Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Южно-Уральский государственный университет» (Национальный исследовательский университет) Институт естественных и точных наук Факультет математики, механики и компьютерных технологий Кафедра математического и компьютерного моделирования

ОТЧЕТ ПО ПРЕДДИПЛОМНОЙ ПРАКТИКЕ ЮУрГУ-010400.68.2017.049.001 КР

Руководители	ь от предприятия,
к.фм.н., доц	(ент
•	T.A. <i>М</i> акаровских
« »	2017 г.
Автор проект	`a
студент груп	пы ЕТ-224
371 13	В.А. Безбородов
<u>«</u> »	2017 г.
Проект защи	щен
с оценкой	
	<u> </u>
« »	2017 г.

Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Южно-Уральский государственный университет» (Национальный исследовательский университет) Институт естественных и точных наук Факультет математики, механики и компьютерных технологий Кафедра математического и компьютерного моделирования

УТВЕРЖДА	Ю
Заведующий	кафедрой, д.фм.н.,
доцент	
	Загребина С.А.
« »	2017 г.

ЗАДАНИЕ

на педагогическую практику студента

<u>Безбородова Вячеслава Александровича</u>

<u>Группа <u>ET-224</u></u>

- 1. Тема работы: Практические занятия по дискретной математике.
- 2. Срок сдачи студентом законченной работы « » 2017 г.
- 3. Исходные данные к работе
 - 3.1. Учебное пособие по комбинаторике и теории графов [27];
 - 3.2. Издательская система компьютерной верстки LATEX.
- 4. Перечень вопросов, подлежащих разработке
 - 4.1. Изучить педагогический опыт преподавания дискретной математики;
 - 4.2. Изучить опыт и систему воспитательной работы преподавателя;
 - 4.3. Овладеть методикой подготовки и проведения практического занятия;

- 4.4. Обучить студентов методам мышления, характерным для дискретной математики, основным понятиям комбинаторики и теории графов;
- 4.5. Развить навыки алгоритмического мышления;
- 4.6. Разработка отчетной документации (дневника), в котором отражены основные этапы работы (по дням).
- 5. Перечень графического материала
 - 5.1. Бинарное дерево 1 л.
 - 5.2. Граф для нахождения минимального остовного дерева 1 л.
 - 5.3. Граф для решения задачи единого среднего 1 л.
 - 5.4. Граф для нахождения кратчайшего пути 1 л.
 - 5.5. Граф для нахождения максимального потока в сети 1 л.
 - 5.6. Начальный поток 1 л.
 - 5.7. Поток 1 1 л.
 - 5.8. Поток 2 1 л.
 - 5.9. Поток 3 1 л.
- 5.10. Максимальный поток 1 л.

6. Календарный план

Наименование этапов	Срок выполнения	Отметка о
педагогической практики	этапов	выполнении
1. Сбор материалов и литературы по теме педагогической практики	01.02.2017 г.	
2. Проведение практических занятий		
Занятие 1	11.09.2016 г.	
Занятие 2	18.09.2016 г.	
Занятие 3	25.09.2016 г.	
Занятие 4	02.10.2016 г.	
Занятие 5	09.10.2016 г.	
Занятие 6	23.10.2016 г.	
Занятие 7	30.10.2016 г.	
Занятие 8	06.11.2016 г.	
Занятие 9	13.11.2016 г.	
Занятие 10	20.11.2016 г.	
Занятие 11	27.11.2016 г.	
Занятие 12	04.12.2016 г.	
Занятие 13	11.12.2016 г.	
Занятие 14	18.12.2016 г.	
3. Оформление дневника практики	19.12.2016 г.	
4. Проверка дневника практики руководителем, исправление замечаний	20.12.2016 г.	
5. Подготовка графического материала и доклада	21.12.2016 г.	
6. Защита педагогической практики	26.02.2017 г.	

7. Дата выдачи задания <u>«</u> »	2017 г.
Заведующий кафедрой	/Загребина С.А./
Руководитель работы	/Т.А. Макаровских/
Студент	/В.А. Безбородов/

ОГЛАВЛЕНИЕ

Введение	11
1 Симплекс-метод	13
1.1 Общее описание	13
1.2 Обычный симплекс-метод	15
1.3 Обратный симплекс-метод	16
2 Параллельный симплекс-метод	19
2.1 Параллельные вычисления	19
2.2 Распараллеливание симплекс-метода	21
2.3 Заключение	25
3 Язык программирования Julia	26
Заключение	28
ПРИЛОЖЕНИЕ А. Итоговая статистика	30
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	31

Министерство образования и науки Российской Федерации ФГАОУ ВО "Южно-Уральский государственный университет" (НИУ) Институт "Математика, механика и компьютерные технологии" Кафедра "Математическое и компьютерное моделирование"

ДНЕВНИК прохождения практики (преддипломная практика)

М.П.

1. Задание на практику

Цель практики:
Задачи практики:
Индивидуальное задание:
индивидуальное задание.

2. Календарный график прохождения практики

Дата	Наименование подразделения предприятия (учреждения)	Выполняемый вид работ	Рекомендации и замечания руководителя практикой от предприятия			

3. Помощь производству, научно-исследовательская или рационализаторская работа студента

Содержание выполненной работы	Итог, полученный эффект

4. Производственные экскурсии

Дата	Краткое содержание, выводы		

5. Характеристика работы практиканта предприятием (организацией)

Студент: <u>Безбородов Вячеслав Александрович</u>, группа <u>ET-224</u> Специальность: <u>Прикладная математика и информатика</u> (01.04.02)

		Oı	цен	ка				Oı	цен	ка		
	важности		[исполнения						
$N_{\underline{0}}$		да	нн	ой		T.C.	практикантом					
$ \Pi/\Pi $	ко		ете		ии	Компетенция	данной					
			вес				компетенции					
	1		жк		k		обвести кружи					
\vdash		ГЭ				D				<i></i>		
1	1	2	3	4	5	Владение статистическими методами и средствами	1	2	3	4	5	
\vdash						обработки экспериментальных данных						
						Способность готовить презентации, оформлять						
		_	_		_	научно-технические отчеты по результатам		_	_		_	
2	1	2	3	4	5	выполненной работы, публиковать результаты	1	2	3	4	5	
						исследований в виде статей и докладов на						
						научно-технических конференциях						
						Способность находить, обобщать, анализировать,						
						синтезировать и критически переосмысливать						
3	1	2	3	4	5	полученную научную, справочную, статистическую и	1	2	3	4	5	
						иную информацию (продолжение формирования						
						компетенции)						
						Способность обрабатывать и анализировать						
						результаты научно-исследовательской работы,						
						находить элементы новизны в разработке,						
4	1	2	3	4	5	представлять материалы для оформления патентов на	1	2	3	4	5	
						полезные модели, готовить к публикации научные						
						статьи и оформлять технич. отчеты						
						• •						
5	1	2	3	1	5	Способность представлять результаты проведенного	1	2	2	1	_	
3	1	2	3	4	3	исследования научному сообществу в виде статьи или	1	2	3	4)	
						доклада						
Ука	тижи	е, к	аки	1MV	і еще	компетенциями, не вошедшими в список, обладает студ	цент-1	пра	КΤИ	іка	нт и	
<u> </u>						оцените их	ı					
1	1	2	3	4	5		1	2	3	4	5	
2	1	2	3	4	5		1	2	3	4	5	
3	1	2	3	4	5		1	2	3	4	5	
Ука	ажит	e, i	как	ие (ещё к	омпетенции Вы хотели бы включить в список и оценит	е их в	в от	нон	шен	нии	
<u> </u>						данного практиканта:						
1												
2												
3												
* H	еобх	код	имо	0 0	бвест	и кружком только одну оценку от "1" - совершенно не в	ажно	ИЛ	И			

^{*} необходимо обвести кружком только одну оценку от "1" - совершенно не важно или совершенно не удовлетворен до "5" - очень важно или полностью удовлетворен.

Сведения о рецензенте:		
Ф.И.О.		
Должность		
Уч. звание ————————————————————————————————————		
Уч. степень		
	_	
		"расшифровка подписи"

Введение

Практика (преддипломная) предусмотрена как один из компонентов основной образовательной программы подготовки магистров.

Преддипломная практика в системе высшего образования является обязательным компонентом профессиональной подготовки. Практика предшествует написанию магистерской диссертации и является логической завершающей ступенью обучения после прохождения основных теоретических дисциплин.

Практика проводилась на базе Южно-Уральского государственного университета, руководитель практики: к.ф.-м.н., доцент Т.А. Макаровских.

Цели преддипломной практики:

- осмысление сущности и целостности педагогического процесса,
- подготовка к преподавательской деятельности в ВУЗе,
- овладение основами учебно-методической и воспитательной работы,
- формирование педагогических навыков и умений ведения практических занятий по дискретной математике.

Задачи практики:

- изучить педагогический опыт преподавания дискретной математики;
- изучить опыт и систему воспитательной работы преподавателя;
- овладеть методикой подготовки и проведения практического занятия.

Практика проводилась в период с 30.01.2017 по 26.02.2017.

Работа состоит из введения, 3 глав, заключения, 1 приложения и списка литературы. Объем работы составляет 33 страниц. Список литературы содержит 27 наименование.

В первой главе даются общие положения по педагогической практике магистров.

Во второй главе описывается план практических занятий.

В третьей главе приводится содержание всех проведенных практических занятий с краткими комментариями, самостоятельных работ и примеров решения типичных задач.

В заключении перечислены основные результаты прохождения педагогической практики.

1 Симплекс-метод

Линейное программирование (ЛП) является широко распространенной техникой решения оптимизационных задач различных областей науки. Сегодня используются два основных подхода к решению задач линейного программирования (ЗЛП) – симплекс-метод и методы внутренней точки. В случаях, когда необходимо решать семейства взаимосвязанных ЗЛП (целочисленное программирование, методы разложения, некоторые классы задач ЛП), симплекс-метод обычно более эффективен [11].

Возможность распараллелить симплекс-метод для решения ЗЛП рассматривалась с 1970-х гг., хотя первые попытки разработать практические реализации предпринимались только с начала 1980-х гг. Наиболее плодотворным для решения этой проблемы оказался период с конца 1980-х до конца 1990-х гг. Также было несколько экспериментов использования векторной обработки и ЭВМ с общей разделяемой памятью; подавляющее большинство реализаций строилось на мультипроцессорах с распределенной памятью и сетевых кластерах [11].

1.1 Общее описание

Симплекс-метод и его вычислительные требования удобнее обсуждать в контексте стандартной формы ЗЛП

$$c^{T}x \to \min$$

$$Ax = b$$

$$x \ge 0,$$
(1.1)

где $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$. Матрица A в (1.1) обычно содержит столбцы с единицами, соответствующими фиктивным переменным, возникающим при переводе ограничений-неравенств в равенства. Оставшиеся столбцы A соответствуют обычным переменным.

В симплекс-методе индексы переменных подразделяются на два подмножества: подмножество \mathcal{B} , соответствующее m базисным переменным x_B , и подмножество \mathcal{N} , соответствующее n-m небазисным переменным x_N . При этом базисная матрица B, составленная из соответствующих \mathcal{B} столбцов A, является невырожденной. Множество \mathcal{B} условно называют базисом. Соответствующие \mathcal{N} столбцы A формируют матрицу N. Компоненты c, соответствующие \mathcal{B} и \mathcal{N} , называют базисными c_B и небазисными c_N издержками соответственно [11].

Когда небазисные переменные нулевые, значения $\hat{b}=B^{-1}b$ базисных переменных соответствуют вершинам допустимого региона при условии, что они неотрицательны. Выражение $x_B+B^{-1}N=\hat{b}$, следующее из (1.1), позволяет убрать базисные переменные из целевой функции, которая становится равной $(c_N^T-c_B^TB^{-1}N)x_N+c_B^T\hat{b}$. Если все компоненты вектора альтернативных издержек $\hat{c}_N=c_N^T-c_B^TB^{-1}N$ неотрицательны, тогда текущий базис оптимален.

Если текущий базис неоптимален, на каждой итерации симплекс-метода для ввода в базис выбирается имеющая отрицательное значение альтернативной издержки небазисная переменная x_q . Увеличение этой переменной от нуля при выполнении условий (1.1) соответствует перемещению вдоль ребра допустимого региона в направлении уменьшения значения целевой функции. Направление этого ребра определяется соответствующим x_q столбцом \hat{a}_q при $\hat{N}=B^{-1}N$. При просмотре отношений компонентов вектора \hat{b} к соответствующим положительным компонентам \hat{a}_q находится первая базисная переменная, которая обнулится при росте x_q и, следовательно, шаг к следующей точке допустимого региона вдоль этого ребра.

Существует много стратегий выбора переменной x_q для ввода в базис. Первоначальное правило выбора переменной с наименьшей альтернативной издержкой известно как критерий Данцига [5]. Хотя, если компоненты \hat{a}_j намного превосходят компоненты \hat{c}_j , то только небольшое увеличение x_j возможно до обращения одной из базисных переменных в ноль. Альтернативные ценовые стратегии взвешивают альтернативную издержку путем деления на длину \hat{a}_j . Точная стратегия наиболее крутого ребра [10] вводит понятие весов $s_j = 1 + ||\hat{\alpha}_j||^2$, соответствующих длине шага при единичном изменении x_j . Практический (приближенный) метод наиболее крутого ребра [8] и страте-

гия Devex [13] вычисляют приближенное значение весов. При использовании этих подходов количество итераций, необходимых для решения ЗЛП на практике может быть оценено как O(m+n), и теоретически нет препятствий для достижения сложности $O(2^n)$.

Популярной техникой выбора выводимой из базиса переменной является процедура EXPAND [17]. Посредством небольшого расширения ограничений, эта стратегия часто позволяет выбрать выводимую переменную из числа возможных на основании численной стабильности.

Два главных варианта симплекс-метода соответствуют различным пониманиям того, какие данные требуются для определения шага к новой точке. Первый вариант – обычный симплекс-метод, в котором альтернативные издержки и направления всех ребер в текущей точке определяются прямо-угольной таблицей. В обратном симплекс-методе альтернативные издержки и направление выбранного ребра определяются путем решения систем с базисной матрицей B.

1.2 Обычный симплекс-метод

В обычном симплекс-методе матрица \hat{N} , правый вектор-столбец \hat{b} , альтернативные издержки \hat{c}_N и текущее значение целевой функции $f=c_B^T\hat{b}$ располагаются в виде таблицы следующей формы.

	\mathcal{N}	RHS
\mathcal{B}	\hat{N}	\hat{b}
	\hat{c}_N^T	$-\hat{f}$

На каждой итерации обычного симплекс-метода для перехода к новому базису к колонкам этой таблицы применяется процедура преобразований Жордана-Гаусса.

Выполнение симплекс-метода начинается с базиса B=E, в то время как в таблице симплекса записана матрица N. Это означает, что таблица является разреженной. Принято считать, что степень заполненности матрицы в процессе выполняемых преобразований такова, что нет необходимости

использовать разреженные структуры данных, поэтому обычный симплексметод часто реализуют без их использования.

Обычный симплекс-метод по природе своей численно нестабилен, поскольку использует длинную цепочку операций последовательного исключения переменных, выбирая колонку поворота согласно алгоритму, а не из соображений стабильности вычислений. Если алгоритм получает плохо обусловленные базисные матрицы, любая подпоследовательность таблицы, соответствующая хорошо обусловленному базису, скорее всего будет содержать численные ошибки, вызванные плохой обусловленностью на ранних этапах. Это может привести к такому выбору вводимой или выводимой переменной, что при точных вычислениях целевая функция не будет убывать монотонно, ограничения будут нарушены либо базисная матрица станет вырожденной. Для большей надежности необходимо отслеживать возникающие в таблице ошибки и, при необходимости, выполнять полный ее пересчет численно стабильным способом. Проверка ошибок может осуществляться сравнением обновленных альтернативных издержек со значением, полученным напрямую с использованием колонки поворота и базисных издержек. Поскольку операции с матрицей, обратной базисной, могут быть выполнены посредством использования соответствующих ячеек таблицы, вычисление колонки поворота напрямую и сравнение ее с ячейками таблицы может предоставить более надежный (но и более затратный) механизм проверки ошибок.

1.3 Обратный симплекс-метод

Вычислительные этапы обратного симплекс-метода представлены в таблице 1. Вначале каждой итерации полагается, что вектор альтернативных издержек \hat{c}_N и вектор \hat{b} текущих значений базисных переменных известны, и представление B^{-1} доступно. Первым шагом алгоритма является CHUZC, который ищет хорошего кандидата q для ввода в базис среди (взвешенных) альтернативных издержек. Колонка поворота \hat{a}_q формируется на шаге FTRAN, используя представление B^{-1} .

На шаге CHUZR определяется выводимая из базиса переменная. Индекс p показывает, в какой строке расположена выводимая переменная, а сама стро-

CHUZC: Выбрать из \hat{c}_N хорошего кандидата q для ввода в базис.

FTRAN: Сформировать колонку поворота $\hat{a}_q = B^{-1} a_q$, где a_q – колонка q матрицы A.

CHUZR: Из отношений \hat{b}_i/\hat{a}_{iq} определить номер p строки хорошего кандидата для вывода из базиса.

Положить $\alpha = \hat{b}_p/\hat{a}_{pq}$.

Обновить $\hat{b} := \hat{b} - \alpha \hat{a}_q$.

ВТРАМ: Сформировать $\pi_p^T = e_p^T B^{-1}$.

PRICE: Сформировать строку поворота $\hat{a}_p^T = \pi_{\underline{p}}^T N$.

Обновить альтернативные издержки $\hat{c}_N^T := \hat{c}_N^T - \hat{c}_q \hat{\alpha}_p^T.$

Если {рост в представлении B^{-1} }, тогда

INVERT: Сформировать новое представление B^{-1} .

иначе

UPDATE: Обновить представление B^{-1} в соответствии с изменением базиса.

конец если

Таблица 1 — Итерация обратного симплекс-метода

ка именуется *строкой поворота*. Индекс самой переменной обозначается как p'. Как только индексы q и p' меняются местами между множествами $\mathcal B$ и $\mathcal N$, говорят, что произошло *изменение базиса*. После этого, правый векторстолбец $\hat b$ обновляется в соответствии с увеличением $\alpha = \hat b_p/\hat a_{pq}$ в x_q .

Перед выполнением следующей операции необходимо получить значения альтернативных издержек и представление новой матрицы B^{-1} . Хотя альтернативные издержки могут быть вычислены и напрямую, используя выражения

$$\pi_B^T = c_B^T B^{-1}; \ \hat{c}_N^T = c_N^T - \pi_B^T N,$$

в вычислительном смысле гораздо эффективнее обновлять их с помощью строки поворота $\hat{a}_p^T = e_p^T B^{-1} N$ из таблицы стандартного симплекса. Это выполняется в два шага. Сначала, используя представление B^{-1} , на шаге BTRAN формируется вектор $\pi_p^T = e_p^T B^{-1}$, а затем строится вектор $\hat{a}_p^T = \pi_p^T N$ значений строки поворота (шаг PRICE). Как только были получены значения альтернативных издержек, шак UPDATE изменяет представление B^{-1} в соответствии с изменением базиса. Необходимо отметить, что из соображений эффектив-

ности и численной стабильности, периодически необходимо находить новое представление B^{-1} с помощью операции INVERT.

При применении стратегии Devex [13], строка поворота, вычисленная для обновления альтернативных издержек, используется также для обновления Devex весов при незначительных вычислительных затратах. Для обновления точных весов в методе наиболее крутого ребра в дополнение к строке поворота требуется дополнительный шаг BTRAN для вычисления $\hat{a}_q^T B^{-1}$ и шаг PRICE для получения результата матричного умножения этого вектора и матрицы N. Также вычислительно неэффективно инициализировать значения весов наиболее крутого ребра, если начальная базисная матрица не единичная. Как следствие этих дополнительных затрат и поскольку стратегия Devex работает хорошо в плане уменьшения количества итераций, необходимых для решения ЗЛП, эта стратегия обычно используется в эффективных последовательных реализациях обратного симплекс-метода.

2 Параллельный симплекс-метод

В этой главе представлен прототип схемы распараллеливания обратного симплекс-метода с применением субоптимизации и метода наиболее крутого ребра.

2.1 Параллельные вычисления

Прежде чем переходить к вопросу распараллеливания симплекс-метода, необходимо рассмотреть некоторые термины и концепции из области параллельного программирования. В этом разделе представлен краткий обзор необходимых понятий. Полное и более общее введение в параллельные вычисления можно найти в [14].

Классифицируя архитектуры параллельных мультипроцессоров, необходимо понимать важное отличие между распределенной памятью, когда каждый процессор имеет свою собственную локальную память, и общей памятью, когда все процессоры имеют доступ к общей разделяемой памяти. Современные мощные ЭВМ могут состоять из множества распределенных кластеров, каждый из которых может иметь множество процессоров с общей памятью. На более простых мультипроцессорах память может быть либо общей, либо разделяемой.

Обычно успешность распараллеливания измеряется в терминах ускорения – отношения времени, необходимого для решения задачи с использованием более одного процессора, ко времени решения задачи на одном процессоре. Традиционной является цель достичь фактор ускорения, равный количеству подключаемых процессоров. Такой фактор называется линейным ускорением и соответствует 100% параллельной эффективности. Увеличение доступной кэш-памяти и оперативной памяти одновременно с количеством процессоров иногда приводит к феномену сверхлинейного ускорения. Схемы распараллеливания, для которых (по крайней мере в теории) производительность растет линейно без ограничений с ростом количества подключаемых процессоров, называются масштабируемыми схемами. Если параллелизм не используется во всех главных операциях алгоритма, то ускорение, в соответствии с

законом Амдала [1], ограничено долей времени выполнения непараллельных операций.

Существуют две основных парадигмы параллельного программирования. Если работа большинства операций алгоритма может быть распределена среди множества процессоров, тогда говорят о параллелизме по данным. В противоположность этому, если возможно выполнять несколько главных операций алгоритма одновременно, тогда имеет место параллелизм по задачам. На практике возможно применять одновременно оба подхода для определенного набора главных операций алгоритма.

Есть два фундаментальных способа реализации алгоритмов на параллельных ЭВМ. На машинах с распределенной памятью передача данных между процессорами осуществляется посредством инструкций, порожденных явными вызовами методов передачи сообщений. На машинах с общей разделяемой памятью применяется параллелизм по данным, когда инструкции записываются как для последовательного исполнения, но транслируются специальным компилятором в параллельный код. Большинство протоколов передачи сообщений также поддерживаются на ЭВМ с общей памятью, равно как и распараллеливание по данным возможно на ЭВМ с распределенной памятью.

На машинах с распределенной памятью, накладные расходы на передачу сообщений между процессорами определяются задержкой и пропускной способностью канала. Первое — это время передачи, не зависящее от размера сообщения, а второе — это скорость связи. Для общих протоколов передачи сообщений задержка и пропускная способность на определенной архитектуре может быть значительно выше, чем в независящей от архитектуры среде, что обычно регулируется и настраивается поставщиком. Если алгоритму для вычислений необходим интенсивный обмен информацией, растущие накладные расходы на связь могут перевесить любые улучшения от использования дополнительных процессоров.

2.2 Распараллеливание симплекс-метода

Существующие подходы к распараллеливанию симплекс-метода и ему подобных удобно классифицировать по виду симплекс-метода и по использованию разреженных типов данных. Такая классификация позитивно коррелирует с практической ценностью реализации в контексте решения ЗЛП и негативно с успешностью этих подходов в достигнутом ускорении.

Некоторые из рассматриваемых ниже схем предлагают неплохое ускорение относительно эффективных последовательных решателей своего времени. Другие только кажутся неэффективными в свете последовательного обратного симплекса, который к тому моменту либо был малоизвестен, либо был разработан впоследствии. Такие случаи определяются ниже, чтобы подчеркнуть, что в результате огромного увеличения эффективности последовательного обратного симплекс-метода (как во время исследований в области распараллеливания симплекса, так и после) проблема разработки практического параллельного симплекс-решателя стала очень актуальной.

2.2.1 Параллельный симплекс-метод с использованием алгебры плотных матриц

Стандартный и обратный симплекс-методы с использованием алгебры плотных матриц реализовывались неоднократно. Простота обычных структур данных и потенциал достичь линейного ускорения делают их привлекательными для применения в параллельных вычислениях. Хотя при решении общих разреженных ЗЛП больших размерностей такие реализации малоэффективны, поскольку они могут соперничать с эффективными последовательными реализациями обратного симплекс-метода, использующими разреженные структуры, только при подключении значительного числа процессоров.

Первые работы в этом направлении ограничиваются обсуждением схем распределения данных и коммуникации; реализации ограничиваются небольшим числом процессов на ЭВМ с распределенной памятью (краткие обзоры даются в [22,25], примеры других ранних работ можно найти в [3,7,9,26]). В одной из относительно ранних работ [21], в которой были реализованы

обычный и обратный симплекс-методы на 16-процессорном Intel hypercube, достигнутое ускорение варьируется от 8 до 12 для небольших задач из библиотеки Netlib. В [4] сообщается о 12-кратном ускорении при решении двух небольших ЗЛП с использованием обычного симлекс-метода на 16-процессорной ЭВМ с общей разделяемой памятью. Также были случаи получения более чем 12-кратного ускорения [16].

В [6] разработаны параллельный обычный и обратный симплекс-методы с применением метода наиболее крутого ребра [10] и протестированы на машинах Соппесtion Machine СМ-2 и СМ-5 с массовым параллелизмом. Решая некоторые ЗЛП средней размерности из Netlib и очень плотные задачи машинного обучения, ускорение между 1.6 и 1.8 было достигнуто только при удвоении числа процессоров. В [23] также используется метод наиболее крутого ребра и обычный симплекс-метод на ЭВМ MasPar MP-1 и MP-2. Решая в основном случайно сгенерированные ЗЛП большой размерности, авторы достигали практически троекратного ускорения. Одной из более поздних работ по реализации параллельного обычного симплекс-метода с запуском на небольшом количестве процессоров является [24].

Работы по созданию параллельных реализаций обычного симплекс-метода с использованием алгебры плотных матриц для ЗЛП небольших размерностей продолжаются. Были представлены результаты реализации на 8 процессорах с 5-кратным ускорением при решении небольших случайных ЗЛП [20].

2.2.2 Параллельный симплекс-метод с использованием алгебры разреженных матриц

Особой сложностью в разработке действительно хорошего в практическом смысле параллельного симплекс-метода является применение эффективных техник работы с разреженными матрицами. Разработанный параллельный решатель будет конкурентноспособным по отношению к хорошей последовательной реализации только тогда, когда решение общих разреженных ЗЛП большой размерности будет затрагивать разумное число процессоров.

В период, когда распараллеливание симплекс-метода только начиналось и широко дискутировалось, практические параллельные методы факториза-

Рисунок 1 — Прототип параллельной реализации обратного симплекс-метода с субоптимизацией

ции и решения разреженных асимметричных СЛАУ были только на стадии становления. Как следствие, несмотря на то, что в симплекс-методе с плотными матрицами внедрение параллелизма проходило успешно, было распространено мнение, что использование разреженных матриц сильно ограничивает возможности распараллеливания (за исключением PRICE). Некоторых это наводило на мысль, что разработать хорошую параллельную реализацию невозможно в принципе. Но несмотря на преимущественно последовательную природу компонентов обратного симплекс метода, все еще существуют возможности применения параллелизма по задачам.

2.2.3 Схема распараллеливания

Рассмотрим следующий подход, использующий некоторые (но не все) возможности применения параллелизма по данным и по задачам к алгоритму обратного симплекс-метода с субоптимизацией [12]. Рисунок 1 иллюстрирует идею.

Сначала относительно дешевая операция CHUZR выбора множества \mathcal{P} хороших кандидатов для вывода из базиса выполняется на одном ядре (таблица 2). Затем, несколько операций BTRAN ($\pi_p^T = e_p^T B^{-1}$) и PRICE ($\hat{a}_p^T = \pi_p^T N$) для $p \in \mathcal{P}$ распределяются между всеми ядрами. Поскольку малый цикл итераций обрабатывает только небольшую часть строк, операция CHUZR_MI

СНUZR: Из отношений \hat{b}_i/s_p для $p=1,\ldots,m$ определить множество ${\cal P}$ строк хороших кандидатов для вывода из базиса.

ВТКАМ: Сформировать $\pi_p^T = e_p^T B^{-1}$, $\forall p \in \mathcal{P}$.

PRICE: Сформировать строку поворота $\hat{a}_p^T = \pi_p^T N$, $\forall p \in \mathcal{P}$.

Цикл {младшие итерации}

CHUZR_MI: Из \hat{b} определить номер строки $p \in \mathcal{P}$ хорошего кандидата для вывода из базиса.

Если p не определен, то **Конец цикла** {младшие итерации}

CHUZC: Среди отношений \hat{c}_j/\hat{a}_{pj} определить номер столбца q хорошего кандидата для ввода в базис.

Обновить $\hat{c}_N^T := \hat{c}_N^T - \beta \hat{a}_p^T$, где $\beta = \hat{c}_q/\hat{a}_{pq}$.

UPDATE_MI: Обновить $\mathcal{P}:=\mathcal{P}\backslash\{p\}$ и $\hat{c}_N^T:=\hat{c}_N^T-\beta\hat{a}_p^T$, где $\beta=\hat{c}_q/\hat{a}_{pq}$. Обновить строки \hat{a}_P^T и \hat{b}_P .

Конец цикла {младшие итерации}

Для {каждого изменения базиса} выполнять

FTRAN1: Сформировать $\hat{a}_q = B^{-1}a_q$, где a_q – столбец q матрицы A. Обновить $\hat{b} := \hat{b} - \alpha \hat{a}_q$, где $\alpha = \hat{b}_p/\hat{a}_{pq}$.

FTRAN2: Сформировать $\tau = B^{-1}\hat{a}_q$. Обновить s_p для $p = 1, \dots, m$.

Если {рост в представлении B^{-1} }, тогда

INVERT: Сформировать новое представление B^{-1} .

иначе

UPDATE: Обновить представление B^{-1} в соответствии с изменением базиса.

конец если

Конец для

Таблица 2 — Итерация обратного симплекс-метода с применением субоптимизации и метода наиболее крутого ребра

выполняется на одном ядре и не показана на рисунке 1. Выбор вводимой колонки выполняется в CHUZC относительно просто, поэтому также не распределяется. Малый цикл замыкает операция UPDATE_MI, в которой параллельное обновление данных в строках таблицы обратного симплекс-метода (оставшиеся кандидаты) и альтернативных издержек \hat{c}_N^T выполняется на всех доступных ядрах. Простое обновление \hat{b}_P выполняется на одном ядре операцией CHUZR_MI. После завершения малого цикла итераций, операции FTRAN $\hat{a} = B^{-1}a_q$ и $\tau = B^{-1}\hat{a}_q$ для каждого изменения базиса распределяется между всеми ядрами. Если необходимо, INVERT выполняется последовательно, без перекрытия любых других вычислений.

2.3 Заключение

Попытки использования параллелизма в симплекс-методе были связаны со многими ведущими членами разработки эффективного последовательного обратного симплекс метода. То, что относительный успех в этой области оказался довольно ограниченным, объясняется трудоемкостью задачи.

Необходимо отметить, что попытки внедрения параллелизма в обычный симплекс-метод для общих разреженных ЗЛП значительно улучшили его производительность по сравнению с хорошей последовательной реализацией обратного симплекс-метода. Параллельные обычный или обратный симплекс-методы с использованием алгебры плотных матриц несостоятельны без привлечения значительного числа процессоров. Внедрение параллелизма по задачам также было ограничено численной нестабильностью и большими накладными расходами на передачу сообщений на ЭВМ с распределенной памятью.

3 Язык программирования Julia

Язык программирования Julia — это высокоуровневый высокопроизводительный динамический язык программирования для технических вычислений [2]. Синтаксис языка очень похож на синтаксис других популярных сред для технических расчетов. В распоряжении имеются умный компилятор, распределенное параллельное исполнение, численная точность и большая библиотека математических функций. Базовая библиотека Julia, в большинстве своем написанная на Julia, также содержит лучшие открытые библиотеки С и Fortran для линейной алгебры, генерации случайных чисел, обработки сигналов и работы со строками. Общество разработчиков Julia поставляют большое количество внешних пакетов через встроенный пакетный менеджер. По аналогии с популярной утилитой Jupyter, существует многофункциональный браузерный графический интерфейс IJulia.

Ниже перечислены некоторые из встроенных возможностей Julia¹.

- Мультидиспетчеризация: возможность определить поведение функции, основываясь на различных комбинациях входных параметров.
- Динамическая система типов: типы для документации, оптимизации и диспатчинга.
- Хорошая производительность, сравнимая со статичиски компилируемыми языками такими, как С.
- Встроенный менеджер пакетов.
- Макросы, подобные макросам из Lisp, и другие возможности метапрограммирования.
- Вызов функций Python.
- Вызов функций C напрямую, без применения оберток или специального API.
- Широкие возможности для управления другими процессами.
- Архитектура, специально спроектированная для параллельных и распределенных вычислений.
- Легковесные "зеленые"потоки.

¹Подробнее на http://julialang.org.

- Объявление пользовательских типов, таких же быстрых и компактных, как встроенные.
- Автоматическое создание эффективного специализированного кода для различных типов аргументов.
- Элегантное и расширяемое преобразование численных и других типов.
- Поддержка Unicode, включая (но не ограничиваясь) UTF-8.
- Лицензия MIT: бесплатность и открытость исходного кода.

Основанный на LLVM JIT-компилятор Julia и дизайн самого языка позволяют ему по производительности приблизиться и часто сравняться с производительностью языка С [15].

Julia не заставляет пользователя следовать какому-либо определенному стилю параллелизма [19]. Вместо этого, в распоряжении имеется множество ключевых строительных блоков для распределенных вычислений, которые позволяют использовать различные стили и добавлять новые.

JuliaBox позволяет запускать ноутбуки IJulia в контейнерах-песочницах Docker. Это открывает простор для полностью облачной обработки, включая управление данными, редактирование и обмен кодом, выполнение, отладки, анализа и визуализации [18]. Цель этого проста – перестать беспокоиться об администрировании машин и управлении данными и сразу перейти к решению задачи.

Заключение

В ходе практики удалось реализовать все поставленные цели и задачи:

- приобрести бесценный практический опыт и навыки работы с коллективом студентов с учетом его психологической структуры и уровня развития;
- углубить свои знания в дискретной математике и педагогике;
- приобрести опыт индивидуального консультирования по сложным вопросам предмета;
- сформировать умения по организации продуктивного взаимодействия с группой на паре (установление личных контактов, навыки сотрудничества, диалогового общения и т.д.);
- развить умения выявлять, анализировать и учитывать при организации учебно-воспительного процесса общие психологические закономерности;
- умение помечать и анализировать возникающие в коллективе ситуации, требующие педагогического вмешательства.

Очень важным, если не определяющим фактором, способствующим успешному прохождению педагогической практики, явилось доброжелательное, участвующее отношение преподавателей: оказывалась всякая помощь, давались ценные советы по разработке и проведению занятий. В свою очередь, студенты проявляли дисциплинированность, одобрение и заинтересованность, демонстрировали хорошую посещаемость в семестре и успеваемость на экзамене (некоторая статистика по занятиям приведена в приложении A).

приложение а

ИТОГОВАЯ СТАТИСТИКА

Итоговая статистика

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Amdahl, G. Validity of the single-processor approach to achieving large scale computing capabilities. / G.M. Amdahl. —AFIPS Press, Reston, Va., 1967. —pp. 483-485.
- 2. Balbaert, I. Julia: High Performance Programming / I. Balbaert, A. Sengupta, M. Sherrington. —2016. —697 pages.
- 3. Boffley, T. Implementing Parallel simplex algorithms. / T.B. Boffley, R. Hay. —Cambridge University Press, 1989. —pp. 169-176.
- 4. Cvetanovic, Z. Efficient decomposition and performance of parallel pde, fft, monte-carlo simulations, simplex, and sparse solvers. / Z. Cvetanovic, E.G. Freedman, C. Nofsinger // Journal of Supercomputing. 1991. no. 5. P. 19–38.
- 5. Dantzig, G. Linear Programming and Extensions / G.B. Dantzig. Princeton, NJ: Princeton Univ. Press., 1963.
- 6. Data-parallel implementations of dense simplex mmethod on the connection machine cm-2. / J. Eckstein, I.I. Boduroglu, L. Polymenakos, D. Goldfarb // ORSA Journal on Computing. —1995. —no. 7. —P. 402–416.
- 7. Finkel, R. Large-grain parallelism three case studies. / R.A. Finkel; Ed. by L.H. Jamieson, D. Gannon, R.J. Douglas. MIT Press, Cambridge, MA, 1987. pp. 21-63.
- 8. Forrest, J. Steepest-edge simplex algorithms for linear programming. / J.J. Forrest, D. Goldfarb // Mathematical Programming. 57:341–374, 1992.
- 9. Four vector-matrix primitives. / A. Agrawal, G.E. Blelloch, R.L. Krawitz, C.A. Phillips // ACM Symposium on parallel Algorithms and Architectures. —1989. —P. 292–302.
- 10. Goldfarb, D. A practical steepest-edge simplex algorithm. / D. Goldfarb, J.K. Reid // Mathematical Programming. -12:361-371, 1977.
- 11. Hall, J. Towards a practical parallelisation of the simplex method $\,$ J.A.J. Hall $\,$ Computational Management Science. -7 (2010), pp. 139–170.

- 12. Hall, J. A high performance dual revised simplex solver / J.A.J. Hall, Q. Huangfu // Proceedings of the 9th international conference on Parallel Processing and Applied Mathematics. Vol. Part I, PPAM'11, Berlin, Heidelberg, 2012. Springer-Verlag. pp. 143–151.
- 13. Harris, P. Pivot selection method of the devex lp code. / P.M.J. Harris // Mathematical Programming. —5:1–28, 1973.
- Introduction to Parallel Computing: Design and Analysis of Algorithms. /
 V. Kumar, A. Grama, A. Gupta, G. Karypis. 2nd edition. Addison-Wesley, 2003.
- 15. Kwon, C. Julia Programming for Operations Research: A Primer on Computing / C. Kwon. -2016. -246 pages.
- 16. Luo, J. Linear programming on transputers. / J. Luo, G.L. Reijns // Algorithms, Software, Architecture / Ed. by J. van Leeuwen. Vol. A-12. Elsevier, 1992. P. 525–534.
- 17. A practical anti-cycling procedure for linear constrained optimization. / P.E. Gill, W. Murray, M.A. Saunders, M.H. Wright // Mathematical Programming. —45:437–474, 1989.
- 18. Rohit, J. Julia Cookbook / J.R. Rohit. Packt Publishing, 2016. 172 pages.
- 19. Seven More Language in Seven Weeks / B. Tate, F. Daoud, J. Moffit,I. Dees. The Pragmatic Programmers, 2014. 350 pages.
- 20. Some computation results on mpi parallel implementation of dense simplex method. / E.-S. Badr, M. Moussa, K. Papparrizos [et al.] // Transactions on Engineering, Computiong and Technology. 2006. —December. no. 17. —P. 228–231.
- 21. Stunkel, C. Linear optimization via message-based parallel processing. / C.B. Stunkel // International Conference on Parallel Processing. —Vol. III. —August 1988. —P. 264–271.
- 22. A survey of Parallel algorithms for linear programming. / J. Luo, G.L. Reijns, F. Bruggeman, G.R. Lindfield; Ed. by E.F. Deprettere, A.J. van der Veen. Elsevier, 1991. Vol. B. pp. 485-490.

- 23. Thomadakis, M. An efficient steepest-edge simplex algorithm for simd computers. / M.E. Thomadakis, J.-C. Liu // International Conference on Supercomputing. —1996. —P. 286–293.
- 24. Yarmish, G. A Distributed Implementation of the Simplex Method.: Ph. D. thesis / G. Yarmish; Polytechnic University.— Brooklyn, NY: 2001.— March.
- 25. Zenios, S. Parallel numerical optimization: current status and annotated bibliography. / S.A. Zenios // ORSA Journal on Computing. -1989. -no. 1(1). -P. 20-43.
- 26. Бабаев, Д. Параллельный алгоритм решения задач линейного программирования. / Д.А. Бабаев, С.С. Марданов // Журнал Вычислительной Математики и Математической Физики. —1991. —№ 31. С. 86-95.
- 27. Панюкова, Т. Комбинаторика и теория графов: Учебное пособие. Изд. 3-е, испр. / Т.А. Панюкова. M.: ЛЕНАНД, 2014. 216 с.