PRÁCTICA 1: PIB ESPAÑOL

Se nos proporciona una serie temporal con el PIB anual español desde 1820 hasta 2008. Desde 1821 hasta 1849, no existen datos para la serie.

Nuestro objetivo a continuación es elaborar predicciones del PIB entre 2004 y 2008 mediante tres sistemas diferentes:

- Una diferencia
- Diferencia del logaritmo
- Dos diferencias

Una diferencia

En primer lugar, transformamos la serie tomando una diferencia. El resultado es el siguiente:

A continuación, observamos el correlograma para decidir qué modelo escoger.

_							
	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
=			1 2 3 4 5	0.757 0.633 0.551 0.488 0.479 0.438	0.757 0.142 0.078 0.047 0.132 0.003	92.205 157.22 206.79 245.93 283.77 315.67	0.000 0.000 0.000 0.000 0.000 0.000
	: =		7 8	0.417	0.051 0.072	344.73 373.42	0.000
	:E	[6]	9	0.409	0.061	401.84 428.92	0.000
	; =	i j i	11	0.392	0.045	455.28	0.000

En la columna que indica la autocorrelación simple, todas las barras exceden los límites. Como, además, la primera barra de la correlación parcial excede ampliamente los límites, y los valores siguientes son muy cercanos a cero, hemos decidido tomar un modelo AR(1).

Dependent Variable: DSPAIN
Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 02/12/20 Time: 22:29
Sample: 1851 2008
Included observations: 158
Convergence achieved after 12 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
C AR(1) SIGMASQ	116.5902 0.753519 17566.43	44.63348 0.042423 1314.948	2.612170 17.76194 13.35903	0.0099 0.0000 0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.573753 0.568253 133.8149 2775496. -996.7376 104.3194 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		117.8960 203.6525 12.65491 12.71306 12.67852 2.164961	
Inverted AR Roots	.75				

Para verificar que el modelo es propicio, debemos asegurarnos de que los residuos son ruido blanco.

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	-0.108	-0.108	1.8739	
1 1 1	1 1	2	0.017	0.006	1.9235	0.165
ı j ı	<u> </u>	3	0.047	0.050	2.2813	0.320
1 1	1 1	4	-0.023	-0.013	2.3662	0.500
ı 🗀		5	0.123	0.119	4.8561	0.302
i j i i	<u> </u>	6	0.029	0.055	4.9995	0.416
ı j ı ı		7	0.029	0.037	5.1386	0.526
1 j i 1	<u> </u>	8	0.057	0.054	5.6889	0.577
ı j ı	<u> </u>	9	0.074	0.088	6.6167	0.578
ı j ı ı	<u> </u>	10	0.050	0.054	7.0467	0.632
ı j a ı	<u> </u>	11	0.081	0.082	8.1645	0.613
ı 🗀		12	0.117	0.129	10.543	0.482
1 ()		13	-0.030	-0.016	10.704	0.554
1 1 1		14	0.018	-0.016	10.761	0.631

Finalmente, lanzamos el forecast para el periodo 2004-2008.

El resultado es el siguiente:

Como podemos observar, esta predicción es notoriamente inferior a los valores reales. Una posible explicación sería la influencia de los valores comprendidos entre 1850 y 1950, que distan mucho de los últimos valores de la serie, pero en nuestro modelo AR(1) siguen ejerciendo su influencia a la baja.

Diferencia de la transformación logarítmica

En primer lugar, transformamos la serie tomando la diferencia del logaritmo.

A continuación, observamos el correlograma para decidir qué modelo escoger.

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1 2 3	0.223 0.039 0.040	0.223 -0.011 0.036	7.9953 8.2392 8.4993	0.005 0.016 0.037
; ; ; ; ;		4 5	0.033 0.140	0.018 0.135	8.6781 11.911	0.037 0.070 0.036
	1 1 1	6 7 8	0.079 0.039 0.081	0.019 0.016 0.066	12.953 13.212 14.329	0.044 0.067 0.074
	1 1	9 10	0.088 0.082 0.157	0.056 0.035 0.127	15.656 16.803 21.053	0.074 0.079 0.033

Como no sabemos identificar a través el correlograma el modelo más indicado para este caso, vamos a probar con un modelo ARMA(1,1).

Variable	Coefficient	Std. Error	t-Stati	stic	Prob.
C AR(1) MA(1) SIGMASQ	0.018351 0.150037 0.075105 0.001965	0.005305 0.431114 0.442769 0.000118	3.4592 0.3480 0.1690 16.671	023 626	0.0007 0.7283 0.8655 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.031361 0.044905 0.310535 268.1145	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watsc	ent var iterion rion n criter.	0.0 -3.3 -3.2 -3.3	018387 045626 343221 265687 311734 397249
Inverted AR Roots Inverted MA Roots	.15 08				
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		1 0.001 2 -0.002 3 0.032 4 -0.005 5 0.129 6 0.046 7 0.009 8 0.062 9 0.062 10 0.035 11 0.128 12 0.088 13 -0.033 14 0.062 15 -0.044 16 -0.118 17 0.129 18 0.002 19 0.054 20 -0.112 21 0.054 22 0.095 23 0.043 24 -0.041 25 -0.119	0.032 -0.005 0.129 0.046 0.011 0.055 0.062 0.020 0.118 0.088 -0.045 0.045 -0.059 -0.160 0.088 -0.003 0.031 -0.142 0.086 0.029 -0.037	0.0001 0.0010 0.1665 0.1707 2.9151 3.2826 3.9247 4.5676 4.7741 7.6031 8.9552 9.1504 12.632 10.161 12.632 15.598 16.131 18.439 18.983 20.661 21.003 21.328 24.003	0.683 0.918 0.405 0.514 0.657 0.687 0.713 0.781 0.575 0.636 0.631 0.681 0.556 0.409 0.481 0.515 0.427 0.458 0.417 0.459 0.501

Con el correlograma de los residuos observamos que los residuos se comportan de manera muy aleatoria, siendo la mayoría cero o próximos a cero. Así pues, asumiremos que son ruido blanco.

Lanzamos un forecast para 2004-2008.

Este es el resultado final:

La predicción es mucho mejor. Los valores predecidos siguen siendo inferiores por el peso de los años anteriores.

Dos diferencias

En primer lugar, transformamos la serie tomando dos diferencias. El resultado es el siguiente:

A continuación, observamos el correlograma para decidir qué modelo escoger.

_							
_	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
=			3	-0.087 -0.038 -0.108 0.061 -0.039	-0.114 -0.184 -0.052 -0.094 -0.110	10.202 11.428 11.661 13.565 14.177 14.427 14.637 14.638	0.001 0.003 0.009 0.009 0.015 0.025 0.041 0.067
		101	9 10 11	0.017 -0.009 0.028	-0.053 -0.075 -0.032	14.685 14.700 14.833	0.100 0.143 0.190
	1 1	" "	11				_

Tampoco tenemos claro qué modelo elegir. Probaremos con un MA(2).

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	3.044567	2.279059	1.335888	0.1836
MA(1)	-0.494818	0.087473	-5.656815	0.0000
MA(2)	-0.308347	0.091033	.091033 -3.387210	
SIGMASQ	16404.88	1365.007	12.01817	0.0000
R-squared	0.183681	Mean depend	0.920371	
Adjusted R-squared	0.167675	S.D. depende	ent var	142.2146
S.E. of regression	129.7450	Akaike info cr	iterion	12.60001
Sum squared resid	2575567.	Schwarz crite	12.67787	
Log likelihood	-985.1005	Hannan-Quin	ın criter.	12.63163
F-statistic	11.47559	Durbin-Watso	on stat	1.857033
Prob(F-statistic)	0.000001			
Inverted MA Roots	.86	36		

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
· þ ·		1 0.037	0.037	0.2161	
ı þ i	' <u> </u>	2 0.112	0.111	2.2386	
1 1	' '	3 -0.019	-0.027	2.2975	0.130
1 [] 1	III	4 -0.091	-0.103	3.6520	0.161
1 1	1 1	5 -0.006	0.006	3.6574	0.301
□ □ □	'['	6 -0.084	-0.064	4.8342	0.305
1 [] 1	'['	7 -0.075	-0.076	5.7683	0.329
ι (ι	'('	8 -0.055	-0.044	6.2829	0.392
1 1		9 -0.003	0.015	6.2845	0.507
1) 1		10 0.016	0.010	6.3263	0.611
ı j ı		11 0.048	0.031	6.7174	0.667
ı b ı		12 0.085	0.069	7.9494	0.634
141	'['	13 -0.041	-0.064	8.2360	0.692
1 1		14 -0.018	-0.043	8.2954	0.762
ı j ı		15 0.033	0.054	8.4845	0.811
1 (1)	1 (1)	16 -0.041	-0.027	8.7772	0.845
ı b ı	<u> </u>	17 0.091	0.082	10.263	0.803
- (d -		18 -0.046	-0.030	10.647	0.831
ı (d. ı	'['	19 -0.062	-0.070	11.338	0.838
<u> </u>		20 -0.183	-0.189	17.414	0.495
ı (d - r	'('	21 -0.059	-0.027	18.042	0.520

Con el correlograma de los residuos observamos que los residuos se comportan de manera muy aleatoria, siendo la mayoría cero o próximos a cero. Así pues, asumiremos que son ruido blanco.

Finalmente, lanzamos el forecast.

Este es el resultado final:

La predicción, en la línea de las demás, tiende a ser inferior a los valores reales. Para mejorar todas las predicciones, tal vez deberíamos tomar solamente valores más recientes de la serie.

