Open Elective Course [OE]

Course Code: CSO507 Winter 2023-24

Lecture#

Deep Learning

Unit-4: Convolutional Neural Networks (Part-II)

Course Instructor:

Dr. Monidipa Das

Assistant Professor

Department of Computer Science and Engineering

Indian Institute of Technology (Indian School of Mines) Dhanbad, Jharkhand 826004, India

$$h^{r} = \sum_{ijk} x^{r}_{ijk} W_{ijk} + b$$
Sum over 3 axes

1 number:

the result of taking a dot product between the filter and a small 3x5x5 chunk of the image (i.e. 3*5*5 = 75-dimensional dot product + bias)

$$w^T x + b$$

Convolution Layer

3x32x32 image

1 number:

the result of taking a dot product between the filter and a small 3x5x5 chunk of the image

(i.e. 3*5*5 = 75-dimensional dot product + bias)

$$w^T x + b$$

What do convolutional filters learn? **Filters Detect Different Features** Visualization of Filter Filter Overlaid on Image Filter Overlaid on Image Filter 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0 50 50 0 0 0 0 30 0 Weighted Sum = ? Weighted Sum = (50x30) + (20x30) +Weighted Sum = ? (50x30) +(50x30)+ (50x30) Weighted Sum = 0 (Small Number!!) Weighted Sum = 6600 (Large Number!!)

A closer look at spatial dimensions

Input: 7x7
Filter: 3x3

A closer look at spatial dimensions

Input: 7x7 Filter: 3x3

Prof. Monidipa Das. Department of CSE. IIT (ISM) Dhanbad

A closer look at spatial dimensions

Input: 7x7 Filter: 3x3

A closer look at spatial dimensions

Input: 7x7 Filter: 3x3

Prof. Monidipa Das. Department of CSE, IIT (ISM) Dhanbad

A closer look at spatial dimensions

Input: 7x7
Filter: 3x3
Output: 5x5

In general: Input: W Filter: K

Output: W - K + 1

Problem: Input Shrinks

• Why do the dimensions shrink with each convolutional layer?

• Information is lost around boundary of the input!

Solution: **padding**Add zeros around the input

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

Idea: Control Output Size with Padding

Padding: add values at the boundaries

Padding

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Input: 7x7 Filter: 3x3 Output: 5x5

In general: Very common:

Input: W Set P = (K - 1) / 2 to

make output have same size as input!

Padding: P

Output: W - K + 1 + 2P

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

Each successive convolution adds K – 1 to the receptive field size With L layers the receptive field size is 1 + L * (K – 1) Input Problem: For large images we need many layers for each output to "see" the whole image image Solution: Downsample inside the network

Strided Convolution

• Stride: how many steps taken spatially before applying a filter

Input: 7x7 Filter: 3x3 Stride: 2

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

Strided Convolution

• Stride: how many steps taken spatially before applying a filter

Input: 7x7 Filter: 3x3 Stride: 2

Strided Convolution

Stride: how many steps taken spatially before applying a filter

Input: 7x7 Filter: 3x3

Stride: 2 Output: 3x3

In general: Input: W Filter: K Padding: P Stride: S

Output: (W - K + 2P) / S + 1

Prof. Monidipa Das. Department of CSE. IIT (ISM) Dhanbad

Convolutional Layers: Parameters vs Hyperparameters

- Parameters
 - Weights
 - Biases
- Hyperparameters
 - Number of filters, including height and width of each
 - Strides
 - Padding type
 - Activation function

Conv	29							
Input volume: 3 x 32 x 3 10 5x5 filters with strid								
Output volume size: ?		?						
Number of learnable para	ameters: ?		?					
Number of multiply-add operations: ?								
?								
	Prof. Monidipa Das, Depar	tment of CSE, IIT (ISM) Dhanbad						

