TD1 Algèbre linéaire

Exercice 1

Déterminer le sous-espace vectoriel F de \mathbb{Q}^4 engendré par les vecteurs :

$$a = (-1, 0, 1, 2)$$
 et $b = (0, 1, -3, 1)$

Le vecteur x = (-3, 2, -3, 8) appartient-il à F?

Exercice 2

Considérons les vecteur lignes de \mathbb{R}^3 A = (1, 2, -1), B = (1, 0, 1) et C = (-1, 2, -3).

Montrer que A, B et C sont linéairement dépendants . Ecrire la relation liant ces trois vecteurs.

Exercice 3

Déterminer tous les vecteurs (x, y, z) de \mathbb{Q}^3 tels que le système suivant soit libre :

$$\{(1,0,0), (0,1,1), (x,y,z)\}$$

Exercice 4

Soit $\{e_1,\ldots,e_n\}$ un système libre de n vecteurs d'un espace vectoriel E. On définit les vecteurs $\varepsilon_j=e_1+e_2+\cdots +e_j$, $j\in\{1,\ldots,n\}$. Démontrer que $\{\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_n\}$ est un système libre.

Exercice 5

Montrer que les vecteurs $u=(2,1),\ v=(-1,2),\ et\ w=(1,3)$ constituent un système générateur de \mathbb{R}^2 . Exprimer le vecteur $X=(x_1,x_2)$ comme combinaison linéaire de ces vecteurs sachant que $u=2e_1+e_2$, $v=-e_1+2e_2$ et $w=e_1+3e_2$ avec $\{e_1,e_2\}$ une base canonique de \mathbb{R}^2 .

Cette décomposition suivant u, v, w est-elle unique ?

Exercice 6

Soit

$$F = \left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4 : x + y + z = 0 \text{ et } x + 2z - t = 0 \right\}$$

Montrer que F est un sous-espace vectoriel de \mathbb{R}^4