

Digital Systems 18B11EC213

Module 1: Boolean Function Minimization Techniques and Combinational Circuits-6

Dr. Saurabh Chaturvedi

Boolean Algebra

- Boolean algebra was named after George Boole.
- George Boole applied a set of symbols to logical operations.
- Digital electronics applies his set theory and logic to binary switching networks.
- Binary number system is used to represent the two possible states of digital circuits and systems.

The symbols 0 and 1 are used to represent:

True or False

Flow or No Flow

Open or Closed

Voltage1 or Voltage2

etc.

- Boolean algebra deals with manipulation of variables and constants.
- Boolean variables, such as X, Y, Z, A, B, C can have values of either 0 or 1.
- 0 and 1 represent two different states of a quantity.

i.e., False (F) or True (T)

Low voltage or high voltage, usually written as L or H

No flow or flow

$$0 \text{ V} \equiv \text{logical } 0$$

+ ve
+ $5 \text{ V} \equiv \text{logical } 1$
or $0 \text{ V} \equiv \text{logical } 1$
+ $5 \text{ V} \equiv \text{logical } 0$

Basic operations: NOT (Invert)

AND

OR

e.g., (NOT 1) is written as: 1' or 1

• NOT X: X' or \overline{X}

X AND Y: X.Y

X OR Y: X + Y

• 1 OR X: 1 + X

NOT
 x
 inversion symbol or "bubble"

$$A \longrightarrow C = A \cdot B$$

$$\begin{array}{c} A \\ B \end{array} \longrightarrow \begin{array}{c} + \\ \end{array} C = A + B$$

Characteristics of an inverter (NOT gate):

if
$$X = 0$$
, $X' = 1$

if
$$X = 1$$
, $X' = 0$

Truth Table

X	X'
0	1
1	0

AND gate

OR gate

Truth Table

X	У	x . y
0	0	0
0	1	0
1	0	0
1	1	1

Truth Table

X	У	x + y
0	0	0
0	1	1
1	0	1
1	1	1

Boolean Algebra Postulates

A **Boolean algebra** consists of a set of elements *B*, with two binary operations {+} and {.} and a unary operation {'}, such that the following axioms hold:

- The set *B* contains at least two distinct elements x and y.
- Closure: For every x, y in B,

$$x + y$$
 is in B
 $x \cdot y$ is in B

Commutative laws: For every x, y in B,

$$x + y = y + x$$
$$x \cdot y = y \cdot x$$

• Associative laws: For every x, y, z in B,

$$(x + y) + z = x + (y + z) = x + y + z$$

 $(x \cdot y) \cdot z = x \cdot (y \cdot z) = x \cdot y \cdot z$

■ Identities (0 and 1):

$$0 + x = x + 0 = x$$
 for every x in B
 $1 \cdot x = x \cdot 1 = x$ for every x in B

Distributive laws: For every x, y, z in B,

$$x \cdot (y + z) = (x \cdot y) + (x \cdot z)$$

 $x + (y \cdot z) = (x + y) \cdot (x + z)$

■ **Complement**: For every x in B, there exists an element x' in B such that

$$x + x' = 1$$

$$x \cdot x' = 0$$

The set $B = \{0, 1\}$ and the logical operations OR, AND and NOT satisfy all the axioms of a Boolean algebra.

☐ A **Boolean expression** is an algebraic statement containing Boolean variables and operators.

Precedence of Operators

- To lessen the brackets used in writing Boolean expressions, operator precedence can be used.
- Precedence (highest to lowest): ' . +
- Examples:

$$a \cdot b + c = (a \cdot b) + c$$

 $b' + c = (b') + c$
 $a + b' \cdot c = a + ((b') \cdot c)$

Truth Table

 A truth table provides a listing of every possible combination of inputs and its corresponding outputs

INPUTS	OUTPUTS
• • •	• • •
•••	• • •

■ Example: 2 inputs, 2 outputs

X	У	х.у	x + y
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

Example: 3 inputs, 2 outputs

X	У	Z	y + z	x.(y+z)
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

Proof Using Truth Table

Prove that
$$x \cdot (y + z) = (x \cdot y) + (x \cdot z)$$

• Construct truth table for LHS and RHS of above equality.

X	у	Z	y + z	x.(y+z)	x.y	X.Z	(x.y)+(x.z)
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

From the truth table, LHS = RHS.

Duality Principle

Every valid Boolean expression (equality) remains valid if the operators and identity elements are interchanged, as follows:

$$+ \leftrightarrow .$$
 $1 \leftrightarrow 0$

Example: Given the expression

$$a + (b \cdot c) = (a + b) \cdot (a + c)$$

then its dual expression is

$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$$

If $(x + y + z)' = x' \cdot y' \cdot z'$ is valid, then its dual form is also valid, i.e.,

$$(x.y.z)' = x' + y' + z'$$

Basic Theorems of Boolean Algebra

• Apart from the axioms/postulates, there are other useful Boolean theorems.

1. **Idempotency**

(a) x + x = x (b) $x \cdot x = x$

```
Proof of (a):

x + x = (x + x) \cdot 1 (identity)

= (x + x) \cdot (x + x') (complementarity)

= x + x \cdot x' (distributivity)

= x + 0 (complementarity)

= x (identity)
```

2. **Null elements** for + and . operators

(a)
$$x + 1 = 1$$
 (b) $x \cdot 0 = 0$

(b)
$$x \cdot 0 = 0$$

3. **Involution** (x')' = x

4. Absorption

(a)
$$x + x \cdot y = x$$

(a)
$$x + x \cdot y = x$$
 (b) $x \cdot (x + y) = x$

5. Distributive

(a)
$$x + x' \cdot y = x + y$$
 (b) $x \cdot (x' + y) = x \cdot y$

$$\mathbf{x}_{\bullet}(\mathbf{x}'+\mathbf{y})=\mathbf{x}_{\bullet}\mathbf{y}$$

6. DeMorgan's theorem

(a)
$$(x + y)' = x' \cdot y'$$

(b)
$$(x,y)' = x' + y'$$

7. Consensus

(a)
$$x \cdot y + x' \cdot z + y \cdot z = x \cdot y + x' \cdot z$$

(b)
$$(x+y) \cdot (x'+z) \cdot (y+z) = (x+y) \cdot (x'+z)$$

These theorems can be proved using the truth table method.

Exercise: Prove the DeMorgan's theorem using the truth table.

■ The theorems can also be proved by algebraic manipulation using axioms/postulates or other basic theorems.

Boolean Functions

- **Boolean function** is an expression formed with binary variables, the two binary operators: OR and AND, and the unary operator: NOT, parenthesis and the equal sign.
- Its result is also a binary value.
- We usually use . for AND, + for OR, and ' or ¬ for NOT

Examples: Boolean functions

$$F1 = x.y.z'$$

$$F2 = x + y'.z$$

$$F3 = (x'.y'.z) + (x'.y.z) + (x.y')$$

$$F4 = x.y' + x'.z$$

X	у	Z	F1	F2	F3	F4
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	0	0	0	0
0	1	1	0	0	1	1
1	0	0	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	0

From the truth table, F3 = F4

We can also prove by algebraic manipulation that F3 = F4

Complement of Functions

■ Given a function F, the complement of this function F', is obtained by interchanging 1 with 0 in the function's output values.

Example: Boolean function F1 = xyz'

Complement of F1:

$$F1' = (x.y.z')'$$

= $x' + y' + (z')'$ DeMorgan
= $x' + y' + z$ Involution

X	У	Z	F 1	F1'
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	1	0
1	1	1	0	1

References

- M. M. Mano, *Digital Logic and Computer Design*, 5th ed., Pearson Prentice Hall, 2013.
- R. P. Jain, *Modern Digital Electronics*, 4th ed., Tata McGraw-Hill Education, 2009.