SSD1283A

Product Preview

132 RGB x 132 TFT Driver Integrated Power, Gate, Source Driver with built-in RAM

This document contains information on a product under development. Solomon Systech reserves the right to change or discontinue this product without notice.

TABLE OF CONTENTS

1	GENERAL DESCRIPTION	5
2	FEATURES	5
3	ORDERING INFORMATION	6
4	BLOCK DIAGRAM	6
5	DIE PAD FLOOR PLAN (GOLD BUMP FACE UP)	7
6	PIN DESCRIPTION	12
7	FUNCTIONAL BLOCK DESCRIPTIONS	15
8	COMMAND TABLE	17
9	COMMAND DESCRIPTIONS	19
10	EXTENDED COMMAND DESCRIPTION	
11	GAMMA ADJUSTMENT FUNCTION	
12	MAXIMUM RATINGS	44
13	DC CHARACTERISTICS	45
14	AC CHARACTERISTICS	
15	ITO RESISTANCE REQUIREMENT	
16	GDDRAM ADDRESS	
17	INTERFACE MAPPING	50
18	SSD1283A OUTPUT VOLTAGE RELATIONSHIP	
19	APPLICATION CIRCUIT	52
20	PACKAGE INFORMATION	54
21	OTP DETAIL	55

TABLE OF TABLES

TABLE 1 - ORDERING INFORMATION	6
TABLE 2 – SSD1283A SERIES BUMP DIE PAD COORDINATES (BUMP CENTER)	8
TABLE 3 – SSD1283A PIN DESCRIPTION	12
TABLE 4 - DATA BUS SELECTION MODES	16
TABLE 5 - COMMAND TABLE	17
TABLE 6 - MAXIMUM RATINGS (VOLTAGE REFERENCED TO VSS)	44
TABLE 7 - DC CHARACTERISTICS	45
TABLE 8 - PARALLEL TIMING CHARACTERISTICS	46
TABLE 9 – PARALLEL TIMING CHARACTERISTICS	47
TABLE 10 - SERIAL TIMING CHARACTERISTICS	48

 SSD1283A Series
 Rev 0.12
 P 3/58
 Jul 2005
 Solomon Systech

TABLE OF FIGURES

FIGURE 1 – SSD1283A BLOCK DIAGRAM	6
FIGURE 2 – SSD1283A DIE PAD FLOOR PLAN	7
FIGURE 3 - READ DISPLAY DATA	15
FIGURE 4 - GRAYSCALE CONTROL BLOCK	37
FIGURE 5 - GRAYSCALE AMPLIFIER	38
FIGURE 6 - RESISTOR LADDER FOR GAMMA VOLTAGES GENERATION	39
FIGURE 7 - GAMMA ADJUSTMENT FUNCTION	40
FIGURE 8 - PARALLEL 6800-SERIES INTERFACE TIMING CHARACTERISTICS	46
FIGURE 9 - PARALLEL 8080-SERIES INTERFACE TIMING CHARACTERISTICS	47
FIGURE 10 - 4 WIRE SERIAL TIMING CHARACTERISTICS	48
FIGURE 11 - LCD DRIVING VOLTAGE RELATIONSHIP	51
FIGURE 12 - BOOSTER CAPACITORS	52
FIGURE 13 - FILTERING AND CHARGE SHARING CAPACITORS	52
FIGURE 14 - POWER SUPPLY PINS CONNECTIONS	52
FIGURE 15 - PANEL CONNECTION EXAMPLE	53

 Solomon Systech
 Jul 2005
 P 4/58
 Rev 0.12
 SSD1283A Series

1 General Description

SSD1283A TFT Smart Driver is an all in one driver that integrated the power circuits, gate driver, source driver and RAM into single chip. It can drive a 262k color a-TFT panel with resolution of 132 RGB x 132.

It is also integrated with the controller function and consists of up to 39,204 bytes (132 x 132 x 18 / 8) Graphic Display Data RAM (GDDRAM), such that it interfaced with common MCU through 8/9/16/18-bits 6800-series / 8080-series compatible Parallel Interface or Serial Interface and stored the data in the GDDRAM. Auxiliary 18-bits video interface (VSYNC, HSYNC, DOTCLK, ENABLE and RR0-RR5, GG0-GG5, BB0-BB5) are integrated into SSD1283A for displays animated image.

With 9 external capacitors only, it embeds DC-DC Converter, Oscillator and Voltage generator to provide all necessary voltage required by the driver with minimum external components. A Common Voltage Generation Circuit is included to drive the TFT-display counter electrode. An Integrated Gamma Control Circuit is also included that can be adjusted by software commands to provide maximum flexibility and optimal display quality.

It can be operated down to 1.16V and provide different power save modes. It is suitable for any portable battery-driven applications requiring long operation period with compact size.

2 FEATURES

Power Supply: V_{DD} = 1.65 V – 2.5V (non-regulated input for logic)
 V_{DDIO} = 1.4 V – 3.6V (regulated input for logic)

 V_{DDEXT} = 1.65 V - 3.6V (auxiliary input for logic when V_{DDIO} < 1.65 V)

V_{CI} = 2.5V – 3.6V (power supply for internal analog circuit)

- Maximum Gate Driving Output Voltage: 30V p-p
- Source Driving Output Voltage: 0-5V
- Low Current Sleep Mode, Partial Display Mode and 8-colors mode for power saving
- Display Size: 132 RGB x 132
- Display Color Support: 262k/65k colors a-TFT displays
- 8/9/16/18-bits 6800-series / 8080-series Parallel Interface, Serial Peripheral Interface
- 18-bit RGB-Interface for animated displays (VSYNC, HSYNC, DOTCLK, DEN, and PD0-17)
- On-Chip 39,204 bytes (132x132x18/8) Graphic Display Data RAM
- Support Line and Frame Inversion
- Source and Gate scan direction control
- Software selection on Center Screen Scrolling, Top Screen Scrolling, Bottom Screen Scrolling and Whole Screen Scrolling
- On-Chip Voltage Generator or External LCD Driving Power Supply Selectable
- On-Chip DC-DC Converter up to 6x / -6x
- Typical Source Output Voltage variation: ±10 mV
- Programmable Common Electrode Voltage amplitude and level for both Cs on gate or Cs on common structure
- Programmable Gamma Correction Curve
- Programmable drive duty ratio: 1/16 up to 1/132 in steps of 8
- On-Chip Oscillator
- Non-Volatile Memory (OTP) for VCOM calibration
- Available in COG package with interlaced Gate Output in both sides

SSD1283A Series | Rev 0.12 | P 5/58 | Jul 2005 | **Solomon Systech**

3 ORDERING INFORMATION

Ordering Part Number	SEG(x RGB)	СОМ	Package Form	Reference	Remark
SSD1283AZ	132	132	Gold Bump Die		

Table 1 - Ordering Information

4 BLOCK DIAGRAM

Figure 1 - SSD1283A Block Diagram

 Solomon Systech
 Jul 2005
 P 6/58
 Rev 0.12
 SSD1283A Series

5 DIE PAD FLOOR PLAN (Gold bump face up)

Figure 2 - SSD1283A Die Pad Floor Plan

 SSD1283A Series
 Rev 0.12
 P 7/58
 Jul 2005

 Solomon Systech

Table 2 – SSD1283A Series Bump Die Pad Coordinates (Bump center)

Pad #	Signal	X-pos	Y-pos	Pad #	Signal	X-pos	Y-pos	Pad #	Signal	X-pos	Y-pos	Pad #	Signal	X-pos Y-pos
1	DUMMY	-8550.0	-784.0	67	BB3	-3600.0	-784.0	133	VSS	1350.0	-784.0	199	C3P	6300.0 -784.0
2	DUMMY	-8475.0	-784.0	68	BB3	-3525.0	-784.0	134	DUMMY	1425.0	-784.0	200	C3P	6375.0 -784.0
3	DUMMY	-8400.0	-784.0	69	BB4	-3450.0	-784.0	135	AVSS		-784.0	201	C3P	6450.0 -784.0
4	NC	-8325.0	-784.0	70	BB4	-3375.0	-784.0	136	AVSS	1575.0		202	C3P	6525.0 -784.0
5	NC	-8250.0	-784.0	71	BB5	-3300.0	-784.0	137	AVSS	1650.0		203	C3N	6600.0 -784.0
6	VCOM	-8175.0	-784.0	72	BB5	-3225.0	-784.0	138	AVSS	1725.0		204	C3N	6675.0 -784.0
7	VCOM VCOM	-8100.0 -8025.0	-784.0 -784.0	73 74	CM D0	-3150.0 -3075.0	-784.0 -784.0	139 140	DUMMY OSC1	1800.0 1875.0		205 206	C3N C3N	6750.0 -784.0 6825.0 -784.0
9	DUMMY	-7950.0	-784.0	75	D1	-3000.0	-784.0	141	VCI		-784.0 -784.0	207		6900.0 -784.0
10	DUMMY	-7875.0	-784.0	76	D2	-2925.0	-784.0	142	VCIP	2025.0		208		6975.0 -784.0
11	EXTCLK	-7800.0	-784.0	77	D3	-2850.0	-784.0	143	VCIP	2100.0		209		7050.0 -784.0
12	VSS	-7725.0	-784.0	78	D4	-2775.0	-784.0	144	VCIP	2175.0	-784.0	210	VGOFFL	7125.0 -784.0
13	REGVDD	-7650.0	-784.0	79	D5	-2700.0	-784.0	145	VDDEXT	2250.0	-784.0	211	VGOFFL	7200.0 -784.0
14	VDDIO	-7575.0	-784.0	80	D6	-2625.0	-784.0	146	VDDEXT	2325.0				7275.0 -784.0
15	CAD	-7500.0	-784.0	81	D7	-2550.0	-784.0	147	VDD	2400.0				7350.0 -784.0
16	BGR	-7425.0	-784.0	82	D8	-2475.0	-784.0	148	VDD	2475.0		214		7425.0 -784.0
17	REV	-7350.0	-784.0	83	E(WR)	-2400.0	-784.0	149	VDD	2550.0		215	VGH	7500.0 -784.0
18	PS0	-7275.0	-784.0	84	$R/\overline{w}(\overline{RD})$	-2325.0	-784.0	150	DUMMY	2625.0	-784.0	216	VGH	7575.0 -784.0
19	PS1	-7200.0	-784.0	85	D/c	-2250.0	-784.0	151	VDDIO	2700.0		217	VGH	7650.0 -784.0
20	PS2	-7125.0	-784.0	86	VSS	-2175.0	-784.0	152	VDDIO	2775.0		218	VGH	7725.0 -784.0
21	PS3	-7050.0	-784.0	87	D9	-2100.0	-784.0	153	VCOMH	2850.0		219	VGH	7800.0 -784.0
22	VSS TB	-6975.0 -6900.0	-784.0 -784.0	88 89	D10 D11	-2025.0 -1950.0	-784.0 -784.0	154 155	VCOMH VCOMH	2925.0		220	DUMMY	7875.0 -784.0 7950.0 -784.0
24	VDDIO	-6825.0	-784.0 -784.0	90	D11	-1950.0	-784.0 -784.0	156	VCHS	3075.0		222	VCOM	8025.0 -784.0
25	RL	-6750.0	-784.0	91	D12	-1800.0	-784.0	157	VCHS	3150.0		223		8100.0 -784.0
26	VSS	-6675.0	-784.0	92	D14	-1725.0	-784.0	158	VCHS	3225.0		224		8175.0 -784.0
27	SHUT	-6600.0	-784.0	93	D15	-1650.0	-784.0	159	HC	3300.0		225	NC	8250.0 -784.0
28	VSYNC	-6525.0	-784.0	94	D16	-1575.0	-784.0	160	VCIX2	3375.0		226	NC	8325.0 -784.0
29	VSYNC	-6450.0	-784.0	95	D17	-1500.0	-784.0	161	VCIX2	3450.0	-784.0	227	DUMMY	8400.0 -784.0
30	HSYNC	-6375.0	-784.0	96	RES	-1425.0	-784.0	162	VCIX2	3525.0		228		8475.0 -784.0
31	HSYNC	-6300.0	-784.0	97	CS	-1350.0	-784.0	163	VCIX2	3600.0		229		8550.0 -784.0
32	DOTCLK	-6225.0	-784.0	98	CDUM0	-1275.0	-784.0	164	VCIX2	3675.0		230		8776.0 -773.5
33 34	DOTCLK DEN	-6150.0 -6075.0	-784.0 -784.0	99 100	CDUM0	-1200.0 -1125.0	-784.0 -784.0	165 166	DUMMY	3750.0 3825.0		231 232	G1	8674.0 -722.5 8776.0 -678.5
35	DEN	-6000.0	-784.0	101	CDUM1	-1050.0	-784.0	167	VCIM	3900.0		233	G3	8674.0 -641.5
36	VDDIO	-5925.0	-784.0	102	CDUM1	-975.0	-784.0	168	VCIM	3975.0		234	G5	8776.0 -604.5
37	RR5	-5850.0	-784.0	103	VGOFFHL	-900.0	-784.0	169	VCOML	4050.0		235	G7	8674.0 -567.5
38	RR5	-5775.0	-784.0	104	NC	-825.0	-784.0	170	VCOML	4125.0	-784.0	236	G9	8776.0 -530.5
39	RR4	-5700.0	-784.0	105	NC	-750.0	-784.0	171	VCI	4200.0	-784.0	237	G11	8674.0 -493.5
40	RR4	-5625.0	-784.0	106	NC	-675.0	-784.0	172	VCI	4275.0		238	G13	8776.0 -456.5
41	RR3	-5550.0	-784.0	107	NC	-600.0	-784.0	173	VCI	4350.0		239	G15	8674.0 -419.5
42	RR3	-5475.0	-784.0	108	NC	-525.0	-784.0	174	VCI	4425.0		240	G17	8776.0 -382.5
43 44	RR2 RR2	-5400.0 -5325.0	-784.0 -784.0	109	NC NC	-450.0 -375.0	-784.0 -784.0	175 176	VCI VSS	4500.0 4575.0		241 242	G19 G21	8674.0 -345.5 8776.0 -308.5
45	RR1	-5250.0			NC		-784.0		AVSS	4650.0				8674.0 -271.5
46	RR1	-5175.0			VSS		-784.0		C1P	4725.0				8776.0 -234.5
47	RR0		-784.0		NC	-150.0	-784.0		C1P	4800.0			G27	8674.0 -197.5
48	RR0	-5025.0	-784.0		NC	-75.0	-784.0		C1P	4875.0			G29	8776.0 -160.5
49	GG5	-4950.0	-784.0	115	NC	0.0	-784.0	181	C1P	4950.0			G31	8674.0 -123.5
50	GG5	-4875.0	-784.0		NC	75.0	-784.0		C1P	5025.0				8776.0 -86.5
51	GG4	-4800.0	-784.0		NC	150.0	-784.0		C1N	5100.0		249	G35	8674.0 -49.5
52	GG4	-4725.0	-784.0		NC	225.0	-784.0			5175.0				8776.0 -12.5
53 54	GG3 GG3	-4650.0	-784.0		TESTA	300.0	-784.0		C1N	5250.0 5325.0		251	G39	8674.0 24.5
55	GG2	-4575.0 -4500.0	-784.0 -784.0		TESTB VLCD63	375.0 450.0	-784.0 -784.0		C1N C1N	5400.0		252 253	G41 G43	8776.0 61.5 8674.0 98.5
56	GG2	-4425.0	-784.0		VLCD63	525.0	-784.0		TESTC				G45	8776.0 135.5
57	GG1	-4350.0	-784.0		VLCD63	600.0	-784.0		C2P	5550.0			G47	8674.0 172.5
58	GG1	-4275.0	-784.0		VLCD63	675.0	-784.0		C2P	5625.0			G49	8776.0 209.5
59	GG0	-4200.0	-784.0		DUMMY	750.0	-784.0		C2P	5700.0			G51	8674.0 246.5
60	GG0	-4125.0	-784.0	126	VSSRC	825.0	-784.0	192	C2P	5775.0			G53	8776.0 283.5
61	BB0	-4050.0	-784.0		VSSRC	900.0	-784.0		C2P	5850.0			G55	8674.0 320.5
62	BB0	-3975.0	-784.0		VSSRC	975.0	-784.0		C2N	5925.0		260	G57	8776.0 357.5
63	BB1	-3900.0	-784.0		DUMMY	1050.0	-784.0		C2N	6000.0			G59	8674.0 394.5
64	BB1	-3825.0	-784.0	130	VSS	1125.0	-784.0		C2N	6075.0			G61	8776.0 431.5
65 66	BB2 BB2	-3750.0 -3675.0	-784.0 -784.0		VSS VSS	1200.0 1275.0	-784.0 -784.0		C2N C2N	6150.0 6225.0		263 264	G63 G65	8674.0 468.5 8776.0 505.5
00	שטע	-3073.0	104.0	132	۷00	1270.0	104.0	130	OZIN	0220.0	-104.0	204	000	0.70.0 000.0

 Solomon Systech
 Jul 2005
 P 8/58
 Rev 0.12
 SSD1283A Series

Pad #	Signal	X-pos	Y-pos	Pad #	Signal	X-pos	Y-pos	Pad #	Signal	X-pos	Y-pos	Pad #	Signal	X-pos	Y-pos
265	G67	8674.0	542.5	331	S369	6438.0	737.5	397	S303	3996.0		463	S237	1554.0	
266	G69	8776.0	579.5	332	S368	6401.0	839.5	398	S302	3959.0		464	S236	1517.0	839.5
267	G71	8674.0	616.5	333	S367	6364.0	737.5	399	S301	3922.0		465	S235	1480.0	
268	G73	8776.0	653.5	334	S366	6327.0	839.5	400	S300	3885.0		466	S234	1443.0	
269	G75	8674.0	690.5	335	S365	6290.0	737.5	401	S299	3848.0		467	S233	1406.0	
270	DUMMY	8776.0	734.5	336	S364	6253.0	839.5	402	S298	3811.0		468	S232	1369.0	839.5
271	DUMMY	8776.0	807.5	337	S363	6216.0	737.5	403	S297	3774.0		469	S231	1332.0	
272 273	DUMMY	8686.0 8613.0	839.5 839.5	338 339	S362 S361	6179.0 6142.0	839.5 737.5	404 405	S296 S295	3737.0 3700.0		470 471	S230 S229	1295.0 1258.0	
274	G77	8547.0	839.5	340	S360	6105.0	839.5	406	S293	3663.0		471	S228	1221.0	
275	G77	8510.0	737.5	341	S359	6068.0	737.5	407	S293	3626.0		473	S227	1184.0	
276	G81	8473.0	839.5	342	S358	6031.0	839.5	408	S292	3589.0		474	S226	1147.0	
277	G83	8436.0	737.5	343	S357	5994.0	737.5	409	S291	3552.0		475	S225	1110.0	
278	G85	8399.0	839.5	344	S356	5957.0	839.5	410	S290	3515.0		476	S224	1073.0	
279	G87	8362.0	737.5	345	S355	5920.0	737.5	411	S289	3478.0		477	S223	1036.0	
280	G89	8325.0	839.5	346	S354	5883.0	839.5	412	S288	3441.0		478	S222	999.0	
281	G91	8288.0	737.5	347	S353	5846.0	737.5	413	S287	3404.0		479	S221	962.0	
282	G93	8251.0	839.5	348	S352	5809.0	839.5	414	S286	3367.0	839.5	480	S220	925.0	839.5
283	G95	8214.0	737.5	349	S351	5772.0	737.5	415	S285	3330.0	737.5	481	S219	0.888	
284	G97	8177.0	839.5	350	S350	5735.0	839.5	416	S284	3293.0		482	S218	851.0	839.5
285	G99	8140.0	737.5	351	S349	5698.0	737.5	417	S283	3256.0		483	S217		737.5
286	G101	8103.0	839.5	352	S348	5661.0	839.5	418	S282	3219.0		484	S216	777.0	839.5
287	G103	8066.0	737.5	353	S347	5624.0	737.5	419	S281	3182.0		485	S215	740.0	737.5
288	G105	8029.0	839.5	354	S346	5587.0	839.5	420	S280	3145.0		486	S214	703.0	839.5
289	G107	7992.0	737.5	355	S345	5550.0	737.5	421	S279	3108.0		487	S213	666.0	
290	G109	7955.0	839.5	356	S344	5513.0	839.5	422	S278	3071.0		488	S212	629.0	839.5
291 292	G111 G113	7918.0 7881.0	737.5 839.5	357 358	S343 S342	5476.0 5439.0	737.5 839.5	423 424	S277 S276	3034.0 2997.0		489	S211 S210	592.0 555.0	737.5 839.5
293	G115	7844.0	737.5	359	S342	5402.0	737.5	425	S275	2960.0		491	S210	518.0	737.5
294	G113	7807.0	839.5	360	S340	5365.0	839.5	426	S274	2923.0		492	S208	481.0	
295	G117	7770.0	737.5	361	S339	5328.0	737.5	427	S273	2886.0		493	S207	444.0	737.5
296	G121	7733.0	839.5	362	S338	5291.0	839.5	428	S272	2849.0		494	S206	407.0	839.5
297	G123	7696.0	737.5	363	S337	5254.0	737.5	429	S271	2812.0		495	S205	370.0	
298	G125	7659.0	839.5	364	S336	5217.0	839.5	430	S270	2775.0		496	S204	333.0	839.5
299	G127	7622.0	737.5	365	S335	5180.0	737.5	431	S269	2738.0		497	S203	296.0	
300	G129	7585.0	839.5	366	S334	5143.0	839.5	432	S268	2701.0	839.5	498	S202	259.0	839.5
301	G131	7548.0	737.5	367	S333	5106.0	737.5	433	S267	2664.0		499	S201	222.0	737.5
302	GTESTR	7511.0	839.5	368	S332	5069.0	839.5	434	S266	2627.0	839.5	500	S200		839.5
303	DUMMY	7474.0	737.5	369	S331	5032.0	737.5	435	S265	2590.0	737.5	501	S199	148.0	737.5
304	DUMMY	7437.0	839.5	370	S330	4995.0	839.5	436	S264	2553.0		502	S198	111.0	839.5
305	S395	7400.0	737.5	371	S329	4958.0	737.5	437	S263	2516.0	737.5	503	DUMMY	74.0	737.5
306	S394	7363.0	839.5	372	S328	4921.0	839.5	438	S262	2479.0		504	DUMMY	37.0	839.5
307 308	S393 S392	7326.0	737.5	373	S327 S326	4884.0 4847.0	737.5 839.5	439 440	S261 S260	2442.0 2405.0	737.5	505 506	DUMMY	0.0 -37.0	737.5 839.5
309	S392 S391	7289.0 7252.0	839.5	374 375	S325	4810.0		441		2368.0		507	DUMMY DUMMY		
310	S390		839.5	376	S324	4773.0		442		2331.0				-111.0	
311	S389	7178.0	737.5	377	S323	4736.0	737.5	443	S257	2294.0		509	S196		737.5
312	S388	7141.0	839.5	378	S322	4699.0	839.5	444	S256	2257.0		510	S195		839.5
313	S387	7104.0	737.5	379	S321	4662.0	737.5	445	S255	2220.0		511	S194		737.5
314	S386	7067.0	839.5	380	S320	4625.0		446	S254	2183.0		512	S193		839.5
315	S385	7030.0	737.5	381	S319	4588.0		447	S253	2146.0	737.5	513	S192	-296.0	737.5
316	S384	6993.0	839.5	382	S318	4551.0		448	S252	2109.0	839.5	514	S191		839.5
317	S383	6956.0	737.5	383	S317	4514.0	737.5	449	S251	2072.0		515	S190	-370.0	
318	S382	6919.0	839.5	384	S316	4477.0	839.5	450	S250	2035.0		516	S189		839.5
319	S381	6882.0	737.5	385	S315	4440.0		451	S249	1998.0		517	S188		737.5
320	S380	6845.0	839.5	386	S314			452	S248	1961.0		518	S187		839.5
321	S379	6808.0	737.5	387	S313	4366.0	737.5	453	S247	1924.0		519	S186		737.5
322 323	S378 S377	6771.0 6734.0	839.5 737.5	388 389	S312 S311	4329.0 4292.0	839.5 737.5	454 455	S246 S245	1887.0 1850.0		520 521	S185 S184		839.5 737.5
323	S377 S376	6697.0	839.5	390	S311	4292.0		456	S245 S244	1813.0		521	S184 S183		839.5
325	S375	6660.0	737.5	391	S309	4233.0	737.5	457	S244 S243	1776.0		523	S182		737.5
326	S374	6623.0	839.5	392	S308	4181.0		458	S242	1739.0		524	S181		839.5
327	S373	6586.0	737.5	393	S307	4144.0		459	S241	1702.0		525	S180	-740.0	
328	S372	6549.0	839.5	394	S306	4107.0		460	S240	1665.0		526	S179	-777.0	
329	S371	6512.0	737.5	395	S305	4070.0		461	S239	1628.0		527	S178		737.5
330	S370	6475.0	839.5	396	S304	4033.0	839.5	462	S238	1591.0		528	S177		839.5
						•							•		

 SSD1283A Series
 Rev 0.12
 P 9/58
 Jul 2005
 Solomon Systech

STOP	Pad #	Signal	X-pos	Y-pos	Pad #	Signal	X-pos	Y-pos	Pad #	Signal	X-pos	Y-pos	Pad #	Signal	X-pos	Y-pos
S174 9960 895 598 5107 44410 8395 680 842 5848.0 737.5 759 688 8288.0 737.5 735 735 737 737 738	529	S176	-888.0	737.5	595	S110	-3330.0	737.5	661	S44	-5772.0	_		G92	-8214.0	
S174 9960 895 598 5107 44410 8395 680 842 5848.0 737.5 759 688 8288.0 737.5 735 735 737 737 738	530	S175	-925.0	839.5	596	S109	-3367.0	839.5	662	S43	-5809.0	839.5	728	G90	-8251.0	839.5
\$\frac{933}{34}\$\$ \frac{171}{10730}\$\$ \frac{939}{395}\$\$ \frac{950}{305}\$\$ \frac{1571}{10730}\$\$ \frac{930}{305}\$\$ \frac{950}{300}\$\$ \frac{1575}{305}\$\$ \frac{950}{305}\$\$ \frac{950}{305}\$\$ \frac{957}{305}\$\$ \frac{957}{305}\$\$ \frac{957}{305}\$\$ \frac{957}{305}\$\$ \frac{957}{305}\$\$ \frac{957}{305}\$\$ \frac{75}{305}\$\$ \frac{957}{305}\$\$ \frac{157}{305}\$\$ \frac{957}{305}\$\$ \frac{157}{305}\$\$ \frac{957}{305}\$\$ \frac{157}{305}\$\$ 1	531		-962.0	737.5	597		-3404.0	737.5	663	S42	-5846.0	737.5	729		-8288.0	737.5
Section 1971 10730 8395 500 505 53515 53515 6395 676 538 59570 839.5 732 682 83990 737.5 733 680 839.5 735 535 8395 735 8395	532	S173	-999.0	839.5	598	S107	-3441.0	839.5	664	S41	-5883.0	839.5	730	G86	-8325.0	839.5
535 5170 111100 737.5 501 5104 3552.0 737.6 667 538 59940 737.5 733 680 4348.0 737.5 538 5168 1184.0 737.5 503 502 5103 3599.0 3395.6 668 537 6031.0 3395.7 733 73 676 4870.0 3895.5 538 5166 1228.0 737.5 503 504 5101 3693.0 3395.6 670 335 6015.0 6395.7 736 736 737.6 8395.5 539 5166 1228.0 737.5 505 504 5101 3693.0 3395.6 70 335 6105.0 6395.7 736 737 6375.6 541 5164 1332.0 737.5 507 598 3774 3735 672 333 6179.0 3395.7 738 504 5101 737.5 673 510 737.5 673 5101 737.5 673 5101 737.5 673 5101 737.5 673 530 6290.0 737.5 740 637.5 637	533	S172	-1036.0	737.5	599	S106	-3478.0	737.5	665	S40	-5920.0	737.5		G84		737.5
6369 5169 11410 3395 602 5103 3589 608 537 6081 6102 608 637 758 758 678 -8473 089 539 S166 11280 335 608 536 6105 0835 736 767 484 608 0377 735 778 767 484 640 0876 6105 0835 736 074 884 884 884 884 884 884 884 884 883 600 899 3737 0356 672 533 6179 633 672 739 00MMY 4876 606 7375 607 580 576 503 6610 7375 739 00MMY 8976 6075 673 502 6020 7375 739 00MMY 8976 6905 564 3161 1484 3936 6035 675 503 6090 7375 741 772 747 <td>534</td> <td>S171</td> <td>-1073.0</td> <td>839.5</td> <td>600</td> <td>S105</td> <td>-3515.0</td> <td>839.5</td> <td>666</td> <td>S39</td> <td>-5957.0</td> <td>839.5</td> <td>732</td> <td>G82</td> <td>-8399.0</td> <td>839.5</td>	534	S171	-1073.0	839.5	600	S105	-3515.0	839.5	666	S39	-5957.0	839.5	732	G82	-8399.0	839.5
S38 S168 41184.0 737.5 603 S102 3626.0 737.5 536 5608.0 737.5 735 536 676 8510.0 737.5 538	535		-1110.0				-3552.0	737.5				737.5				
Sign 1967 1921 839.5 604 S101 366.0 839.5 767 S35 610.50 839.5 736 G74 845470 839.5 839.5 839 8160 12650 839.5 736 605 839.5 736 839.5 737 839.5 737 839.5 737 839.5 737 839.5 737 839.5 737 734 836.5 836.7 839.5 736 736.5																
Since -1258.0 737.5 605 St00 3700.0 737.5 671 S34 614.2 737.5 737 DUMMY -8613.0 893.5																
Section Sect																
S41 S164																
Section Sect																
S44 S162																
Section Sect																
Section 1480 737.5 611 S94 3952.0 737.5 677 S28 4384.0 737.5 734 G68 4877.0 679.5																
S46 S159 1517 0 839.5 612 893 3959.0 839.5 678 S27 6401.0 839.5 744 G66 8776.0 579.5 S47 S156 15540 737.5 613 892 3996.0 737.5 678 \$28.6 64380, 737.5 744 G66 8476.0 542.5 S48 S157 1591.0 839.5 614 891 4033.0 839.5 680 \$25.6 6475.0 839.5 746 G62 84776.0 505.5 S49 S156 -1628.0 737.5 615 889 4107.0 839.5 682 \$23.6 6475.0 839.5 746 G62 84776.0 505.5 S50 S155 -1665.0 839.5 616 889 4107.0 839.5 682 \$22.3 6549.0 339.5 748 G69 8476.0 483.5 S51 S154 -1702.0 737.5 615 889 4107.0 839.5 682 \$22.2 6586.0 737.5 749 G56 6874.0 341.5 S51 S154 -1702.0 737.5 619 836 4218.0 737.5 685 822.1 6829.0 639.5 746 G64 84776.0 387.5 S53 S152 -1776.0 737.5 619 836 4218.0 737.5 685 822.1 6829.0 639.5 636 634 8776.0 337.5 S53 S150 -1850.0 737.5 619 836 4218.0 737.5 685 820 -6660.0 737.5 751 G62 -8674.0 320.5 S55 S150 -1850.0 737.5 621 834 4292.0 737.5 687 818 -6734.0 737.5 753 G48 8674.0 240.5 S57 S148 -1942.0 737.5 623 882 4326.0 737.5 689 S16 -6808.0 737.5 753 G48 8674.0 240.5 S58 S147 -1961.0 839.5 622 880 4440.0 737.5 689 S16 -6808.0 737.5 755 G44 -8674.0 240.5 S58 S144 -1961.0 839.5 622 8778 4851.0 839.5 688 S17 -6771.0 839.5 766 642 8776.0 615.5 S61 S144 -2972.0 737.5 625 880 4440.0 737.5 689 S14 -6808.0 737.5 755 G40 -8674.0 642.5 S62 S143 -2190.0 839.5 622 8778 4851.0 839.5 698 S14 -6808.0 737.5 755 G40 -8674.0 94.5 S63 S144 -2920.0 737.5 622 878 4851.0 737.5 689 S14 -6808.0 737.5 757 640 -6808.0 642.2 8776.0 615.5 S63 S144 -2920.0 839.5 622 8778 4858.0 737.5 689 S14 -6808.0																
S48 S156 1554 0 737.5 613 S92 3996.0 737.5 679 S26 6438.0 737.5 745 G64 8674.0 S42.5 S48 S156 1628.0 737.5 615 S90 4070.0 737.5 681 S24 6512.0 737.5 747 G60 8674.0 488.5 S49 S156 1628.0 737.5 615 S90 4070.0 737.5 681 S24 6512.0 737.5 747 G60 8674.0 488.5 S49 S156 1628.0 737.5 617 S88 4144.0 737.5 682 S22 8686.0 737.5 749 G56 8674.0 394.5 S51 S154 1702.0 737.5 617 S88 4144.0 737.5 682 S22 6858.0 673.5 748 G58 8674.0 394.5 S52 S153 1739.0 839.5 618 S87 4181.0 839.5 684 S24 6852.0 680.0 737.5 750 G54 8674.0 394.5 S53 S152 1776.0 737.5 619 S86 4218.0 737.5 685 S22 6868.0 737.5 750 G54 8674.0 394.5 S54 S151 1813.0 839.5 620 S85 4255.0 839.5 686 S19 6897.0 839.5 782 G59 8776.0 283.5 S55 S150 1850.0 737.5 621 S84 4292.0 737.5 687 S84 4292.0 737.5 678 678 678 678 678 678 678 678 678 678 678 67																
548 5157 1-1591 0 839.5 614 591 4033.0 839.5 680 \$25. 6475.0 839.5 746 \$62. 8776.0 505.5 549 5156 -1628.0 737.5 615 590 4070.0 837.5 681 \$24. 6451.2 737.5 746 \$62. 8776.0 486.5 550 \$155 -1685.0 839.5 616 \$89 4107.0 839.5 682 \$23. 649.0 839.5 748 \$658 8776.0 481.6 551 \$154 -1702.0 737.5 617 \$88 4141.0 737.5 683 \$822 6880.0 737.5 749 \$66. 8674.0 394.5 552 \$153 -1739.0 839.5 618 \$88 4141.0 839.5 683 \$822 6860.0 737.5 749 \$66. 8674.0 394.5 553 \$152 -1776.0 737.5 619 \$86 4218.0 737.5 685 \$82.0 6860.0 737.5 751 \$65.2 6874.0 395.5 554 \$155 -1813.0 839.5 620 \$85 4255.0 839.5 688 \$82.0 6860.0 737.5 751 \$65.2 6874.0 320.5 555 \$150 -1880.0 737.5 621 \$84 4292.0 737.5 687 \$18 6734.0 737.5 753 \$48 8674.0 240.5 556 \$149 -1887.0 839.5 622 \$83 4328.0 839.5 688 \$17 6977.0 839.5 753 \$46 48.6 8776.0 209.5 557 \$148 -1924.0 737.5 623 882 4366.0 737.5 689 \$16 6808.0 737.5 755 \$46 48.677.0 209.5 558 \$147 -1961.0 839.5 624 8876.0 639.5 688 \$17 6777.0 839.5 636 642 8776.0 209.5 559 \$146 -1988.0 737.5 625 880 4440.0 737.5 691 \$14 6882.0 737.5 755 \$44 6876.0 648.6																
S496 S156 -1628.0 737.5 616 S90 -4070.0 737.5 681 S24 -6512.0 737.5 747 680 -8674.0 488.5																
550 S155 -1665.0 839.5 616 S89 -4107.0 839.5 682 S23 -6540 839.5 748 688 -8776.0 431.5 551 S154 -1702.0 737.5 617 S88 4144.0 737.5 686 S22 -6680.0 737.5 750 G54 -8776.0 357.5 552 S153 -1739.0 839.5 618 S87 -4181.0 839.5 684 S21 -6623.0 839.5 750 G54 -8776.0 357.5 553 S152 -1776.0 737.5 619 S86 -4255.0 839.5 686 S19 -6660.0 737.5 751 G62 -8674.0 324.5 554 S151 -1813.0 839.5 620 S85 -4255.0 839.5 686 S19 -6660.7 839.5 752 G50 -8776.0 235.5 555 S150 -1850.0 737.5 621 S84 -429.0 737.5 687 S88 S17 -8771.0 839.5 752 G50 -8776.0 235.5 556 S149 -1887.0 839.5 622 S83 -329.0 839.5 688 S17 -6771.0 839.5 754 G46 -8776.0 205.5 557 S148 -1924.0 737.5 623 S82 -4366.0 737.5 689 S16 -6808.0 737.5 754 G46 -8776.0 205.5 558 S147 -1961.0 839.5 622 S81 -4403.0 839.5 690 S16 -6808.0 737.5 758 G44 -8674.0 345.5 558 S147 -1961.0 839.5 622 S80 -44470 737.5 689 S16 -6808.0 737.5 758 G42 -86776.0 205.5 559 S146 -1998.0 737.5 627 S78 -44514.0 737.5 691 S14 -4882.0 737.5 759 G40 -8674.0 245.5 560 S145 -2035.0 839.5 628 S77 -4561.0 839.5 692 S14 -8882.0 737.5 759 G36 -8674.0 -245.5 561 S144 -2072.0 737.5 627 S78 -4514.0 737.5 693 S12 -6986.0 737.5 759 G36 -8674.0 -245.5 562 S143 -2140.0 737.5 627 S78 -4514.0 737.5 693 S12 -2698.0 737.5 759 G36 -8674.0 -245.5 563 S142 -2140.0 737.5 627 S78 -4514.0 737.5 693 S12 -2698.0 737.5 759 G36 -8674.0 -245.5 564 S141 -2130.0 839.5 630 S75 -4625.0 839.5 696 S14 -8093.0 839.5 760 G32 -8674.0 -245.5 565 S140 -2220.0 737.5 637 639 S39.5 639 S39.5 760																
S516 S154 -1702.0 737.5 617 S88 -4144.0 737.5 683 S22 -6586.0 737.5 749 G68 -8674.0 394.5 552 S152 -1776.0 337.5 619 S88 -4218.0 737.5 685 S20 -6680.0 737.5 751 G62 -8674.0 320.5 554 S151 -1813.0 839.5 682 S85 -4255.0 839.5 686 S19 -6687.0 839.5 752 G50 -8677.0 320.5 555 S150 -1850.0 737.5 621 S84 -4252.0 737.5 687 S18 -6687.0 839.5 753 G48 -8674.0 248.5 555 S149 -1887.0 839.5 562 S83 -4329.0 839.5 688 S19 -6687.0 839.5 753 G48 -8674.0 249.5 557 S148 -1924.0 737.5 623 S82 -4366.0 737.5 689 S16 -6808.0 737.5 755 G44 -8674.0 725.5 558 S147 -1961.0 839.5 562 S81 -4403.0 839.5 689 S16 -6845.0 839.5 755 G44 -8674.0 725.5 558 S147 -1961.0 839.5 562 S80 -4440.0 737.5 691 S14 -8882.0 737.5 757 G40 -8674.0 735.5 559 S144 -1924.0 737.5 625 S80 -4440.0 737.5 691 S14 -8882.0 737.5 757 G40 -8674.0 735.5 561 S44 -2072.0 737.5 623 S80.0 -4477.0 839.5 692 S13 -8919.0 839.5 758 G42 -8674.0 93.5 636 S79 -4477.0 839.5 692 S13 -8919.0 839.5 758 G38 -8674.0 245.5 563 S142 -2220.0 737.5 623 S76 -4588.0 737.5 635 S142 -2220.0 737.5 623 S76 -4588.0 737.5 635 S142 -2220.0 737.5 623 S76 -4588.0 737.5 636 S142 -2220.0 737.5 631 S78 -4682.0 737.5 632 S674.0 245.5 563 S142 -2220.0 737.5 631 S74 -4662.0 737.5 698 S77 -4711.0 839.5 698 S77 -7111.0 839.5 636 S77 -4711.0 839.5 698 S77 -7111.0 839.5 636 S674.0 245.5 636 S139 -2220.0 737.5 633 S72 -4736.0 737.5 698 S77 -7111.0 839.5 636 -4674.0 -495.5 636 -4674.0 -495.5 636 -4674.0 -495.5 636 -4674.0 -495.5 636 -4674.0 -495.5 636 -495.5 636 -495.0 -495.0 -495.0 -495.0																
S52 S153 1739 839 5 618 S87 4181 0 839 5 684 S21 66220 839 5 750 C54 8776.0 357.5 553 S152 1776 0 737.5 619 S86 4218 0 737.5 685 S20 6660 0 737.5 751 C52 6874 0 236.5 555 S150 1810 0 737.5 621 S84 42920 737.5 686 S19 6697.0 839.5 752 G50 8776.0 283.5 556 S149 -1887.0 839.5 622 S83 4329.0 839.5 688 S17 6771.0 839.5 754 G46 8776.0 295.5 557 S148 1924.0 737.5 623 S82 4366.0 737.5 689 S16 6808.0 737.5 755 G44 8874.0 129.5 558 S147 1961.0 839.5 625 S81 4403.0 839.5 688 S17 6771.0 839.5 756 G44 8874.0 172.5 559 S146 1998.0 737.5 625 S80 4440.0 737.5 691 S14 6882.0 737.5 757 G40 8674.0 98.5 560 S145 2035.0 839.5 625 S79 4477.0 839.5 692 S13 6815.0 839.5 682 S18 6815.0 839.5 682 S18 6815.0 839.5 682 S18 6815.0 839.5 682 S18 6815.0 839.5 6815.0 839.5 682 S18 6815.0 839.5 6815.0 8																
553 S152 .1776.0 737.5 619 S86 .4218.0 737.5 685 SS151 .1813.0 839.5 620 S85 .4255.0 839.5 680 819 .6697.0 337.5 752 680 8776.0 223.5 555 S150 -1850.0 737.5 621 S84 .4292.0 737.5 687 S18 .6734.0 737.5 G48 .8674.0 224.65 556 S149 -1887.0 339.5 622 S83 .4329.0 839.5 688 S17 .6771.0 839.5 756 G44 .864 .498.0 .737.5 623 882 .4366.0 737.5 689 816 .809.0 .809.5 756 G44 .8674.0 120.5 .856 .814 .919.8 .1440.0 .337.5 689 816 .809.8 .816 .808.0 .389.5 .786 .444 .8620 .839.5 .786 .442 .8676.0 .125.5 .896																
554 S151 -1813.0 839.5 620 S85 4255.0 839.5 686 S19 -6697.0 839.5 752 GS0 -8776.0 228.5 555 S149 -1887.0 839.5 622 S83 -4229.0 839.5 688 S17 -6771.0 839.5 752 C46 -8776.0 220.5 557 S148 -1924.0 737.5 623 S82 -4366.0 737.5 689 S16 -6808.0 737.5 564 -8470.0 172.5 558 S147 -1961.0 839.5 625 S80 -4430.0 337.5 690 S15 -645.0 756 642 870 -115.5 556 S146 -1998.0 737.5 691 S14 -6862.0 737.5 756 648 893.5 766 486.4 937.5 759 640 -8674.0 98.5 560 S143 -219.0 839.5 627 877.0 8451.0 737.5																
6556 S150 1880.0 737.5 621 S84 4292.0 737.5 687 S18 6734.0 737.5 753 G48 8874.0 220.5 556 S148 -1924.0 737.5 623 S82 4366.0 737.5 688 S17 -6771.0 839.5 756 Q46 -8776.0 205.5 558 S146 -1998.0 737.5 625 S80 4440.0 737.5 690 S15 -6868.0 373.5 756 G42 4876.0 172.5 560 S146 -1998.0 737.5 626 S79 4447.0 339.5 692 S13 -6991.0 339.5 756 468.874.0 98.5 561 S144 -2072.0 737.5 628 S77 4475.0 839.5 692 S13 -6991.0 339.5 758 G38 8776.0 61.5 561 S144 -2072.0 737.5 627 578 44814.0																
556 S149 -1887.0 839.5 622 S83 4329.0 839.5 688 S17 -6771.0 839.5 754 G46 -8776.0 209.5 557 S148 -1924.0 737.5 623 S82 -4366.0 737.5 689 S16 -6845.0 839.5 756 G42 -8776.0 172.5 558 S146 -1998.0 737.5 625 S80 -4440.0 839.5 689 S15 -6845.0 839.5 756 G42 -8776.0 135.5 559 S146 -1998.0 737.5 625 S80 -4447.0 839.5 692 S13 -6898.0 737.5 757 G40 -8674.0 91.5 560 S145 -2035.0 839.5 626 S79 -4447.0 839.5 692 S13 -8699.0 839.5 758 G38 -8776.0 61.5 561 S144 -2072.0 737.5 627 S78 -4514.0 737.5 693 S12 -6956.0 737.5 759 G36 -8674.0 245.5 562 S143 -2190.0 839.5 628 S77 -4551.0 839.5 694 S11 -6993.0 839.5 760 G32 -8674.0 49.5 563 S142 -2146.0 737.5 629 S76 -4658.0 737.5 695 S10 -7030.0 737.5 761 G32 -8674.0 -49.5 564 S141 -2183.0 839.5 630 S75 -4625.0 839.5 696 S9 -7067.0 839.5 762 G30 -8776.0 -12.5 566 S149 -2220.0 737.5 631 S74 -4662.0 737.5 697 S8 -7144.0 839.5 762 G30 -8776.0 -12.5 567 S138 -2294.0 737.5 633 S72 -4736.0 737.5 698 S7 -7141.0 839.5 764 G26 -8776.0 -193.5 568 S137 -2331.0 839.5 634 S71 -4773.0 839.5 700 S5 -7215.0 839.5 766 G22 -8776.0 -293.5 570 S138 -2405.0 839.5 634 S71 -4773.0 839.5 700 S5 -7215.0 839.5 766 G22 -8776.0 -293.5 571 S131 -2255.0 839.5 638 S67 -4921.0 839.5 702 S3 -7280.0 339.5 768 G22 -8776.0 -293.5 572 S133 -2479.0 839.5 634 S71 -4737.0 839.5 700 S5 -7215.0 839.5 766 G22 -8776.0 -293.5 573 S132 -2251.0 839.5 634 S71 -4737.0 839.5 700 S5 -7215.0 839.5 766 G22 -8776.0 -293.5 574 S131 -2253.0 839.5 636 S69 4847.0 839.5 700 S5 -7215.0 8												I				
557 S148 1924.0 737.5 623 S82 -4366.0 737.5 689 S16 -6808.0 737.5 755 G44 -8874.0 172.5 559 S146 -1998.0 737.5 625 S80 -4440.0 737.5 691 S14 -6882.0 373.5 757 640 -8674.0 98.5 560 S145 -2035.0 839.5 626 S79 -4477.0 839.5 692 S13 -6919.0 839.5 758 -636.0 24.5 563 -864.0 737.5 627 S78 -4514.0 737.5 693 S12 -6956.0 737.5 758 636 8674.0 -12.5 563 3141 -2146.0 737.5 693 S12 -6956.0 737.5 758 636 8874.0 -225.0 667 562 576 -4588.0 737.5 693 S12 -6930.0 737.5 761 632 -8674.0 -125.5 664 5141 </td <td></td>																
558 S147 -1981.0 839.5 624 S81 -4403.0 839.5 680 S15 -6846.0 839.5 756 G42 8776.0 135.5 559 S146 -1998.0 737.5 625 S80 -4447.0 737.5 691 S14 -6882.0 737.5 757 G40 -8674.0 98.5 560 S145 -2035.0 839.5 628 S77 44514.0 737.5 693 812 -6986.0 737.5 759 G36 -8674.0 24.5 562 S143 -2190.0 839.5 628 S77 +4651.0 39.5 696 811 -6986.0 737.5 759 G36 -8674.0 24.5 566 31.2 2146.0 737.5 629 S76 -4858.0 737.5 695 510 -7030.0 737.5 762 G30 -8776.0 -125.5 666 S140 -2220.0 737.5 631 S74 -4625.0 839.5 <td></td> <td>III P</td>																III P
559 S146 -1998.0 737.5 625 S80 -4440.0 737.5 691 S14 -6882.0 737.5 757 G40 -8674.0 98.5 560 S145 -2035.0 839.5 626 S79 -4477.0 839.5 692 S13 -6996.0 737.5 758 G38 -8776.0 61.5 561 S144 -2072.0 737.5 627 S78 -44514.0 737.5 693 S12 -6986.0 737.5 758 G38 -8776.0 12.5 563 S142 -2146.0 737.5 631 S73.5 696 S9 -7067.0 839.5 760 G34 -8776.0 -12.5 566 S131 -2218.0 733.5 631 S73 -4662.0 737.5 697 88 -7104.0 737.5 763 228 -8674.0 -123.5 566 S133 -22220.0 737.5 633 S72 -4736.0 737.5																
560 S145 2035.0 839.5 626 S79 4477.0 839.5 662 S13 691.0 839.5 758 G38 -8776.0 61.5 561 S144 -2070.0 737.5 627 S78 -4514.0 737.5 693 S12 -6956.0 737.5 759 G36 -8674.0 24.5 562 S143 -2109.0 839.5 628 S77 458.0 39.5 694 S11 -699.0 737.5 629 S76 458.0 737.5 695 S10 -7030.0 737.5 613 874 -4625.0 839.5 696 S9 -7067.0 839.5 762 G30 -8776.0 -86.5 566 S13 22257.0 839.5 632 S73 4699.0 839.5 698 S7 -7141.0 839.5 662 8776.0 -180.5 566 S13 222 4736.0 373.5 699 S69 S714.0 373.5 899.5					625											
561 S144 2072.0 737.5 627 S78 4514.0 737.5 693 S12 6956.0 737.5 759 G36 -8674.0 24.5 562 S143 -2100.0 839.5 628 S77 -4551.0 839.5 698 \$11 -6993.0 839.5 760 334 -8776.0 -12.5 564 3142 -2140.0 737.5 622 S76 4582.0 737.5 695 \$10 7030.0 737.5 616 G32 -8674.0 -49.5 566 S140 -2220.0 737.5 631 S74 -4662.0 737.5 697 88 -7104.0 737.5 762 630 -8776.0 -86.5 566 S139 -2257.0 839.5 632 S73 4699.0 389.5 689 S6 -7140.0 39.5 766 G22 -8776.0 -180.5 566 S137 -2331.0 839.5 638 871 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																
562 9143 2-2109.0 839.5 628 S77 4551.0 839.5 664 S11 -6993.0 839.5 760 G34 -8776.0 -12.5 564 S141 -2183.0 839.5 630 S75 -4625.0 839.5 696 S9 -7067.0 839.5 762 G30 -8776.0 -48.5 565 S140 -2220.0 737.5 631 S74 -4662.0 737.5 697 S8 -7104.0 737.5 762 G30 -8776.0 -86.5 566 S139 -2257.0 839.5 632 S73 -4690.0 737.5 698 S7 -7141.0 839.5 764 G26 -8776.0 -160.5 567 S138 -2294.0 737.5 633 S72 -4736.0 737.5 699 S6 7717.5 769 G24 -8674.0 -197.5 568 S137 -2368.0 737.5 635 S70 -4810.0		S144	-2072.0		627	S78	-4514.0	737.5	693	S12	-6956.0		759		-8674.0	24.5
564 S141 -2183.0 839.5 630 S75 -4625.0 839.5 696 S9 -7067.0 839.5 762 G30 -8776.0 -86.5 565 S140 -2220.0 737.5 631 S74 -4662.0 737.5 697 S8 -7104.0 737.5 763 628 -8674.0 -123.5 566 S139 -2257.0 839.5 632 S73 -4699.0 889 S7 -7141.0 839.5 766 262 -8674.0 -197.5 568 S137 -2331.0 389.5 634 S71 -4773.0 839.5 700 S5 -7215.0 839.5 766 622 -8776.0 -234.5 569 S136 -2368.0 737.5 635 S70 4810.0 737.5 701 S4 -7252.0 737.5 766 G22 -8776.0 -234.5 570 S135 -2405.0 839.5 638 S69 -4847.0		S143	-2109.0		628	S77	-4551.0	839.5	694	S11	-6993.0	839.5	760	G34	-8776.0	
565 S140 -2220.0 737.5 631 S74 -4662.0 737.5 687 S8 -7104.0 737.5 763 G28 -8674.0 -123.5 566 S139 -2257.0 839.5 632 S73 -4699.0 839.5 698 S6 -7171.0 839.5 764 626 -8776.0 -160.5 567 S138 -2294.0 737.5 633 S72 -4736.0 737.5 699 S6 -7178.0 737.5 765 624 -8674.0 -197.5 568 S137 -2331.0 839.5 634 S71 -4773.0 839.5 700 S5 -7215.0 839.5 766 G22 -8776.0 234.5 570 S136 -2405.0 839.5 636 S69 -4847.0 737.5 701 S4 -7252.0 737.5 767 G20 -8674.0 -2715.5 570 S133 -2479.0 339.5 638 S67	563	S142	-2146.0	737.5	629	S76	-4588.0	737.5	695	S10	-7030.0	737.5	761	G32	-8674.0	-49.5
566 S139 -2257.0 839.5 632 S73 -4699.0 839.5 698 S7 -7141.0 839.5 764 G26 -8776.0 -160.5 567 S138 -2294.0 737.5 633 S71 -4736.0 737.5 699 S6 -7178.0 737.5 765 G24 -8776.0 -234.5 569 S136 -2368.0 737.5 635 S70 -4810.0 737.5 701 S4 -7252.0 737.5 767 G20 -8674.0 -234.5 570 S135 -2405.0 839.5 636 S69 -4847.0 839.5 702 S3 -7289.0 839.5 768 G18 -8776.0 -308.5 571 S134 -2442.0 737.5 637 S68 4884.0 737.5 703 S2 -736.0 839.5 769 G16 -8674.0 -345.5 572 S133 -2479.0 839.5 638 S67	564	S141	-2183.0	839.5	630	S75	-4625.0	839.5	696	S9		839.5	762	G30	-8776.0	-86.5
567 S138 -2294.0 737.5 633 S72 -4736.0 737.5 699 S6 -7178.0 737.5 765 G24 -8674.0 -197.5 568 S137 -2331.0 839.5 634 S71 4773.0 839.5 700 S5 -7215.0 839.5 766 G22 -8776.0 -234.5 569 S136 -2368.0 737.5 635 S70 -4810.0 737.5 701 S4 -7252.0 737.5 767 G20 -8674.0 -271.5 570 S135 -2495.0 839.5 636 S69 4847.0 839.5 702 S3 -7289.0 839.5 768 G18 -8776.0 -308.5 571 S134 -2442.0 737.5 637 S68 4884.0 737.5 703 S2 -7326.0 737.5 769 G16 -8674.0 -345.5 571 S131 -2553.0 839.5 640 866	565			737.5			-4662.0	737.5	697		-7104.0	737.5	763		-8674.0	-123.5
568 S137 -2331.0 839.5 634 S71 4773.0 839.5 700 S5 -7215.0 839.5 766 G22 -8776.0 -234.5 569 S136 -2368.0 737.5 635 S70 4810.0 737.5 701 S4 -7252.0 737.5 768 G18 -8776.0 -234.5 570 S135 -24050 839.5 636 S69 4847.0 839.5 702 S3 -7289.0 839.5 768 G18 -8776.0 -308.5 571 S134 -2442.0 737.5 637 S68 4884.0 737.5 703 S2 -7326.0 737.5 769 G16 -8674.0 -345.5 572 S133 -2479.0 839.5 639 866 -4982.0 839.5 704 S1 -7363.0 839.5 770 G14 877.0 771 G12 -8674.0 -495.5 573 S130 -2590.0																-160.5
569 S136 -2368.0 737.5 635 S70 -4810.0 737.5 701 S4 -7252.0 737.5 767 G20 -8674.0 -271.5 570 S135 -2405.0 839.5 636 S69 -4847.0 839.5 702 S3 -7280.0 839.5 768 G18 -8776.0 -308.5 571 S134 -2442.0 737.5 637 S68 -4884.0 737.5 703 S2 -7326.0 737.5 769 G16 -8674.0 -345.5 572 S133 -2479.0 839.5 638 S67 -4921.0 839.5 706 S0 -7400.0 737.5 770 G14 -8776.0 -382.5 573 S131 -2553.0 839.5 660 9565 -4995.0 839.5 706 DUMMY -7437.0 839.5 771 G10 -8776.0 -486.5 575 S130 -2627.0 839.5 642 S63 <td></td>																
570 S135 -2405.0 839.5 636 S69 -4847.0 839.5 702 S3 -7289.0 839.5 768 G18 -8776.0 -308.5 571 S134 -2442.0 737.5 637 S68 -4884.0 737.5 703 S2 -7326.0 737.5 769 G16 -8674.0 -345.5 572 S133 -2479.0 839.5 638 S67 -4921.0 839.5 700 S1 7740.0 737.5 70 G14 -8776.0 -382.5 573 S132 -2516.0 737.5 639 S66 -4958.0 737.5 705 S0 -7400.0 737.5 771 G12 -8674.0 -419.5 574 S131 -2553.0 839.5 640 S65 -4995.0 839.5 706 DUMMY -7474.0 737.5 773 G8 -8674.0 -491.5 576 S129 -2690.0 737.5 643 S62																
571 S134 -2442.0 737.5 637 S68 -4884.0 737.5 703 S2 -7326.0 737.5 769 G16 -8674.0 -345.5 572 S133 -2479.0 839.5 638 S67 -4921.0 839.5 704 S1 -7363.0 839.5 770 G14 -8776.0 -382.5 573 S132 -2516.0 737.5 639 S66 -4958.0 737.5 705 S0 -7400.0 737.5 771 G12 -8674.0 -419.5 574 S131 -2553.0 839.5 640 S65 -4995.0 839.5 706 DUMMY -7474.0 737.5 771 G12 -8674.0 -493.5 576 S129 -2627.0 839.5 642 S63 -5069.0 839.5 708 G130 -7511.0 839.5 774 G6 -8776.0 -453.5 578 S129 -2624.0 337.5 643 S62 <td></td>																
572 S133 -2479.0 839.5 638 S67 -4921.0 839.5 704 S1 -7363.0 839.5 770 G14 -8776.0 -382.5 573 S132 -2516.0 737.5 639 S66 -4958.0 737.5 705 S0 -7400.0 737.5 771 G12 -8674.0 -419.5 574 S131 -2553.0 839.5 640 S65 -4995.0 839.5 706 DUMMY -7437.0 839.5 772 G10 -8776.0 -456.5 575 S130 -2590.0 737.5 641 S64 -5032.0 737.5 707 DUMMY -7474.0 737.5 773 G8 -8674.0 -493.5 576 S129 -2627.0 839.5 642 S63 -5069.0 839.5 708 G130 -7511.0 839.5 774 G6 -8776.0 -506.5 577 S128 -2664.0 737.5 643 S62 </td <td></td>																
573 S132 -2516.0 737.5 639 S66 -4958.0 737.5 705 S0 -7400.0 737.5 771 G12 -8674.0 -419.5 574 S131 -2553.0 839.5 640 S65 -4995.0 839.5 706 DUMMY -7437.0 839.5 772 G10 -8776.0 -456.5 575 S130 -2592.0 839.5 641 S64 -5032.0 737.5 707 DUMMY -7474.0 737.5 773 G8 -8674.0 -493.5 576 S129 -2627.0 839.5 642 S63 -5069.0 839.5 708 G130 -7511.0 839.5 774 G6 -8776.0 -505.5 577 S128 -2664.0 737.5 643 S62 -5106.0 737.5 709 G128 -7548.0 737.5 776 G2 -8776.0 -506.5 578 S126 -2738.0 737.5 641 S61<																
574 \$131 -2553.0 839.5 640 \$65 -4995.0 839.5 706 DUMMY -7437.0 839.5 772 G10 -8776.0 -456.5 575 \$130 -2590.0 737.5 641 \$64 -5032.0 737.5 707 DUMMY -7474.0 737.5 773 G8 -8674.0 -493.5 576 \$129 -2627.0 839.5 642 \$63 -5069.0 839.5 708 G130 -7511.0 839.5 774 G6 -8776.0 -530.5 578 \$128 -2664.0 737.5 643 \$62 -5106.0 737.5 709 G128 -7548.0 737.5 775 G4 -8674.0 -567.5 578 \$127 -2701.0 839.5 644 \$61 -5143.0 839.5 710 G128 -7585.0 839.5 776 G2 -8776.0 -604.5 579 \$126 -2738.0 737.5 645 \$60																
575 S130 -2590.0 737.5 641 S64 -5032.0 737.5 707 DUMMY -7474.0 737.5 773 G8 -8674.0 -493.5 576 S129 -2627.0 839.5 642 S63 -5069.0 839.5 708 G130 -7511.0 839.5 774 G6 -8776.0 -530.5 577 S128 -2664.0 737.5 643 S62 -5106.0 737.5 709 G128 -7548.0 737.5 775 G4 -8674.0 -567.5 578 S127 -2701.0 839.5 644 S61 -5143.0 839.5 710 G126 -7585.0 839.5 776 G2 -8776.0 -604.5 579 S126 -22738.0 737.5 645 S60 -5180.0 737.5 711 G124 -7622.0 737.5 777 G0 -8674.0 -641.5 581 S124 -2812.0 737.5 647 S58<																
576 S129 -2627.0 839.5 642 S63 -5069.0 839.5 708 G130 -7511.0 839.5 774 G6 -8776.0 -530.5 577 S128 -2664.0 737.5 643 S62 -5106.0 737.5 709 G128 -7548.0 737.5 775 G4 -8674.0 -567.5 578 S127 -2701.0 839.5 644 S61 -5143.0 839.5 710 G126 -7585.0 839.5 776 G2 -8776.0 -604.5 579 S126 -2738.0 737.5 645 S60 -5180.0 737.5 711 G124 -7622.0 737.5 777 G0 -8674.0 -641.5 580 S125 -2775.0 839.5 646 S59 -5217.0 839.5 712 G122 -7659.0 839.5 778 GTESTL -8776.0 -678.5 581 S123 -2849.0 839.5 648 S5																
577 S128 -2664.0 737.5 643 S62 -5106.0 737.5 709 G128 -7548.0 737.5 775 G4 -8674.0 -567.5 578 S127 -2701.0 839.5 644 S61 -5143.0 839.5 710 G126 -7585.0 839.5 776 G2 -8776.0 -604.5 579 S126 -2738.0 737.5 645 S60 -5180.0 737.5 711 G124 -7622.0 737.5 777 G0 -8674.0 -641.5 580 S125 -2775.0 839.5 646 S59 -5217.0 839.5 712 G122 -7659.0 839.5 778 GTESTL -8776.0 -678.5 581 S124 -2812.0 737.5 647 S58 -5254.0 737.5 713 G120 -7696.0 737.5 779 DUMMY -8674.0 -722.5 582 S123 -2886.0 737.5 648 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																
578 S127 -2701.0 839.5 644 S61 -5143.0 839.5 710 G126 -7585.0 839.5 776 G2 -8776.0 -604.5 579 S126 -2738.0 737.5 645 S60 -5180.0 737.5 711 G124 -7622.0 737.5 777 G0 -8674.0 -641.5 580 S125 -2775.0 839.5 646 S59 -5217.0 839.5 712 G122 -7659.0 839.5 778 GTESTL -8776.0 -678.5 581 S124 -2812.0 737.5 647 S58 -5254.0 737.5 713 G120 -7696.0 737.5 779 DUMMY -8674.0 -722.5 581 S124 -2849.0 839.5 648 S57 -5291.0 839.5 714 G118 -773.0 839.5 780 DUMMY -876.0 -773.5 583 S121 -2923.0 839.5 650 <t< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>					-											
579 S126 -2738.0 737.5 645 S60 -5180.0 737.5 711 G124 -7622.0 737.5 777 G0 -8674.0 -641.5 580 S125 -2775.0 839.5 646 S59 -5217.0 839.5 712 G122 -7659.0 839.5 778 GTESTL -8776.0 -678.5 581 S124 -2812.0 737.5 647 S58 -5254.0 737.5 713 G120 -7696.0 737.5 779 DUMMY -8674.0 -722.5 582 S123 -2849.0 839.5 648 S57 -5291.0 839.5 714 G118 -7733.0 839.5 780 DUMMY -8674.0 -722.5 583 S122 -2886.0 737.5 649 S56 -5328.0 737.5 715 G116 -7770.0 737.5 780 DUMMY -876.0 -773.5 584 S121 -2923.0 839.5 652																
580 S125 -2775.0 839.5 646 S59 -5217.0 839.5 712 G122 -7659.0 839.5 778 GTESTL -8776.0 -678.5 581 S124 -2812.0 737.5 647 S58 -5254.0 737.5 713 G120 -7696.0 737.5 779 DUMMY -8674.0 -722.5 582 S123 -2849.0 839.5 648 S57 -5291.0 839.5 714 G118 -7733.0 839.5 780 DUMMY -876.0 -773.5 583 S122 -2886.0 737.5 649 S56 -5328.0 737.5 715 G116 -7770.0 737.5 80 DUMMY -876.0 -773.5 584 S121 -2923.0 839.5 650 S55 -5365.0 839.5 716 G114 -7807.0 839.5 839.5 586 S119 -2997.0 839.5 652 S53 -5439.0 839.5 718																
581 S124 -2812.0 737.5 647 S58 -5254.0 737.5 713 G120 -7696.0 737.5 779 DUMMY -8674.0 -722.5 582 S123 -2849.0 839.5 648 S57 -5291.0 839.5 714 G118 -7733.0 839.5 780 DUMMY -8776.0 -773.5 583 S122 -2886.0 737.5 649 S56 -5328.0 737.5 715 G116 -7770.0 737.5 839.5 839.5 650 S55 -5365.0 839.5 716 G114 -7807.0 839.5 <																
582 S123 -2849.0 839.5 648 S57 -5291.0 839.5 714 G118 -7733.0 839.5 780 DUMMY -8776.0 -773.5 583 S122 -2886.0 737.5 649 S56 -5328.0 737.5 715 G116 -7770.0 737.5 -773.5 584 S121 -2923.0 839.5 650 S55 -5365.0 839.5 716 G114 -7807.0 839.5 585 S120 -2960.0 737.5 651 S54 -5402.0 737.5 717 G112 -7844.0 737.5 586 S119 -2997.0 839.5 652 S53 -5439.0 839.5 718 G110 -7881.0 839.5 587 S118 -3034.0 737.5 653 S52 -5476.0 737.5 719 G108 -7918.0 737.5 <td></td>																
583 S122 -2886.0 737.5 649 S56 -5328.0 737.5 715 G116 -7770.0 737.5 584 S121 -2923.0 839.5 650 S55 -5365.0 839.5 716 G114 -7807.0 839.5 585 585 S120 -2960.0 737.5 651 S54 -5402.0 737.5 717 G112 -7844.0 737.5 586 S119 -2997.0 839.5 652 S53 -5439.0 839.5 718 G110 -7881.0 839.5 587 S118 -3034.0 737.5 653 S52 -5476.0 737.5 719 G108 -7918.0 737.5 588 S117 -3071.0 839.5 654 S51 -5513.0 839.5 720 G106 -7955.0 839.5 589 589 S116 -3108.0 737.5 655 S50 -5550.0 737.5 721 G104 -7992.0 737.5 593 591 S114 -3182.0																
584 S121 -2923.0 839.5 650 S55 -5365.0 839.5 716 G114 -7807.0 839.5 585 585 S120 -2960.0 737.5 651 S54 -5402.0 737.5 717 G112 -7844.0 737.5 586 S119 -2997.0 839.5 652 S53 -5439.0 839.5 718 G110 -7881.0 839.5 589.5 587 S118 -3034.0 737.5 653 S52 -5476.0 737.5 719 G108 -7918.0 737.5 588.5 5117 -3071.0 839.5 654 S51 -5513.0 839.5 720 G108 -7918.0 737.5 589.5 589.5 550 -5513.0 839.5 720 G106 -7955.0 839.5 589.5 589.5 550.0 -5550.0 737.5 721 G104 -7992.0 737.5 599.5 599.5 5587.0 839.5 722 G102 -8029.0 839.5 599.5																
585 S120 -2960.0 737.5 651 S54 -5402.0 737.5 717 G112 -7844.0 737.5 586 S119 -2997.0 839.5 652 S53 -5439.0 839.5 718 G110 -7881.0 839.5 839.5 587 S118 -3034.0 737.5 653 S52 -5476.0 737.5 719 G108 -7918.0 737.5 588 5117 -3071.0 839.5 654 S51 -5513.0 839.5 720 G106 -7955.0 839.5 589.5 589.5 550 -5550.0 737.5 721 G104 -7992.0 737.5 592 591 S115 -3145.0 839.5 656 S49 -5587.0 839.5 722 G102 -8029.0 839.5 593 591 S114 -3182.0 737.5 657 S48 -5624.0 737.5 723 G100 -8066.0 737.5 593 593 S112 -3256.0 737.5																
586 S119 -2997.0 839.5 652 S53 -5439.0 839.5 718 G110 -7881.0 839.5 S9.5 587 S118 -3034.0 737.5 653 S52 -5476.0 737.5 719 G108 -7918.0 737.5 588 588 S117 -3071.0 839.5 654 S51 -5513.0 839.5 720 G106 -7955.0 839.5 589 S116 -3108.0 737.5 655 S50 -5550.0 737.5 721 G104 -7992.0 737.5 590 S115 -3145.0 839.5 656 S49 -5587.0 839.5 722 G102 -8029.0 839.5 591 S114 -3182.0 737.5 657 S48 -5624.0 737.5 723 G100 -8066.0 737.5 592 S113 -3219.0 839.5 658 S47 -5661.0 839.5 724 G98 -8103.0 <td></td> <td>S120</td> <td>-2960.0</td> <td></td> <td></td> <td>S54</td> <td>-5402.0</td> <td>737.5</td> <td></td> <td></td> <td>-7844.0</td> <td>737.5</td> <td></td> <td></td> <td></td> <td></td>		S120	-2960.0			S54	-5402.0	737.5			-7844.0	737.5				
587 S118 -3034.0 737.5 653 S52 -5476.0 737.5 719 G108 -7918.0 737.5 588 S117 -3071.0 839.5 654 S51 -5513.0 839.5 720 G106 -7955.0 839.5 589.5 </td <td></td> <td></td> <td>-2997.0</td> <td></td> <td>652</td> <td></td> <td></td> <td></td> <td>718</td> <td>G110</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			-2997.0		652				718	G110						
589 \$116 -3108.0 737.5 655 \$50 -5550.0 737.5 721 \$G104 -7992.0 737.5 \$75.5 \$7	587	S118	-3034.0	737.5	653	S52	-5476.0	737.5	719		-7918.0	737.5				
590 S115 -3145.0 839.5 656 S49 -5587.0 839.5 722 G102 -8029.0 839.5 839.5 591 S114 -3182.0 737.5 657 S48 -5624.0 737.5 723 G100 -8066.0 737.5 592 737.5 5313 -3219.0 839.5 658 S47 -5661.0 839.5 724 G98 -8103.0 839.5 839.5 593 S112 -3256.0 737.5 659 S46 -5698.0 737.5 725 G96 -8140.0 737.5 <t< td=""><td></td><td></td><td></td><td></td><td>654</td><td></td><td></td><td></td><td></td><td>G106</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>					654					G106						
591 S114 -3182.0 737.5 657 S48 -5624.0 737.5 723 G100 -8066.0 737.5 737.5 592 S113 -3219.0 839.5 658 S47 -5661.0 839.5 724 G98 -8103.0 839.5 593 S112 -3256.0 737.5 659 S46 -5698.0 737.5 725 G96 -8140.0 737.5																
592 S113 -3219.0 839.5 658 S47 -5661.0 839.5 724 G98 -8103.0 839.5 593 593 S112 -3256.0 737.5 659 S46 -5698.0 737.5 725 G96 -8140.0 737.5 737.5																
593 S112 -3256.0 737.5 659 S46 -5698.0 737.5 725 G96 -8140.0 737.5																
594 S111 -3293.0 839.5 660 S45 -5735.0 839.5 726 G94 -8177.0 839.5																
	594	S111	-3293.0	839.5	660	S45	-5735.0	839.5	726	G94	-8177.0	839.5				

 Solomon Systech
 Jul 2005
 P 10/58
 Rev 0.12
 SSD1283A Series

Bump Size

PAD#	X [um]	Y [um]	Pad pitch [um] (Min)
Pad 1-229	51	93	37
Pad 232-269,			
741-778	72	35	37
Pad 274-736	35	72	37
Pad 272-3,			
737-8	49	72	37
Pad 230-231,			
270-271, 739-			
740, 779-780	72	49	37

 SSD1283A Series
 Rev 0.12
 P 11/58
 Jul 2005
 Solomon Systech

6 PIN DESCRIPTION

Table 3 - SSD1283A pin description

Name	Туре	Function	Function
СМ	I	Logic Control	Input pin to select 262k-color or 8-color display mode. After entered 8-color mode, the driving method will be frame inversion mode, and only MSB of the data Red, Green and Blue will be considered. o Connect to V _{DDIO} for 262k-color display mode
DDIE-01			o Connect to V _{SS} for 8-color display mode Graphic Data Input Pins:
RR[5:0]		Graphic	Red Data – 6-bits
GG[5:0]	I	Display Data	Green Data – 6-bits
BB[5:0] DEN			Blue Data – 6-bits Display enable pin from controller.
			Frame synchronization signal
VSYNC		Display	- Connect to V _{DDIO} or V _{SS} if not used
HSYNC	I	Timing	Line synchronization signal Connect to V_{DDIO} or V_{SS} if not used
		Signals	Dot-clock signal and oscillator source. External clock must be provided to that
DOTCLK			pin even at front or black porch non-display period
			- Connect to V_{DDIO} or V_{SS} if not used Display shut down pin in generic display mode. The driver will be put into sleep
SHUT	I	Logic	mode when SHUT = V_{DDIO} while Dmode[1:0] = 01h in register R03h
		Control	- Connect to V _{DDIO} if not used
RL			Source driver data shift direction.
KL			 Connect to V_{DDIO} for display first RGB data at S0~S2 Connect to V_{SS} for display first RGB data at S395~S393
			Gate driver scan direction.
TB			- Connect to V _{DDIO} for gate scan from G0 to G131
		Panel	- Connect to V _{SS} for gate scan from G131 to G0 Color mapping selection pin. Refer to S0-S395 pin description
BGR	I	Mapping	- Connect to V _{DDIO} for Blue-Green-Red mapping
		Control	- Connect to V _{SS} for Red-Green-Blue mapping
REV			Display reverse selection pin - Connect to V_{DDIO} for mapping data "0" to maximum pixel voltage
REV			- Connect to V _{DDIO} for mapping data "0" to minimum pixel voltage
			Panel structure selection pin.
CAD			- Connect to V _{DDIO} if Cs on gate structure is used
			- Connect to V _{SS} if Cs on common structure is used PS[3:0] =
PS0			0000 : 3-wires MCU Serial interface
			0001 : 4-wires MCU Serial interface
PS1			0100 : 16 bits 68 parallel interface 0101 : 8 bits 68 parallel interface
	I	Interface	0110 : 16 bits 80 parallel interface
PS2		Selection	0111 : 8 bits 80 parallel interface
			1000 : 18 bits 68 parallel interface 1001 : 9 bits 68 parallel interface
PS3			1010 : 18 bits 80 parallel interface
1 00			1011 : 9 bits 80 parallel interface
D/ c			Data or command
			68-system : E (enable signal)
E; RD		Lania Oantaal	80-system: RD (read strobe signal)
	I	Logic Control	Serial mode: Not used and should be connected to V _{DDIO} or V _{ss}
R/\overline{W} ; \overline{WR}			68-system: R/W (indicates read cycle when High, write cycle when Low)
N W , WK			80-system : WR (write strobe signal) Serial mode : Not used and should be connected to V_{DDIO} or V_{ss}
D0-D14	I/O		
D15 (SDO)	(SDO) I/O Data Bus		For parallel mode, 8/9/16/18 bit interface, refer to Section Interface Mapping for definition.
D16 (SCK)		במומ שמס	For serial mode, D15-D17 are used. Unused pins should be connected to Vss
D17 (SDI)	I		•
REGVDD	ı	Logic	Enable internal voltage regulation Connect to V _{DDIO} if the supply voltage for V _{DDIO} is above 2.5V
	· 	Control	- Connect to V _{SS} if the supply voltage for V _{DDIO} is below 2.5V
RES	ı	System	System reset pin. Initialization occurs once this pin is pulled low, the minimum pulse length is 10us. A low pulse must be applied after power-on. Connect this

Solomon Systech Jul 2005 P 12/58 Rev 0.12 SSD1283A Series

Name	Type	Function	Function
CS	I	Logic Control	Chip select pin.
V_{DD}	Power	Power for core logic	Voltage input pin for internal logic. - If System V _{DD} > 2.5V: Connect V _{DD} to a 1uF capacitor
$V_{ extsf{DDEXT}}$	Power	Power for internal VDD regulator	Connect System V_{DD} to V_{DDEXT} and V_{DDIO} - If 1.65V \leq System V_{DD} < 2.5V : Connect System V_{DD} to V_{DDEXT} , V_{DDIO} and V_{DD} - If 1.16V \leq System V_{DD} < 1.65V : Connect V_{DD} and V_{DDEXT} to a power supply between 1.65V to 2.5V.
V_{DDIO}	Power	Power for interface logic pins	Connect to system VDD.
V _{SS}			System ground pin for the IC - Connect to system ground
AV _{SS}		Ground of	Ground for analog circuit - Connect to system ground
V _{SSRC}	Power	Power Supply	Ground for analog circuit. This pin requires a noise free path for providing accurate LCD driving voltages. - Connect to system ground
V_{CHS}			Ground for booster circuits - Connect to system ground
V_{Cl}	Power	Power supply for	Booster input voltage pin - Connect to stable voltage source between 2.5 to 3.6V - Connect a capacitor to VSS for stabilization
V_{CIP}	1 ower	analog circuits	Voltage supply pin for analog circuit. This pin requires a noise free path for providing accurate LCD driving voltages - Connect to VCI
V_{CIX2}	0	Booster Output	Equals to 2 x V _{Cl} - Connect a capacitor for stabilization
V _{CIM}	0	Booster Output	Negative voltage of V _{Cl} - Connect a capacitor for stabilization.
V_{COMH}	0	Voltages for VCOM	This pin indicates a high level of Vcom generated in driving the Vcom alternation. - Leave this pin open.
V_{COML}		Signal	This pin indicates a low level of Vcom generated in driving the Vcom alternation. - Leave this pin open.
V_{LCD63}			This pin is the maximum source driver voltage Leave this pin open.
V_{GH}			A positive power output pin for gate driver Connect a capacitor for stabilization
V_{GOFFL}		> (A negative power output pin for gate driver Connect a capacitor for stabilization
V_{GOFFH}	0	LCD Driving Voltages	When Cs on gate structure is used, this pin indicates a high level of Vgoff. - Connect a capacitor for stabilization. When Cs on Com structure is used
Vgoffhl			- Leave this pin open. When Cs on gate structure is used, this pin indicates minimum power output for Vgoffh. - Charge recycling. Connect a capacitor to VCOM When Cs on Com structure is used - Leave this pin open.
C1N			- Connect a capacitor to C1P
C2N C3N	-	Booster	- Connect a capacitor to C2P - Connect a capacitor to C3P
C3N C1P	1	pins	- Connect a capacitor to C3P - Connect a capacitor to C1N
C2P	†	Pilis	- Connect a capacitor to C2N
C3P	1		- Connect a capacitor to C3N
CDUM0	I	Analog	Charge recycling. Connect a capacitor to VSS
CDUM1	I	Analog	Charge recycling. Connect a capacitor to VSS
TESTA	I	IC Testing Signal	Test pin of the internal circuit. Leave connection open. Optional to insert test point in FPC for development evaluation.
TESTB TESTC		OSC input	An internal oscillator reference pin, connect a resistor to VCI. Float this pin
OSC1 EXTCLK	I LCD		when using the internal oscillator. A clock input pin for internal oscillator. Connect to VSS when using the internal oscillator.
VCOM	0	Driving Signals	A power supply for the TFT-display common electrode.
НС	I	Booster pins	Booster mode select pin -Connect to VCIM if use VCIX3 mode -Connect to VCHS if use VCIX2 mode

 SSD1283A Series
 Rev 0.12
 P 13/58
 Jul 2005
 Solomon Systech

Name	Type	Function	Function
GTESTR,			Gate driver output test pins. Leave it disconnected when using Cs on Common
GTESTL			structure
G0-G131			Gate driver output pins. This pin output either VGH, VgoffH or VgoffL level.
S0-S395			Source driver output pins. S(3n): display Red if BGR = Low, Blue if BGR = High. S(3n+1): display Green. S(3n+2): display Blue if BGR = Low, Red if BGR = High.
NC			These pins must be left open and cannot be connected
			Pins that are not connected inside the IC and floated. They can be connected to any voltage or shorted together.

 Solomon Systech
 Jul 2005
 P 14/58
 Rev 0.12
 SSD1283A Series

7 FUNCTIONAL BLOCK DESCRIPTIONS

7.1 System Interface

The System Interface unit consists of three functional blocks for driving the 6800-series parallel interface, 8080-series parallel interface, 3-lines serial peripheral interface and 4-lines serial peripheral interface. The selection of different interface is done by PS3, PS2, PS1 and PS0 pins. Please refer to Section Die Pin Assignment.

a) MPU Parallel 6800-series Interface

The parallel Interface consists of 18 bi-directional data pins ($D_{17} - D_0$), R/\overline{W} , D/\overline{C} , E and \overline{CS} . R/\overline{W} input high indicates a read operation from the Graphical Display Data RAM (GDDRAM) or the status register. R/\overline{W} input low indicates a write operation to Display Data RAM or Internal Command Registers depending on the status of D/\overline{C} input. The E input serves as data latch signal (clock) when high provided that \overline{CS} is low. Please refer to Parallel Interface Timing Diagram of 6800-series microprocessors. In order to match the operating frequency of the GDDRAM with that of the MCU, pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in the following diagram.

Figure 3 - Read Display Data

b) MPU Parallel 8080-series Interface

The parallel interface consists of 18 bi-directional data pins $D_{17}-D_0$, \overline{RD} , \overline{WR} , D/\overline{C} and \overline{CS} . \overline{RD} input serves as data read latch signal (clock) when low provided that \overline{CS} is low. Whether reading the display data from GDDRAM or reading the status from the status register is controlled by D/\overline{C} . \overline{WR} input serves as data write latch signal (clock) when low provided that \overline{CS} is low. Whether writing the display data to the GDDRAM or writing the command to the command register is controlled by D/\overline{C} . A dummy read is also required before the first actual display data read for 8080-series interface.

c) MPU 4-lines Serial Peripheral Interface

The 4-lines serial peripheral Interface consists of serial clock SCK, serial data SDA, D/\overline{C} and \overline{CS} . SDA is shifted into 8-bit shift register on every rising edge of SCK in the order of data bit 7, data bit 6 data bit 0. D/\overline{C} is sampled on every eighth clock to determine whether the data byte in the shift register is written to the Display Data RAM or command register at the same clock.

SSD1283A Series | Rev 0.12 | P 15/58 | Jul 2005 | **Solomon Systech**

d) MPU 3-lines Serial Peripheral Interface

The operation is similar to 4-lines serial peripheral interface while D/\overline{C} is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/\overline{C} bit, D7 to D0 bit. The D/\overline{C} bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/\overline{C} bit = 1) or the command register (D/\overline{C} bit = 0).

	6800 - series Parallel Interface	8080 – series Parallel Interface	MCU Serial Interface
Data Read	18/16/9/8-bits	18/16/9/8-bits	No
Data Write	18/16/9/8-bits	18/16/9/8-bits	8-bits
Command Read	Status only	Status only	No
Command Write	Yes	Yes	8-bits

Table 4 - Data bus selection modes

7.2 Address Counter (AC)

The address counter (AC) assigns address to the GDDRAM. When an address set instruction is written into the IR, the address information is sent from the IR to the AC.

After writing into the GRAM, the AC is automatically incremented by 1 (or decremented by 1). After reading the data, the AC is not updated. A window address function allows for data to be written only to a window area specified by GRAM.

7.3 Graphic Display Data RAM (GDDRAM)

The GDDRAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM is 132 RGB \times 132 \times 18 / 8 = 39,204 bytes. For mechanical flexibility, re-mapping on both Segment and Common outputs can be selected by software. Please refer to the command "Data Output/Scan direction" for detail description.

Four pages of display data forms a RAM address block and stored in the GDDRAM. Each block will form the fundamental units of scrolling addresses. Various types of area scrolling can be performed by software program according to the command "Set area Scroll" and "Set Scroll Start".

7.4 Gamma/Grayscale Voltage Generator

The grayscale voltage circuit generates a LCD driver circuit that corresponds to the grayscale levels as specified in the grayscale gamma-adjusting resistor. 262,144 possible colors can be displayed when 1 byte = 18 bit. For details, see the gamma-adjusting resistor.

7.5 Booster and Regulator Circuit

These two functional blocks generate the voltage of VGH, VGOFFL, VCOM levels and Vlcd0~63 which are necessary for operating a TFT LCD.

7.6 Oscillation Circuit (OSC)

This module is an On-Chip low power RC oscillator circuitry. The oscillator generates the clock for the DC-DC voltage converter. This clock is also used in the Display Timing Generator.

7.7 Data Latches

This block is a series of latches carrying the display signal information. These latches hold the data, which will be fed to the HV Buffer Cell and Level Selector to output the required voltage level.

Solomon Systech Jul 2005 | P 16/58 | Rev 0.12 | SSD1283A Series

8 COMMAND TABLE

Table 5 - Command Table

R/W	D/C	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	*	*	*	*	*	*	*	ID8	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0	R	Index
1	0	L7	L6	L5	L4	L3	L2	L1	L0	0	0	0	0	0	0	0	0	SR	Status Read
0	1	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	OSCEN	R00h	Oscillation Start
1	1	0	0	0	1	0	0	1	0	1	0	0	0	0	0	1	1		Device code read
0	1	0	0	REV	CAD	BGR	SM	ТВ	RL	MUX7	MUX6	MUX5	MUX4	MUX3	MUX2	MUX1	MUX0	R01h	Driver output control
0	1	0	0	0	0	FLD	0	B/C	EOR	0	NW6	NW5	NW4	NW3	NW2	NW1	NW0	R02h	LCD drive AC control
0	1	VS Mode	DFM1	DFM0	TRANS	OEDef	WMode	DMode1	DMode0	TY1	TY2	ID/1	ID/0	AM	LG2	LG1	LG0	R03h	Entry mode
0	1	CPR5	CPR4	CPR3	CPR2	CPR1	CPR0	0	0	CPG5	CPG4	CPG3	CPG2	CPG1	CPG0	0	0	R04h	Compare register (1)
0	1	0	0	0	0	0	0	0	0	CPB5	CPB4	CPB3	CPB2	CPB1	СРВ0	0	0	R05h	Compare register (2)
0	1	0	0	0	PT1	PT0	VLE2	VLE1	SPT	0	0	GON	DTE	СМ	0	D1	D0	R07h	Display control
																		R08h	Reserved
																		R09h	Reserved
0	1	NO1	NO0	SDT1	SDT0	EQ1	EQ0	DIV1	DIV0	0	0	SDIV	SRTN	RTN3	RTN2	RTN1	RTN0	R0Bh	Frame cycle control
													A					R0Ch	Reserved
																		R0Dh	Reserved
									\mathcal{A}									R0Eh	Reserved
0	1	DOT	DCY2	DCY1	DCY0	BTH2	BTH1	BTH0	1	1	1	DC1	DC0	AP2	AP1	AP0	SLP	R10h	Power control (1)
0	1	0	0	0	0	0	0	0	0	0	0	0	PU1	PU0	1	0	0	R11h	control (2)
0	1	0	0	0	0	0	1	1	SX263B	V63SH	0	0	0	VRH3	VRH2	VRH1	VRH0	R12h	control (3)
0	1	0	0	VCOMG	VDV4	VDV3	VDV2	VDV1	VDV0	0	0	0	0	0	0	0	0	R13h R15h	control (4) Reserved
0	1	XL7	XL6	XL5	XL4	XL3	XL2	XL1	XL0	0	0	HBP5	HBP4	HBP3	HBP2	HBP1	HBP0	R16h	Horizontal
0	1	0	VFP6	VFP5	VFP4	VFP3	VFP2	VFP1	VFP0	0	VBP6	VBP5	VBP4	VBP3	VBP2	VBP1	VBP0	R17h	Porch Vertical
		Ů			••••		****		*****					15.0			15.0		Porch
																		R1Ch R1Dh	Reserved Reserved
0	1	0	0	0	0	0	0	0	0	nOTP	0	VCM5	VCM4	VCM3	VCM2	VCM1	VCM0	R1Eh	Power
0	1	0	0	0	0	0	0	0	0	0	0			VCMR3				R1Fh	control (5) Power
																			control (6)
0	1								ADĮ	15:0]									
1	1						Data[1	7:0] mapp	oing depe	nds on th	ne interfa	ace settir	ng						
	•																		RAM write
0	1	WMR5	WMR4	WMR3	WMR2	WMR1	WMR0	0	0	WMG5	WMG4	WMG3	WMG2	WMG1	WMG0	0	0	R23h	data mask (1)
0	1	0	0	0	0	0	0	0	0	WMB5	WMB4	WMB3	WMB2	WMB1	WMB0	0	0	R24h	RAM write data mask (2)
0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	R28h	VCOM OTP (1)
0	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	R29h	VCOM OTP (2)
R/W	D/C	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description

 SSD1283A Series
 Rev 0.12
 P 17/58
 Jul 2005
 Solomon Systech

0	1																	R2A-2Fh	Test Commands
0	1	0	0	0	0	0	PKP12	PKP11	PKP10	0	0	0	0	0	PKP02	PKP01	PKP00	R30h	γ control (1)
0	1	0	0	0	0	0	PKP32	PKP31	PKP30	0	0	0	0	0	PKP22	PKP21	PKP20	R31h	γ control (1)
0	1	0	0	0	0	0	PKP52	PKP51	PKP50	0	0	0	0	0	PKP42	PKP41	PKP40	R32h	γ control (2)
0	1	0	0	0	0	0	PRP12	PRP11	PRP10	0	0	0	0	0	PRP02	PRP01	PRP00	R33h	γ control (4)
0	1	0	0	0	0	0	PKN12	PKN11	PKN10	0	0	0	0	0	PKN02	PKN01	PKN00	R34h	γ control (5)
0	1	0	0	0	0	0	PKN32	PKN31	PKN30	0	0	0	0	0	PKN22	PKN21	PKN20	R35h	γ control (6)
0	1	0	0	0	0	0	PKN52	PKN51	PKN50	0	0	0	0	0	PKN42	PKN41	PKN40	R36h	γ control (7)
0	1	0	0	0	0	0	PRN12	PRN11	PRN10	0	0	0	0	0	PRN02	PRN01	PRN00	R37h	γ control (8)
0	1	0	0	0	VRP14	VRP13	VRP12	VRP11	VRP10	0	0	0	0	VRP03	VRP02	VRP01	VRP00	R38h	γ control (9)
0	1	0	0	0	VRN14	VRN13	VRN12	VRN11	VRN10	0	0	0	0	VRN03	VRN02	VRN01	VRN00	R39h	γ control
0	1	0	0	0	0	0	0	0	0	SCN7	SCN6	SCN5	SCN4	SCN3	SCN2	SCN1	SCN0	R40h	Gate scan starting position
0	1	VL27	VL26	VL25	VL24	VL23	VL22	VL21	VL20	VL17	VL16	VL15	VL14	VL13	VL12	VL11	VL10	R41h	Vertical scroll control
0	1	SE17	SE16	SE15	SE14	SE13	SE12	SE11	SE10	SS17	SS16	SS15	SS14	SS13	SS12	SS11	SS10	R42h	First display drive position
0	1	SE27	SE26	SE25	SE24	SE23	SE22	SE21	SE20	SS27	SS26	SS25	SS24	SS23	SS22	SS21	SS20	R43h	Second display drive position
0	1	HEA7	HEA6	HEA5	HEA4	HEA3	HEA2	HEA1	HEA0	HSA7	HSA6	HSA5	HSA4	HSA3	HSA2	HSA1	HSA0	R44h	Horizontal RAM address position
0	1	VEA7	VEA6	VEA5	VEA4	VEA3	VEA2	VEA1	VEA0	VSA7	VSA6	VSA5	VSA4	VSA3	VSA2	VSA1	VSA0	R45h	Vertical RAM address position
Ļ					T -				xtende									D.071	Di
0	1	0	0	0	0	0	1	0	1	0	1	IU2	IU1	IU0	0	0	0	R27h	Further Bias
0	1	OSCR3	OSCR2	OSCR1	OSCR0	0	0	0	0	0	0	0	0	0	0	0	0	R2Ch	Oscillator frequency

Note 1 : * means don't care
Note 2 : Register bits REV, CAD, BGR, TB, RL, CM will override the corresponding hardware pins settings.

Jul 2005 | P 18/58 | Rev 0.12 | SSD1283A Series Solomon Systech

9 COMMAND DESCRIPTIONS

Index / Status / Display control Instruction

Index (IR)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	0	*	*	*	*	*	*	*	*	*	ID6	ID5	ID4	ID3	ID2	ID1	ID0

The index instruction specifies the RAM control indexes (R00h to RFFh). It sets the register number in the range of 00000000 to 11111111 in binary form. But do not access to Index register and instruction bits which do not have it's own index register.

Device Code Read (R00h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R	1	0	0	0	1	0	0	1	0	1	0	0	0	0	0	1	1

If this register is read forcibly, 1283h is read.

Oscillator (R00h) (POR = 0000h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	OSCEN

OSCEN: The oscillator will be turned on when OSCEN = 1, off when OSCEN = 0.

SSD1283A Series | Rev 0.12 | P 19/58 | Jul 2005 | **Solomon Systech**

Driver Output Control (R01h) (POR = 0383h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	REV	CAD	BGR	SM	TB	RL	MUX7	MUX6	MUX5	MUX4	MUX3	MUX2	MUX1	MUX0

REV: Displays all character and graphics display sections with reversal when REV = "1". Since the grayscale level can be reversed, display of the same data is enabled on normally white and normally black panels. Source output level is indicated below. Note: Register bit REV will override the REV hardware pin setting.

REV	RGB data	Source O	utput level
		VCOM = "L"	VCOM = "H"
	000000B	V63	V0
	000001B	V62	V1
0	:	:	:
	111110B	V1	V62
	111111B	V0	V63
	000000B	V0	V63
	000001B	V1	V62
1	:	:	:
	111110B	V62	V1
	111111B	V63	V0

CAD: Set up based on retention capacitor configuration of the TFT panel. Note: Register bit CAD will override the CAD hardware pin setting.

CAD	Retention capacitor configuration
0	Cs on Common (POR)
1	Cs on Gate

BGR: Selects the <R><G> arrangement. When BGR = "0" <R><G> color is assigned from S0. When BGR = "1" <G><R> color is assigned from S0. Note: Register bit BGR will override the BGR hardware pin setting.

SM: Change scanning order of gate driver. Select the order according to the mounting method.

TB: Selects the output shift direction of the gate driver. When TB = 1, G0 shifts to G131. When TB = 0, G131 shifts to G0. Note: Register bit TB will override the TB hardware pin setting.

RL: Selects the output shift direction of the source driver. When RL = "1", S0 shifts to S395 and <R><G> color is assigned from S0. When RL = "0", S395 shifts to S0 and <R><G> color is assigned from S395. Set RL bit and BGR bit when changing the dot order of R, G and B. RL setting will be ignored when display with RAM (Dmode[1:0] = 00).

Note: Register bit RL will override the RL hardware pin setting.

MUX[7:0]: Specify number of lines for the LCD driver. Setting exceeds 132 lines (MUX[7:0] = 131) will be treated as dummy line of vertical front porch. Refer to "Vertical Porch" (VBH[7:0]) setting for details.

Solomon Systech Jul 2005 P 20/58 Rev 0.12 SSD1283A Series

LCD-Driving-Waveform Control (R02h) (POR = 0000h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	FLD	0	B/C	EOR	0	NW6	NW5	NW4	NW3	NW2	NW1	NW0

FLD: Set display in interlace drive mode to protect from flicker. It splits one frame into 3 fields and drive.

B/C: When B/C = 0, frame inversion of the LCD driving signal is enabled. When B/C = 1, a N-line inversion waveform is generated and alternates in each N lines specified by bits EOR and NW[6:0].

EOR: When B/C = 1 and EOR = 1, the odd/even frame-select signals and the N-line inversion signals are EORed for alternating drive. EOR is used when the LCD is not alternated by combining the set values of the lines of the LCD driven and the N-lines.

NW[6:0]: Specify the number of lines that will alternate at the N-line inversion setting (B/C = 1). NW[6:0] alternate for every set value + 1 lines.

Entry Mode (R03h) (POR = 6830h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	VSMode	DFM1	DFM0	TRANS	OEDef	WMode	DMode1	DMode0	TY1	TY0	ID1	ID0	AM	LG2	LG1	LG0

VSMode: When VSMode = 1 at Dmode[1:0] = "00", the frame frequency will be dependent on VSYNC.

DFM[1:0]: Set the color display mode.

DFM1	DFM0	Color mode
1	1	65k color (POR)
1	0	262k color

TRANS: When TRANS = 1 and Dmode[1:0] = "1x", transparent display is allowed.

OEDef: When OEDef = 1, OE defines the display window.

When OEDef = 0 and Dmode[1:0] = "1x", use command R1Ch and R1Dh to define the display

window

WMode: When WMode = 0, write ram from normal data bus. When WMode = 1, write ram from generic interface.

Dmode[1:0]: SSD1283A allows data display from ram data or from generic input data. When Dmode[1:0] = "00", it displays the ram content. When Dmode[1:0] = "01", it displays from generic input data.

Dmode1	Dmode0	Display
0	0	Ram (POR)
0	1	Generic input
1	0	Reserved
1	1	Reserved

TY[1:0]: In 262k color mode, 16 bit parallel interface, there are three types of methods in writing data into the ram, Type A, B and C are described as below.

TY1	TY0	Writing mode
0	0	Type A
0	1	Type B
1	0	Type C

SSD1283A Series | Rev 0.12 | P 21/58 | Jul 2005 | **Solomon Systech**

				Hardware pins																
Interface	Color mode	Cycle	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	262k Type A	1 st	R5	R4	R3	R2	R1	R0	Х	Х		G5	G4	G3	G2	G1	G0	Х	Х	
		2 nd	B5	G4	ВЗ	B2	B1	B0	Х	Х		R5	R4	R3	R2	R1	R0	Х	Х	
		3 rd	G5	G4	G3	G2	G1	G0	Х	Х		B5	G4	В3	B2	B1	B0	Х	Х	
16 bit	262k Type B	1 st	R5	R4	R3	R2	R1	R0	Х	Х		G5	G4	G3	G2	G1	G0	Х	Х	
		2 nd	Х	Х	Х	Х	Х	Х	Х	Х		B5	G4	В3	B2	B1	B0	Х	Х	
	262k Type C	1 st	R5	R4	R3	R2	R1	R0	Х	Х		G5	G4	G3	G2	G1	G0	Х	Х	
		2 nd	B5	G4	B3	B2	B1	B0	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	

Remark : x Don't care bits
Not connected pins

ID[1:0]: The address counter is automatically incremented by 1, after data are written to the GDDRAM when ID[1:0] = "1". The address counter is automatically decremented by 1, after data are written to the GDDRAM when ID[1:0] = "0". The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. The direction of the address when data are written to the GDDRAM is set with AM bits.

AM: Set the direction in which the address counter is updated automatically after data are written to the GDDRAM. When AM = "0", the address counter is updated in the horizontal direction. When AM = "1", the address counter is updated in the vertical direction. When window addresses are selected, data are written to the GDDRAM area specified by the window addresses in the manner specified with ID[1:0] and AM bits.

LG2–0: Write data to the GDDRAM after comparing the write data written to the GDDRAM by the microcomputer with the values in the compare registers (CPR[5:0], CPG[5:0], CPB[5:0]) and performing a logical and arithmetic operation on them.

Solomon Systech Jul 2005 | P 22/58 | Rev 0.12 | SSD1283A Series

Compare register (R04h - R05h) (POR = 0000h)

R/	/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
٧	N	1	CPR5	CPR4	CPR3	CPR2	CPR1	CPR0	0	0	CPG5	CPG4	CPG3	CPG2	CPG1	CPG0	0	0
٧	N	1	0	0	0	0	0	0	0	0	CPB5	CPB4	CPB3	CPB2	CPB1	CPB0	0	0

CPR[5:0], CPB[5:0]: Set the value for the compare register, of which the data read out from the GDDRAM or data written to the GDDRAM by the microcomputer are compared. This function is not available in the external display interface mode. In the external display mode, make sure LG[2:0] = "000". CPR[5:0] compares the pins RR[5:0], CPG[5:0] compares the pins GG[5:0], and CPB[5:0] compares the pins BB[5:0]. Refer to Section Interface Mapping for writing methods in RGB data.

Display Control (R07h) (POR = 0000h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	PT1	PT0	VLE2	VLE1	SPT	0	0	GON	DTE	CM	0	D1	D0

PT[1:0]: Normalize the source outputs when non-displayed area of the partial display is driven.

VLE2-1: When VLE1 = 1 or VLE2 = 1, a vertical scroll is performed in the 1st screen by taking data VL1[7:0] in R41h register. When VLE2 = 1 and VLE1 = 1, a vertical scroll is performed in the 1st and 2nd screen by VL1[7:0] and VL2[7:0] respectively.

SPT: When SPT = "1", the 2-division LCD drive is performed.

CM: When CM = 1, 8-color mode is selected. Note: Register bit CM will override the CM hardware pin setting.

GON: Gate off level becomes VGH when GON = "0".

DTE: When GON = "1" and DTE = "0", all gate outputs become VGOFFL. When GON = "1" and DTE = "1", selected gate wire becomes VGH, and non-selected gate wires become VGOFFL.

D[1:0]: Display is on when D1 = "1" and off when D1 = "0". When off, the display data remains in the GDDRAM, and can be displayed instantly by setting D1 = "1". When D1= "0", the display is off with all of the source outputs set to the GND level. Because of this, the driver can control the charging current for the LCD with AC driving. When D1-0 = "01", the internal display is performed although the display is off. When D[1:0] = "00", the internal display operation halts and the display is off. Control the display on/off while control GON and DTE.

Table below shows the operation for display

GON	DTE	D1	D0	Internal Display Operation	Source output	Gate output
0	0	0	0	Halt	GND	VGH
0	0	0	1	Operation	GND	VGH
1	0	0	1	Operation	GND	VGOFFL
1	0	1	1	Operation	Grayscale level output	VGOFFL
1	1	1	1	Operation	Grayscale level output	Selected gate line: VGH Non-selected gate line: VGOFFL

SSD1283A Series | Rev 0.12 | P 23/58 | Jul 2005 **Solomon Systech**

Frame Cycle Control (R0Bh) (POR = 5C0Ch)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	NO1	NO0	SDT1	SDT0	EQ1	EQ0	DIV1	DIV0	0	0	SDIV	SRTN	RTN3	RTN2	RTN1	RTN0

NO[1:0]: Sets amount of non-overlap of the gate output.

SDT[1:0]: Set delay amount from the gate output signal falling edge of the source outputs.

SDT1	SDT0	Delay amount of the source output
0	0	1 clock cycle
0	1	2 clock cycle
1	0	3 clock cycle
1	1	4 clock cycle

EQ[1:0]: Sets the equalizing period.

DIV[1:0]: Set the division ratio of clocks for internal operation. Internal operations are driven by clocks which frequency is divided according to the DIV[1:0] setting.

DIV1	DIV0	Division Ratio 2 ^(DIV+1)
0	0	2
0	1	4
1	0	8
1	1	16

^{*} fosc = internal oscillator frequency, ~520kHz

SDIV: When SDIV = 1, DIV[1:0] value will be count. When SDIV = 0, DIV[1:0] value will be automatically determined.

Solomon Systech Jul 2005 | P 24/58 | Rev 0.12 | SSD1283A Series

SRTN: When SRTN =1, RTN[3:0] value will be count. When SRTN = 0, RTN[3:0] value will be automatically determined.

RTN[3:0]: Set the no. of clocks in each line. The total number will be the decimal value of RTN[3:0] plus 16. e.g. if RTN[3:0] = "1010h", the total number of clocks in each line = 10 +16 = 26 clocks.

Frame frequency calculation

Frame frequency is governed by the below equation, for default setting,

If Dmode[1:0] = "00",

Frame
$$_$$
 frequency =
$$\frac{Fosc}{2^{(DIV+1)} \times (rtn+16) \times (mux + vbp + vfp + 3)}$$

Fosc = the internal oscillator frequency

DIV = DIV[1:0] $2^{(DIV+1)}$ = the Division ratio

rtn = RTN[3:0]

mux = MUX[7:0]

vbp = VBP[6:0]

vfp = VFP[6:0]

for default values of SSD1283A,

Fosc ~= 520Khz MUX[7:0] = 131VBP[6:0] = 2VFP[6:0] = 4

RTN[3:0]=12 DIV[1:0]=0:

$$Frame_frequency = \frac{520kHz}{2\times28\times140} = 66Hz$$

Power control 1 (R10h) (POR = 2FC5h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	DOT	DCY2	DCY1	DCY0	BTH2	BTH1	BTH0	1	1	1	DC1	DC0	AP2	AP1	AP0	SLP

DOT: When DOT = 1, all dcdc clock derivation will use dotclk as clock source Dmode[1:0] = "01", "10" or "11". When DOT=0, all dcdc clock derivation will use onchip oscillator as clock source no matter what Dmode[1:0] is.

DCY[2:0]: Set the step-up cycle of the step-up circuit for high voltage output. When the cycle accelerates, the driving ability of the step-up circuit increases, but its current consumption also increases. Adjust the cycle by taking into account the display quality and the power consumption.

DCY2	DCY1	DCY0	Step-up cycle
0	0	0	Fline x 8
0	0	1	Fline x 4
0	1	0	Fline x 2 (POR if 262k mode)
0	1	1	Fline x 1
1	0	0	fosc / 4
1	0	1	fosc / 8
1	1	0	fosc / 16 (POR if 8 color mode)
1	1	1	fosc / 32

*fosc = internal oscillator frequency *Fline = line frequency

P 25/58 SSD1283A Series Rev 0.12 Jul 2005 Solomon Systech BTH[2:0]: Control the step-up factor of the step-up circuit on VGH. Adjust the step-up factor according to the power-supply voltage to be used. The voltage selected at BTH[2:0] is limits by the Note: The voltage selected at BTH[2:0] is limited by the maximum voltage set by the step up multiplying ratio PU[1:0] at R11h. e.g. If VCI = 3.0V and multiplying ratio =

x4, the maximum voltage at VGH will be 12V. VGH will be limited to 12V even 13-15V is selected at the BTH register.

BTH2	BTH1	BTH0	VGH output
0	0	0	8V
0	0	1	9V
0	1	0	10V
0	1	1	11V
1	0	0	12V
1	0	1	13V
1	1	0	14V
1	1	1	unregulated

DC[1:0]: Set the step-up cycle of the step-up circuit for VCIX2. When the cycle accelerates, the driving ability of the step-up circuit increases, but its current consumption also increases. Adjust the cycle taking into account the display quality and power consumption.

DC1	DC0	Step-up cycle
0	0	fosc (POR)
0	1	fosc / 2
1	0	fosc /4
1	1	fosc / 8

^{*} fosc = internal oscillator frequency

AP[2:0]: Adjust the amount of current form the stable-current source in the internal operational amplifier circuit. When the amount of current becomes large, the driving ability of the operational-amplifier circuits increase. Adjust the current by taking into account the power consumption. While there is no display, such as the system is in a sleep mode, AP[2:0] can be set to (0,0,0) and shutting down the operational amplifier can reduce the power consumption.

	AP2	AP1	AP0	Op-amp power
	0	0	0	Least
	0	0	1	Small
	0	1	0	Small to medium (POR)
	0	1	1	Medium
	1	0	0	Medium to large
	1	0	1	Large
1	1	1	0	Maximum
	1	1	1	Reserved

SLP: When SLP = 1, the driver enters into the sleep mode. In the sleep mode, the internal display operations are halted except the R-C oscillator to reduce current consumption. Only the power control instructions (R10h - R13h) are executed during the sleep mode. No change in the GDDRAM data or instructions during the sleep mode is made, although it is retained.

Power Control 2 (R11h) (POR = 001Ch)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	0	0	0	0	PU1	PU0	1	0	0

PU[1:0]: Set the step up multiplying ratio of VGH from VCI. This determines the maximum level of VGH.

PU1	PU0	VGH/VCI ratio
0	0	x3
0	1	X4
1	0	X5
1	1	X6 (POR)

Solomon Systech Jul 2005 P 26/58 Rev 0.12 SSD1283A Series Power Control 3 (R12h) (POR = 060Ah)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	1	1	SX263B	V63SH	0	0	0	VRH3	VRH2	VRH1	VRH0

SX263B: When SX263B = 0 will short VCIX2 to VLCD63 during 8 color mode (i.e. CM = 1). When SX263B = 1 will not short VCIX2 to VLCD63

V63SH: Works together with VRH define amplitude magnification of VLCD63 from 1.33 to 2.775 times.

VRH[3:0]: Set amplitude magnification of VLCD63. These bits amplify the VLCD63 voltage 1.33 to 2.85 times the voltage set by VRH[3:0].

VRH3	VRH2	VRH1	VRH0	VLCD63 Vol	tage		
VKHS	VKHZ	VKITI	VKHU	V63SH=0	V63SH=1		
0	0	0	0	Vref x 1.33	30		
0	0	0	1	Vref x 1.4	50		
0	0	1	0	Vref x 1.5	50		
0	0	1	1	Vref x 1.6	50		
0	1	0	0	Vref x 1.75	50		
0	1	0	1	Vref x 1.80	00		
0	1	1	0	Vref x 1.8	50		
0	1	1	1	Stopped			
1	0	0	0	Vref x 1.900	Vref x 2.03		
1	0	0	1	Vref x 2.175	Vref x 2.25		
1	0	1	0	Vref x 2.325 (POR)	Vref x 2.40		
1	0	1	1	Vref x 2.475	Vref x 2.55		
1	1	0	0	Vref x 2.62	25		
1	1	0	1	Vref x 2.700			
1	1	1	0	0 Vref x 2.775			
1	1	1	1	1 Stopped			

^{*}Vref is the internal reference voltage equals to 2.0V.

 SSD1283A Series
 Rev 0.12
 P 27/58
 Jul 2005
 Solomon Systech

Power Control 4 (R13h) (POR = 3000h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	VCOMG	VDV4	VDV3	VDV2	VDV1	VDV0	0	0	0	0	0	0	0	0

VcomG: When VcomG = "1", it is possible to set output voltage of VcomL to any level, and the instruction (VDV[4:0]) becomes available. When VcomG = "0", VcomL output is fixed to Hi-z level, VCIM output for VcomL power supply stops, and the instruction (VDV[4:0]) becomes unavailable. Set VcomG according to the sequence of power supply setting flow as it relates with power supply operating sequence.

VDV[4:0]: Set the alternating amplitudes of Vcom at the Vcom alternating drive. These bits amplify 0.54 to 1.17 times the VLCD63 voltage. VCOML is govern by the below equation. When VcomG = "0", the settings become invalid. External voltage at VcomR is referenced when VDV[4:0] = "01111".

VCOML = 0.9475 * VCOMH - VCOMA

VDV4	VDV3	VDV2	VDV1	VDV0	Vcom Amplitude
0	0	0	0	0	VLCD63 x 0.54
0	0	0	0	1	VLCD63 x 0.57
0	0	0	1	0	VLCD63 x 0.60
		:			:
		:			Step = 0.03
		:			
0	1	1	0	1	VLCD63 x 0.93
0	1	1	1	0	VLCD63 x 0.96
					Reference from
0	1	1	1	1	external variable
					resistor
1	0	0	0	0	VLCD63 x 0.99
1	0	0	0	1	VLCD63 x 1.02
		:			
		:			Step = 0.03
1	0	1	0	1	VLCD63 x 1.14
1	0	1	1	0	VLCD63 x 1.17
1	0	1	1	1	Reserved
1	1	*	*	*	Reserved

Note: Vcom amplitude < 5V

Solomon Systech Jul 2005 | P 28/58 | Rev 0.12 | SSD1283A Series

Horizontal Porch (R16h) (POR = 8302h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	XL7	XL6	XL5	XL4	XL3	XL2	XL1	XL0	0	0	HBP5	HBP4	HBP3	HBP2	HBP1	HBP0

XL[7:0]: Set the number of valid pixel per line.

XL7	XL6	XL5	XL4	XL3	XL2	XL1	XL0	No. of pixel per line
0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	1	2
0	0	0	0	0	0	1	0	3
				: : :				: Step = 1 :
1	0	0	0	0	0	1	0	131
1	0	0	0	0	0	1	1	132 (POR)
1	0	0	0	0	1	*	*	Reserved
1	1	*	*	*	*	*	*	Reserved

HBP[5:0]: Set the delay period from falling edge of HSYNC signal to first valid data. The pixel data exceed the range set by XL[7:0] and before the first valid data will be treated as dummy data.

HBP5	HBP4	НВР3	HBP2	HBP1	HBP0	No. of clock cycle of DOTCLK
0	0	0	0	0	0	2
0	0	0	0	0	1	3
0	0	0	0	1	0	4(POR)
0	0	0	0	1	1	5
0	0	0	1	0	0	6
0	0	0	1	0	1	7
0	0	0	1	1	0	8
0	0	0	1	1	1	9
0	0	1	0	0	0	10
						: Step = 1 :
1	1	1	1	1	0	64
1	1	1	1	1	1	65

 SSD1283A Series
 Rev 0.12
 P 29/58
 Jul 2005
 Solomon Systech

Vertical Porch (R17h) (POR = 0402h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	VFP6	VFP5	VFP4	VFP3	VFP2	VFP1	VFP0	0	VBP6	VBP5	VBP4	VBP3	VBP2	VBP1	VBP0

VFP[6:0]: Set the delay period from the last valid line to the falling edge of VSYNC of the next frame. The line data within this delay period will be treated as dummy line.

VFP6	VFP5	VFP4	VFP3	VFP2	VFP1	VFP0	No. of clock cycle of HSYNC
0	0	0	0	0	0	0	1
0	0	0	0	0	0	1	2
0	0	0	0	0	1	0	3
0	0	0	0	0	1	1	4
0	0	0	0	1	0	0	5 (POR)
			:				: Step = 1 :
1	1	1	1	1	1	0	127
1	1	1	1	1	1	1	128

VBP[6:0]: Set the delay period from falling edge of VSYNC to first valid line. The line data within this delay period will be treated as dummy line.

Solomon Systech Jul 2005 | P 30/58 | Rev 0.12 | SSD1283A Series

Power Control 5 (R1Eh) (POR = 0036h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	0	nOTP	0	VCM5	VCM4	VCM3	VCM2	VCM1	VCM0

nOTP: nOTP equals to "0" after power on reset and VcomH voltage equals to programmed OTP register(OTPR) value XOR with VCMR. When nOTP set to "1", setting of VCM[5:0] becomes valid and voltage of VcomH can be adjusted regardless VCMR[5:0] values.

VCM[5:0]: To set the VcomH voltage if nOTP = "1". These bits amplify the VcomH voltage 0.36 to 0.99 times the VLCD63 voltage. Default value is "101000" when power on reset.

VCM5	VCM4	VCM3	VC	M2	VCM1	VCM0	VcomH
0	0	0	0		0	0	VLCD63 x 0.36
0	0	0	0	١	0	1	VLCD63 x 0.37
	: : :				S	: tep = 0.01 :	
1	1	1	1		1	0	VLCD63 x 0.98
1	1	1	1		1	1	VLCD63 x 0.99

Please refer to R1Fh for further detail

Power Control 6 (R1Fh) (POR = 0036h)

R/W		IB15	•	, ,	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	0	0	0	VCMR5	VCMR4	VCMR3	VCMR2	VCMR1	VCMR0

VCMR[5:0]: To set the VcomH default voltage if nOTP = "0". These bits amplify the VcomH voltage 0.36 to 0.99 times the VLCD63 voltage. Default value is "110110" when power on reset.

VCMR5 XOR OTPR5	VCMR4 XOR OTPR 4	VCMR3 XOR OTPR 3	VCMR2 XOR OTPR 2	VCMR1 XOR OTPR 1	VCMR0 XOR OTPR 0	VcomH									
0	0	0	0	0	0	VLCD63 x 0.36									
0	0	0	0	0	1	VLCD63 x 0.37									
	Step = 0.01														
1	1	1	1	1	0	VLCD63 x 0.98									
1	1	1	1	1	1	VLCD63 x 0.99									

Note: 2V < VcomH < VCIx2
* XOR means exclusive or

OTPR[5:0] are the OTP registers correspondingly

Please refer to OTP detail for more detail

SSD1283A Series | Rev 0.12 | P 31/58 | Jul 2005 | **Solomon Systech**

RAM address set (R21h) (POR = 0000h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0	
W	1	AD15	AD14	AD13	AD12	AD11	AD10	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0	ĺ

AD15–0: Make initial settings for the GDDRAM address in the address counter (AC). After GRAM data are written, the address counter is automatically updated according to the settings with AM, I/D bits and setting for a new GDDRAM address is not required in the address counter. Therefore, data are written consecutively without setting an address. The address counter is not automatically updated when data are read out from the GDDRAM.

GDDRAM address setting cannot be made during the standby mode. The address setting should be made within the area designated with window addresses.

Write Data to GRAM (R22h)

R/W	DC	D[17:0]
W	1	WD[17:0] mapping depends on the interface setting

WD17–0: Transforms all the GDDRAM data into 18-bit, and writes the data. Format for transforming data into 18-bit depends on the interface used. SSD1283A selects the grayscale level according to the GDDRAM data. After writing data to GDDRAM, address is automatically updated according to AM bit and ID bit. Access to GDDRAM during stand-by mode is not available.

Read Data from GRAM (R22h)

R/W	DC	D[17:0]
R	1	RD[17:0] mapping depends on the interface setting

RD17–0: Read 18-bit data from the GDDRAM. When the data is read to the microcomputer, the first-word read immediately after the GDDRAM address setting is latched from the GDDRAM to the internal read-data latch. The data on the data bus (DB17–0) becomes invalid and the second-word read is normal. When bit processing, such as a logical operation, is performed, only one read can be processed since the latched data in the first word is used.

RAM write data mask (R23h - R24h) (POR = 0000h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	WMR5	WMR4	WMR3	WMR2	WMR1	WMR0	0	0	WMG5	WMG4	WMG3	WMG2	WMG1	WMG0	0	0
W	1	0	0	0	0	0	0	0	0	WMB5	WMB4	WMB3	WMB2	WMB1	WMB0	0	0

WMR[5:0], WMB[5:0]: In writing to the GDDRAM, these bits write-mask the data to be written to the GDDRAM by a bit unit. For example, if WMR5 = 1, the WMR5 write-mask is enabled and data RR5 will be masked and not write into the GDDRAM. WMR[5:0] mask pins RR[5:0], WMG[5:0] mask pins GG[5:0], and WMB[5:0] mask pins BB[5:0]. For writing GDDRAM methods, refer to Section Interface Mapping".

Solomon Systech Jul 2005 | P 32/58 | Rev 0.12 | SSD1283A Series

Vcom OTP (R28h - R29h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
W	1	1	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0

When OTP is access, these registers must be set accordantly.

OTP programming sequence

Power up the module at VCI = 2.7V, VDD = VDDIO = 1.8V. Turn on the display as normal to 65k/262k color mode (displaying a to pattern if any). Set VCMR value by adjusting (R1Fh). Set nOTP to "1" (R1Eh) and optimizes VcomH by adjusting VCM[5:0] (R1Eh). Insert the below commands Index Value R28h 0x0006 R29h 0x8000 R27h 0x0578 R29h 0x89A1
Turn on the display as normal to 65k/262k color mode (displaying a to pattern if any). Set VCMR value by adjusting (R1Fh). Set nOTP to "1" (R1Eh) and optimizes VcomH by adjusting VCM[5:0] (R1Eh). Insert the below commands Index Value R28h 0x0006 R29h 0x8000 R27h 0x0578
pattern if any). 2 Set VCMR value by adjusting (R1Fh). Set nOTP to "1" (R1Eh) and optimizes VcomH by adjusting VCM[5:0] (R1Eh). Insert the below commands Index Value R28h 0x0006 R29h 0x8000 R27h 0x0578
2 Set VCMR value by adjusting (R1Fh). Set nOTP to "1" (R1Eh) and optimizes VcomH by adjusting VCM[5:0] (R1Eh). Insert the below commands Index Value R28h 0x0006 R29h 0x8000 R27h 0x0578
2 optimizes VcomH by adjusting VCM[5:0] (R1Eh). Insert the below commands Index Value R28h 0x0006 R29h 0x8000 R27h 0x0578
Insert the below commands Index Value R28h
Index Value R28h 0x0006 R29h 0x8000 R27h 0x0578
R28h 0x0006 R29h 0x8000 R27h 0x0578
R27h 0x0578
R27II 0x0578
R29h 0x89A1
4 Wait 300ms
5 Power down the whole module.
Connect a power supply to the module at VCI = 3.0V, VDD = VDDIO
6 1.8V.
Write below commands for OTP initialization and wait for 200ms for
activate the OTP :
Index Value
R00h 0x0001
R28h 0x0006
7 R29h 0x80C0
R10h 0x2FC0
R07h 0x0033
R2Bh 0x1A81
Connect a power supply to the module at VGH = 15.0V and connect
VGOFFL to VSS.
Write the optimized value found in Step 2 to VCMI5:01 (P1Eh) and se
9 NOTP to "1".
10 Fire the OTP by write HEX code "000Ah" to register R28h.
11 Wait at least 3 seconds.
12 OTP complete. Power down the whole module and remove 15V supp

Note: nOTP must set to "0" to activate the OTP effect.

SSD1283A Series Rev 0.12 P 33/58 Jul 2005 **Solomon Systech**

Gamma Control (R30h to R39h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
w	1	0	0	0	0	0	PKP	PKP	PKP	0	0	0	0	0	PKP	PKP	PKP
	•	Ů	Ů	•	Ů		12	11	10	•	•	Ů	•	Ů	02	01	00
w	1	0	0	0	0	0	PKP	PKP	PKP	0	0	0	0	0	PKP	PKP	PKP
**	'		U	U	U	U	32	31	30	U	U	U	U		22	21	20
w	1	0	0	0	0	0	PKP	PKP	PKP	0	0	0	0	0	PKP	PKP	PKP
VV		U	U	U	U	U	52	51	50	U	U	U	U	U	42	41	40
w	1	0	0	0	0	0	PRP	PRP	PRP	•	^	0	^	0	PRP	PRP	PRP
VV	'	U	U	U	U	U	12	11	10	0	0	U	0	U	02	01	00
w	1	0	0	0	0	0	PKN	PKN	PKN	0	0	0	0	0	PKN	PKN	PKN
VV		U	U	U	U	U	12	11	10	U	U	U	U	U	02	01	00
w	1	0	0	0	0	0	PKN	PKN	PKN	0	0	0	0	0	PKN	PKN	PKN
VV		U	U	U	U	U	32	31	30	U	U	U	U	U	22	21	20
14/	4	_	_	•	_	_	PKN	PKN	PKN	•	•	_	•	_	PKN	PKN	PKN
W	1	0	0	0	0	0	52	51	50	0	0	0	0	0	42	41	40
w	4	_	_	^	_	•	PRN	PRN	PRN	_	_	_	^	_	PRN	PRN	PRN
VV	1	0	0	0	0	0	12	11	10	0	0	0	0	0	02	01	00
14/	4	_	_	^	VRP	VRP	VRP	VRP	VRP	•	^	_	^	VRP	VRP	VRP	VRP
W	1	0	0	0	14	13	12	11	10	0	0	0	0	03	02	01	00
14/	4	_	_	^	VRN	VRN	VRN	VRN	VRN	•	^	_	^	VRN	VRN	VRN	VRN
W	1	0	0	0	14	13	12	11	10	0	0	0	0	03	02	01	00

PKP52-00: Gamma micro adjustment register for the positive polarity output

PRP12-00: Gradient adjustment register for the positive polarity output

VRP14-00: Adjustment register for amplification adjustment of the positive polarity output

PKN52-00: Gamma micro adjustment register for the negative polarity output

PRN12-00: Gradient adjustment register for the negative polarity output

VRN14-00: Adjustment register for the amplification adjustment of the negative polarity output. (For details, see the Section Gamma Adjustment Function).

Gate Scan Position (R40h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	0	SCN7	SCN6	SCN5	SCN4	SCN3	SCN2	SCN1	SCN0

SCN[7:0]: Set the scanning starting position of the gate driver. The valid range is from 0 to 131.

 Solomon Systech
 Jul 2005 | P 34/58 | Rev 0.12 | SSD1283A Series

Vertical Scroll Control (R41h) (POR =0000h)

R/W DC IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0

W 1 VL27 VL26 VL25 VL24 VL23 VL22 VL21 VL20 VL17 VL16 VL15 VL14 VL13 VL12 VL11 VL10

VL2[7:0]: Specify scroll length at the scroll display for vertical smooth scrolling at 2nd screen. The display-start raster-row (VL2[7:0]) is valid when VLE1 = "1" and VLE2 = "1".

VL1[7:0]: Specify scroll length at the scroll display for vertical smooth scrolling. Any raster-row from the first to 132nd can be scrolled for the number of the raster-row. After 132nd raster-row is displayed, the display restarts from the first raster-row. The display-start raster-row (VL1[7:0]) is valid when VLE1 = "1" or VLE2 = "1". The raster-row display is fixed when VLE2-1 = "00".

1st Screen driving position (R42h) (POR = 8300h)

R/W DC IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0

W 1 SE17 SE16 SE15 SE14 SE13 SE12 SE11 SE10 SS17 SS16 SS15 SS14 SS13 SS12 SS11 SS10

SS1[7:0]: Specify the driving start position for the first screen in a line unit. The LCD driving starts from the set value + 1 gate driver.

SE1[7:0]: Specify the driving end position for the first screen in a line unit. The LCD driving is performed to the set value + 1 gate driver. For instance, when SS17–10 = "07"H and SE17–10 = "10"H are set, the LCD driving is performed from G8 to G17, and non-selection driving is performed for G1 to G7, G18, and others. Ensure that $SS17-10 \le SE17-10 \le 83H$.

2nd Screen driving position (R43h) (POR = 8300h)

R/W DC IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0
W 1 SE27 SE26 SE25 SE24 SE23 SE22 SE21 SE20 SS27 SS26 SS25 SS24 SS23 SS22 SS21 SS20

SS2[7:0]: Specify the driving start position for the second screen in a line unit. The LCD driving starts from the set value + 1 gate driver. The second screen is driven when SPT = "1".

SE2[7:0]: Specify the driving end position for the second screen in a line unit. The LCD driving is performed to the set value + 1 gate driver. For instance, when SPT = "1", SS27–20 = "20"H, and SE27–20 = "2F"H are set, the LCD driving is performed from G33 to G48. Ensure that SS17–10 \leq SE17–10; SS27–20 \leq SE27–20 \leq 83H.

Horizontal RAM address position (R44h) (POR = 8300h)

R/W DC IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0

W 1 | HEA7 | HEA6 | HEA5 | HEA4 | HEA3 | HEA2 | HEA1 | HEA0 | HSA7 | HSA6 | HSA5 | HSA4 | HSA3 | HSA2 | HSA1 | HSA0 |

HSA[7:0]/HEA[7:0]: Specify the start/end positions of the window address in the horizontal direction by an address unit. Data are written to the GDDRAM within the area determined by the addresses specified by HEA[7:0] and HSA[7:0]. These addresses must be set before the RAM write. In setting these bits, make sure that "00"h \leq HSA[7:0] \leq HEA[7:0] \leq "83"h.

Vertical RAM address position (R45h) (POR = 8300h)

R/W DC IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0

W 1 VEA7 VEA6 VEA5 VEA4 VEA3 VEA2 VEA1 VEA0 VSA7 VSA6 VSA5 VSA4 VSA3 VSA2 VSA1 VSA0

VSA[7:0]/VEA[7:0]: Specify the start/end positions of the window address in the vertical direction by an address unit. Data are written to the GRAM within the area determined by the addresses specified by VEA[7:0] and VSA[7:0]. These addresses must be set before the RAM write. In setting these bits, make sure that "00" h \leq VSA[7:0] \leq VEA[7:0] \leq "83"h.

SSD1283A Series | Rev 0.12 | P 35/58 | Jul 2005 | **Solomon Systech**

10 Extended command description

Further bias current setting (R27h) (POR = 0540h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	1	0	1	0	1	IU2	IU1	IU0	0	0	0

IU2	IU1	IU0	Bias current					
0	0	0	Least (POR)					
0	0 0 1		Small					
0	1	0	Small to medium					
0	1	1	Medium					
1	0	0	Medium to large					
1	0	1	Large					
1	1 1 0		Maximum					
1	1 1 1		Reserved					

Oscillator frequency (R2Ch) (POR = 8000h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	OSCR3	OSCR2	OSCR1	OSCR0	0	0	0	0	0	0	0	0	0	. 0	0	0

OSCR[3:0]: To set the oscillator frequency.

OSCR3	OSCR2	OSCR1	OSCR0	Oscillator frequency (kHz)					
1	1 0		0	520					
	Other s	Reserved							

 Solomon Systech
 Jul 2005
 P 36/58
 Rev 0.12
 SSD1283A Series

11 Gamma Adjustment Function

The SSD1283A incorporates gamma adjustment function for the 262,144-color display. Gamma adjustment is implemented by deciding the 8-grayscale levels with angle adjustment and micro adjustment register. Also, angle adjustment and micro adjustment is fixed for each of the internal positive and negative polarity. Set up by the liquid crystal panel's specification.

Figure 4 - Grayscale Control Block

SSD1283A Series | Rev 0.12 | P 37/58 | Jul 2005 | **Solomon Systech**

11.1 Structure of Grayscale Amplifier

Below figure indicates the structure of the grayscale amplifier. It determines 8 levels (VIN0-VIN7) by the gradient adjuster and the micro adjustment register. Also, dividing these levels with ladder resistors generates V0 to V63.

Figure 5 - Grayscale Amplifier

Solomon Systech Jul 2005 | P 38/58 | Rev 0.12 | SSD1283A Series

Figure 6 - Resistor Ladder for Gamma Voltages Generation

SSD1283A Series | Rev 0.12 | P 39/58 | Jul 2005 | **Solomon Systech**

11.2 Gamma Adjustment Register

This block is the register to set up the grayscale voltage adjusting to the gamma specification of the LCD panel. This register can independent set up to positive/negative polarities and there are three types of register groups to adjust gradient, amplitude, and micro-adjustment on number of the grayscale, characteristics of the grayscale voltage. (Using the same setting for Reference-value and R.G.B.) Following graphics indicates the operation of each adjusting register.

Figure 7 - Gamma Adjustment Function

11.2.1 Gradient adjusting register

The gradient-adjusting resistor is to adjust around middle gradient, specification of the grayscale number and the grayscale voltage without changing the dynamic range. To accomplish the adjustment, it controls the variable resistors in the middle of the ladder resistor by registers (PRP(N)0 / PRP(N)1) for the grayscale voltage generator. Also, there is an independent resistor on the positive/negative polarities in order for corresponding to asymmetry drive.

11.2.2 Amplitude adjusting register

The amplitude-adjusting resistor is to adjust amplitude of the grayscale voltage. To accomplish the adjustment, it controls the variable resistors in the boundary of the ladder resistor by registers (VRP(N)0 / VRP(N)1) for the grayscale voltage generator. Also, there is an independent resistor on the positive/negative polarities as well as the gradient-adjusting resistor.

11.2.3 Micro adjusting register

The micro-adjusting register is to make subtle adjustment of the grayscale voltage level. To accomplish the adjustment, it controls each reference voltage level by the 8 to 1 selector towards the 8-level reference voltage generated from the ladder resistor. Also, there is an independent resistor on the positive/negative polarities as well as other adjusting resistors.

Solomon Systech Jul 2005 | P 40/58 | Rev 0.12 | SSD1283A Series

11.3 Ladder Resistor / 8 to 1 selector

This block outputs the reference voltage of the grayscale voltage. There are two ladder resistors including the variable resistor and the 8 to 1 selector selecting voltage generated by the ladder resistor. The gamma registers control the variable resistors and 8 to 1 selector resistors.

Variable Resistor

There are 3 types of the variable resistors that are for the gradient and amplitude adjustment. The resistance is set by the resistor (PRP(N)0 / PRP(N)1) and (VRP(N)0 / VRP(N)1) as below.

PRP(N)[0:1]	Resistance
000	0R
001	4R
010	8R
011	12R
100	16R
101	20R
110	24R
111	28R

VRP(N)0	Resistance				
0000	0R				
0001	1R				
0010 2R					
: Step = 1R :					
1110 14R					
1111 15R					

VRP(N)1	Resistance				
00000	0R				
00001	1R				
00010 2R					
: Step = 1R :					
11110 30R					
11111 31R					

8 to 1 selecter

In the 8 to 1 selector, a reference voltage VIN can be selected from the levels which are generated by the ladder resistors. There are six types of reference voltage (VIN1 to VIN6) and totally 48 divided voltages can be selected in one ladder resistor. Following figure explains the relationship between the micro-adjusting register and the selecting voltage.

	Postive polarity			ity Negative polarity									
Registor			Selected	d voltage			Registor	gistor Selected voltage					
PKP[2:0]	VINP1	VINP2	VINP3	VINP4	VINP5	VINP6	PKN[2:0]	VINN1	VINN2	VINN3	VINN4	VINN5	VINN6
000	KVP1	KVP9	KVP17	KVP25	KVP33	KVP41	000	KVN1	KVN9	KVN17	KVN25	KVN33	KVN41
001	KVP2	KVP10	KVP18	KVP26	KVP34	KVP42	001	KVN2	KVN10	KVN18	KVN26	KVN34	KVN42
010	KVP3	KVP11	KVP19	KVP27	KVP35	KVP43	010	KVN3	KVN11	KVN19	KVN27	KVN35	KVN43
011	KVP4	KVP12	KVP20	KVP28	KVP36	KVP44	011	KVN4	KVN12	KVN20	KVN28	KVN36	KVN44
100	KVP5	KVP13	KVP21	KVP29	KVP37	KVP45	100	KVN5	KVN13	KVN21	KVN29	KVN37	KVN45
101	KVP6	KVP14	KVP22	KVP30	KVP38	KVP46	101	KVN6	KVN14	KVN22	KVN30	KVN38	KVN46
110	KVP7	KVP15	KVP23	KVP31	KVP39	KVP47	110	KVN7	KVN15	KVN23	KVN31	KVN39	KVN47
111	KVP8	KVP16	KVP24	KVP32	KVP40	KVP48	111	KVN8	KVN16	KVN24	KVN32	KVN40	KVN48

Grayscale voltage	Formula	Grayscale voltage	Formula	Grayscale voltage	Formula
V0	VINP(N)0	V22	V43+(V20-V43)*(21/23)	V44	V55+(V43-V55)*(22/24)
V1	VINP(N)1	V23	V43+(V20-V43)*(20/23)	V45	V55+(V43-V55)*(20/24)
V2	V8+(V1-V8)*(30/48)	V24	V43+(V20-V43)*(19/23)	V46	V55+(V43-V55)*(18/24)
V3	V8+(V1-V8)*(23/48)	V25	V43+(V20-V43)*(18/23)	V47	V55+(V43-V55)*(16/24)
V4	V8+(V1-V8)*(16/48)	V26	V43+(V20-V43)*(17/23)	V48	V55+(V43-V55)*(14/24)
V5	V8+(V1-V8)*(12/48)	V27	V43+(V20-V43)*(16/23)	V49	V55+(V43-V55)*(12/24)
V6	V8+(V1-V8)*(8/48)	V28	V43+(V20-V43)*(15/23)	V50	V55+(V43-V55)*(10/24)
V7	V8+(V1-V8)*(4/48)	V29	V43+(V20-V43)*(14/23)	V51	V55+(V43-V55)*(8/24)
V8	VINP(N)2	V30	V43+(V20-V43)*(13/23)	V52	V55+(V43-V55)*(6/24)
V9	V20+(V8-V20)*(22/24)	V31	V43+(V20-V43)*(12/23)	V53	V55+(V43-V55)*(4/24)
V10	V20+(V8-V20)*(20/24)	V32	V43+(V20-V43)*(11/23)	V54	V55+(V43-V55)*(2/24)
V11	V20+(V8-V20)*(18/24)	V33	V43+(V20-V43)*(10/23)	V55	VINP(N)5
V12	V20+(V8-V20)*(16/24)	V34	V43+(V20-V43)*(9/23)	V56	V62+(V55-V62)*(44/48)
V13	V20+(V8-V20)*(14/24)	V35	V43+(V20-V43)*(8/23)	V57	V62+(V55-V62)*(40/48)
V14	V20+(V8-V20)*(12/24)	V36	V43+(V20-V43)*(7/23)	V58	V62+(V55-V62)*(36/48)
V15	V20+(V8-V20)*(10/24)	V37	V43+(V20-V43)*(6/23)	V59	V62+(V55-V62)*(32/48)
V16	V20+(V8-V20)*(8/24)	V38	V43+(V20-V43)*(5/23)	V60	V62+(V55-V62)*(25/48)
V17	V20+(V8-V20)*(6/24)	V39	V43+(V20-V43)*(4/23)	V61	V62+(V55-V62)*(18/48)
V18	V20+(V8-V20)*(4/24)	V40	V43+(V20-V43)*(3/23)	V62	VINP(N)6
V19	V20+(V8-V20)*(2/24)	V41	V43+(V20-V43)*(2/23)	V63	VINP(N)7
V20	VINP(N)3	V42	V43+(V20-V43)*(1/23)		
V21	V43+(V20-V43)*(22/23)	V43	VINP(N)4		

SSD1283A Series | Rev 0.12 | P 41/58 | Jul 2005 | **Solomon Systech**

Reference voltage of positive polarity:

KVP1 \ \ KVP2 \ \ KVP3 \ \ KVP4 \ \ \ KVP5 \ \ KVP6 \ \ KVP7 \ KVP8 \ \ KVP9 \ KVP10 \ KVP11 \ KVP12 \ \ \ KVP12 \ \ \ KVP12 \	VLCD63 - ΔV x VRP0 / SUMRP VLCD63 - ΔV x (VRP0 + 5R) / SUMRP VLCD63 - ΔV x (VRP0 + 9R) / SUMRP VLCD63 - ΔV x (VRP0 + 13R) / SUMRP VLCD63 - ΔV x (VRP0 + 17R) / SUMRP VLCD63 - ΔV x (VRP0 + 21R) / SUMRP VLCD63 - ΔV x (VRP0 + 25R) / SUMRP VLCD63 - ΔV x (VRP0 + 29R) / SUMRP VLCD63 - ΔV x (VRP0 + 33R) / SUMRP VLCD63 - ΔV x (VRP0 + 33R + VRHP) / SUMRP VLCD63 - ΔV x (VRP0 + 34R + VRHP) / SUMRP	PKP0[2:0] = "000" PKP0[2:0] = "001" PKP0[2:0] = "010" PKP0[2:0] = "011" PKP0[2:0] = "100" PKP0[2:0] = "101" PKP0[2:0] = "111" PKP0[2:0] = "111"	VINP0 VINP1
KVP1 \ \ KVP2 \ \ KVP3 \ \ KVP4 \ \ \ KVP5 \ \ KVP6 \ \ KVP7 \ KVP8 \ \ KVP9 \ \ KVP10 \ KVP12 \ \ KVP12 \ \ \ KVP12	VLCD63 - ΔV x (VRP0 + 5R) / SUMRP VLCD63 - ΔV x (VRP0 + 9R) / SUMRP VLCD63 - ΔV x (VRP0 + 13R) / SUMRP VLCD63 - ΔV x (VRP0 + 17R) / SUMRP VLCD63 - ΔV x (VRP0 + 21R) / SUMRP VLCD63 - ΔV x (VRP0 + 25R) / SUMRP VLCD63 - ΔV x (VRP0 + 29R) / SUMRP VLCD63 - ΔV x (VRP0 + 33R) / SUMRP VLCD63 - ΔV x (VRP0 + 33R) / SUMRP VLCD63 - ΔV x (VRP0 + 33R + VRHP) / SUMRP	PKP0[2:0] = "001" PKP0[2:0] = "010" PKP0[2:0] = "011" PKP0[2:0] = "100" PKP0[2:0] = "101" PKP0[2:0] = "111"	
KVP2 \ \ KVP3 \ \ KVP4 \ \ \ KVP5 \ \ \ KVP6 \ \ KVP7 \ \ KVP8 \ \ KVP9 \ \ KVP10 \ \ KVP12 \ \ \ KVP12 \ \ \ \ KVP12 \ \ \ \ \ KVP12 \ \ \ \ \ \ \ \ \ KVP12 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	VLCD63 - ΔV x (VRP0 + 9R) / SUMRP VLCD63 - ΔV x (VRP0 + 13R) / SUMRP VLCD63 - ΔV x (VRP0 + 17R) / SUMRP VLCD63 - ΔV x (VRP0 + 21R) / SUMRP VLCD63 - ΔV x (VRP0 + 25R) / SUMRP VLCD63 - ΔV x (VRP0 + 29R) / SUMRP VLCD63 - ΔV x (VRP0 + 33R) / SUMRP VLCD63 - ΔV x (VRP0 + 33R) / SUMRP VLCD63 - ΔV x (VRP0 + 33R + VRHP) / SUMRP	PKP0[2:0] = "001" PKP0[2:0] = "010" PKP0[2:0] = "011" PKP0[2:0] = "100" PKP0[2:0] = "101" PKP0[2:0] = "111"	VINP1
KVP3 \ KVP4 \ \ KVP5 \ \ KVP6 \ \ KVP7 \ \ KVP8 \ \ KVP9 \ \ KVP10 \ KVP12 \ \ KVP12 \ \ KVP12 \ \ KVP12	VLCD63 - ΔV x (VRP0 + 13R) / SUMRP VLCD63 - ΔV x (VRP0 + 17R) / SUMRP VLCD63 - ΔV x (VRP0 + 21R) / SUMRP VLCD63 - ΔV x (VRP0 + 25R) / SUMRP VLCD63 - ΔV x (VRP0 + 29R) / SUMRP VLCD63 - ΔV x (VRP0 + 33R) / SUMRP VLCD63 - ΔV x (VRP0 + 33R + VRHP) / SUMRP	PKP0[2:0] = "010" PKP0[2:0] = "011" PKP0[2:0] = "100" PKP0[2:0] = "101" PKP0[2:0] = "110" PKP0[2:0] = "111"	VINP1
KVP4 \ \ KVP5 \ \ KVP6 \ \ KVP7 \ \ KVP8 \ \ KVP9 \ \ KVP10 \ KVP12 \ \ \ KVP12 \ \ \ KVP12 \ \ \ KVP12 \ \ \ \ KVP12 \ \ \ \ \ KVP12 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	VLCD63 - ΔV x (VRP0 + 17R) / SUMRP VLCD63 - ΔV x (VRP0 + 21R) / SUMRP VLCD63 - ΔV x (VRP0 + 25R) / SUMRP VLCD63 - ΔV x (VRP0 + 29R) / SUMRP VLCD63 - ΔV x (VRP0 + 33R) / SUMRP VLCD63 - ΔV x (VRP0 + 33R + VRHP) / SUMRP	PKP0[2:0] = "011" PKP0[2:0] = "100" PKP0[2:0] = "101" PKP0[2:0] = "110" PKP0[2:0] = "111"	VINP1
KVP5 \ \ KVP6 \ \ KVP7 \ \ KVP8 \ \ KVP9 \ \ KVP10 \ \ KVP12 \ \ \ KVP12 \ \ \ KVP12 \ \ \ KVP12 \ \ \ \ KVP12 \ \ \ \ \ KVP12 \ \ \ \ \ \ KVP12 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	VLCD63 - ΔV x (VRP0 + 21R) / SUMRP VLCD63 - ΔV x (VRP0 + 25R) / SUMRP VLCD63 - ΔV x (VRP0 + 29R) / SUMRP VLCD63 - ΔV x (VRP0 + 33R) / SUMRP VLCD63 - ΔV x (VRP0 + 33R + VRHP) / SUMRP	PKP0[2:0] = "100" PKP0[2:0] = "101" PKP0[2:0] = "110" PKP0[2:0] = "111"	VINP1
KVP6 \ \ KVP7 \ \ KVP8 \ \ KVP9 \ \ KVP10 \ \ KVP12 \ \ \ KVP12	VLCD63 - ∆V x (VRP0 + 25R) / SUMRP VLCD63 - ∆V x (VRP0 + 29R) / SUMRP VLCD63 - ∆V x (VRP0 + 33R) / SUMRP VLCD63 - ∆V x (VRP0 + 33R + VRHP) / SUMRP	PKP0[2:0] = "101" PKP0[2:0] = "110" PKP0[2:0] = "111"	
KVP7 \ KVP8 \ KVP9 \ KVP10 \ KVP11 \ KVP12 \	VLCD63 - ∆V x (VRP0 + 29R) / SUMRP VLCD63 - ∆V x (VRP0 + 33R) / SUMRP VLCD63 - ∆V x (VRP0 + 33R + VRHP) / SUMRP	PKP0[2:0] = "110" PKP0[2:0] = "111"	
KVP8 \ KVP9 \ KVP10 \ KVP11 \ KVP12 \ \	VLCD63 - ΔV x (VRP0 + 33R) / SUMRP VLCD63 - ΔV x (VRP0 + 33R + VRHP) / SUMRP	PKP0[2:0] = "111"	
KVP9 \ KVP10 \ KVP11 \ KVP12 \	VLCD63 - ΔV x (VRP0 + 33R + VRHP) / SUMRP		
KVP10 \ KVP11 \ KVP12 \		PKP1[2:0] = "000"	
KVP11 \ KVP12 \		PKP1[2:0] = "001"	
KVP12 \	VLCD63 - ΔV x (VRP0 + 35R + VRHP) / SUMRP	PKP1[2:0] = "010"	
	VLCD63 - ΔV x (VRP0 + 36R + VRHP) / SUMRP	PKP1[2:0] = "011"	
	VLCD63 - ΔV x (VRP0 + 37R + VRHP) / SUMRP	PKP1[2:0] = "100"	VINP2
	VLCD63 - ΔV x (VRP0 + 38R + VRHP) / SUMRP	PKP1[2:0] = "101"	
	VLCD63 - ΔV x (VRP0 + 39R + VRHP) / SUMRP	PKP1[2:0] = "110"	
	VLCD63 - ΔV x (VRP0 + 40R + VRHP) / SUMRP	PKP1[2:0] = "111"	
	VLCD63 - ΔV x (VRP0 + 45R + VRHP) / SUMRP	PKP2[2:0] = "000"	
	VLCD63 - ΔV x (VRP0 + 46R + VRHP) / SUMRP	PKP2[2:0] = "001"	
	VLCD63 - ΔV x (VRP0 + 47R + VRHP) / SUMRP	PKP2[2:0] = "010"	
	VLCD63 - ΔV x (VRP0 + 48R + VRHP) / SUMRP	PKP2[2:0] = "011"	
	VLCD63 - ΔV x (VRP0 + 49R + VRHP) / SUMRP	PKP2[2:0] = "100"	VINP3
	VLCD63 - ΔV x (VRP0 + 50R + VRHP) / SUMRP	PKP2[2:0] = "101"	
	VLCD63 - ΔV x (VRP0 + 51R + VRHP) / SUMRP	PKP2[2:0] = "110"	
	VLCD63 - ΔV x (VRP0 + 52R + VRHP) / SUMRP	PKP2[2:0] = "111"	
	VLCD63 - ΔV x (VRP0 + 68R + VRHP) / SUMRP	PKP3[2:0] = "000"	
	VLCD63 - ΔV x (VRP0 + 69R + VRHP) / SUMRP	PKP3[2:0] = "001"	
	VLCD63 - ΔV x (VRP0 + 70R + VRHP) / SUMRP	PKP3[2:0] = "010"	,
	VLCD63 - ΔV x (VRP0 + 71R + VRHP) / SUMRP	PKP3[2:0] = "011"	
	VLCD63 - ΔV x (VRP0 + 72R + VRHP) / SUMRP	PKP3[2:0] = "100"	VINP4
	VLCD63 - ΔV x (VRP0 + 73R + VRHP) / SUMRP	PKP3[2:0] = "101"	
	VLCD63 - ΔV x (VRP0 + 74R + VRHP) / SUMRP	PKP3[2:0] = "110"	
	VLCD63 - ΔV x (VRP0 + 75R + VRHP) / SUMRP	PKP3[2:0] = "111"	
	VLCD63 - ΔV x (VRP0 + 80R + VRHP) / SUMRP	PKP4[2:0] = "000"	
	VLCD63 - ΔV x (VRP0 + 81R + VRHP) / SUMRP	PKP4[2:0] = "001"	
	VLCD63 - ΔV x (VRP0 + 82R + VRHP) / SUMRP	PKP4[2:0] = "010"	
	VLCD63 - ΔV x (VRP0 + 83R + VRHP) / SUMRP	PKP4[2:0] = "011"	
	VLCD63 - ΔV x (VRP0 + 84R + VRHP) / SUMRP	PKP4[2:0] = "100"	VINP5
	VLCD63 - ΔV x (VRP0 + 85R + VRHP) / SUMRP	PKP4[2:0] = "101"	
	VLCD63 - ΔV x (VRP0 + 86R + VRHP) / SUMRP	PKP4[2:0] = "110"	
	VLCD63 - ΔV x (VRP0 + 87R + VRHP) / SUMRP	PKP4[2:0] = "111"	
	VLCD63 - ΔV x (VRP0 + 87R + VRHP + VRLP) / SUMRP	PKP5[2:0] = "000"	
	VLCD63 - ΔV x (VRP0 + 91R + VRHP + VRLP) / SUMRP	PKP5[2:0] = "001"	
	VLCD63 - ΔV x (VRP0 + 95R + VRHP + VRLP) / SUMRP	PKP5[2:0] = "010"	
	VLCD63 - ΔV x (VRP0 + 99R + VRHP + VRLP) / SUMRP	PKP5[2:0] = "011"	
	VLCD63 - ΔV x (VRP0 + 103R + VRHP + VRLP) / SUMRP	PKP5[2:0] = "100"	VINP6
	VLCD63 - ΔV x (VRP0 + 103R + VRHP + VRLP) / SUMRP		
	VLCD63-∆V x (VRP0 + 111R + VRHP + VRLP) / SUMRP	PKP5[2:0] = "110"	
	VLCD63 - ΔV x (VRP0 + 111K + VRHP + VRLP) / SUMRP		
	VLCD63 - ΔV x (VRP0 + 113R + VRHP + VRLP) / SUMRP		VINP7

SUMRP: Total of the positive polarity ladder resistance = 128R + VRHP + VRLP + VRP0 + VRP1 ΔV : Voltage difference between VLCD63 and of GND.

Jul 2005 | P 42/58 | Rev 0.12 | SSD1283A Series Solomon Systech

Reference voltage of negative polarity:

Reference	voltage of negative polarity: Formula	Micr0-adjusting rgister	Reference voltage
		wicro-adjusting rgister	
KVN0	VLCD63 - ΔV x VRN0 / SUMRN	"OOO"	VINN0
KVN1	VLCD63 - ΔV x (VRN0 + 5R) / SUMRN	PKN0[2:0] = "000"	
KVN2	VLCD63 - ΔV x (VRN0 + 9R) / SUMRN	PKN0[2:0] = "001"	
KVN3	VLCD63 - ΔV x (VRN0 + 13R) / SUMRN	PKN0[2:0] = "010"	
KVN4	VLCD63 - ΔV x (VRN0 + 17R) / SUMRN	PKN0[2:0] = "011"	VINN1
KVN5	VLCD63 - ΔV x (VRN0 + 21R) / SUMRN	PKN0[2:0] = "100"	
KVN6	VLCD63 - ΔV x (VRN0 + 25R) / SUMRN	PKN0[2:0] = "101"	
KVN7	VLCD63 - ΔV x (VRN0 + 29R) / SUMRN	PKN0[2:0] = "110"	
KVN8	VLCD63 - ∆V x (VRN0 + 33R) / SUMRN	PKN0[2:0] = "111"	
KVN9	VLCD63 - ΔV x (VRN0 + 33R + VRHN) / SUMRN	PKN1[2:0] = "000"	
KVN10	VLCD63 - ∆V x (VRN0 + 34R + VRHN) / SUMRN	PKN1[2:0] = "001"	
KVN11	VLCD63 - ∆V x (VRN0 + 35R + VRHN) / SUMRN	PKN1[2:0] = "010"	
KVN12	VLCD63 - ∆V x (VRN0 + 36R + VRHN) / SUMRN	PKN1[2:0] = "011"	VINN2
KVN13	VLCD63 - ∆V x (VRN0 + 37R + VRHN) / SUMRN	PKN1[2:0] = "100"	VIIVIVE
KVN14	VLCD63 - ∆V x (VRN0 + 38R + VRHN) / SUMRN	PKN1[2:0] = "101"	
KVN15	VLCD63 - ∆V x (VRN0 + 39R + VRHN) / SUMRN	PKN1[2:0] = "110"	
KVN16	VLCD63 - ∆V x (VRN0 + 40R + VRHN) / SUMRN	PKN1[2:0] = "111"	
KVN17	VLCD63 - ΔV x (VRN0 + 45R + VRHN) / SUMRN	PKN2[2:0] = "000"	
KVN18	VLCD63 - ΔV x (VRN0 + 46R + VRHN) / SUMRN	PKN2[2:0] = "001"	
KVN19	VLCD63 - ΔV x (VRN0 + 47R + VRHN) / SUMRN	PKN2[2:0] = "010"	
KVN20	VLCD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN	PKN2[2:0] = "011"	VANING
KVN21	VLCD63 - ∆V x (VRN0 + 49R + VRHN) / SUMRN	PKN2[2:0] = "100"	VINN3
KVN22	VLCD63 - ∆V x (VRN0 + 50R + VRHN) / SUMRN	PKN2[2:0] = "101"	
KVN23	VLCD63 - ∆V x (VRN0 + 51R + VRHN) / SUMRN	PKN2[2:0] = "110"	
KVN24	VLCD63 - ∆V x (VRN0 + 52R + VRHN) / SUMRN	PKN2[2:0] = "111"	
KVN25	VLCD63 - ∆V x (VRN0 + 68R + VRHN) / SUMRN	PKN3[2:0] = "000"	
KVN26	VLCD63 - ∆V x (VRN0 + 69R + VRHN) / SUMRN	PKN3[2:0] = "001"	
KVN27	VLCD63 - ΔV x (VRN0 + 70R + VRHN) / SUMRN	PKN3[2:0] = "010"	
KVN28	VLCD63 - Δ V x (VRN0 + 71R + VRHN) / SUMRN	PKN3[2:0] = "011"	
KVN29	VLCD63 - ΔV x (VRN0 + 72R + VRHN) / SUMRN	PKN3[2:0] = "100"	VINN4
KVN30	VLCD63 - Δ V x (VRN0 + 73R + VRHN) / SUMRN	PKN3[2:0] = "101"	
KVN31	VLCD63 - ΔV x (VRN0 + 74R + VRHN) / SUMRN	PKN3[2:0] = "110"	
KVN32	VLCD63 - ΔV x (VRN0 + 75R + VRHN) / SUMRN	PKN3[2:0] = "111"	
KVN33	VLCD63 - ΔV x (VRN0 + 80R + VRHN) / SUMRN	PKN4[2:0] = "000"	
KVN34	VLCD63 - ΔV x (VRN0 + 81R + VRHN) / SUMRN	PKN4[2:0] = "001"	
KVN35	VLCD63 - ΔV x (VRN0 + 82R + VRHN) / SUMRN	PKN4[2:0] = "010"	
KVN36	VLCD63 - ΔV x (VRN0 + 82R + VRHN) / SUMRN	PKN4[2:0] = "011"	
KVN37	VLCD63 - ΔV x (VRN0 + 84R + VRHN) / SUMRN	PKN4[2:0] = "100"	VINN5
KVN38	VLCD63 - ΔV x (VRN0 + 84R + VRHN) / SUMRN	PKN4[2:0] = "101"	
KVN39		PKN4[2:0] = "110"	
	VLCD63 - ΔV x (VRN0 + 86R + VRHN) / SUMRN	PKN4[2:0] = "111"	
KVN40	VLCD63 - ∆V x (VRN0 + 87R + VRHN) / SUMRN VLCD63 - ∆V x (VRN0 + 87R + VRHN + VRLN) / SUMRN		
KVN41		PKN5[2:0] = "000"	
KVN42	VLCD63 - ΔV x (VRN0 + 91R + VRHN + VRLN) / SUMRN	PKN5[2:0] = "001"	
KVN43	VLCD63 - ΔV x (VRN0 + 95R + VRHN + VRLN) / SUMRN	PKN5[2:0] = "010"	
KVN44	VLCD63 - ΔV x (VRN0 + 99R + VRHN + VRLN) / SUMRN	PKN5[2:0] = "011"	VINN6
KVN45	VLCD63 - ΔV x (VRN0 + 103R + VRHN + VRLN) / SUMRN	PKN5[2:0] = "100"	
KVN46	VLCD63 - ΔV x (VRN0 + 107R + VRHN + VRLN) / SUMRN	PKN5[2:0] = "101"	
KVN47	VLCD63-ΔV x (VRN0 + 111R + VRHN + VRLN) / SUMRN	PKN5[2:0] = "110"	
KVN48	VLCD63 - ΔV x (VRN0 + 115R + VRHN + VRLN) / SUMRN	PKN5[2:0] = "111"	\
KVN49	VLCD63 - Δ V x (VRN0 + 120R + VRHN + VRLN) / SUMRN		VINN7

SUMRN: Total of the negative polarity ladder resistance = 128R + VRHN + VRLN + VRN0 + VRN1

 SSD1283A Series
 Rev 0.12
 P 43/58
 Jul 2005
 Solomon Systech

 $[\]Delta V\!\!:$ Voltage difference between VLCD63 and of GND.

12 MAXIMUM RATINGS

Table 6 - Maximum Ratings (Voltage Referenced to V_{SS})

Symbol	Parameter	Value	Unit
VDD		-0.3 to +2.7	V
VDDIO	Supply Voltage	-0.3 to +4.0	V
VDDEXT		-0.3 to +4.0	V
VCI	Input Voltage	VSS - 0.3 to 5.0	V
I	Current Drain Per Pin Excluding V _{DD} and V _{SS}	25	mA
T _A	Operating Temperature	-20 to +70	°C
T _{stg}	Storage Temperature	-65 to +150	°C
Ron	Input Resistance	TBD	Ω

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions to be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that VCI and Vout be constrained to the range VSS < VDDIO \leq VCI < V_{OUT}. Reliability of operation is enhanced if unused input is connected to an appropriate logic voltage level (e.g., either VSS or VDDIO). Unused outputs must be left open. This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

13 DC CHARACTERISTICS

Table 7 - DC Characteristics

(Unless otherwise specified, Voltage Referenced to VSS, VDDIO = 2.5 to 3.6V, VCI = 2.5 to 3.6V, TA = -20 to 70°C)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
V_{DD}	System power supply pins of the logic block	Recommend Operating Voltage Possible Operating Voltage	1.65	-	2.5	V
V_{DDIO}	Power supply pin of IO pins	Recommend Operating Voltage Possible Operating Voltage	1.4	-	3.6	V
V_{DDEXT}	Auxiliary power supply pin for VDD	Recommend Operating Voltage Possible Operating Voltage	1.65	-	3.6	V
VcI	Booster Reference Supply Voltage Range (3)	Recommend Operating Voltage Possible Operating Voltage	2.5 or VDDIO	-	3.6	V
		No panel loading; 4x booster; ITO for VCIX2, VCI and VCHS = 10 Ohm	82	89.5	-	%
V_{GH}	Gate driver High Output Voltage Booster efficiency ¹	No panel loading; 5x booster; ITO for VCIX2, VCI and VCHS = 10 Ohm	78	88.5		%
		No panel loading; 6x booster; ITO for VCIX2, VCI and VCHS = 10 Ohm	70	80	-	%
V _{CIX2}	VCIX2 primary booster efficiency ²	No panel loading, 4x or 5x booster; ITO for VCIX2, VCI and VCHS = 10 Ohm	83	90		%
V_{goffL}	Gate driver Low Output Voltage		-15.0		-	V
V_{comH}	Vcom High Output Voltage			TBD		
V_{comL}	Vcom Low Output Voltage		VCIM+0.5	TBD		V
V _{LCD63}	Max. Source Voltage		-	-	V _{CIX2} -0.1	V
ΔV_{LCD63}	Source voltage variation		-2		2	%
V_{OH1}	Logic High Output Voltage	lout=-100μA	0.9* VDDIO	-	VDDIO	٧
V _{OL1}	Logic Low Output Voltage	Iout=100µA	0	-	0.1*VDDIO	V
V _{IH1}	Logic High Input voltage		0.8*VDDIO	-	VDDIO	V
V _{IL1}	Logic Low Input voltage		0	-	0.2*VDDIO	V
I _{OH}	Logic High Output Current Source	Vout = V _{DD} -0.4V	50	-	-	μΑ
I _{OL}	Logic Low Output Current Drain	Vout = 0.4V	-	-	-50	μΑ
l _{OZ}	Logic Output Tri-state Current Drain Source		-1	-	1	μΑ
I _{IL} /I _{IH}	Logic Input Current		-1	-	1	μΑ
C _{IN}	Logic Pins Input Capacitance		-	5	7.5	pF
F _{FRAME}	Frame frequency	Display is ON	60	66	70	Hz
fosc	Internal oscillator frequency variation		-10	-	10	%
TC	Temperature compensation		-	TBD	-	%
I _{dp} (262k)	VCI display current at 262k mode	Full color current consumption without panel loading	-	2.4	-	mA
I _{dp} (8 color)	VCI display current at 8 color mode	8 color mode current consumption without panel loading	-	600	-	μΑ
I _{slp}	VCI sleep mode current	Oscillator off, no source/gate output, ram read write halt	-	70	-	μΑ
R _{SON}	Source drivers output resistance		-	1	TBD	kΩ
R _{GON}	Gate drivers output resistance		-	500	TBD	Ω
R _{CON}	Vcom output resistance		-	200	TBD	Ω

Note1: VGH efficiency = VGH/(VCI x n) x 100% Note2: VCIX2 efficiency = VCIX2 /(VCI x2) x 100%

(where n = booster factor)

SSD1283A Series Rev 0.12 P 45/58 Jul 2005 Solomon Systech

14 AC CHARACTERISTICS

Table 8 - Parallel Timing Characteristics (T_A = -40 to 85°C, V_{DD} = 2.6V to 3.3V)

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time (write cycle)	66	100	-	ns
t _{AS}	Address Setup Time	-	TBD	-	ns
t _{AH}	Address Hold Time	-	TBD	-	ns
t _{DSW}	Data Setup Time	-	TBD	-	ns
t _{DHW}	Data Hold Time	-	TBD	-	ns
t _{ACC}	Data Access Time	-	TBD	-	ns
tон	Output Hold time	-	TBD	-	ns
PW _{CSH}	Chip Select High Pulse Width (write cycle)	-	TBD	-	ns
PW _{CSL}	Chip Select Low Pulse Width (write cycle)	-	TBD	-	ns
t _F	Chip Select Fall Time	-	TBD	-	ns
t_R	Chip Select Rise Time	-	TBD	-	ns

Figure 8 - Parallel 6800-series Interface Timing Characteristics

Solomon Systech Jul 2005 P 46/58 Rev 0.12 SSD1283A Series

Table 9 – Parallel Timing Characteristics (T_A = -40 to 85°C, V_{DD} = 2.6V to 3.3V)

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time (write cycle)	-	TBD	-	ns
t _{AS}	Address Setup Time	-	TBD	-	ns
t _{AH}	Address Hold Time	-	TBD	-	ns
t _{DSW}	Data Setup Time	-	TBD	-	ns
t_{DHW}	Data Hold Time	-	TBD	-	ns
t _{ACC}	Data Access Time	-	TBD	-	ns
t _{OH}	Output Hold time	-	TBD	-	ns
PW _{CSH}	Chip Select High Pulse Width (write cycle)	-	TBD	-	ns
PW_{CSL}	Chip Select Low Pulse Width (write cycle)	-	TBD	-	ns
t _F	Chip Select Fall Time	-	TBD	-	ns
t_R	Chip Select Rise Time	-	TBD	-	ns

Figure 9 - Parallel 8080-series Interface Timing Characteristics

 SSD1283A Series
 Rev 0.12
 P 47/58
 Jul 2005
 Solomon Systech

Table 10 - Serial Timing Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
t _{cvcle}	Clock Cycle Time	-	TBD	-	ns
f _{CLK}	Serial Clock Cycle Time SPI Clock tolerance = +/- 2 ppm	-	TBD	-	MHz
t _{AS}	Register select Setup Time	-	TBD	-	ns
t _{AH}	Register select Hold Time	-	TBD	-	ns
t _{CSS}	Chip Select Setup Time	-	TBD	-	ns
t _{CSH}	Chip Select Hold Time	-	TBD	-	ns
t _{DSW}	Write Data Setup Time	-	TBD	-	ns
tohw	Write Data Hold Time	-	TBD	-	ns
t _{CLKL}	Clock Low Time	-	TBD	-	ns
t _{CLKH}	Clock High Time	-	TBD	-	ns
t _F	Chip Select Fall Time	-	TBD	-	ns
t _R	Chip Select Rise Time	-	TBD	-	ns

Figure 10 - 4 wire Serial Timing Characteristics

 Solomon Systech
 Jul 2005
 P 48/58
 Rev 0.12
 SSD1283A Series

15 ITO resistance requirement

Pin Group	Pin Names	Suggested Maximum resistance
Primary booster	VCI, VCIX2, VCHS	10 Ω
Secondary booster	C1N, C1P, C2N, C2P, C3N, C3P, VGH, VGOFFL	20 Ω
Ground	VSS, AVSS, VSSRC	10 Ω
Power supply	VDD, VDDEXT	20 Ω
Current saving	CDUM0, CDUM1	20 Ω
Others	VCIM	20 Ω

16 GDDRAM Address

	RL=1	S0	S1	S2	S3	S4	S5	S6	S7	S8		S390	S391	S392	S393	S394	S395	
	RL=0	S395	S394	S393	S392	S391	S390	S389	S388	S387		S5	S4	S3	S2	S1	S0	
	BGR=0	R	G	В	R	G	В	R	G	В		R	G	В	R	G	В	Vertical
	BGR=1	В	G	R	В	G	R	В	G	R		В	G	R	В	G	R	address
TB=1	TB=0																	·
G0	G131		0000H			0001H			0002H				0082H			0083H		0
G1	G130		0100H			0101H			0102H				0182H			0183H		1
G2	G129		0200H			0201H			0202H				0282H			0283H		2
G3	G128		0300H			0301H				0383H		3						
G4	G127		0400H			0401H			0402H				0482H			0483H		4
			•			•			•				•			•		-
	•		•			•					• (•		•
G128	G3		8000H			8001H			8002H				8082H			8083H		128
G129	G2		8100H			8101H			8102H	Э,	۸.		8182H			8183H		129
G130	G1		8200H			8201H			8202H				8282H	_		8283H		130
G131	G0		8300H			8301H			8302H		4		8382H			8383H		131
Horizonta	l address		0			1			2				130			131		

Remark: The address is in yyxxH format, where yy is the vertical address and xx is the horizontal address

 SSD1283A Series
 Rev 0.12
 P 49/58
 Jul 2005
 Solomon Systech

17 Interface Mapping

1) Mapping for Writing an Instruction

			Hardware pins																
Interface	Cycle	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
18 bits	•	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	Х	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0	Х
16 bits		IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8		IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0	
9 bits	1 st										IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	Х
9 0115	2 nd										IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0	Х
8 bits	1 st										IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	
o Dits	2 nd										IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0	

Remark: x Don't care bits
Not connected pins

2) Mapping for Writing Pixel Data(s)

		1 st	R5	R4	R3	R2	R1	R0	Х	Х	G5	G4	G3	G2	G1	G0	Х	Х	
		2 nd	B5	B4	ВЗ	B2	B1	B0	Х	Х	R5	R4	R3	R2	R1	R0	Х	Х	
		3 rd	G5	G4	G3	G2	G1	G0	Х	Х	B5	B4	В3	B2	B1	B0	Х	X	
16 bits	262k	1 st	R5	R4	R3	R2	R1	R0	Х	Х	G5	G4	G3	G2	G1	G0	Х	X	
10 0113		2 nd	Х	Х	Х	Х	Х	Х	Х	Х	B5	B4	В3	B2	B1	B0	X	X	
		1 st	R5	R4	R3	R2	R1	R0	Х	Х	G5	G4	G3	G2	G1	G0	Х	X	
		2 nd	B5	B4	В3	B2	B1	B0	X	X	X	Х	Х	X	Χ	X	Χ	Х	
	65k		R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B4	B3	B2	B1	B0	
9 bits	262k	1 st									R5	R4	R3	R2	R1	R0	G5	G4	G3
9 DILS	202K	2 nd									G2	G1	G0	B5	B4	В3	B2	B1	В0
		1 st									R5	R4	R3	R2	R1	R0	Х	Х	
	262k	2 nd									G5	G4	G3	G2	G1	G0	Х	Х	
8 bits	3 rd									B5	B4	B3	B2	B1	B0	Х	Х		
	65k	1 st									R4	R3	R2	R1	R0	G5	G4	G3	
	55K	2 nd									G2	G1	G0	B4	В3	B2	B1	B0	

Remark : x Don't care bits
Not connected pins

 Solomon Systech
 Jul 2005
 P 50/58
 Rev 0.12
 SSD1283A Series

18 SSD1283A OUTPUT VOLTAGE RELATIONSHIP

Figure 11 - LCD Driving Voltage Relationship

SSD1283A Series Rev 0.12 P 51/58 Jul 2005 **Solomon Systech**

19 APPLICATION CIRCUIT

Figure 12 - Booster Capacitors

Figure 13 - Filtering and Charge Sharing Capacitors

Figure 14 - Power Supply Pins Connections

 Solomon Systech
 Jul 2005
 P 52/58
 Rev 0.12
 SSD1283A Series

Figure 15 - Panel Connection Example (with external resistor for panel trimming)

SSD1283A Series | Rev 0.12 | P 53/58 | Jul 2005 | **Solomon Systech**

20 Package Information

20.1 Die Tray Dimension

	Spec	
	mm	(mil)
W1	76.0 ± 0.2	(2992)
W2	68.0 ± 0.2	(2677)
Н	4.20 ± 0.1	(165)
Е	1.60 ± 0.1	(63)
K	1.50 ± 0.1	(59)
Px	21.49 ± 0.1	(646)
Ру	3.22 ± 0.1	(127)
Χ	17.99 + 0.1	(708)
Υ	2.05 + 0.1	(81)
Z	0.56 ± 0.05	(22)
N	60	

 Solomon Systech
 Jul 2005
 P 54/58
 Rev 0.12
 SSD1283A Series

21 OTP Detail

Fresh die

1) Example 1 - VCMR[5:0] is as default

A fresh SSD1283A will have the OTP register default value of OTPR[5:0]=0x00 and R1F default value of VCMR[5:0]=0x36, which corresponds to base values [110110] from the 6 least significant bits.

VCMR[5:0]	1	1	0	1	1	0
OTPR[5:0]	0	0	0	0	0	0
VCOMH = VCMR XOR OTPR	1	1	0	1	1	0

2) Example 2 - VCMR[5:0] is adjusted

VCMR[5:0] will exclusive or (XOR) with the OTPR default value (0x00) to form a new VCOMH default value, and it is recommended to set this command right after the power control commands when applicable.

For example, when VCMR[5:0]=0x0030 which corresponding to [110000], the resultant VCOMH will be as below.

VCMR[5:0]	1	1	0	0	0	0
OTPR[5:0]	0	0	0	0	0	0
VCOMH = VCMR xor OTPR	1	1	0	0	0	0

The new VCOMH default value will become, 0x30

(Please be noted that preceding 10'b is added to the result so as to have uniformity as R1E command is sent.)

3) Example 3 - VCM[5:0] is adjusted and nOTP=1

nOTP=1 will override the default VCOMH value and is used together with VCM[5:0] to find out the optimal value against flickering.

Purpose VCMR[5:0] and OTPR[5:0] is the same as example 2.

For example, when nOTP=1 and VCM[5:0]=0x36 which corresponding to [110110], the resultant VCOMH will equal VCM regardless the value of VCMR XOR OTPR.

VCM[5:0]	1	1	0	1	1	0
VCOMH = VCM	1	1	0	1	1	0

The new VCOMH value will become, 0x36

(Please be noted that preceding 10'b is added to the result so as to have uniformity as R1E command is sent.)

SSD1283A Series | Rev 0.12 | P 55/58 | Jul 2005 | **Solomon Systech**

Program OTP

When nOTP=1, R1E command is mainly used to find out the optimal value against flickering. The OTPR will be programmed as below.

(The equivalent VCOMH value is simply VCM[5:0] if nOTP is 1)

1) Example 1 - VCMR[5:0] is as default, target VCOMH value is equivalent to VCM[5:0] = 0x30.

When R1E-0x00B0 is sent, VCM[5:0] will be [110000]. The OTPR will be the XOR result of VCM[5:0] and VCMR[5:0]. In this case, VCMR[5:0] is the default = 0x36.

VCM[5:0]	1	1	0	0	0	0
VCMR[5:0]	1	1	0	1	1	0
OTPR[5:0]	0	0	0	1	1	0

The result in OTPR means bit 2 and bit 1 in OTPR[5:0] are programmed.

Example 2 – VCMR[5:0]=0x30 is adjusted, target VCOMH value is equivalent to VCM[5:0] = 0x30.

For optimum performance against flickering with different panel characteristic, VCMR[5:0] can be adjusted to reduce the frequency on OTP execution.

For VCMR[5:0]=0x30 is adjusted, and VCOMH target is same as VCM[5:0]=0x30, the below result shows that OTP is not required if VCMR[5:0] is adjusted.

VCM[5:0]	1	1	0	0	0	0
VCMR[5:0]	1	1	0	0	0	0
Result OTPR[5:0]	0	0	0	0	0	0

However, SSD1283A requires VCMR[5:0]=0x30 to be updated when power up every time in order to produce the target VCOMH value of VCM[5:0]=0x30

VCMR[5:0]	1	1	0	0	0	0
OTPR	0	0	0	0	0	0
VCOMH = VCMR xor OTPR	1	1	0	0	0	0

Please be reminded that OTP registers can be fired once and cannot be recovered, it is recommended to finalize the optimal OTP value before firing.

Solomon Systech Jul 2005 | P 56/58 | Rev 0.12 | SSD1283A Series

Example 3 – VCMR[5:0]=0x30 is adjusted, target VCOMH value is equivalent to VCM[5:0] = 0x31.

Upon process variation, there may be a variation in the panel characteristic, OTP may be used to adapt this.

VCMR[5:0] is adjusted to 0x30 as example 2 to reduce the frequency on OTP execution.

For VCM[5:0]=0x31 is adjusted to adapt the process variation, and VCOMH target is same as VCM[5:0]=0x31, the below result shows that only bit 1 of OTPR is required for programming if VCMR[5:0] is adjusted.

VCM [5:0]	1	1	0	0	0	1
VCMR[5:0]	1	1	0	0	0	0
Result OTPR	0	0	0	0	0	1

However, SSD1283A requires VCMR[5:0]=0x30 to be updated when power up every time in order to produce the target VCOMH value of VCM[5:0]=0x31

VCMR[5:0]	1	1	0	0	0	0
OTPR	0	0	0	0	0	1
VCOMH = VCMR XOR OTPR	1	1	0	0	0	1

 SSD1283A Series
 Rev 0.12
 P 57/58
 Jul 2005
 Solomon Systech

Solomon Systech reserves the right to make changes without further notice to any products herein. Solomon Systech makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or each customer application by customer's technical experts. Solomon Systech does not convey any license under its patent rights or others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part

http://www.solomon-systech.com

Solomon Systech Jul 2005 | P 58/58 | Rev 0.12 | SSD1283A Series