Letter to the Editor

Sequence analysis

Comment on: 'ERGC: an efficient referential genome compression algorithm'

Sebastian Deorowicz^{1,*}, Szymon Grabowski², Idoia Ochoa^{3,*}, Mikel Hernaez³ and Tsachy Weissman³

¹Institute of Informatics, Silesian University of Technology, Akademicka 16, Gliwice, 44-100 Poland, ²Institute of Applied Computer Science, Lodz University of Technology, Al. Politechniki 11, 90-924 Łódź, Poland and ³Department of Electrical Engineering, Stanford University, 350 Serra Mall, Stanford, CA, USA

Associate Editor: John Hancock

Received on 19 October 2015; revised on 24 November 2015; accepted on 25 November 2015

Abstract

Motivation: Data compression is crucial in effective handling of genomic data. Among several recently published algorithms, ERGC seems to be surprisingly good, easily beating all of the competitors.

Results: We evaluated ERGC and the previously proposed algorithms GDC and iDoComp, which are the ones used in the original paper for comparison, on a wide data set including 12 assemblies of human genome (instead of only four of them in the original paper). ERGC wins only when one of the genomes (referential or target) contains mixed-cased letters (which is the case for only the two Korean genomes). In all other cases ERGC is on average an order of magnitude worse than GDC and iDoComp.

Contact: sebastian.deorowicz@polsl.pl, iochoa@stanford.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The rapid growth of genomic data in the last few years demands for efficient compression methods to facilitate their storage and transfer. One of the standard problems of this kind is (referential) compression of multiple individual genomes of the same species (Deorowicz *et al.*, 2015; Deorowicz and Grabowski, 2011; Kuruppu *et al.*, 2011; Ochoa *et al.*, 2014; Wandelt and Leser, 2013). As a pair of individual genomes differ only in variant loci, we can expect radical savings in storing a referentially encoded genome.

Recently, (Saha and Rajasekaran 2015) published a new referential genome compression algorithm, called ERGC. As the experimental results presented in this article seemed to suggest that ERGC is surprisingly good, winning easily in compression ratio over the previously proposed algorithms GDC (Deorowicz and Grabowski, 2011) and iDoComp (Ochoa *et al.*, 2014), we decided to take a closer look at ERGC and repeat the experiments on a wider set of data.

2 Discussion

In the first experiment, we repeated the referential compression evaluation from the ERGC paper, where the D_1,\ldots,D_5 experiments are specified in Table 1 in the cited paper and the actual results are shown there in Table 2. In each D_i experiment, all 24 chromosomes of one human genome are referentially compressed, given some other human genome as a reference. We repeated these experiments in our Table 1.

As it can be observed, the results differ significantly for cases D_1 and D_5 . First, the cited paper incorrectly reported 'NA' for the GDC algorithm in these two cases. Moreover, iDoComp achieves 6288 KB on D_1 and 33 158 KB on D_5 , rather than 65 708.47 KB and 209 380.79 KB as reported in the cited paper (note the order of magnitude difference). Finally, applying ERGC on D_5 resulted in a compressed file of 9373 KB, instead of the reported 19 396.40 KB.

With the corrected results, we concluded that ERGC achieves the best compression ratio in all cases except in D_1 , where it is

1115

^{*}To whom correspondence should be addressed.

1116 S.Deorowicz et al.

Table 1. Rerun experiments from Table 2 in the ERGC paper

Dataset	Target size	GDC size	iDoComp size	ERGC size	
$\overline{D_1}$	3132	6439	6288	7890	
D_2	3132	29 831	30 437	9217	
D_3	3132	35 227	33 926	9404	
D_4	2938	12 293	7213	4914	
D_5	3124	34 806	33 158	9373	

Table 2. Rerun experiments from Table 1 above, with the difference that the KOREAN genomes are converted to upper case

Dataset	Target size	GDC size	iDoComp size	ERGC size	
$\overline{D_2}$	3132	7660	7473	9273	
D_3	3132	7849	7691	9449	
D_4	2938	1073	1020	1246	
D_5	3124	7820	7754	9425	

The D_1 experiment is skipped run since both the reference and the target in it consist of upper case DNA symbols only.

Table 3. Summary of the results for all the considered pairs both for chromosomes 10 and 20

Reference	Chromosome 10			Chromosome 20				
	Target size	GDC size	iDoComp size	ERGC size	Target size	GDC size	iDoComp size	ERGC size
CHM1_1.0	1 495 816	10 229	11 805	289 929	694 646	4242	5132	135 412ª
CHM1_1.1	1 496 019	9505	11 054	290 014	694 641	4252	5088	100 306
CSA	1 497 653	51 057	59 500 ^b	339 998	695 024	13 741	15 695	146 233
HG17	1 496 426	8146	7801	167 270	695 127	3457	3893	48 193
HG18	1 496 465	8106	7753	145 209	695 127	3457	3893	48 193
HG19	1 496 303	8153	7913	227 746	694 529	3472	3919	48 294
HG38	1 498 065	9329	9543	222 986	693 090	2743	2798	78 216
HuRef	1 502 946	12 680	15 582	295 338	697 946	5037	5862	95 444
KO131	1 496 143	16 388	18 246 ^b	158 849	694 978	6169	6984 ^b	75 827
KO224	1 496 143	14 736	16 997 ^b	158 635	694 978	5486	6543 ^b	68 173
WGSA	1 503 392	25 607	31 897	336 064	697 939	10 403	12 470	137 623
YH	1 496 143	9388	8785	153 532	694 978	4063	4406	49 951

^aThis total ERGC result is not certain, as ERGC crashed on the pair of sequences: CHM1_1.0 (reference), CHM1_1.1 (target).

outperformed by both GDC and iDoComp. Taking a closer look, we observed that in all but D_1 one of the KOREAN genomes is used either as a reference or a target genome. The KOREAN genomes differ from the other ones in that they contain both lower and upper case letters (see Supplementary material). They also contain non-standard symbols, similarly to the YH genome.

To better understand if the potential of ERGC is due to the design of the algorithm itself, or to the handling of the lower and upper case letters and/or the non-standard symbols, we simulated these experiments again (D_2, \ldots, D_5) with the KOREAN genomes transformed to all upper case. Surprisingly, as demonstrated in Table 2, ERGC achieved the worst compressed size in all cases. The reported results suggest that the gain of ERGC comes from the handling of the lower and upper case symbols.

Since the previous experiments may not be representative enough, we decided to use a wider set of data. Specifically, we chose the human genome datasets from the GDC 2 paper (Deorowicz *et al.*, 2015), which is a superset of the collections from (Deorowicz and Grabowski, 2011) and (Ochoa *et al.*, 2014). To reduce the amount of computations, we

chose only two chromosomes from each genome: chr10 and chr20. Then, to follow the ERGC paper methodology, we tested referential compression in pairs of chromosomes, in a round-robin fashion. In Table 3, we show the sums of compressed sizes; detailed results are presented in the Supplementary material. ERGC is outperformed in all cases by GDC and iDoComp.

3 Conclusion

From the conducted experiments we can draw several conclusions. Firstly, the reported compression results on the D_1 and D_5 cases in the cited paper are not correct for both GDC and iDoComp. Secondly, ERGC seems to get the main advantage due to specific handling of lower and upper case difference between the target and the reference genome. We believe that using the KOREAN genomes is fair, however, the authors should have provided simulations on a wider set of data where the gain does not come from the lower and upper case difference. Finally, after running several experiments on different datasets, we can conclude that ERGC performs in general poorly when compared with GDC and iDoComp.

^bThese total iDoComp results are taken from its bug-fix version (https://github.com/mikelhernaez/iDoComp, v1.2) as the earlier version v1.1 crashed on five pairs of sequences.

Comment on ERGC 1117

Funding

This work has been supported by a fellowship from the Basque Government, a grant from the Center for Science of Information (CSoI), the 2014-07364-01 NIH grant and the 1157849-1-QAZCC NSF grant. It is also supported by the Polish National Science Centre under the project DEC-2011/03/B/ST6/01588. The infrastructure supported by POIG.02.03.01-24-099/13 grant: 'GeCONiI-Upper' Silesian Center for Computational Science and Engineering'.

Conflict of Interest: none declared.

References

Deorowicz, S. et al. (2015) GDC 2: Compression of large collections of genomes,. Sci. Reports, 5, Article no. 11565.

Deorowicz, S. and Grabowski, S. (2011) Robust relative compression of genomes with random access, *Bioinformatics*, 27, 2979–2986.

- Kuruppu,S. et al. (2011) Optimized relative Lempel-Ziv compression of genomes. In: Reynolds,M. (ed.) Proceedings of the ACSC Australasian Computer Science Conference. Australian Computer Society, Inc., Sydney, Australia, pp. 91–98.
- Ochoa, I. et al. (2015) iDoComp: a compression scheme for assembled genomes. Bioinformatics, 31, 626–633.
- Saha,S. and Rajasekaran,S. (2015) ERGC: An efficient referential genome compression algorithm. *Bioinformatics*, 31, 3468–3475.
- Wandelt,S. and Leser,U. (2013) FRESCO: Referential compression of highly similar sequences,. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 10, 1275–1288.