VELA

Radiation

(205)272 3402

Nationwide Occurrence of Radon and Other Natural Radioactivity in Public Water Supplies

NATIONWIDE OCCURRENCE OF RADON
AND OTHER NATURAL RADIOACTIVITY
IN PUBLIC WATER SUPPLIES

Thomas R. Horton

U.S. Environmental Protection Agency Office of Radiation Programs Eastern Environmental Radiation Facility 1890 Federal Drive Montgomery, AL 36109 RA 591 H823 1985

WOOD TO DESCRIPTION OF MANY

The second secon

23. Jacks Physics of London

support of special

The second secon

ONLY IN THE PROPERTY OF

TABLE OF CONTENTS

	F	age
List of Figures	•	٧
List of Tables		xiii
Preface		xvii
Acknowledgments		xix
Abstract	•	xxiii
1.0 Introduction		1
2.0 Study Design	•	2
3.0 Radon and Other Natural Radioactivity Measurements	•	7
3.1 U.S. Rn-222 Results	•	12
3.2 U.S. Gross Alpha Results	•	18
3.3 U.S. Gross Beta Results	•	18
3.4 U.S. Ra-226 Results		18
3.5 U.S. Ra-228 Results	•	18
3.6 U.S. Total Ra Results		33
3.7 U.S. Ra-226/Ra-228 Ratio Results	•	33
3.8 U.S. U-234 Results	i	33
3.9 U.S. U-238 Results	i	33
3.10 U.S. Total U Results	•	33
3.11 U.S. U-234/U-238 Ratio Results	•	50
4.0 Discussion of Results		57
4.1 Section 3 Discussion	•	57
4.1.1 Rn-222		57

TABLE OF CONTENTS (Continued)

				Page
		4.1.2	Gross Alpha	58
		4.1.3	Gross Beta	58
		4.1.4	Ra-226	58
		4.1.5	Ra-228	59
		4.1.6	Total Ra and Ra-226/Ra-228 Ratio	59
		4.1.7	U-234, U-238, Total U, and U-234/U-238 Ratio .	59
	4.2	Regiona	al Approach	60
	4.3	Select:	ive Monitoring	65
		4.3.1	Areas with High Rn-222 Activity	65
		4.3.2	Mining Locations as a Screening Method for Uranium	76
	4.4	Predict	tive Modeling	76
5.0	Summa	ary and	Conclusions	81
6.0	Reco	mmendat	ions	82
Refe	rence	s		83
Appe	ndixe	S		
Α.	Addi	tional	Information on the Study Design	86
В.	Radi	oactivi	ty Results for each Public Water System Sampled	91
c.		ary of ems	Radioactivity Results for Public Surface Water	160
D.			Rn-222 Concentrations for Public Groundwater Selected Population Ranges	165
Ε.		Regiona entrati	Contour Maps for Selected Radioactivity	171

LIST OF FIGURES

Figure	<u>Pa</u>	ige
3.1	Locations of Public Groundwater Supplies Sampled for Rn-222 (1981-1982)	}
3.2	Locations of Public Groundwater Supplies Sampled for Gross Alpha and Gross Beta (1981-1982) 9)
3.3	Average Rn-222 Concentrations in Public Groundwater Supplies (1981-1982) (3D Projection)	4
3.4	Average Rn-222 Concentrations in Public Groundwater Supplies (1981-1982) (Contour)	.5
3.5	U.S. Public Groundwater Systems (All Results): Rn-222 Concentrations	6
3.6	Population Distribution for Public Groundwater Systems (All Results)	.7
3.7	Average Gross Alpha Concentrations in Public Groundwater Supplies (1981-1982) (3D Projection) 2	20
3.8	Average Gross Alpha Concentrations in Public Groundwater Supplies (1981-1982) (Contour) 2	21
3.9	U.S. Public Groundwater Systems: Gross Alpha Concentrations	22
3.10	Average Gross Beta Concentrations in Public Groundwater Supplies (1981-1982) (3D Projection) 2	24
3.11	Average Gross Alpha Concentrations in Public Groundwater Supplies (1981-1982) (Contour) 2	25
3.12	U.S. Public Groundwater Systems: Gross Beta Concentrations	26
3.13	Average Ra-226 Concentrations in Public Groundwater Supplies (1981-1982) (3D Projection)	28
3.14	Average Ra-226 Concentrations in Public Groundwater Supplies (1981-1982) (Contour)	29

Figure		Page
3.15	U.S. Public Groundwater Systems: Ra-226 Concentrations	. 30
3.16	U.S. Public Groundwater Systems: Ra-228 Concentrations	. 32
3.17	U.S. Public Groundwater Systems: Total Ra Concentrations	. 35
3.18	U.S. Public Groundwater Systems: Ra-226/Ra-228 Ratios	. 37
3.19	Average U-234 Concentrations in Public Groundwater Supplies (1981-1982) (3D Projection)	
3.20	Average U-234 Concentrations in Public Groundwater Supplies (1981-1982) (Contour)	
3.21	U.S. Public Groundwater Systems: U-234 Concentrations	. 41
3.22	Average U-238 Concentrations in Public Groundwater Supplies (1981-1982) (3D Projection)	
3.23	Average U-238 Concentrations in Public Groundwater Supplies (1981-1982) (Contour)	
3.24	U.S. Public Groundwater Systems: U-238 Concentrations	. 45
3.25	Average Total Uranium Concentrations in Public Groundwater Supplies (1981-1982) (3D Projection) .	. 47
3.26	Average Total Uranium Concentrations in Public Groundwater Supplies (1981-1982) (Contour)	. 48
3.27	U.S. Public Groundwater Systems: Total U Concentrations	. 49
3.28	Average U-234/U-238 Ratios in Public Groundwater Supplies (Samples with Total Uranium > 3.5 pCi/l) (1981-1982) (3D Projection)	. 52

Figure	<u>Page</u>
3.29	Average U-234/U-238 Ratios in Public Groundwater Supplies (Samples with Total Uranium > 3.5 pCi/l) (1981-1982) (Contour)
3.30	U.S. Public Groundwater Systems: U-234/U-238 Ratios (Total U > 3.5 pCi/l)
3.31	U.S. Public Groundwater Systems: U-234/U-238 Ratios (All Results)
4.1	Expanded Locations of Public Groundwater Supplies Sampled for Rn-222 62
4.2	Average Rn-222 Concentrations in Public Groundwater Supplies 1978-1982 (3D Projection) 63
4.3	Average Rn-222 Concentrations in Public Groundwater Supplies 1978-1982 (Contour)
4.4	Public Groundwater Supplies Exceeding 500 pCi/l of Rn-222 (Based on the Nationwide Study Only) 66
4.5	Public Groundwater Supplies Exceeding 1000 pCi/l of Rn-222 (Based on the Nationwide Study Only) 67
4.6	Public Groundwater Supplies Exceeding 2000 pCi/l of Rn-222 (Based on the Nationwide Study Only) 68
4.7	Public Groundwater Supplies Exceeding 5000 pCi/l of Rn-222 (Based on the Nationwide Study Only) 69
4.8	Public Groundwater Supplies Exceeding 10,000 pCi/l of Rn-222 (Based on the Nationwide Study Only) 70
4.9	Expanded Locations of Public Groundwater Supplies Sampled for Rn-222 Exceeding 500 pCi/l 71

Figure	<u>Page</u>
4.10	Expanded Locations of Public Groundwater Supplies Sampled for Rn-222 Exceeding 1000 pCi/l 72
4.11	Expanded Locations of Public Groundwater Supplies Sampled for Rn-222 Exceeding 2000 pCi/l 73
4.12	Expanded Locations of Public Groundwater Supplies Sampled for Rn-222 Exceeding 5000 pCi/l 74
4.13	Expanded Locations of Public Groundwater Supplies Sampled for Rn-222 Exceeding 10,000 pCi/l 75
4.14	Locations of Inactive Mining Operations Associated with Uranium
4.15	Locations of Active Mining Operations Associated with Uranium
4.16	Locations of Both Active and Inactive Mining Operations Associated with Uranium 79
Appendix C	
C.1	U.S. Public Surface Water Systems: Rn-222 Concentrations
C.2	U.S. Public Surface Water Systems: Gross Alpha Concentrations
C.3	U.S. Public Surface Water Systems: Gross Beta Concentrations
Appendix D	
D.1	Rn-222 Concentrations in U.S. Public Groundwater Systems Serving 1000 or more People166
D.2	Rn-222 Concentrations in U.S. Public Groundwater Systems Serving Less Than 1000 People 167
D.3	Rn-222 Concentrations in U.S. Public Groundwater Systems Serving Less Than 500 People 168

Figure	<u>Page</u>
D.4	Rn-222 Concentrations in U.S. Public Groundwater Systems Serving Less Than 100 People 169
Appendix E	
E.1	Rn-222 Concentrations in Public Groundwater Region I 1981-1982
E.2	Gross Alpha Concentrations in Public Groundwater Region I 1981-1982
E.3	Rn-222 Concentrations in Public Groundwater Region II 1981-1982
E.4	Gross Alpha Concentrations in Public Groundwater Region II 1981-1982
E.5	Rn-222 Concentrations in Public Groundwater Region III 1981-1982
E.6	Gross Alpha Concentrations in Public Groundwater Region III 1981-1982
E.7	Rn-222 Concentrations in Public Groundwater Region IV 1981-1982
E.8	Gross Alpha Concentrations in Public Groundwater Region IV 1981-1982
E.9	Ra-226 Concentrations in Public Groundwater Region IV 1981-1982
E.10	Total Uranium Concentrations in Public Groundwater Region IV 1981-1982
E.11	Rn-222 Concentrations in Public Groundwater Region V 1981-1982
E.12	Gross Alpha Concentrations in Public Groundwater Region V 1981-1982
E.13	Ra-226 Concentrations in Public Groundwater Region V 1981-1982

Figure		Page
E.14	Total Uranium Concentrations in Public Groundwater Region V 1981-1982	. 185
E.15	Rn-222 Concentrations in Public Groundwater Region VII 1981-1983	. 186
E.16	Gross Alpha Concentrations in Public Groundwater Region VII 1981-1983	. 187
E.17	Ra-226 Concentrations in Public Groundwater Region VII 1981-1983	. 188
E.18	Ra-228 Concentrations in Public Groundwater Region VII 1981-1983	. 189
E.19	Total Uranium Concentrations in Public Groundwater Region VII 1981-1983	. 190
E.20	Rn-222 Concentrations in Public Groundwater Region VIII 1981-1982	. 191
E.21	Gross Alpha Concentrations in Public Groundwater Region VIII 1981-1982	. 192
E.22	Ra-226 Concentrations in Public Groundwater Region VIII 1981-1982	. 193
E.23	Total Uranium Concentrations in Public Groundwater Region VIII 1981-1982	
E.24	Rn-222 Concentrations in Public Groundwater Region IX 1981-1982	. 195
E.25	Gross Alpha Concentrations in Public Groundwater Region IX 1981-1982	. 196
E.26	Ra-226 Concentrations in Public Groundwater Region IX 1981-1982	. 197
E:27	Total Uranium Concentrations in Public Groundwater Region IX 1981-1982	. 198

Figure		Page
E.28	Rn-222 Concentrations in Public Groundwater Region X 1981-1982	. 199
E.29	Gross Alpha Concentrations in Public Groundwater Region X 1981-1982	. 200
E.30	Rn-222 Concentrations in Public Groundwater Georgia, N. Carolina, S. Carolina, Virginia 1981-1982	. 201
E.31	Ra-226 Concentrations in Public Groundwater Georgia, N. Carolina, S. Carolina, Virginia 1981-1982	. 202
E.32	Total Uranium Concentrations in Public Groundwater Georgia, N. Carolina, S. Carolina, Virginia 1981-1982	. 203
E.33	Rn-222 Concentrations in Public Groundwater Region I 1978-1982	. 204
E.34	Rn-222 Concentrations in Public Groundwater Region II 1978-1982	. 205
E.35	Rn-222 Concentrations in Public Groundwater Region VI 1978-1982	. 206
E.36	Rn-222 Concentrations in Public Groundwater Region VII 1978-1982	. 207
E.37	Rn-222 Concentrations in Public Groundwater Region IX 1978-1982	. 208

LIST OF TABLES

Table		Page
2.1	Study Design for Sample Collection Effort	. 4
3.1	Population Covered by this Study	. 10
3.2	Summary of Rn-222 Concentrations in Public Groundwater Systems	. 13
3.3	Summary of Gross Alpha Concentrations in Public Groundwater Systems	. 19
3.4	Summary of Gross Beta Concentrations in Public Groundwater Systems	. 23
3.5	Summary of Ra-226 Concentrations in Public Groundwater Systems	. 27
3.6	Summary of Ra-228 Concentrations in Public Groundwater Systems	. 31
3.7	Summary of Total Ra Concentrations in Public Groundwater Systems	. 34
3.8	Summary of Ra-226/Ra-228 Ratios in Public Groundwater Systems	. 36
3.9	Summary of U-234 Concentrations in Public Groundwater Systems	. 38
3.10	Summary of U-238 Concentrations in Public Groundwater Systems	. 42
3.11	Summary of Total U Concentrations in Public Groundwater Systems	. 46
3.12	Summary of U-234/U-238 Ratios (Total U > 3.5 pCi/l) in Public Groundwater Systems	
3.13	Summary of U-234/U-238 Ratios (All Results) in Public Groundwater Systems	. 55

LIST OF TABLES (Continued)

Appendix B		
Table		Page
B.1	Natural Radioactivity in Public Water Systems - Alabama	. 92
B.2	Natural Radioactivity in Public Groundwater Systems - Arizona	. 94
B.3	Natural Radioactivity in Public Groundwater Systems - Colorado	. 96
B.4	Natural Radioactivity in Public Groundwater Systems - Delaware	. 97
B.5	Natural Radioactivity in Public Groundwater Systems - Florida	. 98
B.6	Natural Radioactivity in Public Groundwater Systems - Georgia	. 102
B.7	Natural Radioactivity in Public Groundwater Systems - Idaho	. 104
B.8	Natural Radioactivity in Public Groundwater Systems - Illinois	. 106
B.9	Natural Radioactivity in Public Groundwater Systems - Indiana	. 109
B.10	Natural Radioactivity in Public Groundwater Systems - Kansas	. 111
B.11	Natural Radioactivity in Public Groundwater Systems - Kentucky	. 112
B.12	Natural Radioactivity in Public Groundwater Systems - Maine	. 113
B.13	Natural Radioactivity in Public Groundwater Systems - Massachusetts	. 114
B.14	Natural Radioactivity in Public Water Systems - Minnesota	. 117

LIST OF TABLES (Continued)

Table							Ī	age
B.15	Natural Systems	Radioactivity - Mississippi	in Public	Groundwater	• •	•	•	120
B.16	Natural Systems	Radioactivity - Montana	in Public	Water	• •	•	•	122
B.17	Natural Systems	Radioactivity - Nevada	in Public	Groundwater	• •	•	•	123
B.18	Natural Systems	Radioactivity - New Hampshir	in Public	Groundwater		•	•	124
B.19		Radioactivity - New Mexico						125
B.20	Natural Systems	Radioactivity - New York .	in Public	Groundwater				127
B.21	Natural Systems	Radioactivity - North Caroli	in Public	Water	• •			130
B.22	Natural Systems	Radioactivity - North Dakota	in Public	Water		•	•	134
B.23	Natural Systems	Radioactivity - Ohio	in Public	Groundwater	• •	•	•	136
B.24	Natural Systems	Radioactivity - Oklahoma .	in Public	Groundwater	• •	•	•	138
B.25		Radioactivity - Oregon				•	•	139
B.26	Natural Systems	Radioactivity - Pennsylvania	in Public	Groundwater				141
B.27	Natural Systems	Radioactivity - Rhode Island	in Public	Groundwater				143
B.28	Natural Systems	Radioactivity - South Caroli	in Public	Groundwater				144

LIST OF TABLES (Continued)

Table		Page
B.29	Natural Radioactivity in Public Groundwater Systems - South Dakota	. 147
B.30	Natural Radioactivity in Public Groundwater Systems - Tennessee	. 149
B.31	Natural Radioactivity in Public Groundwater Systems - Utah	. 150
B.32	Natural Radioactivity in Public Groundwater Systems - Vermont	. 152
B.33	Natural Radioactivity in Public Groundwater Systems - Virginia	. 153
B.34	Natural Radioactivity in Public Groundwater Systems - Wisconsin	. 156
B.35	Natural Radioactivity in Public Water Systems - Wyoming	. 159
Appendix C		
C.1	Summary of U.S. Radioactivity Concentrations in Public Surface Water Systems	. 164
Appendix D		
D.1	Summary of U.S. Rn-222 Concentrations in Public Groundwater Systems for Selected Population Ranges	. 170

PREFACE

The Eastern Environmental Radiation Facility (EERF) participates in the identification of solutions to problem areas as defined by the Office of Radiation Programs. The Facility provides analytical capability for evaluation and assessment of radiation sources through environmental studies and surveillance and analysis. The EERF provides technical assistance to state and local health departments in their radiological health programs and provides special analytical support for Environmental Protection Agency Regional Offices and other federal government agencies as requested.

This report summarizes the results of a nationwide study of radon in public water supplies spanning a five year period.

Charles R. Porter

Director

Eastern Environmental Radiation Facility

ACKNOWLEDGMENTS

The following persons were the principal contacts in each state coordinating sample collection.

```
AL
       J. Downey
AZ
       L. Herzmark, M. Stroud
CO
       C. Aikele, H. Holmes
       R. Howell, III
DE
FL
       J. Eakins, W. Johnson, R. Rosson, K. Taylor
       C. Blackman, W. Cline
GA
ID
       R. Funderburg, A. Justus
IL
       P. Eastvold, D. Derenzo, D. Dolan
IN
       J. Corpuz
KS
       H. Spiker
KY
       D. Draper
ME
       P. Dostie, W. Hinckley
MA
       W. Bell, R. Hallisey
       G. Englund
MN
MS
       W. Green
MT
       D. Fraser, L. Lloyd
NV
       A. Edmundson
NH
       D. Tefft, J. Stanton
MM
       S. Pierce, G. Cordova
NY
       J. Hutchinson
NC
       S. Fong
ND
       J. Burgess, D. Mount
       R. Quillin, B. Wilmoth
OH
OK
       R. Craig
OR
       G. Toombs
       M. Reilly
PA
       W. Dundulis, L. Geremia
RI
SC
       N. Bivens
SD
       D. Busch, R. Brich
       C. West, E. Nanning
TN
       B. Howard, D. Mitchell
UT
VT
       K. Stone, A. Rosenau
VA
       T. Stone
WI
       L. McDonnell, M. Bunge
       H. Hutchings, T. Schell
WY
```

The following persons at EERF contributed significantly to this study.

Radiochemistry	Computer Support	Sample Counting
A. Culver R. Lieberman V. Lloyd G. Luster M. Mardis J. Moore (QA) E. Raabe A. Smith Z. Smith L. Williams H. Wilson	M. Knight K. McCroan D. Norwood W. Naftel	B. Head R. Olm B. Sedinger M. Semler F. Steger

Other

- S. Baker (logging in samples and results)
- R. Jackson (contracts)
- C. Kelso (graphics)
- R. Lincoln (contracts and supplies)
- K. Newman (sample counting and calculations)
- J. Partridge (originator of this study)
- C. Petko (editorial)
- E. Sensintaffar (radon sample collection and counting methodology)
- M. Wilkes (typing)

The following USEPA persons outside of EERF made significant contributions to this study.

- M. O'Connell, formerly with ORP-Las Vegas, NV
- B. Keene, Region I, Boston, MA
- W. Brinck, Region VII, Kansas City, MO
- C. Cothern, Office Of Drinking Water, Washington, DC
- F. Martin, Office of Drinking Water, Washington, DC
- L. Weiner, Office of Drinking Water, Washington, DC

I especially would like to recognize the efforts of several individuals who made major contributions to this report and to the overall radon in water study. Mike O'Connell (formerly with ORP-LV) offered many helpful suggestions during the startup of the nationwide study. He also was instrumental in getting most of the western states to participate (those in EPA Regions 8, 9, and 10). Kitty Newman was in charge of counting all the radon in water samples, maintaining data sheets for all water supplies sampled, and calculating radon in water concentrations. Keith McCroan developed the computer software for mapping radionuclide concentrations. Martha Knight patiently produced all the contour, 3-D projection, and location maps. Mardy Wilkes patiently typed the many drafts of this report.

I would like to extend my sincere appreciation to the reviewers of the draft reports for their many helpful comments: Dr. Jon Broadway (EERF), Mr. Sam Windham (EERF), Dr. Bernd Kahn (Georgia Tech), Dr. Bob Sullivan (ORP-HQ), and Dr. Rick Cothern (ODW).

ABSTRACT

In 1978, the Environmental Protection Agency, through its Eastern Environmental Radiation Facility, began sampling radon in drinking water. During the next two to three years, approximately 27 states were included in this pilot study. The subject of this report is the nationwide study that developed from that pilot study.

The nationwide study, which began in November of 1980, was designed to systematically sample water supplies in all 48 contiguous states. The results of the study will be used, in cooperation with EPA's Office of Drinking Water, to estimate population exposures nationwide and to support possible future standards for radon, uranium, and other natural radioactivity in public water supplies.

Samples from more than 2500 public water supplies representing 35 states were collected. Although we sampled only about five percent of the total number of groundwater supplies in the 48 contiguous states of the U.S., those samples represent nearly 45 percent of the water consumed by U.S. groundwater users in the 48 contiguous states.

Sample results are summarized by arithmetic mean, geometric mean, and population weighted arithmetic mean for each state and the entire U.S. Results include radon, gross alpha, gross beta, Ra-226, Ra-228, total Ra, U-234, U-238, total U, and U-234/U-238 ratios. Individual public water supply results are found in the appendices.

As with any survey that only samples a limited number within the overall population available for sampling, certain biases will occur in the final results. By only sampling public groundwater supplies serving at least 1000 or more people, many smaller public groundwater supplies with elevated radon levels were not sampled (He84). Small public groundwater supplies and private wells tend to have the highest radon in water levels (He84). The Ra-226 and uranium results are biased since only samples with elevated gross alpha were analyzed for Ra-226 and uranium. The Ra-228 results are even more biased since Ra-228 analyses were only performed for samples with elevated Ra-226.

1.0 INTRODUCTION

During 1978, the Environmental Protection Agency (EPA), through its Eastern Environmental Radiation Facility (EERF), began sampling radon in drinking water. During the next two to three years, approximately 27 states were included in this pilot study, the purpose of which was to determine the need for a nationwide study of radon in drinking water; to demonstrate the feasibility of such a study; and to develop a limited data base of radon in drinking water nationwide. Water supplies sampled during the pilot study were, in many cases selected because of known or suspected elevated levels of radon or out of convenience leading to arbitrary or random results. For the most part, state health personnel were free to sample any type of water, including private wells and wells not used for drinking water. The results for drinking water have been summarized in another publication (He84). These include private wells, public surface water, public water supplies (may include both groundwater and surface water) and public groundwater - all by state and U.S. averages (geometric means). The pilot study results will not be discussed in any great detail in this report due to the statistical uncertainty associated with much of the data. The subject of this report is the nationwide study that developed from that pilot study.

The nationwide study, which began in November of 1980, was designed to systematically sample water supplies in all 48 contiguous states. The results of the study will be used, in cooperation with EPA's Office of Drinking Water (ODW), to estimate population exposures nationwide and to support possible future standards for radon, uranium, and other natural radioactivity in public water supples.

2.0 STUDY DESIGN

The study design called for sampling only finished water; limited sampling to once per water supply; targeted composited samples or system samples instead of individual well supplies; encouraged sampling as near the source of water as possible; and excluded surface water supplies (no significant radon was detected in surface water in the pilot study) and supplies that served less than 1000 people. Our intent was to collect samples that represented what people actually consume from a given public water supply.

During the pilot study, many samples were untreated water which may not have represented what people were actually consuming (Pr83). Treatment processes such as the use of aerators may significantly reduce radon levels to the public. Storage tanks also allow radon levels to decline due to radioactive decay of radon.

For practical reasons, each water supply was sampled only once. Typically, radon levels are not expected to vary much more than a factor of two seasonally if the source of water remains the same. This was observed in a study in the area of Houston, Texas (Pr81). Water systems having more than one well can have significant differences in radon levels from one well to the next. For this reason, consumer tap or composite samples were specified in order to obtain average levels or more representative levels applicable to the entire water system. Samples collected near the source of water were preferred in order to obtain a fresher sample with less decay of radon.

During the pilot study, samples from public surface water contained little or no radon. This lack of radon was confirmed by another approximate 25 public surface water supply samples taken during the nationwide study.

Originally, the nationwide study specified looking at all public groundwater supplies serving 5000 or more people. After receiving a detailed listing of all public groundwater systems serving 1000 or more people (EPA80), it was obvious that an adjustment was needed in the size of the water system to be sampled. At the 5000 person level some states had only a few water supplies to be included. In order to balance the need for a representative sampling of each state and the artificial requirement that less than 200 water supplies be sampled in any one state

(contract limitation), a collection scheme was formulated (see Table 2.1). For half the states, water systems serving 1000 or more people were scheduled for sampling. These states included those with small populations or if possible with known or suspected elevated radon levels. An attempt was made to put the remaining states at the 3000 person level. Six states remained at the 5000 person level: four of which exceeded the contract limitation at the 3000 person level and the other two were limited by the total contract dollar amount for all 48 states.

Each state was given the opportunity to participate in the collection of samples via a service contract. A copy of the procurement statement associated with each service contract is shown in Appendix A as Exhibit A.1. Each sample taken was identified by the information found on the sampling and analysis form (see Appendix A, Exhibit A.2). A copy of our sample collection criteria is presented in Appendix A as Exhibit A.3.

Radon sampling and analysis methods will not be discussed in this report. Previous papers cover this area in detail (Ho83, Pr77). Specific topics discussed include sampling method, liquid scintillation counting, Ra-226 calibration, radon concentration determination, and precision and accuracy of radon determinations (Ho83).

In addition to the radon samples, a one gallon cubitainer water sample was collected for each water supply included in the study. These samples allowed us to obtain other data on natural radioactivity in public drinking water for very little extra collection effort. Our analyses of these samples were guided, generally, by the requirements of the Safe Drinking Water Act (SDWA) (EPA76).

All samples were analyzed for gross alpha and gross beta. If the gross alpha was equal to or greater than 5 pCi/l, a Ra-226 analysis was performed. Shortly after the study began, the cutoff for Ra-226 analyses was dropped to 3 pCi/l to provide more data. Ra-228 analyses were performed for samples where the Ra-226 was equal to or greater than 3 pCi/l. During the second half of the study, samples whose gross beta exceeded 15 pCi/l were also analyzed

Table 2.1 Study design for sample collection effort

Total Population Served by Public Groundwater**	889,000 1,179,000 1,808,000 5,954,000 1,461,000 317,000 1,450,000 1,515,000 1,515,000 1,607,000 1,607,000 1,607,000 1,88,000 1,766,000 1,162,000 1,162,000 1,1981,000 1,829,000 1,695,000 1,695,000
Population Served by each Public Groundwater System	3000+* 10000+ 10000+ 10000+ 10000+ 30000+ 30000+ 30000+ 10000+ 10000+ 30000+ 10000+ 10000+ 10000+ 10000+ 10000+ 10000+ 10000+ 10000+
Percent of Groundwater Pop. to be Sampled per Study Design	66 81 82 82 82 80 77 76 80 75 76 65 65
No. of Public Groundwater Systems to be Sampled	76 137 192 30 30 30 30 153 103 51 25 104 89 93 35
State	######################################

Study design for sample collection effort-continued Table 2.1

Total Population Served by Public Groundwater**	965,000 220,000 220,000 2,929,000 3,807,000 3,807,000 3,76,000 1,533,000 1,335,000 1,395,000 1,318,000 4,277,000 683,000 4,277,000 86,000 1,983,000 1,983,000 1,575,000 1,575,000	
Population Served by each Public Groundwater System	10000 10000	
Percent of Groundwater Pop. to be Sampled per Study Design	64 68 88 85 73 73 86 86 86 86 75 75 75	
No. of Public Groundwater Systems to be Sampled	188 41 59 25 165 69 63 86 32 63 63 63 61 111 150 16 111 69 140 22	
State	W W W Y Y Y Y S S R I S S R I Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	

For example, in the case of Alabama the smallest public groundwater * Equal to or greater than this number. system served at least 3000 people. ** Rounded to the nearest 1000 (EPA80).

for Ra-228. Where the gross beta exceeded 50 pCi/l, an attempt was made to identify contributing radionuclides by gamma spectroscopy and strontium analysis.

Originally, uranium and thorium analyses were performed if the gross alpha was equal to or greater than 15 pCi/l. After a few months into the study, the cutoff for uranium and thorium analyses was reduced to 3 pCi/1, the same as for Ra-226. The cutoff for any radionuclide-specific analysis was a function of the EERF's sample load at any given time. The vast majority of the samples were analyzed under the lowest cutoff criterion. After performing more than 100 thorium analyses, it was decided that thorium analyses were unnecessary because the concentrations found in groundwater were very low (i.e., typically less than 0.1 pCi/l for Th-227, Th-228, Th-230, and Th-232). At these levels, the measurements are not significantly different from zero. One Ra-226, uranium, and thorium analysis was performed for each state involved in the study. regardless of whether any sample from a given state met our cutoff criteria. This provides us with at least one measurement for each state.

3.0 RADON AND OTHER NATURAL RADIOACTIVITY MEASUREMENTS

Locations of 2457 public groundwater supplies samples for radon are shown in Figure 3.1. Figure 3.2 shows locations of 2510 public groundwater supplies sampled for gross alpha and gross beta. The primary differences in the two location maps are the absence of radon results for Maine and the fewer radon results than gross alpha and gross beta results for Kansas and Mississippi. Nationwide, the public groundwater systems represent about 44 percent of the total groundwater usage (Table 3.1) or about five percent of the total number of public groundwater systems. Thirteen states were not included in the study primarily because of a shortage of manpower and money in the respective states. Even though the state health departments were reimbursed for the collection of samples, the reimbursement did not cover actual expenses incurred in the collection effort.

Radioactivity results are summarized in several different ways to provide readers of this report with practical options in understanding the overall impact of this study. All summaries are based on raw results found in Appendix B.

The use of maps is helpful in showing both location and the magnitude of levels but the mapping process requires a certain amount of localized averaging of the data (the highs and the lows are averaged out in a uniform grid system). When data are missing (e.g., those states that did not participate in this study), extrapolation and interpolation are necessary in producing the maps. The use of extrapolation and interpolation has its limitations since results are produced that potentially are more dependent on computer software than actual measurements. The sole purpose of the maps is to show general trends nationwide. If that idea is kept in mind when using the maps, then the maps can serve a useful purpose. It is suggested that the three dimensional maps be used in conjunction with their corresponding two dimensional (contour) maps so that the position of peak levels can be located more accurately.

Frequently, concentrations of a radionuclide in environmental media are close to zero. When the actual concentration of a nuclide is zero, the net counting results should statistically show a distribution of negative and positive numbers about zero. This occurs when the background count is subtracted from a sample which has only background activity. When reviewing the data in this

Figure 3.1. Locations of public groundwater supplies sampled for Rn-222 (1981-1982)

Figure 3.2. Locations of public groundwater supplies sampled for gross alpha and gross beta (1981-1982)

Table 3.1 Population covered by this study

<u>State</u>	Total Population Served by Public Groundwater*	Percent of Actual Groundwater Population Sampled for Rn-222	Actual Groundwater Population Sampled for Rn-222
AL	889,000	66	582,910
AR	1,179,000	0	0
AZ	1,808,000	NK	1,930,348
CA	5,954,000	0	0
CO	1,461,000		130,754
CT	317,000	9 0	0
DE	521,000	55	284,082
FL	7,320,000	NK	7,585,805
GA	1,450,000	38	549,168
IA	1,515,000	0	0
ID	533,000	87	463,005
IL	3,672,000	77	2,838,632
· IN	1,607,000	69	1,103,454
KS	707,000	8	57,589
KY	188,000	80	151,110
LA	1,766,000	0	0
MA	1,162,000	89	1,029,010
MD	3,602,000	0	0
ME	119,000	0	0
MI	1,981,000		0
MN	1,829,000	85	1,546,294
MO	1,210,000	0	0
MS	1,695,000	34	572,557
MT	163,000	59	96,115
NC	965,000	44	427,278
NE	600,000	0	0

Table 3.1 Population covered by this study - continued

Sta	<u>te</u>	Total Population Served by Public Groundwater*	Percent of Actual Groundwater Population Sampled for Rn-222	Actual Groundwater Population Sampled for Rn-222
				4
ND		220,000	73	159,901
NH		209,000	61	127,074
NJ		2,929,000	0	0
NM		876,000	90	789,544
NV		107,000	70	74,650
NY		3,807,000	71	2,698,801
OH		2,685,000	70	1,879,178
OK		545,000	56	307,776
OR		376,000	70	264,941
PA		1,533,000	67	1,034,163
RI		90,000	NK	174,500
SC		1,395,000	34	468,593
SD		306,000	71	217,928
TN		1,318,000	77	1,018,193
TX		4,277,000	Ó	0
UT		683,000	NK	841,997
٧A		489,000	48	236,984
VT		86,000	28	23,760
WA		1,983,000	0	0
WV		383,000	Ö	0
			71	
WI	74	1,575,000	59	1,120,128 61,854
WY		105,000	59	01,004
	Total	70,190,000		30,848,292

^{*} Rounded to the nearest 1000 (EPA80). NK Not known.

report, caution should be exercised in the interpretation of individual negative values. Obviously, a negative activity value does not have physical significance. Such numbers, however, are significant when taken together with other observations which indicate that the true value of a distribution is near zero. When an average of several measurements produces a result less than zero, this indicates a negative bias in the measurement procedure.

3.1 U.S. Rn-222 Results

Table 3.2 presents arithmetic means, geometric means, and population weighted arithmetic means for water supplies sampled for Rn-222*. Figures 3.3 and 3.4 display Rn-222 concentrations by topographic mapping and contour mapping, respectively. A frequency distribution of Rn-222 concentrations is shown in Figure 3.5 with the corresponding population distribution associated with these Rn-222 concentrations given in Figure 3.6.

Some of the water supplies sampled during the nationwide study did not meet our sampling criteria. These include surface water supplies and groundwater supplies not serving at least 1000 people. Surface water supply results were separated from the groundwater supply results. All public groundwater results were included in the analysis of groundwater results.

^{*} The arithmetic mean is commonly used to describe a normal distribution of data while the geometric mean (or median) typically is employed for characterizing log normal distributions of data. In calculating a geometric mean, all data points are given equal weighting. For an arithmetic mean calculation, the large values dominate the resulting mean. Environmental radioactivity measurements tend to follow a log normal distribution; therefore, a geometric mean is more representative of the data. On the other hand the arithmetic mean is needed for dose and health effects (risk) calculations. A third mean was computed based on population. The arithmetic mean was weighted by population. The purpose of the resulting population weighted arithmetic mean is to eliminate any bias due to variations in water supply sizing. The population weighted arithmetic mean can also be used for dose and risk computations.

All mean and standard deviation results are computer generated. All results should be rounded off to three significant figures or less when using these results.

Table 3.2 Summary of Rn-222 concentrations in public groundwater systems

	Table 3.2 Summar	y 01 KH-222 Colice	nctacions in publ	ie groundwater	systems
STATE	ARITHMETIC MEAN (pCi/1)	GEOMETRIC MEAN (pCi/1)	ARITHMETIC MEAN (POP WEIGHTED)	TOTAL POP	# OF LOCATIONS
AL	132.8 SD= 129.8	77.6 GD= 4.3	160.7	582910	74
AZ	468.6 SD= 799.4	217.2 GD= 7.6	329.3	1930348	64
СО	399.5 SD= 441.7	219.1 GD= 6.5	380.7	130754	37
DE	98.4 SD= 87.6	28.0 GD=20.3	126.4	284082	36
FL	146.8 SD= 227.4	23.0 GD=33.7	148.5	7585805	165
GA	275.2 SD= 603.6	115.6 GD= 3.3	147.4	549168	61
ID	304.6 SD= 308.3	119.1 GD=10.7	256.6	463005	68
IL	174.3 SD= 153.5	100.8 GD= 5.1	167.6	2838632	149
IN	115.3 SD= 118.1	27.5 GD=21.2	105.4	1103454	94
KS	115.9 SD= 118.3	67.1 GD= 3.6	106.0	57589	7
KY	127.2 SD= 114.8	26.2 GD=29.2	107.8	151110	50
MA	790.2 SD= 662.4	506.9 GD= 4.2	769.4	1029010	100
MN	231.1 SD= 215.8	110.0 GD= 9.6	210.3	1546294	106
MS	80.4 SD= 89.9	20.4 GD=19.5	82.0	572557	53
MT	465.3 SD= 408.5	243.7 GD= 7.6	328.6	96115	33
NC	544.9 SD=1400.6	47.6 GD=38.3	278.6	427278	166
ND	164.9 SD= 187.7	32.7 GD=33.0	148.8	159901	68
NH	1387.9 SD=1032.6	943.8 GD= 2.8	1183.6	127074	26
NM	262.3 SD= 289.4	50.1 GD=32.9	178.1	789544	69
NV	448.4 SD= 397.1	146.3 GD=20.7	550.8	74650	25
NY	171,4 SD= 171.4	42.7 GD=22.6	132.1	2698801	130
ОН	167.9 SD= 159.8	71.4 GD= 9.7	169.8	1879178	84
OK	165.5 SD= 162.0	122.1 GD= 2.2	160.0	307776	32
OR	260.2 SD= 214.7	116.0 GD=11.2	264.0	264941	57
PA	756.8 SD= 832.7	343.1 GD= 7.1	719.9	1034163	89
RI	1375.5 SD= 774.5	1140.3 GD= 2.0	1511.1	174500	31*
SC	494.4 SD=1743.4	80.6 GD=16.9	276.9	468593	106
SD	384.1 SD= 457.2	149.9 GD=11.6	289.2	217928	59
TN	113.4 SD= 190.0	6.7 GD=60.2	23.8	1018193	50
UT	350.4 SD= 328.4	144.0 GD=13.5	360.9	841997	99
VA	679.3 SD=1483.2	147.1 GD=15.5	447.8	236984	101
VT	617.9 SD= 300.3	555.8 GD= 1.6	656.8	23760	11
WI	337.6 SD= 675.4	157.0 GD= 5.8	234.4	1120128	140
WY	478.4 SD= 407.8	331.8 GD= 2.5	415.3	61854	17
US	352.8 SD= 751.9	86.6 GD=16.4	232.1	30848292	2457

SD equals standard deviation.
GD equals geometric standard deviation.
* Represents 31 individual wells but only 11 public water systems.

Average Rn-222 concentrations in public groundwater supplies (1981-1982) Figure 3.3.

Figure 3.4. Average Rn-222 concentrations in public groundwater supplies (1981-1982)

Figure 3.5. U.S. public groundwater systems (all results): Rn-222 concentrations

Figure 3.6. Population distribution for public groundwater systems (all results)

Of the more than 2500 public water supplies sampled in the nationwide study, 26 of these supplies were public surface supplies. Surface supply results for Rn-222, gross alpha, and gross beta are summarized in Appendix C.

The vast majority of the sampled groundwater supplies served at least 1000 or more people. Only 95 groundwater supplies served less than 1000 people. Of these, five served less than 100 people. Rn-222 results by population range are given in Appendix D.

3.2 U.S. Gross Alpha Results

Gross alpha concentrations are shown in Table 3.3 by state and U.S. arithmetic means, geometric means, and population weighted arithmetic means. Figures 3.7 and 3.8 display gross alpha concentrations by topographic mapping and contour mapping, respectively. A frequency distribution of gross alpha concentrations is shown in Figure 3.9.

3.3 U.S. Gross Beta Results

Gross beta concentrations are shown in Table 3.4 by state and U.S. arithmetic means, geometric means, and population weighted arithmetic means. Figures 3.10 and 3.11 display gross beta concentrations by topographic mapping and contour mapping, respectively. A frequency distribution of gross beta concentrations is shown in Figure 3.12.

3.4 U.S. Ra-226 Results

Ra-226 concentrations are shown in Table 3.5 by state and U.S. arithmetic means, geometric means, and population weighted arithmetic means. Figures 3.13 and 3.14 display Ra-226 concentrations by topographic mapping and contour mapping, respectively. A frequency distribution of Ra-226 concentrations is shown in Figure 3.15.

3.5 U.S. Ra-228 Results

Ra-228 concentrations are shown in Table 3.6 by state and U.S. arithmetic means, geometric means, and population weighted arithmetic means. A frequency distribution of Ra-228 concentrations is shown in Figure 3.16.

Table 3.3 Summary of gross alpha concentrations in public groundwater systems

	ante 2.3		or gross arpha co	_	_	
STATE	ARITHMETIC (pCi/1)	MEAN	GEOMETRIC MEAN (pCi/1)	ARITHMETIC MEAN (POP WEIGHTED)	TOTAL POP	# OF LOCATIONS
AL	0.6 SD=	0.7	0.3 GD= 4.1	0.5	582910	74
AZ	2.3 SD=	3.0	1.0 GD= 5.9	1.6	1936898	65
CO	9.1 SD=	12.4	3.4 GD= 6.5	10.3	130754	37
DE	0.4 SD=	0.6	0.2 GD= 4.3	0.4	284082	36
FL	0.6 SD=	0.6	0.3 GD= 4.3	0.6	7585805	165
GA	1.6 SD=	2.3	0.6 GD= 6.9	1.4	539418	58
ID	2.6 SD=	4.1	0.9 GD= 5.7	2.8	463005	68
IL	6.7 SD=	8.3	1.9 GD= 8.9	7.4	2821132	148
IN	0.7 SD=	0.6	0.4 GD= 4.0	0.6	1075954	90
KS	6.5 SD=	6.6	3.4 GD= 3.6	2.2	382722	16
KY	0.5 SD=	0.4	0.3 GD= 3.5	0.6	152810	51
MA	0.3 SD=	0.3	0.1 GD= 5.2	0.3	1029010	100
ME	1.3 SD=	3.2	0.4 GD= 3.8	1.2	91551	25
MN	2.6 SD=	2.8	1.1 GD= 5.6	2.7	1569314	107
MS	0.4 SD≕	0.6	0.1 GD= 6.3	0.4	755718	75
MT	3.0 SD=	5.9	0.9 GD= 6.5	1.6	96115	33
NC	0.9 SD=	1.6	0.3 GD= 6.5	0.7	427278	166
ND	1.5 SD=	2.1	0.5 GD= 6.9	1.4	161151	69
NH	0.4 SD=	0.7	0.2 GD= 4.0	0.3	127074	26
NM	5.2 SD=	6.3	2.9 GD= 3.4	4.0	789544	69
NV	3.6 SD=	2.7	2.2 GD= 4.4	3.4	74650	25
NY	0.3 SD=	0.4	0.2 GD= 4.2	0.3	2718357	132
ОН	0.6 SD=	0.5	0.4 GD= 3.7	0.5	1879178	84
OK	3.4 SD=	4.7	1.5 GD= 4.6	4.1	307776	32
OR	0.4 SD=	1.0	0.1 GD= 4.3	0.3	264941	57
PA	1.5 SD=	3.4	0.2 GD= 9.3	1.6	1044163	90
RI	0.4 SD=	0.7	0.2 GD= 4.1	0.6	169500	30*
SC	1.1 SD=	2.4	0.4 GD= 4.8	0.8	466325	105
SD	4.3 SD=	10.2	0.9 GD=10.5	3.6	211928	58
TN	0.9 SD=	1.5	0.5 GD= 3.8	0.5	1018193	50
UT	2.0 SD=	2.2	1.3 GD= 2.9	2.2	841997	99
VA	0.5 SD=	1.0	0.2 GD= 5.4	0.5	239184	102
VT	0.7 SD=	1.2	0.3 GD= 4.7	0.7	23760	11
WI	2.0 SD=	2.2	0.8 GD= 5.4	2.1	1120128	140
WY	7.6 SD=	8.3	4.4 GD= 3.5	7.1	61854	17
US	1.9 SD=	4.2	0.5 GD= 6.7	1.7	31444404	2510

SD equals standard deviation.
GD equals geometric standard deviation.
* Represents 30 individual wells but only 11 public water systems.

Figure 3.7. Average gross alpha concentrations in public groundwater supplies (1981-1982)

Average gross alpha concentrations in public groundwater supplies (1981-1982) Figure 3.8.

Figure 3.9. U.S. public groundwater systems: gross alpha concentrations

Table 3.4 Summary of gross beta concentrations in public groundwater systems

	Table 3.4		or gross pera con	centrations in pr	ibile ground	water systems
STATE	ARITHMETIC (pCi/1)	MEAN	GEOMETRIC MEAN (pCi/1)	ARITHMETIC MEAN (POP WEIGHTED)	TOTAL POP	# OF LOCATIONS
AL	1.5 SD=	1.2	0.8 GD= 4.9	1.6	582910	74
ΛZ	3.2 SD=	2.7	2.2 GD= 3.1	1.9	1936898	65
CO	5.7 SD=	3.7	4.4 GD= 2.2	5.2	130754	37
DE	2.5 SD=	1.4	2.2 GD= 1.8	2.2	284082	36
FL	1.8 SD=	1.5	1.3 GD= 2.6	1.8	7585805	165
GA	1.7 SD=	1.4	1.0 GD= 3.9	1.7	539418	58
ID	3.6 SD=	3.8	1.9 GD= 4.9	2.8	463005	68
IL	10.8 SD=	10.3	6.0 GD= 3.8	11.2	2821132	148
IN	2.5 SD=	1.9	1.7 GD= 3.4	2.4	1075954	90
KS	5.0 SD=	3.3	3.9 GD= 2.2	2.9	382722	16
KY	2.5 SD=	2.0	1.9 GD= 2.1	3.2	152810	51
MA	1.9 SD=	2.7	1.3 GD= 2.4	1.6	1029010	100
ME	2.2 SD=	2.1	1.7 GD= 2.0	1.8	91551	25
MN	3.9 SD=	3.0	2.7 GD= 2.9	4.3	1569314	107
MS	2.4 SD=	1.9	1.6 GD= 3.2	2.1	755718	75
MT	3.3 SD=	2.9	1.6 GD= 5.3	2.7	96115	33
NC	4.2 SD=	3.4	3.1 GD= 2.2	4.1	427278	166
ND	5.5 SD=	3.9	3.9 GD= 3.0	4.8	161151	69
NH	2.0 SD=	1.7	1.6 GD= 1.9	1.8	127074	26
NM	3.5 SD=	3.1	1.6 GD= 6.8	4.2	789544	69
NV	4:9 SD=	3.1	3.6 GD= 2.5	4.9	74650	25
NY	1.7 SD=	1.7	1.3 GD= 2.1	1.3	2718357	132
OH	2.6 SD=	1.9	1.7 GD= 4.1	2.6	1879178	84
OK	3.4 SD=	2.5	2.3 GD= 3.4	3.8	307776	32
OR	2.5 SD=	2.7	1.7 GD= 2.4	2.1	264941	57
PA	2.0 SD=	1.5	1.4 GD= 2.9	2.2	1044163	90
RI	1.6 SD=	0.9	1.2 GD= 2.9	1.8	169500	30*
SC	2.8 SD=	2.3	2.0 GD= 2.8	3.2	466325	105
SD	7.9 SD=	6.2	4.0 GD= 6.5	4.1	211928	58
TN	1.8 SD=	1.5	1.3 GD= 2.4	1.5	1018193	50
UT	2.4 SD=	3.2	1.5 GD= 3.4	3.1	841997	99
VA	3.5 SD=	3.6	2.3 GD= 2.4	3.3	239184	102
VT.	1.3 SD=	0.6	1.2 GD= 1.5	1.4	23760	11
WI	2.6 SD=	2.3	1.8 GD= 2.7	2.5	1120128	140
WY	3.5 SD=	2.6	2.4 GD= 2.6	2.3	61854	17
US	3.4 SD=	4.2	2.0 GD= 3.4	3.1	31444404	2510

SD equals standard deviation.
GD equals geometric standard deviation.
* Represents 30 individual wells but only 11 public water systems.

Figure 3.10. Average gross beta concentrations in public groundwater supplies (1981-1982)

Average gross beta concentrations in public groundwater supplies (1981-1982) Figure 3.11.

Figure 3.12. U.S. public groundwater systems: gross beta concentrations

Table 3.5 Summary of Ra-226 concentrations in public groundwater systems

	Table 3.5	Summary	of Ra-226	conce	ntrations in publ	ic groundwater	systems
STATE	ARITHMETIC (pCi/1)	MEAN	GEOMETRIC (pCi/1)	MEAN	ARITHMETIC MEAN (POP WEIGHTED)	TOTAL POP	# OF LOCATIONS
AL	0.6 SD=	0.3	0.5 GD=	1.7	0.5	19315	4
AZ	0.1 SD=	0.1	0.1 GD=	1.5	0.2	247382	20
CO	0.3 SD=	0.3	0.2 GD=	2.1	0.2	103804	25
DE	0.1 SD=	0.0	0.1 GD=	1.0	0.1	1200	1
FL	2.5 SD=	0.1	2.5 GD=	1.0	2.5	57582	3
GA	2.2 SD=	1.2	1.6 GD=	2.7	1.8	128992	13
ID	0.1 SD=	0.1	0.1 GD=	1.4	0.1	79573	13
IL	4.0 SD=	2.9	2.7 GD=	2.9	3.9	1528109	77
IN	0.9 SD=	0.8	0.6 GD=	3.0	0.5	58500	2
KS	2.3 SD=	2.3	1.2 GD=	3.6	1.3	48724	9
MA	0.2 SD=	0.0	0.2 GD=	1.0	0.2	13000	1
ME	0.6 SD=	0.7	0.3 GD=	5.4	0.3	7620	2
MN	2.8 SD=	1.9	2.0 GD=	2.8	2.9	324155	22
MS	0.2 SD=	0.1	0.2 GD=	1.7	0.2	36600	3
MT	0.2 SD=	0.2	0.2 GD=	1.9	0.2	13715	10
NC	2.8 SD=	1.9	1.8 GD=	3.5	3.7	22651	14
ND	0.2 SD=	0.2	0.2 GD=	1.9	0.2	27253	14
NH	0.4 SD=	0.0	0.4 GD=	1.0	0.4	1500	1
NM	0.3 SD=	0.5	0.2 GD=	2.2	0.3	223152	30
NV	0.2 SD=	0.1	0.2 GD=	1.8	0.2	44300	13
NY	0.1 SD=	0.0	0.1 GD=	1.0	0.1	5000	1
ОН	1.7 SD=	0.0	1.7 GD=	1.0	1.7	8000	1
OK	0.2 SD=	0.2	0.2 GD=	2.1	0.2	85073	10
OR	0.1 SD=	0.0	0.1 GD=	1.0	0.1	1790	1
PA	0.6 SD=	0.6	0.4 GD=	2.8	0.7	126690	10
RI	0.1 SD=	0.0	0.1 GD=	1.0	0.1	11000	1
SC	1.7 SD=	1.9	0.9 GD=	4.0	1.5	17728	6
SD	1.7 SD=	2.0	0.7 GD=	4.6	2.0	37769	. 22
TN	1.5 SD=	1.8	0.7 GD=	6.1	0.9	67500	3
UT	0.3 SD=	0.4	0.2 GD=	2.4	0.2	255030	17
VA	1.4 SD=	1.2	1.1 GD=	2.2	1.1	13507	6
VT	1.0 SD=	0.0	1.0 GD=	1.0	1.0	2000	1
WI	2.3 SD=	1.7	1.5 GD=	3.0	2.8	221640	35
WY	0.6 SD=	0.8	0.3 GD=	3.2	0.6	44337	12
US	1.7 SD=	2.2	0.6 GD=	4.5	2.2	3884191	403

SD equals standard deviation.
GD equals geometric standard deviation.

Figure 3.13. Average Ra-226 concentrations in public groundwater supplies (1981-1982)

Figure 3.14. Average Ra-226 concentrations in public groundwater supplies (1981-1982)

Figure 3.15. U.S. public groundwater systems: Ra-226 concentrations

Table 3.6 Summary of Ra-228 concentrations in public groundwater systems

STATE	ARITHMETIC (pCi/1)	MEAN	GEOMETRIC MEAN (pCi/1)	ARITHMETIC MEAN (POP WEIGHTED)	TOTAL POP	# OF LOCATIONS
GA	0.3 SD=	0.4	0.1 GD=10.5	0.6	31327	4
IL	4.5 SD=	2.4	3.5 GD= 2.8	4.9	1103649	56
KS	0.8 SD=	0.2	0.8 GD= 1.3	0.8	6194	3
MN	2.2 SD=	1.3	1.7 GD= 2.4	1.8	188981	13
NC	4.5 SD=	4.1	2.6 GD= 3.7	3.8	20088	9
SC	3.9 SD=	0.0	3.9 GD= 1.0	3.9	1918	1
SD	3.0 SD=	4.4	0.6 GD=14.2	3.4	9899	5
TN	6.1 SD=	0.0	6.1 GD= 1.0	6.1	15000	1
VA	0.6 SD=	0.6	0.4 GD= 3.1	0.2	4227	2
WI	2.7 SD=	1.3	2.2 GD= 2.2	3.1	94277	12
WY	0.0 SD=	0.0	0.0 GD= 1.0	0.0	4500	1
US	3.6 SD=	2.7	2.1 GD= 4.5	4.3	1480060	107

SD equals standard deviation. GD equals geometric standard deviation.

Figure 3.16. U.S. public groundwater systems: Ra-228 concentrations

3.6 U.S. Total Ra Results

Total Ra concentrations are shown in Table 3.7 by state and U.S. arithmetic means, geometric means, and population weighted arithmetic means. A frequency distribution of total Ra concentrations is shown in Figure 3.17.

3.7 U.S. Ra-226/Ra-228 Ratio Results

Ra-226/Ra-228 ratios are shown in Table 3.8 by state and U.S. arithmetic means, geometric means, and population weighted arithmetic means. A frequency distribution of Ra-226/Ra-228 ratios is shown in Figure 3.18.

3.8 U.S. U-234 Results

U-234 concentrations are shown in Table 3.9 by state and U.S. arithmetic means, geometric means, and population weighted arithmetic means. Figures 3.19 and 3.20 display U-234 concentrations by topographic mapping and contour mapping, respectively. A frequency distribution of U-234 concentrations is shown in Figure 3.21.

3.9 U.S. U-238 Results

U-238 concentrations are shown in Table 3.10 by state and U.S. arithmetic means, geometric means, and population weighted arithmetic means. Figures 3.22 and 3.23 display U-238 concentrations by topographic mapping and contour mapping, respectively. A frequency distribution of U-238 concentrations is shown in Figure 3.24.

3.10 U.S. Total U Results

Total U concentrations are shown in Table 3.11 by state and U.S. arithmetic means, geometric means, and population weighted arithmetic means. Figures 3.25 and 3.26 display total U concentrations by topographic mapping and contour mapping, respectively. A frequency distribution of total U concentrations is shown in Figure 3.27.

Table 3.7 Summary of total Ra concentrations in public groundwater systems

STATE	ARITHMETIC N (pCi/1)	EAN GEOMETRIC (pCi/1)		METIC MEAN WEIGHTED)	TOTAL POP	# OF LOCATIONS
GA	3.6 SD=	1.1 3.5 GD=	1.3	3.5	31327	4
IL	10.0 SD=	4.3 9.0 GD=	1.7	10.1	1079813	53
KS	6.1 SD=	0.3 6.1 GD=	1.0	6.2	6194	3
MN	6.4 SD=	2.3 6.0 GD=	1.4	5.3	152981	10
NC	9.0 SD=	5.1 7.8 GD=	1.8	7.9	15990	7
SD	7.8 SD=	4.3 6.9 GD=	1.7	9.6	9899	5
TN	9.7 SD=	0.0 9.7 GD=	1.0	9.7	15000	1
VA	4.7 SD=	0.0 4.7 GD=	1.0	4.7	227	1
WI	6.9 SD=	1.9 6.6 GD=	1.4	7.6	94277	12
WY	2.9 SD=	0.0 2.9 GD=	1.0	2.9	4500	1
US	8.5 SD=	4.1 7.6 GD=	1.7	9.2	1410208	97

SD equals standard deviation.

GD equals geometric standard deviation.

Figure 3.17. U.S. public groundwater systems: total Ra concentrations

Table 3.8 Summary of Ra-226/Ra-228 ratios in public groundwater systems

STATE	ARITHMETIC	ME AN	GEOMETRIC MEAN	ARITHMETIC MEAN (POP WEIGHTED)	TOTAL POP	# OF LOCATIONS
IL	1.3 SD=	0.7	1.2 GD= 1.6	1.1	1079813	53
MN	1.8 SD=	0.7	1.7 GD= 1.5	2.2	152981	10
WI	2.4 SD=	2.2	1.9 GD= 1.9	1.8	94277	12
US	2.1 SD=	2.4	1.5 CD= 2.1	1.4	1397410	93

SD equals standard deviation.

Note: States having less than 10 locations for calculating a mean are not presented.

GD equals geometric standard deviation.

Figure 3.18. U.S. public groundwater systems: Ra-226/Ra-228 ratios

Table 3.9 Summary of U-234 concentrations in public groundwater systems

	Table 2.3	Summary	01 b-254 concen	tracions in publi	e groundwater	Systems
STATE	ARITHMETIC (pCi/1)	MEAN	GEOMETRIC MEAN (pCi/1)	ARITHMETIC MEAN (POP WEIGHTED)	TOTAL POP	# OF LOCATIONS
AL	0.1 SD=	0.1	0.0 GD= 4.5	0.1	19315	4
AZ	3.8 SD=	3.2	3.0 GD= 1.8	3.6	233426	18
СО	9.2 SD=	7.9	6.5 GD= 2.5	8.3	93904	21
DE	0.1 SD=	0.0	0.1 GD= 1.0	0.1	1200	1
FL	0.1 SD=	0.0	0.1 GD= 1.0	0.1	8569	1
GA	0.1 SD=	0.2	0.0 GD= 4.6	0.1	128992	13
ID	6.2 SD=	4.3	5.0 GD= 2.0	6.7	79573	13
IL	1.2 SD=	0.9	0.7 GD= 4.2	1.4	1501553	7 5
IN	0.3 SD=	0.3	0.2 GD= 3.1	0.4	58500	2
KS	1.7 SD=	1.8	0.8 GD= 4.5	1.8	65025	10
KY	0.1 SD=	0.0	0.1 GD= 1.0	0.1	1990	1
MA	0.4 SD=	0.0	0.4 GD= 1.0	0.4	13000	1
ME	9.6 SD=	9.6	6.8 GD= 3.5	5.2	7620	2
MN	1.0 SD=	1.6	0.3 GD= 5.5	0.8	340155	23
MS	0.0 SD=	0.1	0.0 GD= 3.8	0.0	36600	3
MT	7.0 SD=	6.5	3.5 GD= 5.1	4.9	8115	6
NC	1.8 SD=	3.4	0.3 GD= 8.5	0.7	22651	14
ND	3.5 SD=	4.0	1.6 GD= 5.0	3.7	16508	7
NH	1.1 SD=	0.0	1.1 GD= 1.0	1.1	1500	1
NM	5.9 SD=	7.5	4.1 GD= 2.1	4.9	223152	30
NV	4.0 SD=	2.1	3.5 GD= 2.0	4.8	7300	. 3
NY	0.0 SD=	0.0	0.0 GD= 1.0	0.0	5000	1
OH	0.3 SD=	0.0	0.3 GD= 1.0	0.3	8000	1
OK	7.1 SD=	7.9	4.2 GD= 3.1	11.8	85073	10
OR	2.8 SD=	0.0	2.8 GD= 1.0	2.8	1790	1
PA	5.0 SD=	3.2	4.2 GD= 1.8	4.8	126690	10
RI	0.0 SD=	0.0	0.0 GD= 1.0	0.0	11000	1
SC	3.2 SD=	4.9	0.1 GD=28.9	3.6	17728	6
SD	6.0 SD=	6.5	2.1 GD= 7.2	11.9	15708	10
TN	0.1 SD=	0.1	0.0 GD= 3.8	0.0	67500	3
UT	3.2 SD=	3.0	2.7 GD= 1.7	2.4	255030	17
VA	0.7 SD=	0.9	0.1 GD=12.2	0.4	12707	5
VT	0.0 SD=	0.0	0.0 GD= 1.0	0.0	2000	1
WI	2.0 SD=	1.3	1.6 GD= 1.9	2.0	221640	35
WY	7.1 SD=	5.9	5.1 GD= 2.3	5.5	44337	12
US	3.3 SD=	4.8	1.1 GD= 7.0	2.4	3742851	362

SD equals standard deviation.
GD equals geometric standard deviation.

Figure 3.19. Average U-234 concentrations in public groundwater supplies (1981-1982)

Figure 3.20. Average U-234 concentrations in public groundwater supplies (1981-1982)

Figure 3.21. U.S. public groundwater systems: U-234 concentrations

Table 3.10 Summary of U-238 concentrations in public groundwater systems

	Table 3.10	Summary	of U=238 concen	trations in publi	c groundwater	systems
STATE	ARITHMETIC (pCi/1)	MEAN	GEOMETRIC MEAN (pCi/1)	ARITHMETIC MEAN (POP WEIGHTED)	TOTAL POP	# OF LOCATIONS
ΛL	0.0 SD=	0.0	0.0 GD= 3.2	0.0	19315	4
AZ	2.1 SD=	2.4	1.4 GD= 2.7	2.1	233426	18
CO	6.7 SD=	6.4	4.6 GD= 2.6	6.0	93904	21
DE	0.0 SD=	0.0	0.0 GD= 1.0	0.0	1200	1
FL	0.1 SD=	0.0	0.1 GD= 1.0	0.1	8569	1
GA	0.1 SD=	0.2	0.0 GD= 4.5	0.1	128992	13
ID	3.5 SD=	2.4	2.6 GD= 2.3	3.8	79573	13
IL	0.2 SD=	0.3	0.1 GD= 4.2	0.2	1501553	75
IN	0.2 SD=	0.3	0.1 GD=13.6	0.3	58500	2
KS	1.2 SD=	1.5	0.2 GD=11.8	1.3	65025	10
KY	0.0 SD=	0.0	0.0 GD= 1.0	0.0	1990	1
MA	0.3 SD=	0.0	0.3 GD= 1.0	0.3	13000	1
ME	9.1 SD=	8.8	6.5 GD= 3.3	5.0	7620	2
MN	0.7 SD=	1.3	0.1 GD= 8.2	0.5	340155	,23
MS	0.1 SD=	0.1	0.0 GD= 3.8	0.1	36600	3
MT	4.0 SD=	3.5	2.0 GD= 5.3	2.9	8115	6
NC	1.0 SD=	1.9	0.1 GD= 9.5	0.4	22651	14
ND	2.5 SD=	2.9	0.8 GD= 9.5	2.6	16508	7
NII	1.1 SD=	0.0	1.1 GD= 1.0	1.1	1500	1
NM	2.8 SD=	2.6	2.0 GD= 2.4	2.5	223152	30
NA	2.0 SD=	1.3	1.6 GD= 2.4	2.2	7300	3
NY	0.0 SD=	0.0	0.0 GD= 1.0	0.0	5000	1
ОН	0.1 SD=	0.0	0.1 GD= 1.0	0.1	8000	1
OK	3.9 SD=	4.7	2.2 GD= 3.7	6.7	85073	10
OR	1.9 SD=	0.0	1.9 GD= 1.0	1.9	1790	1
PA	2.5 SD=	1.8	2.0 GD= 1.9	2.7	126690	10
RI	0.0 SD=	0.0	0.0 GD= 1.0	0.0	11000	1
SC	1.9 SD=	2.8	0.1 GD=22.0	2.0	17728	6
SD	2.2 SD=	1.9	0.6 GD=11.7	3.7	15708	10
TN	0.0 SD=	0.1	0.0 GD= 3.8	0.0	67500	3
UT	1.9 SD=	1.7	1.5 GD= 2.0	1.5	255030	17
VA	0.4 SD=	0.6	0.1 GD= 8.4	0.1	12707	5
VT	0.0 SD=	0.0	0.0 GD= 1.0	0.0	. 2000	1
WI	0.4 SD=	0.8	0.2 GD= 3.1	0.3	221640	35
WY	4.1 SD=	3.7	2.7 GD= 2.7	3.2	44337	12
US	1.7 SD=	3.0	0.4 GD= 8.9	1.1	3742851	362

SD equals standard deviation.
GD equals geometric standard deviation.

Figure 3.22. Average U-238 concentrations in public groundwater supplies (1981-1982)

Average U-238 concentrations in public groundwater supplies (1981-1982) Figure 3.23.

Figure 3.24. U.S. public groundwater systems: U-238 concentrations

Table 3.11 Summary of total U concentrations in public groundwater systems

C or A or E	ADTTUME	_		ADITUMETIC MEAN	_	# OF LOCATIONS
STATE	(pCi/	TIC MEAN 1)	GEONETRIC MEAN (pCi/1)	ARITHMETIC MEAN (POP WEIGHTED)	TOTAL POP	" OF LOCATIONS
AL	0.1 SI	0.1	0.0 GD= 5.5	0.1	19315	4
AZ	5.9 SI	D= 5.5	4.5 GD= 2.0	5.6	233426	18
CO	16.0 SI)= 14.4	11.2.GD= 2.5	14.3	93904	21
DE	0.1 SI	0.0	0.1 GD= 1.0	0.1	1200	1
FL	0.2 SI	0.0	0.2 GD= 1.0	0.2	8569	1
GA	0.2 SI	0.4	0.0 GD= 6.4	0.2	128992	13
ID	9.6 SI	0.6	7.7 GD= 2.1	10.4	79573	13
IL	1.4 SI)= 1.0	0.9 GD= 4.2	1.5	1501553	75
IN	0.5 SI	0.6	0.3 GD= 4.7	0.8	58500	2
KS	2.9 SI	D= 3.3	1.1 GD= 5.7	3.1	65025	10
KY	0.1 SI	0.0	0.1 GD= 1.0	0.1	1990	1
MA	0.7 SI	0.0	0.7 CD= 1.0	0.7	13000	1
ME	18.6 SI	D= 18.5	13.3 GD= 3.4	10.1	7620	2
MN	1.7 SI	0= 2.9	0.4 GD= 6.6	1.2	340155	23
MS	0.1 SI	0.1	0.1 GD= 4.8	0.1	36600	3
TM	11.0 SI	D= 9.9	5.6 GD= 5.1	7.8	8115	6
NC	2.8 SI	D= 5.2	0.4 GD= 9.8	1.0	22651	14
ND	5.9 Sl	0= 6.9	2.5 GD= 5.9	6.3	16508	7
NH	2.2 SI	D= 0.0	2.2 GD= 1.0	2.2	1500	1
NM	8.8 SI	D= 9.6	6.2 GD= 2.2	7.5	223152	30
NV	6.1 SI)= 3.4	5.2 GD= 2.1	7.0	7300	3
NY	0.0 SI	D= 0.0	0.0 GD= 1.0	0.0	5000	1
ОН	0.4 SI	0.0	0.4 GD= 1.0	0.4	8000	1
OK	11.0 SI	D= 12.5	6.5 GD= 3.2	18.5	85073	10
OR	4.7 SI	D= 0.0	4.7 GD= 1.0	4.7	1790	1
PA	7.5 SI	0= 4.9	6.3 GD= 1.8	7.5	126690	10
RI	0.0 SI	D= 0.0	0.0 GD= 1.0	0.0	11000	1
SC	5.1 SI	D= 7.8	0.2 CD=36.0	5.6	17728	6
SD	8.1 SI	D= 8.4	2.9 GD= 7.4	15.5	15708	10
TN	0.1 SI	0.1	0.1 GD= 4.8	0.1	67500	3
UT	5.1 SI	D= 4.6	4.3 GD= 1.7	3.8	255030	17
VA	1.0 SI	D= 1.6	0.2 GD=15.0	0.5	12707	5
VT	0.0 SI	D= 0.0	0.0 GD= 1.0	0.0	2000	1
WI	2.4 SI	D= 1.9	1.9 GD= 2.0	2.3	221640	35
WY	11.1 SI	D= 9.5	7.8 GD= 2.4	8.7	44337	12
US	5.1 SI	D= 7.6	1.5 GD= 7.7	3.5	3742851	362

SD equals standard deviation. GD equals geometric standard deviation.

Average total uranium concentrations in public groundwater supplies (1981-1982) Figure 3.26.

Figure 3.27. U.S. public groundwater systems: total U concentrations

3.11 U.S. U-234/U-238 Ratio Results

U-234/U-238 ratios are shown in Table 3.12 by state and U.S. arithmetic means, geometric means, and population weighted arithmetic means for supplies having a total U exceeding 3.5 pCi/l. Figures 3.28 and 3.29 display U-234/U-238 ratios by topographic mapping and contour mapping, respectively. A frequency distribution of U-234/U-238 ratios is shown in Figure 3.30. For comparison purposes only, U-234/U-238 ratios based on all results are given in Table 3.13 and Figure 3.31.

Table 3.12 Summary of U-234/U-238 ratios (total U >3.5 pCi/1) in public groundwater systems

STATE	ARITHMETIC A	MEAN	GEOMETRIC MEAN	ARITHMETIC MEAN (POP WEIGHTED)	TOTAL POP	# OF LOCATIONS
AZ	1.9 SD=	0.9	1.8 GD= 1.4	1.9	190201	10
со	1.4 SD=	0.2	1.4 GD= 1.1	1.4	88854	19
ID	1.9 SD=	0.6	1.9 GD= 1.3	2.0	70039	11
NM	2.0 SD=	8.0	1.9 GD= 1.4	1.9	173552	24
WY	1.9 SD=	0.6	1.8 GD= 1.3	1.8	41987	10
US	1.8 SD=	0.9	1.7 GD= 1.4	1.8	978118	136

SD equals standard deviation.

Note: States having less than 10 locations for calculating a mean are not presented.

GD equals geometric standard deviation.

Figure 3.28. Average U-234/U-238 ratios in public groundwater supplies (Samples with total uranium > 3.5 pCi/l) (1981-1982)

Figure 3.29. Average U-234/U-238 ratios in public groundwater supplies (Samples with total uranium > 3.5 pCi/l) (1981-1982)

Figure 3.30. U.S. public groundwater systems: U-234/U-238 ratios

Table 3.13 Summary of U-234/U-238 ratios (all results) in public groundwater systems

STATE	ARITHMETIC N	MEAN	GEOMETRIC MEAN	ARITHMETIC MEAN (POP WEIGHTED)	TOTAL POP	# OF LOCATIONS
AZ	.2.6 SD=	1.9	2.2 GD= 1.7	2.3	233426	18
СО	1.4 SD=	0.2	1.4 CD= 1.1	1.4	93904	21
ID	1.9 SD=	0.6	1.9 GD= 1.3	2.1	79573	13
IL	9.6 SD=	7.2	6.4 GD= 2.8	10.2	1070637	54
MN	3.1 SD=	2.4	2.4 GD= 2.0	3.0	164194	15
NC	2.1 SD=	1.4	1.8 GD= 1.8	1.7	12590	10
NM	2.3 SD=	1.0	2.1 GD= 1.5	2.2	223152	30
OK	2.0 SD=	0.8	1.9 GD= 1.4	2.0	850 73	10
PA	2.2 SD=	0.7	2.1 GD= 1.3	1.9	126690	10
UT	2.0 SD=	1.0	1.8 GD= 1.6	1.9	255030	17
WI	9.8 SD=	6.5	7.7 GD= 2.2	11.4	218640	34
WY	2.0 SD=	0.6	1.9 GD= 1.3	1.9	44337	12
US	4.4 SD=	5.2	2.7 GD= 2.4	5.8	2883589	296

SD equals standard deviation.

Note: States having less than 10 locations for calculating a mean are not presented.

GD equals geometric standard deviation.

Figure 3.31. U.S. public groundwater systems: U-234/U-238 ratios (all results)

4.0 DISCUSSION OF RESULTS

4.1 Section 3 Discussion

4.1.1 Rn-222

Elevated Rn-222 concentrations, determined in this study, are found primarily in Virginia, North and South Carolina, the New England states, and scattered locations in the Midwest and western parts of the country. These results generally coincide with what was observed during the pilot study except the concentrations are not as elevated. This decrease in activity is thought to be due to the intended purpose of not sampling water supplies because they are known or thought to be elevated (an attempt at minimizing biased results). In most cases, the elevated levels tend to be highly localized. Exceptions to this observation are found in Maine and Rhode Island (and possibly other New England states) where elevated levels tend to be more widespread instead of isolated cases. Relying on mean values for characterizing a state, the entire U.S., or even a county within a state can be misleading due to the wide variations observed on the state level and even the county level. For example, North Carolina has a number of water supplies that have elevated levels but the geometric mean (or median value) is very low due to the high number of supplies that are low in Rn-222 (see Table 3.2).

Radioactivity results are summarized in several different ways to provide readers of this report with practical options in understanding the overall impact of this study. All summaries are based on raw results found in Appendix B.

A limited number of public surface water supplies were sampled in this study. As can be seen from the results in Appendix C, Rn-222 concentrations were very low. This same result was seen in the pilot study. Gross alpha and gross beta results were also very low.

During the pilot study a general trend was observed where on the average smaller public groundwater systems exhibited higher Rn-222 concentrations. Combining the results from the nationwide study and the pilot study, this trend remained (He84). This trend may be due in part to less treatment such as aeration, less water holdup resulting in Rn-222 decay, and low capacity wells giving less Rn-222 dilution. As can be seen from Table D.1 in Appendix D, this trend was not evident in the nationwide study alone due in part to the very few samples collected at the < 100 people served water

systems. Comparing the U.S. means based on all groundwater samples collected during the nationwide study (Table 3.2) with the U.S. means based on groundwater systems serving 1000 or more people (Table D.1), essentially no difference was seen.

The absence of Rn-222 data from Maine during the nationwide study was unfortunate since many public groundwater supplies in Maine exhibit elevated levels as was seen in the pilot study. On a nationwide basis the omission of Maine data does not significantly alter nationwide trends in Rn-222 concentrations. On a regional and state basis, areas within Maine with higher than average concentrations or lower than average concentrations are averaged out by extrapolation and interpolation from other New England states.

4.1.2 Gross Alpha

Elevated gross alpha levels were seen primarily in the Rocky Mountain states (Figures 3.7 and 3.8). Gross alpha measurements were used as a screening device for Ra-226 and uranium. Generally, the elevated levels nationwide are due to elevated uranium. About 85 percent of the supplies had gross alpha concentrations of less than 3 pCi/l (Figure 3.9). The geometric mean for the U.S. was 0.5 pCi/l (Table 3.3).

4.1.3 Gross Beta

Elevated gross beta concentrations were very spotty as seen in Figures 3.10 and 3.11. Theoretically, elevated Ra-228 levels should be associated with elevated gross beta levels. In practice, gross beta levels only serve as a qualitative indicator of Ra-228 at best. The geometric mean for the U.S. was 2.0 pCi/l (Table 3.4).

4.1.4 Ra-226

Elevated Ra-226 concentrations (Figure 3.14) were seen from North Carolina to Florida along the Atlantic Ocean and the Midwest (Illinois, Wisconsin, Minnesota, South Dakota, and Kansas). Very low Ra-226 levels were found in the western states. The geometric mean for the U.S. was 0.6 pCi/l (Table 3.5). About 9 percent of water supplies analyzed for Ra-226 exceeded 5 pCi/l (Figure 3.15), the national interim primary drinking water regulation for radium (FR76, EPA76). No nationwide correlation was observed between Rn-222 and Ra-226 concentrations, while in some local areas a correlation may exist. The reader is cautioned that these results only apply to public groundwater supplies where the gross alpha result was 3 pCi/l or greater (see Section 2.0).

The absence of Ra-226 data from Iowa during the nationwide study was unfortunate since many public groundwater supplies in Iowa exhibit elevated levels. Fortunately, these elevated levels have been documented in other reports.

4.1.5 Ra-228

Elevated Ra-228 concentrations were generally found in water supplies where the Ra-226 was elevated. Illinois, Minnesota, North Carolina, South Dakota, and Wisconsin tended to be the most elevated in Ra-228. The geometric mean for the U.S. was a biased 2.1 pCi/l (Table 3.6). Only water supplies where the Ra-226 concentration was equal to or greater than 3.0 pCi/l were analyzed for Ra-228. A few water supplies were analyzed for Ra-228 when the gross beta was equal to or greater than 15.0 pCi/l. About 24 percent of the water supplies analyzed for Ra-228 (Figure 3.16) exceeded 5 pCi/l, the national interim primary drinking water regulation for radium (FR76, EPA76), based on Ra-228 alone.

4.1.6 Total Ra and Ra-226/Ra-228 Ratio

Elevated total Ra concentrations were found in nearly every state where total Ra analyses were performed (Table 3.7). The state geometric mean exceeded 5.0 pCi/l, the national interim primary drinking water regulation for radium (FR76, EPA76), for every state where total Ra analyses were performed except Georgia, Virginia, and Wyoming (Table 3.7). About 79 percent (77 out of 97) of the water supplies analyzed for total Ra exceeded 5 pCi/l (Figure 3.17). The reader is cautioned that these results only apply to public groundwater supplies where the Ra-226 result was 3 pCi/l or greater (see Section 2.0).

In about 28 percent of the water supplies, the Ra-228 exceeded the Ra-226 (Figure 3.18). By only analyzing a sample for Ra-228 when the Ra-226 is equal to or greater than 3.0 pCi/l potentially allows a water supply with elevated Ra-228 but Ra-226 less than 3.0 pCi/l to avoid the radium regulation (FR76, EPA76). The Ra-226/Ra-228 ratio geometric mean for the U.S. was 1.5 (Table 3.8). According to Michel and Moore (Mi80), Ra-226/Ra-228 ratios as low as 0.3 have been shown to exist in South Carolina. Similar situations were also noted in Georgia (Cl83). Ratios as low as 0.3 were also observed in this study (Figure 3.18).

4.1.7 U-234, U-238, Total U, and U-234/U-238 Ratio

Elevated uranium concentrations were observed in many of the western states (Montana, Idaho, Wyoming, Colorado, New Mexico, and Utah), the Midwest (North and South Dakota, Minnesota, Wisconsin, Kansas, and Oklahoma), and a few eastern states (Maine, Pennsylvania, and North Carolina) as seen in Figures 3.19, 3.20, 3.22, 3.23, 3.25, and 3.26. The U.S. geometric means for U-234, U-238, and total U were 1.1 pCi/l (Table 3.9), 0.4 pCi/l (Table 3.10), and 1.5 pCi/l (Table 3.11). About 14 percent (50 out of 362) of the water supplies analyzed for uranium exceeded 10 pCi/l (Figure 3.27), the EPA's Office of Drinking Water (ODW) Health Advisory (HA) for uranium (La83). The reader is cautioned that these results only apply to public groundwater supplies where the gross alpha result was 3 pCi/l or greater (see Section 2.0).

The ratio of U-234 to U-238 is of interest to those areas where elevated uranium concentrations exist. Using uranium results whose total U exceeded 3.5 pCi/l, Figures 3.28, 3.29, and 3.30 and Table 3.12 were constructed. Low activity samples with their inherent uncertainty were excluded. About 73 percent (99 out of 136) of the water supplies had a U-234/U-238 ratio between 1.0 and 2.0. The geometric mean for the U.S. was 1.7 (Table 3.12). About 9 percent (12 out of 136) of the water supplies had ratios that exceeded 3 (Figure 3.30) whose locations are shown in Figure 3.29. If all results were included, the geometric mean for the U.S. was calculated to be 2.7 (Table 3.13) with about 36 percent (107 out of 296) of the water supplies exceeding 3 (Figure 3.31).

4.2 Regional Approach

One limitation in producing U.S. maps of concentration is that peaks and valleys of concentration tend to be averaged out excessively, especially in those regions where elevated trends are not widespread and numerous water supplies were sampled. For example, several highly elevated water systems in Rn-222 were found in North Carolina, South Carolina, and Virginia, but the results were obscured in Figures 3.3 and 3.4. On the other hand, in areas where few water supplies were sampled and elevated levels of Rn-222 occurred (examples are found in the Far West), elevated levels for those cases were prominent in Figures 3.3 and 3.4. The obscuring of results was primarily seen in the case of Rn-222, but also, to a lesser degree, applied to other U.S. radioactivity maps.

By presenting results in groups of states or regions (see Appendix E), some of the localized averaging was eliminated and more detail was preserved. EPA has ten regional offices throughout the U.S. Each regional office serves at least two states. For example, Region II services New York and New Jersey while Region IX encompasses California, Arizona, Nevada, and Hawaii. Regional maps were produced for all ten regions, except Region VI, based on the nationwide study. Rn-222 and gross alpha were plotted for each of nine regions (Appendix E) while Ra-226 and total uranium were only plotted for those regions where sufficient numbers of results were available. Ra-228 was also plotted for Region VII (Figure E.18).

A special region or group of states was also selected for further study. This region involved Georgia, North Carolina, South Carolina, and Virginia. In general, elevated levels of radioactivity, especially Rn-222, were observed in this four state region (Figures E.30, E.31, and E.32).

In order to better define the distribution of Rn-222 nationwide, Rn-222 results for those states which did not participate in the nationwide study, but did participate in the pilot study, were combined with the nationwide study results. Also included in the expanded results were some unpublished Rn-222 results (Pr79) for Arkansas, Iowa, Louisiana, Nebraska, and Texas. Both the pilot study and unpublished results were for public groundwater supplies only. A map of expanded locations is shown in Figure 4.1. Except for the states of Washington, Michigan, West Virginia, Maryland, Connecticut, and Texas (only one location) where no results were available and the states of California and Kansas with sparse coverage, the continental U.S. has been widely sampled for Rn-222 as displayed in Figure 4.1. On the U.S. scale maps, the addition of results from states which did not participate in the nationwide study did not significantly alter the results for those states as seen in Figures 4.2 and 4.3 as compared to Figures 3.3 and 3.4. Having radon results from all 48 contiguous states would be desirable, but in practice may not be necessary in order to generate U.S. scale maps. This is not the case with larger scale maps such as regional and state maps. Rn-222 regional maps were produced for Regions I, II, VI, VII, and IX (Figures E.33-E.37) based on the expanded locations. As would be expected the regional maps based on the expanded locations (Figures E.33, E.34, E.36, E.37) gave more detail for states that were missing in the nationwide study as compared to corresponding Figures E.1, E.3, E.15, and E.24 based on the nationwide study only.

Figure 4.3. Average Rn-222 concentrations in public groundwater supplies (1978-1982)

4.3 Selective Monitoring

4.3.1 Areas With High Rn-222 Activity

As was discussed in Section 4.2, elevated levels tended to be averaged out or obscured by previous mapping efforts. One mapping technique that helped to lessen this problem was to plot the locations of water supplies exceeding a specified concentration. Using the Rn-222 results from the nationwide study, plots were generated showing the locations of water supplies exceeding 500 pCi/l (Figure 4.4), 1000 pCi/l (Figure 4.5), 2000 pCi/l (Figure 4.6), 5000 pCi/l (Figure 4.7), and 10,000 pCi/l (Figure 4.8). At the 500 pCi/l level, the Rn-222 distribution for the U.S. was widespread. At the 1000 pCi/l level, the distribution became more confined to the East Coast with scattered results in the Midwest and Far West. At the 2000 pCi/l and 5000 pCi/l levels, results were concentrated on the East Coast. At the 10,000 pCi/l level, only North Carolina and South Carolina were included (Figure 4.8). The highest Rn-222 concentration exceeded 16,000 pCi/l.

Using the results depicted in Figure 4.1 and other Rn-222 results for public groundwater supplies (pilot study, AL75, He79, Ka77, Mc82, Pr79), the same levels as before were plotted in Figures 4.9-4.13. Similar nationwide distribution patterns were observed at the 500 pCi/l, 1000 pCi/l, and 2000 pCi/l levels. With the addition of Maine results (pilot study, He79) and pilot study Rhode Island and Virginia results, the distribution at the 10,000 pCi/l level not only included North Carolina and South Carolina but also Virginia, Rhode Island, and Maine. At the 5000 pCi/l level Maine and California were added (Figure 4.12). The lone California result was due to a small groundwater supply serving a remote BLM fire station.

Since extreme values for Rn-222 are localized, an effective monitoring program for Rn-222 could be accomplished by only sampling public groundwater systems where extreme values of Rn-222 in groundwater have been observed in the past. Similar selective monitoring schemes may also apply to Ra-226, Ra-228, and uranium in those areas where elevated levels have been observed.

Figure 4.4. Public groundwater supplies exceeding 500 pCi/l of Rn-222 (Based on the nationwide study only)

Figure 4.5. Public groundwater supplies exceeding 1000 pCi/l of Rn-222 (Based on the nationwide study only)

Figure 4.6. Public groundwater supplies exceeding 2000 pCi/l of Rn-222 (Based on the nationwide study only)

Figure 4.7. Public groundwater supplies exceeding 5000 pCi/l of Rn-222 (Based on the nationwide study only)

Figure 4.8. Public groundwater supplies exceeding 10,000 pCi/l of Rn-222 (Based on the nationwide study only)

Expanded locations of public groundwater supplies sampled for Rn-222 exceeding 500 pCi/l Figure 4.9.

Expanded locations of public groundwater supplies sampled for Rn-222 exceeding 1000 pCi/l Figure 4.10.

Expanded locations of public groundwater supplies sampled for Rn-222 exceeding 2000 pCi/l Figure 4.11.

Figure 4.12. Expanded locations of public groundwater supplies sampled for Rn-222 exceeding 5000 pCi/l

Figure 4.13. Expanded locations of public groundwater supplies sampled for Rn-222 exceeding 10,000 pCi/l

4.3.2 Mining Locations as a Screening Method for Uranium

Logically, a correlation should exist between where uranium is found in the earth and uranium in groundwater in the same areas. Looking at areas where uranium is elevated in the earth's crust should provide some information as to where elevated levels of uranium in groundwater may exist. By plotting the locations of mining operations associated with uranium (DoI79), Figures 4.14-4.16 were produced. Both inactive (Figure 4.14) and active (Figure 4.15) locations along with a combination of both active and inactive locations (Figure 4.16) were developed in order to correlate with total uranium concentrations in public groundwater systems (Figures 3.25 and 3.26). The mining operations not only include uranium mines but also mining ventures in which uranium is a potential byproduct to the principle product. A good qualitative correlation is seen for mining areas in Wyoming, Colorado, Utah, and New Mexico where elevated uranium concentrations in public groundwater systems are observed. Additional uranium data (Co83, NM80, Dr81) from public groundwater systems help to strengthen this correlation. a way to monitor public water supplies for uranium without sampling all supplies for uranium, a monitoring scheme based on sampling those areas with a higher probability of elevated uranium in groundwater (areas associated with uranium mining operations) could be implemented as a first cut or screening method for uranium. Since uranium analyses (especially isotopic) are expensive, any technique that lessens the need to analyze for uranium but provides adequate monitoring should be explored for possible use on a nationwide basis.

4.4 Predictive Modeling

Interest was shown recently in the use of predictive modeling to estimate concentrations of radioactivity in groundwater (Mi81, Mi83, He84). For example, Michel (Mi83, He84) was in the process of correlating Ra-228 concentrations in groundwater with rock type (or aquifer type). Similar correlations may be possible for Ra-226, uranium, and Rn-222.

Figure 4.14. Locations of inactive mining operations associated with uranium (1979)

Figure 4.15. Locations of active mining operations associated with uranium (1979)

Figure 4.16. Locations of both active and inactive mining operations associated with uranium (1979)

The author of this paper has attempted to estimate Rn-222 concentrations based on Rn-222 measurements in adjacent regions and using computer software which generated a Rn-222 concentration surface above the area of interest (Kn84). By specifying a latitude and longitude within the continental U.S., a Rn-222 concentration was estimated. The accuracy of the estimate was dependent on a number of factors including map surface scale (U.S., regional, or state scale), closeness of measurements to the point of interest. and the algorithm used to generate the surface matrix. The accuracy of the estimate increased going from the U.S. scale (more localized averaging was required) to the regional scale and then to the state scale (less localized averaging was required). While computer artifacts were generated where measurements were lacking, this approach shows promise in making a first cut prediction. As the Rn-222 data base increases in coverage, the accuracy of the model should increase. Similar predictions can be made for other radioactivity in water supplies. These estimates are potentially less reliable since the data bases are much smaller and have much less coverage than for Rn-222. While no specific examples of this approach are given in this paper, it is anticipated that such examples and further applications of this technique will be the subject of a future paper.

5.0 SUMMARY AND CONCLUSIONS

Based on the results of this study and previous studies involving limited areas of the U.S., no widespread areas with highly elevated Rn-222 in public groundwater systems were observed. Only localized areas of the eastern U.S. showed relatively high levels of Rn-222 (10,000 pCi/l and above). The reader is cautioned that only public groundwater supplies serving 1000 or more people were sampled (see Section 2.0). Pilot study results (He84) indicated smaller public groundwater supplies on the average tend to have higher radon levels.

Based on the results of this study, 1.6 percent of the people served by public groundwater systems in the contiguous 48 States (approximately 1.15 million people) are served by drinking water supplies exceeding the EPA maximum contaminant level of 5 pCi/l for radium. Some water supplies not sampled in the study are also reported to exceed the 5 pCi/l level.

Based on the results of this study, 0.45 percent of the people served by public groundwater systems in the contiguous 48 States (approximately 0.31 million people) are served by drinking water supplies exceeding the 10 pCi/l level for uranium suggested by an EPA/ODW Health Advisory (La 83). Some groundwater supplies not sampled in the study could exceed the 10 pCi/l level, especially where the earth's crust is enriched in uranium.

Based on the results of this study, thorium levels were shown to be extremely small in public groundwater supplies. Water supplies having thorium concentrations exceeding 0.1 pCi/l would be unusual and those exceeding 1.0 pCi/l would be extremely rare (pilot study results).

As with any survey that only samples a limited number within the overall population available for sampling, some biases will occur in the final analysis of results. In the case of radium and uranium results, the reported results consisted of those samples which exceeded a 3 pCi/l gross alpha screening level. The results of this survey are applicable to the upper end of the distribution function for radium and uranium in public groundwater supplies. Therefore, for the most part, the lower end of the distribution function has been excluded in this survey of radium and uranium levels.

6.0 RECOMMENDATIONS

The following recommendations are made regarding future work involving natural radioactivity in public groundwater supplies:

- 1. No more widespread sample collection should be undertaken at this time. In the future, special studies may be appropriate in localized, high activity areas.
- 2. Analyze remaining samples for Ra-226, Ra-228, U-234, and U-238 or randomly select a nominal 500 samples for further analysis since less than 17 percent of the samples collected in this study were analyzed for Ra-226, less than 5 percent for Ra-228, and less than 15 percent for U-234 and U-238. By increasing the size of the database, more representative average values will be obtained.
- 3. Analyze all samples for Pb-210 in which the gross alpha and gross beta exceed 5 pCi/l (400-500 samples) in order to establish a Pb-210 database.
- 4. Consult the U.S. Geological Survey and state geological surveys for data and information on natural radioactivity in groundwater.
- Gather data from other databases of natural radioactivity such as those maintained by each state to meet the requirements of the Safe Drinking Water Act for radionuclides (EPA76, FR76). States are only required to report violations. This additional data (data from water supplies not in violation) would be very helpful in predictive modeling efforts.
- 6. Develop predictive models of natural radioactivity in groundwater based on geology. Such models might be based on all available data relating natural radioactivity to rock type and used for predicting levels in groundwater and the resulting dose and health effects associated with these levels.

REFERENCES

- AL75 Aldrich, L.K., Sasser, M.K., and Conners, D.A., 1975,
 "Evaluation of Radon Concentrations in North Carolina
 Ground Water Supplies," State of North Carolina, Department
 of Human Resources.
- Cline, W., Adamovitz, S., Blackman, C., and Kahn, B., 1983, "Radium and Uranium Concentrations in Georgia Community Water Systems," Health Physics 44, 1-12.
- Cothern, C.R. and Lappenbusch, W.L., 1983, "Occurrence of Uranium in Drinking Water in the U.S.," Health Physics 45, 89-99.
- DoI79 Department of Interior, Bureau of Mines, Division of Automatic Data Processing, Denver, Colorado, 1979, Minerals Industry Location System (MILS) computer tapes of U.S. mines.
- Dr81 Drury, J.S., Reynolds, S., Owen, P.T., Ross, R.H., and Ensminger, J.T., 1981, "Uranium in U.S. Surface, Ground, and Domestic Water," EPA-570/9-81-001 (Volumes 1-4).
- EPA76 U.S. Environmental Protection Agency, 1976, "National Interim Primary Drinking Water Regulations," EPA-570/9-76-003.
- EPA80 U.S. Environmental Protection Agency, 1980, Office of Drinking Water, FRDS listing of public groundwater systems serving 1000 or more people (FY79).
- FR76 Federal Register, 1976, "Drinking Water Regulations-Radionuclides," U.S. Environmental Protection Agency, July 9, 1976, Title 40, Part 141, 28402-28409.
- He79 Hess, C.T., Norton, S.A., Brutsaert, W.F., Casparius, R.E., Coombs, E.G., and Hess, A.L., 1979, "Radon-222 in Potable Water Supplies in Maine: The Geology, Hydrology, Physics and Health Effects," Land and Water Resources Center, University of Maine at Orono, Completion Report Project A-045-ME Contract A-272-A.

- He84 Hess, C.T., Michel, J., Horton, T.R., Prichard, H.M., and Coniglio, W.A., 1984, "The Occurrence of Radioactivity in Public Water Supplies in the United States," to be published in Health Physics.
- Ho83 Horton, T.R., 1983, "Methods and Results of EPA's Study of Radon in Drinking Water," EPA 520/5-83-027.
- Ka77 Kaufmann, R.F. and Bliss, J.D., 1977, "Effects of Phosphate Mineralization and the Phosphate Industry on Radium-226 in Ground Water of Central Florida," EPA/520-6-77-010.
- Kn84 Knight, M.J. and McCroan, K.D., 1984, "Two and Three Dimensional Plotting of Geographic Data", an internal EERF report.
- La83 Lappenbusch, William L., 1983, U.S. EPA National Workshop on Radioactivity in Drinking Water, May 24-26, 1983, Easton, Maryland. U.S. Environmental Protection Agency, Office of Drinking Water, Washington, D.C., 20460.
- Mc82 McHugh, J.B. and Miller, W.R., 1982, "Radon Survey of Ground Waters from Beaver and Milford Basins, Utah," United States Department of the Interior, Geological Survey, Open-File Report 82-382.
- Mi80 Michel, J., and Moore, W.S., 1980, "228Ra and 226Ra Content of Groundwater in Fall Line Aquifiers," Health Physics 38, 663-671.
- Mi81 Michel, J., King, P.T., and Moore, W.S., 1981, "228Ra, 226Ra and 222Rn in South Carolina Ground Water:

 Measurement Techniques and Isotope Relationships,"
 Department of Geology, University of South Carolina.
- Mi83 Michel, J., personal communication, 1983.
- NM80 State of New Mexico, 1980, "Chemical Quality of New Mexico Community Water Supplies-1980," Environmental Improvement Division, Water Supply Section.
- Pr77 Prichard, H.M. and Gesell, T.F., 1977, "Rapid Measurements of Rn-222 Concentrations in Water with a Commercial Liquid Scintillation Counter," Health Physics 33, 577-581.

- Pr79 Prichard, H.M., 1979. Unpublished radon results. The University of Texas, School of Public Health.
- Pr81 Prichard, H.M. and Gesell, T.F., 1981, "An Estimate of Population Exposures Due to Radon in Public Water Supplies in the Area of Houston, Texas," Health Physics 41, 599-606.
- Pr83 Prichard, H.M. and Gesell, T.F., 1983, "Radon-222 in Municipal Water Supplies in the Central United States," Health Physics 45, 991-993.
- St80 Straub, Conrad P., personal communication, October 10, 1980.

APPENDIX A

ADDITIONAL INFORMATION ON THE STUDY DESIGN

Exhibit A.1

PROCUREMENT STATEMENT*

Using the supplies and equipment provided by the EERF, public water supplies shall be sampled for radon. In addition to the radon samples, a water sample shall be collected for possible analysis for other radionuclides. All samples shall be promptly returned to the EERF using the boxes and mailing tubes supplied by EERF. The enclosed list of public water supplies specifies which supplies to sample. Only these supplies shall be sampled and reimbursed under this agreement. All samples shall be collected within six (6) months following receipt of a sampling list from the EERF. The Project Officer shall receive a monthly progress report during the six-month sampling period outlining the status of sampling and any problems which could delay completion of the sampling plus steps taken to overcome these problems. At the completion of the sampling program the sampling kit shall be returned to the EERF unless otherwise instructed. Also, within one month after the final sample is collected, the Project Officer shall receive a complete summary of sampling data to include the name of the supply; date sampled; information on the well such as depth, aguifer being pumped, etc.; type of water treatment; population served; and other pertinent data as may be available. The data and information developed under this contract shall not be published or made publicly available without the written consent of the Project Officer.

^{*} Samples were collected by state health department personnel using this procurement statement as a guide.

Exhibit A.2

Rn/Water

SAMPLING AND ANALYSIS FORM

(PUBLIC WATER SYSTEM - GROUNDWATER SUPPLIES)

FINISHED WATER ONLY !!!

Date:	Time of Collection:	Samp1	e #:
PWS ID#:	PWS Name:		
Location:			
Consumer tap, individumell sample, give well where taken	ual well, or other sample name: If n	e (CIRCLE ONE). If other nultiple well PWS	If individual sample, specify , include Page 2.
Description of Source			
Number of wells supply Well Depth(s) Aquifer being pumped Water treatment		***POPULATIO	N SERVED BY PWS:
Additional Information	n:		
Sample Collected By:	Address:		
TO BE COMPLETED AT EER	RF:		
Date Received:	Start Count: #	Time:	Day:
Gain: 1.0 or ot A Channel: Lower	ō•'s &	Bkg.: Eff.:	nt:min. c/m cpm/pCl
Results: Sample # Count Rate(C/m) Net Count Rate(c/m)	Decay Corr. C	onc.(pC1/1) ⁺ 2 ₀ (%)

Exhibit A.2 (continued)

PUBLIC WATER SYSTEM SUPPLIED BY MORE THAN ONE WELL IMPORTANT: ATTACH TO Rn/WATER SAMPLING AND ANALYSIS FORM!!!

IF POSSIBLE, PLEASE PROVIDE THE FOLLOWING INFORMATION: PWS ID#: IF SYSTEM SAMPLE TAKEN, % OF PWS IS THIS WELL POPULATION CONTRIBUTING SERVED BY TO THE SAMPLE? WATER-NAME OF INDIVIDUAL WELL WELL DEPTH (YES OR NO) THIS WELL TREATMENT

Exhibit A.3

SAMPLE COLLECTION CRITERIA (Finished Water Only)

Single Well Public Water System

Preferred Method: One set of water samples at consumer tap. (Try to

collect samples as close to the water supply as

possible.)

Alternative: One set of water samples from well, storage tank, or

other suitable finished water sampling point.

(Specify where taken)

Multiple Well Public Water System

Preferred Method: One set of water samples at consumer tap. (Try to

collect samples close to the beginning of the

distribution system, e.g., near water treatment plant

and/or storage tanks.)

Alternative $\alpha 1$: One set of water samples from individual well serving

largest percent of public water system population

(finished water only).

Alternative $\alpha 2$: One set of water samples from any other suitable

finished water sampling point (specify where taken).

Definition: One set of water samples means a one (1) gallon

cubitainer of water plus two (2) liquid scintillation

vials for radon in water samples.

Note: The EPA is trying to collect samples that can be used

in nationwide and state averages, i.e., baseline data. The data may also serve as a screening device for identifying areas warranting more detailed and

comprehensive studies at a later date (St80).

APPENDIX B

RADIOACTIVITY RESULTS FOR EACH PUBLIC WATER SYSTEM SAMPLED

Note: All concentration and counting error results are computer generated resulting in numbers that are less accurate than what is presented (i.e., up to five significant figures are implied). All results should be rounded off to no more than three significant figures when using these results.

2SIGMA ERROR		0 0
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	M M M M M M M M M M M M M M M M M M M
IGMA U-234 2SIGMA U-238 ERR (PC1/1) ERR (PC1/1)		• • • • • • • • • • • • • • • • • • •
1-234 2 c1/1)	E	
2SIGMA U-234 2SIGMA U-238 ERR (pC1/1) ERR (pC1/1)		
	. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Y
2SIGMA Ra-228 ERR (pC1/1)	•	0.00
Ra-226 2SIGM (PCį/1) ERR		AN N N N N N N N N N N N N N N N N N N
2SIG ERR	001111111111111111111111111111111111111	0.74 0.74 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
A BETA 2SIG (pC1/1) ERR		
2SIGMA BETA ERR (pC1/	0.0000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ALPHA (pC1/1)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2SIGMA ALPHA ERROR (pC1/1)	65 64 64 65 65 65 65 65 65 65 65 65 65 65 65 65	655.4 69
Rn-222 pC1/1)	57.9 24.2.8 24.2.9 45.0.9 45.0.9 45.0.9 45.0.9 340.0 61.9 136.8 136.9 136.9 136.9 136.9 136.9 136.9 136.9 136.9 41.8	41.8 89.6.1 10.6 10.6 45.8 45.8 45.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10
COLLECT Rn-222 DATE (pC1/1)	51882 8 582 72782 8 382 72782 72782 6 982 6 982 6 982 6 982 6 982 72782 8 382 72782 8 382 72782 72782 6 382 6 382 6 382 6 382 6 882 6 982 6 982	6 882 72182 51882 51882 51882 72182 72182 72782 6 882 6 982 72782 72182 72182 72182 72182 72182 72182 72182 72182 72182 72182 72182 72182
0	TILLE TYPER DDRIA TILLE SIA TILLE SIA TILLI TILL	PPE A A A A CCKER A A A B B B S S S S S S S S S S S S S S
LOCATION	AL:ABBEVILLE AL:ALBASTER AL:ALEXANDRIA AL:ALICEVILLE AL:ANDALUSIA AL:ATHORE AL:BAY MINETTE AL:BAY MINETTE AL:BAY ULA BATRI AL:BRY DN AL:BRENT AL:CARROLLTON AL:CALERA	AL: FAIRHOPE AL: FLORALA AL: FLORALA AL: FT. RUCKER AL: FT. RUCKER AL: GENEVA AL: GENEVA AL: GEREVOE AL: GEREVOE AL: GREENSBORO AL: GREENSBORO AL: GREENSBORO AL: HARTFORD AL: HARTFORD AL: HOKES BLUFF AL: HADISON
EPA ID#	USRN2 2671 USRN2 4425 USRN2 4175 USRN2 3979 USRN2 3979 USRN2 3077 USRN2 2672 USRN2 2672 USRN2 2934 USRN2 2934 USRN2 2936 USRN2 2930X USRN2 2673 USRN2 3986 USRN2 3986 USRN2 3986 USRN2 3986 USRN2 2928 USRN2 2928 USRN2 2930X USRN2 2930X USRN2 2930X USRN2 2930X USRN2 3986 USRN2 3986 USRN2 3986 USRN2 3986 USRN2 3983 USRN2 3983 USRN2 3983 USRN2 3974	USRN2 3074 USRN2 3984 USRN2 3983 USRN2 2670X USRN2 3980X USRN2 3980 USRN2 4912 USRN2 4412 USRN2 3064 USRN2 4416 USRN2 4411 USRN2 4411 USRN2 4421 USRN2 4428 USRN2 4428 USRN2 4428 USRN2 4428

Table B.1 Natural radioactivity in public water systems-Alabama (continued)

J-238 2SIGMA 31/1) ERROR	A A A A A A A A A A A A A A A A A A A
2SIGMA 1	0.0
Ra-226 2SIGMA Ra-228 2SIGMA U-234 2SIGMA U-238 (pC1/1) ERR (pC1/1) ERR (pC1/1)	
Ra-226 2SIGMA Ra-228 2 (pC1/1) ERR (pC1/1)	T A A A A A A A A A A A A A A A A A A A
2SIGM	0.00
Ra-226 (pC1/1	ANN NA SAN O O O O O O O O O O O O O O O O O O O
2SIG	000000000000000000000000000000000000000
2SIGMA BETA 2SIG ERR (pC1/1) ERR	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2SIGMA ERR	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2SIGMA ALPHA ERROR (pC1/1)	00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.
2SIGMA ERROR	56.0 68.7 68.7 68.7 69.9 67.0 67.0 60.5
Rn-222 (pCi/1)	39.7 505.1 161.6 161.6 154.6 276.2 100.2 39.8 65.2 207.2 23.0 31.9 23.0 23.0 23.0 142.5 67.5 174.9 114.9
COLLECT Rn-222 DATE (pC1/1)	8 382 6 882 6 382 6 382 6 382 6 382 72182 72182 8 582 8 882 6 882 6 882 6 882 8 382 8 382
LOCATION	AL: MARION AL: MCCALLA AL: MCCALLA AL: MUNROEVILLE AL: MONTEVALLO AL: MONTEVALLO AL: OPP AL: OPR AL: ORANGE BEACH AL: ORANGE BEACH AL: SARAK AL: SELHAM AL: PELL CITY AL: PELLAM AL: SARALAND AL: SARANDN AL: WAAVER AL: WEAVER
EPA ID#	USRN24411 USRN24427 USRN22927 USRN22932 USRN22931 USRN22931 USRN23981 USRN23981 USRN24424 USRN24424 USRN24424 USRN24426 USRN24426 USRN24410 USRN23081 USRN23081 USRN23081 USRN24410 USRN24410 USRN24410 USRN24410 USRN24415 USRN22715 USRN22715 USRN22716 USRN22716 USRN22716 USRN22716 USRN22716

* Surface water supply; all others are groundwater supplies.

Table B.2 Natural radioactivity in public groundwater systems-Arizona

2SIGMA ERROR	0.3	0.1	0.3	1.0	0.3	0.1
IGMA U-234 2SIGMA U-238 ERR (pC1/1) ERR (pC1/1)	NA NA NA NA	0.3 NA NA 1.2 NA	1.2 NA NA NA NA NA	1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	1.2 NA NA 0.2 NA NA N
2SIGM/	0.4	0.3	0.5	0 . 3	e. 4.	0.2
2SIGMA U-234 ERR (pC1/1	NA NA NA NA	2.0 NA NA 1.7 NA	11.4 2.2 3.0 NA NA	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3.1 N A A N	2.3 NA NA 1.6 NA NA N
25						
(pC1/1)	AN AN AN AN	NA NA NA NA	N A N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N
Ş	0.0	0.0		0.0	0.00	0.0
Ra-226 2SIGN (PC1/1) ERR	NA NA NA NA	0.1 NA NA NA NA	00.1 00.1 00.2 0.2	N N N N N N N N N N N N N N N N N N N	0.1 NA NA NA NA NA NA NA NA NA NA NA NA NA	NA N
	11.5 5.0 6.6 6.6	0.6 4.0 4.0 1.0	22.7 22.7 11.3 0.6 0.5 11.3 2.8	2	1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.8 0.9 7.0 7.0 7.0
A BETA 2SIG (PC1/1) ERR	7.0	2.0 1.1 1.4 7.0 6.0	200000000000000000000000000000000000000	14.0 14.0 13.0 11.0 11.0 6.0	2 2 2 0 0 0 2 2 2 0 0 0 0 0 0 0 0 0 0 0	7.07.07. 7.07.07.
2SIGMA BETA ERR (pC1/	22.2	1.0	1.4 4.7 4.4 4.7 1.2 1.2 1.2 1.1 1.2 1.1 1.2 1.1 1.1 1.1	11.8 11.3 11.3 11.3 11.3 11.3 11.3 11.3	0.0000000000000000000000000000000000000	1.0 0.4 0.9 0.9 0.9
ALPHA pC1/1)	0.2 6.6 1.2 1.2	3.0 1.3 0.0 5.4 0.2	13.0 4.0 3.0 6.6 7.0 1.0	22.0 0.44 0.44 0.11 1.11 1.00 2.00 2.20	0.2 5.0 6.0 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	1.8 2.7 0.5 1.9 1.9
2SIGMA ALPHA ERROR (pc1/1)	107.9 77.8 110.1	78.4 158.3 130.3 140.8 111.4 54.4	95.0 48.6 49.6 51.5 110.4 61.7 42.3	42.3 97.3 107.7 92.7 123.7 90.2 90.2 92.8	91.6 95.8 112.1 90.8 72.8 67.5 90.7 114.4 1155.2 1173.0 1173.3 1173.3 105.0	93.0 83.6 88.2 98.7 80.4
	135.8 1 308.6 NA 251.3 1	487.4 1021.0 372.9 1005.5 22228.5 544.2		→	20,000,000,000,000	137.5 NA ~51.6 226.3 859.9 433.3 1
COLLECT Rn-222 DATE (pC1/1)	41581 52981 43081 6 481 43081	42881 43081 43081 43081 31881 31081	31881 31081 31081 4 781 31781 31981 31881	31881 31881 52281 31381 31381 43081 4 981 4 281 4 281 4 981		5 781 5 781 42781 42781 42781 31881 71581
8	ION	Ř		HILLS	ALLEY	YI.
ON	AZ:APACHE JUNCTI AZ:ARIZONA CITY AZ:AVONDALE AZ:AVONDALE	AZ:BISBEE AZ:BUCKEYE AZ:BUCKEYE AZ:CAREFREE AZ:CAREFREE	E CREEK LIDGE LIDGE GLAS MIRAGE Y RENCE	CA AR IEI	AZ:LITCHFIELD PA AZ:MAMMOTH AZ:MIAMI AZ:MIAMI AZ:NOGALES AZ:OGALES AZ:ORACLE AZ:PRAKER AZ:PRAKER AZ:PHOENIX AZ:PHOENIX AZ:PHOENIX AZ:PHOENIX AZ:PHOENIX AZ:PHOENIX AZ:PHOENIX	AZ:PICACHO AZ:PICACHO AZ:PINE AZ:PINE AZ:PINE AZ:PRESCOTT AZ:PRESCOTTS AZ:SCOTTSDALE AZ:SCOTTSDALE
LOCATION	AZ:APACHE J AZ:ARIZONA AZ:AVONDALE AZ:AVONDALE AZ:AVONDALE	AZ:BISBEE AZ:BUCKEYE AZ:BUCKEYE AZ:BUCKEYE AZ:CAREFREE	AZ: CONT. DATA AZ: COOLIDGE AZ: COOLIDGE AZ: EL MIRAGE AZ: ELOY AZ: FLORENCE AZ: FLORENCE	AZ: FLORENCE AZ: FLORENCE AZ: FOUNTAIN AZ: GLENDALE AZ: GLOBE AZ: GOODYEAR AZ: HAYDEN AZ: HAYDEN AZ: HUACHUCA AZ: HUACHUCA AZ: HUACHUCA AZ: HUACHUCA AZ: HUACHUCA AZ: HUACHUCA	AZ:LITCHFI AZ:MAMOTH AZ:MIAMI AZ:MOGALES AZ:NOGALES AZ:NOGALES AZ:ORACLE AZ:PARADIS! AZ:PHOENIX AZ:PHOENIX AZ:PHOENIX AZ:PHOENIX AZ:PHOENIX AZ:PHOENIX AZ:PHOENIX	AZ: PICACHO AZ: PICACHO AZ: PINE AZ: PINE AZ: SCOTTSDA AZ: SIERRA V
ID#	2339 3455 2940 3631 2940x	2638 2960 2991 2960X 1544	1539 1431 1428 1934 1546 1752 1708	1406 11491 11545 3352 1538 1629 2990 2085 1840 1840 2082	1547 2084 1430 1430x 1430x 2244 1542 1542 1543 1370 1543 1543	3020X 3020 2686 2684 2683 1541 4695
EPA I	USRN12339 USRN13455 USRN12940 USRN13631 USRN12940X	USRN12960 USRN12991 USRN12991 USRN12960X USRN11544	USRN11539 USRN115428 USRN11428 USRN11934 USRN111542 USRN111492	USRNI1491 USRNI1545 USRNI1545 USRNI1538 USRNI1429 USRNI22900 USRNI22900 USRNI1840 USRNI1840X USRNI1840X	USRN11547 USRN12084 USRN114300 USRN11430X USRN12441 USRN12246 USRN11542 USRN11542 USRN11370 USRN11370 USRN11370 USRN11370 USRN11540X USRN11370	USRN1 302 0X USRN1 302 0 USRN1 26 86 USRN1 26 84 USRN1 26 83 USRN1 46 95

Table B.2 Natural radioactivity in public groundwater systems-Arizona (continued)

2SIGMA ERROR		0.2
U-238 pc1/1)	V V V V V V V V V V V V V V V V V V V	1.0 1.0 1.0 1.0 1.5 1.5 1.6
2SIGMA) ERR (0.3
U-234 (pc1/1)	N N N N N N N N N N N N N N N N N N N	2 . 3 2 . 3 2 . 3 2 . 6 NA NA NA NA NA NA NA NA NA NA NA NA NA
2SIGMA ERR		
Ra-228 pC1/1)	N N N N N N N N N N N N N N N N N N N	NA N
2SIGMA ERR (0.0
Ra-226 2SIGMA Ra-228 2SIGMA U-234 2SIGMA U-238 (pC1/1) ERR (pC1/1) ERR (pC1/1) ERR (pC1/1)	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.2 NA NA N
2SIG ERR	1.00004400040	1.1 1.1 1.1 1.1 1.1 2.3 2.3
2SIGMA BETA ERR (pC1/1)	2000 1300 1300 1200 1200 1200 1200	00.000000000000000000000000000000000000
2SIGMA ERR	0.6 0.8 0.8 0.8 3.1 1.0 0.6 0.6	11.1 1.1 1.1 0.6 0.5 0.5 0.6
ALPHA pc1/1)	22.0 23.0 23.0 23.0 0.5 0.5	0.2 2.2 2.2 2.2 2.2 2.3 2.3 3.4 4.0 3.4 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4
2SIGMA ALPHA ERROR (pC1/1)	92.2 48.7 81.4 81.9 126.4 56.1 142.5 113.1 153.2 78.3	60.5 78.9 88.8 82.0 72.5 101.0 60.3 62.7 63.6
Rn-222 pC1/1)	608.2 608.2 313.3 743.8 265.1 561.1 310.1 708.5 30.9 57.2	53.1 416.2 201.8 383.4 262.1 434.3 19.7 19.7 246.9 326.4 69.0
COLLECT Rn-222 DATE (pC1/1)	41481 31781 41481 71581 52281 31081 31781 31781 43081 43081	92881 4 981 6 981 92881 3 282 5 781 3 282 3 282 3 282 3 282 5 5281 52281
LOCATION	AZ:SIERRA VISTA AZ:SIERRA VISTA AZ:SIERRA VISTA AZ:SOMERTON AZ:SUN CITY AZ:SUN CITY AZ:SUN CITY AZ:SUN CITY AZ:SUN CITY AZ:SUN CITY AZ:SUN CITY AZ:SUN CITY AZ:SUN CITY AZ:SUN CITY	AZ:TUCSON AZ:TUCSON AZ:TUCSON AZ:TUCSON AZ:TUCSON AZ:TUCSON AZ:TUCSON AZ:TUCSON AZ:TUCSON AZ:TUCSON AZ:TUCSON
EPA IDØ	USRN12244 USRN11403 USRN12243 USRN14694 USRN13351 USRN11351 USRN11369 USRN11404 USRN113225 USRN11404	USRN21224 USRN16430X USRN12083 USRN16430 USRN21225 USRN21226 USRN21226 USRN21226 USRN21223 USRN21223

Table B.3 Nutural radioactivity in public groundwater systems Colorado

2S I GMA ERROR	9	H 7	2 4 7 7	2 11557	ଳ୍ୟ ଦଳ	ທຸ ຕຸ ຕຸຕ
	9.0	0.1	0.6 1.2 0.4 - 1.1	0.2 0.1 0.5 0.5	0.3 1.2 2.5 0.3	0.3
2SICHA U-234 2SICHA U-238 2SICH ERR (PC1/1) ERR (PC1/1) ERROR	5.7 NA NA NA NA NA NA NA NA NA NA NA NA NA	0.4 0.4 0.4 0.4 0.4	6.4 12.0 NA 4.5 9.7	1.6 NA NA 1.2 5.2 5.5 14.1	2.7 13.9 NA 29.1 3.2 NA NA	4.8 NA NA 3.2 NA 2.5
2SIGN) ERR	6.0	0.1	0.8 1.7 0.6 1.4	0.3	0.3 1.7 2.9 0.5	0.4 0.4 0.4
U-234 (pc1/1	9.8 AN AN AN AN AN AN	0.5 2.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	9.0 17.3 NA 6.9 12.4	2.4 NA NA NA 2.1 7.5 8.0 118.6 NA	3.1 NA 34.8 5.0 NA	4.7 NA 4.8 NA 3.9
2SICMA ERR						
	A C C C C C C	<pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre></pre> <pre></pre> <pre><pre><pre><pre><pre><pre><pre><pre><td>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~</td><td></td><td>V V V V V V V V V V V V V V V V V V V</td><td></td></pre></pre></pre></pre></pre></pre></pre></pre>	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		V V V V V V V V V V V V V V V V V V V	
2SIGNA ERR (0.0	0.0	0.0	0.0	0.0	0.0
Ra-226 2SIGHA Ra-228 (pC1/1) ERR (pC1/1)	0.3 NA NA NA NA NA NA NA NA NA NA NA NA NA	0.7 0.2 0.2 0.2	0.1 NA 0.2 0.3	0.2 NA 1.6 0.1 0.1 0.1 NA	0.1 0.1 0.2 0.2 0.2	0.8 0.3 NA NA 0.3
	1.9 1.1 1.1 3.1 0.7	1.3 0.5 0.5 0.5 0.5	3.2 1.1 6.5 3.4	1.1 0.8 0.9 5.1 2.0 4.3	11.2 11.2 11.4 11.4	1.0 1.0 1.0 1.0 1.0
2SICHA BETA 2SIG ERR (PC1/1) ERR	8 2 2 3 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7.1 7.1 3.5 0.9 13.1	5.7 0.4 7.3 13.7 4.0 13.4	8 6 7 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5.0 6.0 7.0 4.0 15.4
2SIGNA ERR	3.0 0.5 1.7 1.4	0 1 0 1 0 4 4 0 1 0 1 0 1 0 1 0 1 0 1 0	0.6 0.6 4.4 3.1	1.0 1.0 1.0 1.0 7.2 7.0	4.0 11.0 16.3 3.6 0.6	2.4 2.6 0.4 1.4
ALPHA pc1/1)	15.9 0.2 0.4 0.5 8.0 7.0	6.0 0.0 7.0 13.0	15.0 0.5 11.0 11.4	3.4 3.4 4.9 16.0 34.1 34.1	25.0 25.0 71.3 8.0 0.6	15.0 8.0 9.0 9.6 7.7
2SIGNA ALPUA ERROR (PC1/1)	1113.2 128.8 347.3 60.6 79.3	262.3 136.3 62.9 77.6 173.4 125.6	71.7 71.7 147.3 443.8 91.5 192.3 439.4	132.7 99.7 86.3 126.2 127.5 63.4	79.2 81.9 80.3 87.1 85.4 125.7	83.8 78.8 87.3 335.6 55.1 1127.0
		86.4 779.1 171.6 239.9 505.0 124.0		368.8 122.3 752.2 196.3 121.6 452.8 388.8		492.6 832.7 340.7 369.5 231.2 242.4 233.0
COLLECT Rn-222 DATE (pC1/1)	52281 42181 42281 12981 21881 21881	42481 41781 22681 21881 32081 42081	12881 52881 42281 12631 52781 42281	52181 42081 12781 52181 52181 12981 52781		
LOCATION	CO: AKKON CO: AURORA CO: AURORA CO: BENTS FORT CO: BURLINGTON CO: BURLINGTON	CO:BYEKS CO:CASTLE ROCK CO:CHEROKEE CO:CHEYENNE WELLS CO:CONHERCE CITY CO:CONHERCE CITY	CO:EADS CO:EATON CO:EATON CO:ENCLENOD CO:FOULER CO:FT. LUPTON CO:CLENDALS	CO:HAXTUN CO:HENDERSON CO:HOLLY CO:HOLLY CO:JULESBURG CO:LA JUNTA CO:LA SALLE CO:LA SALLE	CO:LAMAR CO:LAS ANIMAS CO:LINON CO:NAY VALLEY CO:PANKEN CO:PANKEN CO:SAN LUIS	CO: SPINI NGFIELD CO: STRATTWOOR HILL CO: WIDEFIELD CO: WIDEFIELD CO: WOODMAN CO: WRAY CO: YURAY
EPA ID#	USRN13446 USRN1253 USRN12682 USRN10792 USRN11060 USRN11060	USRH1263/ USRH12552 USRH11148 USRH11061 USRH1837 USRH12550	USRN10333 USRN13629 USRN12681 USRN10796 USRN13628 USRN12639	USRN13448 USRN10797 USRN10797 USRN13492 USRN13499 USRN13630	USRN10793 USRN10798 USRN11062 USRN10832 USRN10755 USRN12551 USRN12551	USRN10794 USRN11149 USRN11150 USRN11150 USRN11147 USRN13491

' Table B.4 Natural radioactivity in public groundwater systems-Delaware

2SICHA ERROR		0.0	
		0.0	
A U-2 (pc1/	N N N N N N N N N N N N N N N N N N N	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	<pre></pre>
2STGM ERR		0.0	
ICHA U-234 2SICHA U-238 2SICH ERR (PC1/1) ERR (PC1/1) ERROR	<pre>< < <</pre>	0.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	\[\frac{1}{2} \fr
2SICHA U-234 2SICHA U-238 ERR (PC1/1) ERR (PC1/1)			
Ra-226 2SIGNA Ra-228 (pC1/1) ENR (pC1/1)	V V V V V V V V V V V V V V V V V V V		N N N N N N N N N N N N N N N N N N N
2SIGNA ERR		0.0	
Ra-226 2SIGNA Ra-228 (pc1/1) ERR (pc1/1)	<pre>< < <</pre>		<pre>< < <</pre>
2SIG ERR	1.0		1.3 0.6 0.9 0.9 0.9 0.9 0.0 0.7 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SICHA BETA 2SIC ERR (PC1/1) ERR	3.3 2.0 2.0 5.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 1 2 1 1 1 1 2 2 2 2 2 3 1 1 2 0 2 1 1 2 2 2 2 1 1 2 2 2 2 2 2 2
~	0.0		0.5 0.4 0.2 0.3 0.3 0.3 0.3 0.4 0.0 0.4 0.0 0.4 0.0 0.0 0.0 0.0 0.0
2SIGMA ALPHA ERROR (pC1/1)	0.1	000000000000000000000000000000000000000	4 2 2 2 3 4 5 6 5 6 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6
2SIGNA ALPHA ERROR (PC1/1	100.9 110.6 76.7 102.1 102.3	68.2 91.7 70.1 62.2 103.2 62.9 61.0 63.1	85.4 89.3 64.9 90.1 105.3 88.9 62.6 60.3 58.4 91.1 90.6 118.6 63.6 63.6 63.6 63.6 104.6 104.6 101.1 103.8
	8.5 -67.4 80.7 5.0 54.6	344.7 344.7 344.4 47.5 52.5 224.8 125.9	-112.2 104.3 164.2 104.2 160.4 150.4 171.9 171.9 171.9 171.9 171.9 172.9
COLLECT Rn-222 DATE (pC1/1)	61281 61281 6 181 61281 61081	51981 51981 52881 52081 61081 51981 61581 61581 61581	61181 51981 51981 52281 61281 52281 52281 52281 52281 52281 52281 52281 52281 52281 61881 61281 61281 61281 61281 61281
LOCATION	DE: BETHANY BEACH DE: BETHANY BEACH DE: BETHANY BEACH DE: BETHANY BEACH DE: ERIDGEVILLE DE: CARDEN AVOUTING	DE:CLAYTON DE:CLAYTON DE:DAGSBORO DE:DELAWARE CITY DE:DELIAR DE:DOVER DE:DOVER DE:PRODERICA DE:CEORGETOMN DE:CEORGETOMN	DE:CEORGETOUM DE:GEORGETOUM DE:HARRINGTON DE:HARRINGTON DE:LEWES D
EPA 10#	USRN13935 USRN13900 USRN13517 USRN13900X USRN13812	USRN13180V USRN13180V USRN13451 USRN13230V USRN13230X USRN13811 USRN1381 USRN13901 USRN13901	USRN13814 USRN13140X USRN13140X USRN13299 USRN13299 USRN13298 USRN13298 USRN13299 USRN13290 USRN13293 USRN13293 USRN13293 USRN13293 USRN13293 USRN13293 USRN13293 USRN134650 USRN13450 USRN13450 USRN13450 USRN13450 USRN13450

Ra-226 2SICMA Ra-228 2SICHA U-234 2SICHA U-238 2SICHA ERR (pC1/1) ERR (pC1/1) ERROR 0.0 S <<!->< 0.0 (pC1/1) ERR (pC1/1) 0.0 0.1 0.0 2.5 NA 2516 DATE (pc1/1) ERROR (pc1/1) ERR (pc1/1) ERR 1.4 0.8 0.9 0.9 0.6 4.7 0.5 0.5 0.6 1.1 0.5 0.6 0.6 1.0 0.9 0.6 0.5 0.8 0.5 1.1 0.5 0.8 2SIGHA RETA 00.9 11.5 0.5 1.3 2.5 0.9 0.9 4.0 1.1 0.7 0.4 0.9 0.0 0.0 0.0 0.5 0.5 0.6 0.5 0.4 9.0 1.0 2SIGHA ALPHA 2.0 2.0 3.2 1.5 -0.2 0.4 0.4 0.1 0.4 0.1 58.4 113.4 114.9 102.6 8.66 75.6 94.6 46.3 118.9 157.3 132.0 82.0 72.7 132.3 77.9 82.9 110.8 30.5 152.6 120.8 80.8 164.6 84.6 129.6 59.1 99.1 106.5 118.6 130.8 46.4 9.94 42.4 51.7 100.3 67.1 38.2 100.3 131.2 41.0 40.5 9.661 57.1 259.6 228.0 81.0 1 269.1 5.5 35.6 322.1 150.4 21.8 21.8 146.6 1122.7 1188.9 893.0 221.8 482.4 35.9 247.4 9.45 COLLECT Rn-222 -15.8 71.7 0.99 -22.4 6.7 -34.5 36.0 30.3 -20.5 37.2 0.94 15.7 -15.7 143.8 121.6 394.5 32.8 43.7 9.891 76.5 6.42 51.9 93.8 290.5 -80.1 -30.6 -30.2 131.2 4 781 21180 52181 12081 32481 32481 12081 41481 4 781 33181 41431 41481 FL:DE FUNIAK SPRIN121580 4 981 42981 32481 21580 32331 22781 41681 51381 51381 4 981 4 981 41681 41481 4 781 41381 52081 21080 21030 11431 4 881 42981 42981 51181 4 831 31981 31881 52081 51881 FL:ALTARONTE SPRIN PLEDERRFIELD BEACH PL: FERNANDINA BEAC "L: FT. LAUDERDALE FL:FT. LAUDERDALE FL:FT. LAUDERDALE FL. FT. LAUDERDALE FL: FT. LAUDERDALE LAUDERDALE FL: ATLANTIC BEACH FL:CLAIR HEL CITY IL: DAYTONA BEACH L: BOYNTON BEACH L:CORAL SPRINGS FL: CORAL SPRINGS L: CONWAY MANOR FL: DELRAY BEACH FL:FLORIDA CITY PL:FLORIDA CITY FL:FORT PIERCE L: CASSELBERRY FL : COOPER CITY FL:FORT PIERCE L:AZELEA PARK FL:GAINESVILLE FL: BOCA RATOR FL:CAPE CORAL FL : CLEARWATER FL: CLEARWATER WALTON FL:FT. WALTON FL:FT. MYERS FL: CRESTVIEW FL:DADE CITY FL: EASTPOINT PL: ENGLEWOOD FL: HOLLYWOOD FL:AVON PARK FL: ARCADIA FL:DUNEDIN FL: BARTOW FL: DELAND 7L:EUSTIS L: APOPKA FL: DANIA FL:COCUA FL: DAVIE LOCATION FL: DAVIE L.FT. T. FT. ISRN11630X USRN10993 USRN13316 USRN10252 JSRN1 2540X **ISRN1 21 00X JSRN1 3160X** ISRN11636 JSRN12835 **JSRB1 2836** USK#1 3303 JSRN11630 JSRN12540 **ISRN13160** JSRN1 2239 JSRN03325 ISRIII 2100 JSRN13311 JSRN10526 JSR11 3033 **USRN12102** JSRN03405 **ISRN11835 JSRN12099** JSRK03403 ISRR1 2212 JSRN11486 JSR111638 JSR11 1634 JSRN11082 JSKN12371 JSRN1 3302 JSRN1 2211 **ISRH12543** JSRN1 3305 ISRN1 1482 **USRN13301** ISRN10253 JSRN12547 **ISRN12103** JSRN1 1484 ISRN12831 JSRN03401 JSRN1 3314 JSRN1 2213 **JSRN12544** JSRN1 2094 JSR1103324 **ISRN10201** JSRN1 2097 **ISRN1 2209** 110# VdS

J-238 2SIGNA 31/1) ERROR	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2SIGNA U-234 2SIGNA U-238 ERR (PC1/1) ERR (PC1/1)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(pc1/1) ERR	
Ra-226 2SIGNA Ra-228 (PC1/1) ERR (PC1/1)	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
, BETA 2SIG (PC1/1) ERR	7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2SIGNA BETA ERR (PC1/	00000000000000000000000000000000000000
2SIGNA ALPHA ERROR (PCI/I)	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	34.0 95.6 114.2 129.6 98.4 43.6 47.1 19.5 19.5 19.4 24.2 110.3 -38.9 70.5 111.0 282.1 111.0 282.1 111.0 282.1 111.0 282.1 111.0 282.1 111.0 282.1 111.0 282.1 111.0 282.1 111.0 282.1 111.0 20.5 12.9 81.5 224.0 114.2 246.5 48.8 5.0 12.4 221.3 102.4 -7.6 88.5 224.0 114.2 246.5 48.8 115.6 96.7 61.0 95.3 116.7 224.0 114.2 246.5 48.8 115.6 96.7 116.7 224.0 114.2 246.5 48.8 115.9 235.2 136.3 240.9 115.0 235.2 136.3 240.9 115.0 235.2 136.3 240.9 115.0 20.0 153.3 150.0 110.0 235.2 136.3 240.9 115.0 240.9 110.9 240.9 240
COLLECT Rn-222 DATE (pC1/1)	41681 41681 2 281 2 281 2 281 2 281 2 281 2 2481 2 2 481 2 2 581 2 2 581 3 2 581 3 2 581 4 1 581
LOCATION	FL: HOGESTEAD FL: HOGESTEAD FL: HOGISTEAD FL: HOGISTEAD FL: HOGISTEAD FL: JACKSONVILLE FL:
EPA ID#	USRN12369 USRN12310 USRN12370 USRN12370 USRN10981 USRN10982 USRN10986 USRN10986 USRN10986 USRN10989 USRN110989 USRN11034 USRN110989 USRN110989 USRN110989 USRN110989 USRN110989 USRN11039 USRN110398 USRN11240 USRN12240 USRN12240 USRN12309 USRN123309 USRN123309 USRN123309 USRN12330

-238 2SICHA 1/1) ERROR	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
ICHA U-234 2SIGNA U-238 ERR (pC1/1) ERR (pC1/1)	
25	
2SIGNA Ra-228 ERR (pC1/1)	
Ra-226 (pC1/1)	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
2S1G	
2SIGHA NETA 2SIG ERR (PC1/1) ERR	11.3 12.2 13.3 14.0 15.0 16.0 17.0
2SIGH ERR	0.00 0.00
ALPHA (pci/1)	
2SIGNA ERROR (144.5 62.2 7.73.6 7.73.
LLECT Rn-222 DATE (pC1/1)	535.0 -25.6 1839.0 -22.6 159.5 39.3 54.1 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0
COLLECT Rn-222 DATE (PC1/1)	52181 32681 132681 121080 4 981 43081 43081 112281 31781 428
NO.	FL: NAPLES FL: NEW PORT RICHEY FL: NEW PORT RICHEY FL: NEW PORT RICHEY FL: NORTH HIANI FL: ORACHAD FL: PALH FL: SANAGE FL: PORT FL: PORT FL: PORT FL: PORT FL: PORT FL: PORT FL: SANASOTA FL: SANASOTA FL: SARASOTA FL: SERRING FL: SERRING FL: SARASOTA FL: SERRING FL: SARASOTA FL: SERRING FL: SERRING FL: SARASOTA FL: SERRING FL: SERRING FL: SARASOTA
LOCATION	FL: NAPLES FL: NEW PORT FL: NEW PORT FL: NEW PORT FL: NORTH HI FL: NORTH HI FL: NORTH HI FL: OCALA FL: OCALA FL: OCALA FL: OCALA FL: OCALANDO FL: ORLANDO FL: PALH BEA
EPA ID#	USRN1 1649 USRN1 1649 USRN1 1649 USRN1 1645 USRN1 1485 USRN1 12829 USRN1 2829 USRN1 2829 USRN1 1426 USRN1 1426 USRN1 1426 USRN1 1426 USRN1 1426 USRN1 1436 USRN1 1436 USRN1 1430 USRN1 1480 USRN1 1480 USRN1 1480 USRN1 12839 USRN1 2839 USRN1 2849 USRN1 2840 USRN1 2241 USRN1 2241 USRN1 2241 USRN1 2241 USRN1 2242 USRN1 2037 USRN1 2241 USRN1 2241 USRN1 2241 USRN1 2105 USRN1 2242 USRN1 2105

Ra-226 2SIGNA Ra-228 2SIGNA U-234 2SIGNA U-238 2SIGNA (pc1/1) ERR (pc1/1) ERR (pc1/1) ERR (pc1/1) ERROR COLLECT Rn-222 2SIGNA ALPHA 2SIGNA BRTA 2SIG DATE (pc1/1) ERROR (pc1/1) ERR (pc1/1) ERR 0.8 0.9 0.9 0.6 0.9 0.4 0.7 0.6 0.6 2.0 1.9 0.5 1.2 0.6 0.8 0.8 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 3.1 2.8 0.3 9.0 1.6 0.2 0.6 0.8 0.7 0.00 0.6 0.7 6.0 0.5 0.5 1.6 0.5 0.3 0.3 0.2 2.0 0.1 0.2 0.6 0.2 0.2 0.1 1.0 0.4 0.4 0.8 0.0 34.6 163.3 169.1 131.9 127.0 93.6 98.6 51.6 80.3 57.3 56.9 81.1 466.8 119.0 46.3 46.1 46.9 136.2 133.2 -23.8 223.4 133.7 119.8 118.6 -47.6 136.1 -77.6 104.8 148.4 -22.7 77.9 93.7 2.7 121.8 290.1 160.4 66.4 242.7 266.7 -40.4 73.9 1133.5 .152.9 32781 51381 41481 186 9 41481 11381 51881 32581 42881 51281 2 381 51281 12 980 51181 32481 32781 52081 42981 12281 32581 32581 FL: WEST PALM BEACH 42981 FL:UNIVERSITY SHOR FL:WEST PALM BEACH FL:ST. PETERSBURG FL:TERPLE TERRACE FL:ST. AUGUSTINE FL:WINTER GARDEN FL:UINTER HAVEN FL: WINTER HAVEN FL: TALLAHASSEE FL: WINTER PARK FL: ZEPHYRHILLIS PL:VERO BEACH FL: WARRINGTON FL:TITUSVILLE FL:ST. CLOUD FL: TEQUESTA FL: SUNRISE FL: SUNRISE FL: SUNRISE FL: TAHARAC FL: VENICE FL: STUART FL: TAMPA FL: TAMPA FL: TAMPA LOCATION USRN10200X **JSRN11670X** USRIII 2541 USRN10523 USRR11081 **USRN13032** USRN11633 USRN13134 JSRN12542 USRN12101 USRN12106 USRN11639 USRN13312 JSRN1 2277 **ISRN11632 ISRN12832** USRN13135 USRN13309 JSRN13136 JSRN03322 **ISRN12833** ISRN12834 ISRN10271 ISRN11670 JSRN10255 JSRN11836 110% EPA

2 SIGMA ERROR		0.0	0.0 0.0 0.0 0.0 0.0 0.0
A U-238 (pCi/1)	AN N N N N N N N N N N N N N N N N N N	C C C C C C C C C C C C C C C C C C C	A
2SIGN		0.0	0.0 0.0 0.0 0.0 0.0
2SIGHA U-234 2SIGNA U-238 ERR (pC1/l) ERR (pC1/l)	AN N N N N N N N N N N N N N N N N N N		N N N N N O O O O O O O O O O O O O O O
25			1.0
Ra-228	V V V V V V V V V V V V V V V V V V V		N
_ ≤		0.1	0.0 0.0 0.1 0.1
Ra-226 2SIGN (pC1/1) ERR	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	N N N N N N N N N N N N N N N N N N N
	0.9 1.4 1.1 0.8 0.9 0.9	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.6 0.7 0.7 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
F	2.2 2.2 2.6 1.0 1.0 0.9	1.5 1.5 1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	11.2 11.2 11.3 11.5
2SICHA BETA ERR (PC1/	0.00 0.	2 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.07 0.09
AL.PITA pC1/1)	0.00	0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	2.5 0.8 0.2 2.1 14.1 14.1 14.1 1.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
2SIGNA ALPHA ERROR (pC1/1)	60.9 60.9 60.9 59.3 56.6 70.8	72.2 74.1 74.1 72.1 771.5 771.5 771.5 771.5 64.3 80.8 80.8 80.8 80.8 81.0	78.6 58.3 85.1 66.0 60.0 60.0 69.8 61.1 81.0 55.3 80.8 100.1 104.5 54.6 70.5 84.1 67.5 92.9 69.1 88.7 88.7 88.7
	210.3 94.1 71.3 32.6 47.2 164.7 1125.8 104.0	85.3 49.8 172.9 67.8 108.6 1190.4 1185.7 1185.7 112.4 35.4 476.8 64.4 476.8 55.6 66.1 2694.0	
COLLECT Rn-222 DATE (PC1/1)	71282 72082 72082 81182 81182 8 382 8 382 8 982		en
8 -			63
N	NNY XICUS XICUS XICUS SON SON	JEST DEED TO SEE TO SE	ALDSONV JAS ALDSONV JAS HAN GERALD GE
LOCATION	GA:ANEL GA:ALJANY GA:ALJANY GA:ALJANY GA:ALJANY GA:ANERICUS GA:ARRAGON GA:ARRAGON GA:ARRAGON	GA:BAINBRIDGE GA:BAACKSHEAR GA:BLACKSHEAR GA:CAHILLA GA:CATOOSA CO. GA:CEDARTOWN GA:CEDARTOWN GA:CEDARTOWN GA:CHICKAHAUGA GA:CHICKAHAUGA GA:CHICKAHAUGA GA:CHICKAHAUGA GA:CHICKAHAUGA GA:CHICKAHAUGA GA:CHICKAHAUGA GA:CHINERT GA:DANSON GA:DENOREST GA:DENOREST GA:DENOREST	GA: DENOREST GA: DENORLDSONVILLE GA: DOUGLAS GA: FITZGERALD GA: ATTZGERALD GA: GARDEN CITY GA: HTHESVILLE GA: HGTER GA: SOPERTON GA: SOPERTON GA: SOPERTON
EPA ID#	_ × _ × _ ×	USRN24092 USRN25038 USRN2454 USRN24662 USRN24629 USRN24420 USRN24420 USRN24630 USRN24630 USRN24630 USRN24631 USRN24691 USRN24691 USRN24991 USRN24995	×

Table B.6 Natural radioactivity in public groundwater systems-Georgia (continued)

2SIGNA ERROR		0.1	0.0		0.0						0.0	0.0			
	V V	6.0	0.0	٧N	1:1	٧N	٧V	٧٧	٧V	VN	0.0	0.0	٧V	٧N	٧N
GNA U															
4 2SI 1) ER	•	0.1	0.0		0.0						0.0	0.0			
U-23 (pc1/	Y X	9.0	0.0	۷N	0.1	٧N	ZN.	٧N	VN	S _N	0.0	0.0	NA	VN	VN
2SICNA U-234 2SICNA U-238 ERR (PC1/1) ERR (PC1/1)												1.6			
л-226 2SICMA Ra-228 (рС1/1) ERR (рС1/1)	VN VN	NA	NA	VN	NA	NA	VN	VN	YN N	٧N	VN	0.8	VN	NA	NA
2SIGM	•	0.0	0.0		0.0					ć		0.1			
Ra-226 (pC1/1)	VN VN	2.5	2.3	٧N	0.7	٧N	٧×	NA	NA	٧×	NA	2.5	VN	VN	٧×
2SIG ERR	0.8	5.4	9.0	1.4	9.0	0.7	9.0	6.0	0.3	1.1	1.0	1.0	1.0	6.0	
BETA (pc1/1)	NA 0.6	8.5	1.3	1.4	1.1	1.4	0.8	3.5	0.3	1.5	2.8	3,3	2.0	2.1	VN
2SIGNA NETA ERR (PG1/1)	0.7	2.4	6.0	8°0	0.8	0.4	0.4	0.5	0.3	1.1	1.2	1.5	0.4	0.5	
2SICHA ALPHA ERROR (pC1/1)	NA 0.6	3.5	3.4	0.7	1.6	0.7	0.8	2.1	0.8	2.3	3.6	5.5	-0.1	0.1	VN
2SIGNA ERROR	56.3	63,5	62.7	66.5	63.7	71.7	8.69	72.8	75.6	99.5	99,2	102.1	59.3	9.09	88.2
Rn-222 pC1/1)	24.7	139.6	26.6	738.8	354.0	30.1	9.401	129.8	265.6	103.1	80.4	41.3	40.7	38.6	332.9
OLLECT Rn-222 DATE (pC1/1)	42182	72182	72682	82382	71382	52182	52182	52182	52182	42182	42182	42182			
LOCATION CO	GA:SWAINSBORO	GA:SYLVESTER	GA:TIFTON	GA:TRION	GA:VALDOSTA	GA:WARNER ROBINS	CA:WARNER ROBINS	GA:WARNER ROBINS	GA:WARNER ROBINS	GA: WAYCROSS	GA:WAYCROSS	GA:WAYCROSS	CA:WILHINGTON ISLA	CA:WILMINGTON ISLA	CA: WRENS
EPA ID#	USRN25234	USRN24309	USRN24307	USRN24848	USRN23862	USRN22745	USRN22746	USRN22748	USRN22747	USRN22199	USRN22200X	USRN22200	USRN23630X	USRN23630	USRN25233

2SICMA ERROR										,	8.0		0.7		0.2	-	1.0								4.0	•												9.0				0.3			
U-238 pc1/1)	VN	V V	VN	VN.	<u> </u>	\ \ \ \ \	VN	VN	VV	VN	9.1	<u> </u>	6.4	VN	1,5	NA A	2 2	VN	MA	NA	VV	VN	۲ : د	VN	4.5	7 Y Z	Y Z	VN	VN	NA	V V	VN N	٧N	٧N	< !	V a	V 2	4.8	VN	VN	VN	2.1	VN N	V N	. ₹
2SIGHA U-238) ERR (pC1/1)											1.4		1.3		0.3	c	7.0							,		0.0												1.1				0.5			
2SICNA U-234 2SIGNA U-238 ERR (PC1/1) ERR (PC1/1)	VN	VN VN	NA	NA	VN V	V N	V _N	NA	NA	VN	16.0	V V	12.7	NA	3.0	AN L	YN V	VN	NA	VN	NA	VN	¥ i	NA S	0.0	* * V	¥ X	NA	VN	<	4 2	Y.	VN	VN N	VZ ∶	Y i	ς ς Σ	7.6	VN	VN	VN	4.7	VN VN	VN V	VN N
2SICHA Ra-228 ERR (pC1/1)	V.	V V	NA	VN.	VN VN	V V	×	VN	VV	VN	Ž:	V	NA	VN	۷.	VV.	V 2	VN	NA	VN	VN	VN	V.	VZ :	V X	V 2	V V	VN	VN	Ž i	NA NA	٧٧	NA	NA	VN.	VZ :	V 2	¥ × ×	MA	VN	VV	٧V	VN	< 2	VN
2SIGNA ERR											0.0		0.0		0.0	0	2.							0	0.0	2.0												0.0				0.0			
Ra-226 2SIGN (PC1/1) ERR	VN	Z Z	VN	VN :	VN X	VN N	VN	VN	VN	NA	0.2	<	0.1	ΝN	0.1	ν.,	7.7	V _Z	VN	VN	VΝ	VN.	۲ ۲	VN C	7.0	1 2	ž ž	VN	VN	۷ : 2 :	V V	VN	VN	٧ <u>٧</u>	VZ.	٧ : ت	V 2	0.2	\Z	VN	NA	0.2	< × ×	V 12	X X
2SIG ERR	1.3	4.7		1.2	1 2	0.7	1.2		9.0	1.0	0.3	0.0	6.0	6.0	1.3	,	7.1	1.4		1.7	6.0	1.1	1.0	6.9	1.1	0.0		1.3	1.2	4° 0	, «	2.5		1.2	1.2	1.1	1.0	2.3		0.7	1.1	. 6.0	0.0	7 . 1	1.2
BETA 2SIG (PC1/1) ERR	0.9	10.6	NA	4.2	VN V	1.4	2.9	VN	7.0	1.8	1.3	1.4	5.1	2.5	7.0	۷2 2	0.0	5.7	NA	8.3	1.2	2.9	۳ چو د	1.5	1.1.	1.6	O V	5.6	4.8	3.6	0.1	13.3	VN	3.8	3.1	3.1) · C	4.7	VN	1.0	9.4	2.6	1.1	2	3.3
2SIGHA BETA ERR (PC1/	6.0	3.0		1.0	-	0.40	8.0		6.0	7.0	2,5	0.0	2.4	6.0	1.3	-	7.7	0.8		6.0	0.4	9.0	8°0	4.0	3.7	1.5		1.2	1.0	2.9	0 0	1.2		0.8	8,0	0.7	0.1	4.0		0.7	0.4	1.4	۵. د. د	2 4	0.5
ALPHA pC1/1)	1.3	2 ° 0	VN	1.4	VV C	1.9	1:1	NA	1.5	-0.1	18.0	0.0	17.1	2.5	4.3	VN C	ט כ עיר	6.0	NA	0.5	0.4	0.0	1.5	500	13.0	0.01	S S	2.6	1.7	0.7	2.6	1.0	VΝ	1.0	0.7	0.5	0.2 NA	15.2	VN	1.0	9.0	5.2	0.3	; c	0.4
2SIGNA ALPUA ERROR (PC1/1)	79.4	81.9	82.2	117.1	65.4	93.1	68.4	82.8	81.1	0.06	53.6	65.0	75.9	7.86	74.3	62.8	117 9	98.9	82.6	107.7	120.1	9.69	93.7	92.8	1,061	01 7	65,3	62.4	58.6	97.2	0. 421	116.2	0.69	95.5	98.3	62.8	0.80	160.8	59.9	101.3	125.6	118.2	128.4	125.0	9.3
	169.2	348.3	715.5	403.7	221.9	1164.0	380.2	1182.0	146.7	237.5	0 1	309.5	165.9	9.768	1144.0	5/1.3	÷ ト		589.9			4.969	364.6	8.0	6/8	30% 7	16.2	215.5	84.6	41.7	403.5	301.0	158.1	207.6	245.5	37.2	10.00			212.6	392.6	280.0	305.7		6.1
COLLECT Rn-222 DATE (PC1/1)	61981	11381	11381	61881	11581	61681				52881	13081	12881	52981			11681	6 681	42481	11381	42481	71481	61081	71681	61181	186 6	52881	12281	9 881	9 881	42381	62881	6 481	11581	61881	61881	61781	12281	9 981	11681	42381	42381	6 481	42381	1061/	71481
LOCATION	ID: ABERDEEN	ID: ABERDEEN TD: AMERICAN FALLS	ID: AMERICAN FALLS	ID:AM10N	ID:ANTON	ID:AMRION	TD:ASHTON	ID: BLACKFOOT	ID: BLACKFOOT	ID: BOISE	ID: BOISE	ID: BOISE	ID: BOISE	ID: BOISE PENITENTI	ID: BUIL	1D: BURLEY	ID: BUKEET	ID: CHUBBUCK	ID: CHUBBUCK	ID: CHUBBUCK	ID: COTTONNOOD		ID:DALTON GARDENS	ID:EMETT	ID:FILER	INSCAPORN CITY	ID:GLENNS FERRY		ID:GOODING	ID: GRACE	THEGRANGEVILLE	ID: HOMEDALE	ID: IDANO FALLS	ID: IDANO FALLS	ID:IDAHO FALLS	ID: IONA	IN: JEROME	ID:KIMBERLY	ID:KIMBERLY	ID: LAVA HOT SPRING	ID: MALAD CITY	ID: HERIDIAN	ID:HOMTPELIER	In: NOSCON	1D:10SC0U
EPA IO#	USRN1 4007	USRN10/25	USRN10723	USRN14010	USRN10728	USRN14010X	USRN14009	USRN10726	USRN14014	USRN13490X	USRN10411	USRN13490	USRN13487	USRN13489	USRN1 5998	USRNIOR31	USKN16123	USRN12600	USRN10724	USRN1 2600X	USRN14965	USRN1 3894	USR414961	USRN13809	USRN16126	USKN1 3606	USRN10827	USRN1 5997	USRN16128	USRR12596	USKN14968	USRN1 3623	USRN10731	USRN14012	USRN14008	USRN14006	USKNI 6106	USRN16107	USRN10729	USRN12605	USRN12603	USRN13624	USRN12601	11CBM1 5354	USK#14960

Table B.7 Natural radioactivity in public groundwater systems-Idaho (continued)

2SIGMA ERROR						0.4		0.4																	0.1						0.2					7.0		
	٧×	VN	VV	VV	NA	3,5		3.5 (NA	NA	VV	NA	VV	NA	NA	NA	NA	NA	NA	NA	NA	NA	VN			٧V	NA	VV	٧V	VN	1.1	VN	٧V	NA	NA	0.4	NA	NA
IGNA U-234 2SIGNA U-238 ERR (pC1/1) ERR (pC1/1)																																						
4 2SI						9.0		0.5																	0.3						0.2					9.0		
(pc1/	NA	٧N	٧×	VN	NA	5.6	VN	4.8	٧N	٧N	VN	٧V	٧V	VN	٧N	٧V	VN	VN	VN	٧N	¥2	NA	NA	VN	3.0	NA	٧ ٧	۷V	٧×	٧N	1.9	٧N	۷V	NA	٧N	6.4	NA	VN
25																																						
Ra-228 pC1/1)	NA	VΝ	NA	VN	NA	VN	NA	NA	NA	NA	NA	NA	NA	NA	NΛ	NA	NA	NA	٧N	NA	VN	NA	NA	٧N	NA	NA	NA	VN	۷N	VΝ	NA	۷N	NA	NA	٧N	VN	VN	NA
2SIGNA ERR (0.0		0.0																	0.0						0.0					0.0		
Ra-226 2SIGMA Ra-228 (PC1/1) ERR (PC1/1)	VN	VN	VN	NA	NA	0.2	VN	0.1	VN	NA	۷N	NA	NA	NA	NA	VN	VN	VN	VN	NA	VN	VN	VN	VN	0.2	VN	VN	VN	NA	VN	0.1	NA	NA	VN	NA	0.1	VN	NA
		0.8		1.0	1.0	0.5	1.0	1.1	0.8	1.5	1.5		2.0	1.0	6.0	9.0	1.6		5.0	0.8	0.8	0.7	8.0	6.0	0.4	0.0	5.3		1.1		1.1	0.0	0.8	0.9	0.7	1.6		1.0
SIGNA BETA 2SIG ERR (PC1/1) ERR	NA	1.3	VN	2.3	2.3	1.6	2.8	4.2	1.8	10.2	8.2	VN	18.8	5.6	1.6	0.1	8.7	NA	14.0	1.4	1.3	0.9	1.2	1.3	-1.0	0.0	17.0	VN	3,8	VΝ	4.4	0.0	1.6	1.9	9.0	2.6	VN	2.8
2SIGNA BETA ERR (PC1/)		0.3		0.5	9.0	1.6	0.7	1.2	6.0	0.3	0.5		0.7	0.2	0.2	0.5	1.3		2.8	9.0	0.7	0.4	0.0	0.3	1.0	1.0	1.6		6.0		1.0	0.0	0.9	0.4	0.7	3.8		0.8
LLECT Rn-222 2SIGNA ALPHA DATE (pC1/1) ERROR (pC1/1)	VN	0.1	NA	0.3	0.5	7.7	1.0	3.9	2.2	-0.2	0.5	VN	0.7	0.0	0.1	9.0	2.0	NA	2.1	1.4	1.4	9.0	0.0	0.2	3,3	1.7	9.0	NA	1.6	٧N	3.0	0.0	2.3	0.2	1.3	15.7	۷N	1.6
2SIGMA ALPHA ERROR (PC1/1	64.3	105.7	88.2	104.5	110.6	0°29	8. 49	104.4	104.0	109.4	6.56	57.2	148.4	61.0	106.5	0.06	113.9	88.1	83.2	109.0	9.901	103.1	91.6	103.8	61.8	75.5	151.3	58.1	99.5	81.2	58.6	9°66	100.7	61.0	218.2	125.1	0.86	6.901
tn-222 oc1/1)	-41.7	76.4	-178.2	10.9	39,3	189.7		597.3		288.1	236.2	10.4	185.8		191.8	278.5		0.79-		520.0		2.069			37.4	658.9	232.6	142.9	270.4	102.6	44.0	255.4	9.15		850.3	224.3	158.0	39.5
COLLECT Rn-222 DATE (PC1/1)	12281	91081	12081		91081	6 381	6 381	61181	71581	61181	61181	11681	9 981	61081	71581	71681	42481	11381	42481	71581	71581	72781	42381	71581	61781	61781	9 981	11681	61881	11481	9 881	42381	71581	61781	7 281	9 981	11681	91081
LOCATION	ID:MOUNTAIN HOME	ID: MOUNTAIN HORIE	ID: HOUNTAIN HOME B	ID: MOUNTAIN HORE B	ID: MOUNTAIN HOME B	ID:NAMPA	ID:NAHPA	ID:NEW PLYMOUTH	ID:OLDTOWN	ID: PARIIA	ID: PARMA	ID: PAUL	ID:PAUL	ID: PAYETTE	ID:PINEHURST	ID:PLUIRIER	ID: POCATELLO	ID: POCATELLO	ID:POCATELLO	ID:POST FALLS	ID: POST FALLS	ID:POST FALLS	ID: PRESTON	ID: RATHDRUM	ID: REXBURG	ID: RIGBY	ID: RUPERT	ID: RUPERT	ID: SHELLEY	ID: SHELLEY	ID: SHOSHONE	ID:SODA SPRINGS	ID:SPIRIT LAKE	ID:ST. ANTHONY	ID: SUN VALLEY	ID:TWIN FALLS	ID:WENDELL	ID: WENDELL
EPA ID#	USRN10828	USIN16053	USRN10829	USRN16050X	USIRN1 6050	USRN13625	USRN13622	USRN13807	USRN14964	USRN13810	USRN13810X	USRN10722	USRN16127	USRN1 3859	USRN14834	USRN14962	USRN1 2598	USRM10727	USRN12604	USRN14963	USRN14833	USRN1 5253	USRN1 2602	USRN14967	USRR14016	USRN14013	USRN16124	USRN10730X	USRN14011	USRN10732	USRN16129	USRN12599	USRN14966	USRN14005	USRN14377	USRN16052	USRN10830X	USRR16051

Ra-226 2SICHA Ra-228 2SICHA U-234 2SICHA U-238 2SICHA ERR (pC1/1) ERR (pC1/1) ERROR 2.3 0.0 0.0 0.0 0.3 NA 2.3 0.0 0.0 NA ¥. Ş ¥ ž N N S N 0.4 NA N NA ž N N Z. 2 2 ž ž 2.4 0.2 2.5 0.0 1:5 2.5 1.2 NA S 2.7 NA 9° 0.0 9. • 3 YN X × N ž × × ž × Y X 1.0 1.0 7: (pC1/1) ERR (pC1/1) 4.2 9.6 8.8 NA VN 4.4 3.1 NA 7.3 ٧× M ¥ ž N M S ž ž M ž ž ž YN ž 0.0 0.0 8.4 NA × × ž 0.3 9. NA ¥ × $\leq \leq$ NA × × 2SIGHA BETA 2SIG ERR (pc1/1) ERR 22.6 3.9 2.0 3.9 4.1 12.9 0.4 37.7 20.8 13,3 2.5 2.2 9.4 8.3 2.0 8.61 24.5 18.8 26.5 14.8 9.0 10.4 -0.3 2.3 30.7 39.7 8.0 2.9 10.1 14.1 0.9 4.1 4.1 5.0 2.0 2.4 3.0 2.6 2.2 2.1 2.1 3.8 3.0 0.0 9.4 2.8 2.1 3.9 4.2 1.8 8.2 1.3 2.0 2.2 0.1 0.4 ERROR (pc1/1) 2SIGNA ALPHA 12.8 3.9 29.3 0.8 18.6 3.9 8.0 0.3 1.8 18.6 12.0 2.7 0.3 16.5 24.2 9.0 1.2 6.5 0.1 0.3 6.1 0.3 4.1 0.98 124.9 58.0 98.86 85.6 145.0 01.0 69.5 8.91 8.101 59.8 96.5 147.3 68.3 72.4 40.3 62.2 104.5 94.9 104.7 9.101 142.3 121.3 73.1 61.5 58.3 78.6 68.7 58.2 115.1 64.1 01.0 67,1 113.9 DATE (pC1/1) COLLECT Rn-222 296.0 439.9 -2.0 209.6 112.6 8.091 92.9 338.6 315,3 148.7 45.9 55.8 550.8 324.9 144.8 647.2 294.0 256.6 30.9 38.0 101.4 47.2 210.3 65.4 45.9 97.6 127.4 91.1 211.1 72.3 189.4 18.1 59.2 183.8 237.7 1,791 138.8 486.1 373.7 268.6 81.1 76.1 218.3 68.7 241.7 72682 72782 8 482 81882 82482 82482 72082 91782 72982 72782 82682 72782 72082 72082 282 9 382 82082 82082 13082 82582 8 682 82682 71482 72782 82782 82782 9 782 9 182 61782 81082 72082 81882 7 282 8 582 82682 82682 8 382 9 182 81882 82782 82782 8 482 72682 92082 IL: ARLINGTON HEIGH IL:E. CHICAGO HEIG L:E. CHICAGO HEIG IL: CARPENTERSVILLE IL:CHICAGO HEIGHTS II.: CLARENDON HILLS IL: BUFFALO GROVE IL:BUFFALO GROVE L:DOWNERS GROVE IL: COLLINSVILLE IL: COUNTRY CLUB IL:CAROL STREAM L: BLOOMINGDALE IL:CRYSTAL LAKE L: EDWARDSVILLE IL: CHILLICOTHE LESAST PEORIA IL: BENSENVILLE IL: BOLINGBROOK IL: CREVE-COURE IL: DES PLAINES IL:DES PLAINES IL: BOLINGBROOK L:DES PLAINES IL:CREST HILL L: BARRINGTON IL: BEARDSTOWN IL: EAST ALTON IL:GLEN ELLYN IL:GLEN ELLYN IL:GLEN ELLYN IL: BELVIDERE L:ELK GROVE (L:CALESBURG L: FLOSSMOOR L: BARTLETT IL: BELLMOOD IL: BELLWOOD L: BETHALTO L: ELMIURST IL:FOX LAKE IL: FOX LAKE IL: FREEPORT IL: BATAVIA IL: CLINTON L:CENESEO IL:GENEVA L: AURORA IL:DARIEN IL: DEKALB IL: ELGIN LOCATION IL: DIXON JSRN24950X JSRN24790X **ISRN24320X** USRN24850X JSRN24980X **USRN25040X** USRN25040 JSRN24790 **ISRN25379 USRN24088 USRN2 38 58** USIRN24850 USRW25378 JSRN24950 JSRN25115 USRN24348 JSRN24549 JSRN24979 USRN24980 JSRN24445 JSRN24255 **USRN23989 USRN24085** JSR#124952 USRN24888 USRN24849 JSRN24319 JSRN25406 ISRN24320 USRN24893 USRN24553 USRN24978 **USRN24552** USRN24084 **USRN25377** JSRN24256 JSRN24368 JSRN24602 JSRN24089 JSRN24796 JSR1124258 USRN24797 JSRN24366 JSRN24946 USRN24447 **USRN24321 JSRN24367** JSRN25041 JSRN23306 JSR1124564 JSRN24795 ISRN23593 JSRN2 5044 #CII EPA

2SIGHA BETA

COLLECT Rn-222 2SIGHA ALPHA

LOCATION

EPA ID#

Ra-226 2SICHA Ra-228 2SICHA U-234 2SICHA U-238 2SICHA

2SIGMA ERROR	0.0	0	0.0	0.0				0.1	0.0							0.1	0.0	0.0	0.0	0.0	0	0.0			0.0	0.0	0.0	0.0		0.0	c	7.0	0.1	0.0				0.0		0.0	0.1	0.0	0.0	0.1	
A U-238 (pC1/1)	0.0	VN O	0.1	0.1	NA	VN.	V X	0.4	0.0	NA	NA	VN:	VN N	V V	NA N	0.3	0.1	0.1	0.1	0.1	ج ج د	0.1	VN	NA	0.1	0.0	1.0	0.0	VN	0.1	٧٧ .	1 ° 1	0.2	0.1	VN:	V Z	< < < < < < < < < < < < < < < < < < <	0.1	٧N	0.2	0.4	0.1	0.1	۷ و د د	NA
																Ε																												,	
	0.3	0	0.3	0.2				0.1	0.1							0	0.2	0.2	0.3	0.1	0	0.0			0.1	0.0	0	0.0	,	0.1	•	0.2	0	0.2				0.1		0.4	0.4	0.1	0.1	0.0	
IGNA U-234 2SIGN ERR (PC1/1) ERR	2.0	VN C	2.0	1.2	N	VV	V2	0.5	0.3	NA	NA	YN:	VN X	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Y Y	2.0	1,8	1.6	2,3	9.0	N C	0.1	VN	NA	0.0	0.0	T · T	0.0	VN	0.3	YN,	1 ° T	1.6	1.9	YN:	≨ à	VN N	1.0	NA NA	2.9	3.2	0.5	0.6	٧ - د د	VV
2SIGNA U-234 ERR (pC1/1)	1.2		1.2	1:1					1.0				7	0.0			0.3	6.0	1.9	0.8					1	0.7	7.0			8.0			1.1	6.0				0.8		1 .2	0.7				
Ra-228 (pC1/1)	5.7	NA R	9.4	4.4	NA	VN	V V	V V	2.4	NA	NA	VN	VN	C • 7	Y V	VN	3.6	4.4	5.8	3.7	V V	¥ 2	٧z	NA	VN	0.7	7.4	VN N	VN	1.0	٧V	V 2	5.9	2.5	NA	٧:	V 2	2.5	VN	8.7	3.7	VN	VN	4 2	NA
ş	0.1	-	1.0	0.0		*		0.0	0.1							0.0	0.1	0.1	0.0	0.1	٥	0.0	0.1		0.1	0.0	0.0	0.0)	0.1		0.0	0.0	0.1				0.1		0.1	0.1	0.0		0	2
	6.2 (4.2 (NA	NA	VN				VN	٧.	VN	V 2 2	NA NA						٠, ۲۷	•				8.0		νν 0 · 6					4.5 (VN	٧ <u>٠</u>	VV			6.1		1.9	\$:		NA
Ra-226 (pC1/1)	9	- <	2	4	_	_			· m	-	_				_	0	6	5	4	بر م		-		_	. 2	0	₹ •	- c		2	_ (o -	4	3	_			, 20	_	ٔ ف	<i>ۍ</i> آ	-		_ <	5
2SIG	3,7	3.2	4.1	3.0	2.4	2.1	2.4	7.1	2	1.9	1.5	1.0	4.6	7.0	2.0	1.4	3.0	3.1	3.1	3.1	3.0	2.5	3 8	4.8	5.1	6.3	5.1	3.0	2.4	3.6	3.1	0.0	5.0	3.5	2.1	2.0	11.1	4.6	6.3	6, 4 6, 4	0.9	4.5	5.0	7.1	4.1
BETA 2SIG (PC1/1) ERR	26.5	2.5	7.70	16.3	4.3	2.5	0.0	3.8	16.7	2.6	1.7	1.3	6.9	20.02	0.3	1.4	19.4	17.3	19.1	17.1	0.0	6.4	4.1	5.1	16.7	17.7	16.6	VN 9	2.1	9.2	12.4	0.0	31.7	22.0	2.1	2.8	1 ° 0	13,1	12.8	25.5	35,3	10.5	14.7,	n «	6.4
2SIGUA BETA ERR (PC1/	4.0	2.2	2 6	2.8	1.4	1.8	1.1	1.7	5.1	1.2	8.0	9.0	2.5	7.5	0.0	2.0	2.1	3.0	3.0	9.6	2.3	1.8	3.1	2.4	4.1	3.1	7.9	7.7	1.3	5.6	6.0	7.7	4.1	2.5	1.1		0.5	3.4	3.1	יי מיני	4.6	3.7	3.8	ر د د د د	2.0
ALPHA PC1/1)	18.0	2.7	15.5	12.1	0.1	2.7	0,0	2.6	14.8	1.6	0.2	0,3	1.0	7.0	0.0	3.2	9.5	12.7	15.0	11.5	ا ا ا	2.0	3.8	9.0	8.4	5.5	2,4	NA 7.F	9.0	9.5	0.4	0.0	12.0	0.9	-0.3	9.0	J C	9.5	1.0	20.2	20.6	6.3	9.1	ρ°ς Υ	0.5
2SIGMA ALPHA ERROR (pC1/1)	100.4	57.4	0.50	111.7	9, 76	84.1	59.2	70.8	82.8	129.8	81.1	57.8	101.1	0.42	69.1	69.1	111.8	6.68	0.89	69.2	0.70	6.96	74.5	338.6	56.5	73.4	59.1	75.9	70.5	82.1	95.6	62.7	59.1	58.8	90.6	63.4	83.9	121.8	56.1	107.2	59.9	0°26	100.6	0.20	62.2
		207.4				226.1	137.2		111.1			40.4		0.022	63.5	81.2		60.5	64.5	235.2						15.5		188.9			-14.4	25.1	174.2	183.2	105.4	243.9	119.2			174.0 1	118.7			138.1	21.8
COLLECT Rn-222 DATE (pC1/1)		81682		82582	81882	8 982	72782	61882	82682	72082				81282		8 982	2532			2082	282		83182					8 552				72182			61782	82582			92082	82582	8 982	91782	91782	72783	72682
100	5	ω 0	. u	,	ω	SO. 8		v	2	, ~	w			2	. a	, ω	-	7		VC	0	J &				I S		D CL	, ω	ω,	ω .		- 01	Ů.	9	w =	20	5	5.	ω 0			₽\ r	- 1	7
	90	PARK	Ŀ	2 12	REST			IL:PEKIN TI-PEORIA HETCHT	77		NO.		IL:RICHTON PARK	3 s	. T. I.S.	9	IL: ROLLING MEADOWS	LLE		IL: ROUND LAKE BE	2 :	= =	IL: SAUK VILLAGE	URG		II.: SO. CHICAGO H	IL:SPRING VALLEY	KLES	ပ္	000	Ä		A RK	ODV:	HOI:		IL:WAUCONDA TI-WESTERN SPRIN		_	<u></u> 9	IL:WINTHROP HARBOR	31	DALE	VEK Se	CK.
NOI	IL:OAK BROOK	IL: ORLAND PARK	IL:OILOWA	IL: PALATINE	IL:PARK FOREST	IL:PARK FOREST	IL:PAXTON	KIN	RII	ONV	IL: PRINCETON	IL: RANTOUL	CHTON	IL:RIVERSIDE	IL: ROCK FALLS	IL: ROCKFORD	LLING	IL: ROMEOVILLE	IL: ROSELLE	T GND	IL:S. ELGIN	IL: SANDUI CH	UK VI	IL: SCHAUMBURG	IL: SILVIS	. CHI	RIEG	IL:SI. CHARLES	IL: STERLING	IL: STREAMMOOD	IL: SYCAMORE	II.: TROY	IL:VILLA PARK	IL:W. CHICAGO	IL: WASHINGTON	IL:WATSEKA	IL:WAGCONDA	IL: WESTHOUT	IL: WHEATON	IL:WEELING	NTHRO	IL:WOOD DALE	עם מסו	LL:WOOD KIVEK	IL: WOODSTOCK
LOCATION	11:04	IL:01	TIPED	IL:PA	IL:PA	IL:PA	IL:PA	TI - PEORI	TI. PERII	IL: PLANO	IL:PE	IL: RA	IL:RJ	IL: KI	TLERG	IL: RC	IL: RO	IL: RC	IL: RC	IL: RC	II.:S.	TLESA	IL: SA	IL: SC	IL:SI	IL: SC	ILESE	11.57	IL: ST	IL:SI	IL:SY	II.: TROY	IL:VI	II.:W.	II.:W	IL:W	Tr - mi	IL:WE	ILLIN	IL: W	IL:WI	IL:W	IL:WOOD	11:W	1L:140
#6	045	726	006	895	793	599	205	307	955	086	957	208	792	1991	248	597	392	1592	114	791	365	550X	102	646	885	953	366	951	944	246	551	206	385	429	1305	889	920	563	407	896 628	909	380x	380	257	209
EPA ID#	IISRN25045	USRN24726	USKN24920	USRN24895	USRN24793	USRN24599	USRN24205	USKN23310	1512 24 515 15 15 15 15 15 15 15 15 15 15 15 15	USRR24086	USRN24957	USR1124208	USRN24792	USRNZ466/	050577NSU	USRN24597	USRN24392	USRN23592	USRN25114	USRN24791	USRN24365	USINI24550X	USRN25102	USRN24949	USRN24885	USRN24953	USRN23366	USRN25235	USEN24446	USRN24947	USRN24551	USKNZ4083	USKN25385	USRN25429	USRN23305	USRN24889	0564211150 11518174665	USRN24563	USRN25407	USRR24896	USRN24604	USRN25380X	USRN25380	USKNZ 3988	USRN24209

2SIGNA ERROR					0.0																																																
ICHA U-234 2SIGHA U-238 ERR (pC1/1) ERR (pC1/1)	NA	۷N	VN N	۷ _N	0.0	VZ:	VΝ	۷×	NA	VN	۷N	۷N	VN	NA	VN	۷N	۷N	VN	۷N	VN	۷N	٧N	NA	NA NA	VN	VN	NA	NA	NA	NA	VN	NA	VN	NA	٧N	VN	VN	VN I	VZ:	Š.	VN :	Y _N	٧×	۷N	VN	٧×	VN.	٧ ٢	V :	V ×	N N	V 2	NA
2SIGH/					0.0																																																
2SIGHA U-234 ERR (pc1/1	٧N	۷ ۲	۷N	× ×	0.1	VZ :	VN	٧٧	٧V	VN	۷N	VN	٧N	VΝ	VN	VN	VN	٧N	VΝ	NA	VN	٧N	٧N	٧N	VN	VN	VN	VN	NA	۷N	VN	VN	VN	VN	VN	٧V	٧٧	VZ:	V.	≤ Z	< :	ž	۷ ۷	VN	VV	۷ ۲	VZ:	VI.	VZ:	V X	NA AIA	V V	INA
2SIGHA ERR																																																					
2SIGMA Ra-228 ERR (pC1/1)	۷V	VN	¥	V N	< :	¥.	Y _N	٧N	VN	٧N	VN	۷N	۷N	۷N	NA	۷N	NA	۷V	۷N	٧N	۷N	NA	NA	VN	VN N	VN	VN	VN	NA	NA	٧N	NA	۷N	۷N	VN	NA	VN	Y _N	VN.	V.	Y.	٧×	٧×	Y _Z	۷×	VN	VZ :	۷ ۷	VZ :	< × ×	NA AM	VV V	NA
				,	0.0																																																
Ra-226 2SICE (PC1/1) ERR	۷۷	۸×	٧N	YZ Z	1.4	VN :	×	٧×	××	VN	VN	NA	NA	NA	٧N	٧×	٧X	VN	٧	VN	VN	NA	VN	VN	VΝ	٧N	NA	VN	۷N	VN	NA	VN	VN	VN	VN	٧N	VN	VN	VN	۷ _N	V _N	××	VN.	VN	V _N	٧N	< :	٧N	VN:	VN A	V 2	V X	WW
2SIG ERR	1.1	1.2	1.0	۳. چ	2.0	2.0	1.7	0.0	2.1	1.1	1.1	1.0	6.0		1.1	1.1	1.0	9.0	1.8	4.7	1.1	2.4	1.0	1.2	1.1	1.2	6.3	4.8	1.0	1.1	0.0	4.2	1.5	0.8	1.1	1.3	1.2	1.2	1.1		1.6	4 .3	1.2	3,3	1.8	1.7	9. 4	1.0	4.2	0.0	1.0		1 . 1
N BETA 2SIG (PC1/1) ERR	1.9	3.4	1.8	2.2	2.9	2.9	1.8	0.1	9.4	1.8	1.5	0.9	2.1	VN	9.0	2.9	1.6	0.5	2.8	7.7	2.4	5.2	1.7	1.9	1.7	3.2	-0.4	-3.3	1.6	2.8	0.0	4.0	7.2	6.0	2.4	4.1	4.2	1.7	2.0	VN	2.3	4.5	2.4	2.3	2.5	1.6	7.0	•	6.4	1.1	1 . 1	7 (7 00
2SIGNA BETA ERR (PC1/	0.8	0.8	0.7	1.1	1.2	1.1	1.2	2.1	0.7	9.0	0.5	0.4	0.5		9.0	0.9	0.5	0.8	1.0	1.8	0.7	1.2	9.0	0.7	9.0	1.1	2.4	0.0	0.7	0.0	1.8	2.2	6.0	0.7	0.8	6.0	0.8	0.7	0.7		1.0	1.2	0.8	1.8	1.4	1.3	1.7	1.0	0.0	4.0	4.0	7.0	0.7
2SIGHA ALPHA ERROR (pC1/1)	0.8	0.4	0.1	1.2		0.7	T	-0.3	+0°4	0.5	0.3	-0.1	0.5	VN	0.3	1.0	0.1	1.0	0.9	1.3	0.2	1.4	0.3	0.2	0.1	2.8	9.0	0.0	0.2	0.0	0.5	1.5	0.2	0.5	1.1	1.1	0.5	0.2	0.3	VN	0.1	0.9	0.8	1.7	1.9	1.4	0.5	S°	0.0	0.0	1.0	0.0	
	62.5	А	101.3	118.4	65.5	76.7	78.9	9.09	9.09	0.49	62.6	6°66	44.7	73.7	8.07	121.6	89.5	88.7	0.09	138.3	6.09	64.5	60.2	65.2	8.69	70.1	59.1	63.4	83.0	92.2	86.0	210.9	128.8	107.4	62.2	61.2	65.5	88 0	63.4	72.1	65.9	59.2	77.3	76.5	61.6	75.7	74.4	73.0	101.8	74.1	1010	7. 671	0.67
LLECT Rn-222 DATE (PC1/1)	39.2	142.5	86.0	412.6	83,3	383.5	352.4	17.5	53.9	297.9	176.3	370.1	1.5	15.9	42.7	-17.3	397.7	80.3	24.5	267.4	-30.4	72.3	86.5	318.2	38.5	13.5	15.0	14.5	65.8	-18.7	271.2	33.4	212.9	9.09	30.0	84.0	70.9	34.9	-26.2	15.9	-28.6	49.7	310.9	273.1	29.4	156.0	-7.2	222.1	160.1		350.0	329.0	7, 1
COLLECT Rn-222 DATE (PC1/1)	61581	71681	62481	184 9	51381	6 881	6 881	51181	52781	62981	62381	61881	51281	71381	51981	62381	81381	42381	52681	71481	42981	111081	83181	42981	81681	61581	51181	51181	51881	51881	42081	81081	7 781	52781	61581	7 681	7 681	62581	41581	11 981	51381	7 681	61581	9 181	111081	11 981	42881	9 181	81281	51281	7 701	18/ /	42001
LOCATION	IN: ALEXANDER	IN:ANDERSON	IN:AMGOLA	IN:AT'FICA	IN:AUBURN	IN: AURORA	IN:AURORA	IN: BERNE	IN: BICKNELL	IN: BLOOMFIELD	IN: BOONEVILLE	IN: BRAZIL	IN: BRENEN	IN: BROWNSBURG	IN: CARHEL	IN: CHANDLER	IN: CHARLESTOWN	IN: CHESTERFIELD	IN: CHESTERTON	IN: CLINTON	IN:COLOUBIA CITY	IN: COLUMBUS	IN: CONNERSVILLE	IN: COVINGTON	IN: CROUN POINT	IN:DANVILLE	IN:DECATUR	IN:DECATUR	IN: DELPHI	IN: DELPHI	IN: DUNK IRK	IN: DYER	IN: EDINBURG	IN:ELKHART	IN: ELWOOD	IN: FAIRHOUNT	IN: FAIRHOUNT	IN: FORT BRANCH	IN: FRANKFORT	IN:FRANKLIN	IN:GARRETT	IN:GAS CITY	IN: CREENCASTLE	IN: CREENDALE	_		IN: HARTFORD CITY	IN:JEFFERSONVILLE	IN: JEFFERSONVILLE	IN:KENDELLVILLE	IN:KNOX	IN:KOKONO	IN:LA PORTE
EPA ID#	USRN13853	USRN14713	USRN14143	USRN13703	USRN13063	USRN13700X	USRI113700	USRN1 2999	USRN1 3353	USRN14181	USRN14072	USRN13933	USRN1 3029	USRN1 5731	USRN1 3221	USRN14153	USRN15586	USRN12566	USRN13348	USRN14714	USRM12735	USRN17473	USRN15904	USRN12676	USRN15587	USRN1 3852	USRN1 3000X	USRN1 3000	USRN1 32 20X	USRN13220	USRN12375	USRN15613	USRN14507	USRN1 3444	USRN1 38 54	USRN14380X	USRN14380	USRN14148	USRN1 2273	USEN1 / / 26	USRN1 3064	USRN14379	USRN13851	USRN15907	USRN17474	USRN17626	USRN1 2641	USRN1 5909	USRN1 5588	USRN13133	USKN1 2867	USKN14509	USKNIZ440A

Table 8.9 Natural radioactivity in public groundwater systems-Indiana (continued)

2SIGHA ERROR	0.1	
U-238 pc1/1)	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
2SIGNA) ERR (0°1	
2SIGNA U-234 2SIGNA U-238 2SIGN ERR (pC1/1) ERR (pC1/1) ERROR		
25	<pre><</pre>	< < < < < < < < < < < < < < < < < < <
Ra-226 2SICHA Ra-228 (PC1/1) EKR (PC1/1)	0.0	
Ra-226 (pc1/1)		N N N N N N N N N N N N N N N N N N N
2SIG ERR	0.77 0.77	1.1
=	00000000000000000000000000000000000000	2.0.2.0.1.1.0.0.0.1.1.0.0.0.0.0.0.0.0.0.
2SICHA BETA ERR (pC1/	00.00000000000000000000000000000000000	0.0
ALPUA pC1/1)	00000000000000000000000000000000000000	0.000.0000.0000000000000000000000000000
LLECT Rn-222 2SICHA ALPHA DATE (PC1/1) ERROR (PC1/1)	84.0 66.7 90.6 60.7 100.4 60.2 90.6 62.7 60.2 1111.1 111.1 111.1 111.1 111.1 111.2 111.2 111.3 111.3 111.4 111.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11	65.4 60.8 61.5 106.6
Kn-222 pC1/1)	47.9 145.6 145.6 145.6 185.9 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7	
COLLECT Rn-222 DATE (pc1/1)	42081 4 981 5 1281 6 981 6 981 6 981 6 981 6 981 7 1381 7 1381 6 881 7 1481 7 981 7 981 7 981 7 981 8 527 8 881 8 531 8 531 7 1481 7 981 8 527 8 1481 7 881 8 527 8 1481 7 881 8 527 8 181 8 181	42881 42781 61581 62481 9 881
LOCATION	IN: LA PORTE IN: LAYETTE IN: LAKAKETTE IN: LAMBEHCEBURG IN: LEBANON IN: LIGONIER IN: LINTOH IN: LOWELL IN: HADISON IN: HADISON IN: HADISON IN: HADISON IN: HADISON IN: HOORESVILLE IN: HOORESVILLE IN: NOP CASTLE IN: NOP CASTLE IN: NOP RANCHESTER IN: NOP MANCHESTER IN: NOT RE DAHE IN: PLANUTLLE IN: PLANUTLLE IN: PLANUTLLE IN: PLANUTLLE IN: PLANUTLLE IN: ROCKVILLE IN: ROCKVILLE IN: SELLEKSBURG IN: TELL CITY IN: TENTON IN: TELL CITY IN: TELL CITY IN: TELL CITY IN: TENTON IN: TELL CITY IN: TENTON	IN:W. LAFAYETTE IN:WABASH IN:WALKERTON IN:WASHINGTON IN:WASHINGTON
EPA ID#	USRN12440 USRN13702 USRN13701 USRN13701 USRN13701 USRN13701 USRN13442 USRN13442 USRN131442 USRN13158 USRN131442 USRN131442 USRN13028 USRN131234 USRN131234 USRN131312 USRN131312 USRN131313 USRN13473 USRN13473 USRN13473 USRN13473 USRN13473 USRN13473 USRN13132 USRN13677 USRN13677 USRN13677 USRN13677 USRN13677 USRN13677 USRN13677 USRN13677 USRN13677 USRN1367 USRN1367 USRN1367 USRN13932 USRN1367 USRN1367 USRN1367 USRN1367 USRN1367 USRN1367 USRN13935 USRN1367 USRN1367 USRN1367 USRN1367 USRN1367 USRN1367 USRN13935 USRN1367 USRN1367 USRN1367	USRN12675 USRN12609 USRN13857 USRN14152 USRN14152

Table B.10 Matural radioactivity in public groundwater systems-Kansas

EPA ID#	LOCATION	COLLECT DATE (Rn-222 (pC1/1)	2S I CHA Error	ALPUA (pC1/1)	2SIGNA ERR (BETA PC1/1)	2SIG ERR	Ra-226 (pC1/1)	Ra-226 2SICHA Ra-228 (pC1/1) ERR (pC1/1)	Ra-228 pC1/1)		2SIGNA U-234 2SIGNA U-238 ERR (pC1/1) ERR (pC1/1)	2SIGNA ERR (2SICNA ERROR
USRN30472	KS: ABI LENE	11883	340.2	118.1	0.5	0.9	1.0	1.2	VN	(NA				VN	
USRN24313 USRN23864	KS:COLBY KS:COLUMBUS	71382	7.3 1	117.7	7.1 12.9	3.6	4.2	1.6 3.6	0.2	0.0	NA 0.7	0.7	2.3	0.7	2.2	1.3
USRN24315	KS: DAIIAR	71382	VN		4.2	1.7	2.5	1.4	9.0	0.0	VΝ			0.3	1.2	0.2
USRN25497	KS:DERBY	91482	NA		11.9	0.4	4.2	3,3	0.4	0.0	VN			0.7	4.7	0.5
USRN23866	KS:GALENA	71382	210.7	119.9	6.2	1.6	5,3	1.4	2.2	0.0	NA			0.2	0.2	0.0
USRN23863	KS:CIRARU	71382	67.7	64.3	14.9	4.9	9.6	3.8	5.1	0.1	0.7	0.7		0.0	0.0	0.0
USRN24317	KS: COODLAND	71282	VN		2.3	1.3	1.9	1.3	VN		VN				NA	
USRN24314	KS:IIAYS		NA		2.4	2.8	6.6	9.4	NA		VN			0.3	1.2	0.2
USRN30471	KS:JUNCTION CITY		28.2	112.3	0.5	0.7	4.7	2.0	NA		VN				NA	
USR025496	KS:NEWTON		VN		0.4	1.0	8.0	1.4	VN		NA				VN	
USRN2 5495	KS:PARK CITY	91582	VN		2.1	1.9	2.4	2.1	NA		VN				VN	
USRN23867	KS: PITTSBURG	71382	72.0	64.9	22.6	3.9	6.9	1.6	5.1	0.1	1.1	0.7		0.0	0.0	0.0
USRN2 3865	KS:PITTSBURG	71382	85.0	0.99	1.8	1.4	5.3	2.6	0.7	0.0	VN			0.0	0.0	0.0
USRN24316	KS:PLAINVILLE	71382	VN		11.9	3.1	9.3	2.4	0.4	0.0	NA			0.4	2.2	0.3
USRN2 5498	KS:WICHITA	91482	VN		1.6	1.3	2.0	1.8	VN		NA		NA		MA	

Ra-226 2SIGHA Ra-228 2SIGHA U-234 2SIGHA U-238 2SIGHA (pC1/1) ERR (pC1/1) ERR (pC1/1) ERR (pC1/1) ERR (pC1/1) 0.0 0.0 COLLECT Rn-222 2SIGHA ALPHA 2SIGHA BETA 2SIG DATE (pC1/1) ERRO (pC1/1) ERR 34.3 104.6
184.2 77.7
22.6 67.4
77.4 73.3
-14.7 71.6
218.9 78.6
226.4 87.6
177.6 89.3
35.8 105.6
140.8 75.0
390.9 79.6
-9.8 117.3
52.0 119.5
9.6 51.6
101.0 120.1
250.8 78.4
350.4 91.0
13.1 72.5
-23.3 69.7
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 72.4
7.0 7 79.0 72.8 73.3 91.2 72.5 74.4 90.4 74.8 89.3 74.1 104.8 72.2 72.5 71.8 109.2 86.1 -9.1 31.8 35.4 254.4 47.5 29.8 250.9 26.9 144.1 150.0 220.5 132.3 210.2 6.9 72.7 NA 72181 72081 6 181 72081 6 281 6 281 72181 81181 6 281 72081 72081 6 281 6 281 6 281 72081 72081 72081 72081 72081 6 281 7 281 8 281 72281 8 481 92981 6 281 72281 72281 72081 72081 72081 72081 6 381 6 381 6 281 72081 72 KY;CALVERT CITY
KY;CAMPBELLSBURG
KY;CLAY W:SHITH'S GROVE KY:SEBREE KY:SILVER GROVE KY: BRANDENBURG KY: BROOKESVILLE KY:SALYERSVILLE KY:SEBREE KY: WHITE PLAIRS CY: NORTONVILLE CY:SOUTH SHORE Y: WHITESVILLE KY: BEAVER DAN KY: BEDFORD KY: BENTON KY: WORTHINGTON KY: CLINTON KY: CLOVERPORT KY: HAWESVILLE KY: HICKORY KY:WARSAW KY:WEST POINT KY: EVARTS KY: FANCY FARM KY:MAYFIELD KY:MAYFIELD KY:MAYSVILLE KY:GARRISON KY:GHENT KY:GOSHEN CY: LA CENTER CY: LEDBRITER KY:SYMSONIA KY:SYMSONIA KY: WICKLIFFE KY: AUGUSTA KY: BARDWELL CY:VANCEBURG CY:FINYFIELD KY: WURTEAND KY: PADUCAII KY: PADUCAII CY: RACELAND CY: ROCKHOLD KY: WRTLAND KY: BUCKNER KY: MILTON KY: MURRAY KY: NEON CY: FULTON KY:WARSAW KY:DOVER KY: WINGO LOCATION USRN13550X USRN14953 USRN13556 USRN14904 USRN13540 USRN13540X USRN13540X USRN13560X USRN13560 USRN14913 USRA14910 USRA14910X USRA13566 USRN1 5305 USRN1 6543 USRN1 3550 USRN13558 USRN13554 USRN13542 USRN13562 USRN13543 USRN14906 USRN13545 USRN13547 USRN1355 USRN1355 USRN14901 USRN14908 USRN14908 USRN13549 USRN13565 USRN13565 USRN1 5526 USRN1 3563 USRN1 3546 USRN14952 USRN14903 USRN13551 USRN13538 USRN13544 USRN13539 USRN13539 USRN13552 USRN13564 USRN14902 USRN14907 USRN13541 USRN13557 JSRN14900 ID# VdS

Table B.12 Natural radioactivity in public groundwater systems-Maine

2S I GNA ERROR												0.3		1.6												
Ra-226 2SIGNA Ra-228 2SIGNA U-234 2SIGNA U-238 (pC1/l) ERR (pC1/l) ERR (pC1/l) ERR (pC1/l)	VN	VZ VZ	NA	NA	NA	NA	VΝ	VN	NA	VN	VΝ	2.8	۷N	15.3	VN	VN	NA	NA	٧V	VN	NA	VN	VN	NA	11A	VN
2SIGMA) ERR (0.3		1.8												
A U-234 (pc1/1	VN VN	Y V	۷N	٧V	VN	٧N	VN	۷N	VN	VN	۷N	2.8	VN	16.4	NA	٧N	۷N	VN	٧×	VN	VN	VN	VN	VN	VN	V _N
8 2SIGM																										
Ra-22	VN	Y V	NA	VN	VN	VN	۲×	VN NA	NA	RA	٧N	VN	VN	VN	NA	VN	VN	VN	NA	NA	VN	VN	VN	NA	NA	NA
2SIGN/) ERR												0.0		0.0												
Ra-226 (pc1/1	V 2	V.	VN	VN	NA	NA	N	NA	۷N	NA	VN	0.1	VN	1.1	NA	N	VN N	NA	٧N	NA	VN	VN	NA	NA	NA	VN
2SIG) ERR	0.8	1.0	0.8	0.7	1.0	0.9	0.5	0.9	6°0	0.8	0.7	8.0	0.8	1.4	0.8	1.0	0.8	0.9	0.9	0.7	1.2	8.0	1.0	0.9	0.8	0.8
2SICHA HETA 2SIG ERR (PC1/1) ERR	1.0	3.6	0.9	1.0	2.4	2.1	0.3	1.8	1.2	6.0	0.9	3.4	1.1	11.4	1.1	3.2	1.2	1.5	2.4	1.2	3,3	1.3	2.4	3.0	1.1	2.2
	0.2	0.4	0.2	0.4	9.0	0.3	0.3	0.2	0.5	0.2	0.5	1.5	0.4	2.2	0.2	0.4	0.4	0.5	0.3	0.4	0.4	0.3	0.4	0.4	0.3	9.0
2SIGMA ALPHA ERROR (pC1/1)	0.1	0.4	0.1	0.6	9.0	0.1	0.4	0.1	0.1	0.1	9.0	7.9	0.3	15.0	0.1	0.4	0.3	0.2	0.4	0.8	0.1	0.2	0.2	1.1	0.1	1.5
2SIGMA ERROR																										
COLLECT Rn-222 DATE (pC1/1)	V X	VN	NA	VN	VN	VN	VN	VII	NA	VN	VN	N	VN	VN	NA	VN	NA	VN	NA	VN	VN	VN	NA	NA	NA	NA
OLLECT DATE (91081	9 981		9 981	91081	9 981	186 6	9 981	9 981	91181	91081	9 981	91081	186 6	91081	9 981	91081	91081	9 981	9 981	91081	9 981	9 981	9 981	91081	9 981
ŏ	≅		E JUNC						L.S	_		ILLS			ET	OCK					G,		CK			
ION	HE: BAR HARBOR	E: BOOTHBAY	HE: BROWNVILLE JUNC	IF: BRUNSVI CK	HE: CLINTON	HN I S II	RNISH	HE: FRYEBURG	HE:KEZAR FALLS	ME:KINGFIELD	NCOLN	PERLISBON FALLS	BEC	IE: NAMIOTH	IE: NI LLINOCKET	HE: NORRI DGEWOCK	IE:OLD TOWN	TE:OLD TOWN	FORD	FORD	ME: PITTSFIELD	HE: RICHMOND	F:SO. BERWICK	E:SO. PARIS	E: WOODLAND	ME: YARHOUTH
LOCATION	ME:BAR HAR	11E: BO	ME: BR	ME: 18R	HE:CL	HE: CORN ISH	ME:CORNISH	HE:FR	PE:KE	ME:KI	ME:LINCOLN	PE:LI	PE:LUBEC	HE: NA	HE:NI	ME: NO	NE:OL	IE:OL	ME:OXFORD	ME:OXFORD	ME:PI	ME:RI	HE:SO	1压:50	NE: NO	NE:YA
10//	USRN16746	USRN16743	USRN16741	USRN16751	USRN16735	USRN16750	USRN16750X	USIN16759	USRN16749	USRN16742	USRN16736	USRN16745	USRN16752	USRN16737	USRN16757	USRN16755	USRN16740X	USRN16740	USRN16753	USRN16738	USRN16747	USRN16739	USRN16754	USRN16756	USRN16744	USRN16748
EPA 10#	USRN	USRN	USRN	USRN	USRN	USRN	USRN	USIN	USRN	USRN	USRN	USRN	USRN	USRN	USRN	USRN	USRN	USRN	USRN	USRN	USKN	USRN	USRN	USRN	USRN	USIKN

Ra-226 2SIGHA Ra-228 2SIGHA U-234 2SIGHA U-238 2SIGMA ERR (pC1/1) ERR (pC1/1) ERROR 0.2 0.2 (pC1/1) ERR (pC1/1) 0.0 2816 ERR (pC1/1) ERR 1.2 2.2 9.0 6.0 0.8 0.8 0.0 .. 2.1 6"0 0.6 0.9 8.0 2SIGHA RETA 0.9 2.0 1.0 1.7 1.7 0.9 9.0 9.0 9.0 0.4 0.0 0,3 0.0 0.3 0.0 0.5 0.5 7.0 0.0 0.0 0.0 0.4 0.4 0.8 0.3 0.3 0.3 0.4 0.4 0.3 DATE (pC1/1) ERROR (pC1/1) 2SIGHA ALPHA 2.0 0.0 0.0 0.0 0,2 0.4 0.7 0.3 9.0 0.0 -0.1 0.3 0.0 0.2 0.5 0.7 -0.1 0.2 0.1 0.4 0.1 0.1 0.1 117.0 117.0 126.9 87.3 91.6 129.8 9.09 127.5 76.4 185.9 187.0 188.5 9.46 61.0 8.06 119.8 89.1 95.5 125.2 112.8 59.5 116.9 81.9 116.5 150.1 130.5 95.7 1111.3 101.4 113.1 1.66 125.7 117.1 105.8 100.2 85.3 93.5 114.2 125.2 119.2 84.7 128.3 110.4 130.5 111.4 819.4 1390.5 1168.0 42.8 593.4 267.0 1180.5 589.0 311.8 258.4 114.5 2175.0 1130.5 447.9 1359.5 9.907 794.4 127.1 203.9 515.0 COLLECT Rn-222 816.3 338.0 652.5 23.4 5003.0 270.1 1718.0 1624.0 935.0 674.0 1320.0 916.5 951.4 1331.0 1186.0 765.4 287.5 765.8 1554.5 607.2 -28.1 1538.5 1058.5 22482 43082 43082 22482 42882 42882 71531 3 882 71581 22482 93081 43082 21782 42481 3 882 21782 93081 41681 42781 4 781 4 781 4 781 42781 42481 6 281 41681 42381 42381 21782 92381 92381 42781 123181 21882 42481 42781 23181 6 281 23181 71581 4 881 4 881 7 881 71581 7 881 93081 42781 43082 92381 'IA: BUZZARDS BAY PA : NATTAPOISETT IM: BRIDGEWATER IIA: EASTIIANPTON IIA: EASTIIA: IPTON IIA: EASTIIANPTON HA: CHELHSFORD MA: BELLINGHAM MA: BLACKS TONE IA: NI DDLEBORO MY: FOXBOROUGH IM : CEORGE TOWN IA: HARSHFIELD IM : FUXBOROUGE MA:LYNNFIELD HA: FAIRHAVEN HA:GROVELAND IA: HOLLISTON HA: HOPKINTON MA: LANCASTER IIA: LANES BURO IA: LANES BORO IN:LITTLETON MA: LUNENBURG HA: FRANKLIN IA: BREWSTER MA : HALLITOR IA: KINGSTON A SHEDFIELD MA: NERRINAC IA: PIT L.LISURY IM : GRAFTON PIA: HARVI CH SIA: ASHLAND TA: BEDFORD NA: DOUGLAS PAN : DUXBURY HA: HANOVER IIA: IIANOVER SINNVAII: VIA IN : HASHPEE HA: AUBURN MA: DEDIMAN MA: DENNIS IM: EASTON HA: AUBURN MA: DRACUT MA: DUDLEY IN : MEDWAY LOCATION MA: ESSEX HA: AVON HA: AYER JSRN1 2660X USRN22400X JSRN12554 JSRN22400 JSRN16343 ISRN14715 ISRN14996 ISRN1 2657 JSRN16602 JSR112 2398 USRN20005 JSRN21208 JSRN16604 **JSRN12664 JSRN12246** JSRN12245 USR#112247 JSR01 2665 JSRN1 2662 JSRN16605 ISRN14135 **ISRN12661** JSRN14054 ISRN22332 JSRN1 2660 **ISRN21079 JSRN16346** JSRN16347 JSRN20006 JSRN1 2658 JSRN1 4919 ISRN1 2248 **USRN12271 USIRN14689 USRN14918** USRN21348 **USRN12656 ISRN21089** ISRN22399 ISRN16345 ISRN1 2669 JSRN14692 IISRN21205 JSRN21092 **JSRN1 2667** JSRN21091 JSRN21207 JSRN22331 **JSR**1120007 USRN1 3995 JSRN21204 **USRR121351** EPA ID# JSRN1

8 2SICHA) ERROR		
(pC1/1	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	S S
2SIGNA U-234 2SICNA U-238 ERR (PC1/1) ERR (PC1/1)		VN VN
A Ra-228 (pC1/1)	<pre></pre>	VN VN
Ra-226 2SICM (PC1/1) ERR	<u> </u>	V V V
2SIC ERR	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.0
BETA 2SIG (pc1/1) ERR		1.4
2SIGHA BETA ERR (pC1/	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.3
NLPHA pC1/1)		0.1
2SIGNA ALPUA ERROR (pC1/1)	1112.3 172.1 172.3 172.1 120.9 184.2 100.6 102.6 116.7 116.7 110.6 111.7 111.1	111.6
	416.6 1 269.8 5874.6 5874.5 667.5 667.5 667.5 667.5 1015.2 1113.1 1015.2 118.0	
COLLECT Rn-222 DATE (pC1/1)	92381 61882 71482 71482 71482 71482 71482 71482 71482 71482 71482 71482 71482 71482 71482 71482 71482 71482 71482 71581 6 281 6 281 7 881 7 881	
LOCATION	HA: HILLIS HA: NANTUCKET HA: NANTUCKET HA: NATTUCK HA: NO. ATTLEBORO HA: NO. ATTLEBORO HA: NO. READING HA: NO. READING HA: NORWELL HA: NORWELL HA: PALHER HA: SAUNULEY HA: SANDULEY HA: SANDUREY HA: SANDUREY HA: SANDUREY HA: SANDUREY HA: SANDUREY HA: SANDURY HA: SULIRLEY HA: WEBSTER HA: WESTER	IIA: WESTFORD NA: WHITINSVILLE
EPA ID#	USRN1 6349 USRN1 6344 USRN2 3473 USRN2 3470 USRN2 3470 USRN2 1350 USRN2 1350 USRN2 1350 USRN2 1350 USRN2 1350 USRN2 1350 USRN1 2656 USRN1 2673 USRN1 2673 USRN1 2659 USRN1 2659 USRN1 2659 USRN1 2659 USRN1 2659 USRN1 2660 USRN1 2659 USRN1 2659 USRN1 2659 USRN1 2671 USRN1 2660 USRN1 2670 USRN1 2772 USRN1 2772 USRN1 2773 USRN1 2772	USRN16606

Table B.13 Natural radioactivity in public groundwater systems-Hassachusetts (continued)

≤ ~

2S I CNA ERROR	
Ra-226 2SICHA Ra-228 2SICHA U-234 2SICHA U-238 2SICHA (PC1/1) ERR (PC1/1) ERR (PC1/1) ERR (PC1/1) ERROR	VN N N N N N N N N N N N N N N N N N N
4 2SICM.	
IA 11-23	V V V V V V V V V V V V V V V V V V V
3 2SIG	
A Ra-228 (pc1/1)	AN A
2SIGH) ERR	
Ra-226 (pC1/1	NN NN NA NA
2SIG ERR	0.7 1.0 0.6 0.8
BETA (pC1/1	0.5 3.2 0.5 0.9
2SIGNA BETA 2SIG R ERR (pG1/1) ERR (0.6
ALPHA pC1/1)	0.0
2S ICHA ERROR (132.3 73.2 79.9 61.7
kn-222 pC1/1)	367.5 132.3 860.9 73.2 45.9 79.9 159.2 61.7
COLLECT Rn-222 2SICHA ALPHA 2 DATE (PC1/1) ERROR (PC1/1)	72782 3 882 43082 21782
LOCATION	NA:WI LLIAHSTOWN NA:WILHINGTON NA:WRENTHAH NA:YARHOUTH
EPA ID#	USRN24323 USRN21347 USRN22401 USRN21082

(pc1/1) ERR (pc1/1) ERR (pc1/1) ERR (pc1/1) ERR (pc1/1) 0.0 0.0 1.0 0.0 0.1 0.1 0.1 0.1 COLLECT Rn-222 2SIGNA ALPHA 2SIGNA BETA 2SIG DATE (PC1/1) ERROR (PC1/1) ERR (PC1/1) ERR 1.5 1.5 1.6 0.9 0.5 3.8 4.0 1.2 4.3 1.8 1.1 0.2 1.0 1.0 2.2 2.2 2.1 2.1 1.2 1.3 0.6 2.7 9.1 4.1 2.1 1:1 4.4 0.4 4.0 4.1 2.4 3.1 11.5 1.1 1.7 10.8 11.6 11.1 0.4 0.9 0.9 22.7 60.2 175.1 204.7 424.6 96.9 222.1 133.9 -10.4 84.7 151.4 89.8 380.8 110.0 306.0 76.5 74.8 75.2 106.3 71.9 199.9 105.6 122.1 150.2 191.4 174.1 171.5 133.8 146.4 76.1 199.2 103.6 379.0 119.3 358.3 317.8 109.5 148.0 8.001 105.6 86.4 86.2 91.1 70.8 61.0 72.9 303.2 106.2 97.7 126.2 60.7 206.9 107.6 99.0 112.0 250.5 53.6 2 224.4 1 163.6 1 75.0 1 1.961 83.0 367.4 143.1 220.7 60.2 46.4 139.4 349.0 137.8 49.3 228.0 0.061 129.4 198.4 432.3 126.5 ٧ 171.2 178.7 TH: DETROIT LAKES 12 881
NN: DETROIT LAKES 12 881
NN: EAGAN 1 682
IIN: EAST GRAND FORKII 481
NN: EDEN PRAIRIE 22582
NN: EDINA 22582 2 982 102381 1 882 10 181 11482 101481 12582 21182 21182 12 281 111981 111981 102881 1 882 111981 12 781 122181 21682 122381 2 482 10 781 10 881 21782 102881 112081 11 581 2 482 101681 101481 91481 22582 22582 2 482 22582 10 781 2 982 12 281 121881 21082 21082 21182 22682 21082 102181 IN: BROOKLYN CENTER IN: BROOKLYN PARK IN: COTTAGE GROVE IN: CIRCLE PINES IN: GRAND RAPIDS IN:LITTLE FALLS
IN:LUVERNE M:GRAND RAPIDS IN: APPLE VALLEY IN: FOREST LAKE M: BLOOMINGTON IN: LA CRESCENT IN: ALEXANDRIA MN: BLUE EARTH THE LITCHFIELD IN: BURNSVILLE IN: FARITINGTON IN: HUTCHINSON IN: ALBERT LEA IN: CHANHASSEN IN: FARIBAULT IN: CALIBRIDGE IN: EXCELSIOR W:LAKE CITY MI:LAKE CITY IN: LAKEVILLE IN: BRAINARD IN: HASTINGS IN: HASTINGS IN : BUFFALO IN:CHISOLM IN: FRIDLEY IN: HIBBING IN:HOPKINS IN : JACKSON IN: BABBITT IN: BENIDAL IN: BLAINE IN: CHASKA IN : CLENCO MIN: AUSTIN MIN: BENSON IN: AURORA LOCATION JSRN17902* USRN17900X USRN17270X JSRN20880X JSRN1 7040X USRN16544* JSR1118140X USRN18102 USRN18654 USRN17900 USRN18735 JSRN16949 USRN20273 JSRN21136 **ISRN18140** JSR1120503 USRN17105 JSRN18569 JSIRN20878 JSRN17270 USRN16765 USRN20877 **USRN18062** ISRN20880 1SRN17040 JSRN20342 JSRN20936 USRN16766 USRN20978 **USRN17248 USRN17899** ISRN20756 JSRN21096 JSRN20225 USRN16951 JSRN20161 JSRN21138 JSRN20826 JSRN18059 **USRN18652 ISRN17801** JSRN20755 JSRN16767 ISRN1 7412 JSR1116199 JSRN20979 JSRN21134 JSRN21132 JSRN21133 ISRN20881 JSRN17104 JSRN20754 JSRN21131 EPA ID#

(pc1/1) ERR (pc1/1) ERR (pc1/1) ERR (pc1/1) ERR (pc1/1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.1 0.2 NA 1.0 NA NA 0.0 NA NA 0.0 0.0 NA NA 0.0 N N N ¥ 2 2 YZ Z V V V ž 2 × 0.0 0.0 0.0 0.0 0.2 7.0 0.1 0.2 0.1 0.1 Š NA NA NA 0.1 0.1 NA ž 7.7 NA 0.1 ž 1.3 Y Y ž V V ž ¥. £ **₹** ₹ ₹ £ N 1.0 6.0 8.0 1.0 8.0 6.0 (pC1/1) ERR (pC1/1) N. 7 2.8 YZ Z 3.4 S ž × YN N N N N Y Z Y Z Z × S S × Y A 2. 0.0 0.0 0.1 0.1 0.0 0.1 0.1 0.1 Z Z Z Z NA NA NA NA NA 1.6 NA NA NA NA 2.7 9.1 4.9 NA NA NA 3.2 S S Z Z ¥ % % × × \$ £ \$ SZ. DATE (pC1/1) ERROR (pC1/1) ERR (pC1/1) ERR 22.00.00 2SICHA BETA 2SIG 0.9 1.6 2.9 1.6 1.9 8.0 9.0 1.5 1.5 1.4 1.8 2.1 1.4 0.9 2.0 1.7 2.1 2.1 1.7 2,1 6.9 118.7 10.9 6.7 8.7 3.8 0.7 0.7 4.7 9.01 1.8 6.3 5.2 3.6 1.7 7.0 4.6 2.8 4.4 5.6 1.5 6.9 2.3 1.6 2.8 4.3 0.8 2.0 1.0 2.5 0.9 2.2 8.0 0.8 0.3 1.5 1.4 1.2 1.0 2.0 1.8 6.0 2.4 1.3 1.5 9.1 9.1 8.0 0.0 1.0 1.8 9.0 1.4 0.0 2SIGNA ALPHA 1.0 5.8 0.3 1.2 2.6 11.2 9.0 3.5 8.0 1.7 10.1 2.7 1.3 82.5 78.6 60.7 86.8 101.9 265.1 63.8 59.2 105.0 89.4 86.5 87.9 128.0 67.5 76.2 113,3 83.4 9.801 127.2 65.2 100.5 110.6 4.701 116.4 92.0 117.6 9.49 127.2 396.0 8.901 114.0 65.8 62.7 71.0 115.8 6.001 60.7 88.2 59.7 80.3 156.3 92.3 132.3 58.7 439.5 69.1 68,1 9.411 713.9 249.9 403.6 156.8 290.9 686.5 74.0 431.5 COLLECT Rn-222 167.7 225.8 203.9 52.6 12.0 40094 315,3 83.0 183,3 49.2 330.6 133,3 128.0 278.3 281.8 277.0 519.7 -17.7 167.9 64.3 216.3 389.1 30.5 209.1 283.5 143.7 343.1 110.6 -39.8 100.3 384.3 112.2 164.1 412.1 226.8 152.1 21182 9 381 2 981 2 982 2 982 91781 2 982 21782 12 881 101581 21082 121681 2 982 2 182 10 281 10 281 112081 21182 21782 21782 2 882 11382 22582 22582 12 481 2 882 9 981 101581 21682 112581 22682 9 381 10 781 121431 12782 111681 581 1 882 91781 22382 93081 82781 681 111781 11781 2 281 111381 11 681 102981 0 W:SPRING LAKE PAR PARK IN: NORTH ST. PAUL IN: REDWOOD FALLS W: REDWOOD FALLS MILINEW BRIGHTON IN: STEWARTVILLE IN: MADISON LAKE IN : ROLLINGSTONE IN:SO. ST. PAUL HINTELSTA IN: PARK RAPIDS HIT: ROBBINSDALE IN: SAUK CENTRE MISAUK RAPIDS IN: SILVER LAKE IN:ST. ANTHORY IN: MINNETONKA IN: FONTEVIDEO IN: HOUNDSVIEW IN:N. MANKATO THE NORTHERD IN : NORTHEIELD IN: SLEEPY EYE W.ST. LOUIS W: RICHFIELD IN: PIPESTONE IN: ROCHESTER MN: ROCHES TER IN: ROSENOUNT IN: SHOREVIEW IN: MAINTONEDI MR:ST. PETER MI: PLYMOUTH THE PRINTE M:RED WING IN: SHAKOPEE MIST. PAUL IN:OUATONNA IN : NEW ULM IN: HANKATO IN: NEW ULM IN:OAKDALE IN:SARTELL III: NEWPORT W:STAPLES IN: MORRIS IN: SAVAGE ANGUAN : WA UNDON: MA W: OSSEO LOCATION TS: II. USRN16950X USRN17178 USRN15999 USRU16762 USRN17411 USRN16600X USRN20980X USRN20879 USRN16763 JSRN18385 USRN20543 USRN17686 USRN21077 **USRN16950** USRN16248 USRN20980 JSRN20827 **USRN18139 USRN20981** USRN15911 USRN18564 USRN20824 USRN20822 USRN21107 USRN20935 USRN17901 USRN18651 USRN20825 USRN20709 USRN1 6600 USRN1 7904 USRN20814 USRN20272 **USRN20162 USRNI 7698** USI:N16246 JSRN21129 USRN21135 **USRN21115** USRN18061 **USRN17903** USRN21137 USRN21095 USRN17554 **USRN17413** USRN16545 **USRN15913 USRN17314** USRN18127 USRN20813 **USRN15774** USRN16764 EPA ID#

Table B.14 Natural radioactivity in public water systems-Minnesota (continued)

2SIGMA ERROR						0.0			0.0			0.2		0.7	
2SICMA U-238 ERR (pC1/1)	VV	VΝ	VN	٧×	VN	0.1	VN	NA	0.0	VN	VN	1.2	ž	4.4	٧٧
2SIGNA) ERR (0.1			0.0			0.2		6.0	
(pc1/1)	VN	Š	٧N	VN N	٧٧	9.0	٧N	٧N	0.0	VN	٧N	1.5	٧N	5.9	NA
2SIGN/ ERR						8.0									
2SICMA Ra-228 ERR (pC1/1)	VN.	۷N	VN	VN	٧N	3.4	VN	٧N	VN	NA	MA	VN	N.A	VN	NA
2SICMA ERR (0.1			0.0			0.0			0.0
Ra-226 (pC1/1)	VN	VN	VN	YN.	<n N</n 	3.1	VN	VN	0.7	VN	VN	0.3	٧N	VN	0.3
2SIG ERR	1.3	1.1	2.2	2.2	2.0	4.5	1.6	1.0	14.0	2.3	2.4	0.9	0.5	4.3	4.3
BETA (pc1/1)	3.6	2.4	5,3	9° þ	2,1	14.1	5.4	2.4	1.0	4.2	4.2	0.8	0.7	7,1	7.8
2SIGNA ERR (0.7	9.0	2.0	1.9	1 ,6	4.3	1.3	0.0	2,2	1.2	1.0	1.1	1 .5	3.6	3.5
ALPHA (pC1/1)	0.4	0.3	4.1	2.3	1,1	11.1	3.1	0.0	3,8	0.2	1.1	1.8	5.2	6.2	5.6
2SICNA ERROR (72.6	71.1	95.7	110,6	65.3	101.8	93.3	97.8	0.09	259.3	62.6	88.8	82,0	149.0	155.1
(n-222 pC1/1)	279.1														
COLLECT Rn-222 DATE (pC1/1)	92181	92181	12 381	12 381	2 982	11 481	121181	5		121881	21782	22682	22682	122181	122181
LOCATION		MIN:WALTE PARK	MN:WASECA	PIN: WASECA	I-IN: WAYZATA	IN: WELLS	IN:WHITE BEAR	PIN: WILTE BEAR LAI	HIN: WI LLMAR	IIN: WINDOM	IN : WINOMA	HM: WOODBURG	NN: WOODBURG	NN: WORTHINGTON	MIN: WORTHINGTON
EPA ID#	USRN16310X	USRN16310	USRN18060X	USRN18060	USRN20823	USRN17555	USRN18243	USRN17953	USRN17177	USRN18653	USRN20982	USRN21130	USR#21130X	USRN18650X	USRN18650

* Surface water supply; all others are groundwater supplies.

(pc1/1) ERR (pc1/1) ERR (pc1/1) ERR (pc1/1) ERR (pc1/1) ERR (pc1/1) 0.0 0.0 0.0 0.0 0.0 0.0 COLLECT Rn-222 2SIGHA ALPHA 2SIGHA BETA 2SIG DATE (pc1/1) ERROR (pc1/1) ERR (pc1/1) ERR 0.5 62.5 100.9 97.2 69.6 69.3 25.6 86.5 71.6 30.8 19.2 67.9 69.3 83.6 85.2 67.4 66.5 64.9 84.1 82.4 98.2 70.9 01.9 130.1 114.2 119.6 120.5 20.4 96.2 82.9 84.0 59.2 63.0 64.2 70.1 75.7 85.3 114.7 42.2 88.9 43.0 36.0 86.7 16.2 16.0 68.4 16.1 23.8 78.6 22.4 6.0 115.3 154.1 385.4 56.7 18.5 -18.0 59.5 NA NA NA 154.6 37.5 37.5 84.9 NA 272.4 220.5 72.2 32.6 30.0 -3.8 110.1 34.9 ٧N 6 481 6 481 12 181 72382 12 281 6 481 6 481 72882 72982 72882 6 481 6 381 6 381 6 481 12 381 12 281 12 281 12 281 12 281 12 281 12 281 12 281 12 281 12 281 12 281 12 381 12 381 12 381 12 381 12 481 72282 72282 72282 72282 72282 112 281 112 381 112 381 112 281 112 281 12 281 9 999 6 481 12 281 12 281 72282 4S:CRYSTAL SPRINGS IS:MARTINS BLUFF IS: BAY ST. LOUIS IS:HOLLY SPRINGS IS: MERIDIAN NAS MS:BILOXI MS:BOONEVILLE MS:BROOKMAVEN 4S: HATTLESBURG IS: HATTIES BURG IIS: BROOKIIAVEN
NS: CANTON HS:ELLISVILLE
HS:ELLISVILLE
FS:ESATAQUA S: HATTIESBURG IS:KEESLER AFB IS:LOUISVILLE MS:HOOREVILLE HS:HOSS POINT IS: HAZELHURST IS: LONG BEACH HS: FOREST HS: FULTON HS: GLENDALE NS: GULFPORT HS: GULFPORT HS: COLUMBUS
MS: COLUMBUS IS: LUCEDALE MS:CANTON IS: COLUMBUS MS:JACKSON MS: ABERDEEN IS: COLUNBIA IIS : CORINTH IS: CORINTH 15:JACKSON IS:JACKSON MS:CLINTON 4S:JACKSON S:JACKSON IS:JACKSON MS : CANTON IS: BENTON IS : LAUREL IS : LAUREL IS : AMORY LOCATION USRN24340X USRN24190 USRN24190X USRR13797 USRN13791 JSRN1 3640X **ISRN13790X** USRN13794 USRN24345 USRN24100 USRN17949 USRN24341 USRN18058 USRN18054 USRH18007 JSRN18050X USRN18050 USRN13699 USRN24104 USRN24101 JSRN24100X USRN18053 USRN17946 JSRN18010X ISRN13695 JSRH13790 15111118010 JSRN13795 JSRH24340 ISRN24337 JSRW1 3644 JSRN13640 ISRN13694 JSRM 8048 JSEN18012 JSRN13796 ISRN18013 JSRN18056 USRN13831 ISRN13693 ISRR18057 JSRN1 3638 ISRN24105 JSRR24103 JSRN18052 JSRN13636 JSRN18014 JSRM18009 JSRM13691 ISRN13645 ISRN13643 1SR013787 JSRN18051 EPA

Table B.15 Natural radioactivity in public groundwater systems-Hississippi (continued)

2SIGMA Error												0.0																			
	NA	V 2	S Z	VZ	VN	VN	VV	VN	NA	٧N	VN		VN	NA	NA	NA	MA	NA	NA	٧V	NA	VN	NA	VΝ	NA	NA	NA	V _N	٧N	VN	VN
ICHA U-234 2SICHA U-238 ERR (PC1/1) ERR (PC1/1)												0.0																			
U-234; pc1/1)	NA	V _N	Z Z	Ý	VN	VN	NA	VN	VN	NA	٧V		٧N	NA	VII	VN	VN	٧٧	VN	IIA	٧V	٧V	NA	VN	NA	VN	٧N	NA	NA	VN	NA
SIGNA ERR (
Ra-226 2SICHA Ra-228 2SICHA U-234 2SICHA U-238 (pC1/1) ERR (pC1/1) ERR (pC1/1)	NA	۷۲ ۲	< < <	\ N	VN	NA	VN	VN	NA	VV	NA	VN	VN	NA	VN	VN	VV	NA	NA	NA	VN	VN	NA	VV	VN	NA	NA	NA	VN	NA	VN
SICHA R ERR (P												0.0																			
Ra-226 2SICH (pC1/1) ERR	VN :	V V	V Z	¥.	VN	ΝA	VN	VN	NA	VN	NA		٧V	VV	٧٧	NA	٧N	NA	VN	NA	٧V	NA	ν'n	NA	VN	VΝ	٧×	NA	۷V	VN	NA
	1.6	۲. د د د		2.1	6.0	6.0	1.8	6.0	8.0	6.0	0.0	2.8	1.1	1.4	3.8	1.1	1.7	2.2	1.1	1.2	2.3	6.0	1.9	1.2	1.4	2.1	1.1	2.4	6.0	1.0	6.0
ERR (PC1/1) ERR	1.8						1.7																	_					2.0 (
2SIGNA BETA ERR (pC1/1)	0.7														Ī																
	0.3																													0.0	
LLECF Rn-222 2SIGHA ALPHA DATE (PC1/1) ERROR (PC1/1)	72.5			63.8 -			9.69				- 0.19							119.6 -			1.66							114.7			
22 2S1 1) ERR								_						.3 112	.6 87.0		NA	.9 119	MA								VΝ		VN	1.5 63.2	
Rn-2 (pc1/	7	ſ	,				129.9				_			Ċ	21.6			67.9			-1.2							58.1			18
COLLECT Rn-222 2SIGNA ALPNA DATE (PC1/1) ERROR (PC1/1)	6 581	6 581	6 281	12 281	6 431	12 281	12 181	72232	12 381	9 999	12 181	72882	6 281	72282	72982	6 581	6 381	72282	6 481	6 481	72882	72882	3 6 581	12 181	12 181	IIS:WAYNESBORO 12 381	6 481	72282	6 581	6 581	72882
5										_		_			_		<u></u>					<i>'</i>	H-NAT			02	T	_	6.7	6.7	L.Y.
110	CHEZ	CHEZ	TON	IIS : OCEAN SPRINGS	LOUA	PIS: PASCAGOULA	HS: PASS CHRISTIAN	IRI.	.VI	MS: PHI LADELPHIA	AYUNE	HS: PORT GIBSON	THAN	IS: RICHLAND	IS: RIDGELAND	LEY	MS:STARKVILLE	RY	ELO	NON	MS:VICKSBURG	IS: VICKS BURG	HINGTO	TELARD.	TELAND.	NESBO	HS: WEST POINT	MS: WHITFIELD	HS:WOODVILLE	MS: WOODY LLLE	SIS:YAZOO CITY
LOCATION	HS:NATCHEZ	HS : NATCHEZ	PIS - NIFIETON	11S : OCF	PIS : OKOLONA	MS: PAS	HS: PAS	.NS : PEARL	HS: PETAL	IIS: PIII	IIS : PICAYUNE	HS: POR	IIS:QUITMAN	HS: RIC	HS:RIT	IIS : RIPLEY	MS:ST	MS:TERRY	HS:TUPELO	HS:VEROMA	MS:VIC	MS:VIC	HS: WAS	IIS: WAV	US: WAV	TIS: UAY	HS:WES	NS: WILL	PIS: WOC	NS: WOO	SIS:YAZ
#q	3692	3690	USKN13690A	8011	3792	8008	7947	4102	8055	3641	7948	4344	3639	4192	4339	3793	3642	4193	3786	3788	4342			USRN17950X				4191	3830	USRN13830X	4343
EPA ID#	USRN1 3692	USRN13690	USKINI 3637	USBN1801	USRN13792	USRM18008	USRN17947	USRN24102	USRN18055	USRN1 3641	USRN17948	USRN24344	USRN1 3639	USRN24192	USRN24339	USRN13793	USRN13642	USRN24193	USRN13786	USRN13788	USRN24342	USRN24338	USRN13689	USRN1	IISRN17950	USRN18049	USRN13789	USRN24191	USRN13830	USRNI	USRN24343

Table B.16 Untural radioactivity in public water systems+Hontana

2SIGHA ERROR												0.0								0.2		0.7	0.1								0.5	0.8		
	S S	VN	VN	NA	VN	NA	V _N	۷V	VV	NA	٧V	0.1	VN	NA	٧V	٧V	VV	NA	NA	2.3	VN N	7.1		NA	٧N	٧N	VV	VV	VV	NA	9.4	8.8	۷N	VV
2SICHA U-234 2SICHA U-238 ERR (pC1/1) ERR (pC1/1)												0.0								0.3		1.3	0.2								0.7	1.5		
U-234 (pc1/1)	VN VN	NA	NA	NA	VN	NA	NA	NA	NA	۷V	NA	0.2	VN	٧N	VN	۷N	٧N	٧N	VN	, 2.9	VN	13.0	2.1	NA	VN	VN	٧N	١١٧	VN	NA	7.7	16.2	٧V	VN N
2.5																																		
Ra-226 2SICHA Ra-228 (pC1/1) ERR (pC1/1)	NA AN	NA	NA	NA	NA	VN	٧N	NA	VN	NA	NA	NA	VN	NA	VN	VN	٧N	VΝ	٧N	VN	NA	٧V	٧N	NA	Ϋ́N	٧N	٧×	VV	NA	VN	NA	NA	VN	VN
2SIGMA ERR	0.0									0°0		0.0								0.0		0°0	0.0							0.0	0.0	0.0		0.0
Ra-226 2SIGH (PC1/1) ERR	NA 0.1	NA	VN	NA	NA	VN	VN	VN	NA	0.1	VN	0.1	VN	NA	NA	۲ _N	VN	N N	NA	0.2	٧N	0.3	9.0	VN	VN	٧X	NA	VN N	NA	0.1	0.1	0.2	NA	0.1
2SIG ERR	4.8	0.7	9.0	0.8	0.5	1.2	1.1	3.4	0.5	4.5	9.0	2.3	1.1	9.0	4.7	0.4	0.5	0.0	9.0	2.8	3,3	3.5	4.4	0.3	9.0	3.0	0.5	0.4	1.0	6"0	1.9	7.0	9.0	1.8
BETA 2SIG (PCI/1) ERR	8.1	3.4	2.0	2.0	0.4	3.2	2.0	11.0	9.0	7.5	2.0	2.0	2.0	2.0	7.7	0.2	0.7	0.0	9.0	5.0	5.0	0.9	7.1	0.4	2.0	7.0	6.0	1.0	7.0	5.0	3.0	2.0	0.7	3.0
2SICMA BETA ERR (PC1/	2.1	0.9	0.5	9.0	0.8	8.0	0.5	3,3	0.8	2.4	0,5	3.1	0.7	9.0	2.0	9.0	9.0	0.0	0.0	3.7	3.1	5.9	4.5	2.2	0.8	0.0	0.5	0.5	1.0	1.2	0.4	4 .3	0.4	1.6
ALPHA pC1/1)	1.0	2.3	0.7	0.1	0.7	9.0	1.0	1.0	0.5	1.0	6.0	3.0	0.3	6.0	1.9	0,8	1.0	0.0	0.0	0.9	2.0	15.5	6.2	0.3	0.8	0.0	1.0	1.0	2.0	0°4	0°6	31.0	0.2	1.8
2SIGNA ALPHA ERROR (PC1/1)	82.3	84.3	88.1	112.0	122.6	78.1	92.5	80.3	4.69	74.2	8,95	48.7	104.9	62.3	93.6	55,1	73.1	26.7	67.7	77.3	73.8	111.4	101.5	72.4	107.2	81.3	83.7	72.6	9°11	80.0	110.0	72.1	74.7	103.1
	165.8	0.068	881.2	534.3	102.5	-41.0	392.1	110.7	87.4	362.0	1258.0	75.1	-7.8	377.6	694 .2	1001	540.8	1889.5	377.5	756.5	434.2	1176.0	47.4	199.4	306.1	198.4	8.699	619.9	299.1	619.8	318.6	4.679	73.3	438.8
COLLECT Rn-222 DATE (pC1/1)	72181	22681	22681	22481	22381	72181	41681	32581	32781	51981	3 281	4 381	41231	3 581	72181	31281	32781	3 381	3 481	32681	32681	42981	5 681	32681	22431	32581	3 481	3 481	22681	22681	22481	22781	32681	52281
		F=2		75		Q,	zn.	***		5-7	75	NC		L.	2K	z		_		000							~	~)RKS		RINGS	C.L.	INI	
LOCATION	MT: ASJILAND	H : BELGRADE	MT:BOULDER	NT: BROWN ING	NT:CHOFEAU	HT:COLSTRIP	MT: COLUMBUS	NT: FAIRVIEW	NT: GLASCOW	HT:GLENDIVE	NT: HAHI LTON	IT: HARLOWTON	T : HAVRE	TEKALISPELL	HT:LAME DEER	MT:LEWISTON	T:MALTA	TI: NI SSOULA	IT:PLAINS	HE: PLENTYWOOD	ST:POPLAR	THE RAPELJE	TT: ROUNDUP	TT:SCOBEY	T : SHELBY	FT:SIDNEY	IT:SUPERIOR	IT: SUPERIOR	TI:THREE FORKS	HT: TOWNSEND	IT:WARM SPRINGS	T : WILTEHALL	IT:WOLF POINT	NT: WORDEN
LOC	ME	H	MT	ME	MT:		.MT:	ME	NT:(FIT: (M	ITT	NT:	IT:	HT:	MT:	III.	FIT:	III:	NT:	M: IM	IIT:	M	PIT:	NT:	11:11	III.		III:	HT:	IT	III.	IT:	I. I.
RPA IN#	USRN14954	USRN11048	USRM11045	USRN11042	USRR1 1047	USRN14955*	USRN12337	USRN11646	USRN11731	USRN13349	USRN11214	USRN12088	USRN1 2237	USRN11225	USRN14956	USRN11317	USRN11668	USRN11117	USRN11315	USRN1 1642	USRN11643	USRN12733	USRN12989	USRN11645	USRN11044	USRN11646	USRN11160	USRNIL160X	USRN11041	USRN11043	USRN11046	USRN11083	IISRN11838	USRN13328
₩	ם :		ח	2	2	0	D	2	ם	2	=	n	2	2	2	ח	מ	n	2	n	D	n	n	2	n	2	n	מ	2	מ	2	=	=	5

* Surface water supply; all others are groundwater supplies.

Table B.17 Natural radioactivity in public groundwater systems-Nevada

2S LGNA ERROR													0.1							0.3				0.3	
EER (pC1/1)	V V X	< < :	V V	< < z z	VZ.	< < < < < < < < < < < < < < < < < < <	VN	NA	NA	VN N	٧N	٧N	9.0	٧N	٧N	۷V	٧N	۷V	۷N	3.1	۷N	٧N	٧N	2.4	VN
2SIGNA ERR (0.2							0.5				0.5	
IGNA U-234 ERR (pC1/1)	VN V	Z Z	V V	Y Y	VZ:	< < < < < < < < < < < < < < < < < < <	۷×	VN	VN	VN	٧N	NA	1.6	VN	VN	< Z	NA	٧N	NA	5.1	VN	VN	٧N	5.4	VN
2SICHA Err																									
Rn-226 2SIGMA Ra-228 2SIGHA U-234 2SIGMA U-238 (PC1/1) ERR (PC1/1) ERR (PC1/1) ERR (PC1/1)	V V V	<u> </u>	V V	V	VN.	< < <	VN	VN	٧N	NA	NA	VN	NA	MA	٧N	٧N	NA	NA	VN	¥2	NA	٧N	٧N	VN	VN
2SIGMA ERR (0.0	0.00	0.0		0	0.0				0.0	0.0			0.0				0.0		0.0	0.0			0.0	
Ra-226 (PC1/1)	0.1	0.1	NA NA	V V N	VN (7°0 NA	VN	VN	VN	0.2	0.1	NA	٧V	0.1	٧X	VN	VN	0.2	VN	0.2	0.1	VN	MA	0.1	VN
2SIG ERR	0.8	1.2	1.0	1.2	1.0	0°9	1.0	1.5	1 .8	0.4	0.7	0.8	2.3	0.7	1.1	1.1	9.0	3.2	6.0	0.8	0.8	0.7	1.0	0.8	0.7
2SIGMA BETA ERR (pC1/1)	5.2	0.0	6.0	7.3	0.5	1.4	4.5	4.4	6.5	2.2	5.6	3.4	4.3	9.0	0°6	10.1	2.5	11.2	5.4	0.9	4.7	3.6	7.0	5.4	2.8.
2SIGMA ERR	1.3	1.3	0.7	0.0	1:1	0.0	0.9	1.8	1.6	1,2	1.3	1.2	4.1	4.1	1.1	1.1	1.1	1.1	8.0	2.1	1.3	1.2	1.1	1.7	0.5
ALPHA pC1/1)	3.5	. e	0.5	0.0	2.4	0.0	1.3	2.0	2.0	4.4	3,8	0.4	10.0	0.6	2.9	1.3	3.2	5.0	0.8	11.0	5.0	4.1	3.0	6.2	0.3
2SIGNA ALPNA ERROR (pC1/1)	69.7	77.2	38.1	79.2	37.2	36.9	39.0		6.74	53.4	78.3			81.6	80.2	71.8	42.1	77.3	6.79	79.2		41.3	75.2	45.9	47.5
LLECT Rn-222 DATE (pC1/1)	933.2	533.1	32.8	NA -84.9	6.6-	724.4	118.4	VN	222.8	714.8	135.6	N	VI2	237.8	104.5	413.5	563,5	1104.0	452.5	204.2	VN	360.4	221.1	91.3	1348.5
COLLECT Rn-222 DATE (pC1/1)	IN121180 21281	121080	2 381	2 381 12181	2 381	12181	21081	21081	21081	12 880	21181	21181	21181	21181	21181	121880	12681	121880	121880	121080	2 981	2 981	121080	12 880	2 381
LOCATION C	HOUNTA	NV:CAKLIN NV:FLKO	NV:ELY NV:FALLON	NV:FALLON NV:FALLON	NV: FERNLEY	NV:CARDNERVILLE NV:CARDNERVILLE	NV:JEAN	NV:LAS VEGAS	NV:LAS VECAS	NV:LOVFLOCK	NV: MFRCURY	NV: MERCURY	NV: MESQUITE	NV: MESQUITE	NV: MOAPA	NV: RENO	NV: RENO	NV:RENO	NV: RENO	MV:SPRING CREEK	NV: TONOPAII	NV:TONOPAH	NV:WELLS	NV:WINNERIUCCA	NV:YERINGTON
EPA ID#			×	USRN10520 I		USRN10264 I			×	_	USRN10790X	USRN10790	USRN10720	×	USRN10719 1	USRN03417		USRN03416		USRN03327	USRN10610 P	USRN10610X 1	USRN03326 P		USRN10522 P

Table 8.18 Natural radioactivity in public groundwater systems New Hampshire

2SIGNA ERROR							0.2																				
IGHA U-234 2SIGHA U-238 2SIGH ERR (PC1/1) ERR (PC1/1) ERROR	VZ.	NA	NA	VN	VN	٧N	1.1	NA	VN	٧N	VN	ΝV	VN	VN	VN	VN	VN	٧N	VN	VN	VN	VN	VN	VN	VN	VN	٧N
Ra-226 2SICHA Ra-228 2SICHA U-234 2SICHA U-238 (pG1/1) ERR (pC1/1) ERR (pC1/1)							0.2																				
\ U-234 (pc1/1	VN.	NA	VV	۷V	VV	VN	1.1	٧N	VN	VN	VN	VV	VN	VN	VN	VN	VN	NA	VN	VN	VN	NA	VN	NA	NA	VN	NA
2SIGHU ERR																											
Ra-226 2SICHA Ra-228 (pC1/1) ERR (pC1/1)	VN	٧N	VN	VN	VN	VN	NA	VN	VN	VN	VN	VN	NA	NA	VN	VN	٧N	VN	NA	NA	VN	NA	NA	VN	VN	NA	VN
2SICHA ERR							0.0																				
Ra-226 (pC1/1)	VN	VN	VV	VN	VN	NA	0.4	VN	٧N	VN	NA	NA	NA	NA	NA	VN	NA	VN	VN	VN	VN	VN	VN	NA	VN	VN	VN
2SIG	6.0	1.1	0.8	6.0	0.9	1.1	1.4	0.8	6.0	0.7	1.0	0.8	0.9	1.2	0.8	0.7	6.0	0.8	0.9	9.0	0.7	0.8	0.8	6.0	1.2	6.0	9.0
2SICHA BETA 2SIG ERR (PC1/1) ERR	1,1	2.1	1.3	1.9	1.2	2.0	8.1	1.0	1.2	0.8	1.7	1.1	1.4	4.0	1.6	1.0	1.8	1.3	1.7	0.4	1.0	0.7	2.3	1.6	9.4	1.3	0.5
2S I GPIA ERR	0.3	0.4	0.3	0.4	0.4	9.0	1.0	0.0	0.3	0.2	0.5	0.3	0.2	0.5	0.5	0.3	0.5	0.3	0.2	0.3	0.4	0.2	0.7	0.3	0.7	0.3	0.3
ALPHA (pc1/1)	0.1	0.2	0.3	0.3	0.2	0.3	3.4	0.0	0.1	0.2	0.1	0.2	0.0	9.0	0.5	0.4	0.3	0.2	0.2	0.5	0.7	-0.2	2.3	0.1	0.2	0.2	0.4
2SIGNA ALPUA ERROR (PC1/1)	111.2	125.0	127.5	95.9	118.4	93.0	119.7	89.7	152.0	82.5	150.0	88.8	112.1	137.7	103.2	144.8	90.9	118.5	79.5	141.1	135.1	124.8	100.9	110.7	136.0	128.9	107.3
LLECT Rn-222 DATE (pC1/1)	1588.0	2500.0	1427.0	737.7	2368.0	1032.8	1995.0	68.7	3799.0	111.4	1306.5	277.4	549.1	3442.5	2579.5	1709.0	866.6	1691.5	453.1	973.3	871.7	2079.0	593.2	583.7	715.8	2577.0	161.3
COLLECT Rn-222 DATE (pC1/1)	8 681		81981	72781	7 981	42081	92481			91581		82781	5 681	42181	51381	42981	51981	52281	72481	9 381	9 381	73181	92481	8 581	72981	72781	5 681
rion	LTON	NII: AMILERST	NH: BRISTOL	NH: COLEBROOK	NH: COMWAY	ERRY	NII: EPPING	NII: EXETER	NII: FARIII NGTON	NII: FRANKLIN	NH: HALIPTON	NII: HENNIKER	MILLINSDALE	NH: HOOKSET	NII: IIUDSON	NII: MERRIMACK	H:MI LFORD	WHIN. SUTTON	HI:N. WALPOLE	HI: PEHBROKE	VII: PEHBROKE	NII: PLYMOUTH	III: RAYMOND	NH: ROLLINSFORD	NII: SEABROOK	MISWITEFIELD	NH:WINCHESTER
LOCATION	NH: ALTON	NII: A	NII: BI	NH: C	NII: C	NH: DERRY	NII:E	NII: E	NII: F	NII: FI	NH: III	NII: III	MI: III	NH: HC	NH: III	MI : MI	MII:MI	N:IIN	HII:N	III: PI		NII:PI	NII: R	NH: RC	NII: SE	WII: W	NH: N
EPA ID#	USRN15351	USIRN1 5704	USRN15703	USRN1 5037	USRN14511	USRN12437	USRN16352	USRN12565	USRN15352	USRN16141	USRN1 3224	USRN15773	USRN1 2939	USRN12471	USRN13131	USRN12736	USRN13223	USRN13317	USRN14959	USRI11 5910	USRN1 5910X	USRR115177	USRN16353	USRN15353	USRN15118	USRN15036	USRN12938

2SIGNA ERROR		0.2	0.1			,	7.0								0.2	6	0.2		0.1	8,0	. C . C	0.1	0.3	0	7.0		0.3			0.3			7.0	1.3		0.1		0.1	6.4	
n-238	Z Z Z	1.2	0.4	V V	ΥN	Y C	N \N	NA	VN V	NA	NA	VN.	VN	NA	1.2	VN.	2.1	ž ž	9.0	5.7	6.5	0.7	3.0	Ψ.	7 · T	Ϋ́	2.1	<u> </u>	ž Š	1.9	VN	V V	3,3	10.2	V 2	0.5	VN	0.9	1.6 NA	
2SIGNA U-238) ERR (pC1/1)		0.3	0.2			7									0.2		0.4		0.3	1.2	7.0	0.2	0.4	6	0.3		0.4			0.4.			0.8	1.6		0.2		7.0	9.0	
2SIGNA U-234 2SIGNA U-238 ERR (PC1/1) ERR (PC1/1)	N N N	2.4	1.6	VN VN	NA	AN C	G. ₹	VN	VN VI	W.	NA	VN	VN N	¥ ×	2.1	VN	3.4	VN NA	2.5	9.2	10.4	1.7	4.4	VN	Z.8	V V	3.7	¥ :	V V	3.4	VN	Y N	7.2	12.6	V S	1.7	VN	2.8	2.9 NA	
Ra-226 2SICHA Ra-228 2SI (pC1/1) ERR (pC1/1) E	V V V V	VN	VΝ	VN N	NA	NA NA	NA AN	VN	NA	N N	NA	NA	VN	VN	NA	NA	٧ <u>٠</u>	S V	NA	VN.	V V	NA	NA	VN	V V	VN N	NA	VN.	V V	NA	V.	V V	VN	NA	V X	S S	VN	VN	V V V	
2S I CHA ERR (0.0	0.0			0	2								0.1	6	0.0		0.0	0.0	0.0	0.0	0.0		0.0		0.0			0.0			0.0	0.0		0.0		0.0	0.1	
Ra-226 2SICH (pC1/1) ERR	V V V V	0.2	0.2	Y X	NA	NN C	N	VN	V X	N N	٧N	VN	VN VN	S S	2.8	VN.	0.1	V V	0.4	0.1	2.0	0.2	1.5	VN C	0.3 NA	NA	0.1	<u> </u>	ν V V	0.2	¥:	V V	0.2	0.1	V S	0.1	VN	0.2	0.5 NA	
	0.0	8.0	0.4	2.0	1.3	-:-	1.6	1.5	-:-	2.1	1.3	1.7	0.1	2.4	2.0	3.2	0.0	6.0	17.8	0.2	4.0	2,2	3.8	4.0	1.9	5.3	2.4	1.7	1.0	2.0	1.0	4.9	2.0	1.6	1.0	0.4	2.1	1.5	2.8	
a a	0.0	2.1	3.7	2.5	4.8	4.2	9.1	8.5	9°6	3.9	6.0	1:1	y . 1	3.9	9.9	-0.3	χ φ,	1.5			13.0	5.1	7.1	5.0	2° 4	6.4	8.0	1.0	1.2	4.5	3.2	-2.1	6.3	1.7	2.8	0.2	2.1	2.5	8.2	
2SIGNA BETA ERR (pC1/	3.0	1.2	3.4	2.5	1.1	1.1	1:1	1.0	0.1	1.9	1.3	1.4	1.1	1.5	1.8	0.7	2.1	6.0	2.7	3.7	0°5	1.9	3.6	2.6	4.0	8.4	2.0	1.7	1.2	2.1	1.0	J. 1	3.0	6.2	0.0	1.8	1.7	1.9	3.5	
	4.1 2.6 2.4	4.2	3.6	0.0	2.6	2.4	2.1	1.7	2.2	1.9	1.8	2.1	2.5	0.7	7.0	1.1	3.1	1.1	4.3	20.3	9.3	3.7	8.8	2.7	n	3.6	5.4	2.9	2.8	4.7	2.2	1.7	11.2	17.8	2.0	4.1	1.0	5.6	10.1	
2SICHA ALPHA ERROR (PC1/1)	93.8 130.0 84.6	272.3	72.9	72.8	149.0	157.4	128.0	157.8	89.4	118.8	73.0	118.8	100 0	93.8	78.0	92.2	87.5	103.2	77.8	106.8	116.7	98,3	4.10	85.9	1,07	79.8	128.9	102.9	85.7	7.86	129.6	91.1	101.2	93.0	146.4	147.4	99.5	83.7	84.9	
	323.0 125.3 1 265.8		24.7	36.9		384.6			164.8				194.6		295.4	85.4	6.99				323.0				p°//p			45.8	43.5			37.2			160.4 1			0.6-	184.6	
COLLECT Rn-222 DATE (PC1/1)	92481 72881 72881	72881 1	111781	111781	9 281	9 281	72881	72881	82081	111981			1017.81	11 581	111381	92481	82081	2 382	111781	12182	11 481	111981	82081	102281	102381	111781	11 381	111981	2 482	111981	72881	92481	11 581	2 482	9 281	111881	111981	2 582	102381 102381	
LOCATION	NH: ALAHOGORDO NEI: ALBUQUERQUE NH: ALBUQUERQUE	NN: ALBUQUERQUE	NH: ARTESIA	NH: ARTESIA NI: RAYARD	NH: BELEN	NN: BELEN	NM: BERNALILLO	NM: BERNALILLO	NII: CANNON AFB	NEL: CARLESBAD	NH: CARLSBAD	NH: CARLSBAD CAVE	NEL: CENTRAL	NH: CHAPARRAL	NI: CLAYTON	NN: CLOUDCROFT	WH: CLOVIS	NH: DEMING	NH: DEXTER	NN:DIXON	MILL DONA ANA	NH: EUNICE	NI: FT. SUIINER	NH:GALLUP	NETCRANTS	NII: IIAGERIIAN	MISHATCH	NH: HOBBS	MISHURLEY	NH: JAL	MILKIRKLAND AFB	NN: LA LUZ	MH: LAS CRUCES	NM: LORDS BURG	NM: LOS LUNAS	NM: LOVING	NH: LOVINGTON	NH: HAGDALENA	NN: NI LAN	
EPA ID#	USRN16482 USRN15038 USRN15041	USRN1 5043	USRN17805	USRN17802 USRN20869	USKN15900X	USRN15900	USRN1 5040X	USRN1 5040	USRN15700X	USRN17813	USRN17814	USRN17759	USIKNZ 0808	USRN17415	USRN17625	USRN16455	USRN15711	USRN1 0646	USRU17699	USRN20441	115RN1 / 49 /	USRN17808	USRN1 5697	USRN17113	USRN1 / 201	USRN17700X	USRN17427	USRN1 7807	USRN20810X	USRN17806	USRN1 5042	USRN16483	USRN17414	USRN20828	USRN1 5901	USRN17760	USRN17804	USRN20868	USRN17200 USRN17200X	

Table B.19 Natural radioactivity in public groundwater systems New Nexico (continued)

	2SIGNA ERROR		0.3		0.3	0.2		0.3			0.1		0.2	1.1								0.2		0.7	8.0	
	U-238 C1/1)	VN	2.2	٧N	2.1	1.6	NA	2.8	٧×	VN	0.4	NA	1.8	8.1	٧N	۲ ۲	NA	VII	٧×	٧N	VN	1.8	ΝV	7.4	8.0	٧V
	2SIGMA U-234 2SIGMA U-238 2SIGM ERR (PC1/1) ERR (PC1/1) ERROR		9.0		0.3	0,3		0.4			0.2		0.4	1.5								0.4		1.3	3.7	
r mmed	U-234 (pc1/1)	VN	6.1	VN	2.5	2.5	٧N	4.2	NA	٧٧	1.5	VN	3.9	9.01	VN	٧٧	٧N	۷V	VN	٧N	VN	3.2	VN	13.4	41.5	VN
מס לכס	2SIGMA ERR (
DIE 6.17 NACUTAL FAGIOACCIVICY IN PUBLIC BLOUNGWALER SYSLEMS-NEW MEXICO (CONTINUED)	Ra-226 2SIGNA Ra-228 (pc1/1) ERR (pC1/1)	NA	VN	MA	VN	VN	VN	٧٧	٧٧	NA	٧V	٧×	NA	NA	VV	VN	٧٧	٧٧	۷N	٧N	VN	VN	VN	VΝ	٧×	۷N
מופ	2SIGHA ERR		0.0		0.0	0.0		0.0			0.0	•	0.0	0.0								0.0		0.0	0.0	
dref by	Ra-226 (pc1/1)	VN	0.1	NA	0.2	0.3	۷N	0,2	VN	۷V	9.0	٧N	0.1	0.1	VN	VN	VN	٧N	٧N	VN	VN	0.2	VN	0.2	0.1	VN
apuno 15	2SIG ERR	0.8	2.0	0.8	2.2	9.0	0.1	0.9	1.0	4.1	3.8	3.7	3.9	0.1	9.0	0.9	0.7	1.0	0.7	5.2	0.3	1.1	3.7	1.8	1.2	1.3
a o t t a n	A BETA 2SIG (PC1/1) ERR	9.0	1.7	1.2	4.9	0.7	0.1	3.8	2.4	3.7	3.7	1.5	6.3	-0.2	2.4	1.6	2.0	2.8	1.1	5.6	0.3	4.0	4.3	3.6	-3.2	2.2
d ut k	2SICMA BETA ERR (PC1/)	0.7	4.4	1.0	1.8	1.8	1.9	1.4	9.0	2.6	3.9	2.7	3.9	3.1	3.0	0.8	1.8	1.2	1.0	3.0	1.8	1.4	2.6	4.2	3.4	1.3
activi	ALPHA pc1/1)	0.7	9.5	2.1	4.5	5.3	5.6	5.5	0.7	0.8	3.9	0.4	5.5	24.4	23.3	0.9	8.7	4.1	2.7	0.8	9.4	4.7	2.5	18,3	34.5	1.9
radio	2SIGNA ALPHA ERROR (PC1/1)	122.3	146.1	140.4	103.3	101.9	8.98	96.3	131.0	74.0	76.4	72.5	73.9	95.6	88.1	141.4	86.1	9.101	65.3	91.0	92.0	7.96	104.1	111.5	96.5	117.0
Natura				-32.6																					1205.5	
61 ° 91 ° 91	COLLECT Rn-222 DATE (pC1/1)	111181	9 281	9 281	11 481	111281	111281	82081	72831	111681	111681	92581	102381	12182	12182	81981	2 482	2 382	11 281	11 581	12282	82031	2 382	81981	82081	11 481
labi	LOCATION CO	WHEPORA	NH: HORIARITY	IR	NA:NM STATE UNIV.	NH: PECOS	NN: PECOS	NM: PORTALES	NH: RIO RANCHO			DOWNS	NH: SAN RAFAEL	NM: SANTA CRUZ	NM:SANTA CRUZ	NII:SANTA ROSA	NN:SILVER CITY	NRI: SOCORRO	NM: STATE PENITENTI	NM:SUNLAND PARK	WH: TAOS	NH:TEXICO 82081	NH: TRUTH OR CONSEQ	NRI: TUCUNCARI	NII: VAUGIIN	MITTE SANDS HR
	EPA ID#	USRN17599	USRN15902	USRN1 5898	USRN17419	USRM17600	USRN17600X	USRR115702	USRN15039	USRN17809	USRN17803	USRN16547	USRN17202	11SRN20440	USRN20440X	USRN1 5701	USRN20809	USRN20737	USRN17558	USRN17417	USRN20437	USRN1 5699	USR1120735	USRN15621	USRN1 5698	USRN1 7418

-238 2SICMA 1/1) ERROR	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
2SIGNA U-234 2SIGNA U-238 ERR (PC1/1) ERR (PC1/1)	
2SIGNA U-2 ERR (PC1	
CHA Ra-228 R (PC1/1)	222222222 222222222222222222222222222
Ra-226 2SICHA Ra-228 (PC1/1) ERR (PC1/1)	
	4 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 1 0 1 0
=	2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ZSICMA BETA ERR (pc1/	
2SICHA ALPHA ERROR (PC1/1)	80.2 7.9.9 94.8 89.8 89.8 89.6 69.8 89.0 100.8 7.4.0 7.4.0 1118.7 1120.7 7.4.0 96.6 66.3 7.4.0 7.4.0 96.6 66.3 7.4.0 7.4.0 7.4.0 96.6 66.3 7.4.0 7.4.0 96.6 66.3 7.4.0 7.4.0 7.4.0 96.6 66.3 7.4.0 7.4.0 7.4.0 96.6 66.3 7.4.0 7.0 7.4.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7
LLECF Rn-222 DATE (pc1/1)	70.0 469.8 341.5 341.5 37.0 11.1 437.7 120.9 131.7 120.9
COLLECT Rn-222 DATE (PC1/1)	71481 71481 71481 71481 71481 71481 71481 71481 71481 72781 72781 72781 72981
LOCATION	NY: ALDEN NY: ALFRED NY: ALFRED NY: ALFRED NY: ALIAGANSTT NY: BALLING NY: BALLING NY: BATHIL NY: BATHIL NY: BATHIL NY: BETHIPAGE NY: CLIFTON PARK NY: CRATHINON NY: CRATHINON NY: CRATHINON NY: FRANHFOUT
EPA ID#	USRN1 4653 USRN1 4840 USRN1 4840 USRN1 4840 USRN1 4648 USRN1 4648 USRN1 5050 USRN1 5050 USRN1 5050 USRN1 5020 USRN1 5020 USRN1 5020 USRN1 5020 USRN1 5020 USRN1 5122 USRN1 5122 USRN1 5122 USRN1 5122 USRN1 5125 USRN1 5105 USRN1 5105 USRN1 5101 USRN1 5101 USRN1 5101 USRN1 5110 USRN1 5054 USRN1 5054 USRN1 5051 USRN1 5102

Table B.20 Natural radioactivity in public groundwater systems-New York (continued)

8 2SICHA) ERROR																											0	0.0																								
U-23	MA	2	2	×	VZ	VN	VN	NA	SZ.	VN	VN	2	2	NA	\ \ \ \ \ \	VV	V V	4 4	V N	VN	V :	٧ :	VN:	VN:	٧ !	٧× :	Y C	0.0	V 2	< 2 2	Y X	Y 2	Y N	× ×	VN	VN	VN	Y :	٧× :	۷×	V N	VN VN	< Z	2	×	\Z	۲×	NA	٧٧	VN	V 2	
(pc1/l) ERR (pc1/l)																											0	0.0																								
2SIGNA U-234 ERR (pC1/1)	V Z	× ×	VI.	VN	VN	VN	NA	NA	VN	NA NA	N	2	V 2	VN	Y N	NA	NA NA	771	VN	VN V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V2 :	¥ :	ν.	Š.	VN.	NA O	0.0	V V	V 2		V N	V Z	Y N	VV	VN	VI.	¥2	٧:	٧× :	V2	NA NA	Z Z	2	. v	VN	NA	VN	117	NA	٧×	
2S I CHA ERR																																																				
(a-228)	NA	Ϋ́	N N	V	V2	NA	NA	NA	VN	NA	VN	YZ	VN	NA.	2	NA NA	V 2	VM.	NA NA	V _N	V2	٧× :	VN:	VN	V.V.	VZ :	٧× :	۷ : 2 :	77 77	VN VN	Y V	VV	V	. ×	VN	٧٧	VN	VN.	VZ.	Y :	۲ ×	٧× ۲	V V	VN	Y N	VV	VN	NA	VN	VN	٧× ٧×	
2SIGMA Ra-228 ERR (pC1/1)																											(ດຸ																								
Ra-226 2SIGMA (pC1/1) ERR	V 2	Y.2	VN.	VV	VN	VN	VV	VN	VN	VV	VN.	NA	1 7 2	NA NA	NA	N W	VN VN	V 1	VV.	VN.	NA :	NA ::	ν:	VZ:	VN:	VN:		1	V 14	V V	NA M	V N	V 2	V V	VN	NA	٧N	٧N	Ş:	٧ <u>٢</u>	VN A	V 2	V 2	1 V N	NA ALI	Y _N	VN	VN	٧×	NA	۷×	
	0	6.0	0.7	2.7	8.0	6.0	0.	0.0	0,	6.0	6.0	8	8 0	0	8	000	0 0	0.0	\ ° 0	0.0	٧. ٧	α r Ο c	7.0	0,1	1.2	6.0	ر د د د د	5.0	V. C	. 0	8 0	2.0	0.0	8.0	0.8	1,0	8.6	1.3	8° C	6.0	0.0	1.1	0.0	0.0	0.0	0.8	6.0	6.0	6.0	0.8	6.0	
A BETA 2SIG (PC1/1) ERR					1.0															1.1										יי ר					1,0			3.1					2.5	4						1.0	2.1	
2SICHA BETA ERR (PC1/		0.7				0.4					0.2		2.0					7.0		7.0										? e					0.2	0.4	5°	6.0	E .	0.0	L. 0		5.0	7.0	, s.	0.2	9.0	0.2	0.3	0.5	v. 0	
					0.3						0.3		200				1.0			1.0			0.2				0.0					0.0		2.0							200		200			0.2		0.	٠.	9.	ο°ς Ο α	
2SIGNA ALPNA ERROR (pC1/1)	7		,								ľ			-3											*																		•								.	
2 2SIGUA	67	:			3 82.4				-														104.0					_	7.17												5.07							_		œ 1	3 72.	
DATE (pC1/1)	0.04-	١	NA	364.9	389.3	403.7	473.1	-14.3	-40.	13.9	107.	1 22 /	26.1	117	2. 7.7	200	1000	127.0	13.1	1000	169.	13.4	107.5	166.3	478.0	90.0	167.3	/91	10.0	377	120	109.8	67.9	125.6	78.4	24.6	289.7	443°(-17.5	332.1	123.	193.	7 0	-7	176.3	62.4	419.1	314.2	131.8	101.8	206	
OLLECT	51281	71481	71481	71381	71381	51481	71481	51381	81281	51381	73081	728.81	72881	72881	72981	73101	10167	10107	72161	1916/	1916/	72981	8 181	71481	71481	73081	72781	51481	72791	72081	72081	51181	72783	72981	72981	51381	72881	71381	51281	51281	1381	181 8	51281	71481	51581	73181	71431	72781	72881	51481	72781	
	NV-UTCH AND BALLS	CUEST	CREST	2	: ~	NY: HOOSICK FALLS	EHEADS	NO	200	NO	TNGTON	TNCTOM	THETON	THEFON	THOTOIL D	L 6	A. S	، د	2. 4	ا د	ا ک	٠.	ICA	STOWN	NY: JOHNSON CLTY	CROVE	NY:1.AKE SUCCESS	RTY	MY:LITTLE FALLS	NI:LOCUSI VALLEI	BOOK	MOOR	ACCET	APEOUA	ICK	LETOWN	OLA	UK	06	COMERY	NY : FOURT SVILLE	NY: MOUNT PLEASANT	UKCII	NY NIACARA FALLS	AVIIMA	ALE	0	ER BAY	NVIEW	NY:PORT JERVIS	NY: PORT MASHINGTON	, and a second
LOCATION	NV - LIT CIT	NV-11111 CUEST	NV-HIII CREST	NV - HOPFE	NY: BOHER	NY: HOOS	NY : HORSEHEADS	NY: HUBSON	MY : HIIDSON	NY: HIIDSON	NV: HINTINGTON	NY - HINTINCTON	NV - HINTTHICTON	NY - HUNTINGTON	NIV.TCI TD	MISTORI	WY: ISLIE	MISISLIF	NYTISLIP	NY:ISLIP	MY:ISLIP	NY:ISLIP	NY:JAHAICA	NY : JAMES TOWN	NY: JOHN	NY:LAKE CROVE	NY : LAKE	NY:LIBERTY	MY:LITI	NI TONC BEACH	NV - I VNII BOOK	NY - MAITA	NY - HANHASSET	NY : IIA SSAPEOUA	NY: MERRICK	NY: MI DDLETOWN	NY:HINEOLA	NY: NOIIAWK	NY: MORROE	NY : HON'FCOMERY	NY : FJORK	NX: FIOUR	NY - NEWBORGH	SATA: YN	MY : NI SKAVIINA	NY:OAKDALE	NY:OWEGO	NY: OYSTER BAY	NY:PLAINVIEW	NY: PORT	NY:PORT	
EPA ID#	VOAOR HRUBH	HCPN15300	HSPAT 5320Y	115 PM 1 66 1 OX	11SRN14610	HSRM1.3126	11SRN1 531 5	IISRN13120X	USRN1 5777	USRN13120	11SEN1 5168	115 MISH 111	DEBMI SIO3	115021 5107	USERII STOUV	TODIE TODO	USKNI 3220A	USKR1 3224	USIRNI 5222	USKN15257	USICIAI 5220	USKNISTOO	USRN15258	USRN14837	USRN15314	USRN15123	USRN1 5523	USRN13128	USR014712	HCBM15104	Henri 5521	115 PM 1 29 9 7	11SPM1 5044	USBN1 5099	USRN15522	USRN13125	USRN15113	USRN14338	USRN13061	USRN1 3025	USIGN14009	USKNI 2219	USIKN1 3024	7200 THISH	11SBN1 3129	USRN1 5525	USRK15319	HSRN15045	USRN15114	USRN1 31 17	USRN1 5049	

Table B.20 Matural radioactivity in public groundwater systems-New York (continued)

2SIGMA ERROR																																								
ICHA U-234 2SICHA U-238 2SIGH ERR (PC1/1) ERR (PC1/1) ERROR		VN	NA	NA	NA	NA	VN	NA	NA	٧N	NA	NA	NA	NA	VN	NA	NA	NA	VV	NA	VN	NA	NA	VN	VN	VN	VN	NA	VN	VN	VN	VN	VN	NA	NA	NA	NA	VN	VN	VN
2SIGHA ERR (
U-234 (PC1/1)		NA	NA	NA	VN	NA	NA	VN	NA	VN	NA	NA	NA	VN	NA	VN	NA	NA	٧٧	NA	NA	NA	NA	NA	NA	NA	NA	VN	NA	VN	NA	NA	NA	NA	VN	NA	NA	۷V	NA	NA
2SIGNA ERR																																								
Ra-226 2SICHA Ra-228 2SICHA U-234 2SICHA U-238 (PC1/1) ERR (PC1/1) ERR (PC1/1) ERR (PC1/1)		VN	NA	NA	VN	NA	NA	VN	VN	VN	٧V	NA	NA	VN	NA	VN	NA	NA	VN	NA	VN	VN	VN	NA	NA	VN	VN	NA	VN	NA	NA	NA	NA	NA	NA	NA	VN	NA	NA	NA
SSICHA ERR (
Ra-226 2SICH (PC1/1) ERR		NA	VN	VN	VN	VN	VN	NA	NA	VN	NA	VN	VN	VN	NA	VN	NA	VN	NA	NA	NA	VN	ΛN	VN	NA	NA	NA	VN	NA	NA	NA	VN	NA	NA	NA	VN	VΝ	NA	NA	VN
2SIG ERR	·	0.8	0.8	8.0	0.4	0.3	0.7	0.9	6.0	6.0	1.0	0.9	0.9	1.0	1.2	8.0	1.1	6.0	1.0	1.1	1.0	0.8	0.7	0.8	0.8	1.1	1.0	1.1	0.8	6.0	6.0	1.1	1.0	1.0	9. 4	3.8	0.8	1.0	0.9	0.7
, BETA 2SIG (PC1/1) ERR		1.1	9.0	1.3	0.5	0.5	1.0	1.8	1.3	1.2	2.4	1.8	1.3	1.8	0.1	0.0	2.9	1,5	2.4	2.0	1.8	0.5	0.5	1.0	1.0	1.8	6.0	2.7	1.1	9.0	1.9	2.2	2.8	1.5	4.2	3.9	0.7	2.4	1.9	0.4
2SIGMA BETA ERR (pC1/		0.5	0.2	0.3	0.4	9.0	9.0	0.5	9.0	0.4	0.3	0.3	0.0	0.2	0.2	0.3	9.0	0.2	9.0	9.0	0.7	0.3	0.7	0.4	0.5	0.8	0.3	0.5	0.4	0.4	0.5	0.5	0.5	9.0	1.8	1.7	0.2	9.0	0.2	0.3
ALPHA (pc1/1)		0.2	0.1	0.4	1.3	2.3	1.1	0.5	0.4	-0.1	0.2	0.1	0.0	0.0	-0.1	0.2	0.2	-0.1	0.2	0.3	9.0	0.1	0.4	0.3	0.3	9.0	0.1	0.4	0.2	0.3	0.3	0.7	0.5	0.4	9.0	1.6	0.1	0.1	0.0	0.2
2SIGHA ALPHA ERROR (PC1/1)		59.1	1001	4.09	71.1	71.9	89.0	77.7	85.9	9.98	102.6	100.4	137.2	104.0	82.7	94.1	0.96	92.0	127.7	77.6	7.67	63.3	60.1	70.7	83.7	108.1	64.3	104.3	6.99	61.8	77.8	69.2		77.8	91.6	105.3	75.3	147.1	80.4	74.7
		33.9	118.6	22.1	9.94	22,8	267.1	361.8	126.7	191.4	119.2	150.0	8.1	100.0	86.4	157.4	16.2	86.7				93.6	-11.5	235.8	577.8				496.0	188.1	-26.5	22.4	VN	294.5	-21,1	44.1	81.9	109.7	.5	728.1
COLLECT Rn-222 DATE (pC1/1)		51381	73081	72981	72781	72781	5 781	51581	5 781	5 781	73081	73081	73081	73081	73181	73081	73081	73081	73081	71481	72781	72881	51281	71481	71481	5 681	51281	81481		51381	71481	51281	71481	71481	71381	71381	72881	72881	72831	51281
ŏ		SIE		CENTE		ICHTS		DY							HINGDA	TON				LE E						ILLE			S FALL	S FALL								PARK		
NOI		NY: POUGHKEEPSIE	NY: RIVERHEAD	NY: ROCKVILLE CE!	SLYN	NY: ROSLYN HEIGH	NY: ROTTERDAM	NY: SCHENECTADY	OFIA	OTIA	LDON	NY: SHOREHAM	NY: SMITHTOWN	NY: SNITHFOWN	NY:SOUTH FARRINGDA	NY: SOUTHINAMPTON	NY:SOUTHIOLD	NY: SOUTHIOLD	NY: SOUTHIOLD	NY: SPRINGVILLE	FFERN	OSSET	STER	STAL	STAL	NY: VOORHEESVILL	NY:WALLKILL	LTON	HY: WAPPINCERS FALL	NY: WAPPINCERS FALL	RSAW	RWICK	NY:WATERTOWN	VERLY	ESTER	BSTER	NY:WESTBURY	WY: WILLISTON PARK	NY:WOODBURY	NY: WOODSTOCK
LOCATION		NX: PO	NY: RI	NY: RO	NY: ROSLYN	NY: RO	NY: RO	NY:SCI	.NY: SCO'FIA	NY:SCOTIA	NY: SELDON	NY:SII	NY: SM	NY: SN	NY:SO	NY: SO	NY:SO	NY: SOL	NY: SO	NY:SP	NY: SUFFERN	NY:SYOSSET	NY:ULSTER	NY:VESTAL	NY:VESTAL	NY:VO	NY: WA	NY: WALTON	ITY: WA	NY: WA	NY:WARSAW	NY:WARWICK	NY: WA	NY:WAVERLY	NY:WEBSTER	NY: WEBSTER	NY:WE	MY:WI	NY: WO	NY: WO
EPA ID#		USRN13127	USRN15172	USRN15109	USRN15053	USRN15047	USRN12934	USRN13149	USRN1 2935	USRN1 2936	USRN15121	USRN1 5124	USRN1 5170	USRN1 5170X	USRN15216	USRN1 5223	USRN15120X	USR11 5217	USRN15120	USRN14836	USRN15052	USRN1 5524	USRN1 3026	USRN1 5317	USRR15318	USRN1 2937	USRN13021	USRN15776	USRN13121	USRN13124	USRN14647	USRN1 3062	USRN1 5321	USRN15313	USRN14650X	USRN14650	USRN15108	JSRN15112	USRN15106	USRN13027
EP		US	US	US	us	US	us	US	us	us	ns	US	US	US	US	US	US	US	US	US	us	US	US	US	US	US	us	US	US	ns	US	US	us	us	US	US	US	US	US	US

2SIGMA ERROR	0.0	2	0.0		0.0	•	0.0						0.1																							0.1		0.0						
U+238	0.2	Y.	0.0	¥ ¥	0.0	AN.	1.0 N	Y Y	ž	NA	V	V X	0.3	VN	٧X	YZ:	V 2	NA N	ΥN	VN	NA	VN	VN.	VN Y	¥ 2	¥	VN	VN	Ž ž	Y X	¥	NA	٧× :	V V	E Z	9.0	NA	0.0	Y Z	V X	NA	VN	NA	NA
2SICMA U-234 2SICMA U-238 2SICM ERR (pc1/1) ERROR	0.0		0.0		0.0	0	0.0						0.1																							0.1		0.0						
U-234	0.2	NA	0.0	¥ X	0.1	NA .	1 0 N	Y Y	ž	YN N	YN:	V 2	0.7	VN	YN	YZ:	V 2	NA N	NA V	VN	NA	NA	Ž.	¥ ×	Y Z	N.	NA	NA	¥ i	Y Y	Ž	٧N	YN:	4 2	i X	0.8	NA.	0.0	¥ i	S S	¥.	NA NA	NA	NA
25	1.0	;	0.8	1.0			1.3																																					
Ra-226 2SIGMA Ra+228 (PC1/1) ERR (pC1/1)	4.4	VN	1.7 NA	6.9	NA	٧2 :	9°11	Y Y	VN	NA	VA:	V 2	×	NA	NA	NA	V 4	V V	¥	NA	VN	VN	¥:	V 2	¥ 2	ž	VN	NA	٧ :	V V	NA	NA	VN:	e v	Y X	ΥN	NA	VN :	ž	NA NA	٧Z	NA	VV	NA
2SIGMA ERR	0.1	;	0.1		0.1	•	0.1						0.0																							0.0		0.0						
Ra-226 2SIGM/ (pc1/1) ERR	4.3	NA	4 · 1	Y Y	3.8	VN.	2.4	V V	NA	NA	VN:	V 2	1.4	VN	NA	NA.	V V	Y Z	×	VN	NA	VN	YN :	Y :	< ×	Y _N	NA	NA	Y :	NA.	NA	NA	V.	٧× ٢	V VN	0.2	VN	0.1	۷:	Y X	VN	NA	NA	VN
2SIG ERR	8.0	6.0	8.0	0.8	0.8	1.0	1.2	6.0	0.9	3.0	8.0	0 0	1.1	0.8	1.0	1.1	2° -		1.2	5.6	6.0	E . 3	0.4	0.1	1.1	1.3	2.0	4.8	2.7	0.0	0.9	8.5	1.2	2.9	1.1	0.1	0.3	e	0.7	0.8	8.0	6.0	1.0	1.2
, BETA 2SIG (pc1/1) ERR	3.8	1.9	2,9	. E.	3.9	4,3	8°0	2.9	2.5	11.3		20.1	5.7	1.7	3,3	2.8	1.1	2.5	3.0	6.7	1.9	1.0	ب س	0 0	1.3	3.8	7.9	11.3	ထင်	1.9	1.7	8.0	5.1	12.3	4.6	0.3	9.0	18.3	0 0	0.7	1.0	2.1	1.7	4 .2
2SIGMA BETA ERR (pC1/	9.0	0,3	0.7	0.7	0.7	9.0	8,0	0.0	9.0	1.6	0.3		1.0	0.3	0.3	0.3	0,0	0.0	0.8	0.7	0.4	0.7	2.5	9.0	1.0	9.0	0.7	2.9	0.0	0.0	0.4	0.3	0.5	8.0	0.0	0.8	0.8	1.2	E 0	0.0	0.2	0.7	0.3	0.4
AL.PHA pc1/1)	3.2	9.0	3,1	3.7	4 .3	1.9	ພູເ ໝູ	1.0	1.1	0.8	0.1	1.0	3.7	0.2	0.2	0.0	0.0		0.7	0.1	0.4	0.2	9.0	0.0	0.0	9.0	0.1	2.7	0.1	0.0	0.2	0.0	0.4	7.04	0.1	3.7	4.1	5.6	0.0	0.0	+0.1	0.4	-0.2	0.2
2SIGMA ALPHA ERROR (PC1/1	81.1	81.7	87.0	95.5	87.1	85.7	82.2	61.3	63,3	84.7	107.6	102.1	107.8	123.1	118.9	137.7	19.7	86.9	128.9	76.1	86.9	87.8	88.6	90.5	89.0	136.5	108.2	131.5	125.5	121.1	123.3	83.6	81.9	10/.3	123.2	105.9	106.4	91.9	72.7	70.0	113.2	104.6	73.8	88.5
	275.6	207.1	470.4	344.4	371.1	298.6	195.3	163.6	104.8	45.5	235.8	156.9					140 0			-6.1		87.1		140.8	+27.9			527.0	128.4	17.7	26.6	128.9	34.4	0.0	4.3	0.5850	0.0490	11.7	343.4	25.6	1887.0	1401.0	88.2	77.4
COLLECT Rn-222 DATE (pC1/1)	111781	111781	111781	111781	111781	111781	111781	21082	21082	102981	102881	11 581	11 581			111381	11 381	102281	11 681				12 381	12 381	102281	111081	112581	111381	111381	121581	111381	103181	103181	111881	111381	10278110585.0	10278110640.0	111981	111481	121581		581	10 681	101581
LOCATION	NC:FAYETTEVILLE	NC:FAYETTEVILLE	NC:FAYETTEVILLE	NC:FAYETTEVILLE	NC: FAYETTEVILLE	NC:FAYETTEVILLE	NC:FAYETTEVILLE	NC: FOIR OAKS	NC: FOUR OAKS	NC: FREHONT	NC: FUQUAY	NC:GARYSBURG	NC:GASTON	NC: GOLDSBORO	NC: GOLDSBORO	NC: GOLDS BORO	NC: GRANDVIEW	NC - CRANTTE FALLS	NC:GRIFTON	NC: HARKERS ISLAND	NC: HARMONY	NC: HAVELOCK	NC:HERTFORD	NC:HERTFORD	NC-HILDERRAN	NC:HOBGOOD	NC: JACKSON	NC:JACKSONVILLE	NC:JACKSONVILLE	NC:JACKSONVILLE	NC:KINANSVILLE	NC:KINTON	NC:KINTON	NC:KURE BEACH	NC:LA GRANGE	NC: LAKE LURE	NC:LAKE LURE	NC:LAKE WACCAMAW	NC:LAUREL HILLS	NC:LIBERIY	NC:LINVILLE	NC:LITTLETON	NC:LONG BEACH	NC:LOUISBURG
EPA IU#	USRN17753	USRN17750X	USRN17748	USRN17690	USRN17690X	USRN17694	USRN17751	11SRN20870X	USRN20870	USRN17242	USRN17256*	USRN1/410	USRN17409	USRN17680X	USRN17684	USRN17680	USKN1/344	USKN17137*	USRN17435	USRN17276	USRN17348	USRN17319	USRN18069	USRN18068	11SRN1 71 36*	USRN17557	USRN17945	USRN17681	USRN17679	USKN1/062	USRN17791	USRN17279	USRN17277	USRN1//88	USRN17677	USRN17170	USRN17170X	USRN17816	USRN17689	USRN1 8563*	USRN17134	USRN17408	USRN16686	USRN16948*

2SIGHA ERROR	0.0	0.0
U+238 pc1/1)	N N N N N N N N N N N N N N N N N N N	~ ~ O ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
2SICMA U+234 2SIGMA U+238 ERR (pC1/l) ERR (pC1/l)	0.1	0.0
U+234	N N N N N N N N N N N N N N N N N N N	O N N N N N N N N N N N N N N N N N N N
2SIGMA ERR		1.0
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	AN
< -		0.0
Ra*226 2SIGM (pC1/1) ERR	,	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	11111 10111001000000000000000000000000	00.7 00.8 11.1 11.1 11.1 00.9 11.0 11.0 11.0 11.0
DETA 2SIG (pC1/1) ERR		
A BET	0146664664646464646464646464646464646464	1.6 8 20 30 40 40 40 40 40 40 40 40 40 40 40 40 40
2SIGNA BETA ERR (pC1/		24 8 2 6 6 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
ALPHA pc1/1)	0.0001100000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2SICNA ALPHA ERROR (pC1/1)	68.6 47.9 141.0 79.4 66.3 102.9 64.0 61.3 77.9 109.9 95.6 108.6 88.8 88.8 88.8 106.1 106.1 106.1 106.1 112.9 112.9	137.0 1189.5 139.5 124.6 18.6 104.6 104.6 104.6 104.6 104.6 104.6 104.6 104.9 1149.1 149.1
	493.4 43.5 43.5 40.7 42.2 42.6 131.5 114.6 117.2 117.8 117.2 117.8 117.2 117.8 117.2 117.8 117.2 117.8 117.6	180.2 176.0 1336.5 103.2 65.3 55.0 1162.0 239.1 37.6 222.5 1124.3 1139.0 7454.0 99.2 0.0 413.2 290.2 290.2 280.5 196.9
COLLECT Rn+222 DATE (pC1/1)		111081 111081 111081 111381 111381 111481 111481 111081 111081 111081 111081 111081 111081 111081 111081 111081 111081 111081 111081 111081
LOCATION	NC:LUCAMA NC:LUMBERTON NC:LYLESVILLE NC:MACLESFIELD NC:MACLESFIELD NC:MACADENVILLE NC:MACADENVILLE NC:MACADENVILLE NC:MACADENVILLE NC:MACADENVILLE NC:MACADENVILLE NC:MACADENVILLE NC:MACADENVILLE NC:MACADENVILLE NC:MORCANTON NC:MORCANTON NC:MORCANTON NC:NORCANTON NC:NORCANTON NC:NEW BERN NC:NEWPORT N	NC:PINEBLUFF NC:PINEBLUF NC:REFORD NC:REFORD NC:ROERSONVILLE NC:ROEBRSONVILLE NC:ROEBRSONVIL
EPA ID#	USRN17815 USRN17477* USRN17437 USRN17437 USRN17497 USRN17315 USRN17315 USRN17315 USRN17269 USRN17359 USRN17135 USRN17135 USRN17135 USRN17737 USRN17737 USRN17737 USRN17737 USRN17737 USRN17737 USRN17737 USRN17737 USRN17780 USRN17317 USRN17780 USRN17780 USRN17780	USRN17470X USRN17470 USRN17467 USRN17467 USRN17675 USRN17654 USRN17692 USRN17692 USRN17692 USRN17692 USRN17692 USRN17692 USRN17795

Ra+226 2SIGMA Ra+228 2SIGMA U+234 2SIGMA U+238 2SIGMA ERR (pC1/1) ERR (pC1/1) ERROR 0.5 0.0 0.3 N A N 0.5 0.7 0.1 1.1 (pC1/1) ERR (pC1/1) NA AN AN AN AN AN NA A 0.0 .0.1 NA 0.6 NA NA 5.6 ž X ¥ V V V DATE (pC1/1) ERROR (pC1/1) ERR (pC1/1) ERR COLLECT Rn-222 2SIGMA ALPHA 2SIGMA BETA 2SIG 0.9 8.0 1.6 0.8 1.2 5.2 1.3 1.0 0.9 1.8 0.9 2.9 1:1 2.4 4.3 2.0 5.8 10.8 3.8 1.6 6.9 8.0 1.4 7.9 0.3 2.6 1.0 2.9 1.7 7.2 6.7 2.2 2.2 2.0 2.2 3.8 3.8 8.9 0.7 3.4 1.6 2.2 6.1 3.1 1.0 1.6 0.5 0.4 1.8 1.1 3.6 0.2 0.5 0.3 9.0 0.0 9.0 0.0 9.0 6.0 0.0 0.8 0.9 0.0 6.04 0.8 8.8 0.0 0.3 0.0 7.6 0.0 0.5 0.1 0.3 73.5 85.7 112.2 6.09 78.4 90.4 80.0 90.0 92.6 57.4 111.9 77.9 93.4 117.7 87.7 90.8 107.4 127.9 67.3 102.2 106.4 124.5 67.7 129.8 103:2 100.9 129.2 77.7 117.7 108.2 90.7 147.1 103,3 81.1 130.1 115.9 103.5 111.3 21082 1045.5 336.0 1 1254.0 136.8 662.8 11 381 2236.5 2149.5 116.9 84.0 58.8 114.3 6°64 108.1 0. 5551 73.6 3083.0 9.07 645.2 *36.3 178.6 67.5 93.5 1236.5 4.5 *6.3 44.1 26.7 34.2 48.4 461.7 +33.1 21082 102381 111981 102281 111781 112181 102981 12 481 102981 111781 12 381 102281 111981 102281 102281 11 581 111981 72981 11 681 111881 10 681 11 681 11 481 121681 103181 112081 11 681 102781 102781 102281 111981 11 481 BEAC111881 NC:WILMINGTON BEAC111881 BE111881 BE111881 101481 111081 111081 111881 BE11 481 10 681 NC:WEST JEFFERSON NC:WRIGHTSVILLE NC: TAYLORSVILLE NC:WRIGHTSVILLE NC: WRIGHTSVILLE NC:WRIGHTSVILLE NC:SWAN QUARTER NC:WINTERVILLE NC:SOUTH MILLS NC:SPRING LAKE NC:SPRING LAKE NC: STANTONBURG NC:WILLIAMSTON NC:SPRING HOPE NC:SPENCER MT. NC:WILMINGTON NC: WILMINGTON NC:STONEVILLE NC:WILKESBORO NC:TABOR CITY NC:WHITEVILLE NC:SHARPSBURG NC:WALKERTOWN NC:WILTE LAKE NC:WILTEVILLE NC:SNOW HILL NC:SURF CITY NC: SWANSBORO NC:SOUTHPORT NC:SHALLOTTE NC:WILTAKERS NC: TROUTMAN NC:WALLACE NC:TARBORO NC:WINDSOR NC:WARSAW NC:WINTON NC:SPARTA NC: TRYON LOCATION NC:SELMA NC:SIMS JSRN17257* USRN17138* USRN17171* **USRN17820X** USRN15184* **USRN17790X** USRN17343 USRN17109 USRN17106 USRN17429 JSRN17938 JSRN16684 JSRN20872 USRN17433 **USRN18066 USRN17108** USRN18559 USRN17253 **USRN17693** USRN17757 USRN17888 USRN17169 USRN17126 USRN17786 **USRN17820 USRN17790 USRN17468** USRN17789 USRN18064 USRN17107 USRN17797 USRN17316 USRN17817 USRN17434 **USRN17481 USRN17403 USRN17436** USRN17749 **JSRN17406 USRN17792 USRN17796** USRN16687 JSRN16944 **USRN17404** EPA ID#

Surface water supply; all others are groundwater supplies.

2 SICHA ERROR		8	0.2		0.0.3
U-238 pc1/1)	V V V V	8 N N N N N N N N N N N N N N N N N N N	1		NA N
2SICMA U-234 2SICMA U-238 ERR (pC1/1) ERR (pC1/1)		1:1	0.3	•	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
U-234 (pc1/1	<	N	NA N		0
2S I GMA ERR					
2SIGNA Ra-228 ERR (pC1/1)	AN AN AN	<pre></pre>	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N
2SIGNA ERR (0.0	0.0	0.0	0. 0 0	0.00
Ra-226 2SIGN (PC1/1) ERR	NA O.1 NA NA	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N
	1.4 1.4 2.8 1.3	11.4 0.7 13.9 0.6 0.6	2 2 2 2 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		*
-	5.5 0.3 0.8 4.9	7.0 10.0 10.0 6.0 5.0 5.0 7.0 7.0 7.0	16.0 5.3 6.0 6.0 1.9	12 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.3 5.0 5.0 5.0 11.0 11.0 11.8 8.0
2SICHA BETA ERR (PC1/	0.9 3.6 3.2 0.8	0.9 0.6 0.0 0.0 0.0 0.7 0.0 0.0	3.2 1.4 0.0 0.6 0.6 0.7 0.9	2	2002110011040011 2003110011040011
	0.2 1.8 0.4 0.4	0.0	-1.2 -0.0 -0.1 -0.1 -0.1 -0.1 -0.7	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	4.2 6.1 6.1 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0
2SICHA ALPHA ERROR (pC1/1)	50.1 80.9 83.0 89.8	117.8 128.6 69.3 1127.0 110.7 28.3 81.5 72.4 72.4	81.3 60.1 66.9 78.6 100.0 71.3 79.1 80.1	81.9 57.5 83.1 88.7 66.5 67.4 67.4 67.4 100.0 104.4 1151.8	25.5.8 97.9 97.9 97.9 77.8 77.8 77.8 77.5 78.1 78.4 78.4
	74.8 330.5 504.0 88.9				101.9 105.8 105.8 105.8 105.8 1121.4 1121.4 1121.4 114.8 114.8 114.5 114.5 114.5 114.5
COLLECT Rn-222 DATE (pC1/1)	22481 11381 1 681 51881	42281 42181 2 681 42281 42281 31881 5 681 4 881 4 881	121080 52681 31981 5 881 42381 12281 5 881 1 781	1 781 5 881 121080 42181 5 1881 1 781 2 681 32081 32081 4 981 4 981 6 2981 6 2981	5.2881 6.581 6.581 2.2581 31.881 31.881 121.080 2.2481 11.21180 121.181 11.481 2.2581 31.881
LOCATION	ND: ASHLEY ND: BEACH ND: BELFIELD ND: BEULAH	ND: DOTTINEAU HD: BOLHAN HD: BOLHAN ND: CANDO ND: CANDO ND: CANLO HD: CAVALIER HD: COOPERSTOUN ND: CROSBY	ND:ELENDALE ND:ENDERLIN ND:FINLEY ND:FINLEY ND:GARRISON ND:GARRISON ND:GARRISON ND:GARRISON ND:GARRISON ND:GARRISON	ND: CLEN ULLIN ND: CRAFTON ND: HAKINSON ND: HAZEN ND: HELBON ND: HELBON ND: HILLS BONO ND: JAHESTONN ND: JAHESTONN ND: JAHESTONN ND: KENHARE	ND:KINDRED ND:KINDRED ND:LANDRED ND:LA HOURE ND:LAKOTA ND:LAKOTA ND:LAKOTA ND:LAKOTA ND:LAKOTA ND:LAKOTA ND:LASON ND:LISON ND:LISON ND:NOTT ND:NOTT ND:NOTT
EPA ID#	USRN10999 USRN10173 USRN10122 USRN13215	USRN12561 USRN12562 USRN12560 USRN12560 USRN12560X USRN12564 USRN12554 USRN12554	USRN03427 USRN13357 USRN13557 USRN12957 USRN12559 USRN12559 USRN12956 USRN12956	USRN112953 USRN12953 USRN12953 USRN12435 USRN13216 USRN10123 USRN11548 USRN11548 USRN11520X USRN11520X USRN11520X USRN11520X USRN11519 USRN11511	USKRI 145 J USKRI 1633 USKRI 1030 USKRI 1030 USKRI 1517 USKRI 1549 USKRI 0997 USKRI 0997 USKRI 1031 USKRI 1031

Table B.22 Natural radioactivity in public water systems-North Dakota (continued)

2SIGNA ERROR	0.2	
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	V V
2SICHA U-234 2SICHA U-238 ERR (pC1/1) ERR (pC1/1)	£.0	
U-234 (pc1/1)	2	V V N
2SICHA ERR		
ta-226 2SIGNA Ra-228 (pC1/1) ERR (pC1/1)		V V V V
2SIGNA ERR (0.0	0.0
Ra-226 (pC1/1)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NA 0.2
2SIG) ERR	2.2 15.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	1.1
2SICMA BETA 2SIG ERR (PC1/1) ERR	1.2 6.0 6.0 6.0 7.8 7.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	3.0
2SIGMA ERR	1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	0.6
ALPHA (pC1/1)	0.2 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.4
2SIGNA ALPHA ERROR (pC1/1)	68.2 142.9 141.9 141.9 76.3 68.3 68.0 118.8 129.4 1129.4 1129.4 1129.5 52.0 102.6 52.0 107.5 59.9 67.8 67.8	
Rn-222 pC1/1)	109.0 -8.8 1162.5 -17.4 -53.7 62.3 62.3 17.1 300.7 449.6 -17.1 325.9 449.7 1168.8 1190.7 41.3 1176.3 30.6 46.3	-95.5 NA
COLLECT Rn-222 DATE (PC1/1)	1 781 4 781 121080 4 781 31881 31981 42281 4 281 12281 12281 32081 4 981 12281 32081 4 981 52781 121180 5 781 62981 62981	62981 22481
LOCATION	ND: NEW SALEM ND: OAKES ND: PAKES ND: PAKES ND: PAKES ND: POETLAND ND: ROLLA ND: ROLLA ND: ROLLA ND: ROLLA ND: WALLEY ND: VALLEY ND: VELVA ND: VELVA ND: WAHPETON ND: WAHPETON ND: WAHPETON ND: WATFORD CITY	ND:WISHEK
EPA ID#	USRN10121 USRN12129 USRN12128 USRN1218 USRN11518 USRN11516 USRN12538 USRN12209 USRN122006 USRN12108 USRN12100 USRN12110X USRN12110X USRN12110X USRN12110X USRN12100 USRN12100 USRN12100 USRN12100 USRN12100 USRN12100 USRN12100 USRN1250	USRN14249* USRN14249*

* Surface water supply; all others are groundwater supplies.

2 SIGNA															0.0																														
U-238	VN	Z Z	VN	VN	٧N	V V	NA	N AN	N	< N	VN.	VZ.	۷ ×	N N	0.1	NA	۷× ۲	Y Z	S &	VN	NA	VN:	VN N	۷ × ۲	S X	VN	VN.	VN:	Y X	Z Z	VZ.	NA	<u> </u>	< 2 2 2	NA	S S	VN	VΝ	VN.	VN:	Ž:	< 2 2	NA	N V	NA
2SICHA U-234 2SICHA U-238 ERR (PC1/1) FRR (PC1/1)															0.1																														
U-234	VN	Z Z	NA	NA	VN.	۷ × ۷	Y Y	NA N	¥ ×2	VN	NA	Ý.	V V	ž ž	0.3	VN	VN A	V N	\ \ \ \ \	٧×	NA	VN	VN S	NA NA	S Y	٧×	VN	VN	V 2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	VN	VN	VN	۷× ۲	< < 2	S 2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	NA	NA	VN	VN	Z Z	V V	NA	NA
2SIGHA ERR																																													
/ Ra-228 (pC1/1)	NA	Y X	NA	NA	NA	Y Y	4	N AN	NA	N.A	VN	VN.	V 2	V V	VN	VN	VZ:	A A	S V	VN	٧N	VN	YZ :	VN	\$ X	V.	NA	VN	VZ Z	V V	٧×	VN	VN:	VN V	V 2	♥ < Z Z	Z X	NA	NA	VZ:	٧٧ :	۷×	\$ \$	N.	NA
≥														0.1																															
Ra-226 2SIGN (PC1/1) ERR	NA	< <2 × 2	NA	MA	VN :	V 2	V V	V VN	<u> </u>	VN	NA	VN.	V V	1.7	VN	VN.	٧× :	V V	Y X	VΝ	NA	NA	VN.	V X	VN VN	V	NA	VN	V X	V V	٧N	NA	VZ :	V S	VM	V V	¥ 2	VN	NA	VN	NA S	V X	NA	VN	NA
	1.0	1.0	0.7	6.0	0.9	2,1	0.2	1.0	1.1.	6.0	1.0	1.0	4.0	1.1	3.8	1.1	1.0	ρ. Ο 4	0.3	0.4	1.0	1.0	1.0	1,1	1.1	0.9	1.2	1.0		0.9	1.1	2.8	4 .3	0.1	1.1	د. د. د.	0.9	4.1	4 .5	1.0	1.9	1:1	1.2	-	1.0
a	2.0	1.5	1.3	1.1	1.9	3.8	0.2	1.8	1.6	1.5	1.6	1.8	-1.2	0.3	5.5	2.3	1.5	1,3	0.0	-0.2	2.2	1.8	1.7	6,1	2.9	1.8	3.2	2.0	1.7	0.8	3.3	1.7	7.6	1.5	2.1	7.5	1.5	5.6	6.4	1.2	3.0	3.1	2.2	7.7	1.7
2SICHA BETA ERR (PC1/	9.0	0°0	8.0	0.7	8.0	1.6	1.1	0.3	0.8	0.4	0.5	0.7	1 °8	2.5	2.0	0.7	9.0	10.9	0.7	3.0	9.0	0.5	0.7	5.0	0.7	0.5	0.7	0.0	8°0	2.0	0.5	1.7	1.8	9.0	0.0	۳ د	0.5	2.4	1.9.	0.5	1.3	و د د د	0.0	0.0	0.7
	b.0	1.1	1.4	0.4	1,2	0.8	4.0 8.0	0.4	6.0	0.2	0.3	9.0	1.2	2.9	2.4	0.2	9.0	1.7	0.4	1:1	0.1	0.2	0.2	0.2	4.0	0.3	0.8	0.0	4.0	7.0	0.3	1.9	1.9	0.1	7.0	L.1 0.8	0.3	2.3	1.2	0.2	0.5	٥٠,٧	3.0	0.2	0.7
2SIGNA ALPHA Error (pc1/1)	66.3	5.06	138.9	81.7	60.5	65.6	5.59	63.7	72.9	4.99	0.49	73.9	50.5		61.7	62.8	68.4	29.9	108.5	62.9	0. 49	1.69	70.4	61.4	97-1	59.3	70.7	74.3	69.6	59.8	88.8	9.89	9.49	77 5	73.5	59.7	67.8	62.6	8.09	58.9	60.3	70.9	78.8	6.69	60.2
	0.0	232.2	9		5.8	121.6	1.001	76.7	181.5	54.0	218.5	203.6	82.1	NA NA	11.0	201.9	180.1	40.3			110.9	337.4	367.1	130.9	234.8	54.0	647.2	133.4	212.9	38.0	1.1	685.9	45.1	35.8	21.5	31.0	69.7	70.0	94.4	110.0	33.9	295.5	188.7	297.6	57.3
COLLECT Rn-222 DATE (PC1/1)	72981	62281	42981	62281	42981	8 481	184 8	62381	62381	72281	72181	5 581	72981	42981	42981	72181	72281	81081	62481	62481	8 581	71481	62381	62381	8 681	62981	63081	81081	8 581	63081	73081	81881	8 581	72981	81081	71381	8 581	62981	62981	5 481	8 401	8 581	62281	72281	71381
госатіон со	OII: ANDOVER	OII: ATHENS	OII:BELLE FONTAINE	OII: BELPRE	OII: BRYAN	OILCANTON	OIL: CANTON	OHECHILLICOTHE	OILICITELECOTHE	OH: COLUMBIANA	OII: COSHOCTON		OH: CUYAHOGA FALLS	OH: DELPHOS	OII:DELPHOS		OH: EAST PALESTINE	OH:EATON	OIL: ENGLEWOOD	OH:FAIRBORN	OH: FRANKLIN	OH: FRANKLIN	OII:CALLIPOLIS	OHICALLIPOLIS	OH : GERMANTOWN .	OH:GRANVILLE	OH: GREENFIELD .	OILHAHILTON	OH:HARRISON	OILTELSHORD	OIL: HUBBARD	OIL: HUBBER HEIGHTS	OH: HUNTER	OH:KENT	OH:KINGS MILLS	OH:LANCASTER	OH SLOCKLAND	OII:LOGAN	OII:LOGAN	OH: LONDON	OH:LOUISVILLE	OH:LOVELAND	ORELUCASVILLE	OH:HARTINS FERRY	OII:HASON
EPA ID#	USRN15262	USRN14050	USEN12739	USRN14074	USRN12677	USRN1 5260X	USRN15260	USRN14051	USRN14040	USRN1 4917	USRN14849	USRN1 2944	USRN15176	USRN12680	USRN1 2680X	USRN14852	USRN14915	USRN15497	USKRI 3606	USRN14140X	USRM15503	USRN14656	USRN14048	USRN14053	USRN15350X	USRN14373	USRN14217	USRN15496	USRN15310X	USEN14219	USRN15117	USRN1 5609	USRR1 5504	USRM1 5095	USRN15498	USRN141/9	USENT 5308	USRN14180	USRN14180X	USRN12868	USRN1 5264	USRN15309	USRN14019	1691110011	USRN14603

Table B.23 Natural radioactivity in public groundwater systems-Ohio (continued)

2SICHA ERROR		
(pc1/1)		~ ~ ~ ~ ~ ~ ~ ~ ~ ~
2SIGNA U-234 2SIGNA U-238 ERR (pC1/1) ERR (pC1/1)	<pre></pre>	V
IA Ra-228 (pC1/1)	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	NN NN NN NN NN NN
Ra-226 2SICH (pC1/1) ERR	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	N N N N N N N N N N N N N N N N N N N
2SIG		1.0
=	2 2 2 2 3 3 3 4 4 5 5 5 6 6 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7	1.5 2.1 2.0 2.9
2SIGNA BETA ERR (pC1/		0.5 0.5 1.0
ALPHA pC1/1)		0.2
2SIGNA ALPNA ERROR (PC1/1)	61.4 68.9 67.9 72.4 72.4 72.4 72.4 62.3 64.8 62.3 64.8 62.3 101.8 73.6 67.4 67.4 87.6 87.7 87.6 87.7 87.6	63.7 66.9 63.9 88.0
		142.3 129.4 102.1 138.7
COLLECT Rn-222 DATE (PC1/1)	8 481 71331 71331 71331 72231 81881 81881 8 481 8 481 8 481 8 481 72181 72181 72181 72181 72281 73081	8 481 8 581 62481 72381
LOCATION	OH: MASSILLON OH: HASSILLON OH: HIANISBURG OH: HILAVILLE OH: MILLYILLE OH: MILLADELPHI OH: NEW CARLISLE OH: NEW CARLISLE OH: NEW CARLISLE OH: NEW PHILADELPHI OH: NEW PHILADELPHI OH: NEW PHILADELPHI OH: NEW PHILADELPHI OH: NEW CARLISLE OH: SPERNOR OH: SPERNOR OH: SPERNOR OH: SPERNOR OH: TROY OH: WAPAKONETA OH: WAPAKONETA OH: WAPAKONETA OH: WASTERVILLE OH: WASTERVILLE	OH: WOOSTER OH: WYOHING OH: XENIA OH: ZANESVILLE
EPA ID#	USRN12263 USRN12269 USRN14605 USRN14605 USRN14609 USRN14850X USRN14850X USRN12261 USRN12261 USRN12261 USRN12265 USRN12265 USRN12265 USRN12265 USRN12265 USRN12265 USRN12265 USRN12265 USRN12742 USRN12742 USRN12743 USRN12740X USRN12740X USRN12740X USRN12740X USRN12740X USRN12740X USRN12740X USRN12740X USRN12740X USRN127763 USRN12761 USRN127761 USRN127761 USRN127761 USRN127761 USRN127761 USRN127761 USRN127761 USRN127761 USRN127761 USRN127761 USRN127761 USRN127761 USRN12777	USRN15259 USRN15311 USRN14139 USRN14958

Table B.24 Natural radioactivity in public groundwater systems-Oklahoma

2SIGNA ERROR		2			,	٥				e,			.2							2	5	.2				0	.2				0.5
		0.2				0.0				0.3			0.2								1.5					0.0					
// U-2 (pC1/	VN VN	1.7	Ž.	V V N	N). V	Ž	VN	VZ.	2.7	٧X	VZ.	2.2	YN	VN	VZ	VN	VN	VZ	2.2	16.4	,	VN	N	N N	0.1	1.9	VN.	VN	N	4.6
ICHA U-234 2SICHA U-238 ERR (pC1/1) ERR (pC1/1)		0.3			,	1.2				0.4			0.3							9.0	2.4	0.3				0.1	0.3				6.0
U-234 pC1/1	VN VN	3.0	VN:	V V	VN	12.4 NA	VN	VN	٧×	4.3	VV	٧V	3.0	VN N	٧V	VN	VN	VN	VN	6.7	27.1	2.5	٧٧	VN.	VN	7.0	2.4	٧N	٧N	VV	8.8
2SICHA U-234 2SICHA U-238 ERR (pC1/1) ERR (pC1/1)					,	7															2										
	V V V	Y Y	VN	۷ ۷ ۷ ۷	VN	Y	VN	VN	٧N	NA	NA	VN	NA	٧N	٧N	NA	VN	VN N	۷N	M	VN	۷N	NA	NA	VN	NA	NA	VN	VN	٧IJ	VN N
Ra-226 2SICMA Ra-228 (PC1/1) ERR (PC1/1)		0.0			4. 4.	0.0				0.0			0.0							0.0	0.0	0.0				0.0	0.0				0.0
226 :	VN	8.	VZ :	VN NA	NA	n	VN	NA	٧N	.3	VN	VN	0.1	٧N	NA	VN	VN	٧V	۷N N	0.1	1.1	0.3	٧×	NA	٧N	0.1	1.2	NA	NA	٧N	0.1
					,					0			_																		0
2SIG ERR	0.0	1.1	2.4	0.3	1.9	0.8	0.2	1.0	1.1	1.4	5.0	0.7	4,3	5.1	2.3	1.1	1.2	1.2	1.3	0.9	3.0	0.7	0.9	0.9	1.0	0.8	4.0	1.0	1.0	1.1	0.0
N BETA 2SIG (PC1/1) ERR	1.2	4.7	8.6	11.5	4.5	4.1	1.6	1.9	2.6	7.0	5.5	0.9	6.3	3.0	9.0-	2.5	2.9	3.8	4.1	1.1	6.1	9.0	1.3	2.0	1.8	1.8	5.5	1.9	2.1	1.9	3.0
2SICNA BETA ERR (PC1/1	1.1	1.4	1.0	1.1	1.1	3.2	0.7	1.2	6.0	1.3	1.8	1.0	2.9	0.0	2.0	0.7	1.1	0.7	9.0	1.9	5.3	0° 1/	1.0	1.0	9.0	1,5	2.3	1.1	1.0	9.0	1.4
2SICHA ALPHA ERROR (pC1/1)	2.7	5.8	0.4	0.8	1.0	14.6	0.7	1.9	0.3	4.1	9.0-	2.8	3,3	0.0	1.9	0.2	2.0	0.9	0.4	5.3	21.8	12.4	1.7	2.3	0.3	5.7	3.6	1.9	1.5	0.5	4.8
2SICUA ALPUA ERROR (PC1/1)	79.7	119.7	60.4	61.4	114.4	59.3	60.2	76.7	0.49	63.2	84.1	9.65	73.7	105.1	92.1	61.7	91.4	115.3	88.9	59.3	89.3	7.06	2.09	80.3	91.7	99.5	76.3	66.5	6.99	0.49	70.3
	170.3	321.7	9.98	118.7	44.3	126.8	65.6	230.7	132.6	247.9	48.4	28.6	9.92	281.1	173.6	103.4	124.4	164.4	53.8	121.4	97.7	81.5	110.0	189.1	257.1	901.2	118.4	284.5	419.7	262.8	138.4
COLLECT Rn-222 DATE (pC1/1)	61981	6 481	61081	61081	6 481	6 981	61081	61231	62481	62381	61981	61081	61281	61881	61881	61081	61881	187 9	61181	6 981	61181	61881	61081	61981	18619	61981	61281	62381	61081	62381	186 9
LOCATION	OK:ADA OK:ALVA	OK: BRISTOW	OK: BURNS FLAT	OK: BURNS FLAT	OK : DRUHUR IGHT	OK: EDHOND	OK: ELK CITY	OK: ENID	OK: FAIRVIEW	OK : GUYRION	OK: HEALDTON	OK:HOLLIS	OK:KINCFI SHER	OK:LINDSAY	OK:LINDSAY	OK: NANGUN	OK: MARLOW	OK:MIAHI	OK: HOORE	OK:NICHOLS	OK : NORHAN	OK:PURCELL	OK: SAYRE	OK:SENINOLE	OK: SEMINOLE	OK: SULPHUR	OK: TONKAWA	OK: WATONGA	OK:WEATHERFORD	OK: WOODWARD	OK: YUKON
EPA 10#	USRN14039 USRN14076	USRN13654	USRN13730X	USRN13730 USRN13731	USRN13653	USRN13706	USRN13735	USRN13804	USRN1 4075	USRN14142	USR014141	USRN13734	USRI11 3806	USRN1 3930	USRN13930X	USRN13736	USRN13931	USRN13626	USRN13803	USRM1 3708	USRI11 3805	USRN1 3929	USRN1 37 33	USRN14040X	USRN14040	USRN14038	USRN1 3858	USRN14042	USRW13732	USR#114041	USRB1 3705

pC1/1) ERROR	₹Z	NA	NA	VZ.	٧N	٧٧	VZ VZ	MA	NA	٧V	NA	VN	V.	V _N	¥2 i	V 2	V	Y X	£	V _N	NA	NA	٧٧	VN.	۷ :	V.V	V 2	V.	NA	VV	MA	V _N	V 2	× × ×	VN	NA	NA	VV	VII :	Y Z	V2 ~	V V	VN VN	NA	VN	VV	NA	NA
ERR (pC1/1) ERR (pC1/1)	VN	NA	NA	NA	VN	٧x	VN	٧٧	NA	NA	VN	NA	VN:	VN :	VZ :	VN VN	VN	VN VN	V2	HA.	NA	NA	VN	V _N	V.	< s	V N	< ×	NA	NA	V _N	۷ ×	V 2	V 2	V.	NA	NA	VN	NA	VN N	VN.	VN	Į.	NA NA	NA	NA	NA	NA
(pc1/1)	VN	VN	VN	VN	VN	٧N	NA	٧N	. VN	NA	NA	VN	VN	VN :	VZ :	A Z	NA MA	VII VII	×	Ϋ́N	NA	NA	NA	٧X	V.	V X	Y Y	VN	NA	VN	NA	VE X	V V	V N	VN	NA	VN	VN	VN:	V.	NA NA	۷× ×	VN	NA	NA	VN	٧٧	VV
(pc1/1) ERR	NA	VV	٧٧	VN:	٧٧	Y X	VN	٧٧	VV	٧ <u>٧</u>	٧٧	VN	VN.	NA NA	VI.	V 2	V V	¥ 2	VN	ΥN	VN	NA	VV	VZ :	V :	۷ × ۷	< < ×	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	VN	٧٧	VV	۷ <u>۲</u>	V 2	2 × 2	V _N	NA	NA	٧N	VZ:	V Z	VZ Z	Y 2	× ×	٧×	NA	٧ ₂	VN	VV
(pci/1) ERR (9.0	0.5	6.0	0.8	0.5	0.8	1.1	1.0	0.5	6.0	0.5	8.0	9.0	9.0	1.5	7.1	. ~	0.5	0.7	0.7	0.5	0.4	1.1	0.5	1.0	n. 0	0.0	0.9	0.5	1.0	9.0	9.0	0.0	9.0	1.2	0.7	4.3	1.1	0.7	6.0		2.0	0.7	9.0	0.5	9.0	0.5	0.8
(trad	2.0	1.0	1.8	8.0	6°0	4.3	4 . 4	3,6	0.7	2.0	0.7	1,3	8.0	ر د د د	9.1 5.3	ກໍຕ	0 1	0.0	2.0	4 .0	0.5	b°0	2.8	0.3	2.5	2.0	1.7	2.0	0.3	3.1	2.0	0.7	000	1.0	5.2	0.7	2.2	3.8	2.0	2.0	7.0	000	2.4	2.0	0.8	6.0	0.9	3.0
run	7.0	0.3	0.2	0.0	0.3	0.5	0.3	0.3	0,3	0.3	0.2	0.3	ۍ د د د د د د د د د د د د د د د د د د د	5.0	2.0	9.0	200	7.0	0.7	0.4	0.4	0.5	0.5	4.0	U.O.	ر د د د د	0.0	0.4	0,4	0.0	0,3	0.4	2.1	200	11	0.3	1.7	0.7	0,3	4.0	٠° ٥	9.0	0.0	0.3	0.3	0.2	0.3	0.4
	0.2	0.1	0.1	0.0	0.1	0.2	0.2	0.2	0.1	0.2	0.1	0.2	0.1	£ 0	1.0	7.0	2.0		0,3	0.1	0.2	0.4	0.2	0.2	0.2	7.0	0.0	-0.2	0.2	0.7	0.1	0.1	ا به در		2.6	0.1	6.0	1.1	0.1	7.0	1,0	7.0	0.0	0.1	0.2	0.1	0.1	0.1
	7.6	4° 69	95.4	8.2	7.8	6.7	37.1	1.1	7.8	88.0	6.9	71.9	5.4	5/.0	4.0/	134.4	ָט ע ט ע	67.6	8 8	45,1		59.1	146.3	58.5	82.4	47.8	. 6	76.0	45.2	5.8		56.5	7.3	3.2	128.0	43.5	7.8	0.7	6.7	ر د د د	0.0	5.5	0.0	6.5	247.7	83.1	132.7	67.2
;	214.7 6	2.6 6					~									140.0 13							~			683.0 4	-					211.1 6	033.0 13							512.4 9								
									7																																			-				
	32781	327	52281	92981	2 681	2 681	92981	92981	32781	51881	32781	92881	32481	12281	92881	19676	31001	32781	32781	32481	12281	12281	92981	12281	51981	52481	52281			12681	32781	32781	10 581	31981	92981	32481	51881	92881	32481	52281	126	126	12681	32781	4 781	4 781	4 781	31881
	OR : AMITY	OR: AUTISVILLE	OR: BEND	OR: BEND	OR: BORING	OR: BORING	OR: BURNS	OR: BURNS	OR: DAY TOH	OR: DRAIN	OR: DUNDEE	OR: ELGIN	OR: GLADSTONE	OR: HARRISBURG	OR:HERHISTON	OK:HINES	ORTHOOD RIVER	OR HITRRARD	OR: INDEPENDENCE	OR: JANTZEN BEACH	OR: JEFFERSON	OR: JEFFERSON	OR: JOHN DAY	OR: JUNCTION CLTY	OR: KLAHATH FALLS	OR:LAKE OSWEGO	OPPRANTA	OR: MI LTON~FREEWATE	OR:MILMAUKIE	OR: HOUNT ANGEL	OR:NEWBERG	OR:NEVBERG	OPPORTRE	OR : ODFIL	OR:ONTARIO	OR:OREGON CLTY	OR: PHOENIX	OR:PILOT ROCK	OR: PORTLAND	OR:PRINEVILLE	ORTROCOR KIVER	OR SALEN	OR: SALEM	OR: SHERWOOD	OR: SPRINGFIELD	OR: SPRINCFIELD	OR:SPRINGFIELD	OR:ST. HELENS
	USRN1 1699	USRN1 1702	USRN1 3285	USRN16542	USRN10581	USRN10583	USRN16760X	USRN16760	USRR1 1695	USRN13228	USRN11696	USEN16433	USRN11595	USKN10261	USRN16434	USRR10/01	USKN11493	USRN11701	USEM1 1698	USRN11598	USRN10260	USRN10260X	USRN16541	USRN10259	USRN1 3226	USERLI 2294	USKW13284	USRN16436	USRU11596	USRN10394	USRM1 1700	USRM1 1700X	USKN16336	11SR11 1495	USRN16539	USRN11593	USRN1 32 29	USRN16437	USRN11597	USRN13286	USKN13227	USIGN10412	USRN10395	USRN11697	USRN1 2080	USRN1 2079	USRN12080X	USR111435

Table B.25 Natural radioactivity in public groundwater systems Oregon (continued)

2SICHA ERROR				0.2	0.2				
u-238 pc1/1)	VN	VN	NA	1.9	1.8	NA	VN	NA	NA
2SICMA				0.3	0.3				
2SIGNA U-234 2SIGNA U-238 ERR (pc1/1) ERR (pc1/1)	NA	NA	√N N	2.8	2.8	VN	٧N	VN	NA
Ka-226 28IGMA Ra-228 25 (pc1/1) ERR (pc1/1)	NA	NA	VV	NA	NA	VV	NA	NA	NA
2SIGMA ERR				0.0					
	VN	NA	٧N	0.1	VN	NA	VN	VN	VN
2SIG) ERR	0.8	0.9	1.7	5.0	4.4	9.0	9.0	0.7	9.0
2SIGHA BETA SERR (PC1/1)	0.7	0.9	11.1	14.3	12.6	6.0	2.0	1.7	6.0
2SICHA Err	0.3	0.0	0.7	3.2	2.5	0.2	0.3	0.0	0.5
2SIGNA ALPHA ERROR (PC1/1)	0.1	0.0	-0.2	6.5	5.4	0.1	0.1	0.0	0.4
2SIGMA ERROR (54.5	72.5	126.5	143.0	130.1	63.5	46.7	64.3
Rn-222 pC1/1)	NA	227.7	90.5	350.9	477.4	383.5	471.3	108.6	415.0
COLLECT Rn-222 2 DATE (pC1/1) E	52281	31981	92881	92981	92981	4 781	31881	2 681	12681
LOCATION	OR: SUNKIVER	_	OR: UHATILLA	_	OR:VALE	OR:VENETA	OR: WARREN	OR: WOOD VILLAGE	OR: WOODBURN
EPA ID#	USRN1 3282	USRN11494	USRN16435	USRN16540X	USRN16540	USRN1 2081	USRN11497	USRN10582	USRN10393

S 2SICHA ERROR																																						,	0.0						;	0.2	4.0		
2SICNA U-238 ERR (pC1/1)	NA	VN	ν.:	VZ Z	V 2	Y 2	٧N	NA	NA	NA	MA	VN.	V _N	VZ:	٧×	V X	NA NA	S V	< N	NA	VN	NA	NA	VN	VN	VN:	VZ :	۷: ا	N N	V 2	Y 2	NA	NA	VN	VN	V _N	VZ:	٧× د د	4. V	S V	NA N	VN	NA	VN	NA .	2,1	3.1	N N	
ZSICH.																																							0.0							4.0	0.0		
2SICHA U-234 2SICHA U-238 ERR (PC1/1) ERR (PC1/1)	VN	M	YN:	e :	V V V	VN VN	VN	VN	NA	VN	NA	٧٧	NA:	¥:	VN.	VN	NA	V 2	S N	NA	VN	VN	VN	VN	VN	VN:	VN :	V.	VZ X	VZ V	VN VN	VN	NA	VN	VN	VN	VN	× ′	7.C	V (1)	VN	VN N	VV	NA	VN.	E, 4, 1	L. C	VN	
2SICMA Ra-228 ERR (pC1/1)	NA	VV	VZ:	V .	V 2	S 2	٧ <u>٧</u>	NA	VN	NA	VN	VN	NA	V I	VV.	NA NA	VN V	¥ 2	VZ	VN	VN	VN	NA	VN	VN	VII	VZ :	VZ :	V :	VN	V Z	VN	VN	VN	NA	VN	VN		VZ Z	V Z	X Z	VN	NA	VN				VN NA	
5 2SIC L) ERÌ																																						(0.0							0.0	0.0		
ка-226 2SICM (pC1/l) ERR	NA	YN N	Ý.	\ Z	4 2	S X	VN	VN	VN	NA	NA	VN	VN :	VN :	VZ:	V2	VN V	V V	2	VX	×2	VN	VN	NA	NA	YN:	VN :	VZ:	YZ 2	Y Z	S Z	VN	INA	NA	NA	VN	YN :	VN C	0.0	VZ VZ	E Z	VN	NA	VN	NA	0.1	1.1	X X	
2SIG ERR	1.4	2.3	1.3	L . 9	1.7	5.2	0.9	1.8	2.1	0.8	1.1	2.0	1.6	2.3	0.1	0.1	2 - 6	2 1 2	0.5	1,1	2.6	2.3	1.9	1.9	0.9	1.5	1.7	0.7	0°2	7°7	0.8	0.8	0.9	1,3	2,1	1.3	1.6	1.5	4.0	9	1.5	1.2	2.3	1.7	1.5	0.0	χ. Ο (4.5	
BETA 2SIG (pC1/1) ERR	0.8	4.2	1.3	1.1	0.0	5.9	1.4	1.2	2.6	1.6	1.9	3.1	1.8	2.6	0.2	2.1	7.0	, ,	0.8	2.5	3.7	4.6	1.6	1.3	0.4	1.6	3.7	2.7	F. 7	7 0 2	0.5	0.5	1.1	3.6	1.6	2.5	2.6	D . C	0.0		2.0	9.1	4.7	1.6	1.4	0.0	2.1	3.5	
2SIGNA BETA ERR (pC1/	0.7	1.5	1.0	1:1	1.0	1.1	0.4	1.0	1.0	1.1	0.0	1.5	1.7	1.2	7.0	a	0.0	000	0.8	9.0	1.2	1.1	0.8	0.0	4.0	0.5	0.8	0.4	4.0	1.0	0.3	0.0	0.0	0.5	0.8	0.8	0.8	1.2	2.3	2 . 0	2.0	1.3	1.1	6.0	1.2	2.2	2.3	1.7	
ALPHA (pc1/1)	0.2	0.2	1.5	0.1	6.0	-0.5	0.4	9.0	7.0	2.8	0.0	1.9	2.8	9.0-	7.0	4.0	7.0	1 -	2.9	0.5	0.7	-0.8	0.2	0.0	-0.2	-0.1	-0-3	1.2	200	7.0	0.1	0.0	0.0	-0.5	-0.3	1:1	1.2	2.1	ъ с • е		0.0	2.2	0.8	0.8	1.7	0 ° 0	10.7	0.4	
2SICHA ALPHA FRROR (pC1/1)	115.7	113.2	82.1	000	113.1	113.1	90.3	63.6	63.3	127.5	102.8	70.5	74.9	6.99	0.67	6.11	80 08	123 0	31.8	100.0	72.4	34.4	8.49	71.8	6°66	89.4	62.8	92.5	70.2	60,0	117.5	124.4	113.9	62.4	69.2	101.8	118.3	31.2	38.9 77.8	110.7	114.3	31.1	71.0	64.1	64.5	72.5	163.5	64.4	
			1027.0	281.8	-29 3	, ~		163.2	_		0	47.3	64.1	432.1	1.001	525 2	2.666					122.5	212.4	624.4	68.4	177.3	263.6	778.8	299.2	71 5	2 10			10	~	m	210.5	780.5	1298.0	1581.5	716.6	7.777	10.4	267.0	379.6	857.2	3269.5	303.3	
COLLECT Rn-222 DATE (pC1/1)	123081			12 281	12 281	12 201	102281	112381			12 381	12 881	12 881	122981	184211	102781	111381	111981	111881			102381	102781	102781	111981	121781	122881	111781	111681	12 281	121181			1 582	12 981	103081	103081	102081	10201			102081	12 881	111081	102681		102181	102681	
LOCATION	PA:ALIQUIFPA	PA:ALIQUIPPA	PA:AMBLER	PA:ASPINUALL	PA:AVONTORE BA:RAPNIESHORO	PA: BAKINES BONO PA: REAVER	PA: BELLEFONTE	PA:BERKS CITY	PA:CAIPBELLTOWN	PA:CHALFONT	PA:CHESVICK	PA:CLYNER	PA:CLYNER	PA:CORAOPOLIS	PA:CORAOPOLIS	PA:CORRY	PA:CORRY	PA - DAT 1 AS	PA : DOVER	PA:DOYLESTOWN	PA: PUQUESNE	PA:DUQUESNE	PA: EDGEWORTH	PA:EDINBORO	PA: ELYSBURG	PA:EMMAUS	PA:ETNA	PA: FAYETTEVILLE	PA:FLEETWOOD	BA : FORD CITY	PA:FRACKUILE	PA: FRACKVILLE	PA:GALLITZIN	PA: CLENSIIAW	PA: CREENCASTLE	PA:CROVE CITY	PA:CROVE CITY	PA:HATBORO	PA:HATFIELD	PA - HAZEL TOW	PA - HELLERTOUN	PA:HORSHALI	PA: INDIANA	PA:KUTZTOWN	PA:LANDISVILLE	PA:LANSDALE	PA:LANSDALE	PA: LEOLA	
EPA ID#	USRNZOOO2	USRN18649	USRN17003	USRN18087	USRN1/553	FOODSMASH	USRN1 7099	11SRN1 7906	USRN17498	USRN16958	USRN18063	USRN18130X	USRN18130	USRN18734	USRR1 7905	USRM1/160	USKNI/160X	USIKIN1 7832	11SRN1 7747	USRN17038	USRN17100X	USRN17100	USRN17162	USRN17159	USRN17799	USRN18566	USRN18708	USRR17697	USRN1 /68/	USKNI8086	USRI11 8240x	USRN18240	USRN17994	USRN20073	USRN18138	USRN1 7250X	USRN1 7250	USRN1 7036	USIRN1 /034	11581118218	HSRN18558	USRN1 7037	USRN18132	USRN17549	USRN17167	USRN17103	USRN1/041	USRN17166	

Table 8.26 Natural radioactivity in public groundwater systems-Pennsylvania (continued)

IGNA U-234 2SIGNA U-238 2SIGNA ERR (PC1/1) ERR (PC1/1) ERROR		0.0	0.3
U-238 pc1/1)	A N N N N N N N N N N N N N N N N N N N	1 9	2.3 NA NA NA NA NA NA NA NA NA NA NA NA NA
2SIGHA ERR (0.2	0.4
U-234 (pC1/1)	V V V V V V V V V V V V V V V V V V V		3.7 2.2 2.2 3.1 3.1 NA NA NA NA NA NA NA
2SIGNA U-234 2SIGNA U-238 ERR (PC1/1) ERR (PC1/1)			
	N N N N N N N N N N N N N N N N N N N		N N N N N N N N N N N N N N N N N N N
SICHA PERR (1		,	0.0 0.0 0.0 0.0 0.0
Ra-226 2SICHA Ra-228 (pC1/1) ERR (pC1/1)		6	0.3 HA 0.2 NA NA NA NA NA NA NA NA NA NA NA NA NA
	0.8 0.8 1.3 1.5 1.5 0.1 0.0 0.9	00.7 00.7 00.7 00.7 00.7 11.7 11.7 11.8 0.8	0.6 1.0 0.3 0.5 0.5 0.5 0.5 0.6
BETA 2 pC1/1)	1.4 2.1 1.5 1.5 1.5 0.9 1.3 1.3	0 2 2 3 3 4 1 8 3 6 6 7 4 5 6 6 7 8 6 6 7 8 6 6 6 8 7 8 7 8 7 8 7 8	11.1 11.0 0.3 11.0 0.4 0.7 0.7
2SICHA BETA 2SIG ERR (PC1/1) ERR	00.5	00000000000000000000000000000000000000	1.4 0.5 1.1 1.1 0.3 0.2 0.3 0.3
	0.1 -0.1 -0.1 -0.1 1.3 0.7 0.5 0.5	17.7 6.9 0.2 0.0 0.0 0.7 2.7 2.7 2.7 0.6 0.6 0.6 0.6 0.6 0.0 0.0 0.0	5.1 0.2 3.5 0.3 4.4 1.4 0.0 0.0 0.0 0.0
LLECT Ra-222 2SICHA ALPHA DATE (pC1/1) ERROR (pC1/1)	101.8 62.3 136.1 104.7 112.8 96.7 62.5 75.8 77.1 112.7 112.7	60.6 69.6 67.9 118.5 91.3 228.8 124.5 60.6 60.6 60.6 116.8 82.8 71.8	121.7 71.2 80.6 87.5 106.1 128.3 99.7 1125.4 119.5 61.8
tn-222 ;	173.9 140.4 1943.5 1163.5 407.1 417.7 123.9 265.1 235.8 2052.5 672.2		
COLLECT Rn-222 DATE (PC1/1)	1111981 102681 1022981 1111281 1111281 111281 12 181 12 881 11 981 111281 111281 111281 111381 111381 111381 111381		•
00	<u>ນ</u>	NIV NGS	
NO	PA:LIONVILLE PA:LITIZ PA:MALVERN PA:HALVERN	FASILLA FENN PASIONALIA	PATELFORD PATTINSVILLE PATTAPPE PAWRINSTER PAWRHINSTER PAWRRINSTER PAWRRINSTER PAWRRINSTER PAWRRINSTER PAWRRINGTON PAWRRINGTON PAWRINGTON PAWRINGTON PAWRINGTON PAWRINGTON PAWRINGTON PAWRINGTON PAWRINGTON PAWRINGTON
LOCATION	PA:LIONVILLE PA:LITITZ PA:HALVERN PA:HAVERN PA	PA:NIA: FENN PA:NEWTOWN PA:NORTH WAL PA:OLL CITY PA:PLINERTOW PA:PENNSBURG PA:PERRASIE PA:QUAKERTOW PA:RADING PA:RADING PA:SANONBURG PA:SCANONBURG PA:SCANON	PA:TELFORD PA:TITUSVI PA:TTAPPE PA:WARNINS PA:WARRINS PA:WARRINS PA:WARRINS PA:WEATHER PA:WEATHER PA:WEATHER PA:YORK
pq.	7798 7161 7249 7550 7550 7550 7550 7550 7475 7475 7428	7002 77002 77002 7342 7342 7101 7101 7101 7907 7907 7907 7907 7908 7908 7908 7908	6957 7165 7199 7908 6955 6952 7548 5953 7163
EPA IU#	USRN1 7798 USRN1 7161 USRN1 7249 USRN1 7550 USRN1 7550 USRN1 7550 USRN1 7550 USRN1 7551 USRN1 7951 USRN1 7475 USRN1 7475	USKN1 7002 USKN1 7002 USKN1 7402 USKN1 7342 USKN1 7101 USKN1 6959 USKN1 6959 USKN1 8129 USKN1 8525 USKN1 8525 USKN1 8555 USKN1 8565 USKN1 8668	USRNI 6957 USRNI 7165 USRNI 7199 USRNI 7908 USRNI 6955 USRNI 7548 USRNI 6953 USRNI 7163

Table 8.27 Natural radioactivity in public groundwater systems-Rhode Island

2SIGNA ERROR																											0.0						
2SIGNA U-234 2SIGNA U-238 ERR (pC1/1) ERR (pC1/1)	NA	NA	VN	NA	VN	NA	VN	NA	NA	VN	VN	NA	VN	VN	NA	٧N	NA	NA	VN	NA	NA	NA	VN	VN	VN	MA	0.0	VV	VN	NA	VN	VN	VN
2SICM/ ERR (0.0						
U-234 (pci/1)	NA	NA	VN	VN	MA	MA	VN	VN	VN	VN	NA	NA	VN	٧N	VN	NA	NA	NA	NA	NA	NA	VΝ	NA	NA	٧×	NA	0.0	VN	NA	Y _N	٧V	VN	NA
2SIGNA ERR																																	
	NA	VN	NA	VN	NA	NA	NA	NA	NA	NA	NA	VΝ	٧N	NA	VN	NA	NA	٧N	٧V	NA	VN	NA	NA	NA	VN	VN	VN	VN	NA	NA	٧N	VN	٧×
2																											0.0	æ					
Ra-226 2SIGN (pc1/1) ERR	MA	VN	NA	NA	٧×	NA	NA	٧V	NA	VN	NA	NA	NA	٧٧	VN	NA	۷V	VN	MA	VN	NA	NA	٧×	NA	VN	NA		NA	NA	VN	VN	VN	٧V
	7	2	9	4	4		9	9	7	8	7	7	9	5	2	9	2	9	9	9	4	9	9	9	2	4	9	2	0	3		ıΩ	ر د
2SIG	0.	0	9.0	0	0	0.5	9.0	9.0	0.7	0.8	0.7	0.7	0	0	0	0	°	0	0	0	0.4	٥	0	0	0	0	0	0	0.0	0		0.5	0.5
A BETA 2SIG (pc1/1) ERR	3,3	0.4	1.1	1.6	1.9	1.0	1.1	2.0	2.0	4.0	2.5	3.0	0.9	1.0	0.7	1.9	1.1	1.1	1.4	1,2	1.8	1.8	2.2	1.8	1.2	2.1	3.2	1.4	0.0	1.3	VN	0.5	0.4
2SICHA BETA ERR (PC1/	0.4	0.2	0.0	0.2	0.3	0.3	0.4	0.5	0.4	0.0	0.3	0.5	0.3	0.3	0.3	0.5	0.4	0.3	0.0	0.5	0.4	0.4	0.4	0.4	0.4	0.2	6.0	0.4	0.2	0.2		0.0	0.4
ALPHA PC1/1)	0.4	0.1	0.0	0.2	0.7	0.3	0.4	0.1	0.3	0.0	0.1	0.1	0.1	0.2	0.2	1.1	0.5	0.2	0.0	0.1	9.0	0.2	0.4	0.4	0.5	0.2	3.9	9.0	0.0	0.2	٧N	0.3	0.3
2SIGHA ALPHA ERROR (PCI/I)	103.4	76.7	74.8	90.2	91.2	72.0		89.3	0.76	95.4	89.1	8.96	57.2	64.7	66.2	71.9	62.0	58.2	79.2	82.4	97.5	117.2	66.2	9.07	125.8	98.4	7.16	9° 56	87.0		85.6	83.7	83.6
COLLECT Rn-222 2 DATE (pC1/1) E	1719.0 1	809.3	747.3	2255.0	3038.5	1113.5	NA	415.4	845.4	830.9	312.8	924.6	5°5061	294.5	1656.0	2394.5	118.9	1455.0	565.7	1175.0			2205.5			1093.0	930.4	955.8	1161.5	NA	958.5	1195.0	843.9
ECT R	121780 1	11481	11481	• •	• •		11581	22581	22581	22581	22581	22581	12781 1	12781 1		12781 2				11481 1		11281 2										_	21880
COLI	121	Ξ	Ξ	SOUTH112580	SOUTH112580	SOUTH 11581		22	22	22	22	22								Ξ	112	=	12	12	=		CH 121	-	121	121	121	121	121
		EE	1			SOU	SOUTH						CSTO	GSTO	GSTO	CSTO	CSTO	CSTO								NVIC	NWIC						
2	NTRY	ISVIL	ISVI	STOR,	STOW,	STON,	STON,	OLN	OLN	OLN	OLN	OLN	H KIN	H KIN	H KIN	II KIN	II KIL	II KIN	DVC	טעמ	FIELD	ICK	ICK	ICK	ICK	GREE	GREE	GREE	ERLY	ERLY	ERLY	ERLY	ERLY
LOCATION	RI: COVENTRY	RI:HARRISVILLE	RI: HARRISVILLE	RI:KINGSTOR,	RI:KINGSTOW,	RI:KINGSTON	RI:KINGSTON	RI:LINCOLN	RI:LINCOLN	RI:LINCOLN	RI:LINCOLN	RI:LINCOLN	RI:NORTH KINCSTOWN	RI:NORTH KINGSTOWN	RI:NORTH KINGSTOWN	NORT	NORT	RI: HORTH KINGSTOWN	RI: PASCOAG	RI:PASCOAG	RI:WAKEFIELD	RI:WARVICK	RI:WARWICK	RI :WARWICK	RI :WARWICK	RI:WEST GREENWICH	RI:WEST GREENWI	RI:WEST CREENVI	RI:WESTERLY	RI: WESTERLY	RI:WESTERLY	RI : WESTERLY	RI:WESTERLY
100	RI	RI	RI:	RIS	RIS	RI	RI:	RI	RI	RIS	RI	RI	RI	RI	RI :	RI	RI	RIS	RIS	RIS	RI	RI	RI	RI	RI	KI	RI	RI	KI:	KI:	RI:	RI	RI
#G	3429	9110	2175	3236	3235	X0810	0810	1038	1037	1035	1036	1039	9376	3372	0373	2377	9710	0371	7710	0178	3237	2610	3375	9374	1610	3431	3419	3418	3428	3430	3430X	3423	3424
EPA ID#	USRN03429	USRN10176	USRN10175	IISRN03236	JSRN03235	JSRN10180X	JSRN10180	USRN11038	USRN11037	USRN11035	USRN11036	USRN11039	USRN10376	USRN10372	USRN10373	USRR110377	USRN10179	JSRN10371	USRN10177	USRN10178	ISRN03237	JSRN10192	USRN10375	IISRN10374	1SRN10191	JSRN03431	USRN03419	USRN03418	JSRN03428	JSRN03430	USRNO3430X	USRN03423	JSRN03424
						_												_													-		

2SIGHA ERROR									0.0				7 0	:				0.8						0	0.0															
U-238	VN N	V V	VZ	۷×	S V	VN	VN	V V	0.0	VZ :	< < <	VN	V C	1 Y X	VN	Š.	< < < < < < < < < < < < < < < < < < <	5.8	VN	VZ:	V V	V VN	VN	VN C	0.0	NA	Y 2	VN	VN	V X	Z Z	VN	VN:	V 2	< < < < < < < < < < < < < < < < < < <	VN	VZ:	< < < < < < < < < < < < < < < < < < <	٧ ٧	NA
2SIGMA U-238) ERR (pC1/1)									0.0				-	7 0 7				1.4						0	0.0															
2SIGHA U-234 2SIGNA U-238 ERR (PC1/1) ERR (PC1/1)	VN N	Υ <u>Υ</u> <u>Υ</u>	VN	V S	S S	VN	VX:	V V	0.0	VZ.	Y Y	VN	VN W	VN N	VN	V :	VV	10.3	NN	VN	VN VN	S Z	VN	V C	0.0	VN	V _N	VN	VN	AN A	VN VN	NA	VN	VIII	VN N	VN	VN	4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	NA
2SICHA Ra-228 ERR (pC1/1)	VN VN	K K	NA	V X	V V	NA	VN :	V 7	NA	NA	VN N	VN	V X	\ \ \ \ \ \	VN	VZ.	۷×	£ £	NA	VN	V X	V V	VN	۷ × 2 ×	V V	VN	< < 2	V V	NA	<	ζ× X	VN	∀ №	Y Z	V Z	VN	٧× :	4 × ×	N.	NA
2SIGNA ERR									0.0	-			0	•				0.0							0.0															
Ra-226 2SICH (PC1/1) ERR	NA A	V V	VN	V 2	Š Š	VN	× :	V X	0.4	NA	V VN	VN	۷۷ ۳	YN Y	NA	VN.	V 2	1.4	NA	VN	ζ×.	VN N	VN	< × ×	1.7	VN	VX 2	V V	VN	¥ 2	< ×	VN	VN	< < ×	S X	VN	VN	4 4 2 2	: < : <	NA
2SIG ERR	8.0	1.0	0.8	7.0	0.3	0.9	0.8	9.0	0.0	0.5	1.0	0.5	0.8	0.0	6.0	8.0) a	1.1	6.0	6.0	× 0	3.7	0.7	0 0	8.0	1.0	0.1	1.4	6.0	0.0	4.6	6.0	0.9	6.0	6.0	1.1	0.9	1.0	0.9	1.4
BETA 2SIG (PC1/1) ERR	1.1	1.7	1:1	c-	-0.1	1.9	1.2	0	0.2	0.9	2,3	0.2	1.1	0.0	1.9	1.3	1.3	7.0	2.5	1.3	 	3.4	0.5	7.6	3.7	2.5	2.5	6.5	1.7	α - α c	8.1	2.1	1.7	6.1	1.9	3.2	2.1	7.0	1.7	7.5
2SICHA BETA ERR (PC1/	0.3	0.6	0.3	6.0	0.5	0.3	0.3	7,0	1.2	0.5	0.4	0.2	0,0	1.9	0.3	0.3	4 0	1.7	0.0	0.5	ر د د د	2.6	0.2	0.3	9.0	9.0	0.7	0.2	7.0	2.3	2.1	0.3	0,3	5.0	0.3	9.0	0.5	0.3	0.5	0.5
ALPHA pCi/1)	0.4	0.4	0.2	4.0	0.0	0.5	0.3	2 0	13.4	1.2	0.3	0.2	0.4	-1.0	0.2	0.5	1.0	10.2	0.0	0.2) °	1,3	0.2	9.4	2.9	1.2	0.7	0.0	0.2	-0.7	0.2	0.3	0.2	1.1	0.4	0.4	0.4	7.0	0.4	0.3
2SICMA ALPHA ERROR (pC1/1)	86.3	74.6	81.9	81.4	81.6	82.8	79.6	6.09	80.1	63.8	83.0	181.2	114.0	110.4	80.1	78.2	50.4	81.8	57.4	56.7	ر، د/ د ه	71.2	76.7	86.3	53.1	83.5	84.8	54.7	108.5	76.3	77.7	73.9	56.1	4.07	161.4	86.8	143.8	78.7	83.3	85.2
	454.0	227.3	-15.5	339.0	150.3	196.3	58.6	181 8	341.1	455.5	34.8		191.4				7.75 5	4092.0	45.8	-126.5	722 0	118.1	126.6	210.7	152.2	105.1	37.2			95.6	155.7	8.686	18.6	7.5.7	6135.0	154.7	-24.2	1.262	-17.0	131.5
COLLECT Rn-222 DATE (PC1/1)	72781	72881	71481	71982	72781	72781	72781	52432	71982	52482	71481	72781	72781	72981	72781	81081	72082				7 881	8 481	81081	71481	53182	71481	72881			8 381	8 381	7 881	72781	72981	_		72531	81081	72881	71481
LOCATION	SC:AIKEN SC:AIKEN	SC:ALLENDALE SC:ANDREWS	SC: BANBERC	SC: BARNWELL	SC: BATH	SC: BEACH ISLAND	SC: BELVEDERE	SC: BENNETTSVILLE	SC:BLACKVILLE	SC: BLENHEIN	SC: BRANCHVILLE	SC:BREEZY HILL	SC: BREEZY HILL	SC: BULLS BAY	SC: BURNETTOWN	SC:CASSATT	SC: CHERAW	SC: CLOVER	SC:CLOVER	SC: COLUMBIA	SC: COLUMBIA	SC: CONVAY	SC:DARLINGTON	SC: DENNARK	SC:DILLON	SC:ELLOREE	SC:ESTILL	SC: FLORENCE	SC:FORT MILL	SC:CARDEN CITY	SC:CEORGE FOUN	SC:CILBERT	SC:GLOVERVILLE	SC:COOSE CREEK		SC: HAMPTON	SC:HARDEEVILLE	SC: HARTSVILLE	SC: HILTON BEAD	SC: HOLLY HILL
EPA ID#	USRN1 5022 USRN1 5026	USRN15018	USRN14684	USRN23978	USRNI 5019	USIRN1 5028	USRN1 5032	USRN22/96	USRN23976	USRN22794	USRN14683 USRN14681	USRN1 5020	USRN15020X	USRN1 5076	USRN1 5029	USRN15491	15 KN 2 2 / 95	USRN22108	USRI122107	USRN14503	USRN14505	USRN1 5323	USRN1 5493	USRN14682	USRN2 28 50 X	USRN14686	USRNI 5088	USRN22322	USRN22106	USRN15326	USRN15332	USRN14504	USRN1 5024	USRNI 5080X	USRN24094	USRN15089	USRN1 5084	USR[41 5492	USRN15079	USRB14679

2SICHA ERROR																																0.0										0	0.0							
\ U-238 (pC1/1)	2	YZ.	V.	NA	VN	VN	VN	NA	VIV	VN	VN	NA	VN	VN	VN	VN	VN N	NA	٧N	VN	٧N	٧N	٧N	٧N	Š	VZ:	V X	V Z	< × ×	Ϋ́N	VN N	0.1	NA	VN:	V X	S N	NA	VN	VV	VV	VZ	VN C	0.0	NA	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	VN	VN	٧V	V _N	VN
2SIGNA U-234 2SIGNA U-238 ERR (pC1/l) ERR (pC1/l)																																0.0										0	0.0							
U-234 (pC1/1	V	NA	\ Z	NA	VN	NA	VN	VV	VN	٧V	VN	VN	NA	NA	VN	NA	NA	٧N	VV	NA	NA	NA	NA	NA	VN :	NA :	V V	VN	V V	Z Z	VN	0.1	VN	VN	VN 2	NN NA	MA	VN	NA	VN	٧N	NA	0.0	NA A	V V	٧٧	VN	NA	VZ:	V _N
2SIGMA ERR																																1.2																		
Ra-228	VN	V	VZ.	VV	NA	NA	NA	NA	VN	VN	NA	VN	٧V	NA	VN	VN	ΝA	NA	VN	٧N	NA	VN	VN	٧٧	NA S	V :	V 2	NA AM	V	Y Z	VZ	3.9	VN	VN	٧× :	VN VN	V	VN	NA	VN	VV	۷×	V V	V X	V Z	VN	VN	VN	VN	VN
~~																															0.1											(0.0							
Ra-226 2SIGN (pC1/1) ERR	MA	V 2	VN	NA	NA	VN	VN	٧V	NA	NA	VN	VN	VN	VN	NA	NA	VN	NA	NA	NA	NA	NA	NA	٧V	VN:	VZ :	NA NA	V N	V _N	2	5.5	VN	NA	٧N	NA :	V V	Ç V	NA	VN	NA	٧V	VZ ,	1.0	V.	V V	VN	VN	۷N	VN:	VV
	6.0	6.0	4.8	9.0	1.1	1,2	1.1	1.2	6.0	1.0	6.0	0.9	0.7	6.0	6.0	6.0	1.5	0.0	1.0	0.8	0.8	0.8	0.8	1.6	4.7	4.5	1.1	יי ייי		8.0	9.0	0.7	1.2	,	1.0	4.0	0.9	6.0	7.0	1.3	1.0	0.9	٠. د د د		V. C.	1.0	4.6	1.0	1.2	0.1
5	1.4	2.1	6.2	1.1	3.3	3.8	2.4	3°3	1.5	2.5	3.7	1.8	2.6	1.9	3,5	1.0	6.2	1.9	1.9	2.5	1.2	1.4	2.6	11.7	۳° ا	5.1	0.0	1.0. R A	n. 0	0.0	2.0	2.2	2.4	VN	2.5	7.0	1.7	2.1	6.0	4.8	3.1	1.5	0.1	0 0	2.3	1.4	5.6	1.4	4.5	2.0
2SICMA BETA ERR (pC1/	0,3	0.3	2.6	0.5	9.0	9.0	9.0	0.7	0.3	0.5	0.5	0.2	0.5	0.3	0.7	0.3	0.7	0.5	0.5	0.5	0.3	0.3		0.5	2.3	2°3	ر د د د	0 %	5.0	200	0.1	0.8	0.5	,	0.5	7.4	9.0	0.5	0.7	0.7	7.0	0.4	£ .	7.0	\$ C	8,0	2.6	0.7	0.4	0.3
ALPHA OC1/1)	0.7	0.0	1.5	1.7	9.0	0.4	0.1	0.4	0.1	-0.2	2.0	0.3	2.1	0.5	2.7	0.2	0.3	0.3	0.2	1.8	0.3	0.3	1.3	0.3	0.3	5.0	1.0	1.0	1.6	0.3	6.0	3.4	-0.1	NA	0.2	7.1	0.8	0.7	1.4	0.5	0.3	0.2	4.0	1.0	ر د د د	0.3	9.0	0.4	0.0	0.3
2SIGNA ALPHA ERROR (pC1/1)	79.9	63.6	111.2	85.3	69.5	98.2	107.8	9.87	76.5	70.0	83.1	80.8	60.3	63.2	64.3	62.4	70.1	62.4	73.0	87.1	81.6	78.2	62.0	111.6	109.1	13/.2	77.0	76.77	75.1	32.5	87.6	02.4	77.4	63.6	101.1	110 9	114.5	116.5	7.18	9.60	91.8	61.3	0.00	17.04	80.0	77.0	08.5	62.8	60.2	61.0
	73.6	65.2	~			_	_				_	73.2												_		19.2 1					331.8					152.9					137.1				2.862			194.5	62.9	85.1
OLLECT Rn-222 DATE (pC1/1)	12781	72082	72981	72781	8 481	8 481	8 381	8 381	8 481	8 481	81081	72781	53182	72082	7 881	71381	8 481	72081		8 481 1	81081	81081	52482	72981			184 8							72082	8 481							72081	72082	7061/	71481	8 381	72981	72081	72081	72081
LOCATION CO	SC-HOLL ANIWITTEE		OF PALMS		VILLE	LLE	SC:KINGSTREE	SC:KINGSTREE	SC:LAKE CITY	SC:LAKE VIEW	SC:LANAR	SC:LANGLEY	SC:LATTA			I NOUNTAIN	SC:LORIS	U		Z		SC: HCBEE	SC:MCCALL	~	PLEASANT	ASANT	SCHULLINS	_					ND	MILLS		SC:PAMLEY S ISLAND	~			SC: SANGAREE					SC:ST. GEORGE	STEPHEN	LIVAN'S ISLA	LON	SC:SUNTER	SC:SUMTER
EPA 10#	115PM1 5021	12021111211	USRN1 5081	USRN15017	USR#15330X	USRN15330	USRN15340	USRNI 5340X	USRN15338	USRN15342	USRN15494	USRN15033	USRN22851	USRN24093	USRN14506	USRN14602	USRN15324	USRN14857	USRN1 5343	USRN15334	USRN1 5490	USRN15490X	USRI122797	USRN1 5091	USRNI 5090X	USRN15090	USRNISBBI	USIGNI 5336	USIGNI 5330	11SRN1 5034	USRN14680X	USRN14680	USRN15341	USRN24159	USRN15337	USRN1 5322	USEN14600	USRN14600X	USRN15077	USRN1 5085	USRN15087	USRN14853	USRI124095	USKN23977	USRNI468/	USRN1 5327	USRN1 5083	USRN14856	USRN14855	USRN14854

Table B.28 Matural radioactivity in public groundwater systems-South Carolina (continued)

	2S ECHA ERROR											
	U-238 pc1/1)	٧٧	VV	VN	NA	VV	VV	VV	VV	VN	VN	
	2STGNA ERR (
	U-234 (pc1/1)	NA	VN	NA	NA	NA	VN	VN	٧V	NA	٧N	
	2SIGMA ERR											
	Ra-226 2SIGHA Ra-228 2SIGNA U-234 2SIGNA U-238 (PC1/1) ERR (PC1/1) ERR (PC1/1)	NA	٧٧	VN	VN	NA	٧N	NA	NA	VN	NA	
	2SIGMA ERR											
	Ra-226 (pc1/1)	NA	MA	۷N	VN	NA	۷N	NA	NA	NA	NA	
	2SIG ERR	3.5	0.2	0.5	0.7	0.8	1.0	0.8	1.2	9.0	4.4	
	2SICHA BETA 2SIG ERR (PC1/1) ERR	3.7	1.0	0.5	104	2.4	2.3	1.6	3.6	1.2	8,1	
	2S ICHA ERR	2.2	7.0	0.3	0.4	0.4	6.0	0.2	9.0	0.4	2.6	
	ALPHA (pc1/1)	2.1	0.2	0.7	1.3	0.9	1,5	0.3	0.3	1.2	2.6	
	2S I GNA ERROR	75.9	62.3	7.66	85.1	57.6	89.0	80.9	88.0	86.1	80.2	
	COLLECT Rn-222 2SIGNA ALPHA DATE (pc1/1) ERROR (pc1/1)	33.8	303.9	344.0	373.4	122.5	222.7	225.7	298.8	345.1	239.4	
	OLLECT DATE (8 381	71381	72781	72781	42782	72881	72781	72881	72781	8 381	
Tant	Ö	BEACH				ILLE	ej.		0	Z	ER MIP	
	гослттои	SC:SURFSIDE BEACH	SC:SWANSEA	SC: TALATHA	SC: TALATIIA	SC: TIMIONSVILLE	SC: VARNVILLE	SC:WAGENER	SC:WATERBORO	SC:WILLISTO	SC:WINDJANNER MILL	
	EPA ID#	USRM15335	USRN14601	USRN1 5030	USRN1 5030X	USRN22323	USRN1 5082	USRN15031	USRN1 5086	USRN1 5025	USRN1 5328	

2SIGMA ERROR		ۍ. د			0.2					0.5	0.2											0.3	0.0						0.0		0.0			0.4	8"0							
2SIGNA U-234 2SIGMA U-238 ERR (pC1/1) ERR (pC1/1)	VN VN	۲۰۲ ا	NA	V X	1.5	VN	VN.	V V	Y V	4.4	1.7	N AN	NA	NA	¥:	¥ ×	VN N	NA	V _N	V V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2.8	0.0	V X	Y Z	NA	NA	V V	0.0	NA	0.1	۷ ×	VN	2.1	2.6	V.	4 Z	NA	NA	V S	V V	T _M
2SIGM/	ć	6.0			0.2					1.2	0 "4											0.5	0.1						0.0		0.0			6.0	2.1							
A U-234 (pC1/1	VN VN	0.01 N	NA	VN Y	2.3	NA	VN	۷ ×	NA	12.4	3.3	N A N	Ϋ́	NA	Y :	۷ ×	NA	NA	VN.	NA AN	{ X	4.4	0.3	V :	V V	VN	VN	V X	0.1	NA	0.1	V X	×	9.9	20.2	V.	V Z	VN N	NA	NA	V V	144
											0.0											0.8	1.3								0.7				2.9							
Ra+228	AN AN	Z Z	NA:	V X	¥ ×	NA	VN:	VN V	¥	VV	0.0	X X	¥	NA	≨ :	V V	Y Y	NA	Y Y	V 2	i v	0.5	10.5	٧ : ع	< ×	٧N	NA	V X	¥ 2	NA	0.5	VN N	ž	NA	3.5	VN	V X	Y V	NA	YN:	V 2	W
2SIGMA ERR (0	o' o			0.0		0.0		0.0	0.0	0.1								(0.0	0.0	0.1	0.1		ž	0.0			0.1		0.1		0.0	0.1	0.1	(0.0		0.0			
Ra*226 2SICHA Ra*228 (pC1/1) ERR (pC1/1)	VN NA	0.8 N	V _N	۷× ;	2.1	VN	0.1	VN O	0.1	0.5	4.2	V Z	٧	NA	٧× :	V 2	Y Z	NA	NA	0.5	7 -	4.8	3.1	VZ :	۷ ۷ ۷ ۷	0.1	NA	V X	2.0	VN	4.2	VZ Z	0.1	1.8	7.6	VN (9.0	Ž	2.3	VV.	Y X	IVA
	9.0	9.0	8.0	9.0	3.0	1.4	1.6	0.0	3.6	0.7	٠. دن ا	2.6	0.9	1.2	2.2	1 - 1	8.0	3.9	3,3	ان د د	7.4	2.2	4.1	0,0	0 0	1.6	4.5	0.7	3.5	4.2	3.7	0.4	1.7	2.7	0.4	•	4 c	1.0	3.5	0.0	0.0	0.0
A	1.9	4.9	2.9	6.0	9.1	16.0	6.9	0.0	14.6	4.5	8.1	13.0	4.3	9.6	6.1	0.01	0.9	12.2	5.0	8.7	18.0	18.0	24.0	0.2	4.0	10.1	25.0	æ. <	13.3	20.0	14.7	22.2	14.2	8.2	4.7	VN	ວ ໝູ່ທ	, e	11.0	0.0	0.0	6.7
2SIGNA BETA ERR (pC1/	1.0	0.8	0.8	1°1	0°4	0.8	2.1	0.0	3.5	2.1	۳ د د	200	0.8	6.0	1.5	000	0.8	2.9	2.3	m c	7.0	3.5	4.5	0.0	9 0	1.2	0.0	9.0	0.0	0.0	3.6	5.3	1.8	5.1	5.2		4 . 2	0.0	3.7	0.0	0.0	0.0
ALPIIA pc1/1)	3.0	17.5	1.2	1.1	10.3	1.1	3.2	0.0	2.0	11.0	13.0	0.0	1.0	1.5	2.5) c	2.0	0.4	0.3	2.4	1.1	14.0	7.0	0.0	1.0	4.3	0.0	0.3	0 0	0.0	6.1	ي م د	7.2	10.7	74.2	VX.	2.1	2.2	3.0	0.0	0.0	7 . 7
2SIGMA ALPUA ERROR (PC1/1)	81.7	54.6		44.3	84.6	75.0	57.1	70.7	46.7	62.6	. 03	1.00	42.1	57.2	47.1	0.10	49.0	70.9	58.6	51.4	13.1	52.2	54.1	46.0	73.7	47.5	42.1	65.0	5.8.8	90.3		58.4	47.3	73.0	67.2	58.6	55.7	46.3	88.4	52.1	62.2	46.3
	1633.0	365.6	VN C	78.8	1058.0	267.9	56.7	496.9	240.9	1565.5	VN OC.	211 3	67.9	357.3	556.1	261.6	119.6	+105.8	276.3	223.7	0.64	80.9	180.4	459.7	1.06	217.8	*0.8	53.9	318.2	648.2	VN	556.8	296.9	268.0	672.0	509 8	27.8	59.6	610.5	157.4	101.9	307.1
COLLECT Rn+222 DATE (pC1/1)		21781	21781	121580	121780		112080	121680		21781	12 980	21881	121580	111780	121680		3 281			121480	121780	12 980	111780	32481	121780	12 880	121580	21981	112080	3 381	121180	121180	12 880	121080	121180	121180	112080	12 880	3 381	3 381	21981	000111
LOCATION	SD: BELLE FOURCHE SD: BERESFORD	SD: BOX ELDER	SD: BRANDON	SD: BROOK INGS	SD: CANOVA	SD: CANTON	SD: CLARK	SD:CLEAR LAKE	SD:DE SMET	SD: DELL RAPIDS	SD: EDGEMONT	SD: EDGERONI	SD: ERWIN	SD: EUREKA	SD: FLANDREAU	SD: FREEMAN	SD: GREGORY	SD: GROTON	SD: HARTFORD	SD: HIGHMORE	SD: HOLL SPRINGS	SD: ICLOO	SD: I PSWICH	SD:LEMMON	SD:LENNOX	SD: MARTIN	SD:MILLER	SD: MINNEHARA	SD: NOKIH SIOUA	SD: PARKS TON	SD:PHILLIP	SD: PHILLIP	SD: PINE RIDGE	SD: RAPID CITY	SD:RAPID CITY	SD: RAPID CITY	SD: REDFIELD	SD: ROSEBUD	SD: SALEM	SD: SCOTLAND	SD:SIOUX FALLS	SD:SISSEION
EPA AD#	USRN03378 USRN10897	USKN03382	USRN10860	USRN03397	USRN03395	USRN10857	USRNO3188	USRN03399	USRNO3396	USRN10854	USRN03310	USKNO3310X	USRN03386	USRN03186	USRN03411	USRN11151	USRN11159	USRNO3187	USRN10898	USRN03387	USKN03509	USRN03311	USRN03267	USRN11599	USRN10858	USRNO3297	USIKN03388	USRN10896	USKNI USCO	USRN11156	USRN03380	USRN03380X	USRN03299	USRN03381	USRN03379	USIKN03379A	USRN03242	USRN03298	USRN11157	USRN11152	USRN10895	COTCONICO

Table B.29 Natural radioactivity in public groundwater systems+South Dakota (continued)

2SIGMA ERROR												
U+238 C1/1)	VN	NA	VN	NA	NA	NA	VN	٧N	NA	NA	VV	NA
SICMA ERR (p												
I-234 2 C1/1)	NA	NA	NA	NA	NA	NA	NA	NA	NA	VN	NA	NA
SIGMA LERR (F												
Ra+226 2SIGMA Ra+228 2SIGMA U+234 2SIGMA U+238 (PG1/1) ERR (PG1/1) ERR (PG1/1) ERR (PG1/1)	NA	NA	NA	NA	NA	NA	VN	NA	NA	NA	NA	NA
2SIGMA ERR (0.0							0.0				
Ra+226 (pC1/1)	0.2	VN	NA	NA	NA	VN	NA	0.1	NA	NA	NA	NA
2SIG ERR	1.5	1.3	0.8	0.9	2.0	.2.0	0.5	1.9	2.0	9.0	0.9	0.8
2SIGMA BETA ERR (pC1/1)	0.9	11.0	3.9	4.7	10.8	10.8	3.1	12.8	12.5	2.1	0.9	4.5
2SIGMA ERR	1.6	8.0	1.1	1.2	0.0	0.0	0.8	2.3	2,1	1.1	1.0	0.7
ALPHA pc1/1)	3.0	0.1	2.5	2.3	0.0	0.0	2.1	3.7	2.3	1.7	3.0	2.0
2SIGMA ALPHA ERROR (pc1/1)	61.6	9.89	46.0			82.1	75.8		83.4	45.6	51.0	49.7
OLLECT Rn+222 DATE (pC1/1)	263.6	42.0	400.9	NA	VN	81.8	226.8	NA	668.3	149.7	115.5	142.4
COLLECT DATE (3 281	21881	121580	121580	111880	111880	121680	SPR1121780	SPR1121780	121680	3 281	3 281
LOCATION	SD: TYNDALL	SD:VERMILLION	SD:VOLGA		SD:WEBSTER	_	01	Ų2	SD:WESSINGTON SP	UJ.		SD:WITTEN
EPA ID#	USRN11153	USRN10856	USRN03400X	USRN03400	USRN03190	USRN03190X	USRN03438	USRN03440	USRN03440X	USRN03398	USRN11146	USRN11158

2SIGNA ERROR																					0.0					0									0.0											
IGHA U-234 2SICHA U-238 2SIGH ERR (pC1/1) ERR (pC1/1) ERROR	NA	NA	N AN	NA	NA :	V 2	V V	NA	NA	VN	A N	V V	VN	VN	VN.	e v	NA N	NA	NA	VN	0.0	VN N	Y Y	NA	NA:	V C	VN.	NA	NA.	Y S	NA N	NA	NA	NA NA	0.0	NA	NA	VN:	Y X	Y X	VN	NA	VN	V V	VN	NA
2SIGNA U-234 2SIGMA U-238 ERR (PC1/1) ERR (PC1/1)																					0.0					0									.000											
A U-234 (pc1/1	NA	NA NA	N V	NA	NA	AN AN	ž ×	NA NA	NA	VN:	V X	ž X	NA	VN	¥;	V 2	Y V	×	VN	NA	0.0	VN X	Z X	VN	VN	NA C	Z X	NA	NA	Y X	NA	NA	VN:	V X	0.1	NA	NA	VN	VV N	Y Y	NA	NA	VN	۷ ×	Y.	NA
25																										•	7																			
Ra4226 2SIGNA Ra4228 (PC1/1) ERR (PC1/1)	NA	NA	Y X	VN	V S	4 × ×	NA	٧N	NA	VN.	V X	S X	٧×	NA	×.	V X	Y X	×	NA	NA	NA:	۷ ×	Y Y	VN	NA	V V	N AN	VN	VN	YN S	N N	Ϋ́N	NA	VN X	Y YN	VN	VN	VV	۷×	4 2	VN	VN	NA	V X	Y V	NA
2SIGMA																					0.0					-	1.0								0.0											
Ra4226 2SIGN (pC1/1) ERR	NA	VN	Y X	VN	VN	Y X	ž X	٧N	NA	NA NA	V V	NA AN	×	VN	Y.	¥ 2	V V	¥	VN	NA	0.1	V X	¥ 2	NA	VN :	VN c	NA AN	VN	NA	Y X	N AN	Ϋ́N	٧N	V X	6.0	NA	NA	٧V	YN S	¥ ×	V.	NA	NA	VN.	Y VN	NA
2SIG ERR	9.0	8.0	1.1	4.3	6.0	1.0	1.0	9.0	1.1	0.9	2.6	0.7	1.0	0.7	8 0	5 C	0.7	0.7	0.5	6.0	1.0	F. C	1.0	0.8	8.0	0.6	0.0	0.7	1.3	0.1	0.8	0.8	1.6	0.0	1.5	6.0	1.9	1.5	4.0	1.3	6.0	9.0	0.5		0.0	2.0
, BETA 2SIG (pc1/1) ERR	9.0	1.5	, 4 0 . 6	1.0	1.5	2.9	0.4	0.5	4.1	2.9	4.6	0.7	6.0	1.8	0.8	7.7	0.7	0.8	0.2	1.9	3,4	0.1	2.1	1.1	1.2	0.5	1.6	9.0	1.5	1.9	1.0	1.8	2.6	2.6	4 6	1.3	6.5	4.2	0.8	7.7	3.2	0.3	0.1	E -	1.9	0.2
2SICMA BETA ERR (pC1/	9.0	4.0	0.7	0.3	0.5	0.0	0.7	0.3	0.7	0.5	8,0	0 0	0.4	0.7	0.2	3 6	0.0	0.3	0.3	0.4	8.0	1.4	0.3	0.3	0.3	7 0	9.0	0.3	8.0	9.0	7.0	9.0	0.7	9.0	1.4	0.5	6.0	1.0	0.4	4.0	0.5	0.4	0.3	1.0	4.0	0.7
ALPHA pC1/1)	1.0	0.5	0.8	0.3	0.1	1.1	0.1	0.5	1.7	0.8	50.0	0.5	0.4	1.8	0.0	7.0	0.0	0.4	9.0	0.8	2.1	0° 0	0.4	0.4	0.1	8.01	9.0	0.4	1.1	0.3	AN C	1.6	0.5	1.3	7 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	0.2	1.0	1.2	0.3	200	1.4	0.3	0.3	4.0	9.0	±0.2
2SIGNA ALPUA ERROR (pC1/1)	112.2	65.9	69.9	67.2	104.2	9./9	116.8	102.1	59.7	6.09	142.9	83.3	70.7	9.99	65.6	87.4	150.5	102.5	102.3	65.8	55.5	108.4	103.2	102.4	0.79	101.9	67.9	68.1	108.0	103.2	111.3	101.8	120.1	70.7	6,00	68.5	73.7	67.7	151.0	102.2	66.4	144.7	140.4	166.8	101.3	122.0
		458.3	40.9			410.4					165.3	980.8	208.1	+4.2	41.7							33.3				40.4	3.4	276.3						17.7	3.4	185.4	113.7		285.1				9	+56.4	*10.4	297.5
COLLECT Rn*222 DATE (pC1/1)	72882	72782	72682	72782	8 582	73783	8 582	72882	72882	72882	91482	82482	82482	72782	72682	280 8	72882	72882	72882	72682	72782	82582	72882	72882	72782	72882	72782	82482	82582	72882	82582	72882	91582	72782	72782	72682	72682	72682	8 582	72882	72682	91482	91482	101282	72882	91582
ຮັ				LE	VΩ						ec.	TON							z			CITY				2	2 2	CITY	LL	00011	SPRINGS								ž	. 2	: E			_ ⊁	*	
LON	N10	TN: BARTLETT	IN: BAKILEII	TN: BROWNSVILLE	TN: CHATTANOOGA	TN: COVINCTON	IN: COVINGION	SDEN	TN: DYERSBURG	TN:DYERSBURG	TN: EAGLEVILLE	IN: ELIZABELH TN: ELIZABETHTON	NIA	Tr	TN: HENDER SON	SON	TN HIMBOLDT	BOLDT	TN:HUNTINGDON	KSON	KSON	TN:JEFFERSON	TIN	CINZIE	PHIS	TN:MILAN	IN: MILLINGTON	TN:MOUNTAIN CITY	IN:NEW TAZWELL	VBURN			IN: PIKEVILLE	PLEY	T.EY	TN:SAVANNAH	ILER	ILER	TN:SIGNAL MIN.	TN:SIGNAL FILLON	TN: SOMERVILLE	T	E	IN:TRACY CITY	IN: UNION CITY	TN: WOODBURY
LOCATION	TN: ALAHO	TN: BAI	TN: BOLIVAR	TN: BRC	TN: CH	TN:CO	TN: DECHERD	TN: DRESDEN	TN:DYE	TN:DY	TN:EAC	TN:EL	IN: ERWIN	TN:HALLS	TN: HE	TN:HIXSON	TNITIL	TN: HUMBOLDT	TN:HUN	TN: JACKSON	TN:JACKSON	TN:JE	TN: MARTIN	TN:MCKINZI E	TN: MENPHIS	TN:MILAN	TN:MI	TN: MOL	IN:NE	TN:NEWBURN	TN:OLIVER	TN:PARIS	IN:PI	TN:RIPLEY	TN: RIPLEY	TN:SAV	TN:SEMLER	TN: SEMLER	TN:SI	TN:SI	TN: SOF	TN: TAFT	TN: TAFT	TN:TRACY CI	TN:UNI	TN: WO
lo#	USRN24336	USRN24249	USKN24231	USRN24248	USRN24562	USRN24324	USRN24243	USRN24325	USRN24246	USRN24247	USRN25368	USKN24901	USRN24965	USRN24252	USRN24199	USRN24559	USKN2330	USRN24330X	USRN24331	USRN24196	USRN24195	USRN24962	USRN24335	USRN24332	USRN24244	USRN24334	USRN24253	USRN24963	USRN24964	USRN24328	USKN24960	USRN24327	USRN25369	USRN24250	USRN24230A	USRN24194	USRN24200	USRN24200X	USRN24560	NSKN24306	USRN24197	USRN25370	USRN25370X	USRN25934	USRN24329	USRN25365
EPA ID#	USRN	USRN	USKN	USRN	USRN	USRN	USRN	USRNZ	USRN	USRN	USRN	USKN	USRN	USRN	USRN	USRNA	INSPA	USRNZ	USRNZ	USRNZ	USRNZ	USRNZ	USRNZ	USRNZ	USRNZ	USIRNZ	USRNZ	USRNZ	USRNZ	USRN	IISRN	USRN	USRN	USRN	IISRN	USRN	USRN	USRN	USRN	INSRN	USRN	USRN	USRN	USRN	USRN	USRN

Table B.31 Natural radioactivity in public groundwater systems Utah

2SIGMA ERROR	0.4		0.7		ć	7.0							0.1								0.1			4	•	0.1		ć	7.0					0			0.1			0.2			
U+238 pc1/1)	2.9	V V	7.7	٧N	NA .	7 · 7	Z Z	٧N	VN.	AN :	6 2	NA	0.7	VA:	۷ ۷ ۷ 2	V.	VN	VN	NA	٥ ک	9.0	VN	VN	VX C	\$ ° 7	1.1	NA	YN,	1 · 1	N AN	NA	VN:	٧٧	6 . 3 NA	VN	VN	1.0	V V	S Z	1.6	VN:	< < < < < < < < < < < < < < < < < < <	VN
ICHA U*234 2SIGNA U*238 ERR (pC1/1) ERR (pC1/1)	7.0		1,3		,	0.3							0.3							,	0.2			u	0.0	0.2			4.0				,	٥,3			0.2			0.2			
U+234 pC1/1)	3.0	VN Y	14.3	NA	NA C	ادار ۱۹۸	Y V	NA	VN:	Y :	A Z	NA N	2.4	VN	Z Z	NA	NA	NA	NA	AN C	2.1	VN	VN	AN C	0°2	1.8	NA	ΑZ,	4 • I	Y Y	NA	NA	Ψ.	5°7	N AN	NA NA	2.4	۷× ۲	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1.6	AN :	Y Y	V _N
2SIGNA U*234 2SIGNA U*238 ERR (pC1/1) ERR (pC1/1)			7																																								
Ra*226 2SIGMA Ra*228 ; (pC1/1) ERR (pC1/1)	NA	NA NA	NA	NA	NA NA	Y Y	NA N	NA	NA :	Y S	K 2	NA NA	NA	VN:	4 Z	¥.	NA	VV	NA	V V	NA	VN	NA	NA	V V	NA	NA	Y :	NA NA	¥ 2	NA	NA	¥ ;	V 2	NA	NA	VN	۷ × ۷	Y X	VN	NA:	V 2	VN
2SIGMA ERŘ	0.0		0.0	0.0									0.0							70	0.0			0	0.0	0.0:		0	0.0				0	0.0			0.0			0.0			
Ra+226 2SIGM (PC1/1) ERŘ	0.2	NA NA	0.1	0.1	VN:	V V	V V	VN	VN :	VN:	Y Y	VN N	. 6.0	VN	V V	VZ.	VN	NA	VN	AN C	0.3	NA	VN	VN.	1.0 NA	0.4	VN	AN .	1.0	Y Y	VN	VN	٧,	1.0	Y X	VZ	0.1	Y 2	<u> </u>	1.5	VZ.	۲ × ۲ ۲	VN
	6.0	0.7	6.0	9.0	8.0	٥ ، م د	6.0	1.0	6.0	1,1	9.1	1.2	0.5	9.0	1.3	0.8	6.0	1.4	6.0	1°F	1.6	1.3	1.1	1.7	0.3	6.0	1.0	٥ د د	0.1	2.4	1.1	2.0	B . C	ۍ د د	0.7	6.0	6.9	6.0	0.5	0.8	1.2).1	1:1
F	3.1	1.1	4.0	2.0	2.0	0.2	2.2	2.0	1.6	2.6	7.6	2.7	2.0	0.2	4.0	1.2	2.1	2.0	2.1	3.1	4.2	3,3	2.5	1.2	0.8	2.0	2.0	1.2	1.0	1.2	3.2	2.7	1.9	8.0	1.0	0.5	30.0	1.4	0.1	2.0	1.3	7.1	0.7
2SIGMA BETA ERR (pC1/	1.2	1.1	2.2	1.4	0.8	7.1	9.0	9.0	1.0	6.0	5°C	0.8	1.3	1.2	1.0 2.3	0.5	0.7	0.8	0.7	2.0	1.7	0.8	1.1	0.7	1.0	1.0	8.0	0.7	0.1		0.7	1.4	ص . ص	0.1	1.0			7.0	9.0	1.0	6.0	8°-	6.0
	5.3	2.8	17.5	5.0	1.1	4.0	0.7	0.5	2.2	1.7	9 0	1.0	5.0	 	1.8 2.0	0.5	1.1	0.8	1,3	2.9	4.5	1:1	2.5	9.0	10.1	2.5	0.3	1.4	7.4	2.1	0.8	0.7	1.8	0.0	2.3	6.0	4.0	0.2	0.7	3.0	1.2	1.5	1.5
2SIGMA ALPHA ERROR (pC1/1)	70.7	63.1	121.9	49.8	78.1	70 5	61.5	62.0	63.0	62.1	78.3	64.7	112.9	169.3	60.7	100.9	87.5	74.2	71.4	84.1	85.9	119.0	84.1	60.0	7.67	70.7	69.3	76.0	1,00	75.4	123.1	58.5	73.9	59.1	68.2	74.5	109.3	124.6	73.8	71.3	94.0	109.6	145.4
	642.6	163.9			286.7	NA Sea	*20°1	6.3	191.6	185.2	341.3	308.9			300.1			322.7	216.9	314.0	555.0			174.3	605.2	191.3	284.3	187.6	38.9			292.5		74.9	572.5			35.0		357.2	460.2	2.22	
COLLECT Rn*222 DATE (pC1/1)	81781	81781			41781	33181	5 781	42181	61681	61681	1887/	31082	41081	31582	31582	52281	5 181	3 982	5 181	92981	6 181	52181	102281	52482	81781	5 181	41381	8 481	5 581	102781	5 581	52482	5 181		81781	102781	72981	52281	21982	41381	31182	92581	22482
8		ORK						pā.							5	3							1						-	-			•	-	•	1							
N	INE	LICAN F	ER.	TIFUL	TIFUL	TIFUL	AR CITY	ERVILL	RFIELE	TON	EKTON	Z CITY	ER	ESNE	IESNE C	MIM	INGTOR	HORE	IT HEIC	AND	TSVIL	IISON	R CITY	ER	LAND	AFB.	XVQV.	ER	CLCANE	HI HILL	18	ENCE	NO.	STON	NOO	N	٧.	H	ETON	ALE.	ORD	24.	ΝV
LOCATION	UT:ALPINE	UT: AMERICAN FORK	UT: BEAVER	UT: BOUNTIFUL	UT:BOUNTIFUL	UT: BOUNTIFUL	UT:CEDAR CITY	UT: CENTERVILLE	UT: CLEARFIELD	UT:CLINTON	UT:COPPERTON	UT:DELTA CITY	UT:DRAPER	UT: DUCHESNE	UT:DUCHESNE(UTE)	UT: EPHRAIM	UT: FARMINGTON	UT:FILLMORE	UT:FRUIT HEIGHTS	UT:CARLAND	UT : GRANTSVILLE	UT:GUNNISON	UT:HEBER CITY	UT:HELPER	UT: HIGHLAND	UT:HILL AFB	UT: HOLLADAY	UT:HOOPER	UT:HURRICANE	UT : HYRUM	UT:KANAB	UT:LAWRENCE	UT: LAYTON	UT:LEILI IIT:I FUTSTON	UT:LINDON	UT:LOGAN	UT : MAGNA	UT:MANTI	UT:MAPLETON	UT:MI DVALE	UT:MI LFORD	UT:MOREAN	UT:MORGAN
																	_															_							,				
EPA ID#	USRN15589	USRN1 5593	USRN12941	USRN1 1730X	USRN12336	USRN11/30	USRN1 2942	USRN12436	USRN13895	USRN13896	USRN15035	USRN21380	USRN1 2092	USRN21564	USRN21444	USRN13289	USRN12745	USRN21355	USRN12743	USRN16457	USRN13486	USRN13287	USRN17112	USRN22798	USKN15590	USRN1 2994	USRN12215	USRN1 5303	USRN12864	USRN17174	USRN1 2865	USRN22799	USRN1 2744	USKN16973	USRN1 5594	USRN17176	USRN1 5092	USRN1 3290	USRN21085	USRN12218	USRN21408	USKNI4144	USRN21140

2SIGMA ERROR		0.2	0.1
ICNA U-234 2SICMA U-238 ERR (pC1/1) ERR (pC1/1)		2	0.6 0.6 1.1 NA NA NA NA NA NA NA NA NA NA NA NA NA
2SIGN		. 0.2	0.3
2SIGNA U+234 ERR (PC1/1)		2	2.2 2.3.4 2.4.6 1.8 1.8 1.8 1.8
25	·.		
2SIGMA Ra~228 ERR (pC1/1)	V V V V V V V V V V V V V V V V V V V	V V V V V V V V V V V V V V V V V V V	N N N N N N N N N N N N N N N N N N N
2SIGMA ERR		0.0	000 0
Ra4226 2SIGN (pC1/1) ERR		0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2SIG ERR	0.9 0.7 0.5 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	3.0 1.1 1.1 1.0 0.9 0.0 0.0 0.8 0.5 0.8 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4.0 1.0 1.0 0.1 0.3
(pC1/1) ERR	000000000000000000000000000000000000000	2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5.0 7.0 6.7 6.7 1.8 0.2 0.2
2SIGMA BETA ERR (pC1/	0.6 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.7	1.1 1.1 1.1 1.1 1.1 1.1 1.0 0.0 0.0 0.0	0.9
ALPHA pC1/1)	00.00 00	11.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	2.68
2SIGMA ALPHA ERROR (pC1/1)	102.0. 1111.3 46.7 72.0 78.0 78.0 78.3 135.0 439.6 81.8 81.8 81.4 74.0 76.8 76.8 76.8 76.8 77.0 76.8 77.0 76.8 77.0 76.8 77.0 76.9 71.8 71.8	80.7 73.9 64.4 76.1 118.0 83.8 88.4 66.8 81.8 81.8 61.5 60.4 66.0 77.3 77.3 61.5	104.4 77.5 80.7 143.4 124.3 64.6 74.2 59.9 80.2
COLLECT Rn4222 DATE (pC1/1)		4,1081 31582 52182 52181 31182 4,1381 4,1081 4,1081 4,1081 4,1081 6,1781	
LOCATION CO	CANT CRE CROVE VIEW VIEW CROVE	UT:RIVERTON UT:ROOSEVELT UT:ROY UT:SALEM UT:SALINA UT:SALINA UT:SALINA UT:SALINA UT:SALINA UT:SANDY UT:STANDY	UT:TAYLORSVILLE UT:TOOELE UT:TRENOUTON UT:WASHINGTON UT:WASHINGTON UT:WELLSVILLE UT:WELLSVILLE UT:WELLSVILLE UT:WELLSVILLE UT:WELLSVILLE UT:WOODS CROSS
EPA ID#	USRN13452 USRN12091 USRN11728 USRN11728 USRN15304 USRN15254 USRN15255 USRN15255 USRN152592 USRN152592 USRN152943 USRN121139 USRN121396 USRN13286 USRN13288 USRN17198	USRN1 2089 USRN1 1445 USRN1 1446 USRN1 4010 USRN1 2217 USRN1 2216 USRN1 2090 USRN1 2090 USRN1 2090 USRN1 1098 USRN1 1098 USRN1 1414 USRN1 1414 USRN1 1084 USRN1 1084 USRN1 1084 USRN1 2090 USRN1 2090 USRN1 2090 USRN1 2090	USRN15093 USRN13485 USRN13484 USRN16683 USRN12866 USRN14145 USRN17175 USRN12993 USRN16458

Table B.32 Natural radioactivity in public groundwater systems-Vermont

U-238 2SIGNA C1/1) ERROR	NA	NA	NA	NA	NA	٧٧	NA	NA	0.0 0.0	NA	NA
4 2SIGNA L) ERR (P									0.0		
2SICHA U-234 2SICHA U-238 ERR (pC1/1) ERR (pC1/1)	NA	VN	VN	VN	NA	NA	VN	NA	0.0	VN	NA
Ra-228 2SI pC1/1) E	NA	NA	NA	NA	NA	NA	NA	NA	NA	VV	NA
Ra-226 2SICHA Ra-228 (PC1/1) ERR (PC1/1)									0.2		
	NA	VN	VN	VN	NA	NA	NA	NA	1.0	VN	۷N
2SIC) ERR	0.7	0.9	0.8	0.9	0.8	1,2	0.8	0.7	9°0	0.8	1.0
2SICHA BETA ERR (pc1/1)	0.8	1.3	1,3	1.7	1.1	2.9	9.0	0.8	1.6	0.9	1.4
2S ICHA ERR	0.4	0.5	0.5	0.7	0.3	0.8	0.4	0.4	1.0	0.3	0.5
2SIGHA ALPHA ERROR (PC1/1)	0.5	0.3	9.0	0.3	0.0	1.2	0.1	0.4	4.3	0.1	0.3
2S I GHA ERROR	75.2	84.1	68.1	9.62	9.69	79.0	81.7	76.1	86.5	98.9	93.6
Rn-222 pC1/1)	396.0	841.3	650.0	388.6	773.6	1317,0	628.0	227.1	621.5	329.6	624.0
COLLECT Rn-222 DATE (pC1/1)	61182	4 682	101982	9 181	62282	31582	9 181	62582	41982	33182	4 882
LOCATION	VT:ARLINGTON	VT: HETHEL	VT: CASTLETON	VT:HARDWICK	VI:LUNLOW	VT:LYNDONVILLE	VI:HORRISVILLE	VT:PITTSFORD	VT:QUECHEE	VT:RANDOLPII	VT:WINDSOR
EPA ID#	USRN23142	USRN21885	USRN2 5952	USRN1 5912	USRN23407	USRN21472	USRN15908	USRN23459	USRN22132	USRN21716	USRN21886

Table B.33 Natural radioactivity in public groundwater systems *Virginia (continued)

2SIGMA ERROR																											0.2				c														
2SICMA U-234 2SICMA U-238 ERR (pC1/1) ERR (pC1/1)	NA	AN A	NA	VN.	V X	4 × ×	Y Z	NA	NA	NA	NA	NA NA	NA NA	¥ 2	¥	VN	NA	٧N	NA	×:	VN	V V	Y X	VN	NA	YN,	1.0	Y Y	NA	NA	NA .	1.0	N N	VN	NA	YZ	¥:	Ž:	۷×	Y X	NA	VN	NA	V V	NA
2SIGM/																											0.2				•		•												
(pC1/1	NA	V V	N A	NA	VN X	NA NA	Y Y	VΝ	٧N	ΝA	NA	NA	ZZ XZ	NA NA	Š	VN	VN	NA	٧N	V.	V.	VN V	N AN	NA	NA	YN (2.3	< < <	NA	VN	NA A	0.0	NA NA	NA	NA	٧X	Y.	¥2	AN A	VV VV	YZ.	VN	NA	4 2	N.
28																										•	9.0																		
(pC1/1)	NA	V V	NA N	NA	NA NA	AN A	NA NA	NA	· NA	NA	VN	NA	V.	V V	Y A	NA	VN	NA	VV	NA	٧z :	¥ 2	N AN	VN	NA	VN ,	1.0	V 2	٧V	NA	V.	4 N	NA	NA	VN	NA	VZ:	Y :	V 2	4 X X	Y AN	VN	NA	۷ ×	VN
																										4	0.1						2.0												
Ra4226 2SIGM (pC1/1) ERR	NA	۷ ×	S X	NA	٧× :	NA	NA	ΥN	NA	NA	NA	VN.	AN :	V V	Y Y	NA	VN	NA	NA	V _N	¥2	V 2	X 2	Ν	NA .	VN.	3.7	< < <	NA.	NA	¥ °	2.0	NA NA	V _N	NA	NA	YZ:	VV.	¥2	NA VA	Y X	VN	NA	VX VX	VN
	6.0	6.0	8.0	1.0	0.0	۵ . د د	, o	2.0	1.0	6.0	6.0	4.1	p. 7	200	0 0	1.3	1.1	1.0	8.0	1.4	1.4	0 -	1.0	6.9	1.6	1.2	1.1	6.0	8.0	1.0	1.5	7.7	8.0	0.8	6.0	2.1	9.0	7:1	2.3	0.7	9.0	9.0	2.3	2.7	1.3
a	.1.8	2.5	7.7	2.6	2.2	7.0	0.0	14.1	1.4	0.5	1.1	9.8	ο c	y 0	7.7	2.6	3.0	1.8	6.0	5.2	2.0	۷.۷	1,5	13.5	8.4	0.9	0.9	1 . 7	1.3	1.9	2.9	8.11	9.0	1.2	2.2	2.4	0.7	1.9	4.2	12.4	2.0	1.0	3.8	3°0	2.2
2SIGNA BETA ERR (pc1/	0.5	0.0	0.0	0.3	0°3	4.0	2.0	9.0	0.4	5.0	0.0	9.0	5.0	0.0	9 6	9.0	0.4	0.0	0.2	0.7	8 0	7.0	9.0	2.2	6.0	6.0	1.0	0.3	0.5	0.5	0.8	2.8	0.0	0.5	0.4	1.2	9.0	0.7	0.0	7.1	4.0	0.4	1.2	1.1	9.0
	0.2	0.0	0.2	*0°5	0.2	0.1	7.0	0,3	9.0*	9.0.	0.0	0.4	0.2	1.0		0.4	7.0	0.0	0.1	1.0	0.2	ء د د	0.8	0.4	1.8	1.2	5.0	0.2	0.3	0:1	0.2	8.5	0.2	9.0	0.3	0.3	6.0	0.7	0.0	. 0	0.2	0.1	-1.1	61.9	0.2
2SIGMA ALPHA ERROR (PC1/1	0.98	81.0	7.00	136.7	183.9	51.9	150.9	85.5	74.3	74.5	188.8	76.2	102.1		8.09	88.8	87.7	60.2	9.49	63.9	58.1	0.77	62.0	94.5	67.5	93.3	199.0	63.3	112.7	111.3	120.4	04.6	105.5	15.1	81.8	102.0	121.3	66.4	67.7	00.4	38.6	150.2	66.1	64.1	71.7
n+222 2 C1/1) E	537.7	247.7	NA NA				222.9							V 2	R7 2	341.0	206.5	31.7	9.697		~ .	43.1 1	130.7	182.8	523.8			9.2			0		75.4 1		_	5	~	316.1	166.1	100.0		-		193.2	41.7
COLLECT Rn*222 2SIGHA ALPHA DATE (pC1/1) ERROR (pC1/1)	61281	51581					61/81	51382	61281	61281	63082 4			189 5	7 001	81282	81282	52081	52081	63082	72882	78/25	52081	12 381			4	6 982	7 182			7 182			7 882	7 182	7 182	61781	112381	185711	32581	41781	112381	112381	61581
0			OVE				211	FARMS				SVILLE			Į.	2		22		໘	SHORES	LLE	OKES!	4			•	HILL	TWC II									n-1	e, s	J.D.		NA		2110	ى ك
ION	BANON	VA:LEESBURG	VA:LEESBURG	NISA	UISA	RAY	VA:MARION	VA:MAYFIELD FARM	VA:MCCLURE	VA: MCCLURE	VA: MCKENNEY	VA:MECHANICSVILI	NERAL	VA: MONTEREY	VA:MUNIEKEI	VA : ONANGOCK	VA:PARKSLEY	VA: PEARI SBURG	VA:PEMBROKE	VA:PETERSBURG	VA: POTOMAC SHORES	VA:PURCELLVILLE	VA:KAINBON FORESI VA:RICH CREEK	VA:RICHNOND	VA:RICHMOND	VA: RICHMOND	VA:RIDGEWAY			LEM	LEM	CEN.	LER	LEM	LEN	LEM	LEM	VA:SALTVILLE	VA:SMITHFIELD	VA:SMITHFIELD	VA:SERING FIN VA:STANLEY	VA:STANLEYTOWN	FFOLK	VA:SUFFOLK	RRY
LOCATION	VA: LEBANON	VA:LE	VA:LE	VA:LOUISA	VA:LOUISA	VA: LURAY	VA:MARION	VA:MA	VA:MC	VA:MC	VA:NC	VA:NE	VA:MINERAL	VA: NO	VA: MU	VA:ON	VA:PA	VA:PE	VA:PE	VA:PE	VA:PO	VA:PU	VA: KA	VA:RI	VA:RI	VA:RI	VA:RI	VA:ROUND	VA:SALEM	VA:SALEM	VA:SALEM	VA:SALEN	VA:SALEM	VA:SALEM	VA:SALEM	VA:SALEM	VA:SALEN	VS: VA	VA:SH	VA:SM	VASST	VA:ST.	VA:SUFFOLK	VA:SUFFOLK	VA:SURRY
#QI	USRN1 4017	USRN1 31 50X	USKN13130	USRN13356	USRN1 3697	USRN11591	USRN1 3926	USRN22719	USRN13802	USRN1 3801	USRN23504	USRN23364	USRN13698	USRN1 29 50 X	USKN12950	USRN24724	USRN24725	USRN1 3219	USRN1 3218	USRN23515	USRN24262	USRN22926	USKN1 2007	USRN18088	USRN2 3365	USRN22585	USRN1 2431	USRN25231	USRN23500	USRN23509	USRN23502	USRN23499	USKN2 3506 USRN2 3500X	USRN23510X	USRN23783	USRN23507	USRN23510	USRN1 3927	USRN17910	USKNI /910X	USKN11592	USRN12429	USRN17800	USRN17800X	USRN13856
EPA ID#	USRN	USRN	USKN	USRN	USRN	USRN	USRN	USRN	USRN	USRN	USRN	USRN	USKN	USRN	USKN	IISRN	USBNZ	USRNI	USRN	USRN	USRN	USRN	USKN	USRNI	USRNZ	USRN	USRNI	USRN	USRNZ	USRNZ	USRN	USRN	USRNZ	USRN2	USRNZ	USRN	USRNZ	USRN	USRN	USKN	ISRNI	USRNI	USRN	USRN	USRN

Table B.33 Natural radioactivity in public groundwater systems "Virginia (continued)

2SIGMA FREOR								0.0				
Ra+226 2SIGHA Ra+228 2SIGHA U+234 2SIGHA U+238	NA	NA	NA	VN	VN	NA	NA	0.0	NA	۷N	VN	VN
2SIGM								0.0				
U+234	NA	NA	NA	NA	NA	NA	NA	0.0	NA	٧V	VN	NA
2SIGMA												
Ra#228	NA	NA	NA	NA	NA	VN	NA	NA	٧N	VN	NA	NA
2SIGMA								0.0				
Ra+226	VN	NA	NA	NA	VN	NA	NA	0.5	NA	NA	NA	NA
2SIG	1.5	6.0	1.3	1.1	1.5	2.2	2.4	1.6	1.0	2.7	2.4	0.5
2SIGMA BETA (2.1	1.7	3.4	2.2	6.3	3.8	4.4	7.7	1.7	9°9	4.7	9.0
2SIGMA FRR	1.0	0.3	9.0	0.7	9.0	1.7	1.1	6.0	0.2	1.7	1.2	0.2
ALPIIA pc471)	0.1	0.2	-0.1	9.0	0.1	÷0°3	0.2	1.7	÷0.1	0.4	0.7	0.1
2SICMA	63.9	157.2	62.6	76.4	62.3	69.5	65.1	62.7	113.9	7.06	65.0	94.0
Rn+222	145.3	-57.7	379.7	368.1	214.6	302.8	235.5	172.5	92.4	230.7	203.4	146.6
COLLECT Rn+222 2SIGMA ALPHA	72882	5 481	81182	61582	63082	72882	72882	63082	5 681	72282	112381	4 981
LOCATION	VA:TAPPAHANNOCK	VA:VERONA	VA:VIRGINIA BEACH	VA:VIRGINIA BEACH	VA:WAKEFIELD	VA:WARSAW	VA:WARSAW	VA:WAVERLY	VA:WAYNESBORD	VA:WEST POINT	VA:WINDSOR	VA:WINTERGREEN
EPA ID#	USRN24259	USRN12945	USRN24723	USRN23215	USRN23503	USRN24260	USRN24260X	USRN23505	USRN1 2947	USRN24109	USRN17909	USRN1 2086

Ra+226 2SICMA Ra+228 2SICMA U+234 2SICMA U+238 2SICMA (pC1/1) ERR (pC1/1) ERR (pC1/1) ERR (pC1/1) ERR (pC1/1) 0.1 0.0 0.2 0.0 0.0 0.00 0.0 0.1 0.1 NA NA NA 0.3 Y Y × NA 0.3 NA NA ¥ NAN 0.1 0.1 NA N ¥ X NA 7.0 NA NA 0.1 0.3 0.3 0.2 0.3 0.1 NAN NA NA NA NA × N N NA NA YN × ¥ NA MA N A A A 8.0 0.8 0.8 N A N YN ž VN NA × YN YN NA N NA N AN ¥. ž ž YN YN ž N N N 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 Y Y NA NA NAN NA YN YN × NA NA AN X Y X NA YZ YZ Z YN. × X Y Y LLECT Rn+222 2SIGMA ALPHA 2SIGMA BETA 2SIG DATE (pc1/1) ERROR (pc1/1) ERR (pc1/1) ERR 1.0 0.1 9.0 6.0 0.5 0.9 8.0 1.0 0.5 1.0 1.0 1.0 2.0 1.0 2.0 0. 3.0 2.0 1.0 9.0 0.0 0.1 9.0 5.6 9.0 0.7 0.0 0.8 0.4 0.4 0.4 0.9 0.2 0.8 0.2 1.0 0.2 0.0 0.3 0.0 0.9 0.2 9.0 0.9 +0.1 0.1 0.1 52.0 9.68 55.0 172.5 120.9 69.2 6.61 77.2 118.0 88.7 118.8 88.6 85.3 86.6 39.5 9.04 39.4 94.2 44.5 68.3 80.9 88.9 79.4 117.4 77.8 38.7 102,2 106.1 87.5 68.8 86.1 105.4 66.4 113.1 151.7 107.1 1205.0 208.2 269.5 27.8 145.9 117.3 319.6 29.0 19.9 126.6 392.2 379.5 134.0 652.0 454.8 107.4 127.4 109.3 6.94 126.8 309.2 572.5 65.5 597.5 145.8 139.9 9.3 97.2 151.6 128.4 47.4 43.0 193.8 418.1 451.2 198.3 272.8 249.3 0.009 1.96 .26.5 223.7 305.1 217.1 40.3 123.1 225.1 COLLECT 4 881 4 881 121081 121181 42081 4 981 121181 4 681 4 681 42181 4 981 4 681 4 981 41081 4 781 42081 4 981 42181 4 881 42181 42281 41081 12 281 4 881 4 881 42181 121181 4 981 4 881 12 281 42281 42181 42181 42181 42081 21081 121181 121181 12 281 21181 41081 21081 42181 42081 42081 42081 121181 WI: CHIPPEWA FALLS WI:FORT ATKINSON WI: CLINTONVILLE WI: BLACK RIVER WI: EAGLE RIVER WI: FOND DU LAC WI:DICKEYVILLE WI : HORTONVILLE WI: EAU CLAIRE WI: BEAVER DAM WI : BURLINGTON WI: CUMBERLAND WI: DARLINGTON WI : DODGEVILLE WI: EAU CLAIRE WI: EVANSVILLE WI : EVANSVILLE WI:GENOA CITY WI: CASSVILLE AI: CEDARBURG WI : FENNIMORE WI: CUBA CITY WI: BRODNEAD WI: COLUMBUS WI : EDGERTON WI: FLORENCE WI: FRANKLIN WI: FREDERIC WI : HARTFORD WI : HARTLAND WI : HARTLAND WI: BARABOO WI: BLOOMER WI : BONDUEL WI: CHILLTON WI : CORNELL WI: CRANDON WI: DELAVAN WI : ELKHORN WI:GRAFTON HAYWARD .. WI: CRANDON WI: CRIVITZ WI: BARRON WI: CHETEK WI : DEPERE WI: ANTIGO WI: BELOIT WI: BERLIN WI:COLFAX WI: ALCOMA LOCATION USRN18220X **USRN12050X USRN12420X USRN11920X** USRN18220 USRN18006 **USRN11920 USRN12050 USRN12425 USRN12420** USRN18209 **USRN12066 USRN12418** USRN12075 **USRN11992 USRN17999 USRN11989** JSRN18218 **USRN1 2069 USRN12412 USRN11979 USRN12468** USRN18228 USRN1 2423 USRN18217 USRN11917 **USRN18213 USRN12068 USRN11988** USRN18207 **USRN12376 USRN12428 USRN11985 USRN12492** USRN18233 **USRN12469** USRN12377 **USRN1 2056 USRNI8214** USRN18004 **USRN11987** JSRN1 2057 **USRN18005 USRN12483 USRN12493 USRN12414 USRN12054** USRN18211 USRN18221 **USRN18224 USRN12427 USRN12417 USRN12381** PA ID#

2SICMA ERROR	0.1	0.0	0.0		0			1.0		0.0			7°0		0.0			0	0.0					0.1	0.0		0.0						c	0.0	100				0.0
U-238 C1/1)	0.3 NA	NA 0.1	0.1 NA	VN	۲ ۲ ۲ ۲	NA A	VN.	7 Y	VN	0.1	Z Z	¥	3.4	YZ X	0.1	NA	Y.	¥ c	NA NA	NA	VN:	Z Z	Y.	0.3	AN C	NA A	0.2	۷ ۷ ۷ ۷	NA	YN:	A A	٧×	VN .	7.0	· ×	NA	V V	Y.	0.0
CGMA I	_	_	-					_					-											-															
4 2SI 1) EH	0.1	0.1	0.5		0			0.0		0.2			0.4		0.1			(· •					0.2	0.7	•	0.2						•		:				0.1
IGMA U+234 2SIGMA U-238 ERR (pC1/1) ERR (pC1/1)	0.6 NA	1.2	1.4	N	NA L	NA	Y Y	7.7 N	Y _N	1.7	¥ X	ž	4.0	Ž ž	0.9	WA	NA	Y Y	NA NA	¥	Ž.	A N	VN	1.8	AN L	N A	1.8	X X	Y Y	VN:	A N	V _N	NA C	V. C	2	٧×	V V	Y X	0.4
25	0.7		6.0								,				1.1										-	:	8.0						0	0.0					8.0
Ra-226 2SIGMA Ra-228 (PC1/1) ERR (PC1/1)	0.8 NA	V V	0°.5	٧×	V 2	N A	VN	V V	NA	NA	A AN	NA	VN.	Y X	1.9	VN	NA	۷:	Y X	٧×	NA	¢ ×	Ϋ́N	NA	AN E	NA	3,3	e e	NA	Y.	۷ ۷ ۷ ۲	VZ	VN.	L • J	4 X	VN	۷ ×	VN	4.2
2SIGMA ERR	0.1	0.1	0.1		0		0	0.0		0.0			0.0		0.1			-	1.0					0.0	1.0	•	0.1								2				0.1
Ra*226 2SICH (pC1/1) ERR	3.7 NA	3.4	5.2 NA	VN	VN C	N Y	YN,	NA NA	NA	0.4	Z Z	VN	9.0	Y X	3.3	NA	Y _N	Y Z	NA NA	VN	VN.	N N	NA	0.9	NA A. A	NA	3.9	e v	VN	NA	< Z	Š	NA.	4.0	× ×	NA	V V	NA	4.3
2SIG ERR	1.6	0.9	9.6	3.6	2°3	0.8	0.7	0.8	0.4	3.0	9.0	9.0	6.0	v. 0	1.2	1.5	1.0	۳. د	0.8	0.7	0.4	0.0	0.8	0.7	9.0	8.0	1.5	0.0	6.0	8.0	1.1	1.1	6.0	1 0	9.0	9.0	80 -	9.0	2.1
nETA 2SIG (pC1/1) ERR	5.7	4.0	8°0	2.5	2.9	2.0	2.0	2.0	1.0	2.0	1.0	0.7	5.0	0°0	5.0	1.5	1.1	6.2	1.0	2.0	1.0	7.0	2.0	2.0	2.0	4.0	7.0	0.0	2.0	H .	0.2	2.7	1.6	9 0	0.7	0.5	1.5	0.1	10.9
2SIGMA BETA ERR (PC1/	1.7	1.3	3.5	1.4	1 °3	0.5	0.7	1.2	0.8	1.8	9.0	0.3	1.3	9.0	1.2	9.0	9.0	1.2	0.4	1.1	9.0	2.0	0.7	1.0	0.8	0.7	1.2	8 4	0.4	8.0	ر د د د	0.8	0.7	1 ° t	0.0	0.7	4.0	0.3	1.5
ALPHA pc1/1)	7.2	0.9	0.0	0.4	8.6	0.2	6.0	0.8	1.0	0,0	0.2	0.1	0.0	0.0	4.0	+0.1	0.5	m v	0.0	2.0	1.0	0.0	0.5	3.0	2.0	0.8	4 .0	0.0	0.3	1.7	2.0	0.7	1.0	7.6	0.0	1.4	0,1	0.1	6.3
2SIGMA ALPHA ERROR (pc1/1)	105.0	68.0	107.3	71.0	62.3	115.4	78.6	50.6	38.3	106.0	116.1	59.2	127.3	168.9	88.0	9.98	92.7	86.9	93.6	116.7	112.2	92.3	116.1	170.8	117.1	130.1	115.0	102.5	77.8	94.8	81.4	98.0	79.5	00 00	113.7	98.1	81.7	107.8	64.3
LLECT Rn-222 DATE (pC1/1)	93.4	295.5	412.5	66.7	150.8	183.4	64.2	29.7	48.1	241.6		_		1091.5	119.8	396.1	417.7	314.6	627.1	29.9	326.9	239.6	52.3	16.8	28.6	105.1	130.7	43.0	123.0	542.3	317.6	164.7	147.7	777 7	_		302.2	393.6	273.8
COLLECT Rn~222 DATE (pC1/1)		4 981	42281	12 281	12 281	4 981	42181	42181	4 881	42281	4 961	4 681		4 781	42081	121181	121081	121181	121181	4 981	41081	121081	4 981	4 981	4 981	4 881	42181	42281	42081	121081	42081	42181	42181	107 71	4 981	121081	121181	121081	12 281
LOCATION	WI:HUDSON WI:IOLA	WI:JEFFERSON	WI:KAUKAUNA UT:KFWAIINEF	WI:KEWAUNEE	WI:KIEL UT:VIMBERIV	WI:LA CROSSE	WI: LAKE GENEVA	WI:LAKE MILLS	WI : LANCASTER	WI:LITTLE CHUTE	WI : MANAWA	WI: MARATHON	WI:MARION	WI:MARSHFIELD	WI:MAYVILLE	WI:MEDFORD	WI:MELLEN		WI: MERRILL	WI: MI DDLETON	WI:MILTON	WI:MINEKAL POINT	WI: MONONA	WI:MONROE	WI : MONROE:	WI : MUSCODA	WI:NEW BERLIN	WI:NEW HOLSTEIN	WI : NEW LONDON	WI:NEW RICHMOND	WI : NIAGAKA	WI: OCONOMOWOC	WI:OCONOMONOC	WI : OCONIO	WI : ONALASKA	WI: OSCEOLA	WI:OSSEO	WI:PARK FALLS	WI: PESHTIGO
EPA ID#	USRN18237 USRN12063	USRN12076 USRN12491	USRN12461	USRN18000	USRN17997	USRN12064	USRN12422	USRN1248/ USRN11990	USRN11990X	USRN1 2466	USRN12049	USRN11918	USRN1 2052	USRN1 1984	USRN12415	USRN18215	USRN18225	USRN18206	USRN18219	USRN1 2051	USRN12067	USRN12065	USRN1 2055	USRN1 2070	USRN1 2070X	USRN1 2077	USRN1 2462	USRN12464 USRN12380	USRN12380X	USRN18216	USRN18003	USRN12490	USRN12490X	USKN1 0002	USRN1 2071	USRN18234	USRN18227	USRN18230	USRN17996

Table B.34 Natural radioactivity in public groundwater systems*Wisconsin (continued)

2SIGMA ERROR	0.0	0.0 0.0 0.0
U-238 pc1/1)	O N N N N N N N N N N N N N N N N N N N	2 . 1 . 2 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3
ICMA U*234 2SIGMA U*238 2SIGM ERR (pC1/1) ERR (pC1/1) ERROR	••••••••••••••••••••••••••••••••••••••	0.2
U+234 (pC1/1)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 2 2 2 3 3 4 5 5 1 1 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
2SICHA U+234 2SIGHA U+238 ERR (PC1/1) ERR (PC1/1)		6.000
Ra+228 (pC1/1)	A A A A A A A A A A A A A A A A A A A	N N N N E
~	0.0	0.0 0.0 0.0 0.0
Ra*226 2SIGM (pC1/1) ERR	2 NA	0.0 0.1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
	10.5 00.5 00.5 00.5 00.5 00.5 00.5 00.5	0.5 12.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
BETA 2SIG (pci/l) ERR	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11.0 11.0
2SIGMA BETA ERR (pC1/	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00.00000000000000000000000000000000000
ALPHA pC1/1)	000000000000000000000000000000000000000	
2SIGNA ALPHA ERROR (PC1/1	79.3 1113.7 53.2 39.7 1120.3 118.3 118.3 118.3 118.3 118.5 89.0 89.0 89.0 87.5 91.7 43.3 1151.0 1151.0	1159.7 117.8 50.8 64.2 64.2 64.2 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 119.5 117.7
	145.4 671.8 57.0 67.6 67.6 67.6 67.6 73.9 97.5 78.5 78.5 78.5 86.5 86.5 30.5 85.4 85.4 85.4 30.5 85.4 85.4 85.4 85.4 85.4 85.4 86.5 86.5 86.5 86.5 86.5 86.5 86.5 86.5	
COLLECT Rn4222 DATE (pC1/1)	42181 121081 4 881 4 2281 42281 42281 42281 4 981 121181 121081 121081 121081 121081 4 881 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4 781 4 981 4 981 4 1081 4 2181 (21181 4 881 4 881 4 2181 4 2281 4 4 2281 4 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
ŏ	CHIE NT TER	10
ION	WI:PEWAUKEE WI:PIILLIPS WI:PITTEVILLE WI:PLATTEVILLE WI:PLYMOUTH WI:PLYMOUTH WI:PLYMOUTH WI:REDSBURG WI:REEDSBURG WI:RIINELANDER WI:RIINER	WI:STEVENS POINT WI:STRAFFORD WI:STURGEON BAY WI:STURCEON BAY WI:SUSSEX WI:TUORP WI:TOWAH WI:TOWAH WI:TOWAH WI:TOWAH WI:WIROQUA WI:VIROQUA WI:WIROQUA WI:WIIIE WATER WI:WIIIEWIRO WI:WIIIIEWIRO WI:WIIIIEWIRO WI:WIIIIIAWS WI:WIIIIII
LOCATION	WI: PEWAUKE WI: PHILLIP WI: PLATTEV WI: PLATTEV WI: PLATTEV WI: PLATOUT WI: PLATOUT WI: PRAINE WI: RANDOH WI: REEDS BUI WI: RICE LAI WI: RICELAN WI: RICHLAN WI: RICHLAN WI: RICHLAN WI: RICHLAN WI: RICHLAN WI: STENDUR WI: SPANTA WI: SPANLE	WI:STEVENS WI:STOUGHT WI:STOUGHT WI:STONGHT WI:STONGHT WI:TIORP WI:TONAHAM WI:TONAHAM WI:TONAHAM WI:WINOW G WI:WINOW W WI:WINITE W WI:WITE W
ID#	USRN12488 USRN118232 USRN11980X USRN11980X USRN11980X USRN12465 USRN12465 USRN12465 USRN12465 USRN12072 USRN12072 USRN12033 USRN11986 USRN11986 USRN11981 USRN11981	USRN1 1991 USRN1 2062 USRN1 2062 USRN1 2058 USRN1 2058 USRN1 2058 USRN1 2078 USRN1 2078 USRN1 2060 USRN1 2469 USRN1 2460 USRN1 2460 USRN1 2460 USRN1 2460 USRN1 2460
EPA ID#	USRNI USRNI	USRNI USRNI

Table B.35 Natural radioactivity in public water systems Wyoming

<																				
2SIGMA ERROR	1.3		0.3	0.2		1.0	9.0	1.0	9.0	0.4	0.5		0.1	0.2				0.1	0.1	0.1
(pc1/1) ERR (pc1/1)	11.6	٧N	2.1	1,3	NA	ဆ	2.0	8.3	9.4	3.0	4.5	VN	1.0	1.9	۷N	NA	۷N	0.5	0.5	6.0
ERR (2.3		7.4	0.3		1.5	1.5	1.3	0.9	9.0	0.8		0.4	7.0				0.2	0.2	0.2
J-234 ()	20.0																			
2SIGNA U-234 ERR (pc1/1)	20		• /			H		-		•			0.0	- ,						
(pC1/1)	VΝ	NA	VN	VN	NA	VN	NA	VN	٧٧	NA	NA	NA		VN	NA	۷V	NA	NA	٧٧	VN
2S I GN/ ERR	0.0		0.0	0.0		0.0	0.0	0.0		0.0	0.0		0.1	0.0					0.0	0.0
Ra-226 ((pc1/1)	0.3	NN	0.5	0.4	NA	0.1	0.1	0.1	VN	0.2	0,1	VN	2.9	0.1	VN	VN	NA	VN	1.3	6°0.
2SIG ERR	3.1	2.0	0.8	1.4	1.0	1.4	2.0	6.0	3.5	2.0	0.8	15.7	1,3	1.6	1.9	1.3	1.0	1.3	6.0	1.9
BETA (pc1/1)	8.4	3.7	9.0	9.0	1.2	9°9	7.2	2.3	4.9	4.2	9.0	6.1	2.4	2.5	6.0	1.7	0.4	3.8	1.9	1.9
2SIGHA ERR (7.8	1.6	3.8	4.1	0.9	2.5	2.6	3.0	4.0	2.1	4.4	6.5	2.5	2.4	0.7	0.8	1.6	1.6	1.7	2.0
(PC1/1)	35.2	3.0	8.5	5.9	0.8	12.8	11.2	15.9	9.9	4.5	9.01	0.8	6.7	0.9	0.2	0.7	2.1	5.2	6.1	3.8
2SIGHA ALPHA ERROR (PC1/1)	78.9	74.6	55.7	107.3	89.0	56.3	90.5	85.7	85.4	83.6	110.4	65.1	98.2	114.1	70.3	56.3	70.9	61.1	9.99	59.1
Rn-222 (pC1/1)	131.6	306.0	54.1	307.9	556.4	93.8	379.5	1428.0	612.6	600.5	538.8	592.0	114.2	278.9	938.9	17.3	1294.0	288.0	260.0	155.6
COLLECT DATE (73082	82432	71382	8 532	8 882	91582	7 882	61882	73082	73082	73082	71482	7 782	9 282	82582	61682	82482	71482	71482	7 782
LOCATION	WY: CASPER	WY: DUBOIS	WY:GILLETTE	WY:GLENROCK	WY:JACKSON	WY: JEFFREY CITY	WY: LUSK	WY: LYNIAN	FY:MILLS	WY:MILLS	WY:MILLS	WY:1100RCROFT	WY:NEWCASTLE	WY : POWELL	WY: RIVERTON	WY: ROCK SPRINGS	WY: SHOSHONI	WY: SUNDANCE	WY: SUNDANCE	WY:UPTON
EPA ID#	USRN24312	USRN24898	USRN23829	USRN24631	USRN24575	USRN2 54 08	USR1123676	USRN23308	USRN24310X	HSRN24311	USRN24310	USRN23859	USRB2 3675	USRN25078	USRN24899	USRN23276*	USRN24897	USRN23860X	USRN23860	USRN23632

* Surface water supply; all others are groundwater supplies.

APPENDIX C

SUMMARY OF RADIOACTIVITY RESULTS FOR PUBLIC SURFACE WATER SYSTEMS

Figure C.1. U.S. public surface water systems: Rn-222 concentrations

Figure C.2. U.S. public surface water systems: gross alpha concentrations

Figure C.3. U.S. public surface water systems: gross beta concentrations

Table C.1 Summary of U.S. radioactivity concentrations in public surface water systems

		etic Mean Ci/1)		tric Mean Ci/l)	Arithmetic Mean (Pop. Weighted)	Total Pop.	No. of Locations
Rn-222	33.6	SD=54.9	1.8	GD=56.4	18.5	172,669	25
Gross Alpha	0.2	SD= 0.2	0.1	GD= 4.8	0.3	180,969	26
Gross Beta	2.6	SD= 1.3	2.3	GD= 1.7	2.3	180,969	26

SD equals standard deviation.

GD equals geometric standard deviation.

APPENDIX D

SUMMARY OF Rn-222 CONCENTRATIONS FOR PUBLIC GROUNDWATER SYSTEMS FOR SELECTED POPULATION RANGES

Figure D.1. Rn-222 concentrations in U.S. public groundwater systems serving 1000 or more people

Figure D.2. Rn-222 concentrations in U.S. public groundwater systems serving less than 1000 people

Figure D.3. Rn-222 concentrations in U.S. public groundwater systems serving less than 500 people

Figure D.4. Rn-222 concentrations in U.S. public groundwater systems; serving less than 100 people

Table D.1 Summary of U.S. Rn-222 concentrations in public groundwater systems for selected population ranges

Pop. Range	Arithmetic Mean (pCi/l)	Geometric Mean (pCi/1)	Arithmetic Mean (Pop. Weighted)	Total Pop.	No. of Locations
>1000	326.3 SD= 634.8	84.4 GD= 16.2	230.7	30,794,806	2362
<1000	1012.1 SD=2047.1	162.7 GD= 22.1	1008.2	53,469	95
< 500	1022.9 SD=1984.4	118.5 GD= 38.8	1004.1	8,841	36
< 100	647.5 SD= 750.3	50.4 GD=142.4	518.2	216	5

SD equals standard deviation.

GD equals geometric standard deviation.

APPENDIX E

EPA REGIONAL CONTOUR MAPS FOR SELECTED RADIOACTIVITY CONCENTRATIONS

Figure E.1. Rn-222 concentrations in public groundwater Region I 1981-1982

Gross alpha concentrations in public groundwater Region I 1981-1982 Figure E.2.

2.99 4.99 9.99 14.99 9.00 3.00 5.00 15.00 15.00 =

Figure E.3. Rn-222 concentrations in public groundwater Region II 1981-1982 99.99 199.99 499.99 xxxxxxxxx PCIA 8.00 100.00 200.00 500.00 1000.00

174

Figure E.4. Gross alpha concentrations in public groundwater Region II 1981-1982

Figure E.6. Gross alpha concentrations in public groundwater Region III 1981-1982

Figure E.7. Rn-222 concentrations in public groundwater Region IV 1981-1982

Gross alpha concentrations in public groundwater Region IV 1981-1982 2.99 4.99 9.99 14.99 Figure E.8. 9.90 3.90 5.90 15.90

Figure E.10. Total uranium concentrations in public groundwater Region IV 1981-1982

Figure E.11. Rn-222 concentrations in public groundwater Region V 1981-1982

Gross alpha concentrations in public groundwater Region V 1981-1982 Figure E.12.

Figure E.13. Ra-226 concentrations in public groundwater Region V 1981-1982 0.49 0.99 1.99 4.99 ****** PCIAL 0.00 0.50 0.50 0.00 0.00 0.00

Figure E.14. Total uranium concentrations in public groundwater Region V 1981-1982

Figure E.16. Gross alpha concentrations in public groundwater Region VII 1981-1983 2.99 14.99 14.99 *xycycycycx 9.00 3.00 5.00 15.00 15.00

Figure E.17. Ra-226 concentrations in public groundwater Region VII 1981-1983 0.49 0.99 1.99 4.99 0.00 0.50 1.00 5.00 5.00

Figure E.18. Ra-228 concentrations in public groundwater Region VII 1981-1983 0.49 0.99 1.99 4.99 PCIAL 6.00 6.00 7.00 7.00 8.00 8.00 8.00

Figure E.19. Total uranium concentrations in public groundwater Region VII 1981-1983 1.99 4.99 9.99 19.99 xxxxxxxx 0.00 2.00 5.00 110.00 20.00

Figure E.20. Rn-222 concentrations in public groundwater Region VIII 1981-1982

2.99 4.99 9.99 14.99 xxxxxxxxx 9.00 3.00 5.00 15.00

Figure E.21. Gross alpha concentrations in public groundwater Region VIII 1981-1982

Figure E.22. Ra-226 concentrations in public groundwater Region VIII 1981-1982

1.99 4.99 9.99 19.99 * XOPOPOPOPO Figure E.23. Total uranium concentrations in public groundwater Region VIII 1981-1982 8.88 2.88 5.88 18.88 28.88

194

Figure E.24. Rn-222 concentrations in public groundwater Region IX 1981-1982

Gross alpha concentrations in public groundwater Region IX 1981-1982 Figure E.25.

Figure E.26. Ra-226 concentrations in public groundwater Region IX 1981-1982

Figure E.27. Total uranium concentrations in public groundwater Region IX 1981-1982

Figure E.28. Rn-222 concentrations in public groundwater Region X 1981-1982

99.99 199.99 499.99 999.99 *xxxxxxxxxx 0.88 180.88 280.88 580.88 1880.88

Figure E.29. Gross alpha concentrations in public groundwater Region X 1981-1982 2.99 4.99 14.99 * XOTOTOTOTOTO PCIAL 9.88 9.88 5.88 18.88

Figure E.30. Rn-222 concentrations in public groundwater Georgia, N. Carolina, S. Carolina, Virginia 1981-1982

8.49 8.99 1.99 4.99 * XOKOKOKOK Figure E.31. Ra-226 concentrations in public groundwater Georgia, N. Carolina, S. Carolina, Virginia 1981-1982 0.00 0.50 1.00 2.00 5.00

Figure E.32. Total uranium concentrations in public groundwater Georgia, N. Carolina, S. Carolina, Virginia 1981-1982

Figure E.33. Rn-222 concentrations in public groundwater Region I 1978-1982

Rn-222 concentrations in public groundwater Region II 1978-1982 Figure E.34.

Rn-222 concentrations in public groundwater Region VI 1978-1982 Figure E.35. 99.99 199.99 499.99 999.99 ******* 0.00 100.00 200.00 500.00 1000.00

Rn-222 concentrations in public groundwater Region VII 1978-1982 Figure E.36. 99.99 199.99 499.99 xxxxxxx 200.00 200.00 500.00 500.00

Figure E.37. Rn-222 concentrations in public groundwater Region IX 1978-1982

NIH Library, Building 10 National Institutes of Health Bethesda, Md. 20205

http://nihlibrary.nih.gov

10 Center Drive Bethesda, MD 20892-1150 301-496-1080

NOV 24 1986

OCT 2003