Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-228. Вариант 22

1. Пусть
$$z = \sqrt{3} + i$$
. Вычислить значение $\sqrt[5]{z^3}$, для которого число $\frac{\sqrt[5]{z^3}}{\frac{\sqrt{3}}{2} + \frac{i}{2}}$ имеет аргумент $\frac{11\pi}{15}$.

2. Решить систему уравнений:

$$\begin{cases} x(-3+8i) + y(14-13i) = 77 - 108i \\ x(-6+11i) + y(6-9i) = -56 - 23i \end{cases}$$

- 3. Найти корни многочлена $-5x^6 50x^5 165x^4 + 360x^3 + 1165x^2 2390x 3075$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1=2-i, x_2=-5+4i, x_3=-3$.
- 4. Даны 3 комплексных числа: -14+23i, 6-16i, -17+26i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = 3i$, $z_2 = -3$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+3i| < 2\\ |arg(z-4-4i)| < \frac{\pi}{4} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (-4, 7, 0), b = (4, 0, 2), c = (-5, 6, -1). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(11, -7, -13) и плоскость P: -2x 30y 24z + 240 = 0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-10, -15, -12), $M_1(-1, 5, 6)$, $M_2(-49, -3, 6)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -x + 21y - 15z + 303 = 0 \\ 5x + 14y - 13z + 307 = 0 \end{cases} \qquad L_2: \begin{cases} -6x + 7y - 2z + 530 = 0 \\ 15x + 4y + 2z - 289 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.