

In the claims:

Please amend the claims as follows:

- 1 1. (currently amended) An induction instrument comprising:
 - 2 a quadrupole transmitter for transmitting an electromagnetic signal into a layered
 - 3 formation adjacent a well bore;
 - 4 a receiver for receiving a signal from the formation in response to the transmitted
 - 5 electromagnetic signal; and
 - 6 a processor for analyzing the received signal and for determining from the received signal
 - 7 polarity indicative of a direction for a boundary between layers in the well bore.

- 1 2. (currently amended) The instrument of claim 1, further comprising:
 - 2 a wherein the quadrupole transmitter further comprises comprising a first transmitter coil
 - 3 having a moment pointing in a first direction substantially perpendicular to a well bore
 - 4 the borehole axis and a second transmitter coil having a moment pointing in a direction
 - 5 opposite to the first direction.

- 1 3. (currently amended) The instrument of claim 2, further comprising:
 - 2 a receiver positioned between the first and second transmitter coils and having a moment
 - 3 substantially perpendicular to the borehole well bore axis.

- 1 4. (original) The instrument of claim 3, wherein the first transmitter coil and second
- 2 transmitter coil are separated by a distance of about 10 cm.

1 5. (original) The instrument of claim 2 further comprising:
2 a switch for reversing a direction for a current flowing in the first transmitter coil so that
3 the moment of the first transmitter coil and the moment of the second transmitter coil
4 point in the same direction for obtaining array type induction measurements resistivity
5 data.

1 6. (currently amended) The instrument of claim 1, further comprising:
2 electronics for exciting the transmitter at a frequency frequencies ranging from 100 kHz
3 to 2 MHz.

1 7. (original) The instrument of claim 2, wherein the opposing transmitter coil moments
2 cancel eddy currents induced in the conductive drill.

1 8. (original) The instrument of claim 1, wherein the signal received from the formation
2 further comprises:
3 an in-phase and quadrature component.

1 9. (currently amended) The instrument of claim 1, further comprising:
2 A a sign reversal between a signal received from an up boundary for a layer above the
3 instrument and the a signal received from a down boundary for a layer below the
4 instrument.

1 10. (original) The instrument of claim 2, further comprising:

2 an array of receivers for obtaining array type induction measurements resistivity data.

1 11. (currently amended) A method for determining the direction of ~~a~~ layer in ~~a~~ layer
2 formation comprising:

3 transmitting from a quadrupole transmitter in an induction tool an electromagnetic signal
4 into a layered formation adjacent a well bore;
5 receiving a signal from the formation in response to the transmitted electromagnetic
6 signal; and
7 determining from the received signal polarity a direction for a boundary between layers
8 in the formation well bore.

1 12. (currently amended) The method of claim 11, further comprising:

2 directing a current into a first transmitter of a the quadrupole transmitter thereby
3 generating a moment pointing in a first moment direction substantially perpendicular to a
4 wellbore longitudinal axis; and
5 directing current into a second transmitter coil of a the quadrupole transmitter thereby
6 generating a moment pointing in a direction opposite to the first moment direction.

1 13. (currently amended) The method of 12, further comprising:

2 positioning a receiver between the first and second transmitter coils for receiving a the
3 signal from the formation.

1 14. (original) The method of claim 13, further comprising:

2 separating the first transmitter coil and second transmitter coil by a distance of about 10
3 cm.

1 15. (currently amended) The method of claim 12 further comprising:
2 reversing a direction for ~~a~~ the current flowing in the first transmitter coil so that the
3 moment of the first transmitter coil and the moment of the second transmitter coil point in
4 the same direction for obtaining array type induction resistivity measurement data.

1 16. (currently amended) The method of claim 11, further comprising:
2 exciting the transmitter at a frequency frequencies ranging from 100 kHz to 2 MHz.

1 17. (currently amended) The method of claim 12, further comprising:
2 generating opposing transmitter coil moments for canceling eddy currents induced
3 in ~~the~~ a conductive drill.

1 18. (original) The method of claim 11 further comprising:
2 obtaining array type induction measurements resistitivy data

1 19. (original) The method of claim 11, further comprising:
2 processing an in-phase and quadrature component of the signal received from the
3 formation.

1 20. (original) The method of claim 11, further comprising:
2 detecting a sign reversal between a signal received from an up boundary for a layer ~~above~~
3 the instrument and a signal received from a down boundary for a layer below the
4 instrument.

1 21. (currently amended) A computer readable medium containing instruction that when
2 executed by a computer perform a method for determining the direction of ~~a~~ layer in a
3 layer formation comprising:
4 transmitting from a quadrupole transmitter in an induction tool, an electromagnetic signal
5 into a layered formation adjacent a well bore;
6 receiving a signal from the formation in response to the transmitted electromagnetic
7 signal; and
8 determining from ~~the~~ a received signal polarity a direction for a boundary between layers
9 in the formation well-bore.

1 22. (currently amended) The medium of claim 21, further comprising:
2 directing a current into a first transmitter of ~~a~~ the quadrupole transmitter thereby
3 generating a moment pointing in a first moment direction substantially perpendicular to
4 the bore hole axis a wellbore longitudinal axis; and
5 directing current into a second transmitter coil of ~~a~~ the quadrupole transmitter thereby
6 generating a moment pointing in a second direction opposite to the first moment
7 direction.

1 23. (cancelled)

1 24. (cancelled)

1 25. (currently amended) The medium of claim 22, the method further comprising:
2 reversing a direction for a current flowing in the first transmitter coil so that the moment
3 of the first transmitter coil and the moment of the second transmitter coil point in the
4 same direction for obtaining array type induction measurements resistivity data.

1 26. (currently amended) The medium of claim 21, the method further comprising:
2 exciting the transmitter at frequencies ranging from 100 kHz to 2 MHz.

1 27. (currently amended) The medium of claim 22, the method further comprising:
2 generating opposing transmitter coil moments for canceling eddy currents induced in a
3 the conductive drill.

1 28. (currently amended) The medium of claim 21, the method further comprising:
2 obtaining array type induction measurements resistitivy data.

1 29. (currently amended) The medium of claim 21, wherein the signal received from the
2 formation further comprises:
3 processing an in-phase and quadrature component of the signal received from the
4 formation.

- 1 30. (original) The medium of claim 21, further comprising:
2 detecting a sign reversal between a signal received from an up boundary for a layer above
3 the instrument and a signal received from a down boundary for a layer below the
4 instrument.