

"IV CONGRESO NACIONAL E INTERNACIONAL DEL CAPÍTULOS DE INDUSTRIALES Y SISTEMAS - IV CONIS "

"Ecosistemas Digitales en el Mundo"

Inteligencia Artificial en acción desde Microsoft

ECOSISTEMAS DIGITALES EN EL MUNDO

Pablo Angel Piovano

• Ingeniero en Computación, con más de 12 años de experiencia en el sector TI.

• Enfocado en desarrollar e implementar soluciones con tecnologías Microsoft

Participo activamente como organizador en la comunidad
 Microsoft Azure Al Latam South.

Agenda

- Conceptos AI, ML y DL
- Cargas de trabajo comunes de la Al
- Tipos de Machine Learning
- Diferentes escenarios de ML
- Microsoft Al Ecosystem
- Microsoft Azure Cognitive Services
- ML.NET

Al + ML + Deep learning

Cargas de trabajo comunes de la IA

1010(0)	Aprendizaje automático	Modelos predictivos basados en datos y estadísticas: la base de la IA		
<u></u> ♠	Detección de anomalías	Sistemas que detectan patrones o eventos inusuales, lo que permite una acción preventiva		
	Computer Vision	Aplicaciones que interpretan la entrada visual de cámaras, imágenes o vídeos.		
	Procesamiento del lenguaje natural	Aplicaciones que pueden interpretar el lenguaje escrito o hablado		
	IA conversacional	Agentes de IA (o <i>bots</i>) que pueden entablar diálogos con usuarios humanos		

Diferentes escenarios de ML

Ecosistema de IA de Microsoft

Cognitive Services

AzureML

ML.NET

Administrado Personalizado

Microsoft Cognitive Services

Fácil

REST APIs

Simple de añadir: solo unas cuantas líneas de código

Flexible

Se integra en el lenguaje y la plataforma de su elección.

La amplitud de ofertas le ayuda a encontrar la API correcta para su aplicación

Traiga sus propios datos para su experiencia personalizada

Probado

Construido por expertos en su campo de Microsoft Research, Bing y Azure Machine Learning

Documentación de calidad, código de muestra y soporte comunitario

Categorías

Visión

Voz

Idioma

Decisión

Búsqueda

- Computer Vision
- Custom Vision
- Face
- Form Recognizer
- Speech to Text
- Text to Speech
- Speech Translation
- Speaker Recognition

- LUIS
- QnA Maker
- Text Analytics
- Translator Text

- Anomaly Detector
- Content Moderator
- Personalizer

- Bing Web Search
- Bing Image Search
- Bing Entity Search
- Bing News Search
- Bing Video Search
- Bing Autosuggest
- Bing Spell Check
- Bing Local Business
 Search
- Bing Custom Search

Computer Vision

Véala en acción

NOMBRE DE LA CARACTERÍSTICA:	VALOR
Objetos	[{"rectangle": {"x": 6, "y": 390, "w": 48, "h": 40 }, "object": "footwear", "confidence": 0.513 }, { "rectangle": { "x": 104, "y": 104, "w": 127, "h": 323 }, "object": "person", "confidence": 0.763 }, { "rectangle": { "x": 174, "y": 236, "w": 113, "h": 74 }, "object": "Laptop", "parent": { "object": "computer", "confidence": 0.56 }, "confidence": 0.553 }, { "rectangle": { "x": 351, "y": 331, "w": 154, "h": 99 }, "object": "seating", "confidence": 0.525 }, { "rectangle": { "x": 0, "y": 101, "w": 174, "h": 329 }, "object": "person", "confidence": 0.855 }, { "rectangle": { "x": 223, "y": 99, "w": 199, "h": 322 }, "object": "person", "confidence": 0.725 }, { "rectangle": { "x": 154, "y": 191, "w": 387, "h": 218 }, "object": "seating", "confidence": 0.679 }, { "rectangle": { "x": 111, "y": 275, "w": 264, "h": 151 }, "object": "table", "confidence": 0.601 }]

Link: Ejemplo Consola C#

Face Api


```
Resultado de la detección:
1 caras detectadas
JSON:
   "faceRectangle": {
      "top": 187,
     "left": 482,
     "width": 316,
     "height": 316
    "faceAttributes": {
      "emotion": {
       "anger": 0.0,
       "contempt": 0.0,
       "disgust": 0.0,
       "fear": 0.0,
       "happiness": 1.0,
       "neutral": 0.0,
       "sadness": 0.0,
        "surprise": 0.0
```


URL de la imagen

Enviar

Examinar

URL de la imagen

Enviar

Examinar

Resultado de la comprobación: las dos caras pertenecen a la misma persona. La confianza es 0.91385.

Link: API's Documentation

Link: Crear Recurso Face Api en Azure

Link: Ejemplo para detectar Masks en las caras

Custom Vision 🖈 …

Microsoft

★ ★ ★ ★ ★ 4.3 (44 ratings)

Create

Microsoft

Choose Training Type

Training Types (i)

- Ouick Training
- Advanced Training

In most cases, the more time you select the better the model will be. You're charged based on the compute time used to train your model, so choose your budget based on your need.

		Training budget:	1 hour	i	
1 hour					24 hours
•					
Send me a	n email no	otification after train	ing comp	letes	
Email address	5				
ppiova@hot	mail.com				

Train

③ XamDragonBall

lterations

Probability Threshold: 50% (i)

Iteration 4

PUBLISHED

Advanced Trained : 21 hours ago with General (compact) domain, Training Budget: 2 hours

Iteration 3

Trained: 23 hours ago with General (compact) domain

Iteration 2

Trained: 23 hours ago with General (compact) domain

Iteration 1

Trained: 1 days ago with General (compact) domain

imes Unpublish $ext{ } ext{ } e$

Iteration 4

Finished training on 6/1/2021, 8:57:42 PM using General (compact) domain Iteration id: 29086a4a-2a31-45c2-a097-bcf1bc9cd9a3

Classification type: Multiclass (Single tag per image)

Published as: Iteration4

Performance Per Tag

Tag	Precision ^	Recall	A.P.	Image count
Vegeta	100.0%	100.0%	100.0%	31
Super Buu	100.0%	100.0%	100.0%	28
Piccolo	100.0%	100.0%	100.0%	28
Goku Super Saiyan	100.0%	83.3%	100.0%	28

Probability Threshold: 50% (i)

Iteration 4

PUBLISHED

Advanced Trained: 21 hours ago with General (compact) domain, Training Budget: 2 hours

Iteration 3

Trained: 23 hours ago with General

(compact) domain

Iteration 2

Trained: 23 hours ago with General (compact) domain

Iteration 1

Trained: 1 days ago with General (compact) domain

Training Images Performance Predictions © Train ✓ Quick Test

Performance Per Tag

Tag	Precision ^	Recall	A.P.	Image count
Vegeta	100.0%	100.0%	100.0%	31
Super Buu	100.0%	100.0%	100.0%	28
Piccolo	100.0%	100.0%	100.0%	28
Goku Super Saiyan	100.0%	83.3%	100.0%	28
Goku	100.0%	100.0%	100.0%	32
Cell	100.0%	100.0%	100.0%	30
Krilin	87.5%	100.0%	98.2%	32

Image URL

Enter Image URL

F

Browse local files

File formats accepted: jpg, png, bmp File size should not exceed: 4mb

Using model trained in

Iteration

Iteration 4

Predictions

		-
Tag	Probability	
Piccolo	100%	
Cell	0%	ı
Goku Super Saiyan	0%	ı
Super Buu	0%	Ī
Goku	0%	-

ML.NET

Tareas de ML.NET Soportadas

Instalación ML.NET

Habilitar ML.NET en Visual Studio

Dataset Categories

https://msropendata.com/

https://www.kaggle.com/datasets

https://data.seattle.gov/

https://datasetsearch.research.google.com/

Listado: https://gist.github.com/ppiova