Name: MIN SOE HTUT

ID: 1631938

Load the dataset

```
In [73]: import numpy as np
    import pandas as pd
    url = 'https://raw.githubusercontent.com/bpfa/data_for_compx310_2023/main/covt
    ypeNorm_f1_5_s42.csv'
    df = pd.read_csv(url)
    df
```

Out[73]:

		Elevation	Aspect	Slope	Horizontal_Distance_To_Hydrology	Vertical_Distance_To_Hy	
' <u>'</u>	0	0.556278	0.272222	0.136364	0.107373	0.	
	1	0.543272	0.944444	0.257576	0.047960	0.	
	2	0.375188	0.266667	0.212121	0.137437	0.	
	3	0.552276	0.294444	0.090909	0.434503	О.	
	4	0.642821	0.069444	0.166667	0.211167	0,	
116	198	0.497749	0.919444	0.424242	0.231210	0.	
116	199	0,565283	0.013889	0.212121	0.000000	0.	
116	200	0.696348	0.408333	0.242424	0.273443	0.	
116	201	0.687344	0.147222	0.378788	0.173228	0.	
116	202	0.545273	0.141667	0.333333	0.121689	0.	
116203 rows × 55 columns							
4						•	

Display the dataset information

In [74]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 116203 entries, 0 to 116202
Data columns (total 55 columns):

υατα	columns (total 55 columns):		
#	Column	Non-Null Count	Dtype
0	Elevation	116203 non-null	float64
1	Aspect	116203 non-null	float64
2	Slope	116203 non-null	float64
3	Horizontal_Distance_To_Hydrology	116203 non-null	float64
4	Vertical_Distance_To_Hydrology	116203 non-null	float64
5	Horizontal_Distance_To_Roadways	116203 non-null	float64
6	Hillshade_9am	116203 non-null	float64
7	Hillshade_Noon	116203 non-null	float64
8	Hillshade_3pm	116203 non-null	float64
9	Horizontal_Distance_To_Fire_Points	116203 non-null	float64
10	Wilderness_Area1	116203 non-null	int64
11	Wilderness_Area2	116203 non-null	int64
12	Wilderness_Area3	116203 non-null	int64
13	Wilderness_Area4	116203 non-null	int64
14	Soil_Type1	116203 non-null	int64
15	Soil_Type2	116203 non-null	int64
16	Soil_Type3	116203 non-null	int64
17	Soil_Type4	116203 non-null	int64
18	Soil_Type5	116203 non-null	int64
19	Soil_Type6	116203 non-null	int64
20	Soil_Type7	116203 non-null	int64
21	Soil_Type8	116203 non-null	int64
22	Soil_Type9	116203 non-null	int64
23	Soil_Type10	116203 non-null	int64
24	Soil_Type11	116203 non-null	int64
25	Soil_Type12	116203 non-null	int64
26	Soil_Type13	116203 non-null	int64
27	Soil_Type14	116203 non-null	int64
28	Soil_Type15	116203 non-null	int64
29	Soil_Type16	116203 non-null	int64
30	Soil_Type17	116203 non-null	int64
31	Soil_Type18	116203 non-null	int64
32	Soil_Type19	116203 non-null	
33	Soil_Type20	116203 non-null	int64
34	Soil_Type21	116203 non-null	int64
35	Soil_Type22	116203 non-null	int64
36	Soil_Type23	116203 non-null 116203 non-null	int64
37	Soil_Type24	116203 non-null	int64
38	Soil_Type25	116203 non-null	int64
39 40	Soil_Type26		int64
40	Soil_Type27	116203 non-null	int64
41	Soil_Type28	116203 non-null	int64
42	Soil_Type29	116203 non-null	int64
43	Soil_Type30	116203 non-null	int64
44 45	Soil_Type31	116203 non-null	int64
45 46	Soil_Type32	116203 non-null	int64
46 47	Soil_Type33	116203 non-null	int64
47 48	Soil_Type34	116203 non-null	int64
48 49	Soil_Type35	116203 non-null 116203 non-null	int64
	Soil_Type36		int64
50 51	Soil_Type37	116203 non-null	int64
51	Soil_Type38	116203 non-null	int64

memory usage: 48.8 MB

```
      52 Soil_Type39
      116203 non-null int64

      53 Soil_Type40
      116203 non-null int64

      54 class
      116203 non-null int64

      dtypes: float64(10), int64(45)
```

Selecting all features except "class" as X, selecting "class" as y, and splitting into three parts: 60% train, 20% validation and 20% test; remember to use stratification, and "random_state=YOUR_ID"

```
In [75]: from sklearn.model_selection import train_test_split
    df = df.dropna()
    X = df.iloc[:, :-1]
    y = df.iloc[:, -1]
    ID = 1631938
    # Split the data into 60% train and 40% temporary set using stratification and random state
    X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.4, rando m_state=ID, stratify=y)
    # Split the temporary set into 50% validation and 50% test using stratificatio n and random state
    X_test, X_val, y_test, y_val = train_test_split(X_temp, y_temp, test_size=0.5, random_state=ID, stratify=y_temp)
```

Building twenty trees, by varying the max_depth from 5 up to 100, in steps of 5; remember to use "random_state=YOUR_ID" for the tree

```
In [76]: from sklearn.tree import DecisionTreeClassifier
    # Initialize a list to store models
    models = []
    # Define the range of depths
    depths = range(5, 101, 5)
    # Build and evaluate the decision trees
    for depth in depths:
        tree = DecisionTreeClassifier(max_depth=depth, random_state=ID)
        tree.fit(X_train, y_train)
        models.append(tree)
```

Plot the smallest tree

```
In [87]: from sklearn import tree
    import graphviz
    # Visualize the smallest tree (max_depth=5)
    smallest_tree = models[0]
    dot_data = tree.export_graphviz(smallest_tree, out_file=None,feature_names=X.c
    olumns,class_names=[str(cls) for cls in smallest_tree.classes_], filled=True)
    graph = graphviz.Source(dot_data, format="png")
    graph
Out[87]:
```

Collect and Plot Accuracies

```
In [78]:
         import matplotlib.pyplot as plt
         from sklearn.metrics import accuracy score
         # Initialize lists to store accuracies
         train_accuracies = []
         val accuracies = []
         test_accuracies = []
         # Collect accuracies
         for tree in models:
             train_pred = tree.predict(X_train)
             val_pred = tree.predict(X_val)
             test_pred = tree.predict(X_test)
             train_acc = accuracy_score(y_train, train_pred)
             val_acc = accuracy_score(y_val, val_pred)
             test_acc = accuracy_score(y_test, test_pred)
             train_accuracies.append(train_acc)
             val_accuracies.append(val_acc)
             test_accuracies.append(test_acc)
```

Generate a single plot

```
In [79]: tree_depths = range(5, 101, 5)
    plt.figure(figsize=(10, 6))
    plt.plot(tree_depths, train_accuracies, label='Train Accuracy', marker = 'o')
    plt.plot(tree_depths, val_accuracies, label='Validation Accuracy', marker =
    'o')
    plt.plot(tree_depths, test_accuracies, label='Test Accuracy', marker = 'o')
    plt.xlabel('Tree Depth')
    plt.ylabel('Accuracy')
    plt.title('Accuracy vs. Tree Depth')
    plt.legend()
    plt.grid()
    plt.show()
```


According to the plot Yes, the depth of the tree with the maximum validation accuracy coincides with the depth of the tree for the maximum test accuracy. Both the validation and test accuracies peak at a tree depth of approximately 15-20.

Generate Plots for max_depth

```
In [86]:
         # Initialize lists to store tree attributes
         max_depths = []
         node_counts = []
         # Extract attributes for each tree
         for tree in models:
           max_depths.append(tree.tree_.max_depth)
           node_counts.append(tree.tree_.node_count)
         # Plot node count of each tree
         plt.figure(figsize=(10, 6))
         plt.plot(tree_depths, max_depths, marker='o')
         plt.xlabel('Tree Depth')
         plt.ylabel('Max Depth')
         plt.title('Max Depth vs. Tree Depth')
         plt.grid()
         plt.show()
```


Generate Plots for node_count

```
In [81]: # Plot node count of each tree
   plt.figure(figsize=(10, 6))
   plt.plot(tree_depths, node_counts, marker='o')
   plt.xlabel('Tree Depth')
   plt.ylabel('Node Count')
   plt.title('Node Count vs. Tree Depth')
   plt.grid()
   plt.show()
```


It is unlikely that growing trees with a max-depth greater than 100 will improve test accuracy. Both validation and test accuracies peaked around a depth of 15-20 and did not improve with deeper trees.