

Processamento de Imagens – Parte III

29.Junho.2016

Prof. Celso Kurashima

ESZI009 – Processamento de Vídeo

Segmentação de Imagem

From Sandlot Science

De imagens para objetos

O que define um Objeto?

- Problema Subjetivo, mas tem sido bem estudado
- Leis Getalt procuram formalizar isto
 - proximidade, similaridade, continuação, fechamento, fato comum
 - <u>notes</u> by Steve Joordens, U. Toronto

Segmentação de Imagem

Podemos considerar diferentes métodos Manual:

• Intelligent Scissors (baseado em contorno, manual)

Hoje—métodos automaticos:

- Clusterização K-means (color-based)
- Recortes Normalizados (region-based)

Histogramas de Imagens

Quantos pixels "laranja" há nesta imagem?

- Este tipo de pergunta é respondida olhando-se o histograma
- Um histograma conta o numero de ocorrencia de cada cor
 - Dado uma imagem F[x,y] o RGB
 - O histograma é $H_F[c] = |\{(x,y) \mid F[x,y] = c\}|$
 - » i.e., para cada cor de valor c (eixo-x), plote # de pixels com aquela cor (eixo-y)
 - Qual é a dimensão de um histograma de imagem NxN RGB?

O que os histogramas se parecem?

Demonstração Photoshop

Quando Modos existem?

Fácil de ver, difícil de computar

Segmentação baseada em Histograma

Objetivo

- Quebrar a imagem em K regiões (segmentos)
- Resolver isto pela redução do número de cores para K e mapear cada pixel para a cor mais proxima
 - photoshop demo

Segmentação baseada em Histograma

Objetivo

- Quebrar a imagem em K regiões (segmentos)
- Resolver isto pela redução do número de cores para K e mapear cada pixel para a cor mais proxima
 - photoshop demo

Clusterização

Como escolher cores representativas?

Isto é um problema de clusterização!

Objetivo

 Cada ponto deve estar o mais perto possivel de um centro de cluster (agrupamento)

 Minimize a soma da distancia ao quadrado de cada ponto para o centro mais proximo

$$\sum_{\text{clusters } i} \sum_{\text{points p in cluster } i} ||p - c_i||^2$$

Quebrar em subproblemas

Suponha que os centros dos clusters ci são conhecidos

- P: como determinar quais pontos associar com cada c_i?
- R: para cada ponto p, escolha o c_i mais próximo

Suponha que os pontos de cada cluster são conhecidos

- P: como determinar os centros dos clusters?
- R: escolha c_i como sendo a média de todos os pontos naquele cluster

Clusterização K-means

Algoritmo K-means clustering

- 1. Inicialize aleatoriamente o centro do cluster, c₁, ..., c_K
- 2. Dado o centro do cluster, determine pontos em cada cluster
 - Para cada ponto p, encontre o mais proximo c_i. Coloque p no cluster i
- 3. Dado pontos em cada cluster, resolva para c_i
 - Faça c_i ser a média dos pontos no cluster i
- 4. Se c_i teve mudança, repita Passo 2

Java demo: http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

Propriedades

- Sempre converge para alguma solução
- Pode ser um "minimo local"
 - Nem sempre encontra o minimo global de uma função objetiva: $\sum ||p-c_i||^2$

clusters i points p in cluster i

Clareando o resultado

Problema:

- Segmentação baseada em Histograma pode produzir regiões sujas
 - segmentos não são necessariamente conectados
 - Pode conter buracos

Como isso pode ser resolvido?

Operador Dilation: $G = H \oplus F$

Assume-se: imagem binária

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	7	1	1	0	0
0	0	0	1	1	1	1	1	0	0
0	0	0	1	1	1	1	1	0	0
0	0	0	1	0	1	1	1	0	0
0	0	0	1	1	1	1	1	0	0
0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Dilatação: H "sobrepõe" F ao redor de [x,y]?

- G[x,y] = 1 se H[u,v] e F[x+u-1,y+v-1] são ambos 1 em algum lugar 0 caso contrário
- Notação $G=H\oplus F$

Operador Dilatação

Demo

http://www.cs.bris.ac.uk/~majid/mengine/morph.html

Operador Erosion: $G = H \ominus F$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	7	1	1	0	0
0	0	0	1	1	1	1	1	0	0
0	0	0	1	1	1	1	1	0	0
0	0	0	1	0	1	1	1	0	0
0	0	0	1	1	1	1	1	0	0
0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

1	1	1
1	1	1
1	1	1

Erosão: está H "contido em" F ao redor de [x,y]?

- G[x,y] = 1 se F[x+u-1,y+v-1] é 1 em todo lugar que H[u,v] é 1 0 caso contrário
- Notação $G=H\ominus F$

Operador Erosão

Demo

http://www.cs.bris.ac.uk/~majid/mengine/morph.html

Dilatações e erosões aninhados

O que faz esta operação?

$$G = H \ominus (H \oplus F)$$

esta é chamada de operação fechamento

Dilatações e erosões aninhados

O que faz esta operação?

$$G = H \ominus (H \oplus F)$$

esta é chamada de operação fechamento

É a mesma coisa que esta seguinte?

$$G = H \oplus (H \ominus F)$$

Dilatações e erosões aninhados

O que faz esta operação?

$$G = H \oplus (H \ominus F)$$

- esta é chamada de operação abertura
- http://www.dai.ed.ac.uk/HIPR2/open.htm

Pode-se clarear imagens binárias pela aplicação combinada de dilatações e erosões

Operações de dilatações, erosões, abertura, e fechamento são conhecidadas como **operações morfologicas**

http://www.dai.ed.ac.uk/HIPR2/morops.htm

Referencias

Richard Szeliski. "Computer Vision: Algorithms and Applications". Springer, 2010. Draft: May 17, 2010.

University of Washington, Disciplina "Computer Vision", 2009 e 2008:

- http://www.cs.washington.edu/education/courses/576/09sp/
- http://www.cs.washington.edu/education/courses/cse576/08sp/

Leitura recomendada:

- Morphology, in HIPR The Hypermedia Image Processing Reference
 - http://www.dai.ed.ac.uk/HIPR2/morops.htm
 - Dilation, erosion, opening, closing

Equalisation

If an image has insufficient contrast
Human can distinguish 700-900 greyscales
Evenly distribute the greyscales...

Result has missing greyscales
 Normally equalise only the greyscales / luminance

Edges

An approach to segmentation.

The analysis of the discontinuities in an image.

No correct answer?

An alternative to region based processing.

Edge Detection – What is an edge?

Where brightness changes abruptly

- Edges have
 - Magnitude (Gradient)
 - Direction (Orientation)

- Edge Profiles
 - Step
 - Real
 - Noisy

Edge Detection – 1st derivative definitions

Calculus...

- Rate of change in two directions
- Vector variable:
 - Gradient Magnitude
 - Orientation (0° is East)

$$\nabla f(i,j) = \sqrt{\left(\frac{\delta f(i,j)}{\delta i}\right)^2 + \left(\frac{\delta f(i,j)}{\delta j}\right)^2}$$

$$\phi(i,j) = \arctan\left(\frac{\delta f(i,j)}{\delta j}, \frac{\delta f(i,j)}{\delta i}\right)$$

Edge detection – 2nd derivative – Laplace operator

Laplace operator

$$h(i,j) = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{array} \right] \ h(i,j) = \left[\begin{array}{ccc} 2 & -1 & 2 \\ -1 & -4 & -1 \\ 2 & -1 & 2 \end{array} \right]$$
 Orientation independent

- Determines gradient magnitude
- Linear ramps
- Noise
- Zero-crossings

EDGE - Borda ou Aresta

Detecção de Bordas

Converter uma imagem 2D num conjunto de curvas

- Extração de "features" salientes da cena
- Mais compacto do que pixels

Origem de Bordas

Bordas são causadas por uma variedade de fatores

Detecção de Borda

Como podemos dizer que um pixel está na borda?

Imagens como funções...

Arestas se parecem penhascos íngremes

Detectando bordas

O que é uma borda?

descontinuidade de intensidade (= mudança rapida)

Como podemos encontrar grandes mudanças de intensidade?

operador gradient parece ser a solução correta

Efeitos do ruído

Considere uma unica linha ou coluna da imagem

Plotando intensidade como uma função da posição tem-se um sinal

Onde está a borda?

Solução: primeiro suavize

Onde está a borda? Procure por picos em $\frac{\partial}{\partial x}(h\star f)$

Propriedade Associativa da convolução

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

Isto nos economiza uma operação: Sigma = 50

Kernel $\frac{\partial}{\partial x}h$ $\left(\frac{\partial}{\partial x}h\right)\star f$

Laplaciano da Gaussiana

Onde está a borda?

Cruzamento-por-zero no grafico inferior

Filtros 2D p/ detecção de borda

Gaussiana

$$h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{2\sigma^2}} \qquad \frac{\partial}{\partial x} h_{\sigma}(u,v) \qquad \nabla^2 h_{\sigma}(u,v)$$

derivativa da Gaussiana

$$\frac{\partial}{\partial x}h_{\sigma}(u,v)$$

 $abla^2$ é o operador **Laplaciano** :

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Gradiente da Imagem

Gradiente de uma imagem:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$

O gradiente aponta na direção do aumento mais rapido na intensidade

A direção do gradiente é dada por:

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

Como isso tem a ver com a direção da borda?

A força da borda é dada pela magnitude do gradiente

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

O Gradiente Discreto

Como podemos diferenciar uma imagem digital F[x,y]?

- Opção 1: reconstruir uma imagem continua, e depois fazer o gradiente
- Opção 2: fazer a derivada discreta ("diferença finita")

$$\frac{\partial f}{\partial x}[x,y] \approx F[x+1,y] - F[x,y]$$

Como voce implementaria isto com a correlação cruzada?

O operador Sobel

Aproximação comum da derivada da Gaussiana

- A definição padrão do operador Sobel operator omite o termo 1/8
 - Isso não faz diferença para a deteção de borda
 - O termo 1/8 é necessário para se obter valor correto do gradiente, porém.

imagem original (Lena)

norma do gradiente

thresholding - limiarização

thinning - afinamento (supressão não-maxima)

Supressão Não-maxima

Verifique se o pixel é um maximo local ao longo da direção do gradiente

requer verificar os pixels interpolado p e r

Efeito do σ (Gaussian kernel spread/size)

A escolha do σ depende do comportamento desejado

- grande σ detecta bordas de grandes escala
- pequeno σ detecta caracteristica detalhadas

Detecção de Borda por subtração

original

Detecção de Borda por subtração

suavizado (Gaussiana 5x5)

Detecção de Borda por subtração

Porque isto funciona?

suavizada — original (escalonada por 4, offset +128)

Referencias

Richard Szeliski. "Computer Vision: Algorithms and Applications". Springer, 2010. Draft: May 17, 2010.

University of Washington, Disciplina "Computer Vision", 2009 e 2008:

- http://www.cs.washington.edu/education/courses/576/09sp/
- http://www.cs.washington.edu/education/courses/cse576/08sp/

Leituras recomendadas

- Artigo de <u>Cipolla & Gee sobre detecção de borda</u>
- Szeliski Seção 4.2 Edges

