1. (15 points) Evaluate the following integrals. (5 points for each)

(a)
$$\int (\csc x - \sec x) (\sin x + \cos x) dx$$
 (b)
$$\int 3x^5 \sqrt{x^3 + 1} dx$$

(b)
$$\int 3x^5 \sqrt{x^3 + 1} \, dx$$

(c)
$$\int \frac{\sin(\ln x)}{x} dx$$

Solution:

(a) Because

$$(\csc x - \sec x)(\sin x + \cos x) = \csc x \sin x + \csc x \cos x - \sec x \sin x - \sec x \cos x$$
$$= 1 + \cot x - \tan x - 1 = \cot x - \tan x$$

therefore,

$$\int (\csc x - \sec x) (\sin x + \cos x) dx = \int (\cot x - \tan x) dx = \ln|\sin x| - \ln|\sec x| + C$$

(b) Let $u = x^3 + 1 \Rightarrow x^3 = u - 1$, $du = 3x^2 dx$. Therefore,

$$\int 3x^5 \sqrt{x^3 + 1} \, dx = \int 3x^2 \cdot x^3 \sqrt{x^3 + 1} \, dx = \int (u - 1) \sqrt{u} \, du = \int \left(u^{\frac{3}{2}} - u^{\frac{1}{2}}\right) \, du$$
$$= \frac{2}{5} u^{\frac{5}{2}} - \frac{2}{3} u^{\frac{3}{2}} + C = \frac{2}{5} \left(x^3 + 1\right)^{\frac{5}{2}} - \frac{2}{3} \left(x^3 + 1\right)^{\frac{3}{2}} + C$$

(c) Let $u = \ln x \Rightarrow du = \frac{1}{x} dx$. Therefore,

$$\int \frac{\sin(\ln x)}{x} dx = \int \sin u \, du = -\cos u + C = -\cos(\ln x) + C$$

2. (10 points) Use logarithmic differentiation to find $\frac{dy}{dx}$ if

$$y = \sqrt{\frac{(x+8)^{10}}{(2x+7)^5}}$$

Solution:

• Use logarithmic differentiation.

$$y = \sqrt{\frac{(x+8)^{10}}{(2x+7)^5}} \Rightarrow \ln y = \frac{1}{2} \left[10 \ln(x+8) - 5 \ln(2x+7) \right] \Rightarrow \frac{y'}{y} = \frac{5}{x+8} - \frac{5}{2x+7}$$

Therefore,

$$y' = y \cdot \left(\frac{5}{x+8} - \frac{5}{2x+7}\right) = \sqrt{\frac{(x+8)^{10}}{(2x+7)^5}} \left(\frac{5}{x+8} - \frac{5}{2x+7}\right)$$

3. (15 points) Suppose that f(x) is a continuous function, and

$$\int_0^x f(t) dt = 1 + 3\sin x + k\cos x.$$

(a) Find
$$k = ?$$
 (b) Find $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) dx$. (c) Find $f'\left(\frac{\pi}{4}\right)$.

Solution:

(a) Based on the properties of the definite integrals, when x = 0,

$$\int_0^0 f(t) dt = 1 + 3\sin 0 + k\cos 0 \Rightarrow 0 = 1 + k \Rightarrow k = -1$$

(b) Based on the properties of the definite integrals,

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) dx = \int_{-\frac{\pi}{2}}^{0} f(x) dx + \int_{0}^{\frac{\pi}{2}} f(x) dx = -\int_{0}^{-\frac{\pi}{2}} f(x) dx + \int_{0}^{\frac{\pi}{2}} f(x) dx$$

$$= -\left[1 + 3\sin\left(-\frac{\pi}{2}\right) - \cos\left(-\frac{\pi}{2}\right)\right] + \left[1 + 3\sin\left(\frac{\pi}{2}\right) - \cos\left(\frac{\pi}{2}\right)\right] = -(-2) + 4 = 6$$

(c) Based on Fundamental Theorem of Calculus - Part 1,

$$\frac{d}{dx} \int_0^x f(t) \, dt = \frac{d}{dx} \left[1 + 3\sin x - \cos x \right] \Rightarrow f(x) = 3\cos x + \sin x \Rightarrow f'(x) = -3\sin x + \cos x$$

$$\Rightarrow f'\left(\frac{\pi}{4}\right) = -\frac{3}{\sqrt{2}} + \frac{1}{\sqrt{2}} = -\frac{2}{\sqrt{2}} = -\sqrt{2}$$

4. (10 points) Find the length of the curve:

$$y = \frac{x^2}{8} - \ln x, \quad 4 \le x \le 8$$

Solution:

• Find $1 + (y')^2$ first.

$$y = \frac{x^2}{8} - \ln x \Rightarrow y' = \frac{x}{4} - \frac{1}{x} \Rightarrow 1 + (y')^2 = 1 + \left(\frac{x}{4} - \frac{1}{x}\right)^2 = \frac{x^2}{16} + \frac{1}{2} + \frac{1}{x^2} = \left(\frac{x}{4} + \frac{1}{x}\right)^2$$

The length is,

$$L = \int_{4}^{8} \sqrt{1 + (y')^{2}} dx = \int_{4}^{8} \sqrt{\left(\frac{x}{4} + \frac{1}{x}\right)^{2}} dx = \int_{4}^{8} \left(\frac{x}{4} + \frac{1}{x}\right) dx = \left[\frac{x^{2}}{8} + \ln|x|\right]_{4}^{8} = 6 + \ln 2$$

5. (**10** points) A rectangle *ABCD* is inscribed in a circle *O* with a radius of *r*. Please find the dimensions of the rectangle of largest area that can be inscribed in a circle of radius *r*.

Solution:

• Assume $\overline{AB} = x$ and $\overline{BC} = y$, the area of ABCD is S = xy and the relationship between x, y, and r is

$$x^2 + y^2 = (2r)^2 \Rightarrow y^2 = 4r^2 - x^2 \Rightarrow y = \sqrt{4r^2 - x^2}$$

Therefore,

$$S = xy = x\sqrt{4r^2 - x^2} \Rightarrow \frac{dS}{dx} = \sqrt{4r^2 - x^2} - \frac{x^2}{\sqrt{4r^2 - x^2}} = \frac{4r^2 - 2x^2}{\sqrt{4r^2 - x^2}}$$

When $4r^2 = 2x^2$, $\frac{dS}{dx} = 0 \Rightarrow x = \sqrt{2}r$, $y = \sqrt{4r^2 - x^2} = \sqrt{2}r$. Therefore, the dimensions are $\overline{AB} = \overline{BC} = \sqrt{2}r$.

6. (10 points) Use the shell method to find the volume of the solid obtained by rotating the region bounded by x + y = 4 and $x = y^2 - 4y + 4$ about the *x*-axis.

Solution:

• The curves intersect when $4 - y = y^2 - 4y + 4 \Rightarrow y = 0$ or y = 3. The volume is

$$V = \int_0^3 2\pi y \left[(4-y) - (y^2 - 4y + 4) \right] \, dy = 2\pi \int_0^3 \left(3y^2 - y^3 \right) \, dy = 2\pi \left[y^3 - \frac{1}{4} y^4 \right] \bigg|_0^3 = \frac{27}{2} \pi$$

7. Let
$$f(x) = \frac{x}{x^2 + 1}$$
.

- (a) (6 points) Find the intervals of increase and decrease.
- (b) (8 points) Find the intervals of concavity.
- (c) (4 points) Find the local maximum and minimum values.
- (d) (6 points) Find the inflection points.

Solution:

(a) The first derivative of this function is

$$f'(x) = \frac{(x^2 + 1) - 2x^2}{(x^2 + 1)^2} = \frac{1 - x^2}{(x^2 + 1)^2}$$

One can find that f'(x) > 0 when -1 < x < 1, and f'(x) < 0 when x < -1 and 1 < x. Therefore, f(x) is increasing on (-1, 1), decreasing on $(-\infty, -1)$ and $(1, \infty)$.

(b) The second derivative of this function is

$$f''(x) = \frac{(-2x)(x^2+1)^2 - (1-x^2)(x^2+1)(4x)}{(x^2+1)^4} = \frac{2x(x^2-3)}{(x^2+1)^3}$$

When $-\sqrt{3} < x < 0$ and $x > \sqrt{3}$, f''(x) > 0, therefore, the function is concave upward on $(-\sqrt{3},0)$ and $(\sqrt{3},\infty)$. When $x < -\sqrt{3}$ and $0 < x < \sqrt{3}$, f''(x) < 0, therefore, the function is concave downward on $(-\infty, -\sqrt{3})$ and $(0, \sqrt{3})$.

(c) Based on the result of (a), one can find that f'(x) changes its sign at x = -1 and x = 1.

Therefore, $f(-1) = -\frac{1}{2}$ is its local minimum. $f(1) = \frac{1}{2}$ is its local maximum.

(d) Based on the result of (b), one can find that f''(x) changes its sign only at $x = -\sqrt{3}$, 0, $\sqrt{3}$. The inflection points are

$$\left(-\sqrt{3}, -\frac{\sqrt{3}}{4}\right)$$
, $(0,0)$, $\left(\sqrt{3}, \frac{\sqrt{3}}{4}\right)$.

8. (6 points) If
$$f(x) = \sqrt{x-2}$$
, find $(f^{-1})'(2) = ?$

Solution:

•
$$f'(x) = \frac{df}{dx} = \frac{1}{2\sqrt{x-2}}$$
. When $f(a) = 2 \Rightarrow 2 = \sqrt{a-2} \Rightarrow a = 6$. Thus, $f(6) = 2$, $f^{-1}(2) = 6$, and

$$(f^{-1})'(2) = \frac{df^{-1}}{dx}\bigg|_{x=2} = \frac{1}{\frac{df}{dx}\bigg|_{x=f^{-1}(2)}} = \frac{1}{\frac{df}{dx}\bigg|_{x=6}} = \frac{1}{\left(\frac{1}{2\sqrt{6-2}}\right)} = 4$$

9. (10 points) Find the area of the plane region bounded by the curves $y = \frac{1}{x}$ and 2x + 2y = 5.

Solution:

• The curves intersect when $\frac{1}{x} = \frac{5-2x}{2} \Rightarrow x = \frac{1}{2}$ and x = 2. The area is

$$A = \int_{\frac{1}{2}}^{2} \left(\frac{5 - 2x}{2} - \frac{1}{x} \right) dx = \left[\frac{5}{2}x - \frac{1}{2}x^{2} - \ln x \right]_{\frac{1}{2}}^{2} = \frac{15}{8} - 2\ln 2.$$

10. (10 points) The region bounded by the curve $y = 6 - x^2$ and y = 2 is revolved about the *x*-axis to generate a solid. Please find the volume of the solid.

Solution:

• The curves intersect when $6 - x^2 = 2 \Rightarrow x = -2$ and x = 2. Use the washer method. The volume is

$$V = \int_{-2}^{2} \pi \left[\left(6 - x^2 \right)^2 - 2^2 \right] dx = \pi \int_{-2}^{2} \left(x^4 - 12x^2 + 32 \right) dx = 2\pi \int_{0}^{2} \left(x^4 - 12x^2 + 32 \right) dx$$
$$= 2\pi \left[\frac{1}{5} x^5 - 4x^3 + 32x \right]_{0}^{2} = 2\pi \cdot \frac{192}{5} = \frac{384}{5} \pi.$$