MATH 4281 Risk Theory-Ruin and Credibility

Module 1 (cont.)

January 14, 2021

Generating Functions and Convolutions (cont.)

Prequency and Severity in the IRM

Generating Functions and Convolutions (cont.)

An Example Exercise of a Convolution

Requested last class. Consider 3 independent discrete RVs with PMFs:

$$f_1(x) = \frac{1}{4}, \frac{1}{2}, \frac{1}{4} \text{ for } x = 0, 1, 2$$

 $f_2(x) = \frac{1}{2}, \frac{1}{2} \text{ for } x = 0, 2$
 $f_3(x) = \frac{1}{4}, \frac{1}{2}, \frac{1}{4} \text{ for } x = 0, 2, 4$

Complete the following table for the PMF f_{1+2+3} and the CDF F_{1+2+3} of the sum of the three random variables.

Given			()	GAUA	(1)	(3)
X	$f_1(x)$	$f_2(x)$	$f_{1+2}(x)$	$f_3(x)$	$f_{1+2+3}(x)$	$F_{1+2+3}(x)$
0	1/4	1/2	1/8	1/4	1/32	1/32
1	1/2	0	√ ∋	0	_	3/32
2	1/4	1/2	_	1/2	_	7/32
3	0	/0	_	0	_	_
4	0 /	0	_	1/4	_	_
5	X	0	0	0	_	_
6	/0	0	0	0	_	_
7/	0	0	0	0	_	_
ß	0	0	0	0	_	_
E.g. $f_{1+2}(0) = f_1(0)f_2(0) = \left(\frac{1}{4}\right)\left(\frac{1}{2}\right) = \frac{1}{8}$ as given.						
> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
·	1,1-	1=0	•	۱ =	%+[(4)(0) = 1/4 = 1/8

Another Example Exercise of a Convolution

Consider independent $X, Y \sim \mathcal{U}[0,1]$. Find the pdf of X + Y:

$$Z = X + Y$$
 $F_{z}(z) = \int_{-\infty}^{\infty} \int_{x(z-Y)} \int_{y(Y)} \int_{y} y$

The Normal MGF

A quick review of how to handle some kinds of Gaussian integrals. Note that 1:

$$tx - \frac{(x - \mu)^2}{2\sigma^2} = -\frac{(x - (\mu + \sigma^2 t))^2}{2\sigma^2} + \mu t + \frac{\sigma^2 t^2}{2}$$
Then clearly for $X \sim \mathcal{N}(\mu, \sigma^2)$:
$$E[e^{tX}] = e^{\mu t + \frac{\sigma^2 t^2}{2}} \left(\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{-\frac{(x - (\mu + \sigma^2 t))^2}{2\sigma^2}} dx \right) = e^{\mu t + \frac{\sigma^2 t^2}{2}}$$

¹complete the square

Another IRM example

Example: Consider a portfolio of 10 contracts. The losses X_i 's for these contracts are i.i.d. Normal RVs with mean 100 and variance 100. Determine the distribution of S.

$$M_{S}(t) = \left(\begin{array}{c} M_{S}(t) \\ M_{S}(t) \end{array} \right) = \left(\begin{array}{c} M_{S}(t) \\ M_{S}(t) \end{array} \right)$$

$$= \left(\begin{array}{c} M_{S}(t) \\ M_{S}(t) \end{array} \right) = \left(\begin{array}{c} M_{S}(t) \\ M_{S}(t) \end{array} \right)$$

$$= \left(\begin{array}{c} M_{S}(t) \\ M_{S}(t) \end{array} \right)$$

Normal Approximations for the distribution of the Sum

• Assume X_1, \dots, X_n are independent and $S = X_1 + \dots + X_n$.

• Then $E[S] = \sum_{i=1}^{n} E[X_i]$, $Var[S] = \sum_{i=1}^{n} Var[X_i]$

• When *n* is large (at least 30), the distribution of $\frac{S-E[S]}{\sqrt{Var(S)}}$ can be approximated by the standard normal distribution.

Theoretic Foundation of Normal Approximations

• The central limit theorem²:

$$\frac{S - E[S]}{\sqrt{Var(S)}} \stackrel{d}{\longrightarrow} N(0,1)$$

- Q: why the "d" above the arrow?
- Q: How could this apply to the normal approximation to the binomial I used yesterday?
- Q: How to prove the CLT via using MGFs

²Theorem 3.7 of the loss models textbook

A proof of the CLT

$$\frac{\int -\left\{ \left[S \right] \right]}{\int v_{n}(S)} = \int_{N} \frac{1}{N} \sum_{i} \frac{\sum_{i} \left(\sum_{i} \sum_{i} N_{i} \right)}{\sum_{i} N_{i}}$$

$$M_{\Sigma(x^{-1})}(t) = \mathbb{E}\left\{ \left\{ \frac{2}{x} \left(\sum_{x^{-1}} x^{-1} \right) \right\} \right\}$$

A proof of the CLT

$$X_{s}'s \quad i.i.d$$

$$M_{s}(t) = \left(M_{\left(\frac{X_{s-M}}{S}\right)} \left(\frac{t}{S\lambda} \right) \right) + \left(\frac{X_{s-M}}{S}\right) \left(\frac{t}{S\lambda}\right) + \left(\frac{X_{s-M}}{S}\right) \left(\frac{t}{S\lambda}\right) + \left(\frac{X_{s-M}}{S}\right) \left(\frac{t}{S\lambda}\right) + \left(\frac{X_{s-M}}{S}\right) \left(\frac{t}{S\lambda}\right) + \dots \right)$$

$$= \left(\left[1 + \frac{t}{S\lambda}\right]_{s-M} \right) + \frac{t}{\lambda} \left(\frac{X_{s-M}}{S}\right) \left(\frac{t}{S\lambda}\right) + \dots \right)$$

$$= \left(\left[1 + \frac{t}{S\lambda}\right]_{s-M} \right) + \frac{t}{\lambda} \left(\frac{X_{s-M}}{S\lambda}\right) \left(\frac{t}{S\lambda}\right) + \dots \right)$$

Frequency and Severity in the IRM

A Problem Unique to the IRM

- In the CRM we call N the "frequency distribution" and X_i the "severity".
- Recall in the IRM N is fixed at n, some number we know a priori.
- But not every individual is always claiming coverage, in fact, the opposite is true.
 - \Rightarrow Must be a big mass of probability at x = 0!
- How to handle this?

A Problem Unique to the IRM

For example consider a individual loss like so:

$$\begin{cases} Pr(X = 0) = 1/2, \\ f_X(x) = \frac{1}{2}\beta e^{-\beta x}, \text{ for } \beta = 0.1, \quad x > 0 \end{cases}$$

- Q: How easily can we take convolutions?
- Q: How easily can we take *n-fold* convolutions?
- Q: Mean? Var? MGFs?

How to Separate Frequency from Severity

One approach is to define X = IB, where:

• I is an indicator of claim with

$$Pr[I = 1] = q \text{ and } Pr[I = 0] = 1 - q$$

• B is the claim amount given I = 1 (i.e. given a claim occurs).

The distribution function:

Assume
$$\Pr[I=1]=q$$
 and $\Pr[X<0]=0$, then for $x\geq 0$:

Law of total $\Pr[X]$.

$$\Pr[X\leq x]=\Pr[X\leq x|I=0]\Pr[I=0]+\Pr[X\leq x|I=1]\Pr[I=1]$$

$$=(1)(1-q)+(q)\Pr[(1)B\leq x|I=1]$$

$$=1-q+q\Pr[B\leq x]$$

$$\Pr[X\leq x\mid I=0]$$

$$=(1)(1-q)+(q)\Pr[(1)B\leq x|I=1]$$

$$=(1)(1-q)+(q)\Pr[(1)B\leq x|I=1]$$

$$=(1)(1-q)+(q)\Pr[B\leq x]$$

Moments

• The Mean³:

$$E[X] = E[E[X|I]] = E[X|I = 1] Pr[I = 1] = qE(B),$$

Variance⁴:

$$Var(X) = Var(E[X|I]) + E[Var(X|I)]$$

= $[E(B)]^2 Var(I) + qVar(B)$
= $q(1-q)(E[B])^2 + qVar(B)$

after noting that $E[X|I] = I \cdot E[B]$, $Var(X|I) = I^2 \cdot Var(B)$.

³Recall the "Tower Property"

Generating Functions

MGF:

$$M_X(t) = E[e^{tX}|I=0] \Pr(I=0) + E[e^{tX}|I=1] \Pr(I=1)$$

= 1 - q + E[e^{tB}]q = 1 - q + M_B(t)q

PGF:

$$P_X(t) = E[t^X|I=0] \Pr(I=0) + E[t^X|I=1] \Pr(I=1)$$

= 1 - q + P_B(t)q

Aggregate loss: $S = \sum_{i=1}^{n} X_i$

- Each X_i is separated by $X_i = I_i B_i$, for i = 1, 2, ..., n
- Mean: $E[S] = \sum_{i=1}^{n} q_i \mu_i$, where $q_i = \Pr(I_i = 1)$ and $\mu_i = E[B_i]$
- Variance

$$Var(S) = \sum_{i=1}^{n} [q_i \sigma_i^2 + q_i (1 - q_i) \mu_i^2]$$

where $\sigma_i^2 = \text{Var}(B_i)$

MGF:

$$M_S(t) = \prod_{i=1}^{n} [1 - q_i + M_{B_i}(t)q_i]$$

• What is the PGF? (Exercise)

A Familiar Example

Suppose claim amount X is distributed as:

$$\left\{ \begin{array}{l} P\left(X=0\right)=1/2,\\ f_X(x)=\frac{1}{2}\beta e^{-\beta x}, \text{ for } \beta=0.1, \quad x>0 \end{array} \right.$$

- lacktriangle Find the expected value of X.
- ② Find I and B such that X = IB.

A Familiar Example

A Familiar Example

Another Example

Example In an insurance portfolio, there are 15 insured. Ten of the insured persons have 0.1 probability of making a claim, and the other 5 have a 0.2 probability. All claims are independent and follow $Exp(\lambda)$ (Note: $1/\lambda$ is the mean). What is the MGF of the aggregate claims distribution?