МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРОЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Национальный исследовательский институт ИТМО»

ФАКУЛЬТЕТ ПРОГРАМНОЙ ИНЖЕНЕРИИ И ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №2

по дисциплине «ИНФОРМАТИКА» Вариант №83

Выполнил:

Студент группы Р3118 Михайлов Дмитрий Андреевич *Преподаватель:* Рыбаков Степан Дмитриевич

1 Содержание

1.1	Задание	3	
1.2	Основные этапы вычислений	.4 -	7
1.3	Вывод	.8	
1.4	Список литературы	9	

1.1 Задание.

Вариант №83

	83		6	7	10	39	79	8	32							
1 67 1								_								
1	67		l	1	0	0	1		0	0						
1.	10		1	0	1	0	0	Т	0	0						
1.	39		1	1	0	0	0)	1	0						
.					_			_								
1	79		l	0	0	1	1	\perp	0	1						
_	0.0				0						_					_
2.	82	0	0	1	0	1	0	1	0	0	1	0	0	1	0	

1.2 Основные этапы вычислений.

а) Схема декодирования для (7; 4)

Сначала переведём данные нам числа в 2-ую систему счисления.

- a) $67_{10} = 1000011_2$
- $6) 10_{10} = 0001010_2$
- B) $39_{10} = 0100111_2$
- Γ) $79_{10} = 1001111_2$

Для лучшего понимания схемы декодирования для классического кода Хэмминга(7; 4) построим таблицу, где каждый бит числа будет соответствовать своему значению:

	1	2	3	4	5	6	7	
2^x	r_1	r_2	i_1	r_3	i_2	i_3	i_4	S
1	X		X		X		X	s_1
2		X	Χ			Χ	X	s_2
4				X	X	X	X	s_3

Значение синдромов будут вычисляться с помощью операции **сложения по** модулю:

- $s_1 = r_1 \bigoplus i_1 \bigoplus i_2 \bigoplus i_4$
- $s_2 = r_2 \bigoplus i_1 \bigoplus i_3 \bigoplus i_4$
- $s_3 = r_3 \bigoplus i_2 \bigoplus i_3 \bigoplus i_4$

Тогда алгоритм вычисления позиции, где находиться ошибка, будет следующим:

- 1) Развернуть конфигурацию.
- 2) Перевести из 2-ой системы счисления в 10-ую.
- а) Для числа 67 конфигурация синдромов (s_1, s_2, s_3) будет 000, а это означает, что ошибки в этом сообщении не может быть.
- б) Для числа 10 конфигурация синдромов (s_1,s_2,s_3) будет 010, а это означает, что ошибка в бите 2, т.е. в r_2 . Правильная запись будет такая 0101010 $_2$
- в) Для числа 39 конфигурация синдромов (s_1, s_2, s_3) будет 011, а это означает, что ошибка в бите 6, т.е. в i_3 . Правильная запись будет такая 0100101 $_2$
- г) Для числа 79 конфигурация синдромов (s_1,s_2,s_3) будет 011, а это означает, что ошибка в бите 1, т.е. в r_1 . Правильная запись будет такая 0001111 $_2$

б) Схема декодирования для (15;11)

Сначала переведём данное нам сообщение в 2-ую систему счислени, но длина должна быть равна 15 битам, то остальную часть забьём незначащими нулями.

д) $82_{10} = 000000001010010_2$

Для лучшего понимания схемы декодирования для классического кода Хэмминга(15; 11) построим таблицу, где каждый бит числа будет соответствовать своему значению:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
2^x	r_1	r_2	i_1	r_3	i_2	i_3	i_4	r_4	i_5	i_6	i_7	i_8	i_9	i_{10}	i_{11}	S
1	Χ		X		X		X		X		X		X		Χ	s_1
2		X	X			X	X			X	X			X	Χ	s_2
4				Χ	X	X	X					X	Χ	Χ	X	s_3
8								X	X	X	X	X	X	X	X	s_4

Значение синдромов будут вычисляться с помощью операции **сложения по** модулю:

$$\begin{array}{l} s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 \oplus i_5 \oplus i_7 \oplus i_9 \oplus i_{11} \\ s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 \oplus i_6 \oplus i_7 \oplus i_{10} \oplus i_{11} \\ s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11} \\ s_4 = r_4 \oplus i_5 \oplus i_6 \oplus i_7 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11} \end{array}$$

а) Для числа 82 конфигурация синдромов $(s_1,\,s_2,\,s_3,\,s_4)$ будет 0111, а это означает, что ошибка в бите 14, т.е. в i_{10} . Правильная запись будет такая - 0000000010100002

Далее, следуя заданию, нам необходимо сложить номера всех 5 вариантов заданий, умножить полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.

Переведём обработанные сообщания в 10-ую систему счисления.

- а) 67 так и остаётся, потому что там не было ошибок.
- $6)\ 0101010_2 = 80_{10}$
- B) $0100101_2 = 42_{10}$
- Γ) $00011111_2 = 15_{10}$
- д) $00000001010000_2 = 37_{10}$

Конечным результатом всех вычислений будет 964.

Мы с вами знаем, что для кода Хэмминга должно выполняться такое условие:

 $2^r \ge r+i+1$, где r - число проверочных разрядов, а i - число ифнормационных разрядов.

Тогда получаем: $2^r \ge r + 964 + 1 \Rightarrow r = 10$.

Решение дополнительного задания №9

Исходный код

1.3 Вывод

Детально ознакомясь с данной темой, я научился правильно использовать код Хэмминга для корректного декодирования сообщений разной длины. Также я уверен, что расстояние Хэмминга пригодится для точного сравнения строк, однако только одинаковой длины.

1.4 Список литературы 1) Код Хэмминга. Пример работы алгоритма. 2) Код Хэмминга