Business Prombelm

Based on Features we are going to predict the fuel consumption

Data Mining

```
In [14]:
            ls
          Volume in drive C has no label.
          Volume Serial Number is A007-F621
          Directory of C:\Users\tswar\Downloads\SocialTek\2022 Fuel Consumption
         07/25/2022 04:06 PM
                                 <DIR>
         07/25/2022 04:06 PM
                                 <DIR>
         07/25/2022 03:52 PM
                                 <DIR>
                                                .ipynb_checkpoints
         06/21/2022 02:52 PM
                                      8,061,682 2022FuelConsumption.pdf
         07/25/2022 03:48 PM
                                      3,533,694 A fuel Consumption.ipynb
                                         73,008 MY2022 Fuel Consumption Ratings.csv
         04/06/2022 02:41 PM
         05/11/2022 09:26 PM
                                        474,720 Untitled.ipynb
                                        284,289 Untitled1.ipynb
         07/24/2022 04:54 PM
         07/24/2022 04:25 PM
                                            588 Untitled2.ipynb
         07/25/2022 04:06 PM
                                          3,703 Untitled3.ipynb
                                      12,431,684 bytes
                        7 File(s)
                        3 Dir(s) 103,347,896,320 bytes free
In [15]:
             import pandas as pd
           2 import numpy as np
           3 import seaborn as sns
             import matplotlib.pyplot as plt
             %matplotlib inline
In [16]:
             import warnings
             warnings.filterwarnings("ignore")
```

Out[17]:

	Model Year	Make	Model	Vehicle Class		Cylinders	Transmission	Fuel Type	Fuel Consumption (City (L/100 km)	Consump (L/
0	2022	Acura	ILX	Compact	2.4	4	AM8	Z	9.9	
1	2022	Acura	MDX SH- AWD	SUV: Small	3.5	6	AS10	Z	12.6	
2	2022	Acura	RDX SH- AWD	SUV: Small	2.0	4	AS10	Z	11.0	
4										•

In [18]:

1 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 946 entries, 0 to 945
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	Model Year	946 non-null	int64
1	Make	946 non-null	object
2	Model	946 non-null	object
3	Vehicle Class	946 non-null	object
4	Engine Size(L)	946 non-null	float64
5	Cylinders	946 non-null	int64
6	Transmission	946 non-null	object
7	Fuel Type	946 non-null	object
8	Fuel Consumption (City (L/100 km)	946 non-null	float64
9	<pre>Fuel Consumption(Hwy (L/100 km))</pre>	946 non-null	float64
10	<pre>Fuel Consumption(Comb (L/100 km))</pre>	946 non-null	float64
11	<pre>Fuel Consumption(Comb (mpg))</pre>	946 non-null	int64
12	CO2 Emissions(g/km)	946 non-null	int64
13	CO2 Rating	946 non-null	int64
14	Smog Rating	946 non-null	int64

dtypes: float64(4), int64(6), object(5)

memory usage: 111.0+ KB

In [19]: 1 df.describe()

Out[19]:

	Model Year	Engine Size(L)	Cylinders	Fuel Consumption (City (L/100 km)	Fuel Consumption(Hwy (L/100 km))	Fuel Consumption(Comb (L/100 km))	Cons
count	946.0	946.000000	946.000000	946.000000	946.000000	946.000000	
mean	2022.0	3.198732	5.668076	12.506448	9.363319	11.092072	
std	0.0	1.374814	1.932670	3.452043	2.285125	2.876276	
min	2022.0	1.200000	3.000000	4.000000	3.900000	4.000000	
25%	2022.0	2.000000	4.000000	10.200000	7.700000	9.100000	
50%	2022.0	3.000000	6.000000	12.200000	9.200000	10.800000	
75%	2022.0	3.800000	6.000000	14.700000	10.700000	12.900000	
max	2022.0	8.000000	16.000000	30.300000	20.900000	26.100000	

```
for i in df.columns:
In [21]:
           1
           2
                  trv:
           3
                      sns.boxplot(df[i])
           4
                      plt.show()
           5
                  except:
           6
                      print("This is Categorial",i)
           7
              5.0
                    7.5
                          10.0
                                12.5
                                      15.0
                                           17.5
                                                 20.0
                     Fuel Consumption(Hwy (L/100 km))
             df.columns
In [22]:
           1
'Fuel Consumption (City (L/100 km)', 'Fuel Consumption(Hwy (L/100 km))',
                'Fuel Consumption(Comb (L/100 km))', 'Fuel Consumption(Comb (mpg))', 'CO2 Emissions(g/km)', 'CO2 Rating', 'Smog Rating'],
               dtype='object')
In [23]:
           1df.rename(columns={'Fuel Consumption(Comb (L/100 km))':"Fuel consuption",'CO2
In [24]:
              df.columns
Out[24]: Index(['Model Year', 'Make', 'Model', 'Vehicle Class', 'ES', 'Cylinders',
                 'Transmission', 'Fuel Type', 'Fuel Consumption (City (L/100 km)',
                 'Fuel Consumption(Hwy (L/100 km))', 'Fuel_consuption',
                'Fuel Consumption(Comb (mpg))', 'co2', 'CO2 Rating', 'Smog Rating'],
               dtype='object')
              df.drop(columns=['Fuel Consumption(Hwy (L/100 km))', 'Fuel Consumption(Comb (
In [25]:
```

```
In [26]:
              df.columns
Out[26]: Index(['Model Year', 'Make', 'Model', 'Vehicle Class', 'ES', 'Cylinders',
                 'Transmission', 'Fuel Type', 'Fuel_consuption', 'co2', 'CO2 Rating',
                 'Smog Rating'],
               dtype='object')
In [27]:
              from feature_engine.outliers import Winsorizer
In [28]:
              win_E = Winsorizer(capping_method="iqr",tail='both',fold=1.5,variables=["ES'
In [29]:
              win_C = Winsorizer(capping_method="iqr",tail='both',fold=1.5,variables=["Cyl
In [30]:
              win CO = Winsorizer(capping method="iqr",tail='both',fold=1.5,variables=['
              win_CO2 = Winsorizer(capping_method="iqr",tail='both',fold=1.5,variables=[
In [31]:
In [32]:
              df["ES"] = win_E.fit_transform(df[["ES"]])
In [33]:
              df["Cylinders"] = win C.fit transform(df[["Cylinders"]])
In [34]:
              df["co2"]=win CO.fit transform(df[["co2"]])
In [35]:
             df["CO2 Rating"] =win_CO2.fit_transform(df[["CO2 Rating"]])
```

```
In [36]:
            1
               for i in df.columns:
            2
                    try:
            3
                        sns.boxplot(df[i])
            4
                        plt.show()
            5
                    except:
            6
                        print("This is Categorial",i)
                           200
                                 250
                                        300
                                              350
             100
                    150
                                                     400
                                   ω2
```


In [37]: 1 df.head(3)

Out[37]:

	Model Year	Make	Model	Vehicle Class	ES	Cylinders	Transmission	Fuel Type	Fuel_consuption	co2	C Rat
0	2022	Acura	ILX	Compact	2.4	4.0	AM8	Z	8.6	200.0	
1	2022	Acura	MDX SH- AWD	SUV: Small	3.5	6.0	AS10	Z	11.2	263.0	
2	2022	Acura	RDX SH- AWD	SUV: Small	2.0	4.0	AS10	Z	9.9	232.0	
4											•

Encodeing

```
In [38]: 1 from sklearn.preprocessing import LabelEncoder
In [39]: 1 le = LabelEncoder()
In [40]: 1 df["Vehicle Class"] = le.fit_transform(df[["Vehicle Class"]])
In [41]: 1 df["Transmission"] = le.fit_transform(df[["Transmission"]])
```

```
In [43]:
                df["Fuel Type"] = le.fit_transform(df[["Fuel Type"]])
In [44]:
                df.head(3)
Out[44]:
               Model
                                    Vehicle
                                                                          Fuel
                                                                                                         C
                      Make
                             Model
                                            ES
                                                 Cylinders
                                                          Transmission
                                                                               Fuel consuption
                                                                                                  co2
                Year
                                      Class
                                                                         Type
                                                                                                       Ratii
                2022
                      Acura
                               ILX
                                            2.4
                                                       4.0
                                                                      7
                                                                            3
                                                                                                200.0
                                                                                                          6
                                          0
                                                                                            8.6
                              MDX
                2022 Acura
                               SH-
                                          7 3.5
                                                       6.0
                                                                      8
                                                                            3
                                                                                           11.2
                                                                                                263.0
            1
                                                                                                          4
                              AWD
                              RDX
                                                                      8
                                                                            3
                                                                                                232.0
            2
                2022 Acura
                                          7 2.0
                                                       4.0
                                                                                            9.9
                                                                                                          5
                               SH-
                              AWD
In [45]:
                from sklearn.preprocessing import OneHotEncoder
In [48]:
                socialprachar = OneHotEncoder(sparse=False)
             1
In [55]:
                x = socialprachar.fit transform(df[["Make"]])
             1
In [53]:
                y = socialprachar.get_feature_names_out()
             1
In [56]:
                x1 = pd.DataFrame(x,columns=y)
In [57]:
             1
                х1
Out[57]:
                              Make_Alfa
                                         Make_Aston
                 Make_Acura
                                                                 Make_BMW
                                                      Make_Audi
                                                                              Make_Bentley
                                                                                            Make_Bugatti I
                                 Romeo
                                              Martin
              0
                         1.0
                                    0.0
                                                 0.0
                                                             0.0
                                                                         0.0
                                                                                        0.0
                                                                                                      0.0
              1
                         1.0
                                    0.0
                                                 0.0
                                                             0.0
                                                                         0.0
                                                                                        0.0
                                                                                                      0.0
              2
                         1.0
                                    0.0
                                                 0.0
                                                             0.0
                                                                         0.0
                                                                                        0.0
                                                                                                      0.0
              3
                         1.0
                                    0.0
                                                 0.0
                                                             0.0
                                                                         0.0
                                                                                        0.0
                                                                                                      0.0
              4
                         1.0
                                    0.0
                                                 0.0
                                                             0.0
                                                                         0.0
                                                                                        0.0
                                                                                                      0.0
            941
                         0.0
                                    0.0
                                                 0.0
                                                             0.0
                                                                         0.0
                                                                                        0.0
                                                                                                      0.0
```

946 rows × 39 columns

0.0

0.0

0.0

0.0

942

943

944

945

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Out[61]:

	Model_1500	Model_1500 4X4	Model_1500 4X4 EcoDiesel	Model_1500 4X4 TRX	Model_1500 4X4 eTorque	Model_1500 Classic	Model_1500 Classic 4X4	Mc I
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	1 0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	2 0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	3 0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	4 0.0	0.0	0.0	0.0	0.0	0.0	0.0	
•					•••	•••		
94	1 0.0	0.0	0.0	0.0	0.0	0.0	0.0	
94	2 0.0	0.0	0.0	0.0	0.0	0.0	0.0	
94	3 0.0	0.0	0.0	0.0	0.0	0.0	0.0	
94	4 0.0	0.0	0.0	0.0	0.0	0.0	0.0	
94	5 0.0	0.0	0.0	0.0	0.0	0.0	0.0	

946 rows × 715 columns

•

Out[62]:

	Model Year	Make	Model	Vehicle Class	ES	Cylinders	Transmission	Fuel Type	Fuel_consuption	co2	
0	2022	Acura	ILX	0	2.4	4.0	7	3	8.6	200.0	
1	2022	Acura	MDX SH- AWD	7	3.5	6.0	8	3	11.2	263.0	
2	2022	Acura	RDX SH- AWD	7	2.0	4.0	8	3	9.9	232.0	
3	2022	Acura	RDX SH- AWD A- SPEC	7	2.0	4.0	8	3	10.3	242.0	
4	2022	Acura	TLX SH- AWD	0	2.0	4.0	8	3	9.8	230.0	
941	2022	Volvo	XC40 T5 AWD	7	2.0	4.0	12	3	9.4	219.0	
942	2022	Volvo	XC60 B5 AWD	7	2.0	4.0	12	3	9.4	219.0	
943	2022	Volvo	XC60 B6 AWD	7	2.0	4.0	12	3	9.9	232.0	
944	2022	Volvo	XC90 T5 AWD	8	2.0	4.0	12	3	10.1	236.0	
945	2022	Volvo	XC90 T6 AWD	8	2.0	4.0	12	3	10.8	252.0	

946 rows × 766 columns

In [67]: 1 final.drop(columns=["Model Year","Make","Model"],inplace=True)

In [68]: 1 final

Out[68]:

	Vehicle Class	ES	Cylinders	Transmission	Fuel Type	Fuel_consuption	co2	CO2 Rating	Smog Rating	Make_Ac
0	0	2.4	4.0	7	3	8.6	200.0	6.0	3	
1	7	3.5	6.0	8	3	11.2	263.0	4.0	5	
2	7	2.0	4.0	8	3	9.9	232.0	5.0	6	
3	7	2.0	4.0	8	3	10.3	242.0	5.0	6	
4	0	2.0	4.0	8	3	9.8	230.0	5.0	7	
941	7	2.0	4.0	12	3	9.4	219.0	5.0	5	
942	7	2.0	4.0	12	3	9.4	219.0	5.0	5	
943	7	2.0	4.0	12	3	9.9	232.0	5.0	7	
944	8	2.0	4.0	12	3	10.1	236.0	5.0	5	
945	8	2.0	4.0	12	3	10.8	252.0	5.0	7	

946 rows × 763 columns

Data Prepartion

In [69]: 1 x = final.drop("Fuel_consuption",axis=1)

In [70]: 1 x

Out[70]:

		Vehicle Class	ES	Cylinders	Transmission	Fuel Type	co2	CO2 Rating	Smog Rating	Make_Acura	Make_Alfa Romeo	•
	0	0	2.4	4.0	7	3	200.0	6.0	3	1.0	0.0	_
	1	7	3.5	6.0	8	3	263.0	4.0	5	1.0	0.0	
	2	7	2.0	4.0	8	3	232.0	5.0	6	1.0	0.0	
	3	7	2.0	4.0	8	3	242.0	5.0	6	1.0	0.0	
	4	0	2.0	4.0	8	3	230.0	5.0	7	1.0	0.0	
					***					***		
ć	941	7	2.0	4.0	12	3	219.0	5.0	5	0.0	0.0	
ç	942	7	2.0	4.0	12	3	219.0	5.0	5	0.0	0.0	
ç	943	7	2.0	4.0	12	3	232.0	5.0	7	0.0	0.0	
ç	944	8	2.0	4.0	12	3	236.0	5.0	5	0.0	0.0	
Ś	945	8	2.0	4.0	12	3	252.0	5.0	7	0.0	0.0	

946 rows × 762 columns

```
y = final["Fuel_consuption"]
In [71]:
           1
Out[71]:
                  8.6
                 11.2
                  9.9
         3
                10.3
                  9.8
         941
                 9.4
         942
                  9.4
         943
                 9.9
         944
                10.1
         945
                10.8
         Name: Fuel_consuption, Length: 946, dtype: float64
In [72]:
              from sklearn.model_selection import train_test_split
In [73]:
           1 x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3,random_st
In [74]:
           1 x_train.shape,y_train.shape
Out[74]: ((662, 762), (662,))
```

```
In [75]:
           1 x_test.shape,y_test.shape
Out[75]: ((284, 762), (284,))
In [76]:
             from sklearn.linear_model import LinearRegression
In [77]:
             model = LinearRegression()
In [80]:
             model.fit(x_train,y_train)
Out[80]: LinearRegression()
In [83]:
           1 model.score(x_train,y_train)
Out[83]: 0.9832169319786306
In [84]:
             model.score(x_test,y_test)
Out[84]: -2.484890262268565e+18
In [87]:
             from sklearn.ensemble import RandomForestRegressor
In [88]:
           1 Model = RandomForestRegressor()
In [89]:
           1 Model.fit(x_train,y_train)
Out[89]: RandomForestRegressor()
In [90]:
           1 Model.score(x_train,y_train)
Out[90]: 0.992881839533678
In [91]:
           1 Model.score(x_test,y_test)
Out[91]: 0.9672957225369877
In [ ]:
 In [ ]:
```