Curs Nr. 1

Lect. Dr. Munteanu Iuliana

Ecuatie diferentiala de ordin k ($k \in \mathbb{N}^*$)

$$F(t, x, x^{(1)}, ..., x^{(k)}) = 0$$
 (1)

Se cunoaste F de k+2 variabile, $F:D \subset \mathbb{R}^{k+2} \to \mathbb{R}$. Se cere sa se determine $x(\cdot):D \subset \mathbb{R} \to \mathbb{R}$ astfel incat sa verifice ecuatia (1), adica trebuie gasita $\varphi(\cdot):D_1 \subset \mathbb{R} \to \mathbb{R}$ astfel incat $F\left(t,\varphi(t),\varphi^{(1)}(t),\varphi^{(k)}(t)\right)=0, \forall t \in D.$

Ecuatia (1) poate fi:

1. Liniara:

$$\sum_{j=0}^k a_j x^{(j)} = f(t)$$

f, a_0 , ..., a_k sunt functii continue

2. Liniara cu coeficienti constanti:

$$\sum_{j=0}^k a_j x^{(j)} = f(t)$$

Daca f(t) = 0 atunci ecuatia este omogena.

3. Cvasiliniara de ordin k:

$$x^{(k)} = g\big(t, x, x^{(1)}, \dots, x^{(k-1)}\big)$$

Ecuatie diferentiala de ordin 1

$$F(t, x, x') = 0$$
 forma implicita

 $f(\cdot,\cdot):D\subset\mathbb{R}^2\to\mathbb{R}$ defineste ecuatia (2).

Cerinte: a) Se da un
$$\varphi_0(\cdot)$$
 si verificam ca este solutie pentru (2).

$$\varphi_0: I_0 \subset \mathbb{R} \to \mathbb{R}$$

$$\varphi_0(t) = f(t, \varphi_0(t)), \forall t \in I_0$$

b) Se cere determinarea solutiei generale sau a unei solutii particulare care indeplineste conditia $x(t_0)=x_0$ (problema Cauchy)

Curs Nr. 1

Lect. Dr. Munteanu Iuliana

DEF.: Spunem ca s-a dat o **problema Cauchy** (f,t_0,x_0) pentru ecuatia (2) daca se cauta o functie $\varphi(\cdot)$: $I \subset \mathbb{R} \to \mathbb{R}$ astfel incat $\begin{cases} \varphi'(t) = f\big(t,\varphi(t)\big), \forall t \in I \\ \varphi(t_0) = x_0 \end{cases}$

Interpretare a solutiei ecuatiei (2): inseamna a se gasi o familie de functii $x(\cdot)$, pentru care se cunoaste din (2) directia tangentei.

Ecuatie diferentiala de ordin 1 integrabila prin cuadraturi

1. Ecuatie cu variabile separabile

$$\frac{dx}{dt} = a(t)b(t) \quad (3)$$

 $cu\ a(\cdot), b(\cdot)$ functii continue

Rezolvare: Se determina solutiile stationare obtinute din b(x)=0, apoi se separa variabilele $(b(x)\neq 0)$: $\frac{dx}{b(x)}=a(t)dt \implies \int \frac{dx}{b(x)}=\int a(t)dt$

2. Ecuatie liniara

$$\frac{dx}{dt} = a(t)x \quad (4)$$

Tema: Sa se arate folosind ecuatia (3) ca solutia generala a ecuatiei (4) este de forma $x(t)=ce^{\int a(t)dt}, cu\ c\ constanta\ din\ \mathbb{R}$

3. Ecuatie afina

$$\frac{dx}{dt} = a(t)x + b(t) \quad (5)$$

 $cu\ a(\cdot),b(\cdot)$ functii continue

Rezolvare: Se rezolva ecuatia omogena atasata $\frac{d\bar{x}}{dt}=a(t)\bar{x}$ si se aplica metoda variatiei constantelor. (Tema)

Curs Nr. 1

Lect. Dr. Munteanu Iuliana

4. Ecuatie omogena (functia *f* nu depinde arbitrar de *t* si *x*)

$$\frac{dx}{dt} = g\left(\frac{x}{t}\right) \qquad (6)$$

Adica $f(\cdot,\cdot)$ din ecuatia (2) are proprietatea de a fi functie omogena

$$\Leftrightarrow f(\lambda t, \lambda x) = f(t, x) \forall t \in \mathbb{R}, (\lambda t, \lambda x) \in D_f$$

Schimbare de variabila: $\frac{x}{t} = z$, $\frac{x(t)}{t} = z(t)$, se obtine o noua ecuatie doar in z. Rezolvare:

$$x(t) = tz(t) \Longrightarrow x^{'}(t) = tz^{'}(t) + z(t)$$

Ecuatia (6) devine z + tz' = g(z)

si se reduce la $z' = \frac{1}{t}(g(z) - z)$ ecuatie cu variabile separabile.

5. Ecuatie Bernoulli

$$\frac{dx}{dt} = a(t)x + b(t)x^{\alpha}$$
 (7)
$$cu \ a(\cdot), b(\cdot) \text{ functii continue, } \alpha \in \mathbb{R} \setminus \{0,1\}$$

Observatie: $\alpha = 0 \Rightarrow ec. \ afina; \ \alpha = 1, x \ se \ ia \ ca \ factor \Rightarrow ec. \ liniara$

Rezolvare: Varianta 1

a. Se identifica $a(\cdot), b(\cdot)$

b. Se rezolva ecuatia liniara atasata $\frac{d\bar{x}}{dt} = a(t)\bar{x} \stackrel{2.}{\Rightarrow} \bar{x}(t) = ce^{\int a(t)dt}$, $c \in \mathbb{R}$

c. Utilizand metoda variatiei constantelor determinam functia $c(\cdot)$ astfel incat

$$x(t) = c(t) e^{\int a(t)dt}$$
 sa verifice (7)

$$\left(c(t)e^{\int a(t)dt}\right)' = a(t)xc(t)e^{\int a(t)dt} + b(x)\left(c(t)e^{\int a(t)dt}\right)^{\alpha}$$

$$c'(t)e^{\int a(t)dt} + c(t)\left(e^{\int a(t)dt}\right)'a(t) = a(t)xc(t)e^{\int a(t)dt} + b(t)(c(t))^{\alpha}e^{\alpha\int a(t)dt}$$

$$c'(t) = (c(t))^{\alpha} b(t) e^{(\alpha-1)\int a(t)dt}$$
 ecuatie cu variabile separabile pentru determinarea lui $c(\cdot)$.

Solutii stationare exista numai daca $\alpha > 0$: $c^{\alpha} = 0 \Rightarrow c = 0 \Rightarrow x = 0$ este solutie stationara pt (7).

$$\frac{dc}{c^{\alpha}} = b(t)e^{(\alpha-1)\int a(t)dt} dt$$

Varianta 2

Se face schimbarea de variabile $x = z^{1-\alpha}$, $x(t) = (z(t))^{1-\alpha}$

$$x(t) = (z(t))^{\frac{1}{1-\alpha}} \Longrightarrow \frac{dx}{dt} = \frac{1}{1-\alpha} (z(t))^{\frac{1}{1-\alpha}-1} z'(t) = \frac{1}{1-\alpha} (z(t))^{\frac{\alpha}{1-\alpha}} z'(t).$$

Ecuatia (7) devine:
$$\frac{1}{1-\alpha} \left(z(t)\right)^{\frac{\alpha}{1-\alpha}} z'(t) = a(t) \left(z(t)\right)^{\frac{1}{1-\alpha}} + b(t) \left(z(t)\right)^{\frac{\alpha}{1-\alpha}}$$

$$z' = (1 - \alpha)a(t)z^{\frac{1}{1 - \alpha} - \frac{\alpha}{1 - \alpha}} + b(t)$$

 $z' = (1 - \alpha)a(t)z + b(t)$ ecuatie afina in z, se aplica algoritmul pentru ecuatia afina.

Curs Nr. 1

Lect. Dr. Munteanu Iuliana

6. Ecuatie Riccati

$$\frac{dx}{dt} = a(t)x^2 + b(t)x + c(t)$$
 (8)

 $cu\ a(\cdot), b(\cdot), c(\cdot): J \subset \mathbb{R} \to \mathbb{R}$ functii continue

Observatie: $\begin{bmatrix} 1 & a(t) \neq 0 \\ 2 & c(t) \neq 0 \end{bmatrix}$ (diferit de functia identic 0), altfel este ecuatie afina 2) $c(t) \neq 0$, altfel este ecuatie Bernoulli pentru $\alpha = 2$

Rezolvare: (se presupune cunoscuta o solutie $\varphi_0(\cdot)$ a ecuatiei (8))

Se face schimbarea de variabila $x = y + \varphi_0$, $x(t) = y(t) + \varphi_0(t)$

$$\varphi_0'(t) = a(t)\varphi_0^2(t) + b(t)\varphi_0(t) + c(t)$$
 (9)

$$x'(t) = y'(t) + \varphi'_0(t)$$

Ecuatia (8) devine: $y' + \varphi_0'(t) = a(t) (y + \varphi_0(t))^2 + b(t) (y + \varphi_0(t)) + c(t)$ $y'(\varphi_0'(t)) = a(t)y^2 + 2a(t)y\varphi_0(t) + a(t)\varphi_0^2(t) + b(t)y + b(t)\varphi_0(t) + c(t)$ $y' = \underbrace{[2a(t)\varphi_0(t) + b(t)]}_{a_1(t)} y + \underbrace{[a(t)]}_{b_1(t)} y^2 \Rightarrow \text{ pentru } y \text{ o ecuatie Bernoulli pt } \alpha = 2.$

Observatie: Ecuatia rasturnata a ecuatiei: $\frac{dx}{dt} = f(t,x)$ este ecuatia: $: \frac{dt}{dx} = \frac{1}{f(t,x)}$, care, uneori, poate fi incadrata intr-unul din tipurile de mai sus. Se determina t = t(x) care constituie solutie implicita si pentru ecuatia $\frac{dx}{dt} = f(t,x)$.

Exemplu (pentru ecuatie rasturnata): $x' = \frac{x}{3t-x^2}$

$$f(t,x) = \frac{x}{3t - x^2} \qquad f: D \subset \{(t,x) | x^2 \neq 3t\} \subset \mathbb{R}^2 \to \mathbb{R}$$

Ecuatia rasturnata:
$$\frac{dt}{dx} = \frac{3t - x^2}{x} = \frac{3}{x} \underbrace{t + \underbrace{-x}_{b(x)}}$$
 $\frac{d\bar{t}}{dx} = \frac{3}{x}\bar{t}$

$$\bar{t}(x)=ce^{\int_{\overline{x}}^3\!dx}=ce^{3\ln|x|}=ce^{\ln|x|^3}=c\ln|x|^3=cx^3,\ c\epsilon\mathbb{R}$$

Variatia constantelor: cautam c(x) astfel incat $t(x) = c(x)x^3$ sa fie solutie a ecuatiei rasturnate: $\frac{dt}{dx} = \frac{3t}{x} - x$

$$c'(x)x^{3} + c(x)3x^{2} = \frac{3}{x}c(x)x^{3} - x$$

$$c'(x) = -\frac{1}{x^{2}} \text{ (ecuatie de tip primitiva)}$$

$$c(x) = \frac{1}{x} + k, k \in \mathbb{R}$$

Solutia ecuatiei rasturnate:
$$t(x) = \left(\frac{1}{x} + k\right)x^3$$
 $t = x^2 + kx^3, k \in \mathbb{R}$

Tema (ecuatie rasturnata) :
$$x' = \frac{1}{t^2 e^x - 2t}$$
 $\frac{dt}{dx} = -2t + e^x t^2$ (Bernoulli cu $\alpha = 2$)