Machine Learning Club

Erstes Treffen

Wer sind wir?

Marius

- 20 Jahre Alt
- Studiert Mathe im 4ten Semester
- Programmiert Machine Learning Projekte in seiner Freizeit

Lars

- 21 Jahre Alt
- Studiert Mathe im 4ten Semester
- Arbeitet mit Machine Learning

Über den Club

Unsere Vision

- Gemeinschaft
- Atmosphäre der Neugier
- Zusammen kreieren
- Alle sind willkommen
- Spaß haben

Konzept

- Wettbewerbe einmal im Monat
- Datensätze werden über die Webseite: https://machine-learning.club/ veröffentlich
- Lösungen werden auf der Webseite eingereicht
- Gewinner kriegen Ehrenpreise und stellen ihre Lösungen vor
- Seminarvorträge, Hackathons, Lesegruppen etc...

Klassifikation

Was machen wir in Machine Learning?

- Machine Learning bedeutet: Computer lernen aus Daten, ohne explizit programmiert zu sein
- Ziel: Muster und Zusammenhänge erkennen, um Vorhersagen treffen zu können
- Es gibt zwei große Arten von Problemen:
 - **Regression** → Vorhersage von Zahlen (z. B. Temperatur, Umsatz)
 - Klassifikation → Einteilung in feste Kategorien (z. B. Spam / Kein Spam)

Was ist Klassifikation?

- Klassifikation bedeutet, dass ein Modell entscheidet, zu welcher Klasse ein
 Objekt gehört
- Die Klassen sind vorher bekannt, z. B.:
 - E-Mail → Spam oder Nicht-Spam
 - Bild → Katze, Hund oder Vogel
- Jede Klasse ist eine mögliche Antwort das Modell wählt **eine davon** aus

Beispiel – Klassifikation im Alltag

Problem	⊚ Klassen
E-Mail-Filter	Spam / Nicht-Spam
Kreditvergabe	Ja / Nein
Handschriftliche Ziffern	0, 1, 2, , 9
Krankheitserkennung	Krank / Gesund

- In allen Fällen gibt es eine feste Menge an Möglichkeiten
- Das Modell soll aus Beispielen lernen, wie es neue Fälle einordnet

Wie funktioniert Klassifikation?

- **Daten sammeln** viele Beispiele mit bekannter Antwort
- **Merkmale wählen** welche Eigenschaften sind wichtig?
- **Modell trainieren** Algorithmus findet Regeln in den Daten
- **Vorhersagen treffen** neue Objekte werden automatisch eingeordnet

Das Modell sieht viele Beispiele – daraus lernt es, was **typisch für jede Klasse** ist

Ziel: Trennung der Klassen

- Das Modell versucht, eine Grenze zu finden, die die Klassen voneinander trennt
- Bei zwei Klassen (z. B. krank / gesund) wäre das eine Trennlinie im Datenraum
- Je nach Methode ist das eine:
 - Gerade
 - Kurve
 - eine komplexe Fläche

Was braucht das Modell?

- Trainingsdaten mit bekannten Klassen
- Jede Zeile besteht aus:
 - Features → messbare Eigenschaften (z. B. Alter, Blutdruck, Raucher: ja/nein)
 - Label → die Klasse (z. B. Schlaganfall: ja/nein)

Die Features liefern die Informationen, aus denen das Modell lernt

Training und Test

- Die Daten werden aufgeteilt in:
 - Trainingsdaten → zum Lernen
 - Testdaten → zum Überprüfen
- Wichtig: Das Modell darf die Testdaten nicht vorher sehen!
- Nur so können wir prüfen, ob es wirklich verallgemeinern kann

Häufige Klassifikationsverfahren

Modell	Beschreibung
Logistische Regression	Einfaches Modell, gibt Wahrscheinlichkeiten für Klassen an
Entscheidungsbaum	Wenn-Dann-Regeln, leicht verständlich
Random Forest	Viele Bäume, robust und genau
📍 k-Nächste Nachbarn	Vergleicht mit den ähnlichsten Beispielen
Neuronale Netze	Sehr flexibel, auch für Bilder, Sprache, etc.

👉 Je nach Problem eignen sich **verschiedene Modelle besser**

X Typischer Workflow

- 1. **Datenvorbereitung** aufräumen, normalisieren, codieren
- 2. Modellauswahl welches Modell passt?
- 3. **Training & Validierung** lernen und testen
- 4. **Hyperparameter-Tuning** Feineinstellungen optimieren
- 5. **Evaluierung** wie gut ist das Modell wirklich?
- 6. **Einsatz** auf neue Daten anwenden
- Dieser Ablauf wiederholt sich oft, um das Modell zu verbessern

Wie misst man, wie gut das Modell ist?

- Accuracy wie viele Vorhersagen waren korrekt?
- **Precision** wie viele der als positiv erkannten Fälle sind wirklich positiv?
- **Recall** wie viele der tatsächlich positiven Fälle wurden erkannt?
- **Confusion Matrix** zeigt alle Treffer und Fehler auf einen Blick
- **Nicht nur Accuracy** zählt bei medizinischen Daten ist Recall oft wichtiger!

Warum ist Klassifikation wichtig?

- Klassifikation hilft, **klare Entscheidungen** zu treffen
- Sie ist die Grundlage vieler moderner Anwendungen:
 - Sicherheitsfilter
 - Medizinische Diagnostik
 - Wirtschaftliche Vorhersagen
- Machine Learning kann hier helfen, schneller, objektiver und skalierbar zu entscheiden

Erste Challenge: Schlaganfälle vorhersagen

Schlaganfälle Übersicht

- Zweithäufigste Todesursache Weltweit
- Risiko Faktoren
 - Beeinflussbar:Hoher Blutdruck, Rauchen, Diabetes, Übergewicht, und ein bewegungsarmer Lebensstil
 - Nicht Beeinflussbar: Alter, Geschlecht, und familien Geschichte
- 80 Prozent aller Schlaganfälle sind verhinderbar!

Unser Datensatz

- Vorhersage basierend auf Attributen wie Alter, BMI, Raucher, Vorerkrankungen etc.
- Ungefähr 5000 Datenpunkte
- Stark unbalanciert (mehr Leute die keinen Schlaganfall erlitten)

Aufbau der Daten

Evaluation

POSITIVE NEGATIVE

TP FN

NEGATIVE FP TN

$$Precision = \frac{TP}{TP + FP} \qquad Recall = \frac{TP}{TP + FN}$$

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

$$F1 \, Score = 2 \, \times \, \frac{Precision \, \times Recall}{Precision + Recall}$$

Regeln

- Max. 4 Leute pro Team
- Wettbewerb endet am 31.05 um Mitternacht
- Öffentliches und Privates Leaderboard
- Max. 5 Abgaben pro Tag

Einleitung zu Kaggle

https://www.kaggle.com/competitions/schlaganfall-vorhersage-wettbewerb/leaderboard

Preise

- Erster Platz: Titel des "Classification Casanovas" mit Pokal
- Bragging Rights ein Leben lang
- Gewinner stellen beim nächsten Treffen ihre Lösungen vor

Kontakt

Machine Learning Club

contact@machine-learning.club

https://machine-learning.club

