CS738: Advanced Compiler Optimizations Data Flow Analysis

Amey Karkare

karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738 Department of CSE, IIT Kanpur

Agenda

- ► Static analysis and compile-time optimizations
- ► For the next few lectures
- Intraprocedural Data Flow Analysis
 - Classical Examples
 - Components

Assumptions

- ► Intraprocedural: Restricted to a single function
- ► Input in 3-address format
- Unless otherwise specified

3-address Code Format

Assignments

$$x = y op z$$

$$x = op y$$

$$x = y$$

► Jump/control transfer

Statements can have label(s)

Arrays, Pointers and Functions to be added later when needed

Data Flow Analysis

- Class of techniques to derive information about flow of data
 - along program execution paths
- Used to answer questions such as:
 - whether two identical expressions evaluate to same value
 - used in common subexpression elimination
 - whether the result of an assignment is used later
 - used by dead code elimination

Data Flow Abstraction

- ► Basic Blocks (BB)
 - sequence of 3-address code stmts
 - single entry at the first statement
 - single exit at the last statement
 - Typically we use "maximal" basic block (maximal sequence of such instructions)

Identifying Basic Blocks

- Leader: The first statement of a basic block
 - ► The first instruction of the program (procedure)
 - ► Target of a branch (conditional and unconditional goto)
 - Instruction immediately following a branch

Special Basic Blocks

- ► Two special BBs are added to simplify the analysis
 - ► empty (?) blocks!
- Entry: The first block to be executed for the procedure analyzed
- Exit: The last block to be executed

Data Flow Abstraction

- ► Control Flow Graph (CFG)
- ▶ A rooted directed graph G = (N, E)
- \triangleright N = set of BBs
 - ▶ including *Entry*, *Exit*
- \triangleright E = set of edges

CFG Edges

- ▶ Edge $B_1 \rightarrow B_2 \in E$ if control can transfer from B_1 to B_2
 - ► Fall through
 - ► Through jump (goto)
 - ► Edge from *Entry* to (all?) real first BB(s)
 - ► Edge to Exit from all last BBs
 - ► BBs containing return
 - Last real BB

Data Flow Abstraction: Control Flow Graph

- Graph representation of paths that program may exercise during execution
- ▶ Typically one graph per procedure
- Graphs for separate procedures have to be combined/connected for interprocedural analysis
 - Later!
 - ► Single procedure, single flow graph for now.

Data Flow Abstraction: Program Points

- Input state/Output state for Stmt
 - Program point before/after a stmt
 - Denoted IN[s] and OUT[s]
 - ► Within a basic block:
 - Program point after a stmt is same as the program point before the next stmt

Data Flow Abstraction: Program Points

- ► Input state/Output state for BBs
 - Program point before/after a bb
 - Denoted IN[B] and OUT[B]
 - For B_1 and B_2 :
 - if there is an edge from B_1 to B_2 in CFG, then the program point *after* the last stmt of B_1 may be followed immediately by the program point *before* the first stmt of B_2 .

Data Flow Abstraction: Execution Paths

► An execution path is of the form

$$p_1, p_2, p_3, \ldots, p_n$$

where $p_i \rightarrow p_{i+1}$ are adjacent program points in the CFG.

- Infinite number of possible execution paths in practical programs.
- ▶ Paths having no finite upper bound on the length.
- Need to summarize the information at a program point with a finite set of facts.

Data Flow Schema

- ► Data flow values associated with each program point
 - ► Summarize all possible states at that point
- Domain: set of all possible data flow values
- ▶ Different domains for different analyses/optimizations

Data Flow Problem

- Constraints on data flow values
 - ► Transfer constraints
 - Control flow constraints
- ▶ Aim: To find a solution to the constraints
 - ► Multiple solutions possible
 - ► Trivial solutions, ..., Exact solutions
- We typically compute approximate solution
 - ► Close to the exact solution (as close as possible!)
 - Why not exact solution?

Data Flow Constraints: Transfer Constraints

- Transfer functions
 - relationship between the data flow values before and after a stmt
- ▶ forward functions: Compute facts *after* a statement *s* from the facts available *before s*.
 - ► General form:

$$\mathsf{OUT}[s] = f_s(\mathsf{IN}[s])$$

- backward functions: Compute facts before a statement s from the facts available after s.
 - General form:

$$\mathsf{IN}[s] = f_s(\mathsf{OUT}[s])$$

 $ightharpoonup f_s$ depends on the statement and the analysis

Data Flow Constraints: Control Flow Constraints

- ► Relationship between the data flow values of two points that are related by program execution semantics
- For a basic block having *n* statements:

$$\mathsf{IN}[s_{i+1}] = \mathsf{OUT}[s_i], i = 1, 2, \dots, n-1$$

▶ $IN[s_1]$, $OUT[s_n]$ to come later

Data Flow Constraints: Notations

- ▶ PRED (B): Set of predecessor BBs of block B in CFG
- ► SUCC (B): Set of successor BBs of block B in CFG
- ▶ $f \circ g$: Composition of functions f and g
- →: An abstract operator denoting some way of combining facts present in a set .

Data Flow Constraints: Basic Blocks

- Forward
 - ► For *B* consisting of $s_1, s_2, ..., s_n$

$$f_B = f_{s_n} \circ \ldots \circ f_{s_2} \circ f_{s_1}$$

$$OUT[B] = f_B(IN[B])$$

Control flow constraints

$$\mathsf{IN}[B] = igoplus_{P \in \mathsf{PRED}(B)} \mathsf{OUT}[P]$$

Backward

$$f_B = f_{S_1} \circ f_{S_2} \circ \ldots \circ f_{S_n}$$
 $\mathsf{IN}[B] = f_B(OUT[B])$
 $\mathsf{OUT}[B] = \bigoplus_{S \in \mathsf{SUCC}(B)} \mathsf{IN}[S]$

Data Flow Equations

Typical Equation

$$\mathsf{OUT}[s] = \mathsf{IN}[s] - \mathit{kill}[s] \cup \mathit{gen}[s]$$

gen(s): information generated

kill(s): information killed

Example:

```
a = b*c // generates expression b * c
c = 5 // kills expression b*c
d = b*c // is b*c redundant here?
```

Example Data Flow Analysis

- Reaching Definitions Analysis
- ▶ Definition of a variable x: x = ... something ...
- Could be more complex (e.g. through pointers, references, implicit)

Reaching Definitions Analysis

- ► A definition *d* reaches a point *p* if
 - ▶ there is a path from the point *immediately following d* to p
 - d is not "killed" along that path
 - "Kill" means redefinition of the left hand side (x in the earlier example)

RD Analysis of a Structured Program

$$OUT(s_1) = IN(s_1) - KILL(s_1) \cup GEN(s_1)$$

 $GEN(s_1) = \{d\}$

 $KILL(s_1) = D_x - \{d\}$, where D_x : set of all definitions of x

 $KILL(s_1) = D_x$? will also work here

but may not work in general

RD Analysis of a Structured Program

$$\begin{array}{lcl} \mathsf{GEN}(S) & = & \mathsf{GEN}(s_1) - \mathsf{KILL}(s_2) \cup \mathsf{GEN}(s_2) \\ \mathsf{KILL}(S) & = & \mathsf{KILL}(s_1) - \mathsf{GEN}(s_2) \cup \mathsf{KILL}(s_2) \\ \mathsf{IN}(s_1) & = & \mathsf{IN}(S) \\ \mathsf{IN}(s_2) & = & \mathsf{OUT}(s_1) \\ \mathsf{OUT}(S) & = & \mathsf{OUT}(s_2) \end{array}$$

RD Analysis of a Structured Program

$$\begin{array}{lcl} \mathsf{GEN}(S) & = & \mathsf{GEN}(s_1) \cup \mathsf{GEN}(s_2) \\ \mathsf{KILL}(S) & = & \mathsf{KILL}(s_1) \cap \mathsf{KILL}(s_2) \\ \mathsf{IN}(s_1) & = & \mathsf{IN}(s_2) & = & \mathsf{IN}(S) \\ \mathsf{OUT}(S) & = & \mathsf{OUT}(s_1) \cup \mathsf{OUT}(s_2) \end{array}$$

RD Analysis of a Structured Program

$$\begin{aligned} \mathsf{GEN}(S) &=& \mathsf{GEN}(s_1) \\ \mathsf{KILL}(S) &=& \mathsf{KILL}(s_1) \\ \mathsf{OUT}(S) &=& \mathsf{OUT}(s_1) \\ \mathsf{IN}(s_1) &=& \mathsf{IN}(S) \cup \mathsf{GEN}(s_1) \end{aligned}$$

RD Analysis is Approximate

- Assumption: All paths are feasible.
- Example:

```
if (true) s1;
else s2;
```

Fact		Computed		Actual
GEN(S)	=	$GEN(s_1) \cup GEN(s_2)$	\supseteq	$GEN(s_1)$
KILL(S)	=	$KILL(s_1) \cap KILL(s_2)$	\subseteq	$KILL(s_1)$

RD Analysis is Approximate

► Thus,

true $GEN(S) \subseteq$ analysis GEN(S) true $KILL(S) \supseteq$ analysis KILL(S)

- ▶ More definitions computed to be reaching than actually do!
- Later we shall see that this is **SAFE** approximation
 - prevents optimizations
 - but NO wrong optimization

RD at BB level

- ► A definition *d* can reach the start of a block from any of its predecessor
 - if it reaches the end of some predecessor

$$\mathsf{IN}(B) = \bigcup_{P \in \mathsf{PRED}(B)} \mathsf{OUT}(P)$$

- A definition d reaches the end of a block if
 - either it is generated in the block
 - or it reaches block and not killed

$$\mathsf{OUT}(B) = \mathsf{IN}(B) - \mathsf{KILL}(B) \cup \mathsf{GEN}(B)$$

Solving RD Constraints

- ► KILL & GEN known for each BB.
- A program with N BBs has 2N equations with 2N unknowns.
 - Solution is possible.
 - lterative approach (on the next slide).

```
for each block B {
    OUT(B) = \emptyset;
}
OUT(Entry) = \emptyset; // note this for later discussion change = true;
while (change) {
    change = false;
    for each block B other than Entry {
        IN(B) = \bigcup_{P \in PRED(B)} OUT(P);
        oldout = OUT(B);
        OUT(B) = IN(B) - KILL(B) \cup GEN(B);
        if (OUT(B) \neq oldout) then {
            change = true;
        }
    }
}
```

Reaching Definitions: Example

BB	GEN	KILL
B1	{d1, d2, d3}	{d4, d5, d6, d7}
B2	{d4, d5}	{d1, d2, d7}
B3	{d6}	{d3}
B4	{d7}	{d1, d4}

Reaching Definitions: Example

Pass#	Pt	B1	B2	B3	B4
Init	IN	-	-	-	-
	OUT	Ø	Ø	Ø	Ø
1	IN	Ø	d1, d2,	d3,	d3,
			d3	d4, d5	d4,
					d5, d6
	OUT	d1,	d3, d4,	d4,	d3,
		d2, d3	d5	d5, d6	d5,
					d6, d7
2	IN	Ø	d1, d2,	d3,	d3,
			d3, d5,	d4,	d4,
			d6, d7	d5, d6	d5, d6
	OUT	d1,	d3, d4,	d4,	d3,
		d2, d3	d5, d6	d5, d6	d5,
					d6, d7
3	IN	Ø	d1, d2,	d3,	d3,
			d3, d5,	d4,	d4,
			d6, d7	d5, d6	d5, d6
	OUT	d1,	d3, d4,	d4,	d3,
		d2, d3	d5, d6	d5, d6	d5,
					d6, d7

Reaching Definitions: Bitvectors

a bit for each definition: | d1 | d2 | d3 | d4 | d5 | d6 | d7 |

Pass#	Pt	B1	B2	В3	B4
Init	IN	-	-	-	-
	OUT	0000000	0000000	0000000	0000000
1	IN	0000000	1110000	0011100	0011110
	OUT		0011100		
2	IN	0000000	1110111	0011110	0011110
	OUT		0011110		
3	IN		1110111		
	OUT	1110000	0011110	0001110	0010111

Reaching Definitions: Bitvectors

Set-theoretic definitions:

$$\mathsf{IN}(B) = \bigcup_{P \in \mathsf{PRED}(B)} \mathsf{OUT}(P)$$

$$\mathsf{OUT}(B) = \mathsf{IN}(B) - \mathsf{KILL}(B) \cup \mathsf{GEN}(B)$$

► Bitvector definitions:

$$\mathsf{IN}(B) = \bigvee_{P \in \mathsf{PRED}(B)} \mathsf{OUT}(P)$$

$$\mathsf{OUT}(B) = \mathsf{IN}(B) \land \neg \mathsf{KILL}(B) \lor \mathsf{GEN}(B)$$

▶ Bitwise \lor , \land , \neg operators

Reaching Definitions: Application

Constant Folding

```
while changes occur {
   forall the stmts S of the program {
     foreach operand B of S {
        if there is a unique definition of B
        that reaches S and is a constant C {
           replace B by C in S;
        if all operands of S are constant {
             replace rhs by eval(rhs);
             mark definition as constant;
}}}
```

Reaching Definitions: Application

- Recall the approximation in reaching definition analysis true $GEN(S) \subseteq analysis \ GEN(S)$ true $KILL(S) \supseteq analysis \ KILL(S)$
- ► Can it cause the application to infer
 - an expression as a constant when it is has different values for different executions?
 - an expression as not a constant when it is a constant for all executions?
- ► Safety? Profitability?

Reaching Definitions: Summary

- ► GEN(B) = $\left\{ d_x \mid \text{ followed by another definition of } x \text{ in } B \right\}$
- ► KILL(B) = { $d_x \mid B$ contains some definition of x }
- ▶ $IN(B) = \bigcup_{P \in PRED(B)} OUT(P)$
- ▶ $OUT(B) = IN(B) KILL(B) \cup GEN(B)$
- ▶ meet (\land) operator: The operator to combine information coming along different predecessors is \cup
- ► What about the *Entry* block?

Reaching Definitions: Summary

► Entry block has to be initialized specially:

$$OUT(Entry) = EntryInfo$$

 $EntryInfo = \emptyset$

► A better entry info could be:

```
EntryInfo = \{x = undefined \mid x \text{ is a variable}\}
```

► Why?