全国青少年信息学奥林匹克竞赛

NOI2023模拟

时间: 8:00-12:20

题目名称	路径方案	排列价值	序列操作	路径差值
题目类型	传统型	传统型	传统型	传统型
目录	path	array	sequence	route
可执行文件名	path	array	sequence	route
输入文件名	path.in	array.in	sequence.in	route.in
输出文件名	path.out	array.out	sequence.out	route.out
每个测试点时限	1.0秒	1.0秒	1.0秒	1.0秒
内存限制	512 MB	512 MB	512MB	512MB
子任务数目	10	10	25	20
测试点是否等分	是	是	是	是

提交源程序文件名

对于C++语言 path.cpp	array.cpp	sequence.cpp	route.cpp
------------------	-----------	--------------	-----------

编译选项

对于C++语言	-lm -std=c++14 -O2
---------	--------------------

注意事项与提醒 (请选手务必仔细阅读)

- 1.文件名 (程序名和输入输出文件名) 必须使用英文小写。
- 2. C++ 中主函数的返回值类型必须是 int,程序正常结束时的返回值必须是 0.
- 3.提交的程序代码文件的放置位置请参照各省的具体要求。
- 4.因违反以上三点而出现的错误或问题,申诉时一律不予受理。
- 5.若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 6.程序可使用的栈内存空间限制与题目的内存限制一致。
- 7.全国统一评测时采用的机器配置为: Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz, 内存 32GB。上述时限以此配置为准。
- 8.评测在当前最新公布的 NOI Linux 下进行, 各语言的编译器版本以其为准。
- 9.终评测时所用的编译命令中不含编译选项之外的任何优化开关。

路径方案 (path)

【问题描述】

BS 中学由 n 栋楼组成,由 m 条有向的道路 (u_i,v_i,w_i) 连接,表示从 u_i 有一条长度 w_i 的道路 到达 v_i 。

由于小 X 所在的教学楼 S 和食堂 T 非常远,他不得不每天提前下课跑去吃饭但是在同一时间,老师也要去吃饭,为了避免和他遇上,小 X 必须选择一条除了在 S,T 以外不会相交的路径。

小 X 和老师都会选择最短的路径前往食堂,小 X 想知道,有多少种不同的方案他不会被老师抓到。

两个方案不同可以被描述为:

- 1. 存在一条路径不同,注意路径不同是指**点不相同**,即走过不同的边集但是点集相同的两条路径是 等价的
 - 2. 两条路径**是无序的**,如路径 (1-2,1-3-2) 和路径 (1-3-2,1-2) 是等价的请告诉他不同的方案数 $mod\ 10^9+9$ 。

【输入格式】

第一行读入两个数 n, m, S, T ,表示 BS 中学的规模和教学楼、食堂的位置;

然后每行每行三个数 u_i, v_i, w_i , 描述 BS 中学道路的情况

【输出格式】

输出答案 $mod \ 10^9 + 9$ 。

【样例输入1】

2 1 1 2 1 2 10000

【样例输出1】

1

【样例1解释】

(1-2,1-2).

【样例输入2】

```
3 4 1 2
```

1 2 2

1 3 1

1 3 1

3 2 1

【样例输出2】

2

【样例2解释】

$$(1-2,1-2),(1-2,1-3-2)$$
 .

【数据范围及约定】

对于全部的数据,满足 $1 \leq n \leq 2000, m \leq 30000, w_i \in [1, 10^5], S, T \in [1, n], S \neq T$ 。

测试点编号	n =	m =	特殊性质
1	7	10	无
2	10	14	无
3	15	20	答案为 0
4	20	100	无
5	50	400	无
6	100	2000	无
7	500	30000	$w_i=1$
8	500	30000	无
9	1000	20000	无
10	2000	30000	无

排列价值 (array)

【问题描述】

一个排列 $p_i, i \in [1,n]$ 的笛卡尔树是一棵二叉树,不妨设每个节点的左右儿子分别为 ls_i, rs_i 。 则 $\forall i \in [1,n]$ 满足

 $1. ls_i < i < rs_i$ (如果 ls, rs 存在)

 $2. p_{ls_i} < p_i, p_{rs_i} < p_i$ (如果 ls, rs 存在)

的二叉树

根据笛卡尔树构建的情况,定义这个排列的价值为: $\sum rs_i - ls_i$ (如果 ls_i, rs_i 均存在) 请求出所有长度为 n 的排列的权值总和 $mod\ P$ 。

【输入格式】

输入仅一行两个正整数 n, P, 意义如上。

【输出格式】

输出一行表示总权值 mod P 。

【样例输入1】

3 13

【样例输出1】

4

【样例1解释】

 $p_i = 3$ 的排列权值均为 2, 因此答案为 4。

【数据范围及约定】

对于所有的数据,满足 $3 \leq n \leq 10^6$, $n < P \leq 1.07 \times 10^9$ 且 P 是质数 。

测试点编号	$n \le$
1	10
2	100
3	500
4	2000
5	4000
6	8000
7	50000
8	100000
9	500000
10	1000000

序列操作 (sequence)

【问题描述】

定义一个 n 阶交替序列为: 一个长度为 2n+1 的 01 序列, 且呈现 1010...0101 的排列情况。

对于一个给定的 01 序列,每次操作为将一个不为空的连续交替子串进行 01 翻转。

如序列 100101 可以操作为 000101, 100001, 100100, 100010。

求连续操作 k 次的不同的操作方案数量 mod 998244353。

注意操作是有序的操作,如互不影响的操作 AB 按照顺序 A,B 和 B,A 操作被视为不同的操作方案 。

【输入格式】

第一行三个数 type, n, k;

若 type = 1 则第二行为一个长度为 n 的 01 串;

否则表示给定的串就是一个 n 阶交替序列。

【输出格式】

输出方案数 mod 998244353。

【样例输入1】

1 6 2 111011

【样例输出1】

32

【样例输入2】

2 5 2

【样例输出2】

210

【数据范围及约定】

对于所有的数据点,保证存在至少一种合法方案

测试点编号	type	$n \le$	k
1	1	6	$\leq n$
2	1	10	$\leq n$
3	1	17	$\leq n$
4	1	20	$\leq n$
5	1	23	$\leq n$
6	1	23	$\leq n$
7	2	40	$\leq n+1$
8	2	40	$\leq n+1$
9	2	60	$\leq n+1$
10	2	60	$\leq n+1$
11	2	60	$\leq n+1$
12	2	80	$\leq n+1$
13	2	100	$\leq n+1$
14	2	110	$\leq n+1$
15	2	110	$\leq n+1$
16	2	120	$\leq n+1$
17	2	120	$\leq n+1$
18	2	500	=n+1
19	2	1000	= n + 1
20	2	5000	= n + 1
21	2	10^5	=n+1
22	2	10^7	=n+1
23	2	10^9	=n+1
24	2	10^{18}	= n + 1
25	2	10^{18}	=n+1

路径差值 (route)

【问题描述】

一颗 n 个节点的树是由 n-1 条带权无向边 (u_i,v_i,w_i) 连接的连通图,树上任意两点间存在唯一一条最短路径。

设 $Max(u,v)(u\neq v)$ 为 u 到 v 路径上最大的 w_i , $Min(u,v)(u\neq v)$ 为 u 到 v 路径上最小的 w_i 。

求无序二元点对 (u,v) 满足 Max(u,v)-Min(u,v)=k 的数量。

【输入格式】

第一行两个数 n, k 表示树的大小和要求的差值。

接下来 n-1 每行三个数 u, v, w 表示读入一条带权的树边。

【输出格式】

输出一行一个数表示答案

【样例输入1】

5 2

2 1 1

3 1 4

4 3 5

5 4 3

【样例输出1】

2

【样例1解释】

合法的点对为(3,5)和(1,5)。

【数据范围及约定】

对于所有数据点,满足 $10 \leq n \leq 2 imes 10^5, w_i, k \in [1,n] \cap \mathbb{Z}$ 。

测试点编号	n =	$w_i \leq$	特殊性质
1	3000	n	
2	4000	n	
3	5000	n	
4	20000	n	树为一条链
5	40000	n	树为一条链
6	80000	n	树为一条链
7	99999	n	树为一条链
8	99998	n	树只有一个节点的度数 > 1
9	99998	n	树只有一个节点的度数 > 1
10	99997	2	
11	99996	3	
12	99996	5	
13	99995	500	
14	99995	500	
15	99994	2000	
16	99993	n	树形和权值在 1 分钟内随机生成
17	100000	n	
18	100000	n	
19	100000	n	
20	200000	n	