CÁLCULO NUMÉRICO

Aula 11

MÉTODO DE GAUSS-JACOBI

□ Vamos supor, por simplicidade, um sistema de 3 equações e 3 incógnitas:

$$E_{1}: a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} = b_{1}$$

$$E_{2}: a_{21}x_{1} + a_{22}x_{2} + a_{23}x_{3} = b_{2}$$

$$E_{3}: a_{31}x_{1} + a_{32}x_{2} + a_{33}x_{3} = b_{3}$$

MÉTODO DE GAUSS-JACOBI

 \square Se os elementos da diagonal forem todos **não-nulos**, é possível isolar x_1 em E_1 ; x_2 em E_2 e x_3 em E_3 .

$$x_{1} = \frac{b_{1} - a_{12} x_{2} - a_{13} x_{3}}{a_{11}}$$

$$x_{2} = \frac{b_{2} - a_{21} x_{1} - a_{23} x_{3}}{a_{22}}$$

$$x_{3} = \frac{b_{3} - a_{31} x_{1} - a_{32} x_{2}}{a_{33}}$$

Aula 7 – MATLAB - Zeros de funções Cálculo Numérico

□ De forma equivalente, podemos escrever:

$$x_{1} = \frac{b_{1}}{a_{11}} - \frac{a_{12}}{a_{11}} x_{2} - \frac{a_{13}}{a_{11}} x_{3}$$

$$x_{2} = \frac{b_{2}}{a_{22}} - \frac{a_{21}}{a_{22}} x_{1} - \frac{a_{23}}{a_{22}} x_{3}$$

$$x_{3} = \frac{b_{3}}{a_{33}} - \frac{a_{31}}{a_{33}} x_{1} - \frac{a_{32}}{a_{33}} x_{2}$$

□ Para implementar, escreveremos:

$$I = \begin{bmatrix} \frac{b_1}{a_{11}} \\ \frac{b_2}{a_{22}} \\ \frac{b_3}{a_{33}} \end{bmatrix}; \qquad D = \begin{bmatrix} 0 & -\frac{a_{12}}{a_{11}} & -\frac{a_{13}}{a_{11}} \\ -\frac{a_{21}}{a_{22}} & 0 & -\frac{a_{23}}{a_{22}} \\ -\frac{a_{31}}{a_{33}} & -\frac{a_{32}}{a_{33}} & 0 \end{bmatrix}$$

□ Para implementar, escreveremos:

$$\begin{bmatrix} x_{1}^{(j)} \\ x_{2}^{(j)} \\ x_{3}^{(j)} \end{bmatrix} = \begin{bmatrix} 0 & -\frac{a_{12}}{a_{11}} & -\frac{a_{13}}{a_{11}} \\ -\frac{a_{21}}{a_{22}} & 0 & -\frac{a_{23}}{a_{22}} \\ -\frac{a_{31}}{a_{33}} & -\frac{a_{32}}{a_{33}} & 0 \end{bmatrix} \times \begin{bmatrix} x_{1}^{(j-1)} \\ x_{2}^{(j-1)} \\ x_{3}^{(j-1)} \end{bmatrix} + \begin{bmatrix} \frac{b_{1}}{a_{11}} \\ \frac{b_{2}}{a_{22}} \\ \frac{b_{3}}{a_{33}} \end{bmatrix}$$

□ E teremos:

$$>> X1 = D * X + I$$

RESUMO DE COMANDOS

break	Interrompe a execução de laços for e while
clc	Limpa a tela (command window)
disp	Exibe o conteúdo de uma variável, sem mostrar o seu nome
input	Permite ao usuário inserir variáveis, textos, valores, etc
sign	Função sinal: retorna o sinal de um argumento
if	Condiciona execução de comandos
else	Usado com o comando if
elseif	Usado com o comando if
end	Usado para terminar a execução dos comandos if, for, while
while	Repete comandos enquanto condição especificada for verdadeira
fprintf	Grava dados em arquivo formatado
for	Repete comandos por um número de vezes especificado

9/55

FORMATOS DE DADOS DE SAÍDA

Specifier	Description
%C	Single character
∜d	Decimal notation (signed)
%e	Exponential notation (using a lowercase e as in 3.1415e+00)
% E	Exponential notation (using an uppercase E as in 3.1415E+00)
%f	Fixed-point notation
*g	The more compact of %e or %f, as defined in [2]. Insignificant zeros do not print.
% G	Same as ∜g, but using an uppercase E
% i	Decimal notation (signed)
%o	Octal notation (unsigned)
% S	String of characters
%u	Decimal notation (unsigned)
% X	Hexadecimal notation (using lowercase letters a-f)
% X	Hexadecimal notation (using uppercase letters A-F)

COMANDOS

Character	Description	
\b	Backspace	
۱f	Form feed	
\ n	New line	
۱r	Carriage return	
\t	Horizontal tab	
11	Backslash	
\'' or ''	Single quotation mark	
(two single quotes)		
\$ \$	Percent character	

Vetores e Matrizes

- □ Colchetes são utilizados para armazenar vetores ou matrizes.
- □ Vetor linha:

$$>> a = [1 2 3 4]$$

□ Vetor coluna:

MATRIZ

□ Uma matriz pode ser armazenada por:

$$>> A=[a_{11} \ a_{12} \ a_{13}; \ a_{21} \ a_{22} \ a_{23}; \ a_{31} \ a_{32} \ a_{33}];$$

□ Ou por:

>>
$$A=[a_{11} \ a_{12} \ a_{13}$$

$$a_{21} \ a_{22} \ a_{23}$$

$$a_{31} \ a_{32} \ a_{33}];$$

□ Ou ainda por:

$$>> A = [[a_{11} \ a_{12} \ a_{13}]'[a_{21} \ a_{22} \ a_{23}]'[a_{31} \ a_{32} \ a_{33}]'];$$

MATRIZ

□ Podemos acessar cada valor de uma matriz utilizando a estrutura:

□ Por exemplo:

$$>> A(1,1) = a_{11}$$

Símbolo:

□ O : é muito utilizado para manipular matrizes. Se um : for colocado entre dois números, o MATLAB irá gerar números entre eles adicionando um.

$$>>$$
 i = 1:5

i será igual a 1, depois 2, depois 3, depois 4 e por último 5.

Variações interessantes seriam:

$$>>$$
 i = 1:0.5:3

Isto resulta em: $i = 1.0 \quad 1.5 \quad 2.0 \quad 2.5 \quad 3.0$

$$>>$$
 i = 5:-1:1

Isto resulta em: $i = 5 \ 4 \ 3 \ 2 \ 1$

Algoritmo do método de Gauss-Jacobi

ENTRADA: A (matriz $n \times n$ com $a_{jj} \neq 0, j = 1, ..., n$), **b**, aproximação inicial $x^{(0)}$, precisão tol, número máximo de iterações max.

SAÍDA: solução aproximada $x^{(m)} = [x_j^{(m)}]$ ou mensagem de falha.

<u>Passo 1</u>: Para i = 1 : n (contador das linhas da matriz)

<u>Passo 2</u>: Para j = 1 : n (contador das colunas da matriz)

<u>Passo 3</u>: Se i = j

$$D(i,j) = 0$$

$$I(i, 1) = B(i, 1) / A(i, i);$$

senão

$$D(i, j) = -A(i, j) / A(i, i);$$

Algoritmo do método de Gauss-Jacobi

```
Fim dos Passos 1, 2 e 3
<u>Passo 4</u>: Enquanto k < nmax
       X1 = D * X + I;
   <u>Passo 5</u>: Para i = 1: n
               ERx(i, 1) = abs((X1(i, 1) - X(i, 1))/X1(i, 1))*100;
               mtol(i,1) = tol;
    Fim Passo 5
Passo 6: Se ERx < mtol
        SAÍDA (O vetor solução é: X1)
```

□ VARIÁVEIS

- □ Ordem da matriz: ord
- □ Matriz dos coeficientes: A
- □ Vetor X inicial: X
- □ Vetor dos termos independentes: B
- □ Precisão: tol
- □ Número máximo de iterações: max

```
clear, clc
% Recebe a ordem do sistema
     ord = input('Ordem da matriz:');
% Recebe a matriz dos coeficientes
     A = input('matriz dos coeficientes:');
% Recebe o vetor X inicial
     X = input('Entre com o vetor X inicial:');
% Recebe o vetor dos termos independentes b
     B = input('Entre com o vetor B:');
% Recebe o erro pré-estabelecido
     tol = input('Entre com a tolerância:');
% Recebe o vetor dos termos independentes b
     max = input('Entre com o número máximo de
                 iterações');
```

```
% Processamento
k = 1;
for i = 1:ord
    for j = 1: ord
         if i == j
            % Matriz que armazena os termos que
                 multiplicam por xi
           D(i,j) = 0;
           % Matriz que armazena os termos somam
             com D(i,j)
           I(i,1) = B(i,1)/A(i,i);
        end D(i,j) = -A(i,j)/A(i,i);
```

```
While (k < max)
      X1 = D*X + I;
   for i = 1:ord
      ERX(i,1) = abs((X1(i,1)-X(i,1))/X1(i,1))*100;
      mtol(i,1)=tol;
   end
      if ERX < mtol
            fprintf('%1.5f\n',X1);
            break
      end
      X = X1;
      k = k+1;
                  Aula 7 – MATLAB - Zeros de funções
```

Cálculo Numérico

Exemplo 1

□ Considere o sistema:

$$\begin{cases} 3x_1 - 0.1x_2 - 0.2x_3 = 7.85 \\ 0.1x_1 + 7x_2 - 0.3x_3 = -19.3 \\ 0.3x_1 - 0.2x_2 + 10x_3 = 71.4 \end{cases}$$

- \Box A solução verdadeira é $x_1=3,\,x_2=-2,5,\,x_3=7$
- □ Use o <u>Método de Gauss-Jacobi</u> para obter a solução aproximada com $\theta_s = 0,01\%$

Exemplo 1

 \Box A tabela abaixo apresenta os valores de x_1 , x_2 e x_3 a cada iteração.

Iteração (j)	$x_1^{(j)}$	$x_2^{(j)}$	$x_3^{(j)}$
1	2,61667	-2,75714	7,14000
2	3,00076	-2,48852	7,00636
3	3,00081	-2,49974	7,00021
4	3,00002	-2,50000	6,99998
5	3,00000	-2,50000	7,00000

Algoritmo do método de Gauss-Seidel

ENTRADA: A (matriz $n \times n$ com $a_{jj} \neq 0, j = 1, ..., n$), **b**, aproximação inicial $x^{(0)}$, precisão tol, número máximo de iterações max.

SAÍDA: solução aproximada $x^{(m)} = [x_j^{(m)}]$ ou mensagem de falha.

<u>Passo 1</u>: Para i = 1 : n (contador das linhas da matriz)

<u>Passo 2</u>: Para j = 1 : n (contador das colunas da matriz)

<u>Passo 3</u>: Se i = j

$$D(i,j) = 0$$

$$I(i, 1) = B(i, 1) / A(i, i);$$

senão

$$D(i, j) = -A(i, j) / A(i, i);$$

Algoritmo do método de Gauss-Seidel

```
Fim dos Passos 1, 2 e 3
<u>Passo 4</u>: Enquanto k < nmax
      X1 = X
         Para i = 1:n
       X1 = D * X1 + I;
   Passo 5: Para i = 1: n
              ERx(i, 1) = abs((X1(i, 1) - X(i, 1))/X1(i, 1))*100;
              mtol(i,1) = tol;
   Fim Passo 5
Passo 6: Se ERx < mtol
```

Aula 7 – MATLAB - Zeros de funções Cálculo Numérico

SAÍDA (O vetor solução é: X1)

Método de Gauss-Seidel

□ VARIÁVEIS

- □ Ordem da matriz: ord
- □ Matriz dos coeficientes: A
- □ Vetor X inicial: X
- □ Vetor dos termos independentes: B
- □ Precisão: tol
- □ Número máximo de iterações: max

```
clear, clc
% Recebe a ordem do sistema
     ord = input('Ordem da matriz:');
% Recebe a matriz dos coeficientes
     A = input('matriz dos coeficientes:');
% Recebe o vetor X inicial
     X = input('Entre com o vetor X inicial:');
% Recebe o vetor dos termos independentes b
     B = input('Entre com o vetor B:');
% Recebe o erro pré-estabelecido
     tol = input('Entre com a tolerância:');
% Recebe o vetor dos termos independentes b
     max = input('Entre com o número máximo de
                 iterações');
```

```
% Processamento
k = 1;
for i = 1:ord
    for j = 1: ord
         if i == j
            % Matriz que armazena os termos que
                 multiplicam por xi
           D(i,j) = 0;
           % Matriz que armazena os termos somam
             com D(i,j)
           I(i,1) = B(i,1)/A(i,i);
        end D(i,j) = -A(i,j)/A(i,i);
```

```
While (k < max)
     X1(i,1) = D(i,:)*X1 + I(i,1);
       (Obs. A expressão D(i,:)*X1 realiza uma
        multiplicação entre dois vetores
       (uma linha da matriz e o vetor X))
```

```
for i = 1:ord
  ERX(i,1) = abs((X1(i,1)-X(i,1))/X1(i,1))*100;
  mtol(i,1)=tol;
end
  if ERX < mtol
         fprintf('%1.5f\n',X1);
        break
  end
  X = X1;
  k = k+1;
```

end