Assignment-Regression Algorithm

Problem Statement or Requirement:

A client's requirement is, he wants to predict the insurance charges based on the several parameters.

The Client has provided the dataset of the same. As a data scientist, you must develop a model which will predict the insurance.

S.No	Question	Answer	
1		Stage1:Machine learning	
	Identify your problem statement	Stage2:Supervised learning	
		Stage3:Regression	
2	Tell basic info about the dataset (Total number of rows, columns)	1338 Rows & 6 Columns	
3	Mention the pre-processing method if you're doing any (like converting string to number – nominal data)	It is ordinal data - because it is comparable and no column expand	
4	Develop a good model with r2_score. You can use any machine learning algorithm; you can create many models. Finally, you have to come up with final model	Good model ,final model attached in Github	
5	All the research values (r2_score of the models) should be documented. (You can make tabulation or screenshot of the results.)	Yes,Documented in Excel	
6	Mention your final model, justify why u have chosen the same.	Choosen Random forest regression(absolute_error,log2) = 0.8705 is a best model ,because its having error is less	

1) Multilinear Regression

Multilinear = 0.7891 a good model.

2)Support Vector Machine Regression

Insurance Charges Prediction Assignment - 07.05.2024						
SUPPORT VECTOR MACHINE						
Kernel: linear, poly, rbf, sigmoid, precomputed						
S.No	Parameters	R2 Score				
1	Linear	-0.1115				
2	Poly	-0.064				
3	Rbf	-0.0884				
4	Sigmoid	0.0899				
5	Precomputed Must be square matrix					
Best model in SVM is poly		-0.064				

3)Random Forest Regression

Insurance Charges predict Assignment - 07.05.2024		
RANDOM FOREST		
Creterion: squared_error, friedman_mse, absolute_error, poisson		
Parameter: n_estimators		
Max_features: sqrt, log2		

S.No	Parameter	Creterion	Max_features	R_Score		
1	_	squared_error	sqrt	0.8665		
2	_	squared_error	log2	0.8676		
3	_	friedman_mse	sqrt	0.8645		
4	_	friedman_mse	log2	0.8634		
5	_	absolute_error	sqrt	0.8697		
6	_	absolute_error	log2	0.8705		
7	_	poisson	sqrt	0.8608		
8	_	poisson	log2	0.8629		
9	n_estimators=10	_	_	0.8254		
10	n_estimators=50	_	_	0.8519		
11	n_estimators=80	_	_	0.8514		
12	n_estimators=100	_	_	0.8524		
	Best model in Random forest is absolute_error , log2 0.8					

4)Decision Tree Regression

Insurance Charges Prediction Assignment - 07.05.2024

DECISION TREE

Creterion: squared_error, friedman_mse, absolute_error, poisson

Splitter: best ,random

Max_features: sqrt, log2

S.No	Creterion	Splitter	Max_features	R2 Score
1	squared_error	best		0.6866
2	friedman_mse	best		0.6666
3	absolute_error	best	_	0.7315
4	poisson	best	_	0.6866
5	squared_error	random		0.7284
6	friedman_mse	random	_	0.6464
7	absolute_error	random	_	0.6810
8	poisson	random	_	0.6624
9	squared_error	best	sqrt	0.6836
10	squared_error	best	log2	0.7077
11	squared_error	random	sqrt	0.7354
12	squared_error	random	log2	0.6529
13	friedman_mse	best	sqrt	0.6907
14	friedman_mse	best	log2	0.6826
15	friedman_mse	random	sqrt	0.7417
16	friedman_mse	random	log2	0.7300
17	absolute_error	best	sqrt	0.7184
18	absolute_error	best	log2	0.7121
19	absolute_error	random	sqrt	0.7153
20	absolute_error	random	log2	0.6733
21	poisson	best	sqrt	0.7136
22	poisson	best	log2	0.6576
23	poisson	random	sqrt	0.7239
24	poisson	random	log2	0.6832
	•		<u> </u>	l
<u>l</u>	0.7417			

In overall regression best model is Random Forest (absolute_error,log2) – 0.8705