1 Summary

- 1. Autocovariance, Autocorrelation and Partial Autocorrelation
 - Autocorrelation: the correlation between a time series and a time-shifted version of the time series
 - Autocovariance function (acvf)

$$\gamma_k = E\left[(X_t - \mu_X) \left(X_{t+k} - \mu_X \right) \right]$$

Note that for k = 0 we have

$$\gamma_0 = E[(X_t - \mu_X)(X_{t+0} - \mu_X)]
= E[(X_t - \mu_X)(X_t - \mu_X)]
= E[(X_t - \mu_X)^2]
= \sigma^2$$

That is, the autocovariance at lag k=0 is σ^2

• Autocorrelation function (acf)

$$\rho_k = \frac{\gamma_k}{\sigma^2}$$

For k = 0, $\gamma_0 = \sigma^2$ so that

$$\rho_0 = \frac{\gamma_0}{\sigma^2} = \frac{\sigma^2}{\sigma^2} = 1$$

That is, the autocorrelation at lag k=0 is always 1

- Autocorrelation graph (the correlogram)
 - x-axis: lags
 - y-axis: sample autocorrelation
 - If $\rho_k = 0$ then r_k is approximately Normal with mean $-\frac{1}{n}$ and variance $\frac{1}{n}$. The dotted lines on an autocorrelation graph are

$$-\frac{1}{n} \pm 2 * \frac{1}{\sqrt{n}}$$

If sample autocorrelations fall outside the graph, significant autocorrelation in that you would reject $H_0: \rho_k = 0$

- Partial autocorrelation
 - Removes the effect of correlations at shorter lags

$$COR\left[X_t, X_{t+k} | X_{t+1} \dots X_{t+k-1}\right]$$

– If a process is AR(p), the autocorrelation at lag p is the p^{th} coefficient and helps to identify the model order

1

2. Stationary

- Let X be a random process. X is stationary if the joint distribution of $X_{t_1}, X_{t_2}, \ldots, X_{t_n}$ is the same as the joint distribution of $X_{t_1-k}, X_{t_2-k}, \ldots, X_{t_n-k}$ for all choices of t_1, t_2, \ldots, t_n and k
- The joint probability distribution does not change over time

3. Weakly Stationary

- The mean and variance functions, $\mu(t)$ and $\sigma^2(t)$ are constant
- The autocovariance only depends on the time shift: $\gamma_{t,t+k} = \gamma_k$

4. Models for data generation

- White Noise: $w_t \sim N(0, \sigma^2)$
- MA(q): $x_t = w_t + \beta_1 w_{t-1} + \ldots + \beta_q w_{t-q}$
- AR(p): $x_t = \alpha_1 x_{t-1} + \alpha_2 x_{t-2} + \ldots + \alpha_p x_{t-p} + w_t$
- Random Walk: $x_t = x_{t-1} + w_t$
- Random Walk with Drift: $x_t = \mu + x_{t-1} + w_t$

5. Smoothing

- Regression Models/Smoothers: $x_t = m_t + s_t + w_t$
 - Polynomial: $m_t = \sum_{i=0}^p \beta_i t^i$
 - Harmonic seasonal (periodic): $s_t = \sum_{i=1}^{\lfloor \frac{s}{2} \rfloor} \left(s_i sin\left(2\pi i \frac{t}{s}\right) + c_i cos\left(2\pi i \frac{t}{s}\right) \right)$
 - * s is the number of periods
 - *i is changing the frequency
 - * s_i and c_i are the coefficients to be estimated, think about them as the β coefficients from the indicator variable representation
 - * Note only half the waves have to be estimated
 - $-s_i$ can also be seasonal indicators
- Kernel Smoothers: locally-weighted averaging
- LOWESS: locally-weighted polynomial regression
- Spline: polynomial regression on disjoint time buckets, penalty for complexity

2 Approval Ratings

The fiel Bush.csv contains the approval ratings for President Bush from 2001-2004.

- 1. Read the file and convert the *Approval* column to a ts object.
- 2. Make a times series plot. Is there any trend or seasonality? Are there any sudden shocks?
- 3. Make an ACF plot. Describe how the approvals depend on one another. If these data were an MA process, what does this suggest the MA order should be?
- 4. Make a PACF plot. Describe how the approvals depend on one another. If these data were an AR process, what does this suggest the AR order should be?
- 5. Obtain two smooth fits using a kernel smoother. Plot the fits and the original series on the same graph.
- 6. Obtain two smooth fits using a lowess smoother. Plot the fits and the original series on the same graph.
- 7. Obtain two smooth fits using a spline smoother. Plot the fits and the original series on the same graph.
- 8. Obtain two smooth fits using a regression smoother that include seasonal indicators or a harmonic component. Plot the fits and the original series on the same graph.
- 9. Put all four approaches on one graph sheet? Which do you like the most and why?