CPU Algorithm Design

Exercise 3 Students: Vishal Mangukiya, Konstantin Benz

3.1 Adapting reduce and transform

The input containers in reduce_LoopUnrolling_view.hpp and transform_LoopUnrolling_view.hpp have been adapted as requested. For the reduction routines, std::views::repeat(1.0f, N) is used to replace the original memory-backed containers. This ensures that the workload is compute-bound rather than memory-bound. For the transform routines, std::ranges::views::iota(0, N) is used for the input range, and the output container W is a fixed-size std::vector<Real>(256) with modulo indexing.

All adapted benchmark functions were successfully compiled and tested using the executables reduceVbenchmarkUnroll and transformVbenchmarkUnroll on the target system.

3.2	Adapting	bench Transform Unroll Loop Peeling Directory and the property of the proper
tive	}	

3.3	Adapting	benchReduce	Unrol	$\operatorname{llTree} \Gamma$	Directive
-----	----------	-------------	------------------------	--------------------------------	-----------

 $3.4\ Adapting\ bench Reduce Unroll Sim dX Horizontal\ and\ bench Reduce Unroll Sim dX Vertical$

3.5 Benchmarking