Advanced Persistent Threats

Advanced Persistent Threats (APT)

- Usage of the term:
 - Originally (US Air force): well-funded, organized attack groups that have interest in data theft
 - Now: cybercrime directed at business and political targets
- "Advanced" = combining different kind of attacks
 - Multi-vector (vector = "path/method/scenario that can be exploited to break into an IT system")
 - Multi-stage
- "Persistent" = structured series of attacks with long-term goals
 - Requires stealthiness to avoid early detection
- Requires funding and planning
 - Criminal organizations with financial goals
 - Governments
- Example: Stuxnet

Stuxnet: Components

Source: The Stuxnet Worm. P Mueller & B. Yadegari.

Stuxnet: Attack Paths

Source: The Stuxnet Worm. P Mueller & B. Yadegari.

Equation Group

- "Equation" = name given by Kaspersky lab to a group of "threat actors" because they love encryption algorithms
- Identity unknown
 - Active since 2001, maybe 1996
 - Traces of them seen in several attacks in different countries
 - NSA?
- Developed and used complex attack platforms
 - Many zero-day attacks
 (zero-day = a vulnerability unknown to the software
 authors/users)
 - Probably also responsible for some of the Stuxnet components (although not its creators)

Lifecycle of an APT

Source: Wikipedia

2. Initial compromise

Other attack models (1)

"The Cyber Kill Chain" by Lockheed

With 'Hands on Keyboard' access, intruders accomplish their original goals

Other attack models (2)

■ MITRE ATT&CK matrix

https://attack.mitre.org/matrices/enterprise/

- Reconnaissance
- Resource Development
- Initial Access
- Execution
- •

Initial compromise

- Hardest step
 - Systems are protected against attacks from outside, but weak once you are in ("Eggshell principle")
 - Sensitive systems are isolated from the Internet ("air gap")
- We have seen some techniques in the past weeks
 - DNS cache poisoning
 - Web attacks (cross-site scripting, SQL injection, etc.)
 - Buffer overflows
 - •
- Human level is important: Social engineering!
- APTs often rely on zero-day attacks

Exfiltration

Source: Detecting and Preventing Data Exfiltration – Lancaster University

- Exfiltration traffic should be hidden or look innocent, so it is not noticed by admin or IDS
- Example: DNS tunneling (hiding data in DNS queries)

Evasion

- Requires knowledge of detection techniques used by the target system
- Possible techniques:
 - Slow attacks
 - Hide as normal network traffic
 - Encrypt payload
 - Detect VMs and honeypots! Could be a security expert analyzing you!
 - Delete log files
 - Manipulate the OS (e.g. the process list)
 - •

Lessons learned from APTs

- Requires multi-level defense
 - Deploy different detection and security techniques ("defense in depth")
 - Defend not only against attacks from outside but also inside
 - Monitor outgoing traffic, too
 - Regular training for employees, e.g., how to detect a phishing mail