Derivatives

worksheet-1

I(a) Find the values of the derivatives as specified.

1.
$$f(x) = 4 - x^2$$
; $f'(-3)$, $f'(0)$, $f'(1)$

2.
$$F(x) = (x - 1)^2 + 1$$
; $F'(-1), F'(0), F'(2)$

3.
$$g(t) = \frac{1}{t^2}$$
; $g'(-1), g'(2), g'(\sqrt{3})$

4.
$$k(z) = \frac{1-z}{2z}$$
; $k'(-1), k'(1), k'(\sqrt{2})$

5.
$$p(\theta) = \sqrt{3\theta}$$
; $p'(1), p'(3), p'(2/3)$

6.
$$r(s) = \sqrt{2s+1}$$
; $r'(0), r'(1), r'(1/2)$

I(b) Find the indicated derivatives.

7.
$$\frac{dy}{dx}$$
 if $y = 2x^3$

7.
$$\frac{dy}{dx}$$
 if $y = 2x^3$ 8. $\frac{dr}{ds}$ if $r = s^3 - 2s^2 + 3$

9.
$$\frac{ds}{dt}$$
 if $s = \frac{t}{2t+1}$

9.
$$\frac{ds}{dt}$$
 if $s = \frac{t}{2t+1}$ **10.** $\frac{dv}{dt}$ if $v = t - \frac{1}{t}$

11.
$$\frac{dp}{dq}$$
 if $p = q^{3/2}$

11.
$$\frac{dp}{dq}$$
 if $p = q^{3/2}$ **12.** $\frac{dz}{dw}$ if $z = \frac{1}{\sqrt{w^2 - 1}}$

II(a) Find the first and second derivatives of the following functions

1.
$$y = -x^2 + 3$$

2.
$$y = x^2 + x + 8$$

1.
$$y = -x^2 + 3$$

3. $s = 5t^3 - 3t^5$

4.
$$w = 3z^7 - 7z^3 + 21z^2$$

$$5. \ \ y = \frac{4x^3}{3} - x$$

5.
$$y = \frac{4x^3}{3} - x$$
 6. $y = \frac{x^3}{3} + \frac{x^2}{2} + \frac{x}{4}$

7.
$$w = 3z^{-2} - \frac{1}{z}$$
 8. $s = -2t^{-1} + \frac{4}{t^2}$

$$8. \ \ s = -2t^{-1} + \frac{4}{t^2}$$

9.
$$y = 6x^2 - 10x - 5x^{-2}$$
 10. $y = 4 - 2x - x^{-3}$

10.
$$y = 4 - 2x - x^{-3}$$

11.
$$r = \frac{1}{3s^2} - \frac{5}{2s}$$

11.
$$r = \frac{1}{3s^2} - \frac{5}{2s}$$
 12. $r = \frac{12}{\theta} - \frac{4}{\theta^3} + \frac{1}{\theta^4}$

II(b) Find the derivatives of the following functions

13.
$$y = (3 - x^2)(x^3 - x + 1)$$
 14. $y = (2x + 3)(5x^2 - 4x)$

15.
$$y - (x^2 + 1)\left(x + 5 + \frac{1}{x}\right)$$
 16. $y - (1 + x^2)(x^{3/4} - x^{-3})$

17.
$$y = \frac{2x+5}{3x-2}$$
 18. $z = \frac{4-3x}{3x^2+x}$

19.
$$g(x) = \frac{x^2 - 4}{x + 0.5}$$
 20. $f(t) = \frac{t^2 - 1}{t^2 + t - 2}$

21.
$$v = (1 - t)(1 + t^2)^{-1}$$
 22. $w = (2x - 7)^{-1}(x + 5)$

23.
$$f(s) = \frac{\sqrt{s} - 1}{\sqrt{s} + 1}$$
 24. $u = \frac{5x + 1}{2\sqrt{x}}$

25.
$$v = \frac{1 + x - 4\sqrt{x}}{x}$$
 26. $r = 2\left(\frac{1}{\sqrt{\theta}} + \sqrt{\theta}\right)$

27.
$$y = \frac{1}{(x^2 - 1)(x^2 + x + 1)}$$
 28. $y = \frac{(x + 1)(x + 2)}{(x - 1)(x - 2)}$

III(a) Find the first derivative of the following functions

1.
$$y = -10x + 3\cos x$$
 2. $y = \frac{3}{x} + 5\sin x$

3.
$$y = x^2 \cos x$$
 4. $y = \sqrt{x} \sec x + 3$

5.
$$y = \csc x - 4\sqrt{x} + 7$$
 6. $y = x^2 \cot x - \frac{1}{x^2}$

7.
$$f(x) = \sin x \tan x$$
 8. $g(x) = \frac{\cos x}{\sin^2 x}$

9.
$$y = x \sec x + \frac{1}{x}$$
 10. $y = (\sin x + \cos x) \sec x$

11.
$$y = \frac{\cot x}{1 + \cot x}$$
 12. $y = \frac{\cos x}{1 + \sin x}$

III(b) Find the first derivative of the following functions

1.
$$y = 6u - 9$$
, $u = (1/2)x^4$ **2.** $y = 2u^3$, $u = 8x - 1$

3.
$$y = \sin u$$
, $u = 3x + 1$ **4.** $y = \cos u$, $u = -x/3$

5.
$$y = \sqrt{u}, u = \sin x$$

7.
$$y = \tan u, \quad u = \pi x^2$$

9.
$$y = (2x + 1)^5$$

11.
$$y = \left(1 - \frac{x}{7}\right)^{-7}$$

13.
$$y = \left(\frac{x^2}{8} + x - \frac{1}{x}\right)^4$$
 14. $y = \sqrt{3x^2 - 4x + 6}$

15.
$$y = \sec(\tan x)$$

17.
$$y = \tan^3 x$$

2.
$$y = 2u^3$$
, $u = 8x - 1$

4.
$$y = \cos u$$
, $u = -x/3$

5.
$$y = \sqrt{u}, \quad u = \sin x$$
 6. $y = \sin u, \quad u = x - \cos x$

7.
$$y = \tan u$$
, $u = \pi x^2$ **8.** $y = -\sec u$, $u = \frac{1}{x} + 7x$

10.
$$y = (4 - 3x)^9$$

11.
$$y = \left(1 - \frac{x}{7}\right)^{-7}$$
 12. $y = \left(\frac{\sqrt{x}}{2} - 1\right)^{-10}$

14.
$$y = \sqrt{3x^2 - 4x + 6}$$

$$16. \ y = \cot\left(\pi - \frac{1}{x}\right)$$

18.
$$y = 5\cos^{-4} x$$