \frac{V_{DS}^2}{2})$$
 (2.15)

$$= \mu C_{ox} \frac{W}{L} (V_{GS} - V_{th})^2 \quad \text{where } V_{DS} > V_{GS} - V_{th}$$
 (2.16)

 C_{ox} is the oxide capacitance and μ is the electron mobility. Both of them depends on doping concentration. W and L are the width and length of the transistor. ϕ_t is the thermal voltage depending on temperature. The κ is the gate coupling coefficient. It will be discuss in the next paragraph. To be noted that we ignore the short channel effect, which does not effect our discussion since we always keep V_{DS} constant.

We then derive g_m :

weak inversion:
$$g_m = \frac{\kappa I_D}{\phi_t}$$
 (2.17)

strong inversion:
$$g_m = \sqrt{2\mu C_{ox}(\frac{W}{L})I_D}$$
 (2.18)

For the strong inversion, the Eq.(2.18) shows that the assumption 1 is correct. However, the assumption is not completely right for transistor in weak inversion. According to the Eq.(2.17), the g_m is affected not only by I_D but also by κ . It is a non-linear parameter affected by V_G and other factors. Its value ranges from 0.4 to 0.9. In our circuit, this problem is currently left unsolved. We present its effect in chapter 6.

2.3.2 A Simple Model for Concentration Effect

In [5], the team plot the I_D - V_G curves and study how the curve changes with the concentration of biomolecules. We observe that in the plot (Fig.2.7) with a log scale

for the y-axis, curves with different concentrations exhibit the same rising trend when I_D is low (< 100nA). Each curve seems to be different from each other by a constant shift. By applying the weak inversion current equation of MOSFET, we found that the assumption can explain this concentration effect.

$$I_{D1} = I_0 e^{\kappa (V_{GS} - V_{th})/\phi_t} (2.19)$$

$$I_{D2} = I_0 e^{\kappa (V_{GS} - (V_{th} - v_c))/\phi_t}$$
(2.20)

$$\rightarrow I_{D2} = f(v_c) \times I_{D1}$$
 where $f(\Delta v_q) = e^{v_c/\phi_t}$ (2.21)

The I_{D1} and I_{D2} are the current of two nanowire devices immersed in solutions with different concentrations. The (v_c) is a concentration related variable we create. The Eq.(2.21) implies that when nanowire is in weak inversion region, its $\log I_D$ difference is independent of V_q .

$$\log I_{D2} - \log I_{D1} = \log \frac{I_{D2}}{I_{D1}} = \log f(v_c) = v_c/\phi_t$$
 (2.22)

As for the strong inversion region corresponding to the large current segments in Fig.2.7, the difference among the curves diminish as V_G increases. This is reasonable when V_{GS} is far larger than v_c and the concentration effect becomes ignorable.

We will further prove the two assumptions by the data of biology experiment in section.3.2.2.

Figure 2.7: Concentration-dependent electric response $(I_D - V_G)$ of biotin-modified poly-Si NWFET following biotin-streptavidin interaction. [5]

Chapter 3

Nanowire Structure and

Measurement

In this chapter, we present the experiment data and some analysis which are the foundation of our circuit design. The first section describes briefly the silicon nanowire in our experiments. The second section analyzes the data of the biology experiments. The third section presents the data of the electrical measurement. The last section provides the design specification based on the information given by the previous sections.

3.1 Brief Description of Nanowire Structure

The nanowire we use is made by Prof.Yang's team (National Chiao Tong University)[7]. Fig.3.1 is the cross-sectional view of the nanowire structure. The fabrication process is based on the poly-silicon sidewall spacer technique. The n-Type doped poly-SiNW FET has two to ten poly-silicon channels. Each channel is 80nm in width and 2µm in length. A Large portion of the channel surface is exposed to the environment. The exposed region, through several post-process steps, captures the DNA probe and serves as the sensing site for DNA molecules.[7, 8]

Figure 3.1: Nanowire Structure. (a) A nanowire device with two poly-silicon channels. (b) is the sectional view of the cutting plane in (a).

3.2 Biology Experiment

The biology experiment data are provided by Prof. Yang's team. These data are the Id-Vg measurement of the same biomolecule placed under different circumstances or with different nanowire devices. With each measurement repeated for three times, we find the mean and standard deviation (SD) of them and consider the SD value as the intrinsic noise of nanowire. We want to ensure that such noise should not be greater than the signal. To be more specific, we examine whether the Id-Vg curves of different concentrations overlap with each other or not. We present an example below:

Fig.3.2 are concentration-dependent measurements (1 femto mole(fM) and 100fM biomolecule solution) obtained with two devices ((a) and (b)). The two curves in (a) are distinguishable from each other after gate voltage is above 1.4v. They are not distinguishable in (b) since they overlap with each other. We thus assert that the device of (b) can not detect the concentration difference between 1fM and 100fM. The noise is stronger than the signal (The signal means difference in I_D caused by the concentration difference). The device of (a) can do so if it is biased at a gate voltage larger than 1.4v or a drain current larger than 1E-11.

In Fig.3.3, I_D increases with the biomolecule concentration. One can find that there is only a small separation between the curve for PBS buffer and the solution containing 100aM of biomolecules. Hence 100aM should be the limit of detection.

Figure 3.2: Concentration-dependent I_D - V_G curves of two equivalent nanowire devices. In (a), the measurement result of 1fM and 100fM biomolecule solution is distinguishable. There is no overlap between two curves. This is not true in (b).

Figure 3.3: Concentration-dependent I_D - V_G curves with concentration of Na_PB(Buffer solution only), 100aM, 10pM, 1pM. Since the biomolecule is negative-charged, the lower the concentration is, the higher the curve is. To be noticed, the 10fM curve is closer to the curve of 1pM than 100aM.

Figure 3.4: The normalized variation of Fig.3.3. The normalized variation is obtained by dividing SD by Mean.

It is worth noting that there is more significant difference between the curve for 100aM and 10fM than that between 10fM and 1pM. Besides, Fig.3.4 shows that the normalized variation: SD/Mean is independent of concentration. Hence, the analysis indicates that the "resolution" for detecting concentration ranging from 100aM to 10fM may be better than the that ranging from 10fM to 1pM.

3.2.1 Appropriate operation region

In [8], the team found that the current change (I_D) induced by biomolecules was dependent on the applied gate voltage (VG). A device with a larger I_D change means that the device is more sensitive to the concentration difference. Thus, the team tried to find a biasing gate voltage which concentration difference can induce more I_D change.

We also want to operate the nanowire under the condition that the device has higher sensitivity. Differently, we suppose that one should find the appropriate operation region instead of a bias range for V_G . And we take noise into consideration. The comprehensive method we proposed below proves that the nanowire should be operated in the weak inversion region adjacent to the transition region.

Our method is that we choose the operation region with more "noise tolerance". The noise tolerance is defined as below:

For
$$I_{D1} > I_{D2}$$
 (3.1)

Noise Tolerance =
$$\frac{\text{Noiase Margin}}{I_{D2}}$$
 (3.2)

Noise Margin =
$$(I_{D1} - S_{D1}) - (I_{D2} + S_{D2})$$
 (3.3)

 I_D and SD are the mean and standard deviation of several I_D - V_G curves obtained in a same experimental condition. The larger the noise tolerance implies there is more space between two curves. And more space implies the less chance of overlapping that may happen between two concentration curves.

We present analysis results from three nanowire devices in Fig.3.5. Figure (a), (c), (e) are the I_D - V_G curves of three devices and Fig.3.5(b), (d), (f) are the noise tolerance respectively. One can observe in (b) and (d) that there is first a rising trend then followed by a drop as gate voltage decreases. The drop does not exist in (f) may because the measurement failed before the drop appears (The failure is because the I_D is too small to be detected.). But one can still observe the rising trend. The highest points of (b) and (d) locates in the weak inversion region and is adjacent to the transition region (The region between strong inversion and weak inversion region). We therefore suggest that in this section nanowire should has better sensitivity than other sections.

3.2.2 g_m - I_D Plot

We plot the g_m - I_D curve for the data in Fig.3.3. The result in Fig.3.6 clearly proves our two assumptions for dealing with the device variability problem, which we have discussed in section.2.3.

In Fig.3.6, the g_m of nanowire is almost independent of concentration and merely depends on I_D when I_D ranges from 0.1nA to 1μ A. In fact, the curves start splitting

after $I_D > 1\mu\mathrm{A}$. It means the device is no longer in weak inversion region but enters strong inversion region.

With the data from Fig.3.3, we may find the equivalent voltage change induced

Figure 3.6: The g_m - I_D curve obtained by the I_D - V_G curve in Fig.3.3. The curves start splitting after $I_D > 1\mu A$ where the device may enter into strong inversion region.

by the concentration difference based on the assumption 2 (section.2.3). The values is changeable, which may depend on the gate-coupling coefficient (Eq.2.13).

Concentration Difference	Na_PB - 100aM	100aM - 10fM	10fM - 1pM	
Equivalent voltage value	30mV - 40mV	200mV - 280mV	38mV - 60mV	

Table 3.1: The equivalent voltage value generated by the concentration difference. We obtained the data by the data from Fig.3.6. We divided the I_D difference of different concentration by their g_m ($\Delta I_D = g_m \Delta V_G$).

3.3 Electrical Measurements

This section presents the data analysis results. The data are obtained from our measurements with the source meter (Keithley 2602). To exclude the effect of ions,

we placed nanowire devices in the distilled deionized water instead of biomolecule solution. And there is no DNA probe on the surfaces of poly-silicon channel.

3.3.1 Front Gate and Back Gate

Our nanowire has two gates available: floating gate (liquid gate) and back-gate. We choose floating gate as the operation gate mainly because the floating gate can induce a larger drain current. In other words, it has higher transconductance (Fig.3.7). In our circuit design, nanowire is placed in a feedback loop where its transconductance is proportional to the loop gain (chapter 5).

There are some advantages of back-gate. One of them is the ability to lower the 1/f noise [14, 11]. But this only holds for a very high gate voltage, which is not practical in the integrated circuit design.

3.3.2 Transconductance

The most crucial parameter for our circuit design is the transconductance (g_m) . We acquire it by calculating the partial derivative of I_D with respect to V_G . Since in section 2.3.1 we proved that g_m is dependent on I_D , we plot the g_m - I_D curve to reveal their relation (Fig.3.8(b)).

The g_m - I_D plot indicates that there is a "linear region" where g_m is proportional to I_D . This corresponds to our derivation in Eq.(2.17). We can recognize that our nanowire device is operated in weak inversion region when I_D is less than 10μ A. Therefore, by the section 3.2.1, we decide the I_D of our nanowire should be operated below 10μ A.

We also proved that the transconductance under this region is unaffected by V_{DS} .

3.3.3 Drain-to-source impedance (r_{ds})

In our circuit design, we keep V_{DS} constant. According to the measurement data from Fig.3.9, V_{DS} of 0.7V is enough to keep nanowire in saturation region for V_G ranging from 0v to 3v. However, due to the fabrication variance, the value varies from 0.75v to 1v.

Figure 3.7: Comparison between the DC sweep of voltage on the floating gate and back gate. (a) I_D (b) Transconductance (g_m) : the derivative of I_D . The transconductance of the floating gate is larger than the back gate.

Figure 3.8: Eelectrical response of a nanowire device. (a) Sweep V_G and measure the I_D changes. And by finding the transconductance (g_m) : the derivative of I_D with respect to V_G , we plot (b) the g_m - I_D curve

Figure 3.9: I_D -transconductance with V_{DS} variance

We concern about how I_D effect r_{ds} . The way we obtained r_{ds} is as follows:

- 1. Perform I_D - V_G sweep with two different V_D . We picked V_D values of 0.75V and 1V.
- 2. Find the difference of I_D at each V_G biasing point and divide it by the difference of V_D .

The result is presented in Fig.3.10. It shows that the r_{ds} is inversely proportional to I_D . Its value ranges from $40k\Omega$ to $30M\Omega$. This result becomes useful when we perform the analysis of impedance matching in chapter 5.

3.3.4 Device variability Problem exists

We measured two nanowire devices which lie on the same wafer and are immersed with the same testing PBS solution. Below, the g_m - I_D plot (Fig.3.11) shows that even the environment is same, two devices exhibit different electrical responses. This problem causes issues such as non-uniform specification for measurement or bad quality assurance in a mass production. We try to diminish it by performing the variability-resisting measurement, which have been mentioned in chapter 1.

Figure 3.10: I_D - r_{ds} plot

Figure 3.11: Device variability problem cause nanowire devices with same environment can exhibit different electrical responses.

3.4 Conclusion and Design Specification

Table.3.2 summarizes the electrical characteristics of our nanowire.

Operation Region	I_D	V_G	g_m	r_{ds}
Cut off	< 100nA	< 0V	-	-
weak inversion	$100nA - 10\mu A$	0V - $2.5V$	$200n$ - 20μ	$\int 50M\Omega$ - $200k\Omega$
strong inversion	$> 1\mu A$	> 2.2V	20μ - 30μ	$< 200k\Omega$

Table 3.2: Electrical characteristics. There are overlaps due to the device variability

We hence decide the design specification for the DC-sweep mode as Table.3.3.

$$I_D$$
 g_m $100nA - 30\mu A$ $200n - 20\mu$

Table 3.3: Detecting specification for the DC-sweep mode

As for the Transient Measurement mode, section.3.2.1 suggests that the device should be operated in the weak inversion region adjacent to the strong inversion region. And Table.3.1 indicates that the voltage change (ΔV_G) induced by concentration difference ranges from 20mV to 280mV. These factors give result to the table of device characteristics for the transient measurement (Table.3.4).

The design specification for the Transient Measurement mode is presented in Table.3.5. ΔI_D is the multiplication of ΔV_G and g_m from Table.3.4. The limitation of input referred noise (referred to the gate) is 10% of the minimal ΔV_G (< 2mV) or 10% of the minimal ΔI_D (2nA). The transimpedance (input current to an output voltage) is $5M\Omega$. This is because the minimal ΔI_D is 20nA and a transimpedance of $5M\Omega$ allows the output voltage to be larger than 0.1V. The bandwidth is 1k Hz. The input signal ΔI_D is a very slow signal with the speed less than 10 Hz. However, we implement a modulation method in chapter 5, which resembles the method adopted by f?]. The input signal is modulated to a

higher frequency to avoid the low frequency noise. Thus, we determined that the bandwidth of the circuit should be at least 1k Hz.

$$I_D$$
 g_m ΔV_G $600nA - 5\mu A$ $1\mu - 10\mu$ $20mV - 280mV$

Table 3.4: The summation of the nanowire characteristics when applied with the Transient Measurement mode circuit

ΔI_D	Input Referred Noise	Input Referred Noise	Transimpedance Gain (max)	Bandwidth
$20nA$ - $2.8\mu A$	< 2mV	< 2nA	$5E6(\frac{V}{A})$	1k (Hz)

Table 3.5: Specification for the Transient Measurement mode circuit

Chapter 4

Discrete Circuitry Design

This chapter contains the discrete circuit which has been briefly reviewed in section 2.1.2. We built this circuit to apply the constant-current constant-voltage (V_{DS}) method to our nanowire device.

4.1 Transforming the design from p-type measuring into n-type measuring

In [10], the circuit is for p-type ISFET device (Fig.4.1). Our nanowire device is n-type. Hence we transformed the circuit into the one in Fig.4.2.

4.2 Circuit Description

The circuit is divided into two sections: the constant-voltage circuit and the constant-current source (Ib).

The constant-voltage circuit

The constant-voltage circuit section has a source follower structure. The input of the circuit is at the floating gate (G) of the device under test (DUT), where the output is at its source (S).

The I_D of DUT is controlled by Ib. Because The leakage current flowing into the negative input of OP2 is less than 0.1nA, the I_D of the transistor should always be

Figure 4.1: The schematic of read-out circuit from [10]. The ISFET is a p-type device. It is controlled by the current source I_b whose sub-circuit is shown at right.

Figure 4.2: Our circuit schematic transformed from Fig.4.1. The device under test (DUT) is a n-type device. It is controlled by the current source I_b whose sub-circuit is shown at right.

same as the current provided by Ib.

The V_{DS} of DUT is always equal to the potential difference $(I_0 \times R_0)$ across the resistor R_0 . This is achieved by two OP-based, unity-gain buffer. They connected serially with R_b and cause the voltage at the drain (D) to follow the voltage at the source (S).

The constant-current source (Ib)

The Ib circuit is in fact a current scaling down circuit. By concerning the OP as ideal, the node OP+ has the same voltage as OP-. This equalizes the potential difference between two resistors whose resistance are different by N-fold. As a result, the currents I_b and I_s are also different by N-fold. $I_b = I_s/N$.

The capacitor is for filtering. It filters the high frequency noise out to create a stable output current.

4.3 Discrete Element

We use tlc2264 made by Texas Instrument (TI) as our OP. This OP requires a supply voltage of $\pm 5v$ and can perform rail-to-rail output operation. Its open-loop gain (Large-signal differential voltage amplification rate) is 170 for the output load greater than 50k.

Figure 4.3: LM334: The discrete element we use for current source Is. It has three terminals: R, V_+ , V_- . The output current (I_s) flows from V_+ to V_- . The resistor R_{SET} connected to V_- and R is for adjusting the output current.

For the current source Is and I0, we use lm334 (Fig.4.3) made by National Semiconductor. It is a 3-terminal adjustable current sources with a wide dynamic cross voltage range of 1v to 40v (the cross voltage $V_+ - V_-$ in Fig.4.3), and current accuracy of $\pm 3\%$. In our experiment, the current I_s is fixed at $1\mu A$ with an output impedance of $1.2G\Omega$.

4.4 Circuit Performance and Conclusion

We examined the performance of our circuit by plotting its I_D - V_G curve. The I_0 , R_0 and V_G were kept constant. We swept I_D by changing the N value with a variable resistor. N ranges from 1 to 1000. And I_b should range from $1\mu A$ to 1nA.

We measured the output voltage at S and subtracted this value from V_G to get the corresponding V_{GS} . These two values gave the I_D - V_{GS} curve in Fig.4.4. We compare this curve with the curve obtained by directly sweeping V_G and measuring I_D with Source Meter (Keithley 2602).

The result shows that when I_D is larger than 10nA, the circuit is functional. Two curves are same as each other.

The circuit fails when I_D is smaller than 10nA. This is related to the impedance matching between the constant-voltage circuit and the Ib circuit, which we have discussed in section.2.1.2.

The output impedance of the Ib circuit is:

$$N \times R_s \tag{4.1}$$

 R_s is the output impedance of the current source Is which equals to $1.2G\Omega$. And the current input impedance at the S of the constant-voltage circuit is:

$$\frac{1}{g_m} \tag{4.2}$$

We plot the I_b -Impedance relationship in Fig.4.5.

It shows that the output impedance of Ib is close to the input impedance of transistor when current is 10nA (N = 100). The impedance is unmatched.

Figure 4.4: The measuremet result ("SF_measurement") compares with the direct I_D - V_G sweep ("Id-Vg sweep").

Figure 4.5: Input impedance of transistor ("1/gm") and output impedance of Ib circuit ("N * Rs"). The former is found by the derivative of I_D of V_{Gs} . The latter is obtained by Eq.4.1.

Overall, the constant-current constant-voltage method is feasible. What one needs to notice when applying the this method is the impedance matching. In the source follower structure, its current input impedance varies with the bias current. It affects the dynamic range and needs more design concern.

Chapter 5

Integrated Circuitry Design

This chapter presents the design of the read-out circuit and the post-simulation results.

5.1 Fronted Circuit Design

The review of the source follower in section.2.1.2 suggests the constant current method for the circuit of DC-sweep mode. The data analysis from chapter 3 supports it by the linear relation between I_D and g_m . However, section.2.2 shows that source follower is not suitable for transient measurement. It alternatively recommends the circuit in Fig.2.6 which measures the transient current signal and converts it into a voltage output.

The fronted circuit combined these two methods into one circuit structure with two modes available: the DC-sweep mode and the Transient Measurement mode.

5.1.1 The DC-sweep mode

Fig.5.1 is the fronted circuit operated in the DC-sweep mode. The switch turns the circuit into the DC-sweep mode by connecting the output of OP with the gate of nanowire.

As in the source follower, our circuit contains a biasing current source (Ibias) for controlling the I_D . The difference is that the Ibias inputs the current into drain instead of source. In addition, we employs the transimpedance amplifier (TIA) from

Figure 5.1: The fronted circuit operated in DC-sweep mode.

section.2.2 ([13]). Its output is connected to an OP amplifier to form a negative feedback loop. When I_D is less than Ibias, the output voltage of TIA falls and the gate voltage V_G rises to increase I_D . On the contrary, output voltage of TIA rises and the gate voltage (V_G) drops if Ibias is smaller than I_D . Finally, the feedback mechanism forces I_D to be the same as Ibias by adjusting V_G automatically.

5.1.2 Transient Measurement mode

Figure 5.2: Two usage ((a), (b)) of the fronted circuit operatd in transient measurement mode.

In Fig.5.2(a), the switch turns to a simple voltage source (Vg) that provides a constant gate voltage. The feedback OP is nonfunctional in this mode. When performing measurement, we directly find how the output voltage (V_{out}) changes with the biomolecule concentration. This output voltage will be sent into a second stage circuit for further amplification.

Another Usage of Transient Measurement mode There is another method to perform measurement with the Transient Measurement mode, which resembles the measurement in [13]. This method measures the g_m of the nanowire. As shown in Fig.5.2(b), a sinusoidal signal with an amplitude of v_s is sent to the source of the nanowire. The output response (V_{out}) is a sinusoidal signal at the same frequency with an amplitude equaling to $v_s g_m \times R_{TIA}$. The values of Ibias and Vg can be arbitrary. But one need to be aware that their values should not cause the output of TIA or the second-stage circuit to saturate.

5.1.3 Dealing with the device variability Problem

As mentioned in chapter 1, we combine the DC-sweep mode and Transient Measurement mode to perform a variability-resisting measurement.

Method Procedure Assuming there are two nanowire devices and the device variability problem exists between them. Initially, we use these element to perform the I_D - V_G sweep in the DC-sweep mode. We use the DC-sweep results to find the g_m of each device. $(g_m = \frac{\partial I_D}{\partial V_G})$ When we turns to the Transient Measurement mode, we bias these two devices under the same g_m by setting Ibias and Vg correspondingly. After the buffer solutions, the same voltage difference at the output (V_{out}) should be detected because the two devices have the same g_m . Before a new solution is added, we return to the DC-sweep mode again. This is for finding the new biasing V_G to reset their I_D to be the same as Ibias. This implies that every time when we enter the Transient Measurement mode, the devices always have the same I_D and g_m as those in the beginning of experiments.

5.1.4 Design Description

In this section, we first talk about the TIA block and focus on how we improve the detecting limits of this block. It is followed by the design of the TIA circuit. Then we analyze the feedback mechanism of the DC-sweep mode and the input impedance of the circuit. After that, we discuss the stability issue. Finally, we show the design of the feedback OP block.

5.1.4.1 Strategies for lowering current detecting limits

The TIA subcircuit in section.2.2.3 is shown as Fig.5.3(a), we mentioned that the detecting range of R_{NW} is limited by I_{NW} provided by the TIA. We now discuss the causes of the upper and lower limits, and show the strategies we use to improve them.

Figure 5.3: (a) The transimpedance block (TIA) of the read-out circuit from [13]. The circuit input a voltage signal into resistive nanowire element R_{NW} . To compare it with our circuit (Fig.5.4), we transform the voltage input into an equivalent current input in (b). The $I_{NW} = (V_{Ref} - V_{in})/R_{NW}$ and $\Delta i = \Delta vi/R_{NW}$

Lower Limit: In Fig.5.3(b), the TIA output voltage is:

$$V_{TIA} = V_{Ref} + I_{NW}R_{TIA} + \Delta i R_{TIA} \tag{5.1}$$

Two reasons relate to a large offset current I_{NW} . One is that the output current provided by the TIA is restricted by design. The other is that the restriction of the current flowing through the resistor R_{TIA} :

$$\frac{V_{Ref} - VSS}{R_{TIA}} < I_{NW} < \frac{VDD - V_{Ref}}{R_{TIA}} \tag{5.2}$$

Both reasons lead to the output saturation of TIA.

A naive way to handle the first one is to increase the maximum output current the TIA can provide. The disadvantage of this method is the increase in power consumption and chip area. As for the second one, using smaller R_{TIA} can release the restriction on I_{NW} . Unfortunately, this is unpreferable because it reduces the current-to-voltage gain of the TIA.

Our strategy for decreasing the lower limit is to utilize the biasing current source (Ibias) of nanowire. As shown in Fig.5.4, Eq.(5.1) is transformed into:

$$V_{TIA} = V_{Ref} + (I_{NW} - I_{bias})R_{TIA} + \Delta i R_{TIA}$$

$$(5.3)$$

Now we can diminish the large I_{NW} by Ibias.

In conclusion, the large offset current causes the saturation of the output of TIA. We use the biasing current source to diminish that offset current, so as to increase the detection range.

Figure 5.4

Upper Limit: The upper limit depends on the output resolution. When the input current signal Δi in Fig.5.4 is too small, the output response may be defeated by the noise. This may be solved by increasing the SNR through a larger R_{TIA} . However, the chip area constrains the size of resistors. In our circuit design, it is hard to make a wide linear range resistor with resistance value out of $100k\Omega$. Furthermore, even if the resistor can be greater, one need to concern for the noise brought by the large resistance.

Our strategy is to boost the SNR of TIA by designing its input MOSFETs with a large area. We also amplify the output signal through the second-stage circuit.

5.1.4.2 TIA (Transimpedance Amplifier) Design

Figure 5.5: (a) The transimpedance block and the (b) schematic

Fig. 5.5 shows the Transimpedance Amplifier circuit. We implement the operational amplifier in TIA with the two-stage, differential-pair structure. This simple structure has merits such as large output current and wide output voltage range.

Fig. 5.6 and Fig. 5.7 are the dc and ac post-simulation of the TIA. Fig. 5.6 shows that the TIA has a constant transimpedance of $100k\Omega$ when the input current range is $6\mu A \sim -10\mu A$. Fig. 5.7(a) indicates that the bandwidth is 7MHz. Fig. 5.7(b) is the input referred noise. In Table. 5.1, these three parameters are compared with the specification given by Table. 3.5. Other results such as biasing current, spec. of OP ... etc. are also provided in it.

Figure 5.6: The dc simulation results of TIA. The x-axis represents positive/negative input current (log scale). (a) is the V_{out} responding to the positive input current while (c) is to the negative input current. (b) and (d) are the derivative of V_{out} of input current $(\frac{\partial V_{out}}{\partial I_{in}})$ from (a) and (c) respectively.

Figure 5.7: The ac simulation results of TIA. The x-axis is the input signal frequency. (a) is the V_{out} and (b) is the output-referred noise.

VDD	3.3V		
Biasing Current	$35\mu A$		
Transimpedance	$100k(rac{V}{I})$		
	Closed loop		
	Post-simulation	Spec. from Table.3.5	
Input Current range	from $6\mu A$ to $-10\mu A$	$\pm \ 20nA$ - $2.8\mu A$	
Output Voltage range	0.1V - 1.69V	-	
Bandwidth	7M Hz	1k Hz	
Input referred noise (@10Hz)	0.13nA	< 2nA	
Open loop			
Output dynamic range	Output dynamic range 0.1V - 3.1V		
Phase Margin	103 (degree)		
PSRR	60dB		
CMRR	123dB		
ICMR	0.1V - 2.6V		

Table 5.1: Post-simulation result of TIA

5.1.4.3 Feedback Mechanism

The DC-sweep mode circuit forms a negative feedback loop. Fig.5.8 is the block diagram of the circuit.

From the block diagram, we can compute the loop gain (LG) and the transfer function (TF):

$$R_A = R_{TIA} \times A_{OP} \tag{5.4}$$

$$LG = R_A \times g_m \tag{5.5}$$

$$TF = \frac{V_{out}}{I_{in}} = \frac{R_A}{1 + LG} \tag{5.6}$$

$$\approx \frac{1}{gm}$$
 If LG ≥ 100 (5.7)

The transfer function suggests that if we want to obtain an I_D - V_G sweeping curve with an error less than %1, our loop gain should be greater than 100. According to

Figure 5.8: Block diagram of the DC-sweep mode. The Iin refers to the Ibias and Vout refers to the output voltage of OP, which is also the gate voltage of nanowire (Fig.5.1). The $gm(I_D)$ is the transconductance of nanowire whose values depends on I_D .

chapter 3, the specification for g_m detection ranges from 200n to 20u. This implies that A_{OP} should be at least greater than 5k. We will show in the next section that the A_{OP} in the post-simulation is 10k.

5.1.4.4 Input Impedance (DC-sweep mode)

In chapter 4, we have discussed the impedance matching between the current source and the nanowire device. Here we compute the input impedance of the circuit.

Figure 5.9

In Fig.5.9, we apply an input voltage Δv_x and find the Δi_x . The input impedance

of the circuit is $\Delta v_x/\Delta i_x$.

$$\Delta I_x = \frac{\Delta V_x}{r_{ds}} + I_{SiNW} \tag{5.8}$$

$$I_{SiNW} = \frac{\Delta V_x}{r_{ds}} LG \tag{5.9}$$

$$\rightarrow \Delta I_x = \frac{\Delta V_x}{r_{ds}} + \frac{\Delta V_x}{r_{ds}} LG \tag{5.10}$$

$$\rightarrow \frac{\Delta V_x}{\Delta I_x} = \frac{r_d s}{1 + LG} \tag{5.11}$$

where
$$LG = R_{TIA}A_{OP}g_m$$
 (5.12)

The A_{OP} is the gain of the feedback OP. The r_ds is the drain-to-source resistance of nanowire, which is larger than $100k\Omega$.

The OpAmp of TIA holds the gain of 1000 (60dB), which makes the Z_{in} of 100. The LG is greater than 5k from the last section. By the section 3.3.3, the r_{ds} ranges from $40k\Omega$ to $30M\Omega$. Thus, the maximal input impedance of the feedback circuit is $6k\Omega$ ($\frac{30M\Omega}{5k\Omega}$). In our design, the Ibias is a simple pmos. Its output impedance ranges from $1M\Omega$ to $1G\Omega$, which is much larger than the input impedance of the feedback circuit. Therefore, the impedance matching is fine.

5.1.4.5 Stability and Feedback OP Design

To decide the structure of the feedback OP, we must discuss the stability of the feedback loop in the DC-sweep mode. The OP plays a crucial role in the stability issue because it not only decides the loop gain but also contains the dominant pole at its output.

In Fig.5.10, we mark the dominant pole (w_{p1}) , second order dominant pole w_{p2} and the zero (w_z) . We can write the loop gain as:

$$\frac{v_f}{v_g} = R_{TIA} \times A_{OP} \times g_m \frac{1 - s/w_z}{(1 + s/w_{p1})(1 + s/w_{p2})}$$
 (5.13)

$$w_z = \frac{g_m}{C_{ad}} \tag{5.14}$$

The parasitic capacitance C_{gd} , at the conservative estimate, has a maximum value of 1pF (The estimation is based on the fabrication information in [5] and [8]). And

Figure 5.10

because the lower bound of g_m in our design specification (Table.3.3) is 200n, the w_z can be as small as 20k(rad/s). To force the total loop gain to drop to 1 before s > 2k(rad/s), we have to reduce the first dominant pole frequency.

We choose w_{p1} as the first dominant pole. From section.5.1.4.3, we learned that the A_{OP} should be larger than 5k. Thus, we choose a folded cascode structure which provides high output impedance and gain.

Figure 5.11: (a) The feedback OP block and its (b) schematic

We designed a folded cascode OP with a gain of 10k (80dB) and bandwidth less than 3Hz (Fig.5.11, Table.5.2). A higher gain reduces the effect of fabrication

variation (30% deviation of the impedance of the R_{TIA} in TIA block). The low bandwidth is owing to the large capacitance (Cf) appended to the output. This capacitance results in a lower slew rate, which is fine because the circuit is for DC signal and there is no need for high speed operation.

VDD	3.3V
Ibias	$35\mu A$
BandWidth	2 Hz
Max Gain	81dB
Output Dynamic Range	0.45V - 2.6V
PSRR	41(dB)
CMRR	126(dB)
ICMR	0.32V - 3.1V

Table 5.2: Post-simulation result of feedback OP

5.1.5 The Post-simulation Result of the DC-sweep mode circuit

5.1.5.1 DC Current (Ibias) Sweep

We swept Ibias and measured the output voltage of the feedback OP which is also the gate voltage of SiNW in Fig.5.1. We also measured the I_D of the transistor. (Because we don't have nanowire model, we performed the simulation by using an alternative mosfet.) In Fig.5.12(a), the curve of I_{bias} - V_G is compared with the curve of I_D - V_G . Based on Eq.(5.7), $\frac{\partial I_{bias}}{\partial V_G}$ is approximately equal to g_m . This is verified in Fig.5.12(b) where two g_m : the measured g_m ($\frac{\partial I_{bias}}{\partial V_G}$) and the intrinsic g_m ($\frac{\partial I_D}{\partial V_G}$) are plotted together.

We defined the difference between two g_m as error rate. That is:

$$error = |1 - \frac{measured \ g_m}{intrinsic \ g_m}|(\%)$$
 (5.15)

The error rate is showed in Fig.5.12(c) It is pointed out by the cursor that after the intrinsic g_m is less than 130n, the error is over 1%.

Figure 5.12: Post-simulation result of the dc sweep of Ibias in Fig.5.1. (a) is the I_D - V_G curves of I_D and I_bias . (b) is the g_m - V_G curves of intrinsic g_m and measured g_m . (c) is the ratio of the difference between two g_m s (error).

5.1.5.2 Bode Plot of Loop Gain and Phase

The simulation here is according to the stability section (section.5.1.4.5). We present the Bode plot of the loop gain and the phase (Fig.5.13). The summarization table is also given (Table.5.3). We adjusted the transistor to the specific g_m values by selecting Ibias and corresponding V_G . We also appended a 1pF capacitor to model the C_{gd} .

Table.5.4 compares the design specification and the simulation result. It is notable that in fact the upper limits of g_m is depends on two factors. One is the gate voltage. Table.5.2 shows that the maximal gate voltage

Figure 5.13: Results of the ac simulation of the loop gain and phase (Bode plot) with different g_m value (200n, 2u, 20u). These g_m value is selected according to the DC-sweep mode specification we set in chapter 3 (section.3.4).

g_m	20μ	2μ	200n
Loop Gain	20k	2k	200
Phase Margin	80(deg)	78(deg)	81 (deg)

Table 5.3: The phase margin and loop gain of the fronted circuit

that the Feedback OP can provides is 2.6V. The other is the current I_b ias. I_b ias is generated by a simple pmos whose current is decided by an external resistor (Fig.5.14). The size ratio between pmos mr and mb is 1:10. This current mirror structure has a maximum output current of $70\mu A$. In Table.5.4, the upper limits of g_m is 50μ . According to our electrical measurement, this is the maximal g_m value that our nanowire can have when V_G is 2.6V.

Figure 5.14: The current mirror structure of the current source Ibias.

	Design Spec.	Simulation result
I_D	$100nA$ - $30\mu A$	$20nA$ - $70\mu A$
g_m	$200nA$ - $30\mu A$	$130nA$ - $50\mu A$

Table 5.4: The comparison between the design specification and simulation result of the DC-sweep mode circuit.

5.2 The Second Stage Circuit

We discuss the second stage circuit in this section. It is notable that the second stage circuit is only used for the Transient Measurement.

Fig.5.15 shows the block diagram of the second stage circuit. The analog subtractor shifts the voltage of V_{in} from V_{Ref} to V_z . It is followed by a resistor-based non-inverting amplifier composed of a two-stage differential operational amplifier,

Figure 5.15: Block diagram of the second stage circuit

two switches and three resistors. The switches select the amplification gain among 100, 10 and 1.

5.2.1 The Analog Subtractor

Figure 5.16: Block diagram of the second stage circuit.

Fig. 5.16 shows the schematic of the analog subtractor [15]. The output voltage

equals to:

$$V_x - V_{Ref} + V_z \tag{5.16}$$

A voltage signal Δv sent to vx induces a current change (Δi_d) in Mx. This current is mirrored to the diode-connected Mz by the cascode current mirror formed by M1 \sim M4. Δi_d changes the gate voltage of Mz, and this voltage is buffered to the output by the source follower M5.

$$\Delta v_{out} = \Delta v_x \frac{g_{mx}}{q_{mz}} - V_{Ref} \frac{g_m y}{q_m 5} + V_z \tag{5.17}$$

$$\Delta v_{out} = \Delta v_x - V_{Ref} \quad \text{For } g_{mx} = g_{mz}; g_{my} = g_{m5}$$
 (5.18)

One reason for employing this block is that the V_{Ref} is an internal voltage reference which may drift with the process variation. We prefer the output offset voltage of the circuit to be constant and controllable. Therefore, we shift it to V_z controlled by an external voltage source. Another reason is to increase the output dynamic range of the next amplifier stage. This reason will be much clearer when we start discussing the amplifier circuit in the next section.

We performed DC sweep on input (V_X) and V_z at five corners to show the linear region of the circuit (Fig.5.17, Table.5.5). The circuit has an input dynamic range of 0.77V $(-0.57V \sim +0.2V)$ while the dynamic range for V_z is 0.38V.

In Fig.5.17(a), the result of ff corner exhibit poor upper input dynamic range.

5.2.2 Non-inverting Resistor-based Amplifier

In Fig.5.16, the Op2 along with the resistors (Ro, Ri1, Ri2) and the switches (Switch1, Switch2) compose our non-inverting resistor-based Amplifier. We adopt this simple structure to amplify the output signal of the subtractor. When the

Figure 5.17: DC response of the output of our analog subtractor. (a) The x-axis is the difference between positive input and negative input $(V_x - V_{Ref})$. (b) The x-axis is the voltage of V_z

VDD	3.3V		
Ibias	$40\mu A$		
Output voltage dynamic range	0.2V- $2.5V$		
Input voltage type	V_x	V_z	
Input Dynamic Range	from $V_{Ref} - 0.57V$ to $V_{Ref} + 0.2V$	from $1V$ to $1.38V$	
Bandwidth	675kHz	irrelevant	
SNR (@10Hz)	8.3e10	8.4e10	

Table 5.5: The summary table of the analog subtracter circuit.

subtractor sends a small signal Δv into Vin, the output voltage (v_{out}) is:

$$v_{out} = (\Delta v - v_f) \times A_{Op2} \tag{5.19}$$

$$v_f = v_{out} \frac{R_i}{R_o + R_i} \tag{5.20}$$

$$\frac{v_{out}}{\Delta v} = \frac{A_{Op2}}{1 + A_{Op2} \frac{R_i}{R_i + R_o}} \tag{5.21}$$

$$\approx \frac{R_i + R_o}{R_i} \quad \text{For} \quad \frac{R_i A_{Op2}}{R_i + R_o} > 10 \tag{5.22}$$

The R_i can be $110k\Omega$ or $9.2k\Omega$ ($10k\Omega||110k\Omega$). When two switches is off, the circuit acts like an unit-gain buffer. Eq.(5.22) suggests that A_{Op2} should be larger than 1000 (60dB). Thus, the Op2 in Fig.5.15 adopts the structure of a two-stage amplifier (same with the operational amplifier in TIA block) due to its high gain and wide output dynamic range.

One thing to note is that the derivation above views the V_z as the virtual ground. V_z is both the input and output offset voltage of the amplifier. It is usually applied with 1.3V. As mentioned in the subtractor section (Section.5.2.1), the subtractor increases the output dynamic range of the amplifier stage. If the subtractor is removed, the output offset voltage of this stage would be V_{Ref} , which is much lower ($\sim 0.8V$), and is changeable due to the process variation.

Fig. 5.18 presents the five corners post-simulation results of the amplifier. We swept the input and measured the output under three amplification gain. And Table 5.6 is the summary table.

Figure 5.18: Five corners output DC response (vout) and derivative (dvout/dvin) when being operated under the amplification rate of (a)1, (b)10, (c)100.

Amplification Rate	100	10	1
Error	< 7%	< 0.7%	< 0.02%
Bandwidth	$4k \; \mathrm{Hz}$	24k Hz	$220k~\mathrm{Hz}$
Input Dynamic Range	from $-9mV$ to $17mV$	from $-0.11V$ to $0.14V$	from -0.5 to $0.3V$
Output Dynamic Range	0.1V - 3V		

Table 5.6: The summary table of simulation results.

5.3 Post-simulation Result of the Transient Measurement mode

As mentioned in section.5.1.2, there are two usage of the Transient Measurement mode (Fig.5.2). There simulation results are presented sperately below.

5.3.1 Detecting signals of biomolecules at the gate

Figure 5.19: The block diagram of the Transient Measurement circuit. We simulate it by sending ac signal through the voltage source Vg.

The first usage is to detect the output response of input voltage signal at gate. The voltage signal is caused by the the biomolecule concentration. This measurement are usually preceded by the DC-sweep mode, which initialize the I_D with the value of Ibias and set g_m to a corresponding value. Therefore, we replaced the transistor by a current signal Iin as in Fig.5.19. And we apply an ac signal from Iin to perform the ac analysis.

Figure 5.20: The gain of $\frac{V_{out}}{I_{in}}$ when the voltage gain of the second stage is 100.

Figure 5.21: The input referred noise when the amplification rate of the second stage is 100.

Fig.5.20 presents the maximum gain that the circuit provides at five corners. And Fig.5.21 shows the input referred noise. The design specification requires the gain to be greater than 5M and the voltage noise referred to the gate of nanowire to be smaller than 2mV. The summary table (Table.5.7) computed the noise result by considering the g_m as 200n, which is the minimum g_m that may exist in our measurement.

	Design Spec. (Table.3.5)	Simulation Result
Amplification Rate (max)	5M	10.3M
Input Referred Noise	< 2mV	$=\frac{\sqrt{5.8E-20}}{200n}=1.2mV$ @1Hz

Table 5.7: The summary table. The simulation results are compared with the design specification.

5.3.2 Modulating biomolecule signals from the source terminal

Figure 5.22: The block diagram of the Transient Measurement circuit. We simulate it by sending ac signal to the source of the nanowire.

The second usage of the Transient Measurement mode circuit is to apply a sinusoidal signal at the source of nanowire. Vg and Ibias are kept constant during the measurement. The output voltage is measured and used for computing the g_m of the element.

$$g_m = \frac{V_{out}}{v_s \times R_{TIA} \times A_{second}} \tag{5.23}$$

The v_s is the amplitude of the input sinusoidal signal, and A_{second} is the voltage gain of the second stage circuit.

One thing to be noted is the offset voltage of the output. The biomolecule concentration difference changes the I_D of nanowire. This I_D difference not only results in the change of g_m but also alters the offset current flowing through R_{TIA} . This current is also amplified and may cause too much current flowing into the circuit. The solution is to utilize Ibias to cancel the offset current.

Two simulation results presented below are the transient responses of the output voltage when A_{amp} is 10 (Fig.5.23)and 100(Fig.5.25). g_m of the transistor is swept in the same time. According to the specification given in chapter 3 (Table.3.5), g_m

ranges from 1μ to 10μ in transient measurement. The input sinusoidal signal has a frequency of 1kHz and an amplitude of 20mV. Their corresponding ac sweeps are presented in Fig.5.24 and Fig.5.26. These results show that the circuit bandwidth is about 4kHz, which is caused by the last amplifier block.

Figure 5.23: The transient analysis. The gain of A_{amp} is 10. The g_m is swept from 1μ to 10μ .

Figure 5.24: The ac analysis of the transient simulation result in Fig.5.23.

Figure 5.25: The transient analysis. The gain of A_{amp} is 100. The g_m is swept from 1μ to 6μ . There are two curves have the output saturation problem. This is because of the offset current flowing through R_{TIA} . One may solve it by increasing the current provided by Ibias.

Figure 5.26: The ac analysis of the transient simulation result in Fig.5.25.

Chapter 6

Circuit Results Discussion and Summary

This chapter presents the results of our read-out circuit and the summary of this thesis. The layout of the circuit is given in 6.1

6.1 Fronted Circuit and DC-sweep mode

As in Fig.6.2(a), the fronted circuit includes a biasing current source (Ibias), transimpedance amplifier (TIA) and an operational amplifier (OP). These three circuit blocks combined with the nanowire device (SiNW) form a feedback structure, which is the DC-sweep mode of our circuit.

6.1.1 Ibias

The Fig.6.3 is the schematic of the Ibias. By changing the resistance of the external Res and measuring the current, we obtained the result shown in Fig.??.

Figure 6.2: The fronted circuit

Figure 6.3: The fronted circuit

6.1.2 Ibias

6.1.3 TIA

The Fig.?? shows

6.1.4 OP

By applying a sinusoidal signal to the negative input of OP, we found that the gain of OP is about 2k (Fig.6.4). However, the gain of OP was designed to be more than 5k.

We will discuss this problem in the following section.

Figure 6.4: The output voltage of the OP when the negative input is applied with a sinusoidal signal. This input sinusoidal signal has frequency of 1Hz and amplitude of 1mV. The positive input of OP is biased with a constant voltage generated by the chip. The output signal has amplitude around 2V, which means that the gain of OP is about 2k.

Figure 6.5: DC-sweep mode circuit

6.1.5 Measurement with the DC-sweep Mode Circuit and the Low-current Defect Problem

With the DC-sweep mode circuit (Fig.6.5), we swept Ibias and measured V_G and I_D to obtain the I_D - V_G and I_{bias} - V_G curves (Fig.6.6). The chip works well when I_bias is larger than $1\mu A$. The overlap between two curves implies that I_D follows Ibias and V_G consequently alters due to the feedback mechanism.

When current becomes low, the circuit fails to prompt nanowire follows the biasing current. This phenomenon could be reasonable because the g_m becomes low and the feedback ability of the circuit may be not strong enough to push the gate of nanowire. However, when design the circuit (chapter 5), we expected this happens for g_m below 200n. The Fig.6.7 indicates the circuit fails when g_m is less than 5μ . We call this problem as the low-current defect.

Insufficient Gain

We first suspected that it is caused by the insufficient Op gain (Fig. 6.5). According to the last section (Section 6.1.4), the gain is about 2k. The discussion in Section 5.1.4.3 suggests the feedback mechanism depends on the loop gain of the circuit. The loop gain should be larger than 100 for the DC-sweep mode being func-

Figure 6.6: The measurement result of the DC-sweep mode circuit. I_{bias} is the biasing current. I_D is the current flowing through the nanowire device. One can observe a separation between two curves in low current section ($< 1\mu A$).

Figure 6.7: The g_m - I_D curve. It is obtained from the I_D - V_G curve in Fig.6.6. "Circuit fails" means the two curves in Fig.6.6 are separated where "circuit works" means they are overlapped.

tional. Based on Eq.(5.4) and Eq.(5.5), if A_{OP} is 2k, the loop gain drops below 100 when g_m is less than 500n. In other words, even though the gain of OP is 2.5 fold smaller than the gain we designed, the circuit should work well when g_m is larger than 500n.

One reason may explain is that the gain of OP varies with input. As depicted in Fig.6.8, the slope at the midst is larger than the slope at the both end (The slope can represent the gain of OP). In the measurement of Fig.6.4, the offset of the output signal is around 2V. But in Fig.6.6, when the separation happens, the output voltage of OP (V_G) is less than 1.5V. Thus, we assert that the gain of OP is less than 2k.

Figure 6.8: ..

Input Offset Voltage

Another reason may be responsible for the low-current defect is the offset voltage at the input of the OP.

We examined the output voltage of TIA (V_{TIA}) of the Fig.6.6 DC-sweep experiment. It is shown in Fig.6.9. Ideally, when feedback mechanism works well, V_{TIA} should be equal to V_{Ref} (Fig.6.5). However, the value of V_{Ref} is 0.802V, which is smaller than V_{TIA} . (This V_{Ref} is connected to a constant voltage point inside the chip. We know its value indirectly by measuring the drain voltage of nanowire since the drain of nanowire is kept to be same as V_{Ref} by TIA.) When the circuit works well, V_{TIA} and V_{Ref} is still different by 15mV. This voltage difference can result in an 150nA offset current flowing through TIA and into the nanowire device. This

offset current becomes remarkable when the I_{bias} is less than $1\mu A$.

We suggest the reason that V_{TIA} is large than V_{Ref} is due to the offset voltage appearing at the input of the OP. This speculation is reasonable through with respect to the layout, which will be discussed in the next section.

Figure 6.9: The V_{TIA} . The x-axis is the corresponding gate voltage. With the information from Fig.6.6, we found that the V_{TIA} is not equal to V_{Ref} no matter feedback mechanism works well or not.

Overall, the insufficient gain and the input offset may be the main reasons of the low-current defect. Both of them relate to the OP block. We then discuss these two reasons from the perspective of layout.

6.1.6 The Design and Layout Problems of OP

In the last section, me mentioned that the gain of OP is lower than we expected and there may exist an input offset voltage. In this section, we will deduce that several layout and design flaws may be responsible for these two problems.

Figure 6.10: The schematics of the OP. The right section (three MOSFETs and a current source) is a global circuit for generating the two global biasing voltage: V_{bi} , V_{Ref} .

6.1.6.1 The Possible Reasons for Insufficient Gain

6.2 Transient Measurement Mode

6.3 Dealing with the Device Variability Problem

Bibliography

- [1] A. Bonanno, V. Cauda, M. Crepaldi, P. M. Ros, M. Morello, D. Demarchi, and P. Civera. A low-power read-out circuit and low-cost assembly of nanosensors onto a 0.13 um cmos micro-for-nano chip. In Advances in Sensors and Interfaces (IWASI), 2013 5th IEEE International Workshop on, pages 125–130, June 2013.
- [2] A. Bonanno, V. Cauda, M. Crepaldi, P. M. Ros, M. Morello, D. Demarchi, and P. Civera. A low-power read-out circuit and low-cost assembly of nanosensors onto a 0.13 um cmos micro-for-nano chip. In 5th IEEE International Workshop on Advances in Sensors and Interfaces IWASI, pages 125–130, June 2013.
- [3] A. Bonanno, M. Morello, M. Crepaldi, A. Sanginario, S. Benetto, V. Cauda, P. Civera, and D. Demarchi. A low-power 0.13 um cmos ic for zno-nanowire assembly and nanowire-based uv sensor interface. *IEEE Sensors Journal*, 15(8):4203–4212, Aug 2015.
- [4] Y. Cui, Q. Wei, H. Park, and C. Lieber. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. SCIENCE, 293(5533):1289–1292, AUG 17 2001.
- [5] C.-Y. Hsiao, C.-H. Lin, C.-H. Hung, C.-J. Su, Y.-R. Lo, C.-C. Lee, H.-C. Lin, F.-H. Ko, T.-Y. Huang, and Y.-S. Yang. Novel poly-silicon nanowire field effect transistor for biosensing application. BIOSENSORS & BIOELECTRON-ICS, 24(5, SI):1223–1229, JAN 1 2009.

BIBLIOGRAPHY 72

[6] B.-R. Li, C.-C. Chen, U. R. Kumar, and Y.-T. Chen. Advances in nanowire transistors for biological analysis and cellular investigation. *Analyst*, 139:1589– 1608, 2014.

- [7] C.-H. Lin, C.-Y. Hsiao, C.-H. Hung, Y.-R. Lo, C.-C. Lee, C.-J. Su, H.-C. Lin, F.-H. Ko, T.-Y. Huang, and Y.-S. Yang. Ultrasensitive detection of dopamine using a polysilicon nanowire field-effect transistor. *Chem. Commun.*, pages 5749–5751, 2008.
- [8] C.-H. Lin, C.-H. Hung, C.-Y. Hsiao, H.-C. Lin, F.-H. Ko, and Y.-S. Yang. Polysilicon nanowire field-effect transistor for ultrasensitive and label-free detection of pathogenic avian influenza dna. WOS:000267162200012, 2009.
- [9] S. D. Moss, J. Janata, and C. C. Johnson.
- [10] N. Nikkhoo, P. G. Gulak, and K. Maxwell. Rapid detection of e. coli bacteria using potassium-sensitive fets in cmos. *IEEE Transactions on Biomedical Circuits and Systems*, 7(5):621–630, Oct 2013.
- [11] S. Pud, J. Li, V. Sibiliev, M. Petrychuk, V. Kovalenko, A. OffenhÀusser, and S. Vitusevich. Liquid and back gate coupling effect: Toward biosensing with lowest detection limit. Nano Letters, 14(2):578–584, 2014. PMID: 24392670.
- [12] S. Thanapitak. An 1 v 1 nw source follower isfet readout circuit for biomedical applications. In Science and Information Conference (SAI), 2015, pages 1118–1121, July 2015.
- [13] J. Xu, P. Offermans, G. Meynants, H. D. Tong, C. J. M. van Rijn, and P. Merken. A low-power readout circuit for nanowire based hydrogen sensor. MICROELECTRONICS JOURNAL, 41(11, SI):733-739, NOV 2010.
- [14] I. Zadorozhnyi, S. Pud, S. Vitusevich, and M. Petrychuk. Features of the gate coupling effect in liquid-gated si nanowire fets. In *Noise and Fluctuations* (ICNF), 2015 International Conference on, pages 1–4, June 2015.
- [15] 徐文陽 (Yen-Pang Lai). A CMOS FET sensor chip to detect the DNA amplification process. 國立清華大學電子工程研究所碩士論文, 2011.

Acknowledgement

