

OBSOLETE PRODUCT
OBSOLETE PRODUCT
POSSIBLE SUBSTITUTE PRODUCT
HA-2525

CA3100

38MHz, Operational Amplifier

January 1999

Features

- High Open Loop Gain at Video Frequencies 42dB (Typ) at 1MHz
- Unity Gain
 Crossover Frequency (f_T) 38MHz (Typ)
- Full Power Bandwidth
 V_O = 18V_{P-P} 1.2MHz (Typ)
- Slew Rate
 - 20dB Amplifier 70V/µs (Typ)
 - Unity Gain Amplifier..... 25V/µs (Typ)
- Settling Time 0.6μs (Typ)
- Single Capacitor Compensation
- Offset Null Terminals

Applications

- Video Amplifiers
- · Fast Peak Detectors
- Meter Driver Amplifiers
- High Frequency Feedback Amplifiers
- Video Pre-Drivers
- Oscillators
- Multivibrators
- Voltage Controlled Oscillator
- Fast Comparators

Description

The CA3100 is a large signal wideband, high speed operational amplifier which has a unity gain cross over frequency (f_T) of approximately 38MHz and an open loop, 3dB corner frequency of approximately 110kHz. It can operate at a total supply voltage of from 14V to 36V (\pm 7V to \pm 18V when using split supplies) and can provide at least 18V_{P-P} and 30mA_{P-P} at the output when operating from \pm 15V supplies. The CA3100 can be compensated with a single external capacitor and has DC offset adjust terminals for those applications requiring offset null. (See Figure 1).

The CA3100 circuit contains both bipolar and PMOS transistors on a single monolithic chip.

Part Number Information

PART NUMBER (BRAND)	TEMP. RANGE (°C)	PACKAGE	PKG. NO.	
CA3100E	-40 to 85	8 Ld PDIP	E8.3	
CA3100M (3100)	-40 to 85	8 Ld SOIC	M8.15	
CA3100T	-55 to 125	8 Pin Metal Can	T8.C	

Pinouts

CA3100 (PDIP, SOIC) TOP VIEW

CA3100 (METAL CAN) TOP VIEW

CA3100

Absolute Maximum Ratings Thermal Information Supply Voltage (Between V+ and V- Terminals)............ 36V Thermal Resistance (Typical, Note 1) θ_{JA} (°C/W) θ_{JC} (°C/W) 100 N/A SOIC Package..... 165 N/A 170 85 Maximum Junction Temperature (Metal Can) 175°C Maximum Junction Temperature (Plastic Package) 150°C Maximum Storage Temperature Range -65°C to 150°C **Operating Conditions** Maximum Lead Temperature (Soldering 10s)............ 300°C Temperature Range (SOIC - Lead Tips Only) CA3100E, CA3100M.....--40°C to 85°C CA3100T.....-55°C to 125°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

- 1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.
- 2. CA3100 does not contain circuitry to protect against short circuits in the output.

Electrical Specifications $T_A = 25^{\circ}C$, $V_{SUPPLY} = \pm 15V$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
DC				•		•
Input Offset Voltage	V _{IO}	V _O = 0 ±0.1V	-	±1	±5	mV
Input Bias Current	I _{IB}	V _O = 0 ±1V	-	0.7	2	μА
Input Offset Current	I _{IO}	V _O = 0 ±1V	-	±0.05	±0.4	μА
Common Mode Input Voltage Range	V _{ICR}	CMRR ≥ 76dB	±12	+14 -13	-	V
Common Mode Rejection Ratio	CMRR	V _{CM} = ±12V	76	90	-	dB
Maximum Output Voltage	V _{OM} +	Differential Input Voltage = 0 \pm 0.1V, R _L = $2k\Omega$	+9	+11	-	V
	V _{OM} -]	-9	-11	-	V
Maximum Output Current	I _{OM} +	Differential Input Voltage = 0 + 0.1V, $R_L = 250\Omega$	+15	+30	-	mA
	I _{OM} -]	-15	-30	-	mA
Supply Current	l+	$V_O = 0 \pm 0.1 V$, $R_L \ge 10 k\Omega$	-	8.5	10.5	mA
Power Supply Rejection Ratio	PSRR	ΔV + = ±1 V , ΔV - = ±1 V	60	70	-	dB
DYNAMIC	•			•		•
Unity-Gain Crossover Frequency	f _T	$C_C = 0$, $V_O = 0.3V_{P-P}$	-	38	-	MHz
Open Loop Voltage Gain	A _{OL}	$f = 1kHz$, $V_O = \pm 1V$, (Note 3)	56	61	-	dB
		f = 1MHz, C _C = 0, V _O = 10V _{P-P}	36	42	-	dB
Slew Rate	SR	$A_V = 10, C_C = 0, V_I = 1V \text{ (Pulse)}$	50	70	-	V/μs
		$A_V = 1$, $C_C = 10pF$, $V_I = 10V$ (Pulse)	-	25	-	V/μs
Full Power Bandwidth (Note 4)	FPBW	$A_V = 10, C_C = 0, V_O = 18V_{P-P}$	0.8	1.2	-	MHz
		$A_V = 1$, $C_C = 10pF$, $V_O = 18V_{P-P}$	-	0.4	-	MHz
Open Loop Differential Input Impedance	Z _l	f = 1MHz	-	30	-	kΩ
Open Loop Output Impedance	ZO	f = 1MHz	-	110	-	Ω

Electrical Specifications $T_A = 25^{\circ}C$, $V_{SUPPLY} = \pm 15V$, Unless Otherwise Specified (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Wideband Noise Voltage (RTI)	e _N (Total)	BW = 1MHz, $R_S = 1k\Omega$	-	8	-	μV_{RMS}
Settling Time (To Within ±50mV of 9V Output Swing)	tS	$R_L = 2k\Omega$, $C_L = 20pF$	-	0.6	-	μs

NOTES:

- 3. Low frequency dynamic characteristic.
- Slew Rate 4. Full Power Bandwidth = πV_{OP-P}

Test Circuits

SLOPE = SR CA3100 +1V PULSE **≥ 2k**Ω t_R ≤ 10ns 20 pF twidth ≥1μs μF 큐 $2k\Omega$ 220Ω

FIGURE 1. OPEN-LOOP VOLTAGE GAIN TEST CIRCUIT AND **OFFSET ADJUST CIRCUIT**

FIGURE 2. SLEW RATE IN 10X AMPLIFIER TEST CIRCUIT

FIGURE 3. FOLLOWER SLEW RATE TEST CIRCUIT

FIGURE 4. WIDEBAND INPUT NOISE VOLTAGE TEST CIRCUIT

Test Circuits (Continued)

FIGURE 5. OUTPUT VOLTAGE SWING (V_{OM}), OUTPUT CURRENT SWING (I_{OM}) TEST CIRCUIT

FIGURE 6. SETTLING TIME TEST CIRCUIT

Schematic Diagram

Typical Applications

FIGURE 7. 20dB VIDEO AMPLIFIER

FIGURE 8. 20dB VIDEO LINE DRIVER

FIGURE 9. FAST POSITIVE PEAK DETECTOR

FIGURE 10. 1MHz METER-DRIVER AMPLIFIER

Typical Performance Curves

FIGURE 11. OPEN LOOP GAIN, OPEN LOOP PHASE SHIFT vs FREQUENCY

FIGURE 12. OPEN LOOP GAIN vs FREQUENCY

Typical Performance Curves (Continued)

FIGURE 13. OPEN LOOP GAIN vs FREQUENCY

FIGURE 14. REQUIRED COMPENSATION CAPACITANCE vs CLOSED LOOP GAIN

FIGURE 15. SLEW RATE vs COMPENSATION CAPACITANCE

FIGURE 16. TYPICAL OPEN LOOP OUTPUT IMPEDANCE vs FREQUENCY

FIGURE 17. WIDEBAND INPUT NOISE VOLTAGE vs SOURCE RESISTANCE

FIGURE 18. TYPICAL OPEN LOOP DIFFERENTIAL INPUT IMPEDANCE vs FREQUENCY

Typical Performance Curves (Continued)

FIGURE 19. MAXIMUM OUTPUT VOLTAGE SWING vs FREQUENCY

FIGURE 20. COMMON MODE INPUT VOLTAGE RANGE vs SUPPLY VOLTAGE

FIGURE 21. MAXIMUM OUTPUT VOLTAGE vs SUPPLY VOLTAGE

FIGURE 22. SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 23. INPUT BIAS CURRENT vs SUPPLY VOLTAGE