University of Massachusetts Lowell Department of Electrical and Computer Engineering 16.520 Computer Aided Engineering Analysis

1. Consider the function

$$u(x) = cos(3x)$$
 for $0 \le x < 2\pi$

Using the N-point DFT U(k) of the sampled function $u(x_i)$ where $x_i = i \ 2\pi/N$ for i = (0, N-1)

- a. Evaluate for $N = 16 \frac{du}{dx}$ at each point x_i .
- b. Evaluate $u(x_i + \Delta x/2)$ where $\Delta x = 2\pi/N$.
- 2. Consider two spatially sampled signals $u(x_i)$ and $v(x_i)$ used to compute the he antialiased version of the product $w(x_i) = v(x_i)u(x_i)$. where i = (0, N-1) and N = 16. Therefore the highest freq index of the spectrum is N/2.
 - a. If u = cos(3x) and v = cos(4x) then w = (cos(7x) + cos(x))/2. the highest frequency index is 7. In other words W(k) contains no frequency components greater than N/2 = 8.
 - b. Consider the case u = cos(7x) and v = cos(7x) then w = (cos(14x) + 1)/2 has the highest frequency index is 14. Using the Fourier transforms U(k) and V(k) Find the anti-aliased product w(n) which is equal to 1/2.