# Simulação Numérica De Escoamentos Dispersos Em Turbomáquinas Utilizando Método De Elementos Finitos

**Lucas Carvalho De Sousa** Gustavo Rabello Dos Anjos

Universidade do Estado do Rio de Janeiro encarvlucas@hotmail.com

25 de Junho de 2019







## Sumário

- Introdução
  - Simulação de Escoamentos Bidimensionais com Partículas
  - Escoamentos em Turbomáguinas
- Equações de Governo
  - Formulação Corrente-Vorticidade
  - Eguação de Basset-Boussinesg-Oseen (BBO)
- Métodos Numéricos
  - Método dos Elementos Finitos
     Discretizações dos Modelos

  - Definição das Matrizes
- Código
  - Montagem das Matrizes Globais
  - Estrutura de Uso da Biblioteca
  - Estrutura de Solução
- Validações e Resultados
  - Validações
  - Resultados de Simulações



# Introdução

## Simulação de Escoamentos Bidimensionais com Partículas

#### Objetivos deste trabalho:

Desenvolver uma biblioteca de Python para a simulação de escoamentos particulados.



Escoamento entre placas, Hagen-Poiseuille.

## Escoamentos em Turbomáquinas

#### Objetivos deste trabalho:

Estudar como partículas se comportam dentro de uma turbomáquina em funcionamento.



Fonte: © BrokenSphere / Wikimedia Commons.

# Equações de Governo

## Formulação Corrente-Vorticidade

#### Hipóteses tomadas

- Fluído incompressível
- Fluído newtoniano

#### Equação de Navier-Stoakes

$$\frac{\partial \vec{v}_f}{\partial t} + \vec{v}_f . \vec{\nabla} \vec{v}_f = -\frac{1}{\rho_f} \vec{\nabla} p + \frac{\mu_f}{\rho_f} \nabla^2 \vec{v}_f + \vec{g}$$

#### Desvantagens

- Acoplamento da pressão e velocidade
- Exige elementos de ordem elevada

# Formulação Corrente-Vorticidade

## Equação da Vorticidade

$$\frac{\partial \vec{\omega}}{\partial t} + \vec{v}_f . \vec{\nabla} \vec{\omega} = \frac{\mu_f}{\rho_f} \nabla^2 \vec{\omega}$$

#### Equação da Corrente

$$\nabla^2 \psi = -\omega_z$$

## Equações Auxiliares

$$\vec{v}_f = (v_{f,x}, v_{f,y})$$

$$v_{f,x} = \frac{\partial \psi}{\partial y}$$

$$v_{f,y} = -\frac{\partial \psi}{\partial x}$$

$$\omega_z = \frac{\partial v_{f,x}}{\partial y} - \frac{\partial v_{f,y}}{\partial x}$$

# Equação de Basset-Boussinesq-Oseen (BBO)

Equação que representa as forças exercidas sobre as partículas. Sua expressão é a soma das forças separadamente.

#### Equação de Basset-Boussinesq-Oseen

$$ec{F_p} = \sum ec{F} = ec{F}_{grav} + ec{F}_{drag} + ec{F}_{lift} + ec{F}_{mass}$$

#### Restrição

A equação BBO é somente válida para Reynolds da partícula menores que 1.  $Re_p < 1$ 

## Reynolds de Partícula

$$extit{Re}_{p} = rac{
ho_{p}}{\mu_{f}} |\left(ec{v_{f}} - ec{v_{p}}
ight)|_{ extit{max}} d_{p}$$

# Equação de Basset-Boussinesq-Oseen (BBO)

## Força Gravitacional

$$\vec{F}_{grav} = m_p \vec{g}$$

#### Força de Sustentação

$$ec{F}_{lift} = 1.61 \mu_f d_p \left( ec{v}_f - ec{v}_p \right) \sqrt{Re_G}$$

#### Força de Arrasto

$$\vec{F}_{drag} = 3\pi \mu_f d_p \left( \vec{v}_f - \vec{v}_p \right)$$

## Força de Massa Virtual

$$ec{F}_{mass} = rac{1}{2} 
ho_f V_p rac{d}{dt} \left( ec{v}_f - ec{v}_p 
ight)$$

#### Reynolds de Cisalhamento

$$Re_G = rac{
ho_f}{\mu_f} d_p^2 
abla ec{v}_f$$

## Métodos Numéricos

## Método dos Elementos Finitos

#### Domínio

Equações são definidas em um domínio  $\Omega$  com contorno  $\Gamma$ .

## Forma forte com as funções peso

$$\int_{\Omega} \left( \frac{\partial \vec{\omega}}{\partial t} + \vec{v}_f . \vec{\nabla} \vec{\omega} - \frac{\mu_f}{\rho_f} \nabla^2 \vec{\omega} \right) . \vec{\delta} d\Omega = 0$$

$$\int_{\Omega} \left( \nabla^2 \psi + \omega_z \right) . \vec{\phi} d\Omega = 0$$

$$\int_{\Omega} \left( \vec{v}_f - \left( \frac{\partial \psi}{\partial v}, -\frac{\partial \psi}{\partial x} \right) \right) . \vec{\xi} d\Omega = 0$$

## Condições de contorno

$$\omega = \omega_\Gamma$$
 em  $\Gamma$   $\psi = \psi_\Gamma$  em  $\Gamma$   $\vec{v_f} = \vec{v_{f\Gamma}}$  em  $\Gamma$ 

 $\vec{\delta}$ ,  $\vec{\phi}$  e  $\vec{\xi}$  são as funções de peso de cada equação.

#### Forma fraca

$$m_1\left(rac{\partial ec{\omega}}{\partial t}, \delta
ight) + g_1(ec{v}_f, ec{\delta}) + rac{\mu_f}{
ho_f} k_1(ec{\omega}, ec{\delta}) = 0$$
  $-k_2(\psi, ec{\phi}) + m_2(\omega_z, ec{\phi}) = 0$   $m_3(ec{v}_f, ec{\xi}) - g_3(\psi, ec{\xi}) = 0$ 

#### Onde:

$$m_1\left(\frac{\partial \vec{\omega}}{\partial t}, \delta\right) = \int_{\Omega} \frac{\partial \vec{\omega}}{\partial t} . \vec{\delta} d\Omega$$
 $g_1(\vec{v_f}, \vec{\delta}) = \int_{\Omega} \vec{v_f} . \vec{\nabla} \vec{\omega} . \vec{\delta} d\Omega$ 
 $k_1(\vec{\omega}, \vec{\delta}) = \int_{\Omega} \vec{\nabla} \vec{\omega} . \vec{\nabla} \vec{\delta} d\Omega$ 

$$k_{2}(\psi, \vec{\phi}) = \int_{\Omega} \vec{\nabla} \psi . \vec{\nabla} \vec{\phi} d\Omega$$

$$m_{2}(\omega_{z}, \vec{\phi}) = \int_{\Omega} \omega_{z} . \vec{\phi} d\Omega$$

$$m_{3}(\vec{v}_{f}, \vec{\xi}) = \int_{\Omega} \vec{v}_{f} . \vec{\xi} d\Omega$$

$$g_{3}(\psi, \vec{\xi}) = \int_{\Omega} \left( \frac{\partial \psi}{\partial y}, -\frac{\partial \psi}{\partial x} \right) . \vec{\xi} d\Omega$$

## Discretização do Modelo de Escoamentos

#### Formulação de Galerkin

Funções de peso são definidas com valor igual às funções interpoladoras.

$$\omega(\vec{x}, t) = \sum_{i=1}^{n_p} \omega_i(t) N_i(\vec{x}) 
\psi(\vec{x}, t) = \sum_{i=1}^{n_p} \psi_i(t) N_i(\vec{x}) 
v_{f,x}(\vec{x}, t) = \sum_{i=1}^{n_p} v_{f,x,i}(t) N_i(\vec{x}) 
v_{f,y}(\vec{x}, t) = \sum_{i=1}^{n_p} v_{f,y,i}(t) N_i(\vec{x}) 
v_{f,y}(\vec{x}, t) = \sum_{j=1}^{n_p} v_{f,y,i}(t) N_i(\vec{x})$$

$$\delta(\vec{x}, t) = \sum_{j=1}^{n_p} \delta_i(t) N_j(\vec{x}) 
\phi(\vec{x}, t) = \sum_{j=1}^{n_p} \phi_i(t) N_j(\vec{x}) 
\xi(\vec{x}, t) = \sum_{j=1}^{n_p} \xi_i(t) N_j(\vec{x})$$

## Discretização do Modelo de Escoamentos

#### Função de Aproximação

N(x) é a função de aproximação de cada elemento:

$$N_i(\vec{x}) = [N_1(\vec{x}), \dots, N_{n_p}(\vec{x})]$$

#### Matrizes locais dos elementos

Surgem os termos locais, para cada elemento e:

$$\mathbf{m^e} = \int_{\Omega^e} N_i^e N_j^e d\Omega^e$$
 $\mathbf{g_x^e} = \int_{\Omega^e} \frac{\partial N_i^e}{\partial x} N_j^e d\Omega^e$ 
 $\mathbf{g_y^e} = \int_{\Omega^e} \frac{\partial N_i^e}{\partial y} N_j^e d\Omega^e$ 

$$\mathbf{k}_{\mathbf{x}\mathbf{x}}^{\mathbf{e}} = \int_{\Omega^{e}} \frac{\partial N_{i}^{e}}{\partial x} \frac{\partial N_{j}^{e}}{\partial x} d\Omega^{e}$$

$$\mathbf{k_{yy}^e} = \int_{\Omega^e} \frac{\partial N_i^e}{\partial y} \frac{\partial N_j^e}{\partial y} d\Omega^e$$

## Discretização do Modelo de Escoamentos

#### Discretização no tempo

Para os termos temporais é utilizada o Método de Diferenças Finitas:

$$rac{\partial \omega}{\partial t} pprox rac{\omega(t+dt)-\omega(t)}{dt} = rac{\omega^{t_{n+1}}-\omega^{t_n}}{dt}$$

## Equações na forma global

$$\begin{split} \left( \mathbf{M} v_{f,x}^{t_n} \mathbf{G_x} + v_{f,y}^{t_n} \mathbf{G_y} + \frac{\mu_f}{\rho_f} \left( \mathbf{K_{xx}} + \mathbf{K_{yy}} \right) \right) \omega^{t_{n+1}} &= \mathbf{M} \omega^{t_n} \\ \left( \mathbf{K_{xx}} + \mathbf{K_{yy}} \right) \psi &= \mathbf{M} \omega^{t_{n+1}} \\ \mathbf{M} v_{f,x}^{t_n} \omega^{t_{n+1}} &= \mathbf{G_y} \psi \\ \mathbf{M} v_{f,x}^{t_n} \omega^{t_{n+1}} &= -\mathbf{G_x} \psi \end{split}$$

## Discretização do Modelo de Partículas

#### Equações das forças nas partículas

$$\begin{split} \vec{F}_{grav}^{t_{n}} &= m_{p}\vec{g} \\ \vec{F}_{drag}^{t_{n}} &= 3\pi \mu_{f} d_{p} \left( \vec{v}_{f}^{t_{n}} - \vec{v}_{p}^{t_{n-1}} \right) \\ \vec{F}_{lift}^{t_{n}} &= 1.61 \mu_{f} d_{p} \left( \vec{v}_{f}^{t_{n}} - \vec{v}_{p}^{t_{n-1}} \right) \sqrt{Re_{G}^{t_{n}}} \\ \vec{F}_{mass}^{t_{n}} &= \frac{1}{2} \rho_{f} V_{p} \frac{\left( \vec{v}_{f}^{t_{n}} - \vec{v}_{p}^{t_{n-1}} \right) - \left( \vec{v}_{f}^{t_{n-1}} - \vec{v}_{p}^{t_{n-2}} \right)}{dt} \end{split}$$

## Reynolds específicos

$$extit{Re}_{p}^{t_n} = rac{
ho_p}{\mu_f} d_p \left| ec{v}_f^{t_n} - ec{v}_p^{t_{n-1}} 
ight|_{ extit{max}} \quad extit{Re}_G^{t_n} = rac{d_p^2 
ho_f}{\mu_f} \left( rac{d ec{v}_f}{d ec{r}} 
ight)^{t_n}$$



#### Coordenadas relativas

$$\mathbf{b} \begin{cases} b_i = y_j - y_k \\ b_j = y_k - y_i \\ b_k = y_i - y_j \end{cases} \quad \mathbf{c} \begin{cases} c_i = x_k - x_j \\ c_j = x_i - x_k \\ c_k = x_j - x_i \end{cases}$$

#### Matrizes de Gradiente

$$\mathbf{g}_{x}^{e} = \frac{1}{6} \begin{bmatrix} b_{i} & b_{j} & b_{k} \\ b_{i} & b_{j} & b_{k} \\ b_{i} & b_{j} & b_{k} \end{bmatrix} \qquad \mathbf{g}_{y}^{e} = \frac{1}{6} \begin{bmatrix} c_{i} & c_{j} & c_{k} \\ c_{i} & c_{j} & c_{k} \\ c_{i} & c_{j} & c_{k} \end{bmatrix}$$

Elemento triangular linear.

#### Matriz de Massa

$$\mathbf{m}^{\mathbf{e}} = \frac{A^{\mathbf{e}}}{12} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

#### Matrizes de Rigidez

$$\mathbf{m}^{\mathbf{e}} = \frac{A^{\mathbf{e}}}{12} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} \quad \mathbf{k}^{\mathbf{e}}_{xx} = \frac{t_{h}}{4A} \begin{bmatrix} b_{i}b_{i} & b_{j}b_{i} & b_{k}b_{i} \\ b_{i}b_{j} & b_{j}b_{j} & b_{k}b_{j} \\ b_{i}b_{k} & b_{j}b_{k} & b_{k}b_{k} \end{bmatrix} \quad \mathbf{k}^{\mathbf{e}}_{yy} = \frac{t_{h}}{4A} \begin{bmatrix} c_{i}c_{i} & c_{j}c_{i} & c_{k}c_{i} \\ c_{i}c_{j} & c_{j}c_{j} & c_{k}c_{j} \\ c_{i}c_{k} & c_{j}c_{k} & c_{k}c_{k} \end{bmatrix}$$

# Código

Código

000

## Algoritmo de montagem

$$\mathbf{m}_{e_n} = \begin{bmatrix} m_{ii} & m_{ij} & m_{ik} \\ m_{ji} & m_{jj} & m_{jk} \\ m_{ki} & m_{kj} & m_{kk} \end{bmatrix} \xrightarrow{\begin{array}{c} \text{loop} \\ \text{l=i,j,k} \\ \text{q=i,j,k} \end{array}} \mathbf{M} = \begin{bmatrix} M_{0,0} & M_{0,1} & \dots & M_{0,n_p} \\ M_{1,0} & \ddots & & & M_{1,n_p} \\ \vdots & & & M_{l,q} + m_{l,q} \\ M_{n_p,0} & & & & M_{n_p,n_p} \\ \end{bmatrix}$$

```
# Loop em cada elemento na lista da malha
for elem in malha.ien:
    x = malha.x[elem] # = [x_i, x_j, x_k]
    y = malha.y[elem] # = [y_i, y_j, y_k]
    # Criação das matrizes locais
    # Registro das matrizes locais nas matrizes globais
    for i in range(3):
        for j in range(3):
            kx_global[elem[i], elem[j]] += k_x[i][j]
            ky_global[elem[i], elem[j]] += k_y[i][j]
            m_global[elem[i], elem[j]] += m[i][j]
            gx_global[elem[i], elem[j]] += g_x[i][j]
```

gv\_global[elem[i], elem[j]] += g\_v[i][j]

## Estrutura de Uso da Biblioteca



Fluxograma da lógica de uso da biblioteca pelo usuário.

# # Importação da biblioteca import TccLib # Importação da malha ou coordenadas de uma nova malha = TccLib.Mesh("arquivo\_da\_malha.msh") # ou malha = TccLib.Mesh([coordenadas (x, y)]

malha.add\_particle(propriedades da partícula)

# Adição de partículas

## Estrutura de Solução



Algoritmo de solução do sistema de corrente-vorticidade.



Algoritmo de solução da posição das partículas.

# Validações e Resultados

## Validações de Problemas em Sólidos



Condições de contorno em uma placa sólida.



Comparação do resultado permanente.



Resultado da simulação na plaça.



Comparação do resultado transiente.





## Validações de Problemas em Sólidos



Placa com geração de calor.



Comparação do resultado permanente.



Resultado da simulação na placa.



Comparação do resultado transiente.



## Validações de Problemas em Sólidos



Placa com fluxo e geração de calor.



Comparação do resultado permanente.



Resultado da simulação na placa.



Comparação do resultado transiente.



## Validações do Modelo Corrente-Vorticidade



Escoamento entre placas estacionárias (Poiseuille). Comparação com solução analítica.



Escoamento entre placas em movimento (Couette). Comparação com solução analítica.

## Validações das Forças nas Partículas



Condições de contorno das forças indiviuais.



Partícula sob efeito da força de arrasto.



Partícula sob efeito da força gravitacional.



Partícula sob efeito da força de massa virtual.



## Validações das Forças nas Partículas



Condições de contorno das força de sustentação.



Partícula sob efeito da força de sustentação.

# Simulação em um Canal



Diagrama da simulação.

#### Parâmetros

 $L=8m,~D=1m,~U=1m/s,~\mu_f=50 Pa.s,~\rho_f=50 kg/m^3,~d_p=0.001m,~\rho_f=20000 kg/m^3.$ 

## Simulação em um Canal



Malha do canal utilizado.



Campo de velocidades resultante.



Percurso das partículas na simulação.



## Simulação em um Canal com Obstáculo



Diagrama da simulação.

#### Parâmetros

 $L=8m,~D=1m,~d=0.3m,~U=1m/s,~\mu_f=50Pa.s,~
ho_f=50kg/m^3,~d_p=0.001m,~
ho_f=20000kg/m^3.$ 

## Simulação em um Canal com Obstáculo



Malha do canal utilizado.



Campo de velocidades resultante.



Percurso das partículas na simulação.



## Simulação em um Canal em Degrau



Diagrama da simulação.

#### Parâmetros

 $L_1 = 2m$ ,  $L_2 = 2m$ , d = 1m, D = 1m, U = 1m/s,  $\mu_f = 50 Pa.s$ ,  $\rho_f = 50 kg/m^3$ ,  $d_p = 0.001m$ ,  $\rho_f = 20000 kg/m^3$ .

## Simulação em um Canal em Degrau



Malha do canal utilizado.



Percurso das partículas na simulação.



## Simulação em um Canal em Degrau



Campo de velocidades resultante.

# Simulação em um Canal com Restrição



#### Diagrama da simulação.

#### Parâmetros

 $L=8m,~D=2m,~A=0.004m,~\lambda=0.0006m,~\phi=0,~U=1m/s,~\mu_f=50 Pa.s,~\rho_f=50 kg/m^3,~d_p=0.001m,~\rho_f=20000 kg/m^3.$ 

## Simulação em um Canal com Restrição





Campo de velocidades resultante.





## Simulações em um Impelidor



Diagrama da simulação.

#### **Parâmetros**

 $L=8m,~D=2m,~A=0.004m,~\lambda=0.0006m,~\phi=0,~U=1m/s,~\mu_f=50 Pa.s,~\rho_f=50 kg/m^3,~d_p=0.001m,~\rho_f=$ por caso.



## Simulações em um Impelidor



Campo de velocidades resultante.



Trajetória de partículas de ferro,  $\rho_{Fe}=7300 kg/m^3$ .



Trajetória de partículas de ouro,  $\rho_{Au} = 20000 kg/m^3$ .



Trajetória de partículas de areia,  $ho_p=1600 kg/m^3$  .



## Agradecimentos







Muito Obrigado!