## Assignment 5

Ozone

### Preliminary questions

- ▶ 1. Under the case  $\beta=0$ , as  $n\to\infty$ , Prob(selecting the true model) = Prob(Not reject|H0 is true)=  $1-\alpha$ , wehre  $\alpha$  is the size of the test. Under the case  $\beta\neq0$ , as  $n\to\infty$ , Prob(slecting the true model) = Prob (Reject| H0 is not true) = power = 1
- Post-test estimator for  $\alpha$  is consistent. Under the case  $\beta=0$ , no matter whether we choose the restricted model or unrestricted model, the estimator  $\hat{\alpha}$  is unbiased and consistent estimator for the true  $\alpha$ . Under the case  $\beta \neq 0$ , as  $n \to \infty$ , the Prob(selecting the true model) is 1, then  $\hat{\alpha}$  will be consistent with the true  $\alpha$ . Therefore, the post-test estimator for  $\alpha$  is consistent.

## Simulation (Compare Variance)

Table 1:

|    | beta | model  | n   | variance |
|----|------|--------|-----|----------|
| 1  | 0    | res    | 50  | 0.021    |
| 2  | 0    | res    | 100 | 0.010    |
| 3  | 0    | res    | 150 | 0.007    |
| 4  | 0    | res    | 200 | 0.005    |
| 5  | 0    | select | 50  | 0.035    |
| 6  | 0    | select | 100 | 0.017    |
| 7  | 0    | select | 150 | 0.010    |
| 8  | 0    | select | 200 | 0.009    |
| 9  | 0    | unres  | 50  | 0.071    |
| 10 | 0    | unres  | 100 | 0.034    |
| 11 | 0    | unres  | 150 | 0.021    |
| 12 | 0    | unres  | 200 | 0.017    |
|    |      |        |     |          |

#### Compare Variance Comment

▶ Under the case of  $\beta = 0$ , holding the sample size *n* constant, the variance of the restrictive model estimator is the smallest. then the post-test OLS estimator, and the variance of the unrestricted model estimator is the largest. This makes intuitive sense, becasue when  $X_2$  is not relevent in the model, including  $X_2$  basically adds more noise to the model, which increases the variance of  $\alpha$ . We see the results shown in class. The post-test OLS estimator is a combination of the restricted and unrestricted estimtors, therefore the size of the post-test OLS estimator variance is between the restricted and unrestricted estimtors.

# Simulation (Bias Computation)

Table 2:

|   | beta  | model  | n   | bias    | true_bias |
|---|-------|--------|-----|---------|-----------|
| 1 | 0.160 | res    | 200 | 0.113   | 0.112     |
| 2 | 0.160 | select | 200 | 0.064   |           |
| 3 | 0.160 | unres  | 200 | -0.002  | 0         |
| 4 | 0.240 | res    | 200 | 0.166   | 0.168     |
| 5 | 0.240 | select | 200 | 0.072   |           |
| 6 | 0.240 | unres  | 200 | -0.0002 | 0         |
| 7 | 0.500 | res    | 200 | 0.347   | 0.350     |
| 8 | 0.500 | select | 200 | 0.011   |           |
| 9 | 0.500 | unres  | 200 | -0.007  | 0         |
|   |       |        |     |         |           |

#### Bias Computation Comment

- ▶ Theoretically,  $E[\hat{\alpha}] \alpha$  is the bias. When the true model is  $y = \alpha X + \beta X2 + \epsilon$  (unrestricted model), where  $\beta \neq 0$ ,  $X_1$  and  $X_2$  is jointly normal distributed, with sd of 1 and cov of 0.7 and we choose the model  $y = \gamma X + e$ (restricted model), there will be omitted variable bias.
  - $E[\hat{\alpha}^{res}|\beta \neq 0] \alpha = \beta \frac{cov(X_1,X_2)}{Var(X_1)} = \beta \cdot 0.7$ . If we esimate the true model(unrestricted model), then there will be no bias because  $E[\hat{\alpha}^{unres}|\beta \neq 0] alpha = 0$ . For the post-test estimator,  $E[\hat{\alpha}^{post}|\beta \neq 0] \alpha \neq 0$  and the bias will be smaller if beta is larger and sample size n is larger.
- Our simulation is line with our theory above. Under the cases  $\beta \neq 0$ , the bias of the restricted estimator, is around 0.112, 0.168 and 0.35 repectively. The bias of the unrestricted estimator is around 0 as expected. The bias of the post-estimator is bigger than 0, smaller than the restricted estimator, and decreases as  $\beta$  and sample size n increases.

## Simulation (Confidence Interval)

Table 3:

|    | beta  | model  | n   | true  |
|----|-------|--------|-----|-------|
| 4  | 0     | res    | 200 | 0.944 |
| 8  | 0     | select | 200 | 0.920 |
| 12 | 0     | unres  | 200 | 0.946 |
| 16 | 0.160 | res    | 200 | 0.636 |
| 20 | 0.160 | select | 200 | 0.688 |
| 24 | 0.160 | unres  | 200 | 0.952 |
| 28 | 0.240 | res    | 200 | 0.345 |
| 32 | 0.240 | select | 200 | 0.538 |
| 36 | 0.240 | unres  | 200 | 0.951 |
| 40 | 0.500 | res    | 200 | 0.002 |
| 44 | 0.500 | select | 200 | 0.861 |
| 48 | 0.500 | unres  | 200 | 0.948 |
|    |       |        |     |       |

#### Confidence Interval Comment

- ▶ Under the case  $\beta=0$ , about 95% of the time the confidence inverval contains the true  $\alpha=0.2$  no matter we use restricted, unrestriced or everyday OLS. Under the case  $\beta\neq0$ , only the the condidence interval of the unrestricted OLS case, contains the true  $\alpha$  around 95% of the time. Because both of the two cases,  $\hat{\alpha}$  is unbiased and the correspoding T statistics is t-distributed. Therefore the 95% confidence interval contains the true  $\alpha$  95% of the times as constructed.
- When  $\beta \neq 0$ , the confidence interval of restricted OLS contains the true  $\alpha$  all less than 95% of the time. The bigger the beta is, the less times the confidence interval contains the true beta. Notice that when  $\beta$  is 0.5, the confidence interval of the restricted model only have 0.2% of the time containing the true  $\alpha$ . This makes sence, because the confidence interval is conputed as  $[\hat{\alpha} c_{0.25} \cdot se(\hat{\alpha}), \hat{\alpha} + c_{0.25} \cdot se(\hat{\alpha})]$ . The bigger the beta is, the more bias the  $\hat{\alpha}$  is, the less time the interval computed based on  $\hat{\alpha}$  will contain the true  $\alpha$ .

### Confidence Interval Comment (Continue)

When  $\beta \neq 0$ , how many times the confidence interval of post OLS contain  $\alpha$  is related to how big the  $\beta$  and sample size n is. This could be seen better in the graph in next the slide. Under the case n=200 and  $\beta=0.5$ , the distribution of  $\hat{\alpha}_{post}$  is closer to the distribution of  $\hat{\alpha}_{unres}$  than other  $n-\beta$  cases, therefore the times of the confidence interval containing the true alpha is the highest, 86% of the time. Under  $\beta \neq 0$ , the closer the distribution of  $\sqrt{n} \cdot (\hat{\alpha}_{post} - 0.2)$  is to the distribution of  $\sqrt{n} \cdot (\hat{\alpha}_{unres} - 0.2)$ , the time containing the true alpha will be more close to 95%.

## Simulation (Plots)



#### Simulation Plots Comment

- ▶  $\sqrt{n} \cdot (\hat{\alpha} 0.2)$  is asymptotically  $N(0, V_{\alpha})$  distributed when  $n \to \infty$  and we use the correct model.
- ▶ If n is big and the ture  $\beta$  is much bigger than zero, the distribution of the post-test OLS is closer to the true distribution.
- ▶ The bigger the  $\beta$  and n is, the higher the percentage of rejection of the t-test for  $\beta$ .

### Summary

- ▶ Consistency holds no matter whether the ture  $\beta$  and the  $\beta$  under the null hypothesis are equal or not. Unbiasness does not hold in small sample if the ture  $\beta$  and the  $\beta$  are different. Efficiency does not hold.
- If "the sample size is big and the ture  $\beta$  and the  $\beta$  under the null hypothesis are very different" OR "the true  $\beta$  is the  $\beta$  under the null hypothesis", the usual OLS distribution approximate the distribution of the post-test OLS.