# From Two-Class Linear Discriminant Analysis to Interpretable Multilayer Perceptron Design

C.-C. Jay Kuo
University of Southern California

### Research Background

- Multilayer Perceptron (MLP)
  - Proposed by Rosenblatt in 1958
  - Intensively studied in late 80's and early 90's
    - One important architecture for ANN (artificial neural networks)
  - Two main issues
    - Architecture design is ad hoc
    - Lack of theoretical support
- Main theoretical results
  - Universal approximators
    - by Cybenko (1989) and Hornik, Stinchocombe and White (1989)

### Two-Class Linear Discriminant Analysis (LDA)

- Multi-dimensional input space
- Gaussian distributed random vectors
- Two object classes (orange and blue)

$$\boldsymbol{w}^T \, \boldsymbol{x} \, + \, \boldsymbol{b} = 0$$



Class C2

Class C1

Homoscedasticity

$$\Sigma_1 = \Sigma_2 = \Sigma_1$$

Solution: a partitioning hyperplane

$$\boldsymbol{w}^T \boldsymbol{x} + b = 0,$$

$$\mathbf{w} = (w_1, w_2)^T = \mathbf{\Sigma}^{-1} (\boldsymbol{\mu_1} - \boldsymbol{\mu_2}).$$

$$b = \frac{1}{2} \boldsymbol{\mu}_{\mathbf{2}}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{\mathbf{2}} - \frac{1}{2} \boldsymbol{\mu}_{\mathbf{1}}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{\mathbf{1}} + \log \frac{p}{1 - p}$$

and p is the probability for x belonging to class C1

### Relationship with the 1st Layer of MLP



#### **Two Questions:**

- 1) Why 2 neurons?
- 2) Why ReLU nonlinear activation?

### Answers to 2 Questions (1)

• Two neurons -> preserve responses in both sides of the hyperplanes





### Answers to 2 Questions (2)

ReLU nonlinear activation -> resolve the sign confusion problem

x and  $\tilde{x}$  are mirror points

$$\mathbf{w}^T \mathbf{x} + b = 0$$



#### **Next Stage Convolution**

$$\mathbf{z}_j = \sum_i \tilde{\mathbf{w}}_{ji} \mathbf{y}_i$$

It cannot differentiate if no ReLU

- Positive response multiplied by positive weights (+,+)
- Negative response multiplied by negative weights (-,-)

Similarly, it cannot differentiate if no ReLU

# Illustrative Example: 4-Gaussian-Blobs



### Stage 1 (from Input Layer to the 1st Layer)



### Stage 2 (from the 1<sup>st</sup> Layer to the 2<sup>nd</sup> Layer)



Weight of red link: 1
Weight of black link: -P

# Stage 3 (from the 2<sup>nd</sup> Layer to Output Layer)



Weight of red link: 1
Weight of black link: 0

### Proposed MLP Architecture (4 Layers, 3 Stages)



### Generalization: Feedforward MLP (FF-MLP)

- Determine the network architecture and link weights in onepass feedforward manner
  - Stage 1: Half-Space Partitioning
  - Stage 2: Subspace Isolation
  - Stage 3: Subspace-Class Connection
- Neuron Numbers

$$D_{in} = N$$
,  $D_{out} = C$ .  $D_1 \le 2 \begin{pmatrix} G \\ 2 \end{pmatrix}$ ,  $G \le D_2 \le 2^{G(G-1)/2}$ 

Link Weights

link weights in Stage 1 are determined by each individual 2-class LDA,

link weights in Stage 2 are either 1 or -P, and link weights in Stage 3 are either 1 or 0.

### Illustrative Example: 3-Gaussian Blobs (1)





3 partitioning lines

### Illustrative Example: 3-Gaussian Blobs (2)

Responses at the first layer









### Illustrative Example: 3-Gaussian Blobs (3)

Responses at the second layer









### Illustrative Examples: 9-Gaussian Blobs (1)



4 partitioning lines

### Illustrative Example: 9-Gaussian Blobs (2)

Responses at the first layer











### Illustrative Example: 9-Gaussian Blobs (3)

Responses at the second layer













### Comparison with SVM

- SVM contains only one-stage (no ReLU is needed)
  - SVM partitions boundaries of classes by supporting vectors
  - It can handle non-convex shapes
- FF-MLP contains three stages (ReLU is needed)
  - FF-MLP partitions one full space into many half subspaces in Stage 1
  - FF-MLP isolate regions in Stage 2
  - FF-MLP connects regions to its class type in Stage 3
- SVM is slow for multi-class classification problem (a generalization of a two-class classifier)



### Illustrative Examples: Circle-and-Ring



#### **Classification Results**



Approximation of the outer ring with 4 Gaussian and 16 Gaussian components

### More Illustrative Examples: 2-New-Moons





Each moon is approximated by 2 Gaussian components



**Final Classification result** 

### More Illustrative Examples: 4-New-Moons

#### **Classification Results**





Each Moon Approximated by 2 Gaussian Components



Each Moon Approximated by 3 Gaussian Components

### Will BP Help Improve Performance?

 With FF-MLP as the MLP architecture and initialization, we perform BP



### Comparison of FF-MLP and Random Initializations

#### 9-Gaussian-Blobs



(a) FF-MLP initialization



(b) random initialization

### Comparison of FF-MLP and Random Initializations

#### 4-New-Moons



(a) FF-MLP initialization



(b) random initialization

### Comparison of Classification Accuracy

| Dataset                | FF-MLP |        | BP-MLP with FF-MLP init.(50) |        | BP-MLP with r    | andom init. (50) | BP-MLP with random init. (15) |                   |  |
|------------------------|--------|--------|------------------------------|--------|------------------|------------------|-------------------------------|-------------------|--|
|                        | train  | test   | train                        | test   | train            | test             | train                         | test              |  |
| 2 Gaussian blobs       | 100.00 | 100.00 | 100.00                       | 100.00 | $99.97 \pm 0.03$ | $99.90 \pm 0.04$ | $99.91 \pm 0.05$              | $99.88 \pm 0.10$  |  |
| XOR                    | 100.00 | 99.83  | 100.00                       | 99.83  | $99.83 \pm 0.16$ | $99.42 \pm 0.24$ | $93.20 \pm 11.05$             | $92.90 \pm 11.06$ |  |
| 3-Gaussian-blobs       | 99.67  | 99.33  | 99.67                        | 99.33  | $99.68 \pm 0.06$ | $99.38 \pm 0.05$ | $99.48 \pm 0.30$              | $99.17 \pm 0.48$  |  |
| 9-Gaussian-blobs (0.1) | 89.11  | 88.58  | 70.89                        | 71.08  | $84.68 \pm 0.19$ | $85.75 \pm 0.24$ | $78.71 \pm 2.46$              | $78.33 \pm 3.14$  |  |
| 9-Gaussian-blobs (0.3) | 88.11  | 88.83  | 88.06                        | 88.58  | $81.62 \pm 6.14$ | $81.35 \pm 7.29$ | $61.71 \pm 9.40$              | $61.12 \pm 8.87$  |  |
| circle-and-ring (4)    | 88.83  | 87.25  | 89.00                        | 86.50  | $81.93 \pm 7.22$ | $82.80 \pm 5.27$ | $70.57 \pm 13.42$             | $71.25 \pm 11.27$ |  |
| circle-and-ring (16)   | 83.17  | 80.50  | 85.67                        | 88.00  | $86.20 \pm 1.41$ | $85.05 \pm 1.85$ | $66.20 \pm 9.33$              | $65.30 \pm 11.05$ |  |
| 2-new-moons            | 88.17  | 91.25  | 88.17                        | 91.25  | $83.97 \pm 1.24$ | $87.60 \pm 0.52$ | $82.10 \pm 1.15$              | $86.60 \pm 0.58$  |  |
| 4-new-moons (2)        | 94.33  | 92.62  | 84.75                        | 80.87  | $86.73 \pm 0.11$ | $83.92 \pm 0.34$ | $86.00 \pm 0.23$              | $83.17 \pm 0.44$  |  |
| 4-new-moons (3)        | 95.75  | 95.38  | 87.50                        | 87.00  | $86.90 \pm 0.25$ | $84.00 \pm 0.33$ | $85.00 \pm 0.98$              | $82.37 \pm 0.76$  |  |

TABLE I

COMPARISON OF TRAINING AND TESTING CLASSIFICATION PERFORMANCE BETWEEN FF-MLP, BP-MLP WITH FF-MLP INITIALIZATION AND BP-MLP WITH RANDOM INITIALIZATION. THE BEST MEAN TRAINING AND TESTING ACCURACY ARE HIGHLIGHTED IN BOLD.

### Higher Dimension Datasets

- Iris dataset: 3 classes, 4 dimensions, 150 samples per class
- Wine dataset: 3 classes, 13 dimensions, 59, 71 and 48 samples in each class
- Breast Cancer Wisconsin (BCW) dataset: 2 classes, 30 dimensions, 569 samples in total
- Pima Indians diabetes dataset: 2 classes, 8 dimensions, 768 samples

### Classification Performance

|         |          |           |       |       | Accuracy |       |                          |                   |                          |                   |  |
|---------|----------|-----------|-------|-------|----------|-------|--------------------------|-------------------|--------------------------|-------------------|--|
| Dataset | $D_{in}$ | $D_{out}$ | $D_1$ | $D_2$ | FF-MLP   |       | BP-MLP/random init. (50) |                   | BP-MLP/random init. (15) |                   |  |
|         |          |           |       |       | train    | test  | train                    | test              | train                    | test              |  |
| Iris    | 4        | 3         | 4     | 3     | 96.67    | 98.33 | $65.33 \pm 23.82$        | $64.67 \pm 27.09$ | $47.11 \pm 27.08$        | $48.33 \pm 29.98$ |  |
| Wine    | 13       | 3         | 6     | 6     | 97.17    | 94.44 | $85.66 \pm 4.08$         | $79.72 \pm 9.45$  | $64.34 \pm 7.29$         | $61.39 \pm 8.53$  |  |
| B.C.W   | 30       | 2         | 2     | 2     | 96.77    | 94.30 | $95.89 \pm 0.85$         | $97.02 \pm 0.57$  | $89.79 \pm 2.41$         | $91.49 \pm 1.19$  |  |
| Pima    | 8        | 2         | 18    | 88    | 91.06    | 73.89 | $80.34 \pm 1.74$         | $75.54 \pm 0.73$  | $77.02 \pm 2.89$         | $73.76 \pm 1.45$  |  |
|         |          |           |       |       |          |       | TX DI I/ II              |                   |                          |                   |  |

TABLE II

TRAINING AND TESTING ACCURACY RESULTS OF FF-MLP AND BP-MLP WITH RANDOM INITILIALZATION FOR FOUR HIGHER-DIMENSIONAL DATASETS. THE BEST MEAN TRAINING AND TESTING ACCURACY ARE HIGHLIGHTED IN BOLD.

### Time Complexity

| Dataset                | GMM     | Boundary construction | Region representation | Classes<br>assignment | Total    | BP (15)               | BP (50)               |
|------------------------|---------|-----------------------|-----------------------|-----------------------|----------|-----------------------|-----------------------|
| 2 Gaussian blobs       | 0.00000 | 0.00385               | 0.00112               | 0.00009               | 0.00506  | $2.77509 \pm 0.18903$ | $8.02358 \pm 0.07385$ |
| XOR                    | 0.00000 | 0.01756               | 0.00093               | 0.00007               | 0.01855  | $2.88595 \pm 0.06279$ | $8.50156 \pm 0.14128$ |
| 3-Gaussian-blobs       | 0.00000 | 0.01119               | 0.00126               | 0.00008               | 0.01253  | $2.78903 \pm 0.07796$ | $8.26536 \pm 0.17778$ |
| 9-Gaussian-blobs (0.1) | 0.00000 | 0.22982               | 0.00698               | 0.00066               | 0.23746  | $2.77764 \pm 0.14215$ | $8.34885 \pm 0.28903$ |
| 9-Gaussian-blobs (0.3) | 0.00000 | 2.11159               | 0.00156               | 0.00010               | 2.11325  | $2.79140 \pm 0.06179$ | $8.51242 \pm 0.24676$ |
| circle-and-ring (4)    | 0.02012 | 0.01202               | 0.00056               | 0.00006               | 0.03277  | $1.50861 \pm 0.14825$ | $3.79068 \pm 0.28088$ |
| circle-and-ring (16)   | 0.04232 | 0.05182               | 0.00205               | 0.00020               | 0.09640  | $1.43951 \pm 0.15573$ | $3.80061 \pm 0.13775$ |
| 2-new-moons            | 0.01835 | 0.01111               | 0.00053               | 0.00006               | 0.03006  | $1.44454 \pm 0.06723$ | $3.64791 \pm 0.08565$ |
| 4-new-moons (2)        | 0.04541 | 0.14471               | 0.00461               | 0.00054               | 0.19527  | $2.03826 \pm 0.12244$ | $5.62977 \pm 0.05140$ |
| 4-new-moons (3)        | 0.03712 | 11.17161              | 0.00206               | 0.00021               | 11.21100 | $1.98338 \pm 0.04357$ | $5.71387 \pm 0.14150$ |
| Iris                   | 0.02112 | 0.02632               | 0.00011               | 0.00002               | 0.04757  | $0.73724 \pm 0.01419$ | $1.60543 \pm 0.14658$ |
| Wine                   | 0.01238 | 0.03551               | 0.00015               | 0.00003               | 0.04807  | $0.81173 \pm 0.01280$ | $1.72276 \pm 0.07268$ |
| B.C.W                  | 0.01701 | 0.03375               | 0.00026               | 0.00003               | 0.05106  | $1.08800 \pm 0.05579$ | $2.73232 \pm 0.12023$ |
| Pima                   | 0.03365 | 0.16127               | 0.00074               | 0.00039               | 0.19604  | $0.96707 \pm 0.03306$ | $2.32731 \pm 0.10882$ |

TABLE III

COMPARISON OF COMPUTATION TIME IN SECONDS OF FF-MLP (LEFT) AND BP-MLP (RIGHT) WITH 15 AND 50 EPOCHS. THE MEAN AND STANDARD DEVIATION OF COMPUTATION TIME IN 5 RUNS ARE REPORTED FOR BP-MLP. THE SHORTEST RUNNING TIME IS HIGHLIGHTED IN BOLD.

### Relationship with Feedforward CNNs

- Feedforward CNN
  - Convolutional layers: spatial-spectral transform (e.g. Saab transform and Saak transform)
  - Fully connected layers: linear least-squared-regression



# Linear Least-Squared-Regression



### Why Pseudo-Labels?

#### To address intra-class variability

MNIST Dataset



### Conclusion

- A new interpretation of MLP
  - Generalization of two-class LDA
  - MLP and SVM are quite close to each other
    - Differences lies in the order of "class separation" or "Gaussian blobs separation"
  - FF-MLP is easy to design with excellent performance
- Do we really need BP-MLP?
  - How to justify end-to-end optimization of neural networks in general?

### Reference

• Ruiyuan Lin, Zhiruo Zhou, Suya You, Raghuveer Rao and C.-C. Jay Kuo, "From two-class linear discriminant analysis to interpretable multilayer perceptron design," arXiv preprint arXiv:2009.04442.