MTH 307 - Spring 2022

Assignment #7

Due: Friday, March 4, 2022 (4pm)

For each problem, include the statement of the problem. Leave a blank line. At the beginning of the next line, write **Solution** or **Proof** – as appropriate.

1. Suppose $T \in \mathcal{L}(V)$ and $T^2 = I$ and -1 is not an eigenvalue of T. Prove that T = I.

Proof. Since we are given $T^2 = I$, we can subtract I from both sides to obtain $T^2 - I = 0$. Further, we can split this into

$$(T+I)((T-I)v) = 0$$
 and $(T-I)((T+I)v) = 0$.

If we choose any $v \in V$ where $v \neq \vec{0}$ and $w \in V$ such that $w = (T-I)v \neq 0$, then (T+I)w = 0 by the first equation. Simplifying, this would imply that Tw = -Iw and -1 to be an eigenvalue. This contradicts our assumption that -1 is not an eigenvalue. Hence, w must equal 0 to remove this eigenvalue. Therefore w = 0 = (T-I)v then (T-I)v = 0. Simplifying this we obtain Tv = Iv for all $v \neq 0$. If v = 0 then $T\vec{0} = I\vec{0}$ is certainly true. Hence Tv = Iv for all $v \in V$. By function equivalency we know T = I when -1 is not an eigenvalue.

2. Suppose $P \in \mathcal{L}(V)$ and $P^2 = P$. Prove that $V = \text{null } P \oplus \text{range } P$.

Proof. Using the given notion that $P^2 = P$ we can simplify as follows:

$$P^2 = P \iff P^2 - P = 0 \iff P(P - I) = 0.$$

Hence for all $v \in V$, P(P-I)v = 0. This implies that null $P \supset \{(P-I)v : v \in V\}$. Thus a typical element $v \in V$ can be rewritten as

$$v = \underbrace{Pv}_{\text{range}P} - \underbrace{(P-I)v}_{\text{null}P}.$$

Hence V = range P + null P. We need the intersection $\text{null } P \cap \text{range } P$, and to do this we need null P's equality. Let $v \in \text{null } P$. Then Pv = 0 implies that (by the above equation) v = Pv - (P - I)v = (P - I)(-v). Hence

$$\operatorname{null} P = \{ (P - I)v : v \in V \}.$$

As such, the intersection of null P and range P is when Pv = (P-I)v = Pv - Iv. Therefore 0 = -Iv, implying that null $P \cap \text{range } P = \{\vec{0}\}$. We can apply the definition of a Direct Sum to get that $V = \text{null } P \oplus \text{range } P$. 3. Suppose $T \in \mathcal{L}(V)$ and v is an eigenvector of T with eigenvalue λ . Suppose $p \in \mathcal{P}(\mathbf{R})$. Prove that $p(T)v = p(\lambda)v$.

Proof. Let p be of the form $p(z) = a_0 + a_1 z + \cdots + a_m z^m$. Then we have

$$p(T)v = (a_0T^0 + a_1T^1 + \dots + a_mT^m)v$$

$$= a_0T^0v + a_1T^1v + \dots + a_mT^mv$$

$$= a_0\lambda^0v + a_1\lambda^1v + \dots + a_m\lambda^mv$$

$$= (a_0 + a_1\lambda + \dots + a_m\lambda^m)v$$

$$= p(\lambda)v$$
linearity
$$definition of p$$

4. Suppose W is a complex vector space and $T \in \mathcal{L}(W)$ has no eigenvalues. Prove that every subspace of W invariant under T is either $\{0\}$ or infinite-dimensional.

Proof. Suppose W is non-zero, finite dimentional, then by Theorem 5.21 it has an eigenvalue. Hence $T|_U$ has some eigenvalue λ and consequently T has that eigenvalue λ . This is a contradiction to the assumption that T has no eigenvalues. Therefore W must be $\{0\}$ or infinite dimentional to satisfy T's assumption. \square

5. Suppose V is a finite-dimensional complex vector space and $T \in \mathcal{L}(V)$. Define a function $f: \mathbf{C} \to \mathbf{R}$ by

$$f(\lambda) = \dim \operatorname{range}(T - \lambda I).$$

Prove that f is not a continuous function.

Proof. Let dim V = n.

Because we are in a finite dimensional *complex* vector space we are guaranteed the existance of some eigenvalue λ_0 for T (when T is not the zero transformation). Since $T - \lambda_0 I$ is not surjective, then $f(\lambda_0) = \dim \operatorname{range} T \leq n-1$ by the rank-nullity theorem (FTLM). If λ_1 is not an eigenvalue, then $T - \lambda_1 I$ implies $T = \lambda_1 I$. Since λ_1 is not an eigenvalue $(T - \lambda_1 I)$ is surjective. Hence $f(\lambda_1) = n$ by rank-nullity. We will assume that the output of dim is a nonnegative integer (dim $= 0, 1, 2, \ldots$). Since we have f = n and $f \leq n-1$ for 2 different values, f is discontinuous. (The only way to be continuous is if f is constant.)

6. Suppose $T \in \mathcal{L}(V)$ has a diagonal matrix A with respect to some basis of V and that $\lambda \in \mathbf{F}$. Prove that λ appears on the diagonal of A precisely dim $E(\lambda, T)$ times.

Proof. Let $m = \dim V$ and $\{v_1, \ldots, v_m\}$ be a basis for V. Then denote the diagonal entries of A by $\lambda_1, \ldots, \lambda_n$.

A basis for the eigenspace is every $v_i \in V$ such that $(T - \lambda_i I)v_i = \vec{0}$ with $i \in [1, m]$. This is true only when $\lambda_i = \lambda$. We can build a basis for $E(\lambda, T)$ by appending v_i each time $\lambda_i = \lambda$. Since the dimention is the number of elements in a basis, dim $E(\lambda, T)$ is exactly equal to the number of times $\lambda = \lambda_i$; the number of times λ appeared on the diagonal of A.

7. Show that the function that takes $((x_1, x_2), (y_1, y_2)) \in \mathbf{R}^2 \times \mathbf{R}^2$ to $|x_1y_1| + |x_2y_2|$ is not an inner product on \mathbf{R} .

Proof. Let ϕ be defined as follows,

$$\phi: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$$
$$\phi((x_1, x_2), (y_1, y_2)) = |x_1 y_1| + |x_2 y_2|$$

Suppose ϕ is an inner product. Then definition of an inner product has homogeneity in the first slot, $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$. Leting $u = v = e_1$ and $\lambda = -1$, then

$$\phi(-e_1, e_1) = |-1 \cdot 1| + |0 \cdot 0| = 1.$$

and

$$-\phi(e_1, e_1) = -(|1 \cdot 1| + |0 \cdot 0|) = -1.$$

Since $1 \neq -1$ we have a contradiction to the assumption that ϕ is an inner product. Therefore ϕ is not an inner product by counterexample.

8. Suppose $T \in \mathcal{L}(V)$ is such that $||Tv|| \leq ||v||$ for every $v \in V$. Prove that $T - \sqrt{2}I$ is invertible.

Proof. Suppose that $\lambda = \sqrt{2}$ is an eigenvalue. Let $u \in V^*$. Then $Tu = \lambda u = \sqrt{2}u$ and $||Tu|| = ||\sqrt{2}u|| = \sqrt{2}||u||$. This contadicts the assumption that $||Tv|| \le ||v||$, hence $\sqrt{2}$ is not an eigenvalue. Consequestly, $(T - \sqrt{2}I)$ is invertible.

9. Suppose ||u|| = ||v|| = 1 and $\langle u, v \rangle = 1$. Prove that u = v.

Proof. By the Cauchy-Schwarz Inequality, because $|\langle u,v\rangle|=\|u\|\,\|v\|=1$, we get that u=cv for some scalar $c\in\mathbb{F}$. Substituting u=cv into $\langle u,v\rangle$,

$$1 = \langle u, v \rangle$$

$$= \langle cv, v \rangle$$

$$= c \langle v, v \rangle$$

$$= c \cdot 1$$

$$= c.$$

Therefore c = 1 and $u = 1 \cdot v$ implies u = v.