Assignment 2: Classification for the Detection of Opinion Spam

Anouk van der Lee (6620590), Shu Zhao (6833519), Fleur Petit (5583837) 20, October, 2020

Contents

Dataset for training, validation and test	1
Dataset split	1
Feature selection	2
Classifiers	2
Multinomial naive Bayes	2
Regularized logistic regression	4
Classification trees	6
Random forests	9
Hyper-parameters	9
Questions	9

Dataset for training, validation and test

Dataset split

Feature selection

Classifiers

Multinomial naive Bayes

```
# 4-fold cross validation
reviews.mnb.pred <- c()
reviews.mnb.actual <- c()
# hyper-parameter: feature selection
# the best option: only mutual information to select top-300 terms out of 6900 total terms
train.dtm.mnb <- train.dtm</pre>
for(i in 1:4) {
  # Validation fold
  val.start <- (i - 1) * 80 + 1
  val.end <- val.start + 80 - 1</pre>
  val.range <- c(c(val.start:val.end), 320+c(val.start:val.end))</pre>
  # Training fold
  train.range \leftarrow c(c(1:320)[-val.range], 320+c(1:320)[-val.range])
  # Train the model with priors and conditional probabilities
  reviews.mnb <- train.mnb(as.matrix(train.dtm.mnb)[train.range,], labels[index.train][train.range])</pre>
  # Make predictions
  reviews.mnb.pred <- c(reviews.mnb.pred, predict.mnb(reviews.mnb, as.matrix(train.dtm.mnb)[val.range,]
  reviews.mnb.actual <- c(reviews.mnb.actual, labels[index.train][val.range])</pre>
}
# Confusion matrix
conf.mat.mnb <- table(reviews.mnb.actual, reviews.mnb.pred, dnn = c("actual", "predicted"))</pre>
perf.mnb <-performance(conf.mat.mnb)</pre>
perf.mnb %>% kable()
```

metric	value
recall	0.8437500
miss-rate	0.1562500
fall-out	0.2218750
selectivity	0.7781250
prevalence	0.5000000
precision	0.7917889
false omission rate	0.1672241
pos likelihood ratio	3.8028169

metric	value
neg likelihood ratio	0.2008032
accuracy	0.8109375
false discovery rate	0.2082111
neg predictive value	0.8327759
diagnostic odds ratio	18.9380282
F1	0.8169440

```
# 4-fold cross validation
reviews.mnb.pred <- c()</pre>
reviews.mnb.actual <- c()
# hyper-parameter: feature selection
# the best option: only mutual information to select top-300 terms out of 6900 total terms
train.dtm.mnb <- train.dtm.bigram</pre>
for(i in 1:4) {
  # Validation fold
  val.start <- (i - 1) * 80 + 1
  val.end <- val.start + 80 - 1
  val.range <- c(c(val.start:val.end), 320+c(val.start:val.end))</pre>
  # Training fold
  train.range <- c(c(1:320)[-val.range], 320+c(1:320)[-val.range])</pre>
  \# Train the model with priors and conditional probabilities
  reviews.mnb <- train.mnb(as.matrix(train.dtm.mnb)[train.range,], labels[index.train][train.range])
  # Make predictions
  reviews.mnb.pred <- c(reviews.mnb.pred, predict.mnb(reviews.mnb, as.matrix(train.dtm.mnb)[val.range,]
  reviews.mnb.actual <- c(reviews.mnb.actual, labels[index.train][val.range])</pre>
# Confusion matrix
conf.mat.mnb <- table(reviews.mnb.actual, reviews.mnb.pred, dnn = c("actual", "predicted"))</pre>
perf.mnb <-performance(conf.mat.mnb)</pre>
perf.mnb %>% kable()
```

metric	value
recall	0.8000000
miss-rate	0.2000000
fall-out	0.1468750
selectivity	0.8531250
prevalence	0.5000000
precision	0.8448845
false omission rate	0.1899110
pos likelihood ratio	5.4468085
neg likelihood ratio	0.2344322
accuracy	0.8265625
false discovery rate	0.1551155
neg predictive value	0.8100890
diagnostic odds ratio	23.2340426

metric	value
F1	0.8218299

Regularized logistic regression

value
0.6625000
0.3375000
0.1125000
0.8875000
0.5000000
0.8548387
0.2755102
5.8888889
0.3802817
0.7750000
0.1451613
0.7244898
15.4855967
0.7464789

coef(reviews.glmnet.bigram, s="lambda.1se")

metric	value
recall	0.6375000
miss-rate	0.3625000
fall-out	0.0875000
selectivity	0.9125000
prevalence	0.5000000
precision	0.8793103
false omission rate	0.2843137
pos likelihood ratio	7.2857143
neg likelihood ratio	0.3972603
accuracy	0.7750000
false discovery rate	0.1206897
neg predictive value	0.7156863
diagnostic odds ratio	18.3399015
F1	0.7391304

Classification trees


```
# Tree with lowest cv error
reviews.rpart.pruned <- prune(reviews.rpart, cp=0.014)
# Plot the tree
rpart.plot(reviews.rpart.pruned)</pre>
```


metric	value
recall	0.6000000
miss-rate	0.4000000
fall-out	0.2875000
selectivity	0.7125000
prevalence	0.5000000
precision	0.6760563
false omission rate	0.3595506
pos likelihood ratio	2.0869565
neg likelihood ratio	0.5614035
accuracy	0.6562500
false discovery rate	0.3239437
neg predictive value	0.6404494
diagnostic odds ratio	3.7173913

metric	value
F1	0.6357616

Random forests

metric	value
recall	0.7250000
miss-rate	0.2750000
fall-out	0.2000000
selectivity	0.8000000
prevalence	0.5000000
precision	0.7837838
false omission rate	0.2558140
pos likelihood ratio	3.6250000
neg likelihood ratio	0.3437500
accuracy	0.7625000
false discovery rate	0.2162162
neg predictive value	0.7441860
diagnostic odds ratio	10.5454545
F1	0.7532468

Hyper-parameters

Questions

- 1. For a single classification tree, the impurity reduction is not equal to mutual information?
- 2. the words found in feature selection (e.g. frequency or mutual information) = the words found in classification tree by impurity reduction = the words found in logistic regression by coef(s="lambda.1se") (e.g. as.matrix(coef(reviews.glmnet, s="lambda.1se"))[,1]['chicago'])?
- 3. sum(as.matrix(coef(reviews.glmnet, s="lambda.1se")) != 0) is 52, so top50 is better?