### **Lasso Regression**

### **About Lasso Regression:**

- 1. Supervised Learning Model
- 2. Regression model
- 3. Least Absolute Shrinkage and Selection Operator
- 4. Implements Regularization (L1) to avoid Overfitting

it is built upon linear regression. It avoid overfitting by regularization.

#### Regularization

Regularization is used to reduce the overfitting of the model by adding a penalty term  $(\lambda)$  to the model. Lasso Regression uses L1 regularization technique.

The "penalty" term reduces the value of the coefficients or eliminate few coefficients, so that the model has fewer coefficients. As a result, overfitting can be avoided.

Sid

 $3^{rd}$  order Polynomial equation :  $y = ax^3 + bx^2 + cx + d$ 

This Process is called as Shrinkage.

LASSO --> Least Absolute Shrinkage and Selection Operator



# **Math behind LASSO Regression**

# **Cost Function for Lasso Regression:**

$$J = \frac{1}{m} \left[ \sum_{i=1}^{m} \left( \mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)} \right)^2 + \lambda \sum_{j=1}^{n} w_j \right]$$

m --> Total number of Data Points

n --> Total number of input features

y(i) --> True Value

ŷ<sup>(i)</sup> --> Predicted Value

λ --> Penalty Term

w --> Parameter of the model

here n is the number of parameters(number of columns) and m is the number of rows. lambda is also called regularization parameter.

#### **Gradient Descent**

#### **Gradients for Lasso Regularization**

if 
$$(w_j > 0)$$
:

$$\frac{dJ}{dt} = \frac{-2}{2} \left[ \left[ \sum_{i=1}^{m} \mathbf{x}_{i,i} \left( \mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)} \right) \right] + \lambda \right]$$

else 
$$(w_j \le 0)$$
:

$$\frac{dJ}{dw} = \frac{-2}{m} \left[ \left[ \sum_{i=1}^{m} \mathbf{x}_{j} \cdot (\mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)}) \right] + \lambda \right] \qquad \frac{dJ}{dw} = \frac{-2}{m} \left[ \left[ \sum_{i=1}^{m} \mathbf{x}_{j} \cdot (\mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)}) \right] - \lambda \right]$$

$$\frac{dJ}{db} = \frac{-2}{m} \left[ \sum_{i=1}^{m} \left( \mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)} \right) \right]$$

$$\mathbf{w}_{2} = \mathbf{w}_{1} - \mathbf{L}^{*} \frac{dJ}{dw}$$

$$\mathbf{b}_{2} = \mathbf{b}_{1} - \mathbf{L}^{*} \frac{dJ}{db}$$

$$y = w.x + b$$

dj/db is same for both.

SUBSCRIBE