LQR-Trees [Tedrake, 2010]

George Kontoudis, Shriya Shah

ME5984 Motion Planning Analysis Spring 2017

Mechanical Engineering Department, Virginia Tech

Motivation
Direct Computation of Lyapunov Functions
Linear Feedback Design and Verification
References

Outline

Motivation

Direct Computation of Lyapunov Functions

Linear Feedback Design and Verification Time-Invariant LQR Verification Conclusions Summary

References

Motivation

- ▶ Evaluate regions of stability for nonlinear systems

Lyapunov Functions

For a given dynamical system

$$\dot{x} = f(x), f(0) = 0$$

- a Lyapunov function is V(x), $V \in C$ where
 - V(x) > 0, positive definite
 - $\dot{V}(x) = \frac{dV}{dx} \frac{dx}{dt} < 0$, negative definite

If conditions met in some state space ball B_r , then origin is a.s.

Sums of Squares

We want to check inequalities using sums-of-squares (SoS) method

For a given polynomial $x^4 + 2x^3 + 3x^2 - 2x + 2 \ge 0$, $\forall x \in \mathbb{R}$, we can employ SoS

$$x^{4} + 2x^{3} + 3x^{2} - 2x + 2 = \begin{bmatrix} 1 \\ x \\ x^{2} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 2 & -1 & 0 \\ -1 & 3 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ x \\ x^{2} \end{bmatrix} = X^{\mathsf{T}}AX$$

The eigenvalues of A are $\lambda_1=3.88$, $\lambda_2=1.65$, $\lambda_1=0.47$, so the inequality stands $\forall x\in\mathbb{R}$

April 13, 2017

5

Sums of Squares Properties

The general structure of (SoS) for a 4-th order polynomial is

$$fx^{4} + 2ex^{3} + (d+2c)x^{2} + 2bx + a = \begin{bmatrix} 1 \\ x \\ x^{2} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix} \begin{bmatrix} 1 \\ x \\ x^{2} \end{bmatrix}$$

- Extend to multivariable polynomials
- ► Check non-negativity by searching positive semidefinite matrix

Feedback Synthesis by SoS Optimization

Given a system $\dot{x} = f(x) + g(x)u$ we want to simultaneously generate

- Feedback control law $u = \pi(x)$
- ▶ Lyapunov fcn V(x), s.t. V(x) > 0, $\dot{V}(x) = \frac{\partial V}{\partial x} \frac{\partial x}{\partial t} = \frac{\partial V}{\partial x} \dot{x}$ be negative definite

BUT, this is a difficult problem as the set of V(x), $\pi(x)$ may not be convex sets

- Rely on LQR synthesis
- Design a series of locally-valid controllers
- ► Compose these controllers utilizing feedback motion planning

Non-linear System

► For a given non-linear dynamical system

$$\dot{x} = f(x, u), \ x \in \mathbb{R}^n, \ u \in \mathbb{R}^m$$

- Set goal state x_G , where $f(x_G, u_G) = 0$, and $\bar{x} = x x_G$, $\bar{u} = u u_G$
- ▶ Linearize around (x_G, u_G) , $\bar{x} \approx A\bar{x}(t) + B\bar{u}(t)$
- ▶ Define infinite horizon LQR minimum energy cost-to-go fcn

$$egin{align} J(ar{x}') &= \int_0^\infty [ar{x}^\intercal(t)Qar{x}(t) + ar{u}^\intercal(t)Rar{u}(t)]dt, \ Q &= Q^\intercal \geq 0, R = R^\intercal > 0, ar{x}(0) = ar{x}' \ \end{aligned}$$

Stabilizing Goal State

Solution of inf horizon LQR problem results the optimal cost

$$J^*(\bar{x}) = \bar{x}^{\mathsf{T}} S \bar{x}$$

▶ S is a positive definite matrix, w/ the solution given from ARE

$$0 = Q - SBR^{-1}B^{\mathsf{T}}S + SA + A^{\mathsf{T}}S$$

▶ The optimal feedback closed loop control policy is given

$$\bar{u}^* = -R^{-1}B^{\mathsf{T}}S\bar{x} = -Kx$$

Time-Invariant LQR Verification Conclusions Summary

Time-Invariant LQR Verification

Time-Invariant LQR Verification Conclusions
Summary

Conclusions

Time-Invariant LQR Verification Conclusions Summary

Summary

April 13, 2017 12

References

Tedrake Russ, Manchester Ian, Tobenkin Mark and Roberts John LQR-trees: Feedback motion planning via sums-of-squares verification International Journal of Robotics Researchs, 1038–1052, SAGE Publications, 2010.

Thank You!

April 13, 2017 14