$$\lim_{x \to 0} g(x)^{\frac{1}{x}} \begin{bmatrix} x + \frac{f(x)}{x} \end{bmatrix} = e^{3}, \lim_{x \to 0} \frac{f(x)}{x^{2}} \xrightarrow{0} \lim_{x \to 0} \frac{f'(x)}{2x} = \frac{1}{2} \lim_{x \to 0} \frac{f'(x) - f'(0)}{x - 0} = \frac{f''(0)}{2}, \text{ if }$$

$$\text{If } \lim_{x \to 0} \frac{1}{x} \left[x + \frac{f(x)}{x} \right] = 1 + \frac{1}{2} f''(0) = 3, \text{ if } f''(0) = 4, \text{ if } \lim_{x \to 0} \left(1 + \frac{f(x)}{x} \right)^{\frac{1}{x}} = \lim_{x \to 0} \left[\left(1 + \frac{f(x)}{x} \right)^{\frac{1}{f(x)}} \right]^{\frac{f(x)}{x^{2}}} = e^{\frac{1}{2} f''(0)} = e^{2}.$$

习题 2.6

(A)

1. 单调可微函数的导函数仍为单调可微函数,对吗?

解 不对. 导函数不一定可微. 且即使导函数可微. 我们知道,函数的单调性与区间有关,例如 $f(x) = \sinh x$, $f'(x) = \cosh x$, 对不同的区间有下列各种情况:

- (1) $\operatorname{sh} x$ 在($-\infty$, $+\infty$)是单增函数,但 $\operatorname{ch} x$ 在($-\infty$, $+\infty$)不是单调函数,
 - (2) $\operatorname{sh} x \, \operatorname{at}(-\infty,0)$ 是单增函数,但 $\operatorname{ch} x \, \operatorname{at}(-\infty,0)$ 是单减函数.
 - (3) $\operatorname{sh} x \overset{\cdot}{\alpha} \overset{\cdot}{\alpha} \overset{\cdot}{\alpha} = 1$ 是单增函数,但 $\operatorname{ch} x \overset{\cdot}{\alpha} \overset$
 - 3. 求下列函数的单调区间:
 - (4) $y=x+|\sin 2x|$.

解
$$y=$$

$$\begin{cases} x+\sin 2x, & m\pi \leqslant x < (2m+1)\frac{\pi}{2}, \\ x-\sin 2x, & (2m+1)\frac{\pi}{2} \leqslant x < (m+1)\pi, \end{cases}$$

$$y'=$$

$$\begin{cases} 1+2\cos 2x, & m\pi < x < (2m+1)\frac{\pi}{2}, \\ 1-2\cos 2x, & (2m+1)\frac{\pi}{2} < x < (m+1)\pi. \end{cases}$$
而 $x=\frac{n\pi}{2}$,为 y 的不可导点,其中 $m,n=0$,士 1,士 2,….
$$1+2\cos 2x=0$$
 在 $\left(m\pi,(2m+1)\frac{\pi}{2}\right)$ 内有唯一根 $x_{m_2}=m\pi+\frac{\pi}{3}$,
$$1-2\cos 2x=0$$
 在 $\left((2m+1)\frac{\pi}{2},(m+1)\pi\right)$ 内有唯一根 $x_{m_1}=m\pi+\frac{5\pi}{6}$.
且当 $x\in \left(m\pi,m\pi+\frac{\pi}{3}\right)\cup \left(m\pi+\frac{\pi}{2},m\pi+\frac{5\pi}{6}\right)$, $y'>0$,严格单增。

当
$$x \in (m\pi + \frac{\pi}{3}, m\pi + \frac{\pi}{2}) \cup (m\pi + \frac{5\pi}{6}, (m+1)\pi), y' < 0$$
,严格单减.

6. 如果 y=f(x)在 x_0 处取得极值,是否一定有 $f'(x_0)=0$.

解 不一定,如果 y=f(x)在 x_0 可导,则 $f'(x_0)=0$,如果 f(x)在 x_0 处不可导,则 $f'(x_0)$ 不存在. 例如 f(x)=|x|在 x=0 取得极小值,但 f'(0)不存在.

7. 求下列函数的极值:

(5)
$$f(x) = \left(1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{n!}\right) e^{-x};$$
 (6) $f(x) = |x| e^{-|x-1|}.$

解 (5)
$$f'(x) = -\frac{x^n}{n!}e^{-x}$$
, 令 $f'(x) = 0$ 得驻点 $x = 0$.

若 n 为偶数,则 $f'(x) \le 0$, f(x) 在 $(-\infty, +\infty)$ 上严格单减,无极值. 若 n 为 奇数,当 x>0 时, f'<0; 当 x<0 时, f'>0, x=0 为极大值点,极大值 f(0)=1.

(6)
$$f'(x) = \begin{cases} -(x+1)e^{x-1}, & x < 0, \\ (x+1)e^{x-1}, & 0 < x < 1, & x = 0, 1 \text{ 为不可导点}, \\ -(x-1)e^{1-x}, & x > 1. \end{cases}$$

令 f'(x) = 0 得驻点 x = -1. 故

x	$(-\infty, -1)$	-1	(-1,0)	0	(0,1)	1	(1,+∞)
f'	4	Ō	= 1	不可导	+	不可导	-
f	严格单调增	极大值点 (极大值 为 e ⁻²)	严格单减	极小值点 (极 小 值 为 0)	严格单增	极大值点 (极大值 为1)	严格单减

故 f(x)有极大值 $f(-1) = \frac{1}{e^2}$, f(1) = 1 及极小值 f(0) = 0.

8. 试问 a 为何值时 · 函数 $f(x) = a\sin x + \frac{1}{3}\sin 3x$ 在 $x = \frac{\pi}{3}$ 处取得极值? 是极大值还是极小值? 并求出此极值.

$$f''(x) = a\cos x + \cos 3x, f'\left(\frac{\pi}{3}\right) = \frac{1}{2}a - 1,$$

$$f''(x) = -a\sin x - 3\sin 3x, f''\left(\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}a,$$

因为 $f(x) \in C^{\infty}(-\infty, +\infty)$, 所以要使 $x = \frac{\pi}{3}$ 处取得极值,则 $f'\left(\frac{\pi}{3}\right) = 0$,

即
$$a=2$$
,又因为 $f''\left(\frac{\pi}{3}\right)=-\sqrt{3}<0$,故 $f\left(\frac{\pi}{3}\right)=\sqrt{3}$ 为极大值.

10. 设 $3a^2-5b < 0$,试证方程 $x^5+2ax^3+3bx+4c=0$ 有唯一实根.

证 取 $f(x) = x^5 + 2ax^3 + 3bx + 4c$,则 $f'(x) = 5x^4 + 6ax^2 + 3b$,由于 $3a^2 - 6ax^2 + 3b$

5b < 0所以 f'(x) > 0,即 f(x)在 $(-\infty, +\infty)$ 严格单增.

又由 $\lim_{x\to +\infty} f(x) = +\infty$, $\lim_{x\to -\infty} f(x) = -\infty$ 知. f(x) = 0 在 $(-\infty, +\infty)$ 有唯一实根.

11. 设常数 k>0,试确定 $f(x)=\ln x-\frac{x}{e}+k$ 在 $(0,+\infty)$ 内零点的个数.

解
$$f'(x) = \frac{1}{x} - \frac{1}{e}$$
,令 $f'(x) = 0$ 得驻点 $x = e$,在(0,+∞)内无不可导点.

当 x > e 时,f'(x) < 0,当 0 < x < e 时,f'(x) > 0。故 f(x) 有唯一的极值 f(e) = k > 0,且 f(e) 为极大值.

又因为 $\lim_{x\to 0^+} \left(\ln x - \frac{x}{e} + k\right) = -\infty$,由零点定理知 $\exists x_1 \in (0,e)$,使 $f(x_1) = 0$.

而且由于当 $x \in (0,e)$ 时, f'(x) > 0, 即 f(x)在(0,e)严格单增, 所以 x_1 是 f(x) = 0 在(0,e)内唯一的根.

又因为 $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$. 所以 $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left[x \left(\frac{\ln x}{x} - \frac{1}{e} \right) + k \right] = -\infty$. 类似可证在 $(e, +\infty)$ 内 f(x)有唯一的零点 x_2 .

综上所述, f(x)在 $(0,+\infty)$ 内有且仅有两个零点 $x_1 \in (0,e)$, $x_2 \in (e,+\infty)$.

12. 求下列函数在给定区间上的最大值和最小值.

(2)
$$f(x) = \sin^3 x + \cos^3 x, x \in \left[\frac{\pi}{6}, \frac{3\pi}{4}\right];$$

(4)
$$f(x) = \max\{x^2, (1-x)^2\}, x \in [0,1].$$

解 (2) $f'(x) = 3\sin x \cos x (\sin x - \cos x)$, 令 f'(x) = 0 得驻点 $x_1 = \frac{\pi}{2}$,

$$x_2 = \frac{\pi}{4}$$
, $\chi f\left(\frac{\pi}{2}\right) = 1$, $f\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$, $f\left(\frac{\pi}{6}\right) = \frac{1}{8} + \frac{3\sqrt{3}}{8}$, $f\left(\frac{3\pi}{4}\right) = 0$.

故 f(x)的最大值为 $f\left(\frac{\pi}{2}\right)=1$,最小值 $f\left(\frac{3\pi}{4}\right)=0$.

(4)
$$f(x) = \max\{x^2, (1-x)^2\} = \begin{cases} (x-1)^2, & 0 \le x < \frac{1}{2}, \\ x^2, & \frac{1}{2} \le x \le 1, \end{cases}$$

$$f'(x) = \begin{cases} 2(x-1), & x \in \left[0, \frac{1}{2}\right), \\ 2x, & x \in \left(\frac{1}{2}, 1\right). \end{cases}$$

所以 f(x) 无驻点, 只有一不可导点 $x = \frac{1}{2}$. 又 $f(\frac{1}{2}) = \frac{1}{4}$, $f(0) = f(1) = \frac{1}{2}$

1,故 f(x)的最人值为 f(0) = f(1) = 1,最小值 $f(\frac{1}{2}) = \frac{1}{4}$.

13. 证明下列不等式:

(2)
$$|3x-x^3| \leq 2, x \in [-2,2];$$
 (3) $x^* \geq e^{-\frac{1}{\epsilon}}, x \in (0,+\infty).$

证 (2) 令 $f(x) = 3x - x^3$,则 f(x)在[-2,2]上的最大值为 2,最小值为 -2,即 $\forall x \in [-2,2]$, $-2 \le f(x) \le 2$,即 $|f(x)| \le 2$.

(3) 取 $f(x)=x^*$.那么 $f'(x)=x^*(\ln x+1)$,则 $x=e^{-1}$ 是 f(x) 在 $(0,+\infty)$ 内唯一的驻点,且当 $x>e^{-1}$ 时,f'(x)>0,当 $0< x<e^{-1}$ 时,f'(x)<0. 故 $x=e^{-1}$ 是 f(x) 在 $(0,+\infty)$ 内唯一的极值点,且为极小值.

故
$$\forall x \in (0, +\infty), f(x) = x^x \geqslant (e^{-1})^{e^{-1}} = e^{-\frac{1}{e}},$$

17. 设某银行中的总存款量与银行付给存户利率的平方成正比,若银行以20%的年利率把总存款的90%贷出,问它给存户支付的年利率定为多少时才能获得最大利润?

解 设银行给存户支付的年利率为 x,则其所获利润为

$$T(x) = 20\% \times 90\% \times kx^2 - x \cdot kx^2, 0 < x < 100\%$$

$$T'(x) = 0.36 kx - 3 kx^2$$
,于是 $T(x)$ 在(0,1)内有唯一驻点 $x_0 = 0.12$.

$$T''(x_k) = -0.36 k < 0$$
,于是 $T(x)$ 在(0,1)内有最大值 $T(0.12)$.

故当x=12%时,银行获利最大。

18. 已知轮船的燃料费与速度的立方成正比, 当速度为 10 km/h, 每小时的燃料费为 80 元,又其他费用每小时需 480 元. 问轮船的速度多大时,才能使 20 km 航程的总费用最少? 此时每小时的总费用等于多少?

解 设轮船的速度为 v,此时 20 km 航程的总费用为 T,则

$$T = T(v) = \frac{20}{v} \cdot 480 + \frac{20}{v} \cdot \left(\frac{80}{10^3}\right) v^3, v \in [0, +\infty).$$

$$T'(v) = -\frac{9600}{v^2} + 3.2v. \Leftrightarrow T'(v) = 0 \notin v_0 = 10\sqrt[3]{3} (\text{km/h}).$$

由于 $v_0 = 10\sqrt[3]{3}$ 是唯一驻点. 由定理 $6.3 \, \mathrm{m}$, v_0 即是 T(v) 的最小值点. 故轮船的速度为 $10\sqrt[3]{3}$ km/h 时, 20 km 航程的总费用最少. 此时每小时的总费用为 $480 + \left(\frac{80}{10^3}\right) \left(10\sqrt[3]{3}\right)^3 = 720$ 元.

19. 曲线 $y=4-x^2$ 与 y=2x+1 相交于 A、B 两点,C 为弧段 AB 上的一点,同 C 点在何处时 $\triangle ABC$ 的面积最大? 求此面积.

解 $A(1,3), B(-3,-5), 设 C(x,4-x^2), 则 \triangle ABC$ 面积为

$$S_{\triangle ABC} = \frac{1}{2} |AB| \cdot d.$$

 $|AB| = \sqrt{(-3-1)^2 + (-5-3)^2} = 4\sqrt{5}$, $d = \frac{|x^2 + 2x - 3|}{\sqrt{5}}$ 为 C 到直线 AB 的距

离,故

$$S^2 = 4(x^2 + 2x - 3)^2$$
, $x \in [-3,1]$, 则 S^2 在 $[-3,1]$ 上最大值为 $S^2 \Big|_{x=-1} = 8^2$, 故当 C 取在曲线上 $(-1,3)$ 处时, $\triangle ABC$ 面积最大为 8 .

20. 用仪器测量某零件的长度 n 次, 得到 n 个略有差别的数: a₁, a₂, ···, a_n. 证明:用算术平均值

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} a_i$$

作为该零件的长度 x 的近似值,能使

$$f(x) = (x-a_1)^2 + (x-a_2)^2 + \dots + (x-a_n)^2$$

达到最小.

解 $f'(x) = 2 \sum_{i=1}^{n} (x - a_i) = 2 \left[nx - \sum_{i=1}^{n} a_i \right]$. 令 f'(x) = 0 得唯一驻点 $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} a_i$. 又因为 f''(x) = 2n > 0,故 \bar{x} 为 f(x) 的极小值点,从而 \bar{x} 为 f(x) 的最小值点。故用 $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} a_i$ 作为该零件长度 \bar{x} 的近似值,能使 f(x) 达到最小.

- 22. 讨论下列函数的凸性与相应曲线拐点:
- $(2) f(x) = x + \sin x.$

解 (2) $f'(x) = 1 + \cos x$, $f''(x) = -\sin x$, 令 f''(x) = 0 得 $x_n = n\pi$, $n \in \mathbb{N}$. 当 $x \in (2n\pi, 2n\pi + \pi)$ 时, f''(x) < 0, 即 f 在 $(2n\pi, (2n+1)\pi)$ 为凹函数;

当 $x \in ((2n+1)\pi, 2(n+1)\pi)$ 时, f''(x) > 0, 故 f 在 $((2n+1)\pi, 2(n+1)\pi)$ 为凸函数.

23. 证明下列不等式:

(1)
$$\frac{1}{2}(a^n+b^n) > \left(\frac{a+b}{2}\right)^n \quad (a,b>0,a \neq b,n>1);$$

(2)
$$x \ln x + y \ln y > (x+y) \ln \frac{x+y}{2}$$
 $(x,y>0,x \neq y)$.

证 (1) 取
$$f(x)=x^n$$
,则 $f'(x)=nx^{n-1}$, $f''(x)=n(n-1)x^{n-2}>0$ 当 $(x>0)$,

故 f(x)在(0,+ ∞)上为严格凸函数,进而 $\forall a,b>0,a \approx b$.有

$$f\left(\frac{a+b}{2}\right) < \frac{f(a)+f(b)}{2}$$
, $\operatorname{sp}\left(\frac{a+b}{2}\right)^n < \frac{1}{2}(a^n+b^n)$.

(2) $\mathbb{R} f(u) = u \ln u, \mathbb{M} f'(u) = \ln u + 1, f''(u) = \frac{1}{u} > 0, u > 0.$

故 f(u)在 $(0,+\infty)$ 上严格凸,从而 $\forall x,y>0,x \neq y$.

$$\frac{x+y}{2}\ln\frac{x+y}{2} < \frac{x\ln x + y\ln y}{2},$$

即 $(x+y)\ln\frac{x+y}{2} < x\ln x + y\ln y$.

24. 设在区间 $1 \perp f''(x) > 0$, a, a+h, a-h(h>0) 是 1 内三点,证明, f(a+h)+f(a-h) > 2f(a).

证 因为 f''(x) > 0, 所以 f(x)是 I 上严格凸函数, 又因为 $a, a+h, a-h \in I$,

所以
$$f\left[\frac{(a+h)+(a-h)}{2}\right] = f(a) < \frac{1}{2} [f(a+h)+f(a-h)]$$
,即 $f(a+h)+f(a-h) > 2f(a)$.

25. 设 $0 < x_1 < x_2 < \dots < x_n < \pi$,证明:

$$\sin\left(\frac{x_1+x_2+\cdots+x_n}{n}\right) > \frac{1}{n}(\sin x_1+\sin x_2+\cdots+\sin x_n).$$

证 取 $f(x) = \sin x, x \in [0, \pi]$, 因为 $f'' = -\sin x < 0, x \in (0, \pi)$, 所以 f(x) 是 $(0, \pi)$ 上的严格凹函数. 由定理 6.6, 取 $\lambda_i = \frac{1}{n}$, $i = 1, 2, \cdots, n$.

可得 $f\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right) > \sum_{i=1}^{n} \lambda_{i} f\left(x_{i}\right), 即$ $\sin\left(\frac{x_{1} + x_{2} + \dots + x_{n}}{n}\right) > \frac{1}{n} \left(\sin x_{1} + \sin x_{2} + \dots + \sin x_{n}\right).$

- 26. 利用 $f(x) = -\ln x(x > 0)$ 是凸函数(因而 $\ln x$ 为凹函数)证明:
- (1) $x_1^{\lambda_1} x_2^{\lambda_2} \cdots x_n^{\lambda_n} \leq \lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_n x_n (\sharp \psi x_i > 0, \lambda_i \geq 0, \sum_{i=1}^n \lambda_i = 1);$
- (2) 当 $x_i > 0(i=1,2,\cdots,n)$ 时,

$$\frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}} \leqslant \sqrt[n]{x_1 x_2 \cdots x_n} \leqslant \frac{x_1 + x_2 + \dots + x_n}{n}.$$

证 (1) 因为 $f(x) = -\ln x$ 是 $(0, +\infty)$ 上的凸函数,且 $x_i > 0, \lambda_i \ge 0$,及 $\sum_{i=1}^{n} \lambda_i = 1, \text{所以 } f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \leqslant \sum_{i=1}^{n} \lambda_i f(x_i),$ 即 $\ln(\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n) \geqslant \lambda_1 \ln x_1 + \lambda_2 \ln x_2 + \dots + \lambda_n \ln x_n$,

 $\mathbb{P} \ln(\lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_n x_n) \geqslant \ln(x_1^{\lambda_1} x_2^{\lambda_2} \cdots x_n^{\lambda_n}).$

由 $\ln x$ 的单调增可知: $\lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_n x_n \geqslant x_1^{\lambda_1} x_2^{\lambda_2} \cdots x_n^{\lambda_n}$,

(2) 令
$$\lambda_i = \frac{1}{n}$$
, $i = 1, 2, \dots, n$. 由结论(1)可知: $\forall x_i > 0, i = 1, 2, \dots, n$

$$\sqrt[n]{x_1x_2\cdots x_n} \leqslant \frac{x_1+x_2+\cdots+x_n}{n}$$
.

$$\frac{1}{n} \left(\frac{1}{y_1} + \frac{1}{y_2} + \dots + \frac{1}{y_n} \right) \ge \left(\frac{1}{y_1} \frac{1}{y_2} \dots \frac{1}{y_n} \right)^{\frac{1}{n}}.$$

即

$$\sqrt[n]{y_1 y_2 \cdots y_n} \geqslant \frac{n}{\frac{1}{y_1} + \frac{1}{y_2} + \cdots + \frac{1}{y_n}},$$

故

$$\frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}} \leqslant \sqrt[n]{x_1 x_2 \cdots x_n} \leqslant \frac{x_1 + x_2 + \dots + x_n}{n}.$$

(B)

1. 证明定理 6.4.

证 由于 f 在 x_0 处 n 阶可导,且 $f'(x_0) = f''(x_0) = \cdots = f^{(n-1)}(x_0) = 0$,所以 f(x) 在 x_0 处带 Peano 余项的 n 阶 Taylor 公式为

$$f(x) = f(x_0) + \frac{1}{n!} f^{(n)}(x_0) (x - x_0)^n + o((x - x_0)^n),$$

从而

$$f(x)-f(x_0)=\frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n+o((x-x_0)^n).$$

如果 n 为偶数,类似于定理 6.3 的证明可得结论(1),

如果 n 为奇数,由于上式右端第二项是第一项的高阶无穷小,因此在 x_0 的充分小邻域内, $f(x) - f(x_0)$ 的符号取决于第一项, 当 $x < x_0$ 时, $f(x) - f(x_0)$ 与 $f^{(n)}(x_0)$ 异号; 当 $x > x_0$ 时, $f(x) - f(x_0)$ 与 $f^{(n)}(x_0)$ 同号. 故在 x_0 的充分小邻域内, $f(x) - f(x_0)$ 不定号. 即 x_0 非极值点.

2. 证明下列不等式:

(3)
$$\sin x + \tan x > 2x \quad \left(0 < x < \frac{\pi}{2}\right);$$

(4)
$$\frac{|a+b|}{\pi+|a+b|} \le \frac{|a|}{\pi+|a|} + \frac{|b|}{\pi+|b|} (a,b \in \mathbb{R}).$$

证 (3) 令
$$f(t) = \sin t + \tan t - 2t$$
,那么 $f'(t) = \cos t + \sec^2 t - 2$,
 $f''(t) = \frac{(2 - \cos^3 t) \sin t}{\cos^3 t} > 0, x \in \left(0, \frac{\pi}{2}\right)$,

故 f'(t)在 $\left(0,\frac{\pi}{2}\right)$ 上严格增,于是 $\forall t \in \left(0,\frac{\pi}{2}\right), f'(t) > f'(0) = 0$,进而 f(x)是 $\left(0,\frac{\pi}{2}\right)$ 上的严格增函数,即 $\forall x \in \left(0,\frac{\pi}{2}\right)$.

$$f(x) > f(0)$$
, $\mathbb{P} \sin x + \tan x > 2x$.

(4) 取 $f(x) = \frac{x}{\pi + x}$,则 $f'(x) = \frac{\pi}{(\pi + x)^2} > 0$,即 f(x)为严格单增函数.因而对 $\forall a, b \in \mathbb{R}$,由于 $|a+b| \leq |a| + |b|$,所以

$$\frac{|a+b|}{\pi+|a+b|} \leqslant \frac{|a|+|b|}{\pi+|a|+|b|} \leqslant \frac{|a|}{\pi+|a|} + \frac{|b|}{\pi+|b|}.$$

3. 证明:方程 sin x=x 只有一个实根.

证 显然 $\sin x = x$ 在 $(-\infty, -1)$ $\bigcup (1, +\infty)$ 上无解.

对[-1,1],取 $f(x)=x-\sin x$,则 $f'(x)=1-\cos x\geqslant 0$,且当且仅当 x=0 时 f'(x)=0,即 f(x)在[-1,1]严格单增.又 f(0)=0,故 x=0 是 $\sin x=x$ 的唯一的实根.

4. 设
$$0 \le x_1 < x_2 < x_3 \le \pi$$
,证明: $\frac{\sin x_2 - \sin x_1}{x_2 - x_1} > \frac{\sin x_3 - \sin x_2}{x_3 - x_2}$.

证 令 $f(x) = \sin x$,在 $[x_1, x_2]$ 及 $[x_2, x_3]$ 上分别应用 Lagrange 中值定理得日 $\xi_1 \in (x_1, x_2)$ 及 $\xi_2 \in (x_2, x_3)$ 使

$$\frac{\sin x_2 - \sin x_1}{x_2 - x_1} = \cos \xi_1, \frac{\sin x_3 - \sin x_2}{x_3 - x_2} = \cos \xi_2.$$

又因为 $0 \le x_1 < \xi_1 < x_2 < \xi_2 < x_3 \le \pi$,且 $\cos x$ 在 $[0, \pi]$ 上严格减,

故 cos ξ₁>cos ξ₂. 从而

$$\frac{\sin x_2 - \sin x_1}{x_2 - x_1} > \frac{\sin x_3 - \sin x_2}{x_3 - x_2}.$$

5. 设 $f(x) = (x - x_0)^n g(x), n \in \mathbb{N}_+, g(x)$ 在 x_0 处连续,且 $g(x_0) \neq 0$.问 f(x)在 x_0 处有无极值?

解 因 $g(x_0)$ ≥ 0 . 不妨设 $g(x_0) > 0$ (< 0),又 g(x) 在 x_0 处连续,由函数极限的局部保号性可知: $\exists U(x_0,\delta)$,使 $\forall x \in U(x_0,\delta)$,g(x) > 0 (< 0). 于是, $\forall x \in U(x_0,\delta)$,当 n 为偶数时, $f(x) - f(x_0) = (x - x_0)^n g(x) > 0$. 也即 x_0 为 f(x) 的极小(大)值点;当 n 为奇数时,如 $x \in (x_0 - \delta, x_0)$, $f(x) - f(x_0) < 0$ (> 0);如 $x \in (x_0, x_0 + \delta)$, $f(x) - f(x_0) > 0$ (< 0). 故 x_0 非极值点.

综上所述,当 n 为奇数时, x_0 不是 f(x)的极值点;当 n 为偶数时,若 $g(x_0)>0,x_0$

为 f(x)的极小值点,若 $g(x_0) < 0$, x_0 为 f(x)的极大值点.

6. 求半径为 R 的球的外切正圆锥的最小体积.

解 设正圆锥的半顶角为 θ $\left(0 < \theta < \frac{\pi}{2}\right)$,底半径为 x.体积为 V,则 $\frac{R}{h-R} = \sin \theta$, $\frac{x}{h} = \tan \theta$,进而 $h = R\left(1 + \frac{1}{\sin \theta}\right)$, $x = h \tan \theta = R\left(1 + \frac{1}{\sin \theta}\right)$ $\tan \theta$.从而 $V = \frac{1}{3}\pi x^2 h = \frac{1}{3}\pi R^3 \frac{(1+\sin \theta)^3}{\sin \theta \cos^2 \theta}$, $\theta \in \left(0, \frac{\pi}{2}\right)$,

$$\begin{split} \# \angle \frac{\mathrm{d}V}{\mathrm{d}\theta} &= \frac{1}{3} \pi R^3 \frac{(1+\sin\theta)^2 \cos\theta \left[3\cos^2\theta \sin\theta - (1+\sin\theta)(\cos^2\theta - 2\sin^2\theta)\right]}{\sin^2\theta \cos^4\theta} \\ &= \frac{1}{3} \pi R^3 (1+\sin\theta)^3 \frac{3\sin\theta - 1}{\sin^2\theta \cos^2\theta}. \end{split}$$

令 $\frac{\mathrm{d}V}{\mathrm{d}\theta}=0$,并考虑到 $\theta\in\left(0,\frac{\pi}{2}\right)$, $\sin\theta+1$ $\stackrel{}{=}0$, $\cos\theta\stackrel{}{=}0$,得 $\sin\theta=\frac{1}{3}$,即 $\theta=\arcsin\frac{1}{3}$ 是 V 在 $\left(0,\frac{\pi}{2}\right)$ 上的唯一驻点. 又因为此实际问题一定存在最小值,故 $\theta=\arcsin\frac{1}{3}$ 一定是 V 在 $\left(0,\frac{\pi}{2}\right)$ 上的最小值点, $h\mid_{\theta=\arcsin\frac{1}{3}}=4R$, $x\mid_{\theta=\arcsin\frac{1}{3}}=\sqrt{2}R$,最小体积 $V=V\mid_{\theta=\arcsin\frac{1}{3}}=\frac{8}{3}\pi R^3$.

7. 求常数 k 的取值范围,使当 x>0 时,方程 $kx + \frac{1}{x^2} = 1$ 有且仅有一个根.

解 ① k=0,则方程变为 $\frac{1}{x^2}=1$,则在 $(0,+\infty)$ 有且仅有唯一解 $x^*=1$. 令 $f(x)=kx+\frac{1}{x^2}-1$.

② 如果 k>0, $f'(x)=k-\frac{2}{x^3}$, $\Leftrightarrow f'(x)=0$ 得在 $(0,+\infty)$ 上 f(x)有唯一驻 点 $x_0=\sqrt[3]{\frac{2}{k}}$. 又 $f''\left(\sqrt[3]{\frac{2}{k}}\right)>0$, 因而 f(x)在 x_0 处取得极小值. 即

$$f\left(\sqrt[3]{\frac{2}{k}}\right) = \min_{x \in (0, +\infty)} f(x) = \frac{3}{2} \sqrt[3]{2k^2} - 1.$$

若 $k > \frac{2\sqrt{3}}{9}$,则 $f(x) > f(x_0) > 0$, $x \in (0, +\infty)$,即方程 f(x) = 0 无解;如果

 $k < \frac{2\sqrt{3}}{9}$,由于 $\lim_{x \to 0^+} f(x) = +\infty = \lim_{x \to +\infty} f(x)$,所以 f(x) = 0 在 $(0, +\infty)$ 内有两个根. 若 $k = \frac{2\sqrt{3}}{9}$, x_0 是 f(x) = 0 在 $(0, +\infty)$ 唯一的根.

③ 如果 k < 0,则 $f'(x) < 0(x \in (0, +\infty))$,所以 f(x) 在 $(0, +\infty)$ 上严格单减. 又因为 $\lim_{x \to 0^+} f(x) = +\infty$, $\lim_{x \to +\infty} f(x) = -\infty$. 故 f(x) 在 $(0, +\infty)$ 上有唯一的正根.

综上所述,当 $k = \frac{2\sqrt{3}}{9}$ 或 $k \le 0$ 时,方程 f(x) = 0,即 $kx + \frac{1}{x^2} = 1$ 有且仅有一个根.

- 8. 设某产品的成本函数为 $C=aq^2+bq+c$,需求函数为 $q=\frac{1}{e}(d-p)$,其中 C 为成本,q 为需求量(即产量),p 为单价;a,b,c,d,e 都是正的常数,且 d>b. 求使利润最大的产量及最大的利润,
- 解 由需求量(即产量) $q = \frac{1}{e}(d-p)$ 得产品单价 p = d-eq,从而利润 $T = T(q) = pq C = -(e+a)q^2 + (d-b)q c$.

经计算知:当 $q=\frac{d-b}{2(a+e)}$ 时,利润 T 取得最大值,且最大利润为 $T\Big(\frac{d-b}{2(a+e)}\Big)=\frac{(d-b)^2}{4(a+e)}-c.$

10. 有人说"若 $f'(x_0) > 0$,则存在 x_0 的某邻域,在此邻域内 f(x) 单调增". 这种说法正确吗?如果正确,请给出证明;如果不正确,请举例说明并给出正确结论.

解 不正确. 如

$$f(x) = \begin{cases} x + 2x^{2} \sin \frac{1}{x}, & x \Rightarrow 0, \\ 0, & x = 0, \end{cases} f'(x) = \begin{cases} 1 + 4x \sin \frac{1}{x} - 2\cos \frac{1}{x}, & x \Rightarrow 0, \\ 1, & x = 0. \end{cases}$$

$$\stackrel{\text{def}}{=} \frac{1}{(2n+1)\pi}, k = 0, \pm 1, \pm 2, \dots \text{Ind}, f'(x_{n}) = 3 > 0.$$

$$\stackrel{\text{def}}{=} y_{n} = \frac{1}{2n\pi} \text{Ind}, f'(y_{n}) = -1 < 0.$$

即在原点的任一邻域内,f'(x)有取正值的点也有取负值的点,因为 f'(x)在 $x \neq 0$ 的一切点都连续,故 f(x)在原点的任一邻域内都不单调、正确的结论 应为

若 $f'(x_0)>0$,且 f'(x)在 x_0 连续,则存在 x_0 的某邻域,在此邻域内 f(x) 单调增.