CS146 - Homework 2

Frank Mock

February 16, 2014

2.1

Order is from the slowest growth to the greatest

- 37
- \bullet \sqrt{N}
- 2/N
- *N*
- Nlog(log(N))
- Nlog(N)
- \bullet $Nlog(N^2)$
- $Nlog^2N$
- $N^{1.5}$
- \bullet N^2
- \bullet N^2logN
- N³
- 2^{N/2}
- \bullet 2^N

Prove that for any constant, k, $log^k n = o(n)$.

 $log^k n = (log n)^k$ which is an exponential expression.

A function is polylogarithmically bounded is $f(n) = O(\log^k n)$ for some constant k.

The growth rates of polynomials and exponentials can be related as such: \forall real constants a and b such that a>1 $\lim_{n\to\infty}\frac{n^b}{a^n}=0$

This means that any exponential function with a base greater than one grows faster than any polynomial function. $n^b = o(a^n)$.

Using the same logic, we can also relate the growth of polynomials and polylagarithms by substituting logn for n and 2^a for a in the limit above.

$$\lim_{n\to\infty}\frac{log^bn}{(2^a)^{logn}}=\lim_{n\to\infty}\frac{log^bn}{n^a}=0$$

The above limit shows that $log^b n = o(n^a)$ for any constant a > 0 and that the polynomial function grows faster than any polylogarithmic function. This is what was to be proved.

(Introduction To Algorithms by Cormen pages 55 - 57 was referenced to help complete this proof.)

1.a

O(n) because, 1 for the assignment of line 1, 1 + n + n for the for-loop, and n for line 3 which gives $3n\,+\,2$

1.b

```
n = 10 1816 \text{ ns}

n = 100 3283 \text{ ns}

n = 1000 18159 \text{ ns}
```

1.c

The actual running times don't exactly match, but considering other factors pertaining to my machine they are reasonable.

2.a

 $O(n^2)$ because, 1 for the assignment of line one, 1 + n + n for line 2, 1 + n + n for line 3, and n for line 4 which gives $4n^2 + n + 3$

2.b

```
n = 10 \ 3561 \text{ ns}

n = 100 \ 252476 \text{ ns}

n = 1000 \ 11127741 \text{ ns}
```

2.c

The actual run-time results are worse than my estimate of $\mathcal{O}(n^2)$, but it's probably due to my machine

Exercise 2.7 continued from previous page.

3.a

 $O(n^3)$ because, 1 for assignment of line one, 1 + n + n for line two, $1 + n^2 + n$ for line three, and n for line four which gives about $2n^3 + 3n^2 + n + 3$

3.b

```
n = 10 20883 \text{ ns}
n = 100 10460966 \text{ ns}
```

n = 1000 977206042 ns

3.c

When I compare these run-times to the $\mathcal{O}(n^2)$ run-times of the previous code analysis, these seem to be follow the estimated run-time

4.a

 $O(n^2)$ because, 1 for the assignment of line one, 1 + n + n for line two, 1 + n + n for line three, and n for line four. Which gives approximately $4n^2 + n + 3$

4.b

```
n = 10 3352 \text{ ns}

n = 100 158749 \text{ ns}

n = 1000 4228959 \text{ ns}
```

4.c

When I compare these to code item 2 which I said was also $O(n^2)$, the numbers look pretty close.

5.a

 $O(n^3)$ My computer had a hard time computing this code so I expect it to be at least cubic.

5.b

 $n = 10 \ 230546 \ \mathrm{ns}$

n = 100 97647736 ns

n=1000 *My computer could not compute for this value of n. I aborted execution because it never ended*

5.c

The run-time is comparable to the Big-Oh estimate

6.a

 $O(n^3)$ because, 1 for line one, 1+n+n for line two, $1+n^2+n$ for line three, $\frac{n}{2}$ for line four, 1+n+n for line five and n for line six. This gives approximately $4n^3+7n^2+2n+5$

6.b

n = 10 29054 ns

 $n = 100 \ 19675406 \ \mathrm{ns}$

n=1000 *My computer could not compute for this value of n. I aborted execution because it never ended*

6.c

The run-time is comparable to the Big-Oh estimate.

a. linear
$$\frac{.5ms}{100} = \frac{n}{500}$$
 $500(.5ms) = 100n$ $n = 2.5ms$

b. O(NlogN)
$$\frac{.5ms}{100} = \frac{nlogn}{500}$$
 $500(.5) = 100n$ $\frac{5}{2} = nlogn$ $2^{\frac{5}{2}} = 2^{nlogn}$ $2^{\frac{5}{2}} = n^n$

- c. quadratic: For input size of 1 it takes $\frac{.5ms}{100} = \frac{n^2ms}{1} \qquad \sqrt{\frac{.5}{100}} = n$ then for input size of 500 it takes, $500(\sqrt{\frac{.5}{100}}) \approx 35.35ms$
- d. cubic: For input size of 1 $\frac{.5ms}{100} = \frac{n^3ms}{1}$ $\sqrt[3]{\frac{.5}{100}} = n$ then for an input size of 500 it takes $500(\sqrt[3]{\frac{.5}{100}}) \approx 85.50ms$

2.15

Since the array is sorted $A_1 < A_2 < A_3 < ... < A_n$ I would use some sort of divide and conquer routine which would have a run-time of O(log N)

```
boolean findInteger(int[] A, int i)
{
    int begin = 0;
    int end = n - 1;
    do
    {
       int x = (begin + end)/2; //keep dividing in half
       if(A[x] == i)
           return true;
       else if(i < A[x])
           end = x - 1;
       else
           begin = x + 1;
    }while(begin <= end)</pre>
    return false;
}
```

- a. Program A because, $150Nlog_2N$ can be re-written as $Nlog_2N^{150}$ which is referred to as a polylogarithmic function. I showed in homework question 2.4 any polynomial grows faster than any polylogarithmic function as n gets very large.
- b. Program B is better for small values of n and is the program I would use if I knew for certain that the input data would never be very large.

The chart below shows that for large values of N Program B is better and for small values of N Program A is better.

N	N^2	$150Nlog_2N$
20	400	12,966
60	3,600	53,162
80	6,400	75,863
150	22,500	162,648
1,000	1,000,000	1,494,868
10,000	100,000,000	19,931,569
100,000	10,000,000,000	249,144,607

- c. Program A. Please refer to chart above.
- d. No, it is not possible that program B will run better on all possible inputs.