

Analysis of digital markers from MRI images using Deep Learning

Northumbria University, Newcastle

Contents

Project Brief

Research and Main Objectives

Progress and Current Position

Delivery Dates

TEAM-MRI NU CIS

Saiteja Gaje Role: Project Manager Course: Advanced Computer Science

with Advanced Practice Experience: Graduate From KITSW, India

Naresh Nalluri Role: Communication Lead Course: Advanced Computer Science with Advanced

Practice Experience:

Rajesh Chittimalla Role: Team Member Course: Computer Science with Advanced

Practice Experience: Graduated from Vagdevi Engineering College, India

Venkat Sai Meruva Role: Team Member Course: Advanced Computer Science with Advanced

Practice Experience: Infinity Solutions (IT-Staffing, Junior Associate, 1 year)

Nikitha Thokkala Role: Team Member Course: Advanced Computer Science with Advanced

Practice Experience:

Project Brief

Project Title Analysis of digital markers from MRI images using Deep Learning.

- Outline:
- 1) To predict whether tumor is present in human brain or not.
- 2) To apply all the State of the arts models on MRI images Classification and modify hyperparameters.
- 3) Develop a webapp application for MRI digital markers.

Coding Platform : Google Collabs

Academic Supervisor : Ossama Alshabrawy

- NEURAL NETWORKS(WOL PERT, D.H.(1992))
- MACHINE LEARNING(THE ARTS AND SCIENCE ALGORITHMS THAT MAKES SENSE OF DATA (PETER FLACH))
- CLASSIFICATION (PETER A. FLACH)
- LEARNING IN NEURAL NETWORK (STUART J.RUSSEL)
- -BRAIN TUMOR CLASSIFICATION (KAGGALE)

Objectives

- Learn about Artificial Neural Network and Convolutional Neural Network.
- Implement basic CNN (Convolution Neural Network) architecture using TensorFlow.
- Implement state-of-the-art models using TensorFlow.
- Hyper tune high-performing models.
- Develop web application.

Progress and Current Position

Project Plan

Preparing project charter to outline the project

Communication Plan

COMMUNICATION PLAN

Client	Ossama Alshabrawy	Academic Supervisor	Ossama Alshabrawy	Project team	Saiteja Gaje Naresh Nalluri Venkat Meruva Rajesh Chittimalla Nithitha Thokkala
client	Petia <u>sice</u>	Project Supervisors	Anne Macdonald John Arthur Andrew Edden		

The project aims to classify the MRI images and extract digital markers for disease onset. This will require pre-processing of the images before building the machine learning/deep learning model. This model should predict the disease onset and classify different stages of the disease.

] /

Gantt chart

Gathering Data Choosing a model

Training data

Hyper tuning the model

Designing webpage

Identifying Client and User Requirements

Coding –Under progress

- Development progress started with Google collabs
- Chosen Brain tumor classification(data set)
- Taring
- Testing Click to add text
- Predicting

Designing Database

- Create a web application using Tensorflow.js or Django with TensorFlow.
- Allow user to obtain result from all available models
- · Allow users to obtain result using bagging applied on all mod

Key Milestones

- Need to finish the python coding according to the requirement by the April First week
- Need to develop the webpage by the end of the April
- Need to Apply TensorFlow saved models of the trained state-ofthe-art CNN models.
- Need to TensorFlow saved models of the tuned CNN models

Any Questions

- Is they achieved user requirements or not?
- All the State of art of models performed and Hyper tuned or not?

THANKYOU