HEC 2017

EXERCICE

Pour tout $n \in \mathbb{N}^*$, on note $\mathscr{M}_n(\mathbb{R})$ l'ensemble des matrices carrés à n lignes et n colonnes à coefficients réels et B_n l'ensemble des matrices de $\mathscr{M}_n(\mathbb{R})$ dont tous les coefficients sont égaux à 0 ou à 1.

- 1. Exemple 1. Soit A la matrice de B_2 définie par : $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.
 - a) Calculer la matrice A^2 .
 - b) Quelles sont les valeurs propres de A?
 - c) La matrice A est-elle diagonalisable?
- 2. Exemple 2. Soit B la matrice de B_3 définie par : $B = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

On considère les instructions et la sortie Scilab suivantes :

```
\begin{array}{lll}
\underline{1} & B = [0,1,0;1,0,0;0,0,1] \\
\underline{2} & P = [1,1,0;1,-1,0;0,0,1] \\
\underline{3} & inv(P) \star B \star P
\end{array}
```

```
ans =
1. 0. 0.
0. - 1. 0.
0. 0. 1.
```

- a) Déduire les valeurs propres de B de la séquence **Scilab** précédente.
- b) Déterminer une base de chacun des sous-espaces propres de B.
- 3. a) Combien existe-t-il de matrices appartenant à B_n ?
 - b) Combien existe-t-il de matrices de B_n dont chaque ligne et chaque colonne comporte exactement un coefficient égal à 1?
- 4. Dans cette question, n est un entier supérieur ou égal à 2.

Soit E un espace vectoriel de dimension n et u un endomorphisme de E. On note :

- id l'endomorphisme identité de E;
- F le noyau de l'endomorphisme (u + id) et G le noyau de l'endomorphisme (u id);
- p la dimension de F et q la dimension de G.

On suppose que $u \circ u = id$.

- a) Justifier que l'image de (u id) est incluse dans F.
- **b)** En déduire l'inégalité : $p + q \ge n$.

On suppose désormais que $1 \leq p < q$. Soit (f_1, f_2, \ldots, f_p) une base de F et (g_1, g_2, \ldots, g_q) une base de G.

- c) Justifier que $(f_1, f_2, \ldots, f_p, g_1, g_2, \ldots, g_q)$ est une base de E.
- **d)** Calculer $u(g_1 f_1)$ et $u(g_1 + f_1)$.
- e) Trouver une base de E dans laquelle la matrice de u appartient à B_n .

PROBLÈME

Les tables de mortalité sont utilisées en démographie et en actuariat pour prévoir l'espérance de vie des individus d'une population. On s'intéresse dans ce problème à un modèle qui permet d'ajuster la durée de vie à des statistiques portant sur les décès observés au sein d'une génération.

Dans tout le problème, on note :

- a et b deux réels strictement positifs;
- $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé sur lequel sont définies toutes les variables aléatoires du problème;
- $G_{a,b}$ la fonction définie sur \mathbb{R}_+ par : $G_{a,b}(x) = \exp\left(-ax \frac{b}{2}x^2\right)$.

Partie I. Loi exponentielle linéaire

- 1. a) Montrer que la fonction $G_{a,b}$ réalise une bijection de \mathbb{R}_+ sur l'intervalle [0,1].
 - **b**) Pour tout réel y > 0, résoudre l'équation d'inconnue $x \in \mathbb{R}$: $ax + \frac{b}{2}x^2 = y$.
 - c) On note $G_{a,b}^{-1}$ la bijection réciproque de $G_{a,b}$. Quelle est, pour tout $u \in [0,1[$, l'expression de $G_{a,b}^{-1}(1-u)$?
- 2. a) Justifier la convergence de l'intégrale $\int_0^{+\infty} G_{a,b}(x) dx$.
 - b) Soit f la fonction définie sur \mathbb{R} par : $f(x) = \sqrt{\frac{b}{2\pi}} \times \exp\left(-\frac{1}{2}b\left(x + \frac{a}{b}\right)^2\right)$.

 Montrer que f est une densité d'une variable aléatoire suivant une loi normale dont on précisera les paramètres (espérance et variance).
 - c) Soit Φ la fonction de répartition de la loi normale centrée réduite. Déduire de la question 2.b), l'égalité :

$$\int_0^{+\infty} \ G_{a,b}(x) \ dx = \sqrt{\frac{2\pi}{b}} \times \exp\left(\frac{a^2}{2b}\right) \times \Phi\left(-\frac{a}{\sqrt{b}}\right)$$

- 3. Pour tout a > 0 et pour tout b > 0, on pose : $f_{a,b}(x) = \begin{cases} (a+bx) \exp\left(-ax \frac{b}{2}x^2\right) & \text{si } x \ge 0 \\ 0 & \text{si } x < 0 \end{cases}$
 - a) Justifier que la fonction $f_{a,b}$ est une densité de probabilité. On dit qu'une variable aléatoire suit la loi exponentielle linéaire de paramètres a et b, notée $\mathcal{E}_{\ell}(a,b)$, si elle admet $f_{a,b}$ pour densité.
 - b) Soit X une variable aléatoire suivant la loi $\mathcal{E}_{\ell}(a,b)$. À l'aide d'une intégration par parties, justifier que X admet une espérance $\mathbb{E}(X)$ telle que : $\mathbb{E}(X) = \int_0^{+\infty} G_{a,b}(x) \ dx$.
- 4. Soit Y une variable aléatoire suivant la loi exponentielle de paramètre 1. On pose : $X = \frac{-a + \sqrt{a^2 + 2bY}}{b}$
 - a) Justifier que pour tout réel $x \in \mathbb{R}_+$, on a : $\mathbb{P}([X \geqslant x]) = G_{a,b}(x)$.
 - b) En déduire que X suit la loi $\mathcal{E}_{\ell}(a,b)$.
 - c) On note U une variable aléatoire suivant la loi uniforme sur [0,1[. Déterminer la loi de la variable aléatoire $G_{a,b}^{-1}(1-U)$.

5. La fonction Scilab suivante génère des simulations de la loi exponentielle linéaire.

```
function x = grandlinexp(a,b,n)
u = rand(n,1)
y = .....
x = (-a + sqrt(a^2 + 2 * b * y)) / b
endfunction
```

- a) Quelle est la signification de la ligne de code 2?
- b) Compléter la ligne de code 3 pour que la fonction grandlinexp génère les simulations désirées.
- 6. De quel nombre réel peut-on penser que les six valeurs générées par la boucle Scilab suivante fourniront des valeurs approchées de plus en plus précises et pourquoi?

```
for k = 1:6
mean(grandlinexp(0, 1, 10 ^ k)
mean(grandlinexp(0, 1, 10 ^ k))
mean(grandlinexp(0, 1, 10 ^ k))
```

Dans la suite du problème, on note $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes suivant chacune la loi exponentielle linéaire $\mathcal{E}_{\ell}(a,b)$ dont les paramètres a>0 et b>0 sont inconnus. Soit h un entier supérieur ou égal à 2. On suit pendant une période de h années, une « cohorte » de n individus de même âge au début de l'étude et on modélise leurs durées de vie respectives à partir de cette date par les variables aléatoires X_1, X_2, \ldots, X_n .

Partie II. Premier décès et intervalle de confiance de a

Pour tout $n \in \mathbb{N}^*$, on définit les variables aléatoires M_n , H_n et U_n par :

$$M_n = \min(X_1, X_2, \dots, X_n), \quad H_n = \min(h, X_1, X_2, \dots, X_n) \quad \text{et} \quad U_n = nH_n.$$

- 7. Calculer pour tout $x \in \mathbb{R}_+$, la probabilité $\mathbb{P}([M_n \geqslant x])$. Reconnaître la loi de la variable aléatoire M_n .
- 8. Pour tout $n \in \mathbb{N}^*$, on note F_{U_n} la fonction de répartition de la variable aléatoire U_n .
 - a) Montrer que pour tout $x \in \mathbb{R}$, on a : $F_{U_n}(x) = \begin{cases} 0 & \text{si } x < 0 \\ 1 \exp\left(-ax \frac{b}{2n}x^2\right) & \text{si } 0 \leqslant x < nh \\ 1 & \text{si } x \geqslant nh \end{cases}$
 - b) Étudier la continuité de la fonction F_{U_n} .
 - c) La variable aléatoire U_n admet-elle une densité?
 - d) Montrer que la suite de variables aléatoires $(U_n)_{n\in\mathbb{N}^*}$ converge en loi vers une variable aléatoire dont on précisera la loi.
- **9.** Soit $\alpha \in [0, 1[$.
 - a) Soit Y une variable aléatoire qui suit la loi exponentielle de paramètre 1. Trouver deux réels c et d strictement positifs tels que :

$$\mathbb{P}([c \leqslant Y \leqslant d]) = 1 - \alpha \text{ et } \mathbb{P}([Y \leqslant c]) = \frac{\alpha}{2}$$

b) Montrer que $\left[\frac{c}{U_n}, \frac{d}{U_n}\right]$ est un intervalle de confiance asymptotique de a, de niveau de confiance $1-\alpha$.

Partie III. Nombre de survivants et estimateur convergent de b

Pour tout $i \in \mathbb{N}^*$, soit S_i et D_i les variables aléatoires telles que :

$$S_i = \begin{cases} 1 & \text{si } X_i \geqslant h \\ 0 & \text{sinon} \end{cases} \quad \text{et} \quad D_i = \begin{cases} 1 & \text{si } X_i \leqslant 1 \\ 0 & \text{sinon} \end{cases}$$

Pour tout $n \in \mathbb{N}^*$, on pose : $\overline{S}_n = \frac{1}{n} \sum_{i=1}^n S_i$ et $\overline{D}_n = \frac{1}{n} \sum_{i=1}^n D_i$.

- 10. a) Justifier que pour tout $i \in [1, n]$, on a $\mathbb{E}(S_i) = G_{a,b}(h)$ et calculer $\mathbb{E}(S_iD_i)$.
 - b) Pour quels couples $(i,j) \in [1,n]^2$, les variables aléatoires S_i et D_j sont-elles indépendantes?
 - c) Déduire des questions précédentes l'expression de la covariance $Cov(\overline{S}_n, \overline{D}_n)$ de \overline{S}_n et \overline{D}_n en fonction de n, $G_{a,b}(h)$ et $G_{a,b}(1)$. Le signe de cette covariance était-il prévisible?
- 11. a) Montrer que \overline{S}_n est un estimateur sans biais et convergent du paramètre $G_{a,b}(h)$.
 - b) De quel paramètre, \overline{D}_n est-il un estimateur sans biais et convergent?
- 12. On pose : $z(a,b) = \ln(G_{a,b}(1))$ et $r(a,b) = \ln(G_{a,b}(h))$. Pour tout $n \in \mathbb{N}^*$, on pose : $Z_n = \ln\left(1 - \overline{D}_n + \frac{1}{n}\right)$ et $R_n = \ln\left(\overline{S}_n + \frac{1}{n}\right)$.

On admet que Z_n et R_n sont des estimateurs convergents de z(a,b) et r(a,b) respectivement.

- a) Soit ε , λ et μ des réels strictement positifs.
 - (i) Justifier l'inclusion suivante :

$$\left|\left|\left(\lambda Z_n - \mu R_n\right) - \left(\lambda z(a,b) - \mu r(a,b)\right)\right| \geqslant \varepsilon\right| \subset \left|\lambda |Z_n - z(a,b)| + \mu |R_n - r(a,b)| \geqslant \varepsilon\right|.$$

(ii) En déduire l'inégalité suivante :

$$\mathbb{P}([|(\lambda Z_n - \mu R_n) - (\lambda z(a, b) - \mu r(a, b))| \geqslant \varepsilon])$$

$$\leqslant \mathbb{P}\left([|Z_n - z(a, b)| \geqslant \frac{\varepsilon}{2\lambda}]\right) + \mathbb{P}\left([|R_n - r(a, b)| \geqslant \frac{\varepsilon}{2\mu}]\right)$$

b) Pour tout $n \in \mathbb{N}^*$, on pose : $B_n = \frac{2}{h-1}Z_n - \frac{2}{h(h-1)}R_n$. Montrer que B_n est un estimateur convergent du paramètre b.