UNIVERSIDAD TECNOLÓGICA DE QUERÉTARO

Diplomado en Software Embebido

Módulo 1: Bases de Ingeniería de Software

Tema: 1.2.1. "SPICE", "CMMI"

Lucio Alberto Hernández Ríos

Versión 2.0

I. INTRODUCCIÓN

"Toda vida es una constante educación"

Eleanor Roosevelt

ISO/IEC 15504

El estándar ISO/IEC 15504 también conocido como SPICE (por sus siglas en ingles Software Process Improvement and Capability Determination) es un conjunto de estándares técnicos definidos por la Organización Internacional por la Estandarización (ISO) y la Comisión Internacional Electrotécnica (IEC) cuyo objetivo es establecer un modelo de referencia para el desarrollo de software así como de los procesos derivados como lo serian el control de versiones, aseguramiento de la calidad y la gestión del proyecto en general (Pyhäjärvi, 2004).

Descripción del estándar

El estándar está dividido en 9 partes o documentos que describen diferentes aspectos del estándar. En la tabla 1.2.1 se muestra los aspectos cubiertos por cada parte.

Parte	Descripción			
Parte -1	Conceptos y vocabulario. Se introducen los conceptos, así como			
	el proceso de evaluación y de determinación de su capacidad			

	acorde a ciertos requisitos predefinidos. Básicamente un proceso					
	al ser evaluado nos conduce a determinar la capacidad del					
	proceso y el mejoramiento del mismo (ISO/IEC JTC 1/SC 7					
	Software and systems engineering, 2015).					
Parte -2	Realizando una evaluación. Se definen los requisitos necesarios					
	para realizar una evaluación que garanticen la consistencia y					
	repetitividad de los resultados (ISO/IEC JTC 1/SC 7 Software					
	and systems engineering, 2015).					
Parte -3	Guía para realizar una evaluación. Se provee un ejemplo para la					
	evaluación de un proceso el cual ayuda a interpretar los					
	requerimientos descritos en la parte 2 del estándar (ISO/IEC JTC					
	1/SC 7 Software and systems engineering, 2017).					
Parte -4	Guía de cómo evaluar procesos. Este documento provee guía de					
	cómo realizar la evaluación de un proceso para su mejoramiento					
	o la determinación de sus capacidades, y que contempla los					
	siguientes pasos (ISO/IEC JTC 1/SC 7 Software and systems					
	engineering, 2004):					
	Revisión de las entradas del proceso					
	2. Identificación del equipo como instancia de proceso					
	3. Preparación y planeación de la evaluación					
	4. Recolección de los datos a evaluar					

	5. Validación y verificación de los datos a evaluar					
	6. Determinación de los criterios de evaluación					
	7. Validación de los datos con respecto a los criterios					
	8. Presentación de los resultados de la evaluación					
Parte -5	Ejemplo de modelo de evaluación del proceso del ciclo de vida					
	del software. Este documento provee un ejemplo de un modelo					
	de evaluación del proceso tal y como lo exige la parte 2 del					
	estándar. Esta parte es utilizada principalmente por Automotive					
	SPICE y es libre de ser reproducida en el contexto de la					
	evaluación de un proceso (ISO/IEC JTC 1/SC 7 Software and					
	systems engineering, 2012).					
Parte -6	Ejemplo de modelo de evaluación del proceso del ciclo de vida					
	del sistema (Reporte Técnico). De manera similar a la parte 5 del					
	estándar, este documento provee un ejemplo en situaciones					
	donde se evalúa el proceso del ciclo de vida del sistema (ISO/IEC					
	JTC 1/SC 7 Software and systems engineering, 2013).					
Parte -7	Evaluación de la madurez organizacional (Reporte Técnico).					
	Provee una guía de cómo utilizar la evaluación del proceso para					
	la determinación de las capacidades del proceso. Existen dos					
	enfoques: 1) Determinación de la capacidad del núcleo del					
	proceso, que sirve para evaluar una sola organización sin tomar					

	en cuenta socios o subcontratistas y 2) Determinación de la					
	capacidad del proceso extendido, que sirve para evaluar a la					
	organización junto a los socios y subcontratistas (ISO/IEC JTC					
	1/SC 7 Software and systems engineering, 2008).					
Parte -8	Ejemplo de modelo de validación de proceso para el manejo de					
	servicios de Tecnologías de la Información (Reporte Técnico).					
	Provee un ejemplo de un modelo de evaluación de procesos					
	enfocado al manejo de servicios de TI en conformidad con la					
	parte 2 del estándar (ISO/IEC JTC 1/SC 7 Software and systems					
	engineering, 2012).					
Parte -9	Perfiles de procesos objetivo (Especificación Técnica). Prove					
	guías para definir y usar perfiles de procesos. Un perfil de un					
	proceso se define como el conjunto de criterios a evaluar de un					
	proceso. Los aspectos cubiertos por esta guía van desde la					
	comunidad a la que puede ir dirigida: automotriz, aeroespacial,					
	etcétera; hasta las características de los datos de manera que					
	estos sean relevantes para un determinado perfil (ISO/IEC JTC					
	1/SC 7 Software and systems engineering, 2011).					
Parte -10	Extensión de seguridad (Especificación Técnica). Define los					
	procesos adicionales y la guía para la evaluación de sistemas					
	críticos a fin de crear criterios consistentes con respecto a las					

necesidades y prioridades de un sistema con dichas características (ISO/IEC JTC 1/SC 7 Software and systems engineering, 2011).

Modelo de Evaluación de Procesos

Este modelo es el usado en la práctica para realizar la evaluación de procesos y se basa en el modelo de referencia que se provee en el estándar. Es importante comentar que el estándar permite usar otros modelos si estos cumplen los criterios definidos en el estándar (Wikipedia, SO/IEC 15504, 2018).

Como se comentó previamente, el proceso de evaluación sirve para dos objetivos principales:

- Mejoramiento del proceso. Para la correcta implementación de estas mejoras se necesita definir bien los objetivos para lo cual es necesario el nivel inicial de las capacidades del proceso.
- 2. Determinación de las capacidades del proceso. Comúnmente las organizaciones suelen subcontratar empresas desarrolladoras de software de las cuales necesita saber su capacidad de entrega y así determinar si satisface los requerimientos acordes a las necesidades.

CMMI ®

La Integración de Modelos de Madurez de Capacidades o CMMI ® (por sus siglas en inglés Capability Maturity Model Integration ®) es un modelo de referencia para la mejora y evaluación de procesos. Fue desarrollado por la Universidad Carnegie Mellon en conjunto con miembros de la industria y el Departamento de Defensa de los Estados Unidos (Wikipedia, Capability Maturity Model Integration, 2018).

Estructura de CMMI ®

Se compone de un conjunto de mejores prácticas usadas para construir modelos CMMI ® con el objetivo de controlar la selección de los componentes para diferentes áreas de interés. Estos componentes están organizados en constelaciones que sirven para construir modelos usando a su vez un formato llamado Fundación de Modelo CMMI (CMF) (CMMI Architecture Team, 2007).

Este formato CMF está diseñado para proveer los componentes necesarios para construir modelos CMMI ® acordes. Los componentes deben usarlo sin borrar o cambiar su estructura sin embargo si pueden agregar: áreas de proceso, objetivos específicos, practicas específicas, etc. La tabla 1.2.2 muestra las áreas de proceso núcleo organizadas por nivel de madurez (Penichet, 2004):

Nivel	Enfoque	Acrónimo	Área de Proceso
2		REQM	Administración de Requisitos
		PP	Planeación del Proyecto

	Administración	PMC	Monitoreo y Control del Proyecto		
	básica de proyectos	SAM	Administración de Acuerdos de Proveedores		
		MA	Medición y Análisis		
		PPQA	Garantía de Calidad del Producto y Proceso		
		СМ	Configuración Administrativa		
3	Estandarización	RD	Desarrollo de Requisitos		
	de procesos	TS	Soluciones Técnicas		
		PI	Integración del Producto		
		VER	Verificación		
		VAL	Validación		
		OPF	Enfoque de Procesos Organizacionales		
		OPD	Definición de Procesos Organizacionales		
		ОТ	Capacitación Organizacional		

		IPM	Administración del Proyecto Integrado	
		RSKM	Administración de Riesgos	
		IT	Equipos de Trabajo Integrados	
			Administración de Proveedores Integrados	
		DAR	Análisis de Decisión y Resolución	
		OEI	Ambiente Organizacional para la Integración	
4	Administración Cuantitativa	OPP	Desempeño de Procesos Organizacionales	
		QPM	Administración Cuantitativa del Proyecto	
5	Mejoramiento continuo de los	OID	Innovación Organizacional y Aplicación	
	procesos	CAR	Análisis Causal y Resolución	

Evaluación

Las organizaciones no se certifican en CMMI ®, sin embargo pueden recibir evaluaciones y basados en dicha evaluación puede otorgársele un nivel de madurez (Wikipedia, Capability Maturity Model Integration, 2018).

Dentro de las razones por la que una organización puede optar por evaluarse son:

- Identificar el estado de los procesos de la organización con respecto a las mejores prácticas dictadas por el CMMI ® y por ende las áreas de mejora.
- Cumplir los requerimientos de los clientes que exijan un cierto nivel de madurez en los procesos.

Finalmente, las organizaciones deben ajustarse a los requisitos definidos en la Evaluación de Requisitos para CMMI ® (ARC) versión 1.3 el cual es el documento destinado para evaluaciones de CMMI ®. El ARC distingue tres clases de evaluación dependiendo en el rigor de los requisitos como se muestra en la tabla 1.2.3 (Team, 2011).

Requisitos	Clase A	Clase B	Clase C
Tipo de Evidencia	Artefactos y	Artefactos y	Artefactos y/o
Objetiva Reunida	afirmaciones	afirmaciones	afirmaciones
Calificaciones	Calificaciones de	No permitido	No permitido
generadas	objetivos		
	requerido		

Cobertura de la	Requerido	No requerido	No requerido
Unidad			
Organizacional			
Requisitos del	Evaluador líder	Persona	Persona
Líder Evaluador	certificado	entrenada y con	entrenada y con
del Equipo		experiencia	experiencia

Referencias previas

https://www.youtube.com/watch?v=whHx1LMLcD8

https://www.youtube.com/watch?v=e2V2wgrWBCc

References

- ISO/IEC JTC 1/SC 7 Software and systems engineering. (2004, 07 01).

 Information technology -- Process assessment -- Part 4: Guidance on use for process improvement and process capability determination. Retrieved from https://www.iso.org/obp/ui/#!iso:std:37462:en
- ISO/IEC JTC 1/SC 7 Software and systems engineering. (2012, 02 01).

 Information technology -- Process assessment -- Part 5: An exemplar software life cycle process assessment model. Retrieved from https://www.iso.org/obp/ui/#!iso:std:60555:en
- ISO/IEC JTC 1/SC 7 Software and systems engineering. (2017, 04 01).

 Information technology -- Process assessment -- An exemplar documented assessment process. Retrieved from https://www.iso.org/obp/ui/#!iso:std:55121:en
- CMMI Architecture Team. (2007, 07 01). Introduction to the Architecture of the CMMI Framework. Retrieved from https://resources.sei.cmu.edu/asset_files/TechnicalNote/2007_004_001_14822.pdf

- ISO/IEC JTC 1/SC 7 Software and systems engineering. (2008, 12 01).

 Information technology -- Process assessment -- Part 7: Assessment of organizational maturity. Retrieved from https://www.iso.org/standard/50519.html
- ISO/IEC JTC 1/SC 7 Software and systems engineering. (2011, 11 01).

 Information technology -- Process assessment -- Part 10: Safety extension. Retrieved from https://www.iso.org/obp/ui/#!iso:std:54537:en
- ISO/IEC JTC 1/SC 7 Software and systems engineering. (2011, 08 01).

 Information technology -- Process assessment -- Part 9: Target process profiles. Retrieved from https://www.iso.org/obp/ui/#!iso:std:51684:en
- ISO/IEC JTC 1/SC 7 Software and systems engineering. (2012, 09 01).

 Information technology -- Process assessment -- Part 8: An exemplar process assessment model for IT service management. Retrieved from https://www.iso.org/obp/ui/#!iso:std:50625:en
- ISO/IEC JTC 1/SC 7 Software and systems engineering. (2013, 06 01).

 Information technology -- Process assessment -- Part 6: An exemplar system life cycle process assessment model. Retrieved from https://www.iso.org/obp/ui/#!iso:std:61492:en
- ISO/IEC JTC 1/SC 7 Software and systems engineering. (2015, 03 01).

 Information technology Process assessment Part 1: Concepts and vocabulary. Retrieved from https://www.iso.org/obp/ui/#!iso:std:54175:en

- ISO/IEC JTC 1/SC 7 Software and systems engineering. (2015, 03 01).

 Information technology -- Process assessment -- Requirements for performing process assessment. Retrieved from https://www.iso.org/obp/ui/#!iso:std:54176:en
- Penichet, J. M. (2004, 05 17).

 http://catarina.udlap.mx/u_dl_a/tales/documentos/lis/ulibarri_p_jm/capitul

 o3.pdf. Retrieved from

 http://catarina.udlap.mx/u_dl_a/tales/documentos/lis/ulibarri_p_jm/capitul

 o3.pdf
- Pyhäjärvi, M. (2004, November 31). SPICE International Standard for Software

 Process Assessment. Retrieved from https://www.cs.helsinki.fi/u/paakki/Pyhajarvi.pdf
- Team, S. U. (2011, 04 01). *Appraisal Requirements for CMMI*. Retrieved from https://resources.sei.cmu.edu/asset_files/TechnicalReport/2011_005_00 1_15383.pdf
- Wikipedia. (2018). Capability Maturity Model Integration. Retrieved from https://en.wikipedia.org/wiki/Capability_Maturity_Model_Integration
- Wikipedia. (2018, 06 30). SO/IEC 15504. Retrieved from https://en.wikipedia.org/wiki/ISO/IEC_15504