cse5441 - parallel computing

loop dependence analysis

statement independence

Why might we want to re-order program statements?

- better cache performance
- parallel programs

What determines whether program statements can be re-ordered?

dependence on prior computations

data dependencies

serial code segment:

S1: a = b + c

S2: d = a * 2

S3: a = c + 2

S4: e = d + c + 2

stmt	read	<u>write</u>	
S1	b,c	а	
S2	a	d	$S_1\delta^fS_2$
S3	С	a	$S_1\delta^0S_3$
			$S_2\delta^aS_3$
S4	d,c	е	$S_2^-\delta^fS_4$

data dependence types

flow-dependence: occurs when a variable which is assigned a value in one statement, e.g. S_1 , is read by another statement, e.g. S_2 , later. Written as $S_1\delta^fS_2$.

anti-dependence: occurs when a variable read by one statement, e.g. S_1 , is assigned an updated value in another statement, e.g. S_2 , later. Written as $S_1\delta^aS_2$.

output-dependence: occurs when a variable which is assigned a value in one statement, e.g. S_1 , is later re-assigned an updated value in another statement, e.g. S_2 , later. Written as $S_1\delta^0S_2$.

data dependencies

S1: a = b + c

S2: d = a * 2

S3: a = c + 2

S4: e = d + c + 2

IN(S_i): the set of memory locations read by the statement S_i .

OUT(S_i): the set of memory locations written by the statement S_i. (note a specific memory location may be both IN(S_i) and OUT(S_i).)

stmt	read	<u>write</u>	
S1	b,c	а	
S2	а	d	OUT(S1) \cap IN(S2) = {a} $\neq \emptyset \rightarrow S_1 \delta^f S_2$
S3	С	а	OUT(S1) \cap OUT(S3) = {a} $\neq \emptyset \rightarrow S_1 \delta^{\circ} S_3$
			IN(S2) \cap OUT(S3) = {a} $\neq \emptyset \rightarrow S_2 \delta^a S_3$
S4	d,c	е	OUT(S2) \cap IN(S4) = {d} $\neq \emptyset \rightarrow S_2 \delta^f S_4$

it's your turn ...

S1:
$$a = a + b + c$$

S2: b = b + c + d

S3: c = a + b

stmt	read	write	
S1	a,b,c	а	
S2	b,c,d	b	$S_1\delta^aS_2$
S3	a,b	С	$egin{array}{l} {\sf S_1}\delta^{\sf f}{\sf S_3} \ {\sf S_1}\delta^{\sf a}{\sf S_3} \ {\sf S_2}\delta^{\sf f}{\sf S_3} \ {\sf S_2}\delta^{\sf a}{\sf S_3} \end{array}$

OSU CSE 5441

loop data dependencies

for (int
$$i = 1$$
; $i \le 50$; $i++$)

S1: A(i) = B(i-1) + C(i)

S2: B(i) = A(i+2) + C(i)

NOTE:

this loop is OK, for our purposes, we ignore boundary conditions

$$S1(1)$$
: $A(1) = B(0) + C(1)$

$$S2(1)$$
: $B(1) = A(3) + C(1)$

$$S1(2)$$
: $A(2) = B(1) + C(2)$

$$S2(2)$$
: $B(2) = A(4) + C(2)$

$$S1(3)$$
: $A(3) = B(2) + C(3)$

$$S2(3)$$
: $B(3) = A(5) + C(3)$

$$S1(4)$$
: $A(4) = B(3) + C(4)$

$$S2(4)$$
: $B(4) = A(6) + C(4)$

.

.

.

$$S1(50)$$
: $A(50) = B(49) + C(50)$

$$S2(50)$$
: $B(50) = A(52) + C(50)$

it's your turn ...

for (iterate i)

S1: A(i) = new(value)

S2: B(i) = A(i-1)

S3: C(i) = A(i+1)

S4: D(i) = B(i-1) + C(i+1)

stmt	read	writ <u>e</u>
S1		A(i)
S2	A(i -1)	B(i)
S3	A(i+1)	C(i)
S4	B(i -1), C(i+1)	D(i)

loop data dependencies

```
A for (int i = 1; i <= 50; i++)
```

S1: A(i+n) = whatever(happens, next)

S2: B(i) = A(i)

B for (int
$$i = 1$$
; $i \le 50$; $i++$)

S1: A(i-n) = whatever(happens, next)

S2: B(i) = A(i)

C for (int
$$i = 1$$
; $i \le 50$; $i++$)

S1: A(i) = whatever(happens, next)

S2: A(i) = this(not, that)

notice: all cases – multiple accesses to same memory location!

9

J. S. Jones

iteration space

for (int i = 0; i <= 4; i++)
for (int j = 0; j <= 4; j++)
$$A(i, j) = B(i, j) \cdot C(j)$$

iteration space for A() and B()

iteration space for C()

for (int i = 0; i <= 4; i++)
for (int j = i; j <= 4; j++)

$$A(i, j) = B(i, j) \cdot C(j)$$

iteration space for A() and B()

iteration space for C()

10

lexicographic ordering

aka lexical or alphabetical or natural ordering

given two length-2 index vectors:
$$\mathbf{I} = (i_1, i_2)$$
 and $\mathbf{J} = (j_1, j_2)$

$$(i_1, i_2) \prec (j_1, j_2) \longleftrightarrow (i_1 < j_1) \text{ or } ((i_1 = j_1) \text{ and } (i_2 < j_2))$$

$$(0, 1) \prec (1, 0)$$

$$(0, 0) \prec (0, 2)$$

given two arbitrary length index vectors:

$$V_1 = (i_1, \dots i_m, i_{m+1}, \dots i_n)$$
 and $V_2 = (j_1, \dots j_m, j_{m+1}, \dots j_n)$

$$V_1 \prec V_2 \leftrightarrow$$
 $(i_1 < j_1)$ or $((i_1 - i_m = j_1 - j_m) \text{ and } (i_{m+1} < j_{m+1}))$

$$(0, 4, 4, 4, 4, 8) \prec (1, 1, 1, 1, 1, 0)$$

$$(2, 3, 4, 5, 6, 7) \prec (2, 3, 4, 5, 7, 7)$$

11

loop nest dependencies

consider loops of the form:

```
for (int i_1 = L_1; i_1 <= U_1; i_1++)

for (int i_2 = L_2; i_2 <= U_2; i_2++)

...

for (int i_n = L_n; i_n <= U_n; i_n++)

BODY(i_1, i_2, ... i_n)
```

given: iterations $I^{v} = (i_1, i_2, ... i_n)$ and $J^{v} = (j_1, j_2, ... j_n)$ memory location M

there exists one or more loop dependencies if:

- \cdot I $^{\vee}$ \prec J $^{\vee}$
- both BODY(I^v) and BODY(J^v) reference M
- at least one such reference is a write

distance vectors

given: - iterations
$$\mathbf{I}^{\mathbf{v}} = (i_1, i_2, \dots i_n)$$
 and $\mathbf{J}^{\mathbf{v}} = (j_1, j_2, \dots j_n)$

- a dependence from BODY(Iv) to BODY(Jv)

the dependence distance vector

$$\Delta^{\mathsf{v}} = (\mathsf{d}_1, \, \mathsf{d}_2, \, \dots \, \mathsf{d}_{\mathsf{n}})$$

where
$$\forall d_{\alpha} : d_{\alpha} = j_{\alpha} - i_{\alpha}$$

direction vectors

given: - iterations
$$\mathbf{I}^{\mathbf{v}} = (i_1, i_2, \dots i_n)$$
 and $\mathbf{J}^{\mathbf{v}} = (j_1, j_2, \dots j_n)$

- a dependence from BODY(Iv) to BODY(Jv)
- distance vector $\Delta^{v} = (d_1, d_2, \dots d_n)$

- the sign function
$$\Sigma(x_{\alpha}) = \begin{cases} - & \text{if } x_{\alpha} < 0 \\ 0 & \text{if } x_{\alpha} = 0 \\ + & \text{if } x_{\alpha} > 0 \end{cases}$$

the dependence direction vector

$$\delta^{v} = (\Sigma(d_1), \Sigma(d_2), \dots \Sigma(d_n))$$

dependence vectors

example

for (int i = 1; i <= 5; i++)

for (int j= 1; j <= 5; j++)

$$A(i, j) = A(i, j-3) + A(i-2, j) + A(i-1, j+2) + A(i+1, j-1)$$

		Δ	δ
		distance	direction
RHS ref.	type	vector	vector
A(i, j-3)	flow	(0, 3)	(0, +)
A(i-2, j)	flow	(2, 0)	(+, 0)
A(i-1, j+2)	flow	(1, -2)	(+, -)
A(i+1, j-1)	anti	(-1, 1)	(-, +)

step from the write iteration (LHS)
to
the read iteration (RHS)
for
distance and direction

15

loop interchange

for (int i = 0; i <= n; i++)

for (int j = 0; j <= n; j++)

A(i, j) = A(i-1, j+1) * .9

for (int j = 0; j <= n; j++)

for (int i = 0; i <= n; i++)

A(i, j) = A(i-1, j+1) * .9

loop interchange

example 2

for (int i = 0; i <= n; i++) A for (int j = 0; j <= n; j++) A(i, j) = A(i-1, j-1) * .9

for (int
$$j = 0$$
; $j <= n$; $j++$)

for (int $i = 0$; $i <= n$; $i++$)

A(i, j) = A(i-1, j-1) * .9

dependence vectors

example 3

for (i = 0; i < MAX; i++)
for (j = 0; j < MAX; j++)
for (k = 0; k < MAX; k++)

$$A[i, j, k] += A[i-1, j-1, k+1]$$

		distance	direction
RHS ref.	type	vector	vector
A [i-1, j-1, k+1]	flow	(1, 1, -1)	(+, +, -)
		(i, j, k)	(i, j, k)

permitted permutations: IJK, IKJ, JKI, JIK

loop interchange

example 3

for (
$$i = 0$$
; $i < MAX$; $i++$)

for ($j = 0$; $j < MAX$; $j++$)

for ($k = 0$; $k < MAX$; $k++$)

 $A[i, j, k] += A[i-1, j-1, k+1]$

loop	direction
nest	vector
IJK	(++-)
JIK	(+ + -)
IKJ	(+ - +)
JKI	(+ - +)
KIJ	(-++)
KJI	(-++)

permissible
re-orderings
yes
yes
yes
yes
no
no

19

J. S. Jones

OSU CSE 5441

it's your turn ...

example 4

```
for ( i = 0; i < MAX; i++)

for ( j = 0; j < MAX; j++)

for ( k = 0; k < MAX; k++)

for ( m = 0; m < MAX; m++)

BODY(i, j, k, m)
```

		distance	airection
	BODY	vector	vector
a.)	R[m] += A[i, j, k]		
b.)	R[m] += A[i, j, k, m] * A[i-1, j-1, k-1, m-1]		
c.)	A[i, j, k, m] += A[i-1, j, k, m]	(1, 0, 0, 0)	(+, 0, 0, 0)
d.)	A[i, j, k, m] += A[i-1, j-1, k, m]	(1, 1, 0, 0)	(+, +, 0, 0)
e.)	A[i, j, k, m] += A[i-1, j-1, k+1, m+1]	(1, 1, -1, -1)	(+, +, -, -)

20

cse5441 - parallel computing

loop dependence analysis

21

J. S. Jones

dependence analysis - answers

slide 20:

- a.) no dependencies, fully re-orderable (no instances where same address is read/written
- b.) no dependencies, fully re-orderable (no instances where same address is read/written
- c.) flow dependence, fully re-orderable (sign of vector cannot change)
- d.) flow dependence, fully re-orderable (sign of vector cannot change)
- e.) flow dependence, partially re-orderable valid from IJKM: IJMK, IKJM, IKMJ, IMJK, IMKJ, JIKM, JIKM, JKMI, JMKI, JMKI