Programowanie matematyczne Laboratorium 4

Piotr Widomski, grupa D

21.11.2022

1 Postać ZPL

Rozwiązywane zadanie programowania liniowego ma następującą postać:

$$\max_{x \in \Omega} c^T x, \ (c > 0)$$

$$\Omega : \begin{cases} Ax \leqslant b \\ x \leqslant g \qquad (g > 0) \\ x \in \mathbb{R}^n \end{cases}$$

$$c, x \in \mathbb{R}^n, \ b \in \mathbb{R}^m, \ A \in \mathbb{R}^{m \times n}, \ m = n = 5$$

Macierz A oraz wektor b składają się z wartości całkowitoliczbowych z zakresu [-5,5]. Wektor c składa się z wartości całkowitoliczbowych z zakresu [1,5], a wektor g - z zakresu [1,30].

1.1 Zadanie dualne

W celu znalezienia optymalnego rozwiązania problemu ograniczenia górne na zmienne możemy potraktować jako ograniczenia właściwe wyrażone jako $Ix\leqslant g$. Wtedy zadanie przyjmuje następującą postać (

$$\max_{x \in \Omega} c^T x, \ (c > 0)$$

$$\Omega : \begin{cases} (x[A^T|I])^T \leqslant [b^T|g^T]^T \\ x \in \mathbb{R}^n \end{cases} \quad (g > 0)$$

$$c, x \in \mathbb{R}^n, \ b \in \mathbb{R}^m, \ A \in \mathbb{R}^{m \times n}, \ m = n = 5$$

Zadanie te ma 5 zmiennych i 10 ograniczeń, a wektor b może zawierać wartości ujemne. W takim przypadku konieczne jest dodanie 5 zmiennych dopełniających oraz odwrócenie znaków współczynników w ograniczeniach odpowiadających ujemnym wartością b, co skutkuje rozwiązywaniem problemu z 10 zmiennymi bazowymi.

W takim przypadku korzystna jest próba rozwiązania zadania dualnego w postaci standardowej:

$$\max_{x \in \Omega} -c_D^T y$$

$$\Omega : \begin{cases} A_D y = b_D \\ y \geqslant 0 \end{cases}$$

$$A_D = [A^T | I], c_D = [b^T | g^T]^T, b_D = c,$$

$$c, x \in \mathbb{R}^n, b \in \mathbb{R}^m, A \in \mathbb{R}^{m \times n}, m = n = 5$$

Ograniczenia zadania dualnego są równościowe, ponieważ wszystkie zmienne zadania prymalnego są nieograniczone. Zmienne zadania dualnego są ograniczone z dołu przez 0, ponieważ wszystkie ograniczenia zadania prymalnego są typu nierówności \leq .

1.2 Mnożniki Lagrange'a

Mnożniki Lagrange'a dla ZPL odpowiadają ograniczeniom problemu. Mnożnik $\lambda_i,\ i\in E$ jeżeli ograniczenie i-te jest ograniczeniem równościowym. W przeciwnym wypadku $\lambda_i\ i\in I$. Dodatkowo ograniczenie nierównościowe nieaktywne, czyli gdzie odpowiadająca mu zmienna dopełniająca $x_d\neq 0$, oznacza, że $\lambda_i=0$. Mnożniki Lagrange'a muszą spełniać warunek

$$c = \sum_{i \in I} \lambda_i a_i + \sum_{j \in E} \lambda_j a_j$$

gdzie a_i to *i*-ty wiersz A. Mnożniki Lagrange'a są powiązane z rozwiązaniem zadania dualnego. Możemy przetransformować powyższe równanie do postaci

$$c^T = \lambda A, \ \lambda = [\lambda_1, \lambda_2, \dot{]}$$

Transponując powyższe równanie otrzymujemy postać zadania dualnego.

$$A^T y = c, \ y = \lambda$$

Zatem mnożniki Lagrange'a odpowiadają rozwiązaniu problemu dualnego. Powiązanie RO ZP z RO ZD wynika z faktu, że mnożniki odpowiadające ograniczeniom nierównościowym nieaktywnym mają wartość 0, co odpowiada danym współrzędnym rozwiązania \overline{y} .

2 Zastosowany algorytm

Rozwiązując zadanie dualne w wyżej opisanej postaci możemy natychmiastowo wybrać zmienne bazowe jako $y_B = [y_6, y_7, y_8, y_9, y_10]$, gdyż odpowiadająca im macierz bazowa jest, z definicji zadania dualnego, jednostkowa. Oznacza to, że postać problemu dualnego jest kanoniczna. Dodatkowo wszystkie ograniczenia są równościowe, zatem nie wymagane są żadne zmienne techniczne.

Rozwiązanie optymalne obliczane jest algorytmem sympleks w następujących krokach:

Przy użyciu algorytmu sympleks otrzymywany jest w następujących krokach:

- 1. Obliczenie wskaźników optymalności $z_j c_j$. Jeżeli wszystkie są nieujemne to algorytm znalazł rozwiązanie optymalne.
- 2. Znalezienie indeksu k zmiennej dodawanej do bazy odpowiadającej najmniejszemu wskaźnikowi optymalności.
- 3. Znalezienie indeksu r zmiennej usuwanej z bazy odpowiadającej najmniejszej wartości $\frac{\bar{b}_i}{\bar{a}_{ik}}$ dla nieujemnej wartości \bar{a}_{ik} .
- 4. Obliczenie nowych wartości \overline{A} i \overline{b} .

Dla przykładowej instancji problemu o wartościach:

$$A = \begin{bmatrix} -1 & 3 & 5 & 3 & -4 \\ -5 & 0 & -3 & 1 & 2 \\ -3 & -1 & 3 & 1 & 4 \\ 4 & 1 & -2 & -5 & -3 \\ 5 & 0 & 5 & 1 & 4 \end{bmatrix}$$
$$b = \begin{bmatrix} -1 & 0 & -5 & -4 & -5 \end{bmatrix}^{T}$$
$$c = \begin{bmatrix} 5 & 5 & 1 & 3 & 2 \end{bmatrix}^{T}$$
$$g = \begin{bmatrix} 8 & 28 & 7 & 27 & 21 \end{bmatrix}^{T}$$

startowa tabelka sympleksowa wygląda następująco, i potwierdza dobry wybór punktu startowego:

-	-	_		_	-	-	_	_	1	
_	ь	ᆫ	r	a	ь	_	O	ш	ь.	

	x 1	x2	x 3	x4	x 5	x 6	x 7	x 8	x 9	x 10	b
		_	_	_		_		_			
c	1	0	5	4	5	-8	-28	-7	-27	-21	NaN
x 6	-1	-5	-3	4	5	1	0	0	0	0	5
x 7	3	0	-1	1	0	0	1	0	0	0	5
x 8	5	-3	3	-2	5	0	0	1	0	0	1
x 9	3	1	1	-5	1	0	0	0	1	0	3
x10	-4	2	4	-3	4	0	0	0	0	1	2
Z	-108	-8	-80	152	-186	-8	-28	-7	-27	-21	NaN
z - c	-109	-8	-85	148	-191	0	0	0	0	0	NaN

3 Przykład obliczeniowy

Dla przykładowej instancji problemu o wartościach:

$$A = \begin{bmatrix} 5 & 5 & -1 & -4 & 3 \\ -1 & -5 & -5 & -4 & 1 \\ -4 & -5 & 1 & 2 & -1 \\ 3 & -1 & 4 & -4 & 4 \\ -4 & 0 & -1 & -1 & 5 \end{bmatrix}$$

$$b = \begin{bmatrix} -5 & 4 & 4 & 0 & -5 \end{bmatrix}^{T}$$

$$c = \begin{bmatrix} 1 & 2 & 5 & 1 & 4 \end{bmatrix}^{T}$$

$$g = \begin{bmatrix} 15 & 2 & 8 & 6 & 15 \end{bmatrix}^{T}$$

Rozwiązanie zadania prymalnego znalezione przez funkcję linprog ma wartość 40,1214 wygląda następująco:

$$x = \begin{bmatrix} 0.3429 & 2 & 4.8071 & 6 & 1.4357 \end{bmatrix}^T$$

$$y = \begin{bmatrix} 0 & 0 & 0.5643 & 1.1143 & 0.0214 & 0 & 5.9357 & 0 & 4.35 & 0 \end{bmatrix}^T$$

Wynik dla zaimplementowanego algorytmu sympleks otrzymywany jest przez zastosowanie wyżej opisanych kroków. Wynik ostatniej iteracji wygląda następująco:

Iteration 4	:										
	x1	x2	x 3	x4	x 5	x 6	x 7	x 8	x 9	x10	b
			_	_	_		_		_		
С	5	-4	-4	0	5	-15	-2	-8	-6	-15	NaN
x4	0.14286	-0.82857	0	1	0	0.028571	0	0.17143	0	0.057143	1.1143
x 7	-1.6429	-10.971	0	0	0	-0.82857	1	1.2786	0	-0.40714	5.9357
x 3	-1.3571	-1.0286	1	0	0	-0.17143	0	0.22143	0	-0.092857	0.56429
x 9	-0.5	-4.6	0	0	0	0.4	0	0.15	1	0.55	4.35
x 5	0.21429	0.65714	0	0	1	-0.057143	0	-0.092857	0	0.13571	0.021429
Z	12.786	56.943	-4	0	5	-0.34286	-2	-4.8071	-6	-1.4357	NaN
z - c	7.7857	60.943	0	0	0	14.657	0	3.1929	0	13.564	NaN

Rysunek 1: Tabelka sympleksowa po ostatniej iteracją algorytmu.

Z tabelki otrzymujemy rozwiązanie optymalne zadania dualnego zgodne z rozwiązaniem otrzymanym przy użyciu funkcji linprog. W celu uzyskania rozwiązania optymalnego zadania prymalnego użyty został następujący wzór:

$$\overline{y} = c_B^T A_B^{-1}$$

Używając wartości c_B i A_B z problemu dualnego otrzymujemy:

$$\overline{x} = c_{DB}^T A_{DB}^{-1}$$

 A_{DB}^{-1} możemy odczytać z wierszy tabelki sympleksowej odpowiadających startowej bazie po ostatniej iteracji algorytmu. W przypadku naszego problemu jest to pięć ostatnich kolumn. Po wykonaniu mnożenie otrzymujemy RO zadania prymalnego o wartości:

$$x = \begin{bmatrix} 0.3429 & 2 & 4.8071 & 6 & 1.4357 \end{bmatrix}^T$$

Wynik jest zgodny z rozwiązaniem otrzymanym przy użyciu funkcji linprog.

4 Analiza wyników

W celu sprawdzenia poprawności wyników zaimplementowanego algorytmu przeprowadzone zostały dwa testy dla N=100 instancji problemu. Pierwszy test wykonany został dla dowolnych instancji problemu (posiadających R lub zadań bez rozwiązania). Drugi test został wykonany jedynie dla zadań posiadających RO. Dla każdej instancji wynik, czyli znalezione rozwiązanie optymalne problemu prymalnego oraz wartość funkcji, został porównany z wynikami funkcji linprog.

4.1 Test 1.

Dla wszystkich przypadków testowych otrzymany wynik zgadzał się z wynikiem funcki linprog. Zaimplementowany algorytm wykonywał większą ilość iteracji, ze średnią wynoszącą 4 iteracji. Funkcja linprog posiadała średnią ilość iteracji równą 2,96.

Rysunek 2: Histogram ilości iteracji dla algorytmu sympleks oraz funkcji linprog.

Rysunek 3: Rozkład typów wygenerowanych problemów.

4.2 Test 2.

Dla wszystkich przypadków testowych otrzymany wynik zgadzał się z wynikiem funcki linprog. Zaimplementowany algorytm wykonywał większą ilość iteracji, ze średnią wynoszącą 3,67 iteracji. Funkcja linprog posiadała średnią ilość iteracji równą 2,65.

Rysunek 4: Histogram ilości iteracji dla algorytmu sympleks oraz funkcji linprog.

5 Oświadczenie

Oświadczam, że niniejsza praca stanowiąca podstawę do uzyskania osiągnięcia efektów uczenia się z przedmiotu "Programowanie Matematyczne" została wykonana przeze mnie samodzielnie.

Piotr Widomski 298919