习题 7.4

1. 设 X_1 , …, X_n 为来自b(1,p)的样本,试求假设 H_0 : $p=p_0$ vs H_1 : $p \neq p_0$ 的似然比检验.解:因样本联合密度函数为

$$p(x_1, \dots, x_n; p) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i} = p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i} = p^{n\overline{x}} (1-p)^{n(1-\overline{x})},$$

则似然函数 $L(p) = p^{n\overline{x}}(1-p)^{n(1-\overline{x})}$,有 $\ln L(p) = n\overline{x} \ln p + n(1-\overline{x}) \ln(1-p)$,

令
$$\frac{d \ln L(p)}{dp} = \frac{n\overline{x}}{p} - \frac{n(1-\overline{x})}{1-p} = 0$$
,得 $p = \overline{x}$,即最大似然估计 $\hat{p} = \overline{X}$,

$$\mathbb{U}\sup_{p}L(p)=\overline{x}^{n\overline{x}}(1-\overline{x})^{n(1-\overline{x})},$$

当 $p=p_0$ 时,似然函数 $L(p_0)=p_0^{n\overline{x}}(1-p_0)^{n(1-\overline{x})}$,即 $\sup L(p_0)=L(p_0)=p_0^{n\overline{x}}(1-p_0)^{n(1-\overline{x})}$,

故似然比检验统计量为
$$\Lambda(X_1, \dots, X_n) = \frac{\sup L(p)}{L(p_0)} = \left(\frac{\overline{X}}{p_0}\right)^{n\overline{X}} \left(\frac{1-\overline{X}}{1-p_0}\right)^{n(1-\overline{X})}.$$

- 2. 设 X_1 , …, X_n 为来自正态分布 $N(\mu, \sigma^2)$ 的样本,试求假设 H_0 : $\sigma^2 = \sigma_0^2$ vs H_1 : $\sigma^2 \neq \sigma_0^2$ 的似然比检验.
- 解: 因样本联合密度函数为

$$p(x_1, \dots, x_n; \mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}} = (2\pi)^{-\frac{n}{2}} \sigma^{-n} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2},$$

则似然函数 $L(\mu, \sigma^2) = (2\pi)^{\frac{n}{2}} \sigma^{-n} e^{\frac{-1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2}$

有
$$\ln L(\mu, \sigma^2) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2$$
,

$$\frac{\partial \ln L}{\partial \mu} = -\frac{1}{2\sigma^2} \sum_{i=1}^n 2(x_i - \mu) \cdot (-1) = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) = \frac{1}{\sigma^2} \left(\sum_{i=1}^n x_i - n\mu \right) = 0;$$

$$\frac{\partial \ln L}{\partial \sigma^2} = -\frac{n}{2} \cdot \frac{1}{\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (x_i - \mu)^2 = 0.$$

得
$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$$
 , $\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$,

$$\iiint \sup_{\mu, \sigma^2} L(\mu, \sigma^2) = (2\pi)^{-\frac{n}{2}} \left[\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 \right]^{-\frac{n}{2}} e^{-\frac{n}{2}} = (2\pi)^{-\frac{n}{2}} \left[\frac{(n-1)s^2}{n} \right]^{-\frac{n}{2}} e^{-\frac{n}{2}},$$

当
$$\sigma^2 = \sigma_0^2$$
时,似然函数 $L(\mu, \sigma_0^2) = (2\pi)^{\frac{-n}{2}} \sigma_0^{-n} e^{\frac{-1}{2\sigma_0^2} \sum_{i=1}^n (x_i - \mu)^2}$,

有
$$\ln L(\mu, \sigma_0^2) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln \sigma_0^2 - \frac{1}{2\sigma_0^2} \sum_{i=1}^n (x_i - \mu)^2$$
,

$$\text{Im} \sup_{\mu} L(\mu, \sigma_0^2) = (2\pi)^{\frac{-n}{2}} \sigma_0^{-n} e^{\frac{-1}{2\sigma_0^2} \sum_{i=1}^n (x_i - \bar{x})^2} = (2\pi)^{\frac{-n}{2}} \sigma_0^{\frac{-n}{2}} e^{\frac{-(n-1)s^2}{2\sigma_0^2}},$$

故似然比检验统计量为

$$\Lambda(X_1, \dots, X_n) = \frac{\sup_{\mu, \sigma^2} L(\mu, \sigma^2)}{\sup_{\mu} L(\mu, \sigma_0^2)} = \left[\frac{(n-1)S^2}{n\sigma_0^2} \right]^{-\frac{n}{2}} e^{-\frac{n}{2} + \frac{(n-1)S^2}{2\sigma_0^2}},$$

这与统计量 $\chi^2 = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi^2(n-1)$ 相对应.

- 3. 设 X_1 , …, X_n 为来自指数分布 $Exp(\lambda_1)$ 的样本, Y_1 , …, Y_m 为来自指数分布 $Exp(\lambda_2)$ 的样本,且两组样本独立,其中 λ_1 , λ_2 是未知的正参数.
 - (1) 求假设 H_0 : $\lambda_1 = \lambda_2$ vs H_1 : $\lambda_1 \neq \lambda_2$ 的似然比检验;
 - (2) 证明上述检验法的拒绝域仅依赖于比值 $\sum_{i=1}^{n} X_{i} / \sum_{i=1}^{m} Y_{i}$;
 - (3) 求统计量 $\sum_{i=1}^{n} X_i / \sum_{i=1}^{m} Y_i$ 在原假设成立下的分布.
- 解: (1) 因样本联合密度函数为

$$p(x_1, \dots, x_n, y_1, \dots, y_m; \lambda_1, \lambda_2) = \prod_{i=1}^n \lambda_1 e^{-\lambda_1 x_i} \prod_{i=1}^m \lambda_2 e^{-\lambda_2 y_i} = \lambda_1^n \lambda_2^m e^{-\lambda_1 \sum_{i=1}^n x_i - \lambda_2 \sum_{i=1}^m y_i},$$

则似然函数 $L(\lambda_1,\lambda_2) = \lambda_1^n \lambda_2^m$ $\mathrm{e}^{-\lambda_1 \sum_{i=1}^n x_i - \lambda_2 \sum_{i=1}^m y_i}$, $\ln L(\lambda_1,\lambda_2) = n \ln \lambda_1 + m \ln \lambda_2 - \lambda_1 \sum_{i=1}^n x_i - \lambda_2 \sum_{i=1}^m y_i$,

$$\Rightarrow \begin{cases}
\frac{\partial \ln L}{\partial \lambda_1} = \frac{n}{\lambda_1} - \sum_{i=1}^n x_i = 0; \\
\frac{\partial \ln L}{\partial \lambda_2} = \frac{n}{\lambda_2} - \sum_{i=1}^m y_i = 0.
\end{cases}$$

得
$$\lambda_1 = \frac{n}{\sum_{i=1}^n x_i}$$
 , $\lambda_2 = \frac{m}{\sum_{i=1}^m y_i}$,

則
$$\sup_{\lambda_1, \lambda_2} L(\lambda_1, \lambda_2) = \frac{n^n m^m}{\left(\sum_{i=1}^n x_i\right)^n \left(\sum_{i=1}^m y_i\right)^m} e^{-n-m}$$
,

$$\mathbb{M} \sup_{\lambda_{1}=\lambda_{2}} L(\lambda_{1}, \lambda_{2}) = \frac{(n+m)^{n+m}}{\left(\sum_{i=1}^{n} x_{i} + \sum_{i=1}^{m} y_{i}\right)^{n+m}} e^{-n-m},$$

故似然比检验统计量为

$$\Lambda(X_{1}, \dots, X_{n}, Y_{1}, \dots, Y_{m}) = \frac{\sup_{\lambda_{1}, \lambda_{2}} L(\lambda_{1}, \lambda_{2})}{\sup_{\lambda_{1} = \lambda_{2}} L(\lambda_{1}, \lambda_{2})} = \frac{n^{n} m^{n} \left(\sum_{i=1}^{n} X_{i} + \sum_{i=1}^{m} Y_{i}\right)^{n+m}}{(n+m)^{n+m} \left(\sum_{i=1}^{n} X_{i}\right)^{n} \left(\sum_{i=1}^{m} Y_{i}\right)^{m}}$$

$$=\frac{n^{n}m^{n}}{(n+m)^{n+m}}\left(\frac{\sum_{i=1}^{n}X_{i}+\sum_{i=1}^{m}Y_{i}}{\sum_{i=1}^{n}X_{i}}\right)^{n}\cdot\left(\frac{\sum_{i=1}^{n}X_{i}+\sum_{i=1}^{m}Y_{i}}{\sum_{i=1}^{m}Y_{i}}\right)^{m}=\frac{n^{n}m^{n}}{(n+m)^{n+m}}\left(1+\frac{\sum_{i=1}^{m}Y_{i}}{\sum_{i=1}^{n}X_{i}}\right)^{n}\cdot\left(1+\frac{\sum_{i=1}^{n}X_{i}}{\sum_{i=1}^{m}Y_{i}}\right)^{m};$$

(2)因似然比检验统计量
$$\Lambda(X_1, \dots, X_n, Y_1, \dots, Y_m) = \frac{n^n m^n}{(n+m)^{n+m}} \left(1 + \sum_{i=1}^m Y_i / \sum_{i=1}^n X_i \right)^n \cdot \left(1 + \sum_{i=1}^n X_i / \sum_{i=1}^m Y_i / \sum_{i=1}^m Y_i \right)^m$$
,

故拒绝域仅依赖于比值 $\sum_{i=1}^{n} X_i / \sum_{i=1}^{m} Y_i$;

(3) 因
$$X_i \sim Exp(\lambda_1)$$
,有 $2\lambda_1 X_i \sim Exp\left(\frac{1}{2}\right) = Ga\left(1, \frac{1}{2}\right) = \chi^2(2)$,且 X_1, \dots, X_n 相互独立,

则
$$2\lambda_1 \sum_{i=1}^n X_i \sim \chi^2(2n)$$
, 同理 $2\lambda_2 \sum_{i=1}^m Y_i \sim \chi^2(2m)$,

因两组样本独立,

故
$$F = \frac{2\lambda_1 \sum_{i=1}^n X_i / (2n)}{2\lambda_2 \sum_{i=1}^m Y_i / (2m)} = \frac{m}{n} \cdot \frac{\sum_{i=1}^n X_i}{\sum_{i=1}^m Y_i} \sim F(2n, 2m)$$
.

- 4. 设 X_1, \dots, X_n 为来自正态分布 $N(\mu, \sigma^2)$ 的 i.i.d.样本,其中 μ, σ^2 未知. 证明关于假设 $H_0: \mu \leq \mu_0$ vs $H_1: \mu > \mu_0$ 的单侧 t 检验是似然比检验(显著性水平 $\alpha < 1/2$).
- 证: 因样本联合密度函数为

$$p(x_1, \dots, x_n; \mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}} = (2\pi)^{-\frac{n}{2}} \sigma^{-n} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2},$$

则似然函数 $L(\mu, \sigma^2) = (2\pi)^{\frac{n}{2}} \sigma^{-n} e^{\frac{-1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2}$,

有
$$\ln L(\mu, \sigma^2) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2$$
,

$$\frac{\partial \ln L}{\partial \mu} = -\frac{1}{2\sigma^2} \sum_{i=1}^n 2(x_i - \mu) \cdot (-1) = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) = \frac{1}{\sigma^2} \left(\sum_{i=1}^n x_i - n\mu \right) = 0;$$

$$\frac{\partial \ln L}{\partial \sigma^2} = -\frac{n}{2} \cdot \frac{1}{\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (x_i - \mu)^2 = 0.$$

得
$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$$
, $\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$,

$$\mathbb{I} \sup_{\mu, \sigma^2} L(\mu, \sigma^2) = (2\pi)^{\frac{-n}{2}} \left[\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2 \right]^{\frac{n}{2}} e^{-\frac{n}{2}} = (2\pi)^{\frac{-n}{2}} \left[\frac{(n-1)s^2}{n} \right]^{\frac{-n}{2}} e^{-\frac{n}{2}},$$

当
$$\mu \leq \mu_0$$
时,若 $\bar{x} \leq \mu_0$,有 $\sup_{\mu \leq \mu_0, \sigma^2} L(\mu, \sigma^2) = \sup_{\mu, \sigma^2} L(\mu, \sigma^2)$,

则似然比检验统计量
$$\Lambda(X_1,\cdots,X_n)=rac{\displaystyle\sup_{\mu,\sigma^2}L(\mu,\sigma^2)}{\displaystyle\sup_{\mu\leq\mu_0,\,\sigma^2}L(\mu,\sigma^2)}=1$$
 ,

若 $\bar{x} > \mu_0$,似然函数上确界应在 $\mu = \mu_0$ 时取得,

即似然函数
$$L(\sigma^2) = (2\pi)^{-\frac{n}{2}}\sigma^{-n} e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n(x_i-\mu_0)^2}$$
,有 $\ln L(\sigma^2) = -\frac{n}{2}\ln(2\pi)^{-\frac{n}{2}} - \frac{n}{2}\ln\sigma^2 - \frac{1}{2\sigma^2}\sum_{i=1}^n(x_i-\mu_0)^2$,

$$\stackrel{\text{\tiny 4}}{\text{\tiny 4}} \sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu_0)^2 = \frac{1}{n} \left[\sum_{i=1}^n (x_i - \overline{x})^2 + n(\overline{x} - \mu_0)^2 \right] = \frac{(n-1)s^2}{n} + (\overline{x} - \mu_0)^2 ,$$

$$\mathbb{I} \sup_{\mu \leq \mu_0, \, \sigma^2} L(\mu, \, \sigma^2) = (2\pi)^{-\frac{n}{2}} \left[\frac{(n-1)s^2}{n} + (\overline{x} - \mu_0)^2 \right]^{-\frac{n}{2}} e^{-\frac{n}{2}},$$

故似然比检验统计量为

$$\Lambda(X_1, \dots, X_n) = \frac{\sup_{\mu, \sigma^2} L(\mu, \sigma^2)}{\sup_{\mu \le \mu_0, \sigma^2} L(\mu, \sigma^2)} = \left[\frac{(n-1)S^2}{n} \right]^{-\frac{n}{2}} \left[\frac{(n-1)S^2}{n} + (\overline{X} - \mu_0)^2 \right]^{\frac{n}{2}}$$

$$= \left[1 + \frac{1}{n-1} \left(\frac{\overline{X} - \mu_0}{S/\sqrt{n}}\right)^2\right]^{\frac{n}{2}},$$

这与关于假设 H_0 : $\mu \leq \mu_0$ vs H_1 : $\mu > \mu_0$ 的单侧 t 检验的统计量 $T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \sim t(n-1)$ 相对应.

5. 按孟德尔遗传规律,让开淡红花的豌豆随机交配,子代可区分为红花、淡红花和白花三类,且其比例是 1:2:1,为了验证这个理论,观察一次实验,得到红花、淡红花和白花的豌豆株数分别为 26,66,28,这些数据与孟德尔定律是否一致 (α=0.05)?

解: 假设
$$H_0$$
: $p_1 = \frac{1}{4}$, $p_2 = \frac{1}{2}$, $p_3 = \frac{1}{4}$,

选取统计量
$$\chi^2 = \sum_{i=1}^r \frac{(n_i - np_i)^2}{np_i} \sim \chi^2(r-1)$$
,

显著性水平 $\alpha = 0.05$,r = 3, $\chi^2_{1-\alpha}(r-1) = \chi^2_{0.95}(2) = 5.9915$,右侧拒绝域 $W = \{\chi^2 \ge 5.9915\}$,

因 n = 120, p_i , n_i 及计算结果如下表:

花色	红花	淡红花	白花	合计
n_i	26	66	28	120
p_i	1/4	1/2	1/4	1
$n_i - np_i$	-4	6	-2	0
$(n_i - np_i)^2 / (np_i)$	0.5333	0.6	0.1333	1.2666

有 $\chi^2 = 1.2666 \notin W$,并且检验的p值 $p = P{\chi^2 \ge 1.2666} = 0.5308 > \alpha = 0.05$,故接受 H_0 ,拒绝 H_1 ,即可以认为这些数据与孟德尔定律一致.

6. 掷一颗骰子60次,结果如下:

试在显著性水平为 0.05 下检验这颗骰子是否均匀

解: 假设
$$H_0$$
: $p_1 = p_2 = \cdots = p_6 = \frac{1}{6}$,

选取统计量
$$\chi^2 = \sum_{i=1}^r \frac{(n_i - np_i)^2}{np_i} \sim \chi^2(r-1)$$
,

显著性水平 $\alpha=0.05$,r=6, $\chi^2_{1-\alpha}(r-1)=\chi^2_{0.95}(5)=11.0705$,右侧拒绝域 $W=\{\chi^2\geq 11.0705\}$,

因 n = 60, p_i , n_i 及计算结果如下表:

点数	1	2	3	4	5	6	合计
n_i	7	8	12	11	9	13	60
p_i	1/6	1/6	1/6	1/6	1/6	1/6	1
$n_i - np_i$	-3	-2	2	1	-1	3	0
$(n_i - np_i)^2 / (np_i)$	0.9	0.4	0.4	0.1	0.1	0.9	2.8

有 $\chi^2 = 2.8 \notin W$,并且检验的 p 值 $p = P{\chi^2 \ge 2.8} = 0.7308 > \alpha = 0.05$,

故接受 H₀, 拒绝 H₁, 即可以认为这颗骰子是均匀的.

7. 检查了一本书的 100 页,记录各页中的印刷错误的个数,其结果如下:

	错误个数	0	1	2	3	4	5	≥6	
Ī	页数	35	40	19	3	2	1	0	

问能否认为一页的印刷错误个数服从泊松分布(取 α =0.05)?

解:为了使得在每一类中的个数不小于 5,将取值为 3、4、5、≥6 的情形合并为一类,即

假设 H₀:
$$p_i = \frac{\lambda^i}{i!} e^{-\lambda}$$
, $i = 0, 1, 2 \perp p_3 = \sum_{i=2}^{+\infty} \frac{\lambda^i}{i!} e^{-\lambda}$,

需估计一个参数
$$\lambda$$
 , $k=1$, 选取统计量 $\chi^2 = \sum_{i=0}^{r-1} \frac{(n_i - n\hat{p}_i)^2}{n\hat{p}_i} \sim \chi^2(r-k-1)$,

显著性水平 α = 0.05,r = 4, $\chi^2_{1-\alpha}(r-k-1) = \chi^2_{0.95}(2) = 5.9915$,右侧拒绝域 $W = \{\chi^2 \ge 5.9915\}$,

因
$$n = 100$$
, $\hat{\lambda} = \bar{x} = \frac{100}{100} = 1$, \hat{p}_i , n_i 及计算结果如下表:

错误个数	0	1	2	3	合计
n_i	35	40	19	6	100
\hat{p}_i	0.3679	0.3679	0.1839	0.0803	1
$n_i - n\hat{p}_i$	-1.7879	3.2120	0.6060	-2.0301	0
$(n_i - n\hat{p}_i)^2 / (n\hat{p}_i)$	0.0869	0.2804	0.0200	0.5132	0.9005

有 χ^2 = 0.9005 \notin W,并且检验的 p 值 p = $P\{\chi^2 \ge 0.9005\}$ = 0.6375 > α = 0.05,故接受 H_0 ,拒绝 H_1 ,即可以认为一页的印刷错误个数服从泊松分布.

8. 某建筑工地每天发生事故数现场记录如下:

试在显著性水平 $\alpha = 0.05$ 下检验这批数据是否服从泊松分布.

解:为了使得在每一类中的个数不小于5,将取值为3、4、5、≥6的情形合并为一类,即

假设
$$H_0$$
: $p_i = \frac{\lambda^i}{i!} e^{-\lambda}$, $i = 0, 1, 2 且 p_3 = \sum_{i=3}^{+\infty} \frac{\lambda^i}{i!} e^{-\lambda}$,

需估计一个参数
$$\lambda$$
 , $k=1$, 选取统计量 $\chi^2 = \sum_{i=0}^{r-1} \frac{(n_i - n\hat{p}_i)^2}{n\hat{p}_i} \stackrel{\sim}{\sim} \chi^2(r-k-1)$,

显著性水平 α = 0.05,r = 4, $\chi^2_{1-\alpha}(r-k-1)=\chi^2_{0.95}(2)=5.9915$,右侧拒绝域 $W=\{\chi^2\geq 5.9915\}$,

因
$$n = 200$$
, $\hat{\lambda} = \overline{x} = \frac{148}{200} = 0.74$, \hat{p}_i , n_i 及计算结果如下表:

一天发生的事故数	0	1	2	≥3	合计
n_i	102	59	30	9	200
\hat{p}_{i}	0.4771	0.3531	0.1306	0.0392	1
$n_i - n\hat{p}_i$	6.5772	-11.6129	3.8732	1.1624	0
$\frac{\left(n_i - n\hat{p}_i\right)^2 / (n\hat{p}_i)}{\left(n_i - n\hat{p}_i\right)^2 / (n\hat{p}_i)}$	0.4533	1.9098	0.5742	0.1724	3.1097

有 χ^2 = 3.1097 \notin W,并且检验的 p 值 p = $P\{\chi^2 \ge 3.1097\}$ = 0.2112 > α = 0.05,故接受 H_0 ,拒绝 H_1 ,即可以认为这批数据服从泊松分布.

9. 在一批灯泡中抽取 300 只作寿命试验, 其结果如下:

在显著性水平为 0.05 下能否认为灯泡寿命服从指数分布 Exp(0.005)?

解: 假设
$$H_0$$
: $p_i = e^{-100(i-1)\lambda} - e^{-100i\lambda}$, $i = 1, 2, 3 \perp p_4 = e^{-300\lambda}$,

选取统计量
$$\chi^2 = \sum_{i=1}^r \frac{(n_i - np_i)^2}{np_i} \sim \chi^2(r-1)$$
,

显著性水平 α = 0.05,r = 4, $\chi^2_{1-\alpha}(r-1) = \chi^2_{0.95}(3) = 7.8147$,右侧拒绝域 $W = \{\chi^2 \geq 7.8147\}$,

因 n = 300, $\lambda = 0.005$, p_i , n_i 及计算结果如下表:

1 . , .					
寿命(h)	< 100	[100, 200)	[200, 300)	≥ 300	合计
n_i	121	78	43	58	300
p_i	0.3935	0.2387	0.1447	0.2231	1
$n_i - np_i$	2.9592	6.4046	-0.4248	-8.9390	0
$(n_i - np_i)^2 / (np_i)$	0.0742	0.5729	0.0042	1.1937	1.8450

有 χ^2 = 1.8450 \notin *W*,并且检验的 *p* 值 *p* = *P*{ χ^2 ≥ 1.8450} = 0.6052 > α = 0.05,

故接受 H₀, 拒绝 H₁, 即可以认为灯泡寿命服从指数分布 Exp (0.005).

10. 下表是上海 1875 年到 1955 年的 81 年间,根据其中 63 年观察到的一年中(5 月到 9 月)下暴雨次数的整理资料

试检验一年中暴雨次数是否服从泊松分布($\alpha = 0.05$)?

解:将取值为 0、1 的情形合并为一类,并将 5、6、7、8、≥9 的情形合并为一类,即

假设
$$H_0$$
: $p_1 = \sum_{i=0}^1 \frac{\lambda^i}{i!} e^{-\lambda}$, $p_i = \frac{\lambda^i}{i!} e^{-\lambda}$, $i = 2, 3, 4$ 且 $p_5 = \sum_{i=5}^{+\infty} \frac{\lambda^i}{i!} e^{-\lambda}$,

需估计一个参数
$$\lambda$$
 , $k=1$, 选取统计量 $\chi^2 = \sum_{i=0}^{r-1} \frac{(n_i - n\hat{p}_i)^2}{n\hat{p}_i} \stackrel{\sim}{\sim} \chi^2(r-k-1)$,

显著性水平 $\alpha=0.05,\ r=5,\ \chi^2_{1-\alpha}(r-k-1)=\chi^2_{0.95}(3)=7.8147$,右侧拒绝域 $W=\{\chi^2\geq 7.8147\}$,

因
$$n = 100$$
, $\hat{\lambda} = \bar{x} = \frac{180}{63} = 2.8571$, \hat{p}_i , n_i 及计算结果如下表:

暴雨次数	1	2	3	4	5	合计
n_i	12	14	19	10	8	63
\hat{p}_{i}	0.2215	0.2344	0.2233	0.1595	0.1613	1
$n_i - n\hat{p}_i$	-1.9566	-0.7684	4.9349	-0.0465	-2.1634	0
$\frac{(n_i - n\hat{p}_i)^2 / (n\hat{p}_i)}{}$	0.2743	0.0400	1.7314	0.0002	0.4605	2.5064

有 $\chi^2 = 2.5064 \notin W$,并且检验的 p 值 $p = P\{\chi^2 \ge 2.5064\} = 0.5440 > \alpha = 0.05$,

故接受 Ho, 拒绝 H₁, 即可以认为上海一年中暴雨次数服从泊松分布.

11. 某种配偶的后代按体格的属性分为三类,各类的数目分别是 10,53,46. 按照某种遗传模型其频率之比应为 p^2 : 2p(1-p): $(1-p)^2$,问数据与模型是否相符(α = 0.05)?

解: 假设
$$H_0$$
: $p_1 = p^2$, $p_2 = 2p(1-p)$, $p_3 = (1-p)^2$,

需估计一个参数
$$p$$
, $k=1$, 选取统计量 $\chi^2 = \sum_{i=1}^r \frac{(n_i - n\hat{p}_i)^2}{n\hat{p}_i} \sim \chi^2(r-k-1)$,

显著性水平 $\alpha=0.05,\ r=3,\ \chi^2_{1-\alpha}(r-k-1)=\chi^2_{0.95}(1)=3.8415$,右侧拒绝域 $W=\{\chi^2\geq 3.8415\}$,

设后代的各类数目分别为 n_1 , n_2 , n_3 次, 有 $n_1 + n_2 + n_3 = n$,

则似然函数
$$L(p) = (p^2)^{n_1} [2p(1-p)]^{n_2} [(1-p)^2]^{n_3} = 2^{n_2} p^{2n_1+n_2} (1-p)^{n_2+2n_3}$$
,

有
$$\ln L(p) = n_2 \ln 2 + (2n_1 + n_2) \ln p + (n_2 + 2n_3) \ln (1-p)$$
,

得
$$p$$
 的 MLE $\hat{p} = \frac{2n_1 + n_2}{2(n_1 + n_2 + n_3)} = \frac{2n_1 + n_2}{2n}$,

因
$$n = 109$$
, $\hat{p} = \frac{2n_1 + n_2}{2n} = \frac{73}{218} = 0.3349$, \hat{p}_i , n_i 及计算结果如下表:

后代类别	1	2	3	合计
n_i	10	53	46	109
\hat{p}_{i}	0.1121	0.4455	0.4424	1
$n_i - n\hat{p}_i$	-2.2225	4.4450	-2.2225	0
$(n_i - n\hat{p}_i)^2 / (n\hat{p}_i)$	0.4041	0.4069	0.1024	0.9135

有 $\chi^2 = 0.9135 \notin W$,并且检验的 p 值 $p = P\{\chi^2 \ge 0.9135\} = 0.6608 > \alpha = 0.05$,故接受 H_0 ,拒绝 H_1 ,即可以认为数据与模型相符.

12. 按有无特性 A 与 B 将 n 个样品分成四类,组成 2×2 列联表:

	В	\overline{B}	合计
A	а	b	a+b
\overline{A}	С	d	c+d
合计	a+c	b+d	n

其中 n = a + b + c + d, 试证明此时列联表独立性检验的 χ^2 统计量可以表示成

$$\chi^{2} = \frac{n(ad - bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}.$$

证: 假设
$$H_0$$
: $p_{ij} = p_i \cdot p_{-ij}$, $i = 1, 2$; $j = 1, 2$,

选取统计量
$$\chi^2 = \sum_{i=1}^2 \sum_{j=1}^2 \frac{(n_{ij} - n\hat{p}_{ij})^2}{n\hat{p}_{ii}} \sim \chi^2(1)$$
,

$$\text{III} \ \hat{p}_{11} = \hat{p}_{1.} \cdot \hat{p}_{.1} = \frac{(a+b)(a+c)}{n^2} \ , \quad \hat{p}_{12} = \frac{(a+b)(b+d)}{n^2} \ , \quad \hat{p}_{21} = \frac{(c+d)(a+c)}{n^2} \ , \quad \hat{p}_{22} = \frac{(c+d)(b+d)}{n^2} \ .$$

$$=\frac{[na-(a+b)(a+c)]^2}{n(a+b)(a+c)}+\frac{[nb-(a+b)(b+d)]^2}{n(a+b)(b+d)}+\frac{[nc-(c+d)(a+c)]^2}{n(c+d)(a+c)}+\frac{[nd-(c+d)(b+d)]^2}{n(c+d)(b+d)}$$

$$= \frac{(ad-bc)^2}{n(a+b)(a+c)} + \frac{(bc-ad)^2}{n(a+b)(b+d)} + \frac{(bc-ad)^2}{n(c+d)(a+c)} + \frac{(ad-bc)^2}{n(c+d)(b+d)}$$

$$=\frac{(ad-bc)^{2}[(c+d)(b+d)+(c+d)(a+c)+(a+b)(b+d)+(a+b)(a+c)]}{n(a+b)(c+d)(a+c)(b+d)}$$

$$=\frac{[(a+b)+(c+d)][(b+d)+(a+c)](ad-bc)^2}{n(a+b)(c+d)(a+c)(b+d)}$$

$$= \frac{n^2(ad - bc)^2}{n(a+b)(c+d)(a+c)(b+d)}$$

$$=\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}.$$

13. 在研究某种新措施对猪白痢的防治效果问题时,获得了如下数据:

	存活数	死亡数	合计	死亡率
对照	114	36	150	24%
新措施	132	18	150	12%
合计	246	54	300	36%

试问新措施对防治该种疾病是否有显著疗效($\alpha = 0.05$)?

解: 假设 H_0 : $p_{ij} = p_i \cdot p_{\cdot j}$, i = 1, 2; j = 1, 2,

选取统计量
$$\chi^2 = \sum_{i=1}^2 \sum_{j=1}^2 \frac{(n_{ij} - n\hat{p}_{ij})^2}{n\hat{p}_{ij}} \sim \chi^2(1)$$
,

显著性水平 $\alpha = 0.05$, $\chi^2_{1-\alpha}(1) = \chi^2_{0.95}(1) = 3.8415$,右侧拒绝域 $W = \{\chi^2 \ge 3.8415\}$,

$$\exists n = 300, \quad \hat{p}_{1.} = \frac{150}{300} = 0.5, \quad \hat{p}_{2.} = \frac{150}{300} = 0.5, \quad \hat{p}_{.1} = \frac{246}{300} = 0.82, \quad \hat{p}_{.2} = \frac{54}{300} = 0.18,$$

且 $\hat{p}_{ii} = \hat{p}_{ii} \cdot \hat{p}_{ij}$, i, j = 1, 2, n_{ij} 及计算结果如下表:

 措施	对照 新措施		合计		
效果	存活	死亡	存活	死亡	ΠИ
n_{ij}	114	36	132	18	300
\hat{p}_{ij}	0.41	0.09	0.41	0.09	1
$n_{ij}-n\hat{p}_{ij}$	-9	9	9	-9	0
$(n_i - n\hat{p}_i)^2 / (n\hat{p}_i)$	0.6585	3	0.6585	3	7.3170

有 $\chi^2 = 7.3170 \in W$,并且检验的 p 值 $p = P{\chi^2 \ge 7.3170} = 0.0068 < \alpha = 0.05$,

故拒绝 H₀,接受 H₁,即可以认为新措施对防治该种疾病有显著疗效.

- 14. 某单位调查了 520 名中年以上的脑力劳动者,其中 136 人有高血压史,另外 384 人则无. 在有高血压 史的 136 人中,经诊断为冠心病及可疑者的有 48 人,在无高血压史的 384 人中,经诊断为冠心病及可疑者的有 36 人. 从这个资料,对高血压与冠心病有无关系作检验,取α=0.01.
- 解: 假设 H_0 : $p_{ij} = p_{i} \cdot p_{\cdot j}$, i = 1, 2; j = 1, 2,

选取统计量
$$\chi^2 = \sum_{i=1}^2 \sum_{j=1}^2 \frac{(n_{ij} - n\hat{p}_{ij})^2}{n\hat{p}_{ij}} \sim \chi^2(1)$$
,

显著性水平 α = 0.01, $\chi^2_{1-\alpha}(1) = \chi^2_{0.99}(1) = 6.6349$,右侧拒绝域 $W = \{\chi^2 \geq 6.6349\}$,

且 $\hat{p}_{ij} = \hat{p}_{i} \cdot \hat{p}_{\cdot j}$, i, j = 1, 2, n_{ij} 及计算结果如下表:

血压	高		但	į	合计
冠心病	有	无	有	无	ΠИ
n_{ij}	48	88	36	348	520
\hat{p}_{ij}	0.0422	0.2193	0.1193	0.6192	1
$n_{ij}-n\hat{p}_{ij}$	26.0308	-26.0308	-26.0308	26.0308	
$\frac{(n_i - n\hat{p}_i)^2 / (n\hat{p}_i)}{}$	30.8432	5.9423	10.9236	2.1046	49.8136

有 χ^2 = 49.8136 \in W,并且检验的 p 值 p = $P\{\chi^2 \ge 49.8136\}$ = 1.6906 \times 10 $^{-12} < \alpha$ = 0.05,故拒绝 H_0 ,接受 H_1 ,即可以认为高血压与冠心病有关系.

15. 在一项是否应提高小学生的计算机课程的比例的调查结果如下:

年龄	同意	不同意	不知道
55 岁以上	32	28	14
36~55 岁	44	21	17
15~35岁	47	12	13

问年龄因素是否影响了对问题的回答($\alpha = 0.05$)?

解: 假设 H_0 : $p_{ij} = p_i \cdot p_{.j}$, i = 1, 2, 3; j = 1, 2, 3,

选取统计量
$$\chi^2 = \sum_{i=1}^3 \sum_{j=1}^3 \frac{(n_{ij} - n\hat{p}_{ij})^2}{n\hat{p}_{ij}} \sim \chi^2(4)$$
,

显著性水平 $\alpha = 0.05$, $\chi^2_{1-\alpha}(4) = \chi^2_{0.95}(4) = 9.4877$,右侧拒绝域 $W = \{\chi^2 \ge 9.4877\}$,

$$\hat{p}_{1.} = \frac{32 + 28 + 14}{228} = 0.3246 , \quad \hat{p}_{2.} = \frac{44 + 21 + 17}{228} = 0.3596 , \quad \hat{p}_{3.} = \frac{47 + 12 + 13}{228} = 0.3158 ,$$

$$\hat{p}_{.1} = \frac{32 + 44 + 47}{228} = 0.5395 , \quad \hat{p}_{.2} = \frac{28 + 21 + 12}{228} = 0.2675 , \quad \hat{p}_{.3} = \frac{14 + 17 + 13}{228} = 0.1930 ,$$

且 $\hat{p}_{ij} = \hat{p}_{i\cdot} \cdot \hat{p}_{\cdot j}$, i, j = 1, 2, n_{ij} 及计算结果如下表:

年龄	55 岁以上		36~55 岁		15~35 岁		合计			
回答	同意	不同意	不知道	同意	不同意	不知道	同意	不同意	不知道	音用
n_{ij}	32	28	14	44	21	17	47	12	13	228
\hat{p}_{ij}	0.1751	0.0868	0.0626	0.1940	0.0962	0.0694	0.1704	0.0845	0.0609	1
$n_{ij} - n\hat{p}_{ij}$	-7.9211	8.2018	-0.2807	-0.2368	-0.9386	1.1754	8.1579	-7.2632	-0.8947	0
$\frac{(n_i - n\hat{p}_i)^2/(n\hat{p}_i)}{}$	1.5717	3.3977	0.0055	0.0013	0.0402	0.0873	1.7134	2.7386	0.0576	9.6132

有 $\chi^2 = 9.6132 \in W$,并且检验的 p 值 $p = P{\chi^2 \ge 9.6132} = 0.0475 < \alpha = 0.05$,

故拒绝 H₀,接受 H₁,即可以认为年龄因素影响了对问题的回答.