MACHINE LEARNING QUICK REFERENCE: ALGORITHMS - 1

Algorithm Type	Common Usage	Suggested Usage	Suggested Scale	Interpretability	Common Concerns
Penalized Regression	Supervised regressionSupervised classification	 Modeling linear or linearly separable phenomena Manually specifying nonlinear and explicit interaction terms Well suited for <i>N</i> << <i>p</i> 	Small to large data sets	High	Missing valuesOutliersStandardizationParameter tuning
Naïve Bayes	Supervised classification	 Modeling linearly separable phenomena in large data sets Well-suited for extremely large data sets where complex methods are intractable 	Small to extremely large data sets	Moderate	Strong linear independence assumptionInfrequent categorical levels
Decision Trees	 Supervised regression Supervised classification 	 Modeling nonlinear and nonlinearly separable phenomena in large, dirty data Interactions considered automatically, but implicitly Missing values and outliers in input variables handled automatically in many implementations Decision tree ensembles, e.g. random forests and gradient boosting, can increase prediction accuracy and decrease overfitting, but also decrease scalability and interpretability 	Medium to large data sets	Moderate	 Instability with small training data sets Gradient boosting can be unstable with noise or outliers Overfitting Parameter tuning
k-Nearest Neighbors (kNN)	Supervised regressionSupervised classification	 Modeling nonlinearly separable phenomena Can be used to match the accuracy of more sophisticated techniques, but with fewer tuning parameters 	Small to medium data sets	Low	Missing valuesOverfittingOutliersStandardizationCurse of dimensionality
Support Vector Machines (SVM)	 Supervised regression Supervised classification Anomaly detection 	 Modeling linear or linearly separable phenomena by using linear kernels Modeling nonlinear or nonlinearly separable phenomena by using nonlinear kernels Anomaly detection with one-class SVM (OSVM) 	Small to large data sets for linear kernels Small to medium data sets for nonlinear kernels	Low	 Missing values Overfitting Outliers Standardization Parameter tuning Accuracy versus deep neural networks depends on choice of nonlinear kernel; Gaussian and polynomial often less accurate
Artificial Neural Networks (ANN)	 Supervised regression Supervised classification Unsupervised clustering Unsupervised feature extraction Anomaly detection 	 Modeling nonlinear and nonlinearly separable phenomena Deep neural networks (e.g. deep learning) are well suited for state-of-the-art pattern recognition in images, videos, and sound All interactions considered in fully connected, multilayer topologies Nonlinear feature extraction with autoencoder and restricted Boltzmann machine (RBM) networks Anomaly detection with autoencoder networks Clustering and visualization with self-organizing maps (SOMs) 	Usually small to medium data sets Stochastic gradient descent (SGD) optimization drastically increases scalability	Low	Missing valuesOverfittingOutliersStandardizationParameter tuning

MACHINE LEARNING QUICK REFERENCE: ALGORITHMS - 2

Algorithm Type	Common Usage	Suggested Usage	Suggested Scale	Interpretability	Common Concerns
Association Rules	Supervised rule buildingUnsupervised rule building	Building sets of complex rules by using the co-occurrence of items or events in transactional data sets	Medium to large transactional data sets	Moderate	Instability with small training dataOverfittingParameter tuning
k-Means	Unsupervised clustering	 Creating a known a priori number of spherical, disjoint, equally sized clusters <i>k</i>-modes method can be used for categorical data <i>k</i>-prototypes method can be used for mixed data 	Small to large data sets	Moderate	 Missing values Outliers Standardization Correct number of clusters is often unknown Highly sensitive to initialization Curse of dimensionality
Hierarchical Clustering	Unsupervised clustering	Creating a known a priori number of nonspherical, disjoint, or overlapping clusters of different sizes	Small data sets	Moderate	Missing valuesStandardizationCorrect number of clusters is often unknownCurse of dimensionality
Spectral Clustering	Unsupervised clustering	Creating a data-dependent number of arbitrarily-shaped, disjoint, or overlapping clusters of different sizes	Small data sets	Moderate	Missing valuesStandardizationParameter tuningCurse of dimensionality
Principal Components Analysis (PCA)	Unsupervised feature extraction	 Extracting a data-dependent number of linear, orthogonal features, where N >> p Extracted features can be rotated to increase interpretability, but orthogonality is usually lost Singular value decomposition (SVD) is often used instead of PCA on wide or sparse data Sparse PCA can be used to create more interpretable features, but orthogonality is lost Kernel PCA can be used to extract nonlinear features 	Small to large data sets for traditional PCA and SVD Small to medium data sets for sparse PCA and kernel PCA	Generally low, but higher for sparse PCA or rotated solutions	Missing valuesOutliers
Nonnegative Matrix Factorization (NMF)	Unsupervised feature extraction	Extracting a known a priori number of interpretable, linear, oblique, nonnegative features	Small to large data sets	High	 Missing values Outliers Standardization Correct number of features is often unknown Presence of negative values
Random Projections	Unsupervised feature extraction	Extracting a data-dependent number of linear, uninterpretable, randomly-oriented features of equal importance	Medium to extremely large data sets	Low	Missing values
Factorization Machines	 Supervised regression and classification Unsupervised feature extraction 	 Extracting a known a priori number of uninterpretable, oblique features from sparse or transactional data sets Can automatically account for variable interactions Creating models from a large number of sparse features; can outperform SVM for sparse data 	Medium to extremely large sparse or transactional data sets	Moderate	 Missing values Outliers Standardization Correct number of features is often unknown Less well suited for dense data

