Uniformly most powerful test

In statistical hypothesis testing, a **uniformly most powerful** (**UMP**) **test** is a hypothesis test which has the **greatest power** $1 - \beta$ among all possible tests of a given <u>size</u> α . For example, according to the <u>Neyman-Pearson lemma</u>, the <u>likelihood-ratio</u> test is UMP for testing simple (point) hypotheses.

Contents

Setting

Formal definition

The Karlin-Rubin theorem

Important case: exponential family

Example

Further discussion

References

Further reading

Setting

Let X denote a random vector (corresponding to the measurements), taken from a parametrized family of probability density functions or probability mass functions $f_{\theta}(x)$, which depends on the unknown deterministic parameter $\theta \in \Theta$. The parameter space Θ is partitioned into two disjoint sets Θ_0 and Θ_1 . Let H_0 denote the hypothesis that $\theta \in \Theta_0$, and let H_1 denote the hypothesis that $\theta \in \Theta_1$. The binary test of hypotheses is performed using a test function $\varphi(x)$ with a reject region R (a subset of measurement space).

$$arphi(x) = egin{cases} 1 & ext{if } x \in R \ 0 & ext{if } x \in R^c \end{cases}$$

meaning that H_1 is in force if the measurement $X \in R$ and that H_0 is in force if the measurement $X \in R^c$. Note that $R \cup R^c$ is a disjoint covering of the measurement space.

Formal definition

A test function $\varphi(x)$ is UMP of size α if for any other test function $\varphi'(x)$ satisfying

$$\sup_{\theta \in \Theta_0} \; \mathrm{E}[\varphi'(X)|\theta] = \alpha' \leq \alpha = \sup_{\theta \in \Theta_0} \; \mathrm{E}[\varphi(X)|\theta]$$

we have

$$\forall \theta \in \Theta_1, \quad \mathrm{E}[\varphi'(X)|\theta] = 1 - \beta'(\theta) \leq 1 - \beta(\theta) = \mathrm{E}[\varphi(X)|\theta].$$

The Karlin-Rubin theorem

The Karlin-Rubin theorem can be regarded as an extension of the Neyman-Pearson lemma for composite hypotheses. [1] Consider a scalar measurement having a probability density function parameterized by a scalar parameter θ , and define the likelihood ratio $l(x) = f_{\theta_1}(x)/f_{\theta_0}(x)$. If l(x) is monotone non-decreasing, in x, for any pair $\theta_1 \geq \theta_0$ (meaning that the greater x is, the more likely H_1 is), then the threshold test:

$$arphi(x) = \left\{egin{array}{ll} 1 & ext{if } x > x_0 \ 0 & ext{if } x < x_0 \end{array}
ight.$$

where x_0 is chosen such that $\mathrm{E}_{ heta_0} \ arphi(X) = lpha$

is the UMP test of size α for testing $H_0: \theta \leq \theta_0$ vs. $H_1: \theta > \theta_0$.

Note that exactly the same test is also UMP for testing $H_0: \theta = \theta_0$ vs. $H_1: \theta > \theta_0$.

Important case: exponential family

Although the Karlin-Rubin theorem may seem weak because of its restriction to scalar parameter and scalar measurement, it turns out that there exist a host of problems for which the theorem holds. In particular, the one-dimensional <u>exponential family</u> of <u>probability density functions</u> or probability mass functions with

$$f_{ heta}(x) = g(heta) h(x) \exp(\eta(heta) T(x))$$

has a monotone non-decreasing likelihood ratio in the sufficient statistic T(x), provided that $\eta(\theta)$ is non-decreasing.

Example

Let $X = (X_0, \dots, X_{M-1})$ denote i.i.d. normally distributed N-dimensional random vectors with mean θm and covariance matrix R. We then have

$$egin{aligned} f_{ heta}(X) &= (2\pi)^{-MN/2} |R|^{-M/2} \expiggl\{ -rac{1}{2} \sum_{n=0}^{M-1} (X_n - heta m)^T R^{-1} (X_n - heta m) iggr\} \ &= (2\pi)^{-MN/2} |R|^{-M/2} \expiggl\{ -rac{1}{2} \sum_{n=0}^{M-1} \left(heta^2 m^T R^{-1} m
ight) iggr\} \ \expiggl\{ -rac{1}{2} \sum_{n=0}^{M-1} X_n^T R^{-1} X_n iggr\} \expiggl\{ heta m^T R^{-1} \sum_{n=0}^{M-1} X_n iggr\} \end{aligned}$$

which is exactly in the form of the exponential family shown in the previous section, with the sufficient statistic being

$$T(X) = m^T R^{-1} \sum_{n=0}^{M-1} X_n.$$

Thus, we conclude that the test

$$arphi(T) = \left\{ egin{array}{ll} 1 & T > t_0 \ 0 & T < t_0 \end{array}
ight. \quad \mathrm{E}_{ heta_0} \ arphi(T) = lpha
ight.$$

is the UMP test of size lpha for testing $H_0: heta \leqslant heta_0$ vs. $H_1: heta > heta_0$

Further discussion

Finally, we note that in general, UMP tests do not exist for vector parameters or for two-sided tests (a test in which one hypothesis lies on both sides of the alternative). The reason is that in these situations, the most powerful test of a given size for one possible value of the parameter (e.g. for θ_1 where $\theta_1 > \theta_0$) is different from the most powerful test of the same size for a different value of the parameter (e.g. for θ_2 where $\theta_2 < \theta_0$). As a result, no test is **uniformly** most powerful in these situations.

References

1. Casella, G.; Berger, R.L. (2008), *Statistical Inference*, Brooks/Cole. <u>ISBN</u> <u>0-495-39187-5</u> (Theorem 8.3.17)

Further reading

- Ferguson, T. S. (1967). "Sec. 5.2: *Uniformly most powerful tests*". *Mathematical Statistics: A decision theoretic approach*. New York: Academic Press.
- Mood, A. M.; Graybill, F. A.; Boes, D. C. (1974). "Sec. IX.3.2: *Uniformly most powerful tests*". *Introduction to the theory of statistics* (3rd ed.). New York: McGraw-Hill.
- L. L. Scharf, Statistical Signal Processing, Addison-Wesley, 1991, section 4.7.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Uniformly_most_powerful_test&oldid=1090956500"

This page was last edited on 1 June 2022, at 10:39 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 3.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.