01:640:311 - Homework n

Pranav Tikkawar

April 2, 2025

This is a set of all of the theorems talked in class and in the book numbered.

Theorem 1 (0.0.0: Theorem Name). This is a theorem. and a teplate for theorems.. Proof. This is a proof.

This is a proof.
$$e = mc^2$$

Theorem 2 (Nested Interval Property: (s 1.4)). If $I_1 \supseteq I_2 \supseteq I_3 \supseteq \ldots$ is a sequence of closed intervals in \mathbb{R} then $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$.

Proof. Let $A = \{a_1, a_2, a_3, \dots\}$ be the set of left endpoints of the intervals.

Now since the I_n s are nested, $I_n \subseteq I_1$ for all n.

Thus each $a_n \in I_1$ for all n.

so $a_n \leq b_1$.

It follows that b_1 is an upper bound for A so sup A exists.

Now we need to prove that $x \in \bigcap_{n=1}^{\infty} I_n$.

To do this we need to how that $x \in I_n$ for all n.

This mean that $a_n \leq x \leq b_n$ for all n.

Step 1 $a_n \leq x$ for all n.

Remember that $x = \sup A$.

So $a_n \leq x$ for all n.

Step 2 $x \leq b_n$ for all n.

Since $x = \sup A$, x i less than very upper bound of A so it i enough to show that b_n is an upper bound of A.

 $b_n \geq a_m$ for all m.

Case 1 n > m.

Then $I_n \subset I_m$ so $b_n \in [a_m, b_m] = I_m$.

Case 2 $n \leq m$.

Then $I_m \subset I_n$ so $a_m \in [a_n, b_n] = I_n$.

so $a_m \leq b_n$.

This b_n is an upper bound of A.

Thus $x \leq b_n$ for all n.

Thus $x \in I_n$ for all n.

Thus $x \in \bigcap_{n=1}^{\infty} I_n$. which means the intersection is not empty.

Theorem 3 (Archimedan Property). The set \mathbb{N} is not bounded above.

Proof. Suppose (by contradiction) \mathbb{N} is bounded above.

Then by the least upper bound property, sup \mathbb{N} exists.

Let us call $\alpha = \sup \mathbb{N}$ and it is a real number.

Thus $\alpha - 1 < \alpha$ so $\alpha - 1$ is not an upper bound of \mathbb{N} .

So we can fine an $n \in \mathbb{N}$ such that $\alpha - 1 < n$.

Thus $\alpha < n+1$.

But $n+1 \in \mathbb{N}$ so α is not an upper bound of \mathbb{N} .

Theorem 4 (Density of \mathbb{Q} in \mathbb{R}). $\forall a < b \in \mathbb{R}$ there exists $q \in \mathbb{Q}$ such that a < q < b.

Definition (Open Set). An open set is a set S that for all $x \in S$ for all epsilon neighborhoods $V_{\epsilon}(x)$ of $x, V_{\epsilon}(x) \subseteq S$.

In other words, any point has a circle that can be drawn around it that is completely contained in the set.

The union of open sets is open.

The intersection of finitely many open sets is open.

A set is open iff its compliment is closed.

Definition (Closed Set). A closed set is a set S it contains all of its limit points.

A set is closed iff every cauchy sequence contained in S has limit in S.

The intersection of closed sets is closed.

The union of finitely many closed sets is closed.

A set is closed iff its compliment is open.

Definition (Limit Point). A point x is a limit point of a set S if every epsilon neighborhood $V_{\epsilon}(x)$ of x intersects the set S at a point other than x.

In other words x is a limit point if there is a sequence of points in S that converges to x where the sequence does not contain x.

Definition (Isolated Point). An isolated point is a point x in a set S that is not a limit point of S.

In other words, there exists an epsilon neighborhood $V_{\epsilon}(x)$ of x such that $V_{\epsilon}(x) \cap S = \{x\}$.

Definition (Closure and Interior). The closure of a set S denoted by \overline{S} is the union of S and all of its limit points.

The interior of a set S denoted by S° is the collection of all points $x \in S$ such that there exists an epsilon neighborhood $V_{\epsilon}(x)$ of x that is completely contained in S.

Let S be a set then:

S is closed iff $S = \overline{S}$.

S is open iff $S = S^{\circ}$.

Definition (Compact Set). A compact set is a set that every Sequence in K has a subsequence that converges to a point in K.

A set is compact if and only if it is closed and bounded.

A set is compact if and only if every open cover has a finite subcover.

Definition (Open Cover). An open cover of a set S is a collection of open sets $\{U_{\alpha}\}$ such that union of all the open sets contains S.

In other words, $S \subseteq \bigcup_{\alpha} U_{\alpha}$.

Theorem 5 (Hiene-Borel Theorem). A subset of \mathbb{R} is compact if and only if it is closed and bounded.

Definition (Perfect Set). A Perfect set is a set S that is closed and contains no isolated points.

A nonempty perfect set is uncountable.

Examples are Cantor Set and the set of all real numbers.

Definition (Separated, Disconnected, and Connected Set). Two sets A and B are separated if $\overline{A} \cap B = A \cap \overline{B} = \emptyset$.

A set S is disconnected if it can be written as the union of two nonempty separated sets. A set S is connected if it is not disconnected.

Definition $(F_{\sigma} \text{ set})$. A set S is an F_{σ} set if it is the countable union of closed sets. A set is F_{σ} if and only if its compliment is G_{δ} .

Definition $(G_{\delta} \text{ set})$. A set S is an G_{δ} set if it is the countable intersection of open sets. A set is G_{δ} if and only if its compliment is F_{σ} .

Definition (Dense and Nowhere-Dense Set). We say a set S is dense in X if $\overline{S} = X$. A set S is nowhere-dense if \overline{S} contains no open interval. ie $\overline{S}^{\circ} = \emptyset$. A set E is nowhere-dense in R iff \overline{E}^{c} is dense in R.

Definition (Baire's Theorem). The set of Real numbers R cannot be written as the countable union of nowhere-dense sets.

Definition (Functional Limit). Suppose $f: A \to \mathbb{R}$ and $c \in \mathbb{R}$ is a limit point of A. We say that $\lim_{x\to c} f(x) = L$ if

$$\forall \epsilon > 0, \exists \delta > 0 \text{ such that } 0 < |x - c| < \delta \implies |f(x) - L| < \epsilon$$

$$\forall V_{\epsilon}(L) \text{ there exists a } V_{\delta}(c) \text{ such that } \forall x \in V_{\delta}(c) \implies f(x) \in V_{\epsilon}(L)$$