CUPID array

Joe Camilleri

CUPIL

Optimization of integration time and distance cut in the CUPID array

Joe Camilleri

Virginia Tech

DNP October 2021

Mini-Symposium: Neutrinos and Nuclei XII: Double Beta Decay Analysis
Techniques

CUPID

CUPID experiment

- Proposed $0\nu\beta\beta$ search using bolometric array of 1596 Li₂MoO₄ crystals, deployed in the CUORE¹cryostat.
- Aims to eliminate dominant background of alpha particles present in CUORE.
- Are new backgrounds introduced with a using a new element for the bolometers?

Rendering of proposed CUPID array of Li_2MoO_4 crystals

¹Clarke and Braginski 2004.

Lithium molybdate

- Li₂MoO₄ crystals allow for discrimination of α backgrounds from $\beta\beta$ events (Q=3034keV) via thermal + scintillation signals.
- relatively high isotopic abundance of ¹⁰⁰Mo (10%)
- enrichment above 95% already demonstrated in CUPID-Mo

$2\nu\beta\beta$ events and muons

• The rate of $2\nu\beta\beta$ events is not negligible in CUPID array²

 $T_{1/2} = 7.1 * 10^{18} yr$ \rightarrow rate $\sim 3mHz$

- Minimizing the distance cut helps avoid mis-labelling random $2\nu\beta\beta$ coincidences as multiplicity 2.
- Assuming a simple muon veto geometry, increasing the distance cut rejects more muon events.

²chernyak.

Distance cut in the CUPID array

- monte-carlo simulation of 1 million 2.6MeV gamma rays in the crystal volume.
- With this energy, we expect multiple scattering events in the crystals (cite scattering length)
- multiplicity 2 > events are discarded

Integration time in the CUPID array

$$^{238}U \xrightarrow{\alpha} ^{234}Th \rightarrow ...$$

$$^{214}Bi \xrightarrow{\beta} ^{214}Po \xrightarrow{\alpha} ^{210}Pb...$$

- 100000 uranium-238 events (full chain)
- $T_{1/2}\ ^{214} {
 m Po} \sim 160 \mu {
 m s}$
- $T_{1/2}$ ²¹⁴Bi \sim 20 minutes

$2\nu\beta\beta$ efficiency simulation

- sensitivity studies expect on the order of 90
- larger distance cut causes more random coincidences and more variation with integration time
- Explain LD+CRYS data points
- bremsstrahlung, escape, random coincidences

muon background

- muon flux LNGS
- planned muon veto , 90
- muon track + showers induced by the muon. muon background suppression vs efficiency

Figure: