Mechatronics System Design EC4.404 - S2023

Lecture 11

Nagamanikandan Govindan

Robotics Research Center, IIIT Hyderabad. nagamanikandan.g@iiit.ac.in

LIMITING CONDITIONS

▶ Toggle Positions:

- determined by the colinearity of two of the moving links.
- Will not allow further input motion in one direction from one of its rocker links

(a) Non-Grashof triple-rocker toggle positions

4-toggle positions

(b) Grashof crank-rocker stationary configurations

2 toggle positions

Graphical Synthesis - Motion generation for the prescribed point

Point

Graphical Synthesis - Motion generation for the prescribed pose Pose

Graphical Synthesis - Motion generation for the two prescribed point

Grapl

Rig

LIMITING CONDITIONS

▶ Toggle Positions:

- determined by the colinearity of two of the moving links.
- Will not allow further input motion in one direction from one of its rocker links

(a) Non-Grashof triple-rocker toggle positions

4-toggle positions

(b) Grashof crank-rocker stationary configurations

2 toggle positions

Two-Position Synthesis

Two categories:

- Rocker output
 - Grashof
 - Non-Grashof
- Coupler output (complex motion).

Two-Position Synthesis - Rocker output

Two-Position Synthesis - Rocker output

Design a fourbar Grashof crank-rocker to give 45° of rocker rotation with equal time forward and back, from a constant speed motor input

- 1. Draw the output link O_4B in both extreme cases, and ensure desired angle
- 2. Draw B_1B_2 chord and extend it
- 3. Select O_2 on the extended line B_1B_2
- 4. Bisect line segment B_1B_2 , and draw a circle of that radius about O_2 .
- 5. Coupler length A_1B_1 , Crank length O_2A_1
- 6. Find the Grashof condition. If non-Grashof, redo from steps 3 with O_2 farther from O_4 .

Two-Position Synthesis - Rocker output

Design a fourbar Grashof crank-rocker to give 45° of rocker rotation with equal time forward and back, from a constant speed motor input

- 1. Draw the output link O_4B in both extreme cases, and ensure desired angle
- 2. Draw B_1B_2 chord and extend it
- 3. Select O_2 on the extended line B_1B_2
- 4. Bisect line segment B_1B_2 , and draw a circle of that radius about O_2 .
- 5. Coupler length $A_1 B_1$, Crank length $O_2 A_1$
- 6. Find the Grashof condition. If non-Grashof, redo from steps 3 with O_2 farther from O_4 .

- Design a fourbar linkage to move link CD from position C_1D_1 to C_2D_2
- 1. Draw construction lines from point C_1 to C_2 and from point D_1 to D_2 .
- 2. Bisect line $C_1 C_2$ and line $D_1 D_2$ and extend the perpendicular bisectors
- 3. Draw the output link O_4C in both extreme cases, and ensure desired angle
- 4. Draw a circle with radius ${}^{B_1}{}^{B_2}/_2$ The radius is the length of the sixth link.

Two positions, coupler as the output

- 1. Draw the link AB in its two desired positions, A_1B_1 and A_2B_2
- 2. Connect A_1 to A_2 and B_1 to B_2 .
- 3. Draw two lines perpendicular to $A_1 A_2$ and $B_1 B_2$ at the midpoint (midnormals).
- 4. Select two fixed pivot points, O_2' and O_4 , anywhere on the two midnormals.
- 5. Measure the length of all links,

 $O_2A = link 2$, AB = link 3,

 $O_4B = link 4$ and $O_2O_4 = link 1$

Adding a Dyad to a non-Grashof mechanism.

- 1. Draw the four bar in both positions
- 2. Select any point C on link 2.
- 3. Connect C_1 to C_2 and extend.
- 4. Select any location on this line for third fixed pivot, O₆.
- 5. Draw a circle with radius $C_1C_2/2$. The radius is the length of the sixth link.
- 6. Measure $O_6D = link 6$, DC = link 5

Completed Watt sixbar linkage with motor D_1 C_1 Link 6 A_2 A_1 B_2 O_4 B_1 O_2

Completed Watt sixbar linkage with motor

There is an infinity of driver dyads possible that will drive any double-rocker assemblage of links

Graphical Synthesis - Motion generation: 2 prescribed position

Graphical Synthesis - Motion generation: 2 prescribed position

Graphical Synthesis - Motion generation: 2 prescribed position

Graphical Synthesis - Motion generation: 3 prescribed position

(a) Construction method

(b) Finished non-Grashof fourbar

Coupler Output - Three Positions with Complex Displacement - Alternate Attachment Points for Moving Pivots. (Motion Generation)

Coupler Output - Three Positions with Complex Displacement - Alternate Attachment Points for Moving Pivots. (Motion Generation)

