Integrierter Kurs IV

$\begin{aligned} & \text{Experimental physik II} \\ & \text{Tom Folgmann} \end{aligned}$

22. Juni 2023

Inhaltsverzeichnis

1	$\mathbf{A}\mathbf{to}$	me und Atommodelle	1	
	1.1	Größe von Atomen	2	
	1.2	Typische Bestimmung der Größe eines Atoms	2	
	1.3	Definition des Atomradius	4	
	1.4	Der elektrische Aufbau der Atome, das Elektron	4	
	1.5	Bestimmung der Ladungsverteilung im Atom (Streuexperimente)	6	
	1.6	O •	10	
		1.6.1 Schwarzkörperstrahlung	10	
2	Das	Bohrsche Atommodell	17	
	2.1		17	
	2.2	Modell	18	
3			19	
	3.1		19	
	3.2	g g	20	
	2.0		20	
	3.3	8	20	
	3.4	V I V	21	
	3.5	Lebensdauer angeregter Zustände und Linienbreiten	22	
1	A	atome und Atommodelle		<i>VL 1</i> 12.04.2023,
	_	erimentelle Bestimmung der Atommasse geklingt durch verschiedene Verfahrspielsweise die folgenden.	en,	₩£ ⁴⁵ 2 13.04.2023, 08:15
als	so der	enbeugung an Kristallen. Man kennt zunächst die Gitterkonstante $d \in \mathbb{R}$ n Abstand der Atome innerhalb des Gitters. Damit ist das Atomvolumen gera A_{tom} und schließlich $N_A \cdot V_{Atom} = \frac{M}{\rho(M)},$		
		M die $Molek \ddot{u}lmasse$ und ρ eine Dichtefunktion ist.		
		erchiere das "Avogadro-Projekt" des PTB.		(№1)

Skript

Gaskonstante. Über die Gaskonstante folgt der Atomradius $R = N_A \cdot k_B$ mit k_B als *Boltzmann-Konstante*.

1.1 Größe von Atomen

Atome weisen etwa eine Größe von 10^{-10} m im Radius vor, was wir folgend auf die Einheit Angstrom normieren werden: $1\text{Å} := 10^{-10}$ m. Zum Vergleich: Das Wasserstoffatom weist einen Radius von 0.5Å auf, Magnesium einen von 1.6Å und Caesium 2.98Å.

1.2 Typische Bestimmung der Größe eines Atoms

Grobe Abschätzung. Für reale Gase gilt die sogenannte Van-der-Waals-Gleichung der Form

$$\left(p + \frac{a}{V_m^2}\right) \cdot (V_m - b) = RT,$$

wobei a den Binnendruck und b das Kovolumen darstellen. Aus einem pV Diagramm lässt sich dann die Konstante b bestimmen und die Approximation $b \approx N_A \cdot V_A$ liefert die gewünschten Größen.

Beugung von Röntgenstrahlen an Kristallen. Das Ziel der Beugung ist zunächst die Bestimmung der oben erwähnten Gitterkonstanten d. Man benötigt hierzu Röntgenstrahlen, gewonnen durch (i) eine Röntgenröhre, mit dem Nachteil der charakteristischen Linien, welche berücksichtigt werden müssen, oder (ii) die Synchrotronstrahlung. Diese werden auf einen Einkristall gelenkt, welcher durch eine periodische, durchgehende äquidistante Anordnung von Atomen als ein Festkörper charakterisiert wird. Durch diese Anordnung wird eine Ebenenstruktur initialisiert, welche insbesondere nicht eindeutig wählbar ist.

Im Exp
meriment wird dann eine Beugungserscheinung ersichtlich sein, siehe [\rightarrow AP3: Beugung am Gitter]. Im wesentlichen wird hierfür die Bragg Bedinung der Form

$$2 \cdot d \cdot \sin(\alpha) = n \cdot \lambda$$

verwendet, wobei α der Kontaktwinkel der Strahlung zum Gitter und n die Beugungsordnung ist. Der Gitterabstand führt in der obigen weise auf das gesuchte Atomvolumen V_{Atom} .

Man kann das Experiment auch mit mehreren Verfahren ausführen, wie zB. das Laue-Verfahren, das Bragg- oder Drehkristallverfahren und Dabye Scherrer Verfahren, welches für Pulver und monochromatischem Licht verwendet.

Abbildende Größenbestimmung. Mithilfe eines Lichtmikroskopes lässt sich ein Atom *nicht* auflösen, da es der Abbeschen Theorie über das Auflösungsvermögen widerspricht. Das *Rayleigh-Kriterium* für d ist von der Form

$$d = \frac{\lambda}{n \cdot \sin(\alpha)},$$

mit n als Brechungsindex und α als Einfallswinkel (der halbe Winkel). Unter dem Link zum Auflösungsvermögen sind minimale sichtbare Längen bei ungefähr 500nm recherchierbar, woraus die Ausgangsaussage folgt.

Experiment 1. Die Nebelkammer.

Die sogenannte Nebelkammer ist gefüllt mit übersättigtem Wasserdampf, durch welche gewählte Teilchen hindurchfliegen, wie beispielsweise ⁴₂He Kerne. Ihre Spuren in dem Nebel lassen sich dann optisch durch Schwärzungen nachvollziehen. Die Streifen entstehen durch die Reaktion

$${}^{14}_{7}N + {}^{4}_{2}He \longrightarrow {}^{17}_{8}O + {}^{1}_{1}p.$$

Experiment 2. Das Feldemissionsmikroskop.

Das Feldemissions- oder Feldelektronenmikroskop wurde entwickelt von E. Müller im Jahre 1951. Die Wolframspitze weist einen Krümmungsradius von $r \approx 10$ nm auf, aus wessen Spitze durch eine angelegte Spannung zwischen ihr und dem Schirm Elektronen herausgerissen werden. Diesen Prozess nennt man auch Kalte Elektronen Emission.

VL 314.04.2023, 11:45

Transmissions-Elektronenmikroskopie Die Methode der Transmissions - Elektronenmikroskopie wurde von E. Ruska 1932 entwickelt. Ihre Funktionsweise beruht auf der Emission von Elektronen und anschließender Beschleunigung in Richtung der Probe, an welcher ein Streumuster entsteht. Die Elektronen werden als Teilchen im Modell aufgefasst, sodaß das Auflösungsvermögen der De-Broglie Wellenlänge

$$\lambda = \frac{k}{p} = \frac{k}{\sqrt{2 \cdot m_e \cdot E_{kin}}},$$

entspricht, wobei k die Planck-Konstante und p der (nicht relativistische) Impuls des Elektrons ist.

Rasterelektronenmikroskopie Die Methode der Rasterelektronenmikroskopie rastert ein Muster der Elektronenstrahlung über das zu mikroskopierende Objekt, welches selbstgewählt ist. Ein Sonderfall dieser ist die Rastertunnelmikroskopie (entworfen bei IBM in Zürich), bei welcher keine Elektronen verwendet werden, sondern die Elektrode sehr nahe (approx. 2Å) an das zu untersuchende Objekt herangebracht wird. Hierduch entsteht ein sogenannter Tunnelstrom, welcher eine Proportionalität $I \propto \exp(-d)$ vorweist, sodaß $-\ln(I) \propto d$ der Abstand zur Probe ist. Die Rastertunnelmikroskopie ist somit eine Methode zur Messung der Abstände zwischen Probe und Elektrode. Die Auflösung ist dabei

lateral: 0.05Å vertikal: 1pm.

□ Recherchiere das IBM Logo aus Atomen gebastelt. Wie groß ist das Logo? Wie wurde das

Skript

Logo zurechtgeschoben?

1.3 Definition des Atomradius

Misst man mit verschiedenen Methoden dasselbe Atom, erhält man verschiedene Radien und damit Atomgrößen. Die Messmethoden sind also bezüglich des Atomradius nicht eindeutig! Atome sind also keine harten Kugeln im Sinne der Vorstellung, sondern haben ein Wechselwirkungspotential (auch Lennard-Jones-Potential) der Form

$$V := \left(\frac{a}{r^{12}} - \frac{b}{r^6}\right)_{r \in \mathbb{R}_{>0}},$$

welches mit verschiedenen Messmethoden zu verschiedenen Radien registriert wird.

 \Box Leite das Potential V her. Was ist die Bedeutung der Parameter a und b?

VL 4 17.04.2023, 11:45 Den Atomradius setzt man nach dem Potential beispielsweise auf $r_m := (2a/b)^{1/b}$ als argmin (V) oder auch $r_0 = (a/b)^{1/b}$ als nächste Nullstelle zu r = 0 aus $V(r_0) = 0$.

1.4 Der elektrische Aufbau der Atome, das Elektron

Entdeckung der Kanalstrahlen, Ionen

Der Physiker E. Goldstein (1886) entdeckte die sogenannten Kanalstrahlen, neuer genannt auch Ionenstrahlung. Sie dienen der Untersuchung der Gasentladung. Die Funktionsweise der Kanalstrahlen ist wie folgt: Die Ionen werden per elektrischem Feld beschleunigt und zur Kathode gelenkt. Sie treten durch die Löcher (auch Defektelektronen) in der Kathode aufgrund ihrer Massenträgheit hindurch, was in Form von Leuchterscheinungen erkennbar ist. Man kann durch dieses Verfahren auf das Verhältnis e/m schließen.

Entdeckung der Kathodenstrahlen, Elektronen

Über eine Weiterentwicklung der Vakkuumtechnologie im Allgemeinen wird es möglich, sogar Elektronenstrahlen zu erzeugen. Dies geschieht in der sogenannten Kathodenstrahlröhre:

Abbildung 1: Schematischer Aufbau der Kathodenstrahlröhre.

 $[\to \text{Live-Versuch}]$ Es findet nach der Erzeugung des Elektronenstrahls also eine Ablenkung desselben durch ein elektromagnetisches Feld vor. Die Versuche gehen auf

den Physiker J. J. Thomson zurück, welcher 1897 die erste Kathodenstrahlröhre baute. Das Massenverhältnis m_e/m_p lautet in diesem Fall

$$\frac{m_{Ion}}{e} \approx 10^{-4}$$
.

.....

□ Suche nach einer Formel zur konkreten Berechnung auf Grundlage der Versuchsbedingun- (%6) gen.

Masse des Elektrons

Die Bestimmung von m_e aus den massenspektrometrischen Experimenten erfolgt bei bekannter Ladung durch die einfache Multiplikation $m_e/e \cdot e = m_e$. Der Literaturwert der Elektronenladung ist $e = 1,602 \cdot 10^{-19}$ C, die Masse des Elektrons ist $m_e = 9,109 \cdot 10^{-31}$ k.

Ladung des Elektrons (Elementarladung)

Von Robert Millikan (1909) wurde ein Experimentvorschlag der Elementarladungsbestimmung vorgeschlagen, das sogenannte Millikan-Experiment [\rightarrow AP3]. Das grobe Vorgehen ist zunächst (i) die Volumenmessung des Tröpfchens, (ii) die Kraftberücksichtigung von Schwerkraft $F_g = m \cdot g$, der Reibung $F_R = 6\pi \cdot \eta \cdot r \cdot v$ und der Auftriebskraft $F_A = V \cdot \rho \cdot g$, wodurch der Teilchenradius

$$r = \left(\frac{9 \cdot \eta \cdot v}{2 \cdot g \cdot (\rho_{\ddot{O}l} - \rho_{Luft})}\right)^{\frac{1}{2}} \implies m = \frac{4}{3}\pi r^3 \cdot \rho_{\ddot{O}l}$$

folgt. Die Spannung zwischen den Kondensatorplatten liefert die Feldstärke E=U/d, welche genau so justiert wird, daß das Teilchen zu schweben beginnt. Das Kräftegleichgewicht liefert dann das Ergebnis

$$n \cdot e = \frac{\frac{4}{3}\pi r^3 \cdot g \cdot (\rho_{\ddot{O}l} - \rho_{Luft})}{E}.$$

Hinzukommende Röntgenstrahlung ändert nun schließlich die Tröpfchenladung in Stufen $\Delta q = n \cdot e$, wodurch die Existenz der Elementarladung e bewiesen werden kann $[\rightarrow$ Ionisierende Strahlung].

□ Führe die angedeutete Rechnung konkret durch. (\$7)

Weitere Eigenschaften des Elektrons

Der Eigendrehimpuls (Spin). Der Spin kommt in Größen von $\hbar/2$ vor. Er ist ein Quantenzustand, der sich nicht addieren läßt. Nach dem *Elementarteilchenmodell* sind Elektronen Teil der Gruppe *Fermionen*, also Teilchen mit halbzahliger Spinzahl, und in der Untergruppe der Leptonen. Teilchen mit ganzzahliger Spinzahl heißen *Bosonen*.

Fermi-Dirac-Statistik. Die *Fermi-Dirac-Statistik* beschreibt die Wahrscheinlichkeit, daß ein Fermion in einem bestimmten Zustand ist. Sie ist definiert durch

Pauli-Prinzip. Das *Pauli-Prinzip* besagt, daß zwei Fermionen nicht denselben Quantenzustand haben können.

Magnetisches Moment. Ein Elektron weist ein Magnetisches Moment auf, welches sich aus der Spin-Bewegung ergibt. Es ist definiert durch

$$\mu_{\mathbf{S}} = -g_S \cdot \frac{e}{2 \cdot m_e} \cdot \mathbf{s}.$$

.....

(⊗8) □ Recherchiere in einer Mußestunde die genannten Begriffe und versuche, sie zu verstehen.

1.5 Bestimmung der Ladungsverteilung im Atom (Streuexperimente)

Aus den vorgehenden Kapiteln kann man entnehmen, daß Atomen aus $z \in \mathbb{N}_0$ Elektronen der Ladung $-z \cdot |e|$ und z positiven Ladungen der Ladung $z \cdot |e|$ konstruiert sind. Hieraus resultiert die *elektrische Neutralität* des Atoms.

Das Thomson'sche Atommodell

Das Thomson'sche Atommodell (auch Rosinenkuchenmodell) besagt, daß die Ladungen über das gesamte Atomvolumen verteilt sind. Die Ladungsdichte ρ ist also konstant und gleich der Ladung pro Volumeneinheit.

Abbildung 2: Das Thomson'sche Atommodell.

Die Bestimmung des inneren Atomaufbaus erfolgt durch die Streuung von α (${}_{2}^{4}\mathrm{He}^{2+}$) Teilchen und ihrer Bahnanalyse.

Das Rutherford-Experiment

Das Experiment entstammt der Idee der drei Physiker E. Marsden, H. Geiger und E. Rutherford. Der Versuchsaufbau ist von der Form

Abbildung 3: Das Rutherford-Experiment.

Mit einem Szintillator (oder technisch weiter fortgeschrittenen Messgeräten) wird Anzahl der Teilchenregistrierungen in Form von Blitzen in Abhängigkeit des Winkels θ gemessen, woraus sich zeitlich die Zählrate $N(\theta)$ ergibt. \square Recherchiere den $Rutherfordschen\ Streuungsquerschnitt\$ und versuche, ihn zu verstehen.

Experiment 3. Rutherford-Experiment.

Wir führen das Rutherford-Experiment durch und erhalten:

Registrierungen	Winkel	Zeit	Folie
1468cps	0°	20s	ohne
0 cps	15°	20s	ohne
1369 cps	0°	20s	mit
4 cps	15°	20s	mit

Tabelle 1: Vergleich Messung mit und ohne Folie.

(Einheit "cps" ist counts per second)

VL 5 19.04.2023, 08:15

Wir wollen nun die Ergebnisse des vorigen Experimentes festhalten:

- 99.99% der eingestrahlten α Teilchen fliegen geradlinig durch die Au-Folie hindurch. Die Folie ist für die Teilchen also annähernd transparent.
- Der α Teilchenstrom wird leicht aufgefechert. Dies ist mit der erwarteten $e^- \alpha$ Teilchenwechselwirkung vereinbar.
- \bullet Es wird auch die Rückwertsstreuung (bei den übrigen 0.01% der α Teilchen) beobachtet.
- \bullet Die zurückgestreuten α Teilchen haben keinen Energieverlust erfahren.
- Die Intensität der Rückwertsstreuung ist proportional zur Foliendicke (/-stärke).
- Die Winkelverteilung der Zählraten weist die Proportionalität

$$N(\theta) \propto \frac{1}{\sin(\theta/2)^4}$$

auf.

Aus unseren Beobachtungen können wir das Rutherford-Modell ableiten:

Abbildung 4: Darstellung des schematischen Streuprozesses aus [1].

- (i) Atome sind aus Kern und Hülle aufgebaut.
- (ii) Die Kerne enthalten den Großteil der Atommasse und sind positiv geladen, auf $\approx 40 \mathrm{fm}$ konzentriert.
- (iii) Die Hüllen enthalten Elektronen, verteilt über das Restvolumen des Atoms.
- (iv) Das Coulomb-Gesetz behält auf diesen Größenordnungen seine Gültigkeit.

Die Rutherfordsche Streuformel Wir wollen nun die Streuformel für die Rutherford-Experimente herleiten. Wir betrachten zunächst die Streuung eines α Teilchens auf ein Atom. Die Streuung ist in der Regel sehr klein, sodass wir die Streuung als eine Streuung auf den Atomkern betrachten können. Unser Ziel ist $N(\theta)$. Betrachte das Schema: Für die Coulombkraft erhalten wir zunächst

$$F = \frac{1}{4\pi\varepsilon_0} \cdot \frac{2 \cdot q(\mathrm{Ze})^2}{r^3} \cdot \mathbf{r},$$

wobei die Funktion q die Ladung von Ze zuordne¹. Die Kraftaufspaltung in orthogonale und parallele Flugrichtung ergibt

$$F_{\perp} = ||F||_2 \cdot \sin(\varphi)$$
 $F_{\parallel} = ||F||_2 \cdot \cos(\varphi)$.

Für den Drehimpuls erhalten wir in Zylinderkoordinaten die Gleichungskette

$$\mathbf{L}_{r(t)} = \mathbf{r}(t) \times \mathbf{p}(t) = \mathbf{r}(t) \times m \cdot \mathbf{r}'(t)$$

$$= m \cdot ||\mathbf{r}(t)||_{2}^{2} \cdot \varphi'(t) \cdot (\mathbf{e}(r(t)) \times \mathbf{e}(\varphi(t)))$$

$$=: m \cdot ||\mathbf{r}(t)||_{2}^{2} \cdot \varphi'(t) \cdot \mathbf{e_{3}}.$$

Identifiziere nun $1/r^2 = \varphi'(t)/(v_0 \cdot b)$ mit $v_0 := ||r'(0)||_2$ und b als Bahnabstand zur Mittelachse durch den Kern [\rightarrow Abb. 4]. Wir erhalten für das Coulombgesetz

$$F_{\perp} = \frac{2 \cdot q(\mathrm{Ze})^2}{4\pi\varepsilon_0} \cdot \frac{\varphi'(t)}{v_0 \cdot b} \cdot \sin(\varphi(t)) = m \cdot ||r''(t)||_2$$

und durch Integration

$$b(\theta) = \frac{2 \cdot q(\mathrm{Ze})^2}{4\pi\varepsilon_0} \cdot \frac{1}{m \cdot v_0^2} \cdot \cot\left(\frac{\theta}{2}\right).$$

.....

10) □ Fülle die Lücken der Rechnung auf. Was kommt beim parallelen Fall heraus?

......

Bei unserem Experiment [\rightarrow Exp. 3] haben wir die Anzahl der Ereignisse auf dem Leuchtschirm gemessen. Diese geschahen alle in einem gewissen Raumwinkelbereich $d\Omega$ [\rightarrow Abb. 4], in welchem der Detektor gemessen hat. Wir fragen uns nun, aus welcher Richtung die detektierten Teilchen kommen, was uns auf ein paarweise definiertes

Abbildung 5: Erweiterung der Abbildung 4 um das Ursprungsraumelement [1].

Raumelement vor dem Atom bringt: Die gemittelte Anzahl der Teilchen dN in diesem Raumelement $d\Omega$ ist augenscheinlich von db ab, sodaß wir auf den schematischen Zusammenhang

$$dN = Anzahl \ der \ \alpha \ \ Teilchen \cdot \frac{dB \cdot Streuzentrenanzahl}{Gesamtfl\"{a}che},$$

wobei wir $dB := \pi \cdot (b^2 - (b - db)^2)$ als Trefferfläche und N_t als Streuzentrenanzahl (proportional zur Anzahl der Atome in der Ag-Folie) festhalten. Die Gesamtfläche F ist diejenige der Goldfolie. Daraus ergibt sich

$$dN = N_{\alpha} \cdot dB \cdot \frac{N_t}{F}$$

und "differenziert" nach $d\Omega$ insgesamt

$$\frac{dN}{d\Omega} = N_{\alpha} \cdot \frac{N_t}{F} \cdot \frac{dB}{d\Omega},$$

wobei wir $dB/d\Omega$ als den differentiellen Streuquerschnitt definieren.

.....

 \square Kläre die Bedeutung des angedeuteten Differenzierens. Wie ist der Prozess sauber definier- (\lozenge 11) bar? \square Verifiziere die alternative Definition $dB := b \cdot db \cdot d\varphi$. Verifiziere auch $d\Omega = \sin(\theta) \cdot d\theta \cdot d\varphi$. (\lozenge 12)

.....

Die Streuformel für die Rutherford-Experimente lautet nun

$$\frac{dB}{d\Omega} = \left(\frac{1}{4\pi\varepsilon_0} \cdot \frac{q(\mathrm{Zr}) \cdot e^2}{m \cdot v_0^2}\right)^2 \cdot \frac{1}{\sin(\theta/2)^4}.$$

Man kann nun noch $E_0 = m \cdot v_0^2$ identifizieren.

Der Kernradius Für schnelle α Teilchen konnte jedoch experimentell bewiesen werden, daß die Coulombkraft nicht mehr alleinig die Bahn des gestreuten Teilchens beschreiben kann: Es muss eine weitere Wechselwirkung mit dem Atomkern geben, wie sich rausstellen wird die sogenannte attraktive Kernkraft.

¹Sie hätte wohl eine Form $q := (E \mapsto E_q)_{E \in TOE}$, wobei TOE eine Menge von Tupeln sei, welche zu allen Elemente des Periodensystems ihre Eigenschaften als Einträge zusammenfasst.

(a) Der Tunnelprozess und die Kernkraft.

VL 6 20.04.2023, 10:00

Aufbau von Atomen, Isotopie Zusammenfassend haben wir festgestellt, daß Atome aus Elektronen (e^-) in der Hülle und Protonen (p^+) im Kern bestehen müssen. Noch nicht erwähnt sind die sogenannten Neutronen (n^0) , welche sich ebenfalls im Kern ansiedeln. Wir definieren nun den Begriff Isotop, welcher ein Atom (also Element) beschreibt, bei welchem sich die Anzahl der Neutronen ändert, jedoch die Protonenanzahl gleich bleibt. Beipiel ist der Wasserstoff (H), welcher sich in Protium $\binom{1}{1}H$), Deuterium $\binom{2}{1}H$) und Tritium $\binom{3}{1}H$) unterteilt, bei welchen die letzten beiden Isotope natürlich eher selten anzutreffen sind.

1.6 Entwicklung der Quantenmechanik

Wichtige Experimente waren

- Das Doppelspaltexperiment von Thomas Young (1801), welches den Welle-Teilchen-Dualismus fundierte.
- Die Schwarzkörperstrahlung von Max Planck (1900), welche die Quantisierung der Strahlung beschrieb.
- Der *photoelektrische Effekt* von Albert Einstein (1905), welcher die Quantisierung der Photonen beschrieb.
- Der Compton-Effekt von Compton-Effekt (1923), welcher die Lichtstreuung an freien Elektronen beschrieb (Welle-Teilchen-Dualismus).
- \bullet Die $De\ Broglie-Wellenlänge$ von Louis de Broglie (1924), welche die Wellenlänge von Teilchen/Materie beschrieb.
- Die Spektrallinien von J. Balmer (1885), welche die Quantisierung der Atomenergie durch Absorbtion und Emission von Licht beschrieb. Dies führte zur Entwicklung des Atommodells durch Niels Bohr (1913).

1.6.1 Schwarzkörperstrahlung

Der schwarze Körper / Hohlraumstrahlung Interessant ist die quantitative Beschreibung dieser Phänomene, z.B. durch die Intensitätsverteilung im Spektrum eines Körpers.

Der schwarze Körper ist ein Körper mit einer Oberfläche, welche alle Strahlung absorbiert, d.h. der Absorbtionskoeffizient des Körpers ist A=1, woraus mit A+R=1 wiederum folgt R=0 für alle $\lambda \in \mathbb{R}$. Somit muss ein Körper, welcher alle Strahlung absorbiert, auch alle Strahlung emittieren, und dies proportional zu seiner Temperatur.

Skript

Abbildung 7: Schema eines Schwarzkörpers [3].

Dies ist die Grundlage des *Planckschen Strahlungsgesetz*. Anschaulich passiert mit einfallender Strahlung auf einen Schwarzkörper folgendes: Die Intensitätsverteilung der austretenden Strahlung ist identisch mit derjenigen des sich im Hohlraum befindlichen EM-Felder. Das spektrale Emissionsvermögen eines schwarzen Körpers ist also identisch mit der spektralen Strahlungsdichte der Hohlraumstrahlung.

□ Recherchiere die *Dyson-Sphäre*. Handelt es sich um einen Schwarzkörper? (\$13)

Experiment 4. Die Glühbirne.

Wir starten bei 6W. Das Licht einer Glühbirne wird spektral zerlegt. Ein Detektor misst die Strahlungsintensität und abhängig von der Wellenlänge. Wir sehen einen Peak und Maximum im Ifraroten Bereich. Dies ist die Infrarotstrahlung der Glühbirne.

Nun ändern wir die Leistung auf 3W; sofort wird das sichtbare Spektrum schwächer auf dem Schirm abgebildet. Die erhaltene Intensitätskurve ist relativ zu der 6W Kurve nach oben verschoben. Wir sehen, daß der Peak (nach rechts, ins Infrarote) verschoben ist. (Das Experiment wurde aufgrund zu flacher Kurve hier abgebrochen.)

Hinweis: Simuliere das Experiment auf der FU-Berlin Website.

Aus klassischer Sicht ergibt sich für die spektrale Energiedichte

$$u(\nu, T) \cdot d\nu = \frac{8 \cdot \pi}{c^3} \cdot \nu^2 \cdot k_B \cdot T \cdot d\nu,$$

auch bekannt als Rayleigh-Jeans-Gesetz. Für $\nu \to \infty$ erfolgt eine sogenannte Ultraviolettkatastrophe. Dieses Verhalten ist jedoch nur bei klassischer Strahlung zu beobachten. Das Modell weist eine gute Übereinstimmung mit der Realität für kleine Frequenzen auf.

□ Recherchiere den Gleichverteilungssatz. Wie fließt er in das Rayleigh-Jeans-Gesetz ein? (\$14)

Abbildung 8: Schema der Emission eines Photons durch eine Atomanregung [4].

Plancksches Strahlungsgesetz Max Planck leitete die korrekte Strahlungsformel für das beobachtete Phänomen und Diskrepanz her. Wir konzentrieren uns nachfolgend jedoch auf die Herleitung nach Einstein.

Annahmen. Wir müssen annehmen, daß Licht aus Teilchen besteht, die sogenannten Photonen, und damit quantisiert ist. Weiter nehmen wir an, daß Atome diskrete Energieniveaus besitzen müssen. Es gibt insbesondere nur zwei, welche wir E_1 und E_2 mit $E_2 > E_1$ nennen wollen.

Damit kommen zwei Prozesse bei der Wechselwirkung mit der elektromagnetischen Strahlung infrage: (i) Absorbtion und (ii) Reflexion.

- (i) Bei der Absorbtion eines Photons mit Energie $E = E_2 E_1 = h \cdot \nu$ wird das Atom von E_1 auf E_2 angeregt².
- <u>(ii)</u> Im angeregten Zustand kann das Atom *spontan* das Energieminimm anstreben und ein Photon der Energie $E_2 E_1 = h \cdot \nu$ emittieren.

Anschaulich sind die Prozesse wiefolgt, wobei noch die induzierte Emission als Kombination beigefügt wurde: In einem Atomsystem mit $N \in \mathbb{N}$ Atomen haben wir N_1 Atome in Zustand E_1 und N_2 Atome in Zustand E_2 . Für die Prozesse gilt dann:

(i) Für ein Atom in Zstand E_1 gilt die Änderung

$$dN_{12} = \int B_{12} \cdot u(\nu, T) \cdot N_1 \lambda (dt),$$

wobei B_{12} ein Einstein Koeffizient ist, welcher die Übergangswahrscheinlichkeit angibt in der Einheit $[1/(s \cdot J/m^3)]$ mit E als Energiedichteeinheit.

(ii) Für ein Atom in Zustand E_2 gilt die Änderung

$$dN_{E,21} = \int A_{21} \cdot N_2 \,\lambda\left(dt\right),\,$$

VL 7 21.04.2023,

mit A_{21} als Einstein Koeffizient.

11:45

Die induzierte Emission folgt dem Zusammenhang $dN_{I,21} = \int B_{21} \cdot u(\nu, t) \cdot N_2 \lambda(dt)$. Im thermischen Gleichgewicht gilt

$$dN_{12} = dN_{E,21} + dN_{I,21}$$

also nach Definitionen

$$\frac{N_2}{N_1} = \frac{B_{12} \cdot u(\nu,t)}{A_{21} + B_{21} \cdot u(\nu,t)} \Leftrightarrow \frac{N_2}{N_1} = \frac{(E_2/(k_B \cdot T))}{\exp(E_1/(k_B \cdot T))},$$

bei welchen der Zähler und Nenner sogenannte Boltzmann-Faktoren sind. Mit $E_2-E_1=h\cdot \nu$ folgt dann insgesamt

$$u(\nu, t) = \frac{A_{21}}{B_{12} \cdot \exp(h \cdot \nu / (k_B \cdot T)) - B_{21}}.$$

²Es ist $h = 6.62 \cdot 10^{-34} \,\text{J}$ s die *Planck-Konstante* und $h := h/(2 \cdot \pi)$ die reduzierte Variante.

- Für $T \to \infty$ muss $u \to \infty$ gelten, da sonst die Emission nicht mehr möglich wäre. Dies folgt aus der Definition von u. Weiter folgt mit "physikalischer Argumentation" $B_{12} = B_{21}$.
- Für $h \cdot \nu \ll k_B \cdot T$ (das R.J. Gesetz ist hier gut genug) folgt

$$\exp(h \cdot \nu / (k_B \cdot T)) \approx 1 + \frac{h \cdot \nu}{k_B \cdot T} + \text{TAF}_{f, x_0}(x)$$

mit passend gewählten f, x_0, x durch Taylorapproximation. Daher gilt

$$u(\nu, T) = \frac{A_{21}}{B_{12}} \cdot \frac{k_B \cdot T}{h \cdot \nu}$$

mit $A_{21}/B_{12} = 8\pi h \cdot \nu^3/c_0^3$, sodaß

$$u(\nu,T) = \frac{8\pi h \cdot \nu^3}{c_0^3} \cdot \frac{1}{\exp(h \cdot \nu/(k_B \cdot t)) - 1}.$$

Es ist dann $u(\nu,T)\cdot d\nu$ die spektrale Energiedichte im Frequenzbereich $d\nu$ pro Volumen.

• Betrachte die gesamte Energiedichte

$$U(T) = \int u(\nu, T) \, \lambda_{\mathbb{R}_{\geq 0}} \left(d\nu \right) = \frac{8\pi h}{c_0^3} \cdot \int \frac{\nu^3}{\exp(h \cdot \nu / (k_B \cdot T)) - 1} \, \lambda_{\mathbb{R}_{\geq 0}} \left(d\nu \right)$$

und mit Substitution $x = h\nu/(k_B \cdot T)$ schließlich

$$U(T) = \frac{8\pi h}{c_0^3} \cdot \left(\frac{k_B \cdot T}{h}\right)^4 \cdot \int \frac{x^3}{\exp(x) - 1} \, \lambda_{\mathbb{R}_{\geq 0}} \left(dx\right) = \frac{8 \cdot \pi^5 k_B^3}{15 \cdot c_0^3 \cdot h^3} \cdot T^4,$$

auch bekannt als das Stephan-Boltzmann-Gesetz.

 \Box Führe die angedeutete Substitution in U in der Herleitung des Stephan-Boltzmann-Gesetzes (§

 \Box Fuhre die angedeutete Substitution in U in der Herleitung des Stephan-Boltzmann-Gesetzes durch und zeige, dass die Energie pro Volumen U(T) proportional zu T^4 ist. Benenne den Faktor durch σ_B .

 \Box Wechsle die Eingabe von U von T nach λ , indem du U mit passendem Φ verkettest. (@16)

......

Für das Maximum der Funktion U muss zunächst krit $\mathrm{P}(U)$ durch die Gleichung $dU(\lambda)(h)=0_{\mathbb{R}}$ bestimmt werden. Lösungen und damit Einträge von argmax (U) sind $x=(h\cdot c_0)/(k_B\cdot T\cdot \lambda)$ und $x=5\cdot (1-\exp(x))$. Die numerische Lösung ist $x\approx 4.965114$. Umstellen liefert sodann

$$T \cdot \lambda_{max} = \frac{h \cdot c_0}{4.95114 \cdot k_B} \approx 2.998 \cdot 10^{-3} \text{m K}.$$

......

- \square Recherchiere das Wiensche-Verschiebungsgesetz. Wie hängt es mit der skizzierten Maximumssuche zusammen?
- \square Folge der Anweisung oben. Bestimme $dU(\lambda)(h)$ und löse dU()(h)=0. Verifiziere die (§18) Lösung $x=(h\cdot c_0)/(k_B\cdot T\cdot \lambda)$.
- $\hfill \square$ Bestimme nummerisch die Lösung der Gleichung. ($\hfill \square$ 19)

.....

VL 8 24.04.2023, 11:45

Experiment 5. Ladungsnachweis Wimshurstmaschine und Photoplatte

Bestrahlen der Photoplatte mit und ohne Glasscheibe. Ohne Scheibe ist Ladungsabfall erkennbar, mit Scheibe nicht. Wir beobachten:

- Entladung einer negativ geladenen Zn-Photoplatte durch Bestrahlung mit Licht.
- Bei positiv geladener Platte verändert sich der Zeigerausschlag nicht.
- Mit Glasplatte findet keine Entladung statt: der UV-Anteil des Lichtes wird von der Scheibe absorbiert.

Die quantitative Durchführung mit der Gegenfeldmethode liefert folgende Beobachtungen:

- Beuleuchtung einer Metallplatte führt zur Induktion elektrischen Stroms und eines Auslösens von Elektronen ab einer gewissen Grenzfrequenz $f_{gr} \in \mathbb{R}_{>0}$.
- ν_{qr} hängt von dem Material der Platte ab.
- I hängt von der Intensität P des Lichtes ab, ν_{qr} jedoch nicht.
- Ab einer negativen Spannung U_{max} wird der Stromfluss verhindert.
- U_{max} ist nicht von P abhängig.
- U_{max} ist linear von ν abhängig.
- Der Sättigungsstrom I_S hängt liner von P ab.
- Die Elektronen werden verzögerungsfrei herausgelöst.

Trägt man die Messdaten in Graphen auf, erhält man folgende Schemata:

Die Interpretation der experimentellen Befunde liefert Einstein: er stellt die *Licht-quantenhypothese* auf. Sie postuliert folgende Annahmen:

- 1. Die einfallende Strahlung besteht aus Lichtquanten (Photonen) mit Energie $E=h\cdot \nu.$
- 2. Jedes absorbierte Photon gibt seine Energie vollständig an ein sogenanntes *Photoelektron* (herausgelöstes Elektron) ab.
- 3. Die Austrittsarbeit W muss aufgebracht werden, um Elektronen aus dem Festkörper hinauslösen zu können: $h\cdot \nu>W_A$

- 4. Für die kinetische Energie der Elektronen folgt $E_{kin}^{max}(\nu) = h \cdot \nu W_A$. Haben die Atome die Anregungsenergie E_B , so muss zusätzlich noch berücksichtigt werden $E_{kin}(\nu) = h \cdot \nu W_A E_B$. [\rightarrow Niveausprung]
- 5. Bei Gegenspannung $U=U_{max}$ ist die Geschwindigkeit der Elektronen gleich Null: es gilt der Zusammenhang

$$\frac{1}{2} \cdot m_e \cdot v_e^2 = e \cdot U_{max} \overset{def}{\Longleftrightarrow} \overset{E_{kin}^{max}(\nu)}{\Longleftrightarrow} e \cdot |U_{max}| = h \cdot \nu - W_A.$$

Mit der Photonenenergie- und Impuls

E

mit Wellenvektor $k\in\mathbb{R}^3$ und $p\in C^1(\mathbb{R},\mathbb{R}^3)$ als Impuls, dann gilt mit Relativitätstheorie gerade

$$E^2 = p^2 \cdot c_0^2 + m_0^2 \cdot c_0^4 \stackrel{m_\gamma = 0}{\Longrightarrow} ||p||_2 = \frac{E}{c_0} = \frac{\hbar \cdot \omega(\nu)}{c_0} \stackrel{(D)}{=} \hbar \cdot ||k||_2,$$

wobei bei (D) die Dispersions
relation $[\rightarrow$ IK3-E] verwendet wurde.

 \Box Rechne noch einmal die Dispersionsrelation nach. Wie lautet das Argumentationsergebnis (\$\@20\$ für ein Elektron e der Masse m_e ?

......

Der Compton Effekt

Der Compton Effekt diente dem Nachweis des Teilchencharakters von Photonen, wobei wiefolgt der Versuch aufgebaut wurde:

Abbildung 10: Compton Effekt aus [6].

Es zeigt dabei Abbildung 10c die angenommene inelastische Kollision eines Photons mit einem Elektron. Somit gelingt hier der Brückenschlag aus der Quantenmechanik zur klassischen Mechanik des Zweierstoßes. Wir folgern mit Energieerhaltung

$$\hbar \cdot \omega(\nu) + m_e c_0^2 = \hbar \cdot \omega(\tilde{\nu}) + E_e,$$

wobei die \hbar Terme das Photon und E_e das Elektron beschreiben. Mit Impulserhaltung folgt

$$p + 0_{\text{Abb}} (\mathbb{R}, \mathbb{R}^3) = \tilde{p} + p_e,$$

sodaß $(1)^2 - (2)^2 \cdot c_0^2$ den Zusammenhang

$$\left[\hbar \cdot (\omega(\nu) - \omega(\tilde{\nu})) + m_o \cdot c_0^2\right]^2 - (p - \tilde{p})^2 \cdot c_0^2 = E_e^2 - p_e^2 \cdot c_0^2$$

liefert, wobei unter $E = m_0 2c^4 + c_0^2 p^2 \ (p^2 = \langle p, p \rangle_{\mathbb{R}^3})$ folgt

$$-2 \cdot \hbar^2 \cdot \omega(\nu) \cdot \omega(\tilde{\nu}) + 2 \cdot \hbar \cdot (\omega(\nu) - \omega(\tilde{\nu})) \cdot m_0 c_0^2 + 2\hbar^2 \cdot \omega(\nu) \cdot \omega(\tilde{\nu}) \cdot \cos(\phi(\nu)) = 0$$

für $|\phi| = (\hbar \cdot \omega(\nu))/c_0$ und schlielich

$$\omega(\tilde{\nu}) = \frac{\omega(\nu)}{\hbar\omega(\nu)/(m_0 \cdot c_0^2) \cdot (1 - \cos(\phi(\nu))) + 1}.$$

Für die Wellenlänge $\lambda_e(\nu) = 2\pi \cdot e/\omega(\nu)$ gilt letztlich

$$\Delta \lambda_e(\nu) = \frac{2\pi \cdot e}{\omega(\nu) \cdot \omega(\tilde{\nu})} \cdot (\omega(\nu) - \omega(\tilde{\nu})) =: \lambda_C \cdot (1 - \cos(\phi(\nu))),$$

wobei wir $\lambda_C := h/(m_0 \cdot c_0) \approx 2.4 \cdot 10^{-12} \text{m} = 0.024 \text{Å}$ als Compton-Wellenlänge definieren und die Gleichung $\lambda_e(\nu)$ als Compton-Streuung bezeichnen.

.....

.....

Eigenschafen des Photons

Wir listen wieder einige Eigenschafen des Photons auf:

- Die Photonendichte wird beschrieben als $n = N/V = U_{em}/(h \cdot \nu) = \varepsilon_0 \cdot E^2/(h \cdot \nu)$.
- Der Photonenstrom definiert als $\frac{d}{dt}n = I/(h \cdot \nu) = n \cdot c_0$.
- Der Gesamtimpuls als $p = n \cdot \hbar \cdot k$ mit Wellenvektor $k \in \mathbb{R}^3$ oder $|\phi| = n \cdot h/\lambda = U_{em}/c_0$.
- Der Drehimpuls als $L = \pm \hbar \cdot k / ||k||_2$.

Der Spin ist also Ganzzahlig, wodurch die Photonen den Bosonen zugeordnet wird.

Welle-Teilchen-Dualismus

Der Welle-Teilchen-Dualismus ist ein zentrales Konzept der Quantenmechanik, welches besagt, daß jedes Teilchen sowohl Wellen- als auch Teilcheneigenschaften besitzt. Dieses Konzept wurde von Louis de Broglie eingeführt. Er verknüpfte den Impuls $p \in \mathbb{R}^3$ mit dem Wellenvektor $k \in \mathbb{R}^3$ durch $p = \hbar \cdot k$ und der de Broglie Wellenlänge.

Skript

Abbildung 12: Emissionsspektrum am Beispiel von Neon aus [8].

Das Doppelspaltexperiment

Als Paradebeispiel dieses Dualismus gilt das berühmte *Doppelspaltexperiment*. Welche Objekte hierbei verwendet werden, stellt sich als vielfältig heraus: von makroskopischen Teilchen, klassische Wellen oder auch Quantenobjekte selbst.

VL 9 17.05.2023, 08:15

Abbildung 11: Der Aufbau und Ablauf des Doppelspaltexperimentes im Wellenbild aus [7].

Die Amplitude im Teilchenfall ergibt sich dabei durch $I_1 = |A_1|^2$, im Wellenfall dagegen aus $I = |A_1 + A_2|^2$.

□ Berechne die Wellenintensität für zwei komplexe Amplituden $\psi_1, \psi_2 \in \mathbb{C}$. (\$\@22)

Experiment 6. Ein Doppelspaltexperiment.

Wir wollen nun die Maxima der Schirmverteilung untersuchen: Hierzu ziehen wir einen Sensor zur Photonenmessung pro Zeitintervall mit verschiebbarer Position x über den Schirm. Die Messwerte suggerieren den erwarteten Verlauf der Wellenintensität.

2 Das Bohrsche Atommodell

2.1 Absorption und Emission

Im groben Bild stellen wir uns den Aufbau eines Atoms als einen Kern mit Elektronen vor, welche sich auf Kreisbahnen um den Kern bewegen. Letztere bezeichnen wir als *Elektronenhülle*, welche nachfolgend Untersuchungsgegenstand sein wird.

Diese Spektren stellen sich als *charakteristisch* für Atome heraus. Als Beispiel gilt hier die $Balmer\text{-}Serie \ [\rightarrow AP4]$, welche sich durch die Formel

$$\tilde{\nu} = \lambda^{-1} = R_H \cdot \left(\frac{1}{4} - \frac{1}{n^2}\right), \quad n \in \mathbb{N}_{>2},$$

Abbildung 13: Absorbtionsspektrum am Beispiel von Neon aus [?].

in normierter Form beschreiben lässt. Dabei bezeichnet R_H die Rydberg-Konstante mit $R_H = 1.097 \cdot 10^7 \mathrm{m}^{-1}$. Multipliziert mit c_0 erhalten wir die Rydberg-Frequenz $\nu_R = \tilde{\nu} \cdot c_0$. Die Betrachtung $n \to \infty$ ergibt das Serien-Grenzkontinuum $\nu = 1/4 \cdot R_H \cdot c_0$. In diesem Bereich weist das Spektrum keine Linien mehr vor, sondern ist kontinuierlich. Bei Wasserstoff stellt sich heraus, daß es noch weitere Serien gibt; Eine davon ist die Rydberg-Serie mit

$$\nu = R_H \cdot c_0 \cdot \left(\frac{1}{k^2} - \frac{1}{n^2}\right), \quad n \in \mathbb{N}_{>1}, \ n > k.$$

($^{\circ}$ 23) \Box Erkläre, warum die Spektren zueinander komplementär erscheinen. Handelt es sich dabei um eine Phänomenologie, oder lässt sich dies auch theoretisch begründen?

.....

2.2 Modell

VL 10 Um die Spektren zu erklären, entwickelte Niels Bohr 1913 ein Modell, welches die 19.05.2023, Elektronenhülle als diskretes System beschreibt. Es handelt sich dabei im Wesentlichen um eine Klassifizierung der eigentlich quantenmechanischen Zustände, welche zum damaligen Zeitpunkt einer Erklärung oder sogar Entdeckung noch schuldig waren. Es verwendet also klassische Annahmen und Argumentationen zur Beschreibung der Beobachtungen. Die Grundlage stellen dabei die Bohrschen Postulate dar:

- (i) Die Elektronen bewegen sich auf Kreisbahnen um den Kern. Der Radius berechnet sich dabei aus dem Kräftegleichgewicht der Coulombkraft und der Zentrifugal-kraft: $F_C := mv^2/r \stackrel{!}{=} 1/(4\pi\varepsilon_0) \cdot e^2/r^2$. Daraus lässt sich eine Radiusgleichung herleiten.
- (ii) Die Elektronen können nur diskrete Bahnen einnehmen. Aus der energetischen Perspektive folgt mit $E=E_{kin}+E_{pot}$ und $E_{kin}=1/2\cdot mv^2$ bzw. $E_{pot}(r)=\int F_C(\rho)\lambda_{\mathbb{R}_{>r}}\,(d\rho)$. Hier greift nun der Inhalt des Postulates.
- (iii) Die Elektronenbewegung erfolgt auf ihren Bahnen strahlungslos, sodaß Strahlung einen Sprung zwischen den Bahnen erfordert. Die abgegebene Energie ist dabei $E_n E_m = h \cdot \nu_{n \to m}$. Die Rydberg-Formel liefert dabei den Folgenzusammenhang $E = \left(-R \cdot h \cdot c_0/(n^2)\right)_{n \in \mathbb{N}}$.
- (iv) Für Grenzwertige E_n entspricht die Bahnumlauffrequenz des Elektrons der beim Sprung emittierten Strahlungsfrequenz. Man würde heute vom sogenannten Korrespondenzprinzip sprechen.

№24)	$\hfill \Box$ Berechne die Radiusgleichung und folgere daraus die Energiegleichung.

 $\begin{tabular}{ll} Experimental physik II \\ {\tt Skript} \end{tabular}$

Für einen Übergang aus $n \in \mathbb{N}_{>k}$ nach n-k für $k \in \mathbb{N}$ ergibt sich die Bohrsche Frequenzformel:

$$\nu_{n \to n-k} = \frac{R \cdot c_0}{n^2} \cdot \left(\frac{1}{(n-k)^2} - \frac{1}{n^2}\right) = \frac{R \cdot c_0}{n^2} \cdot \left(\frac{1}{(1-k/n)^2 - 1}\right),$$

wobei durch Taylorentwicklung im Fall k=1 der Zusammenhang $\nu_{n\to n-1}\approx R\cdot c_0\cdot n^{-3}$ folgt.

.....

 \square Betrachte noch einmal die Gesamtenergie $E(r)=(E_{kin}+E_{pot})(r)$. Setze $r(\nu)=r/(2\pi\cdot\nu)$ (\$\infty\$25) ein.

.....

Für den Bahnradius im Bohr Modell ergibt sich also

$$r = \left(\frac{\varepsilon_0 \cdot h^2}{\pi \cdot m_e \cdot e^2} \cdot n^2\right)_{n \in \mathbb{N}},$$

bzw $r_1 =: a_0$ als konkreter *Bohrradius*. Der Drehimpuls $L \in \mathbb{R}$ ergibt sich für den Aufenthaltsvektor $R_n := r_n \cdot e$ mit e als Linearkombination der Basisvektoren \underline{e} mit der Normbetrachtung

$$||L_n||_2 = ||R_n \times p_n||_2 = r_n \cdot m \cdot v_n = n \cdot \hbar.$$

Problematiken

Sofort fällt einem bei der Betrachtung und gerade dem Vergleich mit heutigen Theorien die fehlende Erklärung der Quantisierung auf. Zwar läuft der Ansatz der Diskretisierung in die richtige Richtung, steht jedoch auf einem instabilen Postulat an der Grenze der klassischen Physik. Weiter ist unklar, weshalb das angenommene Atommodell überhaupt zeitlich stabil sein sollte, also nicht in sich zusammenfällt. Für weitere Aufspaltungen im Spektrum, welche experimentell nachweisbar sind, ist das Modell ebenso nicht geeignet. Der Variation der Linien und der generellen Betrachtung der Spektren in elektromagnetischen Feldern ist das Modell ebenfalls nicht gewachsen. Schlussendlich ist das Modell auch nur definiert auf Einelektronensystemen, was die Betrachtung von Mehrkörpersystemen ausschließt.

VL 11 25.05.2023, 10:00

Beispiele

Als Beispiel des Bohrschen Atommodells lässt sich der Franck Hertz Versuch $[\to \mathrm{AP4}]$ herbeiführen.

.....

□ Recherchiere zum Vesuch und finde weitere Beispiele. Warum zeigt der Franck Hertz (Versuch die Quantisierung?

.....

3 Wechselwirkung mit elektromagnetischen Feldern

3.1 Vorbereitung

Wir nehmen an, daß wir die Lösung der Schrödingergleichung für ein bestimmtes Teilchen kennen, meistens das Wasserstoffatom. Wir kennen also $\psi \in \mathscr{H}$ mit $H\psi =$

 $\lambda_{\psi} \cdot \psi$ zum Eigenwert λ und haben eine Basis $(\psi_i)_{i \in I}$ des Hilbertraums \mathscr{H} . Betrachte die Änderung

$$\delta \operatorname{id}_{L_S(\mathscr{H})}(H)(h) = \operatorname{id}_{L_S(\mathscr{H})} + \operatorname{id}_{L_S(\mathscr{H})}(H+h).$$

Stelle also den Differentialquotienten

$$\frac{H(0) - H(h)}{h} = H'(0) = \delta H(0)(h)$$

auf, sodaß wir H'(0) als Operator auf ${\mathscr H}$ erhalten. Die neue Schrödingergleichung lautet also

$$(\delta H(0)(h)) \Big(\sum_{n \in \mathbb{N}} h^n \cdot \psi_i^n \Big) = \lambda_{\psi_i} \cdot \Big(\sum_{n \in \mathbb{N}} h^n \cdot \psi_i^n \Big),$$

wobei wir ψ_i reihenentwickelt haben. Die Korrektur erster Ordnung liefert uns den Eigenwertzusammenhang

$$\lambda_{\psi_i}^1 = \langle \psi_i, (\delta H(0)(h))(\psi_i) \rangle_{\mathscr{H}}.$$

Wir stellen also fest, daß die Korrektur der ersten Ordnung der Erwartungswert der Störung in ungestörten Zuständen ist. Insgesamt gilt $\lambda_i = \lambda_i^0 + \lambda_i^1$. Dabei ist der Skalarproduktausdruck ein Diagonaleintrag einer $d \times d$ Matrix (im endlichdimensionalen Fall).

Übergangswahrscheinlichkeit

Als Übergangswahrscheinlichkeit bezeichnen wir das Funktionsergebnis von

$$\Gamma := \left(\frac{2\pi}{\hbar} \cdot \int_{\sigma_{\mathscr{A}}} \left|x\right|^2 \; \delta_{\lambda_{\psi_b},\mathscr{A}}(dx)\right)_{(a,b) \in [n]^2}$$

mit A_h als Sigmaalgebra von $\sigma(\delta H(0)(h))$ und $\sigma_{\mathscr{A}_h}$ als Spektrum von $\delta H(0)(h)$.

VL 12
@home

08:15

31.05.2023,

VL 14

19.06.2023, 11:45

3.2 Wechselwirkung mit dem Strahlungsfeld

3.2.1 Der Zeemann-Effekt

Unter dem Zeemann Effekt versteht man die Aufspaltung der Spektrallinien eines Atoms in einem äußeren Magnetfeld. Dieser Effekt wurde 1896 von Pieter Zeeman entdeckt und 1902 mit dem Nobelpreis ausgezeichnet. Er ist ein Beispiel für die Wechselwirkung zwischen dem magnetischen Moment eines Elektrons und einem externen Magnetfeld. Die Aufspaltung der Spektrallinien ist dabei ein direkter Nachweis für die Quantisierung des Drehimpulses. Man unterscheidet zwischen dem normalen und dem anomalen Zeeman-Effekt.

3.3 Freies Elektron im Magnetfeld

Mit dem sogenannten Landau Ansatz sei $A := ((0, x \cdot B(x), 0))_{x \in \mathcal{H}}$ ein Vektorpotential. Dann gilt für den Hamiltonoperator

$$H = \left(\frac{1}{2 \cdot m_e} \cdot \left(p(x) - e \cdot A(x)\right)\right)_{x \in \mathcal{H}},$$

sodaß in ausgeschriebener Form für ein $x \in \mathcal{H}$ gilt

$$H(x) = \frac{1}{8 \cdot m_e} \cdot \left(p_1^2(x) + \left(p(x)_2 - e \cdot B(x) \cdot x \right)^2 + p_2^2(x) \right).$$

(27)

 $\begin{tabular}{ll} Experimental physik II \\ {\tt Skript} \end{tabular}$

Mit dem Ansatz $\psi := \left(\exp(\hat{\imath} \cdot (k_3 \cdot x_3 + k_2 \cdot y)) \cdot f(x_1)\right)_{x \in \mathbb{R}^3} \in \mathscr{L}^2(\mathbb{R}^3)$ mit $f \in \mathscr{L}^2(\mathbb{R}^3)$ können wir die Eigenwertgleichung $H\psi = \lambda \cdot \psi$ lösen.

.....

 \square Setze ψ in H ein. Welche Quantenzahl bleibt übrig?

.....

Definiere die Zyklothronfrequenz als $\omega_c := e \cdot B/m_e$ und $x_0 = \hbar \cdot k_2/(m \cdot \omega_c)$, dann lässt sich das Ergebnis der Aufgabe ausschreiben zu

$$\left(\underbrace{\frac{-\hbar^2}{2m_e} \cdot \left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^2 + \frac{1}{2} \cdot m_e \cdot \omega_c \cdot \left(x - x_0\right)^2}_{\text{harmonischer Oszillator}} + \underbrace{\frac{\hbar^2 \cdot k_3^2}{2m_e}}_{\text{freie Energie in } z}\right)(f)(x) = \lambda \cdot f(x).$$

Eigenwertbetrachtung

Wir hatten bereits als Eigenwertfolge des harmonischen Oszillators $U \mapsto \lambda := (\hbar \cdot \omega_e \cdot (n + \dim(U)/2))_{n \in \mathbb{N}}$ gesehen, wobei U der Unterraum der Schwingung darstellt. Im eindimensionalen Falle wähle $U = \mathbb{R}$ und korrigiere um den Faktor $\hbar^2 \cdot k_3/(2 \cdot m_e)$. Für die Wellenfunktion erhalte

$$\psi := \left(C \cdot \exp(\mathring{\imath} \cdot (k_3 \cdot x_3 + k_2 \cdot x_2)) \cdot \exp\left(-\frac{e \cdot B}{2\hbar} \cdot (x - x_0)^2 \right) \cdot H_n\left(\sqrt{\frac{e \cdot B}{\hbar}} \cdot (x - x_0)\right) \right)_{x \in \mathbb{R}^3},$$

wobei H_n das n-te Hermitepolynom ist $[\rightarrow IK4T]$.

VL 15

Die Systemzustände werden bei verschwindendem Magnetfeld B=0 auf die Landau Zustände umverteilt. Für die Entartung gilt dann

 $u = 21.06.2021, \\ 08:15$

$$E = \frac{S_{n,n+1}}{S_0} = \frac{2\pi m\omega_c}{\hbar},$$

3.4 Felder und Potentiale in der Quantenphysik

Mit der Felddarstellung $E = -div\varphi - \frac{\mathrm{d}}{\mathrm{d}t}A$ und $B = \mathrm{rot}\,A$ können wir in die Quantenphysik durch die Transformation $\Phi := \varphi - \frac{\mathrm{d}}{\mathrm{d}t}\Lambda$ und $\mathscr{A} := A + \mathrm{div}\,\Lambda$, wobei $\Lambda \in \mathbb{C}^1(\mathbb{R} \times \mathbb{R}^3, \mathbb{R})$.

Experiment 7. Gedankenexperiment.

Stelle dir ein Elektron auf einer Kreisbahn mit festem Radius $r \in \mathbb{R}_{>0}$ um eine feste Achse $R \in \mathbb{R}^3$ vor. Setze nun eine Dünne Spule mit Durchmesser $d_S < 2r$ entlang R ein, durch welche ein Strom I fließt. Sei die Spule ideal, also unendlich ausgedehnt und dicht gewickelt. Mit dem Satz von Stokes gilt dann

$$rot B = \mu_0 \cdot j \implies \int_{\partial F} \langle B, \psi(t) \rangle \ dt = \mu_0 \cdot I,$$

wobei ψ auf der Kurve ∂F die Normalen ausgibt. Durch geschickte Wahl der Fläche F (siehe IK2 Klausur) können wir mit der Kantenlänge L innerhalb der Spule eines angenommenen Quadrates multiplizieren, sodaß für das innere Magnetfeld $B \cdot L = \mu_0 \cdot I \cdot N$ gilt. Für das äußere Magnetfeld gilt dann B = 0. Wir erhalten für das Potentialfeld A dann

$$A = \left(\frac{\mu_0 \cdot N \cdot I}{2 \cdot L} \cdot \begin{cases} \frac{r^2}{a} \cdot \underline{e}_{\varphi} \\ a \cdot \underline{e}_{\varphi} \end{cases}\right)_{a \in \mathbb{R}^3}.$$

(\$\infty\$28) \Box Stelle den Hamiltonoperator für ein Elektron ohne Spin in dieser Konfiguration auf. Wähle dann eine Substitution β und ε , soda β du auf die Form der Oszillatorgleichung $-\lambda^2 + 2\beta \cdot \lambda + \varepsilon = 0$ kommst. Daraus kann man nun folgern, da β die Energieeigenwerte des Elektrons in der Spule gequantelt sind.

.....

Wir können die Funktion

$$E := \left(\frac{\hbar^2}{2 \cdot m \cdot d_S} \cdot \left(n - \frac{e \cdot \Phi}{2\pi \cdot h}\right)^2\right)_{n \in \mathbb{Z}}$$

ableiten. Das spannende hierbei ist, daß es außerhalb, also in Umgebung des Elektrons, kein Feld vorliegt, jedoch trotzdem eine Auswirkung auf das Elektron erkennbar ist.

.....

(\$29)

Recherchiere zu diesem Problem weiter unter Aharanov-Bohm-Effekt und Quantenmechanik Skript.

.....

VL 16 22.06.2023, 10:00

3.5 Lebensdauer angeregter Zustände und Linienbreiten

Unter der Lebensdauer angeregter Zustände verstehen wir die mittlere Zeit, die ein Atom im angeregten Zustand verbringt, bevor es in den Grundzustand zurückkehrt. Die spontane Emission der Photonen erfolgt durch die Wechselwirkung mit dem Vakuumfeld, dem sogenannten Vakuumfluktationsfeld. Die Wahrscheinlichkeit eines solchen Überganges wird mit dem EINSTEIN-KOEFFIZIENTEN $(n,m)\mapsto A_{n\to m}$ beschrieben. Ein solcher Vorgang führt dann zur Aussendung eines Photons der Energie $(n,m)\mapsto h\cdot \nu_{n\to m}$. Es ist dann die Anzahl der Übergänge pro Zeit gegeben durch

$$\frac{\mathrm{d}}{\mathrm{d}t}N_n = -A_{n \to m}N_n \Longleftrightarrow \frac{\mathrm{d}}{\mathrm{d}t}N_n = -N_n \cdot A_n, \quad A_n := \sum_{m \neq n} A_{n \to m}.$$

Durch die Annahme von *Homogenität* und *Isotropie* des Vakuumfluktationsfeldes sehen wir stets diesen linearen Zusammenhang.

.....

(${}^{\circ}$ 30) \square Recherchiere in diesem Zusammenhang die virtuellen Photonen und den Casimir-Effekt.

Aus der angegebenen Differentialgleichung stellt die Lösung

$$N(t) = N_i(0) \cdot \exp(-A_n \cdot t), \quad N(0) = N_i(0)$$

die Besetzungsfunktion und in der Auswertung die Besetzungszahl dar. Die mittlere Lebensdauer τ_n ist dann gegeben durch $\tau = \left(1/A_n\right)_{n \in \mathbb{N}}$. Führt man den Begriff der Übergangswahrscheinlichkeit für einen weiteren Prozess ein, so ergibt sich $\frac{\mathrm{d}}{\mathrm{d}t}N_n = -(A_n + R_n) \cdot N_n$ und für die effektive Lebensdauer $\tau^{\mathrm{eff}} = \left(1/(A_n + R_n)\right)_{n \in \mathbb{N}}$.

Linienbreite

Mittels der Heisenbergschen Unschärferelation $\Delta E \cdot \Delta t \geq \hbar/2$ hat die spektrale Linienbreite die Form einer Gaußverteilung. Die natürliche Linienbreite ist dabei gegeben durch $\Delta \nu = \hbar/(2\pi\tau_n)$. Hierfür muss die klassische Oszillatorgleichung $x'' + \gamma \cdot x' + \omega_0^2 x = 0$ gelöst werden:

$$x(t) = x_0 \cdot \exp(-\gamma t/2) \cdot \left(\cos(\omega t) + \frac{\gamma}{2\omega}\sin(\omega t)\right), \quad \omega = \sqrt{\omega_0^2 - \frac{\gamma^2}{4}}.$$

Für $\gamma \ll \omega_0$ ergibt sich $\omega \approx \omega_0$ und $\gamma/(2\omega) \ll 1$, sodaß $x(t) \approx x_0 \cdot \exp(-\gamma t/2) \cdot \cos(\omega t)$. Um an das Spektrum $A(\omega)$ zu gelangen, muss eine Fouriertransformation durchgeführt werden. Wir erhalten

$$A(\omega) = \frac{1}{2\pi} \cdot \int_{\mathbb{R}} x(t) \cdot \exp(-\stackrel{\circ}{i} \omega t) dt,$$

sodaß sich durch Einsetzen schließlich die Funktion

$$A(\omega) = \frac{x_0}{\sqrt{2\pi}} \cdot \left(\frac{1}{\hat{i} \cdot (\omega_0 - \omega) + \gamma/2} + \frac{1}{\hat{i} \cdot (\omega_0 + \omega) + \gamma/2} \right).$$

In einer Umgebung von ω_0 gilt damit für die Leistung $P(\omega) \propto A(\omega) \cdot (A(\omega))^*$.

□ Fülle die Lücken dieser Herleitung auf und bestimme P. Das Vorlesungsergebnis lautet (\otimes dabei $P(\omega) = P_0 \cdot (\gamma/(\pi 2))/((\omega - \omega_0)^2 + (\gamma/2)^2)$, benannt als Lorentz-Kurve. Bestimme die

Halbwertsbreite $\Delta \omega = \gamma$. \Box Zeige an dieser Stelle den Zusammenhang zur charakteristischen Zeit $\tau = 1/\gamma$, $\tau_n = 1/A_n$

aus füheren Überlegungen.

.....

Doppler Verbreiterung

Die Doppler Verbreiterung ist ein Effekt, der durch die thermische Bewegung der Atome hervorgerufen wird. Die Geschwindigkeitsverteilung der Atome ist dabei durch die Maxwell-Boltzmann-Verteilung gegeben. Für eine Atomgeschwindigkeit $v \in \mathbb{R}^3$ ergibt sich zunächst der Dopplereffekt mit $\omega = \omega_0 + \langle k, v \rangle$. In die z Richtung ergibt sich dann eine Verteilung

$$P(v_z) = \frac{1}{\sqrt{2\pi} \cdot \Delta v_z} \cdot \exp(-v_z^2/(2\Delta v_z^2)), \quad \Delta v_z = \sqrt{\frac{k_B \cdot T}{m}}.$$

 $\hfill\Box$ Führe eine Transformation auf die Frequenz durch und bestimme die Verteilung $P(\omega)$.

......

Literatur

- [1] Degryer (2018). Der differentielle Wirkungsquerschnitt die Rutherfordsche Streuformel. URL: https://www.degruyter.com/database/PHYSIKO/entry/physiko.21.45/html. Abgerufen am 19.04.2023.
- [2] Wikipedia (2023). Kernpotential. URL: https://de.wikipedia.org/wiki/Kernpotential. Abgerufen am 19.04.2023.
- [3] Wikipedia (2023). Black body. URL: https://commons.wikimedia.org/wiki/Category:Black_body?uselang=de, abgerufen am 20.04.2023.
- [4] Universität Ulm (?). Ableitung der Planckschen Strahlungsformel nach Einstein. URL: https://www.uni-ulm.de/fileadmin/website_uni_ulm/nawi.inst. 251/Didactics/quantenchemie/html/AbleitF.html, abgerufen am 20.04.2023.
- [5] ETH Zürich (?). Kapitel 2: Der Photoeffekt. URL: https://qudev.phys.ethz.ch/static/content/science/BuchPhysikIV/PhysikIVch2.html, abgerufen am 24.04.2023.
- [6] ETH Zürich (?). Kapitel 4: Der Photonenimpuls. URL: https://qudev.phys.ethz.ch/static/content/science/BuchPhysikIV/PhysikIVch4.html, abgeufen am 24.04.2023.
- [7] TU Braunschweig (?). Experimente mit Wellen, Teilchen und Kugeln. URL: http://www.pci.tu-bs.de/aggericke/PC3/Kap_II/Experimente.htm, abgerufen am 17.05.2023.
- [8] Shutterstock (?). Absorbtionsspektrum Neon. URL: https://www.shutterstock.com/image-vector/absorption-spectrum-neon-element-2025986030, abgerufen am 17.05.2023.
- [9] Shutterstock (?). Emissionsspektrum Neon. URL: https://www.shutterstock. com/image-vector/emission-spectrum-neon-element-2025986753, abgerufen am 17.05.2023.