1 (SOUS-)ESPACES VECTORIELS ET COMBINAISONS LINÉAIRES

- 1
- 1) Dans \mathbb{R}^3 , (5,5,1) est-il combinaison linéaire de (2,3,0) et (3,2,0)?
- 2) Dans $\mathbb{R}[X]$, $16X^3 7X^2 + 21X 4$ est-il combinaison linéaire de $8X^3 5X^2 + 1$ et $X^2 + 7X 2$?
- 3) Dans $\mathbb{R}^{\mathbb{R}}$, $x \longmapsto \cos^2 x$ est-il combinaison linéaire de $x \longmapsto 1$ et $x \longmapsto \cos(2x)$?
- 4) Dans $\mathbb{R}^{\mathbb{R}}$, $x \mapsto \sin(2x)$ est-elle combinaison linéaire de sinus et cosinus ?
- Montrer que pour tout $A \in \mathcal{M}_2(\mathbb{K})$, A^2 est combinaison linéaire de I_2 et A.
- Begin to the sensembles suivants sont-ils des sous-espaces vectoriels?
 - 1) $\{(x,y) \in \mathbb{R}^2 / x = y \}.$
 - 2) $\{(x,y) \in \mathbb{R}^2 / 2x 5y 1 = 0\}.$
 - $\mathbf{3)} \quad \left\{ (x, 2x, 3x) \right\}_{x \in \mathbb{R}}.$
 - 4) $\{(x,y,z) \in \mathbb{R}^3 / y = 0\}.$
 - 5) $\{(x,y) \in \mathbb{R}^2 / x^3 + x + y^2 = 0\}.$
 - 6) $\{(x, y, z) \in \mathbb{R}^3 / x = y \text{ et } 3y 2z = 0\}.$
 - 7) $\{P \in \mathbb{R}[X]/ \quad \partial^{\circ}P \geqslant 2\}.$
 - 8) ${P \in \mathbb{R}[X]/ P(X^2) = P' + X^4P}.$
 - 9) $\{f \in \mathscr{C}^1(\mathbb{R}, \mathbb{R}) / f(0) + f(1) = f'(0)\}.$
- 4
 - 1) Montrer que l'ensemble des fonctions 1-périodiques de \mathbb{R} dans \mathbb{R} est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{R}}$.
 - 2) L'ensemble des fonctions croissantes de $\mathbb R$ dans $\mathbb R$ est-il un sous-espace vectoriel de $\mathbb R^{\mathbb R}$? Et l'ensemble des fonctions monotones de $\mathbb R$ dans $\mathbb R$? Et l'ensemble des fonctions de $\mathbb R$ dans $\mathbb R$ qui sont la somme d'une fonction croissante et d'une fonction décroissante?
 - 3) L'ensemble des fonctions majorées de $\mathbb R$ dans $\mathbb R$ est-il un sous-espace vectoriel de $\mathbb R^{\mathbb R}$? Et l'ensemble des fonctions bornées de $\mathbb R$ dans $\mathbb R$?
- -
 - \bigcirc \bigcirc Soit *E* un \mathbb{K} -espace vectoriel.
 - 1) Soient F et G deux sous-espaces vectoriels de E. Montrer que $F \cup G$ est un sous-espace vectoriel de E si et seulement si : $F \subset G$ ou $G \subset F$.
 - 2) Soit $(F_i)_{i \in I}$ une suite *filtrante* de sous-espaces vectoriels de E, i.e. telle que :

$$\forall i, j \in I, \quad \exists \ k \in I / \quad F_i \cup F_j \subset F_k.$$

Montrer que $\bigcup_{i \in I} F_i$ est un sous-espace vectoriel de E.

- - $2) \quad \Big\{ M \in \mathcal{M}_n(\mathbb{K}) / \quad \operatorname{tr}(M) = 1 \Big\}.$
 - 3) $\{P \in \mathbb{R}[X]/ X^2P'' 3XP' + 4P = 4 X\}.$
 - 4) $\{f \in \mathscr{C}(\mathbb{R}, \mathbb{R}) / f(0) = 2 \text{ et } f(1) = -3\}.$
 - 5) $\left\{ y \in \mathcal{C}^1(\mathbb{R}, \mathbb{R}) / \forall x \in \mathbb{R}, e^{x^2} y'(x) + y(x) = 1 \right\}.$

$$\mathbb{R}_2[X] = \text{Vect}\Big((X-1)^2, (X-1)(X+1), (X+1)^2\Big).$$

- Soit $a \in \mathbb{R}$. On pose : u = (1, -1, 1) et v = (0, 1, a). À quelle condition nécessaire et suffisante sur a le vecteur (1, 1, 2) appartient-il à Vect(u, v)?
- Montrer que pour tout $n \in \mathbb{N}$:

$$\operatorname{Vect}(x \longmapsto \cos(kx))_{0 \le k \le n} = \operatorname{Vect}(x \longmapsto \cos^k x)_{0 \le k \le n}$$

2 FAMILLES LIBRES ET BASES

- \bigcirc Montrer que les fonctions $x \mapsto \sin x, x \mapsto \cos x$, $x \mapsto x \sin x$ et $x \mapsto x \cos x$ sont linéairement indépendantes dans $\mathbb{R}^{\mathbb{R}}$.
- On note f la fonction $x \mapsto e^x$, g la fonction $x \mapsto e^{2x}$ et h la fonction $x \mapsto e^{x^2}$ sur \mathbb{R} . Montrer de deux manières différentes que la famille (f, g, h) est libre :
 - 1) par une technique d'évaluation.
 - 2) par une étude asymptotique en $+\infty$.
- 12 $\bigcirc \bigcirc \bigcirc$ Montrer de deux manières différentes que les suites $(1)_{n\in\mathbb{N}}$, $(n^2)_{n\in\mathbb{N}}$ et $(2^n)_{n\in\mathbb{N}}$ forment une famille libre de $\mathbb{R}^{\mathbb{N}}$.
- 13 $\bigcirc \bigcirc \bigcirc \bigcirc$ Montrer que les suites $(n^k)_{n \in \mathbb{N}}$, k décrivant \mathbb{N} , sont linéairement indépendantes dans $\mathbb{R}^{\mathbb{N}}$.
- On pose : $P_0 = 1$ et pour tout $k \in \mathbb{N}^*$: $P_k = X(X-1)(X-2)\dots(X-k+1).$

Montrer de deux manières différentes que la famille $(P_k)_{k\in\mathbb{N}}$ est libre dans $\mathbb{R}[X]$.

- Soient E un \mathbb{K} -espace vectoriel et $u_1, \ldots, u_n \in E$. Pour tout $k \in [1, n]$, on pose : $v_k = u_1 + \ldots + u_k$.
 - 1) Montrer que la famille $(u_1, ..., u_n)$ est libre si et seulement si la famille $(v_1, ..., v_n)$ l'est.
 - **2)** Montrer que $(u_1, ..., u_n)$ engendre E si et seulement si $(v_1, ..., v_n)$ engendre E.
- 16 $\mathscr{C}(\mathbb{R}, \mathbb{R})$ Montrer que la famille $(x \longmapsto |x \lambda|)_{\lambda \in \mathbb{R}}$ de $\mathscr{C}(\mathbb{R}, \mathbb{R})$ est libre.

On note C_1, \ldots, C_n les colonnes de A. Soient $x_1, \ldots, x_n \in \mathbb{C}$. On suppose que : $x_1C_1+\ldots+x_nC_n=0$. Montrer, en utilisant max $\{|x_1|,\ldots,|x_n|\}$, que : $x_1=\ldots=x_n=0$. Qu'en déduit-on sur A?

18 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ Soit $n \in \mathbb{N}$. On veut montrer que la famille $((X+k)^n)_{0 \le k \le n}$ de $\mathbb{R}[X]$ est libre. Soit $(\lambda_k)_{0 \le k \le n} \in \mathbb{R}^{n+1}$.

On suppose que : $\sum_{k=0}^{n} \lambda_k (X+k)^n = 0.$

- 1) Montrer que pour tout $p \in [0, n]$:
 - $\mathbf{a)} \quad \sum_{k=0}^{n} \lambda_k (X+k)^p = 0.$
 - $\mathbf{b)} \qquad \sum_{k=0}^{n} \lambda_k k^p = 0.$
- 2) Conclure en convoquant certains polynômes de Lagrange.
- Montrer que la famille $(x \mapsto e^{\lambda x})_{\lambda \in \mathbb{R}}$ de $\mathscr{C}(\mathbb{R}, \mathbb{R})$ est
 - 1) 🖰 🖰 en s'intéressant au comportement asymptotique des exponentielles.
 - 2) 🕑 🕑 🕑 en convoquant certains polynômes de Lagrange.
- On rappelle que \mathbb{Q} est un corps et que \mathbb{R} , en tant que \mathbb{R} -espace vectoriel, peut être vu aussi comme un \mathbb{Q} -espace vectoriel.
 - 1) Montrer que la famille $(\ln p)_{p\in\mathbb{P}}$ est une famille libre du \mathbb{Q} -espace vectoriel \mathbb{R} .
 - 2) En déduire que $\ln p$ est rationnel pour au plus un nombre premier p. On peut montrer que $\ln r$ est irrationnel pour tout $r \in \mathbb{Q}_+^* \setminus \{1\}$, mais c'est autrement plus compliqué.

3 Bases et dimension

22

- 1) Montrer que ((-1,1,1),(1,-1,1),(1,1,-1)) est une base de \mathbb{R}^3 et déterminer les coordonnées du vecteur (8,4,2) dans cette base.
- **2)** Montrer que $((X-1)^2, X^2, (X+1)^2)$ est une base de $\mathbb{R}_2[X]$ et déterminer les coordonnées du polynôme $X^2 + X + 1$ dans cette base.
- 3) Montrer que la famille :

$$(X^3 + X^2 - X - 1, X^3 - X^2 + 1,$$
 $X^3 - X^2 + X, X^3 + 2X + 1)$

est une base de $\mathbb{R}_3[X]$ et déterminer les coordonnées de X^2 dans cette base.

23 $\bigcirc \bigcirc \bigcirc$ Pour tout $k \in [1, n]$, on pose :

$$u_k = (k, k-1, \dots, 2, 1, 0, \dots, 0) \in \mathbb{R}^n$$

Montrer que la famille (u_1, \ldots, u_n) est une base de \mathbb{R}^n .

 \bigcirc Montrer pour tout $n \in \mathbb{N}$ que la famille :

$$(1+X,X+X^2,...X^{n-1}+X^n,X^n)$$

est une base de $\mathbb{R}_n[X]$.

- 25 © © Soient $n \in \mathbb{N}$ et $A, B \in \mathbb{K}[X]$ non constants et premiers entre eux. Montrer que la famille $\left(A^k B^{n-k}\right)_{0 \le k \le n}$ est une base de $\mathbb{K}_n[X]$.
- Déterminer une base de chacun des sous-espaces vectoriels suivants :
 - 1) $\{(x, y, z) \in \mathbb{R}^3 / x + 2y + z = 0\}$.
 - 2) $\left\{ M \in \mathcal{M}_2(\mathbb{R}) / AM = 0 \right\} \text{ avec} : A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$.
 - 3) $\{P \in \mathbb{R}_3[X]/ P(X^2) = (X^3 + 1)P\}.$
 - 4) $\{(x, y, z, t) \in \mathbb{R}^4 / x + y = 0 \}$
 - et 2x-z+t=0.
 - 5) ${P \in \mathbb{R}_4[X]/ P(0) = P(1) = P(2)}.$
- 27 \bigcirc \bigcirc On note A la matrice $\begin{pmatrix} 3 & -1 \\ 7 & 1 \end{pmatrix}$ et $\mathscr C$ l'ensemble des matrices de $\mathscr M_2(\mathbb R)$ qui commutent à A. Montrer que $\mathscr C$ est un sous-espace vectoriel de $\mathscr M_2(\mathbb R)$ et en déterminer une base.
- On note E l'ensemble des matrices de trace nulle de $\mathcal{M}_n(\mathbb{K})$. Montrer que E est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$ et déterminer sa dimension.

29

 \bigcirc \bigcirc On note *E* l'ensemble des fonctions :

$$x \longmapsto A\sin(x + \varphi)$$
, $A \in \varphi$ décrivant \mathbb{R} .

Montrer que E est un sous-espace vectoriel de $\mathscr{C}(\mathbb{R}, \mathbb{R})$ et déterminer sa dimension.

30

- \bigcirc \bigcirc Soit $M \in \mathcal{M}_n(\mathbb{K})$.
 - 1) Déterminer un entier $d \in \mathbb{N}$ pour lequel la famille $(I_n, M, M^2, \dots, M^d)$ est liée.
 - **2)** En déduire que M possède un polynôme annulateur non nul à coefficients dans \mathbb{K} .

31

- $\bigcirc \bigcirc \bigcirc$ Soient $a, b, c \in \mathbb{R}$. Montrer que les fonctions $x \longmapsto \sin(x+a), x \longmapsto \sin(x+b)$ et $x \longmapsto \sin(x+c)$ sont linéairement dépendantes dans $\mathbb{R}^{\mathbb{R}}$.
- Soient E un \mathbb{K} -espace vectoriel, $x_1, \ldots, x_n \in E$ et $y_1, \ldots, y_n \in E$. On suppose que les vecteurs $x_1 + y_1, \ldots, x_n + y_n$ sont linéairement indépendants. Montrer l'inégalité : $\operatorname{rg}(x_1, \ldots, x_n, y_1, \ldots, y_n) \ge n$.

33

1) Montrer que la famille :

$$(X^3 + X + 1, X^3 - 2X + 2, X^2 + 3X)$$

est libre et la compléter en une base de $\mathbb{R}_4[X]$.

- 2) Montrer que la famille (8,4,1,2),(1,3,0,5) est libre et la compléter en une base de \mathbb{R}^4 .
- 3) Soient E un \mathbb{R} -espace vectoriel de dimension 3 et (e_1,e_2,e_3) une base de E. On pose :

$$\varepsilon_1 = e_1 + 2e_2 + e_3$$
 et $\varepsilon_2 = e_2 - e_3$.

Montrer que $(\varepsilon_1, \varepsilon_2)$ est libre et la compléter en une base de E.

34

Déterminer la dimension de :

Vect((1,2,1,0),(4,-2,1,1),(7,2,4,2),(11,4,1,3)).

34

4 Matrice d'une famille

DE VECTEURS DANS UNE BASE

35

- ① Les familles suivantes sont-elles des bases?
 - 1) $((2,0,\alpha),(2,\alpha,2),(\alpha,0,2))$ $(\alpha \in \mathbb{R}).$
 - 2) ((1,0,2,1),(0,1,1,2),(2,0,1,1),(2,1,0,1)).

- Soient $P_0, \ldots, P_n \in \mathbb{K}[X]$. On suppose que pour tout $i \in [0, n]$: $\partial^{\circ} P_i = i$. Montrer par une technique matricielle que la famille $(P_i)_{0 \le i \le n}$ est une base de $\mathbb{K}_n[X]$. Comment montrer ce résultat sans matrices?
- 37 © © Soient E un \mathbb{K} -espace vectoriel et (u_1, \ldots, u_{2n+1}) une famille libre de E. Montrer par une technique matricielle que la famille :

$$(u_1+u_2,u_2+u_3,\ldots,u_{2n}+u_{2n+1},u_{2n+1}+u_1)$$

est également libre.

5 SOMME DE DEUX SOUS-ESPACES VECTORIELS

- \bigcirc Soient E un \mathbb{K} -espace vectoriel et F et G deux sous-espaces vectoriels de E.

 Montrer que : $F \cup G = F + G$ si et seulement si : $F \subset G$ ou $G \subset F$.
- Soient E un \mathbb{K} -espace vectoriel de dimension finie et F et G deux sous-espaces vectoriels de E. On suppose que : $\dim F + \dim G > \dim E$. Montrer que F et G ont au moins un vecteur non nul en commun.
- ① ① On pose : a = (0,0,1,0), b = (1,1,0,-1), u = (1,0,1,0), v = (0,1,-1,0) et w = (1,1,1,1), ainsi que : F = Vect(a,b) et G = Vect(u,v,w). Déterminer les dimensions de F, G, F + G et $F \cap G$.
- (41) (b) On pose :

$$F = \{(x, y, z, t) \in \mathbb{R}^4 / x + y + z = 0 \text{ et } y - z + t = 0\}$$

et G = Vect((1,0,0,1),(0,1,1,0)). Montrer que F et G sont deux sous-espaces vectoriels supplémentaires de \mathbb{R}^4 .

- 42 \bigcirc Soit $\lambda \in \mathbb{R}$. À quelle condition nécessaire et suffisante sur λ les sous-espaces vectoriels $\text{Vect}((\lambda, \lambda, 1))$ et $\text{Vect}((1, \lambda, 1), (2, 1, 1))$ sont-ils supplémentaires dans \mathbb{R}^3 ?
- On note F l'ensemble des fonctions constantes sur [0,1] et on pose :

$$G = \left\{ f \in \mathcal{C}([0,1], \mathbb{R}) / \int_0^1 f(t) dt = 0 \right\}.$$

Montrer que F et G sont deux sous-espaces vectoriels supplémentaires de $\mathscr{C}([0,1],\mathbb{R})$.

 $\bigcirc \bigcirc \bigcirc \bigcirc$ Montrer que $\{P \in \mathbb{R}_3[X]/ P(X^2) = X^2P(X)\}$ et $\{P \in \mathbb{R}_3[X]/ P(1) = P(2)\}$ sont supplémentaires dans $\mathbb{R}_3[X]$.

- \bigcirc \bigcirc On note \mathscr{P} l'ensemble des fonctions paires de $\mathbb R$ dans $\mathbb R$ et $\mathscr I$ l'ensemble des fonctions impaires de $\mathbb R$ dans \mathbb{R} . Montrer que \mathscr{P} et \mathscr{I} sont deux sous-espaces vectoriels supplémentaires de $\mathbb{R}^{\mathbb{R}}$.
- \bigcirc Soient E un \mathbb{K} -espace vectoriel et F_1 , F_2 et G trois sous-espaces vectoriels de E.
 - 1) Si F_1 et F_2 sont en somme directe, montrer que $F_1 \cap G$ et $F_2 \cap G$ le sont aussi.
 - 2) Si F_1 et F_2 sont supplémentaires dans $E, F_1 \cap G$ et $F_2 \cap G$ le sont-ils dans G?
- Déterminer un supplémentaire des sous-espaces vectoriels suivants - on admet que ce sont bien des sous-espaces vectoriels:
 - 1) Vect((1,2,1,1),(2,2,1,1),(0,2,1,1)) dans \mathbb{R}^4 .
 - 2) $\{(x, y, z, t) \in \mathbb{R}^4 / x + y + 2z t = 0\}$ et y-z+t=0 dans \mathbb{R}^4 .
 - 3) $\left\{ P \in \mathbb{R}_4[X] / P(-X) = P(X) \right\} \text{ dans } \mathbb{R}_4[X].$
 - 4) a) $\{P \in \mathbb{R}_3[X]/ P(0) = P'(0) = 0\}$ dans $\mathbb{R}_3[X]$. **b)** $\bigcirc \bigcirc \bigcirc \bigcirc \{ f \in \mathscr{D}(\mathbb{R}, \mathbb{R}) / f(0) = f'(0) = 0 \}$
 - dans $\mathcal{D}(\mathbb{R},\mathbb{R})$.
 - 5) dans $\mathbb{R}_3[X]$:

48

 ${P \in \mathbb{R}_3[X]/ P' + 3P = P(0)X^3 + P(1)X + P(1)}.$

Soient $x_1, \ldots, x_n \in \mathbb{R}$ distincts. On pose :

 $F = \left\{ f \in \mathscr{C}(\mathbb{R}, \mathbb{R}) / \quad \forall k \in [1, n], \quad f(x_k) = 0 \right\}.$

- 1) \bigcirc Montrer que F est un sous-espace vectoriel de $\mathscr{C}(\mathbb{R},\mathbb{R})$.
- **2)** $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ Déterminer un supplémentaire de Fdans $\mathscr{C}(\mathbb{R},\mathbb{R})$.