

PointNet on FPGA for Real-Time LiDAR Point Cloud Processing

Lin Bai, Yecheng Lyu, Xin Xu and Xinming Huang Worcester Polytechnic institute

2020 IEEE International Symposium on Circuits and Systems Virtual, October 10-21, 2020

Overview

- Introduction
- PointNet Structure
- Optimization
- Hardware Architecture
- System Building
- Conclusion

- LiDAR widely used in autonomous robots and vehicles
 - Robust to lighting condition
 - Small number of data LiDAR
 - 28.8K pixels ~ VLP-16
 - 133.33K pixels ~ HDL-64E Image
 - 777.6K pixels ~ 720p
 - 2M pixels ~ 1080p

PointNet Structure

- Simple: all MLP, no convolution
- Robust: not affected by point could order, transformation

PointNet Structure

- Guarantee transformation (rotation, tarnation) invariant
- All fully connected layer (matrix multiplication)

Optimization for Hardware

- Loop optimization
- Quantization

Hardware Architecture

• SIMD structure

Hardware Architecture

- SIMD structure
- Two-stage buffer
 - Less accuracy loss
 - Less on-chip memory consumption

System Building

- VLP-16 connects to ZCU104 via Ethernet
- Velodyne driver is implanted into PS side (22-23 ms/set)
- DDR buffers point cloud

Performance comparison

Networks	Processing Time		
	INT8	INT16	
PointNet-classification	19.8 ms	27.8 ms	
PointNet-segmentation	34.6 ms	42.6 ms	

Resource consumption (Xilinx ZCU104)

Bit Width	LUT	FF	DSP	BRAM	URAM
INT8	19530 (8%)	36010 (8%)	1026 (60%)	114 (37%)	48 (50%)
INT16	30933 (13%)	60412 (13%)	1026 (60%)	123 (39%)	96 (100%)

Thank you!