Brief machine learning intro with R and H2O

Maximilian Stroh

Data User Group - 05. Sept. 2019

Outlook

- ▶ Load and inspect dataset on fuel efficiency of cars
- ▶ Use machine learning to predict fuel efficiency
- ▶ Understand a fitted machine learning model

Fuel efficiency data

- ▶ Use dataset included in the package 'ggplot2' called **mpg**
- ► Includes information about different cars and their fuel efficiency measured by miles per gallon

Column	Explanation					
manufacturer						
model						
displ	engine displacement, in litres					
year	year of manufacture					
cyl	number of cylinders					
trans	type of transmission					
drv	f = front-wheel drive, $r = rear$ wheel drive, $4 = 4wd$					
cty	city miles per gallon					
hwy	highway miles per gallon					
fl	fuel type					
class	type of car					

Quick look into the dataset

mpg = ggplot2::mpg

mpg[c(1,51,101,151,201),]

manufacturer me	odel	displ	year	cyl	trans	drv	cty	hwy	fl	class
audi a4	1	1.8	1999	4	auto(l5)	f	18	29	р	compact
dodge da	akota pickup 4wd	3.9	1999	6	auto(l4)	4	13	17	\mathbf{r}	pickup
honda civ	vic	1.6	1999	4	auto(l4)	f	24	32	\mathbf{r}	subcompact
nissan pa	athfinder 4wd	3.3	1999	6	auto(l4)	4	14	17	\mathbf{r}	suv
toyota toy	yota tacoma 4wd	2.7	1999	4	manual(m5)	4	15	20	r	pickup

Basic statistics about the dataset

 Numeric columns look well behaved, no outlier treatment or robust method required

```
summary(mpg)
```

```
manufacturer
                           model
                                                displ
                                                                  vear
   Length: 234
                       Length: 234
                                                   :1.600
                                                            Min.
                                                                    1999
   Class :character
                     Class :character
                                           1st Qu.:2.400
                                                            1st Qu.:1999
   Mode :character
                       Mode :character
                                           Median :3.300
                                                            Median:2004
##
                                           Mean
                                                   .3 472
                                                            Mean
                                                                    . 2004
                                           3rd Qu.:4.600
                                                            3rd Qu.:2008
##
                                                   :7.000
                                                            Max.
                                                                    :2008
##
                                            Max.
##
         cvl
                        trans
                                            dry
                                                                 ctv
           :4.000
                    Length: 234
                                        Length: 234
                                                            Min.
                                                                    . 9 00
    1st Qu.:4.000
                    Class :character
                                        Class :character
                                                            1st Qu.:14.00
    Median :6.000
                    Mode :character
                                        Mode :character
                                                            Median :17.00
    Mean
           .5.889
                                                            Mean
                                                                    16.86
   3rd Qu.:8.000
                                                            3rd Qu.:19.00
           :8.000
                                                                   :35.00
   Max.
                                                            Max.
##
         hwv
                          f1
                                           class
           :12.00
                    Length: 234
                                        Length: 234
    Min.
    1st Qu.:18.00
                    Class :character
                                        Class : character
   Median .24.00
                    Mode :character
                                        Mode :character
   Mean
           .23 44
    3rd Qu.: 27.00
   Max
           .44 00
```

Put away some test data

```
## 75% of the sample size
smpSize <- floor(0.75 * nrow(mpg))

## set the seed to make your partition reproducible
set.seed(123)
trainInd <- sample(seq_len(nrow(mpg)), size = smpSize)

trainData <- mpg[trainInd, ]
testData <- mpg[-trainInd, ]</pre>
```

► Financial data often has a time dimension. Don't use simple random sampling to generate a test set in this case!

Regression trees - Simplest possible tree

Tree of depths 2

Evaluating prediction performance on test set

displ	realized	predicted	squared_error
1.8	21 20	21.07143 21.07143	0.005102 1.147959
2.0	20 21	21.07143	0.005102
$\frac{2.8}{3.1}$	18 17	$14.52941 \\ 14.52941$	12.044983 6.103806
5.7	16	14.52941	2.162630

```
# calc root mean squared error
sqrt(mean(predEvaluation$squared_error))
```

[1] 2.549424

From tree to forest

- ► Simple regression trees as shown above are the basis for better performing methods
- ▶ One example is the **Random Forest** algorithm
- ▶ It combines forecasts from many trees
- ► Trees are grown *independently*
 - ▶ Draws different bootstrap samples of data, fits regression tree to each sample, then averages forecasts (bagging)
 - ▶ At each split, only random sample of features is used as split candidates, thus further decorrelates trees
- ▶ Uses larger trees and averages over them to reduce variance

R package "h2o"

- ► Comes with a couple of popular machine learning algorithms
 - Lasso, Ridge Regression, Random Forest, Gradient Boosting, Neural Nets...
- Estimates models on all cores of your machine
- ► Easy to set up on multiple machines to estimate a distributed model (for big data)
- ▶ Includes methods to understand a fitted model
- ▶ Limited capabilities in NN/Deep Learning

Replicating a single tree with the Random Forest algorithm

```
# start h2o instance on this computer (requires Java)
h2o.init()
# upload data to h2o instance
h2o.train = as.h2o(trainData)
h2o.test = as.h2o(testData)
# replication of simple regression tree with depth = 1
h2o.RF1 = h2o.randomForest(x, "cty", h2o.train,
                           ntrees = 1, max depth = 1,
                            mtries=7, sample rate =1,
                            col sample rate per tree=1,
                           nbins=175,
                            build_tree_one_node = T)
```

Use fitted Random Forest model to predict on test set

```
# predict miles per galon for city usage on test set
h2o.RF1.pred = as.data.frame(h2o.predict(h2o.RF1,h2o.test))
# compare predictions to previous model
predEvaluation = cbind(predEvaluation,h2o.RF1.pred)
# name added column
colnames(predEvaluation)[5] = "predicted_h2o"
```

Successful replication of previous 1-split toy example

displ	realized	predicted	squared_error	predicted_h2o
1.8	21	21.07143	0.005102	21.07143
2.0	20	21.07143	1.147959	21.07143
2.0	21	21.07143	0.005102	21.07143
2.8	18	14.52941	12.044983	14.52941
3.1	17	14.52941	6.103806	14.52941
5.7	16	14.52941	2.162630	14.52941

```
# calculate prediction performance stats on test set
h2o.RF1.perf = h2o.performance(h2o.RF1,h2o.test)
# display root mean squared error
h2o.RF1.perf@metrics$RMSE
```

```
## [1] 2.549424
```

Fit real Random Forest

- ▶ Random Forest algorithm has many "hyperparameters"
- ► Two important ones are
 - ▶ ntrees Number of trees to fit to average over
 - ▶ max_depth Size of each tree

Prediction error is halfed compared to toy example

```
# calculate prediction performance stats on test set
h2o.RF.perf = h2o.performance(h2o.RF,h2o.test)
# display root mean squared error
h2o.RF.perf@metrics$RMSE
```

```
## [1] 1.112829
```

Tuning: How to chose the right hyperparameters?

- ▶ Never look at the test set and play around until it works
 - ▶ Now you have fitted the hyperparameters on the test set
 - ▶ No more data left to see if it really works on new data
 - ▶ Can be OK if you can easily collect new data for final test
- ▶ Need some criterion to chose hyperparameters based only on training set
- Basic idea: Split your training set again, estimate on one part, evaluate on another
- ► Can do this multiple times to have enough training data to estimate the model on
- ▶ Popular choice: 5-fold cross validation
 - ▶ Split trainig set into 5 parts
 - ▶ Train on 4/5 of data, evaluate on 1/5
 - ▶ Do this 5 times, average over results

5-fold cross validation in one picture

Figure 1: 5-fold cross validation

Calc CV-stats while training the model

```
cvMetrics = h2o.RF@model$cross_validation_metrics_summary[6,]
```

Table 2: RMSE on cross-validation subsets

mean	sd	cv_1_valid	cv_2_valid	cv_3_valid	cv_4_valid	cv_5_valid
1.4798	0.4308	1.1273	1.1386	1.4934	2.1875	1.452

Use cross validation RMSEs to optimize hyperparameters

```
## $ntrees
## [1] 38 377 66 583 760
##
## $max_depth
## [1] 1 8 33 9 6
```

Cross-validate all 25 Random Forest models

- ▶ H2O will train models for all possible combinations
- i.e. $(38,1), (38,8), \dots, (760,9), (760,6)$
- ▶ This is called a 'Cartesian' grid
- ▶ It is not the most effcient tuning method in most cases
- ▶ But easy to understand and OK for searching across just 2 hyperparameters

Show cross-validation RMSE for best of the 25 models

```
## Hyper-Parameter Search Summary: ordered by increasing RMSE
##
    max_depth ntrees
                             model ids
                                                      rmse
                  760 RF_grid_model_23 1.4669141946148525
## 1
            33
                  760 RF_grid_model_24 1.4684634805902947
## 2
## 3
             8
                  760 RF_grid_model_22 1.472069734081821
## 4
            33
                  583 RF_grid_model_18 1.4736238849120469
## 5
             9
                  583 RF_grid_model_19 1.4754017707854352
             8
                  583 RF grid model 17 1.4783540188668924
## 6
```

- ▶ Remember: These are not test set RMSEs
- ▶ It is not a given, that the best model in CV is also best on test set
- ▶ In particular when train and test set could not be created by random split as with financial data

How well is the best model doing on the test set?

```
## [1] 1.034678
```

- ▶ Barely an improvement compared to RF with default parameters with RMSE of 1.09
- ▶ Depending on the data, tuning can help more or less
- ▶ Often only a second order effect compared to choice of features

Engine displacement and number of cylinders most important features

h2o.varimp_plot(best_RF)

Sensitivity analysis

Charts created with function h2o.partialPlot.

Further reading

- http://docs.h2o.ai/h2o/latest-stable/h2o-docs/index.html
- ▶ https://www.h2o.ai/wp-content/uploads/2018/01/RBooklet.pdf
- $\blacktriangleright \ \, \text{https://github.com/maximilianstroh/henley_dudes}$