Chapter 1

Real Analysis and Topology

Lectured by Someone Typed by Yu Coughlin Season Year

Introduction

The following are complementary reading for the course.

- G. Grimmett and D. J. A. Welsh, Probability: An Introduction, 1986
- J. K. Blitzstein and J. Hwang, Introduction to Probability, 2019
- D. F. Anderson et al, Introduction to Probability, 2018
- S. M. Ross, Introduction to Pro ability Models, 2014
- G. Grimmett and D. Stirzaker, Probability and Random Processes, 2001
- G. Grimmett and D. Stirzaker, One Thousand Exercises in Probability, 2009

Contents

T	Rea	u Anai	ysis and Topology
L1	1	Euclid	lean spaces
		1.1	Euclidean norm
		1.2	Convergence in \mathbb{R}^n
	2	Contin	nuity and limits of functions
		2.1	Open sets
		2.2	Continuity
	3	Deriva	ative of maps of Euclidean spaces
		3.1	Total derivatives
		3.2	Directional and partial derivatives
		3.3	Higher order derivatives
	4	Inverse	e and implicit function theorems
		4.1	Inverse function theorem
		4.2	Implicit function theorem
	5		spaces
	J	5.1	Introduction
		5.2	Normed vector spaces
		5.3	Sets in metric spaces
		5.4	Continuous maps of metric spaces
	6		ogical spaces
	O	6.1	Topologies and their spaces
		6.2	Convergence and Hausdorff property
		6.3	Closed sets
		6.4	Continuous maps
	7	-	ectedness
	'	7.1	Definition 5
		7.2	Continuous maps
		7.3	Path connected sets
	8		actness
	O	8.1	Covers 5
		8.2	Sequential compactness
		8.3	1
			±
	0	8.4	Arzelá-Ascoli theorem
	9	-	leteness
		9.1	Banach spaces
		9.2	Fixed point theorem

Lecture 1 Monday 30/10/2023

1 Euclidean spaces

1.1 Euclidean norm

ya

- 1.2 Convergence in \mathbb{R}^n
- 2 Continuity and limits of functions
- 2.1 Open sets
- 2.2 Continuity
- 3 Derivative of maps of Euclidean spaces
- 3.1 Total derivatives
- 3.2 Directional and partial derivatives
- 3.3 Higher order derivatives
- 4 Inverse and implicit function theorems
- 4.1 Inverse function theorem
- 4.2 Implicit function theorem
- 5 Metric spaces
- 5.1 Introduction
- 5.2 Normed vector spaces
- 5.3 Sets in metric spaces
- 5.4 Continuous maps of metric spaces
- 6 Topological spaces
- 6.1 Topologies and their spaces
- 6.2 Convergence and Hausdorff property
- 6.3 Closed sets
- 6.4 Continuous maps
- 7 Connectedness
- 7.1 Definition
- 7.2 Continuous maps
- 7.3 Path connected sets
- 8 Compactness
- 8.1 Covers
- 8.2 Sequential compactness
- 8.3 Continuous maps
- 8.4 Arzelá-Ascoli theorem
- 9 Completeness
- 9.1 Banach spaces
- 9.2 Fixed point theorem