Homework 10

Spring 2021 - Yu

Due: Tues Apr 27 - 11:59pm

For Questions 1(a-b) and 2(a-b), State the following, showing work where appropriate:

- null and alternative hypothesis
- distribution and value of the test statistic
- p value (may use a table, R, calculator, app, etc)
- conclusion (reject or fail to reject H_0).

Exercise 1

King Joffrey's mom has a million muffins and thinks that at least half of them are poisoned. She obtains a random sample of a sample of 200 muffins and finds that only 80 of them are poisoned. She now thinks it's possible that fewer than half are poisoned. Let p represent the true proportion of poisoned muffins.

- a) (1.5 points) Perform an appropriate test at significance level $\alpha = 0.01$ to test her hypothesis.
- b) (1 point) Change the Null Hypothesis from 1(a) to $p \ge 0.4$, and perform a test at significance level $\alpha = 0.05$.
- c) (0.5 point) Create a 95% confidence interval for p.
- d) (0.5 point) Create a 95% confidence upper bound for p.

Exercise 2

Vision is at the new Infinity Stone kiosk at Marketplace Mall. His current Infinity Stone allows him to fire lasers with high accuracy. If he is shooting at targets a mile away, his laser blasts are currently on target $\mu_{current} = 0$, but have a (population) standard deviation of $\sigma_{current} = 2$ cm.

With the new infinity stone, he tries shooting the same target, and misses by the following amounts:

```
new.laser = c(1.3, -0.8, 2.3, 3.3, 2.7, 5.8, 0.6, 0.2, 2.0, 0.0)
```

*Notes:

- 0 means the shot was on target, negative means it missed to the left, and positive means it missed to the right.
- Assume we don't care about missing up or down.
- You may use R to calculate s^2
- a) (1.5 point) Perform a hypothesis test at $\alpha = 0.05$ to test whether there is sufficient evidence to suggest that the new Infinity Stone gives his laser blasts a smaller standard deviation, σ_{new} than the current one.
- b) (1 point) Vision is noticing that these measurements have more positive numbers than negative ones but Wanda is not around to interpret Stats things for him. Perform an appropriate test at $\alpha = 0.05$ to see whether the new stone still keeps his lasers centered on target (e.g. whether $\mu_{new} = 0$ for the new stone).
- c) (0.5 points) Create a 95% Confidence interval for σ_{new} .
- d) (0.5 points) Create a 95% Confidence interval for μ_{new} .

Exercise 3

Albert collects two samples of exam scores for the same midterm: students who are are reading the textbook (Group 1), and students who **are not** reading the textbook (Group 2), and notices that exams scores seem lower in group 2.

Test whether this difference is significant or not. Here are some summary statistics:

Group 1: $n_1 = 30$, $\bar{x} = 92.2$. $s_X = 2.5$,

Group 2: $n_2 = 20$, $\bar{y} = 83.1$. $s_Y = 4.0$

- a) (1.5 points) Perform the appropriate test to determine if this difference is significant at $\alpha = 0.05$, using Welch's formula for degrees of freedom. Please show all work. Identify your test statistic, calculate its value and distribution under H_0 (show your work for the df calculation), p-value, and decision.
- b) (1 point) Perform a similar appropriate test at $\alpha = 0.05$, but now assume that there is equal variance between the two groups (use pooled variance)
- c) (0.5 points) How many degrees of freedom would there be if we used the conservative method instead of Welch's t? Would you expect the p-value to be larger or smaller than using Welch's?