НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ»

Лабораторная работа 4.7.3 «Измерение коэффициента ослабления потока γ -лучей в веществе и определение их энергии»

Шумаков Иван Игоревич студент группы Б01-009 3 курс ФРКТ **Цель работы:** Измерить линейные коэффициента ослабления потока γ -лучей в различных материалах. По их величине оперделить энергию γ -квантов.

В работе используются: Источник γ -лучей, исследуемые материалы, детектор излучения.

1 Теоретические сведения

Проходя через вещество, пучок γ -квантов постепенно ослабляется, ослабление происходит по экспоненциальному закону, который может быть записан в двух эквивалентных формах:

$$I = I_0 e^{-\mu l},$$

 $I = I_0 e^{-\mu' m_l},$

где I, I_0 — интенсивности прошедшего и падающего излучений, l — длина пути, пройденного пучком γ -лучей, m_l — масса пройденного вещества на единицу площади, μ, μ' — константы, зависящие от вещества. Ослабление потока γ -лучей возникает из-за фотоэлектрического поглощения, комптоновского рассеяния и генерации электрон-позитронных пар (при достаточных энергиях).

Считая, что опыт поставлен в хорошей геометрии, то есть сквозь вещество всегда идёт узкий параллельный пучок, можно считать, что комптоновское рассеяние выводит γ -кванты из пучка и в итоге меняется количество, но не энергия γ -квантов. Это означает, что μ не зависит от l. Число выбывших на пути dl из пучка γ -квантов

$$-dN = \mu N dl,$$

откуда

$$N = N_0 e^{\mu l},$$

или

$$\mu = \frac{1}{l} \ln \frac{N_0}{N}.\tag{1}$$

2 Экспериментальная установка

Рис. 1. Схема установки.

На Рис. 1 изображена схема установки. Свинцовый коллиматор выделяет узкий почти параллельный пучок γ -квантов, проходящий через набор поглотителей Π и регистрируемый сцинтилляционным счётчиком. Сигналы от счётчика усиливаются и регистрируются пересчётным прибором $\Pi\Pi$. Высоковольтный выпрямитель BB обеспечивает питание сцинтилляционного счётчика. Чтобы уменьшить влияние плохой геометрии, счётчик расположен на большим расстоянии от источника, поглотители имеют небольшие размеры, а так же устанавливаются на расстоянии друг от друга, чтобы испытавшие комптоновское рассеяние кванты с меньшей вероятностью могли в него вернуться.

3 Ход работы

3.1 Оценка погрешностей

В начале эксперимента было измерено уоличество γ -квантов со свинцовой заглушкой и без. Результаты в расчете на одну секунду:

$$N_{\text{без}} = 11990 \qquad N_c = 12$$
 (2)

По этим данным видно, что детектор воспринимает γ -излучение и оно меньше, чем внешний фон.

Далее был проведен эксперимент по влиянию вторичных γ -лучей на результаты. Было изммерено количество частиц, регистрируемое при прохождении через 2 пластины алюминия в случае, когда они стояли на расстоянии в несколько сантиметров и в случае максимального расстояния. Результаты в расчете на одну секунду:

$$N_{standart} = 3763 \qquad N_{max} = 3907 \tag{3}$$

Также было измерено количство частиц после прохождения через пастину алюминия в случае, когда она стояла вплотную к детектору и в случае, когда вплотную к источнику. Таким образом мы сможем найти какой вклад дают вторичные γ -кванты. Полученное значение надо вычесть из эксперимента с двумя пластинами. Таким образом будет получена оценка погрешности, котрую вносят вторичные γ -кванты в остальных экспериментах. Поскольку далее образцы были расположены как можно бюлиже к источнику втоичные γ -кванты играют роль только при повторном рассеянии.

$$N_{\text{к источнику}} = 6285$$
 $N_{\text{к детектору}} = 6527$ (4)

Процент вторичных квантов в случае эксперимента с одной пластной:

$$err_{\text{прямые}} = \frac{\Delta N}{N} = 0.037 \tag{5}$$

Процент вторичных квантов в случае эксперимента с двумя пластинами:

$$err_{\text{рассеянные}} = \frac{\Delta N}{N} = 0.038 \tag{6}$$

Ошибка связанная с рассеянием вторичных γ -квантов:

$$err = err_{\text{рассеянные}} - err_{\text{прямые}} = 0.001$$
 (7)

Таким образом ошибка, связанная с взаимным расположением образцов, мала по сравнению с ошибкой, которая связана с расположением образцов относитеольно детектора. Поскольку образцы располагались близко к источнику, можно пренебречь ошибками, связанными с вторичными γ -квантами. В эксперимента присутствовала только случацная погрешность, которая не превышала 1 процент.

3.2 Расчет энергии

В эксперименте использовались пластины из различных материалов. Размеры материалов:

Материал	Толщина [мм]
Fe	10
Al	20
Pb	4.3

Результаты измерений поглощения γ -квантов:

Материал	Кол-во частиц	Время [с]
Alx1	100000	15.91
Alx2	100000	26.57
Alx3	100000	40.09
Alx4	100000	61.58
Alx5	100000	98.39
Fex1	100000	17.58
Fex2	100000	36.36
Fex3	155177	100
Fex4	171080	200
Fex5	98418	200
Pbx1	100000	15.56
Pbx2	100000	30.02
Pbx3	100000	44.03
Pbx4	92550	100
Pbx5	115092	200

По полученным данным был построен график:

Зависимость ослабления потока гамма квантов от толщины материала

Рис. 2. Схема экспериментальной установки

По графику были расчитаны линейные коэффициенты ослабления:

Материал	Коэф наклона 1 / см	Погрешность %
Al	0.225	0.002
Fe	0.612	0.003
Pb	1.431	0.023