Recall – Support Vector Regression

We want to fit a function

$$g(X, W) = W^T \Phi(X) + b$$

▶ We do empirical risk minimization with ϵ -insensitive loss:

$$L_{\epsilon}(y_i, g(X_i, W)) = 0$$
 If $|y_i - g(X_i, W)| < \epsilon$
= $|y_i - g(X_i, W)| - \epsilon$ otherwise

• We use W^TW as a regularization term

Recall – SVR Optimization Problem

Find W, b and ξ_i, ξ'_i to

$$\begin{aligned} & \text{minimize} & & \frac{1}{2}W^TW + C\left(\sum_{i=1}^n \ \xi_i + \sum_{i=1}^n \ \xi_i'\right) \\ & \text{subject to} & & y_i - W^T\Phi(X_i) - b \leq \epsilon + \xi_i, \quad i = 1, \dots, n \\ & & & W^T\Phi(X_i) + b - y_i \leq \epsilon + \xi_i', \quad i = 1, \dots, n \\ & & & \xi_i \geq 0, \ \xi_i' \geq 0 \quad i = 1, \dots, n \end{aligned}$$

Has similar structure as the SVM.

The dual

The dual of this problem is

$$\begin{aligned} \max_{\pmb{\alpha}, \pmb{\alpha}} & & \sum_{i=1}^n \, y_i(\alpha_i - \alpha_i') - \epsilon \sum_{i=1}^n \, (\alpha_i + \alpha_i') \\ & & - \frac{1}{2} \sum_{i,j} \, (\alpha_i - \alpha_i') (\alpha_j - \alpha_j') \Phi(X_i)^T \Phi(X_j) \\ \text{subject to} & & \sum_{i=1}^n \, (\alpha_i - \alpha_i') = 0 \\ & & 0 \leq \alpha_i, \, \, \alpha_i' \leq C, \quad i = 1, \dots, n \end{aligned}$$

▶ Here α_i and α'_i are the Lagrange multipliers corresponding to the first two inequalities in the primal.

The solution

▶ The solution is

$$W^* = \sum_{i=1}^{n} (\alpha_i^* - \alpha_i^{*'}) \Phi(X_i)$$

$$b^* = y_i - \Phi(X_i)^T W^* + \epsilon, \quad j \text{ s.t. } 0 < \alpha_i^* < C/n$$

- Let $K(X, X') = \Phi(X)^T \Phi(X')$.
- ▶ The optimal model learnt is

$$g(X, W^*) = X^T W^* + b^*$$

$$= \sum_{i=1}^n (\alpha_i^* - \alpha_i^{*'}) \phi(X_i)^T \phi(X) + b^*$$

$$= \sum_{i=1}^n (\alpha_i^* - \alpha_i^{*'}) K(X_i, X) + b^*$$

(Note that b^* can also be written in terms of the Kernel function.)

Support vector regression

- Once again, the kernel trick allows us to learn non-linear models using a linear method.
- ▶ The parameters: C, ϵ and parameters of kernel function.
- ► The basic idea of SVR can be used in many related problems.

SV regression

- ▶ With the ϵ -insensitive loss function, points whose targets are within ϵ of the prediction do not contribute any 'loss'.
- ▶ Gives rise to some interesting robustness of the method. It can be proved that local movements of target values of points outside the ϵ -tube do not influence the regression.
- ▶ Robustness essentially comes through the support vector representation of the regression.

- In our formulation of the regression problem we added W^TW term in the objective function.
- ▶ We are essentially minimizing

$$\frac{1}{2}W^{T}W + C \sum_{i=1}^{n} \max(|y_{i} - \Phi(X_{i})^{T}W - b| - \epsilon, 0)$$

- ▶ This is 'regularized risk minimization'.
- ▶ Then W^TW is the model complexity term which is intended to favour learning of 'smoother' models.
- ▶ There are several ways to understand why W^TW is a good term to caracterize smoothness in case of linear models.

- ▶ Let $f: \Re^m \to \Re$ be a continuous function.
- ▶ Continuity means we can make |f(X) f(X')| as small as we want by taking ||X X'|| sufficiently small.
- ► There are ways to characterize the 'degree of continuity' of a function.
- ▶ We consider one such measure now.

ϵ -Margin of a function

▶ The ϵ -margin of a function, $f: \Re^n \to \Re$ is

$$m_{\epsilon}(f) = \inf\{||X - X'|| : |f(X) - f(X')| \ge 2\epsilon\}$$

► The intuitive idea is:

How small can
$$||X-X'||$$
 be, still keeping $|f(X)-f(X')|$ 'large'

▶ The larger $m_{\epsilon}(f)$, the smoother is the function.

$$m_{\epsilon}(f) = \inf\{||X - X'|| : |f(X) - f(X')| \ge 2\epsilon\}$$

- ▶ Obviously, $m_{\epsilon}(f) = 0$ if f is discontinuous.
- $m_{\epsilon}(f)$ can be zero even for continuous functions, e.g., f(x)=1/x.
- $m_{\epsilon}(f) > 0$ for all $\epsilon > 0$ iff f is uniformly continuous.
- ► Higher margin would mean the function is 'slowly varying' and hence is a 'smoother' model.

Linear Models and margin

Consider regression with linear models. Then,

$$|f(X) - f(X')| = |W^T(X - X')|.$$

- ▶ For all X, X' with $|W^T(X X')| \ge 2\epsilon$, we want the smallest ||X X'||
- It would be smallest if $|W^T(X-X')|=2\epsilon$ and (X-X') is parallel to W. That is, $X-X'=\pm\frac{2\epsilon W}{W^TW}$.
- ▶ Thus, $m_{\epsilon}(f) = || \pm \frac{2\epsilon W}{W^T W}|| = \frac{2\epsilon}{||W||}$.
- ▶ Thus in our optimization problem adding the term W^TW promotes learning of smoother models.
- ▶ As we have seen linear regression models use this as the regularization term.

- ► The basic idea of kernel functions, as we saw in SVM, has been extended in many ways.
- ► There have been many extensions of the basic SVM method also.
- ▶ Some of them are essentially formulations of approximate solutions to make the algorithm more efficient.
- Some of them are reformulations to add additional features to the SVM method.
- ► We consider a couple of simple examples of such extensions.

▶ Suppose the optimization problem is changed to

$$\begin{aligned} & \underset{W,b,\pmb{\xi}}{\min} & & \frac{1}{2}W^TW \,+\, b^2 \,+\, C\sum_{i=1}^n\,\xi_i \\ & \text{subject to} & & y_i(W^TX_i+b) \geq 1-\xi_i, \quad i=1,\dots,n \\ & & \xi_i \geq 0, \quad i=1,\dots,n \end{aligned}$$

We have added the b^2 term to the objective function. The main reason is that it simplifies the dual. ▶ The dual turns out to be

$$\begin{aligned} \max_{\pmb{\mu}} \qquad \sum_{i=1}^n \; \mu_i \; - \; \frac{1}{2} \sum_{i,j=1}^n \; \mu_i \mu_j y_i y_j K(X_i, X_j) \\ - \; \frac{1}{2} \sum_{i,j=1}^n \; \mu_i \mu_j y_i y_j \\ \text{subject to} \qquad 0 \leq \mu_i \leq C, \quad i=1,\dots,n, \end{aligned}$$

- The equality constraint is absent.
 Only bound constraints on variables.
- Allows for efficient optimization. (Successive overrelaxation).

- Next, we consider a reformulation of SVM optimization problem, known as *v*-SVM.
- Recall that the primal problem for SVM with slack variables is

$$\min_{W,b,\pmb{\xi}} \qquad \frac{1}{2}W^TW \,+\, C\sum_{i=1}^n\,\xi_i$$
 subject to
$$y_i(W^T\phi(X_i)+b)\geq 1-\xi_i, \ i=1,\ldots,n$$

$$\xi_i\geq 0, \ i=1,\ldots,n$$

- We will call this as C-SVM.
- ▶ In the C-SVM, one has no intuition for choosing the value of *C*.

ν -SVM

Consider a changed optimization problem

$$\begin{aligned} \min_{W,b,\pmb{\xi},\rho} & & \frac{1}{2}W^TW - \nu\rho + \frac{1}{n}\sum \xi_i \\ \text{subject to} & & y_i[W^T\phi(X_i) + b] \geq \rho - \xi_i \\ & & \xi_i \geq 0. \end{aligned}$$

where ν is a user-chosen constant.

- ▶ Note that $W, b, \rho, \xi_i = 0$ is a feasible solution.
- ▶ We do not need $\rho \ge 0$ constraint.

▶ The Lagrangian for this problem is

$$L(W, b, \xi, \rho, \eta, \mu) = \frac{1}{2} W^T W - \nu \rho + \frac{1}{n} \sum_{i=1}^n \xi_i$$
$$- \sum_{i=1}^n \eta_i \xi_i + \sum_{i=1}^n \mu_i \left(\rho - \xi_i - y_i [W^T \phi(X_i) + b] \right)$$

► The μ_i are the Lagrange multipliers for the separability constraints and η_i are the Lagrange multipliers for the constraints $\xi_i > 0$.

$$L = \frac{1}{2}W^{T}W - \nu\rho + \frac{1}{n}\sum_{i=1}^{n} \xi_{i} - \sum_{i=1}^{n} \eta_{i}\xi_{i} + \sum_{i=1}^{n} \mu_{i}(\rho - \xi_{i} - y_{i}[W^{T}\phi(X_{i}) + b])$$

$$\nabla_W L = 0 \Rightarrow W = \sum_i \mu_i y_i \phi(X_i)$$

$$ightharpoonup \frac{\partial L}{\partial b} = 0 \Rightarrow \sum \mu_i y_i = 0$$

$$\frac{\partial b}{\partial \mathcal{E}} = 0 \Rightarrow \mu_i + \eta_i = \frac{1}{n}, \ \forall i$$

$$\frac{\partial L}{\partial a} = 0 \Rightarrow \sum \mu_i = \nu$$

$$\rho - \xi_i - u_i(W^T \phi(X_i) + b) < 0; \quad \xi_i > 0; \quad \forall i$$

$$ho - \xi_i - y_i(W^T \phi(X_i) + b) \le 0; \ \xi_i \ge 0; \ \forall i$$

$$\mu_i \ge 0; \ \eta_i \ge 0, \ \forall i$$

$$\mu_i(\rho - \xi_i - y_i(W^T\phi(X_i) + b)) = 0; \quad \eta_i\xi_i = 0, \ \forall i$$

▶ Suppose $\xi_i > 0$ for some i. Then we have $\eta_i = 0$ and hence $\mu_i = \frac{1}{n}$. Hence

$$\nu = \sum_{i=1}^{n} \mu_{i} = \sum_{i:\xi_{i}>0} \mu_{i} + \sum_{i:\xi_{i}=0} \mu_{i}$$

$$\geq \sum_{i:\xi_{i}>0} \mu_{i} = \frac{|\{i:\xi_{i}>0\}|}{n}$$

Hence we have:
 ν is an upper bound on the fraction of 'margin errors'.

• We also have, because $0 \le \mu_i \le \frac{1}{n}$,

$$\nu = \sum_{i=1}^{n} \mu_{i} = \sum_{i:\mu_{i}>0} \mu_{i} + \sum_{i:\mu_{i}=0} \mu_{i}$$

$$\leq \sum_{i:\mu_{i}>0} \mu_{i} \leq \frac{|\{i:\mu_{i}>0\}|}{n}$$

Hence we have:
 ν is a lower bound on the fraction of support vectors.

- ▶ In the ν -SVM formulation, the ν is the user chosen constant.
- Unlike the parameter C, the ν has an interesting interpretation.
- ▶ It is simultaneously the upperbound on fraction of errors and lower bound on fraction of support vectors.
- ▶ If for the chosen ν , the problem has a solution with $\rho > 0$, then the bounds would be met.
- ► This gives us a good way to choose this 'penalty constant'.

▶ The dual for the ν -SVM turns out to be

$$\max_{\pmb{\mu}} \qquad q(\pmb{\mu}) = -\frac{1}{2} \sum_{i,j=1}^n \ \mu_i \mu_j y_i y_j K(X_i, X_j)$$
 subject to
$$0 \leq \mu_i \leq \frac{1}{n}, \forall i; \ \sum_{i=1}^n y_i \mu_i = 0; \ \sum_{i=1}^n \mu_i = \nu$$

- This a simple optimization problem similar to that of 'C-SVM'.
- ▶ One can show that if we have a solution for ν -SVM then if we choose $C=1/\rho n$, we get the same solution with 'C-SVM'.

ν SVR

- This idea can be extended to the regression problem also.
- ▶ In support vector regression, we had two user defined constants: ϵ and C.
- ▶ The ϵ specifies the 'tolerable error' and it is difficult to know what value to choose for it.
- We can reformulate SVR so that we can optimize on ϵ also.
- ▶ This will be very similar to the ν -SVM formulation.

▶ Recall the optimization problem in SVR:

$$\begin{aligned} & \underset{W,b,\boldsymbol{\xi},\boldsymbol{\xi'}}{\min} & & \frac{1}{2}W^TW + C\left(\sum_{i=1}^n \ \xi_i + \sum_{i=1}^n \ \xi_i'\right) \\ & \text{subject to} & & y_i - W^T\Phi(X_i) - b \leq \epsilon + \xi_i, \quad i = 1,\dots,n \\ & & & W^T\Phi(X_i) + b - y_i \leq \epsilon + \xi_i', \quad i = 1,\dots,n \\ & & & \xi_i \geq 0, \ \xi_i' \geq 0 \quad i = 1,\dots,n \end{aligned}$$

▶ We change the optimization problem to the following:

$$\begin{aligned} & \underset{W,b,\epsilon,\boldsymbol{\xi},\boldsymbol{\xi'}}{\min} & & \frac{1}{2}W^TW + C\left(\nu\epsilon + \frac{1}{n}\sum_{i=1}^n\left(\xi_i + \xi_i'\right)\right) \\ & \text{subject to} & & y_i - W^T\phi(X_i) - b \leq \epsilon + \xi_i, \quad i = 1,\dots,n \\ & & & W^T\phi(X_i) + b - y_i \leq \epsilon + \xi_i', \quad i = 1,\dots,n \\ & & & \xi_i \geq 0, \ \xi_i' \geq 0 \ \epsilon \geq 0, \ i = 1,\dots,n \end{aligned}$$

where ν is a user-chosen constant.

• We get similar results as in ν -SVM.

Risk minimization view of SVM

- We posed the support vector regression problem as a (regularized) risk minimization under a special loss function.
- It was then reformulated into an (equivalent) constrained optimization problem.
- ▶ In contrast, we formulated the SVM directly as a constrained optimization problem.
- However, it can also be seen to be minimization of (regularized) empirical risk under a special loss function.

▶ The optimization problem for SVM is

$$\begin{aligned} & \underset{W,b,\pmb{\xi}}{\min} & & \frac{1}{2}W^TW \,+\, C\sum_{i=1}^n \,\xi_i \\ & \text{subject to} & & y_i(W^TX_i+b) \geq 1-\xi_i, \ i=1,\dots,n \\ & & \xi_i \geq 0, \ i=1,\dots,n \end{aligned}$$

▶ Given any W, b, the ξ_i have to satisfy

$$\xi_i \ge \max(0, 1 - y_i(W^T X_i + b))$$

▶ Since we need to minimize $\sum \xi_i$, we need to take the value above for each ξ_i .

► Hence we can find SVM by solving the following unconstrained optimization problem:

$$\min_{W,b} \frac{1}{2} W^T W + C \sum_{i=1}^n \max(0, 1 - y_i (W^T X_i + b))$$

Consider the loss function defined by

$$L_{\mathsf{hinge}}(y, f(X)) = \max(0, 1 - yf(X))$$

▶ Then the optimization problem is same as

$$\min_{W,b} \ \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(X_i)) + C' \frac{1}{2} W^T W$$

▶ Then the optimization problem is same as

$$\min_{W,b} \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(X_i)) + C' \frac{1}{2} W^T W$$

- ▶ The model (or classifier) we are learning is $f(X) = W^T X + b$.
- For this model, we already saw W^TW is a good regularization term.
- ► Thus, our SVM formulation is empirical risk minimization under hinge-loss along with a regularization term.

- ► As we saw earlier, the hinge-loss and square-loss are good convex approximations of the 0–1 loss.
- ▶ For 0–1 loss L(y, f(X)) is one if yf(X) is negative and zero otherwise.
- ▶ The squared error loss can be written as

$$L_{\mathsf{square}}(y, h(X)) = (1 - yf(X))^2$$

▶ The hinge loss is given by

$$L_{\mathsf{hinge}}(y, h(X)) = \max(0, 1 - yf(X))$$

▶ We can plot all the functions as follows.

(Here we plot yf(X) on x-axis and L(y,f(X)) on y-axis).

- Hinge loss is also called soft-margin loss.
- ightharpoonup Supoose we want to minimize, over all f,

$$E[\max(0, 1 - yf(X))], y \in \{+1, -1\}$$

- Intuitively the best we can do is to make sign of f(X) to be same as sign of the corresponding y.
- \blacktriangleright Hence, intuitively, the best f is

$$f(X) > 0$$
, if $P[y = +1|X] > 0.5$; else $f(X) < 0$

This is indeed a good classifier.

- ▶ In SVM method, there are two important ingradients.
- One is the Kernel function.
- ► Kernel functions allow us to learn nonlinear models using essentially linear techniques.
- Second is the 'support vector' expansion the final model is expressed as a ('sparse') linear combination of some of the data vectors.
- Kernels are a good way to capture 'similarity' and are useful in general.
- ► The support vector expansion is also a general property of Kernel based methods.
- ▶ We look at this general view of Kernels next.

- ▶ Often, in pattern recognition, we use distance between pattern vectors as a means to assess similarity (e.g. nearest neighbour classifier).
- ► Kernels allow us to generalize such notions of distance or similarity between patterns.

 Consider a 2-class classification problem with training data

$$\{(X_i, y_i), i = 1, \dots, n\}, X_i \in \Re^m, y_i \in \{+1, -1\}$$

- Suppose we implement a nearest neighbour classifier, by computing distance of a new pattern to a set of prototypes.
- ▶ Keeping with the viewpoint of SVM, suppose we want to transform the patterns into a new space using ϕ and find the distances there.

Suppose we use two prototypes given by

$$C_{+} = \frac{1}{n_{+}} \sum_{i: y_{i}=+1} \phi(X_{i})$$
 and $C_{-} = \frac{1}{n_{-}} \sum_{i: y_{i}=-1} \phi(X_{i})$

where n_+ is the number of examples in class +1 and n_- is that in class -1.

- ▶ The prototypes are 'centers' of the two classes.
- ightharpoonup Given a new X, we would put it in class +1 if

$$||\phi(X) - C_{+}||^{2} < ||\phi(X) - C_{-}||^{2}$$

▶ We can implement this using kernels. We have

$$||\phi(X) - C_+||^2 = \phi(X)^T \phi(X) - 2\phi(X)^T C_+ + C_+^T C_+$$

ightharpoonup Thus we would put X in class +1 if

$$\phi(X)^T C_+ - \phi(X)^T C_- + \frac{1}{2} \left(C_-^T C_- - C_+^T C_+ \right) > 0$$

▶ All these inner products are now easily done using kernel functions.

▶ By the definition of C_+ , we get

$$\phi(X)^{T}C_{+} = \phi(X)^{T} \left(\frac{1}{n_{+}} \sum_{i: y_{i}=+1} \phi(X_{i}) \right)$$
$$= \frac{1}{n_{+}} \sum_{i: y_{i}=+1} K(X_{i}, X)$$

Similarly we get

$$C_{+}^{T}C_{+} = \frac{1}{n_{+}^{2}} \sum_{i,i,m=n,-+1} K(X_{i}, X_{j})$$

▶ Thus, our classifier is sgn(h(X)) where

$$h(X) = \frac{1}{n_{+}} \sum_{i: m_{-} = 1} K(X_{i}, X) - \frac{1}{n_{-}} \sum_{i: m_{-} = 1} K(X_{i}, X) + b$$

where

$$b = \frac{1}{2} \left(\frac{1}{n_{-}^{2}} \sum_{y_{i}, y_{i} = -1} K(X_{i}, X_{j}) - \frac{1}{n_{+}^{2}} \sum_{y_{i}, y_{i} = +1} K(X_{i}, X_{j}) \right)$$

- ▶ Thus we can implement such nearest neighbour classifiers by implicitly transforming the feature space and using kernel function for the inner product in the transformed space.
- ► The kernel function allows us to formulate the right kind of similarity measure in the original space.

Define

$$P_{+}(X) = \frac{1}{n_{+}} \sum_{i: y_{i}=+1} K(X_{i}, X),$$

$$P_{-}(X) = \frac{1}{n_{-}} \sum_{i: y_{i}=-1} K(X_{i}, X)$$

▶ With a proper normalization, these are essentially non-parametric estimators for the class conditional densities — the kernel density estimates.

- ▶ We could, for example, use a Gaussian kernel and then it is the nonparametric density estimators we studied earlier.
- ► Thus, our nearest neighbour classifier is essentially a Bayes classifier using nonparametric estimators for class conditional densities

- ▶ We next look at positive definite kernels in some detail.
- ▶ We show that for any such kernel, there is one vector space with an innerproduct such that the kernel realizes an innerproduct in that space.
- ► This is called the Reproducing Kernel Hilbert Space (RKHS) associated with the Kernel.
- ▶ We also show that if we are doing regularized empirical risk minimization on this space, then the final solution would have the 'support vector expansion' form.

Positive definite kernels

- ▶ Let \mathcal{X} be the original feature space.
- ▶ Let $K: \mathcal{X} \times \mathcal{X} \to \Re$ be a positive definite kernel.
- ▶ Given any n points, $X_1, \dots, X_n \in \mathcal{X}$, the $n \times n$ matrix with (i, j) element as $K(X_i, X_j)$ is called the Gram matrix of K.
- ▶ Recall that K is positive definite if the Gram matrix is positive semi-definite for all n and all X_1, \dots, X_n .

 \triangleright Positive definiteness of Kernel means, for all n,

$$\sum_{i,j=1}^{n} c_i c_j K(X_i, X_j) \ge 0, \quad \forall c_i \in \Re, \ \forall X_i \in \mathcal{X}$$

- ▶ Taking n = 1, we get $K(X, X) \ge 0$, $\forall X \in \mathcal{X}$.
- ▶ Taking n = 2 and remembering that K is symmetric, we get

$$K(X_1, X_2)^2 \le K(X_1, X_1) K(X_2, X_2), \ \forall X_1, X_2 \in \mathcal{X}$$

Thus, K satisfies Cauchy-Schwartz inequality

- ► Suppose $K(X, X') = \phi(X)^T \phi(X')$.
- ▶ Then *K* is a positive definite kernel:

$$\sum_{i,j} c_i c_j \phi(X_i)^T \phi(X_j) = \left(\sum_i c_i \phi(X_i)\right)^T \left(\sum_j c_j \phi(X_j)\right)$$
$$= \left|\left|\sum_i c_i \phi(X_i)\right|\right|^2 \ge 0$$

▶ Thus, e.g., if *K* satisfies Mercer theorem, then it is a positive definite kernel.

- ► We now show that all positive definite kernels are also innerproducts on some appropriate space.
- ▶ Given a kernel *K*, we will construct a space endowed with an inner product and show how any positive definite kernel is essentially implementing inner product in this space.
- ightharpoonup This space is called the Reproducing Kernel Hilbert Space associated with the Kernel. K.

- Let $\Re^{\mathcal{X}}$ be the set of all real-valued functions on \mathcal{X} .
- ▶ Let *K* be a positive definite kernel.
- ▶ For any $X \in \mathcal{X}$, let $K(\cdot, X) \in \Re^{\mathcal{X}}$ denote the function that maps $X' \in \mathcal{X}$ to $K(X', X) \in \Re$.
- ▶ That is, $K(\cdot, X)(X') = K(X, X')$. If the notation is confusing, think of $K(\cdot, X)$ as a function $g_X(\cdot)$ with $g_X(X') = K(X, X'), \forall X' \in \mathcal{X}$.
- Consider the set of functions

$$\mathcal{H}_1 = \{ K(\cdot, X) : X \in \mathcal{X} \}.$$

▶ Let \mathcal{H} be the set of all functions that are finite linear combinations of functions in \mathcal{H}_1 .

- \blacktriangleright Note that elements of ${\mathcal H}$ are certain real-valued functions on ${\mathcal X}$
- ▶ Any $f(\cdot) \in \mathcal{H}$ can be written as

$$f(\cdot) = \sum_{i=1}^{n} \alpha_i K(\cdot, X_i), \quad \text{for some} \quad n, X_i \in \mathcal{X}, \ \alpha_i \in \Re$$

- ▶ It is easy to see that if $f, g \in \mathcal{H}$ then $f + g \in \mathcal{H}$ and $\alpha f \in \mathcal{H}$ for $\alpha \in \Re$.
- ▶ Thus, \mathcal{H} is a vector space. (The scalars are reals)
- We now define an inner product on \mathcal{H} .

▶ Let $f, g \in \mathcal{H}$ with

$$f(\cdot) = \sum_{i=1}^{n} \alpha_i K(\cdot, X_i), \quad g(\cdot) = \sum_{j=1}^{n'} \beta_j K(\cdot, X'_j)$$

We define the inner product as

$$\langle f, g \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n'} \alpha_i \beta_j K(X_i, X'_j)$$

- ▶ We first show this is well defined.
- ▶ That is, we show that the inner product does not depend on the specific representation used for *f* and *g*.

Note that

$$\langle f, g \rangle = \sum_{i=1}^{n} \alpha_i \sum_{j=1}^{n'} \beta_j K(X_i, X'_j) = \sum_{i=1}^{n} \alpha_i g(X_i)$$

Thus the innerproduct does not depend on β_j or X'_j .

Similarly we have

$$\langle f, g \rangle = \sum_{j=1}^{n'} \beta_j \sum_{i=1}^n \alpha_i K(X_i, X'_j) = \sum_{j=1}^{n'} \beta_j f(X'_j)$$

▶ Thus our inner product does not depend on the α_i , β_j or the specific representation used and hence is well defined.

< f, g > is an Inner Product

$$\langle f, g \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n'} \alpha_i \beta_j K(X_i, X'_j)$$

- ▶ By definition, $\langle f, g \rangle = \langle g, f \rangle$. (Symmetric)
- It is easily verified that it is bilinear:

$$< f, g_1 + g_2 > = < f, g_1 > + < f, g_2 >$$

 $< f_1 + f_2, g > = < f_1, g > + < f_2, g >$

- ▶ It is also easy to see that < cf , g > = c < f , g >.
- We have, by the positive definiteness of K, < f, $f > = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j K(X_i, X_j) \ge 0$

- ightharpoonup Finally, we have to show $\langle f, f \rangle = 0 \Rightarrow f = 0$.
- ▶ Let $f_1, \dots, f_p \in \mathcal{H}$ and let $\gamma_1, \dots, \gamma_p \in \Re$.
- ▶ Let $g_1 = \sum_{i=1}^p \gamma_i f_i \in \mathcal{H}$.
- ▶ Now we get

$$\sum_{i,j=1}^{p} \gamma_{i} \gamma_{j} < f_{i} , f_{j} > = < \sum_{i=1}^{p} \gamma_{i} f_{i} , \sum_{j=1}^{p} \gamma_{j} f_{j} >$$

$$= < g_{1} , g_{1} >$$

$$\geq 0$$

for any scalaras γ_i and any f_i and any p.

- ▶ Note that $<\cdot,\cdot>$ is a symmetric function that maps $\mathcal{H}\times\mathcal{H}$ to \Re .
- ▶ Thus what we have shown is that $\langle \cdot, \cdot \rangle$ is a positive definite kernel on \mathcal{H} .
- ► Since positive definite kernels satisfy Cauchy-Schwartz inequality, we have

$$|\langle g_1, g_2 \rangle|^2 \le \langle g_1, g_1 \rangle \langle g_2, g_2 \rangle$$

▶ In particular, for any $f \in \mathcal{H}$, we have

$$|< K(\cdot,X),\, f>|^2 \, \leq \, < K(\cdot,X),\, K(\cdot,X)> < f,\, f>$$
 for all $X\in\mathcal{X}$.

Recall

$$f(\cdot) = \sum_{i=1}^{n} \alpha_i K(\cdot, X_i), \quad g(\cdot) = \sum_{j=1}^{n'} \beta_j K(\cdot, X'_j)$$

$$\langle f, g \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n'} \alpha_i \beta_j K(X_i, X'_j)$$

Hence We have

$$< K(\cdot\,,X)\,,\; K(\cdot\,,X')> = K(X,X') \;\; \text{and}$$
 $< K(\cdot\,,X)\,,\; f> = \sum_{i=1}^n \,\alpha_i\,K(X\,,X_i) = f(X)$

This is called the reproducing Kernel property.

We have

$$< K(\cdot\,,X)\,,\; K(\cdot\,,X')> \quad = \quad K(X,X') \quad \text{and} \\ < K(\cdot\,,X)\,,\; f> \quad = \quad f(X)$$

▶ Now, $\forall X$,

$$|f(X)|^2 = |\langle K(\cdot, X), f \rangle|^2 \le K(X, X) \langle f, f \rangle$$

- ▶ This shows $\langle f, f \rangle = 0 \implies f = 0$.
- ▶ This shows what we defined is indeed an inner product.

- ► Given any positive definite kernel, we can construct this inner product space \mathcal{H} as explained here.
- ► We can complete it in the norm induced by the inner product.
- ▶ It is called the Reproducing Kernel Hilbert Space (RKHS) associated with *K*.
- ▶ The reproducing kernel property is

$$\langle K(\cdot, X), f \rangle = f(X), \forall f \in \mathcal{H}$$

Note that elements of RKHS are certain real-valued functions on \mathcal{X} . Essentially, a kind of generalization of linear functionals on \mathcal{X} .

▶ Given this RKHS $\mathcal H$ associated with K, define $\phi: \mathcal X \to \mathcal H$ by

$$\phi(X) = K(\cdot, X)$$

Now we have

$$K(X, X') = \langle \phi(X), \phi(X') \rangle$$

This shows that any positive definite kernel gives us the inner product in some other space as needed.

- As a simple example, let $\mathcal{X} = \Re^m$ and $K(X, X') = X^T X'$.
- Now, $K(\cdot, X)$ is the function that takes dot product of its argument with X.
- ▶ Let $X = [x_1, \dots, x_m]^T$. Let e_i , $i = 1, \dots, m$, be the coordinate unit vectors. Thus, $X = \sum_i x_i e_i$.
- ▶ For any $X' \in \Re^m$,

$$K(X', X) = X^T X' = \sum_{i=1}^{m} x_i e_i^T X' = \sum_{i=1}^{m} x_i K(X', e_i)$$

▶ This gives us $K(\cdot, X) = \sum_{i=1}^{m} x_i K(\cdot, e_i)$.

- ▶ This means all functions in \mathcal{H} are linear combinations of $K(\cdot, e_i)$.
- ▶ Thus any $f \in \mathcal{H}$ can be written as $f = \sum_{i=1}^{m} w_i K(\cdot, e_i)$.
- ▶ Each $f \in \mathcal{H}$ is characterized by $W = (w_1, \dots, w_m)^T$.
- ▶ We have, $f(X) = W^T X$. So, \mathcal{H} is the space of all linear functionals over \Re^m .
- So, the RKHS is isomorphic to \Re^m and it represents hyperplanes on \mathcal{X} .

▶ We can see the reproducing kernel property: Let

$$f = \sum_{i=1}^{m} w_j K(\cdot, e_j) \quad \Rightarrow \quad f(X) = \sum_{i=1}^{m} w_i x_i$$

- We have $K(\cdot, X) = \sum_{i=1}^m x_i K(\cdot, e_i)$
- ▶ Hence we get

$$< K(\cdot, X), f> = \sum_{i} x_i w_j K(e_i, e_j) = \sum_{i} x_i w_i = f(X)$$

- ▶ So, the RKHS is isomorphic to \Re^m and thus it represents hyperplanes on \mathcal{X} .
- ▶ The inner product in this \mathcal{H} would be simply the usual dot product.
- ► Learning hyperplanes is same as searching over this \mathcal{H} for minimizer of empirical risk with the usual norm as a regularizer.

- What we have shown is the following.
- ▶ Given a positive definite kernel, there is a vector space with an inner product, namely, the RKHS associated with K, and a mapping ϕ from $\mathcal X$ to $\mathcal H$ such that the kernel is an inner product in $\mathcal H$.
- ► This RKHS represents a space of functions where we can search for the empirical risk minimizer.
- ► An important insight gained by this view point is the Representer theorem.

Representer Theorem

- ▶ Let K be a positive definite Kernel and let H be the RKHS associated with it.
- ▶ Let $\{(X_i, y_i), i = 1, \dots, n\}$ be the training set.
- ► For any function *f* , the empirical risk, under any loss function can be represented as a function

$$\hat{R}_n(f) = C((X_i, y_i, f(X_i)), i = 1, \dots, n)$$

- lacktriangle We search over ${\cal H}$ for a minimizer of empirical risk.
- ▶ Let $||f||^2 = \langle f, f \rangle$ be the norm under our inner product.

▶ **Theorem**: Let $\Omega:[0,\infty)\to\Re^+$ be a strictly monotonically increasing function. Consider minimization of empirical risk over \mathcal{H} . Then any minimizer of the regularized risk

$$C((X_i, y_i, g(X_i)), i = 1, \dots, n) + \Omega(||g||^2)$$

admits a representation

$$g(X) = \sum_{i=1}^{n} \alpha_i K(X_i, X)$$

- What this means is the following.
- ▶ Functions in \mathcal{H} are linear combinations of kernels centered at all points of \mathcal{X} .
- ► Though we are searching over this space, the minimizer can always be expressed as a linear combinations of kernels centered on data points only.
- ▶ Thus, irrespective of the dimension of \mathcal{H} , we can solve the optimization problem by searching for only n real numbers α_i .
- ► This is essentially what we have done in solving the dual for SVM.

Proof of Representer Theorem

- ▶ In the vector space \mathcal{H} , consider the span of the functions $K(X_1, \cdot), \cdots, K(X_n, \cdot)$. (X_i are training data)
- ▶ This will be a subspace.
- Given any f∈ H, we can decompose it into two components – one in this subspace and one in the subspace orthogonal to it.
- ▶ Let us call these two components as f_{\parallel} and f_{\perp} .

▶ Thus, For any $f \in \mathcal{H}$ and any $X \in \mathcal{X}$, we have

$$f(X) = f_{\parallel}(X) + f_{\perp}(X) = \sum_{i=1}^{n} \alpha_i K(X_i, X) + f_{\perp}(X)$$

where $\alpha_i \in \Re$, $f_{\perp}(X) \in \mathcal{H}$ and $\langle f_{\perp}(X), K(X_i, \cdot) \rangle = 0, i = 1, \cdots, n.$

▶ Since \mathcal{H} is the RKHS of K, the reproducing kernel property gives us

$$f(X') = \langle f, K(X', \cdot) \rangle$$

▶ Hence for any of the data points, X_i , $j = 1, \dots, n$,

▶ Hence for any of the data points, X_i , $j = 1, \dots, n$,

$$f(X_{j}) = \langle f, K(X_{j}, \cdot) \rangle$$

$$= \langle f_{\parallel} + f_{\perp}, K(X_{j}, \cdot) \rangle$$

$$= \langle f_{\parallel}, K(X_{j}, \cdot) \rangle + \langle f_{\perp}, K(X_{j}, \cdot) \rangle$$

$$= \sum_{i=1}^{n} \alpha_{i} K(X_{i}, X_{j}) + \langle f_{\perp}, K(X_{j}, \cdot) \rangle$$

$$= \sum_{i=1}^{n} \alpha_{i} K(X_{i}, X_{j}) = f_{\parallel}(X_{j})$$

▶ This is true for any $f \in \mathcal{H}$.

- ▶ Now let $g \in \mathcal{H}$ be a minimizer of the regularized risk.
- We can write $g = g_{\parallel} + g_{\perp}$
- $g(X_i) = g_{\parallel}(X_i)$ for all data vectors, X_i .
- ▶ Hence the empirical risk of g,

$$C((X_i, y_i, g(X_i)), i = 1, \cdots, n)$$

would be same as empirical risk of g_{\parallel} .

▶ Since g_{\parallel} and g_{\perp} are orthogonal,

$$||g||^2 = ||g_{\parallel}||^2 + ||g_{\perp}||^2 \ge ||g_{\parallel}||^2$$

- ► Since Ω is strictly monotone increasing, $\Omega(||g||^2) \ge \Omega(||g_{\parallel}||^2)$.
- Hence we have

$$C((X_i, y_i, g(X_i)), i = 1, \dots, n) + \Omega(||g||^2)$$

$$= C((X_i, y_i, g_{\parallel}(X_i)), i = 1, \dots, n) + \Omega(||g||^2)$$

$$> C((X_i, y_i, g_{\parallel}(X_i)), i = 1, \dots, n) + \Omega(||g_{\parallel}||^2)$$

- ▶ This shows that the regularized risk of g_{\parallel} can only be less than or equal to that of g.
- ▶ Hence any minimizer would be in the subspace spanned by $K(X_i, \cdot)$ and hence would have a representation

$$g(X) = \sum_{i=1}^{n} \alpha_i K(X_i, X)$$

This completes proof of the theorem.