Project: Online News Popularity

by Zhaofeng, Xiang, Weixin, Kushal and Gokul

Introduction

Our Topic: Online News Popularity

We are in Information Era

- Online news: a crucial channel for people to get updated information worldwide.
- Millions of differents news being updated online everyday.
- Important to know readers' preference of news.

Our Objective: Make Prediction For News Companies

- To make a prediction of the popularity of online news.
- We believe that our paper can be helpful for news companies to make strategies for attracting more viewers.

Our dataset:

The Online News Popularity dataset from UCI repository

https://archive.ics.uci.edu/ml/datasets/online+news+popular

Methodology

- Data and sample
- Description of Variables
- Data pre-processing
- Exploratory analytical methods
 - -Classification
 - -Regression
- Data visualization Analysis

Data and sample

- From UCI Machine learning repository, detailed data includes date, href details, positive/negative polarity of its over all post, sentimental polarity, title polarity, number of tokens in title, number of keywords, and so on.
- The dataset were published by Mashable (www.mashable.com) and the acquisition date was on January 8, 2015.

Descriptions of variables

This table lists these attributes by category.

Table 2: List of attributes by category.

Feature	Type (#)
Words	
Number of words in the title	number (1)
Number of words in the article	number (1)
Average word length	number (1)
Rate of non-stop words	ratio (1
Rate of unique words	ratio (1
Rate of unique non-stop words	ratio (1)
Links	W 10 E1
Number of links	number (1)
Number of Mashable article links	number (1)
Minimum, average and maximum n	umber
of shares of Mashable links	number (3)
Digital Media	
Number of images	number (1)
Number of videos	number (1)
Time	
Day of the week	nominal (1)
Published on a weekend?	bool (1)

Feature	Type (#)
Keywords	
Number of keywords	number (1)
Worst keyword (min./avg./max. shares)	number (3)
Average keyword (min./avg./max. shares)	number (3)
Best keyword (min./avg./max. shares)	number (3)
Article category (Mashable data channel)	nominal (1)
Natural Language Processing	5
Closeness to top 5 LDA topics	ratio (5)
Title subjectivity	ratio (1)
Article text subjectivity score and	0.0000000000000000000000000000000000000
its absolute difference to 0.5	ratio (2)
Title sentiment polarity	ratio (1)
Rate of positive and negative words	ratio (2)
Pos. words rate among non-neutral words	ratio (1)
Neg. words rate among non-neutral words	ratio (1)
Polarity of positive words (min./avg./max.)	ratio (3)
Polarity of negative words (min./avg./max.) Article text polarity score and	ratio (3)
its absolute difference to 0.5	ratio (2)

Target	Type (#)
Number of article Mashable shares	number (1)

- 61 (58 predictive attributes, 2 non-predictive, 1 goal field) numbers of attributes in our dataset.
- To generate these variables, we have date, href details, positive/negative polarity of its over all post, sentimental polarity, title polarity, number of tokens in title, number of keywords, the number of shares and so on.

Data Pre-processing

Raw data:

Incomplete,

Inconsistent,

Lacking in certain behaviors or trends

Errors!!!

Data pre-processing

Data Preprocessing

Refining: 7 channel catagories+several small topics

1	Channel	2 Channel	3 Channel								
Business'	Media	lifestyle Gadgets	'Entertainment' Media								
	Business	Marketing	Entertainn	nent							
	Small Business	How To		4 Channel	5 Channel		6 Channel			7 Channel	
	Paid Content	Apps & Softwa	are Social Media	Social Media	'Tech'	Tech	world	U.S.	Watercooler	Watercooler	
	Advertising Dev			Movies		Mobile		World		Gadgets	
	Music	Gaming		Marketing		Music		Mobile		U.S.	
	Startups Lifestyle			Media		Gaming		Gaming		Mobile	
	Marketing	U.S.		Music		Small Business		Small Business		Media	
	Mobile	Mobile				Paid Content		Movies		Movies	
	Gaming	Startups		Paid Content Gadgets				Gadgets	Music		
		Music Paid Content		Mobile		Media		Media		Marketing	
		Small Business		Startups		Marketing		Dev & Design		Startups	
		Conversations		Gaming		Movies		Apps & Software		Advertising	
		Sports				Startups		Advertising		Gaming	
		Photography				Advertising		Music		Apps & Software	
		Memes				How To		Startups		Paid Content	
		Advertising						Paid Content		Small Business	
		Movies								Dev & Design	

Data Preprocessing

Data preprocessing for regression (data reduction)

Data preprocessing for association (data reduction & data transformation)

Data preprocessing for classification (data discretization)

Data preprocessing for visualization (data scraping)

Exploratory Analytical Methods

Classification

Data Preprocessing for Classification

Feature Engineering to categorize Number of Shares to class labels 1, 2, 3 & 4.

Data Preprocessing for Classification (Contd.)

Data Cleansing for missing values and noise.

Scaling of attributes.

Data transformation using Principal Component Analysis (PCA) to select key attributes.

Why Classification Model - C5.0?

C4.5 has a better handling for both discrete and continuous attributes.

C4.5 algorithm prunes the tree after creation.

C5.0 is significantly faster than C4.5

C5.0 fetches similar results as C4.5 with considerably smaller decision trees.

Using Random Forest algorithm may lead to the problem of overfitting

Results of Classification Model - C5.0

Confusion Matrix for C5.0 Model

Reference				
Prediction	1	2	3	4
1	369	377	262	73
2	615	874	680	151
3	503	1172	1943	563
4	29	56	100	64

Results of Classification Model - C5.0 (Contd.)

ROC curve

Research Question

Does publication of certain data channel on weekends/weekdays have impact on sharing and popularity?

Exploratory Analytical Methods

Association

Association

```
Apriori
 ......
 Minimum support: 0.5 (4375 instances)
 Minimum metric (confidence): 0.9
 Number of cycles performed: 10
 Generated sets of large itemsets:
 Size of set of large itemsets L(1): 6
 Size of set of large itemsets L(2): 9
 Size of set of large itemsets L(3): 4
⊟Best rules found:

    n tokens content=t 6142 ==> n non stop words=t 6142 <conf:(1)> lift:(1) lev:(0) [22] conv:(22.46)

    n tokens content=t global subjectivity=t 6132 ==> n non stop words=t 6132 <conf:(1)> lift:(1) lev:(0) [22] conv:(22.43)

    global_sentiment_polarity=t 4452 ==> global_subjectivity=t 4448 <conf:(1)> lift:(1) lev:(0) [15] conv:(3.97)

  4. n_non_stop_words=t global_sentiment_polarity=t 4441 ==> global_subjectivity=t 4437 (conf:(1)> lift:(1) lev:(0) [15] conv:(3.96)

    n tokens content=t 6142 ==> global subjectivity=t 6132 <conf:(1)> lift:(1) lev:(0) [17] conv:(2.49)

    n_tokens_content=t n_non_stop_words=t 6142 ==> global_subjectivity=t 6132 <conf:(1)> lift:(1) lev:(0) [17] conv:(2.49)

    n_tokens_content=t 6142 ==> n_non_stop_words=t global_subjectivity=t 6132 <conf:(1)> lift:(1.01) lev:(0) [39] conv:(4.47)

    rate positive words=t 4658 ==> n_non_stop_words=t 4647 (conf:(1)> lift:(1) lev:(0) [6] conv:(1.42)

    global subjectivity=t rate positive words=t 4642 ==> n non stop words=t 4631 <conf:(1)> lift:(1) lev:(0) [5] conv:(1.41)

 10. global sentiment polarity=t 4452 ==> n non stop words=t 4441 <conf:(1)> lift:(1) lev:(0) [5] conv:(1.36)
 11. global_subjectivity=t global_sentiment_polarity=t 4448 ==> n_non_stop_words=t 4437 <conf:(1)> lift:(1) lev:(0) [5] conv:(1.36)
 13. global_sentiment_polarity=t 4452 ==> n_non_stop_words=t global_subjectivity=t 4437 <conf:(1)> lift:(1) lev:(0) [20] conv:(2.23)
 15. rate_positive_words=t 4658 ==> global_subjectivity=t 4642 <conf:(1)> lift:(1) lev:(0) [4] conv:(1.22)
 16. n_non_stop_words=t rate_positive_words=t 4647 ==> global_subjectivity=t 4631  <conf:(1)> lift:(1) lev:(0) [4] conv:(1.22)
 17. global subjectivity=t 8711 ==> n non stop words=t 8680 <conf:(1)> lift:(1) lev:(0) [0] conv:(1)
 18. num keywords=t global subjectivity=t 4396 ==> n non stop words=t 4378 <conf:(1)> lift:(1) lev:(-0) [-1] conv:(0.85)
 19. num keywords=t 4411 ==> n non stop words=t 4392 <conf:(1)> lift:(1) lev:(-0) [-2] conv:(0.81)
 20. n_non_stop_words=t 8718 ==> global_subjectivity=t 8680 <conf:(1)> lift:(1) lev:(0) [0] conv:(1)
```

- According to the association rules, we got top20 rules by using APRIORI method, we know that 'n_tokens_content' which means Number of words in the content usually come up with 'n_non_stop_words', which means Rate of non-stop words in the content.
- When a news data has 'n_tokens_content' attribute and 'global_subjectivity', which means Text subjectivity, it has high probability to show up with 'n_non_stop_words', which means Rate of non-stop words in the content.

Exploratory Analytical Methods

Regression

Linear Regression

shares =

```
55.8073 *
             n tokens title +
             n non stop words +
 -593.7402 *
  960.0803 *
             n non stop unique tokens +
   31.7819 *
             num hrefs +
  -47.5103 *
             num self hrefs +
   17.8001 *
             num imgs +
             average token length +
 -548.3959 *
   79.8234 *
             num keywords +
   -0.4242 *
             kw min avg +
   -0.1929 *
             kw max avg +
   1.6963 * kw avg avg +
   0.0264 *
             self reference min shares +
    0.0052 *
             self reference max shares +
   -0.0052 *
             self reference avg sharess +
 307.7646 *
             is weekend +
             global subjectivity +
 2732.4499 *
             global rate positive words +
-7578.1641 *
             rate positive words +
 1203.5637 *
  716.3292 *
             rate negative words +
             min positive polarity +
-1769.2139 *
             avg negative polarity +
-1307.9448 *
             abs title subjectivity +
  669.5334 *
 658.3899 *
             abs title sentiment polarity +
-1968.166
```

Videos doesn't matter. In the function, there are no attribute called 'num_videos', which is put into the dataset. It tells us that the number of video does not affect the number of shares, so that it does not show up in the equation.

Linear Regression

- The words in title do matter. In the model function, the coefficient value before the attribute 'n_token_title' is 55.8073, which means that it adds 55 new shares per 'n_token_title' increase one
- 'average_token_length' do harm to the shares. This attribute represents the average length of the words in the content. According to the equation above, the coefficient before this attribute is -548, which means that there are 548 shares lost per average length of the words in the content be added.

```
mw Residuals:
              10 Median
     Min
   -27963 -2277 -1204
## Coefficients: (2 not defined because of singularities)
                                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                             6.129e+86
                                                          0.032 0.974576
                                   1.954e+85
sw timedelta
                                  1.678e+00
                                              3.924e-01
                                                          4.275 1.91e-85 ***
## n_tokens_title
                                   1.125e+02
                                              2.9150+01
                                                          3.858 0.000114 ***
## n_tokens_content
                                   5.896e-81
                                              2.235e-01
                                                          2.638 0.008332 **
## n_unique_tokens
                                  3.354e+03
                                              1.924e+03
                                                          1.744 0.081228
## n non stop words
                                  -1.583e+83
                                              5.9100+03
                                                         -0.268 0.788858
## n_non_stop_unique_tokens
                                  -1.375e+03
                                                         -0.844 0.398852
                                              1.6300+03
## num_hrefs
                                  2.619e+01
                                                          3.906 9.38e-05 ***
## num_self_hrefs
                                  -6.159e+01
                                              1.7840+01
                                                          3.453 0.000556 ***
ew num_imgs
                                  1.1486+01
                                             8.9416400
                                                          1.284 0.199124
## num videos
                                  4.083e+00
                                              1.575e+01
                                                          0.259 0.795447
                                  -5.439e+02
                                                         -2.238 0.025219
## average token length
                                              2.430e+02
## num_keywords
## data_channel_is_lifestyle
                                  -9.580e+02
                                              3.952e+02
                                                         -2.424 0.015336
## data_channel_is_entertainment -1.076e+03
                                             3 5630103
                                                         -4.198 2.70e-05 ***
## data channel is bus
                                 -7.752e+02
                                              3.827e+02
                                                         -2.026 0.042790 *
## data channel is socmed
                                 -5.249e+02
                                              3.727e+02
                                                         -1.408 0.159039
## data_channel_is_tech
                                  -4.774e+02
                                              3.717e+02
                                                         -1.284 0.199020
## data_channel_is_world
                                  -3.136e+02
                                              3.784e+02
                                                          e.829 e.407209
## kw_min_min
                                  1.592e+00
                                              1.629e+00
                                                          0.977 0.328425
ss kw max min
                                  1.079e-01
                                             5.0350-02
                                                          2.144 0.032034
se kw ave min
                                  -4.935e-e1
                                              3.097e-01
                                                         -1.594 0.110971
sw kw_min_max
                                  -2.487e-83
                                              1.1770-03
                                                         -2.112 0.034674
se kw max max
                                  -2.459e-85
                                                          -0.042 0.966748
## kw_avg_max
                                  4.521e-05
                                              8.4810-04
                                                          0.053 0.957490
se kw min avg
                                  -3.641e-01
                                              7.565e-02
                                                         -4.813 1.49e-86 ***
se kw max avg
                                  -2.061e-01
                                             2.530e-02
                                                         -8.143 3.95e-16 ***
ss kw avg avg
                                  1.685e+00
                                              1.439e-01
                                                         11.707
                                                                 < 2e-16 ***
## self_reference_min_shares
                                   2.659e-02
## self_reference_max_shares
                                  5.879e-83
                                              4.083e-03
                                                          1,440 0,149849
## self_reference_avg_sharess
                                  -6 4230-03
                                             1 0446-03
                                                         -0 615 0 538330
                                                          1.009 0.312888
## weekday is monday
                                  2.655e+02
                                             2.631e+02
## weekday is tuesday
                                  -2.805e+02
                                              2.592e+82
                                                         -1.082 0.279135
## weekday_is_wednesday
                                  -1.198e+02
## weekday_is_thursday
                                  -2.918e+02
                                              2.597e+82
                                                         -1.124 0.261055
## weekday_is_friday
                                  -2.520e+02
                                              2.689e+02
                                                         -0.937 0.348792
                                                          1.187 0.235301
## weekday_is_saturday
                                  3.804e+02
                                              3.2050+02
BW weekday is sunday
## is_weekend
                                  -1.969e+85
                                                         -0.032 0.974376
## LDA_00
                                              6.129c+06
                                  -1.977e+85
## LDA_81
                                              6.129e+86
                                                         -0.032 0.974272
SE LDA 62
                                  -1.981e+85
                                             6.1290+85
                                                         -6.632 6.974213
W# LDA 03
                                 -1.973e+05
                                              6.129e+06
                                                         -0.032 0.974323
## LDA_84
                                  -1.973e+05 6.129e+06
                                                          -0.032 0.974322
## global_subjectivity
                                   2.497e+03
                                              8.504e+02
                                                           2.936 0.003322 **
## global_sentiment_polarity
                                   8.146e+02
                                              1.668e+03
                                                           0.489 0.625174
                                  -1.392e+84
## global_rate_positive_words
                                              7.1650+03
                                                          -1.943 0.052036
## global_rate_negative_words
                                   1.041e+02
                                              1.368e+04
                                                           0.008 0.993927
                                   2.024e+03
                                              5.775e+03
                                                           0.350 0.726025
## rate positive words
## rate_negative_words
                                   2.114e+03
                                              5.8210+03
                                                           0.363 0.716520
## avg positive polarity
                                  -1.685e+03
                                              1.366e+03
                                                          -1.233 0.217460
                                  -1.898e+03
                                              1.144e+03
                                                          -1.659 0.097057
## min_positive_polarity
## max_positive_polarity
                                   3.113e+02
                                              4.3110+02
                                                           0.722 0.470213
## avg negative polarity
                                  -1.707e+03
                                              1.258e+03
                                                          -1.356 0.175038
## min_negative_polarity
                                   8.207e+01
                                              4.5900+02
                                                           0.179 0.858083
                                  -1.787e+02
                                              1.0460+03
                                                          -0.171 0.864428
## max negative polarity
## title subjectivity
                                  -9.160e+01
                                              2.741e+02
                                                          -0.334 0.738249
## title_sentiment_polarity
                                   2.841e+82
                                              2.584e+82
                                                           0.815 0.414962
## abs title subjectivity
                                   5.557e+02
                                              3.640e+02
                                                           1.801 0.071634
## abs_title_sentiment_polarity
                                   6.199e+02 3.957e+02
                                                           1.567 0.117183
```

- R^2 and Adjusted R^2 are around 0.02, which indicate that the full models can explain extremely small part of data set.
- the coefficients of weekday_is_Sunday and weekday_is_Saturday is NA.
- variable weekday_is_Sunday: 2737
 variable weekday_is Saturday: 2453
 39644 observations, the information provided by these two variables is not enough, which can cause the singularity of matrix xTx
 The singularity of matrix xTx can cause the missing of some coefficients.

Principal Components Regression

- reducing dimensionality
- decreasing computational cost

```
## Importance of components:
                               PC1
                                         PC2
                         2.316e+05 1.073e+05 4.985e+04 4.748e+04 1.862e+04
## Proportion of Variance 7.628e-01 1.638e-01 3.533e-02 3.205e-02 4.930e-03
## Cumulative Proportion 7.628e-01 9.266e-01 9.620e-01 9.940e-01 9.990e-01
                                         PC7
                                                   PC8
                                                            PC9 PC10 PC11
## Standard deviation
                         6.582e+03 4.494e+03 2.842e+03 1.088e+03 496.1 453.2
## Proportion of Variance 6.200e-04 2.900e-04 1.100e-04 2.000e-05
## Cumulative Proportion 9.996e-01 9.999e-01 1.000e+00 1.000e+00
                          PC12 PC13 PC14 PC15 PC16 PC17 PC18 PC19
## Standard deviation
                         192.5 156.2 35.5 10.21 7.331 7.067 3.912 3.342
## Proportion of Variance 0.0
                                0.0 0.0 0.00 0.000 0.000 0.000 0.000
## Cumulative Proportion
                          PC20 PC21 PC22 PC23 PC24 PC25 PC26 PC27
## Standard deviation
                        2.039 1.625 0.813 0.502 0.4702 0.4385 0.4323 0.4302
## Proportion of Variance 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000
## Cumulative Proportion 1.000 1.000 1.000 1.000 1.0000 1.0000 1.0000 1.0000
                           PC28 PC29 PC30
                                              PC31 PC32 PC33
## Standard deviation
                         0.4278 0.4139 0.3914 0.3856 0.2903 0.2689 0.2555
## Proportion of Variance 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## Cumulative Proportion 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
                           PC35 PC36 PC37 PC38 PC39 PC40
## Standard deviation
                         0.2449 0.2373 0.2335 0.214 0.1641 0.1607 0.1559
## Proportion of Variance 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## Cumulative Proportion 1.0000 1.0000 1.000 1.000 1.0000 1.0000 1.0000
## Standard deviation
                         0.151 0.138 0.1277 0.1026 0.08898 0.07567 0.06863
## Proportion of Variance 0.000 0.0000 0.0000 0.00000 0.00000
## Cumulative Proportion 1.000 1.000 1.0000 1.0000 1.00000 1.00000 1.00000
                                            PC51
## Standard deviation
                         0.06665 0.04806 0.03905 0.03559 0.02914 0.02167
## Cumulative Proportion 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
## Standard deviation
                         0.01155 0.003939 4.214e-06 1.744e-11 1.744e-11
## Proportion of Variance 0.00000 0.000000 0.000e+00 0.000e+00 0.000e+00
## Cumulative Proportion 1.00000 1.000000 1.000c+00 1.000c+00 1.000c+00
```

seven principal components

- explain most variance.

seven four components to perform regression

Mean square error: 123200737.

Bad!

Is not better than simple linear regression.

(R² is only 0.007)

```
## Call:
## lm(formula = V8 ~ ., data = train)
## Residuals:
             10 Median
                          3Q Max
## -40724 -2284 -1654
                        -480 838749
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.358e+03 6.805e+01 49.350 < 2e-16 ***
## PC1
              7.744e-04 2.929e-04 2.644 0.00819 **
## PC2
              -4.804e-03 6.332e-04 -7.588 3.34e-14 ***
## PC3
             -8.746e-03 1.369e-03 -6.390 1.68e-10 ***
## PC4
             7.969e-03 1.448e-03 5.503 3.77e-08 ***
             -6.456e-03 3.710e-03 -1.740 0.08183 .
## PC5
             -8.859e-02 9.836e-03 -9.007 < 2e-16 ***
## PC6
## PC7
              1.352e-02 1.517e-02 0.891 0.37288
22 ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 11730 on 29725 degrees of freedom
## Multiple R-squared: 0.00731, Adjusted R-squared: 0.007076
## F-statistic: 31.27 on 7 and 29725 DF, p-value: < 2.2e-16
```

```
pca_pre<-predict(pca_fit,test)
MSE<-mean((pca_pre-test[,8])^2)
MSE # Used to compare different models</pre>
```

```
## [1] 123200737
```


Bad results

- Less information
- Collinearity

Ridge Regression

```
60 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept)
                                  -1.793861e+03
## timedelta
                                   1.802823e+00
## n tokens title
                                   1.110597e+02
## n_tokens_content
                                   4.317714e-01
## n unique tokens
                                   6.584633e+00
                                  -3.515134e+00
## n_non_stop_words
## n non stop unique tokens
                                   5.720222e+00
## num_hrefs
                                   2.660563e+01
## num_self_hrefs
                                  -6.335614e+01
## num imgs
                                   7.238677e+00
  num videos
                                   1.157819e+01
  average token length
                                  -1.589680e+02
                                   8.539575e+01
  num keywords
## data channel is lifestyle
                                  -1.090749e+03
## data channel is entertainment -1.237649e+03
## data channel is bus
                                  -1.164383e+03
  data_channel_is_socmed
                                  -5.030139e+02
  data_channel_is_tech
                                  -4.754283e+02
  data channel is world
                                  -5.887924e+02
  kw min min
                                   1.603253e-01
## kw max min
                                   2.971068e-03
## kw avg min
                                   1.912590e-01
  kw min max
                                  -2.865725e-03
   kw max max
  kw avg max
                                   1.279919e-03
  kw min avg
                                  -1.458753e-01
                                  -1.201892e-01
  kw max avg
  kw avg avg
                                   1.169409e+00
                                   1.0464046-02
  self reference min shares
## self reference max shares
                                   5.439722e-03
## self reference avg sharess
                                  -1.336894e-03
## weekday is monday
                                   3.051687e+02
                                  -1.469474e+02
## weekday is tuesday
  weekday_is_wednesday
                                   6.803334e+01
## weekday_is_thursday
                                  -2.740554e+02
## weekday is friday
                                  -8.383964e+01
## weekday_is_saturday
                                   4.162125e+02
  weekday is sunday
                                  -4.634198e+01
## is weekend
                                   1.864841e+02
## LDA 00
                                   6.704297e+02
## LDA 01
                                  -1.523147e+02
## LDA 02
                                  -7,475333e+02
## LDA 03
                                   3.785326e+02
## LDA 04
                                  -1.157827e+02
## global subjectivity
                                   2.732672e+03
```

- -The magnitudes of the coefficients are like that from simple linear regression.
- -To achieve best models, we need to use stepwise methods to perform variable selections.
- -However, using stepwise methods may not solve the problem of multicollinearity and have high computation cost.
- Therefore, LASSO can be applied.

LASSO Regression

```
## 60 x 1 sparse Matrix of class "dgCMatrix"
## (Intercept)
                                  -2.328615e+03
## timedelta
                                   1.796363e+00
## n tokens title
                                   1.063043e+02
## n tokens content
                                   3.517763e-01
## n unique tokens
                                   3.069667e+00
## n non stop words
## n non stop unique tokens
## num hrefs
                                   2.595584e+01
## num self hrefs
                                  -5.603344e+01
## num imgs
                                   5.839297e+00
## num videos
                                   9.453074e+00
## average token length
                                  -1.450603e+02
## num keywords
                                   7.032808e+01
## data channel is lifestyle
                                  -7.007533e+02
## data channel is entertainment -9.873508e+02
## data channel is bus
                                  -6.061569e+02
## data channel is socmed
## data channel is tech
                                  -4.779642e+01
## data channel is world
                                  -1.826990e+02
## kw min min
## kw max min
                                   1.492264e-02
```

- -The mean square error of the prediction is 121612240, which is smaller than that from ridge regression.
- -So far, lasso performs the best prediction. From the result, we can see LASSO performs variable selections and disregard 12 variables.

Data visualization Analysis

Sunday Monday			Tuesday		Wednesday		Thursday		Friday		Saturday		
Channel		Channel		Channel		Channel		Channel		Channel		Channel	
How To		Dev & Design		How To	ř	Sports	1	Conversations	*3	Dev & Design	٠	Mobile	ř
Advertising		Small Business	٠	Dev & Design	ř	Conversations	٠	Dev & Design	*	Sports	٠	Dev & Design	
Media		How To		Small Business	,	Small Business	•	Small Business		Photography		How To	,
Startups		Apps & Software		Gaming		How To		How To		Small Business	٠	Media	,
Dev & Design		Memes		Marketing		Dev & Design		Marketing		How To		Advertising	,
		Gadgets	٠	Media		Apps & Software	•	Advertising		Media		Music	
Lifestyle		Marketing	٠	Lifestyle	ı	Marketing	•	Media		Startups	•	Apps & Software	
Marketing		Mobile		U.S.		Startups	٠	Apps & Software		Advertising		Startups	
Gaming		Startups		Apps & Software		Media	•	Movies	•	Marketing	•	Gaming	
Apps & Software		Media			Ī	Movies	•	Startups		Movies		Small Business	
U.S.		Paid Content		Startups		U.S.	•	Gaming		Mobile	•		
Mobile		Movies		Mobile	i	Advertising		Gadgets		Apps & Software		Marketing	i
Paid Content		Gaming		Advertising		Gadgets Paid Content	•	Music		Gaming	:	Paid Content	i
Music		U.S.		Music				Paid Content		Lifestyle Gadgets		Movies	•
World		Lifestyle		Movies		Lifestyle Mobile	1	U.S.		U.S.		Gadgets	•
		Advertising		Gadgets		World	ı	Mobile		Paid Content	-	Lifestyle	1
Movies		Music		Entertainment		Gaming		Lifestyle		Music		Entertainment	١
Social Media		World		Paid Content		Business		World		Business		World	
Business		Business		Social Media		Music		Social Media		Entertainment		Social Media	
Gadgets		Entertainment		World		Entertainment	-	Entertainment		World		Watercooler	
Entertainment		Social Media	Ξ	Business		Social Media		Business		Social Media		Tech	
Tech		Watercooler		Tech		Watercooler		Tech		Watercooler		Business	
Watercooler		Tech	Ī	Watercooler		Tech		Watercooler		Tech		U.S.	

This graph describes every topic's popularity sorted by the date, we can see that Tech is the most popular topic in Monday, Wednesday, Friday, and the Watercooler is popular in Sunday, Tuesday, Thursday. the lowest 2 topics is conversations and Dev&Design topics.

Then, we find that the top 2 topics in a week expect Saturday is Tech and WaterCooler, so we want to find why they are popular in most of days. Because those are all news, so we can analyze the author according to these news to find out the reason.

We also find that the top2 news topic have more number of links and keywords in the news. Because more links will give readers more choice, readers can read more related article following their own hearts. Putting more keywords rather than meaningful words will save readers time.

Here, we sort all the topics in the dataset by the number of keywords, To increase the number of shares, companies need add more keywords into the Tech, watercooler, and Business topics' articles

Conclusion

Classification:

- Designed a model using C5.0 algorithm with 80:20 random sampling split for training and testing respectively.
- Handled feature-engineering methodology to convert the continuous to category target label, which was challenging and interesting.
- Even though, model's overall accuracy is less (41 %), other performance measures show that the model is performing better. Model is performing above the diagonal line in ROC curve. However, in future studies, proper pruning will improve the model's performance even better.

Regression:

- Employed three ways of regression, including linear regression, PCA regression, and Ridge and LASSO Regression to find a more precise model for predicting online news popularity.
- The results indicate that our best model is coming from Ridge and Lasso Regression since the mean square error of the prediction is 121612240.

Future work:

Based on our results, we recommend that future studies focus on refining the model by including more independent variables, extending the time interval, currently we only collected data for 2 years. We also suggest that future studies explore what factors influence news with particular topic.

Reference

Anon, (2017). [online] Available at: https://www.linkedin.com/pulse/online-news-popularity-trend-analysis-krunal-khatri/.

Archive.ics.uci.edu. (2017). UCI Machine Learning Repository: Online News Popularity Data Set. [online] Available at: http://archive.ics.uci.edu/ml/datasets/Online+News+Popularity#.

He Ren and Quan Yang, 'Predicting and Evaluating the Popularity of Online News', Standford University Machine Learning Report, 2015.

K. Fernandes, P. Vinagre and P. Cortez. A Proactive In-telligent Decision Support System for Predicting the Pop-ularity of Online News. Proceedings of the 17th EPIA 2015- Portuguese Conference on Artificial Intelligence, September, Coimbra, Portugal.

Thanks!