TUGAS ROBOTIKA WEEK 3 – Analisis

Ade Tirta Rahmat Hidayat – 1103203212 – TK45G06

1. Simulasi Gerakan Maju dengan Open-Loop Control

Simulasi ini memungkinkan robot e-puck bergerak maju tanpa kendali berbasis sensor. Kedua roda diatur dengan kecepatan yang sama, dan robot terus bergerak maju tanpa memperhatikan kondisi lingkungannya.

Valabihan	Volumengen
Kelebihan	Kekurangan
Sangat sederhana dan efisien dalam hal	Tidak adaptif karena tidak dapat
komputasi, karena tidak melibatkan	mendeteksi hambatan atau perubahan
penggunaan sensor atau pemrosesan	kondisi lingkungan.
tambahan	
Robot dapat bergerak secara konstan	Kurang kontrol karena gerakan tidak
tanpa interupsi atau perubahan arah. Hal	dapat menyesuaikan kecepatan atau arah.
ini cocok untuk kasus yang tidak perlu	
penyesuaian lingkungan.	

Simulasi open-loop cocok digunakan untuk kasus sederhana di mana robot hanya perlu bergerak maju tanpa memerlukan interaksi dengan lingkungannya, namun kurang cocok untuk situasi yang dinamis atau lingkungan yang berubah-ubah.

2. Simulasi Gerakan Melingkar

Dalam simulasi ini, robot e-puck bergerak dalam lintasan melingkar. Kecepatan roda kiri diatur lebih lambat daripada roda kanan, yang menyebabkan robot berputar dalam lingkaran.

Kelebihan	Kekurangan
Kontrol lebih baik karena pengaturan	Lintasan tetap sehingga robot tidak dapat
kecepatan roda kiri dan kanan berbeda.	beradaptasi dengan lingkungan.
Gerakan melingkar memungkinkan robot	Tidak responsif apabila terdapat
untuk menavigasi area yang lebih sempit	hambatan.
atau melakukan manuver yang lebih	
presisi sehingga gerakannya menjadi	
lebih fleksibel.	

Simulasi ini memberikan kontrol gerakan yang lebih fleksibel, namun tetap tidak adaptif terhadap lingkungan. Penggunaan kontrol berbasis sensor sangat dibutuhkan untuk meningkatkan kemampuan navigasi di lingkungan yang kompleks.

3. Simulasi Penghentian Robot dengan Sensor Proximity

Pada simulasi ini, robot e-puck bergerak maju namun dapat mendeteksi objek di depannya menggunakan sensor proximity. Ketika sensor mendeteksi objek, robot berhenti untuk menghindari tabrakan.

Kelebihan	Kekurangan
Sensor proximity memungkinkan robot	Robot hanya dapat berhenti saat
untuk merespons rintangan di depannya	mendeteksi objek di depannya, dan tidak
sehingga robot dapat lebih adaptif.	melakukan manuver untuk

	menghindarinya (seperti berbelok atau
	mundur).
Simulasi ini menggunakan kontrol	Jangkauan sensor proximity terbatas,
berbasis sensor (closed-loop), yang	sehingga hanya bisa mendeteksi objek
memberikan robot kemampuan untuk	yang sangat dekat.
mengubah perilakunya berdasarkan input	
dari lingkungan.	
Penghentian otomatis saat mendeteksi	
objek dapat mencegah tabrakan.	

Simulasi dengan sensor proximity memberikan kontrol adaptif yang penting untuk navigasi di lingkungan nyata. Meskipun simulasi ini hanya berhenti saat ada objek, ini sudah memberikan dasar yang baik untuk menambahkan fitur navigasi yang lebih kompleks, seperti penghindaran rintangan.