

Métodos de Ordenação Parte 4

Introdução à Ciência de Computação II

Prof. Diego Raphael Amancio

Revisando...

- Também chamado merge-sort
- Idéia básica: dividir para conquistar
 - Um vetor v é dividido em duas partes, recursivamente
 - Cada metade é ordenada e ambas são intercaladas formando o vetor ordenado
 - Usa um vetor auxiliar para intercalar

5 2 4 7 1 3 2 6

• Qual a complexidade de tempo?

E a complexidade de espaço?

- Idéia básica: se soubermos quantos são os elementos menores que um determinado valor, saberemos a posição que o mesmo deve ocupar no arranjo ordenado
 - Por exemplo, se há 5 valores menores do que o elemento 7, o elemento 7 será inserido na sexta posição do arranjo
- Usa-se um <u>arranjo auxiliar</u> para manter a contagem de menores e um <u>outro</u> para montar o arranjo ordenado

Exemplo

Arranjo original A desordenado

1º. Passo: criar arranjo auxiliar

			3						
4	2	1	3	7	9	8	ര	0	5
					•				
0	1	2	3	4	5	6	7	8	9

Arranjo original A desordenado

Arranjo auxiliar X, em que X[i]=número de elementos no arranjo A que são menores que A[i] → indicam a posição correta de A[i] no arranjo ordenado

1º. Passo: criar arranjo auxiliar

6

3

Arranjo original A desordenado

Arranjo auxiliar X, em que X[i]=número de elementos no arranjo A que são menores que A[i] → indicam a posição correta de A[i] no arranjo ordenado

2º. Passo: montar arranjo final ordenado

0									
4	2	1	3	7	9	8	3	0	5

Arranjo original A desordenado

			3						
5	2	1	3	7	9	8	3	0	6

Arranjo auxiliar X, em que X[i]=número de elementos no arranjo A que são menores que A[i] → indicam a posição correta de A[i] no arranjo ordenado

0	1	2	3	4	5	6	7	8	9

Arranjo final B ordenado: A[i] vai para a posição X[i] de B

→ Atenção com elemento 3 duplicado

2º. Passo: montar arranjo final ordenado

Arranjo original A desordenado

Arranjo auxiliar X, em que X[i]=número de elementos no arranjo A que são menores que A[i] → indicam a posição correta de A[i] no arranjo ordenado

Arranjo final B ordenado: A[i] vai para a posição X[i] de B

→ Atenção com elemento 3 duplicado

Exercício

- Implementar em C a função de ordenação por contagem de menores
- Calcular complexidade

Implementação

```
void contagem de menores(int v[], int n)
1
     int X[n], B[n], i, j;
     for (i=0; i<n; i++) //inicializando arranjo auxiliar</pre>
         X[i]=0;
     for (i=1; i<n; i++) //contando menores</pre>
          for (j=i-1; j>=0; j--)
              if (v[i]<v[j])</pre>
                 X[j]++;
              else X[i]++;
     for (i=0; i<n; i++) //montando arranjo final</pre>
         B[X[i]]=v[i];
     for (i=0; i<n; i++) //copiando arranjo final para original</pre>
          v[i]=B[i];
```


Complexidade de tempo?

Complexidade de espaço?

- Complexidade de tempo?
 - O(n²)

- Complexidade de espaço?
 - O(3n)

Exercício: executar algoritmo para o vetor abaixo

- Também chamado counting-sort
- Idéia básica: conta-se o número de vezes que cada elemento ocorre no arranjo; se há k elementos antes dele, ele será inserido na posição k+1 do arranjo ordenado
 - Restrição: os elementos devem estar contidos em um intervalo [min, max] do conjunto de números inteiros positivos
- Usa-se um <u>arranjo auxiliar</u> para manter a contagem de tipos e um <u>outro</u> para montar o arranjo ordenado

Exemplo

Arranjo original A desordenado

→ min=1, max=7

Exemplo

Arranjo original A desordenado

→ min=1, max=7

Arranjo auxiliar X, em que X[i] indica o número de elementos i no vetor original A

Exemplo

Arranjo auxiliar X, em que X[i] indica o número de elementos i no vetor original A → há 3 elementos 1, que ocuparão as posições 0, 1 e 2 do vetor ordenado → há 2 elementos 2, que ocuparão as posições livres seguintes (3 e 4) ...

Exemplo

Arranjo original A desordenado

→ min=1, max=7

Arranjo auxiliar X, em que X[i] indica o número de elementos i no vetor original A

- → há 3 elementos 1, que ocuparão as posições
- 0, 1 e 2 do vetor ordenado
- → há 2 elementos 2, que ocuparão as posições livres seguintes (3 e 4) ...

0	1	2	3	4	5	6	7	8	9

Arranjo final B ordenado

Exemplo

Arranjo original A desordenado

→ min=1, max=7

Arranjo auxiliar X, em que X[i] indica o número de elementos i no vetor original A

- → há 3 elementos 1, que ocuparão as posições
- 0, 1 e 2 do vetor ordenado
- → há 2 elementos 2, que ocuparão as posições livres seguintes (3 e 4) ...

Arranjo final B ordenado

Implementação

Implementação

```
void contagem de tipos(int v[], int n)
] {
     int B[n], i, j, max;
     max=v[0]; //determinando max
     for (i=1; i<n; i++)
          if (v[i]>max)
             max=v[i];
     int X[max+1];
     //inicializando arranjo auxiliar
     for (i=0; i<max+1; i++)</pre>
          X[i]=0;
     //contando tipos
     for (i=0; i<n; i++)</pre>
          X[v[i]]++;
```

```
//montando arranjo final
j=0;
for (i=0; i<max+1; i++)</pre>
    while (X[i]!=0) {
           B[j]=i;
           j++;
           X[i]--;
//copiando arranjo
//final para original
for (i=0; i<n; i++)</pre>
    v[i]=B[i];
```


Complexidade de tempo?

Complexidade de espaço?

- Complexidade de tempo?
 - O(n), se max<=n
 - Por que é "tão melhor" do que outros métodos?

- Complexidade de espaço?
 - O(3n), se max<=n

- Complexidade de tempo?
 - O(n), se max<=n</p>
 - A ordenação não é por comparação

- Complexidade de espaço?
 - O(3n), se max<=n

- Também chamado radix-sort
- Idéia básica: os números são ordenados por seus dígitos, dos menos significativos para os mais significativos
 - Por exemplo, ordenar os números 236 e 235 implica comparar os últimos dígitos 6 e 5 dos dois; se não bastar, comparam-se os dígitos do meio; por fim, comparam-se os mais significativos
- Baseado na forma de funcionamento das antigas perfuradoras de cartões

Ordenação de raízes

- Utilizam-se listas
 - Uma fila para cada dígito
 - Os números vão sendo inseridos na fila de acordo com o dígito sendo avaliado
 - A cada iteração, os números estão mais próximos da ordenação final

Ordenação de raízes: exemplo (1ª. iteração)

Arquivo	origina							
	25	57	48	37	12	92	86	33
Filas bas	eadas	no díg	jito me	enos si	gnificat	ivo.		
		Início			Final			
fila [0] fila [1] fila [2] fila [3] fila [4]		12 33			92			
fila [5] fila [6] fila [7] fila [8] fila [9]		25 86 57 48			37			
Depois o	da prim 12	neira p 92	assage 33	em. 25	86	57	37	48

Ordenação de raízes: exemplo (2ª. iteração)

181	12	92	33	25	5	86	57	37	48	
Filas ba	seadas I	no díg	ito ma	ais s	ignif	icativo				
		Início			ı	inal				
fila [0] fila [1] fila [2] fila [3] fila [4] fila [5] fila [6]		12 25 33 48 57				37				
fila [7] fila [8] fila [9]		86 92								
Arquivo	classific	ado: 1	2 2	5	33	37	48	57	86	92

- Para os números do arranjo terem o mesmo número de dígitos, pode-se completá-los com zeros à esquerda
 - Por exemplo, <u>0</u>26 e 235
- Quantas iterações são necessárias para ordenar o arranjo?

- Para os números do arranjo terem o mesmo número de dígitos, pode-se completá-los com zeros à esquerda
 - Por exemplo, <u>0</u>26 e 235

- Quantas iterações são necessárias para ordenar o arranjo?
 - São necessárias m iterações no máximo, sendo m o número de dígitos do maior número

Algoritmo

```
for (k=digito menos signif; k<=digito mais signif; k++){
   for (i=0; i<n; i++) {
      j = kesimo digito de x[i];
      posiciona x[i] no final da fila[j];
   }
   for (f=0; f<10; f++)
      coloca elems da fila[f] na prox posicao de x;
}</pre>
```


Exercício: ordene o vetor abaixo

(44, 55, 112, 42, 94, 18, 6, 67)

• Qual a complexidade de tempo do método?

• Qual a complexidade de espaço?

- Qual a complexidade de tempo do método?
 - O(m*n)
 - Se m pequeno, O(n)
- Qual a complexidade de espaço?
 - Além do vetor, devem-se contar os espaços para as filas

Comparação entre os métodos mais conhecidos

- Ordem aleatória dos elementos
 - O mais rápido recebe valor 1 e o restante é recalculado em função disso

	500	5.000	10.000	30.000
Inserção	11,3	87	161	_
Seleção	16,2	124	228	-
Shellsort	1,2	1,6	1,7	2
Quicksort	1	1	1	1
Heapsort	1,5	1,6	1,6	1,6

Ziviani, 2007 44

Comparação entre os métodos mais conhecidos

Ordem ascendente dos elementos (já ordenado)

	500	5.000	10.000	30.000
Inserção	1	1	1	1
Seleção	128	1.524	3.066	-
Shellsort	3,9	6,8	7,3	8,1
Quicksort	4,1	6,3	6,8	7,1
Heapsort	12,2	20,8	22,4	24,6

Ziviani, 2007 45

Comparação entre os métodos mais conhecidos

Ordem descendente dos elementos

	500	5.000	10.000	30.000
Inserção	40,3	305	575	
Seleção	29,3	221	417	-
Shellsort	1,5	1,5	1,6	1,6
Quicksort	1	1	1	1
Heapsort	2,5	2,7	2,7	2,9

Ziviani, 2007 46

- Quick-sort é o mais rápido para todos os arranjos com elementos aleatórios
- Heap-sort e quick-sort têm uma diferença constante, sendo o heap-sort mais lento
- Para arranjos pequenos, shell-sort é melhor do que o heap-sort
- O método da inserção direta é mais rápido para arranjos ordenados
- O método da inserção direta é melhor do que o método da seleção direta para arranjos com elementos aleatórios
- _ ====
- Shell-sort e quick-sort são sensíveis em relação às ordenações ascendentes e descendentes
- Heap-sort praticamente não é sensível em relação às ordenações ascendentes e descendentes

47

Métodos de ordenação

- Outros métodos: tarefa para casa
 - Shake-sort ou método da coqueteleira
 - Melhoramento do bubble-sort

Tree-sort ou método da árvore binária

Bucket-sort ou método do balde

- Cota (ou limite) inferior do problema
 - Prova-se que é impossível resolver o problema em menos que C(n) passos para uma entrada de tamanho n
 - Algoritmo ótimo: resolve problema em tempo igual à cota inferior

- Cota inferior dos métodos de <u>ordenação por comparação</u> de elementos
 - Pode-se montar uma <u>árvore de decisão</u> para representar o problema
 - Exemplo: ordenação de três elementos a,b e c

- No mínimo, quantas folhas existem nessa árvore, assumindo um arranjo de tamanho n?
 - Ou: quantas possibilidades de ordenação existem?

- No mínimo, quantas folhas existem nessa árvore, assumindo um arranjo de tamanho n?
 - Ou: quantas possibilidades de ordenação existem?
 - n!

Quantas comparações devem ser feitas para ordenar n elementos?

53

- Quantas comparações devem ser feitas para ordenar n elementos?
 - A altura máxima da árvore de decisão, aproximadamente

- Sabe-se que uma árvore binária de altura h não tem mais do que 2^h folhas
 - Altura 3: $2^3 \rightarrow 8$ folhas no máximo

55

Então se sabe que

- Número máximo de folhas de uma árvore binária de altura h: 2^h
- Número de folhas de uma árvore de decisão para ordenação por comparação: n!

Portanto:

 $-2^h \ge n!$

Cota Infe

Cota Inferior para Ordenação

Então se sabe que

- Número máximo de folhas de uma árvore binária de altura h: 2^h
- Número de folhas de uma árvore de decisão para ordenação por comparação: n!

Portanto:

- $2^{h} \ge n!$
- Representando via logaritmo: h ≥ log(n!)

Então se sabe que

- Número máximo de folhas de uma árvore binária de altura h: 2^h
- Número de folhas de uma árvore de decisão para ordenação por comparação: n!

Portanto:

- $2^h \ge n!$
- Representando via logaritmo: h ≥ log(n!)
- Aproximação de Stirling: log(n!) = O(n log(n))

Então se sabe que

- Número máximo de folhas de uma árvore binária de altura h: 2^h
- Número de folhas de uma árvore de decisão para ordenação por comparação: n!

Portanto:

- $2^{h} \ge n!$
- Representando via logaritmo: h ≥ log(n!)
- Aproximação de Stirling: log(n!) = O(n log(n))
- Resultando que $h \ge \log(n!) \rightarrow h \ge n \log(n) \rightarrow h = \Omega(n \log(n))$

Resultado

 Métodos de ordenação por comparação de elementos não podem ser melhores do que O(n log(n))