INTERPRETABLE ML- KAGGLE COMPETITION

GROUP B

NITISH ACHARYA, JULIA BLUME, ELIAS BRUMMUND, AYREEN JAPUTRI, VAHE SHELUNTS

WHAT DATA SCIENTISTS LOOK LIKE

NITISH

Expert for deriving addresses

ELIAS

Expert for SHAP Values

AYREEN

Expert for Decision Trees

JULIA

Expert for Partial Dependence Plots

VAHE

Expert for Feature Engineering

FROM RAW DATA TO KNOWLEDGE

WHAT WAS SPECIAL ABOUT THE DATA SET - FINDINGS FROM EDA

Increasing interest level as the apartment price decreases

WHAT WAS SPECIAL ABOUT THE DATA SET

Word cloud for most used words in column "features"

FEATURE ENGINEERING ON THE COLUMN "FEATURES"

FEATURE ENGINEERING ON THE COLUMN "FEATURES"

```
special_char = ['!', '"', '$', '&', '(', ')', '*', '+', '-', '.', '/', ':', ';', '<', '>', '@', '^', '\xa0', '@', '•']
for x in range(len(special_char)):
    match = [e for e in feature_total if special_char[x] in e]
    print('First 5 matches for ', special_char[x], ': ', match[:5], '\n')
```

First 5 matches for !: ['** HOLY NO FEE DEAL BATMAN! * OVERSIZED 2BR HOME * SPARKLING CLEAN & BRITE * HEART OF GREENPOINT * NEAR THE PARK & TRAIN S **', '!!!!LOW FEE!!!!', '** CHELSEA BABY! * MASSIVE 2BR SUPER SHARE * ALL MODERN & NEW * ELEV /LNDRY BLDG **', 'Garage Parking!', '** COURT SQUARE GEM! * SPRAWLING SUNDRENCHED 2BR HOME * CUSTOM FINISHES * DISHWASHER * FIREPLACES * EAT-IN KITCHEN * BAY WINDOWS **']

Clean words from special characters to make them comparable

Encode keywords into a data frame, add interest level column and fit a random forest

Compute feature importance to find TOP 10 keywords

FEATURE ENGINEERING ON THE COLUMN "FEATURES"

MAKING USE OF THE DESCRIPTION COLUMN

FROM LONGITUDE/ LATITUDE TO AN ADDRESS

To see if the price and interest level are dependent upon a particular area

- create service provider locator
- 1. geopy lib 3. timeout = 10 sec
 - 4. reverse geocoding

	interest_level	price	listing_id	Streetnumber	Streetname	neighbourhood	Community
	high	3195	6811957	752	Broadway	NoHo	NoHo Historic District
	medium	2000	6811965	230	East 54th Street	Midtown East	Manhattan Community Board 6
)	high	5850	6811966	135	East 22nd Street	Gramercy	Manhattan Community Board 6
	medium	2745	6811973	269	West 94th Street	Upper West Side	Manhattan Community Board 7

FINAL DATAFRAME FOR MODELLING

	#	Column				
0		bathrooms				
	1	bedrooms				
	2	latitude				
	3	longitude				
	4	price				
	5	interest_level				
	6	num_photos				
	7	num_features				
	8	num_description_words				
	9	hardwood				
	10	doorman				
	11	fee				
	12	cats				
	13	laundry				
	14	war				
	15	fitness				
	16	elevator				
	17	dishwasher				
	18	dogs				
	19	The Bronx				
	20	Lenox Hill				
	21	Queens				
	22					
	23					
	24	Steinway				
	25	Sunset Park				

RANDOM FOREST

Scikit-Learn
 RandomizedSearchCV
 method

HYPERPARAMETERS

n_estimators: I44
min_samples_split: I0
min_samples_leaf: I
max_features: sqrt
max_depth: 60
bootstrap: False

DECISION TREE

Scikit-Learn
 RandomizedSearchCV
 method

HYPERPARAMETERS

max_depth: 25 max_features: 36 min_samples_leaf: 41

RANDOM FOREST

VS

DECISION TREE

SCORES

CROSS ENTROPY: 0.702 **№** 0.679
ACCURACY: 0.691 **№** 0.688
RECALL: 0.691 **№** 0.688
ROCAUC: 0.743 **№** 0.750

SCORES

CROSS ENTROPY: 0.724 0.778

ACCURACY: 0.682 0.677

RECALL: 0.682 0.677

ROCAUC: 0.724 **→** 0.727

3: Plain Di

N. Pruned V

PARTIAL DEPENDENCE PLOTS 1 FEATURE – 2 MODELS

Feature: price Model: Random Forest

Feature: price Model: Decision Tree

EXPLAINING A MODEL

"CAN I TRUST THE PREDICTION?"

LOCAL EXPLANATION WITH SHAP PLOT

PROJECT TAKE AWAYS

"Impressed by how much we found out in only 4 weeks"

"is that enough **text**? I mean everyone can read the code?"

"some data (columns) looks simple but using it requires a ton of work"

"complicated to find a suited platform for group coding"

"can you explain **SHAP** one more time?"

"It's **NOT**just 3 lines
of code"

"validation or train set?"