МГТУ им. Н.Э. Баумана

ДОМАШНЕЕ ЗАДАНИЕ

Логика и теория алгоритмов

Студент: Нгуен Фыок Санг

Группа: ИУ7И-46Б

Работу проверил:

Для булевой функции f, заданной в таблице 1:

- а) найти сокращенную ДНФ;
- б) найти ядро функции;
- в) получить все тупиковые ДНФ и указать, какие из них являются минимальными;
- г) на картах Карно указать ядро и покрытия, соответствующие минимальным ДНФ.

N вариа	нта: 16
0000	1
0001	1
0010	1
0011	1
0100	1
0101	0
0110	0
0111	1
1000	1
1001	0
1010	1
1011	0
1100	1
1101	0
1110	1
1111	1

Решение:

а) Карта Карно для сокращённой ДНФ:

Сокращённая ДНФ:

$$\bar{x}_2\bar{x}_4 \vee \bar{x}_3\bar{x}_4 \vee \bar{x}_1\bar{x}_2 \vee \bar{x}_1x_3x_4 \vee x_2x_3x_4 \vee x_1x_2x_3 \vee x_1\bar{x}_4$$

Ядро функции:

$$K2 = xx00 = \bar{x}_3\bar{x}_4$$

$$K3 = 00xx = \bar{x}_1\bar{x}_2$$

 $(K4 \lor K5)(K5 \lor K6)(K6 \lor K7)(K7 \lor K1) = K5K7 \lor K4K6K7 \lor K4K6K1 \lor K5K6K1$

$$K2K3 \begin{cases} K5K7 \\ K4K6K7 \\ K4K6K1 \end{cases} = \bar{x}_3\bar{x}_4 \vee \bar{x}_1\bar{x}_2 \vee \begin{cases} x_2x_3x_4 \vee x_1\bar{x}_4 \\ \bar{x}_1x_3x_4 \vee x_1x_2x_3 \vee x_1\bar{x}_4 \\ \bar{x}_1x_3x_4 \vee x_1x_2x_3 \vee \bar{x}_2\bar{x}_4 \\ x_2x_3x_4 \vee x_1x_2x_3 \vee \bar{x}_2\bar{x}_4 \end{cases}$$

Минимальными: $K2K3K5K7 = \bar{x}_3\bar{x}_4 \vee \bar{x}_1\bar{x}_2 \vee x_2x_3x_4 \vee x_1\bar{x}_4$

	00	01	11	10
00	1	1 K3	1	1
01	1 K2	0	1 K4	0
11 K7	1	0	1	1
10	1	0	0 K6	1

Задача 2 Даны функции f (таблица 2) и w (таблица 3).

$$\begin{array}{c|c}
N_{\underline{0}} & f(x_1, x_2, x_3) \\
\hline
16 & \overline{((\overline{x}_2 \lor (\overline{x}_3 \Rightarrow \overline{x}_2)) \downarrow (x_1 \lor \overline{x}_3))} \Rightarrow (x_2 \sim x_3) \\
\hline
16 & (0, 0, 0, 0, 0, 1, 1, 1)
\end{array}$$

- а) Вычислить таблицу значений функции f. б) Найти минимальные ДНФ функций f и w.
- в) Выяснить полноту системы $\{f, w\}$. Если система не полна, дополнить систему функцией g до полной системы.

Указание. Запрещается дополнять систему константами, отрицанием и базовыми функциями двух переменных (\bigoplus , V, Λ , |, \downarrow и т.д.) Не допускается дополнение функцией, образующей с f или w полную подсистему, кроме случаев, когда иное невозможно.

г) Из функциональных элементов, реализующих функции полной системы $\{f,w\}$ или $\{f,w,g\}$, построить функциональные элементы, реализующие базовые функции $(V,\Lambda,0,1)$

а) Таблица значений функции f:

X 1	X2	X 3	\bar{x}_1	\bar{x}_2	\bar{x}_3	$\bar{x}_3 \to \bar{x}_2$	$\bar{x}_2 \vee (\bar{x}_3 \to \bar{x}_2)$	$x_1 \vee \bar{x}_3$	$A = (\bar{x}_2 \vee (\bar{x}_3 \to \bar{x}_2)) \downarrow (x_1 \vee \bar{x}_3)$	$ar{A}$	$x_2 \sim x_3$	f
0	0	0	1	1	1	1	1	1	0	1	1	1
0	0	1	1	1	0	1	1	0	0	1	0	0
0	1	0	1	0	1	0	0	1	0	1	0	0
0	1	1	1	0	0	1	1	0	0	1	1	1
1	0	0	0	1	1	1	1	1	0	1	1	1
1	0	1	0	1	0	1	1	1	0	1	0	0
1	1	0	0	0	1	0	0	1	0	1	0	0
1	1	1	0	0	0	1	1	1	0	1	1	1

Карта Карно функции f:

	00	01	11	10
0	1	0	1	0
1	1	0	1	0

Минимальная ДНФ: $f=\bar{x}_2\bar{x}_3 \vee x_2x_3$

Карта Карно для функции w:

	00	01	11	10
0	0	0	0	0
1	0	1	1	1
			$\overline{}$	J

Минимальная ДНФ: $w = x_1 x_3 \vee x_1 x_2$

Проверка на полноту системы $\{f,w\}$

$x_1 x_2 x_3$	f	W
000	1	0
001	0	0
010	0	0
011	1	0
100	1	0
101	0	1
110	0	1
111	1	1

Сохранение 0

$$f(0,0,0) \neq 0 \to f \notin T_0$$

$$w(0,0,0) = 0 \to w \in T_0$$

2. Сохранение 1

$$f(1,1,1) = 1 \to f \in T_1$$

 $w(1,1,1) = 1 \to w \in T_1$

3. Самодвойственность

$$f(0,0,0) = f(1,1,1) = 1 \ \to f \ \not\in S$$

$$w(0,1,1) = w(1,1,0) = 0 \rightarrow w \notin S$$

4. Монотонность

$$(0,0,0) < (0,0,1), f(0,0,0) > f(0,0,1) \to f \notin M$$
$$\forall \widetilde{\alpha}, \widetilde{\beta}, \widetilde{\alpha} < \widetilde{\beta}, w(\widetilde{\alpha}) \le w(\widetilde{\beta}) \to w \in M$$

5. Линейность функций

$$f(x_1, x_2, x_3) = a_{123} x_1 x_2 x_3 \oplus a_{12} x_1 x_2 \oplus a_{23} x_2 x_3 \oplus a_{13} x_1 x_3 \oplus a_1 x_1 \oplus a_2 x_2 \oplus a_3 x_3 \oplus a_0$$

$x_1x_2x_3$	f	
000	1	$a_0 = 1$
001	0	$a_3 \oplus a_0 = 0 \rightarrow a_3 = 1$
010	0	$a_2 \oplus a_0 = 0 \rightarrow a_2 = 1$
011	1	$a_{23} \oplus a_2 \oplus a_3 \oplus a_0 = 1 \rightarrow a_{23} = 0$
100	1	$a_1 \oplus a_0 = 1 \rightarrow a_1 = 0$
101	0	$a_{13} \oplus a_1 \oplus a_3 \oplus a_0 = 0 \rightarrow a_{13} = 0$
110	0	$a_{12} \oplus a_1 \oplus a_2 \oplus a_0 = 0 \rightarrow a_{12} = 0$
111	1	$a_{123} \oplus a_{12} \oplus a_{23} \oplus a_{13} \oplus a_1 \oplus a_2 \oplus a_3 \oplus a_0 = 1 \rightarrow a_{123} = 0$

Полином Жегалкина функции f:

$$f(x_1, x_2, x_3) = x_2 \oplus x_3 \oplus 1 \rightarrow f \in L$$

$$w(x_1, x_2, x_3) = a_{123} x_1 x_2 x_3 \oplus a_{12} x_1 x_2 \oplus a_{23} x_2 x_3 \oplus a_{13} x_1 x_3 \oplus a_1 x_1 \oplus a_2 x_2 \oplus a_3 x_3 \oplus a_0$$

$x_1 x_2 x_3$	w	
000	0	$a_0 = 0$
001	0	$a_3 \oplus a_0 = 0 \rightarrow a_3 = 0$
010	0	$a_2 \oplus a_0 = 0 \rightarrow a_2 = 0$
011	0	$a_{23} \oplus a_2 \oplus a_3 \oplus a_0 = 0 \rightarrow a_{23} = 0$
100	0	$a_1 \oplus a_0 = 0 \rightarrow a_1 = 0$
101	1	$a_{13} \oplus a_1 \oplus a_3 \oplus a_0 = 1 \rightarrow a_{13} = 1$
110	1	$a_{12} \oplus a_1 \oplus a_2 \oplus a_0 = 1 \rightarrow a_{12} = 1$
111	1	$a_{123} \oplus a_{12} \oplus a_{23} \oplus a_{13} \oplus a_{1} \oplus a_{2} \oplus a_{3} \oplus a_{0} = 1 \rightarrow a_{123} = 1$

Полином Жегалкина функции w:

$$w(x_1, x_2, x_3) = x_1 x_3 \oplus x_1 x_2 \oplus x_1 x_2 x_3 \rightarrow w \notin L$$

	T_0	T_1	S	M	L
f	1	+	1	1	+
W	+	+	-	+	-

Система $\{f,w\}$ не является функционально полным классом, т.к. обе функции сохраняют константу 1. Дополним систему функцией, которая не сохраняет 1,

$$\begin{split} g(x_1, x_2, x_3) &= (1, 0, 0, 0, 1, 1, 1, 0) \\ g(0, 0, 0) &\neq 0 \to g \notin T_0 \\ g(1, 1, 1) &\neq 1 \to g \notin T_1 \\ \forall \widetilde{\alpha} \,, \bar{g}(\widetilde{\alpha}) &= g(\overline{\alpha}) \to g \in S \\ (0, 0, 0) &< (0, 0, 1), g(0, 0, 0) > g(0, 0, 1) \to g \notin M \end{split}$$

 $w(x_1, x_2, x_3) = a_{123} x_1 x_2 x_3 \oplus a_{12} x_1 x_2 \oplus a_{23} x_2 x_3 \oplus a_{13} x_1 x_3 \oplus a_1 x_1 \oplus a_2 x_2 \oplus a_3 x_3 \oplus a_0$

$x_1x_2x_3$	g	
000	1	$a_0 = 1$
001	0	$a_3 \oplus a_0 = 0 \rightarrow a_3 = 1$
010	0	$a_2 \oplus a_0 = 0 \rightarrow a_2 = 1$
011	0	$a_{23} \oplus a_2 \oplus a_3 \oplus a_0 = 0 \rightarrow a_{23} = 1$
100	1	$a_1 \oplus a_0 = 1 \rightarrow a_1 = 0$
101	1	$a_{13} \oplus a_1 \oplus a_3 \oplus a_0 = 1 \rightarrow a_{13} = 1$
110	1	$a_{12} \oplus a_1 \oplus a_2 \oplus a_0 = 1 \rightarrow a_{12} = 1$
111	0	$a_{123} \oplus a_{12} \oplus a_{23} \oplus a_{13} \oplus a_1 \oplus a_2 \oplus a_3 \oplus a_0 = 1 \rightarrow a_{123} = 0$

$$g(x_1,x_2,x_3) = x_1x_2 \oplus x_2x_3 \oplus x_1x_3 \oplus x_2 \oplus x_3 \oplus 1 \rightarrow g \notin L$$

	T_0	T_1	S	M	L
f	-	+	-	-	+
W	+	+	-	+	-
g	-	-	+	-	-

Отрицание:

$$\bar{x} = g(x, x, x)$$

Константа 1:

$$1 = f(x, x, x)$$

Константа 0:

$$0 = g\big(f(x,x,x), f(x,x,x), f(x,x,x)\big)$$

Выражение для конъюнкции:

$$w(x_1, x_2, x_3) = x_1 x_3 \oplus x_1 x_2 \oplus x_1 x_2 x_3$$

$$w = x_1 x_3 \vee x_1 x_2$$

$$x_3 = 0, x_1 = x, x_2 = y, \chi(x, y) = w(x_1, x_2, 0) = x_1 x_2$$

$$\chi(x, y, 0) = xy, a = b = c = 0$$

$$\psi(x, y) = \chi(x, y) = w(x, y, 0)$$

$$\psi(x, y) = w(x, y, g(f(x, x, x), f(x, x, x), f(x, x, x)))$$