Yassine Ait Mohamed

Session d'hiver 2025 Université de Sherbrooke

Exercice 1 : Dans l'espace vectoriel réel des matrices carrées à coefficients réels $M_n(\mathbb{R})$, on considère les sous-ensembles :

$$S_n = \{ A \in M_n(\mathbb{R}) : A^T = A \}$$
 et $A_n = \{ A \in M_n(\mathbb{R}) : A^T = -A \}$

où A^T est la matrice transposée de la matrice A.

- 1. Montrer que S_n et A_n sont des sous-espaces vectoriels de $M_n(\mathbb{R})$.
- 2. Montrer que $M_n(\mathbb{R}) = S_n \oplus A_n$.
- 3. **Application**: Soit $M = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}$ une matrice de $M_2(\mathbb{R})$. Déterminer les matrices $S \in S_2$ et $A \in A_2$ telles que M = S + A.

Exercice 2: Soit A la matrice diagonale, $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$. On note $\mathcal{C}(A) = \{M \in \mathcal{M}_3(\mathbb{R}) | AM = MA\}$

- 1. Montrer que $\mathcal{C}(A)$ est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.
- 2. Montrer que si $D \in \mathcal{M}_3(\mathbb{R})$ est une matrice diagonale, alors $D \in \mathcal{C}(A)$.
- 3. Montrer que $\mathcal{C}(A) = \{D \in \mathcal{M}_3(\mathbb{R}) | D \text{ diagonale} \}$ Soit $P \in \mathcal{M}_3(\mathbb{R})$ une matrice inversible et $B = PAP^{-1}$, enfin $\mathcal{C}(B) = \{M \in \mathcal{M}_3(\mathbb{R}) | BM = MB \}$.
- 4. Montrer que $M \in \mathcal{C}(B)$ si, et seulement si, $P^{-1}MP \in \mathcal{C}(A)$.
- 5. En déduire que $C(B) = \{PDP^{-1} | D \text{ diagonale}\}\$

Exercice 3: On pose : $\forall P \in \mathbb{R}_2[X], \varphi(P) = (X^2 + 2)P'' + (X + 1)P' + P$.

- 1. Vérifier que φ est un endomorphisme de $\mathbb{R}_2[X]$.
- 2. Déterminer la matrice de φ dans la base canonique de $\mathbb{R}_2[X]$.
- 3. Déterminer $ker(\varphi 5I)$.
- 4. En déduire une base de $\mathbb{R}_2[X]$ dans laquelle la matrice de φ est diagonale.

Exercice 4 : Soit $\mathbb{R}_2[X] = \{a_0 + a_1X + a_2X^2, a_i \in \mathbb{R}\}$ l'espace des polynômes réels de degré au plus 2 et soit $\mathcal{B} = (1, X, X^2)$ la base canonique de $\mathbb{R}_2[X]$. On considère l'application

$$f: \mathbb{R}_2[X] \to \mathbb{R}_2[X]$$

 $P \mapsto (X+1)P'$

- 1. Montrer que f est linéaire.
- 2. Montrer que la matrice A de f dans la base \mathcal{B} est :

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$

- 3. Montrer que $\mathcal{B}' = (1, X+1, (X+1)^2)$ est une base de $\mathbb{R}_2[X]$.
- 4. Trouver la matrice P de f par rapport aux bases \mathcal{B}' et \mathcal{B}' .
- 5. Calculer A^2 , A^3 et B^k pour tout $k \in \mathbb{N}$.
- 6. Déterminer le rang de f.
- 7. Trouver une base de l'image de f.
- 8. Trouver une base du noyau de f.

Exercice 5 : Soit E le \mathbb{R} -espace vectoriel des applications de \mathbb{R} dans \mathbb{R} . Soit F le sous-ensemble de E défini par

$$F = \{ f \in E \mid f(1) = 0 \}$$

c'est-à-dire l'ensemble des applications de \mathbb{R} dans \mathbb{R} qui sont nulles en 1. Soit g l'application de \mathbb{R} dans \mathbb{R} définie pour tout x réel par $g(x)=x^2$, et soit G le sous-espace vectoriel de E engendré par cet élément g de E.

- 1. Montrer que F est un sous-espace vectoriel de E.
- 2. Quelle est la forme générale des éléments de G?
- 3. Déterminer $F \cap G$.
- 4. Montrer que les sous-espaces vectoriels F et G sont supplémentaires dans E. (Indication : on pourra remarquer que si f est une application de \mathbb{R} dans \mathbb{R} , f = (f f(1)g) + f(1)g.)

Exercice 6: Le but est de démontrer que toute matrice A de $\mathcal{M}_2(\mathbb{K})$ non scalaire est semblable à la matrice $\begin{pmatrix} 0 & -\det A \\ 1 & \operatorname{tr} A \end{pmatrix}$.

Soit E un \mathbb{K} espace vectoriel de dimension finie, u un endomorphisme de E et A la matrice de u dans une base \mathcal{B} .

Question 0: Montrer que u est une homothétie si, et seulement si, A est une matrice scalaire.

Première partie:

Dans cette partie A désigne la matrice

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

On note u l'endomorphisme de $E = \mathbb{K}^2$ canoniquement associé à la matrice A. Enfin $\mathcal{B} = (e_1, e_2)$ désigne la base canonique de E.

- 1. Vérifier que la matrice A est inversible.
- 2. Déterminer $u(e_1)$ et $u(e_2)$. Dans la suite de cette partie $v_1 = e_1$ et $v_2 = u(e_1)$.
- 3. Déterminer les deux vecteurs v_1 et v_2 .
- 4. Montrer que (v_1, v_2) est une base de E.
- 5. Déterminer deux nombres α et β tels que $u(v_2) = \alpha v_1 + \beta v_2$.
- 6. Déterminer la matrice de u dans la base (v_1, v_2) .
- 7. En déduire que la matrice A est semblable à la matrice $\begin{pmatrix} 0 & -\det A \\ 1 & \operatorname{tr}(A) \end{pmatrix}$.

Deuxième partie

Dans cette partie E désigne un \mathbb{K} -espace vectoriel et u un endomorphisme de E vérifiant :

$$\forall x \in E$$
, la famille $(x, u(x))$ est liée.

- 1. Montrer que pour tout $x \in E \setminus \{0\}$, il existe un unique $\lambda_x \in \mathbb{K}$ tel que $u(x) = \lambda_x x$.
- 2. Soit $x, y \in E \setminus \{0\}$.
 - (a) Montrer que si la famille (x, y) est liée, alors $\lambda_x = \lambda_y$.
 - (b) Montrer que si la famille (x, y) est libre, alors $\lambda_x = \lambda_y$. Indication : on pourra calculer u(x + y) de deux façons.
- 3. En déduire que u est une homothétie.

Troisième partie : Démonstration du résultat

Dans cette partie $A \in \mathcal{M}_2(\mathbb{K})$ est une matrice non scalaire. On désigne par u l'endomorphisme de $E = \mathbb{K}^2$ canoniquement associé à la matrice A.

- 1. Vérifier l'existence d'un vecteur $e \in E$ tel que la famille (e, u(e)) soit une base de E. On pose $v_1 = e$ et $v_2 = u(e)$. \mathcal{B} désigne la base (v_1, v_2) .
- 2. Justifier l'existence de deux nombres $a, b \in \mathbb{K}$ tels que $u(v_2) = av_1 + bv_2$.
- 3. Déterminer B la matrice de u dans la base \mathcal{B} .
- 4. En déduire que A est semblable à la matrice

$$\begin{pmatrix} 0 & a \\ 1 & b \end{pmatrix}$$

5. Montrer que $b = \operatorname{tr} A$ et $a = -\det A$.

Exercice 7: Soient E et F deux \mathbb{R} -espaces vectoriels et φ une application linéaire de E dans F. Soit $\mathcal{A} := \{x_1, \dots, x_m\}$ une famille de vecteurs de E.

- 1. Montrer que, si \mathcal{A} est liée, alors $\varphi(\mathcal{A}) = \{\varphi(x_1), \dots, \varphi(x_m)\}$ est liée.
- 2. Montrer que, si $\varphi(A)$ est libre, alors A est libre.
- 3. Montrer que, si \mathcal{A} est libre et φ est injective, alors $\varphi(\mathcal{A})$ est libre.

Exercice 8: Soit E un \mathbb{K} -e.v et $f \in \mathcal{L}(E)$. On suppose:

$$f^2 - f - 2\mathrm{Id}_E = 0$$

- 1. Montrer que f est un automorphisme.
- 2. Pour $n \in \mathbb{N}$, calculer le reste de la division euclidienne de X^n par $X^2 X 2$. En déduire une expression de f^n comme combinaison linéaire de f et Id_E . Pour $n \in \mathbb{Z}$?
- 3. Montrer que $\ker(f + \operatorname{Id}_E) \cap \ker(f 2\operatorname{Id}_E) = \{0_E\}.$
- 4. Montrer que $\ker(f + \mathrm{Id}_E) + \ker(f 2\mathrm{Id}_E) = E$.

Exercice 9 : Soit E un \mathbb{K} espace vectoriel et E_1, \ldots, E_n des sous-espaces vectoriels de E. Soit $f: E_1 \times \ldots \times E_n \to E$ l'application définie par $f(x_1, \ldots, x_n) = x_1 + \ldots + x_n$.

- 1. Montrer que f est une application linéaire.
- 2. Déterminer $\operatorname{Im} f$ (l'image de f).
- 3. Montrer que la somme $\sum_{i=1}^{n} E_i$ est directe si, et seulement si, f est injective.

4. Montrer que si la somme $\sum_{i=1}^{n} E_i$ est directe alors $E_1 \times \ldots \times E_n$ et $\sum_{i=1}^{n} E_i$ sont isomorphes.

Exercice 10 : Soit E un \mathbb{K} -espace vectoriel, pas nécessairement de dimension finie et soit u un endomorphisme de E.

- 1. Montrer que Ker $u \subseteq \text{Ker } u^2$ et $\text{Im } u^2 \subseteq \text{Im } u$.
- 2. Montrer que Ker $u = \text{Ker } u^2$ si, et seulement si, Ker $u \cap \text{Im } u = \{0\}$.
- 3. Montrer que $\operatorname{Im} u = \operatorname{Im} u^2$ si, et seulement si, $E = \operatorname{Ker} u + \operatorname{Im} u$.

Exercice 11 : Un hyperplan de E est un sous-espace vectoriel H de E de dimension $\dim(E) - 1$. Une forme linéaire sur E est une application linéaire de E dans \mathbb{K} .

- 1. Montrer que toute forme linéaire non nulle est surjective.
- 2. Soient φ et ψ deux formes linéaires sur E telles que $\operatorname{Ker}(\varphi) = \operatorname{Ker}(\psi)$. Monter qu'il existe $\lambda \in \mathbb{K} \setminus \{0\}$ tel que $\varphi = \lambda \psi$.
- 3. Montrer que si $a \notin H$. Alors :

$$E = H \oplus \operatorname{Vect}(a)$$
.

4. Montrer que H est un hyperplan si, et seulement si, c'est le noyau d'une forme linéaire non nulle.

Application:

- a) Montrer que $H = \{M \in \mathcal{M}_n(\mathbb{R}) / \operatorname{tr}(M) = 0\}$ est un hyperplan et en déterminer une équation et un supplémentaire.
- b) Soient $n \geq 2$, $(a_1, \ldots, a_n) \in \mathbb{K}^n \setminus \{(0, \ldots, 0)\}$ et

$$H = \{(x_1, \dots, x_n) \in \mathbb{K}^n \mid a_1 x_1 + \dots + a_n x_n = 0\}.$$

Montrer que H est un sous-espace vectoriel de \mathbb{K}^n de dimension n-1.

Exercice 12: Soit $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{K}^3 et f l'endomorphisme de \mathbb{K}^3 définie par :

$$f(e_1) = 0$$
, $f(e_2) = e_1$, $f(e_3) = e_1 + e_2$

- 1. Calculer $f^2(e_i)$, puis $f^3(e_i)$ pour $1 \le i \le 3$.
- 2. En déduire que $f^3 = 0$.

- 3. Une deuxième méthode pour calculer f^3 (calcul explicite) :
 - (a) Calculer f(x, y, z), pour $(x, y, z) \in \mathbb{K}^3$.
 - (b) Calculer $f^2(x, y, z)$, pour $(x, y, z) \in \mathbb{K}^3$. En déduire que $f^3 = 0$.
- 4. Soit g l'endomorphisme $g = f \mathrm{Id}_E$.
 - (a) Montrer que $g^3 + 3g^2 + 3g + \text{Id}_E = 0$
 - (b) En déduire que q est un isomorphisme et déterminer q^{-1} en fonction de q.

Exercice 13 : Soit E un espace vectoriel réel. On rappelle qu'un projecteur P de E est un endomorphisme de E qui vérifie l'égalité $P \circ P = P$.

- 1. Montrer que pour tout $y \in \text{Im}(p)$, on a p(y) = y.
- 2. En déduire que $E = \ker(p) \oplus \operatorname{Im}(p)$. On dit que p est le projecteur sur $\operatorname{Im}(p)$ parallèlement à $\ker(p)$.
- 3. Montrer que si P est un projecteur de E, alors :

$$\operatorname{Im}(I_E - P) = \ker(P)$$
 et $\ker(I_E - P) = \operatorname{Im}(P)$,

où I_E est l'endomorphisme identité de E.

- 4. Démontrer que p est un projecteur de E si et seulement si $I_E p$ est aussi un projecteur de E.
- 5. Démontrer qu'un projecteur p commute avec un endomorphisme u de E si et seulement si son noyau et son image sont stables par u (c'est-à-dire, $u(\ker(p)) \subset \ker(p)$ et $u(\operatorname{Im}(p)) \subset \operatorname{Im}(p)$).
- 6. On suppose désormais que E est de dimension finie n.
 - (a) Montrer qu'il existe une base \mathcal{B} de E dans laquelle p a pour matrice

$$\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix},$$

où r est le rang de p, I_r est la matrice identité d'ordre r et 0_{n-r} est la matrice nulle d'ordre n-r.

(b) En déduire que la trace d'un projecteur est égale à son rang.

Exercice 14: Soit E un \mathbb{K} -espace vectoriel de dimension n > 1 (avec $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}). Soient f un endomorphisme de E nilpotent d'ordre n (c'est-à-dire, $f^n = 0$ et $f^{n-1} \neq 0$). On note :

$$C(f) = \{ g \in \mathcal{L}(E) \mid g \circ f = f \circ g \}.$$

- 1. Montrer que C(f) est un sous-espace vectoriel de $\mathcal{L}(E)$.
- 2. Soit a un vecteur de E tel que $f^{n-1}(a) \neq 0_E$. Montrer que la famille $(a, f(a), \dots, f^{n-1}(a))$ constitue une base de E.
- 3. Soit $\varphi_a:C(f)\to E$ l'application définie par $\varphi_a(g)=g(a)$. Montrer que φ_a est un isomorphisme.
- 4. En déduire que $C(f) = \text{Vect}(\text{Id}, f, \dots, f^{n-1})$.