GATE 2021 NM Q24

EE23BTECH11009 - AROSHISH PRADHAN*

Question: The sum of the infinite geometric series

$$1 + \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \dots$$

(rounded off to one decimal place) is _____ (GATE 2021 BT Q20)

Solution:

Symbol	Value	Description
x(n)		$(n+1)^{th}$ term of series
x(0)	1	1 st term of series
r	$\frac{1}{3}$	Common ratio
y(n)		Sum of $(n + 1)$ terms

TABLE I: Given Parameters

General term:

$$x(n) = x(0)r^n u(n) \tag{1}$$

$$\implies X(z) = \frac{1}{1 - rz^{-1}} \tag{2}$$

$$y(n) = x(n) * u(n)$$
(3)

$$\implies Y(z) = X(z)U(z)$$
 (4)

$$=\frac{1}{(1-rz^{-1})(1-z^{-1})}\tag{5}$$

$$= \frac{1}{r-1} \left(\frac{r}{1-rz^{-1}} - \frac{1}{1-z^{-1}} \right)$$
 (6)

(7)

Taking inverse Z-transform:

$$y(n) = \frac{1}{r-1} \left(r(r^n u(n)) - u(n) \right)$$
 (8)

$$=\left(\frac{r^{n+1}-1}{r-1}\right)u(n)\tag{9}$$

$$= \left(\frac{1 - r^{n+1}}{1 - r}\right) u(n) \tag{10}$$

For infinite terms:

$$y(\infty) = \lim_{n \to \infty} \left(\frac{1 - r^{n+1}}{1 - r} \right) u(n) \tag{11}$$

$$= \frac{1}{1-r}$$
 (12)
= $\frac{3}{2}$ (13)

$$=\frac{3}{2}\tag{13}$$

Fig. 1: Plot of x(n) vs n

Fig. 2: Plot of y(n) vs n