

Giới hạn Liên tục Đạo hàm Tích phân

Ứng dụng Đạo hàm, Tích phân

Định nghĩa Đạo hàm:
$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Mở đầu

Chúng ta xét tính chất của hàm $f(x) = x^2 - x + 2$ có đồ thị như hình vẽ dưới đây

X	f(x)	x	f(x)
1.0	2.000000	3.0	8.000000
1.5	2.750000	2.5	5.750000
1.8	3.440000	2.2	4.640000
1.9	3.710000		4.310000
1.95	3.852500	2.05	4.152500
1.99	3.970100		4.030100
1.995	3.985025	2.005	4.015025
1.999	3.997001	2.001	4.003001

Bảng trên cho thấy giá trị của hàm số f(x) khi x dần tới 2 nhưng không bằng 2.

Ta nói "giới hạn của hàm số $f(x) = x^2 - x + 2$ khi x tiến tới 2, bằng 4" và viết

$$\lim_{x \to 2} (x^2 - x + 2) = 4$$

Mở đầu

Xét hàm số:

$$f(x) = \sin(x)/x$$

Tìm giá trị của f(x) khi x tiến tới 0?

х	-0.2	-0.1	-0.05	0.05	0.1	0.2
f(x)	0.993	0.998	0.9995	0.9995	0.998	0.993

Từ bảng giá trị, khi x tiến tới 0, f(x) tiến tới 1.

Mở đầu

Định nghĩa chung

Cho f(x) là một hàm trong khoảng mở có chứa x_0 , có thể trừ chính điểm x_0 .

- *Giới hạn trái* của f(x) khi x tiến tới x_0 là L, ký hiệu là $\lim_{x\to x_0^-} f(x) = L$, nếu giá trị của f(x) gần với L khi x tiến tới nhưng luôn nhỏ hơn x_0 ($x < x_0$).
- **Giới hạn phải** của f(x) khi x tiến tới x_0 là L, ký hiệu là $\lim_{x\to x_0+} f(x) = L$, nếu giá trị của f(x) tiến đến L khi x tiến đến nhưng luôn lớn hơn x_0 ($x > x_0$).
- Nếu $\lim_{x\to x_0^-} f(x) = \lim_{x\to x_0^+} f(x) = L$ thì L là *giới hạn* của f(x) khi x tiến tới x_0 , ký hiệu là $\lim_{x\to x_0} f(x) = L$.

Định nghĩa chính xác

Cho f là một hàm xác định trong một khoảng mở có chứa điểm a, nhưng có thể trừ điểm a.

Ta nói rằng, giới hạn của f(x) khi x tiến tới a là L, ký hiệu là $\lim_{x\to a} f(x) = L$ nếu, với mọi $\varepsilon > 0$, tìm được một số $\delta > 0$ sao cho:

Khi
$$0 < |x - a| < \delta$$
 thì $|f(x) - L| < \varepsilon$

Ví dụ

a) Cho f(x) = C, C là hằng số. CMR: $\lim_{x \to x_0} f(x) = C$

CM: Cho trước $\varepsilon > 0$, vì f(x) = C với mọi x nên với mọi $\delta > 0$ sao cho luôn có $|x - x_0| < \delta$

$$|f(x) - C| = |C - C| = 0 < \varepsilon$$

b) Cho f(x) = x. CMR: $\lim_{x \to x_0} f(x) = x_0$

CM: Cho trước $\varepsilon > 0$ chỉ cần chọn $\delta = \varepsilon$ thì luôn có

$$|x - x_0| < \delta$$
 thì $|f(x) - x_0| = |x - x_0| < \varepsilon$

Định lý

- $\lim_{x \to a} x = a$
- $\lim_{x \to a} c f(x) = c \lim_{x \to a} f(x)$
- $\lim_{x \to a} (f(x) \pm g(x)) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$
- $\lim_{x \to a} (f(x)g(x)) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$
- $\lim_{x \to a} (f(x)/g(x)) = \lim_{x \to a} f(x) / \lim_{x \to a} g(x)$ với điều kiện $\lim_{x \to a} (g(x)) \neq 0$
- $\lim_{x \to a} (f(x))^n = (\lim_{x \to a} f(x))^n$
- $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$

$$\lim_{h \to 0} \frac{(h-3)^2 - 9}{h} = \lim_{h \to 0} \frac{(h^2 - 6h + 9) - 9}{h} = \lim_{h \to 0} (h - 6) = -6$$

→ kỹ thuật: đơn giản hóa biểu thức!

$$\lim_{x \to 0} \frac{\sqrt{4+x} - 2}{x} = ? \lim_{x \to 0} \frac{(\sqrt{4+x} - 2)(\sqrt{4+x} + 2)}{x(\sqrt{4+x} + 2)}$$

$$= \lim_{x \to 0} \frac{\left(\sqrt{4+x}\right)^2 - 2^2}{x(\sqrt{4+x} + 2)} = \lim_{x \to 0} \frac{4+x-4}{x(\sqrt{4+x} + 2)}$$

$$= \lim_{x \to 0} \frac{1}{\sqrt{4+x} + 2} = \frac{1}{4}$$

→ kỹ thuật: nhân và chia với cùng một biểu thức!

Ví dụ

$$\lim_{x \to 1} \frac{x^n - 1}{x^m - 1} = ?$$

Khi
$$x = 1$$
 thì $\frac{x^n - 1}{x^m - 1} = \frac{0}{0}$

$$\frac{x^n - 1}{x^m - 1} = \frac{(x - 1)(1 + x + x^2 + \dots + x^{n-1})}{(x - 1)(1 + x + x^2 + \dots + x^{m-1})}$$

$$\lim_{x \to 1} \frac{x^n - 1}{x^m - 1} = \frac{n}{m}$$

Ví du

$$\lim_{x \to 0} \frac{\sqrt[3]{1+x} - 1}{x} = ?$$

Đặt
$$\sqrt[3]{1+x} = y$$

 $\Rightarrow x = y^3 - 1$

$$\Rightarrow \lim_{x \to 0} \frac{\sqrt[3]{1+x} - 1}{x} = \lim_{x \to 0} \frac{y - 1}{y^3 - 1}$$

$$= \lim_{y \to 1} \frac{y - 1}{(y - 1)(y^2 + y + 1)} = \lim_{y \to 1} \frac{1}{(y^2 + y + 1)}$$

$$= 1/3$$

Ví dụ

$$\lim_{x \to 0} \frac{\sqrt[3]{1+x} - \sqrt[5]{1+x}}{x} = ?$$

Gợi ý: đặt

$$\sqrt[3]{1+x} = y \Rightarrow x = y^3 - 1$$

$$\sqrt[5]{1+x} = z \Rightarrow x = z^5 - 1$$

$$\frac{\sqrt[3]{1+x} - \sqrt[5]{1+x}}{x} = \frac{(\sqrt[3]{1+x} - 1) + (1 - \sqrt[5]{1+x})}{x}$$

Định nghĩa

Hàm nguyên lớn nhất là hàm định nghĩa bởi: [[x]]= số nguyên lớn nhất mà luôn nhỏ hơn hoặc bằng x.

$$Vidu: [[3.4]] = 3; [[4.9]] = 4$$

Câu hỏi

$$\lim_{x \to 3} [[x]] = ?$$

$$\lim_{x \to 3^{-}} [[x]] = 2$$
$$\lim_{x \to 3^{+}} [[x]] = 3$$

Định lý kẹp

Cho $f(x) \le g(x) \le h(x)$ với mọi x trong khoảng mở có chứa x_0 , trừ x_0 . Nếu

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = L$$

thì

$$\lim_{x \to x_0} g(x) = L$$

Định lý
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Ví dụ

Tính

$$\lim_{x\to 0} \frac{\tan x}{x} = ?$$

Gợi ý:

$$\frac{\tan x}{x} = \frac{\sin x}{x} \cdot \frac{1}{\cos x}$$

Ví dụ

Tính

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = ?$$

Gợi ý: sử dụng công thức hạ bậc

$$\sin^2 x = \frac{1 - \cos 2x}{2}$$

Ví dụ

Tính

$$\lim_{x\to 0} \frac{\sin mx}{\sin nx} = ?$$

Gợi ý: nhân chia thêm nx và mx

Ví dụ

Tính

$$\lim_{x\to 0} \frac{\cos x - \cos 3x}{x^2} = ?$$

Gợi ý: sử dụng công thức hạ bậc

Câu hỏi

Tính

$$\lim_{x \to 0} \frac{1 - \cos x \cos 2x}{1 - \cos x} = ?$$

Gợi ý: sử dụng công thức 1 - ab = (1 - a)b + (1 - b)

$$\frac{1 - \cos x \cos 2x}{1 - \cos x} = \frac{(1 - \cos x)\cos 2x + 1 - \cos 2x}{1 - \cos x}$$

Định nghĩa

Cho f(x) là một hàm trên khoảng mở có chứa x_0 , trừ bản thân điểm x_0 .

- **Giới hạn của** f(x) là vô cùng, khi x tiến đến x_0 , ký hiệu $\lim_{x\to x_0} f(x) = \infty$, nếu f(x) có thể lớn tùy ý khi x tiến tới x_0 (từ cả hai phía) nhưng không bằng x_0 .
- •Tương tự, chúng ta có định nghĩa đối với $\lim_{x\to x_0} f(x) = -\infty$ và giới hạn vô cùng đối với giới hạn trái và phải của x_0

Định nghĩa

Cho f(x): $\mathbb{R} \to \mathbb{R}$. Ta có:

- Giới hạn của f(x) khi x tiến ra vô cùng là L, ký hiệu $\lim_{x\to f}(x) = L$, nếu f(x) tiến gần đến L khi x đủ lớn. $(+\infty = \infty)$
- Giới hạn của f(x) khi x tiến ra âm vô cùng là L, ký hiệu $\lim_{x\to -\infty} f(x) = L$, nếu f(x) tiến gần đến L khi x đủ bé (âm).

Tính
$$\lim_{x \to \infty} \frac{2x^4 - x^2 + 8x}{-5x^4 + 7}$$

$$= \lim_{x \to \infty} \frac{x^4 \left(2 - \frac{1}{x^2} + \frac{8}{x^3}\right)}{x^4 \left(-5 + \frac{7}{x^4}\right)}$$

$$= \lim_{x \to \infty} \frac{2 - \frac{1}{x^2} + \frac{8}{x^3}}{-5 + \frac{7}{x^4}} = \frac{2 + 0 + 0}{-5 + 0}$$

$$\to kỹ thuật: chia cả tử và mẫu cho số hạng lớn nhất!$$

Câu hỏi

Tính
$$\lim_{x \to \infty} \frac{\sqrt{x + \sqrt{x}}}{\sqrt{x + 1}} = ?$$

Gợi ý: chia cả tử và mẫu cho \sqrt{x}

Câu hỏi

Tính
$$\lim_{x \to \infty} \left(\sqrt{x + \sqrt{x}} - \sqrt{x} \right) = ?$$

Gợi ý: nhân liên hợp

Ví dụ

Tính
$$\lim_{x \to 1} \left(\frac{3}{1 - \sqrt{x}} - \frac{2}{1 - \sqrt[3]{x}} \right) = ?$$

Gợi ý: đặt $x = y^6$

$$\lim_{x \to 1} \left(\frac{3}{1 - \sqrt{x}} - \frac{2}{1 - \sqrt[3]{x}} \right) = \lim_{y \to 1} \frac{1 + 2y}{(1 + y)(1 + y + y^2)} = \frac{1}{2}$$

Định lý

Khi x đủ lớn, chúng ta có (for k > 0):

$$c \ll \ln(x) \ll x^k \ll e^x$$

Tức là:

$$\lim_{x \to \infty} \frac{c}{\ln(x)} = \lim_{x \to \infty} \frac{\ln(x)}{x^k} = \lim_{x \to \infty} \frac{x^k}{e^x} = 0 \text{ khi } k > 0$$

$$\lim_{x \to \infty} \frac{a_m x^m + a_{m-1} x^{m-1} + \dots + a_0}{b_n x^n + b_{n-1} x^{n-1} + \dots + b_0} = \begin{bmatrix} a_m / b_n & hi \\ 0 & khi \end{bmatrix} \begin{pmatrix} m = n \\ m < n \end{pmatrix}$$

Câu hỏi: điều gì sẽ xảy ra nếu m > n?

Định lý

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = \lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x = \lim_{u \to 0} (1 + u)^{\frac{1}{u}} = e$$

Ví du

Tính
$$\lim_{x \to \infty} \left(\frac{x^2 - 1}{x^2 + 1} \right)^{x^2} = \lim_{x \to \infty} \left(1 - \frac{2}{x^2 + 1} \right)^{x^2}$$
$$= \lim_{x \to \infty} \left\{ \left(1 - \frac{2}{x^2 + 1} \right)^{-\frac{x^2 + 1}{2}} \right\}^{\frac{-2x^2}{x^2 + 1}}$$
$$= e^{-2}$$

Ví dụ

Tính
$$\lim_{x \to 0} (1 + \sin x)^{\frac{1}{x}} = ?$$

Gợi ý: kiểm tra xem giới hạn trên có dạng vô định không?

$$\lim_{x \to 0} \left\{ (1 + \sin x) \frac{1}{\sin x} \right\}^{\frac{\sin x}{x}}$$

$$= e$$

Ví du

Tính

$$\lim_{x \to 0} \left(\frac{\cos x}{\cos 2x} \right)^{\frac{1}{x^2}} = ?$$

Gợi ý: kiểm tra xem giới hạn trên có dạng vô định không?

Đáp án: e^{3/2}

$$\left(\frac{\cos x}{\cos 2x}\right)^{\frac{1}{x^2}} = \left\{ \left(1 + \frac{\cos x - \cos 2x}{\cos 2x}\right)^{\frac{\cos x - \cos 2x}{x^2 \cos 2x}} \right\}^{\frac{\cos x - \cos 2x}{x^2 \cos 2x}}$$

$$\frac{\cos x - \cos 2x}{x^2 \cos 2x} = \frac{\cos x - 1}{x^2 \cos 2x} + \frac{1 - \cos 2x}{x^2 \cos 2x}$$
$$= \frac{-2\sin^2(x/2)}{x^2 \cos 2x} + \frac{2\sin^2 x}{x^2 \cos 2x} = \frac{3}{2}$$

Ví dụ

Tính
$$\lim_{x \to 0} \left(\frac{1+x}{2+x} \right)^{\frac{1-\sqrt{x}}{1+x}} = ?$$

Gợi ý: kiểm tra xem giới hạn trên có dạng vô định không?

Đáp án: 1/2

Ví dụ

Tính
$$\lim_{x \to \infty} \left(\frac{x+1}{2x+1} \right)^{\frac{1-x}{1-\sqrt{x}}} = ?$$

Gợi ý: kiểm tra xem giới hạn trên có dạng vô định không?

Đáp án: 0

Bài tập

- **1.** Tính a) $\lim_{t\to 0} \frac{\sqrt{1+t}-\sqrt{1-t}}{t}$ b) $\lim_{x\to 0} \frac{(\sin^2 x)\ln(1+x)}{\tan x x}$
- **2.** Cho $\frac{x^2+x-6}{|x-2|}$. Tìm $\lim_{x\to 2^+} g(x)$ và $\lim_{x\to 2^-} g(x)$. Tồn tại hay không $\lim_{x\to 2} g(x)$? Vẽ đồ thị hàm số g(x)?
- **3.** Tìm a để giới hạn sau tồn tại $\lim_{x\to -2} \frac{3x^2+ax+a+3}{x^2+x-2}$. Tính giới hạn của biểu thức trên với a tìm được.
- **4.** Tính: a) $\lim_{x\to 0} x^2 \sin \frac{1}{x}$ b) $\lim_{x\to 0} \sqrt[3]{x^3 + x^2} \sin \frac{\pi}{x}$ c) $\lim_{x\to 0} \sqrt{x} e^{\sin \frac{\pi}{x}}$
- **5.** Tìm $\lim_{n\to\infty} \left(\frac{1^2}{n^3} + \frac{3^2}{n^3} + \frac{5^2}{n^3} + \dots + \frac{(2n-1)^2}{n^3} \right)$
- **1.6 Exercises:** 5, 21, 27, 29, 33 **1.7 Exercises:** 37, 43