Field Freezing Experiment

ORIGINAL DESIGN (without a real false spring): I will design a field experiment to evaluate the differences in damage sustained across life stage to assess forest recruitment and sustainability. I will monitor the phenology of sapling and adult individuals across 8-9 species for 16 adults and 24 saplings per species and expose half of the individuals to simulated false spring events (Table 1). I will quantify the traits important for frost tolerance (i.e. leaf serrations and number of trichomes) and monitor those traits across life stage. To simulate a false spring, I will construct multiple in-field growth chambers and place them over individuals between budburst and leafout for an hour just after sunrise, which is the coldest time of day. I will then monitor their growth and phenology from budburst to leaf drop to determine the effects of false springs across life stage.

QUESTIONS:

- 1. Do different life stages utilize different avoidance and/or tolerance strategies?
- 2. Does false spring damage vary across life stage?

PLANS FOR ANALYSIS:

Question 1: I want to first evaluate the variation in strategies across life stage. For this question, I will have either Duration of Vegetative Risk, number of trichomes or number of leaf serrations as the response variable (Equation 1).

$$y_i = \alpha_{sp(i)} + \beta_{lifestage_{sp(i)}} + \sigma_{sp(i)} \tag{1}$$

Question 2: I will look at how the duration of vegetative risk shifts under the treatment and I will also have leaf chlorophyll content and SLA as response variables (Equation 2).

$$y_i = \alpha_{(i)} + \beta_{tx_{sp_{(i)}}} + \beta_{serrations_{sp_{(i)}}} + \beta_{trichomes_{sp_{(i)}}} + \sigma_{sp_{(i)}}$$
 (2)

POTENTIAL SHIFT IN DESIGN (if a real false spring is expected): Could I place hobo loggers on individuals that are between budburst and leafout and if the temperature drops below -2.2°C then it is considered a false spring treatment? The temperatures would vary but at least I would be monitoring that temperature...? Still thinking! Temperatures have been in the 50s and 60s over the last couple of weeks. We are supposed to get into the high 60s a couple times this week and then it's suppose to drop again... and then go back up to the 50s. I few of my smaller individuals are already showing signs of bud swelling. From my experiment last spring, I saw that – depending on the species – the buds

could look like that for quite a while before bursting so it may be okay, but it is still so early in the year. My concern is that I will start the experiment and then a false spring will hit halfway through and I will greatly reduce my sample size and number of species. Right now, I will continue to monitor the buds and if I think an individual is very close to budburst, I will look at the 10 day forecast and try to determine the best course of action from there. I also have a lot of individuals tagged at the Grant (Table 2), which I will go check on those individuals in the next couple of weeks. Maybe one site will have a false spring and the other won't — at least one can hope!

Table 1: Number of individuals already tagged in Harvard Forest for the spring field season.

Species	Stage	# of Individuals
Acer pensylvanicum	Sapling	24
A. saccharum	Sapling	24
Betula lenta	Sapling	24
Carya ovata	Sapling	24
Corylus cornuta	Sapling	24
Fagus grandifolia	Sapling	16
Hamamelis virginiana	Sapling	24
Ilex verticillata	Sapling	24
Viburnum acerfolium	Sapling	24
A. pensylvanicum	Tree	16
A. saccharum	Tree	16
B. lenta	Tree	16
C. ovata	Tree	16
C. cornuta	Tree	16
F. grandifolia	Tree	16
H. virginiana	Tree	16
I. verticillata	Tree	16
V. acerfolium	Tree	16

Table 2: Field Freezing (Grant) - number of saplings marked per species.

Species	No. of Individs
VIBLAN	16
ILEMUC	16
BETALL	16
FAGGRA	16
ALNINC	16
PRUPEN	16
ACERUB	16
ACESAC	16
ACEPEN	16