Групповой проект. 4 этап

Электрический пробой. Защита

Астафьева Анна Андреевна Коломиец Мария Владимировна Жиронкин Павел Владимирович Паландузян Артем Карапетович Сурнаков Александр Васильевич Евдокимова Юлия Константиновна Группа: НПИбд-01-18

Содержание

1	Цель	5
2	Задачи проекта	6
3	Этап 1. Описание модели	7
4	Этап 2. Алгоритмы	8
5	Этап 3. Программа	9
6	Вывод	10
7	Список литературы	11

List of Tables

List of Figures

5.1	Poct ct	ทผพคทยดหั стทพหรพท	ы при электрическом	пробое	(
J.I	FUCI CI	римерной структур	N 11DM 2/16K1 DM46CK0M	1100000	

1 Цель

Цель данного этапа – коллективное обсуждение результата проекта, самооценка деятельности.

2 Задачи проекта

- 1. Реализация в геометрии «острие плоскость» однозвенную модель со степенной зависимостью вероятности роста от напряженности поля $p \sim E^\eta$.
- 2. Изучение изменения геометрии стримерной структуры для случаев η = 1, 2, 3.

3 Этап 1. Описание модели

На данном этапе было необходимо представить теоретическое описание задачи, а также описание модели.

Нами был изучен и проанализирован процесс электрического пробоя в однородном веществе, а предметом исследования стал механизм роста и ветвления стримеров. В ходе работы мы описали вычисление потенциала и модели разных критериев роста.

4 Этап 2. Алгоритмы

На втором этапе мы презентовали алгоритм решения нашей задачи, а именно – составили алгоритм для реализации модели роста стримерной структуры при электрическом пробое.

Алгоритм делится на две части - вычисление потенциала и моделирование роста структуры стримера.

5 Этап 3. Программа

По итогам выполнения третьего этапа нами была получена рабочая программа на языке Python.

Данная программа реализует в геометрии «острие – плоскость» однозвенную модель со степенной зависимостью вероятности роста от напряженности поля p ~ E^{η} .

Также было рассмотрено и представлено изменение геометрии стримерной структуры для случаев η = 1, 2, 3, 4. Выявлено, что при увеличении η уменьшается ветвистость стримерной структуры.

В результате мы получили модель пробоя(рис. 5.1):

Figure 5.1: Рост стримерной структуры при электрическом пробое

6 Вывод

В процессе выполнения данного этапа проектной деятельности мы подвели итоги совместной работы, пошагово проанализировали каждый из предыдущих этапов и соотнесли цели работы с достигнутыми результатами.

7 Список литературы

- 1. Д. А. Медведев, А. Л. Куперштох, Э. Р. Прууэл, Н. П. Сатонкина, Д. И. Карпов МОДЕЛИРОВАНИЕ ФИЗИЧЕСКИХ ПРОЦЕССОВ И ЯВЛЕНИЙ НА ПК
- 2. Niemeyer L., Pietronero L., Wiesmann H. J. Fractal dimension of dielectric breakdown // Physical Review Letters. 1984. V. 52, N 12. P. 1033–1036
- 3. Biller P. Fractal streamer models with physical time // Proc. 11th Int. Conf. on Conduction and Breakdown in Dielectric Liquids, IEEE N 93CH3204-5. Baden-D"attwil, Switzerland, 1993. P. 199–203.