

CHEMISTRY Chapter 2

ZONA EXTRANUCLEAR

MOTIVATING STRATEGY

ZONA EXTRANUCLEAR

Es la región energética donde se encuentran los electrones (envoltura electrónica), está formada por niveles de energía, donde cada uno contiene subniveles de energía y estos últimos presentan cada uno, una cantidad de orbitales (o reempe).

Zona extranuclear Niveles de energía Subniveles de energía Crbitales Electrónico s (R.E.E.M.P.E

a) NIVELES DE ENERGÍA

Notación espectroscópic a

> Notació n cuántica

g			M					
n	1	2	3	4	5	6	7	

Niveles incompletos

2e-8e- 18e- 32e- 32e- 18e- 8e-

9

16 16

n es el número cuántico principal y nos da la idea del tamaño y el volumen relativo del orbital.

b) **SUB NIVELES DE ENERGÍA:**

Subnivel energético	S	р	d	f	g	
l	0	1	2	3	4	(n-1)

ORBITAL O REEMPE

LLENO (electrones apareados)

SEMILLENO (electrones desapareados)

VACANTE

Subnivel (I)	Orbitales	Número de orbitales	Capacidad máxima de electrones (e-)		
s (I = 0)	<u>↑↓</u> 0	1	2		
p (I = 1)	$\frac{\uparrow\downarrow}{-1} \frac{\uparrow\downarrow}{0} \frac{\uparrow\downarrow}{+1}$	3	6		
d (I = 2)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	10		
f (I = 3)	$\frac{\uparrow\downarrow}{-3} \frac{\uparrow\downarrow}{-2} \frac{\uparrow\downarrow}{-1} \frac{\uparrow\downarrow}{0} \frac{\uparrow\downarrow}{+1} \frac{\uparrow\downarrow}{+2} \frac{\uparrow\downarrow}{+3}$	7	14		

CONFIGURACIÓN ELECTRÓNICA

NOTACION DE UN SUBNIVEL

$$\begin{cases} n=4 & n=5 \\ \ell=1 & 5d^8 \end{cases} \begin{cases} \ell=2 & N^{\circ}e^{-}=8 \end{cases}$$

ENERGÍA RELATIVA

$$E_R = n + \ell$$

	n	l	E _R =n+ℓ
2s	2	0	2
4 p	4	1	5
3d	3	2	5
5s	5	0	5

a) PRINCIPIO DE AUFBAU

Los electrones se distribuyen a partir de las regiones de menor energía ya que son las que tienen mayor estabilidad.

Niveles de energía	K	L	M	N	0	P	Q
n	1	2	3	4	5	6	7
	S ²	S ²	S ² /	\$ ² /	\$ ²	S ²	S ²
	Y	p ⁶	p 6	06	p 6	p ⁶	p ⁶
			d ¹⁰	A 10	d 10	d ¹⁰	d ¹⁰
Subniveles				f14	f14	f14	f14
de energía					g ¹⁸	g ¹⁸	g ¹⁸
						h ²²	h ²²
							i ²⁶
N°e⁻	2	8	18	32	32	18	8

b) FORMA ABREVIADA (KERNEL)

La configuración electrónica abreviada se escribe colocando entre corchetes el gas noble inmediato anterior.

$$_{8}O: 1s^{2} 2s^{2} 2p^{4}$$
 [He] $2s^{2} 2p^{4}$

$$_{30}$$
Zn : $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10}$ [Ar] $4s^2 3d^{10}$

1. Determine el número de niveles que presenta un átomo cuyo número atómico es igual a 18.

Número de niveles = 3

2. Determine el número de electrones que se encuentran en los subniveles p, para el átomo de selenio (Z=34).

RESOLUCIÓN

34 Se $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^4$

Número de e subniveles p = 16

3. Determine el número de orbitales llenos y semillenos para la siguiente notación:

4. La configuración electrónica de un átomo presenta cuatro electrones en el tercer nivel. Determine el número atómico (Z) de dicho átomo.

RESOLUCIÓN

$$z = 1s^2 2s^2 2p^6 3s^2 3p^2$$

3er. nivel

Número Atómico (Z) = 14

5. Si la configuración electrónica de un átomo culmina en 4s¹, determine el número atómico correspondiente.

6. Con excepción del hidrógeno y helio, las configuraciones electrónicas de todos los elementos se representan por un Kérnel de gas noble, que muestra entre corchetes el símbolo del gas noble que antecede al elemento a considerar, seguido por los símbolos de los subniveles superiores llenos que ocupan los niveles externos..

Realice distribución electrónica abreviada para el 34Se, luego halle el número de electrones desapareados y los electrones de valencia

Número de e⁻ desapareados = 4 Número de e⁻ valencia = 6

7. La distribución electrónica del átomo de oxígeno es:

Luego se puede afirmar que:

- Existen 2 niveles energéticos y 5 subniveles energéticos.
- II. Posee 5 orbitales, de los cuales 2 están semillenos.
- III. Todos sus electrones están apareados.

