External Project Report on Digital Logic Design (EET1211)

DESIGN A 32X1 MULTIPLEXER USING 8X1 MULTIPLEXER AND 4X1 MULTIPLEXER

Submitted by

Name Arnav Pratik
Reg. No.: 2341016435
Reg. No.: 2341016492
Reg. No.: 2341013398
Reg. No.: 2341013398
Reg. No.: 2341019024
Reg. No.: 2341019024
Reg. No.: 2341014013

B. Tech. CSE 3rd Semester (Section - 23412I1)

INSTITUTE OF TECHNICAL EDUCATION AND RESEARCH (FACULTY OF ENGINEERING)
SIKSHA 'O' ANUSANDHAN (DEEMED TO BE UNIVERSITY), BHUBANESWAR, ODISHA

Declaration

We, the undersigned students of B. Tech. of (CSE) Department hereby declare that

we own the full responsibility for the information, results etc. provided in this

PROJECT titled "DESIGN A 32X1 MULTIPLEXER USING 8X1 MULTIPLEXER AND

4X1 MULTIPLEXER" submitted to Siksha 'O' Anusandhan Deemed to be University,

Bhubaneswar for the partial fulfillment of the subject Digital Logic Design (EET 1211).

We have taken care in all respect to honor the intellectual property right and have

acknowledged the contribution of others for using them in academic purpose and

further declare that in case of any violation of intellectual property right or copyright

we, as the candidate(s), will be fully responsible for the same.

Suryamadhab Moharana

Arnay Pratik

Registration No.: 2341013398

Registration No.: 2341016435

DN Sahil

Registration No.: 2341019024

Rajesh Naik

Registration No.: 2341014013

Ashirbad Panda

Registration No.: 2341016492

DATE: 23/12/2024

PLACE: ITER, JAGAMARA, BHUBANESWAR

Abstract

This project presents the design and simulation of a 32x1 multiplexer using 8x1 and 4x1 multiplexers in a software environment. The proposed design utilizes four 8x1 multiplexers to select one out of 32 input signals, which are then fed into a 4x1 multiplexer to produce the final output. The design is simulated using a digital logic simulator, and the functionality is verified through simulation results. The proposed design demonstrates a cost-effective and efficient approach to implementing a 32x1 multiplexer, making it suitable for various digital circuit applications. The project showcases the potential of using smaller multiplexers to implement larger ones.

Contents

Serial No.	Chapter No.	Title of the Chapter	Page No.
1.	1	Introduction	1-2
2.	2	Problem Statement	3
3.	3	Methodology	4-5
4.	4	Implementation	6-9
5.	5	Results and interpretation	10-12
6.	6	Conclusion	13
7.		References	14
8		Annendices	15-45

1. INTRODUCTION

*MULTIPLEXER:

A multiplexer is a device that selects one of several input signals and forwards the selected signal to a single output line.

A multiplexer receives multiple input signals, each representing a different data source. The multiplexer receives selection inputs, which determine which input signal to select and forward to the output. The selected input signal is forwarded to the output line.

No. of input line=2ⁿ

No. of select lines=n

No. of output=1

*4X1 MULTIPLEXER:

It has four input line, typically labeled as I0, I1, I2, I3 with two select lines labeled as S0, S1 and one output line labeled as Y.

*8X1 MULTIPLEXER:

It has 8 input lines, labeled as IO, I1,...,I7 and 3 select lines, labeled as SO, S1, S2 and one output Y.

*32x1 MULTIPLEXER:

It has 32 no, of inputs lines, with 5 select lines and one output Y.

2. Problem Statement

I) Explanation of problem and identification of input and output

variables.

II) Highlighting the constraints.

EXPLANATION:

In this problem, we are using 32 input lines and four 8×1 multiplexers (MUX), each

controlled by three select lines named S2, S1, and S0. Each 8×1 MUX processes 8 input

lines and provides an output. These outputs are then passed as inputs to a 4×1 MUX,

which is controlled by two additional select lines, S3 and S4. Finally, the 4×1 MUX

produces the overall output, Y.

Input: I0, I1, I2, ..., I31.

Output: The output depends on the select lines S0, S1, S2, S3, and S4.

CONSTRAINTS:

The Boolean expression for the output must be derived using K-map, or other

methods and then simplified using Boolean algebra theorems to get the output.

• Use four 8x1 multiplexers to create a 32x1 multiplexer.

Use the 4x1 multiplexer to select one of the 4 outputs from the 8x1 multiplexers.

• Use the 5 select lines (S4-S0) to control the multiplexers.

The functionality of the circuit must be verified by testing with different input

values and checking the output.

3. Methodology

- Generating the solution to the problem by the use of Truth table/excitation table,K- map and (or) Boolean algebra.
- II) Finding out the different digital ICs to be used in the optimized design.

<u>S4</u>	<u>S3</u>	<u>S2</u>	<u>S1</u>	<u>so</u>	<u>Y</u>
0	0	0	0	0	IO
0	0	0	0	1	11
0	0	0	1	0	12
0	0	0	1	1	13
0	0	1	0	0	14
0	0	1	0	1	15
0	0	1	1	0	16
0	0	1	1	1	17
0	1	0	0	0	18
0	1	0	0	1	19
0	1	0	1	0	110
0	1	0	1	1	111
0	1	1	0	0	112
0	1	1	0	1	113
0	1	1	1	0	114
0	1	1	1	1	115
1	0	0	0	0	116
1	0	0	0	1	117
1	0	0	1	0	118
1	0	0	1	1	119
1	0	1	0	0	120
1	0	1	0	1	121
1	0	1	1	0	122
1	0	1	1	1	123
1	1	0	0	0	124
1	1	0	0	1	125
1	1	0	1	0	126
1	1	0	1	1	127
1	1	1	0	0	128
1	1	1	0	1	129
1	1	1	1	0	130
1	1	1	1	1	131

BOOLEAN EXPRESSION:

Y = (\$4'\$3'\$2'\$1'\$0')|0 + (\$4'\$3'\$2'\$1'\$0)|1 + (\$4'\$3'\$2'\$1\$0')|2 + (\$4'\$3'\$2'\$1\$0)|3 + (\$4'\$3'\$2\$1'\$0')|4 + (\$4'\$3'\$2\$1'\$0)|5 + (\$4'\$3'\$2\$1\$0')|6 + (\$4'\$3'\$2\$1\$0)|7 + (\$4'\$3\$2'\$1'\$0')|8 + (\$4'\$3\$2'\$1'\$0)|9 + (\$4'\$3\$2'\$1\$0')|10 + (\$4'\$3\$2'\$1\$0)|11 + (\$4'\$3\$2\$1'\$0')|12 + (\$4'\$3\$2\$1'\$0')|12 + (\$4'\$3\$2\$1'\$0')|13 + (\$4'\$3\$2\$1\$0')|14 + (\$4'\$3\$2\$1\$0)|15 + (\$4\$3'\$2'\$1'\$0')|16 + (\$4\$3'\$2'\$1'\$0)|17 + (\$4\$3'\$2'\$1\$0')|18 + (\$4\$3'\$2'\$1\$0)|19 + (\$4\$3'\$2'\$1'\$0')|20 + (\$4\$3'\$2\$1'\$0)|21 + (\$4\$3'\$2\$1\$0')|22 + (\$4\$3'\$2\$1\$0)|26 + (\$4\$3\$2'\$1\$0')|27 + (\$4\$3\$2\$1'\$0')|28 + (\$4\$3\$2\$1'\$0)|29 + (\$4\$3\$2\$1\$0')|29 + (\$4\$3\$2\$1\$0')|30 + (\$4\$3\$2\$1\$0)|31

DIFFERENT IC's USED:

- 74HC151 8-INPUT 8X1 MUX
- 74HC153 4-INPUT 4X1 MUX

4. Implementation

- I) Drawing the logic diagram using different logic gates.
- II) Program

FOR 4X1 MUX:

Source Code for 4x1 Multiplexer

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity mux_4x1 is
   Port ( i0,i1,i2,i3 : in STD_LOGIC;
        s0,s1 : in STD_LOGIC;
        op : out STD_LOGIC);
end mux_4x1;

architecture dataflow of mux_4x1 is

begin
op<=(not s0 and not s1 and i0) or (s0 and not s1 and i1) or (not s0 and s1 and i2) or (s0 and s1 and i3);
end dataflow;
```

FOR 8X1 MUX:

Source Code for 8x1 Multiplexer

begin

op<=(not s0 and not s1 and not s2 and i0) or (s0 and not s1 and not s2 and i1) or (not s0 and s1 and not s2 and i2) or (s0 and s1 and not s2 and i3) or (not s0 and not s1 and not s2 and i4)or (s0 and not s1 and s2 and i5) or (not s0 and s1 and s2 and i6) or (s0 and s1 and s2 and i7);

end dataflow;

FOR 32X1 MUX:

RTL Schematic of 32x1 Multiplexer

Source Code for 32x1 Multiplexer

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
entity mux 32x1 is
  Port (i:in STD LOGIC VECTOR (31 downto 0);
      s: in STD LOGIC VECTOR (4 downto 0);
      op : out STD LOGIC);
end mux 32x1;
architecture structural of mux 32x1 is
component mux_8x1 is
Port (i0,i1,i2,i3,i4,i5,i6,i7: in STD LOGIC;
     s0,s1,s2: in STD LOGIC;
     op : out STD LOGIC);
end component;
component mux 4x1 is
  Port (i0,i1,i2,i3: in STD LOGIC;
      s0,s1: in STD LOGIC;
      op : out STD LOGIC);
end component;
signal t:std logic vector (3 downto 0);
begin
m8x1_1:mux_8x1 \text{ port map}(i(0),i(1),i(2),i(3),i(4),i(5),i(6),i(7),s(2),s(3),s(4),t(0));
m8x1 2:mux 8x1 port
map(i(8),i(9),i(10),i(11),i(12),i(13),i(14),i(15),s(2),s(3),s(4),t(1));
m8x1_3:mux_8x1 port
map(i(16),i(17),i(18),i(19),i(20),i(21),i(22),i(23),s(2),s(3),s(4),t(2));
m8x1 4:mux 8x1 port
map(i(24),i(25),i(26),i(27),i(28),i(29),i(30),i(31),s(2),s(3),s(4),t(3));
m4x1_5:mux_4x1 port map(t(0),t(1),t(2),t(3),s(0),s(1),op);
end structural;
```

5. Results & Interpretation

I) Verification of the output for different inputs that satisfies the problem statement by the use of truth table.

EXPECTED OUTPUT:

<u>\$4</u>	<u>S3</u>	<u>S2</u>	<u>S1</u>	<u>so</u>	<u>Y</u>
0	0	0	0	0	IO
0	0	0	0	1	11
0	0	0	1	0	12
0	0	0	1	1	13
0	0	1	0	0	14
0	0	1	0	1	15
0	0	1	1	0	16
0	0	1	1	1	17
0	1	0	0	0	18
0	1	0	0	1	19
0	1	0	1	0	110
0	1	0	1	1	111
0	1	1	0	0	112
0	1	1	0	1	113
0	1	1	1	0	114
0	1	1	1	1	115
1	0	0	0	0	116
1	0	0	0	1	117
1	0	0	1	0	118
1	0	0	1	1	119
1	0	1	0	0	120
1	0	1	0	1	121
1	0	1	1	0	122
1	0	1	1	1	123
1	1	0	0	0	124
1	1	0	0	1	125
1	1	0	1	0	126
1	1	0	1	1	127
1	1	1	0	0	128
1	1	1	0	1	129
1	1	1	1	0	130
1	1	1	1	1	131

OBSERVED OUTPUT:

<u>\$4</u>	<u>S3</u>	<u>S2</u>	<u>S1</u>	<u>so</u>	<u>Y</u>
0	0	0	0	0	IO
0	0	0	0	1	11
0	0	0	1	0	12
0	0	0	1	1	13
0	0	1	0	0	14
0	0	1	0	1	15
0	0	1	1	0	16
0	0	1	1	1	17
0	1	0	0	0	18
0	1	0	0	1	19
0	1	0	1	0	110
0	1	0	1	1	111
0	1	1	0	0	112
0	1	1	0	1	113
0	1	1	1	0	114
0	1	1	1	1	115
1	0	0	0	0	116
1	0	0	0	1	117
1	0	0	1	0	118
1	0	0	1	1	119
1	0	1	0	0	120
1	0	1	0	1	121
1	0	1	1	0	122
1	0	1	1	1	123
1	1	0	0	0	124
1	1	0	0	1	125
1	1	0	1	0	126
1	1	0	1	1	127
1	1	1	0	0	128
1	1	1	0	1	129
1	1	1	1	0	130
1	1	1	1	1	131

TBW:

6. CONCLUSION:

The design and simulation of a 32x1 multiplexer using 8x1 and 4x1 multiplexers was successfully accomplished. The proposed design demonstrated a cost-effective and efficient approach, reducing complexity and cost. The simulation results verified the functionality, showcasing the potential of using smaller multiplexers to implement larger ones.

7. REFERENCES:

- Charles H. Roth Jr.; Larry L. Kinney: "FUNDAMENTALS OF LOGIC DESIGN", 7th Edition.
- M. Morris Mano; Michael D. Cileti: "DIGITAL DEDIGN WITH AN INTRODUCTION TO THE VERILOG, HDL, VHDL, and SYSTEM VERILOG", 6th Edition.

8. APPENDICES:

74HC151; 74HCT151

8-input multiplexer Rev. 11 — 11 March 2024

Product data sheet

1. General description

The 74HC151; 74HCT151 is an 8-bit multiplexer with eight binary inputs (I0 to I7), three select inputs (S0 to S2) and an enable input (E). One of the eight binary inputs is selected by the select inputs and routed to the complementary outputs (Y and \overline{Y}). A HIGH on E forces the output Y LOW and output \overline{Y} HIGH. Inputs also include clamp diodes that enable the use of current limiting resistors to interface inputs to voltages in excess of V_{CC} .

2. Features and benefits

- . Wide supply voltage range from 2.0 V to 6.0 V
- · CMOS low power dissipation
- · High noise immunity
- Latch-up performance exceeds 100 mA per JESD 78 Class II Level B
- · Input levels:
 - For 74HC151: CMOS level
 - For 74HCT151: TTL level
- Non-inverting data path
- · Complies with JEDEC standards
 - JESD8C (2.7 V to 3.6 V)
 - JESD7A (2.0 V to 6.0 V)
- ESD protection:
- + HBM: ANSI/ESDA/JEDEC JS-001 class 2 exceeds 2000 V
 - CDM: ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1000 V
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C

3. Ordering information

Table 1. Ordering information

Type number	Package									
	Temperature range	Name	Description	Version						
74HC151D 74HCT151D	-40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1						
74HC151PW 74HCT151PW	-40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1						
74HC151BQ	-40 °C to +125 °C	DHVQFN16	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body 2.5 × 3.5 × 0.85 mm	SOT763-1						

4. Functional diagram

2/16

5. Pinning information

5.1. Pinning

5.2. Pin description

Table 2. Pin description

Symbol	Pin	Description
10, 11, 12, 13, 14, 15, 16, 17	4, 3, 2, 1, 15, 14, 13, 12	data inputs
Υ	5	multiplexer output
7	6	complementary multiplexer output
Ē	7	enable input (active LOW)
GND	8	ground (0 V)
S0, S1, S2	11, 10, 9	common data select inputs
V _{CC}	16	supply voltage

3 / 16

6. Functional description

Table 3. Function table

 $H = HIGH \ voltage \ level; \ L = LOW \ voltage \ level; \ X = don't \ care.$

Input												Outp	ut
E	S2	S1	S0	10	l1	12	13	14	15	16	17	Y	Y
Н	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Н	L
L	L	L	L	L	Х	Х	Х	X	X	Х	Х	Н	L
L	L	L	L	Н	Х	Х	Х	Х	Х	Х	Х	L	Н
L	L	L	Н	Х	L	Х	Х	X	Х	Х	Х	Н	L
L	L	L	Н	Х	Н	Х	Х	X	Х	Х	Х	L	Н
L	L	Н	L	Х	Х	L	Х	Х	Х	Х	Х	Н	L
L	L	Н	L	Х	Х	Н	Х	Х	X	Х	Х	L	Н
L	L	Н	Н	Х	Х	Х	L	Х	Х	Х	Х	Н	L
L	L	Н	Н	Х	Х	Х	Н	X	Х	Х	Х	L	Н
L	Н	L	L	X	Х	Х	Х	L	Х	Х	Х	Н	L
L	Н	L	L	Х	Х	Х	Х	Н	Х	Х	Х	L	Н
L	Н	L	Н	X	Х	Х	Х	Х	L	Х	Х	Н	L
L	Н	L	Н	Х	Х	Х	Х	Х	Н	Х	Х	L	Н
L	Н	Н	L	Х	Х	Х	Х	Х	Х	L	Х	Н	L
L	Н	Н	L	Х	Х	Х	Х	Х	Х	Н	Х	L	Н
L	Н	Н	Н	Х	Х	Х	Х	Х	Х	Х	L	Н	L
L	Н	Н	Н	Х	Х	Х	X	X	Х	Х	Н	L	Н

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+7	V
I _{IK}	input clamping current	$V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}$		-	±20	mA
I _{OK}	output clamping current	$V_{O} < -0.5 \text{ V or } V_{O} > V_{CC} + 0.5 \text{ V}$		-	±20	mA
Io	output current	$V_{O} = -0.5 \text{ V to } (V_{CC} + 0.5 \text{ V})$		-	±25	mA
I _{CC}	supply current			-	+50	mA
I _{GND}	ground current			-50	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	T _{amb} = -40 °C to +125 °C	[1]	-	500	mW

^[1] For SOT109-1 (SO16) package: P_{tot} derates linearly with 12.4 mW/K above 110 °C. For SOT403-1 (TSSOP16) package: P_{tot} derates linearly with 8.5 mW/K above 91 °C. For SOT763-1 (DHVQFN16) package: P_{tot} derates linearly with 11.2 mW/K above 106 °C.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		74HC151		7	4HCT15	1	Unit
			Min	Тур	Max	Min	Тур	Max	
V _{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V _{CC}	0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C
Δt/ΔV	input transition rise and fall rate	V _{CC} = 2.0 V	-	-	625	-	-	-	ns/V
		V _{CC} = 4.5 V	-	1.67	139	-	1.67	139	ns/V
		V _{CC} = 6.0 V	-	-	83	-	-	-	ns/V

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		-40 °C to	o +85 °C	-40 °C to	+125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HC15	1									
V _{IH}	HIGH-level	V _{CC} = 2.0 V	1.5	1.2	-	1.5	-	1.5	-	V
	input voltage	V _{CC} = 4.5 V	3.15	2.4	-	3.15	-	3.15	-	V
		V _{CC} = 6.0 V	4.2	3.2	-	4.2	-	4.2	-	V
V _{IL}	LOW-level	V _{CC} = 2.0 V	-	0.8	0.5	-	0.5	-	0.5	V
	input voltage	V _{CC} = 4.5 V	-	2.1	1.35	-	1.35	-	1.35	V
		V _{CC} = 6.0 V	-	2.8	1.8	-	1.8	-	1.8	V
V _{OH}	HIGH-level	V _I = V _{IH} or V _{IL}								
	output voltage	I _O = -20 μA; V _{CC} = 2.0 V	1.9	2.0	-	1.9	-	1.9	-	V
		I _O = -20 μA; V _{CC} = 4.5 V	4.4	4.5	-	4.4	-	4.4	-	V
		I _O = -20 μA; V _{CC} = 6.0 V	5.9	6.0	-	5.9	-	5.9	-	V
		I _O = -4.0 mA; V _{CC} = 4.5 V	3.98	4.32	-	3.84	-	3.7	-	V
		I _O = -5.2 mA; V _{CC} = 6.0 V	5.48	5.81	-	5.34	-	5.2	-	V
V _{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL}								
	output voltage	I _O = 20 μA; V _{CC} = 2.0 V	-	0	0.1	-	0.1	-	0.1	V
		I _O = 20 μA; V _{CC} = 4.5 V	-	0	0.1	-	0.1	-	0.1	V
		I _O = 20 μA; V _{CC} = 6.0 V	-	0	0.1	-	0.1	-	0.1	V
		I _O = 4.0 mA; V _{CC} = 4.5 V	-	0.15	0.26	-	0.33	-	0.4	V
		I _O = 5.2 mA; V _{CC} = 6.0 V	-	0.16	0.26	-	0.33	-	0.4	V
I _I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±0.1	-	±1.0	-	±1.0	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0 \text{ V}$	-	-	8.0	-	80	-	160	μΑ
C _I	input capacitance		-	3.5	-	-	-	-	-	pF

Symbol	Parameter	Conditions		25 °C		-40 °C to	o +85 °C	-40 °C to	+125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HCT1	51									•
V _{IH}	HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	1.6	-	2.0	-	2.0	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V	-	1.2	0.8	-	0.8	-	0.8	V
V _{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$								
	output voltage	I _O = -20 μA	4.4	4.5	-	4.4	-	4.4	-	V
		I _O = -4 mA	3.98	4.32	-	3.84	-	3.7	-	V
V _{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$								
	output voltage	Ι _Ο = 20 μΑ	-	0	0.1	-	0.1	-	0.1	V
		I _O = 4.0 mA	-	0.15	0.26	-	0.33	-	0.4	V
I _I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	±0.1	-	±1.0	-	±1.0	μA
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5 \text{ V}$	-	-	8.0	-	80	-	160	μΑ
ΔI _{CC}	additional supply current	$V_I = V_{CC}$ - 2.1 V; other inputs at V_{CC} or GND; V_{CC} = 4.5 V to 5.5 V; I_O = 0 A								
		per input pin; In inputs	-	45	162	-	203	-	221	μΑ
		per input pin; E input	-	30	108	-	135	-	147	μΑ
		per input pin; Sn input	-	150	540	-	675	-	735	μΑ
C _I	input capacitance		-	3.5	-	-	-	-	-	pF

10. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); C_L = 50 pF unless otherwise specified; for test circuit see Fig. 6.

Symbol	Parameter	Conditions			25 °C		-40 °C t	o +85 °C	-40 °C to	o +125 °C	Unit
				Min	Тур	Max	Min	Max	Min	Max	
74HC15	1				ı			<u> </u>			
t _{pd}	propagation	In to Y; see Fig. 4	[1]								П
	delay	V _{CC} = 2.0 V		-	52	170	-	215	-	255	ns
		V _{CC} = 4.5 V		-	19	34	-	43	-	51	ns
		V _{CC} = 5 V; C _L = 15 pF		-	17	-	-	-	-	-	ns
		V _{CC} = 6.0 V		-	15	29	-	37	-	43	ns
		In to Y ; see <u>Fig. 4</u>	[1]								
		V _{CC} = 2.0 V		-	58	185	-	230	-	280	ns
		V _{CC} = 4.5 V		-	21	37	-	46	-	56	ns
		V _{CC} = 5 V; C _L = 15 pF		-	17	-	-	-	-	-	ns
		V _{CC} = 6.0 V		-	17	31	-	39	-	48	ns
		Sn to Y; see Fig. 5	[1]								
		V _{CC} = 2.0 V		-	61	185	-	230	-	280	ns
		V _{CC} = 4.5 V		-	22	37	-	46	-	56	ns
		V _{CC} = 5 V; C _L = 15 pF		-	19	-	-	-	-	-	ns
		V _{CC} = 6.0 V		-	18	31	-	39	-	48	ns
		Sn to ₹; see Fig. 5	[1]								
		V _{CC} = 2.0 V		-	61	205	-	255	-	310	ns
		V _{CC} = 4.5 V		-	22	41	-	51	-	62	ns
		V _{CC} = 5 V; C _L = 15 pF		-	19	-	-	-	-	-	ns
		V _{CC} = 6.0 V		-	18	35	-	43	-	53	ns
		Ē to Y; see <u>Fig. 5</u>									
		V _{CC} = 2.0 V		-	41	125	-	155	-	190	ns
		V _{CC} = 4.5 V		-	15	25	-	31	-	38	ns
		V _{CC} = 5 V; C _L = 15 pF		-	12	-	-	-	-	-	ns
		V _{CC} = 6.0 V		-	12	21	-	26	-	32	ns
		Ē to ℧; see <u>Fig. 5</u>									
		V _{CC} = 2.0 V		-	47	145	-	180	-	220	ns
		V _{CC} = 4.5 V		-	17	29	-	36	-	44	ns
		V _{CC} = 5 V; C _L = 15 pF		-	14	-	-	-	-	-	ns
		V _{CC} = 6.0 V		-	14	25	-	31	-	38	ns
t	transition	Y, ₹; see Fig. 4	[2]								
	time	V _{CC} = 2.0 V		-	19	75	-	95	-	110	ns
		V _{CC} = 4.5 V		-	7	15	-	19	-	22	ns
		V _{CC} = 6.0 V		-	6	13	-	16	-	19	ns
C _{PD}	power dissipation capacitance	C_L = 50 pF; f = 1 MHz; V_I = GND to V_{CC}	[3]	-	40	-	-	-	-	-	pF

Symbol Parameter		Conditions		25 °C		-40 °C to +85 °C		-40 °C to +125 °C		Unit	
				Min	Тур	Max	Min	Max	Min	Max	1
74HCT1	51								<u>'</u>		
t _{pd}	propagation	In to Y; see Fig. 4	[1]								
	delay	V _{CC} = 4.5 V		-	22	38	-	48	-	57	ns
		V _{CC} = 5 V; C _L = 15 pF		-	19	-	-	-	-	-	ns
		In to ₹; see Fig. 4	[1]								
		V _{CC} = 4.5 V		-	22	38	-	48	-	57	ns
		V _{CC} = 5 V; C _L = 15 pF		-	19	-	-	-	-	-	ns
		Sn to Y; see Fig. 5	[1]								
		V _{CC} = 4.5 V		-	23	41	-	51	-	62	ns
		V _{CC} = 5 V; C _L = 15 pF		-	20	-	-	-	-	-	ns
		Sn to ₹; see Fig. 5	[1]								
		V _{CC} = 4.5 V		-	25	43	-	54	-	65	ns
		V _{CC} = 5 V; C _L = 15 pF		-	20	-	-	-	-	-	ns
		E to Y; see Fig. 5	[1]								
		V _{CC} = 4.5 V		-	16	29	-	36	-	44	ns
		V _{CC} = 5 V; C _L = 15 pF		-	13	-	-	-	-	-	ns
		E to ∀; see Fig. 5	[1]								
		V _{CC} = 4.5 V		-	21	36	-	45	-	54	ns
		V _{CC} = 5 V; C _L = 15 pF		-	18	-	-	-	-	-	ns
t _t	transition	Y, ₹; see Fig. 4	[2]								
	time	V _{CC} = 4.5 V		-	7	15	-	19	-	22	ns
C _{PD}	power dissipation capacitance	C_L = 50 pF; f = 1 MHz; V_I = GND to V_{CC} - 1.5 V	[3]	-	40	-	-	-	-	-	pF

$$P_D = C_{DD} \times V_{CC}^2 \times f_i \times N + \sum (C_i \times V_{CC}^2 \times f_o)$$
 where

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

C_L = output load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching; $\Sigma(C_L \times V_{CC}^2 \times f_0)$ = sum of outputs.

10.1. Waveforms and test circuit

Table 8. Measurement points

Туре	Input	Output	
	V _M	V _M	
74HC151	0.5 × V _{CC}	0.5 × V _{CC}	
74HCT151	1.3 V	1.3 V	

9/16

Test data is given in Table 9.

Definitions test circuit:

 R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator;

C_L = Load capacitance including jig and probe capacitance;

R_L = Load resistance;

S1 = Test selection switch.

Fig. 6. Test circuit for measuring switching times

Table 9. Test data

Туре	Input		Load	Test	
	V _I	t _r , t _f	C _L		
74HC151	V _{CC}	6.0 ns	15 pF, 50 pF	t _{PLH} , t _{PHL}	
74HCT151	3.0 V	6.0 ns	15 pF, 50 pF	t _{PLH} , t _{PHL}	

10 / 16

11. Package outline

Fig. 7. Package outline SOT109-1 (SO16)

Fig. 8. Package outline SOT403-1 (TSSOP16)

DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body 2.5 x 3.5 x 0.85 mm SOT763-1

Fig. 9. Package outline SOT763-1 (DHVQFN16)

12. Abbreviations

Table 10. Abbreviations

Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
TTL	Transistor-Transistor Logic

13. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes					
74HC_HCT151 v.11	20240311	Product data sheet	-	74HC_HCT151 v.10					
Modifications:	 Fig. 7, Fig. 8: Aligned SO and TSSOP package outline drawings to JEDEC MS-012 and MO-153. 								
	Section 2: E	<u>Section 2</u> : ESD specification updated according to the latest JEDEC standard.							
74HC_HCT151 v.10	20221019	Product data sheet - 74HC_HCT151 v.9							
Modifications:	Type number	er 74HC151BQ (SOT763-1	/DHVQFN16) add	ded.					
74HC_HCT151 v.9	20220706	Product data sheet	-	74HC_HCT151 v.8					
Modifications:	 Section 2 updated. Type number 74HC151DB (SOT338-1/SSOP16) removed. 								
74HC_HCT151 v.8	20210318	Product data sheet	-	74HC_HCT151 v.7					
Modifications:	Type number	Type number 74HC151DB (SOT338-1/SSOP16) added.							
74HC_HCT151 v.7	20210114	20210114 Product data sheet - 74HC_HCT151 v.6							
Modifications:	 The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia. Legal texts have been adapted to the new company name where appropriate. Type numbers 74HC151DB and 74HCT151DB (SOT338-1/SSOP16) removed. Section 7: Derating values for P_{tot} total power dissipation have been updated. 								
74HC_HCT151 v.6	20151228	20151228 Product data sheet - 74HC_HCT151 v.5							
Modifications:	Type numbers 74HC151N and 74HCT151N (SOT38-4) removed.								
74HC_HCT151 v.5	20150126 Product data sheet - 74HC_HCT151 v.4								
Modifications:	<u>Table 7</u> : Power dissipation capacitance condition for 74HCT151 is corrected.								
74HC_HCT151 v.4	20130211 Product data sheet - 74HC_HCT151 v.3								
Modifications:	New descriptive title (errata).								
74HC_HCT151 v.3	20120919	Product data sheet - 74HC_HCT151_CNV v.2							
74HC_HCT151_CNV v.2	19970827	Product specification	-						

14. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Contents

2. Features and benefits	1 2
4. Functional diagram	2
 5. Pinning information	
5.1. Pinning	3
5.2. Pin description	
Functional description Limiting values	3
7. Limiting values	3
	4
8. Recommended operating conditions	4
	5
9. Static characteristics	5
10. Dynamic characteristics	7
10.1. Waveforms and test circuit	9
11. Package outline	. 11
12. Abbreviations	. 14
13. Revision history	.14
14. Legal information	15

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 11 March 2024

16 / 16

[©] Nexperia B.V. 2024. All rights reserved

74HC153; 74HCT153

Dual 4-input multiplexer

Rev. 11 — 11 March 2024

Product data sheet

1. General description

The 74HC153; 74HCT153 is a dual 4-input multiplexer. The device features independent enable inputs ($n\overline{E}$) and common data select inputs (S0 and S1). For each multiplexer, the select inputs select one of the four binary inputs and routes it to the multiplexer output (nY). A HIGH on \overline{E} forces the corresponding multiplexer outputs LOW. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC} .

2. Features and benefits

- Wide supply voltage range from 2.0 to 6.0 V
- CMOS low power dissipation
- · High noise immunity
- Latch-up performance exceeds 100 mA per JESD 78 Class II Level B
- Input levels:
 - For 74HC153: CMOS level
 - For 74HCT153: TTL level
- Non-inverting outputs
- · Separate enable input for each output
- Common select inputs
- Permits multiplexing from n lines to 1 line
- · Enable line provided for cascading (n lines to 1 line)
- Complies with JEDEC standards:
 - JESD8C (2.7 V to 3.6 V)
 - JESD7A (2.0 V to 6.0 V)
- ESD protection:
 - HBM: ANSI/ESDA/JEDEC JS-001 class 2 exceeds 2000 V
 - CDM: ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1000 V
- Specified from -40 °C to +85 °C and -40 °C to +125 °C.

3. Ordering information

Table 1. Ordering information

Type number	Package	Package						
	Temperature range	Name	Description	Version				
74HC153D	-40 °C to +125 °C	SO16	plastic small outline package; 16 leads;	SOT109-1				
74HCT153D			body width 3.9 mm					
74HC153PW	-40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package;	SOT403-1				
74HCT153PW			16 leads; body width 4.4 mm					

Dual 4-input multiplexer

4. Functional diagram

5. Pinning information

5.1. Pinning

5.2. Pin description

Table 2. Pin description

Symbol	Pin	Description		
1Ē, 2Ē	1, 15	output enable inputs (active LOW)		
S0, S1	14, 2	data select inputs		
110, 111, 112, 113	6, 5, 4, 3	data inputs source 1		
1Y	7	multiplexer output source 1		
GND	8	ground (0 V)		
2Y	9	multiplexer output source 2		
210, 211, 212, 213	10, 11, 12, 13	data inputs source 2		
Vcc	16	supply voltage		

6. Functional description

Table 3. Function table

 $H = HIGH \ voltage \ level; \ L = LOW \ voltage \ level; \ X = don't \ care.$

select Inputs		data inputs				output enable	output
S0	S1	nI0	nl1	nl2	nl3	nΕ	nY
Х	Х	Х	X	Х	Х	Н	L
L	L	L	X	X	X	L	L
L	L	Н	Х	Х	Х	L	Н
Н	L	Х	L	X	X	L	L
Н	L	Х	Н	Х	Х	L	Н
L	Н	Х	X	L	X	L	L
L	Н	Х	Х	Н	Х	L	Н
Н	Н	X	Х	Х	L	L	L
Н	Н	Х	X	X	Н	L	Н

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7	V
I _{IK}	input clamping current	$V_1 < -0.5 \text{ V or } V_1 > V_{CC} + 0.5 \text{ V}$ [1]	-	±20	mA
I _{OK}	output clamping current	$V_O < -0.5 \text{ V or } V_O > V_{CC} + 0.5 \text{ V}$ [1]	-	±20	mA
Io	output current	-0.5 V < V _O < V _{CC} + 0.5 V	-	±25	mA
I _{CC}	supply current		-	50	mA
I _{GND}	ground current		-50	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	[2]	-	500	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

^[2] For SOT109-1 (SO16) package: P_{tot} derates linearly with 12.4 mW/K above 110 °C. For SOT403-1 (TSSOP16) package: P_{tot} derates linearly with 8.5 mW/K above 91 °C.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions	74HC153		74HCT153			Unit	
			Min	Тур	Max	Min	Тур	Max	
V _{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V _{CC}	0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C
Δt/ΔV	input transition rise and fall rate	V _{CC} = 2.0 V	-	-	625	-	-	-	ns/V
		V _{CC} = 4.5 V	-	1.67	139	-	1.67	139	ns/V
		V _{CC} = 6.0 V	-	-	83	-	-	-	ns/V

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		-40 °C t	o +85 °C	-40 °C to	+125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HC153	3					1				
V _{IH}	HIGH-level	V _{CC} = 2.0 V	1.5	1.2	-	1.5	-	1.5	-	V
	input voltage	V _{CC} = 4.5 V	3.15	2.4	-	3.15	-	3.15	-	V
		V _{CC} = 6.0 V	4.2	3.2	-	4.2	-	4.2	-	V
V _{IL}	LOW-level	V _{CC} = 2.0 V	-	0.8	0.5	-	0.5	-	0.5	V
	input voltage	V _{CC} = 4.5 V	-	2.1	1.35	-	1.35	-	1.35	V
		V _{CC} = 6.0 V	-	2.8	1.8	-	1.8	-	1.8	V
V _{OH} HIGH-level		V _I = V _{IH} or V _{IL}								
	output voltage	I _O = -20 μA; V _{CC} = 2.0 V	1.9	2.0	-	1.9	-	1.9	-	V
		I _O = -20 μA; V _{CC} = 4.5 V	4.4	4.5	-	4.4	-	4.4	-	V
		I _O = -20 μA; V _{CC} = 6.0 V	5.9	6.0	-	5.9	-	5.9	-	V
		$I_O = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	4.32	-	3.84	-	3.7	-	V
		I_{O} = -5.2 mA; V_{CC} = 6.0 V	5.48	5.81	-	5.34	-	5.2	-	V
V _{OL}	LOW-level	V _I = V _{IH} or V _{IL}								
	output voltage	I _O = 20 μA; V _{CC} = 2.0 V	-	0	0.1	-	0.1	-	0.1	V
		I _O = 20 μA; V _{CC} = 4.5 V	-	0	0.1	-	0.1	-	0.1	V
		I _O = 20 μA; V _{CC} = 6.0 V	-	0	0.1	-	0.1	-	0.1	V
		I _O = 4.0 mA; V _{CC} = 4.5 V	-	0.15	0.26	-	0.33	-	0.4	V
		I_{O} = 5.2 mA; V_{CC} = 6.0 V	-	0.16	0.26	-	0.33	-	0.4	V
II	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±0.1	-	±1	-	±1	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0 \text{ V}$	-	-	8.0	-	80	-	160	μΑ
C _I	input capacitance		-	3.5	-	-	-	-	-	pF

Symbol	Parameter	Conditions		25 °C		-40 °C to	o +85 °C	-40 °C to	+125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HCT1	53									
V _{IH}	HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	1.6	-	2.0	-	2.0	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V	-	1.2	0.8	-	0.8	-	0.8	V
V _{OH} HIGH-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 V$									
	output voltage	I _O = -20 μA	4.4	4.5	-	4.4	-	4.4	-	V
		I _O = -4.0 mA	3.98	4.32	-	3.84	-	3.7	-	V
V _{OL} LOW-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$									
	output voltage	I _O = 20 μA; V _{CC} = 4.5 V	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.15	0.26	-	0.33	-	0.4	V
I _I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	±0.1	-	±1	-	±1	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5$ V	-	-	8	-	80	-	160	μΑ
ΔI _{CC}	additional supply current	per input pin; $V_I = V_{CC} - 2.1 \text{ V}; I_O = 0 \text{ A};$ other inputs at V_{CC} or GND; $V_{CC} = 4.5 \text{ V}$ to 5.5 V								
		1ln, 2ln	-	45	162	-	203	-	221	μΑ
		nĒ	-	60	216	-	270	-	294	μΑ
		Sn	-	135	486	-	608	-	662	μΑ
Cı	input capacitance		-	3.5	-	-	-	-	-	pF

10. Dynamic characteristics

Table 7. Dynamic characteristics

GND = 0 V; $t_r = t_f = 6$ ns; $C_L = 50$ pF; for test circuit, see Fig. 8; unless otherwise specified

Symbol	Parameter	Conditions		25 °C		-40 °C to	o +85 °C	-40 °C to	+125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HC15	3		'						-	
t _{pd}	propagation delay	1In to nY, 2In to nY; [1] see Fig. 6								
		V _{CC} = 2.0 V	-	47	145	-	180	-	220	ns
		V _{CC} = 4.5 V	-	17	29	-	36	-	44	ns
		V _{CC} = 5.0 V; C _L = 15 pF	-	14	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	14	25	-	31	-	38	ns
		Sn to nY; see Fig. 7								
		V _{CC} = 2.0 V	-	50	150	-	190	-	225	ns
		V _{CC} = 4.5 V	-	18	30	-	38	-	45	ns
		V _{CC} = 5.0 V; C _L = 15 pF	-	15	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	14	26	-	33	-	38	ns
		nE to nY; see Fig. 7								
		V _{CC} = 2.0 V	-	33	100	-	125	-	150	ns
		V _{CC} = 4.5 V	-	12	20	-	25	-	30	ns
		V _{CC} = 5.0 V; C _L = 15 pF	-	10	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	10	17	-	21	-	26	ns
t _t	transition time	see <u>Fig. 6</u> [2]								
		V _{CC} = 2.0 V	-	19	75	-	95	-	110	ns
		V _{CC} = 4.5 V	-	7	15	-	19	-	22	ns
		V _{CC} = 6.0 V	-	6	13	-	16	-	19	ns
C _{PD}	power dissipation capacitance	per package; [3] $V_I = GND$ to V_{CC}	-	30	-	-	-	-	-	pF

Symbol	Parameter	Conditions		25 °C		-40 °C to	o +85 °C	-40 °C to	+125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HCT1	53				'		1			
t _{PHL}	propagation	1In to nY, 2In to nY; [7 see Fig. 6]							
	delay	V _{CC} = 4.5 V	-	19	34	-	43	-	51	ns
		V _{CC} = 5.0 V; C _L = 15 pF	-	16	-	-	-	-	-	ns
t _{PLH}	LOW to HIGH propagation	1In to nY, 2In to nY; [7 see Fig. 6]							
	delay	V _{CC} = 4.5 V	-	13	24	-	30	-	36	ns
		V _{CC} = 5.0 V; C _L = 15 pF	-	16	-	-	-	-	-	ns
t _{pd}	propagation	Sn to nY; see Fig. 7]							
	delay	V _{CC} = 4.5 V	-	20	34	-	43	-	51	ns
		V _{CC} = 5.0 V; C _L = 15 pF	-	17	-	-	-	-	-	ns
		nE to nY; see Fig. 7]							
		V _{CC} = 4.5 V	-	14	27	-	34	-	41	ns
		V _{CC} = 5.0 V; C _L = 15 pF	-	11	-	-	-	-	-	ns
t _t	transition time	see Fig. 6	.]							
		V _{CC} = 4.5 V	-	7	15	-	19	-	22	ns
C_{PD}	power dissipation capacitance	per package; [3 V _I = GND to V _{CC} - 1.5 V	-	30	-	-	-	-	-	pF

- t_{pd} is the same as t_{PHL} and t_{PLH}.
- t_t is the same as t_{THL} and t_{TLH} . C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz;

f_o = output frequency in MHz;

C_L = output load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs.}$

Measurement points are given in <u>Table 8</u>.

 V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Waveforms showing the input (1In, 2In) to output (1Y, 2Y) propagation delays and output transition times Fig. 6.

Measurement points are given in Table 8.

 V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Fig. 7. Waveforms showing the input (Sn, $n\overline{E}$) to output (nY) propagation delays

Table 8. Measurement points

Туре	Input	Output					
	V _M	V _M	V _X	V _Y			
74HC153	0.5V _{CC}	0.5V _{CC}	0.1V _{CC}	0.9V _{CC}			
74HCT153	1.3 V	1.3 V	0.1V _{CC}	0.9V _{CC}			

Test data is given in Table 9.

Definitions test circuit:

 R_T = termination resistance should be equal to output impedance Z_o of the pulse generator.

 \mathbf{C}_{L} = load capacitance including jig and probe capacitance.

Fig. 8. Test circuit for measuring switching times

Table 9. Test data

Туре	Input		Load	Test
	VI	t _r , t _f	CL	
74HC153	V _{CC}	6.0 ns	15 pF, 50 pF	t _{PLH} , t _{PHL}
74HCT153	3.0 V	6.0 ns	15 pF, 50 pF	t _{PLH} , t _{PHL}

9 / 14

11. Package outline

Fig. 9. Package outline SOT109-1 (SO16)

10 / 14

Fig. 10. Package outline SOT403-1 (TSSOP16)

12. Abbreviations

Table 10. Abbreviations

Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
TTL	Transistor-Transistor Logic

13. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes					
74HC_HCT153 v.11	20240311	Product data sheet	-	74HC_HCT153 v.10					
Modifications:	and MO-15	3.		drawings to JEDEC MS-012					
	• <u>Section 2</u> : E	SD specification updated	according to the la	atest JEDEC standard.					
74HC_HCT153 v.10	20210813	Product data sheet	-	74HC_HCT153 v.9					
Modifications:	1	 Type number 74HC153DB (SOT338-1/SSOP16) removed. Section 2 updated. 							
74HC_HCT153 v.9	20210114	Product data sheet	-	74HC_HCT153 v.8					
Modifications:	Type number	Type number 74HCT153DB (SOT338-1/SSOP16) removed.							
74HC_HCT153 v.8	20190813	Product data sheet	-	74HC_HCT153 v.7					
Modifications:	1	 Type numbers 74HC153DB and 74HCT153DB (SOT338-1/SSOP16) added. Table 4: Derating values for P_{tot} total power dissipation updated. 							
74HC_HCT153 v.7	20181010	Product data sheet	-	74HC_HCT153 v.6					
Modifications:	guidelines of Legal texts	of this data sheet has beer of Nexperia. have been adapted to the ers 74HC153DB and 74HC	new company nar	ne where appropriate.					
74HC_HCT153 v.6	20160511	Product data sheet	-	74HC_HCT153 v.5					
Modifications:	Type number	ers 74HC153N and 74HCT	153N (SOT38-4)	removed.					
74HC_HCT153 v.5	20140123	Product data sheet	-	74HC_HCT153 v.4					
Modifications:	• <u>Table 1</u> and	Section 11: all references	to 14 pin package	es removed.					
74HC_HCT153 v.4	20131128	Product data sheet	-	74HC_HCT153 v.3					
74HC_HCT153 v.3	20130722	Product data sheet	-	74HC_HCT153_CNV v.2					
74HC_HCT153_CNV v.2	19970827	Product specification	-	-					

12 / 14

14. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- 2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by sustained.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Contents

1. General description	1
2. Features and benefits	1
3. Ordering information	1
4. Functional diagram	2
5. Pinning information	3
5.1. Pinning	3
5.2. Pin description	3
6. Functional description	4
7. Limiting values	4
8. Recommended operating conditions	5
9. Static characteristics	5
10. Dynamic characteristics	7
11. Package outline	10
12. Abbreviations	12
13. Revision history	12
14. Legal information	13

For more information, please visit: http://www.nexperia.com
For sales office addresses, please send an email to: salesaddresses@nexperia.com
Date of release: 11 March 2024

[©] Nexperia B.V. 2024. All rights reserved