(1) (2)

2

43

Offenlegungsschrift 29 30 203

Aktenzeichen:

P 29 30 203.2

Anmeldetag:

25. 7.79

Offenlegungstag:

19. 2.81

30 Unionspriorität:

39 33 31

Bezeichnung:

Unterkonstruktion für ein Unterwasserbauwerk

0

Anmelder:

Thiele, Heinrich, Dr., 8221 Siegsdorf

1

Erfinder:

Nichtnennung beantragt

BNSDOCID: <DE

2930203A1 | >

Unterkonstruktion für ein Unterwasserbauwerk

Patentansprüche

- Als Auflage insbesondere eines Schwimmkörpers geeignete, auf dem Boden eines Gewässers ruhende und aus dem Wasser herausragende Unterkonstruktion, d a d u r c h g e k e n n z e i c h n e t , dass die Unterkonstruktion aus wenigstens
 zwei parallelen und im Abstand voneinander angeordneten Tragrahmen und jeder Tragrahmen aus zwei, auf einem Fundament (10,
 18) ruhenden Stützen (4), einem Träger (5) und zwei mit ihren
 Gehäusen an den Enden der Träger befestigten Selbsthebern (Hubeinrichtung) (6) besteht, die die Stützen umfassen und das
 Bewegen des Trägers in Längsrichtung der Stützen ermöglichen,
 wobei die Länge der Träger grösser als die Breite des Schwimmkörpers (1,15) ist.
- 2. Unterkonstruktion nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass die Träger gleiche oder annähernd gleiche Länge aufweisen und aus T-oder Doppel-T-Profilstahl, aus verschweissten, ein offenes Profil bildenden Stahlblechen oder aus Stahl-oder Spannbeton bestehen.
- 3. Unterkonstruktion nach Anspruch 1 und 2, dadurch gekennzeichnet, dass bei Anordnung von mehr als zwei
 Tragrahmen der Abstand zweier Tragrahmen voneinander unterschiedlich gross sein kann.
- 4. Unterkonstruktion nach Anspruch 1 bis 3, d a d u r c h g e k e n n z e i c h n e t, dass die Stützen (4) aus Stahl-rohren bestehen, die achsparallele, das Eingreifen der Selbstheber (6) ermöglichende Ausnehmungen (7) aufweisen, und dass der Fuss der Stützen mit Halterungen (12) versehen ist, die

in entsprechende Halterungen des Fundaments (13) eingreifen.

- 5. Unterkonstruktion nach Anspruch 1 bis 3, d a d u r c h g e k e n n z e i c h n e t, dass die Stützen (4) aus Beton eder ausbetonierten Rohren bestehen, die in entsprechende Ausnemungen (17) des Fundaments (18) eingreifen, dass die Ausnehmungen mit hervorstehenden Bewehrungselementen versehen sind, die sich mit den Bewehrungselementen der Stützen überlappen, und dass das Eingreifen der Selbstheber (6) an den Stützen durch achsparallele Profile oder Profilleisten (19) ermöglicht wird, die an der Aussenseite der Stützen angebracht sind.
- 6. Unterkonstruktion nach einem der vorangegangenen Ansprüche, dad urch gekennzeich net, dass die Tragrahmen durch in Höhe der Träger (5) angeordnete Querträger und/oder ein Deck (9) mit aussteifender Wirkung mitei ander verbunden sind und dass das Deck auch aus vorgefertigten Stahl-oder Stahlbetonplatten (8) bestehen kann, wobei die auf den Trägern aufliegenden Platten mit ihren Kopfenden an angeschweissten Halterungen der Träger (14) und/oder mit Verbundwirkung aneinander befestigt sind.
- 7. Schwimmkörper nach Anspruch 1, dad urch gekennzeichnet, dass der Schwimmkörper aus einer abseits
 des Einbauortes auf einer Plattform (1) vorgefertigten Industrieanlage oder aus einem abseits des Einbauortes vorgefertigten Grossbehälter (15) besteht, wobei der Grossbehälter
 dem Abstand der Tragrahmen voneinander entsprechende Aussteifungen (16) aufweist und mit diesen Aussteifungen unmittelbar
 auf den Trägern (5) der Tragrahmen aufliegt.
- 8. Hubeinrichtung für eine Unterkonstruktion nach einem der vorangegangenen Ansprüche, dad urch gekennzeich netchtan net, dass das Betätigen der Gelbstheber (6) von einem ausserhalb der Unterkonstruktion liegenden Standort aus erfolgt, der auch auf einem Wasserfahrzeug liegen kann, und dass die Selbstheber sowohl synchron als auch einzeln betätigt werden

können.

- 9. Fundament für eine Unterkonstruktion nach einem der vorangeeangenen Ansprüche, d a d u r c h g e k e n n z e i c h e t ,
 dass das Fundament aus einer durchgehenden Bodenplatte (12)
 oder aus einzelnen Sockeln (10) besteht, die auch in verschiedenen Ebenen liegen können, wobei der kiveauauskleich aurch
 unterschiedliche Hohe der Bockel oder aurch Verwenden von
 Stützen (4) unterschiedlicher Länge erfolgen kann.
- Verfahren zum Herstellen beziehungsweise Verlegen einer Unterkonstruktion nach einem der vorangegangenen Ansprüche, da Juren geher in dei onet t, dass der oder die mit
 dem Tröger (5) auf einem Wasserfthreug (20) aufliegende/n Tragrahmen mit angehobenen Statzen (4) auf das vorbereitete Fundament (10,10) befördert wird/werden, dass des Absenken der
 Statzen unter Betätigen der om Tröger (5) befestigten Selbstheber (6) erfolgt, und dass das Ausschwimmen des Wasserfuhrdeugs unter erneutem Betütigen der 5 Jbstheber durch Heben des/
 der Trager an den auf dem fundament ruhenden Stützen ermöglicht
 wird.
- 11. Verfahren zum Herstellen einer Unterkonstruktion nach einem der vorangegam eren Ansprüche, daa urch gekennzeichnet, dass das Einfügen und Befestigen von Querträgern und die Aufbringung des Decks (9) durchgefohrt wird, wenn die Träger (5) aurch Detätigen der Delbstheber (6) über die Wasserlinie (2) gehoben sind.
- 12. Verfahren für das Auflegen eines Schwimmkörpers auf eine Unterkonstruktion nach einem der vorangegangenen Ansprüche, das durch gekennseichnet, dass das Auflegen der über die Unterkonstruktion eingeschwommenen Plattform (1) oder des über die Unterkonstruktion eingeschwommenen Behälters (15) dadurch ermöglicht wird, dass die Träger (5) der Tragrahmen unter Petätigen der Pelbstheber (6) unter die Was-

serlinie (2) gesenkt werden, wobei der Abstand zwischen der Oberkante der Auflage und der Wasserlinie grösser als der Tiefgang des Schwimmkörpers (1,15) ist, und dass die Träger durch erneutes Betätigen der Selbstheber über die Wasserlinie gehoben werden.

- 13. Verfahren für das Befestigen eines über die Wasserlinie genobenen Schwimmkörpers an einer Unterkonstruktion nach einem der vorangegangenen Ansprüche, das urch gekennzeich net, dass der Schwimmkörper (1,15) an den Trägern (5), den Querträgern oder dem Deck (9) unter Verwendung von Schrauben oder anderer ohne Beschädigung der Bausuostanz wieder lösbarer Halterungen befestigt wird.
- 14. Verfahren für das vorübergehende oder dauernde Entfernen eines Schwimmkörpers von einer Unterkonstruktion nach einem der vorangegangenen Ansprüche, da durch gekennzeich ich net, dass die Trüger (b) nach Lösen der Halterungen durch betätigen der Belbstheber (6) unter die wasserlinie (2) gesenkt werden und dadurch das Ausschwimmen des Schwimmkörpers (1,15) ermöglicht wird.

- 5 -

Dr. neinrich Thiele D 8221 Siegsaorf

Unterkonstruktion für ein Unterwasserbauwerk

Die Erfindung bezieht sich auf eine als Auflage insbesondere eines Schwimmkörpers geeignete, auf dem Boden eines Gewässers ruhende und aus dem Wasser herausragende Unterkonstruktion sowie auf ein Verfahren zum Herstellen beziehungsweise Verlegen der Unterkonstruktion und zum Auflegen, Befestigen und Entfernen des Schwimmkörpers.

Bei einer Unterkonstruktion, die eine grossflächige Plattform oder einen Großbehälter tragen soll, kommt es maßgeblich darauf an, dass sich ein grosser, zusammenhängender, möglichst quadratischer, rechteckiger oder trapezförmiger Grundriss ergibt, dass die Unterkonstruktion für hohe Lauten geeignet ist, dass in abseits des Eineauortes vorgefertigter Schwimmkörper ohne Inanspruchnahme schwerer Kranschiffe montiert und die Unterkonstruktion ohne Schwierigkeiten zur Baustelle transportiert und verlegt werden kann.

Diesen Anforderungen werden die bekannten Konstruktionen nicht gerecht. Zwar ist eine aus drei Stützen und einem Gittertragwerk bestehende Konstruktion bekannt, deren Tragwerk mittels eingebauter Selbstheber an den Stützen bewegbar ist. Diese zum Tra en von Bohrund Fördergerät bestimmt Lonstruktion kann zwar an Land vorgefertigt, auf das Deck eines Fr. chtschiffes verladen und mit Hilfe der eingebauten belöstheber auf den Meeresboden abgesetzt werden. Der T-förmige Grundriss des Tragwerkes schliesst jedoch die Bildung einer grossen quadratischen oder rechteckigen Auflagefläche aus, wie sie für Industrieanlagen und Großbehälter benötigt wird. Da das gesante Bauwerk als Ganzes transportiert wird und da die Tragkraft des Gittertragwerkes relativ gering ist, wird die Verwendung schwimmfähiger Aufbauten ausdrücklich ausgeschlossen. Um die Auflage der Konstruktion auf einem Schilfsdeck zu ermöglichen, müssen die Stützen einen entsprechenden Abstand voneinander aufweisen. Damit wird der Ausgleich stärkerer Belastungen durch Reduzierung des Stätzenabstandes ausgeschlousen. Hinzukommt, dass es bei dieser

130008/0121

ORIGINAL INSPECTED

124

.

 $L_{k+1} \subseteq \mathbb{R}$

bauweise nicht möglich ist, durch Aneinanderfügen mehrerer Konstruktionen eine große zusammenhängende Fläche zu schaffen, wie sie der vorerwähnte Zweck erfordert.

Bekarnt ist auch, die Verankerung eines vorgefertigten Unterwasserbeuwerkes in der Weise durchzuführen, dass die mit Aufbauten versehene Plattform nach Aufsetzen auf dem meeresboden an den an ihr befestigten Stützen unter Verwendung von Gelbsthebern über die Wasserlinie gehoben wird. In diesem Fall hängt die Plattform in den Stützen. Somit muss die gesamte Tragkonstruktion in die Plattform einbezogen werden, was bei nohen Gewichten und grossen Spannweiten zu einer beträchtlichen Erhöhung des Eigengewichts der Plattform führt; hinzukommt das Gewicht der Stützen und das der Selbstheber, so dass das Verhältnis von kutzlast zum Ligengewicht nachteilig beeinflusst wird. Dieses Verhältnis ist auch dann von Belang, wenn die Plattform einschlies lich aller Aufbauten mit einem Spezialfrachtschiff zum Einbauort befordert werden soll, dessen Ladedeck durch Fluten gesenkt und durch Lenzen gehoben werden kann; denn bei dieser Transportart kommt es darauf an, die zur Verfügung stehende Ladefläche voll auszunutzen.

Der Einwand eines unwirtschaftlichen Verhältnisses von Nutzlast zum Eigengewicht trifft auch auf solche Honstruktionen zu, die eine Zweiteilung der Stützen vorsehen. Bei dieser Pauweise ruhen die von der Plattform abgesenkten Stützen auf einer vor dem Einschwimmen der Plattform verlegten stahren Unterkonstruktion, die in einem dem Tiefgang der Plattform entsprechenden Abstand unter dem Wasserspiegel endet. Aber auch bei dieser Pauweise hängt die Plattform in den Stützen und muss daher mit einem entsprechend stark ausgebildeten Tragwerk ausgestattet sein, was zumm nich der Stützen und der Selostheber zu Lasten der hutzlast gent. Hinzumommt, dass diese Deuweise das Vorhandensein einer in den Meerespoden eingelassenen Bodenplatte voraussetzt, die wegen ihrer Größe und ihres Gewichts an Land vorgefertigt und daher mit flutbaren Schwimmkammern ausgestattet ein muss, was mit einem erheblichen

Kostenaufwand verbunden ist.

Somit verbleibt nach dem derzeitigen Stand der Technik für die Vorfertigung von Industrieanlagen nur die Möglichkeit, die Flattformen, wie bereits geschehen, in Ufernähe zu befestigen oder unter Ausnutzung eines unterschiedlichen Wasserstandes an Land zu setzten und einzuschlämmen. Ständig im Wasser oder auf feuchtem Untergrund liegende Plattformen können jedoch nicht von unten gewartet werden. Thre Tebensdauer ist daher begrenzt und auf jeden Fall kürzer als die der auf der Plattform installierten Anlage. Damit werden die mit der Vorfertigung verbundenen Kostenvorteile aufgehoben.

Die für die Vorfertigung von Großbehältern gelundene Lösung, die an Land gefertigten Behälter auf dem Meeresgrund zu lagern, ist auf aus Beton hergestellte Behälter beschränkt, wobei auch hier die Wartung der Behälter und der an ihnen angebrachten Armaturen schwierig aurenzuführen ist.

Die Erlindung hat sich daher die Aufgabe gestellt, eine als Auflage insbesondere für Schwimmkörper geeignete Unterkonstruktion sowie ein Verfahren zum Herstellen beziehungsweise Verlegen der Unterkonstruktion und zum Auflegen und Befestigen des Schwimmkörpers zu schaffen, das ohne schwere Aranschiffe durchgeführt werden kann, wobei es der Exfindung darauf ankommt, dass die Auflage der vorzugsweise in Einem flachen Gewässer zu errichtenden Unterkonstruktion spritzwassergeschützt über der Wasserlinie liegt, dass aus ohne Schwierigkeiten zu transportierenden Einzelteilen eine grosse zusammenhängende, möglichst quadratische, rechteckige oder trapezförmige Auflage geschaffen werden kann, dass mehrere Unterkonstruktionen aneinandergefügt werden können, dass die Stützen und die tragenden Elemente sowohl in Stahl als auch in Deton ausgeführt werden können, dass sich die Unterkonstruktion für komplette und auch schwere Industrieanlagen und auch für Großbehälter eignet, dass der Abstand der Stützen voneinander unterschiedlich seinkann, dass die Unterkonstruktion aus Einzelteilen hergestellt und in

130008/0121

ORIGINAL INSPECTED

2

Œ

. 75

25

. . . .

Sektionen verlegt werden kann, dass die Aufbringung eines feuerund korrosionsbeständigen, lastenverteilenden und aussteifenden
Decks möglich ist und auch unter Verwendung vorgefertigter Tlatten
und über Wasser durchgeführt werden kann, dass die Aufbringung
eines Großbehälters auch ohne Vorhandensein eines Decks durchführbar ist, dass die Fundamentierung kostenmindernd vereinfacht
wird, dass diese auch auf unebenem Untergund möglich ist, und
dass der Schwimmkörper in unzerlegtem Zustand und ohne Beschädigung der Bausubstanz wieder entfernt werden kann.

Die Erfindung löst die gestellte Aufgabe durch eine Unterkonstruktion der eingangs geschilderten Art, dadurch gekennzeichnet, dass die Unterkonstruktion aus wenigstens zwei parallelen und im Abstand voneinander angeordneten Tragrahmen und jeder Tragrahmen aus zwei, auf einem Fundament ruhenden Stützen, einem Träger und zwei mit ihren Gehäusen an den Enden der Träger befestigten Selbsthebern (Hubeinrichtung) besteht, die die Stützen umfassen und das Bewegen des Trägers in Längsrichtung der Stützen ermöglichen, wobei die Länge der Träger grösser als die Breite des Schwimmkörpers ist.

Um eine sowohl quadratische als auch rechteckige oder trapezförmige Auflage zu schaffen, die auch bei weitem Abstand der Stützen voneinander die Auflage schwerer Lasten, zum Deispiel Einrichtungen für die stahlerzeugende-und stahlverarbeitende Industrie ermöglicht, hat die Erfindung vorgesehen, dass die Träger gleiche oder annähernd gleiche Länge aufweisen und aus T-oder Doppel-T-Profilstahl, aus verschweissten, ein offenes Profil bildenden Stahlbechen oder aus Stahl-oder Spannbeton bestehen.

Da bei grossflächigen Industrieanlagen die von den Tragrahmen gebildeten Felder unterschiedlich belastet werden, hat die Erfindung vorgesehen, dass bei Anordnung von mehr als zwei Tragrahmen der Abstand zweier Tragrahmen voneinander unterschiedlich gross sein kann, womit die Verwendung von Tragrahmen gleicher Abmessungen und damit eine Standardisierung der Tragrahmen ermöglicht wird.

Die Erfindung ist weiterhin dadurch gekennzeichnet, dass die

Stützen aus Stahlrohren bestehen, die achsparallele, das Eingreifen der Selbstheber ermöglichende Ausnehmungen aufweisen, und dass der Fuss der Stützen mit Halterungen versehen ist, die in entsprechende Halterungen des Fundaments eingreifen.

Um Korrosionsschäden auszuschliessen, die Stabilität der Nonstruktion zu swerbessern und die Tragfähigkeit der Stützen zu erhöhen, hat die Prfindung vorgesehen, dass die Stützen aus Beton oder ausbetonierten Rohren bestehen, die in entsprechende Ausnehmungen des Fundaments eingreifen, dass die Ausnehmungen mit hervorstehenden Bewehrungselementen versehen sind, die sich mit den Pewehrungselementen der Stützen überlappen, und dass das Eingreifen der Pelbstheber durch achsparallele Profile oder Profilleisten ermöglicht wird, die an der Aussenseite der Stützen angebracht sind.

kach einer weiteren Ausbildung der Prindung ist vorgesehen, dass die Tragrahmen durch in Höhe der Träger angeordnete Querträger und/oder ein Deck mit aussteifender Wirkung miteinander verbunden sind und dass das Deck auch aus vorgefertigten Stahl-oder Stahlbetonplatten bestehen kann, wobei die auf den Trägern aufliegenden Platten mit ihren Kopfenden an angeschweissten Halterungen der Träger und/oder mit Verbundwirkung aneinander befestigt sind.

Ein weiteres Pennzeichen der Erfindung besteht darin, dass der Schwimmkörper aus einer abseits des Einbauortes auf einer Plattrorm vorgefertigten Industrieanlage oder aus einem abseits des Einbauortes vorgefertigten Uroßbehälter besteht, wobei der Großbehälter dem Abstand der Tragrahmen voneinander entsprechende Aussteifungen aufweist und mit diesen Aussteifungen unmittelbar auf den Trägern der Tragrahmen aufliegt.

Damit die Hubeinrichtung in jeder Lage der Träger betätigt und auch beim Verlegen der Unterkonstruktion verwendet werden kann, hat die Erfindung vorgeschen, dass das Betätigen der Selbstheber von einem außerhalb der Unterkonstruktion liegenden Standort aus erfolgt, der auch auf einem Wasserfahrzeug liegen kann, und dass die Selbstheber sowohl synchron als auch einzeln betätigt werden können.

Um die Fundamentierung kostensparend zu vereinfachen und gegebenenfalls auf eine mit Kosten verbundene Planierung des Untergrundes verzichten zu können, hat die Frindung vorgesehen, lass das Fundament aus einer durchgehenden Bodenplatte oder aus einzelnen Sockeln besteht, die auch in verschiedenen Ebenen liegen können, wobei der Niveauausgleich durch unterschiedliche Höhe der Sockel oder durch Verwendung von Stützen unterschiedlicher Länge erfolgen kann.

Ein von der Erfindung geschaffenes Verfahren zum Herstellen beziehungsweise zum Verlegen einer Unterkonstruktion sieht vor, dass der
oder die mit dem Träger auf einem Wasserfahrzeug aufliegenden
Tragrahmen mit angehobenen Stützen auf das vorbereitete Fundament befördert wird/werden, dass das Absenken der Stützen unter
Petätigen der am Träger befestigten Selbstheber erfolgt, und dass
das Ausschwimmen des Wasserfahrzeugs unter erneutem Betätigen
der Selbstheber durch Heben des/der Träger an den auf dem Fundament ruhenden Stützen ermöglicht wird.

Um die weitere Ausbildung der Unterkonstruktion kostensparend zu vereinfachen, sieht die Erfindung vor, dass das Einfügen und Befestigen von Querträgern und die Aufbringung eines Decks durchgeführt wird, wenn die 'räger aurch Betätigen der Selbstheber über die Wasserlinie gehoben sind.

Ein für das Auflegen eines Schwimmkörpers auf die Unterkonstruktion geschaffenes Verfahren sieht vor, dass das Auflegen der über die Unterkonstruktion eingeschwommenen Plattform oder des über die Unterkonstruktion eingeschwommenen Behälters dadurch ermöglicht wird, dass die Träger der Tragrahmen unter betätigen der belbstheber unter die Wasserlinie gesenkt werden, wobei der Abstand zwischen der Oberkante der Auflage und der Wasserlinie grösser als der Tiefgang des Schwimmkörpers ist, und dass die Träger durch erneutes betätigen der Selbstheber über die Wasserlinie gehoben werden.

Für das Befestigen eines über die Wasserlinie gehobenen Schwimm-

körpers an einer Unterkonstruktion hat die Erfindung vorgesehen, dass der Schwimmkörper an den Trägern, den Querträgern oder dem Deck unter Verwendung von Schrauben oder anderer ohne Beschädigung der Bausubstanz wieder lösbar-er Halterungen befestigt wird.

Im Gegensatz zu der eingangs erwähnten Dreiecks-Konstruktion ermöglicht die Erfindung quadratische oder rechteckige Grundrisse und schafft damit auch die Möglichkeit, eine Vielzahl von Tragrahmen aneinander zu fügen. Anders als bei einem T-förmigen Gittertragwerk spielt bei der erfindungsgemässen Konstruktion das Gewicht der tragenden Elemente keine Rolle, so dass auch schwere, für hohe Lasten und grosse Spannweiten geeignete Träger, auch solche aus Stahl-oder Spannbeton verwendet werden können. Bei unterschiedlicher Belastung kann der Abstand der Tragrahmen voneinander verkürzt oder erweitert werden, so dass Träger gleicher Abmessungen verwendet werden können. Gleiches gilt für die Stützen. Damit sind die Voraussetzungen für eine kostenmindernde Standardisierung geschaffen.

Die von der Erfindung angeordnete Trennung von Unterkonstruktion einerseits und Schwimmkörper andererseits gestattet die relativ einfach herzustellende Unterkonstruktion in der Rähe des Bestimmungsortes anzufertigen, was wegen des unterschiedlichen Kostengefüges von Vorteil sein kann. Eine weitere Folge dieser Trennung ist, dass ein schweres lastenverteilendes und aussteifendes Deck geschaffen werden kann, ohne dass dies zu Lasten des Eigengewichts des Schwimmkörpers geht. Dadurch, dass das Deck eine satte Auflage für die Plattform schafft, kann die Plattform leichter ausgebildet werden. Im Gegensatz zu anderen Konstruktionen braucht die Plattform auch die Stützen und die Selbstheber nicht zu tragen. Somit kann auch beim Transport der Plattform durch ein Spezialschiff der eingangs erwähnten Art die zur Verfügung stehende Ladefläche voll ausgenutzt werden.

Die Erfindung schafft zugleich die bislang nicht vorhandene Möglichkeit, einen als selbstschwimmenden Körper ausgebildeten Stahlbehälter vorfertigen zu können und ohne Verwendung einer Plattform oder eines Decks unmittelbar auf der Unterkonstruktion zu befestigen, was mit einer wesentlichen Einsparung an Gransport-und Montagekosten verbunden ist.

Von Vorteil ist ferner, dass der Schwimmkörper in unzerlegtem Zustand und ohne Beschädigung der Bausubstanz wieder entfernt werden kann, und zwar im "egensatz zu anderen Bauweisen auch dann, wenn die Unterkonstruktion mit Ausnahme der Selbstheber ganz oder teilweise aus Beton besteht. Die von der Erfindung vorgesehene Möglichkeit, an Stelle von grossen Bodenplatten Punktfundamente zu verwenden, führt zu Kosteneinsparungen und erleichtert den Ausgleich von Niveauunterschieden. Die erfindungsgemässe Bauweise ist daher auch wirtschaftlich.

Figur 1 zeigt eine Plattform 1, deren unterer Teil unter der Wasserlinie 2 liegt. Die Plattform ist über eine Unterkonstruktion eingeschwommen, die von Tragrahmen gebildet wird. Die Breite der Plattform ist geringer als die lichte Meite des Tragrahmens, so dass sich zwischen Plattform und Rahmen ein Abstand 3 ergibt. Der Tragrahmen besteht aus jeweils zwei Stützen 4 , einem Träger 5 , und zwei mit ihren Gehäusen an den Enden des Trägers befestigten belbsthebern 6 (Hubeinrichtung) , die die Stützen umfassen und in achsparallele Ausnehmungen 7 der Stützen eingreifen. Auf den Trägern liegt ein aus vorgefertigten Betonplatten 8 bestehendes Deck 9 auf. Die Stützen rühen auf Betonsockeln 10, die in den Boden 11 des Gewässers eingelassen sind. Die Stützen weisen an ihren unterem Ende Halterungen 12 auf, die in entsprechende Halterungen 13 des Sockels eingreifen. Der träger ist unter die "asserlinie gesenkt. Der Abstand zwischen der Oberkante des Decks und der Unterkante der Plattform ist gross genug, das Einschwimmen der Plattform zu ermöglichen.

Figur 2 zeigt, wie die auf den Trägern > beziehungsweise auf dem Deck 9 aufl-iegende Plattform 1 über die Wasserlinie 2 gehoben ist.

Figur 3 zeigt eine auf unebenem Untergund ruhende Unterkonstruktior Die Darstellung lässt erkennen, dass der Miveauausgleich durch unterschiedliche Länge der Stützen 4 herbeigeführt ist.

Figur 4 zeigt die Draufsicht auf eine aus zwei Tragrahmen bestehende Unterkonstruktion. Auf den gleichlangen Trägern 5 ist ein aus Betonplatten 8 bestehendes Beck 9 aufgebracht. Die Flatten sind beiderseits an Halterungen 14 befestigt, die mit den Tragern 5 verschweisst sind.

Figur 5 zeigt in perspektivischer Darstellung einen unmittelbar auf den Trägern 5 der Tragrahmen aufliegenden Großbehälter 15. Der Behälter ist mit Aussteifungen 16 versehen, die dem Abstand der Träger voneinander entsprechen. – Die Stützen 4 sind ausbetoniert und greifen in zylinderförmige Ausnehmungen 17 der Bodenplatte 18 ein. Das Eingreifen der Selbstheber 6 wird durch achsparallele Profilleisten 19 ermöglicht, die an der Aussenseite, der Stützen 4 angebracht sind. Die Darstellung lägst erkennen, dass der Behälter trotz der monolithischen Verankering wieder ausgeschwommen werden kann.

Die verschiedenen Phasen des Verlegens der Unterkonstruktion sind wie folgt dargestellt:

Figur 6 zeigt einen mit dem Träger 5 auf einem Wasserfahrzeug 20 aufliegenden Tragrahmen. Die Stützen 4 sind angehoben. Am unteren Ende der Stützen 4 sind die Halterungen 12 zu erkennen, die in die korrespondierenden Halterungen 13 der Sockel eingreifen und zu einer kraftschlüssigen Verbindung führen. – Das Absenken der Stützen erfolgt unter Betätigung der Belbstheber 6. Die Selbstheber werden von einem ausserhalb der Unterkonstruktion liegenden Standort aus betätigt.

Figur 7 zeigt den auf die Sockel 10 abgesenkten Tragrahmen . Der Träger 5 liegt noch auf dem Wasserfahrzeug 20 auf.

Figur 8 zeigt, wie der Träger 5 mittels der Selbstheber 6 an den Stützen 4 über die Wasserlinie 2 gehoben ist, so dass das Wasser-fahrzeug 20 ausschwimmen kann.

Figur 9 zeigt, dass der Träger 5 zur Erleichterung der Montage des Decks 9 wieder gesenkt wurde.

Die Phasen des Einschwimmens und Lebens des Schwimmkörpers ergeben sich aus den Figuren 1 und 2 .

-15-

Nummer: Int. Cl.²: Anmeldetag: Offenlegungstag: **29 30 203 E 02 B 17/04**25. Juli 1979
19. Februar 1981

2930203

مرا

130008/0121

山山

130008/0121