Total No. of Questions : 4]	200	SEAT No. :	
P8556		[Total No. of	Pages: 2
[Oct 2	2/TE/Insem]-526		
T.E. (Con	nputer Engineeri	ng)	
THEORY	OF COMPUTAT	ION	
(2019 Pattern) (Semester -I) (3	310242)	
0, 2		,	
Time: 1 Hour]		[Max. N	<i>Marks</i> : 30
Instructions to the cardidates:		•	
1) Answer Q1 or Q2, Q3 or Q4.			
2) Neat diagrams must be draw	n wherever necessary.		
3) Figures to the right side ind	icate full marks.	26	
4) Assume suitable data, if nece	essary.	<i>y</i> ²	
6.			
	NEA DEA		[10]
Q1) a) Convert the given NFA	-E to an NFA to DFA	1.	[10]
	0 000.19		
0 ε B			
A	E		
	0 0		3
b) Define Pumping Lemma	a and apply it to prov	e the following	
$L=\{0^{m}1^{n}0^{m+n} \mid m>=1$	n>=1} is not regula	ar	[5]
	OR	2 %	
Q2) a) Convert following NFA	to DFA	0,0	[6]

Design a Mealy machine that accepts strings ending in '00' or '11'. b) Convert the Mealy machine to the equivalent Moore machine [9]

P.T.O.

Convert the following RE to ε -NFA and find the ε -closure of all the **Q3**) a) states and corresponding DFA. (0+1)*. 1.(0+1)[9] The set of strings over $\{0,1\}$ that have at least one 1. b) **[6]** The set of strings over $\{0,1\}$ that have at most one 1. The set of all strings over $\{0,1\}$ ending with 00 and beginning with 1. OR Consider the two RE r=0*+1*, s=01*+10*+1*0+(0*1)**04*) a) [8] Find the string corresponding to r but not to s. Find the string corresponding to s but not to re ii) Find the string corresponding to both r & s Find the string corresponding to neither r nor s. Write regular expressions for the following languages over the alphabet $\sum = \{a,b\}$ [7] i) All strings that do not end with 'aa'. The set of all strings ending neither in b nor in ba ii) Sented. Find the shortest string that is not in the language represented by iii) the regular expression a*(ab)*b*.

TE/Insem-526

Total No. of Questions: 4]

P-5341

SEAT No. :		
[Total	No. of Pages :	3

[6187]-426A

T.E. (Computer Engineering) (Insem.)

THEORY OF COMPUTATION (Theory)

(2019 Pattern) (Semester - I) (310242)

Time: 1 Hour] [Max. Marks: 30

Instructions to the candidates:

- 1) Answer the question of 1 or 2, 3 or 4.
- 2) Neat diagrams must be drawn whenever necessary.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data, if necessary.
- Q1) a) Draw FA for the following language over $\{0,1\}$

[8]

- i) Number of 1's is multiple of 3
- ii) Number of 1's is not multiple of 3
- b) Covert following NFA into equivalent DFA and perform DFA minimization

Q/Σ		1
\rightarrow P	{P, Q}	{P}
Q	{ R }	{R}
R	\{S}	
S*	(S)	{S}

OR

- Q2) a) Construct DFA for checking "whether a string over alphabet $\{a, b\}$ contains a substring aba". [5]
 - b) i) Differentiate between Moore machine and Mealy machine.
 - ii) Construct Moore machine equivalent to the following Mealy machine. (Show it in transition Diagram)

 $M = (Q, \Sigma, \Delta, \delta, q0)$ where $Q = \{q0, p0, p1\}$, $\Sigma = \{0, 1\}$, $\Delta = \{y, n\}$ and δ is shown as given below.

P.T.O.

	Input / Output		
States	0	1	
q0	p0/n	p1/n	
P0	p0/y	p1/n	
P1	p0/n	p1/y	

[5]

c) Convert the following DFA to its Minimized form (Minimization of DFA).

Q3) a) Prove that LHS RE is equivalent to RHS RE

(1+00*1)+(1+00*1)(0+10*1)*(0+10*1)=0*1(0+10*1)* [5]

- b) Find a regular expression corresponding to each of the following subsets of $\{0,1\}^*$
 - i) The language of all strings containing exactly two zeros
 - ii) The language of all strings containing at least two zeros
 - iii) The language of all strings that do not end with 01.
- c) Write a note on Myhill Nerode theorem.

-[4

OR

Q4) a) Construct Regular expression for following DFA using Ardens theorem.[7]

[6187]-426A

2

- b) i) Write regular expression for a set of strings of 0s and 1s with even number of 0s.
 - ii) Write regular expression for a set of strings of 0s and 1s containing odd number of 1s.

[4]

- c) Choose any one option given below and give the justification "The regular expression 0*(10*)* denotes the same set as" [4]
 - i) (1*0)*1*
 - ii) 0+(0+10)*
 - iii) (0+1)*10(0+1)*
 - iv) none of these

 $\nabla \nabla \nabla \nabla$

Total No. of Questions : 4]	290	SEAT No. :
PC26	[6360]-26	[Total No. of Pages :2

T.E. (Computer Engineering) (Insem) THEORY OF COMPUTATIONS (2019 Pattern) (Semester- I) (310242)

Time: 1 Hour] [Max. Marks: 30

Instructions to the candidates:

- 1) Answer the question of 1 or 2, 3 or 4.
- 2) Near diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data if necessary.
- Q1) a) Convert the given NFA- ϵ to an NFA to DFA. [9]

b) Design a DFA which can accept a decimal number divisible by 3.

OR

Q2) a) Convert following NFA to DFA.

- b) i) Design a moore machine for the 1's complement of binary number.
 - ii) Design a Mealy machine to find out 2's complement of a given binary number. [8]

P.T.O.

- Q3) a) Convert the following RE to ε -NFA and find the ε -closure of all the states and corresponding DFA. (0+1)*.1.(0+1). [9]
 - b) i) Regular Expression of strings over $\{0,1\}$ that have at least one 1.
 - ii) Regular Expression of strings over $\{0,1\}$ that have at most one 1.
 - iii) Regular Expression of all strings over {0,1} ending with 00 and beginning with 1.

[6]

OR

- Q4) a) i) Write the regular expression for the language starting with a but not having consecutive b's.
 - ii) Write the regular expression for the language L over $\Sigma = \{0,1\}$ such that all the string do not contain the substring 01.
 - write the regular expression for the language containing the string over {0,1} in which there are atleast two occurrences of 1's between any two occurrences of 1's between any two occurrences of 0's.

[7]

- b) Design a FA from given regular expression 10 + (0 + 11) 0 *1. [4]
- c) Construct the regular expression for the given DFA using Ardens Theorem.

