Цифровая схемотехника и архитектура компьютера

второе издание Дэвид М. Харрис и Сара Л. Харрис

Спонсор перевода - Imagination Technologies www.imgtec.com Переведено командой из компаний и университетов России, Украины, США и Великобритании Электронные компоненты цифровых устройств

Определение основных Электрических характеристик

Напряжение/потенциал

Напряжение - разность потенциалов между точками A и B

$$\begin{array}{ccc} \mathbf{A} & \mathbf{B} \\ & & \\ + & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array}$$

$$U=rac{A_{_{AB}}}{q}=arphi_{_{A}}-arphi_{_{B}}$$

Потенциал и напряжение измеряется в вольтах.

Напряжение имеет направление от 🕇 ——————

Напряжение

Потенциал земли принимается равным 0 вольт.

$$\perp$$
 = \perp = GND = 0 Вольт

В электронных устройствах выбирается некоторая общая точка, потенциал которой считается равным 0 (схемная земля GND (Ground) или общий COM (Common)).

Все остальные напряжения измеряются относительно этой точки.

Напряжение может быть:

- постоянным («V=»);
- переменным («V~»).

ATX Main Power Connector

Электрический ток

Электрический ток — направленное движение электрически заряженных частиц под воздействием напряжения электрического поля.

Заряженными частицами могут быть:

- в проводниках электроны;
- в электролитах ионы (положительно или отрицательно заряженный атомы),
- в полупроводниках электроны и дырки (дырка это отсутствие электрона в электронной оболочке атома.)

Сила тока –измеряется в амперах или долях ампер).

Постоянный ток — движение частиц в дном направлении Переменный ток — движение частиц сначала в одном в дном направлении, потом в обратном

Электрическое сопротивление/резистор

Сопротивление (R) – это свойство вещества препятствовать протеканию электрического тока.

Элементы, которые задают нужное сопротивление называются резисторами и обозначаются:

Законы Ома

Закон Ома для участка цепи:

$$U = I \cdot R$$

- Закон Ома для полной цепи:
 - Сумма падений напряжений на отдельных участках цепи равна приложенному напряжению питания

$$U_{\Pi} = U1 + U2 = I*R1 + I*R2$$

 $U2 = U_{\Pi} - U1 = U_{\Pi} - I*R1$

Мощность тока (постоянного)

Мощность электрического тока — это отношение произведенной им работы ко времени в течение которого совершена работа.

$$P = \frac{W}{t} = U \cdot I = \frac{U^2}{R} = I^2 \cdot R$$

Мощность выделяемая на сопротивлении R пропорциональна квадрату протекающего через него тока

Ёмкость/конденсатор

Конденсатор — система, состоящая из проводников и диэлектрика, служащая для накопления заряда.

- «Пропускает» только переменный ток
- Конденсатор «затягивает» /искажает фронты цифрового сигнала

Конденсатор

При некачественном диэлектрике в конденсаторе возникают сквозные постоянные токи, которые приводят к «закипанию» и взрыву конденсатора.

Активные элементы электронных устройств

Электроны и дырки

Si Кремний - 4 электрона

As Мышьяк - 5 электронов

In Индий - 3 электрона

Полупроводник с избытком электронов называется полупроводником N-типа Полупроводник с избытком дырок называется полупроводником P-типа 13

Пояснения к предыдущему слайду

- Атом состоит из:
- Ядра (протоны+нейтроны) и электронов. Электроны находятся на разных орбитах. Электроны, которые находятся на самых крайних орбитах называются валентными и служат для образования парных связей с ядрами других атомов.
- Валентный электрон может отрываться от атом и становиться свободными, а на его месте образуется дырка и атом становится положительно заряженным ионом. При нормальных условиях количество свободных электронов и дырок в полупроводниках не велико.
- У атома кремния всего 14 электрона, но четыре из них валентные.
- Если в кремний добавить примесь, Например мышьяк, у которого 5 валентных электронов, то атомы мышьяка заменят атом ы кремния и четыре из пяти электронов мышьяка образуют парные (ковалентные связи) с соседними атомами кремния, а пятый становится свободным. При этом атом примеси, потерявший электрон становится положительно заряженным (ионом). Количество дырок при этом не увеличивается. Такой полупроводник называется полупроводником n-типа.
- Если в кремний добавить индий, у которого три валентных электрона, то он образует три парные связи с соседними атомами, а четвертая связь будет не заполненной. И тогда электроны из соседних атомов могут заполнять эту связь. В результате на месте электрона образуется дырка. При этом атом индия с дополнительным электроном становится отрицательно заряженным (ионом). Такой полупроводник называется полупроводником р-типа

Свойства р-п перехода

При соединении двух полупроводников дырки и электроны начинают двигаться на встречу друг другу и взаимно уничтожаются (рекомбинируют), образуя нейтральные атомы, в результате на границе образуется обедненный слой в котором отсутствуют дырки и электроны, а остаются положительно и отрицательно заряженные атомы (ионы) примеси, которые создают запирающий слой (запирающее напряжение Езап = 0.3-0.6 Вольт) и ток ток через p-n переход уменьшается.

Свойства р-п перехода

При подаче на p-n переход внешнего напряжения, совпадающего по направлению с начальным запирающим напряжением, запирающий слой расширяется и переход закрывается. Тока нет.

Свойства р—п перехода

При подаче на p-n переход внешнего напряжения (0,3-0,6) Вольт, противоположного по направлению к начальному запирающему напряжению, запирающий слой уменьшается и переход открывается и через него течет ток. Величина тока зависит от приложенного на переход тока.

Диод-выпрямитель преобразует переменное напряжение в постоянное

Светодиоды

Когда избыточные электроны переходят из материала n-типа в материал p-типа и рекомбинируют (объединяются) с дырками, происходит выделение энергии в виде фотонов, элементарных частиц (квантов) электромагнитного излучения.

Разные полупроводниковые материалы испускают фотоны разного цвета.

Фотодиод

Фотодиод — это элемент в котором протекающий через светодиод ток будет зависеть от падающего на p-n — переход света (детектор изображения).

Биполярный транзистор (1947 год)

Транзистор представляет собой два включенных последовательно p-n —перехода:

- база -- эмиттер;
- база -- коллектор.

Транзистор

Биполярный транзистор (1947 год)

Транзистор представляет собой два включенных последовательно p-n –перехода:

- база -- эмиттер;
- база -- коллектор.

Uбк >> Uбэ

Пояснения к работе транзистора

- При подаче напряжения смещения **Uбэ** (прямое) и **Uбк** (обратное) (Uбк >> Uбэ) на транзистор, переход база эмиттер открывается, а переход база коллектор закрывается.
- Свободные носители (в нашем примере дырки)проникают с эмиттера в базу, где подхватываются большим напряжением коллектора и проходят через закрытый переход база коллектор.
- Через транзистор течет ток.Изменяя напряжение U_{бэ} изменяется ширина запорного слоя и ток через транзистор.
- База тонкая и электронов изначально немного (задается при изготовлении). При переходе через p-n переход б/э часть дырок заполняется электронами (самоуничтожаются), а так как дырки поступают постоянно, они создают избыточный положительный заряд, который втягивают электроны от источника питания через вывод базы и образуют незначительный ток базы.

Биполярный транзистор

Количество основных носителей в базе делают не большим, поэтому ток базы намного меньше тока эмиттера. «Малый ток базы управляет «большим током коллектора»»

$$I_{\mathfrak{I}} = I_{\scriptscriptstyle E} + I_{\scriptscriptstyle K}$$

$$b=rac{I_{_{9}}}{I_{_{E}}}$$
 - коэффициент усиления по току

Передаточная характеристика б.п. транзистора

Передаточная характеристика

Усилительный каскад

Полевой транзистор

Образование канала

При подаче напряжения (2-4 вольта) на затвор более положительного относительно истока под диэлектриком образуется поле, которое притягивает электроны из Робласти и отталкивает дырки - появляется токопроводящий канал N - типа

Ток канала

 При подаче более положительного напряжения на сток относительно истока, электроны от истока начинают двигаться по каналу к стоку, появляется ток.

Полевой транзистор N-типа

Чем больше напряжение на затворе, тем шире канал и больше ток

Полевой транзистор Р-типа

Транзистор с **каналом Р**- типа образуется дырками при подаче на затвор напряжения более отрицательного, относительно истока и отрицательного напряжения на сток

Типы полевых транзисторов

В зависимости от способа организации управляющего поля полевые транзисторы бывают трех типов.

ACTOPBI OBIBAIOT TPCX TVITIOB.				
Tun	С каналом п-типа		С каналом р-типа	
транзистора	Полярность	Вольт-амперная	Полярность	Вольт-амперная
	напряжений	характеристика	напряжений	характеристика
С управляющим p-n-переходом	С 3 + И	I_{c} U_{3H}	+ 3 - И	I_{c} U_{3H}
МДП со встроенным каналом	з <u>+</u> П	I_{c} U_{3H}	з 	I_{c} U_{3H}
МДП с индуцирован- ным каналом	3 ⁺ П	$I_{ m c}$ $U_{ m 3H}$	3 ⁺ П	I_{c} U_{3H}

Достоинства полевых транзисторов

- Меньшее потребление мощности
 - полевые транзисторы управляются электрическим полем, управляющий ток затвора значительно меньше управляющего тока базы биполярного транзистора, поэтому они потребляют меньше мощности
- При изготовлении занимают меньше места на кристалле.
- Микросхемы цифровой техники чаще изготавливаются на основе полевых транзисторов.

Элемент НЕ

- При подаче X=0 открывается Q1 и 5 вольт поступает на выход
- При подаче X=1 открывается Q6 и 0 вольт поступает на выход

Инвертор

Элемент ИЛИ-НЕ

Элемент И-НЕ

Семейства логических элементов

Можно выделить следующие семейства логических элементов:

- •**ТТЛ** транзисторно —транзисторная логика (Transistor-Transistor Logic, или TTL) на биполярных транзисторах
- **КМОП** логика, построенная на МОП mpaнзисторах(Complementary Metal-Oxide-Semiconductor Logic, или CMOS)
- •**НТТЛ** низковольтная транзисторно-транзисторная логика (Low-Voltage Transistor-Transistor Logic, или LVTTL)
- **НКМОП** низковольтная логика на комплементарной структуре металл-оксид-полупроводник (Low-Voltage Complementary Metal-OxideSemiconductor Logic, или LVCMOS).

Напряжение питания

С переходом на транзисторы меньшего размера, напряжение питания последовательно снижали до 3,3В; 2,5В; 1,8В; 1,5В В;1,2В Причины:

для избежания перегрева транзисторов; для уменьшения потребляемой мощности;

Не все элементы могут взаимодействовать друг с другом.

Особенности транзисторов

- Входное сопротивление должно быть максимальным (входной ток минимальным).
- Транзистор должен обладать по возможности большим коэффициентом усиления
- Ток через транзистор не должен зависеть от температуры
- Для получения этих параметров несколько транзисторов объединяют в одну схему в одном корпусе операционный усилитель

Операционный усилитель – сборище транзисторов

AD820

FEATURES

True single-supply operation
Output swings rail-to-rail
Input voltage range extends below ground
Single-supply capability from 5 V to 30 V
Dual-supply capability from ±2.5 V to ±15

Excellent load drive

Capacitive load drive up to 350 pF Minimum output current of 15 mA Excellent ac performance for low power 800 μA maximum quiescent current Unity-gain bandwidth: 1.8 MHz Slew rate of 3 V/μs

Excellent dc performance 800 μV maximum input offset voltage 2 μV/°C typical offset voltage drift 25 pA maximum input bias current

Low noise: 13 nV/√Hz @ 10 kHz

AD820 PIN CONFIGURATIONS NULL 1 8 NC AD820 7 +V_S **ANALOG** 6 V_{OUT} TOP VIEW 5 NULL (Not to Scale) NC = NO CONNECT Figure 1. 8-Lead PDIP 8 NC AD820 7 +V_S -IN 2 6 V_{OUT} +IN 3 TOP VIEW -Vs 4 5 NC NC = NO CONNECT

Figure 2. 8-Lead SOIC_N and 8-Lead MSOP

Операционный усилитель

Условные обозначения:

- V_{+} не инвертирующий вход
- V₋ инвертирующий вход
- V_{out} выход
- V_{s+} плюс напряжения питания
- V_{s-} минус напряжения питания

Условное графическое обозначение операционного усилителя

- Усиливает только разность входных напряжений.
- Коэффициент усиления стремится к бесконечности

Инвертирующее включение

Не инвертирующий усилитель

