# Exercise 17.5

Q.1 Construct a rectangle whose adjacent sides are 2.5cm and 5cm respectively. Construct a square having area equal to the given rectangle.



**Construction:** 

- Make the rectangle ABCD with given lengths of sides.
- ii. Produce AD to point E such that  $m\overline{DE} = m\overline{DC}$ .
- iii. Bisect  $\overline{AE}$  at O.
- iv. With O as centre and  $\overline{OA}$  radius draw a semicircle cutting  $\overline{CD}$  produced in M.
- v. With  $\overline{DM}$  as side complete the square  $\overline{DFLM}$ .
- Q.2 Construct a square equal in area to a rectangle whose adjacent sides are 4.5cm and 2.2cm respectively. Measure the sides of the square and find its area and compare with the area of the rectangle.



**Construction:** 

- i. Make the rectangle ABCD with given sides.
- ii. Produce AD and cut  $m\overline{DE} = m\overline{DC}$ .
- iii. Bisect  $\overline{AE}$  at O.
- iv. With O as centre and  $\overline{OA}$  radius draw a semicircle cutting  $\overline{CD}$  produced in M.
- v. With  $\overline{DM}$  as side complete the square  $DF \angle M$ .
- vi. Side of the square (average) = 3.15cm

Area = 
$$3.15 \times 3.15 = 9.9cm^2$$
  
Area of rectangle =  $2.2 \times 4.5 = 9.9cm^2$   
Area of rectangle = Area of square

Q.3 In Q2 above verify by measurement that the perimeter of the square is less then that of the rectangle.

Perimeter of rectangle = 2 [length + brichth] = 2 [4.5 +

2.2] 
$$= 2 [6.7]$$
= 13.4 cm
Perimeter of square 
$$= 4 \times I$$
= 4 × 3.2
= 12.8 cm

Q.4 Construct a square equal in area to the sum of two squares having sides 3cm and 4cm respectively.



#### **Construction:**

- i. Draw a line segment  $\overrightarrow{XY}$ .
- ii. Draw a line perpendicular  $\overrightarrow{ST}$  at point C.
- iii. Cut of  $\overline{CB} = 3cm$  and  $\overline{CG} = 4cm$ .
- iv.  $\overline{CG}$  is the side of square complete the square ACGF.
- v.  $\overline{CB}$  is the side of square complete the square CBIH.
- vi. Join B to A.
- vii.  $\overline{AB}$  is the side of square so, complete the square ABDE.
- viii. ABDE is the required square.
  Using Pythagoras theorem to prove.
- Q.5 Construct a Δ having base 3.5cm and other two sides equal to
   3.4cm and 3.8cm respectively.
   Transform it into a square of equal area



## Construction:

- i. Draw  $\overrightarrow{PAQ} \parallel \overline{BC}$
- ii. Draw perpendicular bisector of  $\overline{BC}$ , bisector it at D and meeting  $\overline{PAQ}$  at P.
- iii. Draw  $\overline{CQ} \perp \overline{PQ}$  meeting it in Q.
- iv. Take a line EFG and cut radius  $\overline{EF} = \overline{DP}$  and  $\overline{FG} = \overline{DC}$ .
- **v.** Bisect  $\overline{EG}$  at O.
- vi. With O as centre and radius =  $\overline{OE}$  draw a semi-circle.
- vii. At F draw  $\overline{FM} \perp \overline{EG}$  meeting the semi-circle at M.
- viii. With MF as a side, complete the required square FMNR.
- Q.6 Construct a  $\Delta$  having base 5 and other sides equal to 5cm and 6cm construct a square equal in area to given  $\Delta$ .



### **Construction:**

- i. Draw  $\overrightarrow{PAQ} \parallel \overline{BC}$
- ii. Draw perpendicular bisector of  $\overline{BC}$ , bisector it at D and meeting  $\overline{PAQ}$  at P.
- iii. Draw  $\overline{CQ} \perp \overline{PQ}$  meeting it in Q.
- iv. Take a line EFG and cut radius  $\overline{EF} = \overline{DP}$  and  $\overline{FG} = \overline{DC}$ .
- **v.** Bisect  $\overline{EG}$  at O.
- vi. With O as centre and radius =  $\overline{OE}$  draw a semi-circle.
- vii. At F draw  $\overline{FM} \perp \overline{EG}$  meeting the semi-circle at M.
- viii. With  $\overline{MF}$  as a side, complete the required square FMNR.

#### Last Updated: September 2020

Report any mistake at freeilm786@gmail.com