Choose the Correct Answer:

- The circumference of the circle = $\cdots \times \pi$
- $(r \ or \ 2r \ or \ r^2 \ or \ r+2)$
- 3. $\frac{2^3 \times 2^5}{2^2} = \cdots$
- 4. $2^5 \times 2^2 = \dots$ (2⁷ or 4⁷ or 1)
- 5. The surface area of a circle = $\pi \times$ (r or r^2 or 2 r)
- 6. $(-5)^2 \times (2)^2 = \cdots$ (10° or 10 or (10)² or (10)³)
- 7. The sum of edge lengths of a cube is 84 cm., then its lateral area equals cm.²
- 8. $\frac{1}{3}, \frac{2}{3}, 1, \frac{4}{3}, \dots, \frac{4}{3}$ (in the same pattern)
- The surface area of the circle = $(\pi r \ or \ \pi r^2 \ or \ 2\pi r \ or \ 2\pi r^2)$
- 10. If the lateral area of a cube is 36 cm², then its total area = cm².
- 11. $(-1)^3 + 2 = \cdots$ (3 or -1 or -3 or 1)
- 12. 1,4,7,10, (in the same pattern)
- 14. $\frac{8^3 \times 8^4}{8^7} = \cdots$
- 15. $5^2 \times 2^2 = \dots$ (5⁴ or 2⁴ or 10² or 10⁴)
- 16. $\{(-1)^{\text{zero}}, (\text{zero})^2\}$ \mathbb{Z} $(\in \text{or } \notin \text{or } \subset \text{or } \not\subset)$
- 17. $(5)^{zero} = \dots$ (zero or 5 or 1 or 50)
- The sum of edge lengths of a cube is 96 cm., then its lateral area = cm².
- 19. 25,21,17,13,..... (in the same pattern)

20. $(-1)^2 - 1 = \cdots$

- 21. $3^5 \div 3^2 = \dots$ (3⁷ or 3¹⁰ or 3³ or 3²)
- 22. $9^2 (-3)^4$ (> or < or = or \ge)
- 24. $\frac{1}{3}$, $\frac{1}{6}$, $\frac{1}{12}$, $\frac{1}{24}$, (in the same pattern)
- 25. $(-100)^{\text{zero}} = \dots$ (-100 or 100 or zero or 1)
- - (6 or 5 or 4 or 3)
- 27. $9^7 \div 9^5 = \dots$ $(9^{-12} \text{ or } 9^2 \text{ or } 9^{2\text{ero}} \text{ or } 9^{35})$
- - (18 or 19 or 20 or 21)
- A circle of diameter length 8 cm., then its area = $-\pi$ cm².
 - (4 **or** 8 **or** 16 **or** 64)
- 30. $(-19)^0 + (19)^0 = \cdots$ (-1 or zero or 1 or 2)
- The height of the cuboid whose lateral area is 160 cm² and the dimensions of its base are 3 cm. and 7 cm. equals cm.
 - (6 or 8 or 10 or 16)
- A cube the perimeter of its base is 36 cm., then its lateral area =cm².
 - (9 or 324 or 36 or 486)
- 33. $(-1)^{104} + (-1)^{103} = \dots$ (0 or 2 or -1 or 1)
- 34. $3^2 + 3^2 + 3^2 = \dots$ (2⁶ or 4⁶ or 3³ or 2⁹)
- The lateral area of the cuboid whose length is 6 cm. and width is 4 cm. and its height is 5 cm. equals
- 37. If a = 3, b = -2, then $3ab = \cdots$

- Half the T.S.A. of a cube whose sum of its edge lengths is 36 cm. 40. is cm². (108 or 27 or 54 or 18)
- The ratio between the T.S.A. and L.S.A. of the cube is 41.

42.
$$(-1)^{12} + (-1)^{13} = \dots$$
 (0 or 1 or 2 or -1)

43.
$$5 \times 5^2 = \dots$$
 (25² or 25³ or 5² or 5³)

47.
$$\frac{(-5)^3 \times (-5)^2}{(-5)^4}$$

48.
$$(-1)^2 \times 2^3 = \dots$$
 (2⁵ or 8 or -8 or -2⁵)

$$(27 \text{ or } 48 \text{ or } 36 \text{ or } 54)$$

50.
$$2^6 \times 2^4 = \dots$$
 (2² or 2¹² or 2¹⁰ or 2²⁴)

51.
$$3^7 \div 3^7 = \dots$$

52. A circle, its diameter length is 14 cm., then its area =
$$-cm^2 \left(\pi = \frac{22}{7}\right)$$

If the radius length of a circle is 10 cm., then its surface area =
$$\frac{2\pi}{3}$$
 (Given that : π = 3.14) (3.14 or 31.4 or 314 or 3140)

56.
$$(3)^7 \div (3)^4 = \dots$$
 (3)⁵ or (3)⁵ or (3)¹¹ or (3)²)

58 .	The perimeter of	one face of	a cube is 12 cm.	then its total	area =	cm ?

59.
$$(-5)^2 \times (2)^2 = \dots$$
 (10° or 10 or 10² or 10³)

60.
$$27 \div (-3)^2 = \cdots$$
 (-9 or 24 or 3 or 81)

A circle, its diameter length is 20 cm., then its area = cm² (
$$\pi$$
 = 3.14)

The total area of the cube = Area of one face
$$\times$$
 (2 or 4 or 6 or 8)

68.
$$2^5 \times 2^2 = \dots$$
 (2⁷ or 2⁴ or 2³ or 1)

A circle, its radius length is 4 cm., then its area =
$$-\pi$$
 cm².

70.
$$(-1)^8 + (-1)^9 + (-1)^{zero} = \dots$$
 (zero or -1 or 1 or 2)

Choose the Correct Answer:

. 1.	$(-1)^8 + (-1)^9 = \cdots$	(zero or -1 or 1 or 2)
<i>•</i>		

The circumference of the circle =
$$\pi$$
 (r or 2r) or r² or r+2)

3.
$$\frac{2^3 \times 2^5}{2^2} = \cdots 2^6$$

5. The surface area of a circle =
$$\pi \times$$
 (r or r^2 or 2 r)

6.
$$(-5)^2 \times (2)^2 = \cdots$$
 (10° or 10 or (10)² or (10)³)

8.
$$\frac{1}{3}, \frac{2}{3}, 1, \frac{4}{3}, \dots, \frac{5}{3}$$
 (in the same pattern)

The surface area of the circle =
$$(\pi r \ or \ \pi r^2) or \ 2\pi r \ or \ 2\pi r^2)$$

11.
$$(-1)^3 + 2 = \dots$$
 (3 or -1 or -3 or 1)

14.
$$\frac{8^3 \times 8^4}{8^7} = ...3^{2} = 1$$

15.
$$5^2 \times 2^2 = \dots$$
 (5⁴ or 2⁴ or 10^2 or 10^4)

16.
$$\{(-1)^{\text{zero}}, (\text{zero})^2\}$$
 \mathbb{Z} $(\in \text{ or } \notin \text{ or } \bigcirc \text{ or } \bigcirc \text{)}$

17.
$$(5)^{zero} = \dots$$
 (zero or 5 or 1 or 50)

The sum of edge lengths of a cube is 96 cm., then its lateral area =
$$.2.5.6$$
. cm²

20. $(-1)^2 - 1 = \cdots$

20. (1/ 1

21.
$$3^5 \div 3^2 = \dots$$
 (3⁷ or 3¹⁰ or 3³ or 3²)

22.
$$9^2 - (-3)^4$$
 (> or < or $=$ or \ge)

A circle is of diameter length 10 cm., then its area =
$$\frac{\text{cm}^2}{(50 \text{ or } 100 \text{ or } 78.5)}$$
 or 25)

24.
$$\frac{1}{3}$$
, $\frac{1}{6}$, $\frac{1}{12}$, $\frac{1}{24}$, $\frac{1}{18}$ (in the same pattern)

25.
$$(-100)^{\text{zero}} = \dots$$
 (-100 or 100 or zero or 1)

27.
$$9^7 \div 9^5 = \dots$$
 $(9^{-12} \text{ or } 9^2 \text{ or } 9^{\text{zero}} \text{ or } 9^{35})$

A circle of diameter length 8 cm. , then its area =
$$-\pi$$
 cm².

30.
$$(-19)^0 + (19)^0 = \cdots$$

33.
$$(-1)^{104} + (-1)^{103} = \cdots$$

$$(2^6 \text{ or } 4^6 \text{ or } 3^3) \text{ or } 2^9)$$

36. A circle of diameter length 14 cm., then its area =
$$154$$
 cm² $\left(\pi = \frac{22}{7}\right)$

37. If
$$a = 3$$
, $b = -2$, then $3 a b = \cdots$

38.
$$-9^3 - (-3)^2$$

$$(\bigcirc or = or > or \ge)$$

The L.S.A. of the cuboid whose dimensions are 3 cm., 4 cm. and 0.6 dm. 39. $(72 \text{ cm}^2 \text{ or } 8.4 \text{ dm}^2 \text{ or } 84 \text{ dm}^2 \text{ or } 84 \text{ cm}^2)$

- Half the T.S.A. of a cube whose sum of its edge lengths is 36 cm. 40. is cm². (108 or 27 or 54) or 18)
- The ratio between the T.S.A. and L.S.A. of the cube is 3.2.2. 41.
- $(-1)^{12} + (-1)^{13} = \cdots$ (\bigcirc or 1 or 2 or -1) 42.
- 5 × 5² = ··········· $(25^2 \text{ or } 25^3 \text{ or } 5^2 \text{ or } 6^3)$ 43.
- A circle, its circumference is 44 cm., then the length of its radius 44. (22 or 11 or 7 or 14)
- A cube of edge length 6 cm., then its lateral area = $\frac{1}{2}$ cm² **45**. (216 or 180 or (144) or 108)
- The lateral area of the cube = Area of one face x 46.
 - (2 **or 4**) **or** 6 **or** height)

- $\frac{(-5)^3 \times (-5)^2}{(-5)^4} = -5$ 47.
- $(-1)^2 \times 2^3 = \cdots$ $(2^5 \text{ or } 8 \text{ or } -8 \text{ or } -2^5)$ 48.
- The lateral area of a cube whose side length is 3 cm. = cm². 49.
 - (27 **or** 48 **or** 36 **or** 54) $2^6 \times 2^4 = \dots$
- $(2^2 \text{ or } 2^{12} \text{ or } 2^{10}) \text{ or } 2^{24})$ 50.
- $3^7 \div 3^7 = \cdots$ 51.
- A circle, its diameter length is 14° cm., then its area = 1.5° $\frac{14^{\circ}}{14^{\circ}}$ cm² ($\pi = \frac{22^{\circ}}{14^{\circ}}$ 52.
- A cuboid whose length is 9 cm., width is 7 cm. and its height is 10 cm., 53. then its lateral area = ... 320 Cm2
- If the radius length of a circle is 10 cm., then its surface area = cm². 54. (3.14 or 31.4 or 314) or 3140) (Given that : π = 3.14)
- If the edge length of a cube is 6 cm., then its total area =cm². 55.
- (24 or 36 or 144 or (216)
- $(3)^7 \div (3)^4 = \cdots$ $(3)^3$ or $(3)^5$ or $(3)^{11}$ or $(3)^2$) 56.
- 57.

58 .	The perimeter of one face of a cube is 12 cm., then its total area =
	

59.
$$(-5)^2 \times (2)^2 = \dots$$
 (10° or 10 or (10^2) or 10°)

60.
$$27 \div (-3)^2 = \dots$$
 (-9 or 24 or 3) or 81)

(31.4 or 314) or 23.14 or 43.14)
63.
$$2-(-3)^0 = \cdots$$
 (5 or 3 or 1) or 2)

68.
$$2^5 \times 2^2 = \dots$$
 (27) or 2^4 or 2^3 or 1)

A circle, its radius length is 4 cm., then its area =
$$-\pi$$
 cm².

70.
$$(-1)^8 + (-1)^9 + (-1)^{zero} = \dots$$
 (zero or -1 or 1) or 2)