Discrete Mathematics(H)

Southern University of Science and Technology Mengxuan Wu 12212006

Assignment 5

Mengxuan Wu

Q.1

(1)

 R_1 is irreflexive, symmetric.

Because for any string a, a and a always have letters in common, thus $(a, a) \notin R_1$. Thus, R_1 is irreflexive, and it can't be reflexive.

Because for any strings a, b, if $(a, b) \in R_1$, then a and b have no letter in common. Then b and a also have no letter in common, thus $(b, a) \in R_1$. However, (a, b) and (b, a) is both in R_1 does not imply a = b, for two different strings can have no letter in common. Thus, R_1 is symmetric, and it can't be antisymmetric.

 R_1 is not transitive. For strings a = "A", b = "B", c = "A", $(a, b) \in R_1$ and $(b, c) \in R_1$, but $(a, c) \notin R_1$.

(2)

 R_2 is irreflexive, symmetric.

Because for any string a, a and a always have the same length, thus $(a, a) \notin R_2$. Thus, R_2 is irreflexive, and it can't be reflexive.

Because for any strings a, b, if $(a, b) \in R_2$, then a and b don't have the same length. Then b and a also don't have the same length, thus $(b, a) \in R_2$. However, (a, b) and (b, a) is both in R_2 does not imply a = b, for two different strings can have different lengths. Thus, R_2 is symmetric, and it can't be antisymmetric.

 R_2 is not transitive. For strings a= "A", b= "BB", c= "C", $(a,b)\in R_2$ and $(b,c)\in R_2$, but $(a,c)\not\in R_2$.

(3)

 R_3 is irreflexive, antisymmetric and transitive.

Because for any string a, a can't be longer than itself, thus $(a, a) \notin R_3$. Thus, R_3 is irreflexive, and it can't be reflexive.

Because for any strings a, b, if $(a, b) \in R_3$, then a is longer than b. Then b can't be longer than a, thus $(b, a) \notin R_3$. Thus, R_3 can't be symmetric.

For any strings a, b, c, if $(a, b) \in R_3$ and $(b, a) \in R_3$, then a is longer than b and b is longer than a. However, this is a contradiction. Then, $(a, b) \in R_3$ and $(b, a) \in R_3$ imply a = b is a tautology. Thus, R_3 is antisymmetric.

For any strings a, b, c, if $(a, b) \in R_3$ and $(b, c) \in R_3$, then a is longer than b and b is longer than c. Then, a is longer than c, thus $(a, c) \in R_3$. Thus, R_3 is transitive.

Q.2

(1)

R is reflexive. For any $a \in \mathbb{R}$, $a - a = 0 \in \mathbb{Q}$. So $(a, a) \in R$.

(2)

R is symmetric. For any $a,b\in\mathbb{R}$, if $(a,b)\in R$, then $a-b\in\mathbb{Q}$. So $b-a=-(a-b)\in\mathbb{Q}$. So $(b,a)\in R$.

(3)

R is not antisymmetric. For a=1 and $b=0, a-b=1\in\mathbb{Q}$ and $b-a=-1\in\mathbb{Q}$. So $(a,b)\in R$ and $(b,a)\in R$. But $a\neq b$.

(4)

R is transitive. For any $a,b,c\in\mathbb{R}$, if $(a,b)\in R$ and $(b,c)\in R$, then $a-b\in\mathbb{Q}$ and $b-c\in\mathbb{Q}$. Let $\frac{m_1}{n_1}=a-b$ and $\frac{m_2}{n_2}=b-c$, where $m_1,n_1,m_2,n_2\in\mathbb{Z}$ and $n_1,n_2\neq 0$. Then $a-c=(a-b)+(b-c)=\frac{m_1}{n_1}+\frac{m_2}{n_2}=\frac{m_1n_2+m_2n_1}{n_1n_2}\in\mathbb{Q}$. So $(a,c)\in R$.

Q.3

(a)

The number of symmetric relations is $2^{\frac{n^2+n}{2}}$.

(b)

The number of antisymmetric relations is $3^{\frac{n^2-n}{2}}2^n$.

(c)

The number of irreflexive relations is 2^{n^2-n} .

(d)

The number of reflexive and symmetric relations is $2^{\frac{n^2-n}{2}}$.

(e)

The number of not reflexive nor irreflexive relations is $(2^n - 2)2^{n^2 - n}$.

(f)

The number of reflexive and antisymmetric relations is $3^{\frac{n^2-n}{2}}$.

(g)

The number of symmetric, antisymmetric and transitive relations is 2^n .

Q.4

No. R^2 is not irreflexive.

Suppose R is an irreflexive relation on A, where $A = \{0, 1\}$ and $R = \{(0, 1), (1, 0)\}$. Then $R^2 = \{(0, 0), (1, 1)\}$. So R^2 is not irreflexive.

Q.5

(1)

Since R_1 and R_2 are reflexive, then for any $a \in A$, $(a,a) \in R_1$ and $(a,a) \in R_2$. Therefore, $(a,a) \notin R_1 \oplus R_2$. So $R_1 \oplus R_2$ is irreflexive.

(2)

Yes. $R_1 \cap R_2$ is reflexive.

Since R_1 and R_2 are reflexive, then for any $a \in A$, $(a, a) \in R_1$ and $(a, a) \in R_2$. Therefore, $(a, a) \in R_1 \cap R_2$. So $R_1 \cap R_2$ is reflexive.

(3)

Yes. $R_1 \cup R_2$ is reflexive.

Since R_1 and R_2 are reflexive, then for any $a \in A$, $(a, a) \in R_1$ and $(a, a) \in R_2$. Therefore, $(a, a) \in R_1 \cup R_2$. So $R_1 \cup R_2$ is reflexive.

Q.6

(1)

R is an equivalence relation.

Reflexive:

For any ordered pair (a, b) where $a, b \in \mathbb{Z}^+$, ab = ba is always true, thus $((a, b), (a, b)) \in R$. Hence, R is reflexive.

Symmetric:

For any ordered pair (a,b), (c,d) where $a,b,c,d \in \mathbb{Z}^+$, if $((a,b),(c,d)) \in R$, then ad = bc. Therefore, cb = da, and $((c,d),(a,b)) \in R$. Hence, R is symmetric.

Transitive:

For any ordered pair (a, b), (c, d), (e, f) where $a, b, c, d, e, f \in \mathbb{Z}^+$, if $((a, b), (c, d)) \in R$ and $((c, d), (e, f)) \in R$, then ad = bc and cf = de. Therefore, $af = \frac{adcf}{dc} = \frac{bcde}{dc} = be$, thus $((a, b), (e, f)) \in R$. Hence, R is transitive.

(2)

Let (a,b)=(1,2), then 2a=b. Hence, the equivalence class of (1,2) is $\{(a,b)|2a=b \text{ and } a,b\in\mathbb{Z}^+\}$.

(3)

Each equivalence class is a set of ordered pairs with the same value of $\frac{a}{h}$.

Q.7

(1)

Proof.

R is an equivalence relation.

Reflexive:

For any tuple (a, b, c) where $a, b, c \in \mathbb{R}$, $(a, b, c) = 1 \cdot (a, b, c)$ and $1 \in \mathbb{R} \setminus \{0\}$. Hence, R is reflexive.

Symmetric:

For any tuple (a, b, c), (d, e, f) where $a, b, c, d, e, f \in \mathbb{R}$, if (a, b, c) = k(d, e, f) where $k \in \mathbb{R} \setminus \{0\}$. Then $(d, e, f) = \frac{1}{k}(a, b, c)$, where $\frac{1}{k} \in \mathbb{R} \setminus \{0\}$. Hence, R is symmetric.

Transitive:

For any tuple (a, b, c), (d, e, f), (g, h, i) where $a, b, c, d, e, f, g, h, i \in \mathbb{R}$, if $(a, b, c) = k_1(d, e, f)$ and $(d, e, f) = k_2(g, h, i)$ where $k_1, k_2 \in \mathbb{R} \setminus \{0\}$. Then $(a, b, c) = k_1k_2(g, h, i)$, where $k_1k_2 \in \mathbb{R} \setminus \{0\}$. Thus, (a, b, c)R(g, h, i). Hence, R is transitive.

(2)

$$[(1,1,1)]_R = \{(1,1,1), (2,2,2), (3,3,3), (4,4,4), \dots\}$$

$$[(1,0,3)]_R = \{(1,0,3), (2,0,6), (3,0,9), (4,0,12), \dots\}$$

(3)

No. Not all equivalence classes have the same cardinality.

Disproof.

The equivalence class $[(1,1,1)]_R$ has infinite elements, while the equivalence class $[(0,0,0)]_R$ has only one element.

Q.8

Proof.

T is an equivalence relation.

Reflexive:

Since R and S are both reflexive, then for any $a \in A$, $(a,a) \in R$ and $(a,a) \in S$. Therefore, $(a,a) \in R \cap S$. Hence, T is reflexive.

Symmetric:

For any $a, b \in A$, if $(a, b) \in T$, then $(a, b) \in R$ and $(a, b) \in S$. Because R and S are both symmetric, then $(b, a) \in R$ and $(b, a) \in S$. Therefore, $(b, a) \in R \cap S$. Hence, T is symmetric.

Transitive:

For any $a, b, c \in A$, if $(a, b) \in T$ and $(b, c) \in T$, then $(a, b), (b, c) \in R$ and $(a, b), (b, c) \in S$. Because R and S are both transitive, then $(a, c) \in R$ and $(a, c) \in S$. Thus, $(a, c) \in R \cap S$. Hence, T is transitive. \square

Q.9

(a)

Yes. $(\mathbb{R}, =)$ is a partially ordered set and = is a partial order.

Reflexive:

For any $a \in \mathbb{R}$, a = a. Therefore, $(a, a) \in R$. Hence, = is reflexive.

Antisymmetric:

For any $a, b \in \mathbb{R}$, if $(a, b) \in R$ and $(b, a) \in R$, then a = b and b = a. Therefore, (a, b) and (b, a) imply a = b. Hence, = is antisymmetric.

Transitive:

For any $a, b, c \in \mathbb{R}$, if $(a, b) \in R$ and $(b, c) \in R$, then a = b and b = c. Therefore, a = c, thus $(a, c) \in R$. Hence, = is transitive.

(b)

No. $(\mathbb{R}, <)$ is not a partially ordered set.

This is because < is not reflexive. For any $a \in \mathbb{R}$, a < a is false.

(c)

Yes. (\mathbb{R}, \leq) is a partially ordered set and \leq is a partial order.

Reflexive:

For any $a \in \mathbb{R}$, $a \leq a$. Therefore, $(a, a) \in R$. Hence, \leq is reflexive.

Antisymmetric:

For any $a, b \in \mathbb{R}$, if $(a, b) \in R$ and $(b, a) \in R$, then $a \leq b$ and $b \leq a$. Therefore, a = b. Hence, \leq is antisymmetric.

Transitive:

For any $a, b, c \in \mathbb{R}$, if $(a, b) \in R$ and $(b, c) \in R$, then $a \leq b$ and $b \leq c$. Therefore, $a \leq c$, thus $(a, c) \in R$. Hence, \leq is transitive.

(d)

No. (\mathbb{R}, \neq) is not a partially ordered set.

This is because \neq is not reflexive. For any $a \in \mathbb{R}$, $a \neq a$ is false.

Q.10

(a)

Proof.

 \leq is a partial order.

Reflexive:

For any function $f: \mathbb{R} \to \mathbb{R}$, $f(x) \leq f(x)$ is true for any $x \in \mathbb{R}$. Hence, \leq is reflexive.

Antisymmetric:

For any functions $f, g : \mathbb{R} \to \mathbb{R}$, if $f \leq g$ and $g \leq f$, then $f(x) \leq g(x)$ and $g(x) \leq f(x)$ for any $x \in \mathbb{R}$. Therefore, f(x) = g(x) for any $x \in \mathbb{R}$. Hence, \leq is antisymmetric.

Transitive:

For any functions $f, g, h : \mathbb{R} \to \mathbb{R}$, if $f \leq g$ and $g \leq h$, then $f(x) \leq g(x)$ and $g(x) \leq h(x)$ for any $x \in \mathbb{R}$. Therefore, $f(x) \leq h(x)$ for any $x \in \mathbb{R}$, thus $f \leq h$. Hence, \leq is transitive.

(b)

Disproof.

 \prec is not a total order.

Let f(x) = x and g(x) = -x for any $x \in \mathbb{R}$. Then $f \leq g$ and $g \leq f$ are both false. \square

Q.11

(a)

Yes. \leq is reflexive.

For any positive integer a, let m_a be the sum of distinct prime factors of a. Then obviously $m_a \leq m_a$, thus $a \leq a$. Hence, \leq is reflexive.

(b)

No. \leq is not antisymmetric.

For integer 2 and 4, the sum of prime factors are both 2. Then, $(2,4), (4,2) \in R$. However, $2 \neq 4$. Hence, \leq is not antisymmetric.

(c)

Yes. \leq is transitive.

For any positive integers a, b, c, if $a \leq b$ and $b \leq c$, then $m_a \leq m_b$ and $m_b \leq m_c$. Therefore, $m_a \leq m_c$, thus $a \leq c$. Hence, \leq is transitive.

Q.12

(1)

Proof.

R is a partial ordering.

Reflexive:

For a tuple (a, b, c) where $a, b, c \in \mathbb{N}$, $2^a 3^b 5^c \le 2^a 3^b 5^c$ is always true. Hence, R is reflexive.

Antisymmetric:

For tuples (a, b, c), (d, e, f) where $a, b, c, d, e, f \in \mathbb{N}$, if $2^a 3^b 5^c \leq 2^d 3^e 5^f$ and $2^d 3^e 5^f \leq 2^a 3^b 5^c$, then $2^a 3^b 5^c = 2^d 3^e 5^f$. By the fundamental theorem of arithmetic, a = d, b = e and c = f. Therefore, (a, b, c) = (d, e, f). Hence, R is antisymmetric.

Transitive:

For tuples (a, b, c), (d, e, f), (g, h, i) where $a, b, c, d, e, f, g, h, i \in \mathbb{N}$, and (a, b, c)R(d, e, f) and (d, e, f)R(g, h, i), then $2^a 3^b 5^c \le 2^d 3^e 5^f$ and $2^d 3^e 5^f \le 2^g 3^h 5^i$. Therefore, $2^a 3^b 5^c \le 2^g 3^h 5^i$, thus (a, b, c)R(g, h, i). Hence, R is transitive.

(2)

(1,1,1) and (2,2,2) are comparable elements. There is no incomparable elements.

(3)

To find the least upper bound for (5,0,1) and (1,1,2), we need to find the smallest number $2^a 3^b 5^c$ that is greater than or equal to both $2^5 3^0 5^1 = 160$ and $2^1 3^1 5^2 = 150$. Hence, the least upper bound is (5,0,1).

Similarly, we can find the greatest lower bound for (5,0,1) and (1,1,2), which is (1,1,2).

(4)

The minimal element is (0,0,0). There is no maximal element.

Q.13

 $(\mathbb{Z} \times \mathbb{Z}, \preceq)$ is a partially ordered set.

Reflexive:

For any $(a,b) \in \mathbb{Z} \times \mathbb{Z}$, (a,b) = (a,b) is always true. Therefore, $(a,b) \leq (a,b)$. Hence, \prec is reflexive.

Antisymmetric:

For any $(a, b), (c, d) \in \mathbb{Z} \times \mathbb{Z}$, suppose $(a, b) \preceq (c, d)$ and $(c, d) \preceq (a, b)$. If $(a, b) \neq (c, d)$, then the two relationships above would be equivalent to $a^2 + b^2 < c^2 + d^2$ and $c^2 + d^2 < a^2 + b^2$, which is a contradiction. Therefore, (a, b) = (c, d). Hence, \preceq is antisymmetric.

Transitive:

For any $(a,b), (c,d), (e,f) \in \mathbb{Z} \times \mathbb{Z}$, suppose $(a,b) \preceq (c,d)$ and $(c,d) \preceq (e,f)$. If $(a,b) \preceq (c,d)$ is equivalent to $a^2+b^2 < c^2+d^2$, then $a^2+b^2 < c^2+d^2 \le e^2+f^2 \to a^2+b^2 < e^2+f^2$. Therefore, $(a,b) \preceq (e,f)$. If $(c,d) \preceq (e,f)$ is equivalent to $c^2+d^2 < e^2+f^2$, we can get the same result as shown above. If $(a,b) \preceq (c,d)$ is equivalent to (a,b) = (c,d) and $(c,d) \preceq (e,f)$ is equivalent to (c,d) = (e,f), then (a,b) = (e,f). Therefore, $(a,b) \preceq (e,f)$. Hence, \preceq is transitive.

Hasse diagram:

Q.14

(a)

The maximal elements are l and m.

(b)

The minimal elements are a, b, and c.

(c)

No. There is no greatest element.

(d)

No. There is no least element.

(e)

The upper bounds of $\{a,b,c\}$ are $k,\,l,$ and m.

(f)

The least upper bound of $\{a,b,c\}$ is k.

(g)

The lower bound does not exist.

(h)

The greatest lower bound does not exist.