Contest

Ali Alghaithi

Methods:

- 1. Linear interpolation
- 2. Stineman interpolation
- 3. Modeling Each Point
- 4. Linear + ML models
- 5. tslm is used to fit linear models to time series including trend and seasonality components.

linear interpolation

```
test <- read_csv("~/Box/Advance NL Class/Contest1/test.csv")
for (i in unique(test$ID)){
  for (j in 3:7){
   test[test$ID == i, j] = na.interpolation(test[test$ID == i, j], option = "linear" )
  }
}</pre>
```

*	ID ‡	Time ‡	Latitude [‡]	Longitude *	AltB ‡	GndSpd *	VSpd =
1	31	57	41.26664	-95.75749	1240.1	44.46	-71.44
2	31	58	NA	NA	NA	NA	NA
3	31	59	NA	NA	NA	NA	NA
4	31	60	NA	NA	NA	NA	NA
5	31	61	NA	NA	NA	NA	NA
6	31	62	NA	NA	NA	NA	NA
7	31	63	NA	NA	NA	NA	NA
8	31	64	NA	NA	NA	NA	NA
9	31	65	NA	NA	NA	NA	NA
10	31	66	NA	NA	NA	NA	NA
11	31	67	NA	NA	NA	NA	NA
12	31	68	NA	NA	NA	NA	NA
13	31	69	NA	NA	NA	NA	NA
14	31	70	NA	NA	NA	NA	NA
15	31	71	NA	NA	NA	NA	NA
16	31	72	NA	NA	NA	NA	NA
17	31	73	41.26193	-95.75766	1280.1	73.30	346.98
18	31	74	NA	NA	NA	NA	NA
19	31	75	N/A	N/A	NA	NA	NA

Stineman interpolation

```
library(imputeTS)
for (i in unique(test$ID)){
  for (j in 3:7){
   test[test$ID == i, j] = na.interpolation(test[test$ID == i, j], option = "stine" )
}
```

stinterp

From stinepack v1.3 by Tomas Johannesson

99.99th Percentile

A Consistently Well Behaved Method Of Interpolation

Returns the values of an interpolating function that runs through a set of points in the xy-plane according to the algorithm of Stineman (1980).

1. If values of the ordinates of the specified points change monotonically, and the slopes of the line segments joining the points change
monotonically, then the interpolating curve and its slope will change monotonically.
2. If the slopes of the line segments joining the specified points change monotonically, then the slopes of the interpolating curve will

points will result conditions (1) or (2) being not longer satisfied. Then making this small change in the ordinate or slope at a point will

3. Suppose that the conditions in (1) or (2) are satisfied by a set of points, but a small change in the ordinate or slope at one of the

According to Stineman, the interpolation procedure has "the following properties:

cause no more than a small change in the interpolating curve."

change monotonically.

Linear and Stineman interpolation

```
library(imputeTS)
- for (i in unique(test$ID)){
for (j in 3:7){
 test[test$ID == i, j] = na.interpolation(test[test$ID == i, j], option = "stine")
 test1<- test
 test <- read_csv("~/Box/Advance NL Class/Contest1/test.csv")
for (i in unique(test$ID)){
+ for (j in 3:7){
 test[test$ID == i, j] = na.interpolation(test[test$ID == i, j], option = "linear" )
 test2<- test
 test <- (test2+ test1) /2
```

Linear	Stineman	Stineman+ Linear		
0.11978	0.12504	0.11943	Kaggle score	

Modeling Each Point

- Creating New Variables

Other variables	start	End	Avg

 Creating another 15 data sets, each one represent a step, train1 = data of step 1

Linear + ML models

- Make train looks like test (deleting 15 seconds)
- Use Linear interpolation to imputed NA (Imputed train data)

- Imputed train data	- Original train
Predictors	Target Variables

Model Design Matrix

Latitude =	yLatitude =	Longitude ‡	yLongitude =	AltB ÷	yAltB =	GndSpd =	yGndSpd =	VSpd =	yVSpd =
41.45808	41.45808	-96.52979	-96.52979	1211.900	1211.9	0.020000	0.02	-2.930000	-2.93
41.45807	41.45807	-96.52982	-96.52979	1211.757	1210.9	0.644876	0.33	-2.905629	-9.46
41.45806	41.45807	-96.52986	-96.52979	1211.633	1211.9	1.273559	0.93	-2.881014	-10.99
41.45804	41.45806	-96.52989	-96.52981	1211.528	1211.9	1.906124	1.61	-2.856104	-4.02
41.45803	41.45806	-96.52992	-96.52983	1211.443	1211.9	2.542646	2.27	-2.830834	-1.95

```
# model part
```{r}
mLatitude <- lm(yLatitude ~ ., data = x)
mLongitude <- lm(yLongitude~ Latitude+ Longitude+AltB, data = all_train)
mAltB<- lm(yAltB~ Latitude+ Longitude+AltB+GndSpd+VSpd, data = all_train)
mGndSpd <- lm(yGndSpd~ Latitude*Longitude*AltB*GndSpd*VSpd, data = all_train)
mVSpd <- lm(yVSpd~ Latitude*Longitude*AltB*GndSpd*VSpd, data = all_train)</pre>
```

Kaggle score(only updating flight 32)

0.11940

### tsml: time series linear model

- tslm is used to fit linear models to time series including trend and seasonality components.
- Stationarity assumptions

#### tsml: time series linear model

tslm is largely a wrapper for lm() except that it allows variables "trend" and "season" which are created on the fly from the time series characteristics of the data. The variable "trend" is a simple time trend and "season" is a factor indicating the season (e.g., the month or the quarter depending on the frequency of the data).

```
1069 - for (i in unique(train$ID)){
1070 new_train <- train %>% filter(ID==i)
1071
1072 - ts_fit = function(new_train) {
 VSpd <- ts(new_train$VSpd,frequency = 16)
 EndLatitude <- new_train$EndLatitude
 startLatitude <- new_train$startLatitude
 EndLongitude <- new_train$EndLongitude
1077
 startLonaitude <- new_train$startLonaitude
 startAltB <- new_train$startAltB
1079
 EndAltB <- new_train$EndAltB
1080
 AvgLatitude <- new_train$AvgLatitude
1081
1082
 EndVSpd <- new_train$EndVSpd
1083
 startVSpd <- new_train$startVSpd
 EndGndSpd <- new_train$EndGndSpd
 startGndSpd <- new_train$startGndSpd
1086
 AvgVSpd <- new_train$AvgVSpd
1087
 AvgGndSpd <- new_train$AvgGndSpd
1088
 fit <- tslm(VSpd ~ trend + season
 + EndVSpd+ startVSpd +EndGndSpd+startGndSpd+EndLatitude+startLatitude +startLonaitude+
 EndLonaitude+startAltB+EndAltB+AvaVSpd+AvaGndSpd)
1090
 return(fit)
1091 - }
1092
1093 model_fit<- ts_fit(new_train)
1094 forecast <- forecast(model_fit, newdata = InData12)
1095
1096 M1<- as.data.frame(forecast$mean)
1097
 output[,i] <- M1$x
1098
1099 - }
1100
```

<b>V1</b> <dbl></dbl>	<b>V2</b> <dbl></dbl>	<b>V3</b> <dbl></dbl>	<b>V4</b> <dbl></dbl>	<b>V5</b> <dbl></dbl>	<b>V6</b> <dbl></dbl>
71.94370424	-5848.031	-223.136857	4.035715e+01	26.4897863	50.355387
70.49340573	-5866.849	-226.016301	4.400755e+01	24.2730331	48.285091
67.40967439	-5885.795	-228.922412	4.259121e+01	23.9409985	45.630353
67.47773409	-5900.573	-233.883894	3.718087e+01	23.6780547	43.854749
68.53325648	-5897.608	-234.647968	3.185213e+01	24.1254573	44.658781
63.25758484	-5894.201	-234.461857	3.172093e+01	24.2979249	47.121674
56.57654006	-5907.109	-233.055746	3.410521e+01	26.3176651	47.627642
57.49265946	-5923.646	-226.705005	3.600333e+01	29.9602625	46.018986
62.99862961	-5915.794	-215.718153	3.719875e+01	33.5064963	44.834051
65.25519678	-5889.079	-204.082227	4.057653e+01	33.1898296	44.005665

1-10 of 833 rows | 1-10 of 30 columns

Kaggle score(changing only VSpd for flight 31) = 0.11969

#### **Validation Method**

- Using Kaggle to check for improvement
- Only prediction flight ID = 31
- We will use the MSE from the new interpolation results as a baseline
- Replace the values of Flight 31 from the baseline, and check for improvement.
- In summary, if we see any improvement even small, then we use the method for the other flights

## Findings from the data!

- Interpolation is great for other variables comparing to GndSpd & VSpd
- For using ML methods, we will need to create more variables
- Maybe more variables about the aircraft or the training task
- Some flights shorter than others.
- There were not any format for collecting the data in term of timing