We prove 2 lemmas about the Chord Arc Quantity between points on adjacent edges, which will lead to an efficient "Adjacent Chord Arc Quantity" calculation algorithm.

In figure 1, e_1 and e_2 are two adjacent edges connected by vertex \mathbf{v} , and θ is the angle between e_1 and e_2 . They form a "corner" of any polygon. We pick an arbitrary point \mathbf{x} on e_1 and the distance between \mathbf{x} and \mathbf{v} is l_1 . Similarly, we pick an arbitrary point \mathbf{y} on e_2 and the distance between \mathbf{y} and \mathbf{v} is l_2 . We assume $l_1 + l_2$ is less than half of the total length of the polygon's edges.

Figure 1: A Corner of Any Polygon

Lemma 1: For a given "corner" of a polygon, the Chord Arc Quantity between \mathbf{x}, \mathbf{y} is maximized when $l_1 = l_2$, i.e., \mathbf{x} and \mathbf{y} are equidistant from \mathbf{v} .

Proof: The Chord Arc Quantity between \mathbf{x} and \mathbf{y} is

$$\frac{l_1+l_2}{d},$$

and we are trying to maximize it. Suppose we fix \mathbf{x} , then l_1 is fixed and what we want to maximize is

$$\max f(l_2) = \frac{l_1 + l_2}{d}$$
 \iff $\max g(l_2) = \left(f(l_2)\right)^2 = \frac{(l_1 + l_2)^2}{d^2}.$

We can express d in terms of l_1 and l_2 since they form a triangle:

$$d^2 = l_1^2 + l_2^2 - 2l_1l_2\cos(\theta).$$

For g to attain its extremum, we need

$$\frac{d}{dl_2}g(l_2) = 0$$

$$\frac{d}{dl_2}\frac{(l_1 + l_2)^2}{l_1^2 + l_2^2 - 2l_1l_2\cos(\theta)} = 0$$

$$\frac{4l_1(l_1^2 - l_2^2)\cos^2(\frac{\theta}{2})}{\left(l_1^2 + l_2^2 - 2l_1l_2\cos(\theta)\right)^2} = 0$$

$$4l_1(l_1^2 - l_2^2)\cos^2(\frac{\theta}{2}) = 0$$

$$l_2^* = l_1$$

which implies that \mathbf{x} and \mathbf{y} are equidistant from \mathbf{v} . Now we use the second derivative test to make sure this extremum of g is indeed a maximum. Let $l_2 = l_1$,

$$\frac{d^2}{dl_2^2}g(l_2) = \frac{8l_1\cos^2(\frac{\theta}{2})\left(2l_1^3\cos(\theta) - 3l_2l_1^2 + l_2^3\right)}{\left(l_1^2 + l_2^2 - 2l_1l_2\cos(\theta)\right)^3}$$

$$= \frac{8l_1\cos^2(\frac{\theta}{2})\left(2l_1^3\cos(\theta) - 2l_1^3\right)}{d^6}$$

$$= \frac{8l_1\cos^2(\frac{\theta}{2})\left(2l_1^3\left(\cos(\theta) - 1\right)\right)^{<0, \text{ since } \theta \in (0,\pi)}}{d^6}$$

$$< 0$$

Therefore, $l_2^* = l_1$ is a maximizer of g.

Lemma 2: For a given "corner" of a polygon, the maximum Chord Arc Quantity between \mathbf{x} and \mathbf{y} is only dependent on θ .

Proof: When $l_2 = l_1$, the maximum Chord Arc Quantity between **x** and **y** achieved is

$$\begin{split} \frac{l_1 + l_2}{d} &= \frac{2l_1}{\sqrt{l_1^2 + l_2^2 - 2l_1 l_2 \cos(\theta)}} \\ &= \frac{2l_1}{\sqrt{2l_1^2 - 2l_1^2 \cos(\theta)}} \\ &= \frac{\sqrt{2}}{\sqrt{1 - \cos(\theta)}}, \end{split}$$

which only depends on θ .

Implication: We can simply use $h(\theta) = \frac{\sqrt{2}}{\sqrt{1-\cos(\theta)}}$ to calculate the "Adjacent Chord Arc Quantity" of a polygon's each "corner".

Figure 2: Plot of $h(\theta)$: Maximum "Adjacent Chord Arc Quantity" vs θ (in degree)