Modèle de Lorentz, retour

On se place à $\omega \gg \omega_i j$

Le déplacement est très faible, on peut négliger ω_0, γ

2.4 Modèles quantiques

Objectifs

- Réintroduire la théorie des perturbation
- $--\mathcal{P}_{|g
 angle
 ightarrow|e
 angle}$
- Oscillations de Rabo

$$H_0 = \hbar\omega_e |e\rangle \langle e| (+\hbar \cdot 0 |g\rangle \langle g|)$$

$$|\psi(t)\rangle = \gamma_g |g\rangle + \gamma_e e^{-i\omega_e t} |e\rangle$$

Comment le système se couple à un champ E.M.?

$$H = H_0 + H_{\text{int}}$$

$$H_{\rm int} = -\hat{D}\hat{E}(\mathbf{r}, t)$$

 \hat{D} : Opérateur de moment dipolaire $=q\hat{r}$

Problème à deux niveaux

$$H = \hbar \omega_e |e\rangle \langle e| - \hat{D}\hat{E}(r, t)$$

Approche perturbative : H_{int} : faible

$$H_{\mathrm{int}} \to \lambda H_{\mathrm{int}} \quad \lambda \ll 1$$

$$\psi(t) = \sum_{n} \gamma_n(t) |n\rangle$$

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t}\psi |\psi(t)\rangle = (H_0 + \lambda H_{\mathrm{int}}) |\psi(t)\rangle$$

On projette sur un $|k\rangle$ quelconque

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} \langle k|\psi(t)\rangle = \langle k|H_0|\psi(t)\rangle + \lambda \langle k|H_{\mathrm{int}}|\psi(t)\rangle$$

$$= E_k \langle k|\psi\rangle + \lambda \sum_n \langle k|H_{\mathrm{int}}|n\rangle \langle n|\psi(t)\rangle$$

$$i\left[-\frac{E_k}{\hbar} + \frac{\mathrm{d}}{\mathrm{d}t}\gamma_k(t)\right] e^{-iE_kt/\hbar} = e_k \gamma_{k(t)} e^{-iE_kt/\hbar} + \lambda \sum_m \langle k|H_{\mathrm{int}}|n\rangle \psi_n(t) e^{(E_n - E_k)t/\hbar}$$

donc,

$$\forall |k\rangle, \quad \frac{\mathrm{d}}{\mathrm{d}t} \gamma_k(t) = \lambda \sum_n \langle k| H_{\mathrm{int}} |n\rangle \gamma_n(t) e^{-i\frac{E_n - E_k}{\hbar}t}$$

Cela est la solution exacte et n'est, évidemment, pas facile à résoudre en général.

On fait donc une série en λ

$$\gamma_{k(t)} = \gamma_k^{(0)}(t) + \lambda \gamma_k^{(1)}(t) + \lambda^2 \gamma_k^{(2)}(t) + \cdots$$

$$\gamma_e^{(1)} = \frac{1}{i} \int_{t_0}^t dt' \langle e | H_{\text{int}} | e \rangle \gamma_e^{(0)} e^{-i\delta E_{eg}t/\hbar} + \cdots$$

$$\gamma_e^{(1)}(t) = \frac{1}{i\hbar} \int_{t_0}^t dt \langle \psi | e H_{\text{int}} | g \rangle e^{-i\Delta E_{ge}t/\hbar}$$

On va considérer un champ éléctrique de la forme

$$\mathbf{E}(\mathbf{r},t) = \mathbf{E}_0 \cos(\omega t + \varphi)$$

$$H_{\text{int}} = \hat{W} \cos(\omega t \pm \varphi)$$

$$\hat{W} = \hat{D}\mathbf{E}_0 = q\hat{r}\mathbf{E}_0$$

$$\gamma_e(t) = \frac{W_{eg}}{i\hbar} int_{t_0}^t dt' \cos(\omega t' + \varphi) e^{-i\frac{E_g - E_e \hbar'}{t}'}$$

$$\gamma_{e(t)} \approx \frac{W_{eg}}{2i\hbar} \int_{t_0}^t dt' \left[e^{i\psi} e^{i\omega t'} + e^{-i\varphi - i\omega t'} \right] e^{i\omega_{eg}t'}$$

. . .