ARGUMENTOS E REGRAS DE INFERÊNCIA

Vamos continuar aperfeiçoando nossos conhecimentos em demonstrações por meio de proposições. Para isso aprenderemos alguns novos conceitos.

Fala Professor

8.1 Argumento

Argumento – é toda afirmação que uma dada seqüência finita P_1 , P_2 ,..., P_n de proposições tem como conseqüência, ou acarreta, uma proposição final Q (ALENCAR FILHO, 2003).

Conceitos

As proposições P₁, P₂,..., P_n dizem-se as premissas do argumento, e a proposição final Q diz-se a conclusão do argumento.

Um argumento de premissas P_1 , P_2 ,..., P_n e de conclusão Q indica-se por:

P₁, P₂,...,P_n⊢Q, onde se lê: "P₁P₂,...,P_n acarretam Q". Podemos dizer que Q decorre, ou se deduz ou se infere de P1, P2, ..., Pn. Na forma padronizada as premissas invocadas para "servir de justificativa", acham-se sobre o traço horizontal e a conclusão do argumento estará sob o mesmo traço horizontal da seguinte forma:

P1

P2

•••

Pn

Q

8.2 Validade de um Argumento

Conceitos

Um argumento P1, P2,..., Pn ⊢ Q diz-se **válido** se e somente se a conclusão Q é verdadeira **todas as vezes** que as premissas P1, P2,..., Pn são verdadeiras (ALENCAR FILHO, 2003).

Portanto, todo argumento válido goza da seguinte característica: A verdade das premissas é incompatível com a falsidade da conclusão.

Um argumento não-válido diz-se um **sofisma**.

Desse modo, todo argumento tem um valor lógico, digamos V se é válido(correto, legítimo) ou F se é um sofisma(incorreto, ilegítimo).

As premissas dos argumento são verdadeiras ou, pelo menos admitidas como tal. Aliás, a Lógica só se preocupa com a validade dos argumentos e não com a verdade ou falsidade das premissas e das conclusões.

A validade de um argumento depende, exclusivamente, da relação existente entre as premissas e a conclusão. Portanto, afirmar que um dado argumento é válido significa afirmar que as premissas são verdadeiras.

8.3 Critério de Validade de um Argumento

Conceitos

Teorema – um argumento P1, P2,..., Pn \vdash Q diz-se **válido** se e somente se a condicional: (P1 \land P2 \land ... \land Pn) \longrightarrow Q é **tautológica** (ALENCAR FILHO, 2003).

Representação do argumento: P1, P2, ..., Pn \vdash Q.

8.4 Condicional Associada a um Argumento

Atividades

Dado um argumento P1, P2,..., Pn \vdash Q, a este argumento corresponde a condicional: (P1 \land P2 \land ... \land Pn) \rightarrow Q (ALENCAR FILHO, 2003).

cujo antecedente é a conjunção das premissas e cujo consequente é a conclusão, denominada "condicional associada" ao argumento dado.

8.5 Argumentos válidos Fundamentais

São argumentos válidos fundamentais ou básicos (de uso corrente) os constantes da seguinte lista (ALENCAR FILHO, 2003):

- I. Adição (AD):
 - (i) p |— p V q;
- (ii) $p \mid -q V p$
- II. Simplificação (SIMP):
 - (i) $p \wedge q \mid -p$;
- (ii) $p \wedge q \mid -q$
- III. Conjunção (CONJ):
 - (i) p, q \mid p \land q;
- (ii) p, q \mid q \land p
- IV Absorção (ABS):
- $p \rightarrow q \mid -p \rightarrow (p \land q)$
- V. Modus Ponens (MP):
- $p \rightarrow q$, $p \mid -q$

- VI. Modus Tollens (MT):
- $p \rightarrow q$, $\sim q \mid \sim p$
- VII. Silogismo disjuntivo (SD):

 - (i) p V q, \sim p |— q; (ii) p V q, \sim q |— p
- VIII. Silogismo hipotético (5H):

$$p \rightarrow q$$

$$q \rightarrow r \mid -p \rightarrow r$$

IX. Dilema construtivo (DC):

$$p \rightarrow q$$
, $r \rightarrow s$, $p V r \mid -q V s$

X. Dilema destrutivo (DD):

$$p \rightarrow q$$
, $r \rightarrow s$, $\sim q V \sim s \mid -- \sim p V \sim r$

A validade desses dez argumentos é consequência imediata das tabelasverdade. Vide capítulo 5.

8.6 Regras de Inferência

Os argumentos que vimos, anteriormente, são usados para fazer "inferências", isto é, executar os "passos" de uma dedução ou demonstração, por isso chamam-se também, regras de inferência.

Conceitos

Uma **inferência lógica**, ou, simplesmente uma **inferência**, é uma tautologia da forma $\mathbf{p} \rightarrow \mathbf{q}$. A proposição \mathbf{p} é chamada antecedente, e \mathbf{q} , conseqüente da implicação. As inferências lógicas, ou regras de inferência, são representadas por $\mathbf{p} \Rightarrow \mathbf{q}$ (PINHO, 1999).

Da definição decorre imediatamente que $\mathbf{p} \Longrightarrow \mathbf{q}$, se e somente se, o conseqüente \mathbf{q} assumir o valor lógico \mathbf{V} , sempre que o antecedente \mathbf{p} assumir esse valor. Em outras palavras, para que a condicional seja verdadeira, essa condição é necessária, pois, se o conseqüente for falso com o antecedente verdadeiro, a condicional não é verdadeira. Por outro lado, a condição também é suficiente, pois, quando o antecedente é falso, a condicional é verdadeira, não importando o valor lógico do conseqüente.

As regras de inferência são, na verdade, formas válidas de raciocínio, isto é, são formas que nos permitem concluir o conseqüente, uma vez que consideremos o antecedente verdadeiro; em termos textuais, costumamos utilizar o termo "logo" (ou seus sinônimos: portanto, em conseqüência, etc) para caracterizar as Regras de Inferência; a expressão p \Longrightarrow q pode então ser lida: p; logo, q.

É possível mostrar que as regras de inferência têm as seguintes propriedades:

Reflexiva: $p \Rightarrow p$

Transitiva: Se $p \Longrightarrow q e q \Longrightarrow r$, então $p \Longrightarrow r$

Aqui neste material será habitual escrevê-los na forma padronizada abaixo indicada, colocando as premissas sobre um traço horizontal e, em seguida, a conclusão sob o mesmo traço (ALENCAR FILHO, 2003)

I. Regra da Adição (AD):

- II. Regra de Simplificação (SIMP):
 - (i) <u>p A q</u>

- (ii) <u>p A q</u>
- III. Regra da Conjunção (CONJ):

- (ii) q q | p
- IV. Regra da Absorção (ABS):

$$\frac{p \to q}{p \to (p \land q)}$$

V. Regra Modus Ponens (MP):

$$p \rightarrow q$$
 q

VI: Regra Modus Tollens (MT):

$$\begin{array}{c}
p \to q \\
\sim q \\
\hline
\sim p
\end{array}$$

VII. Regra do Silogismo Disjuntivo (SD):

VIII. Regra do Silogismo Hipotético (SH):

$$\begin{array}{c}
p \to q \\
q \to r \\
\hline
p \to r
\end{array}$$

Regra do Dilema construtivo (DC): IX.

$$\begin{array}{c}
p \to q \\
r \to s \\
\hline
p V r \\
\hline
q V s
\end{array}$$

X. Regra do Dilema destrutivo (DD):

$$p \rightarrow q$$

$$r \rightarrow s$$

$$\sim q \vee \sim s$$

$$\sim p \vee \sim r$$

Com o auxílio dessas dez regras de inferência pode-se demonstrar a validade de um grande número de argumentos mais complexos.

8.7 Exemplos do uso das Regras de Inferência

Damos a seguir exemplos simples do uso de cada uma das regras de inferência na dedução de conclusões a partir de premissas dadas (ALEN-CAR FILHO, 2003).

1. Regra da Adição - Dada uma proposição p, dela se pode deduzir a sua disjunção com qualquer outra proposição, isto é, deduzir p V q, ou p V r, ou s V p, ou t V p, etc.

Exemplos:

(a)
$$(1)$$
 p P (2) p V ~ q

(c)
$$(1)$$
 $x \neq 0$ P (2) $x \neq 0 \ \forall x \neq 1$

(c)
$$\frac{(1) \quad x \neq 0}{(2) \quad x \neq 0 \quad V \times \neq 1}$$
 (b) $\frac{(1)}{(2)} \frac{X < 1}{X = 2} \frac{P}{V \times 1}$

II. Regra da Simplificação — Da conjunção p ∧ q de duas proposições se pode deduzir cada uma das proposições, p ou q.

Exemplos:

(b)
$$(1) \quad p \land \sim q \quad P$$

$$(2) \quad \sim q$$

(b)
$$(1)$$
 $x \in A \land x \in B \land P$
 (2) $x \in A$

Argumentos e Regras de Inferência

III. Regra da Conjunção -- Permite deduzir de duas proposições dadas p e q (premissas) a sua conjunção p \land q ou q \land p (conclusão).

(c) (1)
$$x < 5$$
 P
(2) $x > 1$ P
(3) $x > 1 \land x < 5$

(d) (1)
$$x \in A$$
 P
(2) $x \notin B$ P
(3) $x \notin B \land x \in A$

IV. Regra da Absorção Esta regra permite, dada uma condicional - como premissa, dela deduzir como conclusão uma outra condicional com o mesmo antecedente p e cujo consequente é a conjunção p ∧ q das duas proposições que integram a premissa, isto é, p \rightarrow p \land q. Exemplos:

(a)
$$(1)$$
 $x = 2 \rightarrow x < 3$ P
(2) $x = 2 \rightarrow x = 2 \land x < 3$
(b) (1) $x \in A \rightarrow x \in A \cup B$ P
(2) $x \in A \rightarrow x \in A \land x \in A \cup B$

V. Regra Modus Ponens - Também é chamada Regra de separação e permite deduzir q (conclusão) a partir de p \rightarrow q e p (premissas). Exemplos:

(a) (1)
$$\sim p \rightarrow \sim q$$
 P
(2) $\sim p$ P
(3) $\sim q$

(b) (1)
$$p \rightarrow q \Lambda r$$
 P
$$\frac{(2) \quad p \qquad P}{(3) \quad q \Lambda r}$$

(e) (1)
$$x \neq 0 \rightarrow x + y > 1$$

P
(2) $x \neq 0$

(f) (1)
$$x \in A \cap B \rightarrow x \in A$$

$$(2) \quad \begin{array}{c} P \\ x \neq 0 \\ P \end{array}$$

$$(3) \quad x + y > 1$$

$$(2) \quad \begin{array}{c} X \in A \cap B \\ P \end{array}$$

VI. Regra Modus Tollens - Permite, a partir das premissas p \rightarrow q (condicional) o ~ q (negação do consequente), deduzir como conclusão ~ p (negação do antecedente).

Exemplos:

(a) (1)
$$q \land r \rightarrow s \quad P$$

(2) $\sim s \quad P$
(3) $\sim (q \land r)$
(b) (1) $p \rightarrow \sim q \quad P$
(2) $\sim \sim q \quad P$
(3) $\sim p$
(c) (1) $p \rightarrow q \land r \quad P$
(2) $\sim (q \land r) \quad P$
(3) $\sim p$
(d) (1) $x \neq 0 \rightarrow x = y \quad P$
(2) $x \neq y \quad P$
(3) $x = 0$

Capítulo 8

VII. Regra do Silogismo Disjuntivo — Permite deduzir da disjunção p V q de duas proposições e da negação \sim p (ou \sim q), de uma delas, a outra proposição q (ou p).

Exemplos:

(a) (1)
$$(p \land q) \lor r$$

 p
(2) $\sim r$
(3) $p \land q$
(b) (1) $\sim p \lor \sim q$
 p
(2) $\sim \sim p$
(3) $\sim q$
(b) (1) $\sim p \lor \sim q$
 $\sim p$
(3) $\sim q$
(b) (1) $\sim p \lor \sim q$
 $\sim p$
(1) $\sim p \lor \sim q$
 $\sim p$
(2) $\sim \sim p$
(3) $\sim q$

(b) (1)
$$x = 0 \ V \ x = 1$$
 (d) (1) $\sim (p \rightarrow q) \ V \ r$ (2) $x \neq 1$ (2) $\sim \sim (p \rightarrow q)$ (2) $\sim \sim (p \rightarrow q)$ (3) r

VIII. Regra do Silogismo Hipotético – Esta regra permite, dadas duas condicionais: $p \rightarrow q$ e $q \rightarrow r$ (premissas), tais que o consequente da primeira coincida com o antecedente da segunda, deduzir uma terceira condicional $p \rightarrow r$ (conclusão), cujos antecedente e consequente sejam, respectivamente, o antecedente da premissa $p \rightarrow q$ e o consequente da outra premissa $q \rightarrow r$ (transitividade da seta \rightarrow).

(a) (1)
$$\sim p \rightarrow \sim q$$
 P
 $(2) \sim q \rightarrow \sim r$ P
 $(3) \sim p \rightarrow \sim r$ (b) (1) $\sim p \rightarrow q \lor r$ P
 $(2) q \lor r \rightarrow \sim s$ P
 $(3) \sim p \rightarrow \sim s$

IX. Regra do Dilema Construtivo — Nessa regra, as premissas são duas condicionais e a disjunção dos seus antecedentes, e a conclusão é a disjunção dos consequentes dessas condicionais.

(a) (1)
$$(p \land q) \rightarrow \neg r$$
 P (b) (1) $x < y \rightarrow x = 3$ P
(2) $s \rightarrow t$ P (2) $x < 5 \rightarrow x = 2$ P
(3) $(p \land q) \lor s$ P (3) $x < y \lor x < 5$ P
(4) $x = 2 \lor x = 3$

X. Regra do Dilema Destrutivo – Nesta regra, as premissas são duas condicionais e a disjunção da negação dos seus consequentes, e a conclusão é a disjunção da negação dos antecedentes destas condicionais.

(a) (1)
$$\sim q \rightarrow r$$
 P (b) (1) $x + y = 7 \rightarrow x = 2$ P (2) $y - x = 2 \rightarrow x = 3$ P (3) $\sim r \lor \sim r$ P (4) $\sim r \lor \sim r$ (5) $(1) \times r \lor r \rightarrow r$ P (2) $(2) \times r \lor r \rightarrow r$ P (3) $(2) \times r \lor r \rightarrow r$ P (4) $(3) \times r \lor r \rightarrow r$ P (4) $(4) \times r \lor r \rightarrow r$ P

ATIVIDADE 13 – Para exercitar, vamos realizar algumas das atividades propostas por (PINHO, 1999, p. 96):

- 1. Construir a condicional associada aos seguintes argumentos:
- (a) $\sim p$, $\sim q \rightarrow p \mid q$
- (b) $p \rightarrow q \mid (p \land \sim q)$
- 2. Indicar a regra de inferência que valida os seguintes argumentos:

(a)
$$p \rightarrow q \mid (p \rightarrow q) \lor \sim r$$

(b)
$$p \rightarrow (q \rightarrow r)$$
, $p \mid q \rightarrow r$

(c)
$$(q \lor r) \rightarrow \sim p, \sim \sim p \mid -- \sim (q \lor r)$$

(d)
$$3 < 5 \mid --- 3 < 5 \lor 3 < 2$$

3. Usar **Modus Ponnes** para deduzir a conclusão das seguintes premissas:

(a) (1)
$$x = y \land y = z$$

(b) (1)
$$2 > 1 \longrightarrow 3 > 1$$

(2)
$$(x = y \land y = z) \longrightarrow x = z$$

4. Usar **Modus Tollens** para deduzir a conclusão das seguintes premissas:

(a) (1)
$$(p \longleftrightarrow q) \longrightarrow \sim (r \land s)$$

(b) (1)
$$x = z \rightarrow x = 6$$

$$(2) \sim \sim (r \land s)$$

(2)
$$x \neq 6$$

5. Usar o **Silogismo Disjuntivo** para deduzir a conclusão das seguintes premissas:

(a) (1) s
$$\vee$$
 (r \wedge t)

6. Usar o **Silogismo Hipotético** para deduzir a conclusão das seguintes premissas:

(a) (1)
$$p \rightarrow r \lor \sim s$$

(2)
$$r \vee \sim s \longrightarrow t$$

Atividades

- 7. Usar o **Dilema Construtivo** para deduzir a conclusão das seguintes premissas:
- (a) (1) $p \rightarrow r$
 - $(2) \sim q \longrightarrow \sim s$
 - (3) p V ~q
- 8. Verifique a validade dos argumentos utilizando regras de inferência
- (a) $r \rightarrow p \lor q, r, \sim p \mid q$
- (b) $p \rightarrow q$, $\sim q$, $p \lor r \mid --- r$
- (c) $p \lor q, p \rightarrow r, \sim r \mid q \lor s$
- (d) t, t $\rightarrow \sim q$, $\sim q \rightarrow \sim s$ | $-\sim s$
- (e) $p \land q$, $p \lor r \rightarrow s \mid p \land s$
- (f) $p \lor q \rightarrow (p \rightarrow s \land t), p \land r \mid t \lor u$

Fala Professor

Não esqueça de fazer os demais exercícios que constam no capítulo 9 do livro de Edgard de Alencar Filho - Iniciação à Lógica Matemática. São Paulo: Nobel, 2003.

Indicações

Para maior compreensão, ler o capítulo 9 – Argumento e Métodos de Inferência do livro Alencar Filho, Edgard de. Iniciação à lógica matemática. São Paulo: Nobel, 2003.