What is claimed is:

- A method of monitoring the conditions of engine lubricant in real time during operation comprising:
 - (A) immersing a probe with a pair of spaced parallel conductors in the fluid to be monitored;
 - (B) exciting of said pair of electrodes with an alternating voltage at a first relatively high frequency and exciting said one conductor at a second relatively low frequency and measuring the current at said first and second frequencies;
 - (C) computing the bulk fluid impedance at said first frequency and the fluid-electrode interface (surface) impedance at the said second frequency and computing the impedance difference (dZ) therefrom;
 - (D) delaying for a selected time interval and repeating steps (A)-(C) and computing another value of dZ;
 - (E) computing the rate of change of dZ (ΔdZ) for a selected time interval (Δt) and determining the value of the remaining useful life (RUL) of the lubricant from the following:
 - (i) determining the value of a physiochemical parameter (X) when ΔdZ is positive from lubricant with known amounts of constituents selected from the group consisting of (a) Phosphorus, Oxygen and Carbon (P-O-C); (b) Phosphorous and double bond Sulphur (P = S); (c) Zincdialkyldithiophosphate (ZDDP); and (d) the Total Base Number TBN by measuring CaCO₃ (CO3), from a table of the selected parameter X versus dZ in a first region of the table and determining RUL from a table of RUL versus parameter X (X₁);
 - (ii) determining the value of the selected parameter X when ΔdZ is negative from a second region of the table of X versus dZ;

- (F) repeating steps (B) (E) after a selected time delay Δt and determining a second value of X (X_2) computing the rate of change of X, $\Psi = \frac{X_2 X_1}{\Delta t}$; and,
- (G) computing the remaining useful life (RUL) expressed as a percentage by dividing the difference in X from a known X_{EOL} by the rate of change $\Psi\left(RUL = \frac{X X_{EOL}}{\Psi}\right)$
- 2. The method defined in claim 1, wherein said step (E)(ii) includes determining that ΔdZ has a negative slope greater than about one.
- 3. The method defined in claim 1, wherein the step of exciting one of said electrodes includes applying an alternating current voltage of note more than about one Volt RMS.
- 4. The method defined in claim 1, wherein said step of determining the value of RUL if ΔdZ is negative includes determining if dZ is less than about 25% of dZ_{MAX} and if affirmative providing an indication that RUL is near zero.