Chessmaster

A new way to play chess

Table of Content

Motivation

State of the Art

Algorithm

Procedure

Main Goal

- Create an powerful AI, that is capable to beat the best chessplayers in the world
- Provide a platform to train against a strong opponent
- Give the "real" chessplayers the opportunity to step up their gametactics

IBM - Deep Blue

- First real chess engine to beat a reign world champion
- Developed by IBM in 1989
- It implemented the alpha beta search on very large-scale integration but in a brut-force method
 - Developers even denied it being an Al

Stockfish

- Open source UCI chess engine
 - UCI = Universal Chess interface
- As of 2018 it has become the world strongest chess entity not relying on Al
- It uses Alpha-Beta-Search and Bitboards
 - Alpha-Beta-Search is a optimized version of the MiniMax Algorithm
 - A bitboard is a specialized bit array data structure where each bit corresponds to a game board space or piece.

DeepMind - AlphaZero

- Uses a Deep Neural Network in combination with a reinforcement learning algorithm
 - Deep Neural Networks are Neural Networks with two or more hidden layers
- The trained network is used to guide the Monte-Carlo Tree Search Algorithm to select the most promising moves
- In the beginning the algorithm does not know anything about the game besides the basic rules
 - After 4 hours of training it was able to beat Stockfish
- Besides Chess AlphaZero also learned Shogi and Go

Monte Carlo Tree Search

- Statistical Algorithm
- Described in 2006 by Rémi Coulom
- Used by various Als, like AlphaZero or MuZero (by Deepmind)
- Improved Efficiency above (true) Tree Search (Brute Force)
- Prevents a large Exploration to Exploitation Trade off!

Used to find optimal moves

Monte Carlo Tree Search

V-Network | Temporal Difference Learning

- V = Value
- V-Network
 - Neural Network (Chess agent)
 - Should output a policy π (to win the game)
- Temporal Difference Learning
 - Model-Free Reinforcement Learning Algorithm
 - Learn from experience by incomplete episodes

•
$$V(S_t) = V(S_t) + \alpha * (G_t - V(S_t))$$

- α = Learning Rate \in [0,1]
- G_t = Estimated return
- Simplest TD-Algorithm (TD(0))

•
$$G_t = R_{t+1} + \gamma * V(S_{t+1})$$

•
$$V(S_t) = V(S_t) + \alpha * (R_{t+1} + \gamma * V(S_{t+1}) - V(S_t))$$

- R_t = Reward
- γ = discount factor \in [0,1]

$$R_{t+1} + \gamma * V(S_{t+1}) = \text{TD Target}$$

$$R_{t+1} + \gamma * V(S_{t+1}) - V(S_t) = \text{TD error}$$

Next Steps

Comparison of the evaluation possibilities of the algorithm

Human versus computer (Graphical user interface)

Summarize scientific papers

Preparation of the elaboration

Evaluation of Algortihm

Elo rating system (Comparison of two chess players)

- Evaluation of the chess game
 - Evaluation of Position
 - Material on the board
 - Pieces Activity

Any Questions?

Thank you for your Attention