ор	Array op Scalar	Scalar op Array	Array op Array
+,	Dot not permitted [1 2 3] + 4 = [5 6 7]	Dot not permitted 9 – [1 2 3] = [8 7 6]	Dot not permitted [1 2 3] + [4 5 6] = [5 7 9]
*	Dot makes no difference [1 2 3] * 2 = [2 4 6] [1 2 3] .* 2 = [2 4 6]	Dot makes no difference 2 * [1 2 3] = [2 4 6] 2 .* [1 2 3] = [2 4 6]	No dot: array operation Dot: element by element [2 3 4].*[1 2 3] = [2 6 12]
/	Dot makes no difference [2 4 6] / 2 = [1 2 3] [2 4 6] ./ 2 = [1 2 3]	No dot: illegal (1) Dot: see below 8 ./ [1 2 4] = [8 4 2]	No dot: array operation Dot: element by element [2 6 12] ./ [1 2 3] = [2 3 4]
^	No dot: array operation (2)	No dot: array operation (3)	No dot: illegal

- (1) Array operation and dimensions guaranteed to be invalid.
- (2) The array (which must be square) is raised to the specified power.
- (3) S^A is (e^A)^S, where e^A is the matrix exponential of A. Don't worry about this.

Points to remember:

- Never use a dot with the + and operators
- Unless you actually want array multiplication, division, or exponentiation, you can always use a dot with the *, /, and ^ operators