UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Matematika - 1. stopnja

Benjamin Benčina Topološke grupe

Delo diplomskega seminarja

Mentor: doc. dr. Marko Kandić

Kazalo

1. Uvod	4
2. Kaj je topološka grupa	4
2.1. Primeri topoloških grup	6
3. Kvocienti topoloških grup	6
4. Izreki o izomorfizmih	7
4.1. Prvi izrek o izomorfizmih	7
4.2. Drugi izrek o izomorfizmih	7
4.3. Tretji izrek o izomorfizmih	7
5. Izreki tipa "2 od 3"	8
6. Separacijski aksiomi in metrizabilnost	8
6.1. Metrizabilnost	8
6.2. Separacijski aksiomi do $T_{3\frac{1}{2}}$	9
6.3. Separacijski aksiom T_4	9
Slovar strokovnih izrazov	9
Literatura	9

Topološke grupe

Povzetek

povzetek HERE

Topological groups

Abstract

ABSTRACT HERE

Math. Subj. Class. (2010): 43-00 Ključne besede: grupa topologija

Keywords: group topology

1. Uvod

2. Kaj je topološka grupa

Definicija 2.1. Neprazna množica G z binarno operacijo * je grupa, če:

- (1) je množica G zaprta za (ponavadi binarno) operacijo *,
- (2) je operacija * asociativna v množici G,
- (3) v G obstaja tak element e (imenujemo ga enota), da za vsak element x množice G veljajo enakosti

$$x * e = e * x = x$$
,

(4) za vsak element x množice G obstaja element y tudi iz množice G, da veljajo enakosti

$$x * y = y * x = e.$$

Oznaka za grupo je (G, *) ali samo G, če je operacija znana ali drugače očitna.

Iz zgornje definicije je razvidno, da nam grupna struktura na množici porodi dve strukturni preslikavi:

- $mno\check{z}enje\ \mu: G\times G\to G,\ (x,y)\mapsto x*y,$
- invertiranje $\iota: G \to G, x \mapsto x^{-1}$.

Definiramo lahko nekaj tipov preslikav med grupami.

Definicija 2.2. Naj bo $f:(G,*)\to (\widetilde{G},\star)$ preslikava med dvema grupama.

- (1) Preslikava f je homomorfizem, če za vsaka dva elementa $a,b \in G$ velja $f(a*b) = f(a) \star f(b)$.
- (2) Preslikava f je izomorfizem, če je bijektivni homomorfizem.

Definicija 2.3. Topologija na neprazni množici X je družina podmnožic $\tau \subseteq 2^X$ z lastnostmi:

- (1) $X \in \tau, \emptyset \in \tau$,
- (2) za poljubni dve množici $U, V \in \tau$ je tudi presek $U \cap V \in \tau$,
- (3) za poljubno poddružino $\{U_{\lambda}\}_{{\lambda}\in\Lambda}\subseteq \tau$ je tudi unija $\bigcup_{{\lambda}\in\Lambda}U_{\lambda}\in \tau$.

Množici X, opremljeni s topologijo τ , rečemo topološki prostor (X, τ) in množice v družini τ označimo za odprte množice v topološkem prostoru X. Zaprte množice definiramo kot komplemente odprtih množic glede na množico X.

Definicija 2.4. Naj bo (X, τ) topološki prostor.

- (1) Podmnožica $B \subset \tau$ je baza za topologijo τ , če je vsaka množica iz topologije τ unija nekaterih množic iz B.
- (2) Podmnožica P je podbaza za topologijo τ , če je družina vseh presekov končno mnogo množic iz P neka baza za topologijo τ .

Definicija 2.5. Naj bo (X, τ) topološki prostor.

- (1) Množica $U\subseteq X$ je okolica za točko $x\in X$, če obstaja odprta množica $V\in \tau$, da velja $V\subseteq U$ in $x\in V$.
- (2) Množica $U \subseteq X$ je okolica za množico $A \subseteq X$, če obstaja odprta množica $V \in \tau$, da velja $V \subseteq U$ in $A \subseteq V$.
- (3) Če je okolica U iz zgornjih dveh primerov tudi sama odprta množica, jo imenujemo $odprta\ okolica$.
- (4) Družina okolic $\mathcal{U}_x = \{U_\lambda; \lambda \in \Lambda\}$ za točko $x \in X$ se imenuje baza okolic za x, če za poljubno okolico V za točko x velja, da obstaja $\lambda \in \Lambda$, da je $U_\lambda \subseteq V$.

Definicija 2.6. Naj bo (X, τ) topološki prostor in $A \subseteq X$.

- (1) Točka $a \in A$ je notranja točka množice A, če je A okolica za točko a.
- (2) Notranjost množice A je množica vseh njenih notranjih točk. Notranjost množice označimo z int(A). Očitno velja $int(A) \subseteq A$ in tudi $int(A) = A \iff A \in \tau$.
- (3) Zaprtje množice A je najmanjša zaprta množica vX, ki vsebuje A. Zaprtje množice označimo z \overline{A} . Očitno velja $A \subseteq \overline{A}$ in tudi $\overline{A} = A \iff A$ je zaprta množica.

S pomočjo odprtih in zaprtih množic topološkega prostora X lahko sedaj definiramo zveznost in odprtost preslikave med dvema topološkima prostoroma ter pojem homeomorfizma.

Definicija 2.7. Naj bo $f:(X,\tau_1)\to (Y,\tau_2)$ preslikava med topološkima prostoroma.

- (1) Preslikava f je zvezna, kadar je praslika preslikave f vsake odprte množice v topološkem prostoru (Y, τ_2) odprta tudi v topološkem prostoru (X, τ_1) .
- (2) Preslikava f je odprta, kadar je slika vsake odprte množice v topološkem prostoru (X, τ_1) odprta tudi v topološkem prostoru (Y, τ_2) .
- (3) Preslikava f je homeomorfizem, če je bijektivna, zvezna in ima zvezen inverz.

Končno lahko strukturi združimo in povežemo ter definiramo pojem topološke grupe.

Definicija 2.8. Topološka grupa je grupa (G,*) opremljena s tako topologijo τ na množici G, da sta za τ strukturni operaciji množenja in invertiranja zvezni.

Potrebujemo le še tip preslikave med topološkimi grupami, ki bo ohranjal tako algebraično kot topološko strukturo.

Definicija 2.9. Preslikava med dvema topološkima grupama je *topološki izomorfi-* zem, če je izomorfizem in homeomorfizem.

Trditev 2.10. Naj bo G topološka grupa in $a \in G$. Leva translacija $x \mapsto ax$ in desna translacija $x \mapsto xa$ za a sta homeomorfizma iz G v G. Prav tako je preslikava invertiranja homeomorfizem iz G v G.

Trditev 2.11. Za topološko grupo G in odprto bazo okolic \mathcal{U} enote e veljajo naslednje trditve:

- (1) za vsako množico $U \in \mathcal{U}$ obstaja taka množica $V \in \mathcal{U}$, da velja $V^2 \subset U$;
- (2) za vsako množico $U \in \mathcal{U}$ obstaja taka množica $V \in \mathcal{U}$, da velja $V^{-1} \subset U$;
- (3) za vsako množico $U \in \mathcal{U}$ in vsak element $x \in U$ obstaja taka množica $V \in \mathcal{U}$, da velja $xV \subset U$;
- (4) za vsako množico $U \in \mathcal{U}$ in vsak element $x \in G$ obstaja taka množica $V \in \mathcal{U}$, da velja $xVx^{-1} \subset U$.

Naj bo G sedaj grupa (ne topološka) in $\mathcal U$ družina podmnožic množice G, za katero veljajo zgornje štiri lastnosti. Naj bodo poljubni končni preseki množic iz $\mathcal U$ neprazni. Tedaj je družina $\{xU\}$, kjer $U \in \mathcal U$ in $x \in G$ odprta podbaza za neko topologijo na G. S to topologijo je G topološka grupa. Družina $\{Ux\}$ je podbaza za isto topologijo.

Če velja še, da za vsaki množici $U, V \in \mathcal{U}$ obstaja množica $W \in \mathcal{U}$, da velja $W \subset U \cap V$, potem sta družini $\{xU\}$ in $\{Ux\}$ tudi bazi za to topologijo.

Trditev 2.12. Vsaka topološka grupa G ima bazo odprtih okolic \mathcal{U} enote e, da za vsako okolico U velja $U = U^{-1}$.

Opomba 2.13. Lastnosti množic iz trditve 2.12 pravimo simetričnost.

Posledica 2.14. Za vsako okolico U enote e topološke grupe G obstaja taka okolica V enote e, da velja $V^{-1} \subset U$.

2.1. Primeri topoloških grup.

3. KVOCIENTI TOPOLOŠKIH GRUP

Trditev 3.1. Naj bo G topološka grupa in H njena podgrupa. Če H opremimo z relativno topologijo, potem je tudi H topološka grupa.

Trditev 3.2. Naj bo sta A in B podmnožici topološke grupa G. Veljajo naslednje trditve:

- (1) $\overline{A} \ \overline{B} \subset \overline{AB}$,
- $(2) \ (\overline{A})^{-1} = \overline{A^{-1}},$
- (3) $x\overline{A}y = \overline{xAy}$ za vsaka dva $x, y \in G$.

Če G ustreza še separacijskemu aksiomu T_0 , velja tudi:

(4) če za vsaka dva elementa $a \in A$ in $b \in B$ velja enakost ab = ba, potem velja enakost ab = ba tudi za vsaka dva elementa $a \in \overline{A}$ in $b \in \overline{B}$.

Trditev 3.3. Naj bo G topološka grupa in H njena podgrupa. H je odprta natanko tedaj, ko ima neprazno notranjost. Vsaka odprta podgrupa H topološke grupa G je tudi zaprta.

Trditev 3.4. Naj bo U simetrična okolica enote e v topološki grupi G. Potem je $L = \bigcup_{n=1}^{\infty} U^n$ odprta in zaprta podgrupa topološke grupe G.

Izrek 3.5. Naj bo G topološka grupa, H njena podgrupa in $\varphi: G \to G/H$ naravna preslikava. Definiramo $\theta(G/H) = \{U; \varphi^{-1}(U) \text{ odprta } v G\}$. Veljajo naslednje trditve:

- (1) družina $\theta(G/H)$ je topologija na kvocientu G/H,
- (2) glede na topologijo $\theta(G/H)$ je φ zvezna preslikava,
- (3) družina $\theta(G/H)$ je najmočnejša topologija na kvocientu G/H, glede na katero je φ zvezna preslikava,
- (4) $\varphi: G \to G/H$ je odprta preslikava.

Družini $\theta(G/H)$ pravimo kvocientna topologija, kvocientu G/H pa kvocientni prostor

Trditev 3.6. Naj bo G topološka grupa, H njena podgrupa in U,V tako okolici enote $e \ v \ G$, da velja $V^{-1}V \subset U$. Naj bo $\varphi : G \to G/H$ naravna preslikava. Potem velja $\overline{\varphi(V)} \subset \varphi(U)$.

Izrek 3.7. Za topološko grupo G in njeno podgrupo H veljajo naslednje trditve:

- (1) kvocientni prostor G/H je diskreten natanko tedaj, ko je H odprta v G,
- (2) če je H zaprta v G, potem je kvocient G/H regularen topološki prostor,
- (3) če kvocientni prostor G/H zadošča separacijskemu aksiomu T_0 , potem je H zaprta v G in velja, da je kvocient G/H regularen topološki prostor.

Izrek 3.8. Naj bo H podgrupa edinka topološke grupe G. Naj bo kvocient G/H opremljen s kvocientno topologijo θ . Veljajo naslednje trditve:

- (1) kvocient G/H je topološka grupa s topologijo θ ,
- (2) naravni homomorfizem φ iz G v G/H je odprt in zvezen homomorfizem,
- (3) kvocient G/H je diskreten natanko tedaj, ko je podgrupa H odprta v G,
- (4) kvocient G/H zadošča separacijskemu aksiomu T_0 (in je zato tudi regularen) natanko tedaj, ko je podgrupa H zaprta v G.

4. Izreki o izomorfizmih

Trditev 4.1. Naj bo G topološka grupa in H njena podgrupa. Naj bo za vsak element $a \in G$ na kvocientu G/H definirana preslikava ψ_a s predpisom $\psi_a(xH) = (ax)H$. Za vsak element $a \in G$ je ψ_a homeomorfizem na prostoru G/H.

Opomba 4.2. Če za vsaki dve točki x, y topološkega prostora X velja, da na prostoru X obstaja homeomorfizem, ki preslika točko x v točko y, rečemo, da je X kot topološki prostor homogen. Zgornja trditev pravi, da je kvocientni prostor G/H homogen topološki prostor.

Trditev 4.3. Naj bo G (lokalno) kompaktna topološka grupa in naj bo H njena podgrupa. Potem je tudi kvocietni prostor G/H (lokalno) kompakten.

4.1. Prvi izrek o izomorfizmih.

Izrek 4.4 (Prvi izrek o izomorfizmih za topološke grupe). Naj bosta G in \widetilde{G} topološki grupi. Naj bo $f: G \to \widetilde{G}$ odprt, zvezen homomorfizem. Potem je H:= kerf podgrupa edinka v grupi G in množice $f^{-1}(\widetilde{x})$, kjer je $\widetilde{x} \in \widetilde{G}$, so disjunktni odseki podgrupe H v grupi G. Preslikava $\Phi: \widetilde{G} \to G/H$ s predpisom $\widetilde{x} \mapsto f^{-1}(\widetilde{x})$ je topološki izomorfizem.

4.2. Drugi izrek o izomorfizmih.

Izrek 4.5. Naj bo G topološka grupa, A njena podgrupa in H podgrupa edinka grupe G. Naj bo τ izomorfizem iz kvocienta (AH)/H v kvocient $A/(A \cap H)$ s predpisom $\tau(aH) = a(A \cap H)$, kjer je $a \in A$. Potem τ slika odprte množice iz (AH)/H v odprte množice iz $A/(A \cap H)$.

Izrek 4.6 (Drugi izrek o izomorfizmih za topološke grupe). Naj bodo objekti G, A, H in τ isti kakor v izreku 4.5. Naj bo podgrupa A še lokalno kompaktna in σ -kompaktna, naj bo H zaprta v G in AH lokalno kompaktna. Tedaj je τ homeomorfizem ter topološki grupi (AH)/H in $A/(A \cap H)$ sta topološko izomorfni.

4.3. Tretji izrek o izomorfizmih.

Izrek 4.7. Naj bo G topološka grupa z enoto e in naj bo \widetilde{G} topološka grupa z enoto \widetilde{e} . Naj bo f odprt, zvezen homomorfizem iz grupe G v grupo \widetilde{G} . Naj bo \widetilde{H} podgrupa edinka grupe \widetilde{G} . Označimo $H = f^{-1}(\widetilde{H})$ in $N = f^{-1}(\widetilde{e})$ (N je jedro homomorfizma f). Potem so grupe G/H, $\widetilde{G}/\widetilde{H}$ in (G/N)/(H/N) topološko izomorfne.

Izrek lahko preoblikujemo v obliko, ki je bolj podobna algebraični različici in ne vsebuje posredne topološke grupe \tilde{G} .

Izrek 4.8 (Tretji izrek o izomorfizmih za topološke grupe). Naj bo G topološka grupa in H, N taki njeni podgrupi edinki, da velja $N \subset H$. Potem sta kvocientni topološki grupi G/H in (G/N)/(H/N) topološko izomorfni.

5. Izreki tipa "2 od 3"

6. Separacijski aksiomi in metrizabilnost

Definicija 6.1. Topološki prostor (X, τ) zadošča separacijskemu aksiomu

- (1) T_0 , če za poljubni različni točki $a, b \in X$ obstaja okolica V za eno od točk a, b, ki ne vsebuje druge od točk a, b;
- (2) T_1 , če za poljubno točko $a \in X$ in različno točko $b \in X$ obstaja okolica V za točko a, ki ne vsebuje točke b;
- (3) T_2 , če za poljubni različni točki $a, b \in X$ obstajata disjunktni okolici za točki a in b:
- (4) T_3 , če za poljubno zaprto množico $A \subseteq X$ in točko $b \in X \setminus A$ obstajata disjunktni okolici za množico A in točko b;
- (5) $T_{3\frac{1}{2}}$, če za poljubno zaprto množico $A\subseteq X$ in točko $b\in X\backslash A$ obstaja zvezna realna funkcija ψ definirana na G, da je $\psi(b)=0$ in $\psi(x)=1$ za vsak $x\in A$;
- (6) T_4 , če za poljubni disjunktni zaprti množici $A, B \subseteq X$ obstajata disjunktni okolici za množici A in B.
- **Opomba 6.2.** (1) Iz definicije je razvidno, da separacijski aksiom T_2 implicira T_1 in da separacijski aksiom T_1 implicira T_0 .
 - (2) Topološkemu prostoru X, ki zadošča separacijskemu aksiomu T_2 , pravimo tudi Hausdorffov topološki prostor.
 - (3) Topološku prostoru X, ki zadoška separacijskima aksiomoma T_1 in T_3 , pravimo regularen topološki prostor.
 - (4) Topološku prostoru X, ki zadoška separacijskima aksiomoma T_1 in $T_{3\frac{1}{2}}$, pravimo povsem regularen topološki prostor.
 - (5) Topološku prostoru X, ki zadoška separacijskima aksiomoma T_1 in T_4 , pravimo normalen topološki prostor.

Trditev 6.3 (Karakterizacija separacijskega aksioma T_1). Topološki prostor (X, τ) zadošča separacijskemu aksiomu T_1 natanko tedaj, ko za vsako točko $x \in X$ velja, da je množica $\{x\}$ zaprta v X glede na topologijo τ .

Posledica 6.4. (1) Vsak regularen topološki prostor je Hausdorffov.

- (2) Vsak povsem regularen topološki prostor je regularen in zato Hausdorffov.
- (3) Vsak normalen topološki prostor je regularen in zato Hausdorffov.

Trditev 6.5 (Karakterizacija separacijskega aksioma T_3). Topološki prostor (X, τ) zadošča separacijskemu aksiomu T_3 natanko tedaj, ko za vsako točko $x \in X$ in vsako okolico W za točko x obstaja taka odprta okolica V za točko x, za katero velja $\overline{V} \subseteq W$.

Izrek 6.6. Vsaka topološka grupa G, ki zadošča separacijskemu aksiomu T_0 je regularen topološki prostor.

6.1. Metrizabilnost.

Definicija 6.7. *Pseudometrika* na neprazni množici X je preslikava $d: X \times X \to [0, \infty)$, ki zadošča naslednjim pogojem:

- (1) za vsaki dve točki $x, y \in X$ velja $\rho(x, y) \ge 0$ in $\rho(x, x) = 0$;
- (2) za vsaki dve točki $x, y \in X$ velja $\rho(x, y) = \rho(y, x)$;
- (3) za vsake tri točke $x, y, z \in X$ velja $\rho(x, z) \leq \rho(x, y) + \rho(y, z)$.

Če za preslikavo d velja še

- (4) $d(x,y) = 0 \iff x = y$, potem ji rečemo metrika.
- **Izrek 6.8.** Naj bo $\{U_k\}_{k=1}^{\infty}$ tako zaporedje simetričnih okolic enote e v topološki grupi G, da za vsak $k \in \mathbb{N}$ velja $U_{k+1}^2 \subset U_k$. Označimo $H = \bigcap_{k=1}^{\infty} U_k$. Potem obstaja taka levoinvariantna pseudometrika σ na G z naslednjimi lastnostmi:
 - (1) σ je enakomerno zvezna na levi uniformni strukturi od $G \times G$;
 - (2) $\sigma(x,y) = 0$ natanko tedaj, ko $y^{-1}x \in H$;
 - (3) $\sigma(x,y) \le 2^{-k+2}$, če $y^{-1}x \in U_k$;
 - (4) $2^{-k} \le \sigma(x,y)$, če $y^{-1}x \notin U_k$.

Če velja še $xU_kx^{-1}=U_k$ za vsak $x\in G$ in $k\in\mathbb{N}$, potem je σ tudi desnoinvariantna in velja

- (5) $\sigma(x^{-1}, y^{-1}) = \sigma(x, y)$ za vsaka dva elementa $x, y \in G$.
- **Izrek 6.9.** Topološka grupa G, ki zadošča separacijskemu aksiomu T_0 , je metrizabilen topološki prostor natanko tedaj, ko obstaja števna baza odprtih okolic enote e
- 6.2. Separacijski aksiomi do $T_{3\frac{1}{2}}$.
- **Izrek 6.10.** Naj bo G topološka grupa, ki zadošča separacijskemu aksiomu T_0 . Naj bo $a \in G$ točka in F zaprta podmnožica v G, ki ne vsebuje a. Potem obstaja taka zvezna realna funkcija ψ definirana na G, da je $\psi(a) = 0$ in $\psi(x) = 1$ za vsak $x \in F$. Drugače: vsaka T_0 topološka grupa je povsem regularna.
- 6.3. Separacijski aksiom T_4 .
- **Izrek 6.11.** Če je m katerokoli neštevno kardinalno število, potem je \mathbb{Z}^m nenormalna popolnoma regularna topološka grupa.
- Izrek 6.12. Vsaka lokalno kompaktna topološka grupa, ki zadošča separacijskemu aksiomu T_0 , je parakompaktna in zato normalna.

SLOVAR STROKOVNIH IZRAZOV

LITERATURA

[1] E. Hewitt in K. A. Ross, Abstact Harmonic Analysis I, Springer-Verlag, New York, 1979.