(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 92111324.7

2 Anmeldetag: 03.07.92

(a) Int. Cl.5. **C07D** 307/60, C07D 307/94, C07D 307/68, C07D 409/12, C07D 407/12, C07F 9/655, A01N 43/08

Priorität: 16.07.91 DE 4123532 21.05.92 DE 4216814

43 Veröffentlichungstag der Anmeldung: 24.02.93 Patentblatt 93/08

(84) Benannte Vertragsstaaten: BE CH DE ES FR GB GR IT LI NL PT

(7) Anmelder: BAYER AG

W-5090 Leverkusen 1 Bayerwerk(DE)

Erfinder: Fischer, Reiner, Dr. **Nelly-Sachs-Strasse 23** W-4019 Monheim 2(DE)

Erfinder: Bretschneider, Thomas, Dr.

Scheerengasse 7-9 W-5200 Siegburg(DE)

Erfinder: Krüger, Bernd-Wieland, Dr.

Unterboschbach 19

W-5060 Bergisch Gladbach 2(DE) Erfinder: Bachmann, Jürgen, Dr. Carl-Duisberg-Strasse 325

W-5090 Leverkusen 1(DE)

Erfinder: Erdelen, Christoph, Dr.

Unterbüscherhof 22 W-5653 Leichlingen 1(DE)

Erfinder: Wachendorff-Neumann, Ulrike, Dr.

Krischerstrasse 81 W-4019 Monheim(DE)

Erfinder: Santel, Hans-Joachim, Dr.

Grünstrasse 9a

W-5090 Leverkusen 1(DE) Erfinder: Lürssen, Klaus, Dr. August-Kierspel-Strasse 145 W-5060 Bergisch Gladbach 2(DE) Erfinder: Schmidt, Robert R., Dr.

Im Waldwinkel 110

W-5060 Bergisch Gladbach 2(DE)

3-Aryl-4-hydroxy-delta3-dihydrofuranon- und 3-Aryl-4-hydroxy-delta3-dihydrothlophenon-Derivate.

⑤ Die vorliegende Erfindung betrifft neue 3-Aryl-4-hydroxy-Δ³-dihydro-furanon- und 3-Aryl-4-hydroxy-Δ³dihydrothiophenon-Derivate, mehrere Verfahren zu ihrer Herstellung und ihre Verwendung als Insektizide, Akarizide, Herbizide und Fungizide.

Die neuen 3-Aryl-4-hydroxyΔ³-dihydrofurano-und 3-Aryl-4-hydroxy-Δ³-dihydrothiophenon-Derivate besitzen die allgemeine Formel I

in welcher

Х für Alkyl, Halogen, Alkoxy oder Halogenalkyl steht,

- Y für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyl steht,
- Z für Alkyl, Halogen, Alkoxy steht,
- n für eine Zahl von 0-3 steht, oder wobei die Reste X und Z gemeinsam mit dem Phenylrest an den sie gebunden sind, den Naphthalinrest der Formel

bilden,

in welchem Y die oben angegebene Bedeutung hat,

G für Wasserstoff (a) oder für die Gruppen

-CO-R¹, (b)
$$M-R^2$$
 (c) $-SO_2-R^3$ (d) $-P-R^5$ (e) $N-R^6$ (f) oder E^{\oplus} (g)

steht,

A und B gleich oder verschieden sein können und für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkinyl, Alkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch Heteroatome

unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen, Alkyl, Halogenalkyl, Alkoxy,

Halogenalkoxy, Nitro substituiertes Aryl, Aralkyl oder Hetaryl stehen

oder worin

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten oder ungesät-

tigten, gegebenenfalls durch Heteroatome unterbrochenen und gegebenenfalls substituierten

Cyclus bilden,

D für Sauerstoff oder Schwefel steht,

E^e für ein Metallionäquivalent oder ein Ammoniumion steht,

L und M für Sauerstoff und/oder Schwefel steht,

und R1, R2, R3, R4, R5, R6 und R7 die im Anmeldungstext angegebene Bedeutung besitzen,

mit Ausnahme folgender Verbindungen:

3-(2-Methoxyphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2,

 $\hbox{3-(2-Chlorphenyl)-4-hydroxy-} \Delta^{3}\hbox{-dihydrofuranon-2},$

3-(2-Methoxyphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2,

3-(2-Fluorphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2.

Die vorliegende Erfindung betrifft neue 3-Aryl-4-hydroxy- Δ^3 -dihydro-furanon- und 3-Aryl-4-hydroxy- Δ^3 -dihydrothiophenon-Derivate, mehrere Verfahren zu ihrer Herstellung und ihre Verwendung als Insektizide, Akarizide, Herbizide und Fungizide.

Es ist bekannt, daß bestimmte substituierte Δ^3 -Dihydrofuran-2-on-Derivate herbizide Eigenschaften besitzen (vgl. DE-A 4 014 420). Die Synthese der als Ausgangsverbindungen verwendeten Tetronsäurederivate (wie z.B. 3-(2-Methyl-phenyl)-4-hydroxy-5-(4-fluorphenyl)- Δ^3 -dihydrofuranon-(2) ist ebenfalls in DE-A 4 014 420 beschrieben, Ähnlich strukturierte Verbindungen ohne Angabe einer insektiziden und/oder akariziden Wirksamkeit sind aus der Publikation Campbell et al. J. Chem. Soc., Perkin Trans. 1 1985, (8) 1567-76 bekannt.

Es wurden nun neue 3-Aryl-4-hydroxy- Δ^3 -dihydrofuranon- und 3-Aryl-4-hydroxy- Δ^3 -dihydrothiophenon- Derivate der allgemeinen Formel (I)

$$\begin{array}{c|c}
G & X & Z_n \\
\hline
D & Q & X & Z_n
\end{array}$$

10

15

20

25

gefunden, in welcher

X für Alkyl, Halogen, Alkoxy oder Halogenalkyl steht,

Y für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogen-alkyl steht,

Z für Alkyl, Halogen, Alkoxy steht,

für eine Zahl von 0-3 steht, oder wobei die Reste X und Z gemeinsam mit dem Phenylrest an den sie gebunden sind, den Naphthalinrest der Formel

30

35

bilden

in welchem Y die oben angegebene Bedeutung hat,

G für Wasserstoff (a) oder für die Gruppen

40

45

-CO-R¹, (b)
$$M-R^2$$
 (c) $-SO_2-R^3$ (d)
$$-P R^4 R^5$$
 (e) $N R^6$ (f) oder E^6 (g)

50

steht,

55 A und B

gleich oder verschieden sein können und für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkinyl, Alkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen, Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Nitro substituiertes Aryl, Aralkyl oder Hetaryl stehen

	oder worin		
	A und B	tigten oder ungesättigten, gegebenent und gegebenenfalls substituierten Cycl	an das sie gebunden sind einen gesät- falls durch Heteroatome unterbrochenen lus bilden,
5	D	für Sauerstoff oder Schwefel steht,	
	E*	für ein Metallionäquivalent oder ein Am	
	L und M	für Sauerstoff und/oder Schwefel steht,	•
10	R¹	Alkylthioalkyl, Polyalkoxyalkyl oder Cy brochen sein kann, gegebenenfalls su stituiertes Phenylalkyl, substituiertes F	ubstituiertes Alkyl, Alkenyl, Alkoxyalkyl, ycloalkyl, das durch Heteroatome unter- bstituiertes Phenyl, gegebenenfalls sub- letaryl, substituiertes Phenoxyalkyl oder
	5 2	substituiertes Hetaryloxyalkyl steht und	
	R ²		ubstituiertes Alkyl, Alkenyl, Alkoxyalkyl,
15	R³, R⁴ und R⁵	kyl, Alkoxy, Alkylamino, Dialkylamino,	ibstituiertes Phenyl oder Benzyl steht, enfalls durch Halogen substituiertes Al- Alkylthio, Alkenylthio, Alkinylthio, Cyclo- tituiertes Phenyl, Phenoxy oder Phenylt-
		hio stehen,	,
	R ⁶ und R ⁷	unabhängig voneinander für Wasserst	toff, gegebenenfalls durch Halogen sub-
20			kyalkyl, für gegebenenfalls substituiertes
		Phenyl, für gegebenenfalls substituierte	
	oder wobei R ⁶ und R ⁷		lurch Sauerstoff unterbrochenen Alkylen-
25	mit Ausnahme folgender Ve 3-(2-Methoxyphenyl)-4-hydroxy 3-(2-Chlorphenyl)-4-hydroxy 3-(2-Methoxyphenyl)-4-hydroxy 3-(2-Fluorphenyl)-4-hydroxy	roxy- Δ^3 -dihydrofuranon-2, y- Δ^3 -dihydrofuranon-2, roxy- Δ^3 -dihydrofuranon-2,	
		en Formen von Verbindungen der Forme	al (I)
30	Unter Einbeziehung de	r verschiedenen Bedeutungen (a), (b), (c ben sich folgende hauptsächlichen Struk	c), (d), (e), (f) und (g) der Gruppe G der
35	B-	A OH X D Z Y	(Ia)
		- n	
40			
40		0	
	R1	, , , , , , , , , , , , , , , , , , ,	
45	к- В-	A O X	(IP)
		o z _n	

$$\begin{array}{c|c}
L & R^6 \\
\hline
 & R^7 & X \\
\hline
 & D & C-N & Z
\end{array}$$
(If)

worin

5

10

15

25

35

40

A, B, D, E, L, M, X, Y, Z_n , R¹, R², R³, R⁴, R⁵, R⁶ und R⁷ die oben angebenenen Bedeutungen besitzen, Weiterhin wurde gefunden, daß man 3-Aryl-4-hydroxy- Δ^3 -dihydrofuranon- und 3-Aryl-4-hydroxy- Δ^3 -dihydrothiophenon-Derivate der Formel (Ia)

in welcher

50 A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben, erhält, wenn man

(A)

55

Carbonsäureester der Formel (II)

$$\begin{array}{c|c}
A & CO_2R^8 \\
X & X \\
D & Z_n
\end{array}$$
(11)

10

5

in welcher

A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben und

R8 für Alkyl steht,

15 in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intramolekular kondensiert.

(B)

Außerdem wurde gefunden, daß man Verbindungen der Formel (Ib)

20

25

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

30

in welcher

A, B, D, X, Y, Z, R^1 und n die oben angegebene Bedeutung haben, erhält, wenn man Verbindungen der Formel (la),

35

40

$$\begin{array}{c|c}
A & HO & X \\
\hline
D & & & \\
\hline
\end{array}$$

45 in welcher

A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben,

α) mit Säurehalogeniden der allgemeinen Formel (III)

50

55

in welche,

R¹ die oben angegebene Bedeutung hat und

Hal für Halogen, insbesondere Chlor und Brom steht, gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt

oder

5 β) mit Carbonsäureanhydriden der allgemeinen Formel (IV)

R1-CO-O-CO-R1 (IV)

in welcher

R¹ die oben angegebene Bedeutung hat, gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels, umsetzt.

15 (C)

10

Ferner wurde gefunden, daß man Verbindungen der Formel (Ic)

 $\begin{array}{c|c}
 & L \\
 & \parallel \\
 & \mathbb{R}^{2}M-C-O \\
 & \mathbb{A} & X \\
 & \mathbb{Z}_{n} & Y
\end{array}$ (1c)

30 in welcher

A, B, D, X, Y, Z, R² und n die oben angegebene Bedeutung haben,

für Sauerstoff

und

M für Sauerstoff oder Schwefel steht,

s erhält, wenn man Verbindungen der Formel (la)

$$\begin{array}{c|cccc}
A & HO & X \\
\hline
D & & & & & & & \\
\hline
D & & & & & & & \\
\hline
O & & & & & & & \\
\end{array}$$
(Ia)

in welcher

45 A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben mit Chlorameisensäureester oder Chlorameisensäurethiolester der allgemeinen Formel (V)

R2-M-CO-CI (V)

50 in welcher

R² und M die oben angegebene Bedeutung haben, gegebenenfals in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt.

55

D) Ferner wurde gefunden, daß man Verbindungen der Formel (Ic)

in welcher

A, B, D, R², X, Y, Z und n die oben angegebene Bedeutung haben,

L für Schwefel

und

M für Sauerstoff oder Schwefel steht, erhält, wenn man Verbindungen der Formel (la)

20

25

5

10

15

$$\begin{array}{c|c}
A & OH X \\
\hline
D & Z_n
\end{array}$$

in welcher

30 A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben

 α) mit Chlormonothioameisensäureestern oder Chlordithioameisensäureestern der allgemeinen Formel (VI)

35

40

in welcher

M und R² die oben angegebene Bedeutung haben

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt,

45 oder

β) mit Schwefelkohlenstoff und anschließend mit Alkylhalogeniden der allgemeinen Formel (VII)

R2-Hal (VII)

50 in welcher

R² die oben angegebene Bedeutung hat

und

Hal für Chlor, Brom, Jod

steht, umsetzt.

E) Außerdem wurde gefunden, daß man Verbindungen der Formel (Id)

in welcher

5

A, B, D, X, Y, Z, R³ und n die oben angegebene Bedeutung haben, erhält, wenn man Verbindungen der Formel (la)

in welcher

A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben, mit Sulfonsäurechloriden der allgemeinen Formel (VIII)

R3-SO₂-CI (VIII)

in welcher

30

35

R³ die oben angegebene Bedeutung hat gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt.

F) Weiterhin wurde gefunden, daß man Verbindungen der Formel (le)

40 $\begin{array}{c|c}
 & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow$

in welcher

A, B, D, L, X, Y, Z, R^4 , R^5 und n die oben angegebene Bedeutung haben,

erhält, wenn manVerbindungen der Formel (la)

in welcher

 A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben mit Phosphorverbindungen der allgemeinen Formel (IX)

Hal-P
$$\mathbb{R}^{5}$$

in welcher

20

25

30

35

40

45

50

L, \mathbf{R}^4 und \mathbf{R}^5 die oben angegebene Bedeutung haben und

Hal für Halogen, insbesondere Chlor und Brom steht, gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt.

G) Ferner wurde gefunden, daß man Verbindungen der Formel (If)

$$\begin{array}{c|c}
L & R^6 \\
\hline
 & R^7 & X \\
\hline
 & D & Z_n
\end{array}$$
(If)

in welcher

A, B, D, L, X, Y, Z, R⁶, R⁷ und n die oben angegebene Bedeutung haben, erhält, wenn man Verbindungen der Formel (la),

$$\begin{array}{c|cccc}
A & OH & X \\
\hline
D & Z_n
\end{array}$$
(Ia)

in welcher

- 55 A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben
 - a) mit Isocyanaten der allgemeinen Formel (X)

 $R^6 - N = C = O \qquad (X)$

in welcher

R6 die oben angegebene Bedeutung hat

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators umsetzt,

oder

β) mit Carbamidsäurechloriden oder Thiocarbamidsäurechloriden der allgemeinen Formel (XI)

10

$$\mathbb{R}^6$$
 \mathbb{C}_1 \mathbb{C}_1

15

in welcher

L, R⁶ und R⁷ die oben angegebene Bedeutung haben,

20 gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt.

H) Weiterhin wurde gefunden, daß man Verbindungen der Formel (Ig)

25

30

35

n welcher

X, Y, Z, A, B, D und n die oben angegebene Bedeutung haben, und E^e für ein Metallionäquivalent oder für ein Ammoniumion steht, erhält, wenn man Verbindungen der Formel (la)

40

45

in welcher

X, Y, Z, A, B, D und n die oben angegebene Bedeutung haben,

o mit Metallhydroxiden oder Aminen der allgemeinen Formeln (XII) und (XIII)

in welchen

Мe

für ein- oder zweiwertige Metallionen

s und t

für die Zahl 1 oder 2 und

5 R⁵, R⁶ und R⁷

unabhängig voneinander für Wasserstoff und Alkyl

stehen,

gegebenenfalls in Gegenwart eines Verdünnungsmittels, umsetzt.

Weiterhin wurde gefunden, daß sich die neuen 3-Aryl-4-hydroxy-Δ³-dihydrofuranon- und 3-Aryl-4-hydroxy-Δ³-dihydrothiophenon-Derivate der Formel (I) durch hervorragende akarizide, insektizide, herbizide und fungizide Wirkungen auszeichnen.

Bevorzugt sind Verbindungen der Formel (I)

in welcher

Х

für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy oder C₁-C₃-Halogenalkyl steht,

Υ

für Wasserstoff, C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy, C₁-C₃-Halogenalkyl steht,

15 Z

für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy steht,

n

für eine Zahl von 0 bis 3 steht,

oder wobei die Reste X und Z gemeinsam mit dem Phenylrest an den sie gebunden sind, den Naphthalinrest der Formel

20

25

30

bilden,

in welchem Y die oben angegebene Bedeutung hat,

A und B

gleich oder verschieden sind und für Wasserstoff oder gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C_1 - C_{12} -Alkyl, C_3 - C_8 -Alkenyl, C_3 - C_8 -Alkinyl, C_1 - C_{10} -Alkoxy- C_2 - C_8 -alkyl, C_1 - C_8 -Polyalkoxy- C_2 - C_8 -alkyl, C_1 - C_1 0-Alkylthio- C_2 - C_8 -alkyl, Cycloalkyl mit 3 bis 8 Ringatomen, das durch Sauerstoff und/oder Schwefel unterbrochen sein kann oder gegebenenfalls durch Halogen, C_1 - C_6 -Alkyl, C_1 - C_6 -Haloalkyl-, C_1 - C_6 -Alkoxy-, C_1 - C_6 -Halogenalkoxy, Nitro substituiertes Aryl, Hetaryl oder Aryl- C_1 - C_6 -alkyl steht,

35 oder worin

A und B

gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen gesättigten oder ungesättigten, gegebenenfalls durch Sauerstoff und/oder Schwefel unterbrochenen und gegebenenfalls durch Halogen, C_1 - C_6 -Alkyl, C_5 - C_6 -Alkoxy, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkylthio oder gegebenenfalls substituiertes Aryl substituierten 3- bis 8-gliedrigen Ring bilden,

G für Wasserstoff (a) oder für die Gruppen

45

40

-co-R¹, (b)

-so₂-R³ (d

50

L R⁷

f) oder E (g)

55

steht,

in welchen

E®

für ein Metallionäquivalent oder ein Ammoniumion steht,

L und M

für Sauerstoff und/oder Schwefel steht,

 \mathbb{R}^1 für gegebenenfalls durch Halogen substituiertes: C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy- C_2 - C_8 -alkyl, C_1 - C_8 -Alkylthio- C_2 - C_8 -alkyl, C_1 - C_8 -Polyalkoxyl- C_2 - C_8 -alkyl oder Cycloalkyl mit 3-8 Ringatomen, das durch Sauerstoff- und/oder Schwefelatome unterbrochen sein kann, steht, für gegebenenfalls durch Halogen, Nitro, C1-C6-Alkyl, C1-C6-Alkoxy, C1-C6-Halo-5 genalkyl, C₁-C₆-Halogenalkoxy-substituiertes Phenyl steht: für gegebenenfalls durch Halogen, C1-C6-Alkyl, C1-C6-Alkoxy, C1-C6-Halogenalkyl, C₁-C₆-Halogenalkoxy-substituiertes Phenyl-C₁-C₆-alkyl steht. für gegebenenfalls durch Halogen und/oder C1-C6-Alkyl substituiertes Hetaryl steht, für gegebenenfalls durch Halogen und C_1 - C_6 -Alkyl-substituiertes Phenoxy- C_1 - C_6 -alkyl 10 steht, für gegebenenfalls durch Halogen, Amino und C₁-C₆-Alkyl-substituiertes Hetaryloxy-C1-C6-Alkyl steht, \mathbb{R}^2 für gegebenenfalls durch Halogen substituiertes C1-C20-Alkyl, C2-C20-Alkenyl, C1-C8-15 Alkoxy-C2-C8-alkyl, C1-C8-Polyalkoxy-C2-C8-alkyl steht, für gegebenenfalls durch Halogen, Nitro, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogena Ikyl-substituiertes Phenyl oder Benzyl steht, R3, R4 und R5 unabhängig voneinander für gegebenenfalls durch Halogen substituiertes C1-C8-Alkyl, C_1 - C_8 -Alkoxy, C_1 - C_8 -Alkylamino, Di- $(C_1$ - C_8)-Alkylamino, C_1 - C_8 -Alkylthio, C_2 - C_5 -Al-20 kenylthio, C2-C5-Alkinylthio, C3-C7-Cycloalkylthio, für gegebenenfalls durch Halogen, Nitro, Cyano, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, C1-C4-Alkyl, C1-C4-Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen, R6 und R7 unabhängig voneinander für gegebenenfalls durch Halogen substituiertes C1-C20-25 Alkyl, C₁-C₂₀-Alkoxy, C₂-C₈-Alkenyl, C₁-C₂₀-Alkoxy-C₁-C₂₀-alkyl, für gegebenenfalls durch Halogen, C₁-C₂₀-Halogenalkyl, C₁-C₂₀-Alkyl oder C₁-C₂₀-Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, C1-C20-Alkyl, C1-C20-Halogenalkyl oder C1-C20-Alkoxy substituiertes Benzyl steht oder zusammen für einen gegebenenfalls durch Sauerstoff unterbrochenen C2-C6-Alkylenring stehen, mit Ausnahme folgender Verbindungen: 30 3-(2-Methoxyphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2, 3-(2-Chlorphenyl)-4-hydroxy- Δ^3 dihydrofuranon-2, 3-(2-Methoxyphenyl)-4-hydroxy-Δ3-dihydrofuranon-2, 3-(2-Fluorphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2, sowie die enantiomerenreinen Formen von Verbindungen der Formel (I). Besonders bevorzugt sind Verbindungen der Formel (I), in welcher 35 Х für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy oder C₁-C₂-Halogenalkyl steht, Υ für Wasserstoff, C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy, C₁-C₂-Halogenalkyl steht, Ζ für C1-C4-Alkyl, Halogen, C1-C4-Alkoxy steht, n für eine Zahl von 0 bis 3 steht, 40 oder wobei die Reste X und Z gemeinsam mit dem Phenylrest an den sie gebunden sind, den Naphthalinrest der Formel 45 50 bilden. in welchem Y die oben angegebene Bedeutung hat, A und B gleich oder verschieden sind und für Wasserstoff, gegebenenfalls durch Halogen substituier-

Nitro substituiertes Aryl, Hetaryl oder Aryl-C1-C4-alkyl stehen,

55

tes geradkettiges oder verzweigtes C₁-C₁₀-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₁-C₈-Alk

oxy- C_2 - C_6 -alkyl, C_1 - C_6 -Polyalkoxy- C_2 C $_6$ -alkyl, C_1 - C_8 -Alkylthio- C_2 - C_6 -alkyl, Cycloalkyl mit 3 bis 7 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann oder gegebenenfalls durch Halogen-, C_1 - C_4 -Alkyl, C_1 - C_4 -Haloalkyl-, C_1 - C_4 -Alkoxy-,

oder worin A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen gesättigten oder ungesättigten, gegebenenfalls durch Sauerstoff und/oder Schwefel unterbrochen und gegebenenfalls durch Halogen, C₁-C₅-Alkyl, C₁-C₅-Alkoxy, C₁-C₃-Halogenalkyl, C1-C4-Halogenalkoxy, C1-C3-Alkylthio oder gegebenenfalls durch Halogen, Alkyl, Al-5 koxy substituiertes Aryl substituierten 3- bis 8-gliedrigen Ring bilden, G für Wasserstoff (a) oder für die Gruppen 10 -co-R¹. (c) (d) (b) 15 (e) 20 steht. in welchen E für ein Metallionäquivalent oder ein Ammoniumion steht 25 L und M jeweils für Sauerstoff und/oder Schwefel steht, R¹ für gegebenenfalls durch Halogen substituiertes C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₆-Alkoxy- C_2 - C_6 -alkyl, C_1 - C_{16} -Alkylthio- C_2 - C_6 -alkyl, C_1 - C_6 -Polyalkoxy- C_2 - C_6 -alkyl und Cycloalkyl mit 3-7 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann steht, 30 für gegebenenfalls durch Halogen-, Nitro, C₁-C₄-Alkyl-, C₁-C₄-Alkoxy-, C₁-C₃-Halogenalkyl-, C₁-C₃-Halogenalkoxy-substituierets Phenyl steht, für gegebenenfalls durch Halogen-, C1-C4-Alkyl-, C1-C4-Alkoxy-, C1-C3-Halogenalkyl-, C₁-C₃-Halogenalkoxy-substituiertes Phenyl-C₁-C₄-alkyl steht, 35 für gegebenenfalls durch Halogen- und C1-C6-Alkyl-substituiertes Hetaryl steht, für gegebenenfalls durch Halogen- und C1-C4-Alkyl-substituiertes Phenoxy-C1-C5-alkyl steht, für gegebenenfalls durch Halogen, Amino und C1-C4-Alkyl substituiertes Hetaryloxy-C1-C5-alkyl steht, R² 40 für gegebenenfalls durch Halogen substituiertes: C1-C16-Alkyl, C2-C16-Alkenyl, C1-C₁₆-Alkox-C₂-C₆-alkyl, C₁-C₆-Polyalkoxy-C₂-C₆-alkyl steht, für gegebenenfalls durch Halogen, Nitro-, C1-C4-Alkyl, C1-C3-Alkoxy-, C1-C3-Halogenalkyl-substituiertes Phenyl oder Benzyl steht, R3, R4 und R5 unabhängig voneinander für gegebenenfalls durch Halogen substituiertes C₁-C₆-Alkyl, 45 C_1-C_6 -Alkoxy, C_1-C_6 -Alkylamino, D_1-C_6 -Alkylamino, C_1-C_6 -Alkylamino, C_3-C_4 -Alkenylthio, C2-C4-Alkinylthio, C3-C6-Cycloalkylthio, für gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃ -Halogenalkylthio, C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl substitutiertes Phenyl, Phenoxy oder Phenylthio stehen, R6 und R7 50 unabhängig voneinander tür gegebenenfalls durch Halogen substituiertes C1-C20-Alkyl, C₁-C₂₀-Alkoxy, C₂-C₈-Alkenyl, C₁-C₂₀-Alkoxy-C₁-C₂₀-alkyl, frnr gegebenenfalls durch Halogen, C₁-C₅-Halogenalkyl, C₁-C₅-Alkyl oder C₁-C₅-Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, C₁-C₅-Alkyl,C₁-C₅-Halogenalkyl oder C₁-C5-Alkoxy substituiertes Benzyl steht, mit Ausnahme folgender Verbindungen: 3-(2-Methoxyphenyl)-4-hydroxy-∆3-dihydrofuranon-2,

14

3-(2-Chlorphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2, 3-(2-Methoxyphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2,

3-(2-Fluorphenyl)-4-hydroxy-∆3-dihydrofuranon-2,

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

Ganz besonders bevorzugt sind Verbindungen der Formel (I), in welcher

X Methyl, Ethyl, Propyl, i-Propyl, Fluor, Chlor, Brom, Methoxy, Ethoxy und Trifluormethyl steht,

Y für Wasserstoff, Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl, tert.-Butyl, Fluor, Chlor, Brom,

Methoxy, Ethoxy und Trifluormethyl steht,

Z für Methyl, Ethyl, i-Propyl, Butyl, i-Butyl, tert.-Butyl, Fluor, Chlor, Brom, Methoxy und Ethoxy

steht.

n für eine Zahl von 0 bis 3 steht,

oder wobei die Reste X und Z gemeinsam mit dem Phenylrest an den sie gebunden sind,

den Rest der Formel

20 bilden.

5

10

15

25

30

in welchem Y die oben angegebene Bedeutung hat,

A und B gleich oder verschieden sind und für Wasserstoff, gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₈-Alkyl, C₃-C₄-Alkenyl, C₃-C₄-Alkinyl, C₁-C₆-Alkoxy-C₂-C₄-alkyl, C₁-C₄-Polyalkoxy-C₂-C₄-alkyl, C₁-C₆-Alkylthio-C₂-C₄-alkyl, Cycloalkyl mit 3 bis 6 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann oder gegebenenfalls durch Fluor-, Chlor-, Methyl-, Ethyl-, Propyl-, iso-Propyl-, Methoxy-,

Ethoxy-, Trifluormethyl-, Nitro substituiertes Aryl, Pyridin, Imidazol, Pyrazol, Triazol, Indol,

Thiazol oder Aryl-C₁-C₃-alkyl stehen,

oder worin

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen gesättigten oder

ungesättigten, gegebenenfalls durch Sauerstoff und/oder Schwefel unterbrochenen und gegebenenfalls durch Fluor, Chlor, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, Trifluormethyl, C_1 - C_2 -Alkylthio oder gegebenenfalls durch Fluor, Chlor, Methyl, Methoxy substituiertes Aryl einen

substituierten 3- bis 8-gliedrigen Ring bilden,

35 G für Wasserstoff (a) oder für die Gruppen

40 -CO-R¹, (b)
$$M-R^2$$
 (c) -SO₂-R³ (d)

45
$$-P$$
 (e) N (f) oder E (g)

50 steht,

in welchen

55

E[®] für ein Metallionäquivalent oder ein Ammoniumion steht.

L und M für Sauerstoff und/oder Schwefel steht,

R¹ für gegebenenfalls durch Fluor oder Ch

für gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₁₄-Alkyl, C₂-C₁₄-Alkenyl, C₁-C₄-Alkoxy-C₂-C₆-alkyl, C₁-C₄-Alkylthio-C₂-C₆-alkyl, C₁-C₄-Polyalkoxy-C₂-C₄-alkyl und Cycloalkyl mit 3-6 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann, steht,

für gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, i-Propyl, Nethoxy,

Ethoxy, Trifluormethyl, Trifluormethoxy, Nitro-substituiertes Phenyl steht,

für gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy-substituiertes Phenyl-C₁-C₃-alkyl steht,

für gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl-substituiertes Pyridyl, Pyrimidyl, Thiazolyl und Pyrazolyl steht,

für gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl-substituiertes Phenoxy-C₁-C₄-alkyl steht,

für gegebenenfalls durch Fluor, Chlor, Amino, Methyl-, Ethyl, substituiertes Pyridyloxy-C₁-C₄-alkyl, Pyrimidyloxy-C₁-C₄-alkyl und Thiazolyloxy-C₁-C₄-alkyl steht,

für gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₁₄-Alkyl, C₂-C₁₄-Alkenyl,

C₁-C₄-Alkoxy-C₂-C₆-alkyl, C₁-C₄-Polyalkoxy-C₂-C₆-alkyl steht,

oder für gegebenenfalls durch Fluor, Chlor, Nitro, Methyl, Ethyl, Propyl, i-Propyl,

Methoxy, Ethoxy, Trifluormethyl substituiertes Phenyl oder Benzyl steht,

unabhängig voneinander für gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylamino, Di-(C₁-C₄-Alkyl)amino, C₁-C₄-Alkylthio, für gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, C₁-C₂-Alkoxy, C₁-C₄-Fluoralkoxy, C₁-C₂-Chloralkoxy, C₁-C₂-Alkylthio, C₁-C₂-Fluoralkylthio, C₁-C₂-Chloralkylthio,

C₁-C₃-Alkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen,

unabhängig voneinander für gegebenenfalls durch Fluor, Chlor, Brom substituiertes C₁-C₁₀-Alkyl, C₁-C₁₀-Alkoxy, C₁-C₁₀-Alkoxy-(C₁-C₁₀)alkyl, für gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₂₀-Halogenalkyl, C₁-C₂₀-Alkyl oder C₁-C₄-Alkoxy substituiertes Phenyl, für gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Haloge-

nalkyl oder C1-C4-Alkoxy substituiertes Benzyl steht,

mit Ausnahme folgender Verbindungen:

5

10

15

20

30

35

40

45

50

55

R²

R³, R⁴ und R⁵

R6 und R7

3-(2-Methoxyphenyl)-4-hydroxy-∆3-dihydrofuranon-2,

3-(2-Chlorphenyl)-4-hydroxy-∆3-dihydrofuranon-2,

3-(2-Methoxyphenyl)-4-hydroxy-Δ³-dihydrofuranon-2,

3-(2-Fluorphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2,

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden 3-Aryl-4-hydroxy- Δ^3 -dihydrofuran-Derivate der Formel (Ia) genannt:

5		Z _n	6-CH ₃	6-CH ₃	6-CH ₃	6-CH3	6-CH ₃	6-CH3	e-cH ₃	6-CH3	6-CH ₃	6-CH ₃	6-CH ₃	€ + 2 − 9
10		>	-CH3	-cH ₃	-CH3	-сн3	-CH ₃	-CH3	-сн3	-сн3	-сн3	-cH ₃	-cH3	-CH ₃
15		×	-cH ₃	-cH ₃	-сн3	-CH3	-сн3	-CH3	-CH3	-CH3	-cH ₃	-сн3	-CH3	-cH ₃
20														
25		a	0	0	0	0	0	0	0	0	0	O	0	٥
30		В	x	¥	×	I	×	-cH3	-cH ₃	-cH ₃	-сн3	-сн3	-сн3	-cH ₃
35				m!		13)3	¹ 21		-c ₂ H ₅	2H3)2	-сн2-сн(сн3)2	\triangle	\bigcirc	
40	Tabelle 1	A	æ	-CH ₃	\	-с(сн ³) ³	-C101	-CH ₃	-CZH	-CH(-CH2-CI		-CH2-	-сн ² сн ² -
45	Tabe	1												

EP 0 528 156 A1

5		zn	6-CH ₃	6-сн ₃	6-сн3	6-CH ₃	6 - CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-сн3	6-CH ₃	6-CH ₃	6-CH ₃	6-СН3	6-сн3
10		٨	-CH3	-сн3	-cH ₃	-CH ₃	-CH3	-CH3	-CH3	-cH3	-сн3	-сн3	-CH3	-сн3	-сн3	-CH3	-cH ₃
15 20		×	-CH ₃	-CH3	-CH ₃	-CH3	-cH ₃	-сн3	-cH ₃	-cH ₃	-снз	-cH ₃	-cH ₃	-cH ₃	-cH ₃	-cH ₃	-cH ₃
25		O	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
30		В	-C ₂ H ₅	-сн(сн ³) ²	x	"	-снз	-сн3						H ₃) ₂ -	2)4-	-(CH ²) ³ -	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -
35	rtsetzung		ş	-сн(сн ³)2			-ch=ch ₂		-(CH ₂) ₂ -	-(CH ₂) ₄ -	-(CH ₂) ₅ -	-(CH ²) ⁶ -	-(CH ₂) ₇ -	-c(cH ₃) ₂ -c(CH ₃) ₂ -	-CH(CH3)-(CH2)4-	-сн ² -сн(сн ³)-(сн ²) ³ -	(сн ₂) ₂ -сн(с
45	Tabelle 1: Fortsetzung	A	-C2H5)но-	=	Y	-CH	-CF3						ĭ	ĭ	ī	•

EP 0 528 156 A1

5	z ⁿ	6-СН3	6-CH ₃	6-CH ₃	€-сн3	6-СН3	6-CH ₃
10	>-	-CH3	-CH ₃	-cH ₃	-CH ₃	-сн3	-CH ₃
15	×	-сн3	- CH ₃	-cH ₃	-cH ₃	-сн3	-CH ₃
20							
•							
25	۵	0	0	0	0	0	0
30	æ	(CH ₂)2-	сн ₂)2-	-C(CH ₃) ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	У	CH ₂) ₂ -	CH ₂) ₂ -
35	Fortsetzung A	-c(cH ₂) ₂ -cH-(CH ₂) ₂ -	-(CH ₂) ₂ -CH-(CH ₂) ₂ -	CH ₃) ₂ -CH ₂ -(-(CH ₂) ₂ -CH-(CH ₂) ₂ - C ₂ H ₅	-(CH ₂) ₂ -CH-(CH ₂) ₂ - -C ₃ H ₇
40	Tabelle 1: For	Ų.	5-)))]-ZH]-		ت ۱	<u>ت</u> ١
45	Tabe						

EP 0 528 156 A1

5															
		Zn	I	x	x	x	×	Ħ	I	Ħ	Ħ	r		x	
10		>-	ü	CI	C1	ប	C	C 1	C1	CI	C1	ជ		ប	
15		×	ជ	C1	C1	C]	C]	C1	CJ	C1	C1	ប		ü	
20															
25		Q	0	0	0	0	0	0	0	0	0	0		0	
30		8	-сн3	-CH ₃	-cH ₃	-CH ₃				2)3-	(CH ₂) ₂ -	-(CH ₂) ₂ -CH-(CH ₂) ₂ -		2)2-	
35	etzung) ₂ -CH ₃		CH ₂) ₄ -	CH ₂) ₅ -	CH2)6-	(сн ³)-(сн	-сн(сн3)-) 2-СН- (СН	c ₂ H ₅	-(CH ₂) ₂ -CH-(CH ₂) ₂ -	i-c ₃ H ₇
40	Tabelle 1: Fortsetzung	æ	-cH ₃	-C2H5	-сн(сн ³) ²	-CF3) -	-) -	-сн ² -сн	-(CH ₂) ₂	- (CH ₂		- (CH ₂	
45	Tabel														

EP 0 528 156 A1

5		$z_{\rm n}$	6-61	6-01	6-C1	6-C1	6-C1	6-C1	6-01	6-C1	6-C1	6-C1	6 - C 1
10		٠,	I	ĸ	I	×	x	H	I	I	H	x	×
15		×	.	CJ	C1	C1	ü	ü	ប៊	ជ	ü	បី	C1
20													
25		O	0	0	0	0	0	0	0	o	0	0	0
30		В	-CH ₃	-cH ₃	-сн3	-CH ₃				.H ₂) ₃ -)-(CH ₂) ₂ -	$-(CH_2)_2-CH-(CH_2)_2-$ C_2H_5	.H ₂) ₂ -
35	tsetzung				-ch(ch ₃) ₂ -ch ₃		-(CH ₂)4-	-(CH ₂) ₅ -	-(CH ₂)6-	сн(сн ³)-(С) ₂ -сн(сн ₃)	H ₂) ₂ -CH-(C C ₂ H ₅	-(CH ₂) ₂ -CH-(CH ₂) ₂ - 1-C ₃ H ₇
40	<u> Tabelle 1</u> : Fortsetzung	4	-CH3	-C2H5	-CH(C	-CF3				-CH2-	- (CH ₂	0	<u></u>
45	Tabel												

EP 0 528 156 A1

5	Z _n	6 - F	6 - F	6 - F	й - 9	6 - F	6 - F	6 F	6 - F	A - A	ir. - 9		년 - A	
10	,	×	×	H	x	H	×	×	x	×	Ħ		x	
15	×	ប៊	C1	C1	CJ	C1	ប	C1	C	C1	C1		ü	
20														
25	Q	0	0	0	0	0	0	0	0	0	0		0	
30	B	-CH ₃	-cH ₃	-сн3	-сн3				CH ₂) ₃ -)-(CH ₂) ₂ -	CH ₂) ₂ -		CH ₂) ₂ -	
35	rserzang			-сн(сн ₃) ₂		-(CH ₂)4-	-(CH ₂) ₅ -	-(CH ²) ⁶ -	-сн(сн ³)-((2)2-CH(CH3)	-(CH ₂) ₂ -CH-(CH ₂) ₂ - C ₂ H-	C	-(CH ₂) ₂ -CH-(CH ₂) ₂ -	i-c ₃ H ₇
40 g	A A CADELLE A L. C.	-cH3	-C2HS	-CH(C	-CF3				-CH2-	- (CH ₂)) -))-	
45	ACBY													

EP 0 528 156 A1

5												
	2 _n	×	x	x	Ħ	×	×	×	×	ĸ	Ξ	I
10	>	-CH3	-CH3	-cH3	-cH3	-CH3	-CH3	-cH3	-сн3	-сн3	-CH ₃	-сн3
15	×	-CH ₃	-cH3	-CH ₃	-CH3	-cH ₃	-сн3	-сн3	-сн3	-CH3	-CH ₃	-CH3
20												
25	O	0	0	0	0	0	0	0	0	0	0	0
30	æ	-CH ₃	-CH ₃	-cH ₃	-cH ₃				H2)3-	-(CH ₂) ₂ -	.H ₂) ₂ -	.H ₂) ₂ -
35	Fortsetzung A					-(CH ₂)4-	-(CH ₂)5-	-(CH ₂) ₆ -	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ -	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH-(CH ₂) ₂ - C ₂ H ₅	-(CH ₂) ₂ -CH-(CH ₂) ₂ - i-C ₃ H ₇
		-CH3	-C2H5	-сн(сн ³) ²	-CF3	•	•	•	-CH2-(-(CH ₂)	. (C	D) -
4 5	Tabelle											

EP 0 528 156 A1

5													
		Zn	x	r	×	æ	Ħ	×	Ħ	Ħ	Ħ	I	×
10		>-	ÍŁ,	Íz,	Îr.	Ĭz,	íz,	(z.,	Ĭz,	Ŀ	Ĺr.	(E.	íz,
15			_					_	-	-	-		=
20		×	CI	CI	CI	CI	CJ	C1	ប	CJ	CI	ប៊	C1
25		Q	0	0	0	0	0	0	0	0	O	0	0
30			-сн3	-cH ₃	CH ₃	-cH ₃				-8(CH2)2-	-2(3	-2(2
35	5 sang	B	,	,	2 -CH ₃		-(CH ₂) ₄ -	H2)5-	H2)6-	сн ³) - (сн ²	сн(сн ³)-(2-CH-(CH ₂	-(CH ₂) ₂ -CH-(CH ₂) ₂ - i-C ₃ H ₇
40	Tabelle 1: Fortsetzung	A	-cH3	-C2H5	-CH(CH3)2	-cF ₃	ID) -	5)-	D) -	-сн ² -сн(-(CH ₂) ₂ -($-(CH_2)_2-CH^-(CH_2)_2 C_2H_5$	-(CH ₂)
45	Tabel1												

EP 0 528 156 A1

5		Zn	6-C1	6-01	6-C1	6-C1	6-C1	6-C1	6-C1	6-C1	6-C1	6-01	6-C1
10		>-	-CF3	-CF3	-cF ₃	-CF3	-cF3	-CF3	-CF3	-CF3	-CF3	-CF3	-CF3
15		×	-61	-61	-01	-C1	-C1	-61	-c1	-01	-ر1	-01	-01
20													
25		Ω	0	0	0	0	0	0	0	0	0	0	0
30			-сн _з	-сн3	-сн3	-снз				3-	2H2)2-	-2	-2,
35	6unz	В	ņ	Ŷ		Ų	-(CH ²) ⁴ -	-(CH ₂) ₅ -	-(CH ²) ⁶ -	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ -	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH-(CH ₂) ₂ - С ₂ H ₅	-(CH ₂) ₂ -CH-(CH ₂) ₂ - i -C ₃ H ₇
40	e 1: Fortsetzung	A	-cH3	-C2H2	-CH(CH3)5	-CF3	- (כוּ	t) -	(C) -	-сн ² -сн((-(CH ₂) ₂ -(-(CH ₂)-	-(CH ₂)
4 5	Tabelle												
50													

5										
10		z _n	ĸ	6-01	Ξ	€ - СН ³	I	6-C1	I	6-CH ₃
		> -	CI	×	CH ₃	x	CI	x	CH3	I
15		×	C1 C1 H	CI	снз	СНЗ	C 3	c ₁	СНЗ	СНЗ
20		Ω	0	0	0	0	0	٥	0	0
25		æ	×	H	H	x	снз	снз	снз	CH ₃
30	rtsetzung	ď	Ŧ	I	×	×	снз	снз	сн3 сн3	CH ₃
35	<u>abelle 1</u> : Fortsetzung		_	-						
40	Tal									
45										

5											
10		z _n	C1 H 6-C1	H	6-CH3	x	6-01	Ħ	6-CH3	x	6-C1
15		,	Ξ	CH ₃	r	បី	ж	снз	x	CJ	I
20		×	ប	CH3	CH3	ü	23	CH ₃	снз	ບ	ເນ
		o l	0	0	0	0	0	0	0	w	w
25	D C	α	ж	I	I	×	I	×	×	×	I
30	<u>Tabelle 1</u> : Fortsetzung	≪	снз	снз	снз		\bigcirc	\bigcirc	\bigcirc	Ħ	×
35	elle 1: 1					·	·				
40	Tab										

5				•						
10		zn	x	6-CH ₃	6-CH ₃	×	н 6-с1	æ	€-сн3	€-сн3
15		-	снз	×	CH3	C	ĸ	снэ	I	снз
20		×	снз	CH ₃	CH3	C1	CJ	снз	снз	снз
		Ω	Ŋ	Ŋ	ທ	Ŋ	ဟ	ဟ	ທ	တ
25	6 un	æ	H	x	×	I	I	×	æ	ĸ
30	Fortsetzung	a	x	н	×	СНЗ	снз	снз	снз	снэ
35	Tabelle 1:									
	H	ı								

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden 3-Aryl-4-hydroxy- Δ^3 -dihydrofuran-Derivate der Formel (lb) genannt:

55

5		R1	-cH ₃	-C2H5	-C3H7	-С4Н9	-сн(сн ₃) ₂	-ch ₂ ch(ch ₃) ₂	-с(сн ₃) ₃	-с(сН ₃) ₂ -с ₂ Н ₅	$-c(cH_3)_2-cH(cH_3)_2$	-сн ₂ -с(сн ₃) ₃	-CH-C4H9 C2H5	-с(сн ₃) ₂ -сн ₂ с1	-c(CH ₂ C1) ₂ CH ₃
15		Zn	€н2-9	€-сн3	6-CH ₃	6-CH ₃	6 -CH ₃	6-CH ₃	6-CH3	6-CH3	6-CH3	6-CH3	6-CH ₃	6-CH3	6-CH ₃
20		,	-CH3	-cH3	-cH3	-cH3	-сн3	-сн3	-сн3	-CH3	-CH ₃	-CH ₃	-сн3	-CH ₃	-CH ₃
25		×	-CH3	-CH ₃	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3	-снз	-CH3	-сн3
30		Q	0	C	0	0	0	0	0	0	0	0	0	0	0
35		83	-снз	-снз	-сн3	-сн3	-cH ₃	-сн3	-снз	-CH ₃	-сн3	-cH ₃	-сн3	-сн3	-сн3
40															
45	Tabelle 2 :	×	-CH ₃	-cH ₃	-CH ₃	-cH ₃	-cH ₃	-CH3	-cH3	-cH ₃	-cH ₃	-cH ₃	-CH ₃	-CH ₃	-cH ₃

EP 0 528 156 A1

5		R1	-с(сн ₃) ₂ -сн ₂ осн ₃	-с(сн ³)-(сн ² -осн ³) ²	-CH=C(CH ₃) ₂		THE STATE OF THE S	H ₃ C H	\Diamond			-сн2	
15		z_n	€н⊃-9	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃
20		*	-CH ₃	-CH3	-CH3	-CH3	-сн3	€Hጋ-	-сн3	-CH ₃	-CH3	-CH3	-CH ₃
25		×	-CH3	-CH ₃	-CH ₃	-сн3	-CH3	-CH3	-сн3	-сн3	-CH3	-CH3	-cH ₃
30		Ω	0	0	0	0	0	0	. 0	0	0	0	0
35	gunz.	Ø	-cH ₃	-сн3	-cH ₃	-снз	-CH ₃	-сн3	-сн3	-сн3	-cH ₃	-снз	-сн3
40	: Fortset										£.		
45	<u>Tabelle 2</u> : Fortsetzung	Ą	-cH ₃	-CH3	-CH ₃	-CH3	-CH3	-сн3	-CH ₃	-CH ₃	-CH3	-CH ₃	-CH ₃

EP 0 528 156 A1

5		R1	-снз	-c ₂ H ₅	-C3H7	-C4H9	-сн(сн ₃) ₂	-cH ₂ CH(CH ₃) ₂	-c(cH ₃) ₃	-C(CH ₃) ₂ -C ₂ H ₅	$-c(cH_3)_2-cH(cH_3)_2$	-сн ₂ -с(сн ₃) ₃	-cH-c4H9 	-с(сн ₃) ₂ -сн ₂ с1	-c(cH ₂ -c1) ₂ CH ₃
15		Zn	€-СН ³	6-CH ₃	6-CH ₃	6-CH ₃	6-CH3	6-CH3	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃
20		٨	-CH3	-сн3	-CH ₃	-CH ₃	-CH3	-CH3	-CH3	-CH3	-CH ₃	-CH3	-CH3	-CH3	-сн3
25		×	-CH ₃	-сн3	-CH ₃	-cH ₃	-cH3	-CH3	-cH3	-CH3	-CH3	-CH3	-сн3	-CH3	-сн3
30		Ω	0	0	0	0	0	0	0	O	٥	0	0	0	0
35	setzung	В	-cH ₃	-cH ₃	-cH ₃	-cH ₃	-cH ₃	-CH3	-cH3	-CH3	-cH ₃	-CH3	-CH ₃	-CH ₃	-cH ₃
40	<u> Tabelle 2: Fortsetzung</u>	¥	-C2H5	-C2H2	-C ₂ H ₅	-C2H5	-c ₂ H ₅	-C2H5	-C2H5	-c ₂ H ₅	-C2H5	-C2H5	-C2H5	-C2H5	-c ₂ H ₅
45	Tabel														

EP 0 528 156 A1

5		R1	-с(сн ₃) ₂ -сн ₂ осн ₃	$-c(cH_3)-(cH_2-ocH_3)_2$	-CH=C(CH ₃) ₂	1	(H)	н3с н		[₽°	$-cH_2$	
15		2 _n	6-CH ₃	6-CH3	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-СН3	6 - CH ₃	€-сн3	6-CH ₃
20		¥	-CH ₃	-CH3	-сн3	-CH3	-CH ₃	-cH ₃	-CH ₃	-CH3	-сн3	-CH ₃	-сн3
25		×	-CH ₃	-CH ₃	-CH3	-CH3	-cH ₃	-CH3	-CH3	-cH3	-CH3	-CH3	-CH3
30		۵	0	0	0	0	0	0	0	0	0	0	0
35	g .		m	m	m	m	m	m	m	m	m	m	m
40	ortsetzu	es	-cH ₃	-CH ₃	-CH3	-сн3	-сн3	-CH ₃	-CH ₃	-сн3	-CH3	-CH3	-CH3
45	<u>Tabelle 2</u> : Fortsetzung	A	-C2H5	-C2H5	-C2H5	-C2H5	-C2HS	-C2H2	-C2H5	-C2H2	-C2H5	-C2H5	-C2H5

EP 0 528 156 A1

5		n1	-CH ₃	-c ₂ H ₅	-c ₃ H ₂	-с4н9	-сн(сн ₃) ₂	-ch2ch(ch3)2	-с(сн ₃) ₃	-с(сн ₃) ₂ -с ₂ н ₅	$-c(cH_3)_2-cH(cH_3)_2$	-CH2-C(CH3)3	-CH-C ₄ H9 C ₂ H5	$-c(cH_3)_2-cH_2c_1$	-C(CH ₂ -C1) ₂ CH ₃
15		Zn	6-CH ₃	6-CH ₃	€-CH3	6-CH ₃	6-CH ₃	6-CH ₃	€-сн3	€-СН3	6-сн3	6-CH ₃	6-сн3	6-CH ₃	6-CH ₃
20		*	-cH ₃	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3	-cH3	-cH ₃	-CH3	- CH ₃	-CH3	-сн3
25		×	-сн3	-CH3	-CH3	-CH ₃	-cH ₃	-cH3	-cH3	-CH3	-cH3	-CH3	-сн3	-cH3	-CH3
30		D	0	0	0	0	0	0	0	0	0	0	0	0	o
35	tzung	82	-снз	-cH ₃	-cH ₃	-cH ₃	-cH ₃	-CH3	-CH3	-CH3	-cH ₃	-cH ₃	-cH ₃	-cH ₃	€HJ-
40	Tabelle 2: Fortsetzung	A	-сн(сн ₃) ₂	-сн(сн ₃) ₂	-CH(CH ₃) ₂	4(сн ₃) ₂	-сн(сн ₃) ₂	-ch(ch ₃) ₂	-сн(сн ₃) ₂	-сн(сн ₃) ₂	-сн(сн3)5	-сн(сн ₃) ₂	-сн(сн ₃) ₂	-сн(сн ³) ₂	-сн(сн ₃) ₂
45	Tabell		5	ים	ָטְ-	ភ	ij-	יב	ָר <u>ַ</u>	ប៊	ប៉	บี	<u>อ</u>	_เ	ប៊

EP 0 528 156 A1

5		R1	-c(cH ₃) ₂ -cH ₂ 0cH ₃	$-c(cH_3)-(cH_2-0cH_3)_2$	-CH=C(CH ³) ²	1	# \frac{\pi}{2}	H ₃ C/H	\Diamond	Ę,		-cH ₂	
15		Zn	6-CH ₃	€-СН3	€-СН3	€-сн3	6 - CH ₃	6-сн3	6-сн3	€+2−9	€ + С + З	6-сн3	6-CH ₃
20		¥	-cH ₃	-CH3	-сн3	-CH3	-сн3	-CH3	€Hጋ-	€ _H ე-	-cH3	-CH3	-CH3
25		×	-CH3	-cH ₃	-CH3	-cH3	-CH3	-CH3	-CH3	-CH3	-cH ₃	-CH ₃	-CH ₃
30		Q	0	0	0	0	0	0	0	0	0	0	0
35	bunz	В	-снз	-сн3	-сн3	-CH ₃	-снз	-снз	-cH ₃	-cH ₃	-cH ₃	-снз	-сн ₃
40	Fortsetzung												
45	Tabelle 2: Fc	V	-сн(сн ³⁾ 2	-CH(CH ₃) ₂	-CH(CH ₃) ₂	-CH(CH ₃) ₂	-ch(ch ₃) ₂	-CH(CH ₃) ₂	-сн(сн ³) ²	-CH(CH ₃) ₂	-сн(сн ₃) ₂	-сн(сн ³) ²	-CH(CH ₃) ₂

5		R1	-CH ₃	-c ₂ H ₅	-C ₃ H ₇	-C4H9	-сн(сн ₃) ₂	-ch ₂ ch(ch ₃) ₂	-с(сн ³)3	-с(сн ₃) ₂ -с ₂ н ₅	-с(сн ³) ² -сн(сн ³) ²	$-cH_2-c(cH_3)_3$	-ch-c ₄ H ₉ 	-с(сн ₃) ₂ -сн ₂ с1	-c(cH ₂ C1) ₂ CH ₃
15		Zn	6-CH ₃	6-CH3	6-CH ₃	€+2-9	€-СН3	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃
20		>	-CH3	-CH3	-CH3	-CH3	-CH3-	-cH ₃	-CH ₃	-cH ₃	-cH ₃	-CH3	-CH ₃	-CH3	°CH3
25		×	-CH ₃	-CH3	-cH3	-cH ₃	-CH ₃	-CH3	-CH ₃	-CH ₃	-CH ₃	-CH ₃	-CH ₃	-CH3	-CH3
30		D	0	0	0	0	0	0	0	0	0	0	o	0	o
35	tzung	В	-снз	-cH ₃	-сн3	-cH ₃	-cH ₃	-cH ₃	-CH3	-cH ₃	-cH ₃	-cH ₃	-сн3	-cH ₃	-CH ₃
40	Tabelle 2: Fortsetzung	æ	-cF ₃	-CF3	-CF3	-CF3	-CF3	-CF3	-CF3	-CF3	-CF3	-CF3	-CF3	-cF3	- CF3
45	Tabelle			·	-	-									

EP 0 528 156 A1

10		R1	-с(сн ₃) ₂ -сн ₂ осн ₃	-с(сн ³)-(сн ² -осн ³) ²	-cH=C(CH ₃) ₂	(Ŷ H	-	- II			P	-cH2-	
15		z _n	6-сн3	€ +СН3	6-CH ₃	€-сн3	6-CH ₃	6-снз	6-CH ₃	€-сн3	6-CH ₃	6 - CH ₃	6-CH ₃	6-CH ₃
20		+	-cH3	-CH3	-CH3	-CH3-	-CH ₃	-CH3	-CH3	-CH3	-сн3	-CH3	-сн3	-CH3
25		×	-CH ₃	-сн3	-CH3	-cH ₃	-cH3	-CH3	-CH3	-CH3	-cH ₃	-CH3	-CH3	-cH ₃
30		Q	0	0	0	0	0	0	0	0	0	0	0	0
35	bunz.	В	-сн3	-сн3	-cH3	-сн ₃	-cH3	-cH ₃	-ch3	-сн3	-снз	-сн3	-cH ₃	-снз
40	Fortset										m		m	m
45	<u>Tabelle 2</u> : Fortsetzung	A	-CF3	-cF3	-CF3	-CF3	-CF3	-CF3	-CF3	-CF3	-CF3	-CF3	-CF3	-೧೯3

5		R1	-cH ₃	-C ₂ H ₅	-C ₃ H ₇	-C4H9	-сн(сн ₃) ₂	-ch2ch(ch3)2	-с(сн ₃) ₃	-с(сн ₃) ₂ -с ₂ н ₅	-с(сн ₃) ₂ -сн(сн ₃) ₂	-сн ₂ -с(сн ₃) ₃	-CH-C4H9 C2H5	-с(сн ₃) ₂ -сн ₂ с1	-c(cH ₂ C1) ₂
15		Zn	6-CH ₃	6-CH ₃	6 -CH ₃	6-CH ₃	6-CH ₃	6-CH3	6-CH3	6-CH3	6-CH3	6-CH3	6-CH ₃	6-CH ₃	6-CH ₃
20		*	-CH3	-CH ₃	-cH3	-CH3	-CH3	-CH3	-CH3	-cH3	-cH3	-cH3	-сн3	-cH ₃	-сн3
25		×	-сн3	-CH3	-CH3	-CH3	-CH3	-CH3	-cH3	-CH3	-CH3	-CH3	cH3-	-cH3	-CH ₃
30		Q	0	0	0	0	0	0	0	0	0	0	0	0	0
35	etzung	В	i 6*	; C	.	, '	- 4	-4	- 4	; 4	; 4	4-		4-	,
40	<u> Tabelle 2</u> : Fortsetzung	A	-(CH ₂)4-	-(CH ₂)4-	-(CH ₂)4-	-(CH ₂) ₄ -	-(CH ₂)	-(CH ₂)4-	-(CH ²)	-(CH2)4-	-(CH ₂)4-	-(CH2)4-	-(CH ₂)4-	-(CH ₂)4-	-(CH ²) ⁴ -
45	Tabel 1														

EP 0 528 156 A1

5		R1	-с(сн ₃) ₂ -сн ₂ осн ₃	$-c(cH_3)-(cH_2-0cH_3)_2$	-CH=C(CH ₃) ₂		= <	н ₃ с н	\Diamond			-cH ₂	
15		Z _n	6-CH ₃	6-сн3	6-CH ₃	€ +⊃- 9	6-сн3	6-CH ₃	6-CH ₃	6 - CH ₃	6-CH ₃	6-CH ₃	6-CH ₃
20		>	-CH3	-CH3	-CH3	-CH ₃	-cH3	-cH3	-CH ₃	-CH ₃	-CH ₃	-CH ₃	-сн3
25		×	-CH ₃	-cH3	-cH3	-cH ₃	-CH ₃	-CH3	-CH ₃	-сн3	-сн3	-CH3	-CH3
30		D	0	0	0	0	0	0	0	0	0	0	0
35	Đ.	į											
40	Tabelle 2: Fortsetzung	B	-(CH ₂)4-	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂)4-	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂)4-	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ²) ⁴ -
4 5	Tabelle 2	A											

5	R1	-CH ₃	-C2H5	-C ₃ H ₇	-C4H9	-сн(сн ₃) ₂	-сн ₂ сн(сн ₃) ₂	-с(сн ₃) ₃	-с(сн ₃) ₂ -с ₂ н ₅	-с(сн ₃) ₂ -сн(сн ₃) ₂	-cH ₂ -c(cH ₃) ₃	-ch-c ₄ H ₉ 	$-c(cH_3)_2-cH_2c_1$	-c(CH ₂ C1) ₂	снз
15	2 _n	€-сн3	6-CH ₃	€-сн3	€-сн3	6-сн3	6-CH ₃	€-сн3	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	€-СН3	
20	>-	-сн3	-cH3	-cH ₃	-cH ₃	-сн3	-сн3	-сн3	-CH3	-CH3	-cH3	-снз	-CH3	-снз	
25	×	-CH ₃	-CH3	-сн3	-сн3	-cH ₃	-CH3	-CH3	-cH3	-CH3	-CH3	-сн3	-CH3	-снз	
30	Ω	0	0	0	0	0	0	0	0	0	0	o	0	0	
35	nu g B														
40	Tabelle 2: Fortsetzung A B	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -						
45	Tabelle 2														

EP 0 528 156 A1

5		-c(cH ₃) ₂ -cH ₂ 0cH ₃	$-c(cH_3)-(cH_2-ocH_3)_2$	-сн=С(СН ₃) ₂	Λ	\wedge	(x)				\bigcirc	~ ^
10	R1	H2)2-	HO) O-	⊃=H⊃-	1	=	H ₃ C/				-CH2-	
15	Z _n	6-CH ₃	6-CH3	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	€-СН3	6-CH ₃	6-CH ₃
20	¥	-CH3	-cH ₃	-cH3	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3
25	×	-CH3	-cH3	-CH ₃	-CH ₃	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3	-CH ₃
30	۵	O	0	0	0	0	0	0	0	0	o	0
35	ung B											
40	Tabelle 2: Fortsetzung A B	-(CH ₂)5-	-(CH ₂) ₅ -	-(CH ₂)5-	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂)-	-(CH ₂) ₅ -				
45	Tabelle											

EP 0 528 156 A1

5		R1	-cH ₃	-c ₂ H ₅	-C ₃ H ₇	-C4H9	-сн(сн ₃) ₂	-сн ² сн(сн ³) ²	-C(CH ₃) ₃	-C(CH ₃) ₂ -C ₂ H ₅	-с(сн ₃₎₂ -сн(сн ₃₎₂	-CH ₂ -C(CH ₃) ₃	-CH-C4H9	c ₂ H ₅	-c(cH ₃) ₂ -cH ₂ c1	-c(cH ₂ C1) ₂
15		Zn	€ −СН3	6-CH ₃	6-CH ₃	6 -CH ₃	6-CH3	6-CH ₃	6-CH ₃	6-CH3	6-CH ₃	6-CH ₃	6-CH ₃		6-CH ₃	6-CH ₃
20		>	-cH3	-сн3	-сн3	-CH ₃	-CH3	-CH ₃	-CH3	-сн3	-сн3	-CH3	-сн3		-CH3	-CH3
25		×	- CH3	-CH3	-CH3	-CH3	-CH3	-cH ₃	-cH ₃	-CH3	-CH3	-cH3	-сн3		-CH3	-CH ₃
30		Ω	0	0	0	0	0	0	0	0	0	0	0		0	0
35	sung	В														
40	<u>Tabelle 2</u> : Fortsetzung	A	-(CH ₂)e-	-(CH ₂) ₆ -	-(CH ²) ⁶ -	-(CH ₂) ₆ -	-(CH ₂) ₆ -	-(CH2)-	-(CH ₂)-	-(CH2)-	-(CH ₂) ₆ -	-(CH ₂) ₆ -	-(CH ²) ⁶ -		-(CH2)-	-(CH ²) ⁶ -
45	Tabelle	7														

EP 0 528 156 A1

5	ra 1	-c(cH ₃) ₂ -cH ₂ OcH ₃	$-c(cH_3)-(cH_2-ocH_3)_2$	-cH=c(cH ₃) ₂	1	TE (H ₃ C/H				-сн2	N N
15	Z _n	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6 - CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH3	6-CH ₃
20	>-	-CH3	-cH3	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3	-CH ₃	-CH ₃
25	×	-cH3	-cH3	-CH3	-CH ₃	-CH3	-CH3	-CH ₃	-CH3	-cH ₃	-CH3	-cH ₃
30	α	O	0	0	0	0	O	0	0	0	0	0
35	g B											
40	Tabelle 2: Fortsetzung A B	-(CH ₂) ₆ -	-(CH2)-	-(CH ₂) ₆ -	-(CH ₂)6-	-(CH2)e-	-(CH ₂) ₆ -	-(CH ₂) ₆ -	-(CH ²) ⁶ -	-(CH ₂)6-	-(CH ²) ⁶ -	-(CH ²) ⁶ -
45	Tabelle 2											

EP 0 528 156 A1

5		الاً .	-CH ₃	-C ₂ H ₅	-C ₃ H ₇	-C4H9	-ch(ch ₃) ₂	-cH ₂ CH(CH ₃) ₂	-c(cH ₃) ₃	-C(CH ₃) ₂ -C ₂ H ₅	-c(cH ₃) ₂ -cH(CH ₃) ₂	-cH ₂ -c(CH ₃) ₃	-CH-C4H9 C2H5	-c(cH ₃) ₂ -cH ₂ C ₁	-c(cH ₂ C1) ₂ CH ₃
15	,	2n	6-CH ₃	6-CH ₃	6-снз	6-CH ₃	6-CH3	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	€но-9	6 - CH ₃	6-CH ₃	6-CH ₃
20	:	٠.	-CH3	-cH ₃	-cH3	-CH ₃	-CH3	-CH ₃	-cH3	-CH ₃	-сн3	-cH3	-CH ₃	-CH ₃	-сн3
25	;	×	-CH3	-cH ₃	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3	-CH ₃	-CH ₃	-сн ³	-CH ₃	-сн ³
30		۵	0	0	0	0	0	0	0	o	0	0	0	0	0
35	tzung	æ	(CH ₂)3-	(CH ₂) ₃ -	.(CH ₂)3-	·(CH ₂) ₃ -	·(CH ₂)3-	·(CH ₂)3-	-(CH ₂)3-	-(CH ₂)3-	-(CH ₂)3-	-(CH ₂) ₃ -	-(CH ₂) ₃ -	-(CH ²) ³ -	-(СН ₂)3 ⁻
40	<u> Tabelle 2</u> ; Fortsetzung	A	-CH ₂ -CH(CH ₃)-(CH ₂)3-	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ -	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ -	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ -	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ -	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ .	-CH2-CH(CH3)-(CH2)3	-CH2-CH(CH3)-(CH2)3-	-сн ₂ -сн(сн ₃)-(сн ₂)3-	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ -	-сн ₂ -сн(сн ₃)-(сн ₂)3-	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ -	-сн ² -сн(сн ³)-(сн ²) ³ -
45	Tabelle		- 0	-C	ָּטָ- י	ָ ט	5	÷	ָּט	Б -	ָּט י	ָ ק	ָּט י	ָ י	Ų

EP 0 528 156 A1

5	R1	-c(cH ₃) ₂ -cH ₂ 0cH ₃	$-c(cH_3)-(cH_2-ocH_3)_2$	-CH=C(CH ₃) ₂		(H)	н ³ с н	\Diamond			-cH ₂	
15	Zn	6-CH3	6-CH ₃	6-CH3	6-CH3	е-сн ³	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	€-сн3-9	6-CH ₃
20	>	-CH ₃	-CH3	-CH3	-cH3	-сн3	-сн3	-cH ₃	-CH3	-CH3	-CH ₃	-CH3
25	×	-cH ₃	-CH3	-CH3	-CH3	-cH ₃	-CH3	-CH3	-CH3	-CH3	-CH3	-CH ₃
30	Ω	0	0	0	0	0	0	0	0	0	0	0
35	zung B	CH ₂)3-	CH ₂)3-	CH ₂)3-	CH ₂)3-	CH2)3-	CH ₂)3-	сн2)3~	CH ₂)3-	CH ₂)3-	CH ₂)3-	CH ₂)3-
40	2: Fortsetzung	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ -	-сн ₂ -сн(сн ₃)-(сн ₂)3-	-сн ₂ -сн(сн ₃)-(сн ₂)3-	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ -	-cH2-CH(CH3)-(CH2)3-	-CH2-CH(CH ₃)-(CH ₂) ₃ -	-сн ₂ -сн(сн ₃)-(сн ₂)3-	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ -	-сн2-сн(сн3)-(сн2)3-	;-сн(сн ₃)-(сн ₂)3-	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ -
45	Tabelle 2:	-CH2	-CH2	-CH2	-CH ₂	-CH2	-CH ₂	-CH ₂	-CH ₂	-CH ₂	-CH2-CH(-CH ₂

EP 0 528 156 A1

5	R1	-cH ₃	-C ₂ H ₅	-C3H7	-C4H9	-сн(сн ₃) ₂	-сн ₂ сн(сн ₃) ₂	-c(cH ₃) ₃	-c(cH ₃) ₂ -c ₂ H ₅	-c(cH ₃) ₂ -cH(CH ₃) ₂	-CH ₂ -C(CH ₃) ₃	-CH-C4H9 C2H5	-c(cH ₃) ₂ -cH ₂ c1	-с(сн ₂ с1) ₂ сн ₃
15	2 _n	6-CH ₃	6-CH3	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6 -CH3	6-CH ₃	6-CH ₃	6-CH ₃	6 - CH ₃	6-CH3	6-CH ₃
20	>	-сн3	-CH ₃	-CH3	-CH3	-CH ₃	-CH ₃	-CH3	-cH3	-cH3	-CH3	-сн3	-cH3	-сн3
25	×	-сн3	-CH3	-CH3	-CH3	-сн3	-CH3	-CH3	-CH3	-CH3	-CH3	-cH ₃	-CH3	-CH ₃
30	Ω	0	0	0	0	0	0	0	0	0	0	0	0	o
36	Fortsetzung	2-CH(CH ₃)-(CH ₂) ₂ -	13)-(CH ₂) ₂ -	13)-(CH ₂)2-	2-CH(CH ₃)-(CH ₂) ₂ -	2-CH(CH ₃)-(CH ₂) ₂ -	2-CH(CH ₃)-(CH ₂) ₂ -	^{2-сн(сн₃)-(сн₂)₂-}						
	: 4	-(сн ₂) ₂ -сн(сн	-(сн ²) ² -сн(сн	- (сн ²) ² -сн(сн	-(сн ₂) ₂ -сн(сн	-(сн ²) ² -сн(сн	-(сн ²) ² -сн(сн	-(сн ²) ² -сн(сн	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	-(сн ₂) ₂ -сн(сн	-(CH ₂) ₂ -Сн(Сн	- (сн ²) ² -сн(сн	-(СН ²) ² -СН(СН
45	Tabelle	5) -	-	<u>.</u>	·) -	1	<u>.</u>	-)-	-	-	1	Ť	-

EP 0 528 156 A1

5	я. 1	-c(cH ₃) ₂ -cH ₂ 0CH ₃	-c(cH ₃)-(cH ₂ -ocH ₃)	-CH=C(CH ³) ²	\langle		н3С н	\bigcirc	S		\rightarrow_z_{H2-}	
15	Zn	6-CH ₃	6-CH ₃	6-CH3	6-CH ₃	6-сн3	6-CH ₃	е-сн ³	6-сн3	6-сн3	6 - CH ₃	6 - CH ₃
20	>-	-CH3	-CH ₃	-CH ₃	-CH ₃	-CH3	-CH ₃	-СН3	-CH3	-CH3	-CH3	-CH3
25	×	-CH ₃	-CH3	-CH3	-CH3	-CH ₃						
30	Ω	0	0	0	0	0	0	0	O	0	0	0
35	t zung B)-(CH ₂) ₂ -	$-(CH_2)_2^-$)-(CH ₂) ₂ -	3)-(CH ₂) ₂ -	3)-(CH ₂)2-	3)-(CH2)5-	3)-(CH ₂)2-				
40	<u>Tabelle 2</u> : Fortsetzung A B	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -
45	Tabelle	D) -	;) -	i) -	- (C	ר (כו	<u>ا</u> (0	<u>ت</u>) -	ר (כ	٠ (ت	٠ (۵	ວ) -

5	1 ₄	-CH ₃	-C ₂ H ₅	-C ₃ H ₇	-C4H9	-сн(сн ₃) ₂	-сн ₂ сн(сн ₃) ₂	-с(сн ³) ³	-С(СН ₃) ₂ -С ₂ Н ₅	-C(CH ₃) ₂ -CH(CH ₃) ₂	-сн ₂ -с(сн ₃) ₃	-CH-C4H9	c ₂ H ₅	-с(сн ₃) ₂ -сн ₂ с1	-c(cH ₂ C1) ₂	633
15	Z _n	6-CH3	6-CH ₃	6-сн3	6-сн3	6-CH ₃	6-CH3	6-CH3	6-CH3	6-CH ₃	6-CH ₃	6-CH ₃		6-сн3	6-CH ₃	
20	>-	-CH ₃	-cH ₃	-cH3	-CH3	-CH3	-CH ₃	-сн3	-CH ₃	-CH3	-CH3	-cH3		-cH3	-cH ₃	
25	×	-сн3	-CH ₃	-cH3	-cH3	-cH3	-cH3	-CH ₃	-CH ₃	-CH3	-CH3	-CH3		-CH ₃	-CH ₃	
30	Q	0	0	0	0	0	0	0	0	0	0	0		o	0	
35	zung B)-(CH ₂) ₂ -)-(CH ₂) ₂ -)-(CH ₂) ₂ -)-(CH ₂) ₂ -)-(CH ₂) ₂ -)-(CH ₂) ₂ -)-(CH ₂) ₂ -)-(CH ₂) ₂ -)-(CH ₂) ₂ -)-(CH ₂) ₂ -	;)-(CH ₂) ₂ -		s)-(CH ₂)2-)-(CH ₂) ₂ -	
40	2: Fortsetzung A B	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	2)2-CH(C2H5	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(cH ₂) ₂ -cH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(cH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(cH ₂) ₂ -cH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -		-(cH ₂) ₂ -cH(C ₂ H ₅)-(CH ₂) ₂ -	-(сH ₂) ₂ -сH(С ₂ H ₅)-(СH ₂) ₂ -	
45	Tabelle 2:	H2) -	- (CH	- (CH	- (CH	- (CH	- (CH	- (CH	HD) -	HD) -	HD) -	- (CH		HD) -	но) -	

EP 0 528 156 A1

5	\mathbb{R}^1	-с(сн ₃) ₂ -сн ₂ осн ₃	$-c(cH_3)-(cH_2-ocH_3)$	-cH=C(CH ₃) ₂		(II)	H ₃ C/H				-CH ₂ -	
15	Z _n	6-сн3	6-CH3	6-CH3	6-CH3	6-CH ₃	6-сн ₃	€но-9	6-сн3	6-сн3	6-сн3	6-CH3
20	>-	-CH ₃	-cH3	-cH3	-CH3	-CH ₃	-CH ₃	-CH ₃	-сн3	-cH ₃	-CH ₃	-cH ₃
25	×	-сн3	-CH3	-CH3	-cH3	-CH ₃	-CH3	-CH3	-CH3	-CH3	-CH ₃	-CH ₃
30	a	0	0	0	0	0	0	0	0	0	0	0
35	ស ព ព	-(CH ₂) ₂ -	-(CH ²) ² -	-(CH ²) ² -	-(CH ₂) ₂ -	-(сH ₂) ₂ -	-(CH ²) ² -	(CH2)5-				
40	Tabelle 2: Fortsetzung A B	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -
45	Tabelle 2	- (CH ₂);	- (CH ₂);	-(CH ₂);	-(CH2)-	- (CH ₂)	-(CH ₂)	-(CH ₂)	-(CH ₂)	-(CH2)	-(CH ₂)	-(CH ₂)

EP 0 528 156 A1

5	,	R¹	-сн3	-c ₂ H ₅	-C ₃ H ₇	-С4Н9	-сн(сн ₃)2	-ch ₂ ch(ch ₃) ₂	-C(CH ₃) ₃	-C(CH ₃) ₂ -C ₂ H ₅	-с(сн ₃) ₂ -сн(сн ₃) ₂	-cH ₂ -c(cH ₃) ₃	-ch-c ₄ H ₉ c ₂ H ₅	-с(сн ₃) ₂ -сн ₂ с1	-с(сн ₂ с1) ₂ сн ₃
15		2 _n	6-CH ₃	6-CH ₃	6-CH ₃	€-сн3	6-CH ₃	6-сн3	6-сн3	€ -сн3	6-CH ₃	6-CH3	6-СН3	6-CH ₃	6-CH ₃
20		۶-	-CH ₃	-CH ₃	-CH3	-сн3	-CH3	-CH3	-сн3	-CH3	-CH ₃	-cH3	-CH ₃	-CH3	-CH ₃
25		×	-CH3	-CH3	-CH ₃	-cH3	-CH ₃	-сн3							
30		Ω	0	0	0	0	0	0	0	0	0	0	0	0	0
35	setzung	В	-(CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(1-C ₃ H ₇)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	-(сн ₂) ₂ -сн(і-с ₃ н ₇)-(сн ₂) ₂ -	-(CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -
40	Tabelle 2: Fortsetzung	ď	2)2-CH(i-C	2)2-CH(i-C	2)2-CH(i-C	12)2-CH(i-C	1 ₂) ₂ -ch(i-c	1 ₂) ₂ -CH(i-C	₁₂) ₂ -сн(і -с	1 ₂) ₂ -CH(i-C	1 ₂) ₂ -CH(i-C	12)2-CH(i-C	₁₂) ₂ -сн(і-с	1 ₂) ₂ -сн(і-с	42)2-СН(і-С
45	Tabel		HD) -	- (CH	- (СН	- (CH	HD) -	- (CH	- (CH	- (CH	- (CE	to) -	(0) -	ن - (ن	- (C

EP 0 528 156 A1

5	R1	-с(сн ₃) ₂ -сн ₂ осн ₃	$-c(cH_3)-(cH_2-ocH_3)$	-CH=C(CH ₃) ₂		(m)	H ₃ C	\Diamond		Ę,	-CH2	×
15	Z _n	6-сн3	6-CH ₃	6-CH3	6-CH ₃	6-сн3	6-CH ₃	6-CH3				
20	>-	-cH3	-cH3	-cH ₃	-CH3	-cH ₃	-CH3	-CH3	-CH ₃	-cH ₃	-сн3	-CH ₃
25	×	-cH ₃	-CH3	-CH ₃	-CH3	-CH ₃						
30	۵	0	0	0	0	0	0	0	0	0	0	0
35	nn g	-(CH ₂) ₂ -	.(CH ₂)2"	-(CH ₂) ₂ -	.(CH ₂) ₂ -	.(CH ₂) ₂ -	-(CH ₂) ₂ -					
40	Fortsetzu	-(CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(1-C ₃ H ₇)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -
45	Tabelle 2: Fortsetzung A B	-(CH ₂) ₂ -C	-(CH2)-	-(CH ₂) ₂ -C	-(CH ²) ² -C	-(CH ₂) ₂ -C	-(CH ²) ² -C					

EP 0 528 156 A1

			ļ									
5												
10			R1	cH₃-	-э ^є (Єнэ)	cH₃-	6-C1 (CH ₃) ₃ C-	снз	-э [£] (Енэ)	−£H⊃	-э ^є (Єнэ)	(CH3)2CH-
15			2 _n	×	x	6-01	6-01	Ħ	I	6-CH3	6-CH3	6-CH3
20			>	ი	ü	×	I	CH3	снз	æ	ı	CH ₃
25			×	ü	C ₁	ច	ប៊	CH3	CH3	снз	CH3	СНЗ
30			ם	0	0	0	0	0	0	0	0	0
		gunz	æ	Ħ	I	I	Ħ	H	ĸ	X	x	Ξ
35		Fortsetzung	K	CH3	CH3	CH3	снз	СНЗ	снз	CH3	CH3	CH3
40		Tabelle 2:										
45												
50												

EP 0 528 156 A1

5	F.0.0	CH ₃		-2-	e HD	C _{C2} H ₅	осн _з	1
10	R1	6-CH ₃ H ₃ C-O	H ₃ C	H3C-S-CI	() () () () ()			OCH ₃
15	2 n	6-CH ₃	6-сн3	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	€н2-9
20	>-	CH3	CH ₃	СНЗ	снз	CH ₃	CH3	CH ₃
25	×	CH3	CH ₃	CH ₃	снз	CH3	СН _З	CH ₃
30	۵	0	0	0	0	0	0	0
	gunz	x	I	x	ĸ	×	Ħ	Ħ
35	Fortsetz	снз	снз	CH3	CH3	СНЗ	CH3	CH ₃
40	Tabelle 2: Fortsetzung A B							

EP 0 528 156 A1

5			R1	H ₃ CO +	CH3-	сн3-	(сн ₃) ₃ с-	CH3−	(CH ₃) ₃ C-	CH3-	(CH ₃) ₃ C-	CH3-	(CH ₃) ₃ C-	(СН ³) ⁵ СН-
15			Zn	6-CH ₃	6-CH3	×	æ	6-C1	6-01	æ	I	6-CH3	6-CH ₃	6-CH ₃
20			٨	снз	снз	C1	C1	H	Ħ	CH3	CH3	н	Ħ	снз
25			×	СНЗ	CH3	ü	ប	ជ	CJ	CH3	CH3	CH ₃	CH ₃	CH ₃
30			۵	0	0	ហ	w	ဟ	Ŋ	v	Ŋ	ဟ	0	0
		6unz	В	x	I	x	I	×	×	Ħ	x	I	-(CH ₂) ₅ -	-(CH ₂) ₅ -
35		elle 2: Fortsetzung	А	CH3	снз	снз	CH3	снз	CH3	CH3	снз	CH ₃	5)-	- (0
40		Tabelle 2:												
45														

EP 0 528 156 A1

5	***	R.	сн ₃ -(сн ₂) ₃ -	C2H5-C(CH3)2	(CH ³) ³ C-CH ⁵ -	(CH ₃) ₂ CH-C(CH ₃) ₂	CH ₂ =CH-(CH ₂) ₈ -	H ₃ C CH ₃		нэ с-о—) н ^{3с-о} -он ³
15	,	2 _n	6-CH3	6-CH3	6-CH3	6-СН3	6-СН3	^Е н2-9	€-сн ³	Н - СН3
20		7	CH3	снз	снз	снз	снэ	снз	CH ₃	CH ₃
25		*	СН ₃	CH3	CH ₃	CH ₃	снз	CH ₃	CH ₃	CH3
30		٥	0	0	0	0	0	0	0	0
	gun	В	Ħ	Ξ	x	Ħ	×	×	æ	I
35	Fortsetz	A	СНЗ	снз	CH3	CH3	СНЗ	снз	снэ	снз
40	Tabelle 2: Fortsetzung									
45										

EP 0 528 156 A1

5	R1	сн ₃ -(сн ₂) ₃ -	C2H5-C(CH3)2	(сн ³) ³ с-сн ⁵ -	сн ³) ⁵ сн-с(сн ³) ⁵	CH ₂ =CH-(CH ₂) ₈ -	H ₃ C ₂₁	-э ^є (єнэ)	CH3-	(сн ³) ² сн-	(сн ³) ³ с-	CH ³ -(CH ⁵) ³ -
15	2 _n	6-CH ₃	€нэ-9	6-CH ₃	€ +⊃- 9	€H3-9	6-сн3	6-CH ₃	€нэ-9	6-CH ₃	6-СН3	6-CH3
20	>-	СНЗ	снз	снз	CH ₃	снз	СНЗ	π	СНЗ	снз	снз	снз
25	×	СНЗ	CH ₃	CH3	CH ₃	снз	СНЗ	снз	снз	снз	снз	сн ₃
30	۵	0	0	0	0	0	0	ω	ဟ	ഗ	Ŋ	v
	g g g g g	-(CH ₂) ₅ -	-(CH ²) ² -	-(CH ₂)5-	-(CH ₂)5	-(CH ²)2	-(CH2)2	×	π	æ	Œ	x
35	Fortset	9-)-) -	<u>.</u>	-	-	снз	CH3	снз	СНЗ	CH ₃
40	<u>Tabelle 2</u> : Fortsetzung A B											

EP 0 528 156 A1

5			н ₅ -с(сн ₃₎ 3	н ₃) ₃ с-сн ₂ -	н ₃) ₂ сн-с(сн ₃₎ ₂	2=CH-(CH ₂) ₈ -	C1 CH ₃	$c_1 \longrightarrow c_1 \longrightarrow c_1 \longrightarrow c_1 \longrightarrow c_1 \longrightarrow c_2 $	н ₃ с-0—, С Н ₃ с СН ₃	н ₃ с-0—, с н ₃ с-0— ссн ₃
15		TE .	6-сн3 С2		о) Ено-9		сн ³ н ³ с	е-сн ³	6-cH ₃	о ^{ен} ено-9
15		2 ^u								
20		>	з сн3	з снз	3 сн3	3 CH ₃	3 CH ₃	3 CH ₃	3 сн3	з сн3
25		×	CH3	CH3	CH3	CH3	CH ₃	CH ₃	CH3	снз
30		B D	υ	υ S	υ π	S	υ	×	υ	κ
35	ortsetzun	4	CH ₃	CH ₃	СНЗ	снэ	СНЗ	снэ	снз	снз
40	<u>Tabelle 2</u> : Fortsetzung									

EP 0 528 156 A1

			.H2-	٠ ^۲ ٤	C2Hs	осн3	ı
10	Ţ	H.3.C	н ₃ с Н ₃ С-S-СН ₂ -				OCH ₃
15	1	-n 9-CH ₃	€н⊃-9	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃
20	>	CH ₃	CH ₃	CH ₃	CH ₃	снэ	CH ₃
25	>	CH ₃	CH3	CH3	CH ₃	CH ₃	CH ₃
30	5	ν v	ហ	ဟ	w	w	ν
	t zung	E	I	æ	Ħ	ж	ж
35	Fortse	CH ₃	снз	CH ₃	снз	CH ₃	СНЗ
40	Tabelle 2: Fortsetzung						

EP 0 528 156 A1

5		CH2=CH-(CH2)8-	CH ₃	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н ₃ с-о—, С Н ₃ с СН ₃	() () (H)		н ₃ с-s-сн ₂	C. C
10	ਸ ₁	-сн ³ сн ² =	-13 H ₃ C—	6-CH ₃ C1	-э [£] н	-э ^{Ен} Енэ-9	⊃εн εн⊃-9 ⊃εн		
15	2 _n								
20	>	3 CH ₃		3 CH3	3 CH ₃	3 CH ₃	e CH3	э снз	е снз
25	×	CH ₃	СНЗ	CH3	CH3	CH ₃	CH ₃	СНЗ	СНЭ
30	ung B	снзо	сн ³ 0	сн3 о	снзо	сн ³ о	сн ³ о	сн3 о	сн3 о
35	Tabelle 2: Fortsetzung A B	снз	CH ₃	снз	снз	CH ₃	СН _З	снз	снз
40	Tabelle 2								

EP 0 528 156 A1

5		C ₂ H ₅	£						
10	R1		OCH ₃	OCH ₃	H ₃ CO	−£H⊃	−£H⊃	- э ^с (Eн э)	−£H⊃
15	2 _n	6-CH ₃	€н⊃-9	6-CH ₃	6-CH ₃	€но-9	æ	Ħ	6-C1
20	>	CH3	снз	CH ₃	CH3	снз	CI	ប	I
25	×	снз	CH ₃	CH ₃	CH ₃	СНЗ	ដ	បី	เว
00	Ω	0	o	0	0	0	0	0	0
. 30	sung B	СНЭ	CH ₃	CH ₃	СНЗ	снз	-(CH ²) ² -	-(CH ₂) ₅ -	-C(H ₂) ₅ -
35	Fortset	CH3	СНЗ	CH3	СНЭ	снз	Ť	Ĭ	Ÿ
40	Tabelle 2: Fortsetzung A B								

EP 0 528 156 A1

5				1											
10		R1	[Н3со-	cH ₃ -	CH₃-	-э ^Е (Енэ)	cH₃∸	-э ^є (Енэ)	сн3-	(CH³)3c-	cH₃-	-э ^ε (Енэ)	(сн ³) ⁵ сн-	сн ³ -(сн ⁵) ³ -
15		Zn	·	6-CH ₃	6-CH ₃	×	æ	6-C1	6-C1	æ	Ħ	6-CH ₃	6-CH ₃	6-CH3	€н2-9
20		٨		сн _З	снз	ប៊	C1	Ħ	×	снз	снз	×	I	снз	снз
25		×		снз	CH ₃	CI	CJ	ü	C1	снз	CH ₃	снз	снз	CH ₃	CH3
30		Ω		ဟ	ហ	0	0	0	0	0	0	0	0	0	0
	o u	a		x	×	CH3	снз	СНЗ	СНЗ	СНЗ	CH3	CH3	СНЗ	СНЗ	СНЗ
35	Fortsetz	A		снз	CH3	снз	снз	снэ	СНЗ	CH ₃	СНЗ	CH ₃	сн ₃	снз	снз
40	<u>Tabelle 2</u> : Fortsetzung														
45	다	1													

EP 0 528 156 A1

5								
10	R1	н ₃ с-s-сн ₂	EH3	C ₂ H ₅	OCH,	осн3	H ₃ CO	cH ₃ -
15	2 ⁿ	6-сн3	6-CH ₃	€-СН3	€нэ-9	6-CH ₃	6-CH ₃	π
20	>	снз	сн3	CH ₃	снэ	снэ	CH ₃	CI
25	×	снз	снз	CH ₃	СНЗ	CH3	снэ	ເນ
30	۵	0	0	0	0	0	0	0
35	Tabelle 2: Fortsetzung A B	-(CH ²) ² -	-(CH ₂) ₅	-(CH ²) ² -	-(CH ₂) ₅ -	-(CH ₂)-	-(CH ₂)-	Ţ
40	Tabelle 2:							

5								
10	R1	-3 ^E (EH3)	сн ₃ -	-э ^Є (СН ^З)	CH₃-	-ɔɛ(ɛнɔ)	CH3-	-3 ^E (EH3)
15	2 _n	Ξ	6 - C1	6-01	ж	ĸ	6-CH ₃	6-CH ₃
20	>-	C1	æ	x	снз	CH ₃	æ	x
25	×	ប	ü	CI	CH3	снэ	снз	СНЗ
30	۵	0	0	0	o	0	0	o
35	Fortsetzung A B	#	H	THE COLUMN	H	H	#	
40	belle 2: F	-						
45	Tab							
50								

EP 0 528 156 A1

5					ا _د	3,5	#2-	с(сн ₃) ₂
10	m ₁	CH3-	(сн ³) ² сн-	-э ^є (снэ)	сн3-(сн2)3-	C2H5-C(CH3)2	- ² но-о ^в (сн ³)	¹ сн ³) ² сн-с(сн ³) ⁵
15	Zn	6-CH ₃	6-CH ₃	€-сн3	6-CH ₃	6-CH ₃	6-CH ₃	6-СН3
20	٠	CH3	снэ	снз	CH ₃	CH ₃	сн ³	СНЗ
25	×	снз	CH3	СНЗ	СН _З	снз	CH ₃	CH3
30	۵	0	0	0	0	0	0	0
35	Tabelle 2: Fortsetzung A B	±	Ţ	T		Ţ	T	THE COLUMN
40	Tabelle 2:							
45								

EP 0 528 156 A1

5			.сн ₃) ₃ с-		, сн ₃) ₃ с-		() (H ₃	н ₃ с-о—, с н ₃ с сн ₃	H ₃ C-0 CH ₃	
10		R1	CCH	cH₃-) CH	cH3-	υ υ ო	3 H ₃ C	н ³ С 3 н ³ С	3 H3C
15		2n	6-01	Ħ	Ħ	6-CH ₃	⁶ -сн ³	6 - CH ₃	6-СН3	6-CH ₃
20		>	æ	снз	СНЗ	I	сн3	снз	снз	СНЗ
25		×	CJ	снз	снз	CH ₃	снз	CH ₃	СН ^З	CH3
30			0	0	0	0	0	0	0	0
35	setzung	В	-(CH ²) ² -	-(CH ²) ² -	-(CH ²) ² -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ^S)2-	-(CH ₂) ₅ -	-(CH ²) ² -
	Tabelle 2: Fortsetzung	A								
40	Tabelle									

EP 0 528 156 A1

	1			•				
5		CH2=CH-(CH2)8-	C1 CH3	C1 C	H ₃ C-0—, С H ₃ С СН ₃	н ₃ с-0—, сн ₃	\int	н ₃ с-s-сн ₂ -
10	R1		C H ₃	υυ	H ₃ C-	H ₃ C-0—	DEH H3C	H ₃
15	2 ⁿ	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH3	6-CH ₃	6-снз
20	>	СНЗ	CH3	CH3	CH ₃	CH ₃	снз	CH3
25	×	CH3	CH3	СНЗ	CH ₃	CH3	CH3	CH ₃
30	۵	0	0	0	0	0	0	0
35	Tabelle 2: Fortsetzung A B	THE CONTRACTOR OF THE CONTRACT	T		Ŧ	T		T
40	Tabelle 2							

5		GH ₃	C, C ₂ H ₅	осн ₃	\downarrow	\downarrow	
10	R1	0,.0	 		н ³ со	H ₃ co	CH3-
15	2 ⁿ	6-сн3	6-CH ₃	€н2-9	6-CH ₃	е-сн ³	Eно-9
20	>-	снз	снз	CH ₃	CH ₃	CH ₃	CH ₃
25	×	CH3	CH ₃	CH ₃	CH ₃	CH ₃	снз
30	Q	0	0	0	0	0	0
35	Tabelle 2: Fortsetzung A B	#	Ţ	Ţ.	THE CONTRACTOR OF THE CONTRACT	H	#
40	Tabelle 2						

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden 3-Aryl-4-hydroxy- Δ^3 -dihydrofuran-Derivate der Formel (Ic) genannt:

5															
10	1	ж ₂	-CH3	-CH3	-CH3	-сн3	-CH3	-CH3	-CH3	-CH3	-CH3	-сн3		-CH ₃	
		Σ	0	0	0	0	0	0	0	0	0	0		0	
15		נו	0	0	0	0	0	0	0	0	0	0		0	
20		r _Z	6 - CH ₃	⁶ -сн ³	6-CH ₃			6-CH3	6-CH ₃		6-CH ₃	€-сн³		€н2-9	
25		>-	CH3-	-CH3	-CH3	-cH3	-CH3	-CH3						-cH ₃	
		×	-CH ₃	-CH3	-CH3	-CH3	-сн3	-CH3	-CH3	-cH3	-CH3	-CH3		-CH3	
30		Ω	0	0	0	0	0	0	0	0	0	0		0	
35										-E('H2) 2 -				
40		മ	-сн3 -сн3	-CH3	2 -CH3	-CH3	-4	5-	-9(3)-(СН2	сн3) - (С	(CH ₂) ₂ -	ιo	(CH ₂) ₂ -	2
	Tabelle 3:	*	-cH3	-C2H5	-ch(ch ₃) ₂ -ch ₃	-CF3	-(CH ²)4-	-(CH2)-	-(CH ₂)6-	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ -	2)2-CH(-(CH ₂) ₂ -CH-(CH ₂) ₂ -	C_2H	-(CH ₂) ₂ -CH-(CH ₂) ₂ -	i-C3H7
45	Tabel				Ÿ					-CH.	- (CH.	HO) -		HD) -	

5			S.	ĸ	.co	ίν	ŝ	5	5.	S	l _S	5		f ₅	
10	•	R ²	-C2H5	-C2H5	-C2H	-C2H	-C2H	-С ₂ н	-C2H	-C2H5	-C2H5	-C2H2		-C2H5	
		Σ	0	0	0	0	0	0	0	0	0	0		0	
15		اد	0	0	0	0	0	0	0	0	0	0		0	
20		Zn	6-CH ₃				6-CH ₃	6-сн3	€н2-9	6-CH ₃	6-CH3	6-CH ₃		€-сн3	
25		>-	-CH3	-CH3	-CH3	-CH3	-cH3	-cH3	-CH3	-CH3	-CH3	-CH3		-CH3	
		×	-cH3	-cH3	-CH3	-CH3	-CH3	-CH3	-cH3	-CH3	-CH3	-CH3		-CH3	
30		O	0	0	0	0	0	0	0	0	0	0		0	
35	etzung	В	H ₃	н ₃	нз	Н3				H2)3-	.(CH ₂) ₂ -	-2-		-2	
40	Tabelle 3: Fortsetzung	V	-cH ₃ -cH ₃	-C2H5 -C	-CH(CH ₃) ₂ -CH ₃	-CF3 -C	-(CH ₂)4-	-(CH2)-	-(CH ²) ⁶ -	-сн ₂ -сн(сн ₃)-(сн ₂)3-	, 2-сн(сн3)-	-(CH ₂) ₂ -CH-(CH ₂) ₂ -	Ċ ₂ H5	-(CH ₂) ₂ -CH-(CH ₂) ₂ -	i-C ₃ H ₇
45	Tabel				ပု					-CH2	- (CH2	- (CH2		- (CH.	

EP 0 528 156 A1

5		R ²	-сн(сн ₃) ₂	-сн(сн ³) ⁵	-сн(сн ³) ²	-ch(ch ³) ²	-сн(сн ³) ⁵	-сн(сн ³) ²	-сн(сн ³) ²	-сн(сн ³) ²	-сн(сн ³) ²	-сн(сн ³) ²	-CH(CH ₃) ₂
10		Σ	0	0	0	0	0	0	0	0	0	0	0
15		١	0	0	0	o	0	0	0	0	0	0	0
20		Z										6-сн3	6-CH ₃
25		>	-CH3	-CH3	-сн3	-CH3				-CH3		-сн3	-сн3
30		×	-cH ₃	-CH3	-CH3	-CH3	-CH3	-cH3	-CH3	-CH3	-CH3	-cH ₃	-cH ₃
		0	0	0	0	0	0	o	o	0	0	0	0
35	tsetzung	В	-cH ₃	-сн3	-CH ₃	-cH ₃				(CH ₂) ₃ -)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH-(CH ₂) ₂ - C ₂ H ₅	-2(2)
40	<u>Tabelle 3</u> : Fortsetzung	A	-cH ₃	-C2H5	-CH(CH ₃) ₂ -CH ₃	-CF3	-(CH ₂)4-	-(CH ₂)5-	-(CH ₂)6-	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ -	2-сн(сн ₃	, 2-СН- (СН С2Н5	-(CH ₂) ₂ -CH-(CH ₂) ₂ - i-C ₃ H ₇
45	Tabel 1				-0.					-СH2-	- (CH ₂)	- (CH ₂	- (CH ²

EP 0 528 156 A1

5		M R ²	0 -0CH ₂ -CH(CH ₃) ₂	0 -0CH2-CH(CH3)2	o -och ₂ -ch(ch ₃) ₂	0 -0CH ₂ -CH(CH ₃) ₂	0 -0CH ₂ -CH(CH ₃) ₂	o -och ₂ -ch(ch ₃) ₂	0 -0CH ₂ -CH(CH ₃) ₂		0 -0CH ₂ -CH(CH ₃) ₂				
15		٦	0	0	0	0	0	0	0	0	0	0		0	
20		Zn	6-CH3	e-cH3	6-CH ₃	6-CH3	6-CH3	€ - CH ³	e-cH ₃	6-CH3	6-CH ₃	6-СН3		6-CH3	
25		٨	l ₃ -CH ₃	13 -СН3	43 -CH3		13 -СН3		13 -CH3	H3 -CH3	-снз -снз	-сн3 -сн3		-снз -снз	
30		×	0 -CH ₃	0 -CH ₃	O -CH3	o -cH3	0 -сн ₃	0 -сн ₃	o -cH ₃	0 -CH ₃	ָט o	٠ ا-		D- 0	
35	setzung	B	-cH ₃	-cH ₃	-сн3	-cH ₃				(сн ₂)3-)-(CH ₂) ₂ -	2)2-		_2(2	
40	Tabelle 3: Fortsetzung	Ą	-CH ₃				-(CH ₂)4-	-(CH ₂) ₅ -	-(CH ²) ⁶ -	-сн ₂ -сн(сн ₃)-(сн ₂)3-	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH-(CH ₂) ₂ -	C2HS	-(CH ₂) ₂ -CH-(CH ₂) ₂ -	i - C ₃ H7
45	Tabel				ပ္					-CH2	- (CH ₂	- (CH2		- (CH ₂	

EP 0 528 156 A1

5		R ²	-сн(сн ₃)-с ₂ н ₅	-сн(сн ₃)-с ₂ н ₅	-сн(сн ₃)-с ₂ н ₅	-сн(сн ³)-с ⁵ н ²	-сн(сн ³)-с ⁵ н ²	-сн(сн ³)-с ² H ²	-сн(сн ₃)-с ₂ н ₅	-сн(сн ₃)-с ₂ н ₅	-сн(сн ₃)-с ₂ н ₅	-сн(сн ₃)-с ₂ н ₅	-сн(сн ³)-с ² н ²
10		Σ	0	0	0	0	0	0	0	0	0	0	0
15		ı	0	0	0	0	o	0	0	0	0	0	0
20		2n	6-CH ₃	6-CH3	€HD-9	6-CH3	6-CH3	€-СН3	€но-9	6-CH ₃	6-CH ₃	€ −СН3	€+⊃-9
25		Y	-cH3	-cH3	-cH3	-CH3	-CH ₃				-cH3	-cH ₃	-сн3
		×	-CH3	-CH3	-сн3	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3	-cH ₃	-CH3
30		D	0	0	0	0	0	0	0	0	0	0	0
35	rtsetzung	В	-снз	-cH ₃	-CH ₃	-снз	ı,	•	•	-(CH ²)3-	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	.H2)2-	'H2) 2-
40	Tabelle 3: Fortsetzung	A	- CH ₃	-c ₂ H ₅ -cH ₃	-сн(сн ₃) ₂ -сн ₃	-cF ₃ -cH ₃	-(CH ₂)4-	-(CH ₂) ₅ -	-(CH ₂) ₆ -	-сн ₂ -сн(сн ₃)-(сн ₂)3-	₁₂) ₂ -сн(сн	-(CH ₂) ₂ -CH-(CH ₂) ₂ - C ₂ H ₅	-(CH ₂) ₂ -CH-(CH ₂) ₂ - i-C ₃ H ₇
45	Tabe	;			•					יָּטְ	- (C	: :	ا (ت

EP 0 528 156 A1

5		R ²	-сн ₂ -с(сн ₃) ₃	-сн ₂ -с(сн ₃) ₃	-CH ₂ -C(CH ₃)3	-сн ₂ -с(сн ₃₎₃	-CH ₂ -C(CH ₃) ₃	-сн ₂ -с(сн ₃) ₃	-сн ₂ -с(сн ₃) ₃	-сн ₂ -с(сн ₃)3	-CH ₂ -C(CH ₃) ₃	-сн ₂ -с(сн ₃₎₃	-CH ₂ -C(CH ₃) ₃
10		Σ	0	0	0	0	0	0	0	0	0	0	0
15		ı	0	0	0	0	0	0	0	0	0	0	0
20		Zn	6-CH ₃	6-CH ₃	e-cH3	€-CH ³	6-CH ₃	€н2-9	€-сн ³	6-CH3	6-CH ₃	6-CH ₃	€-CH ³
25		>	-cH3	-сн3	-CH3	-cH3	-CH3	-CH3	-CH3	-cH3	-cH ₃	-сн3	-сн3
30		×	-CH3	-CH3	-cH3	-CH3	-CH ₃	-CH3	-CH3	€HJ-	-CH3	-сн3	-CH ₃
		D	0	0	0	0	0	0	0	0	o	0	0
35	Fortsetzung	В	-cH ₃	-снз	-cH ₃	-cH ₃				-(сн ₂) ₃ -	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	12)2-	¹ 2)2 ⁻
40	Tabelle 3: For	A	-cH ₃	-C2H2	-сн(сн ₃) ₂ -сн ₃	-сғ _з -сн _з	-(CH ₂)4-	-(CH ₂)5-	-(CH ²) ⁶ -	-сн ₂ -сн(сн ₃)-(сн ₂)3-	, 2-CH(CH ₂	-(CH ₂) ₂ -CH-(CH ₂) ₂ - C ₂ H ₅	-(CH ₂) ₂ -CH-(CH ₂) ₂ - i-c ₃ H ₇
45	Tabel				Ų					-CH2	- (CH ₂	- (CH ₂	- (CH ₂

EP 0 528 156 A1

5	,	R ²	-cH ₂ -	-cH ₂	-cH ₂	-cH ₂	-cH ₂	-cH ₂	-cH ₂	—2 _{но-}	-cH ₂
10		Σ	0	0	0	0	0	0	0	0	O
15		r.	0	0	0	0	0	0	0	0	0
20		2 _n	€н⊃-9	€но-9	е-сн ³	€н2-9	6-CH ₃	€-СН3	6-CH ₃	6-CH ₃	€но-9
25		> -	-CH ₃	-CH3	-cH3	-cH ₃	-CH3	-CH3	-cH ₃	-cH ₃	-CH3
		×	-CH3	-CH3	-CH3	-cH3	-cH ₃	-сн3	-cH ₃	-сн3	-CH3
30		۵	0	O	o	0	0	0	0	0	0
35	tsetzung	മ	-CH3	-cH ₃	-cH3	-cH ₃			ı	-(CH ₂)3-	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -
40	Tabelle 3: Fortsetzung	æ	-сн3	-C2H5	-сн(сн ³) ²	-cF ₃	-(CH ₂)4-	-(CH ₂)5-	-(CH ₂)6-	-сн2-сн(сн3)-(сн5)3-	2)2-сн(сн
45	Tabe				ī					-CH	но) -

EP 0 528 156 A1

5		(x)		-CH2-CH	-CH2-CH	-CH 4"9	-CH 49	-CH2-CH	-CH2-CH	-CH C2H5
10	R ²	-CH2-	-CH2	-CH2	-CH2	CH2-CH	-CH2-CH	-CH2	-CH2	-сн2-сн
	Σ	0	0	0	0	0	0	0	0	0
15	د	0	0	0	0	0	0	0	0	0
20	u ₂	6-CH ₃	€-СН3	6-CH ₃	6-CH ₃	6-CH ₃	€но-9	6-CH ₃	€но-9	6-CH3
25	٨	-CH ₃	-CH ₃	-cH ₃	-CH3	-сн3	-cH ₃	-CH ₃	-CH ₃	-CH3
30	×	- CH3	-cH3	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3
	۵	0	0	0	0	0	o	0	0	0
35 rtsetzung	В	H ₂)2-	H2)2-	-cH ₃	-CH3	-CH3	-CH3	ı	ı	ı
S P P P P P P P P P P P P P P P P P P P	K	¹ 2) 2 - СН - (С С2Н5	-(CH ₂) ₂ -CH-(CH ₂) ₂ - i -C ₃ H ₇	-CH3	-C2H5	-сн(сн ³)2	-CF3	-(CH ₂)4-	-(CH ₂) ₅ -	-(CH ²) ⁶ -
45 eg Ľ		· (C	:D) -							

EP 0 528 156 A1

5	R ²	-CH ₂ -CH	-CH2-CH	-CH2-CH C2H5	$-cH_2-cH$				\bigcirc
10	Σ	0	0	0	0	0	0	0	0
15	د	0	0	0	0	0	0	0	0
20	Zn	6-сн3	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH3	6-CH ₃	€н⊃-9
25	>	-CH3	-CH3	-сн3	-CH3	-CH3	-cH ₃	-CH ₃	-CH3
	×	-CH3	-CH3	-cH ₃	-сн3	- CH3	-CH3	-cH3	-cH3
30	Ω	0	0	0	0	0	0	0	0
35	etzung B	3H ₂) ₃ -	-(CH ₂) ₂ -	-2	-2	-снз	-cH ₃	-снз	-сн3
40	<u>Tabelle 3</u> : Fortsetzung A B	-cH2-CH(CH3)-(CH2)3-	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH-(CH ₂) ₂ - C ₂ HE	- (CH ₂) ₂ -CH-(CH ₂) ₂ -	i-C ₃ H ₇ -CH ₃ -(-C2H5 -	-сн(сн ³)5	-CF3
45	Tabell	-CH2-(- (CH ₂);	-(CH ²)	- (CH ₂)			#D-	

EP 0 528 156 A1

5 (Ng.) (P.) (P.) (P.) (P.) (P.) (P.) (P.) (P	
x 0 0 0 0 0	0
15 0 0 0 0 0	0
ЕНЭ-9 ЕНЭ-9 ЕНЭ-9 ЕНЭ-9	€-СН ³
ЕНО- ЕНО- ЕНО- ЕНО-	-сн3
× EH3 - CH3	- CH3
0 0 0 0 0	0
Cabelle 3: Fortsetzung A B B B B B B B B B B B B B B B B B B	-2,2
Tabelle 3: Fortsetzung A B - (CH ₂) ₄ - (CH ₂) ₅	-(CH ₂) ₂ -CH-(CH ₂) ₂ - i-C ₃ H ₇
Tabel - CH2	- (СН ₂

5	.2 2		-C ₂ H ₅	2H2	2H5	2H2	-C2H5	C2H5	C2H5	-C2Hs	-C2H5	-C2H5	-C ₂ H ₅
10	Σ		S	s S	ັ	S	ن س	ິນ	ິ	ν v	ັ	ν	υ
15	ب		0	0	0	0	0	0	0	0	0	0	0
20	-2	c	6-CH3	6-CH3	6-CH ₃	6-CH ₃	6-CH3	€+CH ³	6-CH ₃	€ + C H 3	6-CH3	6-сн3	€н2-9
25	-	.	-CH3	-cH3	-CH3	-CH3	-cH3	-сн3	-cH3	-CH3	-сн3	-cH ₃	-cH ₃
	*	:	-CH3	-CH3	-CH3	-CH3	-cH3	-CH3	-CH3	-сн3	-CH3	-сн3	-сн3
30	C	,	0	0	0	0	0	0	0	0	0	0	0
35	tsetzung R	3	-сн3	-сн3	-сн3	-снз				-£(2нз))-(CH ₂) ₂ -	- (сH ₂) ₂ -сH-(СH ₂) ₂ - С ₂ H ₅	2)2-
40	<u>Tabelle 3</u> : Fortsetzung a	٤	-CH3	-C2H2	2(EH2)1	-CF3	-(CH ₂)4-	-(CH2)2-	-(CH ²) ⁶ -	-сн(сн ³)-	2-CH(CH ₃	,2-CH-(CH	- (CH ₂) ₂ -CH- (CH ₂) ₂ - i - C ₃ H ₇
45	Tabel 1				ָ [֡]					-CH2-	- (CH2)	- (CH ₂)	- (CH ₂)

EP 0 528 156 A1

5		R ²	-сн(сн ³) ²	-CH(CH ₃) ₂	-CH(CH ₃) ₂	-сн(сн ³) ²	-сн(сн ³) ²	-сн(сн ³) ²	-сн(сн ₃) ₂	-сн(сн ₃) ₂	-CH(CH ₃) ₂	-сн(сн ³) ²	-сн(сн ³) ²
10		Σ	ហ	Ŋ	ហ	ဟ	w	ស	ທ	ဟ	ທ	ဟ	w
15		ı	0	0	0	0	0	0	0	0	0	0	0
20		Zn	6-CH3	6-CH ₃	€+CH ³	€-сн ³	6-CH ₃	6-CH ₃	6-CH ₃	6-сн3	6-CH3	€+2-9	6-сн3
25		*	-CH3	-cH3	-CH3	-сн3							
30		×	-CH3	-CH3	-CH3	-снэ	-CH3	-CH3	-CH3	-CH3	-CH3	-cH3	-CH ₃
		Ω	0	0	0	0	О	0	o	0	0	0	o
35	<u>11e 3</u> : Fortsetzung	60	-cH ₃	-CH ₃	-CH ₃	-CH3	ı	ı	ı	-(CH ²) ³ -	-(cH ₂) ₂ -cH(CH ₃)-(CH ₂) ₂ -	H2)2-	H2)2-
40		Y	-CH ₃	-C2H5	-сн(сн ₃) ₂	-CF3 -CH3	-(CH2)4-	-(CH ₂) ₅ -	-(CH ²) ⁶ -	-сн ₂ -сн(сн ₃)-(сн ₂)3-	⁴ 2)2-сн(сн	H ₂) ₂ -CH-(CH ₂) ₂ - C ₂ H _E	H ₂) ₂ -CH-(CH ₂) ₂ - i-C ₃ H ₇
45	Tabe				•					- 0	1 2) -	HD) -	- (CH
50													

EP 0 528 156 A1

		ı											
5	6	,	-сн ₂ -сн(сн ₃) ₂	-сн ² -сн(сн ³) ²	-сн ₂ -сн(сн ₃) ₂	-сн ² -сн(сн ³) ²	-сн ₂ -сн(сн ₃) ₂	-сн ² -сн(сн ³) ²	-CH2-CH(CH3)2	-сн ₂ -сн(сн ₃) ₂	-CH2-CH(CH3)2	-сн ₂ -сн(сн ₃) ₂	-сн2-сн(сн3)2
10	ì	ž.	-2H2-	-CH2-	-CH2-(-CH2-	-CH2-(-CH ² -(-CH2-	-CH2-	-CH2-	-CH2-	-CH2-
	;	Σ	ហ	ທ	ဟ	w	ທ	භ	ဟ	ဟ	ဟ	ဟ	w
15		J	0	0	0	0	0	0	o	0	o	0	0
20		2 ⁿ	€н⊃-9	6-сн3	6-CH3	6-CH ₃	€но-9	€+CH3	€-сн3	€н2-9	6-CH3	6-CH ₃	6 - CH ₃
25		*	-CH3	-cH3	-сн3	-cH ₃	-CH3	-cH3	-CH3	-CH3	-CH3	-сн3	-CH3
30		×	-cH ₃	-сн3	-CH3	-CH3	-CH3	-CH3	-CH3	-cH3	-CH3	-CH3	-cH ₃
35	D)	Q	O	0	0	0	0	0	o	0	0 -2	0	0
40	ortsetzun	Ø	-cH3	-cH3	-cH3	-cr ₃ -ch ₃	4-	5-	. 9)-(CH ₂)3-	:н ₃)-(сн ₂)	CH ₂) ₂ -	(CH ₂) ₂ -
45	<u>Tabelle 3</u> : Fortsetzung	A	-CH ₃	-c ₂ H ₅ -cH ₃	-CH(CH ₃) ₂ -CH ₃	-CF3	-(CH ₂) ₄ -	-(CH ₂) ₅ -	-(CH ²) ⁶ -	-сн ₂ -сн(сн ₃)-(сн ₂)3-	$-(CH_2)_2-CH(CH_3)-(CH_2)_2$	- (сH ₂) ₂ -сн-(сH ₂) ₂ - С ₂ H ₅	-(CH ₂) ₂ -CH-(CH ₂) ₂ - i-C ₃ H ₇

EP 0 528 156 A1

5	20	N-	-сн ₂ -с(сн ₃) ₃	-сн ₂ -с(сн ₃) ₃	-сн2-с(сн3)3	-сн ₂ -с(сн ₃) ₃	-cH ₂ -c(CH ₃) ₃	-сн ₂ -с(сн ₃) ₃	-сн ₂ -с(сн ₃) ₃	-cH ₂ -c(CH ₃) ₃	-сн ₂ -с(сн ₃₎₃	-сн ₂ -с(сн ₃₎ 3	-сн ₂ -с(сн ₃) ₃
10	X	E	S D-	ა ე-	ຽ	S	S	S	S	ပ	မှ မ	_ν	· ν
15		נ	0	0	0	0	0	0	0	0	0	0	0
20	ŀ		€н⊃-9	£нэ-9	€-сн3	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH3	6-CH3	6-сн3	6-сн3
25	,	>-	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3	-сн3	-cH3	-cH3	- CH ₃	-cH ₃
30	;	×	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3	-сн3	-CH3	-cH3	-CH ₃
	ſ		0	0	0	0	0	0	0	0	0	0	0
35	tzung	æ	f3	£3	₁ 3	H3				H2)3-	(CH ₂) ₂ -	,	' '
40	Forts	A	-cH3 -CH3	-C2H5 -CH3	-сн(сн ₃) ₂ -сн ₃	-cF3 -CH3	-(CH ₂) ₄ -	-(CH ₂) ₅ -	-(CH ₂),6-	-cH2-CH(CH3)-(CH2)3-	- (сH ₂) ₂ -сн(сH ₃)-(сH ₂) ₂ -	сн-(сн ₂); с ₂ н ₅	-(CH ₂) ₂ -CH-(CH ₂) ₂ - i-C ₃ H ₇
45	Tabelle			ပုိ	-CH(C	ပု) -)) -	-сн2-сн	-(CH ₂) ₂ -	-(CH ₂) ₂ -CH-(CH ₂) ₂ - C ₂ H ₅	-(CH ₂) ₂ -

5	25.	-сн(сн ₃)-с ₂ н ₅	-сн(сн ₃)-с ₂ н ₅	-сн(сн ³)-с ⁵ н ²	-сн(сн ³)-с ² н ²	-CH(CH3)-C2H5	-сн(сн ³)-с ⁵ н ²	-сн(сн ₃)-с ₂ н ₅	-сн(сн ₃)-с ₂ н ₅	-сн(сн ₃)-с ₂ н ₅	-сн(сн ₃)-с ₂ н ₅	-сн(сн ³)-с ² н ²
10	Σ	ν '	υ υ	ν v	Ω	ν υ	ν v	, ω	ι v	ິນ	ហ	່ ທ
15	د	0	0	0	0	0	0	0	0	0	0	0
20	Zn								6-CH ₃	6-CH3	€но-9	6-CH ₃
	٨	-CH3	-cH3	-CH3	-CH3	-CH3	-cH3	-CH3	-CH3	-cH3	-CH3	-cH ₃
25	×	-CH3		-cH3	-CH3				-CH3	-cH ₃	-сн3	-CH ₃
30	a	0	0	0	0	0	0	0	0	0	0	0
35 25 L 2 2 2 2 1 2	, a	-CH ₃	-cH ₃	-cH ₃	-снз				(CH ₂)3-)-(CH ₂) ₂ -	2)2-	-2(2
35 40 40 E e E e C e E e E	V	-CH ₃	-C2H5	2(СН ₃) ₂	-CF3	-(CH ₂)4-	-(CH2)-	-9(ZHD)-	-CH2-CH(CH3)-(CH2)3-	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH-(CH ₂) ₂ - C ₂ H ₅	- (CH ₂) ₂ -CH-(CH ₂) ₂ - i-C ₃ H ₇
45 ef)					-CH2	- (CH ₂	- (СН ₂	- (CH;

EP 0 528 156 A1

5		R ²	сн ₃ -	-2н3-сн ²)	с ₂ н ₅ -сн-	(сн ³) ³ с-	(CH ³) ³ C-CH ² -	H	C2H50
10		Σ	0	0	0	0	0	0	0
15		اد	0	0	0	0	0	0	0
		u ₂	6-CH ₃	6-CH3	е-сн ³	€-сн³	6-CH ₃	€но-9	6-СН3
20		>	снз	снз	снз	снэ	снз	CH ₃	CH ₃
25		×	CH3	CH ₃	CH ₃	снз	снз	CH3	CH3
30		Q	0	0	0	0	0	0	0
35	setzung	В	Ξ	Ħ	æ	I	E	x	ж
40	<u>Tabelle 3</u> : Fortsetzung	A	СНЗ	CH3	CH3	снз	CH3	СНЗ	снз
45	T B	ļ							

5	R ²	С2H5-CH- СН3	C2H5-CH- CH3 CH3	с ₂ н ₅ -сн- Сн ₃	с ₂ н ₅ -сн- сн ₃
10	Σ	0	0	0	0
15	اد	o	0	0	0
	Zn	æ	6-01	æ	6-CH ₃
20	>-	CJ	æ	снз	×
25	×	ច	CI	снз	снэ
30	۵	0	0	0	0
35	etzung B	æ	æ	æ	Ħ
40	Tabelle 3: Fortsetzung	CH ₃	CH ₃	CH ₃	CH3
45	e H				

EP 0 528 156 A1

5		R ²	C2H5		CH₃-	(сн ³) ⁵ сн-	(CH ₂) ₂ -CH-CH ₂	С2H5-CH- СH3 СH3	с ₂ н ₅ -сн- С ₂ н ₃	с ₂ н ₅ -сн-
10		E	0 C ₂ H ₅ O	0	S	s	ັ ທ	ω	0	0
15		اد	0	о	0	0 €	. O 8	о _Ю	0	0
20		u _z	6-CH ₃	6-CH ₃	НО-9	9 - СН	НО-9	6 - CH ₃	Ħ	6-C1
		~	снэ	снз	снз	снз	CH ₃	снз	CI	æ
25		×	СН _З	CH ₃	CH3	снз	снз	снз	ប៊	ប
30		۵	0	0	0	0	0	0	ဟ	ဟ
35	tzung	æ	Ξ	×	×	I	I	π	x	æ
40	i: Fortse	«	снз	снз	CH ₃	CH ₃	СНЗ	CH3	снз	снз
45	Tabelle 3: Fortsetzung									

EP 0 528 156 A1

5		R ²	с ₂ н ₅ -сн-	C ₂ H ₅ -CH- C _{H3}	CH3-	(СН ₃) ² СН~	(сн ₃) ₂ сн-сн ₂ -	C2H5-CH- CH3	(CH ³) ³ C-	сн ³) ³ С-сн ²	H
10		Σ	0	0	0	0	0	0	0	0	0
45		رر	0	0	0	0	0	0	0	0	0
15		2 ^u	x	6-CH ₃	€ - CH ³	€н2-9	6-CH3	6-сн ₃	6-CH3	6-CH3	6-CH ₃
20		۲	СНЗ	×	снз	снз	снз	снз	CH ₃	снз	снз
26		×	CH ₃	снз	CH3	снз	снз	снз	CH3	CH3	cH ₃
30		۵	ഗ	ഗ	ທ	ທ	ဟ	и	v	w	ω
35	setzung	æ	æ	x	×	Ξ	×	x	×	I	æ
40	<u>Tabelle 3</u> : Fortsetzung	¥	CH3	CH ₃	CH ₃	CH ₃	СН _З	CH ₃	CH ₃	CH ₃	снз
45	Tab										

EP 0 528 156 A1

)— H	C ₂ H ₅	ı		<u>+</u>	н-сн2-	ı m	ım
5		R ²	C2H50	C2H50		cH₃-	(сн ₃) ₂ с	(СН ³) ⁵ С	C ₂ H ₅ -CH- CH ₃	С2H5-CH- СН3
10		Σ	0	0	0	ທ	ഗ	w	w	0
		'n	0	0	0	0	0	0	0	0
15		Zn	€-сн³	6-сн3	€-сн3	6-CH3	6-CH3	6-CH3	€-сн³	æ
20		٨	снз	СН _Э	снз	снз	CH ₃	CH ₃	снз	បី
25		×	снз	CH3	CH ₃	€H2	СНЗ	снз	CH ₃	ប
30		Q	ဟ	w	ഗ	ဟ	ဟ	w	w	0
35	tzung	Ø	Ξ	x	×	æ	x	æ	æ	CH ₃
	Fortse	Ą	cH ₃	CH ₃	снз	снэ	снз	снз	снз	снз
40	<u>Tabelle 3</u> : Fortsetzung									
45	Ĥ	i								

EP 0 528 156 A1

5		R ²	C2H5-CH- CH3 CH3	C ₂ H ₅ -CH- CH ₃	C2H5-CH- 	CH₃-	(сн ³) ² сн-	(сн ³) ⁵ сн-сн ⁵	С ₂ H ₅ -СH- ССH ₃	(CH ³) ³ C-	(сн ₃) ₃ с-сн ₂ -
10		Σ	0	0	0	0	0	0	0	0	0
		ا د	0	0	0	0	0	0	0	0	0
15		Zn	6 - C1	æ	6 - CH ₃	6-CH ₃	€-сн³	6-CH3	6-сн ₃	6-CH3	6-CH ₃
20		,	æ	снз	æ	CH ₃	снз	CH ₃	CH ₃	CH ₃	снз
25		×	CI	CH ₃	снз	снз	CH ₃	снз	CH3	CH3	снз
30		۵	0	o	0	0	0	0	0	0	0
35	etzung	В	CH ₃	снз	снз	СНЗ	СНЭ	CH ₃	CH ₃	СНЗ	cH ₃
40	3: Forts	A	снз	снз	CH ₃	CH ₃	CH ₃	снэ	сн3	снз	CH3
	<u> Tabelle 3</u> : Fortsetzung										
45	-										

EP 0 528 156 A1

					<u>ئ</u>				2н2	
5		R ²	T T	C2H500	C2H5O~~~C2H5	\bigcirc	сн ³ -	-нэ ² (Енэ)	(CH ₂) ₂ -CH-CH ₂	C2H5-CH- CH3
10		Σ	0	0	0	0	ហ	ဟ	ဟ	ທ
15		٦	0	0	0	0	0	0	0	0
		Zn	6-CH ₃	€но-9	6-CH3	6-CH ₃	6-сиз	6-CH3	6-CH ₃	6-сн3
20										
			снз	СНЗ	СНЗ	СНЗ	СНЗ	CH3	CH3	CH ₃
25		×	CH3	CH ₃	снз	снз	CH ₃	снз	снз	снз
30		O	0	0	0	0	0	0	0	0
35	6unz	ш	CH3	СНЗ	CH ₃	снз	СНЗ	снз	CH3	снз
40	3: Fortsetzung	A	снз	CH ₃	СНЗ	CH ₃	снз	CH ₃	СНЗ	снз
45	Tabelle 3									

EP 0 528 156 A1

5		R ²	с ₂ н ₅ -сн- с ₂ н ₃	C2H5-CH- CH3	C2H5-CH- CH3	с ₂ н ₅ -сн- сн ₃	CH₃-	(сн ³) ⁵ сн-	(сн ³) ⁵ сн-сн ⁵ -	C ₂ H ₅ -CH- CH ₃
10		Σ	0	0	0	o	0	0	0	0
		٦	0	0	0	0	0	0	0	0
15		Zn	æ	6-01	×	6-CH ₃	6 - CH ₃	6-CH3	6-CH3	€-сн³
20		>	CJ	I	снэ	x	CH ₃	снз	снз	снз
25		×	ប៊	ប	CH3	снз	снэ	CH3	CH ₃	СНЗ
30		Q	0	0	0	0	0	0	0	0
35	setzung	a	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH2)2-	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -
40	<u>Tabelle 3</u> : Fortsetzung	A								
45	Tabe									

EP 0 528 156 A1

5		R ²	-ɔ²(cH3)	сн ³) ³ с-сн ⁵	THE STATE OF THE S	C2H50 CH3	C2H50	\Diamond	сн3-	(сн ³) ² сн-	(CH ₃) ₂ CH-CH ₂ -
10		Σ	0	0	0	0	0	0	ល	ហ	ဟ
15		ı	0	0	0	0	0	0	0	0	0
		Zn	6-СН3	6-CH ₃	6-сн3	6-CH3	6-CH ₃	€но-9	€-сн3	6-CH3	6-CH ₃
20		۲ ا	снз	сн ³	СН ₃	снз	CH ₃	снз	снз	снз	CH ₃
25		×	СН3	снз	СНЗ	снз	снз	снз	CH3	CH ₃	CH ₃
30		Q	0	0	0	0	0	0	0	0	0
35	setzung	æ	-(CH ²) ² -	-(CH ₂) ₅ -	-(CH ²) ⁵ -	-{сн ₂ } ₅ -	-(CH ²) ² -	-(CH ₂)5-	-(CH ₂) ₅ -	-(CH ²) ² -	-(CH ²) ² -
40 45	<u>Tabelle 3</u> : Fortsetzung	A									

EP 0 528 156 A1

5	R ²	C2H5-CH-	с ₂ н ₅ -сн- сн ₃	C2H5−CH- CH3	C2H5-CH- CH3	с ² н ² -сн-	CH3-
10	Σ	ω	0	0	0	0	0
	د	0	0	0	0	0	0
15	2 _n) EHD-9	Œ	6-01	Ħ	6-сн ₃	^Є но-9
20		снз	ü	x	CH3	ж	снз
25	×	снз	ប	ü	CH3	CH ₃	CH3
30	۵	o	0	0	0	0	0
35	â a	-(CH ₂) ₅ -	×	I	I	æ	x
40	Tabelle 3: Fortsetzung	·	\bigcirc	\bigcirc			
45	Tabelle						

EP 0 528 156 A1

5		R ²	(сн ₃) ₂ сн-	(сн ³) ² сн-сн ²	с ₂ н ₅ -сн-	-э ^є (єнэ)	-2н3-э ^в (сн3)	T T
10		Σ	O	0	0	0	0	0
		ם	0	0	0	o	0	0
15		2 ^u	6-CH ₃	€-СН3	€н⊃-9	6-сн3	6-CH ₃	6-CH ₃
20		٨	CH ₃	снз	CH ₃	снз	снз	снз
25		×	СНЗ	СН _З	CH ₃	CH ₃	CH3	CH3
30		Q	0	0	0	0	0	0
35	อินกร	a	×	x	I	x	Ħ	Ħ
40	<u> Tabelle 3</u> : Fortsetzung	A	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
45	Tabelle							

EP 0 528 156 A1

5		R ²	C2H50~~	C2H5OV	\Diamond	сн3-	(сн ³) ² сн-	(CH ₃) ₂ CH-CH ₂	сн ₃ -сн-
10		Σ	0	0	0	ဟ	ω	ဟ	ဟ
		اد	0	0	0	0	0	0	0
15		2 ^u 2	6-CH3	6-сн3	6-CH ₃	6-CH ₃	6-снз	€-СН3	6-CH ₃
20		λ	снз	снз	СНЗ	cH ₃	CH ₃	CH ₃	CH ₃
25		×	CH ₃	CH ₃	CH3	CH ₃	СНЗ	CH3	CH ₃
30		O	0	o	0	o	0	0	0
35	6unz 1	æ	Œ	I	I	ж	×	x	x
40	<u>Tabelle 3</u> : Fortsetzung	V			\bigcirc			\bigcirc	\bigcirc
	- •								

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden 3-Aryl-4-hydroxy- Δ^3 -dihydrofuran-Derivate der Formel (Id) genannt:

55

Tabelle 4:

5

10

15	. A	В	D	x	Y	z _n	R ³
20	снз	снз	0	снз	снз	6-СН _З	\bigcirc
	сн ₃	снз	0	снз	снз	6-CH3	c1-C
25	снз	снз	0	сн ₃	сн ₃	6-СН _З	
30	снз	снз	o	снз	снз	6-СН ^З	C1—

35 Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden 3-Aryl-4-hydroxy-Δ³-dihydrofuran-Derivate der Formel (le) genannt:

40
$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 &$$

55

EP 0 528 156 A1

5									
10		R5	снэ	C2H5-S-	-s-нэ ² (£нэ)	C ₂ H ₅ CH-S- CH ₃	C2H5-S-	(сн ₃) ₂ сн-s-	C2H5 CH-S-
15		R4	CF3CH20-	-0-EHD	CH3-0-	сн ₃ -о-	C2H50-	C2H2-0-	C2H5-0-
20		J.	ဟ	0	0	0	0	0	0
25		Z _n	6-CH ₃		6-CH3		6-CH3	6-CH3	6-CH ₃
		>	снз	снэ	снз	СНЗ	снз	снз	CH3
30		×	снз	СНЗ	CH3	CH ₃	снз	снз	снз
35		Q	0	0	0	0	0	0	0
		B	снэ	снз	снз	CH3	CH3	снэ	снз
40	Tabelle 5:	K			CH3	СНЗ	CH3	CH3	CH ₃

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden 3-Aryl-4-hydroxy- Δ^3 -dihydrofuran-Derivate der Formel (If) genannt:

EP 0 528 156 A1

5	В	O	R ⁶		ү				(If)
10	D —-€	O	Y	†⁴ Z _n					
15									
20		L Ró R7	.H3-	H3-	:H2=CH-CH2-	-2(2)	<u>'.</u>	15 -	
25		4	<u>_</u>	1_	-2HCH2-	:H2)2-0-(CH	- (CH ²)	C2H5-	
30		L Rô	о сн _э	s CH ₃	0 СН ₂	0 - (0	v	s	
35		Zn	6-сн3	€-сн3	6-сн3	6-CH3	6-CH ₃	6-CH ₃	
40		>					снз	снз	
45		×						o ch ₃	
		۵							
50	le 6:	æ	СНЗ	сн3	CH3	CH ₃	CH3	снз снз	
55	Tabelle	A	СНЗ	CH3	CH3	СНЗ	СНЗ	снз	

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden 3-Aryl-4-hydroxy- Δ^3 -dihydrofuran-Derivate der Formel (Ig) genannt:

$$E^{\Theta} \stackrel{A}{\longrightarrow} V \qquad (Ig)$$

			-		_	
Ta	ha	. 1	1.	_	7	•

50

55

15	Tabelle 7:						
	A	В	D	x	Y	z _n	E⊕
	СН _З	СНЗ	0	снз	сн3	6-CH3	NH ₄
20	сн ₃	снз	0	снз	сн3	6-CH3	Na
	С ₂ Н ₅	снз	0	снз	снз	6-CH3	Na
	-сн(сн ₃) ₂	снз	0	снз	снз	6-СН ^З	Na
25	CF ₃	снз	0	снз	снз	6-CH3	Na
	-(CH ₂)	4-	0	снз	снз	6-СН ^З	Na
	-(CH ₂)	5 -	0	снз	CH3	6-CH3	Na
30	-(CH ₂)	6-	O	снз	CH3	6-CH3	Na
	-СН ₂ -СН-(СН ₂)3-	o	снз	CH3	6-СН ^З	Na
	с́н _З						
35	-(сн ₂) ₂ -сн-(с сн ₃	H ₂) ₂ -	0	сн _З	сн3	6-СН _З	Na
40	-(СН ₂) ₂ -СН-(С С ₂ Н ₅	H ₂) ₂ -	O	CH ³	сн ₃	6-СН _З	Na
4 5	-(СН ₂) ₂ -СН-(С i-С ₃ Н ₇	H ₂) ₂ -	0	CH ³	снз	6-СН _З	Na

Tabelle 7: Fortsetzung

5	A	В	D	x	Y	z _n	E [®]
	сн3	снз	0	снз	снз	6-CH ₃	i-C ₃ H ₇ NH ₃
10	C ₂ H ₅	сн3	0	снз	снз	6-CH3	i-C ₃ H ₇ NH ₃
	-CH(CH ₃) ₂	снз	0	CH3	CH3	6-CH3	$i-C_3H_7NH_3$
15	CF ₃	снз	0	CH3	снз	6-CH3	$i-C_3H_7NH_3$
15	-(CH ₂) ₄ -		0	сн3	CH3	6-CH3	i-C ₃ H ₇ NH ₃
	-(CH ₂)	5 -	0	снз	CH3	6-CH3	$i-C_3H_7NH_3$
20	-(CH ₂)	6-	0	снз	сн3	6-CH3	i-C ₃ H ₇ NH ₃
	-сн ₂ -сн-(сн ₂) ₃ -	0	CH3	снз	6-CH3	i-C ₃ H ₇ NH ₃
	СН ^З						
25	-(CH ₂) ₂ -CH-(C	H ₂) ₂ -	0	снз	CH3	6-CH3	i-C ₃ H ₇ NH ₃
	сн _З						
30	-(CH ₂) ₂ -CH-(C	H ₂) ₂ -	0	снз	сн ₃	6-CH ₃	i-C ₃ H ₇ NH ₃
	C ₂ H ₅						
	-(CH ₂) ₂ -CH-(C	H ₂) ₂ -	0	снз	снз	6-CH ₃	i-C ₃ H ₇ NH ₃
35	i-C ₃ H ₇						

<u>Tabelle 7</u>: Fortsetzung

5	Α	В	D	x	Y	z _n	E.
	сн ₃	снз	0	снз	снз	6-СН _З	N(C4H9-t)4
10	С ₂ Н ₅	снз	0	CH3	снз	6-CH3	N(C ₄ H ₉ -t) ₄
	-сн(сн ₃) ₂	снз	0	снз	снз	6-CH3	N(C ₄ H ₉ -t) ₄
	CF ₃	CH3	0	снз	снз	6-CH3	N(C ₄ H ₉ -t) ₄
15	-(CH ₂)4	1-	0	CH3	снз	6-CH3	N(C ₄ H ₉ -t) ₄
	-(CH ₂)	;-	0	снз	снз	6-CH3	N(C4H9-t)4
20	-(CH ₂)	-	0	снз	снз	6-CH3	N(C4H9-t)4
	-сн ₂ -сн-(сн ₂)	3-	0	снз	сн _З	6-CH ₃	N(C ₄ H ₉ -t) ₄
25	-(СН ₂) ₂ -СН-(СН СН ₃	i ₂) 2-	0	сн3	снз	6-CH3	N(C ₄ H ₉ -t) ₄
30	-(CH ₂) ₂ -CH-(CH С ₂ H ₅	¹ 2 ⁾ 2 ⁻	0	снз	снз	6-CH3	N(C ₄ H ₉ -t) ₄
35	-(СН ₂) ₂ -СН-(СН і-С _З Н ₇	¹ 2 ⁾ 2 ⁻	0	сн ³	снз	6-CH ₃	N(C ₄ H ₉ -t) ₄

Tabelle 7: Fortsetzung

5	A	В	D	X	Y	z _n	E [®]
	CH3	CH3	0	снз	снз	6-CH ₃	NH ₂ (CH ₃) ₂
10	C ₂ H ₅	снз	0	CH3	снз	6-CH3	NH ₂ (CH ₃) ₂
	-ch(ch ₃) ₂	сн ₃	0	снз	сн ₃	6-CH3	$NH_2(CH_3)_2$
	CF ₃	CH3	0	CH3	снз	6-CH3	NH ₂ (CH ₃) ₂
15	-(CH ₂) ₄ -		0	CH3	снз	6-CH3	$NH_2(CH_3)_2$
	-(CH ₂)	5-	0	снз	СНЗ	6-CH3	$NH_2(CH_3)_2$
20	-(CH ₂)	6-	0	CH3	снз	6-CH3	NH ₂ (CH ₃) ₂
	-сн ₂ -сн-(сн ₂) ₃ -	0	CH3	снз	6-CH ₃	NH ₂ (CH ₃) ₂
	сн ^З						
25	-(CH ₂) ₂ -CH-(C	H ₂) ₂ -	0	снз	снз	6-CH3	NH ₂ (CH ₃) ₂
	сн ^З						
30	-(CH ₂) ₂ -CH-(C	H ₂) ₂ -	0	снз	снз	6-CH3	NH ₂ (CH ₃) ₂
	C ₂ H ₅						
	-(CH ₂) ₂ -CH-(C	H ₂) ₂ -	0	CH3	снз	6-CH3	NH ₂ (CH ₃) ₂
35	i-c ₃ H ₇						

Verwendet man gemäß Verfahren (A) 0-2,6-Dichlorphenylacetyl-hydroxyossigsäureethylester, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (B) (Variante α) 3-(2,4,6 Trimethylphenyl)-4-hydroxy-5,5-dimethyl- Δ^3 -dihydrofuran-2-on und Pivaloylchlorid als Ausgangsstoff, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden.

55

5

$$H_3C$$
 H_3C
 H

Verwendet man gemäß Verfahren B (Variante β) 3-(2,4,5-Trimethylphenyl)-4-hydroxy-5-phenyl-Δ³-dihydrofuran-2-on und Acetanhydrid als Ausgangsverbindungen, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden.

Verwendet man gemäß Verfahren C 3-(2,4-Dichlorphenyl)-4-hydroxy-5-methyl-Δ³-dihydrofuran-2-on und Chlorameisensäureethoxyethylester als Ausgangsverbindungen, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden.

Verwendet man gemäß Verfahren (D_α) 3-(2,4,6-Trimethylphenyl)-4-hydroxy-5-methyl-Δ³-dihydrothiophen-2-on und Chlormonothioameisensäuremethylester als Ausgangsprodukte, so kann der Reaktionsverlauf wie folgt wiedergegeben werden:

Verwendet man gemäß Verfahren (D_{β}) 3-(2,4,6-Trimethylphenyl)-4-hydroxy-5.5-pentamethylen- Δ^3 -dihydrofuran-2-on, Schwefelkohlenstoff und Methyl jodid als Ausgangskomponenten, so kann der Reaktionsverlauf wie folgt wiedergegeben werden:

5 OH
$$CH_3$$
 CH_3
 CH_3
 $-HJ$

10 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

Verwendet man gemäß Verfahren (E) 3-(2,4,6-Trimethylphenyl)-4-hydroxy-5-methylmercaptomethyl-∆³-dihydrofuran - 2-on und Methansulfonsäurechlorid als Ausgangsprodukt, so kann der Reaktionsverlauf durch folgendes Reaktionsschema wiedergegeben werden:

35

40

Verwendet man gemäß Verfahren (F) 3-(2,4,6-Trimethylphenyl)-4-hydroxy-5.5-dimethyl- Δ^3 -dihydro-furan-2-on und Methanthio-phosphonsäurechlorid-(2,2,2-trifluorethylester) als Ausgangsprodukte, so kann der Reaktionsverlauf durch folgendes Reaktionsschema wiedergegeben werden:

H₃C
$$\xrightarrow{CH_3}$$
 \xrightarrow{OH} $\xrightarrow{CH_3}$ $\xrightarrow{CH_3}$

Verwendet man gemäß Verfahren (G_{α}) 3-(2,4,6-Trimethylphenyl)-4-hydroxy-5-tetramethylen- Δ^3 -dihydro-furan-2-on und Ethylisocyanat als Ausgangsprodukte, so kann der Reaktionsverlauf durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (G_β) 3-(2,4,6-Trimethylphenyl)-4-hydroxy-5-methyl- Δ^3 -dihydrofuran-2-on und Dimethylcarbamidsäurechlorid als Ausgangsprodukte, so kann der Reaktionsverlauf durch folgendes Schema wiedergegeben werden:

Verwendet man gemäß Verfahren (H) 3-(2,4,6-Trimethylphenyl)-4-hydroxy-5.5-dimethyl- Δ^3 -dihydro-furan-2-on und NaOH als Komponenten, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes

Reaktionsschema wiedergegeben werden:

Die bei dem obigen Verfahren (A) als Ausgangsstoffe benötigten Verbindungen der Formel (II)

in welcher

15

A, B, D, X, Y, Z, n und R⁸ die oben angegebene Bedeutung haben sind bekannt oder lassen sich nach im 30 Prinzip bekannten Methoden in einfacher Weise herstellen. So erhält man z.B. O-Acyl-α-hydroxycarbonsäureester der Formel (II), wenn man

a) 2-Hydroxycarbonsäure-(ester) bzw. 2-Mercaptocarbonsäure-(ester) der Formel (XIV)

in welcher

40

R¹¹ für Wasserstoff (XIVa) oder Alkyl (XIVb) steht ind

A, B und D die oben angegebene Bedeutung haben, mit Phenylessigsäurehalogeniden der Formel (XV)

$$Y \xrightarrow{X} COHal$$

in welcher

55

X, Y, Z und n die oben angegebene Bedeutung haben und

Hal für Chlor oder Brom steht, acycliert (Chem. Reviews 52 237-416 (1953)); oder wenn man Thio- bzw. Hydroxycarbonsäuren der Formel (IIa),

5

10

$$\begin{array}{c|c}
 & CO_2R^{11} \\
 & X \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$$

in welcher 15

> A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben und

R11 für Wasserstoff steht,

verestert (Chem. Ind. (London) 1568 (1968).

Verbindungen der Formel (IIa) sind beispielsweise aus den Phenylessigsäurehalogeniden der Formel (XV) und Thio- bzw. Hydroxycarbonsäuren der Formel XIVa) erhältlich (Chem. Reviews 52 237-416 (1953).

Weiterhin erhält man Verbindungen der Formel (II), wenn man Phenylessigsäuren der Formel XVI

25

20

$$Y \longrightarrow X -CO_2H$$
 (XVI)

30

in welcher

X, Y, Z und n die oben angegebene Bedeutung haben mit α-Halogencarbonsäureestern der Formel XVII

(XVII) 40

50

in welcher

A und B die oben angegebene Bedeutung haben,

R11 für Alkyl steht und

für Chlor oder Brom steht Hal

alkyliert.

Beispielhaft seien folgende Verbindungen der Formel (II) genannt:

O-(2,4-Dichlorphenyl-acetyl)-hydroxyessigsäureethylester

O-(2,6-Dichlorphenyl-acetyl)-hydroxyessigsäureethylester

O-(2,4,6-Trichlorphenyl-acetyl)-hydroxyessigsäureethylester

O-(2,4-Dimethylphenyl-acetyl)-hydroxyessigsäureethylester

O-(2,6-Dimethylphenyl-acetyl)-hydroxyessigsäureethylester

O-(2,4,6-Trimethylphenyl-acetyl)-hydroxyessigsäureethylester

O-(2,4-Dichlorphenyl-acetyl)-milchsäureethylester

O-(2,6-Dichlorphenyl-acetyl)-milchsäureethylester

```
O-(2,4,6-Trichlorphenyl-acetyl)-milchsäureethylester
O-(2,4-Dimethylphenyl-acetyl)-milchsäureethylester
O-(2,6-Dimethylphenyl-acetyl)-milchsäureethylester
O-(2,4,6-Trimethylphenyl-acetyl)-milchsäureethylester
O-(2,4-Dichlorphenyl-acetyl)-hydroxyisobuttersäureethylester
O-(2,6-Dichlorphenyl-acetyl)-hydroxyisobuttersäureethylester
O-(2,4,6-Trichlorphenyl-acetyl)-hydroxyisobuttersäureethylester
O-(2,4-Dimethylphenyl-acetyl)-hydroxyisobuttersäureethylester
O-(2,6-Dimethylphenyl-acetyl)-hydroxyisobuttersäureethylester
O-(2,4,6-Trimethylphenyl-acetyl)-hydroxyisobuttersäureethylester
O-(2,4-Dichlorphenyl-acetyl)-mandelsäureethylester
O-(2,6-Dichlorphenyl-acetyl)-mandelsäureethylester
O-(2,4,6-Trichlorphenyl-acetyl)-mandelsäureethylester
O-(2,4-Dimethylphenyl-acetyl)-mandelsäureethylester
O-(2,6-Dimethylphenyl-acetyl)-mandelsäureethylester
O-(2,4,6-Trimethylphenyl-acetyl)-mandelsäureethylester
O-(2,4-Dichlorphenyl-acetyl)-1-hydroxycyclohexancarbonsäureethylester
O-(2,6-Dichlorphenyl-acetyl)-1-hydroxycyclohexancarbonsäureethylester
O-(2,4,6-Trichlorphenyl-acetyl)-1-hydroxycyclohexancarbonsäureethylester
O-(2,4-Dimethylphenyl-acetyl)-1-hydroxycyclohexancarbonsäureethylester
O-(2,6-Dimethylphenyl-acetyl)-1-hydroxycyclohexancarbonsäureethylester
O-(2,4,6-Trimethylphenyl-acetyl)-1-hydroxycyclohexancarbonsäureethylester
O-(2,4-Dichlorphenyl-acetyl)-2-hydroxy-2-ethyl-buttersäureethylester
O-(2,6-Dichlorphenyl-acetyl)-2-hydroxy-2-ethylbuttersäureethylester
O-(2,4,6-Trichlorphenyl-acetyl)-2-hydroxy-2-ethylbuttersäureethylester
O-(2,4-Dimethylphenyl-acetyl)-2-hydroxy-2-ethylbuttersäureethylester
O-(2,6-Dimethylphenyl-acetyl)-2-hydroxy-2-ethylbuttersäureethylester
O-(2,4,6-Trimethylphenyl-acetyl)-2-hydroxy-2-ethylbuttersäureethylester
Beispielhaft seien folgende Verbindungen der Formel (II) genannt:
S-(2,4-Dichlorphenyl-acetyl)-thioessigsäureethylester
S-(2,6-Dichlorphenyl-acetyl)-thioessigsäureethylester
S-(2,4,6-Trichlorphenyl-acetyl)-thioessigsäureethylester
S-(2,4-Dimethylphenyl-acetyl)-thioessigsäureethylester
S-(2,6-Dimethylphenyl-acetyl)-thioessigsäureethylester
S-(2,4,6-Trimethylphenyl-acetyl)-thioessigsäureethylester
S-(2,4-Dichlorphenyl-acetyl)-thiomilchsäureethylester
S-(2,6-Dichlorphenyl-acetyl)-thiomilchsäureethylester
S-(2,4,6-Trichlorphenyl-acetyl)-thiomilchsäureethylester
S-(2,4-Dimethylphenyl-acetyl)-thiomilchsäureethylester
S-(2,6-Dimethylphenyl-acetyl)-thiomilchsäureethylester
S-(2,4,6-Trimethylphenyl-acetyl)-thiomilchsäureethylester
S-(2,4-Dichlorphenyl-acetyl)-thioisobuttersäureethylester
S-(2,6-Dichlorphenyl-acetyl)-thioisobuttersäureethylester
S-(2,4,6-Trichlorphenyl-acetyl)-thioisobuttersäureethylester
S-(2,4-Dimethylphenyl-acetyl)-thioisobuttersäureethylester
S-(2,6-Dimethylphenyl-acetyl)-thioisobuttersäureethylester
S-(2,4,6-Trimethylphenyl-acetyl)-thioisobuttersäureethylester
Das Verfahren (A) ist dadurch gekennzeichnet, daß Verbindungen der Formel (II) in welcher A, B, D, X, Y, Z,
n und R8 die oben angegebene Bedeutung haben, in Gegenwart von Basen einer intramolekularen
Kondensation unterwirft.
    Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (A) alle inerten organischen
Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Toluol und Xylol,
ferner Ether, wie Dibutylether, Tetrahydrofuran, Dioxan, Glykoldimethylether und Diglykoldimethylether,
```

Als Basen (Deprotonierungsmittel) können bei der Durchführung des erfindungsgemäßen Verfahrens (A) alle üblichen Protonenakzeptoren eingesetzt werden. Vorzugsweise verwendbar sind Alkalimetall- und

außerdem polare Lösungsmittel, wie Dimethylsulfoxid, Sulfolan, Dimethylformamid und N-Methyl-pyrrolidon. Weiterhin können Alkohole wie Methanol, Ethanol, Propanol, iso-Propanol, Butanol, Isobutanol, tert.-Butanol

eingesetzt werden.

Erdalkalimetalloxide, -hydroxide und -carbonate, wie Natriumhydroxid, Kaliumhydroxid, Magnesiumoxid, Calciumoxid, Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat, Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat, Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat, die auch in Gegenwart von Phasentransferkatalysatoren wie z.B. Triethylbenzylammoniumchlorid, Tetrabutylammoniumbromid, Adogen 464 oder TDA 1 eingesetzt werden können. Weiterhin können Alkalimetalle wie Natrium oder Kalium verwendet werden. Ferner sind Alkalimetall- und Erdalkalimetallamide und -hydride, wie Natriumamid, Natriumhydrid und Calciumhydrid, und außerdem auch Alkalimetall-alkoholate, wie Natrium-methylat, Natriumethylat und Kalium-tert.-butylat einsetzbar.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (A) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 250°C, vorzugsweise zwischen 50°C und 150°C.

Das erfindungsgemäße Verfahren (A) wird im allgemeinen unter Normaldruck durchgeführt.

Bei der Durchführung des erfindungsgemäßen Verfahrens (A) setzt man die Reaktionskomponenten der Formeln (II) und die deprotonierenden Basen im allgemeinen in etwa äquimolaren Mengen ein. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 3 Mol) zu verwenden.

Adogen 464 = Methyltrialkyl(C₈-C₁₀)ammoniumchlorid

TDA 1 = Tris-(methoxyethoxyethyl)-amin

20

Das Verfahren (Bα) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Carbonsäurehalogeniden der Formel (III) umsetzt.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren ($B\alpha$) bei Verwendung der Säurehalogenide alle gegenüber diesen Verbindungen inerten Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Benzin, Benzol, Toluol, Xylol und Tetralin, ferner Halogenkohlenwasserstoffe, wie Methylenchlorid, Chloroform, Tetrachlorkohlenstoff, Chlorbenzol und o-Dichlorbenzol, außerdem Ketone, wie Aceton und Methylisopropylketon, weiterhin Ether, wie Diethylether, Tetrahydrofuran und Dioxan, darüberhinaus Carbonsäureester, wie Ethylacetat, und auch stark polare Solventien, wie Dimethylsulfoxid und Sulfolan, Wenn die Hydrolysestabilität des Säurehalogenids es zuläßt, kann die Umsetzung auch in Gegenwart von Wasser durchgeführt werden.

Verwendet man die entsprechenden Carbonsäurehalogenide so kommen als Säurebindemittel bei der Umsetzung nach dem erfindungsgemäßen Verfahren (Ba) alle üblichen Säureakzeptoren in Betracht, Vorzugsweise verwendbar sind tertiäre Amine, wie Triethylamin, Pyridin, Diazabiyclooctan (DABCO), Diazabicycloundecan (DBU), Diazabicyclononen (DBN), Hüning-Base und N,N-Dimethylanilin, ferner Erdalkalimetalloxide, wie Magnesium- und Calciumoxid, außerdem Alkali- und Erdalkali-metall-carbonate, wie Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat.

Die Reaktionstemperaturen können auch bei dem erfindungsgemäßen Verfahren (Bα) auch bei der Verwendung von Carbonsäurehalogeniden innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -20°C und +150°C, vorzugsweise zwischen 0°C und 100°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens (Bα) werden die Ausgangsstoffe der Formel (Ia) und das Carbonsäurehalogenid der Formel (III) im allgemeinen in angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, das Carbonsäureanhydrid in einem größeren Überschuß (bis zu 5 Mol) einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden.

Das Verfahren (B β) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Carbonsäurehydriden der Formel (IV) umsetzt.

Verwendet man bei dem erfindungsgemäßen Verfahren (Bß) als Reaktionskomponente der Formel (IV) Carbonsäureanhydride, so können als Verdünnungsmittel vorzugsweise diejenigen Verdünnungsmittel verwendet werden, die auch bei der Verwendung von Säurehalogeniden vorzugsweise in Betracht kommen. Im übrigen kann auch ein im Überschuß eingesetztes Carbonsäurehydrid gleichzeitig als Verdünnungsmittel fungieren.

Die Reaktionstemperaturen können bei dem erfindungsgemäßen Verfahren (Bß) auch bei der Verwendung von Carbonsäureanhydriden innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -20°C und +150°C, vorzugsweise zwischen 0°C und 100°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens werden die Ausgangsstoffe der Formel (Ia) und das Carbonsäureanhydrid der Formel (IV) im allgemeinen in angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, das Carbonsäureanhydrid in einem größeren Überschuß (bis zu 5 Mol) einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden.

Im allgemeinen geht man so vor, daß man Verdünnungsmittel und im Überschuß vorhandenes Carbonsäureanhydrid sowie die entstehende Carbonsäure durch Destillation oder durch Waschen mit einem organischen Lösungsmittel oder mit Wasser entfernt.

Das Verfahren (C) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Chlorameisensäureestern oder Chlorameisensäurethiolestern der Formel (V) umsetzt.

Verwendet man die entsprechenden Chlorameisensäureester bzw. Chlorameisensäurethiolester so kommen als Säurebindemittel bei der Umsetzung nach dem erfindungsgemäßen Verfahren (C) alle üblichen Säureakzeptoren in Betracht. Vorzugsweise verwendbar sind tertiäre Amine, wie Triethylamin, Pyridin, DABCO, DBC, DBA, Hünig-Base und N,N-Dimethyl-anilin, ferner Erdalkalimetalloxide, wie Magnesium- und Calcium-oxid, außerdem Alkali-und Erdalkalimetall-carbonate, wie Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (C) bei Verwendung der Chlorameisensäureester bzw. Chlorameisensäurethiolester alle gegenüber diesen Verbindungen inerten Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Benzin, Benzol, Toluol, Xylol und Tetralin, ferner Halogenkohlenwasserstoffe, wie Methylenchlorid, Chloroform, Tetrachlorkohlenwasserstoff, Chlorbenzol und o-Dichlorbenzol, außerdem Ketone, wie Aceton und Methylisopropylketon, weiterhin Ether, wie Diethylether, Tetrahydrofuran und Dioxan, darüberhinaus Carbonsäureester, wie Ethylacetat, und auch stark polare Solventien, wie Dimethylsulfoxid und Sulfolan.

Bei Verwendung der Chlorameisensäureester bzw. Chlorameisensäurethiolester als Carbonsäure-Derivate der Formel (V) können die Reaktionstemperaturen bei der Durchführung des erfindungsgemäßen Verfahrens (C) innerhalb eines größeren Bereiches variiert werden. Arbeitet man in Gegenwart eines Verdünnungsmittels und eines Säurebindemittels, so liegen die Reaktionstemperaturen im allgemeinen zwischen -20°C und +100°C, vorzugsweise zwischen 0°C und 50°C.

Das erfindungsgemäße Verfahren (C) wird im allgemeinen unter Normaldruck durchgeführt.

Bei der Durchführung des erfindungsgemäßen Verfahrens (C) werden die Ausgangsstoffe der Formel (Ia) und der entsprechende Chlorameisensäureester bzw. Chlorameisensäurethiolester der Formel (V) im allgemeinen in angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 2 Mol) einzusetzen. Die Aufarbeitung erfolgt dann nach üblichen Methoden. Im allgemeinen geht man so vor, daß man ausgefallene Salze entfernt und das verbleibende Reaktionsgemisch durch Abziehen des Verdünnungsmittels einengt.

Beim Herstellungsverfahren D_{α} setzt man pro Mol Ausgangsverbindung der Formel (Ia) ca. 1 Mol Chlormonothioameisensäureester bzw. Chlordithioameisensäureester der Formel (VII) bei 0 bis 120 °C, vorzugsweise bei 20 bis 60 °C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten polaren organischen Lösungsmittel in Frage, wie Ether, Amide, Alkohole, Sulfone, Sulfoxide.

Vorzugsweise werden Dimethylsulfoxid, Tetrahydrofuran, Dimethylformamid, Dimethylsulfid eingesetzt. Stellt man in einer bevorzugten Ausführungsform durch Zusatz von starken Deprotonierungsmitteln wie z.B.

Natriumhydrid oder Kaliumtertiärbutylat das Enolatsalz der Verbindung la dar, kann auf den weiteren Zusatz von Säurebindemitteln verzichtet werden.

Werden Säurebindemittel eingesetzt, so kommen übliche anorganische oder organische Basen in Frage, beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin, Triethylamin aufgeführt.

Die Reaktion kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden.

Beim Herstellungsverfahren D_{\beta} setzt man pro Mol Ausgangsverbindung der Formel (II) die äquimolare Menge bzw. einen Überschu\beta Schwefelkohlenstoff zu. Man arbeitet hierbei vorzugsweise bei Temperaturen von 0 bis 50 °C und insbesondere bei 20 bis 30 °C.

Oft ist es zweckmäßig zunächst aus der Verbindung der Formel (II) durch Zusatz eines Deprotonierungsmittels (wie z.B. Kaliumtertiärbutylat oder Natriumhydrid) das entsprechende Salz herzustellen. Man setzt die Verbindung (II) solange mit Schwefelkohlenstoff um bis die Bildung der Zwischenverbindung abgeschlossen ist, z.B. nach mehrstündigem Rühren bei Raumtemperatur.

Die weitere Umsetzung mit dem Alkylhalogenid der Formel (VIII) erfolgt vorzugsweise bei 0 bis 70°C und insbesondere bei 20 bis 50°C. Hierbei wird mindestens die äquimolare Menge Alkylhalogenid eingesetzt.

Man arbeitet bei Normaldruck oder unter erhöhtem Druck, vorzugsweise bei Normaldruck.

Die Aufarbeitung erfolgt wiederum nach üblichen Methoden.

35

Beim Herstellungsverfahren E) setzt man pro Mol Ausgangsverbindung der Formel (la) ca. 1 Mol Sulfonsäurechlorid (VIII) bei 0 bis 150 °C, vorzugsweise bei 20 bis 70 °C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten polaren organischen Lösungsmittel in Frage wie Ether, Amide, Nitrile, Alkohole, Sulfone, Sulfoxide.

Vorzugsweise werden Dimethylsulfoxid, Tetrahydrofuran, Dimethylformamid, Dimethylsulfid eingesetzt.

Stellt man in einer bevorzugten Ausführungsform durch Zusatz von starken Deprotonierungsmitteln (wie z.B. Natriumhydrid oder Kaliumtertiärbutylat) das Enolatsalz der Verbindung la dar, kann auf den weitern Zusatz von Säurebindemitteln verzichtet werden.

Werden Säurebindemittel eingesetzt, so kommen übliche anorganische oder organische Basen in Frage, beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin aufgeführt.

Die Reaktion kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden.

Beim Herstellungsverfahren E kann gegebenenfalls unter Phasen-Transfer-Bedingungen gearbeitet werden (W.J. Spillane et. al.; J. Chem. Soc., Perkin Trans I, (3) 677-9 (1982)). In diesem Fall setzt man pro Mol Ausgangsverbindung der Formel a) 0,3 bis 1,5 mol Sulfonsäurechlorid VIII, bevorzugt 0,5 mol bei 0° bis 150°C, vorzugsweise bei 20 bis 70°C um.

Als Phasen-Transfer-Katalysatoren können alle quartären Ammoniumsalze verwendet werden, vorzugsweise Tetraoctylammoniumbromid und Benzyltriethylammoniumchlorid. Als organische Lösungsmittel können in diesem Fall alle unpolaren inerten Lösungsmittel dienen, bevorzugt werden Benzol und Toluol eingesetzt.

Beim Herstellungsverfahren F) setzt man zum Erhalt von Verbindungen der Struktur (le) auf 1 Mol der Verbindung (la), 1 bis 2, vorzugsweise 1 bis 1,3 Mol der Phosphorverbindung der Formel (IX) bei Temperaturen zwischen - 40°C und 150°C, vorzugsweise zwischen -10 und 110°C Als gegebenenfalls zugesetzte Verdünnungsmittel kommen aller inerten, polaren organischen Lösungsmittel in Frage wie Ether, Amide, Nitrile, Alkohole, Sulfide, Sulfone, Sulfoxide etc.

Vorzugsweise werden Acetonitril, Dimethylsulfoxid, Tetrahydrofuran, Dimethylformamid, Dimethylsulfid eingesetzt.

Als gegebenenfalls zugesetzte Säurebindemittel kommen übliche anorganische oder organische Basen in Frage wie Hydroxide, Carbonate. Beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin aufgeführt.

Die Umsetzung kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden der organischen Chemie. Die Reinigung der anfallenden Endprodukte geschieht vorzugsweise durch Kristallisation, chromatographische Reinigung oder durch sogenanntes "Andestillieren", d.h. Entfernung der flüchtigen Bestandteile im Vakuum.

Beim Herstellungsverfahren G_{α} setzt man pro Mol Ausgangsverbindung der Formel la ca. 1 Mol Isocyanat der Formel (X) bei 0 bis 100 °C, vorzugsweise bei 20 bis 50 °C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten organischen Lösungsmittel in Frage, wie Ether, Amide, Nitrile, Sulfone, Sulfoxide.

Gegebenenfalls können Katalysatoren zur Beschleunigung der Reaktion zugesetzt werden. Als Katalysatoren können sehr vorteilhaft zinnorganische Verbindungen, wie z.B. Dibutylzinndilaurat eingesetzt werden. Es wird vorzugsweise bei Normaldruck gearbeitet.

Beim Herstellungsverfahren G_g setzt man pro Mol Ausgangsverbindung der Formel (Ia) ca. 1 Mol Carbamidsäurechlorid bzw. Thiocarbamidsäurechlorid der Formel (XI) bei 0 bis 150°C, vorzugsweise bei 20 bis 70°C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen aller inerten polaren organischen Lösungsmittel in Frage wie Ether, Amide, Alkohole, Sulfone, Sulfoxide.

Vorzugsweise werden Dimethylsulfoxid, Tetrahydrofuran, Dimethylformamid, Dimethylsulfid eingesetzt.

Stellt man in einer bevorzugten Ausführungsform durch Zusatz von starken Deprotonierungsmitteln (wie z.B. Natriumhydrid oder Kaliumtertiärbutylat) das Enolatsalz der Verbindung la dar, kann auf den weiteren Zusatz von Säurebindemitteln verzichtet werden.

45

50

Werden Säurebindemittel eingesetzt, so kommen übliche anorganische oder organische Basen in Frage, beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin aufgeführt.

Die Reaktion kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugswiese wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden.

Das Verfahren (H) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (la) mit Metallhydroxiden (XII) oder Aminen (XIII) umsetzt.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren vorzugsweise Ether wie Tetrahydrofuran, Dioxan, Diethylether oder aber Alkohole wie Methanol, Ethanol, Isopropanol, aber auch Wasser
eingesetzt werden. Das erfindungsgemäße Verfahren (H) wird im allgemeinen unter Normaldruck durchgeführt. Die Reaktionstemperaturen liegen im allgemeinen zwischen -20°C und 100°C, vorzugsweise zwischen 0°C und 50°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens (H) werden die Ausgangsstoffe der Formel (Ia) bzw. (XII) oder (XIII) im allgemeinen in angenähert äquimolaren Mengen verwendet. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 2 Mol) einzusetzen. Im allgemeinen geht man so vor, daß man das Reaktionsgemisch durch Abziehen des Verdünnungsmittel einengt.

Herstellungsbeispiele

Beispiel la-1

15

10

20

11,8 g (0,105 Mol) Kaliumtertiärbutylat werden bei 40°C in 100 ml tert. Butanol gelöst.

Anschließend läßt man 26 g 2,4,6-Trimethylphenylessigsäureethoxycarbonylmethylester, welcher in 50 ml tert. Butanol gelöst sind, bei 40 °C unter Rühren zutropfen.

Man rührt in 600 ml Eiswasser ein, stellt mit 1N Salzsäure auf pH 2 ein, extrahiert mit Essigsäureethylester, wäscht zweimal mit Wasser, trocknet über Natriumsulfat und engt am Rotationsverdampfer ein.

Ausbeute: 6,82 g (30,3 % der Theorie) der Verbindung 3-(2,4,6-Trimethylphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2.

Schmelzpunkt (nach dem Umkristallisieren aus Methylenchlorid/n-Hexan) 154 °C.

30 Beispiel la-2

35

40

2,16 g (90 mmol) Natriumhydrid (80 %ig) wurden in 50 ml absolutem Toluol vorgelegt. Man arbeitet unter Argon-Atmosphäre. Es wird auf Rückflußtemperatur erhitzt. Dann läßt man unter Rückfluß 17,5 g (60 mmol) in 70 ml absolutem Toluol gelöste Verbindung der Formel

50

55

zutropfen und erhitzt 3 Stunden lang unter Rückfluß.

Zum Zwecke der Aufarbeitung wird die Lösung einrotiert, der Rückstand in Wasser aufgenommen und die Lösung angesäuert. Der dabei ausfallende Niederschlag wird in Methylenchlorid aufgenommen und die wäßrige Mutterlauge noch mehrfach extrahiert. Anschließend wird über Natriumsulfat getrocknet und am Rotationsverdampfer eingeengt.

Zur Reinigung suspendiert man heiß in 20 ml Chloroform, gibt unter Rückfluß 60 ml n-Hexan langsam zu, läßt langsam abkühlen, saugt ab und trocknet.

Ausbeute 4,66 g (= 32 % d. Th) der Verbindung 3-(2,4,6-Trimethylphenyl)-4-hydroxy-5,5-dimethyl- Δ^3 -dihydrofuranon-(2) vom Schmelzpunkt 254 °C.

In Analogie zu den Herstellungsmethoden der Beispiele la-1 und la-2 wurden die folgenden Herstellungsbeispiele synthetisiert:

15		Physikal. Konstanten	Fp: 179°C	Fp: 154°C	Fp: 156°C	Fp: 110°C	Fp: 124°C	Fp: 218°C	Fp: 264°C	Fp: 210°C	Fp: 163°C	Fp: 201°C	Fp: 279°C
20		2 _n	x	×	æ	x	×	H	6 - F	r	×	x	6-CH ₃
		>-	ü	x	æ	×	æ	×	×	H=CH-	×	×	CH3
30		×	ដ	CI	CF3	₆ ноо	СНЗ	Вг	Ĺ	-сн=сн-сн=сн-	снз	ír,	CH ₃
35	(Ia)	۵	0	0	0	0	0	0	0	0	0	0	0
40	}	æ	x	H	ĸ	×	I	Ξ	×	r	Ħ	E	
4 5	×	o Z ⁿ											-(CH ₂) ₅ -
50	4 − − 0	e	CH3	CH ₃	CH ₃	CH ₃	CH3	I	I	×	I	Œ	·
55	Tabelle 8:	Bsp." Nr.	Ia-3	Ia-4	Ia-5	1a-6	Ia-7	Ia-8	Ia-9	Ia-10	Ia-11	Ia-12	Ia-13

EP 0 528 156 A1

5	Physikal. Konstanten	Fp: 212-214°C	Fp: 244-245°C	Fp: 208-210°C	Fp: 237°C	Fp: 211°C	Fp: >270°C	Fp: 225°C	Fp: 97°C	Fp: 191°C
15	Z _n	е-сн ³	€ +СН ³	6-CH ₃	6-01	6-C1	6 -C1	6-C1	r	×
20	>-	снз	снз	CH3	I	×	H	×	CI	ິເວ
	×	CH3	СНЗ	CH3	CI	ü	ប៊	C1	ប	C
25	΄ α	0	0	0	0	0	0	0	0	0
30	œ	¤	снз	x	×	æ	снз	CH ₃	x	снз
35	tzung)								\bigcap	
40	8: (Fortsetzung)			CH ₃	CH3		CH3	\		CH ₃
45	Tabelle Bsp	Ia-14	Ia-15	Ia-16	Ia-17	Ia-18	Ia-19	Ia-20	Ia-21	Ia-22

EP 0 528 156 A1

5		Physikal. Konstanten	Fp: 130° C	Fp: >265°C	Fp: >230°C	Fp: 26% C	Fp: 201°C	Fp: 138°C	Fp: 249°C	Fp: 270-275°C	Fp: 258-260°C	Fp: 98-99°C	Fp: 234-238°C
10		z_n	x	6-C1	×	6-C1	6-C1	6-61	6-61	6-сн ₃	€-сн3	6-CH ₃	6-сн ₃
20		Υ 2	CI	æ	CD	н	н	H	н	снз	сн3	CH ₃	снз
25		×	CJ	ច	CI	ír.	íz.	ĺz,	ſĸ,	снз	СНЭ	CH3	CH ₃
30		Q	0	0	0	0	0	0	0	•	0	0	0
		æ	снз				x	x	снз		-2-	x	
40	Tabelle 8: (Fortsetzung)	A		- (CH ₂) 5-	- (CH ₂) ₅ -	-(CH ₂) ₅ -	снз	\Diamond	снз	\bigcirc	-CH2-CH2-	-(CH ₂) ₉ -CH ₃	-(CH ₂)4-
45	Tabelle 8:	Bsp Nr.	Ia-23	Ia-24	Ia-25	Ia-26	Ia-27	Ia-28	Ia-29	Ia-30	Ia-31	Ia-32	Ia-33

5 ,	Physikal. Konstanten	Fp; 233-235°C	Fp: >250°C	Fp: 210-245°C	216-228° C	Fp: 192-197°C	222° C	Fp: 246-248°C	223-231 ⁰ C
10	Physi Konst	Тр: 2	Fp: >	нр: 2	Fp: 2	Fp: 1	Fp: 2	Fp: 2	F
15	Zn	6-сн3	6-CH3	6 - СН3	6-CH ₃	6-CH ₃	6-СН3	6-CH ₃	6-CH ₃
20	>-	снз	снз	снз	снз	снз	CH3	снз	CH ₃
	×	СНЗ	CH ₃	снэ	СНЗ	СНЭ	СНЗ	СНЗ	СНЗ
25	Ω	0	0	0	0	0	0	0	0
30				•	C2H5	_	,		
35	B B	-сн ₂ -сн- (сн ₂) ₃ - сн ₃	-(CH ₂) ₆ -	-сн ₂ сн ₂ -сн-(сн ₂) ₂ - t-с ₄ н ₉	U	x	-сн ₂ -сн ₂ -сн-(сн ₂) ₂ - сн ₃	-(CH ₂) ₇ -	-сн- (сн ₂) 4- сн ₃
40	(Fortsetzu A	-CH2-CH-(- (CH	-CH ₂ CH ₂	C2H5	x	-CH2-CH	†) -	-CH-(
45	Tabelle 8: (Fortsetzung) Bsp Nr. A	Ia-34	Ia-35	Ia-36	Ia-37	Ia-38	Ia-39	Ia-40	Ia-41

EP 0 528 156 A1

5		Physikal. Konstanten	Fp: 257-260°C	Fp: 175-180°C	Fp: 180-185°C	Fp: 258-259°C		Fp: 233-235°C	Fp: 190-194°C	Fp: 197°C	Fp: 255-257°C	Fp: 208°C	Fp: 236-237°C
10		Zn	6-CH ₃	€+2-9	6-CH ₃	6-CH ₃		6-CH ₃	r	6-C1	6 -CH ₃	€ -СН ³	6-CH3
		۶	снз	CH ₃	СНЗ	снз		снз	снз	ĸ	снз	снз	снз
20		×	СНЗ	CH ₃	снз	снз		CH3	снз	įr,	снз	снз	снз
25		Ω	0	0	0	0		0	0	0	0	0	0
30		В	(CH ₂) ₂ -	снз	x	-CH2-C(CH3)2-CH2-CH-CH2-	CH ₃	CH ₃	CH ₃	# ب	CF3	CH3	
35	tzung)		-(CH ₂) ₂ -CH-(CH ₂) ₂ -		H9	2-C(CH ₃) ₂		-CH=CH2				1 ^H 9	$\langle \rangle$
40	: (Fortsetzung)	A	D) -	C2HS	t-C4H9	-CH2		-CH	CH ₃		CH3	i-C4H9	<u>(_</u>)
45	Tabelle 8:	Bsp Nr.	Ia-42	Ia-43	Ia-44	Ia-45		Ia-46	Ia-47	Ia-48	Ia-49	Ia-50	Ia-51

			δ Ω	ე გ	U e.				ប ទ		U %	ည)rs.)
5		Physikal. Konstanten	215-217°C	212-213º C	Fp: 190-191 ⁰ C	266°C	221º C	198º €	Fp: 118-127°C	ر0° د	204-206° C	251-253° C	Fp: 217 (Zers.)
		Physikal. Konstante	Fp: 21	Fp: 21	p: 19	Fp: 26	Fp: 22	Fp: 19	: d	Fр: 170°С	Fp: 20	Fp: 25	p: 21
10		υ×	Íz,	íz,	ír,	íz,	Ĺz,	i .	is.	ir.	Sz.		íz,
		_	€-сн3	6-CH ₃	6-CH3	6-CF3	6-C1		6-сн3	6-CH ₃	6-сн3	3F,6CH ₃	€-сн3
15		2 _n	-9	.	.	-9	-9	I	9	-9	-9	ж.	•
			снз	снз	снз	-	CF3		снз	снз	CH3	снз	СНЗ
20		>				ប៊	ប	C					
		×	CH3	СНЗ	СНЗ	ដ	<u>tr</u> ,	ដ	снз	снз	СНЗ	снз	СНЗ
25													
		Ω	0	0	0	0	0	0	0	0	0	0	0
30											CH2		
		m	CH3	1	x			x	×	снз			
35				-с(сн ₃) ₂ -с(сн ₃) ₂ -									
	ng)			3) ₂₋ 2		-(CH ₂) ₅ -	-(CH ₂) ₅ -			-сн2-сн2	2H2	-(CH ₂)5-	<u>/</u>
	setzu	«	i-C ₃ H ₇	(снз)	i -C ₃ H ₇	υ) -	٦) -	X	<u>}</u>) -	
40	Tabelle 8: (Fortsetzung)			ပို	i -(-					
	8												
45	be116	Bsp Nr.	Ia-52	Ia-53	Ia-54	Ia-55	Ia-56	Ia-57	Ia-58	Ia-59	Ia-60	Ia-61	Ia-62
	Ta	Bsp Nr.	Ħ H	Ia	Ia	H	H	H	₩.	H	T a	Ia	Ia

50

Beispiel lb-1

10

5

1,23 g (5 mmol) 3-(2,4,6-Trimethylphenyl)-4-hydroxy-5,5-dimethyl-∆³-dihydrofuranon-(2) werden in 20 ml absolutem Methylenchlorid vorgelegt. Dazu gibt man 0,61 g (6 mmol) Triethylamin, tropft bei 0-10 °C eine Lösung von 0,72 g (6 mmol) Pivaloylchlorid in 5 ml abs. Methylenchlorid zu und rührt 1 h bei Raumtemperatur nach.

Zur Aufarbeitung wird die Lösung mit wäßriger Citronensäure und wäßriger Natriumhydrogencarbonatlösung gewaschen, über Natriumsulfat getrocknet und einrotiert.

Ausbeute: 1,43 g (87 % d.Th.) der Verbindung 3-(2,4,6-Trimethylphenyl)4-pivaloyloxy-5,5-dimethyl- Δ^3 -dihydrofuranon-(2) von Schmelzpunkt 82 ° C.

Beispiel lb-2

25

20

30

2,46 g (10 mmol) 3-(2,4,6-Trimethylphenyl)-4-hydroxy-5,5-dimethyl-∆³-dihydrofuranon-(2) werden in 40 ml absolutem Methylenchlorid vorgelegt. Man setzt 1,11 g (11 mmol) Triethylamin zu, tropft bei 0-10°C eine Lösung von 0,86 g (11 mmol) Acetylchlorid in 10 ml abs. Methylenchlorid zu und läßt noch 1 h bei Raumtemperatur rühren.

Die Aufarbeitung erfolgt analog zu Beispiel 3.

Ausbeute: 2,55 g (88 % d. Th.) der Verbindung 3-(2,4,6-Trimethylphenyl)-4-acetyloxy-5,5-dimethyl-Δ³-dihydrofuranon-(2) vom Schmelzpunkt 160°C.

In Analogie zu den Hertellungsmethoden der Beispiele Ib-1 bis Ib-2 wurden die folgenden Herstellungsbeispiele synthetisiert:

45

50

EP 0 528 156 A1

5		Physikal. Konstante	Fp: 118-120°C	Fp: 64°C	Fp: 67°C	Fp: 73°C	Fp: 200° C	Fp: 117-119°C	Fp: 123-125°C	Fp: 110-112°C
10		R1	снз	-C(CH ₃) ₂ -C ₂ H ₅	-с(сн ₃) ₂ -сн(сн ₃) ₂	-сн ² -с(сн ³) ³	снз	-c(cH ₃) ₃	-с(сн ³)3	снз
20		z _n	6-CH ₃	6-CH ₃	6-CH ₃	6-сн3	6-CH ₃	6-CH ₃	6-сн3	6-CH ₃
25	(Ib)	>-	CH3	снз	CH3	CH3	снз	снз	СНЗ	снз
30		×	СНЗ	CH ₃	снз	СНЗ	СНЗ	снз	СНЗ	СНЗ
35	, t	Ω	0	0	0	0	0	0	0	0
40	0=C-R1	Δ	CH₃	CH3	CH3	CH3	-(CH ₂) ₅ -	-(CH ₂) ₅ -	СН3	x
	P	4		CH3	CH ₃	CH3	5	÷		снз
45	Tabelle 9:	Bsp Nr.	Ib-3	Ib-4	Ib-5	1b-6	1b-7	Ib-8	6-qI	Ib-10

EP 0 528 156 A1

45	40	35		30	25	20	15	5
Tabello	Tabelle 9: (Fortsetzung)	setzung)					•	
Bsp Nr.	«	æ	۵	×	٠	Zn	R1	Physikal. Konstante
Ib-11	снз	æ	0	снз	CH ₃	6-CH ₃	-с(сн ₃) ₃	Ö1
Ib-12	снз	CH ₃	0	CH ₃	снз	6-CH ₃	\bigcirc	Fp: 150-152°C
Ib-13	cH ₃	снз	0	CH ₃	снз	€-сн3	снз	Fp: 109-111°C
Ib-14	\bigcirc	æ	0	снз	снз	6-CH ₃	t-C4H9	őı
Ib-15	снз	cH ₃	0	сНз	снз	6-сн3	-CH=C(CH3)2	Fp: 88° C
Ib-16	снз	снз	0	снз	снз	6-CH ₃	-CH ₂	őı
Ib-17		\bigcirc	0	снз	CH3	6-CH ₃	снз	Fp: 170-172°C
Ib-18		\bigcirc	0	снз	снз	6-CH ₃	t-C4H9	Fp: 128-130°C
Ib-19	-(CH ₂) ₅ -	2)5-	0	снз	СНЗ	6-CH ₃	C2H ₅	Fp: 115-116

EP 0 528 156 A1

5		Physikal. Konstante	Fp: 87-88°C	Fp: 138°C	Fp: 114-115°C	Fp: 92-98°C	Fp: 140-142°C	Fp: 121-122°C	Fp: 110-112°C
10		R1	C3-H7	-с(сн ₃) ₂ -сн ₂ с1	-(CH ₃) ₂ -CH ₂ -OCH ₃	CH2-0CH3	_сн ₂ -осн ₃ сн ₂ -осн ₃ сн ₂ -осн ₃	_сн ₂ -осн ₃ сн ₂ -осн ₃ с ₂ н ₅	
20		Zn	о €но-9	6-CH3 -	6 -CH3 -	6-СН3	- Сн3 - 9	- СН3 -	6-CH ₃ -
25		>-	снз	снз	снз	снз	снз	снз	CH3
30		×	снз	CH ₃	снз	снз	снз	снз	снз
35	ng)	Q	0	0	0	0	0	0	0
40	9: (Fortsetzung)	A B	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂)5-	-(CH ₂) ₅ -	-(CH ₂) ₅ -
45	Tabelle 9:	Bsp Nr.	Ib-20	Ib-21	1b-22	Ib-23	Ib-24	Ib-25	Ib-26

EP 0 528 156 A1

4 5		35 40		30	25	20	15	10	5
Tabelle		(Fortsetzung)							
Bsp Nr.	4	, co	۵	×	>-	Zn	R1		Physikal. Konstante
Ib-27	ř	-(CH ₂) ₅ -	0	снз	CH ₃	6-CH ₃	-сн ₂ -с(сн ₃) ₃	Ŗ	Fp: 148-151°C
Ib-28	Ĭ	-(CH ₂) ₅ -	0	снз	СНЗ	6-CH ₃	-CH=C(CH ³) ²	К р:	: 105-106°C
Ib-29	ì	-(CH ₂) ₅ -	0	CH ₃	снз	€н2-9	1	<u>д</u>	Fp: 102-103°C
1b-30	-	-(CH ₂) ₅ -	0	CH3	СНЭ	6-сн3	x	Ŗ G	Fp: 147-148°C
Ib-31)	-(CH ²) ² -	0	снз	снз	6-CH ₃	\Diamond	я С	: 146°C
Ib-32	CH3	×	0	ប	I	6-01	t-C4H9	ብ ር	: 60° C
Ib-33	снз	CH ₃	0	ប៊	x	6-C1	t-C4H9	Г р:	: 121°C
Ib-34	Ħ		0	ដ	ប៊	×	t-C4H9	Бр	: 104° C
Ib-35	снз	снз	0	C1	ü	Ŧ	-cH ₃	ц	ລ ₉ 96 :
1b-36	СНЗ	×	0	Cl	CJ	Ξ	t-C4H9	Öı	

EP 0 528 156 A1

5		Physikal. Konstante	Fp: 141°C	Fp: 91° C	Fp: 197°C	Fp:101-108°C	Fp: 193°C	Fp: 117°C	Fp: 91° C	Fp: 97°C	Fp: 100°C	Fp: 77º C	Fp: 87° C
10													
15		R1	t-C4H9	t-C4H9	t-C4H9	t-C4H9	t-C4H9	t-C4H9	t-C4H9	t-C4H9	-CH ₃	C2H5	t-C4H9
20		Zu	6-C1	. 6-01	æ	x	6-01	₽ - 9	و. ۳	6 - F	6-C1	6-01	ታ የ
25		*	ж	×	ប	CI	x	x	x	I	I	π	I
30		×	0	0	0 01	0 C1	0 01	0 01	0	0 01	0 01	0 C1	0 01
35	(Horreson)	, a		æ		2)5-	2)2-	2)2-	×	×	n	н	СНЗ
40	•		сн _э		СНЗ	-(CH ²)2-	-(CH ²) ² -	-(CH ²) ² -	СНЗ		CH ₃		
4 5	6 	Bso	Ib-37	Ib-38	6E-91	Ib-40	Ib-41	1b-42	Ib-43	Ib-44	1b-45	1b-46	Ib-47
50													

EP 0 528 156 A1

5		Physikal. Konstante	Fp: 102-104°C	ð1	Fp: 132°C	Fp: 141°C	Fp:59-60°C	ð1	Fp: 132-133°C	Fp: 155-157°C
10										
15		ж 1	-CH ₂	L-C4H9			снз	t-C4H9	СН _З	t-C4H9
20		Zn	6-СН3	6-CH ₃	6-сн3	6-сн3	€н⊃-9	€+2-9	6-CH ₃	6-CH ₃
25		>	CH3	СНЗ	CH3	снз	СНЗ	СНЗ	CH ₃	CH ₃
30		×	CH3	CH3	СНЗ	снз	снз	снз	СНЭ	CH3
35	t zung)	B	0	CF3 0	0	0	i-C4H9 0	i-C4H9 0	ССН3	о ж ж
40	Tabelle 9: (Fortsetzung)	A	- (СН ²) ² -	CH ₃ CI	-(CH ₂) ₅ -	-(CH ₂) ₅ -	CH ₃ i	CH ₃ i	H ₃ C H ₃ C	H ₃ C
4 5	Tabelle	Bso.	Ib-48	Ib-49	Ib-50	Ib-51	19-52	Ib-53	Ib-54	Ib-55

EP 0 528 156 A1

5	Physikal. Konstante	Fp: 168° C	Öı	Fp:154-156°C	Fp:134-132°C	Fp:114-1170 C	Fp:115-1170 C	Öı	őı	Fp: 112°C	Öı	Fp:134-136°C
10												√cH ₃
15	ra la	CH ₃	t-C4H9	CH ₃	t-C4H9	снз	t-C4H9	CH ₃	t-C4H9	L-C4H9	i-C3H7	(II)
20	2 ^u	6-CH ₃	6-CH3	6-сн3	6-сн3	6-CH3	6-CH ₃	6-CH3	6-CH3	6-CH ₃	e-cH ₃	6-CH ₃
25	>-	CH ₃	снз	CH ₃	снз	СНЗ	СНЗ	CH ₃	CH3	CH3	СНЭ	CH ₃
30	*	снэ	снз	СНЗ	CH ₃	снз	снз	снз	CH ₃	CH ₃	CH ₃	снз
	۵	0	0	0	0	0	0	0	0	0	0	0
35 5 8 8 9 9	α α	i-C ₃ H ₇	i -C ₃ H ₇	\Longrightarrow		-(CH ₂) ₂ -	-(CH ₂) ₂ -	-(CH ₂) ₉ -CH ₃	-(CH ₂)9-CH ₃	æ	-(CH ₂) ₅ -	-(CH ₂) ₅ -
	. 1	EH3	снз			ī	ī	æ	×	H	ī	Ī
45 G	Bsp	Ib-56 CH ₃	Ib-57 CH ₃	1b-58	1b-59	19-41	Ib-61	Ib-62	E9-q1	Ib-64	Ib-65	1b-66
50												

EP 0 528 156 A1

5		Physikal. Konstante	ðι	ðι	Fp:169-1720C	Fp:48-650 C	őı	Fp:189-191 ⁰ C	Fp:160-162°C	Fp:91-93°C
10										
15		R.	снз	t-C4H9	снз	t-C4H9	снз	t-C4H9	снз	1-C4H9
20		u ₂	6-сн3	6-CH ₃	6-CH ₃	6-CH ₃	6-сн3	6-СН ₃	6-CH ₃	6-CH ₃
25		>	CH3	CH ₃	снз	снз	снз	снз	снз	снз
30		×	CH ₃	CH ₃	СНЗ	снз	сн3	CH ₃	СН ₃	CH ₃
35	etzung)	В	н ₂ , ₃ - о	H ₂)3- 0	0	0	^н 2)3- о	H ₂)3- 0	0	0
40	Tabelle 9: (Fortsetzung)	V	-сн ₂ -сн- (сн ₂) ₃ -	-сн ₂ -сн- (сн ₂) ₃ - сн ₃	-(CH ²)4-	-(CH ²)4-	-CH2-CH-(CH2)3- L-C4H9	-CH2-CH-(CH2)3- L-C4H9	-(CH ²) ⁶ -	-(CH ²) ⁶ -
45	[abel]	Bsp	Ib-67	Ib-68	Ib-69	Ib-70	Ib-71	Ib-72	Ib-73	Ib-74
50										

EP 0 528 156 A1

5		Physikal. Konstante	Fр:125°С	Fp:77-79°C	Öl	Fp:100-102°C	Fp:135-136°C	Fp:137-139 ^o C	Öı	Fp:107-108°C	Fp:127-128°C
10				6		6		.6	C4H9-t		6
15		R1	CH ₃	t-C4H9	снэ	t-C4H9	снз	t-c4H9	لم	CH3	t-C4H9
20		2 ⁿ	€н2-9	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃
25		-	снэ	CH3	снэ	СНЭ	снз	CH ₃	CH3	CH3	снэ
30		×	снз	CH3	CH3	снз	снз	CH ₃	СНЗ	СНЗ	СНЗ
		a	0	0	0	0	0	0	0	0	0
35	Tabelle 9: (Fortsetzung)	В	C2H5	C2H5	×	×	-(CH ₂) ₂ -CH-(CH ₂) ₂ - CH ₃	-(CH ₂) ₂ -CH-(CH ₂) ₂ - CH ₃) ₅ -	-2(-2(
40	e 9: (Fo	¥	C2H5	C ₂ H ₅	<u>π</u>	T T	-(CH ₂) ₂	-(CH ²) ²	-(CH ²) ² -	-(CH ²) ² -	-(CH ²) ² -
45	Tabell	Bao. Nr.	Ib-75	1b-76	Ib-77	1b-78	Ib-79	Ib-80	Ib-81	Ib-82	Ib-83

EP 0 528 156 A1

5	Physikal. Konstante	Гр: 52°С	Fp:125-130 ³ C	Fp:139-142°C	Öl	Fp:140-144°C	öı
10							
15	R1	снз	t-C4H9	снз	t-C4H9	снз	t-C4H9
20	ζη	6 - CH ₃	6 - CH ₃	6-CH ₃	6-сн3	€н2-9	€-сн3
25	>	СНЗ	СНЗ	СНЗ	CH ₃	снз	CH ₃
	×	CH ₃	CH ₃	СНЗ	СНЗ	CH3	снз
30	Ω	0	o	0	0	0	0
35	(Fortsetzung)	-(CH ₂) ₂ -CH-(CH ₂) ₂ -	-(CH ₂) ₂ -CH-(CH ₂) ₂ -	-(СН ₂)4-СН- СН ₃	- (сн ₂)4-сн- Сн ₃	СНЗ	снз
40		-(CH ₂) ₂	-(CH ₂) ₂	- (CH	- (CE	Ib-88 C ₂ H ₅	C2H5
45	Tabelle 9: Bsp	Ib-84	1b-85	1b-86	Ib-87	Ib-88	Ib-89

EP 0 528 156 A1

5		Physikal. Konstante	Fp: 81-82°C	Fp: 78-79°C	Öı	Öı	Fp: 116°C	ð1	Fp:166-168°C	Fp:185° C	Fp:144-146°C	Fp:99-100°C	Öl	Fp:112-1130 C
10														
15		R1	снэ	t-C4H9	снз	t-C4H9	снз	t-C4H9	снз	t-C4H9		CH3	t-C4H9	t-C4H9
20		Zn	€н⊃-9	€-сн³	6-CH ₃	6-CH ₃	6-сн ₃	6-CH3	6-C1	6-01	6-01	6-CH ₃	6-CH3	€ - сн ³
25		>	снз	CH3	c H 3	снз	снз	снз	CF3	CF3	CF ₃	снз	снз	CH ₃
		×	СНЗ	снз	снз	CH ₃	снз	CH3	C1	c ₁	CI	CH ₃	CH3	снз
30		Q	0	0	0 -	0 E ₋₁	٠ د	0	0	0	0	0	0	снз
35	(Fortsetzung)	a	Ħ	×	-CH2-C(CH3)2-CH2-CH-	-сн ₂ -с(сн ₃) ₂ -сн ₂ -сн-	CH ₃	СН _З	E	2.	اد	i-C ₃ H ₇	i-C3H7	снз
40	••	A	t-C4H9	t-C4H9	-сн ² -с(С)	-CH ₂ -C(C	H2C=CH-	H2C=CH-	-(CH ₂)2-	-(CH ²)2-	-(CH ₂) ₅ -	×	x	снз
45	Tabelle 9	Bsp Nr.	Ib-90	Ib-91	1b-92	Ib-93	1b-94	Ib-95	1b-96	1b-97	1b-98	1b-99	Ib-100	1b-101 CH ₃
50														

EP 0 528 156 A1

5	Physikal. Konstante	Fp: 89°C	Fp: 162°C	3 ^H 17 Ö1	Fp: 182°C	Fp: 107-110°C	Fp: 105-106°C	ð1
10	R.	C4H9t		-C ₇ H ₁₄ -CH=CH-C ₈ H ₁₇	Adamantyl	H ₃ C CH ₃	C4H9sec	-CH ₂ -CH-C4H9n C2H5
20	2 _n	π	x	æ	x	I	I	æ
	,	CI	Cl	CI	CJ	C	Cl	ប
25	×	CJ	ដ	CJ	CJ	CJ	CI	CJ
30	۵	0	0	0	0	0	0	0
35	Tabelle 9: (Fortsetzung) Bsp A B	-(CH ²) ⁵ -	-(CH ₂) ₅ -	-(CH ₂)5-	-(CH ₂)5-	-(CH ₂) ₅ -	-(CH ²) ² -	-(CH ₂) ₅ -
40	e 9: (Fo	01	m	**	10	sa.	_	œ
45	Tabell Bsp	Ib-102	Ib-103	Ib-104	Ib-105	Ib-106	Ib-107	Ib-108

EP 0 528 156 A1

5		Physikal. Konstante	Fp: 57-59°C	Fp: 104°C	Öı	Fp: 88°C	Fp: 99°C	Fp: 94°C Fp:120-121°C	Fp:188-189°C
10		R1	-cH-C4H9n C2H5	снэ	C4H9t	снэ	снз	CH ₃	снз
15		Zn	9-СН3-9	€н2-9	6-сн3	6-CH ₃	€+2-9	3F,6-CH ₃ 3F,6-CH ₃	есн ₃
20		٠,	€нэ	CH3	2H2	CH ₃	снз	CH ₃	CH ₃
25		×	снз	снз	CH3	CH3	CH3	CH ₃	снз
30	,	Q	O	0	0	сн3 о	сн3 о	0 0	0
35	lsetzung)	В	-(CH ²) ² -	æ	æ	CH2-CH2 C	CH2-CH2 C	-(CH ₂) ₅ -	$\langle \overline{\ } \rangle$
40	Tabelle 9: (Fortsetzung)	A	•				Ŏ	' '	
45	Tabell	Bsc	Ib-109	Ib-110	Ib-111	Ib-112	Ib-113	Ib-114 Ib-115	1b-116

EP 0 528 156 A1

5	Physikal. Konstante	Fp: 131°C	Fp:141-143°C	Fp: 85-87°C	2 Fp: 123-125°C	:1 Fp: 110-112°C	ðı	Fp: 132-135°C
10	R1	C4H9t	C4H9t	-с(сн ₃)2-с ² Н ₅	-с(сн ³) ² сн(сн ³) ²	-с(сн ₃) ₂ -сн ₂ с1	7-0	-с(сн ³) ³
	2 ^u 2	6-CH ₃	6-сн3	I	H H	æ	×	6 - F
20		CH ₃	снз	CJ	CI	CI	CI	CF 3
25	×	СНЗ	сн3	CI	C1	ü	ប៊	CI
30	a	0	СН2- 0	0	ō	0	0	0
35	(Fortsetzung)		CH2-	-(CH ₂) ₅ -	-(CH2)-	-(CH ₂)5-	-(CH ²) ² -	-(CH ₂) ₅ -
40	Tabelle 9: (F Bsp	21		19	20	21	22	83
45	Tabel Bsy.	Ib-117	Ib-118	Ib-119	Ib-120	Ib-121	Ib-122	Ib-123
50								

5		Physikal. Konstante	ð1	Öı	Ö1	Ö1	ð1	Ö1	
10		R ²	C2H5	i-C4H9	8-C4H9	C ₂ H ₅	i-C ₃ H ₇	-CH2-C-C3H2	n-C4H9
		Σ	0	0	0	0	0	0	
15		اد	0	0	0	0	0	0	
20		2 _n	6-сн3		6-CH3	€но-9		6-CH3	
		>	снз	снз	CH3	снз	CH3	снз	
25	(16)	×				снз		снз	
30		۵	0	0	0	0	0	0	
35	Z,n	a	СНЭ	CH ₃	CH ₃	I	I	снз	
40	% × V	٧	CH ₃	снз	СНЗ	снз	CH ₃	снз	
→	Tabelle 10: L=C-M- β D O O	Bsp	Ic-1	10-2	E-01	Ic-4	10-5	Ic-6	
45									

EP 0 528 156 A1

5		Physikal. Konstante	Fp:92-94°C	őı	Öı	Fp:123-124°C	Fp:108°C	Fp:146-147°C	őı	Fp:142-143°C	Fp:112-114°C
10		R ²	s -cH ₂ C(CH ₃) ₃	o c ₂ H ₅	i-C ₃ H ₇	o cH ₃	0 t-C4H9	o ch ₃	0 CH2-CH-C4H9 C2H5	i-C ₃ H ₇	
15		Σ	w	0	0	0	0	0	0	0	0
		ا د	0	0	0	0	0	0	0	0	0
20		2 _n	6-CH ₃	6-СН3	6-CH3	6-CH3	6-CH ₃	6-CH3	6-CH ₃	6-CH3	6-CH3
25		~	снз	снз	CH3	CH3	снэ	CH3	снз	снз	снз
30		×	снз	CH ₃	CH3	CH3	CH3	снз	CH ₃	снэ	CH3
	â	٥	0	0	0	0	0	0	0	0	0
35	Tabelle 10: (Fortsetzung)	æ	снз	æ	×	CH3	снз	-(CH2)2-	-(CH ²) ⁵ -	-(CH ²) ² -	-(CH ₂)5-
40	10: (Fo	K	снз	Q		CH3	CH ₃	- (0	: :	Ð) -	- (C
45	Tabell	Bs:o.	Ic-7	Ic-8	Ic-9	Ic-10	Ic-11	Ic-12	Ic-13	Ic-14	Ic-15

EP 0 528 156 A1

5		Physikal. Konstante	Fp:128-132°C	Fp:129-131°C	Fp:126-127°C	Fp:121-122°C		Fp: 91°C	Fp:96-97°C	Fp:102-104°C		
		Koi	P.		F F	E C	Öı	μ Ω.	<u>ل</u> ا.	μ. Ο'	Öı	Öı
10		R ²	0 t-C4H9	s -CH ₂ C(CH ₃) ₃	s i-c ₃ H ₇	о снз	O i-C ₃ H ₇	s CH ₃	0 i-C4H9	0 s-C4H9	о сн ₃	0 i-C ₃ H ₇
15		Σ	0	ស	ហ	0	0	ທ	0	0	0	0
		اد	0	0	0	0	0	ທ	0	0	0	0
20		^u 2	6-CH3	6-CH3	€-сн3	€н⊃-9	€-CH3	6-CH ₃	6-CH3	6-CH ₃	6-CH ₃	€-сн³
25		¥	снз	снз	снз	снз	снз	СНЗ	СНЗ	CH ₃	снз	CH ₃
		×	cH ₃	СНЗ	СНЗ	снэ	СНЭ	CH3	СНЗ	снз	снз	CH ₃
30	_	Ω	0	0	0	0	0	0	0	0	0	0
35	Tabelle 10: (Fortsetzung)	æ	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂)5-	-(CH ₂) ₂ -	-(CH ₂) ₂ -	CH ₃	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-сн ₂ -сн- (сн ₂) ₃ - сн ₃	-cH ₂ -cH-(CH ₂) ₃ - CH ₃
40	10: 0	«	[D) -	<u>.</u>	- (C	י (מ	- (ق	CH ₃	- (د	- (۵	-CH2-C	-CH2-C
	Tabelle	Bsu Nr.	Ic-16	Ic-17	Ic-18	Ic-19	Ic-20	Ic-21	Ic-22	Ic-23	Ic-24	Ic-25
45												

EP 0 528 156 A1

5	Physikal. Konstante	Fp:117-1190C	Fp:120-1220 C	ð1		Ö1		Fp:99-104°C	Fp:43-470 C	Fp:101-102°C	Öı	Öı
10	ж 2	O CH ₃	0 i-C3H7	о снз		o i-C ₃ H ₇		о снз	O i-C3H7	сн3	o i-C ₃ H ₇	о сн3
	٦	0	0	0		0		0	0	0	0	0
20	2 2	€но-9	€но-9	6-сн3		6-CH ₃		6-CH3	6-CH3	€-СН3	€HD-9	6-CH3
25	>	CH3	снз	снэ		снз		СНЭ	CH3	СНЭ	снз	снэ
30	×	CH3	CH3	CH3		СНЗ		CH ₃	CH ₃	СНЭ	CH ₃	CH ₃
35	<u>Tabelle 10</u> : (Fortsetzung) Bsy A B D	0 -6	0 -4-	-(CH ₂) ₂ -C-(CH ₂) ₂ - 0	ċ₄H9	-(CH ₂) ₂ -C-(CH ₂) ₂ - 0	t-C4H9	0 _9(0 -9(C2H5 0	C ₂ H ₅ 0	о ж
40	e 10: (Fo	-(CH ²)4-	-(CH ₂)4-	-(CH ²) ² -	٦	-(CH ₂)-	נ	- (CH ²) -	-(CH ₂)6-	C ₂ H ₅	C2H5	(I
45	Tabell. Bsp Nr.	1c-26	10-27	Ic-28		Ic-29		Ic-30	Ic-31	Ic-32	Ic-33	Ic-34

EP 0 528 156 A1

5	Physikal. Konstante	Ö1	Fp:100-102°C	Fp:104°C	₽p: 85-88° C	Fp: 97°C	ðι
15	R ²	o i-c ₃ H ₇	0 СН3	o i-c ₃ H ₇	о сн3	O i-C ₃ H ₇	о сн ₃
	ت ع	0	0	0	0	0	0
20	n 2	6-CH ₃	6-CH ₃	6-снз	6-CH ₃	6-CH ₃	6-CH ₃
25	> -	CH3	CH ₃	СНЗ	CH3	CH3	снз
30	×	СНЗ	CH3	СНЗ	снз	CH ₃	СНЗ
35	Tabelle 10: (Fortsetzung) Bsv A B D	О	-(CH ₂) ₂ -C-(CH ₂) ₂ -0 cH ₃	-(CH ₂) ₂ -C-(CH ₂) ₂ - 0 CH ₃	-(CH ₂) ₇ - 0	-(CH ₂) ₇ - 0	-(CH ₂) ₂ -C-(CH ₂) ₂ - 0
40	9 10: (Fo	# T	-(CH ²) ⁵ .	-(CH ²)-	י (ט	- (כו	- (CH ₂) ₂
45	Tabello Bsy	Ic-35	10-36	Ic-37	Ic-38	Ic-39	Ic-40

EP 0 528 156 A1

5	Physikal. Konstante	őı	Fp:110-120°C	Öı	Ö1	Fp:141-145°C	Fp:94-95°C
10		3H ₂	_	i -C ₃ H ₇	m	3 ^H 7	
15	π 22	1 _	O CH3	0 1-0	0 СН3	0 i-C3H7	0 CH ₃
	ن.	0	0	0	0	0	0
20	2	6-CH ₃	6-CH ₃	€-сн3	6-сн3	6-CH ₃	€н2-9
25	> -	CH ₃	снз	CH3	снз	CH3	СНЭ
	×	CH ₃	CH3	снз	снз	снэ	снз
30			0	0		0	0
	(gui	1	O	O	12-0		Ü
35	tsetzu-		СНЗ	CH3	2-СH-С СН3	2-CH-CF CH ₃	I
40	Tabelle 10: (Fortsetzung) Bsp Nr	-(CH ₂) ₂ -C-(CH ₂) ₂ -	C2HS	c ₂ H ₅	Ic-44 -CH ₂ -C-CH ₂ -CH-CH ₂ -CH ₂ -CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	Ic-45 -CH ₂ -CH ₂ -CH-CH ₂ -CH	t-C4H9
45	Tabell Bsp	Ic-41	Ic-42	Ic-43	Ic-44	Ic-45	Ic-46

EP 0 528 156 A1

5	Physikal. Konstante	Fp:53-56°C	Fp:63-65°C	Fp:88-89°C	Fp:136°C	Öı	Ö1	Öı	Fp:125-126°C	Fp:105-107°C
10										
15	H R ²	O CH ₃	0 i-C3H7	O i-C3H7	O C2H5	\bigcirc	o cH ₃	O i-C3H7	o ch ₃	0 i-C ₃ H ₇
	ا ب	0	0	0	0	0	0	0	0	0
20	2 u	6-CH3	€-сн³	6-CH3	€-СН3	€-сн3	6-CH3	9HD-9	€Hጋ-9	6-CH ₃
25	>-	CH ₃	снз	снз	снз	снэ	СНЗ	СНЗ	снз	снз
30	×	CH ₃	CH3	снз	CH3	снз	снз	снз	снз	СНЗ
	<u> </u>	0	0	0	0	0	0	0	0	0
35	tsetzung B	снз	CH3	æ	Q	снз	СНЗ	снз	CH ³	CH ₃
40	Tabelle 10: (Fortsetzung) Bsp Nr. A B	-CH=CH2	-CH=CH2	t-C4H9		CH3	i-C4H9	i -C4H9	H ₃ C, H	H ₃ C H ₃ C
45	Tabello Bsp	1c-47	Ic-48	Ic-49	Ic-50	Ic-51	1c-52	Ic-53	Ic-54	Ic-55

EP 0 528 156 A1

ט ט ט

	40	35		30	25	20		15	10	5
116	<u>Tabelle 10</u> : (Fortsetzung)	tsetzun.	(6 1							
Bap Nr.	4	æ	Q	×	>-	2 _n	اد	m R ²		Physikal. Konstante
Ic-56	i-C ₃ H ₇	CH3	0	CH ₃	снэ	€-сн3	0	o cH ₃		Fp:118°C
Ic-57	i-C ₃ H ₇	снз	0	снз	снз	€н2-9	0	0 i-C3H7		Fp:130°C
85-2I		〈	0	CH ₃	CH3	6-CH ₃	0	о снз		Fp:130-131 ⁰ (
Ic-59		< >	0	CH3	CH3	6-CH ₃	O	o i-c ₃ H ₇		Fp:135-136°(
1c-60	-(CH ₂)2-	2)2-	0	CI	с∓3 ธ	6 -C1	0	о снз		Fp:151°C
Ic-61	-(CH ₂)2-	2)2-	0	ប	CF3	6-C1	0	0 i-C3H7		Fp:162-1630
Ic-62	i-C3H7	æ	0	снз	снз	6-CH ₃	0	o cH ₃		Fp:103-104 ⁰ (
Ic-63	i-C3H7	×	0	CH3	снз	€н⊃-9	0	0 i-C3H7		Fp:65-67 ⁰ C
Ic-64	1 5	-(CH ₂) ₂ - CH ₃	و 13	снз	снэ	6-CH ₃	0	0 CH ₃		Öı
1c-65		-(CH ₂) ₂ - CH ₃ O	0 6	CH3	CH3	6-CH ₃	0	0 i-C3H7		Öl

140

50

5		Physikal. Konstante	Fp:158-160°C	Fp:130-133°C	Öı	Fp:133-134°C	Fp:152°C	Fp:100-104°C
10		R ₃	CH ₃	CH ₃	-N(CH ₃) ₂	снз	CH ₃	-N(CH ₃) ₂
20		u _Z	€-сн3	€но-9	6-CH3	6-CH3	6-сн3	6-СН3
25		>	снз	CH3	снз	снз	снэ	СНЗ
30	(Id)	×	CH3	CH ₃	СНЗ	CH ₃	СН3	снэ
		ם	сн3 о	сн3 о	сн3 о	2-0	5 0	2 0
35	, "	A B	CH ₃ C	CH ₃	CH ₃ C	-(CH ²) ² -	-(CH ₂) ₅ -	-(CH ²) ² -
40	SO2-R3 B O X D O O C C C C C C C C C C C	BspNr.	Id-1	2-PI	[d-3	Id-4	Id-5	1d-6
45								

5				Physikal. Konstante	Fp:60°C	Fp:64° C	n§º:1.5425	Fp:63°C	Fp:104° C	Fp:60°C	Fp:108°C	Fp:150°C
10				RS	-SC2H5	-0C4H9-n	-SC4H9-n	-SC4H9-i	-0C2H5	-0C2H5	-NHC4H9-s	
15				R4	-0C2H5	-CH3	-C2H5	-CH3	-C2H5	-oc ₂ H ₅	-0C2H5	-C2H5
20				اد	ဟ	v	ហ	ဟ	ဟ	ဟ	ທ	ဟ
				2 ⁿ	6-CH3	6-сн3	6-CH3	6-CH3	е-сн ³	6-CH3	€ -сн3	6-сн3
25				>	снз	снз	СНЗ	снз	снз	CH3	снз	снз
30			(I e)	×	CH3	снз	снэ	снз	снэ	CH3	CH ₃	снз
				۵	0	0	0	0	0	Ö	0	0
35			Ţ	æ	снз	снз	CH3	CH3	CH3	CH3	СНЭ	снз
40	12: 5	, k		4	CH3	CH3	CH3	CH3	CH3	CH3	СНЗ	CH3
45	Tabelle 12			Bsp Nr.	 . 1	Ie-2	Ie-3	Ie-4	Ie-5	9-01	Z-91	. e - 8

EP 0 528 156 A1

35
2: (Fortsetzung)
×
0 CH ₃
0 CH ₃
0 CH ₃
O CH3
O CH ₃
сн ₃ 0 сн ₃
0 сн ³
0 CH ₃
0 сн3

EP 0 528 156 A1

5	Physikal. Konstante	n§º:1.5510	Fp: 90° C	ngº:1.5175	Fp: 151°C	nĝº:1.5610	ngº:1.4965	n§°:1.5300	Fp: 103° C	Fp: 82°C	
10	ጽ	-8C ₃ H ₇ -i	-SC2H5	-SC4H9-8	-SC4H9-t	-C4H9-8	-0C4H9-i	-0CH2C(CH3)3	-0C4H9-n	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	-0C3H7-i
15	유 무	-c2H5	-cH3	-CH ₃	-C2H2	-C2H5	-CH3	-CH3	-CH3	-CH ₃	-0C2H5
20	ឯ	ဟ	ဟ	w	ហ	ဟ	ဟ	ဟ	ဟ	Ŋ	ဟ
	Z	€н⊃-9	€+2-9	€н2-9	€н2-9	€-сн3	6-CH3	6-CH3	€н⊃-9	6-CH ₃	6-сн3
25	~	снэ	снз	снз	снз	снэ	снз	СНЭ	CH3	снз	CH3
30	×	CH3	снз	снз	СНЗ	СНЗ	снз	снз	CH ₃	снз	снз
as.	Q (Gunz	0	0	0	0	0	0	0	0	o ,	0
35 40	Tabelle 12: (Fortsetzung) BspNr. A B D	-(CH ₂)5-	-(CH2)2-	-(CH ₂) ₅ -	-(CH ²) ² -	-(CH ²) ² -					
	Tabelle 12 BspNr.	Ie-21 -	. 1e-22	Ie-23	Ie-24 -	Ie-25	Ie-26	18-27	Ie-28	. 62-ө]	Ie-30
45											

EP 0 528 156 A1

		1											
5		Physikal. Konstante	ո§° ։1,5357	Fp: 98° C		Fp: 87° C							
10		R ⁵	-0C4H9-8	-SC4H9-8	CH3	-C2H2 -S(CH2)2-CH	СНЗ	-SC ₅ H ₁₁ -n	-SC3H7	-0C2H5	-0C3H7-i	-OC2H5	-0C2H5
15		R4	-0C ₂ H ₅	-CH3		-C2H5 -S		-cH ₃	-cH ₃	-cH ₃	-cH ₃	-0C2H5	-C2H5
20		ונ	ဟ	ທ		ဟ		ທ	ທ	ហ	ស	ທ	0
95		2 _n	6-сн3	6-CH ₃		€н2-9		6-CH3	6-CH ₃	6-CH ₃	6-CH3	6-CH3	6-CH3
25		>	снз	CH ₃		снз		снэ	СНЗ	снз	снз	CH ₃	снз
30		×	снз	снз		снз		СНЗ	СНЭ	CH3	СНЭ	СНЗ	CH ₃
35	etzung)	Ω	0	0		0		0	0	0	0	0	0
40	12: (Fortsetzung)	A B	-(CH ²) ² -	-(CH ₂) ₅ -		-(CH ₂) ₅ -		-(CH ₂)5-	-(CH ₂)5-	-(CH ₂) ₅ -	-(CH ₂)5-	-(CH ²)2-	-(CH ₂)4-
45	Tabelle	BspNr.	Ie-31	Ie-32		1e-33		Ie-34	Ie-35	Ie-36	Ie-37	10-38	16-39
50													

5		Physikal. Konstante	. Fp: >260°C
10		6	e e
15		2 ^u	6-CH3
20		~	СН3
		×	CH ₃
25	(Ig)	۵	0
30		æ	2)2-
35	z z z	×	-(CH ²) ² -
40	Tabelle 13:	BspNr.	γ•4 1 10)

45 Herstellung von Ausgangsverbindungen:

Beispiel 1A

55

10

5

13,2 g (0,1 Mol) 2-Hydroxyisobuttersäureethylester werden in 200 ml abs. Methylenchlorid vorgelegt,
15 12,14 g (0,12 Mol) Triethylamin zugegeben und bei 0-10°C eine Lösung von 19,7 g (0,1 Mol) 2,4,6Trimethylphenylessigsäurechlorid in 50 ml abs. Methylenchlorid zugetropft.

Nach 16 h Rühren bei Raumtemperatur wird die Lösung mit wäßriger Zitronensäure und wäßriger Natriumhydrogencarbonatlösung gewaschen, die organische Phase über Natriumsulfat getrocknet und einrotiert.

20 Ausbeute: 26,62 g (91 % d. Theorie) der Verbindung oben angegebener Formel. Die Verbindung fällt als Öl an.

Beispiel 2A

25

$$H_3C$$
 CH_3
 CH_2
 CH_2
 CH_2
 CH_3

30

35,6 g (0,2 Mol) 2,4,6-Trimethylphenylessigsäure werden in 200 ml tert.- Butanol gelöst. Dazu werden 24,6 g (0,22 Mol) Kalium-tert.-butylat gegeben. Man läßt 15 Minuten rühren. Anschließend läßt man 34,9 g (0,2 mol) Bromessigsäureeethylester zutropfen.

Nach dem Einrotieren wird mit Wasser/Methylenchlorid aufgenommen, extrahiert, über Natriumsulfat getrocknet und einrotiert.

40 Ausbeute: 38,8 g (74 % d.Theorie) der Verbindung O-(2,4,6-Trimethylphenylacetyl)-hydroxy-essigsäuremethylester vom Schmelzpunkt 154 °C (umkristallisiert aus Methylenchlorid/n-Hexan-Gemisch).

45

50

5			Fp.°C					
			88	C2H5	C2H5	C2H5	C2H5	C2H5
10			Zn	6-CH ₃	6-CH ₃	6-CH ₃	€+0-9	€+2-9
15		(11)	>-	снэ	CH3	CH3	снз	CH ₃
20	tellt:	5	×	СНЗ	снз	снз	снз	CH3
	erges	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	۵	0	ທ	0	0	0
25	d nab.	ال بكر	ń	×	×	снз		Ħ
30	In Analogie wurden hergestellt:	A C02R8	Nr. A	снз	снз	снз	-(CH ₂) ₅ -	
	In An		Bsp.	3 A	4 A	SA	6 A	7.A

Die Wirkstoffe eignen sich bei guter Pflanzenverträglichkeit und günstiger Warmblütertoxizitat zur Bekämpfung von tierischen Schädlingen, insbesondere Insekten und Spinnentieren die in der Landwirtschaft, in Forsten, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen. Sie sind gegen normal sensible und resistente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam. Zu den oben erwähnten Schädlingen gehören:

Aus der Ordnung der Isopoda z.B. Oniscus asellus, Armadillidium vulgare, Porcellio scaber.

Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus.

35

Aus der Ordnung der Chilopoda z.B. Geophilus carpophagus, Scutigera spec.

45 Aus der Ordnung der Symphyla z.B. Scutigerella immaculata.

Aus der Ordnung der Thysanura z.B. Lepisma saccharina.

Aus der Ordnung der Collembola z.B. Onychiurus armatus.

Aus der Ordnung der Orthoptera z.B. Blatta orientalis, Periplaneta americana, Leucophaea maderae, Blattella germanica, Acheta domesticus, Gryllotalpa spp., Locusta migratoria migratorioides, Melanoplus differentialis, Schistocerca gregaria.

Aus der Ordnung der Dermaptera z.B. Forficula auricularia.

Aus der Ordnung der Isoptera z.B. Reticulitermes spp..

Aus der Ordnung der Anoplura z.B. Phylloxera vastatrix, Pemphigus spp., Pediculus humanus corporis, Haematopinus spp., Linognathus spp.

Aus der Ordnung der Mallophaga z.B. Trichodectes spp., Damalinea spp.

Aus der Ordnung der Thysanoptera z.B. Hercinothrips femoralis, Thrips tabaci.

Aus der Ordnung der Heteroptera z.B. Eurygaster spp., Dysdercus intermedius, Piesma quadrata, Cimex lectularius, Rhodnius prolixus, Triatoma spp.

Aus der Ordnung der Homoptera z.B. Aleurodes brassicae, Bemisia tabaci, Trialeurodes vaporariorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Doralis fabae, Doralis pomi, Eriosoma lanigerum, Hyalopterus arundinis, Macrosiphum avenae, Myzus spp., Phorodon humuli, Rhopalosiphum padi, Empoasca spp., Euscelis bilobatus, Nephotettix cincticeps, Lecanium corni, Saissetia oleae, Laodelphax striatellus, Nilaparvata lugens, Aonidiella aurantii, Aspidiotus hederae, Pseudococcus spp. Psylla spp.

Aus der Ordnung der Lepidoptera z.B. Pectinophora gossypiella, Bupalus piniarius, Cheimatobia brumata, Lithocolletis blancardella, Hyponomeuta padella, Plutella maculipennis, Malacosoma neustria, Euproctis chrysorrhoea, Lymantria spp. Bucculatrix thurberiella, Phyllocnistis citrella, Agrotis spp., Euxoa spp., Feltia spp., Earias insulana, Heliothis spp., Laphygma exigua, Mamestra brassicae, Panolis flammea, Prodenia litura, Spodoptera spp., Trichoplusia ni, Carpocapsa pomonella, Pieris spp., Chilo spp., Pyrausta nubilalis, Ephestia kuehniella, Galleria mellonella, Tineola bisselliella, Tinea pellionella, Hofmannophila pseudospretella, Cacoecia podana, Capua reticulana, Choristoneura fumiferana, Clysia ambiguella, Homona magnanima, Tortrix viridana.

Aus der Ordnung der Coleoptera z.B. Anobium punctatum, Rhizopertha dominica, Bruchidius obtectus, Acanthoscelides obtectus, Hylotrupes bajulus, Agelastica alni, Leptinotarsa decemlineata, Phaedon cochleariae, Diabrotica spp., Psylliodes chrysocephala, Epilachna varivestis, Atomaria spp., Oryzaephilus surinamensis, Anthonomus spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopolites sordidus, Ceuthorrhynchus assimilis, Hypera postica, Dermestes spp., Trogoderma spp., Anthrenus spp., Attagenus spp., Lyctus spp., Meligethes aeneus, Ptinus spp., Niptus hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor, Agriotes spp., Conoderus spp., Melolontha melolontha, Amphimallon solstitialis, Costelytra zealandica. Aus der Ordnung der Hymenoptera z.B. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp.

Aus der Ordnung der Diptera z.B. Aedes spp., Anopheles spp., Culex spp., Drosophila melanogaster, Musca spp., Fannia spp., Calliphora erythrocephala, Lucilia spp., Chrysomyia spp., Cuterebra spp., Gastrophilus spp., Hyppobosca spp., Stomoxys spp., Oestrus spp., Hyppoderma spp., Tabanus spp., Tannia spp., Bibio hortulanus, Oscinella frit, Phorbia spp., Pegomyia hyoscyami, Ceratitis capitata, Dacus oleae, Tipula paludosa.

Aus der Ordnung der Siphonaptera z.B. Xenopsylla cheopis, Ceratophyllus spp.. Aus der Ordnung der Arachnida z.B. Scorpio maurus, Latrodectus mactans.

Aus der Ordnung der Acarina z.B. Acarus siro, Argas spp., Ornithodoros spp., Dermanyssus gallinae, Eriophyes ribis, Phyllocoptruta oleivora, Boophilus spp., Rhipicephalus spp., Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp..

Die erfindungsgemäßen Wirkstoffe wirken nicht nur gegen Pflanzen-, Hygiene- und Vorratsschädlinge, sondern auch auf dem veterinärmedizinischen Sektor gegen tierische Parasiten (Ektoparasiten und endoparasiten) wie Schildzecken, Lederzecken, Räubemilben, Laufmilben, Fliegen (stechend und leckend), parasitierende Fliegenlarven, Läuse, Haarlinge, Federlinge, Flöhe und endoparasitisch lebende Würmer.

Die erfindungsgemäßen Wirkstoffe können weiterhin als Defoliants, Desiccants, Krautabtötungsmittel und insbesondere als Unkrautvernichtungsmittel verwendet werden. Unter Unkraut im weitesten Sinne sind alle Pflanzen zu verstehen, die an Orten aufwachsen, wo sie unerwünscht sind. Ob die erfindungsgemäßen Stoffe als totale oder selektive Herbizide wirken, hängt im wesentlichen von der angewendeten Menge ab. Die erfindungsgemäßen Wirkstoffe können z.B. bei den folgenden Pflanzen verwendet werden:

Dikotyle Unkräuter der Gattungen: Sinapis, Lepidium, Galium, Stellaria, Matricaria, Anthemis, Galinsoga, Chenopodium, Urtica, Senecio, Amaranthus, Portulaca, Xanthium, Convolvulus, Ipomoea, Polygonum, Sesbania, Ambrosia, Cirsium, Carduus, Sonchus, Solanum, Rorippa, Rotala, Lindernia, Lamium, Veronica, Abutilon, Emex, Datura, Viola, Galeopsis, Papaver, Centaurea, Trifolium, Ranunculus, Taraxacum.

Dikotyle Kulturen der Gattungen: Gossypium, Glycine, Beta, Daucus, Phaseolus, Pisum, Solanum, Linum, Ipomoea, Vicia, Nicotiana, Lycopersicon, Arachis, Brassica, Lactuca, Cucumis, Cucurbita.

Monokotyle Unkräuter der Gattungen: Echinochloa, Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cynodon, Monochoria, Fimbristylis, Sagittaria, Eleocharis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, Apera.

Monokotyle Kulturen der Gattungen: Oryza, Zea, Triticum, Hordeum, Avena, Secale, Sorghum, Panicum, Saccharum, Ananas, Asparagus, Allium.

Die Verwendung der erfindungsgemäßen Wirkstoffe ist jedoch keineswegs auf diese Gattungen beschränkt, sondern erstreckt sich in gleicher Weise auch auf andere Pflanzen.

Die Verbindungen eignen sich in Abhängigkeit von der Konzentration zur Totalunkrautbekämpfung z.B. auf Industrie- und Gleisanlagen und auf Wegen und Plätzen mit und ohne Baumbewuchs. Ebenso können

die Verbindungen zur Unkrautbekämpfung in Dauerkulturen, z.B. Forst, Ziergehölz-, Obst-, Wein-, Citrus-, Nuß-, Bananen-, Kaffee-, Tee-, Gummi-, Ölpalm-, Kakao-, Beerenfrucht- und Hopfenanlagen, auf Zier- und Sportrasen und Weideflächen und zur selektiven Unkrautbekämpfung in einjährigen Kulturen eingesetzt werden.

Die erfindungsgemäßen Wirkstoffe weisen auch eine starke fungizide Wirkung auf und können zur Bekämpfung von unerwünschten Schadorganismen praktisch eingesetzt werden. Die Wirkstoffe sind daher auch für den Gebrauch als Fungizide geeignet.

Fungizide Mittel im Pflanzenschutz werden eingesetzt zur Bekämpfung von Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes, Deuteromycetes.

Beispielhaft aber nicht begrenzend seien einige Erreger von pilzlichen Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt:

Pythium-Arten, wie beispielsweise Pythium ultimum:

Phytophthora-Arten, wie beispielsweise Phythophthora infestans;

Pseudoperonospora-Arten, wie beispielsweise Pseudoperonospora humuli oder Pseudoperonospora cuben-

Plasmopara-Arten, wie beispielsweise Plasmopara viticola:

Peronospora-Arten, wie beispielsweise Peronospora pisi oder Peronospora brassicae:

Erysiphe-Arten, wie beispielsweise Erysiphe graminis:

Sphaerotheca-Arten, wie beispielsweise Sphaerotheca fuliginea:

20 Podosphaera-Arten, wie beispielsweise Podosphaera leucotricha:

Venturia-Arten, wie beispielsweise Venturia inaequalis:

Pyrenophora-Arten, wie beispielsweise Pyrenophora teres oder Pyrenophora graminea (Konidienform: Drechslera, Synonym: Helminthosporium):

Cochliobolus-Arten, wie beispielsweise Cochliobolus sativus (Konidienform: Drechslera, Synonym: Helminthosporium);

Uromyces-Arten, wie beispielsweise Uromyces appendiculatus:

Puccinia-Arten, wie beispielsweise Puccinia recondita;

Tilletia-Arten, wie beispielsweise Tilletia caries;

Ustilago-Arten, wie beispielsweise Ustilago nuda oder Ustilago avenae;

30 Pellicularia-Arten, wie beispielsweise Pellicularia sasakii;

Pyricularia-Arten, wie beispielsweise Pyricularia oryzae;

Fusarium-Arten, wie beispielsweise Fusarium culmorum;

Botrytis-Arten, wie beispielsweise Botrytis cinerea;

Septoria-Arten, wie beispielsweise Septoria nodorum:

Leptosphaeria-Arten, wie beispielsweise Leptosphaeria nodorum;

Cercospora-Arten, wie beispielsweise Cercospora canescens;

Alternaria-Arten, wie beispielsweise Alternaria brassicae:

Pseudocercosporella-Arten, wie beispielsweise Pseudocercosporella herpotrichoides.

Die gute Pflanzenverträglichkeit der Wirkstoffe in den zur Bekämpfung von Pflanzenkrankheiten notwendigen Konzentrationen erlaubt eine Behandlung von oberirdischen Pflanzenteilen, von Pflanz- und Saatgut und des Bodens.

Die Wirkstoffe können in die üblichen Formulierungen übergeführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Wirkstoff-imprägnierte Natur- und synthetische Stoffe, Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, ferner in Formulierungen mit Brennsätzen, wie Räucherpatronen, -dosen, -spiralen u.ä., sowie ULV-Kalt- und Warmnebel-Formulierungen.

Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol, oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Gyclohexan oder Paraffine, z.B. Erdölfraktionen, Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser: mit verflüssigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-

Treibgas, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid: als feste Trägerstoffe kommen in Frage: z.B. natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate: als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnußschalen, Maiskolben und Tabakstengel; als Emulgier und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure-Ester, Polyoxyethylen-Fettalkohol-Ether, z.B. Alkylarylpolyglykol-Ether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate: als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

Die erfindungsgemäßen Wirkstoffe können in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Akariziden, Nematiziden Herbiziden oder Fungiziden vorliegen. Zu den Insektiziden zählen beispielsweise Phosphorsäureester, Carbamate, Carbonsäureester, chlorierte Kohlenwasserstoffe, Phenylharnstoffe, durch Mikroorganismen hergestellte Stoffe u.a.

Die erfindungsgemäßen Wirkstoffe können ferner in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit Synergisten vorliegen. Synergisten sind Verbindungen, durch die die Wirkung der Wirkstoffe gesteigert wird, ohne daß der zugesetzte Synergist selbst aktiv wirksam sein muß.

Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann in weiten Bereichen variieren. Die Wirkstoffkonzentration der Anwendungsformen kann von 0,0000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,0001 und 1 Gew.-% liegen.

Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weise.

Als Vergleichsverbindung aus dem Stand der Technik wurden bei den nachfolgenden biologischen Beispielen die Verbindung der Formel

(bekannt aus US 3 954 998) eingesetzt.

Beispiel A

Phaedon-Larven-Test

55

45

50

Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Kohlblätter (Brassica oleracea) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Merettichblattkäfer-Larven (Phaedon cochleariae) besetzt, solange die Blätter noch feucht sind.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, daß alle Käfer-Larven abgetötet wurden: 0 % bedeutet, daß keine Käfer-Larven abgetötet wurden.

Bei diesem Test zeigen z.B. die folgenden Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik: 2, 3, 4.

Beispiel B

Nephotettix-Test

15

Lösungsmittel:

7 Gewichtsteile Dimethylformamid

Emulgator:

1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Reiskeimlinge (Oryza sativa) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Larven der Grünen Reiszikade (Nephotettix cincticeps) besetzt, solange die Keimlinge noch feucht sind.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeute 100 %, daß alle Zikaden abgetötet wurden; 0 % bedeutet, daß keine Zikaden abgetötet wurden.

Bei diesem Test zeigen z.B. die folgenden Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik: 2, 3, 4.

Beispiel C

30

Tetranychus-Test (OP-resistent)

Lösungsmittel:

7 Gewichtsteile Dimethylformamid

Emulgator:

1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.

Bohnenpflanzen (Phaseolus vulgaris), die stark von allen Entwicklungsstadien der gemeinen Spinnmilbe oder Bohnenspinnmilbe (Tetranychus urticae) befallen sind, werden mit einer Wirkstoffzubereitung der gewünschten Konzentration tropfnaß gespritzt.

Nach der gewünschten Zeit wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, daß alle Spinnmilben abgetötet wurden: 0 % bedeutet, daß keine Spinnmilben abgetötet wurden.

Bei diesem Test zeigen die folgenden Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik: 2, 3, 4

Beispiel D

45

55

Pre-emergence-Test / Gewächshaus

50 Lösungsmittel:

5 Gewichtsteile Aceton

Emulgator:

1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel, gibt die angegebene Menge Emulgator zu und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Samen der Testpflanzen werden in normalen Boden ausgesät und nach 24 Stunden mit der Wirkstoffzubereitung begossen. Dabei hält man die Wassermenge pro Flächeneinheit zweckmäßigerweise konstant. Die Wirkstoffkonzentration in der Zubereitung spielt keine Rolle, entscheidend ist nur die Aufwandmenge des Wirkstoffs pro Flächeneinheit. Nach drei Wochen wird der Schädigungsgrad der Pflanzen bonitiert in %

Schädigung im Vergleich zur Entwicklung der unbehandelten Kontrolle. Es bedeuten:

0 % = keine Wirkung (wie unbehandelte Kontrolle)

100 % = totale Vernichtung

10

15

20

25

30

35

45

50

Bei diesem Test zeigt die folgende Verbindung der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik: Ib-7.

Als Stand der Technik diente hier Fluortamone ((±)-5-(Methylamino)-2-phenyl-4-[3-(trifluormethyl)-phenyl]-3-(2H)-furanon.

Tabelle D Pre-emergence-Test / Gewächshaus

Wirkstoff	Wirkstoff aufwand g/ha	Soja	Soja Digitaria Echino- Lonium Panicum Poa Setaria chloa	Echino- chloa	Lonium	Panicum	Poa	Setaria	
Fluortamone bekannte Verbindung	200	ۍ 0	80	20	80	0	20	30	
Verbindung gemäß Beisoiel Ib-7	200	0	95	100	100	90	06	98	

Patentansprüche

5

10

15

20

25

35

40

45

3-Aryl-4-hydroxy-Δ³-dihydrofuranon- und 3-Aryl-4-hydroxy-Δ³-dihydrothiophenon-Derivate der allgemeinen Formel (I)

 $\begin{array}{c|c}
A & O & X & Z_n \\
\hline
D & O & X & Z_n
\end{array}$

in welcher

- X für Alkyl, Halogen, Alkoxy oder Halogenalkyl steht,
- Y für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyli steht,
- Z für Alkyl, Halogen, Alkoxy steht,
- n für eine Zahl von 0-3 steht,

oder wobei die Reste X und Z gemeinsam mit dem Phenylrest, an dem sie gebunden sind, den Napthalinrest der Formel

Y

30 bilden,

in welchem

- Y die oben angegebene Bedeutung hat,
- G für Wasserstoff (a) oder für die Gruppen

-co- R^1 , (b) $\frac{L}{M-R^2}$ (c) -so₂- R^3 (d)

steht,

A und B gleich oder verschieden sein können und für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkinyl, Alkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen, Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Nitro substituiertes Aryl, Aralkyl oder Heteraryl stehen,

55 und worin

A und B

gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten oder ungesättigten, gegebenenfalls durch Heteroatome unterbrochenen und gegebenenfalls substituierten Cyclus bilden,

	D	für Sauerstoff oder Schwefel steht,
	E®	für ein Metallionäquivalent oder ein Ammoniumion steht,
	L und M	für Sauerstoff und/oder Schwefel steht,
5	R ¹	für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyal- kyl, Alkylthioalkyl, Polyalkoxyalkyl oder Cycloalkyl, das durch Heteroatome unterbrochen sein kann, gegebenenfalls substituiertes Phenyl, gegebenen- falls substituiertes Phenylalkyl, substituiertes Hetaryl, substituiertes Phe-
		noxyalkyl oder substituiertes Hetaryloxyalkyl steht und
	R ²	für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyal-
10		kyl, Polyalkoxyalkyloder gegebenenfalls substituiertes Phenyl oder Benzyl steht,
	R³, R⁴ und R⁵	unabhängig voneinander für gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxy, Alkylamino, Dialkylamino, Alkylthio, Alkenylthio, Alkinylthio,
15	R ⁶ und R ⁷	Cycloalkylthio und für gegebenenfalls substituiertes Phenyl, Phenoxy oder Phenylthio stehen,
	n unu n	unabhängig voneinander für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxy, Alkoxyalkyl, für gegebenenfalls substituiertes Phanul für gegebenenfalls substituiertes Phanul stehen
20	oder wobei R ⁶ und R ⁷	stituiertes Phenyl, für gegebenenfalls substituiertes Benzyl stehen zusammen für einen gegebenenfalls durch Sauerstoff unterbrochenen Alkylenrest stehen,
20	mit Ausnahme folgender Ve	

-(2-Methoxyphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2, 3-(2-Chlorphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2, 3-(2-Methylphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2, 3-(2-Fluorphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2,

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

3-Aryl-4-hydroxy-Δ³-dihydrofuranon- und 3-Aryl-4-hydroxy-Δ³-dihydrothiophenon-Derivate der Formel
 (I) gemäß Anspruch 1, dadurch gekennzeichnet, daß es sich um eine der folgenden Strukturen (Ia) bis
 (Ig) handelt:

$$\begin{array}{c|c}
A & O-C-M-R^2 & X \\
D & Z_n
\end{array}$$
(Ic)

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

$$\begin{array}{c|c}
A & O-C-N \\
\hline
 & R^7 \\
\hline
 & Z_n
\end{array}$$
(If)

worin

A, B, D, E, L, M, X, Y, Z_n , R^1 , R^2 , R^3 , R^4 , R^5 , R^6 und R^7 die in Anspruch 1 angegebenen Bedeutungen besitzen.

3. 3-Aryl-4-hydroxy- Δ^3 -dihydrofuranon- und 3-Aryl-4-hydroxy- Δ^3 -dihydrothiophenon-Derivate der Formel (I) gemäß Anspruch 1,

in welcher

- X fur C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy oder C₁-C₃-Halogenalkyl steht,
- Y für Wasserstoff, C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy, C₁-C₃-Halogenalkyl steht.
- Z für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy steht,
- n für eine Zahl von 0-3 steht,

oder wobei die Reste X und Z gemeinsam mit dem Phenylrest, an den sie gebunden sind, den Naphthalinrest der Formel

10

5

___Y

15

20

25

30

bilden,

in welchem Y die oben angegebene Bedeutung hat,

A und B

gleich oder verschieden sind und für Wasserstoff oder gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C_1-C_{12} -Alkyl, C_3-C_8 -Alkenyl, C_3-C_8 -Alkinyl, C_1-C_{10} -Alkoxy- C_2-C_8 -alkyl, C_1-C_1 -Alkoxy- C_2-C_8 -alkyl, C_1-C_1 -Alkylthio- C_2-C_8 -alkyl, Cycloalkyl init 3-8 Ringatomen, das durch Sauerstoff und/oder Schwefel unterbrochen sein kann und gegebenenfalls durch Halogen, C_1-C_6 -Alkyl, C_1-C_6 -Halogenalkyl, C_1-C_6 -Alkoxy-, C_1-C_6 -Halogenalkoxy, Nitro substituiertes Aryl, Hetaryl oder Aryl-C1- C_6 -alkyl steht,

oder worin

A und B

gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten oder ungesättigten, gegebenenfalls durch Sauerstoff und/oder Schwefel unterbrochenen und gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, C₁- C₄-Alkylthio oder gegebenenfalls substituiertes Aryl substituierten 3-bis 8-gliedrigen Ring bilden,

G

für Wasserstoff (a) oder für die Gruppen

35

-CO-R¹, (b)
$$\frac{L}{M-R^2}$$
 (c) $-SO_2-R^3$ (d) $\frac{L}{R^5}$ (e) $\frac{L}{R^6}$ (f) oder E^{\oplus} (g)

45

50

40

steht,

in welchen

E₽

für ein Metallionäquivalent oder ein Ammoniumion steht,

L und M

d M für Sauerstoff und/oder Schwefel steht,

R¹

für gegebenenfalls durch Halogen substituiertes: C_1 - C_{20} -Alkyl, C_2 - C_{20} -Alkenyl, C_1 - C_8 -Alkoxy- C_2 - C_8 -alkyl, C_1 - C_8 -Alkylthio- C_2 - C_8 -alkyl, C_1 - C_8 -Polyalkoxyl- C_2 - C_8 -alkyl oder Cycloalkyl mit 3-8 Ringatomen, das durch Sauerstoffund/oder Schwefelatome unterbrochen sein kann, steht,

55

für gegebenenfalls durch Halogen, Nitro, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Halogenalkoxy-substituiertes Phenyl steht;

			für gegebenenfalls durch Halogen-, C ₁ -C ₆ -Alkyl, C ₁ -C ₆ -Alkoxy-, C ₁ -C ₆ -
			Halogenalkyl-, C ₁ -C ₆ -Halogenalkoxy-substituiertes Phenyl-C ₁ -C ₆ -alkyl steht,
5			für gegebenenfalls durch Halogen und/oder $C_1\text{-}C_6\text{-}AlkyI$ substituiertes Hetaryl steht,
		,	für gegebenenfalls durch Halogen und/oder $C_1\text{-}C_6\text{-}Alkyl\text{-}substituiertes}$ Phenoxy- $C_1\text{-}C_6\text{-}alkyl$ steht,
10			für gegebenenfalls durch Halogen, Amino und C ₁ -C ₆ -Alkyl-substituiertes
		R ²	Hetaryloxy- C_1 - C_6 -Alkyl steht, für gegebenenfalls durch Halogen substituiertes: C_1 - C_{20} -Alkyl, C_2 - C_{20} -Alkenyl, C_1 - C_8 -Alkoxy- C_2 - C_8 -alkyl, C_1 - C_8 -Polyalkoxy- C_2 - C_8 -alkyl steht,
15			
			für gegebenenfalls durch Halogen, Nitro, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkyl-substituiertes Phenyl oder Benzyl steht,
		R³, R⁴ und R⁵	unabhängig voneinander für gegebenenfalls durch Halogen substituiertes C ₁ -C ₈ -
20			Alkyl, C_1 - C_8 -Alkoxy, C_1 - C_8 -Alkylamino, Di- $(C_1$ - C_8)-Alkylamino, C_1 - C_8 -Alkylthio, C_2 - C_5 -Alkenylthio, C_2 - C_5 -Alkinylthio, C_3 - C_7 -Cycloalkylthio, für gegebenenfalls durch
			Halogen, Nitro, Cyano, C ₁ -C ₄ -Alkoxy, C ₁ -C ₄ -Halogenalkoxy, C ₁ -C ₄ -Alkylthio, C ₁ -
			C ₄ -Halogenalkylthio, C ₁ -C ₄ -Alkyl, C ₁ -C ₄ -Halogenalkyl substituiertes Phenyl, Phe-
		R ⁶ und R ⁷	noxy oder Phenylthio stehen, unabhangig voneinander für gegebenenfalls durch Halogen substituiertes C ₁ -C ₂₀ -
25		it and it	Alkyl, C ₁ -C ₂₀ -Alkoxy, C ₂ -C ₈ -Alkenyl, C ₁ -C ₂₀ -Alkoxy-C ₁ -C ₂₀ -alkyl, für gegebenen-
			falls durch Halogen, C1-C20-Halogenalkyl, C1-C20-Alkyl oder C1-C20-Alkoxy sub-
			stituiertes Phenyl, für gegebenenfalls durch Halogen, C ₁ -C ₂₀ -Alkyl, C ₁ -C ₂₀ -Halo-
			genalkyl oder C_1 - C_{20} -Alkoxy substituiertes Benzyl steht oder zusammen für einen gegebenenfalls durch Sauerstoff unterbrochenen C_2 - C_6 -Alkylenring stehen,
30		mit Ausnahme folge	ender Verbindungen:
		2 / C Mathamahan	IV. A. brodinana. A.3. dibrodinationana. O
			l)-4-hydroxy-Δ ³ -dihydrofuranon-2, -hydroxy-Δ ³ -dihydrofuranon-2,
			4-hydroxy- Δ^3 -dihydrofuranon-2,
35		3-(2-Fluorphenyl)-4-	-hydroxy-Δ ³ -dihydrofuranon-2,
		sowie die enantiom	erenreinen Formen von Verbindungen der Formel (I).
	4.	3-Aryl-4-hydroxy-∆	³ -dihydrofuranon- und 3-Aryl-4-hydroxy-Δ ³ -dihydrothiophenon-Derivate der Formel
40		(I) gemäß Anspruch	
		in welcher	
		X für C ₁ -C ₄ -A	Alkyl, Halogen, C ₁ -C ₄ -Alkoxy oder C ₁ -C ₂ -Halogenalkyl steht,
			rstoff, C ₁ -C ₆ -Alkyl, Halogen, C ₁ -C ₄ -Alkoxy, C ₁ -C ₂ -Halogenalkyl steht,
45		Z für C ₁ -C ₄ -/	Alkyl, Halogen, C ₁ -C ₄ -Alkoxy steht,

n für eine Zahl von 0-3 steht, oder wobei die Reste X und Z gemeinsam mit dem Phenylrest, an den sie gebunden sind, den Naphthalinrest der Formel

bilden,

50

in welchem Y die ober angegebene Bedeutung hat,

A und B

gleich oder verschieden sind und für Wasserstoff oder gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C_1 - C_1 0-Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkenyl, C_1 - C_8 -Alkoxy- C_2 - C_6 -alkyl, C_1 - C_6 -Polyalkoxy- C_2 - C_6 -alkyl, C_1 - C_8 -Alkylthio- C_2 - C_6 -alkyl, Cycloalkyl mit 3-7 Ringatomen, das durch 1-2 Sauerstoff und/oder Schwefelatomen unterbrochen sein kann und gegebenenfalls durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl-, C_1 - C_4 -Alkoxy-, Nitro substituiertes Aryl, Hetaryl oder Aryl- C_1 - C_4 -alkyl stehen,

oder worin

G

5

10

15

25

30

35

A und B

gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten oder ungesättigten, gegebenenfalls durch Sauerstoff und/oder Schwefel unterbrochenen und gegebenenfalls durch Halogen, C₁-C₅-Alkyl, C₁-C₅-Alkoxy, C₁-C₃-Halogenalkyl, C₁-C₄-Halogenalkoxy, C₁-C₃-Alkylthio oder gegebenenfalls durch Halogen, Alkyl, Alkoxy substituiertes Aryl substituierten 3- bis 8-gliedrigen Ring bilden,

für Wasserstoff (a) oder für die Gruppen

²⁰ -CO-R¹, (b)

$$\mathbb{R}^7$$
 \mathbb{R}^6 (f) oder \mathbb{E}^{\oplus} (g)

steht,

in welchen

E®

für ein Metallionäquivalent oder ein Ammoniumion steht,

M für Sauerstoff und/oder Schwefel steht,

L und M R¹

für gegebenenfalls durch Halogen substituiertes: C_1-C_{16} -Alkyl, C_2-C_{16} -Alkenyl, C_1-C_6 -Alkoxy- C_2-C_6 -alkyl, C_1-C_{16} -Alkylthio- C_2-C_6 -alkyl, C_1-C_6 -Polyalkoxy- C_2-C_6 -alkyl und Cycloalkyl mit 3-7 Ringatomen, das durch 1-2 Sauerstoff-und/oder Schwefelatome unterbrochen sein kann, steht,

40

45

50

55

für gegebenenfalls durch Halogen, Nitro, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_3 -Halogenalkyl, C_1 - C_3 -Halogenalkoxy-substituiertes Phenyl steht,

für gegebenenfalls durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_3 -Halogenalkyl, C_1 - C_3 -Halogenalkoxy-substituierets Phenyl- C_1 - C_4 -alkyl steht,

für gegebenenfalls durch Halogen und C1-C6-Alkyl-substituiertes Hetaryl steht,

für gegebenenfalls durch Halogen- und C_1 - C_4 -Alkyl-substituiertes Phenoxy- C_1 - C_5 -alkyl steht,

für gegebenenfalls durch Halogen, Amino, C_1 - C_4 -Alkyl-substituiertes Hetaryloxy- C_1 - C_5 -alkyl steht,

R²

für gegebenenfalls durch Halogen substituiertes: C_1 - C_{16} -Alkyl, C_2 - C_{16} -Alkenyl, C_1 - C_1 -Alkox- C_2 - C_6 -alkyl, C_1 - C_6 -Polyalkoxy- C_2 - C_6 -alkyl steht,

für gegebenenfalls durch Halogen, Nitro, C_1 - C_4 -Alkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkyl-substituiertes Phenyl oder Benzyl steht,

R³, R⁴ und R⁵ unabhängig voneinander für gegebenenfalls durch Halogen substituiertes C₁-C₅-

Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Alkylamino, Di- $(C_1$ - C_6)-Alkylamino, C_1 - C_6 -Alkylthio, C_3 - C_4 -Alkenylthio, C_2 - C_4 -Alkinylthio, C_3 - C_6 -Cycloalkylthio, für gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkylthio, C_1 - C_3 - C_3 - C_3 - C_4 - C_3 - C_4 - $C_$

Phenyl, Phenoxy oder Phenylthio stehen,

 R^6 und R^7 unabhängig voneinander für gegebenenfalls durch Halogen substituiertes $\mathsf{C}_1\text{-}\mathsf{C}_2$ o-

Alkyl, C_1 - C_{20} -Alkoxy, C_2 - C_8 -Alkenyl, C_1 - C_{20} -Alkoxy- C_1 - C_{20} -alkyl, für gegebenenfalls durch Halogen, C_1 - C_5 -Halogenalkyl, C_1 - C_5 -Alkyl oder C_1 - C_5 -Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, C_1 - C_5 -Alkyl, C_1 - C_5 -Halogenalkyl

oder C₁-C₅-Alkoxy substituiertes Benzyl steht,

mit Ausnahme folgender Verbindungen:

3-(2-Methoxyphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2, 3-(3-Chlorphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2, 3-(2-Methylphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2, 3-(2-Fluorphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2,

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

 3-Aryl-4-hydroxy-Δ³-dihydrofuranon- und 3-Aryl-4-hydroxy-Δ³-dihydrothiophenon-Derivate der Formel (I) gemäß Anspruch 1,

in welcher

5

10

15

20

25

30

35

40

45

50

55

- X für Methyl, Ethyl, Propyl, i-Propyl, Fluor, Chlor, Brom, Methoxy, Ethoxy und Trifluormethyl steht
- Y für Wasserstoff, Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl, tert.-Butyl, Fluor, Chlor, Brom, Methoxy, Ethoxy und Trifluormethyl steht,
- Z für Methyl, Ethyl, i-Propyl, Butyl, i-Butyl, tert.-Butyl, Fluor, Chlor, Brom, Methoxy und Ethoxy steht.
- n für eine Zahl von 0-3 steht,

oder wobei die Reste X und Z gemeinsam mit dem Phenylrest, an den sie gebunden sind, den Naphthalinrest der Formel

bilden,

in welchem Y die oben angegebene Bedeutung hat,

A und B gleich oder verschieden sind und für Wasserstoff, gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₈-Alkyl, C₃-C₄-Alkenyl, C₃-C₄-Alkinyl, C₁-C₆-Alkoxy-C₂-C₄-alkyl, C₁-C₆-Alkyl, C₁-C₆-Alkyl, C₁-C₆-Alkyl, C₁-C₆-Alkyl, Cycloalkyl mit 3-6 Ringatomen, das durch 1-2 Sauerstoff und/oder Schwefelatomen

unterbrochen sein kann oder gegebenenfalls durch Fluor-, Chlor-, Brom-, Methyl-, Ethyl-, Propyl-, iso-Propyl-, Methoxy-, Ethoxy-, Tiifluormethyl-, Nitro substituiertes Aryl, Pyrimidia Imidatel Physical Index Propyl-, Consultational Index Propyl-

midin, Imidazol, Pyrazol, Triazol, Indol, Thiazol oder Aryl-C₁-C₃-alkyl stehen,

oder worin

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen gesättigten oder ungesättigten, gegebenenfalls durch Sauerstoff und/oder Schwefel unterbrochenen und gegebenenfalls durch Fluor, Chlor, C₁-C₂-Alkyl, C₁-C₂-Alkoxy, Trifluormethyl, C₁-C₂-Alkylthio oder gegebenenfalls substituiertes Fluor, Chlor, Methyl, Methoxy substituiertes

Aryl substituierten 3- bis 8-gliedrigen Ring bilden,

G für Wasserstoff (a) oder für die Gruppen

	-co-R ¹ ,	(b) $M-R^2$ (c) $-so_2-R^3$ (d)
5		
10	-P R5	(e) \mathbb{R}^7 (f) oder \mathbb{E}^{\oplus} (g)
15	steht, in welchen E [®] L und M R ¹	für ein Metallionäquivalent oder ein Ammoniumion steht, für Sauerstoff und/oder Schwefel steht, für gegebenenfalls durch Fluor oder Chlor substituiertes C ₁ -C ₁₄ -Alkyl, C ₂ -C ₁₄ -Alkenyl, C ₁ -C ₄ -Alkoxy-C ₂ -C ₆ -alkyl, C ₁ -C ₄ -Alkylthio-C ₂ -C ₆ -alkyl, C ₁ -C ₄ -Polyalkoxyl-C ₂ -C ₄ -alkyl und Cycloalkyl mit 3-6 Ringatomen, das durch 1-2
20		Sauerstoff- und/oder Schwefelatome unterbrochen sein kann, steht, für gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy, Nitro-substituiertes Phenyl steht,
25		für gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy-substituiertes Phenyl- C_1 - C_3 -alkyl steht,
30		für gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl-substituiertes Pyridyl, Pyrimidyl, Thiazolyl und Pyrazolyl steht, für gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl-substituiertes Phenoxy-C ₁ -C ₄ -alkyl steht,
35	R²	für gegebenenfalls durch Fluor, Chlor, Amino, Methyl-, Ethyl, substituiertes Pyridyloxy- C_1 - C_4 -alkyl, Pyrimidyloxy- C_1 - C_4 -alkyl und Thiazolyloxy- C_1 - C_4 -alkyl steht, für gegebenenfalls durch Fluor oder Chlor substituiertes C_1 - C_14 -Alkyl, C_2 - C_14 -
40	R³, R⁴ und R⁵	Alkenyl, C ₁ -C ₄ -Alkoxy-C ₂ -C ₆ -alkyl, C ₁ -C ₄ -Polyalkoxy-C ₂ -C ₆ -alkyl steht, oder für gegebenenfalls durch Fluor, Chlor, Nitro, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl substituiertes Phenyl oder Benzyl steht, unabhängig voneinander für gegebenenfalls durch Fluor oder Chlor substituiertes
45	re, re una ir	C ₁ -C ₄ -Alkyl, C ₁ -C ₄ -Alkoxy, C ₁ -C ₄ -Alkylamino, Di-(C ₁ -C ₄ -Alkyl)-amino, C ₁ -C ₄ -Alkylthio, für gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, C ₁ -C ₂ -Alkoxy, C ₁ -C ₄ -Fluoralkoxy, C ₁ -C ₂ -Chloralkoxy, C ₁ -C ₂ -Alkylthio, C ₁ -C ₂ -Fluoralkylthio, C ₁ -C ₂ -Chloralkylthio, C ₁ -C ₂ -Alkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen,
50	R ⁶ und R ⁷	unabhängig voneinander für gegebenenfalls durch Fluor, Chlor, Brom substituiertes C_1 - C_{10} -Alkyl, C_1 - C_{10} -Alkoxy, C_1 - C_{10} -Alkoxy- $(C_1$ - C_{10})alkyl, für gegebenenfalls durch Fluor, Chlor, Brom, C_1 - C_2 0-Halogenalkyl, C_1 - C_2 0-Alkyl oder C_1 - C_4 -Alkoxy substituiertes Phenyl, für gegebenenfalls durch Fluor, Chlor, Brom, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl oder C_1 - C_4 -Alkoxy substituiertes Benzyl steht,
	mit Ausnahme folge	ender Verbindungen:

3-(2-Methoxyphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2, 3-(2-Chlorphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2, 3-(2-Methylphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2, 3-(2-Fluorphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2,

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

 Verfahren zur Herstellung von 3-Aryl-4-hydroxy-Δ³-dihydrofuranon- und 3-Aryl-4-hydroxy-Δ³dihydrothiophenon-Derivate der allgemeinen Formel (I)

in welcher

5

10

15

20

25

30

45

50

55

- X für Alkyl, Halogen, Alkoxy oder Halogenalkyl steht,
- Y für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyl steht,
- Z für Alkyl, Halogen, Alkoxy steht,
- n für eine Zahl von 0-3 steht,

oder wobei die Reste X und Z gemeinsam mit dem Phenylrest, an den sie gebunden sind, den Naphthalinrest der Formel

__Y

bilden,

in welchem Y die oben angegebene Bedeutung hat,

G für Wasserstoff (a) oder für die Gruppen

35 $-CO-R^{1}$, (b) $M-R^{2}$ (c) $-SO_{2}-R^{3}$ (d)
40 $-P_{1}$ (e) N_{6} (f) oder E^{9} (g)

steht,

A und B gleich oder verschieden sein können und für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkinyl, Alkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen, Alkyl, Halogenalkyl, Alkoxy, Nitro substituiertes Aryl, Aralkyl oder Hetaryl substituiertes Aryl, Aralkyl oder Heteraryl steht

oder worin

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten oder ungesättigten, gegebenenfalls durch Heteroatome unterbrochenen und gegebenenfalls substituierten Cyclus bilden,

D für Sauerstoff oder Schwefel steht,

E^e für ein Metallionäquivalent oder ein Ammoniumion steht,

L und M für Sauerstoff und/oder Schwefel steht,

R¹ für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl, Polyalkoxyalkyl oder Cycloalkyl, das durch Heteroatome unterbrochen sein kann, gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Phenylalkyl, substituiertes Hetaryl, substituiertes Phe-5 noxyalkyl oder substituiertes Hetaryloxyalkyl steht und \mathbb{R}^2 für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyloder gegebenenfalls substituiertes Phenyl oder Benzyl steht. R3, R4 und R5 unabhängig voneinander für gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxy, Alkylamino, Dialkylamino, Alkylthio, Alkenylthio, Alkinylthio, 10 Cycloalkylthio und für gegebenenfalls substituiertes Phenyl, Phenoxy oder Phenylthio stehen. R6 und R7 unabhängig voneinander für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxy, Alkoxyalkyl, für gegebenenfalls sub-15 stituiertes Phenyl, für gegebenenfalls substituiertes Benzyl stehen oder wobei R6 und R7 zusammen für einen gegebenenfalls durch Sauerstoff unterbrochenen Alkylenrest stehen, mit Ausnahme folgender Verbindungen: 20 3-(2-Methoxyphenyl)-4-hydroxy-∆3-dihydrofuranon-2, 3-(2-Chlorphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2, 3-(2-Methylphenyl)-4-hydroxy-Δ3-dihydrofuranon-2, 3-(2-Fluorphenyl)-4-hydroxy-Δ3-dihydrofuranon-2, dadurch gekennzeichnet, 25 Erhalt von 3-Aryl-4-hydroxy- Δ^3 -dihydrofuranon- und 3-Aryl-4-hydroxy- Δ^3 man zum dihydrothiophenon-Derivaten der Formel (Ia) 30 (Ia) 35

in welcher

A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben,

entweder

40

(A) Carbonsäureester der Formel (II)

 $\begin{array}{c|c}
A & CO_2R^8 \\
B & CO_2R^8
\end{array}$ $\begin{array}{c}
X & CO_2R^8 \\
X & CO_2R^8
\end{array}$

55 in welcher

A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben

und

R8 für Alkyl steht,

in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intramolekular kondensiert,

ode

(B) zum Erhalt von Verbindungen der Formel (Ib)

10

15

20

in welcher

A, B, D, X, Y, Z, R1 und n die oben angegebene Bedeutung haben,

25 Verbindungen der Formel (la),

35 in welcher

A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben,

α) mit Säurehalogeniden der allgemeinen Formel (III)

40

45

50

55

in welcher

R¹ die oben angegebene Bedeutung hat

und

lal für Halogen, insbesondere Chlor und Brom steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt

oder

β) mit Carbonsäureanhydriden der allgemeinen Formel (IV)

R1-CO-O-CO-R1 (IV)

in welcher

R1 die oben angegebene Bedeutung hat,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels.

umsetzt, oder daß man

(C) zum Erhalt von Verbindungen der Formel (Ic)

 $\begin{array}{c|c}
L \\
R^2M-C-0 & X
\end{array}$ $\begin{array}{c|c}
A \\
D \\
\hline
\end{array}$ $\begin{array}{c|c}
\end{array}$ \end{array} $\begin{array}{c|c}$ \end{array} $\begin{array}{c|c}$ \end{array} $\begin{array}{c|c}$ \end{array} $\begin{array}{c|c}$ \end{array} $\begin{array}{c|c}$ \end{array} $\begin{array}{c|c}$ \end{array} \end{array} $\begin{array}{c|c}$ \end{array} \end{array} $\begin{array}{c|c}$ \end{array} \end{array} $\begin{array}{c|c}$ \end{array} \end{array} \end{array} $\begin{array}{c|c}$ \end{array} \end{array} \end{array}

in welcher

A, B, D, X, Y, Z, R² und n die oben angegebene Bedeutung haben,

L für Sauerstoff

und

M für Sauerstoff oder Schwefel steht,

Verbindungen der Formel (la)

30

35

40

45

50

5

10

20

25

in welcher

A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben

mit Chlorameisensäureester oder Chlorameisensäurethiolester der allgemeinen Formel (V)

R²-M-CO-CI (V)

in welcher

R² und M die oben angegebene Bedeutung haben, gegebenenfals in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines

(D) zum Erhalt von Verbindungen der Formel (Ic)

Säurebindemittels umsetzt, oder daß man

55

in welcher

A, B, D, R², X, Y, Z und n die oben angegebene Bedeutung haben,

L für Schwefel

und

M für Sauerstoff oder Schwefel steht,

Verbindungen der Formel (la)

5

10

in welcher

A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben

α) mit Chlormonothioameisensäureestern oder Chlordithioameisensäureestern der allgemeinen Formel (VI)

20

15

25

in welcher

M und R² die oben angegebene Bedeutung haben

30

35

40

45

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt,

odei

β) mit Schwefelkohlenstoff und anschließend mit Alkylhalogeniden der allgemeinem Formel (VII)

R²-Hal (VII)

in welcher

R² die oben angegebene Bedeutung hat

und

Hal für Chlor, Brom, Jod

steht, umsetzt,

oder daß man

(E) zum Erhalt von Verbindungen der Formel (ld)

50

55

in welcher

A, B, D, X, Y, Z, R³ und n die oben angegebene Bedeutung haben,

Verbindungen der Formel (la)

5

10

in welcher

A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben,

nit Sulfonsäurechloriden der allgemeinen Formel (VIII)

R3-SO2-CI(VIII)

in welcher

R³ die oben angegebene Bedeutung hat

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt, oder daß man

(F) zum Erhalt von Verbindungen der Formel (le)

30

25

20

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

35

in welcher

40 A, B, D, L, X, Y, Z, R4, R5 und n die oben angegebene Bedeutung haben,

Verbindungen der Formel (la)

45

50

in welcher

A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben

55

mit Phosphorverbindungen der allgemeinen Formel (IX)

$$Hal-P = (IX)$$

5

in welcher

10 L, R⁴ und R⁵ die oben angegebene Bedeutung haben

und

Hal für Halogen, insbesondere Chlor und Brom steht, gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt, oder daß man

(G) zum Erhalt von Verbindizngen der Formel (If)

20

15

$$\begin{array}{c|c}
 & L \\
 & R^6 \\
 & R^7 \\
 & Z_0
\end{array}$$
(If)

25

in welcher

30

A, B, D, L, X, Y, Z, R⁶, R⁷ und n die oben angegebene Bedeutung haben,

Verbindungen der Formel (la),

35

40

in welcher

45

A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben
 α) mit Isocyanaten der allgemeinen Formel (X)

$$R^6-N=C=O$$
 (X)

50

55

in welcher

R⁶ die oben angegebene Bedeutung hat gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators umsetzt,

ode

β) mit Carbamidsäurechloriden oder Thiocarbamidsäurechloriden der allgemeinen Formel (XI)

$$\mathbb{R}^6$$
 \mathbb{C}_1 \mathbb{C}_1

in welcher

L, R⁶ und R⁷ die oben angegebene Bedeutung haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt, oder daß man

(H) zum Erhalt von Verbindungen der Formel (Ig)

25

5

15

20

in welcher

X, Y, Z, A B, D und n die oben angegebene Bedeutung haben,

und E^e für ein Metallionäquivalent oder für ein Ammoniumion steht,

Verbindungen der Formel (la)

35

30

40

in welcher

X, Y, Z, A, B, D und n die oben angegebene Bedeutung haben,

mit Metallhydroxiden oder Aminen der allgemeinen Formeln (XIII) und (XIII)

50

45

$$R^6$$

$$\downarrow$$

$$Me_gOH_t (XII) R^5-N-R^7 (XIII)$$

55

in welchen

Me s und t für ein- oder zweiwertige Metallionen für die Zahl 1 oder 2 und

R⁵, R⁶ und R⁷ unabhängig voneinander für Wasserstoff und Alkyl stehen.

gegebenenfalls in Gegenwart eines Verdünnungsmittels, umsetzt.

25

30

35

40

45

50

- 7. Insektizide, akarizide, herbizide und fungizide Mittel, gekennzeichnet durch einen Gehalt an mindestens einem 3-Aryl-4- hydroxy-Δ³-dihydrofuranon- oder 3-Aryl-4-hydroxy-Δ³-dihydrothiophenon-Derivat der Formel (I).
- 70 8. Verfahren zur Bekämpfung von Insekten und/oder Spinnentieren und/oder Unkräutern und/oder Pilzen, dadurch gekennzeichnet, daß man 3-Aryl-4-hydroxy-\(\Delta^3\)-dihydrofuranon-oder 3- Aryl-4-hydroxy-\(\Delta^3\)-dihydrothiophenon-Derivate der Formel (I) auf Insekten und/oder Spinnentiere und/oder Unkräuter und/oder Pilzen und/oder deren Lebensraum einwirken \(\text{läßt}\).
- 75 9. Verwendung von 3-Aryl-4-hydroxy-△³-dihydrofuranon- oder 3-Aryl-4-hydroxy-△³-dihydrothiophenon-Derivaten der Formel (I) zur Bekämpfung von Insekten und/oder Spinnentieren und/oder Unkräutern und/oder Pilzen.
- 10. Verfahren zur Herstellung von insektiziden und/oder akariziden und/oder herbiziden und/oder fungiziden 20 Mitteln, dadurch gekennzeichnet, daß man 3-Aryl-4-hydroxy-Δ³-dihydrofuranon- oder 3- Aryl-4-hydroxy-Δ³-dihydrothiophenon-Derivate der Formel (I) mit Streckmitteln und/oder oberflächenaktiven Mitteln vermischt.

EUROPÄISCHER RECHERCHENBERICHT

EP 92 11 1324

	EINSCHLÄGIG	nts mit Angabe, soweit erforderlich,	Betrifft	KLASSIPIKATION DER
Kategorie	der maßgeblic		Anspruch	ANMELDUNG (Int. Cl.5)
A	EP-A-0 299 694 (SCH LIMITED) * Seite 5, Zeile 35 3-4; Beispiel 2 * CHEMICAL ABSTRACTS, 2. Dezember 1968, C abstract no. 94792j	ERING AGROCHEMICALS - Zeile 49; Ansprüche vol. 69, no. 23, olumbus, Ohio, US; Antifungal studies on l activity of ne derivatives.' 2;	1,6,7-10	C07D307/60 C07D307/94 C07D307/68 C07D409/12 C07D407/12 C07F9/655 A01N43/08
A	FR-A-2 054 514 (ROU * Anspruch 1; Seite	SSEL-UCLAF) 12, Schemata 1 und 2 *	1,7	
D,X		ER AKTIENGESELLSCHAFT)	1-4,6, 7-10	RECHERCHIERTE SACHGEBIETE (Int. Cl.5
D, A	* Seite 33, Zeile 4 Ansprüche 1,7,8-11 * Seite 23, Tabelle JOURNAL OF THE CHEM TRANSACTIONS 1. Nr. 8, 1985, LETCHW Seiten 1567 - 1576 A.C. CAMPBELL ET AL and (Z)-Pulvinones' * das ganze Dokumen [100074-47-3], [100 [100074-41-7] *	1, Beispiele 42, 46 * ICAL SOCIETY, PERKIN ORTH GB . 'Synthesis of (E)- t und insbesondere RN	1-4,6	C07D C07F
Der v	Bacherchanet	Abechinfeitun der Racherche	1	Prefer
	DEN HAAG	21 OKTOBER 1992	1	B. Paisdor

X: von besonderer Bedentung allein betrachtet
 Y: von besonderer Bedentung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
 A: technologischer Hintergrund
 O: nichtschriftliche Offenbarung
 P: Zwischenliteratur

T: der Ermaung zugrunze negense i neurose oeur Gr E: Elters Patentfokument, das jedoch erst am oder nach den Annaldedatum veröffentlicht worden ist D: in der Anneldung angeführtes Dokument L: ans andem Gründen angeführtes Dokument

à : Mitgiled der gleichen Patentfamilie, übereinstimmendes Dokument