

Ali Albayat

TABLE OF CONTENTS

01	02	03
INTRODUCTION	PREPROCESSING	DATA ANALYSIS

04	05	06
AUGMENTATION	MODELS	CONCLUSION

01

INTRODUCTION

BACKSTORY,

Glasses typically used for vision correction

Other types of glasses
Safety Glasses
Sunglasses
3D Glasses.

Data set

Glasses or No Glasses Dataset

- Kaggle.
- 4920 images.
 - 2769 Glasses
 - 2151 No glasses
 - 1024 X 1024

Tools

- Pandas
- Numpy
- Matplotlib
- Seaborn
- Sklearn
- Keras
- Tensorflow
- Visualkeras
- Pickle

02

PREPROCESSING

Preprocessing

Resize

1024x1024

128x128

img_to_array

Using keras preprocessing

Reshape

To be fitted into models

03

DATA ANALYSIS

Data Sample

Pie Chart for Image Classes

Comparison Between Number of Images in Each Class

2769 → 4770 Glasses

2151 → 4629 No glasses

Augmentation Sample

Classes Count Comparison

Baseline Logistic Regression

Before Augmentation

After Augmentation

Training: 1.00

Validation: 0.9918

Training: 0.9700

Validation: 0.8668

Simple NN Model

CNN Model

0.9966

0.9959

Conv2D MaxPooling2D Flatten Dense

Transfer Learning

Model	Training	Validation
VGG16	0.9972	0.9756
Xception	0.8991	0.8638
ResNet50	0.9966	0.9756
MobileNet	0.9720	0.9247
DenseNet121	0.9435	0.9146
EfficientNetB1	0.9951	0.9817

Best Model

Conv2D MaxPooling2D Flatten Dense Dropout

Test

Future Work

