

INFO20003 Database Systems

Dr Renata Borovica-Gajic

Lecture 12

Query Processing Part II

Semester 1 2018, Week 6

Remember this? Components of a DBMS

Will briefly touch upon ...

This is one of several possible architectures; each system has its own slight variations.

- Nested loops join
- Sort-merge join
- Hash join
- General joins

- Are very common and can be very expensive (cross product in the worst case)
- There are many implementation techniques for join operations

- Join techniques we will cover:
 - 1. Nested-loops join
 - 2. Sort-merge join
 - 3. Hash join

* MELBOURNE Equality Joins With One Join Column

Example: SELECT * FROM Reserves R1, Sailors S1

WHERE R1.sid=S1.sid

- In algebra: R ⋈ S. They are very common and need to be carefully optimized.
- R X S is large; so, R X S followed by a selection is inefficient.

Left / Outer

∩R	
11	.80
13	75
12	10
15	80
15	.44
13	74
V	

Right / Inner

- Join is associative and commutative:
 - -AxB == BxA
 - Ax(BxC) == (AxB)xC
- Cost metric: Number of pages; Number of I/O

MELBOURNE Schema for Examples

Sailors (*sid*: integer, *sname*: string, *rating*: integer, *age*: real) Reserves (sid: integer, bid: integer, day: dates, rname: string)

Sailors (S):

- -80 tuples per page, **500 pages**
- -NPages(S) = 500, NTuplesPerPage(S) = 80
- -NTuples(S) = 500*80 = 40000

Reserves (R):

- -100 tuples per page, **1000 pages**
- -NPages(R) = 1000, NTuplesPerPage(R) = 100
- -NTuples(R) = 100000

Simple Nested Loops Join

For each tuple in the outer relation R, we scan the entire inner relation S

Pseudo code:

```
foreach tuple r in \mathbf{R} do foreach tuple s in \mathbf{S} do if r_i == s_j then add < r, s > to result
```


Cost:

Our example:

Cost (SNLJ)=
$$1000+100*1000*500$$

= $50001000 (I/O)$

Page-Oriented Nested Loops Join

- For each page of R
 - -get each *page* of S
 - –write out matching pairs of tuples <r, s>, where r is in R-page and S is in S-page

Pseudo code:

foreach page b_R in R do foreach page b_S in S do foreach tuple r in b_R do foreach tuple s in b_S do if $r_i == s_i$ then add <r, s> to result

Our example:

Cost (PNLJ)= 1000+1000*500 = 501000 (I/O)

Block Nested Loops Join

- Page-oriented NL doesn't exploit extra memory buffers
- Alternative approach:
 - –Use one page as an input buffer for scanning the inner S, one page as the output buffer, and use all remaining pages to hold 'block' of outer R
- For each matching tuple r in R-block, s in S-page, add <r,
 s> to result. Then read next R-block, scan S, etc

Block Nested Loops Join Cost

Our example:

Let's say we have 102 pages of space in memory, and consider Reserves (R) as the outer and Sailors (S) as the inner table.

NBlocks(R) =
$$1000/(102-2) = 10$$

Cost(BNLJ) = $1000 + 10*500 = 6000$ I/O

MELBOURNE Query Processing: Joins

- Nested loops join
- Sort-merge join
- Hash join
- General joins

 Sort R and S on the join column, then scan them to do a merge (on join column), and output result tuples

- Sorted R is scanned once;
- Each S group of the same key values is scanned once per matching R tuple (typically means Sorted S is scanned once too).
- Useful when:
 - —one or both inputs are already sorted on join attribute(s)
 - –output is required to be sorted on join attributes(s)

Sort-Merge Join Cost

Sort inputs
Merge inputs

Sort(R) = External Sort Cost = 2*NumPasses*NPages(R)

Our example:

Let's say that both Reserves and Sailors can be sorted in 2 passes, then:

```
Cost(SMJ) = Sort R + Sort S + NPages(R) + NPages(S)
= 2*2*NPages(R)+ 2*2*NPages(S)
+ NPages(R) + NPages (S)
= 5*1000 + 5* 500 = 7500 I/O
```

MELBOURNE Query Processing: Joins

- Nested loops join
- Sort-merge join
- Hash join
- General joins

Hash-Join

 Partition both relations using hash function h: R tuples in partition I will only match S tuples in partition I

 Read in a partition of R, hash it using h2 (<>> h!). Scan matching partition of S, probe hash table for matches

- 1. In partitioning phase, we read+write both relations
- 2. In matching phase, we read both relations

Our example:

Cost(HJ) =
$$2*NPages(R) + 2*NPages(S) + NPages(R) + NPages(S)$$

= $3*1000 + 3*500 = 4500 I/Os$

MELBOURNE Watch this video if you are confused

https://www.youtube.com/watch?v=o1dMJ6-CKzU From 0:58

- Relation A: 10 tuples per page, 100 pages
- Relation B: 20 tuples per page, 500 pages
- Memory Buffer 52 pages, imagine SMJ can be done in 3 passes<- not true but suffices for the purpose of testing the formula
- Find the cheapest join? Assume A is always outer, B is inner.
- Answer?

MELBOURNE Query Processing: Joins

- Nested loops join
- Sort-merge join
- Hash join
- General joins

General Join Conditions

- Equalities over several attributes (e.g., R.sid=S.sid AND R.rname=S.sname):
 - –For Sort-Merge and Hash Join, sort/partition on combination of the two join columns
- Inequality conditions (e.g., *R.rname < S.sname*):
 - -Hash Join, Sort Merge Join not applicable
 - -Block NL quite likely to be the best join method here

Summary

- A virtue of relational DBMSs:
 - Queries are composed of a few basic operators
 - Implementation of operators can be carefully tuned
 - Important to do this
- Many alternative implementations for each operator
 - No universally superior technique for most operators
- Must consider alternatives for each operation in a query and choose best one based on system statistics...
 - Part of the broader task of optimizing a query composed of several operations

- Understand alternatives for join operator implementations
 - Be able to calculate the cost of alternatives
- Important for Assignment 3 as well

Faculty of Science Panel Event

Are you a student in the Bachelor of Science? Do you want to know where your degree can take you and how to get there?

On **Tuesday 17th April** a panel of experts will discuss how to best prepare for the transition from university into the workplace and cover topics such as:

- · How to get involved
- Skill building in curriculum and extra-curricular development
- Recognise and reflect on your development
- Networking options and peer reflection
- Necessary skills in a STEM workplace

Tuesday 17 April, 1:15pm – 2:15pm Harold White Theatre, 757 Swanston St

Registration here:

https://form.jotform.com/80978604502965

- Query optimization
 - How does a DBMS pick a good query plan?