2024 edition

Deep Learning for Music Analysis and Generation

DDSP

($\{audio, MIDI\} \rightarrow audio\}$

Yi-Hsuan Yang Ph.D. yhyangtw@ntu.edu.tw

Outline

- Differentiable digital signal processing (DDSP)
 - Uses a neural network to convert a user's input into complex DSP controls that can produce realistic signals
 - It's a general idea
- MIDI-DDSP
 - MIDI-to-audio

Reference 1: ISMIR 2023 Tutorial

https://intro2ddsp.github.io/intro.html

https://github.com/intro2ddsp/intro2ddsp.github.io

https://docs.google.com/presentation/d/1o9RWWmKX0yVVQii4-dtH3OlGZwqrfhEDgLo3582JnfM/edit#slide=id.p

Reference 2: ISMIR 2022 Tutorial

https://github.com/lukewys/ISMIR2022-tutorial

https://youtu.be/7U-zDL5con8?si=HcD7YDN66YPlyGCN&t=9783

Controlling Instrument Synthesis

ISMIR Tutorial Part 3

T3(M): Designing Controllable Synthesis System for Musical Signals

Outline

- Differentiable digital signal processing (DDSP)
 - https://intro2ddsp.github.io/intro.html
- MIDI-DDSP

DSP & Audio Synthesis

https://intro2ddsp.github.io/background/neural-audio-synthesis.html

What Is DDSP?

https://intro2ddsp.github.io/background/what-is-ddsp.html

- "For example, a neural network might output a value which is used as the cutoff frequency of a filter, which is implemented differentiably"
- "During training, a loss function is computed on the output of the filter and, using the backpropogation algorithm, its gradient with respect to the neural network's parameters is computed."
- "In order to perform this computation, the derivative of the filter's
 output with respect to its cutoff frequency must be evaluated. That is to
 say, the filter forms a part of the computation graph, and its gradient is a
 factor of the chain rule decomposition of the loss gradient."

Why DDSP?

https://intro2ddsp.github.io/background/what-is-ddsp.html

- 1. We have prior knowledge about the class of signal we are interested in
- 2. We wish to infer the parameters of a particular signal processor or signal model
- 3. We are concerned about inference-time latency
- 4. We wish to allow human control over model outputs

A Differentiable Gain Control

https://intro2ddsp.github.io/first-steps/diff_gain.html

Sinusoidal Modelling Synthesis

https://intro2ddsp.github.io/synths/introduction.html

Writing a Differentiable Oscillator in PyTorch

https://intro2ddsp.github.io/synths/oscillator.html

Optimizing Parameters for the Differentiable Oscillator

https://intro2ddsp.github.io/synths/oscillator.html

- Optimizing amplitude → easy
- Optimizing frequency → difficult due to many local minima

Additive Synthesis

https://intro2ddsp.github.io/synths/additive.html

$$egin{aligned} y[n] &= \sum_k^K lpha_k[n] \sin\left(\phi_k + \sum_{m=0}^n \omega_k[m]
ight) \ y[n] &= \sum_{k=1}^K lpha_k[n] \sin\left(\phi_k + k \sum_{m=0}^n \omega_0[m]
ight) \ \sum_{k=1}^K \hat{lpha}_k[n] &= 1 ext{ and } \hat{lpha}_k[n] > 0 \ y[n] &= A[n] \sum_{k=1}^K \hat{lpha}_k[n] \sin\left(k \sum_{m=0}^n \omega_0[m]
ight) \end{aligned}$$

Harmonic Synthesizer

https://intro2ddsp.github.io/synths/harmonic_optimize.html

- 1. Constraining harmonic amplitudes to sum to one
- 2. Adding a global amplitude parameter
- 3. Parameter scaling to constrain the possible range of amplitudes
- Removing frequencies above the Nyquist frequency which will result in aliasing

$$y[n] = A[n] \sum_{k=1}^K \hat{lpha}_k[n] \sin \left(k \sum_{m=0}^n \omega_0[m]
ight)$$

Optimizing a Harmonic Synthesizer

https://intro2ddsp.github.io/synths/harmonic_optimize.html

https://intro2ddsp.github.io/synths/harmonic_results.html

Differentiable Synthesis Libraries

https://intro2ddsp.github.io/synths/libraries.html

- https://github.com/magenta/ddsp
- https://github.com/acids-ircam/ddsp_pytorch
- https://github.com/torchsynth/torchsynth
- https://github.com/PapayaResearch/synthax
- https://github.com/csteinmetz1/dasp-pytorch

DDSP for Tone Transfer

- Essentially doing audio-to-audio generation
- Can we adapt the model to do MIDI-to-audio generation?

Outline

- Differentiable digital signal processing (DDSP)
 - Uses a neural network to convert a user's input into complex DSP controls that can produce realistic signals
- MIDI-DDSP (ICLR'22)

https://docs.google.com/presentation/d/1xrzeAIMnVOumSql_L2oIfVMXcJxOKd3F2u4_DEIkmbY/edit#slide=id.g1a484a50b88_1_1925

Ref: Wu et al, "MIDI-DDSP: Detailed control of musical performance via hierarchical modeling," ICLR 2022

Human Instrument Performing Process

https://docs.google.com/presentation/d/1xrzeAIMnVOumSql_L2oIfVMXcJxO Kd3F2u4_DEIkmbY/edit#slide=id.g1a484a50b88_1_1925

MIDI-DDSP: Controlling Instrument Synthesis

https://docs.google.com/presentation/d/1xrzeAIMnVOumSql_L2oIfVMXcJxO Kd3F2u4_DEIkmbY/edit#slide=id.g1a484a50b88_1_1925

Note to Audio

https://docs.google.com/presentation/d/1xrzeAIMnVOumSql_L2oIfVMXcJxO Kd3F2u4_DEIkmbY/edit#slide=id.g1a484a50b88_1_1925

- Generate single note condition on pitch and instrument.
- Modelling mainly timbre.

NSynth [1] & GANSynth [2]

Score to Audio

https://docs.google.com/presentation/d/1xrzeAIMnVOumSql_L2oIfVMXcJxO Kd3F2u4_DEIkmbY/edit#slide=id.g1a484a50b88_1_1925

- Music score → Audio
- Generates timbre and expressive performance together.

Other Aspects of Instrument Synthesis

https://docs.google.com/presentation/d/1xrzeAIMnVOumSql_L2oIfVMXcJxO Kd3F2u4_DEIkmbY/edit#slide=id.g1a484a50b88_1_1925

- Low-level quantities that changes frequently.
- E.g: pitch, loudness, expressive performance, etc.
- No "labels" available.

*labels: annotation or metadata associated with audio

Low-level Quantities

https://docs.google.com/presentation/d/1xrzeAIMnVOumSql_L2oIfVMXcJxO Kd3F2u4_DEIkmbY/edit#slide=id.g1a484a50b88_1_1925

Extract the Label: Pitch and Loudness

https://docs.google.com/presentation/d/1xrzeAIMnVOumSql_L2oIfVMXcJxO Kd3F2u4_DEIkmbY/edit#slide=id.g1a484a50b88_1_1925

Learn to Extract Synthesis Parameters: DDSP

https://docs.google.com/presentation/d/1xrzeAIMnVOumSql_L2oIfVMXcJxO Kd3F2u4_DEIkmbY/edit#slide=id.g1a484a50b88_1_1925

Engel et al. 2020 [7]

DDSP: Differentiable Digital Signal Processing

https://docs.google.com/presentation/d/1xrzeAIMnVOumSql_L2oIfVMXcJxO Kd3F2u4_DEIkmbY/edit#slide=id.g1a484a50b88_1_1925

Engel et al. 2020 [7]

Problem of Low-level Control

https://docs.google.com/presentation/d/1xrzeAIMnVOumSql_L2oIfVMXcJxO Kd3F2u4_DEIkmbY/edit#slide=id.g1a484a50b88_1_1925

Extract Performance Parameter

https://docs.google.com/presentation/d/1xrzeAIMnVOumSql_L2oIfVMXcJxO Kd3F2u4_DEIkmbY/edit#slide=id.g1a484a50b88_1_1925

Summary statistics pooled over notes 6-D scalar features, scaled [0,1]:

- Volume **(1)**
- Vibrato \ \ \ \ \ \
- Brightness
- Attack Noise
- Volume Peak Position \(\square\)
- Volume Fluctuation X

Extract Performance Parameter

https://docs.google.com/presentation/d/1xrzeAIMnVOumSql_L2oIfVMXcJxO Kd3F2u4_DEIkmbY/edit#slide=id.g1a484a50b88_1_1925

Summary statistics pooled over notes 6-D scalar features, scaled [0,1]:

- Volume **(1)**
- Vibrato √√
- Brightness
- Attack Noise
- Volume Peak Position
- Volume Fluctuation X

Synthesis Generator

https://docs.google.com/presentation/d/1xrzeAIMnVOumSql_L2oIfVMXcJxO Kd3F2u4_DEIkmbY/edit#slide=id.g1a484a50b88_1_1925

Autoregressive Prior on Expression Controls

https://docs.google.com/presentation/d/1xrzeAIMnVOumSql_L2oIfVMXcJxO Kd3F2u4_DEIkmbY/edit#slide=id.g1a484a50b88_1_1925

DDSP-Piano (AES'23)

Also for MIDI-to-audio Inharmonicity Extended pitches Network Note Release Conditioning inharmonicity $T_{release}$ (pitches, velocities) Piano ID Detuner Reverb Z-Encoder detunings a, h $\delta f_i, b_i$ Embedding **Filtered** Context Network Monophonic Network **Pedals IR** Dictionary amplitudes Linear GRU GRU Embedding noise magnitudes **Multi-Resolution Spectral Loss** Target audio--Synthesized audio-

Ref: Renault et al, "DDSP-Piano: a neural sound synthesizer informed by instrument knowledge," AES 2023

Other Differentiable Synthesis Works

Also for MIDI-to-audio

Waveshaping Synthesis [8]

Wavetable Synthesis [9]

FM Synthesis [10]

https://docs.google.com/presentation/d/1xrzeAIMnVOumSql_L2oIfVMXcJxO Kd3F2u4_DEIkmbY/edit#slide=id.g1a484a50b88_1_1925 34

DDSP Guitar Amp (arXiv'24) (from our lab)

https://ytsrt66589.github.io/ddspGuitarAmp_Demo/

- Not for MIDI-to-audio
- Models the four components of a guitar amp using specific DSPinspired designs
 - preamp
 - tone stack
 - power amp
 - output transformer

Ref: Yeh et al, "DDSP Guitar Amp: Interpretable guitar amplifier modeling," arXiv 2024