

Prog. Apl. CC

Dr. E. S. Pereira

Sumário

Unidade d
Ponto
Flutuante

Exercíci

Unidade de Ponto Flutuante

Programação Aplicada a Ciência da Computação. Prof. Dr. Eduardo S. Pereira.

http:

//eduardopereira.upcursosetreinamentosonline.com/

11 de maio de 2018

Prog. Apl. CC

Dr. E. S Pereira

Sumário

Unidade d Ponto Flutuante

Evercício

Unidade de Ponto Flutuante

Prog. Apl. CC

Dr. E. S Pereira

Sumário

Unidade de Ponto Flutuante

Exercício

- Também chamada de co-processador matemático
- A ULA não trabalha bem com números fracionário, muito pequenos ou muito grandes
- Noa processadores antigos eram auxiliados por outro processador mais especializado para realização de operações matemáticas complexas.
- A partir do processador 80486, os processadores passaram a incorporar a função de co-processamento matemático
- Os processadores passaram a receber mais um componente
 interno que foi chamado de Unidade de Ponto Fluturante.

Prog. Apl. CC

Dr. E. S Pereira

Sumário

Unidade de Ponto Flutuante

Exercício

- Também chamada de co-processador matemático
- A ULA não trabalha bem com números fracionário, muito pequenos ou muito grandes
- Noa processadores antigos eram auxiliados por outro processador mais especializado para realização de operações matemáticas complexas.
- A partir do processador 80486, os processadores passaram a incorporar a função de co-processamento matemático
- Os processadores passaram a receber mais um componente interno que foi chamado de Unidade de Ponto Flutuante.

Prog. Apl. CC

Dr. E. S Pereira

Sumário

Unidade de Ponto Flutuante

Exercício

- Também chamada de co-processador matemático
- A ULA não trabalha bem com números fracionário, muito pequenos ou muito grandes
- Noa processadores antigos eram auxiliados por outro processador mais especializado para realização de operações matemáticas complexas.
- A partir do processador 80486, os processadores passaram a incorporar a função de co-processamento matemático
- Os processadores passaram a receber mais um componente interno que foi chamado de Unidade de Ponto Flutuante.

Prog. Apl. CC

Dr. E. S Pereira

Sumário

Unidade de Ponto Flutuante

Exercício

- Também chamada de co-processador matemático
- A ULA não trabalha bem com números fracionário, muito pequenos ou muito grandes
- Noa processadores antigos eram auxiliados por outro processador mais especializado para realização de operações matemáticas complexas.
- A partir do processador 80486, os processadores passaram a incorporar a função de co-processamento matemático
- Os processadores passaram a receber mais um componente interno que foi chamado de Unidade de Ponto Flutuante.

Prog. Apl. CC

Dr. E. S Pereira

Sumário

Unidade de Ponto Flutuante

Exercício

- Também chamada de co-processador matemático
- A ULA não trabalha bem com números fracionário, muito pequenos ou muito grandes
- Noa processadores antigos eram auxiliados por outro processador mais especializado para realização de operações matemáticas complexas.
- A partir do processador 80486, os processadores passaram a incorporar a função de co-processamento matemático
- Os processadores passaram a receber mais um componente interno que foi chamado de Unidade de Ponto Flutuante.

Prog. Apl. CC

Dr. E. S Pereira

Sumário

Unidade de Ponto Flutuante

Exercício

Unidade de Ponto Flutuante

 Em NASM existem instruções específicas para tratar com pontos flutuantes

Prog. Apl. CC

Dr. E. S. Pereira

Sumário

Unidade de Ponto Flutuante

```
%include "io.inc"
    a: dd 4.0
   b: dd 3.0
    c: da 0.0
    msg: db "soma = %f",10,0
    msg2: db "raiz = %f".10.0
    msg3: db "multiplicacao = %f",10,0
    msq4: db "Divisao = %f".10.0
section .text
global CMAIN
    mov ebp, esp; for correct debugging
    ;Colocando os valores de a e b na pilha
    ; para realizar operacoes de ponto flutuante
    fld dword [a]
    fld dword [b]
    ; somando os dois itens na pilha
    ; armazenando a respota em c
    fstp gword [c]
    ;Colocando a parte L do dado em c na pilha
    push dword [c+4]
    ;Colocando a parte H do dado em c na pilha
    push dword [c]
    push dword msg
    call printf
    add esp,12
```


Prog. Apl. CC

Dr. E. S. Pereira

Sumário

Unidade de Ponto Flutuante

```
%include "io.inc"
section .data
    a: dd 4.0
   b: dd 3.0
    c: dq 0.0
    msg: db "soma = %f",10,0
    msq2: db "raiz = %f", 10,0
    msq3: db "multiplicacao = %f",10,0
    msq4: db "Divisao = %f",10,0
section .text
extern printf
global CMAIN
CMAIN:
   finit
    fld dword [a]
    ;Calculando a raiz quadrada de a
    fsqrt
    fstp qword [c]
    push dword [c+4]
    push dword [c]
    push dword msg2
    call printf
    add esp, 12
    xor eax, eax
    ret
```


Prog. Apl. CC

Dr. E. S. Pereira

Sumário

Unidade de Ponto Flutuante

```
%include "io.inc"
section .data
   a: dd 4.0
   b: dd 3.0
   c: da 0.0
   msq: db "soma = %f",10,0
   msg2: db "raiz = %f", 10, 0
   msq3: db "multiplicacao = %f",10,0
   msq4: db "Divisao = %f",10,0
section .text
extern printf
global CMAIN
CMAIN:
   finit
   fld dword [a]
    fld dword [b]
    ; realizando a multiplicacao de a com b
    fm111
    fstp gword [c]
    push dword [c+4]
    push dword [c]
    push dword msg3
    call printf
    add esp,12
    xor eax, eax
    ret
```


Prog. Apl. CC

Dr. E. S. Pereira

Sumário

Unidade de Ponto Flutuante

```
%include "io.inc"
section .data
   a: dd 4.0
   b: dd 3.0
   c: da 0.0
   msq: db "soma = %f",10,0
   msg2: db "raiz = %f", 10, 0
   msq3: db "multiplicacao = %f",10,0
   msq4: db "Divisao = %f",10,0
section .text
extern printf
global CMAIN
CMAIN:
   finit
   fld dword [a]
    fld dword [b]
    ; realizando a divisao de a por b
    fstp gword [c]
    push dword [c+4]
    push dword [c]
    push dword msq4
    call printf
    add esp,12
    xor eax, eax
    ret
```



```
Prog. Apl. CC
```

Dr. E. S. Pereira

Sumário

```
%include "io.inc"
%macro somavetor 3
    mov ebx,0
    mov ecx, %2
    fldz ;st0 <- 0
    while:
        fld dword [%1+4*ebx]
        fadd
        inc ebx
        cmp ebx, ecx
        jl while
    end_while:
    fstp qword [%3]
%endmacro</pre>
```


Prog. Apl. CC

Dr. E. S. Pereira

Sumário

Unidade de Ponto Flutuante

```
section .data
    tmp: dq 0.0
   soma: dd 0.0
   msg: db "soma = %e", 10, 0
                                   7.36464646465
    vetor:
                                   0.930984158273
                                   10.6047098049
                                   14.3058722306
                                   15.2983812149
                                   -17.4394255035
                                   -17.8120975978
                                   -12.4885670266
                                   3.74178604342
                                   16.3611827165
                                   -9.1182728262
                dd
                                   -11.4055038727
                                   4 68148165048
                                   -9.66095817322
                                   5.54394454154
                                   13.4203706426
                                   18.2194407176
                dd
                                   -7.878340987
                dd
                                   -6.60045833452
                dd
                                   -7.98961850398
   N: equ ($-vetor)/4
```


Prog. Apl. CC

Dr. E. S. Pereira

Sumário

Unidade de Ponto

```
section .text
extern printf
global CMAIN
CMAIN:
mov ebp, esp; for correct debugging
somavetor vetor, N, tmp

push dword [tmp+4]
push dword [tmp]
push dword msg
call printf
add esp,12

xor eax, eax
ret
```



```
Prog. Apl. CC
```

Dr. E. S. Pereira

Sumario

Unidade de Ponto Flutuante

Exercíci

ret

```
while:
       cmp ebx, ecx
       il while
   tmp: da 0.0
   nsq: db "soma = %e",10,0
                                10.6047098049
                                15.2983812149
                                16.3611827165
                                -9.1182728262
                                4.68148165048
                                18.2194407176
                                -7.878340987
global CMAIN
   nov ebp, esp; for correct debugging
   push dword msq
```


Exercício

Prog. Apl. CC

Dr. E. S. Pereira

Sumário

Unidade d Ponto

- Escreva uma sub-rotina para o cálculo da potência de dois números, sendo que a base deve ser do tipo ponto flutuante e a potência um inteiro.
- Use como base o seguinte código:

```
POTENCIA:
    mov ecx, [valor]
    mov eax, [valor]
    mov ebx, 1
    while:
        cmp ebx, [potc]
        ie end while
        mul ecx
        inc ebx
        imp while
    end_while:
    mov [resultado], eax
    ret
```


FIM

Prog. Apl. CC

Dr. E. S Pereira

Sumário

Unidade o
Ponto
Flutuante

Exercício

Grato

MUITO OBRIGADO.

Referências

Prog. Apl. CC

Dr. E. S. Pereira

Sumário

Unidade d Ponto

Exercício

Referências

- https://www.nasm.us/doc/nasmdoc4.html
- https://en.wikibooks.org/wiki/X86_Assembly/ Floating_Point
- http://www.science.smith.edu/dftwiki/index.php/ CSC231_Floating-Point_Assembly_Examples