EXHIBIT A

US009107000B2

(12) United States Patent

Woolfork

(10) **Patent No.:**

US 9,107,000 B2

(45) **Date of Patent:**

*Aug. 11, 2015

(54) WIRELESS DIGITAL AUDIO MUSIC SYSTEM

(75) Inventor: C. Earl Woolfork, Pasadena, CA (US)

(73) Assignee: One-E-Way, Inc., Pasedena, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 153 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 13/356,949

(22) Filed: Jan. 24, 2012

(65) **Prior Publication Data**

US 2012/0128171 A1 May 24, 2012

Related U.S. Application Data

(63) Continuation of application No. 12/940,747, filed on Nov. 5, 2010, now Pat. No. 8,131,391, which is a continuation of application No. 12/570,343, filed on Sep. 30, 2009, now Pat. No. 7,865,258, which is a continuation of application No. 12/144,729, filed on Jul. 12, 2008, now Pat. No. 7,684,885, which is a continuation of application No. 10/648,012, filed on Aug. 26, 2003, now Pat. No. 7,412,294, which is a continuation-in-part of application No. 10/027,391, filed on Dec. 21, 2001, now abandoned.

(51) Int. Cl.

G06F 17/00 (2006.01) **H04R 1/10** (2006.01) H04R 5/033 (2006.01)

(52) U.S. Cl.

(58) Field of Classification Search

(56) References Cited

U.S. PATENT DOCUMENTS

5,420,585 A 5,491,839 A * 5,506,861 A	5/1995 2/1996	DuPree 342/378 Adams Schotz 455/39 Bottomley 342/378
5,539,769 A		Kosko tinued)

FOREIGN PATENT DOCUMENTS

EP	0840465	A2	5/1998
GB	2261347	A	5/1993

OTHER PUBLICATIONS

Bluetooth Specification version 1.1, Bluetooth SIG, www.bluetooth.com, Feb. 22, 2001.

(Continued)

Primary Examiner — Andrew C Flanders (74) Attorney, Agent, or Firm — Megan E. Lyman

(57) ABSTRACT

A wireless digital audio system includes a portable audio source with a digital audio transmitter operatively coupled thereto and an audio receiver operatively coupled to a headphone set. The audio receiver is configured for digital wireless communication with the audio transmitter. The digital audio receiver utilizes fuzzy logic to optimize digital signal processing. Each of the digital audio transmitter and receiver is configured for code division multiple access (CDMA) communication. The wireless digital audio system allows private audio enjoyment without interference from other users of independent wireless digital transmitters and receivers sharing the same space.

12 Claims, 3 Drawing Sheets

US 9,107,000 B2 Page 2

(56)		Referer	ices Cited	7,215,269		5/2007	
				7,272,410		9/2007	
	U.S	S. PATENT	DOCUMENTS	7,277,520		10/2007	
				7,292,880			Lehtonen
5,	668,880 A	9/1997	Alajajian	7,295,809		11/2007	
5,	721,783 A		Anderson	7,369,532		5/2008	
5,	771,441 A	* 6/1998	Altstatt 455/66.1	7,460,477			Yata et al.
5,	778,022 A	7/1998	Walley	7,467,344			Banerjee
5,	781,542 A	* 7/1998	Tanaka et al 370/342	7,505,823			Bartlett
5,	822,440 A	10/1998		7,890,661		2/2011	
5,	946,343 A	* 8/1999	Schotz et al 375/141	2001/0025358			Eidson et al 714/752
5,	963,583 A	10/1999	Davidovici	2002/0039424			Watanuki
6,	028,764 A	2/2000	Richardson	2002/0068610			Anvekar
6,	072,770 A	6/2000	Но	2002/0080288		6/2002	
6,	097,711 A	8/2000	Okawa	2002/0098878			Mooney
6,	104,913 A	8/2000	McAllister	2003/0130016			Matsuura
6,	115,478 A	9/2000	Schneider	2003/0223604			Nakagawa
6,	130,643 A	* 10/2000	Trippett et al 342/380	2004/0107271		6/2004	
6,	236,862 B1	5/2001	Erten et al.	2004/0215808			Homma
6,	317,039 B1	* 11/2001	Thomason 340/505				Lindemann et al 381/79
6,	339,706 B1	1/2002	Tillgren	2004/0242278	Al	12/2004	Tomoda
6,	366,662 B1	4/2002	Giordano		OTHER PUBLICATIONS		
6,	373,791 B1	4/2002	Ukita		OH	ILK I U.	BLICATIONS
6,	381,053 B1	4/2002	Fathallah	Blustooth Speci	fication	Vorcion	1.0b, www.bluetooth.com, Dec. 1,
6,	418,558 B1	* 7/2002			ncanoi	1 VEISIOII	1.00, www.bluetooth.com, Dec. 1,
6,	424,820 B1	* 7/2002	Burdick et al 455/41.1	1999.		d D :	1 4 12 4 10 1771
6,	456,645 B1	* 9/2002	Kurrat 375/140	Mettala, Riku, Bluetooth Protocol Architecture version 1.0 White			
6,	678,892 B1	* 1/2004	Lavelle et al 725/75	Paper, www.bluetooth.com.			
6,	781,977 B1	* 8/2004	Li 370/335		Haartsen, Jaap, Bluetooth—The universal radio interface for ad hoc		
6,	898,585 B2	* 5/2005	Benson et al 706/52	wireless connectivity, Ericsson Review No. 3, 1998.			
	978,162 B2		Russell	Haartsen, Jaap, Bluetooth Radio System, Ericsson Radio Systems,			
,	982,132 B1		Goldner et al 429/162	B.V. Feb. 2000.	B.V. Feb. 2000.		
,	035,788 B1		Nakajima	Anthony Ephren	Anthony Ephremides, WTEC Study on Wireless Technologies and		
	047,474 B2		Rhee et al 714/755	Information Syst			
	099.413 B2		Chuang et al 375/347	,	, -		
,	187.948 B2		Alden	* cited by exar	niner		
/,	107,770 D2	3/2007	/ Hoteli	ched by Chai	minel		

^{*} cited by examiner

U.S. Patent Aug. 11, 2015

Sheet 1 of 3

US 9,107,000 B2

FIG.1

U.S. Patent

Aug. 11, 2015

Sheet 2 of 3

US 9,107,000 B2

U.S. Patent

Aug. 11, 2015

Sheet 3 of 3

US 9,107,000 B2

US 9,107,000 B2

1

WIRELESS DIGITAL AUDIO MUSIC SYSTEM

This continuation application claims the benefit of U.S. patent application Ser. No. 12/940,747, which was a continuation application claiming the benefit of U.S. patent application Ser. No. 12/570,343 filed Sep. 30, 2009, now U.S. Pat. No. 7,865,258, which was a continuation claiming the benefit of U.S. patent application Ser. No. 12/144,729 filed Jul. 12, 2008, now U.S. Pat. No. 7,684,885, which was a continuation claiming benefit of U.S. patent application Ser. No. 10/648, 10 012 filed Aug. 26, 2003, now U.S. Pat. No. 7,412,294, which was a continuation-in-part claiming benefit from U.S. patent application Ser. No. 10/027,391, filed Dec. 21, 2001, for "Wireless Digital Audio System," published under US 2003/0118196 A1 on Jun. 26, 2003, now abandoned, the disclosures of which are incorporated herein in their entireties by reference.

BACKGROUND OF THE INVENTION

This invention relates to audio player devices and more particularly to systems that include headphone listening devices. The new audio system uses an existing headphone jack (i.e., this is the standard analog headphone jack that connects to wired headphones) of a music audio player (i.e., 25 portable CD player, portable cassette player, portable A.M./ F.M. radio, laptop/desktop computer, portable MP3 player, and the like) to connect a battery powered transmitter for wireless transmission of a signal to a set of battery powered receiving headphones.

Use of audio headphones with audio player devices such as portable CD players, portable cassette players, portable A.M./ F.M. radios, laptop/desktop computers, portable MP3 players and the like have been in use for many years. These systems incorporate an audio source having an analog headphone jack 35 to which headphones may be connected by wire.

There are also known wireless headphones that may receive A.M. and F.M. radio transmissions. However, they do not allow use of a simple plug in (i.e., plug in to the existing analog audio headphone jack) battery powered transmitter for 40 connection to any music audio player device jack, such as the above mentioned music audio player devices, for coded wireless transmission and reception by headphones of audio music for private listening without interference where multiple users occupying the same space are operating wireless 45 transmission devices. Existing audio systems make use of electrical wire connections between the audio source and the headphones to accomplish private listening to multiple users.

There is a need for a battery powered simple connection system for existing music audio player devices (i.e., the previously mentioned music devices), to allow coded digital wireless transmission (using a battery powered transmitter) to a headphone receiver (using a battery powered receiver headphones) that accomplishes private listening to multiple users occupying the same space without the use of wires.

SUMMARY OF THE INVENTION

The present invention is generally directed to a wireless digital audio system for coded digital transmission of an 60 audio signal from any audio player with an analog headphone jack to a receiver headphone located away from the audio player. Fuzzy logic technology may be utilized by the system to enhance bit detection. A battery-powered digital transmitter may include a headphone plug in communication with any suitable music audio source. For reception, a battery-powered headphone receiver may use embedded fuzzy logic to

2

enhance user code bit detection. Fuzzy logic detection may be used to enhance user code bit detection during decoding of the transmitted audio signal. The wireless digital audio music system provides private listening without interference from other users or wireless devices and without the use of conventional cable connections.

These and other features, aspects and advantages of the present invention will become better understood with reference to the following drawings, description and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Some aspects of the present invention are generally shown by way of reference to the accompanying drawings in which:
FIG. 1 schematically illustrates a wireless digital audio

system in accordance with the present invention;

FIG. 2 is a block diagram of an audio transmitter portion of the wireless digital audio system of FIG. 1;

FIG. 3 is a block diagram of an audio receiver portion of the wireless digital audio system of FIG. 1; and

FIG. 4 is an exemplary graph showing the utilization of an embedded fuzzy logic coding algorithm according to one embodiment of the present invention.

DETAILED DESCRIPTION

The following detailed description is the best currently contemplated modes for carrying out the invention. The description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the invention.

Referring to FIGS. 1 through 3, a wireless digital audio music system 10 may include a battery powered transmitter 20 connected to a portable music audio player or music audio source 80. The battery powered wireless digital audio music transmitter 20 utilizes an analog to digital converter or ADC 32 and may be connected to the music audio source 80 analog headphone jack 82 using a headphone plug 22. The battery powered transmitter 20 may have a transmitting antenna 24 that may be omni-directional for transmitting a spread spectrum modulated signal to a receiving antenna 52 of a battery powered headphone receiver 50. The battery powered receiver 50 may have headphone speakers 75 in headphones 55 for listening to the spread spectrum demodulated and decoded communication signal. In the headphone receiver 50, fuzzy logic detection may be used to optimize reception of the received user code. The transmitter 20 may digitize the audio signal using ADC 32. The digitized signal may be processed downstream by an encoder 36. After digital conversion, the digital signal may be processed by a digital low pass filter. To reduce the effects of channel noise, the battery powered transmitter 20 may use a channel encoder 38. A modulator 42 modulates the digital signal to be transmitted. For further noise immunity, a spread spectrum DPSK (differ-55 ential phase shift key) transmitter or module 48, is utilized. The battery powered transmitter 20 may contain a code generator 44 that may be used to create a unique user code. The unique user code generated is specifically associated with one wireless digital audio system user, and it is the only code recognized by the battery powered headphone receiver 50 operated by a particular user. The radio frequency (RF) spectrum utilized (as taken from the Industrial, Scientific and Medical (ISM) band) may be approximately 2.4 GHz. The power radiated by the transmitter adheres to the ISM standard.

Particularly, the received spread spectrum signal may be communicated to a 2.4 GHz direct conversion receiver or 3

module 56. Referring to FIGS. 1 through 4, the spread spectrum modulated signal from transmit antenna 24 may be received by receiving antenna 52 and then processed by spread spectrum direct conversion receiver or module 56 with a receiver code generator 60 that contains the same transmit- 5 ted unique code, in the battery powered receiver 50 headphones. The transmitted signal from antenna 24 may be received by receiving antenna 52 and communicated to a wideband bandpass filter (BPF). The battery powered receiver 50 may utilize embedded fuzzy logic 61 (as graphically depicted in FIGS. 1, 4) to optimize the bit detection of the received user code. The down converted output signal of direct conversion receiver or module 56 may be summed by receiver summing element 58 with a receiver code generator 60 signal. The receiver code generator 60 may contain the 15 same unique wireless transmission of a signal code word that was transmitted by audio transmitter 20 specific to a particular user. Other code words from wireless digital audio systems 10 may appear as noise to audio receiver 50. This may also be true for other device transmitted wireless signals 20 operating in the wireless digital audio spectrum of digital audio system 10. This code division multiple access (CDMA) may be used to provide each user independent audible enjoyment. The resulting summed digital signal from receiving summary element **58** and direct conversion receiver or mod- 25 ule 56 may be processed by a 64-Ary demodulator 62 to demodulate the signal elements modulated in the audio transmitter 20. A block de-interleaver 64 may then decode the bits of the digital signal encoded in the block interleaver 40. Following such, a Viterbi decoder 66 may be used to decode 30 the bits encoded by the channel encoder 38 in audio transmitter 20. A source decoder 68 may further decode the coding applied by encoder 36.

Each receiver headphone 50 user may be able to listen (privately) to high fidelity audio music, using any of the audio 35 devices listed previously, without the use of wires, and without interference from any other receiver headphone 50 user, even when operated within a shared space. The fuzzy logic detection technique 61 used in the receiver 50 could provide greater user separation through optimizing code division in 40 the headphone receiver.

The battery powered transmitter 20 sends the audio music information to the battery powered receiver 50 in digital packet format. These packets may flow to create a digital bit stream rate less than or equal to 1.0 Mbps.

The user code bits in each packet may be received and detected by a fuzzy logic detection sub-system 61 (as an option) embedded in the headphone receiver 50 to optimize audio receiver performance. For each consecutive packet received, the fuzzy logic detection sub-system 61 may com- 50 pute a conditional density with respect to the context and fuzziness of the user code vector, i.e., the received code bits in each packet. Fuzziness may describe the ambiguity of the high (1)/low (0 or -1) event in the received user code within the packet. The fuzzy logic detection sub-system 61 may 55 measure the degree to which a high/low bit occurs in the user code vector, which produces a low probability of bit error in the presence of noise. The fuzzy logic detection sub-system 61 may use a set of if-then rules to map the user code bit inputs to validation outputs. These rules may be developed as if-then 60

Fuzzy logic detection sub-system 61 in battery-powered headphone receiver 50 utilizes the if-then fuzzy set to map the received user code bits into two values: a low (0 or -1) and a high (1). Thus, as the user code bits are received, the "if" rules map the signal bit energy to the fuzzy set low value to some degree and to the fuzzy set high value to some degree. FIG. 4

graphically shows that x-value -1 equals the maximum low bit energy representation and x-value 1 equals the maximum high bit energy representation. Due to additive noise, the user code bit energy may have some membership to a low and high as represented in FIG. 4. The if-part fuzzy set may determine if each bit in the user code, for every received packet, has a greater membership to a high bit representation or a low bit representation. The more a user code bit energy fits into the high or low representation, the closer its subsethood, i.e., a measure of the membership degree to which a set may be a subset of another set, may be to one.

The if-then rule parts that make up the fuzzy logic detection sub-system **61** must be followed by a defuzzifying operation. This operation reduces the aforementioned fuzzy set to a bit energy representation (i.e., -1 or 1) that is received by the transmitted packet. Fuzzy logic detection sub-system 61 may be used in battery-powered headphone receiver 50 to enhance overall system performance.

The next step may process the digital signal to return the signal to analog or base band format for use in powering speaker(s) 75. A digital-to-analog converter 70 (DAC) may be used to transform the digital signal to an analog audio signal. An analog low pass filter 72 may be used to filter the analog audio music signal to pass a signal in the approximate 20 Hz to 20 kHz frequency range and filter other frequencies. The analog audio music signal may then be processed by a power amplifier 74 that may be optimized for powering headphone speakers 75 to provide a high quality, low distortion audio music for audible enjoyment by a user wearing headphones 55. A person skilled in the art would appreciate that some of the embodiments described hereinabove are merely illustrative of the general principles of the present invention. Other modifications or variations may be employed that are within the scope of the invention. Thus, by way of example, but not of limitation, alternative configurations may be utilized in accordance with the teachings herein. Accordingly, the drawings and description are illustrative and not meant to be a limitation thereof.

Moreover, all terms should be interpreted in the broadest possible manner consistent with the context. In particular, the terms "comprises" and "comprising" should be interpreted as referring to elements, components, or steps in a non-exclusive manner, indicating that the referenced elements, components, or steps may be present, or utilized, or combined with other elements, components, or steps that are not expressly referenced. Thus, it is intended that the invention cover all embodiments and variations thereof as long as such embodiments and variations come within the scope of the appended claims and their equivalents.

I claim:

- 1. A mobile wireless digital audio receiver, configured to receive a unique user code and an original audio signal representation in the form of packets, said unique user code used to spread a spectrum of said signal and further configured for independent CDMA communication operation, said receiver independent of the operation of another receiver, said mobile wireless digital audio receiver comprising:
 - a direct conversion module configured to capture packets and a correct bit sequence within the packets aided by lowering signal detection error through reduced intersymbol interference coding of said original audio signal representation, said packets embedded in the received spread spectrum signal, the captured packets corresponding to the unique user code;
 - a decoder operative to decode the reduced intersymbol interference coding of said original audio signal representation wherein each user has their audio receiver

5

configured to communicate with their own separate audio transmitter, and said receiver virtually free from interference from transmission and reception device signals operating in the shared spectrum.

- 2. A wireless digital audio headphone for receipt of a 5 unique user code and a digital audio signal representation in the form of a packet, said unique user code used to spread a spectrum of said signal and further configured for independent CDMA communication operation, said headphone independent of the operation of another headphone, said wireless 10 digital audio headphone comprising:
 - a direct conversion module configured to capture packets and the correct bit sequence within the packets aided by lowering signal detection error through reduced intersymbol interference coding of said digital audio 15 signal representation, said packets embedded in the received spread spectrum signal, the captured packets corresponding to the unique user code;
 - a decoder operative to decode the reduced intersymbol interference coding of said original audio signal representation;
 - a digital-to-analog converter generating an audio output of said original audio signal representation; and
 - a module adapted to produce said generated audio output, wherein each user has their audio headphone configured 25 to communicate with their own separate audio transmitter, and said audio virtually free from interference from transmission and reception device signals operating in a shared wireless headphone spectrum.
 - 3. A wireless digital audio headphone comprising:
 - a digital audio headphone receiver configured to receive an unique user code bit sequence and a original audio signal representation in the form of packets, said digital audio headphone receiver, capable of mobile operation and configured for direct digital coded wireless spread spectrum communication with a mobile digital audio transmitter, and said user has their headphone configured to communicate with their own transmitter;
 - a direct conversion module configured to capture packets and the correct bit sequence within the packets 40 aided by lowering signal detection error through reduced intersymbol interference coding of said original audio signal representation said packets embedded in the received spread spectrum signal, the captured packets corresponding to the unique user code; 45
 - a digital demodulator configured for independent CDMA communication operation wherein a user has their own transmitter and receiver;
 - a decoder operative to decode the reduced intersymbol interference coding of original audio signal represen- 50 tation:
 - a digital-to-analog converter (DAC) generating an audio output of said original audio signal representation; and
 - a module responsive to the unique user code bit 55 sequence to produce said generated audio output wherein each user has their audio headphone configured to communicate with their own separate audio transmitter, said output virtually free from interference from transmission and reception device signals 60 operating in the shared wireless headphone spectrum.
- **4**. The wireless digital audio headphone of claim **3**, wherein the audio output is music.
- 5. A mobile wireless digital audio receiver, configured to receive a unique user code and an original audio signal representation in the form of packets, said unique user code used to spread the spectrum of said signal and further configured

6

for independent CDMA communication operation, said receiver independent of the operation of another receiver, said mobile wireless digital audio receiver comprising:

- a direct conversion module configured to capture packets and the correct bit sequence within the packets aided by lowering signal detection error through reduced intersymbol interference coding of said original audio signal representation respective to said mobile digital audio receiver, said packets embedded in the received spread spectrum signal, the captured packets corresponding to the unique user code;
- a decoder operative to decode the reduced intersymbol interference coding of said original audio signal representation:
- a digital-to-analog converter generating an audio output of said original audio signal representation; and
- a module adapted to produce said generated audio output, wherein each user has their audio receiver configured to communicate with their own separate audio transmitter, and said audio virtually free from interference from transmission and reception device signals operating in the shared spectrum.
- 6. A mobile wireless digital audio receiver, configured to receive a unique user code and an original audio signal representation in the form of packets, said unique user code used to spread the spectrum of said signal and further configured for independent CDMA communication operation, said receiver independent of the operation of another receiver, said mobile wireless digital audio receiver comprising:
 - fuzzy set membership functionality to enhance detection of said unique user code;
 - a direct conversion module configured to capture packets and the correct bit sequence within the packets aided by lowering signal detection error through reduced intersymbol interference coding of said audio signal representation, said packets embedded in the received spread spectrum signal, the captured packets corresponding to the unique user code;
 - a decoder operative to decode reduced intersymbol interference coding of said original audio signal representation:
 - a digital-to-analog converter generating an audio output of said original audio signal representation; and
 - a module adapted to produce said generated audio output, wherein each user has their audio receiver configured to communicate with their own separate audio transmitter, and said audio virtually free from interference from transmission and reception device signals operating in a shared spectrum.
- 7. A wireless digital audio receiver, configured to receive an unique user code and a original audio signal representation, said unique user code used to spread a spectrum of said signal and further configured for independent CDMA communication operation, said receiver independent of the operation of another receiver, said wireless digital audio receiver comprising:
 - fuzzy set membership functionality to enhance detection of said unique user code;
 - a direct conversion module configured to capture the correct bit sequence embedded in the received spread spectrum signal;
 - a module adapted to produce said original audio signal representation, wherein each user has their audio receiver configured to communicate with their own separate audio transmitter, and said audio virtually free from interference from transmission and reception device signals.

US 9,107,000 B2

7

- **8**. A wireless digital coded music audio spread spectrum transmitter operatively coupled to a music audio source and configured to transmit a unique user code and an original audio signal representation in the form of packets, wherein said digital coded music audio transmitter coupled to said music audio source, and configured to be directly communicable with a mobile digital audio spread spectrum receiver, is capable of being moved in any direction during operation, said wireless digital coded audio transmitter comprising:
 - encoding operative to encode said original audio signal representation to reduce intersymbol interference and aid in lowering signal detection error of said audio representation signal respective to said receiver and mobile said transmitter coupled to said music audio source;
 - a digital modulator module configured for independent code division multiple access communication operation, wherein each user has their own separate transmitter configured to communicate with their receiver, said transmitter configured to wirelessly transmit said audio to be reproduced virtually free from interference from transmission and reception device signals operating in the wireless digital audio transmitter shared spectrum.
- 9. A mobile wireless digital audio receiver capable of being moved in any direction during operation and configured to receive a unique user code and an original audio signal representation in the form of packets, said unique user code used to spread a spectrum of said signal and further configured for independent CDMA communication operation, said receiver independent of the operation of another receiver, said wireless digital audio receiver comprising:
 - a spread spectrum receiver module configured to capture packets and a correct bit sequence within the packets aided by lowering signal detection error through reduced intersymbol interference coding of said original audio signal representation, said packets embedded in the received spread spectrum signal, the captured packets corresponding to the unique user code;

8

- a decoder operative to decode the reduced intersymbol interference coding of said original audio signal representation, wherein each user has their audio receiver configured to communicate with their own separate audio transmitter, and said audio virtually free from interference from transmission and reception device signals operating in the shared spectrum.
- 10. A wireless digital coded audio spread spectrum transmitter operatively coupled to a audio source and configured to transmit a unique user code and an original audio signal representation in the form of packets, wherein said digital coded audio transmitter coupled to said audio source, and configured to be directly communicable with a mobile digital audio spread spectrum receiver, is capable of being moved in any direction during operation, said wireless digital coded audio transmitter comprising:
 - an encoding module operative to encode said original audio signal representation to reduce intersymbol interference and aid in lowering signal detection error of said audio signal representation, said transmitter coupled to said audio source;
 - a digital modulator module configured for independent code division multiple access communication operation, each user has their own separate transmitter configured to communicate with their receiver, said transmitter configured to wirelessly transmit said audio to be reproduced virtually free from interference from transmission and reception device signals operating in the wireless digital audio transmitter shared spectrum.
- 11. The wireless digital audio receiver of claim 8, wherein the spread spectrum receiver module is further configured to utilize differential phase shift keying (DPSK) to demodulate said audio signal representation.
- 12. The wireless digital audio receiver of claim 10, wherein the spread spectrum receiver module is further configured to utilize differential phase shift keying (DPSK) to demodulate said audio signal representation.

* * * * *