Name
Physics 51M Section Box #
Problem Set 9
18 November 2019

Collaborators:

(a) Sketch the vector function

$$\vec{F}(x,y) = -y\hat{x} + x\hat{y}$$

Write down your guess for the direction of the curl of \vec{F} , $\nabla \times \vec{F}$, with a few words of justification. (b) Calculate the curl of \vec{F} and compare with your prediction in part (a). (c) Rewrite \vec{F} in cylindrical coordinates, and compute $\nabla \times \vec{F}$ using the cylindrical form of the curl. Compare with your result from part (b).

(a) Sketch the following function $\vec{F}(x, y, z)$ in the z = 1 plane:

$$\vec{F}(x,y,z) = yz\hat{x} + xz\hat{y} + xy\hat{z}$$

ignoring the out-of-plane *z*-component of \vec{F} . Now consider the *z*-component of $\nabla \times \vec{F}$ and write down your guess for its sign. (b) Calculate the curl of \vec{F} and compare with your prediction in part (a).

Schey: III-15(a) Verify Stokes's Theorem for $\vec{F} = \vec{i}z^2 - \vec{j}y^2$, \mathbb{C} , the square of side 1 lying in the xz-plane and directed as shown. Also compute the right-hand side of Stokes's Theorem using surface S_6 , the square enclosed by the path \mathbb{C} in the x-z plane, and compare with your previous answers.

