TEST 2

JASON MEDCOFF

1. Consider the curve $Y^2 = X^3 - 2X + 4$ and the points P = (0, 2), Q = (3, -5). Compute, by hand, $P \oplus Q$.

Solution. First, we obtain the equation of the line passing through P and Q as $y = -\frac{7}{3}x + 2$. Next, we want the intersections of this line with the curve, so set

$$\left(-\frac{7}{3}x+2\right)^2 = x^3 - 2x + 4$$
$$0 = x^3 - \frac{49}{9}x^2 + \frac{22}{3}x$$

Clearly, x = 0 is a solution, so we divide by x.

$$0 = x^2 - \frac{49}{9}x + \frac{22}{3}$$

As we already know from point Q, x=3 is also a solution so we use polynomial long division to obtain $x=\frac{22}{9}$. Then from the equation of the curve,

$$y^2 = (\frac{22}{9})^3 - 2(\frac{22}{9}) + 4$$

and we have that

$$y = \pm \sqrt{\frac{10000}{729}} = \pm \frac{100}{27}.$$

Plugging our $x = \frac{22}{9}$ into the line equation, we have the negative value, so the positive value gives the correct y for the new point. So the result of $P \oplus Q$ is $(\frac{22}{9}, \frac{100}{27})$.

2. Consider the cubic polynomial

$$x^{3} + ax + b = (x - e_{1})(x - e_{2})(x - e_{3})$$

and show that $4a^3 + 27b^2 = 0$ if and only if two or more of e_1 , e_2 , e_3 are the same.

Solution. Recall from elementary algebra that the discriminant is a function of a polynomial's coefficients, that gives interesting properties of the polynomial. Namely the discriminant equals zero if and only if the polynomial has a multiple root. So, we will begin by finding the discriminant of the given polynomial.

If we expand $(x - e_1)(x - e_2)(x - e_3)$, we have

$$x^{3} - x^{2}(e_{1} + e_{2} + e_{3}) + x(e_{1}e_{2} + e_{1}e_{3} + e_{2}e_{3}) - (e_{1}e_{2}e_{3})$$

but clearly it must be that $(e_1 + e_2 + e_3) = 0$. Then make the substitution $e_3 = -e_1 - e_2$. Then we obtain

(1)
$$x^3 + x(-e_1^2 - e_1e_2 - e_2^2) + (e_1^2e_2 + e_1e_2^2)$$

and it is plainly clear how a and b are expressed in terms of the roots.

The discriminant for a cubic with roots e_1 , e_2 , e_3 is given by

$$\Delta_f := \prod_{i \neq j} (e_i - e_j) = (e_1 - e_2)(e_2 - e_1)(e_3 - e_2)(e_2 - e_3)(e_1 - e_3)(e_3 - e_1)$$

and since $e_3 = -e_1 - e_2$, we can make the substitution

$$\Delta_f = (e_1 - e_2)(e_2 - e_1)((-e_1 - e_2) - e_2)(e_2 - (-e_1 - e_2))(e_1 - (-e_1 - e_2))((-e_1 - e_2) - e_1).$$

Expanding yields

(2)
$$\Delta_f = -4e_1^6 - 12e_1^5e_2 + 3e_1^4e_2^2 + 26e_1^3e_2^3 + 3e_1^2e_2^4 - 12e_1e_2^5 - 4e_2^6.$$

If we take $4a^3 + 27b^2$ and make the substitution for a and b shown in equation (1) in terms of the roots, we have

$$4a^{3} + 27b^{2} = 4(-e_{1}^{2} - e_{1}e_{2} - e_{2}^{2})^{3} + 27(e_{1}^{2}e_{2} + e_{1}e_{2}^{2})^{2}$$
$$= -4e_{1}^{6} - 12e_{1}^{5}e_{2} + 3e_{1}^{4}e_{2}^{2} + 26e_{1}^{3}e_{2}^{3} + 3e_{1}^{2}e_{2}^{4} - 12e_{1}e_{2}^{5} - 4e_{2}^{6}$$

which is precisely equation (2). Thus $4a^3+27b^2$ is the discriminant and it follows that $4a^3+27b^2=0$ if and only if two or more of e_1 , e_2 , e_3 are the same.

3. Consider

$$u^2 = x^3 + 2x + 3$$
 over \mathbb{F}_7

(a) List all the points on this curve.

Solution. The points on the curve are those that satisfy the equation in \mathbb{F}_7 . That is, we can calculate x^3+2x+3 for all x, then check if that number exists as a square in \mathbb{F}_7 . Brute forcing, we have $y^2 \in \{3,6,1,5,0\}$ for $x \in \{0,1,\ldots,6\}$. In addition, we have $a^2 \in \{0,1,2,4\}$ for $a \in \{0,1,\ldots,6\}$. Then the feasible y values are 0 and 1. Specifically, we have $(6,0), (2,\pm 1),$ and $(3,\pm 1).$

(b) Make an addition table for these points. Solution.

Table 1. Addition table

\oplus	(6,0)	(2, 1)	(2, -1)	(3, 1)	(3, -1)
(6,0)	0	(3,1)	(3, -1)	(2,1)	(2,-1)
(2, 1)	(3,1)	(3, -1)	\mathcal{O}	(2,-1)	(6,0)
		$\mathcal O$			
		(2,-1)		(3, -1)	
(3, -1)	(2,-1)	(6,0)	(2, 1)	O	(3, 1)

4. Consider the curve $y^2 = x^3 + x + 1$ over \mathbb{F}_5 and the points P = (4, 2), Q = (0, 1). Solve the discrete log problem, i.e. find n such that Q = nP.

Solution. Brute force all multiples of P using code. Clearly n=5.

Table 2. Multiplication table

5. Consider the group of points on E. Since E is a finite group, every point in E has finite order. Then for some $P \in E$, if s is the smallest solution to $sP = \mathcal{O}$, s is the order of P. We know then

TEST 2 3

that $(is)P = (i)(sP) = (i)\mathcal{O} = \mathcal{O}$ for all i. Then consider nP = Q. By the division algorithm and laws of exponents for groups,

$$nP = Q$$
$$(is + r)P = Q$$
$$(is)P \oplus (r)P = Q$$
$$\mathcal{O} \oplus (r)P = Q$$
$$(r)P = Q$$

but since r is less than s, it must be the smallest such solution to the equation; therefore $r = n_0$.

6. Use the double-and-add algorithm to compute nP in

$$y^2 = x^3 + 1828x + 1675$$
 over $\mathbb{F}_1 999$

for n = 11 and P = (1756, 348). List the intermediate steps in a table.

Solution. We obtain the answer as (1068, 1540). Table 3 displays the state of the intermediate point \mathbf{r} in the code.

Table 3. Exponentiation of P

n	R
11	(1756, 348)
5	(1756, 348)
2	(1362, 998)
1	(1362, 998)
0	(1068, 1540)

- 7. Attach a listing of your code for
 - (a) Addition of points on an elliptic curve over a finite field.
 - (b) Exponentiation (nP).

Solution. Both pieces of code assume a point to be a 2-tuple. A curve is also a 2-tuple, given as (a, b) for $y^2 = x^3 + ax + b$.

```
def add(p1, p2, curve, p):
if p1 is None:
    return p2
if p2 is None:
    return p1
if (p1[0] == p2[0]) and (p1[1] == (-p2[1]%p)):
    return None
lam = 0
if p1 == p2:
    lam = ((3*(p1[0]**2)+curve[0])*inverse_modp(2*p1[1], p)) % p
else:
    lam = ((p2[1] - p1[1])*inverse_modp(p2[0] - p1[0], p)) % p
x3 = (lam**2 - p1[0] - p2[0]) % p
y3 = (lam*(p1[0] - x3) - p1[1]) % p
return x3, y3
```

Note that the function $inverse_modp$ finds the multiplicative inverse of its argument mod p; it is also homemade, from a past homework.

```
def ec_exp(pt, n, curve, p):
q = pt
r = None
while n>0:
    if (n % 2) == 1:
        r = add(r, q, curve, p)
    q = add(q, q, curve, p)
    n = n>>1
return r
```