VIII

Exercices d'approfondissement

- Soit ABCD un carré de centre O et de coté a, I et J sont les points du plan tels que : $\overrightarrow{AI} = \frac{1}{3}\overrightarrow{AB}$ et $\overrightarrow{AJ} = \frac{2}{3}\overrightarrow{AD}$. On désigne par K le point d'intersection des droites (ID) et (JC). Soit H le projeté orthogonal du point A sur (DI).
 - **1** Faire une figure.
 - **2 a.** Montrer que $\overrightarrow{IA}.\overrightarrow{JC} = -\frac{a^2}{3}$ et que $\overrightarrow{AD}.\overrightarrow{JC} = \frac{a^2}{3}$
 - **b.** En déduire que les droites (*ID*) et (*JC*) sont perpendiculaires.
 - **3 a.** Montrer que $\overrightarrow{DC} \cdot \overrightarrow{DI} = \frac{a^2}{3}$
 - **b.** En déduire que $DK = \frac{a}{\sqrt{10}}$
 - **4 a.** Montrer que $\overrightarrow{IJ}.\overrightarrow{ID} = \frac{7a^2}{9}$ et que $\overrightarrow{IJ}.\overrightarrow{IB} = -\frac{2a^2}{9}$
 - **b.** En déduire que : $\overrightarrow{IJ} \cdot \overrightarrow{IO} = \frac{5a^2}{18}$
 - **5** En utilisant un produit scalaire, montrer que : $IH \times ID = IA^2$. En déduire la distance IH.
- Soit ABCD un carré de coté 1 et I, J, et K sont les milieux respectifs de [AB], [AD] et [IA]. H est le projeté orthogonal de A sur (DI). On considère dans le plan le repère $(A, \overrightarrow{AB}, \overrightarrow{AD})$.
 - **1 a.** Déterminer les coordonnés du vecteur \overrightarrow{ID} .
 - **b.** En déduire une équation cartésienne de chacune des droites (ID) et (AH).
 - **c.** Déterminer alors les coordonnées (x;y) du point H.
 - **2** Montrer que les droites (JH) et (HK) sont perpendiculaires.
 - **3** En utilisant un produit scalaire convenable, écrire l'équation réduite du cercle C de diamètre [JK].
 - Soit la droite (Δ): x + 2y = 0. Montrer que (Δ) est tangente au cercle C en A.

03

 $(O, \overrightarrow{i}, \overrightarrow{j})$ étant un repère orthonormé du plan. On donne les points A(1; -2), B(2; 0) et C(0; 1).

- \blacksquare Placer les points A, B et C.
- **2 a.** Calculer \overrightarrow{AB} . \overrightarrow{BC} , AB et BC.
 - **b.** En déduire la nature du triangle ABC.
- **3** Soit *C* l'ensemble des points M(x;y) du plan vérifiant : $x^2 + y^2 x + y 2 = 0$.
 - **a.** Montrer que C est un cercle dont on précisera le centre I et le rayon R
 - **b.** Tracer le cercle *C* et vérifier qu'il est circonscrit au triangle *ABC*.
- 4 En utilisant un produit scalaire convenable, déterminer une équation cartésienne de la droite (*T*) tangente au cercle *C* au point *A*.
- Dans un plan P, on considère un rectangle ABCD de centre O tel que : AB = 8 et AD = 4. On désigne par I, J et K les milieux respectifs de [AB], [DC] et [OI].
 - 1 Calculer \overrightarrow{KA} . \overrightarrow{KB}
 - **a.** Montrer que pour tout points M du plan P, on a :

$$\overrightarrow{MA}$$
, \overrightarrow{MB} + \overrightarrow{MC} , \overrightarrow{MD} = $2MO^2 - 24$

- **b.** En déduire $\overrightarrow{KC}.\overrightarrow{KD}$.
- **3** Déterminer l'ensemble C des points M du plan P tels que :

$$\overrightarrow{MA}.\overrightarrow{MB} + \overrightarrow{MC}.\overrightarrow{MD} = -22$$

05

Dans un plan P, on considère un triangle ABC tel que : AB = a , AC = 2a et $(B\hat{A}C) = \frac{2\pi}{3}$; (a > 0).

- 1 Montrer que $BC = a\sqrt{7}$
- 2 Soit *H* le projeté orthogonal de *C* sur (*AB*).
 - **a.** En utilisant un produit scalaire, montrer que AH = a
 - **b.** Montrer que H est le barycentre des points pondérés (A; 2) et (B; -1).
- **3** Déterminer l'ensemble (E') des points M du plan tels que : $(2\overrightarrow{MA} \overrightarrow{MB}).\overrightarrow{AB} = 0$
- Déterminer l'ensemble (E) des points M du plan tels que : $\frac{MB}{MA} = \sqrt{2}$

- Soit dans un plan P un triangle équilatéral ABC de coté a (a > 0). On désigne par I le milieu du segment [AB].
 - **1 a.** Exprimer $\overrightarrow{BA} \cdot \overrightarrow{BC}$ en fonction de a.
 - **b.** Montrer que pour tout point M de la médiatrice de [AB], on $a: \overrightarrow{AB}.\overrightarrow{AM} = \frac{1}{2}a^2$
 - **2** Soit G le barycentre des points pondérés (A; 3) et (B; -2).
 - **a.** Montrer que $\overrightarrow{GA} = 2.\overrightarrow{AB}$
 - **b.** En déduire *GA* en fonction de *a*.
 - **3 a.** Montrer que pour tout point M du plan, on $a:3MA^2-2MB^2=MG^2-6a^2$
 - **b.** En déduire l'ensemble : $C = \{ M \in P / 3MA^2 2MB^2 = 3a^2 \}$
- Dans un plan P rapporté à un repère orthonormé $R = (O, \overrightarrow{i}, \overrightarrow{j})$, On considère les points A(-2;1), B(-1;2) et C(1;4). Soit K milieu de [BC].

Soit Γ l'ensemble des points M défini par : $\Gamma = \left\{ M \in P / \overrightarrow{MA} . \overrightarrow{MB} = \overrightarrow{AM} . \overrightarrow{MC} \right\}$

- **1 a.** Montrer que $M(x;y) \in \Gamma \Leftrightarrow x^2 + y^2 + 2x 4y + 3 = 0$
 - **b.** En déduire que Γ est un cercle dont on précisera les caractéristiques.
 - **c.** Vérifier que Γ passe par A. Tracer Γ .
- **2** Soit la droite (T): x + y 3 = 0. Montrer que (T) est tangente à Γ en K.
- Soit H(x; y) le projeté orthogonal de O sur la droite (T).

En tenant compte que \overrightarrow{OH} est un vecteur normal à T et que H appartient à T, déterminer les coordonnées de H.

- Dans le plan orienté de sens direct, on considère un rectangle ABCD tel que : BC = 4, AB = 2BC et $(\overrightarrow{BA}, \overrightarrow{BC}) \equiv \frac{\pi}{2}[2\pi]$. On désigne par J le point du segment [CD] tel que $\overrightarrow{CJ} = \frac{1}{4}\overrightarrow{CD}$.
 - **1 a.** Calculer AC puis $\overrightarrow{AB}.\overrightarrow{AC}$
 - **b.** En déduire que $\cos(\widehat{BAC}) = \frac{2\sqrt{5}}{5}$.
 - **a.** Calculer $\overrightarrow{CA}.\overrightarrow{CB}$ et $\overrightarrow{CJ}.\overrightarrow{CA}$
 - **b.** En déduire que les droites (AC) et (BJ) sont perpendiculaires.
 - **3** Soit G le barycentre des points pondérés (A; 2) et (B; 3)
 - **a.** Construire le point *G*
 - **b.** Pour tout M du plan, on pose $\overrightarrow{U} = 2\overrightarrow{MA} + 3\overrightarrow{MB}$. Exprimer \overrightarrow{U} à l'aide de \overrightarrow{MG}
 - **c.** Déterminer et construire l'ensemble $\Delta = \left\{ M \in P / \overrightarrow{U}.\overrightarrow{AB} = 0 \right\}$