CS3231 Midterm 1 Printed Notes

Chong Chin Herng

September 2024

1 Preliminaries

Alphabet An alphabet is a finite non-empty set of symbols.

String A string is a finite sequence of symbols chosen from a given alphabet. The empty string is denoted as ϵ .

Length of a string The length of a string is the number of symbols in the string.

Powers of an alphabet Σ^k is the set of all possible strings over Σ of length k. $\Sigma^{\leq k}$ is the set of all possible strings over Σ of length at most k.

Concatenation of strings If $x = x_1 x_2 \cdots x_m$ and $y = y_1 y_2 \cdots y_n$, then the concatenation of x and y, denoted as $x \cdot y$, is $x_1 x_2 \cdots x_m y_1 y_2 \cdots y_n$.

Substring A string s is a substring of a string $x = x_1 x_2 \cdots x_n$ if and only if there exists $1 \le i, j \le n$ such that $s = x_i x_{i+1} \cdots x_j$.

Subsequence A string s is a subsequence of a string $x = x_1 x_2 \cdots x_n$ if and only if there exists $1 \le i_1, i_2, \cdots, i_k \le n$ such that $i_1 < i_2 < \cdots < i_k$ and $s = x_{i_1} x_{i_2} \cdots x_{i_k}$.

Language A language over an alphabet is a set of strings over the alphabet.

For any language L, L_1 and L_2 ,

- $L_1 \cdots L_2 = L_1 L_2 = \{xy : x \in L_1, y \in L_2\}$
- $L^* = \{x_1 x_2 \cdots x_n : x_1, x_2, \cdots, x_n \in L, n \in \mathbb{N}\} = \{\epsilon\} \cup L \cup LL \cup \cdots$
- $L^+ = \{x_1 x_2 \cdots x_n : x_1, x_2, \cdots, x_n \in L, n \ge 1\} = L \cup LL \cup \cdots$

Theorem 1.1 Number of strings over any alphabet is countable.

Theorem 1.2 Number of languages over any alphabet is uncountable.

2 DFA, NFA, Regular Expressions

Deterministic Finite Automaton (DFA) A DFA $(Q, \Sigma, \delta, q_0, F)$ is a finite automaton where

- ullet Q is a finite set of states
- Σ is a finite set of input symbols
- $\delta: Q \times \Sigma \to Q$ is a transition function
- $q_0 \in Q$ is a starting state
- $F \subseteq Q$ is a finite set of accepting states

Additionally, $\hat{\delta}: Q \times \Sigma^*$ is defined recursively as

$$\hat{\delta}(q, \epsilon) = q$$

$$\hat{\delta}(q, xa) = \delta(\hat{\delta}(q, x), a)$$

Regular language A regular language is a language accepted by some finite automaton.

Transition diagram A transition diagram is a pictorial representation of a DFA.

Transition table A transition table is a tabular representation of a DFA.

Language accepted by a DFA A language L is accepted by a DFA A if and only if $L = L(A) = \{w | \hat{\delta}(q_0, w) \in F\}$.

Dead state A state q of a DFA is a dead state if and only if for all $w \in \Sigma^*$ we have $\hat{\delta}(q, w) \notin F$.

Unreachable state A state q of a DFA is an unreachable state if and only if for all $w \in \Sigma^*$ we have $\hat{\delta}(q_0, w) \neq q$.

Nondeterministic Finite State Automaton (NFA) An NFA $(Q, \Sigma, \delta, q_0, F)$ is a finite automaton where

- Q is a finite set of states
- Σ is a finite set of input symbols
- $\delta: Q \times \Sigma \to \mathcal{P}(Q)$ is a transition function
- $q_0 \in Q$ is a starting state
- $F \subseteq Q$ is a finite set of accepting states

Additionally, $\hat{\delta}: Q \times \Sigma^*$ is defined recursively as

$$\hat{\delta}(q, \epsilon) = \{q\}$$

$$\hat{\delta}(q, xa) = \bigcup_{p \in \hat{\delta}(q, x)} \delta(p, a)$$

Language accepted by an NFA A language L is accepted by an NFA A if and only if $L = L(A) = \{w | \hat{\delta}(q_0, w) \cap F \neq \emptyset\}$.

Theorem 2.1 There is a DFA that accepts a given language if and only if there is an NFA that accepts the same language.

 ϵ -NFA An ϵ -NFA $(Q, \Sigma, \delta, q_0, F)$ is a finite automaton where

- Q is a finite set of states
- Σ is a finite set of input symbols
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \to \mathcal{P}(Q)$ is a transition function
- $q_0 \in Q$ is a starting state
- $F \subseteq Q$ is a finite set of accepting states

Additionally, for any state $q \in Q$, the ϵ -closure of q, denoted as Eclose(q), is a subset of Q is defined recursively as

$$q \in Eclose(q)$$

If $p \in Eclose(q)$, then each state in $\delta(p, \epsilon)$ is in Eclose(q)

and membership of Eclose(q) can always be demonstrated by finitely many applications of the above two statements.

 $\hat{\delta}: Q \times \Sigma^*$ is defined recursively as

$$\begin{split} \hat{\delta}(q, \epsilon) &= Eclose(q) \\ \hat{\delta}(q, wa) &= \bigcup_{p \in R} Eclose(p), \text{ where } R = \bigcup_{p \in \hat{\delta}(q, w)} \delta(p, a) \end{split}$$

Language accepted by an ϵ -NFA A language L is accepted by an ϵ -NFA A if and only if $L = L(A) = \{w | \hat{\delta}(q_0, w) \cap F \neq \emptyset\}.$

Theorem 2.2 There is an ϵ -NFA that accepts a given language if and only if there is a DFA that accepts the same language.

Regular expression A regular expression is a method to describe a language over Σ and is defined recursively as

- ϵ and \emptyset are regular expressions, and $L(\epsilon)=\{\epsilon\}$ and $L(\emptyset)=\emptyset$
- For all $a \in \Sigma$, a is a regular expression, and $L(a) = \{a\}$
- If r_1, r_2 are regular expressions, then $r_1 + r_2, r_1 \cdot r_2, r_1^*$ and (r_1) are regular expressions
- $L(r_1 + r_2) = L(r_1) \cup L(r_2)$
- $L(r_1 \cdot r_2) = \{xy | x \in L(r_1) \text{ and } y \in L(r_2)\}$
- $L(r_1^*) = \{x_1 x_2 \cdots x_k | \text{ for all } 1 \le i \le k, x_i \in L(r_1)\}$
- $\bullet \ L((r_1)) = L(r_1)$

In regular expressions, * has the highest precedence, followed by \cdot , followed by +.

Theorem 2.3 There is a regular expression that can describe a language accepted by some DFA.

Theorem 2.4 There is an ϵ -NFA that can accept a language described by some regular expression.

Theorem 2.5 For any regular expression L, M and N we have

- $\bullet M + N = N + M$
- L(M+N) = LM + LN
- \bullet L+L=L
- $(L^*)^* = L^*$
- $\bullet \ \ \emptyset^* = \epsilon$
- $\bullet \ \epsilon^* = \epsilon$
- $L^+ = LL^* = L^*L$
- $L^* = \epsilon + L^+$
- $(L+M)^* = (L^*M^*)^*$

3 Minimization of DFA

Theorem 3.1 Let L be a regular language over Σ . Define the equivalence relation \equiv_L on Σ^* such that $u \equiv_L w$ if and only if for all $x \in \Sigma^*$ we have $ux \in L \iff wx \in L$. Note that since L is regular, Σ^*/\equiv_L must be finite. Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA where

$$Q = \{[w] : w \in \Sigma^*\}$$
$$q_0 = [\epsilon]$$
$$F = \{[w] : w \in L\}$$
$$\delta([w], a) = [wa]$$

Note that δ is well-defined as $u \equiv_L w \implies ua \equiv_L wa$. A is the unique minimal (with respect to |Q|) DFA for L.

Distinguishable states Two states (p,q) of a DFA are distinguishable if and only if there exists a string w over the relevant alphabet such that either

$$\hat{\delta}(p, w) \in F$$
 and $\hat{\delta}(q, w) \notin F$, or $\hat{\delta}(p, w) \notin F$ and $\hat{\delta}(q, w) \in F$

Additionally, (p,q) are indistinguishable if it is not indistinguishable.

Algorithm 3.2 Given a DFA with transition function δ , the algorithm below determines all pairs of indistinguishable states.

- 1. Each pair of states (p,q) such that $p \in F$ and $q \notin F$ is distinguishable.
- 2. If $\delta(p,a)$ and $\delta(q,a)$ are distinguishable, then (p,q) is distinguishable.
- 3. Repeat step 2 until no new pairs of distinguishable states are discovered.
- 4. The remaining pairs of states are indistinguishable.

Algorithm 3.3 Given DFA $(Q, \Sigma, \delta, q_0, F)$ accepting L, the algorithm below forms the unique minimal DFA accepting L.

- 1. Delete all unreachable states.
- 2. Invoke algorithm 3.2 to find all pairs of indistinguishable states.
- 3. Define an equivalence relation \sim on the set of states such that two states are equivalent if and only if they are indistinguishable.
- 4. The DFA $(Q/\sim, \Sigma, \delta_{new}, [q_0], \{[q]|q \in F\})$ where $\delta_{new}([p], a) = [q]$ if and only if $\delta(p, a) = q$ is the unique minimal DFA accepting L.

4 Properties of Regular Languages

Theorem 4.1 (Pumping Lemma) Let L be a regular language. There exists $n \in \mathbb{Z}^+$ such that for all $w \in L$ satisfying |w| > n, we can write w = xyz such that

- $y \neq \epsilon$
- $|xy| \le n$
- For all $k \in \mathbb{N}$ we have $xy^kz \in L$

Theorem 4.2 For any language L, L_1 and L_2 over Σ ,

- If L_1, L_2 are regular, then $L_1 \cup L_2$ is regular.
- If L_1, L_2 are regular, then $L_1 \cdot L_2$ is regular.
- If L is regular, then $\overline{L} = \Sigma^* L$ is regular.
- If L_1, L_2 are regular, then $L_1 \cap L_2$ is regular.
- If L_1, L_2 are regular, then $L_1 L_2$ is regular.
- If L is regular, then $L^R = \{x^R | x \in L\}$ is regular.

5 Homomorphism

Homomorphism For any alphabet Σ and Γ , a mapping $h: \Sigma^* \to \Gamma^*$ is a homomorphism if and only if $h(\epsilon) = \epsilon$ and for all $a \in \Sigma$ and $w \in \Sigma^*$ we have h(aw) = h(a)h(w).

Theorem 5.1 For any homomorphism h, if L is regular, then h(L) is regular.

Tutorial 1

Question 2 There are $|\Sigma|^n$ strings of length n over Σ . If $|\Sigma| > 1$, then there are $\frac{|\Sigma|^{n+1}-1}{|\Sigma|-1}$ strings of length $\leq n$ over Σ . If $|\Sigma| = 1$, then there are n+1 strings of length $\leq n$ over Σ .

Question 3 For all languages A, B_1, B_2, \dots , we have $A \cdot (\bigcup_{i=1}^{\infty} B_i) = \bigcup_{i=1}^{\infty} (A \cdot B_i)$ and $(A^*)^+ = (A^+)^* = A^*$.

Tutorial 2

Question 2 For any DFA $(Q, \Sigma, \delta, q_0, F)$ we have $\hat{\delta}(q, xy) = \hat{\delta}(\hat{\delta}(q, x), y)$ for all strings x, y over Σ and all states $q \in Q$.

Tutorial 3

Question 3a If A and B are regular, then $A \cdot \overline{B}$ is regular.

Question 3f If L is regular, then $\{x: |x| = 2r \text{ for some } r \in \mathbb{N} \text{ and } x_1x_3\cdots x_{2r-1} \in L\}$ is regular.

Question 4 If L is regular, then $HALF(L) = \{w | (\exists u) [wu \in L \text{ and } |w| = |u|] \}$ is regular.