Computer Science Fundamentals

Lecture 1

Welcome to BIS!

Join Telegram group, please!

https://t.me/joinchat/BroIMhiOgEWVP8kZQagYZA

Please, join the **telegram group as soon as possible** in order to deal with any arising problems

Join video conferencing in intranet

1. Make sure you use latest version of Chrome/Firefox

In Chrome go Settings -> About Chrome

Or copy chrome://settings/help to the address line and update to the latest version

In Firefox go Help -> About Firefox
Update to the latest version

Go to Intranet -> WLB -> Computer Science Fundamentals
 -> Video Conference by Timetable

https://intranet.wiut.uz/UserModuleMaterials/SingleModuleView?moduleId=559

In case of problems let's communicate over the Telegram

https://t.me/joinchat/BrolMhiOgEWVP8kZQagYZA

Trouble with previous slide link (9:00 slot)

If majority has trouble with joining video conferencing on previous slide by 9:20 then we all move to Zoom

Join Zoom Meeting https://us04web.zoom.us/j/73013418591?pwd=RFFPc2dlMUQybFVBeHBrNVBteVFkQT09

Meeting ID: 730 1341 8591

Passcode: csf

If you do not have Zoom installed click to install it in the popup

Trouble with previous slide link (11:00 slot)

If majority has trouble with joining video conferencing on previous slide by 11:20 then we all move to Zoom

Join Zoom Meeting: https://us04web.zoom.us/j/75256607810?pwd=V0c2NDBWQ1Y2bDZFNlhlNVN4UHdkZz09

Meeting ID: 752 5660 7810

Passcode: csf

If you do not have Zoom installed click to install it in the popup

Agenda

- 1. Module overview
 - 1.1. Team and Assessment
 - 1.2. Learning outcomes
 - 1.3. Roadmap for the semester
- 2. History of the computers
- 3. Brief history of computing software

1. Module overview

1.1 Module overview

Module team:

- Olga Yugay, module leader
- Subair Ali, tutor

Q&A:

http://intranet.wiut.uz/LearningMaterial/Discussion/Details/649?moduleId=559

Assessment

Coursework 40%, Final exam 60%

1.2 Learning outcomes

- 1. Identify and interpret the numerical processes running within computer system.
- 2. Describe the tasks and features of each of the main components of a computer system and how these components work together.
- 3. Show understanding of the **von Neumann architecture** and **stored program paradigm**.
- 4. Explore and experiment with **algorithms** and other relevant computer science topics.
- 5. Explore **current trends in technology** and learn to use relevant resources and tools
- 6. Demonstrate a thorough knowledge of basic command line commands and git

Abstraction is

...way to think about the something which removes or hides complex details

...a technique for managing complexity of computer systems.

1.3 Roadmap for the semester: layers of computing systems

1.3 Roadmap for the semester: layers of computing systems

2. History of computers

Your ideas first

When do you think history of computing began?

What was the first computing device?

Early history of computing

Abacus (around 2500 BC)

- An early device to record numeric values

Early history of computing

Blaise Pascal(In the middle of 17th century)

Mechanical device to add, subtract, divide & multiply

Joseph Jacquard(late 18th century)

Jacquard's Loom, the punched card

Charles Babbage(19th century)

Analytical Engine

There are video links about it on the last slide

More recent history: 4 generations of computers

First generation computers (1951 – 1959)

Second generation computers (1959-1965)

Third Generation computers (1965-1971)

Fourth Generation computers (1965-1971)

Fifth Generation: Artificial Intelligence (Present and Beyond)

First generation computers (1951 – 1959)

- Vacuum tubes stored information
- Generated a lot of heat
- Primary memory device magnetic drum that rotated under read/write head
- Slow Input/Output
 - Input device card reader that read the holes punched in an IBM card
 - Output punched card or a line printer
- Use: UNIVAC was the first commercial computer delivered to a business client, the U.S. Census Bureau in 1951.

Second generation computers (1959-1965)

- Transistor replaced vacuum tubes
- Smaller, more reliable
- Memory made from magnetic cores, tiny dougnut-shaped devices, each capable of storing one bit of information -> Immediate access memory
- Transistors and other components <u>were assembled by</u> <u>hand on printed circuit board</u>
- Use: atomic energy industry

Third Generation computers (1965-1971)

- Integrated Circuits (IC) solid pieces of silicon with transistors, other components, and their connections.
- Smaller, cheaper, faster, and more reliable
- 1970s several thousand transistors on a silicon chip
- Memory use of transistor, each transistor one bit of information, volatile memory – the information went away when the power was turned off
- Input, output device the terminal with keyboard and screen first appeared
- Use: Computers for the first time became accessible to a mass audience because they were smaller and cheaper than their predecessors

Fourth Generation computers(1965-1971..present?)

- Large scale integration
- Micro-computer on a chip
- Development of <u>GUIs</u>, the mouse and handheld devices.
- The workstations were <u>networked</u>
- PC (Personal Computer) entered the vocabulary
 - Apple
 - Tandy/Radio Shack
 - Atari
 - Commodore
 - Sun
 - o IBM
 - Hewlett-Packard and many others
- Use: desktop computers in many areas of life as more and more everyday products began to use microprocessors

Fifth Generation: Artificial Intelligence (Present and Beyond)

Fifth generation computing devices, based on **artificial intelligence**, are still in development, though there are some applications, such as **voice recognition**, that are being used today.

The use of **parallel processing** and **superconductors** is helping to make artificial intelligence a reality.

Quantum computation and molecular and nanotechnology will radically change the face of computers in years to come.

Use: The goal of fifth-generation computing is to develop devices that respond to natural language input and are capable of **learning and self-organization**.

3. Brief history of computing software

First generation software

- First programs were written on <u>machine language</u>
- Instructions were <u>built into</u> the electrical circuitry of a particular computer
- E.g.: small task of adding two numbers together used <u>three instructions</u> written in binary (1s and 0s), and the programmer had to remember which combination of binary digits means what
- Programming in machine language is both time-consuming and prone to errors -> first artificial programming languages were developed - assembly languages, used <u>mnemonic codes</u> to represent each machine-language instruction.

Machine language

Assembly language

First generation software

Second generation software

- More powerful hardware → more powerful tools to use it effectively
- Assembly language limitation (thinking in terms of machine instructions) → more powerful languages (high level) developed
 - o Fortran, Cobol, Lisp
- Same program could now run on more than 1 computer
 - Compiler translating program

Second generation software

- Systems programmers wrote tools like assemblers and compilers
- Application programmers used these tools to write programs
- The application programmer was becoming even more insulated from the computer hardware

Third generation software (1965 - 1971)

- With 3rd generation of computers, it became clear that the human was slowing down the computing process.
- Computers were **sitting idle while waiting** for the computer operator to prepare the next job.

Application packages

Systems

• **Solution:** put the computer resources under the control of the computer => to write a program that would determine which programs were run when => an

High-level languages

Machine language

Assembly

languages

operating system

Fourth generation software (1971 - 1989)

- Structured programming, a logical, disciplined approach to programming
 - Pascal
 - Modula-2
 - BASIC
 - C
 - o C++
- More powerful operating systems
 - UNIX under AT&T
 - PC-DOS for IBM PC
 - MS-DOS
 - OS for Macintosh with mouse and point-and-click graphical interface
- Application software packages appeared
 - Spreadsheets
 - Word processors
 - Database management systems

Fifth generation (1990 - present)

- Microsoft
- Apple
- Open source software (Linux and alike)
- Object-oriented design and programming
- World Wide Web
- Embedded systems

Recommended actions!

- 1. https://www.youtube.com/watch?v=O5nskjZ Gol&t=32s
- 2. https://www.youtube.com/watch?v=LN0ucKNX0hc
- 3. https://www.youtube.com/watch?v=6dME3wgaQpM&list=PL1331A4548513E

<u>A81</u>

- 4. Module page (e-version) or Library (hard copy) :
 - a. Dale, Computer Science Illuminated, Ch 1

