Assignment 1

Li Yueheng s2306706

2022.1.24

Problem 1

The characteristic function of W_t is $f(s) = e^{-s^2t/2}$. Since $E[W_t^4] = f^{(4)}(0)$, consider the Taylor expansion $f(s) = 1 - \frac{1}{2}ts^2 + \frac{1}{8}t^2s^4 + \dots$ We find that $\frac{1}{8}t^2 = \frac{f^{(4)}(0)}{4!}$, i.e. $E[W_t^4] = f^{(4)}(0) = 3t^2$. Since p(x), the probability density function of W_t is an even function while x^5 is an odd function, $E[W_t^5] = \int_{\mathbb{R}} x^5 p(x) dx = 0$.

Problem 2

A forward contract is a contract between two parties agreeing to buy or sell an asset at a certain price by a certain date.

A call option is the right to buy an asset at a certain price within an expiration date.

The fundamental difference between the two is that forward contracts are obligatory, while a call options are not.

Problem 3

$$\begin{split} &\int_{\mathbb{R}} exp\{-ax^2 + bx + c\}dx \\ &= \int_{\mathbb{R}} exp\{-a(x - \frac{b}{2a})^2 + (c + \frac{b^2}{4a})\}dx \\ &= \sqrt{\frac{\pi}{a}}exp\{\frac{b^2}{4a} + c\} \end{split}$$