Planning And Learning

- Pouvoir réaliser plusieurs rounds d'apprentissage entre les steps !
- Dyna-Q!

```
Tabular Dyna-Q

Initialize Q(s,a) and Model(s,a) for all s \in \mathbb{S} and a \in \mathcal{A}(s)
Loop forever:

(a) S \leftarrow \text{current} (nonterminal) state
(b) A \leftarrow \varepsilon\text{-greedy}(S,Q)
(c) Take action A; observe resultant reward, R, and state, S'
(d) Q(S,A) \leftarrow Q(S,A) + \alpha [R + \gamma \max_a Q(S',a) - Q(S,A)]
(e) Model(S,A) \leftarrow R,S' (assuming deterministic environment)
(f) Loop repeat n times:
S \leftarrow \text{random previously observed state}
A \leftarrow \text{random action previously taken in } S
R,S' \leftarrow Model(S,A)
Q(S,A) \leftarrow Q(S,A) + \alpha [R + \gamma \max_a Q(S',a) - Q(S,A)]
```

Planning And Learning

- Pouvoir réaliser plusieurs rounds d'apprentissage entre les steps!
- Dyna-Q+! (Pour contrer les changements dans l'environnement et les départs malchanceux)
- $0 \le k \le 1$
- τ est le nombre de steps depuis lequel l'action A n'a pas été effectuée dans l'état S il faut donc le voir comme $\tau(s,a)$

```
Tabular Dyna-Q +

Initialize Q(s,a) and Model(s,a) for all s \in \mathcal{S} and a \in \mathcal{A}(s)
Loop forever:

(a) S \leftarrow \text{current (nonterminal) state}
(b) A \leftarrow \varepsilon\text{-greedy}(S,Q)
(c) Take action A; observe resultant reward, R, and state, S'
(d) Q(S,A) \leftarrow Q(S,A) + \alpha [R + \gamma \max_a Q(S',a) - Q(S,A)]
(e) Model(S,A) \leftarrow R,S' (assuming deterministic environment)
(f) Loop repeat n times:

S \leftarrow \text{random previously observed state}
A \leftarrow \text{random action previously taken in } S
R,S' \leftarrow Model(S,A)
Q(S,A) \leftarrow Q(S,A) + \alpha [R + \kappa \sqrt{\tau} + \gamma \max_a Q(S',a) - Q(S,A)]
```

Que faire quand il y a trop d'états?

- ... ou quand on veut généraliser ?
- Approximation Function Methods!
- Idée : utiliser une fonction à la place de Q(s,a) !

```
Episodic Semi-gradient Sarsa for Estimating \hat{q} \approx q_*
Input: a differentiable action-value function parameterization \hat{q}: \mathbb{S} \times \mathcal{A} \times \mathbb{R}^d \to \mathbb{R}
Algorithm parameters: step size \alpha > 0, small \varepsilon > 0
Initialize value-function weights \mathbf{w} \in \mathbb{R}^d arbitrarily (e.g., \mathbf{w} = \mathbf{0})
Loop for each episode:
    S, A \leftarrow \text{initial state} and action of episode (e.g., \varepsilon-greedy)
    Loop for each step of episode:
         Take action A, observe R, S'
         If S' is terminal:
              \mathbf{w} \leftarrow \mathbf{w} + \alpha [R - \hat{q}(S, A, \mathbf{w})] \nabla \hat{q}(S, A, \mathbf{w})
             Go to next episode
         Choose A' as a function of \hat{q}(S', \cdot, \mathbf{w}) (e.g., \varepsilon-greedy)
         \mathbf{w} \leftarrow \mathbf{w} + \alpha [R + \gamma \hat{q}(S', A', \mathbf{w}) - \hat{q}(S, A, \mathbf{w})] \nabla \hat{q}(S, A, \mathbf{w})
         S \leftarrow S'
         A \leftarrow A'
```

Que faire quand il y a trop d'états?

- Pourquoi ne pas faire du Deep Q Learning ?
 - Attention Danger!
 - Instabilité quand nous sommes en présence de la Deadly Triad (Ch11.3) :
 - Function Approximation
 - TD Methods (Bootstrapping)
 - Off-policy training

Que faire quand il y a trop d'états?

- Pourtant ... ça marche souvent ...
 - https://arxiv.org/abs/1312.5602

```
Algorithm 1 Deep Q-learning with Experience Replay
  Initialize replay memory \mathcal{D} to capacity N
   Initialize action-value function Q with random weights
  for episode = 1, M do
       Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
       for t = 1, T do
            With probability \epsilon select a random action a_t
            otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
            Execute action a_t in emulator and observe reward r_t and image x_{t+1}
            Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
            Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
            Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from \mathcal{D}
           Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
            Perform a gradient descent step on (y_i - Q(\phi_i, a_i; \theta))^2 according to equation 3
       end for
   end for
```

Peut-on apprendre directement la policy?

Oui : Policy Gradient Methods

```
REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for \pi_*

Input: a differentiable policy parameterization \pi(a|s, \boldsymbol{\theta})

Algorithm parameter: step size \alpha > 0

Initialize policy parameter \boldsymbol{\theta} \in \mathbb{R}^{d'} (e.g., to \boldsymbol{0})

Loop forever (for each episode):

Generate an episode S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T, following \pi(\cdot|\cdot, \boldsymbol{\theta})

Loop for each step of the episode t = 0, 1, \ldots, T - 1:

G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k

\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \gamma^t G \nabla \ln \pi(A_t|S_t, \boldsymbol{\theta})
```

Peut-on apprendre directement la policy?

- Oui : Policy Gradient Methods
- Et si l'on a que des rewards positifs ?

```
REINFORCE with Baseline (episodic), for estimating \pi_{\theta} \approx \pi_{*}

Input: a differentiable policy parameterization \pi(a|s, \theta)

Input: a differentiable state-value function parameterization \hat{v}(s, \mathbf{w})

Algorithm parameters: step sizes \alpha^{\theta} > 0, \alpha^{\mathbf{w}} > 0

Initialize policy parameter \theta \in \mathbb{R}^{d'} and state-value weights \mathbf{w} \in \mathbb{R}^{d} (e.g., to \mathbf{0})

Loop forever (for each episode):

Generate an episode S_0, A_0, R_1, \dots, S_{T-1}, A_{T-1}, R_T, following \pi(\cdot|\cdot, \theta)

Loop for each step of the episode t = 0, 1, \dots, T - 1:

G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k

\delta \leftarrow G - \hat{v}(S_t, \mathbf{w})

\mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} \delta \nabla \hat{v}(S_t, \mathbf{w})

\theta \leftarrow \theta + \alpha^{\theta} \gamma^{t} \delta \nabla \ln \pi(A_t|S_t, \theta)
```

Peut-on apprendre aussi cette baseline?

Oui: Actor Critic architectures

```
One-step Actor-Critic (episodic), for estimating \pi_{\theta} \approx \pi_*
Input: a differentiable policy parameterization \pi(a|s,\theta)
Input: a differentiable state-value function parameterization \hat{v}(s, \mathbf{w})
Parameters: step sizes \alpha^{\theta} > 0, \alpha^{\mathbf{w}} > 0
Initialize policy parameter \theta \in \mathbb{R}^{d'} and state-value weights \mathbf{w} \in \mathbb{R}^{d} (e.g., to 0)
Loop forever (for each episode):
    Initialize S (first state of episode)
    I \leftarrow 1
    Loop while S is not terminal (for each time step):
          A \sim \pi(\cdot|S, \boldsymbol{\theta})
          Take action A, observe S', R
          \delta \leftarrow R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w})
                                                               (if S' is terminal, then \hat{v}(S',\mathbf{w}) \doteq 0)
         \mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} \delta \nabla \hat{v}(S, \mathbf{w})
         \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha^{\boldsymbol{\theta}} I \delta \nabla \ln \pi(A|S, \boldsymbol{\theta})
         I \leftarrow \gamma I
          S \leftarrow S'
```

Peut-on réaliser plusieurs epochs d'apprentissage d'affilée sans interagir avec l'environnement ?

Oui avec TRPO et/ou PPO: https://arxiv.org/abs/1707.06347

```
Algorithm 1 PPO, Actor-Critic Style

for iteration=1, 2, ... do

for actor=1, 2, ..., N do

Run policy \pi_{\theta_{\text{old}}} in environment for T timesteps

Compute advantage estimates \hat{A}_1, \ldots, \hat{A}_T

end for

Optimize surrogate L wrt \theta, with K epochs and minibatch size M \leq NT

\theta_{\text{old}} \leftarrow \theta

end for
```

$$L_t^{CLIP}(\theta) = \min(r_t(\theta)\hat{A}_t, \operatorname{clip}(r_t(\theta)), 1 - \epsilon, 1 + \epsilon)\hat{A}_t$$

$$\hat{A}_t = \delta_t + (\gamma\lambda)\delta_{t+1} + \dots + (\gamma\lambda)^{T-t+1}\delta_{T-1},$$
where $\delta_t = r_t + \gamma V(s_{t+1}) - V(s_t)$

$$r_t(\theta) = \frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)}$$

$$L_t^{CLIP+VF+S}(\theta) = \hat{\mathbb{E}}_t \left[L_t^{CLIP}(\theta) - c_1 L_t^{VF}(\theta) + c_2 S[\pi_{\theta}](s_t) \right],$$

where c_1, c_2 are coefficients, and S denotes an entropy bonus, and L_t^{VF} is a squared-error loss $(V_{\theta}(s_t) - V_t^{\text{targ}})^2$.