

Information, Calcul et Communication

Module 1 : Calcul

Leçon I.2 : Calcul et Algorithmes II

J.-C. Chappelier & J. Sam

Objectifs de la leçon

La leçon précédente a présenté ce qu'est un algorithme et par quels moyens l'exprimer.

Mais reste la principale question :

comment concevoir un algorithme

permettant de résoudre un problème donné?

L'objectif de cette leçon est de vous présenter des *méthodes de résolution de problèmes* :

- « Diviser pour régner » (« Divide and Conquer »)
- Récursion
- Programmation dynamique

Conception d'algorithmes

Comment **concevoir** un algorithme permettant de résoudre un problème donné?

Il n'y a malheureusement pas de méthode miracle ni de recette toute faite pour construire des solutions algorithmiques à un problème donné.

Il existe cependant plusieurs **méthodes de résolution**, c'est-à-dire des schémas d'élaboration de solutions.

Plusieurs de ces méthodes suivent ce que l'on appelle une approche descendante (« top-down », procède par analyse), par opposition à ascendante (« bottom-up », procède par synthèse).

Approche descendante

Résoudre un problème par une approche descendante consiste à décomposer le problème général en sous-problèmes plus spécifiques, lesquels seront chacun décomposés en problèmes encore plus spécifiques, etc. (raffinements successifs)

Une telle analyse du problème se fait à l'aide de blocs imbriqués correspondant chacun à des résolutions de plus en plus spécifiques, décrites par des algorithmes de plus en plus spécialisés.

Exemple

Par exemple avec l'algorithme de tri par insertion vu à la leçon précédente :

On découpe le problème en sous-problèmes :

Chaque sous-problème étant ensuite spécifié plus clairement puis résolu.

Tri par insertion : résolution détaillée

Le sous-problème rechercher un élément mal placé

entrée: un tableau tab

sortie : position du 1^{er} élément strictement plus petit que son

prédécesseur

La solution est ici assez simple :

On effectue une **itération** sur les éléments de tab en s'arrêtant au premier élément strictement plus petit que son prédécesseur.

Comme le 1^{er} élément de tab ne peut être mal placé (car sans prédécesseur), l'itération de recherche d'un élément mal placé commencera à partir du 2^e élément

De même, s'il n'y a pas d'élément mal placé on retournera, par convention, la position 1.

Tri par insertion : résolution détaillée (2)

Le sous-problème *trouver la bonne place*

entrée : un tableau tab et l'entier pos, position d'un élément mal

placé

sortie : la bonne position pos_ok de l'élément mal placé.

La « bonne position » correspond à la plus grande position pos_ok (<pos) dans le tableau tab telle que le (pos_ok-1)-ième élément de tab soit inférieur ou égal au pos-ième.

L'algorithme pour trouver la bonne place doit donc parcourir les éléments de tab, un à un, entre le premier et celui à la position pos, à la recherche de la bonne position.

Cet algorithme effectue donc aussi une **itération** sur les éléments du tableau, du premier élément à celui de position pos.

Récursion

Tri par insertion : résolution détaillée (3)

Le sous-problème déplacer un élément

entrée : un tableau tab, une position de départ pos et une position finale pos_ok

On doit déplacer l'élément de la position pos dans tab à la position pos_ok.

On peut effectuer cette opération par décalages successifs (en utilisant un stockage temporaire tmp).

Améliorations

- 1. Pour rechercher le prochain élément mal placé, ce n'est pas la peine de recommencer du début (position 2) à chaque fois. On peut partir de la dernière position mal placée.
- 2. On pourrait trouver la bonne place et déplacer l'élément à cette place en même temps (i.e. en une seule itération)

Si l'on regroupe tout ceci, on arrive à l'algorithme suivant :

```
\begin{array}{l} \textbf{Pour} \text{ i de 2 \`{a} N (= taille du tableau)} \\ \text{ tmp} \longleftarrow \text{ tableau[i]} \\ \text{ } j \longleftarrow \text{ i} \\ \textbf{Tant que} \text{ } j \geq 2 \text{ } \underline{\textbf{et}} \text{ tableau[j-1]>tmp} \\ \text{ tableau[j]} \longleftarrow \text{ tableau[j-1]} \\ \text{ } j \longleftarrow \text{ j-1} \\ \text{ tableau[j]} \longleftarrow \text{ tmp} \\ \end{array}
```


Divide and Conquer

Parmi les méthodes descendantes, une qui est souvent mise en œuvre s'appelle « diviser pour régner » (divide and conquer).

Elle consiste à diviser/regrouper les données pour résoudre des (sous-)problèmes plus simples.

Cette idée n'est pas nouvelle :

« Diviser chacune des difficultés que j'examinerois, en autant de parcelles qu'il se pourroit, et qu'il soit requis pour les mieux résoudre »

(Descartes, Discours de la méthode, 17e siècle)

Divide and Conquer

Pour un problème *P* portant sur des **données** *d*, le schéma général de l'approche « *diviser pour régner* » est le suivant :

10 / 39

Divide and Conquer

Pour un problème *P* portant sur des **données** *d*, le schéma général de l'approche « *diviser pour régner* » est le suivant :

- ▶ si d est « assez simple », appliquer un algorithme « ad hoc » permettant de résoudre le problème (traitement des cas triviaux)
- sinon,
 - décomposer d en instances plus petites d₁, ..., d_n
 - puis pour chacun des d_i : résoudre $P_i(d_i)$. On obtient alors une solution y_i
 - ▶ recombiner les y_i pour former la solution Y au problème de départ.

conduit souvent à des algorithmes récursifs

Récursion

Une catégorie particulière de méthodes de résolution de problèmes sont les solutions **récursives**.

Le principe de l'approche récursive est de

ramener le problème à résoudre à un sous-problème, version simplifiée du problème d'origine.

Exemples:

- recherche par dichotomie (cf leçon précédente)
- exemple en mathématiques : le raisonnement par récurrence
- les algorithmes dits récursifs (à suivre)

Exemple: Les tours de Hanoï

Jeu des tours de Hanoï:

déplacer d'un pilier à un autre une colonne de disques de taille croisante

- en utilisant un seul pilier de transition (c'est-à-dire 3 piliers en tout)
- en ne déplaçant qu'un seul disque à chaque fois
- en ne posant un disque que sur le sol ou sur un disque plus grand.

© User: Evanherk (Wikimedia Commons)

Les tours de Hanoï (2)

Idée : si je peux le faire pour une pile de n disques, je peux le faire pour une pile de n+1 disques (et je sais le faire pour une pile de 1 disque)

Démonstration:

- ▶ je déplace les n disques du haut sur le pilier de transition (en utilisant la méthode que je connais par hypothèse)
- ▶ je mets le dernier disque sur le pilier destination
- je redéplace la tour de n disques du pilier de transition au pilier destination (en utilisant à nouveau la méthode que je connais par hypothèse, et le pilier initial comme transition).

Les tours de Hanoï : algorithme

Tours de Hanoï

entrée : jeu avec pile de n disques (correctement ordonnés) sur le pilier numéro $i, i, j \ (\neq i)$, nombre n de disques à déplacer sortie : jeu avec pile de n disques (correctement ordonnés) sur le pilier numéro j

Si n > 0

Choisir k différent de i et j (par exemple k = 6 - i - j)

Tours de Hanoï

entrée : jeu, i, k, n-1

Déplace disque du pilier i au pilier j

Récursion

Tours de Hanoï

entrée : jeu, k, j, n – 1

démo: http://upload.wikimedia.org/wikipedia/commons/6/60/Tower_of_Hanoi_4.gif

Autre(s) exemple(s)

Calculer la somme des *n* premiers entiers.

Si je peux le faire pour n, je peux le faire pour n+1:

$$S(n+1) = (n+1) + S(n)$$

<u>Note</u> : se généralise trivialement au calcul de toute grandeur définie par une équation de récurrence.

Algorithme récursif

Le schéma général d'un algorithme récursif est le suivant :

monalgo_rec entrée : entrée du problème sortie : solution du problème ... monalgo_rec entrée : entrée du sous-problème sortie : sol. du sous-problème

Exemple (incomplet):

Objectifs

Condition de terminaison

Attention! Pour que la résolution récursive soit correcte, il faut une

condition de terminaison

sinon, on risque une boucle infinie.

Exemple:

Récursion

Algorithme récursif (correct)

Le schéma général correct d'un algorithme récursif est donc le suivant :

```
monalgo_rec
entrée : X
sortie: Y
si terminaison(X)
alors Y \leftarrow \dots
sinon
   . . .
     monalgo rec
     entrée : entrée de l'instance réduite
     sortie:...
     . . .
```


Objectifs

1er exemple

Reprenons la somme des *n* premiers entiers positifs :

somme	
entrée : n	
sortie : $S(n)$	
$\underline{si} \ n \leq 0$	
$\underline{alors} \ S(n) \longleftarrow 0$	
<u>sinon</u>	
somme	
entrée : n – 1	
sortie : m	
$S(n) \leftarrow n + m$	

1er exemple : déroulement

$$S(3) = 6$$

Récursion

1er exemple: remarques

Notez qu'il est parfois préférable d'écrire la fonction sous une autre forme que la forme récursive.

Si l'on reprend l'exemple de la somme des *n* premiers entiers :

$$S(n+1) = (n+1) + S(n)$$

mais on a aussi (!):

$$S(n) = \sum_{i=1}^{n} i$$

(c'est-à-dire une itération) qui est plus direct que la forme récursive.

On peut parfois même utiliser une expression analytique (lorsqu'on en a une!); par exemple :

$$S(n)=\frac{n(n+1)}{2}$$

Exemple 2 : version récursive du tri par insertion

On peut aussi concevoir le tri par insertion de façon récursive :

tri entrée : <i>tableau de n éléments</i> sortie : <i>tableau trié</i>
condition arrêt : moins de 2 éléments
tri (instance réduite du problème)
entrée : tableau de n – 1 éléments
sortie : tableau trié
insertion du n ^{ème} élément dans le tableau trié de n – 1 éléments

Récursion

Tri récursif : exemple

23 / 39

Schéma des appels récursifs (exemple)

Objectifs Récursion Programmation dynamique Conclusion

24 / 39

Pour conclure sur la récursion

La solution récursive n'est pas toujours la seule solution et rarement la plus efficace...

...mais elle est parfois beaucoup plus simple et/ou plus pratique à mettre en œuvre!

<u>Exemples</u>: tris, traitement de structures de données récursives (e.g. arbres, graphes, ...), ...

Programmation dynamique

La programmation dynamique est une méthode de résolution permettant de traiter des problèmes ayant une structure séquentielle répétitive.

- « problèmes séquentiels » : pour lesquels on doit faire un ensemble de choix *successifs*/prendre des décisions *successives* pour arriver à une solution ; au fur et à mesure que de nouvelles options sont choisies, des sous-problèmes apparaissent (aspect « séquentiel »).
 - La programmation dynamique s'applique lorsqu'un <u>même</u> sous-problème apparait dans plusieurs sous-solutions différentes.

Le principe est alors de stocker la solution à chaque sous-problème au cas où il réapparaitrait plus tard dans la résolution du problème global :

On évite de calculer plusieurs fois la même chose.

Note : cette idée (programmation dynamique) peut s'appliquer aussi bien à des approches descendantes qu'ascendantes.

Programmation dynamique (2)

La programmation dynamique est souvent utilisée lorsque une solution récursive se révèle inefficace.

Elle permet souvent de changer un algorithme « naïf » coûteux en un algorithme, peut être plus complexe à concevoir, mais plus efficace.

27/39

Exemple

Prenons l'exemple du calcul des coefficients du binôme $\binom{n}{k}$ (noté aussi C_n^k)

Problème C(n,k):

Entrée : n, entier positif (ou nul) et k entier positif (ou nul), $k \le n$.

Sortie: $\binom{n}{k}$

Approche récursive :

- ▶ si k = 0 ou k = n, renvoyer 1
- ▶ sinon retourner C(n-1,k-1)+C(n-1,k)

Coefficients du binôme approche récursive

Quelle est la complexité T(k, n) de cette approche ?

Du fait de la récursion, on a :

(Supposons que les comparaisons et les additions soient des instructions élémentaires)

$$T(k,n) = T(k-1,n-1) + T(k,n-1) + 1$$

et d'autre part T(0,0) = 1 et T(n,n) = 1

Coefficients du binôme approche récursive (2)

d'où:

$$T(k,n)=2\binom{n}{k}-1$$

temps exponentiel en fonction de n

Y'a-t-il une meilleure solution?

Idée : ne pas recalculer plusieurs fois la même chose

(Regardez par exemple combien de fois nous avons calculé $\binom{1}{1}$!)

stocker dans un tableau les valeurs déjà calculées et utiles pour la suite

(on parle de *mémoïsation*/*memoization*)

Coefficients du binône par programmation dynamique

« tabuler les valeurs déjà calculées »

Concrètement ici : le triangle de Pascal

```
1
1 1
1 2 1
1 3 3 1
```

Calcul par programmation dynamique du coefficient $\binom{n}{k}$:

- ➤ On rempli le début (k éléments) de chaque ligne du triangle de Pascal, une après l'autre, de haut en bas.
- On arrête à la ligne n.

Quelle est la complexité de cet algorithme?

Coefficients du binôme programmation dynamique (2)

Le nombre d'opération le plus grand est requis lorsque k = n - 1 (on aurait pu utiliser la symétrie, mais cela ne change pas fondamentalement le propos)

Dans ce cas, le nombre d'opérations effectuées est :

$$1 + (1+1) + (1+1+1) + (1+1+1+1)$$

$$+ \dots + (1 + \underbrace{1 + \dots + 1}_{n-1}) = n+1+n-1 + \sum_{i=1}^{n-1} i \cdot 1$$

$$= 2n + \frac{n(n-1)}{2} 1$$

$$= \frac{1}{2} n^2 + \left(2 - \frac{1}{2}\right) n$$

Remarque : Il n'est pas nécessaire de mémoriser tout le tableau, k-1 cases suffisent (pourriez-vous trouver l'algorithme ?)

Programmation Dynamique – Autre exemple

Calcul du plus court chemin, par exemple entre toutes les gares du réseau CFF

Voyons une solution par programmation dynamique : l'Algorithme de Floyd

illustration de l'idée de base :

le plus court chemin pour aller de Lausanne à Zürich est le minimum entre :

- 1. le plus court chemin connu pour aller de Lausanne à Zürich,
- le chemin allant de Lausanne à Zürich en passant par une ville intermédaire non encore considérée.

$$D_k(i,j) = \min\{D_{k-1}(i,j), D_{k-1}(i,k) + D_{k-1}(k,j)\}\$$

Zürich

Programmation Dynamique Autre exemple (2)

L'algorithme est donc le suivant, pour n gares dans le réseau :

```
Initialisation :

Pour i de 1 à n

Pour j de 1 à n

D(i,j) ← distance directe de i à j, ∞ si i et j ne sont pas directement connectés
```

Déroulement :

```
Pour k de 1 à n

Pour i de 1 à n

Pour j de 1 à n

D(i,j) \leftarrow \min \{D(i,j), D(i,k) + D(k,j)\}
```

Combien de boucles?

Algorithme de Floyd : exemple

(données fictives)

Note : fonctionne aussi pour des graphes asymétriques (graphes orientés)

Algorithmes de plus court chemin

L'algorithme de Floyd présenté ici résout en $\mathcal{O}(n^3)$ étapes le problème du plus court chemin entre toutes les paires de gares

En appliquant le même genre d'idées (programmation dynamique) :

- ▶ l'algorithme de Dijkstra résout en $\mathcal{O}(n^2)$ le problème du plus court chemin entre une gare donnée et toutes les autres
- l'algorithme A* (« A star ») est une généralisation de l'algorithme de Dijkstra qui est plus efficace si l'on possède un moyen d'estimer une borne inférieure de la distance restant à parcourir pour arriver au but (on appelle cela une « heuristique admissible » ; Dijkstra est un A* avec l'heuristique nulle)
- l'algorithme de Viterbi résout en 𝒪(n) le problème du plus court chemin entre deux gares données (sans cycle : DAG)
- ...et il existe pleins d'autres algorithmes en fonctions des conditions spécifiques (graphe orienté/non orienté, coût positifs ou quelconques, graphe à cycles ou sans cycle)

Conclusion (1)

Formalisation des données : structures de données abstraites

Formalisation des traitements : algorithmes

trouver des solutions correctes et distinguer formellement les solution efficaces de celles inefficaces

Problèmes typiques : recherche, tris, plus « court » chemin.

La conception d'une méthode de résolution automatisée d'un problème consiste à choisir les bons algorithmes et les bonnes structures de données

Conclusion (2)

La **conception** d'une méthode de résolution automatisée d'un problème consiste à choisir les *bons algorithmes* <u>et</u> les *bonnes structures de données*.

- Il n'y a pas de recette miracle pour cela, mais il existe des grandes familles de stratégies de résolution :
 - décomposer (« Divide and Conquer ») : essayer de résoudre le problème en le décomposant en instances plus simples
 Les algorithmes récursifs sont des illlustrations de cette stratégie.
 - regrouper (« programmation dynamique ») : mémoriser les calculs intermédiaires pour éviter de les effectuer plusieurs fois

La suite

- La prochaine leçon : Qu'est-ce qui est calculable et ne l'est pas ?
- Puis : Comment représenter l'information (les données sur lesquelles calculer) ?

39 / 39