Design of magnetics: Assignment 210020050

Joroblem statement: Design an inductor with specification for buck converter

9nput voltage	50V
Output voltage	20V
Inductance	3441
DC Curvent	20A
frequency	80khz
AT	15°C
	70°C
Window Ku	0.8

$$U_L = V_{In} - V_{OUT} = L \frac{dI}{dt}$$
 (On state)
 $V_L = L \frac{\Delta I}{\Delta T}$

$$\Delta T = DT_S$$
 $T_S = Switching time$

$$\Delta I = (V_{IN} - V_{OUT})DT_{S} = \frac{L}{30 \times (\frac{20}{50})^{-1}/80 \times 10^{3}} = 4.41A$$

maximum current: Im= Invg + AI/2

 $T_m = 20 + 2.2 = 22.2A$

=> area product of inductor

Bmax = 0.25T; DT = 15°C; Sw = 1.72×10°52m

 $K_M = 0.8$; $h = 10 \text{ W/m}^2$; $k_W = 10$; $k_a = 40$; $k_i = 1$

 $Ap = \sqrt{1+r} \frac{k_i L T_m^2}{B_{max}} \frac{8/7}{k_t \sqrt{k_u \Delta T}}$

kt = 6 ka/Swkw

Ap= (1+0 × 1 × 34×10 × (22.2) / 0.25× KEX ~ 0.8×15)

 $K_{t} = \frac{10\times40}{1-72\times10^{8}} = 4.8\times10^{4}$

 $\Rightarrow AP = 4.22 \times 10^{-8} \text{ m}^2 = 4.22$

from Ap core selection; near appropriate

core is EE-625

Ac = 2.390 cm²; Wa = 1.930

and other dimmensions taken from Marcel Dekker, Inc - [7]

https://coefs.charlotte.edu/mnoras/files/2013/03/Transformer-and-Inductor-Design-Handbook_Content.pdf

Mopt =
$$B \max k k_i$$

 $Tofind$
 $O = \Delta T$ = $15^{\circ}c$ = 1.36W
 $V_{OPT} = 0.25 \times (8 \times 10^2) \times 1$
 $V_{OPT} = 0.25 \times (8 \times 10^2) \times 1$
 $V_{OPT} = 0.25 \times (8 \times 10^2) \times 1$
 $V_{OPT} = 0.25 \times (8 \times 10^2) \times 1$
 $V_{OPT} = 0.25 \times (8 \times 10^2) \times 1$
 $V_{OPT} = 0.25 \times (8 \times 10^2) \times 1$
 $V_{OPT} = 0.25 \times (8 \times 10^2) \times 1$
 $V_{OPT} = 0.25 \times (8 \times 10^2) \times 1$
 $V_{OPT} = 0.25 \times (8 \times 10^2) \times 1$
 $V_{OPT} = 0.25 \times (8 \times 10^2) \times 1$
 $V_{OPT} = 0.25 \times (10^2) \times 1$
 $V_{OPT} = 0.25$

Reys =
$$2R_2 + R_9 + R_1/2 = \frac{1}{4\pi \times 10^3} \left(\frac{1.9 \times 10}{15.67 \times 10^6} \right)$$

 $\lambda = \frac{N^2}{Ref} = \frac{13^2}{Ref} \approx 34\mu M$