Md Saddam Hossain

Deep Learning Trainee Chowagiken Corporation, Hokkaido, Japan

Ukiyo-e Generation

Japanese Ukiyoe Style Generation with Generative Deep Learning Technique

Overview

- Project description
- What is Ukiyo-e?
- What is unsupervised machine learning technique?
- Selected best models for Ukiyo-e generation.
 - Distance-GAN based on Cycle-GAN
 - Cycle-GAN
 - Dual-GAN
 - Special mention: **TraVeL-GAN**
- Findings
- What I am learning throughout this project?

Project Description

- Ukiyo-e generation
 - Given a set of *Ukiyo-e* like images for training the model.
 - To generate *Ukiyo-e* like image for corresponding a real input image.
 - Which model choose for generating *Ukiyo-e*?
 - To choose best **GAN** based model for generating *Ukiyo-e*

What is Ukiyoe

- *Ukiyo-e* is a traditional woodprints and picture formed in 17th through 19th centuries in Japan.(https://en.wikipedia.org/wiki/Ukiyo-e)
- *Ukiyo-e* is not a realistic picture but it depicts from the real pictures and it has clear outlines.

• What is unsupervised technique?

- Data: X
 - Just data, no labels!
- Learning some underlying hidden structures of the unlabeled data.
- Ex: Density estimation, clustering etc.

Proposed Model

- According to the *image to image translation with texture style transfer* research papers, Come to the conclusion that **Distance-GAN** is the better model for generating *Ukiyo-e*.
- Previously all of the mentioned model, only **Cycle-GAN's** authors try to generate *Ukiyo-e* like image.

Fig:Ukiyo-e by Cycle-GAN

- As **Distance-GAN** works based on **Cycle-GAN** and it is mapping the domain only one direction, it will be easy to feed the model and easy to generate *the* image.
- **Dual-GAN** is also capable to generate *Ukiyo-e* but the performance would not be better than the **Cycle-GAN**

Distance-GAN

- Its architecture is based on cycle-gan or distance-gan.
- Following only single directional mapping.
- Considering adversarial, cycle and distance constraint.
 - There are two types of distance constraint
 - Self distance constraint
 - Or paired distance constraint

Dual-GAN

Figure 1: Network architecture and data flow chart of DualGAN for image-to-image translation.

Findings

- At first, I have tried to generate *Ukiyo-e* with **DCGAN** but after few attempts realised that its so difficult to generate.
- Trained the **Dual-gan** model and generated the following output and its fail to generate desired output.
- It seems lots of improvement is possible.

Fig: generated by Dual-GAN

- Attempting to train the distance-gan model but it takes time for me. Almost getting into that to train but time is over.
- Got confidence that if I get few days to train the Distance-GAN, will do it.

TraVeL-GAN

- TraVeL-GAN is the latest publication over image to image translation.
 - Paper link: https://arxiv.org/abs/1902.09631
 - Authors have generated landscapes image to Ukiyo-e and vice-versa.
 - It introduces a third networks called siamese networks which guides the two network generator and discriminator for better learning.
 - It reduces the cycle consistency in the networks which is difficult for the networks to maintains.

The TraVeL-GAN architecture

Figure 1: The TraVeLGAN architecture, which adds a siamese network S to the traditional generator G and discriminator D and trains to preserve vector arithmetic between points in the latent space of S.

Take-aways Throughout this Project?

- Throughout this project, learned lot of things in deep learning.
- To learn CNN, different versions of CNN
- Generative models
 - VAE(literature only)
 - GANs.
- Image preprocessing and augmentation
- Two popular deep learning frameworks like tensorflow-Keras and PyTorch
- Most importantly, Understanding research papers on related to the problem.

どうもありがとうございました