Adjustable Linear Regulators

As nice as it is to be able to buy a simple device that produces a constant output voltage, the Fixed Linear Regulators are limited to the output voltages selected by the manufacturer. The Adjustable Linear Regulators provide the possibility to produce other voltages, and, using potentiometers in the feedback, to provide a range of output voltages from the same device. Benchtop power supplies use adjustable regulators to allow the user to set the output voltage to anything they want, within the limits of the equipment.

The most common Adjustable Linear Regulators are the positive in - positive out LM317 and the negative in - negative out LM337.

These two devices have the same pinout, which is nice, but the pinout is not intuitive, so many students wire these up incorrectly and burn them out. Be careful!

Again, these typically come in a TO220 Package.

TO220 Package

Pin	Function				
1	Adj				
2	Vout				
3	Vin				
Metal Back	Vout				

Three things are important when using these devices in a design:

- 1. The dropout voltage is 2.5 V
- 2. The voltage between Vout and Adj is designed to be 1.25 V
- 3. There is a small, constant leakage current of about 50 μ A, from the Adj pin

Point #2 is the most important one -- it's the one we use to come up with a workable design. However, the other two points need to be taken into account in order to avoid nasty surprises.

Here's a typical design using an adjustable linear regulator.

Notice that, since the regulator is not directly referenced to ground, the leakage current from pin 1, Adj, passes through R2 and R3, and will therefore produce an error voltage in the design. Let's investigate:

	current?	0.1		V								
2.	If, howeve	r, the combine	d value of	f R2 and R3 is 10 k	Ω , what error	in the output	t voltage	e would be	e introd	uced?		
	0.5		V									
	0.0		·									
Howeve smaller	er, the 1.25 , and some	V between the times significate	e Vout an antly smal	y the leakage curre d the Adj is usually ler, than the R2, R3 us some room to p	smaller than 3 combination	the voltage a . As a rule of	cross R	2 and R3	, so tha	t means	R1 is ty	pically
				V1 is 120 VAC at 6 10 μ F, and the min				10:1, the	rectifie	r diode h	as a for	ward
1.	Which adj	ustable regula	tor should	we use for U1?	LM317							
		-		tput from the rectifi			V _p					
3.	Starting wi	ith a combined	l value for	R2 and R3 of 2 ks	2, calculate a	value for R1	that will	produce	an outp	ut voltag	e of 8,1	92
	mV. 36	0	Ω									
				s (there's one on th d value, pick the ne			•					
	increase th	ne R2, R3 com	nbination,	which we don't waı	nt to do)	30		Ω				
	potentiom	eter. Potention	meters, be	Typically, to allow f eing adjustable, dor a suitable set is arr	n't come in a l	ot of values -	- typical	ly multiple	es of 1,	2, or 5.	Usually	
that the fixed resistor will be 3x the size of the potentiometer. Fixed resistor =								k Ω , Potentiometer =				
	500		Ω									
6.	In reality, v	we would simp	ly adjust t	he potentiometer u	ntil the output	is what we v	vant it to	be. Wha	at would	the con	nbined	
	resistance	of R2 and R3	be, appro	eximately, when the	output is adji	usted to 8192	2 mV?	1.83			k Ω	
7.	What is the	e maximum lo	ad current	, once the voltage	is set to 8192	mV? 81.	9		mA			
8.	What rippl	e voltage woul	ld be seer	at the output from	the rectifier o	iode? 2.0)1		V _{p-p}			
9.	Using this	ripple voltage,	what volt	age would the unre	egulated input	signal drop t	to each	cycle?	14.3			V
10.	Is this likel	y to cause dro	pouts in t	he output signal?	No							
Worke	d Example	e: Selectable	3.3 V / 5 V	/ Regulator								
Car this	oirouit o	liant has aska	d for a ro	aulator aparating fr	om a 0 1/ hatt	on, that has	o ovvitab	to coloct	hotwoo	n 2 2 1/F	C and	=

1. If the combined value of R2 and R3 is 2.0 k Ω , what error in the output voltage would be introduced by the 50 μ A leakage

Wo

For this circuit, a client has asked for a regulator operating from a 9 V battery that has a switch to select between 3.3 VDC and 5 VDC. Since the LM317 requires an overhead of 2.5 V, we'll have no trouble using a 9 V battery, because it will give us an overhead of 4.0 V when generating 5 VDC, which is ample.

Assuming that the choice of voltages means that this will be a power supply for TTL-level devices (5 V) or LVTTL-level devices (3.3 V), there will be a range of allowable voltages: "5 V" for TTL can range from 4.5 V to 5.5 V, and "3.3 V" for LVTTL can range from 2.7 V to 3.6 V. We'll aim for values equal to or slightly higher than the nominal voltages.

For this design, we'll pick a fixed value for the resistor between the Vout and ADJ pins of an LM317-style regulator, and we'll provide two different values for the other resistance by switching in a second resistor in parallel, as shown in the following schematic. The LM117HVH is a military-specification version of the LM317, and is used in this schematic because it's the only version of the IC that's available in Multisim.

The larger the resistance between ADJ and ground, the higher the output voltage. So, we'll start our design for 5 VDC, as that will only involve R1 and R2 in the calculations. That way, we can make R2 a reasonable size but still less than the 2 k Ω maximum needed to minimize the effect of leakage current.

The voltage divider formula used for the feedback network can be rearranged to provide us with the ratio of the resistor values:

$$V_{reg} = 1.25 \left(rac{R_1 + R_2}{R_1}
ight)$$

rearranges to

$$\frac{R_2}{R_1} = \frac{Vreg-1.25}{1.25}$$

For 5 V, then, $R_2/R_1 = 3.00$

Playing around with the various 10% resistor values in the kit, the closest we can get to this ratio is $R_2 = 1.2 \text{ k}\Omega$ and $R_1 = 390 \Omega$. To see how close our theoretical results (based on the chosen values) are to the ideal value, we'll enter the resistors into the original formula. When we do this, we get $V_{reg} = 5.1 \text{ VDC}$, which meets our specifications.

For 3.3 V, we'll need to use the same R_1 -- 390 Ω -- and determine what resistor we'll need to have in parallel with R_2 to get close to 3.3 V.

The ratio of resistances gives us, for 3.3 V, $R_2/R_1 = 1.64$

So that means the parallel combination of R_2 and R_3 needs to be 1.64*390 \varOmega , or 640 \varOmega

Rearranging the parallel resistor calculation is a bit of a challenge -- give it a try!

$$R_T = \frac{1}{\frac{1}{R_2} + \frac{1}{R_3}}$$

rearranges to

$$R_3 = \frac{R_2 \cdot R_T}{R_2 - R_T}$$

... which produces a value of 1.37 k Ω for R₃ using our chosen value of 1.2 k Ω for R₂. 1.37 k Ω is halfway between two 10% resistor values, so we'll choose the larger value to bump the voltage up slightly. We'll pick R₃ = 1.5 k Ω .

Again, we'll check to see that the theoretical output for this resistor is to see if it matches the specification. We get 3.4 VDC, which is suitable.