1-1 设元件可用公式 $i = 4\Psi - \Psi^3$ 表示, 试问该元件是有源还是无源元件?

1-2 图 1-19 所示电路中 VD 为理想二极管 V_1 为输入, V_2 为输出,试分别说明它们满足线性和叠加性否?

图 1-19 题 1-2图

对国内电	路
	X14 .
	$V_1 7 0 B V_2 = \frac{1}{2} V_1$
2	$V_1 < v$ at $V_2 = V_1$
	文 V170、新出 V2= ⇒V1
	$4 \frac{1}{2} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} 1$
	这不满足线性

•	2、程护性:	
	假设输入Vi的,输出V20);输入Vi的有创出V20)	
	ルとすな レルフロ リロスロ 月海で (レル) くしいい トレル <	
	则有 输入 V,(''' + V,('')	
	特別 $V_1^{(1)} + V_1^{(2)} \neq \frac{1}{2} V_1^{(3)} + V_1^{(2)} = V_2^{(1)} + V_2^{(2)}$	
	校不满足强力性	
	1 04	_
对于占		
	当VI ZUBI	
	$V_2 = \frac{1}{2} V_1$	_
	当り、くり対	
	$V_2 = \frac{1}{2}V_1$	
	tx是有V2=1V1	
	当输入 a V, 可t, (a 可取12意义数)	
	$E = \frac{a}{2} V_1$	
	因此满足线性	
	1000 74 72 34 11	
3 - 1	14 \ 7 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_
看力。	性:由于此电路中 色-何 V2 = 专V1 作义定 V1 输出 V2 V1 输出 V2	
		_
	取り V ⁽¹⁾ + V ⁽²⁾ 新出さ (V ⁽¹⁾ + V ⁽²⁾)	
	也抗 等于 V2(1) + V2(2)	
	因此满足雪加性	

1-8 关联矩阵 /	$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	0 0 0 0 -1 0 0 -	0 0		0 1 -1 0	0 0 -1 1		-					
 1)已知该图连 2)求基本回路 3)求基本割集 	矩阵 B_f ;	分别顺次	编排的	为,试 硕	角定哪 _!	些是树	支列;	_					
	det At						•						
	2, 3, 4					们	打打	Ž					
	1,2,3,			双支	3-)								
2) 根据	Bt =-	At' A			_)		۲					
	3	1	0	0	0			-		U	0		
	At =	U	J	O	0		AL=	U	ᅴ	1	0		
		U	0	-1	0			0	0	-1	-1		
		L 0	0	7	- _			_	0	0	1_		
	Bt = (-Дъ' Г	Aι)					ſ,					
		1	0	0	ı				0	U	O		
	=	-		0	0	BL	J	٥	1	0	0		
		0	-	-1	0			0	O	-	0		
		Lo	O	-1	<u> </u>)		LO	U	0			
因此	Bf =	L B	l	Bt]					_				
		1	O	0	0	1	U	0					
		0		U	U	-(l	U	0				
		U	0		0	U	-1	-1	٥				
		Lo	U	O	l	U	U	-					
3) 根据	OL = - 1	34'											

1-11 设上题支路 4、5、6 为树支,试求其基本割集矩阵 Q_f ,并将 $Q_I I_b = 0$ 和 $Q_f^{\mathsf{T}} V_t = V_b$ 的展开式写

