

10/520678
PCT/FR 03/01719

Rec'd USPTO 11 JAN 2005

RECEIVED

26 AUG 2003

WIPO PCT

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION

COPIE OFFICIELLE

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

Fait à Paris, le 09 JUIL. 2003

Pour le Directeur général de l'Institut
national de la propriété industrielle
Le Chef du Département des brevets

A handwritten signature in black ink, appearing to read 'Martine PLANCHE'.

Martine PLANCHE

DOCUMENT DE PRIORITÉ

PRÉSENTÉ OU TRANSMIS
CONFORMÉMENT À LA
RÈGLE 17.1.a) OU b)

Best Available Copy

SIEGE
26 bis, rue de Saint Petersbourg
75800 PARIS codex 08
Téléphone : 33 (0)1 53 04 53 04
Télécopie : 33 (0)1 53 04 45 23
www.inpi.fr

BREVET D'INVENTION
CERTIFICAT D'UTILITÉ

Code de la propriété intellectuelle - Livre VI

INPI
N° 11354°02

BR1

REQUÊTE EN DÉLIVRANCE
page 1/2

DB 540 G IV / 010501

Cet imprimé est à remplir lisiblement à l'encre noire

Réserve à l'INPI

REMISE DES PIÈCES
DATE
LIEU11 JUIL 2002
75 INPI PARIS

0208713

N° D'ENREGISTREMENT
NATIONAL ATTRIBUÉ PAR L'INPI
DATE DE DÉPÔT ATTRIBUÉE
PAR L'INPI

11 JUIL. 2002

 NOM ET ADRESSE DU DEMANDEUR OU DU MANDATAIRE
À QUI LA CORRESPONDANCE DOIT ÊTRE ADRESSÉE

INSTITUT FRANCAIS DU PETROLE

1 et 4 avenue de Bois Préau

92852 Rueil-Malmaison cedex

Vos références pour ce dossier
(facultatif) JPN/CLN

Confirmation d'un dépôt par télécopie

 N° attribué par l'INPI à la télécopie

2 NATURE DE LA DEMANDE

Cochez l'une des 4 cases suivantes

Demande de brevet

Demande de certificat d'utilité

Demande divisionnaire

Demande de brevet initiale

ou demande de certificat d'utilité initiale

Transformation d'une demande de
brevet européen Demande de brevet initiale

Date | | | | | | | |

Date | | | | | | | |

Date | | | | | | | |

Date | | | | | | | |

3 TITRE DE L'INVENTION (200 caractères ou espaces maximum)

COMPOSITIONS POUR NOUVEAUX REVÊTEMENTS POUR CONDUITES HAUTES TEMPERATURES

4 DECLARATION DE PRIORITÉ
OU REQUÊTE DU BÉNÉFICE DE
LA DATE DE DÉPÔT D'UNE
DEMANDE ANTÉRIEURE FRANÇAISEPays ou organisation
Date | | | | | | | |

N°

Pays ou organisation
Date | | | | | | | |

N°

Pays ou organisation
Date | | | | | | | |

N°

 S'il y a d'autres priorités, cochez la case et utilisez l'imprimé «Suite»

5 DEMANDEUR (Cochez l'une des 2 cases)

 Personne morale Personne physique

INSTITUT FRANCAIS DU PETROLE

Nom
ou dénomination sociale

Prénoms

Forme juridique

Organisme Professionnel

N° SIREN

Code APE-NAF

| | | | | | | |

1 et 4 avenue de Bois Préau

Domicile
ou
siège

Rue

19 12 8 5 12 Rueil-Malmaison cedex

Code postal et ville

Pays

France

Française

Nationalité

01 47 52 60 00

N° de télécopie (facultatif) 01 47 52 70 03

N° de téléphone (facultatif)

Adresse électronique (facultatif)

 S'il y a plus d'un demandeur, cochez la case et utilisez l'imprimé «Suite»Remplir impérativement la 2^{me} page

BREVET D'INVENTION
CERTIFICAT D'UTILITÉ

REQUÊTE EN DÉLIVRANCE
page 2/2

BR2

REMISE DES PIÈCES	Réervé à l'INPI
DATE	11 JUIL 2002
LEU	75 INPI PARIS
N° D'ENREGISTREMENT	0208713
NATIONAL ATTRIBUÉ PAR L'INPI	

DB 540 Q W / 010801

6. MANDATAIRE		JPN/CLN
Nom		ELMALEH
Prénom		Alfred
Cabinet ou Société		INSTITUT FRANCAIS DU PETROLE
N °de pouvoir permanent et/ou de lien contractuel		
Adresse	Rue	1 et 4 avenue de Bois Préau
	Code postal et ville	92852 Rueil-Malmaison cedex
	Pays	France
N° de téléphone (facultatif)		01 47 52 60 00
N° de télécopie (facultatif)		01 47 52 70 03
Adresse électronique (facultatif)		
7. INVENTEUR(S)		Les inventeurs sont nécessairement des personnes physiques
Les demandeurs et les inventeurs sont les mêmes personnes		<input type="checkbox"/> Oui <input checked="" type="checkbox"/> Non : Dans ce cas remplir le formulaire de Désignation d'inventeur(s)
8. RAPPORT DE RECHERCHE		Uniquement pour une demande de brevet (y compris division et transformation)
Etablissement immédiat ou établissement différé		<input checked="" type="checkbox"/> <input type="checkbox"/>
Paiement échelonné de la redevance (en deux versements)		Uniquement pour les personnes physiques effectuant elles-mêmes leur propre dépôt <input type="checkbox"/> Oui <input checked="" type="checkbox"/> Non
9. RÉDUCTION DU TAUX DES REDEVANCES		Uniquement pour les personnes physiques <input type="checkbox"/> Requise pour la première fois pour cette invention (<i>joindre un avis de non-imposition</i>) <input type="checkbox"/> Obtenu antérieurement à ce dépôt pour cette invention (<i>joindre une copie de la décision d'admission à l'assistance gratuite ou indiquer sa référence</i>) : AG <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>
Si vous avez utilisé l'imprimé «Suite», indiquez le nombre de pages jointes		
10. SIGNATURE DU DEMANDEUR OU DU MANDATAIRE (Nom et qualité du signataire) Pour Alfred ELMALEH, Chef du Département Brevets Jean COAFOUR		VISA DE LA PRÉFECTURE OU DE L'INPI

5

La présente invention concerne des compositions de polymères et leur
10 utilisation notamment pour le revêtement des canalisations, de préférence
pour le revêtement des tubes de transport d'hydrocarbures utilisés pour
l'exploitation en mer de champs pétroliers.

Dans une telle application, le rôle principal du revêtement déposé à
15 l'extérieur de la conduite sur le métal est de protéger celui-ci contre la
corrosion induite par l'eau de mer, mais le revêtement doit également
assurer un rôle de protection contre les dommages mécaniques subis par le
tube lors de la pose ou au contact du fond marin. Les développements
actuels de l'offshore pétrolier, en particulier l'exploitation de champs haute
20 température où la température de l'effluent transporté excède 130°C,
imposent d'autre part aux systèmes de revêtement pour tube un cahier des
charges encore plus exigeant. En effet, les revêtements externes anti-
corrosion pour tubes de transport doivent être déposés sur l'acier par un
procédé classique, mais limité en température à 250°C pour ne pas modifier
25 la microstructure de l'acier. De plus, les contraintes environnementales
imposent l'usage de matériaux et de procédés de mise en œuvre non
polluants. Enfin, le revêtement doit présenter à la température d'usage dans
l'eau de mer d'excellentes propriétés de stabilité, d'adhérence sur l'acier et
de compatibilité avec les systèmes de protection cathodique. Or, la plupart
30 des revêtements classiquement utilisés, par exemple certaines poudres à

base de résine époxy projetées sur pipe chaud, ou des polyoléfines déposées en bande par extrusion, ou des polyuréthannes coulés sur pipe tournant, ne supportent pas une température d'usage supérieure à 130°C en continu. Une telle température entraîne généralement une déformation du

5 polymère et une perte d'adhérence de celui-ci vis à vis du métal entrant dans la composition de la conduite. Par conséquent, il s'avère nécessaire pour répondre aux besoins du marché de repousser les limites technologiques actuelles en termes de revêtement jusqu'à une tenue à des températures au moins supérieures ou égales à 140°C.

10

Le brevet US 6,239,232 décrit par exemple une composition servant au revêtement de canalisations permettant non seulement une température d'usage élevée (en général jusqu'à 180°C) mais aussi, grâce à l'introduction d'une résine modifiée, d'abaisser la température de mise en œuvre de la 15 composition sur la canalisation métallique entre 180°C et 250°C environ.

20

Dans le cadre de travaux effectués par le demandeur, il a été trouvé que l'introduction de certaines substances de charge dans des compositions de polymère servant au revêtement de canalisations métalliques à des températures d'utilisation élevées (par exemple telles que décrites dans le brevet US-6,239,232) permettait non seulement d'améliorer de façon significative la tenue mécanique desdits revêtements mais également d'étendre les plages des températures d'usage desdits revêtements et enfin d'accroître les performances de ces revêtements après leur mise en œuvre 25 sur leur support. Ainsi, il a été trouvé par le demandeur que la tenue du revêtement sur la conduite ainsi que son comportement dans certaines conditions d'utilisation, en particulier dans l'eau de mer, dépendait dans une large mesure de la prise en eau dudit revêtement, exprimée dans la présente description par la masse d'eau absorbée (exprimée en 30 pourcentage massique) pour cent grammes de revêtement. En effet, une

prise en eau trop importante se traduit irréversiblement par une plastification par l'eau du matériau polymère favorisant des phénomènes de cloquage, de fissuration et finalement de décollement du revêtement. En particulier, il a été trouvé par le demandeur qu'une faible reprise en eau préserve
5 durablement le support des phénomènes de corrosion.

Plus précisément, la présente invention se rapporte à une composition convenant pour une application comme revêtement d'une conduite pétrolière haute température, comprenant au moins un polymère thermoplastique
10 choisi dans le groupe formé par les polyphénylènes éther et les polysulfones, seuls ou en mélange, au moins une résine époxyde modifiée par au moins une polyamine aromatique, ladite résine étant formée à partir d'au moins un polyépoxyde contenant dans sa molécule au moins 2 groupes époxydes et la polyamine aromatique contenant dans sa molécule au moins
15 2 groupements amines primaires, le rapport molaire de la polyamine à l'époxyde étant tel que, à chaque groupement amine, il corresponde de 1,6 à 2,6 groupes époxydes, et au moins une charge de préférence minérale, une charge se présentant sous forme de particules présentant une morphologie anisométrique, de préférence choisie dans le groupe constitué
20 par les silicates en général, tels que certains silicates de magnésium ou d'alumine, en particulier le kaolin, et les oxydes de fer micacés.

Par morphologie anisométrique (ou non isométrique), il est entendu au sens de la présente invention que lesdites particules présentent une morphologie s'étendant préférentiellement dans une ou deux directions de l'espace. Les charges utilisables selon la présente invention peuvent par exemple se présenter sous forme de particules fibreuses, lamellaires, ou préférentiellement sous forme de feuillets.
25

La taille moyenne desdites particules peut être comprise entre 1 et 250 µm, de préférence entre 1 et 100 µm, et de manière très préférée entre 1 et 50 µm.

Par exemple, les particules de kaolin présenteront avantageusement selon 5 leur plus grande longueur des tailles comprises entre 1 et 30 µm, de préférence entre 3 et 10 µm. De même, lesdites particules d'oxyde de fer micacé présenteront avantageusement selon leur plus grande longueur des tailles comprises entre 1 et 60 µm. D'une manière générale, les particules présentent avantageusement une grande longueur supérieure à environ 10 10 µm.

Lesdites particules peuvent présenter un facteur de forme, défini par le rapport entre leur plus grande longueur et leur plus courte longueur, compris entre environ 5 et 500, bornes incluses, de préférence compris entre environ 15 5 et 100, bornes incluses, et le plus souvent compris entre environ 10 et 50, bornes incluses, par exemple, entre environ 10 et 20, ou entre 20 et 40, bornes incluses. Bien entendu, la présente invention n'est pas limitée aux valeurs du facteur de forme telles que précédemment décrites et celles-ci peuvent en particulier varier en fonction de la composition chimique de la charge utilisée. Lesdites valeurs pourront dans ce cas être ajustées selon 20 toute technique connue, notamment par des essais comparatifs portant sur des particules de dimensions connues.

La concentration volumique desdites particules dans la matrice peut être comprise entre 1% et 50%, de préférence entre 5 et 40 et le plus souvent comprise entre 10% et 30%.
25 Un ou plusieurs types de particules selon l'invention, se différenciant par leur nature chimique et/ou leur taille moyenne et/ou leur facteur de forme peuvent être incorporées dans la même composition en vue d'améliorer les propriétés précédemment décrites: Le mélange de plusieurs types de

particules ayant des tailles moyennes et/ou des facteurs de forme différents peut permettre une optimisation de la composition selon l'invention.

Selon l'invention, le rapport en poids entre d'une part le polymère thermoplastique et d'autre part la résine époxyde et la polyamine aromatique ou les précurseurs de celles-ci peut être avantageusement compris entre 5 70/30 et 30/70, et de préférence entre 60/40 et 40/60.

L'invention concerne en outre un revêtement obtenu par application sur une support généralement métallique d'une composition selon l'une des compositions telles que précédemment décrites. Dans une variante, le revêtement est appliqué sur la surface extérieure d'une conduite. 10

Avantageusement, les présentes compositions ou revêtements peuvent être utilisés dans le domaine de l'exploitation pétrolière, du transport d'hydrocarbures ou du raffinage.

La résine époxyde que l'on utilise dans le cadre de la présente invention est le plus souvent choisie dans le groupe formé par les résines commerciales suivantes : la résine diglycidyléther du bis-phénol-A ou du bis-phénol-F, la résine de bis-phénol formol, la résine phénol-novolaque, les résines cycloaliphatiques, les résines tri- ou tétrafonctionnelles, les résines formées à partir de triglycidyléther-isocyanurate et/ou de triglycidyléther-cyanurate et/ou de triglycidyl-cyanurate et/ou de triglycidyl-isocyanurate ou les mélanges d'au moins deux de ces résines. Les résines époxydes obtenues à partir de composés époxydés cités dans le brevet US-A-20 4921047 sont également utilisables dans le cadre de la présente invention.

25 Parmi les polyamines aromatiques utilisées dans le cadre de la présente invention pour modifier les résines époxydes, on peut considérer une première série d'amines aromatiques comportant un seul noyau aromatique comme par exemple le 3,5-diéthyl-2,4-diaminotoluène, le 3,5-

diéthyl-2,6-diaminotoluène et les mélanges de ces deux isomères. On utilise le plus souvent un mélange de ces deux isomères, que l'on dénomme généralement DETDA.

Pour une deuxième série d'amines pouvant être utilisées dans le cadre de la présente invention, on considère les amines comportant au moins deux noyaux aromatiques, ces deux noyaux aromatiques étant généralement reliés l'un à l'autre par un reste hydrocarboné bivalent, linéaire ou ramifié, comportant de 1 à 18 atomes de carbone. Ces deux noyaux aromatiques sont soit reliés par un groupe alcoyle bivalent, soit reliés l'un à l'autre par un reste hydrocarboné bivalent linéaire ou ramifié ayant de 6 à 18 atomes de carbone et comportant un noyau aromatique.

La polyamine aromatique peut aussi comporter au moins un substituant choisi dans le groupe formé par le fluor, l'iode, le brome et le chlore. Elle comporte de préférence au moins deux substituants alcoyles, chacun étant de part et d'autre d'un groupe amino.

Dans le cas où les deux noyaux aromatiques sont reliés par un reste alcoylène bi-valent, ce reste sera de préférence un groupe méthylidène non substitué, ou substitué par au moins un radical choisi parmi les radicaux alcoyles et les radicaux halogénoalcoyles ayant de 1 à 3 atomes de carbone. Par exemple, ce reste alcoylène sera choisi dans le groupe formé par le groupe méthylidène, le groupe isopropylidène, les groupes halogénoisopropylidènes et le groupe hexafluoroisopropylidène. Dans ce cas, l'amine est de préférence choisie dans le groupe formé par :

- la 4,4'-méthylène-bis(2,6-diméthylaniline) ou M-DMA;
- la 4,4'-méthylène-bis(2-isopropyl-6-méthyl-aniline) ou M-MIPA;
- la 4,4'-méthylène-bis(2,6-diéthylaniline) ou M-DEA;
- la 4,4'-méthylène-bis(2,6-diisopropylaniline) ou M-DIPA; et
- la 4,4'-méthylène-bis(3-chloro-2,6-diéthylaniline) ou M-CDEA.

Parmi ces amines, la 4,4'-méthylène-bis(2,6-diéthylaniline) et la 4,4'-méthylène-bis(3-chloro-2,6-diéthylaniline) présentent un intérêt particulier.

Dans le cas où l'amine comporte deux noyaux aromatiques qui sont reliés l'un à l'autre par un reste hydrocarboné bivalent substitué ou non substitué ayant de 6 à 18 atomes de carbone et comportant un noyau aromatique, elle sera de préférence choisie dans le groupe formé par :

- 5 • la 4,4'-(phénylène-diisopropyl)-bis(2,6-diméthyl-aniline);
- 10 • la 4,4'-(phénylène-diisopropyl)-bis(2,6-diéthyl-aniline);
- la 4,4'-(phénylène-diisopropyl)-bis(2,6-dipropyl-aniline);
- la 4,4'-(phénylène-diisopropyl)-bis(2,6-diisopropyl-aniline);
- 15 • la 4,4'-(phénylène-diisopropyl)-bis(2,6-diméthyl-3-chloro-aniline);
- la 4,4'-(phénylène-diisopropyl)-bis(2,6-diéthyl-3-chloro-aniline);
- la 4,4'-(phénylène-diisopropyl)-bis(2,6-dipropyl-3-chloro-aniline);
- la 4,4'-(phénylène-diisopropyl)-bis(2,6-diisopropyl-3-chloro-aniline);
- 20 • la 3,3-(phénylène-diisopropyl)-bis(2,6-diméthyl-aniline);
- la 3,3-(phénylène-diisopropyl)-bis(2,6-diéthyl-aniline);
- la 3,3-(phénylène-diisopropyl)-bis(2,6-dipropyl-aniline);
- la 3,3-(phénylène-diisopropyl)-bis(2,6-diméthyl-3-chloro-aniline);
- la 3,3-(phénylène-diisopropyl)-bis(2,6-diéthyl-3-chloro-aniline);
- 25 • la 3,3-(phénylène-diisopropyl)-bis(2,6-dipropyl-3-chloro-aniline);
- la 3,3-(phénylène-diisopropyl)-bis(2,6-diisopropyl-aniline); et
- la 3,3-(phénylène-diisopropyl)-bis(2,6-diisopropyl-3-chloro-aniline).

Les polyamines aromatiques préférées sont choisies en raison de leur faible réactivité et aussi en raison de leur caractère non toxique.

25 Dans le cadre de la présente invention, on peut également ajouter dans la composition un durcisseur très réactif (c'est-à-dire présentant une réactivité supérieure au durcisseur principal et le plus souvent très largement supérieure) en petite proportion, par exemple d'environ 1 à 15% en poids et

souvent d'environ 1 à 10% en poids par rapport au poids total de la composition.

Les compositions selon la présente invention peuvent aussi contenir
5 des catalyseurs actifs dans la réaction entre les résines époxydes et les polyamines aromatiques encombrées. Les catalyseurs actifs les plus souvent utilisés sont les imidazoles, les amines tertiaires et des complexes à base de bore trifluoré. On peut aussi, sans sortir du cadre de l'invention, ajouter d'autres additifs choisis le plus souvent dans le groupe formé par les
10 antioxydants, les pigments, les promoteurs d'adhérence, les stabilisateurs à la chaleur, au rayonnement et plus particulièrement au rayonnement ultraviolet, les retardateurs de flamme, les agents de démoulage, les agents de dispersion, les lubrifiants, les colorants, les plastifiants, les produits ignifugeants, les agents de pontage, les surfactants, les agents tensioactifs,
15 les agents de renfort, les fibres de renfort minérales ou organiques, telles que par exemple les fibres de verre, de carbone, ou de bore.

La présente invention sera mieux comprise et ses avantages apparaîtront plus clairement à la lecture des exemples décrits ci-après.

20

Dans les exemples qui suivent, les propriétés des compositions selon l'invention sont décrites dans les exemples 2 à 4 et sont comparées à celles d'une formulation de référence (exemple 1), de même nature mais dépourvue de substance de charge additionnelle et à celles d'une
25 composition comprenant ladite formulation de référence et une substance de charge de morphologie sensiblement isométrique (exemple 5).

Pour chaque composition ainsi définie, des mesures d'adhérence à l'acier, du comportement thermomécanique, de la tenue à l'eau de mer, et
30 du comportement en vieillissement ont été effectuées.

EXEMPLE 1:

Dans cet exemple, une composition de polymères comprenant un polyphénylène-éther et une résine époxyde modifiée a été préparée.

5

La résine époxyde modifiée comprend 8,016 kg de diglycidyléther du bis-phénol-A (DGEBA), commercialisée sous la référence LY556 par la société CIBA-GEIGY et 3,984 kg de 4,4'-méthylène-bis(3-chloro-2,6-diéthylaniline) (MCDEA), commercialisée par la société LONZA.

10

Avant son introduction dans l'extrudeuse, ce mélange réalisé en stoechiométrie est chauffé à 80°C sous agitation. On a mesuré l'avancement de réaction de ce mélange par chromatographie d'exclusion de taille. La réactivité est très faible : 5 heures à 60°C conduisent à un avancement de réaction de 1%.

15

Le polyphénylène-éther ou PPE utilisé est commercialisé par la société GENERAL ELECTRIC sous la référence Blendex HPP820, sa masse moléculaire moyenne en nombre est de 12 000 g/mol.

20

La résine époxyde modifiée est introduite dans l'extrudeuse par une pompe à piston au débit constant de 1,30 kg/h. Le polyphénylène-éther est introduit au moyen d'un doseur pondéral au débit de 2,00 kg/h, pour obtenir une composition contenant 40% en masse de résine époxyde modifiée, ce pourcentage de résine époxyde modifiée étant calculé par rapport à la composition totale. La température de mise en œuvre du mélange est de 180°C environ.

25

En sortie d'extrudeuse, on obtient un mélange homogène, la conversion en fonctions réactives époxydes étant inférieure à 10%.

30

Après extrusion, afin d'effectuer des mesures d'adhérence par un test de rupture en traction-cisaillement, la composition de référence notée

PPE60 a été déposée sur acier à une température de 220°C puis portée à recuit à 220°C pendant 2 heures.

D'autre part, la composition a été pressée en moule sous une pression
5 de 5 MPa pour former une plaque d'épaisseur 2.10^{-3} m et de surface
 120.10^{-3} m x 120.10^{-3} m, puis portée à recuit à 220°C pendant 2 heures, de
manière à découper ultérieurement dans la plaque des éprouvettes en vue
de déterminer les propriétés thermomécaniques de la composition, ainsi que
des coupons en vue de déterminer la tenue à l'eau de mer.

10

Les propriétés d'adhérence de la composition suivant l'exemple ont été
déterminées par la méthode de rupture en traction-cisaillement (ASTM
D1002). Pour déterminer l'adhérence, trois éprouvettes en acier,
préalablement décapées avec une brosse en acier inoxydable tournant à
15 grande vitesse, sont collées. La surface de collage est de $25,4.10^{-3}$ m x
 $12,7.10^{-3}$ m et l'épaisseur du joint de colle constitué par ladite composition
est de 125 micromètres. Le collage est effectué par simple contact à 220°C
qui correspond à une température de mise en œuvre aisée, puis les
différentes éprouvettes sont portées à recuit pendant 2 heures à 220°C.

20

Ces tests d'adhérence par la méthode de rupture en traction-
cisaillement ont été effectués avec un appareil commercialisé par la société
INSTRON (INSTRON-1175), équipé d'une tête de mesure de 100 kN
(kiloNewton), avec une vitesse de traverse de 10^{-3} m/min.

25

Les exemples 1.1 à 1.3 du tableau 1a sont relatifs aux trois éprouvettes
testées en traction-cisaillement pour la composition de référence PPE60, et
l'exemple 1.4 est la moyenne des résultats précédents. Pour chaque
éprouvette, on a déterminé la charge maximale applicable avant la rupture.
30 En rapportant cette valeur à la surface de collage, on déduit la contrainte à
la rupture en traction-cisaillement.

TABLEAU 1a

Exemples 1	1.1	1.2	1.3	1.4 (moyenne)
Charge maximale (kiloNewton)	7,5	7,6	7,7	7,6
Contrainte à la rupture (MPa)	23,4	23,7	23,8	23,6

De cette première série de résultats, on note que la contrainte à la
 5 rupture moyenne en traction-cisaillement de la composition de référence
 PPE60 est largement supérieure aux valeurs requises pour une application
 en revêtement.

Les propriétés thermomécaniques de la composition de polymère
 10 suivant l'exemple ont été déterminées par une analyse DMTA (Dynamic
 Mechanical Thermal Analysis), en simple encastrement. La mesure a été
 effectuée sur une éprouvette d'épaisseur 2.10^{-3} m moulée et recuite comme
 précité. Les valeurs du module d'élasticité sont mesurées en fonction de la
 15 température à une fréquence de 1 Hz au moyen d'un appareil DMTA de la
 société Polymer Laboratories.

Les modules d'élasticité E' à 25°C, à 150°C, à 180°C et à 220°C ont été
 mesurés sur la composition de référence PPE60 suivant l'exemple. Ces
 valeurs sont consignées dans le tableau 1b.

20

TABLEAU 1b

Exemple 1	25°C	150°C	180°C	220°C
Modules E' en MPa	1260	990	610	70

25 Les modules d'élasticité traduisent la rigidité des matériaux. D'après
 ces résultats, la composition de référence présente jusqu'à 180°C environ

une rigidité suffisante pour une application comme revêtement, mais pas au-delà.

Un test de la tenue à l'eau de mer a par ailleurs été effectué. La plaque 5 moulée d'épaisseur 2.10^{-3} m de la composition suivant l'exemple et recuite a été découpée sous forme de coupons de surface 50.10^{-3} m x 50.10^{-3} m. Deux échantillons ont été immersés dans de l'eau de mer synthétique contenue dans un réacteur étanche, chauffé à 160°C, à une pression absolue de 0,62 MPa. Des mesures d'absorption de l'eau (ou reprise en 10 eau), exprimée par la masse d'eau absorbée (exprimée en pourcentage massique) pour cent grammes de revêtement, ont été réalisées en déterminant la variation de masse des échantillons après 2 mois et 4 mois d'immersion. Les résultats moyennés sont consignés dans le tableau 1c.

15

TABLEAU 1c

Exemple 1	2 mois	4 mois
Reprise d'eau (% en poids)	1,40	1,40
Déformation	aucune	aucune

Les éprouvettes suivant la composition de référence ne subissent aucune déformation manifeste après 4 mois d'immersion à 160°C et 20 présentent un aspect presque complètement inaltéré. La reprise d'eau de la composition de référence PPE60 est inchangée entre 2 mois et 4 mois d'immersion, signifiant que l'équilibre de saturation est atteint.

EXEMPLE 2

25

L'exemple 2 est conforme à l'invention. Dans cet exemple, une composition a été préparée à base de la composition de référence PPE60 décrite dans l'exemple 1 et de kaolin, présentant une morphologie anisométrique.

Le kaolin (silicate d'alumine calciné) utilisé est commercialisé par la société OMYA sous la référence kaolin 2211. Sa densité spécifique est de 2,63 g/cm³. La taille moyenne de particules est de 1,4 micromètres.

Le mélange entre le PPE60 et le kaolin a été réalisé dans une extrudeuse 5 portée à la température de 180°C. Des granulés de PPÉ60 obtenus après un premier passage en extrudeuse suivant le protocole décrit dans l'exemple 1 ont été introduits par une pompe à piston au débit constant de 2,00 kg/h. Le kaolin est introduit au moyen d'un doseur pondéral au débit de 1,20 kg/h pour obtenir une composition contenant 20% en volume de kaolin par 10 rapport à la composition totale.

En sortie d'extrudeuse, on obtient un mélange homogène en polymère, la conversion en fonctions réactives époxyde étant inférieure à 15%, et chargé en kaolin à raison de 20% en volume.

Après extrusion, la composition de l'exemple 2 suivant l'invention a été mise en œuvre et recuite suivant les mêmes protocoles que ceux décrits dans l'exemple 1 afin de mesurer son adhérence à l'acier, son comportement thermomécanique, sa tenue à l'eau de mer, et son comportement en vieillissement. Le facteur de forme de la plupart desdites particules, mesuré à partir de clichés de microscopie électronique à balayage sur ladite composition après ledit recuit est compris entre 10 et 20.

Les propriétés d'adhérence de la composition de l'exemple 2 conforme 25 à l'invention ont été déterminées par la méthode ASTM D1002 selon le même processus que dans l'exemple 1. Les résultats sont reportés dans le tableau 2a.

TABLEAU 2a

Exemples 2	2.1	2.2	2.3	2.4 (moyenne)
Charge maximale (kiloNewton)	6,1	5,5	6,1	5,8
Contrainte à la rupture (MPa)	19	17	19	18

De cette série de résultats, on note que la composition selon la 5 présente invention présente une contrainte moyenne à la rupture en traction-cisaillement très bonne, convenant pour une utilisation comme revêtement de conduites pétrolières, car les valeurs relatives aux trois éprouvettes sont toutes au moins égales à 15 MPa.

10 Les propriétés thermomécaniques de la composition de l'exemple 2 conforme à l'invention ont été déterminées par une analyse DMTA en simple encastrement selon le même processus que dans l'exemple 1.

15 Les valeurs des modules d'élasticité E' mesurés à 25°C, à 150°C, à 180°C et à 220°C ont été consignées dans le tableau 2b.

TABLEAU 2b

Exemple 2	25 °C	150 °C	180 °C	220 °C
Modules E' en MPa	2520	1990	1220	200

20 Les modules d'élasticité traduisent la rigidité des matériaux. D'après ces résultats, la composition de l'exemple 2 suivant l'invention présente au moins jusqu'à 220°C une rigidité suffisante pour une application en revêtement.

25 Une série de tests mesurant la tenue à l'eau de mer a été effectuée sur la composition suivant l'invention de l'exemple 2 à partir de mesures

gravimétriques selon le même processus que dans l'exemple 1. Les mesures d'absorption de l'eau réalisées en déterminant la variation de masse des échantillons après 2 et 4 mois d'immersion sont reportées dans le tableau 2c.

5

TABLEAU 2c

Durée	2 mois	4 mois
Reprise d'eau (% en poids)	1,27	1,28
Déformation	aucune	aucune

Les éprouvettes de l'exemple 2 suivant l'invention ne subissent aucune 10 déformation manifeste après 4 mois d'immersion à 160°C et présentent un aspect complètement inaltéré. La reprise d'eau de la composition de l'exemple 2 suivant l'invention est stable entre 2 mois et 4 mois d'immersion, signifiant que l'équilibre de saturation est atteint. La reprise d'eau de la composition de l'exemple 2 conforme à l'invention est particulièrement faible.

15

EXEMPLE 3

L'exemple 3 est également conforme à une variante de l'invention. Dans cet exemple, une composition a été préparée à base de la composition de 20 référence PPE60 décrite dans l'exemple 1 et d'un oxyde de fer micacé de morphologie anisométrique.

L'oxyde de fer micacé utilisé est commercialisé par la société Kartner sous la référence MIOX SF. Sa densité spécifique est de 4,80 g/cm³. 15% des particules présentent une taille moyenne inférieure à 44 micromètres et 30% des particules présentent une taille moyenne inférieure à 32 micromètres, l'ensemble des particules présentant une taille moyenne inférieure à 74 micromètres.

Le mélange entre le PPE60 et l'oxyde de fer micacé a été réalisé dans l'extrudeuse portée à la température de 180°C. Les granulés de PPE60 obtenus après un premier passage à l'extrudeuse suivant le protocole décrit dans l'exemple 1 ont été introduits par une pompe à piston au débit constant de 2 kg/h. L'oxyde de fer micacé est introduit au moyen d'un doseur pondéral au débit de 2,20 kg/h pour obtenir une composition contenant 20% en volume d'oxyde de fer micacé par rapport à la composition totale.

En sortie d'extrudeuse, on obtient un mélange homogène en polymère, 10 la conversion en fonctions réactives époxydes étant inférieure à 15%, et chargé en oxyde de fer micacé à raison de 20% en volume.

Après extrusion, la composition suivant l'exemple a été mise en œuvre et recuite suivant les protocoles décrits dans l'exemple 1 afin de mesurer 15 son adhérence à l'acier, son comportement thermomécanique, sa tenue à l'eau de mer, et son comportement en vieillissement. Le facteur de forme de la plupart desdites particules, mesuré à partir de clichés de microscopie électronique à balayage sur ladite composition après ledit recuit, est compris entre 20 et 40.

20 Les propriétés d'adhérence de la composition de l'exemple 3 conforme à l'invention ont été déterminées par la méthode ASTM D1002 selon le même processus que dans l'exemple 1. Les résultats sont reportés dans le tableau 3a.

25

TABLEAU 3a

Exemples 3	3.1	3.2	3.3	3.4 (moyenne)
Charge maximale (kiloNewton)	7,1	7,3	6,9	7,1
Contrainte à la rupture (MPa)	22	23	21	22

De cette série de résultats, on note que la composition selon la présente invention présente une contrainte moyenne à la rupture en traction-cisaillement très bonne, convenant pour une utilisation comme revêtement de conduites pétrolières, les valeurs relatives aux trois éprouvettes étant 5 toutes au moins égales à 20 MPa.

Les propriétés thermomécaniques de la composition de l'exemple 3 conforme à l'invention ont été déterminées par une analyse DMTA en simple encastrement selon le même processus que dans l'exemple 1.

10 Les valeurs des modules d'élasticité E' mesurés à 25°C, à 150°C, à 180°C et à 220°C ont été consignées dans le tableau 3b.

TABLEAU 3b

15	Exemple 3	25°C	150°C	180°C	220°C
	Modules E' en MPa	3000	2010	990	220

15 Les modules d'élasticité traduisent la rigidité des matériaux. D'après ces résultats, la composition de l'exemple 3 suivant l'invention présente une rigidité suffisante pour une application en revêtement au moins jusqu'à 20 220 °C.

Une série de tests de la tenue à l'eau de mer a aussi été effectuée sur 25 la composition suivant l'invention de l'exemple 3 à partir de mesures gravimétriques selon le même processus que dans l'exemple 1. Les mesures d'absorption de l'eau réalisées en déterminant la variation de masse des échantillons après 2 et 4 mois d'immersion sont reportées dans le tableau 3c.

TABLEAU 3c

Durée	2 mois	4 mois
Reprise d'eau (% en poids)	1,14	1,15
Déformation	aucune	aucune

Les éprouvettes de l'exemple 3 suivant l'invention ne subissent aucune déformation manifeste après 4 mois d'immersion à 160°C et présentent un aspect complètement inaltéré. La reprise d'eau de la composition de 5 l'exemple 3 suivant l'invention est stable entre 2 mois et 4 mois d'immersion, signifiant que l'équilibre de saturation est atteint. La reprise d'eau de la composition de l'exemple 3 conforme à l'invention est particulièrement faible.

EXEMPLE 4

10

L'exemple 4 est conforme à une autre variante l'invention. Dans cet exemple, une composition a été préparée à base de la composition de référence PPE60 décrite dans l'exemple 1 et d'un mélange de kaolin et d'oxyde de fer micacé, décrits respectivement dans les exemples 2 et 3.

15

Le mélange entre le PPE60, l'oxyde de fer micacé et le kaolin a été réalisé dans l'extrudeuse portée à la température de 180°C. Les granulés de PPE60 obtenus après un premier passage à l'extrudeuse suivant le protocole décrit dans l'exemple 1 ont été introduits par une pompe à piston au débit constant de 2,00 kg/h. L'oxyde de fer micacé et le kaolin préalablement mélangés suivant un rapport 15/85 en volume sont introduits au moyen d'un doseur pondéral au débit de 1,30 kg/h pour obtenir une composition contenant 20% en volume de particules à morphologie anisométrique par rapport à la composition totale.

25

En sortie d'extrudeuse, on obtient un mélange homogène en polymère, la conversion en fonctions réactives époxydes étant inférieure à 15%, et chargé en un mélange 15/85 d'oxyde de fer et de kaolin à raison de 20% en volume.

30

Après extrusion, la composition suivant l'exemple 4 a été mise en œuvre et recuite suivant les protocoles décrits dans l'exemple 1 afin de

mesurer son adhérence à l'acier, son comportement thermomécanique, sa tenue à l'eau de mer, et son comportement en vieillissement.

- Les propriétés d'adhérence de la composition de l'exemple 4 conforme
 5 à l'invention ont été déterminées par la méthode ASTM D1002 selon le même processus que dans l'exemple 1. Les résultats sont reportés dans le tableau 4a.

TABLEAU 4a

10

Exemples 4	4.1	4.2	4.3	4.4 (moyenne)
Charge maximale (kiloNewton)	6,1	6,4	6,9	6,4
Contrainte à la rupture (MPa)	19	20	21	20

- De cette série de résultats, on note que la composition de l'exemple 4, selon la présente invention présente une contrainte moyenne à la rupture en traction-cisaillement très bonne, convenant pour une utilisation comme revêtement de conduites pétrolières, les valeurs relatives aux trois éprouvettes étant toutes au moins égales à 20 MPa.
 15

- Les propriétés thermomécaniques de la composition de l'exemple 4 conforme à l'invention ont été déterminées par une analyse DMTA en simple encastrement selon le même processus que dans l'exemple 1.
 20

Les valeurs des modules d'élasticité E' mesurés à 25°C, à 150°C, à 180°C et à 220°C ont été consignées dans le tableau 4b.

TABLEAU 4b

25

Exemple 4	25°C	150°C	180°C	220°C
Modules E' en MPa	2700	1910	1130	220

Les modules d'élasticité traduisent la rigidité des matériaux. D'après ces résultats, la composition de l'exemple 4 suivant l'invention présente au moins jusqu'à 220°C une rigidité suffisante pour une application en revêtement.

5

Une série de tests de la tenue à l'eau de mer a aussi été effectuée sur la composition de l'exemple 4 conforme à l'invention à partir de mesures gravimétriques selon le même processus que dans l'exemple 1. Les mesures d'absorption de l'eau réalisées en déterminant la variation de 10 masse des échantillons après 2 et 4 mois d'immersion sont reportées dans le tableau 4c.

TABLEAU 4c

Durée	2 mois	4 mois
Reprise d'eau (% en poids)	1,20	1,21
Déformation	aucune	aucune

15 Les éprouvettes de l'exemple 4 suivant l'invention ne subissent aucune déformation manifeste après 4 mois d'immersion et présentent un aspect complètement inaltéré. La reprise d'eau de la composition de l'exemple 4 suivant l'invention est stable entre 2 mois et 4 mois d'immersion, signifiant que l'équilibre de saturation est atteint. Notons que la reprise en eau de la 20 composition de l'exemple 4 suivant à l'invention est particulièrement faible.

EXEMPLE 5

25 L'exemple 5 n'est pas conforme à l'invention. Dans cet exemple, une composition a été préparée à base de la composition de référence PPE60 décrite dans l'exemple 1 et de particules de Phosphate de Zinc, substance de charge à morphologie sensiblement isométrique.

30 Le Phosphate de Zinc utilisé est commercialisé par la société SNCZ sous la référence Phosphinal PZ04. Sa densité spécifique est de 3,30 g/cm³. Le

phosphate de zinc se présente sous la forme de poudre solide dont la taille moyenne des particules est de l'ordre du micron et le facteur de forme proche de 1.

- 5 Le mélange entre le PPE60 et le phosphate de zinc a été réalisé dans l'extrudeuse portée à la température de 180°C. Les granulés de PPE60 obtenus après un premier passage à l'extrudeuse suivant le protocole décrit dans l'exemple 1 ont été introduits par une pompe à piston au débit constant de 2 kg/h. Le phosphate de zinc a été introduit au moyen d'un doseur pondéral au débit de 1,50 kg/h pour obtenir une composition contenant 20% en volume par rapport à la composition totale de particules de phosphate de zinc à morphologie sensiblement isométrique.
- 10

- 15 En sortie d'extrudeuse, on obtient un mélange homogène en polymère, la conversion en fonctions réactives époxydes étant inférieure à 15%, et chargé en phosphate de zinc à raison de 20% en volume.

- 20 Après extrusion, la composition suivant l'exemple 5 a été mise en œuvre et recuite suivant les protocoles décrits dans l'exemple 1 afin de mesurer son adhérence à l'acier, son comportement thermomécanique, sa tenue à l'eau de mer, et son comportement en vieillissement.

- 25 Les propriétés d'adhérence de la composition suivant l'exemple 5 non conforme à l'invention ont été déterminées par la méthode ASTM D1002 selon le même processus que dans l'exemple 1. Les résultats sont reportés dans le tableau 5a.

TABLEAU 5a

Exemples 5	5.1	5.2	5.3	5.4 (moyenne)
Charge maximale (kiloNewton)	6,9	7,3	7,1	7,1
Contrainte à la rupture (MPa)	21	23	22	22

De cette série de résultats, on note que la composition de l'exemple comparatif 5 présente une contrainte moyenne à la rupture en traction-cisaillement très bonne, car les valeurs relatives aux trois éprouvettes sont toutes au moins égales à 15 MPa.

Les propriétés thermomécaniques de la composition de l'exemple comparatif 5 ont été déterminées par une analyse DMTA en simple encastrement selon le même processus que dans l'exemple 1.

10

Les valeurs des modules d'élasticité E' mesurés à 25°C, à 150°C, à 180°C et à 220°C ont été consignées dans le tableau 5b.

15

Exemple 5	25 °C	150 °C	180 °C	220 °C
Modules E' en MPa	2870	1740	1110	310

Les modules d'élasticité traduisent la rigidité des matériaux. D'après ces résultats, la composition de l'exemple comparatif 5 présente une rigidité suffisante pour une application en revêtement au moins jusqu'à 220°C.

20

Une série de tests de la tenue à l'eau de mer a aussi été effectuée sur la composition de l'exemple comparatif 5 à partir de mesures gravimétriques selon le même processus que dans l'exemple 1. Les mesures d'absorption de l'eau réalisées en déterminant la variation de masse des échantillons après 2 et 4 mois d'immersion sont reportées dans le tableau 5c.

25

TABLEAU 5c

Durée	2 mois	4 mois
Reprise d'eau (% en poids)	12,50	14,20
Déformation	marquée	marquée

Les éprouvettes de l'exemple comparatif 5 subissent une déformation manifeste après 2 et 4 mois d'immersion à 160°C et présentent un aspect sensiblement altéré (cloquage et fissuration). La reprise d'eau de la composition de l'exemple 5 comparatif croît entre 2 mois et 4 mois 5 d'immersion, signifiant que l'équilibre de saturation n'est pas atteint. Comme la reprise d'eau de la composition de l'exemple 5 est particulièrement élevée et non stabilisée, on peut conclure que ladite composition est sensible au vieillissement dans l'eau de mer à 160°C.

10 Les exemples 1 à 5 mettent en évidence la possibilité de réaliser des compositions à partir du thermoplastique Polyphénylène éther et de résines modifiées en respectant une température de mise en œuvre du dépôt de ces 15 compositions sur l'acier inférieure à 250°C et qui conduisent à une bonne adhérence à l'acier - dans ces exemples la contrainte à la rupture en traction-cisaillement est d'au moins 15 MPa.

Mais l'application en revêtement hautes températures nécessite une rigidité élevée dans les conditions de service ; par comparaison à l'exemple 1 de référence, les exemples 2 à 4 mettent en évidence que l'introduction 20 d'une charge anisométrique dans la composition de polymère améliore considérablement la rigidité du revêtement sur toute la gamme des températures (gain de module supérieur ou égal à 100% entre 25°C et 180°C), et permet aussi d'envisager l'application en revêtement à des températures plus élevées, entre 180°C et 220°C (gain de module supérieur 25 ou égal à 200% à 200°C), ce qui n'est pas possible pour la composition de référence.

D'autre part, la considération de la tenue à l'eau de mer s'avère primordiale en vue d'une application en revêtement externe pour conduites 30 en milieu marin. Par comparaison à l'exemple 1 de référence, les exemples 2, 3 et 4 selon l'invention montrent clairement que lorsque les compositions comprennent une substance de morphologie anisométrique, la reprise en eau du revêtement est considérablement réduite par rapport à la

composition de référence de l'exemple 1 (-10% pour l'exemple 2 ; - 20% pour l'exemple 3 ; - 14% pour l'exemple 4) . Il a été trouvé selon la présente invention que cette diminution de la reprise d'eau conditionne dans le temps les performances anticorrosion du revêtement. Ainsi, une composition
5 comprenant une charge de morphologie sensiblement isométrique présente une reprise en eau très accrue par rapport à celle de la composition de référence de l'exemple 1 (+800%). Il a été trouvé selon la présente invention qu'une forte reprise en eau est associée à un phénomène de vieillissement du revêtement de ladite composition, se traduisant par des phénomènes de
10 cloquage et de fissuration.

Le bilan de ces différentes expériences montre que seules les compositions des exemples 2 à 4 suivant l'invention apportent une réponse satisfaisante en termes d'adhérence, comportement thermomécanique, reprise d'eau et vieillissement en vue de l'application en revêtements hautes
15 températures pour conduites en milieu marin notamment.

REVENDICATIONS

- 1- Composition comprenant au moins un polymère thermoplastique choisi dans le groupe formé par les polyphénylènes éther et les polysulfones, seuls ou en mélanges, au moins une résine époxyde modifiée par au moins une polyamine aromatique, ladite résine étant formée à partir d'au moins un polyépoxyde contenant dans sa molécule au moins 2 groupes époxydes et la polyamine aromatique contenant dans sa molécule au moins 2 groupements amines primaires, le rapport molaire de la polyamine à l'époxyde étant tel que, à chaque groupement amine, il corresponde de 1,6 à 2,6 groupes époxydes, et au moins une charge se présentant sous forme de particules présentant une morphologie anisométrique.
5
- 2- Composition selon la revendication 1 dans laquelle ladite charge est choisie parmi des silicates non isométriques.
10
- 3- Composition selon la revendication 1 dans laquelle ladite charge est un oxyde de fer micacé.
15
- 4- Composition selon l'une des revendications précédentes dans laquelle la taille moyenne desdites particules est comprise entre 1 et 250 µm.
- 20 5- Composition selon l'une des revendications précédentes dans laquelle lesdites particules présentent un facteur de forme, défini par le rapport entre leur plus grande longueur et leur plus courte longueur, compris entre environ 5 et 500.
- 25 6- Composition selon l'une des revendications précédentes dans laquelle la concentration volumique desdites particules, par rapport au volume total, est comprise entre 1% et 50%.

- 7- Composition comprenant plusieurs types de particules selon l'une des revendications précédentes se différenciant par leur nature chimique et/ou leur taille moyenne et/ou leur facteur de forme.
- 5 8- Composition selon l'une des revendications précédentes dans laquelle le rapport en poids entre
- le polymère thermoplastique et
 - la résine époxyde et la polyamine aromatique ou les précurseurs de celles-ci,
- 10 est respectivement compris entre 70/30 et 30/70.
- 9- Composition selon l'une des revendications précédentes comprenant en outre au moins un durcisseur dont la teneur en poids est comprise entre environ 1% et environ 15%.
- 10- Revêtement obtenu par application sur un support d'une composition
- 15 selon l'une des revendications précédentes.
- 11- Revêtement selon la revendication 10 appliqué sur la surface extérieure d'une conduite.
- 12- Application d'une composition selon l'une des revendications 1 à 9 ou d'un revêtement selon l'une des revendications 10 ou 11 au domaine de
- 20 l'exploitation pétrolière; du transport d'hydrocarbures ou du raffinage.

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ

Code de la propriété intellectuelle - Livre VI

INPI
N° 11235'03

DÉPARTEMENT DES BREVETS

26 bis, rue de Saint Pétersbourg
75800 Paris Cedex 08
Téléphone : 33 (1) 53 04 53 04 Télécopie : 33 (1) 42 94 86 54

DÉSIGNATION D'INVENTEUR(S) Page N° 1.../1..

INV

(À fournir dans le cas où les demandeurs et
les inventeurs ne sont pas les mêmes personnes)

Cet imprimé est à remplir lisiblement à l'encre noire

08 113 8 W / 27060

Vos références pour ce dossier (facultatif)	JPN/CLN
N° D'ENREGISTREMENT NATIONAL	6228713
TITRE DE L'INVENTION (200 caractères ou espaces maximum)	
COMPOSITIONS POUR NOUVEAUX REVETEMENTS POUR CONDUITES HAUTES TEMPERATURES	

LE(S) DEMANDEUR(S) :

INSTITUT FRANCAIS DU PETROLE

DESIGNE(NT) EN TANT QU'INVENTEUR(S) :

1 Nom		SAUVANT-MOYNOT
Prénoms		Valérie
Adresse	Rue	57, rue de Seze
	Code postal et ville	16 900 6 Lyon
Société d'appartenance (facultatif)		
2 Nom		GAUDILLIERE
Prénoms		Alexandre
Adresse	Rue	3, chemins des Buis La Malate
	Code postal et ville	12 516 10 Montfaucon
Société d'appartenance (facultatif)		
3 Nom		GRENIER
Prénoms		Jacky
Adresse	Rue	Hameau La Rivoire
	Code postal et ville	13 181 91 Vignieu
Société d'appartenance (facultatif)		

S'il y a plus de trois inventeurs, utilisez plusieurs formulaires. Indiquez en haut à droite le N° de la page suivie du nombre de pages.

DATE ET SIGNATURE(S)

DU (DES) DEMANDEUR(S)

OU DU MANDATAIRE

(Nom et qualité du signataire)

Pour Alfred ELMALEH, Chef du
Département Brevets

Jean COADOUR

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.