```
> ### A table of the 20 "standard" Jacobi primes to 10^5.mws
### i.e. those of the form 27*X^2 + 27*X + 7, the "level 0" Jacobi primes
```

All the *standard* Jacobi primes (i.e. $p = 27 X^2 + 27 X + 7$) up to 10^5 :

p p	а	b	r	и	$\mathit{ord}_p(r)$	$ord_p(u)$	$ord_p \left(\frac{1}{3} \left(p-1\right)\right)!$	$ord_p\left(\frac{1}{6} \langle p-1 \rangle\right)!$
7	2	1	1	-5	1	(3)	(3)	1
61	-7	2	1	13	1	(3)	(3)	$(2)^2 (3)$
331	-16	5	1	31	1	(3)	(3)	(2) (3)
547	20	7	1	-41	1	(3)	(3)	(2) (3)
1951	38	13	1	-77	1	(3)	(3)	(3)
2437	-43	14	1	85	1	(3)	(3)	(2) ²
3571	-52	17	1	103	1	(3)	1	(2) (3)
4219	56	19	1	-113	1	(3)	1	(2) (3)
7351	74	25	1	-149	1	(3)	(3)	(3)
8269	-79	26	1	157	1	(3)	(3)	$(2)^2 (3)$
9241	83	28	1	-167	1	(3)	(3)	(2) ²
10267	-88	29	1	175	1	(3)	(3)	(2) (3)
13669	101	34	1	-203	1	(3)	1	$(2)^2 (3)$
23497	-133	44	1	265	1	(3)	(3)	(2) ²
25117	137	46	1	-275	1	(3)	1	$(2)^2 (3)$
55897	-205	68	1	409	1	(3)	1	$(2)^2 (3)$
60919	-214	71	1	427	1	(3)	(3)	(2) (3)
74419	236	79	1	-473	1	(3)	(3)	1
89269	-259	86	1	517	1	(3)	1	$(2)^2 (3)$
92401	263	88	1	-527	1	(3)	(3)	(2) ²

The following are easily eatablished:

1. If
$$\left(\frac{1}{3} \mid \{p-1\}\right)! = 1 \pmod{p}$$
 then $ord_p\left(\frac{1}{6} \mid \{p-1\}\right)! = 3,6$ and 12 only, and all possible order-values occur. In particular, $\left(\frac{1}{3} \mid \{p-1\}\right)!$ and $\left(\frac{1}{6} \mid \{p-1\}\right)!$ are never simultaneously $1 \pmod{p}$.

2. If $ord_p\left(\frac{1}{3} \mid \{p-1\}\right)! = 3$ then $ord_p\left(\frac{1}{6} \mid \{p-1\}\right)! = 1,2,3,4,6$ and 12 only, and all possible order-values occur.