CMPT 440 – Spring 2019: Quantum Finite Automata

Hannah Youssef

Due Date: 5/1/2019

Definition

The formal definition of quantum computing is the "aim to use mechanical phenomena that have no classical counterpart for computational purposes". The central research tasks include building devices with a specified behavior, and designing algorithms to use the behavior.

Quantum Finite Automata are obtained by letting the matrices M_{σ} have complex entries.

Theoretical Background

A real time quantum finite automaton (rtQFA) with a state set Q, and alphabet Σ is described as:

$$M = \{Q, \Sigma, U_{\sigma} | \sigma \in \Sigma, q_1, Q_a\} \tag{1}$$

An Example

 M_{σ} is unitary since the sum of the squares of the norms in each column adds up to 1 and the for product of any two columns is 0.

If all matrices only have 0 or 1 entries and the matrices are unitary, then the automaton is deterministic and reversible.

$$M_{\sigma} = \left\{ \begin{array}{cc} -1 & 0 \\ 0 & i \end{array} \right\}$$

 M_{σ} is unitary since the sum of the squares of the norms in each column adds up to 1 and the dot product of any two columns is 0.

References

Anuj Dawar. Quantum Automata, Machines and Complexity. Computer Laboratory, University of Cambridge. Available from World Wide Web: (https://www.cl.cam.ac.uk/ad260/talks/warwick.pdf).

A.C. Cem Say and Abuzer Yakaryilmaz. *Quantum finite automata: A modern introduction*. Bogazici University, Department of COmputer Engineering, Bebek 34342 Istanbul, Turkey. National Laboratory for Scientific Computing, Pe4tropolis, RJ, 25651-075, Brazil, 2014. Available from World Wide Web: (https://arxiv.org/pdf/1406.4048.pdf).