HEMATICS-I

Prof. C. Nahak,

Prof. J. Kumar

Prof. S. Kumar,

ENGINEERING MATHEMATICS – I (3+0)

Course Developer

Prof. C. Nahak, Prof. J. Kumar & Prof. S. Kumar

Mathematics Department, IIT Kharagpur, Kharagpur 721 302)

AgriMoon App

App that helps the students to gain the Knowledge about Agriculture, Books, News, Jobs, Interviews of Toppers & achieved peoples, Events (Seminar, Workshop), Company & College Detail and Exam notification.

AgriVarsha App

App that helps the students to All Agricultural Competitive Exams IBPS-AFO, FCI, ICAR-JRF, SRF, NET, NSC, State Agricultural exams are available here.

Index

Lesson Name	Page No
Module 1: Differential Calculus	
Lesson 1: Rolle's Theorem, Lagrange's Mean Value Theorem,	5-13
Cauchy's Mean Value Theorem	
Lesson 2: Taylor's Theorem / Taylor's Expansion, Maclaurin's	14-19
Expansion	
Lesson 3: Indeterminate forms ; L'Hospital's Rule	20-29
Lesson 4: Limit, Continuity of Functions of Two Variables	30-46
Lesson 5: Partial and Total Derivatives	47-61
Lesson 6: Homogeneous Functions, Euler's Theorem	62-68
Lesson 7: Composite and Implicit functions for Two Variables	69-77
Lesson 8: Derivative of Higher Order	78-84
Lesson 9: Taylor's Expansion for Function of Two Variables	85-90
Lesson 10: Maximum and Minimum of Function of Two Variables	91-96
Lesson 11: Lagrange's Multiplier Rule / Constrained Optimization	97-104
Lesson 12: Convexity, Concavity and Points of Inflexion	105-111
Lesson 13: Curvature	112-122
Lesson 14: Asymptotes	123-132
Lesson 15: Tracing of Curves	133-144
Module 2: Integral Calculus	
Lesson16: Improper Integral	145-152
Lesson17. Test for Convergence	153-163
Lesson 18: Rectification	164-174
Lesson 19: Volume and Surface of Revolution	175-185
Lesson 20: Double Integration	186-196
Lesson 21: Triple Integration	197-204
Lesson 22: Area & Volume using Double and Triple Integration	205-213
Lesson 23: Gamma Function	214-222
Lesson 24: The Beta Function	223-228
Module 3: Ordinary Differential Equations	
Lesson 25: Introduction	229-233
Lesson 26: Differential Equations of First Order	234-239
Lesson 27: Linear Differential Equation of First Order	240-245
Lesson 28: Exact Differential Equations of First Order	246-251
Lesson 29: Exact Differential Equations : Integrating Factors	252-258
Lesson 30: Linear Differential Equations of Higher Order	259-264
Lesson 31: Linear Differential Equations of Higher Order	265-270
Lesson 32: Linear Differential Equations of Higher Order (Cont.)	271-276

Lesson 33: Method of Undetermined Coefficients	277-282
Lesson 34: Method of Variation of Parameters	283-288
Lesson 35: Equations Reducible to Linear Differential Equations	289-294
with Constant Coefficient	
Lesson 36: Methods for Solving Simultaneoous Ordinary Differential	295-300
Equations	
Lesson 37: Series Solutions about an Ordinary Point	301-306
Lesson 38: Series Solutions about an Ordinary Points (Cont.)	307-312
Lesson 39: Series Solutions about a Regular Singular Point	313-318
Lesson 40: Series Solutions about a Regular Singular Point (Cont)	319-324
Module 4: Vector Calculus	
Lesson 41: Introduction	325-332
Lesson 42: Gradient and Directional Derivatives	333-337
Lesson 43: Divergence and Curl	338-341
Lesson 44: Line Integral	342-347
Lesson 45: Green's Theorem in the Plane	348-352
Lesson 46: Surface Integral	353-357
Lesson 47: Stokes's Theorem	358-362
Lesson 48: Divergence Theorem of Gauss	363-367

Lesson 1

Rolle's Theorem, Lagrange's Mean Value Theorem , Cauchy's Mean Value Theorem

1.1 Introduction

In this lesson first we will state the Rolle's theorems, mean value theorems and study some of its applications.

Theorem 1. 1 [Rolle's Theorem]: Let f be continuous on the closed interval [a,b] and differentiable on the open interval (a,b). If f(a)=f(b), then there exists at least one number c in (a,b) such that f'(c)=0.

Proof: Assume f(a) = f(b) = 0. If f(a) = f(b) = k and k = 0, then we consider f(x) - k instead of f(x). Since f(x) is continuous on [a,b] it attains its bounds: Let M and m be both maximum and minimum of f(x) on [a,b]. If M = m, then f(x) = m is throughout i.e., f(x) is constant on $[a,b] \Rightarrow f'(x) = 0$ for all x in [a,b]. Thus \exists at least one c such that f'(c) = 0. Suppose $M \ne m$. If f(x) varies on (a,b) then there are points where f(c) > 0 or points where f(c) < 0. Without loss of generality assume M > 0 and the

function takes the maximum value at x = c, so that f(c) = M. It is to be noted that if c = a, f(c) = f(a) = 0 = f(b), which is a contradiction. Now as f(c) is the maximum value of the function, it follows that $f(c + \Delta x) - f(c) \le 0$, both when $\Delta x > 0$ and $\Delta x < 0$.

Hence,

$$\frac{f(c + \Delta x) - f(c)}{\Delta x} \le 0$$
when $\Delta x > 0$

$$\frac{f(c+\Delta x)-f(c)}{\Delta x} \ge 0$$

when $\Delta x < 0$. Since it is given that the derivative at x = c exists, we get $f'(c) \le 0$ when $\Delta x > 0$ and $f'(c) \ge 0$ when $\Delta x < 0$. Combining the two inequalities we have, f'(c) = 0.

Note: Rolle's theorem shows that b/w any two zero's of a function f(a) there exists at least one zero o f(x) i.e., f(a) = f(b) clearly f is continous on [-1,1] **Example 1:** Verify the Roll's theorem for $f(x) = x^2$ for all $x \in [-1,1]$.

Solution:

(i) f(1) = f(-1) = 1, (ii) f is differentiable on [-1,1], so all conditions of Roll's theorems are satisfying. Hence f'(c) = 2c = 0 implies c = 0 and $c \in (-1,1)$.

Example 2:
$$f(x) = 1 - |x|$$
 in $[-1,1]$.

Solution:

f(-1) = f(1) = 0, f is continuous. But f(x) is not differentiable at x = 0.

Note that $f'(x) \neq 0$, for which f(x) is differentiable. As f'(x) = -1, for x > 0

and
$$f'(x) = 1$$
, for $x < 0$.

Example 3: Show that the equation $3x^5 + 15x - 8 = 0$, has only one real root

All About Agriculture...

Solution:

 $f(x) = 3x^5 + 15x - 8$ is an odd degree polynomial, hence it has at least one real root as complex roots occurs in pair.

Suppose \exists two real roots x_1, x_2 such that $x_1 < x_2$, then on $[x_1, x_2]$, all properties of Roll's theorem satisfied, hence $\exists c \in (x_1, x_2)$, such that f'(c) = 0,

But $f'(x) = 15x^4 + 15 = 15(x^4 + 1) > 0$, for all x, a contradiction to Rolle's theorem. Hence the equation has only one real root.

1.2. Mean Value Theorems

Theorem 1.2 [Lagrange's Mean Value Theorem]: If a function f(x) is continuous on [a,b], differentiable (a,b), then there exists at least one point c, a < c < b such that f(b) - f(a) = f'(c)(b-a). Hence Lagrange's mean value theorem can be written as

$$f(b) - f(a) = hf'(a + \theta h)$$
, where $h = b - a$; $0 \le \theta \le 1$.

Geometrical Representation: If all points of the arc AB there is a tangent line, then there is a point C between A and B at which the tangent is parallel to the chord connecting the points A and B.

1.2.1 Cauchy's Mean Value Theorem

Cauchy's mean value theorem, also known as the extended mean value theorem, is the more general form of the mean value theorem.

Theorem 1.2 [Cauchy's Mean Value Theorem]: It states that if functions f and g are both continuous on the closed interval [a,b], and differentiable on the

open interval (a,b) and $g(a) \neq g(b)$ then there exists some $c \in (a,b)$, such

that

$$\frac{f'(c)}{g'(c)} = \frac{f(b)-f(a)}{g(b)-g(a)}$$

Note 1: Cauchy's mean value theorem can be used to prove L'Hospital's rule. The mean value theorem (Lagrange) is the special case of Cauchy's mean value theorem when g(t) = t.

Note 2: The proof of Cauchy's mean value theorem is based on the same idea as the proof of the mean value theorem

1.2.2 Another form of the statement: If f(x) and g(x) are derivable in

[a,a+h] and $g'(x) \neq 0$ for any $x \in [a,a+h]$, then there exists at least one number $\theta \in (0,1)$ such that

$$\frac{f(a+h)-f(a)}{g(a+h)-g(a)} = \frac{f^{'}(a+\theta h)}{g^{'}(a+\theta h)} \quad (0 < \theta < 1)$$

Example 4: Write the Cauchy formula for the functions $f(x) = x^2$, $g(x) = x^3$ on [1,2].

Solution:

Clearly fand g are continous and diff. on [1,2] $g'(x) = 3x^2 = 0$ iff

$$x = 0, 0 \in [1,2].$$
 $f'(x) = 2x.$ Hence $g(1) \neq g(2)$

$$\frac{f(2)-f(1)}{g(2)-g(1)} = \frac{f'(c)}{g'(c)}.$$

i.e.,
$$\frac{4-1}{8-1} = \frac{2c}{3c^2}$$
 implies $\frac{3}{7} = \frac{2}{3c}$, so $c = \frac{14}{9}$.

1.2.3 The Intermediate Value Theorem It states the following: If y = f(x) is continuous on [a,b], and N is a number between f(a) and f(b), then there is a $c \in [a,b]$ such that f(c) = N.

1.2.4 Applications of the Mean Value Theorem to Geometric properties of Functions.

Let f be a function which is continuous on a closed inteval [a,b] and assume f

has a derivative at each point of the open interval (a, b). Then we have

- 1. (i) If f'(x) > 0 for all $x \in (a,b)$, f is strictly increasing on [a,b].
- 2. (ii) If f'(x) < 0 for all $x \in (a,b)$, f is strictly decreasing on [a,b].
- 3. (iii) If f'(x) = 0 for all $x \in (a,b)$, f is constant.

Intermediate value Theorem for Derivatives: If f'(x) exists for $a \le x \le b$, with $f'(a) \ne f'(b)$ then for any number d between f'(a) and f'(b) there is a number a < c < b where f'(c) = d.

Application: If f'(x) exists with $f'(x) \neq 0$, on any interval then f has a differentiable inverse, there.

Converse of Rolle's theorem: - (need not true).

Example 1.5 Let f(x) be continuous on [a,b] and differentiable (a,b). If $\exists c \in (a,b)$ such that f'(c) = 0, does it follow that f(a) = f(b)?

Solution:

No: Take for example $f(x) = x^2$ on [-1,2], f'(x) = 2x = 0 implies x = 0.

But f(-1) = 1 and f(2) = 4.

Example 1.6 Show that $|\sin x - \sin y| \le |x - y|$

Solution:

Let $f(t) = \sin t$ on [y, x], By mean value theorem $\sin x - \sin y = f'(c)(x - y)$,

$$\mathrm{But} f'(t) = \mathrm{cost},$$
 and $|\mathrm{cost}| \leq 1,$ for all t . Hence

$$|\sin x - \sin y| = |f'(c)(x - y)| \le |x - y|.$$

Example 1.7 Show that $\tan^{-1} x_2 - \tan^{-1} x_1 < x_2 - x_1$, for all $x_2 > x_1$.

Solution:

Let $f(x) = \tan^{-1}x$ on $[x_1, x_2]$. By mean value theorem $\tan^{-1}x_2 - \tan^{-1}x_1$

$$f'(c)(x_2 - x_1) = \frac{1}{1+c^2}(x_2 - x_1)$$
 but $\frac{1}{1+c^2} < 1$ for all c. Hence the results.

Questions: Answer the following question.

1. Verify the truth of Rolle's theorem for the functions

(a)
$$f(x) = x^2 - 3x + 2$$
 on [1,2]

(b)
$$f(x) = (x-1)(x-2)(x-3)$$
 on [1,3]

(c)
$$f(x) = \sin x$$
 on (a) $[0, \pi]$

- 2. The function $f(x) = 4x^3 + x^2 4x 1$ has roots 1 and -1. Find the root of the derivative f'(x) mentioned in Rolle's throrem.
- 3. Verify Lagrange's formula for the function $f(x) = 2x x^2$ on [0,1].
- 4. Apply Lagrange theorem and prove the inequalities

(i)
$$e^x \ge 1 + x$$
 (ii) $\ln(1+x) < x \ (x > 0)$

(iii)
$$b^n - a^n < nb^{n-1}(b-a)$$
 for $(b > a)$

5. Using Cauchy's mean value theorem show that $\lim_{x\to 0} \frac{\sin x}{x} = 1$

Keywords: Rolle's Theorem, Lagrange's and Cauchy's mean value; L'Hospital's rule; Intermediate value.

References

Thomas, W. Finny. (1998). Calculus and Analytic Geometry, 6th Edition, Publishers, Narsa, India.

R. K. Jain, and Iyengar, SRK. (2010). Advanced Engineering Mathematics, 3 rd Edition Publishers, Narsa, India.

Widder, D.V. (2002). Advance Calculus 2nd Edition, Publishers, PHI, India.

Piskunov, N. (1996). Differential and Integral Calculus Vol I, & II, Publishers, CBS, India.

Suggested Readings

Tom, M. Apostol. (2003). Calculus, Volume II Second Editions, Publishers, John Willey & Sons, Singapore.

All About Agriculture...

Lesson 2

Taylor's theorem / Taylor's expansion, Maclaurin's expansion

2.1 Introduction

In calculus, Taylor's theorem gives us a polynomial which approximates the function in terms of the derivatives of the function. Since the derivatives are usually easy to compute, there is no difficulty in computing these polynomials.

A simple example of Taylor's theorem is the approximation of the exponential function e^x near x = 0.

$$e^x \approx 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^n}{n!}$$

The precise statement of the Taylor's theorem is as follows:

Theorem 2.1: If $n \ge 0$ is an integer and f is a function which is n times continuously differentiable on the closed interval [a,x] and n+1 times differentiable on the open interval (a,x), then

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a)$$

$$+\frac{f^{(2)}(a)}{2!}(x-a)^2+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^n+R_n(x)$$

Here, n! denotes the factorial of n, and $R_n(x)$ is a remainder term, denoting the difference between the Taylor polynomial of degree n and the original function. The remainder term $R_n(x)$ depends on x and is small if x is close enough to a.

Several expressions are available for it. The Lagrange form is given by

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1} = a + \theta(x-a)$$

where $0 < \theta < 1$.

All About Agriculture...

If we put a = 0, Taylor's formula reduces to Maclaurin's formula.

where ξ lies between α and x.

Notes

- In fact, the mean value theorem is used to prove Taylor's theorem with the Lagrange remainder term.
- The Taylor series of a real function f(x) that is infinitely differentiable in a neighborhood of a real number a, is the power series of the form

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

- In general, a function need not be equal to its Taylor series, since it is possible that the Taylor series does not converge, or that it converges to a different function.
- However, for some functions f(x), one can show that the remainder term $R_n(x)$ approaches zero as n approaches ∞ . Those functions can be expressed as a Taylor series in a neighbourhood of the point a and are called analytic.

Example 2.1 Show that $\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$

Solution:

Here $f(x) = \sinh x$, $f'(x) = \cosh x$, So

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \cdots$$

$$f(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$$

$$R_n(x) = \frac{h^n}{n!} f^{(n)}(a + \theta h)$$
. But for $a = 0$ and $h = x$

$$|R_n(x)| = |\frac{x^n}{n!} f^{(n)}(\theta x)|$$

Taylor's theorem / Taylor's expansion, Maclaurin's expansion

$$\lim_{n\to\infty}|R_n|=\lim_{n\to\infty}|\frac{x^n}{n!}||\cosh(\theta x)|=0$$

Example 2.2. Find the Taylor series expansion of $\frac{1}{x^2-4}$

Solution:
$$f(x) = \frac{1}{x^2-4} = \frac{1}{(x+2)(x-2)}$$

$$= \frac{A}{x+2} + \frac{B}{x-2}$$

 $AGRIM^{=-\frac{1}{8(1+\frac{x}{2})} + \frac{1}{-8(1-\frac{x}{2})}}$

$$= -\frac{1}{8}(1 + \frac{x}{2})^{-1} - \frac{1}{8}(1 - \frac{x}{2})^{-1} + 1$$

for $\left|\frac{x}{2}\right| < 1$, we have

$$= -\frac{1}{8} \left[1 - \frac{x}{2} + (-\frac{x}{2})^2 + (-\frac{x}{2})^3 \cdots \right]$$

$$-\frac{1}{8}\left[1+\frac{x}{2}+(\frac{x}{2})^2+(\frac{x}{2})^3\cdots\right]$$

$$=-\frac{1}{8}[2+(\frac{x}{2})^2+\cdots]$$

Example 2.3: Find $f^{(100)}(0)$ if $f(x) = e^{x^2}$

Ans:
$$f^{(100)}(0) = \frac{100!}{50!}$$

Questions: Answer the following questions.

- 1. Expand in power of x-2 of the polynomial $x^4-5x^3+5x^2+x+2$.
- 2. Expand in power of x+1 of the polynomial $x^5 + 2x^4 x^2 + x + 1$.
- 3. Write Taylor's formula for the function $y = \sqrt{x}$ when a = 1, n = 3.
- 4. Write the Maclaurin formula for the function $y = \sqrt{1+x}$ when n = 2.
- 5. Using the results of above problem, estimate the error of the approximate equation $\sqrt{1+x} \approx 1 + \frac{1}{2}x \frac{1}{8}x^2$ when x = 0.2.
- 6. Write down the Taylor's expansion for the function $f(x) = \sin x$ about the point $a = \frac{\pi}{4}$ with n = 4.
- 7. Applying Taylor's theorem with remainder prove that $1 + \frac{x}{2} \frac{x^2}{8} < \sqrt{1+x} < 1 + \frac{x}{2}$ if x > 0.
- 8. Applying Maclaurin's theorem with remainder expand
 - (i) $\ln(1+x)$ (ii) $(1+x)^m$.

Keywords: Taylor's Formula, Taylor's Series, Maclaurin Formula and Series.

References

W. Thomas Finny (1998). Calculus and Analytic Geometry, 6th Edition, Publishers, Narsa, India.

R. K. Jain, and Iyengar, SRK. (2010). Advanced Engineering Mathematics, 3 rd Edition Publishers, Narsa, India.

Widder, D.V. (2002). Advance Calculus 2nd Edition, Publishers, PHI, India.

Piskunov, N. (1996). Differential and Integral Calculus Vol I, & II, Publishers, CBS, India.

Suggested Readings

Tom M. Apostol. (2003). Calculus, Volume II Second Editions, Publishers, John Willey & Sons, Singapore.

All About Agriculture...