Big Data Engineering

Realtime Big Data Processing

Adam Hill April 2023

Streaming

- Continuous data flow
 - "Unbounded streams of data"
- Usually uses a message distribution system
 - -JMS, Apache Kafka, ZeroMQ, MQTT
- An unbounded set of events with time
 - <t1, E1>, <t2, E2>,, <tn, En>,

Stream processing categorization

- Simple event processing
 - Working on an event at a time
 - e.g. filter out all events where the wind speed > 50 mph
- Event stream processing
 - Time-based processing of a single stream of events
 - Average wind speed over the last hour compared to the average over the last day
- Complex Event Processing
 - Correlation of events across different streams

Comparing Databases with Real-Time systems

	Database Applications	Event-driven Applications
Query Paradigm	Ad-hoc queries or requests	Continuous standing queries
Latency	Seconds, hours, days	Milliseconds or less
Data Rate	Hundreds of events/sec	Tens of thousands of events/sec or more
	request	output stream stream

Approaches to Streaming

- Pure streaming
 - Each event is processed as it comes in
- Micro-batch
 - Small batches of events are processed
 - Typically trades flexibility for performance
- Shared nothing
 - You can process events on any system in the cluster
- Stateful / Partitioned
 - The event must be processed on a system that has the correct state in memory

Lambda Architecture

Kappa Architecture

Kafka at Uber

Data distribution

You need to get the events to the processing systems

MQTT (Message Queuing Telemetry Transport)

- Very simple, lightweight, fast
- No built in support for clustering / big-data
 - But can make up for it by being very fast
- Used a lot in IoT

Apache Kafka

Kafka

- Many of the approaches we've seen:
 - Partitioning
 - Multiple brokers
 - Elastically scalable
 - Supports clusters of co-ordinated consumers
 - Automatic re-election of leaders

Kafka exactly-once semantics

Mathias Verraes @mathiasverraes

There are only two hard problems in distributed systems: 2. Exactly-once delivery 1. Guaranteed order of messages 2. Exactly-once delivery

RETWEETS

LIKES

6,775

4,727

10:40 AM - 14 Aug 2015

9 4.7K

Processing the data

Apache Storm

Note: another DAG

Apache Storm

- Originally developed by BackType
 - Nathan Marz
- Acquired by Twitter
- Open Sourced and then donated to Apache
- Became a top level project in 2014
 - http://storm.apache.org

Heron

Heron: Key Features

- Fully API compatible with Apache Storm
- Task isolation
- Developer productivity
- Ease of manageability
- Use of mainstream languages C++/Java/Python

Heron

In production at Twitter for >2 years

Fig. 2. Throughput with acks

Fig. 3. End-to-end latency with acks

Kafka Streams

Kafka Streams

- Event-at-a-time processing (not microbatch) with millisecond latency
- Stateful processing including distributed joins and aggregations
- A convenient DSL
- Windowing with out-of-order data using a DataFlow-like model
- Distributed processing and fault-tolerance with fast failover
- Reprocessing capabilities so you can recalculate output when your code changes
- No-downtime rolling deployments

Apache Spark Streaming

Structured Streams in Spark

Since Spark 2.0, there is a much better approach

Data stream as an unbounded Input Table

User's batch-like query on input table

Incremental execution on streaming data

Structured Streaming Processing Model

Users express queries using a batch API; Spark incrementalizes them to run on streams

1:00

2:00

open

close

2

open

2:00

2

Output

Update Mode

2:00

1:00

1

open

open

Siddhi

- A stateful query model
- SQL-like language for querying streams of data
 - Extended with windows
 - Time, Event count, batches
 - Partitioned
 - Based on data in the events
 - Pattern matching
 - A then B then C within window

Siddhi

- Apache Licensed Open Source on Github
 - https://github.com/wso2/siddhi/
- Pluggable into Storm, Spark and Kafka Streams
- Supports millions of events/sec
- http://freo.me/DEBS_Siddhi

SiddhiQL

Siddhi at Uber

Siddhi at Uber

- 100+ production apps
- 30 billion messages / day
- Fraud, anomaly detection
- Marketing, promotion
- Monitoring, feedback
- Real time analytics and visualization

https://freo.me/siddhi-uber

Summary

- Realtime processing is hard
 - Requires large memory and state
 - The lambda architecture splits the problem into batch and realtime challenges
- Multiple approaches:
 - Pure Streaming
 - Micro-batch
 - CEP

Questions?

